Extracting & Learning a Dependency-Enhanced Grammar for Dutch

Konstantinos Kogkalidis June 2019

Overview

- Parsing as Deduction
- Extraction
- Supertagging
- Parsing

Parsing as Deduction

Intro: Categorial Grammars

- ullet Lexicon \mathcal{L} : words o categories
- Categories defined by some inductive scheme
 - Atomic Categories: full phrases {NP, S, ...}
 - Complex Categories: fractionals $\{{\rm NP}\backslash {\rm S},\ {\rm NP}\backslash ({\rm S}/{\rm NP}),\ \dots\}$
- Category Interactions: Combination Rules
- Parsing: Rule Application

Intro: Typelogical Grammars

- Lexicon \mathcal{L} : words \rightarrow types
- Types defined by some inductive scheme
 - Atomic Types: full phrases {NP, S, ...}
 - Complex Types: fractionals $\{NP\S, NP\(S/NP), \dots\}$
- Type Interactions: Logical Rules
- Parsing: Proof Search

Typelogical Grammars: Example (Lambek & co)

Directionality & Lexical Ambiguity

```
\begin{split} \mathcal{L} := & \mathsf{eten}_1 : \mathrm{NP} \backslash (\mathrm{S/NP}), & \mathsf{eenden} \ \mathsf{eten}_1 \ \mathsf{vis} \ (\mathsf{SVO}) \\ & \mathsf{eten}_2 : (\mathrm{S/NP}) / \mathrm{NP} & \mathsf{eten}_2 \ \mathsf{eenden} \ \mathsf{vis}? \ (\mathsf{VSO}) \\ & \mathsf{eten}_3 : (\mathrm{S/NP}), & \mathsf{eten}_3 \ \mathsf{vis}! \ (\mathsf{VO}) \\ & \mathsf{eten}_{4,5} : \mathrm{NP} \backslash (\mathrm{NP} \backslash \mathrm{S}), & \mathsf{eenden} \ \mathsf{die} \ \mathsf{vis} \ \mathsf{eten}_{4,5} \ (\mathsf{SOV} \ / \ \mathsf{OSV}) \end{split}
```

. . .

Directionality & Lexical Ambiguity

```
\begin{split} \mathcal{L} := & \mathsf{eten}_1 : \mathsf{NP} \backslash (\mathsf{S/NP}), & \mathsf{eenden} \ \mathsf{eten}_1 \ \mathsf{vis} \ (\mathsf{SVO}) \\ & \mathsf{eten}_2 : (\mathsf{S/NP}) / \mathsf{NP} & \mathsf{eten}_2 \ \mathsf{eenden} \ \mathsf{vis}? \ (\mathsf{VSO}) \\ & \mathsf{eten}_3 : (\mathsf{S/NP}), & \mathsf{eten}_3 \ \mathsf{vis}! \ (\mathsf{VO}) \\ & \mathsf{eten}_{4,5} : \mathsf{NP} \backslash (\mathsf{NP} \backslash \mathsf{S}), & \mathsf{eenden} \ \mathsf{die} \ \mathsf{vis} \ \mathsf{eten}_{4,5} \ (\mathsf{SOV} \ / \ \mathsf{OSV}) \end{split}
```

Can we abstract directionality away?

Can we abstract directionality away?

Yes: Multiplicative Intuionistic Linear Logic (ACG, LP ...)

Can we abstract directionality away?

Yes: Multiplicative Intuionistic Linear Logic (ACG, LP ...)

Types:

$$T := A \mid T_1 \rightarrow T_2$$

Can we abstract directionality away?

Yes: Multiplicative Intuionistic Linear Logic (ACG, LP ...)

Types:

$$T:=A\mid T_1\to T_2$$

Logical Rules:

$$\frac{\Gamma \vdash A \to B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B} \quad (\to E) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \qquad (\to I)$$

MILL - The Good (1): Syntax-Semantics Interface

Curry-Howard Correspondence:

 $\mathsf{MILL} \equiv \mathsf{Simply-typed} \ \mathsf{Linear} \ \lambda\mathsf{-calculus}$

MILL - The Good (1): Syntax-Semantics Interface

Curry-Howard Correspondence:

$$MILL \equiv Simply-typed Linear \lambda$$
-calculus

$$\frac{\Gamma: f \vdash A \to B \quad \Delta: x \vdash A}{\Gamma, \Delta \vdash f(x): B} \qquad \frac{\Gamma, x: A \vdash u: B}{\Gamma \vdash \lambda x. u: A \to B}$$

MILL: The good (2): Lesser Lexical Ambiguity

$$\begin{split} \mathcal{L} := \mathsf{eten}_1 : \mathrm{NP} \backslash \big(\mathrm{S/NP} \big), \\ & \mathsf{eten}_2 : \big(\mathrm{S/NP} \big) / \mathrm{NP} \\ & \mathsf{eten}_3 : \big(\mathrm{S/NP} \big), \\ & \mathsf{eten}_{4,5} : \mathrm{NP} \backslash \big(\mathrm{NP} \backslash \mathrm{S} \big), \end{split}$$

MILL: The good (2): Lesser Lexical Ambiguity

$$\begin{split} \mathcal{L} := \mathsf{eten}_1 : \mathrm{NP} \backslash \big(\mathrm{S/NP} \big), \\ & \mathsf{eten}_2 : \big(\mathrm{S/NP} \big) / \mathrm{NP} \\ & \mathsf{eten}_3 : \big(\mathrm{S/NP} \big), \\ & \mathsf{eten}_{4,5} : \mathrm{NP} \backslash \big(\mathrm{NP} \backslash \mathrm{S} \big), \end{split}$$

$$\begin{split} \mathcal{L}' := \mathsf{eten}_{1,2,4,5} : \mathrm{NP} \to \mathrm{NP} \to \mathrm{S}, \\ \mathsf{eten}_3 : \mathrm{NP} \to \mathrm{S} \end{split}$$

MILL - The Bad: Structural Ambiguity

Dependency Decorations

Replace \rightarrow with dependency-decorated variants:

$$\left\{ \overset{\text{su}}{\longrightarrow}, \overset{\text{obj}}{\longrightarrow}, \overset{\text{predc}}{\longrightarrow}, \overset{\text{mod}}{\longrightarrow}, \dots \right\}$$
 eten : NP $\overset{\text{su}}{\longrightarrow}$ NP $\overset{\text{obj}}{\longrightarrow}$ S

Dependency Decorations

Replace \rightarrow with dependency-decorated variants:

$$\left\{ \overset{\text{su}}{\longrightarrow}, \overset{\text{obj}}{\longrightarrow}, \overset{\text{predc}}{\longrightarrow}, \overset{\text{mod}}{\longrightarrow}, \dots \right\}$$
 eten : NP $\overset{\text{su}}{\longrightarrow}$ NP $\overset{\text{obj}}{\longrightarrow}$ S

Lexical preferences + decorations \implies reduced ambiguity

Dependency Decorations

Replace \rightarrow with dependency-decorated variants:

$$\begin{cases} \overset{\text{su}}{\longrightarrow}, \overset{\text{obj}}{\longrightarrow}, \overset{\text{predc}}{\longrightarrow}, \overset{\text{mod}}{\longrightarrow}, \dots \end{cases}$$
 eten : NP $\overset{\text{su}}{\longrightarrow}$ NP $\overset{\text{obj}}{\longrightarrow}$ S

Lexical preferences + decorations ⇒ reduced ambiguity

Formally:

Unary modality \lozenge^d for $d \in \{$ su, obj, predc, mod, $\dots \}$

$$\frac{\Gamma \vdash A}{\langle \Gamma \rangle^d \vdash \diamondsuit^d A} \qquad (\diamondsuit^d I) \qquad \frac{\Delta \vdash \diamondsuit^d A \quad \Gamma[\langle A \rangle^d] \vdash B}{\Gamma[\Delta] \vdash B} \qquad (\diamondsuit^d E)$$

Extraction

Extraction: Intro

Goal

Syntactically-Annotated Corpus \rightarrow Type Lexicon

Extraction: Intro

Syntactically-Annotated Corpus → Type Lexicon

Corpus

```
Lassy-Small: \begin{cases} 65\,000 \text{ Sentences} \\ 1\,000\,000 \text{ Words} \\ \sim 30 \text{ Dependency Labels} \\ \sim 30 \text{ POS & Phrasal Category Tags} \end{cases}
```

Extraction: Parameters

Parameters

- Translation Tables
 - Atomic Types: POS & Phrasal Category Tags
 {np: NP, vnw: VNW, ...}
 - Implications: Dependency Labels $\{su: \xrightarrow{su}, obj: \xrightarrow{obj}, \dots\}$
- Head Dependencies {hd, rhd, whd, crd, cmp}
- Modifier Dependencies {mod, app, predm}

Extraction: Algorithm

General Idea

For each branch

- Find head, arguments, modifiers
- Collect & arrange argument types
- Type head as a functor from argument types to parent type
- Type modifiers as endomorphisms from parent type to itself

Hypothetical Reasoning

When type assigning arguments, consider internal "gaps"

Extraction: Example (1)

Extraction: Example (1)

Extraction: Example (2)

Extraction: Example (2)

Extraction: Transformations

- Majority Voting
- Headless Branches
- Ellipses
- Determiners

Extraction: Results (1)

 $\sim 5\,700$ unique types

Extraction: Results (2)

Supertagging

Supertagging: Standard Approach

Sequence Classification

Given input data sequence (word vectors) predict a class for each sequence item (types)

Supertagging: Standard Approach

Sequence Classification

Given input data sequence (word vectors) predict a class for each sequence item (types)

The problem

- Can't predict unseen items
- Difficulty predicting rare items

Supertagging: An Alternative

Type Syntax

A CFG of two meta-rules

$$\{(S \implies A) \ \forall \ A \in \mathcal{A}\}$$
$$\{(S \implies d \ S \ S) \ \forall \ d \in \mathcal{D}\}$$

Supertagging: An Alternative

Type Syntax

A CFG of two meta-rules

$$\{(S \implies A) \ \forall \ A \in \mathcal{A}\}$$
$$\{(S \implies d \ S \ S) \ \forall \ d \in \mathcal{D}\}$$

CFGs: learnable

Supertagging: An Alternative

Type Syntax

A CFG of two meta-rules

$$\{(S \implies A) \ \forall \ A \in \mathcal{A}\}$$
$$\{(S \implies d \ S \ S) \ \forall \ d \in \mathcal{D}\}$$

CFGs: learnable

Supertagging: learnable

Supertagging: An Alternative

Type Syntax

A CFG of two meta-rules

$$\{(S \implies A) \ \forall \ A \in \mathcal{A}\}$$
$$\{(S \implies d \ S \ S) \ \forall \ d \in \mathcal{D}\}$$

CFGs: learnable

Supertagging: learnable

CFG embedded within supertagging \implies unbounded co-domain

Reformulation

Given input data sequence (word vectors)

generate an output sequence (atomic types & binary
connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Requirements

- Global Receptive Field (long-distance dependencies)
- Auto-Regressive (output conditional on prior output)

Options

• RNN encoder-decoder

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Requirements

- Global Receptive Field (long-distance dependencies)
- Auto-Regressive (output conditional on prior output)

Options

• RNN encoder-decoder ©

Reformulation

Given input data sequence (word vectors)

generate an output sequence (atomic types & binary connectives)

Requirements

- Global Receptive Field (long-distance dependencies)
- Auto-Regressive (output conditional on prior output)

- RNN encoder-decoder ©
- RNN encoder-separable decoder

Reformulation

Given input data sequence (word vectors)

generate an output sequence (atomic types & binary connectives)

Requirements

- Global Receptive Field (long-distance dependencies)
- Auto-Regressive (output conditional on prior output)

- RNN encoder-decoder ©
- RNN encoder-separable decoder ③

Reformulation

Given input data sequence (word vectors)

generate an output sequence (atomic types & binary connectives)

Requirements

- Global Receptive Field (long-distance dependencies)
- Auto-Regressive (output conditional on prior output)

- RNN encoder-decoder ©
- RNN encoder-separable decoder ③
- Attentive encoder-decoder

Reformulation

Given input data sequence (word vectors)

generate an output sequence (atomic types & binary
connectives)

Requirements

- Global Receptive Field (long-distance dependencies)
- Auto-Regressive (output conditional on prior output)

- RNN encoder-decoder ©
- RNN encoder-separable decoder ③
- Attentive encoder-decoder ©

Supertagging: Model & Results

	Frequency				
	Overall	Unseen	Rare	Mid	High
Accuracy	88.05	19.2	45.68	65.62	89.93

Parsing

Parsing: Intro

Goal

From abstract syntax to surface syntax $% \left(x\right) =\left(x\right) +\left(x\right) +\left($

Parsing: Intro

Goal

From abstract syntax to surface syntax

$Parse \equiv Proof$

How can we navigate the proof space?

Parsing: General Framework

Parse State

A logical judgement

Word associations for (some) premises

A 1-step lookback

Algorithm

Given a parse state

- 1 Decide between introduction and elimination
- 2 Perform either
- 3 Update state(s)
- 4 Repeat

Parsing: Elimination

Given a sequence of word & type pairs Split into two disjoint sequences..

Parsing: Elimination

Given a sequence of word & type pairs

Split into two disjoint sequences..

..by assigning each item one of two labels