UFRGS - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2017/1 Prova da área IIA

1 - 5	6	7	Total

Nome:	artão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:		
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$	
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$	
$(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-1}$	$-jb^j$, $\binom{n}{j} = \frac{n!}{j!(n-j)!}$	
$\operatorname{sen}(x+y) = \operatorname{sen}(x)\operatorname{cos}(y) + \operatorname{sen}(y)\operatorname{cos}(x)$		
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$		

Propriedades:

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

Séries:
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$\operatorname{senh}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, m \neq 0, 1, 2, \dots$

Funções especiais:

runções especiais.			
Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$		
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$		
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$		
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$		
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$		

Integrais:
$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

Tabela	de	transformadas	de	Laplace:

Tabel	a de transformadas de Laplace:	
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}$ $\frac{1}{s}$ $\frac{1}{s^2}$	1
2	$\frac{1}{a^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	t^{n-1}
		$\frac{(n-1)!}{\sqrt{\pi t}}$
4	$\overline{\sqrt{s}}$,	$\sqrt{\pi t}$
5	$\frac{1}{\sqrt{s}},$ $\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$	e^{at}
8	$\frac{\overline{s-a}}{1}$ $\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$ $\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b} \left(e^{at} - e^{bt} \right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b} \left(ae^{at} - be^{bt} \right)$
13	$\frac{1}{s^2 + w^2}$	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$ \frac{1}{s^2 + w^2} $ $ \frac{s}{s^2 + w^2} $ $ \frac{1}{s^2 - a^2} $ $ \frac{s}{s^2 - a^2} $ $ 1 $	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
0.4	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$	1 (() (12)
24	$(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2} (\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) -$
	(5 200)	$-\cos(at) \operatorname{senh}(at)$]
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^2)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$
	(0 4)	

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0,5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2 + w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (1.0 ponto) Seja f(t) = u(t-1)(1-u(t-3)). Assinale as alternativas que indicam respectivamente $\mathcal{L}\{f(t)\}$ e $\mathcal{L}\{tf(t)\}$

$$\left(\ \right) \frac{1}{s^2} \left(e^{-s} - e^{-4s}\right),$$

$$\left(\right) \frac{1}{s^4} \left(e^{-s} - e^{-3s}\right) + \frac{1}{s} \left(e^{-s} - 3e^{-3s}\right),$$

$$() \frac{1}{s^2} (e^{-s} - e^{-3s}),$$

$$\left(\ \right) \frac{1}{s^4} \left(e^{-s} - e^{-3s}\right) + \frac{1}{s} \left(e^{-s} - 4e^{-4s}\right),$$

$$\left(\ \right) \frac{1}{s} \left(e^{-s} - e^{-4s}\right),$$

$$\left(\right) \frac{1}{s^2} \left(e^{-s} - e^{-4s}\right) + \frac{1}{s} \left(e^{-s} - 4e^{-4s}\right),$$

(X)
$$\frac{1}{s} (e^{-s} - e^{-3s}),$$

(X)
$$\frac{1}{s^2} \left(e^{-s} - e^{-3s} \right) + \frac{1}{s} \left(e^{-s} - 3e^{-3s} \right),$$

• Questão 2 (1.0 ponto) Considere a função $f(t) = (t-1)^2 u(t-2)$. Assinale as alternativas que indicam, respectivamente, $\mathcal{L}\{f(t)\}$ e $\mathcal{L}\{f'(t)\}$:

()
$$\mathcal{L}\{f(t)\} = \frac{2}{s^2}e^{-2s}$$

()
$$\mathcal{L}\{f(t)\} = \left(\frac{2}{s^2} + \frac{2}{s} + 1\right)e^{-2s}$$

()
$$\mathcal{L}\{f(t)\} = \frac{2}{s^3}e^{-2s}$$

(X)
$$\mathcal{L}\left\{f(t)\right\} = \left(\frac{2}{s^3} + \frac{2}{s^2} + \frac{1}{s}\right)e^{-2s}$$

()
$$\mathcal{L}\{f(t)\} = \left(\frac{2}{s^3} + \frac{2}{s^2}\right)e^{-2s}$$

()
$$\mathcal{L}\{f'(t)\} = \left(\frac{2}{s^2} + \frac{2}{s}\right)e^{-2s}$$

()
$$\mathcal{L}\{f'(t)\} = \frac{2}{s^2}e^{-2s}$$

()
$$\mathcal{L}\{f'(t)\} = \frac{2}{s}e^{-2s}$$

()
$$\mathcal{L}\{f'(t)\} = \left(\frac{2}{s^2} + \frac{2}{s} + s\right)e^{-2s}$$

()
$$\mathcal{L}\left\{f'(t)\right\} = \left(\frac{2}{s^3} + \frac{2}{s^2} + \frac{1}{s}\right)e^{-2s}$$

(X)
$$\mathcal{L}\left\{f'(t)\right\} = \left(\frac{2}{s^2} + \frac{2}{s} + 1\right)e^{-2s}$$

() n.d.a.

• Questão 3 (1.0) Considere a equação integral $y(t) = 1 - \int_0^t y(\tau)e^{t-\tau}d\tau$. Assinale as alternativas que indicam, respectivamente, $\mathcal{L}\left\{y(t)\right\}$ e $\mathcal{L}\left\{e^{-t}y(t)\right\}$.

$$(\)\ \frac{s-1}{s^3},$$

$$\left(\right) \frac{1}{\epsilon}$$

$$(\) \frac{1}{s+1},$$

$$(X) \frac{s}{(s+1)^2},$$

$$() \frac{1}{s^2+1},$$

$$(\)\ \frac{1}{(s-1)^2+1},$$

$$(\) \frac{1-s}{s^2},$$

$$(\) \frac{s}{(s+1)^3},$$

$$(X) \frac{s-1}{s^2},$$

$$() \frac{s-1}{e^2}$$

• Questão 4 (1.0) Considere a função f(t) = tu(t) - 2(t-1)u(t-1) + (t-2)u(t-3). Assinale as alternativas que indicam o esboço do gráfico de f e f', respectivamente.

• Questão 5 (1.0) Considere um sistema RLC modelado pelo problema de segunda ordem abaixo e o gráfico da corrente esboçado ao lado.

$$Li''(t) + Ri'(t) + \frac{i(t)}{C} = f(t)$$

 $i(0) = i_0$
 $i'(0) = i'_0$

A equação da envoltória, esboçada com uma linha pontilhada, é $2e^{-t}$. Assinale as alternativas que indicam, respectivamente, a frequência do sinal e a transformada de Laplace $I(s) = \{i(t)\}$.

$$(\)\ f = \frac{1}{3}Hz$$

$$(X) f = \frac{2}{3}Hz$$

$$(\)\ f = \frac{4}{3}Hz$$

$$(\)\ f = \frac{\pi}{3}Hz$$

$$(\)\ f = \frac{2\pi}{3}Hz$$

$$(\)\ f = \frac{4\pi}{3}Hz$$

()
$$I(s) = \frac{(s-1)}{(s-1)^2 + (\frac{2\pi}{3})^2}$$

()
$$I(s) = \frac{2(s+1)}{(s+1)^2 - (\frac{\pi}{3})^2}$$

(X)
$$I(s) = \frac{2(s+1)}{(s+1)^2 + (\frac{4\pi}{3})^2}$$

()
$$I(s) = \frac{2(s-1)}{(s-1)^2 + (\frac{2\pi}{3})^2}$$

()
$$I(s) = \frac{2}{(s+1)^2 + \left(\frac{\pi}{3}\right)^2}$$

()
$$I(s) = \frac{3}{2\pi} \frac{(s+1)}{(s+1)^2 + (\frac{4\pi}{3})^2}$$

• Questão 6 (2.5) Considere o seguinte problema de valor inicial:

$$x'(t) = -x(t) + y(t) + \delta(t) y(t) = -\int_0^t e^{(t-\tau)} y(\tau) d\tau + x(t),$$

com x(0) = 0.

- a) (0.9) Aplique o método de transformada de Laplace e escreva $X(s) = \mathcal{L}\{x(t)\}$ e $Y(s) = \mathcal{L}\{y(t)\}$ nos espaços abaixo.
 - b) (0.9) Calcule as transformadas inversas e escreva x(t) e y(t) abaixo.
 - c) (0.7) Aplique sua solução do item b) nas condições inciais e justifique o resultado encontrado. **Solução do item a** Aplicando a Transformada de Laplace, temos:

$$sX(s) - x(0) = -X(s) + Y(s) + 1$$

 $Y(s) = -\frac{1}{s-1}Y(s) + X(s),$

onde se usou a propriedade da derivada e da convolução. Isolando Y(s) na segunda equação, temos:

$$Y(s) = \frac{X(s)(s-1)}{s}$$

Substituindo esta expressão na primeira equação, temos:

$$X(s)(s+1) = \frac{X(s)(s-1)}{s} + 1$$
$$X(s)(s^2+s) = X(s)(s-1) + s$$
$$X(s)(s^2+s-s+1) = s$$

isto é, $X(s) = \frac{s}{s^2 + 1}$, e assim:

$$Y(s) = \frac{X(s)(s-1)}{s} = \frac{s}{s^2+1} \frac{(s-1)}{s} = \frac{s-1}{s^2+1} = \frac{s}{s^2+1} - \frac{1}{s^2+1}$$

Solução do item b Aplicação direta dos itens 13 e 14 da tabela,nos dá:

$$x(t) = \cos(t)$$

$$y(t) = \cos(t) - \sin(t)$$

Solução do item c A solução encontrada apresenta valor inical $x(0) = \cos(0) = 1$, divergindo da condição inicial y(0) = 0. Veja seção sobre problemas na origem no material da disciplina.

• Questão 7 (2.5) Considere a função dada no gráfico abaixo

- a) (0.8 ponto) Escreve em termos de Delta de Dirac e Heaviside as funções $f, f' \in g(t) = \int_0^t f(\tau) d\tau$.
- b) (0.8 ponto) Esboce o gráfico de f'(t) e $g(t) = \int_0^t f(\tau)d\tau$ indicando eixos e valores notáveis.
- c) (0.9 ponto) Calcule as transformadas de Laplace das funções f, f' e $g(t) = \int_0^t f(\tau) d\tau$.

Solução do item a: Primeiro observamos que:

$$f(t) = \begin{cases} 1, & 0 < t < 2, \\ 2, & 2 < t < 3, \\ 5 - t, & 3 < t < 4, \\ 1, & 4 < t < 6, \\ 0, & t > 6, \end{cases}$$

Assim:

$$g(t) = \begin{cases} t + C_1, & 0 < t < 2, \\ 2t + C_2, & 2 < t < 3, \\ 5t - \frac{t^2}{2} + C_3, & 3 < t < 4, \\ t + C_4, & 4 < t < 6, \\ C_5, & t > 6, \end{cases} = \begin{cases} t, & 0 < t < 2, \\ 2t - 2, & 2 < t < 3, \\ 5t - \frac{t^2}{2} - \frac{13}{2}, & 3 < t < 4, \\ t + \frac{3}{2}, & 4 < t < 6, \\ \frac{15}{2}, & t > 6, \end{cases}$$

onde as contantes de integração foram obtidas de forma a garantir a continuidade da função. Portanto, obtemos:

$$f(t) = 1 + u(t-2) + (3-t)u(t-3) + (t-4)u(t-4) - u(t-6)$$

$$g(t) = t + (t-2)u(t-2) + \left(3t - \frac{t^2}{2} - \frac{9}{2}\right)u(t-3) + \left(-4t + \frac{t^2}{2} + 8\right)u(t-4) + (-t+6)u(t-6)$$

$$= t + (t-2)u(t-2) - \frac{(t-3)^2}{2}u(t-3) + \frac{(t-4)^2}{2}u(t-4) - (t-6)u(t-6)$$

A fim de obter
$$f(t)$$
, usamos que $\frac{d}{dt}u(t-a)=\delta(t-a)$ e $\frac{d}{dt}[f(t)u(t-a)]=f'(t)u(t-a)+f(a)\delta(t-a)$:
$$f'(t)=\delta(t-2)-u(t-3)+u(t-4)-\delta(t-6)$$

Solução do item b:

Solução do item c:

Partimos da forma para f(t):

$$f(t) = 1 + u(t-2) + (3-t)u(t-3) + (t-4)u(t-4) - u(t-6)$$

e obtemos:

$$F(s) = \frac{1}{s} + \frac{e^{-2s}}{s} - \frac{e^{-3s}}{s^2} + \frac{e^{-4s}}{s^2} - \frac{e^{-6s}}{s}$$

$$\mathcal{L}\left\{f'(t)\right\} = sF(s) - f(0) = e^{-2s} - \frac{e^{-3s}}{s} + \frac{e^{-4s}}{s} - e^{-6s}$$

$$G(s) = \frac{F(s)}{s} = \frac{1}{s^2} + \frac{e^{-2s}}{s^2} - \frac{e^{-3s}}{s^3} + \frac{e^{-4s}}{s^3} - \frac{e^{-6s}}{s^2}$$