Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения» Отчёт по рубежному контролю №1 «Технологии разведочного анализа и обработки данных.» Вариант № 2

Выполнил:	Проверил:
Беккиев Р.И.	Гапанюк Ю.Е.
группа ИУ5-64Б	
Дата: 11.04.25	Дата:
Подпись:	Подпись:

Задание:

Номер варианта: 2

Номер задачи: 1

Номер набора данных, указанного в задаче: 2

https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.load_wine.html#sklearn.datasets.load_wine

Для студентов группы ИУ5-64Б, ИУ5Ц-84Б - для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".

Задача №1.

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Ход выполнения:

1) Загрузил набор данных, просмотрел начало, проверил пропуски и выяснил, что пропуски отсутствуют.

```
# Проверка на наличие пропущенных значений
print("\nКоличество пропущенных значений в каждой колонке:")
print(df_features.isnull().sum())
# Обработка пропусков (если бы они были)
# df_features_cleaned = df_features.dropna() # Удаление строк с пропусками
# df_features_cleaned = df_features.dropna(axis=1) # Удаление колонок с пропусками
# Поскольку пропусков нет, df_features_cleaned = df_features
# Расчет корреляционной матрицы
correlation_matrix = df_features.corr()
print("\nКорреляционная матрица:")
print(correlation_matrix)
# Визуализация корреляционной матрицы с помощью тепловой карты
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5)
plt.title('Тепловая карта корреляций признаков набора данных Wine')
plt.show()
```

2) Расчет и визуализация корреляционной матрицы

```
correlation_matrix = df_features.corr()
print("\nКорреляционная матрица:")
print(correlation_matrix)
# Визуализация корреляционной матрицы с помощью тепловой карты
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5)
plt.title('Тепловая карта корреляций признаков набора данных Wine')
plt.show()
# 1. Возможность построения моделей машинного обучения:
     - Наличие мультиколлинеарности (например, total_phenols и flavanoids) может повлиять на линейные модели.
     - Древовидные модели менее чувствительны.
     - РСА может быть полезен.
     - Данные подходят для построения моделей с учетом этих особенностей.
# 2. Возможный вклад признаков в модель:
    - Группы сильно коррелирующих признаков (фенольные соединения) могут содержать избыточную информацию.
     - Признаки с более слабыми корреляциями (magnesium, ash) могут вносить независимый вклад.
     - Для точной оценки вклада необходим анализ важности признаков конкретной модели.
# Сохранение корреляционной матрицы в CSV файл (опционально)
# correlation_matrix.to_csv("wine_correlation_matrix.csv")
```

	гепловая карта корреляции признаков наоора данных wine															
alcohol -	1.00	0.09	0.21	-0.31	0.27	0.29	0.24	-0.16	0.14	0.55	-0.07	0.07	0.64			1.0
malic_acid -	0.09	1.00	0.16	0.29	-0.05	-0.34	-0.41	0.29		0.25	-0.56	-0.37	-0.19			- 0.8
ash -	0.21	0.16	1.00	0.44	0.29	0.13	0.12	0.19	0.01	0.26	-0.07	0.00	0.22			
alcalinity_of_ash -	-0.31	0.29	0.44	1.00	-0.08	-0.32	-0.35	0.36	-0.20	0.02	-0.27	-0.28	-0.44			- 0.6
magnesium -	0.27	-0.05	0.29	-0.08	1.00	0.21	0.20	-0.26	0.24	0.20	0.06	0.07	0.39			
total_phenols -	0.29	-0.34	0.13	-0.32	0.21	1.00	0.86	-0.45	0.61	-0.06	0.43	0.70	0.50			- 0.4
flavanoids -	0.24	-0.41	0.12	-0.35	0.20	0.86	1.00	-0.54		-0.17	0.54	0.79	0.49			- 0.2
nonflavanoid_phenols -	-0.16	0.29	0.19	0.36	-0.26	-0.45	-0.54	1.00	-0.37	0.14	-0.26	-0.50	-0.31			
proanthocyanins -	0.14	-0.22	0.01	-0.20	0.24	0.61	0.65	-0.37	1.00	-0.03	0.30	0.52	0.33			- 0.0
color_intensity -	0.55	0.25	0.26	0.02	0.20	-0.06	-0.17	0.14	-0.03	1.00	-0.52	-0.43	0.32			
hue -	-0.07	-0.56	-0.07	-0.27	0.06	0.43	0.54	-0.26	0.30	-0.52	1.00	0.57	0.24			0.2
'od315_of_diluted_wines -	0.07	-0.37	0.00		0.07	0.70	0.79	-0.50	0.52	-0.43	0.57	1.00	0.31			0.4
proline -	0.64	-0.19	0.22	-0.44	0.39	0.50	0.49	-0.31	0.33	0.32	0.24	0.31	1.00			
												Space	s: 4 {}	88 я	чейка	2 из 2 Д

```
Первые 5 строк DataFrame с признаками:
  13.20
                                             100.0
                                                           2.65
               2.36 2.67
1.95 2.50
    13.16
                                    18.6
                                             101.0
                                                           2.80
    14.37
                                    16.8
                                             113.0
                                                           3.85
    13.24
               2.59 2.87
                                    21.0
                                             118.0
                                                           2.80
  flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \
                                                      5.64 1.04
      3.06
                          0.28
                                       2.29
       2.76
                          0.26
                                         1.28
                                                       4.38 1.05
       3.24
                          0.30
                                         2.81
                                                       5.68 1.03
       3.49
                          0.24
                                         2.18
                                                       7.80 0.86
                          0.39
                                                       4.32 1.04
                                         1.82
       2.69
  od280/od315_of_diluted_wines proline
                            1065.0
                      3.92
                       3.40
                             1050.0
                       3.17
                             1185.0
                       3.45 1480.0
                       2.93
                             735.0
Общая информация о DataFrame:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
                                          -0.428815 0.316100
color_intensity
                                           0.565468 0.236183
od280/od315_of_diluted_wines
                                           1.000000 0.312761
                                          0.312761 1.000000
proline
```