Claremont Graduate University, M453, Financial Time Series

Homework 2

Instructor: Qidi Peng

Sept. 9, 2016

This assignment is due Friday 9/23/16 before class begins. You can either work on Latex (then print your PDF) or hand write the solutions. I only accept hard copies.

CH 1: Basic Stochastic Models

 $(w_t)_t$, if not specified, denotes a white noise with $Var(w_t) = \sigma^2$.

1. (Stationarity) Consider a time series $(X_t)_t$ defined by

$$X_t = -0.5w_{t-1} + w_t,$$

where $(w_t)_t$ is a white noise of variance σ^2 . Is $(X_t)_t$ second order stationary? (Hint: calculate $E(X_t)$ and $Cov(X_t, X_{t+k})$ for all $k \in \mathbb{Z}$.)

2. (Stationarity) Consider a time series $(Y_t)_t$ defined by

$$Y_t = X_t - X_{t-1},$$

where $X_t = 0.9X_{t-1} + w_t$, with $(w_t)_t$ being a white noise of variance σ^2 . The goal of this exercise is to show $(X_t)_t$ and $(Y_t)_t$ are both second order stationary. Questions.

- (a) Show that $X_t = \sum_{i=0}^{\infty} 0.9^i w_{t-i}$.
- (b) Calculate $E(X_t)$ and $Var(X_t)$ for all $t \in \mathbb{Z}$.
- (c) For $k \in \mathbb{Z}$, calculate $Cov(X_t, X_{t+k})$. Is $(X_t)_t$ second order stationary? (Hint: consider two cases $k \geq 0$ and k < 0.)
- (d) For $k \in \mathbb{Z}$, calculate $Cov(Y_t, Y_{t+k})$. Is $(Y_t)_t$ second order stationary? (Hint: replace Y_t by $X_t X_{t-1}$, then use the result from (c).)
- 3. (Backward shift operator) Express the following autoregressive model in its usual form:

$$(1 - 0.5B)(1 - 0.7B)(1 - 0.2B)X_t = w_t.$$

Justify whether $(X_t)_t$ is second order stationary.

4. (Coefficients of AR) An AR(1) model with a non-zero mean μ can be expressed by either

$$X_t - \mu = \alpha(X_{t-1} - \mu) + w_t$$
, or $X_t = a_0 + a_1 X_{t-1} + w_t$.

Questions.

- (a) What is the relationship between the parameters μ and α , and the parameters a_0 and a_1 ?
- (b) Deduce a similar relationship for an AR(2) process with mean μ .