

Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza Corso di Ingegneria Meccanica

Subject

TITLE

SUBTITLE

Author: Name Surname Name Surname

ACADEMIC YEAR 2018-2019

Teacher:

INDICE

1	Introduzione									
2	Tabelle e grafici									
	2.1	Tabelle	4							
		2.1.1 Altra tabella	4							
	2.2	Grafici	5							
		2.2.1 Altro grafico	5							
3	Forn	ule	6							
4	Altro									
	4.1	Footnote	8							
	4.2	Flowchart	9							
Ri	ferim	nti bibliografici	12							

Introduzione

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

TABELLE E GRAFICI

Here a few examples of tables and graphs.

2.1 TABELLE

Codice	CdL	Lotto	$T_{setup/lotto}$	$T_{lav/pezzo}$	$T_{proc/pezzo}$	Quantità	T_{tot}
100	4	250	25	0,5	0,6	1	0,6
111	2	250	20	2	2,08	1	2,08
111	3	250	15	1,5	1,56	1	1,56
112	2	250	20	2,5	2,58	1	2,58
112	3	250	15	2	2,06	1	2,06
113	3	500	15	1	1,03	2	2,06
120	1	50	30	2	2,6	0,1	0,26
121	1	25	30	3	4,2	0,1	0,42
121	1	25	30	2,5	3,7	0,1	0,37

2.1.1 Altra tabella

Periodo	1	2	3	4	5	6	7	8	Media
MPS	250	250	250	250	250	250	250	250	
CdL 1	262,5	262,5	262,5	262,5	262,5	262,5	262,5	262,5	262,5
CdL 2	1165	1165	1165	1165	1165	1165	1165	1165	1165
CdL 3	1420	1420	1420	1420	1420	1420	1420	1420	1420
CdL 4	150	150	150	150	150	150	150	150	150

2.2 GRAFICI

2.2.1 Altro grafico

FORMULE

Se non sono ammesse consegne in ritardo siamo in presenza di un problema con Backlog. Sia t_i il periodo in cui non si è in backlog e t_b il periodo di backlog. Essendo $t_i=(Q-B)/D$, avremo:

Costi di ordinazione = $C \cdot D/Q$

Costi di mantenimento = $H \cdot (Q - B)/2 \cdot t_i/T = H \cdot (Q - B)^2/2Q$

Costi di backorder = $C_b \cdot B \cdot t_b/2T = C_b \cdot B^2/2Q$

Costi variabili totali = $TC(Q) = C \cdot D/Q + H \cdot (Q - B)^2/2Q + C_b \cdot B^2/2Q$ Condizioni di minimo: $\begin{cases} \frac{\partial TC}{\partial Q} = 0 \\ \frac{\partial TC}{\partial B} = 0 \end{cases} \Rightarrow Q^* = \sqrt{\frac{2C \cdot D(H + C_b)}{H \cdot C_b}} = EOQ\sqrt{\frac{H + C_b}{C_b}}$

Altro

Figura 1: Didascalia.

4.1 FOOTNOTE

You can create a footnote like this.¹

4.2 FLOWCHART

¹I created a footnote.

RIFERIMENTI BIBLIOGRAFICI

- [1] Giusti, Santochi, *Tecnologia Meccanica e Studi di Fabbricazione*. Casa Editrice Ambrosiana, Seconda Edizione
- [2] Mechteacher, *Knuckle Joint Introduction, Parts and Applications*, http://mechteacher.com/knuckle-joint/
- [3] Totalmateria, G32NiCrMo8, http://www.totalmateria.com
- [4] Sandvik Coromant, Catalogo generale 2018, http://www.coromant.sandvik.com/it
- [5] Norme UNI, Ente nazionale italiano di unificazione