Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №1

«Обработка результатов физических измерений»

Выполнил студент:

Голубев Григорий Альбертович группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Введение					
	1.1	Цель работы	2			
		Решаемые задачи				
2	Осн	ювная часть	2			
	2.1	Теоретическая часть	2			
	2.2	Эксперимент	3			
			4			
		Исходный код	4			
		Таблицы	6			
3	Вы	вод	8			

1 Введение

1.1 Цель работы

- 1. Проверка принципа эквивалентности масс.
- 2. Измерение ускорения свободного падения тел.
- 3. Знакомство с методом измерения интервалов времени между импульсами частотомером-хронометром Ч3-32.
- 4. Определение погрешности косвенных измерений.

1.2 Решаемые задачи

- 1. Вычислить массу каждого шарика.
- 2. Зафиксировать время пролета шариков t,мс и вычислить среднее значение времени пролета для каждого шарика.
- 3. Вычислить погрешность времени Δt пролета шариков, используя методы статистической обработки результатов эксперимента.
- 4. Вычислить ускорение свободного падения д для каждого шарика.
- 5. Определить погрешности измерения Δg как погрешности косвенных измерений для каждого шарика. Предварительно сделать вывод формулы для определения Δg .
- 6. Проанализировать возможные источники систематических ошибок.
- 7. Сделать выводы из данных эксперимента.

2 Основная часть

2.1 Теоретическая часть

Измерения Формула для нахождения среднего арифметического \overline{U} :

$$\bar{t} = \frac{\sum_{i=1}^{n} t_i}{n} \tag{1}$$

где n - количество результатов отдельных наблюдений, t_i - результат измерения отдельного наблюдения.

Среднеквадратичное отклонение σ :

$$\sigma \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (t_i - \bar{t}^2)}$$
 (2)

Погрешность среднеарифметического результата наблюдений

$$s_{\bar{t}} = \frac{\sigma}{\sqrt{n}} \tag{3}$$

Как известно, уравнение движения при свободном падении имеет вид:

$$h = v_0 t + \frac{gt^2}{2} \tag{4}$$

Функция g зависит от трех переменных: h, t, v_0 :

$$g = \frac{2(h - v_0 t)}{t^2} \tag{5}$$

Погрешность измерения величин h, v_0 определяется погрешностью измерительных приборов $\omega_h, \ \omega_{v_0};$ погрешность прямо измеряемой величины t является случайными величинами, это означает, что погрешность для t определяется погрешностью среднеарифметического результата наблюдений $s_{\bar{t}}$. Следовательно формула для нахождения косвенной погрешности Δg будет выглядеть следующим образом:

$$\Delta g \approx \sqrt{\frac{1}{9} \left(\frac{\partial g}{\partial h}\right)^2 \omega_h^2 + \frac{1}{9} \left(\frac{\partial g}{\partial v_0}\right)^2 \omega_{v_0}^2 + \left(\frac{\partial g}{\partial t}\right)^2 s_{\overline{t}}^2} \tag{6}$$

Найдем частные производные: $\frac{\partial g}{\partial h} = \frac{2}{t^2}$; $\frac{\partial g}{\partial v_0} = -\frac{2}{t}$; $\frac{\partial g}{\partial t} = \frac{2(v_0t - 2h)}{t^3}$. Итоговое уравнения для Δg :

$$\Delta g \approx \sqrt{\frac{1}{9} \left(\frac{2}{t^2}\right)^2 \omega_h^2 + \frac{1}{9} \left(-\frac{2}{t}\right)^2 \omega_{v_0}^2 + \left(\frac{2(v_0 t - 2h)}{t^3}\right)^2 s_{\overline{t}}^2} \tag{7}$$

2.2 Эксперимент

Схема установки приведена на рис. 1. Луч от квантового генератора ЛГ направляется на призму полного внутреннего отражения Π_1 , от нее на призму Π_2 , а затем на фотодиод Φ Д. При отодвигании заслонки 3 шарик, находящийся в трубке T, падает в лузу Π и пересекает два световых луча, расстояние между которыми равно h. Когда шарик пересекает верхний луч, фотодиод Φ Д вырабатывает импульс, который усилившись в усилителе, подается на вход частотомера Ψ 3-32 и запускает его. При пересечении шариком нижнего луча импульс

от фотодиода останавливает счет частотомера. Интервал времени между двумя импульсами, регистрируемый частотомером, равен времени пролета t шарика от верхнего луча до нижнего. Усилитель питается от источника УПУ-1У4.

Были заданы следующие значения для эксперимента:

1.
$$h = (0.272 \pm 0.001) \text{ M} => \omega_h = 0.001 \text{ M};$$

2.
$$v_0 = (1.050 \pm 0.005) \text{ m/c} => \omega_{v_0} = 0.005 \text{ m/c};$$

Рис. 1. Схема установки

2.3 Обработка данных и обсуждение результатов

Исходный код

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio.

Программа обрабатывает значения для разных шариков по выведенным формулам: нахождение среднего арифметического, нахождение погрешности среднеарифметического результата наблюдений, нахождение косвенной погрешности, нахождение масс шариков, нахождение ускорения свободного падения.

Все выполненные вычисления заносятся в файлы с расширением .csv в соответствующих папках.

Листинг 1. Функция для нахождения Δq

```
| std::vector<double> delta g(std::vector<double>& avarage, std::vector<
                                     double>& delta t)
   _{2}
                               std::vector<double> arr(6, 0);
    3
                               for (int i = 0; i < 6; i++)
    4
                               {
    5
                                               double t i = avarage[i] / 1000;
    6
                                               double tt = std::pow(t i, 4);
    7
                                               double te = tt;
                                               double c h = 4 / (9 * std::pow(t i, 4));
   9
                                              double c_v_0 = 4 / (9 * std::pow(t_i, 2));
                                              double c_t = ((2 * V_0 * t_i - 4 * H) / (t_i * t_i * t_i)) * ((2 * V_0 * V
11
                                           V_0 * t_i - 4 * H) / (t_i * t_i * t_i);
                                                arr[i] = sqrt(c + s
                                     omega v 0 + (delta \ t[i] * delta \ t[i] * c \ t / 1000000)) / sqrt(30);
13
14
                               return arr;
15
16 }
```

Листинг 2. Функция для нахождения Δt

```
| std::vector<double> delta T(const std::vector<std::vector<double>>&
     data, std::vector<double>& avarage)
2
    std::vector<double> delta t(6, 0);
3
    for (int i = 1; i < 7; ++i)
4
5
      double sum = 0.0;
6
      for (int j = 0; j < 29; ++j)
7
8
        double d = (data[j][i] - avarage[i - 1]);
9
        sum += d * d;
10
11
      delta t[i-1] = sqrt((sum) / (data.size()));
12
      delta t[i-1] /= sqrt(30);
13
14
15
    return delta t;
16
17 }
```

Таблицы

Таблица 1. Результаты измерения времени падения шарика от верхнего луча до нижнего

№ п.п.	Алюминий	Латунь	Сталь	Дерево	Плексиглас	Свинец
	t, мс	t, мс	t, мс	t, мс	t, мс	t, мс
1	153.963	153.692	152.337	154.324	153.326	153.391
2	153.612	152.895	153.777	154.011	154.178	153.225
3	153.178	153.065	152.616	154.378	153.245	153.900
4	152.978	152.845	152.725	155.019	153.199	153.449
5	153.161	153.401	152.687	154.112	153.737	152.773
6	152.647	152.962	154.121	154.393	154.022	153.258
7	153.265	152.633	152.557	154.121	153.335	152.291
8	153.572	152.806	153.033	154.101	154.341	154.345
9	153.623	152.819	153.153	154.989	154.471	152.916
10	152.611	152.751	152.401	154.949	153.404	152.599
11	153.421	152.841	152.678	154.606	153.550	153.426
12	154.882	152.773	152.277	154.464	153.451	153.675
13	152.989	152.850	152.409	155.113	153.386	153.938
14	152.824	152.751	152.603	154.778	153.501	153.684
15	152.783	152.702	152.853	153.991	153.400	153.276
16	152.746	152.724	152.832	154.140	153.963	152.910
17	152.842	152.884	153.355	154.445	153.233	154.140
18	152.891	152.496	153.667	154.196	154.007	153.345
19	153.835	153.117	152.983	154.064	153.637	153.159
20	154.131	152.747	152.785	154.473	153.864	153.651
21	152.993	152.873	152.737	154.428	153.449	152.719
22	153.223	153.818	152.678	153.973	154.632	153.106
23	152.919	152.840	152.504	154.395	153.454	152.807
24	153.328	152.903	153.240	154.187	153.939	153.140
25	152.746	152.838	152.891	154.339	153.230	153.009
26	152.994	153.153	153.839	154.208	153.881	153.000
27	153.937	153.566	152.704	153.774	153.907	153.333
28	153.441	153.451	152.919	154.772	153.796	153.048
29	153.144	152.873	153.478	154.012	153.453	153.144
30	153.325	152.093	152.752	154.277	153.361	153.804
\overline{t}	153.247	152.933	152.918	154.378	153.68	153.286

Таблица 2. Таблица веществ

$N_{\overline{0}}N_{\overline{0}}$ Π/Π	Вещество	Плотность $(10^3 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3})$	Macca (10^{-6})
1	дерево (береза)	0.7	0.37
2	плексиглас	1.18	0.62
3	дуралюминий	2.79	1.46
4	сталь	7.9	4.14
5	латунь	8.5	4.45
6	свинец	11.34	5.94

Таблица 3. Погрешность времени пролета шариков

<u>№№</u> П/П	Вещество	Δt , MC
1	Алюминий	0.091
2	Латунь	0.064
3	Сталь	0.086
4	Дерево	0.062
5	Плексиглас	0.071
6	Свинец	0.085

Таблица 4. Ускорение свободного падения д для каждого шарика

<u>№№</u> п/п	Вещество	$g, \frac{M}{c^2}$
1	Алюминий	9.460
2	Латунь	9.527
3	Сталь	9.531
4	Дерево	9.223
5	Плексиглас	9.369
6	Свинец	9.452

Систематические ошибки — это ошибки, которые приводят к отклонению результатов измерений в одном направлении (либо завышают, либо занижают). Их сложнее обнаружить, чем случайные ошибки.

Инструментальная погрешность всегда неизвестна и зависит от внешних условий (температуры, давления, влажности и т. д.). Поэтому любой измерительный прибор, изготовленный и проверенный на заводе-изготовителе, снабжается паспортом, где в числе других его характеристик указывается предел допускаемой погрешности. Инструментальные погрешности отражают суммар-

Таблица 5. Погрешности косвенных измерений для каждого шарика

$\frac{\mathbb{N}_{\overline{0}}\mathbb{N}_{\overline{0}}}{\Pi/\Pi}$	Вещество	$\Delta g, \frac{M}{c^2}$
1	Алюминий	0.041
2	Латунь	0.038
3	Сталь	0.040
4	Дерево	0.038
5	Плексиглас	0.038
6	Свинец	0.040

ное действие разнообразных факторов, приводящих к возникновению как систематических, так и случайных погрешностей. В нашем случае усилитель, частотомер или фотодиоды могут вносить небольшую, но систематическую задержку в измерение времени. Также нужно не забывать, что в установке присутствует неидеальная призма, из-за этого может незначительно изменять траекторию луча или вносить задержку.

Значения погрешности Δg для разных материалов лежат в относительно узком диапазоне (от 0.038 до 0.041 м/с²). Это говорит о том, что основные источники погрешностей, вероятно, связаны не с конкретным материалом шарика, а с общими факторами, такими как точность измерительных приборов, сопротивление воздуха или ошибки наблюдателя.

Все измеренные значения g систематически занижены по сравнению со значением $9.81~{\rm m/c^2},$ это указывает на наличие систематических ошибок.

3 Вывод

Эксперимент показывает важность учета различных факторов, влияющих на точность измерений. Для повышения точности результатов необходимо тщательно анализировать и минимизировать влияние систематических ошибок.

Список литературы

[1] https://github.com/st117210/Workshop1.git