

O I P E

JUL 02 2002

Verf1: 1 to 3640

Figure 1

CGGGGGGAGTGGGGAGGGAGGGGGTCGGCCGCCGCAGCCATGGAGGCCAAGCTGGACGCCGTTCCGTGTTCCAGGCCAACGAAGCATCCCAT
M E A N W T A F L F Q A H E A S H 17 90

CAACAAACAGCAGGCCAGCGCAGAACAGCTGCTGCCCTCTGAGTTCTGTGAGGCCAGCTGATCAAGAAACCGTTGCTTCAATACCA
H Q Q Q A A Q N S L L P L S S A V E F F D Q K P L P I P 47 180

ATTACTCAGAAACCTCAGGCTGACCAGAACATTAAAGGATGCCATTGGGATTAAGAAAAGAAAAACCCAAAACCTCGTTGTGCACT
I T Q K P Q A A P E T L K D A I G I K K E K P K T S F V C T 77 270

TACTGCAGTAAAGCATTAGGGACAGCTATCACCTGAGGCCATCAGTCTGCCACACAGGGATCAAGTGGTGTCTGGCAAAGAAA
X C S K A F R D S Y H L R R H O S C H T G I K L V S R A K K 107 360

ACCCCCACCGTGGTCCCTTATCTCACCATTGCTGGGACAGCAGCCGAACTTGTGTTCAACTATTGCAAGGCATCTGTCA
T P T T V V P L I S T I A G D S S R T S L V S T I A G I L S 137 450

ACAGTCACTACATCTCCTCGGCACCAACCCAGCAGCAGCGTAGTACCAACAGCACTGCCGTGCCCCAGCTGTCAAGAAACCCAGT
T V T T S S S G T N P S S S A S T T A M P V P Q S V K K P S 167 540

AAGCCTGTCAAGAAGAACCAACGCTGTGAGATGTGAGGCTTCCGGGATGTGACCACTCAATCGGCACAAGCTCTCCATTG
K P V K K N H A C E M C G K A F R D V Y H L N R H K L S H 197 630

GACGAAAAGECCTTTGAGTGTCTTATTGTAACTCAGGCCCTCAAGAGGAAGGACCGGATGACTTACCATGAGGTCTCATGAAGGAGGC
D E K P F E C P I C N O R F K R K D R M T X H V R S H E G G 227 720

ATCACCAAACCCCTATACTTCAGTGTGTTGTGGGAAAGGCTTCTCAAGGCTGACCACCTAAAGCTGTCACTGAAAACATGTGCAACCA
I T K P Y T C S V C G K G F S R P D H L S C H V K H V S T 257 810

GAAAGACCCCTCAATGCCAACAGTCACGTGCTGCCCTTGCCACCAAAGACAGACTACGGACACACATGGTGCAGCCACAGGAAGGTA
E R P F K C O T C T A A F A T K D R L R T M V R H E G K V 287 900

TCATGTAACATCTGTGGGAGCTCTGAGTGCAGCATATATCACAGCACTTAAAGACACATGGGAGGCCAAAGTATCACTGTAAAC
S C N I C G K L L S A A X I T S H L K T H G Q S Q S I N C N 317 990

ACGTGCAAACAAGGCATCACCAAAACGTGCATGAGTGAGGAGACCGCAATCAGAAGCAGCAGCAGCAGCAACAGCAGCAGCAG
T C K Q G I S K T C M S E X T S N Q K Q Q Q Q Q Q Q Q Q Q Q Q 347 1080

CAACAACAACAACATGTGACAAGCTGCCAGGGAGCAGGTAGAGACACTGAGACTGTGAGAAGCTGTCAAAGCAAGAAAGAAAAGAA
Q Q Q Q Q H V T S W P G K Q V E T I R L W E E A V K A R K K E 377 1170

GCTGCCAACCTGTGCCAACCTCCACGGCTGTACGACACCAAGTGACTIONTCAACTCCATTCAATAACGTCCTCTGTGCGTCTGGG
A A N L C Q T S T A A T T P V T L T T P F N I T S S V B S G 407 1260

ACTATGTCAAACCCAGTCACAGTGGCAGCTGCAATGAGCATGAGAAAGCTCAAGTGTGAGCTAACATAACCAAGCCCTTA
T M S N P V T V A A A M S M R S P V N V S S A V N I T S P L 437 1350

GCCATGACCTCACCTTAAACTCACCCACCCAGTCACCTCCCCACCCCTGTGACCGCCCAAGTGAATATAGCACACCCGTCAACCATC
A M T S P L T L T T P V N L P T P V T A P V N I A H P V T I 467 1440

ACATCTCCAATGAACCTGCCACTCTATGACATTAGCTGCCCTCTCAATATAGCAATGAGGCTGTAGAAAGTATGCCCTCTGCC
T S P M N L P T P M T L A A P L N I A M R P V E S M P F L P 497 1530

CAAGCTTGCCATCGTCACGCCCTGGTAAACAGTATTATAAGTCAAAATTGGGTTAAAGTAAATATTACAGCAACTAACCTTAGTT
Q A L P T S P P W 506 1620

GATTAAGCAAAAGCAGACTATGAAATTGGGGTTTATATGTTAGTTAAAGAGTGTAGTGTGTCCTAATTGCTGGGGTGTTC
AAAGTAGGGTATATGTTAACTTATCACTGGACCACTTTAGTTACTCAGAAACCCCTTAGCTGACACCATCTGTTAACAGGATAGTA
GCTGGCAAGGAAATGCCGAAGTAAACCAATCAAAACCCATTCTGTTAACAAATAAAAGCATTATTGTTTTTATTATTTTTAAAT
ACAACAGAAATCTTTATTGTAAACACTAGCAGAGTCTCCCTCTGTACAGGTGGACGGTTAACCTGGAGCTCAAGCCACAGACT
GAGAGCTAGTGTAGCATGTGTTGCTGTAGTGAACAGAGGCAATTGCTATAAAATGCAATTTCAGAGATAATGCAATT
TACCTTTGGGAATATGTTAACTTCAGGCAGATTCCCTATGGGAAAGGTGATACCGACTCTGTATATGCAAAAGCATATGATAATTATCAT
TCTAACTTCAACATATAATAGGGATGTGACCTGATATTGGAGATGTAAATTAGGCTGACATATTAACTCTGTGATGATATAGCATT
GTAGTTGACTTTTAAACAAAACAAAACAAAACAAAAGGAATMCCGAGAGCTGTCACTGCCATTGAAATGCTATCCCTGGGATAGG
GGTGGCTTCAGAACCCAGGAAGTGGCAAGGGCACAGACTCTGCTGGAGGCCGTGAGCCGGGGTTCCATAGGAGACTGACAGGAGACAT
TTGGCTTGGAGAACAAAAGAGNAGGCTACCCCACTTCAAGATGAGCAGACAGGCAATTGCTGAGCTGAGTTGTTACTGCTGGGATT
AGTGGTGGAGCAGATGGTACTCTGAGCACTGCTCACAGGCAAGGCTGAGCTGAGCTGAGTTGTTACTGCTGGGATT
GACCTTTGTGCAAGCGTGTATCACGCCCTACCTCACCACTGCGACGGACACAGAGCTGAGCACCCTACCGAACCATCTACCGACTGC
CTATCGCCGTAGGCCCTGGGGTACTCCCGCAAGGCCCTCGTGTGCTGCCCTGGTTGAGGAAGGAGCACAGCTGGGCTCCCTGGGCTMG
TGGAGCAGCAATATGCCACGCCCTATGTGGGAATGGAGGGAGTICATCCGCCAGGACACTGCCGTGCTGGATGGAGATA
CTTGGCAGACAGATGTTGATGAATGCACTACAGGAGAGGCCAGTGTGCTCCAGCGCTGTGCAATACTGTGGGAAGTACTGTGCG
GAATGGGAGGGACAAGGCCACTCTGCAAGATGGGACCCCTGCTGTCTAAGGAGGGCCCTCCCTTCCCCAAAACCCACAGCAGGAG
TGGACAGCATGGGAGAGAGGAGGGTGTACAGGCTGAGCTGGGAGGCTGAGCTGAGCTGAGCTGGGACTCTGAGCTGGGACTCTG
ACAGCCTGCCCTCGGGTCCACAGAGCATGGGCTACAAAGATCTGGCAGCTGCTGGTGTGCTTCTGAGGAGAACATCTGGGCTCTG
AGTCCCACAGAACCCACTCCACCCACAGAGAGCCTAGGGGACCCATGGGGTGGACACCAAGGGCTGGGTGAGTGAACCTCTCTGGGAT
GGGAGATTGCAAGTTTACCCCTCTCTGTGCTCCCTAGGGCTCCCTGAGGAGTAAACCTCTCACCCACAGGCTGGA
TAGAGCACTACCCAGATCCCTGTAGGCCAGGTTCAAGGGAGCCGTGCTGGTGTGCTATGAGCAGAAGGCCCTGCCCTATTGCTCCCT
CTTGTGAGGTTCTCTAGGACTGGGTATGGGAGTGGGGTCTTGTGACTCTTCAGTGGGCTCCCTGTCAAGTGGTAAGTGGGAT
TGTCTCCATCTTGTCAATAAAAGCTGAGACTTGAAGAAAAAA

COPY OF PAPERS
ORIGINALLY FILED

Figure 2

Human DB1 DNA and Protein Sequences

10 20 30 40 50 60
 AGCGGGGGGAGTGGGGAGGAGGGGGGTCGGCCGCCGCAGCCATGGAGGCCAACTGGACCG
 M E A N W T>
 70 80 90 100 110 120
 CGTTCTGTTCCAGGCCATGAAGCTTCCCACCAACAGCAGGCAGCACAGAACAGCT
 A F L F Q A H E A S H H Q Q Q A A Q N S>
 130 140 150 160 170 180
 TGCTGCCCTCCTGAGCTCTGCCGTGGAGCCCCCTGATCAGAAACCATTGCTTCCAATAC
 L L P L L S S A V E P P D Q K P L L P I>
 190 200 210 220 230 240
 CAATAACTCAGAAACCTCAGGGTGCACCAAGAAACATTAAAGGATGCCATTGGGATTAAAA
 P I T Q K P Q G A P E T L K D A I G I K>
 250 260 270 280 290 300
 AAGAAAAACCCAAAACCTCATTGTGTGCACCTACTGCAGTAAAGCTTCAGGGACAGCT
 K E K P K T S F V C T Y C S K A F R D S>
 310 320 330 340 350 360
 ATCACCTGAGGCGCCACGAATCCTGCCACACAGGGATCAAGTTGGTGTCCCAGGCCAAAGA
 Y H L R R H E S C H T G I K L V S R P K>
 370 380 390 400 410 420
 AAACCCCCACCACGGTGGTCCCTTATCTCTACCATCGCTGGGACAGCAGCCGAACCTT
 K T P T T V V P L I S T I A G D S S R T>
 430 440 450 460 470 480
 CGTTGGTCTCGACCATTGCAGGCATCTGTCAACAGTCACTACATCTTCCCTGGGCACCA
 S L V S T I A G I L S T V T T S S S G T>
 490 500 510 520 530 540
 ACCCCAGTAGCAGTGCCAGCACACAGCTATGCCAGTGACCCAGTCTGTCAAGAAACCCA
 N P S S S A S T T A M P V T Q S V K K P>
 550 560 570 580 590 600
 GTAAGCCTGTCAAGAAGAACCATGCTTGTGAGATGTGTGGGAAGGCCTCCAGATGTGT
 S K P V K K N H A C E M C G K A F R D V>
 610 620 630 640 650 660
 ACCATCTCAATCGACACAAGCTCTCCATTCAAGATGAGAAACCCCTTGAGTGTCTATTT
 Y H L N R H K L S H S D E K P F E C P I>
 670 680 690 700 710 720
 GTAATCAGCGCTTCAAGAGGAAGGACCGGATGACTTACCATGTGAGGTCTCATGAAGGAG
 C N Q R F K R K D R M T Y H V R S H E G>
 730 740 750 760 770 780
 GCATCACCAAACCCATACTTGCACTGTTGTGGAAAGGCCTCTCAAGGCCTGACCACT
 G I T K P Y T C S V C G K G F S R P D H>

Figure 2 (con't)

790 800 810 820 830 840
 TAAGCTGTCATGTAAAACATGTCCATTCAACAGAAAGACCCTTCAAATGCCAACGTGCA
 L S C H V K H V H S T E R P F K C Q T C>
 850 860 870 880 890 900
 CTGCTGCCTTGCCACCAAAAGACAGACTGCGGACACACATGGTGCGCCATGAAGGCAAGG
 T A A F A T K D R L R T H M V R H E G K>
 910 920 930 940 950 960
 TATCATGTAACATCTGTGGGAAGCTCCTGAGTGCAGCATACTCACCAAGGCCACTTAAAGA
 V S C N I C G K L L S A A Y I T S H L K>
 970 980 990 1000 1010 1020
 CTCATGGGCAGAGCCAAGTATCAAACGTAAATACATGTAAACAAGGCATCAGTAAAACAT
 T H G Q S Q S I N C N T C K Q G I S K T>
 1030 1040 1050 1060 1070 1080
 GCATGAGTGAAGAGACCAGTAACCAAAAGCAGCAGCAGCAGCAGCAGCAGCAACAAACAC
 C M S E E T S N Q K Q Q Q Q Q Q Q Q Q Q Q>
 1090 1100 1110 1120 1130 1140
 AACAAACAACATGTGACAAGCTGGCCAGGGAAAGCAAGTAGAAACACTCAGACTGTGGGAAG
 Q Q Q H V T S W P G K Q V E T L R L W E>
 1150 1160 1170 1180 1190 1200
 AAGCTGTTAAAGCAAGGAAGAAAGAAGCTGCTAACCTGTGCCAACCTCCACGGCTGCTA
 E A V K A R K K E A A N L C Q T S T A A>
 1210 1220 1230 1240 1250 1260
 CGACACCTGTGACTCTCACTACTCCATTCACTATAAACATCCTCTGTGTCGTCTGAGACTA
 T T P V T L T T P F S I T S S V S S E T>
 1270 1280 1290 1300 1310 1320
 TGTCAAACCCAGTCACAGTGGCAGCTGCAATGAGCATGAGAAGTCCAGTAAATGTTCAA
 M S N P V T V A A A M S M R S P V N V S>
 1330 1340 1350 1360 1370 1380
 GTGCAGTTAACATAACCAGCCCAATGAACATAGGGCATCCTGTAACTATAACCAGTCCAT
 S A V N I T S P M N I G H P V T I T S P>
 1390 1400 1410 1420 1430 1440
 TATCCATGACCTCTCCTTAAACACTCACTACCCCCAGTCAACCTCCCCACCCCCGTCACTG
 L S M T S P L T L T P V N L P T P V T>
 1450 1460 1470 1480 1490 1500
 CCCCAGTGAATATAGCACACCCTGTCACCATCACATCTCAATGAATCTACCCACACCTA
 A P V N I A H P V T I T S P M N L P T P>
 1510 1520 1530 1540 1550 1560
 TGACATTAGCCGCCCTCTCAATATAGCAATGAGACCTGTAGAGAGCATGCCTTCTTGC
 M T L A A P L N I A M R P V E S M P F L>

Figure 2 (con't)

1570 1580 1590 1600 1610 1620
CCCAAGCTTGCGCTACATCACCGCCTGGTAAACAGTATTATAAAAATCAAAATATGGGTA
P Q A L P T S P P W * >

1630 1640 1650 1660 1670 1680
AAAGTAAAATATTACCGAACTTAACCTTTAGTTGATTAAAGCAAAAAGTAAACCATGA

1690 1700 1710 1720 1730 1740
AATTGGGAGATTTATTACATTAGTTAATAAGAGTGTGGTAGCATTCTCCAATTGCG

1750 1760 1770 1780 1790 1800
CTGGGATTATTCAAAGTAGGGTGTGTATGTAACCTACTGGGACCACTTAGTTAATC

1810 1820 1830 1840 1850 1860
AGAAATTCCCTTTAGCTGACAACATTGCTAACAGGGATAGTAGTTGGCAAGATGAAATG

1870 1880 1890 1900 1910 1920
CCAGAATTAAAACCAATCATAGTAGAACCCACTTCAAAATAAAAAACAGCATTACTAT

1930 1940 1950 1960 1970 1980
TTCTAATCCCCAGGAATCACTTATTGTAACACTAGCAGAACTCTCTCCCTATACAAG

1990 2000 2010 2020 2030 2040
GTGGATGGCTGATTTAACCTGAAATTAAATCCACAGATTGAGAGCTAGTGTAGAATT

2050 2060 2070 2080 2090 2100
GTCTGTGTTATTGTTTATGAGTAAATACATGCATTGTCATAATAAAATGCATTTCAAG

2110 2120 2130 2140 2150 2160
AGAATATGCATTTACCTTGGAAATATGTTAATTTCAGGCAGCATTCCCTATGGGAAAG

2170 2180 2190 2200 2210 2220
GTGATACAGCTCTGATATGCAAAGCATATGATAATTATCATTCTAACCTAACGTATA

2230 2240 2250 2260 2270 2280
ATAGGGATTGTGACCTGATATTGGAGATGTAATATTGCTCAGCATATTAATCCCGATG

2290 2300
GAATATAGCATTGTAGTTGACTTTT

Figure 3

Figur 4

Figure 5

Figure 6

A:

B:

Alignment of Vesf1/mPuri:

Vesf1	168	KVVKKQHACEMOKKAFKUVTILAKKLUHSDEKEFICICHQKFRKQRTTHAVSHBEGITMKPCSCGKFSRPHUSCHRVTHPHTSPRKCQ	264
mPuri	275	KLIRKKAACMOKKAFKUVTILAKKLUHSDEKEFICICHQKFRKQRTTHAVSHBEGITMKPCSCGKFSRPHUSCHRVTHPHTSPRKCQ	372
Vesf1	265	TCTAAFKTOKRSHMUTHECKSVENIGQULLSMTATSHLAKHGSOSLNCTCKQISKTCMSEETSHPKOQQQQQQQQQQQQQHVTSPKGQ	360
mPuri	373	KCEAAFKTOKRSHMUTHECKSVENIGQULLSMTATSHLAKHGSOSLNCTCKQISKTCMSEETSHPKOQQQQQQQQQQQHVTSPKGQ	469

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

A.

B.

C.

Figure 14

Figur 15

A: Jackson BSS Chromosome 2

B: Jackson BSS Chromosome 2

Figure 16

Restriction Enzyme Map of a 20 kb Genomic DNA of the Vezf1 Gene

BamHI (B), EcoRI (E), EcoRV (E5), Eagl (Ea), Notl (N), Patl (P), SacI (S), XbaI (Xb), and Xhol (Xh).

— Intronic sequence;

[1] Exon 1

[2] Exon 2

Figure 17

Vezf1 EXPRESSION VECTORS

Figure 18