DM9: Thermodynamique

Exercice 1 : SÉQUESTRATION DU CO₂

Les activités humaines ont accru sensiblement le taux de la concentration de CO_2 dans l'atmosphère : autour de 280 ppm il y a 250 ans, il est actuellement de 387 ppm (soit une augmentation de 38%). Afin de ne pas dépasser la limite de 450 ppm au-delà de laquelle les conséquences les plus dramatiques du réchauffement climatique seront inévitables de nombreuses options sont envisagées afin de limiter les rejets de CO_2 dans l'atmosphère.

Masse volumique de l'océan	$\rho_0 = 1.03 \times 10^3 \mathrm{kg/m^3}$
Température de l'océan	$T_0 = 280 \mathrm{K}$
Pression à la surface de l'océan	$P_0 = 1 \mathrm{bar}$
Constante des gaz parfaits	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Masse molaire du CO ₂	$M_{\rm CO_2} = 44.0 \mathrm{g}\mathrm{mol}^{-1}$

Table 1 – Données thermodynamiques relatives au problème

Une première proposition un peu simple consiste à former des blocs de CO_2 solide à l'aide d'installations frigorifiques puis de les laisser tomber dans des fosses marines. On effectue les approximations suivantes :

- L'océan est un fluide homogène au repos, de température constante, incompressible et indilatable.
- Les blocs de CO₂ sont incompressibles et indilatables. Ils ont de plus une masse constante tout au long de la descente dans la fosse (approximation forte).

On donne ci-dessous le diagramme de phases de CO_2 .

Caractéristiques des points a, b, c :

$$\begin{split} & \text{Point } a, \, T_a = 280 \, \text{K}, \, P_a = 4 \times 10^3 \, \text{bar} \, ; \\ & \text{Point } b, \, T_b = 304 \, \text{K}, \, P_b = 70.4 \, \text{bar} \, ; \\ & \text{Point } c, \, T_c = 216 \, \text{K}, \, P_c = 5.11 \, \text{bar}. \end{split}$$

FIGURE 1 – Diagramme du phases du CO₂.

- 1. Donner le nom de l'état physique dans chacune des quatre zones 1, 2, 3 et 4.
- 2. Donner les noms des points c et b et préciser leur particularité.
- 3. Un morceau de dioxyde de carbone solide est laissé sur une table dans un laboratoire. Ce solide est-il stable ou au contraire observe-t-on un changement d'état (préciser alors son nom)?
- 4. Quelle doit être la pression minimale de l'eau pour que le CO₂ reste solide dans son emplacement de stockage?
- 5. On note z la profondeur du point considéré avec z = 0 correspondant à la surface de l'océan. Sachant que dans le cas d'un fluide au repos, la pression à une profondeur z est $P(z) = P(0) + \rho gz$. Quelle devrait être la profondeur minimale de la fosse marine pour que le bloc de CO_2 reste solide? Commenter le résultat.

La méthode précédente de séquestration présente de nombreux inconvénients : perte partielle du $\rm CO_2$ lors de la chute du bloc, dissolution du $\rm CO_2$ dans l'eau de mer (et donc modification de son pH) et risque de libération brutale du $\rm CO_2$ piégé. Une solution plus raisonnable est de réinjecter le $\rm CO_2$ dans le sous-sol et de le piéger dans un aquifère salin (réserve souterraine d'eau salée).

Le CO_2 gazeux est capté, il subit des compressions successives jusqu'à obtention d'un fluide. Ce dernier est ensuite injecté dans un aquifère salin dont la profondeur est nécessairement supérieure à 800 m. Dans de telles conditions de température et de pression le CO_2 est supercritique. Moins dense que l'eau de l'aquifère, il monte puis s'accumule sous un piège structurel (une roche composée par exemple d'argile).

On considère une quantité n_0 de CO_2 occupant un volume $V_0=10\,\mathrm{m}^3$ à une température $T_0=298\,\mathrm{K}$ et une pression $p_0=1\,\mathrm{bar}$.

2019-2020 page 1/2

On désire vérifier la validité du modèle du gaz parfait appliqué au $\rm CO_2$ gazeux. Pour un kilogramme de $\rm CO_2$ gazeux à une température de $\rm 280\,K$, on obtient les résultats suivants :

\overline{P} (bar)	0,804	0,868	0,968	1,060	1,130	1,179
$V (\mathrm{m}^3)$	0,658	0,610	0,547	0,499	0,468	0,449

- 6. Rappeler les hypothèses du modèle du gaz parfait. Quelle relation lie $P,\,V\,n$ et T dans ce modèle.
- 7. Ce modèle est-il compatible avec les résultats expérimentaux?

On donne ci-dessous le diagramme de Clapeyron et des données thermodynamiques relatives à CO₂.

Volume massique (m³/kg)

T(K)	235	250	265	280	295
P_{sat} (pression de vapeur saturante en bar)	10,7	18,0	28,1	41,9	59,5
v_l (volume massique du liquide à l'ébullition en m ³ kg ⁻¹)	9.0×10^{-4}	9.6×10^{-4}	1.0×10^{-3}	1.1×10^{-3}	$1{,}3\times10^{-3}$
v_v (volume massique de la vapeur saturante en m ³ kg ⁻¹)	3.6×10^{-2}	2.1×10^{-2}	$1{,}3\times10^{-2}$	$8,1 \times 10^{-3}$	4.7×10^{-3}

Table 2 – Données thermodynamiques relatives au dioxyde de carbone. La vapeur saturante correspond à la vapeur en équilibre avec du liquide.

- 8. Compléter le diagramme de Clapeyron (températures) et tracer l'isotherme à 295 K.
- 9. Identifier sur le diagramme les courbes de rosée et d'ébullition.
- 10. À une température de 295 K et à la pression de 59 bar, le gaz peut-il être considéré comme parfait?

La quantité n_0 de CO_2 est à présent soumise à diverses transformations la faisant passer par les états A, B, C et D caractérisés par leur température et leur volume :

Point	A	B	C	D
Température (K) Volume (ℓ)	280	280	295	310
	120	53	53	53

11. Placer les points A, B, C et D sur le diagramme de Clapeyron et préciser l'état physique du CO_2 pour chacun de ces états.

page 2/2

- 12. Préciser la pression pour chacun des états A, B, C et D.
- 13. Dans le cas de systèmes biphasiques, préciser la composition massique du mélange.
- 14. Déterminer le travail fourni par le compresseur pour effectuer la transformation $A \to B$

2019–2020