INVARIANTES SEPARÁVEIS PARA MATRIZES 2 × 2

ARTEM LOPATIN, MARCIO SIMÕES JÚNIOR

Resumo. Um conjunto mínimo separável é encontrado pela álgebra dos invariantes de matrizes dentre várias matrizes 2×2 em um campo infinito de característica arbitrária. **Palavras chaves:** teoria de invariantes, matrizes invariantes, grupos lineares clássicos, geradores, característica positiva.

2010 MSC: 16R30; 15B10; 13A50.

1. Introdução

1.1. **Definições.** Todos os espaços vetoriais, algébricos e modulares estão sobre um campo algebricamente fechado e infinito \mathbb{F} de característica char $\mathbb{F} \neq 2$, salvo quando indicado ao contrário. Por uma álgebra, sempre nos referimos a uma álgebra associativa.

Para definir as álgebras dos invariantes de matriz, consideramos a álgebra polinomial

$$R = R_n = \mathbb{F}[x_{ij}(k) | 1 \le i, j \le n, 1 \le k \le d]$$

juntamente com matrizes $n \times n$ genéricas

$$X_k = \left(\begin{array}{ccc} x_{11}(k) & \cdots & x_{1n}(k) \\ \vdots & & \vdots \\ x_{n1}(k) & \cdots & x_{nn}(k) \end{array}\right).$$

Denote por $\sigma_t(A)$ o t-ésimo coeficiente do polinômio característico χ_A de A. Por exemplo, $\operatorname{tr}(A) = \sigma_1(A)$ e $\det(A) = \sigma_n(A)$. A ação do grupo linear geral GL(n) em R é definida pela fórmula: $g \cdot x_{ij}(k) = (g^{-1}X_kg)_{ij}$, onde $(A)_{ij}$ representa o (i,j)-ésimo elemento de uma matriz A. O conjunto de todos os elementos de R que são estáveis com respeito à ação dada é chamado de álgebra do invariante de matrizes $R^{GL(n)}$ e essa álgebra é gerada por $\sigma_t(b)$, onde $1 \le t \le n$ e b varia em todos os monômios das matrizes de matrizes genéricas X_1, \ldots, X_d (ver [18], [15], [4]). Note que no caso de característica zero, a álgebra $R^{GL(n)}$ é gerada por $\operatorname{tr}(b)$, onde b é como acima. O ideal de relações entre geradores de $R^{GL(n)}$ foi descrito em [17, 15, 20].

Denote por $H = M(n) \oplus \cdots \oplus M(n)$ a soma direta de d copias do espaço M(n) de todas as matrizes $n \times n$ em \mathbb{F} . Os elementos de R podem ser interpretados como funções polinomiais de H em \mathbb{F} da seguinte forma: $x_{ij}(k)$ envia $u = (A_1, \ldots, A_d) \in H$ em $(A_k)_{i,j}$. Para um monômio $c \in R$ denote por deg c seu grau e por mdeg c seu multigrau, i.e., mdeg $c = (t_1, \ldots, t_d)$, onde t_k é o grau total do monomial c em $x_{ij}(k)$, $1 \le i, j \le n$, e deg $c = t_1 + \cdots + t_d$. Similarmente, denotamos o grau e o multigrau de um polinômio \mathbb{N} -homogêneo (\mathbb{N}^d -homogêneo, respectivamente) de R, onde \mathbb{N} representa números inteiros

O primeiro autor foi apoiado pela FAPESP (processo 2016/00541-0) e o segundo autor foi apoiado pela bolsa da Iniciação Científica (PICME, CNPq). Os resultados obídos são originais.

não negativos. Desde que deg $\sigma_t(X_{i_1}\cdots X_{i_s})=ts$, a álgebra $R^{GL(n)}$ tem \mathbb{N} -graduação por graus e \mathbb{N}^d -graduação por multigraus.

Em 2002, Derksen e Kemper [1] introduziu a noção de separar os invariantes como um conceito mais fraco do que gerar invariantes. Dado um subconjunto S de $R^{GL(n)}$, dizemos que os elementos u,v de H podem ser separados por S se existe um invariante $f \in S$ com $f(u) \neq f(v)$. Se $u,v \in H$ podem ser separados por $R^{GL(n)}$, então simplesmente dizemos que eles podem ser separaveis. Um subconjunto $S \subset R^{GL(n)}$ do anel invariante é chamado separável se, para qualquer u,v de H que podem ser separados, temos que eles podem ser separados por S. Um subconjunto $S \subset R^{GL(n)}$ é chamado de θ -separável se para qualquer $u \in H$ tal que $u \in 0$ possam ser separados, temos que $u \in 0$ podem ser separados por S.

O resultado principal deste artigo é uma descrição de um conjunto separável mínimo (por inclusão) da álgebra das matrizes GL(2)-invariantes para qualquer d.

Teorema 1.1. O seguinte conjunto é um conjunto separável mínimo para a álgebra dos invariantes de matrizes $R^{GL(2)}$ para todo $d \ge 1$:

$$\operatorname{tr}(X_i), \det(X_i), \quad 1 \le i \le d,$$

 $\operatorname{tr}(X_i X_j), \quad 1 \le i < j \le d,$
 $\operatorname{tr}(X_i X_j X_k), \quad 1 \le i < j < k \le d.$

1.2. Os resultados conhecidos. Um conjunto de geradores mínimo da álgebra dos invariantes de matrizes $R^{GL(2)}$ é conhecido, a saber:

$$\operatorname{tr}(X_i), \det(X_i), 1 \le i \le d, \ \operatorname{tr}(X_{i_1} \cdots X_{i_k}), 1 \le i_1 < \cdots < i_k \le d,$$

onde k=2,3 no caso char $\mathbb{F}\neq 2$ e k>0 no caso char $\mathbb{F}=2$. O conjunto

$$\operatorname{tr}(X_i), \det(X_i), 1 \le i \le d, \sum_{i+j=k, i < j} \operatorname{tr}(X_i X_j), 3 \le k \le 2d - 1$$

é um conjunto 0-separável mínimo (por inclusão) por $R^{GL(2)}$ (ver [19, 3]).

2. Notações

Esta seção contém algumas observações triviais. Se, para $A, B \in M(n)$ existe $g \in GL(n)$ tal que $gAg^{-1} = B$, então escrevemos $A \sim B$. Denote por E_{ij} a matriz de modo que o (i,j)-ésimo elemento seja igual a um e o restante dos elementos sejam zeros. Obviamente, as seguintes condições para uma matriz não nula $A \in M(2)$ são equivalentes: A é nilpotente $\Leftrightarrow A^2 = 0 \Leftrightarrow \operatorname{tr}(A) = \det(A) = 0 \Leftrightarrow A \sim E_{12}$. A matriz diagonal com elementos a_1, \ldots, a_n é indicada por diag (a_1, \ldots, a_n) . A prova do próximo lema é direta.

Lema 2.1. Assuma que
$$A_1, A_2 \in M(2)$$
, onde $A_2 = \begin{pmatrix} \alpha_2 & \beta_2 \\ \gamma_2 & \delta_2 \end{pmatrix}$. Então:

(a) para $A_1 = \operatorname{diag}(\alpha_1, \beta_1)$ existe $g \in GL(2)$ de tal modo que $gA_1g^{-1} = \operatorname{diag}(\beta_1, \alpha_1)$ e

$$gA_2g^{-1} = \begin{pmatrix} \delta_2 & \gamma_2 \\ \beta_2 & \alpha_2 \end{pmatrix};$$

(b) para

$$A_1 = \left(\begin{array}{cc} \alpha_1 & 1\\ 0 & \alpha_1 \end{array}\right)$$

existe $g \in GL(2)$ de tal modo que $gA_1g^{-1} = A_1$ e

$$gA_2g^{-1} = \left(\begin{array}{cc} c & 0\\ \gamma_2 & d \end{array}\right)$$

para alguns c, d.

3. O caso de três matrizes

Denote o conjunto da formulação do Teorema 1.1 por S(d).

Lema 3.1. Se $d \leq 3$, então o conjunto S(d) é um conjunto separável mínimo por $R^{GL(2)}$.

Demonstração. Suponha que $d \in \{1, 2, 3\}$. Uma vez que neste caso S(d) é um conjunto de geradores (mínimo) para $R^{GL(2)}$ (ver Seção 1.2), temos que S(d) é um conjunto separável. Resta mostrar que S(d) é mínimo.

Suponha que d = 1. Então $tr(X_1)$ não separa as matrizes diag(1, -1) e 0 e $det(X_1)$ não separa as matrizes diag(1, 0) e 0.

Suponha que d=2. Obviamente, basta provar que o conjunto S(2) sem $\operatorname{tr}(X_1X_2)$ não é separável. Considere $u=(E_{12},E_{21})\in H$. Então $\operatorname{tr}(X_1X_2)$ separa u e 0, mas o resto dos elementos de S(2) não os separa.

Suponha que d=3. Obviamente, basta provar que o conjunto S(2) sem $\operatorname{tr}(X_1X_2X_3)$ não é separável. Considere $u=(E_{11},E_{21},E_{12})$ e $v=(E_{22},E_{21},E_{12})$ de H. Então $\operatorname{tr}(X_1X_2X_3)$ separa u e v, mas o resto dos elementos de S(3) não os separa.

Observe que a Seção 1.2 implica que S(1) e S(2) são conjuntos 0-separáveis mínimos, mas S(3) não é um conjunto 0-separável mínimo.

4. A Prova

Começamos com a seguinte Proposição. A prova do Teorema 1.1 é dada no fim da seção.

Preposição 4.1. Suponhamos que d=4. Considere $u=(A_1,A_2,A_3,A_4)$ e $v=(B_1,B_2,B_3,B_4)$ em H, tal que para cada $f\in S(4)$ temos f(u)=f(v). Então em $h=\operatorname{tr}(X_1\cdots X_4)$ temos h(u)=h(v).

Dividimos a prova da proposição em várias lemas. Pela formulação da proposição,

- $(T_i) \operatorname{tr}(A_i) = \operatorname{tr}(B_i), 1 \le i \le 4;$
- $(D_i) \det(A_i) = \det(B_i), 1 \le i \le 4;$
- $(T_{ij}) \operatorname{tr}(A_i A_j) = \operatorname{tr}(B_i B_j), 1 \le i < j \le 4;$
- $(T_{ijk}) \operatorname{tr}(A_i A_j A_k) = \operatorname{tr}(B_i B_j B_k), 1 \le i < j < k \le 4.$

Temos que mostrar que

$$(Q) \operatorname{tr}(A_1 \cdots A_4) = \operatorname{tr}(B_1 \cdots B_4).$$

Se (T) f = h é uma das igualdades acima, então escrevemos T por f - h. Por exemplo, $T_1 = \operatorname{tr}(A_1) - \operatorname{tr}(B_1)$.

Denominamos os elementos das matrizes A_1, \ldots, A_4 da seguinte forma:

$$A_1 = \left(\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right), \quad A_2 = \left(\begin{array}{cc} a_5 & a_6 \\ a_7 & a_8 \end{array} \right), \quad A_1 = \left(\begin{array}{cc} a_9 & a_{10} \\ a_{11} & a_{12} \end{array} \right), \quad A_1 = \left(\begin{array}{cc} a_{13} & a_{14} \\ a_{15} & a_{16} \end{array} \right).$$

Da mesma forma, substituindo $a_i \to b_i$ para todo i, denotamos os elementos das matrizes B_1, \ldots, B_4 por b_1, \ldots, b_{16} .

Observação 4.2. Uma vez que os elementos de S(4) são invariantes com respeito à ação de GL(2) em H, diagonalmente por conjugação, e o campo é algebricamene fechado, podemos assumir qualquer $A_1 = \operatorname{diag}(\alpha, \beta)$ ou

$$A_1 = \left(\begin{array}{cc} \gamma & 1\\ 0 & \gamma \end{array}\right)$$

para algum α, β, γ de \mathbb{F} . Além disso, pela parte (b) do Lema 2.1, podemos assumir que, no segundo caso temos $(A_2)_{12} = 0$.

Observação 4.3. Denote por G(d) o conjunto de geradores mínimo da Seção 1.2; em particular, G(3) = S(3). Considere $u, v \in H$ de modo que u e v não podem ser separados por elementos de G(d). Então u e v não pode ser separado por nenhum invariante f de grau d, porque f é um polinômio com elementos de G(d).

A Observação 4.3 implica imediatamente a próxima observação:

Observação 4.4. Suponha que a condição da Proposição 4.1 seja válida para $u, v \in H$. Então $\operatorname{tr}(X_i X_j X_k)$ também não separa u e v para qualquer emparelhamento diferente $1 \leq i, j, k \leq 4$. Se $\operatorname{tr}(X_{\sigma(1)} \cdots X_{\sigma(4)})$ também não separa u e v, então $\operatorname{tr}(X_{\sigma(1)} \cdots X_{\sigma(4)})$ não separa u e v para qualquer permutação de $\sigma \in S_4$.

Lema 4.5. Suponha que a condição da Proposição 4.1 seja válida e $A_1 = 0$. Então a igualdade (Q) é válida.

Demonstração. Pela Observação 4.2 podemos assumir que $a_7 = 0$. Da mesma forma, podemos assumir isso e $b_3 = 0$. Considerando as igualdades (T_1) – (T_4) , obtemos

$$b_4 = -b_1, \quad b_8 = a_5 + a_8 - b_5,$$

$$b_{12} = a_{12} + a_9 - b_9, \quad b_{16} = a_{13} + a_{16} - b_{13},$$

respectivamente. A igualdade (D_1) implica que $b_1 = 0$. No caso de $b_2 = 0$, temos (Q). Então, sem perda de generalidade, podemos assumir que $b_2 \neq 0$. As igualdades (T_{12}) , (T_{13}) e (T_{14}) , respectivamente, implicam que $b_7 = b_{11} = b_{15} = 0$, respectivamente. Então, também temos (Q).

Lema 4.6. Suponha que a condição da Proposição 4.1 seja válida, A_1 é escalar e B_1 é diagonal. Então a igualdade (Q) é válida.

Demonstração. Temos que $A_1 = \text{diag}(a_1, a_1)$ e $B_1 = \text{diag}(b_1, b_4)$. Considerando as igualdades (T_1) – (T_4) obtemos

$$b_4 = a_1 + a_4 - b_1$$
, $b_8 = a_5 + a_8 - b_5$,

$$b_{12} = a_{12} + a_9 - b_9, \quad b_{16} = a_{13} + a_{16} - b_{13},$$

respectivamente. Assim (D_1) implica $b_1 = a_1$. Portanto, a matriz $B_1 = A_1$ é escalar e Q é igual a igualdade T_{234} multiplicado por a_1 , i.e. (Q) é válido.

Lema 4.7. Suponhamos que a condição da Proposição 4.1 seja válida e A_1, B_1 são diagonais. Então a igualdade (Q) é válida.

Demonstração. Aplicando o Lema 4.6 podemos supor que A_1 e B_1 não são escalares. Denote $A_1 = \text{diag}(a_1, a_4)$, $B_1 = \text{diag}(b_1, b_4)$, onde $a_1 \neq a_4$ e $b_1 \neq b_4$. As igualdades (T_1) – (T_4) implica que

$$b_4 = a_1 + a_4 - b_1$$
, $b_8 = a_5 + a_8 - b_5$,

$$b_{12} = a_{12} + a_9 - b_9, \quad b_{16} = a_{13} + a_{16} - b_{13},$$

respectivamente. Consideramos várias possibilidades de elementos das matrizes.

(1) Assuma $b_1 = a_1$. Se $a_4 \neq a_1$, as ignaldades (T_{12}) , (T_{13}) , (T_{14}) implican que

$$b_5 = a_5$$
, $b_9 = a_9$ e $b_{13} = a_{13}$,

respectivamente.

(1.1) Seja $b_7=0$. Temos da igualdade (D_2) que $a_6=0$ ou $a_7=0$. Uma vez que A_1 é diagonal, podemos usar a parte (a) de Lema 2.1 (veja também a Observação 4.2) para o par (A_1,A_2) e assumir que $a_7=0$. Desde que $a_1\neq a_4$ a seguinte igualdade é válida:

$$Q = \frac{1}{a_1 - a_4} \left((a_1 a_5 - a_4 a_8) T_{134} - a_1 a_4 (a_5 - a_8) T_{34} \right) + a_{13} T_{123} + a_{12} T_{124}.$$

Daí, temos (Q).

(1.2) Seja $b_7 \neq 0$. Assim, as igualdades (T_{23}) , (T_{24}) , (D_2) , respectivamente, implicam que

$$\begin{array}{lcl} b_{10} & = & (a_{11}a_6 + a_{10}a_7 - b_{11}b_6)/b_7, \\ b_{14} & = & (a_{15}a_6 + a_{14}a_7 - b_{15}b_6)/b_7, \\ b_6 & = & a_6a_7/b_7, \end{array}$$

respectivamente. No caso que $a_6=0$ a igualdade

$$Q = a_4 T_{234} + a_5 T_{134} - a_4 a_5 T_{34}$$

completa a prova. Assim, assumimos que $a_6 \neq 0$. Desde que $a_4 \neq a_1$, as igualdades (T_{123}) e (T_{124}) , respectivamente, implicam que

$$a_{11} = a_7 b_{11}/b_7$$
 and $a_{15} = a_7 b_{15}/b_7$,

respectivemente. Assim, temos (Q).

(2) Assuma $b_1 \neq a_1$. Em seguida, segue de (D_1) que $b_1 = a_4$. Desde que $a_1 \neq a_4$, as igualdades (T_{12}) , (T_{13}) e (T_{14}) , respectivamente, implicam que

$$b_5 = a_8$$
, $b_9 = a_{12}$ e $b_{13} = a_{16}$,

respectivamente.

(2.1) Seja $b_7 = 0$. Decorre da igualdade (D_2) que $a_6 = 0$ ou $a_7 = 0$. Desde que A_1 seja diagonal, podemos aplicar a parte (a) do Lema 2.1 (ler também a Observação 4.2) para o par (A_1, A_2) e assumir que $a_6 = 0$. Portanto

$$Q = a_4 T_{234} + a_5 T_{134} - a_4 a_5 T_{34},$$

i.e., (Q) é válido.

(2.2) Seja $b_7 \neq 0$. Então, as igualdades (D_2) , (T_{23}) e (T_{24}) , respectivamente, implicam que

$$b_6 = a_6 a_7 / b_7,$$

$$b_{10} = (a_{11} a_6 + a_{10} a_7 - b_{11} b_6) / b_7,$$

$$b_{14} = (a_{15} a_6 + a_{14} a_7 - b_{15} b_6) / b_7,$$

respectivamente.

(2.2.1) Seja $a_7 = 0$. Desde que $b_7 \neq 0$, então T_{24} implica que

$$b_{14} = a_{15}a_6/b_7.$$

Portanto,

$$Q = a_4 T_{234} + a_5 T_{134} - a_4 a_5 T_{34},$$

i.e. (Q) é válido.

(2.2.2) Seja $a_7 \neq 0$. Desde que $a_1 \neq a_4$, as igualdades (T_{123}) e (T_{124}) implicam, respectivamente:

$$a_{10} = a_6 b_{11}/b_7$$
 e $a_{14} = a_6 a_{15}/b_7$.

Desde que

$$Q = a_4 T_{234} + a_5 T_{134} - a_4 a_5 T_{34} + a_{12} T_{124},$$

a igualdade (Q) é válida.

Lema 4.8. Suponha que a condição da Proposição 4.1 seja válida,

$$A_1 = \left(\begin{array}{cc} a_1 & 1 \\ 0 & a_1 \end{array}\right) \quad e \quad B_1 = \left(\begin{array}{cc} b_1 & 0 \\ 0 & b_4 \end{array}\right).$$

Então a igualdade (Q) é válida.

Demonstração. Usando a parte (b) do Lema 2.1 (ver também a Observação 4.2) para o par (A_1, A_2) , podemos assumir que $a_6 = 0$. As igualdades (T_1) – (T_4) implicam que:

$$b_4 = a_1 + a_4 - b_1$$
, $b_8 = a_5 + a_8 - b_5$,
 $b_{12} = a_{12} + a_9 - b_9$, $b_{16} = a_{13} + a_{16} - b_{13}$,

respectivamente. Portanto, a igualdade $b_1 = a_1$ segue de (D_1) e, em seguida, $a_7 = 0$ segue de (T_{12}) . Aplicando o Lema 4.7 juntamente com a Observação 4.4 para as matrizes diagonais A_2 e B_1 , concluímos a prova.

Lema 4.9. Suponha que char $\mathbb{F} = 2$ e que a condição da Preposição 4.1 seja válida,

$$A_1 = \left(\begin{array}{cc} a_1 & 1 \\ 0 & a_1 \end{array}\right) \quad e \quad B_1 = \left(\begin{array}{cc} b_1 & 1 \\ 0 & b_1 \end{array}\right).$$

Então a igualdade (Q) é válida.

Demonstração. Pelo Lema 4.8 juntamente com a Observação 4.4, podemos assumir que para qualquer i a matriz A_i não é diagonal e para qualquer j a matriz B_j não é diagonal.

Usando a parte (b) do Lema 2.1 (ver também a Observação 4.2) para o par (A_1, A_2) e (B_1, B_2) , podemos assumir que $a_6 = b_6 = 0$. As igualdades (T_2) – (T_4) implicam que:

$$b_8 = a_5 + a_8 - b_5,$$

$$b_{12} = a_{12} + a_9 - b_9, \quad b_{16} = a_{13} + a_{16} - b_{13},$$

respectivamente. Desde que char $\mathbb{F} = 2$, então a igualdade $b_1 = a_1$ segue de (D_1) . Aplicando nas igualdades (T_{12}) , (T_{13}) e (T_{14}) , respectivamente, obtemos

$$b_7 = a_7, \quad b_{11} = a_{11}, \quad b_{15} = a_{15},$$

respectivamente. Uma vez que a matriz A_2 não é diagonal, então $a_7 \neq 0$. Então as igualdades (T_{23}) e (T_{24}) , respectivamente, implicam que

$$b_{10} = \frac{1}{a_7}(a_{10}a_7 - a_8a_9 + a_9b_5 + a_{12}(-a_5 + b_5) + a_5b_9 + a_8b_9 - 2b_5b_9),$$

$$b_{14} = \frac{1}{a_7}(a_{14}a_7 - a_{13}a_8 + a_5b_{13} + a_8b_{13} + a_{13}b_5 - 2b_{13}b_5 + a_{16}(-a_5 + b_5)),$$

respectivamente. Portanto, segue de (T_{123}) e (T_{124}) que

$$b_9 = \frac{1}{a_7}(a_7a_9 + a_{11}(b_5 - a_5)),$$

$$b_{13} = \frac{1}{a_7}(a_7a_{13} + a_{15}(b_5 - a_5)),$$

respectivamente. Se $b_5 = a_5$, então (Q) é válido. Suponha que $b_5 \neq a_5$. Se segue da igualdade (D_2) que $b_5 = a_8$. Então (Q) é válido.

Prova da Preposição 4.1. Se char \mathbb{F} não é igual a 2, então o fato de que S(4) é um conjunto gerado por $R^{GL(2)}$ concluí a prova.

Suponha que char $\mathbb{F}=2$. Pelo Lema 4.5, podemos assumir que para cada i a matriz A_i é diferente de zero, bem como a matriz B_i . Os Lemas 4.7, 4.8, 4.9 juntamente com o Lema 2.1 concluí a prova. \square

Prova do Teorema 1.1. Suponha que $d \geq 4$. Uma vez que S(3) é um conjunto mínimo separável (ver Lema 3.1), temos que S(d) não contém um subconjunto apropriado que seja separável. Por outro lado, no caso de char $\mathbb{F} \neq 2$ o conjunto S(d) gera a álgebra $R^{GL(2)}$, portanto S(d) é separável.

Suponha que char $\mathbb{F}=2$. A Preposição 4.1 juntamente com a descrição do conjunto gerado por $R^{GL(2)}$ da Seção 1.2 implica que S(4) é separável. Da mesma forma, aplicando o Lema para $u=(A_1,A_2,A_3,A_4A_5)$ e $v=(B_1,B_2,B_3,B_4B_5)$ obtemos que esse lema

se mantem para $h = \operatorname{tr}(X_1 \cdots X_5)$. Assim S(5) é separável. Repetindo esse raciocínio, obtemos que S(d) é separável para todo d. O teorema está provado. \square

Referências

- [1] H. Derksen and G. Kemper, Computational Invariant Theory, Invariant Theory and Algebraic Transformation Groups, I. Encyclopaedia of Mathematical Sciences, 130. Springer-Verlag, Berlin, 2002. x+268 pp.
- [2] D.Ž. Đoković, On orthogonal and special orthogonal invariants of a single matrix of small order, Linear and Multilinear Algebra 57 (2009), no. 4, 345–354.
- [3] M. Domokos, S.G. Kuzmin, A.N. Zubkov, Rings of matrix invariants in positive characteristic, J. Pure Appl. Algebra 176 (2002), 61–80.
- [4] S. Donkin, Invariants of several matrices, Invent. Math. 110 (1992), 389–401.
- [5] V. Drensky, L. Sadikova, Generators of invariants of two 4 × 4 matrices, C. R. Acad. Bulgare Sci. 59 (2006), No. 5, 477–484.
- [6] A.A. Lopatin, The algebra of invariants of 3 × 3 matrices over a field of arbitrary characteristic, Commun. Algebra 32 (2004), no. 7, 2863–2883.
- [7] A.A. Lopatin, Relatively free algebras with the identity $x^3 = 0$, Commun. Algebra **33** (2005), no. 10, 3583–3605.
- [8] A.A. Lopatin, Invariants of quivers under the action of classical groups, J. Algebra 321 (2009), 1079– 1106.
- [9] A.A. Lopatin, Orthogonal invariants of skew-symmetric matrices, Linear and Multilinear Algebra 59 (2011), 851–862.
- [10] A.A. Lopatin, On minimal generating systems for matrix O(3)-invariants, Linear and Multilinear Algebra 59, (2011) 87–99.
- [11] A.A. Lopatin, Relations between O(n)-invariants of several matrices, Algebras and Representation Theory 15 (2012), 855–882.
- [12] A.A. Lopatin, Free relations for matrix invariants in the modular case, Journal of Pure and Applied Algebra 216 (2012), 427–437.
- [13] A.A. Lopatin, On the nilpotency degree of the algebra with identity $x^n = 0$, Journal of Algebra 371 (2012), 350–366.
- [14] A.A. Lopatin, Indecomposable orthogonal invariants of several matrices over a field of positive characteristic, arXiv:1511.01075.
- [15] C. Procesi, The invariant theory of $n \times n$ matrices, Adv. Math. 19 (1976), 306–381.
- [16] C. Procesi, Computing with 2×2 matrices, J. Algebra 87 (1984), 342–359.
- [17] Yu.P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic 0, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), No. 4, 723–756 (Russian).
- [18] K.S. Sibirskii, Algebraic invariants of a system of matrices, Sibirsk. Mat. Zh. 9 (1968), No. 1, 152–164 (Russian).
- [19] Y. Teranishi, The Hilbert series of rings of matrix concomitants, Nagoya Math. J. 111 (1988), 143–156.
- [20] A.N. Zubkov, On a generalization of the Razmyslov-Procesi theorem, Algebra and Logic 35 (1996), No. 4, 241–254.
- [21] A.N. Zubkov, Invariants of an adjoint action of classical groups, Algebra and Logic 38 (1999), No. 5, 299–318.
- [22] A.N. Zubkov, Invariants of mixed representations of quivers I, J. Algebra Appl. 4 (2005), No. 3, 245–285.

Artem Lopatin, Marcio Simões Júnior, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 651, 13083-859 Campinas, SP, Brasil

 $E\text{-}mail\ address:$ artem_lopatin@yahoo.com (Artem Lopatin), eu@marciosimoes.com (Marcio Simões Júnior)