Ringed Spaces

September 4, 2020

Throughout this article, let *R* be a commutative ring and let $\alpha \in \widehat{\mathbb{N}}_0 = \mathbb{N} \cup \{0, \infty, \omega\}$.

1 Ringed Spaces

Ringed spaces formalize the idea of giving a geometric object by specifying its underlying topological space and the "functions" on all open subsets of this space.

Definition 1.1.

- 1. An *R*-ringed space is a pair (X, \mathcal{O}_X) , where *X* is a topological space and where \mathcal{O}_X is a sheaf of commutative *R*-algebras on *X*. The sheaf of rings \mathcal{O}_X is called the **structure sheaf** of (X, \mathcal{O}_X) .
- 2. A **locally** R**-ringed space** is an R-ringed space (X, \mathcal{O}_X) such that the stalk $\mathcal{O}_{X,x}$ is a local ring for all $x \in X$. We then denote by \mathfrak{m}_x the maximal ideal of $\mathcal{O}_{X,x}$ and by $\kappa(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$ its residue field.

Remark. Usually we will denote a (locally) R-ringed space (X, \mathcal{O}_X) simply by X.

Our principle example will be sheaves of real-valued C^{α} functions.

Example 1.1. Let X be an open subset of a finite-dimensional \mathbb{R} -vector space. We denote by \mathcal{C}_X^{α} the sheaf of \mathcal{C}^{α} functions: For all open subsets U of X, we have

$$C_X^{\alpha}(U) = \{ f : U \to \mathbb{R} \mid f \text{ is } C^{\alpha} \}.$$

Then C_X^{α} is a sheaf of \mathbb{R} -algebras. The same argument as for sheaves of continuous functions yields the following observation: For all $x \in X$ the stalk $C_{X,x}^{\alpha}$ is a local ring. In particular (X, C_X^{α}) is a locally \mathbb{R} -ringed space.

1.1 Morphisms of (Locally) Ringed Spaces

Definition 1.2. Let $X = (X, \mathcal{O}_X)$ and $Y = (Y, \mathcal{O}_Y)$ be R-ringed spaces. A **morphism of** R-ringed spaces $X \to Y$ is a pair (f, f^{\flat}) , where $f : X \to Y$ is a continuous map of the underlying topological spaces and where $f^{\flat} : \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a homomorphism of sheaves of R-algebras on Y.

The datum of f^{\flat} is equivalent to the datum of a homomorphism of sheaves of R-algebras $f^{\sharp}: f^{-1}\mathcal{O}_{Y} \to \mathcal{O}_{X}$ on X. Usually we simply write f instead of (f, f^{\sharp}) or (f, f^{\flat}) .

Remark. When \mathcal{O}_X and \mathcal{O}_Y are sheaves of functions, f^{\flat} is oftenly defined by the pullback map f^* , where if $g \in \mathcal{O}_Y(U)$, then we set $f^*(g) = g \circ f$. Of course for this to make sense, we need $g \circ f \in \mathcal{O}_X(f^{-1}(U))$.

Morphisms of *locally* ringed spaces have to satisfy an additional property. To state this property, observe that a morphism $f: X \to Y$ of R-ringed spaces induces morphisms on the stalks as follows: let $x \in X$. Using the identification $(f^{-1}\mathcal{O}_Y)_x = \mathcal{O}_{Y,f(x)}$, we get a homomorphism of R-algebras

$$f_x := (f^{\#})_x : \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}.$$

There is a more explicit description of this homomorphism: for U an open neighborhood of f(x) one has a map

$$\mathcal{O}_{Y}(U) \xrightarrow{f_{U}^{\flat}} \mathcal{O}_{X}(f^{-1}(U)) \longrightarrow \mathcal{O}_{X,x}$$

1

These maps induce the map on stalks $f_x : \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$. In particular, $f_x[(s,V)] = [(f_V^{\flat}(s), f^{-1}(V))]$. Now let X and Y be locally R-ringed spaces. We define a **morphism of locally** R-ringed spaces $X \to Y$ to be a morphism (f, f^{\flat}) of ringed spaces such that the homomorphism of local rings $f_x^{\sharp}: \mathcal{O}_{Y, f(x)} \to \mathcal{O}_{X, x}$ is **local** (i.e. $f_x^{\#}(\mathfrak{m}_{f(x)}) \subseteq \mathfrak{m}_x$).

In general there exist locally ringed spaces and morphisms of ringed spaces between them that are not morphisms of locally ringed spaces. For spaces with functions of C^{α} functions such as the premanifolds defined below, we will see that every morphism of ringed spaces is automatically a morphism of locally ringed spaces.

Remark. The composition of morphisms of (locally) R-ringed spaces is defined in the obvious way using the compatibility of direct images with composition (i.e. $(g \circ f)_* = g_* \circ f_*$. We obtain the category of (locally) R-ringed spaces.

In general, f^{\flat} (or f^{\sharp}) is an additional datum for a morphism. For instance it might happen that f is the identity but f^{\flat} is not an isomorphism of sheaves. We will usually encounter the simpler case that the structure sheaf is a sheaf of functions on open subsets of X and that f^{\flat} is given by composition with f. The following special case and its globalization is the main example.

Example 1.2. Let $X \subseteq V$ and $Y \subseteq W$ be open subsets of finite-dimensional \mathbb{R} -vector spaces V and W. Every C^{α} map $f: X \to Y$ defines by composition a morphism of locally \mathbb{R} -ringed spaces $(f, f^{\flat}): (X, \mathcal{C}_X^{\alpha}) \to (Y, \mathcal{C}_Y^{\alpha})$ by

$$f_U^{\flat}: \mathcal{C}_Y^{\alpha}(U) \longrightarrow f_*(\mathcal{C}_X^{\alpha})(U) = \mathcal{C}_X^{\alpha}(f^{-1}(U))$$

 $t \mapsto t \circ f$

for $U \subseteq Y$ open.

The induced map on stalks $f_x: \mathcal{C}^{\alpha}_{Y,f(x)} \to \mathcal{C}^{\alpha}_{X,x}$ is then also given by composing an \mathbb{R} -valued \mathcal{C}^{α} function t, defined in some neighborhood of f(x), with f, which yields an \mathbb{R} -valued C^{α} function $t \circ f$ defined in some neighborhood of x. Conversely, let $(f, f^{\flat}): (X, \mathcal{C}_X^{\alpha}) \to (Y, \mathcal{C}_Y^{\alpha})$ be any morphism of \mathbb{R} -ringed spaces. We claim:

- 1. (f, f^{\flat}) is automatically a morphism of *locally* \mathbb{R} -ringed spaces.
- 2. For all $U \subseteq Y$ open the \mathbb{R} -algebra homomorphism $f_U^{\flat}: \mathcal{C}_Y^{\alpha}(U) \to \mathcal{C}_X^{\alpha}(f^{-1}(U))$ is automatically given by the map $t \mapsto t \circ f$. Note that then f is a C^{α} map (choose a basis of W; considering for t projections to the coordinates shows that each component of f is a C^{α} map).

To show 1 let $x \in X$. Set $\varphi := f_x^\#$, $B := \mathcal{C}_{X,x'}^\alpha$ and $A := \mathcal{C}_{Y,f(x)}^\alpha$. Then $\varphi : A \to B$ is a homomorphism of local \mathbb{R} -algebras such that $A/\mathfrak{m}_A=\mathbb{R}$ and $B/\mathfrak{m}_B=\mathbb{R}$. We claim that φ is automatically local, equivalently that $\varphi^{-1}(\mathfrak{m}_B)$ is a maximal ideal of A. Indeed, φ induces an injective homomorphism of \mathbb{R} -algebras

$$A/\varphi^{-1}(\mathfrak{m}_B) \hookrightarrow B/\mathfrak{m}_B = \mathbb{R}.$$

As a homomorphism of \mathbb{R} -algebras, it is automatically surjective (indeed 1 maps to 1), hence $A/\varphi^{-1}(\mathfrak{m}_B) \cong \mathbb{R}$ is a field and hence $\varphi^{-1}(\mathfrak{m}_B)$ is a maximal ideal.

Let us show 2. Let $U \subseteq Y$ be open and $x \in f^{-1}(U)$. Consider the commutative diagram of \mathbb{R} -algebra homomorphisms

$$\begin{array}{ccc}
\mathcal{C}_{Y}^{\alpha}(U) & \xrightarrow{f_{U}^{b}} & \mathcal{C}_{X}^{\alpha}(f^{-1}(U)) \\
\downarrow^{t \mapsto t_{f(x)}} \downarrow & & \downarrow^{s \mapsto s_{x}} \\
\mathcal{C}_{Y,f(x)}^{\alpha} & \xrightarrow{f_{x}^{\#}} & \mathcal{C}_{X,x}^{\alpha} \\
\downarrow^{ev_{f(x)}:t \mapsto t(f(x))} \downarrow & & \downarrow^{ev_{x}:s \mapsto s(x)} \\
\mathbb{R} & \mathbb{R}
\end{array}$$

The evaluation maps are surjective. Hence there exists a homomorphism of \mathbb{R} -algebras $\iota: \mathbb{R} \to \mathbb{R}$ making the lower rectangle commutative if and only if one has $f_x^\#(\text{Ker}(\text{ev}_{f(x)})) \subseteq \text{Ker}(\text{ev}_x)$. But this latter condition is satisfied because $f_x^{\#}$ is local by 1. Moreover, as a homomorphism of \mathbb{R} -algebras, one must have $\iota = \mathrm{id}_{\mathbb{R}}$. Therefore we find $f_{II}^{\flat}(t)(x) = t(f(x))$, which shows 2.

1.2 Gluing Ringed Spaces

Let $\{(X_i, \mathcal{F}_i)\}_{i \in I}$ be a collection of ringed spaces.