# Homework #2

## Sam Fleischer

May 2, 2016

| Problem 1 | <br> | <br> |      | <br> | <br> |  |  |  | <br>• |  |  |  |  |  |      |  |  |      | 2 |
|-----------|------|------|------|------|------|--|--|--|-------|--|--|--|--|--|------|--|--|------|---|
| Problem 2 | <br> | <br> | <br> | <br> | <br> |  |  |  |       |  |  |  |  |  |      |  |  | <br> | 2 |
| Problem 3 | <br> | <br> | <br> | <br> | <br> |  |  |  |       |  |  |  |  |  |      |  |  | <br> | 3 |
| Problem 4 | <br> | <br> |      | <br> | <br> |  |  |  |       |  |  |  |  |  |      |  |  | <br> | 4 |
| Problem 5 | <br> | <br> | <br> | <br> | <br> |  |  |  |       |  |  |  |  |  | <br> |  |  | <br> | 5 |

#### Problem 1

Let  $i = \sqrt{-1}$  and set

$$A = \left[ \begin{array}{ccc} i & 0 & -i \\ 0 & i & -i \end{array} \right].$$

Using the null space property, show that  $\ell_1$ -minimization will recover any 1-sparse vector x, given Ax = y.

*Proof.* Given  $x = [x_1, x_2, x_3]^T \in \mathbb{C}^3$ ,  $Ax = i[x_1 - x_3, x_2 - x_3]^T = 0$  if  $x_1 = x_2 = x_3$ . Thus null  $A = \text{span}([1, 1, 1]^T)$ . Let  $h \in \text{null } A$ . Then  $h = [a, a, a]^T$  for some  $a \in \mathbb{C}$ . Then choose  $S_i = \{i\}$  for i = 1, 2, 3. Then

$$h_{S_1} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad h_{S_2} = \begin{bmatrix} 0 \\ a \\ 0 \end{bmatrix}, \quad \text{and} \quad h_{S_3} = \begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix}$$

which gives

$$h_{S_1^C} = \begin{bmatrix} 0 \\ a \\ a \end{bmatrix}, \quad h_{S_2^C} = \begin{bmatrix} a \\ 0 \\ a \end{bmatrix}, \quad \text{and} \quad h_{S_3^C} = \begin{bmatrix} a \\ a \\ 0 \end{bmatrix}$$

Clearly  $||h_{S_i}||_1 = |a|$  and  $||h_{S_i^c}||_1 = 2|a|$  for i = 1,2,3. Thus  $||h_S||_1 \le ||h_{S^c}||_1$  for all  $h \in \text{null} A$  and all  $S \subset \{1,2,3\}$  with |S| = 1. This shows the null space property holds and hence  $\ell_1$ -minimization will recover any 1-sparse vector x.

#### **Problem 2**

On the connection between (in)coherence parameter  $\mu$  and restricted isometry constant  $\delta_s$ : Show that  $\delta_1 = 0$ ,  $\delta_2 = \mu$ , and  $\delta_s \le (s-1)\mu$ .

*Proof.* Let  $A \in \mathbb{R}^{k \times d}$  where each column is normalized, i.e.  $||A_j||_2 = 1$  for each j = 1, 2, ..., d. Let x be a 1-sparse vector of norm 1, that is,  $|x_k| = 1$  for some  $k \in \{1, 2, ..., d\}$  and  $x_\ell = 0$  for  $\ell \in \{1, 2, ..., d\} \setminus \{k\}$ . Then  $Ax = x_k A_k$ , where  $A_k$  denotes the k<sup>th</sup> column of A. Since each column is normalized,

$$\|Ax\|_2^2 = \left\|A_j\right\|_2^2 = 1 = \|x\|_2^2$$

Since this holds for all 1-sparse vector,  $\delta_1 = 0$ .

Now set x be a 2-sparse vector of norm 1, that is  $|x_{k_1}|^2 + |x_{k_2}|^2 = 1$  for some  $k_1, k_2 \in \{1, 2, ..., d\}$  and  $x_{\ell} = 0$  for  $\ell \in \{1, 2, ..., d\} \setminus \{x_{k_1}, x_{k_2}\}$ . Then  $Ax = x_{k_1} A_{k_1} + x_{k_2} A_{k_2}$ . Thus,

$$\begin{split} \|Ax\|_{2}^{2} &= \|x_{k_{1}}A_{k_{1}} + x_{k_{2}}A_{k_{2}}\|_{2}^{2} = \|x_{k_{1}}A_{k_{1}}\|_{2}^{2} + 2\langle x_{k_{1}}A_{k_{1}}, x_{k_{2}}A_{k_{2}}\rangle_{2} + \|x_{k_{2}}A_{k_{2}}\|_{2}^{2} \\ &= |x_{k_{1}}|^{2} \|A_{k_{1}}\|_{2}^{2} + 2x_{k_{1}}x_{k_{2}}\langle A_{k_{1}}, A_{k_{2}}\rangle_{2} + |x_{k_{2}}|^{2} \|A_{k_{2}}\|_{2}^{2} \\ &= \|x_{k_{1}}\|^{2} \|A_{k_{1}}\|_{2}^{2} + 2x_{k_{1}}x_{k_{2}}\langle A_{k_{1}}, A_{k_{2}}\rangle_{2} + |x_{k_{2}}|^{2} \|A_{k_{2}}\|_{2}^{2} \\ &\leq 1 + \langle A_{k_{1}}, A_{k_{2}}\rangle_{2} \end{split}$$

since  $\max_{|a|^2+|b|^2=1} [ab] = \frac{1}{2}$ . Then since  $|\langle A_{k_1}, A_{k_2} \rangle| < \mu$ ,

$$(1-\mu)\|x\|_2^2 = 1-\mu \le \|Ax\|_2^2 \le 1+\mu = (1+\mu)\|x\|_2^2.$$

#### UC Davis Big Data (MAT280)

Since this holds for all 2-sparse vectors,  $\delta_2 \le \mu$ . Since we can choose a 2-sparse vectors such that  $x_{k_1} = x_{k_2} = \frac{\sqrt{2}}{2}$ , then  $\delta_2 = \mu$ .

To show  $\delta_s = (s-1)\mu$ , first note, as our base case, that  $\delta_2 = (2-1)\mu$ . Then assume  $\delta_s = (s-1)\mu$ . It suffices to show  $\delta_{s+1} = ((s+1)-1)\mu$ , and then we will conclude, by induction that this holds for all integers s. Also note that the following calculations only make sense for  $s \le d$ . Let x be an s+1-sparse vector of norm 1, that is  $\left|x_{k_1}\right|^2 + \dots + \left|x_{k_s}\right|^2 + \left|x_{k_{s+1}}\right|^2 = 1$  for some  $k_1, \dots, k_s, k_{s+1} \in \{1, 2, \dots, d\}$  and  $x_\ell = 0$  for  $\ell \in \{1, 2, \dots, d\} \setminus \{k_1, \dots, k_s, k_{s+1}\}$ . Then  $Ax = \sum_{i=1}^{s+1} x_{k_i} A_{k_i}$ , and thus

$$\begin{aligned} \|Ax\|_{2}^{2} &= \left\| \sum_{i=1}^{s+1} x_{k_{i}} A_{k_{i}} \right\|_{2}^{2} = \left\| \sum_{i=1}^{s} \left[ x_{k_{i}} A_{k_{i}} \right] + x_{k_{s+1}} A_{k_{s+1}} \right\|_{2}^{2} \\ &= \left\| \sum_{i=1}^{s} x_{k_{i}} A_{k_{i}} \right\|_{2}^{2} + 2 \left\langle \sum_{i=1}^{s} x_{k_{i}} A_{k_{i}}, x_{k_{s+1}} A_{k_{s+1}} \right\rangle_{2} + \left\| x_{k_{s+1}} A_{k_{s+1}} \right\|_{2}^{2} \\ &= \left\| \sum_{i=1}^{s} x_{k_{i}} A_{k_{i}} \right\|_{2}^{2} + 2 \sum_{i=1}^{s} \left( \left\langle x_{k_{i}} A_{k_{i}}, x_{k_{s+1}} A_{k_{s+1}} \right\rangle_{2} \right) + \left| x_{k_{s+1}} \right|^{2} \left\| A_{k_{s+1}} \right\|_{2}^{2+1} \\ &= \left\| \sum_{i=1}^{s} x_{k_{i}} A_{k_{i}} \right\|_{2}^{2} + 2 \sum_{i=1}^{s} x_{k_{i}} x_{k_{s+1}} \left( \left\langle A_{k_{i}}, A_{k_{s+1}} \right\rangle_{2} \right) + \left| x_{k_{s+1}} \right|^{2} \end{aligned}$$

Since  $\sum_{i=1}^{s} x_{k_i} A_{k_i} = A\hat{x}$  for some *s*-sparse vector  $\hat{x}$ , then by the induction hypothesis,

$$(1 - (s - 1)\mu)\|\hat{x}\|_2^2 \le \|A\hat{x}\|_2^2 \le (1 + (s - 1)\mu)\|\hat{x}\|_2^2$$

Since  $\|\hat{x}\|_2^2 \le \|x\|_2^2$ , then  $\|\hat{x}\| \le 1$ , and thus

$$(1 - (s - 1)\mu) \le \left\| \sum_{i=1}^{s} x_{k_i} A_{k_i} \right\|_2^2 \le (1 + (s - 1)\mu)$$

Since  $\max_{\sum_{i=1}^{s+1}|a_i|^2=1} \left[ \sum_{i=1}^{s+1} [a_i a_{s+1}] \right] = 1$  (which occurs when  $a_i = \frac{\sqrt{s+1}}{s+1}$  for i = 1, ..., s+1), and since  $\left| \left\langle A_{k_i}, A_{k_{s+1}} \right\rangle_2 \right| \le \mu$ , then

$$(1 - s\mu)\|x\|_2^2 = 1 - s\mu = 1 - (s - 1)\mu - \mu \le \|Ax\|_2^2 \le 1 + (s - 1)\mu + \mu = 1 + s\mu = (1 + s\mu)\|x\|_2^2$$

Since this holds for arbitrary (s+1)-sparse vectors, then  $\delta_{s+1} \le s\mu$ . However, we can choose x such that  $\|Ax\|_2^2 = (1+s\mu)\|x\|_2^2$  by choosing  $x_{k_i} = \frac{\sqrt{s+1}}{s+1}$  for  $i=1,2,\ldots,s+1$ . Then  $\delta_{s+1} = s\mu$ . By induction  $\delta_s = (s-1)\mu$  for all integers  $s \le d$ .

#### Problem 3

Let  $A = \mathbb{R}^{k \times d}$  be a Gaussian random matrix. Given an estimate for the coherence  $\mu$  of A.

*Proof.* The following surface was generated by taking the coherence of matrices for each value of k and d between 20 and 1000, in intervals of 20. In particular, for each k and d, the average coherence value over 10 Gaussian random matrices of size  $k \times d$  was calculated. The figure shows that coherence, in general, increases as the dimension decreases, and as the number of vectors increases. This is intuitive since, as we saw from Homework 1 Problem 1, as the dimension decreases and/or the number of vectors increases, the probability that two vectors are close to orthogonal decreases. Equivalently, the probability that two vectors are close to parallel increases. If a matrix has two parallel columns, the coherence is 1.

#### Coherence Values as a Function of k and d



#### **Problem 4**

Consider y = Ax, where A is a  $100 \times 400$  Gaussian random matrix and x is a s-sparse vector of length 400. The locations of the non-zero entries of x are chosen uniformly at random and the non-zero coefficients of x are normal-distributed. For  $s = 1, 2, \ldots$ , solve

$$\min_{z} \|z\|_1 \quad \text{subject to } Az = y,$$

(e.g. using the toolbox CVX). For each fixed s repeat the experiment 10 times. Create a graph plotting s versus the relative reconstruction error (averaged over the ten experiments for each s). Starting with which value of s approximately does  $\ell_1$ -minimization fail to recover x?

*Proof.* The following graph shows the mean  $\ell^2$ -norm errors of 10 experiments at each s for s = 1, 2, ..., 40. The non-zero entries of s are normally distributed around 0 with standard deviation of 1. In this experiment, this method failed for  $s \ge 21$ .



### **Problem 5**

Same setup as in Problem 4, but now the non-zero entries of x are non-negative. Taking this information into account, we now solve

$$\min_{z} \|z\|_1$$
 subject to  $Ax = y$  and  $z \ge 0$ 

(here,  $z \ge 0$  is meant entrywise, i.e., for each k,  $z_k \ge 0$ ). (The positivity constraint is easy to include in CVX). Repeat the simulations as described in Problem 4. Compare your findings to the results from your experiments of Problem 4 and try to quantify the difference regarding the range for s for which recovery is still possible in this case.

*Proof.* The following graph shows the mean  $\ell^2$ -norm errors of 10 experiments at each s for s = 1, 2, ..., 40. The non-zero entries of s are the absolute value of a normal distribution around 0 with standard deviation of 1. In this experiment, this method failed for  $s \ge 24$ .

