1 Int - C12. C 21 C 7/06 C 21 C 5/00

60日本分類 10 J 154 10 A 41

19日本国特許庁

(D特許出願公告

昭50-21412

昭和50年(1975)7月23日 60公告

庁内整理番号 6222-42

発明の数 1

(全 3 頁)

1

60鋼の製造法

②特 昭47-24518

御出 昭47(1972)3月9日

昭48-92216 公

③昭48(1973)11月30日

松永吉之助 700発 者 脚

北九州市小倉区片野2の18の8

大喜多義道 冏

北九州市小倉区葛原双見884の10ある。

2 4

间 水谷誠

北九州市小倉区山手3の228

住友金属工業株式会社 包出 願

大阪市東区北浜5の15

弁理士 生形元重 70代 理

の特許請求の範囲

Li 1~15%, Mg 1~20%, Si 5~ 30%KNa 5-40%, Ca 10-40%. Al 1~40%の脱酸剤を1種又は2種以上を化 合物或いは複合物の形にて併用して添加剤とし溶 鋼に 0.1 kg/T~ 1.5 kg/T添加することを特徴 とする鋼の製造法。

発明の詳細な説明

本発明はLi処理剤添加による鋼の脱酸及び鋼 より介在物を除去することを特徴とする鋼の製造 法に関する。

従来鋼の製造において鋼の清浄法として主に強 制脱酸処理法等があり、主に脱酸剤に用いられる。30 を発生するので危険である。 Si 合金、Ca 合金、Mg 合金およびAl 単体若 しくは2種以上の併用添加処理剤が用いられてい るが、脱酸反応生成物と溶鋼との分離が不充分で あるため、鋼の清浄度の低下により他疵の発生及 び超音波による鋼材の欠陥或いは機械的性質等の 35 害上の問題を惹起する外、MgO の硬い介在物が 低下等により品質上極めて有害な欠陥をもたらし ている。

2

この防止対策として従来より精錬方法の改善或 いは浩塊耐火物の改良による耐火物系介在物の減 少、溶鋼中へのガス吹込みによる酸化物の浮上促 進、不活性ガスシールによる無酸化饒込更には真 5 空脱ガス処理による浮遊酸化物の強制除去と酸素 の除去が行われて いる が 何れも造塊工程の繁雑 化、鋼塊単価の上昇及びその効果も必ずしも優れ たものではない。

本発明は従来の脱酸法の欠点を克服するもので

即ち本発明法は鋼中の不純物の除去と成分調整 を行う鋼の製造工程にあつて強力且つ短時間に目 的とする諸反応即ち脱酸、脱酸生成物の低融点化、 介在物の浮上促進による除去を行わしめるため発 15 明者等は種々試験研究した結果、本発明の添加剤 に於いて重量%で化合物或いは複合物の形でLi 1~15%, Mg 1~20%, Si 5~30%K Na 5~40%, Ca 10~40%, Al 1~ 40%の脱酸剤を1種又は2種以上を併用して出 20 鋼時の溶鋼に 0.1 kg/T~1.5 kg/T添加するこ とを特徴とするものである。

又添加法としては添加剤の形態は粉状、粒状、 容器詰状などの形として出鋼時或いは取鍋、注入 管より添加又は中間樋より添加して使用し得る。 本発明による鋼の製造法において、脱酸剤の成 分範囲を限定した理由を説明する。

Li 1%以下では介在物の触点低下の効果が消 失し、又15%以上添加しても介在物量は減少せ ずコスト上昇を招来し又溶鋼添加時に大量のガス

又Mg はSi と合金或いは金属Mg の形で添加 するが、1%以下では脱酸効果が少く、又20% 以上では引火の恐れがあつて、取扱上問題があり、 添加時の白煙が極めて多くて添加作業の困難、公 増加し、鋼質を劣下する恐れがある。

Si は前記した如く、Mg との合金の形で添加

するが、成分のパランス上、最低5%は必要であ るが、30%以上では脱酸効果は飽和し、且つ SiO2系の複合脱酸生成物の発生が多量認められ、 好ましくない。 Na は脱酸生成物の融点を下げる ためにNaを沸化物の形で添加するが、5%以下 5 ではその効果が少く、又40%では脱酸剤の配合 が少くなり、脱酸効果が少くなる。

Ca は 1 0 %以下では介在物の融点降下の効果 が低下して好ましくなく、又40%以上では CaO 介在物が増加し、鋼質を劣下させる。

A1は1%以下では脱酸効果が少く、又40% 以上ではAl2Os 系介在物が増加して好ましくな

本祭明において、上記特定成分の添加剤の添加 量が 0.1 kg/T以下では鍋内溶鋼との接触が十分 15 る鋼片欠陥及び他疵試験及び清浄度について試験 でなく、脱酸脱硫の効果が少く、又1.5 kg/T以 上では投入時発生する白煙のため、造塊作業が阻*

*書されると共に、介在物低下の効果の上昇は期待 できず、コスト上昇の不利がある。

以下本発明の実施例について説明する。 実施例 1

70 T転炉で第1表の如き中炭素鋼

A鋼、B鋼、C鍋、D鋼、E鋼、F鋼及び第2 表の如き低合金鋼G鋼、H鋼、I鋼、J鋼、K鋼、 L鋼をそれぞれ10チャージ吹錬し、出鋼時に於 いて従来の添加剤をA鋼、C鋼、E鋼に本発明添 10 加剤をB鋼、D鋼、F鋼に又、低合金鋼に於いて は従来の添加剤をG鋼、I鋼、K鋼に本発明添加 剤をH鋼、J鋼、L鋼にそれぞれ添加した。

その場合の添加剤の成分、添加量及び分塊圧延 后の110¢鋼片の石炭性試験を行い超音波によ を行つた結果を第1表、第2表に示す。

鋼	盘		鋼成	分		添加 剤					
種	試験鋼	С	Si	Mn	P.P.M O ₂	LiF	Si	Mg	MaF	CaF ₂	A 1
	A	0.35	0.28	0.72	3 9	_	_	1	_	-	_
中	В	0.36	0.29	0.73	3 2	1 1.0	8. 0	2.0	3 5.0	3 4.0	2. 0
炭	С	0.36	0.28	0.72	3 8	-	1	_	_	-	
素	D	0.34	0.27	0.70	3 0	1 1.0	8. 0	2. 0	3 5.0	3 4.0	2. 0
鋼	E	0.35	0.28	0.74	3 8	_	_		-	_	_
	F	0.37	0.27	0.71	3 3	1 1.0	8. 0	2. 0	3 5.0	3 4.0	2. 0

鉺	試	使用量	研	鱼 性	武	験
種	殿網	g/T	U.S.T 合格率	地 斑 合格率	淸	净度
	A	1	5 5.5	8 5.0	0. 0	9 ~ 0.13
中	В	250	9 9. 5	9 9.4	0. 0	4 ~ 0.08
炭	С	-	6 0.5	8 7. 0	0. 0	8 ~ 0.1 2
索	D	500	9 9.8	100	0. 0	3 ~ 0.0 6
鋼	E		6 5.0	8 2.0	0.1	0 ~ 0.14
	F	1000	9 9.6	100	0. 0	5 ~ 0.08

5

б

注 本発明網と比較鋼共に通常の脱酸剤を取鍋に
A1…… 0.6 kg/T、Fe-Si…… 3.5 kg/T、Fe-Mn 3.0 kg/T、
Si-Mn 5.5 kg/T
添加した。

第 2 表

鋼	試験鋼		鋼		成			添加剂			
種		C	Si	Mr ₁	Cr	Mo	P.P.M O ₂	LiF	Si	Mg	NaF
	G	0.31	0.28	0.77	1. 1 1	0. 2 2	3 6	-	-		
低	H	0.32	0.29	0.76	1.09	0.22	3 0	2 2.0	1 2.0	4.0	4 6.0
合	1	0.31	0.29	0.79	1.15	0. 2 1	3 9		_	_	_
金	J	0.30	0.27	0.80	1.12	0.21	3 2	2 2.0	1 2.0	4. 0	4 6 0
鋼	к	0.32	0.29	0.79	1. 1 4	0.22	3 9	· _		_	
1	L	0.31	0.29	0.77	1.09	0.21	3 3	2 2.0	1 2.0	4.0	4 6.0

纲	試験鋼	添加	A NJ	使用量	確 性		試	験		
種		CaF ₂	Al	g/T	U.S.T 合格率	地 疵合格率	清	净	度	
	G	_	-	1	7 0.0	7 9. 5	0.0	9 ~ 0). 1 1	L
低	Н	Fe他 16	-	250	9.60	9 5. 5	0.0	4 ~ (0.08	3
合	I	<u> </u>	_	_	7 5.5	8 5. 5	0. 1	0 ~ 0	0. 1	3
金	J		-	5 0	9 9.5	1 0 0	0. 0	3~(0.0	5
鋼	к	_	-	_	7 3.0	8 7. 5	0.0	8~	0. 1	2
	L	_	_	1000	9 5. 5	100	0.0	4~	0. 0	8

注 本発明鋼と比較鋼共に通常の脱酸剤を取鍋に
A1…… 0.5 kg/T、Fe-Mn…… 3 kg/T、Si-Mn…… 6 kg/T、
Fe-Si…… 2 kg/T
添加した。

第1表、第2表より、本発明法はU·S·T試 ある。 験及び鋼質向上に極めて有効であること明らかで