Total No. of Questions :5]

[Total No. of Printed Pages :2

Roll No	

CS/IT - 304

B.E. III Semester

Examination, June 2014

Electronics Devices and Circuit

Time: Three Hours

Maximum Marks: 70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.

> All parts of each question are to be attempted at one place.

- iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
- iv) Except numericals, Derivation, Design and Drawing etc.

1.	a)	Why does the conductivity of a semiconductor of	hange
		with the rise in temperature?	2
	10	For factor action which transictor is used and why	2

- c) What is a varactor diode?
- d) Explain the principle of operation of any one type of MOSFET.

OR

Explain the four modes of operation of BJT.

- What do you mean by feedback?
 What do you mean by feedback?
 - b) An amplifier has a gain of 2×10⁵ without feedback determine the gain if negative feedback is applied given B = 0.02
 - c) Explain the effect of negative feedback on bandwidth. 3
 - d) Explain the wein bridge oscillator in detail.

[2]

		With the neat diagram explain the class B push amplifier.	pull 7			
3.	a)	Write the applications of clamping circuits.	2			
	b)	Why differential amplifier is necessary?	2			
	c)	Define differential gain and common mode gain.	3			
	d)	Draw and explain Darlington amplifier. OR	7			
		Draw the circuit diagram of a stable multivibrator.	7			
4.	a)	Define slew rate.	2			
**	b)	. / contam				
	c)	Determine the voltage gain for the circuit shown.	3			
	Ţ	R_{1} V_{1} V_{0} $R_{1} = 1$ R_{2} V_{0} $R_{1} = 1$				
	d)	Draw and explain OPAMP as an integrator. OR	7			
		Give the pin connections of IC 555 explain the u each pin.	se of			
5.	a)	What is line regulation and load regulation?				
	b)					
	c)		3			
	d)	Draw the block diagram and explain switched mode;	owe			
	-/	supply.	7			

www.rgpvonline.in

Explain a current limiting circuit.

CS/IT-304 OR

PTO

CS/IT-30

Evaluate the integral $\int_0^\infty \frac{\cos ax}{x^2 + 1} dx$.

- 2. a) Determine the Newton Raphson iterative formula to find the kth root of N.
 - b) Find a real root of the equation $x \log_{10} x = 1.2$ by regula-falsi method correct to one decimal place. 2
 - c) Find a real root of the equation $3x = \cos x + 1$ by iterative method correct to two decimal places.
 - d) Apply Crout's factorization method to solve the system of equations:

$$x-y=0$$
 The molecular does to strength (i) $-2x+4y-2z=-1$ The maps of the strength of the str

100 words) carry 3 NOrks, part D (Max. 400 words)

Apply Gauss-Seidel iteration method to solve the system of equations:

$$20x+y-2z=17$$

$$3x+20y-z=-18$$

$$2x-3y+20z=1.5$$

- 3. a) Prove that: $e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$
 - b) Derive Newton's forward interpolation formula.
 - c) Evaluate the integral $\int_0^{0.6} e^{-x^2} dx$ by Simpson $\frac{1}{3}$ rule. 3

d) Apply Newton's divided difference formula to find the value of f(9) from the following table: 7

x	5	7	11	13	17
f(x)	150	392	1452	2368	5202

OR

Find $\frac{dy}{dx}$ at x = 1.1 from the following table:

x	1.0	1.2	1.4	1.6	1.8	2.0
v	0	0.128	0.544	1.296	2.432	4.000

4. a) Find by Taylor's series method the value y(0.1) correct to three decimal places from the differential equation:

$$\frac{dy}{dx} = x^2y - y, y(0) = 1.$$

- b) Write the working rule of Runge-Kutta method of fourth order for the numerical solution of differential equation.
- c) If θ is the angle between the two regression lines show that:

$$\tan \theta = \frac{1 - r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}.$$

d) Using modified Euler's method, find the value of y (0.3) from the equation:

$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$.

OR