

CUTTING PLANES FOR MIXED-INTEGER CONIC PROGRAMMING

Mathieu Tanneau^{1, 2}, Juan Pablo Vielma²

¹Polytechnique Montréal, ² Massachusetts Institute of Technology - mathieu.tanneau@polymtl.ca

Conic duality 101

Conic program (CP) in primal-dual standard form:

$$\min_{x} c^{T}x$$

$$\max_{y,s} b^T y$$

$$s.t. \quad Ax = b$$
$$x \in \mathcal{K}$$

s.t.
$$Ax = b$$
 s.t. $A^Ty + s = c$ $x \in \mathcal{K}$

with K a closed, convex pointed cone, and its dual cone

$$\mathcal{K}^* = \{ s \in \mathbb{R}^n \mid \forall x \in \mathcal{K}, \, s^T x \ge 0 \}.$$

Lemma 1 (Conic Farkas) $Assume \exists y : -A^Ty \in int(\mathcal{K}^*).$ Then exactly one of the following is non-empty:

$$\{x \in \mathbb{R}^n \mid Ax = b, x \in \mathcal{K}\}$$
$$\{y \in \mathbb{R}^m \mid -A^T y \in \mathcal{K}^*, \ b^T y > 0\}$$

Conic has an LP-like flavour, BUT... no basis information, and strong duality doesn't always hold.

Mixed-integer conic programming

We consider MICP problems of the form

$$\min_{x} c^{T}x \tag{1.1}$$

$$s.t. \quad Ax = b, \tag{1.2}$$

$$x \in \mathcal{K},\tag{1.3}$$

$$x_i \in \mathbb{Z}, \quad i = 1, \dots, p, \tag{1.4}$$

and denote \mathcal{C} the domain of the continuous relaxation. Solved by non-linear branch-and-bound [5] or outer-approximation [3, 7].

Cutting planes & split cuts

Cuts are crucial to MILP, but **seldom used in MICP** (so far).

We focus on *split cuts*, a special case of disjunctive cuts [1, 2].

Fig. 1: Split disjunction (red) and split cut (blue)

Goal: extend existing LP frameworks to conic, and provide **geometric understanding** of the separation of split cuts.

Separation problem

Let $\bar{x} \in \mathbb{R}^n$, $\pi \in \mathbb{Z}^n$, $\pi_0 := \lfloor \pi^T \bar{x} \rfloor$, and $f := \pi^T \bar{x} - \pi_0$, $\bar{f} := 1 - f$.

The cut-generating conic program (CGCP) writes

$$\min \quad \alpha^T \bar{x} - \beta \tag{2.1}$$

$$s.t. \quad \alpha = A^T u + s - u_0 \pi, \tag{2.2}$$

$$\alpha = A^T v + t + v_0 \pi, \tag{2.3}$$

$$\beta = b^T u - u_0 \pi_0, \tag{2.4}$$

$$\beta = b^T v + v_0(\pi_0 + 1), \tag{2.5}$$

$$s, t \in \mathcal{K}^*, u_0, v_0 \ge 0.$$
 (2.6)

Its dual is the **membership conic program** (MCP)

$$\max_{y,z,y_0,z_0} 0 \tag{3a}$$

$$s.t. \quad y + z = \bar{x}, \tag{3b}$$

$$Ay - y_0 b = 0, \tag{3c}$$
The domain of MCP
$$\pi^T u < u \cdot \pi$$

$$\pi^T y \le y_0 \pi_0, \tag{3d}$$

$$Az - z_0 b = 0, \tag{3e}$$

$$\pi^T z \ge z_0(\pi_0 + 1),$$
 (3f)

$$y_0 + z_0 = 1,$$
 (3g)

$$y, z \in \mathcal{K}, y_0, z_0 \ge 0. \tag{3h}$$

Any feasible solution to CGCP with negative objective value yields a violated split cut. Any such solution is also an unbounded ray.

The role of normalization

Solving CGCP (2.1)-(2.6) only identifies a violated cut (if any), not a most violated one. Hence, we use a normalization condition.

Trivial normalization writes $u_0 + v_0 = 1$. It yields compact forms for $CGCP_{triv}$ and MCP_{triv}

$$\min_{\lambda, s, t} (\bar{f}s + ft)^T \bar{x} - f\bar{f} \qquad \max_{y} \pi^T y - f \cdot (\pi_0 + 1)$$

describes exactly the

convex hull of the

union of the two split

disjunctions.

$$\max_{x} \quad \pi^T y - f \cdot (\pi_0 + 1)$$

s.t.
$$A^T \lambda + (s - t) = \pi,$$

 $s, t \in \mathcal{K}^*.$

s.t.
$$Ay = f \cdot b$$
,
 $0 \le_{\mathcal{K}} y \le_{\mathcal{K}} \bar{x}$.

Lemma 2 If \bar{x} is an extreme ray of K, then the feasible domain of MCP_{triv} has empty interior.

Conic-SNC writes $\nu^T s + \nu^T t + u_0 + v_0 = 1$, with $\nu \in int(\mathcal{K})$. Generalizes the SNC normalization from LP [4].

Other normalizations include $\|\alpha\|_2 = 1$, which yields a deepest (but often dense) cut, or polyhedral normalizations such as $\|\alpha\|_1=1$ and $\|\alpha\|_{\infty}=1$ (see e.g. [6]).

Advantages of conic-SNC normalization: it better reflects the geometry of K, it consists of a single linear equality, and displays better numerical properties.

Practical example

Fig. 2: Feasible region and fractional solution \bar{x} .

The fractional solution $\bar{x} = (1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ is an extreme ray of \mathcal{L}_3 .

Duality issues

Duality failure in $CGCP_{triv}$ is reflected in the obtained cuts.

Fig. 3: Split cuts obtained for various choices of normalization.

Explanation: although $CGCP_{triv}$ is bounded, it has no optimal solution (the optimum is not attained). As multipliers get close to optimal, their norm diverges which leads to numerical issues. Geometrically, the corresponding cuts converge towards a non-violated \mathcal{K}^* cut.

Duality failure is resolved with conic-SNC normalization:

Theorem 1 If $\bar{x} \in \mathcal{C}$ and $\nu \in int(\mathcal{K})$, then both $CGCP_{SNC}$ and MCP_{SNC} are strictly feasible. Therefore **strong duality holds**.

What is NOT wrong with LP?

In LP, strong duality holds, and the CGLP with trivial normalization yields a GMI cut [4]. What makes conic different?

When using the trivial normalization, the optimal face of CGCP is a ray that is orthogonal to \bar{x} . When K is polyhedral (i.e., LP), that face is always attainable, and the simplex algorithm stops at an optimal vertex.

Numerical results

Testset: 93 MI-SOCP instances from CBLIB. Remove 29 instances with numerical trouble or root gap < 1%.

Gap closed measured as

$$g = \frac{z^* - z_{conic}}{\bar{z} - z_{conic}}$$

where \bar{z} is the best known upper bound (given by Mosek).

		Gap closed (%)		
Type	# inst	\overline{SC}	OA _{init}	OA _{SC}
clay	10	25.98	33.55	43.53
flay	10	46.95	57.96	80.91
slay	8	92.04	95.17	98.77
sssd	16	99.78	85.57	99.88
ufl	8	15.51	91.07	32.40
tls	6	12.70	28.42	41.37
fo	6	62.21	85.35	81.18
All	64	44.79	64.16	66.59

SC: Split cuts; OA_{init}: initial outer-approximation; OA_{SC}: final OA + split cuts Geometric means with a shift of 1%. LPs and MILPs solved with Gurobi

Conclusions & open questions

Take-away: using conic duality, we can extend most of existing LP tools. Greater care must be given to duality failure, though a good normalization helps. Still lots of numerical issues.

What's next: better understand duality failures; extend results to general disjunctive cuts. Computations: outerapproximation setting, efficient separation oracles.

References

- Egon Balas. "Disjunctive Programming". In: Discrete Optimization II. Ed. by P.L. Hammer, E.L. Johnson, and B.H. Korte. Vol. 5. Annals of Discrete Mathematics. Elsevier, 1979, pp. 3–51.
- [2] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. "A lift-and-project cutting plane algorithm for mixed 0-1 programs". In: Mathematical Programming 58.1 (Jan. 1993), pp. 295–324. ISSN: 1436-4646.
- [3] Marco A. Duran and Ignacio E. Grossmann. "An outer-approximation algorithm for a class of mixed-integer nonlinear programs". In: Mathematical Programming 36.3 (Oct. 1986), pp. 307–339. ISSN: 1436-4646. [4] Matteo Fischetti, Andrea Lodi, and Andrea Tramontani. "On the separa-
- tion of disjunctive cuts". In: Mathematical Programming 128.1 (June 2011), pp. 205–230. ISSN: 1436-4646. [5] Omprakash K. Gupta and A. Ravindran. "Branch and Bound Experi-
- ments in Convex Nonlinear Integer Programming". In: Management Science 31.12 (1985), pp. 1533–1546. [6] Mustafa R. Kılınç, Jeff Linderoth, and James Luedtke. "Lift-and-project
- cuts for convex mixed integer nonlinear programs". In: Mathematical Programming Computation 9.4 (Dec. 2017), pp. 499–526. ISSN: 1867-2957. [7] Miles Lubin et al. "Polyhedral approximation in mixed-integer convex
- optimization". In: Mathematical Programming 172.1 (Nov. 2018), pp. 139-168. ISSN: 1436-4646.