ЛЕКЦИЯ 1. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

Определение предела последовательности Свойства сходящихся последовательностей

1. Числовые последовательности. Если каждому натуральному числу n поставлено в соответствие некоторое вещественное число x_n , то говорят, что задана *числовая последовательность* (или просто последовательность)

$$x_1, x_2, ..., x_n, ...$$

Кратко последовательность обозначают символом $\{x_n\}$ или (x_n) , при этом x_n называют *членом* или элементом этой последовательности, n — номером члена x_n .

Числовая последовательность — это функция, область определения которой есть множество N всех натуральных чисел; множество значений этой функции, т. е. совокупность чисел $x_n, n \in N$, называют множеством значений последовательности.

Множество значений последовательности может быть как конечным, так и бесконечным, в то время как множество ее элементов всегда является бесконечным: любые два разных элемента последовательности отличаются своими номерами.

Например, множество значений последовательности $\{(-1)^n\}$ состоит из двух чисел 1 и -1, а множества значений последовательностей $\{n^2\}$ и $\{1/n\}$ бесконечны.

Последовательность может быть задана с помощью формулы, позволяющей вычислить каждый член последовательности по его номеру. Например, если $x_n = ((-1)^n + 1)/2$, то каждый нечетный член последовательности равен 0, а каждый четный член равен 1.

Иногда последовательность задается рекуррентной формулой, позволяющей находить члены последовательности по известным предыдущим. При таком способе задания последовательности обычно указывают:

- а) первый член последовательности x_1 (или несколько членов, например, x_1, x_2);
- б) формулу, связывающую n-й член с соседними (например, с (n-1)-м и (n+1)-м членами).

Так, арифметическая прогрессия с разностью d и геометрическая прогрессия со знаменателем $q \neq 0$ задаются соответственно рекур-

рентными формулами

$$a_{n+1} = a_n + d, \quad b_{n+1} = b_n q.$$

Зная первые члены этих прогрессий a_1 и b_1 , можно получить формулы для (n+1)-х членов прогрессий:

$$a_{n+1} = a_1 + nd$$
, $b_{n+1} = b_1q^n$, $n \in \mathbb{N}$.

Рекуррентной формулой

$$x_n = x_{n-1} + x_{n-2}, \quad n \in \mathbb{N}, \quad n \geqslant 3,$$

и условиями $x_1=1,\,x_2=1$ задается последовательность Фибоначчи.

В некоторых случаях последовательность может быть задана описанием ее членов. Например, если x_n — простое число с номером n, то $x_1=2,\ x_2=3,\ x_3=5,\ x_4=7,\ x_5=11$ и т. д.

Отметим, наконец, что последовательность $\{x_n\}$ можно изобразить:

- а) точками с координатами $(n; x_n), n \in N$, на плоскости;
- б) точками $x_n,\,n\in {\mathsf N},$ на числовой оси.

2. Определение предела последовательности.

Определение. Число a называется npedenom последовательности $\{x_n\}$, если для каждого $\varepsilon>0$ существует такой номер N_ε , что для всех $n\geqslant N_\varepsilon$ выполняется неравенство

$$|x_n - a| < \varepsilon$$
.

Если a — предел последовательности, то пишут $\lim_{n\to\infty}x_n=a$ или $x_n\to a$ при $n\to\infty$.

С помощью логических символов это определение можно записать в виде

$$\{\lim_{n\to\infty} x_n = a\} \Leftrightarrow \forall \varepsilon > 0 \quad \exists N_\varepsilon \colon \forall n \geqslant N_\varepsilon \to |x_n - a| < \varepsilon. \tag{1}$$

Последовательность, у которой существует предел, называют cxo-дящейся.

Таким образом, последовательность $\{x_n\}$ является сходящейся, если

$$\exists a \in R \colon \forall \varepsilon > 0 \quad \exists N_{\varepsilon} \colon \forall n \geqslant N_{\varepsilon} \to |x_n - a| < \varepsilon. \tag{2}$$

Последовательность, не являющуюся сходящейся, называют *pac-ходящейся*; иначе говоря, последовательность называют расходящейся, если никакое число не является ее пределом.

Заметим, что если $x_n=a$ для всех $n\in \mathcal{N}$ (такую последовательность называют $\mathit{стационарной}$), то $\lim_{n\to\infty}x_n=a$.

Из определения (1) следует, что последовательность $\{x_n\}$ имеет предел, равный a, тогда и только тогда, когда последовательность $\{x_n-a\}$ имеет предел, равный нулю, т. е.

$$\{\lim_{n\to\infty} x_n = a\} \Leftrightarrow \{\lim_{n\to\infty} (x_n - a) = 0\}.$$

Обратимся еще раз к определению предела. Согласно определению число a является пределом последовательности $\{x_n\}$, если при всех $n\geqslant N_{\varepsilon}$ выполняется неравенство $|x_n-a|<\varepsilon$, которое можно записать в виде

$$a - \varepsilon < x_n < a + \varepsilon$$
.

Другими словами, для каждого $\varepsilon > 0$ найдется номер N_{ε} , начиная с которого все члены последовательности $\{x_n\}$ принадлежат интервалу $(a - \varepsilon, a + \varepsilon)$.

Этот интервал называют ε -окрестностью точки a (рис. 4.1) и обозначают $U_{\varepsilon}(a)$, а также $O_{\varepsilon}(a)$, т. е.

$$U_{\varepsilon}(a) = \{x \colon a - \varepsilon < x < a + \varepsilon\} = \{x \colon |x - a| < \varepsilon\}.$$

Итак, число a — предел последовательности $\{x_n\}$, если для каждой ε -окрестности точки a най-

дется номер, начиная с которого все члены последовательности принадлежат этой окрестности, так что вне этой окрестности либо нет ни одно-

$$U_{\varepsilon}(a)$$
 \rightarrow $a-\varepsilon$ a $a+\varepsilon$ $a+\varepsilon$

го члена последовательности, либо содержится лишь конечное число членов.

С помощью логических символов определение предела последовательности "на языке окрестностей" можно записать так:

$$\{\lim_{n\to\infty} x_n = a\} \Leftrightarrow \forall \varepsilon > 0 \ \exists N_\varepsilon \colon \forall n \geqslant N_\varepsilon \to x_n \in U_\varepsilon(a).$$

3. Единственность предела последовательности.

Tеорема 1. Числовая последовательность может иметь только один предел.

О Предположим, что последовательность $\{x_n\}$ имеет два различных предела a и b, причем a < b (рис. 4.2). Выберем $\varepsilon > 0$ таким, чтобы

Рис. 4.2

 ε -окрестности точек a и b не пересекались (не имели общих точек). Возьмем, например, $\varepsilon=(b-a)/3$. Так как число a — предел последовательности $\{x_n\}$, то по заданному $\varepsilon>0$ можно найти номер N такой, что $x_n\in U_\varepsilon(a)$ для всех $n\geqslant N$. Поэтому вне интервала $U_\varepsilon(a)$ может оказаться лишь конечное число членов последовательности. В частности, интервал $U_\varepsilon(b)$ может содержать лишь конечное число членов последовательности. Это противоречит тому, что b — предел последовательности (любая окрестность точки b должна содержать бесконечное число членов последовательности). Полученное противоречие показывает, что последовательность не может иметь два различных предела. Итак, сходящаяся последовательность имеет только один предел. lacktriangle

4. Ограниченность сходящейся последовательности. Последовательность $\{x_n\}$ называется ограниченной снизу, если существует такое число C_1 , что все члены последовательности удовлетворяют условию $x_n \geqslant C_1$, т. е.

$$\exists C_1: \forall n \in \mathbb{N} \to x_n \geqslant C_1.$$

Последовательность $\{x_n\}$ называется ограниченной сверху, если

$$\exists C_2 \colon \forall n \in \mathbb{N} \to x_n \leqslant C_2.$$

Последовательность, ограниченную как снизу, так и сверху, называют ограниченной, т. е. последовательность $\{x_n\}$ называется ограниченной, если

$$\exists C_1 \ \exists C_2 \colon \forall n \in \mathbb{N} \to C_1 \leqslant x_n \leqslant C_2. \tag{5}$$

Таким образом, последовательность называют ограниченной, если множество ее значений ограничено.

Замечание 1. Условие (5) равносильно следующему:

$$\exists C > 0 \colon \forall n \in \mathbb{N} \to |x_n| \leqslant C. \tag{6}$$

В самом деле, из условия (6) следует (5), если взять $C_1=-C,\,C_2=C,$ а из условия (5) следует (6), если взять $C=\max{(|C_1|,|C_2|)}.$

Геометрически ограниченность последовательности означает, что все члены последовательности содержатся в C-окрестности точки нуль.

Теорема 2. Если последовательность имеет предел, то она ограничена

О Пусть последовательность $\{x_n\}$ имеет предел, равный a. По определению предела для $\varepsilon=1$ найдем номер N такой, что при всех $n\geqslant N$ имеет место неравенство $|x_n-a|<1$. Так как модуль суммы не превосходит суммы модулей, то

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a|.$$

Поэтому при всех n>N выполняется неравенство

$$|x_n| < 1 + |a|.$$

Положим $c = \max{(1 + |a|, |x_1|, ..., |x_{N-1}|)},$ тогда $|x_n| \leqslant C$ при всех $n \in N$, т. е. последовательность $\{x_n\}$ ограничена. lacktriangle

Замечание 2. В силу теоремы 2 всякая сходящаяся последовательность является ограниченной. Обратное неверно: не всякая ограниченная последовательность является сходящейся. Например, последовательность $\{(-1)^n\}$ ограничена, но не является сходящейся.

Замечание 3. Если условие (6) не выполняется, т. е.

$$\forall C > 0 \quad \exists n_C \in \mathsf{N} \colon |x_{n_C}| > C,$$

то говорят, что последовательность $\{x_n\}$ не ограничена.

5. Свойства сходящихся последовательностей, связанные с неравенствами.

Теорема 3. Если последовательности $\{x_n\},\,\{y_n\},\,\{z_n\}$ таковы, что

$$x_n \leqslant y_n \leqslant z_n$$
 для всех $n \geqslant N_0$, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, (8)

то последовательность $\{y_n\}$ сходится и

$$\lim_{n \to \infty} y_n = a.$$

О По определению предела для любого $\varepsilon > 0$ найдутся номера $N_1 = N_1(\varepsilon)$ и $N_2 = N_2(\varepsilon)$ такие, что $x_n \in U_{\varepsilon}(a)$ при всех $n \geqslant N_1$ и $z_n \in U_{\varepsilon}(a)$ при всех $n \geqslant N_2$. Отсюда и из условия (8) следует (рис. 4.3), что при

Рис. 4.3

всех $n\geqslant N$, где $N=\max{(N_0,N_1,N_2)}$, выполняется условие $y_n\in U_\varepsilon(a)$. Это означает, что существует $\lim_{n\to\infty}y_n=a$. \bullet

Замечание 4. Теорему 3 называют теоремой о трех последовательностях или теоремой о пределе "зажатой" последовательности.

Теорема 4. Если

$$\lim_{n \to \infty} x_n = a, \quad \lim_{n \to \infty} y_n = b, \tag{15}$$

причем

$$a < b, \tag{16}$$

mo

$$\exists N_0 \colon \forall n \geqslant N_0 \to x_n < y_n. \tag{17}$$

О Как и в теореме 1, выберем $\varepsilon > 0$ таким, чтобы ε -окрестности точек a и b (рис. 4.2) не пересекались (возьмем, например, $\varepsilon = (b-a)/3 > 0$). Согласно определению предела по заданному ε можно найти номера N_1 и N_2 такие, что $x_n \in U_{\varepsilon}(a)$ при всех $n \geqslant N_1$ и $y_n \in U_{\varepsilon}(b)$ при всех $n \geqslant N_2$. Пусть $N_0 = \max{(N_1, N_2)}$. Тогда при всех $n \geqslant N_0$ выполняются неравенства

$$x_n < a + \varepsilon < b - \varepsilon < y_n$$

откуда следует утверждение (17). ●

Следствие 1. Если $\lim_{n \to \infty} x_n = a$ и a < b, то

$$\exists N_0 \colon \forall n \geqslant N_0 \to x_n < b. \tag{18}$$

 \circ Для доказательства утверждения (18) достаточно в теореме 2 взять $y_n = b, n \in \mathbb{N}.$

Следствие 2. Если
$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} y_n = b$ и $\forall n \in \mathbb{N} \to x_n \geqslant y_n,$ (19)

mo

$$a \geqslant b.$$
 (20)

О Предположим, что неравенство (20) не выполняется. Тогда a < b и по теореме 4 справедливо утверждение (17), которое противоречит условию (19). Поэтому должно выполняться неравенство (20). \bullet

Замечание 5. В частности, если для сходящейся последовательности $\{x_n\}$ выполняется для всех $n \in \mathbb{N}$ (или для всех $n \geqslant N_0$) неравенство $x_n \geqslant \alpha$ ($x_n \leqslant \beta$), то $\lim_{n \to \infty} x_n \geqslant \alpha$ ($\lim_{n \to \infty} x_n \leqslant \beta$). Отсюда следует, что если все члены сходящейся последовательности $\{x_n\}$ принадлежат отрезку [a,b], т. е. $a \leqslant x_n \leqslant b$ для всех $n \in \mathbb{N}$, то и предел этой последовательности принадлежит отрезку [a,b], т. е. $a \leqslant \lim_{n \to \infty} x_n \leqslant b$.

Замечание 6. В следствии 2 утверждается, что если соответствующие члены двух сходящихся последовательностей связаны знаком нестрогого неравенства, то такое же неравенство справедливо и для пределов этих последовательностей. Короче: предельный переход сохраняет знак нестрогого неравенства. Однако знак строгого неравенства, вообще говоря, не сохраняется, т. е. если $x_n > y_n$ при $n \geqslant N_0$ и последовательности $\{x_n\}, \{y_n\}$ сходятся, то $\lim_{n \to \infty} x_n \geqslant \lim_{n \to \infty} y_n$. Например, если $x_n = 1 + \frac{1}{n}, \ y_n = 1 - \frac{1}{n},$ то $x_n > y_n, n \in \mathbb{N}$, но $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 1$.

Бесконечно малые и бесконечно большие последовательности. Арифметические операции над сходящимися последовательностями

1. Бесконечно малые последовательности. Последовательность $\{\alpha_n\}$ называется бесконечно малой, если

$$\lim_{n\to\infty}\alpha_n=0.$$

Это означает, что для любого $\varepsilon > 0$ найдется номер $N = N_{\varepsilon}$ такой, что $|\alpha_n - 0| = |\alpha_n| < \varepsilon$ для всех $n \geqslant N_{\varepsilon}$.

Понятие бесконечно малой последовательности используется для доказательства свойств сходящихся последовательностей. Пусть число a — предел последовательности $\{x_n\}$. Обозначим $\alpha_n = x_n - a$. По определению предела

$$\forall \varepsilon > 0 \ \exists N \varepsilon \colon \forall n \geqslant N_{\varepsilon} \to |x_n - a| = |\alpha_n| < \varepsilon,$$

т. е. $\{\alpha_n\}$ — бесконечно малая последовательность. Обратно: если $x_n=a+\alpha_n$, где $\{\alpha_n\}$ — бесконечно малая последовательность, то $\lim_{n\to\infty}x_n=a$.

Приведем примеры бесконечно малых последовательностей:

a)
$$\{a/n^r\}, a \in R, r = \frac{1}{m}, m \in N;$$
 6) $\{q^n\}, |q| < 1;$

в)
$$\{\sqrt[n]{a}-1\}, \ a>1; \quad \Gamma$$
 $\{\sqrt[n]{n}-1\}; \quad$ д) $\{n^p/a^n\}, \ p\in N, \ a>1.$

При изучении свойств сходящихся последовательностей нам потребуется ввести арифметические операции над последовательностями. Назовем суммой, разностью, произведением и частным двух последовательностей $\{x_n\}$ и $\{y_n\}$ соответственно последовательности $\{x_n+y_n\}, \{x_n-y_n\}, \{x_ny_n\}, \{x_n/y_n\}$. При определении частного предполагается, что $y_n \neq 0$ для всех $n \in \mathcal{N}$.

Бесконечно малые последовательности обладают следующими свойствами:

- а) алгебраическая сумма конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность;
- б) произведение бесконечно малой последовательности на ограниченную последовательность является бесконечно малой последовательностью.
- **2.** Бесконечно большие последовательности. Последовательность $\{x_n\}$ называется бесконечно большой, если для любого $\delta>0$ существует такой номер N_δ , что для всех $n\geqslant N_\delta$ выполняется неравенство $|x_n|>\delta$. В этом случае пишут $\lim_{n\to\infty}=\infty$ и говорят, что последовательность имеет бесконечный предел.

Используя логические символы, это определение можно записать так:

$$\{\lim_{n\to\infty} x_n = \infty\} \Leftrightarrow \forall \delta > 0 \quad \exists N_\delta \colon \forall n \geqslant N_\delta \to |x_n| > \delta.$$
 (1)

Дадим геометрическую интерпретацию определения (1). Назовем δ -окрестностью ∞ (рис. 5.1) множество $E = \{x \in R \colon |x| > \delta\}$. Если

Рис. 5.1

последовательность $\{x_n\}$ имеет бесконечный предел, то в любой δ -окрестности ∞ лежат все члены последовательности, за исключением, быть может, конечного числа членов.

Аналогично вводятся для последовательности $\{x_n\}$ понятия бесконечного предела, равного $-\infty$ и $+\infty$. Эти пределы обозначаются соответственно символами $\lim_{n\to\infty}x_n=-\infty$ и $\lim_{n\to\infty}x_n=+\infty$ и определяются так:

$$\{\lim_{n\to\infty} x_n = -\infty\} \Leftrightarrow \forall \delta > 0 \ \exists N_\delta: \ \forall n \geqslant N_\delta \to x_n < -\delta,$$
 (2)

$$\{\lim_{n\to\infty} x_n = +\infty\} \Leftrightarrow \forall \delta > 0 \ \exists N_\delta: \ \forall n \geqslant N_\delta \to x_n > \delta.$$
 (3)

Множества $E_1 = \{x \in R : x < -\delta\}$ и $E_2 = \{x \in R : x > \delta\}$, где $\delta > 0$, назовем δ -окрестностями $-\infty$ и $+\infty$ соответственно (см. рис. 5.1). Тогда $E=E_1\cup E_2$.

Согласно определению (3) последовательность $\{x_n\}$ имеет предел, равный $+\infty$, если в δ -окрестности символа $+\infty$ содержатся все члены этой последовательности, за исключением, быть может, конечного числа их. Аналогичный смысл имеет определение (2).

В дальнейшем под пределом последовательности будем понимать конечный предел, если не оговорено противное.

Приведем примеры последовательностей, имеющих бесконечный предел.

Если $x_n = -\sqrt{n}$, то $\lim_{n \to \infty} x_n = -\infty$; если $x_n = n^2/(n+2)$, то $\lim_{n \to \infty} x_n = +\infty$; если $x_n = (-1)^n 2^n$, то $\lim_{n \to \infty} x_n = \infty$.

3. Арифметические операции над сходящимися последовательностями.

Теорема. Eсли $\lim_{n\to\infty} x_n=a, \lim_{n\to\infty} y_n=b,$ mo: a) $\lim_{n\to\infty} (x_n+y_n)=a+b;$

- $6) \lim_{n \to \infty} (x_n y_n) = ab;$
- в) $\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}$ при условии, что $y_n\neq 0$ $(n\in \mathbb{N})$ и $b\neq 0$.
- \circ Так как $\lim_{n\to\infty}x_n=a,\ \lim_{n\to\infty}y_n=b,$ то $x_n=a+\alpha_n,\ y_n=b+\beta_n,$ где $\{\alpha_n\}$ и $\{\beta_n\}$ бесконечно малые последовательности.

- а) Из равенства $x_n+y_n=a+b+\alpha_n+\beta_n$, где $\{\alpha_n+\beta_n\}$ бесконечно малая последовательность, следует, что $x_n+y_n\to a+b$ при $n\to\infty$.
 - б) Воспользуемся равенством

$$x_n y_n = ab + a\beta_n + b\alpha_n + \alpha_n \beta_n.$$

Так как $\{\alpha_n\}$ и $\{\beta_n\}$ — бесконечно малые последовательности, то последовательности $\{a\beta_n\}$, $\{b\alpha_n\}$ и $\{\alpha_n\beta_n\}$ также являются бесконечно малыми, откуда следует, что $\{a\beta_n+b\alpha_n+\alpha_n\beta_n\}$ — бесконечно малая последовательность. Поэтому $x_ny_n\to ab$ при $n\to\infty$.

в) Докажем, что $\left\{\frac{x_n}{y_n} - \frac{a}{b}\right\}$ — бесконечно малая последовательность. Имеем $\frac{x_n}{y_n} - \frac{a}{b} = \frac{(a+\alpha_n)b - (b+\beta_n)a}{by_n} = \left(\alpha_n - \frac{a}{b}\beta_n\right)\frac{1}{y_n}$. Так как $\{\alpha_n\}$ и $\{\beta_n\}$ — бесконечно малые последовательности, то и последовательность $\left\{\alpha_n - \frac{a}{b}\beta_n\right\}$ также является бесконечно малой.

По условию $y \to b$ при $n \to \infty$, где $b \neq 0$ и $y_n \neq 0$ для всех $n \in \mathcal{N}$. Поэтому последовательность $\left\{\frac{1}{y_n}\right\}$ является ограниченной.

Отсюда следует, что $\left\{\left(\alpha_n-\frac{a}{b}\beta_n\right)\frac{1}{y_n}\right\}$ — бесконечно малая последовательность как произведение бесконечно малой последовательности на ограниченную последовательность.

Таким образом, $\left\{\frac{x_n}{y_n}-\frac{a}{b}\right\}$ — бесконечно малая последовательность, и поэтому $\frac{x_n}{y_n}\to\frac{a}{b}$ при $n\to\infty$. ullet

Предел монотонной последовательности

1. Монотонная последовательность. Точные грани последовательность. Последовательность $\{x_n\}$ называют возрастающей (неубывающей), если для любого $n \in N$ выполняется неравенство

$$x_{n+1} \geqslant x_n. \tag{1}$$

Аналогично последовательность $\{x_n\}$ называют убывающей (невозрастающей), если для любого $n \in \mathbb{N}$ справедливо неравенство

$$x_{n+1} \leqslant x_n. \tag{2}$$

Если неравенство (1) можно записать в виде $x_{n+1} > x_n$, а неравенство (2) — в виде $x_{n+1} < x_n$, то последовательность $\{x_n\}$ называют соответственно строго возрастающей и строго убывающей.

Возрастающую или убывающую последовательность называют монотонной, а строго возрастающую или строго убывающую — cmpo-co монотонной.

Если неравенство (1) выполняется при $n \geqslant n_0$, то последовательность $\{x_n\}$ называют возрастающей, начиная с номера n_0 (при $n \geqslant n_0$). Аналогично вводятся понятия убывающей, строго убывающей и строго возрастающей последовательности, начиная с номера n_0 (при $n \geqslant n_0$).

Точную верхнюю (нижнюю) грань множества значений последовательности $\{x_n\}$ называют точной верхней (нижней) гранью последовательности и обозначают соответственно $\sup\{x_n\}$ и $\inf\{x_n\}$.

Определение точной верхней грани $\sup X$ числового множества X можно записать так:

$$\{M = \sup X\} \Leftrightarrow \{\forall x \in X \to x \leqslant M\} \tag{3}$$

Аналогично определение точной нижней грани $\inf X$ числового множества X можно записать в виде

$$\{m = \inf X\} \Leftrightarrow \{\forall x \in X \to x \geqslant m\} \tag{4}$$

Поэтому определения точной верхней и точной нижней граней последовательности можно записать в виде

$$[a = \sup\{x_n\}] \Leftrightarrow \{\forall n \in \mathbb{N} \to x_n \leqslant a\} \land \{\forall \varepsilon > 0 \ \exists N_{\varepsilon}: a - \varepsilon < x_{N_{\varepsilon}} < a\} (5)$$
$$[b = \inf\{x_n\}] \Leftrightarrow \{\forall n \in \mathbb{N} \to x_n \geqslant b\} \land \{\forall \varepsilon < 0 \ \exists N_{\varepsilon}: b + \varepsilon > x_{N_{\varepsilon}} > b\} (6)$$

Рис. 6.1

2. Признак сходимости монотонной последовательности.

Теорема 1. Если последовательность $\{x_n\}$ является возрастающей и ограниченной сверху, то существует

$$\lim_{n\to\infty} x_n = \sup\{x_n\}.$$

Если последовательность $\{x_n\}$ является убывающей и ограниченной снизу, то существует

$$\lim_{n \to \infty} x_n = \inf \{x_n\}.$$

О Ограничимся доказательством теоремы для случая ограниченной сверху и возрастающей последовательности. Если последовательность $\{x_n\}$ ограничена сверху, т. е. множество чисел $x_1, x_2, ..., x_n, ...$ ограничено сверху, то существует точная верхняя грань этой последовательности. Так как $\{x_n\}$ — возрастающая последовательность, то

$$\forall n \geqslant N_{\varepsilon} \to x_{N_{\varepsilon}} \leqslant x_n. \tag{9}$$

Отсюда следует, что

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} \colon \forall n \geqslant N_{\varepsilon} \to a - \varepsilon < x_{N_{\varepsilon}} \leqslant x_n \leqslant a, \quad \text{t. e. } x_n \in U_{\varepsilon}(a).$$

Это означает, согласно определению предела, что

$$\lim_{n \to \infty} x_n = a = \sup \{x_n\}. \quad \bullet$$

Замечание 1. Теорема 1 остается справедливой для последовательности, ограниченной сверху (снизу) и возрастающей (убывающей), начиная с некоторого номера.

Введем теперь понятие частичного предела. Пусть $\{x_{n_k}\}$ — подпоследовательность последовательности $\{x_n\}$, и пусть существует конечный или бесконечный $\lim_{k\to\infty} x_{n_k} = a$. Тогда a называют acmuvhum acmuvhum

Если $\{x_n\}$ — ограниченная последовательность, а L — множество всех ее частичных пределов, то числа $\sup L$ и $\inf L$ называют соответственно верхним и нижним пределом этой последовательности и обозначают соответственно символами $\varlimsup_{n \to \infty} x_n$ и $\varliminf_{n \to \infty} x_n$.

 $\varlimsup_{n \to \infty} x_n = 3, \ \varliminf_{n \to \infty} x_n = 1.$

Теорема (Больцано-Вейерштрасса). Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Критерий Коши сходимости последовательности

1. Фундаментальная последовательность. Последовательность $\{x_n\}$ называют фундаментальной, если она удовлетворяет условию Коши: для каждого $\varepsilon > 0$ существует такое натуральное число n_{ε} , что для любого $n \geqslant n_{\varepsilon}$ и любого $m \geqslant n_{\varepsilon}$ справедливо неравенство $|x_n - x_m| < \varepsilon$. Кратко это условие можно записать так:

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \colon \forall n \geqslant n_{\varepsilon} \quad \forall m \geqslant n_{\varepsilon} \to |x_n - x_m| < \varepsilon, \tag{1}$$

или в другом виде:

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \colon \forall n \geqslant n_{\varepsilon} \quad \forall p \in \mathbb{N} \to |x_{n+p} - x_n| < \varepsilon.$$

Докажем, что фундаментальная последовательность является ограниченной.

О Пусть $\varepsilon = 1$, тогда согласно условию Коши (1) найдется номер n_0 такой, что для всех $n \geqslant n_0$ и для всех $m \geqslant n_0$ выполняется неравенство $|x_n - x_m| < 1$, и, в частности, $|x_n - x_{n_0}| < 1$.

Так как $|x_n|=|(x_n-x_{n_0})+x_{n_0}|\leqslant |x_{n_0}|+|x_n-x_{n_0}|<|x_{n_0}|+1$ для всех $n\geqslant n_0$, то при всех $n\in \mathbb{N}$ справедливо неравенство $|x_n|< C$, где $C=\max{(|x_1|,...,|x_{n_0-1}|,|x_{n_0}|+1)}$. Это означает, что $\{x_n\}$ — ограниченная последовательность. \blacksquare

2. Необходимое и достаточное условие сходимости последовательности.

Теорема (критерий Коши). Для того чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она была фундаментальной.

О Необходимость. Пусть последовательность $\{x_n\}$ имеет конечный предел, равный a. По определению предела

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} \colon \forall p \geqslant N_{\varepsilon} \to |x_p - a| < \frac{\varepsilon}{2}.$$
 (2)

Полагая в (2) сначала p=n, а затем p=m и используя неравенство для модуля суммы (разности), получаем

$$|x_n - x_m| = |(x_n - a) - (x_m - a)| \leqslant |x_n - a| + |x_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Следовательно, для любого $n \geqslant N_{\varepsilon}$ и для любого $m \geqslant N_{\varepsilon}$ выполняется неравенство $|x_n - x_m| < \varepsilon$, т. е. выполняется условие (1) при $n_{\varepsilon} = N_{\varepsilon}$.

Достаточность. Пусть $\{x_n\}$ — фундаментальная последовательность. Докажем, что она имеет конечный предел. По определению фундаментальной последовательности

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \colon \forall n \geqslant n_{\varepsilon} \quad \forall m \geqslant n_{\varepsilon} \rightarrow |x_n - x_m| < \frac{\varepsilon}{2}.$$
 (3)

Так как фундаментальная последовательность $\{x_n\}$ является ограниченной, то по теореме Больцано-Вейерштрасса она содержит сходящуюся подпоследовательность $\{x_{n_k}\}$. Пусть ее предел равен a, т. е.

$$\lim_{k \to \infty} x_{n_k} = a. (4)$$

Покажем, что число a является пределом исходной последовательности $\{x_n\}$. По определению предела (4)

$$\forall \varepsilon > 0 \ \exists k_{\varepsilon} \colon \ \forall k \geqslant k_{\varepsilon} \to |x_{n_k} - a| < \frac{\varepsilon}{2}.$$
 (5)

Пусть $N_{\varepsilon} = \max{(n_{\varepsilon}, k_{\varepsilon})}$. Фиксируем в (5) номер $n_k \geqslant N_{\varepsilon}$ (такой номер найдется, так как $n_k \to \infty$ при $k \to \infty$). Тогда при $m = n_k$ и при всех $n \geqslant N_{\varepsilon}$ в силу (3) выполняется неравенство

$$|x_n - x_{n_k}| < \frac{\varepsilon}{2}. (6)$$

Из (5) и (6) следует, что при всех $n\geqslant N_{\varepsilon}$ справедливо неравенство $|x_n-a|=|(x_n-x_{n_k})+(x_{n_k}-a)|\leqslant |x_n-x_{n_k}|+|x_{n_k}-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$ т. е. $\lim_{n\to\infty}x_n=a$. \bullet