Decomposing PE

Expected prediction error/ Mean squared error

$$\mathsf{MSE} = \mathsf{E}(\mathsf{PE}) = \mathsf{E} \| Y_{\mathsf{new}} - \hat{Y}_{\mathsf{new}} \|^2$$

We have

$$MSE = ||E(Y_{new}) - E(\hat{Y}_{new})||^2 + tr\{var(Y_{new} - \hat{Y}_{new})\}$$
$$= bias^2 + variance$$

- $ightharpoonup \hat{Y}_{new}$ is from old (training) data.
- \triangleright Y_{new} is from new data.
 - ▶ When independent, variance = $tr\{var(\epsilon_{new}) + var(\hat{Y}_{new})\}$
 - tr{var(ϵ_{new})} is the irreducible variane while tr{var(\hat{Y}_{new})} depends on model.

Bias-variance trade-off

Figure 1: Figure from "An Introduction to Statistical Learning".

- It is possible to find a model with lower MSE than an unbiased model!
- ▶ Bias-variance trade-off is "generic" in statistics: almost always introducing some bias yields a decrease in MSE.

Bias-variance trade-off

Figure 1: Figure from "An Introduction to Statistical Learning".

- ▶ It is possible to find a model with lower MSE than an unbiased model!
- ▶ Bias-variance trade-off is "generic" in statistics: almost always introducing some bias yields a decrease in MSE.

Bias-variance trade-off

Figure 1: Figure from "An Introduction to Statistical Learning".

- It is possible to find a model with lower MSE than an unbiased model!
- ▶ Bias-variance trade-off is "generic" in statistics: almost always introducing some bias yields a decrease in MSE.

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is \mathbf{Z} .
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\mu\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is **Z**.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\mu\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is **Z**.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\mu\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is **Z**.
- ▶ Unbiased estiamte. \Rightarrow E(Z) = M
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\mu\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is ${f Z}$.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - ightharpoonup $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\boldsymbol{\mu}\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - ► Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

Proof:
$$E \parallel z \parallel^2 = \sum_{i=1}^{P} E(z_i^2)$$

$$= \sum_{i=1}^{P} \left[\left\{ E(Z_i) \right\}^2 + var(Z_i) \right]$$

$$= \sum_{i=1}^{P} \left(u_i^2 + 6^2 \right)$$

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is ${f Z}$.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - ightharpoonup $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\boldsymbol{\mu}\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - ► Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is ${\bf Z}$.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - ightharpoonup $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\boldsymbol{\mu}\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - ► Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is ${f Z}$.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - ightharpoonup $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\boldsymbol{\mu}\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - ► Biased.
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \mu\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\mu, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is ${\bf Z}$.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - ightharpoonup $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\boldsymbol{\mu}\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - ► Biased. E(c≥) ≠ ₩
 - But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $\mathsf{E}(\|c\mathbf{Z} \boldsymbol{\mu}\|^2)$ is small.

- 1. Suppose $\mathbf{Z} \sim N_p(\mu, \sigma^2 \mathbf{I}_p)$.
- 2. An obvious estiamte of μ is **Z**.
- Unbiased estiamte.
- ▶ But $\|\mathbf{Z}\|^2$ tends to be too large.
 - ightharpoonup $E(\|\mathbf{Z}\|^2) = p\sigma^2 + \|\boldsymbol{\mu}\|^2$
 - $> \|\mu\|^2$. Intuitively, at least some of the elements of the estimate are too large.
- 3. Another estimator $c\mathbf{Z}$ with a constant $c \in (0,1)$.
 - Biased.
 - ▶ But by bias-variance trade-off, we can choose an appropriate c so that mean squared error $E(\|c\mathbf{Z} \boldsymbol{\mu}\|^2)$ is small.

MSE (c)

=
$$\| E(cZ-M) \|^2 + tr\{var(cZ-M)\}$$
 By $E\|a\|^2 = \| E(a)\|^2 + tr\{var(a)\}$

=
$$(c-1)^2 ||M||^2 + c^2 + r(var(z))$$

$$= (c-1)^{2} ||M|^{2} + c^{2} \times tr(6^{2}I_{p}) = (c-1)^{2} ||M||^{2} + c^{2}p6^{2}$$

$$= (c-1)^{2} ||M||^{2} + c^{2} \times tr(6^{2}I_{p}) = (c-1)^{2} ||M||^{2} + c^{2}p6^{2}$$

$$\frac{\partial MSE(c)}{\partial c} = 2(c-1) ||M|| + 2c p 6^2 = 0$$

$$\Rightarrow \hat{C} = \frac{||M||^2}{|p_6|^2 + ||M||^2} \in (0.1) \Rightarrow \hat{C} \times \text{achieves minimum of MSE}$$

Corresponds to

minimize
$$_{oldsymbol{\mu}} \| \mathbf{Z} - oldsymbol{\mu} \|^2 + \lambda imes \| oldsymbol{\mu} \|^2$$

minimize
$$_{\mu} \|\mathbf{Z} - \mu\|^2$$
 subject to $\|\mu\|^2 \leqslant C$

- For any λ , there is some C such that the solutions of two problems are the same, and vice versa.
- Intuitively, constrains $\|$ minimizer $\|^2$ not too large.
 - If $C = \infty$ or $\lambda = 0$, solution is OLS.
 - As C gets smaller, λ gets larger, find solution subject to the constraint $\|\mu\|^2 \leqslant C$.

minimize
$$L(M) = ||Z - M||^2 + \lambda ||M||^2$$

$$\frac{\partial L(u)}{\partial u} = -2(Z-u) + 2\lambda U = 0$$

$$\Rightarrow \hat{\mathcal{M}} = \frac{1}{1+\lambda} Z \qquad \left(A \text{ shrinked estimator} \right)$$

If choose
$$\lambda$$
 such that $\frac{1}{1+\lambda} = \hat{c}$

then solution
$$\frac{1}{1+\lambda} Z = \hat{c} Z$$

Corresponds to

minimize
$$_{oldsymbol{\mu}} \| \mathbf{Z} - oldsymbol{\mu} \|^2 + \lambda imes \| oldsymbol{\mu} \|^2$$

minimize
$$_{\boldsymbol{\mu}} \| \mathbf{Z} - \boldsymbol{\mu} \|^2$$
 subject to $\| \boldsymbol{\mu} \|^2 \leqslant C$

- For any λ , there is some C such that the solutions of two problems are the same, and vice versa.
- Intuitively, constrains $\|$ minimizer $\|^2$ not too large.
 - If $C = \infty$ or $\lambda = 0$, solution is OLS.
 - As C gets smaller, λ gets larger, find solution subject to the constraint $\|\mu\|^2 \leqslant C$.

Corresponds to

minimize
$$_{oldsymbol{\mu}} \| \mathbf{Z} - oldsymbol{\mu} \|^2 + \lambda imes \| oldsymbol{\mu} \|^2$$

minimize
$$_{\boldsymbol{\mu}} \| \mathbf{Z} - \boldsymbol{\mu} \|^2$$
 subject to $\| \boldsymbol{\mu} \|^2 \leqslant C$

- For any λ , there is some C such that the solutions of two problems are the same, and vice versa.
- Intuitively, constrains $\|$ minimizer $\|^2$ not too large.
 - If $C = \infty$ or $\lambda = 0$, solution is OLS.
 - As C gets smaller, λ gets larger, find solution subject to the constraint $\|\mu\|^2 \leqslant C$.

Corresponds to

minimize
$$_{oldsymbol{\mu}} \| \mathbf{Z} - oldsymbol{\mu} \|^2 + \lambda imes \| oldsymbol{\mu} \|^2$$

minimize
$$_{\boldsymbol{\mu}} \| \mathbf{Z} - \boldsymbol{\mu} \|^2$$
 subject to $\| \boldsymbol{\mu} \|^2 \leqslant C$

- For any λ , there is some C such that the solutions of two problems are the same, and vice versa.
- ▶ Intuitively, constrains \parallel minimizer \parallel^2 not too large.
 - If $C = \infty$ or $\lambda = 0$, solution is OLS.
 - As C gets smaller, λ gets larger, find solution subject to the constraint $\|\mu\|^2 \leqslant C$.

Corresponds to

minimize
$$_{oldsymbol{\mu}} \| \mathbf{Z} - oldsymbol{\mu} \|^2 + \lambda imes \| oldsymbol{\mu} \|^2$$

minimize
$$_{\boldsymbol{\mu}} \| \mathbf{Z} - \boldsymbol{\mu} \|^2$$
 subject to $\| \boldsymbol{\mu} \|^2 \leqslant C$

- For any λ , there is some C such that the solutions of two problems are the same, and vice versa.
- ▶ Intuitively, constrains \parallel minimizer \parallel^2 not too large.
 - ▶ If $C = \infty$ or $\lambda = 0$, solution is OLS.
 - As C gets smaller, λ gets larger, find solution subject to the constraint $\|\mu\|^2 \leqslant C$.

Corresponds to

minimize
$$_{oldsymbol{\mu}} \| \mathbf{Z} - oldsymbol{\mu} \|^2 + \lambda imes \| oldsymbol{\mu} \|^2$$

minimize
$$_{\boldsymbol{\mu}} \| \mathbf{Z} - \boldsymbol{\mu} \|^2$$
 subject to $\| \boldsymbol{\mu} \|^2 \leqslant C$

- For any λ , there is some C such that the solutions of two problems are the same, and vice versa.
- ▶ Intuitively, constrains \parallel minimizer \parallel^2 not too large.
 - ▶ If $C = \infty$ or $\lambda = 0$, solution is OLS.
 - As C gets smaller, λ gets larger, find solution subject to the constraint $\|\mu\|^2 \leqslant C$.

[MS 6] Shrinkage Method for Model Selection

- $ightharpoonup \hat{\beta}$ has a shrinkaged version $\tau \hat{\beta}$ with smaller MSE.
- ► Ridge Regression:

$$\min_{\beta} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

- Also corresponds to an $\|\beta\|^2$ constrained optimization.
- Solution: $\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

- $ightharpoonup \hat{\beta}$ has a shrinkaged version $\tau \hat{\beta}$ with smaller MSE.
- ► Ridge Regression:

$$\min_{\beta} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

- Also corresponds to an $\|\beta\|^2$ constrained optimization.
- Solution: $\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

- $ightharpoonup \hat{eta}$ has a shrinkaged version $\tau \hat{eta}$ with smaller MSE.
- ► Ridge Regression:

$$\min_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

- Also corresponds to an $\|\beta\|^2$ constrained optimization.
- Solution: $\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

- $ightharpoonup \hat{\beta}$ has a shrinkaged version $\tau \hat{\beta}$ with smaller MSE.
- ► Ridge Regression:

$$\min_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

- ▶ Also corresponds to an $\|\beta\|^2$ constrained optimization.
- Solution: $\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

- $ightharpoonup \hat{\beta}$ has a shrinkaged version $\tau \hat{\beta}$ with smaller MSE.
- ► Ridge Regression:

$$\min_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

- ▶ Also corresponds to an $\|\beta\|^2$ constrained optimization.
- Solution: $\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{Y}$

$$L(\beta) = ||Y - x\beta||^{2} + \lambda ||\beta||^{2} \quad (Quadratic in \beta)$$

$$\frac{\partial L(\beta)}{\partial \beta} = -2 X^{T} (Y - x\beta) + 2\lambda \beta$$

$$= -2 \left\{ X^{T} Y - (X^{T} X + \lambda I_{p}) \beta \right\} = 0$$

$$\Rightarrow$$
 Solution: $\hat{\beta}_{\lambda} = (\chi^{T}\chi + \lambda T_{p})^{-1} \chi^{T} \gamma$

If
$$x^T x = I_p$$
 $\hat{\beta}_{ols} = (x^T x)^{-1} x^T = x^T$

$$\hat{\beta}_{\lambda} = \left\{ (1+\lambda) I_p \right\}^{-1} X^T$$

$$= \frac{1}{1+\lambda} x^T = \frac{1}{1+\lambda} \hat{\beta}_{ols}$$
Shrink each $\hat{\beta}_{i,ols}$ by $\frac{1}{1+\lambda} \in (0.1)$ with $\lambda > 0$

- \triangleright Ridge Regression will include all p predictors in the final model.
- ► The penalty $\lambda \|\beta\|^2$
 - will shrink all of the coefficients towards zero
 - but it will not set any of them exactly to zero (unless $\lambda = \infty$)
 - may not be a problem for prediction accuracy
 - can create a challenge in model interpretation if p is too large

- \triangleright Ridge Regression will include all p predictors in the final model.
- ▶ The penalty $\lambda \|\beta\|^2$
 - will shrink all of the coefficients towards zero
 - but it will not set any of them exactly to zero (unless $\lambda = \infty$)
 - may not be a problem for prediction accuracy
 - can create a challenge in model interpretation if p is too large

- \triangleright Ridge Regression will include all p predictors in the final model.
- ▶ The penalty $\lambda \|\beta\|^2$
 - will shrink all of the coefficients towards zero
 - but it will not set any of them exactly to zero (unless $\lambda = \infty$)
 - may not be a problem for prediction accuracy
 - can create a challenge in model interpretation if p is too large

- \triangleright Ridge Regression will include all p predictors in the final model.
- ▶ The penalty $\lambda \|\beta\|^2$
 - will shrink all of the coefficients towards zero
 - but it will not set any of them exactly to zero (unless $\lambda = \infty$)
 - may not be a problem for prediction accuracy
 - can create a challenge in model interpretation if p is too large

- \triangleright Ridge Regression will include all p predictors in the final model.
- ▶ The penalty $\lambda \|\beta\|^2$
 - will shrink all of the coefficients towards zero
 - lacktriangle but it will not set any of them exactly to zero (unless $\lambda=\infty$)
 - may not be a problem for prediction accuracy
 - \triangleright can create a challenge in model interpretation if p is too large

Lasso Regression

Lasso Regression:

$$\min_{oldsymbol{eta}} \|\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2 + \lambda \|oldsymbol{eta}\|_1$$

- ightharpoonup Also corresponds to an $\|\beta\|_1$ constrained optimization.
- Lasso can zero some coefficients.
 - ▶ If $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$ and $\lambda = 2\gamma$, lasso solution

$$\tilde{\beta}_j = \begin{cases} \operatorname{sign}(\hat{\beta}_j) \times (|\hat{\beta}_j| - \gamma), & \gamma \leq |\hat{\beta}_j|, \\ 0, & \text{otherwise} \end{cases}$$

$$\min_{oldsymbol{eta}} \|\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2 + \lambda \|oldsymbol{eta}\|_1$$

- $\blacktriangleright \|\beta\|_1 = \sum_{j=1}^p |\beta_j|$
- ightharpoonup Also corresponds to an $\|\beta\|_1$ constrained optimization.
- Lasso can zero some coefficients.
 - ▶ If $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$ and $\lambda = 2\gamma$, lasso solution

$$\tilde{\beta}_j = \begin{cases} \operatorname{sign}(\hat{\beta}_j) \times (|\hat{\beta}_j| - \gamma), & \gamma \leq |\hat{\beta}_j|, \\ 0, & \text{otherwise} \end{cases}$$

$$\min_{oldsymbol{eta}} \|\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2 + \lambda \|oldsymbol{eta}\|_1$$

- $\blacktriangleright \|\beta\|_1 = \sum_{j=1}^p |\beta_j|$
- ▶ Also corresponds to an $\|\beta\|_1$ constrained optimization.
- Lasso can zero some coefficients.
 - ▶ If $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$ and $\lambda = 2\gamma$, lasso solution

$$\tilde{\beta}_j = \begin{cases} \operatorname{sign}(\hat{\beta}_j) \times (|\hat{\beta}_j| - \gamma), & \gamma \leq |\hat{\beta}_j|, \\ 0, & \text{otherwise} \end{cases}$$

$$\min_{oldsymbol{eta}} \|\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2 + \lambda \|oldsymbol{eta}\|_1$$

- $\blacktriangleright \|\beta\|_1 = \sum_{j=1}^p |\beta_j|$
- ▶ Also corresponds to an $\|\beta\|_1$ constrained optimization.
- Lasso can zero some coefficients.
 - ▶ If $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$ and $\lambda = 2\gamma$, lasso solution

$$\tilde{\beta}_j = \begin{cases} \operatorname{sign}(\hat{\beta}_j) \times (|\hat{\beta}_j| - \gamma), & \gamma \leq |\hat{\beta}_j|, \\ 0, & \text{otherwise} \end{cases}$$

$$\min_{oldsymbol{eta}} \|\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2 + \lambda \|oldsymbol{eta}\|_1$$

- $\blacktriangleright \|\beta\|_1 = \sum_{j=1}^p |\beta_j|$
- ▶ Also corresponds to an $\|\beta\|_1$ constrained optimization.
- Lasso can zero some coefficients.
 - ▶ If $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$ and $\lambda = 2\gamma$, lasso solution

$$ilde{eta}_j = egin{cases} \operatorname{sign}(\hat{eta}_j) imes (|\hat{eta}_j| - \gamma), & \gamma \leq |\hat{eta}_j|, \ 0, & ext{otherwise} \end{cases}$$

When
$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_{\mathsf{P}}$$
. $\hat{\boldsymbol{\beta}}_{\mathsf{OLS}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\mathsf{T}} \mathbf{X}^{\mathsf{T}}\boldsymbol{\gamma} = \mathbf{X}^{\mathsf{T}}\boldsymbol{\gamma}$

$$\Leftrightarrow \min_{\beta} \sum_{i=1}^{p} \left(\beta_{i}^{2} - 2 \hat{\beta}_{i,ols} \beta_{i} + \lambda |\beta_{i}| \right)$$

For each
$$i = 1 - P$$
 min $\beta_i^2 - 2\beta_{i,ols} \beta_i + \lambda \beta_i$

min $\beta_i^2 - 2\beta_{i,ols} \beta_i - \lambda \beta_i$
 $\beta_i \leq 0$

Step 1: Claim: If $\hat{\beta}_{i,ols} > 0$, to immine above objective (β) then solution $\hat{\beta}_i \neq 0$ (non-negative) If $\widehat{\beta}_{i,ols} < 0$, then $\widehat{\beta}_{i} \leq 0$. Proof: Suppose solution $\widehat{\beta_{i}} < 0$, $\left\{ \widehat{\beta_{i.ols}} \widehat{\beta_{i}} < \widehat{\beta_{i.ols}} (-\widehat{\beta_{i}}) \right\} \left(\widehat{\beta_{i.ols}} > 0 \right)$ Thus $\hat{\beta}_{i}^{2} - 2\hat{\beta}_{i,ocs}\hat{\beta}_{i} - \lambda\hat{\beta}_{i} > \hat{\beta}_{i}^{2} - 2\hat{\beta}_{i,ocs}(-\hat{\beta}_{i}) + \lambda\hat{\beta}_{i}$ 5 houng - \beta_i would achieve smaller value in \beta contradicts with β is the solution. Therefore Bi should n't be negative.

Let
$$f_{ii}(\beta_i) := \beta_i^2 - (2\beta_{i,ols} - \lambda)\beta_i^2$$

$$= \left\{\beta_i - (\beta_{i,ols} - \frac{\lambda}{2})^2 - (\beta_{i,ols} - \frac{\lambda}{2})^2 - (\beta_{i,ols} - \frac{\lambda}{2})^2 + \beta_i + \beta_i$$

Q If Bious - r 20

@ If \(\hat{\beta}_{i.ous} - \gamma \in \epsilon

minimizer 0

Step 3: minimizer in the domain
$$\beta i \le 0$$

Let $fiz(\beta i) := \beta i^2 - (2\beta i) ous + \lambda) \beta i$

$$= \{\beta i - (\beta i) ous + \gamma\}^2 + fixed terms$$

minimiler 0

minimer
$$\hat{\beta}_{i,ols} + r$$

(if $\beta_i < 0$)

Step 4: In summary

$$\begin{array}{ll}
\widehat{\beta}_{i.ous} \approx 0, & \text{solution over } \beta_{i.ous} \approx 0 & \text{gives} \\
\widehat{\beta}_{i} = \left\{ \begin{array}{ll}
\widehat{\beta}_{i.ous} - r & \text{if } \widehat{\beta}_{i.ous} - r \approx 0, \\
0 & \text{if } \widehat{\beta}_{i.ous} - r \approx 0. \end{array} \right.$$

$$\begin{array}{ll}
\widehat{\beta}_{i.ous} = |\widehat{\beta}_{i.ous}| - r \\
0 & \text{otherwise}
\end{array}$$

$$\widehat{\beta}_{i,ols} < 0, \quad \text{solution over } \beta_{i} < 0, \quad \text{gives}$$

$$\widehat{\beta}_{i} = \begin{cases} -(\widehat{\beta}_{i,ols} + r) & \text{if } \widehat{\beta}_{i,ols} + r < 0; \\ 0 & \text{if } \widehat{\beta}_{i,ols} + r \geq 0. \end{cases}$$

$$\widehat{\beta}_{i,ols} + r = -(|\widehat{\beta}_{i,ols}| - r)$$

Thus,
$$\hat{\beta}_{i} = \begin{cases} sign(\hat{\beta}_{i.ols}) \times (|\hat{\beta}_{i.ols}| - r) & \text{if } |\hat{\beta}_{i.ols}| - r \leq 0 \end{cases}$$
 otherwise

Graph Illustration

- Consider p = 2.
- The solid blue areas are the constraint regions $|\beta_1|^2 + |\beta_2|^2 \le C$ and $|\beta_1| + |\beta_2| \le C$
- ► The red ellipses given regions of constant RSS.

Figure 2: From "An Introduction to Statistical Learning".

Graph Illustration

- Consider p = 2.
- The solid blue areas are the constraint regions $|\beta_1|^2 + |\beta_2|^2 \le C$ and $|\beta_1| + |\beta_2| \le C$
- ► The red ellipses given regions of constant RSS.

Figure 2: From "An Introduction to Statistical Learning".

- Neither ridge regression nor the lasso will universally dominate the other.
- In general, one might expect
 - lasso to perform better: a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - Ridge regression will perform better: the response is a function of many predictors, all with coefficients of roughly equal size.
- ► The number of predictors that is related to the response is never known a priori for real data sets.
- Cross-validation can be used in order to determine which approach is better on a particular data set and also choose λ .

- Neither ridge regression nor the lasso will universally dominate the other.
- ► In general, one might expect
 - lasso to perform better: a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - Ridge regression will perform better: the response is a function of many predictors, all with coefficients of roughly equal size.
- ► The number of predictors that is related to the response is never known a priori for real data sets.
- Cross-validation can be used in order to determine which approach is better on a particular data set and also choose λ .

- Neither ridge regression nor the lasso will universally dominate the other.
- ► In general, one might expect
 - lasso to perform better: a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - Ridge regression will perform better: the response is a function of many predictors, all with coefficients of roughly equal size.
- ► The number of predictors that is related to the response is never known a priori for real data sets.
- Cross-validation can be used in order to determine which approach is better on a particular data set and also choose λ .

- Neither ridge regression nor the lasso will universally dominate the other.
- ► In general, one might expect
 - lasso to perform better: a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - Ridge regression will perform better: the response is a function of many predictors, all with coefficients of roughly equal size.
- ► The number of predictors that is related to the response is never known a priori for real data sets.
- ightharpoonup Cross-validation can be used in order to determine which approach is better on a particular data set and also choose λ .

- Neither ridge regression nor the lasso will universally dominate the other.
- ► In general, one might expect
 - lasso to perform better: a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - ► Ridge regression will perform better: the response is a function of many predictors, all with coefficients of roughly equal size.
- ► The number of predictors that is related to the response is never known a priori for real data sets.
- Cross-validation can be used in order to determine which approach is better on a particular data set and also choose λ .

- Neither ridge regression nor the lasso will universally dominate the other.
- ► In general, one might expect
 - lasso to perform better: a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - ► Ridge regression will perform better: the response is a function of many predictors, all with coefficients of roughly equal size.
- ► The number of predictors that is related to the response is never known a priori for real data sets.
- Cross-validation can be used in order to determine which approach is better on a particular data set and also choose λ .

- Neither ridge regression nor the lasso will universally dominate the other.
- ► In general, one might expect
 - lasso to perform better: a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero.
 - ► Ridge regression will perform better: the response is a function of many predictors, all with coefficients of roughly equal size.
- ► The number of predictors that is related to the response is never known a priori for real data sets.
- ightharpoonup Cross-validation can be used in order to determine which approach is better on a particular data set and also choose λ .

Example

► Hitters Data: Records and salaries for baseball players.

```
Hitters=na.omit(Hitters)
head(Hitters,2)
##
                AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns
## -Alan Ashby
                  315
                        81
                                    24
                                        38
                                              39
                                                     14
                                                          3449
                                                                 835
                                                                         69
                                                                              321
## -Alvin Davis
                  479
                       130
                               18
                                    66
                                        72
                                              76
                                                     3
                                                          1624
                                                                 457
                                                                         63
                                                                              224
##
                CRBI CWalks League Division PutOuts Assists Errors Salary
                414
                        375
                                           W
                                                 632
                                                           43
                                                                  10
                                                                        475
## -Alan Ashby
                                  N
## -Alvin Davis
                        263
                 266
                                                 880
                                                           82
                                                                        480
                                  Α
                                                                  14
##
                NewLeague
## -Alan Ashby
## -Alvin Davis
x=model.matrix(Salary ~ ., Hitters)[,-1]
y=Hitters\$Salary
```

- In glmnet() function: alpha option determines the model type.
 - ightharpoonup alpha = 0 ridge; alpha = 1 lasso.

```
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x, y, alpha=0, lambda=grid)
```

```
ridge.mod$lambda[60] #//beta//~2

## [1] 705.4802

coef(ridge.mod)[1:5,60]

## (Intercept) AtBat Hits HmRun Runs

## 54.3251995 0.1121111 0.6562241 1.1798091 0.9376971
```

- ▶ In glmnet() function: alpha option determines the model type.
 - ightharpoonup alpha = 0 ridge; alpha = 1 lasso.

```
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x, y, alpha=0, lambda=grid)
```

```
ridge.mod$lambda[60] #//beta//~2

## [1] 705.4802

coef(ridge.mod)[1:5,60]

## (Intercept) AtBat Hits HmRun Runs

## 54.3251995 0.1121111 0.6562241 1.1798091 0.9376971
```

- ▶ In glmnet() function: alpha option determines the model type.
 - ightharpoonup alpha = 0 ridge; alpha = 1 lasso.

```
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x, y, alpha=0, lambda=grid)
```

```
ridge.mod$lambda[60] #//beta//~2

## [1] 705.4802

coef(ridge.mod)[1:5,60]

## (Intercept) AtBat Hits HmRun Runs

## 54.3251995 0.1121111 0.6562241 1.1798091 0.9376971
```

- ▶ In glmnet() function: alpha option determines the model type.
 - ightharpoonup alpha = 0 ridge; alpha = 1 lasso.

```
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x, y, alpha=0, lambda=grid)
```

```
ridge.mod$lambda[60] #//beta//~2

## [1] 705.4802

coef(ridge.mod)[1:5,60]

## (Intercept) AtBat Hits HmRun Runs

## 54.3251995 0.1121111 0.6562241 1.1798091 0.9376971
```

- ▶ In glmnet() function: alpha option determines the model type.
 - ightharpoonup alpha = 0 ridge; alpha = 1 lasso.

```
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x, y, alpha=0, lambda=grid)
```

```
ridge.mod$lambda[60] #//beta//~2

## [1] 705.4802

coef(ridge.mod)[1:5,60]

## (Intercept) AtBat Hits HmRun Runs

## 54.3251995 0.1121111 0.6562241 1.1798091 0.9376971
```

- ▶ In glmnet() function: alpha option determines the model type.
 - ightharpoonup alpha = 0 ridge; alpha = 1 lasso.

```
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x, y, alpha=0, lambda=grid)
```

```
ridge.mod$lambda[60] #//beta//~2

## [1] 705.4802

coef(ridge.mod)[1:5,60]

## (Intercept) AtBat Hits HmRun Runs

## 54.3251995 0.1121111 0.6562241 1.1798091 0.9376971
```

- ▶ In glmnet() function: alpha option determines the model type.
 - ightharpoonup alpha = 0 ridge; alpha = 1 lasso.

```
library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x, y, alpha=0, lambda=grid)
```

```
ridge.mod$lambda[60] #//beta//~2

## [1] 705.4802

coef(ridge.mod)[1:5,60]

## (Intercept) AtBat Hits HmRun Runs

## 54.3251995 0.1121111 0.6562241 1.1798091 0.9376971
```


- Each curve corresponds to a variable.
- It shows the path of its coefficient against the $\|\hat{\beta}\|_1$.
- ightharpoonup The axis above indicates # of nonzero coefficients at the current λ .

- Each curve corresponds to a variable.
- It shows the path of its coefficient against the $\|\hat{\beta}\|_1$.
- ightharpoonup The axis above indicates # of nonzero coefficients at the current λ .

- Each curve corresponds to a variable.
- lacktriangle It shows the path of its coefficient against the $\|\hat{eta}\|_1$.
- ightharpoonup The axis above indicates # of nonzero coefficients at the current λ .

- Each curve corresponds to a variable.
- lacktriangle It shows the path of its coefficient against the $\|\hat{eta}\|_1$.
- \blacktriangleright The axis above indicates # of nonzero coefficients at the current λ .

Cross validaiton

cv.out <- cv.glmnet(x, y, alpha=1) #default # of folds is 10
plot(cv.out)</pre>

cv.out\$lambda.min

[1] 2.674375

Cross validaiton

cv.out <- cv.glmnet(x, y, alpha=1) #default # of folds is 10
plot(cv.out)</pre>

cv.out\$lambda.min

[1] 2.674375