

MY QUESTIONS

- How did genome editing start?
- What is CRISPR-Cas9?
- How can these techniques be relevant to us as evolutionary biologists?

EARLY APPROACHES

- Facilitated homologous recombination
- 1st gen zinc finger nucleases (ZFNs)
- 2nd gen transcription activator-like effector nucleases (TALENs)
- Both have danger of off-target effects

Gupta & Musunuru (2014)

CRISPR-CAS9

- Cas9 is developed from *Streptococcus pyogenes* adaptive immune defense
- Developed for mammals
- Clustered regularly interspersed tandem repeats
- System consists of Cas9 protein which holds
 - o Guide RNA
 - o PAMs
- NHEJ or HDR synthesize new DNA at the site

NIGMS/NIH, edited

APPLICATIONS AND CONSIDERATIONS

- Cheaper and more efficient than other genome editing techniques
- CRISPR changes are heritable
- New CRISPR technologies like Cpf1 and C2c2 are becoming available
- Can apply to gene therapy, pathogen disruption, agriculture, and many other fields
 - Lots of ethical considerations

EVO DEVO

- Example of application relevant to us
- Compare fish with extra limbs vs. CPRISPRremoved limbs
- ID'd *tbx3a* as top differentially expressed gene when compared to pectoral fins
- Homology between walking fish fins and tetrapod limbs

Herbert et al. (2024)

Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods

Dan Sun 1,2t, Zhaojiang Guo 2t, Yong Liu 1 and Youjun Zhang 2*

¹ Longping Branch, Graduate School of Hunan University, Changsha, China, ² Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China

- Cas9 might not be best option for arthropods
 - o Smaller, more fragile eggs

FIGURE 2 | The history of the use of CRISPR/Cas9 technology in arthropods. The dotted lines indicate different arthropod classifications. Red circles represent Diptera; black circles represent Hymenoptera; dark blue circles represent Orthoptera; cambridge blue circles represent Coleoptera; gray circle represents Decapod;

CDICDD AC FDIICATIONAL TOOL

Table 2. Gene targets used for student assignment on designing sgRNAs

Protein name	Species	GenBank ID	Species for TBLASTN analysis
Abdominal-A	Bombyx mori	ACD10794	V. cardui
Distal-less	Bicyclus anynana	AAL69325	V. cardui
Membrane-associated transporter protein (SLC45A2/MATP/OCA4)	Homo sapiens	AIK67168	X. laevis
Optix	Heliconius erato	AEO13434.1	V. cardui
Tyrosinase (Tyr-a+Tyr-b)	Homo sapiens	NP_000363.1	X. laevis
WntA	Heliconius erato	AFC75683	V. cardui

Martin et al. (2020)