

Simplicially driven simple contagion

Maxime Lucas^{1,2}, Iacopo Iacopini³, Thomas Robiglio⁴, Alain Barrat⁵ and Giovanni Petri^{1,2} ¹Mathematics and Complex Systems Research Area, ISI Foundation, Via Chisola 5, 10126 Turin, Italy ²CENTAI, Corso Inghilterra 3, 10138 Turin, Italy ³Department of Network and Data Science, Central European University, 1100 Vienna, Austria

⁴Politecnico di Torino, DISAT, 10129 Turin, Italy ⁵Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, 13009, France

Motivation

SPREADING PROCESSES CAN AFFECT EACH OTHER

- HIV increases susceptibility to other diseases.
- Unsafe behaviours boost pathogen spread.

HIGHER-ORDER STRUCTURES FOR SOCIAL CONTAGION

- Abrupt transition to the endemic state.
- Presence of a bi-stable region where endemic and disease free state coexist.

SO FAR:

 Modeling of processes limited to symmetric interaction and simple contagion.

Model

We consider a model for two interacting spreading pathogens Aand B, which also include simplicial contagion [1]. Individuals can be in one of four compartments, following the standard SIS framework.

Key features of the model:

- Contagion events take place on top of a contact structure with higher-order (non-pairwise) interactions [2].
- For each pathogen we have **two contagion routes**: **simple** controlled by parameter $\beta_{x,1} \equiv \beta_x$ and simplicial controlled by parameter $\beta_{x,2} \equiv \beta_x^{\triangle}$. All other nodes in the simplex need to be infectious for the simplex to be considered so.
- The interaction between the two contagion processes is controlled via two non-negative parameters ϵ_{AB} and ϵ_{BA} . The two processes cooperate if $\epsilon_{xx'} > 1$ and compete if $\epsilon_{xx'} < 1$.

Mean-field description

We assume identical recovery rates $\mu_A = \mu_B = \mu$ and introduce the rescaled infectivity parameters $\lambda_x = \beta_x \langle k \rangle / \mu$ and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$. The general mean-field equations describing the evolution of the densities are:

$$\dot{\rho}_{A} = -\rho_{A} + \lambda_{A}\rho_{S}(\rho_{A} + \rho_{AB}) + \lambda_{A}^{\triangle}\rho_{S}(\rho_{A} + \rho_{AB})^{2} + \rho_{AB} - \epsilon_{AB}\lambda_{B}\rho_{A}(\rho_{B} + \rho_{AB}) - \epsilon_{AB}\lambda_{B}^{\triangle}\rho_{A}(\rho_{B} + \rho_{AB})^{2}$$
(1a)
$$\dot{\rho}_{B} = -\rho_{B} + \lambda_{B}\rho_{S}(\rho_{B} + \rho_{AB}) + \lambda_{B}^{\triangle}\rho_{S}(\rho_{B} + \rho_{AB})^{2} + \rho_{AB} - \epsilon_{BA}\lambda_{A}\rho_{B}(\rho_{A} + \rho_{AB}) - \epsilon_{BA}\lambda_{A}^{\triangle}\rho_{B}(\rho_{A} + \rho_{AB})^{2}$$
(1b)
$$\dot{\rho}_{AB} = -2\rho_{AB} + \epsilon_{AB}\lambda_{B}\rho_{A}(\rho_{B} + \rho_{AB}) + \epsilon_{AB}\lambda_{B}^{\triangle}\rho_{A}(\rho_{B} + \rho_{AB})^{2} + \epsilon_{BA}\lambda_{A}\rho_{B}(\rho_{A} + \rho_{AB})\epsilon_{BA}\lambda_{A}^{\triangle}\rho_{B}(\rho_{A} + \rho_{AB})^{2}$$
(1c)

Results

PATHOGEN $A \rightarrow \text{UNSAFE BEHAVIOUR}$ PATHOGEN B o DISEASE

Pathogen A drives pathogen B ($\epsilon_{AB} > 1$) Pathogen B does not affect pathogen A ($\epsilon_{BA} = 1$)

Abrupt phase transition induced by a simplicial driver

A simplicial driver with $\lambda_A^{\triangle}=2.5$ can induce a discontinuous transition in pathogen B, contrary to a simple driver with $\lambda_A^{\triangle} = 0$. The transition of the simple contagion ${\cal B}$ becomes discontinuous above a critical value of cooperation ϵ^c_{AB} .

Temporal properties

The temporal properties of the driven proces depends on the initial conditions of the driver. Observing only the driven pathogen ${\cal B}$ we see a bistability in B by changing the initial conditions of the simplicial driver A.

References

- I. lacopini et al., Simplicial models of social contagion, Nat. Comm.
- F. Battiston et al., Networks beyond pairwise interactions: Structure and dynamics, Phys. Rep.

(1c)