CSC236, A1

Youngsin Ryoo

$\mathbf{Q}\mathbf{1}$

P(n): Starting from a single group of n coins, the person always wins a total of $\frac{n(n-1)}{2}$ coins. Base Case: Let k=1.

As soon as the person starts the game, the game is over because there is exactly a group of one coin. Since one coin cannot be divided into smaller groups, the person wins 0 dollars. Also, $\frac{1(1-1)}{2} = 0$.

Therefore, P(1) holds.

Inductive Case: Let $k \in \mathbb{N}, k > 1$.

Assume that for all $j \in \mathbb{N}$, $1 \le j \le k$, P(j) holds. [IH]

Want to prove: P(k+1) is true.

i.e. Starting from a group of k+1 coins, a person wins exactly $\frac{k(k+1)}{2}$ coins.

Suppose a group of k+1 coins are divided into (k+1-x) coins and x coins where $x \in \mathbb{N}$, $1 \le x < k+1$.

Then, by IH, we get $\frac{x(x-1)}{2}$ dollars for the group of x coins and $\frac{(k-x+1)(k-x)}{2}$ dollars for the group of (k+1-x) coins, since $1 \le x, k+1-x \le k$.

Note that the person gets x(k+1-x) dollars as the person divides the group of (k+1) coins at first.

Then, we have $\frac{x(x-1)}{2} + \frac{(k-x+1)(k-x)}{2} + x(k+1-x)$ dollars in total.

$$\frac{x(x-1)}{2} + \frac{(k-x+1)(k-x)}{2} + x(k+1-x) = \frac{x(x-1)}{2} + \frac{(k-x+1)(k-x)}{2} + \frac{2x(k+1-x)}{2}$$

$$= \frac{x^2 - x + k^2 - kx + k - xk + x^2 - x + 2xk + 2x - 2x^2}{2}$$

$$= \frac{k^2 + k}{2}$$

$$= \frac{k(k+1)}{2}$$

1

$\mathbf{Q2}$

Let $B_n = \{2^i : i \in \mathbb{N} \text{ and } 0 \le i < n\}$, where $n \in \mathbb{N}$.

Let $s \in \mathbb{N}, 0 \le s < 2^n$.

P(n): B_n contains a subset A such that the sum of all elements in A is equal to S. i.e. $\sum_{x \in A} x = s$

Want to prove: For all $n \in \mathbb{N}$, P(n) holds.

Assume for a contradiction that there exists a natural number k such that P(k) doesn't hold. Let S be a set of all natural numbers j such that $j \in S$ iff P(j) does not hold.

By definition of $S, S \subseteq \mathbb{N}$.

By definition of S, S is not empty.

So, by PWO, S has a minimum element b.

Claim. $b \neq 0$

Proof. We know that $B_0 = \emptyset$. By the definition, we have: $0 \le s < 2^0$. That is, $0 \le s < 1$. Since $s \in \mathbb{N}$, s = 0. Also, $\sum_{x \in \emptyset} x = 0$. Then, $\sum_{x \in \emptyset} x = s$. So, P(0) holds and by def. of S, $0 \notin S$. Since we assumed that $b \in S$, $b \ne 0$.

Since $b \in \mathbb{N}$ and $b \neq 0$, b > 0 and $b - 1 \geq 0$ and so $b - 1 \in \mathbb{N}$.

Since b is the minimum element of S, $b-1 \notin S$. So, by def. of S, P(b-1) holds.

Then, we have B_{b-1} that contains a subset A' such that the sum, s', of all elements in A' is equal to S where $s' \in \mathbb{N}$ and $0 \le s' < 2^{b-1}$.

Consider B_b . The sum, s'', of all elements of a subset A'' of B_b will be $s' + 2^{b-1}$.

We have:

$$0 \le s' < 2^{b-1}$$
 (by the def. of B_{b-1})
 $0 \le s' + 2^{b-1} < 2^{b-1} + 2^{b-1}$
 $0 \le s'' < 2^b$

Thus, B_b contains a subset A'' such that the sum of all elements in A'' is equal to s'' where $0 \le s'' < 2^b$.

So P(b) holds.

On the other hand, $b \in S$ and by def. of S, P(b) does not hold.

This is a contradiction, so the original assumption must be false.

Q3

Z(v): number of occurrences of 0 in the binary string v

O(v): number of occurrences of 1 in the binary string v

P(w): For every proper prefix u of the string $w, O(u) \leq Z(u)$

Want to prove: For all $w \in S$, P(w) holds.

Base Case: Let w = 1.

There is only one character. There is no proper prefix for w, as $\epsilon \notin S$.

Therefore, P(1) holds true vacuously.

Inductive Step: Let $w_1, w_2 \in S$.

Assume $P(w_1)$ and $P(w_2)$ hold. [IH]

i.e. w_1 has a proper prefix u_1 such that $O(u_1) \leq Z(u_1)$.

 w_2 has a proper prefix u_2 such that $O(u_2) \leq Z(u_2)$

Want to prove: $P(0 \cdot w_1 \cdot w_2)$ holds.

Let $w_1 = u_1v_1$ and $w_2 = u_2v_2$. Here, u_1 and u_2 are the proper prefixes of w_1 and w_2 , respectively.

Let $w = 0 \cdot w_1 \cdot w_2$.

That is, $w = 0 \cdot u_1 \cdot v_1 \cdot u_2 \cdot v_2$.

Let u' = prefix of w.

Case 1. Let u' = 0.

Then, O(u') = 0 and Z(u') = 1.

Therefore, $O(u') \leq Z(u')$, so P(w) holds true.

Case 2. Let $u' = 0 \cdot u_1$.

By IH, $O(u_1) \le Z(u_1)$.

Since we have an additional 0 at the front, $O(u_1) < Z(u_1) + 1$.

So, $O(u') \le Z(u')$.

Therefore, P(w) holds true.

Case 3. Let $u' = 0 \cdot u_1 \cdot v_1$.

By the definition of the proper prefix, v_1 can have a minimum length of 1 character.

There are two subcases we can consider for v_1 .

Subcase 1. Let $v_1 = 0$.

Then, the number of occurrences of 1 for v_1 is 0 and the number of occurrences of 0 for v_1 is 1. Since there is also 0 at the front, we have:

$$O(u_1) \le Z(u_1)$$
 (By IH)
 $0 + O(u_1) + 0 < 1 + Z(u_1) + 1$
 $O(u') < Z(u')$

Subcase 2. Let $v_1 = 1$.

Then, the number of occurrences of 1 for v_1 is 1 and the number of occurrences of 0 for v_1 is 0. Since there is also 0 at the front, we have:

$$O(u_1) \le Z(u_1)$$
 (By IH)
 $0 + O(u_1) + 1 \le 1 + Z(u_1) + 0$
 $O(u') \le Z(u')$

Therefore, $O(u') \leq Z(u')$ for both subcases. So, P(w) holds true.

Case 4. Let $u' = 0 \cdot u_1 \cdot v_1 \cdot u_2$.

By the definition of the proper prefix, v_1 can have a minimum length of 1 character.

There are two subcases we can consider for v_1 .

Subcase 1. Let $v_1 = 0$.

Then, the number of occurrences of 1 for v_1 is 0 and the number of occurrences of 0 for v_1 is 1. Since there is also 0 at the front, we have:

$$O(u_1) + O(u_2) \le Z(u_1) + Z(u_2)$$
 (By IH, $O(u_1) \le Z(u_1)$ and $O(u_2) \le Z(u_2)$)
 $0 + O(u_1) + 0 + O(u_2) < 1 + Z(u_1) + 1 + Z(u_2)$
 $O(u') < Z(u')$

Subcase 2. Let $v_1 = 1$.

Then, the number of occurrences of 1 for v_1 is 1 and the number of occurrences of 0 for v_1 is 0. Since there is also 0 at the front, we have:

$$O(u_1) + O(u_2) \le Z(u_1) + Z(u_2)$$
 (By IH, $O(u_1) \le Z(u_1)$ and $O(u_2) \le Z(u_2)$)
 $0 + O(u_1) + 1 + O(u_2) \le 1 + Z(u_1) + 0 + Z(u_2)$
 $O(u') \le Z(u')$

Therefore, $O(u') \leq Z(u')$ for both subcases. So, P(w) holds true.