Haskell. Домашнее задание №1

Горбунов Егор Алексеевич 28 сентября 2015 г.

1 Долг с пары

Задача №1.1 (функция *or*)

or x y = x true y

Если $x = true = \lambda ab.a$, то or~x~y вернёт true (т.е. x), иначе будет возвращён y, который и будет верным ответом, т.к. теперь всё от него и зависит (если y = true, то or~x~y~= true и с false аналогично).

2 Примитивная рекурсия

Задача №2.1 (факториал)

Задача №2.2 (предыдущее число)

Задача №2.3 (меньше или равно)

Задача №2.4 (модуль разности)

3 Списки

$$nil = \lambda cx.x$$
 $cons \ a \ as = \lambda cx.c \ a \ (as \ c \ x)$

Задача №**3.1** (*isEmpty*)

$$isEmpty\ l = l\ (\lambda ht.false)\ true$$

Проверим для пустого списка nil: $isEmpty\ nil = nil\ (\lambda ht.false)\ true = \lambda cx.x\ (\lambda ht.false)\ true =_{\beta}$ true. Ок. Любой непустой список $l = cons\ a_1(cons\ a_2(\dots(cons\ nil)\dots))$ представляется в виде:

$$l = \lambda cx. c \ a_1 \ (T \ c \ x) = \tag{1}$$

$$= \lambda cx. c \ a_1 \ (c \ a_2 \ (T' \ c \ x))) =$$
 (2)

$$= \lambda cx. c \ a_1 \ (c \ a_2 \ (... (c \ a_n \ (nil \ c \ x))...)) =$$
 (3)

$$= \lambda cx. c \ a_1 \ (c \ a_2(\dots \ (c \ a_n \ x)\dots)$$

Ясно, что если вместо c подставить любую абстракцию с 2 связанными переменными, всегда возвращающую false, то $isEmpty\ l$ будет возвращать false.

Задача №3.2 (head)

head l = l true nil

Для nil: $head\ nil = nil\ true\ nil = (\lambda cx.x)\ true\ nil =_{\beta} nil$. Разумно. Для непустого $l = cons\ a_1\ T$:

head
$$l = (\lambda cx.c \ a_1 \ (c \ a_2(\dots \ (c \ a_n \ x)\dots)) \ true \ nil =_{\beta}$$

= $_{\beta} true \ a_1 \ (\dots) =_{\beta}$
= $_{\beta} a_1$

Задача №3.3 (tail)

Соберём хвост списка $l = [a_1, \dots, a_{n-1}, a_n]$ начиная с конца. Пускай:

$$c \ e \ p = pair \ (snd \ p) \ (cons \ e \ (snd \ p)))$$

Тогда, например c a_n $(pair\ nil\ nil)$ = $pair\ nil\ l'$, где l' — лист из элемента a_n , т.е. в первом элементе пары хранится хвост списка l' из одного элемента. Таким образом последовательные применения c при построении списка (см. формулу 4) приведут к тому, что после последнего

применения c получится пара $pair\ tail\ l$. Таким образом ответ на задачу:

$$tail\ l = fst\ (l\ (\lambda ep.pair\ (snd\ p)\ (cons\ e\ (snd\ p)))\ (pair\ nil\ nil))$$

Задача №3.4 (аррепд)

Аналогично операции tail с одним изменением:

append
$$l$$
 $a = snd$ (l ($\lambda ep.pair$ (snd p) ($cons$ e (snd p))) ($pair$ nil a))

Таким образом после первого применения c (см. формулу 4): c a_n (pair nil a) = pair a (cons a_n a). Итого во втором элементе пары у нас будет записан исходный список l, c добавленным в конец элементом a.

4 Y-комбинатор

Задача №4.1 (про $F: \forall M(FM = F)$)

Равенство F = FM β -эквивалентно следующему: $F = (\lambda fm.f)F$. Видим, что F — неподвижная точка терма $\lambda fm.f$. Y-комбинатор по определению таков, что: $\forall G: (YG = G(YG))$, но тогда F = YG, где $G = \lambda fm.f$, итого:

$$F = Y (\lambda f m.f)$$

Задача №4.2 (ещё один факториал)

Задача №4.3 (функция Аккермана)