PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6:
B01D 53/86, C01B 39/44

A1

(11) Numéro de publication internationale: WO 99/34901

(43) Date de publication internationale: 15 juillet 1999 (15.07.99)

(21) Numéro de la demande internationale: PCT/FR98/02747

(22) Date de dépôt international: 16 décembre 1998 (16.12.98)

(30) Données relatives à la priorité:
97/16803 31 décembre 1997 (31.12.97) FR

(71) Déposants (pour tous les Etats désignés sauf US):
GRANDE-PAROISSE S.A. [FR/FR]; 4/8 cours Michelet,
F-92800 Puteaux (FR). INSTITUT REGIONAL DES
MATERIAUX AVANCES (IRMA) [FR/FR]; Parc Technologique de la Soye, Boîte postale 64, F-56274 Ploemeur
Cedex (FR).

(71) Déposant (US seulement): NEVEU, Geneviève (représentante légale de l'inventeur décédé) [FR/FR]; Résidence Défense 2000, F-92800 Puteaux (FR).

(72) Inventeur: NEVEU, Bernard (décédé).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): HAMON, Christian [FR/FR]; 41, chemin de Porcé, F-44600 Saint-Nazaire (FR). MALEFANT, Karine [FR/FR]; 1, impasse de Kerzec Izel, F-56530 Queven (FR).

(74) Mandataire: HAICOUR, Philippe; Elf Atochem S.A.,
Département Propriété Industrielle, Cours Michelet - La
Défense 10, F-92091 Paris La Défense Cedex (FR).

(81) Etats désignés: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

(54) Title: CATALYST BASED ON FERRIERITE/IRON FOR CATALYTIC REDUCTION OF NITROUS OXIDE CONTENT IN GASES, METHOD FOR OBTAINING SAME AND APPLICATION

(54) Titre: CATALYSEUR A BASE DE FERRIERITE/FER POUR LA REDUCTION CATALYTIQUE DE LA TENEUR DE GAZ EN PROTOXYDE D'AZOTE, SON PROCEDE D'OBTENTION ET SON APPLICATION

(57) Abstract

The invention concerns a catalyst for reducing nitrous oxide content in gases operating at relatively low temperatures, whereof the activity is hardly sensitive to the presence of water vapour and highly resistant to hydrothermal degradation prepared from iron-exchanged ferrierite. The invention is useful for treating gases with low N₂O content, such as gases coming from workshops making nitric acid as well as gases with high N₂O content emitted during oxidation of organic compounds by nitric acid.

(57) Abrégé

Un catalyseur pour la réduction de la teneur de gaz en protoxyde d'azote fonctionnant à températures relativement basses, dont l'activité est peu sensible à la présence de vapeur d'eau et résistant bien à la dégradation hydrothermique est élaboré à partir de ferriérite échangée au fer. Application au traitement des gaz à faible teneur en N₂O, tels les gaz issus des ateliers de fabrication d'acide nitrique comme des gaz à forte teneur en N₂O qui sont émis au cours des oxydations de composés organiques par l'acide nitrique.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne .	LS	Lesotho	SI	Slovénie
AM	Arm é nie	FI	Finlande	LT	Lituanie	SK	Slovaquie
ΑT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australic	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaīdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE ·	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israči	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	t T	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavic
CH .	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun '		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	ŁK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

WO 99/34901 PCT/FR98/02747

CATALYSEUR A BASE DE FERRIERITE/FER POUR LA REDUCTION CATALYTIQUE DE LA TENEUR DE GAZ EN PROTOXYDE D'AZOTE, SON PROCEDE D'OBTENTION ET SON APPLICATION

DOMAINE TECHNIQUE

L'invention s'inscrit dans le cadre général de la réduction de la teneur en gaz à effet de serre dans les effluents gazeux d'origine industrielle rejetés à l'atmosphère. Il est question ici de l'abattement du protoxyde d'azote N2O dans les rejets gazeux.

Pendant longtemps, on ne s'est préoccupé que du rejet des oxydes nitriques (NOx) qui se combinent facilement à l'eau pour former des acides nitreux ou nitrique, dont les manifestations les plus spectaculaires sont sans doute les pluies acides avec destruction subséquente des forêts et dégradation des monuments exposés, et les plus insidieuses, la contamination de l'air respirable et son incidence sur la santé publique. On a maintenant pris conscience de la contribution notable du protoxyde d'azote à l'amplification de l'effet de serre, qui risque de conduire à des modifications climatiques aux effets incontrôlés, et peut-être aussi de sa participation à la destruction de la couche d'ozone. Son élimination est ainsi devenue une préoccupation des pouvoirs publics et des industriels.

Si les sources les plus importantes de N2O sont les océans, les terres non cultivées, l'agriculture, combustion de la biomasse et l'utilisation des combustibles fossiles, l'industrie chimique contribue pour quelques 5 à 10 % à l'émission de ce gaz. Les ateliers d'acide nitrique, ainsi que les ateliers de synthèse organique mettant en oeuvre des procédés d'oxydation nitrique (production d'acide adipique, de glyoxal, etc.) sont à l'origine de l'essentiel des rejets de N2O de l'industrie chimique. (voir à ce sujet 35 Freek Kapteijn et al., Heterogeneous Catalytic Decomposition of Nitrous Oxide, dans Applied Catalysis B, Environmental 9, 1996, 25-64).

20

25

ART ANTERIEUR

Depuis quelques années déjà la plupart des ateliers d'acide nitrique sont équipés de réacteurs dits $D\text{\'e}NO_X$, qui fonctionnent de façon satisfaisante pour éliminer de leurs effluents les oxydes nitriques. Toutefois, le N_2O , qui est produit essentiellement lors de l'oxydation de l'ammoniac sur les toiles de platine des brûleurs, reste sensiblement constant entre la sortie des brûleurs et l'entrée du réacteur $D\text{\'e}NO_X$ et n'est pas abattu par passage des gaz à travers ce réacteur (elle est même parfois légèrement augmentée).

On a proposé pour réduire la teneur en N₂O des effluents gazeux issus des procédés d'oxydation nitrique de la chimie organique, de détruire catalytiquement le protoxyde d'azote contenu dans ces derniers sur un catalyseur 15 mordénite / fer (EP 0625369). Mais compte tenu de la forte chute de son activité en présence de vapeur d'eau dans la plage de température 350-450°C, ce catalyseur n'est pas bien adapté au fonctionnement sur des gaz dilués et vieillit mal du fait d'une médiocre résistance hydrothermique.

Aussi s'avère-t-il pas économiquement adapté au traitement des gaz de queue des ateliers d'acide nitrique, qui répondent, en règle générale, en amont de la turbine de détente, aux caractéristiques suivantes,

- température : < 400°C,
- teneur en N2O : entre 500 et 1500 ppmv,
 - teneur en NOx : entre 50 et 2000 ppmv,
 - teneur en H2O: entre 0,5 et 5 %.

L'optimisation économique de l'abattement de N₂O tant dans les gaz émis par les ateliers organiques que les ateliers d'acide nitrique passe par le développement d'un catalyseur conservant une bonne activité de destruction de N₂O à température inférieure à 400°C en présence de NOx et de vapeur d'eau, et qui ait une stabilité hydrothermique suffisante à 600°C pour résister aux pointes de température auxquelles il peut être soumis dans certaines circonstances de son utilisation.

EXPOSE DE L'INVENTION

25

On vient de trouver une solution répondant à un tel cahier des charges avec un catalyseur constitué d'agglomérés formés de 80 à 90 % d'une ferriérite / fer titrant de 1 à 6 % 5 de fer, et de préférence de 2 à 4 %, et de 20 à 10 % en poids d'un liant d'agglomération (pourcentages pondéraux rapportés au poids du granulé).

La ferriérite / fer est l'élément actif du catalyseur selon l'invention. La structure de son réseau cristallin est 10 celui de la ferriérite [RN = 12173-30-7], c'est-à-dire une zéolite parcourue par deux systèmes de canaux. L'un parallèle à l'axe c de la structure, formé de canaux de section elliptique (0,43 nm X 0,55 nm) d'environ 0,18 nm² (18A \circ 2), l'autre parallèle l'axe b et l'axe c de la structure, avec 15 des canaux formés d'anneaux à 8 maillons, d'axes 0,34 X 0,48 nm. Il n'y a pas de canal parallèle à l'axe a. Sur ces canaux se situent des cavités approximativement sphériques, d'un diamètre approximatif de 0,7 nm, qui ne sont accessibles qu'au travers des anneaux à 8 maillons, soit via des pores de 20 0,43 nm°X 0,55 nm ou 0,34 nm X 0,48 nm). La structure ferriéritique est parfaitement caractérisée par son diagramme de diffraction X. (pour les distances inter-réticulaires, consulter Breck "The Synthetic Zeolites", édition 1974, table 4,45, p. 358).

On obtient cette ferriérite / fer en soumettant une ferriérite commerciale, de type sodique/potassique, à échange avec une solution aqueuse d'un sel de fer de façon à obtenir la teneur souhaitée en fer. Les processus opératoires correspondants sont bien connus de l'homme du métier. On peut 30 en particulier procéder par un ou plusieurs échanges par immersion dans une solution de sel de fer, ou par percolation sur colonne, soit de la poudre de ferriérite elle-même soit sur granulés.

Cet échange peut être effectué soit à l'aide d'une 35 solution de sel ferrique, soit à l'aide d'une solution de sel ferreux. On utilise avec avantage le sulfate ferreux qui est

WO 99/34901 PCT/FR98/02747

un produit à très bas prix et qui n'introduit pas dèchlorures, sources de corrosion, dans la préparation.

On préfère la forme échangée au fer à partir de la forme ammonium de la ferriérite, celle qu'on obtient en soumettant une ferriérite commerciale dont la neutralité électrique du réseau cristallographique est réalisée pour l'essentiel par des ions alcalins, sodium et potassium à un échange par une solution d'un sel d'ammonium. La ferriérite /fer obtenue à partir de la forme ammonium de la ferriérite présente comme caractéristique d'avoir une très faible teneur en ions alcalins en position d'échange. C'est la faible teneur en ions potassium (inférieure à 0,5 % en poids) qui signale analytiquement cette forme préférée du catalyseur de l'invention. Les ferriérites / fer selon l'invention ne contiennent que 0,5 à 0,1% de potassium.

Les catalyseurs selon l'invention sont mis sous forme d'agglomérés, une présentation qui est nécessaire pour des raisons de minimisation de la perte de charge à leur traversée du lit de catalyseur. L'agglomération des zéolites 20 est bien connue de l'homme du métier. On procède par empâtage de la poudre de zéolite avec un liant généralement fluidifié par l'eau, souvent constitué d'une argile à suffisamment plastique pour pourvoir former l'aggloméré en bille à l'assiette, en pastilles par moulage ou en filés à la 25 presse à filer, et durcissable par cuisson pour donner une cohésion et une dureté suffisante à l'aggloméré. Les argiles utilisées sont des kaolinites, des attapulgites, bentonites, de l'halloysite ou des mélanges de ces argiles.

On peut aussi utiliser des liants siliceux ou 30 alumineux. En particulier l'agglomération avec des alumines peptisées donne des granulés très résistants, ce mode d'agglomération étant ici possible parce que la ferriérite n'est pas dégradée par l'acidité du liant.

Après agglomération, les granulés sont activés thermiquement. On entend par là qu'on les soumet à une cuisson réalisée sous air, à une température d'environ 400°C, dont le rôle est à la fois de durcir le liant, de le

déshydrater sans le dégrader hydrothermiquement, et dans le cas des ferriérites échangées à partir d'une forme ammonium, d'éliminer une grande partie des ions ammonium et de mettre la zéolite sous forme H.

On peut également commencer par agglomérer la ferriérite sodique/potassique, puis la durcir par calcination, et procéder aux échanges sur l'aggloméré. Après séchage, une seconde calcination permet de mettre la ferriérite / fer sous forme H si la ferriérite mise en oeuvre a été prise sous forme ammonium.

Ce catalyseur est le moyen catalytique perfectionné d'un procédé de destruction du N_2O , contenu dans un mélange gazeux, selon la réaction globale :

$2N_2O \rightarrow 2N_2 + O_2$

Ce procédé, qui est également l'un des objets de la 15 présente invention, consiste à faire passer les gaz à épurer, dont la plage des concentrations en N_2O s'étend de 500 ppm à 50 %, en H_2O de 0,5 à 5 % et en NO de 50 à 2000 ppm, à travers un lit de catalyseur disposé dans un réacteur à flux 20 axial ou radial, maintenu à une température comprise entre 350 et 600°C. Dans le traitement d'un gaz à forte teneur en N_2 O et dont la température initiale est inférieure à 350°C, comme c'est en général le cas dans les procédés de synthèse organique par oxydation nitrique, l'amorçage de la réaction 25 pourra être facilité en préchauffant, pendant la phase de démarrage, le flux gazeux ou le catalyseur par un moyen extérieur, la température du lit catalytique s'entretenant ensuite d'elle-même du fait de l'exothermicité de réaction. Dans certaines situations, notamment dans le cas du 30 traitement de gaz à forte concentration en N_2O , échangeurs à chaleur ou des dispositifs de type «quench» pourront avantageusement être immergés au sein catalytique pour contrôler la température de ce dernier, une partie de la chaleur pouvant éventuellement être utilisée 35 pour préchauffer le gaz à traiter.

A l'inverse d'autres catalyseurs zéolitiques, la ferriérite / fer selon l'invention conserve une activité

notoire vis à vis du N₂O en présence d'eau. Cette activitéest très fortement amplifiée en présence de NO, et c'est un facteur très favorable, parce que cette synergie se développe pour des taux de NO très faibles, de l'ordre de 50 ppm et que les gaz susceptibles d'un tel traitement contiennent pratiquement toujours de telles traces de NO.

Le procédé selon l'invention trouve son application, notamment pour le traitement des gaz de queue des ateliers d'acide nitrique, pris tant avant qu'après traitement DéNOx, gaz qui peuvent avoir des compositions comprises dans les limites suivantes,

- teneur en N2O : entre 500 et 1500 ppmv,
- teneur en NOx : entre 50 et 2000 ppmv,
- teneur en H2O: entre 0,5 et 3%,
- 15 teneur en oxygène : environ 2%,

le complément étant essentiellement constitué d'azote.

Le procédé est également applicable au traitement des gaz issus d'ateliers d'oxydation organique à l'acide nitrique de la chimie organique, en particulier dans la fabrication de l'acide adipique, du glyoxal et de l'acide glyoxilique. Ce sont des gaz dont la composition approximative, avant éventuelle dilution à l'air, est la suivante

- teneur en N2O : entre 20 et 50%
- teneur en NOx : entre 50 et 5000 ppmv,
- 25 teneur en H₂O : entre 0,5 et 5 %,
 - teneur en oxygène : entre 1 et 4 %,
 - teneur en CO₂ : environ 5 %,

le complément étant essentiellement composé d'azote.

30 EXEMPLES

Dans les exemples suivants, non limitatifs, mais destinés à mieux faire comprendre l'invention, on a suivi une même procédure de test catalytique, qui comprend la préparation de l'échantillon et le test catalytique proprement dit.

a) Préparation du catalyseur

La poudre de zéolite échangée est séchée à l'étuve à 100°C, puis mélangée à un sol de silice de 40 % en poids de SiO₂, en quantité telle que la teneur en silice SiO₂ par rapport à l'ensemble sec SiO₂ + zéolite soit de 10 %. La pâte obtenue est séchée à 100°C pendant 6 heures, puis réduite en poudre au mortier. La poudre est pastillée en pastilles de 5 mm de diamètre qui sont activées au four à 400°C sous air pendant 2 heures. Après refroidissement, les pastilles sont concassées et tamisées à 0,5 - 1 mm, cette fraction constituant le catalyseur.

b) Test catalytique

Il est mené dans une unité de test à lit fixe traversé (catatest) entouré de coquilles chauffantes régulées par PID, qui porte le lit catalytique à une température inférieure d'environ 25°C à leur température de consigne. Le réacteur à un diamètre de 15 mm. Le volume de catalyseur mis en oeuvre est de 10 cm³, soit un lit de 57 mm de hauteur.

Le gaz réactionnel est préparé à partir d'air 20 comprimé, d'azote et de gaz étalon, N_2 O dans N_2 à 2 %, NO dans N_2 à 2 %. la teneur en vapeur d'eau est ajustée par saturateur, selon les lois de tension de vapeur.

Les analyses du N_2O sont effectuées par infrarouge, les analyses des NOx par chimiluminescence.

25 Les résultats sont exprimés en taux de transformation du N_2 0 en N_2 .

EXEMPLE 1: préparation de diverses compositions ferriérite/fer La ferriérite est fournie par TOSOH. Son rapport 30 Si/Al est de 8,85, et ses teneurs en Na et K, sur produit sec après calcination à 1 000°C sont respectivement de 0,92 % et 4,7 %. Compte tenu de sa perte au feu à 1 000°C de 25 %, sa formule s'établit à

 $0.75 \text{ K}, 0.25 \text{ Na}, Alo_2, 8.85 Sio_2, 11.6 H₂O$

Dans un ballon de verre de 1 litre, on met en suspension 100 g de zéolite en poudre avec 0,5 l de solution aqueuse de

WO 99/34901 PCT/FR98/02747

chlorure ferrique (FeCl₃) molaire (soit 81,1 g de FeCl₃ par litre), à savoir avec un rapport volume de liquide / poids de solide sec de 5. Le système est maintenu agité à 60°C pendant 4 heures. La zéolite échangée est récupérée par filtration sur entonnoir filtrant, lavée par percolation avec deux litres d'eau déminéralisée à température ambiante, puis séché sur plateau en étuve ventilée pendant une nuit.

Les teneurs en fer, potassium et sodium sur produit sec (1 000°C) s'établissent respectivement à 2,7 %, 2,8 % et 0,16 %. On peut faire varier ces quantités en jouant sur la température la durée des échanges et leur nombre.

Ref	T°	Temps (h)	Echanges Fe ³⁺	Fe %	Na %	K %
1.1	60	4	1	2,7	0,16	2,8
1.2	60	4	1	3,8	0,1	2,7
1.3	80	4	3	7,7	<0,05	0,16

Ces produits sont dénommés par la suite par $FERFe^{3+}$, forme Na, K.

L'échange ferrique sur ferriérite préalablement 15 échangée par des ions ammonium est réalisé comme suit.

Sur 100 g de la même zéolite que précédemment, on pratique un premier échange avec 0,5 litre d'une solution de nitrate d'ammonium à 800 g/l à une température de 80°C pendant 4 heures. Le produit échangé est récupéré, lavé, séché comme précédemment. Sa teneur en sodium est inférieure à 0,1 % et sa teneur en potassium inférieure à 0,15 %.

On procède ensuite à l'échange ferrique comme précédemment, mais par deux échanges successifs. La suite des opérations est la même que dans l'exemple 1. On obtient une ferriérite fer dont les teneurs en fer, potassium et sodium sont respectivement de 2,2 %, 0,15 % et inférieure à 0,1 %. On peut faire varier ces quantités en jouant sur la température la durée des échanges et leur nombre. On a obtenu ainsi

15

20

Ref	T°	Temps	nombre d'échanges Fe ³⁺	Fe %	Na %	K %
2.1	60	5	1	1,26		
2.2	60	4	2	2,2	<0,05	0,15
2.3	80	4	1	3,2	<0,05	0,12
2.4	80	4	2	7	<0,05	<0,05

Ces produits sont dénommés par la suite par FERFe³⁺, forme NH4.

EXEMPLE 2 : pouvoir de conversion du N_2O des ferriérites/fer³⁺ 5 dans les gaz à faible teneur en N_2O

L'essai est mené selon la procédure expérimentale exposée plus haut, sur azote enrichi de

 N_2O 1 000 ppm O_2 2 %

10 à une vitesse volumétrique horaire ou VVH de 10 000 h-1 Le gaz peut en outre contenir ou non de l'oxyde d'azote NO ou de l'eau. Les conditions particulières de l'essai sont les suivantes

1 : 375°C, NO = 0, H₂O = 0

2 : 375°C, NO = 1 000 ppm, $H_2O = 0$

3 . 375°C, NO = 1 000 ppm, H_2O = 3 %

4 : 400°C, NO = 1 000 ppm, $H_2O = 3 %$

On obtient les résultats de conversion % suivants

	Conversion	de N_2 O e	$n N_2$, dif	férentes	conditio	ns		
·			. (Conditions d'essais				
	ref.	Fe %	1	2	3	4		
Forme Na,K	1.1	2,7	10 %	50 %	30 %	42 %		
	1.2	3,8	14	50	20	45		
	1.3	7,7	35	75	34	72		
Forme H	2.1	1,26	49	88	44	72		
	2.2	2,2	46	97	48	77		
	2.3	3,2	24	79	35	66		
	2.4	7	33	84	52	85		

On observe une excellente activité de la ferriérite fer, forme H.

15

EXEMPLE 3 : pouvoir de conversion du N_2O des ferriérites/fer $^{2+}$ dans les gaz à faible teneur en N_2O

On répète les opérations précédentes, mais au lieu de chlorure ferrique on procède à l'échange avec un sel ferreux, le sulfate ferreux $FeSO_4$, $7~H_2O$. Les procédures sont conduites, également en forme Na, K et en forme NH_4 . On obtient ainsi les produits de la série $FERFe^{2+}$, forme Na, K:

Ref	T°	Temps (h)	nombre d'échanges Fe ³⁺	Fe %	Na %	K %
3.1.1	80	4	1	1,8	0,25	3,2
3.1.2	80	4	3 .	4,1	0,2	1,8

10 et les produits de la série FERFe²⁺, forme NH₄

Ref	T°	Temps (h)	nombre d'échanges Fe ³⁺	Fe %	Na %	K %
3.2.1	80	4	1	1,7	<0,05	0,15
3.2.2	80	4	3	5,46	<0,05	0,15

Les résultats du test catalytique sont les suivants, les conditions étant celles de l'exemple précédent :

		Conve	rsion de	N ₂ O en N ₂	2			
		8 .		Conditions d'essais				
	ref.	Fe %	1	2	3	4 .		
Forme Na, K	3.1.1	1,8	12 %	90 %	22 %	43 %		
Forme H	3.2.1	1,7	31	93	48	78		
	3.2.2	5,46	29	98	50	78		

On observe une excellente activité de la ferriérite fer, forme H. Il n'y a pas de différence sensible entre les séries ferrique et ferreuse.

EXEMPLE III : conversion du N_2O - comparaison de diverses zéolites / fer

On effectue maintenant une comparaison entre diverses zéolites fer, toutes échangées dans leur forme NH₄ à partir de sulfate ferreux et une ferriérite / fer²⁺, à des titres en fer voisin de 2 %. La zéolite Y est une Y de rapport Si/Al = 20, et titre après échange, 1,8 % de fer et < 0,1 % de sodium; la pentasil a un Si/Al de 13,5, et titre après échange, 1,6 % de fer et < 0,05 % de sodium; la bêta a un Si/Al de 12,5, et titre après échange, 1,9 % de fer et < 0,05 % de sodium; La mordénite a un Si/Al de 5,5, et titre après échange, 1,9 % de fer et < 0,05 % de sodium. La ferriérite est la ferriérite de référence 2.2 de l'exemple 2.

·	Conv	ersion de	e N ₂ O			
Zéolite	Fer %	Conditions d'essais				
		1	2	3.	4	
Y	1,8	28	45	22	38	
Pentasil	1,6	7	62	14	30	
Bêta	1,9	47	98 .	21	44	
Mordénite	2,4	8	91	22	42	
Ferriérite	2,2	46	97	48	77	

On constate que seule la ferriérite conserve une activité notable de conversion de N_2O en présence de vapeur d'eau.

EXEMPLE IV : activités comparatives d'une mordénite/fer et d'une ferriérite/fer dans des gaz à forte teneur en N₂O

On compare la réduction de la teneur en N_2O obtenue sur la mordénite/fer précédente à 2,4 % de fer et deux ferriérites, l'une à 1,46 % de fer, l'autre à 3,37 % de fer.

Les conditions de l'essai sont

25

15

 N_2O 5 8

02 5 %

VVH 10 000 h⁻¹

5 : 325°C, NO = 0

6 : 325°C, NO = 1 000 ppm

7 . 375°C, NO = 0

8 : 375°C, NO = 1 000 ppm

9 : 425°C, NO = 0

10.: 425°C, NO = 1 000 ppm

11 : 475°C, NO = 0

12.: 475°C, NO = 1 000 ppm

On relève les taux de décomposition ci-après

10

	Conversion de N ₂ O en N ₂								
:	~ 		Conditions d'essais						
	Fe %	5	6	7	8	9	10	11	12
Mordénite fer	2,4	0,1	0	0,8	14,3	6,8	21,6	35,2	65,8
Ferriérite fer	1,46	1,6	1,2	5,3	11,6	12,3	36,7	42,1	8,7
Ferriérite fer	3,37	0,8	3,2	1,1	13,2	5	93,4	49,3	99,9

Ces résultats affichent un niveau de conversion de N_2 0 plus élevé avec la ferriérite.

EXEMPLE V : vieillissement

On rapporte ici le résultat d'un essai de stabilité hydrothermique comparée entre une mordénite/fer de rapport Si/Al = 5,5, forme H, échangée au fer au niveau de 2,4 % en poids et une ferriérite/fer selon l'invention, une forme H, échangée au fer au niveau de 2,2 % (référence 2.2 de l'exemple 1).

Le vieillissement a été opéré par exposition des catalyseurs à un mélange air/vapeur d'eau en lit séché à 650°C pendant 3 heures. L'air est saturé en vapeur d'eau à 90°C.

Les deux catalyseurs sont testés comme précédemment en conversion de N_2O , les conditions opératoires étant

N₂O 1 000 ppm

NO 1 000 ppm

02 10 %

Température : 375°C

/VH 10 000 h⁻¹

13. : $H_2O = 0$

14. : $H_2O = 3 %$

10 On obtient

5

	Conversion of	de N ₂ O en N ₂	
		Condition	ns d'essais
		13	14
Mordénite	Avant vieillissement	91	22
Mordénite	Après vieillissement	32	10
Ferriérite	Avant vieillissement	88	40
Ferriérite	Après vieillissement	83	39

résultats qui confirment la remarquable stabilité de la ferriérite / fer à la vapeur d'eau.

15 EXEMPLE VI : granulés à liant alumineux

Dans un premier temps, on forme des extrudés à 20 % de liant alumineux comme suit. On utilise pour la fabrication du catalyseur aggloméré une alumine de Type NG fournie par la société CONDEA. Dans un premier temps, on procède à sa peptisation, en introduisant dans un malaxeur en continu l'alumine à raison de 15 kg/h et de l'acide nitrique à 5 % en poids avec un débit de 0,16 l/min. On mélange 5 kg du gel d'alumine peptisée ainsi obtenue avec 10 kg de ferriérite en poudre, sous forme Na,K telle que fournie par TOSOH (voir exemple 1) dans un mélangeur de poudre classique. Le mélange

résultant alimente un malaxeur extrudeur en même temps qué 3 litres d'eau. L'extrudeur est un appareil de type REDCO de la société AOUSTIN, d'un diamètre de 5 cm, équipé en sortie d'une filière formant des extrudés d'un diamètre de 3,8 mm 5 qu'on sectionne en éléments de 5 à 10 mm de longueur. Les extrudés sont ensuite passés au four à moufle sous balayage d'air, en épaisseur d'environ 15 mm, à 100°C pendant 4 heures, puis à 450°C pendant 3 heures pour leur conférer une résistance mécanique suffisante.

On introduit maintenant 200g de ces extrudés de ferriérite dans un panier en inox pour les tremper dans un litre d'une solution de nitrate d'ammonium à 800 g/l à la température de 80°C pendant 3 heures, puis les laver par trempages successifs (3) dans 1 litre d'eau déminéralisée, 15 puis les sécher à 100°C.

Leur teneur en sodium et potassium sur produit sec $(1000 \,^{\circ}\text{C})$ est de 0,1 % (Na) et 0,15 % (K).

On procède alors à l'échange au fer selon le même principe avec 1 litre de solution de sulfate de fer (Fe2+) à 20 280 g/l en FeSO₄,7H₂O à 80°C pendant 3 heures, suivi d'un lavage par trempages successifs dans 1 litre déminéralisée, et d'un séchage. La teneur en fer sur produit sec (1000°C) est de 1,6 %.

Le catalyseur ainsi préparé est soumis au test 25 catalytique décrit plus haut dans un réacteur de 25 mm de diamètre. Le volume de catalyseur est de 25 cm³, soit une hauteur de 5 cm environ. Le test catalytique est appliqué dans les conditions 1 à 4 de l'exemple 2.

On obtient :

30

10

Conver	sion de N ₂	O en N ₂			
Conditions d'essais					
Catalyseur	1	2	3	4	
Granulés alumineux	30 %	89 %	43 %	72 %	

qui sont résultats très des comparables à ceux l'exemple 2.1

25

35

REVENDICATIONS

- 1 Composition zéolitique dite ferriérite / fer, constituée d'une ferriérite titrant de 1 à 6 % de fer, et de
 5 préférence de 2 à 4 % (pourcentages pondéraux).
 - 2. Ferriérite / fer selon la revendication 1, caractérisée en ce qu'elle contient au titre d'ions en position d'échange, de 0,5 à 0,1 % de potassium.
- 3 . Catalyseur de conversion de N_{2} O constitué 10 d'agglomérés de
 - 80 à 90 % de ferriérite selon l'une ou l'autre des revendications 1 ou 2 et
 - 20 à 10 % d'un liant d'agglomération argileux, siliceux ou alumineux.
- 4. Procédé pour la réduction de la teneur en protoxyde d'azote dans des gaz dont la teneur en N_2O s'étend de 500 ppm à 50 %, en H_2O de 0,5 à 5 % et en NO de 50 à 2000 ppm, qui consiste à faire passer lesdits gaz à travers un lit de catalyseur porté à 350/600°C, le catalyseur étant un aggloméré tel que décrit dans la revendication 3.
 - 5. Application du procédé selon la revendication 4 au traitement des gaz générés par les installations de production d'acide nitrique gaz qui contiennent

N₂O : entre 500 et 1500 ppmv,

NOx: entre 50 et 2000 ppmv,

 H_2O : entre 0,5 et 5 %,

Oxygène : environ 2%,

le complément étant essentiellement constitué d'azote.

6. - Application du procédé selon la revendication 4 30 au traitement des gaz générés par les installations de production de corps organiques par oxydation nitrique, gaz qui, avant éventuelle dilution à l'air, contiennent

N₂O: entre 20 et 50%

NOx : entre 50 et 5000 ppmv,

 H_2O : entre 0,5 et 5 %,

Oxygène : entre 1 et 4 %,

 CO_2 : environ 5 %,

le complément étant essentiellement composé d'azote.

7. - Procédé de préparation d'un catalyseur de conversion de N_2O tel que décrit dans la revendication 3, comprenant les étapes suivantes :

on agglomère une poudre de ferriérite, avec un liant pris dans le groupe des liants argileux, siliceux ou alumineux,

on forme la pâte correspondante en extrudés, filés, à raison de 80 à 90% de ferriérite et 20 à 10 % de liant, comptés en poids % de matière sèche,

on calcine les agglomérés à une température d'environ 400°C,

on échange au moins une fois avec une solution aqueuse de sel de fer de façon à ce que la ferriérite échangée titre de 1 à 6 % de fer, et de préférence de 2 à 4 % (pourcentages pondéraux),

on sèche l'aggloméré échangé.

- 8. Procédé de préparation d'un catalyseur de conversion de N_2O tel que décrit dans la revendication 3, comprenant les étapes suivantes :
- on échange une poudre de ferriérite, au moins une fois avec une solution aqueuse de sel de fer de façon à ce que la ferriérite échangée titre de 1 à 6 % de fer, et de préférence de 2 à 4 % (pourcentages pondéraux),

on agglomère la poudre de ferriérite échangée avec 25 un liant pris dans le groupe des liants argileux, siliceux ou alumineux,

on forme la pâte correspondante en extrudés, filés, à raison de 80 à 90% de ferriérite et 20 à 10 % de liant, comptés en poids % de matière sèche,

- on sèche l'aggloméré échangé et on le calcine éventuellement à une température d'environ 400°C.
- 9. Procédé selon les revendications 7 ou 8, caractérisé en ce que le liant d'agglomération est une argile prise seule ou en mélange dans le groupe constitué par la kaolinite, l'attapulgite, la bentonite et l'halloysite.

- 10. Procédé selon les revendications 7 ou 8, caractérisé en ce que le liant d'agglomération est une alumine peptisée.
- 11. Procédé selon les revendications 7 à 10,
 5 caractérisé en ce que le sel de fer utilisé est un sel ferreux.
 - 12. Procédé selon les revendications 7 à 10, caractérisé en ce que le sel de fer utilisé est un sel ferrique.
- 13. Procédé selon l'une ou l'autre des revendications 8 à 12, caractérisé en ce qu'avant d'être agglomérée, la poudre de ferriérite est préalablement soumise à un ou plusieurs échanges avec une solution aqueuse d'un sel d'ammonium.
- 14. Procédé selon l'une ou l'autre des revendications 7 ou 9 à 12, caractérisé en ce qu'avant d'être échangés avec une solution de sel de fer, les agglomérés sont soumis à un ou plusieurs échanges avec une solution aqueuse d'un sel d'ammonium.

INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/FR 98/02747

			01/1K 30/(14/4/
A. CLASS IPC 6	B01D53/86 C01B39/44			
According	to International Patent Classification (IPC) or to both national clas	sification and IPC		
1	SEARCHED			
Minimum d IPC 6	ocumentation searched (classification system followed by classif $B010 C01B$	ication symbols)		
Documenta	tion searched other than minimum documentation to the extent the	nat such documents are included	in the fields search	ched
Electronic o	data base consulted during the international search (name of data	base and, where practical ser	arch terms used)	<u> </u>
· .				
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Category *	Citation of document, with Indication, where appropriate, of the	relevant passages		Relevant to claim No.
Α	EP 0 012 473 A (SHELL INT RESEA 25 June 1980 see claim 1	RCH)		1
A	EP 0 625 369 A (GRANDE PAROISSE 23 November 1994 cited in the application see claim 1	SA)		4
Α	DE 44 13 404 A (DEGUSSA) 19 Oct see claims 1-3	ober 1995		4
A	WO 94 27709 A (ENGELHARD CORP) 8 December 1994 see claims 1,8			4
	· · ·	-/		
1				
				-
<u> </u>	er documents are listed in the continuation of box C.	Patent family mem	bers are listed in ar	nnex
	egories of cited documents:	"T" later document published or priority date and not	after the Internati	onal filing date
conside	at defining the general state of the lart which is not red to be of particular relevance ocument but published on or after the International	cited to understand the invention	principle or theory	underlying the
filing da "L" documen	te t which may throw doubts on priority claim(s) or	"X" document of particular re cannot be considered n involve an inventive ste	ovel or cannot be c	onsidered to
citation	cited to establish the publication date of another or other special reason (as specified) at referring to an oral disclosure, use, exhibition or	"Y" document of particular re cannot be considered to	elevance; the claims	ed invention ve step when the
other m P" documen	eans t published prior to the international filing date but n the priority date claimed	document is combined a ments, such combination in the art.	n being obvious to	a person skilled
	aual completion of the international search	"&" document member of the Date of mailing of the int	 	
2	March 1999	12/03/1999		
Name and ma	illing address of the ISA	Authorized officer		
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Clement, J	-P	

1

INTERNATIONAL SEARCH REPORT

Int. Ional Application No
PCT/FR 98/02747

	ation) OOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI Section Ch, Week 9735 Derwent Publications Ltd., London, GB; Class E36, AN 97-383857 XP002077714 & RU 2 071 817 C (AS SIBE CATALYSIS INST)	1
	, 20 January 1997 see abstract	
		·
·	·	
,		
j		·
İ		
ĺ	*	
ļ		
	*	
	*	
*		
:		
0)0		
		•
- 1		

INTERNATIONAL SEARCH REPORT

information on patent family members

int ional Application No PCT/FR 98/02747

				TCI/FR 90/UZ/4/		
Patent document cited in search report	rt	Publication date		Patent family member(s)	Publication date	
EP 0012473	Α	25-06-1980	NL	7812162 A	17-06-1980	
			AU	527137 B	17-02-1983	
			AU	5372979 A	19-06-1980	
			CA	1141740 A	22-02-1983	
			JP	1503889 C	28-06-1989	
•		•	JP	55085415 A	27-06-1980	
			JP	63053126 B	21-10-1988	
			US	4251499 A	17-02-1981	
EP 0625369	Α	23-11-1994	FR	2705036 A	18-11-1994	
		·	AT	149872 T	15-03-1997	
			-CA	2123265 A	11-11-1994	
			DE	69401983 D	17-04-1997	
·			DE	69401983 T	14-08-1997	
		,	JP	2610009 B	14-05-1997	
			JP	7068131 A	14-03-1995	
			US	5582810 A	10-12-1996	
·			ZA 	9403214 A	18-01-1995	
DE 4413404	Α	19-10-1995	NONE			
WO 9427709	A	08-12-1994	NONE			

RAPPORT DE RECHERCHE INTERNATIONALE

Di de Internationale No PCT/FR 98/02747

		f	101/11 30/02/4/
A. CLASS CIB 6	B01D53/86 C01B39/44		
	assification internationale des brevets (CIB) ou à la fois selon la classi	ification nationale et la CIE	3
	INES SUR LESQUELS LA RECHERCHE A PORTE		
CIB 6	ation minimale consultée (système de classification suivi des symboles B010 C01B		
	ation consultée autre que la documentation minimale dans le mesure d		
Base de do	onnées électronique consultée au cours de la recherche internationale	(nom de la base de donn	ées, et si réalisable, termes de recherche utilisés)
	ENTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'Indication	n des passages pertinents	no, des revendications visées
Α	EP 0 012 473 A (SHELL INT RESEARC 25 juin 1980 voir revendication 1	H)	1
Α	EP 0 625 369 A (GRANDE PAROISSE S 23 novembre 1994 cité dans la demande voir revendication 1	A)	4
A	DE 44 13 404 A (DEGUSSA) 19 octob voir revendications 1-3	re 1995	4
Α .	WO 94 27709 A (ENGELHARD CORP) 8 décembre 1994 voir revendications 1,8	·	4
·	 *	/	
χ Voir t	la suite du cadre C pour la fin de la liste des documents	X Les documents d	e familles de brevets sont indiqués en annexe
	spéciales de documents cités: " nt définissant l'état général de la technique, non	T° document ultérieur put date de priorité et n'a	olié après la date de dépôt international ou la opartenenant pas à l'état de la
"E" docume	èré comme particulièrement pertinent nt antérieur, mals publié à la date de dénôt international	ou la théorie constitue	nais cité pour comprendre le principe unt la base de l'invention nent pertinent; l'inven tion revendiquée ne peut
"L" documer priorité autre ci "O" documer	nt pouvant jeter un doute sur une revendication de ou cité pour déterminer la date de publication d'une fatérion ou pour une raison spéciale (telle qu'indiquée) nt se référant à une divulgation orale, à un usage, à	inventive par rapport : Y" document particulièren ne peut être considére	ne nouvelle ou comme impliquant une activité au document considéré isolément nent pertinent, l'inven tion revendiquée de comme impliquant une activité inventive set associé à un ou plusieurs autres
une exp	position ou tous autres moyens nt publié avant la date de dépôt international, mais	pour une personne du	nature, cette combinaison étant évidente
Date à laquei	ile la recherche internationale a été effectivement achevée		résent rapport de recherche internationale
	mars 1999	12/03/199	9
Nom et adres:	se postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 Nt 2280 HV Rijswijk	Fonctionnaire autorisé	Y .
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Clement,	J-P

RAPPORT DE RECHERCHE INTERNATIONALE

De de Internationale No
PCT/FR 98/02747

C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS	PCT/FR 98/02747		
Catégorie	Identification des documents cités, avec,le cas échéant, l'indicationdes passages per	inents	no. des revendications visées	
A	DATABASE WPI Section Ch, Week 9735 Derwent Publications Ltd., London, GB; Class E36, AN 97-383857 XP002077714 & RU 2 071 817 C (AS SIBE CATALYSIS INST) , 20 janyier 1997		1	
	voir abrégé			
			·	
ļ	· · · · · · · · · · · · · · · · · · ·	·		
		·		
			*	
	*			
			-	
	•			

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs _ux membres de familles de brevets

De de Internationale No PCT/FR 98/02747

Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP 0012473	А	25-06-1980	NL 7812162 A AU 527137 B AU 5372979 A CA 1141740 A JP 1503889 C JP 55085415 A JP 63053126 B US 4251499 A	17-06-1980 17-02-1983 19-06-1980 22-02-1983 28-06-1989 27-06-1980 21-10-1988 17-02-1981
EP 0625369	Α	23-11-1994	FR 2705036 A AT 149872 T CA 2123265 A DE 69401983 D DE 69401983 T JP 2610009 B JP 7068131 A US 5582810 A ZA 9403214 A	18-11-1994 15-03-1997 11-11-1994 17-04-1997 14-08-1997 14-05-1997 14-03-1995 10-12-1996 18-01-1995
DE 4413404	A	19-10-1995	AUCUN	
WO 9427709	A	08-12-1994	AUCUN	