Visualización y Análisis de Datos - Diabetes Dataset

Nombre: César Pecero Lara Matrícula: A00842711 Variables analizadas: SkinThickness, Insulin, BMI

En este análisis se estudiarán tres variables del conjunto de datos de diabetes (Pima Indians Diabetes Database).

Se realizarán representaciones gráficas (histogramas, diagramas de cajas y bigotes, y mapas de calor) para identificar su comportamiento, detectar posibles datos atípicos y entender la relación entre ellas.

```
In [1]: import os, pathlib

# 1) Revisa dónde estás
print("PWD antes:", os.getcwd())

# 2) Cambia el directorio de trabajo a donde está el CSV
os.chdir("/home/cesar/AnaliticaDatos/diabetes_eda")
print("PWD después:", os.getcwd())

# 3) Comprueba que el archivo exista ahí
print("¿Existe diabetes.csv?", pathlib.Path("diabetes.csv").exists())
```

PWD antes: /home/cesar/AnaliticaDatos/diabetes_eda PWD después: /home/cesar/AnaliticaDatos/diabetes_eda ¿Existe diabetes.csv? True

```
In [1]: import pandas as pd
    df = pd.read_csv("diabetes.csv")
    df.head()
```

Out[1]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
	0	6	148	72	35	0	33.6	(
	1	1	85	66	29	0	26.6	C
	2	8	183	64	0	0	23.3	C
	3	1	89	66	23	94	28.1	C
	4	0	137	40	35	168	43.1	2
	4							•

In [2]: df.shape, df.columns.tolist()

```
Out[2]: ((768, 9),
         ['Pregnancies',
          'Glucose',
          'BloodPressure',
          'SkinThickness',
          'Insulin',
          'BMI',
          'DiabetesPedigreeFunction',
          'Age',
          'Outcome'])
In [3]: df.info()
        df.isna().sum()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 768 entries, 0 to 767
       Data columns (total 9 columns):
       # Column
                                     Non-Null Count Dtype
       --- -----
                                     _____
        0
           Pregnancies
                                     768 non-null
                                                     int64
           Glucose
                                     768 non-null
                                                     int64
        1
           BloodPressure
                                     768 non-null
                                                     int64
           SkinThickness
                                     768 non-null
                                                     int64
           Insulin
                                     768 non-null
                                                     int64
        5
                                     768 non-null
           BMI
                                                     float64
           DiabetesPedigreeFunction 768 non-null
                                                     float64
        7
                                     768 non-null
                                                     int64
           Age
        8
           Outcome
                                     768 non-null
                                                     int64
       dtypes: float64(2), int64(7)
       memory usage: 54.1 KB
Out[3]: Pregnancies
                                    0
        Glucose
        BloodPressure
        SkinThickness
                                    0
        Insulin
                                    0
        BMT
                                    0
        DiabetesPedigreeFunction
                                    0
        Age
                                    0
        Outcome
                                    0
        dtype: int64
In [4]: import numpy as np
        cols_zero_is_na = ['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
        df[cols_zero_is_na] = df[cols_zero_is_na].replace(0, np.nan)
        df[cols_zero_is_na].isna().sum()
Out[4]: Glucose
                           5
        BloodPressure
                          35
        SkinThickness
                         227
        Insulin
                         374
        BMI
                          11
        dtype: int64
In [5]: vars_sel = ['Glucose', 'BMI', 'Age'] # puedes cambiar si prefieres otras
        df[vars_sel].agg(['count','min','max','mean','median','std']).T
```

Out[5]:		count	min	max	mean	median	std
	Glucose	763.0	44.0	199.0	121.686763	117.0	30.535641
	ВМІ	757.0	18.2	67.1	32.457464	32.3	6.924988
	Age	768.0	21.0	81.0	33.240885	29.0	11.760232

```
import matplotlib.pyplot as plt
import seaborn as sns

for col in ['Glucose','BMI','Age']:
    df[col].dropna().hist(figsize=(5,3))
    plt.title(f'Histograma: {col}')
    plt.xlabel(col); plt.ylabel('Frecuencia')
    plt.show()

sns.boxplot(x=df[col].dropna())
    plt.title(f'Boxplot: {col}')
    plt.show()
```


Boxplot: Glucose

Boxplot: BMI

Boxplot: Age


```
df['Outcome'].value_counts(), (df['Outcome'].value_counts(normalize=True)*100).roun
        (Outcome
Out[7]:
               500
          1
               268
          Name: count, dtype: int64,
          Outcome
               65.1%
               34.9%
          1
          Name: proportion, dtype: object)
        df.groupby('Outcome')[['Glucose','BMI','Age']].mean().round(2)
Out[8]:
                  Glucose
                            BMI
                                  Age
        Outcome
               0
                    110.64 30.86 31.19
                    142.32 35.41 37.07
In [9]:
        pd.crosstab(df['Outcome'], df['BMI']>=30, normalize='index').mul(100).round(1)\
```

.rename(columns={False:'<30', True:'≥30'})</pre>

```
Out[9]:
              BMI <30 ≥30
          Outcome
                   49.4
                         50.6
                 1 18.3 81.7
         pd.crosstab(df['Outcome'], df['Glucose']>=140, normalize='index').mul(100).round(1)
In [10]:
           .rename(columns={False:'<140', True:'≥140'})</pre>
Out[10]:
           Glucose <140 ≥140
          Outcome
                    87.6
                           12.4
                    49.6
                           50.4
```

Tipos de variables

- Outcome: categórica binaria (0=no diabetes, 1=diabetes).
- Glucose, BMI, Age: cuantitativas continuas (escala de razón).

Conclusiones

- Glucose: media \approx ___, mediana \approx ___, $\sigma \approx$ ___; posible sesgo a la derecha.
- BMI: media ≈ ___; % con obesidad (≥30) ≈ ___% (Outcome=1: ___%, Outcome=0: ___%).
- Age: media ≈ , *rango [min-max] = [*].
- Outcome: positivos ≈ ___% del total.

```
Glucose \rightarrow media 121.7, mediana 117.0, \sigma 30.5 BMI \rightarrow media 32.5 Obesidad total (BMI\geq30) \rightarrow 61.5% Obesidad por Outcome \rightarrow 0: 50.6% | 1: 81.7% Age \rightarrow media 33.2, rango [21–81] Outcome positivos \rightarrow 34.9%
```

Tipos de variables

- **Outcome:** categórica binaria (0 = no diabetes, 1 = diabetes).
- Glucose, BMI, Age: cuantitativas continuas (escala de razón).

Conclusiones (resumen)

- **Glucose:** media ≈ **121.7**, mediana ≈ **117.0**, σ ≈ **30.5** → distribución con cola derecha (valores altos frecuentes).
- **BMI:** media ≈ **32.5**; **obesidad** (≥**30**) ≈ **61.5**% del total (Outcome=0: **50.6**% | Outcome=1: **81.7**%).
- Age: media ≈ 33.2 años, rango [min-max] = [21-81].
- Outcome: positivos ≈ 34.9% del total.

Interpretación: En promedio, las personas con Outcome=1 presentan mayor prevalencia de obesidad y glucosa más alta, lo que sugiere asociación entre adiposidad/glucosa y presencia de diabetes en este conjunto de datos.

```
In [2]: # Importaciones y estilo
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="whitegrid", context="notebook")

# Carga y preparación
df = pd.read_csv("diabetes.csv")

vars_sel = ["SkinThickness", "Insulin", "BMI"] # 030 con el nombre exacto de las target = "Outcome"

# En este dataset, 0 significa "desconocido" para estas columnas: conviértelo a NaN df[vars_sel] = df[vars_sel].replace(0, np.nan)

df[vars_sel + [target]].head()
```

Out[2]:		SkinThickness	Insulin	ВМІ	Outcome
	0	35.0	NaN	33.6	1
	1	29.0	NaN	26.6	0
	2	NaN	NaN	23.3	1
	3	23.0	94.0	28.1	0
	4	35.0	168.0	43.1	1

```
In [7]: import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt

# Cargar dataset
   df = pd.read_csv("diabetes.csv")

# Seleccionar variables para el análisis
   vars_analisis = ["SkinThickness", "Insulin", "BMI"]
   df_subset = df[vars_analisis]

df_subset.head()
```

Out[7]: SkinThickness Insulin BMI 0 35 0 33.6 1 29 0 26.6 2 0 0 23.3 3 23 94 28.1 4 35 168 43.1

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Cargar dataset
df = pd.read_csv("diabetes.csv")

# Seleccionar variables para et análisis
vars_analisis = ["SkinThickness", "Insulin", "BMI"]
df_subset = df[vars_analisis]

df_subset.head()
```

Out[8]:		SkinThickness	Insulin	ВМІ
	0	35	0	33.6
	1	29	0	26.6
	2	0	0	23.3
	3	23	94	28.1
	4	35	168	43.1

```
In [3]: # Estadísticos básicos y % de faltantes
auditoria = pd.DataFrame({
        "faltantes": df[vars_sel].isna().sum(),
        "faltantes_%": (df[vars_sel].isna().mean()*100).round(1),
        "min": df[vars_sel].min(),
        "q1": df[vars_sel].quantile(0.25),
        "media":df[vars_sel].mean().round(2),
        "mediana": df[vars_sel].median().round(2),
        "q3": df[vars_sel].quantile(0.75),
        "max": df[vars_sel].max(),
        "std": df[vars_sel].std().round(2),
})
auditoria
```

Out[3]:		faltantes	faltantes_%	min	q1	media	mediana	q3	max	std
	SkinThickness	227	29.6	7.0	22.00	29.15	29.0	36.0	99.0	10.48
	Insulin	374	48.7	14.0	76.25	155.55	125.0	190.0	846.0	118.78
	ВМІ	11	1.4	18.2	27.50	32.46	32.3	36.6	67.1	6.92

Descripción de las variables seleccionadas

• SkinThickness:

Cuantitativa continua. Representa el grosor del pliegue cutáneo (en milímetros).

Se utiliza como un indicador de grasa corporal subcutánea.

Valores cercanos a 0 suelen representar datos faltantes no registrados.

• Insulin:

Cuantitativa continua. Nivel de insulina sérica (mu U/ml).

Valores 0 indican falta de medición. Valores normales suelen estar entre 15 y 276.

• BMI (Body Mass Index):

Cuantitativa continua. Índice de masa corporal (peso en kg dividido entre el cuadrado de la altura en metros).

Es una medida del nivel de sobrepeso u obesidad del paciente.

```
In [11]: # Resumen estadístico y valores nulos
    df_subset.describe()
    df_subset.isnull().sum()

Out[11]: SkinThickness    0
    Insulin          0
    BMI          0
    dtype: int64
```

No existen valores nulos explícitos en el dataset, pero se observan muchos valores 0 que en realidad representan *datos faltantes*.

Esto ocurre principalmente en las variables SkinThickness e Insulin.

- En SkinThickness, el valor mínimo es 0, lo cual no es físicamente posible.
- En Insulin, hay un mínimo de 0 y un máximo de más de 800, evidenciando una gran dispersión.
- BMI no tiene ceros, pero muestra una amplia variabilidad (rango de 0 a 67.1).

```
In [4]:
    def pct_outliers_iqr(s):
        s = s.dropna()
        q1, q3 = s.quantile([0.25, 0.75])
        iqr = q3 - q1
        low, high = q1 - 1.5*iqr, q3 + 1.5*iqr
        return ( (s < low) | (s > high) ).mean()*100

outliers_pct = pd.Series(
        {c: round(pct_outliers_iqr(df[c]), 1) for c in vars_sel},
        name="% atípicos (IQR)"
    ).to_frame()
    outliers_pct
```

Out[4]:

% atípicos (IQR)

SkinThickness	0.6
Insulin	6.1
ВМІ	1.1

En los boxplots se observan múltiples valores atípicos:

• Insulin muestra una gran cantidad de outliers, con valores extremos mayores a 400.

- SkinThickness tiene valores 0 y algunos atípicos superiores a 60 mm.
- BMI presenta valores atípicos por encima de 50, aunque su distribución es más consistente. Estos valores extremos pueden afectar el cálculo de promedios y deben considerarse en el preprocesamiento.

```
In [27]:
         # Histogramas
         df_subset.hist(figsize=(10,4), bins=15, color="#7fb3d5", edgecolor="black")
         plt.suptitle("Distribución de las variables seleccionadas", fontsize=14)
         plt.show()
```


Interpretación (Markdown): Los histogramas muestran que:

- SkinThickness y Insulin tienen una fuerte concentración de valores en 0, lo que confirma la presencia de datos faltantes codificados como cero.
- BMI tiene una distribución más normal, centrada alrededor de 30, indicando que la mayoría de los pacientes presentan sobrepeso u obesidad.

```
#Boxplots (detección de atípicos)
In [29]:
         plt.figure(figsize=(8,5))
         sns.boxplot(data=df_subset, palette="Set3")
         plt.title("Boxplots - SkinThickness, Insulin y BMI")
         plt.show()
```


En los boxplots se observan múltiples valores atípicos:

• Insulin muestra una gran cantidad de outliers, con valores extremos mayores a 400.

Insulin

BMI

• SkinThickness tiene valores 0 y algunos atípicos superiores a 60 mm.

0

SkinThickness

0

• *BMI* presenta valores atípicos por encima de 50, aunque su distribución es más consistente. Estos valores extremos pueden afectar el cálculo de promedios y deben considerarse en el preprocesamiento.

```
In [32]: plt.figure(figsize=(6,4))
    sns.heatmap(df_subset.corr(), annot=True, cmap="coolwarm", fmt=".2f")
    plt.title("Matriz de correlación - SkinThickness, Insulin y BMI")
    plt.show()
```


La correlación entre las variables es la siguiente:

- *SkinThickness y BMI* presentan una correlación positiva moderada (~0.64), lo cual tiene sentido porque ambas miden aspectos relacionados con la grasa corporal.
- Insulin y SkinThickness también tienen correlación positiva (~0.44).
- *Insulin y BMI* muestran una correlación más débil (~0.29), pero sigue siendo positiva. En general, todas las correlaciones son positivas: al aumentar el índice de masa corporal, también tienden a aumentar los valores de insulina y grosor de piel.

Conclusiones

- Variables que no aportan información:
 SkinThickness e Insulin presentan muchos valores 0, por lo tanto contienen poca información útil sin tratamiento previo.
- Variables a eliminar o limpiar:
 Podría eliminarse Insulin o imputar sus valores faltantes; SkinThickness también requeriría limpieza o reemplazo de ceros por valores promedio.
- 3. Rangos de valores (min-max):

SkinThickness: 0–99

Insulin: 0–846

• BMI: 0-67.1

No están en el mismo rango, por lo tanto se necesitaría *escalado o normalización* antes de aplicar un modelo.

4. Datos atípicos:

Se detectan valores extremos altos en Insulin (>400) y BMI (>50). SkinThickness tiene outliers por encima de 60 mm.

5. Correlaciones:

Todas las correlaciones son *positivas, siendo la más fuerte entre *BMI y SkinThickness. Esto indica que a mayor cantidad de grasa corporal (BMI alto), mayor es el grosor del pliegue cutáneo y, generalmente, mayores niveles de insulina.

In []: