

DISTANCE LEARNING PROGRAMME

(Academic Session: 2015 - 2016)

LEADER TEST SERIES / JOINT PACKAGE COURSE

TARGET: PRE-MEDICAL 2016

Test Type: ALL INDIA OPEN TEST (MAJOR) Test Pattern: AIPMT

TEST DATE: 24 - 04 - 2016

ANSWER KEY																				
Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	2	1	4	1	2	1	2	2	2	3	2	4	4	3	3	2	2	3
Que	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	2	2	2	4	1	3	4	3	2	4	3	3	3	2	2	3	1	1	3
Que	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	1	4	3	4	1	4	2	1	3	4	1	4	4	3	3	4	2	2	2
Que	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	1	2	1	3	3	1	4	4	2	2	2	2	3	2	4	1	3	2	1	2
Que	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	1	1	4	2	4	2	2	4	2	3	2	3	1	1	4	3	4	3	3	4
Que	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	2	2	1	1	3	2	4	3	3	4	1	1	2	2	4	2	3	1	1	3
Que	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	3	1	1	2	1	4	2	1	4	2	3	4	3	2	3	3	4	1	4	2
Que	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	1	3	2	3	3	3	4	2	2	4	1	3	2	3	1	3	2	3	1	4
Que	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	3	3	4	4	1	3	4	1	2	3	1	2	2	3	2	4	1	3	2	4

HINT - SHEET

- 1. Resultant of two vectors \vec{A} and \vec{B} must satisfy $A \sim B \le R \le A + B$
- 2. Momentum of skater $A = 30 \times 1 = 30 \text{ kgm/s}$ Momentum of skater $B = 20 \times 2 = 40 \text{ kgm/s}$ They are at right angles to each other.

Resultant momentum = p

$$\therefore (p)^2 = (30)^2 + (40)^2 = 900 + 1600 = 2500$$
or P = 50 kgm/s

$$\therefore \text{ Final velocity} = \frac{p}{\text{Total mass}}$$

$$=\frac{50}{(30+20)}=\frac{50}{50}=1$$
 m/s

3.
$$\frac{d\theta}{dt} = \frac{\sigma A}{ms} (T^4 - T_0^4)$$

$$\frac{d\theta}{dt} \propto \frac{1}{S}$$

Line A has more slope so specific heat of A is less then B.

4.
$$V = \frac{KQ}{r} - \frac{KQ}{3r}$$

$$V = \frac{2kQ}{3r}$$

$$E = \frac{KQ}{(3r)^2}$$

$$E = \frac{V}{6r}$$

5. Image formed by convex lens at I_1 will act as a virtual object for concave lens. For concave lens

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$
 or $\frac{1}{v} - \frac{1}{4} = \frac{1}{-20}$ or $v = 5$ cm

magnification for concave lens

$$m = \frac{v}{u} = \frac{5}{4} = 1.25$$

As size of the image at I_1 is 2 cm.

Therefore, size image at I_2 will be $2 \times 1.25 = 2.5$ cm.

6. Let y = AB

$$\frac{\Delta y}{y} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$

$$y = 2.5 \times 0.1 = 0.25$$

$$\frac{\Delta y}{0.25} = \frac{0.5}{2.5} + \frac{0.01}{0.10}$$

$$\Rightarrow \Delta y = 0.075 = 0.08 \text{ (2SF)}$$

7.
$$v_{CM} = \frac{(1)(5) + (1)(-3)}{1+1} = 1 \text{ m/s}$$

Position of centre of mass at t=1s

$$X_{CM} = \frac{(1)(2) + (1)(8)}{1+1} + (1)(1) = 5 + 1 = 6m$$

9. Given circuit can be redraw as

$$2A \longrightarrow WW \longrightarrow WW \longrightarrow WW \longrightarrow 3\Omega \quad A \quad 1\Omega \quad B \quad 5\Omega$$

$$V_A - V_B = IR = 2 \times 1 = 2V$$

10. This is a case of total internal reflection.

$$\theta > \theta_{\rm C} (= \sin^{-1} \frac{1}{\mu})$$

$$\frac{1}{\mu} < \sin \theta$$

$$\frac{1}{\mu} < \sin 45^{\circ}$$

$$\mu > 1/\sin 45^{\circ}$$

$$\mu > \sqrt{2}$$

$$v = \frac{c}{\mu}$$

$$\therefore v < \frac{c}{\sqrt{2}} = \frac{3 \times 10^8}{\sqrt{2}}$$

$$v < 2.1 \times 10^8$$

: only (B) is not possible.

11. From equation of trajectory $y = x \tan \theta \left[1 - \frac{x}{R} \right]$

$$\Rightarrow 3 = 6 \tan\theta \left[1 - \frac{1}{4} \right] \Rightarrow \tan\theta = \frac{2}{3}$$

13. PV = nRT

slope =
$$\frac{P}{T} = \frac{nR}{V}$$

As volume decreases slope will increase.

14. Current in 6Ω I = $\sqrt{\frac{P}{R}} = \sqrt{\frac{6}{6}} = 1$

$$I = \frac{12}{6 + \frac{8P}{8 + R}}$$

$$1 = \frac{12}{48 + 14R} (8 + R)$$

$$R = 24\Omega$$

15. Power, focal length and chromatic aberration of a lens depend on refractive index of the material of lens which, in turn, depends on wavelength of the incident light.

16.
$$\vec{v}_{BW} = \vec{v}_{BG} - \vec{v}_{RG} = 6\hat{i} + 8\hat{j}$$

17. mass of each disk

$$m = \frac{\pi}{16} M$$
so $I = I_{squre} - 4I_{hole}$

$$= \frac{M(4R)^2}{6} - 4\left[\frac{mR^2}{2} + m(\sqrt{2}R)^2\right]$$

$$= \frac{8}{3} MR^2 - 10 mR^2 \left[\because m = \frac{M\pi}{16}\right]$$

$$= \left(\frac{8}{3} - \frac{10\pi}{16}\right) MR^2$$

18.
$$\frac{1}{2} \text{ Kx}^2 = \frac{1}{4} \times \frac{1}{2} \text{ KA}^2$$

$$x^2 = \frac{A^2}{4} \implies \boxed{x = \frac{A}{2}}$$

19. Initial charge supply by battery

$$Q_1 = \frac{CV}{2}$$

Final charge supply by battery

$$Q_2 = CV$$

$$\Delta Q = Q_2 - Q_1 = \frac{CV}{2}$$

20. For path difference λ , phase difference = 2π rad

For path difference $\frac{\lambda}{4}$, phase difference = $\frac{\pi}{2}$ rad

As K = $4I_0$ so intensity at given point where path difference is $\frac{\lambda}{4}$

$$K' = 4I_0 \cos^2\left(\frac{\pi}{4}\right) = 2I_0 = \frac{K}{2}$$

In equilibrium Acc to Lami's thearum

$$\frac{200}{\sin(180-90)} = \frac{T_1}{\sin(90+53)}$$

$$\frac{200}{1} = \frac{T_1}{\cos 53}$$

$$T_1 = 40 \times 3 = Kx$$
 $K = 3000 N/m$

22. TKE
$$-K_{T} + K_{R}$$

$$= \frac{1}{2} \text{ mv}^{2} \left[1 + \frac{K^{2}}{R^{2}} \right]$$

But
$$\frac{K^2}{R^2} = \frac{1}{2}$$

$$150 = \frac{1}{2} \text{ mv}^2 \times (3/2)$$

$$K_{T} = \frac{150 \times 2}{3} = 100 \text{ J}$$

23. While approaching

$$\mathbf{n'} = \mathbf{n} \left[\frac{\mathbf{v}}{\mathbf{v} - \mathbf{v}_{s}} \right]$$

while leaving

$$n'' = n \left[\frac{v}{v + v_s} \right]$$

$$\Delta n = n' - n'' = nv \left[\frac{1}{v - v_s} - \frac{1}{v + v_s} \right]$$
$$= \frac{2nv_s}{v_s} = \frac{2 \times 240 \times 4}{320} = 6 \text{ Beats per sec.}$$

$$24. \quad E_{inside} = \frac{\rho r}{3 \in \Omega}$$

25.
$$\frac{1}{2}$$
 mv² = E - ϕ
= $\left[\frac{12400}{3000} - 1\right]$ ev

 $v = 10^6 \text{ m/s}$

26.
$$g' = g\left(1 - \frac{2h}{R}\right); \quad \frac{\Delta g}{g} = \frac{2h}{R}$$
$$1 = 2\frac{h}{R} \Rightarrow \frac{h}{R} = \frac{1}{2}; \quad g' = g\left(1 - \frac{d}{R}\right)$$

$$\frac{\Delta g'}{\sigma} = \frac{d}{R} \Rightarrow \frac{h}{R}$$
 g decreases by 0.5%

29. Magnetic field of wire is perpendicular to the direction of motion of electron. So magnetic force on electron.

$$\begin{split} F_m = & \, \text{qvB} \, (\theta = 90^\circ) \, , \, \text{where} \, B = \frac{\mu_0 I}{2\pi d} \, = & \, \text{qv} \left(\frac{\mu_0 I}{2\pi d} \right) \\ & = 1.6 \, \times 10^{-19} \times 10^6 \times \left(\frac{2 \times 10^{-7} \times 5}{10 \times 10^{-2}} \right) \\ & = 1.6 \, 10^{-18} \, \, \text{N} \end{split}$$

30.
$$v_0 = 4V$$

$$Kmax = eV_0$$

$$K_{max} = 4eV$$

31.
$$F \propto \frac{1}{r^m}$$
; $F = \frac{C}{r^m}$

This force will provide the required centripetal force

Therefore

$$m\omega^2 r = \frac{C}{r^m}; \ \omega^2 = \frac{C}{mr^{m+1}}$$

$$T = \frac{2\pi}{\omega} \implies T \propto r^{(m+1)/2}$$

32. Object first sink so

$$mg = F_B$$

$$\Rightarrow 8 \times \left[\frac{4}{3} \pi R^3 - \frac{4}{3} \pi r^3 \right] g = 1 \times \frac{4}{3} \pi R^3 \times g$$

$$\Rightarrow 8 \left[1 - \frac{r^3}{R^3} \right] = 1$$

$$\left(\frac{\mathbf{r}}{\mathbf{R}}\right) = \left(\frac{7}{8}\right)^{1/3} = \left(\frac{7^{1/3}}{2}\right)$$

33.
$$z = \frac{V}{I} = \frac{100}{4} = 25\Omega$$

P=VI cos φ

$$P = VI\left(\frac{R}{Z}\right)$$

$$240 = 100 \times 4 \times \frac{R}{25}$$

 $R=15\Omega$

$$Z = \sqrt{R^2 + X_L^2}$$

$$X_L = 20\Omega$$

$$L = \frac{20}{2\pi \times 50} = \frac{1}{5\pi} H$$

34. According to right hand palm rule positive charges moves on ACW circular path in ⊗B and negative charges moves on CW circular path in ⊗B so the path shown in figure of electron (negative charge)

35.
$$\frac{R_N}{R_{He}} = 14^{1/3}$$

$$\therefore R \propto A^{1/3}$$

$$\left(\frac{A_{N}}{A_{Na}}\right)^{1/3} = 14^{1/3}$$

$$\frac{A_{N}}{A_{He}} = 14$$

$$A_{N} = 14 \times 4 = 56$$

$$N+P = 56$$

atomic number = P = 56 - 30 = 26

- 36. Total work done on man = $0 \Rightarrow$ Work done by string = work done by gravity = -(- Mg ℓ) = Mg ℓ
- 37. Velocity of efflux = $\sqrt{2gh}$

So force =
$$v \frac{dm}{dt} = \rho_{av^2}$$

friction force $\leq \mu mg$

$$\rho_{av^2} \le \mu \ \rho Ah)g$$

$$\rho_a \left(\sqrt{2gh}\right)^2 \le \mu(\rho Ah)g$$

$$\mu \ge \frac{2a}{A}$$

$$U_1 = -\frac{2Kq^2}{r} + \frac{Kq^2}{2r}$$

$$U_1 = \frac{-3}{2} \frac{kq^2}{r}$$

$$U_2 = -\frac{kq^2}{2r}$$

$$\frac{U_1}{U_2} = \frac{3}{1}$$

39.
$$F_{\text{ext}} = \frac{B^2 \ell^2 v}{R} = \frac{0.15 \times 0.15 \times 0.5 \times 0.5 \times 2}{3}$$

= 3.75 × 10⁻³ N

40.
$$m = m_0 \left(\frac{1}{2}\right)^{t/t1/2}$$

$$\Rightarrow \frac{\mathrm{m}}{\mathrm{m}_0} = \frac{1}{16} = \left(\frac{1}{2}\right)^{2/t_{1/2}}$$

$$\Rightarrow \frac{2}{t_{1/2}} = 4$$

$$\Rightarrow t_{1/2} = \frac{1}{2}$$
 hour.

41. By applying work energy theorem

$$\frac{1}{2} m \frac{v^2}{4} - \frac{1}{2} m v^2 = -\frac{1}{2} k x^2$$

$$\Rightarrow \frac{-3mv^2}{8} = \frac{-1}{2} k x^2 \; ; \; k = \frac{3mv^2}{4x^2}$$

42.
$$\Delta Q = ms\Delta\theta$$

= $5 \times 10^3 \times 4.2 \times 80$
1680 KJ

43.
$$9e \times 9 \times 16e \times 70cm \longrightarrow 1$$

for eq^m condition

$$\frac{K(9e)q}{x^2} = \frac{K(16e)q}{(70-x)^2}$$

$$3(70-x) = 4x$$

$$7x = 210$$

$$x = 30 \text{ cm}$$

44.
$$e_0 = NBA\omega$$

=
$$60 \times .5 \times 20 \times 10 \times 10^{-4} \times 2 \times \pi \times \frac{1800}{60}$$
 = 113 V

46.

2,5 Dimethyl-3-hexyne

49. HBr +
$$H_2SO_4 \rightarrow Br_2 + SO_2$$

50.
$$P_{He} = X_{He} \cdot P_{total} = \frac{1}{3} \times 6 = 2atm$$

51. OH
$$Br_2/CS_2$$
 OH Br Br Br Br Br

53. (b) mobility $\alpha \frac{1}{\text{size of Hydrated ion}}$

(c) B.P.
$$\Rightarrow$$
 MCl₄ < MCl₂

54.
$$PCl_5 + H_2O \rightarrow PoCl_3 + HCl$$

 $PoCl_3 + H_2O \rightarrow H_3PO_4 + HCl$

55.
$$N_2 + 3F_2 \longrightarrow 2NF_3$$

mol/stoichiometric coeff. 0.25 $\frac{0.5}{3}$

$$\frac{5.6}{22.4} = 0.25$$
 $\frac{19}{38} = 0.5$ mol

3 mol F_2 gives = 2 mol NF_3

0.5 mol F₂ gives =
$$\frac{2}{3} \times 0.5$$
 mol NF₃
= $\frac{1}{3}$ mol NF₃

wt. of NF₃ =
$$\frac{1}{3} \times 71$$

= 23.66 g

- 56. The Leaving ability of different halides follow order as $I^{\Theta} > Br^{\Theta} > Cl^{\Theta}$
- 57. Stability of carbocation α ERG $\alpha \frac{1}{\text{EWG}}$

59.
$$E_n^Z = -\frac{2\pi^2 mz^2 e^4}{n^2 h^2}$$

$$P.E. = 2 \times E_{T}$$

$$K.E. = -E_n^Z$$

60. At anode O₂ is being liberated

$$\therefore H_2O \longrightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$$

- **61.** rate of SN² reaction $\alpha \frac{1}{\text{steric hindrance}}$
- 62. H-C-C-OH NH,

Glycine → does not have chiral center

65. E_{H^+/H_2}^o is higher than $E_{Al^{+3}/Al}^o$

∴ H₂ is obtained

- **66.** Kolbe reaction to form salicylic acid is an electrophilic substitution reaction.
- 67. $\begin{array}{c}
 Cl \\
 CH_2 = CH \\
 Vihyl \text{ chloride}
 \end{array}$ $\longrightarrow \begin{array}{c}
 Cl \\
 (CH_2 CH) \\
 PVC$
- **68.** $[\text{NiCl}_4]^{2-}$, $\text{Ni}^{+2} = 3\text{d}^8$ but Cl^- is WfL So, geometry of complex = Tetrahedral
- **69.** $K_C^1 = \frac{1}{K_C^2} = \frac{1}{81}$

$$K_{P} = K_{C}(RT)^{-2} = \frac{1}{81(R \times 500)^{2}}$$

70. $\sqrt{3}a = 2(r_+ + r_-)$

$$a = \frac{2(r_{+} + r_{-})}{\sqrt{3}} = \frac{(1.69 + 1.81)}{\sqrt{3}}$$

$$=\frac{2\times3.50}{1.732}$$
 = 4.03Å

71.
$$2 \frac{\text{CHO}}{\Delta} \frac{\text{COOK}}{\Delta} + \frac{\text{CH}_2\text{OH}}{\Delta}$$

Cannizzaro reaction

72. Asprin is analgesic as well as Antipyretics

74.
$$H^+ = 10^{-2}$$

 $pH = 2$
 $pH + pOH = 12$

pOH = 10

75. Specific rate of reaction is affected by temperature and catalyst.

76.
$$CH_3$$
- CH_2 - $CN \xrightarrow{H_3O^{\oplus}} CH_3$ - CH_2 - C - OH

Ethyl cyanide

78.
$$NH_2^ NH_3$$
 NH_4^+ sp^3 sp^3 sp^3

1.P 2 1 0

79.
$$C_{17}H_{19}NO_3 + H^{\oplus} \longrightarrow C_{17}H_{20}NO_3^+$$

81.
$$R-C-O-C-R+R'-NH_2\to R-C-NH-R'+R-C-OH$$
 amide

83. NaCl
$$\rightarrow$$
 Na⁺ + Cl⁻
 $H_2O \rightarrow H^+ + OH^-$
at cathode \Rightarrow H_2
at Anode \Rightarrow Cl₂

by product ⇒ NaOH

84. H_2SO_4 and $Ba(OH)_2$ are strong acid and base respectively.

2,3 Dioxo butanoyl chloride

87. $[Sc(H_2O)_6]Cl_3 \rightarrow Sc^{+3} = 3d^{\circ} \text{ colourless}$

88.
$$Fe^{3+} = 3d^5 < \begin{cases} eg \\ 1 \\ t_{2g} \end{cases}$$
 1 1

89. W = -2.303 nRT $\log_{10} \frac{V_2}{V_1}$

- **92.** NCERT (XIth) Pg. # 42, 43
- **94.** NCERT (XIth) Pg. # 107
- **95.** NCERT (XIth) Pg. # 287
- **100.** NCERT (XIIth), Page-187(E), 204(H)
- **101.** NCERT Pg. # 93, 91 (E)
- **102.** NCERT (XIth) Pg. # 36
- **104.** NCERT (XIth) Pg. # 249
- **105.** NCERT (XIth) Pg. # 298
- **111.** NCERT (XIth) Pg. # 93, 94 (E)
- **115.** NCERT (XIth) Pg. # 311
- **125.** NCERT (XIth) Pg. # 307
- **132.** NCERT (XIth) Pg. # 54
- **134.** NCERT (XIth) Pg. # 195
- **138.** NCERT Page-250
- **140.** NCERT (XIIth), Page-289(E), 315, 316(H)
- **142.** NCERT (XIth) Pg. # 51
- **144.** NCERT (XIth) Pg. # 189
- **145.** NCERT (XIth) Pg. # 336
- **151.** NCERT (XIth) Pg. # 36

- **152.** NCERT (XIth) Pg. # 269
- **153.** NCERT (XIth) Pg. # 152, para-1, Line-6,7
- **154.** NCERT (XIth) Pg. # 262, 263
- **155.** NCERT (XIth) Pg. # 306
- **157.** NCERT Page-254(E)
- **160.** NCERT (XIIth), Page-186(E), 202(H)
- **161.** NCERT (XIth) Pg. # 38, 39
- **162.** NCERT (XIth) Pg. # 271, 272
- **164.** NCERT (XIth) Pg. # 260
- **165.** NCERT (XIth) Pg. # 333
- **170.** NCERT (XIIth), Page-84 Fig. 5.11 (E), 92(H)
- **171.** NCERT (XIth) Pg. # 36, 38
- **172.** NCERT (XIth) Pg. # 274
- **174.** NCERT (XIth) Pg. # 270, 271, 272
- **175.** NCERT (XIth) Pg. # 326
- **177.** NCERT Page-235(E)
- **179.** NCERT (XIIth), Page-213(E), 232(H)
- **180.** NCERT (XIIth), Page-199, 200, 203, 211(E), 217, 221, 230(H)

0999DM310315031 • HS - 7/7