Osnovne tehnike prebrojavanja

Bogdan Ljubinković, Miljan Jokić, Dalibor Nikolić, Lazar Jović, Anastazija Petrov, Marko Djordjević, Aleksa Nenadović i Meris Bilalović

Oktobar 2024, FTN

Problemi kojima ćemo se baviti

- ▶ Binomni koeficijent algebarski i kombinatorno
- Osobine binomnog koeficijenta
- Binomna formula indukcijom
- Polinomni koeficijent algebarski i kombinatorno
- Osobine polinomnog koeficijenta

Istorija binomnih koeficijenata

Binomni koeficijenti su korišćeni još u starom Egiptu i Grčkoj. Prvi zapisi potiču iz dela grčkog matematičara Euklida, koji je u 4. veku p.n.e. opisivao binomnu teoremu za kvadrate binoma. Indijski matematičar Pingala, u 3. veku p.n.e., prikazao je binomne koeficijente kroz strukturu poznatu kao "Pingalin trougao." Kasnije, u 17. veku, Blaise Pascal daje binomnim koeficijentima algebarski oblik koji se danas koristi i popularizuje trougao kao metodu za računanje koeficijenata.

Definicija binomnog koeficijenta

Definicija: Neka su m i n celi brojevi sa osobinom $0 \le m \le n$. Binomni koeficijent $\binom{n}{m}$ je funkcija koja takvim parovima vrednosti n i m dodeljuje pozitivne cele brojeve na sledeći način:

$$\binom{n}{0} = 1, \quad \binom{n}{n} = 1$$
 $\binom{n}{m} = \frac{n(n-1)\cdots(n-m+1)}{m(m-1)\cdots2\cdot1}, \quad m \ge 1$

Kombinatorna definicija binomnog koeficijenta

Definicija: Binomni koeficijent $\binom{n}{m}$ predstavlja broj različitih načina da se iz skupa od n elemenata izabere podskup od m elemenata, gde redosled elemenata nije bitan.

Drugim rečima, $\binom{n}{m}$ označava broj *m*-kombinacija skupa od *n* elemenata.

Faktorijelna reprezentacija

Lema: Za cele brojeve n i m sa osobinom $0 \le m \le n$, važi:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Dokaz:

Za $m \in \{0, n\}$, imamo:

$$\binom{n}{n} = \frac{n!}{n! \cdot 0!} = 1$$
 i $\binom{n}{0} = \frac{n!}{0! \cdot n!} = 1$.

Ako je $1 \le m \le n-1$, množenjem brojioca i imenioca sa (n-m)! dobijamo:

$$\binom{n}{m} = \frac{n(n-1)\cdots(n-m+1)}{m(m-1)\cdots2\cdot1} = \frac{n!}{m!(n-m)!}.$$

Osobina simetričnosti binomnog koeficijenta

Lema (Simetričnost): Za cele brojeve n i m sa osobinom $0 \le m \le n$, važi:

$$\binom{n}{m} = \binom{n}{n-m}$$

Dokaz: Korišćenjem faktorijelne definicije binomnog koeficijenta dobijamo:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$
$$\binom{n}{n-m} = \frac{n!}{(n-m)! \cdot (n-(n-m))!} = \frac{n!}{(n-m)! \cdot m!}$$

Kombinatorno tumačenje: Osobina simetričnosti znači da je broj načina da se iz skupa od n elemenata izabere m elemenata jednak broju načina da se izabere n-m elemenata iz istog skupa. Kada biramo m elemenata iz skupa sa n elemenata, automatski odreujemo komplementarni podskup sa n-m elemenata koji nisu izabrani. Dakle, svako biranje m-kombinacije odgovara jedinstvenoj (n-m) - kombinaciji preostalih elemenata, što dokazuje da:

$$\binom{n}{m} = \binom{n}{n-m}$$

Lema - Paskalov identitet

Za cele brojeve n i m, $1 \le m \le n-1$, važi:

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

Paskalov identitet omogućava rekurzivno računanje binomnih koeficijenata, razlažući svaki koeficijent na dva manja, dok ne doemo do osnovnih vrednosti.

Paskalov identitet (1)

Posmatrajmo skup A sa $n \ge 1$ elemenata i izaberimo proizvoljno element $a \in A$. Neka je:

$$S_m = \{B : B \subseteq A, |B| = m\},$$

$$S_m^a = \{B : B \subseteq A, a \in B, |B| = m\},$$

$$S_m^{\tilde{a}} = \{B : B \subseteq A \setminus \{a\}, |B| = m\}.$$

Tada je

$$S_m = S_m^a \cup S_m^{\tilde{a}}$$
 i $S_m^a \cap S_m^{\tilde{a}} = \emptyset$.

Prema principu zbira, imamo:

$$|S_m|=|S_m^a|+|S_m^{\tilde{a}}|.$$

Paskalov identitet (2)

Kako je broj elemenata u prethodnim skupovima:

$$|S_m| = \left| \binom{A}{m} \right| = \binom{n}{m},$$

$$|S_m^a| = \left| \binom{A \setminus \{a\}}{m-1} \right| = \binom{n-1}{m-1},$$

$$|S_m^{\tilde{a}}| = \left| \binom{A \setminus \{a\}}{m} \right| = \binom{n-1}{m},$$

odakle sledi

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}.$$

Paskalov identitet (3)

Dokazivanje jednakosti koristeći faktorijelne izraze:

$$\binom{n-1}{m-1} + \binom{n-1}{m} = \frac{(n-1)!}{(m-1)!(n-m)!} + \frac{(n-1)!}{m!(n-m-1)!}$$

$$= \frac{m \cdot (n-1)! + (n-m) \cdot (n-1)!}{m!(n-m)!}$$

$$= \frac{(m+n-m) \cdot (n-1)!}{m!(n-m)!} = \frac{n!}{m!(n-m)!} = \binom{n}{m}$$

Paskalov trougao i binomni koeficijenti

Paskalov trougao je tabelarni prikaz binomnih koeficijenata $\binom{n}{m}$, gde je svaki binomni koeficijent jednak zbiru dva binomna koeficijenta iz reda iznad njega, prema Paskalovom identitetu:

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}.$$

Trougao započinje jedinicama na ivicama, jer važi $\binom{n}{0}=1$ i $\binom{n}{n}=1$ za svaki n. Unutrašnje vrednosti se dobijaju kao zbir dva susedna koeficijenta iz reda iznad, što daje prepoznatljivu simetričnu strukturu trougla.

(n,m)	0	1	2	3	4	5	 m'-1	m'	
0	1	_	_	_	_	_	 		
1	1	1	_	_	_	_	 		
	1				_	_	 		
3	1	3	3	1	_	_	 		
4	1	4	6	4	1	_	 		
5	1	5	10	10	5	1	 		
n'-1							 $\binom{n'-1}{m'-1}$	$\binom{n'-1}{m'}$	
n'								$\binom{n'}{m'}$	

Binomna formula

Neka su $x, y \in \mathbb{R}$ i neka je $n \in \mathbb{N}$. Tada važi:

$$(x+y)^n = \sum_{m=0}^n \binom{n}{m} x^{n-m} y^m$$

Binomna formula omogućava nam da izrazimo potenciju zbira (x+y) kao zbir članova koji sadrže različite kombinacije potencija x i y, sa koeficijentima koji su dati binomnim koeficijentima $\binom{n}{m}$. Svaki član u ovom razvoju ima oblik $\binom{n}{m}x^{n-m}y^m$, gde m predstavlja broj pojavljivanja y u svakom članu.

Dokaz binomne formule (1)

Posmatramo izraz $(x + y)^n$ kao proizvod n identičnih faktora (x + y):

$$(x+y)^n = (x+y)(x+y)...(x+y),$$

gde se (x + y) pojavljuje n puta.

Da bismo razvili ovaj izraz, posmatramo sve moguće monome koji se dobijaju kada iz svake zagrade izaberemo ili x ili y. Svaki izbor daje monom oblika $x^{n-m}y^m$, gde se x pojavljuje n-m puta, a y m puta.

Dokaz binomne formule (2)

Sada, broj načina da se izabere tačno m zagrada u kojima ćemo uzeti y (dok u preostalih n-m zagrada biramo x) jednak je binomnom koeficijentu $\binom{n}{m}$.

Dakle, zbir svih mogućih monoma oblika $x^{n-m}y^m$ može se zapisati kao:

$$(x+y)^n = \sum_{m=0}^n \binom{n}{m} x^{n-m} y^m.$$

Induktivni dokaz binomne formule

Baza indukcije n = 1:

$$(x+y)^1 = x + y.$$

Induktivna pretpostavka (T_n): Pretpostavimo da binomna formula važi za neki n, tj.

$$(x+y)^n = x^n + nx^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \dots + nxy^{n-1} + y^n.$$

Induktivni korak ($T_n \Rightarrow T_{n+1}$): Potrebno je pokazati da:

$$(x+y)^{n+1} = x^{n+1} + (n+1)x^ny + \dots + (n+1)xy^n + y^{n+1}.$$

Koristeći induktivnu pretpostavku, dobijamo:

$$(x+y)^{n+1} = (x+y)^n \cdot (x+y).$$

Koristeći induktivnu pretpostavku, možemo proširiti izraz:

$$= (x^{n} + nx^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \cdots + nxy^{n-1} + y^{n})(x + y).$$

Nakon proširenja, dobijamo:

$$= \left\{ x^{n+1} + nx^n y + \binom{n}{2} x^{n-1} y^2 + \dots + nxy^n + y^{n+1} \right\}$$

$$+ \left\{ x^n y + \binom{n}{1} x^{n-1} y^2 + \dots + \binom{n}{n-2} x^2 y^{n-1} + nxy^n + y^{n+1} \right\}.$$

Koristeći Paskalov identitet, dobijamo:

$$(x+y)^{n+1} = x^{n+1} + (n+1)x^{n}y + \left(\binom{n}{1} + \binom{n}{2}\right)x^{n-1}y^{2} + \dots$$
$$+ \left(\binom{n}{n-1} + \binom{n}{n-2}\right)x^{2}y^{n-1} + (n+1)xy^{n} + y^{n+1},$$
$$(x+y)^{n+1} = \sum_{m=0}^{n+1} \binom{n+1}{m}x^{n+1-m}y^{m}.$$

Algebarska definicija: Polinomni koeficijent

Polinomni (Multinomijalni) koeficijent predstavlja jedno od uopštenja binomnog koeficijenta.

Definicija: Neka su dati brojevi m_1, m_2, \ldots, m_l koji pripadaju skupu ne-negativnih celih brojeva \mathbb{N}_0 , i neka je $n=m_1+m_2+\ldots+m_l$. Tada polinomni koeficijent definišemo na sledeći način:

$$\binom{n}{m_1, m_2, \dots, m_l} = \frac{n!}{m_1! \cdot m_2! \cdot \dots \cdot m_l!}$$

Kombinatorna definicija: Polinomni koeficijent

Polinomni koeficijent se kombinatorno može interpretirati kao:

- 1. Broj permutacija multiskupa $M = [a_1, \dots, a_l](m_1, \dots, m_l)$
- 2. Broj uredjenih *I*-torki (B_1, \ldots, B_I) skupa $A = \{a_1, \ldots, a_n\}$ sa osobinom da je za date vrednosti (m_1, \ldots, m_I) važi:
 - $A = B_1 \cup B_2 \cup \ldots \cup B_l,$
 - $|B_1| = m_1, \ldots, |B_l| = m_l$
 - $m_1 + ... + m_l = n$

Kombinatorna definicija: Polinomni koeficijent

Primer: Kreirati sve permutacije multiskupa $M = \{a, a, b, b, b\}$.

Rešenje: Permutacije multiskupa *M* su:

```
► {aabbb}, {ababb}, {abbab}, {abbba}, {baabb}, {babab}, {babab}, {bbaab}, {bbaba}, {bbaab}, {bbaba}, {bbaab}, {bbaab}, {bbaab}, {bbaa}
```

Primer: Polinomni koeficijent

Ovaj problem se može rešiti primenom formule za permutacije multiskupa:

$$P(5;3,2) = \frac{5!}{3!2!} = 10$$

Isti rezultat dobijamo korišćenjem polinomnog koeficijenta za n = 5, $m_1 = 3$, $m_2 = 2$:

$$\binom{5}{3,2} = \frac{5!}{3!2!} = 10$$

Zaključak: Formula za permutacije multiskupa je specifičan slučaj formule za polinomni koeficijent, gde brojevi m_1, m_2, \ldots, m_l označavaju broj pojavljivanja svakog elementa.

Primer: Polinomni koeficijent

Primer: Koliko različitih reči, uključujući besmislene, može da se sastavi od slova reči **ABRAKADABRA**?

Rešenje:

Slova reči ABRAKADABRA se pojavljuju u sledeći broj puta:

- ► A 5 puta
- ▶ B 2 puta
- ► R 2 puta
- ► K 1 put
- ▶ D 1 put

Primer: Polinomni koeficijent

Ukupan broj slova, *n*, je 11. Broj načina na koje se mogu permutovati ova slova, uzimajući u obzir ponavljanja, daje polinomni koeficijent:

$$\binom{11}{5,2,2,1,1} = \frac{11!}{5!2!2!1!1!}$$

Ako su brojevi $m_1,\ldots,m_l\in\mathbb{N}_0$ i neka je $n=m_1+\ldots+m_l$, tada važi sledeća osobina:

$$\binom{n}{m_1, m_2, \dots, m_I} = \binom{n}{m_1} \binom{n - m_1}{m_2} \binom{n - (m_1 + m_2)}{m_3} \dots \binom{m_I}{m_I}.$$

Kombinatorna interpretacija je broj načina da podelimo n objekata u l grupa specifičnih veličina m_1, m_2, \ldots, m_l tako da redosled unutar i izmedju grupa nije bitan.

Dokaz. Ako se primeni definicija binomnih koeficijenata na desnu stranu, po jedan činilac iz imenioca se uvek skrati sa brojiocem iz narednog razlomka.

$$\binom{n}{m_1} \binom{n - m_1}{m_2} \cdots \binom{m_l}{m_l}$$

$$= \frac{n!}{m_1!(n - m_1)!} \cdot \frac{(n - m_1)!}{m_2!(n - m_1 - m_2)!} \cdots \frac{m_l!}{m_l! \cdot 0!}$$

$$= \frac{n!}{m_1! m_2! \cdots m_l!} = \binom{n}{m_1, m_2, \cdots, m_l}$$

Neka su dati brojevi $m_1,\ldots,m_l\in\mathbb{N}_0$ i neka je $n=m_1+\ldots+m_l$. Ako je $\{m_1,m_2,\ldots,m_l\}=\{k_1,k_2,\ldots,k_l\}$ onda je

$$\binom{n}{m_1, m_2, \dots, m_l} = \binom{n}{k_1, k_2, \dots, k_l}$$

Primer:

$$\binom{7}{3,2,2} = \binom{7}{2,3,2} = \binom{7}{2,2,3} = \frac{7!}{3!2!2!}$$

Kombinatorna interpretacija: Razmotrimo jednakost koja se odnosi na raspodelu n objekata u l grupa, gde svaka grupa ima precizno definisanu veličinu, kao što su m_1, m_2, \ldots, m_l .

Broj načina na koji možemo izvršiti ovu raspodelu odgovara broju načina na koji bismo rasporedili n objekata u l grupa sa veličinama k_1, k_2, \ldots, k_l , pod uslovom da su veličine grupa u oba slučaja identične $(m_i = k_i \text{ za sve } i)$.

Drugim rečima, ako su veličine grupa identične u dva različita načina raspodele, broj načina na koji se objekti mogu raspodeliti ostaje isti. Ovo ukazuje na simetričnost multinomialnog koeficijenta u pogledu veličina grupa – redosled grupa nije važan ako su sve veličine jednake.

Dokaz: Ako pretpostavimo da su skupovi veličina grupa jednaki, tj. $\{m_1, m_2, \ldots, m_I\} = \{k_1, k_2, \ldots, k_I\}$, direktno sledi da su proizvodi faktorijela za svaku grupu jednaki, tj. $m_1! m_2! \ldots m_I! = k_1! k_2! \ldots k_I!$. Odatle direktno proizilazi da su odgovarajući polinomni koeficijenti jednaki.

Osobina 3: Ako su brojevi $m_1, \ldots, m_l \in \mathbb{N}_0$ i $n = m_1 + \ldots + m_l$ pri čemu je ispunjen uslov $0 < m_1, \ldots, m_l < n$, onda važi:

$$\binom{n}{m_1, m_2, \dots, m_l} = \binom{n-1}{m_1 - 1, m_2, \dots, m_l} + \binom{n-1}{m_1, m_2 - 1, \dots, m_l} + \dots + \binom{n-1}{m_1, m_2, \dots, m_l - 1}$$

Kombinatorna interpretacija:

Leva strana jednakosti odgovara permutacijama multiskupa $\{a_1, \ldots, a_1, \ldots, a_l, \ldots, a_l\}$.

Desna strana se može interpretirati tako što se skup svih uredjenja može podeliti na *I* podskupova, gde svaki podskup sadrži n-torke sa fiksiranom prvom komponentom.

Primena principa zbira omogućava zaključak da je broj načina da se uredi preostalih n-1 elemenata, s jednim manje a_1 na raspolaganju, jednak $P(m_1-1,m_2,\ldots,m_l)$. Slično se rezonuje i za druge elemente koji se mogu pojaviti na prvom mestu.

Dokaz: Primena definicije polinomnog koeficijenta:

$$\binom{n-1}{m_1-1, m_2, \dots, m_l} = \frac{(n-1)!}{(m_1-1)! m_2! \dots m_l!} = \frac{m_1(n-1)!}{m_1! m_2! \dots m_l!}$$

$$\binom{n-1}{m_1, m_2-1, \dots, m_l} = \frac{(n-1)!}{m_1! (m_2-1)! \dots m_l!} = \frac{m_2(n-1)!}{m_1! m_2! \dots m_l!}$$

$$\vdots$$

$$\binom{n-1}{m_1, m_2, \dots, m_l-1} = \frac{(n-1)!}{m_1! m_2! \dots (m_l-1)!} = \frac{m_l(n-1)!}{m_1! m_2! \dots m_l!}$$

Zbir svih ovih izraza:

$$\frac{m_1(n-1)!+m_2(n-1)!+\ldots+m_l(n-1)!}{m_1!m_2!\ldots m_l!}$$

svodjenje na zajednički imenilac daje:

$$\frac{(m_1 + \ldots + m_l)(n-1)!}{m_1! m_2! \ldots m_l!} = \frac{n!}{m_1! m_2! \ldots m_l!}$$

Osobina 4: Neka su dati celi brojevi $m_1, \ldots, m_l \ge 0$ i neka je $n = m_1 + \ldots + m_l$. Tada važi:

$$\binom{n}{m_1, m_2, \dots, m_{l-1}, 0} = \binom{n}{m_1, m_2, \dots, m_{l-1}}$$

Kombinatorna interpretacija: Ako imamo n objekata i želimo da ih podelimo u l grupa, gde su veličine grupa $m_1, m_2, \ldots, m_{l-1}$, a poslednja grupa sadrži 0 objekata, tada broj načina na koji možemo rasporediti n objekata ne zavisi od prisustva prazne grupe. Drugim rečima, dodavanje grupe veličine 0 ne menja ukupan broj načina raspodele, jer prazna grupa ne sadrži nikakve objekte.

Polinomna formula

Za realne brojeve x_1, x_2, \dots, x_l i prirodan broj n važi, gde važi $l \ge 2$, polinomna formula je:

$$(x_1 + x_2 + \ldots + x_l)^n = \sum_{\substack{m_1 + \ldots + m_l = n \\ m_1 \ge 0, \ldots, m_l \ge 0}} {n \choose m_1, \ldots, m_l} x_1^{m_1} x_2^{m_2} \ldots x_l^{m_l}$$

Ova teorema predstavlja opštu formulu za razvoj izraza $(x_1 + x_2 + \ldots + x_l)^n$ koristeći polinomni koeficijent.

Polinomna formula

Pomoću polinomne formule možemo da izrazimo stepen zbira $(x_1 + x_2 + \ldots + x_l)$ kao zbir članova koji sadrže različite kombinacije stepenova x_1, x_2, \ldots, x_l sa koeficijentima koji su dati polinomnim koeficijentima $\binom{n}{m_1, m_2, \ldots, m_l}$.

Svaki član u ovom razvoju ima oblik:

$$\binom{n}{m_1, m_2, \ldots, m_l} \cdot x_1^{m_1} \cdot x_2^{m_2} \cdot \ldots \cdot x_l^{m_l},$$

gde su m_1, m_2, \ldots, m_l brojevi pojavljivanja x_1, x_2, \ldots, x_l u svakom članu.

Primer: Polinomna formula

Primer: Napisati u razvijenom obliku 3. stepen polinoma $(x_1 + x_2 + x_3)$.

Rešenje: Na osnovu polinomne formule sledi:

$$(x_1 + x_2 + x_3)^3 = \binom{3}{3,0,0} x_1^3 x_2^0 x_3^0 + \binom{3}{0,3,0} x_1^0 x_2^3 x_3^0 + \binom{3}{0,0,3} x_1^0 x_2^0 x_3^3 + \binom{3}{0,1,2} x_1^0 x_2^1 x_3^2 + \binom{3}{0,2,1} x_1^0 x_2^2 x_3^1 + \binom{3}{1,0,2} x_1^1 x_2^0 x_3^2 + \binom{3}{1,2,0} x_1^1 x_2^2 x_3^0 + \binom{3}{2,0,1} x_1^2 x_2^0 x_3^1 + \binom{3}{2,1,0} x_1^2 x_2^1 x_3^0 + \binom{3}{1,1,1} x_1^1 x_2^1 x_3^1 = x_1^3 + x_2^3 + x_3^3 + 3x_2 x_3^2 + 3x_2^2 x_3 + 3x_1 x_3^2 + 3x_1 x_2^2 + 3x_1^2 x_3 + 3x_1^2 x_2 + 6x_1 x_2 x_3$$

U razvoju binoma $\left(\sqrt[3]{3}+\sqrt{2}\right)^n$ odnos koeficijenata drugog i trećeg člana je 2:23. Odrediti n i ispitati koliko članova ne sadrži iracionalne brojeve.

Binomni koeficijenti su:

$$\binom{n}{0}$$
, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{n-1}$, $\binom{n}{n}$.

Po tekstu zadatka je:

$$\frac{\binom{n}{1}}{\binom{n}{2}} = 2:23.$$

Odnosno:

$$\frac{n(n-1)}{2\cdot 1}=\frac{2}{23}.$$

Rešavanjem dobijamo:

$$23n = n(n-1).$$

Odnosno:

$$n^2-24n=0.$$

Dakle, n=0 ili n=24, ali pošto n mora biti pozitivan, zaključujemo da je:

$$n = 24$$
.

Prvi posao smo završili, sada da vidimo koliko ima članova koji ne sadrži iracionalne brojeve.

Iskoristićemo formulu:

$$T_{k+1} = \binom{n}{k} a^{n-k} b^k.$$

Za našu situaciju $(\sqrt[3]{3} + \sqrt{2})^{24} = (\frac{1}{3^5} + \frac{1}{2^7})^{24}$ imamo:

$$T_{k+1} = \binom{24}{k} \left(\sqrt[3]{3}\right)^{24-k} \left(\sqrt{2}\right)^k = \binom{24}{k} \frac{3^{24-k}}{5} \cdot \frac{2^7}{k}.$$

Sad razmišljamo:

k može da uzima vrednosti od $0, 1, 2, \ldots, 24$.

Oba eksponenta moraju biti celi brojevi, jer tada nema iracionalnih članova, to jest $\frac{24-k}{5}$ i $\frac{k}{7}$ moraju biti celi brojevi.

Za
$$k = 0$$
, $\frac{24-k}{5} = \frac{24}{5}$ nije ceo broj.

Za
$$k = 7$$
, $\frac{k}{7} = 1$ je ceo broj, ali $\frac{24-7}{5} = \frac{17}{5}$ nije ceo broj.

Za
$$k=14$$
, $\frac{14}{7}=2$ je ceo broj i $\frac{24-14}{5}=2$ je ceo broj, što znači da $k=14$ radi.

Za
$$k = 21$$
, $\frac{k}{7} = 3$ je ceo broj, ali $\frac{24-21}{5} = \frac{3}{5}$ nije ceo broj.

Dakle, imamo samo jedan član koji je racionalan!

U razvoju binoma $\left(x\sqrt[5]{x}+\frac{1}{\sqrt[5]{x}}\right)^n$ zbir koeficijenata drugog člana od početka i trećeg člana od kraja je 78.

Odrediti n i naći član koji ne sadrži x.

Znamo da su vrednosti binomnih koeficijenata simetrične:

$$\binom{n}{0} = 1, \quad \binom{n}{1} = n, \quad \binom{n}{2} = \frac{n(n-1)}{2}, \dots$$

Dakle:

$$\binom{n}{1} + \binom{n}{2} = 78.$$

Zamenom:

$$n+\frac{n(n-1)}{2}=78.$$

Množimo sa 2:

$$2n + n^2 - n = 156.$$

Odnosno:

$$n^2 + n - 156 = 0.$$

Rešavanjem kvadratne jednačine dobijamo:

$$n = 12$$
.

Vratimo ovo u početni binom i malo priredimo:

$$\left(x\sqrt[5]{x} + \frac{1}{\sqrt[5]{x}}\right)^{12} = \left(x^{\frac{6}{5}} + x^{-\frac{3}{5}}\right)^{12}.$$

Dalje koristimo formulu:

$$T_{k+1} = \binom{n}{k} a^{n-k} b^k.$$

Za našu situaciju:

$$T_{k+1} = {12 \choose k} \left(x^{\frac{6}{5}} \right)^{12-k} \left(x^{-\frac{3}{5}} \right)^k = {12 \choose k} x^{\frac{6(12-k)-3k}{5}}.$$

Ovo u izložiocu mora biti nula, jer tražimo član koji ne sadrži x, odnosno član gde je:

$$\frac{6(12-k)-3k}{5}=0.$$

Rešavanjem ove jednačine:

$$10(12-k)-5k=0 \Rightarrow 120-10k-5k=0 \Rightarrow 15k=120 \Rightarrow k=8.$$

Tada je traženi član:

$$T_9 = {12 \choose 8} a^4 b^8 = {12 \choose 4} = \frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1} = 495.$$

Naći koeficijent uz $x^2y^3z^4w$ u razvoju izraza $(x-y-z+w)^{10}$.

Imamo razvoj izraza $(x - y - z + w)^{10}$.

Prema binomnoj formuli za više promenljivih, ovaj izraz možemo zapisati kao:

$$(x-y-z+w)^{10} = \sum_{p+q+r+s=10} \frac{10!}{p!q!r!s!} (x)^p (-y)^q (-z)^r (w)^s.$$

Potrebno je pronaći koeficijent uz $x^2y^3z^4w$, što implicira da su $p=2,\ q=3,\ r=4,\ s=1.$

Dakle, koeficijent uz $x^2y^3z^4w$ je:

$$\frac{10!}{2!3!4!1!}(-1)^3(-1)^4.$$

Izračunavanjem dobijamo:

$$\frac{10!}{2!3!4!1!} \cdot (-1)^3 \cdot (-1)^4 = -12600.$$

Odrediti ukupan broj članova u razvoju izraza $(1 + x + y)^{10}$.

Rešenje

Dati izraz je $(1+x+y)^{10}$.

Ukupan broj članova u razvoju ovog izraza možemo izračunati pomoću formule za binomni razvoj sa više promenljivih, što daje:

Ukupan broj članova =
$$\binom{10+3-1}{3-1}$$
.

Odnosno:

$$=\binom{12}{2}.$$

Rešenje - Nastavak

Dalje računamo:

$$\binom{12}{2} = \frac{12!}{2!(12-2)!} = \frac{12\times 11\times 10!}{2\times 1\times 10!}.$$

Skraćivanjem dobijamo:

$$= \frac{12 \times 11}{2} = 66.$$

Dakle, ukupan broj članova u razvoju izraza $(1 + x + y)^{10}$ je 66.