Функциональный анализ

Ф. Л. Бахарев *

21 сентября 2016 г.

Содержание

1	Линейное нормированное пространство	2
2	Пространства Лебега	4
3	Непрерывность. Сжимающее отображение	6
4	Линейные операторы	9

^{*}Конспект подготовлен студентом Яскевичем С. В.

1 Линейное нормированное пространство

Определение 1.1. Линейное множество L над полем скаляров \mathbb{R} (\mathbb{C}) — множество с операциями сложения и умножения на скаляр, удовлетворяющее свойствам:

1.
$$(x + y) + z = x + (y + z) \forall x, y, z \in L$$

2.
$$x + y = y + x \ \forall x, y, z \in L$$

- 3. Существует элемент 0 такой, что $x + 0 = x \ \forall x \in L$
- 4. Для любого $x \in L$ существует обратный элемент по сложению -x такой, что -x+x=0

5.
$$\lambda(\mu x) = (\lambda \mu) x \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x \in L$$

6.
$$\lambda(x + y) = \lambda x + \lambda y \ \forall \lambda \in \mathbb{R}(\mathbb{C}), \ x, y \in L$$

7.
$$(\lambda + \mu)x = \lambda x + \mu y \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x, y \in L$$

Определение 1.2. $\phi: L \to \mathbb{R}$ называется нормой, если:

1.
$$\varphi(x+y) \leqslant \varphi(x) + \varphi(y) \ \forall x, y \in L$$

2.
$$\varphi(\lambda x) = |\lambda| \varphi(x) \ \forall x \in L, \ \lambda \in \mathbb{R}(\mathbb{C})$$

3.
$$\varphi(x) \ge 0 \ \forall x \in L$$

4.
$$\varphi(x) = 0 \iff x = 0$$

Если выполнены только первых три свойства, то ϕ называется полунормой.

Замечание 1.3.

1.
$$\rho(x,y) = \phi(x-y)$$
 — метрика.

2. Если на пространстве задана норма $\|\cdot\|$, то $X=(L,\phi)$ — нормированное пространство.

Определение 1.4. $x_n \to x$ в X, если $\|x_n - x\| \to 0$ при $n \to \infty$, то есть $\forall \epsilon > 0$ $\exists N \colon \forall n > N$ $\|x_n - x\| < \epsilon$

Определение 1.5. $\{x_n\}\subset X$ — фундаментальная последовательность (сходящаяся в себе, последовательность Коши), если $\|x_n-x_m\|\xrightarrow{m,n\to\infty} 0$, то есть $\forall \epsilon>0$ $\exists N\colon \forall m,n>N$ $\|x_m-x_m\|<\epsilon$

Замечание 1.6. $x_n \to x \implies \{x_n\}$ — фундаментальная. Обратное, вообще говоря, неверно.

Определение 1.7. Нормированное пространство X называется полным, если из фундаментальности последовательности следует существование предела.

Определение 1.8. Пусть $x_n \in X$. $\sum_{j=1}^{\infty} x_j$ сходится, если $S_n = \sum_{j=1}^n x_j$ имеет предел $\lim S_n = S$. S называется суммой ряда.

Определение 1.9. Ряд $\sum\limits_{j=1}^{\infty}x_j$ называется cxodsumuscs абсолютно, если $\sum\limits_{j=1}^{\infty}\|x_j\|$ сходится.

Замечание 1.10. Из абсолютной сходимости не следует обычная сходимость.

 S_n сходится $\iff |S_n - S_m| \to 0$. Пусть $C_n = \sum_{j=1}^n \|x\|$. C_n сходится $\iff |C_n - C_m| \to 0$. Если мы хотим, чтобы сходимость S_n была равносильна $\|S_n - S_m\| \to 0$, то нам нужна полнота пространства.

Определение 1.11. Полное линейное нормированное пространство называется банаховым пространством (в честь польского математика Стефана Банаха).

Примеры 1.12.

- Евклидово пространство: \mathbb{R}^n с нормой $\|x\| = |x| = \sqrt[n]{|x_1|^2 + \ldots + |x_n|^2}$ то же, что ℓ_n^2 с нормой $\|\cdot\|_2$;
- $\ell_n^1 = (\mathbb{R}^n, \|\cdot\|_1)$, где $\|x\|_1 = |x_1| + \ldots + |x_n|$;
- $\ell_n^\infty=(\mathbb{R}^n,\|\cdot\|_\infty)$, где $\|x\|_\infty=\max_{1\leqslant j\leqslant n}|x_j|;$
- $\ell_n^p = (\mathbb{R}^n, \|\cdot\|_p, \|x\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}, p \geqslant 1;$
- $C(\overline{\Omega})$ с нормой $\|x\|=\max_{\mathbf{t}\in\overline{\Omega}}|x(\mathbf{t})|$, где Ω область в \mathbb{R}^m . $\overline{\Omega}$ замыкание Ω . Ясно, что $\overline{\Omega}$ компакт в \mathbb{R}^m .

Упражнение 1.13. Верно ли, что $\|x\|_p \xrightarrow[p \to \infty]{} \|x\|_\infty$?

Теорема 1.14. Пространство $C(\overline{\Omega})$ полно.

Доказательство. Рассмотрим фундаментальную последовательность $\mathbf{x}_{\mathbf{n}} \in C(\overline{\Omega}).$

$$\forall \epsilon > 0 \exists N : \forall k, n > N \|x_k - x_n\| = \max_{t \in \overline{\Omega}} |x_n(t) - x_k(t)| < \epsilon$$

Возьмём $t\in\overline{\Omega}.$ $\{x_n(t)\}$ — числовая последовательность. Тогда получаем $|x_n(t)-x_k(t)|<\epsilon,$ отсюда $\{x_n(t)\}$ — фундаментальна, значит существует $\lim_{n\to\infty}x_n(t)=x(t).$

Проверим, что $\max_{t \in \overline{\Omega}} |x_n(t) - x(t)| \xrightarrow[n \to \infty]{} 0$, т. е. $x_n \stackrel{n \to \infty}{\rightrightarrows} x$ на $\overline{\Omega}$. Заметим, что $\forall k, n > N$ $|x_k(t) - x_n(t)| < \varepsilon \implies |x(t) - x_n(t)| \leqslant \varepsilon$.

Почему же x непрерывна? Потому что равномерный предел непрерывных функций непрерывен.

Пусть $[a,b] \subset \mathbb{R}$. Рассмотрим пространство дифференцируемых функций $C^1[a,b]$. Какую норму на нём выбрать?

- $\bullet \ \phi_1(x) = \max_{t \in [\mathfrak{a}, \mathfrak{b}]} |x(t)|;$
- $\varphi_2(x) = \max_{t \in [a,b]} |x'(t)|;$
- $\varphi_3(x) = \varphi_1(x) + \varphi_2(x)$;
- $\bullet \ \phi_4(x) = |x(\alpha)| + \max_{t \in [\alpha, b]} |x'(t)|.$

Заметим, что ϕ_2 нормой вообще не является, а ϕ_1 не даёт полноты пространства.

Теорема 1.15. 1. Пространство $(C^1[a,b], \varphi_1)$ не полно.

2. Пространство $(C^1[\mathfrak{a},\mathfrak{b}],\phi_3)$ полно.

Доказательство. Докажем первое утверждение.

Первый аргумент. х — производная непрерывная на [a,b], негладкая. По теореме Вейерштрасса для любого $\varepsilon>0$ существует многочлен P такой, что $\max_{[a,b]}|P-x|<\varepsilon$

Второй аргумент. Пусть $[a,b]=[-1,1],\ x(t)=|t|\notin C^1[a,b],\ x^{\epsilon}(t)=|t|^{1+\epsilon}\in C^1[a,b].$ $\max|x(t)-x^{\epsilon}(t)|\xrightarrow[\epsilon\to 0]{}0.$

Для доказательства второго утверждения возьмём $x_n \in C^1[a,b]$ — последовательность, фундаментальную относительно ϕ_3 .

$$\phi_3(x_n-x_k)\xrightarrow[n,k\to\infty]{}0\implies egin{cases} \phi_1(x_n-x_k) o 0\ \phi_2(x_n-x_k) o 0 \end{cases} \implies \exists x\in C[a,b],y\in C[a,b] \ egin{cases} \phi_1(x_n-x) o 0 &\iff x_n \Rightarrow x \ \text{на}\ [a,b]\ \phi_1(x_n'-y) o 0 &\iff x_n' \Rightarrow y \ \text{нa}\ [a,b] \end{cases} \implies x\in C^1[a,b],x'=y \ \end{cases}$$
 Отсюда $\phi_3(x_n-x) o 0$

2 Пространства Лебега

Неравенство Гёльдера

Рассмотрим (T,μ) — пространство с мерой, x,y — измеримые функции, и числа p,q>0 — сопряжённые показатели, т. е. $\frac{1}{p}+\frac{1}{q}=1$. Тогда верно неравенство:

$$\int\limits_T |x(t)y(t)|\,d\mu(t) \leqslant \left(\int\limits_T |x(t)|^p\,d\mu(t)\right)^{\frac{1}{p}} \left(\int\limits_T |y(t)|^q\,d\mu(t)\right)^{\frac{1}{q}}$$

Неравенство Минковского

Если (T,μ) — пространство с мерой, x,y — измеримые функции, $p\geqslant 1$, то верно неравенство:

$$\left(\int\limits_T |x(t)|^p \ d\mu(t)\right)^{\frac{1}{p}} + \left(\int\limits_T |y(t)|^q \ d\mu(t)\right)^{\frac{1}{q}} \geqslant \int\limits_T |x(t)y(t)| d\mu(t)$$

Обозначение: $\|x\|_p = (\int\limits_T |x|^p)^{\frac{1}{p}}$.

Замечание 2.1. Частный случай — p=q=2. Тогда неравенство Гёльдера оказывается неравенством Коши-Буняковского-Шварца:

$$\int\limits_T |x(t)|\cdot |y(t)|\,d\mu(t)\leqslant \left(\int\limits_T |x(t)|^2\,d\mu(t)\right)^{\frac{1}{2}} \biggl(\int\limits_T |y(t)|^2\,d\mu(t)\biggr)^{\frac{1}{2}}$$

Замечание 2.2. Пусть $T=\mathbb{N}$, и если $M\subset\mathbb{N}$, то $\#M=\operatorname{card} M$ — количество элементов M — будет мерой. Рассмотрим функцию $x:\mathbb{N}\to k$, где k — некоторое поле скаляров. Мы помним, что функция из натуральных чисел называется последовательностью. Как можно

вычислять $\int\limits_{\mathbb{N}} x(n) \mathrm{d} \#(n)$? Ясно, что такой интеграл — это ряд $\sum\limits_{n \in \mathbb{N}} x(n)$, а суммируемые функции в этом случае будут абсолютно сходящимися рядами. Неравенство Гёльдера будет выглядеть так:

$$\sum_{n\in\mathbb{N}}|x_n||y_n|\leqslant \bigg(\sum_{n\in\mathbb{N}}|x_n|^p\bigg)^{\frac{1}{p}}\bigg(\sum_{n\in\mathbb{N}}|y_n|^p\bigg)^{\frac{1}{p}}$$

А неравенство Минковского — так:

$$\left(\sum_{\mathbf{n}\in\mathbb{N}}|x_{\mathbf{n}}|^{p}\right)^{\frac{1}{p}}+\left(\sum_{\mathbf{n}\in\mathbb{N}}|y_{\mathbf{n}}|^{p}\right)^{\frac{1}{p}}\geqslant\left(\sum_{\mathbf{n}\in\mathbb{N}}|x_{\mathbf{n}}||y_{\mathbf{n}}|\right)^{\frac{1}{p}}$$

Определение 2.3. Пространство Лебега $\mathcal{L}^p(\mathsf{T},\mu)$ — это множество $\{x \mid \int\limits_\mathsf{T} |x|^p \, \mathrm{d}\mu < \infty\}$. Оно линейно: $x,y \in \mathcal{L}^p \implies x+y \in \mathcal{L}^p$ и $\lambda y \in \mathcal{L}^p$

Заметим, что $\|x\|_p=\left(\int\limits_T|x|^pd\mu\right)^{\frac{1}{p}}-$ полунорма на $\mathcal{L}^p(T,\mu).$ Если $\|x\|_p=0$, то x=0 почти везде.

Чтобы получить норму, введём следующее отношение эквивалентности:

$$x_1 \sim x_2$$
 если $x_1 - x_2 = 0$ почти везде.

Тогда

$$\mathcal{L}^{p}(T, \mu) /_{\sim} = L^{p}(T, \mu)$$

— это настоящее пространство Лебега. В дальнейшем мы будем считать функции, отличающиеся на множестве меры нуль, одинаковыми.

Замечание 2.4. Пусть $T \subset \mathbb{R}^n$, $\mu = \lambda$ — мера Лебега. Тогда будем обозначать $L^p(T, \mu) = L^p(T)$.

Теорема 2.5. Пространство $L^p(T, \mu)$ полно при $p \geqslant 1$.

Пример 2.6. Рассмотрим $L^2(0,+\infty)$ и $L^1(0,+\infty)$. Какое из этих пространств является вложением в другое? Возьмём функцию $x(t)=\frac{1}{t+1}$.

$$\int_{0}^{\infty} \frac{1}{t+1} dt = \infty$$

$$\int\limits_{0}^{\infty}\frac{1}{(t+1)^{2}}dt<\infty$$

Отсюда видно, что $L^2(0,+\infty) \not\subset L^1(0,+\infty)$. Легко придумать и пример, доказывающий отсутствие включения в обратную сторону.

Теорема 2.7 (О вложенности пространств L^p). Пусть $1 \leqslant p_1 < p_2 \leqslant \infty$. Тогда:

- 1. $\ell^{p_1} \subset \ell^{p_2}$.
- 2. Если (T,μ) пространство с мерой, $\mu(T)<\infty$, то $L^{p_1}(T,\mu)\supset L^{p_2}(T,\mu)$

Доказательство.

1. Пусть $x=(x_1,x_2,x_3,\ldots)$. Хотим проверить, что $x\in \ell^{p_1}\implies x\in \ell^{p_2}.$

$$\sum_{j=1}^{\infty} |x_j|^{p_1} < \infty \implies \exists N \quad \forall j > N \quad |x_j| < 1 \implies |x_j|^{p_1} < |x_j|^{p_2}$$

$$\sum_{j=N+1}^{\infty}|x_j|^{p_1}>\sum_{j=N+1}^{\infty}|x_j|^{p_2}\implies\sum_{j=1}^{\infty}|x_j|^{p_2}<\infty\implies x\in\ell^{p_2}$$

2. Для доказательства второго пункта достаточно применить неравенство Гёльдера.

3 Непрерывность. Сжимающее отображение

Определение 3.1. Возьмём отображение $F: X \to Y$, где X и Y — линейные нормированные пространства. F называется непрерывным в точке x_0 , если:

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \forall x: \|x - x_0\| < \delta \quad \|F(x) - F(x_0)\| < \epsilon$$

F называется непрерывным, если оно непрерывно во всех точках X.

Пример 3.2. $X=Y=C[0,1], \ \|x\|_{C[0,1]}=\max_{t\in[0,1]}|x(t)|.$ Рассмотрим отображение $(F(x))(t)=\int\limits_0^tx(s)\,ds$ и докажем, что оно непрерывно.

$$\|F(x_1) - F(x_2)\| = \max_{t \in [0,1]} \left| \int_0^t x_1(s) \, ds - \int_0^t x_2(s) \, ds \right| \le$$

$$\leqslant \max_{\mathbf{t} \in [0,1]} \int_{0}^{\mathbf{t}} |x_{1}(s) - x_{2}(s)| \, ds \leqslant \max_{\mathbf{t} \in [0,1]} \mathbf{t} \cdot ||x_{1} - x_{2}|| = ||x_{1} - x_{2}||$$

 Δ остаточно взять $\delta = \varepsilon$ и всё доказано.

Определение 3.3. Отображение $F: X \to Y$ называется липшицевым, если существует такое C, что для всех $x_1, x_2 \in X$ выполнено $\|F(x_1) - F(X_2)\| \leqslant C \cdot \|x_1 - x_2\|$

Заметим, что из липшицевости отображения следует его непрерывность. Достаточно взять $\delta = \frac{\varepsilon}{C}$.

Определение 3.4. Отображение $F: X \to Y$ называется сжимающим, если существует такое $\gamma < 1$, что $\forall x_1, x_2 \in X$ выполнено $\|F(x_1) - F(x_2)\| \leqslant \gamma \|x_1 - x_2\|$.

Теорема 3.5 (Банаха о неподвижной точке). Если пространство X — полное, а отображение F — сжимающее, то существует единственный элемент $x_* \in X$ такой, что $F(x_*) = x_*$. Этот элемент называется неподвижной точкой.

Доказательство. Докажем существование. Возьмём траекторию точки х₁:

$$x_1,\underbrace{F(x_1)}_{x_2},\underbrace{F(F(x_1))}_{x_3},\ldots, \text{ T. e. } x_{n+1}=F(x_n)$$

$$\|x_{n+1} - x_n\| = \|F(x_n) - F(x_{n-1})\| \leqslant \gamma \|x_n - x_{n-1}\| \leqslant \gamma^2 \|x_{n-1} - x_{n-2}\| \leqslant \ldots \leqslant \gamma^{n+1} \underbrace{\|x_2 - x_1\|}_{\alpha}$$

Таким образом, при m > n:

$$\begin{split} \|x_m-x_n\| \leqslant \|x_m-x_{m-1}\| + \|x_{m-1}-x_{m-2}\| + \ldots + \|x_{n+1}-x_n\| \leqslant \alpha \gamma^{m-2} + \alpha \gamma^{m-3} + \ldots + \\ + \alpha \gamma^{n-1} \leqslant \sum_{i=n-1}^{\infty} \alpha \gamma^i = \alpha \gamma^{n-1} \frac{1}{1-\gamma} \xrightarrow[n \to \infty]{} 0 \end{split}$$

Отсюда получаем, что $\{x_n\}$ фундаментальна, а значит существует $\lim_{n\to\infty} x_n$. Обозначим его за x_* . Ясно, что это и будет неподвижная точка.

Докажем единственность. Пусть x_* и x^* — две неподвижные точки. Тогда:

$$\underbrace{\|F(x_*) - F(x^*)\|}_{\leq \gamma \|x_* - x^*\|} = \|x_* - x^*\|$$

Отсюда $||x_* - x^*|| = 0$, что и требовалось.

Теорема 3.6. Пустъ пространство X — полное, $F: X \to X$ и существует n такое, что F^n — сжимающее. Тогда существует единственная точка x_* такая, что $F(x_*) = x_*$.

Доказательство. Если F^n сжимающее, то существует (и единственна) неподвижная точка: $F^n(x_*) = x_*$. Условие теоремы подразумевает, что если F переводит точку x_* в некоторую точку x_1 , которую, в свою очередь, переводит в x_2 , то через n итераций точка x_{n-1} снова переходит в x_* . Отсюда следует, что точки x_1, \ldots, x_{n-1} — тоже неподвижные точки F^n . Но по теореме Ванаха такая точка у F^n только одна, следовательно, $x_* = x_1 = x_2 = \ldots = x_{n-1}$. \square

Пример 3.7 (Интегральное уравнение Фредгольма I рода). Пусть нам даны функции K(s,t) и a(t). Мы хотим найти функцию x(t), удовлетворяющую уравнению:

$$x(t) = a(t) + \int_{s_1}^{s_2} K(s, t)x(s) ds$$

Будем рассматривать частный случай, в котором $K \in C([0,1] \times [0,1]), \ \alpha \in C[0,1].$ Задача — найти $x \in C[0,1]$ такое, что

$$x(t) = a(t) + \int_{0}^{t} K(s, t)x(s) ds$$

Предложение 3.8. Это уравнение имеет единственное решение.

Доказательство. Рассмотрим отображение $F: C[0,1] \to C[0,1]$.

$$(F(x))(t) = a(t) + \int_{0}^{t} K(s,t)x(s) ds$$

Заметим, что оно, вообще говоря, не является сжимающим. Рассмотрим также $(F_0(x))(t) = \int\limits_0^t K(s,t)x(s)\,ds$.

Обратим внимание на несколько важных свойств:

•
$$F_0(x) - F_0(y) = F_0(x - y)$$

•
$$F(x) - F(y) = F_0(x) - F_0(y)$$

•
$$F^n(x) - F^n(y) = F(F^{n-1}(x) - F^{n-1}(y)) = F_0(F^{n-1}(x)) - F_0(F^{n-1}(y)) = F_0(F^{n-1}(x) - F^{n-1}(y)) = F_0^n(x-y)$$

$$(F_0(x-y))(t) = \int_0^t K(s_1,t)(x(s_1)-y(s_1)) ds_1$$

$$(F_0^2(x-y))(t) = \int_0^t K(s_2,t) \int_0^{s_2} K(s_1,s_2)(x(s_1)-y(s_1)) ds_1 ds_2$$

$$\cdots$$

$$(F_0^n(x-y))(t) = \int_0^t K(s_n,t) \int_0^{s_n} K(s_{n-1},s_n) \int_0^{s_{n-1}} \dots \int_0^{s_2} K(s_1,s_2)(x(s_1)-y(s_1)) ds_1 ds_2 \dots ds_n$$

Получаем:

$$\|F_0^n(x-y)\| = \max_{t \in [0,1]} |(F_0^n(x-y))(t)| \leqslant M^n \|x-y\| \max_{t \in [0,1]} \int_0^t \int_0^{s_n} \int_0^{s_{n-1}} \dots \int_0^{s_3} \int_0^{s_2} ds_1 \, ds_2 \dots \, ds_n \leqslant \frac{M^n}{n!} \|x-y\|$$

Здесь $M=\max |\mathsf{K}|$. Коэффициент $\frac{M^n}{n!}$ стремится к нулю, а это значит, что F^n_0 — сжимающее, следовательно, существует неподвижная точка.

Пример 3.9. Допустим, что мы хотим решить дифференциальное уравнение y'(t) = a(t)y(t) + b(t), $y(0) = y_0$, $a,b \in C[0,1]$ на промежутке [0,1]. Это уравнение имеет единственное решение $y \in C^1[0,1]$. Как это доказать? Рассмотрим интегральное уравнение:

$$x(t) = \int_{0}^{t} a(s)x(s) ds + B(t)$$

По предыдущей теореме существует $x \in C[0,1]$, решающее это уравнение. Для этого уравнения также верны утверждения:

•
$$x'(t) = a(t)x(t) + b(t)$$
, rae $b(t) = B'(t)$;

•
$$x(0) = B(0)$$
.

Для решения исходной задачи достаточно выбрать B такое, что B'=b и $B(0)=y_0$. Откуда взять непрерывную дифференцируемость y?

$$b \in C[0,1] \implies B \in C^{1}[0,1],$$

$$x \in C[0,1], \ a \in C[0,1] \implies \int_{0}^{t} xa \in C^{1}[0,1]$$

Таким образом всё доказано.

4 Линейные операторы

Определение 4.1. Пусть X, Y — линейные нормированные пространства над одним полем скаляров. Отображение $U: X \to Y$ называется линейным, если:

1.
$$U(x_1 + x_2) = U(x_1) + U(x_2) \ \forall x_1, x_2 \in X$$

2.
$$U(\lambda x) = \lambda U(x)$$
, где λ — скаляр, $x \in X$

Замечание 4.2. Ясно, что выполнение обоих этих свойств равносильно $U(\lambda_1x_1+\lambda_2x_2)=\lambda_1U(x_1)+\lambda_2U(x_2).$

Замечание 4.3. В дальнейшем будем обозначать U(x) как U_x .

Предложение 4.4 (Свойства линейных отображений).

1.
$$U(0) = 0$$
;

2.
$$U(\sum_{j=1}^{n} \lambda_j x_j) = \sum_{j=1}^{n} \lambda_j U_{x_j};$$

- 3. Если $M \subset X$ линейное множество, то множество U(M) линейно в Y. Если $M \subset X$ выпуклое множество, то множество U(M) выпукло в Y;
- 4. Если $N \in Y$ линейное (выпуклое), то $U^{-1}(N)$ линейное (выпуклое). Частный случай: если $N = \{0\}$, то множество $U^{-1}(N) = U^{-1}(\{0\}) = \text{Ker } U$ линейное в X;
- 5. Ker $U = \{0\} \iff U$ инъективно;
- 6. Если U -линейная биекция, то U^{-1} линейное;
- 7. Пусть $U_1, U_2 : X \to Y$ линейные. Тогда $U_1 + U_2$, λU_1 тоже линейны;
- 8. Если $X \xrightarrow{U} Y \xrightarrow{V} Z$, то композиция $V \circ U$ линейна.

Определение 4.5. Множество M называется выпуклым, если для любых $x_1, x_2 \in M$ отрезок $[x_1, x_2]$ лежит в M.

Доказательство предложения. Докажем выпуклость в свойстве 3.

$$\begin{aligned} y_1, y_2 \in U(M) &\implies \exists x_1, x_2 \in M: \ U_{x_1} = y_1, \ U_{x_2} = y_2 \\ \lambda y_1 + (1 - \lambda)y_2 &= \lambda U_{x_1} + (1 - \lambda)U_{x_2} = U(\underbrace{\lambda x_1 + (1 - \lambda)x_2}_{\in M}) \in U(M) \end{aligned}$$

В свойстве 4:

$$\begin{split} x_1, x_2 \in U^{-1}(N) \implies U_{x_1}, U_{x_2} \in N \implies \forall \lambda_1, \lambda_2 \quad \lambda_1 U_{x_1} + \lambda_2 U_{x_2} \in N \implies \\ & \implies U(\lambda_1 x_1 + \lambda_2 x_2) \in N \implies \lambda_1 x_1 + \lambda_2 x_2 \in U^{-1}(N) \end{split}$$

В свойстве 6 биективность U означает, что $\forall y_1,y_2 \; \exists x_1,x_2$ такие, что $U_{x_1}=y_1,\; U_{x_2}=y_2.$ Отсюда $U^{-1}(y_1+y_2)=U^{-1}(U_{x_1}+U_{x_2})=U^{-1}(U(x_1+x_2))=x_1+x_2=U^{-1}(x_1)+U^{-1}(x_2).$ Доказательства остальных свойств тривиальны.

Теорема 4.6 (Эквивалентные условия непрерывности линейного отображения). Пусть $U: X \to Y$ — линейный оператор. Тогда следующие утверждения эквивалентны:

- 1. U непрерывен;
- 2. Ц непрерывен в нуле;
- 3. Образ любого ограниченного множества ограничен;
- 4. Существует C такое, что $\forall x \in X$ выполняется $\|U_x\|_Y = C\|x\|_X.$

Доказательство.

- $1 \Rightarrow 2$. Тривиально.
- $4 \Rightarrow 1$. $\|U_{x_1} U_{x_2}\| \leqslant C \|x_1 x_2\|$. Это влечёт липшицевость и, как следствие, непрерывность.