

Exercise 10A

Question 17:

Given: A \triangle ABC in which AD is a median and E is the mid – point of AD

To Prove:
$$\operatorname{ar}(\Delta \mathsf{BED}) = \frac{1}{4}\operatorname{ar}(\Delta \mathsf{ABC})$$

Proof: Since, $\operatorname{ar}(\Delta \mathsf{ABD}) = \operatorname{ar}(\Delta \mathsf{ACD})$ [: AD is the median]
i.e. $\operatorname{ar}(\Delta \mathsf{ABD}) = \frac{1}{2}\operatorname{ar}(\Delta \mathsf{ABC})$ (1)
 $\left[\because \operatorname{ar}(\Delta \mathsf{ABC}) = \operatorname{ar}(\Delta \mathsf{ABD}) + \operatorname{ar}(\Delta \mathsf{ADC}) \right]$
Now, as BE is the median of $\Delta \mathsf{ABD}$
 $\operatorname{ar}(\Delta \mathsf{ABE}) = \operatorname{ar}(\Delta \mathsf{ABD})$ (2)
Since $\operatorname{ar}(\Delta \mathsf{ABD}) = \operatorname{ar}(\Delta \mathsf{ABE}) + \operatorname{ar}(\Delta \mathsf{BED})$ (3)
 $\therefore \operatorname{ar}(\Delta \mathsf{BED}) = \operatorname{ar}(\Delta \mathsf{ABE})$ [from (2)]
 $= \frac{1}{2}\operatorname{ar}(\Delta \mathsf{ABD})$ [from (2) and (3)]
 $= \frac{1}{2}\left[\frac{1}{2}\operatorname{ar}(\Delta \mathsf{ABC})\right]$ [from (1)]
 $= \frac{1}{4}\operatorname{ar}(\Delta \mathsf{ABC})$

Question 18:

Given: A △ ABC in which E is the mid – point of line segment AD where D is a point on BC.

To Prove:
$$ar(\Delta BEC) = \frac{1}{2}ar(\Delta ABC)$$

Proof: Since BE is the median of Δ ABD

So,
$$ar(\Delta BDE) = ar(\Delta ABE)$$

$$\therefore \qquad \text{ar}(\Delta BDE) = \frac{1}{2} \text{ar}(\Delta ABD) \qquad \dots (i)$$

As, CE is median of △ADC

So,
$$ar(\Delta CDE) = \frac{1}{2}ar(\Delta ACD)$$
(ii)

Adding (i) and (ii), we get

$$\begin{split} \text{ar}(\Delta \text{BDE}) + \text{ar}(\Delta \text{CDE}) &= \frac{1}{2} \text{ar} \left(\Delta \text{ABD} \right) + \frac{1}{2} \text{ar} \left(\Delta \text{ACD} \right) \\ \text{ar}(\Delta \text{BEC}) &= \frac{1}{2} \left[\text{ar} \left(\Delta \text{ABD} \right) + \text{ar} \left(\Delta \text{ACD} \right) \right] \\ &= \frac{1}{2} \text{ar} \left(\Delta \text{ABC} \right). \end{split}$$

********* FND *******