

Elementy i układy elektroniczne (UKEL)

Prowadzenie: dr inż. Daniel Gryglewski pok.549 i 533

Daniel.Gryglewski@pw.edu.pl lub D.Gryglewski@ire.pw.edu.pl

INNE elementy idealne – kondensator (pojemność) element gromadzący energię w polu elektrycznym

$$q = Cu_C$$

$$i_{C} = \frac{dq}{dt} = C \frac{du_{C}}{dt}$$

+Q -Q

$$C = \varepsilon_r \varepsilon_0 \frac{S}{d}$$

Ładunek elektryczny [C]

Pojemność [F]

Jeśli
$$u_c = const$$

$$i_C = 0$$

Dla prądu stałego DC kondensator stanowi rozwarcie!!!

Kondensator dąży do utrzymania stałego napięcia!!!

Szeregowe i równoległe łączenie KONDENSATORÓW

W przypadku połączenia równoległego - pojemności dodają się

Pojemność zastępcza

$$C_{zast} = C_1 + C_2 + ... + C_N$$

W przypadku połączenia szeregowego, dodają się odwrotności pojemności

$$C_1$$
 C_2 C_n

$$\frac{1}{C_{zast}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_N}$$

W wypadku tylko dwóch kondensatorów:

$$C_{zast} = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

Kondensatory

Kondensator – element elektryczny (elektroniczny), zbudowany z

dwóch przewodników (okładek) rozdzielonych dielektrykiem. Doprowadzenie napięcia do okładek kondensatora powoduje zgromadzenie się na nich ładunku elektrycznego.

Kondensator charakteryzuje pojemność określająca zdolność kondensatora do gromadzenia ładunku: C=Q/U gdzie:

C – pojemność, w faradach [F]

Q – ładunek zgromadzony na jednej okładce, w kulombach [C]

U – napięcie elektryczne między okładkami, w woltach [V].

Jeden farad to bardzo duża jednostka, dlatego w praktyce spotyka się kondensatory o pojemnościach piko-, nano-, mikro- i milifaradów (pF, nF, uF, mF).

Podstawowe parametry: pojemność, maksymalne napięcie

Symbole kondensatorów

a – stały,

b – nastawczy/trymer,

c – elektrolityczne,

d – zmienne.

Rodzaje kondensatorów

Podział kondensatorów:

- Ze względu na zastosowanie:
- stały
- zmienne
 - strojeniowe,
 - dostrojcze/trymery
 - Ze względu na typ dielektryka:
- Powietrzne,
- ceramiczne,
- foliowe,
- **Papierowe**
- elektrolityczne (dielektrykiem jest elektrolit tlenek aluminium, tantal) Uwaga: kondensatory elektrolityczne mają określoną biegunowość +/-, co oznacza że dołączenie odwrotnego napięcia może go uszkodzić.

ELEKTROLITYCZNE

zmienny

KONDENSATORY

CERAMICZNE

trymery

FOLIOWE

Oznaczenia kodowe kondensatorów

Capacitance Conversion Values Microfarads (µF) Nanofarads (nF) Picofarads (pF) 0.000001 µF 0.001 nF 1 pF 0.00001 µF 10 pF 0.01 nF 0.0001 µF 100 pF 0.1 nF 1,000 pF 0.001 µF 1 nF $0.01 \, \mu F$ 10,000 pF 10 nf 100 nF 100,000 pF $0.1 \mu F$ 1,000,000 pF 1 µF 1,000 nF 10,000 nF 10,000,000 pF 10 µF 100,000,000 pF 100 µF 100,000 nF

Max. Operating Voltage

Code	Max. Voltage
1H	50V
2A	100∨
2T	150V
2D	200V
2E	250V
2G	400V
2J	630V

Tolerance

Code	Percentage
В	± 0.1 pF
С	±0.25 pF
D	±0.5 pF
F	±1%
G	±2%
Н	±3%
J	±5%
K	±10%
M	±20%
Z	+80%, -20%

103 - 10 x 10³ = 10.000pF = 10nF 472 - 47 x 10² = 4700pF = 4,7nF 684 - 68 x 10⁴ = 680000pF = 680nF

kod	pojemność	pojemność
0,5	0,5pF	0,5pF
1,5	1,5pF	1,5pF
15	15pF	15pF
151	150pF	150pF
152	1500pF	1,5nF
103	10000pF	10nF
154	150000pF	150nF
155	1500000pF	1,5µF
156	15000000pF	15µF
157	150000000pF	150µF
158	1500000000pF	1,5mF
159	1500000000pF	15mF

Kondensatory – Energia zgromadzona i Moc

Kondensator gromadzi energię w postaci pola elektrycznego:

$$E = \int_{0}^{0} q(u)du = \frac{1}{2}q \cdot u = \frac{1}{2}C \cdot u^{2} = \frac{1}{2}\frac{q^{2}}{u}$$

Moc tracona w idealnym kondensatorze:

$$P = 0$$

Dla pobudzenia sinusoidalnego:

$$u(t) = U_0 \cdot \sin(\omega t) \qquad \qquad \varphi = -90^{\circ}$$

$$i = C \cdot \frac{du}{dt} \qquad \qquad \downarrow i(t) = C \frac{du}{dt} = U_0 \ \omega C \cdot \cos(\omega t) = U_0 \ \omega C \cdot \sin(\omega t + 90^{\circ})$$

$$i(t) = I_0 \ \omega C \cdot \cos(\omega t) = I_0 \ \omega C \cdot \sin(\omega t + 90^{\circ}) \qquad \qquad \frac{I_0}{U_0} = \omega C$$

$$P_{\pm r} = \frac{1}{T} \int_0^T p(t) \ dt = \frac{1}{2} U_0 I_0 \cos(\varphi) = \frac{1}{2} U_0 I_0 \cos(-90^\circ) = 0$$

- Prąd wyprzedza napięcie o 90°.
- Amplitudy (tak samo jak wartości skuteczne) prądu i napięcia związane są zależnością:

INNE elementy idealne – indukcyjność (cewka) element gromadzący energię w polu magnetycznyn

to

Strumień magnetyczny skojarzony ze wszystkimi zwojami cewki [Wb]

Jeśli $i_i = const$

$$u_L = \frac{d\Psi}{dt} = L \frac{di_L}{dt}$$

cewka liniowa

Indukcyjność (własna) [H]

$$L = \frac{\mu_0 \,\mu_r \, n^2 S}{I},$$

Dla prądu stałego DC indukcyjność stanowi zwarcie!!!

Indukcyjność dąży do utrzymania stałego prądu!!!

 $u_1 = 0$

Szeregowe i równoległe łączenie CEWEK

W przypadku połączenia szeregowego - indukcyjności

dodają się

Indukcyjność zastępcza

$$L_1$$
 L_2 L_n

$$L_{zast} = L_1 + L_2 + \dots + L_N$$

W przypadku połączenia równoległego, dodają się odwrotności indukcyjności

$$\underbrace{}^{\circ}$$
 L_1
 L_2
 L_n

$$\frac{1}{L_{zast}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$$

W wypadku tylko dwóch cewek:

$$L_{zast} = \frac{L_1 \cdot L_2}{L_1 + L_2}$$

Uwaga: Powyższe zależności są prawdziwe, gdy pola magnetyczne cewek nie oddziałują na siebie

Szeregowe i równoległe łączenie CEWEK

W przypadku połączenia szeregowego - indukcyjności

dodają się

Indukcyjność zastępcza

$$L_1$$
 L_2 L_n

$$L_{zast} = L_1 + L_2 + \dots + L_N$$

W przypadku połączenia równoległego, dodają się odwrotności indukcyjności

$$\underbrace{}^{\circ}$$
 $\underbrace{}^{\circ}$
 $\underbrace{}^$

$$\frac{1}{L_{zast}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$$

W wypadku tylko dwóch cewek:

$$L_{zast} = \frac{L_1 \cdot L_2}{L_1 + L_2}$$

Uwaga: Powyższe zależności są prawdziwe, gdy pola magnetyczne cewek nie oddziałują na siebie

Cewki

W układach elektronicznych cewki są stosowane w obwodach rezonansowych, filtrach i układach sprzęgających Cewką nazywamy zwojnicę, której podstawowym parametrem jest indukcyjność.

Cewki dzielimy na:

- bezrdzeniowe (powietrzne)
- lub z rdzeniem ferromagnetycznym

Cewki mogą być: jednowarstwowe, wielowarstwowe, cylindryczne, płaskie, toroidalne

Podstawowe parametry:

- indukcyjność jednostką jest henr [H],
- maksymalny prąd.

Cewka gromadzi energię w postaci pola magnetycznego E=LI²/2 Symbol /rodzaj cewek: zmienna, z rdzeniem, stała

Cewki – Energia zgromadzona i Moc

Cewka gromadzi energię w postaci pola magnetycznego:

$$E = \int_0^{\psi} i(\psi) d\psi = \int_0^i L \cdot i \, di = \frac{1}{2} L \cdot i^2$$

Moc tracona w idealnej cewce

$$P = 0$$

Dla pobudzenia sinusoidalnego:

$$i(t) = U_0 \cdot \sin(\omega t)$$
 $\varphi = 90^\circ$

$$u = L \cdot \frac{di}{dt} \qquad \Box \qquad \qquad u(t) = L \frac{di}{dt} = I_m \ \omega L \cdot \cos(\omega t) = I_o \ \omega L \cdot \sin(\omega t + 90^o)$$
$$u(t) = U_0 \cdot \cos(\omega t) = U_o \cdot \sin(\omega t + 90^o) \qquad \qquad \frac{U_0}{I_0} = \omega L$$

$$P_{\acute{s}r} = \frac{1}{T} \int_0^T p(t) \ dt = \frac{1}{2} U_0 I_0 \cos(\varphi) = \frac{1}{2} U_0 I_0 \cos(90^\circ) = 0$$

- Napięcie wyprzedza prąd o 90°.
- Amplitudy (tak samo jak wartości skuteczne) prądu i napięcia związane są zależnością:

Indukcyjności sprzężone:

Strumień ψ_{11} występujący w cewce pierwszej pochodzi od prądu tej cewki, a strumień ψ_{21} jest wytworzony przez cewkę drugą i przenika przez cewkę pierwszą. Podobnie strumień ψ_{22} pojawiający się w cewce drugiej pochodzi od prądu tej cewki a strumień ψ_{12} pochodzący od prądu cewki pierwszej przenika przez cewkę drugą.

$$L_1 = \frac{\Phi_{11}}{i_1}, \quad L_2 = \frac{\Phi_{22}}{i_2}$$

Indukcyjności wzajemne:

$$M_{12} = \frac{\Psi_{12}}{i_2}, M_{21} = \frac{\Psi_{21}}{i_1}$$

$$M_{12} = M_{21}$$

Współczynnik sprężenia:

$$\mathbf{k} = \frac{\mathbf{M}}{\sqrt{L_1 L_2}}$$
 $k = 0...1$

$$egin{align} u_1 &= rac{d\Psi_1}{dt} = L_1 \, rac{di_1}{dt} \pm M \, rac{di_2}{dt} \ u_2 &= rac{d\Psi_2}{dt} = L_2 \, rac{di_2}{dt} \pm M \, rac{di_1}{dt} \ \end{pmatrix}$$

Indukcyjności sprzężone:

Podstawowe tożsamości:

Transformator idealny

Przekładnia n

$$\frac{u_1}{u_2} = n = \frac{i_2}{i_1}$$

Transformator idealny jest bezstratny:

$$U_1 = \begin{cases} I_1 & n : 1 & I_2 \\ \vdots & \vdots & \vdots \\ I_2 & \vdots & \vdots \\ I_$$

$$p_1(t) = u_1(t)i_1(t) = u_2(t)i_2(t) = p_2(t)$$

Transformacja obciążenia:

Transformator jest elementem biernym, o co najmniej dwóch uzwojeniach (pierwotnym i wtórnym), który zamienia energię elektryczną, na energię zgromadzoną w polu magnetycznym, aby znów przetworzyć ją na energię elektryczną.

Wskutek zmian strumienia w OBU uzwojeniach transformatora indukują się SEM o wartości proporcjonalnej do szybkości zmian strumienia i liczby zwojów danego uzwojenia.

liczba zwojów

Przekładnia transformatora

ZRÓDŁA:

Idealne źródła napięciowe można łączyć szeregowo

Napięcie źródła zastępczego

$$U_{zast} = U_1 + U_2 + \dots + U_N$$

Łączyć równolegie można tylko w przypadku szczególnym – gdy napięcia źródeł są równe

Idealne źródła prądowe można łączyć równolegie

Prąd źródła zastępczego

$$I_{zast} = I_1 + I_2 + ... + I_N$$

Łączyć szeregowo można tylko w przypadku szczególnym – gdy prądy źródeł są równe

ZRÓDŁA RZECZYWISTE (NIE IDEALNE):

W praktyce źródła idealne (napięciowe i prądowe) nie istnieją.

Każde źródło posiada swoją rezystancję wewnętrzną (a dla prądu zmiennego – impedancję), którą można przedstawić jako dodatkowy rezystor podłączony do źródła.

W przypadku źródła napięciowego, ten dodatkowy rezystor włączamy szeregowo ze źródłem.

W przypadku źródła prądowego włączamy go równolegie.

ŹRÓDŁA NIE IDEALNE SĄ WYMIENNE

$$E = R_{W}J$$

Jak wyglądają zależności U(I) w tych przypadkach?

ZRÓDŁA RZECZYWISTE (NIE IDEALNE):

Parametry: napięcie znamionowe [V], rezystancja wyjściowa [Ω], pojemność [Ah], prąd zwarciowy [A], /maksymalny dopuszczalny prąd obciążenia [A],

LINIOWE ZRÓDŁA STEROWANE

Źródło prądowe sterowane napięciem

Źródło prądowe sterowane prądem

Źródło napięciowe sterowane napięciem

Źródło napięciowe sterowane prądem

r

NIELINIOWE ZRÓDŁA STEROWANE

Źródło prądowe sterowane napięciem

Źródło prądowe sterowane prądem

Źródło napięciowe sterowane napięciem

Źródło napięciowe sterowane prądem

Obwody elektryczne

 Prąd zawsze płynie w zamkniętym obwodzie (nawet jeśli nie płyną elektrony, to występuje prąd przesunięcia)

W każdym obwodzie można znaleźć:

 węzły, tj. miejsca w których spotykają się przewody

- oczka, tj. zamknięte pętelki

Aby "obliczyć" obwód (poznać wartości prądów płynących przez wszystkie elementy i występujące na nich spadki napięć) bardzo przydatne są dwa prawa Kirchoffa.

Pierwsze prawo Kirchoffa

Suma (natężeń) prądów wpływających do węzła jest równa sumie (natężeń) prądów zeń wypływających

Albo krócej –

Algebraiczna suma prądów w węźle jest równa zeru.

$$\sum I = 0$$

Uwaga: aby skutecznie skorzystać z pierwszego prawa Kirchoffa należy uwzględnić strzałkowanie

Drugie prawo Kirchhoffa

W obwodzie zamkniętym suma napięć na wszystkich elementach tworzących dowolnie wybrane oczko obwodu jest (w każdej chwili czasu) równa zeru

Albo krócej –

Algebraiczna suma napięć w oczku jest równa zeru.

$$\sum U = 0$$

$$u_1(t) - u_2(t) + u_3(t) + u_4(t) - u_5(t) = 0$$

Uwaga: aby skutecznie skorzystać z drugiego prawa Kirchoffa należy uwzględnić strzałkowanie

Aby obliczyć napięcia i prądy poszczególnych elementów, mamy do dyspozycji dwa prawa Kirchoffa i prawo Ohma.

W większości przypadków da się taki obwód rozpracować "po kolei" tworząc obwody równoważne

Dwa układy są równoważne z punktu widzenia ich zacisków, jeżeli zależności między napięciami i prądami związanymi z tymi zaciskami są w obu obwodach identyczne

Np. w przypadku z rys. obliczymy najpierw rezystancję zastępczą R1 i R2 (nazwijmy ją Rz1), a następnie rezystancję szeregowego połączenia Rz1 i R3.

To nam pozwoli znaleźć prąd płynący przez źródło, R3 i Rz1.

Z R3 sprawa jest prosta (prawo Ohma), natomiast znając prąd Rz1 obliczymy napięcie na tym rezystorze.

Ponieważ to samo napięcie istnieje na R1 i R2, to z prawa Ohma wyznaczymy prądy płynące przez te rezystory.

To jest tzw. Metoda redukcji obwodu, którą można wykorzystać również w bardziej złożonych obwodach

Przykład: dzielnik napięciowy

Przykład: dzielnik prądowy

Z II prawa Kirchhoffa:

$$u_{we} - u_2 - u_1 = 0$$

$$u_{\text{we}} = u_1 + u_2 = i R_1 + i R_2 = i (R_1 + R_2)$$
 \downarrow $i = \frac{u_{\text{we}}}{i(R_1 + R_2)}$

$$u_{wy} = i R_1 = \frac{R_1}{R_1 + R_2} u_{we} = \frac{G_2}{G_1 + G_2} u_{we}$$

Z I prawa Kirchhoffa:

$$i_{we} - i_1 - i_2 = 0$$

$$i_{we} = i_1 + i_2 = u G_1 + u G_2 = u (G_1 + G_2)$$
 $u = \frac{i_{we}}{(G_1 + G_2)}$

$$i_1 = u G_1 = \frac{G_1}{G_1 + G_2} i_{we} = \frac{R_2}{R_1 + R_2} i_{we}$$

Bywają również układy trudne (np. takie jak ten po prawej).

Czasami najlepszą metodą jest wtedy napisanie jak największej ilości równań dotyczących napięć w oczkach, prądów w węzłach i zależności U/I, a następnie próba rozwiązania takiego układu równań.

Ważne jest, żeby na początku "postrzałkować" sobie prądy, tak by się nie pomylić w znakach.

W przypadku źródła strzałka prądu zgodna jest ze strzałką napięcia, zaś w przypadku rezystorów strzałki są przeciwne.

$$U(R_{3})+U(R_{1})=U$$

$$U(R_{4})+U(R_{2})=U$$

$$U(R_{3})+U(R_{5})-U(R_{4})=0$$

$$U(R_{1})-U(R_{5})-U(R_{2})=0$$

$$I(R_{3})+I(R_{4})=I$$

$$I(R_{1})+I(R_{2})=I$$

$$I(R_{3})=I(R_{1})+I(R_{5})$$

$$I(R_{4})+I(R_{5})=I(R_{2})$$

$$U(R_{1})=I(R_{1})\cdot R_{1}$$
itd.

A potem wystarczy rozwiązać ten układ, aby poznać wszystkie prądy i napięcia w obwodzie...

$$U_{3} + U_{1} = U$$

$$U_{4} + U_{2} = U$$

$$U_{3} + U_{5} - U_{4} = 0$$

$$U_{1} - U_{5} - U_{2} = 0$$

$$I_{3} + I_{4} = I$$

$$I_{1} + I_{2} = I$$

$$I_{3} = I_{1} + I_{5}$$

$$I_{4} + I_{5} = I_{2}$$

$$U_{1} = I_{1} \cdot R1$$

$$U_{2} = I_{2} \cdot R2$$

$$U_{3} = I_{3} \cdot R3$$

$$U_{4} = I_{4} \cdot R4$$

$$U_{5} = I_{5} \cdot R5$$

Zawsze należy spróbować utworzyć układ równoważny o korzystniejszej strukturze, ogólnie:

Dany trójkąt szukamy gwiazdy	Dana gwiazda szukamy trójkąta
$R_1 = \frac{R_{31} R_{12}}{R_{12} + R_{23} + R_{31}}$	$R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R_3}$
$R_2 = \frac{R_{12} R_{23}}{R_{12} + R_{23} + R_{31}}$	$R_{23} = R_2 + R_3 + \frac{R_2 R_3}{R_1}$
$R_3 = \frac{R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$	$R_{31} = R_3 + R_1 + \frac{R_3 R_1}{R_2}$

Twierdzenie Thevenina:

Każdy rzeczywisty liniowy obwód aktywny można zastąpić (<u>z punktu widzenia wybranych zacisków</u>) idealnym źródłem napięciowym z szeregowo włączoną rezystancją.

2. Twierdzenie Nortona:

Każdy rzeczywisty liniowy obwód aktywny można zastąpić (z punktu widzenia wybranych zacisków) idealnym źródłem prądowym z równolegle włączoną rezystancją.

Zasada superpozycji

Jeśli w obwodzie mamy kilka źródeł, to prądy i napięcia na elementach obwodu pochodzące od poszczególnych źródeł sumują się.

Odpowiedź obwodu elektrycznego lub jego gałęzi na kilka wymuszeń (pobudzeń) równa się sumie odpowiedzi (reakcji) na każde wymuszenie z osobna.

Oznacza to, że taki obwód możemy rozwiązać "na raty", za każdym razem usuwając z niego wszystkie źródła z wyjątkiem jednego, a na koniec dodając wyniki.

Naczelną zasadą jest to, że usunięte źródło napięciowe zastępujemy **zwarciem**, a wyrzucone źródło prądowe **rozwarciem**.

UWAGA! Zasada superpozycji obowiązuje tylko w przypadku obwodów liniowych.

Metoda 1: Grupowanie źródeł

Metoda 1: Grupowanie źródeł

Obliczenia końcowe:

$$R1234 := 1.5 \text{ k}\Omega$$

$$R5 := 2 k\Omega$$

$$R6 := 6 k\Omega$$

G1234 :=
$$\frac{1}{R1234}$$

$$G5 := \frac{1}{R5}$$

$$G6 := \frac{1}{R6}$$

$$G5 = 0.5 \, \text{mS}$$

$$G6 = 0.167 \text{ mS}$$

$$G123456 = 1.333 \text{ mS}$$

$$U6 := \frac{I123}{G123456}$$

$$U6 = 7.5 \text{ V}$$

$$I6 = 1.25 \text{ mA}$$

Metoda 2: Źródło zastępcze Tevenina/Notrona

Krok 1: Wyznaczanie R₇ -> źródła napięciowe zastępujmy zwarciem, a prądowe rozwarciem

R1||R2 -> R12=500Ω
R12 + R3 + R4 -> R1234= 1.5kΩ
R1234||R5 ->
$$Rz = \frac{R1234 \cdot R5}{R1234 + R5} = 0.857 \text{ k}Ω$$

Metoda 2: Źródło zastępcze Tevenina/Notrona

Krok 2 -> Źródło zastępcze Tevenina -> Wyznaczanie E_T

$$16 = \frac{E_T}{R_2 + R6} = 1.25 \text{ mA}$$

$$U6 = R6 I6 = 7.5V$$

Metoda 2: Źródło zastępcze Tevenina/Notrona

Krok 2 -> Źródło zastępcze Nortona -> Wyznaczanie I_N

Źródło zastępcze Notrona

$$U6 = I_N \left(\frac{R_N \cdot R6}{R_N + R6} \right) = 7.5 \text{ V}$$

$$16 = \frac{U6}{R6} = 1.25 \text{ mA}$$

Metoda 3: Metoda Superpozycji

$$R5||R6 = \frac{R5 \cdot R6}{R5 + R6} = 1.5 \,k\Omega$$

$$U6 = \frac{R5||R6}{R3 + R4 + R5||R6} \,U2 = 0.6 \,U2$$

$$R2||(R3 + R4 + R5||R6) = \frac{R2 \cdot (R3 + R4 + R5||R6)}{R2 + (R3 + R4 + R5||R6)} = 0.714 \,k\Omega$$

$$U2 = \frac{R2||(R3 + R4 + R5||R6)}{R1 + R2||(R3 + R4 + R5||R6)} V1 = 6.25V$$

$$U6_{V1} = 0.6 \,U2 = 3.75V$$

Metoda 3: Metoda Superpozycji

$$R5||R6 = \frac{R5 \cdot R6}{R5 + R6} = 1.5 \ k\Omega$$

$$U2 = -\frac{R2||(R34 + R5||R6)}{R1 + R2||(R34 + R5||R6)}I2 = -2.0835V$$

$$U6 = -\frac{R5||R6}{R34 + R5||R6}U2 = -1.25V$$

$$U6_{12} = -1.25 V$$

Przykład : cd.. Metoda 3: Metoda Superpozycji

Ostatecznie:
$$U6 = U6_{V1} + U6_{I2} + U6_{I3} = 3.75 V - 1.25 V + 5 V = 7.5 V$$

$$16 = \frac{U6}{R6} = 1.25 \text{ mA}$$

Dopasowane energetyczne dla prądu stałego DC

$$P = UI$$

$$= \frac{R_L E}{R_W + R_L} \frac{E}{R_W + R_L}$$

$$= \frac{R_L E^2}{(R_W + R_L)^2}$$

$$P = UI$$

$$= \frac{R_W J}{R_W + R_L} \cdot R_L \cdot \frac{R_W J}{R_W + R_L} =$$

$$= \left(\frac{R_W J}{R_W + R_L}\right)^2 \cdot R_L$$

Dopasowane energetyczne $R_{W} = R_{L}$

$$P_{Max} = \frac{1}{4} \frac{E^2}{R_L} = \frac{1}{4} \frac{E^2}{R_W}$$

$$P_{Max} = \frac{1}{4} \cdot R_L \cdot J^2 = \frac{1}{4} \cdot R_W \cdot J^2$$

$$P_{Max} = \frac{1}{2} \cdot P_Z \to \eta = \frac{P_L}{P_Z} = 50\%$$

Przykład : Należy wyznaczyć wartość rezystora R6 tak baby wydzielała się w nim maksymalna moc oraz tę moc Pmax

Tu watro zastosować metodę zastępczego źródła Terenina lub Nortona !!!

Źródło zastępcze Tevenina

$$P_{max} \rightarrow R6 = Rz$$

$$R6 = 857 \Omega$$

$$P_{\text{max}} = \frac{1}{4} \frac{E^2}{R_6}$$

$$P_{\text{max}} = \frac{1}{4} \frac{(8.57)^2}{857}$$

$$P_{\text{max}} \approx 21.4 \text{ mW}$$

Źródło zastępcze Nortona

$$P_{\text{max}} = \frac{1}{4} \cdot R_L \cdot J^2$$

$$P_{\text{max}} = \frac{1}{4} \cdot 857 \cdot (10 \cdot 10^{-3})^2$$

$$P_{\text{max}} \approx 21.4 \ mW$$

Przykład : Należy wyznaczyć: napięcie na R4, R5, na źródle sterowanym U_F i prąd R4, R5, i F dla DC

$$E_T = \frac{R2}{R2 + R1} \cdot 10V = \frac{10k\Omega}{10k\Omega + 90k\Omega} \cdot 10V = 1V$$

$$R_T = \frac{R2 \cdot R1}{R2 + R1} + R3 = \frac{10k\Omega \cdot 90k\Omega}{10k\Omega + 90k\Omega} + 11k\Omega = 20k\Omega$$

Przykład: Należy wyznaczyć: napięcie na R4, R5, na źródle sterowanym U_F i prąd R4, R5, i βI_Z dla DC

$$I4 = (1 + \beta)I_Z = 100 \cdot 33.3 \ \mu A = 3.33 \ mA$$
 \checkmark $U4 = I4R4 = 100\Omega \cdot 3.33 \ mA = 333 \ mV$

$$I5 = \beta I_Z = 99 \cdot 33.3 \ \mu A = 3.29 mA$$

$$U5 = I5R5 = 1k\Omega \cdot 3.29 \, mA = 3.29 \, V$$

z II pr. Kirchhoffa:

$$V1 = U5 + U_F + U4$$

$$U_F = V1 - U5 - U4 = 10V - 3.29V - 0.333V = 6.37V$$