AGYEMANG ERIC MAT 450 HOMEWORK 5 Generated SAS Output

QUESTION 6

The GLM Procedure

Class Level Information				
Class	Levels	Values		
case	12	1 2 3 4 5 6 7 8 9 10 11 12		

Number of Observations Read 36

Number of Observations Used 36

Dependent Variable: worms

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	11	149.6388889	13.6035354	3.00	0.0117
Error	24	108.6666667	4.5277778		
Corrected Total	35	258.3055556			
R-Square	Coeff Var	Root MSE	worms Mean		
0.579310	58.47547	2.127858	3.638889		

Level of	N	worms		
case		Mean	Std Dev	
1	3	4.33333333	3.05505046	
2	3	3.3333333	1.15470054	
3	3	1.00000000	1.00000000	
4	3	5.00000000	1.73205081	
5	3	7.00000000	2.64575131	
6	3	3.3333333	3.51188458	
7	3	3.6666667	2.30940108	
8	3	1.6666667	1.52752523	
9	3	5.00000000	2.00000000	
10	3	2.6666667	1.52752523	
11	3	6.6666667	2.51661148	
12	3	0.00000000	0.00000000	

The SURVEYMEANS Procedure

Data Summary	
Number of Clusters	12
Number of Observations	36
Sum of Weights	13920

Statistics						
Variable	N	Mean	Std Error of Mean	95% CL for Mean		
worms	36	3.638889	0.608324	2.29997721	4.97780057	

We can also calculate the following quantities.

```
##OUESTION 16A
> #The percentage of parents who returned a consent form is given by column ybar_i in the table
meas_agg below.
> library(dplyr)
 meas_agg <-as.data.frame(measles %>%
                             group_by(`School No`= school, Mi = Mitotal, ki = mi) %>%
                             summarize(Return = sum(returnf==1, na.rm = TRUE),
                                       mi = sum(returnf!=9, na.rm = TRUE),
                                       ybar_i = Return/mi))
 meas_agg
   School No
              Mi ki Return mi
                                 ybar_i
                        19 38 0.5000000
              78 40
2
3
            238 38
                        19 36 0.5277778
           3
            261 19
                        13 17 0.7647059
4
5
6
7
8
                        18 30 0.6000000
           4 174 30
            236 30
                        12 26 0.4615385
           6 188 25
                        13 24 0.5416667
             113 23
                        15 22 0.6818182
           8
            170 43
                        21 36 0.5833333
                        23 35 0.6571429
9
           9
             296 38
                         7 17 0.4117647
10
          10 207 21
> N < -46
> n<-nrow(meas_agg)</pre>
> meas_agg$si_sg<-c(.25676,.25635,.19118,.24828,.25846,.25906,.22727,.25,.23193,.25735)
 [1] 0.25676 0.25635 0.19118 0.24828 0.25846 0.25906 0.22727 0.25000 0.23193 0.25735
  > #QUESTION 16B
> #The sampling weight for each observation is given by the "weight" column in the table
meas_agg1 below.
> meas_agg11<-as.data.frame(meas_agg %>%
                              group_by(`School No`, Mi, ki, Return, mi, ybar_i, si_sq) %>%
summarize(est_ti = Mi*Return/mi))
> ybar_r<-sum(meas_agg11[,"est_ti"])/sum(meas_agg11[, "Mi"])</pre>
 ybar_r
[1] 0.5789482
> var_ybar_r<-(1/(Mbar^2))*(((1-n/N)*(sr_squared/n))+(sum(final)/(n*N)))
> var_ybar_r
[1] 0.00138099
> meas_agg1 <-as.data.frame(meas_agg11 %>%
                              group_by(`School No`, Mi, ki, Return, mi, ybar_i, est_ti, si_sq)
%>%
                              summarize(squared_deviation = (est_ti-Mi*ybar_r)^2,
                                        final = (Mi^2)*(1-mi/Mi)*(si_sq/mi))
> attach(meas_agg1)
meas_agg1$weight<-(N/n)*(Mi/mi)</pre>
```

OUESTION 16

```
> meas_agg1
School.
              Mi ki Return mi
                                                       si_sq squared_deviation
                                                                                  final
                                                                                            weight
          No
                                   ybar_i
                                             est_ti
              78 40
                         19 38 0.5000000
                                           39.00000 0.25676
                                                                    37.9204848
                                                                                 21.08135
                                                                                            9.442105
2
             238 38
                         19 36 0.5277778 125.61111 0.25635
                                                                   148.3174465 342.34118 30.411111
3
                         13 17 0.7647059 199.58824 0.19118
                                                                  2350.5770575 716.18277 70.623529
           3 261 19
4
           4 174 30
                         18 30 0.6000000 104.40000 0.24828
                                                                    13.4176413 207.36346 26.680000
5
           5
             236 30
                         12 26 0.4615385 108.92308 0.25846
                                                                   767.7722103 492.66452 41.753846
6
           6
             188 25
                         13 24 0.5416667 101.83333 0.25906
                                                                    49.1251259 332.80575
                                                                                          36.033333
7
             113 23
                         15 22 0.6818182
                                           77.04545 0.22727
                                                                   135.1244850 106.22806 23.627273
8
                                           99.16667 0.25000
           8
             170 43
                         21 36 0.5833333
                                                                     0.5557246 158.19444 21.722222
             296
                            35 0.6571429 194.51429 0.23193
9
           9
                 38
                                                                    535.7193943 511.94240 38.902857
          10 207 21
                          7 17 0.4117647
                                                                  1197.6435659 595.38679 56.011765
10
                                           85.23529 0.25735
#QUESTION 16C
> #The overall percentage of parents who received a consent form along with a 95% CI is given
below
> sr_squared<-sum(meas_agg1[,"squared_deviation"])/(nrow(meas_agg1)-1)</pre>
> ybar_r<-sum(meas_agg1[, "est_ti"])/sum(meas_agg1[, "Mi"])</pre>
> attach(meas_agg1)
N < -46
> Mbar<-sum(Mi)/n</pre>
> var_ybar_r<-(1/(Mbar^2))*(((1-n/N)*(sr_squared/n))+(sum(final)/(n*N)))
> var_ybar_r
[1] 0.00138099
```

(0.5061113,0.6517851), As the CI required.

##confidence interval for ybar_r

> ###point estimate of percentage of parents

ybar_r-1.96*sqrt(var_ybar_r); ybar_r+1.96*sqrt(var_ybar_r)

> ybar_r [1] 0.5789482

[1] 0.5061113 [1] 0.6517851 The halysing the data as SRS, $\hat{L}_{unb} = \sum_{i \in S} \hat{u}_{i}^{i} \hat{y}_{i}^{i}$ where $\hat{u}_{ij} = \frac{Nmi}{nmi}$, $\hat{b}_{ii} + \hat{V}(\hat{t}_{unb}) = \hat{N}^{2}(1-\frac{1}{N})\frac{s_{i}^{2}}{n} + \frac{1}{N}\sum_{i \in S}(1-\frac{mi}{mi})\frac{n^{2}s_{i}^{2}}{mi}$ where $\hat{s}_{i}^{2} = \frac{1}{N-1}\sum_{i \in S}(\hat{t}_{i} - \hat{t}_{unb})^{2}$, $\hat{t}_{i}^{2} = Mi\hat{y}_{i}^{2}$ is the estimated total of \hat{p}_{su} and $\hat{s}_{i}^{2} = \frac{1}{N-1}\sum_{i \in S}(\hat{y}_{ij} - \hat{y}_{i}^{2})^{2}$

school	primber of	mi	mi	نه س	~3675
1	38	78	40	8-190	311-22
2	35	238 1	38	26.305	920-684
3	17	261	19	57-695	980.81
4	30	174	30	24.360	730.80
5	26	236	36	33.040	859.04
*	ry	188	25	31.584	7-58.616
7	22	113	23	20.635	451.965
8	3,6	170	43	16.605	597.767
9	35	296	38	J2.716	1145.05
10	17	207	2(41.400	763.8
				Total -	7461.16
	_		**	27	

- - funb = 7461.16

52 = 1 (21840 - 7461.16)2+ (6664 - 7461.16)2+ - + 6776 46

₹(funb) = 46²(1-10) 34828617 + 46 × 40593.94 = 57673089073 SE(Funb) = 5767308907.74 = 75942.80

CI = £unb ± = SE(£unb) = (7461.16±1.96(75942-80)) = [-141386.73,156304.048]

The ration Estimated variance of the Date = 87665.34

Standad variance of the Date = 5767305907.34

Estimated variance of the Date = 0.000015

Therefore the effecting of clustering vary low that is defi-

Since Mi=AT and mi=m for + i funb= I = 18 50 55B = EEG: - Junb) = m E(g: - Junb) E (558) = m & (Z(J; -J; Junb + J2) = m E(Z(J; - Junb) = m E([==iJi /Z1, --1Zn]) - mn E[gun6] = m f(Zziji /z,, --, zn) - mn f(gunb) + yu) = m f(Zzi[v(y; |z) + yiu] - mn [v(yunb) + yu) = m = [= zi [(1-m) 5:2+ = 27] -mn[m2 (1-m) 52 + 1 2 (1-m) 52 + Fu = mn & [(1-m)si2 + yin - m2(1-n)st2 m & (1-m) 52 - mn yy = m(n-1) (1-m) 25: + m [1 = 3in - yn] - m (1-m) ms = m(n-1) (1-m) = 552 + (N-1) mn-n(N-n) SSB = (n-1) (1-m) msw +(n-1) m msB 50 t(msb) = (1-m) msw + m msB = m msB+ (1-m) msxo

```
/* AGYEMANG ERIC*/
/*MAT 450 HOMEWORK */
/*Generated SAS Code*/
/*QUESTION 6*/
data worms;
do case = 1 to 12;
do can = 1 to 3;
input worms @@;
wt = (580/12)*(24/3);
output;
end;
end;
cards;
157
424
012
366
498
073
5 5 1
302
735
3 1 4
479
000
proc print data=worms;
run;
proc glm data=worms;
class case;
model worms = case;
mean case;
run;
/* Due to the 2-stage sampling, SAS do not calculate the extra term for variance */
proc surveymeans data=worms total = 580;
weight wt;
cluster case;
var worms;
```

#R-CODES

run;

##QUESTION 16A

#The percentage of parents who returned a consent form is given by column ybar_i in the table meas_agg below.

```
library(dplyr)
meas_agg <-as.data.frame(measles %>%
            group_by(`School No`= school, Mi = Mitotal, ki = mi) %>%
            summarize(Return = sum(returnf==1, na.rm = TRUE),
                 mi = sum(returnf!=9, na.rm = TRUE),
                 ybar_i = Return/mi))
meas_agg
N < -46
n<-nrow(meas_agg)</pre>
meas_agg$si_sq<-c(.25676,.25635,.19118,.24828,.25846,.25906,.22727,.25,.23193,.25735)
meas_agg$si_sq
####
#QUESTION 16B
#The sampling weight for each observation is given by the "weight" column in the table meas_agg1 below.
meas_agg11<-as.data.frame(meas_agg %>%
             group_by(`School No`, Mi, ki, Return, mi, ybar_i, si_sq) %>%
             summarize(est_ti = Mi*Return/mi))
ybar_r<-sum(meas_agg11[,"est_ti"])/sum(meas_agg11[, "Mi"])
ybar r
var_ybar_r<-(1/(Mbar^2))*(((1-n/N)*(sr_squared/n))+(sum(final)/(n*N)))
var_ybar_r
meas_agg1 <-as.data.frame(meas_agg11 %>%
             group_by(`School No`, Mi, ki, Return, mi, ybar_i, est_ti, si_sq) %>%
             summarize(squared_deviation = (est_ti-Mi*ybar_r)^2,
                  final = (Mi^2)*(1-mi/Mi)*(si sq/mi)))
attach(meas_agg1)
meas\_agg1$weight<-(N/n)*(Mi/mi)
meas_agg1
##
#QUESTION 16C
```

#The overall percentage of parents who received a consent form along with a 95% CI is given below

sr_squared<-sum(meas_agg1[,"squared_deviation"])/(nrow(meas_agg1)-1)</pre>

ybar_r<-sum(meas_agg1[,"est_ti"])/sum(meas_agg1[, "Mi"])

```
attach(meas_agg1)
N<-46

Mbar<-sum(Mi)/n
var_ybar_r<-(1/(Mbar^2))*(((1-n/N)*(sr_squared/n))+(sum(final)/(n*N)))
var_ybar_r
###point estimate of percentage of parents
ybar_r

##confidence interval for ybar_r

ybar_r-1.96*sqrt(var_ybar_r); ybar_r+1.96*sqrt(var_ybar_r)
#(0.5061113,0.6517851), As the CI
```