

Spatial Image Transformations

We talked about image transformation.

Question:

How to find the ideal affine transformation between given pair of images?

A

3

Composite Affine Transformations

Suppose a composite transformation: First translation T, next scaling S, and then rotation R.

Composite Affine Transformations

Suppose a composite transformation:

First translation T, next scaling S, and then rotation R.

$$\mathbf{H} = \mathbf{RST} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} s_{x} \cos \alpha & s_{y} \sin \alpha & s_{x} t_{x} \cos \alpha + s_{y} t_{y} \sin \alpha \\ -s_{x} \sin \alpha & s_{y} \cos \alpha & s_{y} t_{y} \cos \alpha - s_{x} t_{x} \sin \alpha \\ 0 & 0 & 1 \end{bmatrix}$$

$$(1)$$

Given **H**, five parameters should be determined: α , s_x , s_y , t_x , and t_y .

Composite Affine Transformations

Suppose a composite transformation:

First translation T, next scaling S, and then rotation R.

$$\mathbf{H} = \mathbf{RST} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} s_{x} \cos \alpha & s_{y} \sin \alpha & s_{x} t_{x} \cos \alpha + s_{y} t_{y} \sin \alpha \\ -s_{x} \sin \alpha & s_{y} \cos \alpha & s_{y} t_{y} \cos \alpha - s_{x} t_{x} \sin \alpha \\ 0 & 0 & 1 \end{bmatrix}$$

$$(1)$$

Given **H**, five parameters should be determined: α , s_x , s_y , t_x , and t_y .

One possible approach is **Point Matching.**

Point Matching

Step 1: Randomly select few matching points in both images.

Step 2: Determine matrix **H** that transform the selected points in image A to the points in image B.

Step 3: Determine parameters α , s_x , s_y , t_x , and t_y using determined **H** in Step 2 and equation (1) in previous slide.

Step 1: Randomly select few matching points in both images.

Step 2: Determine matrix **H** that transform the selected points in image A to the points in image B.

Suppose N selected points in images A and B are $\{\mathbf{p}_0, \mathbf{p}_1, ..., \mathbf{p}_{N-1}\}$ and $\{\mathbf{q}_0, \mathbf{q}_1, ..., \mathbf{q}_{N-1}\}$, successfully. Use the homogeneous coordinate representation of these points as columns of matrices \mathbf{P} and \mathbf{Q} .

$$\mathbf{P} = \begin{bmatrix} x_0 & x_1 & \dots & x_{N-1} \\ y_0 & y_1 & \dots & y_{N-1} \\ 1 & 1 & \dots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_0 & \mathbf{p}_1 & \dots & \mathbf{p}_{N-1} \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} u_0 & u_1 & \dots & u_{N-1} \\ v_0 & v_1 & \dots & v_{N-1} \\ 1 & 1 & \dots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_0 & \mathbf{q}_1 & \dots & \mathbf{q}_{N-1} \end{bmatrix}$$

$$\mathbf{Q} = \mathbf{H}\mathbf{P} \quad \Rightarrow \quad \mathbf{H} = \mathbf{Q}\mathbf{P}^{\mathrm{T}}(\mathbf{P}\mathbf{P}^{\mathrm{T}})^{-1}$$

The first two columns of the table below represent the coordinates of matching points in image A and the next two the point coordinates of image B. The corresponding matrix **H** is

$$\mathbf{H} = \mathbf{Q}\mathbf{P}^{\mathrm{T}}(\mathbf{P}\mathbf{P}^{\mathrm{T}})^{-1} = \begin{bmatrix} 0.92 & -0.39 & 224.17 \\ 0.39 & 0.92 & 10.93 \\ 0 & 0 & 1 \end{bmatrix}$$

Given this matrix **H**, the approximation of the selected point in image A are shown in the last two columns. These estimated points are very close to the actual points of image B in columns 3 and 4, i.e., small estimation error.

Matching Points					
X_a	Y_a	\boldsymbol{X}_{b}	\boldsymbol{Y}_{b}	X'_a	Y'_a
30.5	325.3	125.8	322.5	126	322.8
86.8	271.3	199.3	295.5	198.7	294.9
330.3	534	320	632	320.5	632.2
62	110.3	238	137	238.4	136.8
342	115	494	250	493.9	250.4
412	437	434.3	574.8	433.3	574.7
584.5	384.8	611.8	594	612.2	593.8

Step 3: Determine parameters α , s_x , s_y , t_x , and t_y using determined **H** in Step 2 and equation (1) in previous slide.

$$\mathbf{H} = \mathbf{RST} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

$$= \begin{bmatrix} s_x \cos \alpha & s_y \sin \alpha & s_x t_x \cos \alpha + s_y t_y \sin \alpha \\ -s_x \sin \alpha & s_y \cos \alpha & s_y t_y \cos \alpha - s_x t_x \sin \alpha \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.92 & -0.39 & 224.17 \\ 0.39 & 0.92 & 10.93 \\ 0 & 0 & 1 \end{bmatrix}$$

$$s_{x} = \sqrt{h_{11}^{2} + h_{21}^{2}} = 0.999$$

$$s_{x} = \sqrt{h_{11}^{2} + h_{21}^{2}} = 1.001$$

$$\alpha = -\arctan(h_{21}, h_{11}) = -23^{\circ}$$

$$t_{x} = \frac{(h_{13}\cos\alpha - h_{23}\sin\alpha)}{s_{x}}$$

$$t_{y} = \frac{(h_{13}\sin\alpha + h_{23}\cos\alpha)}{s_{y}}$$

- \checkmark The dark area in "Transformed A" is the region of B that is not contained in image A.
- ✓ The gray image values of "Transformed A" were computed by an **interpolation** of the gray values of image A.

Transformed A

B

- The dark area in "Transformed A" is the region of B that is not contained in image A.
- The gray image values of "Transformed A" were computed by an interpolation of the gray values of image A.

Interpolation

- ✓ Image interpolation refers to the "guess" or "approximating" of intensity values at missing points/locations given the value of intensity in points around (neighboring) those points.
- ✓ Note that it is just a guess (Note that all sensors have finite sampling distance).

Interpolation

- ✓ Image interpolation refers to the "guess" or "approximating" of intensity values at missing points/locations given the value of intensity in points around (neighboring) those points.
- ✓ Note that it is just a guess (Note that all sensors have finite sampling distance).

Engineering Motivations

✓ We want BIG images
When we see a video clip on a PC, we like to see it in the full screen mode

Resolution Enhancement

Engineering Motivations

Resolution Enhancement

✓ We want BIG images
When we see a video clip on a PC, we like to see it in the full screen mode

Engineering Motivations (Cont.)

✓ We want GOOD images
 If some block of an image gets damaged
 during the transmission, we want to repair it.

Image Inpainting

Engineering Motivations (Cont.)

✓ We want COOL images
Manipulate images digitally can render fancy artistic effects as we often see in movies.

Image Warping

Interpolation

Three common 2D interpolation:

Original image:

X 8

Bilinear interpolation

Bicubic interpolation

Interpolation: Nearest neighbor interpolation

$$f(x,y) = f(x_1,y_1) \text{ or } f(x_2,y_2) \text{ or floor}(\frac{f(x_1,y_1)+f(x_2,y_2)}{2})$$

nearest neighbor

Neighbors are at the same distance

Interpolation: Bilinear interpolation

$$f(x,y) = ax + by + cxy + d$$

coefficients to be estimated: a,b,c,d

$$ax_1 + by_1 + cx_1y_1 + d = f(x_1, y_1)$$

 $ax_2 + by_2 + cx_2y_2 + d = f(x_2, y_2)$
 $ax_3 + by_3 + cx_3y_3 + d = f(x_3, y_3)$
 $ax_4 + by_4 + cx_4y_4 + d = f(x_4, y_4)$

Interpolation: Bicubic interpolation

$$f(x,y) = ax + by + cxy + d$$

coefficients to be estimated: a,b,c,d
 $ax_1 + by_1 + cx_1y_1 + d = f(x_1,y_1)$
 $ax_2 + by_2 + cx_2y_2 + d = f(x_2,y_2)$
 \vdots
 $ax_3 + by_3 + cx_3y_3 + d = f(x_3,y_3)$

QUESTIONS & ANSWERS

