MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ECOLE A LA MAISON

SECONDAIRE

1^{ère}C MATHEMATIQUES CÔTE D'IVOIRE - ÉCOLE NUMÉRIQUE

Durée: 9 heures

Code:

Compétence 1

Traiter des situations relatives aux calculs

algébriques et aux fonctions

Thème 2

Fonctions

LEÇON 15: SUITES NUMERIQUES

A- SITUATION D'APPRENTISSAGE

Une coopérative scolaire veut monter un projet de construction de ferme. Pour ce fait le président encourage ses 45 membres à cotiser une somme de 1000 F par mois pendant 9 mois. Au bout de la première année, il compte ouvrir un compte et déposer cet argent dans une banque qui accorde un intérêt de 5% chaque année, sur tout montant resté immobilisé sur ce compte. Le budget primitif du projet s'élève à 623 000F.

Le président de la coopérative, en classe de première est curieux de savoir si pendant 4 années la coopérative pourra réunir ce montant grâce à la banque. Il recherche un procédé efficace pour effectuer les calculs nécessaires.

B-CONTENU DU COURS

I- GENERALITES

1-Définition

On appelle suite numérique toute fonction de N vers IR.

$$U: \mathbb{N} \longrightarrow IR$$

 $n \mapsto U(n)$. L'image U(n) de n est généralement notée U_n .

La suite numérique ainsi définie est notée $(U_n)_{n \in \mathbb{N}}$ ou simplement (U_n) .

 U_n est appelé terme d'indice n ou terme général de la suite (U_n) .

Exemple

Parmi les fonctions suivantes, seule la fonction de la colonne C est une suite numérique

Α	В	С
$f: IR \longrightarrow IR$	$g:IR \longrightarrow IR$	$g:\mathbb{N}\longrightarrow IR$
$n \mapsto 2n-1$	$n \mapsto \frac{2n-1}{n+3}$	$n \mapsto \frac{2n-1}{n}$

2- Différentes présentations d'une suite

Une suite peut être définie par une formule explicite ou par une formule de récurrence.

a- Suite définie par une formule explicite

Soit f une fonction définie dans IR+, pour tout $n \in \mathbb{N}$, la suite (Un) de terme général Un = f(n) est dite définie par une formule explicite.

Exemples:

- $U_n = 3n + 5$ et $V_n = \frac{2n^2 + 1}{n}$ sont des suites définies par des formules explicites.
- Soit la suite suivante : $W_n = -6(\frac{1}{2})^n + 10$. On a :

$$W_0 = -6(\frac{1}{2})^0 + 10 = 4$$
; $W_5 = -6(\frac{1}{2})^5 + 10 = \frac{157}{12}$; $W_{10} = -6(\frac{1}{2})^{10} + 10 = \frac{5117}{512}$

b- Suite définie par une formule de récurrence

La suite (U_n) définie par la donnée :

- d'un terme (en général le 1er terme)
- et d'une relation du type : \forall $n \in \mathbb{N}$, $U_{n+1} = f(U_n)$

est dite suite définie par une formule de récurrence.

Exemple 1: $\begin{cases} P_1 = 3500 \\ \forall n \in \mathbb{N}^*, P_{n+1} = P_n + 25 \end{cases}$ est une suite définie par une formule de récurrence.

Soit la suite (V_n) définie par la formule de récurrence suivante :

$$\begin{cases} V_0 = 7 \\ \forall n \in \mathbb{N}, V_{n+1} = 2V_n - 5 \\ \text{On a} : \end{cases}$$

$$V_1 = 2V_0 - 5 = 9$$
;

$$V_4 = 2V_3 - 5$$
. Il nous faut calculer V_3 .

$$V_3 = 2V_2 - 5$$
; il nous faut calculer V_2 .

$$V_2 = 2V_1 - 5$$
. On a donc $V_2 = 14$; $V_3 = 23$ et enfin $V_4 = 41$.

3-Représentation graphique d'une suite

a- Suite définie par une formule explicite

$$U_n = f(n)$$
.

Méthode:

- On représente (Cf), la courbe de la fonction f associée à la suite (U_n) .
- On détermine graphiquement

$$U_0=f(0)$$
; $U_1=f(1)$; $U_2=f(2)$; $U_3=f(3)$ etc.

Exemple

Représentation graphique des 3 premiers termes de la suite définie par : $U_n = 2n+1$.

b- Suite définie par une formule de récurrence : $U_{n+1} = f(U_n)$ Méthode :

- On représente (Cf), la courbe de la fonction f associée à la suite (Un).
- On trace la droite (Δ) d'équation : y = x (la première bissectrice)
- On marque U₀ sur l'axe des abscisses (OI).
- On Projette le point obtenu verticalement sur (Cf), on projette ce nouveau point horizontalement sur (Δ) et enfin on projette ce dernier point obtenu verticalement sur (OI), on obtient U₁.
- -Refaire ce même processus avec U₁ pour obtenir U₂.
- Et ainsi de suite...

Exemple

Représentation graphique des 3 premiers termes de la suite définie par :

$$\begin{cases} U_0 = 0 \\ \forall n \in \mathbb{N}, U_{n+1} = \frac{2}{3}U_n + 2 \end{cases}$$

II- SUITES ARITHMETIQUES, SUITES GEOMETRIQUES

1-Suites arithmétiques

a-Définition

Soit (U_n) une suite numérique.

(U_n) est arithmétique s'il existe un nombre réel **r** tel que :

$$\forall$$
 $n \in \mathbb{N}$, $U_{n+1} = U_n + r$.

* r est appelé la raison de la suite (U_n)

Exemples:

• Voici des exemples de suite arithmétique :

 \forall n \in N, U_{n+1} = U_n + 3; 3 est la raison et U₀ le premier terme.

 $\forall \ n \in \ \mathbb{N}^* \text{, } V_{n+1} = V_n \text{-} \frac{1}{2} \text{; -} \frac{1}{2} \text{ est la raison } \text{ et } V_1 \text{ le premier terme.}$

• On considère la suite (U_n) définie par : $\forall n \in \mathbb{N}$, $U_n = \frac{1}{2}n - 3$.

 $\forall n \in \mathbb{N}, U_{n+1} = \frac{1}{2}(n+1) - 3 = \frac{1}{2}n - 3 + \frac{1}{2}$. Donc $U_{n+1} = U_n + \frac{1}{2}$. Il en résulte que la suite (U_n) est arithmétique. Sa raison est $\frac{1}{2}$ et son premier terme est : $U_0 = -3$.

b-Détermination du terme général

Propriété

Soit n et k des entiers naturels ; (U_n) une suite arithmétique de raison r, on a :

$$U_n = U_k + (n-k)r$$

Cette forme est appelée terme général de (Un)

Cas particuliers:

$$U_n = U_0 + n r$$

 $U_n = U_1 + (n-1)r$

Exercice de fixation

Soit (U_n) la suite arithmétique de raison -4 et de premier terme $U_0=5$. Exprime U_n en fonction de n.

Solution

 $\forall n \in \mathbb{N}, U_n = U_0 + (-4)n. \text{ Donc } \forall n \in \mathbb{N}, U_n = 5 - 4n.$

c-Somme des termes consécutifs

<u>Propriété</u>

La somme de n termes consécutifs d'une suite arithmétique est égale au produit par n de la demi-somme des termes extrêmes

Conséquences :

- Si $S = U_1 + U_2 + U_3 + + U_n$ une somme de termes consécutifs de la suite arithmétique (U_n) alors $S = n \times \frac{(U_1 + U_n)}{2}$
- Si $S = U_k + U_{k+1} + U_{k+2} + \dots + U_j$ une somme de termes consécutifs de la suite arithmétique (U_n) , alors $S = (j k + 1) \times \frac{(U_k + U_j)}{2}$

Exemples

•
$$S = 1+2+3+...+2020 = 2020 \times \frac{(1+2020)}{2} = 2041210$$

- $S = 2+4+6+\dots+2n = n \times \frac{2+2n}{2} = n(n+1)$
- $S = 1+3+5+...+(2n+1) = (n+1) \times (n+1) = (n+1)^2$
- Soit (U_n) la suite arithmétique de raison 9 et de premier terme $U_0 = -2$.

Alors: Si on pose

1)
$$S = U_0 + U_1 + \cdots + U_{n-1}$$
. De 0 à $n-1$, on additionne n termes.

Donc
$$S = \frac{n}{2}(U_0 + U_{n-1})$$
. Soit donc $S = \frac{n(9n-13)}{2}$

2)
$$T = U_3 + U_4 + \cdots + U_{77}$$
; de 3 à 77, on additionne 77 – 3 + 1 = 75 termes.

Donc
$$T = \frac{75}{2}(U_3 + U_{77})$$
 soit $T = 26 850$.

2- Suites géométriques

a-Définition

Soit (U_n) une suite numérique.

 (U_n) est une suite géométrique s'il existe un nombre réel q tel que : \forall $n \in \mathbb{N}$, $U_{n+1} = q$ U_n * q est appelé la raison de la suite (U_n)

Exemple:

• Soit la suite définie par :

$$\begin{cases} U_0 = 3 \\ \forall \ n \in \mathbb{N}, U_{n+1} = \frac{1}{2} \ U_n \end{cases} \text{ est une suite géométrique.}$$

• On considère la suite (V_n) définie par : $\forall n \in \mathbb{N}, \ V_n = 3(\frac{1}{4})^n$.

$$\forall n \in \mathbb{N}, V_{n+1} = 3(\frac{1}{4})^{n+1} = \frac{1}{4} \left[3(\frac{1}{4})^n \right]$$
. Il en résulte que $\forall n \in \mathbb{N}, V_{n+1} = \frac{1}{4} V_n$.

Donc la suite (V_n) est une géométrique de raison $\frac{1}{4}$ et de premier terme $V_0=3$.

b-Détermination du terme général

Propriété

Soit (U_n) une suite géométrique de raison q et k un entier naturel inférieur à n.

On a:
$$U_n = q^{(n-k)}U_k$$

Cas particuliers:

- $U_n = q^n U_0$
- $U_n = q^{n-1} U_1$

Exercice de fixation

Soit (V_n) la suite géométrique de raison 3 et de premier terme $V_1=3$. Exprime V_n en fonction de n.

Solution

$$\forall n \geq 1, V_n = V_1 3^{n-1}$$
. Donc $\forall n \geq 1, V_n = 3^n$

c-Somme de termes consécutifs

Propriété

La somme S des n termes consécutifs d'une suite géométrique de $1^{\rm er}$ terme a et de raison q est :

Si
$$q \ne 1$$
 alors: $S = U_1 + U_2 + U_3 + \dots + U_n = U_1 \times \frac{1 - q^n}{1 - q}$

- \bullet Si q=1 alors $\,S=U_1+U_2+U_3+.....+\,U_n=$ (nombre de termes) \times (1er terme) ; $\,S=n\times\,U_1$
- De façon générale : $U_k + U_{k+1} + U_{k+2} + \dots + U_{k+p} = U_k \times \frac{1 q^{p+1}}{1 q}$ si $q \neq 1$ $U_k + U_{k+1} + U_{k+2} + \dots + U_{k+p} = U_k \times (p+1)$ si q = 1

Exercice de fixation

Soit (V_n) la suite géométrique définie par : $V_n = (\frac{1}{3})^n$.

Calcule la somme T suivante: $T = \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^7}$.

Solution

$$T = V_1 + V_2 + \dots + V_7$$
; d'après une formule du cours, $T = \frac{1}{3} \left(\frac{1 - \left(\frac{1}{3}\right)^7}{1 - \frac{1}{3}} \right)$; soit $T = \frac{1}{2} \left(1 - \left(\frac{1}{3}\right)^7 \right)$
 $T = \frac{1093}{2187}$

C-SITUATION COMPLEXE

Chaque année, depuis 2010 la production d'un article de l'usine citoyenne O.B.V en Côte d'Ivoire subit une baisse par rapport à la production de l'année précédente d'environ 3%. Au cours de l'année 2010, la production a été de 65 000 articles.

Une étude de marché a montré que la production de cet article n'est plus rentable dès que la production annuelle devient inférieure à 56 000 articles

Les premiers responsables de cette usine désirent savoir à partir de quelle année la production de cet article ne sera plus rentable.

Elève en classe de 1C, Ton professeur de mathématiques a son épouse qui travaille dans cette usine. Il présente la situation à la classe puis accorde un bonus de deux à chacun des trois premiers élèves qui trouveront la solution. Tu désires obtenir ce bonus.

Propose une solution argumentée à ce problème.

Proposition de solution

Pour aider à résoudre ce problème, je vais utiliser les suites numériques.

Je vais schématiser ce problème sous la forme d'une suite géométrique.

Je vais au fur et à mesure donner des valeurs à n afin de trouver une valeur inférieure à 56000.

La valeur qui me permettra de trouver une valeur inférieure à 56000 me permettra de trouver l'année et conclure.

Chaque année, la production subit une baisse par rapport à la production de l'année précédente d'environ 3%. Au cours de l'année 2010, la production a été de 65 000 articles. Soit $(V_n)_{n\in\mathbb{N}}$ la une suite associée à ce problème. Alors le terme général de cette suite est :

$$U_{n+1} = U_n - \frac{3}{100}U_n = \frac{97}{100}U_n$$

Alors $(V_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=\frac{97}{100}$ et de premier terme $V_0=65000$.

On a alors :
$$U_n = U_0 \times q^n = 65000 \times (\frac{97}{100})^n$$

En 2011, la production sera:

$$U_1 = 65000 \times \frac{97}{100} = 63050$$

En 2012, la production sera :

$$U_2 = 65000 \times (\frac{97}{100})^2 = 61158,5 \text{ Soit } 61159$$

En 2013, la production sera:

$$U_3 = 65000 \times (\frac{97}{100})^3 = 59323,7 \text{ Soit } 59324$$

En 2014, la production sera :

$$U_4 = 65000 \times (\frac{97}{100})^4 = 57544$$

En 2015, la production sera:

$$U_5 = 65000 \times (\frac{97}{100})^5 = 55817,7 \text{ Soit } 55818$$

55818 < 56000 Alors la production ne sera plus rentable à partie de 2015.

D-EXERCICES

Exercice 1

Réponds par vrai ou faux à chacune des affirmations suivantes :

- 1- La suite définie par : $\forall n \in \mathbb{N}$, $r_n = -2n + 7$ est une suite arithmétique.
- 2- La suite définie par : $\forall n \in \mathbb{N}, u_n = -\frac{2}{n} + 1$ est une suite arithmétique.
- 3- La suite définie par : $\forall n \in \mathbb{N}, t_n = 3(2^n) 1$ est une suite géométrique.
- 4- La suite définie par : $\forall n \in \mathbb{N}, v_n = 6^n$ est une suite géométrique.

Correction de l'exercice 1

- 1- Vrai
- 2- Faux
- 3- Faux
- 4- Vrai

Exercice 2

Soit (V_n) la suite géométrique définie par : $\begin{cases} V_1 = -2 \\ \forall n \in \mathbb{N}^* \ V_{n+1} = -5 V_n \end{cases}$ Exprime V_n en fonction de n.

Correction de l'exercice 2

$$V_n = V_1 \times q^{n-1} = -2 \times (-5)^{n-1}$$

Exercice 3

Soit (U_n) la suite de terme général : $U_n = -5n + n^2$ avec $n \in \mathbb{N}$ Calcule les 5 premiers termes de cette suite.

Correction de l'exercice 3

$$U_0 = -5 \times 0 + 0^2 = 0$$
; $U_1 = -5 \times 1 + 1^2 = -4$; $U_2 = -5 \times 2 + 2^2 = -6$; $U_3 = -5 \times 3 + 3^2 = -6$; $U_4 = -5 \times 4 + 4^2 = -4$

Exercice 4

Soit $(U_n)_{n\in\mathbb{N}}$ la suite arithmétique définie par : $\begin{cases} U_2=5\\ \forall n\geq 2, U_{n+1}=U_n-3 \end{cases}$ Exprime U_n en fonction de n.

Correction de l'exercice 4

 $(U_n)_{n\in\mathbb{N}}$ est une suite arithmétique de premier terme $U_2=5$ et de raison r=-3, alors : $U_n=U_2+(n-2)\times(-3)=5+(n-2)\times(-3)=-3n+11$

Exercice 5

Soit $(U_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r telle que : $U_6=-3$ et $U_9=-6$. Détermine la valeur de r.

Correction de l'exercice 5

 $(U_n)_{n\in\mathbb{N}}$ étant une suite arithmétique, on a : $U_{n+1}=U_n+r$. Par conséquent : $U_7=U_6+r$; $U_8=U_7+r$, en remplaçant U_7 par sa valeur, on obtient ; $U_8=U_6+2r$ et donc ; $U_9=U_6+3r=-3+3r=-6$ d'où r=-1.

9

Exercice 6

Soit $(V_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q telle que : $V_1=-\frac{3}{2}$ et $V_3=-\frac{27}{2}$. Détermine les valeurs possibles de q.

Correction de l'exercice 6

 $(V_n)_{n\in\mathbb{N}}$ est une suite géométrique, alors $V_{n+1}=q\times V_n$ d'où $V_2=q\times V_1$,

 $V_3=q\times V_2=q^2\times V_1$ par conséquent, on a $-\frac{27}{2}=q^2\times (-\frac{3}{2})$; $q^2=9$. Conclusion q=3 ou q=-3.

Exercice 7

Soit la suite (U_n) définie par : $U_n = 2n + 1$

- 1) Calcule les quatre premiers termes de cette suite.
- 2) Démontre que (U_n) est une suite arithmétique.
- 3) Déduis-en le calcul de la somme des cents premiers nombres impaires.

Correction de l'exercice 7

- 1) $U_0 = 2 \times 0 + 1 = 1$; $U_1 = 2 \times 1 + 1 = 3$; $U_2 = 2 \times 2 + 1 = 5$; $U_3 = 2 \times 3 + 1 = 7$
- 2) $U_{n+1} = 2(n+1) + 1 = 2n+2+1 = 2n+1+2 = U_n+2$ alors (U_n) est une suite arithmétique.
- 3) $S = \frac{(U_0 + U_{99})}{2} \times 100$. $U_{99} = 2 \times 99 + 1 = 199$; alors S=10000.

Exercice 8

Soit
$$(V_n)$$
 la suite définie par :
$$\begin{cases} V_1 = -2 \\ \forall n \in \mathbb{N}^* \ V_{n+1} = \frac{V_n}{1 - V_n} \end{cases}$$

Calcule les 3 premiers termes de cette suite.

Correction de l'exercice 8

$$V_1 = -2$$
; $V_2 = \frac{V_1}{1 - V_1} = -\frac{2}{3}$; $V_3 = -\frac{2}{5}$

Exercice 9

Le plan est muni du repère orthonormé (0; I, J).

Soit
$$(U_n)$$
 la suite numérique définie par: $\begin{cases} U_0=1 \\ \forall n\in\mathbb{N}^*\ U_{n+1}=2U_n+1 \end{cases}$

Représente sur l'axe des abscisses les 4 premiers termes de la suite

Correction de l'exercice 9

Exercice 10

Soit (t_n) la suite de terme général $t_n = -6n + 3$

Démontre que : $(t_n)_{n\in\mathbb{N}^*}$ est une suite arithmétique dont on déterminera le premier terme et la raison.

Correction de l'exercice 10

 $t_{n+1} = -6(n+1) + 3 = -6n - 6 + 3 = -6n + 3 - 6 = t_n - 6$, alors : $(t_n)_{n \in \mathbb{N}^*}$ est une suite arithmétique de raison -6 et de premier terme $t_1 = -6 \times 1 + 3 = -3$.

Exercice 11

Soit (P_n) la suite numérique définie par: $\begin{cases} P_0 = -2 \\ \forall n \in \mathbb{N}^*, 2P_{n+1} = 2P_n - 5 \end{cases}$

Démontre que : $(P_n)n \in \mathbb{N}^*$ est une suite arithmétique dont on déterminera le premier terme et la raison

Correction de l'exercice 11

 $2P_{n+1}=2P_n-5$ alors $P_{n+1}=P_n-\frac{5}{2}$; par conséquent $(P_n)n\in\mathbb{N}^*$ est une suite arithmétique de raison $\frac{5}{2}$ et de premier terme $P_1=P_0-\frac{5}{2}=-\frac{9}{2}$

Exercice 12

Soit (U_n) la suite numérique définie par: $U_n=7\times 2^n$ avec $n\in\mathbb{N}$

Démontre que : $(U_n)n \in \mathbb{N}$ est une suite géométrique puis précise le premier terme et la raison.

Correction de l'exercice 12

 $U_{n+1}=7\times 2^{n+1}=7\times 2^n\times 2=2U_n$; alors $(U_n)n\in\mathbb{N}$ est une suite géométrique de raison 2 et de premier terme $U_0=7$.

Exercice 13

Soit (V_n) la suite numérique définie par : $\begin{cases} V_0 = 2 \\ \forall n \in \mathbb{N}, 2V_{n+1} + 5V_n = 0 \end{cases}$

Démontre que : $(V_n)n \in \mathbb{N}^*$ est une suite géométrique et précise le premier terme et la raison

Correction de l'exercice 14

 $2V_{n+1}+5V_n=0$ alors $2V_{n+1}=-5V_n$ d'où $V_{n+1}=-\frac{5}{2}V_n$ par conséquent $(V_n)n\in\mathbb{N}^*$ est une suite géométrique de raison $-\frac{5}{2}$ et de premier terme $V_1=-\frac{5}{2}V_0=-5$.

Exercice 14

Soit (U_n) une suite arithmétique telle que : $U_8=4$ et $U_{20}=28$

- 1- Détermine la raison de cette suite
- 2- Calcule U_{18} puis en déduis U_{19}

Correction de l'exercice 14

1- (U_n) est une suite arithmétique, en utilisant la formule : $U_n = U_p + (n-p)r$ on a :

$$U_{20} = U_8 + (20 - 8)r;$$
 $r = \frac{U_{20} - U_8}{(20 - 8)} = 2$

2- $U_{18} = U_{20} + (18-20)2 = 24$. En utilisant la formule $U_{n+1} = U_n + r$ on en déduis que : $U_{19} = U_{18} + 2 = 24 + 2 = 26$

Exercice 15

Soit (U_n) la suite numérique définie par: $\begin{cases} U_0 = 4 \\ \forall n \in \mathbb{N}, U_{n+1} = \frac{4U_n - 9}{U_n - 2} \end{cases}$ et $V_n = \frac{1}{U_n - 3}$

- 1- Calcule U_1 , U_2 puis V_0 , V_1 et V_2
- 2- a) Démontre que $(V_n)n\in\mathbb{N}$ est une suite arithmétique de raison r=1 et de premier terme $V_0=1$
 - b) Déduis-en V_n puis U_n en fonction de n
- 3- On pose $T_n = V_1 + V_2 + \cdots + V_n$ Exprime T_n en fonction de n

Correction de l'exercice 15

1-
$$U_1 = \frac{4U_0 - 9}{U_0 - 2} = \frac{4 \times 4 - 9}{4 - 2} = \frac{7}{2}$$
; $U_2 = \frac{4U_1 - 9}{U_1 - 2} = \frac{10}{3}$; $V_0 = \frac{1}{U_0 - 3} = 1$; $V_1 = \frac{1}{U_1 - 3} = 2$;

12

$$V_2 = \frac{1}{U_2 - 3} = 3$$
2- a) $V_{n+1} = \frac{1}{U_{n+1} - 3} = \frac{1}{\frac{4U_n - 9}{U_n - 2} - 3} = \frac{U_n - 2}{U_n - 3} = \frac{U_n - 3 + 1}{U_n - 3} = 1 + \frac{1}{U_n - 3} = 1 + V_n$; alors $(V_n)n \in \mathbb{N}$ est une suite arithmétique de raison $r = 1$ et de premier terme $V_0 = 1$.

b)
$$V_n = V_0 + nr = 1 + n$$
; $V_n = \frac{1}{U_n - 3}$ alors $U_n = \frac{1}{V_n} + 3 = \frac{1}{1 + n} + 3 = \frac{4 + 3n}{1 + n}$

3-
$$(V_n)n \in \mathbb{N}$$
 est une suite arithmétique alors : $T_n = \frac{(V_1 + V_n) \times n}{2} = \frac{(2 + 1 + n) \times n}{2} = \frac{n^2 + 3n}{2}$

Exercice 16

Soit (U_n) la suite numérique définie par: $\begin{cases} U_0 = 9 \\ \forall n \in \mathbb{N}, U_{n+1} = \frac{1}{2}U_n + 2 \end{cases}$ et $V_n = U_n - 3$

- 1- Calcule U_1 , U_2 puis V_0 , V_1 et V_2
- 2- a) Démontre que $(V_n)n \in \mathbb{N}$ est une suite géométrique de raison $q=\frac{1}{3}$ et de premier terme $V_0=6$
 - b) Déduis-en V_n puis U_n en fonction de n
- 3- On pose $S_n=U_1+U_2+\cdots+U_n$ et $T_n=V_1+V_2+\cdots+V_n$ Exprime T_n puis S_n en fonction de n.

Correction de l'exercice 16

1-
$$U_1 = \frac{1}{3}U_0 + 2 = 5$$
; $U_2 = \frac{1}{3}U_1 + 2 = \frac{11}{3}$; $V_0 = U_0 - 3 = 6$; $V_1 = U_1 - 3 = 2$;

$$V_2 = U_2 - 3 = \frac{2}{3}$$
2- a) $V_{n+1} = U_{n+1} - 3 = \frac{1}{3}U_n + 2 - 3 = \frac{1}{3}U_n - 1 = \frac{1}{3}(U_n - 3) = \frac{1}{3}U_n$

Alors $(V_n)n \in \mathbb{N}$ est une suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $V_0 = 6$.

b) $(V_n)n \in \mathbb{N}$ est une suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $V_0 = 6$, alors

$$V_n = 6 \times (\frac{1}{3})^n$$

$$V_n = U_n - 3$$
 alors $U_n = V_n + 3 = 6 \times (\frac{1}{3})^n + 3$

3-
$$T_n = \frac{1-q^n}{1-q} \times V_0 = \frac{1-\left(\frac{1}{3}\right)^n}{\frac{2}{3}} \times 6 = 9\left(1-\left(\frac{1}{3}\right)^n\right)$$
 on a $V_n = U_n - 3$ alors $U_n = V_n + 3$
 $S_n = T_n + 3n = 9\left(1-\left(\frac{1}{3}\right)^n\right) + 3n$