Yakeen NEET 2.0 2026

Physics By Saleem Sir

Units and Measurements

DPP: 5

- Q1 The potential energy of a particle series with distance x from a fixed origin as $U=rac{A\sqrt{x}}{x^2+B}$ where A and B are dimensional constants then dimensional formula for ${
 m AB}$ is:

 - (B) $\left[\mathrm{ML}^{11/2} \ \mathrm{T}^{-2} \right]$ (C) $\left[\mathrm{M}^2 \ \mathrm{L}^{9/2} \ \mathrm{T}^{-2} \right]$ (D) $\left[\mathrm{ML}^{13/2} \ \mathrm{T}^{-3} \right]$
- Q2 If force on a particle having uniform circular motion is given by $F = M^a V^b R^c$. Then what will be the value of a, b, c? (M = mass ofparticle, V= velocity of particle, R = radius of circle)
 - (A) 1, 1, 1
- (B) 2, 1, 3
- (C) 1, 2, -1
- (D) 2, 2, 2
- Q3 E, m, L, G denote energy, mass, angular momentum & gravitation constant respectively. The dimensions of $\frac{EL^2}{m^5G^2}$ will be that of
 - (A) Angle
- (B) Length
- (C) Mass
- (D) Time
- **Q4** Gas bubble oscillates with a time period Tproportional of $P^{\mathrm{a}}d^{\mathrm{b}}E^{\mathrm{c}}$ where P is pressure, dis the density and E is the energy. The values of a,b&c are
 - (A) $a = \frac{1}{2}, b = -\frac{1}{3}, c = \frac{1}{2}$
 - (B) $a=-\frac{5}{6}, b=\frac{1}{3}, c=\frac{1}{2}$ (C) $a=-\frac{5}{6}, b=\frac{1}{2}, c=\frac{1}{3}$

 - (D) $a = \frac{3}{2}, b = -\frac{1}{3}, c = \frac{1}{2}$

- **Q5** Frequency is the function of density (ρ) , length (a) and surface tension (T). The formula of frequency is:
 - (A) $k\rho^{1/2}a^{3/2}$

 - (D) None of these
- **Q6** A physical quantity x depends on quantities yand z as follows : $x = Ay + B \tan Cz$, where A, B and C are constants. Which of the following do not have the same dimensions
 - (A) x and B
 - (B) C and z^{-1}
 - (C) y and B/A
 - (D) x and A
- Q7 If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be
 - (A) $[EV^{-1} T^{-2}]$
 - (B) $\left[\mathrm{EV}^{-2}\ \mathrm{T}^{-2}\right]$
 - (C) $\left[E^{-2} \ V^{-1} \ T^{-3} \right]$
 - (D) $[EV^{-2} T^{-1}]$
- **Q8** If force F, Length L and time T are chosen as fundamental quantities, the dimensional formula for Mass is
 - (A) F L T
 - (B) $F^{-1}L^{-1}T^{-2}$
 - (C) $F^{-2}L^{-2}T^{-2}$
 - (D) $F^1L^{-1}T^2$

Answer Key

Q1	(B)	Q5	(D)
Q2	(C)	Q5 Q6 Q7 Q8	(D)
Q3	(A)	Q7	(B)
Q4	(C)	Q8	(D)

Android App | iOS App | PW Website

