Algoritmizace

Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 - 2020

Úvod

stránky předmětu:

https://cw.fel.cvut.cz/wiki/courses/b4b33alg/start

cíle předmětu

Cílem je schopnost samostatné implementace různých variant základních úloh informatiky. Hlavní témata jsou algoritmy řazení a vyhledávání a jim odpovídající datové struktury. Důraz je kladen na algoritmický aspekt úloh a efektivitu praktického řešení.

předpoklady

Kurs předpokládá **schopnost programování** v alespoň jednom z jazyků C/C++/Java. Součástí cvičení jsou programovací úlohy na řešení problematiky ALG. Adept musí ovládat základní datové struktury jako pole, seznam, soubor a musí být schopen manipulovat s daty v těchto strukturách.

Problémy a algoritmy

Výpočetní problém P

Úkol zpracovat vstupní data IN na výstupní data OUT se zadanými vlastnostmi.

Algoritmus A

- □ Výpočetní postup řešení problému P.
- Tedy přesný popis posloupnosti kroků, která vezme vstupní data IN a vyprodukuje výstupní data OUT dle zadaných vlastností problémem P.

Instance problému

Problém s konkrétními vstupními daty potřebnými pro jeho řešení.

Korektnost algoritmu A pro problém P

 Algoritmus A je korektní, pokud pro každou instanci problému P vydá v konečném čase správný výstup (tedy takový, který řeší problém P).

Jak měřit algoritmy?

- Podle algoritmu vytvoříme program v programovacím jazyku a několik vybraných instancí problému.
- Algoritmy pak porovnáme podle rychlosti a paměťové náročnosti na konkrétním počítači.
- Ale co když bychom změnili počítač, nebo jen OS, nebo co kdybychom vybrali jiné instance problému, nebo kdybychom změnili programovací jazyk?
- Budou algoritmy výše popsaným způsobem stále stejně porovnatelné? zřejmě nikoliv ...
- → Budeme potřebovat nějakou nezávislou metodu (na programovacím jazyku, počítači, atd ...) na porovnávání algoritmů.

Růst funkcí

Čas potřebný ke zpracování dat velikosti n, jestliže počet operací při provádění algoritmu je dán funkcí T(n) a provedení jedné operace trvá jednu mikrosekundu. (Připomeňme, že počet atomu ve vesmíru se odhaduje na 10^{80} a stáří na 14×10^9 let)

T(n)/n	20	40	60	80	100
$\log(n)$	4.3 μs	5.3 μs	5.9 μs	6.3 μs	6.6 μs
n	20 μ s	40 μ s	60 μs	80 μs	0.1 ms
$n\log(n)$	86 μs	0.2 ms	0.35 ms	0.5 ms	0.7 ms
n^2	0.4 ms	1.6 ms	3.6 ms	6.4 ms	10 ms
n^3	8 ms	64 ms	0.22 s	0.5 s	1 s
n^4	0.16 s	2.56 s	13 s	41 s	100 s
2^n	1 s	12.7 dní	36600 let	10 ¹¹ let	10 ¹⁶ let
n!	77100 let	10 ³⁴ let	10 ⁶⁸ let	10 ¹⁰⁵ let	10 ¹⁴⁴ let

horní asymptotický odhad (velké omikron odhad):

$$f(n) \in O(g(n))$$

význam:

f je shora asymptoticky ohraničená funkcí g (až na multiplikativní konstantu)

definice:

$$(\exists c>0)(\exists n_0)(\forall n>n_0): f(n)\leq c\cdot g(n)$$
 kde $c\in\mathbb{R}^{>0}$ $n_0,n\in\mathbb{N}$ $f,g\in\mathbb{N}\to\mathbb{R}^{\geq0}$

příklad $f(x) \in O(g(n)), h(x) \in O(g(n))$

$$(\exists c > 0)(\exists n_0)(\forall n > n_0): f(n) \le c \cdot g(n)$$

horní asymptotický odhad pro více proměnných:

$$f(n_1, \cdots, n_k) \in O(g(n_1, \cdots, n_k))$$

definice:

$$(\exists c>0)(\exists n_0)(\forall n_1>n_0)\cdots(\forall n_k>n_0):$$

$$f(n_1,\cdots,n_k)\leq c\cdot g(n_1,\cdots,n_k)$$
 kde $c\in\mathbb{R}^{>0}$ $n_0,n_1,\cdots,n_k\in\mathbb{N}$ $f,g\in\mathbb{N}\to\mathbb{R}^{\geq0}$

poznámka

v literature se často místo

$$f(n) \in O(g(n))$$

používá zápis

$$f(n) = O(g(n))$$

není to ale zcela přesné z matematického hlediska

dolní asymptotický odhad (velké omega odhad):

$$f(n) \in \Omega(g(n))$$

význam:

f je zdola asymptoticky ohraničená funkcí g (až na konstantu)

definice:

$$(\exists c>0)(\exists n_0)(\forall n>n_0):\ c\cdot g(n)\leq f(n)$$
 kde
$$c\in\mathbb{R}^{>0}\ n_0,n\in\mathbb{N}\ f,g\in\mathbb{N}\to\mathbb{R}^{\geq0}$$

×

Asymptotické odhady

optimální asymptotický odhad (velké théta odhad):

$$f(n) \in \Theta(g(n))$$

význam:

f je asymptoticky ohraničená funkcí g z obou stran (až na konstantu)

- definice: $\Theta(g(n)) \stackrel{\text{def}}{=} O(g(n)) \cap \Omega(g(n))$
- nebo alternativně:

$$(\exists c_1, c_2 > 0)(\exists n_0)(\forall n > n_0): c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

kde $c_1, c_2 \in \mathbb{R}^{>0}$ $n_0, n \in \mathbb{N}$ $f, g \in \mathbb{N} \to \mathbb{R}^{\geq 0}$

příklad $g(n) \in \Theta(h(n))$, $g(n) \notin \Theta(f(n))$

příklad: Mějme dvojrozměrné pole MxN celých čísel. Jaká je asymptotická složitost problému nalezení největšího čísla v tomto poli?

- horní:
 - $O((M+N)^2)$
 - \bullet O(max(M,N)²) \checkmark
 - O(N²)
 - O(M*N)

- dolní:
 - $\Omega(1)$
 - $\Omega(M)$
 - $\Omega(M*N)$

- optimální:
 - Θ(M*N)

O algoritmu se složitostí f(n) říkáme, že je logaritmický, pokud $f(n) \in \Theta(\log(n))$ lineární, pokud $f(n) \in \Theta(n)$ **kvadratický**, pokud $f(n) \in \Theta(n^2)$ **kubický**, pokud $f(n) \in \Theta(n^3)$ polynomiální, pokud $f(n) \in \Theta(n^k)$ pro $k \in \mathbb{N}$ **exponenciální**, pokud $f(n) \in \Theta(k^n)$ pro $k \in \mathbb{N}$

Poznámka: U asymptotických odhadů nemá smysl u logaritmických složitostí uvádět základ logaritmu, protože platí $\log_a(n) \in \Theta(\log_b(n))$ pro libovolná nenulová kladná a,b.

Jak dokážeme $\log_a(n) \in \Theta(\log_b(n))$?

$$\log_a n = \frac{\log_b n}{\log_b a} = \frac{1}{\log_b a} \cdot \log_b n$$
vzoreček konstanta

Vlastnosti asymptotických odhadů

$$n^{m} \in O(n^{m'}) \text{ pokud } m \leq m'$$
 $f(n) \in O(f(n))$
 $c \cdot O(f(n)) = O(c \cdot f(n)) = O(f(n))$
 $O(O(f(n))) = O(f(n))$
 $O(f(n)) + O(g(n)) = O(max\{f(n), g(n)\})$
 $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$
 $O(f(n) \cdot g(n)) = f(n) \cdot O(g(n))$

Třídu složitosti polynomu určuje člen s nejvyšší mocninou:

$$\sum_{i=0}^{k} a_i \cdot n^{k-i} \in \sum_{i=0}^{k} O(n^k) = k \cdot O(n^k) = O(k \cdot n^k) = O(n^k)$$

Vlastnosti asymptotických odhadů

Věta: Jsou-li funkce f(n), g(n) vždy kladné, pak pro limitu v ∞ platí

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0 \text{ , pak } f(n)\in O(g(n)) \text{ , ale neplati } f(n)\in O(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = a \text{ , kde } 0 < a < \infty \text{ , pak } f(n) \in \Theta(g(n))$$

Důsledek: Mějme pevně zvolené číslo $k \in \mathbb{N}$, pak platí

$$(\log(n))^k \in O(n)$$

Důkaz lze provést pomocí L'Hopitalova pravidla.

Vlastnosti asymptotických odhadů

Dokážeme $(\ln(n))^2 \in O(n)$

$$\lim_{x \to \infty} \frac{(\ln x)^2}{x} = \lim_{x \to \infty} \frac{((\ln x)^2)'}{x'} = \lim_{x \to \infty} \frac{2 \cdot \frac{1}{x} \cdot \ln x}{1}$$
$$= \lim_{x \to \infty} \frac{2 \cdot \ln x}{x} = \lim_{x \to \infty} \frac{(2 \cdot \ln x)'}{x'} = \lim_{x \to \infty} \frac{2}{x} = 0$$