DIGITAL LOGIC

Chapter 4 part3: Arithmetic Circuit

2023 Fall

Today's Agenda

- Recap
- Context
 - Binary Adder-Subtractor
 - Decimal Adder
 - Binary Multiplier
- Reading: Textbook, Chapter 4.5-4.7

Recap

Outline

- Binary Adder
- Binary Subtractor
- Decimal Adder (BCD)
- Binary Multiplier
- Other Arithmetic Functions

Binary Add

- Similar to the addition operation of decimal numbers.
- 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 10 ← The higher significant bit is called a **carry** (进位).
- A combinational circuit that performs the addition of two bits as described above is called a half-adder.
- The addition operation involves three bits the augend bit, addend bit, and the carry bit and produces a sum result as well as carry.
- The combinational circuit performing this type of addition operation is called a *full-adder*.

```
11 carry(进位)
1011 augend(被加数)
0001 addend(加数)
1100 sum
```


Recall: Design Procedure

- 1. Specification: From the specifications, determine the inputs, outputs, and their symbols.
- 2. Formulation: Derive the truth table (functions) from the relationship between the inputs and outputs
- 3. Optimization: Derive the simplified Boolean functions for each output function. Draw a logic diagram for the resulting circuits using AND, OR, and inverters.
- 4. Technology Mapping: Transform the logic diagram to a new diagram using the available implementation technology.
- Verification: Verify the design.

Half-adder

• 1. Spec

• Inputs: x, y

Outputs: C(carry), S(sum)

• 2. Truth table

	2 ¹	20
y	C	S
0	0	0
1	0	1
0	0	1
1	1	0
	0 1	y C 0 0 1 0 0 0

• 3. Boolean function

$$S = x'y + xy' = x \oplus y$$

$$C = xy$$

• 4. Block diagram

Full-adder

- 1. Spec
 - Inputs: x, y, z(carry from previous lower significant bit)
 - Outputs: C(carry), S(sum)
- 2. Truth table
- 3. Boolean function

$$S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$$

$$C = xy + xz + yz$$

$\setminus yz$	$\searrow yz$								
x	00	01	11	10					
0	m_0	<i>m</i> ₁ 1	m_3	m ₂ 1					
$\mathfrak{r} \left\{ 1 \right\}$	m ₄ 1	m_5	<i>m</i> ₇ 1	m_6					
Ì	\overline{z}								

(a)
$$S = x'y'z + x'yz' + xy'z' + xyz$$

$\setminus yz$				<i>y</i>	
x	00	01	11	10	
0	m_0	m_1	m_3 1	m_2	
$x \left\{ 1 \right\}$	m_4	m_5 1	<i>m</i> ₇ 1	m_6 1	
	\overline{z}				

(b)
$$C = xy + xz + yz$$

xor gate, odd number of $1 \rightarrow \text{sum} = 1$

x	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-adder

• 3. Boolean function

$$S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$$

 $C = xy + xz + yz$

• 4. Block diagram

Full Adder Implemented with Half Adders

FA

Full adder implemented with: Two half adders and one

OR gate

$$S = xy'z' + x'yz' + xyz + x'y'z$$

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= z'(xy' + x'y) + z(xy' + x'y)'$$

$$= z \oplus (x \oplus y)$$

$$C = z(xy' + x'y) + xy = z(x \oplus y) + xy$$

Ripple-Carry Adder

- unsigned addition
- $(C_nS_{n-1}S_{n-2}...S_0)=(A_{n-1}A_{n-2}...A_0)+(B_{n-1}B_{n-2}...B_0)$
- eg. S=A+B, A= $A_3A_2A_1A_0$, B= $B_3B_2B_1B_0$, S= $S_3S_2S_1S_0$

The computation time of a ripple-carry adder grows linearly with word length n

T=O(n) due to carry chain

Ripple-Carry Adder

$$S_i = A_i \oplus B_i \oplus C_i$$

Ai BiC	i 00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5 1	<i>m</i> ₇ 1	m_6 1

$$C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$

$egin{array}{cccccccccccccccccccccccccccccccccccc$					
$egin{array}{cccccccccccccccccccccccccccccccccccc$	Ai	Bi	Ci	Ci+1	Si
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0
$egin{array}{cccccccccccccccccccccccccccccccccccc$		0	1	0	1
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0	0	1
1 0 1 1	0	1	1	1	0
	1	0	0	0	1
$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$	1	0	1	1	0
1 1 1 1	1	1	0	1	0
	1	1	1	1	1

X

Carry Lookahead Adder

- For a full adder, define what happens to carry
 - Carry-generate: C_{out}=1 independent of C_{in}

•
$$G_i = A_i \cdot B_i$$

•
$$P_i = A_i \oplus B_i \text{ or } P_i = A_i + B_i$$

- Use the above G_i and P_i
 - $C_{i+1} = A_i B_i + B_i C_i + A_i C_i = A_i B_i + (A_i + B_i) C_i = G_i + P_i C_i$
 - $\mathbf{S}_{i} = A_{i} \oplus B_{i} \oplus C_{i} = \mathbf{P}_{i} \oplus \mathbf{C}_{i}$

Carry Lookahead Adder

- Do not have to wait for C_i to compute C_{i+1}
 - $C_{i+1} = G_i + P_i C_i$
 - $C_{i+2} = G_{i+1} + P_{i+1}C_{i+1} = G_{i+1} + P_{i+1}G_i + P_{i+1}P_iC_i$
 - $C_{i+3} = G_{i+2} + P_{i+2}C_{i+2} = G_{i+2} + P_{i+2}G_{i+1} + P_{i+2}P_{i+1}G_i + P_{i+2}P_{i+1}P_iC_i$
 - $C_{i+4} = G_{i+3} + P_{i+3}C_{i+3} = G_{i+3} + P_{i+3}G_{i+2} + P_{i+3}P_{i+2}G_{i+1} + P_{i+3}P_{i+2}P_{i+1}G_i + P_{i+3}P_{i+2}P_{i+1}P_iC_i$
- Fixed delay time for each carry (but not the same for every gate!)
- Fanout of G_i & P_i also affect the overall delay → usually be limited to 4 bits

$$C_0$$
 =input carry,
 $C_1 = G_0 + P_0C_0$,
 $C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$,
 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

Carry Lookahead Adder

Outline

- Binary Adder
- Binary Subtractor
- Decimal Adder (BCD)
- Binary Multiplier
- Other Arithmetic Functions

Binary Adders/Subtractors

• Binary subtraction normally is performed by adding the minuend to the 2's complement of the subtrahend.

Overflow

- When n-digits addition with sum occupying n+1 digits, we say that an overflow (溢出) occurred.
- Carry for unsigned numbers:

- Overflow for Signed numbers: (2's Complement)
 - two -ve numbers are added and the obtained result is +ve
 - two +ve numbers are added and the obtained result is -ve

4 bits can not correctly represent -10

4 bits can not correctly represent +8

Binary Adders/Subtractors

- Overflow happens when A and B are 2's complement signed value
- Example: In each case, determine the values of the four SUM outputs, the carry C, and overflow V

M	А	В	SUM	С	V
0	0111	0110	1101	0	1
1	1100	1000	0100	1	1

Serial Adder

- Initially, augend is in register A and addend is in register B
- Shift control enables/disable the clock for FF
- addition of two operands from LSB to MSB
- A new sum (S) bit is transferred to shift register A
- A carry-out (C) of the FA is transferred to Q as the z input of the next addition
- Finally, when the shift control is disabled, summation result is stored in shift register A

Timing Sequence of Serial Adder

Serial addition of 0101 + 0111

1110 0101

Register A(Store Augend and Sum): 0101

+ 0111

Register B(Store Addend): 0111

1100

More cycles required to initialize Register A and B

Shift control	SI SO Shift register A (Augend) x S
Serialinput	y FA z C Shift register B (Addend)
	Q D
	Clear
_	

Register A	Register B	С	S
0101	0111	0	0
0010	0011	1	0
0001	0001	1	1
1000	0000	1	1
1100	0000	0	0
	0101 0010 0001 1000	0101 0111 0010 0011 0001 0001 1000 0000	0101 0111 0 0010 0011 1 0001 0001 1 1000 0000 1

sum

Outline

- Binary Adder
- Binary Subtractor
- Decimal Adder (BCD)
- Binary Multiplier
- Other Arithmetic Functions

Decimal Adders

• Addition of 2 decimal digits in BCD	Decimal Symbol	BCD Digit
• $\{C_{out},S\}=A+B+C_{in}$	0	0000
• $S=S_8S_4S_2S_1$, $A=A_8A_4A_2A_1$, $B=B_8B_4B_2B_1$	1	0001
	2	0010
 A digit in BCD cannot exceed 9, add 6 	3	0011
(0110) for final correction.	4	0100
	5	0101
	6	0110
10 10000	7	0111
10 1 0 0 0 0	8	1000
8_{10} A $1 0 0 0_2$	9	1001
9_{10} B $1 0 0 1_2$		
KZ $1 0 0 0 1_2$ bina	ary coded results	
$0 \ 1 \ 1 \ 0_2$ if >	9, add 6	
17_{10} CS 0 0 0 1 0 1 1 1_2 BCI	D coded result	

K: binary carry, Z: binary sum, C: BCD carry, S: BCD sum

Decimal Adders

K

	Bir	ary S	um			BCD Sum				Decimal
K	Z ₈	Z ₄	Z ₂	Z ₁	C	S 8	S ₄	S ₂	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	O	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	·Q	1	0	0	0	0	10
0	1	0	1	1	`\1	0	0	0	1	11
)	1	1	0	0	`1	0	0	1	0	12
280 2 (1	1	0	1	1	0	0	1	1	13
0 '	. 1	1	1	0	/1	0	1	0	0	14
0	ĽĿ,	_ 1 _	_1_	_11	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

- C = 1 when
 - 1. K=1
 - 2. or K = 0, but A+B > 9, which is $Z_8Z_4 + Z_8Z_2$
- C = 1 means need to add 0110

Decimal Adders

• $C_{out} = K + Z_8 Z_4 + Z_8 Z_2$

 When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the next stage.

Outline

- Binary Adder
- Binary Subtractor
- Decimal Adder (BCD)
- Binary Multiplier
- Other Arithmetic Functions

Binary Multiplier

- Multiplication consists of
 - Generation of partial products
 - Accumulation of shifted partial products
- Binary multiplication equivalent to AND operation

2-bit x 2-bit Binary Multiplier

4-bit x 3-bit Binary Multiplier

Outline

- Binary Adder
- Binary Subtractor
- Decimal Adder (BCD)
- Binary Multiplier
- Other Arithmetic Functions (optional)

Other Arithmetic Functions

- It is convenient to design the functional blocks by contraction
 - Removal of redundancy from circuit to which input fixing has been applied
- Functions
 - Increment
 - Decrement
 - Multiplication by constant
 - Division by constant
 - Zero fill and extension

Design by Contraction

- Simplify the logic in a functional block to implement a different function
 - The new function must be realizable from the original function by applying basic functions to its inputs
 - Contraction is treated here only for application of 0s and 1s (not for X and X')
 - After application of 0s and 1s, equations or the logic diagram are simplified

Design by Contraction Example

 Contraction of a ripple carry adder to incrementer for n=1 (A₂A₁A₀+001)

Incrementing and Decrementing

Incrementing

- Add a fixed value to an arithmetic variable
- Fixed value is often 1, called counting up
 - A+1, B+4
- Functional block is called incrementer

Decrementing

- Subtracting a fixed value from an arithmetic variable
- Fixed value is often 1, called counting down
 - A-1, B-4
- Functional block is called decrementer

Multiplication/Division by 2ⁿ

Shift left (multiplication) or right (division)

shift left by 2

shift right by 2

Multiplication by a Constant

Zero/Sign Extension

- Fill an m-bit operand with 0s to become an n-bit operand with n > m
 - Filling usually is applied to the MSB end of the operand
- Zero Extension
 - 01110101 filled to 16 bits
 - 000000001110101 {{8{0}}01110101}
 - 11110101 filled to 16 bits
 - 0000000011110101 {{8{0}}}11110101}
- Sign Extension
 - Copies the MSB of the operand into the new positions
 - 01110101 extended to 16 bits
 - 000000001110101 {{8{a7}}}a71110101}
 - 11110101 extended to 16 bits
 - 1111111111110101 {{8{a7}}a71110101}