

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «Информатика и системы управления»

КАФЕДРА ИУ-1 «Системы автоматического управления»

ОТЧЕТ

по лабораторной работе №1

по дисциплине

«Основы теории линейных систем управления»

Выполнили: Шевченко А.Д.

Уткин Т.О.

Шемет А.В.

Группа: ИУ1-52Б (51Б)

Проверил: Вереникин С. Н.

Работа выполнена: 28.11.2023

Отчет сдан: 28.11.2023

Оценка:

Москва 20

Содержание

Цель	работы:	3
Иссл	едование типовых динамических звеньев	3
Типовые динамические звенья		4
•	Усилительное (пропорциональное или безинерционное) звено	4
•	Идеальное интегрирующее звено	5
•	Апериодическое звено 1-го порядка (с разным усилением)	6
•	Апериодическое звено 1-го порядка (с разной постоянной времен	и)7
•	Апериодическое звено 2-го порядка	8
•	Консервативное звено	9
•	Колебательное звено (с разным коэффициентом демпфирования).	. 10
•	Колебательное звено (с разной собственной частотой)	. 11
•	Идеальное дифференцирующее звено	. 12
•	Форсирующее звено 1-го порядка	. 13
•	Форсирующее звено 2-го порядка	.14
•	Звено чистого запаздывания	. 15
Усто	йчивость динамических систем	.16
Од	цин действительный полюс $oldsymbol{p}=-oldsymbol{5}$. 17
Од	цин действительный полюс $oldsymbol{p}=+oldsymbol{5}$.19
Па	пра комплексных полюсов $p=-5\pm 2j$. 21
Па	ра комплесных полюсов $p=0\pm 5j$. 23
Па	ра комплесных полюсов $p=+5\pm2j$. 25
Выво	од:	. 27

Цель работы:

Исследование типовых динамических звеньев и устойчивости динамических систем.

Исследование типовых динамических звеньев

Для каждого из описанной ниже комбинации динамических звеньев одного типа, но с разными параметрами, построены на одной канве три графика. График слева — график переходного процесса, построенного с использованием функции step(), для которой в явном виде задано время моделирования равное одной секунде. Справа график ЛАФЧХ (диаграмма Боде), построенный с использованием двух функций semilogx(), данные для которого получены из выходных параметров функции freqresp() (вычисление частотной характеристики). На графиках ЛАФЧХ частота отображена в Гц, ЛАЧХ в дБ, а ЛФЧХ в градусах.

<u>Примечание</u>. Частоты динамических звеньев ω , определяемые в точке в которой падение усиления в системе составляет 3 дБ, связаны с постоянными времени следующим соотношением:

$$\omega = \frac{1}{T}$$

Однако, постоянная времени T измеряется в секундах, следовательно величина 1/T измеряется в Γ ц, а как результат, значение ω , измеряемое в рад/с, должно вычисляться следующим образом:

$$\omega = \frac{2\pi}{T}$$

<u>Примечание</u>. Ввиду того, что MATLAB не может моделировать во временной области системы в которых порядок полинома знаменателя меньше порядка полинома числителя, построение переходных процессов для соотвествующих передаточных функций было пропущено, и было реализовано с использованием функции isproper().

Типовые динамические звенья

• Усилительное (пропорциональное или безинерционное) звено

$$W(s) = K$$

для
$$K=10$$

Рис. 1 Характеристики Усилительного звена

• Идеальное интегрирующее звено

$$W(s) = \frac{K}{s}$$

для $K = \{1, 10\}.$

Рис. 2 Характеристики Идеального интегрирующего звена

• Апериодическое звено 1-го порядка (с разным усилением)

$$W(s) = \frac{1}{Ts + 1}$$

для $K = \{1, 10\}$ при T = 0.1.

Рис. 3 Характеристики Апериодического звена 1-го порядка (с разным усил.)

• Апериодическое звено 1-го порядка (с разной постоянной времени)

$$W(s) = \frac{1}{Ts + 1}$$

для $T = \{0.1, 0.01\}.$

Рис. 4 Характеристики Апериодического звена 1-го порядка (с разной постоянной времени)

• Апериодическое звено 2-го порядка

$$W(s) = \frac{1}{T_2^2 s^2 + T_1 s + 1}$$

для $T_1 = 0.1, T_2 = 0.01$

Рис. 5 Характеристики Апериодического звена 2-го порядка

• Консервативное звено

$$W(s) = \frac{1}{T^2 s^2 + 1}$$

для $T = \{0.1, 0.01\}.$

Рис. 6 Характеристики Консервативного звена

• Колебательное звено (с разным коэффициентом демпфирования)

$$W(s) = \frac{\omega^2}{s^2 + 2\varepsilon\omega s + \omega^2}$$

для $\varepsilon = \{0.3, 0.7, 1.5\}$, при $\omega = 10 \cdot 2\pi$

Рис. 7 Характеристики колебательного звена для = 0.3

Рис. 8 Характеристики колебательного звена для = 0.7

Рис. 9 Характеристики колебательного звена для = 1.5

• Колебательное звено (с разной собственной частотой)

$$W(s) = \frac{\omega^2}{s^2 + 2\varepsilon\omega s + \omega^2}$$

для $\omega = \{1, 10\} \cdot 2\pi$, при $\varepsilon = 0.7$

Рис. 10 Характеристики колебательного звена (с разной собственной частотой)

• Идеальное дифференцирующее звено

$$W(s) = s$$

Рис. 11 Характеристики идеального дифференцирующего звена

• Форсирующее звено 1-го порядка

$$W(s) = \frac{Ts+1}{1}$$

для $T = \{0.1, 0.01\}.$

Рис. 12 Характеристики Форсирующего звена 1-го порядка

• Форсирующее звено 2-го порядка

$$W(s) = \frac{T_2^2 s^2 + T_1 s + 1}{1}$$

для $T_1 = 0.1$, $T_2 = 0.01$

Рис. 13 Характеристики Форсирующего звена 2-го порядка

• Звено чистого запаздывания

$$W(s) = e^{-Ts}$$

для
$$T = \{0.2, 0.6\}.$$

Рис. 14 Характеристики Звена чистого запаздывания

Устойчивость динамических систем

Сформировать с использованием функции zpk() следующие передаточные функции, в предположении, что в системах нет нулей и коэффициент усиления равен единице:

- один действительный полюс p = -5;
- один действительный полюс p = +5;
- пара комплесных полюсов $p = -5 \pm 2j$;
- пара комплесных полюсов $p = 0 \pm 5j$;
- пара комплесных полюсов $p = +5 \pm 2j$.

<u>Примечание</u>. Для задания комплексных полюсов воспользоваться функцией complex().

Для каждой сформированной передаточной функции построены на одной канве два горизонтально расположенных графика. График слева — график переходного процесса, построенного с использованием функции plot(), данные для которого получены из выходных параметров функции step(). Справа график карты нулей и полюсов, который был построен с использованием функции pzmap(). На системы был подан ступенчатый сигнали, после чего на основании реакции системы сделаны выводы о связи значений полюсов системы с устойчивостью и характером переходного процесса при реакции на ступенчатое входное воздействие.

Данные дейтсвия были проделаны для систем с значениями «5» и «10» в полюсах системы.

После чего, используя функцию ss() были получены описаня всех созданных ранее систем (только для значений полюсов с «5») в переменных состояния. Определенв собственные значения матрицы состояния А с использованием функции eigs() и сделан вывод об устойчивости системы в переменных состояния.

Один действительный полюс p=-5

• Один действительный полюс p = -5;

$$F(s) = \frac{s}{s+5}$$

Рис. 15 Характеристики при одном действительном полюсе = -5

• Один действительный полюс p = -10;

$$F(s) = \frac{s}{s+10}$$

Рис. 16 Характеристики при одном действительном полюсе = -10

Один действительный полюс p=+5

• Один действительный полюс p = +5;

$$F(s) = \frac{s}{s - 5}$$

Рис. 17 Характеристики при одном действительном полюсе = +5

• Один действительный полюс p = +10;

$$F(s) = \frac{s}{s - 10}$$

Рис. 18 Характеристики при одном действительном полюсе = +10

Пара комплексных полюсов $p=-5\pm2j$

• Пара комплесных полюсов $p = -5 \pm 2j$;

$$F(s) = \frac{s}{s^2 + 10s + 29}$$

Рис. 19 Характеристики при паре комплесных полюсов = $-5 \pm 2j$

• Пара комплесных полюсов $p = -10 \pm 2j$;

Рис. 20 Характеристики при паре комплесных полюсов = $-10 \pm 2j$

Пара комплесных полюсов $p=0\pm 5j$

• Пара комплесных полюсов $p = 0 \pm 5j$;

$$F(s) = \frac{s}{s^2 + 25}$$

Рис. 21 Характеристики при паре комплесных полюсов = $0 \pm 5j$

• Пара комплесных полюсов $p = 0 \pm 10j$;

Рис. 22 Характеристики при паре комплесных полюсов = $0 \pm 10j$

Пара комплесных полюсов $p=+5\pm2j$

• Пара комплесных полюсов $p = +5 \pm 2j$;

$$F(s) = \frac{s}{s^2 - 10s + 29}$$

Рис. 23 Характеристики при паре комплесных полюсов = $+5 \pm 2j$

• Пара комплесных полюсов $p = +10 \pm 2j$.

Рис. 24 Характеристики при паре комплесных полюсов = $+10 \pm 2j$

Вывод:

В ходе данной лабораторной работы были исследованы типовые динамические звенья на предмет изменения амплитуды во время переходного процесса длительностью 1 секунда, а так же построены ЛАЧХ и ЛАФЧХ.

В результате работы была исследована устойчивость динамических систем и были получены навыки работы с динамическими системами в MATLAB.

Вопрос 1:

Предположить вид переходного процесса для дифференцирующих звеньев.

Ответ 1:

Идеальное дифференцирующее звено характеризуется уравнением:

$$W(s) = kp$$

Следовательно, в таком звене выходная величина пропорциональна скорости изменения входной величины. При изменении входной величины переходный процесс в идеально дифференцирующем звене теоретически происходит мгновенно.

Рис. 25 График переходного процесса в идеально дифференцирующем звене

Вопрос 2:

Сделать вывод о связи значений полюсов системы с устойчивостью и характером переходного процесса при реакции на ступенчатое входное воздействие.

Ответ 2:

Свободные колебания затухают тем быстрее, чем дальше от мнимой оси расположены корни характеристического уравнения.

- Для устойчивости системы необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные вещественные части, или эти корни на плоскости комплексного переменного были расположены слева от мнимой оси.
- Если корни характеристического уравнения расположены на мнимой оси, то система находится на границе устойчивости.
- Если хотя бы один из корней лежит в правой полуплоскости комплексной плоскости корней характеристического уравнения, то система неустойчивая.