Évaluation : dérivation (sujet A)

Exercice 1 : Calculer les dérivées suivantes :

- 1. La dérivée de la fonction f(x) = x 1 au point d'abscisse 3.
- 2. La dérivée de la fonction $f(x) = x^2 + 2$ au point d'abscisse 2.
- 3. La dérivée de la fonction $f(x) = -x^2 + 6x 5$ au point d'abscisse -1.

Exercice 2 : Tracer les courbes de x^3 et de sa dérivée entre -3 et 3.

(Remarque : il faudra prendre au moins 3 unités par carreau en ordonnée)

Exercice 3:

Un motard accélère de manière continue sur une route, avant de se lancer dans les airs depuis une rampe.

On modélise la situation par le schéma suivant :

On admet que la position du motard est définie par la fonction f, telle que :

- Si $x \in [0;10]$, le motard est sur la route, donc f(x) = 0.
- Si $x \in [10;12]$, le motard est sur la rampe, dont la courbe est définie par $f(x) = \frac{1}{2}x^2 10x + 50$.
- 1. Déterminer la pente de la rampe lorsque le motard la quitte.
- 2. Si il n'y avait pas de gravité, quelle serait la hauteur du motard au point d'abscisse 20?
- 3. En prenant en compte la gravité, on admet que la position du motard après la rampe suit la courbe de la fonction $f(x) = -0.5x^2 + bx + c$, où b et c ne sont pas encore connus.
 - (a) On admet que la fonction f est dérivable sur l'intervalle $[0;+\infty[$. D'après la question 1, quelle est la valeur de f'(12)? On admet que sur l'intervalle $[12;+\infty[$, la dérivée de f peut s'écrire f'(x)=-x+b. Quelle est alors la valeur de b?
 - (b) Lire sur le graphe la valeur de f(12). En déduire la valeur de c.
- 4. Tracer alors la fonction $f(x) = -0.5x^2 + bx + c$ sur l'intervalle [12;17]. À quelle abscisse le motard touche-il le sol?

Évaluation : dérivation (sujet B)

Exercice 1 : Calculer les dérivées suivantes :

- 1. La dérivée de la fonction f(x) = x + 2 au point d'abscisse 3.
- 2. La dérivée de la fonction $f(x) = -x^2 + 1$ au point d'abscisse 2.
- 3. La dérivée de la fonction $f(x) = x^2 + 6x 5$ au point d'abscisse -1.

Exercice 2: Tracer les courbes de x^3 et de sa dérivée entre -3 et 3. (Remarque : il faudra prendre au moins 3 unités par carreau en ordonnée)

Exercice 3

Un motard accélère de manière continue sur une route, avant de se lancer dans les airs depuis une rampe.

On modélise la situation par le schéma suivant :

On admet que la position du motard est définie par la fonction f, telle que :

- Si $x \in [0;10]$, le motard est sur la route, donc f(x) = 0.
- Si $x \in [10;12]$, le motard est sur la rampe, dont la courbe est définie par $f(x) = \frac{1}{4}x^2 5x + 25$.
- 1. Déterminer la pente de la rampe lorsque le motard la quitte.
- 2. Si il n'y avait pas de gravité, quelle serait la hauteur du motard au point d'abscisse 20?
- 3. En prenant en compte la gravité, on admet que la position du motard après la rampe suit la courbe de la fonction $f(x) = -\frac{1}{4}x^2 + bx + c$, où b et c ne sont pas encore connus.
 - (a) On admet que la fonction f est dérivable sur l'intervalle $[0;+\infty[$. D'après la question 1, quelle est la valeur de f'(12)? On admet que sur l'intervalle $[12;+\infty[$, la dérivée de f peut s'écrire f'(x)=-0.5x+b. Quelle est alors la valeur de b?
 - (b) Lire sur le graphe la valeur de f(12). En déduire la valeur de c.
- 4. Tracer alors la fonction $f(x) = -0.5x^2 + bx + c$ sur l'intervalle [12;17]. À quelle abscisse le motard touche-il le sol?