

CLAIMS

1 1. A method of achieving a therapeutic effect comprising:
2 providing a particle containing a therapeutic substance to an anatomical structure
3 comprising a lumen such that said particle embolizes within said lumen for a transitory
4 period of less than one week;
5 wherein said therapeutic substance is released from said particle, causing said
6 therapeutic effect.

1 2. The method of Claim 1, wherein said anatomical structure has a first region and a
2 second region branching from said first region, said second region being located downstream
3 from said first region, and wherein said providing a particle to an anatomical structure comprises
4 the acts of:
5 causing an occlusion in said first region at a position downstream of the location
6 at which said second region branches from said first region; and
7 introducing said particle into said first region upstream of the location at which
8 said second region branches from said first region.

1 3. The method of Claim 1, wherein said anatomical structure has a first region and a
2 second region branching from said first region, said second region being located downstream
3 from said first region, and wherein said providing a particle to an anatomical structure comprises
4 the acts of:
5 occluding said first region at positions both upstream and downstream of the
6 location at which said second region branches from said first region; and
7 introducing said particle into said first region between the upstream and
8 downstream occlusions.

1 4. The method of Claim 1, wherein said lumen contains an occlusion therein and
2 wherein said providing a particle to an anatomical structure comprises the act of:
3 introducing said particle into said lumen upstream of said occlusion.

1 5. The method of Claim 4, wherein said therapeutic substance is an angiogenic
2 substance and wherein said therapeutic effect is collateral growth upstream of said occlusion.

1 6. The method of Claim 1, wherein said particle reduces in size as said therapeutic
2 substance is released therefrom.

1 7. A method according to Claim 1 wherein the method of providing a particle further
2 comprises:

3 preparing a solution;
4 emulsifying the solution to form an emulsion; and
5 filtering particles from the emulsion.

1 8. A method according to Claim 7 wherein:

2 preparing the solution further includes:
3 dissolving lecithin and dexamethasone in methylene chloride;
4 emulsifying the solution further includes:
5 stirring the solution with a perfluorotributylamine / pluronic F-68 and water
6 solution with heparin; and
7 filtering particles further includes:
8 warming the emulsion to drive off the methylene chloride to form microparticles;
9 collecting the microparticles by filtration;
10 washing the collected microparticles in cold water;
11 drying the microparticles in a vacuum; and
12 separating the microparticles by size using cyclone or tangential flow filtration.

1 9. A method according to Claim 7 wherein:

2 preparing the solution further includes:
3 dissolving Basic Fibroblast Growth Factor, heparin, and lactose in phosphate
4 buffer with Human serum albumin;
5 emulsifying the solution further includes:
6 mixing the solution methylene chloride containing polylactide-co-glycolide to
7 form a single emulsion;
8 stirring the first emulsion with a perfluorotributylamine / pluronic F-68 and water
9 solution to form a double emulsion; and

10 filtering particles further includes:

11 warming the emulsion to drive off the methylene chloride to form microparticles;
12 collecting the microparticles by filtration;
13 washing the collected microparticles in water;
14 mixing the washed microparticles with an aqueous solution of mannose in
15 potassium phosphate buffer;
16 freeze-drying the microparticles in a vacuum; and
17 separating the microparticles by size using cyclone or tangential flow filtration.

1 10. A method according to Claim 7 wherein:

2 preparing the solution further includes:

3 stirring plasmid DNA and heparin in a solution of dextran and mannose in water;
4 emulsifying the solution further includes:

5 emulsifying the solution in cyclo-octane with SPAN 80; and

6 filtering particles further includes:

7 filling the emulsion into lyophilization vials to form microparticles;

8 freeze-drying the microparticles; and

9 separating the microparticles by size using cyclone or tangential flow filtration.

1 11. A method of achieving a therapeutic effect comprising:

2 providing a particle to an anatomical structure having a lumen such that said
3 particle embolizes within said lumen for a transitory period;

4 wherein said transitory period of embolization causes a brief period of
5 reduced blood flow through said lumen that induces a therapeutic bodily response.

1 12. The method of Claim 11, wherein said act of providing a particle to said

2 anatomical structure comprises the act of delivering pulses of said particles to said anatomical
3 structure.

1 13. The method of Claim 12, wherein the act of delivering pulses of said particles

2 causes a series of said brief periods of reduced blood flow;

3 wherein said therapeutic bodily response induced by said series of brief periods of
4 reduced blood flow is collateral growth.

1 14. A composition for achieving a therapeutic effect in an anatomical structure
2 comprising a lumen, the composition comprising:

3 a particle suitable for introduction into an anatomical structure, said particle
4 containing a therapeutic substance and being capable of reducing in size;

5 wherein said particle is capable of embolizing within said lumen for a
6 transitory period of less than one week; and

7 wherein said therapeutic substance is released from said particle for the treatment
8 of a patient.

,1 15. The composition of Claim 14, wherein said therapeutic substance is selected from
2 a group of antineoplastic, antiplatelet, anticoagulant, fibrinolytic, antimitotic, thrombin inhibitor,
3 antiinflammatory, antiproliferative, antioxidant, antiangiogenic, angiogenic, arteriogenic,
4 antiallergic substances, and mixtures thereof.

1 16. The composition of Claim 14, wherein said particle is made of a mixture of at
2 least two different substances.

1 17. The composition of Claim 16, wherein each of said substances reduces in size in
2 said lumen at a different rate.

1 18. The composition of Claim 14, wherein said particle is made of a first substance
2 and a second substance, said second substance covering at least a portion of said first substance,
3 wherein each of said substances reduce in size in said lumen at a different rate.

1 19. The composition of Claim 14, wherein said particle reduces in size as said
2 therapeutic substance is released therefrom.

1 20. A composition for achieving a therapeutic effect in an anatomical structure
2 comprising a lumen, said composition comprising:
3 a particle suitable for introduction into an anatomical structure, said particle being
4 capable of reducing in size;

5 wherein said particle is capable of embolizing within said lumen for a
6 transitory period, causing a brief period of reduced blood flow which induces a
7 therapeutic bodily response.

1 21. A method of achieving a therapeutic effect within an anatomical structure having
2 a first region and a second region, said second region being located downstream of said first
3 region and having a smaller cross-sectional diameter than said first region, the method
4 comprising the acts of:

- 5 (a) providing a particle having a first size in which said particle is not capable of
6 passing from said first region into said second region, said particle being capable of
7 reducing in size; and
8 (b) delivering said particle having said first size to said first region of said
9 anatomical structure;

10 wherein said particle subsequently reduces from said first size to a smaller second
11 size as said particle travels through said anatomical structure, allowing said particle to
12 pass into said second region; and

13 wherein a therapeutic effect is achieved.

1 22. The method of Claim 21, wherein said particle includes a therapeutic substance;
2 wherein said therapeutic substance is released from said particle; and
3 wherein said therapeutic effect results from said therapeutic substance.

1 23. The method of Claim 21, wherein during said act of traveling through said
2 anatomical structure and prior to said act of reducing to said second size, said particle reaches a
3 diameter of said anatomical structure through which said particle cannot pass and at which said
4 particle is constrained for a transitory period until said particle reduces to said second size.

1 24. The method of Claim 23, wherein said particle includes a therapeutic substance
2 and wherein said transitory period is less than one week;
3 wherein said therapeutic substance is released from said particle; and
4 wherein said therapeutic effect results from said therapeutic substance.

1 26. The method of Claim 24, wherein said particle reduces in size as said therapeutic
2 substance is released therefrom.

1 27. The method of Claim 21, wherein during said act of traveling through said
2 anatomical structure, said particle becomes transiently lodged in a plurality of locations
3 throughout said anatomical structure as said particle reduces in size over a period of days,
4 providing said therapeutic effect over a length of said anatomical structure.

1 28. The method of Claim 21, wherein said anatomical structure is within a
2 mammalian cardiovascular system,

3 wherein a brief period of reduced blood flow is caused during said transitory
4 period; and

5 wherein said therapeutic effect is a therapeutic bodily response induced by said
6 brief period of reduced blood flow.

1 29. The method of Claim 21, wherein said anatomical structure comprises a single
2 lumen containing said first region and said second region.

1 30. The method of Claim 21, wherein said anatomical structure comprises a lumen
2 network including a plurality of lumens.

2 31. The method of Claim 21, wherein said anatomical structure additionally includes
3 a third region, said third region being located downstream of said second region and having a
4 smaller cross-sectional diameter than said second region;

5 wherein said particle is capable of reducing from said second size to a smaller
6 third size, allowing said particle to pass from said second region into said third region.