Apéndice D

Fórmula de inversión de Möbius

En este apéndice vamos a probar la **fórmula de inversión de Möbius** que es una encarnación del principio de inclusión-exclusión.

D.1 Función de Möbius

D.1.1. Definición. Para un entero positivo *n* la **función de Möbius** se define por

$$\mu(1) := 1$$
, $\mu(n) = 0$ si n no es libre de cuadrados,

y para *n* libre de cuadrados se pone

$$\mu(p_1\cdots p_k):=(-1)^k,$$

donde k es el número de diferentes números primos que aparecen en la factorización de n.

D.1.2. Ejemplo. He aquí los primeros valores de la función de Möbius.

	n:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$-\mu(n)$	<i>i</i>):	+1	-1	-1	0	-1	+1	-1	0	0	+1	-1	0	-1	+1	+1

D.1.3. Lema. *Para todo* n > 0 *se tiene*

$$\sum_{d|n} \mu(d) = 0.$$

Demostración. Escribamos $n = p_1^{k_1} \cdots p_s^{k_s}$. Tenemos

$$\sum_{d|n} \mu(d) = \sum_{(e_1, \dots, e_s)} \mu(p_1^{e_1} \cdots p_s^{e_s}),$$

donde $e_i = 0$ o 1. Luego,

$$\sum_{d|n} \mu(d) = 1 - s + \binom{s}{2} - \binom{s}{3} + \dots + (-1)^s = (1 - 1)^s = 0.$$

D.2 Fórmula de inversión

Para dos funciones $f,g\colon \mathbb{Z}_{\geq 1} \to \mathbb{Z}$ definamos su **producto de Dirichlet** mediante

$$(f * g)(n) := \sum_{d_1 d_2 = n} f(d_1) g(d_2).$$

Este producto es asociativo:

$$((f*g)*h)(n) = (f*(g*h))(n) = \sum_{d_1d_2d_3=n} f(d_1) g(d_2) h(d_3).$$

Definamos las funciones \mathbb{I} e I mediante

$$\mathbb{I}(n) := \begin{cases} 1, & n = 1, \\ 0, & n > 1; \end{cases} \qquad I(n) := 1 \text{ para todo } n \ge 1.$$

D.2.1. Lema. *Se tiene* $I * \mu = \mu * I = \mathbb{I}$.

Demostración. Si n = 1, entonces

$$(I * \mu)(1) = (\mu * I)(1) = 1.$$

Para n > 1, se tiene

$$(\mu * I)(n) = (I * \mu)(n) = \sum_{d|n} \mu(d) = 0.$$

D.2.2. Proposición (Fórmula de inversión de Möbius). Para una función $f: \mathbb{Z}_{\geq 1} \to \mathbb{Z}$ definamos

$$F(n) := (f * I) := \sum_{d|n} f(d).$$

Luego,

$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d|n} \mu\left(\frac{n}{d}\right) F(d).$$

Demostración. Tenemos

$$F * \mu = (f * I) * \mu = f * (I * \mu) = f * \mathbb{I} = f.$$

Entonces,

$$(F * \mu)(n) = \sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right) = f(n).$$

D.2.3. Ejemplo. Para la función ϕ de Euler se tiene $\sum_{d|n} \phi(d) = n$ (por ejemplo, interpretando $\phi(n)$ como el número de los elementos de orden d en el grupo cíclico $\mathbb{Z}/n\mathbb{Z}$). Luego, para $n = p_1^{k_1} \cdots p_s^{k_s}$ la fórmula de inversión de Möbius nos da

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d} = n - \sum_{1 \le i \le s} \frac{n}{p_i} + \sum_{1 \le i < j \le s} \frac{n}{p_i p_j} - \cdots$$

$$= n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_s}\right).$$