

Vector Processor vs. SIMD Processor

Program Abstractions & Machine Objects

Vector term	Closest CUDA/NVIDIA GPU term	Comment
Vectorized Loop	Grid	Concepts are similar, with the GPU using the less descriptive term.
Chime	-	Since a vector instruction (PTX Instruction) takes just two cycles on Fermi and four cycles on Tesla to complete, a chime is short in GPUs.
Vector Instruction	PTX Instruction	A PTX instruction of a SIMD thread is broadcast to all SIMD Lanes, so it is similar to a vector instruction.
Gather/Scatter	Global load/store (ld.global/st.global)	All GPU loads and stores are gather and scatter, in that each SIMD Lane sends a unique address. It's up to the GPU Coalescing Unit to get unit-stride performance when addresses from the SIMD Lanes allow it.
Mask Registers	Predicate Registers and Internal Mask Registers	Vector mask registers are explicitly part of the architectural state, while GPU mask registers are internal to the hardware. The GPU conditional hardware adds a new feature beyond predicate registers to manage masks dynamically.

Processor

Vector term	Closest CUDA/NVIDIA GPU term	Comment
Vector Processor	Multithreaded SIMD Processor	These are similar, but SIMD Processors tend to have many lanes, taking a few clock cycles per lane to complete a vector, while vector architectures have few lanes and take many cycles to complete a vector. They are also multithreaded where vectors usually are not.
Control Processor	Thread Block Scheduler	The closest is the Thread Block Scheduler that assigns Thread Blocks to a multithreaded SIMD Processor. But GPUs have no scalar-vector operations and no unit-stride or strided data transfer instructions, which Control Processors often provide.
Scalar Processor	System Processor	Because of the lack of shared memory and the high latency to communicate over a PCI bus (1000s of clock cycles), the system processor in a GPU rarely takes on the same tasks that a scalar processor does in a vector architecture.

Memory System

Vector term	Closest CUDA/NVIDIA GPU term	Comment
Vector Lane	SIMD Lane	Both are essentially functional units with registers.
Vector Registers	SIMD Lane Registers	The equivalent of a vector register is the same register in all 32 SIMD Lanes of a multithreaded SIMD Processor running a thread of SIMD instructions. The number of registers per SIMD thread is flexible, but the maximum is 64, so the maximum number of vector registers is 64.
Main Memory	GPU Memory	Memory for GPU versus System memory in vector case.

SIMD Extension vs. GPU

Feature	Multicore with SIMD	GPU
SIMD processors	4 to 8	8 to 16
SIMD lanes per processor	2 to 4	8 to 16
Multithreading hardware support for SIMD threads	2 to 4	16 to 32
Typical ratio of single-precision to double-precision performance	2:1	2:1
Largest cache size	8 MB	0.75 MB
Size of memory address	64-bit	64-bit
Size of main memory	8 to 256 GB	4 to 6 GB
Memory protection at level of page	Yes	Yes
Demand paging	Yes	No
Integrated scalar processor/SIMD processor	Yes	No
Cache coherent	Yes	No