

Vorlesung "Logik"

10-201-2108-1

9. PL1 - Herbrandtheorie

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

19. Juni 2025 Leipzig

In der letzten Vorlesung

Substitution und Überführung Gebundene Umbenennung Negationsnormalform Pränexnormalform Skolemnormalform

Fahrplan für diese Vorlesung

Herbrand-Modellsatz Satz von Löwenheim-Skolem Satz von Herbrand Algorithmus von Gilmore

Herbrand-Theorie

- Jacques Herbrand (1908 1931)
- Schon bekannt: Erfüllbarkeitsproblem unentscheidbar
- Aber: im Falle der Erfüllbarkeit existieren kanonische Modelle, sog. Herbrand-Modelle

Definition

Sei ϕ ein Satz in SNF. Das Herbrand-Universum $D(\phi)$ ist induktiv definiert durch:

$$D(\phi) = \begin{cases} s(\phi) \cap \mathcal{C}, & \text{falls } s(\phi) \cap \mathcal{C} \neq \emptyset \\ \{c\}, & \text{sonst} \end{cases}$$
 (Kor

(Konstanten)

② für jedes $f^n \in s(\phi) \cap \mathcal{F}$ und $t_1, \dots, t_n \in D(\phi)$ sei auch $f(t_1, \dots, t_n) \in D(\phi)$ (variablenfreie Terme)

Beispiel:

$$\phi = \forall x \, \forall y \, (P(h(y), x) \vee R(f(y, y)))$$

$$D(\phi) = \{c, h(c), f(c, c), h(h(c)), h(f(c, c)), f(c, h(c)), \ldots\}$$

Herbrand-Theorie

- Jacques Herbrand (1908 1931)
- Schon bekannt: Erfüllbarkeitsproblem unentscheidbar
- Aber: im Falle der Erfüllbarkeit existieren kanonische Modelle, sog. Herbrand-Modelle

Definition

Sei ϕ ein Satz in SNF. Das Herbrand-Universum $D(\phi)$ ist induktiv definiert durch:

$$D(\phi) = \begin{cases} s(\phi) \cap \mathcal{C}, & \text{falls } s(\phi) \cap \mathcal{C} \neq \emptyset \\ \{c\}, & \text{sonst} \end{cases}$$

(Konstanten)

② für jedes $f^n \in s(\phi) \cap \mathcal{F}$ mit $n \ge 1$ und $t_1, \dots, t_n \in D(\phi)$ sei auch $f(t_1, \dots, t_n) \in D(\phi)$ (variablenfreie Terme)

Frage: Was ist $|D(\phi)|$?

Abzählbarkeit des Herbrand-Universums

Sei ϕ eine Formel mit Signatur

$$s(\phi) = \{c_1, \dots, c_m, f_1, \dots, f_n, P_1, \dots, P_l\}$$

Definiere die Menge der variablenfreien Terme induktiv nach ihrer Tiefe:

• setze
$$T_0 = \{c_1, ..., c_m\}$$
 (Tiefe 0)

•
$$T_{d+1} := T_d \cup \{ f(t_1, \dots, t_l) \mid f^l \in s(\phi) \cap \mathcal{F}, t_1, \dots, t_l \in T_d \}$$
 (Tiefe $d+1$)

Beobachtung:

- jede Menge T_d ist endlich
- abzählbare Vereinigung von endlich Mengen ist abzählbar
- $D(\phi) = \bigcup_{d \in \mathbb{N}} T_d$ ist abzählbar

Definition

Sei ϕ ein Satz in SNF. Eine Struktur $\mathfrak A$ heißt Herbrand-Struktur für ϕ , falls:

- $U^{\mathfrak{A}} = D(\phi)$, und
- ② für $f \in s(\phi) \cap \mathcal{F}$ und $t_1, \ldots, t_n \in U^{2}$:

$$f^{\mathfrak{A}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

Bemerkungen:

- Interpretation der Prädikatensymbole in ϕ ist noch offen
- Belegung der Variablen ist ebenfalls offen, spielt aber keine Rolle da φ geschlossen (Koinzidenzsatz)
- variablenfreie Terme werden durch sich selber interpretiert

Herbrand-Struktur + Modell = Herbrand-Modell

Definition

Sei ϕ ein Satz in SNF. Eine Struktur $\mathfrak A$ heißt Herbrand-Struktur für ϕ , falls:

- $U^{\mathfrak{A}} = D(\phi)$, und
- ② für $f \in s(\phi) \cap \mathcal{F}$ und $t_1, \ldots, t_n \in U^{2}$:

$$f^{\mathfrak{A}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

Beispiel:

$$\phi = \forall x \,\forall y \, (P(h(y), x) \vee R(f(y, y)))$$

$$U^{\mathfrak{A}} = \{c, h(c), f(c, c), h(h(c)), h(f(c, c)), f(c, h(c)), \ldots\}$$

$$h^{\mathfrak{A}} : U^{\mathfrak{A}} \rightarrow U^{\mathfrak{A}} \text{ mit } t_1 \mapsto h^{\mathfrak{A}}(t_1) = h(t_1)$$

$$f^{\mathfrak{A}} : U^{\mathfrak{A}} \times U^{\mathfrak{A}} \rightarrow U^{\mathfrak{A}} \text{ mit } (t_1, t_2) \mapsto f^{\mathfrak{A}}(t_1, t_2) = f(t_1, t_2)$$

$$P^{\mathfrak{A}} = U^{\mathfrak{A}} \times U^{\mathfrak{A}} \rightarrow U^{\mathfrak{A}} \text{ und } R^{\mathfrak{A}} = \emptyset$$

$$(\mathfrak{A}, \beta) \text{ ist Herbrand-Modell von } \phi \text{ da für alle}$$

$$t_1, t_2 \in U^{\mathfrak{A}} : (\mathfrak{A}, \beta_{[x \mapsto t_1, y \mapsto t_2]}) (P(h(y), x)) = 1$$

Definition

Sei ϕ ein Satz in SNF. Eine Struktur $\mathfrak A$ heißt Herbrand-Struktur für ϕ , falls:

- $U^{\mathfrak{A}} = D(\phi)$, und
- ② für $f \in s(\phi) \cap \mathcal{F}$ und $t_1, \ldots, t_n \in U^{\mathfrak{A}}$:

$$f^{\mathfrak{A}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

Lemma (Überführungslemma)

Sei $\mathfrak A$ eine Struktur, β eine Belegung, x eine Variable, t ein Term und ϕ eine Formel. Sofern $var(t) \cap geb(\phi) = \emptyset$, dann:

$$(\mathfrak{A},\beta) \left(\phi[x/t]\right) = \left(\mathfrak{A},\beta_{[x\mapsto\beta(t)]}\right) (\phi)$$

für Herbrandstruktur \mathfrak{A} , Belegung β und $t \in U^{\mathfrak{A}}$:

- $var(t) \cap geb(\phi) = \emptyset$ da variablenfrei
- $\beta(t) = t^{\mathfrak{A}} = t$

Definition

Sei ϕ ein Satz in SNF. Eine Struktur $\mathfrak A$ heißt Herbrand-Struktur für ϕ , falls:

- $U^{\mathfrak{A}} = D(\phi)$, und
- ② für $f \in s(\phi) \cap \mathcal{F}$ und $t_1, \ldots, t_n \in U^{\mathfrak{A}}$:

$$f^{\mathfrak{A}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

Lemma (Überführungslemma)

Sei $\mathfrak A$ eine Herbrand-Struktur für eine Formel ϕ , β eine Belegung, x eine Variable, $t \in U^{\mathfrak A}$ ein (variablenfreier) Term. Es gilt: $(\mathfrak A,\beta) \left(\phi[x/t]\right) = \left(\mathfrak A,\beta_{[x\mapsto t]}\right) (\phi)$

syntaktischer Ersetzung entspricht punktueller Änderung

Proposition

Sei ϕ ein gleichheitsfreier Satz in SNF. Es gilt:

 ϕ erfüllbar gdw. ϕ besitzt Herbrand-Modell

- Fundamentalsatz der PL1
- Suche nach Modellen, kann auf Herbrand-Strukturen eingeschränkt werden (festes abzählbares Universum)
- Einschränkung gleichheitsfrei ist wichtig (betrachte $\phi = \forall x (f(x) = x)$)
- aber: für jede Formel ϕ existiert erfüllbarkeitsäquivalente und gleichheitsfreie Formel ψ (ohne Beweis)

Proposition

Sei ϕ ein gleichheitsfreier Satz in SNF. Es gilt:

 ϕ erfüllbar gdw. ϕ besitzt Herbrand-Modell

Beweis:

- (←) Klar.
- (⇒) Sei ϕ erfüllbar, d.h. es ex. Modell (\mathfrak{A},β) von ϕ . Ausgehend davon definieren ein Herbrand-Modell (\mathfrak{B},γ) von ϕ . Für $P^n \in s(\phi) \cap \mathcal{P}$ und $t_1,\ldots,t_n \in D(\phi) = U^\mathfrak{B}$ setzen wir:

$$(t_1,\ldots,t_n)\in P^{\mathfrak{B}}$$
 gdw. $(\beta(t_1),\ldots,\beta(t_n))\in P^{\mathfrak{A}}$

Falls $s(\phi) \cap \mathcal{C} = \varnothing$ setzen wir für die eingeführte Konstante $c \in D(\phi) : c^{\mathfrak{A}} \in U^{\mathfrak{A}}$ beliebig (Modelleigenschaft von (\mathfrak{A},β) bleibt erhalten, Koinzidenzsatz). Wir zeigen nun, daß für alle Sätze ψ in SNF mit $s(\psi) \subseteq s(\phi) \cup \{c\}$ gilt:

Falls (\mathfrak{A},β) Modell von ψ , dann (\mathfrak{B},γ) Modell von ψ .

Proposition

Sei ϕ ein gleichheitsfreier Satz in SNF. Es gilt:

 ϕ erfüllbar gdw. ϕ besitzt Herbrand-Modell

- (\Rightarrow) Sei ψ Satz in SNF mit $s(\psi) \subseteq s(\phi) \cup \{c\}$. Zeigen: Wenn (\mathfrak{A},β) Modell von ψ , dann auch (\mathfrak{B},γ) Modell von ψ . Beweis per vollst. Ind. über die Anzahl der (All)quantoren.
 - Sei n = 0. Wir zeigen $(\mathfrak{A}, \beta)(\psi) = (\mathfrak{B}, \gamma)(\psi)$ per struk. Ind.:
 - Sei ψ atomar. Da ψ Satz gilt $\psi = P(t_1, \dots, t_n)$ für variablenfreie Terme t_1, \dots, t_n . Es gilt: $(\mathfrak{A}, \beta)(\psi) = 1$ gdw. $(\beta(t_1), \dots, \beta(t_n)) \in P^{\mathfrak{A}}$ (Semantik)

gdw.
$$(t_1,\ldots,t_n)\in P^{\mathfrak{B}}$$
 (Def. $P^{\mathfrak{B}}$)

gdw.
$$(\gamma(t_1), \dots, \gamma(t_n)) \in P^{\mathfrak{B}}$$
 (Def. \mathfrak{B})

gdw.
$$(\mathfrak{B}, \gamma)(\psi) = 1$$
 (Semantik)

- Für $\psi = \neg \xi$ gilt: $(\mathfrak{A}, \beta)(\psi) = 1$ gdw. $(\mathfrak{A}, \beta)(\xi) = 0$ gdw. $(\mathfrak{B}, \gamma)(\xi) = 0$ gdw. $(\mathfrak{B}, \gamma)(\psi) = 1$.
- Für $\psi = \xi_1 \circ \xi_2$ analog.

Proposition

Sei ϕ ein gleichheitsfreier Satz in SNF. Es gilt:

 ϕ erfüllbar gdw. ϕ besitzt Herbrand-Modell

- (\Rightarrow) Sei ψ Satz in SNF mit $s(\psi) \subseteq s(\phi) \cup \{c\}$. Zeigen: Wenn (\mathfrak{A},β) Modell von ψ , dann auch (\mathfrak{B},γ) Modell von ψ . Beweis per vollst. Ind. über die Anzahl der Allquantoren.
 - Betrachte n+1. Somit ist $\psi = \forall x \xi$ wobei ξ n Quantoren aufweist. Beachte: ξ nicht notwendigerweise Satz da $x \in frei(\xi)$ möglich. Sei $(\mathfrak{A},\beta)(\psi)=1$. Folglich, für alle $a \in U^{\mathfrak{A}}: (\mathfrak{A},\beta_{[x\mapsto a]})(\xi)=1$. Da $\{t^{\mathfrak{A}} \mid t \in D(\psi)\}\subseteq U^{\mathfrak{A}}$ gilt für $t \in D(\psi): 1=(\mathfrak{A},\beta_{[x\mapsto t^{\mathfrak{A}}]})(\xi)=(\mathfrak{A},\beta)(\xi[x/t])$ (Überführungslemma). Formel $\xi[x/t]$ ist Satz in SNF mit n Quantoren. Also gilt nach IV: für alle $t \in D(\psi): (\mathfrak{B},\gamma)(\xi[x/t])=1$. Mit Überführungslemma für Herbrandstrukturen folgern wir für alle $t \in D(\psi)=U^{\mathfrak{B}}: (\mathfrak{B},\gamma_{[x\mapsto t]})(\xi)=1$. Dies bedeutet $(\mathfrak{B},\gamma)(\forall x \xi)=1$.

Bemerkungen:

- gilt auch für beliebige Formelmengen
- falls keine Funktionssymbole auftauchen, ist Herbrand-Universum endlich ⇒ nur endlich viele Herbrand-Strukturen

Beispiel: Ausgangsformel

$$\phi = \forall x \, \forall y \, (P(z) \to Q(x,y))$$

Existenzieller Abschluß:

$$\psi = \exists z \, \forall x \, \forall y \, (P(z) \to Q(x,y))$$

Skolemnormalform:

$$\xi = \forall x \forall y (P(c) \rightarrow Q(x,y))$$

Herbrand-Universum:

$$D(\xi) = \{c\}$$

4 mögliche Herbrand-Strukturen $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}$ mit:

$$P^{\mathfrak{A}} = \varnothing, \ Q^{\mathfrak{A}} = \varnothing$$
 $P^{\mathfrak{B}} = \{c\}, \ Q^{\mathfrak{B}} = \varnothing$
 $P^{\mathfrak{C}} = \varnothing, \ Q^{\mathfrak{C}} = \{(c,c)\}$ $P^{\mathfrak{D}} = \{c\}, \ Q^{\mathfrak{D}} = \{(c,c)\}$

Satz von Löwenheim-Skolem

Proposition

Falls ϕ erfüllbar, dann existiert bereits ein abzählbares Modell.

Beweisidee (für gleichheitsfreies ϕ):

- sei ψ_1 existenzieller Abschluß von ϕ , d. h. ψ_1 ist Satz und erfüllbarkeitsäquivalent zu ϕ (VL7)
- ullet sei ψ_2 eine semantisch äquivalente Pränexnormalform von ψ_1
- sei ψ_3 eine Skolemnormalform von ψ_2 , d.h. $\psi_3 \models \psi_2$ und ψ_3 erfüllbarkeitsäquivalent ψ_2 (VL8)
- da ϕ erfüllbar ist, folgt: ψ_1 , ψ_2 und somit auch ψ_3 erfüllbar
- ψ_3 besitzt Herbrand-Modell $\mathfrak A$ (Herbrand-Modellsatz)
- wegen $\psi_3 \models \psi_2$ ist $\mathfrak A$ Modell von ψ_2
- wegen $\psi_2 \equiv \psi_1$ ist $\mathfrak A$ Modell von ψ_1
- da ψ_1 existenzieller Abschluß von ϕ , existiert Belegung β , sodaß $(\mathfrak{A}, \beta)(\phi) = 1$ (belege freie Variablen entsprechend)
- U^Ջ ist abzählbar

Herbrand-Expansion

Definition

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ Satz in SNF. Die Herbrand-Expansion $E(\phi)$ ist definiert durch:

$$E(\phi) = \{\xi[x_1/t_1] \dots [x_n/t_n] \mid t_1, \dots, t_n \in D(\phi)\}$$

Beispiel:

$$\phi = \forall x \, \forall y \, (P(h(y), x) \vee R(f(y, y)))$$

$$D(\phi) = \{c, h(c), f(c, c), h(h(c)), h(f(c, c)), f(c, h(c)), \ldots\}$$

$$E(\phi) = \{\underbrace{P(h(c), c) \vee R(f(c, c))}_{\xi[x/c][y/c]}, \underbrace{P(h(h(c)), c) \vee R(f(h(c), h(c)))}_{\xi[x/c][y/h(c)]}, \ldots\}$$

Formeln der Herbrand-Expansion sind quantoren- und variablenfrei ⇒ in AL interpretierbar

$$E(\phi) = \{ \underbrace{A_1}_{P(h(c),c)} \lor \underbrace{A_2}_{R(f(c,c))} , \underbrace{A_3}_{P(h(h(c)),c)} \lor \underbrace{A_4}_{R(f(h(c),h(c)))}, \ldots \}$$

Herbrand-Expansion

Definition

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ Satz in SNF. Die Herbrand-Expansion $E(\phi)$ ist definiert durch:

$$E(\phi) = \{\xi[x_1/t_1] \dots [x_n/t_n] \mid t_1, \dots, t_n \in D(\phi)\}$$

Formeln der Herbrand-Expansion sind quantoren- und variablenfrei ⇒ in AL interpretierbar

$$E(\phi) = \{ \underbrace{A_1}_{P(h(c),c)} \lor \underbrace{A_2}_{R(f(c,c))} , \underbrace{A_3}_{P(h(h(c)),c)} \lor \underbrace{A_4}_{R(f(h(c),h(c)))}, \ldots \}$$

Jede Interpretation $I: A \to \{0, 1\}$ korrespondiert zu einer Herbrandstruktur \mathfrak{I} . Sofern $A = P(t_1, \dots, t_n)$ setzen wir:

$$I(A) = 1$$
 gdw. $(t_1, \ldots, t_n) \in P^{\Im}$ (*)

Satz von Herbrand

- Erfüllbarkeit in PL1 läßt sich auf Erfüllbarkeit in AL zurückführen
- Aber: einzelne prädikatenlogische Formel entspricht einer (ggf. unendlichen) Menge von aussagenlogischen Formeln

Proposition (Herbrand, 1930)

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF. Es gilt:

 ϕ erfüllbar gdw. $E(\phi)$ im aussagenlogischen Sinne erfüllbar

Beweisidee: ϕ erfüllbar

gdw.
$$\phi$$
 besitzt ein Herbrand-Modell (\mathfrak{A},β) (Herbrand-Modellsatz) gdw. für alle $t_1,\ldots,t_n\in D(\phi): (\mathfrak{A},\beta_{[x_1\mapsto t_1,\ldots,x_n\mapsto t_n]})(\xi)=1$ (Semantik) gdw. für alle $t_1,\ldots,t_n\in D(\phi): (\mathfrak{A},\beta)(\xi[x_1/t_1]\ldots[x_n/t_n])=1$ (Ü.lemma) gdw. $(\mathfrak{A},\beta)(E(\phi))=1$ (Definition $E(\phi)$) gdw. $E(\phi)$ ist erfüllbar im aussagenlogischen Sinne

Satz von Herbrand

Proposition (Herbrand, 1930)

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF. Es gilt:

- ϕ erfüllbar $\,$ gdw. $\,$ E(ϕ) im aussagenlogischen Sinne erfüllbar
 - Einschränkung gleichheitsfrei ist wichtig (betrachte $f(c) = c \land \neg (f(f(c)) = c)$)
 - Erfüllbarkeit in PL1 läßt sich auf Erfüllbarkeit in AL zurückführen
 - Aber: einzelne prädikatenlogische Formel entspricht einer (ggf. unendlichen) Menge von aussagenlogischen Formeln

Kombiniert mit dem Kompaktheitssatz der AL:

Corollary

Sei $\phi = \forall x_1 \dots \forall x_n \xi$ gleichheitsfreier Satz in SNF. Es gilt:

 ϕ unerfüllbar gdw. es existiert endliches unerfüllbares $E \subseteq E(\phi)$

Algorithmus von Gilmore

- Paul Gilmore (1906 1978)
- Algorithmus testet auf Unerfüllbarkeit
- in der Praxis kaum anwendbar

Algorithmus von Gilmore

Sei ϕ gleichheitsfreier Satz in SNF und sei $\{\phi_1, \phi_2, \phi_3, \ldots\}$ eine Aufzählung von $E(\phi)$. Für $i = 1, 2, 3, \ldots$ teste:

- Ist $\phi_1 \wedge ... \wedge \phi_i$ aussagenlogisch unerfüllbar?
- Falls ja, halte an mit Ausgabe "φ unerfüllbar"
- Algorithmus ist korrekt, d.h. wenn Ausgabe " ϕ unerfüllbar", dann ist ϕ auch unerfüllbar
- Algorithmus ist vollständig, d.h. wenn ϕ unerfüllbar, dann terminiert Algorithmus mit Ausgabe " ϕ unerfüllbar"
 - ⇒ Unerfüllbarkeit ist semi-entscheidbar

Vorlesung "Logik"

10-201-2108-1

9. PL1 - Herbrandtheorie

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

19. Juni 2025 Leipzig

