Bài 3. Đường thẳng vuông góc với mặt phẳng.

A. Lý thuyết

I. Định nghĩa

- Đường thẳng d được gọi là vuông góc vơi mặt phẳng (α) nếu d vuông góc với mọi đường thẳng a nằm trong mặt phẳng (α) .

- Khi d vuông góc với (α) ta còn nói (α) vuông góc với d hoặc d và (α) vuông góc với nhau và kí hiệu là $d \perp (\alpha)$

II. Điều kiện để đường thẳng vuông góc mặt phẳng

- Định lí: Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.
- **Hệ quả.** Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì nó cũng vuông góc với cạnh thứ ba của tam giác đó.

Ví dụ 1. Cho tứ diện ABCD có hai tam giác ABC và ABD là các tam giác đều. Gọi I là trung điểm của AB. Chứng minhh AB vuông góc với mặt phẳng (CDI).

Lời giải

Khi đó; $AB \perp (CDI)$ trong đó I là trung điểm của AB. Thật vậy, vì ABC và ABD là các tam giác đều nên đường trung tuyến đồng thời là đường cao :

 $CI \perp AB$; $DI \perp AB$.

Suy ra AB \perp (CDI).

III. Tính chất.

- **Tính chất 1**. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
- Mặt phẳng trung trực của một đoạn thẳng.

Người ta gọi mặt phẳng đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng AB là *mặt phẳng trung trực của đoạn thẳng AB*.

- **Tính chất 2**. Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.

IV. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng.

- Tính chất 1.

- a) Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
- b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.

- Tính chất 2.

- a) Cho hai mặt phẳng song song. Đường thẳng nào vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng kia.
- b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

- Tính chất 3.

- a) Cho đường thẳng a và mặt phẳng (α) song song với nhau. Đường thẳng nào vuông góc với (α) thì cũng vuông góc với a.
- b) Nếu một đường thẳng và một mặt phẳng (không chứa đường thẳng đó) cùng vuông góc với một đường thẳng khác thì chúng song song với nhau.

Ví dụ 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và $SA \perp (ABCD)$. Gọi I; J; K lần lượt là trung điểm của AB, BC và SB. Chứng minh:

- a) (IJK) // (SAC).
- b) BD \perp (SAC)
- c) BD \perp (IJK).

Lời giải:

a) Tam giác ABC có IJ Là đường trung bình của tam giác nên IJ // AC (1)

Tam giác SAB có IK là đường trung bình của tam giác nên IK//SA (2)

Từ (1) và (2) suy ra: (IJK) // (SAC).

b) Do BD \perp AC; BD \perp SA

Mà BD, AC \subset (SAC)

nên BD \perp (SAC)

c)Do BD \perp (SAC) và (IJK) // (SAC)

nên BD \perp (IJK).

V. Phép chiếu vuông góc và định lí ba đường vuông góc.

1. Phép chiếu vuông góc.

Cho đường thẳng Δ vuông góc với mặt phẳng (α). Phép chiếu song song theo phương của Δ lên mặt phẳng (α) được gọi là *phép chiếu vuông góc lên mặt phẳng* (α).

Nhận xét: Phép chiếu vuông góc lên một mặt phẳng là trường hợp đặc biệt của phép chiếu song song nên có đầy đủ các tính chất của phép chiếu song song.

2. Định lí ba đường vuông góc.

Cho đường thẳng a nằm trong mặt phẳng (α) và b là đường thẳng không thuộc (α) đồng thời không vuông góc với (α) . Gọi b' là hình chiếu vuông góc của b trên (α) . Khi đó, a vuông góc với b khi và chỉ khi a vuông góc với b'.

3. Góc giữa đường thẳng và mặt phẳng.

Định nghĩa:

Cho đường thẳng d và mặt phẳng (α) .

- + Trường hợp đường thẳng d vuông góc với mặt phẳng (α) thì ta nói rằng góc giữa đường thẳng d và mặt phẳng (α) bằng 90° .
- + Trường hợp đường thẳng d không vuông góc với mặt phẳng (α) thì góc giữa d và hình chiếu d' của nó trên (α) gọi là góc giữa đường thẳng d và mặt phẳng (α) .

Khi d không vuông góc với (α) thì d cắt (α) tại điểm O, ta lấy một điểm A tùy ý trên d khác điểm O. Gọi H là hình chiếu vuông góc của A lên (α) và ϕ là góc giữa d và (α) thì AOH = ϕ

- **Chú ý:** Nếu φ là góc giữa d và mặt phẳng (α) thì ta luôn có: $0^{\circ} \le \varphi \le 90^{\circ}$.

Ví dụ 3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và (ABC).

Lời giải:

Gọi H là trung điểm của BC.

Vì tam giác ABC vuông góc tại A có đường trung tuyến AH nên suy ra

$$AH = BH = CH = \frac{1}{2}BC = \frac{a}{2}.$$

Ta có: SH
$$\perp$$
 (ABC) \Rightarrow SH = $\sqrt{SB^2 - BH^2} = \frac{a\sqrt{3}}{2}$.

$$(SA,(ABC)) = (SA;AH) = SAH = \alpha$$

$$\Rightarrow \tan \alpha = \frac{SH}{AH} = \sqrt{3} \Rightarrow \alpha = 60^{\circ}$$
.

B. Bài tập tự luyện

Bài 1. Cho hình chóp S. ABC có SA \perp (ABC) và tam giác ABC vuông ở B , AH là đường cao của tam giác SAB. Chứng minh:

- a) BC \perp (SAB).
- b) AH⊥(SBC)

Lời giải:

a)

Do SA ⊥ (ABC) và BC ⊂ (ABC) nên SA ⊥ BC. Ta có:

$$\begin{cases} BC \perp AB \\ BC \perp SA \Rightarrow BC \perp (SAB) \\ AB; SA \subset (SAB) \end{cases}$$

b)Vì BC
$$\perp$$
 (SAB) \Rightarrow BC \perp AH

Lai có; $SB \perp AH \Rightarrow AH \perp (SBC)$

Bài 2. Cho tứ diện OABC có ba cạnh OA; OB; OC đôi một vuông góc. Gọi H là hình chiếu của O lên (ABC). Chứng minh:

a) OA
$$\perp$$
 BC

b)
$$\frac{1}{OH^2} = \frac{1}{OA^2} + \frac{1}{OB^2} + \frac{1}{OC^2}$$
.

c) H là trực tâm tam giác ABC

Lời giải:

a) Ta có:

$$\begin{cases} OA \perp OB \\ OA \perp OC \end{cases}$$

$$\Rightarrow$$
 OA \perp OBC \Rightarrow OA \perp BC

b) Hạ
$$\begin{cases} OI \perp BC \\ OH \perp AI \end{cases}$$

$$\begin{cases} OI \perp BC \\ BC \perp OA \end{cases} \Rightarrow BC \perp OAI$$

$$\Rightarrow$$
 BC \perp OH \Rightarrow OH \perp ABC.

Xét tam giác AOI vuông tại O có OH đường cao:

$$\frac{1}{OH^2} = \frac{1}{OA^2} + \frac{1}{OI^2} = \frac{1}{OA^2} + \frac{1}{OB^2} + \frac{1}{OC^2}$$

c) Ta có:
$$\begin{cases} AB \perp OC \\ AB \perp OH \end{cases} \Rightarrow AB \perp \ OCH \ \Rightarrow AB \perp HC \ 1 \ .$$

Tuong tự $BC \perp OH$ 2.

Từ (1) và (2) suy ra: H là trực tâm tam giác ABC

Bài 3. Cho hình chóp S.ABC có SA \perp (ABC). Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Chứng minh:

a) BC
$$\perp$$
 (SAH)

b) HK
$$\perp$$
 (SBC).

c) SH; AK và BC đồng quy.

Lời giải:

a) Ta $c\acute{o}BC \perp SA, BC \perp SH \Rightarrow BC \perp (SAH)$

b)Ta có

 $CK \perp AB, CK \perp SA$

$$\Rightarrow$$
CK \perp (SAB) \Rightarrow CK \perp SB

Mặt khác có CH \perp SB nên suy ra SB \perp (CHK)

 \Rightarrow SB \perp HK.

Tương tự, SC ⊥ HK nên HK ⊥ (SBC)

c) Gọi M là giao điểm của SH và BC.

Do $BC \perp (SAH) \Rightarrow BC \perp AM$ hay đường thẳng

AM trùng với đường thẳng AK.

Suy ra, SH, AK và BC đồng quy.

Bài 4. Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a và

SA
$$\perp$$
 (ABCD). Biết SA = $\frac{a\sqrt{6}}{3}$. Tính góc giữa SC và (ABCD).

Ta có:
$$SA \perp (ABCD) \Rightarrow SA \perp AC$$

$$\Rightarrow$$
 (SC; (ABCD)) = (SC; CA) = SCA = α

+ Do ABCD là hình vuông cạnh a

$$\Rightarrow$$
 AC = $\sqrt{AB^2 + BC^2} = a\sqrt{2}$, SA = $\frac{a\sqrt{6}}{3}$

$$\Rightarrow \tan \alpha = \frac{SA}{AC} = \frac{\sqrt{3}}{3} \Rightarrow \alpha = 30^{\circ}.$$

