PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-129510

(43)Date of publication of application: 25.05.1993

(51)Int.CI.

HO1L 23/50 HO1L 21/60

(21)Application number: 03-170242

. .

(00)D + 5 C!

(70)

(71)Applicant : NIPPON STEEL CORP

(22)Date of filing:

10.07.1991

(72)Inventor: ISHIKAWA SHINJI

ONO TAKAHIDE OZEKI YOSHIO

(54) COMPOSITE LEAD FRAME AND MANUFACTURE THEREOF

(57) Abstract:

PURPOSE: To improve the usage performance of the title lead frame and to make the pitch of the title lead frame fine by a method wherein the inside tip part of a lead frame is connected to the outer circumferential part of a lead frame-shaped wining for an inner lead part. CONSTITUTION: An insulating layer 2 is formed on the surface of a metal thin film 1; in addition, lead frameshaped wining is formed on it. Thereby, an inner lead part 10 is formed. Then, tip parts 11 of inner leads for a lead frame 9 are connected to outer circumferential parts 4 of the lead frame-shaped wiring for the inner lead part 10. In addition, the metal thin sheet 1 is formed to be tape-shaped. The insulating film 2 and the wiring are formed on the surface; after that, they are cut; and the inner lead part 10 is formed. Thereby, the usage performance of the title lead frame can be enhanced and the pitch of the title lead frame can be made finer as compared with that in conventional cases.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-129510

(43)公開日 平成5年(1993)5月25日

技術表示箇所

(51)Int.Cl.*							
	Н	0	1	L	23/50		

識別配号 庁内整理番号

U 9272-4M

21/60 23/50 3 0 1 M 6918-4M

S 9272-4M

審査請求 未請求 請求項の数3(全 6 頁)

(21)出願番号	特顯平3-170242	(71)出顧人	000006655
			新日本製鐵株式会社
(22)出顧日	平成3年(1991)7月10日	0	東京都千代田区大手町2丁目6番3号
		(72)発明者	石川 信二
			神奈川県川崎市中原区井田1618番地 新日
			本製鐵株式会社第1技術研究所內
	•	(72)発明者	大野 恭秀
			神奈川県川崎市中原区井田1618番地 新日
			本製鐵株式会社第1技術研究所內
		(72)発明者	大関 芳雄
			神奈川県川崎市中原区井田1618番地 新日
			本製鐵株式会社第1技術研究所內

(54) 【発明の名称】 複合リードフレームおよびその製造方法

(57)【要約】

【目的】 本発明は、半導体素子のパッケージングに際 し、使用性能および信頼性を向上させると共に、多ピン パッケージを可能にする複合リードフレームを提供す る。

【構成】 金属テープの表面に絶縁層とリードフレーム 様の配線を連続して形成し、該テープを切断して作製し たインナーリード部材の配線の外周部とリードフレーム の内側のリード先端部を接続して複合リードフレームと する。高熱伝導性、高剛性、低吸湿性、高耐熱性を持つ 部材で構成されるため使用性能および信頼性に優れる。 また薄膜プロセスにより配線のファインピッチ化が容易 で、多ピンパッケージが可能になる。

(74)代理人 弁理士 田村 弘明 (外1名)

【特許請求の範囲】

【請求項1】 リードフレームの内側に接続され中央に シリコンチップを搭載するダイパット部を備えた、イン ナーリード部を有し、前記インナーリード部が金属薄板 の表面に設けられた絶縁層とその上に形成されたリード フレーム様の配線からなり、リードフレームの内側のリ ード先端部とインナーリード部のリードフレーム様の配 線の外周部が接続されている複合リードフレーム。

【請求項2】 以下の工程を備えたことを特徴とする複 合リードフレームの製造方法。

(a) 金属薄板の表面に絶縁層を形成し、さらにその上 にリードフレーム様の配線を形成して、インナーリード 部を作製する工程、

(b) リードフレームの内側のリード先端部とインナー リード部のリードフレーム様の配線の外周部を接続する 工程。

【請求項3】 金属薄板がテープ状で、表面に連続して 絶縁層と配線を形成後、切断してインナーリード部を作 製する請求項2記載の複合リードフレームの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体電子工業におい て、半導体素子のパッケージングに用いられる複合リー ドフレームおよびその製造方法に関するものである。

[0002]

【従来の技術】近年、半導体デバイスの高集積・高機能 化に伴い、パッケージは著しく多ピン化している。その 結果、リードフレームのより一層の高精度ファインピッ チ化が強く求められている。特に、特定用途向け集積回 すると予測されており、近い将来には1000本程度ま で必要と言われている。

【0003】現在、リードフレームの加工方法としては プレス法およびエッチング法がある。両者の比較では、 エッチング法はプレス法よりも高精度ファインピッチ化 が可能であるが、製造コストがプレス加工法の数倍かか る問題がある。しかも、エッチング法でもファインピッ チ化の限界はリード幅で板厚の7~8割程度と言われて おり、リード幅を狭くするためには板厚を薄くすること が必要となる。しかしながら、板厚を薄くしていくと強 40 度が不足し、ハンドリングあるいは接合等でリード曲が り等の不都合が発生しやすい。そのため、板厚の限界は 0. 10~0. 15 mであり、リード数で200本程度 が限界となっている。

【0004】一方、多ピン化の1つの対応としてTAB 技術の適用がなされている。しかしながら、TABテー プの場合、リードが銅(Cu)箔で形成されており強度 が低いため、外部配線に際してアラインメント等で問題 が発生しやすく、従来のリードフレームと同様には使用 できない。

【0005】これらに対し、多ピン化を実現する対策と しては、絶縁フィルム単独あるいは絶縁フィルム上に形 成された金属アイランド部よりなるパッド部を持つTA Bテープのアウターリード部を半導体用リードフレーム に接合した複合リードフレーム (例えば特開昭62-2 32948号公報)、Siチップ用の窓を持つTABテ ープのアウターリード部を一体形成されたパッド部を持 つ半導体用リードフレームに接合した複合リードフレー ム (例えば特開昭63-24647号公報)、あるいは 10 TABテープとSiチップをTAB接合により一括接合 し、TABテープのアウターリード部に半導体用リード フレームのインナーリード部を接合することを特徴とす る複合リードフレーム(例えば特開平2-22850号 公報) 等が提案されている。

【0006】しかしながら、既に提案されているこれら の複合リードフレームは、絶縁フィルムと銅箔より構成 されるTABテープを用いているために以下のような問 題がある。すなわち、下層が絶縁フィルムであるため高 集積・大規模化により発熱量の大きい素子では、熱放散 20 性が十分でなく問題となるおそれがある。また、Siチ ップとTABテープのインナーリード部とをボンディン グワイヤで接続する際、インナーリード部が銅箔リード 部と剛性の低い絶縁フィルムのみで構成されているた め、接合に必要な超音波振動が十分でなく接合不良が生 じやすい。さらには、TABテープの絶縁フィルムは電 気的特性との兼ね合いからポリイミド樹脂等の限られた 素材であるため、耐熱性が劣りパッケージングの工程で 処理温度の制約を生じている。しかも、TABテープの 絶縁フィルムの熱膨張や吸湿による半導体素子の故障も 路 (ASIC) 等では、必要リード数は今後大幅に増大 30 多くみられる。一方、リードとしての強度を確保するた め銅箔の厚みは余り薄くできないことから、TAB技術 においてもリードのファインピッチ化には限界があり、 500本以上では問題になると考えられる。

[0007]

【発明が解決しようとする課題】本発明は、従来のTA Bテープを使用した複合リードフレームの問題を解消す るものであり、優れた使用性能と従来よりもさらにファ インピッチ化が可能な複合リードフレームを提供すること とを目的とするものである。

[00008]

【課題を解決するための手段】上記目的を達成するため に本発明は、(1)リードフレームの内側に接続され中 央にシリコンチップを搭載するダイパッド部を備えた、 インナーリード部を有し、前記インナーリード部が金属 薄板の表面に設けられた絶縁層とその上に形成されたリ ードフレーム様の配線からなり、リードフレームの内側 のリード先端部とインナーリード部のリードフレーム様 の配線の外周部が接続されている複合リードフレーム、 および、(2)以下の工程を備えたことを特徴とする複 50 合リードフレームの製造方法、すなわち、(a) 金属薄 板の表面に絶縁層を形成し、さらにその上にリードフレーム様の配線を形成して、インナーリード部を作製する工程、(b) リードフレームの内側のリードの先端部とインナーリード部のリードフレーム様の配線の外周部を接続する工程、さらに、(3) 金属薄板がテープ状で、表面に絶縁層と配線を形成後、切断してインナーリード部を作製する前項(2) 記載の複合リードフレームの製造方法、である。

【0009】本発明の複合リードフレームを、以下に示 す模式図をもとに説明する。図1(a)および(b) は、本発明の複合リードフレームに用いるインナーリー ド部材テープおよびその断面図を示したものである。従 来の複合リードフレームで用いられるTABテープは、 絶縁フィルム上に銅箔により配線パターンを形成してい るが、本発明で用いるインナーリード部材テープでは、 Cu, Al, Fe-42%Ni合金等の金属薄板1とア ルミナ、シリカ等の酸化物あるいは窒化アルミ等の絶縁 層2よりなる基材テープ上に、Cu, Al, Ag, Au 等の導電材料で配線3を形成するのが特徴である。ま た、絶縁層および配線の積層形態には、例として図2 (a) に示したように、リードフレームとの良好な接合 のためAu, Ag, Sn等のメッキ7を施したもの、図 2 (b) に示したように、Siチップとの接続のためビ ーム8を設けたり、両面を絶縁層2で被覆したものなど 種々考えられる。なお、金属薄板および絶縁層の材料は 耐熱性および熱伝導性を満たすものであればいずれでも よく、特に本例に限定するものではない。

【0010】図3(a) および(b) は、インナーリード部材10とリードフレーム9のインナーリード11を接合した本発明の複合リードフレームの一形態およびそ30の断面図を示す。従来の複合リードフレームでは、絶縁フィルムより突き出たTABテープのアウターリードとリードフレームのインナーリードを重ね合わせて接合しているが、本発明では、絶縁層2上に形成された配線の外周部4とリードフレーム9の内側のリード先端部11を重ね合わせて熱圧着等により接合する。なお、その接合方法としては良好な熱圧着接合を得るためメッキを施す他、導電ペーストによる接合なども適用でき、必ずしも熱圧着に限定されるものではない。

【0011】またこの他にも、図4(a)に示したようにインナーリード部材10とリードフレーム9との接合部にAu, Ag, Sn等のメッキ7を施してあるもの、図4(b)に示したようにインナーリード部材10に別途製作した金属パッド15を後付けし、Siチップ12との接合をピーム8とパンプ14で行ったもの、図4(c)のようにメッキ等で形成したパンプ16にSiチップ12をフェイスダウンで接続するもの、図4(d)のようにインナーリード部材テープを複層配線構造とし、Siチップ12を複数搭載するものなどのいずれを採用してもよい。

【0012】このようにして製造された複合リードフレームは、TABテープの絶縁フィルムを金属薄板と絶縁層に置き換えたことにより、絶縁フィルムの問題点である、低熱伝導性、抵剛性、高吸湿性、低耐熱性が解消され、優れた特性が得られる。すなわち、絶縁フィルムに比較して、基材が高熱伝導性、高剛性、低吸湿性、高耐熱性をもつ金属および絶縁層であるため、(a) Siチップで発生する熱の放散性が向上する、(b) 超音波振動が付加されやすく、従来のワイヤボンディング装置で10十分な信頼性を持つワイヤボンディングが可能となる、

(c) 低吸湿性のため半導体素子部材として使用する際の信頼性が向上する、(d) 耐熱温度の上昇により従来不可能であった熱処理、用途に使用できる、等の特性が得られる。また、絶縁層として誘電率の低い材料を選択することにより、高周波数特性の優れたバッケージングが可能となる。

【0013】配線の形成についてはメッキや印刷プロセスも適用できるが、本発明では薄膜プロセスが適用できるため、非常に微細な配線パターンの形成が容易となり、TABテープ以上のファインピッチ化が可能となる。さらに、絶縁層および配線材料の選択が自由になり、配線と同時に回路素子を形成できるなど種々の用途に適した組み合わせを選ぶことができる。また、金属テープ上に連続して配線を形成したものから切断したインナーリード部材を用いることにより、大量生産およびコストの低減が可能になる。

【0014】本発明の複合リードフレームは、Siチップを搭載し、樹脂あるいはセラミックパッケージを用いて封止することにより半導体素子として使用されるが、従来のTABテープに比較して耐熱性に優れるため、封止処理条件を広い範囲から選択でき、信頼性の向上が得られる。また、インナーリード部材の絶縁層を樹脂との密着性の良好なものとすれば、インナーリード部材の一部をパッケージ表面に露出させることで熱放散性を大幅に高めることができる。

[0015]

【実施例】(実施例1)0.15m厚のFe-42%Ni合金で208ピンのリードフレームを作製した。別途、A1薄板に陽極酸化および封孔処理を施し、さらに40 CuおよびAgメッキで配線を形成したインナーリード部材テープを作製した。次いで、このテープから金型により打ち抜いたインナーリード部材の配線の外周部(図3-4)とリードフレームの内側のリード先端部(図3-1)を熱圧着接合して、図3に示したものと同様の複合リードフレームを作製した。なお、インナーリード部材の配線の内周部(図3-5)はSiチップとワイヤボンディングが可能な配線パターンとした。

【0016】この複合リードフレームにSiチップを搭載し、インナーリード部材の配線の内周部とAuボンデ 50 ィングワイヤ (図3-13) で接続した。ワイヤボンデ

ィングの接合強度試験を行った結果、いずれもボールネ ック部で破断しており、第2ボンディング部、すなわち インナーリード部材の配線の内周部の接合強度は十分な

【0017】さらに、これを樹脂封止して、半導体素子 とした。この素子を消費電力が2Wになるよう動作さ せ、動作開始2時間後の半導体素子表面の温度を測定し た結果、比較例の素子は98℃であったのに対し本発明 素子は57℃で優れた熱放散性を示した。

【0018】さらに、この素子で-55℃で30分、1 50℃で30分の温度サイクルテストを行った結果、5 00サイクルでも不良が発生しなかった。

【0019】 (実施例2) 0. 15mm厚のFe-42% Ni合金で208ピンのリードフレームを作製した。別 途、A1上に薄膜プロセスによりA1およびSiO2の 複層配線を形成した図4(d)と同様のマルチチップ用 インナーリード部材テープを作製した。次いで、このテ ープから金型により打ち抜いたインナーリード部材の配 線の外周部とリードフレームの内側のリード先端部を熱 ンナーリード部材の配線パターン内周部はSiチップと ワイヤボンディングが可能な配線パターンとした。

【0020】この複合リードフレームに4個のSiチッ プを搭載し、インナーリード部材のインナー部とAuボ ンディングワイヤで接続した。ワイヤボンディングの接 合強度試験を行った結果、いずれもボールネック部で破 断しており、第2ポンディング部、すなわちインナーリ ード部材の配線の内周部での接合強度は十分なレベルで

【0021】さらに、この素子で-55℃で30分、1 30 50℃で30分の温度サイクルテストを行った結果、5 00サイクルでも不良が発生しなかった。

【0022】 (実施例3) 0. 10m厚のCu系合金で 308ピンのリードフレームを作製した。別途、Cu上 に薄膜プロセスによりA1N絶縁層を形成し、さらにC uで配線を形成したインナーリード部材テープを作製し た。次いで、このテープから金型により打ち抜いたイン・ ナーリード部材の配線の外周部とリードフレームの内側 のリード先端部を熱圧着接合して図3と同様の複合リー ドフレームを作製した。なお、インナーリード部材の配 40 線にはAuメッキを施し、Siチップとワイヤボンディ ングが可能な配線パターンとした。この複合リードフレ ームにSiチップを搭載し、インナーリード部材の配線 パターン内周部とAuボンディングワイヤで接続した。 ワイヤボンディングの接合強度試験を行った結果、いず れもボールネック部で破断しており、第2ボンディング 部、すなわちインナーリード部材の配線の内周部での接 合強度は十分なレベルであった。さらに、この素子で一 55℃で30分、150℃で30分の温度サイクルテス トを行った結果、500サイクルでも不良が発生しなか 50

った。

【0023】 [比較例] 実施例1と同一のリードフレー ムを用い、同様の銅の配線をもち、中央に絶縁フィルム のアイランド部と銅箔のSiチップをのせるダイパッド 部を形成したTABテープを接合して複合リードフレー ムを作成した。さらに、Siチップを実装し、実施例1 と同一条件でワイヤボンディングを行った。また、同一 条件で樹脂封止して比較用の半導体素子も作製した。

6

【0024】ワイヤボンディングの接合強度試験を行っ 10 た結果、第2ボンディング部、すなわちTABテープの 内側のリード先端部でのボンディングワイヤの剥離およ び破断が29%も見られた。次に、この素子を消費電力 が2Wになるよう動作させ、動作開始2時間後の半導体 素子表面の温度を測定した結果、98℃であった。さら に、この素子で-55℃で30分、150℃で30分の 温度サイクルテストを行った結果、500サイクルで 0.06%の累積不良率を示した。

[0025]

【発明の効果】本発明により、従来の複合リードフレー 圧着接合して複合リードフレームを作製した。なお、イ 20 ムに比較して、高い熱放散性および信頼性をもつ半導体 素子の製造が容易となった。また、さらに多ピンのリー ドフレームおよびそれを用いた半導体素子を製造するこ とも可能となった。

【図面の簡単な説明】

【図1】 本発明に使用するインナーリード部分およびそ

【図2】本発明に使用するインナーリード部分およびそ の断面図.

【図3】本発明の複合リードフレームおよびその断面 図。

【図4】本発明の複合リードフレームおよびその断面 図_

【符号の説明】

- インナーリード部材の基材金属部 1
- 2 インナーリード部材の絶縁層
- インナーリード部材の配線
- インナーリード部材の配線の外周部
- インナーリード部材の配線の内周部
- インナーリード部材テープのスプロケット 6
- 7 リードフレームとの接続用のメッキ
 - TAB接合用のビーム
 - 9 リードフレーム
 - 10 インナーリード部材
 - 11 リードフレームの内側のリード先端部
 - 12 Siチップ
 - 13 ボンディングワイヤ
 - 14 バンブ
 - 15 金属パッド
 - 16 Siチップとの接続用メッキ

[図3]

[図4]

V 5