ESTRUTURAS DE DADOS

Conceitos

Por definição, temos um conjunto básico de dados primitivos (inteiro, real, caracter e lógico). Quando agrupamos estes dados, formamos uma **estrutura**. Este agrupamento pode resultar em vetores (matrizes unidimensionais), matrizes (com mais de uma dimensão) ou registros.

Objetivos

O estudo das estruturas de dados é necessário para que possamos identificar e desenvolver modelos matemáticos que resolvam problemas abstratos, bem como a resolução de problemas práticos que envolvam estruturas de dados.

Listas lineares

Conceitos

A maneira mais básica de se agrupar dados é a lista. Matematicamente, uma lista é um conjunto \mathbf{L} ($e_1, e_2, e_3, \ldots, e_n$) com as seguintes propriedades para n > 0:

- e₁ é o primeiro elemento de **L**;
- e_n é o último elemento de **L**;
- um elemento e_k é precedido pelo elemento e_{k-1} e seguido por e_{k+1}.

Caso n = 0, dizemos que a lista é vazia. A ideia de lista é a unidimensionalidade dos elementos, ou seja, temos sempre um elemento a frente de outro. Com este conceito podemos afirmar com certeza absoluta que a lista tem um início e fim bem determinados.

Tipos de listas

Considerando as operações de inserção, remoção e pesquisa de elementos restritas às extremidades da lista, temos seguintes tipos especiais de listas:

- **Pilha:** inserções, remoções e pesquisa de elementos são realizadas a partir de uma única extremidade da lista, ou seja, o último elemento que entrou na lista, será o primeiro elemento a sair.
- **Fila:** as inserções são realizadas em um extremo e as remoções e pesquisa são realizadas no outro extremo, ou seja, o primeiro elemento que entrou na lista, será o primeiro elemento a sair.

Cada tipo de lista pode ser implementada de forma **sequencial** (quando cada célula da estrutura possui apenas o elemento contido nela), **simplesmente encadeada** (quando cada célula está dividida em duas partições, onde uma partição irá guardar o seu elemento e a outra partição guardará o endereço da célula seguinte) ou **duplamente encadeada** (quando cada célula está dividida em três partições, onde a primeira partição irá guardar o endereço da célula anterior, a segunda partição guardará seu elemento e a outra partição guardará o endereço da célula seguinte).

Uma lista pode ocupar a memória do computador de forma **estática** (quando, de antemão, já sabemos seu tamanho) ou **dinâmica** (quando o programa é capaz de criar novas varáveis durante sua execução).

As listas apresentam diversas particularidades, que serão estudadas no seu devido tempo, bem como outros tipos de estruturas de dados.

Pilnas sequenciais

Conceito

Uma pilha é um tipo especial de lista linear em que as operações de inserção e remoção são realizadas na mesma extremidade, a qual chamaremos **topo**.

Desta forma, cada vez que um novo elemento deverá ser inserido na pilha, devemos executar esta inserção colocando-o sobre o último elemento da pilha, consequentemente alterando, seu topo. Para a remoção, somente o elemento localizado no topo da pilha, pode ser retirado, onde altera-se também o topo.

Operações

Em uma pilha, temos basicamente as seguintes operações:

- **Inicialização:** dizemos que uma pilha P está vazia, quando seu topo for igual a zero.

- **Inserção:** podemos inserir elementos até que o topo atinja o tamanho máximo da pilha.

- **Remoção:** podemos retirar elementos da pilha, até que o topo atinja o valor zero.

A operação de "remoção", na verdade apenas desloca o topo, não retirando fisicamente o elemento contido na posição atual do topo, a não ser que inicializemos o elemento a cada "retirada".

Exercícios

- 1. Faça um algoritmo para converter um número decimal inteiro para a base binária e depois mostrar o resultado.
- 2. Faça um algoritmo para somar os valores contidos nos topos de 2 pilhas e armazená-los na posição correspondente em uma terceira pilha.

	1 1	100		
7		3		10
5	8	6		11
2		1		3
	1 1	100	1	

3. Mostre as seqüências de operações de inserção e retirada para atender as seguintes situações:

