3)
$$X \in \mathbb{R}^N$$
 og $a \in \mathbb{R}^N$

$$X = [X_1, X_2, \dots, X_N]$$

$$a = [a_0, a_1, ..., a_N]$$

$$X - \alpha = X_1 \alpha_1 + X_2 \alpha_2 + \dots + X_N \alpha_N$$

$$\frac{\partial}{\partial \alpha} \left(x^{T} \alpha \right) = \left[\frac{\partial}{\partial \alpha_{i}} \left(x_{i} \alpha_{i} + x_{2} \alpha_{2} + \dots \right) \right]$$

$$\frac{\partial}{\partial \alpha_2} \left(x_1 \alpha_1 + x_2 \alpha_2 + \dots \right),$$

$$= \left[\times_{1} \times_{2}, \ldots, \times_{N} \right] = \times$$

 $4) \hat{P}(c,|x) > 0 \qquad (0 < 0 < 1)$

 $FP = N \cos\left(\frac{\pi\theta}{2}\right)$, N: # Negative Samples $TP = T \cos\left(\frac{\pi\theta}{2}\right)(2 - \cos\left(\frac{\pi\theta}{2}\right))$, T: # Pos. Sample

a) Def: $f_P = \frac{FP}{FP + TN}$ og $t_P = \frac{TP}{TP + FN}$ Konfusion matrix: R

N = TN + FP TP = TP + FN TN

Lo $f_{p} = \frac{M\cos\left(\frac{\pi\theta}{2}\right)}{M} = \cos\left(\frac{\pi\theta}{2}\right) \times \frac{1}{2}$

 $t_p = \frac{T \cos(\frac{\pi \theta}{2})(2 - \cos(\frac{\pi \theta}{2}))}{2}$

- (b) ROC curve: La 0 vanière mellom [0,1]

 Plot to mot fo.
- c) AUC-500re: Sy(x) dx (arealet under "kurven")

$$y = t_p = f_p(\lambda - f_p) = x(2 - x) = -x^2 + 2x$$

$$A = \int_0^1 (-x^2 + 2x) dx = \left[-\frac{1}{3}x^3 + \frac{1}{2} \cdot 2x \right]_0^1 = 1 - \frac{1}{3} = \frac{2}{3}$$

Ground	truth Pr	robability	
x ⁽¹⁾	P (1)	0,9928	Huis terskel
(1) X (2) X (3)	^ (2)	0,99540	0 = 0,5 så vil
x (3)	^ (3)	0,97839	denne van
x (3) 1	/ (4)	0,53893 4	feil - klassifiset
	Justitions &	False positions	Pett klussifiert om 0 = 0,6 skrimet
Butyr at	TP-rate og	FP-rate au	rhenger av
terskelverdi & for klassificing som True/False!			
tp = TP TP + F	No southing e equations	fp = FP	Tot # regative
Shull	r positive.	Shalle eg.	

to kalles også "Recall" i literaturen, eller også sensitivitet.

Innen medisin er dette en faktor som man ønsker høyert

mulig! (kom også støre på begrepet "precision" = TP

TP + FP

Ofte fører økt recall til lawere presisjon og

motsatt...)

ROC står for Receiver Operatorting Characteristic (5)
og platter to mot fp, altså to på y-abse og
fp på x-abre.

5a) Forslag algoritme:

- 1) Bruik førsk kollonne til å dele 55h. hollonne i Samples pt og p:
- 2) True positives finner in i subsettet

 pr + > 0 og true negatives i pr: < 0

 Lengden av disre blir da TP og TN.
- 3) FP finner in da for f: > 0 09 FN for f: > 0