

Team Members: Justin Lee, John Kim

10/21/2024

Table of Contents

Part 1 – Statement/Project Goal	3
Part 2 – Description of Dataset	
Part 3 – Preprocessing	5
Part 4 – Attribute Selection Algorithms & Model Classifiers Used	9
Part 5 – Results and Analysis	11
Part 6 – Conclusion/How to Reproduce Our Model	22
Part 7 – Team Members and Tasks Performed	23
Part 8 – Appendix and Sources	23

Part 1 – Statement/Project Goal

Emergency Medical Services, more commonly known as EMS, is a system that responds to emergencies in need of highly skilled pre-hospital clinicians. The EMS Computer Aided Dispatch System generates data about the incident as it relates to the assignment of resources and the Fire Department's response to the emergency.

We want to predict the disposition code (indicating the final outcome of the incident) of an EMS incident. This will help the medical industry at large and provide insight on what aspects of emergency response are most effective for delivering successful care to patients.

Part 2 – Description of Dataset

We used the EMS Incident Dispatch Data from NYC OpenData¹. Each instance of the dataset covers the whole process of one specific incident, starting at the time the incident is opened and elapsing until the incident closes. Altogether, the dataset spans the course of 19 years, with 25,984,643 instances. Because of the size of the dataset, we decided to take a subset of it, the most recent 1-month period from December 1st, 2023 to January 1st, 2024.

We were left with 139,499 instances, with each instance having 30 attributes and 1 class attribute.²

Through looking at the data, we can see that it is mostly well structured and uniform, especially across time, although it does have missing values in several of the columns. The missing values are as follows.

Attributes	Number of Missing Values
FIRST_ASSIGNMENT_DATETIME	3074
FIRST_ACTIVATION_DATETIME	3335
FIRST_ON_SCENE_DATETIME	8093
INCIDENT_RESPONSE_SECONDS_QY	8111
INCIDENT_TRAVEL_TM_SECONDS_QY	8093
FIRST_TO_HOSP_DATETIME	51569
FIRST_HOSP_ARRIVAL_DATETIME	51883
INCIDENT_CLOSE_DATETIME	12
ZIPCODE	1285

POLICEPRECINCT	1283
CITYCOUNCILDISTRICT	1283
COMMUNITYDISTRICT	1283
COMMUNITYSCHOOLDISTRICT	1360
CONGRESSIONALDISTRICT	1283
INCIDENT_DISPOSITION_CODE	3559

In particular, our class column, INCIDENT_DISPOSITION_CODE, has 3559 instances with missing values, all of which we would remove during preprocessing.

Further, below is our class distribution.³

Incident Disposition Code	Number of Instances
82	87996
83	1228
87	3196
90	10820
91	3848
93	23255
94	248
95	11
96	5338
Missing	3559

Our class label column is heavily skewed towards certain class labels, particularly 82, 93, and 90, which we would have to take into account when doing our train/test/validation split.

Part 3 – Preprocessing

Part 3.1 – Enable WEKA to open dataset

Our initial preprocessing steps were to process the CSV file in such a way that WEKA could convert the dataset into the ARFF file format. After debugging, we found most of these issues were because of WEKA's handling of nominal attributes, so we wrote some Python code in VSCode to fix these. In particular, WEKA's discovery algorithm for nominal attributes does not let it explore the whole dataset, and if it encounters a value it did not find originally, it throws the following error.

java.io.IOException: Read unknown nominal value ARRESTfor attribute INITIAL_CALL_TYPE (line: 102). Try increasing the size of the memory buffer (-B option) or explicitly specify legal nominal values with the -L option.

To address this, we first gathered a list of the nominal attributes that WEKA could not self discover: INITIAL_CALL_TYPE, FINAL_CALL_TYPE, INCIDENT_DISPATCH_AREA, TRANSFER_INDICATOR, STANDBY_INDICATOR, SPECIAL_EVENT_INDICATOR, VALID_DISPATCH_RSPNS_TIME_INDC. We then used python to query the actual unique values for each column.

```
attr_to_values: dict[str, list[str]] = {}
for attr in ATTRIBUTES_EXPLICIT_NOMINAL:
   attr_to_values[attr] = df[attr].unique().tolist()

with open(ARGUMENT_FILE, "w+") as f:
   for i, (attr, values) in enumerate(attr_to_values.items()):
      if i != 0:
        f.write(" ")
      f.write(f"-L {attr}:{','.join(values)}")
```

Then, when running WEKA's CSVLoader, we included these attributes as additional arguments: java -cp WEKA.jar weka.core.converters.CSVLoader INPUT_FILE \$(cat ARGUMENT_FILE) > OUTPUT_FILE

We also encountered another issue with dates, with WEKA treating them as nominal attributes. To circumvent this, we converted them to numerical data, which WEKA was able to parse properly.

for col in datetime_columns: df[col] = df[col].astype(int) // 10**9

To do this, we found all of the "datetime" columns, parsed the format provided into a pandas Timestamp object, and then converted them into a Unix timestamp, or the seconds since January 1, 1970, UTC. Fixing these two issues, we were able to successfully convert our CSV to an ARFF file that WEKA would load.

Part 3.2 - Reduce Dimension

We did our preprocessing in Python, and did it on the CSV file before we converted it to an ARFF format. First, we removed 15 attributes that we were confident would be redundant or would have zero correlation with the class. This included one ID attribute, seven attributes describing the date and time (there were better attributes in the dataset that provide the same information but with relative time), and seven attributes describing the area codes where the incident occurred (we kept the one attribute with the zipcode of the incident since its the most specific of the location attributes). This removal halved the dimension of our data, decreasing it from 30 to 15, and made our data more manageable.

The specific attributes that we removed are as follows: CAD INCIDENT ID INCIDENT DATETIME FIRST ASSIGNMENT DATETIME FIRST ACTIVATION DATETIME FIRST ON SCENE DATETIME FIRST TO HOSP DATETIME FIRST HOSP ARRIVAL DATETIME INCIDENT CLOSE DATETIME **BOROUGH** INCIDENT DISPATCH AREA **POLICEPRECINCT** CITYCOUNCILDISTRICT COMMUNITYDISTRICT COMMUNITYSCHOOLDISTRICT CONGRESSIONALDISTRICT

Part 3.3 – Missing Values

We started by removing all 3559 instances with missing values for our class label (INCIDENT DISPOSITION CODE), decreasing the number of instances from 139,499 to 135,940.

Then, we filled out the missing values for INCIDENT_RESPONSE_SECONDS_QY and INCIDENT_TRAVEL_TM_SECONDS_QY with the median of each column, since both of these columns were numeric with outliers.

Although these two columns were the only ones with missing values, our dataset had some hidden missing values. Two attributes, VALID_DISPATCH_RSPNS_TIME_INDC and VALID_INCIDENT_RSPNS_TIME_INDC, indicate whether or not the respective response times were valid. Whenever the indicator attribute value was false, we replaced the default value (0) for the respective attribute, DISPATCH_RESPONSE_SECONDS_QY or INCIDENT_RESPONSE_SECONDS_QY, with the median of that attribute. Since we already used the indicator attributes, we could safely remove both attributes, further decreasing our dimension from 15 to 13.

Part 3.4 - Miscellaneous

Next, we converted three other columns, ZIPCODE, INITIAL_SEVERITY_LEVEL_CODE, and FINAL_SEVERITY_LEVEL_CODE from numeric to nominal, as they represent discrete values.

Finally, we moved the INCIDENT_DISPOSITION_CODE column to the end and converted it from numeric to nominal in order to set it as the class column and prepare it for classification tasks.

Part 3.4 – Train/Test Split

Given that our distribution of class labels is unbalanced, we used stratified random sampling to get our train/test dataset. We decided to split our dataset in a ratio of 80% for train and 20% for test. The way we accomplished this is with Python and the Pandas library.

train_df = df.groupby(CLASS_ATTRIBUTE).sample(frac=TRAIN_SPLIT)
test_df = df.drop(train_df.index)

The original dataset has the following class label distribution:

```
82 87996
```

93 23255

90 10820

96 5338

91 3848

87 3196

83 1228

94 248

95 11

The train dataset has the following class label distribution:

- 82 70397
- 93 18604
- 90 8656
- 96 4270
- 91 3078
- 87 2557

```
83 98294 19895 9
```

The test dataset has the following class label distribution:

```
82 1759993 4651
```

90 2164

96 1068

91 770

87 639

83 246

94 50

95 2

Using stratified random sampling, we were able to preserve the same distribution of class labels in both our train and test datasets.

Part 4 – Attribute Selection Algorithms & Model Classifiers Used

CorrelationAttributeEval

Calculates Pearson's Correlation Coefficient between all attributes and class

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$$

Cutoff: 0.01
Removed attributes:
ZIPCODE
SPECIAL_EVENT_INDICATOR
REOPEN_INDICATOR
TRANSFER INDICATOR

OneRAttributeEval

Evaluates accuracy of each attribute using a OneR classifier

- 1 for each predictor P
- 2 for each value V of the predictor, generate rule as
- 3 find the most frequent class c
- 4 create a rule if (P = V) then c
- 5 compute the error rate of the rule
 - select predictor with minimum error rate for its rules

Cutoff: 64.75

Removed attributes:

SPECIAL EVENT INDICATOR

REOPEN INDICATOR

TRANSFER_INDICATOR

HELD INDICATOR

DISPATCH RESPONSE SECONDS QY

CfsSubsetEval

Evaluates the importance of a subset of attributes by maximizing individual predictive ability and minimizing redundancy

Removed attributes:
INITIAL_SEVERITY_LEVEL_CODE
DISPATCH_RESPONSE_SECONDS_QY
HELD_INDICATOR
ZIPCODE
REOPEN_INDICATOR
SPECIAL_EVENT_INDICATOR
STANDBY_INDICATOR
TRANSFER_INDICATOR

InfoGainAttributeEval

Evaluates attributes based on information gain of the class attribute InfoGain(C,A) = $H(C) - H(C \mid A)$

Cutoff: 0.01
Removed attributes:
STANDBY_INDICATOR
REOPEN_INDICATOR
SPECIAL_EVENT_INDICATOR
TRANSFER_INDICATOR

Self Selection

Removed "INDICATOR" attributes as their distribution was extremely unbalanced, with virtually all instances having the value of N. Also removed "ZIPCODE" as we thought the geographical information of each scenario would be less important than the time, severity codes, and other features.

Removed attributes: HELD_INDICATOR, ZIPCODE, REOPEN_INDICATOR, SPECIAL_EVENT_INDICATOR, STANDBY_INDICATOR, TRANSFER_INDICATOR

Model Classifiers

NaiveBayes

Performs probabilistic analysis for which class most likely an instance belongs to.

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Used Weka Implementation

J48

An open source implementation in Java of a Decision Tree Classifier. Used Weka Implementation

OneR

Construct a predictor one attribute at a time and selects the one with the lowest error rate. Pseudo code:

- 1 for each predictor P
- 2 for each value V of the predictor, generate rule as
- 3 find the most frequent class c
- 4 create a rule if (P = V) then c
- 5 compute the error rate of the rule
- 6 select predictor with minimum error rate for its rules

Used Weka Implementation

FilteredClassifier

Runs an arbitrary classifier on data that was filtered arbitrarily Used Weka Implementation

Part 5 – Results and Analysis

Part 5.1 – Results

CorrelationAttributeEval

with NaiveBayes

=== Summary === Correctly Classified Instances										
Incorrectly Classified Instances	=== Summary ==	=								
TP Rate	Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative Total Number o	assified Ir c error red error ute error squared err f Instances	ror	11249 0. 0. 0. 85. 106. 27189	1029 2609 3784 %					
== Confusion Matrix === a b c d e f g h i < classified as 14105 810 453 558 788 239 357 285 4 a = 82 925 599 128 149 172 86 71 30 4 b = 90 284 82 119 12 57 34 37 13 1 c = 87 502 136 86 130 104 49 50 11 0 d = 96 3167 404 66 169 625 123 60 37 0 e = 93 272 77 109 30 124 117 59 2 0 f = 91		TP Rate 0.801 0.277 0.186 0.122 0.134 0.152 0.580 0.878 0.000	FP Rate 0.541 0.061 0.032 0.035 0.054 0.020 0.023 0.014 0.000	Precisio 0.731 0.283 0.124 0.124 0.338 0.179 0.044 0.363 0.000	0.801 0.277 0.186 0.122 0.134 0.152 0.580 0.878 0.000	0.765 0.280 0.149 0.123 0.192 0.165 0.081 0.514 0.000	0.275 0.218 0.127 0.087 0.120 0.143 0.155 0.559 -0.000	0.703 0.713 0.746 0.714 0.632 0.823 0.833 0.981	0.800 0.201 0.107 0.095 0.284 0.140 0.059 0.443 0.000	8 9 8 9 9 9 9
10 1 1 4 0 4 29 1 0 g = 94 22 7 0 0 1 0 0 216 0 h = 83 2 0 0 0 0 0 0 0 0 i = 95	=== Confusion a b 14105 810 925 599 284 82 502 136 3167 404 272 77 10 1 22 7	C d 453 558 128 149 119 12 86 130 66 169 109 30 1 4 0 0	e 788 172 57 104 625 104 0	f g 239 357 86 71 34 37 49 50 123 60 117 59 4 29 0 0	h 285 30 13 11 37 2 1	i < cl 4 a 4 b 1 c 0 d 0 e 0 f 0 g 0 h	assified a = 82 = 90 = 87 = 96 = 93 = 91 = 94 = 83		0.59/	

with J48

=== Summary ==	=								
Correctly Clas Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative Total Number o	assified In .c error .red error .ute error squared err	stances	17925 9264 0.15 0.16 0.23 88.24 96.13 27189)64 36 182 %	65.9274 34.0726				
=== Detailed A	ccuracy By	Class ===	=						
Weighted Avg.	TP Rate 0.960 0.103 0.443 0.017 0.068 0.058 0.000 0.593 0.000 0.659	FP Rate 0.814 0.021 0.007 0.003 0.017 0.004 0.000 0.006 0.000 0.532	Precision 0.684 0.301 0.587 0.165 0.446 0.288 ? 0.493 ?	Recall 0.960 0.103 0.443 0.017 0.068 0.058 0.000 0.593 0.000 0.659	F-Measure 0.799 0.154 0.505 0.031 0.118 0.097 ? 0.539 ?	MCC 0.242 0.137 0.500 0.041 0.120 0.119 ? 0.536 ?	ROC Area 0.716 0.711 0.766 0.670 0.636 0.763 0.800 0.939 0.576 0.705	PRC Area 0.792 0.195 0.330 0.083 0.271 0.118 0.043 0.394 0.000 0.592	C 8 9 9 9 9 9 9 8
a b 16894 250 1723 223 298 21 916 62 4097 145 627 34 48 0 93 5 2 0	c d 67 35 54 26 283 2 31 18 35 21 11 7 1 0 0 0 0 0	e 204 91 20 30 316 45 0 2	f 9 35 0 33 0 12 0 6 0 24 0 45 0 1 0 0 0	14 3 5 13 1	i < clas 0 a = 0 b = 0 c = 0 d = 0 f = 0 g = 0 j =	90 87 96 93 91 94 83	:		

=== Summary ===									
Correctly Class Incorrectly Cla Kappa statistic Mean absolute e Root mean squar Relative absolu Root relative s Total Number of	rror ed error te error quared err Instances	ror	17840 9349 0.05 0.07 0.27 63.38 112.59 27189	64 64 91 %	65.6148 34.3852				
=== Detailed Ac									
Weighted Avg. === Confusion M	0.995 0.020 0.002 0.000 0.049 0.073 0.000 0.000 0.056	FP Rate 0.949 0.002 0.000 0.005 0.003 0.000 0.000 0.000 0.000	Precision 0.658 0.483 0.200 ? 0.659 0.421 ? ?	Recall 0.995 0.020 0.002 0.000 0.049 0.073 0.000 0.000 0.000 0.656	F-Measure 0.792 0.038 0.003 ? 0.092 0.124 ? ?	MCC 0.152 0.085 0.016 ? 0.148 0.166 ?	ROC Area 0.523 0.509 0.501 0.500 0.522 0.535 0.500 0.500 0.500	PRC Area 0.658 0.088 0.024 0.039 0.195 0.057 0.002 0.009 0.000	C 8 9 8 9 9 9 8 9
a b 17510 19 2061 43 599 9 1060 2 4402 5 685 11 49 0 245 0	C d 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0	e 50 34 12 4 230 18 0 1	f g 18 0 25 0 18 0 2 0 13 0 56 0 1 0 0 0	h 0 0 0 0 0 0	i < clas 0 a = 0 b = 0 c = 0 d = 0 d = 0 g = 0 g = 0 i =	90 87 96 93 91 94	S		

=== Summar	ry ===									
Correctly Incorrectl Kappa stat Mean absol Root mean Relative a Root relat Total Numb	ly Cla: tistic lute e square absolu tive se	ssified Ir rror ed error te error quared err	ror	18108 9081 0.14 0.16 0.23 88.45 94.27	966 314	66.66 33.39				
=== Detail	led Ac	curacy By	Class ===	=						
Weighted #	-	TP Rate 0.977 0.062 0.463 0.006 0.054 0.071 0.000 0.683 0.000 0.666	FP Rate 0.857 0.010 0.007 0.001 0.007 0.003 0.000 0.006 0.000 0.557	Precision 0.677 0.351 0.605 0.231 0.627 0.396 ? 0.508 ?	Recall 0.977 0.062 0.463 0.006 0.054 0.071 0.000 0.683 0.000 0.666	F-Measu 0.800 0.106 0.525 0.011 0.100 0.121 ? 0.582 ?	MCC 0.232 0.120 0.520 0.030 0.148 0.159 ?	ROC Area 0.725 0.744 0.782 0.701 0.656 0.834 0.775 0.974 0.585 0.720	PRC Area 0.803 0.213 0.362 0.992 0.295 0.158 0.650 0.452 0.000 0.608	C 8 9 8 9 9 9 8 9
a 17196 1	b 106 135	c d 76 7 47 5 296 0 30 6 29 7 10 1 1 0 0 0	e 70 40 11 10 252 18 0 1	f g 19 0 27 0 16 0 3 0 18 0 55 0 1 0 0 0 0	h 125 16 1 6 14 1 0 168	0 a	classified a 1 = 82 2 = 90 5 = 90 6 = 96 6 = 93 6 = 91 7 = 94 7 = 94 7 = 95	S		

OneRAttributeEval

with NaiveBayes

vvitii	Ivaiv	CDC	yes)										
=== Sum	mary ==	=												
Correct Incorre Kappa s Mean ab Root me Relativ Root re Total N	ctly Cl tatisti solute an squa e absol lative	assifi .c error ired en .ute en square	ror ror ror	stances or	1	15598 11591 0.2283 0.1054 0.2617 87.4112 % 106.5851 % 27189				57.3688 % 42.6312 %				
=== Det	ailed A	ccura	у Ву	Class =	==									
Weighte		0.7 0.3 0.2 0.1 0.2 0.5 0.8	747 324 219 100 225 281 500 346 500 574	FP Rat 0.453 0.071 0.032 0.024 0.097 0.036 0.019 0.012 0.000 0.318	0.1 0.1 0.1 0.3 0.1	324 185 347 396 300	Recall 0.747 0.324 0.219 0.100 0.225 0.281 0.500 0.846 0.000 0.574	0. 0. 0. 0. 0.	-Measi .750 .302 .171 .118 .266 .223 .085 .540 .000	ure	MCC 0.294 0.237 0.150 0.090 0.149 0.200 0.148 0.574 -0.000 0.253	ROC Area 0.701 0.728 0.753 0.718 0.636 0.636 0.842 0.843 0.969 0.502 0.700	PRC Area 0.797 0.221 0.095 0.097 0.289 0.162 0.087 0.498 0.000 0.598	
a 13154 755 221 487 2683 163 9 24	b 1005 701 93 150 446 73 4 13	C 445 125 140 79 85 124 4 0	d 374 109 15 107 114 21 3 0	e 1600 248 76 118 1047 138 2 1	f 462 142 59 73 210 216 3 0	g 312 53 25 43 46 33 25 0	h 244 31 9 11 20 2 0 208	i 3 0 1 0 0 0 0	6 6 1	class a = 8 b = 9 d = 9 f = 9 f = 9 h = 8	90 37 96 93 91 94			

with J48

=== Summary ==	=							
Correctly Clas Incorrectly Cl Kappa statisti Mean absolute Root mean squa Relative absol Root relative Total Number o	assified In c error red error ute error squared err	stances or	17888 9301 0.15 0.10 0.23 89.62 96.90 27189)8 379 258 %	65.7913 34.2087			
=== Detailed A	ccuracy By	Class ===	:					
Weighted Avg. === Confusion	TP Rate 0.958 0.110 0.305 0.000 0.076 0.096 0.000 0.659 0.000 0.658	FP Rate 0.817 0.020 0.007 0.001 0.021 0.005 0.000 0.006 0.000 0.534	Precision 0.683 0.328 0.517 0.000 0.431 0.359 ? 0.503 ?	Recall 0.958 0.110 0.305 0.000 0.076 0.096 0.000 0.659 0.000 0.658	F-Measure 0.797 0.165 0.384 0.000 0.130 0.152 ? 0.570 ?	MCC 0.234 0.152 0.386 -0.007 0.122 0.174 ? 0.571 ?	ROC Area 0.697 0.681 0.768 0.665 0.633 0.745 0.816 0.948 0.761 0.689	PRC Area 0.777 0.184 0.247 0.072 0.266 0.128 0.037 0.437 0.000 0.580
a b 16864 241 1698 238 362 35 978 39 4100 130 570 38 47 2 78 3 2 0	c d 76 18 39 14 195 0 25 0 29 4 12 0 0 0 0	127 18 14 355	f 9 52 0 29 0 24 0 4 0 23 0 74 0 0 0 0 0	h 118 19 5 8 10 0 0	i < clas 0 a = 0 b = 0 c = 0 d = 0 e = 0 g = 0 g = 0 i =	90 87 96 93 91 94		

=== Summ	ary ===											
Correctl Incorrec Kappa st Mean abs Root mea Relative Root rel Total Nu	tly Cla atistic olute e n squar absolu ative s	error error ed err ite err	or or or d err	stances	17847 9342 0.0557 0.0764 0.2763 63.3416 % 112.554 %				65.6405 34.3595			
=== Deta	iled Ad	curacy	/ Ву	Class ==	=							
Weighted		0.99 0.01 0.00 0.00 0.05 0.08 0.00 0.00	16 95 90 90 90 90 90	FP Rate 0.949 0.002 0.000 0.005 0.003 0.000 0.000 0.000 0.615	Prec 0.65 0.36 0.42 ? 0.67 0.48 ?	6 9 8	Recall 0.995 0.016 0.005 0.000 0.050 0.082 0.000 0.000 0.000	0. 0. ? 0.	-Measure .792 .030 .009 .094 .140	MCC 0.153 0.062 0.043 ? 0.153 0.190 ? ?	ROC Area 0.523 0.507 0.502 0.500 0.523 0.540 0.500 0.500 0.500 0.500	PRC Area 0.658 0.084 0.025 0.039 0.197 0.065 0.002 0.009 0.000 0.470
a 17513 2074 597 1060 4400 673 48 246 2	b 19 34 12 6 9 11 2 0	C 2 1 3 0 1 0 0 0 0 0	d 0 0 0 0 0 0	e 44 33 9 2 234 23 0 0	f 21 22 18 0 7 63 0 0	g 0 0 0 0 0	h 0 0 0 0 0 0	i 0 0 0 0 0 0	<pre>< clas a = b = c = d = e = f = g = h = i =</pre>	90 87 96 93 91 94 83	5	

WICH I HICCH	Cacias	311161						
=== Summary ===								
Correctly Classi Incorrectly Clas Kappa statistic Mean absolute er Root mean square Relative absolut Root relative sq Total Number of	sified Ins ror d error e error uared erro	tances	17847 9342 0.05: 0.076 0.276 63.34: 112.556	54 53 16 %	65.6405 34.3595			
=== Detailed Acc	uracy By C	lass ===						
Weighted Avg.	0.016 0.005 0.000 0.050 0.082 0.000 0.000 0.000 0.000	FP Rate 0.949 0.002 0.000 0.005 0.003 0.000 0.000 0.000 0.000	Precision 0.658 0.366 0.429 ? 0.678 0.481 ? ?	Recall 0.995 0.016 0.005 0.000 0.050 0.082 0.000 0.000 0.000 0.656	F-Measure 0.792 0.030 0.009 ? 0.094 0.140 ? ?	MCC 0.153 0.062 0.043 ? 0.153 0.190 ? ?	ROC Area 0.523 0.507 0.502 0.500 0.523 0.540 0.500 0.500 0.500	PRC Area 0.658 0.084 0.025 0.039 0.197 0.065 0.002 0.009 0.000 0.470
a b 17513 19 2074 34 597 12 1060 6 4400 9 673 11 48 2 246 0 2 0	C	33 2 9 1 2 234	f g 21 0 22 0 18 0 0 0 7 0 53 0 0 0 0 0	0 0 0 0 0 0	i < clas 0 a = 0 b = 0 c = 0 d = 0 d = 0 g = 0 j =	90 87 96 93 91 94		

CfsSubsetEval

with NaiveBayes

```
=== Summary ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Root relative squared error
Total Number of Instances
                                                                                                                                                                                                                               58.5715 %
41.4285 %
                                                                                                                                                   15925
                                                                                                                                             15925
11264
0.2165
0.1047
0.2538
86.8563 %
103.3856 %
27189
   === Detailed Accuracy By Class ===
                                                                 TP Rate Precision Recall 0.790 0.511 0.739 0.790 0.286 0.865 0.276 0.286 0.261 0.404 0.134 0.261 0.116 0.154 0.062 0.337 0.154 0.223 0.260 0.035 0.155 0.223 0.260 0.011 0.042 0.260 0.862 0.031 0.054 0.862 0.000 0.000 0.000 0.000 0.586 0.350 0.575 0.586
                                                                                                                                                                                                                      F-Measure MCC

0.764 0.288

0.281 0.218

0.178 0.160

0.130 0.100

0.211 0.128

0.184 0.158

0.073 0.101

0.546 0.52

0.000 -0.000

0.572 0.244
                                                                                                                                                                                                                                                                                                                                           PRC Area Class
0.884 82
0.203 90
0.125 87
0.098 96
0.277 93
0.141 91
0.049 94
0.450 83
0.000 95
0.599
                                                                                                                                                                                                                                                                                                     ROC Area
0.710
0.730
0.758
0.715
0.633
0.822
0.771
0.977
0.357
0.705
  Weighted Avg.
   === Confusion Matrix ===
                                                                                                         e
988
193
28
93
715
102
0
0
                                                                                                                                                      9
175
34
16
28
27
14
13
0
                                                                                                                                                                                                                               <-- classified as
                                                                                                                                                                               h
235
35
7
12
28
1
1
212
     a
13904
856
289
533
2961
226
13
23
                                                                                                                                                                                                                                              classif
a = 82
b = 90
c = 87
d = 96
e = 93
f = 91
g = 94
h = 83
i = 95
                                 892
618
81
102
453
76
5
10
                                                            563
159
167
100
100
141
12
0
                                                                              401
117
11
124
143
38
2
0
                                                                                                                                  435
152
40
76
224
172
4
1
```

with I48

WILII J48								
=== Summary ===								
Correctly Classified In Incorrectly Classified Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared e Total Number of Instanc	17998 9191 0.14 0.10 0.23 88.71 95.30 27189	69 4 97 %	66.1959 33.8041					
=== Detailed Accuracy B	/ Class ===							
TP Rat 0.969 0.072 0.515 0.003 0.060 0.066 0.066 0.000 0.504 0.000 Weighted Avg. 0.662 === Confusion Matrix ==	0.836 0.013 0.009 0.001 0.017 0.003 0.000 0.005 0.000 0.545	Precision 0.680 0.326 0.580 0.079 0.428 0.405 0.000 0.484 ?	Recall 0.969 0.072 0.515 0.003 0.060 0.066 0.000 0.504 0.000 0.662	F-Measure 0.799 0.118 0.546 0.005 0.105 0.114 0.000 0.494 ?	MCC 0.238 0.122 0.536 0.008 0.107 0.155 -0.000 0.489 ?	ROC Area 0.717 0.728 0.805 0.691 0.642 0.789 0.682 0.940 0.800 0.710	PRC Area 0.796 0.202 0.399 0.086 0.132 0.023 0.398 0.000 0.598	Class 82 90 87 96 93 91 94 83 95
17057 148 89 1 1812 156 54 1 269 12 329 951 35 33 4222 79 41 599 40 19 47 1 1 114 7 1	91 2 12 3 33 5 278	f g 16 0 27 0 12 0 7 0 12 1 51 0 0 0 0 0	h 96 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	a = b = c = d = d = d = d = d = d = d = d = d	90 87 96 93 91 94 83			

/VICII (Jiici	`									
=== Summa	ary ===										
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances			17800 9389 0.0473 0.0767 0.277 63.6603 % 112.8367 % 27189			65.4677 % 34.5323 %					
=== Deta	iled Acc	uracy By	Class ===								
Weighted	,	TP Rate 0.995 0.018 0.008 0.000 0.040 0.071 0.000 0.000 0.000 0.655	FP Rate 0.956 0.002 0.000 0.005 0.005 0.002 0.000 0.000 0.000 0.000 0.000	Precision 0.656 0.406 0.714 ? 0.639 0.491 ? ?	Recall 0.995 0.018 0.008 0.000 0.040 0.071 0.000 0.000 0.655		F-Measure 0.791 0.035 0.015 ? 0.075 0.125 ? ?	MCC 0.139 0.072 0.073 ? 0.129 0.179 ? ?	ROC Area 0.520 0.508 0.504 0.500 0.517 0.535 0.500 0.500 0.500	PRC Area 0.656 0.085 0.029 0.039 0.190 0.061 0.002 0.009 0.000 0.468	Class 82 90 87 96 93 91 94 83 95
a 17517 2079 597 1058 4457 682 48 246 2	b 26 39 10 3 5 12 1	C d 2 0 0 5 0 0 0 0 0 0 0 0 0	e 45 23 11 4 184 21 0 0	f 9 0 223 0 16 0 3 5 0 55 0 1 0 0 0 0	h 0 0 0 0 0 0	i 0 0 0 0 0 0 0	< clas a = b = c = d = e = f = g = h = i =	90 87 96 93 91 94 83			

=== Summary ===					
Correctly Classified Ins Incorrectly Classified I Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared er Total Number of Instance === Detailed Accuracy By	9095 0.1: 0.1: 0.2: 88.7: ror 94.3' s 27189	07	% %		
TP Rate 0.977 0.058 0.591 0.004 0.050 0.070 0.000 0.671 0.000 Weighted Avg. 0.665 === Confusion Matrix ===	0.856		0.233 0.113 0.538 0.023 0.127 0.180 ? 0.571 ?	ROC Area 0.721 0.751 0.820 0.694 0.650 0.821 0.779 0.972 0.835 0.718	PRC Area 0.801 0.216 0.403 0.090 0.283 0.155 0.039 0.436 0.000 0.605
17192 115 81 5 1900 126 48 5 279 8 320 0 976 27 33 4 4301 59 32 5 628 32 18 0 46 1 1 0 80 1 0 0 2 0 0 0	80 8 0 43 20 0 14 13 0 15 5 0 233 6 0 38 54 0 0 1 0	118 0 a = 22 0 b = 5 0 c = 8 0 d = 15 0 d = 15 0 d = 165 0 h = 6 0 0 i = 100 0 i = 1	82 90 87 96 93 91 94 83		

InfoGainEval

with NaiveBayes

```
=== Summary ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
                                                                                                                                     15823
11366
0.2155
0.1028
0.2608
85.3105 %
106.213 %
                                                                                                                                                                                                             58.1963 %
41.8037 %
                                                                                                                                    27189
  === Detailed Accuracy By Class ===
                                                            TP Rate FP Rate Precision Recall 0.781 0.596 0.739 0.781 0.297 0.066 0.281 0.297 0.147 0.034 0.151 0.147 0.164 0.067 0.337 0.164 0.298 0.480 0.298 0.480 0.298 0.480 0.029 0.481 0.298 0.480 0.029 0.482 0.480 0.813 0.035 0.813 0.000 0.000 0.000 0.000 0.582 0.347 0.576 0.582
                                                                                                                                                                                                     F-Measure MCC
0.759 0.28
0.289 0.22
0.162 0.14
                                                                                                                                                                                                                                                                            ROC Area PRC Area 0.702 0.799 0.730 0.209 0.753 0.106
                                                                                                                                                                                                                                                                             0.702
0.730
0.753
0.726
0.630
                                                                                                                                                                                                                                             0.283
0.226
0.141
0.115
0.133
0.169
0.138
0.534
-0.000
0.241
                                                                                                                                                                                                                                                                                                                 0.106
0.108
0.283
0.145
0.035
0.486
0.000
0.597
                                                                                                                                                                                                      0.149
0.221
                                                                                                                                                                                                      0.194
0.078
0.497
0.000
0.572
                                                                                                                                                                                                                                                                             0.833
0.815
0.961
0.628
0.701
  Weighted Avg.
  === Confusion Matrix ===
                                                                                                                                                                  h
266
33
14
10
32
                                                                                                                                                                                              i
4 |
2 |
1 |
0 |
0 |
0 |
0 |
                                                                                                                                                                                                              <-- classified as
                                                      c
454
143
132
88
74
92
5
0
                                                                                            e
1037
188
69
93
764
115
0
                                                                                                                                          9
316
64
28
42
53
40
24
0
     a
13743
                                                                                                                      365
97
41
60
155
160
                                                                                                                                                                                                                         a = 82
b = 90
c = 87
d = 96
e = 93
f = 91
                                 892
643
89
129
435
80
5
                                                                           522
137
15
157
177
30
1
0
         857
250
489
2961
250
10
32
                                                                                                                                                                                                                           g = 94
h = 83
                                                                                                                                                                  200
```

with J48

*********	_							
=== Summary	· ===							
Incorrectly Kappa stati Mean absolu Root mean s Relative ab Root relati		nstances For	17631 9558 0.15 0.10 0.24 89.57 98.90 27189)8 28 83 %	64,8461 % 35.1539 %			
=== Detaile	ed Accuracy By	Class ===						
Weighted Av	0.937 0.135 0.156 0.008 0.111 0.083 0.000 0.654 0.000	FP Rate 0.784 0.026 0.004 0.004 0.038 0.006 0.000 0.006 0.000 0.516	Precision 0.687 0.313 0.485 0.073 0.375 0.277 ? 0.508 ?	Recall 0.937 0.135 0.156 0.008 0.111 0.083 0.000 0.654 0.000 0.648	F-Measure 0.793 0.189 0.237 0.015 0.172 0.128 ? 0.572 ?	MCC 0.228 0.163 0.266 0.012 0.125 0.139 ? 0.572 ?	ROC Area 0.691 0.675 0.683 0.638 0.615 0.689 0.758 0.939 0.621 0.677	PRC Area 0.769 0.184 0.160 0.068 0.256 0.098 0.019 0.405 0.000 0.569
945 4 3874 16 569 4 45 80	22 20 26 19 100 2 19 9 9	182 42 43 517	46 0 20 0 5 0 35 0 64 0	h 113 19 6 8 10 0 0	i < clas 0 a = 0 b = 0 c = 0 d = 0 d = 0 g = 0 f = 0 g = 0 i =	90 87 96 93 91 94 83		

=== Summary	/ ===								
Incorrectly Kappa stati Mean absolu Root mean s Relative ab Root relati	Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances				508 767 769 993 % 326 %	65.5008 % 34.4992 %			
=== Detaile	ed Accu	racy By	Class ===	:					
Weighted Av	/g.	0.994 0.022 0.003 0.000 0.045 0.064 0.000 0.000 0.000	FP Rate 0.952 0.002 0.000 0.000 0.005 0.003 0.000 0.000 0.000 0.617	Precision 0.657 0.452 0.333 ? 0.639 0.412 ?	Recall 0.994 0.022 0.003 0.000 0.045 0.064 0.000 0.000 0.000	F-Measur 0.791 0.041 0.006 ? 0.084 0.110 ? ?	e MCC 0.143 0.085 0.030 ? 0.137 0.153 ? ? ?	ROC Area 0.521 0.510 0.501 0.500 0.520 0.530 0.500 0.500 0.500 0.519	PRC Area 0.657 0.088 0.024 0.039 0.192 0.053 0.002 0.009 0.000 0.469
a 17502 1 2052 4 594 1 1059 4429	b 19 17 15 5 6 11 1 0	c d 1 0 1 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0	37 12 4 209	f 9 21 0 27 0 16 0 0 0 6 0 49 0 0 0 0 0	h 0 0 0 0 0 0	0 a 0 b 0 c 0 d 0 e 0 f 0 g 0 h	assified a = 82 = 90 = 87 = 96 = 93 = 91 = 94 = 83 = 95	S	

With Filter Cac	143311161						
=== Summary ===							
Correctly Classified Incorrectly Classified Rappa statistic Mean absolute error Root mean squared error Root relative absolute error Root relative squared Total Number of Instan	or or or error nces	18013 9176 0.12 0.10 0.23 89.18 94.67 27189	175 324 3 %	66.2511 33.7489			
=== Detailed Accuracy	By Class ==	=					
TP R 0.977 0.044 0.393 0.096 0.055 0.066 0.006 0.655 0.066 weighted Avg. 0.663	7 0.873 6 0.008 9 0.007 0 0.001 3 0.007 4 0.003 0 0.000 4 0.006 0 0.000 3 0.567	Precision 0.673 0.324 0.565 0.000 0.603 0.412 ? 0.511 ?	Recall 0.977 0.046 0.399 0.000 0.053 0.064 0.000 0.654 0.000	F-Measure 0.797 0.081 0.468 0.000 0.097 0.110 ? 0.574 ?	MCC 0.211 0.097 0.465 -0.005 0.142 0.153 ? 0.574 ?	ROC Area 0.718 0.747 0.807 0.691 0.657 0.832 0.778 0.970 0.674 0.717	PRC Area 0.799 0.211 0.326 0.084 0.290 0.147 0.024 0.426 0.001 0.603
a b c 17202 84 81 1927 100 46 334 16 255 1002 33 20 4298 55 35 674 20 13 48 1 1 85 0 0 2 0 0	d e 7 92 5 40 0 12 0 5 2 246 1 13 0 0 0 0	27 0 16 0 0 0 6 0 49 0	112 (19 6 6 6 6 8 6 9 6 6 6 6 6 6 6 6 6 6 6 6	i < clas 0 a = 0 b = 0 d = 0 f = 0 g = 0 i =	90 87 96 93 91 94 83		

SelfSelection

with NaiveBayes

```
=== Summary ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
                                                                                                  15611
                                                                                                                                                      57.4166 %
                                                                                                 11578
0.2235
0.103
0.2611
                                                                                                                                                       42.5834 %
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
                                                                                                       85.4645 %
106.3667 %
                                                                                                 27189
 === Detailed Accuracy By Class ===

        TP Rate
        FP Rate
        Precision
        Recall

        0.753
        0.457
        0.752
        0.753

        0.298
        0.064
        0.288
        0.298

        0.232
        0.037
        0.131
        0.232

        0.106
        0.030
        0.125
        0.106

        0.244
        0.107
        0.320
        0.244

                                                                                                                                                F-Measure
0.752
                                                                                                                                                                            MCC
0.297
                                                                                                                                                                                                    ROC Area PRC Area 0.702 0.798
                                                                                                                                                                                                    0.728
0.747
0.706
0.625
                                                                                                                                                0.293
0.168
                                                                                                                                                                             0.230
0.148
                                                                                                                                                                                                                               0.208
0.105
                                                                                                                                                 0.115
0.277
                                                                                                                                                                                                                                0.092
0.280
                                                                                                                                                                              0.082
                                                                                                                                                                              0.153
                                                                                           0.320
0.173
0.035
0.341
0.000
0.580
                                                                                                                        0.244
0.127
0.400
0.833
0.000
0.574
                                                                    0.018
0.020
0.015
0.000
                                                                                                                                                0.147
0.064
0.483
0.000
                                                                                                                                                                                                    0.827
0.825
0.975
0.555
                                                                                                                                                                                                                               0.141
0.035
0.438
0.000
                                             0.127
0.400
                                                                                                                                                                             0.127
0.113
                                             0.833
0.000
                                                                                                                                                                             0.527
-0.000
Weighted Avg.
                                             0.574
                                                                    0.322
                                                                                                                                                 0.575
                                                                                                                                                                             0.252
                                                                                                                                                                                                     0.698
                                                                                                                                                                                                                                0.595
 === Confusion Matrix ===
                                                                  e
1710
283
100
130
                                                                                                      9
304
74
18
                                                                                                                                                      <-- classified as
                                                                                                                      h
290
35
15
11
42
3
1
205
                                                                                                                                           i
9
1
3
   13249
781
221
488
                       848
645
86
119
                                                                                                                                                               a = 82
b = 90
c = 87
d = 96
                                        508
140
148
107
67
144
11
                                                      480
114
11
113
157
26
1
                                                                                       201
91
37
47
91
98
1
0
                                                                                                                                        53
52
50
20
     2666
178
12
31
                        443
90
1
10
                                                                                                                                                                 e = 93
f = 91
                                                                      181
3
0
                                                                                                                                                                g = 94
h = 83
```

with J48

WICH JAC	•							
=== Summary	===							
	Classified Datic de error quared error dolute error de squared en of Instance	ror	17873 9316 0.16 0.10 0.23 88.11 96.36 27189	062 364 144 %	65.7361 34.2639			
=== Detailed	Accuracy By	Class ==	=					
Weighted Avg		0.801 0.027 0.008 0.004 0.018 0.004 0.009 0.005 0.005 0.000	Precision 0.686 0.279 0.590 0.157 0.450 0.310 0.000 0.491 ?	Recall 0.954 0.122 0.452 0.017 0.073 0.057 0.000 0.528 0.000 0.657	F-Measure 0.798 0.170 0.512 0.030 0.125 0.096 0.509 ?	MCC 0.243 0.140 0.506 0.039 0.125 0.123 -0.000 0.505 ?	ROC Area 0.712 0.712 0.759 0.678 0.639 0.743 0.733 0.935 0.622 0.702	PRC Area 0.787 0.194 0.347 0.085 0.272 0.120 0.033 0.379 0.000 0.590
a 16789 336 1686 265 285 27 911 77 4057 184 596 66 40 108 8	84 46 48 26 289 4 29 18 19 18 20 7 2 1 2	212 115 19 3 27 8 338 7 37 2 3	f g 41 2 14 1 15 0 5 0 21 0 44 0 2 0 0 0	h 95 15 5 6 14 0 0 130	0 a = 0 b = 0 c = 0 d = 0 d = 0 d = 0 f = 0 g = 0 h	ssified as 82 90 87 96 93 91 94 83		

=== Summa	ary ===											
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances				17827 9362 0.0516 0.0765 0.2766 63.4772 % 112.6744 % 27189				65.567 34.433				
=== Deta	iled Ac	curacy	/ Ву	Class ==	=							
Weighted === Confi		0.99 0.02 0.00 0.04 0.08 0.00 0.00 0.06	95 21 96 90 13 32 90 90 90	FP Rate 0.954 0.002 0.000 0.000 0.003 0.003 0.000 0.000 0.000 0.618	Pre- 0.6: 0.4: 0.7: 0.7: 0.4: ?	57 59 64 26	Recall 0.995 0.021 0.006 0.000 0.043 0.082 0.000 0.000 0.000		F-Measure 0.791 0.040 0.012 ? 0.082 0.138 ? ?	MCC 0.143 0.084 0.045 ? 0.149 0.183 ? ? ?	ROC Area 0.521 0.509 0.503 0.500 0.520 0.539 0.500 0.500 0.500	PRC Area 0.657 0.087 0.026 0.039 0.195 0.063 0.002 0.009 0.000 0.469
a 17514 2074 601 1060 4433 685 48 246 2	b 30 45 4 3 7 9 0	c 4 1 4 0 1 1 0 0	d 0 0 0 0 0 0	e 30 23 8 2 201 12 1 0	f 21 21 22 3 9 63 1 0	g 0 0 0 0 0 0	h 0 0 0 0 0 0	i 0 0 0 0 0 0 0	a: b: c: d: e: f:	assified a = 82 = 90 = 87 = 96 = 93 = 91 = 94 = 83 = 95	S	

=== Summary ===							
Correctly Classif Incorrectly Class Kappa statistic Mean absolute err Root mean squared Relative absolute Root relative squ Total Number of I	ified Instances or error error ared error nstances	18092 9097 0.1375 0.1068 0.2319 88.6265 94.4449 27189	33.4584	66.5416 % 33.4584 %			
Weighted Avg.	TP Rate 0.979 0.868 0.056 0.088 0.056 0.008 0.007 0.000 0.051 0.006 0.009 0.065 0.065 0.564 rix === c d e d e d		156 0.097 168 0.533 100 0.000 151 0.094 169 0.118 100 7 159 0.560 100 ? 165 ?	0.222 0.117 0.528 -0.004 0.148 0.162 ? 0.561 ?	ROC Area 0.720 0.757 0.794 0.693 0.654 0.825 0.800 0.974 0.352 0.717	PRC Area 0.799 0.221 0.372 0.084 0.292 0.150 0.039 0.418 0.000 0.605	
1929 121 3 298 7 29 991 28 2 4314 57 1 662 22 2 45 0 82 2	6 0 40 9 0 8 7 0 11 9 3 235	19 0 19 19 0 8 4 0 7 8 0 15 53 0 0 0 1 0 162 0 0 0	0 d = 0 b = 0 c = 0 d = 0 d = 0 d = 0 d = 0 f = 0 d = 0 i	90 87 96 93 91 94 83			

Part 5.2 – Analysis

Just by looking at the "Correctly Classified Instances," we can see that our classifier models aren't particularly great. The best of these 20 models can barely predict % of unseen data correctly. However, a 66% accuracy is still something statistically significant, so we think our project suggests that there is some viability to properly training on a model on this dataset.

The main source of error likely came from the dataset itself and how the attributes don't have a strong correlation with the class. For example, the attribute HELD_INDICATOR has the highest correlation when we performed CorrelationAttributeEval, but that value was still less than 0.1. The features that we have access to don't seem like enough to capture the nuance of our data, as predicting the outcome of a medical emergency needs to take into account more information, such as a patient's medical background and a more precise metric of their current condition.

Another source of error could have come from the fact that our class distribution was very uneven, meaning that certain class labels got trained more than others. This can be reflected in the huge differences in TP & FP rates between the different class labels.

After running 4 models on 5 datasets that were each created by a different attribute selection algorithm, the following results had 66% or greater accuracy for the corresponding test dataset:

CfsSubsetEval with J48 (66.20%)

mean absolute error: 0.1069
root mean squared error: 0.234
relative absolute error: 88.72%
root relative squared error: 95.31%

CfsSubsetEval with FilteredClassifier (66.55%)

mean absolute error: 0.107
root mean squared error: 0.2317
relative absolute error: 88.79%
root relative squared error: 94.37%

CorrelationAttributeEval with FilteredClassifier (66.60%)

mean absolute error: 0.1066
root mean squared error: 0.2314
relative absolute error: 88.48%
root relative squared error: 94.27%

InfoGainEval with FilteredClassifier (66.25%)

mean absolute error: 0.1075
root mean squared error: 0.2324
relative absolute error: 89.18%

root relative squared error: 94.67%

SelfSelection with FilteredClassifier (66.54%)

mean absolute error: 0.1068
root mean squared error: 0.2319
relative absolute error: 88.63%
root relative squared error: 94.44%

Although the 5 models above had similar accuracy and error, the model using the CorrelationAttributeEval dataset with the FilteredClassifier had the highest accuracy and least amount of error (across the four available error scores). For this reason, we picked the CorrelationAttributeEval with FilteredClassifier model as our final model and attribute selection algorithm combination that performs best on our dataset.

Looking at the *CorrelationAttributeEval* attribute selection results, we can see that it was tied for the fewest number of attributes removed: 4. The attributes it chose to remove were remarkably similar to our *SelfSelection*, except it decided to keep the HELD_INDICATOR and SPECIAL_EVENT_INDICATOR. It decided to remove the geographical information, ZIPCODE, along with \% of the INDICATOR attributes. This suggests that some of the relationships in our data are more complicated, and that more features are necessary to fully capture that complexity.

Part 6 – Conclusion and How to Reproduce Our Model

The *CorrelationAttributeEval with FilteredClassifier* model had the best results of the 20 models for this project.

Steps to Reproduce Our Model: CorrelationAttributeEval with FilteredClassifier:

- 1. Download the 'Files' folder next to this report
- 2. Download a 'weka.jar' file in order to run weka scripts from the command line
- 3. Install dependencies within Python files if not already installed, 'pip install pandas'
- 4. Run the `run_data_pipeline.sh` script within the `Preprocessing_Scripts` directory
- 5. This will produce the processed datasets within `processed_data/preprocessing` and the train / test splits of the attribute selection datasets within `processed_data/attribute_selection_arff`
- 6. Open WEKA explorer
- 7. Load the `EMS Incident Dispatch FilteredClassifier Train.arff` file in the Preprocess tab
- 8. Click on the Classify tab
- 9. Click "Choose" and select FilteredClassifier under meta
- 10. Click "Supplied test set" under Test Options, load the `EMS_Incident_Dispatch_FilteredClassifier_Test.arff` and click "Close"
- 11. Select INCIDENT DISPOSITION CODE as the class
- 12. Click Start

13. Once the model finishes running, right-click on the run under "Results List" > "Save Model" > enter file name and select directory to save in > click "Save"

Part 7 – Team Members and Tasks Performed

Finding the Data & Building Proposal: Both

Preprocessing Initial Attempt: Justin Preprocessing & Project Update: Both Attribute Selection Algorithms: Justin

Classifiers: John Results Output: John Results Analysis: Both Building Final Report: Both

Part 8 – Appendix and Sources

Data Source Website

https://data.cityofnewyork.us/Public-Safety/EMS-Incident-Dispatch-Data/76xm-jjuj/data

Files Attached with Report

- Initial_Data/EMS_Incident_Dispatch_Data.csv Data downloaded from the NYC OpenData website
- Processed_Data/EMS_Incident_Dispatch_Data_Processed.arff Data after preprocessing
- Processed Data/EMS Incident Dispatch Data Train.arff Train data after split
- Processed Data/EMS Incident Dispatch Data Test.arff Test data after split
- Attribute_Selection_Data folder contains 10 arff files, one train and one test dataset for each type of attribute selection
- Preprocessing_Scripts scripts used for preprocessing. To run all the preprocessing steps, run `run data pipeline.sh`
- FilteredClassifier_Model.model Chosen model for the project

Data Attribute Descriptions

Attribute	Description
CAD_INCIDENT_ID	An incident identifier comprising the julian date and a 4 character sequence number starting at 1 each day.
INCIDENT_DATETIME	The date and time the incident was created in the dispatch system
INITIAL_CALL_TYPE *	The call type assigned at the time of incident creation.

INITIAL_SEVERITY_LEVEL_CODE	The segment(priority) assigned at the time of incident creation.
FINAL_CALL_TYPE *	The call type at the time the incident closes.
FINAL_SEVERITY_LEVEL_CODE	The segment(priority) assigned at the time the incident closes.
FIRST_ASSIGNMENT_DATETIME	The date and time the first unit is assigned.
VALID_DISPATCH_RSPNS_TIME_INDC	Indicates that the components comprising the calculation of the DISPATCH_RESPONSE_SECONDS_QY are valid.
DISPATCH_RESPONSE_SECONDS_QY	The time elapsed in seconds between the incident_datetime and the first_assignment_datetime.
FIRST_ACTIVATION_DATETIME	The date and time the first unit gives the signal that it is enroute to the location of the incident.
FIRST_ON_SCENE_DATETIME	The date and time the first unit signals that it has arrived at the location of the incident.
VALID_INCIDENT_RSPNS_TIME_INDC	Indicates that the components comprising the calculation of the INCIDENT_RESPONSE_SECONDS_QY are valid.
INCIDENT_RESPONSE_SECONDS_QY	The time elapsed in seconds between the incident_datetime and the first_on_scene_datetime.
INCIDENT_TRAVEL_TM_SECONDS_QY	The time elapsed in seconds between the first_assignment_datetime and the first_on_scene_datetime.
FIRST_TO_HOSP_DATETIME	The date and time the first unit gives the signal that it is enroute to the hospital.
FIRST_HOSP_ARRIVAL_DATETIME	The date and time the first unit signals that it has arrived at the hospital.
INCIDENT_CLOSE_DATETIME	The date and time the incident closes in the dispatch system.
HELD_INDICATOR	Indicates that for some reason a unit could not be assigned immediately
BOROUGH	The borough of the incident location.
INCIDENT_DISPATCH_AREA	The dispatch area of the incident.
ZIPCODE	The zip code of the incident.
POLICEPRECINCT	The police precinct of the incident.
CITYCOUNCILDISTRICT	The city council district.
COMMUNITYDISTRICT	The community district.
COMMUNITYSCHOOLDISTRICT	The community school district.

CONGRESSIONALDISTRICT	The congressional district.
REOPEN_INDICATOR	Indicates that at some point the incident was closed but then reopened.
SPECIAL_EVENT_INDICATOR	Indicates that the incident was a special event such as the NYC Marathon.
STANDBY_INDICATOR	Indicates that the units were assigned to stand by incase they were needed.
TRANSFER_INDICATOR	Indicates that the incident was created for the transportation of a patient from one facility (ie a hospital or nursing home) to another.
INCIDENT_DISPOSITION_CODE	A code indicating the final outcome of the incident. See incident dispositions.

Data Incident Dispositions

INCIDENT_DISPOSITION_CODE	Description
82	transporting patient
83	patient pronounced dead
87	cancelled
90	unfounded
91	condition corrected
92	treated not transported
93	refused medical aid
94	treated and transported
95	triaged at scene no transport
96	patient gone on arrival
CANCEL	cancelled
DUP	duplicate incident
NOTSNT	unit not sent
ZZZZZZ	no disposition