1. Solution

The sample size, *n*, is 12. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 12]	3	83.15
Q2	$\lceil 0.5 \times 12 \rceil$	6	92.09
Q3	$\lceil 0.75 \times 12 \rceil$	9	102.85

We determine the IQR.

$$IQR = Q3 - Q1$$

= 102.85 - 83.15
= 19.7

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $83.15 - 1.5 \times 19.7$
= 53.6
upper boundary = Q3 + $1.5 \times IQR$
= $102.85 + 1.5 \times 19.7$
= 132.4

We determine the outliers.

outliers =
$$\{155.61\}$$

We identify the ends of the whiskers: 73.41 and 115.99. We plot the boxplot.

2. Solution

The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 72 ceil$	18	29.19
Q2	$\lceil 0.5 \times 72 \rceil$	36	36.46
Q3	$\lceil 0.75 \times 72 \rceil$	54	53.68

We determine the IQR.

$$IQR = Q3 - Q1$$

= 53.68 - 29.19
= 24.49

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 29.19 $- 1.5 \times 24.49$
= -7.545
upper boundary = Q3 + 1.5 $\times IQR$
= 53.68 + 1.5 $\times 24.49$
= 90.415

We determine the outliers.

outliers =
$$\{96.3\}$$

We identify the ends of the whiskers: 20.57 and 80.15. We plot the boxplot.

