Assignment - 2 Report

S.No	Name	Roll Number
1	Pashikanti Rohith Parjanya	M20CS009
2	Piyush Ranjan Majhi	M20CS010
3	Parsa Revanth	M20CS058
4	Anurag Saraswat	M20CS066

- Google colab link: https://colab.research.google.com/drive/1iQIhmON9_lJV-13O9pSXpGpxtiZRCf IR?usp=sharing
- Dataset link: https://drive.google.com/file/d/1cXRkL LDG8TB2q6HiMjF5dgT112p7jUU/vie w?usp=sharing

 ${f Q1.}$ Pick any 10 risky assets from the market. Use their 3 months closing price to obtain simple returns.

S.No	Name of the asset	
1	BandhanBank	
2	Burgerking	
3	Glenmark	
4	ITC	
5	CIL	
6	Canara Bank	
7	Castrol	
8	Exide Ind	
9	CUB	
10	Rsys	

• The above table contains the ten asserts selected as risky assets dated from 6th january 2021 to 6th april 2021

Q2. Use the mean-variance theory and build the Markowitz efficient frontier.

Equations used for calculating markowitz efficient frontier,

$$oldsymbol{w} = rac{oldsymbol{u}oldsymbol{C}^{-1}}{oldsymbol{u}oldsymbol{C}^{-1}oldsymbol{u}^T} \;,\;\;\; \sigma_V = \sqrt{oldsymbol{w}oldsymbol{C}oldsymbol{w}^T} \;\;,\;\;\; \mu_V = oldsymbol{m}oldsymbol{w}^T$$

- X-axis in the above graph represents Risk (Variance)
- Y-axis in the above graph represents Return
- Red dot in the graph represents the minimum risk portfolio

Q3. Use a risk-free asset along with the 10 risky assets to obtain CAP"M". Draw the straight line and show that it is tangent to the efficient frontier. Obtain the market portfolio.

CAP'M':
$$w = \frac{(u - u_{rf}U)C^{-1}}{(u - u_{rf}U)C^{-1}u^{T}}$$

From the w, We calculate the μ_{der} and σ_{der}^2 and that constitutes our point of tangency $(\sigma_{der}^2, \mu_{der})$ and the other point lies on the Y-axis as it constitutes no risk because μ_{rf} is the return of the risk free assets. So, the other point is (o, μ_{rf}) . The green line shown below is the line drawn from these two points and that is the CAP'M' line.

- X-axis in the above graph represents Risk (Variance)
- Y-axis in the above graph represents Return
- Red dot in the graph represents the minimum risk portfolio
- Black dot represents the minimum risk for derived portfolio
- Green dot represents the risk free return of the government bond
- Rate of return is 0.6%

Q4. Use any three assets out of the 10 risky assets to get three different SMLs.

The equation of the SML is given by the

$$\mu_V = r_F + (\mu_M - r_F) \beta_V$$

$$\beta_V = \frac{(K_{V'}K_M)}{\sigma_M^2}$$

- Beta (β_V) signifies how the stock return is related to overall market return
- $\bullet~$ The market index considered is NIFTY 50 and $r_{_F}$ risk free return of the asset is chosen as 1%

The SML for the stocks Bandhan Bank, Burger King, Glenmark is

- X-axis in the above graph represents Beta
- Y-axis in the above graph represents Effective Return

The SML for the stocks ITC, CIL, Canara Bank is

- X-axis in the above graph represents Beta
- Y-axis in the above graph represents Effective Return

The SML for the stocks Exide Ind, CUB, Castrol is

- X-axis in the above graph represents Beta
- Y-axis in the above graph represents Effective Return