Cancer Rates Beyond Borders: What's Behind the Disparities?

Company and printing Company

John Pauline Pineda

November 11, 2023

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results Summary
 - Data Gathering
 - Data Description
 - Data Quality Assessment
 - Data Preprocessing
 - Data Exploration
- Detailed Findings
- Discussion
 - Overall Findings and Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

Study Objective

• Conduct data analysis to investigate the potential drivers for high cancer rates between countries given various world performance indicators (social protection and labor, education, economy and growth, environment, climate change, agricultural and rural development, social development, health, science and technology, urban development) and indices (human development, environmental performance).

Methodology and Tools

- Data Quality Assessment using Python Pandas and NumPy APIs
- Data Preprocessing using Python Pandas and Scikit-Learn APIs
- Data Exploration using Python Matplotlib, Seaborn and SciPy APIs

Overall Findings

- Data quality issues were identified and handled with the appropriate data preprocessing methods.
- Relevant numeric indicators which highly correlated with cancer rates were determined.
- Relevant categorical indices that effectively differentiated varying levels of cancer rates were determined.
- Combined key numeric and categorical drivers for high cancer rates were statistically evaluated.

INTRODUCTION

- Cancer a complex group of diseases characterized by the uncontrolled growth and spread of abnormal cells, has emerged as a leading cause of morbidity and mortality worldwide.
- While the prevalence of cancer varies significantly between countries, unraveling the factors that contribute to these variations is crucial for effective prevention, early detection, and treatment strategies.
- This capstone project generally aims to conduct a data analysis to determine the key factors influencing cancer rates among countries.
 - In particular, an exploratory analysis of high-quality and preprocessed information will be conducted which could provide a visual snapshot of the data in a clear and concise manner allowing to derive insights, uncover patterns, and understand relationships.

METHODOLOGY

- Source assessment
- Data download
- Variable description
- Data dimension
- Column types
- Numeric statistics
- Categorical statistics
- Row duplicates
- Column fill rate
- Row fill rate
- Low variance
- High data skew

- Data cleaning
- Data imputation
- Outlier treatment
- Collinearity
- Transformation
- · Centering and scaling
- Data Encoding

- Visual exploration
- Hypothesis testing

RESULTS – DATA GATHERING

World Performance Indicators

Social Protection and Labor [Source: World Bank]

Education [Source: World Bank]

Economy and Growth [Source: World Bank]

Environment [Source: World Bank]

Climate Change [Source: World Bank]

Agricultural and Rural Development [Source: World Bank]

Social Development [Source: World Bank]

Health [Source: World Bank]

Science and Technology [Source: World Bank]

Urban Development [Source: World Bank]

World Performance Indices

Human Development [Source: <u>Human Development Reports</u>]

Environmental Performance [Source: Yale Center]

• The study hypothesizes that world performance indicators (social protection and labor, education, economy and growth, environment, climate change, agricultural and rural development, social development, health, science and technology, urban development) and indices (human development, environmental performance) directly influence cancer rates across countries.

World Cancer Rates

[Source: World Population Review]

 The objective of the study is to explore and prepare the dataset to determine which among the world performance indicators and indices are the significant key drivers of cancer rates across countries.

RESULTS – DATA DESCRIPTION

Country 177 Unique Values	COUNTRY		
GDP Per Person Employed (USD) Min: 1.7K Mean: 45.3K Max: 234.6K	GDPPER	Human Development Index Category 4 Categories	HDICAT
Urban Population (% of Total) Min: 13.3 Mean: 59.8 Max: 100.0	URBPOP	Environmental Performance Index (Score) Min: 18.9 Mean: 42.9 Max: 77.9	EPISCO
Patent Applications by Residents (Count) Min: 1.0 Mean: 20.6K Max: 1344.8K	PATRES	GDP per Capita (USD) Min: 0.2K Mean: 13.9K Max: 117.3K	GDPCAP
R&D Expenditure (% of GDP) Min: 0.1 Mean: 1.2 Max: 5.3	RNDGDP	Tertiary School Enrollment (% Gross) Min: 2.4 Mean: 50.0 Max: 143.3	ENRTER
Annual Population Growth (%) Min: -2.1 Mean: +1.1 Max: +3.7	POPGRO	Population Density (Persons per Km²) Min: 2.1 Mean: 200.8 Max: 7918.9	POPDEN
Life Expectancy at Birth (Years) Min: 52.7 Mean: 71.7 Max: 84.5	LIFEXP	PM2.5 Air Pollution Exposure (% of Total) Min: 0.3 Mean: 91.9 Max: 100.0	PM2EXP
Tuberculosis Incidence per 100K (Count) Min: 0.7 Mean: 105.0 Max: 592.0	TUBINC	CO2 Emissions (Metric Tons per Capita) Min: 0.0 Mean: 3.7 Max: 31.7	CO2EMI
Death by Communicable Disease (% of Total) Min: 1.3 Mean: 21.3 Max: 65.2	DTHCMD	Forest Area (% of Land Area) Min: 0.0 Mean: 32.2 Max: 97.4	FORARE
Agricultural Land (% of Land Area) Min: 0.5 Mean: 38.8 Max: 80.8	AGRLND	Methane Emissions (Kiloton) Min: 0.0K Mean: 47.8K Max: 1186.2K	METEMI
Greenhouse Gas Emissions (Kiloton) Min: 0.1K Mean: 259.5K Max: 12,942.8K	GHGEMI	Renewable Electricity Output (% of Total) Min: 0.0 Mean: 39.7 Max: 100.0	RELOUT

- Original data consisted of:
 - 177 observation rows
 - 1 numeric response column
 - 19 numeric predictor columns
 - 1 categorical predictor column
 - 1 object metadata column
- · Numeric data are of different scales.

Object Metadata

RESULTS - DATA QUALITY ASSESSMENT

Country	COUNTRY		
GDP Per Person Employed (USD) MIS MUL OUT	GDPPER	Human Development Index Category MIS	HDICAT
Urban Population (% of Total) MIS	URBPOP	Environmental Performance Index (Score) MIS OUT	EPISCO
Patent Applications by Residents (Count) MIS SKW	PATRES	GDP per Capita (USD) MIS MUL OUT	GDPCAP
R&D Expenditure (% of GDP) MIS	RNDGDP	Tertiary School Enrollment (% Gross) MIS	ENRTER
Annual Population Growth (%) MIS	POPGRO	Population Density (Persons per Km²) MIS SKW OUT	POPDEN
Life Expectancy at Birth (Years) MIS	LIFEXP	PM2.5 Air Pollution Exposure (% of Total) MIS NZV SKW OUT	PM2EXP
Tuberculosis Incidence per 100K (Count) MIS OUT	TUBINC	CO2 Emissions (Metric Tons per Capita) MIS OUT	CO2EMI
Death by Communicable Disease (% of Total) MIS	DTHCMD	Forest Area (% of Land Area) MIS	FORARE
Agricultural Land (% of Land Area) MIS	AGRLND	Methane Emissions (Kiloton) MIS SKW MUL OUT	METEMI
Greenhouse Gas Emissions (Kiloton) MIS SKW MUL OUT	GHGEMI	Renewable Electricity Output (% of Total) MIS	RELOUT

- Data quality issues identified included:
 - Missing data
 - Skewed distributions
 - Near zero variance
 - High multicollinearity
 - High outlier ratio

Target

 Data preprocessing is needed to address data quality issues.

CANRAT

Cancer Rate Per 100K (%)
OUT

21
Predictors + Metadata

177
Observations

Numeric Target
Numeric Predictor
Categorical Predictor
Object Metadata

MUL High Multicollinearity
OUT High Outlier Ratio

RESULTS – DATA PREPROCESSING

Predictors + Metadata		Observations
21	DATA PREPROCESSING STEPS	177
17	High Column-Wise Missing Data ^A : Column Fill Rate<90% High Row-Wise Missing Data ^B : Row Missing Rate>20%	163
17	Data Imputation: Iterative Imputation for Low Column-Wise Missing Data	163
15	Multicollinearity Detection: Pairwise Correlation Coefficient>0.90 ^C	163
15	Skewness Detection Outlier Detection: Skewness> 3 , Value>75 th Percentile+1.5 IQR, Value<25 th Percentile-1.5 IQR	163
15	Shape Transformation: Yeo-Johnson Transformation for Skewness and Outlier Reduction	163
14	Post-Transformation Outlier Skewness Detection: Outlier Count>25 ^D , Skewness> 3 ^D	163
17	Centering Scaling: Standardization for Comparable Range Data Encoding: One-Hot Encoding for Categorical Column	163
Removed 7 Predictors	Removed	l 14 Observations
ARNDGDP APATRE CGDPPER CMETEM	Caledonia, French Polynesia, Guam, Puerto Rico, N	North Korea,

RESULTS – DATA EXPLORATION

Statistically significant associations with predictors were determined.

- Higher cancer rates were generally observed among progressive countries as characterized by the following:
 - Higher economic growth leading to advanced industrialization with increased exposure to pollutants but potentially better environmental policies
 - · Better socioeconomic policies to support cancer screening and diagnosis
 - More robust healthcare infrastructure to support the completeness of cancer registries and reporting mechanisms
 - Shifting demographics including a potentially aging population with increased disease incidence trends
- Given the findings, a high level of progressiveness may not inherently imply higher cancer rates; rather, the relationship might have been influenced by a combination of demographic, environmental, and healthcare-related factors associated with developed countries.
- The relationship between a country's level of progressiveness and cancer rates may not be straightforward, and other potential drivers must be considered in the future when exploring this issue including data on lifestyle factors (smoking rates, obesity levels) or genetic diversity (infectious agents).

RESULTS – DATA QUALITY ASSESSMENT

- No duplicated rows observed.
- 2. Missing data noted for 20 variables with Null.Count>0 and Fill.Rate<1.0.
 - RNDGDP: Null.Count = 103, Fill.Rate = 0.418
 - PATRES: Null.Count = 69. Fill.Rate = 0.610
 - ENRTER: Null.Count = 61, Fill.Rate = 0.655
 - RELOUT: Null.Count = 24, Fill.Rate = 0.864
 - GDPPER: Null.Count = 12, Fill.Rate = 0.932
 - EPISCO: Null.Count = 12, Fill.Rate = 0.932
 - HDICAT: Null.Count = 10, Fill.Rate = 0.943
 - PM2EXP: Null.Count = 10, Fill.Rate = 0.943
 - DTHCMD: Null.Count = 7, Fill.Rate = 0.960
 - METEMI: Null.Count = 7, Fill.Rate = 0.960
 - CO2EMI: Null.Count = 7, Fill.Rate = 0.960
 - GDPCAP: Null.Count = 7, Fill.Rate = 0.960
 - GHGEMI: Null.Count = 7, Fill.Rate = 0.960
 - FORARE: Null.Count = 4. Fill.Rate = 0.977
 - TUBINC: Null.Count = 3, Fill.Rate = 0.983
 - AGRLND: Null.Count = 3, Fill.Rate = 0.983
 - POPGRO: Null.Count = 3. Fill.Rate = 0.983
 - POPDEN: Null.Count = 3. Fill.Rate = 0.983
 - URBPOP: Null.Count = 3, Fill.Rate = 0.983
 - LIFEXP: Null.Count = 3, Fill.Rate = 0.983

- 3. 120 observations noted with at least 1 missing data. From this number, 14 observations reported high Missing.Rate>0.2.
 - COUNTRY=Guadeloupe: Missing.Rate= 0.909
 - COUNTRY=Martinique: Missing.Rate= 0.909
 - COUNTRY=French Guiana: Missing.Rate= 0.909
 - COUNTRY=New Caledonia: Missing.Rate= 0.500
 - COUNTRY=French Polynesia: Missing.Rate= 0.500
 - COUNTRY=Guam: Missing.Rate= 0.500
 - COUNTRY=Puerto Rico: Missing.Rate= 0.409
 - COUNTRY=North Korea: Missing.Rate= 0.227
 - COUNTRY=Somalia: Missing.Rate= 0.227
 - COUNTRY=South Sudan: Missing.Rate= 0.227
 - COUNTRY=Venezuela: Missing.Rate= 0.227
 - COUNTRY=Libya: Missing.Rate= 0.227
 - COUNTRY=Eritrea: Missing.Rate= 0.227
 - COUNTRY=Yemen: Missing.Rate= 0.227
- 4. Low variance observed for 1 variable with First. Second. Mode. Ratio > 5.
 - PM2EXP: First Second Mode Ratio = 53,000
- 5. No low variance observed for any variable with Unique.Count.Ratio>10.
- 6. High skewness observed for 5 variables with Skewness>3 or Skewness<(-3).
 - POPDEN: Skewness = +10.267
 - GHGEMI: Skewness = +9.496
 - PATRES: Skewness = +9.284
 - METEMI: Skewness = +5.801
 - PM2EXP: Skewness = -3.141
- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – DATA CLEANING

- 1. Subsets of rows and columns with high rates of missing data were removed from the dataset:
 - 4 variables with Fill.Rate < 0.9 were excluded for subsequent analysis.
 - RNDGDP: Null.Count = 103, Fill.Rate = 0.418
 - PATRES: Null.Count = 69, Fill.Rate = 0.610
 - ENRTER: Null.Count = 61, Fill.Rate = 0.655
 - RELOUT: Null.Count = 24, Fill.Rate = 0.864
 - 14 rows with Missing.Rate>0.2 were exluded for subsequent analysis.
 - COUNTRY=Guadeloupe: Missing.Rate= 0.909
 - COUNTRY=Martinique: Missing.Rate= 0.909
 - COUNTRY=French Guiana: Missing.Rate= 0.909
 - COUNTRY=New Caledonia: Missing.Rate= 0.500
 - COUNTRY=French Polynesia: Missing.Rate= 0.500
 - COUNTRY=Guam: Missing.Rate= 0.500
 - COUNTRY=Puerto Rico: Missing.Rate= 0.409
 - COUNTRY=North Korea: Missing.Rate= 0.227
 - COUNTRY=Somalia: Missing.Rate= 0.227
 - COUNTRY=South Sudan: Missing.Rate= 0.227
 - COUNTRY=Venezuela: Missing.Rate= 0.227
 - COUNTRY=Libya: Missing.Rate= 0.227
 - COUNTRY=Eritrea: Missing.Rate= 0.227
 - COUNTRY=Yemen: Missing.Rate= 0.227
- 2. No variables were removed due to zero or near-zero variance.

- 3. The cleaned dataset is comprised of:
 - 163 rows (observations)
 - 18 columns (variables)
 - 1/18 metadata (object)
 - COUNTRY
 - 1/18 target (numeric)
 - CANRAT
 - 15/18 predictor (numeric)
 - GDPPER
 - URBPOP
 - POPGRO
 - LIFEXP
 - TUBINC
 - DTHCMD
 - AGRLND
 - GHGEMI
 - METEMI
 - FORARE
 - o CO2EMI
 - PM2EXP
 - POPDEN
 - GDPCAP
 - EPISCO
 - 1/18 predictor (categorical)
 - HDICAT
- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – MISSING DATA IMPUTATION

- 1. Missing data for numeric variables were imputed using the iterative imputer algorithm with a linear regression estimator.
 - GDPPER: Null.Count = 1
 - FORARE: Null.Count = 1
 - PM2EXP: Null.Count = 5
- 2. Missing data for categorical variables were imputed using the most frequent value.
 - HDICAP: Null.Count = 1

- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – OUTLIER TREATMENT

Findings

1. High number of outliers observed for 5 numeric variables with Outlier.Ratio>0.10 and marginal to high Skewness.

- PM2EXP: Outlier.Count = 37, Outlier.Ratio = 0.226, Skewness=-3.061
- GHGEMI: Outlier.Count = 27, Outlier.Ratio = 0.165, Skewness=+9.299
- GDPCAP: Outlier.Count = 22, Outlier.Ratio = 0.134, Skewness=+2.311
- POPDEN: Outlier.Count = 20, Outlier.Ratio = 0.122, Skewness=+9.972
- METEMI: Outlier.Count = 20, Outlier.Ratio = 0.122, Skewness=+5.688

2. Minimal number of outliers observed for 5 numeric variables with Outlier.Ratio < 0.10 and normal Skewness.

- TUBINC: Outlier.Count = 12. Outlier.Ratio = 0.073. Skewness = +1.747
- CO2EMI: Outlier.Count = 11. Outlier.Ratio = 0.067. Skewness=+2.693
- GDPPER: Outlier.Count = 3, Outlier.Ratio = 0.018, Skewness=+1.554
- EPISCO: Outlier.Count = 3, Outlier.Ratio = 0.018, Skewness=+0.635
- CANRAT: Outlier.Count = 2, Outlier.Ratio = 0.012, Skewness=+0.910

- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – COLLINEARITY

- 1. Majority of the numeric variables reported moderate to high correlation which were statistically significant.
- 2. Among pairwise combinations of numeric variables, high Pearson.Correlation.Coefficient values were noted for:
 - GDPPER and GDPCAP: Pearson.Correlation.Coefficient = +0.921
 - GHGEMI and METEMI: Pearson.Correlation.Coefficient = +0.905
- 3. Among the highly correlated pairs, variables with the lowest correlation against the target variable were removed.
 - GDPPER: Pearson.Correlation.Coefficient = +0.690
 - METEMI: Pearson.Correlation.Coefficient = +0.062

- 4. The cleaned dataset is comprised of:
 - 163 rows (observations)
 - 16 columns (variables)
 - 1/16 metadata (object)
 - COUNTRY
 - 1/16 target (numeric)
 - CANRAT
 - 13/16 predictor (numeric)
 - URBPOP
 - POPGRO
 - LIFEXP
 - TUBINC
 - DTHCMD
 - AGRLND
 - GHGEMI
 - FORARE
 - CO2EMI
 - PM2EXP
 - POPDEN
 - GDPCAP
 - EPISCO
 - 1/16 predictor (categorical)
 - HDICAT
- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – SHAPE TRANSFORMATION

- 1. A Yeo-Johnson transformation was applied to all numeric variables to improve distributional shape.
- 2. Most variables achieved symmetrical distributions with minimal outliers after transformation.
- 3. One variable which remained skewed even after applying shape transformation was removed.
 - PM2EXP

- 4. The transformed dataset is comprised of:
 - 163 rows (observations)
 - 15 columns (variables)
 - 1/15 metadata (object)
 - COUNTRY
 - 1/15 target (numeric)
 - CANRAT
 - 12/15 predictor (numeric)
 - URBPOP
 - POPGRO
 - LIFEXP
 - TUBINC
 - DTHCMD
 - AGRLND
 - GHGEMI
 - FORARE
 - o CO2EMI
 - POPDEN
 - GDPCAP
 - EPISCO
 - 1/15 predictor (categorical)
 - HDICAT

- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – CENTERING AND SCALING

- 1. All numeric variables were transformed using the standardization method to achieve a comparable scale between values.
- 2. The scaled dataset is comprised of:
 - 163 rows (observations)
 - 15 columns (variables)
 - 1/15 metadata (object)
 - COUNTRY
 - 1/15 target (numeric)
 - CANRAT
 - 12/15 predictor (numeric)
 - URBPOP
 - POPGRO
 - LIFEXP
 - TUBINC
 - DTHCMD
 - AGRLND
 - GHGEMI
 - FORARE
 - CO2EMI
 - POPDEN
 - GDPCAP
 - EPISCO
 - 1/15 predictor (categorical)
 - HDICAT
 - Code chunk formulated to generate the assessment tables is presented as a markdown file here.
 - Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – DATA ENCODING

Findings

1. One-hot encoding was applied to the HDICAP_VH variable resulting to 4 additional columns in the dataset:

- HDICAP_L
- HDICAP_M
- HDICAP_H
- HDICAP_VH

- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS - EXPLORATORY DATA ANALYSIS

- 1. Bivariate analysis identified individual predictors with generally linear relationship to the target variable based on visual inspection.
- 2. Increasing values for the following predictors correspond to higher CANRAT measurements:
 - URBPOP
 - LIFEXP
 - CO2EMI
 - GDPCAP
 - EPISCO
 - HDICAP VH
- 3. Decreasing values for the following predictors correspond to higher CANRAT measurements:
 - POPGRO
 - TUBINC
 - DTHCMD
 - HDICAP L
 - HDICAP M
- 4. Values for the following predictors did not affect CANRAT measurements:
 - AGRLND
 - GHGEMI
 - FORARE
 - POPDEN
 - HDICAP_H

- Code chunk formulated to generate the assessment tables is presented as a markdown file here.
- Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

RESULTS – HYPOTHESIS TESTING

- 1. The relationship between the numeric predictors to the CANRAT target variable was statistically evaluated using the following hypotheses:
 - Null: Pearson correlation coefficient is equal to zero
 - Alternative: Pearson correlation coefficient is not equal to zero
- 2. There is sufficient evidence to conclude of a statistically significant linear relationship between the CANRAT target variable and 10 of the 12 numeric predictors given their high Pearson correlation coefficient values with reported low p-values less than the significance level of 0.05.
 - GDPCAP: Pearson.Correlation.Coefficient=+0.735, Correlation.PValue=0.000
 - LIFEXP: Pearson.Correlation.Coefficient=+0.702, Correlation.PValue=0.000
 - DTHCMD: Pearson.Correlation.Coefficient=-0.687, Correlation.PValue=0.000
 - EPISCO: Pearson.Correlation.Coefficient=+0.648, Correlation.PValue=0.000
 - TUBINC: Pearson.Correlation.Coefficient=+0.628, Correlation.PValue=0.000
 - CO2EMI: Pearson.Correlation.Coefficient=+0.585. Correlation.PValue=0.000
 - POPGRO: Pearson.Correlation.Coefficient=-0.498, Correlation.PValue=0.000
 - URBPOP: Pearson.Correlation.Coefficient=+0.479, Correlation.PValue=0.000
 - GHGEMI: Pearson.Correlation.Coefficient=+0.232, Correlation.PValue=0.002
 - FORARE: Pearson.Correlation.Coefficient=+0.165, Correlation.PValue=0.035
- 3. The relationship between the categorical predictors to the CANRAT target variable was statistically evaluated using the following hypotheses:
 - Null: Difference in the means between groups 0 and 1 is equal to zero
 - Alternative: Difference in the means between groups 0 and 1 is not equal to zero
- 4. There is sufficient evidence to conclude of a statistically significant difference between the means of CANRAT measuremens obtained from groups 0 and 1 in 3 of the 4 categorical predictors given their high t-test statistic values with reported low p-values less than the significance level of 0.05.
 - HDICAT VH: T.Test.Statistic=-10.605, T.Test.PValue=0.000
 - HDICAT L: T.Test.Statistic=+6.559, T.Test.PValue=0.000
 - HDICAT_M: T.Test.Statistic=+5.104, T.Test.PValue=0.000
 - Code chunk formulated to generate the assessment tables is presented as a markdown file here.
 - Python notebook for the entire capstone project is saved on GitHub and can be accessed here.

PLOTS – OUTLIER ANALYSIS

Original Data

Transformed Data

Removed due to high multicollinearity

Removed due to high multicollinearity

Centered and Scaled Data

Removed due to high multicollinearity

Removed due to high multicollinearity

Removed due to persistent skew after transformation

PLOTS – CORRELATION ANALYSIS

All Correlations

Statistically Significant Correlations

PLOTS – EXPLORATORY DATA ANALYSIS

Relationship Scatterplots

S: Association between predictor and target was statistically significant NS: Association between predictor and target was not statistically significant

OVERALL FINDINGS AND IMPLICATIONS

Key Findings

- Higher cancer rates were generally observed among progressive countries as characterized by the following:
 - Higher economic growth leading to advanced industrialization with increased exposure to pollutants but potentially better environmental policies
 - Better socioeconomic policies to support cancer screening and diagnosis
 - More robust healthcare infrastructure to support the completeness of cancer registries and reporting mechanisms
 - Shifting demographics including a potentially aging population with increased disease incidence trends

Overall Implications

- A high level of progressiveness may not inherently imply higher cancer rates; rather, the relationship might have been influenced by a combination of demographic, environmental, and healthcare-related factors associated with developed countries.
- The relationship between a country's level of progressiveness and cancer rates may not be straightforward, and other potential drivers must be considered in the future when exploring this issue including data on lifestyle factors (smoking rates, obesity levels) or genetic diversity (infectious agents).

CONCLUSION

Overall Summary

- Data collection for the analysis involved world performance indicators and indices hypothesized to be directly influencing cancer rates across countries.
- The quality of gathered data was assessed and potential issues were identified.
- Appropriate pre-processing methods including remedial procedures to address duplicate, missing, outlying, and non-normalized data were applied to prepare the data for subsequent analysis.
 Additional data scaling and transformation were implemented.
- EDA using visualization presented the various distributions and comparisons between the indicators and indices as evaluated against cancer rates eventually identifying the key drivers of higher cancer rates.
- Statistical hypothesis testing identified the individual drivers that were significantly associated with cancer rates.
- Overall analysis findings were discussed and their practical implications were highlighted.

Source Data

- Cancer Rates: World Population Review
- Social Protection and Labor Indicator: World Bank
- Education Indicator: World Bank
- Economy and Growth Indicator: World Bank
- Environment Indicator: World Bank
- Climate Change Indicator: World Bank
- Agricultural and Rural Development Indicator: World Bank
- Social Development Indicator: World Bank
- Health Indicator: World Bank
- Science and Technology Indicator: World Bank
- Urban Development Indicator: World Bank
- Human Development Indices: <u>Human Development Reports</u>
- Environmental Performance Indices: Yale Center for Environmental Law and Policy

Python Notebooks | Codes

- GitHub URL: <u>Data Background</u>
- GitHub URL: <u>Data Description</u>
- GitHub URL: <u>Data Quality Assessment</u>
- GitHub URL: Data Preprocessing
 - GitHub URL: <u>Data Cleaning</u>
 - GitHub URL: <u>Missing Data Imputation</u>
 - GitHub URL: Outlier Treatment
 - GitHub URL: Collinearity
 - GitHub URL: <u>Shape Transformation</u>
 - GitHub URL: <u>Centering and Scaling</u>
 - GitHub URL: <u>Data Encoding</u>
 - GitHub URL: <u>Preprocessed Data Description</u>
- GitHub URL: <u>Data Exploration</u>
 - GitHub URL: Exploratory Data Analysis
 - GitHub URL: <u>Hypothesis Testing</u>

References

- [Book] Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python by Jason Brownlee
- [Book] Feature Engineering and Selection: A Practical Approach for Predictive Models by Max Kuhn and Kjell Johnson
- [Book] Feature Engineering for Machine Learning by Alice Zheng and Amanda Casari
- [Book] Applied Predictive Modeling by Max Kuhn and Kjell Johnson
- [Book] Data Mining: Practical Machine Learning Tools and Techniques by Ian Witten, Eibe Frank, Mark Hall and Christopher Pal
- [Book] <u>Data Cleaning</u> by Ihab Ilyas and Xu Chu
- [Book] Data Wrangling with Python by Jacqueline Kazil and Katharine Jarmul
- [Python Library API] NumPy by NumPy Team
- [Python Library API] pandas by Pandas Team
- [Python Library API] seaborn by Seaborn Team
- [Python Library API] matplotlib.pyplot by MatPlotLib Team
- [Python Library API] itertools by Python Team
- [Python Library API] operator by Python Team
- [Python Library API] sklearn.experimental by Scikit-Learn Team
- [Python Library API] sklearn.impute by Scikit-Learn Team
- [Python Library API] sklearn.linear model by Scikit-Learn Team
- [Python Library API] sklearn.preprocessing by Scikit-Learn Team
- [Python Library API] scipy by SciPy Team

References

- [Article] Step-by-Step Exploratory Data Analysis (EDA) using Python by Malamahadevan Mahadevan (Analytics Vidhya)
- [Article] Exploratory Data Analysis in Python A Step-by-Step Process by Andrea D'Agostino (Towards Data Science)
- [Article] Exploratory Data Analysis with Python by Douglas Rocha (Medium)
- [Article] 4 Ways to Automate Exploratory Data Analysis (EDA) in Python by Abdishakur Hassan (BuiltIn)
- [Article] 10 Things To Do When Conducting Your Exploratory Data Analysis (EDA) by Alifia Harmadi (Medium)
- [Article] How to Handle Missing Data with Python by Jason Brownlee (Machine Learning Mastery)
- [Article] Statistical Imputation for Missing Values in Machine Learning by Jason Brownlee (Machine Learning Mastery)
- [Article] Imputing Missing Data with Simple and Advanced Techniques by Idil Ismiguzel (Towards Data Science)
- [Article] Missing Data Imputation Approaches | How to handle missing values in Python by Selva Prabhakaran (Machine Learning +)
- [Article] Master The Skills Of Missing Data Imputation Techniques In Python(2022) And Be Successful by Mrinal Walia (Analytics Vidhya)
- [Article] How to Preprocess Data in Python by Afroz Chakure (BuiltIn)
- [Article] <u>Easy Guide To Data Preprocessing In Python</u> by Ahmad Anis (KDNuggets)
- [Article] Data Preprocessing in Python by Tarun Gupta (Towards Data Science)
- [Article] <u>Data Preprocessing using Python</u> by Suneet Jain (Medium)
- [Article] Data Preprocessing in Python by Abonia Sojasingarayar (Medium)
- [Article] Data Preprocessing in Python by Afroz Chakure (Medium)
- [Article] Detecting and Treating Outliers | Treating the Odd One Out! by Harika Bonthu (Analytics Vidhya)
- [Article] Outlier Treatment with Python by Sangita Yemulwar (Analytics Vidhya)
- [Article] A Guide to Outlier Detection in Python by Sadrach Pierre (Builtln)
- [Article] How To Find Outliers in Data Using Python (and How To Handle Them) by Eric Kleppen (Career Foundry)

• References

- [Article] <u>Statistics in Python Collinearity and Multicollinearity</u> by Wei-Meng Lee (Towards Data Science)
- [Article] <u>Understanding Multicollinearity and How to Detect it in Python</u> by Terence Shin (Towards Data Science)
- [Article] A Python Library to Remove Collinearity by Gianluca Malato (Your Data Teacher)
- [Article] 8 Best Data Transformation in Pandas by Tirendaz Al (Medium)
- [Article] Data Transformation Techniques with Python: Elevate Your Data Game! by Siddharth Verma (Medium)
- [Article] Data Scaling with Python by Benjamin Obi Tayo (KDNuggets)
- [Article] How to Use StandardScaler and MinMaxScaler Transforms in Python by Jason Brownlee (Machine Learning Mastery)
- [Article] Feature Engineering: Scaling, Normalization, and Standardization by Aniruddha Bhandari (Analytics Vidhya)
- [Article] How to Normalize Data Using scikit-learn in Python by Jayant Verma (Digital Ocean)
- [Article] What are Categorical Data Encoding Methods | Binary Encoding by Shipra Saxena (Analytics Vidhya)
- [Article] Guide to Encoding Categorical Values in Python by Chris Moffitt (Practical Business Python)
- [Article] Categorical Data Encoding Techniques in Python: A Complete Guide by Soumen Atta (Medium)
- [Article] Categorical Feature Encoding Techniques by Tara Boyle (Medium)
- [Article] Ordinal and One-Hot Encodings for Categorical Data by Jason Brownlee (Machine Learning Mastery)
- [Article] Hypothesis Testing with Python: Step by Step Hands-On Tutorial with Practical Examples by Ece Polat (Towards Data Science)
- [Article] 17 Statistical Hypothesis Tests in Python (Cheat Sheet) by Jason Brownlee (Machine Learning Mastery)
- [Article] A Step-by-Step Guide to Hypothesis Testing in Python using Scipy by Gabriel Rennó (Medium)

