TMA-301(A)

B. Tech. (ME) (Third Semester) End Semester EXAMINATION, 2017

ENGINEERING MATHEMATICS—III

Time: Three Hours] [Maximum Marks: 100

Note: (i) This question paper contains five questions.

- (ii) All questions are compulsory.
- (iii) Instructions on how to attempt a question are mentioned against it.
- (iv) Total marks assigned to each question are twenty.
- 1. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Show that the function z|z| is harmonic not analytic anywhere.
 - (b) Show that the function f(z) is defined by:

$$f(z) = \begin{cases} e^{-z^{-4}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

is not analytic at the origin even though it satisfies Cauchy-Riemann equation at the origin.

- (c) Prove that $u = x^4 + y^4 6x^2y^2$ is harmonic. Also find analytic function f(z) = u + iv in terms of z.
- 2. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Evaluate:

$$\int_{\mathcal{C}} \frac{e^{2z}+z^2}{(z-1)^5} dz,$$

where C is the circle |z| = 2.

- (b) Show that the relation $w = \frac{5-4z}{4z-2}$ transforms the circle |z|=1 into a circle of radius unity in the w-plane and find the centre of this circle.
- (c) Evaluate the integral:

$$\int_0^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta$$

- 3. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Construct the forward difference table for the data below, evaluate $\Delta^2 f(10)$ and $\Delta^4 f(5)$:

x	F(x)
5	9962
10	9848
15	9659
20	9397
25	9063
30	8660

(b) Find the cubic Lagrange's interpolation formula from the following data:

90.50	
х	F(x)
0	2
1	3
2	12
5	147

- (c) Compute the value of π from the formula $\frac{\pi}{4} = \int_0^1 \frac{dx}{1+x^2}$ by using Trapezoidal rule with h = 1/4.
- 4. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Use Taylor's series method to solve the equation $y' = x^2 + y^2$ for x = 0.5 given y(0) = 1.
 - (b) Find the second derivative of y = f(x) at x = 1.5 from the data given:

X	Y
1.5	3.375
2.0	7.0
2.5	13.625
3.0	24.0
3.5	38.875
4.0	59.0

C-45

C-45

P. T. O.

(c) Using Runge-Kutta fourth order method compute y(0.1) from:

$$10\frac{dy}{dx} = x^2 + y^2, y(0) = 1,$$

taking h = 0.1.

- 5. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) In a bolt factory, machines A, B and C manufacture respectively 25%, 35%, 40% of the total of their output. 5%, 4%, 2% are defective bolts. A bolt is drawn at from the product and is found to be defective. What are the probability that is was manufactured by machines A, B and C?
 - (b) Obtain the line of regression of y on x from the following data:

x	y
1.53	33.50
1.78	36.30
2.60	40.00
2.95	45.80
3.42	53.50

(c) Define Moment Generating Function (MGF) and find the MGF of discrete Poisson distribution.

TMA-301(A)

200