Cyber Physical Systems - Discrete Models Exercise Sheet 12 Solution

Alper Ari aa508@uni-freiburg.edu Onur Sahin os141@uni-freiburg.de

January 21, 2023

Exercise 1: Lecture Evaluation

We did the lecture evaluation.

1	2	3	4	2
2/2	10.5/	4,5/	9/7	26,

Exercise 2: LTL Properties

(a)

3/3

$$\varphi_{1} = a \land \bigcirc b : \tau = \{a\}\{b\}^{\omega} \vDash \varphi_{1} \checkmark$$

$$\varphi_{2} : \tau = \{a\}\{a\}\{a\}\{b\}^{\omega} \checkmark$$

$$\varphi_{3} : \tau = \{a\}\{a\}\{b\}\{a\}^{\omega} \checkmark$$

$$\varphi_{4} : \tau = \{b\}\{b\}\{c\}\{a\}^{\omega} \checkmark$$

$$\varphi_{5} : \tau = \{c\}\{c\}\{a\}^{\omega} \checkmark$$

$$\varphi_{6} : \tau = \{b\}\{b\}\{\{a\}\{c\}\}^{\omega} \checkmark$$

(b)

3/3

3/3_(c)

Let T be the Transition System

- $T \nvDash \varphi_1$. Counterexample: $\operatorname{trace}(s_0 s_2 ...) = \{b\}\{a\}...$
- $T \vDash \varphi_2$. Because first trace is $\{b\}\{a\}$... which immediately starts with b therefore satisfies and the second trace is $\{a,c\}\{a\}\{a,b\}$... which also contains a until b.

- $T \nvDash \varphi_3$. Counterexample: $\operatorname{trace}(s_1 s_2 s_3^{\omega}) = \{a, c\}\{a\}\{a, b\}^{\omega}$. Which satisfies $a \cup \Box b$ therefore violates φ_3 .
- $T \nvDash \varphi_4$. Counterexample: $\operatorname{trace}(s_0s_2s_3) = \{b\}\{a\}\{a,b\}^{\omega}$ doesn't contain a in the initial state and also there is no eventually c for the first state. Therefore it is not in $\operatorname{Words}(\varphi_4)$.
- $T \vDash \varphi_5$. The infinite parts of each trace satisfies "always a". Therefore, all traces are in $\operatorname{Words}(\varphi_5)$.
- $T \nvDash \varphi_6$. Counterexample: $\operatorname{trace}(s_0 s_2 s_3^{\omega}) = \{b\}\{a\}\{a,b\}^{\omega}$ doesn't have c at all. Therefore, "eventually c" can't be satisfied.

4.5/5

Exercise 3: Stating properties in LTL

$$\varphi_a = \Box(\neg \text{ Peter.use} \lor \neg \text{ Betsy.use}) \checkmark$$

The wording is ambiguous. "a user can print only for a finite amount of time" can be either interpreted as:

- 1. For each time the user starts printing, user stops printing in a finite amount of time.
- 2. Each user only prints finitely many times in total.

We choose the interepratation 1.

$$\varphi_b = \Box(\operatorname{Peter.use} \to \diamondsuit \neg \operatorname{Peter.use}) \land \\ \Box(\operatorname{Betsy.use} \to \diamondsuit \neg \operatorname{Betsy.use}) \qquad \checkmark$$

$$\varphi_c = \Box(\operatorname{Peter.request} \to \diamondsuit \operatorname{Peter.use}) \land \\ \Box(\operatorname{Betsy.request} \to \diamondsuit \operatorname{Betsy.use}) \qquad \checkmark$$

$$\varphi_d = (\Box(\operatorname{Peter.request} \to \diamondsuit \neg \operatorname{Peter.request})) \land \\ (\Box(\operatorname{Betsy.request} \to \diamondsuit \neg \operatorname{Betsy.request})) \qquad \checkmark$$

$$\varphi_e = \Box(\operatorname{Peter.use} \to (\neg \operatorname{Peter.use}) \cup \operatorname{Betsy.use}) \land \\ \Box(\operatorname{Betsy.use} \to (\neg \operatorname{Betsy.use}) \cup \operatorname{Peter.use})$$

9 \(\bigcap \) Exercise 4: Equivalence of LTL formulas

Note: Atomic propositions of the Transition System are notated under the state name.

•
$$\Box a \land \bigcirc \diamondsuit a \stackrel{?}{\equiv} \Box a = \text{true}$$

•
$$\Diamond a \land \bigcirc \square a \stackrel{?}{\equiv} \Diamond a = \text{false.}$$
 Counter example TS:

satisfies $\diamondsuit a$ but not for $\bigcirc \Box a$

•
$$\Box a \rightarrow \diamondsuit b \stackrel{?}{\equiv} a \cup (b \vee \neg a) = \text{true.}$$

• $a \cup \text{false} \stackrel{?}{=} \Box a = \text{false}$. Counter example TS:

satisfies $\square a$ but not for $a \cup \text{false}$.

• $\square \bigcirc b \stackrel{?}{=} \square b = \text{false.}$ Counter example:

satisfies $\square \bigcirc b$ but not for $\square b$.

Proofs

 \uparrow **Proof 1:** $\Box a \land \bigcirc \diamondsuit a \equiv \Box a$

Assuming $\operatorname{Words}(\Box a) \subseteq \operatorname{Words}(\bigcirc \Box a)$, $\Box a \land \bigcirc \diamondsuit a \equiv \Box a$ because intersection with a subset results with the subset.

Proving $Words(\Box a) \subseteq Words(\bigcirc \diamondsuit a)$:

$$\begin{split} \operatorname{Words}(\Box a) &= \left\{ A_0 A_1 ... \in \left(2^{\operatorname{AP}} \right)^\omega \mid \forall i \in \mathbb{N}. \ a \in A_i \right\} \\ \operatorname{Words}(\bigcirc \diamondsuit a) &= \left\{ A_0 A_1 ... \in \left(2^{\operatorname{AP}} \right)^\omega \mid \forall i > 0. \ \exists j \geq i. \ a \in A_i \right\} \end{split}$$

Let $\sigma \in \operatorname{Words}(\Box a)$. $\sigma \in \operatorname{Words}(\bigcirc \diamondsuit a)$ because for any σ , we can take i=1 and j=1 which contains a and therefore $\sigma \vDash \bigcirc \diamondsuit a$.

Proof 2: $\Box a \rightarrow \diamondsuit b \equiv a \cup (b \vee \neg a)$

 $a \cup (b \vee \neg a) \equiv (\text{true} \cup (b \vee \neg a))$, because a must necessarily hold until $b \vee \neg a$ occurs otherwise $b \vee \neg a$ would hold earlier. Also $\text{true} \cup (b \vee \neg a) \equiv \diamondsuit(b \vee \neg a)$ from the definition of \diamondsuit operator.

For $\Box a \rightarrow \Diamond b$:

$$\Box a \to \diamondsuit b \equiv \neg \Box a \lor \diamondsuit b$$
$$\equiv \diamondsuit \neg a \lor \diamondsuit b$$
$$\equiv \diamondsuit (\neg a \lor b)$$

Since both equations are equivalent for another LTL formula they are equivalent to each other as well.