A Multiple Variable Regression Model to predict public high schools graduation rates in NYC (2014) based on NYC Open Data

Objective:

Identify factors that can predict NYC public high school graduation rates.

Questions:

- Do demographics of a school impact student graduation rates? If so, which attributes (gender, ethnicity, new English Learner, etc.)?
- Similarly, can factors pertaining to school quality or individual student achievements help predict graduation rates?

Hypothesis:

 The high rate of graduation in a school is not dependent of any factors related to the school or the students.

Literature Review

Definition

- **Graduation rate** is the percentage of a school's first-time, first-year undergraduate students who complete their program within 150% of the published time for the program. For example, for a four-year degree program, entering students who complete within six years are counted as **graduates**.
- School graduation is an important outcome measure for the school systems. Hence, determining its different factors can help improving the school systems.

Existing works

- Rumberger and Larson, 1998; Ensminger and Slusarcick, 1992).
- Ensminger and Slusarcick predicted using background and demographic variables (low grades, aggressive behavior, student poverty, and parents' education level.)
- Rumberger and Larson predicted using low grades, misbehavior, and high absenteeism.

Dataset and Variables

OpenData

Sources

- Data extracted from NYC Open Data (https://opendata.cityofnewyork.us/) in csv format, cleaned and treated using python (pandas)
- Disclaimer: NYC Open Data format has inconsistencies (i.e., results are only as good as its source data)

Data

• 420 observations - each observation represents a school. (3 primary tables)

Target Variable

High school graduation rate (% - continuous)

Independent variables (40 after filtering)

Classified between ethnicity - language proficiency - gender - SAT - achievement scores

Empirical Approach

- Transformation of target variables to consider success (graduation rate ≥ 50%)
- Distribution approximates a normal distribution after change

 It also helped to remove data that would create biases in our models

Distribution of schools with graduation rate more than 50%

Empirical Approach (suite)

Relation between 2 main variables: Student Achievement Scores and Student Attendance Rate

Empirical Approach (suite)

Correlation Matrix with all variables

- Since this is a Pearson Coefficient, the values near to 1 or -1 have high correlation.
- We drop "ethnicity probabilities" and all but one "metric score," and then
- We start to execute our linear regression model with the non-correlated variables.

Modelisation & Validation

The different steps before selecting our final model:

- Adding variables
- Modeling with transformation
- Checking errors normality and heteroscedasticity

Final Model

Final Model

Grad_rate =

```
-0.8649 +
0.2975 (prob Former English Language Learner) +
0.5254 (prob_Not English Language Learner) +
0.0086 (Student Achievement Score) +
0.018 (% Earning 10 Credits in Year 1) +
0.2235 (Supportive Environment- % Positive) +
0.0469 (Avg Grade 8 English Proficiency) +
0.4109 (% English Language Learners) +
```

-0.3683 (% in Temp Housing) +

0.6355 (Student Attendance Rate) + 0.2678 (Teacher Attendance Rate)

Linear Regression Assumptions

- Our model explains 70% of the variances of the variables
- Error histogram → approximates a normal distribution
- The residual scatter plot doesn't show a real pattern for the fitted value - we can assume the error is homoscedastic.

Results and Interpretation

Model Summary Table

OLS Regression Results				coef	std err	t	P> t	[0.025	0.975]	
Dep. Variable:	grad_rate	R-squared:	0.700	const	-0.9097	0.109	-8.326	0.000	-1.125	-0.695
Model:	OLS	Adj. R-squared:	0.692	prob_Former ELL	0.3491	0.079	4.408	0.000	0.193	0.505
			04.40	prob_Not ELL	0.5252	0.077	6.819	0.000	0.374	0.677
Method:	Least Squares	F-statistic:	84.42	SA_score	0.0089	0.003	2.840	0.005	0.003	0.015
Date:	Fri, 23 Aug 2019	Prob (F-statistic):	8.19e-97	Metric Score - Percentage Earning 10+ Credits in First Year	0.0178	0.003	5.215	0.000	0.011	0.024
Time:	10:31:01	Log-Likelihood:	537.16	Supportive Environment - Percent Positive	0.2282	0.078	2.937	0.004	0.075	0.381
No. Observations:	410	AIC:	-1050.	Average Grade 8 English Proficiency	0.1310	0.037	3.520	0.000	0.058	0.204
Df Residuals:	398	BIC:	-1002.	Average Grade 8 Math Proficiency	-0.0798	0.032	-2.460	0.014	-0.144	-0.016
Df Model:	11			Percent English Language Learners	0.4353	0.081	5.401	0.000	0.277	0.594
Covariance Type:	nonrobust			Percent in Temp Housing - 4yr	-0.3670	0.096	-3.820	0.000	-0.556	-0.178
				Student Attendance Rate	0.6565	0.100	6.566	0.000	0.460	0.853
				Teacher Attendance Rate	0.2663	0.068	3.933	0.000	0.133	0.399

At 95% confidence level, all our coefficients expect 'Average Grade 8 Math Proficiency' are statistically significant

- 1. NYC Public High School graduation rates can be explained mainly by factors relevant to the school environment and attendance
- 2. Gender and ethnicity don't impact graduation rates in any of our models
- More analysis are required to find out why male/female population and other demographic attributes are not statistically significant