MTH 9831 Assignment 11 (12/02/2015 - 12/09/2015).

Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity λ , $M(t)=N(t)-\lambda t$, $t\geq 0$, be a compensated Poisson process, $\{Q(t)\}_{t\geq 0}$ be a compound Poisson process with jump distribution $\mathbb{P}(Y_1=y_m)=p_m,\ m\in\{1,2,\ldots,M\}$, and $M_Q(t)=Q(t)-\beta\lambda t\ (\beta=\mathbb{E}Y_1),\ t\geq 0$, be a compensated Poisson process.

- (1) Find the process $[Q,Q](t), t \ge 0$, and compute its expectation (not just quote, compute!). What is $[M_Q,M_Q](t), t \ge 0$?
- (2) Let $\varphi(t)$, $t \geq 0$, be a left-continuous square-integrable process adapted to the filtration of M(t), $t \geq 0$. Show that

$$\mathbb{E}\left(\int_0^t \varphi(s)dM(s)\right)^2 = \lambda \mathbb{E}\int_0^t \varphi^2(s)\,ds.$$

Find

$$\operatorname{Var}\left(\int_0^t 2^{M(s-)} dM(s)\right).$$

Hint: adapt the calculation between equations (5) and (6) of Lecture 12.

(3) Let $\varphi(t)$, $t \geq 0$, be a left-continuous square-integrable process adapted to the filtration of $M_Q(t)$, $t \geq 0$. Show that

$$\mathbb{E}\left(\int_0^t \varphi(s)dM_Q(s)\right)^2 = \lambda \mathbb{E}(Y_1^2)\mathbb{E}\int_0^t \varphi^2(s)\,ds.$$

Hint: the method of the previous problem works here too.

- (4) Exercise 11.6 from the textbook.
- (5) Let under \mathbb{P} the process S(t), $t \geq 0$ be a solution to

$$dS(t) = \mu S(t)dt + \sigma S(t)dB(t) + S(t-)dQ(t).$$

Find a change of measure, such that under the new measure the process $e^{-rt}S(t)$, $t \ge 0$, is a martingale.

(6) Suppose that under a risk-neutral measure the stock price can be represented as follows:

$$S(t) = S^*(t)e^{Q(t)},$$

where $S^*(t) = e^{\sigma B(t) + \mu t}$, B(t) is a standard Brownian motion, $Q(t) = \sum_{i=1}^{N(t)} Y_i$ is a compound Poisson process with intensity λ , random variables Y_i , $i \geq 1$, are normal with mean μ_0 and variance σ_0^2 , and $\mu = r - \sigma^2/2 - \lambda(Ee^{Y_1} - 1)$, where r is the annual nominal interest rate. Find the time 0 cost of a European call option with strike price K and expiration t. Hint: condition on N(t) = n and recognize each term of the obtained series as a version of a standard Black-Scholes price.