МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого»

Кафедра «НГРиГПА»

Курсовая работа по дисциплине «Подземная гидромеханика»

-	Гема:	
«Расчет параметров фильтрации	нефти к скважине и гру	уппе скважин»

Выполнил студент группы 3HP-41

Манько Д.И.

Проверил преподаватель

Семенова В.А.

СОДЕРЖАНИЕ

4
5
5
11
14
15
17
19
20
25
27
30
32
34
34
36
37
40
41

ИСХОДНЫЕ ДАННЫЕ

Рассчитать параметры фильтрации нефти к скважине и группе скважин при различных вариантах их расположения в плоском круговом пласте с ограниченным контуром питания для водонапорного и упругого режимов работы пласта.

Задание, вариант 1.1.1

Исходные данные для расчета:

- Горизонтальный однородный круговой пласт имеет радиус контура питания $R_{\kappa} = 2$ км
- Мощность пласта h = 10 м
- Коэффициент пористости пласта m = 0,18
- Коэффициент проницаемости пласта k= 0,8 Д
- Динамический коэффициент вязкости нефти µ_н=10 мПа·с
- Плотность нефти $\rho_{\rm H} = 850 \ {\rm kr/m}^3$
- Коэффициент сжимаемости нефти $\beta_H = 1,04 \cdot 10^{-9}$ 1/Па
- Коэффициент сжимаемости породы пласта $\beta_c = 0.72 \cdot 10^{-10} \ 1/\Pi a$
- Водонасыщенность нефтяного пласта $\sigma_0 = 12 \%$
- Коэффициент вязкости пластовой воды $\mu_B = 1,2 \text{ м}$ Па·с
- Коэффициент сжимаемости пластовой воды $\beta_B = 4.6 \cdot 10^{-10} \text{ 1/Па}$
- Давление на контуре питания р_к= 12 МПа
- Забойное давление p_c = 8 МПа
- Пласт вскрывается скважинами на глубину b= 10 м
- Диаметр скважины $D_c = 24.8$ см
- Число круглых отверстий на 1 м забоя n=10 шт
- Диаметр отверстий d_0 = 16 мм
- Глубина проникновения пуль в породу 1' = 100 мм

Забой скважины обсажен и перфорирован при помощи кумулятивного перфоратора.

ВВЕДЕНИЕ

Подземная гидромеханика является наукой, изучающей законы течения природных жидкостей - нефти, воды и газа в пористой среде. Частицы грунта пористой среды имеют, как правило, самую разнообразную форму. Поэтому, когда мы говорим об изучении течения жидкости, следует иметь в виду, что речь идет не о скоростях отдельных жидких частиц, а об осредненных величинах, дающих представление о потоке в целом. Конечной задачей подземной гидромеханики является установление зависимостей между расходами, кон-гурными давлениями, размерами и структурой пласта и свойствами текущих нем жидкостей. Подземная физическими гидромеханика является одной из составляющих теории разработки нефтяных и газовых месторождений и технологии нефтегазодобычи. Знание законов подземной гидромеханики необходимо при решении задач выбора систем и режимов разработки залежей, рациональных для данных пластовых условий. С целью определения фильтрационных характеристик пласта для разработки контроля регулирования проводят гидродинамические И исследования пластов и скважин, обработка данных которых основана на решении обратной задачи подземной гидромеханики. Существенный вклад в развитие подземной гидромеханики внесли французский ученые А. Дарси и французскому ученому А. Дарси, американские ученые Ч. Слихтер и М. Маскет, также российские профессор Н.Е. Жуковский и академики Н.Н. Павловский и Л.С. Лейбензон, ученые И.А. Чарный, В.Н. Щелкачев и др.

работы заключается ∐ель курсовой В расчете коэффициента совершенства скважины с целью определения ее совершенства при условии постоянства давлений на контуре и на забое скважины. Также необходимо провести расчет дебитов, времени эксплуатации залежи, определение зависимости дебита от времени отбора нефти из пласта и различных расстояниях от оси скважины при установившемся водонапорном и упругом неустановившемся режимах эксплуатации нефтяного пласта. Расчеты должны сопровождаться графическими приложениями для наглядного понимания процесса, происходящего в пласте.

ГЛАВА 1. РАСЧЕТ ПАРАМЕТРОВ РАБОТЫ СКВАЖИНЫ

1.1. Расчёт совершенства скважины

Буровая скважина (well or drilling hole) — горная выработка преимущественно круглого сечения (диаметр 59-1000 мм), образуемая в результате бурения. В буровых скважинах выделяют устье, ствол и забой.

Они подразделяются на:

- мелкие (глубина до 2000 м);
- средние (глубина до 4500 метров);
- глубокие (глубина до 6000 метров);
- сверхглубокие (свыше 6000 метров).

По положению оси ствола и конфигурации буровые скважины бывают:

- вертикальные;
- горизонтальные;
- наклонные;
- неразветвлённые;
- разветвлённые;
- одиночные;
- кустовые.

Скважины бывают совершенные и несовершенные, где в свою очередь несовершенные скважины делятся на несколько видов.

Виды несовершенства скважин:

- 1) несовершенная скважина по степени вскрытия— это скважина с открытым забоем, вскрывшая пласт не на всю мощность, а только на некоторую глубину b.
- 2) несовершенная скважина по характеру вскрытия это скважина, вскрывшая пласт на всю его мощность, но сообщающаяся с пластом только через отверстия в колонне труб (перфорация), в цементном кольце или в специальном фильтре. При этом фильтрация жидкости или газа будет пространственной (трехмерной).
- 3) несовершенная скважина по степени и по характеру вскрытия. На практике чаще всего встречаются скважины несовершенные как по степени, так и по характеру вскрытия пласта.

Расчет эксплуатируемых скважин ведется при установившемся водонапорном режиме. Под водонапорным режимом понимается режим месторождений углеводородов, при котором приток полезных ископаемых, в нашем случае нефти, к забоям добывающих скважин обусловлен напором продвигающейся в залежь контурной или подошвенной воды. При этом залежь наполняется водой из поверхностных источников в количествах, равных или несколько меньших количества отбираемой жидкости и газа из пласта в процессе его разработки.

Показателем эффективности разработки залежи является коэффициент нефтеотдачи - отношение количества извлеченной из залежи нефти к общим (балансовым) запасам ее в пласте. Практикой установлено, что активный водонапорный режим наиболее эффективный. При этом режиме удается извлечь 50-70%, а иногда и больше от общего количества нефти, содержащейся в недрах до начала разработки залежи. Коэффициент нефтеотдачи при водонапорном режиме может быть в пределах 0,5-0,7 и более.

Под установившимся или стационарным режимом эксплуатации залежи понимается фильтрация флюидов при условии, если в каждой фиксированной точке пространства, принадлежащей области движения, все гидродинамические величины (давления и скорости фильтрации) не зависят от времени.

Скважина называется *гидродинамически совершенной*, если она вскрывает продуктивный пласт на всю толщину и забой скважины открытый, т. е. вся вскрытая поверхность забоя является фильтрующей.

Гидродинамически несовершенная скважина характеризуется определенным параметром — относительным вскрытием пласта $\bar{\mathbf{h}}$.

Степень гидродинамической связи между пластом и скважиной принято оценивать по величине коэффициента гидродинамического совершенства скважины δ :

$$\delta = \frac{Q_{\phi \alpha \kappa m}}{Q_{cos}},\tag{1.1}$$

где Q_{coe} – дебит совершенной скважины, соответствующий потенциальным природным условиям пласта;

 $Q_{\phi a \kappa m}$ – фактический дебит скважины.

Если коэффициент гидродинамического совершенства меньше единицы, то такая скважина называется гидродинамически несовершенной. В ПЗП и на забое такой скважины возникают дополнительные фильтрационные сопротивления из-за искривления и сгущения линий токов. Принято различать следующие виды гидродинамического несовершенства скважин:

- по <u>степени вскрытия</u> пласта, когда скважина вскрывает пласт не на всю толщину;
- по характеру вскрытия, когда приток флюида в скважину осуществляется через перфорационные отверстия в обсадной эксплуатационной колонне;
- по качеству вскрытия, если гидропроводность пористой среды в ПЗП меньше, чем остальной части дренирования пласта, что связано с загрязнением прискважинной области, формирующимся на протяжении всей

жизни скважины: при бурении, цементировании, перфорации, освоении и эксплуатации [1, с.10-11].

Так, например, в процессе бурения в прискважинной зоне образуется зона кольматации, что обусловлено проникновением дисперсной фазы промывочной жидкости в пласт, при этом проницаемость снижается в среднем на 40%, а глубина проникновения кольматанта составляет 20-40 см и более; в процессе эксплуатации добывающей скважины происходит загрязнение призабойной зоны мельчайшими частицами глины и породы, выносимыми фильтрующимися жидкостями, может происходить выпадение асфальтенов и солей [2, с.6-7].

Широкое распространение получил метод расчета дебитов несовершенных скважин, основанный на электрогидродинамической аналогии фильтрационных процессов, когда за контур питания принимается кольцевой электрод, погруженный в электролит, а степень вскрытия пласта моделируется другим электродом, погружённым на заданную глубину в центр ванны с электролитом

К обоим электродам подводится разность потенциалов, являющаяся аналогом перепада давления, а сила тока служит аналогом дебита скважины [3, с.120].

Фактический дебит гидродинамически несовершенной скважины при этом подсчитывается по формуле Дюпюи:

$$Q_{\phi a \kappa m} = \frac{2\pi k h(P_{\kappa} - P_{c})}{\mu \left(ln \frac{R_{\kappa}}{r_{c}} + C_{I} + C_{2} \right)},$$

(1.2)

где k — естественная проницаемость пласта, M^2 ;

h - эффективная толщина пласта, м; <math>h = 10м;

 P_{κ} – давление на контуре питания, Πa ;

 P_c — давление на забое скважины, Πa ;

 $\Delta P = P_{\kappa} - P_{c}$ — депрессия, под действием которой жидкость притекает к скважине, Πa ;

 μ – динамическая вязкость флюида, $\Pi a \cdot c$;

 R_{κ} – радиус контура питания, $M:R_{\kappa}=2\kappa M=2\cdot 10^3 M;$

 r_c — радиус скважины по долоту, m;

 C_1 — безразмерная величина, определяющая дополнительное фильтрационное сопротивление, обусловленное несовершенством скважины по степени вскрытия пласта;

 C_2 — безразмерная величина, определяющая дополнительное фильтрационное сопротивление, обусловленное несовершенством скважины по характеру вскрытия пласта [4, с.16].

 $C = C_1 + C_2$ — скин-эффект — безразмерная величина, которая определяет дополнительное фильтрационное сопротивление, вызывающее падение давления в призабойной зоне; помимо коэффициентов C_1 и C_2 она также может включать коэффициент, контролирующий качество вскрытия пласта, а также псевдоскин-факторы, которые определяются изменением фазового состава и скоростей фильтрации [2, с.7].

Величина C_i может быть определена по формуле А.М. Пирвердяна [4, с.17]:

$$C_{I} = \left(\frac{1}{\overline{h}} - I\right) \left(\frac{1}{1 - \frac{r_{c}}{b}} \ln \frac{b}{r_{c}} - I\right) = \left(\frac{1}{\overline{h}} - I\right) \left(\frac{1}{1 - \frac{D_{c}}{2b}} \ln \frac{2b}{D_{c}} - I\right), \tag{1.3}$$

b – глубина вскрытия пласта, m; b = 10м;

 \overline{h} — относительное вскрытие пласта:

Определяем параметры а и $\bar{\mathbf{h}}$:

$$\bar{h} = \frac{b}{h} = \frac{10M}{10M} = 1.$$
 (1.4)

 D_c – диаметр скважины, м; $D_c = 24.8c$ м = 0.248м;

$$C_1 = \left(\frac{1}{1} - 1\right) \left(\frac{1}{1 - \frac{0.248\text{M}}{2 \cdot 10\text{M}}} \ln \frac{2 \cdot 10\text{M}}{0.248\text{M}} - 1\right) = 0.$$

Величина C_2 может быть определена аналитически по формуле, приведённой в статье [1, c.11]:

$$C_2^{\text{аналит}} = 3,58 \cdot a \cdot b \cdot c - 1$$
,
где $a = 0,34 - 0,3 \cdot ln(l) + 0,17 \cdot ln^2(l)$; $b = 2,07 - 1,64 \cdot ln(n \cdot D_c) + 0,41 \cdot ln^2(n \cdot D_c)$; $c = 0,3 - 0,24 \cdot ln \alpha + 0,01 \cdot ln^2 \alpha$;

$$l = \frac{l'}{D_c};$$

l' – глубина проникновения пуль в породу, m; $l' = 100_{MM} = 0.100_{M}$;

$$l = \frac{0,100\,\text{M}}{0,248\,\text{M}} = 0,403$$
;

n — число перфорационных отверстий на один метр вскрытой толщины пласта (плотность перфорации), M^{-1} ; $n = 10 M^{-1}$;

$$n \cdot D_c = 10 M^{-1} \cdot 0,248 M = 2,48;$$

$$\alpha = \frac{d_0}{D_c};$$

 d_{o} – диаметр перфорационных отверстий (каналов), M;

$$\alpha = \frac{d_0}{D_c} = \frac{16 \cdot 10^{-3} \,\text{M}}{248 \cdot 10^{-3} \,\text{M}} = 6,45 \cdot 10^{-2}$$

$$a = 0,34 - 0,3 \cdot \ln 0,403 + 0,17 \cdot \ln^2 0,403 = 0,753;$$

$$b = 2,07 - 1,64 \cdot \ln 2,48 + 0,41 \cdot \ln^2 2,48 = 0,919;$$

$$c = 0,3 - 0,24 \cdot \ln(6,45 \cdot 10^{-2}) + 0,01 \cdot \ln^2(6,45 \cdot 10^{-2}) = 1,033;$$

$$C_2^{\text{anaxium}} = 3,58 \cdot a \cdot b \cdot c - 1 = 3,58 \cdot 0,753 \cdot 0,919 \cdot 1,033 - 1 = 1,557.$$

Значения параметров C_1 и C_2 можно также найти графически по графикам В.И. Щурова, построенным по данным исследования притока жидкости к скважине на электролитических моделях.

Рисунок 1– График для определения коэффициента C₁, учитывающего несовершенство скважины по степени вскрытия пласта

Определяем параметры а и $\bar{\mathbf{h}}$:

$$\bar{h} = \frac{b}{h} = \frac{10M}{10M} = 1.$$
 (1.1)

$$a = \frac{h}{D_c} = \frac{10M}{24.8 \cdot 10^{-2}M} = 48.387 \simeq 48.$$
 (1.2)

По графику В. И. Щурова (рис. 1) определяем величину С1, которая является безразмерной, определяющей дополнительное фильтрационное сопротивление, обусловленное несовершенством скважины по степени вскрытия пласта.

$$\mathbf{a} = \frac{\mathbf{h}}{\mathbf{D}_c} = \frac{10\mathbf{M}}{24,8\cdot 10^{-2}\mathbf{M}} = 40,323 \approx 40;$$

$$C_1^{cpa\phi}(a,\overline{h}) = C_1^{cpa\phi}(a_1,\overline{h}) + \frac{a-a_I}{a_2-a_I} \Big[C_1^{cpa\phi}(a_2,\overline{h}) - C_1^{cpa\phi}(a_1,\overline{h}) \Big];$$

$$C_1^{rpa\phi}(a_1,\overline{h}) = C_1^{rpa\phi}(40;1) = 0 \text{ [4, рисунок 11]};$$

$$C_1^{rpa\phi}(a_2,\overline{h}) = C_1^{rpa\phi}(80;1) = 0 \text{ [4, рисунок 11]};$$

$$C_1^{rpa\phi}(0;0) = 0 + \frac{40-40}{80-40} [0-0] = 0;$$

$$C_2^{cpa\phi}(l,\alpha_1,n\cdot D_c) = C_2^{cpa\phi}(l_1,\alpha_1,n\cdot D_c) + \frac{l-l_I}{l_2-l_I} \Big[C_2^{cpa\phi}(l_2,\alpha_1,n\cdot D_c) - C_2^{cpa\phi}(l_1,\alpha_1,n\cdot D_c) \Big];$$

$$C_2^{cpa\phi}(l,\alpha_2,n\cdot D_c) = C_2^{cpa\phi}(l_1,\alpha_2,n\cdot D_c) + \frac{l-l_I}{l_2-l_I} \Big[C_2^{cpa\phi}(l_2,\alpha_2,n\cdot D_c) - C_2^{cpa\phi}(l_1,\alpha_2,n\cdot D_c) \Big];$$

$$C_2^{cpa\phi}(l,\alpha_1,n\cdot D_c) = C_2^{cpa\phi}(l,\alpha_1,n\cdot D_c) + \frac{\alpha-\alpha_I}{\alpha_2-\alpha_I} \Big[C_2^{cpa\phi}(l,\alpha_2,n\cdot D_c) - C_2^{cpa\phi}(l,\alpha_1,n\cdot D_c) \Big];$$

$$C_2^{cpa\phi}(l_1,\alpha_1,n\cdot D_c) = C_2^{cpa\phi}(0,25;0,060;2,5) = 3,48 \text{ [4, рисунок 13, кривая №4]};$$

$$C_2^{cpa\phi}(l_1,\alpha_1,n\cdot D_c) = C_2^{cpa\phi}(0,5;0,060;2,5) = 1,575 \text{ [4, рисунок 14, кривая №4]};$$

$$C_2^{cpa\phi}(l_1,\alpha_2,n\cdot D_c) = C_2^{cpa\phi}(0,25;0,060;2,5) = 3,06 \text{ [4, рисунок 13, кривая №5]};$$

$$C_2^{cpa\phi}(l_1,\alpha_2,n\cdot D_c) = C_2^{cpa\phi}(0,25;0,070;2,5) = 3,06 \text{ [4, рисунок 14, кривая №5]};$$

$$C_2^{cpa\phi}(l_2,\alpha_2,n\cdot D_c) = C_2^{cpa\phi}(0,5;0,070;2,5) = 1,32 \text{ [4, рисунок 14, кривая №5]};$$

$$C_2^{cpa\phi}(0,403;0,070;2,5) = 3,06 + \frac{0,403}{0,5} - 0,25} \frac{1}{0,5} \text{ [1,32 - 3,06]} = 1,994;$$

$$C_2^{cpa\phi}(0,403;0,070;2,5) = \frac{C_2^{cpa\phi}(0,403;0,060;2,5) + C_2^{cpa\phi}(0,403;0,070;2,5)}{0,5} = \frac{2,312+1,994}{2} = 2,153$$

Учитывая, что объёмный дебит совершенной скважины определяется по формуле:

$$Q_{cos} = \frac{2\pi k h(P_{\kappa} - P_{c})}{\mu \ln \frac{R_{\kappa}}{r_{c}}},$$
(1.6)

а несовершенной по формуле (2), то для расчёта коэффициента совершенства скважины на основании формулы (1) получим следующее выражение:

$$\delta = \frac{Q_{\phi a \kappa m}}{Q_{cos}} = \frac{ln \frac{R_{\kappa}}{r_{c}}}{ln \frac{R_{\kappa}}{r_{c}} + C_{1} + C_{2}} = \frac{ln \frac{2R_{\kappa}}{D_{c}}}{ln \frac{2R_{\kappa}}{D_{c}} + C_{1} + C_{2}};$$
(1.7)

$$\begin{split} \delta^{\text{аналит}} &= \frac{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}}}{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}} + \textit{C}_{1} + \textit{C}_{2}^{\text{аналит}}} = \frac{\ln \frac{2 \cdot 2 \cdot 10^{3} \text{M}}{0.248 \text{M}}}{\ln \frac{2 \cdot 2 \cdot 10^{3} \text{M}}{0.248 \text{M}} + 0 + 1,557} = 0,862; \\ \delta^{\text{гра}} &= \frac{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}}}{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}} + \textit{C}_{1}^{\text{гра}} + \textit{C}_{2}^{\text{гра}}} \approx \frac{\ln \frac{2 \cdot 2 \cdot 10^{3} \text{M}}{0.248 \text{M}}}{\ln \frac{2 \cdot 2 \cdot 10^{3} \text{M}}{0.248 \text{M}} + 0 + 2,725} = 0,78; \\ \delta^{\textit{аналит}} &\approx \delta^{\textit{гра}} \end{split}$$

1.2 Расчёт дебита одиночной скважины

По условию давление на контуре питания p_{κ} постоянно и скважины эксплуатируются при постоянном забойном давлении p_{c} .

Дебит несовершенной скважины удобно сравнивать с дебитом совершенной скважины. Коэффициентом совершенства скважины δ называется отношение дебита несовершенной скважины к дебиту совершенной скважины:

$$\delta = \frac{Q}{Q_{\text{cob}}},\tag{2.1}$$

где Q – дебит несовершенной скважины;

 Q_{cob} – дебит совершенной скважины в тех же условиях;

По нижеприведенной формуле можно определить дебит совершенной скважины, эксцентрично расположенной в круговом пласте:

$$Q_{cob} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{K} - p_{C})}{\mu_{H} \cdot \ln \left[\frac{R_{K}}{r_{C}} \cdot \left(1 - \frac{r^{2}}{R_{K}^{2}} \right) \right]},$$
(2.2)

где r — расстояние от центра скважины до центра кругового пласта (эксцентриситет).

Откуда можем определить дебит одиночной скважины несовершенной по характеру вскрытия по формуле (2.3):

$$Q = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{\kappa} - p_{c}) \cdot \delta}{\mu_{H} \cdot \ln \left[\frac{R_{\kappa}}{r_{c}} \cdot \left(1 - \frac{r^{2}}{R_{\kappa}^{2}} \right) \right]},$$
 (2.3)

На рисунке 3 представлена скважина несовершенная по характеру вскрытия пласта.

Рисунок 3 – Скважина несовершенная по характеру вскрытия

1) Определяем дебит одиночной скважины несовершенной по характеру вскрытия в центре кругового пласта (r=0) по формуле (2.4):

$$Q_{1} = \frac{2 \cdot \pi \cdot k \cdot h}{\mu_{H}} \cdot \frac{(p_{K} - p_{C}) \cdot \delta}{\ln \frac{R_{K}}{r_{C}}},$$
(2.4)

где необходимо учесть, что k=0,2 Д=2,04·10⁻¹³ м², а r_c =0,5· D_c = 12,4 см.

$$Q_1 = \frac{2 \cdot \pi \cdot 2,04 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m}}{10 \cdot 10^{-3} \text{\Pia} \cdot c} \cdot \frac{4 \cdot 10^6 \text{\Pia} \cdot 0,862}{\ln \frac{2 \cdot 10^3 \text{m}}{0,124 \text{m}}} \simeq 1,323 \cdot 10^{-3} \frac{\text{m}^3}{c}.$$

2) Определяем дебит одиночной скважины Q на расстоянии $0,1\cdot R_k$ от ее центра:

$$Q_{2} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{K} - p_{C}) \cdot \delta}{\mu_{H} \cdot \ln \left[\frac{R_{K}}{r_{C}} \cdot \left(1 - \frac{r^{2}}{R_{F}^{2}}\right)\right]} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{K} - p_{C}) \cdot \delta}{\mu_{H} \cdot \ln \left[\frac{R_{K}}{r_{C}} \cdot \left(1 - 0, 1^{2}\right)\right]},$$
 (2.5)

$$Q_2 = \frac{2 \cdot \pi \cdot 2,04 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \text{\Pia} \cdot 0,862}{10 \cdot 10^{-3} \text{\Pia} \cdot \text{c} \cdot \ln \left[\frac{2 \cdot 10^3 \text{m}}{0,124 \text{m}} \cdot \left(1 - 0,1^2\right) \right]} \simeq 1,324 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

3) Определяем дебит одиночной скважины на расстоянии $0.5 \cdot R_k$ от ее центра:

$$Q_{3} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{K} - p_{C}) \cdot \delta}{\mu_{H} \cdot \ln \left[\frac{R_{K}}{r_{C}} \cdot \left(1 - \frac{r^{2}}{R_{K}^{2}}\right)\right]} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{K} - p_{C}) \cdot \delta}{\mu_{H} \cdot \ln \left[\frac{R_{K}}{r_{C}} \cdot \left(1 - 0.5^{2}\right)\right]},$$
(2.6)

$$Q_3 = \frac{2 \cdot \pi \cdot 2,\!04 \cdot 10^{-13} \, \text{m}^2 \cdot 10 \, \text{m} \cdot 4 \cdot 10^6 \, \text{\Pia} \cdot 0,\!862}{10 \cdot 10^{-3} \, \text{\Pia} \cdot c \cdot \ln \cdot \left[\frac{2 \cdot 10^3 \, \text{m}}{0,\!124 \, \text{m}} \cdot \left(1-0,\!5^2\right) \right]} \simeq 1,\!363 \cdot 10^{-3} \, \frac{\text{m}^3}{c}.$$

4) Определяем дебит одиночной скважины на расстоянии $0,1 \cdot R_k$ от ее контура:

$$Q_{4} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{\kappa} - p_{c}) \cdot \delta}{\mu_{H} \cdot \ln \left[\frac{R_{\kappa}}{r_{c}} \cdot \left(1 - \frac{r^{2}}{R_{\kappa}^{2}} \right) \right]} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{\kappa} - p_{c}) \cdot \delta}{\mu_{H} \cdot \ln \left[\frac{R_{\kappa}}{r_{c}} \cdot \left(1 - 0.9^{2} \right) \right]}, \tag{2.7}$$

$$Q_4 = \frac{2 \cdot \pi \cdot 2,04 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \Pi a \cdot 0,862}{10 \cdot 10^{-3} \Pi a \cdot c \cdot \ln \cdot \left[\frac{2 \cdot 10^3 \text{m}}{0,124 \text{m}} \cdot \left(1 - 0,9^2\right) \right]} \simeq 1,597 \cdot 10^{-3} \frac{\text{m}^3}{c}.$$

На рисунке 4 представлена схема кругового горизонтального цилиндрического пласта мощностью h и радиусом питания R_{κ} при плоскорадиальной фильтрации.

Рисунок 4 — Расположения скважин в круговом пласте в соответствии с указанными вариантами

Рисунок 5 – График зависимости дебита скважины от ее расположения в пласте

По полученным данным построили график (рис. 5) зависимости дебита скважины от ее расположения в пласте, где по оси абсцисс отложили значения расстояний от оси скважины, а по оси ординат — значения дебита.

С поправкой на гидродинамическое несовершенство скважины рассчитаем её фактический дебит по формуле (1):

$$\begin{split} Q_0^{\text{факт}} &= \delta^{\text{аналит}} Q_0^{\text{сов}} = 0,862 \cdot 1,323 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}} = 1,14 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}}; \\ Q_1^{\text{факт}} &= \delta^{\text{аналит}} Q_1^{\text{сов}} = 0,862 \cdot 1,324 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}} = 1,141 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}}; \\ Q_2^{\text{факт}} &= \delta^{\text{аналит}} Q_2^{\text{сов}} = 0,862 \cdot 1,363 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}} = 1,175 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}}; \\ Q_3^{\text{факт}} &= \delta^{\text{аналит}} Q_3^{\text{сов}} = 0,862 \cdot 1,597 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}} = 1,376 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}. \end{split}$$

1.3 Расчет коэффициента продуктивности скважины

Для нефтяной скважины график зависимости перепада давлений (депрессии) $\Delta p = p_{\kappa} - p_{c}$ от дебита скважины при притоке к скважине в условиях справедливости закона Дарси, определяемый уравнением $Q=K\cdot\Delta p$, называют *индикаторной диаграммой*. Количество жидкости, получаемое из скважины за единицу времени при единичной депрессии, называется коэффициентом продуктивности, то есть коэффициент продуктивности есть отношение дебита скважины к депрессии.

Коэффициент продуктивности численно равен дебиту при депрессии, равной единице.

Коэффициент продуктивности определяют по формуле (2.8):

$$K = \frac{Q}{\Delta p} = \frac{2 \cdot \pi \cdot k \cdot h}{\mu_{H} \cdot \ln \frac{R_{K}}{r_{c}}} = \text{const,}$$
 (2.8)

Определяем коэффициенты продуктивности скважины при вышеуказанных вариантах расположения скважины в круговом пласте. При плоскорадиальной фильтрации жидкости к скважине в условиях справедливости закона Дарси индикаторная линия представляет собой прямую.

1) Определяем коэффициент продуктивности скважины в центре кругового пласта (r_1 =0):

$$K_1 = \frac{Q_0^{\phi a \kappa T}}{\Delta p} = \frac{1,14 \cdot 10^{-3} \frac{M^3}{C}}{4 \cdot 10^6 \Pi a} \simeq 2,85 \cdot 10^{-10} \frac{M^3}{\Pi a \cdot c}.$$

2) Определяем коэффициент продуктивности скважины на расстоянии r_2 =200м от ее центра:

$$K_2 = \frac{Q_1^{\phi a \kappa T}}{\Delta p} = \frac{1,141 \cdot 10^{-3} \frac{M^3}{C}}{4 \cdot 10^6 \Pi a} \simeq 2,852 \cdot 10^{-10} \frac{M^3}{\Pi a \cdot c}.$$

3) Определяем коэффициент продуктивности скважины на расстоянии $r_3 = 1000 \text{м}$ от ее центра:

$$K_3 = \frac{Q_2^{\phi a \kappa T}}{\Delta p} = \frac{1,175 \cdot 10^{-3} \frac{M^3}{c}}{4 \cdot 10^6 \Pi a} \simeq 2,937 \cdot 10^{-10} \frac{M^3}{\Pi a \cdot c}.$$

4) Определяем коэффициент продуктивности скважины на расстоянии r_4 =1800м от контура нефтеносности:

$$K_4 = \frac{Q_3^{\phi a \kappa T}}{\Delta p} = \frac{1,376 \cdot 10^{-3} \frac{M^3}{c}}{4 \cdot 10^6 \Pi a} \simeq 3,439 \cdot 10^{-10} \frac{M^3}{\Pi a \cdot c}.$$

По полученным значениям коэффициента продуктивности скважины в круговом пласте строим индикаторные диаграммы.

Рисунок 6 – Индикаторные линии несовершенных скважин при различных вариантах расположения их в пласте

Как видно, индикаторная диаграмма (рис. 6) имеет вид прямой линии, выходящей из начала координат, следовательно фильтрация происходит по линейному закону.

1.4 Оценка применимости закона Дарси

В результате исследования пределов применимости закона Дарси было установлено, что можно выделить *верхнюю и нижнюю границы* применимости закона Дарси и соответствующие им две основные группы причин.

Верхняя граница определяется группой причин, связанных с проявлением инерционных сил при достаточно высоких скоростях фильтрации.

Нижняя граница определяется проявлением неньютоновских реологических свойств жидкости, ее взаимодействием с твердым скелетом пористой среды при достаточно малых скоростях фильтрации.

В нашем случае рассмотрим верхнюю границу из-за ее выше указанных причин, которые приводят к нелинейным законам фильтрации.

Верхнюю границу применимости закона Дарси связывают обычно с некоторым критическим (предельным) значением Re_{кр} числа Рейнольдса:

$$Re = \frac{w \cdot d}{v}, \tag{2.9}$$

где d- некоторый характерный линейный размер пористой среды (размер каналов, пор или частиц в зависимости от используемой модели пористой среды);

 ν - кинематический коэффициент вязкости флюида ($\nu = \mu/\rho$);

w- скорость фильтрации.

Итак, при значениях числа Рейнольдса $Re > Re_{\kappa p}$ линейный закон Дарси перестает быть справедливым. Это связано с тем, что закон Дарси нарушается вследствие того, что силы инерции, возникающие в жидкости за счет извилистости каналов и изменения площади их поперечных сечений, становятся при $w > w_{\kappa p}$ соизмеримыми с силами трения. Однако нарушение линейного закона фильтрации еще не означает перехода от ламинарного движения к турбулентному. Скорость фильтрации, при которой нарушается закон Дарси, называется критической скоростью фильтрации ($w_{\kappa p}$).

Оценку линейного закона Дарси проводим по формулам В. Н. Щелкачева и М. Д. Миллионщикова.

По В. Н. Щелкачеву число Рейнольдса определяется по формуле (2.10):

$$Re = \frac{10 \cdot w \cdot \sqrt{k} \cdot \rho_{H}}{m^{2,3} \cdot \mu_{H}}, \qquad (2.10)$$

а критические значения лежат в интервале $1 \le \text{Re}_{\kappa p} \le 12$.

По М. Д. Миллионщикову число Рейнольдса определяется по формуле (2.11):

$$Re = \frac{\upsilon \cdot \sqrt{\frac{k}{m}} \cdot \rho}{\mu_{H}} = \frac{w \cdot \sqrt{k} \cdot \rho_{H}}{m^{1,5} \cdot \mu_{H}},$$
 (2.11)

где υ- средняя скорость движения флюида.

Критическое число Ренольдса по М. Д. Миллионщикову находятся в пределах $Re_{\kappa p}$ =0,022...0,29.

Если вычисленное по одной из формул (2.10), (2.11) значение числа Re оказывается меньше нижнего критического значения $Re_{\kappa p}$, то закон Дарси справедлив, если Re больше верхнего значения $Re_{\kappa p}$, то закон Дарси заведомо нарушен.

Скорость фильтрации и средняя скорость движения связаны соотношением (2.12):

$$v = \frac{w}{m}; \tag{2.12}$$

Скоростью фильтрации w называется отношение объемного расхода жидкости к площади поперечного сечения пласта, нормального к направлению движения жидкости (2.13):

$$w = \frac{Q_1}{\omega},\tag{2.13}$$

где ω- площадь фильтрации флюида.

Площадь фильтрации определяем по формуле (2.14):

$$\omega = \frac{\pi \cdot d_0^2 \cdot b \cdot n}{4} = \frac{\pi \cdot (16 \cdot 10^{-3} \text{m})^2 \cdot 12 \text{m} \cdot 10 \frac{\text{otb}}{\text{m}}}{4} \simeq 0,024 \text{m}^2, (2.14)$$

Следовательно

$$w = \frac{1,376 \cdot 10^{-3} \frac{M^3}{C}}{0,024M^2} \simeq 0.068 \frac{M}{C}$$

Определяем число Рейнольдса по В. Н. Щелкачеву:

$$\text{Re} = \frac{10 \cdot 1,376 \cdot 10^{-3} \frac{\text{M}}{\text{c}} \cdot \sqrt{0,2 \cdot 1,02 \cdot 10^{-12} \text{m}^2} \cdot 850 \frac{\text{K}\Gamma}{\text{m}^3}}{0,18^{2,3} \cdot 10 \cdot 10^{-3} \Pi \text{a} \cdot \text{c}} \simeq 3,39 < 12.$$

Определяем число Рейнольдса по М. Д. Миллионщикову:

$$Re = \frac{0,068 \cdot 10^{-4} \frac{M}{c} \cdot \sqrt{0,2 \cdot 1,02 \cdot 10^{-12} M^2} \cdot 850 \frac{K\Gamma}{M^3}}{0,18^{1,5} \cdot 10 \cdot 10^{-3} \Pi a \cdot c} \simeq 0,086 < 0,29.$$

Результаты расчета показали, что тип течения ламинарный, закон Дарси выполняется.

1.5 Расчет давления на различных расстояниях от скважины

При плоскорадиальном движении векторы скорости фильтрации направлены по радиусам к оси скважины, поэтому давление и скорость фильтрации зависят только от одной координаты г. При этом во всех горизонтальных плоскостях поле скоростей и давлений будет одинаковым.

Поток будет также плоскорадиальным при притоке к скважине радиуса r_c , расположенной в центре ограниченного горизонтального цилиндрического пласта мощностью h и радиусом R_κ .

Закон распределения давления при плоскорадиальной фильтрации определяется формул (2.15):

$$p(r) = p_c + \frac{p_\kappa - p_c}{\ln \frac{R_\kappa}{r_c}} \cdot \ln \frac{r}{r_c}; \qquad (2.15)$$

Необходимо учитывать данное условие $r_c \leqslant r \leqslant R_{\kappa}$.

Определяем давления на различных расстояниях от скважины, расположенной в центре пласта:

1) Определяем давление на расстоянии r=0,5 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ M}}{0.124 \text{ M}}} \cdot \ln \frac{0.5 \text{ M}}{0.124 \text{ M}} \simeq 8,576 \text{ M}\Pi a.$$

2) Определяем давление на расстоянии r=1 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ M}}{0.124 \text{ M}}} \cdot \ln \frac{1\text{ M}}{0.124 \text{ M}} \simeq 8,862 \text{ МПа}.$$

3) Определяем давление на расстоянии r=2 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ M}}{0.124 \text{ M}}} \cdot \ln \frac{2\text{ M}}{0.124 \text{ M}} \simeq 9,148 \text{ МПа}.$$

4) Определяем давление на расстоянии r=5 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{м}}{0,124 \text{м}}} \cdot \ln \frac{5 \text{м}}{0,124 \text{м}} \simeq 9,526 \text{ МПа}.$$

5) Определяем давление на расстоянии r=10 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ M}}{0.124 \text{ M}}} \cdot \ln \frac{10 \text{ M}}{0.124 \text{ M}} \simeq 9,813 \text{ МПа}.$$

6) Определяем давление на расстоянии r=20 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ M}}{0.124 \text{ M}}} \cdot \ln \frac{20 \text{ M}}{0.124 \text{ M}} \simeq 10,01 \text{ МПа}.$$

7) Определяем давление на расстоянии r=50 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ m}}{0,124 \text{ m}}} \cdot \ln \frac{50 \text{ m}}{0,124 \text{ m}} \simeq 10,48 \text{ M}\Pi a.$$

8) Определяем давление на расстоянии r=100 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ m}}{0,124 \text{ m}}} \cdot \ln \frac{100 \text{ m}}{0,124 \text{ m}} \simeq 10,76 \text{ M}\Pi a.$$

9) Определяем давление на расстоянии r=200 м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{ M}}{0.124 \text{ M}}} \cdot \ln \frac{200 \text{ M}}{0,124 \text{ M}} \simeq 11,05 \text{ МПа}.$$

10) Определяем давление на расстоянии r=1000м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{м}}{0,124 \text{м}}} \cdot \ln \frac{1000 \text{м}}{0,124 \text{м}} \simeq 11,71 \text{ МПа}.$$

11) Определяем давление на расстоянии r=1800м от оси скважины:

$$p = 8 \cdot M\Pi a + \frac{4M\Pi a}{\ln \frac{2 \cdot 10^3 \text{м}}{0.124 \text{м}}} \cdot \ln \frac{1800 \text{м}}{0.124 \text{м}} \simeq 11,96 \text{ МПа}.$$

1.6 Расчет условного времени отбора нефти

Для неоднородного коллектора учитывается средневзвешенное пластовое давление, определяемое взвешиванием по его объему. Вычислить средневзвешенное пластовое давление можно, если известна геометрия возмущенной части пласта и конкретное распределение давления в ней.

Средневзвешенное по объему порового пространства пластовое давление определяем по формуле (2.16):

$$\tilde{p} = p_{\kappa} - \frac{p_{\kappa} - p_{c}}{2 \cdot \ln \frac{R_{\kappa}}{r_{c}}},$$
(2.16)

$$\tilde{p} = 12 \text{ M}\Pi a - \frac{4M\Pi a}{2 \cdot \ln \frac{2 \cdot 10^3 \text{ M}}{0,124 \text{ M}}} \simeq 11,8 \text{ M}\Pi a.$$

Линия p=p(r) называется депрессионной кривой давления. Характерно, что при приближении к скважине градиенты давления и скорости фильтрации резко возрастают.

Рисунок 7 – График изменения давления на различных расстояниях от оси скважины при плоскорадиальной фильтрации

Время отбора всей жидкости из кругового пласта радиусом R_{κ} определяется по формуле (2.17):

$$t = \frac{m \cdot \mu_{_{\rm H}} \cdot \ln\left(\frac{R_{_{\rm K}}}{r_{_{\rm C}}}\right) \cdot \left(R_{_{\rm K}}^{^{2}} - r_{_{\rm C}}^{^{2}}\right)}{2 \cdot k \cdot (p_{_{\rm K}} - p_{_{\rm C}})} = \frac{\pi \cdot m \cdot h \cdot \left(R_{_{\rm K}}^{^{2}} - r_{_{\rm C}}^{^{2}}\right)}{Q_{1}},$$

$$t = \frac{\pi \cdot 0.18 \cdot 10 \text{ m} \cdot (2 \cdot 10^{3} \text{m}^{2} - 0.124 \text{ m}^{2})}{3600 \cdot 24 \cdot 365 \cdot 2.117 \cdot 10^{-3} \frac{\text{m}^{3}}{\text{c}}} \simeq 1.984 \cdot 10^{10} \text{c}.$$
(2.17)

1.7 Расчет изменения дебита скважины, расположенной в центре пласта

На рисунке 8 представлена схема вытеснения нефти водой при плоскорадиальной фильтрации флюида.

Рисунок 8 – Схема пласта при плоскорадиальном вытеснении нефти водой

Пояснение к рисунку 8:

 $p_{\scriptscriptstyle K}\!\!=\!\!const;\,p_c\!\!=\!\!const;\,\mu_{\scriptscriptstyle H}\!>\mu_{\scriptscriptstyle B}$

 R_0 – начальное положение контура нефтеносности (t=0);

 $r_{\scriptscriptstyle H}$ – текущее положение контура нефтеносности (t);

 $p_{\scriptscriptstyle \Gamma}$ – давление на границе раздела жидкостей.

При плоскорадиальном вытеснении нефти водой дебит гидродинамически совершенной и несовершенной скважин определяется по формулам (2.18) и (2.19) соответственно:

$$Q_{cob} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{K} - p_{C})}{\mu_{B} \cdot \ln \frac{R_{K}}{r} + \mu_{H} \cdot \ln \frac{r}{r_{C}}},$$
(2.18)

$$Q = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{K} - p_{C})}{\mu_{B} \cdot \ln \frac{R_{K}}{r} + \mu_{H} \cdot \ln \frac{r}{r_{C}}} \cdot \delta,$$
(2.19)

где rн - радиус границы раздела нефть-вода в момент времени t. Таким образом при постоянной депрессии дебит скважины с темпом времени увеличивается.

Закон распределения давления вдоль радиуса P(r) выражается следующими соотношениями:

- в водоносной области:

$$p_{B} = p_{K} - \frac{\mu_{B} \cdot (p_{K} - p_{C})}{\mu_{B} \cdot \ln \frac{R_{K}}{r_{H}} + \mu_{H} \cdot \ln \frac{r_{H}}{r_{C}}} \cdot \ln \frac{R_{K}}{r},$$
(2.20)

- в нефтяной области

$$p_{H} = p_{C} + \frac{\mu_{H} \cdot (p_{K} - p_{C})}{\mu_{B} \cdot \ln \frac{R_{K}}{r_{H}} + \mu_{H} \cdot \ln \frac{r_{H}}{r_{C}}} \cdot \ln \frac{r}{r_{C}},$$
(2.21)

Определяем изменение распределения давления одиночной скважины, расположенной в центре кругового пласта, при стягивании контура нефтеносности под напором контурных вод.

Дебит во время стягивания контура нефтеносности:

1) Положение контура нефтеносности $r_{\scriptscriptstyle H} = R_{\scriptscriptstyle K}\!\!=\!\!2000$ м

$$Q = \frac{2 \cdot \pi \cdot 8,16 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \Pi \text{a} \cdot 0,862}{1,2 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln 1 + 4 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \frac{2000 \text{m}}{0,124 \cdot \text{m}}} \simeq 1,323 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

2) Положение контура нефтеносности $r_{\rm H} = 0.75 \cdot R_{\rm K} = 1500 {\rm M}$

$$Q = \frac{2 \cdot \pi \cdot 2,04 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \Pi \text{a} \cdot 0,862}{1,2 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \frac{20 \text{m}}{15 \text{m}} + 4 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \frac{1500 \text{m}}{0,124 \cdot \text{m}}} \simeq 1,351 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

3) Положение контура нефтеносности $r_{\scriptscriptstyle H} = 0.5 \cdot R_{\scriptscriptstyle K} = 1000 {\rm m}$

$$Q = \frac{2 \cdot \pi \cdot 2,04 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \Pi \text{a} \cdot 0,864}{1,2 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln 2 + 4 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \frac{1000 \text{m}}{0.124 \cdot \text{m}}} \simeq 1,393 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

4) Положение контура нефтеносности $r_{\rm H} = 0.25 \cdot R_{\rm K} = 500$ м

$$Q = \frac{2 \cdot \pi \cdot 2,04 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \Pi \text{a} \cdot 0,864}{1,2 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln 4 + 4 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \frac{500 \text{m}}{0,124 \cdot \text{m}}} \simeq 1,47 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

5) Положение контура нефтеносности $r_{\scriptscriptstyle H} = 0,1 \cdot R_{\scriptscriptstyle K} = \! 200$ м

$$Q = \frac{2 \cdot \pi \cdot 2,04 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \Pi \text{a} \cdot 0,864}{1,2 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln 10 + 4 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \frac{200 \text{m}}{0,124 \cdot \text{m}}} \simeq 1,587 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

Рисунок 9 – График зависимости дебита скважины от положения контура нефтеносности

Определить изменение распределения давления для контура нефтеносности $r_H = 0, 1 \cdot R_K$:

1) На расстоянии r = 0,5 м

$$p_{_{\rm H}} = 8 \; {\rm M\Pi a} + \frac{10 {\rm m\Pi a} \cdot c \cdot 4 \; {\rm M\Pi a}}{1,2 {\rm m\Pi a} \cdot c \cdot \ln 10 + 4 {\rm m\Pi a} \cdot c \cdot \ln \frac{200 \; {\rm m}}{0.124 {\rm m}}} \cdot \ln \frac{0,5 {\rm m}}{0,124 {\rm m}} \simeq 8,73 \; {\rm M\Pi a}.$$

2) На расстоянии r = 5 м

$$p_{_{\rm H}} = 8~\text{M}\Pi a + \frac{10 \text{m}\Pi a \cdot c \cdot 4~\text{M}\Pi a}{1,2 \text{m}\Pi a \cdot c \cdot \ln 10 + 4 \text{m}\Pi a \cdot c \cdot \ln \frac{200~\text{m}}{0.124 \text{m}}} \cdot \ln \frac{5 \text{m}}{0,124 \text{m}} \simeq 9,93~\text{M}\Pi a.$$

3) На расстоянии r = 10 м

$$p_{_{\rm H}} = 8 \; \text{M}\Pi \text{a} \; + \; \frac{10 \text{m}\Pi \text{a} \cdot \text{c} \cdot 4 \; \text{M}\Pi \text{a}}{1,2\Pi \text{a} \cdot \text{c} \cdot \ln 10 \; + \; 4\Pi \text{a} \cdot \text{c} \cdot \ln \frac{200 \; \text{m}}{0,124 \text{m}}} \cdot \ln \frac{10 \text{m}}{0,124 \text{m}} \simeq 10,\!29 \; \text{M}\Pi \text{a}.$$

4) На расстоянии r = 50 м

$$p_{_{\rm H}} = 8 \ \text{M}\Pi a + \frac{4 \text{M}\Pi a \cdot c \cdot 4 \ \text{M}\Pi a}{1,2 \Pi a \cdot c \cdot \ln 10 + 4 \Pi a \cdot c \cdot \ln \frac{200 \ \text{M}}{0.124 \text{M}}} \cdot \ln \frac{50 \text{M}}{0,124 \text{M}} \simeq 11,13 \ \text{M}\Pi a.$$

5) На расстоянии r = 100 м

$$p_{_{\rm H}} = 8 \ \text{M}\Pi a + \frac{4 \text{M}\Pi a \cdot c \cdot 4 \ \text{M}\Pi a}{1,2 \Pi a \cdot c \cdot \ln 10 + 4 \Pi a \cdot c \cdot \ln \frac{200 \ \text{M}}{0,124 \text{M}}} \cdot \ln \frac{100 \text{M}}{0,124 \text{M}} \simeq 11,49 \ \text{M}\Pi a.$$

6) На расстоянии r = 500 м

$$p_{_{\rm H}} = 8 \ \text{M}\Pi a + \frac{4 \text{M}\Pi a \cdot c \cdot 4 \ \text{M}\Pi a}{1,2 \Pi a \cdot c \cdot \ln 10 + 4 \Pi a \cdot c \cdot \ln \frac{200 \ \text{m}}{0,124 \text{m}}} \cdot \ln \frac{500 \text{m}}{0,124 \text{m}} \simeq 11,91 \ \text{M}\Pi a.$$

7) На расстоянии r = 750 м

$$p_{_{\rm H}} = 8 \ \text{M\Pi a} + \frac{4 \text{M} \Pi a \cdot c \cdot 4 \ \text{M} \Pi a}{1,2 \Pi a \cdot c \cdot \ln 10 + 4 \Pi a \cdot c \cdot \ln \frac{200 \ \text{M}}{0.124 \text{M}}} \cdot \ln \frac{750 \text{M}}{0,124 \text{M}} \simeq 11,94 \ \text{M} \Pi a.$$

8) На расстоянии r = 1000 м

$$p_{_{\rm H}} = 8~{\rm M\Pi a} + \frac{4{\rm M\Pi a} \cdot c \cdot 4~{\rm M\Pi a}}{1,2{\rm \Pi a} \cdot c \cdot \ln 10 + 4{\rm \Pi a} \cdot c \cdot \ln \frac{200~{\rm m}}{0.124{\rm m}}} \cdot \ln \frac{1000{\rm m}}{0,124{\rm m}} \simeq 11,96~{\rm M\Pi a}.$$

9) Ha расстоянии r = 1500 м

$$p_{_{\rm H}} = 8 \ \text{M}\Pi a + \frac{4 \text{M}\Pi a \cdot c \cdot 4 \ \text{M}\Pi a}{1,2 \Pi a \cdot c \cdot \ln 10 + 4 \Pi a \cdot c \cdot \ln \frac{200 \ \text{M}}{0,124 \text{M}}} \cdot \ln \frac{1500 \text{M}}{0,124 \text{M}} \simeq 11,98 \ \text{M}\Pi a.$$

10) Ha расстоянии r = 2000 м

$$p_{_{\rm H}} = 8 \ {\rm M\Pi a} + \frac{4 {\rm M\Pi a} \cdot c \cdot 4 \ {\rm M\Pi a}}{1,2 \Pi a \cdot c \cdot \ln 10 + 4 \Pi a \cdot c \cdot \ln \frac{200 \ {\rm m}}{0.124 {\rm m}}} \cdot \ln \frac{2000 {\rm m}}{0,124 {\rm m}} \simeq 12,00 \ {\rm M\Pi a}.$$

В таблицу 1 занесены значения изменения давления в МПа для других положений контура нефтеносности.

Таблица 1 – Распределение давления

Текущее	Текущее положение				
значение	контура нефтеносности, м				
радиус-вектора,	1500	1000	500	200	
M					
0,5	8,591	8,614	8,659	8,64	
5	9,567	9,629	9,746	9,696	
10	9,861	9,934	10,07	10,1	
50	10,54	10,64	10,83	10,33	
100	10,84	10,95	11,16	10,7	
500	11,52	11,66	11,92	10,91	
750	11,69	11,84	11,94	11,02	
1000	11,81	11,96	11,96	11,12	
1500	11,99	11,98	11,98	11,19	
2000	12,00	12,00	12,00	11,29	

Примечание:

Черный цвет: распределение давления в нефтяной части Синий цвет: распределение давления в водоносной части

Строим график распределения давления одиночной скважины, расположенной в центре кругового пласта, при стягивании контура нефтеносности под напором контурных вод.

Рисунок 10 – График зависимости давления от расположения контура нефтеносности

Время вытеснения всей нефти из кругового пласта рассчитаем по формуле (2.22):

$$T = \frac{m \cdot (\mu_{\text{H}} \cdot R_{\text{K}}^2 \cdot \ln \frac{R_{\text{K}}}{r_{\text{C}}} - (\mu_{\text{H}} - \mu_{\text{B}}) \cdot \frac{R_{\text{K}}}{2})}{2 \cdot k \cdot (P_{\text{K}} - P_{\text{C}})},$$
(2.22)

$$T = \frac{0.18 \cdot (4 \cdot 10^{-3} \Pi a \cdot c \cdot 4 \cdot 10^{6} \text{m} \cdot \ln \frac{2 \cdot 10^{3} \text{m}}{0.124 \text{m}} - 8.8 \cdot 10^{-3} \Pi a \cdot c \cdot \frac{2 \cdot 10^{3} \text{m}}{2})}{2 \cdot 2.04 \cdot 10^{-13} \cdot 4 \cdot 10^{6}} = 1.984 \cdot 10^{10} c.$$

1.8 Расчет дебита скважины (пласт разрабатывается пятью скважинами)

Для определения изменения дебита скважины, расположенной в центре пласта, если на расстоянии 200 м расположить такую же скважину с тем же забойным давлением, необходимо использовать принцип суперпозиции.

Метод суперпозиции - весьма эффективный математический прием, который позволяет применять решения, полученные для случая работы скважины с постоянным дебитом, к широкому кругу задач о работе скважины с переменным дебитом. Кроме того, принцип суперпозиции можно использовать можно как в случае бесконечного пласта или же в случае, когда скважины работают в пласте, ограниченном контуром питания той или иной формы, или непроницаемыми границами (линии выклинивания, сбросы).

Потенциал скорости фильтрации определяется по формуле (3.1):

$$\Phi = \frac{\mathbf{k} \cdot \mathbf{p}}{\mathbf{u}_{u}};\tag{3.1}$$

Значение потенциала в точке на расстоянии г от центра скважины(3.2):

$$\Phi = \frac{q}{2 \cdot \pi} \cdot \ln r + C, \tag{3.2}$$

где q –дебит скважины-стока, приходящийся на единицу мощности пласта;

С-постоянная интегрирования.

При совместной работе нескольких скважин результирующий потенциал в любой точке пласта равен алгебраической сумме потенциалов, обусловленных работой каждой отдельной скважины.

Таким образом:

$$\Phi_{\rm n} = \frac{1}{2 \cdot \pi \cdot h} \cdot (Q_{\rm n}^{\rm cob} \cdot \ln r_{\rm c} + Q_{\rm m}^{\rm cob} \cdot \ln r_{\rm t}) + C, \tag{3.3}$$

$$\Phi_{m} = \frac{1}{2 \cdot \pi \cdot h} \cdot (Q_{m}^{cob} \cdot \ln r_{c} + Q_{n}^{cob} \cdot \ln r_{t}) + C, \qquad (3.4)$$

$$\Phi_{\kappa} = \frac{1}{2 \cdot \pi \cdot h} \cdot (Q_{n}^{\cos} \cdot \ln R_{\kappa} + Q_{m}^{\cos} \cdot \ln R_{\kappa}) + C, \tag{3.5}$$

Составляем уравнения:

$$\Phi_{\kappa} - \Phi_{n} = \frac{1}{2 \cdot \pi \cdot h} \cdot \left(Q_{n}^{\cos} \cdot \ln \frac{R_{\kappa}}{r_{c}} + Q_{m}^{\cos} \cdot \ln \frac{R_{\kappa}}{r_{t}} \right), \tag{3.6}$$

$$\Phi_{\kappa} - \Phi_{m} = \frac{1}{2 \cdot \pi \cdot h} \cdot \left(Q_{n}^{\cos} \cdot \ln \frac{R_{\kappa}}{r_{t}} + Q_{m}^{\cos} \cdot \ln \frac{R_{\kappa}}{r_{c}} \right), \tag{3.7}$$

где r_t — расстояние между скважинами, Q_n^{cob} и Q_m^{cob} — дебиты гидродинамически совершенных скважин соответственно при их совместной работе, а Φ_n и Φ_m — их потенциалы соответственно. Необходимо учитывать, что Φ_m = Φ_n = Φ_c .

Из уравнений (3.6) и (3.7) получаем формулы (3.8) и (3.9) для расчёта дебитов Q_n^{\cos} и Q_m^{\cos} :

$$Q_n^{\text{cob}} = \frac{2 \cdot \pi \cdot h}{\ln \frac{R_K^2}{r_t \cdot r_c}} \cdot \left[\Phi_{\kappa} - Q_n^{\text{cob}} - \frac{Q_n^{\text{cob}} - Q_m^{\text{cob}}}{\ln \frac{a}{r_c}} \cdot \frac{R_{\kappa}}{r_t} \right], \tag{3.8}$$

$$Q_{m}^{\text{cob}} = Q_{n}^{\text{cob}} + \frac{2 \cdot \pi \cdot h \cdot (Q_{n}^{\text{cob}} - Q_{m}^{\text{cob}})}{\ln \frac{r_{t}}{r_{c}}},$$
(3.9)

Так как $\Phi_m = \Phi_n$, то имеем

$$Q_n^{cob} = Q_m^{cob} = \frac{2 \cdot \pi \cdot h \cdot (\Phi_K - \Phi_C)}{\ln \frac{R_K^2}{r_t \cdot r_C}},$$
(3.10)

В нашем случае для гидростатически несовершенных скважин:

$$Q_{n} = Q_{m} = \frac{2 \cdot \pi \cdot h \cdot (\Phi_{\kappa} - \Phi_{c})}{\ln \frac{R_{\kappa}^{2}}{r_{t} \cdot r_{c}}} \cdot \delta,$$
(3.11)

Необходимо учесть

$$(\Phi_{\kappa} - \Phi_{c}) = \frac{\mathbf{k} \cdot (\mathbf{p}_{\kappa} - \mathbf{p}_{c})}{\mathbf{u}_{tr}},$$
(3.12)

Тогда имеем

$$Q_{n} = Q_{m} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_{\kappa} - p_{c})}{\mu_{H} \cdot \ln \frac{R_{\kappa}^{2}}{r_{t} \cdot r_{c}}} \cdot \delta,$$
(3.13)

Полученную формулу используем в определении изменения дебита скважины при условии того, что одна скважина от другой находится на расстоянии r_t =200 м:

$$\Delta Q = Q_1 - Q_n,$$

$$\Delta Q = Q_1 - \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_k - p_c)}{\mu_H \cdot \ln \frac{R_K^2}{r_t \cdot r_c}} \cdot \delta,$$
 (3.14)

$$\Delta Q = Q_1 - \frac{2 \cdot \pi \cdot 8,\!16 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \text{\Pia} \cdot 0,\!862}{4 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln \frac{(2 \cdot 10^3 \text{m})^2}{200 \text{m} \cdot 0,\!124 \text{m}}} \simeq 2,\!189 \cdot 10^{-4} \frac{\text{m}^3}{c}.$$

На рисунке 11 представлена схема расположения скважин в пласте.

Рисунок 11 - Схема расположения скважин

1.9 Расчет дебита кольцевой батареи скважин

Определяем дебит кольцевой батареи гидродинамически несовершенных скважин, расположенных по кругу на расстоянии $0,6\cdot R_\kappa$ от центра. Все скважины идентичны и работают с одинаковым забойным давлением p_c .

Рисунок 12 – Схема расположения скважин в кольцевой батарее

Дебит одной скважины кольцевой батареи, состоящей из n скважин, в круговом пласте радиуса R_{κ} имеет вид (4.1):

$$Q_{\text{CKB.6}} = \frac{2 \cdot \pi \cdot h \cdot (\Phi_k - \Phi_c) \cdot \delta}{\ln \left[\frac{R_k^n}{n \cdot r_c \cdot R_6^{n-1}} \cdot \left(1 - \frac{R_6^{2n}}{R_k^{2n}} \right) \right]},$$
(4.1)

а так как

$$(\Phi_{\kappa} - \Phi_{c}) = \frac{\mathbf{k} \cdot (\mathbf{p}_{\kappa} - \mathbf{p}_{c})}{\mathbf{u}_{m}},$$

имеем

$$Q_{\text{CKB.6}} = \frac{2 \cdot \pi \cdot k \cdot h \cdot (p_k - p_c) \cdot \delta}{\mu_{\text{H}} \cdot \ln \left[\frac{R_k^n}{n \cdot r_c \cdot R_6^{n-1}} \cdot \left(1 - \frac{R_6^{2n}}{R_k^{2n}} \right) \right]},$$
(4.2)

где R_6 – радиус батареи; r_c – радиус скважин.

$$R_6 = 0.6 \cdot R_K = 1.8 \text{ км}$$

Определяем дебит одной скважины от их числа в батарее:

1) Батарея состоит из n=4 скважин

$$\begin{split} Q_1^{\text{\tiny CKB.6}} &= \frac{2 \cdot \pi \cdot 8,16 \cdot 10^{-13} \text{\tiny M}^2 \cdot 10 \text{\tiny M} \cdot 4 \cdot 10^6 \text{\tiny \Pia} \cdot 0,862}{4 \cdot 10^{-3} \text{\tiny \Pia} \cdot c \cdot \ln \left[\frac{(2 \cdot 10^3 \text{\tiny M})^4}{4 \cdot 0,124 \text{\tiny M} \cdot (1,8 \cdot 10^3 \text{\tiny M})^3} \cdot \left(1 - \frac{(1,8 \cdot 10^3 \text{\tiny M})^8}{(3 \cdot 10^3 \text{\tiny M})^8}\right) \right]} \\ &\simeq 1,306 \cdot 10^{-3} \frac{\text{\tiny M}^3}{c}. \end{split}$$

2) Батарея состоит из n=5 скважин

$$\begin{split} Q_2^{\text{CKB.6}} &= \frac{2 \cdot \pi \cdot 8,16 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \text{\Pia} \cdot 0,862}{4 \cdot 10^{-3} \text{\Pia} \cdot \text{c} \cdot \text{ln} \left[\frac{(2 \cdot 10^3 \text{m})^5}{4 \cdot 0,124 \text{ m} \cdot (1,8 \cdot 10^3 \text{m})^4} \cdot \left(1 - \frac{(1,8 \cdot 10^3 \text{m})^{10}}{(3 \cdot 10^3 \text{m})^{10}}\right) \right]} \\ &\simeq 1,267 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}. \end{split}$$

3) Батарея состоит из n=6 скважин

$$\begin{split} Q_3^{\text{CKB.6}} &= \frac{2 \cdot \pi \cdot 8,\!16 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \text{\Pia} \cdot 0,\!862}{4 \cdot 10^{-3} \text{\Pia} \cdot \text{c} \cdot \text{ln} \left[\frac{(2 \cdot 10^3 \text{m})^6}{4 \cdot 0,\!124 \text{ m} \cdot (1,\!8 \cdot 10^3 \text{m})^5} \cdot \left(1 - \frac{(1,\!8 \cdot 10^3 \text{m})^{12}}{(3 \cdot 10^3 \text{m})^{12}} \right) \right]} \\ &\simeq 1,\!227 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}. \end{split}$$

4) Батарея состоит из n=8 скважин

$$\begin{split} Q_4^{\text{CKB.6}} &= \frac{2 \cdot \pi \cdot 8,16 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \text{\Pia} \cdot 0,862}{4 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln \left[\frac{(2 \cdot 10^3 \text{m})^8}{4 \cdot 0,124 \text{ m} \cdot (1,8 \cdot 10^3 \text{m})^7} \cdot \left(1 - \frac{(1,8 \cdot 10^3 \text{m})^{16}}{(3 \cdot 10^3 \text{m})^{16}} \right) \right]} \\ &\simeq 1,146 \cdot 10^{-3} \frac{\text{m}^3}{c}. \end{split}$$

5) Батарея состоит из n=10 скважин

$$\begin{split} Q_5^{\text{CKB.6}} &= \frac{2 \cdot \pi \cdot 8,16 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \text{\Pia} \cdot 0,862}{4 \cdot 10^{-3} \text{\Pia} \cdot \text{c} \cdot \text{ln} \left[\frac{(2 \cdot 10^3 \text{m})^{10}}{4 \cdot 0,124 \text{ m} \cdot (1,8 \cdot 10^3 \text{m})^9} \cdot \left(1 - \frac{(1,8 \cdot 10^3 \text{m})^{20}}{(3 \cdot 10^3 \text{m})^{20}}\right) \right]} \\ &\simeq 1,07 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}. \end{split}$$

6) Батарея состоит из n=12 скважин

$$\begin{split} Q_6^{\text{CKB.6}} &= \frac{2 \cdot \pi \cdot 8,16 \cdot 10^{-13} \text{m}^2 \cdot 10 \text{m} \cdot 4 \cdot 10^6 \text{\Pia} \cdot 0,862}{4 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln \left[\frac{(2 \cdot 10^3 \text{m})^{12}}{4 \cdot 0,124 \text{ m} \cdot (1,8 \cdot 10^3 \text{m})^{11}} \cdot \left(1 - \frac{(1,8 \cdot 10^3 \text{m})^{24}}{(3 \cdot 10^3 \text{m})^{24}} \right) \right]}{ &\simeq 9,996 \cdot 10^{-4} \frac{\text{m}^3}{c}. \end{split}$$

Строим график зависимости дебита одной скважины от их числа в батарее (рис. 13).

Рисунок 13 – Зависимость дебита одной скважины от их числа в батарее

Суммарный дебит батареи скважин определяется по формуле (4.3):

$$Q_n^{\text{CYM}} = n \cdot Q_n^{\text{CKB.6}}; \tag{4.3}$$

Определяем суммарный дебит батареи скважин от их числа в батарее:

1) Батарея состоит из n=4 скважин

$$Q_1^{\text{cym}} = 4 \cdot 1,306 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} \simeq 5,222 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}}.$$

2) Батарея состоит из n=5 скважин

$$Q_2^{\text{cym}} = 5 \cdot 1,267 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}} \simeq 6,335 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

3) Батарея состоит из n=6 скважин

$$Q_3^{\text{cym}} = 6 \cdot 1,227 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} \simeq 7,36 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}}.$$

4) Батарея состоит из n=8 скважин

$$Q_4^{\text{cym}} = 8 \cdot 1,146 \cdot 10^{-3} \frac{\text{M}^3}{\text{C}} \simeq 9,168 \cdot 10^{-3} \frac{\text{M}^3}{\text{C}}.$$

5) Батарея состоит из n=10 скважин

$$Q_5^{\text{cym}} = 10 \cdot 1,07 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} \simeq 0,011 \frac{\text{M}^3}{\text{c}}.$$

6) Батарея состоит из n=12 скважин

$$Q_6^{\text{cym}} = 12 \cdot 9{,}996 \cdot 10^{-4} \frac{\text{M}^3}{c} \simeq 0{,}012 \frac{\text{M}^3}{c}.$$

Строим график зависимости суммарного дебита батареи скважин от их числа в батарее(рис. 14).

Рисунок 14 — Зависимость суммарного дебита батареи скважин от их числа в батарее

1.10 Расчет распределения давления и дебита одиночной скважины

Время вытеснения T всей нефти водой найдем из соотношения между скоростью фильтрации и средней скоростью движения:

$$\frac{Q}{S} = -m\frac{dr_f}{dt},$$

где m — коэффициент пористости; S — площадь фильтрации, $S = 2\pi r_f h$.

После разделения переменных с учётом (39) получим

$$dt = -\frac{m}{k(P_{\kappa} - P_c)} \left\{ \mu_B \ln \frac{R_{\kappa}}{r_f} + \mu_H \ln \frac{r_f}{r_c} \right\} r_f dr_f.$$

Проинтегрируем уравнение (48) в пределах от r_c до R_{κ} :

$$T = \frac{m}{k(P_{\kappa} - P_c)} \left\{ \mu_B \int_{r_c}^{R_{\kappa}} \ln \frac{R_{\kappa}}{r_f} r_f dr_f + \mu_H \int_{r_c}^{R_{\kappa}} \ln \frac{r_f}{r_c} r_f dr_f \right\}. \tag{49}$$

Поочередно рассмотрим интегралы уравнения (49):

$$\int_{r_{c}}^{R_{\kappa}} \ln \frac{R_{\kappa}}{r_{f}} r_{f} dr_{f} = \begin{cases} U = \ln \frac{R_{\kappa}}{r_{f}}, & dU = -\frac{1}{r_{f}} dr_{f} \\ dV = r_{f} dr_{f}, & V = \frac{r_{f}^{2}}{2} \end{cases} = -\frac{r_{c}^{2}}{2} \ln \frac{R_{\kappa}}{r_{c}} + \frac{R_{\kappa}^{2} - r_{c}^{2}}{4}$$

$$(50)$$

 $\int_{r_{c}}^{R_{\kappa}} \ln \frac{r_{f}}{r_{c}} r_{f} dr_{f} = \begin{cases} U = \ln \frac{r_{f}}{r_{c}}, & dU = \frac{1}{r_{f}} dr_{f} \\ dV = r_{f} dr_{f}, & V = \frac{r_{f}^{2}}{2} \end{cases} = \frac{R_{\kappa}^{2}}{2} \ln \frac{R_{\kappa}}{r_{c}} - \frac{R_{\kappa}^{2} - r_{c}^{2}}{4}$ (51).

Из выражений (49), (50) и (51) получим окончательную формулу для определения времени вытеснения всей нефти водой от контура питания до ствола скважины:

$$T = \frac{m}{4k(P_{\kappa} - P_{c})} \left\{ 2\ln \frac{R_{\kappa}}{r_{c}} \left(\mu_{H} R_{\kappa}^{2} - \mu_{B} r_{c}^{2} \right) + \left(\mu_{B} - \mu_{H} \right) \left(R_{\kappa}^{2} - r_{c}^{2} \right) \right\}$$
 (52)
$$T = 1.648 \cdot 10^{10} \text{ c.}$$

Для определения положения фронта водонасыщенности в различные моменты времени проинтегрируем уравнение (48) в пределах от r до R_{κ} . После преобразований получим

$$t(r) = \frac{m}{4k(P_{\kappa} - P_{c})} \left\{ 2\left(\mu_{H}R_{\kappa}^{2} \ln \frac{R_{\kappa}}{r_{c}} - \mu_{B}r_{c}^{2} \ln \frac{R_{\kappa}}{r}\right) + \left(\mu_{B} - \mu_{H}\right)\left(R_{\kappa}^{2} - r_{c}^{2}\right) - 2\mu_{H}r^{2} \ln \frac{r}{r_{c}}\right\}$$

$$(53)$$

В соответствии с полученной формулой (53) построим график функции, обратной t(r) (рисунок 15).

Рисунок 14 – График зависимости положения контура нефтеносности от времени

1.11 Расчет положения фронта водонасыщенности

Фронтальную насыщенность можно определять графически, используя графики функции Леверетта, либо аналитически, если известны функции относительных фазовых проницаемостей пористой среды для воды и нефти соответственно. Воспользуемся аналитическим методом, задав относительные фазовые проницаемости для воды $k_{\rm B}$ и нефти $k_{\rm H}$ в наиболее простом виде:

$$k_{B}(\sigma) = \sigma^{2}, \tag{54}$$

$$k_{H}(\sigma) = (I - \sigma)^{2}, \tag{55}$$

где σ – коэффициент водонасыщенности.

Этим фазовым проницаемостям (54) и (55) отвечает следующая функция Леверетта $f(\sigma)$:

$$f(\sigma) = \frac{k_B(\sigma)}{k_B(\sigma) + \mu_0 k_H(\sigma)} = \frac{\sigma^2}{\sigma^2 + \mu_0 (I - \sigma)^2},$$
 (56)

где $\mu_0 = \frac{\mu_B}{\mu_H}$ — относительный коэффициент вязкости.

Производная функции Леверетта, исходя из выражения (56), будет определяться по формуле:

$$\frac{df(\sigma)}{d\sigma} = \frac{2\mu_0 \sigma (1-\sigma)}{\left[\sigma^2 + \mu_0 (1-\sigma)^2\right]^2}.$$
 (57)

Формула для определения фронтальной насыщенности σ_{ϕ} имеет вид:

$$\left(\sigma_{\phi} - \sigma_{o}\right) \frac{df\left(\sigma_{\phi}\right)}{d\sigma_{\phi}} = f\left(\sigma_{\phi}\right) - f\left(\sigma_{o}\right), \tag{58}$$

где σ_0 – коэффициент начальной водонасыщенности.

Численное решение уравнения (58) с учётом (56), (57) и того, что начальная водонасыщенность по условию составляет 0.12, позволяет получить значение фронтальной насыщенности, которая составила 0.41 (рисунок 15).

Рисунок 15 – График функции Леверетта $Y(\sigma_{\phi})$ и вспомогательной функции $X(\sigma_{\phi})$, полученной из уравнения касательной к $Y(\sigma_{\phi})$

Следует отметить, что с ростом коэффициента относительной вязкости μ_0 происходит рост фронтальной насыщенности, а, следовательно, и эффективности вытеснения, так как доля воды в суммарном потоке уменьшается, поэтому на практике часто применяют <u>пены</u> и <u>загустители</u>, повышающие вязкость воды [10, с.63-64].

ГЛАВА 2 РАСЧЕТ УПРУГОГО НЕУСТАНОВИВШЕГОСЯ РЕЖИМА ПЛАСТА

2.1 Расчет упругого запаса нефти в пласте

Имеем замкнутый горизонтальный круговой пласт с начальным пластовым давлением p_{κ} . Одиночная скважина, расположенная в центре пласта, эксплуатируется при постоянном забойном давлении p_{c} .

При пуске скважины в эксплуатацию, при остановке ее, при изменении темпа добычи жидкости из скважин в пласте возникают неустановившиеся процессы, которые проявляются в перераспределении пластового давления (в падении или росте давления вокруг скважины), в изменении с течением времени дебитов, скоростей фильтрационных потоков и т. д. Особенности этих неустановившихся процессов зависят от упругих свойств пластов и насыщающих их жидкостей. Хотя коэффициенты сжимаемости воды, нефти и пористой среды очень малы, упругость жидкостей и породы оказывает огромное влияние на поведение скважины и пласта в процессе их эксплуатации, так как объемы пласта и насыщающей его жидкости могут быть очень велики. Поэтому при подсчете запасов нефти (и газа), при проектировании разработки нефтяных и газовых месторождений, при эксплуатации, при исследовании скважин, при создании подземных хранилищ - газа приходится учитывать сжимаемость жидкости и пористой среды. Объем насыщающей пласт жидкости при снижении пластового давления увеличивается, а объем порового пространства уменьшается; это и определяет вытеснение жидкости из пласта в скважину (или газовую залежь).

Если в процессе разработки преобладающей формой энергии является энер гия упругой деформации пласта и сжатой жидкости, то режим пласта называется упругим. При этом предполагается, что фильтрационный поток однофазный, т. е. пластовое давление выше давления насыщения. В условиях упругого режима характерным является то, что процесс перераспределения давления происходит медленно (длительно), а не мгновенно, как это было бы в случае абсолютной несжимаемости пласта и насыщающей его жидкости.

В теории упругого режима большую роль играют два параметра:

1. Коэффициент упругоемкости пласта (2.1):

$$\beta^* = \mathbf{m} \cdot \beta_{\mathcal{K}} + \beta_{\mathcal{C}},\tag{2.1}$$

где $\beta_{\rm ж}$ и $\beta_{\rm c}$ - соответственно, коэффициенты сжимаемости жидкости и коэф- фициент объемной упругости породы пласта.

Величина коэффициента β^* - численно равна изменению упругого запаса жидкости в единице объема пласта при изменении пластового давления на одну единицу.

2. Коэффициент пьезопроводности пласта (2.2):

$$\chi = \frac{k}{\mu_{\rm H} \cdot \beta^*};\tag{2.2}$$

Он характеризует темп перераспределения пластового давления в условиях упругого режима.

Эта величина аналогична коэффициенту температуропроводности в теории теплопередачи и впервые была введена профессором В.Н. Щелкачевым.

Под упругий запасом жидкости в пласте понимают количество жидкости, которое можно извлечь из пласта при снижении давления в нем — за счет упругости пласта и насыщающих его жидкостей. Упругий запас нефти в нефтеносных пластах обычно весьма существенен.

Определяем упругий запас нефти в пласте при уменьшении давления от p_{κ} до p_{c} определяем по формуле (2.3):

$$\Delta V_3 = \beta^* \cdot V_0 \cdot \Delta p, \tag{2.3}$$

Формулу (2.1) подставляем в формулу (2.3):

$$\Delta V_{3} = (m \cdot \beta_{xx} + \beta_{c}) \cdot V_{o} \cdot \Delta p$$

Следует учитывать нефте- и водонасыщенность. Тогда имеем формулу (2.4) коэффициента объемной сжимаемости жидкости:

$$\beta_{x} = \sigma_{0} \cdot \beta_{B} + (1 - \sigma_{0}) \cdot \beta_{H}; \qquad (2.4)$$

Откуда вытекает формула для определения упругого запаса нефти (2.5):

$$\Delta V_3 = (\mathbf{m} \cdot (\sigma_0 \cdot \beta_{\mathrm{B}} + (1 - \sigma_0) \cdot \beta_{\mathrm{H}}) + \beta_{\mathrm{c}}) \cdot V_0 \cdot (p_k - p_c), \tag{2.5}$$

где V_0 – объем пласта,

m — пористость пласта при P_o ;

$$V_o = 2 \cdot \pi \cdot R_\kappa^2 \cdot h = 2 \cdot \pi \cdot (2 \cdot 10^3 \text{m})^2 \cdot 10 \text{m} \simeq 1,257 \cdot 10^8 \text{m}^3, \qquad (2.6)$$

$$\beta_{\text{x}} = 0.12 \cdot 4.6 \cdot 10^{-10} \frac{1}{\Pi a} + 0.88 \cdot 1.04 \cdot 10^{-9} \frac{1}{\Pi a} \simeq 2.467 \cdot 10^{-10} \frac{1}{\Pi a},$$

$$\Delta V_3 = 2,467 \cdot 10^{-10} \frac{1}{\Pi a} \cdot 6,786 \cdot 10^8 \text{m}^3 \cdot 4 \cdot 10^6 \Pi a \simeq 1,24 \cdot 10^5 \text{m}^3.$$

Определить также полный запас нефти по формуле (2.7):

$$V_{3} = 2 \cdot \pi \cdot R_{\kappa}^{2} \cdot h \cdot m \cdot (1 - \sigma_{0}), \qquad (2.7)$$

$$V_{3} = 2 \cdot \pi \cdot (2 \cdot 10^{3} \text{M})^{2} \cdot 10_{M} \cdot 0,18 \cdot (1 - 0,12) \approx 1,991 \cdot 10^{7} \text{M}^{3}.$$

2.2 Расчет изменения дебита после пуска скважины в эксплуатацию

Для определения изменения дебита скважины после пуска её в эксплуатацию воспользуемся приближенным методом последовательной смены стационарных состояний, согласно которому в каждый момент времени вся область движения жидкости условно разделяется на две области: возмущенную и невозмущенную. В возмущенной области, начинающейся от стенки скважины, давление распределяется так, как будто бы движение жидкости в ней установившееся. Внешняя граница этой области служит в данный момент контуром питания и определяется в соответствии с приведенным радиусом влияния l(t). В невозмущенной области пласта давление постоянно и соответствует начальному давлению [5, c.73].

Итак, дебит в соответствии с формулой Дюпюи (23) с течением времени t при плоскорадиальном притоке упругой жидкости к скважине будет изменяться по следующей зависимости:

$$Q(t) = \frac{2\pi k h(P_{\kappa} - P_c)}{\mu \ln \frac{l(t)}{r_c}},$$
(5.8)

где $l(t) = 2\sqrt{\chi t}$;

 χ — коэффициент пьезопроводности, характеризующий темп перераспределения пластового давления в условиях упругого режима, $\frac{M^2}{C}$.

Коэффициент пьезопроводности определяется по следующей формуле:

$$\chi = \frac{k}{\mu \beta^*}. (5.9)$$

По формуле (73) рассчитаем коэффициент пьезопроводности:

$$\chi = \frac{{}^{2,04\cdot 10^{-13}}{}^{M^2}}{{}^{4\cdot 10^{-3}}\Pi a \cdot c \cdot 2,47\cdot 10^{-10}\frac{1}{\Pi a}} = 0,207\frac{{}^{M^2}}{c}.$$

Для наглядности построим график изменения дебита скважины с течением времени с учётом гидродинамического несовершенства (рисунок 16).

Рисунок 16 – График изменения дебита гидродинамически несовершенной скважины с течением времени при плоскорадиальном притоке упругой жидкости

2.3 Расчет давления на забое после остановки скважины

Если скважина была пущена в эксплуатацию с постоянным дебитом и через промежуток времени T была остановлена, то давление в любой точке пласта можно определить в соответствии с методом суперпозиции. Предположим, что к моменту времени t после остановки понижение давления в какой-либо точке пласта, вызванное пуском непрерывно работающей скважины, будет равно

$$\Delta P_{I} = \frac{Q\mu}{4\pi kh} \left\{ -Ei \left(-\frac{r^{2}}{4\chi(t+T)} \right) \right\}, \tag{5.10}$$

где Еі – интегральная показательная функция.

Допустим, что в том же месте, где расположена эксплуатационная скважина, в момент остановки начала работать нагнетательная скважина с тем же дебитом, повышение давления в результате пуска которой к моменту времени t в какой-либо точке пласта будет определяться по формуле

$$\Delta P_2 = \frac{Q\mu}{4\pi kh} \left\{ -Ei \left(-\frac{r^2}{4\chi t} \right) \right\}. \tag{5.11}$$

Результирующее понижение давления ΔP будет определяться как разность (74) и (75):

$$\Delta P = \frac{Q\mu}{4\pi kh} \left\{ -Ei\left(-\frac{r^2}{4\chi(t+T)}\right) + Ei\left(-\frac{r^2}{4\chi t}\right) \right\} [4, c.41]. \tag{5.12}$$

При этом давление на забое скважины после её остановки будет определяться на основании формулы (76):

$$P_{c}(t) = P_{\kappa} + \frac{Q\mu}{4\pi kh} \left\{ Ei \left(-\frac{r_{c}^{2}}{4\chi(t+T)} \right) - Ei \left(-\frac{r_{c}^{2}}{4\chi t} \right) \right\}. \tag{5.13}$$

Для численного анализа формулы (77) воспользуемся разложением интегральной показательной функции в ряд:

$$Ei(x) = \gamma + \ln(-x) + \sum_{n=1}^{\infty} \frac{x^{k}}{n!n}, \quad x < 0,$$
 (5.14)

где у – постоянная Эйлера-Маскерони.

Таким образом, с учётом (78) формула (77) может быть записана в следующем виде:

$$P_{c}(t) = P_{\kappa} + \frac{Q\mu}{4\pi kh} \left\{ \ln \frac{t}{t+T} + \sum_{n=1}^{\infty} \frac{(-1)^{n} r_{c}^{2n}}{2^{2n} \chi^{n} n! n} \left[\frac{1}{(t+T)^{n}} - \frac{1}{t^{n}} \right] \right\}.$$
 (5.15)

При малых аргументах интегральной показательной функции рядом в формуле (79) можно пренебречь:

$$P_c(t) = P_{\kappa} + \frac{Q\mu}{4\pi kh} \ln \frac{t}{t+T}.$$
 (5.16)

По формуле (80) рассчитаем давление на забое скважины в разные моменты времени после её остановки, до которой она работала продолжительное время (200 суток) с постоянным забойным давлением:

 $Pc(1 \cdot 3600c)$

= 12MΠa

$$+\frac{1{,}323\cdot 10^{-3}\frac{{\text{M}}^3}{\text{c}}\cdot 4\cdot 10^{-3}\Pi \text{a}\cdot \text{c}}{4\cdot 3{,}14\cdot 2{,}04\cdot 10^{-13}\cdot 10\text{m}}\ln\frac{1}{1+\frac{200\cdot 86400\text{c}}{1\cdot 3600\text{c}}}=10{,}25\text{ M}\Pi \text{a}$$

 $Pc(5 \cdot 3600c)$

= 12MΠa

$$+\frac{1,323 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} \cdot 4 \cdot 10^{-3} \Pi \text{a} \cdot \text{c}}{4 \cdot 3,14 \cdot 2,04 \cdot 10^{-13} \cdot 10 \text{M}} \ln \frac{1}{1 + \frac{200 \cdot 86400 \text{c}}{5 \cdot 3600 \text{c}}} = 10,58 \text{ M}\Pi \text{a}$$

 $Pc(20 \cdot 3600c)$

= 12MΠa

$$+\frac{1,323\cdot 10^{-3}\frac{\text{M}^{3}}{\text{C}}\cdot 4\cdot 10^{-3}\Pi a\cdot \text{c}}{4\cdot 3,14\cdot 2,04\cdot 10^{-13}\cdot 10\text{M}}\ln\frac{1}{1+\frac{200\cdot 86400\text{c}}{20\cdot 3600\text{c}}}=10,87\text{ M}\Pi a$$

 $Pc(100 \cdot 3600c)$

= 12MΠa

$$+\frac{1{,}323\cdot 10^{-3}\frac{\text{M}^3}{\text{C}}\cdot 4\cdot 10^{-3}\Pi a\cdot \text{c}}{4\cdot 3{,}14\cdot 2{,}04\cdot 10^{-13}\cdot 10\text{M}}\ln\frac{1}{1+\frac{200\cdot 86400\text{c}}{100\cdot 3600\text{c}}}=11{,}2\text{ M}\Pi a$$

$$\begin{aligned} Pc(500 \cdot 3600c) &= 12 \text{М}\Pi \text{а} \\ &+ \frac{1,323 \cdot 10^{-3} \frac{\text{м}^3}{\text{c}} \cdot 4 \cdot 10^{-3} \Pi \text{a} \cdot \text{c}}{4 \cdot 3,14 \cdot 2,04 \cdot 10^{-13} \cdot 10 \text{м}} \ln \frac{1}{1 + \frac{200 \cdot 86400c}{500 \cdot 3600c}} = 11,51 \text{ M}\Pi \text{a} \end{aligned}$$

Результаты расчётов представим в графической форме (рисунок 17).

Рисунок 17 – График зависимости давления на забое остановленной гидродинамически несовершенной скважины от времени

ЗАКЛЮЧЕНИЕ

Методы подземной гидромеханики позволили разработать теорию взаимодействия скважин в условиях водонапорного пластового режима. Формулы дебитов и давлений легли в основу тех расчетных уравнений, которые применяются при проектировании разработки нефтяных и газовых месторождений.

Гидродинамические расчеты, на основании которых внедряются передовые методы технологии нефтедобычи, могут способствовать сокращению сроков разработки, числа скважин, уменьшению капиталовложений, увеличению нефтедобычи, а, как следствие, и получению огромного экономического эффекта.

В процессе выполнения данной курсовой работы было сформировано представление о фильтрации флюидов в нефтяных толщах, изучен ряд формул, описывающих законы, в том числе, закон Дарси и формула Дюпюи для плоскорадиальной фильтрации флюидов к совершенной скважине. Также можно добавить в этот перечень формулы М. Маскета и И. А. Чарного. В курсовой были рассмотрены задачи установившейся и неустановившейся фильтрации жидкости в круговом пласте, основы теории многофазной фильтрации, в нашем случае вытеснение нефти водой при стягивании контура нефтеносности. В курсовой построен ряд графиков зависимости дебита и депрессионных кривых, время эксплуатации нефтяного пласта. Полученные знания по «Подземной гидромеханике» могут пригодиться при анализе и разработке месторождений нефти и газа, при написании дипломного проекта.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Водонапорный режим [Электронный ресурс]: Режим доступа: http://dic.academic.ru/dic.nsf/enc_geolog/854/Водонапорный— (Дата обращения: 12.04.2017).
- 2. Пирвердян А.М. Физика и гидравлика нефтяного пласта. М., Недра, 1982.
- 3. Михневич А.В. Методические указания к практическим занятиям и курсовой работе по курсу «Подземная гидромеханика» для студентов специальности Т.20.02.03.
- 4. Виды несовершенства скважин [Электронный ресурс]: Режим доступа: http://www.poznayka.org/s76810t1.html (Дата обращения: 12.04.2017).
- 5. Евдокимова В.А., Кочина И.Н. Сборник задач по подземной гидравлике. М., Недра, 1979.
- 6. Режимы работы нефтегазоносных пластов [Электронный ресурс]: Режим доступа: http://oilloot.ru/77-geologiya-geofizika-razrabotka-neftyanykh-i-gazovykh-mestorozhdenij/216-rezhimy-raboty-neftegazonosnykh-plastov— (Дата обращения: 12.04.2017).
- 7. Средневзвешенное давление [Электронный ресурс]: Режим доступа: (Дата обращения: 13.04.2017).
- 8. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. М., Недра, 1993.
 - 9. Басниев К.С. и др. Подземная гидравлика. М., Недра, 1986.
- 10. Гидродинамика пластовых систем. Методические указания для выполнения лабораторных работ / Сост. И.Н. Пономарева, А.А. Ерофеев: Перм. нац. иссл. политехн. ун-т. Пермь, 2011, 65 с.
- 11. Основы подземной гидромеханики: учеб. пособие / В. П. Пятибрат. Ухта : УГТУ, 2012. 123 с.
- 12. Учебное пособие по одноименному курсу для студентов специальности 1-51 02 02 «Разработка и эксплуатация нефтяных месторождений» Гомель: ГГТУ им. П.О.Сухого, 2005. 93с.