

FIG._1

. 1

FIG._4

1

7/20

FIG._6A

FIG._6F

FIG._6B

FIG._6C

FIG. 6D

FIG._9

Original Image

	2-D coordinates	4-D coordinates
Vertex 0	(x ₀ , y ₀)	(x ₀ , y ₀ , 0,1)
Vertex 1	(x_1, y_1)	$(x_1, y_1, 0, 1)$
Vertex 2	(x_2, y_2)	$(x_2, y_2, 0, 1) > 134$
Vertex 3 The i th vertex	(x_3, y_3) (x_1, y_1)	$(x_3, y_3, 0,1)$ $(x_i, y_i, 0,1)$
	130	132

FIG._10A

FIG._10B

Perspective Correction Transformation

1. Translate outwards:

$$T_a = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & f & 1 \end{bmatrix}$$
 136

2. Three rotations:

$$\Theta_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_{x} & \sin\theta_{x} & 0 \\ 0 & -\sin\theta_{x} & \cos\theta_{x} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \Theta_{y} = \begin{bmatrix} \cos\theta_{y} & 0 & -\sin\theta_{y} & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta_{y} & 0 & \cos\theta_{y} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Theta_z = \begin{bmatrix} \cos\theta_z & \sin\theta_z & 0 & 0 \\ -\sin\theta_z & \cos\theta_z & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 138

3. Translate inwards:

$$T_b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -f & 1 \end{bmatrix}$$

4. Effect of focal length on Perspective:

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 146

FIG._10C

Perspective Correction

Perspective Corrected Image Vertices given by:

$$\widehat{p}_i = p_i T_a \Theta_z \Theta_y \Theta_x T_b P = \underbrace{\left[\widehat{\mathbf{x}}_i, \widehat{\mathbf{y}}_i, \widehat{\mathbf{z}}_i, \widehat{\mathbf{w}}_i\right]}_{152}$$

 $\widehat{\mathbf{w}}_i = -\frac{\mathbf{x}_i}{f} \left(-\mathrm{sin} \boldsymbol{\theta}_z \mathrm{sin} \boldsymbol{\theta}_x + \mathrm{cos} \boldsymbol{\theta}_z \mathrm{sin} \boldsymbol{\theta}_y \mathrm{cos} \boldsymbol{\theta}_y \right)$ $+ \frac{y_i}{f} (\cos\theta_z \sin\theta_x + \sin\theta_z \sin\theta_y \cos\theta_x)$ $+\cos\theta_{v}\cos\theta_{x}$

and x_i and y_i from the perspective corrected image are given by:

$$x_i' = \frac{\widehat{x}_i}{\widehat{W}_i}$$
 and $y_i' = \frac{\widehat{y}_i}{\widehat{W}_i}$

Therefore we can write:

$$F_{xi}(\theta_z, \theta_y, \theta_x, f) - x'_i = 0$$

Taking:

$$t = [\theta_x \ \theta_y \ \theta_z \ f] / 160$$

We can write:

We can write:
$$-\mathbf{F(t)} = \begin{bmatrix} \mathbf{x}_o - F_{x_o}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \\ \mathbf{y}_o - F_{y_o}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \\ \vdots \\ \mathbf{x}_i - F_{x_i}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \\ \mathbf{y}_i - F_{y_i}(\mathbf{\theta}_z, \mathbf{\theta}_y, \mathbf{\theta}_x, f) \end{bmatrix}$$

Newton's Method

By Newton's method of numerical computation, **t** is an estimate of the values

$$[\theta_x \quad \theta_y \quad \theta_z \quad f]$$

then:

$$t_{new} = t - J^{-l}F(t)$$
 166

is a better estimate of the values.

Where J^{-1} is the matrix of partial derivatives:

$$J_{i,j} = \frac{\partial F_i}{\partial t_j} \checkmark^{164}$$

FIG._10E

* MADEMARY

