

an associative quasigroup is a group

Canonical name AnAssociativeQuasigroupIsAGroup

Date of creation 2013-03-22 18:28:50 Last modified on 2013-03-22 18:28:50

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Derivation
Classification msc 20N05
Related topic Group

Proposition 1. Let G be a set and \cdot a binary operation on G. Write ab for $a \cdot b$. The following are equivalent:

- 1. (G, \cdot) is an associative quasigroup.
- 2. (G,\cdot) is an associative loop.
- 3. (G,\cdot) is a group.

Proof. We will prove this in the following direction $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.

- (1) \Rightarrow (2). Let $x \in G$, and $e_1, e_2 \in G$ such that $xe_1 = x = e_2x$. So $xe_1^2 = xe_1 = x$, which shows that $e_1^2 = e_1$. Let $a \in G$ be such that $e_1a = x$. Then $e_2e_1a = e_2x = x = e_1a$, so that $e_2e_1 = e_1 = e_1^2$, or $e_2 = e_1$. Set $e = e_1$. For any $y \in G$, we have $ey = e^2y$, so y = ey. Similarly, $ye = ye^2$ implies y = ye. This shows that e is an identity of G.
- (2) \Rightarrow (3). First note that all of the group axioms are automatically satisfied in G under \cdot , except the existence of an (two-sided) inverse element, which we are going to verify presently. For every $x \in G$, there are unique elements y and z such that xy = zx = e. Then y = ey = (zx)y = z(xy) = ze = z. This shows that x has a unique two-sided inverse $x^{-1} := y = z$. Therefore, G is a group under \cdot .
- $(3) \Rightarrow (1)$. Every group is clearly a quasigroup, and the binary operation is associative.

This completes the proof.

Remark. In fact, if \cdot on G is flexible, then every element in G has a unique inverse: for z(xz) = (zx)z = ez = z = ze, so by left division (by z), we get xz = e = xy, and therefore z = y, again by left division (by x). However, G may no longer be a group, because associativity may longer hold.