CSL 759 – Cryptography and Network Security

Jan 21, 2013

Lecture 7: General Hardcore Bit of OWF

Instructor: Shweta Agrawal Scribe: V.Rajeev

1 Recap: OWF and hardcore bit

One Way Function: $h: \{0,1\}^k \to 0, 1$ is a hardcore bit for a OWF 'f' if

- 1) h(x) is easy to compute given x
- 2) h(x) is hard to compute given f(x)

i.e. for any polynomial time algorithm $A: Pr(A(f(x) \to h(x))) \le \frac{1}{2} + (negligible function)$

Hardcore bit:

given f(x), if MSB(x) can be computed, then entire of $f^{-1}(f(x))$ can be computed.

2 General hardcore bit of a OWF

Definition 1 For a random parity : if $x \in 0, 1^k$ and $r \in 0, 1^k$, then $hx, r = \sum r_i x_i mod 2$

Given OWF $f: \{0,1\}^k \to \{0,1\}^k$, Define $g_f = 0, 1^{2k} \to 0, 1^{2k}$ such that: $g_f(x,r) = f(x), r$ $(g_f$ - appendeded function such that inverting $g_f' \equiv inverting'f'$)

3 Goldreich - Levin Theorem

Theorem 1 If 'f' is a OWF, then h(x,r) is a hardcore bit for g_f or more formally for all PPTA, $P_{x,r}(A(f(x),r) \to h(x,r)) < 1/2 + (negligible function)$

Proof. Contra-positive Method

Assume A_{GL} such that $P_{x,r}(A(f(x),r) \to h(x,r)) \ge 1/2 + (negligible function)$ will build an A_{OWF} that inverts f

Easy Case: Suppose A_{GL} is such that it always computers the hardcore bit. Set r = unit vector & directly recover x each time.

Medium Case: Suppose A_{GL} such that $Pr(A_{GL}succeeds) \geq 3/4 + \varepsilon$, where ε is a non-negligible function

Proof Idea: r needs to be random

(1)Observe that for every r', < x, r > and $< x, r \oplus e_i >$ together recover x_i . Call A_{GL} on $< x, r > \& < x, r \oplus e_i >$

Note: Since we can't test when the algo A_{GL} is correct, we run it many times and take majority.

(2) If both answers are same, x_i is obtained.

Proposition 1 Claim: there exits a set "GOOD" $\in 0, 1^k$ such that $|GOOD| \ge 2^n \cdot \varepsilon/2$ and for all $x \in GOOD$: $Pr(A_{GL}wins) \ge 3/4 + (\varepsilon)/2$

Proof: Define $succ(x) = Pr(A(f(x), r) = \langle x, r \rangle).$

GOOD is the set of x such that: $succ(x) \ge \frac{3}{4} + (\varepsilon)/2$ $Pr_{x,r}(A_{GL}wins) = Pr(A_{GL}wins|x \in GOOD)xPr(x \in GOOD) + Pr(A_{GL}wins|x \notin GOOD)xPr(x \notin GOOD)$ $\le Pr(x \in GOOD) + Pr(A_{GL}wins|x \notin GOOD)$

$$Pr(x \epsilon GOOD) \ge (3/4 + \varepsilon) - (3/4 + (\varepsilon)/2)$$

= $(\varepsilon)/2 \equiv non - negligible$
 $|GOOD| \ge (\varepsilon)/2.x^k$

Observe: For any 'i' and x ϵ GOOD

$$Pr(A_{GL}(f(x,r)) \neq < x,r >) \leq 1/4 - (\varepsilon)/2$$

 $Pr(A_{GL}(f(x,r \oplus e_i)) \neq < x,r \oplus e_i >) \leq 1/4 - (\varepsilon)/2$
 $Pr(A_{GL}$ fails on at least on of them) $\leq 1/2 - \varepsilon$
 $Pr(A_{GL}$ succeeds on both of them) $> 1/2 + \varepsilon$

Statement 1: If $x \in GOOD$, and suppose A_{OWF} inverts f with $Pr \geq 1/2$ then, objective attained.

$$Pr(A_{OWF} \text{succeeds in inverting f}) \ge Pr(A_{OWF} \text{succeeds} | GOOD).Pr(GOOD)$$

 $\ge 1/2x(\varepsilon)/2 = (\varepsilon)/4....eq^n(2)$

Need: A'_{OWF} to invert f' with $Pr \ge 1/2$ for x ϵ GOOD

 A'_{OWF} : for i=1 to k do

- I) for j=1 to 't'
- 1) Pick $r_i \leftarrow 0, 1^k$
- 2) Run $A_{GL}(f(x), r_j)$ aswellas $A_{GL}(f(x), r_j \oplus e_i)$
- 3) Compute x_{ij} as XOR of answer.
- II) Compute $x_i = majority(x_{ij})$

Proposition 2 Claim: if t = log 2k, then $Pr(x_i computes correctly) <math>\geq 1 - 1/2k$

Lemma 2 Chernoff: if $z_1, z_2....z_t$ are independent & identically distributed and $E(z_i) = 1/2, z = \sum_{i=1-t} z_i$, where z_i is indicator that x_i is correct then, $Pr(z < t/2) \le 2^t$

Justifying the Claim: if t = log 2k, $Pr(Majority is wrong) \le 1/2k$ thus, there exists i, such that x_i computed with A_{GL} is wrong with Pr < k.1/2k So, $Pr(A_{GL} is correct for all i) \ge \frac{1}{2}$

From Statement 1 and $eq^n 2$, since A'_{OWF} inverts f with $Pr \ge 1/2$ for GOOD x and set GOOD is large enough.