#### **Topics:**

- 1. TOC
- 2. Introduction
- 3. Types of Flip Flops
- 4. Types of Flip Flops
- 5. D Flip Flop Operation
- 6. D Flip Flop Master Circuit
- 7. D Flip Flop Circuit
- 8. Tri-State Inverter
- 9. Flip-Flop Ideas
- 10. Flip-Flop Ideas

#### Introduction (Martin c.7)

#### Flip Flops basics:

- •Storage elements for synchronous circuits (what is synchronous?)
- •Break up any race conditions or oscillations, i.e., feedback loops around a cyclic logic circuit
- •Inputs: normally have 1 or 2 input signals and a clock
- •Outputs: differential outputs Q and Q'
  - •output latched or stored on rising/falling edge of clock
  - •output stable until next rising/falling edge of clock
- •Can optionally have set and/or reset asynchronous inputs
  - •regardless of state of the clock, the outputs will either be set to a 1 or reset to a 0
- •Typical techniques
  - •master\_slave
  - •edge\_sensitive
- •Typical configurations:
  - •SR (set\_reset)
  - •D
  - •JK
  - •T (toggle)
- •D FF is the most common for ICs







SR flip flop symbol
•changes on negative
going clock edge

### Types of Flip Flops (Martin c.7)

•D

Table 7.1 The Characteristic Table for a D Flip-flop

| D | $Q_{n+1}$ |
|---|-----------|
| 0 | 0         |
| 1 | 1         |



Figure 7.17 The logic diagram of a master-slave D flip-flop.

•SR

| S | R | $Q_{n+1}$     |
|---|---|---------------|
| 0 | 0 | Qn            |
| 0 | 1 | 0             |
| 1 | 0 | 1             |
| 1 | 1 | Indeterminate |

Table 7.2 The Characteristic Table of an SR Flip-flop



Figure 7.18 The logic diagram of a master-slave SR flip-flop.

•JK

Table 7.3 The Characteristic Table for a JK Flip-flop

| J | K | $Q_{n+1}$        |
|---|---|------------------|
| 0 | 0 | Qn               |
| O | 1 | O                |
| 1 | 0 | 1                |
| 1 | 1 | $\overline{Q}_n$ |



•T

| Table 7.4 The Characteristic Table for a Toggle or T Flip |                      |  |
|-----------------------------------------------------------|----------------------|--|
| Т                                                         | Q <sub>n+1</sub>     |  |
| 0                                                         | $Q_{n+1}$            |  |
| T                                                         | $\overline{Q}_{n+1}$ |  |

realized by tying J and K together from a JK FF

### Types of Flip Flops (Martin c.7)

•D

- •cascade of two latches with opposite clock phases
- •best choice (usually) for IC design
- •after FF is clocked, output is equal to the D value just before the clock changed

•SR

- •same as D FF if S=D and R=D'
- •can be set, reset, or remain in its previous state
- •intedeterminate state exists if S=R=high when CLK=low
- •major limitation is output can be affected by the input at any time the CLK is high, a.k.a., noise problem

•JK

- often used for synchronous machines or counters
- •J=1, K=0
- FF is set
- •J=0, K=1 FF is reset
- •J=0, K=0 No change
- •J=1, K=1 FF state toggles (difference between JK and SR, but same noise limitation)

 $\bullet T$ 

•useful in counters

#### D Flip Flop Operation (Martin c.7)

Clk is '1', implies master active, slave latched B=D=1 since 1 or anything is 1 in 'c'



Clk is '1', implies master active, slave latched B=D=0 since 1 or anything is 1 in 'd'



Clk is '0', implies master latched, slave active Q'=D'=0 since 1 or anything is 1 in 'h'

Clk=0

Clk is '0', implies master latched, slave active Q'=D'=0 since master disabled by 'a' and 'b'



D=0

#### D Flip Flop Master Circuit (Martin c.7)

#### master





### D Flip Flop Circuit (Martin c.7)



#### Tristate Inverter (Weste c.2)



- •Cascade of a transmission gate with an inverter
- •C=0 -C=1: Z is tristated, i.e., A does not influence Z
- •C=1 -C=0: Z = A'

### Flip Flop Ideas (Martin c.7)

- •Biphase D FF
- •asynchronous Set and Reset
- •Inverter Based

- •Biphase D FF
- •transmission gates used
- •NOR based





Figure 7.27 A transmission-gate-based master-slave D flip-flop.

### Flip Flop Ideas (Martin c.7)

- •Biphase JK FF
- •transmission gates used
- •Inverter based



#### Design Assignment

- •Biphase D FF (clk, clk')
- •buffer the D input with a tristate inverter
- •Inverter based
- •Asynchronous Reset
- •hint: can optimize the layout by rearranging ckt

