Assignment 2: MS2300/MS5140

- Submit your assignment solutions (to all questions) as a *single* jupyter notebook.
- Name your jupyter notebook as **GroupNo_assign2.ipynb**.
- For **group number** refer to the shared spreadsheet on the google classroom.
- Only one submission per group on the google classroom.
- Use matplotlib for plots and markdown option to explain your answers.
- Due date 20 March 2024.

1. (15 marks)

- (a) Plot the function: f(x) = (3x 1.4)sin(18x) and write down a code to determine the global minima as well as all the local minima in the interval $x \in [0, 1.22]$.
- (b) Is it possible to use the method such as **Brent**, **Golden or Bounded** within scipy .optimize.minimize_scalar to find the global minima of f(x) in $x \in [0, 1.22]$? If yes, write down your code to demonstrate.
- (c) If not, which approach will you choose in scipy.optimize to find the global minima? Write down your code to demonstrate.
- 2. (15 marks) Given a function of two-variables $f(x, y) = 100(y x^2)^2 + (0.5 x)^2$.
 - (a) Plot the 2D contour plot of f(x, y) on x and y axes.
 - (b) Write down the Jacobian and Hessian Matrices for f(x, y). You can use sympy.
 - (c) Use the following methods: **Nelder-Mead, Powell, CG, BFCG, Newton-CG, SLSQP** in scipy.optimize.minimize to find (x, y) that minimize f(x, y). Choose a tolerance value of 10^{-6} and choose a starting point, randomly, in the search domain $-2 \le x, y \le 2$. Plot a table for your results, keeping (x_0, y_0) same for all methods:

method	starting	solution	no. of (#)	# function	# Jacobian	# Hessian
	(x_0,y_0)		iterations	evaluations	evaluations	evaluations

3. (15 marks)

- (a) Plot the 2D contour plot and use scipy.optimize.basinhopping to find the global minima of the function: $f(x, y) = (x^2 + y 10)^2 + (x + y^2 1)^2$, in, $-6 \le x, y \le 6$.
- (b) Does f(x, y) has any local minima(s) in the above search domain?
- (c) use scipy.optimize.minimize to find the minima of f(x, y) under the constraint $0 < y < x^2$.
- 4. (20 marks) Given data of size N = 4:

x	У			
1	1.0			
2	1.2			
3	1.5			
4	1.8			

- (a) Construct and plot a least squares quadratic polynomial (\hat{y}) for the given data.
- (b) Find the least-squares approximation of the form $\hat{y} = ce^{bx}$ for the given data.
- (c) Compare the error measure, $E = \sum_{i}^{N} (y_i \hat{y}_i)^2$ for (a) and (b).
- (d) Assume a polynomial of the form: $F(x) = a_0 \phi_0(x) + a_1 \phi_1(x)$

where,
$$\phi_0(x) = 1$$
, and $\phi_1(x) = x - 2.5$, and parameter, $a_k = \frac{\sum_{i=1}^N \phi_k(x_i)y_i}{\sum_{i=1}^N (\phi_k(x_i))^2}$.

- i. Find F(x)
- ii. Show that $\phi_0(x)$ and $\phi_1(x)$ are orthogonal such that: $\sum_{i=1}^N \phi_j(x_i)\phi_k(x_i) = 0$, whenever $j \neq k$
- 5. (15 marks) Given a set of points as shown in the figure. Can you write a Python code that maps the locus of points that are closer to the origin (0,0) than any other point in the figure?

Figure 1:

6. (20 marks) The nonlinear system:

$$1 + x_1^2 - (x_2 + 1)^3 = 0,$$

$$4x_1 - x_2 - 5 = 0$$
(0.1)

(a) Can be transformed into the fixed-point form:

$$x_1 = g_1(x_1, x_2) = \frac{1}{4}(x_2 + 5),$$

$$x_2 = g_2(x_1, x_2) = (1 + x_1^2)^{1/3} - 1.$$
(0.2)

Using (0.2) to find the solution of (0.1), starting with $\mathbf{x}^{(0)} = (1.5, 0.5)$. Does the Seidel approach accelerate convergence? Iterate until $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty} < 10^{-2}$.

- (b) For $x_1 \in [1, 2]$ and $x_2 \in [0.25, 0.75]$, calculate the maximum value of $\|J_G(x)\|_{\infty}$, where, $J_G(x)$ is the Jacobian matrix.
- (c) Solve the set of non-linear equations in (0.1) by Newton's method. Iterate until $\|\boldsymbol{x}^{(k)} \boldsymbol{x}^{(k-1)}\|_{\infty} < 10^{-2}$, starting with $\boldsymbol{x}^{(0)} = (1.5, 0.5)$.