(Bonus problem). HX=b.

GE: big errors.

(Iterations)

(g (Conjugate Gradient), pcg, bicg.

SVD, pseudoinv

gmres, minres, Isqminres

TFQMR/ $n=10^5$ (GS) Gauss-Seidel.,

regularization: (H+EI)X=b, $\epsilon=10^5$, 10^6 , 10^6 t

"Numerical Linear Algebra"

(Fourier integral) $\int_{-\infty}^{\infty} |f(x)| dx$ is finite $F(x) = \# \int_{0}^{\infty} A(w) (S_{0}(wx)) dw$ $+ \# \int_{0}^{\infty} S(w) S_{0}(wx) dw$ $A(w) = \int_{-\infty}^{\infty} f(z) (S_{0}(wz)) dz$, $B(w) = \int_{-\infty}^{\infty} f(z) S_{0}(wz) dz$ The

Interval

Interval

B) f(x) has a right-hand derivatives & a left-hand derivative at every point. $\int_{-\infty}^{\infty} |f(x)| dx$ is finite

O (1) If f(x) is continuous at $f(x) \in \mathbb{R}$, f(x) = f(x)then $f(x) = \frac{1}{2} \left[\lim_{x \to x_0 - x_0 + x_0} f(x) + \lim_{x \to x_0 - x_0 + x_0} f(x) \right]$

11. T. Fourier integral.

(1)
$$f(x)$$
 is an even function, $x = \frac{1}{2} \int_{0}^{\infty} f(x) dx < \infty$

(B(ω) $= 0$

(A(ω) $= \frac{2}{17} \int_{0}^{\infty} f(z) \cos(\omega z) dz$

[(x) $= \int_{0}^{\infty} A(\omega) \cos(\omega x) d\omega = \int_{0}^{\infty} f(x) dx$

the Fourier Cosine integral of $f(x)$

(a) $f(\omega)$ is odd in IR, $\int_{-\infty}^{\infty} |f(\omega)| dx < \infty$

A(ω) $= 0$

B(ω) $= \frac{2}{17} \int_{0}^{\infty} f(z) \sin(\omega z) dz$

F(∞) $= \int_{0}^{\infty} B(\omega) \sin(\omega x) d\omega = \int_{0}^{\infty} f(z) \cos(\omega x) d\omega$

(Ex)
$$f(u) = \int_{0}^{1} \int_{0}^{1} O(x \le 1)$$
 (missing data)
(1) Even extension
$$f_{E}(x) = \int_{0}^{\infty} f(u), \quad x > 0$$

$$f(-x), \quad x < 0 \Rightarrow x$$

$$f(-x) = \int_{0}^{\infty} A(\omega) \cos(\omega x) d\omega = f_{C}(x)$$

$$A(\omega) = \frac{2}{\pi} \int_{0}^{\infty} f(z) \cos(\omega z) dz$$

$$A(\omega) = \frac{2}{\pi} \int_{0}^{1} \cos(\omega z) dz = \frac{2}{\pi} \left[\frac{\sin(\omega z)}{\omega} \right]_{0}^{1}$$

$$= \frac{2}{\omega \pi} \left(\sin \omega - 0 \right) = \frac{2\sin \omega}{\pi \omega}$$

$$\begin{bmatrix}
\xi(k) = \int_{0}^{\infty} \left(\frac{2\sin w}{\pi w}\right) \cos(wx) dw
\end{bmatrix}$$
(2) Odd extension
$$f_{0}(x) = \int_{0}^{\infty} f(x) \sin(wx) dy$$

$$F(-x), x < 0 : vdd$$

$$F(w) = \frac{2}{\pi} \int_{0}^{\infty} f(x) \sin(wx) dy$$

$$F(x) = \frac{2}{\pi} \left[\frac{-\cos(wx)}{w}\right]_{0}^{0}$$

$$F(x) = \frac{2}{\pi} \left[\frac{-\cos(wx)}{w}\right]_{0}^{0}$$

$$F(x) = \frac{2}{\pi} \left[\frac{-\cos(wx)}{w}\right]_{0}^{0}$$

$$F(x) = \frac{2}{\pi} \left[\frac{-\cos(wx)}{w}\right]_{0}^{0}$$

$$F_{c}(x) = \int_{0}^{\infty} A(\omega) (os(\omega)x) d\omega$$

$$A(\omega) = \frac{1}{\pi} \int_{0}^{\infty} f(x) (os(\omega)x) d\omega : \frac{1}{\pi} = \sqrt{\frac{2}{\pi}}$$
Let $f_{c}(\omega) = \sqrt{\frac{2}{\pi}} A(\omega)$

Def

1. $f_{c}(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) (os(\omega)x) d\omega$

: the Fourier cosine transform of $f_{c}(\omega)$

2. $f_{c}(f_{c}(\omega)) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f_{c}(\omega) (os(\omega)x) d\omega$

: the inverse Fourier cosine transform of $f_{c}(\omega)$

3. $f_{c}(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin(\omega x) d\omega$

: the Fourier Sine transform of $f_{c}(\omega)$

4.
$$\mathcal{J}_{s}^{-1}(f_{s})(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f_{s}(\omega) \sin(\omega x) d\omega$$

: the inverse Fourier sine transform of f_{s}
Remark $\mathcal{J}_{c}(f) = f_{c}$, $\mathcal{J}_{s}(f) = f_{s}$
(Ex) $f(u) = \int_{0}^{1} \int_{0}^{\infty} f(u) (\cos(\omega x)) du$
(1) $f_{c}(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(u) (\cos(\omega x)) du$
= $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} (\cos(\omega x)) du = \sqrt{\frac{2}{\pi}} \left[\frac{\sin(\omega x)}{\omega} \right]_{0}^{1}$
= $\sqrt{\frac{2}{\pi}} \frac{\sin(\omega x)}{\sin(\omega x)} du$

(3)
$$\hat{f}_{s}(\omega) = \int_{\overline{H}}^{\overline{H}} \frac{1 - (os(\omega))}{\omega}$$

Remark $\mathcal{J}_{c}^{-1}(\hat{f}_{c})_{\omega} = \int_{\overline{H}}^{\overline{H}} \int_{0}^{\infty} \hat{f}_{c}(\omega) (os(\omega x)) d\omega$
 $\mathcal{J}_{c}^{-1}(\hat{f}_{c}) = \int_{\overline{H}}^{\overline{H}} \int_{0}^{\infty} (\sqrt{\frac{2\pi}{H}} \frac{Sin(\omega)}{\omega}) (os(\omega x)) d\omega = ?$
 $= f_{c}(x)$
 $\mathcal{J}_{c}^{-1}(\hat{f}_{c}) = f_{c}(x) = \int_{\overline{L}}^{\overline{H}} \int_{0}^{\infty} (x) dx = ?$
 $\frac{1}{2}$, $x = 1$
 $\frac{1}{2}$, $x = 1$
 $\frac{1}{2}$, $x = 1$

$$\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin(\omega)}{\omega} \cos(\omega x) d\omega = \begin{bmatrix} \frac{1}{2}, & 0 \leq x < 1 \\ 0, & x > 1 \end{bmatrix}$$

$$\int_{0}^{\infty} \frac{\sin(\omega)}{\omega} \cos(\omega x) d\omega = \begin{bmatrix} \frac{\pi}{4}, & x \leq 1 \\ 0, & x < 1 \end{bmatrix}$$

$$(Ex2) \quad f(xc) = \begin{cases} x < 0, & 0 < x < 1 \\ 0, & x < 1 \end{cases}$$

$$\int_{0}^{\infty} \frac{\sin(\omega)}{\omega} \cos(\omega x) dx = \int_{0}^{\infty} \int_{0}^{\infty} f(xc) \sin(\omega x) dx$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f(xc) \sin(\omega x) dx$$

$$= \sqrt{\frac{2}{\pi}} \left(\left[x \frac{(-1)(\sigma_s(\omega))}{\omega} \right]_0^1 + \int_0^1 \frac{(+1)(\sigma_s(\omega))}{\omega} dx \right)$$

$$= \sqrt{\frac{2}{\pi}} \left(\frac{(-1)(\sigma_s\omega)}{\omega} - 0 + \frac{1}{\omega} \left[\frac{Sin(\omega)}{\omega} \right]_0^1 \right)$$

$$= \sqrt{\frac{2}{\pi}} \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin\omega - 0 \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin\omega - 0 \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin\omega - \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin\omega - \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{1}{\omega^2} \left(Sin(\omega) + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{Cos\omega}{\omega} \right) \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{Cos\omega}{\omega} \right)$$

$$= \int_0^2 \left(-\frac{Cos\omega}{\omega} + \frac{Cos\omega}{\omega} \right) \right)$$