Muon pair production

A high energy electron and positron collision can create two muons.

Here is the same diagram with momentum and spinor labels.

In a typical collider experiment the momentum vectors are

$$p_{1} = \begin{pmatrix} E \\ 0 \\ 0 \\ p \end{pmatrix} \qquad p_{2} = \begin{pmatrix} E \\ 0 \\ 0 \\ -p \end{pmatrix} \qquad p_{3} = \begin{pmatrix} E \\ \rho \sin \theta \cos \phi \\ \rho \sin \theta \sin \phi \\ \rho \cos \theta \end{pmatrix} \qquad p_{4} = \begin{pmatrix} E \\ -\rho \sin \theta \cos \phi \\ -\rho \sin \theta \sin \phi \\ -\rho \cos \theta \end{pmatrix}$$
inbound electron inbound positron outbound muon outbound anti-muon outbound anti-muon

Symbol E is beam energy, $p = \sqrt{E^2 - m^2}$, $\rho = \sqrt{E^2 - M^2}$, m is electron mass 0.51 MeV, and M is muon mass 106 MeV.

The spinors are

$$u_{11} = \begin{pmatrix} E + m \\ 0 \\ p \\ 0 \end{pmatrix} \qquad v_{21} = \begin{pmatrix} -p \\ 0 \\ E + m \\ 0 \end{pmatrix} \qquad u_{31} = \begin{pmatrix} E + M \\ 0 \\ p_3^z \\ p_3^x + ip_3^y \end{pmatrix} \qquad v_{41} = \begin{pmatrix} p_4^z \\ p_4^x + ip_4^y \\ E + M \\ 0 \end{pmatrix}$$

$$\begin{array}{l} \text{outbound electron spin up} \qquad \text{outbound muon spin up} \qquad \text{outbound anti-muon spin up} \\ u_{12} = \begin{pmatrix} 0 \\ E + m \\ 0 \\ -p \end{pmatrix} \qquad v_{22} = \begin{pmatrix} 0 \\ p \\ 0 \\ E + m \end{pmatrix} \qquad u_{32} = \begin{pmatrix} 0 \\ E + M \\ p_3^x - ip_3^y \\ -p_3^z \end{pmatrix} \qquad v_{42} = \begin{pmatrix} p_4^x - ip_4^y \\ -p_4^z \\ 0 \\ E + M \end{pmatrix}$$

$$\begin{array}{l} \text{outbound electron spin down} \qquad \text{outbound muon spin down} \qquad \text{outbound anti-muon spin down} \\ \end{array}$$

Spinor subscripts have 1 for spin up and 2 for spin down. The spinors are not individually normalized. Instead, a combined spinor normalization constant $N = (E+m)^2(E+M)^2$ will be used.

This is the probability density for spin state abcd. Symbol e is electron charge and $s = (p_1 + p_2)^2 = 4E^2$. The formula is derived from Feynman diagrams for muon pair production.

$$\left| \mathcal{M}_{abcd} \right|^2 = \frac{e^4}{Ns^2} \left| (\bar{u}_{3c} \gamma_{\mu} v_{4d}) (\bar{v}_{2b} \gamma^{\mu} u_{1a}) \right|^2$$

The expected probability density $\langle |\mathcal{M}|^2 \rangle$ is computed by summing $|\mathcal{M}_{abcd}|^2$ over all spin states and dividing by the number of inbound states. There are four inbound states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 \left| \mathcal{M}_{abcd} \right|^2$$
$$= \frac{e^4}{4Ns^2} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 \left| (\bar{u}_{3c} \gamma_{\mu} v_{4d}) (\bar{v}_{2b} \gamma^{\mu} u_{1a}) \right|^2$$

The Casimir trick uses matrix products to compute sums over spins.

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4s^2} \operatorname{Tr} \left((\not p_3 + M) \gamma^{\mu} (\not p_4 - M) \gamma^{\nu} \right) \operatorname{Tr} \left((\not p_2 - m) \gamma_{\mu} (\not p_1 + m) \gamma_{\nu} \right)$$

The following formula is equivalent to the Casimir trick. (Recall that $a \cdot b = a^{\mu}g_{\mu\nu}b^{\nu}$)

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4s^2} \left(32(p_1 \cdot p_3)(p_2 \cdot p_4) + 32(p_1 \cdot p_4)(p_2 \cdot p_3) + 32m^2(p_3 \cdot p_4) + 32M^2(p_1 \cdot p_2) + 64m^2M^2 \right)$$

For the momentum vectors given above the result is

$$\langle |\mathcal{M}|^2 \rangle = e^4 \left(1 + \cos^2 \theta + \frac{m^2 + M^2}{E^2} \sin^2 \theta + \frac{m^2 M^2}{E^4} \cos^2 \theta \right)$$

Cross section

The Stanford Linear Collider had a collision energy of 2E = 91 GeV. For beam energies such as SLC where $E \gg M$ the above equation can be approximated as

$$\langle |\mathcal{M}|^2 \rangle = e^4 (1 + \cos^2 \theta)$$

The differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{\langle |\mathcal{M}|^2 \rangle}{64\pi^2 s} = \frac{e^4}{256\pi^2 E^2} (1 + \cos^2 \theta)$$

Recall that $e^2 = 4\pi\alpha$ hence

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{16E^2} \left(1 + \cos^2 \theta \right)$$

We can integrate $d\sigma$ to obtain a cumulative distribution function. Recall that

$$d\Omega = \sin\theta \, d\theta \, d\phi$$

Hence

$$d\sigma = \frac{\alpha^2}{16E^2} (1 + \cos^2 \theta) \sin \theta \, d\theta \, d\phi$$

Let $I(\theta)$ be the following integral of $d\sigma$.

$$I(\theta) = \int (1 + \cos^2 \theta) \sin \theta \, d\theta$$

The result is

$$I(\theta) = -\frac{\cos^3 \theta}{3} - \cos \theta$$

The cumulative distribution function is

$$F(\theta) = \frac{I(\theta) - I(0)}{I(\pi) - I(0)} = -\frac{\cos^3 \theta}{8} - \frac{3\cos \theta}{8} + \frac{1}{2}, \quad 0 \le \theta \le \pi$$

The probability of observing scattering between θ_1 and θ_2 is

$$P(\theta_1 \le \theta \le \theta_2) = F(\theta_2) - F(\theta_1)$$

Data from SLAC PEP experiment

See www.hepdata.net/record/ins216031, Table 1, 29.0 GeV.

x	y
-0.925	67.08
-0.85	58.67
-0.75	54.66
-0.65	51.72
-0.55	43.70
-0.45	41.12
-0.35	39.71
-0.25	35.34
-0.15	33.35
-0.05	34.69
0.05	34.05
0.15	34.48
0.25	34.66
0.35	35.23
0.45	35.60
0.55	40.13
0.65	42.56
0.75	46.37
0.85	49.28
0.925	55.70

Data x and y have the following relationship with cross section parameters.

$$x = \cos \theta, \quad y = (2E)^2 \frac{d\sigma}{d\cos \theta}$$

The differential cross section for muon production is

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{16E^2} \left(1 + \cos^2 \theta \right)$$

Let us compute predicted values \hat{y} from the cross section formula. Start by finding the relationship between $d\Omega$ and $d\cos\theta$. Since $1+\cos^2\theta$ has no dependence on ϕ we have

$$\int_{\Omega} (1 + \cos^2 \theta) d\Omega = \int_{0}^{2\pi} \int_{0}^{\pi} (1 + \cos^2 \theta) \sin \theta d\theta d\phi = 2\pi \int_{0}^{\pi} (1 + \cos^2 \theta) \sin \theta d\theta$$

Hence

$$d\Omega = 2\pi \sin\theta \, d\theta = -2\pi \, d\cos\theta$$

We want positive cross sections so drop the minus sign and set

$$\frac{d\sigma}{d\cos\theta} = 2\pi \frac{d\sigma}{d\Omega}$$

We can now write

$$y = (2E)^{2} \frac{d\sigma}{d\cos\theta}$$

$$= (2E)^{2} (2\pi) \frac{d\sigma}{d\Omega}$$

$$= (2E)^{2} (2\pi) \frac{\alpha^{2}}{16E^{2}} (1 + \cos^{2}\theta)$$

$$= \frac{\pi\alpha^{2}}{2} (1 + \cos^{2}\theta)$$

Multiply by $(\hbar c)^2$ to convert to SI and multiply by 10^{37} to convert square meters to nanobarns.

$$y = \frac{\pi \alpha^2}{2} (1 + \cos^2 \theta) \times (\hbar c)^2 \times 10^{37}$$

Replace $\cos \theta$ with explanatory variable x to obtain \hat{y} .

$$\hat{y} = \frac{\pi \alpha^2}{2} (1 + x^2) \times (\hbar c)^2 \times 10^{37}$$

Here are the predicted values \hat{y} based on the above formula.

x	y	\hat{y}
-0.925	67.08	60.44
-0.85	58.67	56.10
-0.75	54.66	50.89
-0.65	51.72	46.33
-0.55	43.70	42.42
-0.45	41.12	39.17
-0.35	39.71	36.56
-0.25	35.34	34.61
-0.15	33.35	33.30
-0.05	34.69	32.65
0.05	34.05	32.65
0.15	34.48	33.30
0.25	34.66	34.61
0.35	35.23	36.56
0.45	35.60	39.17
0.55	40.13	42.42
0.65	42.56	46.33
0.75	46.37	50.89
0.85	49.28	56.10
0.925	55.70	60.44

The coefficient of determination R^2 measures how well predicted values fit the real data.

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.87$$

The result indicates that the model $d\sigma$ explains 87% of the variance in the data.

Electroweak model

The following differential cross section formula from electroweak theory results in a better fit to the data.¹

$$\frac{d\sigma}{d\Omega} = F(s)(1 + \cos^2\theta) + G(s)\cos\theta$$

where

$$F(s) = \frac{\alpha^2}{4s} \left(1 + \frac{g_V^2}{\sqrt{2}\pi} \left(\frac{m_Z^2}{s - m_Z^2} \right) \left(\frac{sG}{\alpha} \right) + \frac{(g_A^2 + g_V^2)^2}{8\pi^2} \left(\frac{m_Z^2}{s - m_Z^2} \right)^2 \left(\frac{sG}{\alpha} \right)^2 \right)$$

$$G(s) = \frac{\alpha^2}{4s} \left(\frac{\sqrt{2}g_A^2}{\pi} \left(\frac{m_Z^2}{s - m_Z^2} \right) \left(\frac{sG}{\alpha} \right) + \frac{g_A^2 g_V^2}{\pi^2} \left(\frac{m_Z^2}{s - m_Z^2} \right)^2 \left(\frac{sG}{\alpha} \right)^2 \right)$$

and

$$g_A = -0.5$$

 $g_V = -0.0348$
 $m_Z = 91.17 \,\text{GeV}$
 $G = 1.166 \times 10^{-5} \,\text{GeV}^{-2}$

The corresponding formula for \hat{y} is

$$\hat{y} = 2\pi \left[F(s)(1+x^2) + G(s)x \right] \times (\hbar c)^2 \times 10^{37}$$

where $\sqrt{s} = 29\,\mathrm{GeV}$ is the center of mass collision energy. Here are the predicted values \hat{y} based on the above formula.

¹F. Mandl and G. Shaw, Quantum Field Theory Revised Edition, 316.

x	y	\hat{y}
-0.925	67.08	65.59
-0.85	58.67	60.84
-0.75	54.66	55.07
-0.65	51.72	49.96
-0.55	43.70	45.49
-0.45	41.12	41.69
-0.35	39.71	38.53
-0.25	35.34	36.02
-0.15	33.35	34.17
-0.05	34.69	32.97
0.05	34.05	32.42
0.15	34.48	32.53
0.25	34.66	33.28
0.35	35.23	34.69
0.45	35.60	36.75
0.55	40.13	39.47
0.65	42.56	42.83
0.75	46.37	46.85
0.85	49.28	51.52
0.925	55.70	55.45

The coefficient of determination \mathbb{R}^2 is

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.98$$

The result indicates that electroweak theory explains 98% of the variance in the data.

Notes

Here are a few notes about how the scripts work.

In component notation the traces become sums over the repeated index α .

$$\operatorname{Tr}\left((\not p_3+M)\gamma^{\mu}(\not p_4-M)\gamma^{\nu}\right)=(\not p_3+M)^{\alpha}{}_{\beta}\gamma^{\mu\beta}{}_{\rho}(\not p_4-M)^{\rho}{}_{\sigma}\gamma^{\nu\sigma}{}_{\alpha}$$
$$\operatorname{Tr}\left((\not p_2-m)\gamma_{\mu}(\not p_1+m)\gamma_{\nu}\right)=(\not p_2-m)^{\alpha}{}_{\beta}\gamma_{\mu}{}^{\beta}{}_{\rho}(\not p_1+m)^{\rho}{}_{\sigma}\gamma_{\nu}{}^{\sigma}{}_{\alpha}$$

To convert the above formulas to Eigenmath code, the γ tensors need to be transposed so that repeated indices are adjacent to each other. Also, multiply γ^{μ} by the metric tensor to lower the index.

Define the following 4×4 matrices.

Then

$$(\not\!\!p_3 + M)^\alpha{}_\beta \gamma^{\mu\beta}{}_\rho (\not\!\!p_4 - M)^\rho{}_\sigma \gamma^{\nu\sigma}{}_\alpha \quad \rightarrow \quad \text{T1 = contract(dot(X3,gammaT,X4,gammaT),1,4)}$$

$$(\not\!\!p_2 - m)^\alpha{}_\beta \gamma_\mu{}^\beta{}_\rho (\not\!\!p_1 + m)^\rho{}_\sigma \gamma_\nu{}^\sigma{}_\alpha \quad \rightarrow \quad \text{T2 = contract(dot(X2,gammaL,X1,gammaL),1,4)}$$

Next, multiply matrices and sum over repeated indices. The dot function sums over ν then the contract function sums over μ . The transpose makes the ν indices adjacent as required by the dot function.

$$\operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu}) \operatorname{Tr}(\cdots \gamma_{\mu} \cdots \gamma_{\nu}) \rightarrow \operatorname{contract}(\operatorname{dot}(\mathtt{T1}, \operatorname{transpose}(\mathtt{T2})))$$