

General information

Designation

Prunus avium

Typical uses

Furniture; turnery; decorative ware;

Cellulose/Hemicellulose/Lignin/12%H2O

Composition overview

Compositional summary

Renewable content

·	
Material family	Natural
Base material	Wood (hardwood)

100

%

Composition detail (polymers and natural materials)

	Wood	100	%
--	------	-----	---

Price

Price	* 3.04	-	4.88	USD/lb	
-------	--------	---	------	--------	--

Physical properties

Density	0.0199	-	0.0242	lb/in^3		
---------	--------	---	--------	---------	--	--

Mechanical properties

wechanical properties				
Young's modulus	* 0.197	-	0.22	10^6 psi
Yield strength (elastic limit)	* 0.383	-	0.461	ksi
Tensile strength	* 0.638	-	0.769	ksi
Elongation	* 0.94	-	1.15	% strain
Compressive strength	* 0.777	-	0.95	ksi
Flexural modulus	0.18	-	0.2	10^6 psi
Flexural strength (modulus of rupture)	* 0.638	-	0.769	ksi
Shear modulus	* 0.0205	-	0.028	10^6 psi
Shear strength	* 4.48	-	5.44	ksi
Rolling shear strength	* 0.165	-	0.495	ksi
Bulk modulus	* 0.102	-	0.113	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	* 3.85	-	4.7	HV
Hardness - Brinell	3.92	-	4.79	ksi
Hardness - Janka	* 866	-	1.06e3	lbf
Fatigue strength at 10^7 cycles	* 0.191	-	0.231	ksi

Cherry (prunus avium) (t)

BEDOFILE						
Mechanical loss coefficient (tan delta)	* 0.02	-	0.026			
Differential shrinkage (radial)	0.16	-	0.18	%		
Differential shrinkage (tangential)	0.26	-	0.3	%		
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%		
Tangential shrinkage (green to oven-dry)	* 6.8	-	11.5	%		
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%		
Work to maximum strength	* 0.0906	-	0.11	ft.lbf/in^3		
Impact & fracture properties						
Fracture toughness	* 0.39	-	0.477	ksi.in^0.5		
Thermal properties						
Glass temperature	171	-	216	°F		
Maximum service temperature	248	-	284	°F		
Minimum service temperature	* -99.4	-	-9.4	°F		
Thermal conductivity	* 0.0537	-	0.0659	BTU.ft/hr.ft^2.°F		
Specific heat capacity	0.396	-	0.408	BTU/lb.°F		
Thermal expansion coefficient	* 16.1	-	21.8	µstrain/°F		
Electrical properties						
Electrical properties Electrical resistivity	* 2.1e14	_	7e14	µohm.cm		
Dielectric constant (relative permittivity)	* 3.49		4.27	ропп.сп		
Dissipation factor (dielectric loss tangent)	* 0.047	_	0.057			
Dielectric strength (dielectric breakdown)	* 25.4	_	50.8	V/mil		
Dielectife Changan (dielectife broakdom)	20.1		00.0	· · · · · · · · · · · · · · · · · · ·		
Magnetic properties						
Magnetic type	Non-mag	gnetic	;			
Optical properties						
Transparency	Opaque					
Transparency	Opaque					
Bio-data						
Food contact	Yes					
Restricted substances risk indicators						
RoHS (EU) compliant grades?	✓					
Durability						
Water (fresh)	Limited (
Water (salt)	Limited (
Weak acids	Limited (
Strong acids	Unaccep	Unacceptable				

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources				

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones,	2008)); 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	270	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0426	-	0.0471	lb/lb
Fine machining energy (per unit wt removed)	* 603	-	666	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	lb/lb
Grinding energy (per unit wt removed)	* 1e3	-	1.11e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.175	-	0.193	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	-	69.3

Notes

Warning

Cherry (prunus avium) (t)

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links	
ProcessUniverse	
Reference	
Shape	

General information

Designation

Prunus serotina

Typical uses

Furniture; fine veneer panels; architectural woodwork; coffins; woodenware novelties; patterns; paneling; limited market in gunstocks.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O						
Material family	Natural					
Base material	Wood (ha	Wood (hardwood)				
Renewable content	100			%		
Composition detail (polymers and natura	al materials)					
Wood	100			%		
Price						
Price	* 3.04	-	4.88	USD/lb		
Physical properties						
Density	0.0181	-	0.0224	lb/in^3		
Mechanical properties						
Young's modulus	* 0.152	-	0.171	10^6 psi		
Yield strength (elastic limit)	* 0.305	-	0.365	ksi		
Tensile strength	0.508	-	0.609	ksi		
Elongation	* 0.98	-	1.2	% strain		
Compressive strength	0.621	-	0.759	ksi		
Flexural modulus	0.138	-	0.155	10^6 psi		
Flexural strength (modulus of rupture)	* 0.493	-	0.624	ksi		
Shear modulus	* 0.0157	-	0.0218	10^6 psi		
Shear strength	* 4.59	-	5.58	ksi		
Rolling shear strength	* 0.17	-	0.508	ksi		
Bulk modulus	* 0.0783	-	0.0885	10^6 psi		
Poisson's ratio	* 0.02	-	0.04			
Shape factor	5.6					
Hardness - Vickers	3.8	-	4.65	HV		
Hardness - Brinell	* 3.31	-	4.03	ksi		
Hardness - Janka	854	-	1.05e3	lbf		

Cherry (prunus serotina) (t)

BEDUPICK				
Fatigue strength at 10^7 cycles	* 0.148	-	0.187	ksi
Mechanical loss coefficient (tan delta)	* 0.023	-	0.03	
Differential shrinkage (radial)	* 0.14	-	0.17	%
Differential shrinkage (tangential)	* 0.23	-	0.28	%
Radial shrinkage (green to oven-dry)	3.3	-	4.1	%
Tangential shrinkage (green to oven-dry)	6.4	-	7.8	%
Volumetric shrinkage (green to oven-dry)	10.4	-	12.7	%
Work to maximum strength	* 0.0858	-	0.104	ft.lbf/in^3
Impact & fracture properties				
Fracture toughness	* 0.343	-	0.42	ksi.in^0.5
The annual array antice				
Thermal properties Glass temperature	171	_	216	°F
Maximum service temperature	248	_	284	 °F
Minimum service temperature	* -99.4	_	-9.4	°F
Thermal conductivity	0.0924	-	0.11	BTU.ft/hr.ft^2.°F
•	0.396		0.408	BTU/lb.°F
Specific heat capacity Thermal expansion coefficient	* 15.4	-	21	
Thermal expansion coefficient	15.4	-	Z I	µstrain/°F
Electrical properties				
Electrical resistivity	* 3.78e14	-	5.64e14	µohm.cm
Dielectric constant (relative permittivity)	* 3.27	-	3.99	
Dissipation factor (dielectric loss tangent)	* 0.043	-	0.052	
Dielectric strength (dielectric breakdown)	* 25.4	-	50.8	V/mil
Magnetic properties				
Magnetic type	Non-mag	netic	;	
Optical properties				
Transparency	Opaque			
Bio-data				
Food contact	Yes			
Restricted substances risk indicators				
RoHS (EU) compliant grades?	V			
Durability				
Water (fresh)	Limited u	se		
Water (salt)	Limited u	se		
Weak acids	Limited u	se		

Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
Sources					

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones, 2	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 239	-	264	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0417	-	0.0461	lb/lb
Fine machining energy (per unit wt removed)	* 551	-	609	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.0962	-	0.106	lb/lb
Grinding energy (per unit wt removed)	* 898	-	993	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.157	-	0.173	lb/lb

Recycling and end of life

Recycle	×	
Recycle fraction in current supply	8.55 - 9.45 %	
Downcycle	✓	
Combust for energy recovery	✓	
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb	
Combustion CO2	* 1.69 - 1.78 lb/lb	
Landfill	✓	
Biodegrade	✓	

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	- 69.3	

Notes

Cherry (prunus serotina) (t)

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

ProcessUniverse	
Reference	
Shape	