Minería de Datos IIC2433

Modelos de Clasificación Regresión Logística Vicente Domínguez

¿Qué veremos esta clase?

- ¿Qué es el aprendizaje automático (machine learning)?
- Clasificación
- Modelo de Regresión Logística

Knowledge Discovery in Databases

Aprendizaje de máquina

(Machine Learning)

Darle a los computadores la habilidad de realizar una actividad, sin programarlos explícitamente.

*La minería de datos y el aprendizaje de máquina se traslapan y no tienen límites claros

Programación tradicional (explícita)

Kasparov vs. Deep Blue (1997)

Aprendizaje de máquina

Lee Sedol vs. AlphaGo (2016)

Aprendizaje de máquina

Tipos de tareas

- Aprendizaje supervisado
 - Clasificación
 - Regresión
- Aprendizaje no supervisado
 - Clustering
 - Aprendizaje por refuerzo
 - o etc

Aprendizaje supervisado Clasificación

Tarea para el computador:

Decir si en una foto hay un perro o un gato

Aprendizaje supervisado

Clasificación

Conjunto de entrenamiento etiquetado

Aprendizaje supervisado

Clasificación

¿Qué es eso?

Aprendizaje **no supervisado**Clustering

Tarea para el computador:

Identificar grupos de elementos similares

Aprendizaje no supervisado

Clustering

Conjunto de datos no etiquetados

Aprendizaje de máquina

Tipos de tareas

- Aprendizaje supervisado (necesita etiquetas)
 - Clasificación
 - Regresión
- Aprendizaje no supervisado (no necesita etiquetas)
 - Clustering
 - Aprendizaje por refuerzo
 - o etc

Clasificación

1. Etapa de entrenamiento

Conjunto de entrenamiento

Algoritmo de clasificación

Clasificador entrenado

Dato Etiqueta
Gato
Perro
Perro

Gato

Gato

Perro

- Árboles de decisión
- Naïve Bayes
- KNN
- SVM
- etc...

Clasificación

2. Etapa de clasificación

Datos no etiquetados

Dato	Etiqueta
	?
	?
	?
	?
	?
77	?

Clasificador entrenado

que obtuvimos en la etapa 1

Clases (Etiquetas)

Calendario

Martes	Jueves	Clase Martes - 1	Clase Martes - 2	Ayudantía Jueves
8-mar	10-mar	Intro Administrativo, El problema de aprender	Manejo de datos	Ayudantía Pandas y librerías
15-mar	17-mar	Regresión Lineal	Regresión Lineal	
22-mar	24-mar	Regresión Logística	Regresión Logística	Ayudantía Tarea
29-mar	31-mar	Clasificadores - Evaluación	KNN	
5-abr	7-abr	Árbol de decisión	Árbol de decisión	
12-abr	14-abr	Ensamble	Random Forest, Gradient Boosted Trees	FERIADO (JUEVES SANTO)

Regresiones Lineales

- Técnica estadística donde se trata de ajustar parámetros de una función lineal sobre un conjunto de datos.
- Se busca predecir el valor de una variable dependiente cuantitativa (predicha) utilizando variables independientes (predictores)
- Finalmente, queremos determinar cómo afecta nuestra variable independiente a la dependiente

$$Y = \alpha + \beta X$$

¿Cómo podemos utilizar una regresión lineal como un clasificador?

- ¿Hay alguna propiedad o modelamiento que debamos hacer en ella?
- ¿Alguna idea?
- ¿Qué valores debería tener Y?

$$Y = \alpha + \beta X$$

- Se puede ajustar una regresión para cada clase
- Luego, cambiamos el valor de Y de cada instancia por:
 - Y = 1 si pertenece a la clase
 - Y = 0 si no pertenece
- Ahora, si me llega un valor nuevo:
 - Calculo el valor predicho por cada regresión.
 - El valor más alto obtenido por una regresión me dirá la clase que predeciré de dicha instancia

- ¿Basta sólo esto?
- ¿Está acotado el output de la regresión lineal a valores entre 0 y
 1?
- ¿Cómo distribuye el valor del Y predicho?

Las siguientes slides están basadas en las del profesor Mauricio Arriagada

 Modelamos la salida del clasificador deseado como una función de probabilidad

 Si reducimos la salida de una regresión lineal al intervalo [0,1], podríamos usar esa salida como P (Y = y)

 Si reducimos la salida de una regresión lineal al intervalo [0,1], podríamos usar esa salida como P (Y = y)

 Si reducimos la salida de una regresión lineal al intervalo [0,1], podríamos usar esa salida como P (Y = y)

- Otro punto de vista: estamos haciendo una regresión sobre las probabilidades (log odds)
- Log odds: log de la proporción de obtener un "éxito" (codificado como 1) sobre obtener "fracaso" (codificado como 0)
- Entonces, lo que realmente estamos haciendo es una regresión en log odds:

$$\log \frac{\theta}{(1-\theta)} = \beta_0 + \sum_{j=1}^{d} \beta_j x_j \qquad \theta = \frac{1}{1 + e^{-(\beta_0 + \sum_{j=1}^{d} \beta_j x_j)}}$$

(Logit)

(Sigmoide)

• Finalmente, lo que se busca es un W (pesos) tal que se optimice

$$max \ P(Y|\theta)$$

$$\theta = \frac{1}{1 + e^{-(\beta_0 + \sum_{j=1}^d \beta_j x_j)}}$$

Descenso del gradiente

- A pesar de que con las regresiones lineales podemos encontrar los parámetros de forma analítica, eso muchas veces no es el caso.
- La mayoría de las veces se utiliza un método de descenso de gradiente.