ECE 6473
Lecture 2
Date: 09/21/2015

Shaloo Rakheja
Assistant Professor
Electrical and Computer Engineering, NYU

Reading

- Power point and hand-written lecture notes posted on newclasses.nyu.edu
- <u>Sections 3.3.1–3.3.2, 5.1–5.4</u> from Digital Integrated Circuits by Jan M. Rabaey et al.

MOSFET analysis

- Recap from 09/14/2015
 - MOSFET I-V characteristics
 - Transistor Resistance
 - Sub-threshold Conduction (read from posted lecture notes and discuss in office hours)
- MOSFET capacitance
- Introduction to Inverter functionality

MOSFET

CMOS process has two types of transistors: NFET and PFET

MOSFET

NICCT

DEET

	INFE	PFEI
Body or substrate	p-doped	n-doped
Source/Drain contacts	n+ doped	p+ doped
Current	Flows from drain to source (I_{DS})	Flows from source to drain (I _{SD})
Current carriers	Electrons	Holes
Threshold voltage	Positive	Negative
Relevant terminal voltages	V_{gs} , V_{ds} , V_{bs}	V_{sg} , V_{sd} , V_{sb}

- In MOSFETs, threshold voltage is the <u>control voltage</u>. It tells whether or not the transistor is conducting.
- Threshold voltage is fixed by the fabrication process.

NFET I-V characteristics

Modes of operation

Cut-off or "OFF"

Ideally in cut-off, the transistor must not conduct any current.

Active or "ON"

(V_{gs}-V_{Tn}) is the SATURATION voltage

NFET I-V model for hand calculation

Active region: $V_{gs} \ge V_{Tn}$

Linear (V_{ds} < V_{gs}-V_{Tn}):
$$I_{DS} = (\mu_n C_{ox}) \left(\frac{W}{L} \right) \left[(V_{gs} - V_{Tn}) V_{ds} - \frac{V_{ds}^2}{2} \right]$$

Saturation (V_{ds}
$$\geq$$
 V_{gs}-V_{Tn}): $I_{DS} = \frac{1}{2} \left(\mu_n C_{ox} \right) \left(\frac{W}{L} \right) \left(V_{gs} - V_{Tn} \right)^2 \left(1 + \lambda V_{ds} \right)$

 κ_n = ($\mu_n C_{ox}$): Process parameter —> decided by the foundry. Designers CANNOT tweak it.

 $\beta_n = \kappa_n \times (W/L)$ —> Designers can tweak W/L ratio. Hence, β_n is a design parameter.

λ: Channel-length modulation. Also considered fixed by foundry.

Threshold voltage, V_{Tn}

$$V_{Tn} = V_{T0} + \gamma \left(\sqrt{\left(2 \left| \phi_f \right| - V_{bs} \right)} - \sqrt{2 \left| \phi_f \right|} \right)$$

 V_{T0} : Process parameter. Fixed by the foundry.

γ: Body-effect coefficient. Fixed by the foundry.

φ_f: Bulk Fermi potential. Fixed by the foundry

- V_{Tn} is fixed by the foundry.
- Designers can control V_{bs} voltage through circuit design.
- When $V_{bs} = 0V$, V_{Tn} cannot be tweaked.

NFET I-V characteristics

PFET I-V model for hand calculation

Active region:
$$V_{sg} \ge \left| V_{Tp} \right|$$

Linear (V_{sd} < V_{sg}+V_{Tp}):
$$I_{SD} = \left(\mu_h C_{ox}\right) \left(\frac{W}{L}\right) \left[\left(V_{sg} + V_{TP}\right)V_{sd} - \frac{V_{sd}^2}{2}\right]$$

Saturation (V_{sd}
$$\geq$$
 V_{sg} +V_{Tp}): $I_{SD} = \frac{1}{2} \left(\mu_h C_{ox} \right) \left(\frac{W}{L} \right) \left(V_{sg} + V_{TP} \right)^2 \left(1 + \frac{\lambda}{L} V_{sd} \right)$

 κ_p = ($\mu_h C_{ox}$): Process parameter —> decided by the foundry. Designers CANNOT tweak it.

 $\beta_p = \kappa_p \times (W/L)$ —> Designers can tweak W/L ratio. Hence, β_p is a design parameter.

λ: Channel-length modulation. Also considered fixed by foundry.

NFET versus PFET

In CMOS digital design, we will use both NFETs and PFETs for complementary logic.

Very important point: For the same C_{ox} , $\kappa_n > \kappa_p$

Differential resistance of the transistor

Differential resistance of the transistor is a useful concept for analog design. It is also called small signal resistance.

$$r = \left(\frac{\partial I_{DS}}{\partial V_{ds}}\right)^{-1}$$

Linear region

$$r = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right) \left[\left(V_{gs} - V_{Tn}\right) - V_{ds}\right]} \qquad r = \frac{2}{\mu_n C_{ox} \left(\frac{W}{L}\right) \left(V_{gs} - V_{Tn}\right)^2 \lambda}$$

Saturation region

$$r = \frac{2}{\mu_n C_{ox} \left(\frac{W}{L}\right) \left(V_{gs} - V_{Tn}\right)^2 \lambda}$$

If $\tilde{\lambda} = 0$, then $r = \infty$ (ideal current source).

Very useful for designing current mirror circuits in analog space.

Large signal resistance of the transistor

Large signal resistance of the transistor is a useful concept for digital design.

$$R = \left(\frac{\Delta I_{DS}}{\Delta V_{ds}}\right)^{-1}$$

Say
$$V_{gs} = V_{dd}$$

V_{ds} changes from 0 to V_{dd}

What is R?

When $V_{ds} = 0V$, $I_{DS} = 0$.

When $V_{ds} = V_{dd}$, $I_{DS} = Saturation current$

Large signal resistance of the transistor

Large signal resistance of the transistor is a useful concept for digital design.

$$R = \left(\frac{\Delta I_{DS}}{\Delta V_{ds}}\right)^{-1}$$

Say
$$V_{gs} = V_{dd}$$

V_{ds} changes from 0 to V_{dd}

What is R?

When
$$V_{ds} = 0V$$
, $I_{DS} = 0$.
When $V_{ds} = V_{dd}$, $I_{DS} = Saturation current$

$$R = \left(\frac{I_{DS,sat}}{V_{dd}}\right)^{-1}$$

$$\frac{2V_{dd}}{(\mu_n C_{ox})\left(\frac{W}{L}\right)(V_{dd} - V_{Tn})^2 (1 + \lambda V_{dd})}$$

Problem:

Discharging time of a capacitor through a NFET

Question:

Obtain the time constant for discharging of the capacitor through the NFET.

$$R_{eq} = \frac{1}{2} \left(R_1 + R_2 \right)$$

Large signal resistance at $V_{ds} = V_{dd}$

Large signal resistance at $V_{ds} = V_{dd}/2$

Problem: Charging time of a capacitor through a PFET

Calculating equivalent resistance, Req

$$R_{eq} = \frac{3V_{dd}}{4I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{dd} \right)$$

$$I_{DSAT} = \frac{1}{2} (\mu C_{ox}) \left(\frac{W}{L} \right) \left[(V_{dd} - V_T)^2 \right]$$

Use the values of μ , C_{ox} , V_T , (W/L) corresponding to either NFET or PFET depending on analysis.

Equivalent resistance

$$R_{eq} = \frac{3V_{dd}}{2(\mu C_{ox}) \left(\frac{W}{L}\right) (V_{dd} - V_T)^2} \left(1 - \frac{5}{6}\lambda V_{dd}\right)$$

Observations:

(W/L) **1**, Req **↓**

 (μC_{ox}) \uparrow , Req \downarrow

Vdd ♣, Req 🛊

Try the MATLAB file given in class

Equivalent resistance in Jan. M. Rabaey's book

The analysis we have presented in class is based on averaging the resistances to find R_{eq} .

A more accurate analysis is given in Eq. (3.41) and (3.42) in Chapter 3 of Jan M. Rabaey's book.

Using the approach in the book, the value of R_{eq} is given as

$$R_{eq} = \frac{3V_{dd}}{4I_{DSAT}} \left(1 - \frac{7}{9} \lambda V_{dd} \right)$$

$$I_{DSAT} = \frac{1}{2} (\mu C_{ox}) \left(\frac{W}{L} \right) \left[(V_{dd} - V_T)^2 \right]$$

This factor changes. Not a big deal, since mostly $\lambda V_{dd} \ll 1$.

Summary: charging and discharging of capacitors through NFET and PFET

- Time constant of charging and discharging of capacitance is always given as $\tau = 0.69 R_{eq} C$
- R_{eq} : Equivalent resistance of the transistor.
- To compute R_{eq} , we must take average of initial resistance of transistor (R_1) and value at half way through the transition (R_2) .
- That is, $R_{eq} = \frac{1}{2}(R_1 + R_2)$
- C is the total capacitance that is being charged or discharged.

Summary: charging and discharging of capacitors through NFET and PFET

Time constant of charging and discharging of capacitance is always given as $\tau = 0.69 R_{aa}C$

Summary: charging and discharging of capacitors through NFET and PFET

- If NFET is used to discharge the capacitor, the final voltage across the capacitor will be 0.
- If PFET is used to charge the capacitor, the final voltage across the capacitor will be V_{dd} .

In CMOS logic:

- when a circuit "node" needs to be discharged to ground, we must use NFET to discharge. NFETs form the pull-down network (PDN) in CMOS logic.
- When a circuit "node" needs to be charged to Vdd, we must use PFET to charge. PFETs form the pull-up network (PUN) in CMOS logic.

The MOSFET capacitance

The MOSFET capacitance

- a. Gate capacitance
- b. Source overlap capacitance
- c. Drain overlap capacitance
- d. Source-body junction capacitance
- e. Drain-body junction capacitance

all capacitances depend on width and length of the device.

Except for gate capacitance, other capacitances are parasitic capacitances.

The MOSFET capacitance

- The gate capacitance is the gate voltage dependent capacitance of the Metal-Oxide-Semiconductor structure and depends on the oxide material and the oxide thickness.
- The overlap caps are between gate and source/drain terminals.
 They are parasitic caps. and does not contribute to the charge. The importance of the overlap cap will be introduced later in "Miller effect" discussion.
- The junction capacitances are due to p-n junction between the n+ source/drain and p-type body (for NFET). They are also parasitic capacitances and depends on the junction doping and drain-to-body and source-to-body biases.
- All capacitances depends on the length and/or width of the devices.

The gate and overlap capacitance

gate capacitance:

$$C_{gate} = C_{ox}WL = \frac{\mathcal{E}}{t_{ox}}WL$$

overlap capacitance:

$$C_{ov} = C_{ox}WX_{ov} = \frac{\mathcal{E}}{t_{ox}}WX_{ov}$$

The gate capacitance

For digital logic we are most interested in "on" (i.e. inversion) and "off" (i.e. in accumulation or weak depletion) devices.

Junction or Diffusion capacitance

$$\begin{split} &C_{Junction} = C_{bottom} + C_{sidewall} = C_{j} \times AREA + C_{jsw} \times PERIMETER \\ &= C_{j}WL_{S} + C_{jsw} \left(W + 2L_{S}\right) \end{split}$$

 $C_i \& C_{isw}$ are technology and voltage dependent parameter

Junction or Diffusion capacitance

substrate=0 reverse-bias junction cap

Highly non-linear (voltage-dependent)

$$C_{j} = \frac{C_{j0}}{\left(1 - \frac{V_{jun}}{\phi_{0}}\right)^{m}}$$

C_{j0}: junction capacitance under zero bias

V_{jun}: junction voltage (negative for reverse biased junctions)

 ϕ_0 : built-in junction bias

m: grading coefficient (1/3 (linear

junction) or 1/2 (abrupt jn.))

Junction or Diffusion capacitance

$$C_j = \frac{C_{j0}}{(1 - V_D I \phi_0)^m}$$

m = 0.5: abrupt junction m = 0.33: linear junction

Linearizing junction capacitance

An easy way to linearize the junction capacitance is given as

$$C_{j} = k_{eq}C_{j0}$$

$$k_{eq} = \frac{-\phi_{0}^{m}}{(V_{high} - V_{low})(1-m)} \left[(\phi_{0} - V_{high})^{1-m} - (\phi_{0} - V_{low})^{1-m} \right]$$

- The factor k_{eq} is the linearizing factor.
- \bullet C_{j0} is the junction capacitance per unit area under zero bias conditions.

Model for manual analysis

gate capacitance:

$$C_{gate} = \frac{\mathcal{E}}{t_{ox}} WL$$

overlap capacitance:

$$C_{ov} = \frac{\varepsilon}{t_{ox}} W X_{ov}$$

Junction capacitance:

$$C_{Junction} = C_{j}WL_{S} + C_{jsw}(W + 2L_{S})$$

$$C_{j} \& C_{jsw} \text{ are tech. param.}$$

CMOS inverter analysis

- a. Steady state or DC operation
- b. Switching characteristics
- c. Power dissipation

CMOS inverter

- Rail-to-rail voltage swing
- Logic levels are independent of device sizes ratioless logic
- Low-impedance path to V_{dd} or ground
- Infinite input impedance infinite drivability
- No direct path between V_{dd} and ground in steady state

CMOS inverter

 The NFET (Mn) is good at pulling down "C" to ground.

Inverter functionality

$$\beta_p = \kappa_p \times (W/L)_p$$

$$\beta_n = \kappa_n \times (W/L)_n$$

Typically:
$$\kappa_n > \kappa_p$$

Why:

Because $\mu_n > \mu_h$

Inverter functionality

Low output level = 0High output level = V_{dd}

Inverter transient response (HSPICE sim.)

CMOS inverter analysis

Steady state or DC characteristics Robustness and noise tolerance

Voltage transfer characteristics (VTC)

VTC tells us V_{out} versus V_{in} for the inverter.

Voltage transfer characteristics (VTC)

VTC tells us V_{out} versus V_{in} for the inverter.

Voltage conditions:

NFET: $V_{gsn} = V_{in}$, $V_{dsn} = V_{out}$

 $\overline{\mathbf{V}_{out}}$ **PFET**: $V_{sgp} = V_{dd} - V_{in}$, $V_{sdp} = V_{dd} - V_{out}$

DC characteristics:

 $I_{NFET}(V_{gsn}, V_{dsn}, V_{thn}) = I_{PFET}(V_{sgp}, V_{sdp}, V_{thp})$

Key: Need to determine the operating region of NFET and PFET for different input and output voltage

Voltage transfer characteristics (VTC)

DC characteristics:

$$I_{NFET}(V_{gsn}, V_{dsn}, V_{thn}) = I_{PFET}(V_{sgp}, V_{sdp}, V_{thp})$$

NFET Regions

$$cut - off: V_{in} < V_{thn}, V_{out} \sim V_{DD}:$$

$$saturation: V_{in} > V_{thn}, V_{out} > V_{in} - V_{thn}$$

$$linear: V_{in} > V_{thn}, V_{out} < V_{in} - V_{thn}$$

PFET Regions

$$\begin{aligned} &linear: V_{in} < V_{DD} - \left| V_{thp} \right|, V_{DD} - V_{out} < V_{DD} - V_{in} - \left| V_{thp} \right| \\ &saturation: V_{in} < V_{DD} - \left| V_{thp} \right|, V_{DD} - V_{out} > V_{DD} - V_{in} - \left| V_{thp} \right| \\ &cut - off: V_{in} > V_{DD} - \left| V_{thp} \right|, V_{out} \sim 0 \end{aligned}$$

Voltage transfer characteristics (VTC) graphically explained

Switching threshold voltage

 $V_M = V_{out} = V_{in}$ —> known as switching threshold or the trip point.

Noise margins

"a" and "b" are points with gain = 1

VIL: low noise margin

V_{IH}: high noise margin

What do noise margins signify physically?

- Noise margins signify robustness to noise.
- An input signal within (0, V_{IL}) voltage levels will always be considered as logic "0" or LOW.
- An input signal within (V_{IH}, V_{DD}) levels will always be considered as logic "1" or HIGH.

Switching threshold (V_M) computation

At $V_{in} = V_{out} = V_M$, both NFET and PFET are saturated.

$$V_{M} = \frac{V_{dd} - |V_{Tp}| + \sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{Tn}}{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$

$$Recall:$$

$$\beta_{n} = (\mu_{n}Cox)(W/L)_{n}$$

$$\beta_{p} = (\mu_{h}Cox)(W/L)_{p}$$

For
$$V_M = rV_{DD} \Rightarrow \sqrt{\frac{\beta_n}{\beta_p}} = \frac{(1-r)V_{DD} - |V_{thp}|}{(rV_{DD} - V_{thn})}$$

To achieve
$$V_M = 0.5V_{DD}$$
 with $|V_{thp}| = V_{thn} \Rightarrow \beta_n/\beta_p = 1$
Normally, $\mu_n/\mu_p = 2$, $W_p/L_p = 2(W_n/L_n)$ (assuming, $C_{oxp} = C_{oxn}$)

Design of switching threshold

Stronger PFET —> difficult high-to-low transition —> higher switching threshold (V_M)

Stronger NFET —> difficult low-to-high transition —> low switching threshold (V_M)

Proper choice of (β_n/β_p) is necessary to achieve a desired switching threshold (V_M)

CMOS inverter analysis

Switching characteristics Performance (speed)

Low to high transition time in inverter

Input: High —> Low

Output: Low —> High

$$t_{pLH} = 0.69 R_{eq,p} C$$

High to low transition time in inverter

Input: Low —> High

Output: High —> Low

$$t_{pHL} = 0.69 R_{eq,n} C$$

Inverter transient response

Inverter transient response from HSPICE

Propagation delay

$$t_{p} = 0.5(t_{pLH} + t_{pHL})$$

$$= 0.69C_{L} \frac{(R_{eq,n} + R_{eq,p})}{2}$$

Rise time:

10% to 90% of V_{dd} $t_r = ln(9)R_{eq,p}C_L$

Fall time:

90% to 10% of V_{dd} $t_f = ln(9)R_{eq,n}C_L$

Inverter transient response from HSPICE

Propagation delay

$$t_{p} = 0.5(t_{pLH} + t_{pHL})$$

$$= 0.69C_{L} \frac{(R_{eq,n} + R_{eq,p})}{2}$$

Rise time:

10% to 90% of V_{dd} $t_r = ln(9)R_{eq,p}C_L$

Fall time:

90% to 10% of V_{dd} $t_f = ln(9)R_{eq,n}C_L$ Next class we will study more details of inverter sizing based on desired fall time, rise time ...

Next class on 09/28/2015

- Recap from 09/21/2015
 - MOSFET capacitances
 - Inverter DC characteristics
 - Definitions of rise time, fall time, propagation delay
- Calculation of inverter delay and sizing
- Power dissipation of inverter