

Teil VI

Relationale Theorie

Relationale Theorie

- 1. Formalisierung
- 2. Rechnen mit FDs
- 3. Mehr zu Normalformen
- 4. Entwurfsverfahren

Lernziele für heute

- Vertiefte Kenntnisse der theoretischen Grundlagen des relationalen Entwurfs
- Korrektheit der Normalisierung
- Details des Syntheseverfahrens

Formalisierung

Wiederholung: Formalisierung Relationenmode UNIVERSITÄT MAGDEBURG

Attribute und Domänen

- *U* nichtleere, endliche Menge: Universum
- $A \in \mathcal{U}$: Attribut
- $\mathcal{D} = \{D_1, \dots, D_m\}$ Menge endlicher, nichtleerer Mengen: jedes D_i : Wertebereich oder Domäne
- lacksquare total definierte Funktion $\mathrm{dom}:\mathcal{U}\longrightarrow\mathcal{D}$
- dom(A): **Domäne von** A $w \in dom(A)$: **Attributwert** für A

Wiederholung: Formalisierung Relationenmode UNIVERSITÄT MAGDEBURG

Relationenschemata und Relationen

- $R \subseteq \mathcal{U}$: Relationenschema
- **Relation** r über $R = \{A_1, \ldots, A_n\}$ (kurz: r(R)) ist endliche Menge von Abbildungen $t: R \longrightarrow \bigcup_{i=1}^m D_i$, **Tupel** genannt
- Es gilt $t(A) \in dom(A)$ (t(A) Restriktion von t auf $A \in R$)
- für $X \subseteq R$ analog t(X) X-Wert von t
- Menge aller Relationen über R: $REL(R) := \{r \mid r(R)\}$

Wiederholung: Formalisierung Relationenmode UNIVERSITÄT MAGDEBURG

Datenbankschema und Datenbank

- Menge von Relationenschemata $S := \{R_1, \dots, R_p\}$:

 Datenbankschema
- Datenbank über S: Menge von Relationen $d := \{r_1, \ldots, r_p\}$, wobei $r_i(R_i)$
- Datenbank d über S: d(S)
- Relation $r \in d$: Basisrelation

Rechnen mit FDs

Wiederholung: Ableitung von FDs

r	Α	В	С	
	a_1	b_1	c_1	
	a_2	b_1	c_1	
	a_3	b_2	c_1	
	a_4	b_1	c_1	

- $\bullet \ \ \mathrm{genügt} \ A \!\to\! B \ \ \mathrm{und} \ B \!\to\! C$
- dann gilt auch $A \rightarrow C$
- nicht ableitbar $C \rightarrow A$ oder $C \rightarrow B$

Formale Ableitung von FDs

- Gilt für f über R $\mathbf{SAT}_R(F) \subseteq \mathbf{SAT}_R(f)$, dann **impliziert** F die FD f (kurz: $F \models f$)
- obiges Beispiel:

$$F = \{A \rightarrow B, B \rightarrow C\} \models A \rightarrow C$$

- Hüllenbildung: Ermittlung **aller** funktionalen Abhängigkeiten, die aus einer gegebenen FD-Menge abgeleitet werden können
- Hülle $F_R^+ := \{f \mid (f \text{ FD über } R) \land F \models f\}$
- Beispiel:

$$\{A \to B, B \to C\}^+ = \{A \to B, B \to C, A \to C, AB \to C, A \to BC, \dots, AB \to AB, \dots\}$$

Ableitungsregeln

$\mathbf{F}1$	Reflexivität	$X \supseteq Y \implies X \to Y$
$\mathbf{F2}$	Augmentation	$\{X \! \to \! Y\} \Longrightarrow XZ \! \to \! YZ \text{ sowie } XZ \! \to \! Y$
$\mathbf{F3}$	Transitivität	$\{X \rightarrow Y, Y \rightarrow Z\} \implies X \rightarrow Z$
$\mathbf{F4}$	Dekomposition	$\{X \rightarrow YZ\} \implies X \rightarrow Y$
$\mathbf{F5}$	Vereinigung	$\{X \rightarrow Y, X \rightarrow Z\} \implies X \rightarrow YZ$
$\mathbf{F6}$	Pseudotransitivität	$\{X \rightarrow Y, WY \rightarrow Z\} \implies WX \rightarrow Z$

F1-F3 bekannt als Armstrong-Axiome (sound, complete)

- **gültig** (sound): Regeln leiten keine FDs ab, die logisch nicht impliziert
- vollständig (complete): alle implizierten FDs werden abgeleitet
- unabhängig (independent) oder auch bzgl. ⊆ minimal: keine Regel kann weggelassen werden

6 - 10

Beweis: F1

• Annahme: $X \supseteq Y$, $X, Y \subset R$, $t_1, t_2 \in r(R)$ mit $t_1(X) = t_2(X)$

• dann folgt: $t_1(Y) = t_2(Y)$ wegen $X \supseteq Y$

• daraus folgt: $X \rightarrow Y$

Beweis: F2

- Annahme: $X \rightarrow Y$ gilt in r(R), jedoch nicht: $XZ \rightarrow YZ$
- dann müssen zwei Tupel $t_1, t_2 \in r(R)$ existieren, so dass gilt

(1)
$$t_1(X) = t_2(X)$$

(2)
$$t_1(Y) = t_2(Y)$$

(3)
$$t_1(XZ) = t_2(XZ)$$

(4)
$$t_1(YZ) \neq t_2(YZ)$$

• Widerspruch wegen $t_1(Z)=t_2(Z)$ aus (1) und (3), woraus folgt: $t_1(YZ)=t_2(YZ)$ (in Verbindung mit (4))

Beweis: F3

• Annahme: in r(R) gelten:

- (1) $X \rightarrow Y$
- (2) $Y \rightarrow Z$
- demzufolge für zwei beliebige Tupel $t_1, t_2 \in r(R)$ mit $t_1(X) = t_2(X)$ muss gelten:
 - (3) $t_1(Y) = t_2(Y)$ (wegen (1))
 - (4) $t_1(Z) = t_2(Z)$ (wegen (3) und (2))
- daher gilt: $X \rightarrow Z$

Alternative Regelmenge

B-Axiome oder RAP-Regeln

$$\begin{array}{lll} \mathbf{R} \ \, \text{Reflexivit\"at} & \{\} & \Longrightarrow & X \!\to\! X \\ \mathbf{A} \ \, \text{Akkumulation} & \{X \!\to\! YZ, Z \!\to\! AW\} & \Longrightarrow & X \!\to\! YZA \\ \mathbf{P} \ \, \text{Projektivit\"at} & \{X \!\to\! YZ\} & \Longrightarrow & X \!\to\! Y \end{array}$$

 Regelmenge ist vollständig, da Armstrong-Axiome daraus abgeleitet werden können

Membership-Problem

Membership-Problem

Kann eine bestimmte FD $X \rightarrow Y$ aus der vorgegebenen Menge F abgeleitet werden, d.h. wird sie von F impliziert?

Membership-Problem: ", $X \rightarrow Y \in F^+$?"

- Hülle einer Attributmenge X bzgl. F ist $X_F^+ := \{A \mid X \rightarrow A \in F^+\}$
- Membership-Problem kann durch das modifizierte Problem

Membership-Problem (2): "
$$Y \subseteq X_F^+$$
?"

in linearer Zeit gelöst werden

Algorithmus Closure: Ermittlung der Hülle $X_{\mathbb{R}}^{\mathbb{R}}$ bzgl. F

```
OTTO VON GUERICKE
INIVERSITÄT
MAGDEBURG
```

```
Closure (F, X):
     X^{+} := X
     repeat
         \overline{X}^+ := X^+ / * \mathbf{R} - Regel * /
         forall FDs Y \rightarrow Z \in F
              if Y \subseteq X^+ then X^+ := X^+ \cup Z^- / * \mathbf{A} - Regel * /
    until X^+ = \overline{X}^+
     return X^+
Member (F, X \rightarrow Y): /* Test auf X \rightarrow Y \in F^+ */
     return Y \subseteq \mathbf{Closure}(F, X) /* \mathbf{P}-Regel */
```

Algorithmus Closure: Beispiel

$$A \rightarrow C \in \{\underbrace{A \rightarrow B}_{f_1}, \underbrace{B \rightarrow C}_{f_2}\}^+?$$

- Member $(\{f_1,f_2\},A\rightarrow C)$
- $C \subseteq \mathbf{Closure}(\{f_1, f_2\}, A)$
- X^+ ist initial $\{A\}$, schrittweises Hinzunehmen von B und C

Überdeckungen

- ullet F heißt **äquivalent** zu G
- oder: F Überdeckung von G; kurz: $F \equiv G$ falls $F^+ = G^+$
- d.h.:

$$\forall g \in G : g \in F^+ \land \forall f \in F : f \in G^+$$

- wichtige Entwurfsaufgabe: Finden einer Überdeckung, die
 - einerseits so wenig Attribute wie möglich in ihren funktionalen Abhängigkeiten und
 - andererseits möglichst wenig funktionale Abhängigkeiten insgesamt enthält
- verschiedene Formen von Überdeckung: nicht-redundant, reduziert, minimal, ringförmig

Reduktionsoperationen

- Ziel: Entfernen überflüssiger Attribute auf linker bzw. rechter Seite von FDs
- **Linksreduktion**: entfernt unwesentliche Attribute auf der linken Seite einer FD
- Rechtsreduktion: entsprechend auf der rechten Seite
- erw. Relationenschema $\mathcal{R}=(R,\mathcal{K})$, FD-Menge F über R, A ist ein Attribut aus R und $X \to Y$ eine FD aus F

Unwesentliche Attribute

A heißt **unwesentlich** in $X \rightarrow Y$ bzgl. F, wenn

•
$$X = AZ, Z \neq X \implies (F - \{X \rightarrow Y\}) \cup \{Z \rightarrow Y\} \equiv F \text{ oder }$$

•
$$Y = AW, W \neq Y \implies (F - \{X \rightarrow Y\}) \cup \{X \rightarrow W\} \equiv F$$

Reduktionsoperationen /2

- A kann also aus der FD $X \to Y$ entfernt werden, ohne dass sich die Hülle von F ändert
- FD $X \rightarrow Y$ heißt **linksreduziert**, wenn kein Attribut in X unwesentlich ist.
- FD $X \rightarrow Y$ heißt **rechtsreduziert**, wenn kein Attribut in Y unwesentlich ist.

Minimale Überdeckung

- Eine **minimale Überdeckung** ist eine Überdeckung, die eine minimale Anzahl von FDs enthält
- Auswahl der kleinsten aller nicht-redundanten Überdeckungen
- ullet FD-Menge F heißt **minimal** gdw.

$$\forall F' [F' \equiv F \Rightarrow |F| \le |F'|]$$

 Bestimmung etwa durch reduzierte Überdeckung mit anschließender Äquivalenzklassenbildung (später)

Reduzierte Überdeckung


```
ReducedCover(F):
    forall FD X \rightarrow Y \in F /* Linksreduktion */
        forall A \in X /* A unwesentlich ? */
            if Y \subseteq \mathbf{Closure}(F, X - \{A\})
            then ersetze X \rightarrow Y durch (X - A) \rightarrow Y in F
    forall verbleibende FD X \rightarrow Y \in F /* Rechtsreduktion */
        forall B \in Y / B unwesentlich ? */
            if B \subseteq \mathbf{Closure}(F - \{X \rightarrow Y\} \cup \{X \rightarrow (Y - B)\}, X)
            then ersetze X \rightarrow Y durch X \rightarrow (Y - B)
    Eliminiere FDs der Form X \to \emptyset
    Vereinige FDs der Form X \to Y_1, X \to Y_2, \ldots zu X \to Y_1 Y_2 \ldots
    return resultierende FDs
```

Reduzierte Überdeckung: Beispiel

Geg.: FD-Menge

$$F = \{f_1 : A \to B, f_2 : AB \to C, f_3 : A \to C, f_4 : B \to A, f_5 : C \to E\}$$

- 1. Linksreduktion: bei FD f_2 Attribut A streichen, da $C \subseteq \mathbf{Closure}(F, \{A\})$ (wegen f_3)
- 2. Rechtsreduktion: FD f_3 durch $A \rightarrow \{\}$ ersetzt, da $C \subseteq \mathbf{Closure}(\{A \rightarrow B, B \rightarrow C, A \rightarrow \{\}, B \rightarrow A, C \rightarrow E\}, \{A\})$
- 3. Streichen von $A \rightarrow \{\}$
- Ergebnis:

$$\mathbf{ReducedCover}(F) = \{A \rightarrow B, B \rightarrow C, B \rightarrow A, C \rightarrow E\}$$

Äquivalenzklassen

- FDs mit äquivalenten linken Seiten werden zu einer Äquivalenzklasse zusammengefasst
- FDs $X_1 \to Y_1$ und $X_2 \to Y_2$ liegen in einer **Äquivalenzklasse**, wenn $X_1 \to X_2$ und $X_2 \to X_1$ gelten
- In einigen Fällen können nun zwei solche FDs in einer Äquivalenzklasse zu einer FD $X \rightarrow Y_1Y_2$ zusammengefasst werden
- Da die FDs einer Äquivalenzklasse in die Form $X_1 \rightarrow X_2, X_2 \rightarrow X_3, \dots, X_n \rightarrow X_1, X_1 \rightarrow Y$ überführt werden können, nennt man eine Überdeckung dieser Form eine **ringförmige** Überdeckung

Äquivalenzklassen /2

- linke Seiten sind äquivalent, wenn sie sich gegenseitig funktional bestimmen
- Relationenschema R mit $X_i, Y \subset R$, FD-Menge $X_i \to X_j$ und $X_i \to Y$ mit $1 \le i, j \le n$ kann dargestellt werden durch $(X_1, X_2, \ldots, X_n) \to Y$

Mehr zu Normalformen

Wiederholung: Integritätsbedingungen

• Identifizierende Attributmenge $K := \{B_1, \ldots, B_k\} \subseteq R$:

$$\forall t_1, t_2 \in r \ [t_1 \neq t_2 \quad \Longrightarrow \quad \exists B \in K : t_1(B) \neq t_2(B)]$$

- Schlüssel: ist minimale identifizierende Attributmenge
 - {Name, Jahrgang, Weingut} und
 - {WeinID} für WEINE
- Primattribut: Element eines Schlüssels
- Primärschlüssel: ausgezeichneter Schlüssel
- **Oberschlüssel** oder **Superkey**: jede Obermenge eines Schlüssels (= identifizierende Attributmenge)

Schüssel und Hüllenbildung

• Identifizierende Attributmenge $K := \{B_1, \dots, B_k\} \subseteq R$:

$$\forall t_1, t_2 \in r \ [t_1 \neq t_2 \quad \Longrightarrow \quad \exists B \in K : t_1(B) \neq t_2(B)]$$

$$\Longrightarrow \quad K \to R$$

• Hülle einer Attributmenge X bzgl. F ist

$$X_F^+ := \{ A \mid X \to A \in F^+ \} \quad \Longrightarrow \quad$$

- $K_F^+ = R$ $\Longrightarrow K = \text{Identifizierende Attributmenge}$
- $K_F^+ = R \land X \ minimal \ (linksreduziert)$ $\Longrightarrow K = Schlüsselkandidat$
- Attribute, die nur funktional-abhängig sind, sind nicht Teil eines Schlüssels
- Attribute, die nie funktional-abhängig sind (nur bestimmend), sind immer Teil eines Schlüssels

Wiederholung: Zweite Normalform

 partielle Abhängigkeit liegt vor, wenn ein Attribut funktional schon von einem Teil des Schlüssels abhängt

Name	Weingut	Farbe	Anbaugebiet	Region	Preis
La Rose	Ch. La Rose	Rot	Saint-Emilion	Bordeaux	39.00
Creek Shiraz	Creek	Rot	Barossa Valley	Südaustralien	7.99
Pinot Noir	Creek	Rot	Barossa Valley	Südaustralien	10.99
Zinfandel	Helena	Rot	Napa Valley	Kalifornien	5.99
Pinot Noir	Helena	Rot	Napa Valley	Kalifornien	19.99
Riesling Reserve	Müller	Weiß	Rheingau	Hessen	14.99
Chardonnay	Bighorn	Weiß	Napa Valley	Kalifornien	9.90

 $f_1\colon$ Name, Weingut o Preis

 f_2 : Name o Farbe

 f_3 : Weingut o Anbaugebiet, Region

 $f_4\colon$ Anbaugebiet o Region

Formale Definition der zweiten Normalform

- Hinweis: partiell abhängiges Attribut stören nur, wenn es kein Primattribut ist
- 2NF formal: erweitertes Relationenschema $\mathcal{R}=(R,\mathcal{K})$, FD-Menge F über R

Zweite Normalform

- Y hängt partiell von X bzgl. F ab, wenn die FD $X \rightarrow Y$ nicht linksreduziert ist
- Y hängt voll von X ab, wenn die FD $X \rightarrow Y$ linksreduziert ist
- $\mathcal R$ ist in **2NF**, wenn $\mathcal R$ in 1NF ist und jedes Nicht-Primattribut von R voll von jedem Schlüssel von $\mathcal R$ abhängt

Entwurfsverfahren

Entwurfsverfahren: Ziele

- Universum \mathcal{U} und FD-Menge F gegeben
- lokal erweitertes Datenbankschema $S = \{(R_1, \mathcal{K}_1), \dots, (R_p, \mathcal{K}_p)\}$ berechnen mit
 - T1: S charakterisiert vollständig F
 - **S1**: *S* ist in 3NF bezüglich *F*
 - **T2**: Dekomposition von \mathcal{U} in R_1, \ldots, R_p ist verbundtreu bezüglich F
 - **S2**: Minimalität, d.h. $\not\exists S': S' \text{ erfüllt } \mathbf{T1}, \mathbf{S1}, \mathbf{T2} \text{ und } |S'| < |S|$

Entwurfsverfahren: Beispiel

- Datenbankschemata schlecht entworfen, wenn nur eins dieser vier Kriterien nicht erfüllt
- Beispiel: $S = \{(AB, \{A\}), (BC, \{B\}), (AC, \{A\})\}$ erfüllt $\mathbf{T1}$, $\mathbf{S1}$ und $\mathbf{T2}$ bezüglich $F = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$ in dritter Relation AC-Tupel redundant oder inkonsistent
- korrekt: $S' = \{(AB, \{A\}), (BC, \{B\})\}$

Dekomposition

- Geg.: initiales Universalrelationenschema $\mathcal{R}=(\mathcal{U},\mathcal{K}(F))$ mit allen Attributen und einer von erfassten FDs F über R implizierten Schlüsselmenge
 - lacksquare Attributmenge $\mathcal U$ und eine FD-Menge F
 - suche alle $K \rightarrow \mathcal{U}$ mit K minimal, für die $K \rightarrow \mathcal{U} \in F^+$ gilt $(\mathcal{K}(F))$
- Ges.: Zerlegung in $D = \{\mathcal{R}_1, \mathcal{R}_2, \dots\}$ von 3NF-Relationenschemata

Dekomposition: Algorithmus


```
Decompose (\mathcal{R}):
     Setze D := \{\mathcal{R}\}
     while \mathcal{R}' \in D, das 3NF nicht erfüllt
         /* Finde Attribut A, das transitiv von K abhängig ist */
          if Schlüssel K mit K \rightarrow Y, Y \rightarrow K, Y \rightarrow A, A \not\in KY then
              /* Zerlege Relationenschema R bzgl. A */
              R_1 := R - A, R_2 := YA
              \mathcal{R}_1 := (R_1, \mathcal{K}), \ \mathcal{R}_2 := (R_2, \mathcal{K}_2 = \{Y\})
              D := (D - \mathcal{R}') \cup \{\mathcal{R}_1\} \cup \{\mathcal{R}_2\}
          end if
     end while
     return D
```

Dekomposition: Beispiel

- initiales Relationenschema R = ABC
- funktionale Abhängigkeiten $F = \{A \rightarrow B, B \rightarrow C\}$
- Schlüssel K = A

Dekomposition: Beispiel /2

- ullet initiales Relationenschema R mit Name, Weingut, Preis, Farbe, Anbaugebiet, Region
- funktionale Abhängigkeiten

```
f_1\colon \operatorname{Name}, \operatorname{Weingut} 	o\operatorname{Preis} \ f_2\colon \operatorname{Name}, \operatorname{Weingut} 	o\operatorname{Weingut} \ f_3\colon \operatorname{Name}, \operatorname{Weingut} 	o\operatorname{Name} \ f_4\colon \operatorname{Name} \ 	o\operatorname{Farbe} \ f_5\colon \operatorname{Weingut} \ 	o\operatorname{Anbaugebiet}, \operatorname{Region} \ f_6\colon \operatorname{Anbaugebiet} \ 	o\operatorname{Region}
```

Dekomposition: Bewertung

- Vorteile: 3NF, Verbundtreue
- Nachteile: restliche Kriterien nicht, reihenfolgeabhängig, NP-vollständig (Schlüsselsuche)

Details zum Syntheseverfahren

- ullet Prinzip: Synthese formt Original-FD-Menge F in resultierende Menge von Schlüsselabhängigkeiten G so um, dass $F \equiv G$ gilt
- "Abhängigkeitstreue" im Verfahren verankert
- 3NF und Minimalität wird auch erreicht, reihenfolgeunabhängig
- Zeitkomplexität: quadratisch

Vergleich Dekomposition — Synthese

Dekomposition

Synthese

Syntheseverfahren für Relationenschema R mit synthesität mägde burg

Ges.: verlustfreie und abhängigkeitstreue Zerlegung in $R_1, \ldots R_n$, wobei alle R_i in 3NF sind

```
Synthesize(F):
\hat{F} := \mathbf{MinimalCover}(F) \ /^* \ \textit{Bestimme minimale Überdeckung */}
Bilde Äquivalenzklassen C_i von FDs aus \hat{F} mit gleichen oder äquivalenten linken Seiten, d.h. C_i = \{X_i \to A_{i1}, X_i \to A_{i2}, \dots\}
Bilde zu jeder Äquivalenzklasse C_i ein Schema der Form R_{C_i} = \{X_i \cup \{A_{i1}\} \cup \{A_{i2}\} \cup \dots\}
if keines der Schemata R_{C_i} enthält einen Schlüssel von R
then erzeuge weiteres Relationenschema R_K mit Attributen aus R, die Schlüssel bilden return \{R_K, R_{C_1}, R_{C_2}, \dots\}
```

Synthese Beispiel

FD-Menge

$$F = \{A \rightarrow B, AB \rightarrow C, A \rightarrow C, B \rightarrow A, C \rightarrow E\}$$

minimale Überdeckung

$$\hat{F} = \{A \rightarrow B, B \rightarrow C, B \rightarrow A, C \rightarrow E\}$$

Zusammenfassung zu Äquivalenzklassen

$$C_1 = \{A \rightarrow B, B \rightarrow C, B \rightarrow A\}$$

 $C_2 = \{C \rightarrow E\}$

Syntheseergebnis

$$(ABC, \{\{A\}, \{B\}\}), (CE, \{C\})$$

Erreichung der Verbundtreue

- Erreichen der Verbundtreue durch einfachen "Trick":
 - \blacksquare Erweitern der Original-FD-Menge F um $\mathcal{U} \! \to \! \delta$ um Dummy-Attribut δ
 - lacksquare δ wird nach Synthese entfernt
- Beispiel: $\{A \rightarrow B, C \rightarrow E\}$
 - Syntheseergebnis $(AB, \{A\}), (CE, \{C\})$ ist nicht verbundtreu, da Universalschlüssel in keinem Schema enthalten ist
 - Dummy-FD $ABCE \rightarrow \delta$; reduziert auf $AC \rightarrow \delta$
 - liefert drittes Relationenschema

$$(AC, \{AC\})$$

Synthese: Beispiel

FD-Menge

```
egin{array}{lll} f_1 &=& \{ 	ext{Name}, 	ext{Weingut} 
ightarrow 	ext{Preis} \} \ f_2 &=& \{ 	ext{Name}, 	ext{Weingut} 
ightarrow 	ext{Weingut} \} \ f_3 &=& \{ 	ext{Name}, 	ext{Weingut} 
ightarrow 	ext{Name} \} \ f_4 &=& \{ 	ext{Name} 
ightarrow 	ext{Farbe} \} \ f_5 &=& \{ 	ext{Weingut} 
ightarrow 	ext{Anbaugebiet}, 	ext{Region} \} \ f_6 &=& \{ 	ext{Anbaugebiet} 
ightarrow 	ext{Region} \} \ \end{array}
```

Synthese: Beispiel /2

- Ablauf
 - 1. minimale Überdeckung: Entfernen von f_2 , f_3 sowie Region in f_5
 - 2. Äquivalenzklassen:

```
egin{array}{lll} C_1 &=& \{ 	exttt{Name}, 	exttt{Weingut} 
ightarrow 	exttt{Preis} \} \ C_2 &=& \{ 	exttt{Name} 
ightarrow 	exttt{Farbe} \} \ C_3 &=& \{ 	exttt{Weingut} 
ightarrow 	exttt{Anbaugebiet} \} \ C_4 &=& \{ 	exttt{Anbaugebiet} 
ightarrow 	exttt{Region} \} \end{array}
```

3. Ableitung der Relationenschemata

Zusammenfassung

- Formalisierung des Relationenmodells und der funktionalen Abhängigkeiten
- Algorithmen zur Normalisierung

Kontrollfragen

 Was muß beim Syntheseverfahren beachtet werden, um Spezialfälle wie zyklische Abhängigkeiten oder fehlende Schlüssel zu berücksichtigen?

