#### ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

| Кафедра Прочности Летательных Аппара | тов |
|--------------------------------------|-----|
|--------------------------------------|-----|

Дипломная работа на степень бакалавра на тему:

## Исследование прочности конструкции центроплана для крыльев большого удлинения.

| Студент                          | Дынников Ю.А. |
|----------------------------------|---------------|
| Научный руководитель<br>степень? | Шаныгин А.Н.  |
| Зав. кафедрой                    | Замула ГН     |

### Оглавление

| 1 | Практическая значимость задачи                                           | 3             |
|---|--------------------------------------------------------------------------|---------------|
| 2 | Решение задачи           2.1 Создание параметрической модели центроплана | <b>5</b><br>5 |
| 3 | Валидация решения                                                        | 10            |

### Введение

В настоящее время стремительно развиваются беспилотные летательные аппараты. Некоторые из них конструируются под задачи разведки, которые налагают на ЛА требования малозаметности. [1]

#### Глава 1

### Практическая значимость задачи

В настоящее время всё большее внимание уделяется принципиальной схеме самолета "летающее крыло". Данная схема применяется в том числе и для разработки беспилотных летательных аппаратов, предназначенных для разведки. В конструктировании таких самолетов особое внимание уделяется требованиям малозаметности и увеличения аэродинамического качества, и как слествие, возможности барражировать в течение длительного времени.

Для удовлетворения данным требованиям конструкцию самолета создают максимально "плоской" – так, в подобных конструкциях строительная высота фюзеляжа сравнима с высотой двигателя. Один из способов создания подобной конструкции – использование изогнутого кессона. (Рис.1.1). Примером такого самолета служит концепт американского беспилотного летательного аппарата RQ-180 (Рис.1.2).



Рис. 1.1: Вид сечения центроплана в месте стыка передней кромки крыла и фюзеляжа с изображением двигателя

Так как вес конструкции является одним из важнейших критериев при выборе конструкции самолета, (что-то дописать), при проектировании самолета необходимо знать, какой вклад в вес конструкции совершает выбор такой формы кессона. С целью получения таких сведений в данной работе проводится анализ влияния различных форм кессона на вес самолета.

Стоит заметить, что для того, чтобы в полной мере понимать целесообразность выбора той или иной формы центроплана, необходимо проводить комплексный анализ с учетом того, как меняются аэродинамических характеристик самолета при выборе той или иной формы кессона, и выбирать оптимальный вариант, исходя из критериев как прочности, так и аэродинамики. В данной работе проводится анализ лишь с точки зрения прочности



Рис. 1.2: Концепт американского БПЛА RQ-180

конструкции, аэродинамические характеристики и нагрузки приняты постоянными.

Полученные в работе данные возможно использовать при дальнейшем проектировании самолетов схемы "летающее крыло".

#### Глава 2

### Решение задачи

#### 2.1 Создание параметрической модели центроплана

Для анализа влияния формы кессона на вес самолета и его аэродинамические характеристики была создана параметрическая модель, представляющая из себя упрощенную модель центроплана. В упрощенной модели кессон заменен коробом переменного прямоугольного сечения с перегородками. На него передаются нагрузки путем приложения аэродинамических нагрузок на упрощенную модель крыла — короб постоянного прямоугольного сечения (Рис.2.1). Материал всех панелей - алюминий, толщина каждой панели постоянна, панели без вырезов. Все остальные части самолёта опущены для простоты.



Рис. 2.1: Упрощенная модель центроплана

Для модели центроплана имеются два параметра: относительная координата нижней точки сечения и строительная высота в плоскости симметрии самолета. Кривые, описывающие нижнюю и верхнюю поверхность кессона выбраны кубическим сплайном через заданные исходя из параметров точки с условием равенства нулю производных в точках стыка фюзеляжа с крылом и в плоскости симметрии самолета (Рис.2.2).



Рис. 2.2: Пример модельного сечения центроплана

Были выбраны 42 пары значений параметров. Для каждой пары была проведена оптимизация толщин панелей кессона с целью удовлетворения требованиям прочности конструкции, а именно: среднее напряжение в каждой панели не должно превышать значения

допускаемого напряжения, принятого равным  $35 {\rm kr/mm^2}$ . Оптимизация проводилась путем вычисления запаса прочности для каждой пластины с последующим делением толщины панели на полученное значение (так называемый алгоритм  $\sigma/\sigma$ ). Итоговые результаты вычислений приведены в таблицах 2.1, 2.2 и на  ${\rm Puc.}2.3$ 

 Таблица 2.1: Зависимость площади панелей центроплана и веса кессона от параметров центроплана

|    | Вес кессона [кг] |         |         |         | Площадь панелей центроплана [м²] |        |         |        |  |
|----|------------------|---------|---------|---------|----------------------------------|--------|---------|--------|--|
| N  | Верхние          | Нижние  | Боковые |         | Верхние                          | Нижние | Боковые | 2      |  |
|    | панели           | панели  | стенки  | $\sum$  | панели                           | панели | стенки  | Σ      |  |
| 1  | 297.182          | 294.551 | 12.561  | 604.294 | 2.730                            | 2.730  | 4.000   | 9.520  |  |
| 2  | 225.261          | 237.378 | 27.672  | 490.313 | 2.730                            | 2.740  | 5.210   | 10.720 |  |
| 3  | 190.080          | 222.327 | 49.159  | 461.564 | 2.730                            | 2.760  | 5.820   | 11.340 |  |
| 4  | 161.544          | 211.467 | 65.963  | 438.972 | 2.730                            | 2.760  | 6.450   | 11.950 |  |
| 5  | 146.581          | 199.989 | 66.844  | 413.415 | 2.730                            | 2.780  | 7.090   | 12.590 |  |
| 6  | 134.746          | 191.293 | 70.912  | 396.952 | 2.730                            | 2.800  | 7.640   | 13.200 |  |
| 7  | 350.816          | 374.021 | 47.679  | 772.515 | 2.910                            | 2.910  | 4.000   | 9.850  |  |
| 8  | 253.752          | 259.311 | 53.180  | 566.245 | 2.910                            | 2.850  | 5.210   | 10.990 |  |
| 9  | 213.881          | 226.655 | 57.618  | 498.154 | 2.910                            | 2.830  | 5.840   | 11.570 |  |
| 10 | 188.442          | 205.603 | 62.047  | 456.092 | 2.910                            | 2.810  | 6.450   | 12.150 |  |
| 11 | 174.466          | 196.192 | 66.506  | 437.164 | 2.910                            | 2.780  | 7.090   | 12.770 |  |
| 12 | 154.328          | 195.919 | 70.963  | 421.210 | 2.910                            | 2.770  | 7.680   | 13.350 |  |
| 13 | 363.681          | 391.414 | 48.862  | 803.953 | 3.010                            | 3.000  | 4.000   | 10.000 |  |
| 14 | 258.118          | 275.555 | 53.209  | 586.883 | 3.010                            | 2.930  | 5.230   | 11.160 |  |
| 15 | 225.322          | 238.220 | 57.604  | 521.145 | 3.010                            | 2.890  | 5.820   | 11.720 |  |
| 16 | 201.612          | 214.755 | 62.046  | 478.413 | 3.010                            | 2.860  | 6.440   | 12.310 |  |
| 17 | 171.877          | 203.370 | 66.418  | 441.665 | 3.010                            | 2.840  | 7.050   | 12.900 |  |
| 18 | 163.553          | 201.207 | 70.912  | 435.673 | 3.010                            | 2.820  | 7.660   | 13.480 |  |
| 19 | 380.079          | 398.521 | 49.032  | 827.631 | 3.050                            | 3.050  | 4.000   | 10.110 |  |
| 20 | 267.143          | 279.590 | 53.134  | 599.866 | 3.050                            | 2.980  | 5.210   | 11.240 |  |
| 21 | 231.158          | 238.954 | 57.667  | 527.779 | 3.050                            | 2.930  | 5.820   | 11.820 |  |
| 22 | 197.327          | 218.001 | 62.040  | 477.368 | 3.050                            | 2.910  | 6.410   | 12.390 |  |
| 23 | 191.553          | 205.935 | 66.481  | 463.971 | 3.050                            | 2.870  | 7.070   | 12.980 |  |
| 24 | 158.352          | 203.948 | 70.897  | 433.199 | 3.050                            | 2.850  | 7.660   | 13.560 |  |
| 25 | 383.525          | 410.374 | 50.351  | 844.249 | 3.110                            | 3.110  | 4.000   | 10.210 |  |
| 26 | 279.228          | 288.331 | 53.186  | 620.745 | 3.110                            | 3.030  | 5.210   | 11.350 |  |
| 27 | 233.614          | 249.500 | 57.583  | 540.696 | 3.110                            | 2.990  | 5.820   | 11.910 |  |
| 28 | 213.922          | 221.683 | 62.125  | 497.728 | 3.110                            | 2.950  | 6.450   | 12.500 |  |
| 29 | 180.457          | 210.067 | 66.523  | 457.046 | 3.110                            | 2.920  | 7.070   | 13.070 |  |
| 30 | 167.492          | 205.426 | 71.001  | 443.918 | 3.110                            | 2.880  | 7.640   | 13.660 |  |
| 31 | 401.418          | 424.040 | 50.413  | 875.868 | 3.160                            | 3.160  | 4.000   | 10.330 |  |
| 32 | 285.115          | 297.451 | 53.649  | 636.214 | 3.160                            | 3.070  | 5.230   | 11.470 |  |
| 33 | 251.131          | 255.015 | 57.656  | 563.801 | 3.160                            | 3.040  | 5.860   | 12.030 |  |
| 34 | 212.049          | 229.543 | 62.067  | 503.658 | 3.160                            | 3.000  | 6.450   | 12.610 |  |
| 35 | 191.030          | 215.968 | 66.550  | 473.548 | 3.160                            | 2.970  | 7.070   | 13.170 |  |
| 36 | 170.765          | 209.184 | 70.962  | 450.912 | 3.160                            | 2.920  | 7.660   | 13.740 |  |
| 37 | 431.880          | 451.562 | 51.974  | 935.418 | 3.230                            | 3.230  | 4.000   | 10.440 |  |
| 38 | 291.199          | 306.178 | 54.263  | 651.640 | 3.230                            | 3.130  | 5.210   | 11.560 |  |
| 39 | 253.054          | 265.073 | 57.593  | 575.719 | 3.230                            | 3.090  | 5.820   | 12.140 |  |
| 40 | 222.782          | 233.403 | 61.948  | 518.132 | 3.230                            | 3.050  | 6.400   | 12.700 |  |
| 41 | 197.192          | 218.301 | 66.423  | 481.917 | 3.230                            | 3.020  | 7.030   | 13.270 |  |
| 42 | 175.591          | 210.828 | 70.877  | 457.295 | 3.230                            | 2.970  | 7.660   | 13.840 |  |

Таблица 2.2: Зависимость площади панелей центроплана и веса кессона от параметров центроплана относительно варианта с прямым кессоном

| N  | Верхние | Нижние     | -       |          |         |        |                   |       |
|----|---------|------------|---------|----------|---------|--------|-------------------|-------|
| 1  |         | 1111111111 | Боковые | $\nabla$ | Верхние |        |                   |       |
| 1  | панели  | панели     | стенки  | $\sum$   | панели  | панели | Боковые<br>стенки | Σ     |
| 1  | 0.492   | 0.487      | 0.021   | 1.000    | 0.287   | 0.287  | 0.420             | 1.000 |
| 2  | 0.373   | 0.393      | 0.046   | 0.811    | 0.287   | 0.288  | 0.547             | 1.126 |
| 3  | 0.315   | 0.368      | 0.081   | 0.764    | 0.287   | 0.290  | 0.611             | 1.191 |
| 4  | 0.267   | 0.350      | 0.109   | 0.726    | 0.287   | 0.290  | 0.678             | 1.255 |
| 5  | 0.243   | 0.331      | 0.111   | 0.684    | 0.287   | 0.292  | 0.745             | 1.322 |
| 6  | 0.223   | 0.317      | 0.117   | 0.657    | 0.287   | 0.294  | 0.803             | 1.387 |
| 7  | 0.581   | 0.619      | 0.079   | 1.278    | 0.306   | 0.306  | 0.420             | 1.035 |
| 8  | 0.420   | 0.429      | 0.088   | 0.937    | 0.306   | 0.299  | 0.547             | 1.154 |
| 9  | 0.354   | 0.375      | 0.095   | 0.824    | 0.306   | 0.297  | 0.613             | 1.215 |
| 10 | 0.312   | 0.340      | 0.103   | 0.755    | 0.306   | 0.295  | 0.678             | 1.276 |
| 11 | 0.289   | 0.325      | 0.110   | 0.723    | 0.306   | 0.292  | 0.745             | 1.341 |
| 12 | 0.255   | 0.324      | 0.117   | 0.697    | 0.306   | 0.291  | 0.807             | 1.402 |
| 13 | 0.602   | 0.648      | 0.081   | 1.330    | 0.316   | 0.315  | 0.420             | 1.050 |
| 14 | 0.427   | 0.456      | 0.088   | 0.971    | 0.316   | 0.308  | 0.549             | 1.172 |
| 15 | 0.373   | 0.394      | 0.095   | 0.862    | 0.316   | 0.304  | 0.611             | 1.231 |
| 16 | 0.334   | 0.355      | 0.103   | 0.792    | 0.316   | 0.300  | 0.676             | 1.293 |
| 17 | 0.284   | 0.337      | 0.110   | 0.731    | 0.316   | 0.298  | 0.741             | 1.355 |
| 18 | 0.271   | 0.333      | 0.117   | 0.721    | 0.316   | 0.296  | 0.805             | 1.416 |
| 19 | 0.629   | 0.659      | 0.081   | 1.370    | 0.320   | 0.320  | 0.420             | 1.062 |
| 20 | 0.442   | 0.463      | 0.088   | 0.993    | 0.320   | 0.313  | 0.547             | 1.181 |
| 21 | 0.383   | 0.395      | 0.095   | 0.873    | 0.320   | 0.308  | 0.611             | 1.242 |
| 22 | 0.327   | 0.361      | 0.103   | 0.790    | 0.320   | 0.306  | 0.673             | 1.301 |
| 23 | 0.317   | 0.341      | 0.110   | 0.768    | 0.320   | 0.301  | 0.743             | 1.363 |
| 24 | 0.262   | 0.337      | 0.117   | 0.717    | 0.320   | 0.299  | 0.805             | 1.424 |
| 25 | 0.635   | 0.679      | 0.083   | 1.397    | 0.327   | 0.327  | 0.420             | 1.072 |
| 26 | 0.462   | 0.477      | 0.088   | 1.027    | 0.327   | 0.318  | 0.547             | 1.192 |
| 27 | 0.387   | 0.413      | 0.095   | 0.895    | 0.327   | 0.314  | 0.611             | 1.251 |
| 28 | 0.354   | 0.367      | 0.103   | 0.824    | 0.327   | 0.310  | 0.678             | 1.313 |
| 29 | 0.299   | 0.348      | 0.110   | 0.756    | 0.327   | 0.307  | 0.743             | 1.373 |
| 30 | 0.277   | 0.340      | 0.117   | 0.735    | 0.327   | 0.303  | 0.803             | 1.435 |
| 31 | 0.664   | 0.702      | 0.083   | 1.449    | 0.332   | 0.332  | 0.420             | 1.085 |
| 32 | 0.472   | 0.492      | 0.089   | 1.053    | 0.332   | 0.322  | 0.549             | 1.205 |
| 33 | 0.416   | 0.422      | 0.095   | 0.933    | 0.332   | 0.319  | 0.616             | 1.264 |
| 34 | 0.351   | 0.380      | 0.103   | 0.833    | 0.332   | 0.315  | 0.678             | 1.325 |
| 35 | 0.316   | 0.357      | 0.110   | 0.784    | 0.332   | 0.312  | 0.743             | 1.383 |
| 36 | 0.283   | 0.346      | 0.117   | 0.746    | 0.332   | 0.307  | 0.805             | 1.443 |
| 37 | 0.715   | 0.747      | 0.086   | 1.548    | 0.339   | 0.339  | 0.420             | 1.097 |
| 38 | 0.482   | 0.507      | 0.090   | 1.078    | 0.339   | 0.329  | 0.547             | 1.214 |
| 39 | 0.419   | 0.439      | 0.095   | 0.953    | 0.339   | 0.325  | 0.611             | 1.275 |
| 40 | 0.369   | 0.386      | 0.103   | 0.857    | 0.339   | 0.320  | 0.672             | 1.334 |
| 41 | 0.326   | 0.361      | 0.110   | 0.797    | 0.339   | 0.317  | 0.738             | 1.394 |
| 42 | 0.291   | 0.349      | 0.117   | 0.757    | 0.339   | 0.312  | 0.805             | 1.454 |

Рис. 2.3: Зависимость веса кессона от параметров центроплана



### Глава 3

# Валидация решения

# Список таблиц

| 2.1                                                 | Зависимость | площади | панелей | центроплана | и веса | кессона | ot | параметров |   |
|-----------------------------------------------------|-------------|---------|---------|-------------|--------|---------|----|------------|---|
|                                                     | центроплана |         |         |             |        |         |    |            | 7 |
| 2.2                                                 | Зависимость | площади | панелей | центроплана | и веса | кессона | ot | параметров |   |
| пентроплана относительно варианта с прямым кессоном |             |         |         |             |        |         | 8  |            |   |

# Список иллюстраций

| 1.1 | .1 Вид сечения центроплана в месте стыка передней кромки крыла и фюзеляжа |    |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------|----|--|--|--|--|--|--|
|     | с изображением двигателя                                                  | 3  |  |  |  |  |  |  |
| 1.2 | Концепт американского БПЛА RQ-180                                         | 4  |  |  |  |  |  |  |
| 2.1 | Упрощенная модель центроплана                                             | Ę. |  |  |  |  |  |  |
| 2.2 | Пример модельного сечения центроплана                                     | 5  |  |  |  |  |  |  |
| 2.3 | Зависимость веса кессона от параметров центроплана                        | Ć  |  |  |  |  |  |  |

## Литература

- [1] Diaz Jesus. Usaf confirms new secret stealth plane. http://gizmodo.com/5419363/usaf-confirms-new-secret-stealth-plane, 2009.
- [2] Rabbert Klein. Black holes and their relation to hiding eggs. *Theoretical Easter Physics*, 2010. (to appear).