Examenes estudiantes

Jeremias Iturriza Agustin Rebechi

Formulacion del problema

-

Nuesto objetivo es predecir si un alumno aprobará o no en función de diversas características. Esto ayudaria a identificar estudiantes en riesgo y brindar apoyo necesario, proporcionando una herramienta útil para ayudar a profesores e instituciones educativas en toma de decisiones que mejoren el rendimiento académico.

Es por eso que utilizaremos tecnicas de machine learning para este problema de clasificacion

Presentacion del dataset


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30641 entries, 0 to 30640
Data columns (total 14 columns):
    Column
                        Non-Null Count Dtype
                        30641 non-null object
    Gender
 0
    EthnicGroup
                        28801 non-null object
    ParentEduc
                        28796 non-null object
    LunchType
                        30641 non-null object
 3
                        28811 non-null object
    TestPrep
    ParentMaritalStatus 29451 non-null object
    PracticeSport
                        30010 non-null object
                        29737 non-null object
    IsFirstChild
    NrSiblings
                        29069 non-null float64
    TransportMeans
                        27507 non-null object
    WklyStudyHours
                        29686 non-null
                                        object
 11 MathScore
                         30641 non-null int64
    ReadingScore
                        30641 non-null int64
 13 WritingScore
                        30641 non-null int64
dtypes: float64(1), int64(3), object(10)
memory usage: 3.3+ MB
```

Fuente: https://www.kaggle.com/datasets/desalegngeb/students-exam-scores

- 30641 filas
- 14 columnas

Variables categóricas:

Gender, EthnicGroup, ParentEducation, LunchType, TestPrep, ParentMaritalStatus, PractiveSport, TransportMeans, WklyStudyHours

Variables numéricas:

NrSilbings, MathScore, ReadingScore, WritingScore

Genero

Grupo etnico

Almuerzo

Curso de preparacion

Estado civil de los padres

Deporte

Primer hijo

Horas semanales de estudio

Media de notas

¿Matemáticas con la media más baja?

Preparacion de los datos

Del analisis exploratorio decidimos:

 Remplazar los valores faltantes con SimpleImputer y utilizando la estrategia most frequent.

['female' 'group C' 'some college' 'standard' 'none' 'married' 'sometimes' 'yes' 1.0 'school_bus' '5 - 10' 64 65 67]

Valores categoricos: Codificación por OneHotEncoding

['Gender', 'EthnicGroup', 'ParentEduc', 'LunchType', 'TestPrep', 'ParentMaritalStatus', 'PracticeSport', 'IsFirstChild', 'TransportMeans', 'WklyStudyHours']

Preparacion de los datos

Del analisis exploratorio decidimos:

- Crear una unica columna:
 - Hallando el promedio entre las 3 notas, si es mayor o igual a 6 se considera aprobado y se coloca 1, si es menos se coloca un O

 También se realizo una división de los datos en conjuntos de Train y Test de la siguiente forma

Modelo a utilizar

Utilizaremos un pipeline para realizar varios pasos de procesamiento y modelado

- Polynomial features: Para generar caracteristicas polinomiales
- Standar Scaler: Para realizar un escalado de características y asegurar una media de 0 y desviación de 1
- Logistic Regression: Implementa un algoritmo de regresión logística. max_iter de 2000

Determinacion de hiper-parametros

Se utilizo gridsearch para elegir los mejores hiper-parámetros

{'logi__C': 0.1 'poli__degree': 1}

Metricas 📶

Matriz de confusion

Accuracy: 0.738456518192201

Precicion: 0.766711357977399

F1-Score: 0.8331772296805078

Recall: 0.912260711030082

Metricas 1

Features más importantes

Conclusiones

El modelo tiene un buen desempeño y nos da información sobre features mas importantes

En cuanto a si los modelos responden la pregunta planteada, señalan algunas características influyentes: tipo de almuerzo, educación de los padres, preparación al test, horas semanales de estudio y si practica deporte

Algunas acciones a realizar para mejorar el rendimiento académico entre los alumnos es asegurar la buena alimentación, realizar deporte y fomentar hábitos de estudio

Muchas gracias