

Aprendizado estatístico e computacional

Análise de componentes principais ou Principal components analysis

Componentes Principais

Variáveis independentes

$$\text{Var}[X_k] = \frac{\sum\limits_{i=1}^{n} (X_k^i - E[X_k])(X_k^i - E[X_k])}{n-1}$$

· Variáveis dependentes

$$Cov[X_l, X_k] = \frac{\sum\limits_{i=1}^{n} (X_l^i - E[X_l])(X_k^i - E[X_k])}{n-1}$$

Componentes Principais $\begin{array}{c|c} \text{Var}[X_1] \neq \text{Var}[X_2] \\ \text{Cov}[X_1, X_2] \neq 0 \\ \hline X_2, E[X_2] \\ \hline \end{array}$

mvrnorm(n = 3000, rep(0, 2), matrix(c(10, 3, 3, 2), 2, 2))[,1]

Componentes Principais

Componentes Principais

Componentes Principais

Matriz de covariância

$$\Sigma_{\mathbf{X}} = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T]$$

$$\mathbf{X} = \{X_1, X_2, \dots, X_n\}$$

$$\mu = \{\overline{X}_1, \overline{X}_2, \dots, \overline{X}_n\}$$

Componentes Principais

Transformação de Karhunen-Loève (KL)

$$\Sigma_{\mathbf{Y}} = A^T \Sigma_{\mathbf{X}} A = \Lambda$$

• Assim, temos um problema de diagonalização de uma matriz positiva, que envolve achar os autovalores e os autovetores de $\Sigma_{\mathbf{X}}$

Componentes Principais

· Da álgebra linear,

$$A\mathbf{x} = \lambda \mathbf{x}$$

 Se A é uma matriz simétrica quadrada (n x n), ela tem n pares de autovalores e autovetores

Componentes Principais

$$A = \left[\begin{array}{cc} 1 & -5 \\ -5 & 1 \end{array} \right]$$

$$\begin{bmatrix} 1 & -5 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = 6 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

• Para λ = 6, o autovetor é $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$

Componentes Principais

$$A = \left[\begin{array}{cc} 1 & -5 \\ -5 & 1 \end{array} \right]$$

$$\begin{bmatrix} 1 & -5 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = 4 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

• Para λ = 4, o autovetor é $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

Componentes Principais

 Da álgebra linear, os autovalores são a solução da equação:

$$|A - \lambda \mathbf{I}| = 0$$

· Ou, no nosso caso:

$$|\Sigma_{\mathbf{X}} - \lambda \mathbf{I}| = 0$$

Componentes Principais

Componentes Principais

· Exemplo:

$$\begin{vmatrix} 10 - \lambda & 3 \\ 3 & 2 - \lambda \end{vmatrix} = (10 - \lambda)(2 - \lambda) - 9 = 0$$
$$\lambda^2 - 12\lambda + 11 = 0$$
$$\lambda_1 = 11 \qquad \lambda_2 = 1$$

Componentes Principais

· Para encontrar o autovetor correspondente, aplica-se a equação:

$$A\mathbf{x} = \lambda \mathbf{x}$$

· Substituindo-se os valores de lambda

Componentes Principais

$$\left[\begin{array}{cc} 10 & 3 \\ 3 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = 11 \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \qquad \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 3 \\ 1 \end{array}\right]$$

$$\mathbf{e} = \mathbf{x}/\sqrt{\mathbf{x}'\mathbf{x}}$$
 $\begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{bmatrix}$

$$\left[\begin{array}{cc} 10 & 3 \\ 3 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \left[\begin{array}{c} e_1 \\ e_2 \end{array}\right] = \left[\begin{array}{c} 1/\sqrt{10} \\ -3/\sqrt{10} \end{array}\right]$$

Componentes Principais

Componentes Principais

- Possíveis aplicações:
 - Compressão de imagens
 - Representação de imagens
 - Classificação
- · Eigenfaces:
 - Kirby and Sirovich
 - Pentland, Turk, Moghaddam, and Starner

Eigenfaces

- · Recortam-se várias faces de modo que fiquem os olhos e o queixo
- · Converte-se o recorte em um vetor
- Empacota-se os vetores como colunas de uma matriz
- · Adicionam-se zeros suficientes para a matriz ficar quadrada
- · Calculam-se os autovalores e os autovetores da matriz

Eigenfaces

Algumas faces reconstruídas

Classificação usando PCA - idéia

Classificação usando PCA - idéia

Classificação usando PCA - idéia

- · Comandos do R
- data1 = mvrnorm(n=3000, c(-1,-1), matrix(c(2,0,0,2),2,2))
- data2 = mvrnorm(n=3000, c(3,5), matrix(c(2,0,0,2),2,2))
- points(data2,col="green")
- points(data1,col="red")

Classificação usando PCA - idéia

- str(data1)
- num [1:3000, 1:2] -1.996 -0.387 -0.908 -0.564 -1.907 ...
- str(data2)
- num [1:3000, 1:2] 2.82 4.01 2.51 1.75 2.32
- datat=rbind(data1,data2)
- str(datat)
- num [1:6000, 1:2] -1.996 -0.387 -0.908 -0.564 -1.907 ...

Classificação usando PCA - idéia

- Exercício usando o comando princomp do pacote MASS (ou equivalente de outro pacote, ou feito à mão), calcule as componentes principais do dataset
- Usando o comando abline (ou equivalente), desenhe uma linha correspondente à direção da componente principal de maior autovalor

Aprendizado estatístico e computacional

Análise de aglomerados

• Exemplo usando o valor da imagem

Análise de aglomerados

 Tomando como características os valores vistos através de W, mais o número de vezes que eles apareceram, formamos o conjunto de dados de treinamento

rauus					
W ₁	W ₂	W_3	N		
0	0	0	14		
0	0	1	3		
0	1	0	4		
1	0	0	4		
0	1	4	3		
4	1	0	3		
1	4	1	2		
1	4	8	1		
8	4	1	1		
4	8	4	1		

Análise de aglomerados

Análise de aglomerados

 Retornando ao conjunto de dados, teremos uma nova coluna com os rótulos das regiões

W_1	W ₂	W_3	N	Label
0	0	0	14	Fundo
0	0	1	3	Borda
0	1	0	4	Borda
1	0	0	4	Borda
0	1	4	3	Borda
4	1	0	3	Borda
1	4	1	2	Figura
1	4	8	1	Figura
8	4	1	1	Figura
4	8	4	1	Figura

Classificadores supervisionados

Um problema difícil de visão computacional é a classificação de objetos.

Classificadores supervisionados

- A construção de classificadores também depende da escolha de bons atributos
- Depende da quantidade de exemplos de treinamento (para a construção do classificador)
- Depende da qualidade desses exemplos, ie., o quão fiéis os exemplos são em relação a distribuição de sua população

Classificadores supervisionados

Classificadores supervisionados

Classificadores supervisionados

Classificadores supervisionados

- Muitas vezes temos mais atributos que são necessários
- Nem sempre é fácil escolher e combinar bons atributos
- Quanto mais atributos, em geral, mais fácil encontrar uma separação natural das classes
- Porém, perde-se robustez. Também com o aumento da complexidade do operador

Classificadores supervisionados

Classificadores supervisionados

- Quando a complexidade aumenta demais, o classificador fica ajustado demais aos dados
- Em inglês, temos o famoso problema de "overfitting"
- Nesse caso, o erro nos dados de treinamento é zero, ou próximo
- Os erros nos dados de teste podem ser grandes

Classificadores supervisionados

Teoria de decisão - Bayes

- Abordagem puramente estatística para o problema de classificação
- Supões conhecidas as distribuições de probabilidade envolvidas no problema
- Ex: probabilidade a priori que o pescado é um salmão, ou uma robalo
- Caso essa fosse a única probabilidade conhecida, escolhe-se a classe com a maior priori

Teoria de decisão - Bayes

- Seja $P(w_1)$ a probabilidade a priori que o pescado é uma robalo
- Seja $P(w_2)$ a probabilidade a priori que o pescado é um salmão
- · Decida que o pescado é um salmão se

$$P(w_2) > P(w_1)$$

· Ou uma robalo caso contrário.

Teoria de decisão - Bayes

- Porém, esse seria um critério de decisão bem ruim, principalmente se as probabilidades são parecidas
- Caso usemos a luminosidade, podemos considerar a distribuição de probabilidade da luminosidade do pescado dado que ele seja de um certo tipo

Probabilidade condicional

Teoria de decisão - Bayes

· Sabendo que:

$$p(w_i, x) = P(w_i|x)p(x) = p(x|w_i)P(w_i)$$

Manipulando, temos a Fórmula de Bayes

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

onde

$$p(x) = \sum_{i=1}^{2} p(x|w_i) P(w_i)$$

Teoria de decisão - Bayes

- Em português, ela poderia ser escrita como:
- · Posteriori=verossimilhança*priori/evidência

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

Teoria de decisão - Bayes

• Assim, se observamos x podemos transformar a probabilidade a priori $P(w_j)$ na probabilidade a posteriori $P(w_j|x)$

Teoria de decisão - Bayes

- · A decisão poderia ser tomada por:
- se $P(w_2, x) > P(w_1, x)$
- Escolha w_2 senão, escolha w_1
- · Isso minimiza o erro:

$$P(ext{erro}|x) = P(w_1|x)$$
 Decide-se por w_2 $P(w_2|x)$ Decide-se por w_1

Redes neurais

- Conjunto de métodos de aprendizado (supervisionado, ou não) que teve grande interesse na década de 60 e na década de 90
- A inspiração desse método vem das redes neuronais, do funcionamento de um neurônio e da relação entre eles

Neurônio artificial

Redes neurais

 Chamando de net_j a contribuição de cada neurônio, e w o conjunto de pesos para cada entrada,

$$net_j = \sum_{i=1}^d x_i w_{ji} + w_{j0} = \mathbf{w}_j^t \mathbf{x}$$

 A saída do neurônio vai depender, ainda, de uma função de ativação, em geral, não linear

Redes neurais

· Para cada neurônio,

$$y_i = f(\text{net})$$

 Exemplo de uma função de ativação baseada no sinal da soma

$$f(\text{net}) = \text{Sgn}(\text{net}) = \begin{pmatrix} 1 & \text{se net} \ge 0 \\ -1 & \text{se net} < 0 \end{pmatrix}$$

Árvores de Decisão

- Indução da árvore
 - Crie uma fila com o conjunto de exemplos rotulados e o nó raiz para representá-los
 - enquanto a fila n\u00e3o estiver vazia
 - ache uma partição do conjunto que seja mais "pura"
 - Associe o critério ao nó atual
 - para cada parte, crie um novo nó na árvore
 - · adicione cada parte impura criada na fila

Árvores de Decisão

- Perguntas a serem respondidas
 - Partição binária/não-binária?
 - Qual critério de impureza?
 - Folha pura/impura?
 - E se a árvore ficar muito grande? Poda?
 - Se a folha for impura, qual o rótulo dela?
 - Missing data?

Critérios de impureza

- Objetivo: simplicidade
- Seja i(N)a impureza do nó N

$$i(N) = -\sum_{i} P(\omega_{j}) log_{2} P(\omega_{j})$$

• $P(\omega_i)$: fração dos padrões da categoria j

Critérios de impureza

- · Objetivo: simplicidade
- Impureza de informação (entropia)
- Seja i(N)a impureza do nó N

$$i(N) = -\sum_{i} P(\omega_{j}) log_{2} P(\omega_{j})$$

• $P(\omega_i)$: fração dos padrões da categoria j

Critérios de impureza

- Objetivo: simplicidade
- Impureza de classificação

$$i(N) = 1 - \max_{j} P(\omega_j)$$

 Menor probabilidade que um padrão seja mal-classificado em N

Métodos de indução

- Twoing
 - Usado para múltiplas classes
 - Testa todas as possíveis partições e acha a que melhor separa grupos de c categorias segundo um critério de impureza
- Em geral, surpreendentemente, o critério de impureza não parece influenciar o erro do classificador final

Métodos de indução

- Pode-se / deve-se parar a indução?
- Algumas vezes, induzir uma árvore perfeita (sem impurezas) pode levar ao "overfitting"
- Critérios:
 - Quando o decréscimo de impureza for menor que um certo limiar
 - Quando o erro sob validação cruzada for minimizado

Overfitting

 Dado um espaço de hipóteses H, diz-se que uma hipótese h super-ajusta o conjunto de treinamento se existir uma hipótese h´ de H que error(h) < error(h´) sobre os exemplos de treinamento, mas error(h´) < error(h) para o conjunto de todas as instâncias.

Overfitting e DTs

- Por construção, árvores de decisão super-ajustam os dados.
- Soluções:
 - Pare o processo antes
 - Pode a árvore

Overfitting e DTs

- Problema:
 - Qual o critério de parada?
- Por isso, em geral, faz-se a poda.

Poda

 Uma forma de podar é ir das folhas para a raiz, juntando-se folhas do mesmo pai, desde que isso não comprometa demais o erro do classificador.

Poda

- · Outra forma:
 - escrever todas as regras representadas pela árvore e,
 - para cada uma delas, remover as précondições que resultam em aumento da acurácia. Então,
 - ordenar as regras pela acurácia e usá-las nessa ordem para classificar.

Outros algoritmos

- · Classificador de Fisher
- KNN (K-Nearest Neighbor)
- ODT (Oblique DT)
- SVM (Support Vector Machine)
- Deep learning
- Combinação de classificadores
- · ...