

Chpt.2 Random Variables & Probability Distributions

第二章 随机变量及其分布

上节回顾

- 离散型随机变量 连续型随机变量
- 分布函数F(x) 密度函数f(x) 概率函数P(A)
- ■常用分布
- 泊松分布 $X \sim \pi(\lambda)$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \qquad k = 0, 1, 2, \dots$$

$$k=0,1,2,\cdots$$

均匀分布 $X \sim U(a, b)$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & else \end{cases}$$

指数分布 $X \sim E(\theta)$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, x > 0, \\ 0, & \text{i.e.} \end{cases}$$

$$f(x) = \begin{cases} \theta e^{-\theta x} & x > 0 \\ 0 & \text{ #...} \end{cases}$$

难点1:怎么理解概率密度函数? f(x)的含义是什么?

$$f(x) = F'(x)$$

$$f(x) = \lim_{\Delta x \to 0^{+}} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{P\{x < X \le x + \Delta x\}}{\Delta x}.$$

若不计高阶无穷小,有

$$P\{x < X \leq x + \Delta x\} \approx f(x) \Delta x$$
.

这表示 X 落在小区间 $(x,x+\Delta x]$ 上的概率近似地等于 $f(x)\Delta x$.

f(x)不表示x点处的概率,而是表示x点处无穷小区间内单位长的概率

$$P(x < X \le x + \Delta x) \approx f(x)\Delta x$$

m(点x附近 ΔV 体积 $) \approx \rho(x)\Delta V_x$

■ 难点2: 怎么理解概率为0的事件也可能发生?

对连续型随机变量而言,事件 $\{X=C\}$ 概率为0,但是一个可能 发生的事件(如在一个区间上方抛点,点可以落到任意一点x, 但是落到任意一点的概率为0)

A为不可能事件
$$\iff$$
 $A=\emptyset \neq P(A)=0$

A为必然事件
$$\iff$$
A=S $\stackrel{\Rightarrow}{\Leftarrow}$ $P(A)=1$

pp. 4 南开大学计算机学院

思考题

除了离散型和连续型,还有其他类型的随机变量吗?

思考题

除了离散型和连续型,还有其他类型的随机变量吗?

$$F(x) = \begin{cases} 0, & x < 0, \\ (1+x)/2, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

F(x)是分布函数,但它不是离散型的(因为不是阶梯型函数),

也不是连续型的(因为F(x)不连续)

[三] 正态分布

若随机变量 X 的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$$

就称 X 服从<u>正态(Normal)分布</u>,记作 $X \sim N(\mu, \sigma^2)$ 。其中, $\sigma > 0$, $-\infty < \mu < \infty$ 。

[三] 正态分布

我们来证明上述定义的f(x)的确是密度函数*。

显然 f(x) > 0;

进一步证明
$$\int_{-\infty}^{\infty} f(x) = 1$$
,即证明

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1 \xrightarrow{t=\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt = 1.$$

$$\left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt\right]^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} e^{-\frac{s^2}{2}} dt ds$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{t^2+s^2}{2}} dt ds$$

上述二重积分可用极坐标表示成

pp. 8

2.4 连续型随机变量的分布

Remark 1: 正态分布是概率论中最重要的一种分布,与<mark>二项分布</mark>、 泊松分布并称为**三大分布**。

正态分布是19世纪初高斯(Gauss)在研究测量误差时首次引进的,故正态分布又称**误差分布**或**高斯分布**。

Remark 2:对正态分布应用很广,一般说来,若影响某一数量指标的随机因素很多,而每一因素所起的作用又不很大,则这个数量指标服从正态分布。例如进行测量时,由于仪器精度、人的视力、心理因素、外界干扰等多种因素影响,测量结果大致服从正态分布,测量误差也服从正态分布。

Remark 3: 正态分布具有良好的性质,一定条件下,很多分布可用 正态分布来近似表达;另一些分布又可以通过正态分布来导出,因此,正态分布在理论研究中也相当重要。

正态分布的密度曲线是一条轴对称的钟形曲线。特点是"两头小,中间大,左右对称"。

[1] 曲线f(x) 关于 $x=\mu$ 对称。

正态分布
$$N(\mu, \sigma^2)$$
的概率密度函数为
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$

$$f(\mu - x) = f(\mu + x)$$
 $P\{\mu - h < X < \mu\} = P\{\mu < X < \mu + h\}$

[2] 当 $x = \mu$ 时,f(x)取得最大值 $\frac{1}{\sqrt{2\pi}\sigma}$

当 $x < \mu$ 时, f(x)单调递增;

 $x \to \infty$ 时, $f(x) \to 0$.

这些表明,x 离 μ 越远,f(x)的值越小。对于同样长度的区间, 当区间离 μ 越远时,X 落在此区间的概率越小。

[3] σ^2 (方差) 越大,最高点越低,f(x) 的图形越扁平,说明 X 分布比较分散,X 取值离开 μ 点远的概率也越大;

 σ^2 (方差)越小,最高点越高,说明 X 分布比较集中; f(x) 的图形越陡峭,X 取值越集中在点 μ 附近。

[4] 固定 σ ,改变 μ 的值,则图形沿着x 轴平移,而不改变其形状。

可见正态分布的概率密度曲 线的位置完全由参数µ决定, μ 称为**位置参数**。

[5] 当 μ =0, σ =1时,称为<u>标准正态分布</u>(standardized normal distribution),它的密度曲线关于纵轴对称,其密度及分布函 数特别记为 $\varphi(x)$ 和 $\Phi(x)$:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad -\infty < x < \infty$$

容易知道 $\Phi(-x)=1-\Phi(x)$.

pp. 13 南开大学计算机学院

[1] 标准正态分布概率的计算

标准正态分布的计算不容易,有专门的表格供查阅分布函数 $\Phi(x)$ 。 当 $x \ge 0$ 时, 表格中纵向间隔是0.1 ,横向间隔是0.01,这个是用线性插值法插补求得的)。

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

[1] 标准正态分布概率的计算

标准正态分布的计算不容易,有专门的表格供查阅分布函数 $\Phi(x)$ 。 当 $x \ge 0$ 时, 表格中纵向间隔是0.1 ,横向间隔是0.01,这个是用线性插值法插补求得的)。

当x < 0时,注意到

$$\Phi(x) = 1 - \Phi(-x)$$

结合 -x > 0时的 $\Phi(-x)$ 表,就可算出 x < 0时 $\Phi(x)$ 的值。

Example 设 $X\sim N(0,1)$ 。

- (1) 计算 *P*{-1<*X*<3};
- (2) 已知 $P\{X < \lambda\} = 0.9755$,求 λ 。

解: (1)
$$P(-1 < X < 3) = P(X < 3) - P(X < -1)$$

= $\Phi(3) - \Phi(-1)$
= $\Phi(3) - (1 - \Phi(1))$
= $0.9987 + 0.8413 - 1$
= 0.8400

(2) $\Phi(\lambda) = 0.9755$,求 λ 。

我们倒查表格,看看0.9755对应的值是多少。

但是,表格没有这样的值,只有相近的。

$$\Phi(1.96) = 0.9750 < \Phi(\lambda) < \Phi(1.97) = 0.9756$$

由于Φ(x)是单调不减的,故λ在1.96与1.97之间

$$1.96 < \lambda < 1.97$$

在这个小的范围内,我们把 λ 与 $\Phi(\lambda)$ 的关系近似看作线性:

$$\frac{\lambda - 1.96}{1.97 - 1.96} \approx \frac{\Phi(\lambda) - \Phi(1.96)}{\Phi(1.97) - \Phi(1.96)}$$
$$\lambda \approx 1.96 + \frac{\Phi(\lambda) - \Phi(1.96)}{\Phi(1.97) - \Phi(1.96)} (1.97 - 1.96)$$
$$\approx 1.968$$

以上思路称为线性插值法。

对一般的 $X \sim N(\mu, \sigma^2)$

可以变换为标准正态分布加以计算。

记 $Y=(X-\mu)/\sigma$ (称为X的标准化随机变量),则 Y 服从 N(0,1)。

证明:

$$\begin{split} F_{y}(y) &= P\left\{Y \le y\right\} \\ &= P\left\{X \le \sigma y + \mu\right\} \\ &= \int_{-\infty}^{\sigma y + \mu} \frac{1}{\sqrt{2\pi\sigma}} Exp\left(-(t - \mu)^{2} / 2\sigma^{2}\right) dt \end{split}$$

$$z = \frac{t - \mu}{\sigma}$$

$$=\int_{-\infty}^{y}\frac{1}{\sqrt{2\pi}}Exp(-\frac{z^2}{2})dz$$

由此可知: 若 $X \sim N(\mu, \sigma^2)$,则

$$P\{X \le x\} = P\left\{\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right\}$$
$$= P\left\{Y \le \frac{x - \mu}{\sigma}\right\}$$
$$= \Phi\left\{\frac{x - \mu}{\sigma}\right\}$$

对于任意的区间 $(x_1, x_2]$

$$P\{x_{1} < X \le x_{2}\} = P\left\{\frac{x_{1} - \mu}{\sigma} < \frac{X - \mu}{\sigma} \le \frac{x_{2} - \mu}{\sigma}\right\}$$
$$= \Phi\left(\frac{x_{2} - \mu}{\sigma}\right) - \Phi\left(\frac{x_{1} - \mu}{\sigma}\right)$$

Example 汽车设计手册中指出:人的身高服从正态分布 $X \sim N(\mu, \sigma^2)$ 。根据各国统计资料,可得各国、各民族男子身高的 μ 和 σ 。对于中国人, $\mu = 1.75$, $\sigma = 0.05$ 。现要求上下车时要低头的人不超过0.5%,车门需要多高?

解: 设大巴士车车门高位h,X为乘客的身高,则 $X \sim N(1.75, 0.05^2)$,根据题意

$$P\{X \le h\} \ge 99.5\%$$

$$P\left\{\frac{X-1.75}{0.05} \le \frac{h-1.75}{0.05}\right\} \ge 99.5\%$$

$$\Phi\left(\frac{h-1.75}{0.05}\right) \ge 99.5\%$$

$$\frac{h-1.75}{0.05} \ge 2.58$$

$$h \ge 1.879$$

如此,知道车门应该高 1.88米。

Example!!! 设 $X \sim N(\mu, \sigma^2)$,

求
$$P\{|X-\mu| < \sigma\}, P\{|X-\mu| < 2\sigma\}, P\{|X-\mu| < 3\sigma\}$$

解: 设
$$Y = (X - \mu) / \sigma$$
,则 $Y \sim N(0, 1)$ 。

$$P\{|X - \mu| < k\sigma\} = P\left\{-k < \frac{X - \mu}{\sigma} < k\right\}$$
$$= \Phi(k) - \Phi(-k)$$
$$= 2\Phi(k) - 1$$

$$P\{|X - \mu| < \sigma\} = 2\Phi(1) - 1 \approx 0.6826$$

$$P\{|X-\mu| < 2\sigma\} = 2\Phi(2) - 1 \approx 0.9544$$

$$P\{|X - \mu| < 3\sigma\} = 2\Phi(3) - 1 \approx 0.9973$$

pp. 21

说明正态随机变量的99.73%的值落在(μ -3 σ , μ +3 σ)之中,落在该区间之外的概率几乎为零,这情况被实际工作者称为"3 σ 原则"。

思考题: 从南郊某地乘车到北区火车站有两条路可走,第一条路较短,但交通拥挤,所需时间 T_1 服从N(50, 100)分布;第二条路线略长,但意外阻塞较少,所需时间 T_2 服从N(60, 16)。

- (1) 若有70分钟可用, 问应走哪一条路?
- (2) 若只有65分钟可用,又应走哪一条路?

2.5 随机变量的函数及其分布-I

人们经常碰到随机变量的函数。例如分子运动动能 $T = mv^2/2$ 是分子运动速度—随机变量 v 的函数: 摸小球中摸到白球数的 平方也是随机变量白球数的函数。

一般地,若X是随机变量,y = g(x)是普通的实函数,则Y = g(X)是X的函数。

产生两个问题:

- (1) *Y* 是随机变量吗?
- (2) 如果是,Y的分布与X的分布有什么关系?

pp. 23 南开大学计算机学院

2.5.1 离散型随机变量的函数

Example (pp.62 例1) 假设随机变量 X 具有如下分布律

求: $Y = (X-1)^2$ 的分布。

解: Y的的可能取值为0,1,4,是有限个,

X	-1	0	1	2
Pn	0.2	0.3	0.1	0.4

只须算出对应的概率。由于

$$P{Y=0} = P{X=1} = 0.1,$$

故
$$P{Y=1} = P{X=0} + P{X=2} = 0.7$$

$$P{Y=4} = P{X = -1} = 0.2$$

类似可得其它概率。我们得到 Y 的分布:

Y	0	1	4
p _n	0.1	0.7	0.2

一般,设
$$X$$
有分布列 $P{X = x_i} = p{x_i}$, $i = 1,2,...$,则

$$Y = f(X)$$
 有分布列 $P\{Y = y_j\} = \sum_{f(x_i) = y_j} p(x_i), \quad j = 1, 2, \dots$

2.5.1 离散型随机变量的函数

例2 设 $X \sim B(n_1, p), Y \sim B(n_2, p), X$ 、Y相互独立,

 \mathbf{x} : Z = X + Y 的分布。

解: X, Y 各可取值 $0, 1, ..., n_1$ 和 $0, 1, ..., n_2$, 则 Z 可取值 $0, 1, ..., n_1+n_2$, 得

$$P\{Z = s\} = \sum_{k=0}^{s} P\{X = k, Y = s - k\}$$

$$= \sum_{k=0}^{s} P\{X = k\} P\{Y = s - k\}$$

$$= \sum_{k=0}^{s} C_{n_1}^k p^k (1 - p)^{n_1 - k} C_{n_2}^{s - k} p^{s - k} (1 - p)^{n_2 - (s - k)}$$

$$= p^s (1 - p)^{n_1 + n_2 - s} \sum_{k=0}^{s} C_{n_1}^k C_{n_2}^{s - k}$$

$$= C_{n_1 + n_2}^s p^s (1 - p)^{n_1 + n_2 - s}$$

 $X+Y \sim B(n_1+n_2, p)$

pp. 25 南开大学计算机学院

2.5.1 离散型随机变量的函数

Remark1: 上面公式的推导用到了组合数的性质(可以从摸 小球的模型去理解)

 $\sum_{n_1} C_{n_1}^k C_{n_2}^{s-k} = C_{n_1+n_2}^s$

Remark2: $X+Y\sim B(n_1+n_2,p)$ 这个事实显示了二项分布一个很 重要的性质:两个独立的二项分布,当它们的第二参数相同 时,其和也服从二项分布,它的第一参数恰为这两个二项分 布第一参数的和。

- □ 这性质称为二项分布的<u>再生性(</u>或<u>可加性(additive property))</u>
- □ 从X, Y的概率意义来看,这结果是非常明显的: X和Y分别 是 n_1 和 n_2 重贝努里试验中成功的次数,两组试验合起来, Z=X+Y应该就是 n_1+n_2 重贝努里试验中成功的次数。

pp. 26 南开大学计算机学院

设连续型随机变量 X 的密度函数为 $f_X(x)$,我们要求出 Y = g(X)的 分布函数 $F_{V}(v)$ 。

$$F_{Y}(y) = P(Y \le y) = P(g(X) \le y)$$
$$= P(X \in D)$$

而 $D = \{x \mid g(x) \le y\}$ 是一维的波雷尔集,故

$$F_{Y}(y) = P(X \in D) = \int_{x \in D} f_{X}(x) dx$$

至于 Y 是不是连续型随机变量,它的密度函数是什么,在一 般场合无法作出决定,但在某些特殊而又常见的场合,我们 可以直接导出 Y 的密度函数 $f_Y(y)$ 。

南开大学计算机学院

Example $X \sim N(0, 1)$, 求 $Y = X^2$ 的密度。

解: 先求分布函数 $F_Y(y)$, 再微分求得 $f_Y(y)$, 这里是变限积分求导

$$F_{Y}(y) = P(Y \le y)$$

$$= P(X^{2} \le y)$$

$$= \begin{cases} 0 & y \le 0 \\ P(-\sqrt{y} < X < \sqrt{y}) & y > 0 \end{cases}$$

$$= \begin{cases} 0 & y \le 0 \\ \int_{-\sqrt{y}}^{\sqrt{y}} f_{X}(x) dx & y > 0 \end{cases}$$

这里用到了变限 积分求导

$$f_Y(y) = \begin{cases} 0 & y \le 0\\ \frac{1}{2\sqrt{y}} \left[f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right] & y > 0 \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{1}{2\sqrt{y}} \left(\frac{1}{\sqrt{2\pi}} e^{-y/2} + \frac{1}{\sqrt{2\pi}} e^{-y/2} \right) & y > 0 \\ 0 & y \le 0 \end{cases}$$
$$= \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-1/2} e^{-y/2} & y > 0 \\ 0 & y \le 0 \end{cases}$$

此时称 Y 服从自由度为1的 $\chi^2(1)$ 分布,它也是 Γ -分布的一种。

某些情形下,我们可以直接导出Y的密度函数 $f_{Y}(y)$ 。

定理1 X为连续型随机变量,有概率密度函数 $f_{X}(x)(-\infty < x < \infty)$

若g(x)严格单调且处处可导,则Y = g(X)也是连续型随 机变量。若令其中 h(y) 是 g(x) 的反函数,则Y的密度函 数为 原函数 y=g(x) 反函数x=h(y)

$$f_Y(y) = |h'(y)| f_x[h(y)] \quad y \in g(x)$$
的值域

南开大学计算机学院

证:不妨设 g(x) 严格单调增加,且 $-\infty < x < +\infty$ 时, $\alpha < g(x) < \beta$ 。显然若 $y \le \alpha$,则 $F_Y(y) = 0$;若 $y > \beta$,则 $F_Y(y) = 1$,两种情形下都有 $f_Y(y) = 0$ (求导)。

当 $\alpha < y < \beta$ 时, $\{Y \le y\} = \{g(X) \le y\} = \{X \le h(y)\}$,故

$$f_{Y}(y) = \begin{cases} h'(y)f_{X}[h(y)] & y \in g(x)$$
的值域
$$0 & y \in 其他 \end{cases}$$

当y = f(x)为严格单调减少时,类似可证:

$$f_Y(y) = \begin{cases} -h'(y)f_X[h(y)] & y \in g(x) \text{ in } \text{ if } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in } \text{ in } y \in \mathcal{Y} \text{ in$$

二者结合,可得定理的结论。

Example 设 $X \sim N(\mu, \sigma^2)$,求Y = aX + b的密度函数 $(a \neq 0)$ 。

解: y = g(x) = ax + b 满足上述定理1中的条件, x = h(y) = (y - b)/a

Y的密度

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2} - \infty < x < \infty$$

$$f_{Y}(y) = f_{X}(h(y)) |h'(y)| \stackrel{\text{$\stackrel{\rightleftharpoons}{\cong}$ }}{=} \stackrel{\text{$\stackrel{\rightleftharpoons}{\cong}$ }}{=} \frac{1}{\sqrt{2\pi}\sigma} Exp\left(-\left(\frac{y-b}{a}-\mu\right)^{2} / 2\sigma^{2}\right) \times \frac{1}{|a|}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{|a|\sigma} Exp\left(-\left[y-(a\mu+b)\right]^{2} / 2(a\sigma)^{2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{|a|\sigma} e^{-\left[y-(a\mu+b)\right]^{2} / 2(a\sigma)^{2}}$$