Adelic Topology

Riley Moriss

January 22, 2024

L	The Topology of Local Fields	1
2	The Topology on \mathbb{A}	1
3	The Topology on $G(\mathbb{A})$	2

Let k be a number field, A its adele ring and G a connected reductive group over k.

1 The Topology of Local Fields

Given a global field and a place ν we get a local field k_{ν} an an induced metric topology. It has the properties:

- All are locally compact
- For all but finitely many ν , k_{ν} is compact.
- k_{ν}, k_{ν}^{*} are both totally disconnected

2 The Topology on \mathbb{A}

We have defined the adeles as a topological product, hence the topology is already specified here we give only properties of this topology. Recall that we identify k with its image in \mathbb{A} under the inclusion map

$$\alpha \mapsto (\alpha)_{\nu}$$

i.e. the constant sequence. With this in mind the adelic topology has the properties:

- Locally compact and Hausdorff
- \bullet k is a discrete set in \mathbb{A}
- \bullet k is closed in $\mathbb A$
- \mathbb{A}/k is compact in the quotient topology
- For any finite set of places S k is dense in

$$\prod_{\nu \notin S}' k_{\nu}$$

the removal of just one place takes us from discrete to dense.

3 The Topology on $G(\mathbb{A})$

Throughout X,Y,Z are affine schemes of finite type and R is a topological ring.

We first identify $X \cong \operatorname{Spec}(R[t_1,...,t_n]/I)$ then X(R) is naturally the set of points in R^n on which the polynomials in I all vanish. We then give it the subspace topology.

Theorem. This is the unique topology on the R points of X, Y, Z that is

- Functorial: If $X \to Y$ is a morphism of schemes over R then $X(R) \to Y(R)$ is continuous
- Compatible with pullbacks: $(X \times_Y Z)(R) \cong X(R) \times_{Y(R)} Z(R)$; homeomorphic topological spaces.
- Compatible with embeddings: A closed immersion $X \hookrightarrow Y$ is sent to a topological embedding $X(R) \hookrightarrow Y(R)$
- Compatible with R points: $Spec(R[t])(R) \cong R$ topologically.

Moreover under this topology X(R) forms a topological group, and if R is locally compact, or Hausdorff so is X(R).