

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №2 по курсу «Математическая статистика»

на тему: «Интервальные оценки»

Вариант 10

Студент группы ИУ7-66Б		Мансуров В. М.
	(Подпись, дата)	(Фамилия И.О.)
Преподаватель		Андреева Т. В.
	(Подпись, дата)	(Фамилия И.О.)

Содержание

1	l Задание	
	1.1 Содержание работы	3
2	Теоретическая часть	4
3	Практическая часть	5

1 Задание

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

1.1 Содержание работы

- 1) Для выборки объема n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ
 - 1) вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ МХ и дисперсии DX; соответственно;
 - 2) вычисление нижней и верхней границ $\underline{\mu}(\vec{x}_n), \, \overline{\mu}(\vec{x}_n)$ для γ -доверительного интервала для математического ожидания МХ;
 - 3) вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{x}_n), \overline{\sigma}^2(\vec{x}_n)$ для γ -доверительного интервала для дисперсии DX;
- 2) Вычислить $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ для выборки из индивидуального варианта;
- 3) Для заданного пользователем уровня доверия γ и N объема выборки из индивидуального варианта:
 - 1) на координатной плоскости Oyn построить прямую $y = \hat{\mu}(\vec{x}_N)$, также графики функций $y = \hat{\mu}(\vec{x}_n)$ $y = \underline{\mu}(\vec{x}_n)$, $y = \overline{\mu}(\vec{x}_n)$, как функций объема п выборки, где п изменяется от 1 до N;
 - 2) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x}_N)$, также графики функций $z=S^2(\vec{x}_n), \ z=\underline{\sigma^2}(\vec{x}_n)$ и $z=\overline{\sigma^2}(\vec{x}_n)$ как функций объема п выборки, где п изменяется от 1 до N.

2 Теоретическая часть

Пусть $\vec{x} = (x_1, \dots, x_n)$ — реализация случайной выборки из генеральной совокупности случайно величины X, закон распределения которой известен с точностью до параметра θ .

 γ -доверительным интервалом для параметра θ называется интервал $(\underline{\theta}, \overline{\theta})$ для которого справедливо $P(\underline{\theta} \leq \theta \leq \overline{\theta}) = \gamma$.

В работе использовались следующие формулы для вычисления величин:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{N} x_i; \tag{2.1}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2};$$
 (2.2)

$$\underline{\mu}(\vec{x}_n) = \overline{x} - \frac{S}{\sqrt{n}} t_{1-\alpha}(n-1)$$
 (2.3)

$$\overline{\mu}(\vec{x}_n) = \overline{x} + \frac{S}{\sqrt{n}} t_{1-\alpha}(n-1)$$
(2.4)

$$\underline{\sigma}(\vec{x}_n) = \frac{S^2(n-1)}{\chi_{1-\alpha}^2(n-1)} \tag{2.5}$$

$$\overline{\sigma}(\vec{x}_n) = \frac{S^2(n-1)}{\chi_{\alpha}^2(n-1)} \tag{2.6}$$

где (2.1) — точечная оценка математического ожидания, (2.2) — точечная оценка дисперсии, (2.3) — нижняя граница γ —доверительного интервала для математического ожидания, (2.4) — верхняя граница γ —доверительного интервала для математического ожидания, (2.5) — нижняя граница γ —доверительного интервала для дисперсии, верхняя граница γ —доверительного интервала для дисперсии, $t_{\alpha}(n-1)$ — квантиль уровня $(1-\alpha)$ распределения Стьюдента с (n-1) степенями свободы, $\chi^2_{\alpha}(n-1)$ — квантиль уровня α распределения χ^2 .

3 Практическая часть

Значения параметров для выборки из индивидуального варианта №10: $\hat{\mu}(\overrightarrow{x}_n) = 1.836417;$

 $S^2(\overrightarrow{x}_n) = 1.152669.$

Результаты построения графиков функций:

Рисунок 3.1 – Графики прямой $y=\hat{\mu}(\vec{x}_N)$, а также функций $y=\hat{\mu}(\vec{x}_n)$ $y=\underline{\mu}(\vec{x}_n)$, $y=\overline{\mu}(\vec{x}_n)$, как функций объема п выборки, где п изменяется от 1 до N

Рисунок 3.2 – Графики прямой $z=S^2(\vec{x}_N)$, также функций $z=S^2(\vec{x}_n)$, $z=\underline{\sigma^2}(\vec{x}_n)$ и $z=\overline{\sigma^2}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N