B' cont.

$$\begin{array}{c|c}
R^{202} & N & R^{203} \\
\hline
 & N & R^{201} \\
\hline
 & N & R^2 \\
\hline
 & B^1 & R^3 \\
\hline
 & (IV-1)
\end{array}$$

$$R^{202}$$
 N
 N
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}

$$R^{202}$$
 R^{203}
 R^{203}

wherein, A, R^2 , R^3 , B^1 , and B^2 are synonymous with A, R^2 , R^3 , B^1 , and B^2 in said general formula (I);

 R^{201} , R^{202} , and R^{203} represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, $-SR^{12}$, -

By-

 $C0_{2}R^{13}, -OC0R^{14}, -NR^{15}R^{16}, -CONR^{17}R^{18}, -SO_{2}R^{19}, -SO_{2}NR^{20}R^{21}, -NR^{22}CONR^{23}R^{24}, -NR^{25}CO_{2}R^{26} - COR^{27}, -NR^{28}COR^{29}, \text{ or } -NR^{30}SO_{2}R^{31};$

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , and R^{31} represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group; and

 R^{201} and R^{202} optionally may be combined with each other to form a ring structure.

82

12. (Twice Amended) A coloring composition formed by dispersing coloring particulates in a water-based medium, the coloring particulates containing a nonionic oil-soluble polymer, a hydrophobic high boiling point organic solvent having a boiling point of 150°C or more, and an oil-soluble dye, wherein the oil-soluble dye is represented by the following general formula (I):

$$R^2$$
 R^3
 $X=N$
 A
 $B^2=B^1$
General Formula (I)

wherein, X represents the residue of a color coupler;

A represents -NR⁴R⁵ or a hydroxyl group;

R⁴ and R⁵ represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group;

$$B^1$$
 represents = $C(R^6)$ - or = N -;

$$B^2$$
 represents $-C(R^7) = \text{ or } -N=$;

Bo

 R^2 , R^3 , R^6 , and R^7 represent respectively independently a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-SR^{51}$, $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, $-NR^{68}COR^{69}$, or $-NR^{70}SO_2R^{71}$;

 R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , and R^{71} represent respectively independently a hydrogen atom, an aliphatic group, or an aromatic group; and

R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ optionally may be connected to each other to form rings.

B3

14. (Twice Amended) An ink jet recording method, in which recording is carried out using an ink-jet ink which contains a coloring composition, the coloring composition being formed by dispersing coloring particulates in a water-based medium, the coloring particulates containing a nonionic oil-soluble polymer, a hydrophobic high boiling point organic solvent having a boiling point of 150°C or more, and an oil-soluble dye, wherein the oil-soluble dye is represented by the following general formula (I):

$$R^2$$
 R^3
 $X=N$
 $B^2=B^1$
General Formula (I)

wherein, X represents the residue of a color coupler;

A represents -NR⁴R⁵ or a hydroxyl group;

B3.

R⁴ and R⁵ represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group;

 B^1 represents = $C(R^6)$ - or = N-;

 B^2 represents $-C(R^7) = or -N=$;

 R^2 , R^3 , R^6 , and R^7 represent respectively independently a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-SR^{51}$, $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, $-NR^{68}COR^{69}$, or $-NR^{70}SO_2R^{71}$;

 R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , and R^{71} represent respectively independently a hydrogen atom, an aliphatic group, or an aromatic group; and

R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ optionally may be connected to each other to form rings.