Show all work clearly and in order. Please box your answers. 10 minutes.

(PRACTICE PROBLEM) Find the most general antiderivative of the function $f(\theta) = 5 + \frac{1}{\theta^2}$.

The domain of
$$f$$
 is $(-\infty,0) \cup (0,\infty)$ so the most general articles is at f is

$$F(0) = \begin{cases} 50 - \frac{1}{6} + C_1 & \text{if } 0 < 0 \\ 50 - \frac{1}{6} + C_2 & \text{if } 0 > 0 \end{cases}$$

(notice C, and C_z are independent of each other)

3 1. Write $\int_0^3 \sin(\sqrt{x}) dx$ as a limit of Riemann sums taking the sample points to be the right endpoints on the subintervals. DO NOT EVALUATE THE LIMIT (right endpoints of subintrivals):

$$a=0$$

 $b=3$ so $\Delta x = \frac{b-a}{n} = \frac{3-0}{n} = \frac{3}{n} + \frac{AND}{n} = \frac{3}{n} = \frac{3}{n$

So $\int_0^3 \sin(\sqrt{x}) dx = \lim_{N \to \infty} \int_{i=1}^{\infty} \sin(\sqrt{\frac{3i}{n}}) \left(\frac{3}{n}\right)$

2. Evaluate $\int_{0}^{2} 3x dx$ as a limit of Riemann sums taking the sample points to be the right endpoints on the subintervals.

$$a=0$$
 $b=2$
So $\Delta x = \frac{2-0}{n} = \frac{2}{n}$
 AND
 $X_i = a + i \Delta x$
 $A = \frac{2-i}{n}$
 AND
 $X_i = a + i \Delta x$
 $A = \frac{2-i}{n}$

$$\int_{6}^{2} 3x dx = \lim_{N \to \infty} \sum_{i=1}^{N} 3\left(\frac{2i}{N}\right) \left(\frac{Z}{N}\right)$$

$$= \lim_{N \to \infty} \sum_{i=1}^{N} \frac{12i}{N^{2}} = \lim_{N \to \infty} \frac{12}{N^{2}} \sum_{i=1}^{N} \frac{12i}{N^{2}} = \lim_{N \to \infty} \frac{12}{N^{2}} \left(\frac{1}{N^{2}}\right) = \lim_{N \to \infty} \frac{12 + 12n}{N^{2}} \left(\frac{1}{N^{2}}\right)$$

$$= \lim_{N \to \infty} \frac{12 + \frac{12}{N}}{N^{2}} = \frac{1}{12}$$

$$= \lim_{N \to \infty} \frac{12 + \frac{12}{N}}{N^{2}} = \frac{1}{12}$$