18.06

Four Fundamental Spaces

```
For a matrix A
```

Column space: col(A)

Row space: row(A)

Nullspace: null(A)

Left Nullspace: $null(A^T)$

What are these spaces?

Why do we study them?

How can we compute them?

Nullspace

```
A m \times n matrix
```

Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

A is a function

input: $x \in \mathbb{R}^n$

output: $y \in \mathbb{R}^m$

y = Ax

 $\operatorname{null}(A) \colon \{ x \in \mathbb{R}^n | A(x) = 0 \}$

Familiar example:

f is a function

input: $x \in \mathbb{R}$

output: $y \in \mathbb{R}$

$$y = f(x)$$

zeros(f): $\{x \in \mathbb{R} | f(x) = 0\}$

Nullspace

```
A \ m \times n \ \text{matrix: null}(A) = \{x \in \mathbb{R}^n | Ax = 0\}
```

Consider equation Ax = 0This equation always has a solution Set of all solutions is null(A)

Consider equation Ax = bThis equation may or may not have a solution If has solution, let x_p denote some solution $(Ax_p = b)$ Set of all solutions is $x_p + \text{null}(A)$ $\{x_p + x_n | x_n \in \text{null}(A)\}$

Column Space

 $A m \times n$ matrix

Column space: $col(A) = \{ all linear combinations of columns \}$

Familiar example:

A is a function

input: $x \in \mathbb{R}^n$

output: $y \in \mathbb{R}^m$

y = Ax

col(A): $\{y \in \mathbb{R}^m | Ax = y, x \in \mathbb{R}^n\}$

f is a function

input: $x \in \mathbb{R}$

output: $y \in \mathbb{R}$

y = f(x)

 $range(f): \{y \in \mathbb{R} | f(x) = y, x \in \mathbb{R} \}$

Column Space

 $A \ m \times n \ \text{matrix: } \operatorname{col}(A) = \{ y \in \mathbb{R}^m | Ax = y, x \in \mathbb{R}^n \}$

Consider equation Ax = b

This equation may or may not have a solution

Has at least one solution exactly when $b \in col(A)$

Row Space

```
A m \times n matrix
          Row space: row(A) = \{ all linear combinations of rows \}
                                        = \operatorname{col}(A^{\mathsf{T}})
A^{\mathsf{T}} is a function
         input: y \in \mathbb{R}^m
         output: x \in \mathbb{R}^n
         x = A^{\mathsf{T}} y
         row(A): \{x \in \mathbb{R}^n | A^{\mathsf{T}}y = x, y \in \mathbb{R}^m\}
         Careful: A^{T} is not (generally) the inverse of A
```

Row Space

 $A \ m \times n \ \text{matrix}, \ \text{row}(A) = \text{col}(A^{\mathsf{T}}) \colon \{x \in \mathbb{R}^n | A^{\mathsf{T}}y = x, y \in \mathbb{R}^m\}$

Consider equation Ax = b

Clear what null(A), col(A) say about solutions

What does row(A) tell us?

Idea: row(A) has important relationship to both null(A) and col(A)

Recall SVD

Singular Value Decomposition

 $A m \times n$ matrix, of rank r

Write
$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2^{\mathsf{T}} \end{bmatrix}$$

 $\Sigma_r \ r \times r$ diagonal matrix, with all positive singular values on diagonal

 U_1 first r columns of U

 V_1 first r columns of V

 U_1, U_2, V_1, V_2 are all orthogonal matrices

Fundamental Theorem of Linear Algebra

$$A \ m \times n$$
 matrix, of rank r , where $A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2^{\mathsf{T}} \end{bmatrix}$

$$col(A) = col(U_1)$$

 $row(A) = col(V_1)$
 $null(A) = col(V_2)$
 $null(A^T) = col(U_2)$

Tells us "everything" about A

General Solution to Ax = b

 $A m \times n$ matrix, of rank r

When does Ax = b have at least one solution?

Exactly when $b \in col(A)$

Exactly when $b \in \operatorname{col}(U_1)$

Exactly when $U_1U_1^Tb=b$

General Solution to Ax = b

 $A m \times n$ matrix, of rank r

```
If Ax = b has at least one solution, when does it have only one solution? Exactly when \operatorname{null}(A) = \{0\} (only contains the zero vector) Exactly when \operatorname{col}(V_2) = \{0\} Exactly when r = n
```

General Solution to Ax = b

 $A m \times n$ matrix, of rank r

If Ax = b has at least one solution, what are all of the solutions? $x_p = V_1 \Sigma_r^{-1} U_1^{\mathsf{T}} b$ is a solution $(A = U_1 \Sigma_r V_1^{\mathsf{T}})$ $x_p + \operatorname{null}(A)$ is the set of all solutions $x_p + \operatorname{col}(V_2)$ is the set of all solutions

Vector space V

We say vectors $u, w \in V$ are orthogonal when $u \cdot w = 0$

Given subspaces R, S of V, say R, S are orthogonal when For every $r \in R$ and $s \in S$

$$r \cdot s = 0$$

Example: In \mathbb{R}^3 , xy-plane is orthogonal to z-axis

$$r = (a, b, 0) \in xy$$
-plane
 $s = (0,0,c) \in z$ -axis

$$r \cdot s = 0$$

Non-Example: In \mathbb{R}^3 , xy-plane is *not* orthogonal to yz-plane

$$r = (0,1,0) \in xy$$
-plane

$$s = (0,1,0) \in yz$$
-plane

$$r \cdot s = 1$$

Vector space *V*, subspaces *R*, *S*

Always have $0 \in R$ and $0 \in S$

If, for a $v \neq 0$, $v \in R$ and $v \in S$ R and S not orthogonal $v \cdot v = ||v||^2 > 0$

Row Space

 $A m \times n$ matrix

$$row(A) = \{x \in \mathbb{R}^n | A^{\mathsf{T}}y = x, y \in \mathbb{R}^m\}$$
$$null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$$

 $\operatorname{row}(A)$ and $\operatorname{null}(A)$ subspaces of \mathbb{R}^n $\operatorname{row}(A)$ and $\operatorname{null}(A)$ orthogonal $\operatorname{row}(A) = \operatorname{col}(V_1)$ $\operatorname{null}(A) = \operatorname{col}(V_2)$ V orthogonal matrix

Row Space

 $A m \times n$ matrix, row(A) and null(A) orthogonal

```
0 \in \text{row}(A) \text{ and } 0 \in \text{null}(A)
But, no v \neq 0 in both \text{row}(A) and \text{null}(A)

For x_1, x_2 \in \text{row}(A)
If x_1 \neq x_2 then Ax_1 \neq Ax_2
Ax_1 = Ax_2 \Rightarrow Ax_1 - Ax_2 = 0 \Rightarrow A(x_1 - x_2) = 0 \Rightarrow (x_1 - x_2) \in \text{null}(A)
```

 $x_1, x_2 \in \text{row}(A) \Rightarrow (x_1 - x_2) \in \text{row}(A)$

Three Fundamental Spaces

Left Nullspace

 $A m \times n$ matrix

$$\operatorname{col}(A) = \{ y \in \mathbb{R}^m | Ax = y, x \in \mathbb{R}^n \}$$
$$\operatorname{null}(A^{\mathsf{T}}) = \{ y \in \mathbb{R}^m | A^{\mathsf{T}}y = 0 \}$$

 $\operatorname{col}(A)$ and $\operatorname{null}(A^{\mathsf{T}})$ subspaces of \mathbb{R}^m $\operatorname{col}(A)$ and $\operatorname{null}(A^{\mathsf{T}})$ orthogonal $\operatorname{col}(A) = \operatorname{col}(U_1)$ $\operatorname{null}(A^{\mathsf{T}}) = \operatorname{col}(U_2)$ U orthogonal matrix

Four Fundamental Spaces

