KTH Matematik

Examinator: Petter Brändén Kursansvarig: Olof Sisask

Σр	G/U	bonus

poäng uppg.1

Efternamn	förnamn	pnr	programkod

Kontrollskrivning 5A till Diskret Matematik SF1610, för CINTE, vt2018

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), n = 1, ..., 5.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.)

Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Det finns en icke-planär graf med 4 noder.		X
b)	Den kompletta grafen K_{10} har en Hamiltoncykel.	X	
c)	Den kompletta grafen K_9 har en Eulerkrets.	X	
d)	Det finns en graf med 5 noder vars grader är 3, 3, 4, 1 och 2.		X
e)	Varje bipartit graf är planär.		X
f)	Varje träd med 121 kanter har 120 noder.		X

Namn	poäng uppg.2

2a) (1p) En graf har 10 kanter och 6 noder. Graderna av fem av noderna är 2, 3, 3, 4. Vad är den återstående nodens grad? (Det räcker att ange rätt svar.)

Svar: 5

b) (1p) Skriv ned en Eulerväg för följande graf. (Skriv svaret som en sekvens av noder, eller rita vägen **extremt tydligt** i bilden.)

(Det räcker att ange rätt svar.)

Svar: t.ex. c-a-b-h-g-a-e-g-f-h-d-b-c-e-f-c-d-f

c) (1p) Vad är det högsta antalet kanter en sammanhängande planär graf med 6 noder kan ha? (Det räcker att ange rätt svar.)

Svar: 12

Namn	poäng uppg.3

3) (3p) Låt G = (V, E) vara en graf där nodmängden V består av alla binära ord av längd 4, och

$$E = \{\{x, y\} : \text{avståndet mellan } x \text{ och } y \text{ är } 1\},$$

dvs där två ord har en kant mellan sig om och endast om de skiljer sig i precis 1 bit. T.ex. är 0000 och 0100 grannar, men ingen av dessa är grannar med 1111.

- (1) Hur många noder har G?
- (2) Hur många kanter har G? (Hint: använd handskakningslemmat.)

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning:

- (1) Det finns 2^4 binära ord av längd 4; alltså har G 16 noder.
- (2) Varje nod har precis 4 grannar: 1 granne för varje bit som kan ändras i ordet. Alltså uppfyller antalet kanter e att

$$2e = \sum_{v \in V} d(v) = \sum_{v \in V} 4 = 16 \cdot 4 = 64$$

enligt handskakningslemmat.

Alltså är antalet kanter e = 32.

Namn	poäng uppg.4

4) (3p) En viss sammanhängande planär graf G har 16 kanter och en plan ritning med 9 områden, ytterområdet medräknat. Visa att det måste finnas en 3-cykel i grafen, eller med andra ord ett område i ritningen som är inhängnat av precis 3 kanter.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning:

Om en sammanhängande planär graf inte innehåller några 3-cykler, då uppfyller den enligt känd sats olikheten

$$e \le 2v - 4$$

där e är antalet kanter och v är antalet noder. För denna graf är e=16, och v kan räknas ut via Eulers formel v-e+r=2 som håller för sammanhängande planära grafer. I vårt fall ger detta

$$v = 2 + 16 - 9 = 9$$
.

Med e=16 och v=9 uppfylls inte olikheten ovan, och därför kan inte antagandet att G inte har några 3-cykler uppfyllas. Med andra ord måste G innehålla minst en 3-cykel.

Namn	poäng uppg.5

5) (3p) Den kompletta grafen K_8 på 8 noder har ingen Eulerkrets. Bestäm det minsta antalet kanter som måste tas bort från denna graf för att resultatet skall ha en Eulerkrets, och ge fullständing motivering för ditt svar.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning:

Enligt känd sats så har en graf en Eulerkrets omm varje nod har jämn grad. I K_8 har varje nod grad 7, då varje av de 8 noderna är grannar med samtliga andra 7 noder. Alltså måste varje nods grad ändras för att det ska finnas en Eulerkrets. Varje borttagning av en kant påverkar graden hos precis 2 noder, så för att ändra på graden hos alla 8 noder så måste åtminstone 4 kanter tas bort.

Vidare räcker det att ta bort 4 kanter från grafen för att varje nod ska ha jämn grad i resultatet: om vi ger noderna namnen v_1, v_2, \ldots, v_8 så kan vi ta bort de 4 kanterna

$$\{v_1, v_2\}, \{v_3, v_4\}, \{v_5, v_6\}, \{v_7, v_8\}.$$

Varje nod har efter detta grad 6 — ett jämnt tal — och alltså finns det en Eulerkrets.

Svar: det minsta antal kanter som måste tas bort är 4.