Digital Electronics- 2CS303

UNIT-1 Complements (r's and (r-1)'s)

Dr. Sudeep Tanwar, Dr. Pimal Khanpara, Prof. Preksha Pareek

- 1. Complement Theory
- 2. 1's and, 2's complement operation
- 3. (r-1)'s and r's complement
- 4.9's and, 10's complement operation
- 5. Binary Codes (BCD Arithematic)
- 6. Weighted Codes
- 7. Error Processing Codes
- 8. Alphanumeric codes.

Complements

- Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation
- There are two types of complements for base-r system:
 - Radix complement (also called r's complement) and
 - **Diminished radix complement** (also known as (r-1)'s complement)
- For Binary numbers: 2's and 1's complements
- For Decimal numbers: 10's and 9's complements (Substitute the value of base-r)

Radix Complement (r's Complement)

• R's complement of an n-digit number N in base-r is $r^n - N$, $N \ne 0$ (and 0 for N = 0)

Example: N = 012398 (Decimal Number)

n = 6, r = 10 hence, $10^6 - 012398 = 987602$

- Shortcut Method for base-10:
 - Leave all least significant zeros unchanged
 - Subtract the first non-zero least significant digit from 10
 - Subtract all higher significant digits from 9

Example: N = 012398 Answer???

Find 10's complement of 246700.

Radix Complement (r's Complement) (Cont...)

• R's complement of an n-digit number N in base-r is $r^n - N$, $N \ne 0$ (and 0 for N = 0)

Example: N = 101100 (Binary Number)

$$n = 6$$
, $r = 2$ hence, $2^6 - 101100 = 1000000 - 101100 = 010100$

- Shortcut Method for base-2:
 - Leave all least significant zeros and first 1 unchanged
 - Replace 1's with 0's and 0's with 1's with 0's in all other higher significant digits

Example: N = 101100 Answer???

Find 2's complement of 1101100.

Diminished Complement ((r-1)'s Complement)

• (r-1)'s complement of an n-digit number N in base-r is $(r^n - 1) - N$

Example: N = 546700 (Decimal Number)

$$n = 6$$
, $r = 10$ hence, $(10^6 - 1) - 546700 = 453299$

- Shortcut Method for base-10:
 - Subtract all digits from 9

Example: N = 546700 Answer???

Find 9's complement of 012398.

Diminished Complement ((r-1)'s Complement) (Cont..)

• (r-1)'s complement of an n-digit number N in base-r is $(r^n - 1) - N$

Example: N = 1011000 (Binary Number)

$$n = 7$$
, $r = 2$ hence, $(2^7 - 1) - 1011000 = 100111$

- Shortcut Method for base-2:
 - Change 1's to 0's and 0's to 1's

Example: N = 1011000 Answer???

Find 1's complement of 0101101.

1.Complement Theory Example 1 Get 1's complement of 00000101

1's Complement Arithmetic (ADD/SUB Method)

- 1. Read both the operands
- 2. Negative operand(s) (if any) is converted into 1's complement form
- 3. Add both the numbers
- 4. If carry is generated (i.e. =1) then the resultant number is positive.
- 5. Add ONE to the output of setp4, to get the final answer.
- 6. If carry is not generated then the answer is Negative and available in 1's complement form.
- 7. Convert output of step 6 into 1's complement to get final answer.

1. 1's Complement Theory

Example 1: Subtract 1010 from 1111 using 1's complement theory. (15-10 Small negative)

Carry "1" means the answer is positive.

1. 1's Complement Theory

Example 2: Subtract 1010 from 1000 using 1's complement theory. (Large negative 8-10)

Carry "0" means the answer is negative and available in 1's complement form.

$$1 \ 1 \ 0 \ 1 \longrightarrow -0 \ 0 \ 1 \ 0 = (-2)$$

- 1. How to get 2's complement form
- 2. Arithmetic operation using 2's complement theory

2's Complement Arithmetic (How to get 2's complement form..?)

Example 1

Example 2

2's Complement Arithmetic (Method)

- 1. Read both the operands
- 2. Negative operand (if any) is converted into 2's complement form
- 3. Add both the numbers (2's complement of negative operand with the other one).
- 4. If carry is generated (i.e. =1) then the resultant number is positive and in original form
- 5. If carry is not generated (when we have negative operand) then the carry is assumed =0.
- 6. Carry zero means the resultant number is negative and in a 2's complement form.
- 7. Convert the 2's complement form into the original form.

Take the 2's complement of the negative number and use regular binary 8-bit addition.

Take the 2's complement of the negative number and use regular 8-bit binary addition.

Verify the logic using following combinations:

- 1: (10) -(01)
- 2: (10) -(02)
- 3: (10) –(05)
- 4: (10) -(08)
- 5: (10) –(09)
- 6: (10) –(10)
- 7: (210) -(08)
- 8: (120) –(55)
- 9: (52) -(18)

2's Complement Arithmetic (Examples)

A+B	Α	В	2's of B	Addition	Ans
A=10 B=-1		0001	1110 0001 1111	1010 1111 CY = 1 So ans is +ve 11001	+9
B=-2		0010	1101 0001 1110	1010 1110 11000 CY =1 So ans is +ve	+8
B=-5	1010	0101	1010 0001 1011	1010 1011 10101 CY =1 So ans is +ve	+5
B=-8	1010	1000	$ \begin{array}{c} 0 \ 1 \ 1 \ 1 \\ \underline{0 \ 0 \ 0 \ 1} \\ 1 \ 0 \ 0 \ 0 \end{array} $	1010 <u>1000</u> 10010 CY =1 So ans is +ve	+2
B=-9		1001	0110 0001 0111	1010 0111 10001 CY =1 So ans is +ve	+1
B=-10		1010	0 1 0 1 0 0 0 1 0 1 1 0	1010 0110 10000 CY =1 So ans is +ve	+0

Example: Perform 2's complement subtraction on 210-08

Add both the numbers:

Carry = 1 means and is positive +202

2's Complement Arithmetic (Examples on varying number of bits)

Example: Perform 2's complement arithmetic for (30)-(50) using

1: 6-bit number system

2: 8-bit number system

Example: Perform 2's complement arithmetic for (30)-(50) using:

001110

1: 6-bit number system

Add both the numbers

$$011110 \\
001110 \\
\hline
0101100$$

Carry = 0 means number is negative and in 2's compl form

2: 8-bit number system

Add both the numbers

Carry = 0 means number is negative and in 2's compl form

$$00010011 \\ 0000001$$

$$0\ 0\ 0\ 1\ 0\ 1\ 0\ 0 = -20$$

(r-1)'s and r's complement

Example of decimal number system

So r becomes 10's complement

And (r-1) becomes 9's complement

How to get (r-1)'s complement of decimal number...?

How do we get (r-1)'s complement ...?

(r-1)'s i.e. 9's complement of decimal number can be obtained by ((10ⁿ - 1)-number) where n represents the number of digits in given number.

Example 1: Find 9's complement of $(1234)_{10}$

9's complement = $(10^4-1)-1234 = 9999-1234 = 8765$

How do we get (r)'s complement ...?

r's i.e. 10's complement can be obtained by (10ⁿ – number) where n represents the number of digits in given number.

Example 2: Find 10's complement = 10^4 -1234 = 8766.

We will move to subtraction using them. Remember always the number to be subtracted (negative number) is converted to 9's or 10's complement.

Example 1: Get 9's complement of following numbers

(19)10, (146)10, (4397)10

99	999	9999
-19	-146	-4397
80	853	5602

Example 1: Perform subtraction using 9's complement on the data set given below.

a: 18-06,

b: 39-23

c: 34-49

d: 49-84

06 is negative number, We will get 9's complement of 06

We will ADD 93 and 18

A carry is generated means answer is +ve ADD the carry back to the sum "11".

Try for (018) - (006)

Example 2: Perform 9's complement subtraction on the data set given below.

a: 18-06,

b: 39-23 c: 34-49

d: 49-84

23 is negative number, We will get 9's complement of 23

7 6

We will ADD 76 and 39

A carry is generated. ADD the carry back to the sum "15".

Try for 039-023

Example 3: Perform 9's complement subtraction on the data set given below.

a: 18-06,

b: 39-23

c: 34-49

d: 49-84

49 is negative number, We will get 9's complement of 49

We will ADD 50 and 34

A carry is **not** generated that means answer is Negative.

Get 9's complement of 84

Answer is -15

Example 4: Perform 9's complement subtraction on the data set given below.

a: 18-06,

b: 39-23

c: 34-49

d: 49-84

84 is negative number, We will get 9's complement of 84

We will ADD 15 and 49

A carry is **not** generated that means answer is Negative.

Get 9's complement of 64

Answer is -35

Example 1: Perform 10's complement subtraction on the data set given below.

a: 24-09, b: 69-32 c: 265-347

09 is negative number,

We will get 10's complement of 09

99 - 09

90 0 1

9 1

We will ADD 91 and 24

2 4 + 9 1

1 1 5

A carry is generated that means answer is Positive. Answer is +15

Example 2: Perform 10's complement subtraction on the data set given below.

a: 24-09, b: 69-32 c: 265-347

32 is negative number,

We will get 10's complement of 32

- 32

68

We will ADD 68 and 69

1 3 7

A carry is generated that means answer is Positive. Answer is +37

Example 3: Perform 10's complement subtraction on the data set given below.

a: 24-09,

b: 69-32

c: 265-347

We will ADD 653 and 265

347 is negative number,

We will get 10's complement of 347

653 + 265

A carry is **not** generated that means answer is Negative and in 10's complement form.

9 9 9 - 3 4 7

0 918

Get 10's complement form of 918

6 5 2

0 1

6 5 3

9 9 9

-9 1 8

081

+0 0 1

082

Ans = -82

Try for 0265-0347