PTML 8: 09/06/2022

TABLE DES MATIÈRES

Ĺ	Curse of dimensionality and adaptivity to a low dimensional			
	sup	port		1
	1.1	Gene	ral case: curse of dimensionality	1
		1.1.1	Problem statement	1
		1.1.2	Simulation	1
		1.1.3	Python files	2
	1.2	Adar	otivity	3
			Setting	
			Files	

1 CURSE OF DIMENSIONALITY AND ADAPTIVITY TO A LOW DIMEN-SIONAL SUPPORT

1.1 General case: curse of dimensionality

1.1.1 Problem statement

We consider the problem of a nearest neighbors estimation. We will use $\mathfrak{X} = [0,1]^d$ as input space. Hence, here the dimensionality of the problem is d.

In the general case, we have seen in the class that if the target function f^* is Lipshitz-continuous, and if the n samples in the dataset are on a lattice that divides $[0,1]^d$ in cubes of equal size, then it is possible to show that the error made by a k-NN esimator is $O(n^{-1/d})$.

Note that this is a rough bound. It is possible to have more subtle results, and the constant in the \circlearrowleft depends on d and on the Lipshitz constant of the target function However, it is not possible to have a bound that is "way better" (i.e. "way smaller") than this bound.

This means that if d is large, then 1/d is small, and the decrease of the error is very slow. To be more precise, in order to reach an error ε , it is possible to show that the number of sampled needed n_{ε} verifies

$$n_{\varepsilon} \geqslant \frac{\varepsilon^{-d} d^{d/2}}{\alpha^{d/2}} \tag{1}$$

where $\alpha >$ is a constant. n_{ε} hence grows exponentially with $1/\varepsilon$, and this is an example of curse of dimensionality.

1.1.2 Simulation

To illustrate this phenomenon, we will learn a estimator of the euclidean norm. This means that our target function f^* verifies $f^*(x) = ||x||_2$, for all x. Of course, as we already know the target function, the goal of these exercise is to illustrate

important aspects and limitations of the k-NN estimation.

Exercice 1: Run a simulation that illustrates the curse of dimensionality by computing the error of a nearest neighbor estimator of f*, for several numbers of samples availables and several dimensions d. You can use several values of k, the number of nearest neighbors used, e.g. k = 2.

Note that as we know f*, it is possible to perfectly evaluate the error made by the k-NN algorithm for each sample.

For instance, you can observe a picture like the one in figure 1. In the simulation that generated the figure, the samples (both the dataset and the test samples) were drawn randomly in X, with a uniform distribution (the dataset is not on a regular lattice, although you can do use a regular lattice in your simulation).

1.1.3 Python files

You can use knn_1.py, and edit the function predict(), that implements the k-NN algorithm.

FIGURE 1 – Curse of dimensionality. We observe that the logarithm of the error is linear in the logarithm of the number of samples, with a slope that depends on the dimension d.

1.2 Adaptivity

1.2.1 Setting

Now, we would like to do a k-NN estimation on the same target function (f* is still the squared norm), but on a different dataset. We now use d = 30 and $\mathfrak{X} = [0, 1]^{30}$.

Exercice 2: Perform a k-NN estimation using the data stored in data_knn/ and use a varying number of samples n that you use from the dataset. Plot the error as a function of n.

1.2.2 Files

- You can start from knn_2.py and import the relevant functions from the previous file.
- **x_data_.npy** and **y_data_.npy**: dataset that is used by the k-NN algorithm.
- x_data_test.npy : data on which we estimate using the k-NN algorithm.

You should observe something like figure 2.

FIGURE 2 – Nearest neighbors estimation on a different dataset.

Exercice 3: The learning rate is way better than $O(n^{-1/d})$.

- What could be an explanation of this phenomenon?
- How could we test this hypothesis? (we have seen a way during the class)