- · lover bound on fx
- Duality: Lagrangian, dual function,
 dual problem
 - · Stater's conditions, 8trong duality
 - · KKT conditions.

minimize

$$B \leq f(x^*) \implies f^* > B$$

how can we do that?

(2)

Lower bound: Pn + 9y minimize my y a+b=Pn+ y > 2 a (n+y) + bn+cy > 2 > 0 > 0 n, y > 0 a + c = 8 a, b, c > 0 B = 2a So the abtained best lower bound is maninize 2a a, b, c a+b=Pa + c = 9 a, b, c > 0 This is called the dual problem (dual LP)

· Number of variables in the dual problem = no. of Constraints in the primal problem.

Lagrangian:

Standard form problem (not nece Marily conven)

> minimige X Subject to f (x)

h; (z) <0 $i=1,\ldots,m$

l; (n) = 0 j=1, - - ~ ~ · Call & (nx) = px

Define Lagrangian as

 $L\left(x, u, v\right) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{m} v_j l_j(x)$ at Fearible

· New variables: Le EIR and VEIR

U > 0 (else L(2, 4, v) = -00)

· We have, for each bearible n:

- Solid line is f
- Dashed line is h, hence feasible set $\approx [-0.46, 0.46]$
- Each dotted line shows L(x, u, v) for different choices of $u \ge 0$

(From B & V page 217)

Lagrange dual femilion: Minimizing L (n, u, v) over all ne gives a lower bound on the posimal optimal value for $f^* > minimize L(\underline{n}, \underline{u}, \underline{v}) > minimize L(\underline{n}, \underline{u}, v)$ $\underline{x} \in C$ = g(<u>u</u>,<u>v</u>) Lagrange dual function L (x, k, v) g(u,v) = in P $\chi \in \partial om(P)$ = $\min \left\{ \left(f(\underline{n}) + \sum_{i=1}^{m} u_i h_i(n_i) + \sum_{i=1}^{m} v_i \cdot l_i(n_i) \right) \right\}$ $n \in \partial om(f)$ i=1 i=1

·
$$g(u, v)$$
 is concave (even when the primal is not convex)

$$g(\underline{u},\underline{v}) = -\max_{x} \left\{ -f(\underline{x}) - \sum_{i=1}^{m} u_i h_i(\underline{x}) - \sum_{i=1}^{n} v_i l_i(\underline{x}) \right\}$$

pointwise max. of convert fenctions in (u, v)

• Lower bound property: $u \geqslant 0$, then $g(u,v) \leq P^*$ ib \tilde{n} is feasible and $u \geqslant 0$, then $g(u,v) \leqslant f(\tilde{n})$ $f(\tilde{n}) \geqslant L(\tilde{n},u,v) \geqslant \inf_{\underline{n} \in \partial on f} L(\underline{n},u,v) = g(u,v)$

minimize over all feasible \tilde{n} gives $P^* \geq g(\underline{u},\underline{v})$.

u and v an dual beasible dual variably.

- Dashed horizontal line is f^*
- Dual variable λ is (our u)
- Solid line shows $g(\lambda)$

(From B & V page 217)

Lagrange dual problem: P* > 8 (4, Y) for any us o and Hence the best lower bound is obtained by solving the Lagrange dual problem maximize g(u, v) Conven u, v s. to u > 0 $(9: R^x 1R^7 \rightarrow 1R$ op himization problem Weak Quality: P* > 9*

g* in dual optimal value

Enamph: Quadratic program

An: b, 20 30 S. b.

with
$$Q > 0$$

• $L(x, u, v) = \frac{1}{2} x^T Q x + C^T x - u^T x$

+ $V^T (A x - b)$

• $Q(u, v) - inf((x, u, v))$

$$g(\underline{u},\underline{v}) = \inf_{\underline{n}} L(\underline{n},\underline{u},\underline{v})$$

$$= -\frac{1}{2} (\underline{C} - \underline{u} + \underline{A}^{T}\underline{v})^{T} \underline{Q}^{-1} (\underline{C} - \underline{u} + \underline{A}^{T}\underline{v})$$

$$- \underline{b}^{T}\underline{v}$$

$$8x + C - 4 + A4$$

$$= 0$$

$$2x = -8^{-1}(C - 4 + A^{T}y)$$

Strong duality:

Slater's conditions: if primal is a convex problem with at least one strictly feasible $x \in \mathbb{R}^2$ i.e., $h_1(x) < 0$, --, $h_m(x) < 0$ $l_n(x) = 0$, --, $l_n(x) = 0$

then Strong duality holds.

Enample: Support vector machine Clamifier y ∈ { 1, -1}, X: MXP with nows {nij Given $\frac{1}{2} \|\beta\|_{2}^{2} + C \sum_{i=1}^{m} \xi_{i}$ minimize B, Bo, &

yi (niβ + βo) > 1 - ξi (=1, - - · n

S-ho

Lagrangian:

$$L(\beta,\beta_{0},\xi_{1},\nu,\omega) = \frac{1}{2} \|\beta\|^{2} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \nu_{i} \xi_{i}$$

$$+ \sum_{i=1}^{n} \omega_{i} (1 - \xi_{i} - y_{i} (\gamma_{i} \beta + \beta_{0}))$$

$$= \frac{1}{2} \|\beta\|^{2} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \nu_{i} \xi_{i}$$

Qual fenction:

$$g(v, \omega) = \begin{cases} -\frac{1}{2} \omega^{T} \times \tilde{x}^{T} \omega + \frac{1}{2} \omega & \text{if } \omega = c - \frac{1}{2} - \omega \\ \tilde{y} = 0 & \text{otherwise} \end{cases}$$

$$\frac{\omega^{T} y}{2} = 0$$

$$0. \omega.$$

SVM dreat: (plininating Black Variable U):

 $\frac{1}{2} \omega^{7} \chi \chi^{7} \omega + 1 \omega$

 $0 \leq \omega \leq c \leq \omega \qquad \omega^{\tau} \qquad = 0$

Slater's condition is satisfied, we have strong

duality

 $3 = X^T \omega$

Duality gap:

Given primal fearible or and dual fearible u, v:

duality gap: f(x) - g(u, v)

We have

$$f(n) - f(n^*) \leq f(n) - g(u,v)$$

if f(n) - g(n, v) = 0, then n is primal optimal (and $u \in v$ one dual optimal)

Karush - Kuhn - Tucker conditions: (KKT)

S. to
$$h_{i}(n) \leq 0$$
, $i=1, -n$
 $l_{j}(n) = 0$ $j=1, -\infty$

KKT conditions:

O Stationanity:
$$D \in \partial_{\mathcal{X}} \left(\mathcal{L}(x) + \sum_{i=1}^{m} u_i h_i(x_i) + \sum_{j=1}^{m} v_j l_j(x_i) \right)$$

(9) primal beasibility:
$$h_i(x) \leq 0$$
; $l_j(x) = 0$ $\forall i,j$

(4) dual bearibility:

U(>0 + (

For a problem with 8trong duality (i.e., Slater's (andition holds):

x* and u*, v* cox primal and dual solutions

n* and u*, v* Salvity the KKT conditions.

(1) if n*qu*, v* an primal and dual Solutions with zero duality gap:

$$f(x^*) = g(u^*, v^*)$$
= min $\begin{cases} f(x) + \sum_{i=1}^{m} u_i^* h_i(x) + \sum_{j=1}^{m} v_j^* l_j(x) \end{cases}$
 $f(x^*) + \sum_{i=1}^{m} u_i^* h_i(x^*) + \sum_{j=1}^{m} v_j^* l_j(x^*)$
 $f(x^*) + \sum_{i=1}^{m} u_i^* h_i(x^*) + \sum_{j=1}^{m} v_j^* l_j(x^*)$
 $f(x^*) + \sum_{i=1}^{m} u_i^* h_i(x^*) + \sum_{j=1}^{m} v_j^* l_j(x^*)$

Two inequalities hold with equality:

=) "X* minimizer L(X, U*, V*) [Stationary condition]

=)
$$u_i^* h_i(x^*) = 0$$
 or $u_i^* > 0 = 0$ $u_i^* > 0$ $u_$

Enough: minimize
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{8}$ $\frac{1}{2}$ $\frac{1}{2}$

Example: SVM

Given $y \in \{1,-1\}^n$, $X : m \times p$ with moves $\{\infty\}$

minimize $\frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^{m} \xi_i$ S-ho $\xi_i > 0$

 $y_i(n_i^T\beta + \beta_0) \geqslant 1 - \xi_i$ (=1, -1)

dud variably: V, w

 $0 = \sum_{i=1}^{\infty} w_i y_i$, $\beta = \sum_{i=1}^{\infty} w_i y_i x_i$, $w = c_1 - v_1$

Conplene Many Blackness:

ν; ξ; = 0; ω; (1 - ζ; - y; (κ; β+β₀))=0

じ=1,-0

At optimality we have, $\beta = \sum_{i=1}^{n} w_i y_i x_{ii} = \sum_{i=1}^{n} w_i$ and $w_i \neq 0 \quad \text{only} \quad \text{if} \quad y_i \left(x_{ii} \beta + \beta_0 \right) = 1 - \xi_i,$ Such points on called support points

