第6章 线性规划

- 6.1 线性规划模型
- 6.2 标准形
- 6.3 单纯形法
- 6.4 对偶性
- 6.5 整数线性规划的分支限界算法

6.1 线性规划模型

例1 生产计划问题 用3种原料混合配制2种清洁剂

	原料1	原料2	原料3	售价(万元/吨)
清洁剂A	0.25	0.50	0.25	12
清洁剂 B	0.50	0.50		15
存量 (吨)	120	150	50	

这 2 种清洁剂应各配制多少才能使总价值最大?

设清洁剂A和B分别配制x和y吨

$$\max z = 12x + 15y$$

s.t.
$$0.25x + 0.50y \le 120$$

$$0.50x + 0.50y \le 150$$

$$\leq 50$$

$$x \ge 0, y \ge 0$$

例2 投资组合问题

投资方向	高新技术		基础工业		债券
项目	1	2	3	4	5
年收益	8.1	10.5	6.4	7.5	5.0

投资10亿,如何分配,使得收益最大?

- 每个项目不超3亿
- 高新技术不超5亿
- · 项目2不超高新技术的一半
- •债券不少于基础工业的40%

设项目
$$i$$
 的投资额为 x_i 亿元, $i=1,2,3,4,5$.

max $z=8.1x_1+10.5x_2+6.4x_3+7.5x_4+5.0x_5$
s.t. $x_1 \le 3$, $x_2 \le 3$, $x_3 \le 3$, $x_4 \le 3$, $x_5 \le 3$
 $x_1+x_2 \le 5$
 $x_2 \le 0.5(x_1+x_2)$, 即 $x_1-x_2 \ge 0$
 $x_5 \ge 0.4(x_3+x_4)$, 即 $0.4x_3+0.4x_4-x_5 \le 0$
 $x_1+x_2+x_3+x_4+x_5=10$
 $x_i \ge 0$, $i=1,2,3,4,5$

例3运输问题

	分销中心1	分销中心2	分销中心3	产量
工厂1	3	2	7	5000
工厂2	7	5	2	6000
需求量	6000	4000	1000	11000

产销平衡. 试制定供销方案, 使总运费最小.

设工厂
$$i$$
 供应分销中心 j 的数量为 x_{ij} , $i=1,2; j=1,2,3$.

min
$$z = 3x_{11} + 2x_{12} + 7x_{13} + 7x_{21} + 5x_{22} + 2x_{23}$$

s.t.
$$x_{11} + x_{12} + x_{13} = 5000$$

$$x_{21} + x_{22} + x_{23} = 6000$$

$$x_{11} + x_{21} = 6000$$

$$x_{12} + x_{22} = 4000$$

$$x_{13} + x_{23} = 1000$$

$$x_{ij} \ge 0$$
, $i = 1,2$; $j = 1, 2, 3$

线性规划的一般形式

$$\min(\max) z = \sum_{j=1}^{n} c_j x_j$$

目标函数

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \le (=, \ge) b_{i}$$
, $i = 1, 2, ..., m$ 约束条件

$$x_j \ge 0$$
, $j \in J \subseteq \{1,2,...,n\}$
 x_j 任意, $j \in \{1,2,...,n\}$ - J

非负条件自由变量

可行解 满足约束条件和非负条件的变量可行域 全体可行解 全体可行解 最优解 目标函数值最小(最大)的可行解 最优值 最优解的目标函数值

二维线性规划图解法

例4 max
$$z = 12x + 15y$$

s.t. $0.25x + 0.50y \le 120$
 $0.50x + 0.50y \le 150$
 $0.25x \le 50$
 $x \ge 0, y \ge 0$

O(0,0), A(0,240), B(120,180),C(200,100), D(200,0)

最优解 $x^*=120$, $y^*=180$ (点B) 最优值 $z^*=4140$.

目标函数改为 $\max z = 12x + 12y$

最优解
$$x^*=120t + 200(1-t) = 200-80t$$

 $y^*=180t + 100(1-t) = 100 + 80t$,
 $z^*=3600$ 最优值

(0≤*t*≤1,线段*BC*)

例 5

$$\min z = x - 2y$$
s.t. $2x + y \ge 2$

$$x - y \le 2$$

$$x \ge 0, y \ge 0$$

有可行解 目标函数值可以任意小 无最优解.

 $2x + y \ge 2$ 改为 $2x + y \le 2$, $x - y \le 2$ 改为 $x - y \ge 2$ 则可行域为空集, 无可行解

几种解的情况

- (1) 解有4种可能
 - (a) 有唯一的最优解.
 - (b) 有无穷多个最优解.
 - (c) 有可行解, 但无最优解 (目标函数值无界).
 - (d) 无可行解, 更无最优解.
- (2) 可行域是一个凸多边形 (可能无界,也可能是空集). 如果有最优解,则一定可以在凸多边形的顶点取到.
- 一般的n维线性规划也是如此

6.2 标准形

标准形

min
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{i=1}^{n} a_{ij} x_j = b_i \ge 0, i = 1, 2, ..., m$

$$x_j \ge 0, \quad j = 1, 2, \dots, n$$

特点

目标函数: 最小化

约束条件:大于等于0

化成标准形

- (1) 把 $\max z$ 替换成 $\min z' = -z$, 即取 $c_j' = -c_j$.
- (2) b_i < 0. 两边同时变号, ≤ 改变成 ≥, ≥ 改变成 ≤.
- $(4) \sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} . 引入剩余变量 y_{i} \geq 0 , 替换成$ $\sum_{j=1}^{n} a_{ij} x_{j} y_{i} = b_{i}$
- (5) 自由变量 x_j 替换成 $x_j' x_j'', x_j' \ge 0, x_j'' \ge 0$

例 6

写出下述线性规划的标准形

max
$$z = 3x_1 - 2x_2 + x_3$$

s.t. $x_1 + 3x_2 - 3x_3 \le 10$
 $4x_1 - x_2 - 5x_3 \le -30$
 $x_1 \ge 0, x_2 \ge 0, x_3$ 任意

解
$$\min z' = -3x_1 + 2x_2 - x_3' + x_3''$$

s.t. $x_1 + 3x_2 - 3x_3' + 3x_3'' + x_4 = 10$
 $-4x_1 + x_2 + 5x_3' - 5x_3'' - x_5 = 30$
 $x_1 \ge 0, x_2 \ge 0, x_3' \ge 0, x_3'' \ge 0, x_4 \ge 0, x_5 \ge 0$

标准形的其他形式

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & \dots & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

矩阵形式

$$\min z = c^T x$$

$$\mathbf{s.t.} \ Ax = b$$

$$x \ge 0$$

向量形式

min
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$

s.t.
$$\sum_{j=1}^{n} P_{j} x_{j} = b$$

$$x_{j} \ge 0, \ j = 1, 2, ..., n$$

$$P_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

标准形的可行解的性质

定义 设A 的秩为m,

A的 m 个线性无关的列向量称作标准形的基.

给定基 $B = (P_{i_1}, P_{i_2}, \dots, P_{i_m}),$

对应基中列向量的变量 $x_{i_1}, x_{i_2}, \dots, x_{i_m}$ 称作基变量, 其余的变量称作非基变量.

基变量构成的向量记作 x_B , 非基变量构成的向量记作 x_N . 令 $x_N = 0$, 等式约束变成

$$B x_B = b$$

解得 $x_B = B^{-1}b$. 向量 x 满足约束 Ax = b且非基变量全为 0,称作关于基 B 的基本解 .

x是一个基本解且 $x \ge 0$, 则称 x是基本可行解, 对应的基 B为可行基.

例 7

$$\min z = -12x_1 - 15x_2
s.t. 0.25x_1 + 0.50x_2 + x_3 = 120
0.50x_1 + 0.50x_2 + x_4 = 150
0.25x_1 + x_5 = 50$$

$$A = \begin{bmatrix}
0.25 & 0.50 & 1 & 0 & 0 \\
0.50 & 0.50 & 0 & 1 & 0 \\
0.25 & 0 & 0 & 0 & 1
\end{bmatrix}
x_i \ge 0, i = 1, 2, ..., 5$$

基
$$B_1$$
=(P_1 , P_2 , P_3). 基变量 x_1 , x_2 , x_3 , 非基变量 x_4 , x_5 . 令 x_4 = 0, x_5 = 0, 得 0.25 x_1 + 0.50 x_2 + x_3 =120 0.50 x_1 + 0.50 x_2 =150 0.25 x_1 =50

解得 $x_1 = 200$, $x_2 = 100$, $x_3 = 20$. $x^{(1)} = (200,100,20,0,0)^T$ 是基本可行解, B_1 是可行基.

例7 (续)

取基 B_2 =(P_1 , P_2 , P_4). 基变量 x_1 , x_2 , x_4 , 非基变量 x_3 , x_5 . 令 x_3 =0, x_5 = 0, 由 $0.25x_1 + 0.50x_2 = 120$ $0.50x_1 + 0.50x_2 + x_4 = 150$ $0.25x_1 = 50$

解得 x_1 =200, x_2 =140, x_4 = -20.

 $x^{(2)} = (200, 140, 0, -20, 0)^T$ 是基本解,不是基本可行解.

基本可行解的性质

引理1 Ax=b 的解 α 是基本解 $\Leftrightarrow \alpha$ 中非零分量对应的列向量线性无关.

定理1 如果标准形有可行解,则必有基本可行解.

定理2 如果标准形有最优解,则必存在一个基本可行解是 最优解.

6.3 单纯形法

基本步骤

- (1) 确定初始基本可行解.
- (2) 检查当前的基本可行解. 若是最优解或无最优解,计算结束; 否则作基变换,用一个非基变量替换一个基变量,得到 一个新的可行基和对应的基本可行解,且使目标函数 值下降(至少不升).
- (3) 重复(2).

确定初始基本可行解

先考虑最简单的情况,设约束条件为

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le b_i$$
 , $b_i \ge 0$, $i = 1,2,\ldots,m$ 引入 m 个松弛变量 $x_{n+i} \ge 0$ ($i = 1,2,\ldots,m$) , $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n + x_{n+i} = b_i$, $i = 1,2,\ldots,m$ 取 x_{n+i} ($i = 1,2,\ldots,m$) 作为基变量,初始基本可行解为 $x^{(0)} = (0,0,\ldots,0,b_1,b_2,\ldots,b_m)^T$

min
$$z' = -12x_1 - 15x_2$$

s.t. $0.25x_1 + 0.50x_2 + x_3 = 120$
 $0.50x_1 + 0.50x_2 + x_4 = 150$
 $0.25x_1 + x_5 = 50$
 $x_j \ge 0, i = 1, 2, ..., 5$

例 $\max z = 12x + 15y$ s.t. $0.25x + 0.50y \le 120$ $0.50x + 0.50y \le 150$ $0.25x \le 50$ $x \ge 0, y \ge 0$

取 x_3, x_4, x_5 作为基变量, $x^{(0)} = (0,0,120,150,50)^T$

