Chapter 0 Overview to Integrated Circuits

關志達 台灣大學電機系

電晶體的發明

1956諾貝爾物理獎, Shockley, Bardeen, Brattain "for their researches on semiconductors and their discovery of the transistor effect"

"for his part in the invention of the

integrated circuit"

ECL 3-input Gate Motorola 1966

Intel 4004 微處理器 (1971)

1000 電晶體 1 MHz 操作速度

Intel 八核微處理器 (2014)

- **2014**, Core i7, 5960X Haswell: **26**億電晶體, **22**奈米 製程, 晶片面積 355 mm², 時脈速度 **3.5GHz**, 20MB 記憶體.
- ■八核心

不只是電腦內的微處理器

全球歷年手機銷售量

1004M smartphones

2000 2008 2009 2010 2011 2012 2013

Units 435M 1177M 1130M 1391M 1546M 1738M 1822M

Source: IDC Worldwide Mobile Phone Tracker, Jan. 27, 2014.

Apple A8 Processor

其他多處理電路

圖形運算 處理器 (GPU)

記憶體

雙核處理 器(CPU)

摩爾定律 Moore's Law

- 生於 1929年
- Intel 創辦人
- PhD, Caltech, 1954年
- 身價67億美金

摩爾定律

- 在1965年, Moore 發現一個IC(晶片)中的電晶體總數每18到24個月會加倍。
- 於是他提出一個預測說IC製程技術會以這個 速率持續的進步,也就是說最尖端的IC效能 會每18個月翻一倍。

9

4

IC製程的發展

- 製程的命名是以該製程中所能製作元件的精度為基礎,目前主要是以製程中最細的元件的寬度為主,又稱feature size (特徵尺度)
- 過去數十年來已經從5微米(um, micron)逐漸 進步
- 0.13 um -> 90nm -> 65nm -> 45nm (40nm)
- 現在28nm/22nm/14nm 是最尖端製程。
- 10nm製程也快要推出了。

nm 是nanometer,是1公尺的十億分之一(1/1,000,000,000)

摩爾定律圖解

Electronics, April 19, 1965.

記憶晶片(ROM)容量的演進

IC製程的演進

Source: SIA 2007

微處理器 (CPU)的摩爾定律

最先進的微處理器中的電晶體數每兩年倍增

晶片速度的摩爾定律

最先進的微處理器速度每兩年倍增

電晶體的單位製造成本

製造成本

IC 製程

https://www.youtube.com/watch? v=JDROPMoNZpk

Silicon Wafer

IC 製造程序(製程)

製造IC像在做Pizza

IC局部放大相片

IC側視放大照片

電晶體

IC 進步有限制嗎?

1

Intel CPU 的趨勢

微處理器消耗的功率

微處理器功率一直增加

IC消耗功率太高是一大問題

功率密度

Source: Intel 28

走向多核

- 在一個晶片上製作多個處理器
- 每一個處理器用較慢的速度來執行,耗能較低
- 16核心,64核心,甚至上千核心。

五十歲的摩爾定律 玩完了嗎?

1965 - 2015?

摩爾定律的未來

- 持續微縮至10nm, 5nm, 甚至以下。
- 到達原子尺寸極限以前,會走向立體化。
- 立體化(3D)有幾種方法,可以只採用一種或 採用多種
 - 3D電晶體 (鰭式電晶體, FinFET)
 - 堆疊晶片 (3D IC)
 - 堆疊電晶體層 (Monolithic 3D IC)

31

3D IC --- 晶片堆疊

- 垂直方向堆疊多個晶片 (13,32甚至更多)
- 利用金屬線來連結晶片之間的訊號

3D IC --- 穿砂連結 (TSV)

■ Through-silicon Via (TSV) 技術

2. Amkor Technologies is working on a four-die memory stack with 50-µm die thickness and 10-µm diameter TSVs. (courtesy of Amkor Technologies)

晶圓磨薄

- ■晶圓堆疊之前要先磨薄
- 從 300μm 磨成 30μm.

Monolithic (單晶) 3D IC

■ 一層一層的電晶體與連結直接堆疊

4

總結

- IC設計與製造技術在過去半個世紀來促成了電子科技爆炸性的成長。
- 影響了所有人類的各個生活層面:通訊, 能源,醫療,科學,農業,工業,運輸, 娛樂等等。
- 展望未來,摩爾定律還會持續。
- 工程師們也會持續do this good job,為 人類的福祉與更好的生活品質創造出更 多的創新產品與技術。

36