Final Project Azure Machine Learning

Klonicki, Steve

Deep Azure@McKesson

Dr. Zoran B. Djordjević

Problem statement

- In 2017, around 5.57 million existing homes were sold in the US
- If priced too low, the seller leaves money on the table.
- If priced too high, the house will sit on the market unsold.
- A negative perception can result when a house is on the market for a considerable amount of time, or when the price is reduced often.

Goal

- How accurately can we predict the selling price of a home before it is put onto the market?
- Build a system to predict housing prices using Azure Machine Learning.

Install/Configure/Set up

- Data set
 - https://www.kaggle.com/c/house-prices-advanced-regressiontechniques/data
 - consists of 1,460 rows of data of house sales, each with 81 attributes.
- Microsoft Azure Machine Learning Studio (https://studio.azureml.net/)
- Anaconda 5.0 distribution of Python 64 bit (https://www.anaconda.com/), which includes:
 - Python 2.7.14
 - Jupyter (visualization tool)

Install/Configure/Set up

- Data cleaning
- Columns LotFrontage and MasVnrArea are numeric. The creators of the data used the value 'NA' to denote no value. In these cases, I replaced NA with '0'. Cleansing is necessary to supply correct values to the machine learning algorithms.

Out of the box, Azure Machine Learning offers basic visualizations

@Klonicki, Steve

6

Machine Learning is accomplished through a series of interconnected modules

Not all data features are correlated with SalesPrice

 Filter Based Feature Selection module attempts to identify the most relevant attributes.

I observed how the 2 Feature Scoring methods came to different conclusions. Listed in descending order of importance

Mutual Information	Pearson Correlation		
Overall Quality	OverallQuality		
Neighborhood	GrLivArea		
GrLivArea	GarageCars		
GarageCars	GarageArea		
GarageArea	TotalBsmtSF		
YearBuilt	1stFlrSF		
TotalBsmtSF	FullBath		
BsmtQual	TotRmsAbvGrd		
ExterQual	YearBuilt		
KitchenQual	YearRemodled		

Split the data, use 75% to train the algorithm.

Out[35]:

- The remaining 25% was used to determine the accuracy of the model.
- Not all Regression algorithms are equal. Compare the accuracy of the 2 models against each other.
- Boosted Decision Tree Regression outperformed Decision Forest Regression.
 Coefficient of Determination closest to 1 wins.

In [35]: frame

	Negative Log Likelihood			Relative Absolute Error	Relative Squared Error	Coefficient of Determination
0	∞	20501.911836	29997.296732	0.360987	0.141419	0.858581
1	4377.84695669526	22088.663480	32556.124367	0.388926	0.166574	0.833426

Summary

Pros

 Quickly generate an experiment that, in theory, could predict the price of a house with 85% accuracy

Cons

- Limited ways Azure
 Machine Learning can be used programmatically.
- Not possible to configure or execute the machine learning modules through a programming language.

YouTube URLs, GitHub URL, Last Page

- Two minute (short): https://youtu.be/kb44rs7QztQ
- 15 minutes (long): https://youtu.be/GQZ3NAmyNxA
- GitHub Repository with all artifacts: https://github.com/we814/AMLDeepDive