University of Toronto Department of Mathematics

MAT224H1S

Linear Algebra II

Midterm Examination I

Feb. 9, 2011

Y. Burda, S. Uppal

Duration: 1 hour 30 minutes

Last Name:	
Given Name:	
Student Number:	
Tutorial Code:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY		
Question	Mark	
1	/10	
2	/10	
3	/10	
4	/10	
5	/6	
6	/4	
TOTAL	/50	

1. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be defined by

$$T(p(x)) = p(x-1).$$

- (a) Show that T is a linear operator.
- (b) Find the matrix of T relative to the basis $\alpha = \{1, 1+x, 1+x+x^2\}$ of $P_2(\mathbb{R})$.

2. Is the set $\{(i, 1, 2i), (1, 1+i, i), (1, 3+5i, -4+3i)\}$ a basis for \mathbb{C}^3 ? Justify your answer.

3. Let $T: \mathbb{R}_{2\times 2} \to \mathbb{R}_{2\times 2}$ be the linear transformation be defined by

$$T(A) = A \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A.$$

- (a) Find a basis for the kernel of T.
- (b) Find a basis for the range of T.

4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, cx_2, x_1 + x_3)$$

where $c \in \mathbb{R}$ is a constant. For what values of c does there exist a basis α such that $[T]_{\alpha\alpha}$ diagonal? Justify your answer.

5. Let V and W be vector spaces over a field F, let $\alpha = \{v_1, \ldots, v_n\}$ and $\beta = \{w_1, \ldots, w_n\}$ be bases for V and W respectively, and let $T: V \to W$ be a linear transformation. Prove that T is an isomorphism iff $[T]_{\beta\alpha}$ is an invertible matrix.

6. Let $V = M_{22}$, the set of all 2×2 matrices. Let the operation of vector addition in V be the usual matrix addition but let scalar multiplication in V be defined by

$$c \cdot A = cA^T.$$

Is V a vector space? Justify your answer.