Kinetics & Mechanism Physical Chemistry Tutorials Mark Wallace, Wadham College

mark.wallace@chem.ox.ac.uk
CRL Floor 1 Office 1 Phone (2)75467

Question 1

- a) Define the following terms which relate to the reaction $N_2 + 3H_2 \rightarrow 2NH_3$
 - i. the rate of reaction
 - ii. the rate expression or rate law
 - iii. the rate constant
- b) A gas phase reaction of the type $2A \rightarrow B$ is monitored at 298 K by measuring the total pressure ($P_t = P_A + P_B$). Note that at t=0, the pressure is due to A only.

- i. Derive an expression that gives the pressure of A, P_A , in terms of the total pressure P_t .
- ii. Show that the data are consistent with a second order reaction.
- iii. Show that the rate constant at 298 K is $k_2 = 8.06 \times 10^{-6} \text{ Torr}^{-1}\text{s}^{-1}$
- iv. If the rate constant at 37° C is $k_2 = 1.73 \times 10^{-5}$ Torr⁻¹s⁻¹, show how to calculate the activation energy of the reaction.

Question 2

The kinetics of the thermal decomposition of ozone can be accounted for by the following mechanism:

$$(1) \ O_3 \to O_2 + O \qquad \qquad k_1$$

(2)
$$O + O_3 \rightarrow O_2 + O_2$$
 k_2

(3)
$$O + O_2 + M \rightarrow O_3 + M$$
 k_3

a) Show that the steady state concentration of oxygen atoms is given by

$$[O] = \frac{k_1[O_3]}{k_2[O_3] + k_3[O_2][M]}$$

- b) Why is the species M included in both sides of reaction (3)?
- c) Show that the rate of disappearance of ozone according to the above mechanism is

$$-\frac{d[O_3]}{dt} = \frac{2k_1k_2[O_3]^2}{k_2[O_3] + k_3[O_2][M]}$$

d) Outline the assumptions upon which the use of the steady-state approximation is based. Are these assumptions justified?

Question 3

a) Explain what is meant by the half-life of a chemical reaction. The reaction OH + $C_2H_6 \rightarrow H_2O + C_2H_5$ was studied at 300K. For initial concentrations $[OH]_0 = [C_2H_6]_0$

- = a_0 , show that the half life of OH radicals is given by $(a_0k_1)^{-1}$, where k_1 is the bimolecular rate constant for the reaction.
- b) For initial concentrations $[OH]_0 = [C_2H_6]_0 = 1.5 \times 10^{-10} \text{ mol dm}^{-3}$, the half life at 300 K was found to be 44 s. Determine the OH radical half life when $[OH]_0 = 1.5 \times 10^{-10} \text{ mol dm}^{-3}$ and $[C_2H_6]_0 = 1.5 \times 10^{-7} \text{mol dm}^{-3}$ (i.e. in great excess over $[OH]_0$).
- c) For $[OH]_0 = [C_2H_6]_0 = 1.5 \times 10^{-10}$ mol dm⁻³, the half life $t_{1/2}$ of OH varies with temperature as shown in the table below. Deduce what you can from these data.

T / K 300 450 900
$$t_{1/2}$$
 / s 44 12 1.85

d) For the recombination reaction represented by the stoichiometric equation $O+O+M\to O_2+M$ the half life of oxygen atoms increases with increasing temperature. Account for this behaviour