工科数学分析期末试题(A卷)

班级	学号	姓名
クエ <i>ラ</i> ス	.1 7	た プロ

(本试卷共6页, 十一个大题. 试卷后面空白纸撕下做草稿纸, 试卷不得拆散.)

题号	1	11	11]	四	五	六	七	八	九	+	十一	总分
得分												
签名												

- 一. 填空题 (每小题 2 分, 共 10 分)
- 2. $\forall \vec{x} \vec{A}(x, y, z) = xy\vec{i} + x \ln y\vec{j} + \ln(x^2 + z^2)\vec{k}$, y = 1
- 3. 如图,正方形 $\{(x,y)|x| \le 1, |y| \le 1\}$ 被对角线分成四个区域 D_1, D_2, D_3, D_4 , D_3 D_4 D_4
- 4. 设点 M(x,y,z) 处力 \vec{F} 的大小等于此点到原点的距离,而方向指向原点,一质点在力 \vec{F} 的作用下沿曲线 $x=\cos t,y=2\sin t,z=2t$ 由点 A(1,0,0) 移动到点 $B(0,2,\pi)$,则力 \vec{F} 所作的功W=
- 5. 设 $\sum_{n=1}^{\infty} b_n \sin nx$ 是 f(x) = x 1 $(0 \le x \le \pi)$ 的以 2π 为周期的正弦级数,则 $b_5 =$ _______.
- 二. (8 分) 设 $I = \int_0^1 dy \int_y^{\sqrt{y}} \frac{\sin x}{x} dx$, 交换积分次序, 并计算积分的值
- 三. (8分) 求 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值点和极值.
- 四. (8 分) 求曲线 $\begin{cases} x + y z = \ln z + 3 \\ xyz = 3 \end{cases}$ 在点 P(1,3,1) 处的切线方程.
- 五. (9 分) 计算 $I = \iint_S \frac{x^2 + y^2}{\sqrt{1 + 4x^2 + 4y^2}} dS$, 其中 S 是曲面 $z = x^2 + y^2$ 被柱面 $(x 1)^2 + y^2 = 1$ 所 截下的有限部分.

六. (11 分) (1)求曲面 $z = -1 - \frac{x^2}{2} - y^2$ 在点 P(2,1,-4) 处的切平面 π 的方程. (2)计算积分 $I = \iiint_V x dx dy dz, \;\; 其中 V \; 是平面 \pi 与三个坐标面围成的有界区域.$

七. (9 分) 求幂级数 $\sum_{n=2}^{\infty} (-1)^n \frac{x^{2n}}{2n-1}$ 的收敛域及和函数.

八. (10 分) 利用格林公式计算 $I = \int_L (e^{-x} \cos y - 2y^3) dx + (e^{-x} \sin y - xy^2) dy$, 其中 L 为曲线 $x = \sqrt{2y - y^2} \text{ 从点 } O(0,0) \text{ 到 } A(0,2).$

九. (9分) 把 $f(x) = x \ln(2+x)$ 展成 x+1 的幂级数, 并指出收敛域.

十. (9 分) 证明 $(2x\cos y - y^2\sin x)dx + (2y\cos x - x^2\sin y)dy = 0$ 是全微分方程, 并求其通解.

十一. (9 分) 计算积分
$$I = \iint_S \frac{x^2 dy dz}{x^2 + y^2 + (z - 1)^2} + \frac{y^2 dz dx}{x^2 + y^2 + (z - 1)^2} + \frac{z^3 dx dy}{x^2 + y^2 + (z - 1)^2},$$
 其中 S 是曲面 $S = S$ 是曲面 $S = S$ 是曲面 $S = S$ 是曲面 $S = S$ 是由面 $S = S$ 是由 $S = S$