方差分析

方差分析

- ▶方差分析(analysis of variance, ANOVA)是英国遗传学家、统计学家Ronald Fischer提出的一种分析方法
- ▶方差分析技术是假设检验的拓展

$$\mathcal{H}_0: \mu_1 = \mu_2 = \dots = \mu_N$$

- ▶ 单因子方差分析
- > 双因子方差分析
- > 多因子方差分析

例9-42 单元素方差分析

- ▶有5种药物比较疗效
 - ▶ 将30个病人随机地分成5组
 - > 每组使用同一种药物,并记录病人治疗时间
 - ▶ 评价疗效——5种药物疗效是否有显著不同?

patient	med	dicin	e ni	ımb	ers	patient	medicine numbers							
number	1	2	3	4	5	number	1	2	3	4	5			
1	5	4	6	7	9	2	8	6	4	4	3			
3	7	6	4	6	5	$\overline{4}$	7	3	5	6	7			
5	10	5	4	3	7	6	8	6	3	5	6			

单因子方差分析

- ▶单因子方差分析就是指对一些观察来说,只有一个外界因素可能对观测的现象产生影响
- >求解单因子方差分析的函数调用格式 [all the last of the la

[p, tab, stats] = anova1(X)

- ▶其中, x 为需要分析的数据
- ▶ 若 $p < \alpha$,则拒绝假设

$$\mathcal{H}_0: \mu_1 = \mu_2 = \dots = \mu_N$$

单因子方差分析表

➢ANOVA表

sourc	e sum of squares	DOF	mean squares	F	probability p
group	SSA= $\sum_{i} n_{i} \bar{y}_{i,:}^{2} - N \bar{y}_{:,:}^{2}$	I-1	$MSSA = \frac{SSA}{I - 1}$	$\frac{\text{MSSA}}{\text{MSSE}}$	$p = P(F_{I-1,N-I} > c)$
erro	SSE= $\sum_{i} \sum_{k} y_{i,k}^{2} - \sum_{i} n_{i} \bar{y}_{i,:}^{2}$	N-I	$MSSE = \frac{SSE}{N - I}$		
tota	$SST = \sum_{i}^{k} \sum_{k} y_{i,k}^{2} - N\bar{y}_{:,:}^{2}$	N-1			

- ▶p的值是不是很小
- ▶盒子图的观察

例9-42 单元素方差分析

- ▶有5种药物比较疗效
 - ▶ 将30个病人随机地分成5组
 - > 每组使用同一种药物,并记录病人治疗时间
 - ▶ 评价疗效——5种药物疗效是否有显著不同?

patient	med	dicin	e ni	ımb	ers	patient	medicine numbers							
number	1	2	3	4	5	number	1	2	3	4	5			
1	5	4	6	7	9	2	8	6	4	4	3			
3	7	6	4	6	5	$\overline{4}$	7	3	5	6	7			
5	10	5	4	3	7	6	8	6	3	5	6			

例9-42的求解方法

▶方差分析——MATLAB求解语句

```
A=[5,4,6,7,9; 8,6,4,4,3;...
7,6,4,6,5; 7,3,5,6,7;...
10,5,4,3,7; 8,6,3,5,6];
mean(A),
[p,tbl,stats]=anova1(A)
```

▶盒子图的直观观察

双因子方差分析

- ▶如果有两种因子可能影响到某现象的统计规律,则应该引入双因子方差分析的概念
- 》观测量 y 可以表示为一个三维数组 $y_{i,j,k}$, 表示第 1个因子取第 i 个水平,第 2个因子取第 j 个水平时,组内第k个对象的观测指标

例9-43 树的生长地、树种的影响

- ▶比较3种松树在4个不同地区的生长情况有无差别
 - ➤ 在每个地区对每种松树随机地选择5株
 - > 测量它们的胸径

pine	living conditions																			
species	1					2				3					$\overline{}$					
1	23	15	26	13	21	25	20	21	16	18	21	17	16	24	27	14	17	19	20	24
2	28	22	25	19	26	30	26	26	20	28	19	24	19	25	29	17	21	18	26	23
3	18	10	12	22	13	15	21	22	14	12	23	25	19	13	22	16	12	23	22	19

双因子方差分析的三个假设

>三个假设:

▶ α_i 为第一因子单独作用对现象没有影响

$$\mathcal{H}_1: \ \alpha_1 = \alpha_2 = \cdots = \alpha_I$$

β_j 为第二因子单独作用对现象没有影响

$$\mathcal{H}_2: \beta_1 = \beta_2 = \dots = \beta_J$$

 $ightharpoonup \gamma_k$ 为两个因子同时作用的效应

$$\mathcal{H}_3: \ \gamma_1 = \gamma_2 = \cdots = \gamma_{I,I}$$

三个概率的定义及意义

 \triangleright 若 $p_{\Lambda} < c_1$ 则拒绝假设 \mathcal{H}_1

$$p_A = P\left(F_{[I-1,IJ(K-1)]} > c_1\right)$$

 \triangleright 若 $p_B < c_2$ 则拒绝假设 \mathcal{H}_2

$$p_B = P\left(F_{[J-1,IJ(K-1)]} > c_2\right)$$

》若 $p_{AB} < c_3$ 则拒绝假设 \mathcal{H}_3

$$p_{AB} = P\left(F_{[(I-1)(J-1),IJ(K-1)]} > c_3\right)$$

>双因子方差分析 [p,tab,stats]=anova2(X)

双因子方差表

▶双因子方差表

source	square of sums	DOF	mean squared error	F	p
factor A	$SSA = JK \sum_{i} \bar{y}_{i,:,:}^2 - IJK \bar{y}_{:,:,:}^2$	I-1	$MSSA = \frac{SSA}{I - 1}$	$\frac{\text{MSSA}}{\text{MSSE}}$	$p_{_A}$
factor B	:	J-1	$\boldsymbol{\vartheta}$	$\frac{\text{MSSB}}{\text{MSSE}}$	$p_{_B}$
interaction	SSAB $SSE = \sum_{i:i} y_{i,j,k}^2 - K \sum_{i} \sum_{j} \bar{y}_{i,j,:}^2$	$(I\!-\!1)(J\!-\!1)$	$MSSAB = \frac{SSAB}{(I-1)(J-1)}$	$\frac{\text{MSSAB}}{\text{MSSE}}$	\boldsymbol{p}_{AB}
errors	SSE= $\sum_{ijk} y_{i,j,k}^2 - K \sum_i \sum_j \bar{y}_{i,j,i}^2$	IJ(K-1)	$MSSE = \frac{SSE}{IJ(K-1)}$		
total	$SST = \sum_{ijk} y_{i,j,k}^2 - IJK\bar{y}_{:,:,:}^2$	IJK-1			

$$SSAB = K \sum_{ij} \bar{y}_{i,j,:}^2 - JK \sum_{i} \bar{y}_{i,:,:}^2 - IK \sum_{j} \bar{y}_{:,j,:}^2 + IJK \bar{y}_{:,:,:}^2$$

例9-43 树的生长地、树种的影响

- ▶比较3种松树在4个不同地区的生长情况有无差别
 - ➤ 在每个地区对每种松树随机地选择5株
 - > 测量它们的胸径

pine		living conditions																		
species	1					2				3				4						
1	23	15	26	13	21	25	20	21	16	18	21	17	16	24	27	14	17	19	20	24
2	28	22	25	19	26	30	26	26	20	28	19	24	19	25	29	17	21	18	26	23
3	18	10	12	22	13	15	21	22	14	12	23	25	19	13	22	16	12	23	22	19

例9-43的求解

➤MATLAB 求解

```
>> B=[23,15,26,13,21,25,20,21,16,18,21,17,16,24,27,14,17,19,20,24; 28,22,25,19,26,30,26,26,20,28,19,24,19,25,29,17,21,18,26,23; 18,10,12,22,13,15,21,22,14,12,23,25,19,13,22,16,12,23,22,19] anova2(B',5);
```

▶均值计算

多因子方差分析

▶MATLAB语言的统计学工具箱还可以进行三因子 甚至多因子的方差分析,可以采用manova1()函 数进行多因子方差分析

