Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Измерение магнитного поля Земли [3.1.3]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Теоретическое введение	1
2	Экспериментальная установка	2
3	Ход работы 3.1 Подготовка приборов к работе	3
4	4 Обработка результатов	
5	Вывод	7
6	Литература	7

Цель работы: измерение зависимости сопротивления полупроводниковых образцов различной формы от индукции магнитного поля.

Используемое оборудование: электромагнит, милливеберметр или миллитесламетр (на основе датчика Холла), вольтметр, амперметр, миллиамперметр, реостат, образцы монокристаллического антимонида индия (InSb) *n*-типа.

1 Теоретическое введение

В работе исследуется эффект зависимости электрического сопротивления от магнитного поля на примере диска Корбино (см. рис.).

Рис. 1: Диск Корбино

При отстутствии магнитного поля, направленного перпендикулярно плоскости диска, по диску течёт ток, определяемый по закону

$$I = \frac{U}{R_0}, \ R_0 = \frac{\ln \frac{r_2}{r_1}}{\sigma_0 2\pi r h}$$
 (1)

Однако при включении магнитного поля индукции B на частицыпереносчики тока начинает действовать сила Лоренца, из-за чего траектория частиц увеличивается в расстоянии, проходимом между двумя точками с фиксированной разницей потенциалов U.

В этом случае проводимость равна

$$\sigma_r = \frac{\sigma_0}{1 + (\mu B)^2} \tag{2}$$

Закон Ома преобразовывается в следующий вид:

$$I = \frac{U}{R}, \ R = R_0(1 + (\mu B)^2) \tag{3}$$

Таким образом, зависимость I(U) поменялась из-за геометрических особенностей диска Корбино. Такой эффект называют геометрическим магнетосопротивлением. В этой работе будут исследоваться зависимость сопротивления диска от магнитного поля, проверяться выше записанные формулы и исследоваться как влияет характер зависимости геометрических форм на зависимость R(B).

2 Экспериментальная установка

Для исследование зависимости R(B) используется следующая методика:

- 1. Используется калибровка электромагнита (источника магнитного поля): находится зависимость индукции создаваемого магнитного поля от тока в контуре электродвигателя $B(I_m)$ (или $I_m(B)$), который регистрируется амперметром A_1 , чтобы в дальнейшем считать величину магнитного поля с помощью тока в контуре I_m .
- 2. При постоянной силе тока I_0 , которая настривается с помощью сопротивления реостата в контуре с источником питания, меняется величина индукции магнитного поля, тем самым меняется напряжение U, подаваемое на диск Корбино. Исследуется зависимость R(B) через калибровочную кривую и зависимость $U(I_m)$.
- 3. Проводится тот же самый опыт с прямоугольной пластинкой с исследованием зависимости её сопротивления R(B).

3 Ход работы

3.1 Подготовка приборов к работе

Включим вольтметр кнопкой "Сеть"

Присоединим диск Корбино через разъём к цепи питания. Убедившись, что реостат R_2 выведен на минимум тока, включим в сеть блок управления и тумблером К подключим образец.

Теперь определим диапазон изменения силы тока через образец. Для этого снова уберем ток до нуля и временно отключим образец от цепи.

Рис. 2: Схемы экспериментальных установок

Установим все ручки регулировки источника питания магнита (GPR-11H30D) на минимум сигнала и включим источник в сеть. Установим обе ручки регулировки тока на максимум.

Используя ручки регулировки напряжения R_1 (сначала fine, затем coarse), определим диапазон изменения силы тока через электромагнит, чтобы выбрать, каким шагом следует увеличивать ток при калибровке магнита.

Получили следующий диапазон изменения силы тока через электромагнит $0,05-0,40~\mathrm{A}.$

3.2 Калибровка электромагнита

Сперва ознакомимся с устройством и принципом работы измерителя магнитной индукции Ш1-10.

Теперь при помощью прибора Ш1-10 исследуем зависимость индукции B магнитного поля в зазоре от тока I_M через обмотки магнита.

Проведем измерения магнитной индукции для 8 значений тока $I_{\rm M}$ через электромагнит. Так же убидились, что в отсутствие тока через магнит индукция B практически равна нулю.

I, A	В, мТс
0,05	71,4
0, 10	125, 7
0, 15	188, 1
0,20	247
0,25	301
0,30	338
0,35	356
0,39	371

Таблица 1: градуировка B(I)

График полученной зависимости (и её аппроксимация):

Рис. 3: Измерение магнитных моментов шариков

Видно, что при небольних значениях тока зависимость почти линейная, однако при больших видны значительные отклонения от прямой (парабола).

3.3 Исследование магнетосопротивления образцов

Подключим диск Корбино к электрической цепи. При помощи реостата R_2 установим ток через образец $I_0 \simeq 25$ мА. Измерьм падение напряжения на образце в отсутствие магнитного поля. XX

Вставим держатель с диском в зазор электромагнита. Снимим зависимость напряжения U на образце от тока I_M через обмотки магнита при фиксированном токе через образец ($I_0 \simeq 25~{\rm mA}$).

U, MB	I, A
0,899	0,05
1,213	0,10
1,694	0,15
2,175	0,20
2,687	0,25
3,143	0,30
3,415	0,35
3,552	0,39

Таблица 2: зависимость напряжения на образце от тока (диск)

U, MB	<i>I</i> , A
0,898	0,05
1,212	0,10
1,696	0,15
2,174	0,20
2,687	0,25
3,143	0,30
3,414	0,35
3,551	0,39

Таблица 3: зависимость напряжения на образце от тока (перевернутый диск)

По полученным данным видно, что резльутат измерения не зависит от направления магнитного поля.

Теперь вместо диска Корбино подключим к измерительной цепи образец, имеющий форму пластинки. Реостатом R_2 установим в образце ток 10 мА. Измерим падение напряжения на образце в отсутствие магнитного поля.

Снимим зависимость напряжения U на образце от тока через магнит при постоянном токе I=10 мА через образец. При измерениях длинная сторона образца должна быть направлена поперёк поля, а средняя (ширина) в одной серии опытов располагается вдоль, а в другой - поперёк поля.

полученный данные:

U, мВ	I, A
2,890	0,05
3,008	0,10
3,142	0,15
3,253	0,20
3,384	0,25
3,449	0,30
3,488	0,35
3,512	0,40

Таблица 4: зависимость напряжения на образце от тока (пластинка)

Для обработки результатов понадобятся данные с размерами диска и характеристиками приборов:

$$InSb; D = 18 \text{ mm}; d = 3 \text{ mm}; h = 1,8 \text{ mm}.$$

4 Обработка результатов

Построим калибровочный график $B(I_M)$, чтобы в дальнейшем использовать эти данные для интерполяции.

График полученной зависимости (и её аппроксимация):

Рис. 4: Измерение магнитных моментов шариков

Видно, что при небольних значениях тока зависимость почти линейная, однако при больших видны значительные отклонения от прямой (парабола).

5 Вывод

6 Литература

1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна - М.: МФТИ, 2007. - 280 с.