Example 88: As shown in Figure 3, in \triangle *ABC*, *O* is the circumcenter, and the parallel line passing through *A* to *BC* intersects the circumscribed circle of \triangle *ABC* at point *D*, and the feet of *D* on *AB* and *AC* are *G* and *F* respectively. Prove: *GF* $/\!/$ *AO*.

$$\frac{G-F}{O-A} = \frac{B-C}{A-D} \frac{\frac{G-F}{A-B}}{\frac{D-F}{D-A}} \left(\frac{D-F}{A-C} \frac{A-B}{A-O} \frac{C-A}{C-B} \right)$$