Fast algorithms and numerical methods for the solution of Boundary Element Methods

Session 6: Low rank approximations

Stéphanie Chaillat-Loseille

Laboratoire POEMS (CNRS-INRIA-ENSTA Paris) stephanie.chaillat@ensta-paris.fr

AMS 304 2021/2022

Outline of the boundary element method

Illustration with the EFIE with Dirichlet Boundary Condition

Step 1: Solve the boundary integral equation

$$\int_{\Gamma} G(\mathbf{x} - \mathbf{y}) p(\mathbf{y}) dS_{\mathbf{y}} = -u^{inc}(\mathbf{x}), \quad \mathbf{x} \in \Gamma$$

- · Linear system to solve
- · Unknowns only on the boundary

Step 2: Invoke the boundary integral representation for the evaluation of the quantities at interior points (boundary excluded)

$$u^+(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x} - \mathbf{y}) p(\mathbf{y}) dS_{\mathbf{y}}, \quad \mathbf{x} \in \Omega^+/\Gamma.$$

• Cost reduced matrix-vector product: p(y) already known on Γ

How to reduce the costs of the BEM?

BIE to solve (EFIE):
$$\int_{\Gamma} G(x-y)p(y)dS_y = -u^{inc}(x), \quad x \in \Gamma$$

BEM discretization \Rightarrow fully-populated system $\mathbb{A} p = b$

Assembly of the matrix system and matrix-vector product: $O(N^2)$

How can we reduce the costs?

- Not possible to speed-up the solution of the initial system
- But it is possible for an approximate system

$$\mathbf{A} := \begin{bmatrix} -2 & 4 & 6 & -3 \\ 4 & -8 & -12 & 6 \\ -6 & 12 & 18 & -9 \\ -8 & 16 & 24 & -12 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} -2 & 4 & 6 & -3 \end{bmatrix}$$

 BEM system is not low-rank but it can be approximated by a low-rank system: reduction of storage and solution time

Algebraic fast BEM

Example with 1 Gauss point per element and a \mathbb{P}^0 interpolation

$$\left[\begin{array}{c}b_1\\ \vdots\\ b_N\end{array}\right] = \left[\begin{array}{c}w_{\Gamma_1}\\ & \ddots\\ & w_{\Gamma_N}\end{array}\right] \left[\begin{array}{c}G(\mathbf{x}_i,\mathbf{y}_j)\\ & \end{array}\right] \left[\begin{array}{c}w_{\Gamma_1}\\ & \ddots\\ & w_{\Gamma_N}\end{array}\right] \left[\begin{array}{c}p_1\\ \vdots\\ p_N\end{array}\right]$$

If we can find \mathbb{U} $(N \times r \text{ with } r \ll N)$ and \mathbb{V} $(N \times r \text{ with } r \ll N)$ such that $\mathbb{G} \simeq \mathbb{U} \mathbb{V}^T$, it follows a similar approximation for $\mathbb{A} \simeq \mathbb{U}_A \mathbb{V}_A^T$.

$$\begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix} = \underbrace{ \begin{bmatrix} w_{\Gamma_1} \\ & \ddots \\ & w_{\Gamma_N} \end{bmatrix}}_{\mathbb{U}_A \text{ of size } N \times r} \underbrace{ \begin{bmatrix} w_{\Gamma_1} \\ & \ddots \\ & w_{\Gamma_N} \end{bmatrix}}_{\mathbb{V}_A^T \text{ of size } r \times N} \begin{bmatrix} p_1 \\ \vdots \\ p_N \end{bmatrix}$$

Advantages of this algebraic approach?

- Factorization of matrix-vector product $\mathbb{A} \boldsymbol{p} = \mathbb{U}_A(\mathbb{V}_A^T \boldsymbol{p})$
- · Possibility to combine with a direct solver

Singular Value Decomposition

Rank of a matrix:

Column rank: max # of linearly independent column vectors Column and row ranks are equal ⇒ rank of the matrix

Definition (Singular Value Decomposition) $\mathbb{M} \in \mathbb{C}^{m \times n}$ with rank(\mathbb{M}) = r. The Singular Value Decomposition

(SVD) of M is the choice of two orthogonal basis

- $\mathbf{v}_1, \dots, \mathbf{v}_r$ of row space of M (right singular vectors)
- and $\mathbf{u}_1, \dots, \mathbf{u}_r$ of column space of M (left singular vectors)
- such that $\mathbb{M} v_i = \sigma_i \mathbf{u}_i, \ \sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r \geq 0$ (singular values)

Link with the eigendecomposition

The left singular vectors of M are eigenvectors of MM* The right-singular vectors of M are eigenvectors of M*M The non-zero singular values of M are the square roots of the non-zero eigenvalues of MM* and M*M

Singular Value Decomposition: matrix form

Theorem (Singular Value Decomposition) $\mathbb{M} \in \mathbb{C}^{m \times n}$, there exists a factorization of \mathbb{M} of the form $\mathbb{M} = \mathbb{U}\Sigma\mathbb{V}^*$

- \mathbb{U} and \mathbb{V} are unitary matrices: $\mathbb{U}^*\mathbb{U} = \mathbb{I}_m$ and $\mathbb{V}^*\mathbb{V} = \mathbb{I}_n$
- Σ is a diagonal matrix (singular values)

The storage is reduced to O(mr + r + nr)

G.H. Golub and C.F. Van Loan. Matrix computations. JHU Press, 2012.

SVD and low-rank approximations

The SVD does not give an approximation but only a factorization

Definition (Truncated SVD)

 \mathbb{M}_r is the SVD of \mathbb{M} truncated to the r largest singular values

$$\mathbb{M}_r = \sum_{i=1}^r \mathbb{U}_i \Sigma_{ii} \mathbb{V}_i^*$$

The numerical rank depends on the used norm

$$k(\varepsilon) := \min\{r \mid ||\mathbb{M} - \mathbb{M}_r|| \le \varepsilon ||\mathbb{M}||\}$$

Unitary invariant norm ||UMV|| = ||M|| for all unitary matrices U and V

- Frobenius norm: $||\mathbf{M}||^2_F = \sum_{i,j} |\mathbf{M}_{ij}|^2$
 - Easy to compute (if M is known)
- Spectral or 2-norm: $||M||_2 = \sigma_1$ (σ_1 largest singular value)
 - Need to compute the SVD
- Frobenius norm is always at least as large as the spectral radius $||M||_2 \le ||M||_F \le \sqrt{r} ||M||_2$

Best low-rank approximation

Theorem (Eckart-Young, Best low rank approximation) $\mathbb{M} \in \mathbb{C}^{m \times n}$ with $m \ge n$, and ||.|| a unitary invariant norm. The best rank-k approximation \mathbb{M}_r of \mathbb{M} defined such that

$$\mathbb{M}_r := \min \Big\{ ||\mathbb{M} - \mathbb{R}|| \quad | \quad \mathbb{R} \in \mathbb{C}^{m \times n}, rank(\mathbb{R}) \le r \Big\} = ||\mathbb{M} - \mathbb{M}_r||$$

$$is \quad \mathbb{M}_r = \sum_{i=1}^r \mathbb{U}_i \Sigma_{ii} \mathbb{V}_i^*, \quad \textit{with} \quad \mathbb{M} = \mathbb{U} \Sigma \mathbb{V}^*.$$

In addition,
$$||\mathbb{M} - \mathbb{M}_r||_F^2 = \sum_{i=r+1}^n \sigma_i^2$$
 and $||\mathbb{M} - \mathbb{M}_r||_2 = \sigma_{r+1}$.

Truncated SVD is the best low-rank approximation for L^2 -norm.

Low-rank approximations: finding the main information

Representing concepts hidden in massive datasets: matrices are used to

- Evaluate the importance of Web pages: Pagerank algorithm (number of occurrences is easy to fool, add the links between pages)
- Community detection: social networks, protein interaction network
- Recommendation systems: Amazon, Netflix

Finding concepts underlying movies

	M1	M2	МЗ	M4	M5
Jill	3	1	1	3	1
Jane	1	2	4	1	3
Joe	3	1	1	3	1
Jack	4	3	5	4	4

Finding concepts underlying movies

	M1	M2	МЗ	M4	M5
Jill	3	1	1	3	1
Jane	1	2	4	1	3
Joe	3	1	1	3	1
Jack	4	3	5	4	4

=	U	S	V'	=

-0.3460	0.5294
-0.4190	-0.6515
-0.3460	0.5294
-0.7649	-0.1221

11.822	0	
0	3.9039	

-0.4698	-0.3235	-0.5238	-0.4698	-0.4237
0.5217	-0.1564	-0.5527	0.5217	-0.3545

SVD Maps Users and Items Into Latent Space

Low-rank approximations: finding the main information

Image Compression: the goal is to reduce the storage

- Images represented as matrices of size n times m pixels
- · Gray scale images: 1 number per pixel
- Color images: 3 numbers per pixel (red, green and blue)

SVD: form the best rank-r approximations for the matrix

Low-rank approximations: finding the main information

Image Compression: the goal is to reduce the storage

- Images represented as matrices of size n times m pixels
- · Gray scale images: 1 number per pixel
- Color images: 3 numbers per pixel (red, green and blue)

SVD: form the best rank-r approximations for the matrix

$$r = 10$$

r = 50

k = 200

r = 1024

Truncated SVD to remove the redundant information

Low-rank matrices

If we have a low-rank representation of the matrix: $M = AB^T$

- with $\mathbb{A} \in \mathbb{R}^{m \times r}$ and $\mathbb{B} \in \mathbb{R}^{n \times r}$
- Then the storage is reduced from mn to r(m+n)

Acceleration of the matrix-vector multiplication: $\mathbf{M}x = \mathbf{y}$

Low-rank matrices

If we have a low-rank representation of the matrix: $M = AB^T$

- with $\mathbb{A} \in \mathbb{R}^{m \times r}$ and $\mathbb{B} \in \mathbb{R}^{n \times r}$
- Then the storage is reduced from mn to r(m+n)

Acceleration of the matrix-vector multiplication: $\mathbf{M}\mathbf{x} = \mathbf{v}$

- Step 1: $\mathbf{w} \leftarrow \mathbb{B}^T \mathbf{x}$
- Step 2: y ← Aw
- The number of operations is reduced from O(mn) to O(r(m+n))

Definition (Low-rank matrices) $\mathbb{M} \in \mathbb{R}^{m \times n}$ of rank r is called low-rank if

$$r(m+n) \ll m.n$$

We will always use this representation for low-rank matrices

Computing a low-rank approximation

The truncated SVD gives the best low-rank approximation But computing SVD too expensive: $O(rN^3)$ (r: rank of approximation)

- If we know the SVD: $\mathbb{M} = \mathbb{U}\Sigma\mathbb{V}^*$
 - Direct solver: compute the pseudo-inverse $\mathbb{M}^+ = \mathbb{V}\Sigma^+\mathbb{U}^*$
 - Iterative solver: compute the approximation $\mathbb{M}=\mathbb{AB}^*=\mathbb{U}\Sigma\mathbb{V}^*$ to accelerate the matrix-vector product

Is the SVD the only way to compute a low-rank approximation?

Need of a factorization but not of all the properties of the SVD SVD requires all entries of a matrix to construct low-rank approx.

Savings if we use only a small part of the entries

Skeleton decomposition

Definition (Skeleton decomposition) $\mathbb{A} \in \mathbb{R}^{m \times n}$, rank \mathbb{A} =r. There exists a non-singular submatrix $\hat{\mathbb{A}} \in \mathbb{R}^{r \times r} \hat{\mathbb{A}} = \mathbb{A}(\hat{I}, \hat{J}) \text{ with } \mathbb{A} = \mathbb{C}\hat{\mathbb{A}}^{-1}\mathbb{R}, \ \mathbb{C} = \mathbb{A}(I, \hat{J}), \ \mathbb{R} = \mathbb{A}(\hat{I}, J)$

Goreinov, Tyrtyshnikov and Zamarashkin. A Theory of Pseudoskeleton Approximations. Linear Algebra and its Applications, 1997.

Skeleton decomposition

Sketch of the proof

- By definition of the rank, since A is of rank r there exists an invertible submatrix of A, Â of size r x r
- It follows the definition of \hat{I} , \hat{J} , \mathbb{R} and \mathbb{C}

Noting
$$\mathbb{A} = \begin{bmatrix} \alpha \mathbb{A}_2 & \mathbb{A}_2 & \beta \mathbb{A}_2 \\ \alpha \hat{\mathbb{A}} & \hat{\mathbb{A}} & \beta \hat{\mathbb{A}} \\ \alpha \mathbb{A}_7 & \mathbb{A}_7 & \beta \mathbb{A}_7 \end{bmatrix}$$
, it follows $\mathbb{C}\hat{\mathbb{A}}^{-1}\mathbb{R} = \begin{bmatrix} \mathbb{A}_2\hat{\mathbb{A}}^{-1}\alpha\hat{\mathbb{A}} & \mathbb{A}_2 & \mathbb{A}_2\hat{\mathbb{A}}^{-1}\beta\hat{\mathbb{A}} \\ \hat{\mathbb{A}}\hat{\mathbb{A}}^{-1}\alpha\hat{\mathbb{A}} & \hat{\mathbb{A}} & \hat{\mathbb{A}}\hat{\mathbb{A}}^{-1}\beta\hat{\mathbb{A}} \\ \mathbb{A}_7\hat{\mathbb{A}}^{-1}\alpha\hat{\mathbb{A}} & \mathbb{A}_7 & \mathbb{A}_7\hat{\mathbb{A}}^{-1}\beta\hat{\mathbb{A}} \end{bmatrix}$

 Finally, use the fact that rows and columns are linear combinations of the rows and columns of Â

Verify that it is correct on a small matrix of rang 3

Fully-pivoted Cross Approximation

Starting point: Every rank r matrix is the sum of r matrices of rang 1 Principle: iteratively removing a row and a column of the matrix

• Successive approximations applied to the remainder $\mathbb{A} = \mathbb{A}_k + \mathbb{R}_k, \quad \mathbb{R}_k = \mathbb{A} - \sum_{\ell=1}^k \mathbf{u}_\ell \mathbf{v}_\ell^T$

$$A = A_k + R_k, \quad R_k = A - \sum_{\ell=1}^k \mathbf{u}_\ell \mathbf{v}_\ell^T$$

- Similarly to the Gaussian elimination, the pivot is the largest entry of the matrix (to define a stable algorithm)
- At each iteration, we nullify in the remainder the rows and columns dependent from the pivot row and column

$$\mathbb{A} = \left[\begin{array}{ccc} a_{11} & a_{12} & \alpha a_{11} \\ a_{21} & a_{22} & \alpha a_{21} \\ a_{31} & a_{32} & \alpha a_{31} \end{array} \right] \quad \mathbb{R}_1 = \mathbb{A} - \mathbb{A}(:,1) \mathbb{A}(2,:)/a_{21} = \left[\begin{array}{ccc} 0 & r_{12} & 0 \\ 0 & 0 & 0 \\ 0 & r_{32} & 0 \end{array} \right]$$

At iteration *k*:

- Find the pivot (i^*, j^*) such that $(i^*, j^*) = \operatorname{argmax}_{ij} |(\mathbb{R}_k)_{ij}|$
- Compute vectors: $\mathbf{u}_{k+1} := \frac{(\mathbb{R}_k)_{ij^*}}{(\mathbb{R}_k)_{i^*i^*}}, \mathbf{v}_{k+1} := (\mathbb{R}_k)_{i^*j}$
- Update the approximation: $\mathbb{A}_{k+1} = \mathbb{A}_k + \mathbf{u}_{k+1} \mathbf{v}_{\iota_{-1}}^T$

R ₂ =	R, - W, V,				/1
	0	0	0	0	0
-	0	0	0	0	0
	0,0155	0,0055	0	0.0003	0
	-0.0255	0.0013	0	0.0023	0
	0.0326)	0.0308	0	0.0166	0

- -

Fully-pivoted Cross Approximation: pseudo-code

```
Initialization: \mathbb{R}_0 := A, \mathscr{P}_r = \emptyset; \mathscr{P}_c = \emptyset, k = 0 repeat k := k+1 Find the pivot (i^*, j^*) := \operatorname{argmax}_{i,j} |\mathbb{R}_{k-1}(i, j)| \mathscr{P}_r = \mathscr{P}_r \cup \{i^*\}, \quad \mathscr{P}_c = \mathscr{P}_c \cup \{j^*\} \delta_k := \mathbb{R}_{k-1}(i^*, j^*) \mathbf{u}_k := \mathbb{R}_{k-1}(i, j^*) \mathbf{v}_k := \mathbb{R}_{k-1}(i^*, i)/\gamma \mathbb{R}_k = \mathbb{R}_{k-1} - \mathbf{u}_k \mathbf{v}_k until \|\mathbb{R}_k\|_F \le \varepsilon \|A\|_F
```

It requires

steps to generate an approximation of rank \emph{r}

It requires

to compute the pivot indices

Fully-pivoted Cross Approximation: pseudo-code

```
Initialization: \mathbb{R}_0 := A, \mathscr{P}_r = \emptyset; \mathscr{P}_c = \emptyset, k = 0 repeat k := k+1 Find the pivot (i^*, j^*) := \operatorname{argmax}_{i,j} |\mathbb{R}_{k-1}(i, j)| \mathscr{P}_r = \mathscr{P}_r \cup \{i^*\}, \quad \mathscr{P}_c = \mathscr{P}_c \cup \{j^*\} \delta_k := \mathbb{R}_{k-1}(i^*, j^*) \mathbf{u}_k := \mathbb{R}_{k-1}(i, j^*) \mathbf{v}_k := \mathbb{R}_{k-1}(i, j^*) \mathbf{v}_k := \mathbb{R}_{k-1}(i, j^*) \mathbb{R}_k = \mathbb{R}_{k-1} - \mathbf{u}_k \mathbf{v}_k until \|\mathbb{R}_k\|_F \le \varepsilon \|A\|_F
```

- It requires O(rmn) steps to generate an approximation of rank r
- It requires all the entries of A to compute the pivot indices

Exact reproduction of rank r matrices

Lemma (Exact reproduction of rank r **matrices)** Let \mathbb{A} be matrix of rank exactly r. Then the matrix \mathbb{A}_r is equal to \mathbb{A} .

$$\mathbb{A}_r := \sum_{\ell=1}^r \mathbf{u}_\ell \mathbf{v}_\ell^T$$

If rank(A)=r, the algorithm terminates in r steps.

Consistent with the Skeleton decomposition: $\mathbb{A} \in \mathbb{R}^{m \times n}$, rank A = r. There exists a non-singular submatrix $\hat{\mathbb{A}} \in \mathbb{R}^{r \times r}$ $\hat{\mathbb{A}} = \mathbb{A}(\hat{I}, \hat{J})$ with $\mathbb{A} = \mathbb{C}\hat{\mathbb{A}}^{-1}\mathbb{R}$, $\mathbb{C} = \mathbb{A}(I, \hat{J})$, $\mathbb{R} = \mathbb{A}(\hat{I}, J)$

How can we reduce the complexity?

Principle of the Partially-pivoted Cross Approximation

- Fully-pivoted: pivot is the largest entry in the residual
- Partially-pivoted: maximize only for 1 of the 2 indices (the other one is fixed) → only one row or one column is assembled

Partially-pivoted CA: pseudo-code

```
Initialization: \mathbb{R}_0 := A, i^* = 1, \mathscr{P}_r = \emptyset; \mathscr{P}_c = \emptyset, k = 1
repeat
     Find the pivot column j^* := \operatorname{argmax}_{i} |\mathbb{R}_{k-1}(i^*, j)|
     \delta_k := \mathbb{R}_{k-1}(i^*, j^*)
     if \delta_k == 0 then
          if \#\mathscr{P}_r = n-1 then
               STOP
          end if
     else
          \mathbf{u}_k := \mathbb{R}_{k-1}(:, j^*)
          \mathbf{v}_k := \mathbb{R}_{k-1}(i^*,:)/\gamma
          \mathbb{R}_k = \mathbb{R}_{k-1} - \mathbf{u}_k \mathbf{v}_k
          k := K + 1
     end if
     \mathscr{P}_r = \mathscr{P}_r \cup \{i^*\}, \quad \mathscr{P}_c = \mathscr{P}_c \cup \{j^*\}
     i^* := \operatorname{argmax}_{i \notin \mathscr{P}_r} |\mathbf{u}_k(i)|
until Stopping criterion is fulfilled
```

Adaptive Cross Approximation (ACA)

 \mathbb{R}_k is never explicitly formed

$$\mathbb{R}_k(i,j) = \mathbb{A}(i,j) - \sum_{\ell=1}^k \mathbf{u}_\ell(i) \mathbf{v}_\ell(j)$$

Can we determine the rank k adaptively for a given approximation accuracy ε ?

- Fully-pivoted ACA: $||A A_k||_F \le \varepsilon ||A||_F$
- Partially-pivoted ACA: A is not formed, stagnation-based error estimator

$$||\mathbf{u}_k||_2||\mathbf{v}_k||_2 \le \varepsilon ||\mathbb{A}_k||_F$$

· Optimal computation of the Frobenius norm

$$||\mathbf{A}_k||_F^2 = ||\mathbf{A}_{k-1}||_F^2 + 2\sum_{\ell=1}^{k-1} \mathbf{u}_k^T \mathbf{u}_\ell \mathbf{v}_\ell^T \mathbf{v}_k + ||\mathbf{u}_k||_2^2 ||\mathbf{v}_k||_2^2$$

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right]$$

First iteration, we set $i^* = 1$, $\mathscr{P}_r = \{1\}$

$$\mathbb{R}_0 = \begin{bmatrix} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{bmatrix}$$

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right]$$

First iteration, we set $i^* = 1$, $\mathscr{P}_r = \{1\}$ and find $j^* = 4$, $\mathscr{P}_c = \{4\}$

$$\mathbb{R}_0 = \begin{bmatrix} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{bmatrix}$$

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right]$$

First iteration, we set $i^* = 1$, $\mathscr{P}_r = \{1\}$ and find $j^* = 4$, $\mathscr{P}_c = \{4\}$

$$\mathbb{R}_0 = \begin{bmatrix} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{bmatrix}$$

We have
$$u_1 = [1 - 0.7209 - 1.8605 \ 0.6047]^T$$
 $v_1 = [6.5 \ 31 \ -14 \ -43]$

Next pivot is $i^* = 3$ ($i^* = 1$ already used)

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right]$$

First iteration, we set $i^* = 1$, $\mathscr{P}_r = \{1\}$ and find $j^* = 4$, $\mathscr{P}_c = \{4\}$

$$\mathbb{R}_0 = \begin{bmatrix} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{bmatrix}$$

We have
$$u_1 = [1 - 0.7209 - 1.8605 \ 0.6047]^T$$
 $v_1 = [6.5 \ 31 - 14 - 43]$

Next pivot is $i^* = 3$ ($i^* = 1$ already used)

If we compute the residual (not performed in practice):

$$\mathbb{R}_1 = \left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 13.7860 & 19.3488 & 0.9070 & 0 \\ 29.6930 & 41.6744 & 1.9535 & 0 \\ 22.2698 & 31.25581 & 1.4651 & 0 \end{array} \right]$$

 $||A_1||_F = 127.6636$, $||v_1||_2 ||u_1||_2 = 127.6636$, convergence not achieved

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right] \quad \mathbb{R}_1 = \left[\begin{array}{cccccc} 0 & 0 & 0 & 0 \\ 13.7860 & 19.3488 & 0.9070 & 0 \\ \hline 29.6930 & 41.6744 & 1.9535 & 0 \\ 22.2698 & 31.25581 & 1.4651 & 0 \end{array} \right]$$

 $\mathcal{P}_r = \{1, 3\}. \text{ New row } \mathbb{R}_1: [29.693 \ 41.6744 \ 1.9536 \ 0]$

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right] \quad \mathbb{R}_1 = \left[\begin{array}{cccccc} 0 & 0 & 0 & 0 \\ 13.7860 & 19.3488 & 0.9070 & 0 \\ \hline 29.6930 & 41.6744 & 1.9535 & 0 \\ 22.2698 & 31.25581 & 1.4651 & 0 \end{array} \right]$$

 $\mathcal{P}_r = \{1, 3\}.$ New row \mathbb{R}_1 : [29.693 41.6744 1.9536 0]

We find $j^* = 2$, $\mathcal{P}_c = \{4, 2\}$. New column [0 19.3488 41.6744 31.2558]^T

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right] \quad \mathbb{R}_1 = \left[\begin{array}{cccccc} 0 & 0 & 0 & 0 \\ 13.7860 & 19.3488 & 0.9070 & 0 \\ \hline 29.6930 & 41.6744 & 1.9535 & 0 \\ 22.2698 & 31.25581 & 1.4651 & 0 \end{array} \right]$$

 $\mathcal{P}_r = \{1, 3\}.$ New row \mathbb{R}_1 : [29.693 41.6744 1.9536 0]

We find $j^* = 2$, $\mathscr{P}_c = \{4, 2\}$. New column [0 19.3488 41.6744 31.2558]

$$u_2 = [0 \ 0.4643 \ 1 \ 0.75]^T$$
 and $v_2 = [29.6930 \ 41.6744 \ 1.9535 \ 0]$

Next pivot is $i^* = 4$ ($i^* = 1$ or 3 already used)

$$\mathbb{A} = \left[\begin{array}{ccccc} 6.5 & 31 & -14 & -43 \\ 9.1 & -3 & 11 & 31 \\ 17.6 & -16 & 28 & 80 \\ 26.2 & 50 & -7 & -26 \end{array} \right] \quad \mathbb{R}_1 = \left[\begin{array}{cccccc} 0 & 0 & 0 & 0 \\ 13.7860 & 19.3488 & 0.9070 & 0 \\ \hline 29.6930 & 41.6744 & 1.9535 & 0 \\ 22.2698 & 31.25581 & 1.4651 & 0 \end{array} \right]$$

 $\mathcal{P}_r = \{1, 3\}.$ New row \mathbb{R}_1 : [29.693 41.6744 1.9536 0]

We find $j^* = 2$, $\mathscr{P}_c = \{4, 2\}$. New column [0 19.3488 41.6744 31.2558]

$$u_2 = [0 \ 0.4643 \ 1 \ 0.75]^T$$
 and $v_2 = [29.6930 \ 41.6744 \ 1.9535 \ 0]$

Next pivot is $i^* = 4$ ($i^* = 1$ or 3 already used)

$$||A_2||_F = 113.7962$$
 et $||v_2||_2 ||u_2||_2 = 68.2826$

End of the algorithm: We cannot find a new pivot