

Phase Estimation Algorithm for Quantum Computing

Zhengrong Qian

1010011001100011

FRIB-TA Summer School 2022

Outline

- *Idea* of quantum phase estimation (QPE)
 - Phase as binary fractions
- How do we *estimate* the phase?
 - Phase kickback
 - Quantum Fourier Transform
- Quantum circuit for QPE
 - Standard & Iterative
- Application on a physical model

QPE 101: The Idea

Phase as *binary* fractions

m=1

$$=e^{2\pi i\varphi}|\psi\rangle$$

(1,0) 2π $\varphi = \sum_{m} j_m 2^{-m} = 0. \ j_1 \ j_2 \ \dots \ j_t$

Im

(0,1)

Phase as binary fractions

$$\varphi = \sum_{m=1}^{t} j_m 2^{-m} = 0. \boxed{j_1} j_2 ... \boxed{j_t}$$

$$\text{Most Least significant significant bit bit}$$

Example:

$$\varphi = (.1011)_2$$

$$\frac{1}{2^1} \cdot 1 + \frac{1}{2^2} \cdot 0 + \frac{1}{2^3} \cdot 1 + \frac{1}{2^4} \cdot 1 = (0.6875)_{10}$$

How do we learn the phase using a quantum computer?

1 1 0 0 1 0

Phase kickback

$$|\psi_k
angle = - \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i \varphi_k} \end{bmatrix} - \psi_k$$

$$U|\psi\rangle = e^{2\pi i\varphi}|\psi\rangle$$

Phase kickback: Why Hadamard?

$$|0\rangle \boxed{H} - \boxed{0\rangle + e^{2\pi i \varphi_k}} |1\rangle$$

$$|\psi_k\rangle - \boxed{U} - |\psi_k\rangle$$

$$U|\psi\rangle = e^{2\pi i\varphi}|\psi\rangle$$

Quantum Fourier Transform

Source: Nielsen and Chuang, Ch. 5.2

Standard phase estimation

Interpret the phase

Iterative phase estimation

 ω_k Feedback angle, depends on previously measured bit.

Estimate the energy of a number operator

Question: Using the standard phase estimation algorithm, what can we say about the eigenvalue of state $|2\rangle$?

Step 1: 'Wrap' the unit complex circle

Step 2: Apply the QPE algorithm

Step 3: Collect data and learn the phase

Step 4:
'Translate' back
to the energy
spectrum

Step 1: 'Wrap' the unit complex circle

Step 2: Apply the QPE algorithm

Step 3: Collect data and learn the phase

Step 4:
'Translate' back
to the energy
spectrum

$$U|2\rangle = e^{it2}|10\rangle = e^{2\pi i\varphi}|10\rangle$$

$$t = 1$$

$$\varphi = (0.318309...)_{10} = (0.010100010...)_2$$

$$\varphi = (0.318309...)_{10} = (0.010100010...)_2$$

Step 3

