$\Delta(1910) \ 1/2^{+}$

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1910) POLE POSITION

RFAI	PART
	· FAIL

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1830 to 1880 (≈ 1855) OUR ESTIM	MATE			
1840 ± 40	SOKHOYAN	15A	DPWA	Multichannel
1896 ± 11	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1771	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
1874	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1880 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1840 ± 40	GUTZ	14	DPWA	Multichannel
1850 ± 40	ANISOVICH	12A	DPWA	Multichannel
1910	SHRESTHA	12A	DPWA	Multichannel
1880	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 500 (≈ 350) OUR ESTIMAT	ΓE			
370±60	SOKHOYAN	15A	DPWA	Multichannel
302 ± 22	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
479	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
283	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
200 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet We do not use the following	data for averages	, fits,	limits, e	etc. • • •
370±60	GUTZ	14	DPWA	Multichannel
350 ± 45	ANISOVICH	12A	DPWA	Multichannel
199	SHRESTHA	12A	DPWA	Multichannel
496	VRANA	00	DPWA	Multichannel

Δ (1910) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
20 to 45 (≈ 30) OUR ESTIMATE				
25±6	SOKHOYAN	15A	DPWA	Multichannel
29±2	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
45	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
38	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
20 ± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
25±6	GUTZ	14	DPWA	Multichannel
24±6	ANISOVICH	12A	DPWA	Multichannel
HTTP://PDG.LBL.GOV	Page 1		Creat	ed: 5/30/2017 17:19

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT
- 80 to $-$ 180 ($pprox -$ 130) OUR E	STIMATE			
-155 ± 30		15A	DPWA	Multichannel
$-$ 83 \pm 4 \pm 1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
+172	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
-90 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
-155 ± 30	GUTZ	14	DPWA	Multichannel
-145 ± 30	ANISOVICH	12A	DPWA	Multichannel

△(1910) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \to \Delta(1910) \to \Sigma K$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.07 ± 0.02	-110 + 30	ANISOVICH 12/	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1910) \to \Delta\pi$, *P*-wave

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.24 ± 0.10	85 ± 35	SOKHOYAN 15	SA DPWA	Multichannel
ullet $ullet$ We do not	t use the following data	for averages, fits,	limits, etc.	• • •
0.16 ± 0.09	95 ± 40	ANISOVICH 12	2A DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1910) \to \Delta(1232)\eta$

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.11 ± 0.04	-150 ± 50	GUTZ	14	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1910) \to N(1440)\pi$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.06 ± 0.03	170 ± 45	SOKHOYAN 15	DPWA	Multichannel

△(1910) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1860 to 1910 (≈ 1890) OUR EST	IMATE			
1845 ± 40	SOKHOYAN	15A	DPWA	Multichannel
2067.9 ± 1.7	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
1910 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1888 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following d	lata for averages	, fits,	limits, e	tc. • • •
1845 ±40	GUTZ	14	DPWA	Multichannel
1860 ± 40	ANISOVICH	12A	DPWA	Multichannel
1934 ± 5	SHRESTHA	12A	DPWA	Multichannel
1995 ± 12	VRANA	00	DPWA	Multichannel

Created: 5/30/2017 17:19

△(1910) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	DOCUMENT ID		COMMENT
220 to 340 (≈ 280) OUR ESTIMAT	Έ			
360± 60	SOKHOYAN	15A	DPWA	Multichannel
543± 10	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
225± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
280± 50	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
360± 60	GUTZ	14	DPWA	Multichannel
350± 55	ANISOVICH	12A	DPWA	Multichannel
211± 11	SHRESTHA	12A	DPWA	Multichannel
713 ± 465	VRANA	00	DPWA	Multichannel

Δ (1910) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

Mode Fraction (Γ_i/Γ)	
Γ_1 $N\pi$ 15–30 %	
Γ_2 ΣK 4–14 %	
$\Gamma_3 N\pi\pi$	
$\Gamma_4 \qquad \Delta(1232)\pi$ 34–66 %	
$\Gamma_5 N(1440)\pi$ 3–9 %	
$\Gamma_6 \qquad \Delta(1232)\eta$ 5–13 %	
Γ_7 N γ , helicity=1/2 0.0–0.02 %	

△(1910) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
15 to 30 OUR ESTIMATE					
12 ± 3	SOKHOYAN	15A	DPWA	Multichannel	
23.9 ± 0.1	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
19 ± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
24 ± 6	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
ullet $ullet$ We do not use the following of	lata for averages	, fits,	limits, e	tc. • • •	
12 ± 3	GUTZ	14	DPWA	Multichannel	
12 ± 3	ANISOVICH	12A	DPWA	Multichannel	
17 ± 1	SHRESTHA	12A	DPWA	Multichannel	
29 ±21	VRANA	00	DPWA	Multichannel	
$\Gamma(\Sigma K)/\Gamma_{total}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
9±5	ANISOVICH	12A	DPWA	Multichannel	

Created: 5/30/2017 17:19

$\Gamma(\Delta(1232)\pi)/\Gamma_{total}$					Γ_4/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$50\!\pm\!16$	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •	
$60\!\pm\!28$	ANISOVICH	12A	DPWA	Multichannel	
$\Gamma(N(1440)\pi)/\Gamma_{\text{total}}$					
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
6 ± 3	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •	
47±6	SHRESTHA	12A	DPWA	Multichannel	
56±7	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\eta)/\Gamma_{total}$					Γ_6/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
9±4	GUTZ	14	DPWA	Multichannel	

Δ (1910) PHOTON DECAY AMPLITUDES AT THE POLE

Δ (1910) \rightarrow N γ , helicity-1/2 amplitude A $_{1/2}$

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.027\!\pm\!0.009$	-30 ± 60	SOKHOYAN	15A	DPWA	Multichannel
$-0.246 ^{+ 0.024}_{- 0.047}$	159^{+9}_{-4}	ROENCHEN	14	DPWA	

Δ (1910) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$\Delta(1910) \rightarrow N\gamma$, helicity-1/2 amplitude A $_{1/2}$

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
$+0.020\pm0.010$ OUR ESTIMATE				
0.026 ± 0.008	SOKHOYAN	15A	DPWA	Multichannel
-0.002 ± 0.008	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, e	tc. • • •
0.026 ± 0.008	GUTZ	14	DPWA	Multichannel
0.022 ± 0.009	ANISOVICH	12A	DPWA	Multichannel
0.030 ± 0.002	SHRESTHA	12A	DPWA	Multichannel

△(1910) FOOTNOTES

Created: 5/30/2017 17:19

 $^{^{1}\,\}mathrm{Fit}$ to the amplitudes of HOEHLER 79.

△(1910) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

SOKHOYAN GUTZ	15A 14	EPJ A51 95 EPJ A50 74		BELSA/TAPS Collab.) BELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen et al.	
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(GWU)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H. Le	e (PITT, ANL)
ARNDT	96	PR C53 430	R.A. Arndt, I.I. Strakovsky, R.L. Worl	kman (VPI)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMŰ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP