Akademia Nauk Stosowanych Instytut Techniczny Kierunek: Informatyka studia I stopnia, semestr 3



# Systemy operacyjne

**WYKŁAD 13 i 14** 

dr inż. Stanisława Plichta splichta@ans-ns.edu.pl

autor: dr inż. Stanisława Plichta

## Przetwarzanie współbieżne, równoległe i rozproszone

- Przetwarzanie współbieżne, równoległe i rozproszone to powszechne dziś formy wykonania programów.
- O wykonaniu współbieżnym dwóch wątków mówimy wtedy, gdy rozkazy jednego wątku zaczną być wykonywane, zanim zakończy się wykonywanie rozkazów drugiego, uruchomionego wcześniej.
- O przetwarzaniu równoległym mówimy wtedy, kiedy przynajmniej niektóre z rozkazów wątków wykonywanych współbieżnie są realizowane w tym samym czasie.

## Przetwarzanie równoległe

- Dwa lub więcej procesów (wątków) jednocześnie współpracuje w celu rozwiązania pojedynczego zadania.
- Obliczenia równoległe są silnie związane z dziedziną obliczeń wysokiej wydajności oraz obliczeniami naukowo-technicznymi.
- W czasach procesorów wielordzeniowych, programowanie równoległe jest koniecznością.

# Rodzaje przetwarzania równoległego

#### Równoległość na poziomie:

- Pojedynczego rozkazu.
- Sekwencji rozkazów tworzących zadanie:
  - rozdział kolejno wykonywanych rozkazów pomiędzy procesory/rdzenie
  - podział zadania obliczeniowego na podzadania, przydział poszczególnych zadań procesorom/rdzeniom
- Programów.

# Tworzenie programów równoległych

- W procesie tworzenia programów równoległych znaczenie ma:
  - Wykrycie dostępnej współbieżności w trakcie realizacji programu.
  - Określenie koniecznej synchronizacji lub wymiany komunikatów pomiędzy procesami lub wątkami realizującymi program.

Jednym z najważniejszych wymagań stawianych programom równoległym jest przenośność.

## Przetwarzanie równoległe i rozproszone

- Istnieje kilka podstawowych celów, dla których stosuje się przetwarzanie równoległe i rozproszone:
  - Zwiększenie wydajności obliczeń,
  - Zwiększenie niezawodności przetwarzania.
  - Zwiększenie elastyczności wykorzystania dostępnych zasobów komputerowych.
- Do upowszechnienia sprzętu równoległego przyczyniło się wprowadzenie klastrów.

#### KLASYFIKACJA SYSTEMÓW RÓWNOLEGŁYCH

## Klasyfikacja Flynna:

- W klasyfikacji Michaela Flynna podstawą do rozróżniania poszczególnych rodzajów maszyn obliczeniowych jest zdolność obsługi strumienia danych i strumienia rozkazów.
- Maszyny równoległe zostały w niej podzielone na 4 grupy:
  - SISD (Single Instruction stream, Single Data stream)
  - SIMD (Single Instruction stream, Multiple Data stream)
  - MIMD (Multiple Instruction stream, Multiple Data stream)
  - MISD (Multiple Instruction stream, Single Data stream)

#### Architektura SISD

Architektura komputera sekwencyjnego jednoprocesorowego, zwana też architekturą Neumanna.



autor: dr inż. Stanisława Plichta

#### Architektura SIMD

- Metoda zastosowana we wczesnych systemach równoległych.
- Każdy z procesorów przetwarza ten sam zestaw instrukcji na własnym zestawie danych.



autor: dr inż. Stanisława Plichta

#### **Architektura MIMD**

- Każdy z procesorów pracuje z własnym zestawem instrukcji, operując na własnym zestawie danych.
- Praca systemu opartego na architekturze MIMD ma charakter asynchroniczny
- Procesory pracują całkowicie oddzielnie, realizując oddzielne i najczęściej rożne strumienie rozkazów - procesy.

W ramach grupy MIMD wyróżnia się:

- MIMD z pamięcią wspólną,
- MIMD z pamięcią rozproszoną,
- MIMD z pamięcią rozproszonowspólną



#### Architektura MIMD-SM

- Procesory są połączone specjalizowaną siecią interconnect, poprzez którą komunikują się ze wspólnym obszarem pamięci.
- W ramach systemów SM można wyróżnić dwie kolejne kategorie:
  - Shared everything
  - Shared something



#### Architektura MIMD

- Każdy procesor posiada własną pamięć, dostępną tylko dla niego samego.
- Procesory przekazują sobie nawzajem informacje poprzez komunikaty.
- Są to zazwyczaj maszyny wieloprocesorowe.



Architektura MIMD-DM



Architektura MIMD-HDSM

autor: dr inż. Stanisława Plichta

#### **Architektura MISD**

- Maszyny tego typu wykonują rożne operacje na tych samych danych.
- Zbudowano niewiele takich maszyn, nie są one używane do celów komercyjnych.
- Znajdują zastosowanie dla uzyskania bardzo wysokiej niezawodności, np. sterowanie reaktorami jądrowymi.

## Rozszerzona klasyfikacja Johnsona

- Większość systemów przeznaczonych do obliczeń równoległych jest klasyfikowana jako maszyny MIMD - Johnson usystematyzował tę grupę, wprowadzając jako kryterium podziału strukturę pamięci.
- Według Johnsona w ramach architektury MIMD możemy wyróżnić 4 grupy:
- GMSV (ang. Global Memory Shared Variables)
- GMMP (ang. Global Memory Message Passing)
- **DMSV** (ang. *Distributed Memory Shared Variables*)
- DMMP (ang. Distributed Memory Message Passing)



## Klasyfikacja Tanenbauma

- Odmienne spojrzenie na klasę MIMD przedstawił Andrew S.
  Tanenbaum koncentracja na sposobie w jaki komunikują się poszczególne systemy.
- Stopień rozproszenia systemów określany jest na podstawie szybkości przesyłania danych pomiędzy systemami.
  - systemy ściśle powiązane
  - systemy słabo powiązane

# Ogólny model klastra komputerowego

- Klaster komputerowy to grupa wspólnie działających połączonych maszyn, które tworzą pojedynczy zespół obliczeniowy.
- Klastry składają się z węzłów (node), czyli pojedynczych maszyn, które są połączone za pomocą wydajnej sieci – zwykle szybkiej sieci lokalnej.
- Ilość węzłów w klastrze może wahać się od kilku do kilku tysięcy.
- Architektura klastra zależy od danej implementacji.



## Klastry równoważące obciążenia (Load Balancing Cluster)

- Służą do utrzymywania w działaniu mocno obciążonych usług sieciowych takich jak np. serwery WWW, czy serwery bazy danych.
- Działanie ich polega na równoważnym dystrybuowaniu obciążenia pomiędzy poszczególne węzły klastra.

Klastry tego typu implementuje się w przypadku, gdy bardzo istotny jest czas reakcji usługi na żądania klienta.



## Klastry niezawodnościowe (High Availability Clusters)

Zadaniem tych klastrów nie jest zwiększanie wydajności ale wyeliminowanie tak zwanego pojedynczego punktu awarii.

Działanie ich polega na rozłożeniu w przypadku wystąpienia awarii któregoś z serwerów jego zadań na pozostałe serwery, w taki sposób, aby nie było to widoczne dla użytkowników systemu.



## Klastry wydajnościowe (High Performance Clusters)

- Używane są do masowego przetwarzania danych jednego rodzaju, przy czym równoważenie obciążenia najczęściej leży w gestii samych aplikacji, jednak nie jest to regułą.
- W klastrach tych duże znaczenie ma aplikacja, którą najczęściej należy przygotować w jednej z dostępnych często specjalizowanych bibliotek programistycznych.
- Zazwyczaj od aplikacji zależy w jakim stopniu będzie możliwe odpowiednie rozłożenie obciążenia, a przez to przyśpieszenie obliczeń.

## Rozproszony system informatyczny



# Systemy rozproszone - wymagania

## Wymagania projektowe systemów rozproszonych:

- Współdzielenie zasobów
- Otwartość
- Współbieżność
- Skalowalność
- Wydajność
- Tolerowanie uszkodzeń (niezawodność)
- Przezroczystość

## Dzielenie zasobów

#### Zasoby:

- Składowe sprzętowe: specjalizowane komputery, dyski, drukarki, urządzenia peryferyjne i inne.
- Składowe programowe: usługi sieciowe, aplikacje internetowe.
- Zasoby informacyjne: pliki, bazy danych.

System rozproszony powinien umożliwiać wspólne wykorzystanie zasobów lokalnych, znajdujących się w węzłach systemu rozproszonego, przez wielu użytkowników zdalnych.

## Dzielenie zasobów

## Cele współdzielenia zasobów:

- poprawia efektywność wykorzystania zasobów,
- zmniejsza koszt budowy systemu,
- zwiększa efektywność przetwarzania systemu,
- zwiększa dostępność systemu,
- umożliwia pracę zespołową i zdalne nauczanie.

Współdzielenie zasobów nie powinno naruszać zasad polityki bezpieczeństwa systemu rozproszonego w zakresie: poufności, integralności i dostępności informacji.

## Koncepcja dostępu do zasobów

- Zasoby dostępne fizycznie w węzłach.
- Konieczny interfejs komunikacyjny programowo-sprzętowy, który umożliwi użytkownikowi korzystanie z zasobu.
- Obsługa dostępu do zasobów realizowana przez oprogramowanie zarządcy zasobu.
- Zarządca zasobu: moduł oprogramowania (proces) zarządzający zasobem określonego typu.
- Użytkownik zasobu: moduł oprogramowania (proces) żądający

dostępu do zasobu.



## Koncepcja dostępu do zasobów

#### Zadania zarządcy zasobu:

- Zapewnienie jednolitego schematu nazewniczego dla każdej klasy zasobów.
- Umożliwienie dostępu do poszczególnych zasobów z dowolnego miejsca.
- Odwzorowywanie nazw zasobów na adresy komunikacyjne.
- Synchronizacja współbieżnego dostępu do zasobów.
- Zapewnienie zgodności stanu zasobu z rzeczywistością.

# Modele współpracy użytkownika z zarządcą

Model proceduralno-komunikatowy - proces klienta i serwera współpracują ze sobą w oparciu o przesyłanie komunikatów.



# Modele współpracy użytkownika z zarządcą

Model obiektowy - procesy klienta i zarządcy są obiektami o jednoznacznych identyfikatorach, które posiadają interfejsy, zawierające metody umożliwiające wykonywanie operacji z udziałem obiektów, a także dostęp do danych i zasobów.



autor: dr inż. Stanisława Plichta

# Popularne architektury rozproszenia

- Klient-serwer
- Klient-multi-serwer
- peer-to-peer (P2P)
- Architektura oparta na oprogramowaniu pośredniczącym (middleware)

# Podstawowe pojęcia

- Usługa
- System obsługi (serwer)
- Klient
- Nazewnictwo
- Przezroczystość lokalizacji
- Niezależność lokalizacji

## Pamięć podręczna

- Pamięć podręczna w rozproszonych systemach plików jest wykorzystywana w celu zmniejszenia ruchu w sieci.
- Jeśli dane potrzebne do wykonania zamówienia nie znajdują się w pamięci podręcznej – przenosi się ich kopię z systemu obsługi do użytkownika.
- Problem spójności pamięci podręcznej.
- Ziarnistość pamięci podręcznej.
- Niezawodność pamięci podręcznej.

# Aktualizacja kopii głównej

- Metoda ustawicznego przepisywania.
- Metoda opóźniania aktualizowania kopii głównej:
  - Bloki danych mogą być przesyłane tylko wtedy gdy przewidywane jest usunięcie bloku z pamięci podręcznej.
  - Bloki danych są zapisywane w chwili zamykania pliku daje to korzyści przy plikach otwieranych na długie okresy czasu i często modyfikowanych.

## Rozproszony system plików

Zasady jednoczesnego dostępu wielu użytkowników do pliku:

- Możliwość jednoczesnego odczytu bez możliwości zapisywania mechanizm prosty do realizacji.
- Kontrolowanie zapisu wielu użytkowników otwiera jeden plik, ale tylko jeden z nich ma możliwość zapisu zmienionego dokumentu.
- Jednoczesne zapisywanie daje możliwość jednoczesnego zapisu i odczytu tego samego zbioru przez kilku użytkowników - wymaga intensywnego nadzoru ze strony systemu operacyjnego.
  - klasa stateless
  - klasa callback

# Synchronizacja w systemach rozproszonych

- Synchronizacja w systemach rozproszonych jest procesem bardziej złożonym niż w systemach scentralizowanych.
- W zagadnieniach synchronizacji procesów na wielu maszynach nie jest istotna znajomość czasu absolutnego - istotne jest, aby procesy mogły ustalić kolejność zdarzeń.
- Powodu pomiar czasu możemy podzielić na:
  - fizyczny czasu pomiar zegary wskazują czas astronomiczny,
  - Logiczny pomiar czasu zegary o wzajemnie uzgodnionym czasie, niekoniecznie astronomicznym.

## Algorytm Lamporta

- Jeśli a poprzedza b w tym samym procesie, to C(a) < C(b)</li>
- Jeśli a i b oznaczają nadanie i odbiór komunikatu, to C(a) < C(b)</li>
- Dla wszystkich zdarzeń a i b  $C(a) \Leftrightarrow C(b)$



# Zegary logiczne



autor: dr inż. Stanisława Plichta

# Zegary fizyczne – algorytm Cristiana

- UTC wzorzec uniwersalnego koordynowanego czasu.
- Czas UTC jest udostępniany przez kilka satelitów.
- Serwer czasu w algorytmie Cristiana jest pasywny inne maszyny okresowo zadają mu pytania o czas - jego działanie sprowadza się do udzielania im odpowiedzi.



autor: dr inż. Stanisława Plichta

# Zegary fizyczne – algorytm Berkeley

- W systemie Berkeley przyjęto dokładnie przeciwne założenie - serwer czasu jest aktywny i odpytuje okresowo każdą maszynę o jej aktualny czas.
- Na podstawie tych odpowiedzi oblicza czas średni i nakazuje wszystkim innym maszynom, przesunąć zegary na ten nowy czas lub je zwolnić, aż do osiągnięcia określonej redukcji czasu.

# Algorytm uśredniania



### Wzajemne wyłączanie w systemach rozproszonych

- Algorytm scentralizowany
- Algorytm rozproszony
- Algorytm pierścienia z żetonem

# Algorytm scentralizowany



## Algorytm scentralizowany

- W systemie istnieje proces będący koordynatorem zasobów.
- Wymienia on z procesami następujące typy komunikatów:
- Z- Zamówienie zasobu Proces -> Koordynator
- P- Przydzielenie zasobu Koordynator -> Proces
- O- Oddanie zasobu Proces -> Koordynator

Proces działa według algorytmu:

- 1. Wysyła do koordynatora zamówienie zasobu.
- 2. Czeka na przydzielenie zasobu.
- 3. Używa zasobu.
- Wysyła do koordynatora komunikat o zwolnieniu zasobu.



## Algorytm rozproszony

- Proces, który chce wejść do sekcji krytycznej, buduje komunikat z nazwą tej sekcji, swoim numerem i bieżącym czasem.
- Wysyła komunikat do wszystkich innych procesów.
- Każdy komunikat jest potwierdzany.
- Jeśli proces otrzyma zamówienie od innego procesu, to działanie jakie podejmie, będzie zależeć od jego zamiarów związanych z sekcją krytyczną wymienioną w komunikacie.







## Algorytm rozproszony



Własności:

- Algorytm poprawnie realizuje rozproszone wzajemne wykluczanie.
- Nie występuję zagłodzenie, gdyż zamówienia są uporządkowane czasowo.
- Awaria jednego procesu powoduje awarie całego systemu.
- Proces musi być gotowy na odbiór zamówień i odpowiedzi.

## Algorytm rozproszony

#### Algorytm charakteryzuje się następującymi cechami:

- Zapewnia wzajemne wykluczanie w systemie rozproszonym.
- Wymaga, aby w systemie występowało całkowite uporządkowanie zdarzeń - zegary logiczne.

#### Rodzaje komunikatów:

- Zamówienie
- Pozwolenie

#### W komunikacie wysyła się:

- Nazwę zasobu
- Identyfikator procesu
- Wartość zegara logicznego

# Algorytm pierścienia z żetonem



# Porównanie algorytmów

| Algorytm                 | Liczba<br>komunikatów na<br>we/wy | Opóźnienie<br>wejścia<br>(mierzone liczbą<br>komunikatów) | Problemy                        |
|--------------------------|-----------------------------------|-----------------------------------------------------------|---------------------------------|
| Scentralizowany          | 3                                 | 2                                                         | Awaria<br>koordynatora          |
| Rozproszony              | 2(n-1)                            | 2(n-1)                                                    | Awaria<br>dowolnego<br>procesu  |
| Pierścienia z<br>żetonem | od 1 do ∞                         | od 0 do n-1                                               | Utrata żetonu<br>awaria procesu |

autor: dr inż. Stanisława Plichta

### **Procesy rozproszone**

- Proces rozproszony współbieżne i skoordynowane wykonywanie zbioru procesów sekwencyjnych w środowisku rozproszonym, które współdziałają, aby osiągnąć wspólny cel przetwarzania.
- Rozproszenie położenia i stanu.



### **Procesy rozproszone**



autor: dr inż. Stanisława Plichta

### **Procesy rozproszone**

- Wyróżnia się dwa modele rozproszonych procesów:
  - Model statyczny
  - Model dynamiczny
- Koncepcja procesu
- Zarządzanie procesami
- Środowisko wykonywania procesów
- Przełączanie kontekstu procesów

# Wędrówka procesów

- Daje możliwość przemieszczania procesów w trakcie ich wykonywania z jednego procesora na inny.
- Problemy:
  - Ustalenie stanu procesu: stan wewnętrzny, lokalna kolejka komunikatów, stan komunikacji ze zdalnymi procesami.
  - Transparentność wędrówki.
  - Obsługa przyszłej komunikacji.
  - Kiedy zdalnie wykonywać proces.

## Modele wędrówki procesów

- Modele wędrówki procesów ze względu na przesyłanie informacji:
  - Przenośność słaba segment kodu
  - Przenośność silna segment kodu + segment wykonania
- Miejsce rozpoczęcia wędrówki:
  - Przenośność inicjowana przez nadawcę
  - Przenośność inicjowana przez odbiorcę

## Wiązanie zasobów lokalnych

- Sposoby powiązania procesu z zasobem:
  - Wiązanie przez identyfikator
  - Wiązanie przez wartość
  - Wiązanie przez typ

# Komunikaty a wędrówka procesów

- Sposoby postępowania:
  - Przekierowywanie komunikatów
  - Zapobieganie utracie komunikatów
  - Odzyskiwanie utraconych komunikatów