Autoregressive (AR) Models

Jared Fisher

Lecture 5b

Announcements

- ► Midterm 1 grades coming soon.
- ▶ Project checkpoint 2 is due Wednesday March 10 (next week).
- ▶ Homework 4 is due Wednesday March 17, will be posted soon.

Recap

Definition of Moving Average Models

Let ..., W_{-2} , W_{-1} , W_0 , W_1 , W_2 , ... be a double infinite white noise sequence. The **moving average model** of order q or MA(q) model is defined as

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2} + \ldots + \theta_q W_{t-q}$$

where $\theta_1, \ldots, \theta_q$ are parameters, with $\theta_q \neq 0$.

Autocovariance function of an MA(q) time series:

- ▶ The MA(q) model can be concisely written as $X_t = \sum_{j=0}^q \theta_j W_{t-j}$ where we take $\theta_0 = 1$.
- ightharpoonup The mean of X_t is clearly 0.
- ▶ For $h \ge 0$, the covariance between X_t and X_{t+h} is given by

$$\gamma_X(h) = \begin{cases} \sigma^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h} & h = 0, 1, \dots, q \\ 0 & h > q. \end{cases}$$

Autocorrelation function of an MA(q) time series (brief in recap)

For the autocorrelation function we thus get

$$ho_X(h) = egin{cases} rac{\sum_{j=0}^{q-h} heta_j heta_{j+h}}{\sum_{j=0}^q heta_j^2} & h=0,1,\ldots,q \ 0 & h>q \end{cases}$$

Note that the autocovariance and the autocorrelation functions $\it cut\ off$ after lag $\it q$.

Theorem: Stationarity of MA(q)

- ► Theorem: Let ..., X_{-2} , X_{-1} , X_0 , X_1 , X_2 , ... be a time series which follows an MA(q) model. Then $\{X_t\}$ is weakly stationary.
- ▶ Why? Because the mean is always 0 and
- ightharpoonup cov (X_t, X_{t+h}) does not depend on t, only h.

Backshift Notation

- ▶ A convenient piece of notation avoids the trouble of writing huge expressions!
- Let B denote the **backshift operator** defined by

$$BW_t = W_{t-1}, B^2W_t = W_{t-2}, B^3W_t = W_{t-3}, \dots$$

Moving Average Operator

▶ Definition: for parameters $\theta_1, \dots, \theta_q$ with $\theta_q \neq 0$ define the **moving average** operator of order q as

$$\theta(B) = 1 + \theta_1 B + \dots \theta_q B^q.$$

► MA(2):

$$X_{t} = W_{t} + \theta_{1}W_{t-1} + \theta_{2}W_{t-2}$$
$$= (1 + \theta_{1}B + \theta_{2}B^{2})W_{t}$$

such that $\theta(B) = (1 + \theta_1 B + \theta_2 B^2)$

► Then we can write the MA(q) model as

$$X_t = \theta(B)W_t$$

for a white noise process $\{W_t\}$.

Invertibility (brief in recap)

▶ The MA(1) process $X_t = W_t + \theta W_{t-1}$ can be written as

$$X_t = \theta(B)W_t$$

for the polynomial $\theta(z) = 1 + \theta_1 z$.

► Consider the case of the MA(1) model whose ACVF is given by

$$egin{aligned} \gamma_X(0) &= \sigma_W^2(1+ heta^2) \ \gamma_X(1) &= heta \sigma_W^2 \end{aligned}$$

- $\blacktriangleright \ \, \mathsf{Let's \ say} \,\, \theta = 5, \sigma_W^2 = 1$
- ▶ But we'd get the same ACVF as for $\theta = 1/5, \sigma_W^2 = 25$.
- ▶ In other words, there exist different parameter values that give the same ACVF.

 $\gamma_X(h) = 0$ for all h > 2.

► This implies that one **cannot uniquely** estimate the parameters of an MA(1) model from data.

Invertibility (brief in recap)

$$X_t = W_t + \theta W_{t-1}$$

- ▶ A natural fix is to consider only those MA(1) for which $|\theta| < 1$:
- ► This condition is called **invertibility**.
- $|\theta| < 1$ for the MA(1) model is equivalent to stating:
- lacktriangledown heta(z)=1+ heta z has all roots of magnitude strictly larger than one.

Definition

An MA(q) model $X_t = \theta(B)W_t$ is said to be **invertible**, if $\theta(z) \neq 0$ for $|z| \leq 1$.

Equivalence of Idea and Definition

- For $\theta(z) = 1 + \theta z$, force $|\theta| < 1$
- ► Then for its roots:

if
$$\theta(z) = 0$$
, then $|z| > 1$

► The converse carries the same meaning

if
$$|z| \le 1$$
, then $\theta(z) \ne 0$

Alternate Definition via Theorem

An MA(q) model $X_t = \theta(B)W_t$ is invertible if and only if the time series $\{X_t\}$ and the white noise $\{W_t\}$ can be written as

$$W_t = \pi(B)X_t = \sum_{i=0}^{\infty} \pi_j X_{t-j},$$

where $\pi(B) = \sum_{j=0}^{\infty} \pi_j B^j$ and $\sum_{j=0}^{\infty} |\pi_j| < \infty$ and $\pi_0 = 1$.

Example

▶ Is the following process invertible?

$$X_t = W_t - \frac{11}{8}W_{t-1} + \frac{7}{16}W_{t-2}$$

- ▶ Operator notation: $X_t = (1 \frac{11}{8}B + \frac{7}{16}B^2)W_T$
- ► Factor: $X_t = (1 \frac{1}{2}B)(1 \frac{7}{8}B)W_T$
- ▶ Roots are 2 and $\frac{8}{7}$, which are greater than 1.
- ➤ Yes! It's invertible.

Example 2: from Problem 5b on Tomorrow's Lab

- ▶ What is the autocovariance function $\gamma_Y(h)$ of $Y_t = W_t + 2W_{t-1} 2W_{t-4}$?
- ightharpoonup First, is h=0

$$\gamma_{Y}(0) = Var(Y_t) = Var(W_t + 2W_{t-1} - 2W_{t-4}) = 1 + 2^2 + 2^2 = 9$$

 \blacktriangleright h=1 uses bilinearity of the covariance:

$$\gamma_{Y}(1) = Cov(Y_{t}, Y_{t-1}) = Cov(W_{t} + 2W_{t-1} - 2W_{t-4}, W_{t-1} + 2W_{t-2} - 2W_{t-5})$$
$$= 2Cov(W_{t-1}, W_{t-1}) = 2$$

Example 2: from Problem 5b on Tomorrow's Lab

▶ For $h \ge 2$, we'll use a different, more generic, approach:

$$\gamma_{Y}(h) = Cov(Y_{t}, Y_{t-h}) = Cov(W_{t} + 2W_{t-1} - 2W_{t-4}, W_{t-h} + 2W_{t-1-h} - 2W_{t-4-h})$$

$$= Cov(W_{t}, W_{t-h}) + Cov(W_{t}, 2W_{t-1-h}) + Cov(W_{t}, -2W_{t-4-h})$$

$$+ Cov(2W_{t-1}, W_{t-h}) + Cov(2W_{t-1}, 2W_{t-1-h}) + Cov(2W_{t-1}, -2W_{t-4-h})$$

$$+ Cov(-2W_{t-4}, W_{t-h}) + Cov(-2W_{t-4}, 2W_{t-1-h}) + Cov(-2W_{t-4}, -2W_{t-4-h})$$

$$= Cov(W_{t}, W_{t-h}) + 2Cov(W_{t}, W_{t-1-h}) - 2Cov(W_{t}, W_{t-4-h})$$

$$+ 2Cov(W_{t-1}, W_{t-h}) + 4Cov(W_{t-1}, W_{t-1-h}) - 4Cov(W_{t-1}, W_{t-4-h})$$

$$- 2Cov(W_{t-4}, W_{t-h}) - 4Cov(W_{t-4}, W_{t-1-h}) + 4Cov(W_{t-4}, W_{t-4-h})$$

$$= \gamma_{W}(h) + 2\gamma_{W}(h+1) - 2\gamma_{W}(h+4)$$

 $+2\gamma_{W}(h-1)+4\gamma_{W}(h)-4\gamma_{W}(h+3) \ -2\gamma_{W}(h-4)-4\gamma_{W}(h-3)+4\gamma_{W}(h)$

Example 2: from Problem 5b on Tomorrow's Lab

$$\gamma_{Y}(h) = -2\gamma_{W}(h-4) - 4\gamma_{W}(h-3) + 2\gamma_{W}(h-1) + 9\gamma_{W}(h) + 2\gamma_{W}(h+1) - 4\gamma_{W}(h+3) - 2\gamma_{W}(h+4)$$

▶ Recall $\gamma_W(h) = \sigma_W^2$ when h = 0, and 0 otherwise. Thus

$$\gamma_Y(h) = egin{cases} 9\sigma_W^2 & h = 0 \ 2\sigma_W^2 & |h| = 1 \ 0 & |h| = 2 \ -4\sigma_W^2 & |h| = 3 \ -2\sigma_W^2 & |h| = 4 \ 0 & |h| \ge 5. \end{cases}$$

▶ This is an $MA(\infty)$ model:

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2} + \dots + \theta_q W_{t-q} + \theta_{q+1} W_{t-q-1} + \dots$$

with $\{W_t\}$ as white noise with mean zero and variance σ^2 .

We will write this expression succinctly via

$$X_t = \sum_{j=0}^{\infty} \theta_j W_{t-j}$$

with θ_0 taken to be 1.

- Infinite sums have convergence issues!
- Note the sum of the infinite geometric series, for |r| < 1:

$$a + ar + ar^{2} + ar^{3} + ... = \sum_{k=0}^{\infty} ar^{k} = \frac{a}{1-r}$$

- A sufficient condition which ensures that the infinite sum is finite (almost surely) is $\sum_j |\theta_j| < \infty$.
- ▶ In this class, we will always assume this condition when talking about the infinite series $\sum_{j\geq 0} \theta_j W_{t-j}$.

It turns out that $X_t = \sum_{j=0}^{\infty} \theta_j W_{t-j}$ is a stationary process because

$$EX_t = E\left(\sum_{j=0}^{\infty} \theta_j W_{t-j}\right) = \sum_{j=0}^{\infty} \theta_j EW_{t-j} = 0$$

and

$$Cov(X_t, X_{t+h}) = Cov\left(\sum_{j=0}^{\infty} \theta_j W_{t-j}, \sum_{k=0}^{\infty} \theta_k W_{t+h-k}\right)$$
$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \theta_j \theta_k Cov(W_{t-j}, W_{t+h-k}) = \sigma^2 \sum_{j=0}^{\infty} \theta_j \theta_{j+h}.$$

We could freely interchange the expectation and covariance operators above with the infinite sum because of the condition $\sum_i |\theta_i| < \infty$.

Note that the expectation EX_t and the covariance $Cov(X_t, X_{t+h})$ do not depend on t and the autocovariance is given by

$$\gamma_X(h) = \sigma^2 \sum_{j=0}^{\infty} \theta_j \theta_{j+h}.$$

In particular, we get the following

▶ Thoerem: Let ..., X_{-2} , X_{-1} , X_0 , X_1 , X_2 ,... be a time series which follows an MA(∞) model. Then $\{X_t\}$ is weakly stationary.

An Interesting $MA(\infty)$

- Fix ϕ with $|\phi| < 1$.
 - ightharpoonup Choose weights $\theta_i = \phi^j$ in $MA(\infty)$
 - $X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$
 - ACVF:

$$\gamma(h) = \sigma^2 \sum_{j=0}^{\infty} \phi^j \phi^{j+h} = \sigma^2 \phi^h \sum_{j=0}^{\infty} \phi^{2j} = \frac{\phi^h \sigma^2}{1 - \phi^2} \text{for } h \ge 0$$

- ▶ ACF: $\rho(h) = \phi^h$ for $h \ge 0$.
- ▶ Unlike the MA(1), this ACF is strictly non-zero for all lags! But, since $\rho(h)$ drops exponentially as lag increases, this is effectively a stationary time series with short range dependence.
- Note that if ϕ is negative, the ACF $\rho(h)$ osillates as h increases.

An Interesting $MA(\infty)$

▶ Here is an important property of this process X_t :

$$X_{t} = W_{t} + \phi W_{t-1} + \phi^{2} W_{t-2} + \dots$$

$$= W_{t} + \phi \left(W_{t-1} + \phi W_{t-2} + \phi^{2} W_{t-3} + \dots \right)$$

$$= W_{t} + \phi X_{t-1} \text{ for every } t = \dots, -1, 0, 1, \dots$$

▶ Thus X_t satisfies the following first order difference equation:

$$X_t = \phi X_{t-1} + W_t.$$

For this reason, $X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$ is called the **Stationary Autoregressive Process of order one**.

Definition of AR(p)

Let ..., W_{-2} , W_{-1} , W_0 , W_1 , W_2 , ... be a double infinite white noise sequence. The **autoregressive model** of order p or **AR(p)** model is of the form

$$X_t = W_t + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p},$$

where ϕ_1, \ldots, ϕ_p with $\phi_p \neq 0$ are parameters.

Autoregressive Operator

We can write the AR(p) model as

$$\phi(B)X_t=W_t,$$

for a white noise process $\{W_t\}$.

Definition of Autoregressive Operator

For parameters ϕ_1, \dots, ϕ_p with $\phi_p \neq 0$ define the **autoregressive operator** of order p as

$$\phi(B) = 1 - \phi_1 B - \dots \phi_p B^p.$$

AR(1) Process

▶ We will first look at AR(1) processes which satisfy the difference equation

$$X_t - \phi X_{t-1} = W_t.$$

or equivalently

$$X_t = \phi X_{t-1} + W_t.$$

- Previously seen that when $|\phi| < 1$ the MA(∞) process $X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$ solves this difference equation.
- Is it the only solution to the difference equation above?
- ► No!

What do we mean by solution?

- ▶ In practice (empirically/with data), we consider X_t as our residuals.
- ► Theoretically, however, we're look at an equation that involves white noise (whose properties we understand) and a sequence of unknown random variables,

$$..., X_{t-1}, X_t, X_{t+1}, ...$$

▶ Thus, we're solving for X, similar to high school algebra class.

Another Solution to $X_t = \phi X_{t-1} + W_t$

- ▶ Define X_0 to be an arbitrary random variable that is uncorrelated with the white noise series $\{W_t\}$ and define X_1, X_2, \ldots as well as X_{-1}, X_{-2}, \ldots using the difference equation $X_t = \phi X_{t-1} + W_t$.
- ▶ The resulting sequence surely satisfies $X_t = \phi X_{t-1} + W_t$. Is it stationary?
- NO! Because $X_{-1}=X_0/\phi-W_0/\phi$ and since $|\phi|<1$ and X_0 and W_0 are uncorrelated, this would give $\text{var}(X_{-1})>\text{var}(X_0)$, contradicting stationarity.
- lacksquare $X_t = \phi X_{t-1} + W_t$ with $|\phi| < 1$ has many solutions but only one stationary solution.

Stationarity of AR (break here :)

Theorem on AR Stationarity

For some white noise process $\{W_t\}$ and fixed parameter $|\phi| \neq 1$ there exists exactly one time series process $\{X_t\}$ with mean zero which is stationary and solves the difference equation

$$X_t - \phi X_{t-1} = W_t.$$

Sidebar

- ▶ Before we prove this theorem, let us analyze what the unique stationary solution of the difference equation is in a rather more heuristic way.
- The difference equation $X_t \phi X_{t-1} = W_t$ can be rewritten as $\phi(B)X_t = W_t$ where $\phi(B)$ is given by the polynomial $\phi(z) = 1 \phi z$. Therefore, it is natural that the solution of this equation is

$$X_t = \frac{1}{\phi(B)} W_t.$$

lacktriangle First consider $|\phi| < 1$. From the formula for the sum of a geometric series, we have

$$\frac{1}{\phi(z)} = (1 - \phi z)^{-1} = 1 + \phi z + \phi^2 z^2 + \phi^3 z^3 + \dots$$

Sidebar

► As a result, we expect as a stationary solution

$$X_t = \frac{1}{\phi(B)} W_t$$

$$= \left(I + \phi B + \phi^2 B^2 + \dots \right) W_t$$

$$= W_t + \phi W_{t-1} + \phi^2 W_{t-2} + \dots$$

$$= \sum_{j=0}^{\infty} \phi^j W_{t-j}.$$

Sidebar

▶ Second consider $|\phi| > 1$. Here, we can write

$$\frac{1}{\phi(z)} = \frac{1}{1 - \phi z}$$

$$= \frac{-1}{\phi z} \left(1 - \frac{1}{\phi z} \right)^{-1}$$

$$= -\frac{1}{\phi z} - \frac{1}{\phi^2 z^2} - \frac{1}{\phi^3 z^3} - \dots$$

$$= -\frac{z^{-1}}{\phi} - \frac{z^{-2}}{\phi^2} - \frac{z^{-3}}{\phi^3} - \dots$$

Sidebar

▶ As a result, we expect as a stationary solution

$$X_{t} = \left(-\frac{B^{-1}}{\phi} - \frac{B^{-2}}{\phi^{2}} - \frac{B^{-3}}{\phi^{3}} - \dots\right) W_{t}$$
$$= -\frac{W_{t+1}}{\phi} - \frac{W_{t+2}}{\phi^{2}} - \frac{W_{t+3}}{\phi^{3}} - \dots$$

- This is indeed true and we will prove this in the following. The strange part about the equation above is that X_t depends on only future white noise values: W_{t+1}, W_{t+2}, \ldots
- As a result, autoregressive processes of order 1 for $|\phi| > 1$ are rarely used in time series modelling.

Proof

- ▶ We only present the proof for $|\phi| < 1$. The case for $|\phi| > 1$ is analog.
- ▶ We have seen that $X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$ is one stationary solution of the difference equation.
- Suppose $\{Y_t\}$ is any other stationary sequence which also satisfies the difference equation, so that we want to show $X_t = Y_t$ is the unique stationary solution. i.e. $Y_t = \phi Y_{t-1} + W_t$.
- In that case, by successively using this equation, we obtain

$$Y_{t} = W_{t} + \phi Y_{t-1}$$

$$= W_{t} + \phi W_{t-1} + \phi^{2} Y_{t-2}$$

$$= W_{t} + \phi W_{t-1} + \phi^{2} W_{t-2} + \phi^{3} Y_{t-3}$$

$$= W_{t} + \phi W_{t-1} + \phi^{2} W_{t-2} + \phi^{3} W_{t-3} + \phi^{4} Y_{t-4}$$

$$= \vdots$$

Proof (continued)

 \triangleright In general, for every k, one would have

$$Y_{t} = \left[\sum_{i=0}^{k} \phi^{i} W_{t-i}\right] + \phi^{k+1} Y_{t-k-1}$$

- ▶ The idea is now to let k approach ∞ .
- ▶ The first term on the right hand side is

$$\sum_{i=0}^{k} \phi^{i} W_{t-i}$$

which we have argued converges to $X_t = \sum_{i=0}^{\infty} \phi^i W_{t-i}$ as k goes to infinity.

▶ If the second term, $\phi^{k+1}Y_{t-k-1}$, goes to 0 as $k \to \infty$, then $Y_t = X_t$ and we're done. We'll do this with mean-square convergence.

Proof (continued) - Mean-Square Convergence

We want to show

$$\lim_{k \to \infty} E\left[\left(\phi^{k+1}Y_{t-k-1} - 0\right)^2\right] = 0$$

- First note that $E\left[\left(\phi^{k+1}Y_{t-k-1}\right)^2\right] = \phi^{2k+2}EY_{t-k-1}^2$
- ▶ We assumed $\{Y_t\}$ is stationary, which means it has time-invariant (constant) mean and variance, implying $E(Y_t^2)$ is time-invariant too as $Var(Y_t) = E(Y_t^2) [E(Y_t)]^2$. Hence $EY_{t-k-1}^2 = EY_a^2$ for any fixed integer a. Let a = 0:

$$\phi^{2k+2}EY_{t-k-1}^2 = \phi^{2k+2}EY_0^2$$

As EY_0^2 is a constant and $|\phi| < 1$:

$$\lim_{k \to \infty} E\left[\left(\phi^{k+1} Y_{t-k-1} - 0 \right)^2 \right] = \lim_{k \to \infty} \phi^{2k+2} E Y_0^2 = 0$$

▶ It follows therefore that Y_t and X_t are the same.

Proof (continued)

- ightharpoonup Finally, consider the case $|\phi|=1$
- ▶ Here the difference equation becomes $X_t X_{t-1} = W_t$ for $\phi = 1$ and $X_t + X_{t-1} = W_t$ for $\phi = -1$.
- ▶ These difference equations have **no** stationary solutions.
- Let us see this for $\phi = 1$ (the $\phi = -1$ case is similar).
- Note that $X_t = X_{t-1} + W_t$ means that

$$var(X_t) = var(X_{t-1}) + var(W_t)$$

as X_{t-1} , W_t are uncorrelated.

▶ If $var(W_t) > 0$, then $var(X_t) > var(X_{t-1})$. This cannot happen if $\{X_t\}$ were stationary.

AR(1) Summary

- 1. If $|\phi| < 1$, the difference equation has a unique stationary solution given by $X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$. The solution clearly only depends on the present and past values of $\{W_t\}$. It is hence called **causal**.
- 2. If $|\phi| > 1$, the difference equation has a unique stationary solution given by $X_t = -\sum_{j=1}^{\infty} \phi^{-j} W_{t+j}$. This is **non-causal**.
- 3. If $|\phi|=1$, no stationary solution exists.

Reinterpreted Summary

This summary can be reinterpreted in terms of the polynomial $\phi(z) = 1 - \phi z$. The root of this polynomial is $1/\phi$.

- 1. If the magnitude of the root of $\phi(z)$ is strictly larger than 1, then $\phi(B)X_t = W_t$ has a unique **causal** stationary solution.
- 2. If the magnitude of the root of $\phi(z)$ is strictly smaller than 1, then $\phi(B)X_t = W_t$ has a unique stationary solution which is **non-causal**.
- 3. If the magnitude of the root of $\phi(z)$ is exactly equal to one, then $\phi(B)X_t = W_t$ has no stationary solution.

Causality

Causality

- Akin to the invertiblity condition for MA(q), we can define the causality condition for general AR(p) processes.
- Definition: An AR(p) model $\phi(B)X_t = W_t$ is said to be **causal**, if $\phi(z) \neq 0$ for $|z| \leq 1$.
- ▶ Analog to the invertibility theorem, one gets the following equivalent definition.

Thoerem on Causality

An AR(p) model $\phi(B)X_t=W_t$ is causal if and only if the time series $\{X_t\}$ and the white noise $\{W_t\}$ can be written as

$$X_t = \psi(B)W_t = \sum_{i=0}^{\infty} \psi_j W_{t-j},$$

where $\psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$ and $\sum_{j=0}^{\infty} |\psi_j| < \infty$ and $\psi_0 = 1$.

ARMA (if time, else next time!)

ARMA(p,q)

Definition: A (zero mean) autoregressive moving average model of order p and q is of the form

$$\phi(B)X_t = \theta(B)W_t$$

where $\phi(B)$ is the AR operator, $\theta(B)$ is the MA operator, and $\{W_t\}$ is white noise.

ARMA(p,q)

Rearranged for forecasting:

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q}$$

Basic ARMA Models

- 1. White noise $(X_t = W_t)$ is ARMA(0,0), with $\phi(z) = \theta(z) = 1$
- 2. Moving Average is ARMA(0,q), with $\phi(z)=1$ and $\theta(z)=1+\theta_1z+\theta_2z^2+...+\theta_qz^q$
- 3. Autoregression is ARMA(p,0), with $\theta(z)=1$ and $\phi(z)=1+\phi_1z+\phi_2z^2+...+\phi_qz^q$

Example (TSA4e 3.8)

▶ Is the following process causal and/or invertible?

$$X_t = .4X_{t-1} + .45X_{t-2} + W_t + W_{t-1} + .25W_{t-2}$$

- ► Move like terms: $X_t .4X_{t-1} .45X_{t-2} = W_t + W_{t-1} + .25W_{t-2}$
- ▶ Put in operator form: $(1 .4B .45B^2)X_t = (1 + B + .25B^2)W_t$

Example (TSA4e 3.8)

- ► Factor polynomials: $(1 + .5B)(1 .9B)X_t = (1 + .5B)^2W_t$
- ► Cancel common factors: $(1 .9B)X_t = (1 + .5B)W_t$
- ► Turns out the original process can be reduced!! To

$$X_t = .9X_{t-1} + W_t + .5W_{t-1}$$

Example (TSA4e 3.8)

- ► Cancel common factors: $(1 .9B)X_t = (1 + .5B)W_t$
- $\theta(z) = 1 + .5B$ has root -2, so it's invertible!
- $\phi(z) = 1 .9B$ has root $\frac{10}{9}$, so it's causal!

Code

- ARMAacf()
- ▶ arima.sim()