Поляков Иван Михайлович

Отчёт по домашнему заданию №1

«Анализ структуры сети»
«Распределение степеней вершин, кластерный коэффициент»
«Метрики узлов графа-друзей vk»

Направление 01.04.02: «Прикладная математика и информатика» Образовательная программа ВМ.5505.2021: «Математическое и информационное обеспечение экономической деятельности»

Руководитель: кандидат физ.-мат. наук, доцент Воронкова Ева Боруховна

1 Анализ структуры сети

В данной части работы были даны 4 графа:

- CA-AstroPh граф соавторства в области астрофизики (неориентированный);
- vk граф пользователей ВКонтакте (неориентированный);
- vk_friends личный граф друзей ВКонтакте (неориентированный);
- web-Google (ориентированный).

В соответствии с заданием были вычислены следующие значения для каждого графа и

построены гистограммы:

гроены гистограммы.	CA-AstroPh	vk	vk_friends	web-Google
Вершины	18772	2736186	53	875713
Рёбра	198110	9140970	169	5105039
Плотность	0.0011	0.0000	0.1226	0.0000
Число компонент слабой связности	290	45695	4	2746
Доля вершин в максимальной по мощности компоненте связной связности	95.37%	96.32%	60.38%	97.73%
Число компонент сильной связности	-	-	-	371764
Доля вершин графа в наи- большей компоненте силь- ной связности	-	-	-	49.65%
Число вершин степени, превышающей среднюю степень	5594	624037	26	265436
Радиус	8	14	3	29
Диаметр	14	16	4	40
90 процентиль расстояния	5	8	3	14
Число треугольников	1351441	15635422	241	13391903
Средний кластерный ко- эффициент	0.6306	0.0237	0.5231	0.5143
Глобальный кластерный коэффициент	0.3180	0.0576	0.5583	0.0552
Минимальная степень	1	1	1	1
Средняя степень	21.11	6.68	6.38	11.66
Максимальная степень	504	3331	17	6353

CA-AstroPh

Рис. 1: Функция плотности распределения

Рис. 2: Функция плотности распределения (LogLog)

Рис. 3: Аппроксимация линейной функцией

Рис. 4: Функция плотности распределения

Рис. 5: Функция плотности распределения (LogLog)

Рис. 6: Аппроксимация линейной функцией

${\bf vk_friends}$

Рис. 7: Функция плотности распределения

Рис. 8: Функция плотности распределения (LogLog)

Рис. 9: Аппроксимация линейной функцией

web-Google

Рис. 10: Функция плотности распределения

Рис. 11: Функция плотности распределения (LogLog)

Рис. 12: Аппроксимация линейной функцией

2 Распределение степеней вершин, кластерный коэффициент

В данной части работы предлагалось использовать 3 следующих графа:

- 1. Γραφ General Relativity and Quantum Cosmology (GR-QC);
- 2. Случайный граф G(n, p), где n число вершин в GR-QC, p вероятность, которая выбрана так, чтобы математическое ожидание числа рёбер было равно числу ребёр в GR-QC;
- 3. Случайный граф Модели Малого Мира (WS) с числом вершин и рёбер, совпадающим с числом вершин и рёбер в GR-QC.

Для данных графов были найдены следующие величины:

	GR-QC	G(n, p)	WS
Число тре- угольников	48260	26	5251
Средний кла- стерный коэф- фициент	0.5296	0.0009	0.2819
Глобальный кластерный коэффициент	0.6298	0.0010	0.2268
Минимальная степень	1	0	4
Средняя степень	5.5307	5.4136	5.5307
Максимальная степень	81	15	12

Построены функции плотности распределения и кумулятивной функции распределения степеней вершин каждой из сети, а также была проведена аппроксимация функции плотности распределения графа GR-QC с помощью метода наименьших квадратов:

GR-QC

Рис. 13: Функция плотности распределения

Рис. 14: Функция плотности распределения (LogLog)

Рис. 15: Кумулятивная функция распределения степеней

Рис. 16: Кумулятивная функция распределения степеней (LogLog)

Рис. 17: Аппроксимация линейной функцией

G(n, p)

Рис. 18: Функция плотности распределения

Рис. 19: Функция плотности распределения (LogLog)

Рис. 20: Кумулятивная функция распределения степеней

Рис. 21: Кумулятивная функция распределения степеней (LogLog)

Рис. 22: Функция плотности распределения

Рис. 23: Функция плотности распределения (LogLog)

Рис. 24: Кумулятивная функция распределения степеней

Рис. 25: Кумулятивная функция распределения степеней (LogLog)

3 Метрики узлов графа-друзей vk

В данной части работы использовалась наибольшая компонента связности графа друзей vk. Были рассчитаны следующие метрики, а также приведены их результаты:

1. Метрика центральности по степени

Александр Савченко : 0.5484Александр Папернюк : 0.5161

• Marika Oja : 0.4839

• Анастасия Жадан : 0.4516

Инга Прохорова : 0.3548

Дмитрий Гирдюк : 0.3226

• Соня Писарева : 0.3226

• Анастасия Раевская: 0.2903

• Артур Саакян : 0.2903

• Александр Кулаков: 0.2903

2. Метрика центральности по близости

• Александр Савченко: 0.6327

• Александр Папернюк : 0.6200

• Анастасия Жадан: 0.5849

• Анастасия Раевская: 0.5741

• Marika Oja : 0.5636

• Антон Гавриков : 0.5536

• Саша Крылатов : 0.5345

Ефим Жолобов : 0.5345

Дмитрий Гирдюк : 0.5254

• Александр Кулаков: 0.5167

3. Метрика центральности по посреднечеству

• Антон Гавриков : 0.2146

• Александр Савченко: 0.1482

• Анастасия Раевская: 0.1393

• Александр Папернюк : 0.1240

Дмитрий Гирдюк : 0.1173

Анастасия Жадан : 0.0668

• Саша Крылатов: 0.0619

• Артур Саакян: 0.0567

• Marika Oja : 0.0517

Ефим Жолобов : 0.0468

4. Метрика центральности по собственному вектору

• Александр Савченко: 0.3564

• Александр Папернюк : 0.3411

• Marika Oja : 0.3346

Анастасия Жадан : 0.3207

• Инга Прохорова : 0.2765

• Александр Кулаков: 0.2414

• Соня Писарева : 0.2395

• Диана Евтина: 0.2239

• Святослав Ковалев : 0.2099

• Няшка Веселенькая: 0.2093

5. Метрика Decay Centrality (delta=0.2)

• Александр Савченко: 3.8320

• Александр Папернюк : 3.6720

• Marika Oja : 3.3840

• Анастасия Жадан: 3.3200

• Анастасия Раевская : 2.6480

Дмитрий Гирдюк : 2.6160

Инга Прохорова : 2.5904

• Антон Гавриков : 2.5840

• Соня Писарева : 2.5840

• Александр Кулаков: 2.4560

6. Метрика Decay Centrality (delta=0.5)

• Александр Савченко: 11.5000

• Александр Папернюк: 11.2500

• Анастасия Жадан: 10.6250

• Marika Oja: 10.5000

• Анастасия Раевская: 9.8750

• Антон Гавриков : 9.6250

Дмитрий Гирдюк : 9.3750

• Соня Писарева : 9.2500

• Александр Кулаков: 9.1250

Ефим Жолобов: 9.1250

7. Метрика Decay Centrality (delta=0.8)

• Александр Савченко: 22.0480

• Александр Папернюк : 21.8880

• Анастасия Жадан : 21.4400

• Marika Oja : 21.2160

• Анастасия Раевская: 21.1520

• Антон Гавриков : 20.8960

• Ефим Жолобов : 20.5760

• Саша Крылатов : 20.5440

• Дмитрий Гирдюк : 20.5440

• Соня Писарева : 20.4160

8. Метрика PageRank

• Александр Савченко: 0.0614

• Александр Папернюк : 0.0580

• Marika Oja : 0.0535

• Анастасия Жадан: 0.0506

• Дмитрий Гирдюк : 0.0430

• Антон Гавриков : 0.0412

• Артур Саакян: 0.0398

• Инга Прохорова : 0.0398

• Анастасия Раевская: 0.0374

• Соня Писарева : 0.0372

9. Метрика *hub* алгоритма *HITS*

• Александр Савченко: 0.0797

• Александр Папернюк : 0.0762

• Marika Oja : 0.0748

• Анастасия Жадан: 0.0717

Инга Прохорова : 0.0618

• Александр Кулаков: 0.0539

• Соня Писарева : 0.0535

• Диана Евтина: 0.0501

• Святослав Ковалев: 0.0469

• Няшка Веселенькая: 0.0468

10. Метрика autorities алгоритма HITS

• Александр Савченко: 0.0797

• Александр Папернюк : 0.0762

• Marika Oja : 0.0748

• Анастасия Жадан: 0.0717

Инга Прохорова : 0.0618

• Александр Кулаков: 0.0539

• Соня Писарева : 0.0535

• Диана Евтина : 0.0501

• Святослав Ковалев: 0.0469

• Няшка Веселенькая: 0.0468

Визуализация данных метрик представлена ниже:

Рис. 26: Центральность по степени

Рис. 27: Центральность по близости

Рис. 28: Центральность по посредничеству

Рис. 29: Центральность по собственному вектору

Рис. 30: Decay Centrality (delta=0.2)

Рис. 31: Decay Centrality (delta=0.5)

Рис. 32: Decay Centrality (delta=0.8)

Рис. 33: PageRank

Рис. 34: Метрика Ниb

Рис. 35: Метрика Autorities

Несмотря на неявное выделение двух сообществ в данном подграфе, наибольшие значения почти всех метрик имеют одни и те же узлы. Это связано как раз с тем, что одно из двух сообществ плотнее (имеет внутри себя больше связей), чем оставшееся. Также данное почти полное совпадение связано с тем, что подграф мал – 10 узлов с наибольшими значениями мет-

рик составляют примерно 30% от вершин в подграфе, что повышает вероятность попадания в выборку. Так как подграф является неориентированным, то метрики hub и $autorities$ совпадают.