Практическая работа №3. Исследование метода фильтрации сигналов в спектральном пространстве

Цель работы. Изучить метод фильтрации сигналов в спектральном пространстве с использованием алгоритма быстрого преобразования Фурье.

Краткие теоретические сведения

Фильтрация является одним из широко применяемых методов обработки сигналов [1-3]. К методам фильтрации прибегают, когда об обрабатываемом процессе $\{x_n\}$ заранее известно, что он состоит из аддитивной смеси полезного сигнала $\{s_n\}$ и некоторой помехи $\{v_n\}$

$$x_n = s_n + v_n. (1)$$

Основная цель фильтрации — ослабление компонентов помехи, с последующим формированием выходного сигнала $\{y_n\}$, который будет наиболее близким по форме к полезному сигналу. Наиболее просто данная задача решается в случае, когда полезный сигнал и помеха имеют существенные различия в спектральном составе. Если обработке подлежит записанная реализация $\{x_n\}$ (массив из N дискретных отсчетов), можно применить метод фильтрации в спектральном пространстве (частотной области) [4, 5]. Идея метода заключается в вычислении спектра $\{X_n\}$ исходного процесса $\{x_n\}$, последующей модификации спектра в соответствии заданными частотными характеристиками фильтра и формировании выходного сигнала фильтра посредством вычисления обратного преобразования Фурье модифицированного спектра $\{Y_n\}$.

Для модификации спектра $\{X_n\}$ необходимо задать массив отсчетов дискретной передаточной функции фильтра $\{W_n\}$, после чего выполнить преобразование

$$Y_n = X_n \cdot W_n$$
, $n=0,1...N-1$.

При задании $\{W_n\}$ можно использовать как минимум два подхода:

1) использовать дискретизацию некоторой непрерывной передаточной функции аналогового фильтра W(p), применяя формулу, связывающую переменную преобразования Лапласа p и дискретный индекс n массива частотной передаточной функции $\{W_n\}$:

$$p = j\omega = j\frac{2\pi n}{N \cdot T_{II}},$$

где ј – мнимая единица.

2) задать массив, исходя из требований к диапазону частот полезного сигнала,

$$W_n = \begin{cases} 1, & \text{для } n, \text{соответствующих частотам полезного сигнала} \\ 0, & \text{для } n, \text{ не соответствующих частотам полезного сигнала} \end{cases}$$
 (2)

При реализации любого из двух подходов необходимо также соблюсти условие комплексносопряженной симметрии для массива отсчетов дискретной передаточной функции

$$W_n = W_{N-n}^*$$

где звездочка означает операцию комплексного сопряжения.

Достоинство рассмотренного метода фильтрации – простота, недостаток – необходимость предварительного накопления и сохранения в памяти всего исходного процесса $\{x_n\}$. При применении метода следует также учитывать, что при формировании массива $\{W_n\}$ по формуле (2) в выходном сигнале будут наблюдаться колебания в начале и конце выходного сигнала фильтра, вызванные эффектом Гиббса. Для ослабления вредного влияния этого эффекта рекомендуется предварительно искусственно удлинять исходный процесс посредством добавления отсчетов в начале и в конце исходного сигнала, и удаляя соответствующие участки в начале и конце массива

выходного сигнала фильтра. Необходимо помнить, что объем выборки удлиненного сигнала (M отсчетов, M>>N) для ускорения вычислений желательно задавать равным целой степени двойки.

Варианты заданий

Задание на выполнение работы включает задание обучающимся функции s(t), представляющей собой полезный сигнал, c формированием выборки сигнала $\{s_n\},$ дискретизированного по времени, а также помехи $\{v_n\}$ двух видов: гармонической и флуктуационной (дискретный гауссовский белый шум), и последующем моделировании метода фильтрации в частотной области. При задании свойств полезного сигнала необходимо соблюдать соответствие его характеристик и диапазона частот полосы пропускания фильтра. Наиболее просто это выполнить, задавая гармонические тестовые сигналы. Исследование метода фильтрации заключается в вычислении среднеквадратической ошибки фильтрации при действии различных помех.

Варианты заданий приведены в таблице. Значение периода дискретизации $T_{\rm Д}$ выбирается студентом самостоятельно, исходя из требований теоремы Котельникова, кроме того самостоятельно выбираются параметры N и M.

Таблица – Варианты заданий

Bap.	Тип фильтра	Граничные частоты полосы пропускания фильтра	
		$f_{\scriptscriptstyle m HИЖ},$ Γ ц	$f_{ m Bepx}$, Гц
1	полосовой фильтр	10	30
2	фильтр нижних частот	0	3000
3	режекторный фильтр	10	30
4	фильтр высоких частот	100	-
5	полосовой фильтр	100	200
6	режекторный фильтр	40	60
7	фильтр нижних частот	0	500
8	фильтр высоких частот	1000	-
9	полосовой фильтр	350	450
10	фильтр нижних частот	0	400
11	полосовой фильтр	15	25
12	фильтр нижних частот	0	500
13	режекторный фильтр	15	25
14	фильтр высоких частот	300	-
15	полосовой фильтр	1000	2000
16	режекторный фильтр	45	55
17	фильтр нижних частот	0	50
18	фильтр высоких частот	350	-
19	полосовой фильтр	35	45
20	фильтр нижних частот	0	10

Возможные варианты дополнительных заданий:

- 1) Осуществить расчет массива $\{W_n\}$ посредством дискретизации передаточной функции W(p) некоторого аналогового фильтра-прототипа [2] 2-го порядка, соответствующего заданному в таблице вариантов фильтру.
- 2) Выполнить исследование влияния параметра M на среднеквадратическую ошибку фильтрации сигнала, построить график соответствующей зависимости.
- 3) Выполнить исследование влияния частоты гармонической помехи на среднеквадратическую ошибку фильтрации, построить трафик соответствующей зависимости.

Для выполнения практической работы рекомендуется использовать компьютерный пакет MathCAD или MatLAB. Обучающийся должен быть готов к защите своей работы и к ответу на любой вопрос из списка контрольных вопросов.

Порядок выполнения работы.

- 1. Согласовать с преподавателем вариант задания во время занятия по расписанию, удостовериться в правильном понимании задания и критериев его оценки.
- 2. Задать формулу для функции, описывающей исходный непрерывный сигнал s(t), желательно в виде гармонического колебания с частотой, попадающей в полосу пропускания фильтра.
- 3. Выбрать период дискретизации, исходя из требований теоремы Котельникова для заданного сигнала, задать объем выборки N, а также объем удлиненной выборки M.
- 4. Сформировать выборку дискретизированного по времени сигнала, без учета дискретизации по уровню в АЦП. Построить график сигнала.
- 5. Задать помехи двух видов: гармоническую $\{v1_n\}$, частота которой находится вне полосы частот пропускания фильтра, и помеху типа гауссовский белый шум $\{v2_n\}$.
- 6. Написать программу-функцию, которая, получая массив отсчетов исходного сигнала $\{x_n\}$, возвращает массив отсчетов выходного сигнала фильтра $\{y_n\}$. Все этапы обработки, включая удлинение исходного процесса до M отсчетов и последующее усечение массива выходного сигнала фильтра должны производиться внутри программы-функции.
- 7. Используя написанную при выполнении п. 6 программу-функцию, осуществить моделирование фильтрации для следующих сигналов:
 - чистого полезного сигнала, без помехи, т. е., задавая $x_n = s_n$, с целью выявления искажений сигнала фильтром, включая эффект Гиббса, построить графики входного процесса и полученного выходного сигнала фильтра $\{y0_n\}$,
 - аддитивной смеси сигнала и гармонической помехи, задавая $x_n = s_n + \lambda \cdot v \mathbf{1}_n$, интенсивность помехи λ задать по своему усмотрению, чтобы убедительно проиллюстрировать эффективность работы фильтра, построить графики входного процесса и полученного выходного сигнала фильтра $\{y\mathbf{1}_n\}$,
 - аддитивной смеси сигнала и флуктуационной помехи, задавая $x_n = s_n + \lambda \cdot v 1_n$, интенсивность помехи λ задать по своему усмотрению, чтобы убедительно проиллюстрировать эффективность работы фильтра, построить графики входного процесса и полученного выходного сигнала фильтра $\{y2_n\}$.
- 8. Для каждого из трех полученных выходных сигналов фильтра вычислить среднеквадратическую ошибку фильтрации $e = \sqrt{\frac{1}{N}\sum_{n=0}^{N-1}(y_n s_n)^2}$.
- 9. При необходимости (см. примечание к вариантам заданий) или при желании выполнить дополнительное исследование.

Содержание отчета

- 1. Цель работы.
- 2. Краткие теоретические сведения о задачах фильтрации сигналов и их практическом применении, а также о методе фильтрации в частотной области.
- 3. Программа, в которой представлены результаты моделирования, с необходимыми комментариями (назначение констант и переменных, функций, и т.п.).
- 4. Полученные графики выходного сигнала фильтра при различных исходных данных с соответствующими подрисуночными подписями.
- 5. Выводы, в которых отражены особенности изученных методов и свойства полученных результатов. Дополнительно, в выводах можно привести ответы на некоторые контрольные вопросы.
- 6. Список используемых источников, желательно не только из списка рекомендуемой литературы, приветствуется использование Интернет-ресурсов; на все источники в тексте отчета должны быть ссылки.

Рекомендуемая литература

- 1. Цифровая обработка сигналов: учебник для ВПО / С.Н. Воробьев. М.: Академия, 2013. 320 с. [библиотечный шифр 621.391 В75]
- 2. Цифровые фильтры частотной селекции: учебное пособие / О.О. Жаринов, И.О. Жаринов. СПб: Изд-во ГУАП, 2019. 77 с. [библиотечный шифр 621.372 Ж 34].
- 3. Цифровая обработка сигналов: учебное пособие / В.А. Сериков, В.Р. Луцив; СПб: Изд-во ГУАП, 2014. 110 с. [библиотечный шифр 621.391 СЗ2]
- 4. Алгоритм цифровой фильтрации в частотной и временной областях. // URL: http://stu.sernam.ru/book_g_rts.php?id=137
- 5. Фильтрация сигнала в частотной области Цифровая обработка сигналов. // URL: http://www.cyberforum.ru/digital-signal-processing/thread1663620.html

Контрольные вопросы

- 1. Каковы задачи фильтрации сигналов?
- 2. Какие основные типы фильтров применяются на практике?
- 3. В чем идея метода фильтрации в частотной области?
- 4. В чем состоят различия между линейными и нелинейными фильтрами?
- 5. В чем причины и проявления эффекта Гиббса?
- 6. В чем достоинства и недостатки метода фильтрации в частотной области?
- 7. Каким требованиям должна удовлетворять передаточная функция фильтра, обеспечивающего наилучшее подавление помехи и достижение минимальной среднеквадратической ошибки фильтрации?
- 8. Можно ли, теоретически, при помощи фильтрации полностью устранить гармоническую помеху? Если да, то при каких условиях, если нет, то почему?
- 9. Можно ли, теоретически, при помощи фильтрации полностью устранить флуктуационную помеху? Если да, то при каких условиях, если нет, то почему?
- 10. Какие еще помехи, кроме гармонической и флуктуационной, могут возникать на практике?
- 11. Приведите примеры источников помех различных видов.