

planetmath.org

Math for the people, by the people.

all orthonormal bases have the same cardinality

Canonical name AllOrthonormalBasesHaveTheSameCardinality

Date of creation 2013-03-22 17:56:10 Last modified on 2013-03-22 17:56:10 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Theorem Classification msc 46C05

Synonym dimension of an Hilbert space is well-defined

Theorem. – All orthonormal bases of an Hilbert space H have the same cardinality. It follows that the concept of dimension of a Hilbert space is well-defined.

Proof: When H is finite-dimensional (as a vector space), every orthonormal basis is a Hamel basis of H. Thus, the result follows from the fact that all Hamel bases of a vector space have the same cardinality (see http://planetmath.org/AllBasesForAVectorSpaceHaveTheSameCardinalitythis entry).

We now consider the case where H is infinite-dimensional (as a vector space). Let $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ be two orthonormal basis of H, indexed by the sets I and J, respectively. Since H is infinite dimensional the sets I and J must be infinite.

We know, from Parseval's equality, that for every $x \in H$

$$||x||^2 = \sum_{i \in I} |\langle x, e_i \rangle|^2$$

We know that, in the above sum, $\langle x, e_i \rangle \neq 0$ for only a countable number of $i \in I$. Thus, considering x as f_j , the set $I_j := \{i \in I : \langle f_j, e_i \rangle \neq 0\}$ is countable. Since for each $i \in I$ we also have

$$||e_i||^2 = \sum_{j \in J} |\langle e_i, f_j \rangle|^2$$

there must be $j \in J$ such that $\langle f_j, e_i \rangle \neq 0$. We conclude that $I = \bigcup_{j \in J} I_j$.

Hence, since each I_j is countable, $I \leq J \times \mathbb{N} \cong J$ (because J is infinite). An analogous proves that $J \leq I$. Hence, by the Schroeder-Bernstein theorem J and I have the same cardinality. \square