

Disclaimer / Descargo de Responsabilidad

Esta presentación corresponde a una guía usada por el profesor durante las clases. La misma ha sido modificada para ser utilizado en el modelo de cursos asistidos por tecnología. No es una versión final, por lo que la misma podría requerir todavía hacer algunos ajustes. Para aspectos de evaluación esta presentación es solo una guía, por lo que el estudiante debe profundizar con el material de lectura asignado y lo discutido en clases para aspectos de evaluación.

This presentation corresponds to a guide material used by the professor during classes. It has been modified to be used in the model of technology-assisted courses. It is not a final version, so it may still require some adjustments. For evaluation aspects, this presentation is only a guide, so the student should delve with the assigned reading material and what has been discussed in class.

Introduction

- → Graphs are general data structures that have a wide range of applications:
 - Sociology
 - Chemistry
 - ◆ Geography
 - ◆ Electrical engineering
 - ◆ Industrial engineering

Introduction

→ Graphs are general data structures that have a wide range i.e Identify criminal ns:

networks

- Sociology
- **♦** Chemistry
- ◆ Geography
- ◆ Electrical engineering
- ◆ Industrial engineering

- → A graph G groups together physical or conceptual entities. A graph is composed of:
 - Vertices, nodes or points that represents each of the entities
 - ◆ Edges, arcs or lines that represents relationships between nodes.

 \rightarrow A graph is denoted as $G = \{V, A\}$

- → A graph G groups together physical or conceptual entities. A graph is composed of:
 - Vertices, nodes or points that represents each of the entities
 - ◆ Edges, arcs or lines that represents relationships between nodes.

 \rightarrow A graph is denoted as $G = \{V, A\}$

- → A graph G groups together physical or conceptual entities. A graph is composed of:
 - ◆ **Vertices**, nodes or points that represents each of the entities
 - ◆ **Edges**, arcs or lines that represents relationships between nodes.

$$\mathbf{A} = \{ (1,4), (4,1), (1,5), (5,1), (4,9), (9,4), (5,7), (7,5) \\ (7,9), (9,7) \}$$

→ A graph can be directed or undirected:

Undirected graph

Directed graph

→ A graph can be directed or undirected:

→ A graph can be directed or undirected:

- → An edge can have a weight associated denoting a magnitude associated with the relationship
- → Graphs with weight set on the edges are called weighted graphs

Weighted graph

→ The degree of v is a quality of a node of a graph. In an undirected graph it is the number of edges that contains v

→ In a directed graph the indegree is the number of tail ends adjacent to v.
 Outdegree is the number of head ends adjacent to v

→ A path P = $(v_0, v_1, v_2, ..., v_n)$ is a set of vertices that form the path from v_0 to v_n . v_0 and v_n can be the same.

→ It the vertices between v_0 to v_n are different, the path is called **simple path**

→ A **cycle** is a simple path that begins and ends in the same node.

→ A **DAG** is a directed acyclic graph, a graph where there are no cycles

→ A graph is **connected** if there is a path between any pair of nodes that compose it

→ A graph is strongly connected if the graph is connected and is a digraph

- → Graphs can be represented using two different approaches:
 - Using a bidimensional array known as adjacency matrix
 - Using a dynamic representation known as adjacency list

→ Choosing between one representation or the other depends of the type of the array and the operations that will be done

- → Graphs can be represented using two different approaches:
 - Using a bidimensional array known as adjacency matrix
 - Usinglist

If the graph is dense (lots of arcs), is better to chose a matrix

tation known as **adjacency**

If the graph is sparse, choose the linked list

→ Choosing between one representation and other depends of the type of the array and the operations that will be done

Adjacency Matrix

→ Let $G = \{V, A\}$ where $V = \{v_0, v_1, v_2, ..., v_{n-1}\}$ and $A = \{(v_i, v_j)\}$. Nodes can be represented by matrix A of nxn known as adjacency matrix. Each element of a_{ij} can take one of the following values:

```
\mathbf{a}_{ij} 0 if there is not an arc between (v_i, v_j)
\mathbf{1} \text{ if there is an arc between } (v_i, v_j)
```

Adjacency Matrix

→ For example, let's say the nodes are {D, F, K, L, R} the matrix will be:

$$A = \begin{vmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{vmatrix}$$

Adjacency Matrix

→ If the graph is weighted:

$$P = \left| \begin{array}{ccccc} 0 & 4 & 5 & 0 & 0 \\ 0 & 0 & 3 & 6 & 3 \\ 3 & 0 & 0 & 0 & 0 \\ 5 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array} \right|$$

Graph representation Adjacency List

→ An adjacency list is a linked list where each element represents a node of the graph. Each element contains a list of relationships with other nodes, being the element node, the origin

Adjacency List

Graph traversals

- → Traversing a graph involves **visiting** all reachable nodes starting from an specific node
- → Basic traversing algorithm:
 - ◆ Let V be the set of vertices of the graph
 - ◆ Let W be the set of not visited nodes. Initially it only contains the initial node v
 - ◆ Let Y be the set of visited nodes.
 - On each pass of the algorithm, removes a node w, get processed and for each edge of w, if not visited, will be added to w
 - Algorithm ends when W is empty

Graph traversals Breadth-First

→ Uses a queue that keeps marked vertices

→ FIFO achieves that from v, all adjacent vertices are processed first, then all the adjacents of the adjacents of v...and so on

Graph traversals

Breadth-First

→ Algorithm:

- 1. Mark the start node v
- 2. Enqueue the start node v
- 3. Repeat step 4 and 5 until queue is empty
- 4. Dequeue node w from the queue, process w
- 5. Enqueue all adjacents nodes to w that are not marked, marked queued nodes
- 6. End

Graph traversals

Breadth-First

Queue	Visited		
D			
ВС	D		
C H	В		
H R	С		
R A T	Н		
A T	R		
T	A		
Empty Queue	T		

Graph traversals Depth-First

- → We saw that in the Breadth-First traversal, adjacents nodes are processed in a FIFO approach
- → In Depth-First, the processing order is given by a LIFO approach

Graph traversals Depth-First

- → Traverse beings with a node v. v is marked as visited and pushed to the stack. Top of the stack is popped. Each unvisited adjacent node of v is pushed to the stack.
- → Continue until there are not more elements in the stack

Graph traversals

Depth-First

Stack	Visited nodes				
D					
B C	D				
B R	С				
B H	R				
B A T	н				
ВА	T				
В	A				
Empty Stack	В				

Shortest-path: Dijkstra

→ One of the most common problems is to determine the shortest path between a pair of nodes

- → For this kind of problem we consider a directed and weighted graph
- → The length of the shortest path is the sum of the weight of each edge

- → **Dijkstra algorithm** finds the shortest path from an origin node to all other nodes in a graph with positive weights
- → Edsger Dijkstra (1930 2002) was a Dutch computer scientist that shaped computer programming as a recognized science

Shortest-path: Dijkstra

→ Dijkstra algorithm is an avid algorithm that selects the best solution on each step

→ Let's see how it works

V	а	b	С	d	е	f	g

V	а	b	С	d	е	f	g

Shortest-path: Dijkstra

V	а	b	С	d	е	f	g
a	0 _a	3 _a	5 _a	6 _a	_	_	_

Blue means: this is the shortest path. For example, from a to a, there won't be other path shorter

V	a	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	-	-	-
b	0 _a				-	-	-
the	alrea shor vas fr	test p					

V	а	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	-	-	-
b	0 _a	3 _a			-	-	_

V	а	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	-	_	-
b	0 _a	3 _a	5 _a	5 _b	-	_	-
			nave the lo	get to two p wer d ne sou	aths. one ir	Cho ndica	ose

V	а	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	_	_	_
b	0 _a	3 _a	5 _a	5 _b	_	_	-
С	0 _a	3 _a	5 _a				

V	a	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	_	_	_
b	0 _a	3 _a	5 _a	5 _b	_	_	-
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c

No further improvementsso we
are done!

V	а	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	_	_	_
b	0 _a	3 _a	5 _a	5 _b	_	_	_
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
d	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
f	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	9 _f
g							

Shortest-path: Dijkstra

What is the shortest path from a to g? a > c > f > g

V	a	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	_	-	-
b	0 _a	3 _a	5 _a	5 _b	_	_	_
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
d	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
f	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	9 _f

V	а	b	С	d	е
а	0 _a	50 _a	_	80 _a	-

V	а	b	С	d	е
а	0 _a	50 _a	-	80 _a	-

V	а	b	С	d	е
а	0 _a	50 _a	-	80 _a	-

V	а	b	С	d	е
а	0 _a	50 _a	_	80 _a	_
b	0 _a	50 _a	110 _b	80 _a	_
d	0 _a	50 _a	100 _d	80 _a	150 _d
С	0 _a	50 _a	100 _d	80 _a	140 _c

Shortest-path: Dijkstra

V	a	b	С	d	е
а	0 _a	50 _a	_	80 _a	-
b	0 _a	50 _a	110 _b	80 _a	_
d	0 _a	50 _a	100 _d	80 _a	150 _d
С	0 _a	50 _a	100 _d	80 _a	140 _c

What is the cheapest way to get from a to e?

V	a	Ь	С	d	е
а	O _a	50 _a	-	80 _a	-
b	0 _a	50 _a	110 _b	80	-
d	0 _a	50 _a	100 _d	80 _a	150 _d
С	0 _a	50 _a	100 _d	80 _a	140 _c

Graph algorithms Shortest-path: Dijkstra

```
Foreach node set distance[node] = HIGH
SettledNodes = empty
UnSettledNodes = empty
Add sourceNode to UnSettledNodes
distance[sourceNode]= 0
while (UnSettledNodes is not empty) {
  evaluationNode = getNodeWithLowestDistance(UnSettledNodes)
  remove evaluationNode from UnSettledNodes
    add evaluationNode to SettledNodes
    evaluatedNeighbors(evaluationNode)
getNodeWithLowestDistance(UnSettledNodes){
  find the node with the lowest distance in UnSettledNodes and return it
evaluatedNeighbors(evaluationNode){
  Foreach destinationNode which can be reached via an edge from evaluationNode AND which is not in SettledNodes {
    edgeDistance = getDistance(edge(evaluationNode, destinationNode))
    newDistance = distance[evaluationNode] + edgeDistance
    if (distance[destinationNode] > newDistance) {
      distance[destinationNode] = newDistance
    evaluation.predecessor = evaluationNode
      add destinationNode to UnSettledNodes
```

Graph algorithms Shortest-path: Dijkstra

Shortest-path: Floyd-Warshall

- → How to calculate the shortest path from every node to every node?
 - ◆ Run Dijkstra from every node!
 - ◆ Yes but there is a more direct solution

→ Floyd algorithm calculates using dynamic programming the shortest path from every node to every node

Shortest-path: Floyd

→ Floyd algorithm represents the graph as a weighted matrix. Each arc (v_i, v_j) has a weight c_{ij} . If the arc does not exist, the value is ∞ .

→ The diagonal of the matrix is equal to zero.

- → Floyd algorithm determines a new matrix D of n_xn elements, where each D_{ij} is the minimum path from v_i to v_j
- \rightarrow A new matrix D_1 , D_2 , ..., D_k , D_n is generated on each step from D_0 . On each step a new vertex is included to determine if that vertex improves the paths to become shorter

$$\mathbf{D_0[i,j]} = \begin{cases} c_{ij} \text{ weight of the arc from } \text{vertex}_i \text{ to } \text{vertex}_j \\ \infty \text{ if there is no arc} \end{cases}$$

$$\mathbf{D_1[i,j]} = \min_{\mathbf{D_0[i,j]}, \mathbf{D_0[i,1]} + \mathbf{D_0[1,j]}}$$

$$\mathbf{D_2[i,j]} = \min_{\{D_1[i,j],D_1[i,2]+D_1[2,j]\}}$$

$$\mathbf{D_{k}[i,j]} = \min(\mathbf{D_{k-1}[i,j]}, \mathbf{D_{k-1}[i,k]} + \mathbf{D_{k-1}[i,k]})$$
₁[k,j])

Shortest-path: Floyd

→ Another matrix Q_1 , Q_2 , ..., Q_k , Q_n is generated on each step from Q_0 . Q is the predecessor matrix.

$$\begin{aligned} \mathbf{Q_0[i,j]} &= \begin{cases} 0 \text{ if } i = j \text{ or } D_{ij} = \infty \\ &\text{i in all other cases} \end{cases} \\ \mathbf{Q_n[i,j]} &= \begin{cases} Q_{n-1}[i,j] \text{ if } D_{n-1}[i,j] \leq D_{n-1}[i,n] + D_{n-1}[n,j] \\ Q_{n-1}[n,j] \text{ if } D_{n-1}[i,j] > D_{n-1}[i,n] + D_{n-1}[n,j] \end{cases} \end{aligned}$$

$D_k[i, j] = minimum($	$D_{k-1}[i,j]$,
	$D_{k-1}[i,k] +$
	$D_{k-1}[k,j]$

D_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6	∞	∞	0	2
V ₅	∞	∞	∞	3	0

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

 $\begin{aligned} \textbf{D_{k}[i,j]} &= \text{minimum(} \textbf{D}_{k-1}[\texttt{i,j}],\\ \textbf{D}_{k-1}[\texttt{i,k}] &+\\ \textbf{D}_{k-1}[\texttt{k,j}]) \end{aligned}$

D ₀	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6	∞	∞	0	2
V ₅	∞	∞	∞	3	0

D ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0				
V ₂					
V ₃					
V ₄					
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

	\mathbf{Q}_{1}	V ₁	V ₂	V ₃	V_4	V ₅
	V ₁	0				
	V ₂					
i	V ₃					
	V ₄					
	V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

$D_k[i, j] = minimum($	$[D_{k-1}[i,j],$
	$D_{k-1}[i,k] +$
	$D_{k-1}[k,j]$

D ₁	V ₁	/	V ₃	V ₄	V ₅
V ₁	0	1			
V ₂					
V ₃					
V ₄					
V ₅					

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂					
V ₃					
V ₄					
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0				
V ₃					
V ₄					
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0			
V ₃					
V ₄					
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0		
V ₃					
V ₄					
V ₅					

Shortest-path: Floyd

$D_k[i, j] = minimum$	$n(D_{k-1}[i,j],$
	$D_{k-1}[i,k]+$
	D _{k-1} [k , j])

D ₀	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6	∞	∞	0	2
V5	∞	∞	∞	3	0

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

min(D₀[2,4],D₀[2,1]+D₀[1,4])

I I	V ₁	0	1	∞		∞
i	V ₂	8	0	∞	4	
i	V ₃					
į	V ₄					
i	V ₅					

Q ₁	V ₁	V ₂	V ₃	V_4	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	
V ₃					
V ₄					
V ₅					

 $\begin{aligned} \textbf{D_{k}[i,j]} &= \text{minimum(} \textbf{D}_{k-1}[\texttt{i,j}],\\ \textbf{D}_{k-1}[\texttt{i,k}] &+\\ \textbf{D}_{k-1}[\texttt{k,j}]) \end{aligned}$

						j						
D ₀	V ₁	V ₂	V ₃	V ₄	V ₅		Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞	∞		V ₁	0	1	0	0	0
V ₂	∞	0	∞	4	7		V ₂	0	0	0	2	2
V ₃	3	2	0	∞	4		V ₃	3	3	0	0	3
V ₄	6	∞	∞	0	2		V ₄	4	0	0	0	4
Vs	∞	∞	∞	3	0		٧¸	_0	0	0	5	0
m	in(D.	[2 =	51 D.	ſ2 1	1+D.	1,5	51)					
	(_{D0}	[2]	, , , , ,		-] , D(, 1 ,	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞			V ₁	0	1	0	0	0
V ₂	∞	0	∞	4	7		V ₂	0	0	0	2	2
V ₃							V ₃					
V ₄							V ₄					
							- 4					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3				
V ₄					
V ₅					

$\mathbf{Q_0}$	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3			
V ₄					
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3			
V ₄					
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3			
V ₄					
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0		
V ₄					
V ₅					

$$\begin{aligned} \mathbf{D_{k}[i,j]} &= \operatorname{minimum}(\ \mathtt{D_{k-1}[i,j]}\,, \\ \mathtt{D_{k-1}[i,k]} &+ \\ \mathtt{D_{k-1}[k,j]}) \end{aligned}$$

1,1],D ₀ [4,1]+D ₀ [1,1])	

D ₀	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6	∞	∞	0	2
V ₅	∞	∞	∞	3	0

D ₁	V ₁	V ₂	V ₃	V_4	V ₅
V ₁	0	1	∞	8	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6				
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4				
V ₅					

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	1			
V ₅					

 $\begin{aligned} \mathbf{D_{k}[i,j]} &= \operatorname{minimum}(\ \mathtt{D_{k-1}[i,j]}\,, \\ \mathtt{D_{k-1}[i,k]} &+ \\ \mathtt{D_{k-1}[k,j]}) \end{aligned}$

D_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6	∞	∞	0	2
V ₅	∞	∞	∞	3	0

D ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	8	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6	7	∞	0	2
V ₅	∞	∞	∞	3	0

Q_0	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	0	0	0	4
V ₅	0	0	0	5	0

Q_1	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	1	0	0	4
V ₅	0	0	0	5	0

Q ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	0	0	0	5	0

Q ₂	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1			
V ₂					
V ₃					
V ₄					
V ₅					

Shortest-path: Floyd

D ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	∞	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V٨	6	7	∞	0	2

min(D₁[1,4],D₁[1,2]+D₁[2,4])

Q ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	0	0	0	5	0

$D_k[i, j] = minimum($	$\left[D_{k-1}[i,j],\right]$
	$D_{k-1}[i,k] +$
	$D_{k-1}[k,j]$

D ₂	V ₁	V ₂	V ₃		V_5
V ₁	0	1	∞	5	
V ₂		0			
V ₃			0		
V ₄				0	
V ₅					0

Q_2	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	
V_2					
V_3					
V_4					
V ₅					

 $\begin{aligned} \mathbf{D_{k}[i,j]} &= \operatorname{minimum}(\ \mathtt{D_{k-1}[i,j]}\,, \\ \mathtt{D_{k-1}[i,k]} &+ \\ \mathtt{D_{k-1}[k,j]}) \end{aligned}$

D ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	8	∞
V ₂	∞	0	∞	4	7
V ₃	3	2	0	∞	4
V ₄	6	7	∞	0	2
V ₅	∞	∞	∞	3	0

D ₂	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	8
V ₂	∞	0	∞	4	7
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	∞	∞	∞	3	0

Q ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	0	0
V ₂	0	0	0	2	2
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	0	0	0	5	0

Q_2	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	2
V_2	0	0	0	2	2
V ₃	3	3	0	2	3
V_4	4	1	4	0	4
V ₅	0	0	0	5	0

 $\begin{aligned} \mathbf{D_{k}[i,j]} &= \operatorname{minimum}(\ \mathtt{D_{k-1}[i,j]}\,, \\ \mathtt{D_{k-1}[i,k]} &+ \\ \mathtt{D_{k-1}[k,j]}) \end{aligned}$

D ₂	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	8
V ₂	∞	0	∞	4	7
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	∞	∞	∞	3	0

D ₃	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	8
V ₂	∞	0	∞	4	7
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	∞	∞	∞	3	0

\mathbf{Q}_2	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	0
V ₂	0	0	0	2	2
V ₃	3	3	0	2	3
V ₄	4	1	4	0	4
V ₅	0	0	0	5	0

Q_3	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	0
V ₂	0	0	0	2	2
V ₃	3	3	0	2	3
V ₄	4	1	4	0	4
V ₅	0	0	0	5	0

 $\begin{aligned} \mathbf{D_{k}[i,j]} &= \operatorname{minimum}(\ \mathtt{D_{k-1}[i,j]}\,, \\ \mathtt{D_{k-1}[i,k]} &+ \\ \mathtt{D_{k-1}[k,j]}) \end{aligned}$

D ₃	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	8
V ₂	∞	0	∞	4	7
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	∞	∞	∞	3	0

D ₄	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	7
V ₂	10	0	∞	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

\mathbf{Q}_3	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	0
V ₂	0	0	0	2	2
V ₃	3	3	0	2	3
V ₄	4	1	4	0	4
V ₅	0	0	0	5	0

Q_4	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V ₃	3	3	0	2	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

$D_k[i, j] = minimum($	(D _{k-1} [i,j],
	$D_{k-1}[i,k] +$
	$D_{k-1}[k,j]$

D_4	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	7
V ₂	10	0	∞	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

D ₅	V ₁	V ₂	V ₃	V_4	V ₅
V ₁	0	1	∞	5	7
V ₂	10	0	∞	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

\mathbf{Q}_4	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

Q_5	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V ₃	3	3	0	2	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

$D_k[i, j] = minimum($	D_{k-1}	[i,	j],
	D_{k-1}	[i,	k]+
	D_{k-1}	[k,	j])

D ₄	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	8	5	7
V ₂	10	0	8	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

D ₅	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	7
V ₂	10	0	∞	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

Q_4	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

\mathbf{Q}_{5}	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

$D_k[i, j] = minimum($	D_{k-1}	[i,	j],
	D_{k-1}	[i,	k]+
	D_{k-1}	[k,	j])

What's the shortest	path	from	\mathbf{v}_1	to	v ₄ ?
---------------------	------	------	----------------	----	------------------

D ₄	V ₁	V ₂	V ₃	V ₄	V_5
V ₁	0	1	8	5	7
V ₂	10	0	8	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0
			1		

D ₅	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	7
V ₂	10	0	∞	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

Q_4	V ₁	V ₂	V ₃	V_4	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

Q,	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V_3	3	3	0	0	3
V_4	4	1	4	0	4
V ₅	4	4	0	5	0

$D_k[i, j] = minimum($	$D_{k-1}[i,j]$,
	$D_{k-1}[i,k] +$
	$D_{k-1}[k,j]$

What's the shortest path from v ₁ to v ₄ ?
$R/\{v_1, v_2, v_4\}$

D ₄	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	8	5	7
V ₂	10	0	8	4	7
V ₃	3	2	0	6	6
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

D ₅	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	∞	5	7
V ₂	10	0	∞	4	6
V ₃	3	2	0	6	4
V ₄	6	7	∞	0	2
V ₅	9	10	∞	3	0

\mathbf{Q}_4	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	0	2	4
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

Q,	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	0	2	4
V ₂	4	0	٥	2	4
V ₃	3	3	0	0	3
V ₄	4	1	4	0	4
V ₅	4	4	0	5	0

- → Calculates the **path matrix** *P* (also called transitive closure) of a graph *G* of n vertices, represented by its adjacency matrix *A*.
- → Defines a sequence of matrices n_x n P_0 , P_1 , P_2 , P_3 , ... P_n
- → Similar to Floyd algorithm

$$\begin{aligned} & \textbf{P_0[i,j]} = \begin{cases} 1 \text{ if there is an arc from } v_i \text{ to } v_j \\ 0 \text{ if there is no arc} \end{cases} \\ & \textbf{P_1[i,j]} = \begin{cases} 1 \text{ if there is an arc from } v_i \text{ to } v_j \text{ that does not go through other vertex different of } v_1 \\ 0 \text{ if there is no arc} \end{cases} \\ & \textbf{P_2[i,j]} = \begin{cases} 1 \text{ if there is an arc from } v_i \text{ to } v_j \text{ that does not go through other vertex different of } v_1 \dots v_2 \\ 0 \text{ if there is no arc} \end{cases} \\ & \textbf{P_n[i,j]} = \begin{cases} 1 \text{ if there is an arc from } v_i \text{ to } v_j \text{ that does not go through other vertex different of } v_1 \dots v_n \\ 0 \text{ if there is no arc} \end{cases} \end{aligned}$$

P ₀	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	0	0
V ₂	0	1	0	1	1
V ₃	1	1	1	0	1
V ₄	1	0	0	1	1
V ₅	0	0	0	1	1

P ₂	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	1	1
V ₂	0	1	0	1	1
V ₃	1	1	1	1	1
V ₄	1	1	0	1	1
V ₅	0	0	0	1	1

P ₁	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	0	0
V ₂	0	1	0	1	1
V ₃	1	1	1	0	1
V ₄	1	1	0	1	1
V ₅	0	0	0	1	1

P ₃	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	1	1
V ₂	0	1	0	1	1
V ₃	1	1	1	1	1
V ₄	1	1	0	1	1
V ₅	0	0	0	1	1

P ₂	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	1	1
V ₂	0	1	0	1	1
V ₃	1	1	1	1	1
V ₄	1	1	0	1	1
V ₅	0	0	0	1	1

P ₄	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	1	1
V ₂	1	1	0	1	1
V ₃	1	1	1	1	1
V ₄	1	1	0	1	1
V ₅	1	1	0	1	1

P ₃	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	1	1
V ₂	0	1	0	1	1
V ₃	1	1	1	1	1
V ₄	1	1	0	1	1
V ₅	0	0	0	1	1

P ₅	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	1	1	0	1	1
V ₂	1	1	0	1	1
V ₃	1	1	1	1	1
V ₄	1	1	0	1	1
V ₅	1	1	0	1	1

Warshall

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

→ A undirected graph is used to model symmetrical relations between vertices of the graph. Any arc (v,w) of an undirected graph is the same as the arc of (w,v).

→ A common task is to determine if for any pair of vertices, there is a path that connects them, in other words, if it is a connected graph

- → A minimal spanning tree is a subset of the graph that covers all vertices and which edges have a sum of the minimal weights
 - ◆ Applied on networks

- → A tree is a subset of the graph that is connected and has no cycles
 - ◆ If it has n vertices, then it has n-1 edges
 - ◆ There exists a unique path between any two vertices of a tree
 - ◆ If an edge is added it results in a cycle

→ If all vertices are on the tree, then it is a connected graph

→ Given undirected graph, find the minimal spanning tree

Minimal spanning tree

Minimal spanning tree

- → How to do this?
 - ◆ Prim algorithm
 - ◆ Kruskal algorithm

Graph algorithms Prim

→ Grows the tree in successive stages. In each stage, one node is picked as the root, and we add an edge and the associated vertex to the tree

→ At any point we have a set of vertices that have been already included in the tree.

Graph algorithms Prim

→ The algorithm finds a new vertex to add to the tree by choosing the edge (u,v) such as the cost of (u,v) is the smallest among all edges where u is in the tree and v not

Prim

Minimum weight connecting to a known node

		\searrow	
ν	known	d_{ν}	p_{ν}
$\overline{v_1}$	F	0	0
v_2	F	∞	0
v_3	F	∞	0
ν4	F	∞	0
v_5	F	∞	0
v_6	F	∞	0
ν7	F	∞	O

ν	known	d_{ν}	pν
v ₁	F	0	0
v_2	F	∞	0
ν3	F	∞	0
ν4	F	∞	0
ν ₅	F	∞	0
ν ₆	F	∞	0
ν7	F	∞	0

Prim

Last vertex that cause a change in $d_{\rm v}$

			_
ν	known	d_{ν}	p_{ν}
$\overline{v_1}$	F	0	0
v_2	F	∞	0
ν3	F	∞	0
ν4	F	∞	0
ν ₅	F	∞	0
v_6	F	∞	0
ν7	F	∞	0

ν	known	d_{ν}	p_{ν}
$\overline{\nu_1}$	Т	0	0
v_2	F	2	v_1
ν3	F	4	v_1
ν4	F	1	v_1
ν ₅	F	∞	0
ν6	F	∞	0
ν ₇	F	∞	0

Prim

Next is the minimum

			$\overline{}$	
ν	known	00	p_{ν}	
$\overline{v_1}$	Т	0	0	
v_2	F	2	v_1	
ν3	F	4	v_1	
v_4	F	1	v_1	
v_5	F	∞	0	
ν ₆	F	∞	0	
ν ₇	F	∞	0	

ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
v_2	F	2	v_1
ν3	F	2	ν4
ν4	T	1	v_1
ν ₅	F	7	v_4
ν ₆	F	8	ν4
ν ₇	F	4	v_4

ν	known	d_{ν}	p_{ν}
$\overline{\nu_1}$	Т	0	0
v_2	T	2	v_1
ν3	T	2	ν4
ν4	T	1	v_1
ν ₅	F	7	v_4
ν ₆	F	5	ν3
ν ₇	F	4	ν4

ν	known	d_{v}	p_{ν}
$\overline{\nu_1}$	Т	0	0
v_2	T	2	v_1
ν3	T	2	ν4
ν4	T	1	v_1
ν ₅	F	6	ν ₇
ν6	F	1	ν7
ν ₇	T	4	v_4

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
ν3	T	2	v_4
ν4	T	1	v_1
ν5	T	6	ν7
ν ₆	T	1	ν ₇
ν ₇	T	4	v_4

Graph algorithms Kruskal

- → Selects edges if order of smallest weight and accept an edge if does not cause a cycle
- → Maintains a forest (collection of trees). Initially all are single node trees. Adding an edge merges two trees into one
- → If u and v are in the same set the edge (u,v) is rejected, because adding it would cause a cycle

Graph algorithms Kruskal

→ u and v are in the same set if they are connected

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
$\overline{(v_1,v_4)}$	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

Edge	Weight	Action
(v_1, v_4)	1	Accepted
(v_6, v_7)	1	Accepted
(v_1, v_2)	2	Accepted
(v_3, v_4)	2	Accepted
(v_2, v_4)	3	Rejected
(v_1, v_3)	4	Rejected
(v_4, v_7)	4	Accepted
(v_3, v_6)	5	Rejected
(v_5, v_7)	6	Accepted

