Chapitre 3 : Protocoles et communications réseau

Présentation des réseaux Lawrence BENEDICT Janvier 2016

Les standards et les normes permettent d'avoir des principes compatibles dans la plupart des contextes appropriés.

Plan du chapitre

- 3.0 Introduction
- 3.1 Règles de communication
- 3.2 Normes et protocoles réseau
- 3.3 Transfert de données sur le réseau
- 3.4 Résumé

Section 3.1 : Règles de communication

À la fin de cette section, vous saurez :

Décrire les types de règles nécessaires pour communiquer

Rubrique 3.1.1 : Règles

Notions de base sur les communications

Communication humaine

Notions de base sur les communications (suite)

Communication entre ordinateurs

Définition des règles

la communication les règles entre les hommes régissent. Il est trèsdifficile decomprendre des messages qui ne sont pas bien formatés et qui nesuiventpas les règles et les protocoles établis. A estrutura da gramatica, da lingua, da pontuacao e do sentance faz a configuracao humana compreensivel por muitos individuos diferentes.

Traduire

Les règles régissent la communication entre les hommes. Il est très difficile de comprendre des messages qui ne sont pas bien formatés et qui ne suivent pas les règles et les protocoles établis. La structure de la grammaire, la langue, la ponctuation et la phrase rendent la configuration humainement compréhensible pour beaucoup d'individus différents.

Non traduit

Définition des règles (suite)

Codage des messages

Codage des messages (suite)

Format et encapsulation des messages

Adresse de l'emplace- ment du destinataire (destina- tion)	Adresse de l'emplace- ment de l'expéditeur (source)	(indicateur de début du	Identificateur du destinataire (destination)	Contenu de la lettre (données encapsulées)	Identificateur de I'expéditeur (source)	Fin de la trame (indicateur de fin du message)
Adressage de l'enveloppe		Lettre encap				
1400 Main Street Canton, Ohio 44203	4085 SE Pine Street Ocala, Floride 34471	Chère	Jane	Je viens de revenir de voyage. J'ai pensé que tu aimerais peut- être voir mes photos.	John	

Format et encapsulation des messages

Format et encapsulation des messages

Exemple – Une lettre personnelle comprend les éléments suivants :

- l'identification du destinataire ;
- des salutations ;
- le contenu du message;
- une phrase de conclusion ;
- l'identification de l'expéditeur.

Format et encapsulation des messages (suite)

Destination (adresse matérielle/phy sique)	Source (adresse matérielle/ph ysique)		,	Expéditeur (identificate ur de la source)	Données encapsulées (bits)	Fin de la trame (indicateur de fin du message)
Adressage de la	a trame	Message enca				

Taille des messages

Communication humaine

Taille des messages

Communication entre ordinateurs

- L'hôte source décompose les messages longs en segments de trame répondant aux impératifs de taille minimale et maximale.
- Chaque trame contient également ses propres informations d'adressage.
- Au niveau de l'hôte destinataire, les segments sont recomposés pour être traités et interprétés.

Synchronisation des messages

Règles d'implication :

- Méthode d'accès
- Contrôle de flux
- Délai d'attente de la réponse

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Options de remise des messages

Options de remise des messages (suite)

Options de remise des messages (suite)

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Diffusion

Multidiffusion

Monodiffusion

Section 3.2 : Normes et protocoles réseau

À la fin de cette section, vous saurez :

- Expliquer pourquoi les protocoles sont indispensables à la communication
- Expliquer l'utilité d'adhérer à une suite de protocoles
- Expliquer le rôle des organismes de normalisation dans la définition des protocoles pour l'interopérabilité réseau
- Expliquer comment le modèle TCP/IP et le modèle OSI sont utilisés pour faciliter la normalisation dans le processus de communication

Rubrique 3.2.1 : Protocoles

Règles qui régissent les communications

Suite de protocoles

Les suites de protocoles sont des ensembles de règles qui fonctionnent conjointement pour aider à résoudre un problème.

Protocoles réseau

- Rôle des protocoles
- Format ou structure du message
- La méthode selon laquelle les périphériques réseau partagent des informations à propos des chemins avec d'autres réseaux
- Comment et à quel moment des messages d'erreur et système sont transférés entre des périphériques
- Configuration et arrêt des sessions de transfert de données

Interaction entre les protocoles

Interaction des protocoles dans la communication entre un serveur web et un client web.

Rubrique 3.2.2 : Suites de protocoles

Suites de protocoles et normes de l'industrie

Nom de la couche	TCP/IP	ISO	AppleTalk	Noveli Netware
Application	HTTP DNS DHCP FTP	NS ROSE AFP		NDS
Transport	TCP UDP	TP0 TP1 TP2 TP3 TP4	ATP AEP NBP RTMP	SPX
Internet	IPv4 IPv6 ICMPv4 ICMPv6	CONP/CMNS CLNP/CLNS	AARP	IPX
Accès réseau	Et	hemet PPP Frame	e Relay ATM WL	.AN

Ce qu'on peut retrouver facilement dans une trace réseau

Développement de TCP/IP

Suite de protocoles TCP/IP

Processus de communication TCP/IP

Fonctionnement des protocoles : envoi d'un message

Termes d'encapsulation de protocole

Processus de communication TCP/IP

Fonctionnement des protocoles : réception d'un message

Termes d'encapsulation de protocole

Rubrique 3.2.3 : Organismes de normalisation

Normes ouvertes

Normes Internet

RFC...

https://tools.ietf.org/html/rfc1149

Normes Internet (suite)

IANA et ICANN

Organismes de normalisation des communications électroniques

Institute of Electrical and Electronics Engineers (IEEE)

Groupes de travail et groupes d'étude IEEE 802

- 802.1 : groupe de travail sur les protocoles LAN de couche supérieure
- 802.3 : groupe de travail sur Ethernet
- · 802.11 : groupe de travail sur les LAN sans fil
- 802.15 : groupe de travail sur les réseaux personnels sans fil (WPAN)
- 802.16 : groupe de travail sur les réseaux métropolitains à liaison sans fil
- 802.18 : groupe consultatif technique de contrôle radio
- 802.19 : groupe de travail sur la coexistence des réseaux sans fil
- 802.21 : groupe de travail sur les services MIH (Media Independent Handover)
- 802.22 : groupe de travail sur les réseaux régionaux sans fil
- 802.24 : groupe consultatif technique sur les réseaux intelligents

Contemporain, LoRa Alliance LPWAN (Low Power Wide Area Networks), LoRaWAN

Organismes de normalisation des communications électroniques (suite)

Normes EIA/TIA

Rubrique 3.2.4 : Modèles de référence

Avantage de l'utilisation d'un modèle en couches

Modèle de référence OSI

Modèle OSI

7. Application

6. Présentation

5. Session

4. Transport

3. Réseau

2. Liaison de données

1. Physique

Le modèle de référence TCP/IP

modèle TCP/IP

Application

Représente des données pour l'utilisateur, ainsi que du codage et un contrôle du dialogue.

Transport

Prend en charge la communication entre plusieurs périphériques à travers divers réseaux.

Internet

Détermine le meilleur chemin à travers le réseau.

Accès réseau

Contrôle les périphériques matériels et les supports qui constituent le réseau.

Comparaison des modèles OSI et TCP/IP

Section 3.3 : Transfert de données sur le réseau

À la fin de cette section, vous saurez :

- Expliquer comment l'encapsulation de données permet la transmission des données sur le réseau
- Expliquer comment les hôtes locaux accèdent aux ressources locales sur un réseau

Rubrique 3.3.1 : Encapsulation des données

Segmentation des messages

Communication des messages

Segmentation des messages (suite)

Communication des messages

Communication des messages

Segmentation des messages :

- Permet d'intercaler plusieurs communications
- Améliore l'efficacité des communications sur le réseau
- Ajoute un niveau de complexité

Unités de données de protocole

E ncapsulation

- Données
- maximale
- Paquet
- Trame
- Bits

Exemple d'encapsulation

Termes d'encapsulation de protocole

Désencapsulation

Termes d'encapsulation de protocole

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Rubrique 3.3.2 : Accès aux données

Adresses réseau

Adresses réseau et adresses de liaison de données

Adresses réseau (suite)

Adresses réseau de la couche 3

Adresses de liaison de données

Adresse réseau

- Adresse IP source
- Adresse IP de destination
- Transmet le paquet IP de la source initiale jusqu'à la destination finale que ce soit sur le même réseau ou sur un réseau distant.

Adresse de liaison de données

- Adresse de liaison de données source
- Adresse de liaison de données de destination
- Transmet la trame liaison de données depuis une carte réseau vers une autre carte réseau sur le même réseau.

Adresses de liaison de données (suite)

Adresses de liaison de données de la couche 2

Adresses de liaison de données (suite)

Adresses de liaison de données de la couche 2

Périphériques sur le même réseau

____ En-tête de trame Ethernet_____ En-tête de paquet IP _____ de liaison de données de la couche réseau

Destination	Source	Source		Destination		
CC-CC-CC-CC-	AA-AA-AA- AA-AA	Réseau 192.168.1.	Hôte 110	Réseau 192.168.1.	Hôte 9	Données

PC1 192.168.1.110 AA-AA-AA-AA-AA

Serveur FTP 192.168.1.9 CC-CC-CC-CC-CC

Périphériques sur le même réseau (suite)

Rôle des adresses de la couche transport

Partie réseau de l'adresse IP : partie la plus à gauche de l'adresse qui indique le réseau auquel appartient l'adresse IP.

Partie hôte : partie restante de l'adresse qui identifie un périphérique précis sur le réseau.

- Adresse IP source : il s'agit de l'adresse IP du périphérique expéditeur.
- Adresse IP de destination : elle correspond à l'adresse IP du périphérique destinataire.
- Rôle des adresses de la couche liaison de données

Adresse MAC source : il s'agit de l'adresse de liaison de données, ou de l'adresse MAC Ethernet, du périphérique expéditeur.

Adresse MAC de destination : lorsque le périphérique destinataire se trouve sur le même réseau que le périphérique expéditeur, il s'agit de l'adresse de liaison de données du périphérique destinataire.

Périphériques sur un réseau distant

Périphériques sur un réseau distant (suite)

Rôle des adresses de la couche transport

 Les adresses IP source et de destination représentent les hôtes sur différents réseaux indiqués par les différentes parties réseau des adresses source et de destination.

Rôle des adresses de la couche liaison de données

 Adresse MAC de destination : lorsque le périphérique destinataire se trouve sur un réseau différent de celui du périphérique expéditeur, ce dernier utilise l'adresse MAC Ethernet de la passerelle par défaut ou du routeur.

Section 3.4 : Résumé

Objectifs du chapitre :

- Expliquer comment les règles sont utilisées pour faciliter la communication
- Expliquer le rôle des protocoles et des organismes de normalisation en tant que facilitateurs de l'interopérabilité des communications réseau
- Expliquer comment les périphériques d'un réseau local accèdent aux ressources dans un réseau de PME

Merci.

CISCO Cisco Networking Academy
Mind Wide Open