Understanding Hallucinations in LLMs: A Graph-Based Reproduction Study

By
YIP Sau Lai
LAM Sum Ying
PENG Muzi

Overview

Paper

01

Motivation

02

Objectives

03

Methodology

04

Experiments & Conclusion

Experiments

05

Threshold & Embedding Model

06

Dataset

07

LLM

08

Conclusion

Motivation (premise)

• LLM hallucinations are structured: Hallucinations share characteristics in the latent space.

• Principle of homophily: samples that share text-level characteristics tend to lie closer in the embedding space.

Objectives

- Do LLM-generated hallucinations share characteristics?
- Can we leverage graph structures to identify and learn these characteristics?
- If learned, can we use this knowledge to identify hallucinations among new incoming LLM generations through label recovery?

Methedology

Data Generation

Dataset Composition

for each query, generate:

- 1 true
- 1 true without context.
- 1 true with context.
- 8 hallucinated (misleading)

Figure 1: Data generation process.

Graph Construction

- **Objective**: Create a graph structure to represent relationships between sentences.
- Node Representation:
 - Each node corresponds to a sentence from the dataset.
 - Sentence embeddings are generated using **BERT**.
- Edge Formation:
 - Use cosine similarity; establish an edge if it exceeds a threshold (τ).

Graph Attention Network (GAT)

- Attention Mechanism & Message
 Passing
 - Attention scores = AGG(neighbors)
 - Importance ~ similarity
- Classification Task
 - Model as an ordinal regression task
 - Output labels ~ degree of hallucination

Label Recovery Task

Experiment Setting

Dataset

Graph

Metrics

MSMARCO-QA

Query Answer Context

Llama2

Meta's instruction-tuned

Sentence-level Split

70% - 15% - 15%

Embedding Model

BERT (English uncased)

Threshold

0.85

Loss Function

Binary Cross Entropy (BCE) loss

Macro-recall

Accuracy in identifying individual classes

Macro-precision

Prediction accuracy per class

AUC-PR

Binary classification performance

Baselines

DeBERTa-QA

DeBERTa

+

process query-answer pair in unified encoder

MLP-QA

three-layer MLP & ReLU
+
BERT embedding
+
concatenated query-answer

MLP-A

two-layer MLP & ReLU

+
BERT embedding
+
process answer

Ablation Study

Split	Model	Recall	Precision	AUC-PR
	GAT	0.5069	0.5844	0.4153
Train	DeBERTa-QA	0.3882	0.5404	0.3517
	MLP-QA	0.3214	0.3880	0.2718
	GAT	0.4972	0.5717	0.4096
Val	DeBERTa-QA	0.3206	0.5059	0.3357
	MLP-QA	0.3150	0.3622	0.2953
	GAT	0.5069	0.5844	0.4153
Train	CL + GAT	0.8244	0.8281	0.7118
Train	MLP-A	0.2512	0.3123	0.2014
	CL + MLP-A	0.4286	0.5892	0.3987
Val	GAT	0.4972	0.5717	0.4096
	CL + GAT	0.5305	0.5438	0.4212
vai	MLP-A	0.2256	0.3110	0.2057

Contrastive Learning (CL)

Conclusion

Q1: Do LLM-generated hallucinations share characteristics?

GAT identifies an underlying structure of the embedding space

GAT vs kNN

Split	Model	Recall	Precision	AUC-PR
	GAT	0.5069	0.5844	0.4153
Train	CL + GAT MLP-A	0.8244 0.2512	0.8281 0.3123	0.7118 0.2014
	CL + MLP-A	0.4286	0.5123	0.3987
	GAT	0.4972	0.5717	0.4096
Val	CL + GAT	0.5305	0.5438	0.4212
	MLP-A	0.2256	0.3110	0.2057
	CL + MLP-A	0.3589	0.4956	0.3278
	kNN	0.2434	0.1895	0.2494

Conclusion

Q2: Can we leverage graph structures to identify and learn these characteristics?

GAT >> kNN

Test Set Performance

	Recall	Precision	AUC-PR
CL + GAT	0.5142	0.5430	0.4057
GAT	0.4830	0.5603	0.3887
CL + MLP-A	0.3727	0.5122	0.3419

Conclusion

Q3: If learned, can we use this knowledge to identify hallucinations among new incoming LLM genera tions through label recovery?

Comparaitive performance in test set.

FEVER

Method	Recall	Precision	Label Accuracy
CL + GAT UNC-NLP		0.4712 0.4227	0.6471 0.6821

SelfCheckGPT

Mathad	Sentence-level (AUC-PR)			
Method	NonFactual	Factual		
Random	0.7296	0.2704		
LLM + BERT Scores	0.8196	0.4423		
CL + GAT	0.7799	0.4002		

Benchmarks

UNC-NLP: best

CL + GAT: comparative

LLM + BERT Score: LLM-generated statements

CL + GAT: suffer from small size

Conclusion

Comparative performance without accessing search-base methods

Our Experiments

Setting

Threshold

&

Embedding Model

Data

LLM

&

Dataset

Experiment 1

Threshold & Embedding Model

Embedding Model	Threshold	Recall	Precision	AUC-PR
Optimal	0.60	0.5246	0.5884	0.4334
threshold depend or	0.00	0.5074	0.6110	<u>0.4305</u>
depend of data	0.70	<u>0.5108</u>	0.5/28	0.4246
BERT	0.75	0.4266	<u>0.5893</u>	0.3863
(CL+ GAT)	0.80	0.5100	0.5398	0.4118
(60% data)	0.85	0.4660	0.5858	0.4025
	0.90	0.4727	0.5508	0.3968
	0.95	0.4675	0.5302	0.3894
	0.60	0.4675	0.5302	0.3894
	0.65	0.4423	0.5606	0.3555
	0.70	0.4682	0.5622	0.3679
DeBERTa	0.75	0.4487	0.5973	0.3633
(CL+ GAT)	0.80	0.3241	0.4532	0.2888
(60% data)	0.85	0.4842	0.5169	0.3736
, ,	0.90	0.4459	0.5699	0.3710
	0.95	0.4952	0.5221	0.3732

As MLP-A is trained solely on answers, and DeBERTa uses different embeddings, potentially leading to a distribution shift

Performance of DeBERTa is worse and less stable

Experiment 2

New LLM - generated by QWen2.5-14B

	Recall	Precision	AUC-PR
Qwen2.5-14B	0.5434	0.6240	0.4210
Llama2-13B	0.4660	0.5858	0.4025

- **Objective:** Conduct experiments to enhance data generation by using different Large Language Models (LLMs).
- Model: Qwen2.5-14B
 - A state-of-the-art LLM designed for versatile text generation tasks, known for its ability to produce coherent and contextually relevant responses.
- **Results**: Qwen2.5-14B outperforms MSMARCO-QA, showing promise in data generation with opportunities for further optimization.

Experiment 3

New Dataset

SciQ dataset: It contains
13,679 crowdsourced science
exam questions about Physics,
Chemistry and Biology. An
additional paragraph with
supporting evidence for the
correct answer is provided.

	Recall	Precision	AUC-PR
Sci_Q	0.3353	0.4454	0.3030
MSMARCO-QA	0.4660	0.5858	0.4025

Conclusion

- LLM-generated hallucinations share characteristics.
- GAT is potential in LLM hallucination detection.

Thank you!