实验报告四 牛顿迭代法

题目(摘要)

使用牛顿迭代法计算公式:

$$x_0 = \alpha$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$n = 0,1, ...$$

求非线性方程f(x) = 0的根 x^* 。

其中:

问题	f(x)	$arepsilon_1$	ε_2	N	x_0
1	cosx - x		10-4	10	$\pi/4$
2	$e^{-x} - sinx$	10^{-6}			0.6
3	$x - e^{-x}$	10			0.5
4	$x^2 - 2xe^{-x} + e^{-2x}$	'			0.5

前言:(目的和意义)

目的:

- 1. 用牛顿迭代法求解方程的根
- 2. 了解迭代法的原理
- 3. 代码实现牛顿迭代法
- 4. 考虑特殊情况

意义:

- 1. 学习使用 matlab 语言
- 2. 提升对牛顿迭代法的认识
- 3. 增加对上机作业的经验

数学原理

一般地,牛顿迭代法具有局部收敛性,为了保证迭代收敛,要求,对充分小的 $\delta > 0, \alpha \in O(x^*, \delta)$ 。

如果 $f(x) \in C^2[a,b], f(x^*) = 0, f(x) \neq 0$,那么,对充分小的 $\delta > 0$,当 $\alpha \in O(x^*,\delta)$ 时,由牛顿迭代法计算出的 $\{x_n\}$ 收敛于 x^* ,且收敛速度为 2 阶的;

如果

$$\begin{cases} f(x) \in C^{m}[a, b] \\ f(x^{*}) = f'(x^{*}) = \dots = f^{(m-1)}(x^{*}) = 0 \\ f^{(m)}(x^{*}) \neq 0 \end{cases}$$

那么,对于充分小的 $\delta > 0$,当 $\alpha \in O(x^*, \delta)$ 时,由牛顿迭代法计算出的 $\{x_n\}$ 收敛于 x^* ,且收敛速度为 1 阶的。

程序设计流程

输入:初值 α ,精度 ϵ_1 , ϵ_2 ,最大迭代次数 N

输出: 方程f(x) = 0根 x^* 的近似值或者计算失败的标志

流程:

- 1 $\mathbb{T}n=1$
- 2 当 $n \le N$ 时:
 - 2.1 置 $F = f(x_{n-1}), DF = f'(x_{n-1})$ 如果 $|F| < \varepsilon_1,$ 输出 x_0 ; 停机 如果 $|DF| < \varepsilon_2,$ 输出失败标志; 停机
 - 2.2 $\mathbb{E} x_n = x_{n-1} \frac{F}{DF}$
 - 2.3 置 $Tol = |x_n x_{n-1}|$ 如果 $Tol < \varepsilon_1$,输出 x_n ; 停机
 - 2.4 置 n = n + 1
- 3 输出失败标志
- 4 停机

实验结果、结论与讨论

问题	f(x)	$arepsilon_1$	ε_2	N	x_0	x_n
1	cosx - x	10 ⁻⁶	10-4	10	$\pi/4$	0.739085178106010
2	$e^{-x} - sinx$				0.6	0.588532742847979
3	$x-e^{-x}$				0.5	0.567143165034862
4	$x^2 - 2xe^{-x} + e^{-2x}$				0.5	0.566605704128158

显然,四个问题都能成功完成迭代,没有失败输出。

而且在 N 足够大的情况下, 根的近似值能足够精确。

思考题:

- 1. 选择一个 x_0 ,使得f(x)接近于精确解,实际运算中可以考虑二分法大致确定一个不太精确的数开始迭代;
- 2. 数学上来看显然两个解是完全相等的,但是在程序顺利完成的情况下得出的结果有所不同。

是因为前一问是单根,二阶收敛;后一问是重根,是局部线性收敛,的迭代次数就会更多,要求更准确的解才能满足题目给出的误差条件。所以两者的结果有所不同。