SICK 白皮书

从≤V1.05 到≥V1.06 的接口变化

Clemens Bitsch

业务开发经理

SICK STEGMANN GmbH 公司,位于德国多瑙艾辛根

背景

在 1.05 及之前版本的 IP 核中,只有 "DSL 功能寄存器通道 1"和 "DSL 功能寄存器通道 2"两个接口模块。而在 1.06 及之后版本的 IP 核中,则变成了三个接口模块,"DSL Master 主功能寄存器"分为两个单独的寄存器("驱动接口"和"安全 1 接口"),而 "DSL Master 第二功能寄存器"则变成了"安全 2 接口"。

之所以要将通道 **1** 寄存器一分为二,主要是为了将驱动功能和安全功能分开,以实现更独特的架构。用户可以使用两个不同的微控制器,分别对过程功能和安全功能进行处理。

原理图

寄存器拆分会对"驱动接口"和"安全 1 接口"造成一些影响。有些寄存器两种接口都能使用,有些仅限一个接口使用,还有一些则被拆分为两个不同的寄存器。此外,还新增了一些寄存器以实现新的功能(主要是为了处理估算器)。

"安全2接口"的功能仍和先前版本一致。唯一的变化,是提供了一个新的"0Bh版本"寄存器。

输入/输出名称变化

IP 核版本≤V1.05 的名称	IP 核版本≥V1.06 的名和	IP 核版本≥V1.06 的名称							
	驱动	安全1	安全 2						
Scan_a	Hostd_a	Host1_a							
Scan_di	Hostd_di	Host1_di							
Scan_do	Hostd_do	Host1_do							
Scan_r	Hostd_r	Host1_r							
Scan_w	Hostd_w	Host1_w							
Scan_f	Hostd_f	Host1_f							
Scan2_a			Host2_a						
Scan2_do			Host2_do						
Scan2_f			Host2_f						

新地址

name IPcore ≥V1.06	简要说明
Drive and safe1	
Safe_ctrl	两个控制位,用于 DSL Master 安全相关应用
Acc_err_cnt	计算 "acceleration_err"的数量
Maxacc	设置估算器的最大加速度
Max_dev_h	返回最大绝对位置偏差(高字节)
Max_dev_l	返回最大绝对位置偏差(低字节)
Safe2	
Version	DSL Master IP 核的发布版本号

分拆地址

IP 核版本≤V1.05 的名称	IP 核版本≥V1.06 的名称	
	Drive	safe1
Event_h/Event_l	Event_h/Event_I	Event_s
Mask_h/Mask_l	Mask_h/Mask_l	Mask_s
Summary	Summary	Safe_sum
Pc_data	Pc_data	S_pc_data

分拆地址的变化详情

事件和屏蔽寄存器

"事件和屏蔽寄存器"的拆分让寄存器看起来会有所不同。绝大多数事件仍位于相同的位置,但是有些位置和/或寄存器地址发生了改变。详细的变化情况如下图所示。在先前版本的 IP 核中,如果用户想要读取具备权限的所有事件,那么他必须读取所有事件寄存器"event_h"、"enent_I"和"event_s"。

事件寄存器

		完全相同						
		位置不同,但	1是数值相同					
		名称变化						
		新增						
		删除						
IPcore V1.05	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
Event_h	INT	SUM	VRT		POS	VPOS	QMLW	PRST
Event_I	-	1-	MIN	ANS	-	RET	FREL	FRES
				+				
IPcore V1.06	第7位	第6位	第5位	第4位	第 3 位	第2位	第1位	第0位
Event_h	INT	SUM	-	-	POS	-	DTE	PRST
Event_I	-	-	MIN	ANS	-	QMLW	FREL	-
Event_s	SINT	SSUM	SCE	VPOS	QMLW	PRST	MIN	FRES

屏蔽寄存器

IPcore V1.05	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
Mask_h	-	MSUM	MVRT	-	MPOS	MVPOS	MQMLW	MPREST
Mask_I	-	-	MMIN	MANS	-	MRET	MFREL	MFRES
				ı				
				1				
				•				
IPcore V1.06	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
mask_h		MSUM	-	-	MPOS	-	MDTE	MPRST
mask_l	-	-	MMIN	MANS		MQMLW	MFREL	-:
mask_s		MSSUM	MSCE	MVPOS	MQMLW	MPRST	MMIN	MFRES

求和

"summary (求和)"被拆分为 "safe_sum"和 "mir_sum"。"Safe_sum"与先前版本中的"summary (求和)"功能相同。"mir_sum"是 "safe_sum"的镜像寄存器,在使用"safe_sum"时是不需要的。

IPCore V1.05	第7位	第6位	第 5 位	第 4 位	第3位	第 2 位	第1位	第0位
summary	SUM 7:0							
				V				
IPCore V1.06	第7位	第6位	第 5 位	第 4 位	第 3 位	第2位	第 1 位	第0位
mir_sum	summary mir	ror register, SI	UM7:0					
safe_sum	safety summa	ary, SUM 7:0						

短消息数据

"pc_data"被拆分为"pc_data"和"s_pc_data"。"S_pc_data"与先前版本中的"pc_data"功能相同。新的"pc_data" 是"s_pc_data"的影子寄存器,在使用"safe_sum"时是不需要的。

IP 核 V1.05	第7位	第6位	第 5 位	第4位	第3位	第2位	第1位	第0位
pc_data	短消息数据							
				V				
IP 核 V1.06	第7位	第6位	第5位	第 4 位	第3位	第2位	第1位	第0位
pc_data	短消息影子智	寄存器						
s_pc_data	短消息数据							

寄存器访问

如果需要实现像先前版本使用两个接口时同样的访问,"Drive(驱动)"和"Safe1(安全 1)"接口的输入必须连接到相同的输入端口上。"Drive(驱动)"和"Safe1(安全 1)"的输出必须进行或运算,因为任意一个访问到不存在的地址时都会返回零值。这可以使用 VHDL 代码中的小型封装来实现,或者对顶层设计略微进行修改。

备注

如果不对本文所述的其他变化予以考虑,仅仅如上文 所述采用相应的寄存器访问方式是远远不够的。由于 有些寄存器出现了功能变化、地址有所改变、而且有 些信息已经分成了多个寄存器(比如事件),所以不 建议在新版本中使用为 V1.05 及先前版本 IP 核所开 发的应用代码。

