

Problem Statement

 Organic farming practices face significant challenges in controlling weeds within crop fields and need an ecological method of eliminating weeds with minimal time investment and labor use.

Solution Proposal

 Develop an autonomous robot system equipped with machine learning camera recognition and a targeted high voltage impulse zapper to effectively identify and eliminate weeds.

Diagram of Subsystems & Interface

Task Partition

 Will: Develop and train a machine learning model to distinguish between crops and weeds in real time.

 Conner: Create a high voltage impulse that can effectively and safely kill weeds.

Machine Learning Camera Subsystem Progress in Past 1.5 Months

- Research what species of crops and weeds that our system will use for recognition and classification.
- 2. Gather data from the internet to create a image dataset of both crops and weeds.
- 3. Download Miniconda (Jupyterlab) and set up virtual environment.
- 4. Install and import dependencies (TensorFlow, OpenCV, Albumentations).
- 5. Label data and create bounding boxes using LabelMe software.
- 6. Apply data augmentation to expand the size of the dataset.
- 7. Split the data into Training, Testing, and Validation sets.

High Voltage Impulse Subsystem Progress in Past 1.5 Months

- 1. Research viable power sources
- Research existing electrical weed control technology and previous experiments.
- 3. Install SPICE and Altium
- Simulate boost conversion.

Execution Plan

Validation Plan

Paragraph #	Test Name	Success Criteria	Methodology	Status	Owner
3.2.1.1.	Capacitor Charge and Discharge Time	Time between start of charge up and end of discharge is less than 8 seconds	Measure voltage across output electrodes throughout a charge and discharge cycle, calculate time delta	UNTESTED	Conner Mullen
3.2.1.2.	Electrode Discharge Mode	Electrodes are only connected to high voltage output after contact is detected	With no contact: confirm that the voltage across electrodes is low With contact: confirm that indicator LED is on, and that the voltage across electrodes is high	UNTESTED	Conner Mullen
3.2.1.3.	False Positive Rate	FPR of less than 5% to prevent unintended crop damage	Conduct image classification test using a validation set with known crop and weed labels. Track the number of images where crops are incorrectly identified and calculate results	UNTESTED	Will Fenno
3.2.1.4.	False Negative Rate	FNR of less than 5% to prevent missed weeds	Conduct image classification test using a validation set with known crop and weed labels. Track the number of images where weedes are incorrectly identified and calculate results	UNTESTED	Will Fenno
3.2.1.5.	Camera Field of View	System detects objects at a range of 62.2 degrees horizontally and 48.8 degrees vertically	Measure the system's response to objects placed inside and outside the specified field of view	UNTESTED	Will Fenno
3.2.2.1.	Electrode Placement	Arcing does not occur across electrodes	Charge system to maximum voltage, visually confirm that no arc forms	UNTESTED	Conner Mullen
3.2.2.2.	Mounting	All components are secured properly	Visually inspect all connections to the robot or other platform, then attempt to move mounted components around to test strength of mounts	UNTESTED	Full Team
3.2.4.1.	Power Source	12V DC is converted to correct voltages for all components	Before powering on: Perform continuity test for all 12V points Power on board with 12V DC source and test voltage at output of power converters	UNTESTED	Conner Mullen
3.2.4.2.	Inputs	All buttons/switches work as expected, as indicated by LEDs	Power system on, set to each combination and confirm that the proper LED indicators are on, and test for necessary continuities	UNTESTED	Conner Mullen
3.2.4.3.	Outputs	LEDs all light up as expected Energy discharges through electrodes (Germany)	Verify that proper LEDs light up under proper circumstances Charged capacitor is discharged following contact with target plant	UNTESTED	Conner Mullen
3.2.4.4.	Interface Between Processor and Electronics	I2C signal sent from processor is received and properly interpreted by microcontrollers	Send I2C commands from processor to microcontrollers, verifying that every necessary function is initiated properly	UNTESTED	Full Team
3.2.5.1.	Temperature (Thermal Resistance)	System functions in complete range of temperatures (10C to 45C)	Low end of temperature range exists outside in Texas, high end will be created with temperature chamber	UNTESTED	Full Team
3.2.5.2.	External Contamination	Casing keeps contaminants off of electronics when exposed to large amounts of dirt	Bombard empty casing with dirt, grass, and other particles; open casing and visually inspect inside	UNTESTED	Full Team
3.2.6.1.	Built-In Test (BIT)	The system will activate a red LED in the case of camera failure during the startup process	Intentionally simulate camera failure via disconnection to verify LED activation response	UNTESTED	Will Fenno
3.2.6.2.	Isolation and Recovery	In the case of a BIT fault, the system will be reset and restore normal operations	Conduct a reset test in response to a camera detection failure	UNTESTED	Will Fenno