DEVOIR À LA MAISON Nº 11

EXERCICE 1.

On note E l'ensemble des suites complexes, c'est-à-dire $E=\mathbb{C}^{\mathbb{N}}$. On admet que E est un \mathbb{C} -espace vectoriel. Pour $\mathfrak{p}\in\mathbb{N}^*$, on note $F_\mathfrak{p}$ l'ensemble des suites complexes périodiques de période \mathfrak{p} . On pose enfin $\mathfrak{j}=e^{\frac{2i\pi}{3}}$.

- 1. Soit $p\in\mathbb{N}^*.$ Montrer que F_p est un sous-espace vectoriel de E.
- 2. Soit $p \in \mathbb{N}^*$. Pour $k \in [0, p-1]$, on note u^k la suite telle que

$$\forall n \in \mathbb{N}, \ u_n^k = \begin{cases} 1 & \text{si } n \equiv k[p] \\ 0 & \text{sinon} \end{cases}$$

Montrer que $(u^k)_{0\leqslant k\leqslant p-1}$ est une base de $F_p.$ En déduire la dimension de $F_p.$

3. Pour tout $n \in \mathbb{N}$, on pose

$$u_n = 1$$
 $v_n = j^n$ $w_n = \overline{j}^n$

Montrer que les suites u, v et w appartiennent à F_3 .

- **4.** Montrer que (u, v, w) est une base de F_3 .
- 5. Soit $t \in E$ telle que pour tout $n \in \mathbb{N}$, t_n est le reste de la division euclidienne de n par 3. Montrer que $t \in F_3$.
- 6. Déterminer les coordonnées de t dans la base (u, v, w).
- **7.** Montrer que $F_3 \subset F_6$.
- **8.** Pour tout $n \in \mathbb{N}$, on pose

$$x_n = (-1)^n \qquad \qquad y_n = (-j)^n \qquad \qquad z_n = (-\overline{j})^n$$

et $G = \mathrm{vect}(x,y,z)$. Montrer que $G \subset F_6$.

- 9. Montrer que la famille (x, y, z) est libre. En déduire la dimension de G.
- 10. Montrer que $F_6 = F_3 \oplus G$.
- 11. Montrer que (u, x) est une base de F_2 .
- 12. On pose H = vect(v, w, y, z). Montrer que $F_6 = F_2 \oplus H$.

EXERCICE 2.

On considère les équations différentielles suivantes

$$(\mathcal{E}): y''' - y = 0$$

$$(\mathcal{F}): \mathbf{y}' - \mathbf{y} = \mathbf{0}$$

$$(G): y'' + y' + y = 0$$

REMARQUE. y" et y" désignent les dérivées seconde et troisième de y.

On note:

- \blacktriangleright E l'ensemble des solutions de (\mathcal{E}) à valeurs réelles;
- \blacktriangleright F l'ensemble des solutions de (\mathcal{F}) à valeurs réelles;
- ightharpoonup G l'ensemble des solutions de (\mathcal{G}) à valeurs réelles.

On admettra que les solutions de (\mathcal{E}) , (\mathcal{F}) et (\mathcal{G}) sont indéfiniment dérivables sur \mathbb{R} .

- 1. Résoudre les équations différentielles (\mathcal{F}) et (\mathcal{G}) . On donnera les solutions à valeurs réelles.
- **2.** Montrer que $F \subset E$ et $G \subset E$.
- 3. Montrer que E est un R-espace vectoriel et que F et G sont des sous-espaces vectoriels de E.
- **4.** Soit $y \in E$. On pose $y_1 = y'' + y' + y$ et $y_2 = 2y y' y''$. Montrer que $y_1 \in F$ et $y_2 \in G$.
- 5. Montrer que F et G sont supplémentaires dans E.
- 6. Donner des bases de F et G. En déduire les dimensions de F et G.
- 7. Donner la dimension de E ainsi qu'une base de E.
- **8.** Résoudre (\mathcal{E}) .

On s'intéresse maintenant à l'équation différentielle

$$(\mathcal{E}'): y''' - y = xe^x$$

dont on recherche à nouveau les solutions à valeurs réelles.

- 9. Déterminer une solution de (\mathcal{E}') de la forme $x \mapsto P(x)e^x$ où P est une fonction polynomiale.
- 10. En déduire toutes les solutions de (\mathcal{E}') .