

Figure 1: Frame structure for uplink DPDCH/DPCCH

Figure 2: Frame structure for downlink DPCH

X = Idle frame T = Frame used for PTCCH B0 - B11 = Radio blocks

Figure 3: Multiframe structure for PDCH

Figure 4: Compressed mode transmission

Figure 5: Frame structure in uplink compressed transmission

Figure 6: Frame structure types in downlink compressed transmission

Figure 7: Transmission gap positioning

Figure 8: Transmission gap positions

Figure 9: Mapping of TDMA and W-CDMA frames

Figure 10: Modified TDMA frame structure

Figure 11: Mapping of a first frame structure to a second frame structure

Figure 12: TDMA and W-CDMA single-mode radio base stations

Figure 13: Dual-mode radio base station

Figure 14: Variable duplex distance for a FDD TDD spectrum sharing

Normal TDD Radio Frame

Figure 15: Conventional TDD frame structure

WO 2004/057894 PCT/EP2002/014603

Shared TDD Radio Frame

Shared Time slot e. g. High speed shared channels used by the FDD system

↑ UL ↓ DL shared channel

Figure 16: TDD frame structure for TDD/FDD spectrum sharing

Figure 17: Mapping of a first frame structure to a second frame structure

PCT/EP2002/014603 WO 2004/057894

Figure 18

SRE = Synchronised RBS Equipment

where $f_{\mbox{\scriptsize X}}{}^{\mbox{\scriptsize '}}$ and $f_{\mbox{\scriptsize X}}{}^{\mbox{\tiny ''}}$ are suitable carrier frequencies out of frequency range f_x

Figure 19

Figure 20

WO 2004/057894 PCT/EP2002/014603

Figure 21

Figure 22

Figure 23

 $\mathbf{c^n}_{1S}$: total available W-CDMA traffic capacity in f_1 and f_S , when conf. n used for f_S $\mathbf{c^n}_{2S}$: total available (E)GPRS traffic capacity in f_2 and f_S , when conf. n used for f_S

Figure 24

TGL = 9.333 ms (for 14 consecutive ldle slots, i.e. maximum according to current standard) t_{pw} = 120 ms (= 12 W-CDMA frames = 26 TDMA frames)

Figure 25

TGL = 4.668 ms (for 7 consecutive idle slots) t_{per} = 60 ms (= 6 W-CDMA frames = 13 TDMA frames)

Figure 26

PCT/EP2002/014603 WO 2004/057894

Figure 27

TGL1 = 9.333 ms (for 14 consecutive idle slots)
TGL2 = 5.333 ms (for 8 consecutive idle slots)
t_{per} = 60 ms (= 6 W-CDMA frames = 13 TDMA frames)

Figure 28