

Módulo de Internet das Coisas

Prof^a. Nídia Glória da Silva Campos

Objetivos da Aula

- Apresentar o protocolo MQTT
- Demo-Lab: MQTT no Packet Tracer
- Atv 11 Dados de um sistema monitoramento de presença para armazenamento em nuvem

Cenários lot trazem novos desafios [1]

- Requer um modelo em tempo-real, orientado a eventos
- publicação de informação um-para-muitos
- escutar os eventos à medida que acontecem
- enviar pacotes pequenos de dados para dispositivos pequenos
- envio de dados seguro sobre redes inseguras

Para dispositivos móveis e IoT...
mensagens são muitas vezes > HTTP request/response

MQTT: um protocolo leve para mensageria lot [1]

- aberto
 - o especificação aberta, padrão
- leve
 - overhead mínimo, formato eficiente, clientes minúsculos (kb)
- confiável
 - QoS para confiabilidade em redes não-confiáveis
- simples
 - o especificação de 43 páginas, connect+publish+subscribe

MQTT: comunicação bidirecional, assíncrona [1]

MQTT: publish-subscribe [2]

- publisher: cliente que transmite uma mensagem de dados
- subscriber: cliente que recebe mensagens de dados
- tópico: consiste nos dados transmitidos
- broker: servidor que conecta os clientes e filtra dados
 - o por assunto: um tópico e/ou branches de tópicos
 - o por conteúdo: dados transmitidos
 - o por tipo: filtros criados pelos próprios clientes

MQTT [2]

Arquitetura

- clientes executam na borda
- tópicos: temperatura e umidade
- um cliente pode ser subscriber de vários tópicos

MQTT: simples de implementar [1]

Connect

Subscribe

Publish

Unsubscribe

Disconnect

```
client = new Messaging.Client(hostname, port, clientId)
client.onMessageArrived = messageArrived;
client.onConnectionLost = connectionLost;
client.connect({ onSuccess: connectionSuccess });
function connectionSuccess() {
    client.subscribe("planets/earth");
    var msg = new Messaging.Message("Hello world!");
    msg.destinationName = "planets/earth";
    client.publish(msg);
function messageArrived(msg) {
    console.log(msg.payloadString);
    client.unsubscribe("planets/earth");
    client.disconnect();
```

Eclipse Paho JavaScript MQTT client

MQTT: pub/sub desacopla emissores de receptores [1]

MQTT: permite subscrições wildcard [1]

scores/football/big12/Texas scores/football/big12/TexasTech scores/football/big12/Oklahoma scores/football/big12/IowaState scores/football/big12/TCU scores/football/big12/OkState scores/football/big12/Kansas scores/football/SEC/TexasA&M scores/football/SEC/LSU scores/football/SEC/Alabama

single level wildcard: + multi-level wildcard: #

MQTT: projetado para tráfego de rede mínimo e dispositivos limitados [1]

- cabeçalho pequeno
 - O PUBLISH: 2-4 bytes
 - CONNECT: 14 bytes
 - O HTTP: 0,1-1KB
- payload binário (sem texto)
- clientes pequenos
 - o 30 KB em C, 100 KB em Java
- trocas de mensagens mínimas
 - MQTT tem keep alive configurável (2 byte PINGREQ/PINGRES)
- eficiente para a vida da bateria
 - gasta menos energia que o HTTP para manter a conexão aberta, como também para receber e enviar mensagens

MQTT: Estrutura da Mensagem [2]

- cabeçalho padrão de 2 bytes
- cabeçalho variável (opcional)
- payload variável (opcional)

MQTT Packet Structure

Name	Value Direction		Description	
Reserved	0	Forbidden	Reserved	
CONNECT	1	Client to Server	Client connect request	
CONNACK	2	Server to Client	Connect ACK	
PUBLISH	3	Client to Server or Server to Client	Publish a message	
PUBACK	4	Client to Server or Server to Client	Publish ACK	
PUBREC	5	Client to Server or Server to Client	Publish receive (assured delivery part 1)	
PUBREL	6	Client to Server or Server to Client	Publish receive (assured delivery part 2)	
PUBCOMP	7	Client to Server or Server to Client	Publish complete (assured delivery part 3)	
SUBSCRIBE	8	Client to Server	Client subscribe request	
SUBACK	9	Server to Client	Subscribe ACK	
UNSUBSCRIBE	10	Client to Server	Unsubscribe request	
UNSUBACK	11	Server to Client	Unsubscribe ACK	
PINGREQ	12	Client to Server	PING request	
PINGRESP	13	Server to Client	PING response	
DISCONNECT	14	Client to Server	Client disconnecting	
Reserved	15	Forbidden	Reserved	

■ MQTT Control Packet Flags

Control Packet	Fixed Header Flags	Bit 3	Bit 2	Bit 1	Bit 0
CONNECT	Reserved	0	0	0	0
CONNACK	Reserved	0	0	0	0
PUBLISH	Used in MQTT 3.1.1	DUP	QoS	QoS	RETAIN
PUBACK	Reserved	0	0	0	0
PUBREC	Reserved	0	0	0	0
PUBREL	Reserved	0	0	1	0
PUBCOMP	Reserved	0	0	0	0
SUBSCRIBE	Reserved	0	0	1	0
SUBACK	Reserved	0	0	0	0
UNSUBSCRIBE	Reserved	0	0	1	0
UNSUBACK	Reserved	0	0	0	0
PINGREQ	Reserved	0	0	0	0
PINGRESP	Reserved	0	0	0	0
DISCONNECT	Reserved	0	0	0	0

MQTT: Qualidade de Serviço para mensageria confiável [1]

QoS 0 at most once

- doesn't survive failures
- never duplicated

QoS 1 at least once

QoS 2 exactly once

- survives connection loss
- never duplicated

- survives connection loss
- can be duplicated

MQTT: payload agnóstico para entrega flexível [1]

agnóstico:
qualquer tipo
de dados
(texto,
imagem,
audio, binário,
JSON, etc.)

PUBLISH to thing1/myBinary

01010100110011100

PUBLISH to thing1/myJSON

{"id":"thing1","lon":-97.135198, "lat":94.19384,"status":"I'm alive!"}

PUBLISH to thing1/myPicture

...

MQTT: retém mensagens para os últimos valores em cache [1]


```
CONNECT ID=thing1 →

PUBLISH thing1/battery {"value":95} RETAIN →

PUBLISH thing1/battery {"value":94} RETAIN →

PUBLISH thing1/battery {"value":93} RETAIN →

DISCONNECT →
```

MQTT Broker

CONNECT ID=thing2

SUBSCRIBE thing1/battery

RETAIN thing1/battery {"value":93} PUBLISH

MQTT: client id e cleanSession para o estado da sessão [1]

MQTT: clientID e cleanSession [2]

- clientID: identifica o cliente no servidor
- cleanSession:
 - 0: cliente e servidor devem salvar o estado da sessão antes do encerramento da conexão. Servidor faz um resumo para os subscribers.
 - o 1: cliente e servidor começam uma nova conexão; descartam a sessão anterior

MQTT: last will and testament [1]

MQTT: last will and testament [2]

- LWT é uma mensagem que um cliente especifica durante a fase de conexão
- Contém o tópico Last Will, QoS e a mensagem.
- Se o cliente se desconecta de um broker (ex. keep-alive timeout, erro /O, encerramento da conexão pelo cliente), o broker é obrigado a difundir a LWT para todos os subscribers daquele tópico
- Sistema keep-alive do MQTT

 - para clientes e broker terem certeza de que ainda podem usar a conexão cliente envia mensagem PINGREQ que exige reconhecimento de uma mensagem PINGRESP.

 - timer presente no lado do cliente e broker se uma mensagem não for transmitida dentro de intervalo de tempo predeterminado, o pacote keep-alive é enviado
 - se não houver récebimento quando o timer expirar, o broker envia o pacote LWT a todos os clientes

MQTT: Segurança [1]

SSL/TLS TCP/IP

CONNECT

with username / password

- MQTT não define um modelo de segurança para autorização de conexão
- Brokers podem implementar o suporte para o TLS e políticas de conexão e mensageria
 - o organiza tópicos por grupo e associar um username ao grupo
 - o ex. bboyd está no grupo "IBM" e pode pub/sub IBM/bboyd/#

DEMO

PickMeUp!

PickMeUp

Flow

MQTT

connect

share name/picture

payment/rating

passengers

drivers

PickMeUp

Phase 1 — Connection

PickMeUp

Phase 1 — Connection

Connect and CONNECT (id: PMU-Driver-Bryan) send presence LWT: pickmeup/drivers/Bryan "" pickmeup/drivers/Bryan 0 RETAIN name: "Bryan", connectionTime: 1409162406197 **MQTT Broker** CONNECT (id: PMU-Passenger-Mike) LWT: pickmeup/passenger/Mike "" pickmeup/passengers/Mike 0 name: "Mike", connectionTime: 1409162406197

PickMeUp

Phase 1 — Connection

Send picture, subscribe to inbox


```
pickmeup/drivers/Bryan/picture 0 RETAIN
{
   url: "..."
}
```

pickmeup/drivers/Bryan/inbox

Send picture, subscribe to inbox

```
PUB
```

```
pickmeup/passengers/Mike/picture 0 RETAIN
{
  url: "..."
}
```

SUB

pickmeup/passengers/Mike/inbox 2

MQTT

Broker

PickMeUp

Phase 2 — Pairing

pickmeup/drivers/Bryan/picture

PickMeUp

Phase 2 — Pairing

Subscribe to requests, accept request


```
pickmeup/requests/+ 0

pickmeup/passengers/Mike/inbox 1
{
   type: "accept",
   driverId: "Bryan",
   lon: <lon>, lat: <lat>
}

pickmeup/requests/Mike 0 RETAIN ""

Broker

pickmeup/requests/Mike 1 RETAIN
{
   name: "Mike", lon: <lon>, lat: <lat>
}

pickmeup/drivers/Bryan 0
```

Send request, subscribe to driver

Estadual do Ceará

A

MQTT: Estudo de Caso [1]

PickMeUp Phase 3 — Approaching

PickMeUp Phase 3 — Approaching

Subscribe to passenger data chat to driver

Publish driver location chat to passenger

Driver

```
pickmeup/passengers/Mike
    pickmeup/passengers/Mike/picture
    pickmeup/passengers/Mike/location 0
    pickmeup/drivers/Bryan/chat 0
                                                           MQTT
    pickmeup/passengers/Mike/chat 0
                                                           Broker
      format: "text", data: "On my way!"
      format: "data:audio/wav;base64",
      data: "18bwagh0AH30913n..."
PUB
    pickmeup/drivers/Bryan/location 0
                                       RETAIN
      lon: <lon>, lat: <lat>
```


PickMeUp

Phase 3 — Approaching

Subscribe to driver location chat to passenger

pickmeup/drivers/Bryan/location 0

pickmeup/drivers/Bryan/chat 0

Publish chat to driver

Р

format: "text", data: "On my way!"

or

format: "data:audio/wav;base64",

data: "18bwagh0AH30913n..."
}

pickmeup/drivers/Bryan/chat 0

Passenger

PickMeUp

Phase 4 — Driving

PickMeUp

Phase 4 — Driving

Publish trip start notification trip end notification

Driver

```
pickmeup/passengers/Mike/inbox 2
      type: "tripStart"
PUB
                                                       MQTT
    pickmeup/passengers/Mike/inbox 2
                                                       Broker
      type: "tripEnd",
       distance: 2.39,
                       // miles
                        // minutes
      time: 178,
       cost: 8.27
                        // dollars
```


PickMeUp

Phase 5 — Payment

PickMeUp

Phase 5 — Payment

Publish rating and payment

driverId: "Bryan", passengerId: "Mike", cost: 8.27, rating: 3, tip: 3.25

pickmeup/payments 2

Subscribe to payments, publish when processed

Backend

```
pickmeup/payments
                                                          MQTT
    pickmeup/passengers/Mike/inbox 2
                                                         Broker
      type: "tripProcessed",
      tip: 3.25, rating: 3
PUB
    pickmeup/drivers/Bryan/inbox 2
      type: "tripProcessed",
      tip: 3.25, rating: 3
```


- publicar mensagens de presença retidas na conexão, usar o last will and testament para limpar
- usar mensagens retidas se você quer obter os dados dos últimos subscribers (posição do motorista, requisições)
- QoS 0 = atualização de informações, chat (coisas que podem ser perdidas)
- QoS 1 = requisições e aceites de requisições (importante, mas o cliente pode lidar com duplicações)
- QoS 2 = mensagens inbox, pagamento (importante, duplicações podem ser problemáticas)

Demo-Lab: MQTT no Packet Tracer

- Broker: laptop
- pub/sub: coffee, lamp
- tópico:
 - coffee: {done, undone},
 - o light: {on, off}

Atv 11 - Dados de um sistema monitoramento de presença para armazenamento em nuvem

Nesta atividade, você deve listar todos os dados necessários para armazenamento em nuvem de um sistema de monitoramento de presença em uma Smart Home.

1 - Crie um documento de texto com uma tabela que relacione o nome do dado, tipo e descrição enfatizando a importância no armazenamento em nuvem.

2 - No final, envie o documento de texto para a Atv 11 do classroom.

Referências Bibliográficas

[1] B. Boyd. MQTT - A practical protocol for the Internet of the Things. 2014. Disponível em: https://www.slideshare.net/BryanBoyd/mqtt-austin-api>. Acesso em: 20/04/2023.

[2] Lea, P. IoT and Edge Computing for Architects - Implementing edge and IoT systems from sensors to clouds with communication systems, analytics, and security. 2^a ed. 2020.

Dúvidas?

Módulo de Internet das Coisas

