Leçon :Ondes acoustiques

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

23 mai 2024

Niveau : CPGE PSI

Prérequis: Thermodynamique

: Mécanique de première année

: Écoulement parfait

: Ondes électromagnétiques dans le vide

Effet Doppler

Figure – Manipulation effet Doppler

Intensité sonore

Source	Intensité (dB)	
Ronronnement d'un chat	15	
Pièce calme	30	
Voiture (à 10 m)	50	
Conversation normale à 1 m	60	
Avion au décollage	125	

Table - Tiré du Dunod PC - Ondes acoustiques dans les fluides

Adaptation d'impédance acoustique

Coefficients de réflexion et transmission en puissance :

$$R = \frac{||\langle \vec{\Pi_0} r \rangle||}{||\langle \vec{\Pi_0} r \rangle||} \qquad T = \frac{||\langle \vec{\Pi_0} t \rangle||}{||\langle \vec{\Pi_0} i \rangle||}$$

$$R = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2 \qquad T = \frac{4Z_1 Z_2}{(Z_1 + Z_2)^2}$$
(1)

Milieu		sang/tissu		squelette
$Z(kg m^{-2}s^{-1})$	440	1.66×10^{6}	1.55×10^{6}	7.8×10^{6}

Adaptation d'impédance acoustique

Merci pour votre attention