GigaDevice Semiconductor Inc.

GD32FFPRTGU6 ARM® Cortex®-M4 32-bit MCU

Datasheet

Table of Contents

List	t of Figures	3
List	t of Tables	4
1	General description	5
2	Device overview	6
2.	.1 Device information	6
2.2	.2 Block diagram	7
2.3	.3 Pinouts and pin assignment	8
2.4	.4 Memory map	9
2.	.5 Clock tree	13
2.6	.6 Pin definitions	14
3	Functional description	16
3.	.1 ARM® Cortex®-M4 core	16
3.2	.2 On-chip memory	17
3.3	.3 Clock, reset and supply management	17
3.4	.4 Boot modes	18
3.5	.5 Power saving modes	18
3.6	.6 Analog to digital converter (ADC)	19
3.	.7 DMA	19
3.8	.8 General-purpose inputs/outputs (GPIOs)	19
3.9	.9 Timers and PWM generation	20
3.	.10 Real time clock (RTC)	21
3.	.11 Inter-integrated circuit (I2C)	21
3.	.12 Serial peripheral interface (SPI)	22
3.	.13 Universal synchronous asynchronous receiver transmitter (USART)	22
3.	.14 Universal serial bus full-speed (USB 2.0 FS)	22
3.	.15 Debug mode	23
3.	.16 Package and operation temperature	23
4	Electrical characteristics	24
4.	.1 Absolute maximum ratings	24
4.2	.2 Recommended DC characteristics	24
4.3	.3 Power consumption	25
4.4	.4 EMC characteristics	26
4.	.5 Power supply supervisor characteristics	27
4.6	.6 Electrical sensitivity	27
4.	.7 External clock characteristics	28
4.8	.8 Internal clock characteristics	29
4.9	.9 PLL characteristics	30
4.	.10 Memory characteristics	31

	4.11	GPIO characteristics	32
	4.12	ADC characteristics	33
	4.13	DAC characteristics	35
	4.14	SPI characteristics	36
	4.15	I2C characteristics	36
	4.16	USART characteristics	36
5		Package information	37
	5.1	QFN package outline dimensions	37
6		Ordering Information	38
7		Revision History	39
-			

List of Figures

Figure 1. GD32FFPRTGU6 block diagram	
Figure 2. GD32FFPRTGU6 QFN36 pinouts	
Figure 3. GD32FFPRTGU6 memory map	
Figure 4. GD32FFPRTGU6 clock tree	
Figure 5. QFN package outline	
iguio oi ai ii paokago oatii o	

List of Tables

Table 1. GD32FFPRTGU6 device features and peripheral list	6
Table 2. GD32FFPRTGU6 pin definitions	14
Table 3. Absolute maximum ratings	24
Table 4. DC operating conditions	24
Table 5. Power consumption characteristics	25
Table 6. EMS characteristics	26
Table 7. EMI characteristics	26
Table 8. Power supply supervisor characteristics	27
Table 9. ESD characteristics	27
Table 10. Static latch-up characteristics	27
Table 11. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics	28
Table 12. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics	28
Table 13. High speed internal clock (IRC8M) characteristics	29
Table 14. High speed internal clock (IRC48M) characteristics	29
Table 15. Low speed internal clock (IRC32K) characteristics	30
Table 16. PLL characteristics	30
Table 17. PLL2/3 characteristics	30
Table 18. Flash memory characteristics	31
Table 19. I/O port characteristics	32
Table 20. ADC characteristics	33
Table 21. ADC RAIN max for fADC=40MHz	33
Table 22. ADC dynamic accuracy at f _{ADC} = 30 MHz	34
Table 23. ADC dynamic accuracy at fADC = 30 MHz	34
Table 24. ADC dynamic accuracy at fADC = 36 MHz	34
Table 25. ADC dynamic accuracy at fADC = 40 MHz	34
Table 26. ADC static accuracy at f _{ADC} = 15 MHz	34
Table 27. DAC characteristics	35
Table 28. SPI characteristics	36
Table 29. I2C characteristics	
Table 30. USART characteristics	36
Table 31. QFN package dimensions	37
Table 32. Part ordering code for GD32FFPRTGU6 device	38
Table 33. Revision history	39

1 General description

The GD32FFPRTGU6 device belongs to the specific line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M4 RISC core with best cost-performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex®-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. Its single precision FPU (floating point unit) speeds up software development. It also provides a Memory Protection Unit (MPU) and powerful trace technology for enhanced application security and advanced debug support.

The GD32FFPRTGU6 device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 168 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1024 KB on-chip Flash memory and 128 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The device offer four general-purpose 16-bit timers, a 16-bit advanced-control timer, two 12-bit 2.6M SPS ADCs, as well as standard and advanced communication interfaces: two USARTs, two SPIs, an I2C and an USB 2.0 FS.

The device operates from a 2.6 to 3.6 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make GD32FFPRTGU6 device specifically suitable for advanced fingerprint recognition application.

2 Device overview

2.1 Device information

Table 1. GD32FFPRTGU6 device features and peripheral list

	Part Number	GD32FFPRTGU6	
	Code Area (KB)	256	
Flash	Data Area (KB)	768	
	Total (KB)	1024	
	SRAM (KB)	128	
	16-bit GPTM	4	
S	Adv. 16-bit TM	1	
Timers	SysTick	1	
_	Watchdog	2	
	RTC	1	
ty	USART	2	
ctivi	I2C	1	
Connectivity	SPI	2	
ŭ	USB 2.0 FS	1	
	GPIO	26	
	EXMC	0	
	EXTI	16	
	ADC Unit (CHs)	2(10)	
	Package	QFN36	

2.2 Block diagram

Figure 1. GD32FFPRTGU6 block diagram

2.3 Pinouts and pin assignment

Figure 2. GD32FFPRTGU6 QFN36 pinouts

2.4 Memory map

Figure 3. GD32FFPRTGU6 memory map

Pre-defined	1		B : 1 1
Regions	Bus	Address	Peripherals
External			
device		0xA000 0000 - 0xA000 0FFF	Reserved
	AHB3	0x9000 0000 - 0x9FFF FFFF	Reserved
External RAM		0x7000 0000 - 0x8FFF FFFF	Reserved
		0x6000 0000 - 0x6FFF FFFF	Reserved
		0x5000 0000 - 0x5003 FFFF	Reserved
		0x4008 0000 - 0x4FFF FFFF	Reserved
		0x4004 0000 - 0x4007 FFFF	Reserved
		0x4002 BC00 - 0x4003 FFFF	Reserved
		0x4002 B000 - 0x4002 BBFF	Reserved
		0x4002 A000 - 0x4002 AFFF	Reserved
		0x4002 8000 - 0x4002 9FFF	Reserved
		0x4002 6800 - 0x4002 7FFF	Reserved
		0x4002 6400 - 0x4002 67FF	Reserved
	AHB1	0x4002 6000 - 0x4002 63FF	Reserved
		0x4002 5000 - 0x4002 5FFF	Reserved
		0x4002 4000 - 0x4002 4FFF	Reserved
		0x4002 3C00 - 0x4002 3FFF	Reserved
		0x4002 3800 - 0x4002 3BFF	Reserved
Dorinharal		0x4002 3400 - 0x4002 37FF	Reserved
Peripheral		0x4002 3000 - 0x4002 33FF	CRC
		0x4002 2C00 - 0x4002 2FFF	Reserved
		0x4002 2800 - 0x4002 2BFF	Reserved
		0x4002 2400 - 0x4002 27FF	Reserved
		0x4002 2000 - 0x4002 23FF	FMC
		0x4002 1C00 - 0x4002 1FFF	Reserved
		0x4002 1800 - 0x4002 1BFF	Reserved
		0x4002 1400 - 0x4002 17FF	Reserved
		0x4002 1000 - 0x4002 13FF	RCU
		0x4002 0C00 - 0x4002 0FFF	Reserved
		0x4002 0800 - 0x4002 0BFF	Reserved
		0x4002 0400 - 0x4002 07FF	DMA1
		0x4002 0000 - 0x4002 03FF	DMA0
		0x4001 8400 - 0x4001 FFFF	Reserved
		0x4001 8000 - 0x4001 83FF	Reserved

			0002111111000
Pre-defined Regions	Bus	Address	Peripherals
		0x4001 7C00 - 0x4001 7FFF	Reserved
		0x4001 7800 - 0x4001 7BFF	Reserved
		0x4001 7400 - 0x4001 77FF	Reserved
		0x4001 7000 - 0x4001 73FF	Reserved
		0x4001 6C00 - 0x4001 6FFF	Reserved
		0x4001 6800 - 0x4001 6BFF	Reserved
		0x4001 5C00 - 0x4001 67FF	Reserved
		0x4001 5800 - 0x4001 5BFF	Reserved
		0x4001 5400 - 0x4001 57FF	Reserved
		0x4001 5000 - 0x4001 53FF	Reserved
		0x4001 4C00 - 0x4001 4FFF	Reserved
		0x4001 4800 - 0x4001 4BFF	Reserved
		0x4001 4400 - 0x4001 47FF	Reserved
		0x4001 4000 - 0x4001 43FF	Reserved
	ADDO	0x4001 3C00 - 0x4001 3FFF	Reserved
	APB2	0x4001 3800 - 0x4001 3BFF	USART0
		0x4001 3400 - 0x4001 37FF	Reserved
		0x4001 3000 - 0x4001 33FF	SPI0
		0x4001 2C00 - 0x4001 2FFF	Reserved
		0x4001 2800 - 0x4001 2BFF	ADC1
		0x4001 2400 - 0x4001 27FF	ADC0
		0x4001 2000 - 0x4001 23FF	Reserved
		0x4001 1C00 - 0x4001 1FFF	Reserved
		0x4001 1800 - 0x4001 1BFF	Reserved
		0x4001 1400 - 0x4001 17FF	Reserved
		0x4001 1000 - 0x4001 13FF	Reserved
		0x4001 0C00 - 0x4001 0FFF	GPIOB
		0x4001 0800 - 0x4001 0BFF	GPIOA
		0x4001 0400 - 0x4001 07FF	EXTI
		0x4001 0000 - 0x4001 03FF	AFIO
		0x4000 CC00 - 0x4000 FFFF	Reserved
		0x4000 C800 - 0x4000 CBFF	Reserved
		0x4000 C400 - 0x4000 C7FF	Reserved
		0x4000 C000 - 0x4000 C3FF	Reserved
	APB1	0x4000 8000 - 0x4000 BFFF	Reserved
	AIDI	0x4000 7C00 - 0x4000 7FFF	Reserved
		0x4000 7800 - 0x4000 7BFF	Reserved
		0x4000 7400 - 0x4000 77FF	Reserved
		0x4000 7000 - 0x4000 73FF	PMU
		0x4000 6C00 - 0x4000 6FFF	ВКР
-			·

				<u> </u>
Pre-defin Region		Bus	Address	Peripherals
			0x4000 6800 - 0x4000 6BFF	Reserved
			0x4000 6400 - 0x4000 67FF	Reserved
			0x4000 6000 - 0x4000 63FF	USBD SRAM 512 bytes
			0x4000 5C00 - 0x4000 5FFF	USBD
			0x4000 5800 - 0x4000 5BFF	Reserved
			0x4000 5400 - 0x4000 57FF	I2C0
			0x4000 5000 - 0x4000 53FF	Reserved
			0x4000 4C00 - 0x4000 4FFF	Reserved
			0x4000 4800 - 0x4000 4BFF	Reserved
			0x4000 4400 - 0x4000 47FF	USART1
			0x4000 4000 - 0x4000 43FF	Reserved
			0x4000 3C00 - 0x4000 3FFF	SPI2
			0x4000 3800 - 0x4000 3BFF	Reserved
			0x4000 3400 - 0x4000 37FF	Reserved
			0x4000 3000 - 0x4000 33FF	FWDGT
			0x4000 2C00 - 0x4000 2FFF	WWDGT
			0x4000 2800 - 0x4000 2BFF	RTC
			0x4000 2400 - 0x4000 27FF	Reserved
			0x4000 2000 - 0x4000 23FF	Reserved
			0x4000 1C00 - 0x4000 1FFF	Reserved
			0x4000 1800 - 0x4000 1BFF	Reserved
			0x4000 1400 - 0x4000 17FF	Reserved
			0x4000 1000 - 0x4000 13FF	Reserved
			0x4000 0C00 - 0x4000 0FFF	TIMER4
			0x4000 0800 - 0x4000 0BFF	TIMER3
			0x4000 0400 - 0x4000 07FF	TIMER2
			0x4000 0000 - 0x4000 03FF	TIMER1
			0x2007 0000 - 0x3FFF FFFF	Reserved
			0x2006 0000 - 0x2006 FFFF	Reserved
			0x2003 0000 - 0x2005 FFFF	Reserved
CDAM		AHB	0x2002 0000 - 0x2002 FFFF	Reserved
SRAM		АПБ	0x2001 C000 - 0x2001 FFFF	Reserved
			0x2001 8000 - 0x2001 BFFF	
			0x2000 5000 - 0x2001 7FFF	SRAM
			0x2000 0000 - 0x2000 4FFF	
			0x1FFF F810 - 0x1FFF FFFF	Reserved
			0x1FFF F800 - 0x1FFF F80F	Option Bytes
Code		AHB	0x1FFF F000 - 0x1FFF F7FF	
			0x1FFF C010 - 0x1FFF EFFF	Boot loader
			0x1FFF C000 - 0x1FFF C00F	

			0002111111000
Pre-defined Regions	Bus	Address	Peripherals
		0x1FFF B000 - 0x1FFF BFFF	
		0x1FFF 7A10 - 0x1FFF AFFF	Reserved
		0x1FFF 7800 - 0x1FFF 7A0F	Reserved
		0x1FFF 0000 - 0x1FFF 77FF	Reserved
		0x1FFE C010 - 0x1FFE FFFF	Reserved
		0x1FFE C000 - 0x1FFE C00F	Reserved
		0x1001 0000 - 0x1FFE BFFF	Reserved
		0x1000 0000 - 0x1000 FFFF	Reserved
		0x083C 0000 - 0x0FFF FFFF	Reserved
		0x0830 0000 - 0x083B FFFF	Reserved
		0x0810 0000 - 0x082F FFFF	
		0x0802 0000 - 0x080F FFFF	Main Flash
		0x0800 0000 - 0x0801 FFFF	
		0x0030 0000 - 0x07FF FFFF	Reserved
		0x0010 0000 - 0x002F FFFF	Aliased to Main Flash or Boot
		0x0002 0000 - 0x000F FFFF	loader
		0x0000 0000 - 0x0001 FFFF	Ivauci

2.5 Clock tree

СТС CK_IRC48M СК_СТС 48 MHz CK48MSEL USBD CK_I2S CK_IRC8M I2S enable (by hardware) (to I2S1,2) x2,3,4 ...63 PLL AHB Prescaler ÷1,2...512 CK_AHB 120 MHz ma CK_EXMC CK_SYS 120 MHz max (to EXMC) PLLPI CK_IRC48M HCLK PLLSEL PLLMF AHB enable (to AHB bus,Cortex-M4,SRAM,DMA,FMC) /1 or /2 CK_CST ÷8 (to Cortex-M4 SysTick) PREDV0 FCLK CK_HXTAL (free running clock) CK_SDIO SDIO enable... (by hardware) (to SDIO) APB1 Prescaler ÷1,2,4,8,16 PCLK1 to APB1 peripherals 60 MHz max
Peripheral enable TIMER1,2,3,4,5,6 11,12,13 if(APB1 prescale =1)x1 else x 2 CK_TIMERX to TIMER1,2,3,4, 5,6,11,12,13 /128 CK_RTC (to RTC) APB2 Prescaler ÷1,2,4,8,16 120 MHz max Peripheral enable RTCSRC[1:0] CK FWDGT TIMER0.7.8.9.10 40 KHz IRC40K if(APB2 pre =1)x1 (to FWDGT) CK_TIMERx TIMERx to TIMER0,7,8,9,10 - NO CLK - CK_SYS - CK_IRC8M ADC Prescaler ÷2,4,6,8,12,1 CK_HXTAL

/2 CK_PLL CK_ADCx to ADC0,1,2 40 MHz max ADC CKOUTOSEL[2:0]

Figure 4. GD32FFPRTGU6 clock tree

Legend:

HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillators IRC48M: Internal 48M RC oscillators IRC32K: Internal 32K RC oscillator

2.6 Pin definitions

Table 2. GD32FFPRTGU6 pin definitions

Table 2. Obs.	Table 2. GD32FFPR 1GU6 pin definitions						
Pin Name	Pins	Pin Type ⁽¹⁾	I/O ⁽²⁾ Level	Functions description			
OSC_IN	2	I		Default: OSC_IN			
OSC_OUT	3	0		efault: OSC_OUT			
NRST	4	I/O		Default: NRST			
Vssa	5	Р		Default: Vssa			
V_{DDA}	6	Р		Default: V _{DDA}			
PA0-WKUP	7	I/O		Default: PA0 Alternate: WKUP, USART1_CTS, ADC012_IN0, TIMER1_CH0_ETI, TIMER4_CH0			
PA1	8	I/O		Default: PA1 Alternate: USART1_RTS, ADC012_IN1, TIMER1_CH1, TIMER4_CH1			
PA2	9	I/O		Default: PA2 Alternate: USART1_TX, ADC012_IN2, TIMER1_CH2, TIMER4_CH2, SPI0_IO2			
PA3	10	I/O		Default: PA3 Alternate: USART1_RX, ADC012_IN3, TIMER1_CH3, TIMER4_CH3, SPI0_IO3			
PA4	11	I/O		Default: PA4 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4 Remap:SPI2_NSS			
PA5	12	I/O		Default: PA5 Alternate: SPI0_SCK, ADC01_IN5			
PA6	13	I/O		Default: PA6 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BKIN			
PA7	14	I/O		Default: PA7 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON			
PB0	15	I/O		Default: PB0 Alternate: ADC01_IN8, TIMER2_CH2 Remap: TIMER0_CH1_ON			
PB1	16	I/O		Default: PB1 Alternate: ADC01_IN9, TIMER2_CH3 Remap: TIMER0_CH2_ON			
PB2	17	I/O	5VT	Default: PB2, BOOT1			
Vss_1	18	Р		Default: V _{SS_1}			
V _{DD_1}	19	Р		Default: V _{DD_1}			
PA8	20	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, VCORE, CTC_SYNC			
PA9	21	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1			

Pin Name	Pins	Pin Type ⁽¹⁾	I/O ⁽²⁾ Level	Functions description
PA10	22	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2
PA11	23	I/O	5VT	Default: PA11 Alternate: USART0_CTS, USBDM, TIMER0_CH3
PA12	24	I/O	5VT	Default: PA12 Alternate: USART0_RTS, TIMER0_ETI, USBDP
PA13	25	I/O	5VT	Default: JTMS, SWDIO Remap: PA13
V _{SS_2}	26	Р		Default: Vss_2
V_{DD_2}	27	Р		Default: V _{DD_2}
PA14	28	I/O	5VT	Default: JTCK, SWCLK Remap: PA14
PA15	29	I/O	5VT	Default: JTDI Alternate: SPI2_NSS Remap: TIMER1_CH0_ETI, PA15, SPI0_NSS
PB3	30	I/O	5VT	Default: JTDO Alternate:SPI2_SCK Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK
PB4	31	I/O	5VT	Default: NJTRST Alternate: SPI2_MISO Remap: TIMER2_CH0, PB4, SPI0_MISO
PB5	32	I/O		Default: PB5 Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI
PB6	33	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, SPI0_IO2
PB7	34	I/O	5VT	Default: PB7 Alternate: I2C0_SDA , TIMER3_CH1 Remap: USART0_RX, SPI0_IO3
BOOT0	35	ı		Default: BOOT0
Vss_3	36	Р		Default: Vss_3
$V_{DD_{2}}$	1	Р		Default: V _{DD_3}

Notes:

- 1. Type: I = input, O = output, P = power.
- 2. I/O Level: 5VT = 5 V tolerant.

3 Functional description

3.1 ARM® Cortex®-M4 core

The ARM® Cortex®-M4 processor is a high performance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an efficient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive device requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.

32-bit ARM® Cortex®-M4 processor core

- Up to 168 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Floating Point Unit (FPU)
- Integrated DSP instructions
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M4 processor is based on the ARMv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M4:

- Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
- Nested Vectored Interrupt Controller (NVIC)
- Flash Patch and Breakpoint (FPB)
- Data Watchpoint and Trace (DWT)
- Instrument Trace Macrocell (ITM)
- Memory Protection Unit (MPU)
- Serial Wire JTAG Debug Port (SWJ-DP)
- Trace Port Interface Unit (TPIU)

3.2 On-chip memory

- Up to 1024 Kbytes of Flash memory, including code Flash and data Flash
- Up to 128 KB of SRAM

The ARM® Cortex®-M4 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 1024 Kbytes of inner Flash at most, which includes code Flash that available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. An extra data Flash is also included for storing data mainly. The Figure of GD32FFPRTGU6 memory map shows the memory of the GD32FFPRTGU6 series of device, including Flash, SRAM, peripheral, and other pre-defined regions.

3.3 Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
- Internal 48 MHz RC oscillator
- Internal 32 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- 2.6 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the two AHB domains are 120 MHz. The maximum frequency of the two APB domains including APB1 is 60 MHz and APB2 is 120 MHz. See Figure 6 for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} range: 1.8 to 3.6 V, power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0, USART1 in device mode. It also can be used to transfer and update the Flash memory code, the data and the vector table sections. In default condition, boot from bank 1 of Flash memory is selected. It also supports to boot from bank 2 of Flash memory by setting a bit in option bytes.

3.5 Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are Sleep mode, Deep-sleep mode, and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

■ Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In Deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the Deep-sleep mode including the 23 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the Deep-sleep mode, the IRC8M is selected as the system clock.

■ Standby mode

In Standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup Registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC, the FWDG reset, and the rising edge on WKUP pin.

3.6 Analog to digital converter (ADC)

- 12-bit SAR ADC's conversion rate is up to 2.6MSPS
- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
- Input voltage range: V_{SSA} to V_{DDA} (2.6 to 3.6 V)
- Temperature sensor

Two 12-bit 2.6MSPS multi-channel ADCs are integrated in the device. It has a total of 12 multiplexed channels: 10 external channels, 1 channel for internal temperature sensor (V_{SENSE}), 1 channel for internal reference voltage (V_{REFINT}). The input voltage range is between 2.6 V and 3.6 V. An on-chip hardware oversampling scheme improves performance while offloading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general-purpose level 0 timers (TMx) and the advanced-control timers (TM0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

3.7 DMA

- 7 channel DMA 0 controller and 5 channel DMA 1 controller
- Peripherals supported: Timers, ADC, SPIs, I²C, USARTs

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Four types of access method are supported: peripheral to peripheral, peripheral to memory, memory to peripheral, memory to memory

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.8 General-purpose inputs/outputs (GPIOs)

- Up to 26 fast GPIOs, all mappable on 16 external interrupt vectors (EXTI)
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 26 general purpose I/O pins (GPIO) in GD32FFPRTGU6, named PA0 ~ PA15

and PB0 ~ PB7, to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

3.9 Timers and PWM generation

- A 16-bit advanced-control timer (TM0), four 16-bit general-purpose timers (TM1 ~ TM4)
- Up to 4 independent channels of PWM, output compare or input capture for each generalpurpose timer (GPTM) and external trigger input
- 16-bit, motor control PWM advanced-control timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (Free watchdog and window watchdog)

The advanced-control timer (TM0) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general-purpose timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center-aligned counting modes) and single pulse mode output. If configured as a general-purpose 16-bit timer, it has the same functions as the TMx timer. It can be synchronized with external signals or to interconnect with other GPTMs together which have the same architecture and features.

The general-purpose timer (GPTM), can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TM1 ~ TM4 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. The GPTM also supports an encoder interface with two inputs using quadrature decoder.

The GD32FFPRTGU6 have two watchdog peripherals, Independent watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.

The independent watchdog timer includes a 12-bit down-counting counter and a 8-bit prescaler, It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in stop and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the

main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.10 Real time clock (RTC)

- 32-bit up-counter with a programmable 20-bit prescaler
- Alarm function
- Interrupt and wake-up event

The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz from external crystal oscillator.

3.11 Inter-integrated circuit (I2C)

- An I2C bus interfaces can support both master and slave mode with a frequency up to 1
 MHz (Fast mode plus)
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides several data transfer rates: 100 KHz of standard mode, 400 KHz of the fast mode and 1 MHz of the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.12 Serial peripheral interface (SPI)

- Two SPI interfaces with a frequency of up to 30 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

3.13 Universal synchronous asynchronous receiver transmitter (USART)

- Two USARTs with operating frequency up to 10.5 MHz
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- USARTs support ISO 7816-3 compliant smart card interface

The USARTs (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

3.14 Universal serial bus full-speed (USB 2.0 FS)

- One full-speed USB Interface with frequency up to 12 Mbit/s
- Internal 48 MHz oscillator support crystal-less operation
- Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports device modes. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode that allows crystal-less operation.

3.15 Debug mode

■ Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

3.16 Package and operation temperature

- QFN36
- Operation temperature range: -40°C to +85°C (industrial level)

4 Electrical characteristics

4.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
V _{DD}	External voltage range	Vss - 0.3	Vss + 3.6	V
V _{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.6	V
V _{BAT}	External battery supply voltage	Vss - 0.3	V _{SS} + 3.6	V
VIN	Input voltage on 5V tolerant pin	Vss - 0.3	$V_{DD} + 4.0$	V
VIN	Input voltage on other I/O	Vss - 0.3	4.0	V
ΔV _{DDx}	Variations between different VDD power pins		50	mV
Vssx -Vss	Variations between different ground pins		50	mV
lio	Maximum current for GPIO pins		25	mA
T _A	T _A Operating temperature range		+85	°C
T _{STG}	Storage temperature range	-55	+150	°C
TJ	Maximum junction temperature	_	125	°C

4.2 Recommended DC characteristics

Table 4. DC operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage		2.6	3.3	3.6	V
V_{DDA}	Analog supply voltage	Same as V _{DD}	2.6	3.3	3.6	V
V _{BAT}	Battery supply voltage		1.8	_	3.6	V

4.3 Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 5. Power consumption characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{DD} =V _{DDA} =3.3V, HXTAL=25MHz, System		64.0		mA
		clock=168MHz, All peripherals enabled		0 1.0		, \
		V _{DD} =V _{DDA} =3.3V, HXTAL =25MHz, System		33.5	_	mΑ
	Supply current	clock =168MHz, All peripherals disabled		00.0		, \
	(Run mode)	V _{DD} =V _{DDA} =3.3V, HXTAL =25MHz, System	_	42.5	_	mΑ
		clock =108MHz, All peripherals enabled				
		V _{DD} =V _{DDA} =3.3V, HXTAL =25MHz, System	-	22.5	_	mΑ
		Clock =108MHz, All peripherals disabled				
		V _{DD} =V _{DDA} =3.3V, HXTAL =25MHz, CPU				
		clock off, System clock=168MHz, All	_	44.9	_	— mA
	Supply current	peripherals enabled			88 — 0 —	
	(Sleep mode)	V _{DD} =V _{DDA} =3.3V, HXTAL =25MHz, CPU				
I_{DD}		clock off, System clock=168MHz, All	_	13.86	_	mA
.55		peripherals disabled				
		V _{DD} =V _{DDA} =3.3V, Regulator in run mode,				
	Supply current	IRC32K on, RTC on, All GPIOs analog	_	208	_	μΑ
	(Deep-Sleep	mode				
	mode)	V _{DD} =V _{DDA} =3.3V, Regulator in low power				
	mode)	mode, IRC32K on, RTC on, All GPIOs	_	180	_	μΑ
		analog mode				
		V _{DD} =V _{DDA} =3.3V, LXTAL off, IRC32K on,		5.10	_	пΑ
		RTC on		0.10		μπ
	Supply current	V_{DD} = V_{DDA} =3.3V, LXTAL off, IRC32K on,		4.90	_	μΑ μΑ
	(Standby mode)	RTC off		1.00		μπ
		V _{DD} =V _{DDA} =3.3V, LXTAL off, IRC32K off,	_	4.30	_	μΑ
		RTC off				μ
		V _{DD} not available, V _{BAT} =3.6 V, LXTAL on				
		with external crystal, RTC on, Higher	_	1.78	_	μΑ
		driving				
		V _{DD} not available, V _{BAT} =3.3 V, LXTAL on				
	Dettemania	with external crystal, RTC on, Higher	_	1.48	_	μΑ
I _{BAT}	Battery supply	driving				
	current	V _{DD} not available, V _{BAT} =2.6 V, LXTAL on				
		with external crystal, RTC on, Higher	_	1.16	_	μΑ
		driving				
		V _{DD} not available, V _{BAT} =3.6 V, LXTAL on		1 11		^
		with external crystal, RTC on, Lower driving	_	1.11	_	μΑ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V_{DD} not available, V_{BAT} =3.3 V, LXTAL on		0.83		
		with external crystal, RTC on, Lower driving	_	0.03		μΑ
		V _{DD} not available, V _{BAT} =2.6 V, LXTAL on		0.51		
		with external crystal, RTC on, Lower driving	_	0.51		μΑ

4.4 EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the following table, based on the EMS levels and classes compliant with IEC 61000 series standard.

Table 6. EMS characteristics

Symbol	Parameter	Conditions	Level/Class
V	Voltage applied to all device pins to	VDD = 3.3 V, TA = +25 °C	3B
VESD	induce a functional disturbance	conforms to IEC 61000-4-2	3D
	Fast transient voltage burst applied to	VDD 2.2.V TA .25.°C	
V _{FTB}	induce a functional disturbance through	VDD = 3.3 V, TA = +25 °C	4A
	100 pF on V _{DD} and V _{SS} pins	conforms to IEC 61000-4-4	

EMI (Electromagnetic Interference) emission testing result is given in the following table, compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Table 7. EMI characteristics

Symbol	Parameter	Conditions	Tested	Conditions		Unit
			frequency band	24M	48M	
	VDD = 5	VDD = 5.0 V,	0.1 to 2 MHz	<0	<0	
		TA = +25 °C,	2 to 30 MHz	-3.9	-2.8	
S _{EMI} Pe	Peak level	compliant with IEC	30 to 130 MHz	-7.2	-8	dBμV
		61967-2	130 MHz to 1GHz	-7	-7	

4.5 Power supply supervisor characteristics

Table 8. Power supply supervisor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR}	Power on reset threshold		2.30	2.40	2.48	V
V _{PDR}	Power down reset threshold	_	1.72	1.80	1.88	V
V _{HYST}	PDR hysteresis		_	0.6	_	٧
TRSTTEMP	Reset temporization		_	2	_	ms

4.6 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 9. ESD characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A =25 °C; JESD22-			6000	V
	voltage (human body model)	A114		_	6000	V
V=== (== :	Electrostatic discharge	T _A =25 °C;			1000	V
Vesd(CDM)	voltage (charge device model)	JESD22-C101			1000	V

Table 10. Static latch-up characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
LU	I-test	T _A =25 °C; JESD78	_	_	±200	mA
LU	V _{supply} over voltage	1 _A =25 C, JESD/6	_	_	5.4	V

4.7 External clock characteristics

Table 11. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	High Speed External oscillator	V _{DD} =5.0V	4	8	32	MHz
f _{HXTAL}	(HXTAL) frequency	VDD=3.0 V	4	0	32	IVII IZ
CHXTAL	Recommended load capacitance			20	30	nE
CHXTAL	on OSC_IN and OSC_OUT		30	pF		
	Recommended external feedback					
R _{FHXTAL}	resistor between OSC_IN and	_	_	400	_	ΚΩ
	OSC_OUT					
DHXTAL	HXTAL oscillator duty cycle	_	30	50	70	%
IDDHXTAL	HXTAL oscillator operating current	V _{DD} =3.3V, T _A =25°C	_	1		mA
tsuhxtal	HXTAL oscillator startup time	V _{DD} =3.3V, T _A =25°C	_	2	_	ms

Table 12. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL}	Low Speed External oscillator (LXTAL) frequency	V _{DD} =V _{BAT} =3.3V	_	32.768	1	KHz
C _{LXTAL}	Recommended load capacitance on OSC32_IN and OSC32_OUT	_	_		15	pF
DLXTAL	LXTAL oscillator duty cycle	_	30	50	70	%
	LXTAL oscillator operating	Low Drive	_	0.7	_	
IDDLXTAL	current	High Drive	_	1.3	_	μΑ
tsulxtal	LXTAL oscillator startup time	V _{DD} =V _{BAT} =3.3V	_	2	_	S

4.8 Internal clock characteristics

Table 13. High speed internal clock (IRC8M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	High Speed Internal					
f _{IRC8M}	Oscillator (IRC8M)	V _{DD} =3.3V	_	8	_	MHz
	frequency					
400	IDCOM appillator Fraguency	V _{DD} =3.3V, T _A =-40°C ~+105°C	-4.0	_	+5.0	%
	IRC8M oscillator Frequency	V _{DD} =3.3V, T _A =0°C ~ +85°C	-2.0	_	+2.0	%
	accuracy, Factory-trimmed	V _{DD} =3.3V, T _A =25°C	-1.0	_	+1.0	%
ACC _{IRC8M}	IRC8M oscillator Frequency					
	accuracy, User trimming	_	_	0.5	_	%
	step					
D _{IRC8M}	IRC8M oscillator duty cycle	V _{DD} =3.3V, f _{IRC8M} =8MHz	45	50	55	%
langang	IRC8M oscillator operating	\/2 2\/ f:		66	80	
IDDIRC8M	current	V _{DD} =3.3V, f _{IRC8M} =8MHz		66	00	μΑ
ta	IRC8M oscillator startup	\/2 2\/ f		2.5	4	110
tsuirc8M	time	V _{DD} =3.3V, f _{IRC8M} =8MHz		2.5	4	us

Table 14. High speed internal clock (IRC48M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC48M}	High Speed Internal Oscillator (IRC48M) frequency	V _{DD} =3.3V		48	_	MHz
	IRC48M oscillator	V _{DD} =3.3V, T _A =-40°C ~+105°C	-4.0	_	+5.0	%
	Frequency accuracy,	V _{DD} =3.3V, T _A =0°C ~ +85°C	-3.0	_	+3.0	%
ACC _{IRC48M}	Factory-trimmed	V _{DD} =3.3V, T _A =25°C	-2.0	_	+2.0	%
	IRC48M oscillator Frequency accuracy, User trimming step	_	ı	0.12		%
DIRC48M	IRC48M oscillator duty cycle	V _{DD} =3.3V, f _{IRC48M} =16MHz	45	50	55	%
I _{DDIRC48M}	IRC48M oscillator operating current	V _{DD} =3.3V, f _{IRC48M} =16MHz		240	300	μΑ
t _{SUIRC48M}	IRC48M oscillator startup time	V _{DD} =3.3V, f _{IRC48M} =16MHz	_	2.5	4	us

Table 15. Low speed internal clock (IRC32K) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
firc32K	Low Speed Internal oscillator (IRC32K) frequency	V _{DD} =V _{BAT} =3.3V, T _A =-40°C ~ +85°C	20	40	45	KHz
I _{DDIRC32K}	IRC32K oscillator operating current	V _{DD} =V _{BAT} =3.3V, T _A =25°C		0.4	0.6	μΑ
tsuirc32K	IRC32K oscillator startup time	V _{DD} =V _{BAT} =3.3V, T _A =25°C	_	110	130	μs

4.9 PLL characteristics

Table 16. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN}	PLL input clock frequency	_	1		25	MHz
f _{PLLOUT}	PLL output clock frequency	_	16	_	168	MHz
f _{VCOOUT}	PLL VCO output clock frequency	_	32		344	MHz
tLOCK	PLL lock time	_	_	_	300	μs
I _{DD}	Current consumption on VDD	VCO freq=344MHz	_	500	_	μΑ
I _{DDA}	Current consumption on VDDA	VCO freq=344MHz	_	750	_	μΑ
Jitter _{PLL}	Cycle to cycle Jitter	System clock	_	300	_	ps

Table 17. PLL2/3 characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN}	PLL input clock frequency	_	1	_	25	MHz
f _{PLLOUT}	PLL output clock frequency	_	16	_	100	MHz
fvcoouт	PLL VCO output clock frequency	_	32	_	200	MHz
tLOCK	PLL lock time	_	_	_	300	μs
I _{DD}	Current consumption on VDD	VCO freq=200MHz		290	_	μΑ
I _{DDA}	Current consumption on VDDA	VCO freq=200MHz		440		μΑ
Jitter _{PLL}	Cycle to cycle Jitter	System clock	_	300		ps

4.10 Memory characteristics

Table 18. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PEcyc	Number of guaranteed program /erase cycles before failure (Endurance)	T _A =-40°C ~ +85°C	100	_	_	kcycles
t _{RET}	Data retention time	T _A =125°C	20	_	_	years
tprog	Word programming time	T _A =-40°C ~ +85°C	200	_	400	us
terase	Page erase time	T _A =-40°C ~ +85°C	60	100	450	ms
t _{MERASE}	Mass erase time	T _A =-40°C ~ +85°C	3.2	_	9.6	S

4.11 **GPIO** characteristics

Table 19. I/O port characteristics

Symbol	Parame	eter	Conditions	Min	Тур	Max	Unit
	0, 1, 1, 10		V _{DD} =2.6V	_	_	0.97	
	Standard IO	Low level	V _{DD} =3.3V	_	_	1.29	V
	input voltage		V _{DD} =3.6V	_	_	1.42	
V_{IL}			V _{DD} =2.6V	_	_	0.98	
	High Voltage t		V _{DD} =3.3V	_	_	1.29	V
	Low level input	voltage	V _{DD} =3.6V	_	_	1.41	
	Chandard IO	lliah lawal	V _{DD} =2.6V	1.67	_		
	Standard IO	High level	V _{DD} =3.3V	1.97	_	_	V
V	input voltage		V _{DD} =3.6V	2.09	_	_	
V_{IH}	High Voltage t	alarant IO	V _{DD} =2.6V	1.64	_	_	
	High Voltage tolerant IO High level input voltage		V _{DD} =3.3V	1.97	_	_	V
			V _{DD} =3.6V	2.07	_	-	
			V _{DD} =2.6V, I _{IO} =8mA	_	_	0.17	
			V _{DD} =3.3V, I _{IO} =8mA	_	_	0.15	
Vol	Low level output voltage		V _{DD} =3.6V, I _{IO} =8mA	_	_	0.15	V
VOL			V _{DD} =2.6V, I _{IO} =20mA	_		0.49	
			V _{DD} =3.3V, I _{IO} =20mA	_	_	0.40	
			V _{DD} =3.6V, I _{IO} =20mA	_	_	0.40	
			V_{DD} =2.6V, I_{IO} =8mA	2.40	_		
			V_{DD} =3.3V, I_{IO} =8mA	3.11	_		
Vон	High level outpo	ıt voltago	V_{DD} =3.6V, I_{IO} =8mA	3.44	_		V
VOH	i ligit level outpo	ut voltage	V _{DD} =2.6V, I _{IO} =20mA	2.02	_	_	V
			V_{DD} =3.3V, I_{IO} =20mA	2.81	_	-	
			V _{DD} =3.6V, I _{IO} =20mA	3.15	_	_	_
R _{PU}	Internal pull-	All pins	V _{IN} =V _{SS}	30	40	50	kΩ
INPU	up resistor	PA10	_	7.5	10	13.5	KΩ
Rnn	Internal pull-	All pins	V _{IN} =V _{DD}	30	40	50	kΩ
R _{PD}	down resistor	PA10	_	7.5	10	13.5	1/77

4.12 ADC characteristics

Table 20. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Operating voltage	_	2.6	3.3	3.6	V
V _{ADCIN}	ADC input voltage range	_	0	-	V _{REF+}	V
f _{ADC}	ADC clock	_	0.1	_	40	MHz
		12-bit	0.007	_	2.86	
fo	Compling rate	10-bit	0.008		3.33	MSPS
fs	Sampling rate	8-bit	0.01		4.00	IVIOFO
		6-bit	0.012		5.00	
VIN	Analog input voltage	16 external;2 internal	0		V_{DDA}	V
V _{REF+}	Positive Reference Voltage		_	V_{DDA}	_	V
V _{REF} -	Negative Reference Voltage	_	_	0	_	V
R _{AIN}	External input impedance	See <i>Equation 2</i>	_	_	32.9	kΩ
RADC	Input sampling switch resistance		-		0.55	kΩ
CADC	Input sampling capacitance	No pin/pad capacitance included	_	-	5.5	pF
tcal	Calibration time	f _{ADC} =40MHz	_	3.275	_	μs
ts	Sampling time	f _{ADC} =40MHz	0.0375	_	5.99	μs
		12-bit	_	14	_	
tconv	Total conversion time	10-bit	_	12	_	1/ f _{ADC}
	(including sampling time)	8-bit	_	10		17 TADC
		6-bit	_	8	_	
tsu	Startup time	_	_	_	1	μs

$$\textit{Equation 2} : \mathsf{R}_{\mathsf{AIN}} \ \mathsf{max} \ \mathsf{formula} \quad R_{AIN} < \frac{T_s}{f_{\mathsf{ADC}} * C_{\mathsf{ADC}} * ln(2^{N+2})} - R_{\mathsf{ADC}}$$

The formula above (Equation 2) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N=12 (from 12-bit resolution).

Table 21. ADC $R_{AIN\ max}$ for f_{ADC} =40MHz

T _s (cycles)	t _s (us)	R _{AIN max} (KΩ)
1.5	0.0375	0.15
7.5	0.1875	2.96
13.5	0.3375	5.77
28.5	0.7125	12.8
41.5	1.0375	18.9
55.5	1.3875	25.4
71.5	1.7875	32.9
239.5	5.9875	N/A

Note: Guaranteed by design, not tested in production.

Table 22. ADC dynamic accuracy at f_{ADC} = 30 MHz

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =30MHz	10.5	10.6	_	bits
SNDR	Signal-to-noise and distortion ratio	V _{DDA} =V _{REFP} =2.6V	65	65.6	_	
SNR	Signal-to-noise ratio	Input Frequency=110KHz	65.5	66	_	dB
THD	Total harmonic distortion	Temperature=25°C	-74	-76	_	

Table 23. ADC dynamic accuracy at f_{ADC} = 30 MHz

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =30MHz	10.7	10.8	_	bits
SNDR	Signal-to-noise and distortion ratio	V _{DDA} =V _{REFP} =3.3V	66.2	65.8	_	
SNR	Signal-to-noise ratio	Input Frequency=110KHz	66.8	67.4	_	dB
THD	Total harmonic distortion	Temperature=25°C	-71	-75	_	

Table 24. ADC dynamic accuracy at f_{ADC} = 36 MHz

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36MHz	10.3	10.4		bits
SNDR	Signal-to-noise and distortion ratio	V _{DDA} =V _{REFP} =3.3V	63.8	64.4	_	
SNR	Signal-to-noise ratio	Input Frequency=110KHz	64.2	65	_	dB
THD	Total harmonic distortion	Temperature=25°C	-70	-72	_	

Table 25. ADC dynamic accuracy at f_{ADC} = 40 MHz

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =40MHz	9.9	10.0	_	bits
SNDR	Signal-to-noise and distortion ratio	V _{DDA} =V _{REFP} =3.3V	61.4	62	_	
SNR	Signal-to-noise ratio	Input Frequency=110KHz	62	62.4	_	dB
THD	Total harmonic distortion	Temperature=25°C	-68	-70	_	

Table 26. ADC static accuracy at f_{ADC} = 15 MHz

Symbol	Parameter	Test conditions	Тур	Max	Unit
Offset	Offset error	fadc=15MHz Vdda=Vreep=3.3V	±2	±3	
DNL	Differential linearity error		±0.9	±1.2	LSB
INL	Integral linearity error	VDDA=VREFP=3.3V	±1.1	±1.5	

4.13 DAC characteristics

Table 27. DAC characteristics

Symbol	Parameter	Conditions		Тур	Max	Unit	
V _{DDA}	Operating voltage	_		3.3	3.6	V	
RLOAD	Resistive load	Resistive load with buffer ON		_	_	kΩ	
Ro	Impedance output	Impedance output with buffer OFF		_	15	kΩ	
C _{LOAD}	Capacitive load	Capacitive load with buffer ON	_	_	50	pF	
DAC OUT	Lawar DAC OUT valtage	Lower DAC_OUT voltage with buffer ON		_	_	V	
DAC_OUT min	Lower DAC_OUT voltage	Lower DAC_OUT voltage with buffer OFF	0.5	_	_	mV	
		Higher DAC_OUT voltage with buffer ON	_	_	V _{DDA} -	V	
DAC_OUT max	Higher DAC_OUT voltage	Higher DAC_OUT voltage with buffer OFF	_	_	V _{DDA} -	V	
		Middle code on the input			500		
I_{DDA}	consumption in quiescent mode with no load	Worst code on the input		_	560	μA	
DNII	Differential non linearity	10-bit configuration	— — ±0.5		LCD		
DNL Differentia		12-bit configuration	_	_	±2	LSB	
INL	Integral non linearity	10-bit configuration	_	_	±1	±1 LSB	
IINL	integral flori lineality	12-bit configuration	_	_	±4	LOD	
Gain error	Gain error	_	_	±0.5	_	%	
TSETTLING	Settling time	C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ	_	0.5	1	μs	
Change from code i to i±1LSB Wakeup time from off state Power supply rejection		C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ	_	_	4	MS/s	
		C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ	_	1	2	μs	
		No R _{Load} , C _{LOAD} =50pF	_	-90	-75	dB	

4.14 SPI characteristics

Table 28. SPI characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency	_	_	_	30	MHz
TSI _{K(H)}	SCK clock high time	_	16	_	_	ns
TSI _{K(L)}	SCK clock low time	_	16	_	_	ns
SPI maste	r mode					
t _{V(MO)}	Data output valid time	_	_	_	25	ns
t _{H(MO)}	Data output hold time	_	2	_	_	ns
tsu(MI)	Data input setup time	_	5	_	_	ns
t _{H(MI)}	Data input hold time	_	5	_	_	ns
SPI slave i	mode					
tsu(NSS)	NSS enable setup time	f _{PCLK} =54MHz	74	_	_	ns
t _{H(NSS)}	NSS enable hold time	f _{PCLK} =54MHz	37	_	_	ns
t _{A(SO)}	Data output access time	f _{PCLK} =54MHz	0	_	55	ns
t _{DIS(SO)}	Data output disable time	_	3	_	10	ns
t _{V(SO)}	Data output valid time	_	_	_	25	ns
t _{H(SO)}	Data output hold time	_	15	_	_	ns
t _{SU(SI)}	Data input setup time	_	5	_	_	ns
t _{H(SI)}	Data input hold time	_	4	_	_	ns

4.15 I2C characteristics

Table 29. I2C characteristics

Cumbal	Doromotor	Conditions	Standard mode		Fast mode		Unit
Symbol	Parameter	Conditions	Min	Max	Min	Max	Unit
f _{SCL}	SCL clock frequency	_	0	100	0	1000	KHz
TSI _{L(H)}	SCL clock high time	_	4.0	_	0.6	_	ns
TSI _{L(L)}	SCL clock low time	_	4.7	_	1.3	_	ns

4.16 USART characteristics

Table 30. USART characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck	SCK clock frequency	_	_	_	84	MHz
TSI _{K(H)}	SCK clock high time	_	5.5	_	_	ns
TSI _{K(L)}	SCK clock low time	_	5.5		_	ns

5 Package information

5.1 QFN package outline dimensions

Figure 5. QFN package outline

Table 31. QFN package dimensions

Symbol	Dimensions (mm)		Symbol	Dimensions (mm)			
Symbol	min	max	Symbol	min	max		
А	6.0 ±	0.1	D1	3.90	Гур		
В	6.0 ±	0.1	D2	3.90	Гур		
С	0.85	0.95	Е	0.210 ± 0.025			
C1	0~0.0)50	E1	0.500 Typ			
C2	0.203	Тур	F	0.550 Typ			

Note:

- 1. Formed lead shall be planar with respect to one another within 0.004 inches.
- 2. Both package length and width do not include mold flash and metal burr.

6 Ordering Information

Table 32. Part ordering code for GD32FFPRTGU6 device

Ordering code	Flash (KB)	Package	Package type	Temperature operating range
GD32FFPRTGU6	1024	QFN36	Green	Industrial -40°C to +85°C

7 Revision History

Table 33. Revision history

Revision No.	Description	Date
1.0	Initial Release	Jun.6, 2017