Given an acute angled $\triangle ABC$. The perimeter of the pedal \triangle is less than $\frac{1}{2}$ perimeter of $\triangle ABC$.

Last updated: 2021-09-22

Created by Mr. Francis Hung on 13 Feb., 2014

In the figure, $\triangle ABC$ is an acute-angled triangle.

Let BC = a, AC = b, AB = c.

AD, BE, CF are the altitudes of $\triangle ABC$.

They are concurrent at the orthocentre H.

 ΔDEF is the pedal triangle of ΔABC .

Let
$$EF = p$$
, $DF = q$, $DE = r$.

$$\angle BFC = 90^{\circ} = \angle BEC$$
 (given)

 \therefore BCEF is a cyclic quad. (converse, \angle in semi-circle)

$$\angle AEF = \angle B$$
, $\angle AFE = \angle C$ (ext. \angle cyclic quad.)

$$\angle ADC = 90^{\circ} = \angle AFC$$
 (given)

 \therefore ACDF is a cyclic quad. (converse, \angle in semi-circle)

$$\angle BDF = \angle A$$
, $\angle BFD = \angle C$ (ext. \angle cyclic quad.)

$$\angle AEB = 90^{\circ} = \angle ADB$$
 (given)

 \therefore AEDB is a cyclic quad. (converse, \angle in semi-circle)

$$\angle CDE = \angle A$$
, $\angle CED = \angle B$ (ext. \angle cyclic quad.)

$$\angle ADF = 90^{\circ} - \angle BDF = 90^{\circ} - \angle A = 90^{\circ} - \angle CDE = \angle ADE \dots (1)$$

$$\angle BED = 90^{\circ} - \angle CED = 90^{\circ} - \angle B = 90^{\circ} - \angle AEF = \angle BEF \dots (2)$$

$$\angle CFD = 90^{\circ} - \angle BFD = 90^{\circ} - \angle C = 90^{\circ} - \angle AFE = \angle CFE \dots (3)$$

Now relabel $\triangle ABC$ as $\triangle A_1B_1C_1$, $\triangle DEF$ as $\triangle D_1E_1F_1$. Shade $\triangle D_1E_1F_1$.

Reflect $\Delta A_1 B_1 C_1$ along the dotted line $A_1 C_1$ to give $\Delta A_1 B_2 C_1$, $\Delta D_1 E_1 F_1 \cong \Delta D_2 E_1 F_2$... (4)

Reflect $\Delta A_1 B_2 C_1$ along the dotted line $B_2 C_1$ to give $\Delta A_2 B_2 C_1$, $\Delta D_2 E_1 F_2 \cong \Delta D_2 E_2 F_3$... (5)

Reflect $\Delta A_2 B_2 C_1$ along the dotted line $A_2 B_2$ to give $\Delta A_2 B_2 C_2$, $\Delta D_2 E_2 F_3 \cong \Delta D_3 E_3 F_3$... (6)

Reflect $\Delta A_2 B_2 C_2$ along the dotted line $A_2 C_2$ to give $\Delta A_2 B_3 C_2$, $\Delta D_3 E_3 F_3 \cong \Delta D_4 E_3 F_4$... (7)

Reflect $\Delta A_2 B_3 C_2$ along the dotted line $B_3 C_2$ to give $\Delta A_3 B_3 C_2$, $\Delta D_4 E_3 F_4 \cong \Delta D_4 E_4 F_5$... (8)

$$\angle B_1 E_1 B_2 = 90^\circ + 90^\circ = 180^\circ$$
, $\angle A_1 D_2 A_2 = 90^\circ + 90^\circ = 180^\circ$, $\angle C_1 F_3 C_2 = 90^\circ + 90^\circ = 180^\circ$,

$$\angle B_2 E_3 B_3 = 90^\circ + 90^\circ = 180^\circ, \angle A_2 D_4 E_4 = 90^\circ + 90^\circ = 180^\circ$$

 $\therefore B_1E_1B_2, A_1D_2A_2, C_1F_3C_2, B_2E_3B_3, A_2D_4E_4$ are straight lines

Created by Mr. Francis Hung

By the results of (1), (2), (3), $\angle B_1E_1F_1 = \angle B_2E_1D_2$, $\angle A_1D_2E_1 = \angle A_2D_2F_3$, $\angle C_1F_3D_2 = \angle C_2F_3E_3$,

 $\angle B_2 E_3 F_3 = \angle B_3 E_3 D_4$, $\angle A_2 D_4 E_3 = \angle A_3 D_4 F_5$.

 \therefore $F_1E_1D_2$, $E_1D_2F_3$, $D_2F_3E_3$, $F_3E_3D_4$, $E_3D_4F_5$ are straight lines (converse, vert. opp. \angle s)

i.e. F_1 , E_1 , D_2 , F_3 , E_3 , D_4 , F_5 are collinear.

 $F_1F_5 = p + r + q + p + r + q = 2(p + q + r) = 2(perimeter of pedal \Delta DEF)$

By the property of reflection, B_1A_1 has turned $2\angle A$ (anti-clockwise) to B_2A_1 .

 B_2A_1 has turned $2\angle B$ (anti-clockwise) to B_2A_2 .

 B_2A_2 has turned $2\angle A$ (clockwise) to B_3A_2 , B_3A_2 has turned $2\angle B$ (clockwise) to B_3A_3 .

Take anti-clockwise rotation as positive and clockwise rotation as negative.

Then the overall angle of rotation of B_1A_1 to B_3A_3 is $2\angle A + 2\angle B - 2\angle A - 2\angle B = 0^\circ$

 $\therefore B_1A_1 // B_3A_1$

Clearly $\Delta B_1 C_1 F_1 \cong \Delta B_3 C_2 F_5$ (A.A.S.)

 $B_1F_1 = B_3F_5$ (corr. sides, $\cong \Delta$'s)

 $\Rightarrow B_1B_3F_5F_1$ is a //-gram (opp. sides are eq. and //)

 $B_1B_3 = F_1F_5 = 2(p + q + r)$ (opp. sides of //-gram)

On the other hand, $B_1B_3 \le B_1C_1 + C_1A_2 + A_2B_3$ (The shortest distance between 2 points is a st. line)

 $\therefore 2(p+q+r) \le a+b+c$

i.e. perimeter of pedal $\triangle DEF \le \frac{1}{2}$ perimeter of $\triangle ABC$. Q.E.D.