(D) a)
$$\frac{5 \times +5}{2} + 8 \le 17$$

 $\frac{5 \times +5}{2} \le 25 \implies \le 5 \times +5 \le 50 \implies \times \le 9$
 $\times \in (-\infty, 9)$

b) $(x+2) \cdot (x-7) \ge 0$	_00 -2 3 7
$(x-3)^2$	x+2 - + + +
	x-7 +
(x-3) ≥ O V x	x-3 0 + 4
×=?	(x+2)(x-7) + 0 - 0 +
$\therefore (x+2)\cdot (x-7) \geq 0$	$(x+3)^2$

$C(x+2)(x-7) \ge 0$	_0 -3 -2 7	6
$\frac{C) (x+2) \cdot (x-7)}{(x+3)^2} \ge O$	x+2 + +	
	x-7 +	
$(x+3)^2 \ge 0 \ \forall x$	x+3 - + + +	
	(x+2)(x-7) + + 0 - 0 +	
	(x+3) ²	

②
$$A = (3,5)$$
 $B = (1,1)$

a)
$$\bar{X} = X_1 + X_2$$
; $\bar{Y} = \frac{Y_1 + Y_2}{Z}$

$$= \sum_{x=3}^{2} \frac{3+1}{2} = \frac{4}{2} = \frac{2}{2}$$

$$= \sum_{y=5}^{2} \frac{5+1}{2} = \frac{6}{2} = \frac{3}{2}$$
El punto (7,3)

b)
$$d = \sqrt{(A_x - B_x)^2 + (A_y - B_y)^2}$$

c)
$$d = \sqrt{(3-1)^2 + (5-1)^2} = \sqrt{4+16} = \sqrt{20} = 2\sqrt{5}$$

d)
$$d_{B_1(2,\alpha)} = \sqrt{(2-1)^2 + (4-1)^2} \leq \sqrt{5}$$

$$=$$
 $1 + (a - 1)^2 \le 5$

$$(a-1)^2 = 4 \Rightarrow a-1 = 2 ? a = 3$$

 $a-1 \ge -2$ $a \ge -1$

(3)
$$\frac{x+1}{x} \le \frac{x+1}{x-1} - \frac{3}{x} \implies 0 \le \frac{x+1}{x-1} - \frac{x+1}{x} - \frac{3}{x}$$

$$x \neq 1$$
 $x \neq 0$ => $0 \leq (x+1) \cdot x - (x+1) \cdot (x-1) - 3 \cdot (x-1)$

$$0 \le (x+1) \cdot (x-x+1) - 3(x-1) = -2x + 4 => 0 \le -2(x-2)$$

 $(x-1) \cdot x$

-00	C			+ 00
X	-	+	+	+
x-1		-	+	+
x-2	-	-	•	+
-2	-	-		-
-2(x-2)	+		+	-
(x-1)·X				

$$|ax+b|-|cx+d|=0$$

(aso 1:
$$ax+b-cx-d=0 \Rightarrow (a-c)\cdot x = -(b-d) \Rightarrow x = -(b-d) = \frac{d-b}{a-c}$$

Case 2:
$$ax+b+cx+d=0 \Rightarrow x\cdot(a+c)=-(b+d) \Rightarrow x=-(b+d)$$

Cass 3:
$$-ax-b + ex+d=0 \Rightarrow x(c-a) = b-d \Rightarrow b-d = \frac{d-b}{c-a}$$

•
$$x^3 - 20x + 91x > 0 \Rightarrow x \cdot (x-7) \cdot (x-13) > 0$$

ptos. críticos: 0;7;13

-4	9			3 4
X	- () +	+	+
x-7	-	-	0 +	+
x-13	1	1	-	8+
x3-20x+91x	- (7+	9 _ (9+

: x 6 (0,7) U (13,00)

$$\Rightarrow (x^2 - 13) \cdot (x^2 - 7) > 0$$

Pese a que se ven similares, su conjunto solución varía bastante entre cada caso.

```
6 Z > 0 : ZER ; Az => Z: |x2 + Z · x + Z2 | 61
                                                                                                                                                                                                                                 Z.x +222
              0 < 21 < 22 ; x>-22 => AZI > AZZ
                              Como x>-2z => x+2z >0 /· z(>0)
                                                         : x.2 + 222 > 0
                                         |x^2 + z \cdot x + z^2| \le |x^2 + z \cdot x + z^2| \le z \cdot x + 2z^2
                                         => -2x -2z2 4x2+2x+22 4 2.x+2z2
                            => -222 4 x2+22 x+22
                                                                                                                                                                                                  1 x2+22 4222
                                                                                                                                                                                                                                                                    x2- z2 60 => (x+2).(x-z)60
                                              -2=2 = (x+=)2
            Sabemos que 2 >0 => - 222 60
                                                                                                                                                                                                                                                     Lo cual se comple si:
               Ademas (x+z)2 >0 Vx
                                                                                                                                                                                                                                 (1) x+2>0 \wedge x-2\leq0

x \geq -2 \wedge x \leq z \Rightarrow x \in [-z,z]
  · La igualdad se cumplina siempre
                                                                                                                                                                                                                                 (2) x+z \neq 0  \wedge x-z \neq 0  \times (-z) \wedge (x+z) \wedge (x+z)
                                      xer
             Luego, el conjunto solveión es (-0,00) N [-z, z] = [-z, z]
             Por ende, si ziezz, Es evidente que Azz es más grande que Azi.
```