'We start by importing essential Python libraries for data handling and manipulation.

- pandas for structured data operations.
- numpy for numerical operations.
- os for interacting with the operating system and directory structures.

```
import os
import pandas as pd
import numpy as np
```

Define and Create Directory Paths

To ensure reproducibility and organized storage, we programmatically create directories for:

- raw data
- processed data
- results
- documentation

These directories will store intermediate and final outputs for reproducibility.

```
#Get working directory
current_dir = os.getcwd()
#go one directory up to root directory
project_root_dir = os.path.dirname(current_dir)
#Define path to data files
data_dir = os.path.join(project_root_dir, 'data')
raw_dir = os.path.join(data_dir, 'raw')
processed_dir = os.path.join(data_dir, 'processed')
#Define path to results folder
results_dir = os.path.join(project_root_dir, 'results')
```

```
#Define path to results folder
docs_dir = os.path.join(project_root_dir, 'docs')

#Create directories if they do not exist
os.makedirs(raw_dir, exist_ok=True)
os.makedirs(processed_dir, exist_ok=True)
os.makedirs(results_dir, exist_ok=True)
os.makedirs(docs_dir, exist_ok=True)
```

Read in the data

We load the Credit Card dataset and Customer dataset as a CSV file.

Key considerations here are:

- We treat ? as missing values (na_values = '?').
- We use skipinitialspace = True to remove extra spaces after delimiters, which is common in text-based datasets.

After loading, we inspect toolumns for each dataset

```
credit_card = os.path.join(raw_dir, "credit_card.csv")
credit_card df = pd.read_csv(credit_card, na_values="?", skipinitialspace=True)
customer = os.path.join(raw_dir, "customer.csv")
customer_df = pd.read_csv(customer, na_values="?", skipinitialspace=True)
print(credit_card_df.columns)
print(customer_df.columns)
Index(['Client_Num', 'Card_Category', 'Annual_Fees', 'Activation_30_Days',
       'Customer_Acq_Cost', 'Week_Start_Date', 'Week_Num', 'Qtr',
       'current_year', 'Credit_Limit', 'Total_Revolving_Bal',
       'Total_Trans_Amt', 'Total_Trans_Vol', 'Avg_Utilization_Ratio',
       'Use Chip', 'Exp Type', 'Interest_Earned', 'Delinquent_Acc'],
      dtype='object')
Index(['Client_Num', 'Customer_Age', 'Gender', 'Dependent_Count',
       'Education_Level', 'Marital_Status', 'state_cd', 'Zipcode', 'Car_Owner',
       'House_Owner', 'Personal_loan', 'contact', 'Customer_Job', 'Income',
       'Cust_Satisfaction_Score'],
      dtype='object')
```

Merge the datasets

- Purpose: Combines both datasets using Client_Num as the key.
- inner join ensures only matching records from both datasets are kept.

merged_df = pd.merge(credit_card_df, customer_df, on="Client_Num", how="inner")

merged_df

	Client_Num	Card_Category	Annual_Fees	Activation_30_Days	Customer_Acq_Cost	Week_
0	708082083	Blue	200	0	87	01-01-
1	708083283	Blue	445	1	108	01-01-
2	708084558	Blue	140	0	106	01-01-
3	708085458	Blue	250	1	150	01-01-
4	708086958	Blue	320	1	106	01-01-
10103	827695683	Blue	340	1	106	24-12-
10104	827703258	Blue	395	1	104	24-12-
10105	827712108	Blue	125	1	107	24-12-
10106	827888433	Blue	410	0	96	24-12-
10107	827890758	Blue	100	0	43	24-12-

We also inspect the dataset's shape. We see that the data has 32,561 rows and 15 columns

```
merged_df.shape
```

(10108, 32)

In addition, we check the data types using .info.

merged_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10108 entries, 0 to 10107
Data columns (total 32 columns):
```

#	Column	Non-Null Count	Dtype
0	Client Num	10108 non-null	int64

```
Card_Category
                             10108 non-null object
 1
2
    Annual_Fees
                             10108 non-null
                                             int64
 3
    Activation_30_Days
                             10108 non-null
                                             int64
 4
    Customer_Acq_Cost
                             10108 non-null int64
 5
    Week Start Date
                             10108 non-null object
6
    Week_Num
                             10108 non-null object
7
    Qtr
                             10108 non-null object
8
    current_year
                             10108 non-null int64
9
    Credit_Limit
                             10108 non-null float64
 10 Total_Revolving_Bal
                             10108 non-null int64
    Total_Trans_Amt
                             10108 non-null int64
 11
 12 Total_Trans_Vol
                             10108 non-null int64
 13 Avg_Utilization_Ratio
                             10108 non-null float64
 14 Use Chip
                             10108 non-null object
 15 Exp Type
                             10108 non-null object
 16 Interest_Earned
                             10108 non-null float64
 17
    Delinquent_Acc
                             10108 non-null int64
 18 Customer_Age
                                            int64
                             10108 non-null
 19
    Gender
                             10108 non-null object
 20 Dependent Count
                             10108 non-null int64
21 Education_Level
                             10108 non-null object
22 Marital Status
                             10108 non-null object
                             10108 non-null object
23 state_cd
24 Zipcode
                             10108 non-null int64
25 Car_Owner
                             10108 non-null object
 26 House_Owner
                             10108 non-null object
 27 Personal_loan
                             10108 non-null object
 28 contact
                             10108 non-null
                                             object
 29
    Customer_Job
                             10108 non-null
                                             object
30 Income
                             10108 non-null
                                             int64
    Cust_Satisfaction_Score 10108 non-null
                                             int64
dtypes: float64(3), int64(14), object(15)
```

memory usage: 2.5+ MB

Data Cleaning

1. Understanding Datasets

Table 1: summary of dataset columns

Column Name	Description	Type	Values / Range
Client_Num	Unique identifier for each customer	Categori	caUnique alphanumeric
Card_Category	Type of credit card held	Categori	cællue, Silver, Gold, Platinum
Annual_Fees	Annual fee charged for the	Numeric	0 – several hundred
A .: .:	credit card	NT ·	(currency units)
Activation_30_Da	yGard activated within 30 days $(1 = Yes, 0 = No)$	Numeric	0, 1
Customer_Acq_C	octost to acquire the customer	Numeric	Positive numeric
Week_Start_Date	Start date of the observation week	Categori	caYYYY-MM-DD format
$Week_Num$	Week number label	Categori	caWeek-1 to Week-52
Qtr	Financial quarter	Categori	caQ1, Q2, Q3, Q4
current_year	Year of data collection		2020, 2021, etc.
Credit_Limit	Maximum credit limit		Positive numeric
Total_Revolving_	Bacvolving balance from past months	Numeric	Positive numeric
Total Trans Amt	Total transaction amount	Numeric	Positive numeric
-	Total number of transactions	Numeric	Positive integer
	Ratiedit utilization ratio		0.0 - 1.0
Use Chip	Whether card has a chip		caYes, No
Exp Type	Type of expense	_	carravel, Shopping, Food, etc.
Interest_Earned	Interest earned by customer	_	Positive numeric
Delinquent_Acc	Number of delinquent accounts	Numeric	0 and above
Customer_Age	Age of the customer	Numeric	18 - 90 +
Gender	Gender of the customer	Categori	caMale, Female
Dependent_Count	Number of dependents	Numeric	0 - 10 +
Education_Level	Highest education level	Categori	calligh School, Graduate, PhD, etc.
Marital Status	Marital status	Catagori	
Maritai_Status	Maritai status	Categori	calingle, Married, Divorced, etc.
$state_cd$	Customer state code	Categori	caTwo-letter state codes
Car_Owner	Car ownership	Categori	calles, No
House_Owner	House ownership	Categori	calles, No
Personal_loan	Has a personal loan	Categori	calles, No
Customer_Job	Occupation or job type	Categori	c&Businessman, Selfemployed, etc.
Income	Annual income	Numeric	In currency units (e.g., 10,000 – 100,000+)
Cust_Satisfaction_	Satisfaction score	Numeric	
Month	Month of the activity		callan, Feb,, Dec

2. Deal with missing values and Duplicated Values

Duplicates can distort statistical summaries and model performance. Using .duplicated().sum(), we count duplicate records.

```
merged_df.duplicated().sum()
```

0

We inspect to ensure we don't have any duplicated values. using isna().sum()

merged_df.isna().sum()

Client_Num	0
Card_Category	0
Annual_Fees	0
Activation_30_Days	0
Customer_Acq_Cost	0
Week_Start_Date	0
Week_Num	0
Qtr	0
current_year	0
Credit_Limit	0
Total_Revolving_Bal	0
Total_Trans_Amt	0
Total_Trans_Vol	0
Avg_Utilization_Ratio	0
Use Chip	0
Exp Type	0
Interest_Earned	0
Delinquent_Acc	0
Customer_Age	0
Gender	0
Dependent_Count	0
Education_Level	0
Marital_Status	0
state_cd	0
Zipcode	0
Car_Owner	0
House_Owner	0
Personal_loan	0

contact	0
Customer_Job	0
Income	0
Cust_Satisfaction_Score	0

dtype: int64

3. Standardized Categorical Variables

Remove any leading or trailing spaces and convert the strings to lowercase

To prepare categorical variables for consistent processing, we first of all remove extra spaces and convert them to lowercase. This step ensures categorical variables are clean and consistently organized.

merged_df.dtypes == object

Client_Num	False
Card_Category	True
Annual_Fees	False
Activation_30_Days	False
Customer_Acq_Cost	False
Week_Start_Date	True
Week_Num	True
Qtr	True
current_year	False
Credit_Limit	False
Total_Revolving_Bal	False
Total_Trans_Amt	False
Total_Trans_Vol	False
Avg_Utilization_Ratio	False
Use Chip	True
Exp Type	True
Interest_Earned	False
Delinquent_Acc	False
Customer_Age	False
Gender	True
Dependent_Count	False
Education_Level	True
Marital_Status	True
state_cd	True
Zipcode	False
Car_Owner	True

```
House_Owner True
Personal_loan True
contact True
Customer_Job True
Income False
Cust_Satisfaction_Score False
```

dtype: bool

```
merged_df.columns[(merged_df.dtypes == object)]
```

```
categorical_cols = merged_df.columns[merged_df.dtypes == object]
for col in categorical_cols:
    merged_df.loc[:,col] = merged_df[col].str.strip().str.lower()
```

merged_df.head(5)

	Client_Num	Card_Category	Annual_Fees	Activation_30_Days	Customer_Acq_Cost	Week_Sta
0	708082083	blue	200	0	87	01-01-2023
1	708083283	blue	445	1	108	01-01-2023
2	708084558	blue	140	0	106	01-01-2023
3	708085458	blue	250	1	150	01-01-2023
4	708086958	blue	320	1	106	01-01-2023

Re-code Gender column

We re-coded the Gender column to replace shorthand values with more descriptive labels, improving clarity and consistency. Table 2 shows the updated encoding:

```
merged_df['Gender'].unique()
```

```
array(['f', 'm'], dtype=object)
```

```
merged_df.loc[:, "Gender"] = merged_df["Gender"].replace({
    "f": "Female",
    "m": "Male",
})
```

```
merged_df['Gender'].unique()
```

```
array(['Female', 'Male'], dtype=object)
```

create month column

To analyze trends over time more effectively, we extracted the month name from the Week_Start_Date column. First, we converted the Week_Start_Date to a proper date-time format using pd.to_datetime(). Then, we derived the full month name using .dt.strftime("%B"). This transformation helps in grouping and visualizing data by calendar months.

Re-code the state_cd column

dtype=object)

We re-coded the state_cd column to replace two-letter state abbreviations with full U.S. state names. This improves readability and helps non-technical stakeholders understand the data more easily. Table 3 shows a sample of the new encoding:

Table 3: Re-encoding of the state_cd column

Old State	New State
CA	California
TX	Texas

```
Old State New State

NY New York

FL Florida

IL Illinois
...
```

```
merged_df["state_cd"] = merged_df["state_cd"].str.upper()
merged_df['state_cd'].unique()
array(['FL', 'NJ', 'NY', 'TX', 'CA', 'MO', 'MA', 'IA', 'AK', 'MI', 'GA',
       'CT', 'IL', 'VA', 'UT', 'HI', 'AZ', 'WA', 'NV', 'CO', 'MN', 'AR',
       'PA', 'OR', 'OH', 'NM', 'SC', 'NE'], dtype=object)
merged_df["state_cd"] = merged_df["state_cd"].replace({
    "AL": "Alabama", "AK": "Alaska", "AZ": "Arizona", "AR": "Arkansas", "CA": "California",
    "CO": "Colorado", "CT": "Connecticut", "DE": "Delaware", "FL": "Florida", "GA": "Georgia
    "HI": "Hawaii", "ID": "Idaho", "IL": "Illinois", "IN": "Indiana", "IA": "Iowa",
    "KS": "Kansas", "KY": "Kentucky", "LA": "Louisiana", "ME": "Maine", "MD": "Maryland",
    "MA": "Massachusetts", "MI": "Michigan", "MN": "Minnesota", "MS": "Mississippi", "MO": "
    "MT": "Montana", "NE": "Nebraska", "NV": "Nevada", "NH": "New Hampshire", "NJ": "New Jers
    "NM": "New Mexico", "NY": "New York", "NC": "North Carolina", "ND": "North Dakota", "OH"
    "OK": "Oklahoma", "OR": "Oregon", "PA": "Pennsylvania", "RI": "Rhode Island", "SC": "Sou
    "SD": "South Dakota", "TN": "Tennessee", "TX": "Texas", "UT": "Utah", "VT": "Vermont",
    "VA": "Virginia", "WA": "Washington", "WV": "West Virginia", "WI": "Wisconsin", "WY": "W
})
merged_df['state_cd'].unique()
array(['Florida', 'New Jersey', 'New York', 'Texas', 'California',
       'Missouri', 'Massachusetts', 'Iowa', 'Alaska', 'Michigan',
       'Georgia', 'Connecticut', 'Illinois', 'Virginia', 'Utah', 'Hawaii',
       'Arizona', 'Washington', 'Nevada', 'Colorado', 'Minnesota',
       'Arkansas', 'Pennsylvania', 'Oregon', 'Ohio', 'New Mexico',
       'South Carolina', 'Nebraska'], dtype=object)
```

Displayed Merged Dataset

```
merged_df
```

	$Client_Num$	Card_Category	Annual_Fees	Activation_30_Days	$Customer_Acq_Cost$	$Week_{\underline{\ }}$
0	708082083	blue	200	0	87	2023-0
1	708083283	blue	445	1	108	2023-0
2	708084558	blue	140	0	106	2023-0
3	708085458	blue	250	1	150	2023-0
4	708086958	blue	320	1	106	2023-0
•••						•••
10103	827695683	blue	340	1	106	2023 - 1
10104	827703258	blue	395	1	104	2023-1
10105	827712108	blue	125	1	107	2023-1
10106	827888433	blue	410	0	96	2023-1
10107	827890758	blue	100	0	43	2023-1

Create age group based on the Customer_Age column

Age is binned into groups such as <21-25, 26-35, \cdots , 75 to facilitate easier demographic analysis.

Drop unnecessary columns

After recoding, some columns such as Zipcode, and contact become redundant. We drop them to avoid multicollinearity and simplify our dataset.

```
merged_df.drop(columns=["Zipcode", "contact"], inplace=True)
```

merged_df

	Client_Num	Card_Category	Annual_Fees	Activation_30_Days	Customer_Acq_Cost	Week_
0	708082083	blue	200	0	87	2023-0
1	708083283	blue	445	1	108	2023-0
2	708084558	blue	140	0	106	2023-0
3	708085458	blue	250	1	150	2023-0
4	708086958	blue	320	1	106	2023-0
10103	827695683	blue	340	1	106	2023-1
10104	827703258	blue	395	1	104	2023-1
10105	827712108	blue	125	1	107	2023-1
10106	827888433	blue	410	0	96	2023-1
10107	827890758	blue	100	0	43	2023-1

Save the Clean Dataset

Before saving the clean dataset, we re-inspect it to ensure no new issues have risen up due to re-encoding. We first of all inspect the shape of the dataset. We see that we have 10108 rows and 31 columns. This means that there is a new column, Month, added to the original dataset.

```
merged_df.shape
```

(10108, 31)

```
merged_df.columns
```

```
'Total_Trans_Amt', 'Total_Trans_Vol', 'Avg_Utilization_Ratio',
'Use Chip', 'Exp Type', 'Interest_Earned', 'Delinquent_Acc',
'Customer_Age', 'Gender', 'Dependent_Count', 'Education_Level',
'Marital_Status', 'state_cd', 'Car_Owner', 'House_Owner',
'Personal_loan', 'Customer_Job', 'Income', 'Cust_Satisfaction_Score',
'Month'],
dtype='object')
```

Save Merged dataset

Finally, we save the clean, processed dataset as a CSV file in our processed directory for future modelling and analysis.

```
merged_df.to_csv("Credit_Card_Financial.csv", index=False)
clean_filename = os.path.join(processed_dir, "Credit_Card_Financial.csv")
merged_df.to_csv(clean_filename, index=False)
print(f"\nCleaned data saved to: {clean_filename}")
```

Cleaned data saved to: C:\Users\user\Documents\tekHer\LookerStudio\Credit-Card-Financial\data