Devoir Maison nº 22

Exercice 1 - Divers

1. Les applications suivantes sont-elles linéaires?

•
$$f_1: \left\{ \begin{array}{l} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (3z,x-2y,x) \end{array} \right.$$
 • $f_2: \left\{ \begin{array}{l} \mathscr{C}^\infty(\mathbb{R},\mathbb{R}) \to \mathbb{R} \\ \varphi \mapsto e^4 \times \varphi^{(3)}(2) \end{array} \right.$ • $f_3: \left\{ \begin{array}{l} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (xy,x-y,y-z) \end{array} \right.$

Les applications f_1 et f_2 sont-elles injectives?

2. Soit E un espace vectoriel et soit $u \in \mathcal{L}(E)$ vérifiant $u^3 = u$. Montrer que $E = \ker u \oplus \operatorname{Im} u^2$.

Exercice 2 - Cœur et nilespace

Soit E un espace vectoriel et soit $u \in \mathcal{L}(E)$.

- 1. Montrer que pour tout $n \ge 1$, $\ker u^n \subset \ker u^{n+1}$.
- 2. Démontrer une inclusion analogue pour les images. Dans la suite on suppose qu'il existe $n_0 \ge 1$ et $n_1 \ge 1$ tels que $\ker u^{n_0} = \ker u^{n_0+1}$ et $\operatorname{Im} u^{n_1} = \operatorname{Im} u^{n_1+1}$.
- 3. Montrer que $\ker u^{n_0+1} = \ker u^{n_0+2}$ puis que pour tout $p > n_0$, $\ker u^p = \ker u^{p+1}$.
- 4. Montrer un résultat analogue pour les images.
- 5. Montrer qu'il existe n_2 tel que pour tout $p \ge n_2$, $\ker u^{n_2} = \ker u^p$ et $\operatorname{Im} u^{n_2} = \operatorname{Im} u^p$.
- 6. Montrer que $\ker u^{n_2} \cap \operatorname{Im} u^{n_2} = \{0\}.$

Exercice 3

On note E l'espace vectoriel réel des fonctions continues de \mathbb{R} dans \mathbb{R} , E_1 le sous-ensemble de E constitué des fonctions périodiques de période 1, T l'application qui, à une fonction f de E fait correspondre la fonction T(f) = g définie par :

$$\forall x \in \mathbb{R}$$
 $g(x) = \int_{x}^{x+1} f(t) dt$

- 1. (a) Montrer que E_1 est un espace vectoriel.
 - (b) Montrer que pour tout $f \in E$, la fonction g = T(f) est de classe \mathscr{C}^1 sur \mathbb{R} et donner sa dérivée.
 - (c) En déduire que T est à valeurs dans E. T est-il surjectif?
 - (d) Montrer que T est un endomorphisme de E.
 - (e) Montrer que g est constante si et seulement si $f \in E_1$.
 - (f) Expliciter q dans le cas où f est la fonction définie sur \mathbb{R} par $f(t) = |\sin(\pi t)|$.

On appelle vecteur propre de T associé à la valeur propre $\lambda \in \mathbb{R}$ toute fonction $f \in E$, autre que la fonction nulle, telle que $T(f) = \lambda f$. Un réel λ est valeur propre de T s'il existe un vecteur propre associé à λ . Par exemple, un vecteur propre associé à la valeur propre 0 est tout simplement un élément non nul du noyau.

- 2. (a) Montrer que : $f \in \ker T \iff f \in E_1$ et $\int_0^1 f(t) dt = 0$. L'application T est-elle injective?
 - (b) Vérifier que pour tout réel a, la fonction $h_a: t \mapsto e^{ta}$ est vecteur propre de T et préciser la valeur propre associée.
 - (c) Justifier que l'ensemble des valeurs propres de T contient \mathbb{R}^+ .
- 3. On suppose qu'il existe $L \in \mathbb{R}$ tel que $f(x) \xrightarrow[x \to +\infty]{} L$. Montrer que $g(x) \xrightarrow[x \to +\infty]{} L$. Que dire de la réciproque (on pourra simplement prendre L = 0)?

Page 1/2 2023/2024

MP2I Lycée Faidherbe

Problème (facultatif) - Formes linéaires positives

Partie A - Formes linéaires positives.

On se donne dans cette partie deux réels 0 < a < b et on pose I = [a, b]. On note $E = \mathcal{C}([a, b], \mathbb{R})$ et on rappelle que E est un espace vectoriel de référence.

Une application $\mu: E \to \mathbb{R}$ est appelée une forme linéaire positive si elle est linéaire et si $\mu(f) \geq 0$ pour toute fonction $f \in E$ positive sur [a, b].

1. (a) Montrer que

$$\mu_1: \left\{ \begin{array}{l} E \to \mathbb{R} \\ f \mapsto f(a) \end{array} \right. \quad \text{et} \quad \mu_2: \left\{ \begin{array}{l} E \to \mathbb{R} \\ f \mapsto \int_a^b f(t) dt \end{array} \right.$$

sont des formes linéaires positives.

(b) μ_1 et μ_2 sont-elles injectives? surjectives?

Dans la suite de cette partie et dans la suivante, on se donne

- μ une forme linéaire positive.
- pour tout $x \in \mathbb{R}$, la fonction $\varphi_x : t \mapsto e^{-xt}$ définie sur I.
- la fonction $\tilde{\mu}$ définie sur I par $\tilde{\mu}(x) = \mu(\varphi_x)$.
- 2. Expliciter $\tilde{\mu}$ quand $\mu = \mu_1$ puis quand $\mu = \mu_2$. Dans la suite, μ est de nouveau quelconque, ces deux formes linéaires n'étant prises qu'à titre d'exemple.
- 3. Montrer que si $f \leq g$ sont des éléments de E alors $\mu(f) \leq \mu(g)$ (attention, f et g ne sont pas forcément positives).
- 4. Montrer que $\tilde{\mu}$ est positive et décroissante sur I.
- 5. En se souvenant que $f \leq |f|$ et que $-f \leq |f|$, montrer que $|\mu(f)| \leq \mu(|f|)$.
- 6. Soit $f \in E$. Justifier l'existence de $M = \max_{[a,b]} |f|$. En déduire que $\mu(|f|) \leq M \times \mu(g)$ où g est la fonction constante égale à 1.

En particulier, si on veut majorer $\mu(|f|)$, il suffit de donner un majorant de la fonction |f| (indépendant de t, naturellement, mais qui peut dépendre d'autres paramètres, comme $x, n, x_0 \dots$). Cette question est importante dans la partie suivante. À chaque fois qu'on l'utilisera, on n'oubliera pas de la citer, ainsi que de rappeler la définition de la fonction g.

Partie B - Lien avec les fonctions CM.

On reprend dans cette partie les notations de la partie précédente $(\mu, \varphi_x, \tilde{\mu})$. Dans toute la partie on se donne $x_0 \in I$.

- 1. (a) Montrer que pour tout $x \in I$, $|\tilde{\mu}(x) \tilde{\mu}(x_0)| \le \mu (|\varphi_x \varphi_{x_0}|)$.
 - (b) Montrer que pour tout $x \in I$ et tout $t \in I$, $|\varphi_x(t) \varphi_{x_0}(t)| \le be^{-a^2} \times |x x_0|$.
 - (c) En déduire que $\tilde{\mu}$ est continue en x_0 et donc sur I.
- 2. On se donne dans cette question un entier naturel n.
 - (a) Montrer que pour tout réel $u, |e^u 1 u| \le (1 + e^u) \times \frac{u^2}{2}$.
 - (b) En déduire que pour tout $t \in I$ et tout $x \in I$

$$\left|\frac{t^n e^{-xt} - t^n e^{-x_0 t}}{x - x_0} + t^{n+1} e^{-x_0 t}\right| \leq \frac{t^{n+2} e^{-x_0 \times t}}{2} \times \left(1 + e^{(x_0 - x)t}\right) |x_0 - x| \leq \frac{b^{n+2} e^{-x_0 \times a}}{2} \times \left(1 + e^{|x_0 - x|b}\right) |x_0 - x|$$

On mettra le membre de gauche au même dénominateur et on mettra $t^n e^{-x_0 t}$ en facteur (mais on aurait dû y penser tout seul si le prof de maths n'était pas si gentil). On définit dans la suite la fonction $h_{n,x}$ sur I par $h_{n,x}(t) = t^n e^{-xt}$ et on note enfin $\Delta(x) = \mu(h_{n,x})$ (définie donc sur I également).

- (c) Montrer à l'aide de la question précédente que Δ est dérivable et que pour tout $x_0 \in I, \Delta'(x_0) = -\mu(h_{n+1,x_0})$.
- (d) Montrer par récurrence que $\tilde{\mu}$ est \mathscr{C}^{∞} et que pour tout $n, \tilde{\mu}^{(n)}(x) = (-1)^n \mu(h_{n,x})$.
- 3. Montrer finalement que $\tilde{\mu}$ est complètement monotone, c'est-à-dire (cf. exercice 56 du chapitre 14) que, pour tout $n \in \mathbb{N}$, $\tilde{\mu}^{(n)}$ est du signe de $(-1)^n$.

Page 2/2 2023/2024