Plano de Ensino e Introdução

RODRIGO LYRA

- •Classificação dos paradigmas de programação:
 - o Introdução aos paradigmas de programação
 - o Principais paradigmas de programação

- Paradigmas declarativos e imperativos:
 - Vantagens e Desvantagens de cada paradigma
 - Introdução à orientação a objetos

- Programação funcional:
 - o Funções de Alta Ordem
 - Currying
 - Funtores e Mônadas

- Programação em lógica:
 - Conceitos
 - Aplicações

Plano de Ensino - Avaliações

Média Final = 6,00Limite de Falta = 25%

Objetivo da disciplina

•Estudar conceitos sobre linguagens de programação e seus paradigmas, tornando-se apto a adotar decisões de projetos que envolvem a seleção de linguagens de programação mais adequadas para o desenvolvimento de aplicações computacionais.

Organização de Computadores

- •Os computadores executam milhões de operações a velocidades incríveis.
- •As operações são organizadas por meio de um conjunto de instruções.
- Esse conjunto de instruções é o programa.
- •Quem executa o programa é o processador.

Figura 1 Representação dos principais componentes de um computador.

- •É necessário que os programas sejam escritos em uma linguagem que o computador entenda.
- •Essa linguagem é chamada linguagem de máquina.
 - •0100 1111 1010 0110
- •É pouco intuitiva para os seres humanos.
- •Foram desenvolvidas linguagens de mais alto-nível.

Figura 9 Processo de compilação de um código-fonte na linguagem de programação C.

•Compiladas: todas as instruções são traduzidas para instruções de baixo nível antes da execução do programa.

•Interpretadas: as instruções são traduzidas para instruções de baixo nível à medida que vão sendo executadas.

Métodos de Programação

- •A elaboração de programas complexos requer a utilização de um método sistemático de programação que permita obter programas confiáveis, flexíveis e eficientes. Salvetti (1998, p. 5)
- •Sugere-se adotar um método de programação em etapas.

Métodos de Programação

- 1. Análise do problema a ser resolvido;
- Projeto do programa que resolverá o problema, incluindo a elaboração de um algoritmo e a definição das estruturas de dados a serem utilizadas;
- 3. Implementação (codificação) do programa;
- 4. Testes.

Algoritmo

O que é um algoritmo?

- É a descrição de uma sequência de passos ordenadas e finita que deve ser seguida para a realização de uma tarefa.
- É uma descrição de como realizar uma tarefa independente da linguagem/hardware.
- Não se preocupa com detalhes de implementação em uma linguagem.

Pseudocódigo

Faz uso de uma notação baseada em linguagem natural.

Um algoritmo é composto por um nome, as variáveis e o bloco principal

- •Fornece e determina a visão que o programador possui sobre a estruturação e execução do programa.
- Assim como diferentes grupos em engenharia de software propõem diferentes metodologias, diferentes linguagens de programação propõem diferentes paradigmas de programação.

- Um paradigma específico:
 - Java- Orientações a objetos
 - Haskell- Funcional

- Múltiplos paradigmas:
 - LISP, Perl, Python, C++, Oz

- •Os paradigmas de programação são muitas vezes diferenciados pelas técnicas de programação que proíbem ou permitem.
- •O relacionamento entre paradigmas de programação e linguagens de programação pode ser complexo.

- •Se dividem em dois grandes grupos:
 - Imperativo
 - Declarativo

- •Os paradigmas imperativos são aqueles que facilitam a computação por meio de mudanças de estado. Se dividem principalmente em:
 - O paradigma estruturado: Algol 60.
 - O paradigma procedural: Fortran e o Basic.
 - o O paradigma de orientação a objetos: C++, Java, Python e Ruby

- •A arquitetura dos computadores exerceu um efeito crucial sobre o projeto das linguagens de programação.
- Arquitetura de Von Neumann se caracteriza pela possibilidade de uma máquina digital armazenar seus programas no mesmo espaço de memória que os dados, podendo assim manipular tais programas.

- •O modelo imperativo de programação baseia-se no modo de funcionamento do computador.
- •O paradigma imperativo é predominante nas LPs, pois tais linguagens são mais fáceis de traduzir para uma forma adequada para execução na máquina.

- Linguagens imperativas são caracterizadas por três conceitos: variáveis, atribuições e sequências.
- O estado de um programa imperativo é mantido em variáveis de programa que são associados com localizações de memória que correspondem a um endereço e um valor de armazenamento.
- •O valor da variável pode ser acessado direta e indiretamente, e pode ser alterado através de um comando de atribuição. O comando de atribuição introduz uma dependência de ordem no programa: o valor de uma variável é diferente antes e depois de um comando de atribuição.

- Já as funções de linguagem de programação imperativas são descritas como algoritmos que especificam como processar um intervalo de valores, a partir de um valor de domínio, com uma série de passos prescritos.
- A repetição, ou laço, é usada extensivamente para processar os valores desejados. Laços são usados para varrer uma sequência de localizações de memória tal como vetores, ou para acumular um valor em uma variável específica.

- •As características centrais das linguagens imperativas são:
 - As variáveis, que modelam as células de memória;
 - Comandos de atribuição, que são baseados nas operações de transferência dos dados e instruções;
 - A execução sequencial de instruções;
 - A forma iterativa de repetição, que é o método mais eficiente desta arquitetura.

Vantagens

- Eficiência (embute o modelo de Von Neumann)
- Mais fácil de traduzir para a linguagem de máquina
- Paradigma dominante e bem estabelecido
- Modelagem "Natural" de aplicações do mundo real
- Também é muito flexível.

Desvantagens

- Descrições demasiadamente operacionais
- o Focaliza o "como" e não o "quê"

- •Alguns exemplos de linguagens de programação que baseiam-se no modelo imperativo:
 - Ada
 - Algol
 - Basic
 - o C/C++
 - o PHP
 - Java
 - Cobol
 - Fortran
 - Pascal
 - Python
 - Lua
 - Mathematica

Programação Declarativa

•Já a Programação declarativa é um paradigma de programação baseado em programação funcional, programação lógica ou programação restritiva. Um programa se diz declarativo quando descreve o que ele faz e não como seus procedimentos funcionam. Na programação declarativa, não há a ideia de estado do programa, como ocorre na programação imperativa.

Programação Declarativa

Vantagens:

- Reduzir efeito colaterais
- Minimizar mutabilidade
- Mais legibilidade e menos bugs

Desvantagens:

 Não oferece alocação explícita de memória ou declaração explícita de variáveis, necessários para a resolução de muitos problemas reais.