

The National Academies of SCIENCES • ENGINEERING • MEDICINE

SPACE STUDIES BOARD

Achieving Science with CubeSats: Thinking Inside the Box

Committee Chair: Thomas H. Zurbuchen, University of Michigan

Vice Chair: Bhavya Lal, IDA Science and Technology Policy Institute

Study Director: Abigail Sheffer, Program Officer, SSB

Committee Membership

Julie Castillo-Rogez, Jet Propulsion Laboratory, Caltech Andrew Clegg, Google, Inc. Bhavya Lal, (Vice Chair), IDA Science and Technology Policy Inst. Paulo Lozano, Massachusetts Institute of Technology Malcolm Macdonald, University of Strathclyde Robyn Millan, Dartmouth College Charles D. Norton, Jet Propulsion Laboratory, Caltech William H. Swartz, Johns Hopkins University, Applied Physics Lab Alan M. Title, Lockheed Martin Space Technology Adv. R&D Labs Thomas N. Woods, University of Colorado Boulder Edward L. Wright, University of California, Los Angeles A. Thomas Young, Lockheed Martin Corporation [Retired] Thomas H. Zurbuchen (Chair), University of Michigan

Key Elements of Charge to Committee

- Develop a summary of status, capability, availability, and accomplishments in the government, academic, and industrial sectors
- Recommend potential near-term investments that could be made to improve the capabilities and usefulness of CubeSats for scientific return and to enable the science communities' use of CubeSats
- Identify a set of sample priority science goals that describe near-term science opportunities

Overview

- 1. Based on detailed analysis of available data
- 2. Recognized similarity to disruptive innovation
- 3. Analysis of science publications: CubeSats can do high priority science
- 4. Science potential in all science divisions to varying degrees. However, not every application is appropriate for CubeSats.
- 5. Potential is materialized if a number of conditions are fulfilled
 - 1. Technology and connections to industry
 - 2. Policy issues
 - 3. Programmatic and management issues

US CubeSats Launched – by Mission Type

International Participation

Concept of a Disruptive Innovation

- "Process by which a product or service takes root initially in simple applications at the bottom of a market and then relentlessly moves up market [...]." Clayton Christenson, 1995
- Has been used to describe many shifts in the economy
 - Personal computers (that disrupted the mainframe computer industry)
 - Cellular phones (that disrupted fixed line telephony)
 - Smartphones (that continue disruption of multiple sectors, computers, digital cameras, telephones, and GPS receivers)
- End-state and especially level of disruption is unclear at beginning

CubeSats Share Characteristics of Disruptive Innovations

- Performance. Early CubeSats were essentially "beepsats"
- Cost. Hardware for a basic CubeSat can be purchased for a few tens of thousands of dollars
- Users. CubeSats are introducing students and other participants to space technology; introducing the potential for new functionalities such as stop-andstare and multi-hundred/thousand swarm systems
- Speed. CubeSats began as platforms for technology testing, and are being considered for advanced missions such providing real-time relay communication
- Origin. Introduced by educators not the stalwarts of aerospace
- **Enabling technology.** Propelled by advances in software, processing power, data storage, camera technology, compression and solar array efficiency
- Development models. Adopted by entrepreneurs using fly-test-refly and other lean manufacturing technology and business models

End-state and especially level of disruption CubeSats may create is unclear

What CubeSats Can Enable

- They are standardized creation of supply chain
- They are cheaper conduct of higher risk activities, "fly-learn-refly" paradigm
- Enables new mission types, especially high-risk orbits and secondary lines of sights, as well as targeted science
- Enables creation of entirely new architectures, especially constellations and swarms

Number of CubeSat Publications

Conclusion: CubeSats have already produced high-value science, as demonstrated by peer-reviewed publications in high-impact journals. {...}

CubeSat Example for High-Risk Orbits, with other Mission

Colorado Student Space Weather Experiment (CSSWE)

Example: Constellations/Swarms

Constellations for Space Weather

"Instrumenting Space" through Distributed Architectures

Example: Targeted Science: 1 Instrument, 1 Question

Enabling Technology by Science Discipline

Science Discipline	Enabling Technology	Example Application
	Propulsion	Constellation deployment and maintenance,
		formation flight
Solar and Space	Sub-arcsecond attitude control	High resolution solar imaging
Physics	Communications	Missions beyond low Earth orbit
,	Miniaturized field and plasma	In-situ measurements of upper atmosphere
	sensors	plasmas
Earth Science	Propulsion	Constellations for high-temporal resolution
		observation and orbit maintenance
	Miniaturized sensors	Stable, repeatable and calibrated datasets
	Communications	High data rate
	Propulsion	Orbit insertion
Planetary Science	Communications Comm	Direct/in direct to Forth consequences
	Communications, Comm Infrastructure	Direct/indirect to Earth communications
	Radiation-tolerant electronics	Enhanced survival in planetary magnetospheres, long duration flight
	Deployables	Enhanced power generation beyond Mars
	Propulsion	Constellations for interferometry, distributed
		apertures
Astronomy and	Sub-arcsecond attitude control	High resolution imaging
Astrophysics	Communications	High data rate
	Deployables	Increase aperture and thermal control
	Miniaturized sensors	UV and X-ray imaging
Physical and	Thermal control	Stable payload environment
Biological		15-

Illustrating Speed of Development: Attitude Control

Policy Issues Considered

- Regulatory framework for CubeSats is nearly identical to that of large spacecraft
- Issues particularly affecting or potentially limiting the development of CubeSats as a science tool
 - Orbital debris
 - Communications
 - Launch vehicles
 - Other restrictions affecting the community, such as ITAR, etc.

Overview

- 1. Based on detailed analysis of available data
- 2. Recognized similarity to disruptive innovation
- 3. Analysis of science publications: CubeSats can do high priority science
- 4. Science potential in all science divisions to varying degrees. However, not every application is appropriate for CubeSats.
- Potential is materialized if a number of conditions are fulfilled
 - 1. Technology and connections to industry
 - 2. Policy issues
 - 3. Programmatic and management issues

Download full report at: goo.gl/osCSQ3 Full presentation: goo.gl/fQXXYp

Questions, Comments?

