E.M.B

Chapter 6: THE GROUP CONCEPT

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- define a group
- define a unit, unity
- show that the sets Z,R and the set of complex numbers are groups under addition
- show that the set R excluding zero and the set of complex numbers excluding zero are groups under multiplication
- ф

Definition (6.1.1)

A set G with an associative binary operation \star , written $\langle G, \star \rangle$ is called a group if

- (i) G is closed under * for any a, b in G we have that the product of a and b is in G
- (ii) \star is associative on G for any a,b,c in G (ab)c=(ab)c
- (iii there exists a unique element e (sometimes 0 or1) called identity or unity with e * g = g * e = g for each $g \in G$ and
- for each $g \in G$ there is an inverse $g^{-1} \in G$ such that $g \star g^{-1} = g^{-1} \star g = e$.

E.M.B

Definition (6.1.2)

If $g \star h = h \star g$ for each $g, h \in G$, then G is an abelian group.

NOTE: The words or concepts of "'binary operation," "'unity or identity", "'inverse" and "'closed" need to be fully explored.

Part 1 E.M.B

Definition (6.1.3 Binary operation \star acting on S.)

[Recall from Chapter 5] A binary operation \star acting on S is a well defined mapping $\star: S \times S \to S$ that assigns each pair of elements $(a,b) \in S \times S$ with a unique element $a \star b \in S$. i.e $\star(a,b) = a \star b \in S$.

Definition (6.2.1 (1)) (closure of a set 5 under a given binary operation)

Let $\star: S \times S \to S$ be well defined binary mapping or operation Since $\star(a,b) = \underbrace{a \star b \in S}_{} \forall \underbrace{a,b \in S}_{}$, we say that S is closed under \star .

Definition (6.2.1 (2)) (well defined property on SXS)

Since for each $(a,b) \in S \times S$ there is a unique $\star(a,b) = a \star b \in S$ we have $(a_1,b_1) = (a_2,b_2) \Rightarrow \star(a_1,b_1) = \star(a_2,b_2)$ or $a_1 \star b_1 = a_2 \star b_2$. We call this the well defined property of \star on S.

Definition (6.2.1 (3)) (commutativity under a given binary operation)

If $\mathbf{a} \star \mathbf{b} = \mathbf{b} \star \mathbf{a} \quad \forall \mathbf{a}, \mathbf{b} \in \mathcal{S}$, then we say \mathbf{a} and \mathbf{b} are commutative under \star . If \mathbf{S} is an abelian group then $\mathbf{a} \star \mathbf{b} = \mathbf{b} \star \mathbf{a} \quad \forall \mathbf{a}, \mathbf{b} \in \mathcal{S}$.

All elements $\in S$ commute with each other.

Definition (6.2.1 (4)) (associativity of a given timery operation)

- ⋆ is an associative map if
- $a \star (b \star c) = (a \star b) \star c \quad \forall a, b, c \in S.$

Definition (6.2.1 (5)) (Identity element in a group 6 is unique)

The unity or identity element in G is unique and leaves each element of S unchanged under *

$$i.e \star (e, a) = \star (a, e) = a \quad \forall a \in S \text{ or }$$

$$e \star a = a \star e = a \quad \forall a \in S.$$

Definition (6.2.1 (6)) (souther investigated about in S is an element that has an inverse

An element $a \in S$ is called a unit or invertible in S if we can find $b \in S$ such that $a \star b = b \star a = e$.

NOTE: We will show if b exists then b is unique and can be written as a^{-1} , the inverse of a.

NOTE: The inverse of *a* always commutes with *a*. These invertible elements are referred to as Units.

NOTE: unity e is unique, some elements in S may be units. Unity is a unit,

BUT not all units are unity. Unity is unique.

Example (6.2.2 (1))

- \star ordinary addition on \mathbb{Z} , \mathbb{R} , or \mathbb{C} , then $\langle \mathbb{Z}, \star \rangle$, $\langle \mathbb{R}, \star \rangle$, $\langle \mathbb{C}, \star \rangle$ are groups.
 - (i) \mathbb{Z} , \mathbb{R} , \mathbb{C} , are closed under addition.
 - \square addition in \mathbb{Z} , \mathbb{R} , \mathbb{C} , is associative.
 - (iii) identity: e = 0 in \mathbb{Z} , \mathbb{R} , or \mathbb{C} , since

$$x + 0 = 0 + x = x \quad \forall x \in \mathbb{Z}, \mathbb{R}, \mathbb{C}.$$

For any $x \in \mathbb{Z}, \mathbb{R}, \mathbb{C}, -x$ is the inverse of x since x + (-x) = -x + x = 0.

v Indeed $\mathbb{Z}, \mathbb{R}, \mathbb{C}$ are abelian groups under addition $\forall x, y \in \mathbb{Z}, \mathbb{R}, \mathbb{C}$ since x + y = y + x. Thus $\langle \mathbb{Z}, + \rangle, \langle \mathbb{R}, + \rangle, \langle \mathbb{C}, + \rangle$ are abelian groups.

the 4 properties to check in order to show that a given set with a given binary operation is a group E.M.B

Example (6.2.2 (2))

- \star ordinary multiplication on \mathbb{Z} , \mathbb{R} , \mathbb{C}
 - (i) $\mathbb{Z}, \mathbb{R}, \mathbb{C}$ are closed under multiplication.
 - (ii) Multiplication is associative on \mathbb{Z} , \mathbb{R} , \mathbb{C} .
 - m Multiplicative identity or unity is 1, since

$$x \bullet 1 = 1 \bullet x = x \quad \forall x \in \mathbb{Z}, \mathbb{R}, \mathbb{C}.$$

(iv
$$\forall x \in \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}, \quad x^{-1} = \frac{1}{x}, \text{ since } \frac{1}{x} \bullet x = x \bullet \frac{1}{x} = 1.$$

Exercise: (i) Show that the set of rational numbers is a group under addition

(ii) Show that the set of rational numbers excluding zero is a group under multiplication

Please do this exercise

. . . .

Note:

- ♠ 1 and -1 are the only invertible elements in \mathbb{Z} , since 1.1 = 1 and (-1).(-1) = 1. Thus $1^{-1} = 1$ and $(-1)^{-1} = (-1)$.
- ♠ Let $m \in \mathbb{Z}$, $m \neq 0, 1, -1$. If m^{-1} exists say n, then $mn = 1 \Rightarrow n = \frac{1}{m} \notin \mathbb{Z}$.
- ♠ Thus $m \in \mathbb{Z}$, $m \neq 1, -1$ is not invertible, hence $\langle \mathbb{Z}, . \rangle$ is not a group. The set of integers under multiplication is not a group
- $\{\mathbb{R}, \bullet\}, \langle \mathbb{C}, \bullet \rangle$ are not groups since 0 does not have an inverse.
- ♣ Hence $\langle \mathbb{R} \setminus \{0\}, \bullet \rangle, \langle \mathbb{C} \setminus \{0\}, \bullet \rangle$ are groups under multiplication.
- ♣ $\langle \mathbb{Z} \setminus \{0\}, \bullet \rangle$ not a group. Not all elements $m \in \mathbb{Z}$ are units (invertible).