

Poking the Bear: Lessons Learned from Probing Three Android Malware Datasets

Aleieldin Salem and Alexander Pretschner

Technische Universität München

Garching bei München

{salem, pretschn @in.tum.de}

Montpellier, 04.09.2018

Abstract

- Stumbled upon some inconsistencies while experimenting with different Android malware datasets
- Investigate the source of discrepancies
- A series of experiments performed on three Android malware datasets
- Some (interesting) findings

Background

- Working on a solution based on "Active Learning"
- Evaluating on Malgenome vs. Piggybacking
 - Datasets of Repackaged/Piggybacked Malware
 - Malgenome = great results!
 - Piggybacking = mediocre results?
- Trying on AMD and Drebin
 - Works like a charm!
- What the .. ?

Research Questions

- RQ1 : What are the trends adopted by Android malware authors according to the malicious apps in current datasets (i.e., malware families/types, app marketplaces, distribution techniques, etc.)? And how did they evolve over the years?
- **RQ2**: What is the lifespan of a malware dataset within which it can be used to train effective detection methods?
- **RQ3**: How do conventional detection methods (e.g., machine learning classifiers), fare against different malware datasets?
- RQ4 : What are the malware families/types that are most difficult to detect, if any?
- RQ5 : How can malware authors circumvent effective detection methods?

- Infer some information about the malicious instances found in:
 - Malgenome (Zhou et al. 2012)
 - Piggybacking (Li et al. 2017)
 - AMD (Wei et al. 2017)
- VirusTotal detection rates, involved marketplaces, malware types, etc.
- Backed up by information in Euphony (Hurier et al. 2017)

Backed up by information in Euphony (Hurier et al. 2017)

around 50

Dataset	Total Apps	Average # of VT Detectors	Source(s)	Top Families	Top Types
Malgenome (2010-2012)	1234	31.43	Official + Alternative Markets [5]	Droidkungfu (38%) Basebridge (25%) Geinimi (5%)	Trojan (94%) Exploit (3%) Spyware (1%)
Piggybacking (Malicious apps) (2016)	1136	≈ 9	Anzhi (64%) Appchina (12%) Angeeks (5%)	Dowgin (24%) Kuguo (22%) Gingermaster (6%)	Adware (64%) Trojan (25%) Spyware (2%)
AMD (2010-2016)	204 (of 1250)	24.6	Malgenome (29%) Google Play (27%) Appchina (23%)	Droidkungfu (20%) Airpush (8%) Ginmaster (8%)	Trojan (42%) Adware (34%) Exploit (11%)

More information: https://androidmalwareinsights.github.io

Backed up by information in Euphony (Hurier et al. 2017)

around 50

Dataset	Total Apps	Average # of VT Detectors	Source(s)	Top Families	Top Types
Malganama			Official + Alternative	Droidkungfu (38%)	Trojan (94%)
Malgenome	1234	31.43		Basebridge (25%)	Exploit (3%)
(2010-2012)			Markets [5]	Geinimi (5%)	Spyware (1%)
Piggybacking			Anzhi (64%)	Dowgin (24%)	Adware (64%)
(Malicious apps)	1136	≈ 9	Appchina (12%)	Kuguo (22%)	Trojan (25%)
(2016)			Angeeks (5%)	Gingermaster (6%)	Spyware (2%)
AMD	204		Malgenome (29%)	Droidkungfu (20%)	Trojan (42%)
(2010-2016)		24.6	Google Play (27%)	Airpush (8%)	Adware (34%)
	(of 1250)		Appchina (23%)	Ginmaster (8%)	Exploit (11%)

More information: https://androidmalwareinsights.github.io

Backed up by information in Euphony (Hurier et al. 2017)

Dataset	Total Apps	Average # of VT Detectors	Source(s)	Top Families	Top Types
Malganama			Official + Alternative	Droidkungfu (38%)	Trojan (94%)
Malgenome (2010-2012)	1234	31.43		Basebridge (25%)	Exploit (3%)
(2010-2012)			Markets [5]	Geinimi (5%)	Spyware (1%)
Piggybacking			Anzhi (64%)	Dowgin (24%)	Adware (64%)
(Malicious apps)	1136	≈ 9	Appchina (12%)	Kuguo (22%)	Trojan (25%)
(2016)			Angeeks (5%)	Gingermaster (6%)	Spyware (2%)
AMD	204		Malgenome (29%)	Droidkungfu (20%)	Trojan (42%)
AMD (2010-2016)	204	24.6	Google Play (27%)	Airpush (8%)	Adware (34%)
	(of 1250)		Appchina (23%)	Ginmaster (8%)	Exploit (11%)

More information: https://androidmalwareinsights.github.io

- What about repackaging?
- What is in fact the definition of repackaging?
 - E.g. must the app be decompiled/disassembled?
- Wei et al. [authors of AMD] claim it has been declining
- How to quickly infer whether an app is repackaged?
- Simple technique using compiler fingerprinting (with APKiD¹)

¹ https://rednaga.io/2016/07/31/detecting_pirated_and_malicious_android_apps_with_apkid/

- Simple technique using compiler fingerprinting (with APKiD¹)
- Legitimate developer = access to source code = using IDE
- Compile app using Android SDK's dx and dexmerge compilers
- If app compiled using other compilers (e.g., dexlib)
 - = repackaged = no access to source code != legitimate developer?
- Different compilers leave unique marks on the compiled code

¹ https://rednaga.io/2016/07/31/detecting_pirated_and_malicious_android_apps_with_apkid/

What about repackaging?

What is in fact the definition of repackaging?

Dataset	dx	dexmerge	Not repackaged (dx + dexmerge)	Repackaged (dexlib 1.X + 2.X)
Malgenome	52%	-	52%	48%
Play Store (benign)	61%	34%	95%	5%
Piggybacking (malicious)	22%	6%	28%	72%
Piggybacking (benign)	61%	22%	73%	17%
AMD	38%	35%	63%	≈27%

- What about repackaging?
- What is in fact the definition of repackaging?

Dataset	dx	dexmerge	Not repackaged (dx + dexmerge)	Repackaged (dexlib 1.X + 2.X)	
Malgenome	52%	-	52%	48%	
Play Store	61%	34%	95%	5%	
(benign)	01%	34%	95%	3%	↓
Piggybacking	22%	6%	28%	72%	lazy developers?
(malicious)	22/0	0 /6	20%	12/0	wrong labeling?
Piggybacking	61%	22%	73%	17%	<u> </u>
(benign)	01/6	22/0	73%	1770	
AMD	38%	35%	63%	≈27%	

What about repackaging?

What is in fact the definition of repackaging?
 86% repackaged?!

Dataset	dx	dexmerge	Not repackaged (dx + dexmerge)	Repackaged (dexlik 1 X + 2.X)
Malgenome	52%	-	52%	48%
Play Store (benign)	61%	34%	95%	5%
Piggybacking (malicious)	22%	6%	28%	72%
Piggybacking (benign)	61%	22%	73%	17%
AMD	38%	35%	63%	≈27%
				$\overline{}$

declining?

How do <u>conventional</u> detection techniques fare against different datasets?

- Conventional:
 - Machine learning classifiers
 - Trained with static/dynamic features
 - Validated using K-fold CV

- How do <u>conventional</u> detection techniques fare against different datasets?
- Ensemble classifier
 - KNN, with K = {10, 25, 50, 100, 250, 500}
 - Random Forests with estimators = {10, 25, 50, 75, 100}
 - Support Vector machine with linear kernel
 - 10-Fold CV
 - Trained with static/dynamic features
 - Static: Extracted from APK using androguard
 - <u>Dynamic</u>: Running apps within VM + recording issued API calls

• How do conventional detection techniques fare against different datasets?

Dataset	Accuracy		Recall		Pre	ecision	Specificity		F1 Score	
	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic
Malgenome+GPlay	0.98	0.94	0.97	0.94	0.99	0.74	0.99	0.94	0.98	0.83
Piggybacking	0.67	0.67	0.70	0.70	0.63	0.76	0.65	0.61	0.63	0.73
AMD+GPlay	0.94	0.87	0.92	0.87	0.96	0.85	0.96	0.87	0.94	0.86

How do conventional detection techniques fare against different datasets?

Dataset	Accuracy		Recall		Pre	ecision	Specificity		F1 Score	
	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic
Malgenome+GPlay	0.98	0.94	0.97	0.94	0.99	0.74	0.99	0.94	0.98	0.83
Piggybacking	0.67	0.67	0.70	0.70	0.63	0.76	0.65	0.61	0.63	0.73
AMD+GPlay	0.94	0.87	0.92	0.87	0.96	0.85	0.96	0.87	0.94	0.86

• But why?

- Piggybacking = original, benign apps + repackaged, malicious versions
- Majority = Adware
- ~70% of misclassified apps = Adware

- What is the lifespan of malware datasets?
- Can we use an old/new dataset to detect newer/older datasets?
- Train voting classifier using dataset A, and test using dataset B

- What is the lifespan of malware datasets?
- Can we use an old/new dataset to detect newer/older datasets?
- Train voting classifier using dataset A, and test using dataset B

Training Datase	t Test Dataset	Ac	Accuracy		Recall	Pre	ecision	Spe	cificity	F1	Score
Training Datase	i Test Dataset	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic
Malgenome+GPla	ay Piggybacking	0.49	0.52	0.49	0.65	0.54	0.42	0.47	0.44	0.51	0.51
Malgenome+GPla	ay AMD+GPlay	0.90	0.79	0.96	0.93	0.83	0.60	0.86	0.73	0.90	0.73
AMD+GPlay	Piggybacking	0.50	0.59	0.50	0.63	0.75	0.73	0.48	0.78	0.60	0.69
Piggybacking	AMD+GPlay	0.47	0.63	0.47	0.57	0.48	0.86	0.48	0.78	0.47	0.69
AMD+GPlay	Malgenome+GPlay	y 0.97	0.93	0.95	0.92	0.99	0.93	0.99	0.94	0.97	0.92
Piggybacking	Malgenome+GPlay	y 0.51	0.63	0.51	0.55	0.34	0.94	0.51	0.89	0.40	0.70

Adversarial Experiments

- How can an adversary make use of this?
- Consider a marketplace using a ML classifier as its "bouncer"
- The classifier is trained using malicious + benign apps
- If I [adversary] figure out one (or more) of the benign apps
- Repackage benign apps + upload to marketplace
- Classifier will be confused!!

Adversarial Experiments (cont'd)

- How can an adversary make use of this?
- If I [adversary] figure out one (or more) of the benign apps
- Many people presume apps on Google Play to be benign
- Use Google Play apps as benchmark/reference for benign behaviors
- Adversary make the same assumption!

Adversarial Experiments (cont'd)

- Piggybacking dataset = benign apps + repackaged versions
- Train voting classifier with dataset A, and test with dataset B
- Observe the effect of adding "Original" segment of Piggybacking on classification accuracy

Adversarial Experiments

 Observe the effect of adding "Original" segment of Piggybacking on classification accuracy

#	Training Datacet	Test Dataset	Accuracy		
#	Training Dataset	Test Dataset	Static	Dynamic	
1	AMD+GPlay	Piggybacked	0.81	0.72	
2	AMD+GPlay	Original	0.20	0.38	
3	AMD+Original	Piggybacked	0.17	0.50	
4	AMD+Original	Original	0.98	0.94	
5	AMD+Malgenome+GPlay	Piggybacked	0.81	0.79	
6	AMD+Malgenome+GPlay	Original	0.20	0.30	
7	AMD+Original+GPlay	Piggybacked	0.19	0.34	
8	AMD+Original+GPlay	Original	0.98	0.98	
9	AMD+Malgenome+Original+GPlay	Piggybacked	0.30	0.43	
10	AMD+Malgenome+Original+GPlay	Original	0.91	0.92	

Adversarial Experiments

 Observe the effect of adding "Original" segment of Piggybacking on classification accuracy

#	Training Datacet	Test Dataset	Accuracy	
#	Training Dataset	Test Dataset	Static	Dynamic
1	AMD+GPlay	Piggybacked	0.81	0.72
2	AMD+GPlay	Original	0.20	0.38
3	AMD+Original	Piggybacked	0.17	0.50
4	AMD+Original	Original	0.98	0.94
5	AMD+Malgenome+GPlay	Piggybacked	0.81	0.79
6	AMD+Malgenome+GPlay	Original	0.20	0.30
7	AMD-Original+GPlay	Piggybacked	0.19	0.34
8	AMD+Original+GPlay	Original	0.98	0.98
9	AMD+Malgenome+Origina +GPlay	Piggybacked	0.30	0.43
10	AMD+Malgenome+Original+GPlay	Original	0.91	0.92

Conclusion

- RQ1 : What are the trends adopted by Android malware authors according to the malicious apps in current datasets (i.e., malware families/types, app marketplaces, distribution techniques, etc.)? And how did they evolve over the years?
- Trojans appear to be most popular malware type
- Adware is the go-to model for repackaging
- Repackaging is losing popularity
- Malicious apps continue to bypass Google Play's safeguards

Conclusion (cont'd)

RQ2: What is the lifespan of a malware dataset within which it can be used to train effective detection methods?

- AMD is 5-6 years younger than Malgenome
- Yet, apps from Malgenome are still out there!
- Malware authors prefer re-using/building on older malware
- Five years to use a dataset for training?

Conclusion (cont'd)

- RQ3 : How do conventional detection methods (e.g., machine learning classifiers), fare against different malware datasets?
- RQ4 : What are the malware families/types that are most difficult to detect, if any?
- Already answered that in the detection experiments.
- Adware most challenging to detect = Ambiguous nature
- Binary-labeling problem? What are the alternatives?

Conclusion (cont'd)

RQ5 : How can malware authors circumvent effective detection methods?

- In what we called as "adversarial setting"
- Effectively circumvent app vetting safeguards (especially ML-based ones)
- Repackaging benign apps used during training

Thank You

Any questions?

Working on a solution based on "Active Learning"

Alei Salem (TUM) | A-Mobile 2018 | Montpellier, France