hw2

October 3, 2017

1 ML Homework 2

Gede Ria Ghosalya - 1001841

```
In [1]: %matplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt

import theano
    import theano.tensor as T

In [2]: csv='https://www.dropbox.com/s/oqoyy9p849ewzt2/linear.csv?dl=1'
    data = np.genfromtxt(csv, delimiter=',')
```

1.0.1 Q1. Ridge Regression with Offset

a) Let the first 10 entries of the data set be the validation set, and the last 40 entries to be the training set. Concatenate their features into matrices vX and tX, and their responses into vectors vY and tY. Print the shapes of vX, tX, vY, tY.

```
In [3]: vdata = data[0:10,:]
        tdata = data[10:,:]
        vX = vdata[:,1:]
        vY = vdata[:,0]
        tX = tdata[:,1:]
        tY = tdata[:,0]
        print("""
        vX shape:{vx}
        vY shape:{vy}
        tX shape:{tx}
        tY shape:{ty}
        11111
        .format(vx=vX.shape,
                vy=vY.shape,
                tx=tX.shape,
                ty=tY.shape))
```

```
vX shape: (10, 4)
vY shape: (10,)
tX shape: (40, 4)
tY shape: (40,)
```

b) Write a program in Theano that performs ridge regression by using a regularization penalty of $0.5\lambda \mid \mid w \mid \mid ^2$ with λ =0.15. You may use the source codes from Homework 1. Print the resulting value of w. Which feature may we assume to be irrelevant?

```
In [4]: def ridge_regression(X, Y, lamb=0.15, learn_rate=0.5):
            d = X.shape[1]
            n = X.shape[0]
            x = T.matrix(name='x')
            y = T.vector(name='y')
            w = theano.shared(np.zeros((d,1)),name='w')
            regularizer = 0.5*lamb*(T.dot(w[:-1].T,w[:-1])[0,0])
            point_loss = 0.5*(T.dot(x,w).T-y)**2
            risk = (T.sum(point_loss))/n + regularizer
            grad_risk = T.grad(risk, wrt=w)
            train_model = theano.function(inputs=[],
                                           outputs=risk,
                                           updates=[(w, w-learn_rate*grad_risk)],
                                           givens={x:X,y:Y}
            training = [train_model() for i in range(100)]
            return w.get_value()
        w = ridge_regression(tX, tY)
        wp = ridge_regression(tX, tY, 0.5)
        print('with lambda=0.15, w:\n\n',w,'\n\nwith lambda=0.5, w:\n\n', wp)
with lambda=0.15, w:
 [[-0.53590673]
 [ 1.20293332]
 [ 0.04334568]
 [-1.85492455]]
with lambda=0.5, w:
 [[-0.4577457]
 [ 0.9361236 ]
 [ 0.0534599 ]
 [-1.81257696]]
```

c) Compute the optimal solution using BFGS optimizer from scipy.

```
In [5]: from scipy.optimize import fmin_l_bfgs_b as minimize

def ridgecost(w,X,Y,lamb):
    n = X.shape[0]
    regularizer = 0.5*lamb*np.dot(w[:-1].T,w[:-1])
    point_loss = 0.5*(np.dot(X,w).T-Y)**2
    risk = (np.sum(point_loss))/n + regularizer
    j = np.identity(X.shape[1])
    j[-1,-1] = 0
    grad = lamb*np.dot(j,w) + np.dot(np.dot(X.T,X),w)/n - np.dot(X.T,Y)/n
    return risk, grad

d = tX.shape[1]
    w = np.zeros((d,1))
    optx, cost, messages = minimize(ridgecost, w, args=[tX,tY,0.15])
    print(optx)

[-0.53591305   1.20293347   0.04332715  -1.85492236]
```

d) Write a function ridge_regression(tX, tY, 1) that takes the training features, training responses and regularizing parameter λ , and output the exact solution w for ridge regression with offset. Print the resulting value of w for λ =0.15.

e) Use the following code to plot graphs of the validation loss and training loss as λ varies on a logarithmic scale from λ =10e-5 to λ =10e0.

Out[7]: [<matplotlib.lines.Line2D at 0x7fba4ff34588>]

Looking at the validation line (blue), it can be seen that the validation loss is lowest when λ =10e-5.

1.0.2 Q2. Clustering

```
In [8]: import numpy.random as rng
        import matplotlib.pyplot as plt
        import matplotlib.image as mpimg
        from sklearn.cluster import KMeans
        from sklearn.metrics import pairwise_distances_argmin
        n_{colors} = 32
        pic = 'http://www.dropbox.com/s/bmwwfct2qxjfje4/sutd.png?dl=1'
        img = mpimg.imread(pic)
        img = img[:,:,:3]
        w, h, d = tuple(img.shape)
        image_array = np.reshape(img, (w * h, d))
In [9]: def recreate_image(palette, labels, w, h):
            d = palette.shape[1]
            image = np.zeros((w,h,d))
            label_idx = 0
            for i in range(w):
                for j in range(h):
                    image[i][j] = palette[labels[label_idx]]
                    label_idx += 1
            return image
   a) Sampling 1000 pixels at random
In [10]: rand_index = np.random.randint(0, w*h, 1000)
         rand_img_sample = image_array[rand_index]
         rand_cluster = KMeans(n_clusters=32).fit(rand_img_sample)
         kmeans_palette = rand_cluster.cluster_centers_
         kmeans_labels = rand_cluster.predict(image_array)
   b) Sampling 32 pixels at random
In [11]: rand_index = np.random.randint(0, w*h, 1000)
         random_palette = image_array[rand_index]
         pdam = pairwise_distances_argmin
         random_labels = pdam(image_array, random_palette)
```

Resulting plot:

```
In [12]: plt.figure(1)
        plt.clf()
         ax = plt.axes([0,0,1,1])
         plt.axis('off')
         plt.title('Original Image (16.8 million colors)')
         plt.imshow(img)
         plt.figure(2)
        plt.clf()
         ax = plt.axes([0,0,1,1])
         plt.axis('off')
         plt.title('Compressed Image (K-Means)')
        plt.imshow(recreate_image(kmeans_palette, kmeans_labels, w, h))
         plt.figure(3)
         plt.clf()
         ax = plt.axes([0,0,1,1])
        plt.axis('off')
         plt.title('Compressed Image (Random)')
         plt.imshow(recreate_image(random_palette, random_labels, w, h))
         plt.show()
```

Original Image (16.8 million colors)

Compressed Image (K-Means)

Compressed Image (Random)

c) See end of document.

1.0.3 Q3. Logistic Regression

0

0

A/5 21171

7.2500

```
In [13]: import numpy as np
         import pandas as pd
         X_data = pd.read_csv('kaggle_train.csv')
         X_test = pd.read_csv('kaggle_test.csv')
         X_valid = X_data.sample(frac=0.2, random_state=200)
         X_train = X_data.drop(X_valid.index)
         Y_data = X_data['Survived']
         Y_train = X_train['Survived']
         Y_valid = X_valid['Survived']
         ID_test = X_test['PassengerId']
In [14]: from IPython.display import display
         print("\nKaggle's train.csv")
         display(X_data.head())
         display(X_data.describe())
         print("\nKaggle's test.csv")
         display(X_test.head())
         display(X_test.describe())
Kaggle's train.csv
   PassengerId Survived Pclass
0
                        0
                                3
             1
             2
                        1
                                1
1
             3
                                3
                        1
3
             4
                        1
                                1
4
             5
                                                                      SibSp
                                                 Name
                                                           Sex
                                                                 Age
0
                              Braund, Mr. Owen Harris
                                                          male
                                                                22.0
                                                                          1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                                38.0
                                                        female
                                                                          1
2
                               Heikkinen, Miss. Laina
                                                        female
                                                                26.0
                                                                          0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                35.0
                                                        female
                                                                          1
4
                             Allen, Mr. William Henry
                                                          male 35.0
   Parch
                    Ticket
                                Fare Cabin Embarked
```

S

NaN

1	0	PC 17599 71	.2833 C85	C		
2	0 STON/02	2. 3101282 7	.9250 NaN	S		
3	0	113803 53	.1000 C123	S		
4	0	373450 8	.0500 NaN	S		
			ъ. т		a : 1 a	,
	PassengerI			Age	SibSp	\
count	891.00000			714.000000	891.000000	
mean	446.00000	0.383838	2.308642	29.699118	0.523008	
std	257.35384	2 0.486592	0.836071	14.526497	1.102743	
min	1.00000	0.00000	1.000000	0.420000	0.000000	
25%	223.50000	0.00000	2.000000	20.125000	0.000000	
50%	446.00000	0.00000	3.000000	28.000000	0.000000	
75%	668.50000	0 1.000000	3.000000	38.000000	1.000000	
max	891.00000			80.000000	8.000000	
	Parch	Fare				
count	891.000000	891.000000				
mean	0.381594	32.204208				
std	0.806057	49.693429				
min	0.000000	0.000000				
25%	0.000000	7.910400				
50%	0.000000	14.454200				
75%	0.000000	31.000000				
max	6.000000	512.329200				

Kaggle's test.csv

0 1 2 3	Pass	engerId 892 893 894 895	Pclass 3 3 2 3		Wilke	•	. James s, Mr. T	Nam ly, Mr. Jame (Ellen Needs homas Franci z, Mr. Alber	s male) female s male	\
4		896	3	Hirvone	n, Mrs. Al	lexande	r (Helga	E Lindqvist) female	
0 1 2 3 4	Age 34.5 47.0 62.0 27.0 22.0	0 1 0 0	Parch 0 0 0 0 1	Ticket 330911 363272 240276 315154 3101298	Fare (7.8292 7.0000 9.6875 8.6625 12.2875	Cabin E NaN NaN NaN NaN NaN	mbarked Q S Q S S			
		Passenge	rId	Pclass	Aş	ge	SibSp	Parch	Far	·e
со	unt	418.000	000 418	3.000000	332.00000	00 418	.000000	418.000000	417.00000	0
me	an	1100.500	000	2.265550	30.27259	90 0	.447368	0.392344	35.62718	8

```
120.810458
                      0.841838
                                 14.181209
                                              0.896760
                                                           0.981429
                                                                      55.907576
std
                                              0.000000
                                                           0.000000
min
        892.000000
                      1.000000
                                  0.170000
                                                                       0.000000
25%
        996.250000
                      1.000000
                                 21.000000
                                              0.000000
                                                           0.000000
                                                                       7.895800
50%
       1100.500000
                      3.000000
                                 27.000000
                                              0.000000
                                                           0.000000
                                                                      14.454200
                      3.000000
                                 39.000000
75%
       1204.750000
                                              1.000000
                                                           0.000000
                                                                      31.500000
       1309.000000
                      3.000000
                                 76.000000
                                              8.000000
                                                           9.000000 512.329200
max
In [15]: dropped_columns = ["PassengerId","Name","Ticket","Cabin"]
         df = X_train.drop(dropped_columns, axis=1)
         df.drop(["Survived"], axis=1, errors="ignore", inplace=True)
         #imputing
         df["Embarked"].fillna(df["Embarked"].mode()[0], inplace=True)
         df["Fare"].fillna(df["Fare"].median(), inplace=True)
         df["Age"].fillna(df["Age"].mean(), inplace=True)
In [16]: # one-hot encoding
         df = df.join(pd.get_dummies(df["Embarked"]))
         df.drop(["Embarked"], axis=1, inplace=True)
         df = df.join(pd.get_dummies(df["Sex"]))
         df.drop(["Sex"], axis=1, inplace=True)
         df = df.join(pd.get_dummies(df["Pclass"]))
         df.drop(["Pclass"], axis=1, inplace=True)
In [17]: # feature engineering
         df.loc[:,"Family"] = (df["SibSp"]+df["Parch"] > 0).astype(int)
         df.loc[:,"Child"] = (df["Age"] < 16).astype(int)</pre>
In [18]: def preprocess(df):
             dropped_columns = ["PassengerId","Name","Ticket","Cabin"]
             df = df.drop(dropped_columns, axis=1)
             df.drop(["Survived"], axis=1, errors="ignore", inplace=True)
             #imputing
             df["Embarked"].fillna(df["Embarked"].mode()[0], inplace=True)
             df["Fare"].fillna(df["Fare"].median(), inplace=True)
             df["Age"].fillna(df["Age"].mean(), inplace=True)
             # one-hot encoding
             df = df.join(pd.get_dummies(df["Embarked"]))
             df.drop(["Embarked"], axis=1, inplace=True)
             df = df.join(pd.get_dummies(df["Sex"]))
             df.drop(["Sex"], axis=1, inplace=True)
             df = df.join(pd.get_dummies(df["Pclass"]))
             df.drop(["Pclass"], axis=1, inplace=True)
             # feature engineering
             df.loc[:,"Family"] = (df["SibSp"]+df["Parch"] > 0).astype(int)
             df.loc[:,"Child"] = (df["Age"] < 16).astype(int)</pre>
             return df
```

a) Preprocessing all dataframes & displaying.

Train

	Age	SibSp	Parch	Fare	C	Q	S	female	${\tt male}$	1	2	3	Family	\
0	22.000000	1	0	7.2500	0	0	1	0	1	0	0	1	1	
2	26.000000	0	0	7.9250	0	0	1	1	0	0	0	1	0	
3	35.000000	1	0	53.1000	0	0	1	1	0	1	0	0	1	
4	35.000000	0	0	8.0500	0	0	1	0	1	0	0	1	0	
5	29.449243	0	0	8.4583	0	1	0	0	1	0	0	1	0	

Validation

	Age	SibSp	Parch	Fare	С	Q	S	female	${\tt male}$	1	2	3	\
659	58.000000	0	2	113.2750	1	0	0	0	1	1	0	0	
525	40.500000	0	0	7.7500	0	1	0	0	1	0	0	1	
828	30.671233	0	0	7.7500	0	1	0	0	1	0	0	1	
753	23.000000	0	0	7.8958	0	0	1	0	1	0	0	1	
518	36.000000	1	0	26.0000	0	0	1	1	0	0	1	0	

```
Family Child
659 1 0
525 0 0
```

828	0	0
753	0	0
518	1	0

Data

	Age	SibSp	Parch	Fare	C	Q	S	female	${\tt male}$	1	2	3	Family	Child
0	22.0	1	0	7.2500	0	0	1	0	1	0	0	1	1	0
1	38.0	1	0	71.2833	1	0	0	1	0	1	0	0	1	0
2	26.0	0	0	7.9250	0	0	1	1	0	0	0	1	0	0
3	35.0	1	0	53.1000	0	0	1	1	0	1	0	0	1	0
4	35.0	0	0	8.0500	0	0	1	0	1	0	0	1	0	0

Test

	Age	SibSp	Parch	Fare	C	Q	S	female	${\tt male}$	1	2	3	Family	Child
0	34.5	0	0	7.8292	0	1	0	0	1	0	0	1	0	0
1	47.0	1	0	7.0000	0	0	1	1	0	0	0	1	1	0
2	62.0	0	0	9.6875	0	1	0	0	1	0	1	0	0	0
3	27.0	0	0	8.6625	0	0	1	0	1	0	0	1	0	0
4	22.0	1	1	12.2875	0	0	1	1	0	0	0	1	1	0

b) Using LogisticRegression from the sklearn.linear_model module, fit a classifier to the training set X_train and Y_train. Evaluate the accuracy of the classifier via the validation set X_valid and Y_valid. What is the score?

Accuracy: 0.792134831461

c) Fit a classifier to the data X_data and Y_data. What is the value of the parameter?

```
Parameters: {'C': 1.0, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_s
```

d) Apply classifier in (c) to the test data X_test. Let Y_test denote the predicted labels. You are welcome to tweak the code to improve your model. Use the following code to prepare a submission file for Kaggle.

```
In [22]: X_data = pd.read_csv('kaggle_train.csv')
         X_test = pd.read_csv('kaggle_test.csv')
         X_valid = X_data.sample(frac=0.2, random_state=200)
         X_train = X_data.drop(X_valid.index)
         Y_data = X_data['Survived']
         Y_train = X_train['Survived']
         Y_valid = X_valid['Survived']
         def tweaked_preprocess(df):
             dropped_columns = ["PassengerId","Name","Ticket","Cabin"]
             df = df.drop(dropped_columns, axis=1)
             df.drop(["Survived"], axis=1, errors="ignore", inplace=True)
             #imputing
             df["Embarked"].fillna(df["Embarked"].mode()[0], inplace=True)
             df["Fare"].fillna(df["Fare"].median(), inplace=True)
             df["Age"].fillna(df["Age"].mean(), inplace=True)
             # one-hot encoding
             df = df.join(pd.get_dummies(df["Embarked"]))
             df.drop(["Embarked"], axis=1, inplace=True)
             df = df.join(pd.get_dummies(df["Sex"]))
             df.drop(["Sex"], axis=1, inplace=True)
             # feature engineering
             df.loc[:,"Family"] = (df["SibSp"]+df["Parch"] > 0).astype(int)
             df.loc[:,"Child"] = (df["Age"] < 16).astype(int)</pre>
             return df
         X_train = tweaked_preprocess(X_train)
         X_valid = tweaked_preprocess(X_valid)
         X_data = tweaked_preprocess(X_data)
         X_test = tweaked_preprocess(X_test)
         tweaked_model = logres().fit(X_train, Y_train)
         accuracy = tweaked_model.score(X_valid, Y_valid)
         print("Accuracy: ",accuracy)
Accuracy: 0.803370786517
```

```
In [23]: Y_test = tweaked_model.predict(X_test)
    ans = pd.DataFrame({"PassengerId":ID_test,"Survived":Y_test})
    ans.to_csv("submit.csv", index=False)
```


score

Q2c) Given a cluster $\{x(1), x(2), ..., x(m)\}$ of points, prove that the point z minimizing SUM($|x(i)-z|^2$) is the centroid.

SINGAPORE UNIVERSITY OF TECHNOLOGY AND BESIGN
Date No.
2C) Prove their the point & minimizing m - 11 x(1) - Z 112
is the centroid
$z = \frac{1}{m} \sum_{i=1}^{m} \chi^{(i)}.$
Answer:
$\int_{1}^{\infty} (z, x) = \sum_{i=1}^{\infty} x^{(i)} - z ^{2}$ $\int_{1}^{\infty} (z, x) = m x^{(i)} - z ^{2}$ $= m (x^{(i)} - z^{(i)} - z^{(i)} - z^{(i)} - z^{(i)} + (x^{(i)} - z^{(i)} + z^{(i)} + z^{(i)})$ $= m (x^{(i)} - z^{(i)} - z^{(i)} - z^{(i)} + (x^{(i)} - z^{(i)} + z^{(i)} + z^{(i)})$ $= \sum_{i=1}^{\infty} m (x^{(i)} - z^{(i)} - z^{(i)} + (x^{(i)} - z^{(i)} + z^{(i)} + z^{(i)})$ $= \sum_{i=1}^{\infty} m (x^{(i)} - z^{(i)} - z^{(i)} + (x^{(i)} - z^{(i)} + z^{(i)} + z^{(i)})$ $= \sum_{i=1}^{\infty} m (x^{(i)} - z^{(i)} - z^{(i)} + (x^{(i)} - z^{(i)} + z^{(i)} + z^{(i)})$ $= \sum_{i=1}^{\infty} m (x^{(i)} - z^{(i)} - z^{(i)} + (x^{(i)} - z^{(i)} + z^{(i)} + z^{(i)} + z^{(i)})$ $= \sum_{i=1}^{\infty} m (x^{(i)} - z^{(i)} - z^{(i)} + z^{(i)$
$ \frac{\left(\chi_{n}^{(i)} - \xi_{n}\right)}{\left(\chi_{n}^{(i)} - \xi_{n}\right)} $
$\chi_{n}^{(i)} - z_{n}$ $= -2m \left(\chi^{(i)} - z\right)$ $\nabla d_{n}(z_{n}) = -2m \stackrel{\sim}{\mathbb{Z}} \left(\chi^{(i)} - z\right) = 0$ $\stackrel{\sim}{\mathbb{Z}} \chi^{(i)} - mz = 0$ $\stackrel{\sim}{\mathbb{Z}} \chi^{(i)} = mz$ $= -2m \stackrel{\sim}{\mathbb{Z}} \chi^{(i)} = mz$

Answer