

Undecidability

Reading: Chapter 8 & 9

Decidability vs. Undecidability

There are two types of TMs (based on halting): (Recursive)

> TMs that always halt, no matter accepting or nonaccepting ≡ DECIDABLE PROBLEMS

(Recursively enumerable)

TMs that are guaranteed to halt only on acceptance. If non-accepting, it may or may not halt (i.e., could loop forever).

Undecidability:

Undecidable problems are those that are <u>not</u> recursive

Recursive, RE, Undecidable languages

Recursive Languages & Recursively Enumerable (RE) languages

Any TM for a <u>Recursive</u> language is going to look like this:

Any TM for a <u>Recursively Enumerable</u> (RE) language is going to look like this:

Closure Properties of:

- the Recursive language class, and
- the Recursively Enumerable language class

Recursive Languages are closed under complementation

If L is Recursive, L is also Recursive

Are Recursively Enumerable Languages closed under complementation? (NO)

If L is RE, L need not be RE

Recursive Langs are closed under Union

- Let $M_u = TM$ for $L_1 U L_2$
- M_u construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M₁ on tape 1
 - 3. Simulate M₂ on tape 2
 - If either M_1 or M_2 accepts, then M_u accepts
 - 5. Otherwise, M₁₁ rejects.

Recursive Langs are closed under Intersection

- Let $M_n = TM$ for $L_1 \cap L_2$
- M_n construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M₁ on tape 1
 - 3. Simulate M₂ on tape 2
 - If either M₁ AND M₂ accepts, then M_n accepts
 - 5. Otherwise, M_n rejects.

Other Closure Property Results

- Recursive languages are also closed under:
 - Concatenation
 - Kleene closure (star operator)
 - Homomorphism, and inverse homomorphism
- RE languages are closed under:
 - Union, intersection, concatenation, Kleene closure
- RE languages are not closed under:
 - complementation

"Languages" vs. "Problems"

A "language" is a set of strings

Any "problem" can be expressed as a set of all strings that are of the form:

"<input, output>"

e.g., Problem (a+b) ≡ Language of strings of the form { "a#b, a+b" }

==> Every problem also corresponds to a language!!

Think of the language for a "problem" == a verifier for the problem

The Halting Problem

An example of a <u>recursive</u> <u>enumerable</u> problem that is also undecidable

The Halting Problem

What is the Halting Problem?

Definition of the "halting problem":

Does a givenTuring Machine M halt on a given input w?

A Turing Machine simulator

The Universal Turing Machine

- Given: TM M & its input w
- Aim: Build another TM called "H", that will output:
 - "accept" if M accepts w, and
 - "reject" otherwise
- An algorithm for H:
 - Simulate M on w

Implies: H is in RE

Question: If M does *not* halt on w, what will happen to H?

- Claim: No H that is always guaranteed to halt, can exist!
- Proof: (Alan Turing, 1936)
 - By contradiction, let us assume H exists

Therefore, if H exists → D also should exist.

But can such a D exist? (if not, then H also cannot exist)

HP Proof (step 1)

- Let us construct a new TM D using H as a subroutine:
 - On input <M>:
 - Run H on input <M, <M>>; //(i.e., run M on M itself)
 - Output the opposite of what H outputs;

HP Proof (step 2)

- The notion of inputing "<M>" to M itself
 - A program can be input to itself (e.g., a compiler is a program that takes any program as input)

D (
$$<$$
M $>$) =
$$\begin{cases} accept, & \text{if M does } not \text{ accept } <$$
M $> \\ reject, & \text{if M accepts } <$ M $> \end{cases}$

Now, what happens if D is input to itself?

$$D () = \begin{cases} accept, & \text{if D does not accept } \\ reject, & \text{if D accepts } \end{cases}$$

A contradiction!!! ==> Neither D nor H can exist.

Of Paradoxes & Strange Loops

E.g., Barber's paradox, Achilles & the Tortoise (Zeno's paradox) MC Escher's paintings

A fun book for further reading:

"Godel, Escher, Bach: An Eternal Golden Braid" by Douglas Hofstadter (Pulitzer winner, 1980)

The Diagonalization Language

Example of a language that is not recursive enumerable

(i.e, no TMs exist)

A Language about TMs & acceptance

- Let L be the language of all strings <M,w> s.t.:
 - M is a TM (coded in binary) with input alphabet also binary
 - w is a binary string
 - 3. M accepts input w.

4

Enumerating all binary strings

- Let w be a binary string
- Then $1w \equiv i$, where i is some integer
 - E.g., If w=ε, then i=1;
 - If w=0, then i=2;
 - If w=1, then i=3; so on...
- If 1w≡ i, then call w as the ith word or ith binary string, denoted by w_i.
- ==> A <u>canonical ordering</u> of all binary strings:
 - **ε** {ε, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110,}
 - $\{W_1, W_2, W_3, W_4, \dots, W_i, \dots\}$

Any TM M can also be binary-coded

- $M = \{ Q, \{0,1\}, \Gamma, \delta, q_0, B, F \}$
 - Map all states, tape symbols and transitions to integers (==>binary strings)
 - $\delta(q_i, X_j) = (q_k, X_l, D_m)$ will be represented as: • ==> 0ⁱ1 0^j1 0^k1 0^l1 0^m
- Result: Each TM can be written down as a long binary string
- ==> Canonical ordering of TMs:
 - $M_1, M_2, M_3, M_4, \dots M_i, \dots$

The Diagonalization Language

- $L_d = \{ w_i \mid w_i \notin L(M_i) \}$
 - The language of all strings whose corresponding machine does not accept itself (i.e., its own code)

• <u>Table:</u> T[i,j] = 1, if M_i accepts w_j = 0, otherwise.

Make a new language called
 L_d = {w_i | T[i,i] = 0}

-

L_d is not RE (i.e., has no TM)

- Proof (by contradiction):
- Let M be the TM for L_d
- = => M has to be equal to some M_k s.t. $L(M_k) = L_d$
- ==> Will w_k belong to L(M_k) or not?
 - 1. If $W_k \in L(M_k) ==> T[k,k]=1 ==> W_k \notin L_d$
 - 2. If $w_k \notin L(M_k) ==> T[k,k]=0 ==> w_k \in L_d$
- A contradiction either way!!

Why should there be languages that do not have TMs?

We thought TMs can solve everything!!

Non-RE languages

How come there are languages here? (e.g., diagonalization language)

One Explanation

There are more languages than TMs

- By pigeon hole principle:
- ==> some languages cannot have TMs
- But how do we show this?
- Need a way to "count & compare" two infinite sets (languages and TMs)

How to count elements in a set?

Let A be a set:

- If A is finite ==> counting is trivial
- If A is infinite ==> how do we count?
- And, how do we compare two infinite sets by their size?

Cantor's definition of set "size" for infinite sets (1873 A.D.)

Let
$$N = \{1,2,3,...\}$$
 (all natural numbers)
Let $E = \{2,4,6,...\}$ (all even numbers)

- Q) Which is bigger?
- A) Both sets are of the same size
 - "Countably infinite"
 - Proof: Show by one-to-one, onto set correspondence from

i.e, for every element in N,		
there is a unique element in E,		
and vice versa.		

n	f(n)
1	2
2	2 4 6
3	6
•	•
•	

Example #2

- Let Q be the set of all rational numbers
- $Q = \{ m/n \mid \text{ for all } m,n \in \mathbb{N} \}$
- Claim: Q is also countably infinite; => |Q|=|N|

Really, really big sets! (even bigger than countably infinite sets)

Uncountable sets

Example:

- Let R be the set of all real numbers
- Claim: R is uncountable

n	f(n)	
1	3 . <u>1</u> 4 1 5 9	Build x s.t. x cannot possibly
2	5 . 5 <u>5</u> 5 5 5	occur in the table
3	0 . 1 2 <u>3</u> 4 5	
4	0 . 5 1 4 <u>3</u> 0	E.g. $x = 0.2644$
	, -	

Therefore, some languages cannot have TMs...

The set of all TMs is countably infinite

The set of all Languages is uncountable

==> There should be some languages without TMs (by PHP)

The problem reduction technique, and reusing other constructions

Languages that we know about

- Language of a Universal TM ("UTM")
 - L_u = { <M,w> | M accepts w }
 - Result: L_u is in RE but not recursive

- Diagonalization language
 - L_d = { w_i | M_i does not accept w_i }
 - Result: L_d is non-RE

TMs that accept non-empty languages

- $L_{ne} = \{ M \mid L(M) \neq \emptyset \}$
- L_{ne} is RE
- Proof: (build a TM for L_{ne} using UTM)

TMs that accept non-empty languages

- L_{ne} is not recursive
- Proof: ("Reduce" L_u to L_{ne})
 - Idea: M accepts w if and only if L(M') ≠ Ø

Reducability

- To prove: Problem P₁ is undecidable
- Given/known: Problem P₂ is undecidable
- Reduction idea:
 - "Reduce" P_2 to P_1 :
 - Convert P₂'s input instance to P₁'s input instance s.t.
 - P₂ decides only if P₁ decides
 - Therefore, P_2 is decidable
 - 3. A contradiction
 - Therefore, P₁ has to be undecidable

The Reduction Technique

Conclusion: If we could solve P₁, then we can solve P₂ as well

Summary

- Problems vs. languages
- Decidability
 - Recursive
- Undecidability
 - Recursively Enumerable
 - Not RE
 - Examples of languages
- The diagonalization technique
- Reducability