Contents

Invited Papers	
Microdynamics	1
High T_c superconducting based sensors	9
General	
Noise in sensors	17
Information transduction in solid-state transducers: a general thermodynamic systems	
D. C. van Duyn and S. Middelhoek (Delft, The Netherlands)	25
Study of Nb/AlO _x /Nb superconductor detectors with X-ray and pulse light M. Kurakado and A. Matsumura (Kanagawa, Japan)	33
Superfast Fourier transform and its application in dynamic calibration of transducers Wang Shuguang, Lu Hongnian and Pan Deheng (Taiyuan, Shanxi, China)	37
A novel bonding technology for GaAs sensors	40
Pressure Sensors	
Nonlinearity of piezoresistance effect in p- and n-type silicon	45
A computer-aided intrauterine pressure measurement system based on a silicon sensor element with low deflection and excellent overload protection	49
Electrically trimmable silicon micromachined pressure switch	54
Passive silicon transensor intended for biomedical, remote pressure monitoring	58
A novel pressure sensor structure for integrated sensors	62
A new pressure sensor with innercompensation for nonlinearity and protection to over-	
Pressure Xian-Ping Wu (Shanghai, China)	65
Digital compensation of high-performance silicon pressure transducers S. B. Crary, W. G. Baer, J. C. Cowles and K. D. Wise (Ann Arbor, MI, U.S.A.)	70
Silicon pressure sensor with frequency output	73
Cooperative development of a piezoresistive pressure sensor with integrated signal conditioning for automotive and industrial applications	79
Single-crystal silicon pressure sensors with 500× overpressure protection	84

Low-pressure sensors employing bossed diaphragms and precision etch-stopping J. R. Mallon, Jr., F. Pourahmadi, K. Petersen, P. Barth, T. Vermeulen and J. Bryzek (Fremont, CA, U.S.A.)	89
Ultra-stable, high-temperature pressure sensors using silicon fusion bonding	96
A CMOS front-end circuit for a capacitive pressure sensor	102
A capacitive pressure sensor with low impedance output and active suppression of parasitic	100
B. Puers, E. Peeters, A. van den Bossche and W. Sansen (Heverlee, Belgium)	108
A field-focusing capacitance sensor for multiphase flow analysis	115
A new condenser microphone in silicon	123
Pressure-sensitive insulated gate field-effect transistor (PSIGFET)	126
Temperature characteristics of microcrystalline and polycrystalline silicon pressure sensors Guo Shuwen, Tan Songshen and Wang Weiyuan (Shanghai, China)	133
Micromachined beam-diaphragm structure improves performances of pressure transducer Min-Hang Bao, Lian-Zhong Yu and Yan Wang (Shanghai, China)	137
Piezoresistive low-pressure sensor with high sensitivity and high accuracy	142
Silicon pressure sensor integrates resonant strain gauge on diaphragm	146
A capacitive silicon pressure sensor with low TCO and high long-term stability A. Hanneborg and P. Øhlckers (Oslo, Norway)	151
Diffused silicon wet/wet differential pressure sensor and transducer for minus 100 to plus 120 °C	155
14. E. Ballick and M. Mei (Ball Dillas, CA, C.B.A.)	
Actuators	
Integrated micro flow control systems	161
An electrostatic top motor and its characteristics	168
A study of three microfabricated variable-capacitance motors	173
Frictional study of IC-processed micromotors	180
In situ friction and wear measurements in integrated polysilicon mechanisms	184
Micropump and sample-injector for integrated chemical analyzing systems	189
Microfabricated electrohydrodynamic pumps	193

A thermopneumatic micropump based on micro-engineering techniques F. C. M. van de Pol, H. T. G. van Lintel, M. Elwenspoek and J. H. J. Fluitman (Enschede, The Netherlands)	198
Piezoelectric micropump with three valves working peristaltically	203
Incremental control of a valve actuator employing optopneumatic conversion K. F. Hale, C. Clark, R. F. Duggan and B. E. Jones (Uxbridge, U.K.)	207
Movable micromachined silicon plates with integrated position sensing M. G. Allen, M. Scheidl, R. L. Smith and A. D. Nikolich (Cambridge, MA, U.S.A.)	211
Numerical determination of the electromechanical field for a micro servosystem H. Fujita and T. Ikoma (Tokyo, Japan)	215
Application of electric microactuators to silicon micromechanics	219
Thin-film ZnO as micromechanical actuator at low frequencies	226
Direct optical control for a silicon microactuator	229
Spring-type magnetostriction actuator based on the Wiedemann effect	236
Thin-film processing of TiNi shape memory alloy	243
Characteristics of thin-wire shape memory actuators	247
Shape memory alloy microactuators	253
Passive wireless actuator control and sensor signal transmission	258
Micromachined structures in ophthalmic microsurgery	263
Epitaxially stacked structures of Si/Al ₂ O ₃ /Si for sensor materials	267
Accelerometers	
Monolithic silicon accelerometer	273
An ASIC for high-resolution capacitive microaccelerometers	278
Measuring simultaneously translational and angular acceleration with the new translational—angular—piezobeam (TAP) system	282
Study on the dynamic force/acceleration measurements	285
Photoelectric inclination sensor	289

Design of a solid-state gyroscopic sensor made of quartz	293
Precision accelerometers with μg resolution	297
A review of low cost accelerometers for vehicle dynamics	303
A novel silicon accelerometer with a surrounding mass structure	308
Capacitive silicon accelerometer with highly symmetrical design	312
Semiconductor capacitance-type accelerometer with PWM electrostatic servo technique S. Suzuki, S. Tuchitani, S. Ueno, Y. Yokota, M. Sato (Ibaraki, Japan), K. Sato (Tokyo, Japan) and M. Esashi (Miyagi, Japan)	316
Resonators	
Very high Q-factor resonators in monocrystalline silicon	323
Electrostatic-comb drive of lateral polysilicon resonators	328
Resonating microbridge mass flow sensor	332
A balanced resonant pressure sensor	336
Resonant-bridge two-axis microaccelerometer	342
The application of fine-grained, tensile polysilicon to mechanically resonant transducers H. Guckel, J. J. Sniegowski, T. R. Christenson and F. Raissi (Madison, WI, U.S.A.)	346
Performance of thermally excited resonators	352
Novel ultrasonic motors with mono- and bimodal drives	357
Piezoelectric resonator as a chemical and biochemical sensing device	362
Self-excitation in fibre-optic microresonator sensors	369
Vibrating cantilever mass flow sensor	373
Application of vibrating beam technology to digital acceleration measurement M. A. Meldrum (Costa Mesa, CA, U.S.A.)	377
Accelerometer systems with built-in testing	381
Optothermal drive of silicon resonators: the influence of surface coatings	387
Excitation of silicon microresonators using short optical pulses	391

