Solutions: Assignment #3 STA355H1S

1. (a) The posterior density of (α, λ) is proportional to

$$\pi(\alpha, \lambda)\mathcal{L}(\alpha, \lambda) = \frac{1}{10000} \exp\left(-\frac{\alpha}{100} - \frac{\lambda}{100}\right) \frac{\lambda^{n\alpha}(x_1 \times \dots \times x_n)^{\alpha - 1} \exp\left(-\lambda \sum_{i=1}^n x_i\right)}{[\Gamma(\alpha)]^n}$$

Factoring out all terms not involving λ , we're left with the following integral:

$$\int_0^\infty \lambda^{n\alpha} \exp\left[-\lambda \left(\sum_{i=1}^n x_i + \frac{1}{100}\right)\right] d\lambda.$$

Making the change of variables

$$u = \lambda \left(\sum_{i=1}^{n} x_i + \frac{1}{100}\right)$$
 with $du = d\lambda \left(\sum_{i=1}^{n} x_i + \frac{1}{100}\right)$

and so the integral above equals

$$\left(\sum_{i=1}^{n} x_i + \frac{1}{100}\right)^{-(n\alpha+1)} \Gamma(n\alpha+1).$$

(b) We need to compute

$$\int_0^\infty \frac{\Gamma(n\alpha+1)}{[\Gamma(\alpha)]^n} \exp\left(\alpha \sum_{i=1}^n \ln(x_i) - \alpha/100\right) \left(\frac{1}{100} + \sum_{i=1}^n x_i\right)^{-n\alpha-1} d\alpha.$$

This is complicated by the fact that $\Gamma(x)$ cannot be computed in R (using the function gamma) for larger x (x > 171). To do the integration, we take the logarithm of the integrand (which is computable) and then subtract its maximum value; in this case, we can use the function lgamma, which computes the logarithm of the Gamma function. Converting back to the original scale, we now have an integrand taking values between 0 and 1, which can be easily integrated numerically. The following R code does this pre-normalization:

```
> x <- scan("aircon.txt")</pre>
```

- $> n \leftarrow length(x)$
- > alpha <- c(6000:12000)/10000</pre>
- > logint <- lgamma(n*alpha+1) n*lgamma(alpha)</pre>
- > logint <- logint + alpha*sum(log(x)) alpha/100</pre>
- > logint < logint (n*alpha-1)*log(sum(x)+1/100)
- > logint <- logint max(logint)</pre>
- > int <- exp(logint)</pre>

We can now use the following R code to compute the normalizing constant:

Figure 1: Posterior density of α for air conditioning data.

- > mult <- c(1/2,rep(1,5999),1/2)/10000
- > norm <- sum(mult*int)</pre>
- > post <- int/norm</pre>
- > plot(alpha,post,type="l",ylab="posterior density",lwd=3,col="red")

The posterior density is shown in Figure 1.

(c) This is much (much!) easier than it seems! We have

$$P(\alpha = 1 | x_1, \dots, x_n) = \frac{\int_0^\infty \pi(\lambda, 1) \mathcal{L}(\lambda, 1) d\lambda}{\int_0^\infty \pi(\lambda, 1) \mathcal{L}(\lambda, 1) d\lambda + \int_0^\infty \int_0^\infty \pi(\lambda, \alpha) \mathcal{L}(\lambda, \alpha) d\lambda d\alpha}$$

If we divide the numerator and denominator by $\int_0^\infty \int_0^\infty \pi(\lambda, \alpha) \mathcal{L}(\lambda, \alpha) d\lambda d\alpha$ then we have

$$P(\alpha = 1|x_1, \dots, x_n) = \frac{\theta \pi(1|x_1, \dots, x_n)}{\theta \pi(1|x_1, \dots, x_n) + 1 - \theta}$$

where $\pi(1|x_1,\dots,x_n)$ was computed in part (b). Table 1 below gives the posterior probabilities; note that the posterior probability is greater than the prior probability θ . This suggests that the Exponential model is probably a reasonably good approximation.

	0.1								
$P(\alpha = 1 \text{data})$	0.29	0.48	0.61	0.71	0.79	0.85	0.90	0.94	0.97

Table 1: Posterior probabilities of Exponential model as a function of the prior probability θ .

2. (a) We use the cross-validation (CV) estimate from Assignment 2, which has its mode at x=0.07946. (The default bandwidth for density has its mode at x=0.07744.) Table 2 below gives the Venter estimates for various values of τ . Note that for smaller values of τ , the Venter estimates are close to the mode of the CV estimate while for larger τ , the Venter estimates are close to the mode of the default density estimate.

au	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
Venter est.	0.0793	0.0794	0.0796	0.0794	0.0790	0.0787	0.0780	0.0761	0.0757	0.0754

Table 2: Venter estimates for different values of τ .

(b) The following function can be used to do the simulations for various values of n and α :

```
ventermse <- function(n,tau,alpha,nrep=10000) {
    if (missing(tau)) tau <- c(1:10)/20
    modest <- NULL
    for (i in 1:nrep) {
        m <- NULL
        x <- rgamma(n,alpha)
        for (i in tau) {
            m <- c(m,venter(x,tau=i))
            }
        modest <- rbind(modest,m)
        }
    bias <- apply(modest-(alpha-1),2,mean)
    variance <- apply(modest,2,var)
        mse <- apply((modest-(alpha-1))^2,2,mean)
        r <- list(modes=modest,mse=mse,bias=bias,var=variance)
        r
    }
}</pre>
```

We obtain the following results (note that your results will be different due to the randomness of the simulation):

Figure 2: Estimated density of the Venter estimator for $\tau = 1/2$ and n = 100 for Gamma(2,1) distribution.

```
> r <- ventermse(100,tau=c(0.1,0.5),alpha=2)
> round(r$mse,4)
[1] 0.2672 0.1261
> r <- ventermse(1000,tau=c(0.1,0.5),alpha=2)
> round(r$mse,5)
[1] 0.07087 0.04751
> r <- ventermse(100,tau=c(0.1,0.5),alpha=10)
> round(r$mse,4)
[1] 1.8313 0.7139
> r <- ventermse(1000,tau=c(0.1,0.5),alpha=10)
> round(r$mse,4)
[1] 0.5479 0.1640
```

Note that the Venter estimator with $\tau = 0.5$ is better in terms of MSE for all four scenarios. A closer examination of the simulation data reveals that this superiority is due to its smaller variance; the estimator with $\tau = 0.1$ has a smaller (absolute) bias in all cases.

(c) We can use the following R code to compute an estimate of the density of the Venter estimator for $\alpha = 2$ and n = 100:

```
> muhat <- NULL
```

The estimated density of the Venter estimator is shown in Figure 2; note that this density is skewed to the left.

Supplemental problems:

3. (a) Since X_i is deleted from the sample, $\hat{\theta}_{-i}$ satisfies the equation

$$\sum_{j \neq i} \ell'(X_j; \widehat{\theta}_{-i}) = 0.$$

Adding $\ell'(X_i; \widehat{\theta}_{-i})$ to both sides of the equation, we get

$$\sum_{i=1}^{n} \ell'(X_j; \widehat{\theta}_{-i}) = \ell'(X_i; \widehat{\theta}_{-i})$$

(b) By a Taylor series approximation,

$$\ell'(X_j; \widehat{\theta}_{-i}) \approx \ell'(X_j; \widehat{\theta}) + (\widehat{\theta}_{-i} - \widehat{\theta}) \ell''(X_j; \widehat{\theta})$$

Thus (assuming that the approximation above is good), we have

$$\ell'(X_i; \widehat{\theta}_{-i}) = \sum_{j=1}^n \ell'(X_j; \widehat{\theta}_{-i})$$

$$\approx \sum_{j=1}^n \ell'(X_j; \widehat{\theta}) + (\widehat{\theta}_{-i} - \widehat{\theta}) \sum_{j=1}^n \ell''(X_j; \widehat{\theta})$$

$$= (\widehat{\theta}_{-i} - \widehat{\theta}) \sum_{j=1}^n \ell''(X_j; \widehat{\theta})$$

since $\widehat{\theta}$ is the MLE (and so $\sum_{j=1}^{n} \ell'(X_j; \widehat{\theta}) = 0$). Thus

$$\widehat{\theta}_{-i} - \widehat{\theta} \approx \frac{\ell'(X_i; \widehat{\theta}_{-i})}{\sum_{j=1}^n \ell''(X_j; \widehat{\theta})} \approx \frac{\ell'(X_i; \widehat{\theta})}{\sum_{j=1}^n \ell''(X_j; \widehat{\theta})}$$

where the latter approximation follows from the continuity of ℓ' and the fact that $\hat{\theta}_{-i} - \hat{\theta}$ is not too large. Likewise (again having faith in our approximations!),

$$\widehat{\theta}_{\bullet} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{-i}$$

$$\approx \widehat{\theta} + \frac{\sum_{i=1}^{n} \ell'(X_i; \widehat{\theta})}{\sum_{j=1}^{n} \ell''(X_j; \widehat{\theta})}$$

$$= \widehat{\theta}$$

since (again) $\hat{\theta}$ is the MLE.

(c) The jackknife standard error estimator is

$$\widehat{\operatorname{se}}_{\mathsf{jk}}(\widehat{\theta}) = \left\{ \frac{n-1}{n} \sum_{i=1}^{n} (\widehat{\theta}_{-i} - \widehat{\theta}_{\bullet})^{2} \right\}^{1/2}$$

and using our approximations from part (b), we get

$$\widehat{\operatorname{se}}_{\mathsf{jk}}(\widehat{\theta}) \approx \left\{ \frac{n-1}{n} \frac{\sum_{i=1}^{n} [\ell'(X_i; \widehat{\theta})]^2}{\left[\sum_{j=1}^{n} \ell''(X_j; \widehat{\theta})\right]^2} \right\}^{1/2}$$

In constrast, the estimator based on the observed Fisher information is

$$\widehat{\operatorname{se}}_{\mathsf{fi}}(\widehat{\theta}) = \left\{ -\sum_{i=1}^{n} \ell''(X_i; \widehat{\theta}) \right\}^{1/2}$$

The difference between the two estimators is easily explained: The estimator based on observed Fisher information assumes that the random variables X_1, \dots, X_n come from the density or mass function $f(x; \theta)$; on the other hand, the jackknife estimator assumes non-parametric model where X_1, \dots, X_n come from an unknown distribution function F and $\hat{\theta}$ is a substitution principle estimator of $\theta = \theta(F)$ satisfying the equation

$$E_F[\ell'(X_i; \theta(F))] = 0$$

where ℓ' need not have any relation to the underlying distribution function F. However, in the case where F has a density or mass function of the form $f(x; \theta(F))$ then (assuming maximum likelihood regularity conditions)

$$\operatorname{Var}_F[\ell'(X_i; \theta(F))] = -E_F[\ell''(X_i; \theta(F))]$$

and so it follows that

$$\frac{1}{n}\sum_{i=1}^{n}[\ell'(X_i;\widehat{\theta})]^2 \approx \operatorname{Var}_F[\ell'(X_i;\theta(F))] = -E_F[\ell''(X_i;\theta(F))] \approx -\frac{1}{n}\sum_{i=1}^{n}\ell''(X_i;\widehat{\theta}),$$

in which case the two standard error estimators should be quite similar.

(d) For the Exponential model, $\hat{\lambda} = 1/\bar{X}$ and $\hat{\text{se}}_{\text{fi}}(\hat{\lambda}) = \hat{\lambda}/\sqrt{n}$. For the air conditioning data, $\hat{\lambda} = 0.01091$ and $\hat{\text{se}}_{\text{fi}}(\hat{\lambda}) = 0.01091/\sqrt{199} = 0.000773$. The jackknife estimate can be computed as follows:

```
> loo <- NULL
> for (i in 1:199) {
+     xi <- aircon[-i]
+     loo <- c(loo,1/mean(xi))
+     }
> jack.se <- sqrt(198*sum((loo-mean(loo))^2)/199)
> jack.se
[1] 0.0008897483
```

The two estimates are different but not too dissimilar. This is consistent with the analysis in Problem 1 where we observed that the Exponential model was "not too bad".

4. (a) First of all,

$$I_X(\theta) = \int_{-\infty}^{\infty} \left[\frac{\partial}{\partial \theta} \ln f(x; \theta) \right]^2 f(x; \theta) dx$$

$$= \sum_{k=1}^{m} \int_{B_k} \left[\frac{\partial}{\partial \theta} \ln f(x; \theta) \right]^2 f(x; \theta) dx$$

$$= \sum_{k=1}^{m} \int_{B_k} p(k; \theta) \left[\frac{\partial}{\partial \theta} \ln f(x; \theta) \right]^2 \frac{f(x; \theta)}{p(k; \theta)} dx$$

Next,

$$I_{Y}(\theta) = \sum_{k=1}^{m} \left[\frac{\partial}{\partial \theta} \ln p(k; \theta) \right]^{2} p(k; \theta)$$
$$= \sum_{k=1}^{m} \left[\frac{\partial}{\partial \theta} p(k; \theta) \right]^{2} p(k; \theta)$$

and

$$\left[\frac{1}{p(k;\theta)}\frac{\partial}{\partial\theta}p(k;\theta)\right]^{2} = \left[\frac{1}{p(k;\theta)}\frac{\partial}{\partial\theta}\int_{B_{k}}f(x;\theta)\,dx\right]^{2} \\
= \left[\frac{1}{p(k;\theta)}\int_{B_{k}}\frac{\partial}{\partial\theta}f(x;\theta)\,dx\right]^{2} \\
= \left[\int_{B_{k}}\frac{\partial}{\partial\theta}\ln f(x;\theta)\frac{f(x;\theta)}{p(k;\theta)}\,dx\right]^{2} \\
\leq \int_{B_{k}}\left[\frac{\partial}{\partial\theta}\ln f(x;\theta)\right]^{2}\frac{f(x;\theta)}{p(k;\theta)}\,dx$$

by Jensen's inequality since $f(x;\theta)/p(k;\theta)$ is a density on B_k (it is the conditional density of X_i given $X_i \in B_k$ or $Y_i = k$). Therefore,

$$I_{Y}(\theta) \leq \sum_{k=1}^{m} p(k;\theta) \int_{B_{k}} \left[\frac{\partial}{\partial \theta} \ln f(x;\theta) \right]^{2} \frac{f(x;\theta)}{p(k;\theta)} dx$$
$$= I_{X}(\theta).$$

(b) Note that $E(U^2) = [E(U)]^2$ if, and only if, U is a constant with probability 1, and $E(U^2) \approx [E(U)]^2$ if U is nearly constant, that is, $Var(U) = E(U^2) - [E(U)]^2$ is very small. This suggests that $I_X(\theta) \approx I_Y(\theta)$ if for each B_k ,

$$\frac{\partial}{\partial \theta} \ln f(x; \theta) \approx a_k(\theta) \text{ for } x \in B_k,$$

which occurs if B_k is sufficiently small that for each θ $f(x;\theta)$ is nearly constant for $x \in B_k$. Thus the information loss due to "discretization" decreases as size of the sets $\{B_k\}$ become smaller.

As an aside, it is possible to construct examples where $I_X(\theta) = I_Y(\theta)$, although these examples are very artificial. Suppose that

$$f(x;\theta) = c_k(x)p(k;\theta)$$
 for $x \in B_k$

where $c_k(x)$ is a density on B_k . Then

$$\frac{\partial}{\partial \theta} \ln f(x; \theta) = \frac{\partial}{\partial \theta} \ln p(k; \theta) \text{ for } x \in B_k$$

and following the steps above, we have $I_X(\theta) = I_Y(\theta)$. Intuitively this makes sense — given an observation X from $f(x;\theta)$, knowing into which B_k it falls tells us everything we need to know about θ .

5. (a) The log-likelihood function is

$$\ln \mathcal{L}(\beta) = \sum_{i=1}^{n} \left\{ -\beta(x_i - m_0 - \delta/2) \right\} + n \ln[1 - \exp(-\beta \delta)]$$

Differentiating and solving, we get obtain the MLE

$$\hat{\beta} = \frac{1}{\delta} \ln \left(1 + \frac{\delta}{\bar{X} - m_0 - \delta/2} \right).$$

- (b) We can compute the MLE using the code given below; the vector mag contains the magnitudes.
- > delta <- 0.1
- > m0 < -4.95
- > mle <- log(1 + delta/(mean(mag)-m0-delta/2))/delta
- > mle
- [1] 2.055946

The jackknife standard error estimate is computed as follows:

```
> mle.i <- NULL
> for (i in 1:433) {
+    mag.i <- mag[-i]
+    mle.i <- c(mle.i,log(1 + delta/(mean(mag.i)-m0-delta/2))/delta)
+  }
> jack.var <- 432*sum((mle.i-mean(mle.i))^2)/433
> jack.se <- sqrt(jack.var)
> jack.se
[1] 0.09787367
```

For the observed Fisher information, we have

$$-\frac{d^2}{d\beta^2} \ln \mathcal{L}(\widehat{\beta}) = \frac{n\delta^2 \exp(-\widehat{\beta}\delta)}{(1 - \exp(-\widehat{\beta}\delta))^2}$$

- > fisher.info <- 433*delta^2*exp(-delta*mle)/(1-exp(-delta*mle))^2</pre>
- > fisher.se <- 1/sqrt(fisher.info)</pre>
- > fisher.se

[1] 0.09897655

The (approximate) 95% confidence intervals are 2.056 ± 0.192 (using the jackknife standard error estimate) and 2.056 ± 0.194 (using the standard error estimate based on the observed Fisher information). The two intervals are clearly very similar.

6. (a) The log-likelihood function is

$$\ln \mathcal{L}(\theta) = 2x_1 \ln(\theta) + x_2 \{\ln(2) + \ln(\theta) + \ln(1 - \theta)\} + 2x_3 \ln(1 - \theta).$$

Differentiating with respect to θ , we get

$$\frac{d}{d\theta} \ln \mathcal{L}(\theta) = \frac{(2x_1 + x_2)(1 - \theta) - (x_2 + 2x_3)\theta}{\theta(1 - \theta)}$$

and so the MLE is

$$\widehat{\theta} = \frac{2X_1 + X_2}{2(X_1 + X_2 + X_3)} = \frac{2X_1 + X_2}{2n}.$$

The observed Fisher information is

$$-\frac{d^2}{d\theta^2}\ln\mathcal{L}(\widehat{\theta}) = \frac{2X_1 + X_2}{\widehat{\theta}^2} + \frac{X_2 + 2X_3}{(1-\widehat{\theta})^2} = \frac{2n}{\widehat{\theta}(1-\widehat{\theta})}.$$

Thus the estimated standard error is

$$\widehat{\operatorname{se}}(\widehat{\theta}) = \left\{ \frac{\widehat{\theta}(1-\widehat{\theta})}{2n} \right\}^{1/2}.$$

(b) Note that we can write the prior as

$$\pi(\theta) = K(\alpha, \beta) \, \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } 0 \le \theta \le 1$$

where the normalizing constant is

$$K(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}.$$

The posterior density is

$$\pi(\theta|x_1, x_2, x_3) = \frac{\pi(\theta)\mathcal{L}(\theta)}{\int_0^1 \pi(s)\mathcal{L}(s) ds};$$

note that

$$\pi(\theta)\mathcal{L}(\theta) = \text{constant} \times \theta^{\alpha+2x_1+x_2-1} (1-\theta)^{\beta+x_2+2x_3-1}$$

where the constant depends on $\alpha, \beta, x_1, x_2, x_3$ but not θ . Therefore,

$$\pi(\theta|x_1, x_2, x_3) = K(\alpha + 2x_1 + x_2, \beta + x_2 + 2x_3) \theta^{\alpha + 2x_1 + x_2 - 1} (1 - \theta)^{\beta + x_2 + 2x_3 - 1}$$

and so the posterior is also a Beta distribution with hyperparameters $\alpha + 2x_1 + x_2$ and $\beta + x_2 + 2x_3$.

(As an aside, the mean and variance of the posterior distribution are

$$E(\theta|x_1, x_2, x_3) = \int_0^1 \theta \pi(\theta|x_1, x_2, x_3) d\theta$$

$$= \frac{\alpha + 2x_1 + x_2}{\alpha + \beta + 2n}$$

$$Var(\theta|x_1, x_2, x_3) = \frac{(\alpha + 2x_1 + x_2)(\beta + x_2 + 2x_3)}{(\alpha + \beta + 2n)^2(\alpha + \beta + 2n + 1)}$$

If $2x_1+x_2$ and x_2+2x_3 are large compared to the prior hyperparameters α and β , respectively then the posterior mean and variance can be approximated $\hat{\theta}$ and $\hat{\theta}(1-\hat{\theta})/(2n)$, respectively.)