Types of Machine learning

1) Based on amount of supervision

Supervised, Unsupervised, Semi-supervised, Reinforcement Learning

2) Based on How model gets trained on Production

Batch Machine Learning, Online Machine Learning

3) Based on Instance Based Vs Model based

5	6 km C +	
IIV	100 Days of ML V	F
٥	Day 4 - Batch ML	1. Online Machine Learning
(3)	Day 5 - Online ML	2. When to use?
		3. How to implement?
		4. Learning Rate
		5. Out of Core Learning
		6. Disadvantage
		7. Batch Vs Online Learning

7. Batch Vs Online Learning

Thursday, March 18, 2021 4:29 PM

Offline Learning	Features	Online Learning
Less complex as model is constant	Complexity	Dynamic complexity as the model keeps evolving over time
Fewer computations, single time batch-based training	Computational Power	Continuous data ingestions result in consequent model refinement computations
Easier to implement	Use in Production	Difficult to implement and manage
Image Classification or anything related to Machine Learning - where data patterns remains constant without sudden concept drifts	Applications	Used in finance, economics, heath where new date patterns are constantly emerging
Industry proven tools. E.g. Sci-kit, TensorFlow, Pytorch, Keras, Spark Mlib	Tools	Active research/New project tools: E.g. MOA, SAMOA, scikit-multiflow, streamDM

Image courtesy - https://www.iunera.com/kraken/fabric/simple-introduction-to-online-learning-in-machine-learning/

Friday, March 19, 2021 4:06 PM

Usual/Conventional Machine Learning	Instance Based Learning
Prepare the data for model training	Prepare the data for model training. No differencଙ୍କ here
Train model from training data to estimate model parameters i.e. discover patterns	Do not train model. Pattern discovery postponed until scoring query received
Store the model in suitable form	There is no model to store
Generalize the rules in form of model, even before scoring instance is seen	No generalization before scoring. Only generalize for each scoring instance individually as and when seen
Predict for unseen scoring instance using model	Predict for unseen scoring instance using training data directly
Can throw away input/training data after model training	Input/training data must be kept since each query uses part or full set of training observations
Requires a known model form	May not have explicit model form
Storing models generally requires less storage	Storing training data generally requires more storage

