- > What if the output is taken from emitter?
- > Redraw the *ac schematic*:

ac Midband Schematic for Output Taken from Emitter

- \succ First, short v_i to ground
 - $\Rightarrow R_3$ comes in parallel with R_S (call this combination R_5)

$$\Rightarrow$$
 R₅ = R₃||R_S = 900 Ω

 $ightharpoonup R_5$ comes in series with r_{π} (call this combination R_6)

$$\Rightarrow$$
 R₆ = R₅ + r _{π} = 2.2 k Ω

► Transform R_6 to emitter by dividing it by $(\beta +1)$

$$\Rightarrow$$
 R₀₁ = R₆/(β +1) = 21.8 Ω

- ightharpoonup Thus, $R_0 = 20 \Omega (Easy?)$
- > Summary:
 - $A_v = 0.827$
 - $R_i = 6.72 \text{ k}\Omega$
 - Resistance *seen* by $v_i = 7.72 \text{ k}\Omega$
 - $R_0 = 20 \Omega$
- Thus, this circuit has voltage gain close to unity, ok input resistance, and very small output resistance
 - Ideal characteristics needed for a Buffer/Isolator/
 Impedance Matcher

• Loading Effect:

 \triangleright *Neglecting* r_0 :

$$A_v = -g_m(R_C||R_L)$$

> R_L has no role in DC biasing, but comes into picture in ac calculations

- Known as Loading Effect
- Similar situation happens when a high output resistance driver drives a low input resistance load (e.g., CE stage driving a CB stage)

- The gain of the CE stage will be severely compromised due to low input resistance of the CB stage
 - Known as *Impedance Mismatch* between *Driver and Load*
- ➤ Under such a situation, need an *Isolator/Buffer/ Impedance Matcher* between the two stages
- A CC stage perfectly fits the bill due to its high input resistance and low output resistance, and can be used to couple the CE stage to CB stage
- > MOS circuits generally don't have this problem

Compound Connections

- Multi-Stage
- Have some *special properties*
- Popular Topologies:
 - > Darlington
 - > Cascode
 - $\triangleright DP \text{ (or } DA)$
- Modules by themselves

• Darlington:

- CE or a CC stage, followed by either a CE or a CC stage
- > Two biggest advantages:
 - Extremely large R_i
 - Extremely large A_i
- These two advantages are automatic for MOS stages
 - ⇒ MOS Darlington has no special use

> For *DC biasing*:

$$I_{C2} = \beta_2 I_{B2} = \beta_2 I_{E1} \approx \beta_2 I_{C1}$$

 $\Rightarrow r_{\pi 2} = \beta_2 r_{E2} = \beta_2 V_T / I_{C2} = V_T / I_{C1} = r_{E1}$