Time Complexity

	Notation	Meaning	Equivalent Symbol
Big-Oh	O	Upper bounds	\leq
Little-oh	0	Strict upper bound	<
Big-Omega	Ω	Lower bounds	\geq
Little-omega	ω	Strict lower bound	>
Big-Theta	Θ	Tight bounds	=

Tight bounds. T(n) is $\Theta(f(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$.

Master Method

replace the T(n) with c.F(n)

▶ "Cookbook" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

- Case 1: if $f(n) = O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$;
- Case 3: if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Iteration Method (Tree)

Divide and Conquer

maximum-subarray: $T(n)=2T(n/2)+\Theta(n)$, $T(n)=\Theta(n\log n)$

Useful conclusions

maximum-subarray: dividing < combining

merge-sort: dividing < combining quick-sort: dividing > combining

Asymptotic analysis

- Ignoring the constant factor
 - ▶ 347n is Θ(n)
- Constant factors of exponentials cannot be ignored
 - ²³ⁿ is not O(2ⁿ)
- Concentrating on trends of the large value of n
 - → $3n^2 \log n + 25n \log n$ is Θ $(n^2 \log n)$

Sorting

Insertion sort

"almost sorted" arrays $\Theta(n)$ 5 2 4 6 1 3 $\frac{1}{5} \frac{1}{2} \frac{1}{4} \frac{4}{10} \frac{6}{11} \frac{1}{3}$ 2 5 4 6 1 3 $\frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{6}{10} \frac{1}{13}$ 2 4 5 6 1 3 $\frac{1}{2} \frac{3}{4} \frac{1}{5} \frac{6}{10} \frac{1}{13}$ 2 4 5 6 1 3 $\frac{1}{2} \frac{3}{4} \frac{4}{5} \frac{6}{10} \frac{1}{13}$

Bubble sort

Merge sort

Guaranteed to run in O(nlgn), but requires extra space ≈ n

Loop Invariants

Proving loop invariants works like induction

- Initialization (base case):
 - o It is true prior to the first iteration of the loop
- Maintenance (inductive step):
 - If it is true before an iteration of the loop,
 it remains true before the next iteration
- Termination:
 - When the loop terminates, the invariant gives us
 a useful property that shows the algorithm is correct
 - Stop the induction when the loop terminates

Hoare partition i until >=, i until <=

Count sort

use when r = O(n), then $T(n) = \Theta(n)$

Radix sort

Example: key=15

- ▶ $key_{10} = 15$, d=2, k=10 where $0 \le x_i \le 9$
- ▶ $\text{key}_2 = 1111, d=4, k=2$ where $0 \le x_i \le 1$

when use count to sort each digit, $T(n) = \Theta(d(n+k))$

Useful conclusions

If use lomuto partition, the probability that the i-th ranked element will be compared against (i+k)-th element is 2/(k+1)

Selection Problem

find min and max in paris, 3 comparison per two elements, O(3n/2)

Randomized Select

use Randomized Partition,

best case:
$$T(n) = T(\alpha'n) + O(n)$$
, where $\alpha(1, T(n) = O(n))$
worst case: $T(n) = T(n-1) + O(n)$, $T(n) = O(n^2)$

Worst-Case Linear-Time Selection

- ▶ step1: divide n elements into n/5 groups
- > step2: find median of each group of 5 elements, using insertion-sorting
- step3: recursively SELECT to find the median x of n/5 medians found in step 2
- step 4: use x found in step 3 to partition the array, let k be one plus the number of elements in the low side of partition
- ▶ step 5: if i=k, return x; else recursively SELECT i-th element in low side, if i<k; or SELECT (i-k)-th element in high side, if i>k.

Algorithm	Time complexity (average case)	Best case	Worst case	In-place	Stable
Insertion sort	$O(n^2)$	O(n)	$O(n^2)$	Yes	Yes
Bubble sort	$O(n^2)$	O(n)	$O(n^2)$	Yes	Yes
Merge sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No	Yes
Heap sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Yes	No
Quick sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$	Yes	No
Count sort	O(n+k)	O(n+k)	O(n+k)	No	Yes
Radix sort	O(nk)	O(nk)	O(nk)	No	Yes

Heap

Item	Notation		
Node i	A[i]		
Root of the tree	A[1]		
Left child	A[2i]		
Right child	A[2i+1]		
Parent	$A[\lfloor i/2\rfloor]$		

Operation	Running time		
Max-Heapify	$O(\log n)$		
Build-Max-Heap	O(n)		
Heap-Sort	$O(n \log n)$		
Extract-Max	$O(\log n)$		
Increase-Key	$O(\log n)$		
Max-Heap-Insert	$O(\log n)$		

 $h_i = h - i$ height of the heap rooted at level i $n_i = 2^i$ number of nodes at level i

operations

Max-Heapify: Recursively exchange the node with its larger child

Build-Max-Heap: call Max-Heapify on A[n/2], ..., A[1]

Heap-Sort: swap A[n] and A[1], call Max-Heapify on A[1]

Increase-Key: recursively swap the newly inserted node with its parent, (if larger than its parent)

Tree

- degree of x: number of children
- depth of x: length of the simple path from root to x
- level of a tree: all nodes at the same depth
- height of x: length of the longest simple path from x downward to some leaf node
- height of a tree: height of root

Hash table

Load factor(expected list length): d=n/m

Universal hashing function: h(k) and h(l) are independent

Hashing methods

Division method: $h(k) = k \mod m$ m choose a prime, not close to power of 2 Multiplication Method: $h(k) = \lfloor m(kA - \lfloor kA \rfloor) \rfloor$. $0 \le A \le 1$, m typically power of 2

Binary Search Tree

Traversal

pre-order: root-left-right in-order: left-root-right in-order: left-right-root

successor of x: the smallest key > x predecessor of x: the biggest key < x

Operations all require O(h)

Useful conclusions

- 1. expected number of elements exammined in an unseccessful search is a
- 2. The expected number of elements examined when searching for the k-th inserted key is 1+(n-k)/m
- 3. The expected number of elements examined when searching for a randomly key is 1+(n-1)/2m

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right] \quad \frac{1+\frac{1}{n}\sum_{k=1}^{n}\frac{n-k}{m}=\frac{n-1}{2m}+1}{=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E\left[X_{ij}\right]\right)=1+\frac{n-1}{2m}}{=1+\frac{\alpha}{2}-\frac{\alpha}{2n}}.$$

AVL tree

height of the two subtrees of a node differs by at most one

single rotation

double rotation

Shrink and paste!

- (c) **T** or **F**: By using uniform hashing functions, the number of elements hashed into a slot is independent from the number of elements in any other slot;
- (d) **T** or **F**: Bubble sort is stable;
- (b) T or F: Radix sort follows the divide-and-conquer design;

After Rotation

- (c) T or F: The worst-case running time and average-case running time are equal asymptotically (same order) for any randomized algorithms;
- (d) T or F: Quicksort with Hoare's partition is stable;

$$P(\{\max_{i=1}^{m} X_i = k\}) \le P(\bigcup_{i=1}^{m} \{X_i = k\}) \le \sum_{i=1}^{m} P(X_i = k) = mP(X_i = k);$$