Assignment 2 STAT 315-463: Multivariable Statistical Methods and Applications

Lisa Lu 31088272

Due date: Friday 24 March 2023

- Your assignment needs to show the R code you used, and your well discussed answers to the questions.
- Submit your assignments on Learn.

Background

In the dataset, USJudgeRatings.csv, you are presented with ratings of State Judges on the Superior Court on 12 variables provided by 43 Lawyers in 1977.

CONT	Number of contacts of lawyer with judge	INTG	Judicial integrity	DMNR	Demeanour
DILG	Diligence	CFMG	Case flow managing	DECI	Prompt decisions
PREP	Preparation for trial	FAMI	Familiarity with law	ORAL	Sound oral rulings
WRIT	Sound written rulings	PHYS	Physical ability	RTEN	Worthy of retention

```
# Read in the data
dataset <- read.csv("USJudgeRatings.csv")
```

Principal Component Analysis of the Rating Data.

Perform a PCA on the standardised ratings. Note, you will need to standardise the ratings yourself. Then answer the following questions.

```
# Standardise the ratings
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

dataset_std <- dataset %>% mutate(across(where(is.numeric),scale))
summary(dataset_std)
```

```
CONT.V1
                                                     INTG.V1
##
       Lawyer
##
                                :-1.846373
                                                      :-2.7539372
    Length:43
                        Min.
                                              Min.
##
    Class : character
                        1st Qu.:-0.624109
                                              1st Qu.:-0.6114828
                        Median :-0.145831
                                              Median: 0.1026687
##
          :character
##
                        Mean
                                : 0.000000
                                              Mean
                                                      : 0.0000000
##
                        3rd Qu.: 0.491872
                                              3rd Qu.: 0.6869745
##
                        Max.
                                : 3.361535
                                              Max.
                                                      : 1.5309717
##
          DMNR.V1
                                 DILG. V1
                                                        CFMG.V1
                                  :-2.8782657
##
            :-2.8121570
                                                         :-2.4172132
    Min.
                          Min.
                                                 Min.
##
    1st Qu.:-0.5388442
                           1st Qu.:-0.6027579
                                                 1st Qu.:-0.5569865
##
    Median: 0.1606366
                          Median: 0.1187446
                                                 Median: 0.1405985
##
            : 0.0000000
                          Mean
                                  : 0.0000000
                                                         : 0.0000000
    3rd Qu.: 0.7289648
##
                           3rd Qu.: 0.8402471
                                                 3rd Qu.: 0.6637873
            : 1.2972929
                                  : 1.4507492
                                                         : 1.4195044
##
          DECI.V1
                                 PREP.V1
##
                                                        FAMI.V1
##
            :-2.3228698
                                  :-2.7979078
                                                         :-2.5167602
    Min.
                          Min.
                                                 Min.
                           1st Qu.:-0.5951957
##
    1st Qu.:-0.5792693
                                                 1st Qu.:-0.5673125
    Median: 0.1679881
                          Median: 0.2439327
                                                 Median: 0.1176285
##
            : 0.0000000
                                  : 0.0000000
                                                         : 0.0000000
    Mean
                          Mean
                                                 Mean
##
    3rd Qu.: 0.7284311
                           3rd Qu.: 0.7683879
                                                 3rd Qu.: 0.8025696
##
    Max.
            : 1.5379600
                          Max.
                                  : 1.7124074
                                                         : 1.6982618
                                                 Max.
##
          ORAL.V1
                                 WRIT.V1
                                                        PHYS.V1
##
            :-2.5672387
                                  :-2.5841599
                                                         :-3.442921
    Min.
                          Min.
                                                 Min.
##
    1st Qu.:-0.4386179
                          1st Qu.:-0.5032821
                                                 1st Qu.:-0.249989
##
    Median: 0.2049186
                          Median: 0.2250252
                                                 Median: 0.175735
##
    Mean
            : 0.0000000
                          Mean
                                  : 0.0000000
                                                 Mean
                                                         : 0.000000
##
    3rd Qu.: 0.6999467
                           3rd Qu.: 0.6932227
                                                 3rd Qu.: 0.601459
##
    Max.
            : 1.5909973
                           Max.
                                  : 1.6816397
                                                         : 1.240046
                                                 Max.
          RTEN.V1
##
##
            :-2.5453217
    Min.
##
    1st Qu.:-0.4108424
##
    Median : 0.1795455
##
            : 0.0000000
    Mean
    3rd Qu.: 0.5882756
##
            : 1.4511502
    Max.
```

1. How many principal components do you believe should be retained. Justify your answer by looking at the variation in the data explained by each component.

```
sapply(dataset[,-1], var)
```

```
##
        CONT
                   INTG
                              DMNR
                                         DILG
                                                    CFMG
                                                               DECI
                                                                         PREP
                                                                                     FAMT
##
   0.8852492 0.5931229 1.3080620 0.8116168
                                              0.7397896 0.6447065 0.9089147 0.9005759
##
        ORAL
                   WR.TT
                              PHYS
                                         R.T.F.N
## 1.0201883 0.9237763 0.8828018 1.2121373
```

- 2. In your own words, describe what you believe the first principal component is measuring.
- 3. What do you think the second principal component represents?
- 4. You are told *Judicial Integrity* and *Demeanour* are particularly important traits, and should be given 5 times the weight of the other variables. Re-run the Principal Component Analysis such that Integrity and Demeanour is given 5 times the weight of all other variables. What impact does this have?

Factor Analysis for the Rating Data

Perform Factor Analysis on the standardised Ratings Data.

- 1. What happens when you try to fit a 3 and a 4 factor solution with no rotation. Hint: For the three factor solution, you may need to add control=list(nstart=100) as an additional argument in the factanal function.
- 2. Which variables are grouped by the first two factors? (e.g. threshold $|loading| \ge 0.25$)
- 3. Compare the factor loadings for the first two factors to the first two principal components of the standardised data found in the previous section. Comment on any similarities and/or differences.
- 4. Comment on the observed variable specific variances (the uniquenesses). Do you believe all observed variables are explained by the factors discovered.
- 5. Re-fit the 3 factor solution with a varimax rotation. How does this change the interpretation of the factors? In this case, do you find the rotated or non-rotated solution easier to interpret. Explain why or why not?