## 北京化工大学 2013—2014 学年第二学期

## 《固体物理学》期末考试试卷

| 课程代码 P H Y 3 4 4 0 0 T  班级:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                        | <b>"—</b> 111 | 122-7                           | " '43               | -14 3                                  | 4-4-6             |                                |               |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|---------------|---------------------------------|---------------------|----------------------------------------|-------------------|--------------------------------|---------------|---------------------|
| 題号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 课程代码                                                   | Р                      | Н             | Y                               | 3                   | 4                                      | 4                 | 0                              | 0             | T                   |
| 得分  一、填空應(每空 $2$ 分,共 $30$ 分)  1. 密堆积的结构包括 大角密堆积 、立方密堆积 ,两种结构的配位数都是 12 。 2. 布拉菲格子共有 $14$ 种,可以分为七大晶系,其中包含布拉菲格子最多的晶系是 正交 晶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 班级:                                                    | 姓名:                    |               | 学号:                             | 1                   | 壬课教师                                   | :                 |                                | 分数:           |                     |
| 一、填空题(每空 $2$ 分,共 $30$ 分) 1. 密堆积的结构包括 六角密堆积 、立方密堆积 ,两种结构的配位数都是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 题号                                                     |                        |               | $\top$                          | =                   |                                        | Ξ                 | j.                             | 总分            | 7                   |
| 1. 密堆积的结构包括_大角密堆积_、立方密堆积_,两种结构的配位数都是。 2. 布拉非格子共有_14种,可以分为七大晶系,其中包含布拉非格子最多的晶系是_正交 晶系,其中包含对称操作数最多的非正交类晶系是立方晶系。 3. 晶体按照结合力的不同,晶体可以分为离子晶体,原子晶体,金属晶体,分子晶体和氢键晶体。 4. 一位双原子链中包含两种波,其中两种原子振动方向相同的为声学波,振动方向相同的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 得分                                                     |                        |               |                                 |                     |                                        |                   |                                |               |                     |
| 2.布拉菲格子共有 14 种,可以分为七大晶系,其中包含布拉菲格子最多的晶系是 正交 晶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                        |               |                                 |                     |                                        |                   |                                |               |                     |
| $\underline{S}$ ,其中包含对称操作数最多的非正交类晶系是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                        |               |                                 |                     |                                        |                   |                                |               |                     |
| 3.晶体按照结合力的不同,晶体可以分为离子晶体,原子晶体,金属晶体,分子晶体和氢键晶体。 4.一位双原子链中包含两种波,其中两种原子振动方向相同的为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                        |               |                                 |                     |                                        |                   |                                | 晶系是_          | 正交晶                 |
| 晶体。 4.一位双原子链中包含两种波,其中两种原子振动方向相同的为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                      |                        |               |                                 |                     |                                        |                   |                                | N <del></del> | . The first fields  |
| 4.一位双原子链中包含两种波,其中两种原子振动方向相同的为                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 的小问,                   | 晶体可           | 以分为民                            | 于晶体:                | , <u>原于晶</u>                           | <u>体</u> ,金属      | 馬品体,                           | 分于晶体          | 2.朴氢键               |
| 相同的是 <u>光学被</u> 1° 5.7- VAE, · <b>2</b> F1 1 5 ′ F11 1 1 £ w F11 0 jF1 il 6. 4 A < W · °f ] * + e # 5 , · F 0 $\underline{v} = \frac{\hbar k}{9\pi} \text{CCXE}$ $\underline{m}^* = \hbar^2 / \frac{\partial^2 E(k)}{\partial k^2}$ 1° 7.0K & 8 + a + e "D, Ci2£7-> E ? $N(E) = 2 \times \frac{V}{(2\pi)^3} \times 2\pi (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} = 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}}$ $N = \int_0^{E_F} N(E) dE = \int_0^{E_F} 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} (\frac{2m}{\hbar^2})^{\frac{3}{2}} E_F^{\frac{3}{2}}$ $E_F = \frac{\hbar^2}{2m} (\frac{3n}{8\pi})^{\frac{3}{3}}$ 1 1 N° ?! N° 5 6° ; 30 6° 1. * 5 · , · * · fAæ > fB 1 M 0B Ø                                                                                                        |                                                        | 一<br>句今西5              | bids the      | 1 西 秭 盾                         | 子振力                 | 方向相同                                   | 的先                | 古学法                            | Ħ             | 記古位                 |
| 5.7- VAE, $\overline{\text{CEF1 1}} = \frac{5}{r} \cdot \overline{\text{F11}} = \frac{1}{1} \cdot \frac{1}{1} \cdot \overline{\text{EW F11}} = \dots \text{ o jF1 il}^{-1}$ 6. 4 A < W 'f ] * + e # 5 , · F 0 $\underline{v} = \frac{\hbar k}{9\pi} CXE^{-1}$ $\underline{m}^* = \hbar^2 / \frac{\partial^2 E(k)}{\partial k^2} = 1^{-1}$ 7.0K & 8 + a + e "D , $Ci2\underline{\mathfrak{L}}7- > E$ ? $N(E) = 2 \times \frac{V}{(2\pi)^3} \times 2\pi (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} = 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}}$ $N = \int_0^{E_F} N(E) dE = \int_0^{E_F} 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} (\frac{2m}{\hbar^2})^{\frac{3}{2}} E_F^{\frac{3}{2}}$ $E_F = \frac{\hbar^2}{2m} (\frac{3n}{8\pi})^{\frac{2}{3}}$ 1 1 N " ! N " 5 6" ; 30 6" 1. My 0B Ø |                                                        |                        |               | 下四 作 次                          | ( ) 1/RA/J,         | 시배하네                                   | רע נים            | 广子収                            | ,加            | X约刀門                |
| 6. 4 A < $\mathbb{W} \cdot \hat{f}$ ] * + e # 5 , · F 0 $\underline{v} = \frac{\hbar k}{m} CXE^{\hat{f}}$ $\underline{m}^* = \hbar^2 / \frac{\partial^2 E(k)}{\partial k^2}$ 1°  7.0K & 8 + a + e " D , Ci2£7-> E ? $N(E) = 2 \times \frac{V}{(2\pi)^3} \times 2\pi (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} = 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}}$ $N = \int_0^{E_F} N(E) dE = \int_0^{E_F} 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} (\frac{2m}{\hbar^2})^{\frac{3}{2}} E_F^{\frac{3}{2}}$ $E_F = \frac{\hbar^2}{2m} (\frac{3n}{8\pi})^{\frac{2}{3}}$ 1 1 N**! N*5 6** ; 30 6**  1. * 5 · , · * · fAæ > fB 1 M 08 Ø                                                                                                                                                           |                                                        |                        | _             | 12                              | f w F               | 11                                     | 0                 | iFi i                          | 1~            |                     |
| $m^* = \hbar^2 / \frac{\partial^2 E(k)}{\partial k^2} \qquad 1^{\infty}$ $7.0K  \& 8  + a + e \qquad "D, Ci2£7-> E ?$ $N(E) = 2 \times \frac{V}{(2\pi)^3} \times 2\pi (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} = 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}}$ $N = \int_0^{E_F} N(E) dE = \int_0^{E_F} 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} (\frac{2m}{\hbar^2})^{\frac{3}{2}} E_F^{\frac{3}{2}}$ $E_F = \frac{\hbar^2}{2m} (\frac{3n}{8\pi})^{\frac{2}{3}}$ $\dots 1^{-1} 1 N^{-1} N^{-1} N^{-5} 6^{-1} 130 6^{-1}$ $1.  *  5 \cdot , \cdot * \cdot fAm > fB 1  M_F  OB \emptyset$                                                                                                                                                                                                |                                                        |                        |               | 7/7                             |                     |                                        |                   |                                |               | . 7.                |
| $m^* = \hbar^2 / \frac{\partial^2 E(k)}{\partial k^2} \qquad 1^{\infty}$ $7.0K  \& 8  + a + e \qquad "D, Ci2£7-> E ?$ $N(E) = 2 \times \frac{V}{(2\pi)^3} \times 2\pi (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} = 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}}$ $N = \int_0^{E_F} N(E) dE = \int_0^{E_F} 4\pi V (\frac{2m}{\hbar^2})^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} (\frac{2m}{\hbar^2})^{\frac{3}{2}} E_F^{\frac{3}{2}}$ $E_F = \frac{\hbar^2}{2m} (\frac{3n}{8\pi})^{\frac{2}{3}}$ $\dots 1^{-1} 1 N^{-1} N^{-1} N^{-5} 6^{-1} 130 6^{-1}$ $1.  *  5 \cdot , \cdot * \cdot fAm > fB 1  M_F  OB \emptyset$                                                                                                                                                                                                | 6. 4 A <                                               | < W.                   | řf ]          | * -                             | e .                 | #                                      | 5,                | • F                            | 0 v= 9        | <i>iK</i><br>→ CXG^ |
| 7.0K & 8 + a + e   "D, Ci2£7-> E ? $N(E) = 2 \times \frac{V}{(2\pi)^3} \times 2\pi \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}} = 4\pi V \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}}$ $N = \int_0^{E_F} N(E) dE = \int_0^{E_F} 4\pi V \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E_F^{\frac{3}{2}}$ $E_F = \frac{h^2}{2m} \left(\frac{3n}{8\pi}\right)^{\frac{3}{3}}$ 2 1 1 N ~ ?! N ~ 5 6 ~ ; 30 6 ~ .  1. * 5 · , · * . fAæ > fB 1 M                                                                                                                                                                                                                                                                                      |                                                        |                        |               |                                 |                     |                                        |                   |                                |               | <u>n</u>            |
| $N(E) = 2 \times \frac{V}{(2\pi)^3} \times 2\pi \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}} = 4\pi V \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}}$ $N = \int_0^{E_F} N(E) dE = \int_0^{E_F} 4\pi V \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E_F^{\frac{3}{2}}$ $E_F = \frac{h^2}{2m} \left(\frac{3n}{8\pi}\right)^{\frac{2}{3}}$ 1 N ""! N"5 6"; 30 6" 1. * 5 ·, · * · fAm > fB 1 M OB Ø                                                                                                                                                                                                                                                                                                                                  | $m^* = \hbar^2 / \frac{\partial^2 E(k)}{\partial k^2}$ | ı~                     |               |                                 |                     |                                        |                   |                                |               |                     |
| $N = \int_{0}^{E_{F}} N(E) dE = \int_{0}^{E_{F}} 4\pi V \left(\frac{2m}{h^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}} dE = \frac{8\pi V}{3} \left(\frac{2m}{h^{2}}\right)^{\frac{3}{2}} E_{F}^{\frac{3}{2}}$ $E_{F} = \frac{h^{2}}{2m} \left(\frac{3n}{8\pi}\right)^{\frac{2}{3}}$ 1 1 N <sup></sup> ! N <sup>-5</sup> 6 <sup>-</sup> ;30 6 <sup>-</sup> 1. * 5 · , · * · fAæ > fB 1 M OB Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0K & 8 + a                                           | + e                    | " D ;         | Ci2£7-                          | > E ?               |                                        |                   |                                |               |                     |
| $E_F = \frac{h^2}{2m} \left(\frac{3n}{8\pi}\right)^{\frac{2}{3}}$ 1 1 N <sup></sup> ! N <sup></sup> ! N <sup></sup> 5 6 <sup></sup> ;30 6 <sup></sup> 1. * 5 · , · * · fAæ > fB 1 Mj 0B Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                        |               |                                 |                     | $\gamma(\frac{2m}{h^2})^{\frac{2}{3}}$ | 3 1<br>2 E 2      |                                |               |                     |
| 1 1 N~~! N~5 6~~;30 6~~<br>1. * 5.,. *. fAæ > fB 1 Mj OB Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $N = \int_0^{E_F} N(E)$                                | $dE = \int_0^{\infty}$ | $4\pi V$      | $\binom{2m}{h^2}^{\frac{3}{2}}$ | $E^{\frac{1}{2}}dE$ | $S = \frac{8\pi V}{3}$                 | $\binom{2m}{h^2}$ | $\frac{3}{2}E_F^{\frac{3}{2}}$ |               |                     |
| 1. * 5 · , · * . fAme > fB 1 Mg 0ß Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $E_F = \frac{h^2}{2m} \left( \frac{3n}{8\pi} \right)$  | )3                     |               |                                 |                     |                                        |                   |                                |               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                        |               |                                 | Maj OJ              | ß Ø                                    |                   |                                |               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                        |               |                                 |                     |                                        | $-\vec{k}$ )      |                                |               |                     |

 $\vec{b}_1 = \frac{2\pi(\vec{a}_2 \times \vec{a}_3)}{\Omega} = \frac{2\pi}{a}(\vec{j} + \vec{k})$ 

$$\begin{aligned} & \text{PRE} \quad b_2 = \frac{2\pi}{a} (\vec{i} + \vec{k}) \\ & b_3 = \frac{2\pi}{a} (\vec{i} + \vec{j}) \\ & \text{PM} \quad 0.8 \quad \varnothing.5 \quad \cdot \cdot \cdot \cdot B.1 \quad \text{J} \quad 0.8 \quad \varnothing. \\ & 2. \quad f \quad \text{J} \quad 9 \quad \text{J} \quad \text{KIZ} \quad \text{S} \quad \text{J} \quad \text{KII} \quad \text{J} \quad \text{S} \quad \text{L} \quad \text{J} \quad \text{S} \quad \text{S} \quad \text{S} \quad \text{J} \quad \text{KII} \quad \text{J} \quad \text{S} \quad \text{L} \quad \text{J} \quad \text{S} \quad \text{J} \quad \text{S} \quad \text{J} \quad \text$$

+e X Z LtF1 &k?- B  $\dot{}$  j,  $\dot{}$  +X BC 3W 5 LT V (  $\vec{r}$  -  $\vec{R}$   $_m$  )  $_{-}$  }  $\vec{R}_m$  1 sØ,  $\dot{}$   $\dot{}$  ,  $\dot{}$  .

一級哈密顿量: 
$$\hat{H} = \hat{H}_0 + \hat{H}' = -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r} - \vec{R}_m) + \Delta V(\vec{r})$$
  $V(\vec{r})_-$  の ず f p 9 、)! + e , +X 
$$\text{N'} \Delta V(\vec{r}) = V(\vec{r}) - V(\vec{r} - \vec{R}_m) > \text{f } \text{vil} \text{ } \text{! } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{, · i} \text{ } \text{!} \text{ } \text{!+e} \text{ } \text{ } \text{!+e} \text{!+e} \text{ } \text{!+e} \text{!+e} \text{ } \text{!+e} \text{!+e} \text{ } \text{!+e} \text{ } \text{!+e} \text{ } \text{!+e} \text{!+e} \text{!+e} \text{ } \text{!+e} \text{!+$$

 $\begin{pmatrix} \frac{a}{2}, & \frac{a}{2}, & \frac{a}{2} \end{pmatrix} \qquad \begin{pmatrix} -\frac{a}{2}, & \frac{a}{2}, & \frac{a}{2} \end{pmatrix} \qquad \begin{pmatrix} \frac{a}{2}, & -\frac{a}{2}, & \frac{a}{2} \end{pmatrix} \qquad \begin{pmatrix} \frac{a}{2}, & \frac{a}{2}, & -\frac{a}{2} \end{pmatrix}$ 

$$\begin{split} &\left(-\frac{a}{2},\ -\frac{a}{2},\ \frac{a}{2}\right) & \left(\frac{a}{2},\ -\frac{a}{2},\ -\frac{a}{2}\right) & \left(-\frac{a}{2},\ \frac{a}{2},\ -\frac{a}{2}\right) \\ & E(k) = \mathcal{E}_i - J_0 + \\ & -J_1[e^{-i(k_x\frac{a}{2}+k_y\frac{a}{2}+k_z\frac{a}{2})} + e^{-i(-k_x\frac{a}{2}+k_y\frac{a}{2}+k_z\frac{a}{2})} + \\ & + e^{-i(k_x\frac{a}{2}-k_y\frac{a}{2}+k_z\frac{a}{2})} + e^{-i(k_x\frac{a}{2}+k_y\frac{a}{2}-k_z\frac{a}{2})} + \\ & + e^{-i(-k_x\frac{a}{2}-k_y\frac{a}{2}+k_z\frac{a}{2})} + e^{-i(k_x\frac{a}{2}-k_y\frac{a}{2}-k_z\frac{a}{2})} + \\ & e^{-i(-k_x\frac{a}{2}+k_y\frac{a}{2}-k_z\frac{a}{2})} + e^{-i(-k_x\frac{a}{2}-k_y\frac{a}{2}-k_z\frac{a}{2})}] \end{split}$$

$$\begin{split} &E(k) = \varepsilon_i - J_0 + \\ &- J_1 [e^{-i(k_x \frac{a}{2} + k_y \frac{a}{2})} 2\cos k_z \frac{a}{2} + e^{-i(-k_x \frac{a}{2} + k_y \frac{a}{2})} 2\cos k_z \frac{a}{2} + \\ &+ e^{-i(k_x \frac{a}{2} - k_y \frac{a}{2})} 2\cos k_z \frac{a}{2} + e^{-i(-k_x \frac{a}{2} - k_y \frac{a}{2})} 2\cos k_z \frac{a}{2}] \\ &= \varepsilon_i - J_0 - J_1 [4\cos(k_x \frac{a}{2} + k_y \frac{a}{2})\cos k_z \frac{a}{2} + \\ &+ 4\cos(k_x \frac{a}{2} - k_y \frac{a}{2})\cos k_z \frac{a}{2}] \\ &= \varepsilon_i - J_0 - 8J_1 \cos k_x \frac{a}{2} \cos k_y \frac{a}{2} \cos k_z \frac{a}{2} \\ &\Gamma \stackrel{\text{Li}}{=} (0,0,0) \qquad (2\pi/a,0,0) \\ &E^\Gamma = \varepsilon_z - J_0 - 8J_1 \\ &E = \varepsilon_z - J_0 + 8J_1 \end{split}$$

带宽 16 J₁

$$m *_{x} = \hbar^{2} / \frac{\partial^{2} E}{\partial k_{x}^{2}} = \frac{\hbar^{2}}{2a^{2} J_{1} \cos k_{y} \frac{a}{2} \cos k_{z} \frac{a}{2}}$$

$$m*_{y} = \hbar^{2} / \frac{\partial^{2} E}{\partial k_{y}^{2}} = \frac{\hbar^{2}}{2a^{2} J_{1} \cos k_{x} \frac{a}{2} \cos k_{z} \frac{a}{2}}$$

$$m*_{z} = \hbar^{2} / \frac{\partial^{2} E}{\partial k_{z}^{2}} = \frac{\hbar^{2}}{2a^{2} J_{1} \cos k_{x} \frac{a}{2} \cos k_{y} \frac{a}{2}}$$

