

Winning Space Race with Data Science

Orlando Jesús Herrera Ruiz September, 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data collection using API
 - Data collection using Website Scraping
 - Data wrangling
 - Data Analysis using SQL
 - Data Visualization
 - Visual Analytics with Folium
 - Machine Learning Predictions
- Summary of all results
 - Predictive analytics result

Introduction

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch. In this lab, you will collect and make sure the data is in the correct format from an API. The following is an example of a successful and launch.

Problems you want to find answers

- 1. What will determine the successful landing of the rockets?
- 2. What conditions are necessary to have success launches and landings?

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and web scraping this link of wikipedia
- Perform data wrangling
 - Watching, Decoding, and Cleaning Data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Machine learning algorithms with Python

Data Collection

The data was collected:

- Using get & request and SpaceX API
- Decoding and normalizing data with Pandas .json() and json_normalize()
- Data was cleaned, removing null data or fill missed values
- Data table from wikipedia was transformed in dataframe

Data Collection – SpaceX API

Using api from SpaceX

Click here and open the file

```
In [6]: spacex_url="https://api.spacexdata.com/v4/launches/past"
In [7]: response = requests.get(spacex_url)
```

```
To make the requested JSON results more consistent, we will use the following static response object for this project:

static_json_url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/API_call_spacex_api.jsor

We should see that the request was successfull with the 200 status response code

response.status_code

200

Now we decode the response content as a Json using .json() and turn it into a Pandas dataframe using .json_normalize()

# Use json_normalize meethod to convert the json result into a dataframe data = pd.json_normalize(response.json())
```

Data Collection - Scraping

 Webscrapping and BeautifulSoup

 The table was converted in a Pandas dataframe

You can visit the file, <u>click</u>
 <u>here</u>

```
headings = []
for key,values in dict(launch dict).items():
    if key not in headings:
        headings.append(key)
   if values is None:
       del launch dict[key]
def pad_dict_list(dict_list, padel):
    lmax = 0
    for lname in dict_list.keys():
       lmax = max(lmax, len(dict_list[lname]))
    for lname in dict_list.keys():
       11 = len(dict_list[lname])
       if 11 < 1max:
           dict_list[lname] += [padel] * (lmax - 11)
   return dict list
pad_dict_list(launch_dict,0)
df = pd.DataFrame.from_dict(launch_dict)
df.head()
```

	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	<generator 0x7ff1d8<="" at="" object="" tagall_strings="" th=""><th>Success\n</th><th>F9 v1.0B0003.1</th><th>Failure</th><th>4 June 2010</th><th></th></generator>	Success\n	F9 v1.0B0003.1	Failure	4 June 2010	
1	2	CCAFS	Dragon	0	LEO	<generator 0x7ff1d8<="" at="" object="" tagall_strings="" th=""><th>Success</th><th>F9 v1.0B0004.1</th><th>Failure</th><th>8 December 2010</th><th>15:43</th></generator>	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
2	3	CCAFS	Dragon	525 kg	LEO	<generator 0x7ff1d8<="" at="" object="" tagall_strings="" th=""><th>Success</th><th>F9 v1.0B0005.1</th><th>No attempt\n</th><th>22 May 2012</th><th>07:44</th></generator>	Success	F9 v1.0B0005.1	No attempt\n	22 May 2012	07:44
3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	<generator 0x7ff1d8<="" at="" object="" tagall_strings="" th=""><th>Success\n</th><th>F9 v1.0B0006.1</th><th>No attempt</th><th>8 October 2012</th><th>00:35</th></generator>	Success\n	F9 v1.0B0006.1	No attempt	8 October 2012	00:35

Data Wrangling

The complete notebook is in the next <u>link</u>

EDA with Data Visualization

The complete notebook is the next link

EDA with SQL

SQL queries insights:

- Names of the unique launch sites in the space mission
- 5 records where launch sites begin with the string 'CCA'
- total payload mass carried by boosters launched by NASA (CRS)
- average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was acheived.

Complete list of queries clicking <u>here</u>

Build an Interactive Map with Folium

- Sites were marked, We added map objects: circles & lines to mark the success or failure of launches for each site on the map.
- 0 Class represent failure (red points), 1 class represent success
- Identification of which launch site have high probability success rate
- The distance between a launch site was calculated to its proximities.

Build a Dashboard with Plotly Dash

- Interactive dashboard with Plotly dash
- Mark all launch sites on a map
- Calculate the distances between a launch site to its proximities
- The link to the notebook is here

Predictive Analysis (Classification)

- Numpy and pandas for transform the data, after that split the data into training and testing.
- Different ML models were built
- We use accuracy to measure the best performance of the algorithms

If you want to see the complete notebook, please click <u>next link</u>

Results

	FlightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_E5- L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	 Serial_B1058	Serial_B1059	Sei
0	1.0	6104.959412	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
1	2.0	525.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
2	3.0	677.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	 0.0	0.0	
3	4.0	500.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
4	5.0	3170.000000	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	
85	86.0	15400.000000	2.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
86	87.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	
87	88.0	15400.000000	6.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
88	89.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
89	90.0	3681.000000	1.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	
90 r	ows × 83 colu	mns											

Flight Number vs. Launch Site

Payload vs. Launch Site

CCAFS higher rate of success

VAFB-SLC launchsite there are no rockets launched for heavypayload mass(greater than 10000).

Success Rate vs. Orbit Type

ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

After the half flights, the success was higher

ES-L1, SSO and HEO was 100% of success

Payload vs. Orbit Type

PO, ISS, VLEO with high success heavy payload

Launch Success Yearly Trend

More experience is synonym of high success rate

All Launch Site Names

DISTINCT clause to show only unique launch sites from the SpaceX data.

Launch Site Names Begin with 'CCA'

	* sqlit	e:///my_d	ata1.db							
:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcom
-	04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failur (parachute
(08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failu (parachut
	22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attem
(08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attem
	01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attem

[&]quot;LIKE" clause to select "CCA" launch sites

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)

* sql select sum(PAYLOAD_MASS__KG_) from spacexdata where Customer='NASA (CRS)'

* sqlite://my_data1.db
Done.

: sum(PAYLOAD_MASS__KG_)

45596
```

"SUM" clause to calculate the total

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

* sqlite://my_data1.db
Done.

avg(PAYLOAD_MASS__KG_)

2928.4
```

"AVG" clause to calculate the average payloadmass

First Successful Ground Landing Date

We observed the first successful landing outcome on ground pad was 01/05/2017

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%sql select distinct Booster_Version from spacexdata where [Landing _Outcome]='Success (drone ship)' and PAYLOAD_MASS__KG_ between 4000 and 6000

* sqlite://my_data1.db
Done.

Booster_Version

F9 FT B1022

F9 FT B1021.2

F9 FT B1031.2
```

We used the WHERE clause to filter successfully landed on drone ship

BETWEEN clause to determine successful landing with payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

```
%sql select substr(Mission_Outcome,1,7) as Mission_Outcome, count(*) from spacexdata group by 1

* sqlite://my_data1.db
Done.

Mission_Outcome count(*)

Failure 1

Success 100
```

GROUP clause split two groups "Failure" and "Success"

COUNT clause calculate all rows with the previous condition

Boosters Carried Maximum Payload

2015 Launch Records

WHERE clause is the condition need to be validate

DISTINCT clause take unique values, not repeat

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

20 Success landings outcome

All launch sites global map markers

All launches are from Florida and California

Markers showing launch sites

Green is succeed, red is a fail.

Zoom in to show the map with all succeeded and failure launches

Launch Site distance

A blue line show the distance from one poin to the Florida coast. In this case: 0.9km.

Total success launches group by all sites

Classification Accuracy

Logistic Regression, SVM & KN have a high accuracy metric

Confusion Matrix

Logistic Regression

SVM

Conclusions

- ES-L1, GEO, HEO, SSO, VLEO orbits, had a very high success rate
- Logistic Regression, SVM & KN show a very high accuracy metric, so we can work with them
- KSC LC-39A is the most successful site for launches
- If the flight amount at a launch site is large, the probability of success rate will be high

