Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения бо́льшего количества задач дополнительные баллы также будут учтены.

На экзамене разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

1. Линейный функционал $F \in C[-\pi/6,\pi]^*$ задан формулой

$$F(f) = \int_{-\pi/6}^{0} \cos x f(x) \, dx - \int_{0}^{\pi/2} \sin x f(x) \, dx + 2f(0) - \frac{1}{2} f\left(\frac{\pi}{2}\right) - f(\pi).$$

Найдите функцию распределения меры, соответствующей этому функционалу, постройте ее график и вычислите ее вариацию.

2. Линейный оператор $T: C[0,\pi] \to C[0,\pi]$ действует по формуле

$$(Tf)(x) = f\left(\frac{\pi}{2}\right) + f\left(\frac{x^2}{\pi}\right) + \int_0^{\pi} f(y)\sin^2(2(x-y)) dy \qquad (f \in C[0,\pi], \ x \in [0,\pi]).$$

Отождествим стандартным образом пространство $(C[0,\pi])^*$ с $M[0,\pi]$ (так что сопряженный оператор T^* будет действовать в пространстве $M[0,\pi]$). Обозначим через μ меру Лебега. Найдите **1)** $(T^*\mu)([0,\pi/2));$ **2)** $(T^*\mu)([\pi/2,\pi]).$

- **3.** Пусть X и Y банаховы пространства.
- 1) Докажите, что множество сюръективных ограниченных линейных операторов из X в Y открыто в $\mathcal{B}(X,Y)$.
- 2) Верно ли предыдущее утверждение для неполных нормированных пространств?
- **4.** Для каждого $t \in [0,1]$ обозначим через δ_t борелевскую меру на [0,1], заданную формулой

$$\delta_t(B) = \begin{cases} 1, & \text{если } t \in B, \\ 0, & \text{если } t \notin B. \end{cases}$$

Рассмотрим линейный оператор $T: \ell^1 \to M[0,1], (x_n) \mapsto \sum_n x_n \delta_{1/n}$. Отождествим стандартным образом ℓ^1 с c_0^* , а M[0,1] — с $C[0,1]^*$. Существует ли такой ограниченный линейный оператор $S: C[0,1] \to c_0$, что $T=S^*$?

- **5.** Пусть $\|\cdot\|_1$ и $\|\cdot\|_2$ неэквивалентные нормы на векторном пространстве X. Докажите, что сопряженные пространства $(X,\|\cdot\|_1)^*$ и $(X,\|\cdot\|_2)^*$ различны как подмножества в пространстве всех линейных функционалов на X.
- **6.** Пусть $\|\cdot\|$ норма на пространстве $L^1[0,1]$, превращающая $L^1[0,1]$ в банахово пространство и такая, что из сходимости последовательности (f_n) к элементу $f \in L^1[0,1]$ по норме $\|\cdot\|$ следует, что

$$\lim_{n\to\infty} \int_{0}^{x} f_n(t) dt = \int_{0}^{x} f(t) dt$$
 для всех $x \in [0,1]$.

Докажите, что норма $\|\cdot\|$ эквивалентна стандартной норме на $L^1[0,1]$.