Base dati relazionale

Breve introduzione

Base dati relazionale

Basata su due concetti:

Tabella
 Semplice ed intuitivo

• Relazione

Formale, arriva direttamente dalla matematica

Tabella

Insieme di righe e colonne, dove:

- i-esima riga: raccolta di valori correlati ad un oggetto
- i-esima colonna (campo): «ruolo» svolto all'interno della riga

	Matricola	Nome Utente	Nome	Cognome
l	123	rossi.m	mario	rossi
2	456	bianchi.m	mario	bianchi

Relazione

Definita nella teoria degli insiemi: sottoinsieme P del prodotto cartesiano di due insiemi D_1 e D_2 .

Esempio:

$$D_1 = \{ 1, 2, 4 \}$$
 $D_2 = \{ a, b \}$

prodotto cartesiano: $\{(1, a), (1, b), (2, a), (2, b), (4, a), (4, b)\}$ Un possibile sottoinsieme può essere $P = \{(1, a), (1, b), (4, b)\}$

Relazione

Rappresentazione grafica del sottoinsieme $P = \{(1, a), (1, b), (4, b)\}$:

D ₁	D ₂
1	а
1	b
4	b

Base dati relazionale

Tabella = Relazione

• Tabella: utilizzo pratico per la costruzione di basi di dati

• Relazione: concetto matematico per formalizzazioni teoriche

Base dati relazionale

Insieme di tabelle le cui righe contengono le informazioni rilevanti per la nostra applicazione; ove necessario, sono presenti valori comuni per stabilire corrispondenze tra righe o tabelle differenti.

Studenti

Matricola	Cognome	Nome	Data di nascita
276545	Rossi	Maria	25/11/1981
485745	Neri	Anna	23/04/1982
200768	Verdi	Fabio	12/02/1982
587614	Rossi	Luca	10/10/1981
937653	Bruni	Mario	01/12/1981

Esami

Studente	Voto	Corso
276545	28	01
276545	27	04
937653	25	01
200768	24	04

Codice	Titolo	Docente
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

Studenti

Matricola	Cognome	Nome	Data di nascita
200768	Verdi	Fabio	12/02/1982
937653	Rossi	Luca	10/10/1981
937653	Bruni	Mario	01/12/1981

Esami

Studente	Voto	Lode	Corso
200768	36		05
937653	28	sì	01
937653	30	sì	04
276545	25		01

Codice	Titolo	Docente
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

Studenti

Matricola	Cognome	Nome	Data di nascita
200768	Verdi	Fabio	12/02/1982
937653	Rossi	Luca	10/10/1981
937653	Bruni	Mario	01/12/1981

Esami

Studente	Voto	Lode	Corso
200768	36		05
937653	28	sì	01
937653	30	sì	04
276545	25		01

Codice	Titolo	Docente
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

In generale, non tutte le possibili n-uple (o tuple) sono «corrette» per una fissata tabella della nostra applicazione, bensì solo un loro sottoinsieme.

Vincolo di integrità:

Proprietà che deve essere soddisfatta dalle istanze di riga che rappresentano informazioni corrette per l'applicazione.

Vincoli di tupla

• Vincoli di chiave

• Vincoli di integrità referenziale

I **vincoli di tupla** esprimono condizioni sui valori all'interna della riga, indipendentemente dalle altre righe.

Esami

Studente	Voto	Lode	Corso
200768	36 -		05
937653	28	sì _	01
937653	30	sì	04
276545	25		01

Il voto deve essere compreso tra 18 e 30

La lode è ammissibile solo se il voto è pari a 30.

La **chiave primaria** è un insieme di colonne che identificano univocamente le righe di una tabella.

• Univocità delle righe

 Stabilire le corrispondenze tra dati in tabelle differenti

Studenti

<u>Matricola</u>	Cognome	Nome	Data di nascita
200768	Verdi	Fabio	12/02/1982
937653	Rossi	Luca	10/10/1981
937653	Bruni	Mario	01/12/1981

Nota: identifichiamo la chiave primaria sottolineando le colonne che la compongono

Un **vincolo di integrità referenziale** tra un insieme di colonne C della tabella T₁ e la tabella T₂ è soddisfatto se i valori di C, per ogni riga di T₁, compaiono come valori di chiave primaria* in T₂.

Esami

<u>Studente</u>	Voto	Lode	Corso
200768	29		05
937653	28		01
937653	30	sì	04

Codice	Titolo	Docente
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

^{*} alcuni motori di database lo permettono anche su vincoli UNIQUE.

Tipi

- Character: char, varchar, nchar, nvarchar
- Numerici esatti: integer, decimal, bit
- Numerici approssimati: float, real, double
- Istanti temporali: date, time, timestamp
- Binary: binary

ORM

Acronimo di object-relational mapping

Consente l'integrazione tra il software OO e i sistemi RDBMS

<u>Codice</u>	Titolo	Docente
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

```
Epublic class Corsi
{
    [Key]
    public int Codice { get; set; }

    public string Titolo { get; set; }

    public string Docente { get; set; }
}
```

ORM

Vantaggi:

- Astrazione tra il software e il modello relazionale
- Portabilità del software rispetto al DBSM utilizzato
- Stratificazione del software, isolando la logica di accesso al DB

Svantaggi:

- Riduzione delle prestazioni
- Apprendimento iniziale non banale

Entity Framework Core

• Framework open source di Microsoft

ORM

Open source

• Multipiattaforma

• Supporta più provider di database (SQL Server, Oracle, PostgreSQL, ...)

Entity Framework Core - Repository

 Insieme di classi e componenti che incapsula le logiche di accesso al DB

 Unico punto di accesso al DB

Migliore manutenibilità

Entity Framework Core - DbContext

Le istanze rappresentano una sessione di lavoro con il DB

- Traduce il codice C# in query SQL e le trasferisce al motore DB
- Traduce il risultato di una query in istanze di classi C#, ove necessario
- Change tracking
- Transazioni
- Gestione delle relazioni tra tabelle

Entity Framework Core - DbSet

Rappresenta una tabella del DB

Il DbContext incapsula tutti i DbSet necessari per il corretto funzionamento dell'applicazione

Modifiche al DbSet si ripercuotono sul tracking del DbContext

Entity Framework Core - Model

Classe C# che rappresenta lo schema di una tabella

<u>Codice</u>	Titolo	Docente
01	Analisi	Giani
03	Chimica	Melli
04	Chimica	Belli

```
public class Corsi
{
    [Key]
    public int Codice { get; set; }

    public string Titolo { get; set; }

    public string Docente { get; set; }
}
```