Analog Electronics

Course No: AE-2

Lec: LC & Crystal Oscillators

Course Instructor: Dr. Arka Roy

Dept of ECE, PDEU

LC Tank Circuit:

Initially capacitor is not charged:

$$V_c(\mathbf{0}^-) = \mathbf{0}$$

Continuous charging and discharging of capacitor and inductor

Tuned Oscillators Circuits: LC Oscillators

Tuned oscillators use a parallel LC resonant circuit (LC tank) to provide the oscillations.

- > The frequency selection network (Z_1 , Z_2 and Z_3) provides a phase shift of 180°
- ➤ Output voltage is developed across Z₂ and feedback voltage is developed across Z₁.
- > The amplifier provides additional shift of 180°

There are two common types:

Colpitts—The resonant circuit is an inductor and two capacitors.

Hartley—The resonant circuit is a tapped inductor or two inductors and one capacitor.

Generalized LC Oscillator:

OPAMP's internal ckt:

- $R_i = \infty$ (very high so we can reject)
- But R_o is finite but low

Generalized LC Oscillator:

$$V_0 = -A_v V_{12} \times \frac{Z_l}{Z_l + R_0}$$

$$Z_l = Z_2 || (Z_1 + Z_3)$$

$$= \frac{Z_2 \times (Z_1 + Z_3)}{Z_1 + Z_3 + Z_2}$$

$$A = \frac{V_0}{V_{12}} = -A_v \times \frac{Z_l}{Z_l + R_0}$$

$$A = \frac{-A_v \times Z_2 \times (Z_1 + Z_3)}{R_0 \times (Z_1 + Z_3 + Z_2) + Z_2 \times (Z_1 + Z_3)}$$

$$A = \frac{-A_v \times Z_2 \times (Z_1 + Z_3)}{R_0 \times (Z_1 + Z_3 + Z_2) + Z_2 \times (Z_1 + Z_3)}$$

$$\beta = \frac{Z_1}{Z_1 + Z_2}$$

$$A\beta = \frac{-A_v \times Z_2 \times Z_1}{R_0 \times (Z_1 + Z_3 + Z_2) + Z_2 \times (Z_1 + Z_3)}$$

Let
$$Z_1$$
, Z_2 , $Z_3 = j X_1$, $j X_2$, $j X_3$;
where $X = \omega L$, $or(-\frac{1}{\omega C})$

$$A\beta = \frac{A_v \times X_2 \times X_1}{jR_0 \times (X_1 + X_3 + X_2) - X_2 \times (X_1 + X_3)}$$

Aβ should be equal for sustained oscillation:

$$jR_0 \times (X_1 + X_3 + X_2) = 0$$

$$\Rightarrow (X_1 + X_3 + X_2) = 0$$

$$A\beta = \frac{A_v \times X_2 \times X_1}{-X_2 \times (X_1 + X_3)}$$

$$A\beta = \frac{A_{\nu} \times X_2 \times X_1}{-X_2 \times -X_2} = \frac{A_{\nu} \times X_1}{X_2}$$

$$A_{v} = \frac{X_2}{X_1}$$

Colpitt's Oscillator:

 $Z_{1,} Z_{2} \rightarrow Capacitors$

 $Z_3 \rightarrow Inductor$

Derive relation of f_0 !!

$$\Rightarrow (X_1 + X_3 + X_2) = 0$$

$$-\frac{1}{\omega C_1} + \omega L + -\frac{1}{\omega C_2} = 0$$

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{(C_1 + C_2)}{LC_1 C_2}}$$

Hartley's Oscillator:

 $Z_{1,} Z_{2} \rightarrow Inductor$

 $Z_3 \rightarrow Capacitors$

Derive relation of f_0 !!

$$\Rightarrow (X_1 + X_2 + X_3) = 0$$

$$\omega L_1 + \omega L_2 + -\frac{1}{\omega C} = 0$$

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{C(L_1 + L_2)}}$$

THE END.

