분류 Part2

5. GBM (Gradient Boosting Machine)

GBM 개요 및 실습

- **부스팅** 알고리즘
 - 약한 학습기 차례로 학습/예측 → 잘못된 데이터에 가중치 부여함
 - 1. 에이다 부스트 (AdaBoost)
 - a. 약한 학습기로 데이터 분류 (학습/예측)
 - b. 오류 데이터에 가중치 값 부여
 - ⇒ 다음 학습기가 더 잘 분류하게 됨
 - c. 약한 학습기를 모두 결합해서 결과를 예측함

• 개별 약한 학습기에 가중치 부여

2. 그래디언트 부스트(GBM)

- 경사 하강법으로 가중치 업데이트함
 - 경사 하강법: 오류식을 최소화하는 방향성으로 가중치 업데이트 (y: 실제 결괏값, F(x): 피처에 기반한 예측 함수, 오류식: h(x)=y-F(x))

- GradientBoostingClassifier: 분류 클래스
- 랜덤 포레스트보다 예측 성능 뛰어남
 but 느림 (⇒ XGBoost), 하이퍼 파라미터 튜닝 노력 필요함

GBM 하이퍼 파라미터 및 튜닝

이름	설명
loss	- 경사 하강법 비용 함수 - deviance(디폴트)
learning_rate	- 학습률: 약한 학습기가 오류값 보정할 때 적용하는 계수 - 0~1 (디폴트: 0.1) - 학습률 작을 때: 최소 오류 값 찾을 수 있음 (예측 성능 good) but 수행 시간 길어짐, 최소 오류 값 찾지 못할 수도 있음 - 학습률 클 때: 수행 시간 짧아짐 but 최소 오류 값 지나칠 수 있음 (예측 성능 bad)
n_estimators	- weak learner 개수 - 개수 많을 수록 성능 좋아질 수 있음 but 시간 오래 걸림
subsample	- 학습에 사용하는 데이터의 샘플링 비율 - 1(디폴트): 전체 데이터, 0.5: 학습 데이터의 50% - subsample<1 → 과적합 방지

6. XGBoost

XGBoost 개요

• 장점

항목	설명
1. 뛰어난 성능	
2. GBM에 비해 빠른 수행 시간	- 병렬로 수행함 ◦ GBM: 순차적인 진행 → 느림
3. 과적합 규제	- 자체 과적합 규제 기능 • GBM: 과적합 규제 기능 없음
4. 나무 가지치기	긍정 이득이 없는 분할을 가지치기 함 → 분할 수를 줄임
5. 자체 내장된 교차 검증	- 교차 검증 ⇒ 최적화된 반복 수행 횟수 얻음 - 조기 중단 기능: 평가 값 최적화됨 → 반복 중간에 중단함
6. 결손값 자체 처리	

- 파이썬 래퍼 XGBoost 모듈
 - 。 독자적인 XGBoost 프레임워크 기반
- 사이킷런 래퍼 XGBoost 모듈
 - 。 사이킷런과 연동

XGBoost 설치하기

conda install -c anaconda py-xgboost

import xgboost as xgb
from xgboost import XGBClassifier

파이썬 래퍼 XGBoost 하이퍼 파라미터

- 하이퍼 파라미터 유형
 - 1. 일반 파라미터

이름	설명
booster	gbtree(tree based model) (디폴트) gblinear(linear model)
slient	- 0 (디폴트) - 1: 출력 메시지 나타내고 싶지 않을 때
nthread	CPU 실행 스레드 수 - (디폴트) 전체 사용

2. 부스터 파라미터

• 트리 최적화, 부스팅, regularization 관련

이름	설명
eta [default=0.3, alias: learning_rate]	학습률
num_boost_rounds	GBM의 n_estimators
min_child_weight [default=1]	클수록 분할 자제 ⇒ 과적합 규제
gamma [default=0, alias: min_split_loss]	트리 리프 노드 추가로 나눌지 결정할 최소 손실 감소 값
max_depth	
sub_sample	데이터 샘플링 비율 지정 ⇒ 과적합 규제
colsample_bytree	GBM의 max_feature
lambda	L2 Regularization 적용 값
alpha	L1 Regularization 적용 값
scale_pos_weight	비대칭한 클래스로 구성된 데이터 세트의 균형을 유지함

3. 학습 태스크 파라미터

• 학습 수행 시 객체 함수, 평가 지표 설정

- objective: 최솟값을 가져야할 손실 함수를 정의합니다. XGBoost는 많은 유형의 손실함수를 사용할 수 있습니다. 주로 사용되는 손실함수는 이진 분류인지 다중 분류인지에 따라 달라집니다.
- binary:logistic: 이진 분류일 때 적용합니다.
- multi:softmax: 다중 분류일 때 적용합니다. 손실함수가 multi:softmax일 경우에는 레이블 클래스의 개수인 num_class 파라미터를 지정해야 합니다.
- multi:softprob: multi:softmax와 유사하나 개별 레이블 클래스의 해당되는 예측 확률을 반환합니다.
- eval_metric: 검증에 사용되는 함수를 정의합니다. 기본값은 회귀인 경우는 rmse, 분류일 경우에는 error입니다. 다음은 eval_metric의 값 유형입니다.
 - · rmse: Root Mean Square Error
 - · mae: Mean Absolute Error
 - · logloss: Negative log-likelihood
 - · error: Binary classification error rate (0.5 threshold)
 - · merror: Multiclass classification error rate
 - · mlogloss: Multiclass logloss
 - · auc: Area under the curve
- 。 과적합 문제 해결 tip
 - eta 값 낮추기
 - num_round (=n_estimators) 값 높여줘야 함
 - max_depth 값 낮추기
 - min_child_weight 값 높이기
 - gamma 값 높이기
 - subsample, colsample_bytree 조정하기
- 。 조기 중단 기능
 - n_estimators 반복 횟수에 도달하지 않았지만 예측 오류가 더 이상 개선되지 않음 → 중지!
 - ⇒ 시간 단축됨
 - ex. 조기 중단 파라미터 = 50
 : 50회 반복하는 동안 오류 감소하지 않음 → 종료

사이킷런 래퍼 XGBoost 개요 및 적용

• XGBClassifier: 분류 XGBRegressor: 회귀

• 하이퍼 파라미터명

사이킷런 래퍼 XGBoost 이름	파이썬 래퍼 XGBoost 이름
learning_rate	eta
subsample	sub_sample
reg_lambda	lambda
reg_alpha	alpha
n_estimators	num_boost_round

7. LightGBM

• 특징

장점	단점
1. XGBoost보다 학습 시간이 짧음	1. if 적은 데이터 사용 → 과적합 발생하기 쉬움
2. 메모리 사용량 적음	
3. 카테고리형 피처 자동변환, 최적 분할 - 원-핫 인코딩 사용하지 않고 노드 분할 수행 가능함	

。 **리프 중심 트리 분할** 사용함

• cf. 대부분의 트리 기반 알고리즘은 균형 트리 분할 방식 사용함

이름	설명	장점	단점
리프 중심 트리 분 할	트리의 균형을 맞추지 않고 최대 손실 값을 갖는 리프 노드를 계속 분할함	예측 오류 손실 최소 화함	- 깊이가 깊어짐 - 비대칭적인 트리 생 성됨
균형 트리 분할	균형 잡힌 트리 유지하면서 분할함	트리의 깊이 최소화 됨 ⇒ 과적합에 강함	시간이 걸림

LightGBM 설치

conda install -c conda-forge lightgbm

LightGBM 하이퍼 파라미터

이름	설명
num_iterations	반복 수행하는 트리 개수
learning_rate	- 학습률: 약한 학습기가 오류값 보정할 때 적용하는 계수 - 0~1 (디폴트: -1) - 학습률 작을 때: 최소 오류 값 찾을 수 있음 (예측 성능 good) but 수행시간 길어짐, 최소 오류 값 찾지 못할 수도 있음 - 학습률 클 때: 수행시간 짧아짐 but 최소 오류 값 지나칠 수 있음 (예측성능 bad)
max_depth	- <0: 깊이에 제한이 없음
min_data_in_leaf	= min_samples_leaf - LightGBMClassifier: min_child_samples - 리프 노드 되기 위해 필요한 최소 레코드 수
num_leaves	하나의 트리가 갖는 최대 리프 개수
boosting	부스팅의 트리 생성하는 알고리즘을 기술함
bagging_fraction	- 데이터 샘플링 비율 지정 ⇒ 과적합 방지
feature_fraction	- 개별 트리 학습할 때 무작위로 선택하는 피처 비율 - GBM: max_feature

이름	설명
	- XGBClassifier: colsample_bytree
lambda_l2	L2 Regularization 제어 값
lambda_l1	L1 Regularization 제어 값
objective	최솟값을 가져야 할 손실함수

하이퍼 파라미터 튜닝 방안

- 모델 복잡도 감소 tip
 - num_leaves 줄이기
 - num_leaves 높임
 - → 정확도 높아짐
 - → but 트리 깊이 깊어짐, 복잡도 커짐
 - o min_data_in_leaf (=min_child_samples) 큰 값으로 설정함
 - ∘ max_depth로 깊이 제한함
 - 。 learning_rate 작게, n_estimators 크게 설정함

파이썬 래퍼/사이킷런 래퍼 LightGBM, 사이킷런 래퍼 XGBoost 하이퍼 파라미터 비교

유형	파이썬 래퍼 LightGBM	사이킷런 래퍼 LightGBM	사이킷런 래퍼 XGBoost
	num_iterations	n_estimators	n_estimators
	learning_rate	learning_rate	learning_rate
	max_depth	max_depth	max_depth
	min_data_in_leaf	min_child_samples	N/A
	bagging_fraction	subsample	subsample
파라미터명	feature_fraction	colsample_bytree	colsample_bytree
	lambda_l2	reg_lambda	reg_lambda
	lambda_l1	reg_alpha	reg_alpha
	early_stopping_round	early_stopping_rounds	early_stopping_rounds
	num_leaves	num_leaves	N/A
	min_sum_hessian_in_leaf	min_child_weight	min_child_weight

10. 스태킹 앙상블

- 메타 모델: 개별 모델의 예측된 데이터 세트를 기반으로 다시 학습, 예측하는 방식
- 수행 절차
 - 1. 개별적인 기반 모델로 예측한 결과 값으로 학습/테스트용 데이터 세트를 생성함
 - 2. 각 모델에서 생성된 학습/테스트용 데이터를 스태킹 형태로 합침 (메타 데이터 세트)
 - 3. ML 알고리즘으로 최종 학습 수행함 (최종 메타 모델)
 - 4. 테스트용 데이터 (메타 데이터 세트) 기반으로 최종 예측 수행함
 - 5. 원본 테스트 데이터 기반으로 평가함

• 성능 비슷한, 많은 개별 모델이 필요함 → 성능 높임

기본 스태킹 모델

CV 세트 기반의 스태킹

- 최종 메타 모델을 위한 데이터 세트 만들 때 교차 검증 기반으로 예측함 → 과적합 개선!
- 수행 절차

- 1. 학습용 데이터를 N개의 폴드로 나눔
 - → (N-1)개 학습용 데이터 폴드, 1개 검증용 데이터 폴드
- 2. 학습용 데이터 폴드로 개별 모델 학습시킴
 - a. 검증 폴드 1개로 예측하고 결과 저장함
 - b. 1~3을 N번 반복함
- 3. (N-1)개 폴드로 학습한 모델로 원본 테스트 데이터 예측함
 - a. N번 반복함
 - b. 최종 결괏값 = 예측값의 평균
 - → 메타 모델의 테스트 데이터

- 4. 학습/테스트용 데이터 모두 합침
- 5. 최종 학습 데이터와 원본 데이터의 레이블 데이터 합침
- 6. 메타 모델 학습함
 - a. 최종 테스트 데이터로 예측함
 - b. 최종 예측 결과를 원본 테스트 데이터의 레이블과 비교함 (평가)

[파머완 2판] 베이지안 최적화 기반 HyperOpt로 하이퍼 파라미터 튜닝

- Grid Search 방식을 이용한 하이퍼 파라미터 튜닝
 - 하이퍼 파라미터 수 많음 → 최적화 시간 오래 걸림
 - ⇒ 베이지안 최적화 기법

베이지안 최적화 개요

- 목적 함수 식을 알 수 없을 때 최적 입력값을 최소한의 시도로 찾아주는 방식
 - 목적 함수: 어떤 목적 (ex. 최대, 최솟값) 위해 사용하는 함수
- 새로운 데이터 입력 받음 → 최적 함수 예측하는 사후 모델 개선 → 최적 함수 모델 생성
 - 。 베이지안 확률 기반 최적화 기법
 - 베이지안 확률: 새로운 사건의 관측, 데이터 기반으로 사후 확률 개선함

구성 요소	설명
대체 모델(Surrogate Model)	획득 함수로부터 입력값 추천 받음 → 최적 함수 모델 개선
획득 함수(Acquisition Function)	개선된 모델 기반으로 최적 입력값 계산함

- 최적화 단계
 - 1. 랜덤 하이퍼 파라미터를 입력하여 성능 결과 관측함

2. 관측값 기반으로 최적 함수 추정함

- 파란색 실선: 대체 모델이 추정한 최적 함수
- 옅은 파란색: 예측된 함수의 신뢰 구간, 추정된 함수의 결괏값 오류 편차 (=추정 함수의 불확실성)
- 최적 관측값: y축(value)에서 가장 높은 값 가질 때의 하이퍼 파라미터

3. 획득 함수가 추정된 최적 함수 기반으로 하이퍼 파라미터 값을 계산함

• 이전 최적 관측값보다 더 큰 최댓값을 가질 가능성이 있는 지점 찾음 → 그 지점을 대체 모델에 전달함 (왜 최댓값을 갖는 지점 찾아야 함?)

4. 전달 받은 하이퍼 파라미터 수행해서 관측한 값 기반으로 모델 개선함 → 최적 함수 다시 예측 추정함

HyperOpt 사용하기

- HyperOpt 사용 로직
 - 1. 입력 변수명, 입력값의 검색 공간 설정하기
 - 검색 공간 제공하는 함수

o label: 입력 변수명

○ low: 최솟값, high: 최댓값, q: 간격

함수	설명
hp.quniform(label, low, high, q)	입력값 변수 검색 공간을 최솟값에서 최댓값까지 q 간격으로 설정
hp.uniform(label, low, high)	최솟값에서 최댓값까지 정규 분포 형태의 검색 공간 설정
hp.randint(label, upper)	0부터 최댓값(upper)까지 random 정숫값으로 검색 공간 설정
hp.loguniform(label, low, high)	exp(uniform(low,high)) 반환 - log(반환 값)이 정규 분포 형태인 검색 공간 설정
hpchoice(label, options)	검색 값이 문자열 or 문자열+숫자값

2. 목적 함수 설정하기

- 인자: 변숫값, 검색 공간 갖는 딕셔너리
- 반환값: 숫자형 or dictionary
 - o if dictionary → {'loss': retval, 'status':STATUS_OK}
- 3. 목적 함수의 반환 최솟값 갖는 최적 입력값 유추하기
 - fmin(objective, space, algo, max_evals, trials) 함수

이름	설명
fn	목적 함수
space	(= search_space) 검색 공간 딕셔너리
algo	베이지안 최적화 알고리즘
max_evals	입력값 시도 횟수
trials	최적 입력값 찾기 위해 시도한 입력값 및 목적 함수 반환값 결과를 저장함
rstate	random seed

- Trials 객체 중요 속성
 - 1. results
 - 함수 반복 수행 시, 반환되는 반환값
 - result- list 형태 result 개별 원소- dictionary 형태: {'loss': retval, 'status':STATUS_OK}
 - 2. vals
 - 입력되는 입력 변숫값
 - dictionary 형태: {'입력 변수명': 개별 수행 시마다 입력된 값의 리스트}

HyperOpt 이용한 XGBoost 하이퍼 파라미터 최적화

- 주의점
 - 。 특정 하이퍼 파라미터들은 정숫값만 입력 받음 ⇒ 입력 시 형변환!
 - 목적 함수는 최솟값 반환하도록 최적화됨 ⇒ 값이 클수록 좋은 성능 지표일 경우 (-1) 곱하기!