

Bachelor's Thesis

submitted in partial fulfillment of the requirements for the course "Applied Computer Science"

My Title

Robin William Hundt

Institute of Computer Science

Bachelor's and Master's Theses of the Center for Computational Sciences at the Georg-August-Universität Göttingen

09. May 2020

Georg-August-Universität Göttingen Institute of Computer Science

Goldschmidtstraße 7 37077 Göttingen Germany

a +49 (551) 39-172000

+49 (551) 39-14403

www.informatik.uni-goettingen.de

First Supervisor: Prof. Dr. Burkhard Morgenstern

Second Supervisor: Dr. Peter Meinicke

Abstract

Here comes the abstract...

Contents

1	Introduction	1
2	Basics 2.1 Multiple sequence alignment	3
3	Prior Work	5
4	Algorithm	7
5	Implementation	9
6	Evaluation	11
	6.1 BAliBASE 3	11
	6.2 Sum-of-pairs and column score	12
	6.3 MAFFT	12
	6.4 Results	12
7	Conclusion	15
	7.0.1 Further work	15
Bi	bliography	17

Introduction

Basics

2.1 Multiple sequence alignment

Prior Work

Algorithm

In this chapter, the analysis of ...

Implementation

In this chapter, the implementation of \dots

Evaluation

6.1 BAliBASE 3

The third version of the BAliBASE benchmark protein alignment database has been released in 2005 and is widely employed for the comparison of multiple alignment programs [1,2]. It is constructed in a semi automatic process as shown in fig. 6.1 and suitable to evaluate global and local alignment programs. The database is split into 5 reference sets with different characteristics representing distinctive multiple alignment problems.

- reference set 1 subset V1, for which any two sequences share <20% identity and no internal insertions over 35 residues long
- reference set 1 subset V2, consisting of families with at least four equidistant sequences for which any two sequences share 20-40% identity and no large insertions
- reference set 2, for which all sequences share >40% identity and at least one 3D structure is known. Additionally an "Orphan" sequence with <20% identity is chosen per family
- for reference set 3, all sequences in the same subfamily have >40% identity, whereas sequences from different subfamilies share <20% identity
- for reference sets 4 and 5, every sequence shares

Figure 6.1: Flow chart showing the semi automatic process used to establish the reference sets TODO cite self

at least 20% with one other sequence, including sequences with large N/C-terminal extensions (ref 4) or internal insertions (ref 5)

- 6.1.1 Core blocks
- 6.2 Sum-of-pairs and column score
- 6.3 MAFFT
- 6.4 Results

Conclusion

7.0.1 Further work

Bibliography

- [1] J. D. Thompson, P. Koehl, R. Ripp, and O. Poch, "Balibase 3.0: latest developments of the multiple sequence alignment benchmark," *Proteins: Structure, Function, and Bioinformatics*, vol. 61, no. 1, pp. 127–136, 2005.
- [2] D. J. Russell, *Multiple Sequence Alignment Methods -*, softcover reprint of the original 1st ed. 2014 ed. unbekannt: Humana Press, 2016.

20 BIBLIOGRAPHY