Lesson B-2

Frequent Pattern Mining

-frequent patterns, Apriori algorithms, mining association rules, and correlation rules

Frequent Patterns

- Frequent pattern mining searches for recurring relationships in a given data set
- Frequent pattern
 - patterns (e.g., itemset, sequences, or structures) that appear frequently in a dataset.
 - milk and bread, that appear frequently together in a transaction
 - buying first a smartphone, then a phone case, and then a memory card, if it occurs frequently in a shopping history database

Frequent Pattern Analysis

- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, recommender systems, DNA sequence analysis, etc.

Basic Concepts of Frequent Patterns

- Itemset
- k-itemset
- the occurrence frequency of an itemset (frequency, support count or count of the itemset)
- frequent itemset
- closed frequent itemset
- maximal frequent itemset
- (relative) support
- (absolute) support
- minimum support threshold (count)
- association rules
- confidence
- minimum confidence threshold (count)
- strong rules

Item, Itemset, k-itemset, a set of itemset, a transaction database

TID	Items bought
1	A, B, C, E
2	A, C, D, E
3	В, С, Е
4	A, C, D, E
5	C, D, E
6	A, D, E

The occurrence frequency of an itemset

TID	Items bought
1	A, B, C, E
2	A, C, D, E
3	B, C, E
4	A, C, D, E
5	C, D, E
6	A, D, E

{A}	{A,B,C}
{B}	{A,B,D}
{C}	{A,B,E}
{D}	{A,C,D}
{E}	{A,C,E}
	{A,D,E}
{A,B}	{B,C,D}
{A,C}	{B,C,E}
{A,D}	{C,D,E}
{A,E}	
{B,C}	{A,B,C,D}
{B,D}	{A,B,C,E}
{B,E}	{B,C,D,E}
{C,D}	
{C,E}	
{D,E}	

Minimum support count and frequent itemset

minimum support count = 3

TID	Items bought
1	A, B, C, E
2	A, C, D, E
3	B, C, E
4	A, C, D, E
5	C, D, E
6	A, D, E

${A} = 4$	${A,B,C} = 1$
${B} = 2$	${A,B,D} = 0$
${C} = 5$	${A,B,E} = 1$
$\{D\} = 4$	${A,C,D} = 2$
$\{E\} = 6$	${A,C,E} = 3$
	${A,D,E} = 3$
${A,B} = 1$	$\{B,C,D\} = 0$
${A,C} = 3$	$\{B,C,E\} = 2$
${A,D} = 3$	$\{C,D,E\} = 3$
$\{A,E\} = 4$	
$\{B,C\} = 2$	${A,B,C,D} = 0$
$\{B,D\}=0$	${A,B,C,E} = 1$
$\{B,E\} = 2$	$\{B,C,D,E\} = 0$
$\{C,D\} = 3$	
$\{C,E\} = 5$	
$\{D,E\} = 4$	

Closed frequent itemset and maximal frequent itemset (max itemset)

Frequent itemset $X \in D$ is closed if it has no superset with the same frequency. Frequent itemset $X \in D$ is maximal if it does not have any frequent supersets.

TID	Items bought
1	A, B, C, E
2	A, C, D, E
3	B, C, E
4	A, C, D, E
5	C, D, E
6	A, D, E

$\{A\} = 4$	$\{A,B,C\} = 1$
$\{B\} = 2$	$\{A,B,D\} = 0$
$\{C\} = 5$	$\{A,B,E\}=1$
$\{D\} = 4$	$\{A,C,D\} = 2$
$\{E\} = 6$	${A,C,E} = 3$
	${A,D,E} = 3$
$\{A,B\} = 1$	$\{B,C,D\} = 0$
${A,C} = 3$	$\{B,C,E\} = 2$
${A,D} = 3$	$\{C,D,E\} = 3$
$\{A,E\} = 4$	
$\{B,C\} = 2$	$\{A,B,C,D\}=0$
${B,D} = 0$	$\{A,B,C,E\}=1$
$\{B,E\} = 2$	$\{B,C,D,E\}=0$
$\{C,D\} = 3$	
$\{C,E\} = 5$	
$\{D,E\} = 4$	

How to Generate Frequent Itemset?

- Let $I = \{I_1, I_2, ..., I_m\}$ be a set of items
- Let D, the task-relevant data, be a set of database transactions where each transaction T is a set of items such that T ⊆ I
- Each transaction is associated with an identifier, called *TID*.
- Let A be a set of items
- A transaction T is said to contain A if and only if $A \subseteq T$

How to Generate Frequent Itemset?

• Suppose the items in L_{k-1} are listed in an order

The join step:

- To find L_k , a set of candidate k-itemsets, C_k , is generated by joining L_{k-1} with itself.
 - Let I_1 and I_2 be itemsets in L_{k-1} .
 - The resulting itemset formed by joining I_1 and I_2 is $I_1[1]$, $I_1[2]$, ..., $I_1[k-2]$, $I_1[k-1]$, $I_2[k-1]$

The prune step:

- Scan data set D and compare candidate support count of C_k with minimum support count.
- Remove candidate itemsets that whose support count is less than minimum support count, resulting in L_k .

Apriori Algorithm

- Initially, scan DB once to get frequent 1-itemset
- Generate length (k+1) candidate itemsets by joining length k
 frequent itemsets
- Prune length (k+1) candidate itemsets with Apriori property
 - Apriori property: All nonempty subsets of a frequent itemset must also be frequent
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

Input:

- \blacksquare D, a database of transactions;
- *min_sup*, the minimum support count threshold.

Output: *L*, frequent itemsets in *D*.

```
Method:
```

```
(1)
        L_1 = \text{find\_frequent\_1-itemsets}(D);
(2)
        for (k = 2; L_{k-1} \neq \phi; k++) {
(3)
           C_k = \operatorname{apriori\_gen}(L_{k-1});
           for each transaction t \in D { // scan D for counts
(4)
                C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
(5)
                for each candidate c \in C_t
(6)
(7)
                     c.count++;
(8)
(9)
            L_k = \{c \in C_k | c.count \ge min\_sup\}
(10)
(11)
        return L = \bigcup_k L_k;
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
(1)
(2)
           for each itemset l_2 \in L_{k-1}
(3)
                if (l_1[1] = l_2[1]) \land (l_1[2] = l_2[2])
                     \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) then {
                     c = l_1 \bowtie l_2; // join step: generate candidates
(4)
                     if has_infrequent_subset(c, L_{k-1}) then
(5)
                          delete c; // prune step: remove unfruitful candidate
(6)
(7)
                     else add c to C_k;
(8)
(9)
        return C_k;
procedure has_infrequent_subset(c: candidate k-itemset;
            L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
(1)
        for each (k-1)-subset s of c
(2)
           if s \notin L_{k-1} then
(3)
                return TRUE;
        return FALSE;
(4)
```

Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

Transactional Database

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

Transactional data for an AllElectronics branch.

Minimum support count = 2

	C_3		C_3		Compare candidate	L_3	
Generate C_3	Itemset	Scan D for	Itemset	Sup. count		Itemset	Sup. count
candidates from	{I1, I2, I3}	count of each	{I1, I2, I3}	2	minimum support	{I1, I2, I3}	2
L_2		candidate			count		
→	{I1, I2, I5}	→	{I1, I2, I5}	2	→	{I1, I2, I5}	2

Generation of candidate itemsets and frequent itemsets, where the minimum support count is 2.

Rules

- Rule-based expert system
 - If-then rules
 - -X=>Y

- In data mining, association rules are "if-then" statements, that help to show the probability of relationships between data items or attributes within large data sets.
 - Discover relations between attributes or data items within large dataset.

- The rule *X* => *Y* is called a <u>strong</u> association rule
 - when it satisfies a prespecified minimum support threshold and a prespecified minimum confidence threshold.

- The association rule X => Y holds in the transaction set D with support s,
 - where s is the percentage of transactions in D that contain
 X U Y (i.e., the union of sets X and Y say, or, both X and Y).

Support

- The rule $A \Rightarrow B$ holds in the transaction set D with support s
 - support, s, probability that a transaction contains A and B
 - support (A \Rightarrow B) = support (A U B) = P (A U B), range:[0,1]

Confidence

- The rule $A \Rightarrow B$ has **confidence** c in the transaction set D,
 - where c is the percentage of transactions in D containing A that also contain Y.
 - confidence, c, conditional probability that a transaction having A also contains Y
 - confidence (A \Rightarrow B) = P (B | A), range: [0,1]
 - confidence $(A \Rightarrow B) = P(B|A) = P(A \cup B) / P(A)$
 - = support (A U B) / support(A)
 - = support_count(A U B) / support_count(A)

Mining Association Rules

- The <u>association rule mining</u> can be viewed as a twostep process
 - Find all frequent itemsets:
 - By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, *min_sup*.
 - Generate strong association rules from the frequent itemsets:
 - By definition, these rules must satisfy minimum support and minimum confidence.

- Generating Association Rules from Frequent Itemsets
 - for each frequent itemset I, generate all nonempty subset of I
 - For every nonempty subset s of l, Output the rule "s ⇒ (l - s)" If support_count(l) / support_count(s) ≥ min_confidence, where min_confidence is the minimum confidence threshold
- Rules that satisfy both a minimum support threshold and a minimum confidence threshold are called strong

Generating Association Rules from Frequent Itemsets

Suppose the data contain the frequent itemset I = {I1, I2, I5}.
 What are the association rules that can be generated from I?
 If the minimum confidence threshold is 70%, then which rules are strong?

Frequent Patterns -- Apriori Agorithm

```
dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
  M
                    ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
      2
                    ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
      3
                    ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
      4
                    ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
  M
     1 import pandas as pd
                                                                           M
                                                                                 te.columns
      2 from mlxtend.preprocessing import TransactionEncoder
      3 te = TransactionEncoder()
                                                                             ['Apple',
      4 te ary = te.fit(dataset).transform(dataset)
                                                                               'Corn',
      5 te ary
                                                                               'Dill',
                                                                               'Eggs',
[2]: array([[False, False, False, True, False, True, True, True, True,
                                                                               'Ice cream',
            False, True],
                                                                               'Kidney Beans',
           [False, False, True, True, False, True, False, True, True,
            False, True],
                                                                               'Milk',
           [ True, False, False, True, False, True, False, False,
                                                                               'Nutmeg',
            False, Falsel,
                                                                               'Onion',
           [False, True, False, False, True, True, False, False,
                                                                              'Unicorn',
             True, Truel.
                                                                              'Yogurt']
           [False, True, False, True, True, False, False, True,
            False, False]])
        te ary.astype("int")
[3]: array([[0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1],
           [0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1],
           [1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0],
           [0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1],
           [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0]]
```

```
M
     1 te.columns
|: ['Apple',
    'Corn',
    'Dill',
    'Eggs',
    'Ice cream',
    'Kidney Beans',
    'Milk',
    'Nutmeg',
    'Onion',
    'Unicorn',
    'Yogurt']
M
     1 df = pd.DataFrame(te ary, columns=te.columns )
     2
        df
|:
       Apple Corn
                    Dill Eggs Ice cream Kidney Beans
                                                      Milk Nutmeg Onion Unicorn Yogurt
                                                      True
    0 False False False
                                                                     True
                         True
                                  False
                                                True
                                                                            False
                                                                                    True
                                                              True
       False False
                   True
                                  False
                                                True False
                         True
                                                              True
                                                                     True
                                                                            False
                                                                                    True
        True False False
                         True
                                  False
                                                      True
                                                             False
                                                                    False
                                                                            False
    2
                                                True
                                                                                    False
             True False False
                                                             False
       False
                                  False
                                                True
                                                      True
                                                                    False
                                                                             True
                                                                                    True
             True False
                                                True False
       False
                        True
                                   True
                                                             False
                                                                     True
                                                                            False
                                                                                    False
M
     1 first4 = te_ary[:4]
     2 te.inverse transform(first4)
|: [['Eggs', 'Kidney Beans', 'Milk', 'Nutmeg', 'Onion', 'Yogurt'],
    ['Dill', 'Eggs', 'Kidney Beans', 'Nutmeg', 'Onion', 'Yogurt'],
    ['Apple', 'Eggs', 'Kidney Beans', 'Milk'],
    ['Corn', 'Kidney Beans', 'Milk', 'Unicorn', 'Yogurt']]
```

```
M
                                                                                apriori(df, min_support=0.6, use_colnames=True)
  H
           from mlxtend.frequent_patterns import apriori
        1
                                                                      ]:
        3
           apriori(df, min_support=0.6)
                                                                               support
                                                                                                        itemsets
 ]:
                                                                            0
                                                                                    8.0
                                                                                                          (Eggs)
           support itemsets
                                                                            1
                                                                                    1.0
                                                                                                   (Kidney Beans)
               0.8
        0
                         (3)
                                                                            2
                                                                                    0.6
                                                                                                           (Milk)
        1
               1.0
                         (5)
                                                                            3
                                                                                    0.6
                                                                                                         (Onion)
        2
               0.6
                         (6)
                                                                            4
                                                                                    0.6
                                                                                                         (Yogurt)
        3
               0.6
                         (8)
                                                                            5
                                                                                    8.0
                                                                                              (Eggs, Kidney Beans)
               0.6
                        (10)
        4
                                                                            6
                                                                                    0.6
                                                                                                    (Eggs, Onion)
        5
                                                                            7
                       (3, 5)
                                                                                    0.6
                                                                                               (Milk, Kidney Beans)
               8.0
                                                                            8
                                                                                    0.6
                                                                                             (Onion, Kidney Beans)
        6
               0.6
                       (8, 3)
                                                                            9
                                                                                    0.6
                                                                                             (Yogurt, Kidney Beans)
        7
               0.6
                       (5, 6)
                                                                           10
                                                                                    0.6 (Eggs, Onion, Kidney Beans)
        8
               0.6
                       (8, 5)
        9
               0.6
                      (10, 5)
       10
                     (8, 3, 5)
               0.6
   frequent itemsets = apriori(df, min support=0.6, use colnames=True)
   frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x: len(x))
   frequent itemsets
                           itemsets length
   support
                                                                         frequent itemsets[ (frequent itemsets['length'] == 2) &
                                                                                                 (frequent itemsets['support'] >= 0.8) ]
0
       8.0
                                                                     2
                             (Eggs)
                                        1
1
       1.0
                      (Kidney Beans)
                                        1
2
       0.6
                              (Milk)
                                        1
                                                                                            itemsets length
                                                                       support
3
       0.6
                            (Onion)
                                        1
                                                                    5
                                                                            0.8 (Eggs, Kidney Beans)
                                                                                                          2
       0.6
4
                            (Yogurt)
                                        1
```

H

2

10

support

frequent_itemsets[(frequent_itemsets['length'] == 3) &

itemsets length

3

0.6 (Eggs, Onion, Kidney Beans)

(frequent itemsets['support'] >= 0.6)]

M

:

5

6

7

8

9

10

8.0

0.6

0.6

0.6

0.6

2

2

2

2

2

3

(Eggs, Kidney Beans)

(Milk, Kidney Beans)

(Onion, Kidney Beans)

(Yogurt, Kidney Beans)

0.6 (Eggs, Onion, Kidney Beans)

(Eggs, Onion)

```
from mlxtend.frequent_patterns import association_rules
```

association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

	antecedents	consequents	antecedent support	consequent support	support	confidence
0	(Eggs)	(Kidney Beans)	0.8	1.0	0.8	1.00
1	(Kidney Beans)	(Eggs)	1.0	0.8	8.0	0.80
2	(Eggs)	(Onion)	0.8	0.6	0.6	0.75
3	(Onion)	(Eggs)	0.6	0.8	0.6	1.00
4	(Milk)	(Kidney Beans)	0.6	1.0	0.6	1.00
5	(Onion)	(Kidney Beans)	0.6	1.0	0.6	1.00
6	(Yogurt)	(Kidney Beans)	0.6	1.0	0.6	1.00
7	(Eggs, Onion)	(Kidney Beans)	0.6	1.0	0.6	1.00
8	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75
9	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00
10	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75
11	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00

Misleading "strong" association rule

- Analyzing transactions at AllElectronics with respect to the purchase of computer games and videos.
 - 10,000 transactions analyzed
 - 6000 of the customer transactions included computer games
 - 7500 included videos
 - 4000 included both computer games and videos
 - minimum support: 30%
 - minimum confidence: 60%
 - buys(X, "computer games" => buys (X, "videos")
 - *support* = 40%, *confidence* = 66%

From Association Analysis to Correlation Analysis

- A correlation measure can be used to augment the support confidence framework for association rules
- Correlation rules
 - A=>B [support, confidence, correlation (lift, leverage, conviction)]
 - A correlation rule is measured not only by its support and confidence but also by the correlation between itemsets A and B

Lift

- Lift is a simple correlation measure
- The occurrence of itemset A is independent of the occurrence of itemset B if $P(A \cup B) = P(A)P(B)$
 - otherwise, itemsets A and B are dependent and correlated as events.
- The Lift between the occurrence of A and B can be measured by computing
 - lift (A=>B) = $P(A \cup B) / P(A)P(B) = P(B|A)/P(B) =$ confidence(A=>B)/support(B), range: [0, ∞]
 - If the resulting value is greater than 1, then A and B are positively correlated,
 - If the resulting value is less than 1, then A and B are negatively correlated,
 - If the resulting value is equal to 1, then A and B are independent and there is no correlation between them.

```
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.2)

:

antecedents consequents antecedent support consequent support support confidence lift leverage conviction

(Eggs) (Onion) 0.8 0.6 0.6 0.75 1.25 0.12 1.6
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.6
1	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
2	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.6
3	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
4	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.6
5	(Onion)	(Eggs. Kidnev Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf

Leverage

- Leverage computes the difference between the observed frequency of A and B appearing together and the frequency that would be expected if A and B were independent.
 - $leverage(A=>B) = support(A=>B) support(A) \times support(B)$,
 - range: [-1, +1]
 - leverage value of 0 indicates independence

```
rules = association_rules(frequent_itemsets, metric="leverage", min_threshold=0.12)
rules
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.6
1	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
2	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.6
3	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
4	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.6
5	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf

Conviction

- A high conviction value means that the consequent is highly depending on the antecedent.
 - confidence (A=>B) = (1 support(B)) / (1 confidence(A,B))
 - range: [0, ∞]
 - For instance, in the case of a perfect confidence score, the denominator becomes 0 (due to 1 - 1) for which the conviction score is defined as 'inf'
 - if items are independent, the conviction is 1.

```
1 ru
2 ru
```

rules = association_rules(frequent_itemsets, metric="conviction", min_threshold=2)

2 rules

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Eggs)	(Kidney Beans)	0.8	1.0	0.8	1.0	1.00	0.00	inf
1	(Onion)	(Eggs)	0.6	0.8	0.6	1.0	1.25	0.12	inf
2	(Milk)	(Kidney Beans)	0.6	1.0	0.6	1.0	1.00	0.00	inf
3	(Onion)	(Kidney Beans)	0.6	1.0	0.6	1.0	1.00	0.00	inf
4	(Yogurt)	(Kidney Beans)	0.6	1.0	0.6	1.0	1.00	0.00	inf
5	(Eggs, Onion)	(Kidney Beans)	0.6	1.0	0.6	1.0	1.00	0.00	inf
6	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.0	1.25	0.12	inf
7	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.0	1.25	0.12	inf

```
# at least 2 antecedents

rules["antecedent_len"] = rules["antecedents"].apply(lambda x: len(x))
rules
```

consequents antecedent support consequent support support confidence lift leverage conviction antecedent_len antecedents 8.0 1.0 1.00 inf 0 (Eggs) (Kidney Beans) 8.0 1.0 0.00 0.6 1.0 1.25 0.12 1 (Onion) 0.6 8.0 inf (Eggs) 2 (Milk) (Kidney Beans) 0.6 1.0 0.6 1.0 1.00 0.00 inf inf 3 (Kidney Beans) 0.6 1.0 0.6 1.0 1.00 0.00 (Onion) 4 (Yogurt) (Kidney Beans) 0.6 1.0 0.6 1.0 1.00 0.00 inf 5 (Eggs, Onion) 0.6 1.0 0.6 1.0 1.00 0.00 inf 2 (Kidney Beans) (Onion, Kidney Beans) (Eggs) 0.6 1.0 1.25 0.12 inf 2 0.6 8.0 7 (Onion) (Eggs, Kidney Beans) 0.6 8.0 0.6 inf 1.0 1.25 0.12

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_len
Ī	6 (Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.0	1.25	0.12	inf	2

Measures of Correlation

- "Buy walnuts ⇒ buy milk
 [1%, 80%]" is misleading
 if 85% of customers buy
 milk
- Support and confidence are not good to indicate correlations
- Over 20 interestingness measures have been proposed (see Tan, Kumar, Sritastava
 @KDD'02)
- Which are good ones?

symbol	measure	range	formula
ϕ	ϕ -coefficient	-11	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
Q	Yule's Q	-11	$\frac{\stackrel{\bullet}{P}(A,B)P(\overline{A},\overline{B})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)}$
Y	Yule's Y	-1 1	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
k	Cohen's	-1 1	$\frac{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$
PS	Piatetsky-Shapiro's	-0.250.25	P(A,B) - P(A)P(B)
F	Certainty factor	-1 1	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
AV	added value	-0.5 1	$\max(P(B A) - P(B), P(A B) - P(A))$
K	Klosgen's Q	-0.330.38	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$
g	Goodman-kruskal's	0 1	$\frac{\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))}{\sum_{j} \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
M	Mutual Information	0 1	$\frac{\Sigma_i \Sigma_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i) P(B_J)}}{\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log P(B_i))}$
J	J-Measure	0 1	$\max(P(A, B)\log(\frac{P(B A)}{P(B)}) + P(\overline{AB})\log(\frac{P(B A)}{P(\overline{B})}))$
			$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$
G	Gini index	0 1	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
	gunn ant	01	$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B}[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] - P(A)^{2} - P(\overline{A})^{2})$ $P(A, B)$
s	$\begin{array}{c} ext{support} \\ ext{confidence} \end{array}$	01	
c			$\max(P(B A), P(A B))$ $(NP(A,B)+1, NP(A,B)+1)$
L	Laplace	0 1	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
IS	Cosine	0 1	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
γ	coherence(Jaccard)	0 1	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
α	all_confidence	0 1	$\frac{P(A,B)}{\max(P(A),P(B))}$
o	odds ratio	0 ∞	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
V	Conviction	$0.5 \dots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
λ	lift	$0 \dots \infty$	$\frac{P(A,B)}{P(A)P(B)}$
S	Collective strength	$0 \dots \infty$	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$ $\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E_{i}}$
χ^2	χ^2	$0\ldots\infty$	$\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E_{i}}$