Теория конечных графов

Алгоритм почтальона

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Аналоги задачи почтальона в повседневной жизни

Аналогами задачи почтальона в повседневной жизни являются:

- ✓ обход железнодорожных путей,
- ✓ патрулирование улиц,
- ✓ совершение покупок,
- ✓ доставка товара или почты,
- ✓ задачи маршрутизации.

Маршрут почтальона

Задача почтальона в терминах теории графов: «Проверить возможность существования оптимального (минимального по суммарному весу) ормаршрута в мультиграфе из произвольной вершины V_i , включающего все ребра графа ровно один раз и заканчивающегося также вершиной V_i ».

Такой маршрут называется эйлеровым и знаком слушателю из прошлых лекций.

Соответствующий маршрут в орграфе принято называть маршрутом почтальона.

Условия существования маршрута почтальона

- ✓ Для неорграфа. Степень каждой вершины должна быть четной $\delta(V_i) = 2k, \, k \in \mathbb{N}, \, \forall V_i \in \mathbb{V}$.
- ✓ Для орграфа. Отрицательная и положительная степени вершин должны быть равны: $\delta^{+}(V_{i}) = \delta^{-}(V_{i})$, $\forall V_{i} \in \mathbf{V}$.

Орграф, в котором для каждой вершины ее отрицательная степень равна положительной степени, называется симметричным орграфом. Смешанным графом называется граф, в котором встречаются и неориентированные ребра, и ориентированные дуги.

Алгоритм поиска маршрута почтальона для орграфов

<u>Начало.</u> Дан граф $G = \langle \mathbf{V}, \mathbf{E} \rangle$ — взвешенный мультиграф, в котором задана начальная вершина, являющаяся началом обхода маршрута почтальона, назовем ее в алгоритме $V_{_{0}}$.

<u>Шаг 1.</u> Если $G = \langle \mathbf{V}, \mathbf{E} \rangle$ — несимметричный граф, то перейти к шагу 2, иначе к шагу 3.

<u>Шаг 2.</u> Путем дублирования дуг графа $G = \langle \mathbf{V}, \mathbf{E} \rangle$ уравнять степени вершин, то есть сделать граф симметричным, причем суммарная длина дублируемых дуг должна быть минимальной.

<u>Шаг 3.</u> Построить эйлеров цикл из заданной вершины V_0 , используя алгоритм поиска эйлерова цикла с выбором вершины по нумерации без повторных обходов. При возврате в заданную вершину V_0 , обойдя все дуги, получается ормаршрут почтальона для графа $G = \langle \mathbf{V}, \mathbf{E} \rangle$.

Конец алгоритма. Ормаршрут почтальона найден.

Более детально опишем шаг 2.

- 1) $\forall V_i \in \mathbf{V} \ \exists \mathcal{S}^+(V_i)$ (количество выходящих из вершины дуг) и $\exists \mathcal{S}^-(V_i)$ (количество входящих в вершину дуг). Пусть $D(V_i) = \mathcal{S}^-(V_i) \mathcal{S}^+(V_i)$. Согласно полученным значениям вершины делятся на три категории.
 - а. Если значение $D(V_i) = 0$, то вершина V_i промежуточная.
 - b. Если значение $D(V_i) > 0$, то есть $\delta^-(V_i) > \delta^+(V_i)$, то вершина V_i источник.
 - с. Если значение $D(V_i) < 0$, то есть $\delta^-(V_i) < \delta^+(V_i)$, то вершина V_i сток.

- 2) В граф $G = \langle \mathbf{V}, \mathbf{E} \rangle$ вводится дополнительный источник V_s и дополнительный сток V_τ .
 - а. Дополнительный источник V_s соединяется дугами со всеми источниками, найденными в пункте 1b.

Значение пропускной способности (максимальный поток) каждой дуги, выходящей из дополнительного источника V_s равно $\left|D(V_i)\right|$. Стоимость прохождения единицы потока равна 0.

b. Все вершины-стоки, найденные в пункте 1с соединяем с дополнительным стоком $V_{\scriptscriptstyle T}$. Значение пропускной способности каждой дуги, входящей в дополнительный сток $V_{\scriptscriptstyle T}$ равно $\left|D(V_{\scriptscriptstyle i})\right|$. Стоимость прохождения единицы потока по дуге равна 0.

- 3) Для всех дуг графа $G = \langle \mathbf{V}, \mathbf{E} \rangle$ пропускная способность дуг $c(V_i, V_j) := \infty$, а стоимость прохождения по дугам единицы потока прежняя.
- 4) Применяя к полученному графу алгоритм поиска максимального потока минимальной стоимости из источника V_s в сток V_T , можно получить новые дублируемые дуги, которые сделают граф $G=<\mathbf{V,E}>$ симметричным.
- 5) Удаляются дополнительный источник V_s и дополнительный сток V_{τ} , и дуги, инцидентные им.
- 6) Граф $G = \langle V, E \rangle$ симметричен.

Пример построения маршрута почтальона из вершины V_1

Цифра на ребре обозначает стоимость прохождения по дуге одной единицы потока.

Описание категорий вершин орграфа

1. Строим таблицу с описанием категорий вершин исходного графа:

$\delta^-(V_i)$	$\delta^{\scriptscriptstyle +}(V_i)$	Описание
1	1	Промежуточная
3	1	Источник
1	2	Сток
1	2	Сток
2	2	Промежуточная

Дополнительные источник и сток

Вводим дополнительные источник V_{s} и сток V_{τ} .

Соединяем дополнительный источник с вершинами-источниками, а вершины-стоки соединяем с дополнительным стоком.

Орграф после дополнений

Дублирование дуг

Из дополнительного источника проводится поток минимальной стоимости до насыщения новых дуг.

а.
$$V_S \rightarrow V_2 \rightarrow V_4 \rightarrow V_T$$
 (дуга $\langle V_4, V_T \rangle$ насыщена).

b. $V_s \to V_2 \to V_4 \to V_3 \to V_T$ (дуги $< V_s, V_2 >$ и $< V_3, V_T >$ также насыщены).

В процессе насыщения дуг можно наблюдать последовательный проход по вершинам через дуги исходного графа. Эти дуги будут дублироваться. Достраиваются три дополнительные дуги $< V_2^5, V_4>, < V_2^5, V_4>, < V_4^1, V_3>$.

Орграф после дополнений

Для получения симметричного графа, исключаются дуги $<\!V_{\!\scriptscriptstyle S},\!V_{\!\scriptscriptstyle 2}\!>$, $<\!V_{\!\scriptscriptstyle 3},\!V_{\!\scriptscriptstyle T}\!>$, $<\!V_{\!\scriptscriptstyle 4},\!V_{\!\scriptscriptstyle T}\!>$.

Начиная с вершины V_1 , строится эйлеров маршрут, вершины выбираются по нумерации. Читателю рекомендуется самостоятельно проделать эту несложную процедуру. Ответ. $V_1V_2V_4V_3V_2V_4V_5V_5V_4V_5V_1$. Вопросы для подготовки к экзамену по теории графов размещены на web-local.rudn.ru

Желаю Вам трудолюбия во время подготовки к экзамену!