

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 February 2002 (07.02.2002)

PCT

(10) International Publication Number
WO 02/10217 A2

(51) International Patent Classification⁷: **C07K 16/00**

Halkirk Way, BelAir, MD 21015 (US). **VOGELSTEIN**,
Bert [US/US]; 3700 Brenton Way, Baltimore, MD 21208
(US).

(21) International Application Number: **PCT/US01/24031**

(22) International Filing Date: 1 August 2001 (01.08.2001)

(74) Agents: **KAGAN, Sarah, A.** et al.; Banner & Witcoff,
Ltd., 1001 G Street, N.W., Eleventh Floor, Washington, DC
20001-4597 (US).

(25) Filing Language: English

(26) Publication Language: English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW.

(30) Priority Data:

60/222,599	2 August 2000 (02.08.2000)	US
60/224,360	11 August 2000 (11.08.2000)	US
60/282,850	11 April 2001 (11.04.2001)	US

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier applications:

US	60/222,599 (CON)
Filed on	2 August 2000 (02.08.2000)
US	60/224,360 (CON)
Filed on	11 August 2000 (11.08.2000)
US	60/282,850 (CON)
Filed on	11 April 2001 (11.04.2001)

Published:

— without international search report and to be republished
upon receipt of that report

(71) Applicant (*for all designated States except US*): **THE
JOHNS HOPKINS UNIVERSITY** [US/US]; 111 Market
Place, Baltimore, MD 21202 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **ST. CROIX, Brad**
[CA/US]; 319 Lord Byron Lane #202, Cockeysville, MD
21020 (US). **KINZLER, Kenneth, W.** [US/US]; 1403

WO 02/10217 A2

(54) Title: ENDOTHELIAL CELL EXPRESSION PATTERNS

(57) Abstract: To gain a better understanding of tumor angiogenesis, new techniques for isolating endothelial cells (ECs) and evaluating gene expression patterns were developed. When transcripts from ECs derived from normal and malignant colorectal tissues were compared with transcripts from non-endothelial cells, over 170 genes predominantly expressed in the endothelium were identified. Comparison between normal- and tumor-derived endothelium revealed 79 differentially expressed genes, including 46 that were specifically elevated in tumor-associated endothelium. Experiments with representative genes from this group demonstrated that most were similarly expressed in the endothelium of primary lung, breast, brain, and pancreatic cancers as well as in metastatic lesions of the liver. These results demonstrate that neoplastic and normal endothelium in humans are distinct at the molecular level, and have significant implications for the development of anti-angiogenic therapies in the future.

ENDOTHELIAL CELL EXPRESSION PATTERNS

- [01] This application claims the benefit of provisional applications serial numbers 60/222,599 filed August 2, 2000, 60/224,360 filed August 11, 2000, and 60/282,850 filed April 11, 2001, the disclosures of which are expressly incorporated herein.
- [02] The U.S. government retains certain rights in the invention by virtue of the provisions of National Institutes of Health grants CA57345 and CA43460, which supported this work.

TECHNICAL FIELD OF THE INVENTION

- [03] This invention is related to the area of angiogenesis and anti-angiogenesis. In particular, it relates to genes which are characteristically expressed in tumor endothelial and normal endothelial cells.

BACKGROUND OF THE INVENTION

- [04] It is now widely recognized that tumors require a blood supply for expansive growth. This recognition has stimulated a profusion of research on tumor angiogenesis, based on the idea that the vasculature in tumors represents a potential therapeutic target. However, several basic questions about tumor endothelium remain unanswered. For example, are vessels of tumors qualitatively different from normal vessels of the same tissue? What is the relationship of tumor endothelium to endothelium of healing wounds or other physiological or pathological forms of angiogenesis? The answers to these questions critically impact on the potential for new therapeutic approaches to inhibit angiogenesis in a specific manner.

[05] There is a continuing need in the art to characterize the vasculature of tumors relative to normal vasculature so that any differences can be exploited for therapeutic and diagnostic benefits.

[06] One technique which can be used to characterize gene expression, or more precisely gene transcription, is termed serial analysis of gene expression (SAGE). Briefly, the SAGE approach is a method for the rapid quantitative and qualitative analysis of mRNA transcripts based upon the isolation and analysis of short defined sequence tags (SAGE Tags) corresponding to expressed genes. Each Tag is a short nucleotide sequences (9-17 base pairs in length) from a defined position in the transcript. In the SAGE method, the Tags are dimerized to reduce bias inherent in cloning or amplification reactions. (See, US Patent 5,695,937) SAGE is particularly suited to the characterization of genes associated with vasculature stimulation or inhibition because it is capable of detecting rare sequences, evaluating large numbers of sequences at one time, and to provide a basis for the identification of previously unknown genes.

SUMMARY OF THE INVENTION

[07] One embodiment of the invention provides an isolated molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 3, 9, 17, 19, and 44, as shown in SEQ ID NO: 196, 200, 212, 230, 232, and 271, respectively. The molecule can be, for example, an intact antibody molecule, a single chain variable region (ScFv), a monoclonal antibody, a humanized antibody, or a human antibody. The molecule can optionally be bound to a cytotoxic moiety, bound to a therapeutic moiety, bound to a detectable moiety, or bound to an anti-tumor agent.

[08] According to another embodiment of the invention a method of inhibiting neoangiogenesis is provided. An effective amount of an isolated molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 3, 9, 17, 19, 22, and 44, as shown in SEQ ID NO: 196, 200, 212, 230, 232, 238, and 271, respectively, is administered to a subject in need thereof. Neoangiogenesis is consequently inhibited. The subject may bear a vascularized tumor, may have polycystic kidney disease, may have diabetic retinopathy, may have rheumatoid arthritis, may have psoriasis, for example.

[09] Another aspect of the invention is a method of inhibiting tumor growth. An effective amount of an isolated molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 3, 9, 17, 19, 22, and 44, as shown in SEQ ID NO: 196, 200, 212, 230, 232, 238, and 271, respectively, is administered to a human subject bearing a tumor. The growth of the tumor is consequently inhibited.

[10] Still another aspect of the invention provides an isolated molecule comprising an antibody variable region which specifically binds to a TEM protein selected from the group consisting of: 3, 9, 17, 19, and 44, as shown in SEQ ID NO: 200, 212, 230, 232, and 271 , respectively. The molecule can be, for example, an intact antibody molecule, a single chain variable region (ScFv), a monoclonal antibody, a humanized antibody, or a human antibody. The molecule can optionally be bound to a cytotoxic moiety, bound to a therapeutic moiety, bound to a detectable moiety, or bound to an anti-tumor agent.

[11] According to still another aspect of the invention an isolated and purified human transmembrane protein is provided. The protein is selected from the group consisting of: TEM 3, 9, 17, and 19 as shown in SEQ ID NO: 200, 212, 230, and 232, respectively.

[12] Yet another aspect of the invention is an isolated and purified nucleic acid molecule comprising a coding sequence for a transmembrane TEM selected from the group consisting of: : TEM 3, 9, 17, and 19 as shown in SEQ ID NO: 200, 212, 230, and 232, respectively. The isolated and purified nucleic acid molecule may optionally comprise a coding sequence selected from those shown in SEQ ID NO: : 199, 211, 229, and 231.

[13] Still another aspect of the invention is a recombinant host cell which comprises a nucleic acid molecule. The nucleic acid molecule comprises a coding sequence for a transmembrane TEM selected from the group consisting of: : TEM 3, 9, 17, and 19 as shown in SEQ ID NO: 200, 212, 230, and 232, respectively. The recombinant host cell optionally comprises a coding sequence selected from those shown in SEQ ID NO: 199, 211, 229, and 231.

[14] According to one embodiment of the invention a method is provided for inducing an immune response in a mammal. A nucleic acid molecule comprising a coding sequence for a human transmembrane protein selected from the group consisting of: TEM 1, 3, 9, 13, 17, 19, 22, 30, and 44 as shown in SEQ ID NO: , respectively, is administered to the mammal. An immune response to the human transmembrane protein is thereby induced in the mammal. Optionally the coding sequence is shown in SEQ ID NO: 196, 200, 212, 220, 230, 232, 238, 250 and 271.

[15] According to yet another embodiment of the invention a method of inducing an immune response in a mammal is provided. A purified human transmembrane protein selected from the group consisting of: TEM 1, 3, 9, 13, 17, 19, 22, 30, and 44 as shown in SEQ ID NO: 196, 200, 212, 220, 230, 232, 238, 250 and 271, respectively, is administered to the mammal. An immune response to the human transmembrane protein is thereby induced in the mammal.

[16] Another aspect of the invention is a method for identification of a ligand involved in endothelial cell regulation. A test compound is contacted with an isolated and purified human transmembrane protein selected from the group consisting of 1, 3, 9, 13, 17, 30, 19, and 44 as shown in SEQ ID NO: 196, 200, 212, 220, 230, 232, 250, and 271. The isolated and purified human transmembrane protein is also contacted with a molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 3, 9, 13, 17, 30, 19, and 44 as shown in SEQ ID NO: 196, 200, 212, 220, 230, 232, 250, and 271 respectively. Binding of the molecule comprising an antibody variable region to the human transmembrane protein is determined. A test compound which diminishes the binding of the molecule comprising an antibody variable region to the human transmembrane protein is identified as a ligand involved in endothelial cell regulation.

[17] Yet another aspect of the invention is a method for identification of a ligand involved in endothelial cell regulation. A test compound is contacted with a cell comprising a human transmembrane protein selected from the group consisting of 1, 3, 9, 17, and 19 as shown in SEQ ID NO: 196, 200, 212, 230, and 232. The cell is also contacted with a molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 3, 9, 17, and 19 as shown in SEQ ID NO: 196, 200, 212, 230, and 232 , respectively. Binding of the molecule comprising an antibody variable region to the cell is determined. A test compound which diminishes the binding of the molecule comprising an antibody variable region to the cell is identified as a ligand involved in endothelial cell regulation.

[18] Yet another aspect of the invention is a method for identification of a ligand involved in endothelial cell regulation. A test compound is contacted with a human transmembrane protein selected from the group consisting of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27,

28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275. Binding of a test compound to the human transmembrane protein is determined. A test compound which binds to the protein is identified as a ligand involved in endothelial cell regulation.

[19] Another embodiment of the present invention is a soluble form of a human transmembrane protein selected from the group consisting of: TEM 1, 3, 9, 17, 19, 22, 30, and 44 as shown in SEQ ID NO: 196, 200, 212, 230, 232, 238, 250, and 271 respectively. The soluble forms lack transmembrane domains. The soluble form may consist of an extracellular domain of the human transmembrane protein.

[20] Also provided by the present invention is a method of inhibiting neoangiogenesis in a patient. A soluble form of a human transmembrane protein is administered to the patient. Neoangiogenesis in the patient is consequently inhibited. The patient may bear a vascularized tumor, may have polycystic kidney disease, may have diabetic retinopathy, may have rheumatoid arthritis, or may have psoriasis, for example.

[21] Another embodiment of the invention provides a method of inhibiting neoangiogenesis in a patient. A soluble form of a human transmembrane protein is administered to the patient. Neoangiogenesis in the patient is consequently inhibited. The patient may bear a vascularized tumor, may have polycystic kidney disease, may have diabetic retinopathy, may have rheumatoid arthritis, or may have psoriasis, for example.

[22] According to still another aspect of the invention a method of identifying regions of neoangiogenesis in a patient is provided. A molecule comprising an antibody variable region which specifically binds to an

extracellular domain of a TEM protein selected from the group consisting of: 1, 3, 9, 13, 17, 19, 22, 30, and 44, as shown in SEQ ID NO: 196, 200, 212, 220, 230, 232, 238, 250, and 271, respectively, is administered to a patient. The molecule is bound to a detectable moiety. The detectable moiety is detected in the patient, thereby identifying neoangiogenesis.

[23] According to another aspect of the invention a method is provided for inducing an immune response to tumor endothelial cells in a patient. A mouse TEM protein selected from the group consisting of: 1, 2, 3, 9, 13, 17, 19, 22, and 30 as shown in SEQ ID NO: 291, 293, 299, 295, 303, 297, 301, 305, and 307, is administered to a patient in need thereof. An immune response to a human TEM protein is consequently induced.

[24] Still another embodiment of the invention is a method of screening for neoangiogenesis in a patient. A body fluid collected from the patient is contacted with a molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 3, 9, 17, 19, and 44, as shown in SEQ ID NO: 196, 200, 212, 230, 232, and 271, respectively. Detection of cross-reactive material in the body fluid with the molecule indicates neo-angiogenesis in the patient.

[25] Still another embodiment of the invention provides a method of inhibiting neoangiogenesis in a patient. A molecule comprising an antibody variable region which specifically binds to a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40 as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 and 224, 234, 242, 244, 252, 257, 259, 261, 263, and 265, is administered to the patient. Neoangiogenesis in the patient consequently inhibited.

[26] Yet another aspect of the invention is a method of screening for neoangiogenesis in a patient. A body fluid collected from the patient is

contacted with a molecule comprising an antibody variable region which specifically binds to a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 & 224, 234, 242, 244, 252, 257, 259, 261, 263, and 265, respectively. Detection of cross-reactive material in the body fluid with the molecule indicates neoangiogenesis in the patient.

[27] Also provided by the present invention is a method of promoting neoangiogenesis in a patient. A TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 & 224, 234, 242, 244, 252, 257, 259, 261, 263, and 265, is administered to a patient in need of neoangiogenesis. Neoangiogenesis in the patient is consequently stimulated.

[28] One embodiment of the invention provides a method of promoting neoangiogenesis in a patient. A nucleic acid molecule encoding a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, as shown in SEQ ID NO: 201, 205, 207, 213, 217, 221 & 222, 233, 241, 243, 251, 256, 258, 260, 262, and 264, is administered to a patient in need of neoangiogenesis. The TEM protein is consequently expressed and neoangiogenesis in the patient is stimulated.

[29] Another embodiment of the invention provides a method of screening for neoangiogenesis in a patient. A TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 & 224, 234, 242, 244, 252, 257, 259, 261, 263, and 265, respectively, is detected in a body fluid collected from the patient. Detection of the TEM protein indicates neoangiogenesis in the patient.

[30] Another aspect of the invention is a method of screening for neoangiogenesis in a patient. A nucleic acid encoding a TEM protein

selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40 is detected in a body fluid collected from the patient. The nucleic acid is selected from the group consisting of those shown in SEQ ID NO: 201, 205, 207, 213, 217, 221 & 222, 233, 241, 243, 251, 256, 258, 260, 262, and 264. Detection of the TEM protein indicates neoangiogenesis in the patient.

[31] Yet another embodiment of the invention is an isolated and purified nucleic acid molecule which encodes a NEM protein selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289. The nucleic acid molecule optionally comprises a coding sequence as shown in SEQ ID NO: 278, 282, 284, and 288. The nucleic acid may be maintained in a recombinant host cell.

[32] The present invention also provides an isolated and purified NEM protein selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289.

[33] The present invention further provides an isolated molecule comprising an antibody variable region which specifically binds to a NEM protein selected from the group consisting of: 14, 22, 23, and 33, as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289.

[34] An additional embodiment of the present invention is a method of inhibiting neoangiogenesis. An effective amount of a NEM protein selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289 is administered to a subject in need thereof. Neoangiogenesis is thereby inhibited.

[35] A still further embodiment of the invention is a method to identify candidate drugs for treating tumors. Cells which express one or more TEM genes selected from the group consisting of: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: : 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 221 & 222, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 256, 258, 260, 262, 266, 268, 270, 272, and 274, respectively, are contacted with a test compound. Expression of said one or more TEM genes is determined by hybridization of mRNA of said cells to a nucleic acid probe which is complementary to said mRNA. A test compound is identified as a candidate drug for treating tumors if it decreases expression of said one or more TEM genes. Optionally the cells are endothelial cells. Alternatively or additionally, the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more TEMs. Test compounds which increase expression can be identified as candidates for promoting wound healing.

[36] Yet another embodiment of the invention is a method to identify candidate drugs for treating tumors. Cells which express one or more TEM proteins selected from the group consisting of: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275, respectively, are contacted with a test compound. The amount of said one or more TEM proteins in said cells is determined. A test compound is identified as a candidate drug for treating tumors if it decreases the amount of one or more TEM proteins in said cells. Optionally the cells are endothelial cells. Alternatively or additionally, the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more TEMs. Alternatively, a test compound which increases the amount of one or more TEM proteins in said cells is identified as a candidate drug for treating wound healing.

[37] According to another aspect of the invention a method is provided to identify candidate drugs for treating tumors. Cells which express one or more TEM proteins selected from the group consisting of: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275, respectively, are contacted with a test compound. Activity of said one or more TEM proteins in said cells is determined. A test compound is identified as a candidate drug for treating tumors if it decreases the activity of one more TEM proteins in said cells. Optionally the cells are endothelial cells. Alternatively or additionally, the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more TEMs. Optionally the cells are endothelial cells. If a test compound increases the acitivity of one more TEM proteins in said cells it can be identified as a candidate drug for treating wound healing.

[38] An additional aspect of the invention is a method to identify candidate drugs for treating patients bearing tumors. A test compound is contacted with recombinant host cells which are transfected with an expression construct which encodes one or more TEM proteins selected from the group consisting of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275, respectively. Proliferation of said cells is determined. A test compound which inhibits proliferation of said cells is identified as a candidate drug for treating patients bearing tumors. A test compound which stimulates

proliferation of said cells is identified as a candidate drug for promoting neoangiogenesis, such as for use in wound healing.

[39] Another embodiment of the invention provides a method to identify candidate drugs for treating tumors. Cells which express one or more NEM genes selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 278, 282, 284, and 288, respectively, are contacted with a test compound. Expression of said one or more NEM genes is determined by hybridization of mRNA of said cells to a nucleic acid probe which is complementary to said mRNA. A test compound is identified as a candidate drug for treating tumors if it increases expression of said one or more NEM genes. Optionally the cells are endothelial cells. Alternatively or additionally, the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more NEMs.

[40] According to another aspect of the invention a method is provided to identify candidate drugs for treating tumors. Cells which express one or more NEM proteins selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289, are contacted with a test compound. The amount of said one or more NEM proteins in said cells is determined. A test compound is identified as a candidate drug for treating tumors if it increases the amount of one more NEM proteins in said cells. Optionally the cells are endothelial cells. Alternatively or additionally, the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more NEMs.

[41] An additional aspect of the invention is a method to identify candidate drugs for treating tumors. Cells which express one or more NEM proteins selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289, are contacted with a test compound. Activity of said one or more NEM proteins in said cells is determined. A test compound is identified as a candidate drug for treating

tumors if it increases the activity of said one or more NEM proteins in said cells. Optionally the cells are endothelial cells. Alternatively or additionally, the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more NEMs.

[42] Still another embodiment of the invention provides a method to identify candidate drugs for treating patients bearing tumors. A test compound is contacted with recombinant host cells which are transfected with an expression construct which encodes one or more NEM proteins selected from the group consisting of 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289. Proliferation of said cells is determined. A test compound which stimulates proliferation of said cells is identified as a candidate drug for treating patients bearing tumors.

[43] Another aspect of the invention is a method for identifying endothelial cells. One or more antibodies which bind specifically to a TEM or NEM protein selected from the group consisting of TEM : 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275 and NEM 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289, is contacted with a population of cells. Cells in the population which have bound to said antibodies are detected. Cells which are bound to said antibodies are identified as endothelial cells. Optionally cells which have bound to said antibodies are isolated from cells which have not bound.

[44] Still another aspect of the invention is a method for identifying endothelial cells. One or more nucleic acid hybridization probes which are complementary to a TEM or NEM gene nucleic acid sequence selected from the group consisting of of TEM : 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16,

17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275 and NEM 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289, is contacted with nucleic acids of a population of cells. Nucleic acids which have specifically hybridized to said nucleic acid hybridization probes are detected. Cells whose nucleic acids specifically hybridized are identified as endothelial cells.

[45] Yet another embodiment of the invention is a method of inhibiting neoangiogenesis. An effective amount of an isolated molecule comprising an antibody variable region which specifically binds to an extracellular domain of a mouse TEM protein selected from the group consisting of: 1, 2, 3, 9, 17, and 19, as shown in SEQ ID NO: 291, 293, 299, 295, 297, and 301, respectively, is administered to a subject in need thereof. Neoangiogenesis is thereby inhibited. The subject may be a mouse, may bear a vascularized tumor, may have polycystic kidney disease, may have diabetic retinopathy, may have rheumatoid arthritis, or may have psoriasis, for example.

[46] These and other embodiments which will be apparent to those of skill in the art upon reading the specification provide the art with reagents and methods for detection, diagnosis, therapy, and drug screening pertaining to neoangiogenesis and pathological processes involving or requiring neoangiogenesis.

BRIEF DESCRIPTION OF THE DRAWINGS

[47] Fig. 1A-1B. vWF expression in colorectal cancers. vWF (red stain) was detected in vessels by *in situ* hybridization. At low power magnification (Fig. 1.A) vessels were often surrounded by a perivascular cuff of viable cells

(red arrows), with a ring of necrotic cells evident at the periphery (black arrows). At high power magnification (Fig. 1.B) the expression of vWF (red) was clearly localized to the vessels. Sections were counterstained with methyl green.

[48] Fig. 2A-2D. Purification of Endothelial Cells (ECs) from human normal and malignant tissue. (Fig. 2A) Vessels (red) of frozen sections were stained by immunofluorescence with the P1H12 monoclonal antibody (Chemicon, Temecula, CA) and detected using a biotinylated goat anti-mouse IgG secondary antibody followed by rhodamine-linked strepavidin. The region stained is from within the lamina propria of normal colonic mucosa. Note that the larger vessels (arrowheads) and capillaries (arrows) are positive, and staining of hematopoietic cells was undetectable. E-cadherin positive epithelial cells (green) at the edge of the crypt were simultaneously visualized using a rabbit polyclonal antibody (Santa Cruz, Santa Cruz, CA), followed by a goat anti-rabbit IgG secondary antibody labelled with alexa (Molecular Probes, Eugene, OR). Sections were imaged at 60X magnification using confocal microscopy. (Fig. 2.B) To isolate pure populations from collagenase dispersed tissues, the epithelial and hematopoietic cell fractions were sequentially removed by negative selection with magnetic beads. The remaining cells were stained with P1H12 and ECs were isolated by positive selection with magnetic beads. (Fig. 2.C) RT-PCR analysis used to assess the purity of the EC preparations. Semiquantitative PCR analysis was performed on cDNA generated either directly from colorectal cancer tissue (unfractionated tumor) or from purified ECs isolated from normal colonic mucosa (normal EC fraction) or colorectal cancer (tumor EC fraction). PCR amplification of the epithelial specific marker cytokeratin 20 (CK20), demonstrated its expression was limited to the unfractionated tumor. Two endothelial specific markers, vWF and VE-cadherin (VE-Cad) showed robust amplification only in the endothelial fractions, validating the purity and enrichment protocol shown in (Fig. 2.B). The ubiquitous housekeeping enzyme GAPDH was observed in all samples.

No signal was detected in the no-template (NT) control. cDNA templates were diluted 1:10, 1:100, 1:1000, 1:4000, and 1:40,000 as indicated by the declining wedge. (Fig. 2.D) The relative expression level of select genes was determined by measuring the tag abundance from several SAGE libraries combined into four groups. The first was composed of ~193,000 tags from the two *in vivo*-derived EC preparations (Endothelial Cell Fraction) while the second contained a single library of ~57,000 tags containing macrophages and other leukocytes derived from the negative selection (Hematopoietic Fraction). The fourth library contained ~401,000 tags from cultured HUVEC and HMVEC (Endothelial Cells in Culture), and the fourth consisted of ~748,000 tags from 6 colon cancer cell lines in culture (Epithelial Cells). After normalization, the library with the highest tag number for each marker was given a value of 100%, and the corresponding relative expression levels of the remaining 3 libraries was plotted on the ordinate. Note the high level of CD31 present on hematopoietic cells, the likely cause of the impurity of the initial endothelial selection, compared with the selectivity of P1H12.

[49] Fig. 3A- 3E). Expression of Pan-Endothelial Markers (PEMs) is limited to ECs. The endothelial origin of PEMs identified by SAGE was confirmed using a highly sensitive *in situ* hybridization assay. Localization of novel PEMs to the ECs was demonstrated by examining two representative PEMs, PEM3 (Fig. 3A) and PEM6 (Fig. 3B) in lung cancer and colon cancer, respectively. Hevin expression was readily detected in the ECs of a colon tumor (Fig. 3C) despite its low level of expression in cultured ECs. Expression of VEGFR2 was readily detectable in the ECs of both normal (Fig. 3D) and malignant colon tissue (Fig. 3E).

[50] Fig. 4A-4J. Expression of Tumor Endothelial Markers (TEMs). (Fig. 4A) RT-PCR analysis confirmed the tumor specific expression of selected novel TEMs. Semiquantitative PCR analysis was performed on cDNA generated either from purified epithelial cells as a negative control (Control) or from purified ECs isolated from normal colonic mucosa (Normal ECs) or

colorectal cancer (Tumor ECs) from two different patients. Two endothelial specific markers, vWF and PEM6 showed robust amplification only in the endothelial fractions whereas the ubiquitous housekeeping enzyme GAPDH was observed in all samples. TEM1 (BSC-TEM1), TEM 17 (BSC-TEM7) and TEM22 (BSC-TEM9) were specifically expressed in tumor compared to normal ECs. The cDNA template was diluted 1:10, 1:100, 1:1000, and 1:10,000 as indicated by the declining wedge. (Fig. 4 B- 4J) The endothelial origin of TEMs identified by SAGE was confirmed using *in situ* hybridization as in Fig 3. Expression of TEM 1 (BSC-TEM1) (Fig. 4 B) and TEM17 (BSC-TEM7) (Fig. 4 C) was demonstrated to be highly specific to the ECs in colorectal cancers; sections were imaged in the absence of a counterstain to show the complete lack of detectable expression in the non-endothelial cells of the tumor. Expression of TEM17 (BSC-TEM7) in ECs was demonstrated in a metastatic liver lesion from a primary colorectal cancer (Fig. 4 D), a lung (Fig. 4 E), breast (Fig. 4 F), pancreatic (Fig. 4 G) and brain cancer (Fig. 4 H), as well as in a sarcoma (Fig. 4 I). TEM 17 (BSC-TEM7) was also localized to vessels during normal physiological angiogenesis of the corpus luteum (Fig. 4 J).

DETAILED DESCRIPTION OF THE INVENTION

[51] We identified 46 human genes that were expressed at significantly higher levels (> 10-fold) in tumor endothelium than in normal endothelium, and 33 genes that were expressed at significantly lower levels in human tumor versus normal endothelium. See Tables 2 and 4, respectively. Most of these genes were either not expressed or expressed at relatively low levels in Endothelial Cells (ECs) maintained in culture. Moreover, we identified 93 genes which are expressed in both normal and tumor human endothelium. Interestingly, the tumor endothelium genes were expressed in all tumors tested, regardless of its tissue or organ source. Most tumor endothelium genes were also expressed in corpus luteum and wounds.

[52] As the work has progressed, we have refined and classified our original 46 tumor endothelial markers. We have named these markers TEMs and renumbered them consecutively by the prevalence of their tags in our SAGE analysis. Originally we had not used a consecutive numbering system. Our non-consecutive numbering system has been renamed as BSC-TEMs. For most of the original 46 SAGE Tags, we now provide full-length nucleic acid and protein sequence. In some cases, the sequences were obtained through the public databases, in others the sequences were obtained by cloning and through the use of gene prediction tools. In some cases, we found SAGE Tags corresponding to genes having different splice variants or with known polymorphisms. For example, in one case the SAGE Tag BSC-TEM3 has been found to hybridize to an alternatively spliced form of the transcript encoding BSC-TEM7. The proteins encoded by the two transcripts are the same; therefore they are cumulatively called TEM7. A highly related sequence was found via homology searches, BSC-TEM7R. This paralog sequence is now called TEM3. See Table 2, which follows, showing tumor endothelial markers by order of prevalence (except for TEM 3). Column 1 indicates the prevalence number. Column 2 indicates the original nomenclature. Column 3 indicates the short tags. Column 4 indicates the long tags. Column 5 indicates the accession number in GenBank. Column 6 indicates the sequence identifiers for the short tag, the long tag, the full nucleic acid, and the protein. Column 7 provides a functional description, which is expanded below in the text.

TEM1	BSC- TEM1	GGGGCTGCC CA	GGGGCTGCC GA	NM020404	SEQ ID NO : 94, 309, 195, 196	Human tumor endothelial marker 1 precursor
TEM 2	BSC- TEM2	GATCTCCGT GT			SEQ ID NO: 95, 197.198	sapiens tumor endothelial marker 2 (BSC-TEM2) mRNA/mouse Ras, dexamethasone-induced 1 (RASD1), mRNA
TEM 3	BSC- TEM7 R				SEQ ID NO:199, 200	Human ortholog of mouse paralog of mouse TEM-7
TEM 4		CTTCTTTGA G	CTTCTTTGAGTTT AA	AB034203	SEQ ID NO:97, 311, 201, 202	Homo sapiens dickkopf-3 (DKK-3) mRNA,
TEM 5	BSC- TEM4	TATTAACTCT C	TATTAACTCTCTTTG GA		SEQ ID NO:98, 312, 203, 204	Tumor endothelial marker 4
TEM 6		CAGGAGACC CC	CAGGAGACCCAGG CCC	X57766	SEQ ID NO:99, 314, 205, 206	Human stromelysin-3 mRNA.
TEM 7		GGAAATGTC AA	GGAAATGTCAGCAA GTA	BC002576	SEQ ID NO:100, 315.207, 208	matrix metalloproteinase 2 (gelatinase A, 72kD gelatinase, 72kD type IV collagenase)

TEM 8	CCTGGTTCA GT		SEQ ID NO:101, 316, 209, 210	HeyL transcription factor
TEM 9	BSC- TEM5	TTTTAAGAA C	SEQ ID NO:102, 317, 211, 212	Human collagen alpha-2 type I mRNA, complete cds, clone pHCOL2A1.
TEM 10		TTTGGTTTC C	J03464, M18057, X02488	SEQ ID NO:103, 319, 213, 214
TEM 11		ATTTGTATG A	NM_00250 8	nidogen/entactin
TEM 12		ACTTTAGATG G	X52022	SEQ ID NO:104, 321, 215, 216
TEM 13		GAGTGAGAC CC	M11749	SEQ ID NO:105, 322, 217, 218
TEM 14		GTACACACA CC		H.sapiens RNA for type VI collagen alpha3 chain.
				Human Thy-1 glycoprotein gene, complete cds.
				SEQ ID NO:106, 324, 219, 220
				SEQ ID NO:107, 325, 221, 223
				Cystatin SN

TEM 14	GTACACACA CC	GTACACACACCCCCC ACC	X54867	SEQ ID NO:107, 325, 222, 224	H.sapiens mRNA for cystatin S.
TEM 15	CCACAGGGG AT	CCACAGGGGATTCT CCT	NM_000090	SEQ ID NO:108, 327, 225, 226	Human mRNA 3' region for pro-alpha1(III) collagen.
TEM BSC- 16 TEM6	TAAAGTCA C	TTAAAAGTCACTGTG CA		SEQ ID NO:109, 328, 227, 228	
TEM BSC- 17 TEM7	ACAGACTGTT A	ACAGACTGTTAGGCC AAG	AF279144	SEQ ID NO:110, 329, 229, 230	Human Tumor endothelial marker 7
TEM 18	CCACTGCAC CC			SEQ ID NO:111	
TEM BSC- 19 TEM8	CTATAGGAG AC			SEQ ID NO:112, 330, 231, 232	
TEM 20	GTTCCACAG AA		NM_000089	SEQ ID NO:113, 233, 234	collagen, type I, alpha 2 (COL1A2)

TEM 21	TACCAACCTC CC	TACCACCTCCC CT		SEQ ID NO:114, 331, 235, 236	Homo sapiens mRNA; cDNA DKFZp762B245; (from clone DKFZp762B245);
TEM 22	BSC- TEM9	GCCCTTCTCT T	GCCCCCTTCTCTGTA GTT	NM_00603 9	SEQ ID NO:115, 334, 237, 238
TEM 23		TTAAATAGCA C	TTAAATAGCACCTT AG		endocytic receptor (macrophage mannose receptor family) (KIAA0709),
TEM 24		AGACATACT GA	AGACATACTGACAG AAT	NM_02264 8	SEQ ID NO:116, 335
TEM 25		TCCCCCAGG AG	TCCCCCAGGAGGCCA CCG	NM_00612 9	SEQ ID NO:117, 336, 239, 240
TEM 26				NM_35279, NM_00612 9	SEQ ID NO:118, 338, 241, 242
TEM 27					SEQ ID NO:119
TEM 28				NM_00306 2	No Match
					Homo sapiens mRNA for MEGF5, partial cds.
					Homo sapiens mRNA for KIAA0672 protein, complete cds.

				SEQ ID NO:122, 247, 248	EST's (2 unigene clusters)
TEM 29	TTGGGTGAA AA				
TEM 30	CATTATCCAA A	CATTATCCAA AT	THC53402 9, X68742, AI262158, AI88747, AI394565, AA679721	SEQ ID NO:123, 340, 249, 250	integrin, alpha 1
TEM 31	AGAAACCAC GG	AGAAACCACGGAAA TGG	NM_00184 5	SEQ ID NO:124, 341, 251, 252	hypothetical protein KIAA1164
TEM 32	ACCAAAAC AC			SEQ ID NO:125	no match
TEM 33	TGAAATAAAC		NM_00025 5	SEQ ID NO:126, 253, 254	methylmalonyl Coenzyme A mutase
TEM 34	TTGGTTTCC			SEQ ID NO:127	no match
TEM 35	GTGGAGACCG GA	GTGGAGACCGACTC TGT	ESTAI186 535	SEQ ID NO:128, 345, 255, 358	est

TEM 36	TTTGTGTTGTA A	TTTGTGTTGATATT TA	NM_00437 0	SEQ ID NO:129, 346, 256, 257	est
TEM 37	TTATGTTAA T	TTATGTTAAATAGTT GA	NM_00234 5	SEQ ID NO:130, 347, 258, 259	Human lumican mRNA, complete cds.
TEM 38	TGGAAATGAA C	TGGAAATGACCCAA AAA	NM_00008 8	SEQ ID NO:131, 348, 260, 261	collagen type1 alpha1
TEM 39	TGCCACACACA GT	TGCCACACACAGTGAC TTG	NM_00323 9	SEQ ID NO:132, 350, 262, 263	Human transforming growth factor-beta 3 (TGF- beta3) mRNA, complete
TEM 40	GATGAGGAG AC	GATGAGGAGACTGG CAA		SEQ ID NO:133, 351, 264, 265	collagen, type I, alpha 2
TEM 41	ATCAAAGTT T	ATCAAAGTTATCA TA		SEQ ID NO:134, 352, 266, 267	est
TEM 42	AGTCACATAGTACAT AA		NM_02522 6	SEQ ID NO: 135, 353, 268, 269	ESTs

ITEM 43	TTCGGTTGG TC	TTCGGTTGGTCAA GAT		SEQ ID NO:136, 354	No match
ITEM 44	CCCCACACGG GG	CCCCACACGGCAA GCA	NM_01835 4v	SEQ ID NO: 137, 355, 270, 271	Homo sapiens cDNA FLJ11190 fts, clone PLACE1007583.
ITEM 45	GGCTTGCCT TT	GGCTTGCCTTTGT AT	NM_00036 6	SEQ ID NO:138, 356, 272, 273	est
ITEM 46	ATCCCTTCCC G	ATCCCTTCCC CAC	NM_00268 8	SEQ ID NO:139, 357, 274, 275	Homo sapiens mRNA for peanut-like protein 1, PNUTL1 (hCDCrel-1).

[53] The studies described below provide the first definitive molecular characterization of ECs in an unbiased and general manner. They lead to several important conclusions that have direct bearing on long-standing hypotheses about angiogenesis. First, it is clear that normal and tumor endothelium are highly related, sharing many endothelial cell specific markers. Second, it is equally clear that the endothelium derived from tumors is qualitatively different from that derived from normal tissues of the same type and is also different from primary endothelial cultures. Third, these genes are characteristically expressed in tumors derived from several different tissue types, documenting that tumor endothelium, in general, is different from normal endothelium. Fourth, the genes expressed differentially in tumor endothelium are also expressed during other angiogenic processes such as corpus luteum formation and wound healing. It is therefore more appropriate to regard the formation of new vessels in tumors as "neoangiogenesis" rather than "tumor angiogenesis" *per se*. This distinction is important from a variety of perspectives, and is consistent with the idea that tumors recruit vasculature using much of, or basically the same signals elaborated during other physiologic or pathological processes. That tumors represent "unhealed wounds" is one of the oldest ideas in cancer biology.

[54] The nature and precise biological function of many of the Tumor Endothelial Markers (TEMs) identified here are unknown. Of the previously characterized genes shown in Table 2, it is intriguing that several encode proteins involved in extracellular matrix formation or remodelling (TEM 6, TEM 6, TEM 10, TEM 7, TEM 11, TEM 12, TEM 14, TEM 20, TEM 24, TEM 25, TEM 27, TEM 37, TEM 38, and TEM 40,) Deposition of extracellular matrix is likely critical to the growth of new vessels. Finally, it is perhaps not surprising that so many of the endothelial-specific transcripts identified here, whether expressed only in neovasculature or in endothelium in general, have not been previously characterized, and some are not even represented in EST databases. In part, this may be due to the fact that the EST databases are heavily biased toward certain

tissues, but moreover, may be due to the fact that even in highly vascularized tissues endothelial cells are still a relatively small proportion of the population. Thus, the sensitivity of the SAGE method is a particularly appropriate tool.

- [55] Sequence and literature study has permitted the following identifications to be made among the family of TEM proteins. TEM proteins have been identified which contain transmembrane regions. These include TEM 1, TEM 3, TEM 9, TEM 13, TEM 17, TEM 19, TEM 22, TEM 30, and TEM 44. TEM proteins have been identified which are secreted proteins, including TEM 4, TEM 6, TEM 7, TEM 10, TEM 12, TEM 14, TEM 20, TEM 25, TEM 27, TEM 31, TEM 36, TEM 37, TEM 38, and TEM 39. HeyL (TEM 8) is a transcription factor which may be involved in regulating TEMs as one or more groups. The protein corresponding to the tag for TEM44 was found in the public databases, but no biological function has yet been ascribed to it.
- [56] TEM 1 has been named endosialin in the literature. It has a signal sequence at amino acids 1-17 and a transmembrane domain at amino acids 686-708. Thus it is a cell surface protein. Its extracellular domain is at residues 1-685. Endosialin may be involved in endocytosis. The mouse ortholog is predicted to have a signal peptide at residues 1-21.
- [57] TEM 2 is a dexamethasone induced, ras related protein homolog of 266 amino acids. It has neither a signal sequence nor a transmembrane domain. Thus it is neither a cell surface nor a secreted protein. TEM 2 plays a role in signal transduction. It regulates alterations in cell morphology, proliferation, and cell-extracellular matrix interactions.
- [58] TEM 3 (originally termed TEM 7R) has both a signal sequence (at residues 1-24 or 1-30) and a transmembrane domain (at residues 456 – 477). Thus it is a cell surface protein. The portion of the protein which is extracellular is at amino acids 1- 455. TEM 3 has domains with homology to integrins, plexin,

and adhesion molecules. TEM 3 may regulate GTPases that control signal transduction pathways linking plasma membrane receptors to the actin cytoskeleton. In the mouse ortholog, the signal peptide is predicted to be residues 1-30.

[59] TEM 4 is also known as DKK -3. It has a signal sequence (residues 1-16), suggesting that it is a secreted protein. TEM 4 regulates *wnt* signaling, and it may be involved in vasculogenesis and *wnt*-dependent signaling for endothelial growth. TEM 4 is an inhibitor of Wnt oncogene and such inhibition can be determined by assay. Tsuji et al., Biochem.Biophys.Res.Comm. 268:20-4, 2000.

[60] TEM 5 appears to be neither secreted nor a cell surface protein. TEM 5 appears to be a component of a G protein - GTPase signaling pathway.

[61] TEM 6 is also known as stromelysin - 3 /Matrix metalloproteinase 11 (MMP -11). It has a signal sequence at residues 1-31, but no transmembrane domain. It has an alternative signal peptide splice site at residues 108-109. Thus it appears to be a secreted protein. TEM 6 belongs to the zinc metaloprotease family, also known as the matrixin subfamily. TEM 6 is expressed in most invasive carcinomas. Alpha 1 - protease inhibitor is a natural substrate of MMP 11. TEM 6 degrades extracellular matrix proteins such as collagen and is involved in extracellular matrix remodeling and cell migration. Stromelysin can be assayed using a casein-resorufin substrate, for example. See Tortorella and Arner, Inflammation Research 46 Supp. 2:S122-3, 1997.

[62] TEM 7 is a protein of many names, also being known as matrix metalloproteinase 2, gelatinase A, and 72KD type IV collagenase. TEM 7 has a signal sequence at residues 1-26 and is a secreted protein. Like TEM 6, TEM 7 belongs to the matrixin subfamily (zinc metalloproteinases). TEM 7 cleaves gelatin type I, collagen type I, IV, V VII and X.. TEM 7 associates with integrin on the surface of endothelial cells and promotes vascular invasion. TEM 7 is

involved in tissue remodeling. TEM 7 can be assayed using zymography or quenched fluorescent substrate hydrolysis, for example. Garbett, et al., Molecular Pathology 53:99-106, 2000. A fluorogenic matrix metalloproteinase substrae assay can also be used which employs methoxycoumarin continuaing septapeptide analog of the alpha2(I) collagen cleavage site. See Bhide et al., J. Periodontology 71:690-700, 2000.

[63] TEM 8 is HEYL protein . It has neither a signal sequence nor a transmembrane domain. It is related to the hairy/Enhancer of split genes. TEM 8 is likely a nuclear protein, having a role as a transcription factor. TEM 8 belongs to a new class of Notch signal tranducers and plays a key role in various developmental processes, such as vascular development, somatogenesis and neurogenesis. SNP's at residues 615 and 2201 have Cytosine bases. Notch 3 mutations underlie the CADASIL vascular disorder. See *Mech Dev* 2000 Nov; 98 (1-2):175

[64] TEM 9 is a G- protein coupled receptor homolog, having both a signal sequence at residues 1-26 and 7 transmembrane domains. Thus it is a cell surface protein. Its extracellular region resides in amino acids 1-769. Its transmembrane domains are at residues 817-829 (TM2 and TM3), residues 899-929 (TM4 and TM5), and residues 1034-1040 (TM6 and TM7). TEM 9 acts as a G-protein coupled receptor with extracellular domains characteristic of cell adhesion proteins. One of its splice variants may function as a soluble receptor. TEM 9 may regulate cell polarity and cell migration. It may be involved in exocytosis based on latrophilin function. The mouse ortholog has a predicted signal peptide at residues 1-29.

[65] TEM 10 is collagen type I, alpha2 (COL1A2), which has a signal sequence at residues 1-22. It is an extracellular matrix (ECM) protein which is secreted subsequent to synthesis. TEM 10 interacts with a number of proteins including other ECM proteins, certain growth factors, and matrix metalloproteases. TEM

10 is required for the induction of endothelial tube formation and is involved in tissue remodeling. A variant at nucleotide 3233 which substitutes an A, is associated with osteogenesis imperfecta type IV. A variant at nucleotide 4321 substituting an A retains a wild type phenotype. Nucleotide 715 is a site of a polymorphism. Nucleotides 695-748 are deleted in Ehlers-Danos syndrome. Other mutations are associated with idiopathic osteoporosis, and atypical Marfan syndrome. Variants are known at nucleotides 226(T,C), 314(A,C), 385(T,C), 868 (G,A), 907(C,T), 965(A,G), 970(T,A), 1784 (G,C), 2017(T,G), 2172(C,A), 2284(T,C), 2308(T,C), 2323(T,G), 2344(T,G), 2604(G,A), 2974(A,T), 2903(A,G), 2995(C,T), 3274(C,T), 3581(A,C), 3991(A,C), 4201(G,T), 4434(C,T), 4551(A,C), 4606(C,A), 4947(T,C), 4978(C,T), 4982(G,T), 5051(G,T). PolyA sites are located at nucleotides 4450, 4550, 4885, and 5082. PolyA signals are located at 4420-4424, 4515-4520, 4529-4534, 4866-4871, 5032-5037, 5053-5058. TEM 10, 20, and 40 derive from the same gene but are different isoforms having different lengths.

[66] TEM 11 is Nidogen /Entactin. It is a secreted protein which has a signal sequence at residues 1-28. TEM 11 is an extracellular matrix protein which is a component of a basement membrane. TEM 11 binds to laminin and collagen IV and other extracellular matrix proteins. TEM 11 regulates capillary formation and is involved in tissue remodelling. Variations have been observed at nucleotides 4265(T,C), 4267(G,C,T), and 4738(T,G). Nidogen can be assayed by its effect on the morphology of astrocytes. See Grimpe et al., GLIA 28:138-49, 1999.

[67] TEM 12 is the alpha 3 chain of collagen type VI. It has a signal sequence at residues 1-25. A secreted protein, TEM 12 is an extracellular matrix protein. TEM 12 has a splice variant. TEM 12 is a major constituent of vascular subendothelium and is involved in tissue remodeling. It regulates platelet activation and aggregation. Alternatively spliced domains are located at nucleotides 347-964, 965-1567, 2153-3752, and 4541-5041.

[68] TEM 13 is also known as Thy -1 glycoprotein. It has both a signal sequence (at residues 1-19) and a transmembrane domain (at residues 143-159). Residues 131-161 are removed in a matured form of the protein. The extracellular region of the protein is residues 1- 142 or residues 1-130. TEM 13 has a glycosyl phosphatidylinositol (GPI) anchor at residue 130 anchoring it to the membrane. TEM 13 is detectable in its soluble form in human serum. TEM 13 is reported to be a marker for activated endothelial cells (a marker of adult but not embryonic angiogenesis). TEM 13 on vascular endothelial cells may function as a possible vascular permeability modulator. Antibody to Thy-1 is a mitogenic signal for the CD4+CD45+ and CD8+CD45+ cells, but fails to induce proliferation in the CD45- T cells. Pingel et al., International Immunology 6:169-78, 1994. Thy-1 can be assayed as an inhibitor of such signal.

[69] TEM 14 is also known as cystatin S. It is a secreted protein with a signal sequence at residues 1-20 and an extracellular region at residues 1-141. It is a cysteine protease inhibitor. TEM 14 may regulate cysteine protease function involved in angiogenesis and tissue remodeling. TEM14 is an inhibitor of the activity of papain and such inhibition can be assayed. Hiltke et al., J. Dental Research 78:1401-9, 1999.

[70] TEM 15 is collagen type III, alpha 1 (COL3A1). It has a signal sequence (residues 1-23) and is secreted. Type III collagen binds to von Willebrand factor. It is involved in cell-cell adhesion, proliferation, and migration activities. Variants at nucleotides 2104(C,A), 2194(G,A), 2346(C,T), 2740(C,T), 3157(T), 3468(G), 3652(T), 3666(C), 3693(C), 3755(G), 3756(T), 3824(C), 4546(A, G), 4661(G), 4591(C,T), 4665(C), 5292(C), 5293(C), and 5451 (A) have been observed.

[71] TEM 16 is a tensin homolog which is apparently an intracellular protein. It may have splice variants or isoforms. One form with 1704 amino acids has a region at the N-terminal domain which is similar to a tumor suppressor protein,

phosphatase and tensin homolog (PTEN). Tensin is a focal adhesion molecule that binds to actins and phosphorylated proteins. It is involved in cell migration linking signal transduction pathways to the cytoskeleton. PTEN regulates tumor induced angiogenesis.

[72] TEM 17 (BSC-TEM 7) has a signal sequence which includes residues 1-18 and a transmembrane domain at residues 427-445. It is a cell surface marker with an extracellular region comprising residues 1-426. It has homologs in both mouse and *C. elegans*. Residues 137-244 share weak homology with nidogen; residues 280-344 share homology to PSI domains found in plexin, semaphorins and integrin beta subunits. Variants have been observed at nucleotides 1893(A,G), 1950(C,G), 2042(A,G), and 2220(G,A). In mouse TEM 17 the signal sequence includes residues 1-19.

[73] TEM 19 was originally reported to be tumor endothelial marker 8, i.e., BSC-TEM 8. It has a signal sequence at residues 1-27 and a transmembrane domain at residues 322-343. It is a cell surface protein having an extracellular region at residues 1-321. TEM 19 has a von Willebrand Factor (vWF) A domain at residues 44-216; a domain at residues 34-253 which is found in leukointegrin alpha D chain; and a domain at residues 408-560 found in PRAM-1 or adaptor molecule -1 of the vinculin family. TEM 19's function is adhesion related. von Willibrand Factor domains are typically involved in a variety of functions including vascular processes. TEM 19 may play a role in the migration of vascular endothelial cells. The mouse ortholog has a predicted signal peptide at residues 1-27.

[74] TEM 20 is collagen type I, alpha 2 (COL1A2). It has a signal sequence at residues 1-22 and is a secreted extracellular matrix protein. TEM 20 induces endothelial tube formation *in vitro* and is involved in tissue remodeling. Variants have been observed at nucleotides 226(T,C), 314(A,C), 385(T,C), 868 (G,A), 907(C,T), 965(A,G), 970(T,A), 1784(G,C), 2017(T,G), 2172(C,A), 2284(T,C),

2308(T,C), 2323(T,G), 2344(T,G), 2604(G,A), 2794(A,T), 2903(A,G), 2995(C,T), 3274(C,T), 3581(A,C), 3991(A,C), 4201(G,T), 4434(C,T), 4551(A,C), 4606(C,A), 4895-4901(--, GGACAAAC), 4947(T,C), 4978(C,T), 4982(G,T), 5051(G,T).

[75] TEM 21 is a Formin - like protein homolog which is an intracellular protein. Formin related proteins interact with Rho family small GTPases, profilin, and other actin associated proteins. Formin-binding proteins bind to FH1 domains with their WW domains. TEM 21 has a proline rich FH1 domain at residues 221-449. Formin related proteins play crucial roles in morphogenesis, cell polarity , cytokinesis and reorganization of the actin cytoskeleton. They may also regulate apoptosis, cell adhesion and migration.

[76] TEM 22 is an endocytic receptor in the macrophage mannose receptor family. It has both a signal sequence at residues 1-30 and a transmembrane domain at residues 1415-1435, and resides on the cell surface. Its extracellular domain is amino acids 1- 1414. TEM 22 may be present as a soluble (secreted) form and act as an inhibitor. It may bind secreted phospholipase A2 (sPLA2) and mediate biological responses elicited by sPLA2. TEM 22 may have endocytic properties for sPLA2 and mediate endocytosis for endothelial related proteins. It may promote cell adhesion and be involved in cell-cell communication. Variations have been observed at nucleotide 5389 (A, G). TEM 22 mediates uptake of micro-organisms and host-derived glycoproteins. Groger et al., J. Immunology 165:5428-34, 2000.

[77] TEM 24 is tensin, an intracellular protein. It is a focal adhesion molecule that binds to actin filaments and interacts with phosphotyrosine containing proteins. It may mediate kinase signaling activities and regulate cellular transformation. Variations have been observed at nucleotides 2502 (A, G), 2622(A, G), 6027(A, G). TEM24 binds to actin filaments and interacts with phosphotyrosine-containing proteins. Chen et al., Biochem. J. 351 Pt2:403-11,

2000. TEM24 also binds to phosphoinositide3-kinase. Auger et al., J. Bio. Chem. 271:23452-7, 1996 TEM 24 also binds to nuclear protein p130. Lo et al., Bioessays 16:817-23, 1994.

[78] TEM 25 is Bone morphogenic protein 1 (BMP-1) which has a signal sequence at residues 1-22. It is a secreted protein. There are at least 6 isoforms of BMP-1 as well as splice variants which add carboxy terminal CUB domains and an additional EGF domain. TEM 25 is a metalloprotease enzyme. It cleaves the C-terminal propeptide of collagen type I, II and III and laminin 5 gamma 2 , proteins that are important for vascular processes. It is involved in cartilage formation. Variations have been observed at nucleotides 3106(C,T), 3248(G,A), 3369(G,A). TEM 25 cleave probiglycan at a single site, removing the propeptide and producing a biglycan molecule with an NH(2) terminus identical to that of the mature form found in tissues. Sctt et al., J. Biol. Chem. 275:30504-11, 2000. Laminin alpha 3 and gamma2 short chains are substrates of TEM 25. Amano et al., J. Biol. Chem. 275:22728-35, 2000.

[79] TEM 27 is known as Slit homolog 3, a secreted protein with a signal sequence at residues 1-27. TEM 27 is a secreted guide protein involved in migration, repulsion and patterning. It interacts with "round about" receptors (Robo receptors). TEM 27 may interact with extracellular matrix (ECM) proteins and is involved in cell adhesion. Variations have been observed at nucleotides 4772 (C,T)

[80] TEM 28 is similar to mouse nadrin (neuron specific GTPase activating protein). TEM 28 is an intracellular protein with a RhoGAP domain. The RhoGAP domain activates RhoA, Rac1, and Cdc42 GTPases. It is involved in the reorganization of actin filaments and enhancing exocytosis. It may also be involved in cell signalling. Variations have been observed at nucleotide 3969 (A,C),

[81] TEM 29 is protein tyrosine phosphatase type IVA, member 3, isoform 1, an intracellular protein. It has alternate splice variants. TEM 29 belongs to a small class of prenylated protein tyrosine phosphatases (PTPs). It may be membrane associated by prenylation. PTPs are cell signaling molecules and play regulatory roles in a variety of cellular processes and promote cell proliferation. PTP PRL-3 regulates angiotensin -II induced signaling events.

[82] TEM 30 is integrin alpha 1, a cell surface protein having both a signal sequence (residues 1-28) and a transmembrane domain (residues 1142- 1164). Its extracellular region includes amino acids 1-1141. TEM 30 is a receptor for laminin and collagen. It mediates a variety of adhesive interactions. TEM 30 is abundantly expressed on microvascular endothelial cells. It stimulates endothelial cell proliferation and vascularization. TEM 30 may regulate angiostatin production. Variations have been observed at nucleotide 418 (C,T). TEM 30 activates the Ras/Shc/mitogen-activated protein kinase pathway promoting fibroblast cell proliferation. It also acts to inhibit collagen and metalloproteinase synthesis. Pozzi et al., Proc. Nat. Acad. Sci. USA 97:2202-7, 2000,

[83] TEM 31 is Collagen IV alpha 1 (COL4A1) a secreted protein with a at residues 1-27. TEM 31 is a component of the basement membrane. It binds to alpha3 beta 1 integrin and promotes integrin mediated cell adhesion. Non-collagenous domains of type IV subunits are involved in tumoral angiogenesis. TEM 31 is involved in tissue remodeling. Variations have been observed at nucleotide 4470 (C,T)

[84] TEM 33 is methylmalonyl Co-A Mutase a protein which is localized in the mitochondrial matrix. It degrades several amino acids, odd-numbered-acid fatty acids, and cholesterol to the tricarboxylic acid cycle. A defect in TEM 33 causes a fatal disorder in organic acid metabolism termed methylmalonic aciduria. Variations have been observed at nucleotides 1531(G,A), 1671(G,A), 2028(T,C), 2087(G,A), 2359(A,G), 2437(C,A), 2643(G,C), 2702(G,C). TEM 33

converts L-methylmalonyl CoA to succinyl CoA. This reaction can be assayed as is known in the art. See, e.g., Clin. Chem. 41(8 Pt I):1164-70, 1995.

[85] TEM 36 is collagen type XII, alpha1 (COL12A1), an extracellular matrix protein having a signal sequence at residues 1-23 or 24. TEM 36 has von Willebrand Factor (vWF) type A domains, Fibronectin type III domains, and thrombospondin N-terminal like domain. TEM 36 is expressed in response to stress environment. TEM 36 may organize extracellular matrix architecture and be involved in matrix remodeling. There are two isoforms of the protein, a long form and a short form. The short form is missing amino acids 25-1188, and therefore nucleotides 73 to 3564. Both forms share the signal sequence and are therefore both secreted.

[86] TEM 37 is lumican, an extracellular matrix sulfated proteoglycan having a signal sequence at residues 1-18. Lumican interacts with proteins that are involved in matrix assembly such as collagen type I and type VI; it is involved in cell proliferation and tissue morphogenesis. Lumican plays an important role in the regulation of collagen fiber assembly. Variations have been observed at nucleotides 1021(G,T), 1035(A,G), 1209(A,G), 1259(A,C), 1418(C,A), 1519(T,A). TEM 37 is a binding partner of TGF- β . See FASEB J. 15:559-61, 2000. One assay that can be used to determine TEM 37 activity is a collagen fibril formation/sedimentation assay. Svensson et al., FEBS Letters 470:178-82, 2000.

[87] TEM 38 is collagen type I, alpha 1 (COL1A1), an extracellular matrix protein having a signal sequence at residues 1-22. Type I collagen promotes endothelial cell migration and vascularization and induces tube formation and is involved in tissue remodelling. Telopeptide derivative is used as a marker for malignancy and invasion for certain cancer types. Variations have been observed at nucleotides 296(T,G), 1810(G,A), 1890(G,A), 2204(T,A), 3175(G,C), 3578(C,T), 4298(C,T), 4394(A,T), 4410(A,C), 4415(C.A), 4419 (A,T), 4528(C,A), 4572(G,T), 4602(T,C), 5529(T,C), 5670(C,T), 5985(C,T), 6012(C,T).

[88] TEM 39 is transforming growth factor β -3 (TGF-beta3). It has a signal sequence at residues 1-23. It is a secreted protein. TEM 39 regulates cell growth and differentiation. TGF-beta isoforms play a major role in vascular repair processes and remodeling. Variations have been observed at nucleotide 2020(G,T).

[89] TEM 41 is similar to Olfactomedin like protein. It appears to be an intracellular protein, having no obvious predicted signal sequence. Olfactomedin is the major glycoprotein of the extracellular mucous matrix of olfactory neuroepithelium. TEM 41 shares homology with latrophilin (extracellular regions) which has cell-adhesive type domains. TEM 41 may be involved in adhesive function.

[90] TEM 42 is MSTP032 protein, a cell surface protein having a transmembrane domain at residues 42-61. Its function is unknown and it shares little homology with other proteins. Variations have been observed at nucleotides 418(A,T), 724(C,A).

[91] TEM 44 is a hypothetical protein FLJ11190 (NM_018354) which has two predicted transmembrane domains at residues 121-143 and 176 – 1 97. Residues 144-175 may form an extracellular region. TEM 44's function is not known and shares no homology to other known proteins.

[92] TEM 45 is tropomyosin 1 (alpha), a protein which is intracellular. It forms dimers with a beta subunit. It influences actin function. TEM 45 may be involved in endothelial cell cytoskeletal rearrangement. Variations have been observed at nucleotides 509(A,C), 621(A,C), 635(T,G), 642(C,G), 1059(G,T).

[93] TEM 46 is peanut-like 1 protein/septin 5, which belongs to the septin family. Proteins in the septin family bind to GTP and phosphatidylinositol 4,5-bisphosphate. They are involved in the signal transduction cascades controlling cytokinesis and cell division.

[94] NEM 4 is a member of the small inducible cytokine subfamily A (cys-cys), member 14 (SCYA14). NEM4 is a secreted protein characterized by two adjacent cysteine residues. One isoform lacks internal 16 amino acids compared to isoform 2.

[95] NEM 22 shares homology with guanylate kinase-interacting protein 1Maguin-1. It is a membrane associated protein.

[96] NEM 23 is human signaling lymphocytic acitavation molecule (SLAM). It has a signal sequence at residues 1-20. The extracellular domain may reside at residues 21-237. There is a secreted isoform of the protein.

[97] NEM33 is netrin 4. It induces neurite outgrowth and promotes vascular development. At higher concentration, neurite outgrowth is inhibited.

[98] ECs represent only a minor fraction of the total cells within normal or tumor tissues, and only those EC transcripts expressed at the highest levels would be expected to be represented in libraries constructed from unfractionated tissues. The genes described in the current study should therefore provide a valuable resource for basic and clinical studies of human angiogenesis in the future. Genes which have been identified as tumor endothelial markers (TEMs) correspond to tags shown in SEQ ID NOS: 94-139, 173-176, 180-186. Genes which have been identified as normal endothelial markers (NEMs) correspond to tags shown in SEQ ID NOS: 140-172. Genes which have been identified as pan-endothelial markers (PEMs) *i.e.*, expressed in both tumor and normal endothelial cells correspond to tags shown in SEQ ID NOS: 1-93. Genes which have been previously identified as being expressed predominantly in the endothelium correspond to PEM tags shown in SEQ ID NOS: 1-6, 8, 10-15. Markers in each class can be used interchangeably for some purposes.

[99] Isolated and purified nucleic acids, according to the present invention are those which are not linked to those genes to which they are linked in the human genome. Moreover, they are not present in a mixture such as a library containing a multitude of distinct sequences from distinct genes. They may be, however, linked to other genes such as vector sequences or sequences of other genes to which they are not naturally adjacent. Tags disclosed herein, because of the way that they were made, represent sequences which are 3' of the 3' most restriction enzyme recognition site for the tagging enzyme used to generate the SAGE tags. In this case, the tags are 3' of the most 3' most NlaIII site in the cDNA molecules corresponding to mRNA. Nucleic acids corresponding to tags may be RNA, cDNA, or genomic DNA, for example. Such corresponding nucleic acids can be determined by comparison to sequence databases to determine sequence identities. Sequence comparisons can be done using any available technique, such as BLAST, available from the National Library of Medicine, National Center for Biotechnology Information. Tags can also be used as hybridization probes to libraries of genomic or cDNA to identify the genes from which they derive. Thus, using sequence comparisons or cloning, or combinations of these methods, one skilled in the art can obtain full-length nucleic acid sequences. Genes corresponding to tags will contain the sequence of the tag at the 3' end of the coding sequence or of the 3' untranslated region (UTR), 3' of the 3' most recognition site in the cDNA for the restriction endonuclease which was used to make the tags. The nucleic acids may represent either the sense or the anti-sense strand. Nucleic acids and proteins although disclosed herein with sequence particularity, may be derived from a single individual. Allelic variants which occur in the population of humans are including within the scope of such nucleic acids and proteins. Those of skill in the art are well able to identify allelic variants as being the same gene or protein. Given a nucleic acid, one of ordinary skill in the art can readily determine an open reading frame present, and consequently the sequence of a polypeptide encoded by the open reading frame and, using techniques well known in the art, express such protein in a suitable

host. Proteins comprising such polypeptides can be the naturally occurring proteins, fusion proteins comprising exogenous sequences from other genes from humans or other species, epitope tagged polypeptides, etc. Isolated and purified proteins are not in a cell, and are separated from the normal cellular constituents, such as nucleic acids, lipids, etc. Typically the protein is purified to such an extent that it comprises the predominant species of protein in the composition, such as greater than 50, 60 70, 80, 90, or even 95% of the proteins present.

[100] Using the proteins according to the invention, one of ordinary skill in the art can readily generate antibodies which specifically bind to the proteins. Such antibodies can be monoclonal or polyclonal. They can be chimeric, humanized, or totally human. Any functional fragment or derivative of an antibody can be used including Fab, Fab', Fab2, Fab'2, and single chain variable regions. So long as the fragment or derivative retains specificity of binding for the endothelial marker protein it can be used. Antibodies can be tested for specificity of binding by comparing binding to appropriate antigen to binding to irrelevant antigen or antigen mixture under a given set of conditions. If the antibody binds to the appropriate antigen at least 2, 5, 7, and preferably 10 times more than to irrelevant antigen or antigen mixture then it is considered to be specific.

[101] Techniques for making such partially to fully human antibodies are known in the art and any such techniques can be used. According to one particularly preferred embodiment, fully human antibody sequences are made in a transgenic mouse which has been engineered to express human heavy and light chain antibody genes. Multiple strains of such transgenic mice have been made which can produce different classes of antibodies. B cells from transgenic mice which are producing a desirable antibody can be fused to make hybridoma cell lines for continuous production of the desired antibody. See for example, Nina D. Russel, Jose R. F. Corvalan, Michael L. Gallo, C. Geoffrey Davis, Liise-Anne Pirofski. Production of Protective Human Antipneumococcal Antibodies by Transgenic Mice with Human Immunoglobulin Loci *Infection and Immunity* April 2000, p.

1820-1826; Michael L. Gallo, Vladimir E. Ivanov, Aya Jakobovits, and C. Geoffrey Davis. The human immunoglobulin loci introduced into mice: V (D) and J gene segment usage similar to that of adult humans *European Journal of Immunology* 30: 534-540, 2000; Larry L. Green. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies *Journal of Immunological Methods* 231 11-23, 1999; Yang X-D, Corvalan JRF, Wang P, Roy CM-N and Davis CG. Fully Human Anti-interleukin-8 Monoclonal Antibodies: Potential Therapeutics for the Treatment of Inflammatory Disease States. *Journal of Leukocyte Biology* Vol. 66, pp401-410 (1999); Yang X-D, Jia X-C, Corvalan JRF, Wang P, CG Davis and Jakobovits A. Eradication of Established Tumors by a Fully Human Monoclonal Antibody to the Epidermal Growth Factor Receptor without Concomitant Chemotherapy. *Cancer Research* Vol. 59, Number 6, pp1236-1243 (1999) ; Jakobovits A. Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. *Advanced Drug Delivery Reviews* Vol. 31, pp: 33-42 (1998); Green L and Jakobovits A. Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. *J. Exp. Med.* Vol. 188, Number 3, pp: 483-495 (1998); Jakobovits A. The long-awaited magic bullets: therapeutic human monoclonal antibodies from transgenic mice. *Exp. Opin. Invest. Drugs* Vol. 7(4), pp : 607-614 (1998) ; Tsuda H, Maynard-Currie K, Reid L, Yoshida T, Edamura K, Maeda N, Smithies O, Jakobovits A. Inactivation of Mouse HPRT locus by a 203-bp retrotransposon insertion and a 55-kb gene-targeted deletion: establishment of new HPRT-Deficient mouse embryonic stem cell lines. *Genomics* Vol. 42, pp: 413-421 (1997) ; Sherman-Gold, R. Monoclonal Antibodies: The Evolution from '80s Magic Bullets To Mature, Mainstream Applications as Clinical Therapeutics. *Genetic Engineering News* Vol. 17, Number 14 (August 1997); Mendez M, Green L, Corvalan J, Jia X-C, Maynard-Currie C, Yang X-d, Gallo M, Louie D, Lee D, Erickson K, Luna J, Roy C, Abderrahim H, Kirschenbaum F, Noguchi M,

Smith D, Fukushima A, Hales J, Finer M, Davis C, Zsebo K, Jakobovits A. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. *Nature Genetics* Vol. 15, pp: 146-156 (1997); Jakobovits A. Mice engineered with human immunoglobulin YACs: A new technology for production of fully human antibodies for autoimmunity therapy. *Weir's Handbook of Experimental Immunology, The Integrated Immune System* Vol. IV, pp: 194.1-194.7 (1996) ; Jakobovits A. Production of fully human antibodies by transgenic mice. *Current Opinion in Biotechnology* Vol. 6, No. 5, pp: 561-566 (1995) ; Mendez M, Abderrahim H, Noguchi M, David N, Hardy M, Green L, Tsuda H, Yoast S, Maynard-Currie C, Garza D, Gemmill R, Jakobovits A, Klapholz S. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells. *Genomics* Vol. 26, pp: 294-307 (1995); Jakobovits A. YAC Vectors: Humanizing the mouse genome. *Current Biology* Vol. 4, No. 8, pp: 761-763 (1994); Arbones M, Ord D, Ley K, Ratech H, Maynard-Curry K, Otten G, Capon D, Tedder T. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. *Immunity* Vol. 1, No. 4, pp: 247-260 (1994); Green L, Hardy M, Maynard-Curry K, Tsuda H, Louie D, Mendez M, Abderrahim H, Noguchi M, Smith D, Zeng Y, et. al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. *Nature Genetics* Vol. 7, No. 1, pp: 13-21 (1994); Jakobovits A, Moore A, Green L, Vergara G, Maynard-Curry K, Austin H, Klapholz S. Germ-line transmission and expression of a human-derived yeast artificial chromosome. *Nature* Vol. 362, No. 6417, pp: 255-258 (1993) ; Jakobovits A, Vergara G, Kennedy J, Hales J, McGuinness R, Casentini-Borocz D, Brenner D, Otten G. Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. *Proceedings of the National Academy of Sciences USA* Vol. 90, No. 6, pp: 2551-2555 (1993); Kucherlapati et al., U.S. 6,1075,181.

[102] Antibodies can also be made using phage display techniques. Such techniques can be used to isolate an initial antibody or to generate variants with altered specificity or avidity characteristics. Single chain Fv can also be used as is convenient. They can be made from vaccinated transgenic mice, if desired. Antibodies can be produced in cell culture, in phage, or in various animals, including but not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, apes.

[103] Antibodies can be labeled with a detectable moiety such as a radioactive atom, a chromophore, a fluorophore, or the like. Such labeled antibodies can be used for diagnostic techniques, either *in vivo*, or in an isolated test sample. Antibodies can also be conjugated, for example, to a pharmaceutical agent, such as chemotherapeutic drug or a toxin. They can be linked to a cytokine, to a ligand, to another antibody. Suitable agents for coupling to antibodies to achieve an anti-tumor effect include cytokines, such as interleukin 2 (IL-2) and Tumor Necrosis Factor (TNF); photosensitizers, for use in photodynamic therapy, including aluminum (III) phthalocyanine tetrasulfonate, hematoporphyrin, and phthalocyanine; radionuclides, such as iodine-131 (¹³¹I), yttrium-90 (⁹⁰Y), bismuth-212 (²¹²Bi), bismuth-213 (²¹³Bi), technetium-99m (^{99m}Tc), rhenium-186 (¹⁸⁶Re), and rhenium-188 (¹⁸⁸Re); antibiotics, such as doxorubicin, adriamycin, daunorubicin, methotrexate, daunomycin, neocarzinostatin, and carboplatin; bacterial, plant, and other toxins, such as diphtheria toxin, pseudomonas exotoxin A, staphylococcal enterotoxin A, abrin-A toxin, ricin A (deglycosylated ricin A and native ricin A), TGF-alpha toxin, cytotoxin from chinese cobra (*naja naja atra*), and gelonin (a plant toxin); ribosome inactivating proteins from plants, bacteria and fungi, such as restrictocin (a ribosome inactivating protein produced by *Aspergillus restrictus*), saporin (a ribosome inactivating protein from *Saponaria officinalis*), and RNase; tyrosine kinase inhibitors; ly207702 (a difluorinated purine nucleoside); liposomes containing antitumor agents (e.g.,

antisense oligonucleotides, plasmids which encode for toxins, methotrexate, etc.); and other antibodies or antibody fragments, such as F(ab).

- [104] Those of skill in the art will readily understand and be able to make such antibody derivatives, as they are well known in the art. The antibodies may be cytotoxic on their own, or they may be used to deliver cytotoxic agents to particular locations in the body. The antibodies can be administered to individuals in need thereof as a form of passive immunization.
- [105] Characterization of extracellular regions for the cell surface and secreted proteins from the protein sequence is based on the prediction of signal sequence, transmembrane domains and functional domains. Antibodies are preferably specifically immunoreactive with membrane associated proteins, particularly to extracellular domains of such proteins or to secreted proteins. Such targets are readily accessible to antibodies, which typically do not have access to the interior of cells or nuclei. However, in some applications, antibodies directed to intracellular proteins may be useful as well. Moreover, for diagnostic purposes, an intracellular protein may be an equally good target since cell lysates may be used rather than a whole cell assay.
- [106] Computer programs can be used to identify extracellular domains of proteins whose sequences are known. Such programs include SMART software (Schultz et al., Proc. Natl. Acad. Sci. USA 95: 5857-5864, 1998) and Pfam software (Bateman et al., Nucleic acids Res. 28: 263-266, 2000) as well as PSORTII. Typically such programs identify transmembrane domains; the extracellular domains are identified as immediately adjacent to the transmembrane domains. Prediction of extracellular regions and the signal cleavage sites are only approximate. It may have a margin of error + or - 5 residues. Signal sequence can be predicted using three different methods (Nielsen et al, *Protein Engineering* 10: 1-6 ,1997, Jagla et. al, *Bioinformatics* 16: 245-250 , 2000, Nakai, K and Horton, P. *Trends in Biochem. Sci.* 24:34-35, 1999) for greater accuracy.

Similarly transmembrane (TM) domains can be identified by multiple prediction methods. (Pasquier, et. al, Protein Eng. 12:381-385, 1999, Sonnhammer et al., In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p. 175-182 , Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998 , Klein, et.al, Biochim. Biophys. Acta, 815:468, 1985, Nakai and Kanehisa Genomics, 14: 897-911 , 1992). In ambiguous cases, locations of functional domains in well characterized proteins are used as a guide to assign a cellular localization.

[107] Putative functions or functional domains of novel proteins can be inferred from homologous regions in the database identified by BLAST searches (Altschul et. al. Nucleic Acid Res. 25: 3389-3402, 1997) and/or from a conserved domain database such as Pfam (Bateman et.al, Nucleic Acids Res. 27:260-262 1999) BLOCKS (Henikoff, et. al, Nucl. Acids Res. 28:228-230, 2000) and SMART (Ponting, et. al, Nucleic Acid Res. 27,229-232, 1999). Extracellular domains include regions adjacent to a transmembrane domain in a single transmembrane domain protein (out-in or type I class). For multiple transmembrane domains proteins, the extracellular domain also includes those regions between two adjacent transmembrane domains (in-out and out-in). For type II transmembrane domain proteins, for which the N-terminal region is cytoplasmic, regions following the transmembrane domain is generally extracellular. Secreted proteins on the other hand do not have a transmembrane domain and hence the whole protein is considered as extracellular.

[108] Membrane associated proteins can be engineered to delete the transmembrane domains, thus leaving the extracellular portions which can bind to ligands. Such soluble forms of transmembrane receptor proteins can be used to compete with natural forms for binding to ligand. Thus such soluble forms act as inhibitors. and can be used therapeutically as anti-angiogenic agents, as diagnostic tools for the quantification of natural ligands, and in assays for the identification of small molecules which modulate or mimic the activity of a TEM:ligand complex.

[109] Alternatively, the endothelial markers themselves can be used as vaccines to raise an immune response in the vaccinated animal or human. For such uses, a protein, or immunogenic fragment of such protein, corresponding to the intracellular, extracellular or secreted TEM of interest is administered to a subject. The immunogenic agent may be provided as a purified preparation or in an appropriately expressing cell. The administration may be direct, by the delivery of the immunogenic agent to the subject, or indirect, through the delivery of a nucleic acid encoding the immunogenic agent under conditions resulting in the expression of the immunogenic agent of interest in the subject. The TEM of interest may be delivered in an expressing cell, such as a purified population of tumor endothelial cells or a populations of fused tumor endothelial and dendritic cells. Nucleic acids encoding the TEM of interest may be delivered in a viral or non-viral delivery vector or vehicle. Non-human sequences encoding the human TEM of interest or other mammalian homolog can be used to induce the desired immunologic response in a human subject. For several of the TEMs of the present invention, mouse, rat or other ortholog sequences are described herein or can be obtained from the literature or using techniques well within the skill of the art.

[110] Endothelial cells can be identified using the markers which are disclosed herein as being endothelial cell specific. These include the human markers identified by SEQ ID NOS: 1-172, *i.e.*, the normal, pan-endothelial, and the tumor endothelial markers. Homologous mouse markers include tumor endothelial markers of SEQ ID NO: 182-186 and 190-194. Antibodies specific for such markers can be used to identify such cells, by contacting the antibodies with a population of cells containing some endothelial cells. The presence of cross-reactive material with the antibodies identifies particular cells as endothelial. Similarly, lysates of cells can be tested for the presence of cross-reactive material. Any known format or technique for detecting cross-reactive material can be used including, immunoblots, radioimmunoassay, ELISA, immunoprecipitation, and

immunohistochemistry. In addition, nucleic acid probes for these markers can also be used to identify endothelial cells. Any hybridization technique known in the art including Northern blotting, RT-PCR, microarray hybridization, and *in situ* hybridization can be used.

- [111] One can identify tumor endothelial cells for diagnostic purposes, testing cells suspected of containing one or more TEMs. One can test both tissues and bodily fluids of a subject. For example, one can test a patient's blood for evidence of intracellular and membrane associated TEMs, as well as for secreted TEMs. Intracellular and/or membrane associated TEMs may be present in bodily fluids as the result of high levels of expression of these factors and/or through lysis of cells expressing the TEMs.
- [112] Populations of various types of endothelial cells can also be made using the antibodies to endothelial markers of the invention. The antibodies can be used to purify cell populations according to any technique known in the art, including but not limited to fluorescence activated cell sorting. Such techniques permit the isolation of populations which are at least 50, 60, 70, 80, 90, 92, 94, 95, 96, 97, 98, and even 99 % the type of endothelial cell desired, whether normal, tumor, or pan-endothelial. Antibodies can be used to both positively select and negatively select such populations. Preferably at least 1, 5, 10, 15, 20, or 25 of the appropriate markers are expressed by the endothelial cell population.
- [113] Populations of endothelial cells made as described herein, can be used for screening drugs to identify those suitable for inhibiting the growth of tumors by virtue of inhibiting the growth of the tumor vasculature.
- [114] Populations of endothelial cells made as described herein, can be used for screening candidate drugs to identify those suitable for modulating angiogenesis, such as for inhibiting the growth of tumors by virtue of inhibiting the growth of endothelial cells, such as inhibiting the growth of the tumor or other undesired

vasculature, or alternatively, to promote the growth of endothelial cells and thus stimulate the growth of new or additional large vessel or microvasculature.

[115] Inhibiting the growth of endothelial cells means either regression of vasculature which is already present, or the slowing or the absence of the development of new vascularization in a treated system as compared with a control system. By stimulating the growth of endothelial cells, one can influence development of new (neovascularization) or additional vasculature development (revascularization). A variety of model screen systems are available in which to test the angiogenic and/or anti-angiogenic properties of a given candidate drug. Typical tests involve assays measuring the endothelial cell response, such as proliferation, migration, differentiation and/or intracellular interaction of a given candidate drug. By such tests, one can study the signals and effects of the test stimuli. Some common screens involve measurement of the inhibition of heparanase, endothelial tube formation on Matrigel, scratch induced motility of endothelial cells, platelet-derived growth factor driven proliferation of vascular smooth muscle cells, and the rat aortic ring assay (which provides an advantage of capillary formation rather than just one cell type).

[116] Drugs can be screened for the ability to mimic or modulate, inhibit or stimulate, growth of tumor endothelium cells and/or normal endothelial cells. Drugs can be screened for the ability to inhibit tumor endothelium growth but not normal endothelium growth or survival. Similarly, human cell populations, such as normal endothelium populations or tumor endothelial cell populations, can be contacted with test substances and the expression of tumor endothelial markers and/or normal endothelial markers determined. Test substances which decrease the expression of tumor endothelial markers (TEMs) are candidates for inhibiting angiogenesis and the growth of tumors. Conversely, markers which are only expressed in normal endothelium but not in tumor endothelium (NEMs) can be monitored. Test substances which increase the expression of such NEMs in tumor endothelium and other human cells can be identified as candidate antitumor or

anti-angiogenic drugs. In cases where the activity of a TEM or NEM is known, agents can be screened for their ability to decrease or increase the activity.

- [117] For those tumor endothelial markers identified as containing transmembrane regions, it is desirable to identify drug candidates capable of binding to the TEM receptors found at the cell surface. For some applications, the identification of drug candidates capable of blocking the TEM receptor from its native ligand will be desired. For some applications, the identification of a drug candidate capable of binding to the TEM receptor may be used as a means to deliver a therapeutic or diagnostic agent. For other applications, the identification of drug candidates capable of mimicing the activity of the native ligand will be desired. Thus, by manipulating the binding of a transmembrane TEM receptor:ligand complex, one may be able to promote or inhibit further development of endothelial cells and hence, vascularization.
- [118] For those tumor endothelial markers identified as being secreted proteins, it is desirable to identify drug candidates capable of binding to the secreted TEM protein. For some applications, the identification of drug candidates capable of interfering with the binding of the secreted TEM it is native receptor. For other applications, the identification of drug candidates capable of mimicing the activity of the native receptor will be desired. Thus, by manipulating the binding of the secreted TEM:receptor complex, one may be able to promote or inhibit futher development of endothelial cells, and hence, vascularization.
- [119] Expression can be monitored according to any convenient method. Protein or mRNA can be monitored. Any technique known in the art for monitoring specific genes' expression can be used, including but not limited to ELISAs, SAGE, microarray hybridization, Western blots. Changes in expression of a single marker may be used as a criterion for significant effect as a potential pro-angiogenic, anti-angiogenic or anti-tumor agent. However, it also may be desirable to screen for test substances which are able to modulate the expression

of at least 5, 10, 15, or 20 of the relevant markers, such as the tumor or normal endothelial markers. Inhibition of TEM protein activity can also be used as a drug screen. Human and mouse TEMS can be used for this purpose.

[120] Test substances for screening can come from any source. They can be libraries of natural products, combinatorial chemical libraries, biological products made by recombinant libraries, etc. The source of the test substances is not critical to the invention. The present invention provides means for screening compounds and compositions which may previously have been overlooked in other screening schemes. Nucleic acids and the corresponding encoded proteins of the markers of the present invention can be used therapeutically in a variety of modes. NEMs, can be used to restrict, diminish, reduce, or inhibit proliferation of tumor or other abnormal or undesirable vasculature. TEMs can be used to stimulate the growth of vasculature, such as for wound healing or to circumvent a blocked vessel. The nucleic acids and encoded proteins can be administered by any means known in the art. Such methods include, using liposomes, nanospheres, viral vectors, non-viral vectors comprising polycations, etc. Suitable viral vectors include adenovirus, retroviruses, and sindbis virus. Administration modes can be any known in the art, including parenteral, intravenous, intramuscular, intraperitoneal, topical, intranasal, intrarectal, intrabronchial, etc.

[121] Specific biological antagonists of TEMs can also be used to therapeutic benefit. For example, antibodies, T cells specific for a TEM, antisense to a TEM, and ribozymes specific for a TEM can be used to restrict, inhibit, reduce, and/or diminish tumor or other abnormal or undesirable vasculature growth. Such antagonists can be administered as is known in the art for these classes of antagonists generally. Anti-angiogenic drugs and agents can be used to inhibit tumor growth, as well as to treat diabetic retinopathy, rheumatoid arthritis, psoriasis, polycystic kidney disease (PKD), and other diseases requiring angiogenesis for their pathologies.

[122] Mouse counterparts to human TEMS can be used in mouse cancer models or in cell lines or *in vitro* to evaluate potential anti-angiogenic or anti-tumor compounds or therapies. Their expression can be monitored as an indication of effect. Mouse TEMs are disclosed in SEQ ID NO: 182-186 and 190-194. Mouse TEMs can be used as antigens for raising antibodies which can be tested in mouse tumor models. Mouse TEMs with transmembrane domains are particularly preferred for this purpose. Mouse TEMs can also be used as vaccines to raise an immunological response in a human to the human ortholog.

[123] The above disclosure generally describes the present invention. All references disclosed herein are expressly incorporated by reference. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.

EXAMPLE 1

Visualization of vasculature of colorectal cancers

[124] The endothelium of human colorectal cancer was chosen to address the issues of tumor angiogenesis, based on the high incidence, relatively slow growth, and resistance to anti-neoplastic agents of these cancers. While certain less common tumor types, such as glioblastomas, are highly vascularized and are regarded as good targets for anti-angiogenic therapy, the importance of angiogenesis for the growth of human colorectal cancers and other common solid tumor types is less well documented.

[125] We began by staining vessels in colorectal cancers using von Willebrand Factor (vWF) as a marker. In each of 6 colorectal tumors, this examination revealed a high density of vessels throughout the tumor parenchyma (Examples in Fig. 1 A and B). Interestingly, these analyses also substantiated the importance of these

vessels for tumor growth, as endothelium was often surrounded by a perivascular cuff of viable cells, with a ring of necrotic cells evident at the periphery (Example in Fig. 1A). Although these preliminary studies suggested that colon tumors are angiogenesis-dependent, reliable markers that could distinguish vessels in colon cancers from the vessels in normal colon are currently lacking. One way to determine if such markers exist is by analyzing gene expression profiles in endothelium derived from normal and neoplastic tissue.

EXAMPLE 2

Purification of endothelial cells

[126] Global systematic analysis of gene expression in tumor and normal endothelium has been hampered by at least three experimental obstacles. First, endothelium is enmeshed in a complex tissue consisting of vessel wall components, stromal cells, and neoplastic cells, requiring highly selective means of purifying ECs for analysis. Second, techniques for defining global gene expression profiles were not available until recently. And third, only a small fraction of the cells within a tumor are endothelial, mandating the development of methods that are suitable for the analysis of global expression profiles from relatively few cells.

[127] To overcome the first obstacle, we initially attempted to purify ECs from dispersed human colorectal tissue using CD31, an endothelial marker commonly used for this purpose. This resulted in a substantial enrichment of ECs but also resulted in contamination of the preparations by hematopoietic cells, most likely due to expression of CD31 by macrophages. We therefore developed a new method for purifying ECs from human tissues using P1H12, a recently described marker for ECs. Unlike CD31, P1H12 was specifically expressed on the ECs of both colorectal tumors and normal colorectal mucosa. Moreover, immunofluorescence staining of normal and cancerous colon with a panel of known cell surface endothelial markers (e.g. VE-cadherin, CD31 and CD34)

revealed that P1H12 was unique in that it stained all vessels including microvessels (see Fig. 2A and data not shown). In addition to selection with P1H12, it was necessary to optimize the detachment of ECs from their neighbors without destroying their cell surface proteins as well as to employ positive and negative affinity purifications using a cocktail of antibodies (Fig. 2B). The ECs purified from normal colorectal mucosa and colorectal cancers were essentially free of epithelial and hematopoietic cells as judged by RT-PCR (Fig. 2C) and subsequent gene expression analysis (see below).

EXAMPLE 3

Comparison of tumor and normal endothelial cell expression patterns

[128] To overcome the remaining obstacles, a modification of the Serial Analysis of Gene Expression (SAGE) technique was used. SAGE associates individual mRNA transcripts with 14 base pair tags derived from a specific position near their 3' termini. The abundance of each tag provides a quantitative measure of the transcript level present within the mRNA population studied. SAGE is not dependent on pre-existing databases of expressed genes, and therefore provides an unbiased view of gene expression profiles. This feature is particularly important in the analysis of cells that constitute only a small fraction of the tissue under study, as transcripts from these cells are unlikely to be well represented in extant EST databases. We adapted the SAGE protocol so that it could be used on small numbers of purified ECs obtained from the procedure outlined in Fig. 2B. A library of ~100,000 tags from the purified ECs of a colorectal cancer, and a similar library from the ECs of normal colonic mucosa from the same patient were generated. These ~193,000 tags corresponded to over 32,500 unique transcripts. Examination of the expression pattern of hematopoietic, epithelial and endothelial markers confirmed the purity of the preparations (Fig. 2D).

EXAMPLE 4

Markers of normal and tumor endothelium

[129] We next sought to identify Pan Endothelial Markers (PEMs), that is, transcripts that were expressed at significantly higher levels in both normal and tumor associated endothelium compared to other tissues. To identify such PEMs, tags expressed at similar levels in both tumor and normal ECs were compared to ~ 1.8 million tags from a variety of cell lines derived from tumors of non-endothelial origin. This simple comparison identified 93 transcripts that were strikingly EC-specific, i.e. expressed at levels at least 20-fold higher in ECs *in vivo* compared to non-endothelial cells in culture. The 15 tags corresponding to characterized genes which were most highly and specifically expressed in endothelium are shown in Table 1A. Twelve of these 15 most abundant endothelial transcripts had been previously shown to be preferentially expressed in endothelium, while the other 3 genes had not been associated with endothelium in the past (Table 1A). These data sets also revealed many novel PEMs, which became increasingly prevalent as tag expression levels decreased (Table 1B). For many of the transcripts, their endothelial origin was confirmed by SAGE analysis of ~401,000 transcripts derived from primary cultures of human umbilical vein endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) (Table 1 A and B). To further validate the expression of these PEMs *in vivo*, we developed a highly sensitive non-radioactive *in situ* hybridization method that allowed the detection of transcripts expressed at relatively low levels in frozen sections of human tissues. Two uncharacterized markers, PEM3 and PEM6, were chosen for this analysis. In each case, highly specific expression was clearly limited to vascular ECs in both normal and neoplastic tissues (Fig. 3 A and B and data not shown). These data also suggest that ECs maintained in culture do not completely recapitulate expression patterns observed *in vivo*. For example, Hevin and several other PEM's were expressed at high levels in both tumor and normal

ECs *in vivo*, but few or no transcripts were detected in cultured HUVEC or HMVEC (Table 1). The source of the Hevin transcripts was confirmed to be endothelium by *in situ* hybridization in normal and malignant colorectal tissue (Fig. 3C).

[130] Many of the markers reported in Table 1 were expressed at significantly higher levels than previously characterized genes commonly associated with ECs. For example, the top 25 markers were all expressed at greater than 200 copies per cell. In contrast, the receptors for VEGF (VEGFR-1 and VEGFR-2) were expressed at less than 20 copies per cell. Interestingly, VEGFR2 (KDR), which had previously been reported to be up-regulated in vessels during colon cancer progression , was found to be expressed in both normal and neoplastic colorectal tissue (Fig. 3 D and E). The lack of specificity of this gene was in accord with the SAGE data, which indicated that the VEGFR was expressed at 12 copies per cell in both normal and tumor endothelium.

EXAMPLE 5

Tumor *versus* normal endothelium

[131] We next attempted to identify transcripts that were differentially expressed in endothelium derived from normal or neoplastic tissues. This comparison revealed 33 tags that were preferentially expressed in normal-derived endothelium at levels at least 10-fold higher than in tumor-derived endothelium. Conversely, 46 tags were expressed at 10-fold or higher levels in tumor vessels. Because those transcripts expressed at higher levels in tumor endothelium are most likely to be useful in the future for diagnostic and therapeutic purposes, our subsequent studies focussed on this class. Of the top 25 tags most differentially expressed, 12 tags corresponded to 11 previously identified genes, one with an alternative polyadenylation site (see Table 2). Of these 10 genes, 6 have been recognized as markers associated with angiogenic vessels. The remaining 14 tags corresponded

to uncharacterised genes, most of which have only been deposited as ESTs (Table 2).

[132] To validate the expression patterns of these genes, we chose to focus on 9 Tumor Endothelial Markers (BSC-TEM 1-9; TEM 1, 2, 5, 9, 16, 17, 19, and 22) for which EST sequences but no other information was available (Table 2). These tags were chosen simply because they were among the most differentially expressed on the list and because we were able to obtain suitable probes. In many cases, this required obtaining near full-length sequences through multiple rounds of sequencing and cDNA walking (See accession numbers in Table 2). RT-PCR analysis was then used to evaluate the expression of the corresponding transcripts in purified ECs derived from normal and tumor tissues of two patients different from the one used to construct the SAGE libraries. As shown in Fig. 4 A, the vWF gene, expected to be expressed in both normal and tumor endothelium on the basis of the SAGE data as well as previous studies, was expressed at similar levels in normal and tumor ECs from both patients, but was not expressed in purified tumor epithelial cells. As expected, PEM2 displayed a pattern similar to vWF. In contrast, all 9 TEMs chosen for this analysis were prominently expressed in tumor ECs, but were absent or barely detectable in normal ECs (Table 3 and examples in Fig. 4A). It is important to note that these RT-PCR assays were extremely sensitive indicators of expression, and the absence of detectable transcripts in the normal endothelium, combined with their presence in tumor endothelial RNAs even when diluted 100-fold, provides compelling confirmatory evidence for their differential expression. These results also show that these transcripts were not simply expressed differentially in the ECs of the original patient, but were characteristic of colorectal cancer endothelium in general.

[133] It could be argued that the results noted above were compromised by the possibility that a small number of non-endothelial cells contaminated the cell populations used for SAGE and RT-PCR analyses, and that these non-endothelial

cells were responsible for the striking differences in expression of the noted transcripts. To exclude this possibility, we performed *in situ* hybridization on normal and neoplastic colon tissue. In every case where transcripts could be detected (BSC-TEM 1, 3, 4, 5, 7, 8, and 9; TEM 1, 5, 9, 17, and 19), they were specifically localized to ECs (Table 3 and examples in Fig. 4 B and C). Although caution must be used when interpreting negative *in situ* hybridization results, none of the TEMs were expressed in vascular ECs associated with normal colorectal tissue even though vWF and Hevin were clearly expressed (Table 3).

EXAMPLE 6

Tumor endothelium markers are expressed in multiple tumor types

[134] Were these transcripts specifically expressed in the endothelium within primary colorectal cancers, or were they characteristic of tumor endothelium in general? To address this question, we studied the expression of a representative TEM (BSC-TEM7; TEM 17) in a liver metastasis from a colorectal cancer, a sarcoma, and in primary cancers of the lung, pancreas, breast and brain. As shown in Fig. 4, the transcript was found to be expressed specifically in the endothelium of each of these cancers, whether metastatic (Fig. 4D) or primary (Fig. 4E-I). Analysis of the other six TEMs, (BSC-TEM 1, 3, 4, 5, 7, 8 and 9; TEM 1, 5, 9, 17, and 19) revealed a similar pattern in lung tumors, brain tumors, and metastatic lesions of the liver (see Table 3).

EXAMPLE 7

Tumor endothelium markers are neo-angiogenic

[135] Finally, we asked whether these transcripts were expressed in angiogenic states other than that associated with tumorigenesis. We thus performed *in situ* hybridizations on corpus luteum tissue as well as healing wounds. Although there

were exceptions, we found that these transcripts were generally expressed both in the corpus luteum and in the granulation tissue of healing wounds (Table 3 and example in Fig. 4J). In all tissues studied, expression of the genes was either absent or exclusively confined to the EC compartment.

References and Notes

The disclosure of each reference cited is expressly incorporated herein.

1. J. Folkman, in *Cancer Medicine* J. Holland, Bast Jr, RC, Morton DL, Frei III, E, Kufe, DW, Weichselbaum, RR, Ed. (Williams & Wilkins, Baltimore, 1997) pp. 181.
2. R. S. Kerbel, *Carcinogenesis* 21, 505 (2000).
3. P. Wesseling, D. J. Ruiter, P. C. Burger, *J Neurooncol* 32, 253 (1997).
4. Q. G. Dong, et al., *Arterioscler Thromb Vasc Biol* 17, 1599 (1997).
5. P. W. Hewett, J. C. Murray, *In Vitro Cell Dev Biol Anim* 32, 462 (1996).
6. M. A. Hull, P. W. Hewett, J. L. Brough, C. J. Hawkey, *Gastroenterology* 111, 1230 (1996).
7. G. Haraldsen, et al., *Gut* 37, 225 (1995).
8. The original EC isolation protocol was the same as that shown in Fig. 2B except that dispersed cells were stained with anti-CD31 antibodies instead of anti-P1H12, and magnetic beads against CD64 and CD14 were not included in the negative selection. After generating 120,000 SAGE tags from these two EC preparations, careful analysis of the SAGE data revealed that, in addition to endothelial-specific markers, several macrophage-specific markers were also present.
9. A. Solovey, et al., *N Engl J Med* 337, 1584 (1997).
10. V. E. Velculescu, L. Zhang, B. Vogelstein, K. W. Kinzler, *Science* 270, 484-487 (1995).
11. In order to reduce the minimum amount of starting material required from ~50 million cells to ~50,000 cells (i.e. ~1000-fold less) we and others (38) have introduced

several modifications to the original SAGE protocol. A detailed version of our modified "MicroSAGE" protocol is available from the authors upon request.

12. 96,694 and 96,588 SAGE tags were analyzed from normal and tumor derived ECs, respectively, and represented 50,298 unique tags. A conservative estimate of 32,703 unique transcripts was derived by considering only those tags observed more than once in the current data set or in the 134,000 transcripts previously identified in human transcriptomes (39).

13. To identify endothelial specific transcripts, we normalized the number of tags analyzed in each group to 100,000, and limited our analysis to transcripts that were expressed at levels at least 20-fold higher in ECs than in non-endothelial cell lines in culture and present at fewer than 5 copies per 100,000 transcripts in non-endothelial cell lines and the hematopoietic fraction (~57,000 tags)(41). Non-endothelial cell lines consisted of 1.8×10^6 tags derived from a total of 14 different cancer cell lines including colon, breast, lung, and pancreatic cancers, as well as one non-transformed keratinocyte cell line, two kidney epithelial cell lines, and normal monocytes. A complete list of PEMs is available at www.sagenet.org\angio\table1.htm.

14. M. Tucci, et al., *J Endocrinol* 157, 13 (1998).
15. T. Oono, et al., *J Invest Dermatol* 100 , 329 (1993).
16. K. Motamed, *Int J Biochem Cell Biol* 31, 1363 (1999).
17. N. Bardin, et al., *Tissue Antigens* 48, 531 (1996).
18. D. M. Bradham, A. Igarashi, R. L. Potter, G. R. Grotendorst, *J Cell Biol* 114, 1285 (1991).
19. K. Akaogi, et al., *Proc Natl Acad Sci U S A* 93, 8384 (1996).

20. Y. Muragaki, et al., *Proc Natl Acad Sci U S A* 92, 8763 (1995).
21. M. L. Iruela-Arispe, C. A. Diglio, E. H. Sage, *Arterioscler Thromb* 11, 805 (1991).
22. J. P. Girard, T. A. Springer, *Immunity* 2, 113 (1995).
23. E. A. Jaffe, et al., *J Immunol* 143, 3961 (1989).
24. J. P. Girard, et al., *Am J Pathol* 155, 2043 (1999).
25. H. Ohtani, N. Sasano, *J Electron Microsc* 36, 204 (1987).
26. For non-radioactive *in situ* hybridization, digoxigenin (DIG)-labelled sense and anti-sense riboprobes were generated through PCR by amplifying 500-600 bp products and incorporating a T7 promoter into the anti-sense primer. In vitro transcription was performed using DIG RNA labelling reagents and T7 RNA polymerase (Roche, Indianapolis, IN). Frozen tissue sections were fixed with 4 % paraformaldehyde, permeabilized with pepsin, and incubated with 200 ng/ml of riboprobe overnight at 55°C. For signal amplification, a horseradish peroxidase (HRP) rabbit anti-DIG antibody (DAKO, Carpinteria, CA) was used to catalyse the deposition of Biotin-Tyramide (from GenPoint kit, DAKO). Further amplification was achieved by adding HRP rabbit anti-biotin (DAKO), biotin-tyramide, and then alkaline-phosphatase (AP) rabbit anti-biotin (DAKO). Signal was detected using the AP substrate Fast Red TR/Naphthol AS-MX (Sigma, St. Louis, MO), and cells were counterstained with hematoxylin unless otherwise indicated. A detailed protocol including the list of primers used to generate the probes can be obtained from the authors upon request.
27. Transcript copies per cell were calculated assuming an average cell contains 300,000 transcripts.

28. R. S. Warren, H. Yuan, M. R. Matli, N. A. Gillett, N. Ferrara, *J Clin Invest* 95, 1789 (1995).
29. Y. Takahashi, Y. Kitadai, C. D. Bucana, K. R. Cleary, L. M. Ellis, *Cancer Res* 55, 3964 (1995).
30. L. F. Brown, et al., *Cancer Res* 53, 4727 (1993).
31. Endothelial-specific transcripts were defined as those expressed at levels at least 5-fold higher in ECs *in vivo* than in non-endothelial cell lines in culture (13), and present at no more than 5 copies per 100,000 transcripts in non-endothelial cell lines and the hematopoietic cell fraction (41). Transcripts showing statistically different levels of expression ($P < 0.05$) were then identified using Monte Carlo analysis as previously described (40). Transcripts preferentially expressed in normal endothelium were then defined as those expressed at levels at least 10-fold higher in normal endothelium than in tumor endothelium. Conversely, tumor endothelial transcripts were at least 10-fold higher in tumor versus normal endothelium. See www.sagenet.org\angio\table2.htm and www.sagenet.org\angio\table3.htm for a complete list of differentially expressed genes.
32. M. Iurlaro, et al., *Eur J Clin Invest* 29 , 793 (1999).
33. W. S. Lee, et al., *Circ Res* 82, 845 (1998).
34. J. Niquet, A. Represa, *Brain Res Dev Brain Res* 95, 227 (1996).
35. L. Fousser, L. Irueala-Arispe, P. Bornstein, E. H. Sage, *J Biol Chem* 266 , 18345 (1991).
36. M. L. Irueala-Arispe, P. Hasselaar, H. Sage, *Lab Invest* 64, 174 (1991).
37. H. F. Dvorak, *N Engl J Med* 315, 1650 (1986).
38. B. Virlon, et al., *Proc Natl Acad Sci U S A* 96, 15286 (1999).

39. V. E. Velculescu, et al., *Nat Genet* 23, 387 (1999).
40. L. Zhang, et al., *Science* 276, 1268 (1997).
41. Human colon tissues were obtained within ½ hour after surgical removal from patients. Sheets of epithelial cells were peeled away from normal tissues with a glass slide following treatment with 5 mM DDT, then 10 mM EDTA, leaving the lamina propria intact. After a 2h incubation in collagenase at 37 oC, cells were filtered sequentially through 400 um, 100 um, 50 um and 25 um mesh, and spun through a 30 % pre-formed Percoll gradient to pellet RBCs. Epithelial cells (Epithelial Fraction), which were found to non-specifically bind magnetic beads, were removed using Dynabeads coupled to BerEP4 (Dynal, Lake Success, NY). Subsequently, macrophages and other leukocytes (Hematopoietic Fraction) were removed using a cocktail of beads coupled to anti-CD45, anti-CD14 and anti-CD64 (Dynal). The remaining cells were stained with P1H12 antibody, purified with anti-mouse IgG-coupled magnetic beads, and lysed in mRNA lysis buffer. A detailed protocol can be obtained from the authors upon request.
42. H. Sheikh, H. Yarwood, A. Ashworth, C. M. Isacke, *J Cell Sci* 113, 1021-32 (2000).

Sequence name	SEQ ID NO:
PEM 1	1
PEM 2	2
PEM 3	3
PEM 4	4
PEM 5	5
PEM 6	6
PEM 7	7
PEM 8	8
PEM 9	9
PEM 10	10
PEM 11	11
PEM 12	12
PEM 13	13
PEM 14	14
PEM 15	15
PEM 16	16
PEM 17	17
PEM 18	18
PEM 19	19
PEM 20	20
PEM 21	21
PEM 22	22
PEM 23	23
PEM 24	24
PEM 25	25
PEM 26	26
PEM 27	27
PEM 28	28
PEM 29	29
PEM 30	30
PEM 31	31
PEM 32	32
PEM 33	33
PEM 34	34
PEM 35	35

SEQ ID NO:	Sequence name
1	PEM 1
2	PEM 2
3	PEM 3
4	PEM 4
5	PEM 5
6	PEM 6
7	PEM 7
8	PEM 8
9	PEM 9
10	PEM 10
11	PEM 11
12	PEM 12
13	PEM 13
14	PEM 14
15	PEM 15
16	PEM 16
17	PEM 17
18	PEM 18
19	PEM 19
20	PEM 20
21	PEM 21
22	PEM 22
23	PEM 23
24	PEM 24
25	PEM 25
26	PEM 26
27	PEM 27
28	PEM 28
29	PEM 29
30	PEM 30
31	PEM 31
32	PEM 32
33	PEM 33
34	PEM 34
35	PEM 35

PEM 36	36
PEM 37	37
PEM 38	38
PEM 39	39
PEM 40	40
PEM 41	41
PEM 42	42
PEM 43	43
PEM 44	44
PEM 45	45
PEM 46	46
PEM 47	47
PEM 48	48
PEM 49	49
PEM 50	50
PEM 51	51
PEM 52	52
PEM 53	53
PEM 54	54
PEM 55	55
PEM 56	56
PEM 57	57
PEM 58	58
PEM 59	59
PEM 60	60
PEM 61	61
PEM 62	62
PEM 63	63
PEM 64	64
PEM 65	65
PEM 66	66
PEM 67	67
PEM 68	68
PEM 69	69
PEM 70	70
PEM 71	71
PEM 72	72
PEM 73	73
PEM 74	74

36	PEM 36
37	PEM 37
38	PEM 38
39	PEM 39
40	PEM 40
41	PEM 41
42	PEM 42
43	PEM 43
44	PEM 44
45	PEM 45
46	PEM 46
47	PEM 47
48	PEM 48
49	PEM 49
50	PEM 50
51	PEM 51
52	PEM 52
53	PEM 53
54	PEM 54
55	PEM 55
56	PEM 56
57	PEM 57
58	PEM 58
59	PEM 59
60	PEM 60
61	PEM 61
62	PEM 62
63	PEM 63
64	PEM 64
65	PEM 65
66	PEM 66
67	PEM 67
68	PEM 68
69	PEM 69
70	PEM 70
71	PEM 71
72	PEM 72
73	PEM 73
74	PEM 74

PEM 75	75
PEM 76	76
PEM 77	77
PEM 78	78
PEM 79	79
PEM 80	80
PEM 81	81
PEM 82	82
PEM 83	83
PEM 84	84
PEM 85	85
PEM 86	86
PEM 87	87
PEM 88	88
PEM 89	89
PEM 90	90
PEM 91	91
PEM 92	92
PEM 93	93
TEM 1	94
TEM 2	95
TEM 3	96
TEM 4	97
TEM 5	98
TEM 6	99
TEM 7	100
TEM 8	101
TEM 9	102
TEM 10	103
TEM 11	104
TEM 12	105
TEM 13	106
TEM 14	107
TEM 15	108
TEM 16	109
TEM 17	110
TEM 18	111
TEM 19	112
TEM 20	113

75	PEM 75
76	PEM 76
77	PEM 77
78	PEM 78
79	PEM 79
80	PEM 80
81	PEM 81
82	PEM 82
83	PEM 83
84	PEM 84
85	PEM 85
86	PEM 86
87	PEM 87
88	PEM 88
89	PEM 89
90	PEM 90
91	PEM 91
92	PEM 92
93	PEM 93
94	TEM 1
95	TEM 2
96	TEM 3
97	TEM 4
98	TEM 5
99	TEM 6
100	TEM 7
101	TEM 8
102	TEM 9
103	TEM 10
104	TEM 11
105	TEM 12
106	TEM 13
107	TEM 14
108	TEM 15
109	TEM 16
110	TEM 17
111	TEM 18
112	TEM 19
113	TEM 20

TEM 21	114
TEM 22	115
TEM 23	116
TEM 24	117
TEM 25	118
TEM 26	119
TEM 27	120
TEM 28	121
TEM 29	122
TEM 30	123
TEM 31	124
TEM 32	125
TEM 33	126
TEM 34	127
TEM 35	128
TEM 36	129
TEM 37	130
TEM 38	131
TEM 39	132
TEM 40	133
TEM 41	134
TEM 42	135
TEM 43	136
TEM 44	137
TEM 45	138
TEM 46	139
NEM 1	140
NEM 2	141
NEM 3	142
NEM 4	143
NEM 5	144
NEM 6	145
NEM 7	146
NEM 8	147
NEM 9	148
NEM 10	149
NEM 11	150
NEM 12	151
NEM 13	152

114	TEM 21
115	TEM 22
116	TEM 23
117	TEM 24
118	TEM 25
119	TEM 26
120	TEM 27
121	TEM 28
122	TEM 29
123	TEM 30
124	TEM 31
125	TEM 32
126	TEM 33
127	TEM 34
128	TEM 35
129	TEM 36
130	TEM 37
131	TEM 38
132	TEM 39
133	TEM 40
134	TEM 41
135	TEM 42
136	TEM 43
137	TEM 44
138	TEM 45
139	TEM 46
140	NEM 1
141	NEM 2
142	NEM 3
143	NEM 4
144	NEM 5
145	NEM 6
146	NEM 7
147	NEM 8
148	NEM 9
149	NEM 10
150	NEM 11
151	NEM 12
152	NEM 13

NEM 14	153
NEM 15	154
NEM 16	155
NEM 17	156
NEM 18	157
NEM 19	158
NEM 20	159
NEM 21	160
NEM 22	161
NEM 23	162
NEM 24	163
NEM 25	164
NEM 26	165
NEM 27	166
NEM 28	167
NEM 29	168
NEM 30	169
NEM 31	170
NEM 32	171
NEM 33	172
TEM 1 DNA	173
TEM 2 DNA	174
TEM 7 DNA	175
TEM 8 DNA	176
TEM 1 Protein	177
TEM 2 Protein	178
TEM 8 Protein	179
TEM 5 DNA	180
TEM 7B DNA	181
mTEM 1 DNA	182
mTEM 5 DNA	183
mTEM 7 DNA	184
mTEM 7B DNA	185
mTEM 8 DNA	186
TEM 8 Protein	187
TEM 5 Protein	188
TEM 7B Protein	189
mTEM 1 Protein	190
mTEM 5 Protein	191

153	NEM 14
154	NEM 15
155	NEM 16
156	NEM 17
157	NEM 18
158	NEM 19
159	NEM 20
160	NEM 21
161	NEM 22
162	NEM 23
163	NEM 24
164	NEM 25
165	NEM 26
166	NEM 27
167	NEM 28
168	NEM 29
169	NEM 30
170	NEM 31
171	NEM 32
172	NEM 33
173	TEM 1 DNA
174	TEM 2 DNA
175	TEM 7 DNA
176	TEM 8 DNA
177	TEM 1 Protein
178	TEM 2 Protein
179	TEM 8 Protein
180	TEM 5 DNA
181	TEM 7B DNA
182	mTEM 1 DNA
183	mTEM 5 DNA
184	mTEM 7 DNA
185	mTEM 7B DNA
186	mTEM 8 DNA
187	TEM 8 Protein
188	TEM 5 Protein
189	TEM 7B Protein
190	mTEM 1 Protein
191	mTEM 5 Protein

mTEM 7 Protein	192
mTEM 7b Protein	193
mTEM 8 Protein	194
TEM 1 DNA	195
TEM 1 Protein	196
TEM 2 DNA	197
TEM 2 Protein	198
TEM 3 DNA	199
TEM 3 Protein	200
TEM 4 DNA	201
TEM 4 Protein	202
TEM 5 DNA	203
TEM 5 Protein	204
TEM 6 DNA	205
TEM 6 Protein	206
TEM 7 DNA	207
TEM 7 Protein	208
TEM 8 DNA	209
TEM 8 Protein	210
TEM 9 DNA	211
TEM 9 Protein	212
TEM 10 DNA	213
TEM 10 Protein	214
TEM 11 DNA	215
TEM 11 Protein	216
TEM 12 DNA	217
TEM 12 Protein	218
TEM 13 DNA	219
TEM 13 Protein	220
TEM 14a DNA	221
TEM 14b DNA	222
TEM 14a Protein	223
TEM 14b Protein	224
TEM 15 DNA	225
TEM 15 Protein	226
TEM 16 DNA	227
TEM 16 Protein	228
TEM 17 DNA	229
TEM 17 Protein	230

192	mTEM 7 Protein
193	mTEM 7b Protein
194	mTEM 8 Protein
195	TEM 1 DNA
196	TEM 1 Protein
197	TEM 2 DNA
198	TEM 2 Protein
199	TEM 3 DNA
200	TEM 3 Protein
201	TEM 4 DNA
202	TEM 4 Protein
203	TEM 5 DNA
204	TEM 5 Protein
205	TEM 6 DNA
206	TEM 6 Protein
207	TEM 7 DNA
208	TEM 7 Protein
209	TEM 8 DNA
210	TEM 8 Protein
211	TEM 9 DNA
212	TEM 9 Protein
213	TEM 10 DNA
214	TEM 10 Protein
215	TEM 11 DNA
216	TEM 11 Protein
217	TEM 12 DNA
218	TEM 12 Protein
219	TEM 13 DNA
220	TEM 13 Protein
221	TEM 14a DNA
222	TEM 14b DNA
223	TEM 14a Protein
224	TEM 14b Protein
225	TEM 15 DNA
226	TEM 15 Protein
227	TEM 16 DNA
228	TEM 16 Protein
229	TEM 17 DNA
230	TEM 17 Protein

TEM 19 DNA	231
TEM 19 Protein	232
TEM 20 DNA	233
TEM 20 Protein	234
TEM 21 DNA	235
TEM 21 Protein	236
TEM 22 DNA	237
TEM 22 Protein	238
TEM 24 DNA	239
TEM 24 Protein	240
TEM 25 DNA	241
TEM 25 Protein	242
TEM 27 DNA	243
TEM 27 Protein	244
TEM 28 DNA	245
TEM 28 Protein	246
TEM 29 DNA	247
TEM 29 Protein	248
TEM 30 DNA	249
TEM 30 Protein	250
TEM 31 DNA	251
TEM 31 Protein	252
TEM 33 DNA	253
TEM 33 Protein	254
TEM 35 DNA	255
TEM 35 Protein	358
TEM 36 DNA	256
TEM 36 Protein	257
TEM 37 DNA	258
TEM 37 Protein	259
TEM 38 DNA	260
TEM 38 Protein	261
TEM 39 DNA	262
TEM 39 Protein	263
TEM 40 DNA	264
TEM 40 Protein	265
TEM 41 DNA	266
TEM 41 Protein	267
TEM 42 DNA	268

231	TEM 19 DNA
232	TEM 19 Protein
233	TEM 20 DNA
234	TEM 20 Protein
235	TEM 21 DNA
236	TEM 21 Protein
237	TEM 22 DNA
238	TEM 22 Protein
239	TEM 24 DNA
240	TEM 24 Protein
241	TEM 25 DNA
242	TEM 25 Protein
243	TEM 27 DNA
244	TEM 27 Protein
245	TEM 28 DNA
246	TEM 28 Protein
247	TEM 29 DNA
248	TEM 29 Protein
249	TEM 30 DNA
250	TEM 30 Protein
251	TEM 31 DNA
252	TEM 31 Protein
253	TEM 33 DNA
254	TEM 33 Protein
255	TEM 35 DNA
256	TEM 36 DNA
257	TEM 36 Protein
258	TEM 37 DNA
259	TEM 37 Protein
260	TEM 38 DNA
261	TEM 38 Protein
262	TEM 39 DNA
263	TEM 39 Protein
264	TEM 40 DNA
265	TEM 40 Protein
266	TEM 41 DNA
267	TEM 41 Protein
268	TEM 42 DNA
269	TEM 42 Protein

TEM 42 Protein	269
TEM 44 DNA	270
TEM 44 Protein	271
TEM 45 DNA	272
TEM 45 Protein	273
TEM 46 DNA	274
TEM 46 Protein	275
NEM 4 DNA	276
NEM 4 Protein	277
NEM 14 DNA	278
NEM 14 Protein	279
NEM 17 DNA	280
NEM 17 Protein	281
NEM 22 DNA	282
NEM 22 Protein	283
NEM 23 DNA	284
NEM 23 Protein	285
NEM 23 Secreted	286
NEM 23 Short	287
NEM 33 DNA	288
NEM 33 Protein	289
mTEM 1 DNA	290
mTEM 1 Protein	291
mTEM 2 DNA	292
mTEM 2 Protein	293
mTEM 3 DNA	298
mTEM 3 Protein	299
mTEM 9 DNA	294
mTEM 9 Protein	295
mTEM 13 DNA	302
mTEM 13 Protein	303
mTEM 17 DNA	296
mTEM 17 Protein	297
mTEM 19 DNA	300
mTEM 19 Protein	301
mTEM 22 DNA	304
mTEM 22 Protein	305
mTEM 30 DNA	306
mTEM 30 Protein	307

270	TEM 44 DNA
271	TEM 44 Protein
272	TEM 45 DNA
273	TEM 45 Protein
274	TEM 46 DNA
275	TEM 46 Protein
276	NEM 4 DNA
277	NEM 4 Protein
278	NEM 14 DNA
279	NEM 14 Protein
280	NEM 17 DNA
281	NEM 17 Protein
282	NEM 22 DNA
283	NEM 22 Protein
284	NEM 23 DNA
285	NEM 23 Protein
286	NEM 23 Secreted
287	NEM 23 Short
288	NEM 33 DNA
289	NEM 33 Protein
290	mTEM 1 DNA
291	mTEM 1 Protein
292	mTEM 2 DNA
293	mTEM 2 Protein
294	mTEM 9 DNA
295	mTEM 9 Protein
296	mTEM 17 DNA
297	mTEM 17 Protein
298	mTEM 3 DNA
299	mTEM 3 Protein
300	mTEM 19 DNA
301	mTEM 19 Protein
302	mTEM 13 DNA
303	mTEM 13 Protein
304	mTEM 22 DNA
305	mTEM 22 Protein
306	mTEM 30 DNA
307	mTEM 30 Protein
308	TEM 2 tag

TEM 2 tag	308
TEM 1 long tag	309
TEM 3 long tag	310
TEM 4 long tag	311
TEM 5 long tag	312
TEM 5 long tag	313
TEM 6 long tag	314
TEM 7 long tag	315
TEM 8 long tag	316
TEM 9 long tag	317
TEM 10 long tag	318
TEM 10 long tag	319
TEM 10 long tag	320
TEM 11 long tag	321
TEM 12 long tag	322
TEM 13 long tag	323
TEM 13 long tag	324
TEM 14 long tag	325
TEM 15 long tag	326
TEM 15 long tag	327
TEM 16 long tag	328
TEM 17 long tag	329
TEM 19 long tag	330
TEM 21 long tag	331
TEM 21 long tag	332
TEM 22 long tag	333
TEM 22 long tag	334
TEM 23 long tag	335
TEM 24 long tag	336
TEM 25 long tag	337
TEM 25 long tag	338
TEM 28 long tag	339
TEM 30 long tag	340
TEM 31 long tag	341
TEM 32 long tag	342
TEM 33 long tag	343
TEM 33 long tag	344
TEM 35 long tag	345
TEM 36 long tag	346

309	TEM 1 long tag
310	TEM 3 long tag
311	TEM 4 long tag
312	TEM 5 long tag
313	TEM 5 long tag
314	TEM 6 long tag
315	TEM 7 long tag
316	TEM 8 long tag
317	TEM 9 long tag
318	TEM 10 long tag
319	TEM 10 long tag
320	TEM 10 long tag
321	TEM 11 long tag
322	TEM 12 long tag
323	TEM 13 long tag
324	TEM 13 long tag
325	TEM 14 long tag
326	TEM 15 long tag
327	TEM 15 long tag
328	TEM 16 long tag
329	TEM 17 long tag
330	TEM 19 long tag
331	TEM 21 long tag
332	TEM 21 long tag
333	TEM 22 long tag
334	TEM 22 long tag
335	TEM 23 long tag
336	TEM 24 long tag
337	TEM 25 long tag
338	TEM 25 long tag
339	TEM 28 long tag
340	TEM 30 long tag
341	TEM 31 long tag
342	TEM 32 long tag
343	TEM 33 long tag
344	TEM 33 long tag
345	TEM 35 long tag
346	TEM 36 long tag
347	TEM 37 long tag

TEM 37 long tag	347
TEM 38 long tag	348
TEM 38 long tag	349
TEM 39 long tag	350
TEM 40 long tag	351
TEM 41 long tag	352
TEM 42 long tag	353
TEM 43 long tag	354
TEM 44 long tag	355
TEM 45 long tag	356
TEM 46 long tag	357

348	TEM 38 long tag
349	TEM 38 long tag
350	TEM 39 long tag
351	TEM 40 long tag
352	TEM 41 long tag
353	TEM 42 long tag
354	TEM 43 long tag
355	TEM 44 long tag
356	TEM 45 long tag
357	TEM 46 long tag
358	TEM 35 Protein

CLAIMS

1. An isolated molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 9, 17, 19, and 44, as shown in SEQ ID NO: 196, 212, 230, 232, and 271, respectively.
2. The isolated molecule of claim 1 which is an intact antibody molecule.
3. The isolated molecule of claim 1 which is a single chain variable region (ScFv).
4. The isolated molecule of claim 1 which is a monoclonal antibody.
5. The isolated molecule of claim 1 which is a humanized antibody.
6. The isolated molecule of claim 1 which is a human antibody.
7. The isolated molecule of claim 1 which is bound to a cytotoxic moiety.
8. The isolated molecule of claim 1 which is bound to a therapeutic moiety.
9. The isolated molecule of claim 1 which is bound to a detectable moiety.
10. The isolated molecule of claim 1 which is bound to an anti-tumor agent.

11. A method of inhibiting neoangiogenesis, comprising:
 - administering to a subject in need thereof an effective amount of an isolated molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 9, 17, 19, 22, and 44, as shown in SEQ ID NO: 196, 212, 230, 232, 238, and 271, respectively, whereby neoangiogenesis is inhibited.
12. The method of claim 11 wherein the subject bears a vascularized tumor.
13. The method of claim 11 wherein the subject has polycystic kidney disease.
14. The method of claim 11 wherein the subject has diabetic retinopathy.
15. The method of claim 11 wherein the subject has rheumatoid arthritis.
16. The method of claim 11 wherein the subject has psoriasis.

17. A method of inhibiting tumor growth, comprising:

administering to a human subject bearing a tumor an effective amount of an isolated molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 9, 17, 19, 22, and 44, as shown in SEQ ID NO: 196, 212, 230, 232, 238, and 271, respectively, whereby growth of the tumor is inhibited.

18. An isolated molecule comprising an antibody variable region

which specifically binds to a TEM protein selected from the group consisting of: 9, 17, 19, and 44, as shown in SEQ ID NO: 212, 230, 232, and 271, respectively.

19. The isolated molecule of claim 18 which is a single chain variable region (ScFv).

20. The isolated molecule of claim 18 which is a monoclonal antibody.

21. The isolated molecule of claim 18 which is a humanized antibody.

22. The isolated molecule of claim 18 which is a human antibody.

23. The isolated molecule of claim 18 which is bound to a cytotoxic moiety.

24. The isolated molecule of claim 18 which is bound to a therapeutic moiety.

25. The isolated molecule of claim 18 which is bound to a detectable

moiety.

26. The isolated molecule of claim 18 which is bound to an anti-tumor agent.
27. The isolated molecule of claim 18 which is an intact antibody molecule.
28. An isolated and purified human transmembrane protein selected from the group consisting of: TEM 9, 17, and 19 as shown in SEQ ID NO: 212, 230, and 232, respectively.
29. An isolated and purified nucleic acid molecule comprising a coding sequence for a transmembrane TEM selected from the group consisting of: TEM 9, 17, and 19 as shown in SEQ ID NO: 212, 230, 232, respectively.
30. The isolated and purified nucleic acid molecule of claim 29 which comprises a coding sequence selected from those shown in SEQ ID NO: 211, 229, and 231.
31. A recombinant host cell which comprises a nucleic acid molecule comprising a coding sequence for a transmembrane TEM selected from the group consisting of: TEM 9, 17, and 19 as shown in SEQ ID NO: 212, 230, and 232, respectively.
32. The recombinant host cell of claim 31 which comprises a coding sequence selected from those shown in SEQ ID NO: 211, 229, and 231.
33. A method of inducing an immune response in a mammal, comprising:
administering to the mammal a nucleic acid molecule comprising a coding sequence for a human transmembrane protein selected from the group consisting of: TEM 1, 9, 13, 17, 19, 22, 30, and 44 as shown in SEQ ID NO: 196, 212, 220, 230, 232, 238, 250 and 271, respectively, whereby an immune response to the human transmembrane protein is induced in the mammal.

34. The method of claim 33 wherein the coding sequence is shown in SEQ ID NO: 195, 211, 219, 229, 231, 237, 249, 270.

35. A method of inducing an immune response in a mammal, comprising:

administering to the mammal a purified human transmembrane protein selected from the group consisting of: TEM 1, 9, 13, 17, 19, 22, 30, and 44 as shown in SEQ ID NO: 196, 212, 220, 230, 232, 238, 250 and 271 , respectively, whereby an immune response to the human transmembrane protein is induced in the mammal.

36. A method for identification of a ligand involved in endothelial cell regulation, comprising:

contacting a test compound with an isolated and purified human transmembrane protein selected from the group consisting of 1, 9, 13, 17, 19, 30, and 44 as shown in SEQ ID NO: 196, 212, 220, 230, 250, 232 and 271;

contacting the isolated and purified human transmembrane protein with a molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 9, 13, 17, 19, 30, and 44 as shown in SEQ ID NO: 196, 212, 220, 230, 250, 232 and 271, respectively;

determining binding of the molecule comprising an antibody variable region to the human transmembrane protein, wherein a test compound which diminishes the binding of the molecule comprising an antibody variable region to the human transmembrane protein is identified as a ligand involved in endothelial cell regulation.

37. A method for identification of a ligand involved in endothelial cell regulation, comprising:

contacting a test compound with a cell comprising a human transmembrane protein selected from the group consisting of 1, 9, 17, and 19 as shown in SEQ ID NO: 196, 212, 230, and 232;

contacting the cell with a molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 9, 17, and 19 as shown in SEQ ID NO: 196, 212, 230, and 232, respectively;

determining binding of the molecule comprising an antibody variable region to the cell, wherein a test compound which diminishes the binding of the molecule comprising an antibody variable region to the cell is identified as a ligand involved in endothelial cell regulation.

38. A soluble form of a human transmembrane protein selected from

the group consisting of: TEM 1, 9, 17, 19, 22, 30 and 44 as shown in SEQ ID NO: 196, 212, 230, 232, 238, 250, and 271, respectively, wherein the soluble forms lack transmembrane domains.

39. The soluble form of claim 38 wherein the soluble form consists of an extracellular domain of the human transmembrane protein.

40. A method of inhibiting neoangiogenesis in a patient, comprising:
administering to the patient a soluble form of a human

transmembrane protein according to claim 38, whereby neoangiogenesis in the patient is inhibited.

41. A method of inhibiting neoangiogenesis in a patient, comprising:

administering to the patient a soluble form of a human transmembrane protein according to claim 39, whereby neoangiogenesis in the patient is inhibited.

42. The method of claim 40 wherein the patient bears a vascularized tumor.

43. The method of claim 41 wherein the patient bears a vascularized tumor.

44. The method of claim 40 wherein the patient has polycystic kidney disease.
45. The method of claim 40 wherein the patient has diabetic retinopathy.
46. The method of claim 40 wherein the patient has rheumatoid arthritis.
47. The method of claim 40 wherein the patient has psoriasis.
48. The method of claim 41 wherein the patient has polycystic kidney disease.
49. The method of claim 41 wherein the patient has diabetic retinopathy.
50. The method of claim 41 wherein the patient has rheumatoid arthritis.
51. The method of claim 41 wherein the patient has psoriasis.
52. A method of identifying regions of neoangiogenesis in a patient, comprising:
administering to a patient a molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 9, 13, 17, 19, 22, 30, and 44, as shown in SEQ ID NO: 196, 212, 220, 230, 232, 238, 250, and 271, respectively, wherein the molecule is bound to a detectable moiety; and
detecting the detectable moiety in the patient, thereby identifying neoangiogenesis.
53. A method of screening for neoangiogenesis in a patient, comprising:

contacting a body fluid collected from the patient with a molecule comprising an antibody variable region which specifically binds to an extracellular domain of a TEM protein selected from the group consisting of: 1, 9, 17, 19, and 44, as shown in SEQ ID NO: 196, 212, 230, 232, and 271, respectively, wherein detection of cross-reactive material in the body fluid with the molecule indicates neoangiogenesis in the patient.

54. A method of screening for neoangiogenesis in a patient, comprising:

contacting a body fluid collected from the patient with a molecule comprising an antibody variable region which specifically binds to a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 25, 27, 31, 36, 37, 38, 39, as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 & 224, 242, 244, 252, 257, 259, 261, and 263, respectively, wherein detection of cross-reactive material in the body fluid with the molecule indicates neoangiogenesis in the patient.

55. A method of promoting neoangiogenesis in a patient, comprising:

administering to a patient in need of neoangiogenesis a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 & 224, 234, 242, 244, 252, 257, 259, 261, 263, and 265, whereby neoangiogenesis in the patient is stimulated.

56. A method of promoting neoangiogenesis in a patient, comprising:

administering to a patient in need of neoangiogenesis a nucleic acid molecule encoding a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 & 224, 234, 242, 244, 252, 257, 259, 261, 263, and 265, whereby the TEM protein is expressed and neoangiogenesis in the patient is stimulated.

57. A method of screening for neoangiogenesis in a patient, comprising:

detecting a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, as shown in SEQ ID NO: 202, 206, 208, 214, 218, 223 & 224, 234, 242, 244, 252, 257, 259, 261, 263, and 265, respectively, in a body fluid collected from the patient, wherein detection of the TEM protein indicates neoangiogenesis in the patient.

58. A method of screening for neoangiogenesis in a patient, comprising:

detecting in a body fluid collected from the patient a nucleic acid encoding a TEM protein selected from the group consisting of: 4, 6, 7, 10, 12, 14, 20, 25, 27, 31, 36, 37, 38, 39, and 40, wherein the nucleic acid is selected from the group consisting of those shown in SEQ ID NO: 201, 205, 207, 213, 217, 221 & 222, 233, 241, 243, 251, 256, 258, 260, 262, and 264, respectively, wherein detection of the TEM protein indicates neoangiogenesis in the patient.

59. An isolated and purified nucleic acid molecule which encodes a NEM protein selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289.

60. The nucleic acid molecule of claim 59 wherein the nucleic acid molecule comprises a coding sequence as shown in SEQ ID NO: 278, 282, 284, and 288.

61. A recombinant host cell which comprises a nucleic acid according to claim 59.

62. An isolated and purified NEM protein selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289, respectively.

63. An isolated molecule comprising an antibody variable region which specifically binds to a NEM protein selected from the group

consisting of: 14, 22, 23, and 33, as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289.

64. A method of inhibiting neoangiogenesis, comprising:

administering to a subject in need thereof an effective amount of a NEM protein selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289, whereby neoangiogenesis is inhibited.

65. A method to identify candidate drugs for treating tumors, comprising:

contacting cells which express one or more TEM genes selected from the group consisting of: 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 195, 197, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221 & 222, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 256, 258, 260, 262, 266, 268, 270, 272, and 274, respectively, with a test compound;

determining expression of said one or more TEM genes by hybridization of mRNA of said cells to a nucleic acid probe which is complementary to said mRNA; and

identifying a test compound as a candidate drug for treating tumors if it decreases expression of said one or more TEM genes.

66. The method of claim 65 wherein the cells are endothelial cells.

67. The method of claim 65 wherein the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more TEMs.

68. A method to identify candidate drugs for treating tumors, comprising:

contacting cells which express one or more TEM proteins selected from the group consisting of: 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41,

42, 44, 45, and 46 as shown in SEQ ID NO: 198, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275, respectively, with a test compound;

determining amount of said one or more TEM proteins in said cells; and

identifying a test compound as a candidate drug for treating tumors if it decreases the amount of one or more TEM proteins in said cells.

69. The method of claim 69 wherein the cells are endothelial cells.

70. The method of claim 69 wherein the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more TEMs.

71. A method to identify candidate drugs for treating tumors, comprising:

contacting cells which express one or more TEM proteins selected from the group consisting of: 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 198, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275 respectively, with a test compound;

determining activity of said one or more TEM proteins in said cells; and

identifying a test compound as a candidate drug for treating tumors if it decreases the activity of of one more TEM proteins in said cells.

72. The method of claim 72 wherein the cells are endothelial cells.

73. The method of claim 72 wherein the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more TEMs.

74. A method to identify candidate drugs for treating patients bearing tumors, comprising:

contacting a test compound with recombinant host cells which are transfected with an expression construct which encodes one or more TEM proteins selected from the group consisting of 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 198, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257, 259, 261, 263, 267, 269, 271, 273, and 275, respectively;

determining proliferation of said cells; and

identifying a test compound which inhibits proliferation of said cells as a candidate drug for treating patients bearing tumors.

75. A method to identify candidate drugs for treating tumors, comprising:

contacting cells which express one or more NEM genes selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 278, 282, 284, and 288, respectively, with a test compound;

determining expression of said one or more NEM genes by hybridization of mRNA of said cells to a nucleic acid probe which is complementary to said mRNA; and

identifying a test compound as a candidate drug for treating tumors if it increases expression of said one or more NEM genes.

76. The method of claim 76 wherein the cells are endothelial cells.

77. The method of claim 76 wherein the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more NEMs.

78. A method to identify candidate drugs for treating tumors,
comprising:

contacting cells which express one or more NEM proteins
selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ
ID NO: 279, 283, 285, 286, 287, and 289, with a test compound;

determining amount of said one or more NEM proteins in
said cells; and

identifying a test compound as a candidate drug for
treating tumors if it increases the amount of one more NEM proteins in
said cells.

79. The method of claim 79 wherein the cells are endothelial cells.

80. The method of claim 79 wherein the cells are recombinant host
cells which are transfected with an expression construct which
encodes said one or more NEMs.

81. A method to identify candidate drugs for treating tumors, comprising:

contacting cells which express one or more NEM proteins selected from the group consisting of: 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289, with a test compound;

determining activity of said one or more NEM proteins in said cells; and

identifying a test compound as a candidate drug for treating tumors if it increases the activity of one or more NEM proteins in said cells.

82. The method of claim 81 wherein the cells are endothelial cells.

83. The method of claim 81 wherein the cells are recombinant host cells which are transfected with an expression construct which encodes said one or more NEMs.

84. A method to identify candidate drugs for treating patients bearing tumors, comprising:

contacting a test compound with recombinant host cells which are transfected with an expression construct which encodes one or more NEM proteins selected from the group consisting of 14, 22, 23, and 33 as shown in SEQ ID NO: 279, 283, 285, 286, 287, and 289;

determining proliferation of said cells; and

identifying a test compound which stimulates proliferation of said cells as a candidate drug for treating patients bearing tumors.

85. A method for identification of a ligand involved in endothelial cell regulation, comprising:

contacting a test compound with a human transmembrane TEM protein selected from the group consisting of 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 40, 31, 33, 35, 36, 37, 38, 39, 41, 42, 44, 45, and 46 as shown in SEQ ID NO: 196,

198, 202, 204, 206, 208, 210, 212, 214, 216, 218, 223 & 224, 226, 228,
230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 358, 257,
259, 261, 263, 267, 269, 271, 273, and 275;

determining binding of a test compound to the human transmembrane protein, wherein a test compound which binds to the protein is identified as a ligand involved in endothelial cell regulation.

86. A method of inducing an immune response in a mammal,
comprising:
administering to the mammal a cell which expresses a
transmembrane protein selected from the group consisting of: TEM 1, 9,
13, 17, 19, 22, 30, and 44 as shown in SEQ ID NO: 196, 212, 220, 230,
232, 238, 250 and 271 , respectively, wherein the cell is a recombinant cell
which comprises a vector encoding said transmembrane protein, or the cell
is a fusion of a dendritic cell and a tumor endothelium cell, whereby an
immune response to the human transmembrane protein is induced in the
mammal.

Figure 1

Figure 2

Figure 3

A**B****C****D****E****F****G****H****I****J**

Figure 4

SEQUENCE LISTING

<110> Brad St. Croix
Bert Vogelstein
Kenneth Kinzler

<120> ENDOTHELIAL CELL EXPRESSION PATTERNS

<130> 1107.00134

<150> 60/222,599
<151> 2000-08-02

<150> 60/224,360

<151> 2000-08-11
<150> 60/282,850
<151> 2000-04-11

<160> 358

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 11
<212> DNA
<213> Homo sapiens

<400> 1
catatcatta a 11

<210> 2
<211> 11
<212> DNA
<213> Homo sapiens

<400> 2
tgcacttcaa g 11

<210> 3
<211> 11
<212> DNA
<213> Homo sapiens

<400> 3
tttgcacctt t 11

<210> 4
<211> 10
<212> DNA
<213> Homo sapiens

<400> 4
cccttgtccg 10

<210> 5
<211> 11
<212> DNA
<213> Homo sapiens

<400> 5
ttgctgactt t 11

<210> 6
<211> 11
<212> DNA
<213> Homo sapiens

<400> 6
accattggat t 11

<210> 7
<211> 11
<212> DNA
<213> Homo sapiens

<400> 7
acacttcttt c 11

<210> 8
<211> 11
<212> DNA
<213> Homo sapiens

<400> 8
ttctgctctt g 11

<210> 9
<211> 11
<212> DNA
<213> Homo sapiens

<400> 9
tccctggcag a 11

<210> 10
<211> 11
<212> DNA
<213> Homo sapiens

<400> 10
taatcctcaa g 11

<210> 11
<211> 11
<212> DNA
<213> Homo sapiens

<400> 11
atgtctttc t 11

<210> 12
<211> 11
<212> DNA
<213> Homo sapiens

<400> 12
gggattaaag c 11

<210> 13
<211> 11
<212> DNA
<213> Homo sapiens

<400> 13
ttagtgtcgt a 11

<210> 14
<211> 11
<212> DNA
<213> Homo sapiens

<400> 14
ttctccccaaa t 11

<210> 15

<211> 11
<212> DNA
<213> Homo sapiens

<400> 15
gtgctaagcg g 11

<210> 16
<211> 11
<212> DNA
<213> Homo sapiens

<400> 16
gtttatggat a 11

<210> 17
<211> 11
<212> DNA
<213> Homo sapiens

<400> 17
ccctttcaca c 11

<210> 18
<211> 11
<212> DNA
<213> Homo sapiens

<400> 18
tgttctggag a 11

<210> 19
<211> 11
<212> DNA
<213> Homo sapiens

<400> 19
aagatcaaga t 11

<210> 20
<211> 11
<212> DNA
<213> Homo sapiens

<400> 20
tctctgagca t 11

<210> 21
<211> 11
<212> DNA
<213> Homo sapiens

<400> 21
caggtttcat a 11

<210> 22
<211> 11
<212> DNA
<213> Homo sapiens

<400> 22

gcacaagg t 11
<210> 23
<211> 11
<212> DNA
<213> Homo sapiens

<400> 23
agcttggc c 11
<210> 24
<211> 11
<212> DNA
<213> Homo sapiens

<400> 24
cttctggata a 11
<210> 25
<211> 11
<212> DNA
<213> Homo sapiens

<400> 25
caacaataat a 11
<210> 26
<211> 11
<212> DNA
<213> Homo sapiens

<400> 26
accggcgccc g 11
<210> 27
<211> 11
<212> DNA
<213> Homo sapiens

<400> 27
ggaagctaag t 11
<210> 28
<211> 11
<212> DNA
<213> Homo sapiens

<400> 28
gcaatttaac c 11
<210> 29
<211> 11
<212> DNA
<213> Homo sapiens

<400> 29
gataactaca t 11
<210> 30
<211> 11
<212> DNA

<p><213> Homo sapiens</p> <p><400> 30 tatgaggta a</p> <p><210> 31 <211> 11 <212> DNA <213> Homo sapiens</p> <p><400> 31 ccacggatt c</p> <p><210> 32 <211> 11 <212> DNA <213> Homo sapiens</p> <p><400> 32 tttacaaaga g</p> <p><210> 33 <211> 11 <212> DNA <213> Homo sapiens</p> <p><400> 33 cccagtaaga t</p> <p><210> 34 <211> 11 <212> DNA <213> Homo sapiens</p> <p><400> 34 acaaaggcatt t</p> <p><210> 35 <211> 11 <212> DNA <213> Homo sapiens</p> <p><400> 35 gcctgtccct c</p> <p><210> 36 <211> 11 <212> DNA <213> Homo sapiens</p> <p><400> 36 tactttataa.g</p> <p><210> 37 <211> 11 <212> DNA <213> Homo sapiens</p> <p><400> 37 tgtttaatac a</p>	<p>11</p>
--	---

<210> 38
<211> 11
<212> DNA
<213> Homo sapiens

<400> 38
gtccctgcct t 11

<210> 39
<211> 11
<212> DNA
<213> Homo sapiens

<400> 39
gagccatcat a 11

<210> 40
<211> 11
<212> DNA
<213> Homo sapiens

<400> 40
ggccctacag t 11

<210> 41
<211> 11
<212> DNA
<213> Homo sapiens

<400> 41
gctaaccct g 11

<210> 42
<211> 11
<212> DNA
<213> Homo sapiens

<400> 42
atcacacagc t 11

<210> 43
<211> 11
<212> DNA
<213> Homo sapiens

<400> 43
acaagtactg t 11

<210> 44
<211> 11
<212> DNA
<213> Homo sapiens

<400> 44
tcaccgtgga c 11

<210> 45
<211> 11
<212> DNA
<213> Homo sapiens

<400> 45
acattccaaag t 11

<210> 46
<211> 11
<212> DNA
<213> Homo sapiens

<400> 46
gagcctggat a 11

<210> 47
<211> 11
<212> DNA
<213> Homo sapiens

<400> 47
ggcactcctg t 11

<210> 48
<211> 11
<212> DNA
<213> Homo sapiens

<400> 48
tcacagcccc c 11

<210> 49
<211> 11
<212> DNA
<213> Homo sapiens

<400> 49
tgccaggtgc a 11

<210> 50
<211> 11
<212> DNA
<213> Homo sapiens

<400> 50
tgggaaacct g 11

<210> 51
<211> 11
<212> DNA
<213> Homo sapiens

<400> 51
tttcatccac t 11

<210> 52
<211> 11
<212> DNA
<213> Homo sapiens

<400> 52
aacaggggcc a 11

<210> 53
<211> 11

<212> DNA
<213> Homo sapiens

<400> 53
actgaaagaa g 11

<210> 54
<211> 11
<212> DNA
<213> Homo sapiens

<400> 54
accgttctgt a 11

<210> 55
<211> 11
<212> DNA
<213> Homo sapiens

<400> 55
atactataat t 11

<210> 56
<211> 11
<212> DNA
<213> Homo sapiens

<400> 56
tttgtataga a 11

<210> 57
<211> 11
<212> DNA
<213> Homo sapiens

<400> 57
gtaatgacag a 11

<210> 58
<211> 11
<212> DNA
<213> Homo sapiens

<400> 58
aataggggaa a 11

<210> 59
<211> 11
<212> DNA
<213> Homo sapiens

<400> 59
gtgctacttc t 11

<210> 60
<211> 11
<212> DNA
<213> Homo sapiens

<400> 60
ccggccccctc c 11

<210> 61
<211> 11
<212> DNA
<213> Homo sapiens

<400> 61
ttgaatttgt t 11

<210> 62
<211> 11
<212> DNA
<213> Homo sapiens

<400> 62
cgagagtgtg a 11

<210> 63
<211> 11
<212> DNA
<213> Homo sapiens

<400> 63
ccctgttcag c 11

<210> 64
<211> 11
<212> DNA
<213> Homo sapiens

<400> 64
cagatggagg c 11

<210> 65
<211> 11
<212> DNA
<213> Homo sapiens

<400> 65
aggctcctgg c 11

<210> 66
<211> 11
<212> DNA
<213> Homo sapiens

<400> 66
tctgcttcta g 11

<210> 67
<211> 11
<212> DNA
<213> Homo sapiens

<400> 67
ggcttaggat g 11

<210> 68
<211> 11
<212> DNA
<213> Homo sapiens

<400> 68
ggttgttgcg g 11
<210> 69
<211> 11
<212> DNA
<213> Homo sapiens

<400> 69
acaagtagcc a 11
<210> 70
<211> 11
<212> DNA
<213> Homo sapiens

<400> 70
cttccttga g 11
<210> 71
<211> 11
<212> DNA
<213> Homo sapiens

<400> 71
gctaataatg t 11
<210> 72
<211> 11
<212> DNA
<213> Homo sapiens

<400> 72
tgtgctttt t 11
<210> 73
<211> 11
<212> DNA
<213> Homo sapiens

<400> 73
catcacggat c 11
<210> 74
<211> 11
<212> DNA
<213> Homo sapiens

<400> 74
gcagcagcag c 11
<210> 75
<211> 11
<212> DNA
<213> Homo sapiens

<400> 75
tgactgtatt a 11
<210> 76

<211> 11
<212> DNA
<213> Homo sapiens

<400> 76
gaatgctttt g 11

<210> 77
<211> 11
<212> DNA
<213> Homo sapiens

<400> 77
gttagttctgg a 11

<210> 78
<211> 11
<212> DNA
<213> Homo sapiens

<400> 78
tccccctctct c 11

<210> 79
<211> 11
<212> DNA
<213> Homo sapiens

<400> 79
gggcagtgcc t 11

<210> 80
<211> 11
<212> DNA
<213> Homo sapiens

<400> 80
aaatatgtgt t 11

<210> 81
<211> 11
<212> DNA
<213> Homo sapiens

<400> 81
gtcattttct a 11

<210> 82
<211> 11
<212> DNA
<213> Homo sapiens

<400> 82
ctctccaaac c 11

<210> 83
<211> 11
<212> DNA
<213> Homo sapiens

<400> 83

11
ttaatgtgta a
<210> 84
<211> 11
<212> DNA
<213> Homo sapiens

<400> 84
tcaagcaatc a
<210> 85
<211> 11
<212> DNA
<213> Homo sapiens

<400> 85
gaagacactt g
<210> 86
<211> 11
<212> DNA
<213> Homo sapiens

<400> 86
gggttagggtg a
<210> 87
<211> 11
<212> DNA
<213> Homo sapiens

<400> 87
tggaacagtg a
<210> 88
<211> 11
<212> DNA
<213> Homo sapiens

<400> 88
gagttggctac c
<210> 89
<211> 11
<212> DNA
<213> Homo sapiens

<400> 89
gtcagggtcc c
<210> 90
<211> 11
<212> DNA
<213> Homo sapiens

<400> 90
gtcagtcact t
<210> 91
<211> 11
<212> DNA

<213> Homo sapiens	
<400> 91	
agcagagaca a	11
<210> 92	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 92	
agcgatggag a	11
<210> 93	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 93	
cgtggggtgt a	11
<210> 94	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 94	
ggggctgccc a	11
<210> 95	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 95	
gatctccgtg t	11
<210> 96	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 96	
catttttatac t	11
<210> 97	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 97	
ctttctttga g	11
<210> 98	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 98	
tattaactct c	11

<210> 99
<211> 11
<212> DNA
<213> Homo sapiens

<400> 99
caggagaccc c 11

<210> 100
<211> 11
<212> DNA
<213> Homo sapiens

<400> 100
ggaaatgtca a 11

<210> 101
<211> 11
<212> DNA
<213> Homo sapiens

<400> 101
cctggttcag t 11

<210> 102
<211> 11
<212> DNA
<213> Homo sapiens

<400> 102
ttttaagaa c 11

<210> 103
<211> 11
<212> DNA
<213> Homo sapiens

<400> 103
tttggtttc c 11

<210> 104
<211> 11
<212> DNA
<213> Homo sapiens

<400> 104
attttgtatg a 11

<210> 105
<211> 11
<212> DNA
<213> Homo sapiens

<400> 105
acttttagatg g 11

<210> 106
<211> 11
<212> DNA
<213> Homo sapiens

<400> 106
gagtgagacc c 11
<210> 107
<211> 11
<212> DNA
<213> Homo sapiens

<400> 107
gtacacacac c 11
<210> 108
<211> 11
<212> DNA
<213> Homo sapiens

<400> 108
ccacagggga t 11
<210> 109
<211> 11
<212> DNA
<213> Homo sapiens

<400> 109
ttaaaagtca c 11
<210> 110
<211> 11
<212> DNA
<213> Homo sapiens

<400> 110
acagactgtt a 11
<210> 111
<211> 11
<212> DNA
<213> Homo sapiens

<400> 111
ccactgcaac c 11
<210> 112
<211> 11
<212> DNA
<213> Homo sapiens

<400> 112
ctataggaga c 11
<210> 113
<211> 11
<212> DNA
<213> Homo sapiens

<400> 113
gttcccacaga a 11
<210> 114
<211> 11

<212> DNA
<213> Homo sapiens

<400> 114
taccacacctcc c 11

<210> 115
<211> 11
<212> DNA
<213> Homo sapiens

<400> 115
gccctttctc t 11

<210> 116
<211> 11
<212> DNA
<213> Homo sapiens

<400> 116
ttaaaatagca c 11

<210> 117
<211> 11
<212> DNA
<213> Homo sapiens

<400> 117
agacatactg a 11

<210> 118
<211> 11
<212> DNA
<213> Homo sapiens

<400> 118
tccccccagga g 11

<210> 119
<211> 11
<212> DNA
<213> Homo sapiens

<400> 119
agcccaaagt g 11

<210> 120
<211> 11
<212> DNA
<213> Homo sapiens

<400> 120
actaccataa c 11

<210> 121
<211> 11
<212> DNA
<213> Homo sapiens

<400> 121
tacaaaatcggt t 11

<210> 122		
<211> 11		
<212> DNA		
<213> Homo sapiens		
<400> 122		
ttgggtgaaa a	11	
<210> 123		
<211> 11		
<212> DNA		
<213> Homo sapiens		
<400> 123		
cattatccaa a	11	
<210> 124		
<211> 11		
<212> DNA		
<213> Homo sapiens		
<400> 124		
agaaaaccacg g	11	
<210> 125		
<211> 11		
<212> DNA		
<213> Homo sapiens		
<400> 125		
accaaaaacca c	11	
<210> 126		
<211> 10		
<212> DNA		
<213> Homo sapiens		
<400> 126		
tgaaataaac	10	
<210> 127		
<211> 10		
<212> DNA		
<213> Homo sapiens		
<400> 127		
tttggtttcc	10	
<210> 128		
<211> 11		
<212> DNA		
<213> Homo sapiens		
<400> 128		
gtggagacgg a	11	
<210> 129		
<211> 11		
<212> DNA		
<213> Homo sapiens		

<400> 129
tttgttgtt a 11
<210> 130
<211> 11
<212> DNA
<213> Homo sapiens

<400> 130
ttatgttaa t 11
<210> 131
<211> 11
<212> DNA
<213> Homo sapiens

<400> 131
tggaaatgac c 11
<210> 132
<211> 11
<212> DNA
<213> Homo sapiens

<400> 132
tgccacacag t 11
<210> 133
<211> 11
<212> DNA
<213> Homo sapiens

<400> 133
gatgaggaga c 11
<210> 134
<211> 11
<212> DNA
<213> Homo sapiens

<400> 134
atcaaagggtt t 11
<210> 135
<211> 11
<212> DNA
<213> Homo sapiens

<400> 135
agtcacatag t 11
<210> 136
<211> 11
<212> DNA
<213> Homo sapiens

<400> 136
ttcggttggt c 11
<210> 137

```

<211> 11
<212> DNA
<213> Homo sapiens

<400> 137
ccccacacgg g 11

<210> 138
<211> 11
<212> DNA
<213> Homo sapiens

<400> 138
ggcttgcctt t 11

<210> 139
<211> 11
<212> DNA
<213> Homo sapiens

<400> 139
atcccttccc g 11

<210> 140
<211> 11
<212> DNA
<213> Homo sapiens

<400> 140
tctcacgtct c 11

<210> 141
<211> 11
<212> DNA
<213> Homo sapiens

<400> 141
ctagcgaaaa a 11

<210> 142
<211> 11
<212> DNA
<213> Homo sapiens

<400> 142
gtggctgacg c 11

<210> 143
<211> 11
<212> DNA
<213> Homo sapiens

<400> 143
ctcttaaaaa a 11

<210> 144
<211> 11
<212> DNA
<213> Homo sapiens

<400> 144

```

tgggaagagg g	11
<210> 145	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 145	
gtttaaggat g	11
<210> 146	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 146	
ctttgttttg c	11
<210> 147	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 147	
attgccaatc t	11
<210> 148	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 148	
tgttgaaaaa a	11
<210> 149	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 149	
acaaaaaaggc c	11
<210> 150	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 150	
aagatgcaca c	11
<210> 151	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 151	
gtagaggaaa a	11
<210> 152	
<211> 11	
<212> DNA	

<213> Homo sapiens	
<400> 152	
ttgttcaagg g	11
<210> 153	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 153	
ctcttcaaaa a	11
<210> 154	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 154	
tattaaaata g	11
<210> 155	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 155	
gaatttcacca g	11
<210> 156	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 156	
aaggagaact g	11
<210> 157	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 157	
aatatctgac t	11
<210> 158	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 158	
tcagtgacca g	11
<210> 159	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 159	
gcaaagtgcc c	11

<210> 160
<211> 11
<212> DNA
<213> Homo sapiens

<400> 160
taaatacttg t 11

<210> 161
<211> 11
<212> DNA
<213> Homo sapiens

<400> 161
gtcactaatt t 11

<210> 162
<211> 11
<212> DNA
<213> Homo sapiens

<400> 162
ataaacctgca g 11

<210> 163
<211> 11
<212> DNA
<213> Homo sapiens

<400> 163
tgcatctgtg c 11

<210> 164
<211> 11
<212> DNA
<213> Homo sapiens

<400> 164
taaaggcaca g 11

<210> 165
<211> 11
<212> DNA
<213> Homo sapiens

<400> 165
gaccgcggct t 11

<210> 166
<211> 11
<212> DNA
<213> Homo sapiens

<400> 166
actccggtgt g 11

<210> 167
<211> 11
<212> DNA
<213> Homo sapiens

<400> 167	
cttctcacct a	11
<210> 168	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 168	
tcgtgcttg t	11
<210> 169	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 169	
gagcagtgc g	11
<210> 170	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 170	
ctctaaaaaa a	11
<210> 171	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 171	
gaaacccggt a	11
<210> 172	
<211> 11	
<212> DNA	
<213> Homo sapiens	
<400> 172	
aacacagtgc c	11
<210> 173	
<211> 2565	
<212> DNA	
<213> Homo sapiens	
<400> 173	
tcgcgatgct gctgcgcctg ttgctggcct gggcgccgc agggcccaca ctgggcagg accacctgggc tgctgagccc cgtgcgcct gcggcccccag cagctgctac gctctttcc cacggcgccg caccttcctg gaggctggc gggctgtccg cgagctgggg ggcgactgg ccacttcctcg gaccccccag gaggccccagc gtgtggacag cctgggtgggt gcgggcccag ccagccggct gctgtggatc gggtgcagc ggcagggccg gcaatgccag ctgcagcgcc cactgcgcgg cttcacgtgg accacagggg accaggacac ggctttcacc aactggccc agccagcctc tggaggcccc tgcccgcccc agcgctgtgt ggccctggag gcaagtggcg agcaccgctg gctggagggc tcgtgcacgc tggctgtcga cggctacctg tgccagtttg gcttcgaggg cgcctggccg ggcgtgcaag atgaggccgg ccaggccggc ccagccgtgt ataccacgccc cttccacactg gtctccacag agtttgagtg gctgcccttc ggctctgtgg ccgcgtgc gttccaggtt ggcagggggag cctctctgct ctgcgtgaag cagcctgagg gagggtgtggg ctggtcacgg gctggccccc tgtgcctggg gactggctgc agccctgaca	60 120 180 240 300 360 420 480 540 600 660 720

acgggggctg cgaacacgaa tgtgtggagg aggtggatgg tcacgtgtcc tgccgctgca	780
ctgaggcctt ccggctggca gcagacgggc gcagttgcga ggaccctgt gcccaggc	840
cgtcgagca gcagtgttag cccgggtggc cacaaggcta cagtcgcac tgtcgcctgg	900
gtttccggcc agcggaggat gatccgcacc gctgtgtgga cacagatgag tgccagatgg	960
ccggtgtgtg ccagcagatg tigtcaact acgttggtggtt ctgcagtgat tatttagcg	1020
agggacatga gctggaggct gatggcatca gctgcagccc tgccaggggcc atgggtgcc	1080
aggctccca ggacctcgga gatgagttgc tggatgacgg ggaggatgag gaagatgaag	1140
acgaggcctg gaaggccttc aacggtggt gacggagat gcctggatc ctgtggatgg	1200
agcctacgca gcccgcgtgac tttgcctgg cctatacgacc gagctccca gaggacagag	1260
agccacagat accctacccg gagcccacct ggccacccccc gctcagtgc cccagggtcc	1320
cctaccactc ctcaagtgc tccgtcaccc ggcctgtgtt ggtctctgc acgcataccca	1380
caactgccttc tgcccaccag cctcctgtga tccctgcccc acacccagat ttgtcccg	1440
accaccatg ccccgatgc gcaacggact atccagatgc gcctctgc taccacccg	1500
gtattctctc tgtctctcat tcagcacagc ctccgtccca ccagccccat atgatctcaa	1560
ccaaatatcc ggagctcttc cctgcctcc agtccccat gttccagac accgggtcg	1620
ctggcaccctt gaccaccaat cattgcctg gaatccccat taaccatgccc cctctgg	1680
ccaccctcgg tgcccagctt cccctcaag cccagatgc ccttgcctc agaaccagg	1740
ccaccctcgg tcccattatc ccaactgc ccccccctctt gaccaccacc tccaggtccc	1800
ctgtgtctcc tgcccattaa atctctgtgc ctgcgtccac ccagccccca gcccctccca	1860
ccctcctgc ctctcagagc cccactaacc agacctcacc catcagccct acacatcccc	1920
attccaaagc ccccaaaatc ccaaggaaatg atggccccatg tcccaagttt gcccgtggc	1980
tgccttcacc agctcccaaca gcagccccaa cagccctggg ggagctggg tttggccagc	2040
acagccagag gatgaccgg tggctgtgg tggactctc ggtgcaacg tttgtcttt	2100
tggtgttctt gcttgcactg ggcatcgatg actgcacccg ctgtggccccc catgcaccca	2160
acaaggcgcat cactgactgc tatcgctggg tcatccatgc tggagcaag agccaaacag	2220
aaccatgc ccccgaggc agcctcacag gggtgcagac ctgcagaacc agcgtgttat	2280
gggggtgcaga ccccccctcat ggatgtggg ggcgtggaca catggccggg gctgcacccag	2340
ggaccatgg gggctgccc gctggacaga tggcttcctg ctcccccaggg ccagccaggg	2400
tcctctctca accactagac ttggctctca ggaactctgc ttctggccc agcgtcg	2460
accaaggata caccaaagcc cttaagacct cagggggcgg gtgctgggtt cttctccaaat	2520
aatgggggtg tcaaccttaa aaaaaaaaaaaaaaaa aaaaaaaa	2565

<210> 174
 <211> 2832
 <212> DNA
 <213> Homo sapiens

<400> 174	
atgcctgctt ctctcgctt gttgcagccc cgagccatga tgaagacttt gtccagcggg	60
aactgcacgc tcagtgcc cgccaaaaac tcataccgca tgggtgtgtt ggggtgcctct	120
cggtggca agagctccat cgtgtctcg ttcctcaatg gccccttgc ggaccagtac	180
acacccacca tcgaggactt ccaccgtaaat gtataacaaca tccgcggcga catgtaccag	240
ctcgacatcc tggataccctc tggcaaccac ccctcccccg ccatgcgcag gctgtccatc	300
ctcacagggg atgtcttcat cctgtgttcc agcctggata accgggagtc cttcgatgag	360
gtcaagcgc ttcagaagca gatcctggag gtcaagtctt gcctgaagaa caagaccaag	420
gaggcggcgg agctgcccatt ggtcatctgt ggcaacaaga acgaccacgg cgagctgtgc	480
cgccagggtc ccaccacccg gcccggctg ctgggtgtcc ggcacggagaa ctgcgcctac	540
ttcgagggtt cggccaagaa gaacaccaac gtggacgaga tttctacgt gctcttcagc	600
atggccaaggc tccccacacca gatgagcccc gcccgtcacc gcaagatctc cgtcgatc	660
ggtgacgcct tccaccccaat gccccttcgc atgcgcgcgc tcaaggagat ggacgcctat	720
ggcatggctt cggcccttcgc cggccggccc agcgtcaaca gtgacccatca gtacatcaag	780
gccaagggtcc ttccggaaat ccaggccctgt gagagggaca agtgcacccat ccagtggcg	840
aggatgctg gggcggggct tggccagtgcc tttcaggagat gtggcccccag atgcccactg	900
tgcgcacatcc cccaccgagg cccggcgcg agtcttgc acagaccta ggcacccagac	960
tggaggcccc cggggcgctgg cctccgcaca ttgcgtgtcc ttctcacacg tttctgtgat	1020
ccgcctgtcc acagctccat ggtgtttca ttcctctctgt gggaggacac atctctgcag	1080
cctcaagatg taggcagagaa ctcaagttac accttccctc cctgggggtt gaagaaatgt	1140
tgtatgccaga ggggtgagga ttgcgtgcgc atatggagcc ttctggaca agcctcagga	1200
tgaaaaggac acagaaggcc agatgagaaaa ggtctccctc ctccctggcat aacacccagc	1260
ttgggttggg tggcagctgg gagaacttctt ctccctggcc tgcaactttt acgtctgggt	1320
tcagctgcctt ctgcacccccc tcccacccccc agcacacacaca caagttggcc cccagctgc	1380

cctgacattt	agccagtgg	ctctgtgtct	gaaggggcgc	tggccacacc	tccttagacca	1440
cgcaccac	ttagaccacg	cccacccct	gaccgcgttc	ctcagccctc	tctccttaggt	1500
ccctccccc	gacagtgtg	cttgggtgt	gttgcagctg	tttcgtgtc	atgtatagt	1560
gtagaatgg	aaatcatgt	actgtaaaag	cctagtgtact	ccctccttg	ccaggccctc	1620
acccagttca	gatccacgg	etccacccgg	gacgccttc	tcctctgtc	ccaaacaggg	1680
tttccgtggc	ctgtttgcag	ctagacattt	acctccgcca	tttagctcca	cggtttacag	1740
acaattgcac	aagcgtggg	tggcaggcc	aggactgtt	tttttaatg	ctccccatttc	1800
acagaggata	ccaccgagac	tcggagggga	cacatgtggc	accaggcccc	acctttgtcc	1860
cctagcaaat	tcagggtaca	gttccaccta	gaaccaggt	gcctctact	gtgctcggtc	1920
ctcaagcatt	tattaagcac	ctactgggt	ctgggttccac	tgtgtcttag	gaaaccaaga	1980
gggtccccag	tcctggcctc	tgcccggcc	tgctgcccc	ccacccctctg	cacacacagc	2040
ggtggggagg	cggggaggag	cagtggac	ccagaactga	gcctggagg	gatccgacag	2100
aaaagctcg	ggcggtctt	ctcttgtgc	ccgggatgg	gctatgtgg	gtaccacca	2160
gtactcaggc	atgggtgggt	ttgaacccat	aaaccaaagg	cccttgcac	cagctctaa	2220
caagtatattt	ttgttatttt	atctctctaa	acatatttga	gttttagggc	cctaaggAAC	2280
cttagtgtatc	ttcttattgg	tcttctgtag	gttcagagag	ggtaagtaac	ttccctccagg	2340
tcacacagca	agtctgtgg	tggcagaagc	aagctagcgc	tggcattca	gtacatacca	2400
cgatgtgctc	cctctcttgc	tgcttggccc	ctggggcctt	cagggtttt	ggacatcttg	2460
tcctcaaccc	tctccctaga	tcagtctgt	agggtccctg	tagatattgt	gtacaccatg	2520
cccatgtata	tacaagtaca	cacagatgt	cacacagatg	tacacatgt	ccagccccag	2580
ctctgcatac	ctgcacccctc	accccagct	tggccctgc	ctgcgtctgt	gctcaagca	2640
gcagctccaa	ccctgcctct	gtccccttc	ccacccactg	cctgagcctt	ctgagcagac	2700
caggtaacctt	ggctgcaccc	gtgtgtggcc	cgctctcacc	caggcacagc	cccgccacca	2760
tggatctccg	tgtacactat	caataaaaat	gggtttgtta	aaaaaaaaa	aaaaaaaaaa	2820
aaaaaaaaaa	aa					2832

<210> 175
<211> 4640
<212> DNA
<213> Homo sapiens

<400> 175						
gccccccgcag	cctgagccag	ggcccccctc	ctcgtcagga	ccggggcagc	aagcaggccc	60
ggggcagggtc	cgggcacca	ccatgcgagg	cgagctctgg	ctctgggtgc	tggtgctcag	120
ggaggctgcc	cgggcgctga	gccccccagcc	cgagccagg	cacatgtagg	gcccaggctc	180
tggatgggct	gccaaaggga	ccgtgcgggg	ctggAACCGG	agagccccgg	agagccctgg	240
gcatgtgtca	gagccggaca	ggacccagct	gagccaggac	ctgggtgggg	gcaccctggc	300
catggacacg	ctgcccagata	acaggaccag	gttggtggag	gacaaccaca	gctattatgt	360
gtcccgcttc	tatggccca	gcgagcccca	cagccggaa	ctgtgggtag	atgtggccga	420
ggccaaccgg	agccaagtga	agatccacac	aatactctcc	aacacccacc	ggcaggcttc	480
gagagtggc	ttgtccttt	attttccctt	ctacggcat	cctctgcggc	agatcaccat	540
agcaacttgg	ggcttcatct	tcatgggg	cgtgatccat	cgatgtctca	cagctactca	600
gtatgtggcg	ccctctatgg	ccaaacttcaa	ccctggctac	tccgacaact	ccacagttgt	660
ttactttgc	aatgggacag	tctttgtgt	tcagtggac	cacgtttatc	tccaaggctg	720
ggaagacaag	ggcagttca	ccttccaggg	agctctgcac	catgacggcc	gcattgtctt	780
tgcctataaa	gagatccca	tgtctgtccc	ggaaatcagc	tcctccca	atcctgtcaa	840
aacccggcta	tcggatgcct	tcatgattct	caatccatcc	ccggatgtgc	cagaatctcg	900
gcgaaggagc	atctttgaat	accaccgc	agagctggac	cccagcaagg	tcaccaggat	960
gtcgccctgt	gagttccatcc	cattgcgcac	ctgcctgcag	cataggagct	tgacgcctg	1020
catgtcctca	gacctgcac	tcaactgcag	ctgggtccat	gtctccca	gatgtccag	1080
tggcttgac	cgctatcgcc	aggagtggg	ttggactatg	ggctgtgcac	aggaggcaga	1140
ggggcaggat	gtgcgaggac	ttccagggat	gaggaccacg	acttcagct	ccctgtcac	1200
ttccttcagc	cccttatgtat	gagacccatc	cactaccc	tcctccctct	tcatgcacag	1260
cctcaccaca	gaagatgaca	ccaaatggaa	tccctatgca	ggaggagacg	gccttcagaa	1320
caacctgtcc	cccaagacaa	aggcactcc	tgtcaccc	ggcaccatcg	tgggcacatgt	1380
gctggcagtc	ctccctgtgg	cgcccacat	cctggctgg	attacatca	atggccaccc	1440
cacatccat	gctgcgtct	tcttcatcga	gcgttagacat	caccactggc	cagccatgaa	1500
gtttcgcagc	caccctgacc	attttccatc	tgccggaggt	gaggccctcg	gccatgagaa	1560
ggagggcttc	atggaggctg	agcagtgt	agaacacca	gttccccc	tgaagactt	1620
gaggccacag	aaaagacat	taaagcaaag	aagagaatg	actttctgt	gcctctccca	1680
gcatgcctcg	ggctgagat	agatgggt	ttatggctcc	agagctgt	ttcgcttcgt	1740

<210> 176
<211> 5540
<212> DNA
<213> *Homo sapiens*

<400> 176

aattgcttcc	ggggagttgc	gaggggagcga	gggggaataa	aggaccggcg	aggaaggggcc	60
cgcggatggc	gcgtccccgt	gggtcggtgc	gagttcgcgg	agcgtggaa	ggagcggacc	120
ctgctctccc	cgggctgcgg	gccatggcca	cggcggagcg	gagagccctc	ggcatcggct	180
tccagtggct	ctctttggcc	actctggtgc	tcatctgcgc	cgggcaaggg	ggacgcaggg	240
aggatgggggg	tccagcctgc	tacggccggat	ttgacacctgta	cttcattttg	gacaatatcg	300

gaagtgtgct gcaccactgg aatgaaatct attactttgt ggaacagttg gtcacaaaat	360
tcatcagccc acagttgaga atgtcctta ttgtttctc caccggagga acaacctaa	420
tgaaactgac agaagacaga gaacaaatcc gtcaaggct agaagaactc cagaaagtgc	480
tgccaggagg agacacttac atgcatgaag gatttgaag ggccagttag cagattatt	540
atgaaaacag acaagggtac aggacagcca ggtcatcat tgcttact gatggagaa	600
tccatgaaga tctcttttc tattcagaga gggaggctaa taggtctga gatcttgg	660
caatttta ctgtgttggt gtgaaagatt tcaatgagac acagctggcc cggattgcgg	720
acagtaagga tcatgtgtt cccgtaatg acggcttca ggctctgaa ggcataatcc	780
actcaatttt gaagaagtcc tgcatcgaaa ttctagcagc tgaaccatcc accatatgt	840
caggagagtc atttcaagg tgcgtgagag gaaacggctt cgcacatgcc cgcaacgtgg	900
acagggctt ctgcagcttc aagatcaatg actcggtcac actcaatgag aagcccttt	960
ctgtgtgaa tacttattta ctgtgtccag cgcctatctt aaaagaagtt ggcataagaa	1020
ctgcactcca ggtcagcatg aacgatggcc tctctttat ctccagttct gtcataatca	1080
ccaccacaca ctgttctgac gttccatcc tggccatcgcc cctgtgtatc ctgttccctgc	1140
tcctagccct ggcttcctc tgggtttct ggccccctcg ctgcactgtg attatcaagg	1200
aggtccctcc accccctgcc gaggagatg aggaagaaga tggatgttgc tgcctaaga	1260
aaaagtggcc aacggtagac gccttattt atgggtggag aggcgttgg ggcattaaaa	1320
gaatggaggt tcgttgggg gaaaaggctt ccacagaaga aggtgtcaag ttggaaaagg	1380
caaagaatgc aagagtcaag atgcggagc aggaatatga attccctgag ccgcgaaatc	1440
tcaacaacaa tatgcgtcgg ctttcttccc cccggaaatg gtactctcca atcaaggaa	1500
aactcgatgc ttgtgggtc ctactgagga aaggatatga tgcgtgttct gtgtgcgtc	1560
cacaggcagg agacacgggg cgctgcatca acttcaccag ggtcaagaac aaccagccag	1620
ccaagtaccc actcaacaac gcctaccaca cttctcgcc gcctctgcc cccatctaca	1680
ctccccccacc ttctgcgcctc cactgcctc cccggcccc cagccccctt accccctcca	1740
tcccgtcccc accctccacc ctccccctc ctccccccagc tccacctccc aacagggcac	1800
ctcctccctc cggccctctt ccaaggccctt ctgtcttagag cccaaagtcc ctgtctgg	1860
ctcttcaga aacttcagga gatgttagaa caagtcttc cagttagaga agaggagtgg	1920
tgataaaagcc cactgaccc cacacattct aaaaatttgt tggcaatgcc agtataccaa	1980
caatcatgat cagctgaaag aaacagatatt tttaaatttc cagaaaacaa atgatgaggc	2040
aactacagtc agatttatacg ccagccatct atcacctcta gaaggttcca gagacagtga	2100
aactgcaaga tgctctcaac aggattatgt ctcatggaga ccagtaagaa aatcatttt	2160
ctgaaggtga aatgcagatg tggataagaa atacattgtt ggtttctaa aatgctgcct	2220
tcctgcctct actccaccc catccctgga ctttggaccc ttggcttagg agcctaaggaa	2280
ccttcacccc tgtgcaccac ccaagaaaga gggaaaactt gcctacaact ttggaaatgc	2340
tggggccctt ggtgtgttggaa gaaactcaac atcagacggg tatcagaag gatgttctc	2400
tgggatttgc aggtacataa aaaatgtatg gcatctttc ttgcaattt cttccagtt	2460
ccaagtggaa aggggagcag gtgttactg atggaaaagg tatgttgc tttgtatgt	2520
taagtggaaat cagttgtgtg caatagacag gggcgatattc atgggagcat cagccagtt	2580
ctaaaaccca caggccatca gcagctagag gtggctggc ttggccagac atggacccta	2640
aatcaacaga caatggcatt gtcgaagagc aacctgtttaa tgaatcatgt taaaatcaa	2700
ggtttggctt cagtttaaat cacttgaggt atgaaggat tcccttttc cagagataaa	2760
cataagttga tctcccaaa ataccatcat taggacatat cacacaatat cactagttt	2820
ttttgttgc ttgttttttgc tttttttctt tggttaaaggcc atgcaccaca gacttctgg	2880
cagagctgag agacaatgtt cctgacatcaa taaggatctt tgattaaccc ccataaggca	2940
tgtgtgtgtc tacaaaatata cttctcttgc gcttttcgac atagaacccctc agctgttaac	3000
caagggggaa tacatcgat ctgcacacaa gaaatgtctt gcctggaaatt tccaccatgc	3060
ctaggactca ccccatattt ccaggctttt ctggatctgt ttaatcaata agccctataa	3120
tcacttgcta aacactgggc ttcatcaccc agggataaaa acagagatca ttgtcttgg	3180
cctcctgcat cgcctattt aaaaattatct ctctctctag ctttccacaa atcctaaaat	3240
tcctgtcccc agccacccaa attctcgat cttttctgaa acaaggcaga atataaaaata	3300
aatatacatt tagtggctt ggctatggtc tccaaagatc cttaaaaat acatcaagcc	3360
agcttcattt actcaacttta cttagaacag agatataagg gcctggatg catttatttt	3420
atcaataccca atttttgcgg ccatggcaga cattgctaat caatcacagc actatttct	3480
attaagccca ctgatattttt cacaatccctt cttcaattac aattccaaag agccgcccact	3540
caacagtcag atgaacccaa cagtcagatg agagaaatga accctacttg ctatcttat	3600
cttagaaaagc aaaaacaac aggatgttcc agggagaatg gggaaagccag ggggcataaa	3660
aggtacagtc agggggaaaat agatcttaggc agatgtgcctt agtcaggac cacgggcgt	3720
gaatctgcag tgccaaacacc aaactgacac atctccaggt gtacctccaa ccctagccct	3780
ctccccacaggc tgccataaac agatctccc agccttctca gagagctaaa accagaaatt	3840
tccagactca tggaaagcaac ccccccaggctt ctcccccaacc ctgcccattt gtctaaat	3900
tagaacacta ggcttcttctt ttcattgttgc tccctataag cagggccag aatatctcag	3960

ccacacctgca	tgacattgct	ggaccctga	aaaccattcc	ataggagaat	gggttccccca	4020
ggctcacagt	gtagagacat	tgagcccatc	acaactgttt	tgactgctgg	cagtctaaaa	4080
cagtcacccc	acccatggc	actgcccgt	gattcccgcg	gccattcaga	aggtaagcc	4140
gagatgtga	cgttgctgag	caacgagatg	gtgagcatca	gtgcaaatac	accattcagc	4200
acatcagtca	tatggccagt	gcagttacaa	gatgttgttt	cggcaaaagca	tttggatgga	4260
atagggaaact	gcaaatagtat	gatgattttg	aaaaggctca	gcaggatttg	ttcttaaacc	4320
gactcagtgt	gtcatccccg	gttatttaga	attacagttt	agaaggagaa	acttctataaa	4380
gactgtatga	acaagggtat	atcttcatag	tggcttatta	caggcaggaa	aatgttttaa	4440
ctggtttaca	aaatccatca	atacttgtt	cattccctgt	aaaaggcagg	agacatgtga	4500
ttatgatcag	gaaactgcac	aaaattattt	tttcagccc	ccgtgttatt	gtccctttga	4560
actgtttttt	ttttattaaa	gccaaatttg	tgttgtatat	attcgtattc	catgtgttag	4620
atggaaagcat	ttccttatcca	gtgtgataaa	aaaagaacagt	tgttagtaat	tattataaaag	4680
ccgatgatat	ttcatggcag	gttattttac	caagctgtgc	ttgttggttt	ttcccatgac	4740
tgtattgctt	ttataaatgt	acaaatagtt	actgaaatga	cgagaccctt	gttgcacag	4800
cattaataag	aaccttgata	agaaccatat	tctgttgaca	gccagctcac	agtttcttgc	4860
ctgaagcttg	gtgcaccctc	cagtggagaca	caagatctct	cttttaccaa	agttgagaac	4920
agagctggtg	gattaattaa	tagtctcga	tatctggcca	tgggtaacct	cattgttaact	4980
atcatcagaa	tgggcagaga	tgatctgaa	gtgtcacaata	cactaaagtc	caaacactat	5040
gtcagatggg	ggtaaaatcc	attaaagaac	agaaaaaaaaat	aattataaga	tgataagcaa	5100
atgtttcagc	ccaatgtcaa	cccagttaaa	aaaaaaaaatta	atgctgtgt	aatgggttga	5160
attagttgc	aaactatata	aagacatatg	cagttaaaaag	tctgttaatg	cacatcctgt	5220
ggaaatggag	tgttctaacc	aattgcctt	tcttggttatc	tgagctctcc	tatattatca	5280
tactcagata	acccaaattaa	aagaattaga	atatgatttt	taatacactt	aacattaaac	5340
tcttctaact	ttcttcttgc	tgtgataatt	cagaagatag	ttatggatct	tcaatgcctc	5400
tgagtcatgt	ttataaaaaaa	tcagttatca	ctataccatg	ctataggaga	ctggggaaaaaa	5460
cctgtacaat	gacaaccctg	gaagttgctt	tttttaaaaaa	aataataaaat	ttcttaaattc	5520
aaaaaaaaaaa	aaaaaaaaaaa					5540

<210> 177
<211> 757
<212> PRT
<213> *Homo sapiens*

<400> 177
 Met Leu Leu Arg Leu Leu Leu Ala Trp Ala Ala Ala Gly Pro Thr Leu
 1 5 10 15
 Gly Gln Asp Pro Trp Ala Ala Glu Pro Arg Ala Ala Cys Gly Pro Ser
 20 25 30
 Ser Cys Tyr Ala Leu Phe Pro Arg Arg Arg Thr Phe Leu Glu Ala Try
 35 40 45
 Arg Ala Cys Arg Glu Leu Gly Gly Asp Leu Ala Thr Pro Arg Thr Pro
 50 55 60
 Glu Glu Ala Gln Arg Val Asp Ser Leu Val Gly Ala Gly Pro Ala Ser
 65 70 75 80
 Arg Leu Leu Trp Ile Gly Leu Gln Arg Gln Ala Arg Gln Cys Gln Leu
 85 90 95
 Gln Arg Pro Leu Arg Gly Phe Thr Trp Thr Thr Gly Asp Gln Asp Thr
 100 105 110
 Ala Phe Thr Asn Trp Ala Gln Pro Ala Ser Gly Gly Pro Cys Pro Ala
 115 120 125
 Gln Arg Cys Val Ala Leu Glu Ala Ser Gly Glu His Arg Trp Leu Glu
 130 135 140
 Gly Ser Cys Thr Leu Ala Val Asp Gly Tyr Leu Cys Gln Phe Gly Phe
 145 150 155 160
 Glu Gly Ala Cys Pro Ala Leu Gln Asp Glu Ala Gly Gln Ala Gly Pro
 165 170 175
 Ala Val Tyr Thr Thr Pro Phe His Leu Val Ser Thr Glu Phe Glu Trp
 180 185 190
 Leu Pro Phe Gly Ser Val Ala Ala Val Gln Cys Gln Ala Gly Arg Gly

195	200	205
Ala Ser Leu Leu Cys Val Lys Gln Pro Glu Gly Gly Val Gly Trp Ser		
210	215	220
Arg Ala Gly Pro Leu Cys Leu Gly Thr Gly Cys Ser Pro Asp Asn Gly		
225	230	235
Gly Cys Glu His Glu Cys Val Glu Val Asp Gly His Val Ser Cys		
245	250	255
Arg Cys Thr Glu Gly Phe Arg Leu Ala Ala Asp Gly Arg Ser Cys Glu		
260	265	270
Asp Pro Cys Ala Gln Ala Pro Cys Glu Gln Gln Cys Glu Pro Gly Gly		
275	280	285
Pro Gln Gly Tyr Ser Cys His Cys Arg Leu Gly Phe Arg Pro Ala Glu		
290	295	300
Asp Asp Pro His Arg Cys Val Asp Thr Asp Glu Cys Gln Ile Ala Gly		
305	310	315
Val Cys Gln Gln Met Cys Val Asn Tyr Val Gly Gly Phe Glu Cys Tyr		
325	330	335
Cys Ser Glu Gly His Glu Leu Glu Ala Asp Gly Ile Ser Cys Ser Pro		
340	345	350
Ala Gly Ala Met Gly Ala Gln Ala Ser Gln Asp Leu Gly Asp Glu Leu		
355	360	365
Leu Asp Asp Gly Glu Asp Glu Glu Asp Glu Asp Glu Ala Trp Lys Ala		
370	375	380
Phe Asn Gly Gly Trp Thr Glu Met Pro Gly Ile Leu Trp Met Glu Pro		
385	390	395
Thr Gln Pro Pro Asp Phe Ala Leu Ala Tyr Arg Pro Ser Phe Pro Glu		
405	410	415
Asp Arg Glu Pro Gln Ile Pro Tyr Pro Glu Pro Thr Trp Pro Pro Pro		
420	425	430
Leu Ser Ala Pro Arg Val Pro Tyr His Ser Ser Val Leu Ser Val Thr		
435	440	445
Arg Pro Val Val Val Ser Ala Thr His Pro Thr Leu Pro Ser Ala His		
450	455	460
Gln Pro Pro Val Ile Pro Ala Thr His Pro Ala Leu Ser Arg Asp His		
465	470	475
Gln Ile Pro Val Ile Ala Ala Asn Tyr Pro Asp Leu Pro Ser Ala Tyr		
485	490	495
Gln Pro Gly Ile Leu Ser Val Ser His Ser Ala Gln Pro Pro Ala His		
500	505	510
Gln Pro Pro Met Ile Ser Thr Lys Tyr Pro Glu Leu Phe Pro Ala His		
515	520	525
Gln Ser Pro Met Phe Pro Asp Thr Arg Val Ala Gly Thr Gln Thr Thr		
530	535	540
Thr His Leu Pro Gly Ile Pro Pro Asn His Ala Pro Leu Val Thr Thr		
545	550	555
Leu Gly Ala Gln Leu Pro Pro Gln Ala Pro Asp Ala Leu Val Leu Arg		
565	570	575
Thr Gln Ala Thr Gln Leu Pro Ile Ile Pro Thr Ala Gln Pro Ser Leu		
580	585	590
Thr Thr Thr Ser Arg Ser Pro Val Ser Pro Ala His Gln Ile Ser Val		
595	600	605
Pro Ala Ala Thr Gln Pro Ala Ala Leu Pro Thr Leu Leu Pro Ser Gln		
610	615	620
Ser Pro Thr Asn Gln Thr Ser Pro Ile Ser Pro Thr His Pro His Ser		
625	630	635
Lys Ala Pro Gln Ile Pro Arg Glu Asp Gly Pro Ser Pro Lys Leu Ala		
645	650	655
Leu Trp Leu Pro Ser Pro Ala Pro Thr Ala Ala Pro Thr Ala Leu Gly		
660	665	670
Glu Ala Gly Leu Ala Glu His Ser Gln Arg Asp Asp Arg Trp Leu Leu		
675	680	685

Val Ala Leu Leu Val Pro Thr Cys Val Phe Leu Val Val Leu Leu Ala
 690 695 700
 Leu Gly Ile Val Tyr Cys Thr Arg Cys Gly Pro His Ala Pro Asn Lys
 705 710 715 720
 Arg Ile Thr Asp Cys Tyr Arg Trp Val Ile His Ala Gly Ser Lys Ser
 725 730 735
 Pro Thr Glu Pro Met Pro Pro Arg Gly Ser Leu Thr Gly Val Gln Thr
 740 745 750
 Cys Arg Thr Ser Val
 755

<210> 178
 <211> 278
 <212> PRT
 <213> Homo sapiens

<400> 178
 Met Pro Ala Ser Leu Ala Leu Leu Gln Pro Arg Ala Met Met Lys Thr
 1 5 10 15
 Leu Ser Ser Gly Asn Cys Thr Leu Ser Val Pro Ala Lys Asn Ser Tyr
 20 25 30
 Arg Met Val Val Leu Gly Ala Ser Arg Val Gly Lys Ser Ser Ile Val
 35 40 45
 Ser Arg Phe Leu Asn Gly Arg Phe Glu Asp Gln Tyr Thr Pro Thr Ile
 50 55 60
 Glu Asp Phe His Arg Lys Val Tyr Asn Ile Arg Gly Asp Met Tyr Gln
 65 70 75 80
 Leu Asp Ile Leu Asp Thr Ser Gly Asn His Pro Phe Pro Ala Met Arg
 85 90 95
 Arg Leu Ser Ile Leu Thr Gly Asp Val Phe Ile Leu Val Phe Ser Leu
 100 105 110
 Asp Asn Arg Glu Ser Phe Asp Glu Val Lys Arg Leu Gln Lys Gln Ile
 115 120 125
 Leu Glu Val Lys Ser Cys Leu Lys Asn Lys Thr Lys Glu Ala Ala Glu
 130 135 140
 Leu Pro Met Val Ile Cys Gly Asn Lys Asn Asp His Gly Glu Leu Cys
 145 150 155 160
 Arg Gln Val Pro Thr Thr Glu Ala Glu Leu Leu Val Ser Gly Asp Glu
 165 170 175
 Asn Cys Ala Tyr Phe Glu Val Ser Ala Lys Lys Asn Thr Asn Val Asp
 180 185 190
 Glu Met Phe Tyr Val Leu Phe Ser Met Ala Lys Leu Pro His Glu Met
 195 200 205
 Ser Pro Ala Leu His Arg Lys Ile Ser Val Gln Tyr Gly Asp Ala Phe
 210 215 220
 His Pro Arg Pro Phe Cys Met Arg Arg Val Lys Glu Met Asp Ala Tyr
 225 230 235 240
 Gly Met Val Ser Pro Phe Ala Arg Arg Pro Ser Val Asn Ser Asp Leu
 245 250 255
 Lys Tyr Ile Lys Ala Lys Val Leu Arg Glu Gly Gln Ala Arg Glu Arg
 260 265 270
 Asp Lys Cys Thr Ile Gln
 275

<210> 179
 <211> 1002
 <212> PRT
 <213> Homo sapiens

<400> 179
 Met Arg Gly Glu Leu Trp Leu Leu Val Leu Val Leu Arg Glu Ala Ala

1	5	10	15
Arg Ala Leu Ser Pro Gln Pro Gly		Ala Gly His Asp Glu	Gly Pro Gly
20	25	30	
Ser Gly Trp Ala Ala Lys Gly	Thr Val Arg Gly Trp	Asn Arg Arg Ala	
35	40	45	
Arg Glu Ser Pro Gly His Val	Ser Glu Pro Asp Arg	Thr Gln Leu Ser	
50	55	60	
Gln Asp Leu Gly Gly	Thr Leu Ala Met Asp Thr	Leu Pro Asp Asn	
65	70	75	80
Arg Thr Arg Val Val Glu Asp Asn His	Ser Tyr Tyr Val	Ser Arg Leu	
85	90	95	
Tyr Gly Pro Ser Glu Pro His	Ser Arg Glu Leu Trp Val	Asp Val Ala	
100	105	110	
Glu Ala Asn Arg Ser Gln Val	Lys Ile His Thr Ile	Leu Ser Asn Thr	
115	120	125	
His Arg Gln Ala Ser Arg Val	Val Leu Ser Phe Asp	Phe Pro Phe Tyr	
130	135	140	
Gly His Pro Leu Arg Gln	Ile Thr Ile Ala Thr	Gly Phe Ile Phe	
145	150	155	160
Met Gly Asp Val Ile His Arg Met	Leu Thr Ala Thr	Gln Tyr Val Ala	
165	170	175	
Pro Leu Met Ala Asn Phe Asn	Pro Gly Tyr Ser Asp Asn	Ser Thr Val	
180	185	190	
Val Tyr Phe Asp Asn Gly	Thr Val Phe Val Val	Gln Trp Asp His Val	
195	200	205	
Tyr Leu Gln Gly Trp Glu Asp	Lys Gly Ser Phe Thr	Phe Gln Ala Ala	
210	215	220	
Leu His His Asp Gly Arg Ile Val	Phe Ala Tyr Lys Glu Ile Pro	Met	
225	230	235	240
Ser Val Pro Glu Ile Ser Ser	Ser Gln His Pro Val	Lys Thr Gly Leu	
245	250	255	
Ser Asp Ala Phe Met Ile Leu Asn	Pro Ser Pro Asp Val	Pro Glu Ser	
260	265	270	
Arg Arg Arg Ser Ile Phe Glu	Tyr His Arg Ile Glu	Leu Asp Pro Ser	
275	280	285	
Lys Val Thr Ser Met Ser Ala	Val Glu Phe Thr Pro	Leu Pro Thr Cys	
290	295	300	
Leu Gln His Arg Ser Cys Asp	Ala Cys Met Ser Ser	Asp Leu Thr Phe	
305	310	315	320
Asn Cys Ser Trp Cys His Val	Leu Gln Arg Cys Ser Ser	Gly Phe Asp	
325	330	335	
Arg Tyr Arg Gln Glu Trp Asp	Gly Thr Met Gly Cys Ala	Gln Glu Ala	
340	345	350	
Glu Gly Gln Asp Val Arg Gly	Leu Pro Gly Met Arg	Thr Thr Ser	
355	360	365	
Ala Ser Pro Asp Thr Ser Phe	Ser Pro Tyr Asp Gly	Asp Leu Thr Thr	
370	375	380	
Thr Ser Ser Ser Leu Phe	Ile Asp Ser Leu Thr	Glu Asp Asp Thr	
385	390	395	400
Lys Leu Asn Pro Tyr Ala Gly	Gly Asp Gly Leu Gln Asn Asn	Leu Ser	
405	410	415	
Pro Lys Thr Lys Gly Thr Pro	Val His Leu Gly Thr Ile	Val Gly Ile	
420	425	430	
Val Leu Ala Val Leu Leu Val	Ala Ile Ile Leu Ala	Gly Ile Tyr	
435	440	445	
Ile Asn Gly His Pro Thr Ser	Asn Ala Ala Leu Phe	Phe Ile Glu Arg	
450	455	460	
Arg Pro His His Trp Pro Ala	Met Lys Phe Arg Ser	His Pro Asp His	
465	470	475	480
Ser Thr Tyr Ala Glu Val Glu	Pro Ser Gly His Glu	Lys Glu Gly Phe	
485	490	495	

Met Glu Ala Glu Gln Cys Met Arg Gly Glu Leu Trp Leu Leu Val Leu
 500 505 510
 Val Leu Arg Glu Ala Ala Arg Ala Leu Ser Pro Gln Pro Gly Ala Gly
 515 520 525
 His Asp Glu Gly Pro Gly Ser Gly Trp Ala Ala Lys Gly Thr Val Arg
 530 535 540
 Gly Trp Asn Arg Arg Ala Arg Glu Ser Pro Gly His Val Ser Glu Pro
 545 550 555 560
 Asp Arg Thr Gln Leu Ser Gln Asp Leu Gly Gly Thr Leu Ala Met
 565 570 575
 Asp Thr Leu Pro Asp Asn Arg Thr Arg Val Val Glu Asp Asn His Ser
 580 585 590
 Tyr Tyr Val Ser Arg Leu Tyr Gly Pro Ser Glu Pro His Ser Arg Glu
 595 600 605
 Leu Trp Val Asp Val Ala Glu Ala Asn Arg Ser Gln Val Lys Ile His
 610 615 620
 Thr Ile Leu Ser Asn Thr His Arg Gln Ala Ser Arg Val Val Leu Ser
 625 630 635 640
 Phe Asp Phe Pro Phe Tyr Gly His Pro Leu Arg Gln Ile Thr Ile Ala
 645 650 655
 Thr Gly Gly Phe Ile Phe Met Gly Asp Val Ile His Arg Met Leu Thr
 660 665 670
 Ala Thr Gln Tyr Val Ala Pro Leu Met Ala Asn Phe Asn Pro Gly Tyr
 675 680 685
 Ser Asp Asn Ser Thr Val Val Tyr Phe Asp Asn Gly Thr Val Phe Val
 690 695 700
 Val Gln Trp Asp His Val Tyr Leu Gln Gly Trp Glu Asp Lys Gly Ser
 705 710 715 720
 Phe Thr Phe Gln Ala Ala Leu His His Asp Gly Arg Ile Val Phe Ala
 725 730 735
 Tyr Lys Glu Ile Pro Met Ser Val Pro Glu Ile Ser Ser Ser Gln His
 740 745 750
 Pro Val Lys Thr Gly Leu Ser Asp Ala Phe Met Ile Leu Asn Pro Ser
 755 760 765
 Pro Asp Val Pro Glu Ser Arg Arg Arg Ser Ile Phe Glu Tyr His Arg
 770 775 780
 Ile Glu Leu Asp Pro Ser Lys Val Thr Ser Met Ser Ala Val Glu Phe
 785 790 795 800
 Thr Pro Leu Pro Thr Cys Leu Gln His Arg Ser Cys Asp Ala Cys Met
 805 810 815
 Ser Ser Asp Leu Thr Phe Asn Cys Ser Trp Cys His Val Leu Gln Arg
 820 825 830
 Cys Ser Ser Gly Phe Asp Arg Tyr Arg Gln Glu Trp Met Asp Tyr Gly
 835 840 845
 Cys Ala Gln Glu Ala Glu Gly Arg Met Cys Glu Asp Phe Gln Asp Glu
 850 855 860
 Asp His Asp Ser Ala Ser Pro Asp Thr Ser Phe Ser Pro Tyr Asp Gly
 865 870 875 880
 Asp Leu Thr Thr Ser Ser Leu Phe Ile Asp Ser Leu Thr Thr
 885 890 895
 Glu Asp Asp Thr Lys Leu Asn Pro Tyr Ala Gly Gly Asp Gly Leu Gln
 900 905 910
 Asn Asn Leu Ser Pro Lys Thr Lys Gly Thr Pro Val His Leu Gly Thr
 915 920 925
 Ile Val Gly Ile Val Leu Ala Val Leu Leu Val Ala Ala Ile Ile Leu
 930 935 940
 Ala Gly Ile Tyr Ile Asn Gly His Pro Thr Ser Asn Ala Ala Leu Phe
 945 950 955 960
 Phe Ile Glu Arg Arg Pro His His Trp Pro Ala Met Lys Phe Arg Ser
 965 970 975
 His Pro Asp His Ser Thr Tyr Ala Glu Val Glu Pro Ser Gly His Glu

980	985	990
Lys Glu Gly Phe Met Glu Ala Glu Gln Cys		
995	1000	

<210> 180
<211> 5680
<212> DNA
<213> Homo sapiens

<400> 180

ggcgatggg ttgatggcg ccggggacg caggatgcgg gggcgcccc cgccctgtc	60
gctccgctg ctggcgtggc tcctgctgt cctggccccc gaggctggg gcgcggccgg	120
ctgccccta tccatccgca gctcaagtg ctggggggag cggcccaagg ggctgagcgg	180
cggcgccct ggcccggtc ggccgggggt ggtgtcagc ggccgggacc tcccgagcc	240
tcccgagccc gccttctgc ctaacggcac ctgttccctg ctctttagca ataacaagat	300
cacggggctc cgcaatggct cttctctggg actgtcaactg ctggagaagc tggacctgag	360
gaacaacatc atcagcacag tgccgggg cgccttcctg ggcctggggg agctgaagcg	420
tttagatctc tccaacaacc ggattggctg tctcacctcc gagaccttcc agggcctccc	480
caggcttctc cgactaaaca tatctggaaa catcttctcc agtctgcaac ctgggggtt	540
tgatgagctg ccagccctt aggttggaa cttggcacc gagttctga cctgtgactg	600
ccacctgccc tggctgctgc cttggggcca gaatcgctcc ctgcagctgt cggAACACAC	660
gctctgtctc tacccctggc cccctgcattc tcaggccctg ggcagccccc aggaggccca	720
gctctgtgc gagggggccc tggagctgca cacacaccac ctcatccctt ccctacgcca	780
agtgggttcc cagggggatc ggctgccctt ccagtgtctt gccagctacc tggcaacaga	840
cacccgcata cgctggtacc acaaccgagc ccctgtggag ggtgtatgagc aggccggcat	900
cctccggcc gagagccctc tccacgactg cacccatc accagtgagc tgacgctgtc	960
tcacatcgcc gtgtggccct caggcgatg ggagtgcacc gtgtccatgg ccaaggccaa	1020
cgccagcaag aagggtggaga tcgtggctg ggagacctt gcctccact gccccggccga	1080
gcgtgttccc aacaaccgcg gggacttcag gtggcccccga actctggctg gcatcacagc	1140
ctaccagtcc tgcctgcagt atcccttccatc ctcagtgcctt ctgggggggg gtggccccgg	1200
cacccgagcc tcccggccgt gtgaccgtgc cggccgctgg gagccagggg actactccca	1260
ctgtctctac accaacgaca tcaccagggt gctgtacacc ttcgtgctga tgcccatcaa	1320
tgcctccaat ggcgtgaccc tggctcacca gtcgcgcgtg tacacagccg aggccgctag	1380
cttttcagac atgatggatg tagtctatgt ggctcagatg atccagaaaat ttttgggta	1440
tgtcgaccag atcaaagagc tggtagaggt gatgggtggac atggccagca acctgatgt	1500
ggtgtggacgg cacctgtgt ggctggccca ggcgcaggac aaggcctgca gccgcacatcgt	1560
gggtggccctg gagcgcattt gggggccggc ctcagcccc catgcccgc acatctcagt	1620
aatgcgagg aacgtggcat tggaggccctt ctcatcaag cgcacagct acgtgggct	1680
gacctgcaca gccttccaga ggaggggaggg aggggtgcgg ggcacacggc caggaagccc	1740
tggccagaac ccccccaccc agcccgagcc cccagctgac cagcagctcc gcttccgt	1800
caccacccggg aggccccatg ttctctgtc gtccttccac atcaagaaca gctgtggccct	1860
ggccctccatc cagctggccc cgagtttccatc ctcatccctt cccggctgccc tggctcccc	1920
gggtggccca gactgcaccc tgcaactgtc ctgttccca aatggccccc ttttccacag	1980
ccacagcaac acctcccccctt ctggagctgc tggccctggc aagaggctg gcgtggccac	2040
ccccgtcata ttcgcaggaa ccagtggctg tggcggtggaa aacctgacag agccagtgc	2100
cgtttcgtc cggcactggg ctgaggaggc cgaacctgtg gccgttggg gtagccaga	2160
ggggcccccggg gaggctgggg gctggacctc ggagggtctc cagctccgtc ccagccagcc	2220
caatgtcagc gcccctgcact gccagcaattt gggcaatgtg gccgtgctca tggagctgag	2280
cgccttccc agggaggtgg gggccggccgg ggcagggtctg caccggctgg tataccccctg	2340
cacggcccttgc ctgctgtctt gtccttcgc caccatcatc acctacatcc tcaaccacag	2400
ctccatccgt gtgtccggaa aaggctggca catgtgtctg aacttgttct tccacatagc	2460
catgacccctt gctgtcttgc cggggggcat cacacttccacc aactaccaga tggctgcca	2520
ggcggtggcc atcaccctgc actacttccctt cctatccacg ctgtcttgg tggcggtgaa	2580
ggcgcgagtg ctccataagg agtcacactg gaggggacccc ctcggccaaag aaggggaccc	2640
cgctctgcctt actcccgatc ctatgtccg gttctattt atcgctggag ggattccact	2700
cattatctgt ggcattcacag ctgcgttcaa catccacaaac taccgggacc acagccccca	2760
ctgctggctg gtgtggctc caaggcttgg cgccttctac atccctgtgg ctttgattct	2820
gctcatcacc tggatctatt tcctgtgcgc cgggtacgc ttacggggtc ctctggcaca	2880
gaaccccaag gcccccaaca gcaggccctc cttggaggac ggggaggagc tgaggggttc	2940
caccaggctc agggccagcg gcccccttccat gatgtactca gttcccttc ttgctactgg	3000
gagcgcgcga gtggggacgc ccggggcccc gaggatggt gacagctctt attctccggg	3060

agtccagcta	ggggcgctgg	tgaccacgca	cttcctgtac	ttggccatgt	gggcctgccc	3120
ggctctggca	gtgtccccaggc	gctggctgcc	ccgggtgggt	tgcagctgt	tgtacggggt	3180
ggcagccctcc	gccctgggccc	tcttcgtctt	cactcaccac	tgtgcaggc	ggagggacgt	3240
gagagcctcg	tggcgccct	gctgcccccc	tgccctccccc	gccccccccc	atgccccccc	3300
ccggggcctg	cccgccggcc	cagaggacgg	ttccccgggt	ttcggggagg	ggccccccctc	3360
cctcaagtcc	tcccccaaggc	gcagcagcgg	ccatccgctg	gctctggccc	cctgcaact	3420
caccaacactg	cagctggccc	agagttaggt	gtgcgaggcg	ggggcggcgg	ccggcgggga	3480
aggagagccg	gagccggcgg	gcacccgggg	aaacctcgcc	caccggcacc	ccaacaact	3540
gcaccacggg	cgtggggcgc	acaagagccg	ggccaaaggga	caccggcggg	gggaggcctg	3600
cgccaagaac	cggctcaagg	ccctgcgggg	gggcgcggcg	ggggcgctgg	agctgctgtc	3660
cagcgagagc	ggtagtctgc	acaacagccc	caccgacagc	tacctggca	gcagccgcaa	3720
cagccccggc	gccccggctgc	agcttggagg	cgagcccatg	ctcacggcgt	ccgagggcag	3780
cgacaccaggc	gccccggccg	tttctggggc	gggccccggca	ggccagcggc	gcagcgccag	3840
ccgcgcagat	ctcaaggggcg	gcggcgcgt	ggagaaggag	agccatcgcc	gctcgtaacc	3900
gctcaacgc	gccccggctaa	acggccccc	caagggggggc	aagtacgacg	acgtcaccct	3960
gatggggcgc	gaggtggcca	gcggcggctg	catgaagacc	ggactctgga	agagcgaac	4020
taccgtctaa	gttggggcgg	gcaacggcggt	agacgggctg	gccacggcgc	tcgttcccc	4080
gctcctcggg	gccccggcaag	gtgtctccgt	agtcagcagg	ttggaggcag	aggagccat	4140
ggctggagga	agccccacagg	cgatgttcc	ccacttgccc	agagggcatc	cctctgggt	4200
agcgacagac	aatccccagaa	acacgcataa	tacatttccg	tccagcccg	ggcagtctga	4260
ctgtcggtgc	cctcccgagga	acggggaaagg	cctccgtctg	tgtgaaaagg	cacagcacat	4320
cccagggtca	ccctccccaa	gtactccac	ccgcctact	gtccatcgcc	cctcaactggg	4380
ggccatcagc	ctcaccagca	aagcagagat	gagagcgtgg	gaactgtgtt	ctttcctccc	4440
tgccctctac	tgatttcagc	ccagccctg	cctagatcct	aggtccctt	tcctcccgag	4500
tttggctggc	acgagagct	gcccagcaca	tgaaggcagg	gatgttaagt	cacaagggtc	4560
tgcttttcag	atccactatg	caagagggga	gggtggggcc	acgtgaaagg	cagctctaga	4620
catcaaccag	tcctggggga	ggggagtggg	aaccgggcac	aacttaggaac	aatgccacca	4680
ttccccacagg	agtggactt	aaaccagaca	gcagggttca	gaggtggcac	accgggacaa	4740
agctgaggcc	ctgcacactca	acagctgact	gccaggtgcc	tgtgggtgaa	ctgaggggag	4800
tagagggaga	gggcagggtgg	aactggggca	aatcttagtc	atgccttaaa	gctagtcctg	4860
taaacaatgg	tgccccggaa	agctgcagg	ggtgtttgga	gaagcagtt	cttttcagtt	4920
acaagaccca	tctccctagt	ctcagcctta	caacaccacg	ggactaagga	agagcacttc	4980
cttcctccg	taaggccaga	ggaagaacca	tcccaatcat	ttgatctcca	gctccacagt	5040
agagagaaac	ctacaaaatg	tcaaccaggc	ttcccgactc	ccaggagctc	aagccaagcc	5100
cagaggcagt	ggctgggggtc	cctgcaggc	atgagggggc	tatgccttta	ctccctttaa	5160
acaccagcac	ccgtcttttc	cccaacctaa	aaccaaccac	cagcattca	ctacaggacc	5220
aatggaaac	cgagggaaacc	ctgggtctt	ggaagaacaa	caggaaacca	aggctgtacc	5280
taggttccc	tcccagtctt	cacatcactc	ttggcctcatc	accaagggtg	cagaggacac	5340
aggggagggg	aaaaacccac	acacactcct	ttggatgggt	cctgttattt	atgcttgctg	5400
cacagacata	ttagaagaaa	aaaaaaaaagct	ttgttattt	ttccacata	tgctggctgc	5460
tgtttacaca	ccctgccaat	gccttagcac	ttggagagctt	tttgcataat	gctggggaaa	5520
ggggagggag	ggaatgaaag	tgccaaagaa	aacatgtttt	taagaactcg	ggttttat	5580
aatagaatgt	tttcttagcag	atgcctctt	ttttaatata	ttaaaat	gcaaaggcc	5640
tttagactaca	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa		5680

<210> 181
<211> 2157
<212> DNA
<213> Homo sapiens

<400> 181

ggcgccggca	tggcgagggtt	cccgaaaggcc	gacctggccg	ctgcaggagt	tatgttactt	60
tgccacttct	tcacggacca	gtttcgttc	gcccgtggga	aaccggaga	ccaaatcctt	120
gatggcagt	atggaggttac	tcagggcttc	cctcacacag	aggaggaggt	ggaagttgat	180
tcacacgcgt	acagccacag	gtggaaaaga	aacttggact	ttctcaaggc	ggtagacacg	240
aaccgagcaa	gcgtcgccca	agactctct	gagcccaaga	gcttcacaga	cctgtgtctg	300
gatgatgggc	aggacaataa	cactcagatc	gaggaggata	cagaccacaa	ttactatata	360
tctcgaatat	atggtccatc	tgattctgcc	agccgggatt	tatgggtgaa	catagaccaa	420
atggaaaaaa	ataaaagtgaa	gattcatgga	atattgtcca	atactcatcg	gcaagctgca	480

agagtgaatc	tgtccttcga	ttttccattt	tatggccact	tcctacgtga	aatcaactgtg	540
gcaaccgggg	gtttcatata	cactggagaa	gtcgtaatc	gaatgctaac	agccacacag	600
tacatagcac	ctttaatgc	aaatttcgtat	cccagtgtat	ccagaaattc	aactgtcaga	660
tatTTGATA	atggcacagc	acttgtggc	cagtggacc	atgtacatct	ccaggataat	720
tataacctgg	gaagcttcac	attccaggca	accctgccta	tggatggacg	aatcatctt	780
ggatACAAG	aaattcctgt	cttggtcaca	cagataagtt	caaccaatca	tccagtgaaa	840
gtcggactgt	ccgatgcatt	tgtcgttgc	cacaggatcc	aacaaattcc	caatgttcga	900
agaagaacaa	tttatgaata	ccaccgagta	gagctacaaa	tgtaaaaaat	taccaacatt	960
tcggctgtgg	agatgacccc	attacccaca	tgccctcagt	ttaacagatg	tggccctgt	1020
gtatcttc	agattggctt	caactgcagt	tggtagta	aacttcaag	atgttcoagt	1080
ggatttgatc	gtcatcgca	ggactgggt	gacagtggat	gccctgaaga	gtcaaaagag	1140
aagatgtgt	agaatacaga	accagtggaa	acttcttc	gaaccaccac	aaccatagga	1200
gCGACAACCA	cccagttcag	ggtcctaact	accaccagaa	gaggagtgc	ttctcagtt	1260
cccaccagcc	tccctacaga	agatgatacc	aagatagcac	tacatctaaa	agataatgga	1320
gcttctacag	atgacagtgc	agctgagaag	aaagggggaa	ccctccacgc	tggcctcatc	1380
gttggaatcc	tcatcttgc	ccttattgt	gccacagcca	ttttgtgac	agtctatatg	1440
tatcaccacc	caacatcagc	agccagcattc	ttctttattt	agagacgccc	aagcagatgg	1500
cctgcgtatg	agtttagaa	aggctctgga	catcctgcct	atgtgaaat	tgaaccagtt	1560
ggagagaaag	aaggctttat	tgtatcagag	cagtgcataa	atttcttagg	cagaacaaca	1620
ccagttactgg	tttacagggt	ttaagactaa	aattttgcct	atacctttaa	gacaaacaaa	1680
caaacacaca	cacaaacaag	ctctaagctg	ctgtagcctg	aagaagacaa	gatttctgga	1740
caagctcagc	ccagggaaaca	aagggttaaac	aaaaaaactaa	aacttataca	agataaccatt	1800
tacactgaac	atagaatcc	ctagtggat	gtcatctata	gttcaactcgg	aacatctccc	1860
gtggacttat	ctgaagtatg	acaagattat	aatgctttt	gcttaggtgc	agggttgcaa	1920
agggatcaga	aaaaaaaaat	cataataaaag	ctttagttca	tgagggatcg	acacctttgg	1980
ttcaaatgtt	ctctgatgtc	tcaaagataa	ctgttttcca	aaggctgaac	ccttcactc	2040
aaaagagcaa	tgtatgaatgt	ctcaagattg	ctaagaaaaa	cagcccatgc	aagagtgaga	2100
acaaaacacaa	aataagagat	tttctacatt	ttcaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2157

<210> 182

<211> 2535

<212> DNA

<213> Mus musculus

<400> 182

gtcgcgatgc	tgctgcgcct	gctgctggcc	tgggtggccg	cggtgccccgc	actggccag	60
gtcccttgg	cgccggagcc	tcgagccgc	tgcggccca	gcagctgcta	cgcgctttt	120
ccccggcgcc	gcacattctt	ggaagcttgg	cgggcgtgcc	gcaatttggg	ggcaacctg	180
gccacaccgc	ggaccccaaga	ggaggcccag	cgtgtggaca	gcctgggtgg	gtcggcccg	240
gccaacgggc	tgctatggat	tgggttgcag	cggcaggcta	ggcaatgcca	gcccgcgc	300
ccactgcggg	gcttcatatg	gaccacggga	gaccaggaca	ccgccttcac	caactggcc	360
cagccggcta	cggaggacc	ctgcccagcc	cagcgtgt	cagcccttga	ggccagcgga	420
gagcatcgct	ggctcgaagg	ctcgacaca	ctggctgtcg	atgcttacct	ctgcccattt	480
ggttttgggg	gtgcctgccc	tgccttgcgg	cttgagggtgg	gtcagggccgg	tcccgtgtc	540
tacaccacac	ccttcacatc	ggtttccagc	gagttcgaat	ggctccctt	tggctccgt	600
gcagctgtgc	agtgcacac	tggcaggggg	gttctctgc	tgtcgtgaa	acagcctca	660
ggtggcgtgg	gctggtccca	gactggcccg	ctgtgcctcag	ggactggctg	tggcctgac	720
aatgggggtt	gcgaacatga	gtgtgtggaa	gaggtggacg	gtgtgtgtc	ctgcccgtgc	780
agtgaaggct	tccgtctagc	agcagatggg	cacagtgtg	aagacccctg	tgcccaggcc	840
ccctgtgagc	agcagtgtga	acctgggggg	ccacaaggct	atagctgcca	ctgtgcctt	900
ggctccggc	cagctgagga	tgttccacac	cgctgcgtgg	acacggatga	gtgccagatt	960
gctgggtgt	gccagcagat	gtgtgtcaac	tatgttggtg	gctttgatgt	ttactgcagc	1020
gagggtcacg	agcttggggc	agatgggtatc	agctgttagcc	ctgcaggagc	catgggtgcc	1080
caggcttccc	aggatcttag	agatgagttg	ctggatgtat	gagaagaagg	ggaggatgaa	1140
gaggagccct	ggggaggactt	tgtatggcacc	tggacagagg	aacaggggat	cctatggctg	1200
gcacccatcac	atccacatca	ctttggccct	ccctataaggc	ccaaacttccc	acaggatgga	1260
gagcctcaga	gattgcaccc	ggagcctacc	tggccacccc	cacttagtgc	ccccaggggc	1320
ccctaccact	cctcagttgt	gtctgccaca	cgccccatgg	tgtatcttc	cactcgaccc	1380
acactacattt	ctgcccacaa	gacctctgtt	atttcagcta	cacgcccacc	cctgagccct	1440
gtccacccac	ctgcccattgc	ccctgcccaca	cctccagctg	tgttctctga	gcaccagatc	1500
ccaaaatca	aggccaatta	tccagacctg	cttttggcc	acaaggctgg	gataacctcg	1560

gccactcacc cagcacggtc tcctccgtac cagccccca ttatctcaac caactatccc	1620
caagtttcc ctccccacca ggcccctatg tctccagata cccacactat cacttattg	1680
cctccagtcc cccctcacct tgatcctggg gataccactt ctaaaagccca tcaacacccct	1740
ttgctccag atgctccagg tatcagaacc caggccccc agcttctgt ctcagcttc	1800
cagccccctc ttccatccaa ctccaggctc tctgtccatg aaactcctgt gcctgctgcc	1860
aaccagcccc cagccctccc ttctctccc ctccccctc agaggccac taaccagacc	1920
tcatctatca gccctacaca ttccatccc agagccccctc tagtccaag ggaaggagtt	1980
cccagtccca aatcagtgcc acagctgcc tcgggtccct ccacagcagc tccaacagcc	2040
ctggcagagt caggcttgc aggccaaagg caaaggatg accgctggct gctggtgca	2100
ctccctgtgc caacatgtgt cttcttggtg gtgctgttg ccctggcat tttgtactgc	2160
actcgctgtg gctcccacgc acccaacaag cggatcacgg actgtatcg ctgggtcaca	2220
catgtggga acaagagctc aacagaaccc atgccccca gaggcagcct tacagggtta	2280
cagacctgtta gaaccagtgt gtgatgggt gcagatggcc ctttgtggta tagaagaaaa	2340
ggactgtctt tggacacatg gctgagacca caccaggac ttatggggc tgcccagctg	2400
acagaggagg ttctgttctt tgagccacgc atccatggca aaggacacac caggactcca	2460
ggacctcaag ggggtgggtgc tggatcttc tccaataaat ggggtgccaa cctcacccaa	2520
aaaaaaaaaaa aaaaaa	2535

<210> 183
<211> 5520
<212> DNA
<213> Mus musculus

<400> 183

gggcggccgg gactcccgct gagcactcct cccgcacgcc cgggtccctc cggccggcga	60
gccgtccggc ccctgcgctg taggtccccg cggggcgatg gttgatggg cgccggggga	120
cgcagatgc cgggtccctcc cgcgctttg ctgctgtgc cgctgtgcc ttgtcttc	180
ctcctggctc ctggactcgg ggtgcgcct ggctgccccg tccctatccg cgggtgcaag	240
tgctctgggg agcggcccaa gggactaagt ggccgcgc acaaccggc tcgaaggagg	300
gtgggtgtcg cgggtgggaa tctcccgaa cctccagatc cggccttgc gccaaacggc	360
accatcacct tgctcttgag caacaacaag attactggc tccgaatgg atccttctg	420
ggactgtccc tggggagaa gttggacctg aggagcaatg tcatcagcac tgtcagcct	480
ggagccttcc taggtctggg agagctaaaa cgcttagatc tctccaacaa tcggattggc	540
tgtctcacct ctgagacatt tcaagggtc cctagactc tcagactaaa catacttgc	600
aacatctact cttagtctgca acctgggtc ttgatgagc tgccagccct taagatttg	660
gactttggta ctgagttct gacctgtgac tgccgcctgc gctggctgt gccctggggc	720
cggaatcact ccctgcagct gtctgagcgc acactctgt cctaccagg tgccctgcac	780
gcccattggcc tggcggcct ccaggagtcc cagcttcgt gtgaaggggc cctggactg	840
cacaccact acctcatccc atcccttcgc caagtgggt tccagggtga cccctgc	900
ttccagtgtc cagccagcta cttggcaac gatacccgg tccactgtt ccacaatggg	960
gctccatgg agagcgtatc gcaggccggc atcgtccctg ctgaaaacct tatccatgt	1020
tgcacccatca taccaggta gctgaccctg ttcacatgg tttgtgtggc ctctggtaa	1080
tgggagtgct cctgtccac agtccaaggc aacaccaggc agaaggtga gatagtagtg	1140
ctggagaccc ctgccttcctc ctggcctgca gagggggtga ccaacaaccg tggggacttc	1200
aggtggccccc gaaaccttggc tggcatcacg gtttaccagg cctgtttaca gtacccttc	1260
acctctgtgc cttggatggg gggagccccc gtttaccgg cctcagcgc gtgtgaccga	1320
gctggccgct gggagccagg ggactactcg cactgtctgt acaccaatga catcaactcg	1380
gtgctctaca cttttgtgt gatccccatc aacgcctca atgcattgac gttggccac	1440
cagctgcgag tttataccgc agaggccgc agcttctcg acatgatgg cgtggcttat	1500
gtggctcaga tgatccagaa gttttgggt tacgttgacc agatcaaggc gttgggtggag	1560
gtgatgggtt acatggccag caacccatg ctgggtggatg agcacccctt gttggctggcc	1620
cagagagaag acaaaggctg cagttgcatt gtgggtggcc tggagcgaat cggaggagct	1680
gctcttagcc cccatgcca gcacatctt gtgaattcaa gaaatgtggc actggaggcc	1740
tacccatca agcctcacag ctacgtgggt ctgacttgca cggcttcca gaggaggag	1800
gttaggatgtt cgggtgcaca gccaaggcgc gtcggccagg atgccccatgg gggccgaa	1860
cccctagctg atcagcactg taggtccgc tgcaccactg ggaggcccaa catttctcg	1920
tcatcttc acatcaagaa tagctggcc ctggcctca tccagctgc cccagcctg	1980
ttctcaaccc ttccggctgc cctggctccc ccaggccctc cagattgcac cctgcaactg	2040
ctggcttca gaaatggccg tctttccgc agccacggca acaacacttc cctgcttgc	2100
gcagctgggc ctggcaagag gctgggtgt gcccacccag tcatatttgc aggaaccagt	2160
ggctgtgggtt tggaaacctt gacggagcccc gttggctgtgt cactgaggca ctggctgaa	2220

ggagctgacc	ccatggcagc	tttgttgaac	caggacgggc	ctggaggctg	gagttctgaa	2280
ggctgcaggc	tccgctacag	ccagcccaac	gtcagctccc	tgtactgcca	gcacttgggc	2340
aatgtggccg	tgcttatgga	gctgaatgca	tccccgggg	aggcaggagg	ctctggggct	2400
gggttgcata	ccgtcgta	cccctgcacg	gctttgctgc	tactctgtct	cttctccacc	2460
atcatcacgt	acatcctcaa	ccacagctcc	atccacgtgt	cccggaaagg	ttggcacatg	2520
ctgctgaacc	tttgtttcca	tatggccatg	acctctgtgt	tcttcgtggg	ggcgctcagc	2580
ctcacaact	acccaaatggt	ttgtcaagcg	gtgggcatca	ctctgcacta	ctcttcctt	2640
tcgtcaactgc	tctggatggg	ggtcaaggct	cgagtccctc	acaaggagct	tagttggagg	2700
gcacccccc	tggagaagg	ggaagcagct	ccgcctggtc	ctcgccccat	gtccggttc	2760
tacttgattg	ctggagggat	ccccctcata	atctggggca	tcaccgctgc	ggtcaacatc	2820
cacaactacc	gggaccacag	tccctattgt	tggctgggtgt	ggcgtccaag	ccttggtgcc	2880
ttctacatac	cggtggcggt	gattctgcct	atcacctgga	tctacttctt	gtgtgcaggg	2940
cttcacttac	ggagccatgt	ggccccaat	ccaaaggcagg	gtaacaggat	ctctctggag	3000
ccaggggaag	agctgagggg	ttccaccagg	ctcaggagta	gtggcgctct	cctgaatgac	3060
tctggtttctc	tttggctac	agttagcgca	ggagtagggg	cacctgcgcc	cccagaggat	3120
ggtgatggcg	tatattctcc	tggagttccag	ctgggggcgc	tgatgaccac	gcatttcctg	3180
tacctggcta	tgtgggctt	tggtgcctt	gccccgggtc	gccccgagtg	3240	
gtgtgttagct	gtctgtacgg	cgtggcagct	tcagcttctt	gtctgtttgt	cttcactcac	3300
cactgtgcca	gacgttagaga	tgtccgggt	tcttggcgcg	cctgctgccc	tcctgttctg	3360
ccctcgccct	cccatgtccc	agccccggcc	ctggcgactg	ctacagagga	tggatcccc	3420
gtgttggggg	agggaccagg	ctctctcaag	tcttcccaa	gtggcagcag	tggccgcgc	3480
ccgccccccc	cctgcaaact	caccaatctg	cagggtggcc	agagtcaagg	gtgcgaggca	3540
agcgtggccg	cccgcggaga	tggagagcca	gagcccacgg	gtcccctgtt	cagcctagct	3600
ccccggcacc	ataacaacct	gcatcatggg	cgccgagta	acaagagtcg	ggccaagggg	3660
caccgagccg	gagagactgg	tggtaagagc	cgctcaagg	cgttgcgcgc	ggcacgtcc	3720
ccagggagctc	ccgagctgtt	gtccagttag	agccggcagtt	tgcacaacag	cccgctctgac	3780
agctaccgg	gcagcagccg	caacagtcca	ggcgcacggc	ttccactcga	ggttgagccc	3840
atgcttacgc	cgtcgagggg	cagtgacaca	agcggcggc	caatcgctg	gacggggcgc	3900
cccgggcagc	gccgcagcgc	cagccgtgac	aacctcaagg	gcagcggcag	cgcgctggag	3960
agggagagca	agcggcgc	ctatccgctc	aacactacca	gtcttaacgg	tgcccccaaa	4020
gggggcaagt	atgaggatgc	cagttaact	ggtgcagagg	ccatagcgg	aggtccatg	4080
aagacttggcc	tctggaaaag	cgagaccacc	gtcttagtcc	agattttaga	tggcgggtc	4140
acgcgggctt	gtttactccc	aaatccctt	gggcgttca	agccgttac	tgatgtgtat	4200
gtaggtttaa	ggcggccatg	ctgatgctc	cctttagtcc	accatcatta	gttacccagg	4260
ctagggaaag	gggagggagg	cagatgctt	cccctactgt	ggactatccc	tcagcgttag	4320
cgacagacaa	tcccagacca	gttttgggtt	ccaaagtctt	ggtacccctc	caggttaggc	4380
taaaacatcc	atcggtccct	aggtaaccc	ataaaacttag	ttgaagagcc	cagccccagg	4440
aggctcagga	aatgagaggg	agaccgggg	actgggttct	ccacaccagg	ccggcaagggt	4500
atccctgtgac	tgccaagatc	ccaggccct	ctcccaagt	tggcttggga	aaccatccca	4560
gcaggtgagc	cagggggcgt	aacaggtgt	gccttccaga	ttaactatgc	aagggggatg	4620
gggttgggg	gggttagggc	gtgttgggg	cagcttaga	gatgagctt	tccttcagga	4680
ggcaggcagg	tggaaaagg	tgcatttagg	agacagaatc	cctaactatg	ggagtggtag	4740
acagttttc	cagcagagt	cacacaaac	cctgaacccc	cacacacgt	ggaagtgtata	4800
ctggccagcag	gtgccttaag	actcaagggg	agggagctga	tatgtggatc	tcacaaccta	4860
tacagtggc	tgcaagtggc	tccacttagc	tgtttaattt	taataccac	tgtctgttcc	4920
cagccctcca	actccgggg	actgagggg	aatgcctcca	tgaggctct	gtggcaaagc	4980
catgctaata	atctgacttc	taacctcagt	tagaaaccca	aatgcca	ccacccctca	5040
actcgctgaa	acccaaaccac	actctgaggc	agcgcctggg	tccaggctgc	tcaagagcc	5100
atgcttccag	ccccccat	cctcaactca	agatgcctt	taatacagaa	ctacatggaa	5160
gtagaggaac	ccttggc	tggaaatgt	caggatccc	agctctgatc	aagttagagg	5220
acagagcagg	gaagacgcca	tactcgctga	gatgggtccc	attattttag	cttgcgtc	5280
cagacactat	tagagaaaa	gctttgtatt	actctccac	gtgagctgt	gctgtttacc	5340
ctgccaatgc	cttagcactg	gagagcttt	tgcaatatgc	tggggaaagg	ggagggaggg	5400
gatgaagtgc	caaagaaaac	acattttaaa	agctctgggt	ttatacaata	gaatgtttc	5460
cacgcagatgc	ctctttgtt	taatatatta	aaatcttgca	aaaaaaaaaa	aaaaaaaaaa	5520

<210> 184
<211> 2833

<212> DNA
 <213> Mus musculus

<400> 184

cggggctgct	ccctctgcag	ccgcgcgcgc	cggcgcgcaag	acccggaggt	cgtccgcgcc	60
caccatgcga	gctcagctt	ggttgcgtca	gttgctgcata	ctccgcgggg	ccgcgcgcgc	120
gctcagtccc	gcaacaccccg	caggcacaaa	tgaaggtaaa	gactctgcata	ggactgccaa	180
gaggaccagg	caaggctgga	gtcgagacc	ccgagagagc	cccgcgcagg	tgttgaagcc	240
aggcaagacc	cagctaagcc	aggacttggg	tgggggctcc	ctggccatcg	acacacttcc	300
ggacaacagg	actcgggtgg	tggaggacaa	ccataactac	tacgtgtccc	gtgtctacgg	360
ccctggtag	aaacaaagcc	aggatctgtg	ggtggacctg	gctgtggcca	accggagtc	420
tgtgaagatc	cacaggatcc	tctcagttc	tcaccgacag	gcttcaagag	tggtcttgc	480
ctttgatttc	cctttctatg	ggcatcctct	gccccagatc	accatagcaa	ccggaggctt	540
catcttcatg	ggggacatgc	tccacccggat	gctcacagct	acgcagtatg	tggcacccct	600
gatggccaac	tcaaccccg	gctactctga	caactccacg	gttgcattact	ttgacaatgg	660
gaccgtttt	gtgggtca	gggatcatgt	ttacctccag	gaccgggagg	acaggggcag	720
cttcaccc	caggcggccc	tacaccgaga	tggccgcatt	gtctcggct	acaaagagat	780
ccccatggct	gtcctggata	tcagctctgc	ccagcaccc	gtcaaggcag	gcctgtccga	840
cgcttccatg	atttcaatt	catccccaga	ggtgcgcagag	tctcagagac	ggaccattt	900
cgaataccac	cgtgtggAAC	tggactccag	caagatcacc	accacccctgg	ccgtggagtt	960
caccccggtt	ccaacctgcc	tccagcatca	gagttgcgcac	acctgcgtgt	cctcgaatct	1020
aaccttcaac	tgcagcttgt	gccatgtcct	gcagagggtgt	tccagtgct	ttgaccgata	1080
ccgccaagaa	tggctgaccc	acggctgtgc	ccaggaggca	gaaggcaaga	catgcgagga	1140
cttccaggat	gataggccact	actcagccctc	ccctgcacagc	tccttcagcc	cctttaatgg	1200
cgactccact	accccttctt	ccctcttcat	tgacagccctc	accacacaaag	atgacaccaa	1260
gttgaatccc	tacgcagaag	gagacggcct	tccggaccac	tcatctccga	agtccaaaggg	1320
tcctcccg	cacctggca	ccatcggtgg	tatcggtt	gctgtactcc	tggtagccgc	1380
catcatctg	gctgggattt	acatcagtgg	ccaccctaatt	tccaatgtcg	cactcttctt	1440
catcgagcgg	agacctcacc	actggccagc	catgaagttc	cataaccacc	ccaaaccactc	1500
tacctacacc	gaggttagagc	cctccggca	cgagaaggaa	ggcttcgtgg	aggccgagca	1560
gtgctgagag	agcatcgggc	cagagacctg	gagatggcat	gaaagacaag	tcacagcaca	1620
gagaagtgtat	ttttttctt	ggcttcctcg	gagctggccc	tggccagga	agacaagaca	1680
acagcttgg	gtgccaacac	tacagttgg	tctgcacacc	ccatttaaag	ggggctcagt	1740
aatacaactg	cgaaggctcc	ttgggaaca	ctgaccta	gagttccctg	tttcaatggg	1800
aggaggctt	gtttgggtt	tctcagttgt	ctgcagctat	ggcggagccc	ctgcccactg	1860
gagacagcct	cctgtgttcc	tcctgcac	tgaagccac	actggccat	tgcattccgg	1920
ggtctataga	ttcaagagct	ggtcttgct	gctatggagt	cagtgcctt	ggctccaaac	1980
tttgggtt	agaaggctga	agaaggggat	ccctccctc	cgagagcgt	taaccctgag	2040
atgcgctaac	agagagaaaa	gtacccctgg	ggaaacttgc	tttttctggc	cttggtcctt	2100
tgcttcattt	tttttttgc	agaggccggg	gccaacatcc	gagactgt	gcctgcagct	2160
cattctgtac	cctgccttc	cctgccttc	agccctccacc	ctgcaagct	gtcttgcatt	2220
gctgccagta	atgagtgggg	cccttactgt	gccatgtgtc	tgggcctgc	attactcggt	2280
aacctgttct	gttatcaacg	gcagtagttt	ccttcaaaaga	ggggacaat	ttacctggct	2340
cctgttttaa	cttggctgac	cagactcgag	ttcttgcata	cattaaaaac	aactaggggg	2400
ccgggtgtgg	tggtgcac	actcaggagg	ctgagctctg	agatcaaggc	cagcctggc	2460
tacagagaga	gcctgtttt	aagaaaacaag	acaaaatgggg	ggctagaggt	ttccctgaga	2520
caccctgtcc	ttagcaaggg	gctccagtt	gatcccttgc	aaggcacgggt	gcccgcgaagg	2580
tagggcagag	aatctggta	tgggagggag	agaccttgac	ctgaaaagcg	gcctccatct	2640
ctccagctt	gcaaagagct	ttgggaaactg	ggagttgcac	ttcccacact	cagcctgggt	2700
ttaagggact	tctgtcccc	tggtggacca	ggacggcttc	taaaggacaa	tgaaaaccta	2760
gagctcacct	tcatccaaa	gaagcgtcat	cagcaaataa	ataaggtata	gcccctcaaaa	2820
aaaaaaaaaa	aaa					2833

<210> 185

<211> 2009

<212> DNA

<213> Mus musculus

<400> 185

gagagaggtc	gcggcagcgg	catggcaagg	ttccggaggg	ccgacctggc	cgcagcagga	60
gttatgttac	tttgcactt	tttaacagac	cggttccact	tcgcccacgg	ggagcctgga	120

caccatacca	atgattggat	ttatgaagtt	acaaacgcgtt	ttccttgaa	tgaagagggg	180
gtagaagtgg	actctcaagc	atacaaccac	aggtggaaaa	gaaatgtgg	cccttttaag	240
gcagtagaca	caaacagagc	cagcatgggc	caagccttc	cagagtccaa	agggttcaact	300
gacctgtac	tggatgacgg	acaggacaat	aacaccaga	tagaggagga	cacggatcac	360
aattactaca	tttctcgat	atatggtcca	gcggattctg	ccagccggga	tctgtgggtt	420
aacatagacc	aatatggaaaa	agacaaaatgt	aagattcacg	ggatacttcc	caacactcat	480
cgccaagctg	caagagtggaa	tctgtccttc	gatttccat	tttatggtca	ttttcttaat	540
gaagtcactg	tggcaactgg	gggtttcata	tatactggag	aagtgtaca	tcgaatgctc	600
acagctacac	agtatatacg	tcctttaatg	gcaaattttg	atcccagtgt	atccagaataat	660
tcaactgtca	gatattttga	taatggcaca	gcttctgtt	tccagtggga	ccatgtccac	720
ctgcaggata	attacaacct	gggaagcttc	acattccagg	ccacactcct	catggacggg	780
cgcacatcatct	ttggatacaa	agaaatccct	gtcttggtca	cacagataag	ttctaccaac	840
catccagtga	aagtccccgtt	gtctgatgca	tttgtcggt	tccacaggat	ccagcaataa	900
cccaattgttc	gaagaagaaac	aatttatgaa	tatcaccggag	tagaactaca	aatgtccaaa	960
attaccaaca	tctcagctgt	ggagatgact	ccacttccca	catgtctcca	gttcaatgg	1020
tgtggccctt	gtgtgtcctc	gcagattgg	ttcaactgca	gttgggtcgag	caaacttcaa	1080
agatgtccca	gtggatttga	tcgccccatcg	caggactggg	tggacagtgg	atgcccggaa	1140
gaggtacagt	caaaaagagaa	gatgtgttag	aagacagagc	cagagagac	gtctcaact	1200
accacgacct	cccacacac	caccatgcaa	ttcagggtcc	tgaccaccac	caggagagct	1260
gtgacatcgc	agatgcctac	caggctgcct	acagaagatg	acacgaagat	agccctacat	1320
ctcaaaagaca	gtggagcctc	cacagatgac	agtgcagctg	agaagaaaagg	aggaaccctc	1380
catgcaggcc	tcattttgtt	gatttcatc	tttgtccca	ttatagcagc	ggccattctg	1440
gtgacagtgt	atatgtatca	ccatccaaca	tcagcagcca	gcattttctt	cattgagaga	1500
cgcaccaagca	gatggccagc	aatgaagttt	cgaagagct	cagacacccc	tgcctatgca	1560
gaagttgaac	cagttggaga	gaaaagaaagg	tttattttat	cagacgatgt	ctaaaatttt	1620
aggacagagc	agcaccatgt	ctggcttaca	gttggtaaga	ctaaaacttt	gtttatgcat	1680
ttaagacaaa	cagacacaca	accacaacc	acacacaaaag	gagccctaaa	ctgctgtaga	1740
cagaagggcg	acgagatttc	tggacaagcc	cagcccgagga	acattgaaag	gaaaactcag	1800
acttgtacaa	gacaccatgt	acaatgatta	aagaattttcc	tagtggatg	acatccatgg	1860
ttcacaagga	acatctccgg	tggacttgc	aggagtgtga	cgagatgacg	atgctttgg	1920
tttaggtgca	gggttgc当地	gaaatcaagg	aaaaaaaaata	tgacaataaa	taaagcttta	1980
gttcacaagg	aaaaaaaaaa	aaaaaaaaaa				2009

<210> 186

<211> 5220

<212> DNA

<213> Mus musculus

<400> 186

cggaactgct	tcgactgcaa	agcttcaagc	gcagcctggg	agcggcctgg	tggccctatc	60
ccggcagctc	cacacagcag	aacccctgg	gtccctgaaa	ctcgaaaccc	gggctcagaa	120
ccagcggaaa	ccaaagcgaa	atccttgaac	ttctctgaa	aatttctcc	gggcgtttgc	180
tgagagccgg	gggacctgac	cgagccag	gccgcgtatg	gcgcgcctt	gtatgtcacac	240
ggacgcgc	gaggccagcg	ctccgcgtc	agcatggacc	gcccggggcg	cctgggtcg	300
ggcctgcggg	gactctgcgt	ggctgcactc	gtgctcggt	gcccggaca	ccccggccgc	360
cgcgaggatg	ggggaccagg	ttgtctacgg	ggattcgacc	tctacttcat	cctggacaag	420
tcaggaagtgt	tgctgcacca	ctggaaatgaa	atctactact	tcgtggagca	gttggctcat	480
agattcatca	ccccacagct	aaggatgtcc	ttcatttgc	tctctactcg	agggacaact	540
ttaatgaaac	taactgagga	cagggaaacag	atccgacaag	gcctagaaga	gttcccgaaa	600
gttctgcag	gaggagacac	ttacatgca	gaaggattcg	agagggccag	tgagcagat	660
tactatgaga	acagtcaagg	atacaggacg	gcgcgcgtca	tcatcgctt	gacggatggg	720
gagctgcacg	aggacatctt	tttctactca	gagagggagg	ctaaccgatc	ccgagacett	780
ggtgcgattg	tttactgcgt	tggctgaaag	gatttcaatg	aaactcagtt	ggctcgatt	840
gcagacagta	aggaccacgt	gtttctgtg	aacgcacgg	tccaggtct	ccaaggcatt	900
atccactcaa	ttttaaagaa	atcctgcata	gaaattctgg	cggtcaacc	atccaccatc	960
tgcgcgggag	agtcccttca	agtgtcgta	agaggaaatg	gttccgaca	tgcccgc当地	1020
gtggacaggg	tcctctgcag	cttccaaaatc	aatgactcag	tcacgc当地	tgagaagccc	1080
tttgcgtgg	aagacactta	tttgcgtgc	ccagcaccaa	tcttggaaaga	agttggcatg	1140
aaagctgcac	tgcaggtcag	catgaacgc	ggcctgtct	tcatctccag	ttctgtcatc	1200
atcaccacca	cacactgttc	agacggctcc	atcctggcga	ttgc当地	ggctctcttc	1260
ctgctgc当地	ccctggcgt	gctctgggg	ttctggcccc	tctgc当地	agtgc当地	1320

aaggagggtcc	ctccacccccc	tgttggaggag	agtggaggaag	aagacgatga	tggtttgc当地	1380
aagaagaaat	gccccacagt	agatgcctct	tattatggtg	gacgcgggtgt	gggaggcatt	1440
aaaagaatgg	aggtccgctg	gggagaaaaag	ggctccacag	aagaaggggc	gaagtttagaa	1500
aaggcaaaga	atgcacgagt	caagatgcc	gagcaagaat	atgagttccc	agaaccccg	1560
aacctcaaca	acaacatg	cgcccttcc	tcgcctcg	agtggta	ctc g	1620
ggaaaactcg	atgccttgc	gttctgctg	agaaaaaggat	atgaccgagt	gtctgtat	1680
aggccacagc	caggagacac	gggacgctgt	atcaacttca	ccagagt	gaacagt	1740
ccagccaagt	atcccctgaa	caacacctac	cacccctact	ccccac	ctcc	1800
tacacacccc	cacccctgc	tcccactgc	cctccccc	ccccactgtc	ccccactct	1860
cccatccctt	ccccaccatc	cactctccc	cctcccttc	aggccccacc	ccctaaccagg	1920
gcacccccc	cctcccgacc	tcctccaagg	cctctgtct	agaagccaaa	gtccgagctc	1980
tgggtgcct	gagcaactcc	agcaggaggc	ttctctgtc	aaagaaaagat	ctggccagcc	2040
tatgttgtga	gtggcggtgt	atgtttgcac	gatttaaaag	caagtgt	tggcagaac	2100
aaaatgggca	tttgaactc	cctgaagaca	gacaatgaga	caataacagt	cacattata	2160
cctgtgaccc	ctcacctct	gaggaagg	cccgagatgg	ccacattg	cc acat	2220
cagccagatt	atgtcccat	aagaccagg	agaaagt	ttccaaagaat	ggaatgcagc	2280
attggataag	aaacacctgg	ctgagattct	gac	tttactct	tgattcttgg	2340
actgggagcc	aggccatctc	cacccctgg	accaccc	actgtgaaa	atgtgcag	2400
tccctagtat	gcac	gatctga	gttccac	aggttgc	ctt	2460
tatgtcttat	tctcttccc	gaacttctg	gttccc	gatgagg	ggggaaagg	2520
gttgcacatgc	ttagaagtg	gaggacgt	gtgctc	ctgatgg	agcgtt	2580
ggaggtgtcca	gctcttacat	ctagaaatgg	ctggctt	caggac	tcctaa	2640
acaaggcttgc	tcattgtca	aggcaac	ctaatgat	ac	ttcaagg	2700
ctgtggcata	ggtcag	gatcacac	aac	tttccc	atgaaat	2760
atcttcaat	acccagg	ccagagat	ctaaatcc	ctaaatcc	gtagt	2820
cttggcaaga	aaaccat	cagt	tttt	actctgaa	aggcgtt	2880
tatctcttct	tggccttca	ac	ctc	acttattac	atgtat	2940
tacatccat	gtgt	aataga	aaag	ctc	caagg	3000
ttctgaagct	gttgg	tgagg	ttt	ttt	atgttt	3060
caatcatgaa	aacagag	ttt	ttt	ttt	ttt	3120
tccaggtgtc	atgcact	tagacac	ttc	ttt	ttt	3180
aatctcagca	ctag	tttca	attt	attt	ttt	3240
ttatgacctg	ttgg	tttca	ttt	ttt	ttt	3300
cttagaaaga	aaagc	agg	aaatgg	ttt	ttt	3360
aaaatcgacc	tga	aaac	ttt	ttt	ttt	3420
tttcccaagt	gtac	cc	ttt	ttt	ttt	3480
ggaggtgtga	aaaagat	ctt	ttt	ttt	ttt	3540
tttagtgtat	c	ttt	ttt	ttt	ttt	3600
gggccccaga	aaaccat	ttt	ttt	ttt	ttt	3660
agcccatggc	aact	ttt	ttt	ttt	ttt	3720
gcaggatttg	tgca	ttt	ttt	ttt	ttt	3780
gcatgggctt	cg	ttt	ttt	ttt	ttt	3840
gctgtgg	agtgt	ttt	ttt	ttt	ttt	3900
tgcaagg	ttt	ttt	ttt	ttt	ttt	3960
gaagtttct	gaaacc	ttt	ttt	ttt	ttt	4020
agctt	ttt	ttt	ttt	ttt	ttt	4080
atgggtt	tgat	ttt	ttt	ttt	ttt	4140
acggagg	ttt	ttt	ttt	ttt	ttt	4200
gatggaa	act	ttt	ttt	ttt	ttt	4260
agtgtt	ttt	ttt	ttt	ttt	ttt	4320
gcttt	ttt	ttt	ttt	ttt	ttt	4380
acagc	ttt	ttt	ttt	ttt	ttt	4440
cctgg	ttt	ttt	ttt	ttt	ttt	4500
caaag	ttt	ttt	ttt	ttt	ttt	4560
at	ttt	ttt	ttt	ttt	ttt	4620
ttt	ttt	ttt	ttt	ttt	ttt	4680
ttt	ttt	ttt	ttt	ttt	ttt	4740
ttt	ttt	ttt	ttt	ttt	ttt	4800
ttt	ttt	ttt	ttt	ttt	ttt	4860
ttt	ttt	ttt	ttt	ttt	ttt	4920
ttt	ttt	ttt	ttt	ttt	ttt	4980

aaccgattta aaggaattag aatatgattt ctgaatacac ataacattaa actcttctct	5040
ttttctatgg taattttagtt atggacgttc agcgtctctg agttattgtt ataaaagact	5100
tgtcatcacc gcaactgtgct gtaggagact gggctgaacc tgtacaatgg tataccctgg	5160
aagttgctt tttaaaaaaa aataataata aacacctaata atcaaaaaaaaaaaaaaaaaaa	5220

<210> 187
<211> 564
<212> PRT
<213> Homo sapiens

<400> 187
Met Ala Thr Ala Glu Arg Arg Ala Leu Gly Ile Gly Phe Gln Trp Leu
1 5 10 15
Ser Leu Ala Thr Leu Val Leu Ile Cys Ala Gly Gln Gly Gly Arg Arg
20 25 30
Glu Asp Gly Gly Pro Ala Cys Tyr Gly Gly Phe Asp Leu Tyr Phe Ile
35 40 45
Leu Asp Lys Ser Gly Ser Val Leu His His Trp Asn Glu Ile Tyr Tyr
50 55 60
Phe Val Glu Gln Leu Ala His Lys Phe Ile Ser Pro Gln Leu Arg Met
65 70 75 80
Ser Phe Ile Val Phe Ser Thr Arg Gly Thr Thr Leu Met Lys Leu Thr
85 90 95
Glu Asp Arg Glu Gln Ile Arg Gln Gly Leu Glu Glu Leu Gln Lys Val
100 105 110
Leu Pro Gly Gly Asp Thr Tyr Met His Glu Gly Phe Glu Arg Ala Ser
115 120 125
Glu Gln Ile Tyr Tyr Glu Asn Arg Gln Gly Tyr Arg Thr Ala Ser Val
130 135 140
Ile Ile Ala Leu Thr Asp Gly Glu Leu His Glu Asp Leu Phe Phe Tyr
145 150 155 160
Ser Glu Arg Glu Ala Asn Arg Ser Arg Asp Leu Gly Ala Ile Val Tyr
165 170 175
Cys Val Gly Val Lys Asp Phe Asn Glu Thr Gln Leu Ala Arg Ile Ala
180 185 190
Asp Ser Lys Asp His Val Phe Pro Val Asn Asp Gly Phe Gln Ala Leu
195 200 205
Gln Gly Ile Ile His Ser Ile Leu Lys Lys Ser Cys Ile Glu Ile Leu
210 215 220
Ala Ala Glu Pro Ser Thr Ile Cys Ala Gly Glu Ser Phe Gln Val Val
225 230 235 240
Val Arg Gly Asn Gly Phe Arg His Ala Arg Asn Val Asp Arg Val Leu
245 250 255
Cys Ser Phe Lys Ile Asn Asp Ser Val Thr Leu Asn Glu Lys Pro Phe
260 265 270
Ser Val Glu Asp Thr Tyr Leu Leu Cys Pro Ala Pro Ile Leu Lys Glu
275 280 285
Val Gly Met Lys Ala Ala Leu Gln Val Ser Met Asn Asp Gly Leu Ser
290 295 300
Phe Ile Ser Ser Ser Val Ile Ile Thr Thr His Cys Ser Asp Gly
305 310 315 320
Ser Ile Leu Ala Ile Ala Leu Leu Ile Leu Phe Leu Leu Leu Ala Leu
325 330 335
Ala Leu Leu Trp Trp Phe Trp Pro Leu Cys Cys Thr Val Ile Ile Lys
340 345 350
Glu Val Pro Pro Pro Ala Glu Glu Ser Glu Glu Asp Asp Asp
355 360 365
Gly Leu Pro Lys Lys Trp Pro Thr Val Asp Ala Ser Tyr Tyr Gly

370	375	380
Gly Arg Gly Val Gly Gly Ile Lys Arg Met Glu Val Arg Trp Gly Glu		
385	390	395
Lys Gly Ser Thr Glu Glu Gly Ala Lys Leu Glu Lys Ala Lys Asn Ala		400
405	410	415
Arg Val Lys Met Pro Glu Gln Glu Tyr Glu Phe Pro Glu Pro Arg Asn		
420	425	430
Leu Asn Asn Asn Met Arg Arg Pro Ser Ser Pro Arg Lys Trp Tyr Ser		
435	440	445
Pro Ile Lys Gly Lys Leu Asp Ala Leu Trp Val Leu Leu Arg Lys Gly		
450	455	460
Tyr Asp Arg Val Ser Val Met Arg Pro Gln Pro Gly Asp Thr Gly Arg		
465	470	475
Cys Ile Asn Phe Thr Arg Val Lys Asn Asn Gln Pro Ala Lys Tyr Pro		480
485	490	495
Leu Asn Asn Ala Tyr His Thr Ser Ser Pro Pro Pro Ala Pro Ile Tyr		
500	505	510
Thr Pro Pro Pro Ala Pro His Cys Pro Pro Pro Pro Pro Ser Ala		
515	520	525
Pro Thr Pro Pro Ile Pro Ser Pro Pro Ser Thr Leu Pro Pro Pro Pro		
530	535	540
Gln Ala Pro Pro Pro Asn Arg Ala Pro Pro Pro Ser Arg Pro Pro Pro		
545	550	555
Arg Pro Ser Val		560

<210> 188
<211> 1331
<212> PRT
<213> Homo sapiens

<400> 188		
Met Arg Gly Ala Pro Ala Arg Leu Leu Leu Pro Leu Leu Pro Trp Leu		
1	5	10
Leu Leu Leu Leu Ala Pro Glu Ala Arg Gly Ala Pro Gly Cys Pro Leu		15
20	25	30
Ser Ile Arg Ser Cys Lys Cys Ser Gly Glu Arg Pro Lys Gly Leu Ser		
35	40	45
Gly Gly Val Pro Gly Pro Ala Arg Arg Val Val Cys Ser Gly Gly		
50	55	60
Asp Leu Pro Glu Pro Pro Glu Pro Gly Leu Leu Pro Asn Gly Thr Val		
65	70	75
80		
Thr Leu Leu Leu Ser Asn Asn Lys Ile Thr Gly Leu Arg Asn Gly Ser		
85	90	95
Phe Leu Gly Leu Ser Leu Leu Glu Lys Leu Asp Leu Arg Asn Asn Ile		
100	105	110
Ile Ser Thr Val Gln Pro Gly Ala Phe Leu Gly Leu Glu Leu Lys		
115	120	125
Arg Leu Asp Leu Ser Asn Asn Arg Ile Gly Cys Leu Thr Ser Glu Thr		
130	135	140
Phe Gln Gly Leu Pro Arg Leu Leu Arg Leu Asn Ile Ser Gly Asn Ile		
145	150	155
160		
Phe Ser Ser Leu Gln Pro Gly Val Phe Asp Glu Leu Pro Ala Leu Lys		
165	170	175
Val Val Asp Leu Gly Thr Glu Phe Leu Thr Cys Asp Cys His Leu Arg		
180	185	190
Trp Leu Leu Pro Trp Ala Gln Asn Arg Ser Leu Gln Leu Ser Glu His		
195	200	205
Thr Leu Cys Ala Tyr Pro Ser Ala Leu His Ala Gln Ala Leu Gly Ser		
210	215	220
Leu Gln Glu Ala Gln Leu Cys Cys Glu Gly Ala Leu Glu Leu His Thr		

225	230	235	240
His His Leu Ile Pro Ser Leu Arg Gln Val Val Phe Gln Gly Asp Arg			
245	250	255	
Leu Pro Phe Gln Cys Ser Ala Ser Tyr Leu Gly Asn Asp Thr Arg Ile			
260	265	270	
Arg Trp Tyr His Asn Arg Ala Pro Val Glu Gly Asp Glu Gln Ala Gly			
275	280	285	
Ile Leu Leu Ala Glu Ser Leu Ile His Asp Cys Thr Phe Ile Thr Ser			
290	295	300	
Glu Leu Thr Leu Ser His Ile Gly Val Trp Ala Ser Gly Glu Trp Glu			
305	310	315	320
Cys Thr Val Ser Met Ala Gln Gly Asn Ala Ser Lys Lys Val Glu Ile			
325	330	335	
Val Val Leu Glu Thr Ser Ala Ser Tyr Cys Pro Ala Glu Arg Val Ala			
340	345	350	
Asn Asn Arg Gly Asp Phe Arg Trp Pro Arg Thr Leu Ala Gly Ile Thr			
355	360	365	
Ala Tyr Gln Ser Cys Leu Gln Tyr Pro Phe Thr Ser Val Pro Leu Gly			
370	375	380	
Gly Gly Ala Pro Gly Thr Arg Ala Ser Arg Arg Cys Asp Arg Ala Gly			
385	390	395	400
Arg Trp Glu Pro Gly Asp Tyr Ser His Cys Leu Tyr Thr Asn Asp Ile			
405	410	415	
Thr Arg Val Leu Tyr Thr Phe Val Leu Met Pro Ile Asn Ala Ser Asn			
420	425	430	
Ala Leu Thr Leu Ala His Gln Leu Arg Val Tyr Thr Ala Glu Ala Ala			
435	440	445	
Ser Phe Ser Asp Met Met Asp Val Val Tyr Val Ala Gln Met Ile Gln			
450	455	460	
Lys Phe Leu Gly Tyr Val Asp Gln Ile Lys Glu Leu Val Glu Val Met			
465	470	475	480
Val Asp Met Ala Ser Asn Leu Met Leu Val Asp Glu His Leu Leu Trp			
485	490	495	
Leu Ala Gln Arg Glu Asp Lys Ala Cys Ser Arg Ile Val Gly Ala Leu			
500	505	510	
Glu Arg Ile Gly Gly Ala Ala Leu Ser Pro His Ala Gln His Ile Ser			
515	520	525	
Val Asn Ala Arg Asn Val Ala Leu Glu Ala Tyr Leu Ile Lys Pro His			
530	535	540	
Ser Tyr Val Gly Leu Thr Cys Thr Ala Phe Gln Arg Arg Glu Gly Gly			
545	550	555	560
Val Pro Gly Thr Arg Pro Gly Ser Pro Gly Gln Asn Pro Pro Pro Glu			
565	570	575	
Pro Glu Pro Pro Ala Asp Gln Gln Leu Arg Phe Arg Cys Thr Thr Gly			
580	585	590	
Arg Pro Asn Val Ser Leu Ser Ser Phe His Ile Lys Asn Ser Val Ala			
595	600	605	
Leu Ala Ser Ile Gln Leu Pro Pro Ser Leu Phe Ser Ser Leu Pro Ala			
610	615	620	
Ala Leu Ala Pro Pro Val Pro Pro Asp Cys Thr Leu Gln Leu Leu Val			
625	630	635	640
Phe Arg Asn Gly Arg Leu Phe His Ser His Ser Asn Thr Ser Arg Pro			
645	650	655	
Gly Ala Ala Gly Pro Gly Lys Arg Arg Gly Val Ala Thr Pro Val Ile			
660	665	670	
Phe Ala Gly Thr Ser Gly Cys Gly Val Gly Asn Leu Thr Glu Pro Val			
675	680	685	
Ala Val Ser Leu Arg His Trp Ala Glu Gly Ala Glu Pro Val Ala Ala			
690	695	700	
Trp Trp Ser Gln Glu Gly Pro Gly Glu Ala Gly Gly Trp Thr Ser Glu			
705	710	715	720

Gly Cys Gin Leu Arg Ser Ser Gln Pro Asn Val Ser Ala Leu His Cys
 725 730 735
 Gln His Leu Gly Asn Val Ala Val Leu Met Glu Leu Ser Ala Phe Pro
 740 745 750
 Arg Glu Val Gly Gly Ala Gly Leu His Pro Val Val Tyr Pro
 755 760 765
 Cys Thr Ala Leu Leu Leu Cys Leu Phe Ala Thr Ile Ile Thr Tyr
 770 775 780
 Ile Leu Asn His Ser Ser Ile Arg Val Ser Arg Lys Gly Trp His Met
 785 790 795 800
 Leu Leu Asn Leu Cys Phe His Ile Ala Met Thr Ser Ala Val Phe Ala
 805 810 815
 Gly Gly Ile Thr Leu Thr Asn Tyr Gln Met Val Cys Gln Ala Val Gly
 820 825 830
 Ile Thr Leu His Tyr Ser Ser Leu Ser Thr Leu Leu Trp Met Gly Val
 835 840 845
 Lys Ala Arg Val Leu His Lys Glu Leu Thr Trp Arg Ala Pro Pro Pro
 850 855 860
 Gln Glu Gly Asp Pro Ala Leu Pro Thr Pro Ser Pro Met Leu Arg Phe
 865 870 875 880
 Tyr Leu Ile Ala Gly Gly Ile Pro Leu Ile Ile Cys Gly Ile Thr Ala
 885 890 895
 Ala Val Asn Ile His Asn Tyr Arg Asp His Ser Pro Tyr Cys Trp Leu
 900 905 910
 Val Trp Arg Pro Ser Leu Gly Ala Phe Tyr Ile Pro Val Ala Leu Ile
 915 920 925
 Leu Leu Ile Thr Trp Ile Tyr Phe Leu Cys Ala Gly Leu Arg Leu Arg
 930 935 940
 Gly Pro Leu Ala Gln Asn Pro Lys Ala Gly Asn Ser Arg Ala Ser Leu
 945 950 955 960
 Glu Ala Gly Glu Glu Leu Arg Gly Ser Thr Arg Leu Arg Gly Ser Gly
 965 970 975
 Pro Leu Leu Ser Asp Ser Gly Ser Leu Leu Ala Thr Gly Ser Ala Arg
 980 985 990
 Val Gly Thr Pro Gly Pro Pro Glu Asp Gly Asp Ser Leu Tyr Ser Pro
 995 1000 1005
 Gly Val Gln Leu Gly Ala Leu Val Thr Thr His Phe Leu Tyr Leu Ala
 1010 1015 1020
 Met Trp Ala Cys Gly Ala Leu Ala Val Ser Gln Arg Trp Leu Pro Arg
 1025 1030 1035 1040
 Val Val Cys Ser Cys Leu Tyr Gly Val Ala Ala Ser Ala Leu Gly Leu
 1045 1050 1055
 Phe Val Phe Thr His His Cys Ala Arg Arg Arg Asp Val Arg Ala Ser
 1060 1065 1070
 Trp Arg Ala Cys Cys Pro Pro Ala Ser Pro Ala Ala Pro His Ala Pro
 1075 1080 1085
 Pro Arg Ala Leu Pro Ala Ala Ala Glu Asp Gly Ser Pro Val Phe Gly
 1090 1095 1100
 Glu Gly Pro Pro Ser Leu Lys Ser Ser Pro Ser Gly Ser Ser Gly His
 1105 1110 1115 1120
 Pro Leu Ala Leu Gly Pro Cys Lys Leu Thr Asn Leu Gln Leu Ala Gln
 1125 1130 1135
 Ser Gln Val Cys Glu Ala Gly Ala Ala Ala Gly Gly Glu Gly Glu Pro
 1140 1145 1150
 Glu Pro Ala Gly Thr Arg Gly Asn Leu Ala His Arg His Pro Asn Asn
 1155 1160 1165
 Val His His Gly Arg Arg Ala His Lys Ser Arg Ala Lys Gly His Arg
 1170 1175 1180
 Ala Gly Glu Ala Cys Gly Lys Asn Arg Leu Lys Ala Leu Arg Gly Gly
 1185 1190 1195 1200
 Ala Ala Gly Ala Leu Glu Leu Leu Ser Ser Glu Ser Gly Ser Leu His

	1205	1210	1215
Asn Ser Pro Thr Asp Ser Tyr Leu Gly Ser Ser Arg Asn Ser Pro Gly			
1220	1225	1230	
Ala Gly Leu Gln Leu Glu Gly Glu Pro Met Leu Thr Pro Ser Glu Gly			
1235	1240	1245	
Ser Asp Thr Ser Ala Ala Pro Leu Ser Glu Ala Gly Arg Ala Gly Gln			
1250	1255	1260	
Arg Arg Ser Ala Ser Arg Asp Ser Leu Lys Gly Gly Gly Ala Leu Glu			
1265	1270	1275	1280
Lys Glu Ser His Arg Arg Ser Tyr Pro Leu Asn Ala Ala Ser Leu Asn			
1285	1290	1295	
Gly Ala Pro Lys Gly Lys Tyr Asp Asp Val Thr Leu Met Gly Ala			
1300	1305	1310	
Glu Val Ala Ser Gly Gly Cys Met Lys Thr Gly Leu Trp Lys Ser Glu			
1315	1320	1325	
Thr Thr Val			
1330			

<210> 189

<211> 529

<212> PRT

<213> Homo sapiens

<400> 189

Met Ala Arg Phe Pro Lys Ala Asp Leu Ala Ala Gly Val Met Leu			
1	5	10	15
Leu Cys His Phe Phe Thr Asp Gln Phe Gln Phe Ala Asp Gly Lys Pro			
20	25	30	
Gly Asp Gln Ile Leu Asp Trp Gln Tyr Gly Val Thr Gln Ala Phe Pro			
35	40	45	
His Thr Glu Glu Val Glu Val Asp Ser His Ala Tyr Ser His Arg			
50	55	60	
Trp Lys Arg Asn Leu Asp Phe Leu Lys Ala Val Asp Thr Asn Arg Ala			
65	70	75	80
Ser Val Gly Gln Asp Ser Pro Glu Pro Arg Ser Phe Thr Asp Leu Leu			
85	90	95	
Leu Asp Asp Gly Gln Asp Asn Asn Thr Gln Ile Glu Glu Asp Thr Asp			
100	105	110	
His Asn Tyr Tyr Ile Ser Arg Ile Tyr Gly Pro Ser Asp Ser Ala Ser			
115	120	125	
Arg Asp Leu Trp Val Asn Ile Asp Gln Met Glu Lys Asp Lys Val Lys			
130	135	140	
Ile His Gly Ile Leu Ser Asn Thr His Arg Gln Ala Ala Arg Val Asn			
145	150	155	160
Leu Ser Phe Asp Phe Pro Phe Tyr Gly His Phe Leu Arg Glu Ile Thr			
165	170	175	
Val Ala Thr Gly Phe Ile Tyr Thr Gly Glu Val Val His Arg Met			
180	185	190	
Leu Thr Ala Thr Gln Tyr Ile Ala Pro Leu Met Ala Asn Phe Asp Pro			
195	200	205	
Ser Val Ser Arg Asn Ser Thr Val Arg Tyr Phe Asp Asn Gly Thr Ala			
210	215	220	
Leu Val Val Gln Trp Asp His Val His Leu Gln Asp Asn Tyr Asn Leu			
225	230	235	240
Gly Ser Phe Thr Phe Gln Ala Thr Leu Leu Met Asp Gly Arg Ile Ile			
245	250	255	
Phe Gly Tyr Lys Glu Ile Pro Val Leu Val Thr Gln Ile Ser Ser Thr			
260	265	270	
Asn His Pro Val Lys Val Gly Leu Ser Asp Ala Phe Val Val Val His			
275	280	285	
Arg Ile Gln Gln Ile Pro Asn Val Arg Arg Thr Ile Tyr Glu Tyr			

290	295	300
His Arg Val Glu Leu Gln Met Ser Lys Ile Thr Asn Ile Ser Ala Val		
305	310	315 320
Glu Met Thr Pro Leu Pro Thr Cys Leu Gln Phe Asn Arg Cys Gly Pro		
	325	330 335
Cys Val Ser Ser Gln Ile Gly Phe Asn Cys Ser Trp Cys Ser Lys Leu		
	340	345 350
Gln Arg Cys Ser Ser Gly Phe Asp Arg His Arg Gln Asp Trp Val Asp		
	355	360 365
Ser Gly Cys Pro Glu Glu Ser Lys Glu Lys Met Cys Glu Asn Thr Glu		
	370	375 380
Pro Val Glu Thr Ser Ser Arg Thr Thr Thr Ile Gly Ala Thr Thr		
	385	390 395 400
Thr Gln Phe Arg Val Leu Thr Thr Arg Arg Ala Val Thr Ser Gln		
	405	410 415
Phe Pro Thr Ser Leu Pro Thr Glu Asp Asp Thr Lys Ile Ala Leu His		
	420	425 430
Leu Lys Asp Asn Gly Ala Ser Thr Asp Asp Ser Ala Ala Glu Lys Lys		
	435	440 445
Gly Gly Thr Leu His Ala Gly Leu Ile Val Gly Ile Leu Ile Leu Val		
	450	455 460
Leu Ile Val Ala Thr Ala Ile Leu Val Thr Val Tyr Met Tyr His His		
	465	470 475 480
Pro Thr Ser Ala Ala Ser Ile Phe Phe Ile Glu Arg Arg Pro Ser Arg		
	485	490 495
Trp Pro Ala Met Lys Phe Arg Arg Gly Ser Gly His Pro Ala Tyr Ala		
	500	505 510
Glu Val Glu Pro Val Gly Glu Lys Glu Gly Phe Ile Val Ser Glu Gln		
	515	520 525
Cys		

<210> 190
 <211> 765
 <212> PRT
 <213> Mus musculus

<400> 190	
Met Leu Leu Arg Leu Leu Leu Ala Trp Val Ala Ala Val Pro Ala Leu	
1 5 10 15	
Gly Gln Val Pro Trp Thr Pro Glu Pro Arg Ala Ala Cys Gly Pro Ser	
	20 25 30
Ser Cys Tyr Ala Leu Phe Pro Arg Arg Arg Thr Phe Leu Glu Ala Trp	
	35 40 45
Arg Ala Cys Arg Glu Leu Gly Gly Asn Leu Ala Thr Pro Arg Thr Pro	
	50 55 60
Glu Glu Ala Gln Arg Val Asp Ser Leu Val Gly Val Gly Pro Ala Asn	
	65 70 75 80
Gly Leu Leu Trp Ile Gly Leu Gln Arg Gln Ala Arg Gln Cys Gln Pro	
	85 90 95
Gln Arg Pro Leu Arg Gly Phe Ile Trp Thr Gly Asp Gln Asp Thr	
	100 105 110
Ala Phe Thr Asn Trp Ala Gln Pro Ala Thr Glu Gly Pro Cys Pro Ala	
	115 120 125
Gln Arg Cys Ala Ala Leu Glu Ala Ser Gly Glu His Arg Trp Leu Glu	
	130 135 140
Gly Ser Cys Thr Leu Ala Val Asp Gly Tyr Leu Cys Gln Phe Gly Phe	
	145 150 155 160
Glu Gly Ala Cys Pro Ala Leu Pro Leu Glu Val Gly Gln Ala Gly Pro	
	165 170 175
Ala Val Tyr Thr Pro Phe Asn Leu Val Ser Ser Glu Phe Glu Trp	

	180	185	190
Leu Pro Phe Gly Ser Val Ala Ala Val Gln Cys Gln Ala		Gly Arg Gly	
195	200	205	
Ala Ser Leu Leu Cys Val Lys Gln Pro Ser Gly Gly Val		Gly Trp Ser	
210	215	220	
Gln Thr Gly Pro Leu Cys Pro Gly Thr Gly Cys Gly Pro Asp Asn Gly			
225	230	235	240
Gly Cys Glu His Glu Cys Val Glu Glu Val Asp Gly Ala Val Ser Cys			
245	250	255	
Arg Cys Ser Glu Gly Phe Arg Leu Ala Ala Asp Gly His Ser Cys Glu			
260	265	270	
Asp Pro Cys Ala Gln Ala Pro Cys Glu Gln Gln Cys Glu Pro Gly Gly			
275	280	285	
Pro Gln Gly Tyr Ser Cys His Cys Arg Leu Gly Phe Arg Pro Ala Glu			
290	295	300	
Asp Asp Pro His Arg Cys Val Asp Thr Asp Glu Cys Gln Ile Ala Gly			
305	310	315	320
Val Cys Gln Gln Met Cys Val Asn Tyr Val Gly Gly Phe Glu Cys Tyr			
325	330	335	
Cys Ser Glu Gly His Glu Leu Glu Ala Asp Gly Ile Ser Cys Ser Pro			
340	345	350	
Ala Gly Ala Met Gly Ala Gln Ala Ser Gln Asp Leu Arg Asp Glu Leu			
355	360	365	
Leu Asp Asp Gly Glu Glu Gly Glu Asp Glu Glu Glu Pro Trp Glu Asp			
370	375	380	
Phe Asp Gly Thr Trp Thr Glu Glu Gln Gly Ile Leu Trp Leu Ala Pro			
385	390	395	400
Thr His Pro Pro Asp Phe Gly Leu Pro Tyr Arg Pro Asn Phe Pro Gln			
405	410	415	
Asp Gly Glu Pro Gln Arg Leu His Leu Glu Pro Thr Trp Pro Pro Pro			
420	425	430	
Leu Ser Ala Pro Arg Gly Pro Tyr His Ser Ser Val Val Ser Ala Thr			
435	440	445	
Arg Pro Met Val Ile Ser Ala Thr Arg Pro Thr Leu Pro Ser Ala His			
450	455	460	
Lys Thr Ser Val Ile Ser Ala Thr Arg Pro Pro Leu Ser Pro Val His			
465	470	475	480
Pro Pro Ala Met Ala Pro Ala Thr Pro Pro Ala Val Phe Ser Glu His			
485	490	495	
Gln Ile Pro Lys Ile Lys Ala Asn Tyr Pro Asp Leu Pro Phe Gly His			
500	505	510	
Lys Pro Gly Ile Thr Ser Ala Thr His Pro Ala Arg Ser Pro Pro Tyr			
515	520	525	
Gln Pro Pro Ile Ile Ser Thr Asn Tyr Pro Gln Val Phe Pro Pro His			
530	535	540	
Gln Ala Pro Met Ser Pro Asp Thr His Thr Ile Thr Tyr Leu Pro Pro			
545	550	555	560
Val Pro Pro His Leu Asp Pro Gly Asp Thr Thr Ser Lys Ala His Gln			
565	570	575	
His Pro Leu Leu Pro Asp Ala Pro Gly Ile Arg Thr Gln Ala Pro Gln			
580	585	590	
Leu Ser Val Ser Ala Leu Gln Pro Pro Leu Pro Thr Asn Ser Arg Ser			
595	600	605	
Ser Val His Glu Thr Pro Val Pro Ala Ala Asn Gln Pro Pro Ala Phe			
610	615	620	
Pro Ser Ser Pro Leu Pro Pro Gln Arg Pro Thr Asn Gln Thr Ser Ser			
625	630	635	640
Ile Ser Pro Thr His Ser Tyr Ser Arg Ala Pro Leu Val Pro Arg Glu			
645	650	655	
Gly Val Pro Ser Pro Lys Ser Val Pro Gln Leu Pro Ser Val Pro Ser			
660	665	670	

Thr Ala Ala Pro Thr Ala Leu Ala Glu Ser Gly Leu Ala Gly Gln Ser
 675 680 685
 Gln Arg Asp Asp Arg Trp Leu Leu Val Ala Leu Leu Val Pro Thr Cys
 690 695 700
 Val Phe Leu Val Val Leu Leu Ala Leu Gly Ile Val Tyr Cys Thr Arg
 705 710 715 720
 Cys Gly Ser His Ala Pro Asn Lys Arg Ile Thr Asp Cys Tyr Arg Trp
 725 730 735
 Val Thr His Ala Gly Asn Lys Ser Ser Thr Glu Pro Met Pro Pro Arg
 740 745 750
 Gly Ser Leu Thr Gly Val Gln Thr Cys Arg Thr Ser Val
 755 760 765

<210> 191
 <211> 1329
 <212> PRT
 <213> Mus musculus

<400> 191
 Met Pro Val Pro Pro Ala Arg Leu Leu Leu Pro Leu Leu Pro Cys
 1 5 10 15
 Leu Leu Leu Ala Pro Gly Thr Arg Gly Ala Pro Gly Cys Pro Val
 20 25 30
 Pro Ile Arg Gly Cys Lys Cys Ser Gly Glu Arg Pro Lys Gly Leu Ser
 35 40 45
 Gly Gly Ala His Asn Pro Ala Arg Arg Arg Val Val Cys Gly Gly
 50 55 60
 Asp Leu Pro Glu Pro Pro Asp Pro Gly Leu Leu Pro Asn Gly Thr Ile
 65 70 75 80
 Thr Leu Leu Leu Ser Asn Asn Lys Ile Thr Gly Leu Arg Asn Gly Ser
 85 90 95
 Phe Leu Gly Leu Ser Leu Leu Glu Lys Leu Asp Leu Arg Ser Asn Val
 100 105 110
 Ile Ser Thr Val Gln Pro Gly Ala Phe Leu Gly Leu Gly Glu Leu Lys
 115 120 125
 Arg Leu Asp Leu Ser Asn Asn Arg Ile Gly Cys Leu Thr Ser Glu Thr
 130 135 140
 Phe Gln Gly Leu Pro Arg Leu Leu Arg Leu Asn Ile Ser Gly Asn Ile
 145 150 155 160
 Tyr Ser Ser Leu Gln Pro Gly Val Phe Asp Glu Leu Pro Ala Leu Lys
 165 170 175
 Ile Val Asp Phe Gly Thr Glu Phe Leu Thr Cys Asp Cys Arg Leu Arg
 180 185 190
 Trp Leu Leu Pro Trp Ala Arg Asn His Ser Leu Gln Leu Ser Glu Arg
 195 200 205
 Thr Leu Cys Ala Tyr Pro Ser Ala Leu His Ala His Ala Leu Ser Ser
 210 215 220
 Leu Gln Glu Ser Gln Leu Arg Cys Glu Gly Ala Leu Glu Leu His Thr
 225 230 235 240
 His Tyr Leu Ile Pro Ser Leu Arg Gln Val Val Phe Gln Gly Asp Arg
 245 250 255
 Leu Pro Phe Gln Cys Ser Ala Ser Tyr Leu Gly Asn Asp Thr Arg Ile
 260 265 270
 His Trp Tyr His Asn Gly Ala Pro Met Glu Ser Asp Glu Gln Ala Gly
 275 280 285
 Ile Val Leu Ala Glu Asn Leu Ile His Asp Cys Thr Phe Ile Thr Ser
 290 295 300
 Glu Leu Thr Leu Ser His Ile Gly Val Trp Ala Ser Gly Glu Trp Glu
 305 310 315 320
 Cys Ser Val Ser Thr Val Gln Gly Asn Thr Ser Lys Lys Val Glu Ile
 325 330 335

Val Val Leu Glu Thr Ser Ala Ser Tyr Cys Pro Ala Glu Arg Val Thr
 340 345 350
 Asn Asn Arg Gly Asp Phe Arg Trp Pro Arg Thr Leu Ala Gly Ile Thr
 355 360 365
 Ala Tyr Gln Ser Cys Leu Gln Tyr Pro Phe Thr Ser Val Pro Leu Ser
 370 375 380
 Gly Gly Ala Pro Gly Thr Arg Ala Ser Arg Arg Cys Asp Arg Ala Gly
 385 390 395 400
 Arg Trp Glu Pro Gly Asp Tyr Ser His Cys Leu Tyr Thr Asn Asp Ile
 405 410 415
 Thr Arg Val Leu Tyr Thr Phe Val Leu Met Pro Ile Asn Ala Ser Asn
 420 425 430
 Ala Leu Thr Leu Ala His Gln Leu Arg Val Tyr Thr Ala Glu Ala Ala
 435 440 445
 Ser Phe Ser Asp Met Met Asp Val Val Tyr Val Ala Gln Met Ile Gln
 450 455 460
 Lys Phe Leu Gly Tyr Val Asp Gln Ile Lys Glu Leu Val Glu Val Met
 465 470 475 480
 Val Asp Met Ala Ser Asn Leu Met Leu Val Asp Glu His Leu Leu Trp
 485 490 495
 Leu Ala Gln Arg Glu Asp Lys Ala Cys Ser Gly Ile Val Gly Ala Leu
 500 505 510
 Glu Arg Ile Gly Gly Ala Ala Leu Ser Pro His Ala Gln His Ile Ser
 515 520 525
 Val Asn Ser Arg Asn Val Ala Leu Glu Ala Tyr Leu Ile Lys Pro His
 530 535 540
 Ser Tyr Val Gly Leu Thr Cys Thr Ala Phe Gln Arg Arg Glu Val Gly
 545 550 555 560
 Val Ser Gly Ala Gln Pro Ser Ser Val Gly Gln Asp Ala Pro Val Glu
 565 570 575
 Pro Glu Pro Leu Ala Asp Gln Gln Leu Arg Phe Arg Cys Thr Thr Gly
 580 585 590
 Arg Pro Asn Ile Ser Leu Ser Ser Phe His Ile Lys Asn Ser Val Ala
 595 600 605
 Leu Ala Ser Ile Gln Leu Pro Pro Ser Leu Phe Ser Thr Leu Pro Ala
 610 615 620
 Ala Leu Ala Pro Pro Val Pro Pro Asp Cys Thr Leu Gln Leu Leu Val
 625 630 635 640
 Phe Arg Asn Gly Arg Leu Phe Arg Ser His Gly Asn Asn Thr Ser Arg
 645 650 655
 Pro Gly Ala Ala Gly Pro Gly Lys Arg Arg Gly Val Ala Thr Pro Val
 660 665 670
 Ile Phe Ala Gly Thr Ser Gly Cys Gly Val Gly Asn Leu Thr Glu Pro
 675 680 685
 Val Ala Val Ser Leu Arg His Trp Ala Glu Gly Ala Asp Pro Met Ala
 690 695 700
 Ala Trp Trp Asn Gln Asp Gly Pro Gly Gly Trp Ser Ser Glu Gly Cys
 705 710 715 720
 Arg Leu Arg Tyr Ser Gln Pro Asn Val Ser Ser Leu Tyr Cys Gln His
 725 730 735
 Leu Gly Asn Val Ala Val Leu Met Glu Leu Asn Ala Phe Pro Arg Glu
 740 745 750
 Ala Gly Gly Ser Gly Ala Gly Leu His Pro Val Val Tyr Pro Cys Thr
 755 760 765
 Ala Leu Leu Leu Cys Leu Phe Ser Thr Ile Ile Thr Tyr Ile Leu
 770 775 780
 Asn His Ser Ser Ile His Val Ser Arg Lys Gly Trp His Met Leu Leu
 785 790 795 800
 Asn Leu Cys Phe His Met Ala Met Thr Ser Ala Val Phe Val Gly Gly
 805 810 815
 Val Thr Leu Thr Asn Tyr Gln Met Val Cys Gln Ala Val Gly Ile Thr

820	825	830
Leu His Tyr Ser Ser Leu Ser Ser	Leu Leu Trp Met Gly Val Lys Ala	
835	840	845
Arg Val Leu His Lys Glu Leu Ser Trp Arg Ala Pro Pro	Leu Glu Glu	
850	855	860
Gly Glu Ala Ala Pro Pro Gly Pro Arg Pro	Met Leu Arg Phe Tyr Leu	
865	870	875
Ile Ala Gly Gly Ile Pro Leu Ile Ile Cys Gly Ile Thr Ala Ala Val		880
885	890	895
Asn Ile His Asn Tyr Arg Asp His Ser Pro Tyr Cys Trp Leu Val Trp		
900	905	910
Arg Pro Ser Leu Gly Ala Phe Tyr Ile Pro Val Ala Leu Ile Leu Pro		
915	920	925
Ile Thr Trp Ile Tyr Phe Leu Cys Ala Gly Leu His Leu Arg Ser His		
930	935	940
Val Ala Gln Asn Pro Lys Gln Gly Asn Arg Ile Ser Leu, Glu Pro Gly		
945	950	955
Glu Glu Leu Arg Gly Ser Thr Arg Leu Arg Ser Ser Gly Val Leu Leu		960
965	970	975
Asn Asp Ser Gly Ser Leu Leu Ala Thr Val Ser Ala Gly Val Gly Thr		
980	985	990
Pro Ala Pro Pro Glu Asp Gly Asp Gly Val Tyr Ser Pro Gly Val Gln		
995	1000	1005
Leu Gly Ala Leu Met Thr Thr His Phe Leu Tyr Leu Ala Met Trp Ala		
1010	1015	1020
Cys Gly Ala Leu Ala Val Ser Gln Arg Trp Leu Pro Arg Val Val Cys		
1025	1030	1035
Ser Cys Leu Tyr Gly Val Ala Ala Ser Ala Leu Gly Leu Phe Val Phe		1040
1045	1050	1055
Thr His His Cys Ala Arg Arg Asp Val Arg Ala Ser Trp Arg Ala		
1060	1065	1070
Cys Cys Pro Pro Ala Ser Pro Ser Ala Ser His Val Pro Ala Arg Ala		
1075	1080	1085
Leu Pro Thr Ala Thr Glu Asp Gly Ser Pro Val Leu Gly Glu Gly Pro		
1090	1095	1100
Ala Ser Leu Lys Ser Ser Pro Ser Gly Ser Ser Gly Arg Ala Pro Pro		
1105	1110	1115
Pro Pro Cys Lys Leu Thr Asn Leu Gln Val Ala Gln Ser Gln Val Cys		1120
1125	1130	1135
Glu Ala Ser Val Ala Ala Arg Gly Asp Gly Glu Pro Glu Pro Thr Gly		
1140	1145	1150
Ser Arg Gly Ser Leu Ala Pro Arg His His Asn Asn Leu His His Gly		
1155	1160	1165
Arg Arg Val His Lys Ser Arg Ala Lys Gly His Arg Ala Gly Glu Thr		
1170	1175	1180
Gly Gly Lys Ser Arg Leu Lys Ala Leu Arg Ala Gly Thr Ser Pro Gly		
1185	1190	1195
Ala Pro Glu Leu Leu Ser Ser Glu Ser Gly Ser Leu His Asn Ser Pro		1200
1205	1210	1215
Ser Asp Ser Tyr Pro Gly Ser Ser Arg Asn Ser Pro Gly Asp Gly Leu		
1220	1225	1230
Pro Leu Glu Gly Glu Pro Met Leu Thr Pro Ser Glu Gly Ser Asp Thr		
1235	1240	1245
Ser Ala Ala Pro Ile Ala Glu Thr Gly Arg Pro Gly Gln Arg Arg Ser		
1250	1255	1260
Ala Ser Arg Asp Asn Leu Lys Gly Ser Gly Ser Ala Leu Glu Arg Glu		
1265	1270	1275
Ser Lys Arg Arg Ser Tyr Pro Leu Asn Thr Thr Ser Leu Asn Gly Ala		1280
1285	1290	1295
Pro Lys Gly Gly Lys Tyr Glu Asp Ala Ser Val Thr Gly Ala Glu Ala		
1300	1305	1310

Ile Ala Gly Gly Ser Met Lys Thr Gly Leu Trp Lys Ser Glu Thr Thr
 1315 1320 1325
 Val

<210> 192
<211> 500
<212> PRT
<213> Mus musculus

<400> 192
 Met Arg Ala Gln Leu Trp Leu Leu Gln Leu Leu Leu Arg Gly Ala
 1 5 10 15
 Ala Arg Ala Leu Ser Pro Ala Thr Pro Ala Gly His Asn Glu Gly Gln
 20 25 30
 Asp Ser Ala Trp Thr Ala Lys Arg Thr Arg Gln Gly Trp Ser Arg Arg
 35 40 45
 Pro Arg Glu Ser Pro Ala Gln Val Leu Lys Pro Gly Lys Thr Gln Leu
 50 55 60
 Ser Gln Asp Leu Gly Gly Ser Leu Ala Ile Asp Thr Leu Pro Asp
 65 70 75 80
 Asn Arg Thr Arg Val Val Glu Asp Asn His Asn Tyr Tyr Val Ser Arg
 85 90 95
 Val Tyr Gly Pro Gly Glu Lys Gln Ser Gln Asp Leu Trp Val Asp Leu
 100 105 110
 Ala Val Ala Asn Arg Ser His Val Lys Ile His Arg Ile Leu Ser Ser
 115 120 125
 Ser His Arg Gln Ala Ser Arg Val Val Leu Ser Phe Asp Phe Pro Phe
 130 135 140
 Tyr Gly His Pro Leu Arg Gln Ile Thr Ile Ala Thr Gly Gly Phe Ile
 145 150 155 160
 Phe Met Gly Asp Met Leu His Arg Met Leu Thr Ala Thr Gln Tyr Val
 165 170 175
 Ala Pro Leu Met Ala Asn Phe Asn Pro Gly Tyr Ser Asp Asn Ser Thr
 180 185 190
 Val Ala Tyr Phe Asp Asn Gly Thr Val Phe Val Val Gln Trp Asp His
 195 200 205
 Val Tyr Leu Gln Asp Arg Glu Asp Arg Gly Ser Phe Thr Phe Gln Ala
 210 215 220
 Ala Leu His Arg Asp Gly Arg Ile Val Phe Gly Tyr Lys Glu Ile Pro
 225 230 235 240
 Met Ala Val Leu Asp Ile Ser Ser Ala Gln His Pro Val Lys Ala Gly
 245 250 255
 Leu Ser Asp Ala Phe Met Ile Leu Asn Ser Ser Pro Glu Val Pro Glu
 260 265 270
 Ser Gln Arg Arg Thr Ile Phe Glu Tyr His Arg Val Glu Leu Asp Ser
 275 280 285
 Ser Lys Ile Thr Thr Ser Ala Val Glu Phe Thr Pro Leu Pro Thr
 290 295 300
 Cys Leu Gln His Gln Ser Cys Asp Thr Cys Val Ser Ser Asn Leu Thr
 305 310 315 320
 Phe Asn Cys Ser Trp Cys His Val Leu Gln Arg Cys Ser Ser Gly Phe
 325 330 335
 Asp Arg Tyr Arg Gln Glu Trp Leu Thr Tyr Gly Cys Ala Gln Glu Ala
 340 345 350
 Glu Gly Lys Thr Cys Glu Asp Phe Gln Asp Asp Ser His Tyr Ser Ala
 355 360 365
 Ser Pro Asp Ser Ser Phe Ser Pro Phe Asn Gly Asp Ser Thr Thr Ser
 370 375 380
 Ser Ser Leu Phe Ile Asp Ser Leu Thr Thr Glu Asp Asp Thr Lys Leu
 385 390 395 400

Asn Pro Tyr Ala Glu Gly Asp Gly Leu Pro Asp His Ser Ser Pro Lys
 405 410 415
 Ser Lys Gly Pro Pro Val His Leu Gly Thr Ile Val Gly Ile Val Leu
 420 425 430
 Ala Val Leu Leu Val Ala Ala Ile Ile Leu Ala Gly Ile Tyr Ile Ser
 435 440 445
 Gly His Pro Asn Ser Asn Ala Ala Leu Phe Phe Ile Glu Arg Arg Pro
 450 455 460
 His His Trp Pro Ala Met Lys Phe His Asn His Pro Asn His Ser Thr
 465 470 475 480
 Tyr Thr Glu Val Glu Pro Ser Gly His Glu Lys Glu Gly Phe Val Glu
 485 490 495
 Ala Glu Gln Cys
 500

<210> 193
 <211> 530
 <212> PRT
 <213> Mus musculus

<400> 193

Met Ala Arg Phe Arg Arg Ala Asp Leu Ala Ala Ala Gly Val Met Leu
 1 5 10 15
 Leu Cys His Phe Leu Thr Asp Arg Phe His Phe Ala His Gly Glu Pro
 20 25 30

Gly His His Thr Asn Asp Trp Ile Tyr Glu Val Thr Asn Ala Phe Pro
 35 40 45

Trp Asn Glu Glu Gly Val Glu Val Asp Ser Gln Ala Tyr Asn His Arg
 50 55 60

Trp Lys Arg Asn Val Asp Pro Phe Lys Ala Val Asp Thr Asn Arg Ala
 65 70 75 80

Ser Met Gly Gln Ala Ser Pro Glu Ser Lys Gly Phe Thr Asp Leu Leu
 85 90 95

Leu Asp Asp Gly Gln Asp Asn Asn Thr Gln Ile Glu Glu Asp Thr Asp
 100 105 110

His Asn Tyr Tyr Ile Ser Arg Ile Tyr Gly Pro Ala Asp Ser Ala Ser
 115 120 125

Arg Asp Leu Trp Val Asn Ile Asp Gln Met Glu Lys Asp Lys Val Lys
 130 135 140

Ile His Gly Ile Leu Ser Asn Thr His Arg Gln Ala Ala Arg Val Asn
 145 150 155 160

Leu Ser Phe Asp Phe Pro Phe Tyr Gly His Phe Leu Asn Glu Val Thr
 165 170 175

Val Ala Thr Gly Gly Phe Ile Tyr Thr Gly Glu Val Val His Arg Met
 180 185 190

Leu Thr Ala Thr Gln Tyr Ile Ala Pro Leu Met Ala Asn Phe Asp Pro
 195 200 205

Ser Val Ser Arg Asn Ser Thr Val Arg Tyr Phe Asp Asn Gly Thr Ala
 210 215 220

Leu Val Val Gln Trp Asp His Val His Leu Gln Asp Asn Tyr Asn Leu
 225 230 235 240

Gly Ser Phe Thr Phe Gln Ala Thr Leu Leu Met Asp Gly Arg Ile Ile
 245 250 255

Phe Gly Tyr Lys Glu Ile Pro Val Leu Val Thr Gln Ile Ser Ser Thr
 260 265 270

Asn His Pro Val Lys Val Gly Leu Ser Asp Ala Phe Val Val Val His
 275 280 285

Arg Ile Gln Gln Ile Pro Asn Val Arg Arg Arg Thr Ile Tyr Glu Tyr
 290 295 300

His Arg Val Glu Leu Gln Met Ser Lys Ile Thr Asn Ile Ser Ala Val
 305 310 315 320

Glu Met Thr Pro Leu Pro Thr Cys Leu Gln Phe Asn Gly Cys Gly Pro
 325 330 335
 Cys Val Ser Ser Gln Ile Gly Phe Asn Cys Ser Trp Cys Ser Lys Leu
 340 345 350
 Gln Arg Cys Ser Ser Gly Phe Asp Arg His Arg Gln Asp Trp Val Asp
 355 360 365
 Ser Gly Cys Pro Glu Glu Val Gln Ser Lys Glu Lys Met Cys Glu Lys
 370 375 380
 Thr Glu Pro Gly Glu Thr Ser Gln Thr Thr Thr Ser His Thr Thr
 385 390 395 400
 Thr Met Gln Phe Arg Val Leu Thr Thr Thr Arg Arg Ala Val Thr Ser
 405 410 415
 Gln Met Pro Thr Ser Leu Pro Thr Glu Asp Asp Thr Lys Ile Ala Leu
 420 425 430
 His Leu Lys Asp Ser Gly Ala Ser Thr Asp Asp Ser Ala Ala Glu Lys
 435 440 445
 Lys Gly Gly Thr Leu His Ala Gly Leu Ile Val Gly Ile Leu Ile Leu
 450 455 460
 Val Leu Ile Ile Ala Ala Ile Leu Val Thr Val Tyr Met Tyr His
 465 470 475 480
 His Pro Thr Ser Ala Ala Ser Ile Phe Phe Ile Glu Arg Arg Pro Ser
 485 490 495
 Arg Trp Pro Ala Met Lys Phe Arg Arg Gly Ser Gly His Pro Ala Tyr
 500 505 510
 Ala Glu Val Glu Pro Val Gly Glu Lys Glu Gly Phe Ile Val Ser Glu
 515 520 525
 Gln Cys
 530

<210> 194
 <211> 562
 <212> PRT
 <213> Mus musculus

<400> 194
 Met Asp Arg Ala Gly Arg Leu Gly Ala Gly Leu Arg Gly Leu Cys Val
 1 5 10 15
 Ala Ala Leu Val Leu Val Cys Ala Gly His Gly Gly Arg Arg Glu Asp
 20 25 30
 Gly Gly Pro Ala Cys Tyr Gly Gly Phe Asp Leu Tyr Phe Ile Leu Asp
 35 40 45
 Lys Ser Gly Ser Val Leu His His Trp Asn Glu Ile Tyr Tyr Phe Val
 50 55 60
 Glu Gln Leu Ala His Arg Phe Ile Ser Pro Gln Leu Arg Met Ser Phe
 65 70 75 80
 Ile Val Phe Ser Thr Arg Gly Thr Thr Leu Met Lys Leu Thr Glu Asp
 85 90 95
 Arg Glu Gln Ile Arg Gln Gly Leu Glu Leu Gln Lys Val Leu Pro
 100 105 110
 Gly Gly Asp Thr Tyr Met His Glu Gly Phe Glu Arg Ala Ser Glu Gln
 115 120 125
 Ile Tyr Tyr Glu Asn Ser Gln Gly Tyr Arg Thr Ala Ser Val Ile Ile
 130 135 140
 Ala Leu Thr Asp Gly Glu Leu His Glu Asp Leu Phe Phe Tyr Ser Glu
 145 150 155 160
 Arg Glu Ala Asn Arg Ser Arg Asp Leu Gly Ala Ile Val Tyr Cys Val
 165 170 175
 Gly Val Lys Asp Phe Asn Glu Thr Gln Leu Ala Arg Ile Ala Asp Ser
 180 185 190
 Lys Asp His Val Phe Pro Val Asn Asp Gly Phe Gln Ala Leu Gln Gly
 195 200 205

Ile Ile His Ser Ile Leu Lys Lys Ser Cys Ile Glu Ile Leu Ala Ala
 210 215 220
 Glu Pro Ser Thr Ile Cys Ala Gly Glu Ser Phe Gln Val Val Val Arg
 225 230 235 240
 Gly Asn Gly Phe Arg His Ala Arg Asn Val Asp Arg Val Leu Cys Ser
 245 250 255
 Phe Lys Ile Asn Asp Ser Val Thr Leu Asn Glu Pro Phe Ala Val
 260 265 270
 Glu Asp Thr Tyr Leu Leu Cys Pro Ala Pro Ile Leu Lys Glu Val Gly
 275 280 285
 Met Lys Ala Ala Leu Gln Val Ser Met Asn Asp Gly Leu Ser Phe Ile
 290 295 300
 Ser Ser Ser Val Ile Ile Thr Thr His Cys Ser Asp Gly Ser Ile
 305 310 315 320
 Leu Ala Ile Ala Leu Leu Val Leu Phe Leu Leu Ala Leu Ala Leu
 325 330 335
 Leu Trp Trp Phe Trp Pro Leu Cys Cys Thr Val Ile Ile Lys Glu Val
 340 345 350
 Pro Pro Pro Pro Val Glu Glu Ser Glu Glu Asp Asp Asp Gly Leu
 355 360 365
 Pro Lys Lys Lys Trp Pro Thr Val Asp Ala Ser Tyr Tyr Gly Gly Arg
 370 375 380
 Gly Val Gly Gly Ile Lys Arg Met Glu Val Arg Trp Gly Glu Lys Gly
 385 390 395 400
 Ser Thr Glu Glu Gly Ala Lys Leu Glu Lys Ala Lys Asn Ala Arg Val
 405 410 415
 Lys Met Pro Glu Gln Glu Tyr Glu Phe Pro Glu Pro Arg Asn Leu Asn
 420 425 430
 Asn Asn Met Arg Arg Pro Ser Ser Pro Arg Lys Trp Tyr Ser Pro Ile
 435 440 445
 Lys Gly Lys Leu Asp Ala Leu Trp Val Leu Leu Arg Lys Gly Tyr Asp
 450 455 460
 Arg Val Ser Val Met Arg Pro Gln Pro Gly Asp Thr Gly Arg Cys Ile
 465 470 475 480
 Asn Phe Thr Arg Val Lys Asn Ser Gln Pro Ala Lys Tyr Pro Leu Asn
 485 490 495
 Asn Thr Tyr His Pro Ser Ser Pro Pro Ala Pro Ile Tyr Thr Pro
 500 505 510
 Pro Pro Pro Ala Pro His Cys Pro Pro Pro Ala Pro Ser Ala Pro Thr
 515 520 525
 Pro Pro Ile Pro Ser Pro Pro Ser Thr Leu Pro Pro Pro Pro Gln Ala
 530 535 540
 Pro Pro Pro Asn Arg Ala Pro Pro Pro Ser Arg Pro Pro Pro Arg Pro
 545 550 555 560
 Ser Val

<210> 195
 <211> 2565
 <212> DNA
 <213> Homo sapiens

<400> 195

tcgcgatgt	gctgcgcctg	ttgctggcct	ggggggccgc	agggcccaca	ctggggccagg	60
accctgggc	tgctgagccc	cgtgccgcct	ggggccccag	cagctgctac	gctcttcc	120
cacggcgccg	cacettcccg	gaggcctggc	gggcctggc	cgagctgggg	ggcacctgg	180
ccactcctcg	gaccggccag	gaggcccagc	gtgtggacag	cctgggtgggt	gcgggcccag	240
ccagggcggt	gctgtggat	gggcgtgcagc	ggcaggcccg	gcaatgccag	ctgcagcgcc	300
cactgcgcgg	tttcacgtgg	accacagggg	accaggacac	ggctttcacc	aactggggcc	360
agccagcctc	tggaggcccc	tgcggccccc	agcgctgtgt	ggccctggag	gcaagtggcg	420
agcaccgctg	gctggagggc	tcgtcacgc	tggctgtcga	cggctacctg	tgccagtttgc	480

gcttcgaggg	cgccctgccc	gcgctgcaag	atgaggcggg	ccaggccggc	ccagccgtgt
ataccacgcc	cttccacctg	gtctccacag	agtttgagtg	gctgcccttc	ggctctgtgg
ccgctgtgca	gtgccaggct	ggcaggggag	cctctctgct	ctgcgtgaag	cagcctgagg
gaggtgtggg	ctggcacgg	gctggggccc	tgtgcctggg	gactggctgc	agccctgaca
acgggggctg	cgaacacgaa	tgtgtggagg	aggtggatgg	tcacgtgtcc	tggcgtgcga
ctgagggctt	ccggctggca	gcagacgggc	gcagttgcga	ggaccctgt	gcccaggctc
cgtgcgagca	gcagtgtgag	cccggggc	cacaaggcta	cagctccac	tgtcgcctgg
gtttccggcc	agcggaggat	gatccgcacc	gctgtgtgga	cacagatgag	tgccagattg
ccggtgtgtg	ccagcagatg	tgtgtcaact	acgttggtgg	cttcgagtgt	tatttagcgt
agggacatga	gctggaggct	gatggcatca	gctgcagccc	tgcagggggcc	atgggtgccc
aggctccca	ggacctcgga	gatgagttgc	tggatgacgg	ggaggatgag	gaagatgaag
acgaggcctg	gaaggccttc	aacggggct	ggacggagat	gcctggatc	ctgtggatgg
agcctacgca	gcccgcgtac	tttgcctgg	cctatacgacc	gagcttccca	gaggacagag
agccacagat	accctacccg	gagcccacct	ggccaccccc	gctcagtgc	cccagggtcc
cctaccactc	ctcagtgtc	tcggcaccc	ggcctgtgg	ggtctctgc	acgcataccca
cactgccttc	tgcccaccag	cctcctgtga	tccctgccc	acacccagct	ttgtcccggt
accaccagat	ccccgtgtac	gcagccaact	atccagatct	gcctctgc	taccaaccccg
gtattctctc	tgtctctcat	tcagcacagc	ctcctgccc	ccagccccct	atgatctcaa
ccaaatatcc	ggagctctc	cctgcccacc	agtccccat	gttccagac	acccgggtcg
ctggcaccca	gaccaccact	catttgcctg	gaatcccacc	taaccatgc	cctctggtca
ccacccctcg	tgcccagcta	ccccctcaag	ccccagatgc	ccttgcctc	agaacccagg
ccacccagct	tcccattatc	ccaaactgccc	agccctctct	gaccacccacc	tccaggtccc
ctgtgtctcc	tgcccatcaa	atctctgtgc	ctgctgccc	ccagcccgca	gccctcccc
ccctcctgcc	ctctcagagc	cccactaacc	agacctcacc	catcagccct	acacatcccc
attccaaagc	ccccccaaatc	ccaaggaaag	atggcccccag	tcccaagttg	gccctgtggc
tgccctcacc	agctccca	gcagcccaa	cagccctggg	ggaggctgg	cttgcgcgagc
acagccagag	ggatgaccgg	tggctgtgg	tggcactct	ggtgccaacg	tgtgtcttt
ttgtggctct	gtttgcactg	ggcatctgt	actgcaccccg	ctgtggcccc	catgcaccca
acaagcgcac	cactgactgc	tatgcgtgg	tatccatgc	tgggagcaag	agcccaacag
aacccatgcc	ccccaggggc	agcctcacag	gggtgcagac	ctgcagaacc	agcgtgtgt
ggggtgtcaga	ccccccctcat	ggagtatggg	ggcgtggaca	catggccggg	gctgcaccag
ggacccatgg	gggctgccc	gctggacaga	tggcttctg	ctcccccaggc	ccagccaggg
tcctctctca	accactagac	ttggctctca	ggaactctgc	ttcctggccc	agcgctcggt
accaaggata	caccaaagcc	cttaagacct	cagggggcgg	gtgctgggt	cttctccaat
aaatgggggtg	tcaaccttaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaa	2565

<210> 196
<211> 757
<212> PRT
<213> *Homo sapiens*

<400> 196
 Met Leu Leu Arg Leu Leu Leu Ala Trp Ala Ala Ala Gly Pro Thr Leu
 1 5 10 15
 Gly Gln Asp Pro Trp Ala Ala Glu Pro Arg Ala Ala Cys Gly Pro Ser
 20 25 30
 Ser Cys Tyr Ala Leu Phe Pro Arg Arg Arg Thr Phe Leu Glu Ala Trp
 35 40 45
 Arg Ala Cys Arg Glu Leu Gly Gly Asp Leu Ala Thr Pro Arg Thr Pro
 50 55 60
 Glu Glu Ala Gln Arg Val Asp Ser Leu Val Gly Ala Gly Pro Ala Ser
 65 70 75 80
 Arg Leu Leu Trp Ile Gly Leu Gln Arg Gln Ala Arg Gln Cys Gln Leu
 85 90 95
 Gln Arg Pro Leu Arg Gly Phe Thr Trp Thr Thr Gly Asp Gln Asp Thr
 100 105 110
 Ala Phe Thr Asn Trp Ala Gln Pro Ala Ser Gly Gly Pro Cys Pro Ala
 115 120 125
 Gln Arg Cys Val Ala Leu Glu Ala Ser Gly Glu His Arg Trp Leu Glu
 130 135 140
 Gly Ser Cys Thr Leu Ala Val Asp Gly Tyr Leu Cys Gln Phe Gly Phe

145	150	155	160												
Glu	Gly	Ala	Cys	Pro	Ala	Leu	Gln	Asp	Glu	Ala	Gly	Gln	Ala	Gly	Pro
165									170						175
Ala	Val	Tyr	Thr	Thr	Pro	Phe	His	Leu	Val	Ser	Thr	Glu	Phe	Glu	Trp
180									185						190
Leu	Pro	Phe	Gly	Ser	Val	Ala	Ala	Val	Gln	Cys	Gln	Ala	Gly	Arg	Gly
195									200					205	
Ala	Ser	Leu	Leu	Cys	Val	Lys	Gln	Pro	Glu	Gly	Gly	Val	Gly	Trp	Ser
210						215						220			
Arg	Ala	Gly	Pro	Leu	Cys	Leu	Gly	Thr	Gly	Cys	Ser	Pro	Asp	Asn	Gly
225						230				235					240
Gly	Cys	Glu	His	Glu	Cys	Val	Glu	Glu	Val	Asp	Gly	His	Val	Ser	Cys
									245		250				255
Arg	Cys	Thr	Glu	Gly	Phe	Arg	Leu	Ala	Ala	Asp	Gly	Arg	Ser	Cys	Glu
			260			265						270			
Asp	Pro	Cys	Ala	Gln	Ala	Pro	Cys	Glu	Gln	Gln	Cys	Glu	Pro	Gly	Gly
			275			280						285			
Pro	Gln	Gly	Tyr	Ser	Cys	His	Cys	Arg	Leu	Gly	Phe	Arg	Pro	Ala	Glu
			290			295					300				
Asp	Asp	Pro	His	Arg	Cys	Val	Asp	Thr	Asp	Glu	Cys	Gln	Ile	Ala	Gly
			305			310					315				320
Val	Cys	Gln	Gln	Met	Cys	Val	Asn	Tyr	Val	Gly	Gly	Phe	Glu	Cys	Tyr
									325		330				335
Cys	Ser	Glu	Gly	His	Glu	Leu	Glu	Ala	Asp	Gly	Ile	Ser	Cys	Ser	Pro
						340				345					350
Ala	Gly	Ala	Met	Gly	Ala	Gln	Ala	Ser	Gln	Asp	Leu	Gly	Asp	Glu	Leu
						355			360			365			
Leu	Asp	Asp	Gly	Glu	Asp	Glu	Glu	Asp	Glu	Asp	Glu	Ala	Trp	Lys	Ala
			370			375						380			
Phe	Asn	Gly	Gly	Trp	Thr	Glu	Met	Pro	Gly	Ile	Leu	Trp	Met	Glu	Pro
			385			390					395				400
Thr	Gln	Pro	Pro	Asp	Phe	Ala	Leu	Ala	Tyr	Arg	Pro	Ser	Phe	Pro	Glu
						405				410					415
Asp	Arg	Glu	Pro	Gln	Ile	Pro	Tyr	Pro	Glu	Pro	Thr	Trp	Pro	Pro	Pro
			420			425									430
Leu	Ser	Ala	Pro	Arg	Val	Pro	Tyr	His	Ser	Ser	Val	Leu	Ser	Val	Thr
						435			440			445			
Arg	Pro	Val	Val	Val	Ser	Ala	Thr	His	Pro	Thr	Leu	Pro	Ser	Ala	His
						450			455			460			
Gln	Pro	Pro	Val	Ile	Pro	Ala	Thr	His	Pro	Ala	Leu	Ser	Arg	Asp	His
			465			470					475				480
Gln	Ile	Pro	Val	Ile	Ala	Ala	Asn	Tyr	Pro	Asp	Leu	Pro	Ser	Ala	Tyr
						485					490				495
Gln	Pro	Gly	Ile	Leu	Ser	Val	Ser	His	Ser	Ala	Gln	Pro	Pro	Ala	His
				500					505						510
Gln	Pro	Pro	Met	Ile	Ser	Thr	Lys	Tyr	Pro	Glu	Leu	Phe	Pro	Ala	His
			515			520					525				
Gln	Ser	Pro	Met	Phe	Pro	Asp	Thr	Arg	Val	Ala	Gly	Thr	Gln	Thr	Thr
			530			535					540				
Thr	His	Leu	Pro	Gly	Ile	Pro	Pro	Asn	His	Ala	Pro	Leu	Val	Thr	Thr
			545			550					555				560
Leu	Gly	Ala	Gln	Leu	Pro	Pro	Gln	Ala	Pro	Asp	Ala	Leu	Val	Leu	Arg
						565				570					575
Thr	Gln	Ala	Thr	Gln	Leu	Pro	Ile	Ile	Pro	Thr	Ala	Gln	Pro	Ser	Leu
						580			585			590			
Thr	Thr	Thr	Ser	Arg	Ser	Pro	Val	Ser	Pro	Ala	His	Gln	Ile	Ser	Val
						595			600			605			
Pro	Ala	Ala	Thr	Gln	Pro	Ala	Ala	Leu	Pro	Thr	Leu	Leu	Pro	Ser	Gln
			610			615						620			
Ser	Pro	Thr	Asn	Gln	Thr	Ser	Pro	Ile	Ser	Pro	Thr	His	Pro	His	Ser
			625			630					635				640

Lys Ala Pro Gln Ile Pro Arg Glu Asp Gly Pro Ser Pro Lys Leu Ala
 645 650 655
 Leu Trp Leu Pro Ser Pro Ala Pro Thr Ala Ala Pro Thr Ala Leu Gly
 660 665 670
 Glu Ala Gly Leu Ala Glu His Ser Gln Arg Asp Asp Arg Trp Leu Leu
 675 680 685
 Val Ala Leu Leu Val Pro Thr Cys Val Phe Leu Val Val Leu Leu Ala
 690 695 700
 Leu Gly Ile Val Tyr Cys Thr Arg Cys Gly Pro His Ala Pro Asn Lys
 705 710 715 720
 Arg Ile Thr Asp Cys Tyr Arg Trp Val Ile His Ala Gly Ser Lys Ser
 725 730 735
 Pro Thr Glu Pro Met Pro Pro Arg Gly Ser Leu Thr Gly Val Gln Thr
 740 745 750
 Cys Arg Thr Ser Val
 755

<210> 197
<211> 2973
<212> DNA
<213> Homo sapiens

<400> 197

gccccttgcg	cctccttgc	cggccgcgcc	cagccccggcg	tcccgagcag	cgcaggggag	60
gatcccccgcg	cagtgacc	ggagccacca	cagactctgg	gaggctcg	ggctggagca	120
gcaggcagct	ccccgcagct	ccggcgctt	ccaggcagct	ctctgagcc	tgccagaggc	180
ccggccgc	atccccagcc	ccgagccatg	atgaagac	ttgtccagcg	gaactgcacg	240
ctcagtgtgc	ccgc	aaaaaa	ctcataccgc	atgtgtgtc	tgggtgc	300
aagagctcca	tcgtgtctcg	cttc	cttcaat	ggccg	tttgg	360
atcgaggact	tccaccgtaa	ggtatacaac	atccgcgc	acatgtacca	gctcgacatc	420
ctggatacct	ctggcaacca	ccc	tttcccc	ccatgc	ggctgtccat	480
gatgtttca	tcctgtgtt	cagc	cttggat	aaccgg	cgttatg	540
cttcagaagc	agatc	cttgg	ggtcaagtcc	tgc	cttgaaga	600
gagctgccc	tgg	tcat	tgc	accac	gcaagacaa	660
cccacccac	agg	cc	ggact	gcg	gagctgt	720
tcggccaaga	aga	acac	cg	gac	actgcgc	780
ctggcacac	agat	gag	cc	ca	gttgc	840
ttccacccca	ggcc	cttgc	cat	gccc	gcgc	900
tcgccttcg	ccgc	ccccc	cag	gttgc	actatcaa	960
cttcggaa	g	ccagg	cc	gat	ttccatg	1020
ggggcggggc	ttgg	ccatg	cc	gg	gttgc	1080
ccccacccag	g	cccg	gg	gg	ccact	1140
ccggcgctg	gc	cttccc	cc	gg	gttgc	1200
cacagctct	tgg	tgtt	atc	gg	catctgc	1260
ttaggcagag	act	caag	cac	tttgg	tttgc	1320
aggggtgagg	att	gtcg	catat	gg	aaaatg	1380
cacagaaggc	ca	gat	ggaa	gg	tttgc	1440
gtggcagctg	gg	gaa	actt	gg	atgaaaatg	1500
tctgcacccc	ct	cc	ccac	cc	tttgc	1560
gagccagtgg	act	ctgt	tgaa	gg	tttgc	1620
cttagaccac	g	cc	ccac	cc	tttgc	1680
cgacagttgt	gtt	ttgt	gttgc	gg	tttgc	1740
gaaatcattg	tac	tttt	actgt	tttgc	tttgc	1800
agatccacgg	c	cc	ccac	cc	tttgc	1860
cctgtttgca	g	cc	ccac	cc	tttgc	1920
caagcgtggg	gt	gg	ccagg	gg	tttgc	1980
accaccgaga	ct	ccgg	gggg	gg	tttgc	2040
ttcagggtac	ag	ctcc	ac	gg	tttgc	2100
ttattaagca	c	ctact	gggt	gg	tttgc	2160
gtcctggcct	ct	ggcc	cccc	gg	tttgc	2220
gcggggagga	gc	ag	ccaga	gg	tttgc	2280

gggcgggtct	tctccttgc	ccgggattg	ggctatgcg	ggtaccacca	tgtactcagg	2340
catgggtgggt	tttgaaccca	taaaccaaag	gcccttgc	tcagcttta	acaagtatat	2400
tttgtatccc	aatctctcta	aacatattga	agtttttaggg	ccctaaggaa	ccttagtgat	2460
cttctattgg	gtctttctga	gtttagaga	gggtaagtaa	cttcctccag	gtcacacagc	2520
aagtctgtgg	gtggcagaag	caagctagcg	ctgggcattc	agtacatacc	acgatgtct	2580
ccctctcttg	atgcgtggcc	cctggggcct	tcagggctt	gggacatctt	gtcctcaacc	2640
ctctccctag	atcagtcgt	gagggtccct	gtagatattg	tgtacaccat	gccccatgtat	2700
atacaagtac	acacagatgt	acacacatgt	gtacacatgc	tccagcccc	gctctgcata	2760
cctgcacctg	caccccagcc	ttggggccctg	cctgcgtctg	tgctcaaagc	agcagctcca	2820
acccctgcctc	tgtcccctc	cccacccact	gcctgagcct	tctgagcaga	ccaggtacct	2880
tggctgcacc	ggtgtgtggc	ccgcctcac	ccaggcacag	ccccggccacc	atggatctcc	2940
tggtacacta	tcaataaaaag	tgggtttgtt	aca			2973

<210> 198
<211> 266
<212> PRT
<213> Homo sapiens

<400> 198															
Met	Met	Lys	Thr	Leu	Ser	Ser	Gly	Asn	Thr	Leu	Ser	Val	Pro	Ala	
1				5				10					15		
Lys	Asn	Ser	Tyr	Arg	Met	Val	Val	Leu	Gly	Ala	Ser	Arg	Val	Gly	Lys
			20					25					30		
Ser	Ser	Ile	Val	Ser	Arg	Phe	Leu	Asn	Gly	Arg	Phe	Glu	Asp	Gln	Tyr
		35						40				45			
Thr	Pro	Thr	Ile	Glu	Asp	Phe	His	Arg	Lys	Val	Tyr	Asn	Ile	Arg	Gly
		50					55				60				
Asp	Met	Tyr	Gln	Leu	Asp	Ile	Leu	Asp	Thr	Ser	Gly	Asn	His	Pro	Phe
	65					70				75				80	
Pro	Ala	Met	Arg	Arg	Leu	Ser	Ile	Leu	Thr	Gly	Asp	Val	Phe	Ile	Leu
							85			90			95		
Val	Phe	Ser	Leu	Asp	Asn	Arg	Glu	Ser	Phe	Asp	Glu	Val	Lys	Arg	Leu
			100					105					110		
Gln	Lys	Gln	Ile	Leu	Glu	Val	Lys	Ser	Cys	Leu	Lys	Asn	Lys	Thr	Lys
		115						120					125		
Glu	Ala	Ala	Glu	Leu	Pro	Met	Val	Ile	Cys	Gly	Asn	Lys	Asn	Asp	His
		130						135			140				
Gly	Glu	Leu	Cys	Arg	Gln	Val	Pro	Thr	Thr	Glu	Ala	Glu	Leu	Leu	Val
	145						150			155			160		
Ser	Gly	Asp	Glu	Asn	Cys	Ala	Tyr	Phe	Glu	Val	Ser	Ala	Lys	Lys	Asn
			165					170					175		
Thr	Asn	Val	Asp	Glu	Met	Phe	Tyr	Val	Leu	Phe	Ser	Met	Ala	Lys	Leu
		180					185						190		
Pro	His	Glu	Met	Ser	Pro	Ala	Leu	His	Arg	Lys	Ile	Ser	Val	Gln	Tyr
		195					200						205		
Gly	Asp	Ala	Phe	His	Pro	Arg	Pro	Phe	Cys	Met	Arg	Arg	Val	Lys	Glu
		210					215						220		
Met	Asp	Ala	Tyr	Gly	Met	Val	Ser	Pro	Phe	Ala	Arg	Arg	Pro	Ser	Val
	225						230				235			240	
Asn	Ser	Asp	Leu	Lys	Tyr	Ile	Lys	Ala	Lys	Val	Leu	Arg	Glu	Gly	Gln
			245					250					255		
Ala	Arg	Glu	Arg	Asp	Lys	Cys	Thr	Ile	Gln						
		260						265							

<210> 199
<211> 2159
<212> DNA
<213> Homo sapiens

<400> 199
ggcggcggca tggcgagggtt cccgaaggcc gacctggccg ctgcaggagt tatgttactt 60

tgccacttct tcacggacca gtttcagttc gccgatggga aaccggaga ccaaattcctt	120
gattggcagt atggagttac tcagcccttc cctcacacag aggaggaggt ggaagtttat	180
tcacacgcgt acagccacag gtggaaaaga aacttggact ttctcaaggc ggttagacacg	240
aaccgagcaa gcgtcgccca agactctctt gagcccagaa gcttcacaga cctgctgt	300
gatgatgggc aggacaataa cactcagatc gaggaggata cagaccacaa ttactatata	360
tctcaaatat atggtccatc tgattctgcc agccgggatt tatgggtgaa catagaccaa	420
atggaaaaag ataaagtgaa gattcatgga atattgtcca atactcatcg gcaagctgc	480
agagtgaatc tgtccttcga ttttccattt tatggccact tcctacgtga aatcactgt	540
gcaaccgggg gtttcatata cactggagaa gtcgtacatc gaatgctaacc agccacacag	600
tacatagcac cttaatggc aaatttcgtat cccagtgtat ccagaaattc aactgtcaga	660
tatTTTgata atggcacagc acttgtggc cagtgggacc atgtacatct ccaggataat	720
tataacctgg gaagcttcac attccaggca accctgctca tggatggacg aatcatctt	780
ggatacaaaag aaattcctgt cttgtcaca cagataagtt caaccaatca tccagtgaaa	840
gtcgactgt ccgatgcatt tgtcggtgc cacaggatcc aacaaattcc caatgttgcg	900
agaagaacaa ttatgaata ccaccggata gagctacaaa tgtcaaaaat taccaacatt	960
tcggctgtgg agatgacccc attacccaca tgcctccagt ttaacagatg tggccctgt	1020
gtatcttc agattggctt caactgcagt tggtgtagta aacttcaaag atgttccagt	1080
ggatttgate gtcatcgca ggactgggtg gacagtggat gcccgtgaaga gtcaaaagag	1140
aagatgtgtg agaatacaga accagtggaa acttcttcga gaaccaccac aaccatagga	1200
gchgacaacca cccagtttagt ggtcttaact accaccagaa gagcagtgc ttctcagtt	1260
cccaccagcc tccctacaga agatgatacc aagatagcac tacatctaaa agataatgga	1320
gcttctacag atgacagtgc agctgagaag aaagggggaa ccctccacgc tggcctcatc	1380
gttggaatcc tcatcctgtt cctcattgtt ggcacagcca ttcttgcgatc agtctatatg	1440
tatcaccacc caacatcagc agccagcatc ttctttattt agagacgccc aagcagatgg	1500
cctgcgtatca agtttagaag aggctctggc catcctgcct atgctgaagt tgaaccagtt	1560
ggagagaaaag aaggctttat tttatcagag cagtactgg ttacaggtt ttaagactaa aattttgcct atacctttaa cagaacaaca	1620
caaacacaca cacaacaag ctctaaagctg ctgtacatc aaaaaaaaaactaa aacttataca gacaaacaaa	1680
caagtcagc ccaggaaaca aaggtaaac tacactgaac atagaattcc ctatggat gtcatctata gttcactcgg aacatctccc	1740
gtggactttat ctgaagtatg acaagattat aatgcttttgc gcttaggtgc agggttgcaaa	1800
aggatcaga aaaaaaaaaat cataataaaag ctttagttca tgagggatcg acaccttgg	1860
ttcaaatgtt ctctgtatgc tcaaagataa ctgttttcca aagcctgaac cctttactc	1920
aaaagagcaa tgatgaatgt ctcaagattt ctaagaaaa cagcccatgc aagagtgaga	1980
acaaacacaa aataagagat ttctacatt ttcaaaaaaa aaaaaaaaaa aaaaaaaaaa	2040
	2100
	2159

<210> 200
 <211> 529
 <212> PRT
 <213> Homo sapiens

<400> 200
 Met Ala Arg Phe Pro Lys Ala Asp Leu Ala Ala Gly Val Met Leu
 1 5 10 15
 Leu Cys His Phe Phe Thr Asp Gln Phe Gln Phe Ala Asp Gly Lys Pro
 20 25 30
 Gly Asp Gln Ile Leu Asp Trp Gln Tyr Gly Val Thr Gln Ala Phe Pro
 35 40 45
 His Thr Glu Glu Glu Val Glu Val Asp Ser His Ala Tyr Ser His Arg
 50 55 60
 Trp Lys Arg Asn Leu Asp Phe Leu Lys Ala Val Asp Thr Asn Arg Ala
 65 70 75 80
 Ser Val Gly Gln Asp Ser Pro Glu Pro Arg Ser Phe Thr Asp Leu Leu
 85 90 95
 Leu Asp Asp Gly Gln Asp Asn Asn Thr Gln Ile Glu Glu Asp Thr Asp
 100 105 110
 His Asn Tyr Tyr Ile Ser Arg Ile Tyr Gly Pro Ser Asp Ser Ala Ser
 115 120 125
 Arg Asp Leu Trp Val Asn Ile Asp Gln Met Glu Lys Asp Lys Val Lys
 130 135 140
 Ile His Gly Ile Leu Ser Asn Thr His Arg Gln Ala Ala Arg Val Asn

145	150	155	160
Leu Ser Phe Asp Phe Pro Phe Tyr Gly His	Phe Leu Arg Glu Ile Thr		
165	170	175	
Val Ala Thr Gly Gly Phe Ile Tyr Thr Gly Glu Val Val His Arg Met			
180	185	190	
Leu Thr Ala Thr Gln Tyr Ile Ala Pro Leu Met Ala Asn Phe Asp Pro			
195	200	205	
Ser Val Ser Arg Asn Ser Thr Val Arg Tyr Phe Asp Asn Gly Thr Ala			
210	215	220	
Leu Val Val Gln Trp Asp His Val His Leu Gln Asp Asn Tyr Asn Leu			
225	230	235	240
Gly Ser Phe Thr Phe Gln Ala Thr Leu Leu Met Asp Gly Arg Ile Ile			
245	250	255	
Phe Gly Tyr Lys Glu Ile Pro Val Leu Val Thr Gln Ile Ser Ser Thr			
260	265	270	
Asn His Pro Val Lys Val Gly Leu Ser Asp Ala Phe Val Val Val His			
275	280	285	
Arg Ile Gln Gln Ile Pro Asn Val Arg Arg Arg Thr Ile Tyr Glu Tyr			
290	295	300	
His Arg Val Glu Leu Gln Met Ser Lys Ile Thr Asn Ile Ser Ala Val			
305	310	315	320
Glu Met Thr Pro Leu Pro Thr Cys Leu Gln Phe Asn Arg Cys Gly Pro			
325	330	335	
Cys Val Ser Ser Gln Ile Gly Phe Asn Cys Ser Trp Cys Ser Lys Leu			
340	345	350	
Gln Arg Cys Ser Ser Gly Phe Asp Arg His Arg Gln Asp Trp Val Asp			
355	360	365	
Ser Gly Cys Pro Glu Glu Ser Lys Glu Lys Met Cys Glu Asn Thr Glu			
370	375	380	
Pro Val Glu Thr Ser Ser Arg Thr Thr Thr Thr Ile Gly Ala Thr Thr			
385	390	395	400
Thr Gln Phe Arg Val Leu Thr Thr Thr Arg Arg Ala Val Thr Ser Gln			
405	410	415	
Phe Pro Thr Ser Leu Pro Thr Glu Asp Asp Thr Lys Ile Ala Leu His			
420	425	430	
Leu Lys Asp Asn Gly Ala Ser Thr Asp Asp Ser Ala Ala Glu Lys Lys			
435	440	445	
Gly Gly Thr Leu His Ala Gly Leu Ile Val Gly Ile Leu Ile Leu Val			
450	455	460	
Leu Ile Val Ala Thr Ala Ile Leu Val Thr Val Tyr Met Tyr His His			
465	470	475	480
Pro Thr Ser Ala Ala Ser Ile Phe Phe Ile Glu Arg Arg Pro Ser Arg			
485	490	495	
Trp Pro Ala Met Lys Phe Arg Arg Gly Ser Gly His Pro Ala Tyr Ala			
500	505	510	
Glu Val Glu Pro Val Gly Glu Lys Glu Gly Phe Ile Val Ser Glu Gln			
515	520	525	
Cys			

<210> 201
 <211> 2608
 <212> DNA
 <213> Homo sapiens

<400> 201

gaggtagggg ctgagagagg cttgaggtgg aagtgggggt cggcactct gacctggtcg	60
aggagggct agggtttcaa ccggggacag agtctaggtg agctgggct gggagctatt	120
agcgtagagg atccgggttc gggtgcctg gcgagggctc cagcatcaca ggcggcgct	180
gcggcgcag agcggaaatg cagcggcttg gggccaccct gctgtgcctg ctgctggcgg	240
cggcggtccc cacggcccccc gcgcccgctc cgacggcgac ctccggctcca gtcaagcccc	300

gccccggctct	cagctacccg	caggaggagg	ccaccctcaa	tgagatgttc	cgcgagggtt	360
aggaactgat	ggaggacacg	cagcacaaat	tgcgcagcgc	ggtgaaagag	atggaggcag	420
aagaagctgc	tgctaaagca	tcatcagaag	tgaacctggc	aaacttacct	cccagctatc	480
acaatgagac	caacacagac	acgaagggtt	gaaataatac	catccatgtg	caccgagaaa	540
ttcacaagat	aaccaacaac	cagactggac	aatggtctt	ttcagagaca	gttatacacat	600
ctgtggaga	cgaagaaggc	agaaggagcc	acgagtgcatt	catcgacgag	gactgtggc	660
ccagcatgt	ctgccagttt	gccagcttcc	agtacacctg	ccagccatgc	cggggccaga	720
ggatgctctg	cacccggac	agttagtgc	gtggagacca	gctgtgtgc	tggggtcact	780
gcaccaaaat	ggccaccagg	ggcagcaatg	ggaccatctg	tgacaaccag	agggactgcc	840
agccgggct	gtgctgtgcc	ttccagagag	gcctgctgtt	ccctgtgtc	acacccctgc	900
ccgtggaggg	cgagcttgc	catgaccccg	ccagccggct	tctggacctc	atcacctgg	960
agctagagcc	tgtatggagcc	ttgaccgt	gcccctgtc	cagtggcctc	ctctgcccagc	1020
cccacagcca	cagcctgtgt	tatgtgtgca	agccgacctt	cgtggggagc	cgtgaccaag	1080
atggggagat	cctgctgccc	agagaggtcc	ccgatgagta	tgaagttggc	agcttcatgg	1140
aggagggtcg	ccaggagctg	gaggacctgg	agaggagcct	gactgaagag	atggcgctgg	1200
gggagcctgc	ggctgccc	gctgactgc	tgggagggga	agagatttag	atctggacca	1260
ggctgtgggt	agatgtcaa	tagaaatagc	taatttattt	ccccaggtgt	gtgctttagg	1320
cgtggcgtga	ccaggctct	tcctacatct	tcttcccagt	aagtttcccc	tctggcttga	1380
cagcatgagg	tgttgtgc	ttgttcagct	cccccaggct	gttctccagg	cttcacagtc	1440
tggtgcttgg	gagagtcaagg	cagggttaaa	ctgcaggagc	agtttgcac	ccctgtccag	1500
attattggct	gcttgcctc	taccagttgg	cagacagccg	tttgcattac	atggcttga	1560
taatttgggt	aggggaggag	atgaaacaa	tgtggagtt	ccctctgatt	gtttttgggg	1620
aaatgtggag	aaagatgccc	tgctttgcaa	acatcaacct	ggcaaaaatg	caacaaatga	1680
atttccacg	cagttcttc	catggcata	ggtaagctgt	gccttcagct	gttcagatg	1740
aaatgttctg	ttcacccctgc	attacatgtg	tttatttcattc	cagcagtgtt	gctcagctcc	1800
tacccctgtg	ccagggcagc	atttcata	ccaaagatcaa	ttccctctc	cagcacagcc	1860
tggggagggg	gtcattgttc	tcctcgtcca	tcagggatct	cagaggctca	gagactgcaa	1920
gctgttgc	caagtacac	agctagtgaa	gaccagagca	gttcatctg	gttgcactc	1980
taagctcagt	gctctctcca	ctaccccaca	ccagccttgg	tgccacccaa	agtgcctccc	2040
aaaaggaagg	agaatggat	tttctttt	aggcatgcac	atctggaaatt	aaggtaaaac	2100
taattctcac	atccctctaa	aagtaaaacta	ctgttaggaa	cagcagtgtt	ctcacagtgt	2160
ggggcagccg	tccttctaat	gaagacaatg	atattgacac	tgtccctctt	tggcagggtgc	2220
attagtaact	ttgaaaggtt	tatgactgag	cgtagcatac	aggttaaacct	gcagaaacag	2280
tacccctgtt	attgttagggc	gaggattata	aatgaaattt	gaaaaatcac	ttagcagcaa	2340
ctgaagacaa	ttatcaacca	cgtggagaaa	atcaaaccga	gcagggctgt	gtgaaacatg	2400
gttgtaatat	gcgactgcga	acactgaact	ctacgccact	ccacaaatga	tgtttcagg	2460
tgtcatggac	tgttgccacc	atgtattcat	ccagagttct	taaagttaaa	agttgcacat	2520
gattgtataa	gcatgcttc	tttgagtttt	aaattatgta	taaacataag	ttgcatttag	2580
aaatcaagca	taaatcactt	caactgct				2608

<210> 202

<211> 350

<212> PRT

<213> Homo sapiens

<400> 202

Met	Gln	Arg	Leu	Gly	Ala	Thr	Leu	Leu	Cys	Leu	Leu	Leu	Ala	Ala	Ala
1						5			10				15		
Val	Pro	Thr	Ala	Pro	Ala	Pro	Ala	Pro	Thr	Ala	Thr	Ser	Ala	Pro	Val
						20			25				30		
Lys	Pro	Gly	Pro	Ala	Leu	Ser	Tyr	Pro	Gln	Glu	Glu	Ala	Thr	Leu	Asn
						35			40				45		
Glu	Met	Phe	Arg	Glu	Val	Glu	Glu	Leu	Met	Glu	Asp	Thr	Gln	His	Lys
						50			55				60		
Leu	Arg	Ser	Ala	Val	Glu	Glu	Met	Glu	Ala	Glu	Glu	Ala	Ala	Ala	Lys
						65			70				75		80
Ala	Ser	Ser	Glu	Val	Asn	Leu	Ala	Asn	Leu	Pro	Pro	Ser	Tyr	His	Asn
						85			90				95		
Glu	Thr	Asn	Thr	Asp	Thr	Lys	Val	Gly	Asn	Asn	Thr	Ile	His	Val	His
						100			105				110		
Arg	Glu	Ile	His	Lys	Ile	Thr	Asn	Asn	Gln	Thr	Gly	Gln	Met	Val	Phe

115	120	125
Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu	Gly Arg Arg Ser	
130	135	140
His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln		
145	150	155
Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met		
165	170	175
Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp		
180	185	190
Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys		
195	200	205
Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg		
210	215	220
Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu		
225	230	235
Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu		
245	250	255
Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu		
260	265	270
Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe		
275	280	285
Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val		
290	295	300
Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu		
305	310	315
Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu		
325	330	335
Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile		
340	345	350

<210> 203

<211> 7540

<212> DNA

<213> Homo sapiens

<400> 203

gtgagttacg	ccactatggc	ggacggggca	ccccggcccc	agctttaccg	cagcgtctcg	60
ttcaagctgc	tggagcgctg	gagcggggca	cccgggctga	gggaggagga	cacggacacc	120
cccggttga	ggcacgcgc	ctcgccgg	ccgaccacgg	ctgccccggg	ccagccctct	180
ccgcgcgtgt	ccaagctggc	gtctggggcc	ctggccgccc	ccgcgcagcc	gcgccccgctc	240
cgcagctct	cgcgtcggt	tcgcccagctc	tcccgccgct	tcgacgcgcc	gcgtctggac	300
gacggctccg	ctgggacccg	agacggaggc	gtcttacccg	cgccgcgggaa	agaagcggcc	360
gagggcccaag	cgcgaggagc	ctggcccagc	gtcaccgaga	tgcgcaagct	cttcggcggt	420
cctggctcca	ggagggcccaag	cgcccactct	gaatccccag	gaacgcggag	ccccgacgggt	480
gccgcgtggg	agcctccggc	tcgggagtcg	cggcagccac	cgacgcacc	ccctcggaca	540
tgcttcccccc	tggcggtct	gcgttccggcg	cgccccctga	ccggggccggaa	gaccgaaggg	600
aggctgcgcc	ggccgcagca	gcaacaggag	cgggcgcagc	gtccagcgga	tgtttacat	660
tcttggcata	tcttctccca	accgcaggcc	ggggccccggg	cctcctgtctc	cttcctccctcc	720
atcgcgcct	cctatcctgt	cagccgcagt	cgtgtgtcca	gttcacgcgaa	ggaggaagag	780
gagggcccgcc	cgcagctgcc	tggagcccgag	atgcggccct	accacggccgg	ccactcctcg	840
ggcagtgacg	acgaccgaga	cggtgagggc	ggccaccgct	ggggagggag	gcccgggctc	900
aggcctggaa	gctccctatt	ggatcaggac	tgaggcctg	acagtgtatgg	gttaaatcta	960
agcagcatga	actcagcagg	gttttctggg	agccctgagc	ccccaaatc	tccaagagcc	1020
cctagagaag	aaggactccg	ggagtgggg	atgggtctc	cgcctcggt	ccaggtccc	1080
caggaggac	ttcggcctat	gtctgactct	gtgggaggag	tttccgtgt	ggccaagggt	1140
agctttccct	cgtacctggc	cagccccgca	ggtccccgca	gtagcagccg	ttattccagc	1200
acggagaccc	tcaaggacga	cgacctatgg	tctagtaggg	gttctgggg	ctggggcggtg	1260
taccgctccc	ctagcttgg	agctggggaa	gggcctctgc	ggtcccaggc	tcaaacccgt	1320
gccaaaggac	ctggaggcac	ctctagggca	ttagggatg	gaggattga	gcctgaaaag	1380
agtcgacagc	ggaagtccct	gtcaaatcca	gatatcgcc	cagagaccct	gacgcttctc	1440
agtttctgc	gctcagacac	ttcagagctg	agggtccgaa	aacctgggtgg	gagctccggg	1500

gaccgtggaa	gcaacccct	agatggcaga	gactcaccat	ccgcagggtgg	ccctgtgggg	1560
caactgaac	ccataccat	cccagcccc	gcatcaccctg	gcacgcgccc	cacactcaag	1620
gacttgcac	ccactctcg	gagagcaaag	tcattcacct	gctctgagaa	gcccatggcc	1680
cgccgcctgc	cccgcaccag	tgctctgaag	tccagctct	ccgagctct	gctcacagc	1740
cctgggtccg	aggaggatcc	gctgcccctc	atcgtccagg	accaatatgt	gcaggaggcc	1800
cgccaggttt	ttgagaagat	ccagcgcatg	ggtgcccac	aagatgatgg	aagcgatgcc	1860
ccccctggaa	gccctgactg	ggcaggggat	gtgacccgag	ggcagcggtc	ccaggaggag	1920
ctctcaggcc	ctgagtccag	tctgacagat	gaaggcattg	ggcagacccc	tgaggctct	1980
gttgcagcat	tttgcggct	gggttaccaca	gggatgtggc	gacctcttc	ctcattctcg	2040
gcccagacga	accaccatgg	ccctggact	gaggacatgc	tggccgggt	ggccctgggt	2100
tcgcctgaga	ccccctccac	accagtgcc	ctccgcgcac	gacgcaaagt	cccacctca	2160
gttctgggt	ggagcgaatt	gagcaatggg	gaggcagggg	aggcttacag	gtcccctgagt	2220
gacccaattc	ctcagcgcac	ccgggctgcc	acctctgaag	agcctactgg	gttctctgt	2280
gacagcaacc	tcctgggctc	actgagcccc	aagacagggc	tccctccac	ctcagccatg	2340
gatgagggct	tgaccagtgg	tcacagtgc	ttgtctgtgg	gcagtgaaa	gagcaaggga	2400
tatcaggagg	ttattcagag	catagttcag	gggcctggca	ccctggggcg	tgtggggac	2460
gacaggattg	ctggcaaagc	ccccaaagaag	aaatccctga	gtgacccag	ccgcccgtgg	2520
gagctggctg	ggcctggatt	cgagggccct	ggaggggagc	ccatccgaga	agttgagccc	2580
atgctgcctc	catccagcag	cgagccatc	tttgcacatgc	agcgggcaga	gccagaagaa	2640
cctgggtccca	ccaggagccg	ggcacagtct	gaaagggccc	tacctgaggc	tctgcctccc	2700
cctgcactg	cccaccgaaa	cttacaccc	gaccccaagc	tggctgacat	tctgtccccg	2760
aggctaattc	ggcgaggctc	caagaagcgc	ccagctcgga	gtagtcacca	ggagcttcgg	2820
agagacgagg	gcagtcagga	ccagactggc	agcctgtctc	gggcccggcc	ctcctccaga	2880
cacgttcgccc	atgccagtgt	gccccccaca	tttatgccta	ttgtgggtggc	tgagccacca	2940
acttctgttg	gtccccctgt	ggctgtggca	gaacccatag	gcttccctac	ccgagccat	3000
cccacgttgc	aggcaccatc	gtcgaggac	gtcaccaagc	agtacatgt	gaacctgcac	3060
tccggtgagg	tccctgcccc	agtgcctgt	gacatgcct	gcttgcctct	ggctgcaccc	3120
ccctctgctg	aggccaagcc	ccctgaggca	gtctggccctg	catatggaccc	tacccctgccc	3180
agcaagtgt	gcagcaagcc	acaggtggac	atgcggaaagc	acgtggccat	gaccctgtcg	3240
gacacagagc	agtcgtatgt	ggagtcgtcg	cgacccctga	tgcagggcta	catgcagccg	3300
ctgaagcagc	cagagaactc	cgtgcctgt	gacccttcac	ttgtggacga	gatcttcgac	3360
cagatcccc	agctccttgg	gcaccacgag	caattccctgg	agcaggttcg	gcactgcatg	3420
cagacctggc	atgcccagca	gaaggtggga	gcccctgtcg	tccagtcgtt	ctccaaaggat	3480
gtccttagtaa	acatcttattc	tgcctataatc	gataacttcc	tcaatgcaaa	ggatgctgt	3540
cgtgtggcca	aggagggcgag	gcctgcctt	ctcaagttcc	tagagcaaag	catgcgttag	3600
aacaaggaga	agcaggcgct	gtctgacctc	atgatcaagc	ctgtgcagcg	gatcccacgc	3660
tacgagcttc	ttgtgaaggg	cctcctgaaag	catacacatcg	aggaccaccc	ggaccatca	3720
ctcctgctgg	aggcgcagcg	gaacatcaag	cagggtggctg	agcgcataaa	caagggtgt	3780
cgagggtccg	aggaggcggg	gcccacatgc	cggtgtgtcg	aggagataga	ggctcacatc	3840
gagggcatgg	aggatctcca	ggccctctg	ccgcgggttcc	tgagacagga	gatggtcatt	3900
gaagtgttgg	cgatcggtgg	caagaaggac	cggtctctct	ttctgtttcac	ggacccatc	3960
gtctgcacca	ctctgaagcg	aaagtccaggc	ttccctgccc	gcagctccat	gagcctgtac	4020
acggcagcc	gtgtcattga	cacagccage	aagtacaaga	tgctgtggaa	gctcccgctg	4080
gaagacgcag	acatcatcaa	aggggcattcc	caagccacca	atcggggagaa	catccaaagaa	4140
gccatcagcc	gccttgcgt	ggacccatcc	accctggggc	aatatgagaa	gtctctgt	4200
agccttgggt	tccccccacca	gagccttggac	gtgcactgc	gggacccatc	agtcgcacat	4260
caccgggacc	tgtcggagaa	gcaggcgctg	tgctacgc	tttccttccc	gccaaccaaag	4320
ctggagctgt	gcccacatcg	gcccggggcc	accgactct	acatttttga	gttccctcac	4380
cctgacgcctc	gccttgggtt	tgaacaggcc	ttcgatgagg	ccaagaggaa	gttggcatcc	4440
agcaaaagct	gtcttagaccc	tgagttctcg	aaggccatcc	ccatcatgaa	aacccgcagt	4500
ggcatgcagt	tctctgtgc	ggcttccacc	ctgaacagct	gcccggagcc	ctcgccctgag	4560
gtatgggtct	gcaacagcga	cggtctacgt	ggccagggtt	gcctgctgag	ctgcgcgccc	4620
gagccggacg	ttggaggccctg	catcgccgtc	ttttccccc	gcatccctcg	catcgggggc	4680
gtgcccggc	tgcagctcg	ctgcccaccc	gagccctcc	cgtcgtcg	gagtccctca	4740
gagacggcac	cgagcccg	cgggccggag	ctggacgtcg	aggccgctgc	agacgaggaa	4800
gcccgcacgc	tcgcggagcc	ggggccgcag	ccctgccttc	acatctccat	tgcaggctcg	4860
ggcttggaga	tgacgcccgg	cctggccgag	ggtgacccccc	gcccagagct	gttggccctt	4920
gacagtact	ctgacgatga	gtcttgc	agcccttcgg	ggacgctgca	gagccaggcc	4980
agccggtcca	ccatctcc	cagtttggc	aatgaggaga	ccccgagttc	caaggaggcc	5040
acggcagaga	ccaccagctc	agaggaggag	caggagccag	gttccctgccc	actgtctggc	5100
tccttgggc	ctgggtgtcc	ctgcggcacc	agccaaatgg	atgggagagc	cttcgccgc	5160

tccagccacg	gtccttcac	ccggggcagc	cttggaggacc	tgctgagtgt	cgacccttag	5220
gcctaccaga	gtccgtgt	gctggcact	gaggatggct	gtgtccacgt	gtaccagtcc	5280
tccgacagca	tccgtgaccg	caggaacagc	atgaagctcc	agcatgcggc	ctctgtgacc	5340
tgcatcttgt	atctgaataa	ccaggtgttt	gtgtctctgg	ccaatggaga	gtttgtggtc	5400
taccaaaggaa	aaggcaggcca	tttctggac	ccccagaact	tcaaatacg	gaccttgggc	5460
acccagggga	gccccatcac	caagatggta	tctgtgggtg	ggcggtgtg	gtgtggctgc	5520
cagaaccgag	tccttgcct	gagccctgac	acgctgcagc	tggagcacat	gtttacgtg	5580
ggtcaggatt	caagccgctg	cgtggcttgc	atggtggact	ccagcctggg	tgtgtgggtg	5640
acatttggaaag	gtatgtccca	cgtgtgttgc	taccatccag	acaccttta	gcagctggca	5700
gaagttagacg	tcactctcc	cgtgcacagg	atgcgtggcag	gctcgatgc	catcatccgg	5760
cagcacaagg	ctgcctgtct	gcaaatcaca	gcgctgtgg	tgtgtgagga	gtgtgtgtgg	5820
gtgggcacca	gtgctgtgtt	cgtccctacc	atgcccactt	cgcccggtac	tgtcagctgc	5880
ccacgggcac	cactcagttc	cacaggcctc	ggccaggagac	acacccggca	cgtccgcttc	5940
ttggctgcag	tccagctgcc	agatggcttc	aacctgtct	gccccaaaaacc	accacctccc	6000
ccagacacag	gccccggagaa	gctgccatca	ctggagcacc	gggactcccc	ttggcaccga	6060
ggccccggcc	ctgcccaggcc	taaaatgtg	tttatcagt	gagggtatgg	ctatgaggac	6120
ttccgactca	gcagtggggg	cgccgacgac	agttagactg	ttgggtcgaga	cgacagcaca	6180
aaccacctcc	tcctgtggag	ggtgtgaccc	tgtctccgt	ggcccgaggac	tcgcccggcc	6240
acctgccttc	agcctgttgc	cctctcccta	gcccacacgc	agactttgc	caggagtatc	6300
cagccagggg	cacacatgtg	cctgcgtggg	ctctgccttgc	tcttcgcgg	agcattccgt	6360
atggAACACC	cactggccag	ccaggccatg	gtttctcccg	accctctggc	tgccccgggt	6420
cttccagtca	tgatcggtt	ggggacatgt	gggctgacca	ggacactctga	ccctgggagc	6480
tttacccaaa	gacacagctg	ggtctggacc	ccacggggct	ggggaggggcc	atgtcaata	6540
tttggagggt	tttctggagg	gcagcaggaa	ggctggggaa	ttcccatgt	acagtattta	6600
tgtttcttt	tagatgtgt	ccttcccaag	cacttattta	tgcaagtgacc	tggtcacctg	6660
gggtgggggt	gatttgagga	aatgacatga	ggaaaaagaaa	cctattccgt	ccctggggac	6720
caccctggga	ctctaaccaa	gccttcctgg	agggacccat	gccccctgaa	gccccattcc	6780
attcatacag	acacacacgt	acgcacacactg	catgtccaa	gcccataaaca	ttgcccgtt	6840
acataaactt	tccagggccc	cagcctgtat	gggctgcctt	cagtccctta	gatcaagatg	6900
ctgactatta	gggggcagtg	attgcccatt	ggggacctgt	caggcttgc	catttccca	6960
tttgggtgt	gtgcctttag	tggttcccta	atttgggaa	actgatgggg	ccttggacag	7020
ggcttctct	caggtaggag	aatggggcc	atgatctct	cacagtcgccc	cccagtcctt	7080
ggccctgctt	ccctgtgtct	catgcactgg	cacatatgtt	caccttggag	ggcagaccta	7140
ggagcccttc	tgaccactga	atccgtctcc	acacccttc	tgccaaaggga	agcccccttca	7200
ggaaggaccc	cccaaagctg	aggggctgaa	tgtagcctt	tcaacagaga	aggctccac	7260
ttgagagcag	cctctacctg	accccctgg	ccacagagag	ccactctgac	cctcagcccc	7320
ctcgcttctt	cagctaaac	tccaaagggtt	tggtttcaga	tggtttgt	tttggttctgt	7380
ttgggtttgg	tttgggtttgg	ggtgggtggg	tcattgcgtt	cttagattat	gtttctctt	7440
ctacccaaaca	gtcatgtatt	aactctctt	ggatgtgaa	gtttaaagag	tcaataaaata	7500
gaaacaccag	atgactgcaa	aaaaaaaaaa	aaaaaaaaaa			7540

<210> 204
 <211> 2063
 <212> PRT
 <213> Homo sapiens

<400> 204
 Met Ala Asp Gly Ala Pro Arg Pro Gln Leu Tyr Arg Ser Val Ser Phe
 1 5 10 15
 Lys Leu Leu Glu Arg Trp Ser Gly Gly Pro Gly Leu Arg Glu Glu Asp
 20 25 30
 Thr Asp Thr Pro Gly Leu Arg Arg Arg Ala Ser Cys Arg Pro Thr Thr
 35 40 45
 Ala Ala Arg Gly Gln Pro Ser Arg Arg Val Ser Lys Leu Ala Ser Gly
 50 55 60
 Pro Leu Ala Ala Pro Ala Gln Pro Arg Pro Leu Arg Ser Leu Ser Pro
 65 70 75 80
 Ser Val Arg Gln Leu Ser Arg Arg Phe Asp Ala Pro Arg Leu Asp Asp
 85 90 95

Gly Ser Ala Gly Thr Arg Asp Gly Gly Val Leu Pro Ala Ala Ala Glu
 100 105 110
 Glu Ala Ala Glu Gly Pro Ala Arg Gly Ala Trp Pro Ser Val Thr Glu
 115 120 125
 Met Arg Lys Leu Phe Gly Gly Pro Gly Ser Arg Arg Pro Ser Ala Asp
 130 135 140
 Ser Glu Ser Pro Gly Thr Pro Ser Pro Asp Gly Ala Ala Trp Glu Pro
 145 150 155 160
 Pro Ala Arg Glu Ser Arg Gln Pro Pro Thr Pro Pro Pro Arg Thr Cys
 165 170 175
 Phe Pro Leu Ala Gly Leu Arg Ser Ala Arg Pro Leu Thr Gly Pro Glu
 180 185 190
 Thr Glu Gly Arg Leu Arg Arg Pro Gln Gln Gln Glu Arg Ala Gln
 195 200 205
 Arg Pro Ala Asp Gly Leu His Ser Trp His Ile Phe Ser Gln Pro Gln
 210 215 220
 Ala Gly Ala Arg Ala Ser Cys Ser Ser Ser Ser Ile Ala Ala Ser Tyr
 225 230 235 240
 Pro Val Ser Arg Ser Arg Ala Ala Ser Ser Ser Glu Glu Glu Glu Glu
 245 250 255
 Gly Pro Pro Gln Leu Pro Gly Ala Gln Ser Pro Ala Tyr His Gly Gly
 260 265 270
 His Ser Ser Gly Ser Asp Asp Asp Arg Asp Gly Glu Gly Gly His Arg
 275 280 285
 Trp Gly Gly Arg Pro Gly Leu Arg Pro Gly Ser Ser Leu Leu Asp Gln
 290 295 300
 Asp Cys Arg Pro Asp Ser Asp Gly Leu Asn Leu Ser Ser Met Asn Ser
 305 310 315 320
 Ala Gly Val Ser Gly Ser Pro Glu Pro Pro Thr Ser Pro Arg Ala Pro
 325 330 335
 Arg Glu Glu Gly Leu Arg Glu Trp Gly Ser Gly Ser Pro Pro Cys Val
 340 345 350
 Pro Gly Pro Gln Glu Gly Leu Arg Pro Met Ser Asp Ser Val Gly Gly
 355 360 365
 Ala Phe Arg Val Ala Lys Val Ser Phe Pro Ser Tyr Leu Ala Ser Pro
 370 375 380
 Ala Gly Ser Arg Gly Ser Ser Arg Tyr Ser Ser Thr Glu Thr Leu Lys
 385 390 395 400
 Asp Asp Asp Leu Trp Ser Ser Arg Gly Ser Gly Gly Trp Gly Val Tyr
 405 410 415
 Arg Ser Pro Ser Phe Gly Ala Gly Glu Gly Leu Leu Arg Ser Gln Ala
 420 425 430
 Arg Thr Arg Ala Lys Gly Pro Gly Gly Thr Ser Arg Ala Leu Arg Asp
 435 440 445
 Gly Gly Phe Glu Pro Glu Lys Ser Arg Gln Arg Lys Ser Leu Ser Asn
 450 455 460
 Pro Asp Ile Ala Ser Glu Thr Leu Thr Leu Ser Phe Leu Arg Ser
 465 470 475 480
 Asp Leu Ser Glu Leu Arg Val Arg Lys Pro Gly Gly Ser Ser Gly Asp
 485 490 495
 Arg Gly Ser Asn Pro Leu Asp Gly Arg Asp Ser Pro Ser Ala Gly Gly
 500 505 510
 Pro Val Gly Gln Leu Glu Pro Ile Pro Ile Pro Ala Pro Ala Ser Pro
 515 520 525
 Gly Thr Arg Pro Thr Leu Lys Asp Leu Thr Ala Thr Leu Arg Arg Ala
 530 535 540
 Lys Ser Phe Thr Cys Ser Glu Lys Pro Met Ala Arg Arg Leu Pro Arg
 545 550 555 560
 Thr Ser Ala Leu Lys Ser Ser Ser Ser Glu Leu Leu Leu Thr Gly Pro
 565 570 575
 Gly Ala Glu Glu Asp Pro Leu Pro Leu Ile Val Gln Asp Gln Tyr Val

	580	585	590												
Gln	Glu	Ala	Arg	Gln	Val	Phe	Glu	Lys	Ile	Gln	Arg	Met	Gly	Ala	Gln
	595				600					605					
Gln	Asp	Asp	Gly	Ser	Asp	Ala	Pro	Pro	Gly	Ser	Pro	Asp	Trp	Ala	Gly
	610				615					620					
Asp	Val	Thr	Arg	Gly	Gln	Arg	Ser	Gln	Glu	Leu	Ser	Gly	Pro	Glu	
	625				630					635				640	
Ser	Ser	Leu	Thr	Asp	Gly	Ile	Gly	Ala	Asp	Pro	Glu	Pro	Pro	Val	
					645					650				655	
Ala	Ala	Phe	Cys	Gly	Leu	Gly	Thr	Thr	Gly	Met	Trp	Arg	Pro	Leu	Ser
					660					665				670	
Ser	Ser	Ser	Ala	Gln	Thr	Asn	His	His	Gly	Pro	Gly	Thr	Glu	Asp	Ser
					675					680				685	
Leu	Gly	Gly	Trp	Ala	Leu	Val	Ser	Pro	Glu	Thr	Pro	Pro	Thr	Pro	Gly
	690				695					700					
Ala	Leu	Arg	Arg	Arg	Arg	Lys	Val	Pro	Pro	Ser	Gly	Ser	Gly	Ser	
	705				710					715				720	
Glu	Leu	Ser	Asn	Gly	Glu	Ala	Gly	Glu	Ala	Tyr	Arg	Ser	Leu	Ser	Asp
					725					730				735	
Pro	Ile	Pro	Gln	Arg	His	Arg	Ala	Ala	Thr	Ser	Glu	Glu	Pro	Thr	Gly
					740					745				750	
Phe	Ser	Val	Asp	Ser	Asn	Leu	Leu	Gly	Ser	Leu	Ser	Pro	Lys	Thr	Gly
					755					760				765	
Leu	Pro	Ala	Thr	Ser	Ala	Met	Asp	Glu	Gly	Leu	Thr	Ser	Gly	His	Ser
					770					775				780	
Asp	Trp	Ser	Val	Gly	Ser	Glu	Glu	Ser	Lys	Gly	Tyr	Gln	Glu	Val	Ile
	785				790					795				800	
Gln	Ser	Ile	Val	Gln	Gly	Pro	Gly	Thr	Leu	Gly	Arg	Val	Val	Asp	Asp
					805					810				815	
Arg	Ile	Ala	Gly	Lys	Ala	Pro	Lys	Lys	Ser	Leu	Ser	Asp	Pro	Ser	
					820					825				830	
Arg	Arg	Gly	Glu	Leu	Ala	Gly	Pro	Gly	Phe	Glu	Gly	Pro	Gly	Gly	Glu
					835					840				845	
Pro	Ile	Arg	Glu	Val	Glu	Pro	Met	Leu	Pro	Pro	Ser	Ser	Ser	Glu	Pro
					850					855				860	
Ile	Leu	Val	Glu	Gln	Arg	Ala	Glu	Pro	Glu	Glu	Pro	Gly	Ala	Thr	Arg
	865				870					875				880	
Ser	Arg	Ala	Gln	Ser	Glu	Arg	Ala	Leu	Pro	Glu	Ala	Leu	Pro	Pro	Pro
					885					890				895	
Ala	Thr	Ala	His	Arg	Asn	Phe	His	Leu	Asp	Pro	Lys	Leu	Ala	Asp	Ile
					900					905				910	
Leu	Ser	Pro	Arg	Leu	Ile	Arg	Arg	Gly	Ser	Lys	Lys	Arg	Pro	Ala	Arg
					915					920				925	
Ser	Ser	His	Gln	Glu	Leu	Arg	Arg	Asp	Glu	Gly	Ser	Gln	Asp	Gln	Thr
					930					935				940	
Gly	Ser	Leu	Ser	Arg	Ala	Arg	Pro	Ser	Ser	Arg	His	Val	Arg	His	Ala
	945				950					955				960	
Ser	Val	Pro	Ala	Thr	Phe	Met	Pro	Ile	Val	Val	Pro	Glu	Pro	Pro	Thr
					965					970				975	
Ser	Val	Gly	Pro	Pro	Val	Ala	Val	Pro	Glu	Ile	Gly	Phe	Pro	Thr	
					980					985				990	
Arg	Ala	His	Pro	Thr	Leu	Gln	Ala	Pro	Ser	Leu	Glu	Asp	Val	Thr	Lys
					995					1000				1005	
Gln	Tyr	Met	Leu	Asn	Leu	His	Ser	Gly	Glu	Val	Pro	Ala	Pro	Val	Pro
					1010					1015				1020	
Val	Asp	Met	Pro	Cys	Leu	Pro	Leu	Ala	Ala	Pro	Pro	Ser	Ala	Glu	Ala
	1025				1030					1035				1040	
Lys	Pro	Pro	Glu	Ala	Ala	Arg	Pro	Ala	Asp	Glu	Pro	Thr	Pro	Ala	Ser
					1045					1050				1055	
Lys	Cys	Cys	Ser	Lys	Pro	Gln	Val	Asp	Met	Arg	Lys	His	Val	Ala	Met
					1060					1065				1070	

Thr Leu Leu Asp Thr Glu Gln Ser Tyr Val Glu Ser Leu Arg Thr Leu
 1075 1080 1085
 Met Gln Gly Tyr Met Gln Pro Leu Lys Gln Pro Glu Asn Ser Val Leu
 1090 1095 1100
 Cys Asp Pro Ser Leu Val Asp Glu Ile Phe Asp Gln Ile Pro Glu Leu
 1105 1110 1115 1120
 Leu Glu His His Glu Gln Phe Leu Glu Gln Val Arg His Cys Met Gln
 1125 1130 1135
 Thr Trp His Ala Gln Gln Lys Val Gly Ala Leu Leu Val Gln Ser Phe
 1140 1145 1150
 Ser Lys Asp Val Leu Val Asn Ile Tyr Ser Ala Tyr Ile Asp Asn Phe
 1155 1160 1165
 Leu Asn Ala Lys Asp Ala Val Arg Val Ala Lys Glu Ala Arg Pro Ala
 1170 1175 1180
 Phe Leu Lys Phe Leu Glu Gln Ser Met Arg Glu Asn Lys Glu Lys Gln
 1185 1190 1195 1200
 Ala Leu Ser Asp Leu Met Ile Lys Pro Val Gln Arg Ile Pro Arg Tyr
 1205 1210 1215
 Glu Leu Leu Val Lys Asp Leu Leu Lys His Thr Pro Glu Asp His Pro
 1220 1225 1230
 Asp His Pro Leu Leu Leu Glu Ala Gln Arg Asn Ile Lys Gln Val Ala
 1235 1240 1245
 Glu Arg Ile Asn Lys Gly Val Arg Ser Ala Glu Glu Ala Glu Arg His
 1250 1255 1260
 Ala Arg Val Leu Gln Glu Ile Glu Ala His Ile Glu Gly Met Glu Asp
 1265 1270 1275 1280
 Leu Gln Ala Pro Leu Arg Arg Phe Leu Arg Gln Glu Met Val Ile Glu
 1285 1290 1295
 Val Lys Ala Ile Gly Gly Lys Asp Arg Ser Leu Phe Leu Phe Thr
 1300 1305 1310
 Asp Leu Ile Val Cys Thr Thr Leu Lys Arg Lys Ser Gly Ser Leu Arg
 1315 1320 1325
 Arg Ser Ser Met Ser Leu Tyr Thr Ala Ala Ser Val Ile Asp Thr Ala
 1330 1335 1340
 Ser Lys Tyr Lys Met Leu Trp Lys Leu Pro Leu Glu Asp Ala Asp Ile
 1345 1350 1355 1360
 Ile Lys Gly Ala Ser Gln Ala Thr Asn Arg Glu Asn Ile Gln Lys Ala
 1365 1370 1375
 Ile Ser Arg Leu Asp Glu Asp Leu Thr Thr Leu Gly Gln Met Ser Lys
 1380 1385 1390
 Leu Ser Glu Ser Leu Gly Phe Pro His Gln Ser Leu Asp Asp Ala Leu
 1395 1400 1405
 Arg Asp Leu Ser Ala Ala Met His Arg Asp Leu Ser Glu Lys Gln Ala
 1410 1415 1420
 Leu Cys Tyr Ala Leu Ser Phe Pro Pro Thr Lys Leu Glu Leu Cys Ala
 1425 1430 1435 1440
 Thr Arg Pro Glu Gly Thr Asp Ser Tyr Ile Phe Glu Phe Pro His Pro
 1445 1450 1455
 Asp Ala Arg Leu Gly Phe Glu Gln Ala Phe Asp Glu Ala Lys Arg Lys
 1460 1465 1470
 Leu Ala Ser Ser Lys Ser Cys Leu Asp Pro Glu Phe Leu Lys Ala Ile
 1475 1480 1485
 Pro Ile Met Lys Thr Arg Ser Gly Met Gln Phe Ser Cys Ala Ala Pro
 1490 1495 1500
 Thr Leu Asn Ser Cys Pro Glu Pro Ser Pro Glu Val Trp Val Cys Asn
 1505 1510 1515 1520
 Ser Asp Gly Tyr Val Gly Gln Val Cys Leu Leu Ser Leu Arg Ala Glu
 1525 1530 1535
 Pro Asp Val Glu Ala Cys Ile Ala Val Cys Ser Ala Arg Ile Leu Cys
 1540 1545 1550
 Ile Gly Ala Val Pro Gly Leu Gln Pro Arg Cys His Arg Glu Pro Pro

1555	1560	1565
Pro Ser Leu Arg Ser Pro Pro Glu Thr Ala Pro Glu Pro Ala Gly Pro		
1570	1575	1580
Glu Leu Asp Val Glu Ala Ala Ala Asp Glu Glu Ala Ala Thr Leu Ala		
1585	1590	1595
Glu Pro Gly Pro Gln Pro Cys Leu His Ile Ser Ile Ala Gly Ser Gly		
1605	1610	1615
Leu Glu Met Thr Pro Gly Leu Gly Glu Gly Asp Pro Arg Pro Glu Leu		
1620	1625	1630
Val Pro Phe Asp Ser Asp Ser Asp Asp Glu Ser Ser Pro Ser Pro Ser		
1635	1640	1645
Gly Thr Leu Gln Ser Gln Ala Ser Arg Ser Thr Ile Ser Ser Ser Phe		
1650	1655	1660
Gly Asn Glu Glu Thr Pro Ser Ser Lys Glu Ala Thr Ala Glu Thr Thr		
1665	1670	1675
Ser Ser Glu Glu Gln Glu Pro Gly Phe Leu Pro Leu Ser Gly Ser		
1685	1690	1695
Phe Gly Pro Gly Gly Pro Cys Gly Thr Ser Pro Met Asp Gly Arg Ala		
1700	1705	1710
Leu Arg Arg Ser Ser His Gly Ser Phe Thr Arg Gly Ser Leu Glu Asp		
1715	1720	1725
Leu Leu Ser Val Asp Pro Glu Ala Tyr Gln Ser Ser Val Trp Leu Gly		
1730	1735	1740
Thr Glu Asp Gly Cys Val His Val Tyr Gln Ser Ser Asp Ser Ile Arg		
1745	1750	1755
Asp Arg Arg Asn Ser Met Lys Leu Gln His Ala Ala Ser Val Thr Cys		
1765	1770	1775
Ile Leu Tyr Leu Asn Asn Gln Val Phe Val Ser Leu Ala Asn Gly Glu		
1780	1785	1790
Leu Val Val Tyr Gln Arg Glu Ala Gly His Phe Trp Asp Pro Gln Asn		
1795	1800	1805
Phe Lys Ser Val Thr Leu Gly Thr Gln Gly Ser Pro Ile Thr Lys Met		
1810	1815	1820
Val Ser Val Gly Gly Arg Leu Trp Cys Gly Cys Gln Asn Arg Val Leu		
1825	1830	1835
Val Leu Ser Pro Asp Thr Leu Gln Leu Glu His Met Phe Tyr Val Gly		
1845	1850	1855
Gln Asp Ser Ser Arg Cys Val Ala Cys Met Val Asp Ser Ser Leu Gly		
1860	1865	1870
Val Trp Val Thr Leu Lys Gly Ser Ala His Val Cys Leu Tyr His Pro		
1875	1880	1885
Asp Thr Phe Glu Gln Leu Ala Glu Val Asp Val Thr Pro Pro Val His		
1890	1895	1900
Arg Met Leu Ala Gly Ser Asp Ala Ile Ile Arg Gln His Lys Ala Ala		
1905	1910	1915
Cys Leu Arg Ile Thr Ala Leu Leu Val Cys Glu Glu Leu Leu Trp Val		
1925	1930	1935
Gly Thr Ser Ala Gly Val Val Leu Thr Met Pro Thr Ser Pro Gly Thr		
1940	1945	1950
Val Ser Cys Pro Arg Ala Pro Leu Ser Pro Thr Gly Leu Gly Gln Gly		
1955	1960	1965
His Thr Gly His Val Arg Phe Leu Ala Ala Val Gln Leu Pro Asp Gly		
1970	1975	1980
Phe Asn Leu Leu Cys Pro Thr Pro Pro Pro Pro Asp Thr Gly Pro		
1985	1990	1995
Glu Lys Leu Pro Ser Leu Glu His Arg Asp Ser Pro Trp His Arg Gly		
2005	2010	2015
Pro Ala Pro Ala Arg Pro Lys Met Leu Val Ile Ser Gly Gly Asp Gly		
2020	2025	2030
Tyr Glu Asp Phe Arg Leu Ser Ser Gly Gly Ser Ser Ser Glu Thr		
2035	2040	2045

Val Gly Arg Asp Asp Ser Thr Asn His Leu Leu Leu Trp Arg Val
 2050 2055 2060

<210> 205
<211> 2247
<212> DNA
<213> Homo sapiens

<400> 205

ccggggcgg	tggctccggc	cgctggctc	cgcagcgg	ccgcgcgc	cctcctgccc	60
ccgatgtgc	tgctgctgt	ccagccgccc	ccgctgtgg	ccgggctct	gccgcggac	120
gtccaccacc	tccatgcca	gaggaggggg	ccacagccct	ggcatgcagc	cctgcccagt	180
agccggcac	ctgccccgtc	cacgcaggaa	gccccccggc	ctggcagcag	cctcaggcct	240
ccccgctgtg	gcgtgcccga	cccatctgtat	gggctgagtg	cccgcaaccg	acagaagagg	300
ttcgtgttt	ctggcggcgc	ctgggagaag	acggaccta	cctacaggat	ccttcggttc	360
ccatggcagt	tggtgccgga	gcaggtgcgg	cagacatgg	cagaggccct	aaaggtatgg	420
agcgatgtga	cggccactcac	cttactgttag	gtgcacgagg	gccgtgtga	catcatgatc	480
gacttcgcca	ggtactggca	tggggacgac	ctggcggtt	atgggcctgg	gggcattctg	540
gccccatgcct	tcttcccaa	gactcaccga	gaaggggatg	tccacttcga	ctatgtatgg	600
acctggacta	tcggggatga	ccagggcaca	gacctgtgc	aggtggcagc	ccatgaattt	660
ggccacgtgc	tggggctgca	gcacacaaca	gcagccaagg	ccctgatgtc	cgccttctac	720
accttcgct	acccactgt	tctcagccca	gatgactgca	ggggcgttca	acacctata	780
ggccagccct	ggcccactgt	cacccagg	accccagccc	tggggcccca	ggctgggata	840
gacaccaatg	agattgcacc	gctggagcca	gacgccccgc	cagatgcctg	tgaggccctcc	900
tttgcacgccc	tctccaccat	ccgaggcgg	ctcttttct	tcaaagcggg	ctttgtgtgg	960
cgcctccgtg	ggggccagct	gcagccggc	tacccagcat	tggctctcg	ccactggcag	1020
ggactgcccc	gcccctgtgg	cgctgccttc	gaggatgccc	aggccacat	ttggttcttc	1080
caaggtgctc	agtactgggt	gtacgacgg	aaaaagccag	tcctggggccc	cgcacccttc	1140
accgagctgg	gcctgggtgg	gttcccggtc	catgctgcct	tggtctgggg	tcccgagaag	1200
aacaagatct	acttcttcc	aggcagggac	tactggcgtt	tccacccca	cacccggcgt	1260
gttagacagtc	ccgtgcccc	cagggccact	gactggagag	gggtgccttc	tgagatcgac	1320
gctgccttcc	aggatgtcga	tggctatgccc	tacttcctgc	gcggccgcct	ctactggaa	1380
tttgcaccctg	tgaaggtgaa	ggctctggaa	ggcttccccc	gtctcgtggg	tcctgacttc	1440
tttggctgtg	ccgagcctgc	caacacttcc	ctctgaccat	ggcttggatg	ccctcagggg	1500
tgctgacccc	tgccaggcca	cgaatatatcg	gctagagacc	catggccatc	tttgtggctg	1560
tggccaccag	gcatggact	gagcccatgt	ctcctgcagg	ggatgggggt	gggttacaac	1620
caccatgaca	actgcccgg	ggcccacgca	ggcgtgtgtc	acctgcccagc	gactgtctca	1680
gactggcag	ggaggcttg	gcatgactta	agaggaagg	cagtcttggg	acccgctatg	1740
caggccttgg	caaaccctggc	tgcctgtct	catccctgtc	cctcagggt	gcaccatggc	1800
aggactgggg	gaactggagt	gtcctgtct	tatccctgtt	gtgagggttcc	ttccaggggc	1860
tggactgaa	gcaagggtgc	tggggcccca	tggccttcag	ccctggctga	gcaactgggc	1920
tgttagggcag	ggccacttcc	tgaggtcagg	tcttggtagg	tgctcgtc	tgtctgcctt	1980
ctggctgaca	atccctggaaa	tctgttctcc	agaatccagg	ccaaaaagtt	cacagtcaaa	2040
tggggagggg	tattcttcat	gcaggagacc	ccaggccctg	gaggctgcaa	catactcaa	2100
tcctgttcc	ggccggatcc	tcctgaagcc	cttttgcag	cactgtatc	ctccaaagcc	2160
attgtaaatg	tgtgtacagt	gtgtataaac	cttcttcttc	ttttttttt	ttaaactgag	2220
gattgtcatt	aaacacagtt	gttttct				2247

<210> 206
<211> 488
<212> PRT
<213> Homo sapiens

<400> 206

Met Ala Pro Ala Ala Trp Leu Arg Ser Ala Ala Ala Arg Ala Leu Leu			
1	5	10	15
Pro Pro Met Leu Leu Leu Leu Gln Pro Pro Pro Leu Leu Ala Arg			
20	25	30	
Ala Leu Pro Pro Asp Val His His Leu His Ala Glu Arg Arg Gly Pro			
35	40	45	
Gln Pro Trp His Ala Ala Leu Pro Ser Ser Pro Ala Pro Ala Pro Ala			

50	55	60
Thr Gln Glu Ala Pro Arg Pro Ala Ser Ser	Leu Arg Pro Pro Arg Cys	
65	70	75
Gly Val Pro Asp Pro Ser Asp Gly Leu Ser Ala Arg Asn Arg Gln Lys		80
85	90	95
Arg Phe Val Leu Ser Gly Gly Arg Trp Glu Lys Thr Asp Leu Thr Tyr		
100	105	110
Arg Ile Leu Arg Phe Pro Trp Gln Leu Val Gln Glu Gln Val Arg Gln		
115	120	125
Thr Met Ala Glu Ala Leu Lys Val Trp Ser Asp Val Thr Pro Leu Thr		
130	135	140
Phe Thr Glu Val His Glu Gly Arg Ala Asp Ile Met Ile Asp Phe Ala		
145	150	155
Arg Tyr Trp His Gly Asp Asp Leu Pro Phe Asp Gly Pro Gly Gly Ile		160
165	170	175
Leu Ala His Ala Phe Pro Lys Thr His Arg Glu Gly Asp Val His		
180	185	190
Phe Asp Tyr Asp Glu Thr Trp Thr Ile Gly Asp Asp Gln Gly Thr Asp		
195	200	205
Leu Leu Gln Val Ala Ala His Glu Phe Gly His Val Leu Gly Leu Gln		
210	215	220
His Thr Thr Ala Ala Lys Ala Leu Met Ser Ala Phe Tyr Thr Phe Arg		
225	230	235
Tyr Pro Leu Ser Leu Ser Pro Asp Asp Cys Arg Gly Val Gln His Leu		240
245	250	255
Tyr Gly Gln Pro Trp Pro Thr Val Thr Ser Arg Thr Pro Ala Leu Gly		
260	265	270
Pro Gln Ala Gly Ile Asp Thr Asn Glu Ile Ala Pro Leu Glu Pro Asp		
275	280	285
Ala Pro Pro Asp Ala Cys Glu Ala Ser Phe Asp Ala Val Ser Thr Ile		
290	295	300
Arg Gly Glu Leu Phe Phe Lys Ala Gly Phe Val Trp Arg Leu Arg		
305	310	315
Gly Gly Gln Leu Gln Pro Gly Tyr Pro Ala Leu Ala Ser Arg His Trp		320
325	330	335
Gln Gly Leu Pro Ser Pro Val Asp Ala Ala Phe Glu Asp Ala Gln Gly		
340	345	350
His Ile Trp Phe Phe Gln Gly Ala Gln Tyr Trp Val Tyr Asp Gly Glu		
355	360	365
Lys Pro Val Leu Gly Pro Ala Pro Leu Thr Glu Leu Gly Leu Val Arg		
370	375	380
Phe Pro Val His Ala Ala Leu Val Trp Gly Pro Glu Lys Asn Lys Ile		
385	390	395
Tyr Phe Phe Arg Gly Arg Asp Tyr Trp Arg Phe His Pro Ser Thr Arg		400
405	410	415
Arg Val Asp Ser Pro Val Pro Arg Arg Ala Thr Asp Trp Arg Gly Val		
420	425	430
Pro Ser Glu Ile Asp Ala Ala Phe Gln Asp Ala Asp Gly Tyr Ala Tyr		
435	440	445
Phe Leu Arg Gly Arg Leu Tyr Trp Lys Phe Asp Pro Val Lys Val Lys		
450	455	460
Ala Leu Glu Gly Phe Pro Arg Leu Val Gly Pro Asp Phe Phe Gly Cys		
465	470	475
Ala Glu Pro Ala Asn Thr Phe Leu		480
485		

<210> 207

<211> 3074

<212> DNA

<213> Homo sapiens

<400> 207

ggcacgaggc	tcagggcggtg	gctggaggct	gcccacatctgg	ggctttaaac	atacaaaggg	60
attgccaga	cctgcggcgg	cggccggcggc	ggcgggggct	ggggcgcggg	ggccggacca	120
ttagccctg	agccgggcaa	accggaggcc	accgagccag	cggaccctcg	gagcgcagcc	180
ctgcggcg	gaggcggctc	caaccaggcg	gcccacggc	cacacgcacc	gagccagcga	240
ccccggcg	acgcgcgggg	ccagggagcg	ctacgatgg	ggcgttaatg	gcccggggcg	300
cgctcacgg	tccccgtgg	gcgcctgtc	tcctggctg	cctgctgagc	cacggcccg	360
ccggccgtc	gccccatcatc	aaggccccg	gcccataatg	ccccaaaacg	gacaaagagt	420
tggcgtgca	ataacctgaa	acccctatg	gctgccccaa	ggagagctgc	aacctgttg	480
tgctgaagga	cacactaaag	aagatgcaga	agtttcttgg	actgccccag	acaggtgatc	540
ttgaccagaa	taccatcgag	accatgcgga	agccacgtg	cgccaaaccca	gatgtggcca	600
actacaactt	cttccctcgc	aagcccaagt	gggacaagaa	ccagatcaca	tacaggatca	660
ttggctacac	acctgatctg	gaccaggaga	cagtggatga	tgcccttgc	cgtgccttcc	720
aagtctggag	cgatgtgacc	ccactgcgg	tttctcgaa	ccatgatgg	gaggcagaca	780
tcatgatcaa	ctttggccgc	tggagcatg	gcatggata	ccccttgac	gttaaggacg	840
gactcctgc	tcatgccttc	gccccaggca	ctgggtttgg	gggagactcc	cattttatg	900
acgatgagct	atggaccttgc	ggagaaggcc	aagtggtccg	tgtgaagtat	ggcaaccccg	960
atggggagta	ctgcaagttc	cccttcttgc	tcaatggca	ggagtacaac	agctgcactg	1020
ataccggccg	cagcgatggc	ttccctctgg	gctccaccac	ctacaactt	gagaaggatg	1080
gcaagtacgg	cttctgtccc	catgaagccc	tgttcaccat	ggccggcaac	gctgaaggac	1140
agccctgcaa	gtttccattc	cgcttccagg	gcacatcc	tgacagctgc	accactgagg	1200
gcccacgg	tggctaccgc	tggcggca	ccactgagga	ctacgaccgc	gacaagaagt	1260
atggcttctg	ccctgagacc	gccatgtcca	ctgttggtgg	gaactcagaa	gttgccttcc	1320
gtgtcttccc	cttcacttgc	ctggcaaca	aatatgagag	ctgcaccagc	gcccggccca	1380
gtgacggaaa	gatgtggtgt	gcgaccacag	ccaactacga	tgacgaccgc	aagtgggct	1440
tctgccccta	ccaagggtac	agctgttcc	tcgtggcagc	ccacgagttt	ggccacggca	1500
tggggcttgg	gcactccaa	gaccctgggg	ccctgatggc	accattttac	acctacacca	1560
agaacttccg	tctgtcccg	gatgacatca	agggcattca	ggagctctat	ggggcctctc	1620
ctgacattga	ccttggcacc	ggccccaccc	ccacactggg	ccctgtcact	cctgagatct	1680
gcaaacagga	cattgtattt	gatggcatcg	ctcagatccg	tggtagatc	ttcttcttca	1740
aggaccgggt	catttggcg	actgtgacgc	cacgtgacaa	gccatgggg	ccctgtctgg	1800
tggccacatt	ctggccttag	ctcccgaaaa	agattgtgc	gttatacgg	gccccacagg	1860
aggagaaggc	tgtgttcttgc	gcagggatg	aataactggat	ctactcagcc	agcaccctgg	1920
agcgagggt	ccccaaagcc	ctgaccagcc	tgggactgccc	ccctgatgtc	cagcgagtgg	1980
atggccctt	taactggagc	aaaaacaaga	agacatacat	cttgcgttgc	gacaaattct	2040
ggagatacaa	tgaggtgaag	aagaaaaatgg	atccctggctt	tcccaagctc	atcgccagatg	2100
cctggaatgc	catccccat	aacctggatg	ccgtcgatgg	cctgcaggcc	ggcggtcaca	2160
gctacttctt	caagggtgccc	tattacctga	agctggagaa	ccaaagtctg	aagagcgtga	2220
agtttggaa	catcaaattc	gactggctag	gctgctgagc	tggccctggc	tcccacaggc	2280
ccttcctctc	cactgccttc	gatacaccgg	gcctggagaa	ctagagaagg	acccggaggg	2340
gcctggcagc	cgtgccttca	gctctacagc	taatcagcat	tctactctt	acctggtaat	2400
ttaagattcc	agagagtggc	tcctcccggt	gccaagaat	agatgctgac	tgtactcctc	2460
ccaggcgcgg	cttcccttc	caatcccacc	aaccctcaga	gccaccccta	aagagatcct	2520
ttgatatttt	caacgcagcc	ctgtttttgg	ctggccctgg	gctgccacac	ttcaggctct	2580
tctcttttca	caaccttctg	tggctcacag	aacccttgg	gccaatggag	actgtctcaa	2640
gagggcactg	gtggcccgac	agcctggcac	agggcagtgg	gacagggcat	ggccagggtgg	2700
ccactccaga	ccccctggctt	ttcaactgtctg	gctgccttag	aacccttttt	acattagcag	2760
tttgcgttgc	atgcacttttgc	tttttttttttgc	tgggtttttgt	ttttttttttc	cacttagaaaa	2820
ttgcattttc	tgacagaagg	actcagggttgc	tctgaagtca	ctgcacagtg	catctcagcc	2880
cacatagtga	tggttcccttgc	tttcaacttca	cttagcatgt	ccctaccgg	tctcttctcc	2940
actggatgg	ggaaaaaccaa	gcccgtggctt	cccgctcagc	cctccctggc	cctcccttca	3000
accatcccc	atgggaaatg	tcaacaagta	tgaataaaga	cacctactga	gtgaaaaaaaa	3060
aaaaaaaaaa	aaaa					3074

<210> 208

<211> 660

<212> PRT

<213> Homo sapiens

<400> 208

Met Glu Ala Leu Met Ala Arg Gly Ala Leu Thr Gly Pro Leu Arg Ala

1	5	10	15												
Leu	Cys	Leu	Leu	Gly	Cys	Leu	Leu	Ser	His	Ala	Ala	Ala	Ala	Pro	Ser
20		25												30	
Pro	Ile	Ile	Lys	Phe	Pro	Gly	Asp	Val	Ala	Pro	Lys	Thr	Asp	Lys	Glu
35														45	
Leu	Ala	Val	Gln	Tyr	Leu	Asn	Thr	Phe	Tyr	Gly	Cys	Pro	Lys	Glu	Ser
50														60	
Cys	Asn	Leu	Phe	Val	Leu	Lys	Asp	Thr	Leu	Lys	Met	Gln	Lys	Phe	
65														80	
Phe	Gly	Leu	Pro	Gln	Thr	Gly	Asp	Leu	Asp	Gln	Asn	Thr	Ile	Glu	Thr
85														95	
Met	Arg	Lys	Pro	Arg	Cys	Gly	Asn	Pro	Asp	Val	Ala	Asn	Tyr	Asn	Phe
100														110	
Phe	Pro	Arg	Lys	Pro	Lys	Trp	Asp	Lys	Asn	Gln	Ile	Thr	Tyr	Arg	Ile
115														125	
Ile	Gly	Tyr	Thr	Pro	Asp	Leu	Asp	Pro	Glu	Thr	Val	Asp	Asp	Ala	Phe
130														140	
Ala	Arg	Ala	Phe	Gln	Val	Trp	Ser	Asp	Val	Thr	Pro	Leu	Arg	Phe	Ser
145														160	
Arg	Ile	His	Asp	Gly	Glu	Ala	Asp	Ile	Met	Ile	Asn	Phe	Gly	Arg	Trp
165														175	
Glu	His	Gly	Asp	Gly	Tyr	Pro	Phe	Asp	Gly	Lys	Asp	Gly	Leu	Leu	Ala
180														190	
His	Ala	Phe	Ala	Pro	Gly	Thr	Gly	Val	Gly	Gly	Asp	Ser	His	Phe	Asp
195														205	
Asp	Asp	Glu	Leu	Trp	Thr	Leu	Gly	Glu	Gly	Gln	Val	Val	Arg	Val	Lys
210														220	
Tyr	Gly	Asn	Ala	Asp	Gly	Glu	Tyr	Cys	Lys	Phe	Pro	Phe	Leu	Phe	Asn
225														240	
Gly	Lys	Glu	Tyr	Asn	Ser	Cys	Thr	Asp	Thr	Gly	Arg	Ser	Asp	Gly	Phe
245														255	
Leu	Trp	Cys	Ser	Thr	Thr	Tyr	Asn	Phe	Glu	Lys	Asp	Gly	Lys	Tyr	Gly
260														270	
Phe	Cys	Pro	His	Glu	Ala	Leu	Phe	Thr	Met	Gly	Gly	Asn	Ala	Glu	Gly
275														285	
Gln	Pro	Cys	Lys	Phe	Pro	Phe	Arg	Phe	Gln	Gly	Thr	Ser	Tyr	Asp	Ser
290														300	
Cys	Thr	Thr	Glu	Gly	Arg	Thr	Asp	Gly	Tyr	Arg	Trp	Cys	Gly	Thr	Thr
305														320	
Glu	Asp	Tyr	Asp	Arg	Asp	Lys	Lys	Tyr	Gly	Phe	Cys	Pro	Glu	Thr	Ala
325														335	
Met	Ser	Thr	Val	Gly	Gly	Asn	Ser	Glu	Gly	Ala	Pro	Cys	Val	Phe	Pro
340														350	
Phe	Thr	Phe	Leu	Gly	Asn	Lys	Tyr	Glu	Ser	Cys	Thr	Ser	Ala	Gly	Arg
355														365	
Ser	Asp	Gly	Lys	Met	Trp	Cys	Ala	Thr	Thr	Ala	Asn	Tyr	Asp	Asp	Asp
370														380	
Arg	Lys	Trp	Gly	Phe	Cys	Pro	Asp	Gln	Gly	Tyr	Ser	Leu	Phe	Leu	Val
385														400	
Ala	Ala	His	Glu	Phe	Gly	His	Ala	Met	Gly	Leu	Glu	His	Ser	Gln	Asp
405														415	
Pro	Gly	Ala	Leu	Met	Ala	Pro	Ile	Tyr	Thr	Tyr	Thr	Lys	Asn	Phe	Arg
420														430	
Leu	Ser	Gln	Asp	Asp	Ile	Lys	Gly	Ile	Gln	Glu	Leu	Tyr	Gly	Ala	Ser
435														445	
Pro	Asp	Ile	Asp	Leu	Gly	Thr	Gly	Pro	Thr	Pro	Thr	Leu	Gly	Pro	Val
450														460	
Thr	Pro	Glu	Ile	Cys	Lys	Gln	Asp	Ile	Val	Phe	Asp	Gly	Ile	Ala	Gln
465														480	
Ile	Arg	Gly	Glu	Ile	Phe	Phe	Lys	Asp	Arg	Phe	Ile	Trp	Arg	Thr	
485														495	

Val Thr Pro Arg Asp Lys Pro Met Gly Pro Leu Leu Val Ala Thr Phe
 500 505 510
 Trp Pro Glu Leu Pro Glu Lys Ile Asp Ala Val Tyr Glu Ala Pro Gln
 515 520 525
 Glu Glu Lys Ala Val Phe Phe Ala Gly Asn Glu Tyr Trp Ile Tyr Ser
 530 535 540
 Ala Ser Thr Leu Glu Arg Gly Tyr Pro Lys Pro Leu Thr Ser Leu Gly
 545 550 555 560
 Leu Pro Pro Asp Val Gln Arg Val Asp Ala Ala Phe Asn Trp Ser Lys
 565 570 575
 Asn Lys Lys Thr Tyr Ile Phe Ala Gly Asp Lys Phe Trp Arg Tyr Asn
 580 585 590
 Glu Val Lys Lys Lys Met Asp Pro Gly Phe Pro Lys Leu Ile Ala Asp
 595 600 605
 Ala Trp Asn Ala Ile Pro Asp Asn Leu Asp Ala Val Val Asp Leu Gln
 610 615 620
 Gly Gly Gly His Ser Tyr Phe Phe Lys Gly Ala Tyr Tyr Leu Lys Leu
 625 630 635 640
 Glu Asn Gln Ser Leu Lys Ser Val Lys Phe Gly Ser Ile Lys Ser Asp
 645 650 655
 Trp Leu Gly Cys
 660

<210> 209

<211> 4160

<212> DNA

<213> Homo sapiens

<400> 209

ggggcggggc	cggggcgggg	cctgacttcc	cgactggag	ccttagccgc	ggggctgaga	60
ccaggcagcc	tgcgttcgcc	atgaagcgcac	ccaaggagcc	gagcggctcc	gacggggagt	120
ccgacggacc	catcgacgtg	ggcaagagg	gccagctgag	ccagatggcc	aggccgctgt	180
ccaccccccag	ctcttcgcag	atgcaagcca	ggaagaaacg	cagagggatc	atagagaaaac	240
ggcgtcgaga	ccgcataaac	agtagcctt	ctgaattgcg	acgcttggtc	cccactgcct	300
ttgagaaaaca	gggctcttcc	aactggaga	aagccgaggt	cttgcagatg	acggtggtac	360
acttggaaat	gctccatgcc	actgggtggg	caggatttt	tgatgcccga	gccctggcag	420
ttgacttccg	gagcatttgt	tttcgggagt	gcctcaactg	ggtcatcagg	tacctgggg	480
tccttgaagg	gccccagcgc	cgtgcagacc	ccgtccggat	tcgccttetc	tcccacctca	540
acagctacgc	agccgagatg	gaggcttcgc	ccacgcccac	tggccctttg	gccttcctg	600
cctggccctg	gtctttcttc	catacgctgc	cagggtctcc	agccctgago	aaccagctcg	660
ccatccctggg	aagagtgc	agccctgtcc	tccccgtgt	ctctctctct	gtttacccca	720
tcccaaggcc	ccgaaccgc	cccccttcgc	gagccacagg	catcatectg	ccagcccgaa	780
ggaatgtgt	gcccagtgc	ggggcattt	ccacccggag	ggccggcccc	ctagagggc	840
cagcgacccc	tgtgcctgtc	gcccccagca	gcagggctgc	caggagcagc	cacatcgctc	900
ccctctgc	gtcttcctcc	ccaaacacccc	ctggtcetac	agggtcggtc	gcttacgtgg	960
ctgttccccac	ccccaaactca	tcctccccag	ggccagctgg	gaggccagcg	ggagccatgc	1020
tctaccactc	ctgggtctct	gaaatcaactg	aaatcggggc	tttctgagct	gcccccttcac	1080
caccccgccc	caaggaataa	ggaagggtct	tttaccagga	gccccaaaaaa	gggcactgccc	1140
ttttctgtct	tgcttcgtgg	actggctcat	atgtgaaggc	acgttctcca	gccatcagag	1200
gccccctct	cctccaaaccc	atctctccct	ctcaactgtta	tccagctta	tccaccagc	1260
tctccctggag	ctgttctgg	ctcagaggct	tggttccatt	tctcacctga	acagatgagt	1320
cctgggagag	accctcaagag	atccgcccag	acccctctcc	tgccctctgc	acaccaggag	1380
caggcatgaa	ccttgggtct	ggaaaaaaagc	tttaacctgc	agggcaccag	gacccaaggc	1440
aggctgttcc	ttggggccgt	cagaccccgag	tcaggagcaa	tgactgactg	gctgcagcct	1500
tcccacgcca	agaggctgga	acatagtgtc	tgccctcgctt	cctggagata	gtactgagc	1560
aggggctaca	aagaggcttc	ctggaaaccc	tgtctggccc	ttcccacctg	tccttgggcc	1620
acaccatcac	actgaaccac	aggacagacc	cttctccac	cacagccaag	gcctggagac	1680
tggggccca	gcagagcctg	ctcccaccc	cctcccagca	gagacacccc	accctctcac	1740
tgactaacag	gtccctgcac	acagctggcc	tggtaaacc	agctgggagg	tttctaggca	1800
gcagcaaaac	tctgtgacag	ggtgtcctca	caccaggcct	tggacagctc	tcccgagacag	1860
gagccagggt	tgagcaatgg	agagcccagc	ccccacgtct	tacagtcgccc	atcctccagg	1920

cgtgtggtcc	ctccccattg	ggtgcacagt	gcagaggggc	cgtggcccca	tgtgatggtg	1980
cgcagagagg	aacctttgg	gattcagcac	cagacgtctg	tgctgcctgg	tttgcatccg	2040
gctcacagag	cccagactgc	tggaacagcc	aaggactgtc	aggctggaca	aaaataactg	2100
caaggagggg	caagagaaaag	gatgattcg	ggcaccttgg	ccctcaagg	tcatgcagt	2160
ggtcgagcgc	ctgagatctt	gttcaccagg	actccacaga	gctggctctg	ctcagaagcc	2220
atttcattcc	ccggctccac	ccttaggccac	ttttctaaac	agagggaaaca	aatggtcag	2280
cagtcgttcc	cagcagaaca	gcccggccctg	gactgacacc	cagtgggacc	agtgttgc	2340
caccagtta	taaaatgcag	aaacccttct	gtactcggt	gtaaatatct	actccccaa	2400
gtgactccag	gtgcccccca	ccgcctggca	cttccccccag	gactcctacg	atctggttac	2460
tgccctggccg	atccaaggt	gtggagtccc	agagccagca	gttcactgtt	gctcattcca	2520
cactggtag	atacttcagt	tgtcacccttct	ggaaagatc	tcccacctcc	tccctttgt	2580
ggaaccaccc	tccccagagg	ctgcatttag	gagactccac	agactaaaaa	gtgagttgc	2640
agaaacacctt	ggggaaaagg	ccctttcaaaa	gaagtggata	agagggagga	gatcatttag	2700
tgacccqgaa	agctctttt	aaaagacaga	ctcctcaagg	agagataaaag	aggaaagcac	2760
ctcttcatt	tttttagtgc	agctaattcc	atcagactgc	tgtcctcctg	gaccatctg	2820
agatgtcag	tagcaaggag	aggggggatc	attttagaga	gtgggttatt	ggcagggagt	2880
gctccggagg	gaggcagagg	ggagactgt	gtagaaggaa	gacagaactc	acacatgtc	2940
ccaggattgg	ggacagggac	agaggaggt	acagaaggca	aaggccagg	tccccgttat	3000
catgaagggg	cccactcagg	acaggaacaa	ggacaactcc	tcctcctcc	cctcctctcc	3060
tgctgcttcc	gggataccag	gtcagtgtat	tagtcttgc	gttggcaac	ttccttagc	3120
gagaatccct	agtggggctg	tgggaaacac	atttccacgt	tgcagacatg	caactccaaa	3180
gaatctgtga	tgccactgaa	atgagatggg	aatgatccag	ctctttcagc	atctggttg	3240
aacttgctt	cattgtccct	gggatattgt	ggaagggaaag	gtgactgtt	gatctgattc	3300
tgtggtaag	gacttgcatc	ttgtgtttct	atccccaaagc	cttcttgg	tctccaaactc	3360
ctacccatt	gcatgggtt	ttggggacat	ccaataaaga	tttttttagt	gcttctggaa	3420
acttccagta	gattctactt	ctaaactatc	tctggagtt	atccacttct	gtctgcaccc	3480
acagccatcc	tggccagggc	acatcacctc	ccccagatca	ctggccctggc	ctcagaaagg	3540
tcttccctct	tgctttgtca	atcgttctc	agtagcagca	gagagaaatt	gaaagctgca	3600
ggtcatatcg	tatcatctt	agttggaaa	cctcacttct	ttaccctatt	gttctaaagg	3660
tcttctttt	gtcccaacct	cacttccagc	ctcattttctt	gccagttccca	gacttgc	3720
ctgagcttct	gccacctg	cttcttcat	ttcctcgaca	ttccagc	gttcccac	3780
ccagcacatt	gcatatgt	ttcccttgc	caagaatgt	cttccctac	cctgtgc	3840
gctgagttct	gcagaccctc	aggccttgc	ttcaacgtt	cctcgtccaa	gaggccttcc	3900
tcgactactt	tacttgttga	gttctctat	cacaaggct	cttttctt	ccttcatg	3960
gaatttgcca	ctgcatatcc	atttgtttaa	tttacttgtt	gtttgactgt	gcctccact	4020
cgagtgttaag	ctcatgaggc	caggtgccat	gcctgg	gttccactc	tgtacccagc	4080
attgagcaca	gggcctgg	catagttggc	gttcaataaa	tacttgtt	agaagtgaaa	4140
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	4160

<210> 210

<211> 328

<212> PRT

<213> Homo sapiens

<400> 210

Met	Lys	Arg	Pro	Lys	Glu	Pro	Ser	Gly	Ser	Asp	Gly	
1				5				10			15	
Pro	Ile	Asp	Val	Gly	Gln	Glu	Gly	Gln	Leu	Ser	Gln	Met
									20			30
Leu	Ser	Thr	Pro	Ser	Ser	Gln	Met	Gln	Ala	Arg	Lys	
									35			45
Gly	Ile	Ile	Glu	Lys	Arg	Arg	Asp	Arg	Ile	Asn	Ser	Leu
									50			60
Glu	Leu	Arg	Arg	Leu	Val	Pro	Thr	Ala	Phe	Glu	Lys	Gln
									65			80
Lys	Leu	Glu	Lys	Ala	Glu	Val	Leu	Gln	Met	Thr	Val	Asp
									85			95
Met	Leu	His	Ala	Thr	Gly	Gly	Thr	Gly	Phe	Phe	Asp	Ala
									100			110
Ala	Val	Asp	Phe	Arg	Ser	Ile	Gly	Phe	Arg	Glu	Cys	Leu
									115			125

Ile Arg Tyr Leu Gly Val Leu Glu Gly Pro Ser Ser Arg Ala Asp Pro
 130 135 140
 Val Arg Ile Arg Leu Leu Ser His Leu Asn Ser Tyr Ala Ala Glu Met
 145 150 155 160
 Glu Pro Ser Pro Thr Pro Thr Gly Pro Leu Ala Phe Pro Ala Trp Pro
 165 170 175
 Trp Ser Phe Phe His Ser Cys Pro Gly Leu Pro Ala Leu Ser Asn Gln
 180 185 190
 Leu Ala Ile Leu Gly Arg Val Pro Ser Pro Val Leu Pro Gly Val Ser
 195 200 205
 Ser Pro Ala Tyr Pro Ile Pro Ala Leu Arg Thr Ala Pro Leu Arg Arg
 210 215 220
 Ala Thr Gly Ile Ile Leu Pro Ala Arg Arg Asn Val Leu Pro Ser Arg
 225 230 235 240
 Gly Ala Ser Ser Thr Arg Arg Ala Arg Pro Leu Glu Arg Pro Ala Thr
 245 250 255
 Pro Val Pro Val Ala Pro Ser Ser Arg Ala Ala Arg Ser Ser His Ile
 260 265 270
 Ala Pro Leu Leu Gln Ser Ser Ser Pro Thr Pro Pro Gly Pro Thr Gly
 275 280 285
 Ser Ala Ala Tyr Val Ala Val Pro Thr Pro Asn Ser Ser Ser Pro Gly
 290 295 300
 Pro Ala Gly Arg Pro Ala Gly Ala Met Leu Tyr His Ser Trp Val Ser
 305 310 315 320
 Glu Ile Thr Glu Ile Gly Ala Phe
 325

<210> 211
<211> 5680
<212> DNA
<213> Homo sapiens

<400> 211

gggcgatggg ttgatggcg ccggggacg caggatgcgg gggcgcccg cgccctgtct	60
gctggcgtcg ctggcggtgc tcctgtgtct cctggcgccc gaggtcgagg gcgcccccgg	120
ctgcccgtta tccatccgca gtcgaatgt ctggggggag cggcccaagg ggctgagcgg	180
cggcgccctt ggcccggtc ggcggagggt ggtgtgcagc ggcggggacc tcccgagcc	240
tcccgagccc ggccttctgc ctaacggcac cgtaacctg ctcttgagca ataacaagat	300
cacggggctc cgcaatggct ctttctggg actgtcaactg ctggagaagc tggacctgag	360
gaacaacatc atcagcacag tgcagccggg cgccttcctg ggcctggggg agctgaagcg	420
tttagatctc tccaacaacc ggattggctg ttcacatcc gagaccttcc agggctccc	480
caggcttctc cgactaaaca tatctggaaa catcttctcc agtctgcaac ctgggtctt	540
tgtatgagctg ccagcccta aggttgtgga ctgggcacc gagttcctga cctgtgactg	600
ccacccgtc tggctgtcg cctggggccca gaatcgctcc ctgcagctgt cggAACACAC	660
gctctgtct taccggatgt ccctgtcatgc tcaggccctg ggcagccctcc aggaggccca	720
gctctgtcg gagggggccc tggagctgca cacacaccac ctcatccccgt ccctacgcca	780
agtgggttcc cagggggatc ggctgcctt ccagtgtctt gccagctacc tgggcaacga	840
cacccgcata cgctgttacc acaaccggc ccctgtggag ggtgtatgagc agggggccat	900
cctctggcc gagagcctca tccacgactg cacccatc accagtggc tgacgctgtc	960
tcacatggc gtgtggcct caggcgagtg ggagtgcacc gtgtccatgg cccaggccaa	1020
cgccagcaag aagggtggaga tcgtgtgtct ggagacctt gcctctact gccccggcga	1080
gcgtgttgcc aacaaccggc gggacttcag gtggggccca actctggctg gcatcacagc	1140
ctaccaggcc tgcctgcagt atcccttcac ctcaatggccc ctgggggggg gtgggggggg	1200
cacccggcc tcccgggt gtgaccgtgc cggccgtgg gagccagggg actactccca	1260
ctgtctctac accaaccgaca tcaccagggt gctgtacacc ttctgtgtga tgcccatcaa	1320
tgcctccaat ggcgtgaccc tggctccatca gtcgtcggt tacacagcc agggcgctag	1380
ctttcagac atgatggatg tagtctatgt ggctcagatg atccagaaat ttttgggtta	1440
tgtcgaccag atcaaaggac tggtagaggt gatgggtggac atggccagca acctgtatgt	1500
ggtgacgag cacctgctgt ggctggccca ggcggaggac aaggccctgca gccgcacatgt	1560
gggtgcctg gagcgcattt gggggccgc ctcagcccc catgcccagc acatctcagt	1620
aatgcgagg aacgtggcat tggaggccta ctcatcaag ccgcacagct acgtggccct	1680

gacctgcaca	gccttccaga	ggagggaggg	aggggtgcgg	ggcacacggc	caggaagccc	1740
tggccagaac	cccccacctg	agcccgagcc	cccagctgac	cagcagctcc	gcttcgcgtg	1800
caccaccggg	aggcccaatg	tttctctgtc	gtccttccac	atcaagaaca	gcgtggccct	1860
ggcctccatc	cagctcccc	cgagtctatt	ctcatccctt	ccggctgccc	tggctcccc	1920
ggtccccca	gactgcaccc	tgcaactgct	cgcttccga	aatggccgcc	tcttccacag	1980
ccacagcaac	acctcccgcc	ctggagctgc	tgggcctggc	aagaggcgtg	gcgtggccac	2040
ccccgtcata	ttcgcaggaa	ccagtggtcg	tggcgtggga	aacctgacag	agccagtggc	2100
cgtttcgtc	cggcactggg	ctgagggagc	cgAACCTGTG	gcccgttgg	ggagccagga	2160
ggggcccccggg	gaggctgggg	gctggacctc	ggagggctgc	cagctccgct	ccagccagcc	2220
caatgtcagc	gccctgcact	gccagcactt	gggcaatgt	gcccgtctca	tggagctgag	2280
cgccttccc	agggaggtgg	ggggcgcgg	ggcagggtcg	caccctgtgg	tatacccc	2340
cacggcccttgc	ctgctgtct	gcctcttcgc	caccatcatc	acctacatcc	tcaaccacag	2400
ctccatccgt	gtgtcccgga	aaggctggca	catgtgtcg	aacttgtgt	tccacatagc	2460
catgacactt	gctgtcttgc	cggggggcat	cacactcacc	aactaccaga	tggctgcga	2520
ggcgggtggc	atcaccctgc	actactcctc	cctatccacg	ctgctctgg	ttggcgtgaa	2580
ggcgcgagtg	ctccataagg	agctcacctg	gagggcaccc	cctccgcag	aaggggaccc	2640
cgctctgcct	actcccgatc	ctatgtccg	gttatttgc	atcgctggag	ggattccact	2700
cattatctgt	ggcatcacag	ctgcagtcaa	catccacaaac	tacccggacc	acagcccta	2760
ctgctggctg	gtgtggcgtc	caaggcttgg	'cgcccttctac	atccctgtgg	ctttgattct	2820
gctcatcacc	ttgatctt	tcctgtgcgc	cggtctacgc	ttacggggatt	ctctggcaca	2880
gaaccccaag	gcgggcaaca	gcagggcctc	cctggaggca	ggggaggagc	tgaggggttc	2940
caccaggctc	aggggcagcg	gccccctct	gagtactca	ggttcccttc	ttgctactgg	3000
gagcgcgcga	gtggggacgc	ccggggcccc	ggaggatgtt	gacagcctct	attctccggg	3060
agtccagcta	ggggcgctgg	tgaccacgc	cttccctgtac	ttggccatgt	gggcctgcgg	3120
ggctctggca	gtgtcccgac	gctggctgca	ccgggtgggt	tgcagctgt	tgtacggggt	3180
ggcagcctcc	gccctggggc	tcttcgtt	cactcaccac	tgtgccaggc	ggagggacgt	3240
gagagcctg	ttggcgcgct	gctggggggc	tgccctctcc	gcccccccc	atgccccgccc	3300
ccggggccctg	cccgccgcgg	cagaggacgg	ttcccccgtt	ttcggggagg	ggccccccctc	3360
cctcaagtcc	tccccaagcg	gcagcagcgg	ccatccgtg	gctctggcc	cctgcagact	3420
caccaacctg	cagctggccc	agagtcaagg	gtgcaggcg	ggggcggcgg	ccggcggggga	3480
aggagagccg	gagccggcgg	gcacccgggg	aaacctcgcc	caccgcacc	ccaacaacgt	3540
gcaccacggg	ctcgccgcgc	acaagagccg	ggccaaggga	caccgcgg	gggaggctgg	3600
cgcaagaac	cggctcaagg	ccctgcgcgg	gggcgcggcg	ggggcgttgg	agctgtgtc	3660
cagcgagagc	gttagtctgc	acaacagccc	caccgacagc	tacctggca	gcagccgcaaa	3720
cagccggggc	gccggcctgc	agcttggagg	cgagccatg	ctcacggcgt	ccgagggcag	3780
cgacaccagc	gccgcgcggc	tttctgaggc	gggcggggca	ggccagcgcc	gcagcgccag	3840
cccgacagt	ctcaaggcg	cgggcgcgt	ggagaaggag	agccatcgcc	gctcgtaccc	3900
gctcaacgccc	gccagcctaa	acggcccc	caagggggc	aagtacgacg	acgtcaccct	3960
gatgggcgcg	gaggtagcca	cgccggctg	catgaagacc	ggactcttgg	agagcgaaac	4020
taccgtctaa	gtgtggggcgg	gcaacgcgtt	agacgggtcg	gccacgcggc	tcgttcccc	4080
gctccctcggt	gcccttccaag	gtgtctccgt	agtcaagcagg	ttggaggcag	aggagccat	4140
ggctggagga	agccccacagg	cggtgttcc	ccacttgct	agagggcattc	cctctggggt	4200
agcgcacagac	aatcccagaa	acacgcataa	tacatttccg	tccagcccg	ggcagtctga	4260
ctgtcggtgc	cctcccagga	acggggagg	cctccgtctg	tgtgaaagg	cacagcacat	4320
cccaagggtca	ccctccccaa	gtactcccac	cccgcctact	gtccatgcgg	cctcactggg	4380
ggccatcagc	ctcaccagca	aagcagagat	gagagcgtgg	gaactgtgtt	tttctctccc	4440
tgcctctac	tgatttcagc	ccagcccc	cctagatct	aggtccctt	tcctcccgag	4500
tttggctggc	acgagagcta	gcccagcaca	tgaagcagg	gatgttaatg	cacaagggtc	4560
tgcttttcag	atccactatg	caagagggga	gggtggggcc	acgtaaaagg	cagctctaga	4620
catcaaccag	tcctggggga	ggggagtggg	aaccgggcac	aacttaggaac	aatgccacca	4680
ttcccacagg	agtggtaatt	aaaccagaca	gcagggttca	gaggtggcac	accgggacaa	4740
agctgaggcc	ctgcacactca	acagctgact	gccaggtgcc	tgtgggtgaa	ctgaggggag	4800
tagagggaga	gggcagggtgg	aactggggca	gaatctagtc	atgcctaaa	gctagtctgt	4860
taaacaatgg	tgccccagaa	agctgcagg	ggtgtttgg	gaagcaggta	cttttcgtt	4920
acaagaccca	tctccctagt	ctcagcctta	caacaccacg	ggactaagg	agagcacttc	4980
cttgccctcg	taaggccaga	ggaagaacca	tcccaatcat	ttgatctca	gctccacagt	5040
agagagaaac	ctacaaaatg	tcaaaccagc	ttcccgactc	ccaggagctc	aagccaaagcc	5100
cagaggcagt	ggctgggggtc	cctgcagg	atgagggggcc	tatgccttta	ctccctttaa	5160
acaccagcac	ccgtcttttc	cccaacctaa	aaccaaccac	cagcattca	ctacaggacc	5220
aaatggaaaac	cgagggaaacc	ctgggtcttgc	ggaagaacaa	cagggaaacca	aggtctgacc	5280
tagggttccc	tcccagtctt	cacatca	tggcctcatc	accaagg	tgacaggacac	5340

aggggagggg gaaaacccac acacactcct tggaatgggt cctgttattt atgcttgc	5400
cacagacata ttagaagaaa aaaaaaagct ttgttatttt cttcacata tgctggctgc	5460
tgttacaca ccctgccaat gccttagcac tggagagctt ttgcaatat gctggggaaa	5520
ggggagggag ggaatgaaag tgccaaagaa aacatgttt taagaactcg ggttttatac	5580
aatagaatgt tttctagcag atgcctcttg tttaatata taaaatttt gcaaaggccct	5640
ttgagctaca aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	5680

<210> 212
<211> 1331
<212> PRT
<213> Homo sapiens

<400> 212

Met Arg Gly Ala Pro Ala Arg Leu Leu Leu Pro Leu Leu Pro Trp Leu			
1	5	10	15
Leu Leu Leu Ala Pro Glu Ala Arg Gly Ala Pro Gly Cys Pro Leu			
20	25	30	
Ser Ile Arg Ser Cys Lys Cys Ser Gly Glu Arg Pro Lys Gly Leu Ser			
35	40	45	
Gly Gly Val Pro Gly Pro Ala Arg Arg Val Val Cys Ser Gly Gly			
50	55	60	
Asp Leu Pro Glu Pro Pro Glu Pro Gly Leu Leu Pro Asn Gly Thr Val			
65	70	75	80
Thr Leu Leu Leu Ser Asn Asn Lys Ile Thr Gly Leu Arg Asn Gly Ser			
85	90	95	
Phe Leu Gly Leu Ser Leu Leu Glu Lys Leu Asp Leu Arg Asn Asn Ile			
100	105	110	
Ile Ser Thr Val Gln Pro Gly Ala Phe Leu Gly Leu Glu Leu Lys			
115	120	125	
Arg Leu Asp Leu Ser Asn Asn Arg Ile Gly Cys Leu Thr Ser Glu Thr			
130	135	140	
Phe Gln Gly Leu Pro Arg Leu Leu Arg Leu Asn Ile Ser Gly Asn Ile			
145	150	155	160
Phe Ser Ser Leu Gln Pro Gly Val Phe Asp Glu Leu Pro Ala Leu Lys			
165	170	175	
Val Val Asp Leu Gly Thr Glu Phe Leu Thr Cys Asp Cys His Leu Arg			
180	185	190	
Trp Leu Leu Pro Trp Ala Gln Asn Arg Ser Leu Gln Leu Ser Glu His			
195	200	205	
Thr Leu Cys Ala Tyr Pro Ser Ala Leu His Ala Gln Ala Leu Gly Ser			
210	215	220	
Leu Gln Glu Ala Gln Leu Cys Cys Glu Gly Ala Leu Glu Leu His Thr			
225	230	235	240
His His Leu Ile Pro Ser Leu Arg Gln Val Val Phe Gln Gly Asp Arg			
245	250	255	
Leu Pro Phe Gln Cys Ser Ala Ser Tyr Leu Gly Asn Asp Thr Arg Ile			
260	265	270	
Arg Trp Tyr His Asn Arg Ala Pro Val Glu Gly Asp Glu Gln Ala Gly			
275	280	285	
Ile Leu Leu Ala Glu Ser Leu Ile His Asp Cys Thr Phe Ile Thr Ser			
290	295	300	
Glu Leu Thr Leu Ser His Ile Gly Val Trp Ala Ser Gly Glu Trp Glu			
305	310	315	320
Cys Thr Val Ser Met Ala Gln Gly Asn Ala Ser Lys Lys Val Glu Ile			
325	330	335	
Val Val Leu Glu Thr Ser Ala Ser Tyr Cys Pro Ala Glu Arg Val Ala			
340	345	350	
Asn Asn Arg Gly Asp Phe Arg Trp Pro Arg Thr Leu Ala Gly Ile Thr			
355	360	365	

Ala Tyr Gln Ser Cys Leu Gln Tyr Pro Phe Thr Ser Val Pro Leu Gly
 370 375 380
 Gly Gly Ala Pro Gly Thr Arg Ala Ser Arg Arg Cys Asp Arg Ala Gly
 385 390 395 400
 Arg Trp Glu Pro Gly Asp Tyr Ser His Cys Leu Tyr Thr Asn Asp Ile
 405 410 415
 Thr Arg Val Leu Tyr Thr Phe Val Leu Met Pro Ile Asn Ala Ser Asn
 420 425 430
 Ala Leu Thr Leu Ala His Gln Leu Arg Val Tyr Thr Ala Glu Ala Ala
 435 440 445
 Ser Phe Ser Asp Met Met Asp Val Val Tyr Val Ala Gln Met Ile Gln
 450 455 460
 Lys Phe Leu Gly Tyr Val Asp Gln Ile Lys Glu Leu Val Glu Val Met
 465 470 475 480
 Val Asp Met Ala Ser Asn Leu Met Leu Val Asp Glu His Leu Leu Trp
 485 490 495
 Leu Ala Gln Arg Glu Asp Lys Ala Cys Ser Arg Ile Val Gly Ala Leu
 500 505 510
 Glu Arg Ile Gly Gly Ala Ala Leu Ser Pro His Ala Gln His Ile Ser
 515 520 525
 Val Asn Ala Arg Asn Val Ala Leu Glu Ala Tyr Leu Ile Lys Pro His
 530 535 540
 Ser Tyr Val Gly Leu Thr Cys Thr Ala Phe Gln Arg Arg Glu Gly Gly
 545 550 555 560
 Val Pro Gly Thr Arg Pro Gly Ser Pro Gly Gln Asn Pro Pro Pro Glu
 565 570 575
 Pro Glu Pro Pro Ala Asp Gln Gln Leu Arg Phe Arg Cys Thr Thr Gly
 580 585 590
 Arg Pro Asn Val Ser Leu Ser Ser Phe His Ile Lys Asn Ser Val Ala
 595 600 605
 Leu Ala Ser Ile Gln Leu Pro Pro Ser Leu Phe Ser Ser Leu Pro Ala
 610 615 620
 Ala Leu Ala Pro Pro Val Pro Pro Asp Cys Thr Leu Gln Leu Leu Val
 625 630 635 640
 Phe Arg Asn Gly Arg Leu Phe His Ser His Ser Asn Thr Ser Arg Pro
 645 650 655
 Gly Ala Ala Gly Pro Gly Lys Arg Arg Gly Val Ala Thr Pro Val Ile
 660 665 670
 Phe Ala Gly Thr Ser Gly Cys Gly Val Gly Asn Leu Thr Glu Pro Val
 675 680 685
 Ala Val Ser Leu Arg His Trp Ala Glu Gly Ala Glu Pro Val Ala Ala
 690 695 700
 Trp Trp Ser Gln Glu Gly Pro Gly Glu Ala Gly Gly Trp Thr Ser Glu
 705 710 715 720
 Gly Cys Gln Leu Arg Ser Ser Gln Pro Asn Val Ser Ala Leu His Cys
 725 730 735
 Gln His Leu Gly Asn Val Ala Val Leu Met Glu Leu Ser Ala Phe Pro
 740 745 750
 Arg Glu Val Gly Gly Ala Gly Ala Gly Leu His Pro Val Val Tyr Pro
 755 760 765
 Cys Thr Ala Leu Leu Leu Cys Leu Phe Ala Thr Ile Ile Thr Tyr
 770 775 780
 Ile Leu Asn His Ser Ser Ile Arg Val Ser Arg Lys Gly Trp His Met
 785 790 795 800
 Leu Leu Asn Leu Cys Phe His Ile Ala Met Thr Ser Ala Val Phe Ala
 805 810 815
 Gly Gly Ile Thr Leu Thr Asn Tyr Gln Met Val Cys Gln Ala Val Gly
 820 825 830
 Ile Thr Leu His Tyr Ser Ser Leu Ser Thr Leu Leu Trp Met Gly Val
 835 840 845
 Lys Ala Arg Val Leu His Lys Glu Leu Thr Trp Arg Ala Pro Pro Pro

850	855	860
Gln Glu Gly Asp Pro Ala Leu Pro Thr Pro Ser Pro Met Leu Arg Phe		
865	870	875
Tyr Leu Ile Ala Gly Gly Ile Pro Leu Ile Ile Cys Gly Ile Thr Ala		880
885	890	895
Ala Val Asn Ile His Asn Tyr Arg Asp His Ser Pro Tyr Cys Trp Leu		
900	905	910
Val Trp Arg Pro Ser Leu Gly Ala Phe, Tyr Ile Pro Val Ala Leu Ile		
915	920	925
Leu Leu Ile Thr Trp Ile Tyr Phe Leu Cys Ala Gly Leu Arg Leu Arg		
930	935	940
Gly Pro Leu Ala Gln Asn Pro Lys Ala Gly Asn Ser Arg Ala Ser Leu		
945	950	955
Glu Ala Gly Glu Glu Leu Arg Gly Ser Thr Arg Leu Arg Gly Ser Gly		960
965	970	975
Pro Leu Leu Ser Asp Ser Gly Ser Leu Leu Ala Thr Gly Ser Ala Arg		
980	985	990
Val Gly Thr Pro Gly Pro Pro Glu Asp Gly Asp Ser Leu Tyr Ser Pro		
995	1000	1005
Gly Val Gln Leu Gly Ala Leu Val Thr Thr His Phe Leu Tyr Leu Ala		
1010	1015	1020
Met Trp Ala Cys Gly Ala Leu Ala Val Ser Gln Arg Trp Leu Pro Arg		
1025	1030	1035
Val Val Cys Ser Cys Leu Tyr Gly Val Ala Ala Ser Ala Leu Gly Leu		
1045	1050	1055
Phe Val Phe Thr His His Cys Ala Arg Arg Arg Asp Val Arg Ala Ser		
1060	1065	1070
Trp Arg Ala Cys Cys Pro Pro Ala Ser Pro Ala Ala Pro His Ala Pro		
1075	1080	1085
Pro Arg Ala Leu Pro Ala Ala Glu Asp Gly Ser Pro Val Phe Gly		
1090	1095	1100
Glu Gly Pro Pro Ser Leu Lys Ser Ser Pro Ser Gly Ser Ser Gly His		
1105	1110	1115
Pro Leu Ala Leu Gly Pro Cys Lys Leu Thr Asn Leu Gln Leu Ala Gln		
1125	1130	1135
Ser Gln Val Cys Glu Ala Gly Ala Ala Gly Gly Glu Gly Glu Pro		
1140	1145	1150
Glu Pro Ala Gly Thr Arg Gly Asn Leu Ala His Arg His Pro Asn Asn		
1155	1160	1165
Val His His Gly Arg Arg Ala His Lys Ser Arg Ala Lys Gly His Arg		
1170	1175	1180
Ala Gly Glu Ala Cys Gly Lys Asn Arg Leu Lys Ala Leu Arg Gly Gly		
1185	1190	1195
Ala Ala Gly Ala Leu Glu Leu Leu Ser Ser Glu Ser Gly Ser Leu His		
1205	1210	1215
Asn Ser Pro Thr Asp Ser Tyr Leu Gly Ser Ser Arg Asn Ser Pro Gly		
1220	1225	1230
Ala Gly Leu Gln Leu Glu Gly Glu Pro Met Leu Thr Pro Ser Glu Gly		
1235	1240	1245
Ser Asp Thr Ser Ala Ala Pro Leu Ser Glu Ala Gly Arg Ala Gly Gln		
1250	1255	1260
Arg Arg Ser Ala Ser Arg Asp Ser Leu Lys Gly Gly Ala Leu Glu		
1265	1270	1275
Lys Glu Ser His Arg Arg Ser Tyr Pro Leu Asn Ala Ala Ser Leu Asn		
1285	1290	1295
Gly Ala Pro Lys Gly Gly Lys Tyr Asp Asp Val Thr Leu Met Gly Ala		
1300	1305	1310
Glu Val Ala Ser Gly Gly Cys Met Lys Thr Gly Leu Trp Lys Ser Glu		
1315	1320	1325
Thr Thr Val		
1330		

<210> 213
 <211> 5086
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(5086)
 <223> n = A,T,C or G

<400> 213

agcaccacgg	cagcaggagg	tttcgncta	agtggaggt	actgnccac	gactgcata	60
cccgccccgc	caggtgatac	ctccggcgt	gaccagggg	ctctgcaca	caaggagtct	120
gcatgtctaa	gtgctagaca	tgctcagctt	tgtggatacg	cggacttgt	tgctgcttgc	180
agtaaccta	tgcctagcaa	catgccaatc	tttacaagag	aaaactgtaa	aaaaggccc	240
agccggagat	agaggaccac	gtggagaaag	gggtccacca	ggcccccag	gcagagatgg	300
tgaagatgtt	cccacaggcc	ctccgggtcc	acctgggtct	cctggccccc	ctgggtctcg	360
tgggaacttt	gtgtctcagt	atgatggaaa	aggagttgg	cttggccctg	gccaatggg	420
cttaatggg	cctagaggcc	cacctgggtc	agctggagcc	ccaggccctc	aaggttcca	480
aggacctgt	gttgagccctg	gtgaacctgg	tcaaaactgtt	cctgcagggt	ctcgtggtcc	540
agctggccct	cctggcaagg	ctggtaaga	tggtcacccct	ggaaaaacccg	gacgacctgg	600
tgagagagga	gttggggac	cacagggtgc	tcgtgggttc	cctggaaactc	ctggacttcc	660
tggcttcaaa	ggcatttaggg	gacacaatgg	tctggatgg	ttgaaggggac	agcccggtgc	720
tcctgggtg	aagggtgaac	ctgggtcccc	ttgtgaaaat	ggaactccag	gtcaaacagg	780
agcccggtgg	cttcctgggt	agagaggacg	tgtgggtgcc	cctggccag	ctgggtcccg	840
tggcagtgtat	ggaagtgtgg	gtcccgggg	tcctgctgg	cccatgggt	ctgctggccc	900
tccaggcttc	ccaggtgccc	ctggccccc	gggtgaaaatt	ggagctgtt	gtaacgctgg	960
tcctgtgtt	cccgccgggt	cccggtgtga	agtgggtctt	ccaggccctc	ccggcccccgt	1020
tggacactcct	ggtaatcctg	gagcaaacgg	cctactgtt	gc当地gggt	ctgctggcct	1080
tcccgccgtt	gctggggctc	ccggcctccc	tggacccccc	gttattcctg	gcccgttgg	1140
tgctggcggt	gtactgggt	ccagaggact	tgtgggtgag	cctggtccag	ctggctccaa	1200
aggagagagc	gttaacaagg	gtgagccgg	ctctgctgg	ccccaaaggc	ctcctggtcc	1260
cagtggtaaa	gaaggaaaaga	gaggccctaa	tggggaaagct	ggatctggc	gc当地ccagg	1320
acctctggg	ctgagaggtt	gtcctgggtc	tcgtggtctt	cctggagctg	atggcagagc	1380
tggcgtcatg	ggccctcctg	gtagtcgtgg	tgcaagtggc	cctgctggag	tccgaggacc	1440
taatggagat	gttggtcgccc	ctggggagcc	ttgtctcatg	ggacccagag	gttcccttgg	1500
ttcccttgg	aatatcgccc	ccgctggaaa	agaaggctt	gtcggcctcc	ctggcatcga	1560
cggcaggcct	ggcccaattt	gcccagctgg	agcaagagga	gagcctggca	acattggatt	1620
ccctggaccc	aaaggccccca	ctgggtatcc	tggcaaaaac	gttataaaag	gtcatgttgg	1680
tcttgcgtt	gctgggggtt	ctccagggtcc	tgtggaaaac	aatggtctc	agggacctcc	1740
tggaccacag	ggtgttcaag	gtggaaaagg	tgaacagggt	cccgtggc	ctccaggcct	1800
ccagggtctg	cctggccctt	cagggtccgc	ttgtgaagg	ggcaaaaccag	gagaaagggg	1860
tctccatgtt	gagtttggtc	tccctggtcc	tgctggtcca	agagggaaac	gc当地ccccc	1920
aggtgagagt	ggtgtgtccg	gtcctactgg	tcctatttgg	agccgaggc	cttctggacc	1980
cccaggccct	gatggaaaca	agggtgaacc	ttgtgtgg	ggtgtgtgg	gcactgttgg	2040
tccatgtgt	cctagtggac	tcccaggaga	gaggggtgt	gctgcatac	ctggaggccaa	2100
gggagaaaag	ggtgaacctg	gtctcagagg	tggaaattgtt	aacctggca	gagatgttgc	2160
tcgtgggtct	catgtgtctg	taggtcccc	ttgtcctgt	ggagccacag	gtgaccgggg	2220
cgaagctggg	gctgtggtc	ctgctggtcc	tgctggtctt	cgggaaagcc	ctggtaacg	2280
tggcgaggc	ggtcctgtc	gccccaaacgg	atttgcgtt	ccggctgg	ctgctggtca	2340
accgggtgt	aaaggagaaa	gaggagccaa	agggcctaag	ggtggaaaacg	gtgttggtt	2400
tcccacaggc	cccggtggag	ctgctggccc	agctggtcca	aatggcccc	ccggctctgc	2460
tggaaatgt	ggtgtatggag	gccccctgg	tatgactgtt	ttccctgg	ctgctggacg	2520
gactggtccc	ccaggaccct	ctggattttc	tggccctctt	ggtccccctg	gtcctgttgg	2580
gaaagaagg	cttcgtggc	ctcgtggta	ccaagggtca	gttggccgaa	ctggagaagt	2640
aggtgcgtt	gttccccctg	gttgcgttgg	tgagaagggt	ccctctggag	aggctggtac	2700
tgctggacct	cctggcactc	cagggtctca	gggtcttctt	ggtgtctctg	gtattcttgg	2760
tctccctggc	tcgagaggtt	aacgtggtct	acctggtgtt	gctggtctg	tgggtgaacc	2820
tggctcttt	ggcattggcc	gccctcctgg	ggccctgtt	cctctgg	ctgtgggttag	2880
tcctggagtc	aacgggtctc	ctggtaagc	ttgtcgtt	ggcaaccctg	ggaacgatgg	2940

tcccccaggt	cgcgatggc	aaccggaca	caagggagag	cgcgggttacc	ctggcaatat	3000
tggtcccgtt	ggtgtcgac	gtcacccctgg	tcctcatggc	cccgtgggtc	ctgctggcaa	3060
acatggaaac	cgtgggtaaaa	ctggcccttc	tggctctgtt	ggtcctgctg	tgctgttgg	3120
cccaagagggt	cctagtggcc	cacaaggcat	tcgtggcgat	aaggagagc	ccggtaaaaa	3180
ggggcccaga	ggtttccctg	gtttaaagggg	acacaatgga	ttcaaggtc	tgcctggtat	3240
cgctggtcac	catggtgatc	aagggtctcc	tggctccgtg	ggtcctgctg	gtccttaggg	3300
ccctgtgtt	ccttgtggcc	ctgtggaaa	agatggtcgc	actggacatc	ctggtaggt	3360
tggacctgt	ggcattcgag	gccctcaggg	tcaccaaggc	cctgtggcc	ccccctggcc	3420
ccctggccct	cctggacatc	cagggttaag	cgggtgttgg	tatgactttg	ttacgatgg	3480
agacttctac	agggtcgacc	agcctcgctc	agcaccttct	ctcagaccca	aggatatga	3540
agttgatgct	actctgaagt	ctctcaacaa	ccagatttag	acccttcta	ctcctgaagg	3600
ctctagaaag	aaccaggctc	gcacatggcg	tgacttgaga	ctcagccacc	cagagtggag	3660
cagtggttac	tactggatg	accctaacc	aggatgcact	atggatgcta	tcaaagtata	3720
ctgtgatttc	tctactggcg	aaacctgtat	ccggggccaa	cctgaaaaca	tcccagccaa	3780
gaactggtat	aggagctcca	aggacaagaa	acacgtctgg	ctaggagaaa	ctatcaatgc	3840
tggcagccag	tttgaatata	atgtagaagg	agtgacttcc	aaggaaatgg	ctacccaact	3900
tgccttcatg	cgcctgctgg	ccaactatgc	ctctcagaac	atcacctacc	actgcaagaa	3960
cagcattgca	tacatggatg	aggagactgg	caacctgaaa	aaggctgtca	ttctacaggg	4020
ctctaatgtat	gttgaacttg	ttgctgaggg	caacagcagg	ttcacttaca	ctgttcttgt	4080
agatggctgc	tctaaaaaga	caaatgaatg	gggaaagaca	atcattgaat	acaaaacaaa	4140
taagccatca	cgcctgcctt	tccttgatat	tgcaccttg	gacatcggtg	tgctgacca	4200
tgaattctt	gtggacatg	gcccaagtctg	tttcaaataa	atgaactcaa	tctaaaattaa	4260
aaaagaaaaga	aatttgaaaa	aactttctct	ttgccatttc	ttcttcttct	tttttaactg	4320
aaagctgaat	ccttccattt	cttctgcaca	tctacttgct	taaattgtgg	gcaaaaagaga	4380
aaaagaagga	ttgatcagag	catttgccaa	tacagttca	ttaactcctt	cccccgctcc	4440
cccaaaaatt	tgaattttt	tttcaacact	cttacacctg	ttatggaaaa	tgtcaacctt	4500
tgtaagaaaa	ccaaaataaa	aatttggaaaa	taaaaaccat	aaacatttgc	accacttgc	4560
gcttttgaat	atcttccaca	gagggaaagtt	taaaacccaa	acttccaaag	gtttaaacta	4620
cctcaaaaaca	ctttcccatg	agtgtgatcc	acattgttag	tgctgaccc	agacagagat	4680
gaactgaggt	ccttggttt	ttttgttcat	aatacaaagg	tgctaattaa	tagtattca	4740
gatacttgaa	gaatgttcat	ggtgctagaa	gaatttgaga	agaaaatactc	ctgtatttgg	4800
ttgtatctgt	ttgtgttattt	ttttaaaaat	ttgatattgc	attcatattt	tccatcttat	4860
tcccaattaa	aagtatgcag	attatttgc	caaagttgtc	ctcttcttca	gattcagcat	4920
ttgttcttt	ccagtctcat	tttcatcttc	ttccatgggtt	ccacagaagc	tttgggttctt	4980
gggcaagcag	aaaaattaaa	ttgtacctat	tttgtatatg	tgagatgttt	aaataaaattg	5040
tgaaaaaaat	gaaataaaagc	atgtttggtt	ttccaaaaga	acatat		5086

<210> 214
 <211> 1366
 <212> PRT
 <213> Homo sapiens

<400> 214
 Met Leu Ser Phe Val Asp Thr Arg Thr Leu Leu Leu Ala Val Thr
 1 5 10 15
 Leu Cys Leu Ala Thr Cys Gln Ser Leu Gln Glu Glu Thr Val Arg Lys
 20 25 30
 Gly Pro Ala Gly Asp Arg Gly Pro Arg Gly Glu Arg Gly Pro Pro Gly
 35 40 45
 Pro Pro Gly Arg Asp Gly Glu Asp Gly Pro Thr Gly Pro Pro Gly Pro
 50 55 60
 Pro Gly Pro Pro Gly Pro Pro Gly Leu Gly Gly Asn Phe Ala Ala Gln
 65 70 75 80
 Tyr Asp Gly Lys Gly Val Gly Leu Gly Pro Gly Pro Met Gly Leu Met
 85 90 95
 Gly Pro Arg Gly Pro Pro Gly Ala Ala Gly Ala Pro Gly Pro Gln Gly
 100 105 110
 Phe Gln Gly Pro Ala Gly Glu Pro Gly Glu Pro Gly Gln Thr Gly Pro
 115 120 125

Ala Gly Ala Arg Gly Pro Ala Gly Pro Pro Gly Lys Ala Gly Glu Asp
 130 135 140
 Gly His Pro Gly Lys Pro Gly Arg Pro Gly Glu Arg Gly Val Val Gly
 145 150 155 160
 Pro Gln Gly Ala Arg Gly Phe Pro Gly Thr Pro Gly Leu Pro Gly Phe
 165 170 175
 Lys Gly Ile Arg Gly His Asn Gly Leu Asp Gly Leu Lys Gly Gln Pro
 180 185 190
 Gly Ala Pro Gly Val Lys Gly Glu Pro Gly Ala Pro Gly Glu Asn Gly
 195 200 205
 Thr Pro Gly Gln Thr Gly Ala Arg Gly Leu Pro Gly Glu Arg Gly Arg
 210 215 220
 Val Gly Ala Pro Gly Pro Ala Gly Ala Arg Gly Ser Asp Gly Ser Val
 225 230 235 240
 Gly Pro Val Gly Pro Ala Gly Pro Ile Gly Ser Ala Gly Pro Pro Gly
 245 250 255
 Phe Pro Gly Ala Pro Gly Pro Lys Gly Glu Ile Gly Ala Val Gly Asn
 260 265 270
 Ala Gly Pro Ala Gly Pro Ala Gly Pro Arg Gly Glu Val Gly Leu Pro
 275 280 285
 Gly Leu Ser Gly Pro Val Gly Pro Pro Gly Asn Pro Gly Ala Asn Gly
 290 295 300
 Leu Thr Gly Ala Lys Gly Ala Ala Gly Leu Pro Gly Val Ala Gly Ala
 305 310 315 320
 Pro Gly Leu Pro Gly Pro Arg Gly Ile Pro Gly Pro Val Gly Ala Ala
 325 330 335
 Gly Ala Thr Gly Ala Arg Gly Leu Val Gly Glu Pro Gly Pro Ala Gly
 340 345 350
 Ser Lys Gly Glu Ser Gly Asn Lys Gly Glu Pro Gly Ser Ala Gly Pro
 355 360 365
 Gln Gly Pro Pro Gly Pro Ser Gly Glu Gly Lys Arg Gly Pro Asn
 370 375 380
 Gly Glu Ala Gly Ser Ala Gly Pro Pro Gly Pro Pro Gly Leu Arg Gly
 385 390 395 400
 Ser Pro Gly Ser Arg Gly Leu Pro Gly Ala Asp Gly Arg Ala Gly Val
 405 410 415
 Met Gly Pro Pro Gly Ser Arg Gly Ala Ser Gly Pro Ala Gly Val Arg
 420 425 430
 Gly Pro Asn Gly Asp Ala Gly Arg Pro Gly Glu Pro Gly Leu Met Gly
 435 440 445
 Pro Arg Gly Leu Pro Gly Ser Pro Gly Asn Ile Gly Pro Ala Gly Lys
 450 455 460
 Glu Gly Pro Val Gly Leu Pro Gly Ile Asp Gly Arg Pro Gly Pro Ile
 465 470 475 480
 Gly Pro Ala Gly Ala Arg Gly Glu Pro Gly Asn Ile Gly Phe Pro Gly
 485 490 495
 Pro Lys Gly Pro Thr Gly Asp Pro Gly Lys Asn Gly Asp Lys Gly His
 500 505 510
 Ala Gly Leu Ala Gly Ala Arg Gly Ala Pro Gly Pro Asp Gly Asn Asn
 515 520 525
 Gly Ala Gln Gly Pro Pro Gly Pro Gln Gly Val Gln Gly Gly Lys Gly
 530 535 540
 Glu Gln Gly Pro Ala Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro
 545 550 555 560
 Ser Gly Pro Ala Gly Glu Val Gly Lys Pro Gly Glu Arg Gly Leu His
 565 570 575
 Gly Glu Phe Gly Leu Pro Gly Pro Ala Gly Pro Arg Gly Glu Arg Gly
 580 585 590
 Pro Pro Gly Glu Ser Gly Ala Ala Gly Pro Thr Gly Pro Ile Gly Ser
 595 600 605
 Arg Gly Pro Ser Gly Pro Pro Gly Pro Asp Gly Asn Lys Gly Glu Pro

610	615	620
Gly Val Val Gly Ala Val Gly Thr Ala Gly Pro Ser Gly Pro Ser Gly		
625	630	635
Leu Pro Gly Glu Arg Gly Ala Ala Gly Ile Pro Gly Gly Lys Gly Glu		640
645	650	655
Lys Gly Glu Pro Gly Leu Arg Gly Glu Ile Gly Asn Pro Gly Arg Asp		
660	665	670
Gly Ala Arg Gly Ala His Gly Ala Val Gly Ala Pro Gly Pro Ala Gly		
675	680	685
Ala Thr Gly Asp Arg Gly Glu Ala Gly Ala Ala Gly Pro Ala Gly Pro		
690	695	700
Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly Glu Val Gly Pro Ala		
705	710	715
Gly Pro Asn Gly Phe Ala Gly Pro Ala Gly Ala Ala Gly Gln Pro Gly		720
725	730	735
Ala Lys Gly Glu Arg Gly Ala Lys Gly Pro Lys Gly Glu Asn Gly Val		
740	745	750
Val Gly Pro Thr Gly Pro Val Gly Ala Ala Gly Pro Ala Gly Pro Asn		
755	760	765
Gly Pro Pro Gly Pro Ala Gly Ser Arg Gly Asp Gly Gly Pro Pro Gly		
770	775	780
Met Thr Gly Phe Pro Gly Ala Ala Gly Arg Thr Gly Pro Pro Gly Pro		
785	790	795
Ser Gly Ile Ser Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Lys Glu		800
805	810	815
Gly Leu Arg Gly Pro Arg Gly Asp Gln Gly Pro Val Gly Arg Thr Gly		
820	825	830
Glu Val Gly Ala Val Gly Pro Pro Gly Phe Ala Gly Glu Lys Gly Pro		
835	840	845
Ser Gly Glu Ala Gly Thr Ala Gly Pro Pro Gly Thr Pro Gly Pro Gln		
850	855	860
Gly Leu Leu Gly Ala Pro Gly Ile Leu Gly Leu Pro Gly Ser Arg Gly		
865	870	875
Glu Arg Gly Leu Pro Gly Val Ala Gly Ala Val Gly Glu Pro Gly Pro		
885	890	895
Leu Gly Ile Ala Gly Pro Pro Gly Ala Arg Gly Pro Pro Gly Ala Val		
900	905	910
Gly Ser Pro Gly Val Asn Gly Ala Pro Gly Glu Ala Gly Arg Asp Gly		
915	920	925
Asn Pro Gly Asn Asp Gly Pro Pro Gly Arg Asp Gly Gln Pro Gly His		
930	935	940
Lys Gly Glu Arg Gly Tyr Pro Gly Asn Ile Gly Pro Val Gly Ala Ala		
945	950	955
Gly Ala Pro Gly Pro His Gly Pro Val Gly Pro Ala Gly Lys His Gly		960
965	970	975
Asn Arg Gly Glu Thr Gly Pro Ser Gly Pro Val Gly Pro Ala Gly Ala		
980	985	990
Val Gly Pro Arg Gly Pro Ser Gly Pro Gln Gly Ile Arg Gly Asp Lys		
995	1000	1005
Gly Glu Pro Gly Glu Lys Gly Pro Arg Gly Leu Pro Gly Leu Lys Gly		
1010	1015	1020
His Asn Gly Leu Gln Gly Leu Pro Gly Ile Ala Gly His His Gly Asp		
1025	1030	1035
Gln Gly Ala Pro Gly Ser Val Gly Pro Ala Gly Pro Arg Gly Pro Ala		1040
1045	1050	1055
Gly Pro Ser Gly Pro Ala Gly Lys Asp Gly Arg Thr Gly His Pro Gly		
1060	1065	1070
Thr Val Gly Pro Ala Gly Ile Arg Gly Pro Gln Gly His Gln Gly Pro		
1075	1080	1085
Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Val Ser		
1090	1095	1100

Gly Gly Gly Tyr Asp Phe Gly Tyr Asp Gly Asp Phe Tyr Arg Ala Asp
 1105 1110 1115 1120
 Gln Pro Arg Ser Ala Pro Ser Leu Arg Pro Lys Asp Tyr Glu Val Asp
 1125 1130 1135
 Ala Thr Leu Lys Ser Leu Asn Asn Gln Ile Glu Thr Leu Leu Thr Pro
 1140 1145 1150
 Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Arg Leu
 1155 1160 1165
 Ser His Pro Glu Trp Ser Ser Gly Tyr Tyr Trp Ile Asp Pro Asn Gln
 1170 1175 1180
 Gly Cys Thr Met Asp Ala Ile Lys Val Tyr Cys Asp Phe Ser Thr Gly
 1185 1190 1195 1200
 Glu Thr Cys Ile Arg Ala Gln Pro Glu Asn Ile Pro Ala Lys Asn Trp
 1205 1210 1215
 Tyr Arg Ser Ser Lys Asp Lys Lys His Val Trp Leu Gly Glu Thr Ile
 1220 1225 1230
 Asn Ala Gly Ser Gln Phe Glu Tyr Asn Val Glu Gly Val Thr Ser Lys
 1235 1240 1245
 Glu Met Ala Thr Gln Leu Ala Phe Met Arg Leu Leu Ala Asn Tyr Ala
 1250 1255 1260
 Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp
 1265 1270 1275 1280
 Glu Glu Thr Gly Asn Leu Lys Lys Ala Val Ile Leu Gln Gly Ser Asn
 1285 1290 1295
 Asp Val Glu Leu Val Ala Glu Gly Asn Ser Arg Phe Thr Tyr Thr Val
 1300 1305 1310
 Leu Val Asp Gly Cys Ser Lys Lys Thr Asn Glu Trp Gly Lys Thr Ile
 1315 1320 1325
 Ile Glu Tyr Lys Thr Asn Lys Pro Ser Arg Leu Pro Phe Leu Asp Ile
 1330 1335 1340
 Ala Pro Leu Asp Ile Gly Gly Ala Asp His Glu Phe Phe Val Asp Ile
 1345 1350 1355 1360
 Gly Pro Val Cys Phe Lys
 1365

<210> 215
 <211> 4898
 <212> DNA
 <213> Homo sapiens

<400> 215

gaattccggc	tgccaggggc	gtccggttac	atccccgcct	tcctctgtcc	tggccgcggg	60
accgggtttg	cgggaccgca	gttcgggaac	atgttggct	cgagcagccg	gatccgggct	120
gcgtggacgc	gggcgctgct	gctgccgctg	ctgctggcg	ggctgtggg	ctgcctgagc	180
cgcaggagc	tctttccctt	cggcccccgg	cagggggacc	tggagctgga	ggacggggat	240
gacttcgtct	ctcctgcctt	ggagctgagt	ggggcgctcc	gcttctacga	cagatccgac	300
atcgacgcag	tctacgtcac	cacaaatggc	atcattgcta	cgagtgaacc	cccgccaaaa	360
gaatcccatc	ccgggctctt	cccaccaaca	ttcggtgtag	tcgccccttt	cctggggac	420
ttggacacga	ccgatggct	gggaaaggtt	tattatcgag	aagacttatac	ccctccatc	480
actcagcgag	cagcagagt	tgtccacaga	gggttcccg	agatctcttt	ccagcctagt	540
agcgcggtgt	ttgtcactt	ggaatccgt	gccccctacc	aaggccccag	cagggacc	600
gaccagaaaag	gcaagagaaaa	cacgttccag	gctgttctag	cctccctctga	ttccagctcc	660
tatgccattt	tccttatcc	tgaggatgt	ctgcagttcc	atacgacatt	ctcaaagaag	720
gaaaacaacc	aagttccgtc	cgtggttgca	ttcagtcag	gttcagtggg	attcttatgg	780
aagagcaacg	gagcttataa	catatttgc	aatgacaggg	aatcaattga	aaatttgccc	840
aagagtagta	actctggca	gcaggggtgc	tgggtgtttg	agattggggag	tccagccacc	900
accaatggcg	tggtgcctgc	agacgtgatc	ctcggaaactg	aagatggggc	agagtatgtat	960
gatgaggatg	aagattatga	cctggcgacc	actcgtctgg	gcctggagga	tgtgggcacc	1020
acgccttct	cctacaaggc	tctgagaagg	ggaggtgctg	acacatacag	tgtgcccagc	1080
gtcccttccc	cgcggccgggc	agctaccgaa	aggccccctt	gaccccccac	agagagaacc	1140
aggctttcc	agttggcagt	ggagactttt	caccagcagc	accctcaggt	catagatgt	1200

gatgaagttg	aggaaacagg	agtgttttc	agctataaca	cggattcccg	ccagacgtgt	1260
gctaacaaca	gacaccagt	ctcgggtcac	gcagagtgc	gggactacgc	cacgggcttc	1320
tgctcgagct	gtgtcgctgg	ctatacgggc	aatggcaggc	aatgtgttgc	agaagggtcc	1380
ccccagcgag	tcaatggcaa	ggtggaaagga	aggatcttgc	tggggagcag	ccaggtcccc	1440
attgtcttg	agaacactga	cctccactct	tacgttagtaa	tgaaccacgg	gcccgttctac	1500
acagccatca	gcaccattcc	cgagaccgtt	ggatattctc	tgcttccact	ggccccagtt	1560
ggaggcatca	ttggatggat	gttgcagtg	gagcaggacg	gattcaagaa	tgggttcagc	1620
atcacccggg	gtgagttcac	tcgcccaggct	gagggtacact	tcgtggggca	cccgggcaat	1680
ctggtcatta	agcagcgtt	caggccatc	gatgagcatg	ggaacactgac	catcgacacg	1740
gagctggagg	gcccgtgtcc	gcagattccg	ttcggctct	ccgtgcacat	tgagccctac	1800
acggagctgt	accacttc	cacccatgt	atcaacttct	cctccaccccg	ggagttacacg	1860
gtgactgagc	ccgagcggaga	tggggcatct	ccttcacgca	tctacactta	ccagtggcgc	1920
cagaccatca	ccttcaggaa	atggctccac	gatgactccc	ggccagccct	gcccgagcacc	1980
cagcgtct	cggtgacag	cgtgttcgtc	ctgtacaacc	aggaggagaa	gatcttgcgc	2040
tacgtttca	gcaactccat	tgggctgtg	agggaaaggct	cccctgtatgc	tcttcagaat	2100
ccctgctaca	tcggcactca	tgggtgtgac	accaacgcgg	cctgtcgccc	tggtcccagg	2160
acacagttca	cctgcaagt	ctccatcgcc	ttccgaggag	acgggcaac	ctgctatgtat	2220
attgatgaat	gttcagaaca	accctcagt	tgtggagagcc	acacaatctg	caataatcac	2280
ccaggaacct	tccgctgcga	gtgtgtggag	ggctaccagt	tttcagatga	ggaaacgtgt	2340
gtggctgtcg	tggaccagcg	cccattcaac	tactgtgaaa	ctggccttca	taactgcgac	2400
ataccccagg	ggggccatgt	tatctacaca	ggaggctct	cctacacctg	ttcctgcttg	2460
ccaggcttt	ctggggatgg	ccaagctgc	caagatgtag	atgaatgc	gccaaggcga	2520
tgtcaccctg	acgccttctg	ctacaacact	ccaggctctt	tcacgtgc	gtgcaaacct	2580
ggttatcagg	gagacggott	ccgttgcgt	cccgagagg	tggagaaaac	ccgggtccag	2640
cacgagcgag	aacacatct	cggggcagcg	ggggcgcacag	acccacacg	acccattcct	2700
ccggggctgt	tcgttctga	gtgcgatgc	cacgggact	acgcgcac	ccagtgccac	2760
ggcagcaccg	gctactgt	gtgcgtggat	cgcgacggcc	gcgagggtga	gggcaccagg	2820
accaggcccg	ggatgacgcc	cccggtctg	agtagactgg	ctcccccgat	tcaccaagga	2880
cctgcgtgc	ctaccgcgt	gatccccctg	cctcctgg	cccatattact	ctttgcccag	2940
actgggaaga	ttgagcgcct	gcccctggag	ggaaatacca	tgaggaagac	agaagcaaag	3000
gcgttccttc	atgtcccccgc	taaagtcatc	attggactgg	ccttgcact	cgtggacaag	3060
atgtttact	ggacggacat	cactgagct	tccattgg	gagctagtt	acatggtga	3120
gagccaacca	ccatcattag	acaagatctt	ggaagtccag	aaggtatgc	tgttgatcac	3180
cttggccgca	acatcttctg	gacagactct	aacctggatc	gaatagaagt	ggcgaagctg	3240
gacggcacgc	agcgccgggt	gctcttttag	actgacctgg	tgaatcccag	aggcattgt	3300
acggattccg	tgagagggaa	ccttacttgg	acagactg	acagagataa	ccccaaagatt	3360
gaaacttctt	acatggacgg	caccaaccgg	aggatcc	tgcaaggat	cctggcttg	3420
cccaatggac	tgcacttcg	tgcgttctc	tctcagct	gctgggtgg	tgcaggcacc	3480
aatcggccgg	aatgcctgaa	ccccagtc	cccagcagac	gcaaggctct	cgaaggctc	3540
cagtatcctt	ttgctgtgac	gagctacggg	aagaatctgt	atttcacaga	ctggaaagatg	3600
aattccgtgg	ttgctctcg	tcttgcatt	tccaaggaga	cgatgtctt	ccaaacccac	3660
aagcagaccc	ggctgtatgg	catcaccacg	gccctgtctc	agtgtccg	aggccataac	3720
tactgctcg	tgaacaatgg	cggtgcacc	cacctatgt	tggccacccc	agggagcagg	3780
acctgcgtt	gccctgacaa	cacccatgg	gttgactgt	tgcacggaa	atgaagacaa	3840
gagtgcctt	tttccttcc	aagttttca	cagcaacact	ctacttgc	caacttggc	3900
cagattgaaa	agtgtctct	ggctgagtg	ccactaggcc	cagacccag	ccagcctgag	3960
ccccaaacaac	aactttccc	tcactgttcc	ccaaaacatg	caccctgg	ttctctaata	4020
gaaaagtctc	cacccctaca	caaggacaga	accctccacc	cctacccccc	accctcagac	4080
agacttatac	accctgttgt	gaggattaca	tgcccattcc	agtgtcttag	gacctttcc	4140
caatactagc	cccccagtgg	tgaacagaac	ctcccaaatt	tgagttgc	ccttccctgt	4200
ggccttatga	gctcagcc	gctttggat	acccacccgt	ctgtcagct	cttgacccat	4260
gagctggggc	ctgacttag	aaagttgg	gttaaggagg	aaatttagcat	tccttaatgt	4320
tttgggggg	tgctctgat	ttcttcttta	ttatagct	atagtttac	tcctcagttc	4380
ctcaccatca	tcatcttgc	taagaccccc	attataat	tcatgcgt	ctttttcata	4440
aaaacctacc	ctgtccat	gatctatgg	catttgg	atgataatga	gcagccctc	4500
ccagatagaa	tgtcaatatt	tgagcagt	gatattgg	tttggtagt	aaaggctaa	4560
atcaaaagaa	tgtccat	taggat	aagggttag	tcaagatattt	gagaataggg	4620
gattttttg	atgtgcctt	aattatacca	aagattacta	attattcc	tttggccaaa	4680
atacttgc	ccaagggttct	agtctctgtt	gctgtgttgc	tctttagccc	cactgcttgc	4740
actgatgtcc	ctcccttttc	acggagacct	atctgaggt	caggatgggg	ctggcaccag	4800
atgatgtccc	accacagtcc	ctcacccat	gacagaacca	attacactc		4860

aaccatgacc tcacccctcc ttggtttctc cctccccg

<210> 216

<211> 1247

<212> PRT

<213> Homo sapiens

<400> 216

Met	Leu	Ala	Ser	Ser	Ser	Arg	Ile	Arg	Ala	Ala	Trp	Thr	Arg	Ala	Leu	
1							5				10				15	
Leu	Leu	Pro	Leu	Leu	Leu	Ala	Gly	Pro	Val	Gly	Cys	Leu	Ser	Arg	Gln	
							20			25				30		
Glu	Leu	Phe	Pro	Phe	Gly	Pro	Gly	Gln	Gly	Asp	Leu	Glu	Leu	Glu	Asp	
							35			40				45		
Gly	Asp	Asp	Phe	Val	Ser	Pro	Ala	Leu	Glu	Leu	Ser	Gly	Ala	Leu	Arg	
							50			55				60		
Phe	Tyr	Asp	Arg	Ser	Asp	Ile	Asp	Ala	Val	Tyr	Val	Thr	Thr	Asn	Gly	
							65			70				80		
Ile	Ile	Ala	Thr	Ser	Glu	Pro	Pro	Ala	Lys	Glu	Ser	His	Pro	Gly	Leu	
							85			90				95		
Phe	Pro	Pro	Thr	Phe	Gly	Ala	Val	Ala	Pro	Phe	Leu	Ala	Asp	Leu	Asp	
							100			105				110		
Thr	Thr	Asp	Gly	Leu	Gly	Lys	Val	Tyr	Tyr	Arg	Glu	Asp	Leu	Ser	Pro	
							115			120				125		
Ser	Ile	Thr	Gln	Arg	Ala	Ala	Glu	Cys	Val	His	Arg	Gly	Phe	Pro	Glu	
							130			135				140		
Ile	Ser	Phe	Gln	Pro	Ser	Ser	Ala	Val	Val	Val	Thr	Trp	Glu	Ser	Val	
							145			150				155		160
Ala	Pro	Tyr	Gln	Gly	Pro	Ser	Arg	Asp	Pro	Asp	Gln	Lys	Gly	Lys	Arg	
							165			170				175		
Asn	Thr	Phe	Gln	Ala	Val	Leu	Ala	Ser	Ser	Asp	Ser	Ser	Ser	Tyr	Ala	
							180			185				190		
Ile	Phe	Leu	Tyr	Pro	Glu	Asp	Gly	Leu	Gln	Phe	His	Thr	Thr	Phe	Ser	
							195			200				205		
Lys	Lys	Glu	Asn	Asn	Gln	Val	Pro	Ala	Val	Val	Ala	Phe	Ser	Gln	Gly	
							210			215				220		
Ser	Val	Gly	Phe	Leu	Trp	Lys	Ser	Asn	Gly	Ala	Tyr	Asn	Ile	Phe	Ala	
							225			230				235		240
Asn	Asp	Arg	Glu	Ser	Ile	Glu	Asn	Leu	Ala	Lys	Ser	Ser	Asn	Ser	Gly	
							245			250				255		
Gln	Gln	Gly	Val	Trp	Val	Phe	Glu	Ile	Gly	Ser	Pro	Ala	Thr	Thr	Asn	
							260			265				270		
Gly	Val	Val	Pro	Ala	Asp	Val	Ile	Leu	Gly	Thr	Glu	Asp	Gly	Ala	Glu	
							275			280				285		
Tyr	Asp	Asp	Glu	Asp	Glu	Asp	Tyr	Asp	Leu	Ala	Thr	Thr	Arg	Leu	Gly	
							290			295				300		
Leu	Glu	Asp	Val	Gly	Thr	Thr	Pro	Phe	Ser	Tyr	Lys	Ala	Leu	Arg	Arg	
							305			310				315		320
Gly	Gly	Ala	Asp	Thr	Tyr	Ser	Val	Pro	Ser	Val	Leu	Ser	Pro	Arg	Arg	
							325			330				335		
Ala	Ala	Thr	Glu	Arg	Pro	Leu	Gly	Pro	Pro	Thr	Glu	Arg	Thr	Arg	Ser	
							340			345				350		
Phe	Gln	Leu	Ala	Val	Glu	Thr	Phe	His	Gln	Gln	His	Pro	Gln	Val	Ile	
							355			360				365		
Asp	Val	Asp	Glu	Val	Glu	Glu	Thr	Gly	Val	Val	Phe	Ser	Tyr	Asn	Thr	
							370			375				380		
Asp	Ser	Arg	Gln	Thr	Cys	Ala	Asn	Asn	Arg	His	Gln	Cys	Ser	Val	His	
							385			390				395		400
Ala	Glu	Cys	Arg	Asp	Tyr	Ala	Thr	Gly	Phe	Cys	Cys	Ser	Cys	Val	Ala	
							405			410				415		
Gly	Tyr	Thr	Gly	Asn	Gly	Arg	Gln	Cys	Val	Ala	Glu	Gly	Ser	Pro	Gln	

	420	425	430
Arg Val Asn Gly Lys Val Lys Gly Arg Ile Phe Val Gly Ser Ser Gln			
435	440	445	
Val Pro Ile Val Phe Glu Asn Thr Asp Leu His Ser Tyr Val Val Met			
450	455	460	
Asn His Gly Arg Ser Tyr Thr Ala Ile Ser Thr Ile Pro Glu Thr Val			
465	470	475	480
Gly Tyr Ser Leu Leu Pro Leu Ala Pro Val Gly Gly Ile Ile Gly Trp			
485	490	495	
Met Phe Ala Val Glu Gln Asp Gly Phe Lys Asn Gly Phe Ser Ile Thr			
500	505	510	
Gly Gly Glu Phe Thr Arg Gln Ala Glu Val Thr Phe Val Gly His Pro			
515	520	525	
Gly Asn Leu Val Ile Lys Gln Arg Phe Ser Gly Ile Asp Glu His Gly			
530	535	540	
His Leu Thr Ile Asp Thr Glu Leu Glu Gly Arg Val Pro Gln Ile Pro			
545	550	555	560
Phe Gly Ser Ser Val His Ile Glu Pro Tyr Thr Glu Leu Tyr His Tyr			
565	570	575	
Ser Thr Ser Val Ile Thr Ser Ser Ser Thr Arg Glu Tyr Thr Val Thr			
580	585	590	
Glu Pro Glu Arg Asp Gly Ala Ser Pro Ser Arg Ile Tyr Thr Tyr Gln			
595	600	605	
Trp Arg Gln Thr Ile Thr Phe Gln Glu Cys Val His Asp Asp Ser Arg			
610	615	620	
Pro Ala Leu Pro Ser Thr Gln Gln Leu Ser Val Asp Ser Val Phe Val			
625	630	635	640
Leu Tyr Asn Gln Glu Glu Lys Ile Leu Arg Tyr Ala Phe Ser Asn Ser			
645	650	655	
Ile Gly Pro Val Arg Glu Gly Ser Pro Asp Ala Leu Gln Asn Pro Cys			
660	665	670	
Tyr Ile Gly Thr His Gly Cys Asp Thr Asn Ala Ala Cys Arg Pro Gly			
675	680	685	
Pro Arg Thr Gln Phe Thr Cys Glu Cys Ser Ile Gly Phe Arg Gly Asp			
690	695	700	
Gly Arg Thr Cys Tyr Asp Ile Asp Glu Cys Ser Glu Gln Pro Ser Val			
705	710	715	720
Cys Gly Ser His Thr Ile Cys Asn Asn His Pro Gly Thr Phe Arg Cys			
725	730	735	
Glu Cys Val Glu Gly Tyr Gln Phe Ser Asp Glu Gly Thr Cys Val Ala			
740	745	750	
Val Val Asp Gin Arg Pro Ile Asn Tyr Cys Glu Thr Gly Leu His Asn			
755	760	765	
Cys Asp Ile Pro Gln Arg Ala Gln Cys Ile Tyr Thr Gly Gly Ser Ser			
770	775	780	
Tyr Thr Cys Ser Cys Leu Pro Gly Phe Ser Gly Asp Gly Gln Ala Cys			
785	790	795	800
Gln Asp Val Asp Glu Cys Gln Pro Ser Arg Cys His Pro Asp Ala Phe			
805	810	815	
Cys Tyr Asn Thr Pro Gly Ser Phe Thr Cys Gln Cys Lys Pro Gly Tyr			
820	825	830	
Gln Gly Asp Gly Phe Arg Cys Val Pro Gly Glu Val Glu Lys Thr Arg			
835	840	845	
Cys Gln His Glu Arg Glu His Ile Leu Gly Ala Ala Gly Ala Thr Asp			
850	855	860	
Pro Gln Arg Pro Ile Pro Pro Gly Leu Phe Val Pro Glu Cys Asp Ala			
865	870	875	880
His Gly His Tyr Ala Pro Thr Gln Cys His Gly Ser Thr Gly Tyr Cys			
885	890	895	
Trp Cys Val Asp Arg Asp Gly Arg Glu Val Glu Gly Thr Arg Thr Arg			
900	905	910	

Pro Gly Met Thr Pro Pro Cys Leu Ser Thr Val Ala Pro Pro Ile His
 915 920 925
 Gln Gly Pro Ala Val Pro Thr Ala Val Ile Pro Leu Pro Pro Gly Thr
 930 935 940
 His Leu Leu Phe Ala Gln Thr Gly Lys Ile Glu Arg Leu Pro Leu Glu
 945 950 955 960
 Gly Asn Thr Met Arg Lys Thr Glu Ala Lys Ala Phe Leu His Val Pro
 965 970 975
 Ala Lys Val Ile Ile Gly Leu Ala Phe Asp Cys Val Asp Lys Met Val
 980 985 990
 Tyr Trp Thr Asp Ile Thr Glu Pro Ser Ile Gly Arg Ala Ser Leu His
 995 1000 1005
 Gly Gly Glu Pro Thr Thr Ile Ile Arg Gln Asp Leu Gly Ser Pro Glu
 1010 1015 1020
 Gly Ile Ala Val Asp His Leu Gly Arg Asn Ile Phe Trp Thr Asp Ser
 1025 1030 1035 1040
 Asn Leu Asp Arg Ile Glu Val Ala Lys Leu Asp Gly Thr Gln Arg Arg
 1045 1050 1055
 Val Leu Phe Glu Thr Asp Leu Val Asn Pro Arg Gly Ile Val Thr Asp
 1060 1065 1070
 Ser Val Arg Gly Asn Leu Tyr Trp Thr Asp Trp Asn Arg Asp Asn Pro
 1075 1080 1085
 Lys Ile Glu Thr Ser Tyr Met Asp Gly Thr Asn Arg Arg Ile Leu Val
 1090 1095 1100
 Gln Asp Asp Leu Gly Leu Pro Asn Gly Leu His Phe Asp Ala Phe Ser
 1105 1110 1115 1120
 Ser Gln Leu Cys Trp Val Asp Ala Gly Thr Asn Arg Ala Glu Cys Leu
 1125 1130 1135
 Asn Pro Ser Gln Pro Ser Arg Arg Lys Ala Leu Glu Gly Leu Gln Tyr
 1140 1145 1150
 Pro Phe Ala Val Thr Ser Tyr Gly Lys Asn Leu Tyr Phe Thr Asp Trp
 1155 1160 1165
 Lys Met Asn Ser Val Val Ala Leu Asp Leu Ala Ile Ser Lys Glu Thr
 1170 1175 1180
 Asp Ala Phe Gln Pro His Lys Gln Thr Arg Leu Tyr Gly Ile Thr Thr
 1185 1190 1195 1200
 Ala Leu Ser Gln Cys Pro Gln Gly His Asn Tyr Cys Ser Val Asn Asn
 1205 1210 1215
 Gly Gly Cys Thr His Leu Cys Leu Ala Thr Pro Gly Ser Arg Thr Cys
 1220 1225 1230
 Arg Cys Pro Asp Asn Thr Leu Gly Val Asp Cys Ile Glu Arg Lys
 1235 1240 1245

<210> 217
 <211> 10558
 <212> DNA
 <213> Homo sapiens

<400> 217

cagttggag ctcagtcttc caccaaaggc cgttcagttc tcctgggctc cagcctcctg	60
caaggactgc aagagtttc ctccgcagct ctgagtctcc acttttttgg tggagaaagg	120
ctgaaaaag aaaaagagac gcagttagtg gaaaaagtat gcacccattt caaacctaatt	180
tgaatcgagg agcccaggga cacacgcctt caggtttgtc caggggttca tatttgggtgc	240
ttagacaaat tcaaatgag gaaacatcggt cacttgcctt tagtggccgt ctttgcctc	300
tttctctcag gtttcctac aactcatgcc cagcagcagc aagcagatgt caaaaatgg	360
gcggctgctg atataatatt tctagtggat tcctcttggta ccattggaga ggaacatttc	420
caacttgttc gagagtttct atatgatgtt gtaaaatctt tagctgtggg agaaaatgtat	480
ttcatttttgc ctctgggtcca gttcaacggaa aacccacata ccgagttcct gttaaatacg	540
tatcgacta aacaagaagt cctttctcat atttccaaca tgtcttat tgggggaacc	600
aatcgactg gaaaaggatt agaatacata atgcaaagcc acctcaccaa ggctgctgga	660
agccgggccc gtgacggagt ccctcaggtt atcgttagtgt taactgatgg acactcgaag	720

gatggcctt	ctctgccctc	agcggaaactt	aagtctgtct	atgttaacgt	gtttgcatt	780
ggaggtagg	atgcagatga	aggagcgta	aaaagaata	caagtgaacc	gctcaatatg	840
catatgtca	acctagagaa	tttacctca	cttcata	tagtaggaaa	cttagtgtcc	900
tgtgtgcatt	catccgtgag	tccagaaagg	gctggggaca	cgaaaaaccct	taaagacatc	960
acagcacaag	actctgctga	cattatttc	cttattgtat	gatcaaaca	caccggaaagt	1020
gtcaatttcg	cagtcattct	cgacttcctt	gtaaatctcc	tttagagaaact	cccaatttgg	1080
actcagcaga	tccgagtggg	ggtggccag	tttagcgtat	agccccagaac	catgtttcc	1140
ttggacacct	actccaccaa	ggcccagg	ctgggtgcag	tgaagccct	cgggtttgc	1200
ggtggggagt	tggccaatat	cgccctcgcc	cttgatttcg	tggtggagaa	ccacttcacc	1260
cgggcagggg	gcagccgcgt	ggaggaagg	gttccccagg	tgctggcct	cataagtgc	1320
gggcctcta	gtacgagat	tcgctacggg	gtggtagcac	tgaagcaggc	tagcgtgtt	1380
tcattcggcc	ttggagccca	ggccgcctcc	agggcagagc	ttcagcacat	agctaccgat	1440
gacaacttgg	tgttactgt	cccggaattc	cgtagcttgc	gggaccccca	ggagaaatta	1500
ctgcccata	ttgttggcg	ggcccaaagg	cacattgtct	tgaaacccgc	aaccattgtc	1560
acacaagtca	ttgaagtcaa	caagagagac	atagtctcc	tggtggatgg	ctcatctgc	1620
ctgggactgg	ccaactcaa	tgccatccga	gacttcattt	ctaaagtcat	ccagaggctg	1680
gaaatcgac	aggatcttat	ccaggtggca	gtggcccagt	atgcagacac	tgtgaggcct	1740
gaattttatt	tcaataccca	tccaacaaaa	agggaaagtca	taaccgctgt	gcccggaaatg	1800
aagccctgg	acggctcg	cctgtacacg	ggctctgctc	tagactttgt	tcgtaacaac	1860
ctattcacga	gtcagccgg	ctaccggct	gcccagg	ttcctaagct	tttgggtgc	1920
atcacaggtg	gtaagtccct	agatgaaatc	agccagcctg	cccaggagct	gaagagaagc	1980
agcataatgg	ccttgc	tggaaacaag	gttgcgc	aggctgagct	ggaagagatc	2040
gctttcgact	cctccctgg	gttcatccca	gctgagttcc	gagccggccc	attgcaaggc	2100
atgctgcctg	gcttgc	acctctcagg	accctctctg	gaaccctga	agttcactca	2160
aacaaaagag	atatcatctt	tctttggat	ggatcagcca	acgttggaa	accaatttc	2220
ccttatgtc	gcgactttgt	aatgaaccta	gtaacagcc	ttgatattgg	aatgacaat	2280
attcgtgtt	gttagtgca	atttagtgac	actcctgtaa	cgagttctc	tttaaacaca	2340
taccagacca	agtcagat	ccttggcat	ctgaggcagc	tgcagctca	gggagggtc	2400
ggcctgaaca	caggctc	cctaagctat	gtctatgcca	accacttcac	ggaagctggc	2460
ggcagcagga	tccgtgaaca	cgtgcgc	ctcctgc	tgctcacagc	tggcagtc	2520
gaggactcct	attgcaagc	tgccaa	ttgacac	cgggcatcct	gacttttgc	2580
gtgggagcta	gccaggcgaa	taaggcagag	cttgc	ttgctttaa	ccaaaggctg	2640
gtgtatctca	tggatgattt	cagctcc	ccagcttgc	ctcagcagct	gattcagccc	2700
ctaaccacat	atgttagtgg	aggtgtggag	gaagtaccac	tcgctcagcc	agagagcaag	2760
cgagacattc	tgttcc	tgacg	gccaatcttgc	tggcc	ccctgttgc	2820
cgtgacttcc	tctacaagat	tatcgat	ctcaatgt	agccagagg	gaccggaaat	2880
gccccgtc	agtagc	tgatgtca	gtggagtccc	gtttgtat	gcaaggagat	2940
aaggctgaga	tcctgaatct	tgtgaagaga	atgaagatca	agacgggca	agccctcaac	3000
ctgggctacg	cgtggacta	tgcacagagg	tacatttttgc	tgaagtctgc	tggcagccgg	3060
atcgagatgt	gagtgttca	gttcc	ctgctgg	caggaagg	atctgaccgt	3120
gtggatggc	cagca	cctga	agtg	tgc	cttccaagc	3180
aagaacccag	accctgt	tttagagc	atctgt	ctcc	tatcctgg	3240
gcagatcgc	ttcccaagat	tggagat	ttt	c	ctaaaatca	3300
gtgcacaacg	gagcacc	acc	ggtaaaa	acgt	tgtctt	3360
ggctctgagg	ggtc	cttcc	ttt	cc	gaggtgtt	3420
gaaagcttgg	atgtgg	ggacc	gg	gg	gaggtgtt	3480
accaggcccg	agg	cg	cg	cc	gacgacc	3540
cggccagctg	ccct	ctt	ctt	cc	caacg	3600
ctgaggaaca	tctgt	ctt	ctt	cc	ctg	3660
ctgatctcc	tcacggcc	cagg	tc	cc	cc	3720
aagaggggt	gggtgt	catt	cc	cc	cc	3780
cagaccatct	ccttcat	ggact	cc	cc	cc	3840
accgtccaac	aggtcat	tgagagg	ttt	cc	cc	3900
ctgcaggccg	tgttgc	tctacc	ccagg	cc	cc	3960
tttctcatcg	atgg	gg	gg	gg	gg	4020
gagaggctgg	ttgact	ggac	gg	gg	gg	4080
ttcagcgt	acccc	ggagt	cc	cc	cc	4140
cagaacccgg	tgcag	ggccc	gg	gg	gg	4200
ctggagatcg	tgtcc	cat	gg	gg	gg	4260
gtcccacagt	tctgt	cat	gg	gg	gg	4320
gcgggtgg	tcaagc	tg	gg	gg	gg	4380

tcctgtggat ttggcagttg gaggcattcc ttcagggaca ggagagcggc agggagtat	8100
gtggacatcg acatggctt catcttagac agcgctgaga ccaccaccct gttccagttc	8160
aatgagatga agaagtagat agcgtacctg gtcagacaac tggacatgag cccagatccc	8220
aaggcctccc agcaacttcgc cagatggca gttgtgcagc acgcgcctc tgagtccgt	8280
gacaatgcca gcatgccacc tgtgaagggtg gaattctccc tgactgacta tggctccaag	8340
gagaagctgg tggacttct cagcaggaaa atgacacagt tgcagggaaac cagggcetta	8400
ggcagtgcctt tggaaatacac catagagaat gtcttggaaa gtgcggccaaa cccacgggac	8460
ctgaaaatttgg tggctctgt gctgacgggc gaggtgcggg agcagcagct ggaggaggcc	8520
cagagagtgc tccgtcaggc caaatgcaag ggctacttct tcgttgtctt gggcattggc	8580
aggaaggtga acatcaagga ggtatacacc ttcgcccagt agccaaacga cgtcttcttc	8640
aaattagtgg acaagtccac cgagctcaac gaggagcctt tgatgcgtt cgggaggctg	8700
tgcgtcctt tgcgtcaggc tgaaaatgtct tttacttctt ccccagatata caggaaacag	8760
tgtgttgtt tccaaggggc ccaaccacca aagaacctt tgaagtttgg tcacaaacaa	8820
gtaaaatgttc cgaataaacgt tacttaagt cctacatcca acccagtgac gacaacgaag	8880
ccggtgacta cgacgaagcc ggtgaccacc acaacaaagc ctgtaaaccac cacaacaaag	8940
cctgtacta ttataaatacc gccatctgtg aagccagccg ctgcaaagcc gggccctg	9000
aaacctgtgg ctgccaaggc tggccaca aagacggcc a ctgttagacc cccagtggc	9060
gtgaagccag caacagcagc gaaggctgtt gcaagaaacg cagcagctgt aagaccccccc	9120
gctgtctgtg caaaaaccagt ggcgaccaag cctgagggtcc ctggccaca ggcagccaaa	9180
ccagctgcca ccaagccagc caccactaag cccgtggta agatgcctc tgaagtccag	9240
gtgttgtt gataacagaaaa cagcggccaa ctccacttgg agaggcctga gccccccgg	9300
ccttattttt atgacctcac cgtcacctca gcccattgtc agtcccttgt tctgaagcag	9360
aacctcacgg tcacggaccc cgtcatttgg ggcctgctg ctggcagac ataccatgt	9420
gctgttgtt gctaccttgg gtctcaggc agagccaccc accacggaaat tttcagtaca	9480
aagaaatctc agccccccacc tccacagcc gcaaggctcag cttctagttc aaccatcaat	9540
ctaattgtt gacacagaacc attggctc actgaaacag atatatgaa gttgcccggaa	9600
gacgaaggaa cttgcaggaa ttcatatta aaatggtact atgatccaa caccaaaagc	9660
tgtgcagat tctggatgg aggttgttgg gggaaacgaaa acaaatttgg atcacagaaaa	9720
gaatgtgaaa aggtttggc tcctgtgtc gccaaaccgg gagtcatcag tggatgggaa	9780
acctaaggcgt gggggccaa catcatatac ctcttgaaga agaaggagtc agccatcgcc	9840
aacttgtctc tggtagaaagct cgggggtgt tagtcccttc actgtatcat ttcattgttt	9900
gatttacact cgaactcggg agggaaacatc ctgctgtcat acctatcgt atgggtctaa	9960
tgtgtctgtg gaccctcgct ctctgtctcc agcagttctc tcgaataactt tgaatgtt	10020
gtaacagttt gccactgtc gtgttatgtt gaaacatttctt atcaatccaa atccctctg	10080
gagtttcatg ttatgcctgt tgcaggcaaa tggtaatgtt agaaaataat gcaaatgtca	10140
cggtctactct atatactttt gcttggttca tttttttcc ctggtagttt agcatgactt	10200
tagatggaa gctgtgtat cgtggagaaaa caagagacca acttttcat tccctgcccc	10260
caatttccca gactagattt caagcttaatt ttcttttctt gaaaggctcta acaaattgtc	10320
tagttcagaa ggaagcaaaa tcccttaatc tatgtgcacc gttgggacca atgccttaat	10380
taaagaattt aaaaaagttt taatagagaa tttttttggc attcctctca atgttgtgt	10440
ttttttttttt ttgtgtctg gagggagggg atttaattt aatttaaaaa tggtagaa	10500
atttatacaa agaaactttt taataaagta tattgaaatggaaaaaaa	10558

<210> 218
 <211> 3173
 <212> PRT
 <213> Homo sapiens

<400> 218
 Met Arg Lys His Arg His Leu Pro Leu Val Ala Val Phe Cys Leu Phe
 1 5 10 15
 Leu Ser Gly Phe Pro Thr Thr His Ala Gln Gln Gln Ala Asp Val
 20 25 30
 Lys Asn Gly Ala Ala Ala Asp Ile Ile Phe Leu Val Asp Ser Ser Trp
 35 40 45
 Thr Ile Gly Glu Glu His Phe Gln Leu Val Arg Glu Phe Leu Tyr Asp
 50 55 60
 Val Val Lys Ser Leu Ala Val Gly Glu Asn Asp Phe His Phe Ala Leu
 65 70 75 80

Val Gln Phe Asn Gly Asn Pro His Thr Glu Phe Leu Leu Asn Thr Tyr
 85 90 95
 Arg Thr Lys Gln Glu Val Leu Ser His Ile Ser Asn Met Ser Tyr Ile
 100 105 110
 Gly Gly Thr Asn Gln Thr Gly Lys Gly Leu Glu Tyr Ile Met Gln Ser
 115 120 125
 His Leu Thr Lys Ala Ala Gly Ser Arg Ala Gly Asp Gly Val Pro Gln
 130 135 140
 Val Ile Val Val Leu Thr Asp Gly His Ser Lys Asp Gly Leu Ala Leu
 145 150 155 160
 Pro Ser Ala Glu Leu Lys Ser Ala Asp Val Asn Val Phe Ala Ile Gly
 165 170 175
 Val Glu Asp Ala Asp Glu Gly Ala Leu Lys Glu Ile Ala Ser Glu Pro
 180 185 190
 Leu Asn Met His Met Phe Asn Leu Glu Asn Phe Thr Ser Leu His Asp
 195 200 205
 Ile Val Gly Asn Leu Val Ser Cys Val His Ser Ser Val Ser Pro Glu
 210 215 220
 Arg Ala Gly Asp Thr Glu Thr Leu Lys Asp Ile Thr Ala Gln Asp Ser
 225 230 235 240
 Ala Asp Ile Ile Phe Leu Ile Asp Gly Ser Asn Asn Thr Gly Ser Val
 245 250 255
 Asn Phe Ala Val Ile Leu Asp Phe Leu Val Asn Leu Leu Glu Lys Leu
 260 265 270
 Pro Ile Gly Thr Gln Gln Ile Arg Val Gly Val Val Gln Phe Ser Asp
 275 280 285
 Glu Pro Arg Thr Met Phe Ser Leu Asp Thr Tyr Ser Thr Lys Ala Gln
 290 295 300
 Val Leu Gly Ala Val Lys Ala Leu Gly Phe Ala Gly Gly Glu Leu Ala
 305 310 315 320
 Asn Ile Gly Leu Ala Leu Asp Phe Val Val Glu Asn His Phe Thr Arg
 325 330 335
 Ala Gly Gly Ser Arg Val Glu Glu Gly Val Pro Gln Val Leu Val Leu
 340 345 350
 Ile Ser Ala Gly Pro Ser Ser Asp Glu Ile Arg Tyr Gly Val Val Ala
 355 360 365
 Leu Lys Gln Ala Ser Val Phe Ser Phe Gly Leu Gly Ala Gln Ala Ala
 370 375 380
 Ser Arg Ala Glu Leu Gln His Ile Ala Thr Asp Asp Asn Leu Val Phe
 385 390 395 400
 Thr Val Pro Glu Phe Arg Ser Phe Gly Asp Leu Gln Glu Lys Leu Leu
 405 410 415
 Pro Tyr Ile Val Gly Val Ala Gln Arg His Ile Val Leu Lys Pro Pro
 420 425 430
 Thr Ile Val Thr Gln Val Ile Glu Val Asn Lys Arg Asp Ile Val Phe
 435 440 445
 Leu Val Asp Gly Ser Ser Ala Leu Gly Leu Ala Asn Phe Asn Ala Ile
 450 455 460
 Arg Asp Phe Ile Ala Lys Val Ile Gln Arg Leu Glu Ile Gly Gln Asp
 465 470 475 480
 Leu Ile Gln Val Ala Val Ala Gln Tyr Ala Asp Thr Val Arg Pro Glu
 485 490 495
 Phe Tyr Phe Asn Thr His Pro Thr Lys Arg Glu Val Ile Thr Ala Val
 500 505 510
 Arg Lys Met Lys Pro Leu Asp Gly Ser Ala Leu Tyr Thr Gly Ser Ala
 515 520 525
 Leu Asp Phe Val Arg Asn Asn Leu Phe Thr Ser Ser Ala Gly Tyr Arg
 530 535 540
 Ala Ala Glu Gly Ile Pro Lys Leu Leu Val Leu Ile Thr Gly Gly Lys
 545 550 555 560
 Ser Leu Asp Glu Ile Ser Gln Pro Ala Gln Glu Leu Lys Arg Ser Ser

	565	570	575
Ile Met Ala Phe Ala Ile Gly Asn Lys	Gly Ala Asp Gln Ala Glu Leu		
580	585	590	
Glu Glu Ile Ala Phe Asp Ser Ser	Leu Val Phe Ile Pro Ala Glu Phe		
595	600	605	
Arg Ala Ala Pro Leu Gln Gly	Met Leu Pro Gly Leu Leu Ala Pro Leu		
610	615	620	
Arg Thr Leu Ser Gly Thr Pro Glu Val His	Ser Asn Lys Arg Asp Ile		
625	630	635	640
Ile Phe Leu Leu Asp Gly Ser Ala Asn Val	Gly Lys Thr Asn Phe Pro		
645	650	655	
Tyr Val Arg Asp Phe Val Met Asn Leu Val Asn Ser Leu	Asp Ile Gly		
660	665	670	
Asn Asp Asn Ile Arg Val Gly	Leu Val Gln Phe Ser Asp Thr Pro Val		
675	680	685	
Thr Glu Phe Ser Leu Asn Thr Tyr Gln Thr Lys	Ser Asp Ile Leu Gly		
690	695	700	
His Leu Arg Gln Leu Gln Gly Gly Ser Gly	Leu Asn Thr Gly		
705	710	715	720
Ser Ala Leu Ser Tyr Val Tyr Ala Asn His	Phe Thr Glu Ala Gly Gly		
725	730	735	
Ser Arg Ile Arg Glu His Val Pro Gln Leu Leu Leu	Leu Thr Ala		
740	745	750	
Gly Gln Ser Glu Asp Ser Tyr	Leu Gln Ala Ala Asn Ala Leu Thr Arg		
755	760	765	
Ala Gly Ile Leu Thr Phe Cys Val Gly Ala Ser Gln	Ala Asn Lys Ala		
770	775	780	
Glu Leu Glu Gln Ile Ala Phe Asn Pro Ser	Leu Val Tyr Leu Met Asp		
785	790	795	800
Asp Phe Ser Ser Leu Pro Ala Leu Pro	Gln Gln Leu Ile Gln Pro Leu		
805	810	815	
Thr Thr Tyr Val Ser Gly Gly Val	Glu Glu Val Pro Leu Ala Gln Pro		
820	825	830	
Glu Ser Lys Arg Asp Ile Leu Phe Leu Phe Asp Gly	Ser Ala Asn Leu		
835	840	845	
Val Gly Gln Phe Pro Val Val Arg Asp Phe Leu	Tyr Lys Ile Ile Asp		
850	855	860	
Glu Leu Asn Val Lys Pro Glu Gly Thr Arg	Ile Ala Val Ala Gln Tyr		
865	870	875	880
Ser Asp Asp Val Lys Val Glu Ser Arg Phe Asp Glu	His Gln Ser Lys		
885	890	895	
Pro Glu Ile Leu Asn Leu Val Lys Arg Met Lys	Ile Lys Thr Gly Lys		
900	905	910	
Ala Leu Asn Leu Gly Tyr Ala Leu Asp Tyr	Ala Gln Arg Tyr Ile Phe		
915	920	925	
Val Lys Ser Ala Gly Ser Arg Ile Glu Asp Gly	Val Leu Gln Phe Leu		
930	935	940	
Val Leu Leu Val Ala Gly Arg Ser Ser Asp	Arg Val Asp Gly Pro Ala		
945	950	955	960
Ser Asn Leu Lys Gln Ser Gly Val Val Pro	Phe Ile Phe Gln Ala Lys		
965	970	975	
Asn Ala Asp Pro Ala Glu Leu Glu Gln	Ile Val Leu Ser Pro Ala Phe		
980	985	990	
Ile Leu Ala Ala Glu Ser Leu Pro Lys Ile Gly	Asp Leu His Pro Gln		
995	1000	1005	
Ile Val Asn Leu Leu Lys Ser Val His Asn Gly	Ala Pro Ala Pro Val		
1010	1015	1020	
Ser Gly Glu Lys Asp Val Val Phe Leu Leu Asp Gly	Ser Glu Gly Val		
1025	1030	1035	1040
Arg Ser Gly Phe Pro Leu Leu Lys Glu Phe Val	Gln Arg Val Val Glu		
1045	1050	1055	

Ser Leu Asp Val Gly Gln Asp Arg Val Arg Val Ala Val Val Gln Tyr
 1060 1065 1070
 Ser Asp Arg Thr Arg Pro Glu Phe Tyr Leu Asn Ser Tyr Met Asn Lys
 1075 1080 1085
 Gln Asp Val Val Asn Ala Val Arg Gln Leu Thr Leu Leu Gly Gly Pro
 1090 1095 1100
 Thr Pro Asn Thr Gly Ala Ala Leu Glu Phe Val Leu Arg Asn Ile Leu
 1105 1110 1115 1120
 Val Ser Ser Ala Gly Ser Arg Ile Thr Glu Gly Val Pro Gln Leu Leu
 1125 1130 1135
 Ile Val Leu Thr Ala Asp Arg Ser Gly Asp Asp Val Arg Asn Pro Ser
 1140 1145 1150
 Val Val Val Lys Arg Gly Gly Ala Val Pro Ile Gly Ile Gly Ile Gly
 1155 1160 1165
 Asn Ala Asp Ile Thr Glu Met Gln Thr Ile Ser Phe Ile Pro Asp Phe
 1170 1175 1180
 Ala Val Ala Ile Pro Thr Phe Arg Gln Leu Gly Thr Val Gln Gln Val
 1185 1190 1195 1200
 Ile Ser Glu Arg Val Thr Gln Leu Thr Arg Glu Glu Leu Ser Arg Leu
 1205 1210 1215
 Gln Pro Val Leu Gln Pro Leu Pro Ser Pro Gly Val Gly Lys Arg
 1220 1225 1230
 Asp Val Val Phe Leu Ile Asp Gly Ser Gln Ser Ala Gly Pro Glu Phe
 1235 1240 1245
 Gln Tyr Val Arg Thr Leu Ile Glu Arg Leu Val Asp Tyr Leu Asp Val
 1250 1255 1260
 Gly Phe Asp Thr Thr Arg Val Ala Val Ile Gln Phe Ser Asp Asp Pro
 1265 1270 1275 1280
 Lys Ala Glu Phe Leu Leu Asn Ala His Ser Ser Lys Asp Glu Val Gln
 1285 1290 1295
 Asn Ala Val Gln Arg Leu Arg Pro Lys Gly Gly Arg Gln Ile Asn Val
 1300 1305 1310
 Gly Asn Ala Leu Glu Tyr Val Ser Arg Asn Ile Phe Lys Arg Pro Leu
 1315 1320 1325
 Gly Ser Arg Ile Glu Glu Gly Val Pro Gln Phe Leu Val Leu Ile Ser
 1330 1335 1340
 Ser Gly Lys Ser Asp Asp Glu Val Val Val Pro Ala Val Glu Leu Lys
 1345 1350 1355 1360
 Gln Phe Gly Val Ala Pro Phe Thr Ile Ala Arg Asn Ala Asp Gln Glu
 1365 1370 1375
 Glu Leu Val Lys Ile Ser Leu Ser Pro Glu Tyr Val Phe Ser Val Ser
 1380 1385 1390
 Thr Phe Arg Glu Leu Pro Ser Leu Glu Gln Lys Leu Leu Thr Pro Ile
 1395 1400 1405
 Thr Thr Leu Thr Ser Glu Gln Ile Gln Lys Leu Leu Ala Ser Thr Arg
 1410 1415 1420
 Tyr Pro Pro Pro Ala Val Glu Ser Asp Ala Ala Asp Ile Val Phe Leu
 1425 1430 1435 1440
 Ile Asp Ser Ser Glu Gly Val Arg Pro Asp Gly Phe Ala His Ile Arg
 1445 1450 1455
 Asp Phe Val Ser Arg Ile Val Arg Arg Leu Asn Ile Gly Pro Ser Lys
 1460 1465 1470
 Val Arg Val Gly Val Val Gln Phe Ser Asn Asp Val Phe Pro Glu Phe
 1475 1480 1485
 Tyr Leu Lys Thr Tyr Arg Ser Gln Ala Pro Val Leu Asp Ala Ile Arg
 1490 1495 1500
 Arg Leu Arg Leu Arg Gly Gly Ser Pro Leu Asn Thr Gly Lys Ala Leu
 1505 1510 1515 1520
 Glu Phe Val Ala Arg Asn Leu Phe Val Lys Ser Ala Gly Ser Arg Ile
 1525 1530 1535
 Glu Asp Gly Val Pro Gln His Leu Val Leu Gly Gly Lys Ser

	1540	1545	1550
Gln Asp Asp Val Ser Arg Phe Ala Gln Val Ile Arg Ser Ser Gly Ile			
1555	1560	1565	
Val Ser Leu Gly Val Gly Asp Arg Asn Ile Asp Arg Thr Glu Leu Gln			
1570	1575	1580	
Thr Ile Thr Asn Asp Pro Arg Leu Val Phe Thr Val Arg Glu Phe Arg			
1585	1590	1595	1600
Glu Leu Pro Asn Ile Glu Glu Arg Ile Met Asn Ser Phe Gly Pro Ser			
1605	1610	1615	
Ala Ala Thr Pro Ala Pro Pro Gly Val Asp Thr Pro Pro Ser Arg			
1620	1625	1630	
Pro Glu Lys Lys Ala Asp Ile Val Phe Leu Leu Asp Gly Ser Ile			
1635	1640	1645	
Asn Phe Arg Arg Asp Ser Phe Gln Glu Val Leu Arg Phe Val Ser Glu			
1650	1655	1660	
Ile Val Asp Thr Val Tyr Glu Asp Gly Asp Ser Ile Gln Val Gly Leu			
1665	1670	1675	1680
Val Gln Tyr Asn Ser Asp Pro Thr Asp Glu Phe Phe Leu Lys Asp Phe			
1685	1690	1695	
Ser Thr Lys Arg Gln Ile Ile Asp Ala Ile Asn Lys Val Val Tyr Lys			
1700	1705	1710	
Gly Gly Arg His Ala Asn Thr Lys Val Gly Leu Glu His Leu Arg Val			
1715	1720	1725	
Asn His Phe Val Pro Glu Ala Gly Ser Arg Leu Asp Gln Arg Val Pro			
1730	1735	1740	
Gln Ile Ala Phe Val Ile Thr Gly Gly Lys Ser Val Glu Asp Ala Gln			
1745	1750	1755	1760
Asp Val Ser Leu Ala Leu Thr Gln Arg Gly Val Lys Val Phe Ala Val			
1765	1770	1775	
Gly Val Arg Asn Ile Asp Ser Glu Glu Val Gly Lys Ile Ala Ser Asn			
1780	1785	1790	
Ser Ala Thr Ala Phe Arg Val Gly Asn Val Gln Glu Leu Ser Glu Leu			
1795	1800	1805	
Ser Glu Gln Val Leu Glu Thr Leu His Asp Ala Met His Glu Thr Leu			
1810	1815	1820	
Cys Pro Gly Val Thr Asp Ala Ala Lys Ala Cys Asn Leu Asp Val Ile			
1825	1830	1835	1840
Leu Gly Phe Asp Gly Ser Arg Asp Gln Asn Val Phe Val Ala Gln Lys			
1845	1850	1855	
Gly Phe Glu Ser Lys Val Asp Ala Ile Leu Asn Arg Ile Ser Gln Met			
1860	1865	1870	
His Arg Val Ser Cys Ser Gly Gly Arg Ser Pro Thr Val Arg Val Ser			
1875	1880	1885	
Val Val Ala Asn Thr Pro Ser Gly Pro Val Glu Ala Phe Asp Phe Asp			
1890	1895	1900	
Glu Tyr Gln Pro Glu Met Leu Glu Lys Phe Arg Asn Met Arg Ser Gln			
1905	1910	1915	1920
His Pro Tyr Val Leu Thr Glu Asp Thr Leu Lys Val Tyr Leu Asn Lys			
1925	1930	1935	
Phe Arg Gln Ser Ser Pro Asp Ser Val Lys Val Val Ile His Phe Thr			
1940	1945	1950	
Asp Gly Ala Asp Gly Asp Leu Ala Asp Leu His Arg Ala Ser Glu Asn			
1955	1960	1965	
Leu Arg Gln Glu Gly Val Arg Ala Leu Ile Leu Val Gly Leu Glu Arg			
1970	1975	1980	
Val Val Asn Leu Glu Arg Leu Met His Leu Glu Phe Gly Arg Gly Phe			
1985	1990	1995	2000
Met Tyr Asp Arg Pro Leu Arg Leu Asn Leu Leu Asp Leu Asp Tyr Glu			
2005	2010	2015	
Leu Ala Glu Gln Leu Asp Asn Ile Ala Glu Lys Ala Cys Cys Gly Val			
2020	2025	2030	

Pro Cys Lys Cys Ser Gly Gln Arg Gly Asp Arg Gly Pro Ile Gly Ser
 2035 2040 2045
 Ile Gly Pro Lys Gly Ile Pro Gly Glu Asp Gly Tyr Arg Gly Tyr Pro
 2050 2055 2060
 Gly Asp Glu Gly Gly Pro Gly Glu Arg Gly Pro Pro Gly Val Asn Gly
 2065 2070 2075 2080
 Thr Gln Gly Phe Gln Gly Cys Pro Gly Gln Arg Gly Val Lys Gly Ser
 2085 2090 2095
 Arg Gly Phe Pro Gly Glu Lys Gly Glu Val Gly Glu Ile Gly Leu Asp
 2100 2105 2110
 Gly Leu Asp Gly Glu Asp Gly Asp Lys Gly Leu Pro Gly Ser Ser Gly
 2115 2120 2125
 Glu Lys Gly Asn Pro Gly Arg Arg Gly Asp Lys Gly Pro Arg Gly Glu
 2130 2135 2140
 Lys Gly Glu Arg Gly Asp Val Gly Ile Arg Gly Asp Pro Gly Asn Pro
 2145 2150 2155 2160
 Gly Gln Asp Ser Gln Glu Arg Gly Pro Lys Gly Glu Thr Gly Asp Leu
 2165 2170 2175
 Gly Pro Met Gly Val Pro Gly Arg Asp Gly Val Pro Gly Pro Gly
 2180 2185 2190
 Glu Thr Gly Lys Asn Gly Gly Phe Gly Arg Arg Gly Pro Pro Gly Ala
 2195 2200 2205
 Lys Gly Asn Lys Gly Gly Pro Gly Gln Pro Gly Phe Glu Gly Glu Gln
 2210 2215 2220
 Gly Thr Arg Gly Ala Gln Gly Pro Ala Gly Pro Ala Gly Pro Pro Gly
 2225 2230 2235 2240
 Leu Ile Gly Glu Gln Gly Ile Ser Gly Pro Arg Gly Ser Gly Gly Ala
 2245 2250 2255
 Arg Gly Ala Pro Gly Glu Arg Gly Arg Thr Gly Pro Leu Gly Arg Lys
 2260 2265 2270
 Gly Glu Pro Gly Glu Pro Gly Pro Lys Gly Gly Ile Gly Asn Pro Gly
 2275 2280 2285
 Pro Arg Gly Glu Thr Gly Asp Asp Gly Arg Asp Gly Val Gly Ser Glu
 2290 2295 2300
 Gly Arg Arg Gly Lys Lys Gly Glu Arg Gly Phe Pro Gly Tyr Pro Gly
 2305 2310 2315 2320
 Pro Lys Gly Asn Pro Gly Glu Pro Gly Leu Asn Gly Thr Thr Gly Pro
 2325 2330 2335
 Lys Gly Ile Arg Gly Arg Arg Gly Asn Ser Gly Pro Pro Gly Ile Val
 2340 2345 2350
 Gly Gln Lys Gly Arg Pro Gly Tyr Pro Gly Pro Ala Gly Pro Arg Gly
 2355 2360 2365
 Asn Arg Gly Asp Ser Ile Asp Gln Cys Ala Leu Ile Gln Ser Ile Lys
 2370 2375 2380
 Asp Lys Cys Pro Cys Cys Tyr Gly Pro Leu Glu Cys Pro Val Phe Pro
 2385 2390 2395 2400
 Thr Glu Leu Ala Phe Ala Leu Asp Thr Ser Glu Gly Val Asn Gln Asp
 2405 2410 2415
 Thr Phe Gly Arg Met Arg Asp Val Val Leu Ser Ile Val Asn Val Leu
 2420 2425 2430
 Thr Ile Ala Glu Ser Asn Cys Pro Thr Gly Ala Arg Val Ala Val Val
 2435 2440 2445
 Thr Tyr Asn Asn Glu Val Thr Thr Glu Ile Arg Phe Ala Asp Ser Lys
 2450 2455 2460
 Arg Lys Ser Val Leu Leu Asp Lys Ile Lys Asn Leu Gln Val Ala Leu
 2465 2470 2475 2480
 Thr Ser Lys Gln Gln Ser Leu Glu Thr Ala Met Ser Phe Val Ala Arg
 2485 2490 2495
 Asn Thr Phe Lys Arg Val Arg Asn Gly Phe Leu Met Arg Lys Val Ala
 2500 2505 2510
 Val Phe Phe Ser Asn Thr Pro Thr Arg Ala Ser Pro Gln Leu Arg Glu

2515	2520	2525
Ala Val Leu Lys Leu Ser Asp Ala Gly Ile Thr Pro Leu Phe Leu Thr		
2530	2535	2540
Arg Gln Glu Asp Arg Gln Leu Ile Asn Ala Leu Gln Ile Asn Asn Thr		
2545	2550	2555
Ala Val Gly His Ala Leu Val Leu Pro Ala Gly Arg Asp Leu Thr Asp		
2565	2570	2575
Phe Leu Glu Asn Val Leu Thr Cys His Val Cys Leu Asp Ile Cys Asn		
2580	2585	2590
Ile Asp Pro Ser Cys Gly Phe Gly Ser Trp Arg Pro Ser Phe Arg Asp		
2595	2600	2605
Arg Arg Ala Ala Gly Ser Asp Val Asp Ile Asp Met Ala Phe Ile Leu		
2610	2615	2620
Asp Ser Ala Glu Thr Thr Leu Phe Gln Phe Asn Glu Met Lys Lys		
2625	2630	2635
Tyr Ile Ala Tyr Leu Val Arg Gln Leu Asp Met Ser Pro Asp Pro Lys		
2645	2650	2655
Ala Ser Gln His Phe Ala Arg Val Ala Val Val Gln His Ala Pro Ser		
2660	2665	2670
Glu Ser Val Ser Met Pro Pro Val Lys Val Glu Phe Ser Leu Thr Asp		
2675	2680	2685
Tyr Gly Ser Lys Glu Lys Leu Val Asp Phe Leu Ser Arg Gly Met Thr		
2690	2695	2700
Gln Leu Gln Gly Thr Arg Ala Leu Gly Ser Ala Ile Glu Tyr Thr Ile		
2705	2710	2715
Glu Asn Val Phe Glu Ser Ala Pro Asn Pro Arg Asp Leu Lys Ile Val		
2725	2730	2735
Val Leu Met Leu Thr Gly Glu Val Pro Glu Gln Gln Leu Glu Glu Ala		
2740	2745	2750
Gln Arg Val Ile Leu Gln Ala Lys Cys Lys Gly Tyr Phe Phe Val Val		
2755	2760	2765
Leu Gly Ile Gly Arg Lys Val Asn Ile Lys Glu Val Tyr Thr Phe Ala		
2770	2775	2780
Ser Glu Pro Asn Asp Val Phe Phe Lys Leu Val Asp Lys Ser Thr Glu		
2785	2790	2795
Leu Asn Glu Pro Leu Met Arg Phe Gly Arg Leu Leu Pro Ser Phe		
2805	2810	2815
Val Ser Ser Glu Asn Ala Phe Tyr Leu Ser Pro Asp Ile Arg Lys Gln		
2820	2825	2830
Cys Asp Trp Phe Gln Gly Asp Gln Pro Thr Lys Asn Leu Val Lys Phe		
2835	2840	2845
Gly His Lys Gln Val Asn Val Pro Asn Asn Val Thr Ser Ser Pro Thr		
2850	2855	2860
Ser Asn Pro Val Thr Thr Lys Pro Val Thr Thr Lys Pro Val		
2865	2870	2875
Thr Thr Thr Lys Pro Val Thr Thr Lys Pro Val Thr Ile		
2885	2890	2895
Ile Asn Gln Pro Ser Val Lys Pro Ala Ala Ala Lys Pro Ala Pro Ala		
2900	2905	2910
Lys Pro Val Ala Ala Lys Pro Val Ala Thr Lys Thr Ala Thr Val Arg		
2915	2920	2925
Pro Pro Val Ala Val Lys Pro Ala Thr Ala Ala Lys Pro Val Ala Ala		
2930	2935	2940
Lys Pro Ala Ala Val Arg Pro Pro Ala Ala Ala Lys Pro Val Ala		
2945	2950	2955
Thr Lys Pro Glu Val Pro Arg Pro Gln Ala Ala Lys Pro Ala Ala Thr		
2965	2970	2975
Lys Pro Ala Thr Thr Lys Pro Val Val Lys Met Leu Arg Glu Val Gln		
2980	2985	2990
Val Phe Glu Ile Thr Glu Asn Ser Ala Lys Leu His Trp Glu Arg Pro		
2995	3000	3005

Glu Pro Pro Gly Pro Tyr Phe Tyr Asp Leu Thr Val Thr Ser Ala His
 3010 3015 3020
 Asp Gln Ser Leu Val Leu Lys Gln Asn Leu Thr Val Thr Asp Arg Val
 3025 3030 3035 3040
 Ile Gly Gly Leu Leu Ala Gly Gln Thr Tyr His Val Ala Val Val Cys
 3045 3050 3055
 Tyr Leu Arg Ser Gln Val Arg Ala Thr Tyr His Gly Ser Phe Ser Thr
 3060 3065 3070
 Lys Lys Ser Gln Pro Pro Pro Gln Pro Ala Arg Ser Ala Ser Ser
 3075 3080 3085
 Ser Thr Ile Asn Leu Met Val Ser Thr Glu Pro Leu Ala Leu Thr Glu
 3090 3095 3100
 Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Thr Cys Arg Asp Phe
 3105 3110 3115 3120
 Ile Leu Lys Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg Phe
 3125 3130 3135
 Trp Tyr Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln Lys
 3140 3145 3150
 Glu Cys Glu Lys Val Cys Ala Pro Val Leu Ala Lys Pro Gly Val Ile
 3155 3160 3165
 Ser Val Met Gly Thr
 3170

<210> 219
 <211> 2806
 <212> DNA
 <213> Homo sapiens

<400> 219

ggatccagga	ctgagatccc	agaaccatga	acctggccat	cagcatcgct	ctcctgtcaa	60
caggtaaaaa	gcatggggca	ggactggggc	tccaggcgcc	ctggcttcct	tccctccaga	120
gaagcagctt	ctccctcaca	gtctcagaaa	agcgcaggtg	acaaagagag	ggctcttttt	180
catctgtttt	tcagccgatc	caccgcgtg	atattctgac	ggccttgagg	gttttttggaa	240
aacacagttt	gctgagccct	ccttcacact	attgaactag	aatccccaaac	tgagaaccca	300
ggaaccaggc	tcaactccct	aagatctctt	gtccttgaaa	cacattgata	ggatccaagg	360
ctcaaggcaga	gtggggaggg	aggctgggt	ctgaaagga	gaagtgggt	ccctggggtg	420
ggaaaggcata	ctcagagagc	agaccccggt	cccctcccta	gccaggccca	tctctccact	480
tcagggtgggt	gggaggcccc	tgtccgcag	gcccctccag	tttgaaggag	gcactgtgg	540
tgccagtctt	gcaggtctcc	cgagggcaga	aggtgaccag	cctaaccggcc	tgcctagtgg	600
accagagcct	tcgtctggac	tgcgcctatg	agaataccag	cagttcaccc	atccagtagc	660
agttcagcct	gaccctgttag	acaaagaagc	acgtgcttt	tggactgtg	gggggtgcctg	720
agcacacata	ccgctcccg	accaacttca	ccagcaaata	ccacatgaag	gtccctctact	780
tatccgcctt	cactagcaag	gacggggca	cctacacgtg	tgcactccac	cactctggcc	840
attccccacc	catctccccc	cagaacgtca	cagtgctcag	aggtgagaca	agccccctaac	900
aaggtaagt	gagctgggg	agccaggctc	ggggacagca	ggcagttccc	ttggctggac	960
tagagaggag	aatagcccc	taacgctctc	accctctccc	aactgctgcc	tggtaactg	1020
gggaaaccatt	gccttcgggt	tgaatgggg	gaagagctca	ggccagacaca	ggcagagcag	1080
tgtgggttcca	ccagaactgt	ggccaaggcc	tttggccctt	aatttccctt	ctcccagcgg	1140
gaaacaggga	tgacaccacc	tccctcagcc	agttttcttg	tcatgatgtt	tagtaaggtt	1200
ttcataagat	gatatgtgt	caagagatca	gtaatctgca	aatggggaaag	atggctggtt	1260
ctgtgagacc	aggctgtcc	tggcccccagc	taagacattt	cagtaaccac	ctccccaaagg	1320
gagtacaccc	ttgtttttgg	cctgtgcctg	cctgagtcct	gatccgtctt	ccttcctacc	1380
ctggccccgg	cccccttctc	tttctgcaga	caaactggtc	aagtgtgagg	gcatcagcct	1440
gctggcttag	aacaccttgt	ggctgctgt	gctcctgt	tccctctccc	tcctccaggc	1500
cacggatttc	atgtccctgt	gactgggtgg	gcccattggag	gagacaggaa	gcctcaagtt	1560
ccagtgcaga	gatcctactt	ctctgagtca	gctgacccccc	tccccccaaat	ccctcaaacc	1620
ttgaggagaa	gtggggaccc	caccctctat	caggagtcc	agtgtgtcat	gctgattatct	1680
accacacgtcc	acgcggccac	ctcacccctt	ccgcacaccc	ctggctgtct	ttttgtactt	1740
tttgttccag	agctgctct	gtctgggtta	tttaggtttt	atcccttcctt	ttctttgaga	1800
gttcgtgaag	agggaaaggca	ggattgggg	cctgtatggag	agtgagagca	tgtgagggt	1860
agtggatgg	tgggtacca	gcccactggag	gggtcattcct	tgcccatcg	gaccagaaac	1920

ctgggagaga	cttggatgag	gagtggttgg	gctgtgctgg	gcctagcacg	gacatggct	1980
gtcctgacag	cactcctcg	caggcatggc	tggtgccctga	agaccccaga	tgtgaggca	2040
ccaccaagaa	tttgtggct	accttgttag	ggagagaact	gaggatctcc	agcattctca	2100
gccacaacca	aaaaaaaata	aaaagggcag	ccctccttac	cactgtggaa	gtccctcaga	2160
ggccttgggg	catgaccagg	tgaagatgca	ggtttgacca	gaaaggcage	gctagtggag	2220
ggttggagaa	ggaggttaaag	gatgagggtt	catcatccct	ccctgcctaa	ggaagctaaa	2280
agcatggccc	tgctgcccct	ccctgcctcc	acccacagtg	gagagggtta	caaaggagga	2340
caagaccctc	tcaggctgtc	ccaagctccc	aagagcttcc	agagctctga	cccacagcct	2400
ccaagtcaagg	tggggtgagg	tccagagct	gcacagggtt	tggcccaagt	ttctaaggga	2460
ggcacttcct	ccccctcgccc	atcagtgcct	gcccctgctg	gctgggtgcct	gagcccctca	2520
gacagccccc	tggcccgag	gcctgccttc	tcagggactt	ctggggggcc	tgaggcaagc	2580
catggagtga	gaccaggag	ccggacactt	ctcaggaaat	ggcttttccc	aaccccccagc	2640
ccccaccgg	tggttctcc	tgttctgtga	ctgtgtatag	tgcaccacaca	gettatggca	2700
tctcatttag	gacaaagaaa	actgcacaat	aaaaccaagc	ctctggaaatc	tgtcctcggt	2760
tccacctggc	cttcgctcct	ccagcagtgc	ctgcctgccc	ccgctt		2806

<210> 220
 <211> 161
 <212> PRT
 <213> Homo sapiens

<400> 220
 Met Asn Leu Ala Ile Ser Ile Ala Leu Leu Leu Thr Val Leu Gln Val
 1 5 10 15
 Ser Arg Gly Gln Lys Val Thr Ser Leu Thr Ala Cys Leu Val Asp Gln
 20 25 30
 Ser Leu Arg Leu Asp Cys Arg His Glu Asn Thr Ser Ser Pro Ile
 35 40 45
 Gln Tyr Glu Phe Ser Leu Thr Arg Glu Thr Lys Lys His Val Leu Phe
 50 55 60
 Gly Thr Val Gly Val Pro Glu His Thr Tyr Arg Ser Arg Thr Asn Phe
 65 70 75 80
 Thr Ser Lys Tyr His Met Lys Val Leu Tyr Leu Ser Ala Phe Thr Ser
 85 90 95
 Lys Asp Glu Gly Thr Tyr Thr Cys Ala Leu His His Ser Gly His Ser
 100 105 110
 Pro Pro Ile Ser Ser Gln Asn Val Thr Val Leu Arg Asp Lys Leu Val
 115 120 125
 Lys Cys Glu Gly Ile Ser Leu Leu Ala Gln Asn Thr Ser Trp Leu Leu
 130 135 140
 Leu Leu Leu Ser Leu Ser Leu Leu Gln Ala Thr Asp Phe Met Ser
 145 150 155 160
 Leu

<210> 221
 <211> 736
 <212> DNA
 <213> Homo sapiens

<400> 221
 ggctctcacc ctccctccct gcagctccag ctctgtgctc tgccctctgag gagaccatgg 60
 cccggcctct gtgtaccctg ctactcctga tggctaccct ggctggggct ctggcctcga 120
 gctccaagga ggagaatagg ataatccctg gtggcatcta tgatgcagac ctcaatgatg 180
 agtgggtaca gcgtgccctt cacttcgcca tcagcggatca caacaaggcc accgaagatg 240
 agtactacag acgcccgtg caggtgtctc gagccaggga gcagacctt ggggggtga 300
 attacttctt cgacgttagag gtggggccca ccatatgtac caagtcccag cccaaattgg 360
 acacctgtgc ttccatgaa cagccagaac tgccagaagaa acagttatgc tctttcgaga 420
 tctacgaagt tccctggag gacagaatgt ccctgggtgaa ttccagggtt caagaaggct 480
 aggggtctgt gccaggccag tcacaccgac caccaccac tcccaaaaaa tgtagtgtc 540
 ccacccctgg actggtgccc cccacccctgc gggaggcctc cccatgtgcc tggccaaaga 600

```

gacagacaga gaaggctgca ggagtccctt gttgctcagc agggcgctct gccctccctc 660
cttccttctt gctctataa gacctggtaat atggtaaaaa caccggccacc tcctgcatt 720
aaacagtagtc atcccc 736

```

<210> 222
<211> 594
<212> DNA
<213> *Homo sapiens*

```

<400> 222
cctgg gacaggctct caccctcctc tcctgcagct ccagctttgt gctctgcctc 60
agacc atggcccagc atctgagtac cctgctgctc ctgctggcca ccctagctgt 120
tggcc tggagccccca aggaggagga taggataatc ccgggtggca tctataacgc 180
tcaat gatgagtggg tacagcgtgc ctttcacttc gccatcagcg agtataacaa 240
ccaaa gatgactact acagacgtcc gctgcgggta ctaagagccca ggcaacagac 300
ggggg gtgaattact tcttcgacgt agaggtggc cgaaccatat gtaccaagtc 360
ccaaac ttggcacacct gtgccttcca tgaacagccca gaactgcaga agaaacagtt 420
ctttc gagatctacg aagtccctg ggagaacaga aggtccctgg tgaaatccag 480
aagaa tccttagggat ctgtgccagg ccattgcac cagccaccac ccactccac 540
tgtgt gctcccaaccc ctgggggcca atqqqactgt gcaggagaca gcgg 594

```

<210> 223
<211> 141
<212> PRT
<213> *Homo sapiens*

<400> 223
 la Arg Pro Leu Cys Thr Leu Leu Leu Met Ala Thr Leu Ala
 5 10 15
 la Leu Ala Ser Ser Ser Lys Glu Glu Asn Arg Ile Ile Pro Gly
 20 25 30
 le Tyr Asp Ala Asp Leu Asn Asp Glu Trp Val Gln Arg Ala Leu
 35 40 45
 he Ala Ile Ser Glu Tyr Asn Lys Ala Thr Glu Asp Glu Tyr Tyr
 0 55 60
 rg Pro Leu Gln Val Leu Arg Ala Arg Glu Gln Thr Phe Gly Gly
 70 75 80
 sn Tyr Phe Phe Asp Val Glu Val Gly Arg Thr Ile Cys Thr Lys
 85 90 95
 ln Pro Asn Leu Asp Thr Cys Ala Phe His Glu Gln Pro Glu Leu
 100 105 110
 ys Lys Gln Leu Cys Ser Phe Glu Ile Tyr Glu Val Pro Trp Glu
 115 120 125
 rg Met Ser Leu Val Asn Ser Arg Cys Gln Glu Ala
 30 135 140

<210> 224
<211> 141
<212> PRT
<213> *Homo sapiens*

<400> 224
 Met Ala Gln His Leu Ser Thr Leu Leu Leu Leu Ala Thr Leu Ala
 5 10 15
 Val Ala Leu Ala Trp Ser Pro Lys Glu Glu Asp Arg Ile Ile Pro Gly
 20 25 30
 Gly Ile Tyr Asn Ala Asp Leu Asn Asp Glu Trp Val Gln Arg Ala Leu
 35 40 45
 His Phe Ala Ile Ser Glu Tyr Asn Lys Ala Thr Lys Asp Asp Tyr Tyr
 50 55 60
 Arg Arg Pro Leu Arg Val Leu Arg Ala Arg Gln Gln Thr Val Gly Gly

65	70	75	80
Val Asn Tyr Phe Phe Asp Val Glu Val Gly Arg Thr Ile Cys Thr Lys			
85	90	95	
Ser Gln Pro Asn Leu Asp Thr Cys Ala Phe His Glu Gln Pro Glu Leu			
100	105	110	
Gln Lys Lys Gln Leu Cys Ser Phe Glu Ile Tyr Glu Val Pro Trp Glu			
115	120	125	
Asn Arg Arg Ser Leu Val Lys Ser Arg Cys Gln Glu Ser			
130	135	140	

<210> 225

<211> 5460

<212> DNA

<213> Homo sapiens

<400> 225

cggggcccggt gctgaaggc	agggaaacaac ttgatggtgc	tactttgaac tgcttttctt	60
ttctcccttt tgcacaaaaga	gtctcatgtc tgatatttag	acatgatgag ctttgtcaaa	120
aaggggagct ggctacttct	cgctctgttt catcccacta	ttattttggc acaaacaggaa	180
gctgttgaag gaggatgttc	ccatcttggt cagtcctatg	cgatagaga tgtctggaaag	240
ccagaaccat gccaaatatg	tgtctgtgac tcaggatccg	ttctctgcga tgacataata	300
tgtgacgatc aagaattaga	ctgccccaaac ccagaaattc	cattggaga atgttgtca	360
gtttgcccac agcctccaaac	tgctcttact cgcccttccta	atggtaagg acctcaaggc	420
cccaaggggag atccaggccc	tccttggatt cctggagaa	atggtgcacc tggtattcca	480
ggacaaccag ggtccccctgg	ttctcttggc ccccctggaa	tctgtgaatc atgcccctact	540
ggtcctcaga actattctcc	ccagtagtatc tcatatgtat	tcaagtctgg agtagcagta	600
ggaggactcg caggctatcc	tggaccagct ggccccccag	gccctcccg tccccctgg	660
acatctggtc atcctggttc	cccttggatct ccaggatacc	aaggaccccc tggtgaacct	720
gggcaagctg gtcttcagg	ccctccagga ccttgggtgt	ctataaggcc atctggtctt	780
gctggaaaag atggagaatc	aggtagaccc ggacgaccc	gagacgcagg attgccttgg	840
cctccaggta tcaaaggccc	agctggata cctggattcc	ctggatgaa aggacacaga	900
ggcttcgatg gacgaaatgg	agaaaagggt gaaacaggtg	ctccctggatt aaagggtgaa	960
aatggtcttc caggcgaaaa	tggagctcct ggaccatgg	gtccaaagagg ggcttcgtgt	1020
gagcgaggac ggccaggact	tcctggggct gcagggtgtc	ggggtaatga cgggtctcga	1080
ggcagtgtatc gtcaaccagg	cccttcgtgt ccttcgtgaa	ctggccgatt ccctggatcc	1140
cctggtgcta agggtgaagt	tggacctgca gggtctctg	gttcaaatgg tgccccctgg	1200
caaagaggag aacctggacc	tcagggacac gctgggtgtc	aaggtcctcc tggcccttct	1260
gggattaatg ttagtccctgg	tggtaaaggc gaaatggtc	ccgctggcat tcctggagct	1320
cctggactga tgggagcccg	gggtccctca ggaccagccg	gtgctaattgg tgcttcgttga	1380
ctgcgaggtg gtgcagggtg	gccttggtaag aatggtgc	aaggagagcc cggaccacgt	1440
ggtgaacgcg gtgaggctgg	tattccaggt gttccaggag	ctaaaggcga agatggcaag	1500
gatggatcac ctggagaacc	tggtcaaat gggctccag	gagctgcagg agaaagggt	1560
gcccctgggt tccgaggacc	tgctggacca aatggcattcc	caggagaaaa gggtcctgt	1620
ggagagcgtg gtgctccagg	ccctgcaggg cccagaggag	ctgctggaga acctggcaga	1680
gatggcgtcc ctggagggtcc	aggaatgagg ggcatgccc	gaagtcagg aggaccagga	1740
agtatggga aaccaggccc	tcccggaaat caaggagaaa	gtggtcgacc aggtccctct	1800
gggccatctg gtcccccagg	tcagcctggt gtcatggct	tcccgggtcc taaaggaaat	1860
gatggtgctc ctggtaagaa	tggagaacga ggtggccctg	ccctcagggt gggccttgg	1920
ccttcgtgaa agaatggta	aactggaccc caaggacccc	caggccctac tggcccttgg	1980
ggtgacaaaag gagacacagg	acccctggt ccacaaggat	tacaaggctt gcctggtaca	2040
ggtggtcctc caggagaaaa	tggaaaaccc gggaaaccag	gtccaaagggg tgatggccgg	2100
gcacccggag ctccaggagg	caagggtgtat gctgggtccc	ctggtaacg tggacccctct	2160
ggattggcag gggccccagg	acttagaggt ggagctggc	ccccctggcc cgaaggagga	2220
aagggtgtctg ctggtcctcc	tggggcacct ggtgtctgt	gtacttcctgg tctgcaagga	2280
atgcctggag aaagaggagg	tcttggaaat cctggtccaa	agggtgacaa ggtgtacca	2340
ggcggcccaag gtgctgtatgg	tgtcccccagg aaagatggcc	caaggggtcc tactggtct	2400
attggtcctc ctggccctagg	tggccaggct ggagataagg	gtgaagggtgg tgccccctgg	2460
cttccaggta tagctggacc	tcgtggtagc cttgggtgaga	gaggtgaaac tggcccttcca	2520
ggacccgtcg gttcccttgg	tgctccctgg acaatggtg	aacctggtgg taaaggagaa	2580
agaggggctc cgggtgagaa	aggtgaagga ggcctccctg	gagttgcagg acccccctgg	2640
ggttctggac ctgctggtcc	tcctggtccc caaggtgtca	aagggtacg tggcagtcc	2700

ggggacctg	gtgctgctgg	cttccctgg	gctcggtgc	ttcctggtcc	tcctggtagt	2760
aatggtaacc	caggacccc	aggtcccagc	ggttctccag	gcaaggatgg	gcccccaggt	2820
cctgcggta	acactggtg	tcctggcagc	cctggagtgt	ctggacccaa	aggtgatgt	2880
ggccaaccag	gagagaaggg	atcgccctgg	gcccaggggcc	caccaggagc	tccaggccca	2940
cttgggattg	ctgggatcac	tggagcacgg	ggtcttgcag	gaccaccagg	catgccaggt	3000
cctagggaa	gccctggccc	tcaggggtc	aagggtgaaa	gtgggaaacc	aggagcta	3060
ggtctca	gagaacgtgg	tcccccgg	ccccagggtc	ttcctggtct	ggctggtaca	3120
gctggtaac	ctgaaagaga	tggaaaacct	ggatcagatg	gtcttccagg	ccgagatgga	3180
tctcctgg	gcaagggtg	tcgtggtaa	aatggctc	ctgggtcccc	ttgcgtccct	3240
ggtcattcc	gcccacctgg	tcctgtcggt	ccagctggaa	agagtggta	cagaggagaa	3300
agtggccctg	ctggccctgc	tggtgtccc	ggtccctgtc	gttcccgg	tgctccctgg	3360
cctcaaggcc	cacgtgg	caaagggtgaa	acagggtgaa	gtggagctgc	tggcatcaaa	3420
ggacatcgag	gattccctgg	taatccagg	gccccagggt	ctccaggccc	tgctggtcag	3480
cagggtgc	tcggcagtcc	aggacctgc	ggccccagag	gacctgttgg	acccagtgga	3540
cctcctggca	aagatggaa	cagtggacat	ccagggtccca	ttggaccacc	agggcctega	3600
ggtAACAGAG	gtgaaagagg	atctgaggc	tcccccaggcc	accaggggca	accaggccct	3660
cctggaccc	ctgggtcccc	tggtccttgc	tgtgggttgg	ttggagccgc	tgccattgt	3720
gggattggag	gtgaaaaa	tggcggtt	gccccgtatt	atggagatga	accatggat	3780
ttcaaaatca	acaccgatg	gattatgact	tcaactca	ctgttaatgg	acaaatagaa	3840
agcctcatta	gtcctgtatgg	ttctcgtaaa	aaccccgcta	gaaactgcag	agacctgaaa	3900
ttctgcata	ctgaactca	gagtggagaa	tactgggtt	accctaacc	aggatgcaaa	3960
ttggatgct	tcaagggtatt	ctgtatg	gaaactgggg	aaacatgc	aagtgc	4020
cctttaat	ttccacggaa	acactgg	acagattcta	tgctgagaa	gaaacacgtt	4080
tggtttggag	agtccatgg	tgggtttt	cagtttagct	acggcaatcc	tgaacttcc	4140
gaagatgtcc	tgtatgtc	gctggatttc	cttcgacttc	tctccagccg	agcttcc	4200
aacatcacat	atcaactgca	aaatagcatt	gcatacatgg	atcagccag	tggaaatgt	4260
aagaaggccc	tgaagctgat	ggggtcaaat	gaaggtgaa	tcaagctg	agggaaatagc	4320
aaattcac	acacagttc	ggaggatggt	tgcacgaa	acactgggg	atggagcaaa	4380
acagtctt	aatatcgac	acgcaagg	gtgagactac	ctattttaga	tattgcaccc	4440
tatgacattt	gtggcctg	tcaagaattt	ggtgtgg	ttggccctgt	ttgtctttt	4500
taaacc	ttatctgaa	atcccaacaa	aaaaaattt	actccat	tggtctct	4560
gttcta	atctgcaacc	tgcacgt	cgacaaaatt	ccagtattt	atttccaaa	4620
tgtttggaaa	cagtataatt	tgacaaagaa	aaatgata	tctctttt	tgctgttcca	4680
ccaaat	ttcaaatg	tttttttta	ttttttacc	aattccaa	tcaaaatgtc	4740
tcaatgg	tataataat	aaactca	actcttat	ataaca	acac tgc	4800
tctttaat	ctagccatc	tgcagag	tgactgt	caccat	aaa agataac	4860
tcttctgaa	atagtca	acgaaatt	aaaaggcc	cctattt	aa ctac	4920
tggtcagaaa	cacagattt	attctatg	tcccaga	tgaaaaaa	tttatacgtt	4980
gataaaactt	ataaaatttca	ttgattaatc	tcctgg	ttggttt	aaa aagaaa	5040
taatgcaaga	attnaaagaa	atattttaa	agccaca	attttat	tgatatcaa	5100
ctgcttgg	agggtct	ctttttctt	gtcattgt	gtcaagat	ctaatttt	5160
ggaaggctt	aaagacgc	gttatgt	taatgtactt	tcacttt	aa actctagatc	5220
agaatttgt	acttgcattc	agaacata	tgcacaaat	ctgtacat	gt cccatc	5280
aaagattcat	tggcatg	caggattt	cctcctt	cctgt	aaagg tcaacaataa	5340
aaaccaaatt	atgggct	ttttgtcaca	ctagcat	aga	aatgtgtt	5400
ttgtaa	gtatgt	tttt	ttttcctt	cagacac	ccca taataaaaata	5460

<210> 226
<211> 1466
<212> PRT
<213> Homo sapiens

<400> 226
Met Met Ser Phe Val Gln Lys Gly Ser Trp Leu Leu Leu Ala Leu Leu
1 5 10 15
His Pro Thr Ile Ile Leu Ala Gln Gln Glu Ala Val Glu Gly Cys
20 25 30
Ser His Leu Gly Gln Ser Tyr Ala Asp Arg Asp Val Trp Lys Pro Glu

35	40	45
Pro Cys Gln Ile Cys Val Cys Asp Ser Gly Ser Val Leu Cys Asp Asp		
50	55	60
Ile Ile Cys Asp Asp Gln Glu Leu Asp Cys Pro Asn Pro Glu Ile Pro		
65	70	75
Phe Gly Glu Cys Cys Ala Val Cys Pro Gln Pro Pro Thr Ala Pro Thr		
85	90	95
Arg Pro Pro Asn Gly Gln Gly Pro Gln Gly Pro Lys Gly Asp Pro Gly		
100	105	110
Pro Pro Gly Ile Pro Gly Arg Asn Gly Asp Pro Gly Ile Pro Gly Gln		
115	120	125
Pro Gly Ser Pro Gly Ser Pro Gly Pro Pro Gly Ile Cys Glu Ser Cys		
130	135	140
Pro Thr Gly Pro Gln Asn Tyr Ser Pro Gln Tyr Asp Ser Tyr Asp Val		
145	150	155
Lys Ser Gly Val Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala		
165	170	175
Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro Gly		
180	185	190
Ser Pro Gly Ser Pro Gly Tyr Gln Gly Pro Pro Gly Glu Pro Gly Gln		
195	200	205
Ala Gly Pro Ser Gly Pro Pro Gly Pro Pro Gly Ala Ile Gly Pro Ser		
210	215	220
Gly Pro Ala Gly Lys Asp Gly Glu Ser Gly Arg Pro Gly Arg Pro Gly		
225	230	235
Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile		
245	250	255
Pro Gly Phe Pro Gly Met Lys Gly His Arg Gly Phe Asp Gly Arg Asn		
260	265	270
Gly Glu Lys Gly Glu Thr Gly Ala Pro Gly Leu Lys Gly Glu Asn Gly		
275	280	285
Leu Pro Gly Glu Asn Gly Ala Pro Gly Pro Met Gly Pro Arg Gly Ala		
290	295	300
Pro Gly Glu Arg Gly Arg Pro Gly Leu Pro Gly Ala Ala Gly Ala Arg		
305	310	315
Gly Asn Asp Gly Ala Arg Gly Ser Asp Gly Gln Pro Gly Pro Pro Gly		
325	330	335
Pro Pro Gly Thr Ala Gly Phe Pro Gly Ser Pro Gly Ala Lys Gly Glu		
340	345	350
Val Gly Pro Ala Gly Ser Pro Gly Ser Asn Gly Ala Pro Gly Gln Arg		
355	360	365
Gly Glu Pro Gly Pro Gln Gly His Ala Gly Ala Gln Gly Pro Pro Gly		
370	375	380
Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys Gly Glu Met Gly Pro		
385	390	395
Ala Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro		
405	410	415
Gly Pro Ala Gly Ala Asn Gly Ala Pro Gly Leu Arg Gly Gly Ala Gly		
420	425	430
Glu Pro Gly Lys Asn Gly Ala Lys Gly Glu Pro Gly Pro Arg Gly Glu		
435	440	445
Arg Gly Glu Ala Gly Ile Pro Gly Val Pro Gly Ala Lys Gly Glu Asp		
450	455	460
Gly Lys Asp Gly Ser Pro Gly Glu Pro Gly Ala Asn Gly Leu Pro Gly		
465	470	475
Ala Ala Gly Glu Arg Gly Ala Pro Gly Phe Arg Gly Pro Ala Gly Pro		
485	490	495
Asn Gly Ile Pro Gly Glu Lys Gly Pro Ala Gly Glu Arg Gly Ala Pro		
500	505	510
Gly Pro Ala Gly Pro Arg Gly Ala Ala Gly Glu Pro Gly Arg Asp Gly		
515	520	525

Val Pro Gly Gly Pro Gly Met Arg Gly Met Pro Gly Ser Pro Gly Gly
 530 535 540
 Pro Gly Ser Asp Gly Lys Pro Gly Pro Pro Gly Ser Gln Gly Glu Ser
 545 550 555 560
 Gly Arg Pro Gly Pro Pro Gly Pro Ser Gly Pro Arg Gly Gln Pro Gly
 565 570 575
 Val Met Gly Phe Pro Gly Pro Lys Gly Asn Asp Gly Ala Pro Gly Lys
 580 585 590
 Asn Gly Glu Arg Gly Gly Pro Gly Gly Pro Gly Pro Gln Gly Pro Pro
 595 600 605
 Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro Gly Pro Thr Gly
 610 615 620
 Pro Gly Gly Asp Lys Gly Asp Thr Gly Pro Pro Gly Pro Gln Gly Leu
 625 630 635 640
 Gln Gly Leu Pro Gly Thr Gly Gly Pro Pro Gly Glu Asn Gly Lys Pro
 645 650 655
 Gly Glu Pro Gly Pro Lys Gly Asp Ala Gly Ala Pro Gly Ala Pro Gly
 660 665 670
 Gly Lys Gly Asp Ala Gly Ala Pro Gly Glu Arg Gly Pro Pro Gly Leu
 675 680 685
 Ala Gly Ala Pro Gly Leu Arg Gly Gly Ala Gly Pro Pro Gly Pro Glu
 690 695 700
 Gly Gly Lys Gly Ala Ala Gly Pro Pro Gly Pro Pro Gly Ala Ala Gly
 705 710 715 720
 Thr Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly Leu Gly Ser
 725 730 735
 Pro Gly Pro Lys Gly Asp Lys Gly Glu Pro Gly Gly Pro Gly Ala Asp
 740 745 750
 Gly Val Pro Gly Lys Asp Gly Pro Arg Gly Pro Thr Gly Pro Ile Gly
 755 760 765
 Pro Pro Gly Pro Ala Gly Gln Pro Gly Asp Lys Gly Glu Gly Gly Ala
 770 775 780
 Pro Gly Leu Pro Gly Ile Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg
 785 790 795 800
 Gly Glu Thr Gly Pro Pro Gly Pro Ala Gly Phe Pro Gly Ala Pro Gly
 805 810 815
 Gln Asn Gly Glu Pro Gly Gly Lys Gly Glu Arg Gly Ala Pro Gly Glu
 820 825 830
 Lys Gly Glu Gly Gly Pro Pro Gly Val Ala Gly Pro Pro Gly Gly Ser
 835 840 845
 Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly Val Lys Gly Glu Arg Gly
 850 855 860
 Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe Pro Gly Ala Arg Gly Leu
 865 870 875 880
 Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser
 885 890 895
 Gly Ser Pro Gly Lys Asp Gly Pro Pro Gly Pro Ala Gly Asn Thr Gly
 900 905 910
 Ala Pro Gly Ser Pro Gly Val Ser Gly Pro Lys Gly Asp Ala Gly Gln
 915 920 925
 Pro Gly Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro
 930 935 940
 Gly Pro Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly
 945 950 955 960
 Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
 965 970 975
 Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly Leu Ser Gly Glu Arg
 980 985 990
 Gly Pro Pro Gly Pro Gln Gly Leu Pro Gly Leu Ala Gly Thr Ala Gly
 995 1000 1005
 Glu Pro Gly Arg Asp Gly Asn Pro Gly Ser Asp Gly Leu Pro Gly Arg

1010	1015	1020													
Asp	Gly	Ser	Pro	Gly	Gly	Lys	Gly	Asp	Arg	Gly	Glu	Asn	Gly	Ser	Pro
1025				1030				1035							1040
Gly	Ala	Pro	Gly	Ala	Pro	Gly	His	Pro	Gly	Pro	Pro	Gly	Pro	Val	Gly
					1045				1050						1055
Pro	Ala	Gly	Lys	Ser	Gly	Asp	Arg	Gly	Glu	Ser	Gly	Pro	Ala	Gly	Pro
					1060				1065						1070
Ala	Gly	Ala	Pro	Gly	Pro	Ala	Gly	Ser	Arg	Gly	Ala	Pro	Gly	Pro	Gln
					1075				1080						1085
Gly	Pro	Arg	Gly	Asp	Lys	Gly	Glu	Thr	Gly	Glu	Arg	Gly	Ala	Ala	Gly
					1090				1095						1100
Ile	Lys	Gly	His	Arg	Gly	Phe	Pro	Gly	Asn	Pro	Gly	Ala	Pro	Gly	Ser
					1105				1110						1120
Pro	Gly	Pro	Ala	Gly	Gln	Gln	Gly	Ala	Ile	Gly	Ser	Pro	Gly	Pro	Ala
						1125				1130					1135
Gly	Pro	Arg	Gly	Pro	Val	Gly	Pro	Ser	Gly	Pro	Pro	Gly	Lys	Asp	Gly
					1140				1145						1150
Thr	Ser	Gly	His	Pro	Gly	Pro	Ile	Gly	Pro	Pro	Gly	Pro	Arg	Gly	Asn
					1155				1160						1165
Arg	Gly	Glu	Arg	Gly	Ser	Glu	Gly	Ser	Pro	Gly	His	Pro	Gly	Gln	Pro
					1170				1175						1180
Gly	Pro	Pro	Gly	Pro	Pro	Gly	Ala	Pro	Gly	Pro	Cys	Cys	Gly	Gly	Val
					1185				1190						1200
Gly	Ala	Ala	Ala	Ile	Ala	Gly	Ile	Gly	Gly	Glu	Lys	Ala	Gly	Gly	Phe
						1205				1210					1215
Ala	Pro	Tyr	Tyr	Gly	Asp	Glu	Pro	Met	Asp	Phe	Lys	Ile	Asn	Thr	Asp
					1220				1225						1230
Glu	Ile	Met	Thr	Ser	Leu	Lys	Ser	Val	Asn	Gly	Gln	Ile	Glu	Ser	Leu
					1235				1240						1245
Ile	Ser	Pro	Asp	Gly	Ser	Arg	Lys	Asn	Pro	Ala	Arg	Asn	Cys	Arg	Asp
					1250				1255						1260
Leu	Lys	Phe	Cys	His	Pro	Glu	Leu	Lys	Ser	Gly	Glu	Tyr	Trp	Val	Asp
					1265				1270						1280
Pro	Asn	Gln	Gly	Cys	Lys	Leu	Asp	Ala	Ile	Lys	Val	Phe	Cys	Asn	Met
						1285				1290					1295
Glu	Thr	Gly	Glu	Thr	Cys	Ile	Ser	Ala	Asn	Pro	Leu	Asn	Val	Pro	Arg
						1300				1305					1310
Lys	His	Trp	Trp	Thr	Asp	Ser	Ser	Ala	Glu	Lys	Lys	His	Val	Trp	Phe
					1315				1320						1325
Gly	Glu	Ser	Met	Asp	Gly	Gly	Phe	Gln	Phe	Ser	Tyr	Gly	Asn	Pro	Glu
					1330				1335						1340
Leu	Pro	Glu	Asp	Val	Leu	Asp	Val	Gln	Leu	Ala	Phe	Leu	Arg	Leu	Leu
					1345				1350						1360
Ser	Ser	Arg	Ala	Ser	Gln	Asn	Ile	Thr	Tyr	His	Cys	Lys	Asn	Ser	Ile
						1365				1370					1375
Ala	Tyr	Met	Asp	Gln	Ala	Ser	Gly	Asn	Val	Lys	Lys	Ala	Leu	Lys	Leu
						1380				1385					1390
Met	Gly	Ser	Asn	Glu	Gly	Glu	Phe	Lys	Ala	Glu	Gly	Asn	Ser	Lys	Phe
					1395				1400						1405
Thr	Tyr	Thr	Val	Leu	Glu	Asp	Gly	Cys	Thr	Lys	His	Thr	Gly	Glu	Trp
						1410				1415					1420
Ser	Lys	Thr	Val	Phe	Glu	Tyr	Arg	Thr	Arg	Lys	Ala	Val	Arg	Leu	Pro
						1425				1430					1440
Ile	Val	Asp	Ile	Ala	Pro	Tyr	Asp	Ile	Gly	Gly	Pro	Asp	Gln	Glu	Phe
						1445				1450					1455
Gly	Val	Asp	Val	Gly	Pro	Val	Cys	Phe	Leu						
					1460				1465						

<210> 227
 <211> 6663
 <212> DNA

<213> Homo sapiens

<400> 227

ccccgactag	cccgacagtc	cccgactagc	ccgacagccc	cagcaggatc	tgcacgtca	60	
tcgagccggc	ccagcttctg	aaggagatg	tcatggtcaa	atgcattaccac	aagaaataacc	120	
gctcgccac	ccgtgacgtc	atttccgccc	tgcagtttca	cactgggct	gtgcaggct	180	
acgggttgtt	gtttggaaag	gaggatctgg	acaatgccag	caaagatgac	cgttttcctg	240	
actatggaa	gttgtgaatta	gtcttctctg	ccacgcctga	gaagattcaa	gggtccgaac	300	
acttgtacaa	cgaccacggt	tgattgtgg	actacaacac	aacagaccca	ctgatacgt	360	
gggactcgta	cgagaacctc	agtgcagatg	gagaagtgt	acacacgcag	ggccctgtcg	420	
atggcagcct	ttacgcgaag	tgaggaaaga	aaagctcctc	ggatcctggc	atcccagggt	480	
ccccccaggc	aatcccgccc	accaacagcc	cagaccacag	tgaccacacc	ttgtctgtca	540	
gcagtgactc	cgcccaactct	acaggctctg	ccaggacgga	taagacgaa	gagcgcctgg	600	
ccccaggaac	caggaggggc	ctgagtgccc	aggagaaggc	agagttggac	cagctgctca	660	
gtggcttgg	cctggaaagat	cctggaaagct	ccctcaagga	aatgactgtat	gctcgaagca	720	
agtacagtgg	gaccggccac	gtggtgccag	cccaggttca	cgtgaatgg	gacgctgctc	780	
tgaagatcg	ggagacagac	attctggatg	acgagatgcc	ccaccacgac	ctgcacagt	840	
tggacagcct	ttggaccctg	tcctcctcgg	aaggccctca	gtcgcccac	ctgggtccct	900	
tcacctgcca	caagagcagc	cagaactcac	tccttatctga	cgggtttggc	agcaacgtt	960	
gtgaagatcc	gcagggcacc	ctcggtccgg	acctgggct	tggcatggac	ggcccttatg	1020	
agcggagcgc	gacttttggg	agtcgagagc	ccaagcaggc	ccagccccctg	ctgagaaagc	1080	
cctcaagtgc	cgcccagatg	caggcctatg	ggcagagcag	ctactccaca	cagacctggg	1140	
tgccgcagca	gcagatgggt	gtagctcacc	atgatagctt	cgcccccagat	ggggaggccc	1200	
ggctgttag	ccgctgcctc	gcagacaatc	ctggcctctg	ccagccccag	cccagagtgc	1260	
cactcacc	cacccgaggg	accaggatg	gggtggctgt	ccagaggggt	gtagggcagt	1320	
ggccacatcc	ccctgacaca	cagcagccct	ctccccagcaa	agcgttcaaa	cccaggttc	1380	
caggagacca	gttgtgaat	ggagccggcc	cagagctgag	cacagcccc	tccccaggct	1440	
cgcccaccc	ggacatcgac	cagtccatcg	agcagctcaa	caggctgatc	ctggagctgg	1500	
atcccacctt	cgagccatc	cctacccaca	tgaacgccc	cggtagccag	gccaatggc	1560	
ctgtgtctcc	agacagcgt	ggagggggc	tccgggcaag	cagcaggctg	cctgacacag	1620	
gagagggccc	cagcaggccc	accggccggc	aaggctcc	tgctgaacag	cccctggcg	1680	
ggagactcag	gaagctgagc	ctggggcagt	acgacaacga	tgctgggggg	cagctgcct	1740	
tctccaaatg	tgcatgggaa	aaggctggtg	ttgactatgc	cccaaaccctg	ccgccattcc	1800	
cctcacc	cgacgtcaaa	gagacgatg	ccctggcta	tcccaggac	ctcgatatta	1860	
tcgatggcag	attttaagt	agcaaggagt	ccatgtgtc	aactccagca	tttctgtgt	1920	
ctccagagac	accgtatgt	aaaacagcgc	tgcgcacatcc	tccgttcagc	ccacctgagc	1980	
ccccgttag	cagcccaaggc	agtca	caca	aaggaggacg	tgaaccacga	agctgcctg	2040
agacgctcac	tcacgctgt	gggatgtcg	agagcccat	cggacccaaa	tccacgatgc	2100	
tccggctga	tgcgtctcg	acgcctcct	ttcagcaggc	ttttgttct	tcctgcacca	2160	
tttccagcaa	cggccctgg	cagaggagag	agagctcc	ttctgcagaa	cgccagtgg	2220	
tggagagcag	ccccaaagcc	atggttccc	tgctggggag	cggccggccc	accggaaagtc	2280	
ccctcagcgc	ttagttctcc	ggtaccagga	aggactcccc	agtgtgtcc	tgcttcccg	2340	
cgtca	agactcc	ttccacagcc	atgagctgtc	cctagcagag	ccaccggact	2400	
ccctggcc	tcccagcagc	caggcttcc	ttggcttccgg	caccggccca	gtgggaagt	2460	
gccttccg	cgaggaggac	ctggggcct	tgctggccaa	ttctcatgg	gcgtcaccga	2520	
ccccca	cccgctaca	gcgcacaggg	ctgcccaca	tggcttctg	tcccacaact	2580	
ttctc	acgggt	ggcccttgc	cacagcagcc	accacagtcc	aggcctgcag	2640	
tgacc	ctggcagcca	cccccctcg	agaagaagcg	ggcctcggag	ggggatcg	2700	
ctttgg	agtctctcc	tcctccatgt	gtttctccag	cccgcacagc	gggagcacca	2760	
tca	tttccaaat	gtccttcccg	actttccaa	ggcttcagaa	gcccctc	2820	
ctct	ccaga	tagtccagg	gataaaacttg	tgatcgtgaa	atttgttca	2880	
agtt	ctgg	caaggcgat	atttcaagag	aacaagccat	cgccatgtt	2940	
agcc	ggg	attcattgtt	cgagacagcc	attcctccg	aggggcctat	3000	
tga	agg	ccacccccca	ccttcagtc	tgca	caagaaagct	3060	
cca	at	gtccggc	ttttgtatcg	agtgtacccc	ggagatttg	3120	
ggt	gtcg	taaaccat	ttcgggagcc	tgacggc	cggttgaag	3180	
cgc	cccttggc	tttgcgtgc	aagctgtt	gggtgtccag	cattccatca	3240	
caga	aaat	cccgac	tcccagagag	agatccatt	gaggaaatag	3300	
cc	ttcc	cccgac	gcagcaatt	cagcagctg	cgagggcag	3360	
cct	caac	gtggactt	aactctgtgg	agatggatc	cctcacc	3420	
tcc	agaagg	cctgacatc	accctggtcc	aggagcctcc	acctgtgtc	3480	
acttcaaggt	gtcagccag	ggcatcaccc	tgacagacaa	tcagaggaag	ctcttcttcc		

ggaggcatta ccccgtaac agtgtgattt tctgtgcctt ggaccacaa gacaggaagt	3540
ggatcaaaga tggcccttcc tcaaaaagtct ttggattttgt ggccccgaag cagggcagtg	3600
ccacgataa tgtgtgccac ctgtttcag agcatgaccc tgagcagcct gccagtgc当地	3660
ttgtcaactt cgtatcaaag gtcatgattt gttccccaaa gaaggctcta gaactccc当地	3720
ccctccctgg acccaccat gcctctcgaa gcccctggaga cagcgttgg tgaggggtgg	3780
ggcccccaact ttttacaaa ctagtaaaccc tgacattcca gcccctatgag gggaaagagg	3840
atcttcagc tctgaaaaaaaa caagaacaaa caacatcacc tgaaattggc ctttcctgaa	3900
agtgacttat ctgacacatc tctgtagcca catgtttttt gggtagaaaga agctgggcat	3960
gggtgcaccc cacccttag ggtccccatg gaaaaaggac atgcaaggaa acagcacaga	4020
acacgaggtg gtccccatgt ccctggcaca ctagcattcc gggggatgag gaatccccag	4080
cccttgaggc agaggtgccc agtgactgcc atgcttcgccc cgtccgc当地 ggcgttctg	4140
tccagctgca cccgaggccc ggggttccc tcacctcggt cttcccaaga tggagatgct	4200
aacgaaactg agaagggggc gtatgttga cgaaggttt tgcaagtca gcccctctgg	4260
aacacagcag ggcctacaac gaggggcctt tgcgatggc tggaggatg ggggtgggtgg	4320
gaagaattgg ccacgttaga gacccatgc caccctacca tggtagtgc tctgtgc当地	4380
ctgctcacct gtggtagct gggcgagctg ggc当地 gctgg gcgagctgg ctggggagag	4440
cctgttagga cc当地 gagaggaa aatgagaag aaggaacaaa aatattattt ctatgttaatt	4500
tatattttac ttatgcaaaa ttatttatga taatttgcca ttgctatact gtaccagtg	4560
caaatgtgc agcctgcaaa gctgtgattt tggaggctt gtc当地 tatgt aggtgc当地	4620
gcagggccct ggccactgaa agaggtgca gtggactgtg ggtctccat atgc当地 ggc当地	4680
gccc当地 aggt ggcttgc当地 caagcaaccc accctgatgt ttactcatt ggaatgttt	4740
tcccccatttggatgact cttttctgat ggagagatc caggaggat gaaaaactcc	4800
tggatttaag ctcagcatcc cccacatggg cttttcgatc atcttcaggc ctgaagctgc	4860
acgacactgaa gttcgc当地 ctttgc当地 atttatcagc cctctttgtg ctgctc当地 ccaccttggg	4920
gttc当地 gctg gggaccatgt gtgggtgtgg catgtgtgag cagaaggag gatgaggaaa	4980
aagagaagaa accccggtaac tgacaagctg tttttagtgg ccactgtttt ccatcatcta	5040
agccactgaa tcaagtgtat ttcaaggctt tttcaacatt ccaatgc当地 ggttttccctg	5100
cttgaatctg ttc当地 ggttca aagggttggg ggaatttggg accctggaaac atccccagag	5160
tgaaagatgg agctgggcca catcagaata aggcccttggc cccatcttct cacagc当地	5220
gtgctctgca ggc当地 gctgta ctgtcctgat tgcgatccag cccgaaattt ctc当地 ctgc当地	5280
tttcaaaaatg caaatcccccc attcttaggc cacactggg tcaacatgtc ctgtc当地 gaggg	5340
gctggggttt gggaaatgtgc tttgtgact ctgctt当地 aaat gtaggggccc gaggaaaact	5400
tagaaacagg cagagttgga agcagccaaa tcaacatgttgg ttttggatgtgt gtgtc当地	5460
gtgcatgc当地 gctgtatgc gtgtgtggaa gcagggtggc cattccactt tt当地 tagctcct	5520
attgtgc当地 caaacc当地 aagtgc当地 attcttgc当地 ttgtccaaat gtttgc当地 gtc当地 ttgg	5580
acctc当地 ttcttctt ctaacttgc当地 gtggcatgac tgc当地 caggagg tgc当地 cttc当地 gagcagat	5640
cctcatgtgt tgaccctgat gtctttagca gaggcctcta gcatctcggt tt当地 catc当地	5700
ctgc当地 gaggaat gtggccacag ggagcagagg ttttactt ccccaagagg tc当地 ctcatc当地	5760
gagacgtctt ctacccatgt ttaacccaaa gatgtc当地 gggttccctt atc当地 ctgc当地	5820
tgaaggatgaa gagagctcat tt当地 aggtca gaggcaacta gggctctc当地 attgagaac	5880
gcagc当地 ctgca accggaaatcacc agagacatgc gggtgccc当地 gatggcc当地 atgaaaggccat	5940
gc当地 ctgc当地 accgg cattcaggaa gccc当地 ctaaaa cgtgctttt gaaactc当地 tggc当地 gaggtgtg	6000
attttacac aaggtaaaacg tggtaaggc catcggggaa tt当地 gctccaa gcaagatagct	6060
ccctctgagg aaccaaaggaa agcaagttt caccatttctt gaaagactgg tataggaat	6120
ttt当地 ttcttctt cttt当地 gtgttcatc acatgtgc当地 taacacagaac aagctgtgtg tcatc当地	6180
ttgtactgtg ggctc当地 gaaa ccgtgagaga gccccccaccc tggacaccgg ctctaggggc	6240
acaggaaaag gaacgttcc aggcattttgc tctccaggc tccc当地 ctgc当地 caggcacgt	6300
ctgccc当地 ctgggg gaggtaaatgc ggagatgtca cgaactgtgc ccaacgc当地 ttatagccag	6360
ggctctacta actactcact aaaaacacgt attgttgc当地 ttctccaggc ttaagctata	6420
gccatgttaa aagtactgt gcatttatttcc tcaagcatcaa ataccttgc当地 acgttctc	6480
tgc当地 ctgttta gtgc当地 atttttctt gatactgtaa agaatatatc cagtagttaa	6540
atgaatgttca tataaaatctt ttgtatagtc attttctcg ctc当地 tttaat atcatctca	6600
ttcagagtat aataaaatata tgaacttggt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	6660
aaa	6663

<210> 228
 <211> 1202
 <212> PRT
 <213> Homo sapiens

<400> 228

Met	Val	Lys	Cys	Tyr	His	Lys	Lys	Tyr	Arg	Ser	Ala	Thr	Arg	Asp	Val
1				5				10					15		
Ile	Phe	Arg	Leu	Gln	Phe	His	Thr	Gly	Ala	Val	Gln	Gly	Tyr	Gly	Leu
			20				25						30		
Val	Phe	Gly	Lys	Glu	Asp	Leu	Ser	Lys	Asp	Asp	Arg	Phe	Pro	Asp	Tyr
		35				40					45				
Gly	Lys	Val	Glu	Leu	Val	Phe	Ser	Ala	Thr	Pro	Glu	Lys	Ile	Gln	Gly
	50				55						60				
Ser	Glu	His	Leu	Tyr	Asn	Asp	His	Gly	Val	Ile	Val	Asp	Tyr	Asn	Thr
65				70				75					80		
Thr	Asp	Pro	Leu	Ile	Arg	Trp	Asp	Ser	Tyr	Glu	Asn	Leu	Ser	Ala	Asp
				85				90					95		
Gly	Glu	Val	Leu	His	Thr	Gln	Gly	Pro	Val	Asp	Gly	Ser	Leu	Tyr	Ala
	100				105				105				110		
Lys	Val	Arg	Lys	Lys	Ser	Ser	Ser	Asp	Pro	Gly	Ile	Pro	Gly	Gly	Pro
	115					120						125			
Gln	Ala	Ile	Pro	Ala	Thr	Asn	Ser	Pro	Asp	His	Ser	Asp	His	Thr	Leu
	130				135							140			
Ser	Val	Ser	Ser	Asp	Ser	Gly	His	Ser	Thr	Ala	Ser	Ala	Arg	Thr	Asp
145					150				155				160		
Lys	Thr	Glu	Glu	Arg	Leu	Ala	Pro	Gly	Thr	Arg	Arg	Gly	Leu	Ser	Ala
				165				170					175		
Gln	Glu	Lys	Ala	Glu	Leu	Asp	Gln	Leu	Ser	Gly	Phe	Gly	Leu	Glu	
	180				185						190				
Asp	Pro	Gly	Ser	Ser	Leu	Lys	Glu	Met	Thr	Asp	Ala	Arg	Ser	Lys	Tyr
	195					200				205					
Ser	Gly	Thr	Arg	His	Val	Val	Pro	Ala	Gln	Val	His	Val	Asn	Gly	Asp
	210				215						220				
Ala	Ala	Leu	Lys	Asp	Arg	Glu	Thr	Asp	Ile	Leu	Asp	Asp	Glu	Met	Pro
	225				230				235				240		
His	His	Asp	Leu	His	Ser	Val	Asp	Ser	Leu	Gly	Thr	Leu	Ser	Ser	Ser
					245				250				255		
Glu	Gly	Pro	Gln	Ser	Ala	His	Leu	Gly	Pro	Phe	Thr	Cys	His	Lys	Ser
	260					265					270				
Ser	Gln	Asn	Ser	Leu	Leu	Ser	Asp	Gly	Phe	Gly	Ser	Asn	Val	Gly	Glu
	275					280					285				
Asp	Pro	Gln	Gly	Thr	Leu	Val	Pro	Asp	Leu	Gly	Leu	Gly	Met	Asp	Gly
	290				295					300					
Pro	Tyr	Glu	Arg	Glu	Arg	Thr	Phe	Gly	Ser	Arg	Glu	Pro	Lys	Gln	Pro
	305				310				315				320		
Gln	Pro	Leu	Leu	Arg	Lys	Pro	Ser	Val	Ser	Ala	Gln	Met	Gln	Ala	Tyr
					325				330				335		
Gly	Gln	Ser	Ser	Tyr	Ser	Thr	Gln	Thr	Trp	Val	Arg	Gln	Gln	Gln	Met
					340			345				350			
Val	Val	Ala	His	Gln	Tyr	Ser	Phe	Ala	Pro	Asp	Gly	Glu	Ala	Arg	Leu
					355			360				365			
Val	Ser	Arg	Cys	Pro	Ala	Asp	Asn	Pro	Gly	Leu	Val	Gln	Ala	Gln	Pro
					370			375			380				
Arg	Val	Pro	Leu	Thr	Pro	Thr	Arg	Gly	Thr	Ser	Arg	Val	Ala	Val	
	385				390					395			400		
Gln	Arg	Gly	Val	Gly	Ser	Gly	Pro	His	Pro	Pro	Asp	Thr	Gln	Gln	Pro
					405				410			415			
Ser	Pro	Ser	Lys	Ala	Phe	Lys	Pro	Arg	Phe	Pro	Gly	Asp	Gln	Val	Val
					420			425				430			
Asn	Gly	Ala	Gly	Pro	Glu	Leu	Ser	Thr	Gly	Pro	Ser	Pro	Gly	Ser	Pro
					435			440				445			
Thr	Leu	Asp	Ile	Asp	Gln	Ser	Ile	Glu	Gln	Leu	Asn	Arg	Leu	Ile	Leu
	450				455						460				
Glu	Leu	Asp	Pro	Thr	Phe	Glu	Pro	Ile	Pro	Thr	His	Met	Asn	Ala	Leu

465	470	475	480
Gly Ser Gln Ala Asn Gly Ser Val Ser Pro Asp Ser Val Gly Gly			
485	490	495	
Leu Arg Ala Ser Ser Arg Leu Pro Asp Thr Gly Glu Gly Pro Ser Arg			
500	505	510	
Ala Thr Gly Arg Gln Gly Ser Ser Ala Glu Gln Pro Leu Gly Gly Arg			
515	520	525	
Leu Arg Lys Leu Ser Leu Gly Gln Tyr Asp Asn Asp Ala Gly Gly Gln			
530	535	540	
Leu Pro Phe Ser Lys Cys Ala Trp Gly Lys Ala Gly Val Asp Tyr Ala			
545	550	555	560
Pro Asn Leu Pro Pro Phe Pro Ser Pro Ala Asp Val Lys Glu Thr Met			
565	570	575	
Thr Pro Gly Tyr Pro Gln Asp Leu Asp Ile Ile Asp Gly Arg Ile Leu			
580	585	590	
Ser Ser Lys Glu Ser Met Cys Ser Thr Pro Ala Phe Pro Val Ser Pro			
595	600	605	
Glu Thr Pro Tyr Val Lys Thr Ala Leu Arg His Pro Pro Phe Ser Pro			
610	615	620	
Pro Glu Pro Pro Leu Ser Ser Pro Ala Ser Gln His Lys Gly Gly Arg			
625	630	635	640
Glu Pro Arg Ser Cys Pro Glu Thr Leu Thr His Ala Val Gly Met Ser			
645	650	655	
Glu Ser Pro Ile Gly Pro Lys Ser Thr Met Leu Arg Ala Asp Ala Ser			
660	665	670	
Ser Thr Pro Ser Phe Gln Gln Ala Phe Ala Ser Ser Cys Thr Ile Ser			
675	680	685	
Ser Asn Gly Pro Gly Gln Arg Arg Glu Ser Ser Ser Ala Glu Arg			
690	695	700	
Gln Trp Val Glu Ser Ser Pro Lys Pro Met Val Ser Leu Leu Gly Ser			
705	710	715	720
Gly Arg Pro Thr Gly Ser Pro Leu Ser Ala Glu Phe Ser Gly Thr Arg			
725	730	735	
Lys Asp Ser Pro Val Leu Ser Cys Phe Pro Pro Ser Glu Leu Gln Ala			
740	745	750	
Pro Phe His Ser His Glu Leu Ser Leu Ala Glu Pro Pro Asp Ser Leu			
755	760	765	
Ala Pro Pro Ser Ser Gln Ala Phe Leu Gly Phe Gly Thr Ala Pro Val			
770	775	780	
Gly Ser Gly Leu Pro Pro Glu Glu Asp Leu Gly Ala Leu Leu Ala Asn			
785	790	795	800
Ser His Gly Ala Ser Pro Thr Pro Ser Ile Pro Leu Thr Ala Thr Gly			
805	810	815	
Ala Ala Asp Asn Gly Phe Leu Ser His Asn Phe Leu Thr Val Ala Pro			
820	825	830	
Gly His Ser Ser His His Ser Pro Gly Leu Gln Gly Gln Gly Val Thr			
835	840	845	
Leu Pro Gly Gln Pro Pro Leu Pro Glu Lys Lys Arg Ala Ser Glu Gly			
850	855	860	
Asp Arg Ser Leu Gly Ser Val Ser Pro Ser Ser Ser Gly Phe Ser Ser			
865	870	875	880
Pro His Ser Gly Ser Thr Ile Ser Ile Pro Phe Pro Asn Val Leu Pro			
885	890	895	
Asp Phe Ser Lys Ala Ser Glu Ala Ala Ser Pro Leu Pro Asp Ser Pro			
900	905	910	
Gly Asp Lys Leu Val Ile Val Lys Phe Val Gln Asp Thr Ser Lys Phe			
915	920	925	
Trp Tyr Lys Ala Asp Ile Ser Arg Glu Gln Ala Ile Ala Met Leu Lys			
930	935	940	
Asp Lys Glu Pro Gly Ser Phe Ile Val Arg Asp Ser His Ser Phe Arg			
945	950	955	960

Gly Ala Tyr Gly Leu Ala Met Lys Val Ala Thr Pro Pro Pro Ser Val
 965 970 975
 Leu Gln Leu Asn Lys Lys Ala Gly Asp Leu Ala Asn Glu Leu Val Arg
 980 985 990
 His Phe Leu Ile Glu Cys Thr Pro Lys Gly Val Arg Leu Lys Gly Cys
 995 1000 1005
 Ser Asn Glu Pro Tyr Phe Gly Ser Leu Thr Ala Leu Val Cys Gln His
 1010 1015 1020
 Ser Ile Thr Pro Leu Ala Leu Pro Cys Lys Leu Leu Ile Pro Glu Arg
 1025 1030 1035 1040
 Asp Pro Leu Glu Glu Ile Ala Glu Ser Ser Pro Gln Thr Ala Ala Asn
 1045 1050 1055
 Ser Ala Ala Glu Leu Leu Lys Gln Gly Ala Ala Cys Asn Val Trp Tyr
 1060 1065 1070
 Leu Asn Ser Val Glu Met Glu Ser Leu Thr Gly His Gln Ala Ile Gln
 1075 1080 1085
 Lys Ala Leu Ser Ile Thr Leu Val Gln Glu Pro Pro Val Ser Thr
 1090 1095 1100
 Val Val His Phe Lys Val Ser Ala Gln Gly Ile Thr Leu Thr Asp Asn
 1105 1110 1115 1120
 Gln Arg Lys Leu Phe Phe Arg Arg His Tyr Pro Val Asn Ser Val Ile
 1125 1130 1135
 Phe Cys Ala Leu Asp Pro Gln Asp Arg Lys Trp Ile Lys Asp Gly Pro
 1140 1145 1150
 Ser Ser Lys Val Phe Gly Phe Val Ala Arg Lys Gln Gly Ser Ala Thr
 1155 1160 1165
 Asp Asn Val Cys His Leu Phe Ala Glu His Asp Pro Glu Gln Pro Ala
 1170 1175 1180
 Ser Ala Ile Val Asn Phe Val Ser Lys Val Met Ile Gly Ser Pro Lys
 1185 1190 1195 1200
 Lys Val

<210> 229
 <211> 2320
 <212> DNA
 <213> Homo sapiens

<400> 229

gcggccgcag	cctgagccag	ggccccctcc	ctcgtcagga	ccggggcagc	aaggcaggccg	60
ggggcaggtc	cgggcaccca	ccatgcgagg	cgagctctgg	ctcctgggtc	tggtgctcag	120
ggaggctgcc	cgggcgtca	gcccccagcc	cgagccagg	cacatggagg	gcccaggctc	180
tggatgggct	gccaaaggga	ccgtgcgggg	ctggAACCGG	agagcccgag	agagccctgg	240
gcatgtgtca	gagccggaca	ggaccaggct	gagccaggac	ctgggtgggg	gcaccctggc	300
catggacacg	ctgcccagata	acaggaccag	gttgggtggag	gacaaccaca	gctattatgt	360
gtcccgctc	tatggccca	gcgagccca	cagccggaa	ctgtgggttag	atgtggccga	420
ggccaaccgg	agccaagtga	agatccacac	aatactctcc	aacaccacc	ggcaggcttc	480
gagagtggtc	ttgtccttt	atttccctt	ctacggccat	cctctgcggc	agatcaccat	540
agcaacttgg	ggcttcatct	tcatggggga	cgtatccat	cgatgtctca	cagtaactca	600
gtatgtggcg	ccctgtatgg	ccaacttcaa	ccctggctac	tccgacaact	ccacagttgt	660
ttactttgac	aatgggacag	tcttgtgg	tcagtgggac	cactttatac	tccaaggctg	720
ggaagacaag	ggcagttca	ccttccaggc	agctctgcac	catgacggcc	gcattgtctt	780
tgcctataaa	gagatcccta	tgtctgtccc	ggaaatcagc	tcctccca	atcctgtcaa	840
aaccggccta	tcggatgcct	tcatgattct	caatccatcc	ccggatgtgc	cagaatctcg	900
gcgaaggagc	atcttgaat	accacccat	agagctggac	cccagcaagg	tcaccagcat	960
gtcggccgtg	gagttcaccc	cattgcccac	ctgcctgcag	cataggagct	gtgacgcctg	1020
catgtcctca	gacctgaccc	tcaactgcac	ctgggtccat	gtctccaga	gtgctccag	1080
tggctttgac	cgctatgcgc	aggagtggat	ggactatggc	tgtgcacagg	aggcagagg	1140
caggatgtgc	gaggacttcc	aggatgagga	ccacgactca	gcctccctg	acacttccctt	1200
cagcccctat	gatggagacc	tcaccactac	ctcctccctcc	ctcttcatcg	acagccctcac	1260
cacagaagat	gacaccaagt	tgaatcccta	tgcaggagga	gacggccctc	agaacaacct	1320

gtcccccaag	acaaaaggca	ctcctgtgca	cctgggcacc	atcggtggca	tcgtgctggc	1380
agtccctcctc	gtggcggcca	tcatcctggc	tggaatttac	atcaatggcc	accccacatc	1440
caatgctcg	ctcttcttca	tcgagcgtag	acctcaccac	tggccagcca	tgaagttcg	1500
cagccaccct	gaccattcca	cctatgcgga	ggtggagccc	tcgggccatg	agaaggaggg	1560
cttcatggag	gctgagcagt	gctgagaaca	ccaagtctcc	cctttaaga	ctttgaggcc	1620
acagaaaaga	cagttaaagc	aaagaagaga	agtgactttt	cctggcctct	cccagcatgc	1680
cctgggctga	gatgagatgg	tggtttatgg	ctccagagct	gctgttcgct	tcgtcagcac	1740
accccgata	ttgaagaggg	ggccaaaaaaaaa	caaccacatg	gatttttat	aggaacaaca	1800
acctaatactc	atccctgttt	gatgcaaggg	ttctcttctg	tgtctttaaa	ccatgaaaca	1860
gcagaagaac	taacataact	aactccattt	ttgtttaagg	ggcctttacc	tattccctgca	1920
cctaggctag	gataactta	gagcaactgac	ataaaacgca	aaaacaggaa	tcatgccgtt	1980
tgcaaaaacta	actctggat	taaaggggaa	gcatgtaaac	agctaactgt	ttttgttaaa	2040
gatttatagg	aatgaggagg	tttggctatt	gtcacatgac	agactgttag	ccaaggacaa	2100
agaagttctg	caaaccctcc	ctggaccctt	gctgggtgtcc	agatgtctgc	ggttgtcagc	2160
cccttccttt	cccccgacct	aaacataaaaa	gacaaggcaa	agcccgatca	attttaagac	2220
ggttctttag	gacattagtc	caccatcttc	ttggtttgct	ggctctccga	aataaagtcc	2280
cttcccttgc	tccaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa			2320

<210> 230

<211> 500

<212> PRT

<213> Homo sapiens

<400> 230

Met	Arg	Gly	Glu	Leu	Trp	Leu	Leu	Val	Leu	Val	Leu	Arg	Glu	Ala	Ala
1				5				10				15			
Arg	Ala	Leu	Ser	Pro	Gln	Pro	Gly	Ala	Gly	His	Asp	Glu	Gly	Pro	Gly
					20			25				30			
Ser	Gly	Trp	Ala	Ala	Lys	Gly	Thr	Val	Arg	Gly	Trp	Asn	Arg	Arg	Ala
					35			40			45				
Arg	Glu	Ser	Pro	Gly	His	Val	Ser	Glu	Pro	Asp	Arg	Thr	Gln	Leu	Ser
					50			55			60				
Gln	Asp	Leu	Gly	Gly	Gly	Thr	Leu	Ala	Met	Asp	Thr	Leu	Pro	Asp	Asn
					65			70			75			80	
Arg	Thr	Arg	Val	Val	Glu	Asp	Asn	His	Ser	Tyr	Tyr	Val	Ser	Arg	Leu
					85			90			95				
Tyr	Gly	Pro	Ser	Glu	Pro	His	Ser	Arg	Glu	Leu	Trp	Val	Asp	Val	Ala
					100			105			110				
Glu	Ala	Asn	Arg	Ser	Gln	Val	Lys	Ile	His	Thr	Ile	Leu	Ser	Asn	Thr
					115			120			125				
His	Arg	Gln	Ala	Ser	Arg	Val	Val	Leu	Ser	Phe	Asp	Phe	Pro	Phe	Tyr
					130			135			140				
Gly	His	Pro	Leu	Arg	Gln	Ile	Thr	Ile	Ala	Thr	Gly	Gly	Phe	Ile	Phe
					145			150			155			160	
Met	Gly	Asp	Val	Ile	His	Arg	Met	Leu	Thr	Ala	Thr	Gln	Tyr	Val	Ala
					165			170			175				
Pro	Leu	Met	Ala	Asn	Phe	Asn	Pro	Gly	Tyr	Ser	Asp	Asn	Ser	Thr	Val
					180			185			190				
Val	Tyr	Phe	Asp	Asn	Gly	Thr	Val	Phe	Val	Val	Gln	Trp	Asp	His	Val
					195			200			205				
Tyr	Leu	Gln	Gly	Trp	Glu	Asp	Lys	Gly	Ser	Phe	Thr	Phe	Gln	Ala	Ala
					210			215			220				
Leu	His	His	Asp	Gly	Arg	Ile	Val	Phe	Ala	Tyr	Lys	Glu	Ile	Pro	Met
					225			230			235			240	
Ser	Val	Pro	Glu	Ile	Ser	Ser	Ser	Gln	His	Pro	Val	Lys	Thr	Gly	Leu
					245			250			255				
Ser	Asp	Ala	Phe	Met	Ile	Leu	Asn	Pro	Ser	Pro	Asp	Val	Pro	Glu	Ser
					260			265			270				
Arg	Arg	Arg	Ser	Ile	Phe	Glu	Tyr	His	Arg	Ile	Glu	Leu	Asp	Pro	Ser
					275			280			285				
Lys	Val	Thr	Ser	Met	Ser	Ala	Val	Glu	Phe	Thr	Pro	Leu	Pro	Thr	Cys

290	295	300	
Leu	Gln	His	Arg Ser Cys Asp Ala Cys Met Ser Ser Asp Leu Thr Phe
305			310 315 320
Asn	Cys	Ser	Trp Cys His Val Leu Gln Arg Cys Ser Ser Gly Phe Asp
			325 330 335
Arg	Tyr	Arg	Gln Glu Trp Met Asp Tyr Gly Cys Ala Gln Glu Ala Glu
			340 345 350
Gly	Arg	Met	Cys Glu Asp Phe Gln Asp Glu Asp His Asp Ser Ala Ser
			355 360 365
Pro	Asp	Thr	Phe Ser Pro Tyr Asp Gly Asp Leu Thr Thr Thr Ser
			370 375 380
Ser	Ser	Leu	Phe Ile Asp Ser Leu Thr Thr Glu Asp Asp Thr Lys Leu
385			390 395 400
Asn	Pro	Tyr	Ala Gly Gly Asp Gly Leu Gln Asn Asn Leu Ser Pro Lys
			405 410 415
Thr	Lys	Gly	Thr Pro Val His Leu Gly Thr Ile Val Gly Ile Val Leu
			420 425 430
Ala	Val	Leu	Leu Val Ala Ala Ile Ile Leu Ala Gly Ile Tyr Ile Asn
			435 440 445
Gly	His	Pro	Thr Ser Asn Ala Ala Leu Phe Phe Ile Glu Arg Arg Pro
			450 455 460
His	His	Trp	Pro Ala Met Lys Phe Arg Ser His Pro Asp His Ser Thr
465			470 475 480
Tyr	Ala	Glu	Val Glu Pro Ser Gly His Glu Lys Glu Gly Phe Met Glu
			485 490 495
Ala	Glu	Gln	Cys
			500

<210> 231
 <211> 5540
 <212> DNA
 <213> Homo sapiens

<400> 231

aattgcttcc	ggggagttgc	gagggagcga	ggggaaataa	aggacccgcg	aggaagggcc	60
cgcggatggc	gcgtccctga	gggtcggtgc	gagttcgccg	agcgtggaa	ggagcggacc	120
ctgctctccc	cgggctgcgg	gccatggcca	ccggcggagcg	gagagccctc	ggcatcggt	180
tccagtggtct	ctctttggcc	actctggtgc	tcatctgcgc	ccggcaaggg	ggacgcagg	240
aggatggggg	tccagcctgc	tacggcggat	ttgacctgtt	cttcattttt	gacaatcag	300
gaagtgtgtct	gcaccactgg	aatgaaatct	attactttgt	ggaacagttt	gctcacaaat	360
tcatcagccc	acagttgaga	atgtccttta	ttgttttctc	cacccgagga	acaaccttaa	420
tgaaaactgac	agaagacaga	gaacaaatcc	gtcaaggcct	agaagaactc	cagaaagtcc	480
tgccaggagg	agacacttac	atgcatgaag	gatttgaag	ggccagttag	cagatttatt	540
atgaaaacag	acaagggtac	aggacagcca	gcgtcatcat	tgcttgact	gatggagaac	600
tccatgaaga	tcttttttcc	tattcagaga	gggaggctaa	tagtctcga	gatcttggt	660
caattgttta	ctgtgttgg	gtgaaagatt	tcaatgagac	acagctggcc	cgattgcgg	720
acagtaagga	tcatgtgttt	cccggtaatg	acggctttca	ggctctgcaa	ggcatcatcc	780
actcaatttt	gaagaagtcc	tgcattcgaaa	ttcttagcagc	tgaaccatcc	accatatgt	840
caggagagtc	atttcaagtt	gtcgttagag	gaaacggctt	ccgacatgcc	cgcaacgtgg	900
acagggtcct	ctgcagcttc	aagatcaatg	actcggteac	actcaatgag	aagcccttt	960
ctgtgaaaga	tacttattta	ctgtgtccag	cccttatctt	aaaagaagtt	ggcatgaaag	1020
ctgcactcca	ggtcagcatg	aacgatggcc	tctttttat	ctccagtct	gtcatcatca	1080
ccaccacaca	ctgttctgac	ggttccatcc	tggccatcgc	cctgctgatc	ctgttccctgc	1140
tcctagccct	ggctctccct	tggtggttct	ggccccctcg	ctgcactgt	attatcaagg	1200
aggtccctcc	acccctgtcc	gaggagagt	aggaagaaga	tgatgtatgt	ctgcctaaga	1260
aaaagtggcc	aacggtagac	gcctttatt	atggtgggag	aggcgttgaa	ggcattaaaa	1320
gaatggaggt	tgcgtgggaa	gaaaagggtct	ccacagaaga	aggtgctaag	ttggaaaagg	1380
caaagaatgc	aagagtcaag	atgcggagc	aggaatatgta	attccctgag	ccgcgaaatc	1440
tcaacaacaa	tatgcgtcg	ccttctccc	cccgaaatgt	gtactctcca	atcaagggaa	1500
aactcgatgc	cttgcgtgg	ctactgagga	aaggatatgta	tcgtgtgtct	gtgatgcgtc	1560
caacccagg	agacacgggg	cgctgcatca	acttcaccag	ggtcaagaac	aaccagccag	1620

ccaagtaccc	actcaacaac	gcctaccaca	cctcctcgcc	gcctccgtcc	cccatctaca	1680
ctcccccacc	tcctgcgccc	cactgcctc	ccccggcccc	cagcgcctt	acccttccca	1740
tcccgtcccc	accttccacc	cttccccctc	ctccccaggc	tccacctccc	aacagggcac	1800
ctecccctc	ccggccctct	ccaaggcctt	ctgtcttagag	cccaaagttc	ctgctctggg	1860
ctctctcaga	aacttcagga	gatgttagaa	caagtcttc	cagttagaga	agaggagtgg	1920
tgataaaagcc	cactgacctt	cacacattct	aaaaattggt	tggcaatgcc	agtataccaa	1980
caatcatgat	cagctgaaag	aaacagatat	ttaaaattgc	cagaaaaacaa	atgatgaggg	2040
aactacagtc	agatttata	ccagccatct	atcacctcta	gaaggttcca	gagacagtga	2100
aactgcaaga	tgctctcaac	aggattatgt	ctcatggaga	ccagtaagaa	aatcatttat	2160
ctgaagggtga	aatgcagagt	tggataagaa	atacattgct	gggtttctaa	aatgctgcct	2220
tcctgcctct	actccacctc	catccctgga	cttggaccc	ttggccttagg	agcctaagga	2280
ccttcacccc	tgtgcaccac	ccaagaaaaga	ggaaaacttt	gcctacaact	ttggaaatgc	2340
tggggtccct	ggtgtggtaa	gaaactcaac	atcagacggg	tatgcagaag	gatgttcttc	2400
tgggatttgc	aggcacataa	aaaatgtatg	gcatctttc	cttgc当地	cttccagttt	2460
ccaagtgaga	aggggagcag	gtgttactg	atggaaaagg	tatgttgc当地	tgttgc当地	2520
taagtgaard	cagttgtgt	caatagacag	ggcgttattc	atgggagcat	cagccagttt	2580
ctaaaaccca	caggccatca	gcagctagag	gtggctggct	ttggccagac	atggacccta	2640
aatcaacaga	caatggcatt	gtcgaagagc	aacctgttaa	tgaatcatgt	taaaaatcaa	2700
ggtttggctt	cagtttaat	cacttgaggt	atgaagttt	tcctgtttc	cagagataaa	2760
cataaggta	tcttcccaa	ataccatcat	taggacctat	cacacaatata	cactagttt	2820
ttttgtttgt	ttgttttttg	tttttttct	tgttaaagcc	atgcaccaca	gacttctggg	2880
cagagctgag	agacaatggt	cctgacataa	taaggatctt	tgattaaccc	ccataaggca	2940
tgtgtgtgt	tacaaatata	cttctcttgc	gtttttc当地	atagaacctc	agctgttaac	3000
caaggggaaa	tacatcagat	ctgcaacaca	gaaatgctct	gcctgaaatt	tcaccatgc	3060
ctaggactca	ccccatttat	ccaggtctt	ctggatctgt	ttaatcaata	agccctataaa	3120
tcacttgcta	aacactggc	ttcatcaccc	aggataaaaa	acagagatca	ttgtcttgga	3180
cctcctgcat	cagcctattc	aaaattatct	ctctctctag	cttccacaa	atccctaaaat	3240
tcctgtccca	agccacccaa	attctcagat	ctttctggc	acaaggcaga	atataaaaata	3300
aatatacatt	tagtggctt	ggctatggc	tccaaagatc	cttcaaaaat	acatcaagcc	3360
agcttcattc	actcacttta	cttagaacag	agatataagg	gcctgggatg	catttatttt	3420
atcaataccca	atttttgtgg	ccatggcaga	cattgcttaat	caatcacacg	actatttcct	3480
attaagccca	ctgatttctt	cacaatccct	ctcaaattac	aattccaaag	agccgcccact	3540
caacagtcag	atgaacccaa	cagtcagatg	agagaaatga	accctacttg	ctatctctat	3600
cttagaaagc	aaaaacaaaac	aggagttcc	agggagaatg	ggaaagccag	ggggcataaa	3660
aggtacagtc	aggggaaaat	agatctaggc	agagtgc当地	agtcaaggac	cacggggcgc当地	3720
gaatctgcag	tgccaaacacc	aaactgacac	atctccaggt	gtacctccaa	ccctagccctt	3780
ctcccacaggc	tgcttacaa	agagtc当地	agccttctca	gagagctaaa	accagaaaatt	3840
tccagactca	tgaaagcaac	cccccagcct	ctccccaaacc	ctgccc当地	gtctaatttt	3900
tagaacacta	ggcttcttct	ttcatgttagt	tcctcataag	cagggggccag	aatatctcag	3960
ccacctgcag	tgacattgtc	ggacccctga	aaaccattcc	ataggagaat	gggttccccca	4020
ggctc当地	gtagagacat	tgagcccatc	acaactgttt	tgactgtgg	cagtctaaaa	4080
cagttccatccc	accccatggc	actggccggt	gattcccgcg	gccattcaga	agttcaagcc	4140
gagatgtcga	cgttgcttag	caacgagatg	gtgagcatca	gtgcaaata	accattcagc	4200
acatcagtc	tatgtccagg	gcagttcaa	gatgttgg	cggcaaagca	ttttgatgg	4260
atagggact	gcaaatgtat	gatgatttt	aaaaggctca	gcaggattt	ttttaaacc	4320
gactcagtt	gtcatcccc	gttattttaga	attacagtt	agaaggagaa	attcttataaa	4380
gactgtatga	acaagggtat	atcttcata	tggcttattt	caggcaggaa	aatgtttttaa	4440
ctgggttaca	aaatccatca	atacttgtt	cattccctgt	aaaaggcagg	agacatgtga	4500
ttatgtatca	gaaactgcac	aaaattattt	tttcagcccc	ccgtgttatt	gtccttttga	4560
actgtttttt	tttttattaa	gccaatttt	tgttgttat	attcgtattc	catgtgttag	4620
atggaaagcat	ttcctatcca	gtgtgataaa	aaagaacagt	tgttagataat	tattataaag	4680
ccgatgatata	ttcatggcag	gttattctac	caagctgtgc	ttgttgg	ttcccatgac	4740
tgtattgtt	ttataaattgt	acaaatagtt	actgaaatga	cgagaccctt	gttgc当地	4800
cattaataag	aaccttgata	agaaccat	tctgttgaca	gccagctcac	agttcttgc	4860
ctgaagctt	gtgc当地	cagtggagaca	caagatctct	cttttacaa	agttgagaac	4920
agagctgggt	gattaattaa	tagtctcga	tatctggcca	tggtaacct	cattgtact	4980
atcatcagaa	tgggcagaga	tgatctgaa	gtgtc当地	cactaaagtc	caaacactat	5040
gtcagatggg	ggtaaaatcc	attaaagaac	agaaaaaaat	aattataaga	tgataagcaa	5100
atgtttcagc	ccaatgtca	cccagttaaa	aaaaaaaatta	atgctgtgt	aaatgggttga	5160
attagtttgc	aaactatata	aagacatatg	cagtaaaaag	tctgttaat	cacatcctgt	5220
ggaaatgggag	tgttctaa	aattgc当地	tcttgg	ttagcttcc	tatattatca	5280

tactcagata accaaattaa aagaattaga atatgattt taatacactt aacattaac	5340
tcttctaact ttcttcattc tgtgataatt cagaagatag ttatggatct tcaatgcctc	5400
tgagtcatgt ttataaaaaaa tcagttatca ctataccatg ctataggaga ctgggcaaaa	5460
cctgtacaat gacaaccctg gaagttgctt ttttaaaaaa aataataaat ttcttaaatc	5520
aaaaaaaaaaaa aaaaaaaaaaa	5540

<210> 232
 <211> 564
 <212> PRT
 <213> Homo sapiens

<400> 232
 Met Ala Thr Ala Glu Arg Arg Ala Leu Gly Ile Gly Phe Gln Trp Leu
 1 5 10 15
 Ser Leu Ala Thr Leu Val Leu Ile Cys Ala Gly Gln Gly Arg Arg
 20 25 30
 Glu Asp Gly Gly Pro Ala Cys Tyr Gly Gly Phe Asp Leu Tyr Phe Ile
 35 40 45
 Leu Asp Lys Ser Gly Ser Val Leu His His Trp Asn Glu Ile Tyr Tyr
 50 55 60
 Phe Val Glu Gln Leu Ala His Lys Phe Ile Ser Pro Gln Leu Arg Met
 65 70 75 80
 Ser Phe Ile Val Phe Ser Thr Arg Gly Thr Thr Leu Met Lys Leu Thr
 85 90 95
 Glu Asp Arg Glu Gln Ile Arg Gln Gly Leu Glu Leu Gln Lys Val
 100 105 110
 Leu Pro Gly Gly Asp Thr Tyr Met His Glu Gly Phe Glu Arg Ala Ser
 115 120 125
 Glu Gln Ile Tyr Tyr Glu Asn Arg Gln Gly Tyr Arg Thr Ala Ser Val
 130 135 140
 Ile Ile Ala Leu Thr Asp Gly Glu Leu His Glu Asp Leu Phe Phe Tyr
 145 150 155 160
 Ser Glu Arg Glu Ala Asn Arg Ser Arg Asp Leu Gly Ala Ile Val Tyr
 165 170 175
 Cys Val Gly Val Lys Asp Phe Asn Glu Thr Gln Leu Ala Arg Ile Ala
 180 185 190
 Asp Ser Lys Asp His Val Phe Pro Val Asn Asp Gly Phe Gln Ala Leu
 195 200 205
 Gln Gly Ile Ile His Ser Ile Leu Lys Lys Ser Cys Ile Glu Ile Leu
 210 215 220
 Ala Ala Glu Pro Ser Thr Ile Cys Ala Gly Glu Ser Phe Gln Val Val
 225 230 235 240
 Val Arg Gly Asn Gly Phe Arg His Ala Arg Asn Val Asp Arg Val Leu
 245 250 255
 Cys Ser Phe Lys Ile Asn Asp Ser Val Thr Leu Asn Glu Lys Pro Phe
 260 265 270
 Ser Val Glu Asp Thr Tyr Leu Leu Cys Pro Ala Pro Ile Leu Lys Glu
 275 280 285
 Val Gly Met Lys Ala Ala Leu Gln Val Ser Met Asn Asp Gly Leu Ser
 290 295 300
 Phe Ile Ser Ser Ser Val Ile Ile Thr Thr Thr His Cys Ser Asp Gly
 305 310 315 320
 Ser Ile Leu Ala Ile Ala Leu Leu Ile Leu Phe Leu Leu Ala Leu
 325 330 335
 Ala Leu Leu Trp Trp Phe Trp Pro Leu Cys Cys Thr Val Ile Ile Lys
 340 345 350
 Glu Val Pro Pro Pro Pro Ala Glu Glu Ser Glu Glu Asp Asp Asp
 355 360 365
 Gly Leu Pro Lys Lys Trp Pro Thr Val Asp Ala Ser Tyr Tyr Gly

370	375	380		
Gly				
Arg				
Gly	Val	Gly		
		Ile		
		Lys		
		Arg		
		Met		
385	390	395		
Lys	Gly	Ser		
		Thr		
		Glu		
		Gly		
		Ala		
		Lys		
		Leu		
		Glu		
		Lys		
		Ala		
		Lys		
		Asn		
		Ala		
	405	410	415	
Arg	Val	Lys	Met	
			Pro	
			Glu	
			Gln	
			Glu	
			Tyr	
			Glu	
			Phe	
			Pro	
			Glu	
			Pro	
			Arg	
			Asn	
420	425	430		
Leu	Asn	Asn	Asn	
			Met	
			Arg	
			Arg	
			Pro	
			Ser	
			Ser	
			Pro	
			Arg	
			Lys	
			Trp	
			Tyr	
			Ser	
435	440	445		
Pro	Ile	Lys	Gly	
			Lys	
			Leu	
			Asp	
			Ala	
			Leu	
			Trp	
			Val	
			Leu	
			Leu	
			Arg	
			Lys	
	450	455	460	
Tyr	Asp	Arg	Val	
			Ser	
			Val	
			Met	
			Arg	
			Pro	
			Gln	
			Pro	
			Gly	
			Asp	
			Thr	
			Gly	
	465	470	475	480
Cys	Ile	Asn	Phe	
			Thr	
			Arg	
			Val	
			Lys	
			Asn	
			Gln	
			Pro	
			Ala	
			Lys	
			Tyr	
			Pro	
	485	490	495	
Leu	Asn	Asn	Ala	
			Tyr	
			His	
			Thr	
			Ser	
			Ser	
			Pro	
			Pro	
			Pro	
			Ala	
			Pro	
	500	505	510	
Thr	Pro	Pro	Pro	
			Ala	
			Pro	
			His	
			Cys	
			Pro	
			Ser	
			Ala	
	515	520	525	
Pro	Thr	Pro	Pro	
			Ile	
			Pro	
			Ser	
			Pro	
			Ser	
			Thr	
			Leu	
			Pro	
			Pro	
			Pro	
	530	535	540	
Gln	Ala	Pro	Pro	
			Pro	
			Asn	
			Arg	
			Ala	
			Pro	
			Pro	
			Pro	
			Ser	
			Arg	
			Pro	
			Pro	
	545	550	555	560
Arg	Pro	Ser	Val	

<210> 233
 <211> 5086
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (1)...(5086)
 <223> n = A,T,C or G

<400> 233

agcaccacgg	caggcaggagg	tttcggncta	agttggaggt	actggncac	gactgcatgc	60
ccgcgcggc	caggtgatac	ctccgcgggt	gaccgcagggg	ctctgcgaca	caaggagtct	120
gcatgtctaa	gtgcttagaca	tgctcagctt	tgtggatacg	cggaaccttgc	tgctgttgtc	180
agtaaccccta	tgcctagcaa	catgccaatc	tttacaagag	gaaactgtaa	gaaaggggccc	240
agccggagat	agaggaccac	gtggagaaaag	gggtccacca	ggccccccag	gcagagatgg	300
tgaagatggt	cccacaggcc	ctccctggtcc	acctgggtct	cctggccccc	ctgggtctcg	360
tgggaacttt	gtgtctcagt	atgtatggaaa	aggagtttgg	cttggccctg	gaccaatggg	420
cttaatggga	cctagaggcc	cacctggtgc	agctggagcc	ccagggccctc	aaggtttcca	480
aggacctgct	gttgagccctg	gttgaacctgg	tcaaactgtt	cctggcagggt	ctcggtgtcc	540
agctggccct	cctggcaagg	ctggtaaga	tggtcacccct	ggaaaaacccg	gacgacctgg	600
ttagagagga	gttggggac	cacagggtgc	tcgtggtttc	cctggaaactc	ctggacttcc	660
tggcttcaaa	ggcatttaggg	gacacaatgg	tctggatgg	ttgaaggagac	agccgggtgc	720
tcctgggtgt	aagggtgaac	ctggtcccc	tggtggaaaat	ggaactccag	gtcaaacagg	780
agccgtggg	cttcctgggt	agagaggacg	tgttgggtcc	cctggcccg	ctgggtcccg	840
tggcagtgtat	ggaagtgtgg	gtcccggtgg	tcctgtgtgt	cccattgggt	ctgctggccc	900
tccaggcttc	ccaggtgccc	ctggccccc	gggtgaaaatt	ggagctgttg	gtaacgttgg	960
tcctgtgtgt	cccggccggc	cccgtggta	agtgggtctt	ccagggctct	ccggcccccgt	1020
tggacctcct	ggtaatcctg	gagcaaaacgg	ccttactgtt	gcccaagggtg	ctgctggcct	1080
tccggcggtt	gctggggctc	ccggcctccc	tggacccccc	ggtatccctg	gccctgttgg	1140
tgctgcccgt	gctactgggt	ccagaggact	tgttgggtgg	cctgggtccag	ctggctccaa	1200
aggagagagc	ggttacaacagg	gtgagccgg	ctctgtgtgg	ccccaaaggtc	ctctgtgtcc	1260
cagtggtgaa	gaaggaaaaga	gaggccctaa	tggggaaact	ggatctggcc	gccctccagg	1320
accttcctggg	ctgagaggtt	gtccctggttc	tcgtggtctt	cctggagctg	atggcagagc	1380
tggcgcatg	ggccctccctg	gtagtcgtgg	tgcaagtggc	cctgctggag	tccgaggacc	1440

taatggagat	gctggtcgccc	ctggggagcc	tggtctcatg	ggaccaggag	gtcttcctgg	1500
ttccccctgga	aatatcggccc	ccgctggaaa	agaaggtcct	gtcgccctcc	ctggcatcga	1560
cggcaggcct	ggcccaattt	gcccagctgg	agcaagagga	gagcctggca	acattggatt	1620
ccctggaccc	aaaggccccca	ctggtgatcc	tggcaaaaac	ggtgataaag	gtcatgtgg	1680
tcttgcgtgt	gctcggggtg	ctccaggtcc	tatggaaaac	aatggtgctc	agggacctcc	1740
tggaccacag	gggttcaag	gtggaaaagg	tgaacagggt	cccgctggtc	ctccaggcgtt	1800
ccagggctcg	cctggccct	caggtcccgc	tggtaagtt	ggcaaaccag	gagaaagggg	1860
tctccatggt	gagtttggtc	tccctgtcc	tgctggtcca	agagggaaac	gcggtcccc	1920
aggtgagagt	ggtgctgccc	gtcctactgg	tcctatttgg	agccgaggtc	tttctggacc	1980
cccagggcct	gatggaaaaca	agggtgaacc	tggtgtgggt	ggtgctgtgg	gactgtgtgg	2040
tccatctggt	cctagtggac	tcccaggaga	gaggggtgtc	gctggcatac	ctggaggcga	2100
gggagaaaaag	ggtaacctg	gtctcagagg	tggaaaatttgg	aaccctggca	gagatgggtc	2160
tcgtggtgc	catggtgctg	taggtcccc	tggtctctgt	ggagccacag	gtgaccgggg	2220
cgaagctggg	gtgctggtc	ctgctggcc	tgctggtctc	cggggaaagcc	ctggtaacg	2280
tggcgaggtc	ggtcctgctg	gccccaaacgg	atttgctgtt	ccggctggtg	ctgctggtca	2340
accgggtgc	aaaggagaaa	gaggagccaa	agggcctaag	ggtaaaaacg	gtttgttgg	2400
tcccacaggg	cccggtggag	ctgctggccc	agctggtcca	aatggtcccc	ccggctctgc	2460
tggaagtgcgt	ggtgatggag	gccccctgg	tatgactgtt	ttccctggtg	ctgctggacg	2520
gactggtccc	ccaggaccct	ctggtatccc	tggccctctt	ggtcccccctg	gtcctgtctgg	2580
gaaagaaggg	cttcgtggtc	ctcgtggta	ccaagggtcca	gttggccgaa	ctggagaagt	2640
aggtgtagtt	ggtccccctg	gttcgtctgg	tggaaagggtt	ccctctggag	aggctggtag	2700
tgctggaccc	cctggcactc	caggtcctca	gggtcttctt	ggtgtcctg	gtattctggg	2760
tctccctggc	tcgaggggtt	aacgtgttct	acctggtgtt	gctggtctg	ttgggtgaacc	2820
tggtctcttt	ggcattggcc	gcccccttgg	ggcccgtgg	cctcctggtg	ctgtgggtag	2880
tcctggagtc	aacggtgctc	ctggtaaggc	tggtctgtat	ggcaaccctg	ggaacgatgg	2940
tccccaggct	cgcgtggtc	aacccggaca	caagggagag	cgcgttacc	ctggcaatat	3000
tggcccccgtt	ggtgcgtca	gtgcacctgg	tcctcatggc	cccggtggtc	ctgctggcaa	3060
acatggaaac	cgtggtaaaa	ctggctcttc	tggtcctgtt	ggtcctgctg	gtgctgttgg	3120
cccaagaggt	cctagtggcc	cacaaggcat	tcgtggcgat	aagggagagc	ccggtaaaaa	3180
ggggcccaga	ggtcttcctg	gtttaaaggg	acacaatgga	ttgcaaggtc	tgccctggat	3240
cgctggtcac	catggtgatc	aagggtctcc	tggctccgtg	ggtcctgctg	gtccttaggg	3300
ccctgtgtt	ccttcgtggcc	ctgctggaaa	agatggtcgc	actggacatc	ctggtaggt	3360
tggacctgt	ggcattcggag	gccccctagg	tcaccaaggc	cctgtggcc	ccccctggcc	3420
ccctggccct	cctggaccc	caggtgtaag	cggtgggtt	tatgactttg	gttacgtatgg	3480
agacttctac	agggctgacc	agcctcgctc	agcaccttct	ctcagaccca	aggactatga	3540
agttgatgt	actctgaagt	ctctcaacaa	ccagatttag	acccttctt	ctcctgaagg	3600
ctctagaaaag	aacccagctc	gcacatggcc	tgacttgaga	ctcagccacc	cagagtggag	3660
cagtgttac	tactggattt	accctaaacca	aggatgcact	atggatgcta	tcaaagtata	3720
ctgtgatttc	tctactggcg	aaacctgtat	ccggggcccaa	cctgaaaaca	tcccagccaa	3780
gaactggat	aggagctcca	aggacaagaa	acacgtctgg	ctaggagaaa	ctatcaatgc	3840
tggcagccag	tttgaatata	atgtagaagg	agtacttcc	aaggaaatgg	ctacccaact	3900
tgccttcatg	cgccctgtgg	ccaactatgc	ctctcagaac	atcacctacc	actgcaagaa	3960
cagcattgca	tacatggatg	aggagactgg	caacctgaaa	aaggctgtca	ttctacaggg	4020
ctctaattat	gttgaactt	ttgctggaggg	caacagcagg	ttcacttaca	ctgttcttgc	4080
agatggctgc	tctaaaaaga	caaataatg	gggaaagaca	atcattgaat	acaaaacaaa	4140
taagccatca	cgccctccct	tccttgatat	tgcaccttt	gacatcggtg	gtgctgacca	4200
tgaattcttt	gtggacattt	gcccagtctg	tttcaaaataa	atgaactcaa	tctaaattaa	4260
aaaagaaaaga	aatttggaaa	aactttctt	ttgccattt	ttcttctt	tttttaactg	4320
aaagctgaat	cttccattt	tttctgcaca	tctacttgc	taaattgtgg	gcaaaaagaga	4380
aaaagaaagga	ttgatcgag	cattgtgcaa	tacagtttca	ttaactcctt	cccccgctcc	4440
cccaaaaaatt	tgaatttttt	tttcaacact	tttacacctg	ttatggaaaa	tgtcaacctt	4500
tgtaagaaaa	ccaaaataaaa	aattgaaaaa	taaaaaccat	aaacatttgc	accacttgc	4560
gctttgaat	atcttccaca	gagggaaagt	taaaaaccaa	acttccaaag	gtttaaacta	4620
cctcaaaaaca	ctttccccat	agtgtgatcc	acattgttag	gtgctgaccc	agacagagat	4680
gaactgaggt	ccttgcgg	ttttgttcat	aatacacaagg	tgctaattaa	tagtatttca	4740
gatacttgc	gaatgttgc	ggtgctagaa	gaatttgaga	agaaaatactc	ctgttattgag	4800
ttgtatcg	ttgtgttatt	tttggaaaat	ttgatttgc	attcatattt	tccatctt	4860
tcccaattaa	agttatgcag	attatttgc	caaaggttgc	ctcttcttca	gattcagcat	4920
ttgttcttgc	ccagtctcat	tttcatctt	ttccatgggtt	ccacagaagc	tttgggttctt	4980
ggcaagcag	aaaaattaaa	ttgtacctat	tttgcataat	tgagatgttt	aaataaattt	5040

tgaaaaaaat gaaataaagc atgtttggtt ttccaaaaga acatat

5086

<210> 234
 <211> 1366
 <212> PRT
 <213> Homo sapiens

<400> 234

Met	Leu	Ser	Phe	Val	Asp	Thr	Arg	Thr	Leu	Leu	Leu	Leu	Ala	Val	Thr
1				5					10				15		
Leu	Cys	Leu	Ala	Thr	Cys	Gln	Ser	Ieu	Gln	Glu	Glu	Thr	Val	Arg	Lys
						20			25				30		
Gly	Pro	Ala	Gly	Asp	Arg	Gly	Pro	Arg	Gly	Glu	Arg	Gly	Pro	Pro	Gly
	35					40				45					
Pro	Pro	Gly	Arg	Asp	Gly	Glu	Asp	Gly	Pro	Thr	Gly	Pro	Pro	Gly	Pro
	50					55				60					
Pro	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Leu	Gly	Gly	Asn	Phe	Ala	Ala	Gln
	65					70			75				80		
Tyr	Asp	Gly	Lys	Gly	Val	Gly	Leu	Gly	Pro	Gly	Pro	Met	Gly	Leu	Met
					85				90				95		
Gly	Pro	Arg	Gly	Pro	Pro	Gly	Ala	Ala	Gly	Ala	Pro	Gly	Pro	Gln	Gly
	100					105						110			
Phe	Gln	Gly	Pro	Ala	Gly	Glu	Pro	Gly	Glu	Pro	Gly	Gln	Thr	Gly	Pro
	115					120						125			
Ala	Gly	Ala	Arg	Gly	Pro	Ala	Gly	Pro	Pro	Gly	Lys	Ala	Gly	Glu	Asp
	130					135					140				
Gly	His	Pro	Gly	Lys	Pro	Gly	Arg	Pro	Gly	Glu	Arg	Gly	Val	Val	Gly
	145					150				155				160	
Pro	Gln	Gly	Ala	Arg	Gly	Phe	Pro	Gly	Thr	Pro	Gly	Leu	Pro	Gly	Phe
						165			170				175		
Lys	Gly	Ile	Arg	Gly	His	Asn	Gly	Leu	Asp	Gly	Leu	Lys	Gly	Gln	Pro
						180			185				190		
Gly	Ala	Pro	Gly	Val	Lys	Gly	Glu	Pro	Gly	Ala	Pro	Gly	Glu	Asn	Gly
	195					200						205			
Thr	Pro	Gly	Gln	Thr	Gly	Ala	Arg	Gly	Leu	Pro	Gly	Glu	Arg	Gly	Arg
	210					215						220			
Val	Gly	Ala	Pro	Gly	Pro	Ala	Gly	Ala	Arg	Gly	Ser	Asp	Gly	Ser	Val
	225					230				235				240	
Gly	Pro	Val	Gly	Pro	Ala	Gly	Pro	Ile	Gly	Ser	Ala	Gly	Pro	Pro	Gly
						245			250				255		
Phe	Pro	Gly	Ala	Pro	Gly	Pro	Lys	Gly	Glu	Ile	Gly	Ala	Val	Gly	Asn
						260			265				270		
Ala	Gly	Pro	Ala	Gly	Pro	Ala	Gly	Pro	Arg	Gly	Glu	Val	Gly	Leu	Pro
						275			280				285		
Gly	Leu	Ser	Gly	Pro	Val	Gly	Pro	Pro	Gly	Asn	Pro	Gly	Ala	Asn	Gly
						290			295				300		
Leu	Thr	Gly	Ala	Lys	Gly	Ala	Ala	Gly	Leu	Pro	Gly	Val	Ala	Gly	Ala
	305					310				315				320	
Pro	Gly	Leu	Pro	Gly	Pro	Arg	Gly	Ile	Pro	Gly	Pro	Val	Gly	Ala	Ala
						325				330				335	
Gly	Ala	Thr	Gly	Ala	Arg	Gly	Leu	Val	Gly	Glu	Pro	Gly	Pro	Ala	Gly
						340			345				350		
Ser	Lys	Gly	Glu	Ser	Gly	Asn	Lys	Gly	Glu	Pro	Gly	Ser	Ala	Gly	Pro
						355			360				365		
Gln	Gly	Pro	Pro	Gly	Pro	Ser	Gly	Glu	Glu	Gly	Lys	Arg	Gly	Pro	Asn
						370			375				380		
Gly	Glu	Ala	Gly	Ser	Ala	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Leu	Arg	Gly
	385					390				395				400	
Ser	Pro	Gly	Ser	Arg	Gly	Leu	Pro	Gly	Ala	Asp	Gly	Arg	Ala	Gly	Val

	405	410	415
Met Gly Pro Pro Gly Ser Arg Gly Ala Ser Gly Pro Ala Gly Val Arg			
420	425	430	
Gly Pro Asn Gly Asp Ala Gly Arg Pro Gly Glu Pro Gly Leu Met Gly			
435	440	445	
Pro Arg Gly Leu Pro Gly Ser Pro Gly Asn Ile Gly Pro Ala Gly Lys			
450	455	460	
Glu Gly Pro Val Gly Leu Pro Gly Ile Asp Gly Arg Pro Gly Pro Ile			
465	470	475	480
Gly Pro Ala Gly Ala Arg Gly Glu Pro Gly Asn Ile Gly Phe Pro Gly			
485	490	495	
Pro Lys Gly Pro Thr Gly Asp Pro Gly Lys Asn Gly Asp Lys Gly His			
500	505	510	
Ala Gly Leu Ala Gly Ala Arg Gly Ala Pro Gly Pro Asp Gly Asn Asn			
515	520	525	
Gly Ala Gln Gly Pro Pro Gly Pro Gln Gly Val Gln Gly Gly Lys Gly			
530	535	540	
Glu Gln Gly Pro Ala Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro			
545	550	555	560
Ser Gly Pro Ala Gly Glu Val Gly Lys Pro Gly Glu Arg Gly Leu His			
565	570	575	
Gly Glu Phe Gly Leu Pro Gly Pro Ala Gly Pro Arg Gly Glu Arg Gly			
580	585	590	
Pro Pro Gly Glu Ser Gly Ala Ala Gly Pro Thr Gly Pro Ile Gly Ser			
595	600	605	
Arg Gly Pro Ser Gly Pro Pro Gly Pro Asp Gly Asn Lys Gly Glu Pro			
610	615	620	
Gly Val Val Gly Ala Val Gly Thr Ala Gly Pro Ser Gly Pro Ser Gly			
625	630	635	640
Leu Pro Gly Glu Arg Gly Ala Ala Gly Ile Pro Gly Gly Lys Gly Glu			
645	650	655	
Lys Gly Glu Pro Gly Leu Arg Gly Glu Ile Gly Asn Pro Gly Arg Asp			
660	665	670	
Gly Ala Arg Gly Ala His Gly Ala Val Gly Ala Pro Gly Pro Ala Gly			
675	680	685	
Ala Thr Gly Asp Arg Gly Glu Ala Gly Ala Ala Gly Pro Ala Gly Pro			
690	695	700	
Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly Glu Val Gly Pro Ala			
705	710	715	720
Gly Pro Asn Gly Phe Ala Gly Pro Ala Gly Ala Ala Gly Gln Pro Gly			
725	730	735	
Ala Lys Gly Glu Arg Gly Ala Lys Gly Pro Lys Gly Glu Asn Gly Val			
740	745	750	
Val Gly Pro Thr Gly Pro Val Gly Ala Ala Gly Pro Ala Gly Pro Asn			
755	760	765	
Gly Pro Pro Gly Pro Ala Gly Ser Arg Gly Asp Gly Gly Pro Pro Gly			
770	775	780	
Met Thr Gly Phe Pro Gly Ala Ala Gly Arg Thr Gly Pro Pro Gly Pro			
785	790	795	800
Ser Gly Ile Ser Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Lys Glu			
805	810	815	
Gly Leu Arg Gly Pro Arg Gly Asp Gln Gly Pro Val Gly Arg Thr Gly			
820	825	830	
Glu Val Gly Ala Val Gly Pro Pro Gly Phe Ala Gly Glu Lys Gly Pro			
835	840	845	
Ser Gly Glu Ala Gly Thr Ala Gly Pro Pro Gly Thr Pro Gly Pro Gln			
850	855	860	
Gly Leu Leu Gly Ala Pro Gly Ile Leu Gly Leu Pro Gly Ser Arg Gly			
865	870	875	880
Glu Arg Gly Leu Pro Gly Val Ala Gly Ala Val Gly Glu Pro Gly Pro			
885	890	895	

Leu Gly Ile Ala Gly Pro Pro Gly Ala Arg Gly Pro Pro Gly Ala Val
 900 905 910
 Gly Ser Pro Gly Val Asn Gly Ala Pro Gly Glu Ala Gly Arg Asp Gly
 915 920 925
 Asn Pro Gly Asn Asp Gly Pro Pro Gly Arg Asp Gly Gln Pro Gly His
 930 935 940
 Lys Gly Glu Arg Gly Tyr Pro Gly Asn Ile Gly Pro Val Gly Ala Ala
 945 950 955 960
 Gly Ala Pro Gly Pro His Gly Pro Val Gly Pro Ala Gly Lys His Gly
 965 970 975
 Asn Arg Gly Glu Thr Gly Pro Ser Gly Pro Val Gly Pro Ala Gly Ala
 980 985 990
 Val Gly Pro Arg Gly Pro Ser Gly Pro Gln Gly Ile Arg Gly Asp Lys
 995 1000 1005
 Gly Glu Pro Gly Glu Lys Gly Pro Arg Gly Leu Pro Gly Leu Lys Gly
 1010 1015 1020
 His Asn Gly Leu Gln Gly Leu Pro Gly Ile Ala Gly His His Gly Asp
 1025 1030 1035 1040
 Gln Gly Ala Pro Gly Ser Val Gly Pro Ala Gly Pro Arg Gly Pro Ala
 1045 1050 1055
 Gly Pro Ser Gly Pro Ala Gly Lys Asp Gly Arg Thr Gly His Pro Gly
 1060 1065 1070
 Thr Val Gly Pro Ala Gly Ile Arg Gly Pro Gln Gly His Gln Gly Pro
 1075 1080 1085
 Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Val Ser
 1090 1095 1100
 Gly Gly Gly Tyr Asp Phe Gly Tyr Asp Gly Asp Phe Tyr Arg Ala Asp
 1105 1110 1115 1120
 Gln Pro Arg Ser Ala Pro Ser Leu Arg Pro Lys Asp Tyr Glu Val Asp
 1125 1130 1135
 Ala Thr Leu Lys Ser Leu Asn Asn Gln Ile Glu Thr Leu Leu Thr Pro
 1140 1145 1150
 Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Arg Leu
 1155 1160 1165
 Ser His Pro Glu Trp Ser Ser Gly Tyr Tyr Trp Ile Asp Pro Asn Gln
 1170 1175 1180
 Gly Cys Thr Met Asp Ala Ile Lys Val Tyr Cys Asp Phe Ser Thr Gly
 1185 1190 1195 1200
 Glu Thr Cys Ile Arg Ala Gln Pro Glu Asn Ile Pro Ala Lys Asn Trp
 1205 1210 1215
 Tyr Arg Ser Ser Lys Asp Lys Lys His Val Trp Leu Gly Glu Thr Ile
 1220 1225 1230
 Asn Ala Gly Ser Gln Phe Glu Tyr Asn Val Glu Gly Val Thr Ser Lys
 1235 1240 1245
 Glu Met Ala Thr Gln Leu Ala Phe Met Arg Leu Leu Ala Asn Tyr Ala
 1250 1255 1260
 Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp
 1265 1270 1275 1280
 Glu Glu Thr Gly Asn Leu Lys Lys Ala Val Ile Leu Gln Gly Ser Asn
 1285 1290 1295
 Asp Val Glu Leu Val Ala Glu Gly Asn Ser Arg Phe Thr Tyr Thr Val
 1300 1305 1310
 Leu Val Asp Gly Cys Ser Lys Lys Thr Asn Glu Trp Gly Lys Thr Ile
 1315 1320 1325
 Ile Glu Tyr Lys Thr Asn Lys Pro Ser Arg Leu Pro Phe Leu Asp Ile
 1330 1335 1340
 Ala Pro Leu Asp Ile Gly Gly Ala Asp His Glu Phe Phe Val Asp Ile
 1345 1350 1355 1360
 Gly Pro Val Cys Phe Lys
 1365

<210> 235
<211> 4168
<212> DNA
<213> Homo sapiens

<400> 235

atgggcaacc	tggagagcgc	cgagggggtc	ccgggagagc	ccccctctgt	cccggttgg	60
ctgcccccgg	gcaagatgcc	gatgcctgag	ccctgtgagc	tggaggaaag	gttcgcctg	120
gtgctgagct	ccatgaacct	gcctccagac	aaggcccccgc	tcctgcggca	gtatgacaat	180
gagaagaaat	gggatctgat	ctgtgaccag	gaacgattcc	aggtgaagaa	tcctcccac	240
acttacattc	agaaaactcca	gagttcttg	gaccccagtg	taactcgaa	gaagttcagg	300
aggagggtgc	aggagtcaac	caaagtacta	agggagctgg	agatctctt	tcgcaccaac	360
cacattgggt	gggtgcggga	atttctgaat	gatgaaaaca	aaggcctgga	tgtactgg	420
gattacctgt	cctttgcca	gtgttctgtc	atgtttgact	ttgagggct	ggaaagtgg	480
gacgatggtg	catttgacaa	actccggtcc	tggagcagg	caatcgagga	cctgcagcca	540
cccagcgccc	tgtcgccccc	cttacccaac	agcctcgctc	gctctgcgcg	ccagtctgt	600
ctccggata	gcactctccc	tgggcgcagg	gccctgaaga	actccgcct	agtgagccag	660
aaggatgacg	tccacgtctg	tatccttgt	ctcagagcca	tcatgaacta	tcagtacgga	720
ttcaacctgg	tcatgtccca	ccccatgct	gtcaatgaga	ttgcacttag	cctcaataac	780
aagaatccaa	ggacccaaagc	ccttgctta	gagttctgg	cagctgtgt	tttggtgcg	840
ggaggtcacg	aaatcatct	tgctgcctt	gacaatttca	aagaggtat	caaggagctg	900
caccgcctt	agaagctgat	ggagtattt	cggaatgagg	acagcaatat	tgacttcatg	960
gtggcctgca	tgcagttcat	caacatcg	gtgcactcg	tggaggacat	gaacttcgg	1020
gtcccacctgc	agtatgagtt	taccaagctg	gggctagagg	agttcctgca	gaagtcaagg	1080
cacacagaga	ggcagaagct	gcaggtgcag	attcaggcat	atctggacaa	cgtgtttgat	1140
gtcgggggtt	tgttggagga	tgctgagacc	aagaatgtag	ccctggagaa	gttggaggag	1200
ttggaggagc	atgtgtccca	tctcacagag	aagttctgg	acctagagaa	tgaaaacatg	1260
atgcgggtgg	cagaactaga	gaagcagctg	ctacagcggg	agaaggaact	agagagcatc	1320
aaggagacat	atgagaacac	aaggcaccag	gtgcacaccc	tgcggaggct	cattaaagag	1380
aaggaggagg	ccttcagcg	tcgatgtcat	ttggagccaa	atgtccgggg	cctggagtt	1440
gtggcagatg	aggccctggc	cagagtaggc	cctgcagagc	tgagtggagg	catgccaccc	1500
tccgacctgg	accttctggc	tccagccca	ccccctgagg	aggtcctgcc	tcttcctcca	1560
ccaccagctc	cgcccttggc	cccttcaccc	ccccattac	cagacaatg	tccccagcc	1620
ccacccctcc	ctggctgctc	accctctgt	gtgttgcac	tggcctgtc	agccattcga	1680
attaagaaac	ctatcaagac	caagttccgg	ctgcctgtct	tcaactggac	agcactgaaa	1740
cccaaccaga	tcagtggc	tgttctcagc	gaacttgc	atgagaagat	cttggaggac	1800
ctggatctt	ataagtttga	agaattattt	aagacaaaag	cgcagggccc	tgcccttgac	1860
ctcatctgct	ccaaaaaaca	gacagcgaa	aaagctgca	gcaagggtac	tctgttgaa	1920
gccaatctg	ccaagaacat	ggccatcacc	ctacgcaagg	ctggccgctc	ggctgaggag	1980
atctgcaggg	ccattcatac	gtttgactt	cagacactac	ctgtggactt	cgtggagtgc	2040
ctgatgcgt	tcctgcccc	agaggctgag	gtaaagctgc	tgcgcaata	tgagcggag	2100
cggcagcccc	tggaggagg	ggcagctgag	gaccgcttca	tgctgtctt	cagcaagg	2160
gaacggttga	cccagcgaat	ggctggcat	gccttcctgg	ggaacttcca	ggataacctg	2220
cagatgctca	caccgcaact	caatgccatc	attgcggcgt	ccgcttccgt	caagtctca	2280
cagaagctga	agcagatgtt	ggagatcata	tttgcactt	ggaactacat	gaacagcagc	2340
aagcggggag	ctgtgtatgg	cttcaagctc	cagagcctt	atctgcgt	ggataaccaag	2400
tccactgacc	ggaagatgac	actgttcat	ttcatcgct	tgacagtgg	ggagaaatac	2460
ccagacctgg	ctaacttctg	gcatgagct	cactttgtt	agaaggctgc	agcagtgtcc	2520
ctggagaacg	tgctgtctgg	cgtgaaggag	ctggccggg	gcatggagct	gattcggcgt	2580
gagtgcagca	tccatgacaa	cagcgtc	cggaacttcc	tcagatccaa	tgaaggcaaa	2640
ctagacaagc	tccagcggg	cgccaaagac	gctgaggagg	cctacaatgc	agttgtgcgc	2700
tactttggcg	agagtccca	gactacac	ccttctgtat	tcttccagt	atttgcgt	2760
ttcattcg	tttacaagga	agcagaacaa	gagaatgaag	cccgcaagaa	gcaggaggag	2820
gtaatgcggg	agaagcagct	ggctcaggaa	gccaagaaac	tggatgcca	gaccctatcc	2880
cagcggaaaca	agtggcaaca	gcaggaggta	atagcagat	tgaggcggcg	ccaggccaag	2940
gaacaccggc	ctgttatga	ggggaaaggat	ggtaccatcg	aggacatcat	cacagtgtc	3000
aagagtgtcc	ctttcacggc	ccgtactg	aagcggggct	cacgcttctt	ctgtgtatgc	3060
gccaccatg	atgagtcaaa	ctgttagccc	ccaagg	ggccgacag	gcctccactg	3120
ccagcctatg	gttggcgtcc	accaagccag	gagtgcgtca	ccgcccagt	gtccccctcg	3180
ggctccaggc	ccccactgag	accotctgg	aggcagaac	acttcaccc	tcagagtct	3240
acaagtccaa	ccagtggacc	tggaattggc	caagggtc	ggagagg	gtgttgc	3300

<210> 236
<211> 1028
<212> PRT
<213> *Homo sapiens*

<400> 236
 Met Gly Asn Leu Glu Ser Ala Glu Gly Val Pro Gly Glu Pro Pro Ser
 1 5 10 15
 Val Pro Leu Leu Leu Pro Pro Gly Lys Met Pro Met Pro Glu Pro Cys
 20 25 30
 Glu Leu Glu Glu Arg Phe Ala Leu Val Leu Ser Ser Met Asn Leu Pro
 35 40 45
 Pro Asp Lys Ala Arg Leu Leu Arg Gln Tyr Asp Asn Glu Lys Lys Trp
 50 55 60
 Asp Leu Ile Cys Asp Gln Glu Arg Phe Gln Val Lys Asn Pro Pro His
 65 70 75 80
 Thr Tyr Ile Gln Lys Leu Gln Ser Phe Leu Asp Pro Ser Val Thr Arg
 85 90 95
 Lys Lys Phe Arg Arg Arg Val Gln Glu Ser Thr Lys Val Leu Arg Glu
 100 105 110
 Leu Glu Ile Ser Leu Arg Thr Asn His Ile Gly Trp Val Arg Glu Phe
 115 120 125
 Leu Asn Asp Glu Asn Lys Gly Leu Asp Val Leu Val Asp Tyr Leu Ser
 130 135 140
 Phe Ala Gln Cys Ser Val Met Phe Asp Phe Glu Gly Leu Glu Ser Gly
 145 150 155 160
 Asp Asp Gly Ala Phe Asp Lys Leu Arg Ser Trp Ser Arg Ser Ile Glu
 165 170 175
 Asp Leu Gln Pro Pro Ser Ala Leu Ser Ala Pro Phe Thr Asn Ser Leu
 180 185 190
 Ala Arg Ser Ala Arg Gln Ser Val Leu Arg Tyr Ser Thr Leu Pro Gly
 195 200 205
 Arg Arg Ala Leu Lys Asn Ser Arg Leu Val Ser Gln Lys Asp Asp Val
 210 215 220
 His Val Cys Ile Leu Cys Leu Arg Ala Ile Met Asn Tyr Gln Tyr Gly
 225 230 235 240
 Phe Asn Leu Val Met Ser His Pro His Ala Val Asn Glu Ile Ala Leu
 245 250 255
 Ser Leu Asn Asn Lys Asn Pro Arg Thr Lys Ala Leu Val Leu Glu Leu
 260 265 270
 Leu Ala Ala Val Cys Leu Val Arg Gly Gly His Glu Ile Ile Leu Ala
 275 280 285
 Ala Phe Asp Asn Phe Lys Glu Val Cys Lys Glu Leu His Arg Phe Glu
 290 295 300
 Lys Leu Met Glu Tyr Phe Arg Asn Glu Asp Ser Asn Ile Asp Phe Met

305	310	315	320
Val Ala Cys Met Gln Phe Ile Asn Ile Val Val His Ser Val Glu Asp			
325	330	335	
Met Asn Phe Arg Val His Leu Gln Tyr Glu Phe Thr Lys Leu Gly Leu			
340	345	350	
Glu Glu Phe Leu Gln Lys Ser Arg His Thr Glu Ser Glu Lys Leu Gln			
355	360	365	
Val Gln Ile Gln Ala Tyr Leu Asp Asn Val Phe Asp Val Gly Gly Leu			
370	375	380	
Leu Glu Asp Ala Glu Thr Lys Asn Val Ala Leu Glu Lys Val Glu Glu			
385	390	395	400
Leu Glu Glu His Val Ser His Leu Thr Glu Lys Leu Leu Asp Leu Glu			
405	410	415	
Asn Glu Asn Met Met Arg Val Ala Glu Leu Glu Lys Gln Leu Leu Gln			
420	425	430	
Arg Glu Lys Glu Leu Glu Ser Ile Lys Glu Thr Tyr Glu Asn Thr Ser			
435	440	445	
His Gln Val His Thr Leu Arg Arg Leu Ile Lys Glu Lys Glu Glu Ala			
450	455	460	
Phe Gln Arg Arg Cys His Leu Glu Pro Asn Val Arg Gly Leu Glu Ser			
465	470	475	480
Val Asp Ser Glu Ala Leu Ala Arg Val Gly Pro Ala Glu Leu Ser Glu			
485	490	495	
Gly Met Pro Pro Ser Asp Leu Asp Leu Ala Pro Ala Pro Pro Pro			
500	505	510	
Glu Glu Val Leu Pro Leu Pro Pro Pro Ala Pro Pro Leu Pro Pro			
515	520	525	
Pro Pro Pro Pro Leu Pro Asp Lys Cys Pro Pro Ala Pro Pro Leu Pro			
530	535	540	
Gly Ala Ala Pro Ser Val Val Leu Thr Val Gly Leu Ser Ala Ile Arg			
545	550	555	560
Ile Lys Lys Pro Ile Lys Thr Lys Phe Arg Leu Pro Val Phe Asn Trp			
565	570	575	
Thr Ala Leu Lys Pro Asn Gln Ile Ser Gly Thr Val Phe Ser Glu Leu			
580	585	590	
Asp Asp Glu Lys Ile Leu Glu Asp Leu Asp Leu Asp Lys Phe Glu Glu			
595	600	605	
Leu Phe Lys Thr Lys Ala Gln Gly Pro Ala Leu Asp Leu Ile Cys Ser			
610	615	620	
Lys Asn Lys Thr Ala Gln Lys Ala Ala Ser Lys Val Thr Leu Leu Glu			
625	630	635	640
Ala Asn Arg Ala Lys Asn Leu Ala Ile Thr Leu Arg Lys Ala Gly Arg			
645	650	655	
Ser Ala Glu Glu Ile Cys Arg Ala Ile His Thr Phe Asp Leu Gln Thr			
660	665	670	
Leu Pro Val Asp Phe Val Glu Cys Leu Met Arg Phe Leu Pro Thr Glu			
675	680	685	
Ala Glu Val Lys Leu Leu Arg Gln Tyr Glu Arg Glu Arg Gln Pro Leu			
690	695	700	
Glu Glu Leu Ala Ala Glu Asp Arg Phe Met Leu Leu Phe Ser Lys Val			
705	710	715	720
Glu Arg Leu Thr Gln Arg Met Ala Gly Met Ala Phe Leu Gly Asn Phe			
725	730	735	
Gln Asp Asn Leu Gln Met Leu Thr Pro Gln Leu Asn Ala Ile Ile Ala			
740	745	750	
Ala Ser Ala Ser Val Lys Ser Ser Gln Lys Leu Lys Gln Met Leu Glu			
755	760	765	
Ile Ile Leu Ala Leu Gly Asn Tyr Met Asn Ser Ser Lys Arg Gly Ala			
770	775	780	
Val Tyr Gly Phe Lys Leu Gln Ser Leu Asp Leu Leu Leu Asp Thr Lys			
785	790	795	800

Ser Thr Asp Arg Lys Met Thr Leu Leu His Phe Ile Ala Leu Thr Val
 805 810 815
 Lys Glu Lys Tyr Pro Asp Leu Ala Asn Phe Trp His Glu Leu His Phe
 820 825 830
 Val Glu Lys Ala Ala Ala Val Ser Leu Glu Asn Val Leu Leu Asp Val
 835 840 845
 Lys Glu Leu Gly Arg Gly Met Glu Leu Ile Arg Arg Glu Cys Ser Ile
 850 855 860
 His Asp Asn Ser Val Leu Arg Asn Phe Leu Ser Thr Asn Glu Gly Lys
 865 870 875 880
 Leu Asp Lys Leu Gln Arg Asp Ala Lys Thr Ala Glu Glu Ala Tyr Asn
 885 890 895
 Ala Val Val Arg Tyr Phe Gly Glu Ser Pro Lys Thr Thr Pro Pro Ser
 900 905 910
 Val Phe Phe Pro Val Phe Val Arg Phe Ile Arg Ser Tyr Lys Glu Ala
 915 920 925
 Glu Gln Glu Asn Glu Ala Arg Lys Lys Gln Glu Glu Val Met Arg Glu
 930 935 940
 Lys Gln Leu Ala Gln Glu Ala Lys Lys Leu Asp Ala Lys Thr Pro Ser
 945 950 955 960
 Gln Arg Asn Lys Trp Gln Gln Glu Leu Ile Ala Glu Leu Arg Arg
 965 970 975
 Arg Gln Ala Lys Glu His Arg Pro Val Tyr Glu Gly Lys Asp Gly Thr
 980 985 990
 Ile Glu Asp Ile Ile Thr Val Leu Lys Ser Val Pro Phe Thr Ala Arg
 995 1000 1005
 Thr Ala Lys Arg Gly Ser Arg Phe Phe Cys Asp Ala Ala His His Asp
 1010 1015 1020
 Glu Ser Asn Cys
 1025

<210> 237
 <211> 5641
 <212> DNA
 <213> Homo sapiens

<400> 237.

cggaggagga	cgcgagcccc	ttgcggggcg	tcatcacagc	ccagccctgg	ggctgccaca	60
gcgcgttgcg	cctgtgcgccc	ctcggtcccc	gcgtccactg	agcgcgcgc	tccggatgg	120
ggcccccggc	ccggggccccc	gcgcctggc	ctcgtcacact	gctgcgtgc	gtccctgtcc	180
tcgggtgcct	gcacctcgcc	cgtcccgccg	ccccctggga	cgccgcctc	ccggaaaccca	240
acgttttcct	catcttcagc	catggactgc	agggctgcct	ggaggcccag	ggccggcagg	300
tcaagatcac	cccggttgc	aataccagcc	tccctgccc	gctgttggaa	ttgggtctccc	360
gaaaccggct	attcaacctg	ggtaccatgc	agtgcctgg	cacaggctgg	ccaggcacca	420
acaccacggc	ctccctgggc	atgtatgatg	gtgaccggga	agcaactgaat	tttcgttgc	480
attgtcgta	actgggttct	cagctgttct	tgctctgg	ggcccccacc	agcaacatat	540
ccaaggctgg	cacccttgag	cgtggtgacc	agaccgcag	tggccagtgg	cgcatctacg	600
gcagcggagga	ggacctatgt	gctctccct	accacgaggat	ctacaccatc	caggaaact	660
cccacggaaa	gccgtgcacc	atcccccttca	aatatgacaa	ccagtggttc	cacggctgca	720
ccagcacggg	ccgcgaggat	gtcacctgt	ggtgtgccac	cacccaggac	tacggcaaag	780
acgagcgctg	gggcttctgc	cccatcaaga	gtaacgactg	cgagacattc	tgggacaagg	840
accagctgac	tgacagctgc	taccatgtt	attccagtc	cacgctgtcg	tggagggagg	900
cctggccag	ctgcgagcag	cagggtgcgg	atctgctgag	catcacggag	atccacgagc	960
agacctacat	caacggccctc	ctcactgggt	acagctccac	cctgtggatc	ggcttgaatg	1020
acttgacac	gagcggaggc	tggcagtgg	cgacacaactc	gccccctcaag	tacccatcaact	1080
gggagagtga	ccagccggac	aaccccagt	aggagaactg	tggagtgtac	cgcactgagt	1140
cctcggccgg	ctggcagaaac	cgtgactgca	gcatcgcgt	gcccttatgt	tgcaagaaga	1200
agcccaacgc	cacggccgag	cccacccctc	cagacaggtg	ggccaaatgt	aagggtggagt	1260
gcgagccgag	ctggcagccc	ttccaggggcc	actgctaccg	cctgcaggcc	gagaagcgca	1320
gctggcagga	gtccaagaag	gcatgtctac	ggggcgggtgg	cgacctggtc	agcatccaca	1380
gcatggcgg	gctggattc	atcaccaagc	agatcaagca	agagggtggag	gagctgtgga	1440

tcggcctcaa	cgatttgaaa	ctgcagatga	attttagtgc	gtctgacggg	agccttgtga	1500
gcttcaccca	ctggcacccc	ttttagccca	acaacttccg	ggacagtctg	gaggactgtg	1560
tcaccatctg	ggggcccgaa	ggccgctgga	acgacagtcc	ctgttaaccag	tccttgcct	1620
ccatctgcaa	gaaggcagggc	cagctgagcc	agggggccgc	cgaggaggac	catggctgcc	1680
ggaagggtt	gacgtggcac	agcccatctt	gctactggct	gggagaagac	caagtgcacct	1740
acagtgagggc	ccggcgccctg	tgcactgacc	atggctctca	gctggtcacc	atcaccaaca	1800
gttgcagca	ggccttcgctc	agcagcctca	tctacaactg	ggagggcgag	tacttctgga	1860
cggccctgca	ggacctaaca	agcacccgct	ccttcttctg	gctcaatggg	gatgaagtca	1920
tgtacaccca	ctggAACCGG	gaccAGCCG	ggtagccccg	ttggggctgc	gtggcgctgg	1980
ccactggcg	cgccatgggg	ctgtggagg	tgaagaactg	tacctcggtc	cgggcccgct	2040
acatctgccc	gcagagcctg	ggcactccag	tgacgcccgg	gctgcggggg	ccagatccca	2100
cggccagcct	cactggctcc	tgtccccagg	gctgggcctc	ggacacccaa	ctccggattt	2160
gctataaggt	gttcagctca	gagcgcgtc	aggacaagaa	gagctgggtc	caggccccagg	2220
gggcctgcca	ggagctgggg	gcccagctgc	tgagcctggc	cagctacgag	gaggagcact	2280
ttgtggccaa	catgctcaac	aagatctcg	gtgaatcaga	acccgagatc	cacgagcagc	2340
actggttctg	gatcgccctg	aaccgtcggg	atcccagagg	gggtcagat	ttggcgctgga	2400
gcgacggcgt	agggttctct	taccacaatt	tcgaccggag	ccggcacgcac	gacgacgaca	2460
tccgaggctg	tgccgtgctg	gacctggct	ccctgcagtg	ggtggccatg	cagtgcgaca	2520
cacagctgga	ctggatctgc	aagatcccc	gaggtacgga	cgtgcgggg	cccgacgaca	2580
gccctcaagg	ccgacgggaa	tggctgcgt	tccaggaggg	cgagtacaag	ttctttgagc	2640
accactccac	gtgggcgca	gchgacgcac	tctgcacgt	gttccaggcc	gagctgaccc	2700
ccgtgcacag	ccaggcagag	ctagacttcc	tgagccacaa	tttgcagaag	ttctcccg	2760
cccaggagca	gcactgggt	atcgccctgc	acacctctga	gagcgtgggg	cgcttcagat	2820
ggacagatgg	ttccattata	aacttcatct	cctggcacc	aggcaaaac	ccgcctgtcg	2880
gcaaggacaa	gaagtgcgtg	tacatgacag	ccagccgaga	ggactggggg	gaccagaggt	2940
gcctgacagc	cttgccttac	atctgcaagc	gcaagcaacgt	caccaaaagaa	acgcagcccc	3000
cagaccttgc	aactacagcc	ctggggggct	gcccctctga	ctggatccag	ttcctcaaca	3060
agtgtttca	ggtccagggg	caggaacccc	agggccgggt	gaagtggta	gaggcacagt	3120
tctcctgtga	acagcaagag	gcccagctgg	tccatcac	aaacccctta	gagcaagcat	3180
tcatcacagc	cagcctgccc	aatgtgaccc	ttgacctttg	gattggctc	catgcctcgc	3240
agagggactt	ccagtgggt	gagcaggagc	ctttgatgta	tgccaaactgg	gcacctgggg	3300
agccctctgg	cccttagccct	gctcccaatg	gcaacaaacc	gaccagctgt	gcccgtggcc	3360
tgcacagccc	cteagcccac	ttcactggcc	gctgggacga	tcggagctgc	acggaggaga	3420
cccatggctt	catctgccc	aagggcacgg	acccctccct	gagcccttcc	ccagcagcgc	3480
tggcccccgc	cccgggcact	gagctctcc	acctcaacgg	cacctccgg	ctgcttcaga	3540
agccgctgca	ctggcacat	gcccctctgc	tgtgtgagag	ccacaatgcc	agccctggcc	3600
acgtccccga	cccctacacc	caggccttcc	tcacgcaggg	tgcccgaggg	ctgcgcacgc	3660
cgctctggat	ttggctggct	ggcgaggagg	gctctggcg	gtactcctgg	gtctcagagg	3720
agccgctgaa	ctacgtgggc	ttgcaggacg	gggagccgca	gcagccgggg	ggctgtaccc	3780
acgttagatgt	ggacggggcc	ttgcgcacca	ccagctgtg	caccaagctg	cagggggctg	3840
tgtgtgggt	tagcagtggg	ccccctcc	cccgaaagaat	aagctaccat	ggcagctgtc	3900
cccaggggact	ggcagactcc	gcgtgattc	ccttcggga	gcactgctat	tctttccaca	3960
tggagctgct	gctggccac	aaggaggcgc	gacagcgcgt	ccagagagcg	ggtggggccg	4020
tcctgtctat	cctggatgag	atggagaatg	tgtttgcgt	ggagcacctg	cagagctatg	4080
agggccagag	tcggggccgc	ttgctggca	tgaacttcaa	ccccaaagga	ggcactctgg	4140
tctggcagga	caacacagct	gtgaactact	ccaactgggg	gccccgggc	ttggggccca	4200
gcatgctgag	ccacaacagc	tgctactgga	ttcagagcaa	cagggggcta	tggcgcccc	4260
gcccgtgcac	caacatcacc	atgggtgtcg	tctcaatgt	tcctcgtgt	gagcagagca	4320
gcttctcccc	atcagcgctt	ccagagaacc	cagggccct	ggtgggtgt	ctgatggccg	4380
tgctgctgct	cctggcctt	ctgaccgcag	ccctcatct	ttaccggagg	cgccagagca	4440
tcgagcgcgg	ggccttttag	ggtggccgt	acagccgcag	cagctccagg	cccaccgg	4500
ccactgagaa	gaacatcctg	gtgtcagaca	tggaaatgaa	tgagcaacaa	gaatagagcc	4560
aggcgcgtgg	gcagggccag	ggcgggagga	gctggggagc	ttggggccctg	ggtcaatgt	4620
gccccccacc	agctgctgt	ccagttggcc	tatggaaagg	tgcccttggg	agtcgctgtt	4680
gggagccgga	gtggggcaga	gcctgggtg	gtgggggtcc	acccctccac	aagggtgggg	4740
ctgagaccca	gtcgatgtca	gcgtggcg	tcccttctg	ggggggccctg	aggtcttgc	4800
acctggctt	gtgccccac	aggaaccaga	gttagatgg	gagggggaaac	gagagcctt	4860
ttctccccag	agccccccggc	ccaggctgt	tgatccgcgc	cccaggaccc	ccttcttgc	4920
agagcccgag	gagcctcccc	tgtccccctg	ggcagatctg	ttgtgtcttct	cttcccaccc	4980
ggcagcctca	gctctgtgcc	cctcacccctg	tccctctctg	ccccctctct	ccccccccctt	5040
ccttcgtgagc	cgggcccttg	ggattgggaa	gcccttctgt	tcctgatgag	ggtcaatgt	5100

gggggctgag	catccatcac	tcctgtgcct	gctggggtgg	ctgtggggcg	ttggcaggagg	5160
ggccttaggtg	ggttggcct	gagaaccagg	gcacgggtgt	ggtgtctgt	gggctggaga	5220
taagactggg	gagagacacc	ccaacctccc	agggtggag	ctggggcccc	ctgggatgtc	5280
atctcctgcc	ggggggggga	gggctctgcc	ccttggaaagag	tcccctgtgg	ggacccaaaat	5340
aagttcccta	acatctccag	ctcctggctc	tggtttggag	caaggggaag	ggttgccaga	5400
gtcctggggg	ccccagagga	gcaggagtct	gggagggccc	agagttcacc	ctctagtgtga	5460
tccaggagga	gcagcaccccg	agccctggag	tgccccagta	cccttccaag	aggccacagt	5520
cccagccagg	acaaaagtatg	cggcccatcc	tggtgcgaca	gcgtgggaca	atgtgaacat	5580
ggactcgaag	acatggccct	ttctctgttag	ttgattttt	aatgtgcca	ttattgttt	5640
t						5641

<210> 238
<211> 1479
<212> PRT
<213> *Homo sapiens*

<400> 238
 Met Gly Pro Gly Arg Pro Ala Pro Ala Pro Trp Pro Arg His Leu Leu
 1 5 10 15
 Arg Cys Val Leu Leu Leu Gly Cys Leu His Leu Gly Arg Pro Gly Ala
 20 25 30
 Pro Gly Asp Ala Ala Leu Pro Glu Pro Asn Val Phe Leu Ile Phe Ser
 35 40 45
 His Gly Leu Gln Gly Cys Leu Glu Ala Gln Gly Gly Gln Val Arg Val
 50 55 60
 Thr Pro Ala Cys Asn Thr Ser Leu Pro Ala Gln Arg Trp Lys Trp Val
 65 70 75 80
 Ser Arg Asn Arg Leu Phe Asn Leu Gly Thr Met Gln Cys Leu Gly Thr
 85 90 95
 Gly Trp Pro Gly Thr Asn Thr Thr Ala Ser Leu Gly Met Tyr Glu Cys
 100 105 110
 Asp Arg Glu Ala Leu Asn Leu Arg Trp His Cys Arg Thr Leu Gly Asp
 115 120 125
 Gln Leu Ser Leu Leu Leu Gly Ala Arg Thr Ser Asn Ile Ser Lys Pro
 130 135 140
 Gly Thr Leu Glu Arg Gly Asp Gln Thr Arg Ser Gly Gln Trp Arg Ile
 145 150 155 160
 Tyr Gly Ser Glu Glu Asp Leu Cys Ala Leu Pro Tyr His Glu Val Tyr
 165 170 175
 Thr Ile Gln Gly Asn Ser His Gly Lys Pro Cys Thr Ile Pro Phe Lys
 180 185 190
 Tyr Asp Asn Gln Trp Phe His Gly Cys Thr Ser Thr Gly Arg Glu Asp
 195 200 205
 Gly His Leu Trp Cys Ala Thr Thr Gln Asp Tyr Gly Lys Asp Glu Arg
 210 215 220
 Trp Gly Phe Cys Pro Ile Lys Ser Asn Asp Cys Glu Thr Phe Trp Asp
 225 230 235 240
 Lys Asp Gln Leu Thr Asp Ser Cys Tyr Gln Phe Asn Phe Gln Ser Thr
 245 250 255
 Leu Ser Trp Arg Glu Ala Trp Ala Ser Cys Glu Gln Gln Gly Ala Asp
 260 265 270
 Leu Leu Ser Ile Thr Glu Ile His Glu Gln Thr Tyr Ile Asn Gly Leu
 275 280 285
 Leu Thr Gly Tyr Ser Ser Thr Leu Trp Ile Gly Leu Asn Asp Leu Asp
 290 295 300
 Thr Ser Gly Gly Trp Gln Trp Ser Asp Asn Ser Pro Leu Lys Tyr Leu
 305 310 315 320
 Asn Trp Glu Ser Asp Gln Pro Asp Asn Pro Ser Glu Glu Asn Cys Gly
 325 330 335

Val Ile Arg Thr Glu Ser Ser Gly Gly Trp Gln Asn Arg Asp Cys Ser
 340 345 350
 Ile Ala Leu Pro Tyr Val Cys Lys Lys Lys Pro Asn Ala Thr Ala Glu
 355 360 365
 Pro Thr Pro Pro Asp Arg Trp Ala Asn Val Lys Val Glu Cys Glu Pro
 370 375 380
 Ser Trp Gln Pro Phe Gln Gly His Cys Tyr Arg Leu Gln Ala Glu Lys
 385 390 395 400
 Arg Ser Trp Gln Glu Ser Lys Lys Ala Cys Leu Arg Gly Gly Asp
 405 410 415
 Leu Val Ser Ile His Ser Met Ala Glu Leu Glu Phe Ile Thr Lys Gln
 420 425 430
 Ile Lys Gln Glu Val Glu Glu Leu Trp Ile Gly Leu Asn Asp Leu Lys
 435 440 445
 Leu Gln Met Asn Phe Glu Trp Ser Asp Gly Ser Leu Val Ser Phe Thr
 450 455 460
 His Trp His Pro Phe Glu Pro Asn Asn Phe Arg Asp Ser Leu Glu Asp
 465 470 475 480
 Cys Val Thr Ile Trp Gly Pro Glu Gly Arg Trp Asn Asp Ser Pro Cys
 485 490 495
 Asn Gln Ser Leu Pro Ser Ile Cys Lys Lys Ala Gly Gln Leu Ser Gln
 500 505 510
 Gly Ala Ala Glu Glu Asp His Gly Cys Arg Lys Gly Trp Thr Trp His
 515 520 525
 Ser Pro Ser Cys Tyr Trp Leu Gly Glu Asp Gln Val Thr Tyr Ser Glu
 530 535 540
 Ala Arg Arg Leu Cys Thr Asp His Gly Ser Gln Leu Val Thr Ile Thr
 545 550 555 560
 Asn Arg Phe Glu Gln Ala Phe Val Ser Ser Leu Ile Tyr Asn Trp Glu
 565 570 575
 Gly Glu Tyr Phe Trp Thr Ala Leu Gln Asp Leu Asn Ser Thr Gly Ser
 580 585 590
 Phe Phe Trp Leu Ser Gly Asp Glu Val Met Tyr Thr His Trp Asn Arg
 595 600 605
 Asp Gln Pro Gly Tyr Ser Arg Gly Gly Cys Val Ala Leu Ala Thr Gly
 610 615 620
 Ser Ala Met Gly Leu Trp Glu Val Lys Asn Cys Thr Ser Phe Arg Ala
 625 630 635 640
 Arg Tyr Ile Cys Arg Gln Ser Leu Gly Thr Pro Val Thr Pro Glu Leu
 645 650 655
 Pro Gly Pro Asp Pro Thr Pro Ser Leu Thr Gly Ser Cys Pro Gln Gly
 660 665 670
 Trp Ala Ser Asp Thr Lys Leu Arg Tyr Cys Tyr Lys Val Phe Ser Ser
 675 680 685
 Glu Arg Leu Gln Asp Lys Lys Ser Trp Val Gln Ala Gln Gly Ala Cys
 690 695 700
 Gln Glu Leu Gly Ala Gln Leu Leu Ser Leu Ala Ser Tyr Glu Glu Glu
 705 710 715 720
 His Phe Val Ala Asn Met Leu Asn Lys Ile Phe Gly Glu Ser Glu Pro
 725 730 735
 Glu Ile His Glu Gln His Trp Phe Trp Ile Gly Leu Asn Arg Arg Asp
 740 745 750
 Pro Arg Gly Gly Gln Ser Trp Arg Trp Ser Asp Gly Val Gly Phe Ser
 755 760 765
 Tyr His Asn Phe Asp Arg Ser Arg His Asp Asp Asp Ile Arg Gly
 770 775 780
 Cys Ala Val Leu Asp Leu Ala Ser Leu Gln Trp Val Ala Met Gln Cys
 785 790 795 800
 Asp Thr Gln Leu Asp Trp Ile Cys Lys Ile Pro Arg Gly Thr Asp Val
 805 810 815
 Arg Glu Pro Asp Asp Ser Pro Gln Gly Arg Arg Glu Trp Leu Arg Phe

	820	825	830
Gln Glu Ala Glu Tyr Lys Phe Phe Glu His His Ser Thr Trp Ala Gln			
835	840	845	
Ala Gln Arg Ile Cys Thr Trp Phe Gln Ala Glu Leu Thr Ser Val His			
850	855	860	
Ser Gln Ala Glu Leu Asp Phe Leu Ser His Asn Leu Gln Lys Phe Ser			
865	870	875	880
Arg Ala Gln Glu Gln His Trp Trp Ile Gly Leu His Thr Ser Glu Ser			
885	890	895	
Asp Gly Arg Phe Arg Trp Thr Asp Gly Ser Ile Ile Asn Phe Ile Ser			
900	905	910	
Trp Ala Pro Gly Lys Pro Arg Pro Val Gly Lys Asp Lys Lys Cys Val			
915	920	925	
Tyr Met Thr Ala Ser Arg Glu Asp Trp Gly Asp Gln Arg Cys Leu Thr			
930	935	940	
Ala Leu Pro Tyr Ile Cys Lys Arg Ser Asn Val Thr Lys Glu Thr Gln			
945	950	955	960
Pro Pro Asp Leu Pro Thr Thr Ala Leu Gly Gly Cys Pro Ser Asp Trp			
965	970	975	
Ile Gln Phe Leu Asn Lys Cys Phe Gln Val Gln Gly Gln Glu Pro Gln			
980	985	990	
Ser Arg Val Lys Trp Ser Glu Ala Gln Phe Ser Cys Glu Gln Gln Glu			
995	1000	1005	
Ala Gln Leu Val Thr Ile Thr Asn Pro Leu Glu Gln Ala Phe Ile Thr			
1010	1015	1020	
Ala Ser Leu Pro Asn Val Thr Phe Asp Leu Trp Ile Gly Leu His Ala			
1025	1030	1035	1040
Ser Gln Arg Asp Phe Gln Trp Val Glu Gln Glu Pro Leu Met Tyr Ala			
1045	1050	1055	
Asn Trp Ala Pro Gly Glu Pro Ser Gly Pro Ser Pro Ala Pro Ser Gly			
1060	1065	1070	
Asn Lys Pro Thr Ser Cys Ala Val Val Leu His Ser Pro Ser Ala His			
1075	1080	1085	
Phe Thr Gly Arg Trp Asp Asp Arg Ser Cys Thr Glu Glu Thr His Gly			
1090	1095	1100	
Phe Ile Cys Gln Lys Gly Thr Asp Pro Ser Leu Ser Pro Ser Pro Ala			
1105	1110	1115	1120
Ala Leu Pro Pro Ala Pro Gly Thr Glu Leu Ser Tyr Leu Asn Gly Thr			
1125	1130	1135	
Phe Arg Leu Leu Gln Lys Pro Leu Arg Trp His Asp Ala Leu Leu Leu			
1140	1145	1150	
Cys Glu Ser His Asn Ala Ser Leu Ala Tyr Val Pro Asp Pro Tyr Thr			
1155	1160	1165	
Gln Ala Phe Leu Thr Gln Ala Ala Arg Gly Leu Arg Thr Pro Leu Trp			
1170	1175	1180	
Ile Gly Leu Ala Gly Glu Glu Gly Ser Arg Arg Tyr Ser Trp Val Ser			
1185	1190	1195	1200
Glu Glu Pro Leu Asn Tyr Val Gly Trp Gln Asp Gly Glu Pro Gln Gln			
1205	1210	1215	
Pro Gly Gly Cys Thr Tyr Val Asp Val Asp Gly Ala Trp Arg Thr Thr			
1220	1225	1230	
Ser Cys Asp Thr Lys Leu Gln Gly Ala Val Cys Gly Val Ser Ser Gly			
1235	1240	1245	
Pro Pro Pro Arg Arg Ile Ser Tyr His Gly Ser Cys Pro Gln Gly			
1250	1255	1260	
Leu Ala Asp Ser Ala Trp Ile Pro Phe Arg Glu His Cys Tyr Ser Phe			
1265	1270	1275	1280
His Met Glu Leu Leu Leu Gly His Lys Glu Ala Arg Gln Arg Cys Gln			
1285	1290	1295	
Arg Ala Gly Gly Ala Val Leu Ser Ile Leu Asp Glu Met Glu Asn Val			
1300	1305	1310	

Phe Val Trp Glu His Leu Gln Ser Tyr Glu Gly Gln Ser Arg Gly Ala
 1315 1320 1325
 Trp Leu Gly Met Asn Phe Asn Pro Lys Gly Gly Thr Leu Val Trp Gln
 1330 1335 1340
 Asp Asn Thr Ala Val Asn Tyr Ser Asn Trp Gly Pro Pro Gly Leu Gly
 1345 1350 1355 1360
 Pro Ser Met Leu Ser His Asn Ser Cys Tyr Trp Ile Gln Ser Asn Ser
 1365 1370 1375
 Gly Leu Trp Arg Pro Gly Ala Cys Thr Asn Ile Thr Met Gly Val Val
 1380 1385 1390
 Cys Lys Leu Pro Arg Ala Glu Gln Ser Ser Phe Ser Pro Ser Ala Leu
 1395 1400 1405
 Pro Glu Asn Pro Ala Ala Leu Val Val Val Leu Met Ala Val Leu Leu
 1410 1415 1420
 Leu Leu Ala Leu Leu Thr Ala Ala Leu Ile Leu Tyr Arg Arg Arg Gln
 1425 1430 1435 1440
 Ser Ile Glu Arg Gly Ala Phe Glu Gly Ala Arg Tyr Ser Arg Ser Ser
 1445 1450 1455
 Ser Ser Pro Thr Glu Ala Thr Glu Lys Asn Ile Leu Val Ser Asp Met
 1460 1465 1470
 Glu Met Asn Glu Gln Gln Glu
 1475

<210> 239
<211> 6127
<212> DNA
<213> Homo sapiens

<400> 239

ctgtcccttg	caccccgctc	cctgcctgga	cacaggctca	ctcgctgcct	tcttctgggg	60
gaaaaccagct	tcttgcagc	cacagtgc	gcctccgcca	ctggccaccc	cccctgtcct	120
ggggatccct	tggcccgagac	acccaccta	ctttagtggct	cctctgcagg	aaagggtggct	180
ccccctgcg	ttccctccatc	caaccatgag	ctgggtcccc	tcaccactga	aatgtgcacca	240
aagaatgtag	tggacaaggg	agaaggagcc	tcccgggggt	aaaacacacg	aaaaaggcctc	300
gaggacaacg	gctccaccag	ggtcaccccg	agtgtccagc	cccacctcca	gcccatcaga	360
aacatgagtg	ttagccggac	catggaggac	agctgtgagc	tggacctgg	gtacgtcaca	420
gagaggatca	tcgctgtctc	cttccccagc	acagccaatg	aggagaactt	ccggagcaac	480
ctccgtgagg	tggcgcgat	gctcaagtcc	aaacatggag	gcaactacct	gtgttcaac	540
ctctctgagc	ggagacctga	catcacgaag	ctccatgcca	aggtaactgg	atttggctgg	600
cccgacactcc	acaccccgac	cctggagaag	atctgcagca	tctgttaaggc	catggacaca	660
tggctcaatg	cagaccctca	caatgtcg	tttctacaca	acaagggaaa	ccgaggcagg	720
ataggagtt	tcatcgccgc	ttacatgcac	tacagcaaca	tttctgccc	tgccggaccag	780
gctctggacc	ggtttcaat	gaagcggttc	tatgaggata	agattgtgcc	cattggccag	840
ccatccaaa	gaaggtacgt	gcattacttc	agtggctgc	tctccggctc	catcaaaaata	900
aacaacaagc	ccttggttct	gcaccacgt	atcatgcacg	gatccccaa	ctttgagtc	960
aaaggaggat	gtcgccatt	tctccgcata	taccaggcca	tgcaacactgt	gtacacatct	1020
ggcatctaca	acatcccagg	agacagccag	actagcgct	gcatcaccat	cgagccagga	1080
ctgctcttga	agggagacat	tttgctgaag	tgcttaccaca	agaagttccg	aagcccagcc	1140
cgagacgtca	tcttccgtgt	gcagttccac	acctgtgcca	tccatgacct	gggggttgc	1200
tttgggaagg	aggaccttga	tgatgcttc	aaagatgatc	gatttccaga	gtatggcaa	1260
gtggagttt	tatttctta	tggccagag	aaaattcaag	gcatggagca	cctggagaac	1320
ggggccgagcg	tgtctgtgga	ctataaacacc	tctgacccccc	tcatccgctg	ggactcctac	1380
gacaacttca	gtgggcacatc	agatgacggc	atggaggagg	tggtggaca	cacgcagggg	1440
ccactagatg	ggagcctgta	tgctaagg	agaagaaag	actccctgca	cgccagcacc	1500
ggggctgtta	atgcccacacg	tcctacactg	tcggccaccc	ccaaccacgt	ggaacacacg	1560
ctttctgtga	gcagcgactc	ggcaactcc	acagcctcca	ccaagacccga	caagaccgac	1620
gagcctgtcc	ccggggcctc	cagtgccact	gctgcctga	gtccccagga	gaagcgggag	1680
ctggaccgc	tgctgagtgg	cttggctta	gagcgagaga	agcaaggcgc	catgtaccac	1740
acccagcacc	ttaggtcccc	cccagcaggg	ggctcggtcg	tgcctccctc	tggacgcccac	1800
gttgtccag	cccaggttca	tgtcaatgg	ggggcggttag	catctgagcg	ggagacagac	1860
atccctggac	atgaattgccc	aaaccaggat	ggtcacagtg	cgggcagcat	gggcacactc	1920

ttttctctgg acggggtaac caacaccagt gaggggggct acccagaggc cctgtccca	1980
ctgacaacg gtctggacaa gtcctacccc atggagccca tggtaatgg aggaggctac	2040
ccctacgagt ctgccagccg ggcggggcct gcccatgcg gccacacggc cccatgcgg	2100
ccctctact ctgcacaggaa gggttagct ggctaccaga gggagggcc ccaccaggc	2160
tggccacaggc cagtgaccac ctccccactat gcccatgacc ccagcggtat gttccgctt	2220
caatctttt cgaaagctga accccagctg cccccagetc cgggtccgagg gggaaagcagc	2280
cgggaggctg tgcaaagggg actgaattcg tggcagcagc agcagcagca gcagcagcag	2340
cctcggccac ctccacgcca gcaggaaaga gcccacttg agagtcttgt agccagcagg	2400
cccaggccctc agccattggc agagaccccc atccccagtc tccctgagtt cccgcgagca	2460
gcctcccagc aggagattga acagtccatc gaaacactca atatgctat gctggacctg	2520
gagccagcct ccgctgtgc cccactacac aagtcccaga gtgtcccccgg ggcctggcca	2580
ggggcttctc cactctcctc ccagggccctc tctggatctt cccgtcagtc ccatccactg	2640
acccagtcca gatctggcta tatccccagt gggcattcgt tggaaacccc tgagccagcc	2700
ccacgggcct ctctggagtc tgccctccct ggcaggtctt actcaccta tgactatacg	2760
ccatgtttgg ctgggcctaa ccaggatttc cattcaaaga gcccagcctc ttccctcctg	2820
cctgccttcc ttccgaccac ccacagccct ccagggccctc agcaaccccc agcctcttc	2880
cctggcctca ctgctcagcc tctgtctca ccaaaggaaag cgacttcaga cccctcccg	2940
actccagagg aggagccatt gaatttagaa gggctggtg cccacagggt agcagggta	3000
caggctcggg agaaggcagcc tgcaagcccc ccagggccctc tgccggaggcg ggcggccagt	3060
gatggacagt atgagaacca gtctccagaa gccacatccc ctcgtagccc tggggttcgc	3120
tccccgttcc agtgtgtctc cccggagctg gctcttacca tgcgtctcaa ttctggaggg	3180
cggccaaag agccccattt gcacagctac aaggaggct tcgaggagat ggaggaaacc	3240
tccccgagca gcccaccacc cagtggggtg cgggtccccc cgggtctggc caagacaccc	3300
ctgtctgctc tgggcctgaa acctcacaac ccagcggaca tccttgtca ccccacagga	3360
gttaccagaa gacggatcca gccagaggaa gatgaggggaa aggtgggtt caggctgtca	3420
gaagagcccc ggagctatgt ggagtctgtg gcacggacag cgggtgctgg accccgagct	3480
caggactctg agcccaagag ctttagtgc ctagccaccc aggcctatgg ccatgagata	3540
cccctgagga acgggaccct gggtggctcc tttgtctccc ccagggccctt ctccaccagc	3600
agccccatcc tcagtgtctg cagcacttca gtggggagtt tccctgtccgg agagagcagt	3660
gaccagggtc cccggacgcc caccggccct ctgtggagtt ctgggttcccg ctccaggcagc	3720
ctgggacagc ccagccatc tgccctggaga aactaccaga gctcttctcc tctccgact	3780
gtggcagta gtcacagcag cccggactac tcacttcagc atttcagctc ctctccggaa	3840
agccaggccc gagctcaggta cagtgggtt ggcgtccaca cgggtgctgg gagccctcag	3900
gcmcggcaca gaacagtggg caccacact ccccttagtc ctgggttccgg cggcggggcc	3960
atcaatccca gcatggctgc ccccgacgtt cccagttga gccatcacca gatgatgggt	4020
ccaccaggca ctggcttcca tggtagact gtctccagcc cccagagcag tgcagcagcc	4080
acccggggaa gccccagctt gtgtcggcac ccagcagggg tctaccaggt ttctggccctc	4140
cacaacaaag tggccaccac cccggggagtt cccagcctgg gccggcaccc tggggctcac	4200
caagggcaacc tggcctccgg tcttcatacg aatgcaatag ccagccctgg aagccccagc	4260
ctggggcgtc acctcggagg gtctggatct gtgggttcccg gcagccctgg ctggaccgg	4320
catgtggct atggcggcta ttctaccccg gaggatcggc gaccacact tccccggcag	4380
agcagtgcct ctggcttacca ggctcttcc acggccctct tccctgtctc ccctgcctac	4440
taccttggcc tgagcagccc tgccacccctt cctgtcaccag actccgcagc ttccggccaa	4500
gggagcccaa caccggcctt gccagagaag cgaaggatgt cagtggaga cggggcaggg	4560
agcctcccca actatggccac catcaatggg aaggttgc cgcctgtgcc cagcggcatg	4620
tccagttcca gggggggcag caccgtctcc ttctcccaaca ctctggccga ttctccaaag	4680
tactccatgc cagacaacag cccggagacg cgggcttaaaag tgaagttgtt ccaggacact	4740
tctaagtatt ggtacaaggc tgagatctc agggagcagg ccatcgcgtt cctcaaggac	4800
caggagccgg gggccttcat catccgcgac agtcactctt tccgaggcgc gtacgggtt	4860
gccatgaagg tgtcttcggc accttccaaacc atcatgcggc agaataaaaa aggagacatg	4920
acccatgagc tggtcagggc ttttctgtata gagactggcc ccagaggagt caagctcaag	4980
ggctggccca atgagccaaa cttcggtatcg ctgtctggcc tggcttacca gcactccatc	5040
atcccattgg ccctgccttgc caagctggc attccaaacc gagacccac agatgaatcg	5100
aaagatagct cccggccctc caactcaact gcagacgttc tggaaacaagg ggcagcctgc	5160
aatgtgtct tcatcaactc tggatgcattt ggtcactca ctggccaca ggcacatctt	5220
aaagccacat ctgagacgtt ggctgcagac cccacggccag ctgcaccat cgttccatc	5280
aaagtctctg cccaggaaat cactctgact gacaaccaga gaaagctttt tttcagacgc	5340
caactaccctc tcaacactgt caccttctgt gacctggatc cacaggaaag aaagtggatg	5400
aaaacagagg gtgggtcccc tgctaaagctc ttcggcttcg tggccggaa gcagggcagc	5460
accacggaca acgcctgcac cctctttgtt gagcttgacc ccaaccagcc ggcctctgcc	5520
atcgtaact tcgtctccaa ggtcatgctg aatgcccggcc aaaagagatg aaccctgc	5580

cttgcagg gccagtgc	ttggaaagg gcttgtggg	agggacca tgaatccta	5640
ccactttga acccagaagg	aggacttgg gccaatttcg	gaggagagaa gaaagtgc	5700
cgtgggaga gggaaatgaa	ttgcagaggg gagggggaaa	agagagagag agagagagag	5760
agagagagag agagagagaa	agatggagga gaagaactt	gattcccctg gtagatgga	5820
aactgcaaaa acccaaagcc	tccaaaacta accaggtcca	cctaacaaccc cttccctccc	5880
ctaagaagat ggatgtcctc	aaaagagaag gaacaaacct	ccttggaaat ccacatttt	5940
tggggaaatg gaaaagctct	gtctccctaa ctcaactgct	ttgcaagggg aaatcaagct	6000
gggagaatct tttctggcc	acctgtaggg taggttgtca	aaccaaacag agccaccgtg	6060
ggacatcaag tggaagaact tgtttgctt	aaagtatctc agacccaagg	cacctcaggt	6120
ctctttg			6127

<210> 240
<211> 1732
<212> PRT
<213> Homo sapiens

<400> 240			
Met Ser Val Ser Arg Thr Met Glu Asp Ser Cys Glu Leu Asp Leu Val			
1	5	10	15
Tyr Val Thr Glu Arg Ile Ile Ala Val Ser Phe Pro Ser Thr Ala Asn			
20	25	30	
Glu Glu Asn Phe Arg Ser Asn Leu Arg Glu Val Ala Gln Met Leu Lys			
35	40	45	
Ser Lys His Gly Gly Asn Tyr Leu Leu Phe Asn Leu Ser Glu Arg Arg			
50	55	60	
Pro Asp Ile Thr Lys Leu His Ala Lys Val Leu Glu Phe Gly Trp Pro			
65	70	75	80
Asp Leu His Thr Pro Ala Leu Glu Lys Ile Cys Ser Ile Cys Lys Ala			
85	90	95	
Met Asp Thr Trp Leu Asn Ala Asp Pro His Asn Val Val Leu His			
100	105	110	
Asn Lys Gly Asn Arg Gly Arg Ile Gly Val Val Ile Ala Ala Tyr Met			
115	120	125	
His Tyr Ser Asn Ile Ser Ala Ser Ala Asp Gln Ala Leu Asp Arg Phe			
130	135	140	
Ala Met Lys Arg Phe Tyr Glu Asp Lys Ile Val Pro Ile Gly Gln Pro			
145	150	155	160
Ser Gln Arg Arg Tyr Val His Tyr Phe Ser Gly Leu Leu Ser Gly Ser			
165	170	175	
Ile Lys Ile Asn Asn Lys Pro Leu Phe Leu His His Val Ile Met His			
180	185	190	
Gly Ile Pro Asn Phe Glu Ser Lys Gly Gly Cys Arg Pro Phe Leu Arg			
195	200	205	
Ile Tyr Gln Ala Met Gln Pro Val Tyr Thr Ser Gly Ile Tyr Asn Ile			
210	215	220	
Pro Gly Asp Ser Gln Thr Ser Val Cys Ile Thr Ile Glu Pro Gly Leu			
225	230	235	240
Leu Leu Lys Gly Asp Ile Leu Leu Lys Cys Tyr His Lys Lys Phe Arg			
245	250	255	
Ser Pro Ala Arg Asp Val Ile Phe Arg Val Gln Phe His Thr Cys Ala			
260	265	270	
Ile His Asp Leu Gly Val Val Phe Gly Lys Glu Asp Leu Asp Asp Ala			
275	280	285	
Phe Lys Asp Asp Arg Phe Pro Glu Tyr Gly Lys Val Glu Phe Val Phe			
290	295	300	
Ser Tyr Gly Pro Glu Lys Ile Gln Gly Met Glu His Leu Glu Asn Gly			
305	310	315	320
Pro Ser Val Ser Val Asp Tyr Asn Thr Ser Asp Pro Leu Ile Arg Trp			
325	330	335	

Asp Ser Tyr Asp Asn Phe Ser Gly His Arg Asp Asp Gly Met Glu Glu
 340 345 350
 Val Val Gly His Thr Gln Gly Pro Leu Asp Gly Ser Leu Tyr Ala Lys
 355 360 365
 Val Lys Lys Lys Asp Ser Leu His Gly Ser Thr Gly Ala Val Asn Ala
 370 375 380
 Thr Arg Pro Thr Leu Ser Ala Thr Pro Asn His Val Glu His Thr Leu
 385 390 395 400
 Ser Val Ser Ser Asp Ser Gly Asn Ser Thr Ala Ser Thr Lys Thr Asp
 405 410 415
 Lys Thr Asp Glu Pro Val Pro Gly Ala Ser Ser Ala Thr Ala Ala Leu
 420 425 430
 Ser Pro Gln Glu Lys Arg Glu Leu Asp Arg Leu Leu Ser Gly Phe Gly
 435 440 445
 Leu Glu Arg Glu Lys Gln Gly Ala Met Tyr His Thr Gln His Leu Arg
 450 455 460
 Ser Arg Pro Ala Gly Gly Ser Ala Val Pro Ser Ser Gly Arg His Val
 465 470 475 480
 Val Pro Ala Gln Val His Val Asn Gly Gly Ala Leu Ala Ser Glu Arg
 485 490 495
 Glu Thr Asp Ile Leu Asp Asp Glu Leu Pro Asn Gln Asp Gly His Ser
 500 505 510
 Ala Gly Ser Met Gly Thr Leu Ser Ser Leu Asp Gly Val Thr Asn Thr
 515 520 525
 Ser Glu Gly Gly Tyr Pro Glu Ala Leu Ser Pro Leu Thr Asn Gly Leu
 530 535 540
 Asp Lys Ser Tyr Pro Met Glu Pro Met Val Asn Gly Gly Gly Tyr Pro
 545 550 555 560
 Tyr Glu Ser Ala Ser Arg Ala Gly Pro Ala His Ala Gly His Thr Ala
 565 570 575
 Pro Met Arg Pro Ser Tyr Ser Ala Gln Glu Gly Leu Ala Gly Tyr Gln
 580 585 590
 Arg Glu Gly Pro His Pro Ala Trp Pro Gln Pro Val Thr Thr Ser His
 595 600 605
 Tyr Ala His Asp Pro Ser Gly Met Phe Arg Ser Gln Ser Phe Ser Glu
 610 615 620
 Ala Glu Pro Gln Leu Pro Pro Ala Pro Val Arg Gly Gly Ser Ser Arg
 625 630 635 640
 Glu Ala Val Gln Arg Gly Leu Asn Ser Trp Gln Gln Gln Gln Gln
 645 650 655
 Gln Gln Gln Pro Arg Pro Pro Arg Gln Gln Glu Arg Ala His Leu
 660 665 670
 Glu Ser Leu Val Ala Ser Arg Pro Ser Pro Gln Pro Leu Ala Glu Thr
 675 680 685
 Pro Ile Pro Ser Leu Pro Glu Phe Pro Arg Ala Ala Ser Gln Gln Glu
 690 695 700
 Ile Glu Gln Ser Ile Glu Thr Leu Asn Met Leu Met Leu Asp Leu Glu
 705 710 715 720
 Pro Ala Ser Ala Ala Ala Pro Leu His Lys Ser Gln Ser Val Pro Gly
 725 730 735
 Ala Trp Pro Gly Ala Ser Pro Leu Ser Ser Gln Pro Leu Ser Gly Ser
 740 745 750
 Ser Arg Gln Ser His Pro Leu Thr Gln Ser Arg Ser Gly Tyr Ile Pro
 755 760 765
 Ser Gly His Ser Leu Gly Thr Pro Glu Pro Ala Pro Arg Ala Ser Leu
 770 775 780
 Glu Ser Val Pro Pro Gly Arg Ser Tyr Ser Pro Tyr Asp Tyr Gln Pro
 785 790 795 800
 Cys Leu Ala Gly Pro Asn Gln Asp Phe His Ser Lys Ser Pro Ala Ser
 805 810 815
 Ser Ser Leu Pro Ala Phe Leu Pro Thr Thr His Ser Pro Pro Gly Pro

	820	825	830												
Gln	Gln	Pro	Pro	Ala	Ser	Leu	Pro	Gly	Leu	Thr	Ala	Gln	Pro	Leu	Leu
		835	840										845		
Ser	Pro	Lys	Glu	Ala	Thr	Ser	Asp	Pro	Ser	Arg	Thr	Pro	Glu	Glu	Glu
		850	855										860		
Pro	Leu	Asn	Leu	Glu	Gly	Leu	Val	Ala	His	Arg	Val	Ala	Gly	Val	Gln
		865	870										880		
Ala	Arg	Glu	Lys	Gln	Pro	Ala	Glu	Pro	Pro	Ala	Pro	Leu	Arg	Arg	Arg
													885	890	895
Ala	Ala	Ser	Asp	Gly	Gln	Tyr	Glu	Asn	Gln	Ser	Pro	Glu	Ala	Thr	Ser
													900	905	910
Pro	Arg	Ser	Pro	Gly	Val	Arg	Ser	Pro	Val	Gln	Cys	Val	Ser	Pro	Glu
													915	920	925
Leu	Ala	Leu	Thr	Ile	Ala	Leu	Asn	Pro	Gly	Gly	Arg	Pro	Lys	Glu	Pro
													930	935	940
His	Leu	His	Ser	Tyr	Lys	Glu	Ala	Phe	Glu	Glu	Met	Glu	Gly	Thr	Ser
													945	950	955
Pro	Ser	Ser	Pro	Pro	Ser	Gly	Val	Arg	Ser	Pro	Pro	Gly	Leu	Ala	
													965	970	975
Lys	Thr	Pro	Leu	Ser	Ala	Leu	Gly	Leu	Lys	Pro	His	Asn	Pro	Ala	Asp
													980	985	990
Ile	Leu	Leu	His	Pro	Thr	Gly	Val	Thr	Arg	Arg	Ile	Gln	Pro	Glu	
													995	1000	1005
Glu	Asp	Glu	Gly	Lys	Val	Val	Val	Arg	Leu	Ser	Glu	Glu	Pro	Arg	Ser
													1010	1015	1020
Tyr	Val	Glu	Ser	Val	Ala	Arg	Thr	Ala	Val	Ala	Gly	Pro	Arg	Ala	Gln
													1025	1030	1035
Asp	Ser	Glu	Pro	Lys	Ser	Phe	Ser	Ala	Pro	Ala	Thr	Gln	Ala	Tyr	Gly
													1045	1050	1055
His	Glu	Ile	Pro	Leu	Arg	Asn	Gly	Thr	Leu	Gly	Gly	Ser	Phe	Val	Ser
													1060	1065	1070
Pro	Ser	Pro	Leu	Ser	Thr	Ser	Pro	Ile	Leu	Ser	Ala	Asp	Ser	Thr	
													1075	1080	1085
Ser	Val	Gly	Ser	Phe	Pro	Ser	Gly	Glu	Ser	Ser	Asp	Gln	Gly	Pro	Arg
													1090	1095	1100
Thr	Pro	Thr	Gln	Pro	Leu	Leu	Glu	Ser	Gly	Phe	Arg	Ser	Gly	Ser	Leu
													1105	1110	1115
Gly	Gln	Pro	Ser	Pro	Ser	Ala	Gln	Arg	Asn	Tyr	Gln	Ser	Ser	Pro	
													1125	1130	1135
Leu	Pro	Thr	Val	Gly	Ser	Ser	Tyr	Ser	Ser	Pro	Asp	Tyr	Ser	Leu	Gln
													1140	1145	1150
His	Phe	Ser	Ser	Pro	Glu	Ser	Gln	Ala	Arg	Ala	Gln	Phe	Ser	Val	
													1155	1160	1165
Ala	Gly	Val	His	Thr	Val	Pro	Gly	Ser	Pro	Gln	Ala	Arg	His	Arg	Thr
													1170	1175	1180
Val	Gly	Thr	Asn	Thr	Pro	Pro	Ser	Pro	Gly	Phe	Gly	Arg	Arg	Ala	Ile
													1185	1190	1195
Asn	Pro	Ser	Met	Ala	Ala	Pro	Ser	Ser	Pro	Ser	Leu	Ser	His	His	Gln
													1205	1210	1215
Met	Met	Gly	Pro	Pro	Gly	Thr	Gly	Phe	His	Gly	Ser	Thr	Val	Ser	Ser
													1220	1225	1230
Pro	Gln	Ser	Ser	Ala	Ala	Thr	Thr	Pro	Gly	Ser	Pro	Ser	Leu	Cys	Arg
													1235	1240	1245
His	Pro	Ala	Gly	Val	Tyr	Gln	Val	Ser	Gly	Leu	His	Asn	Lys	Val	Ala
													1250	1255	1260
Thr	Thr	Pro	Gly	Ser	Pro	Ser	Leu	Gly	Arg	His	Pro	Gly	Ala	His	Gln
													1265	1270	1275
Gly	Asn	Leu	Ala	Ser	Gly	Leu	His	Ser	Asn	Ala	Ile	Ala	Ser	Pro	Gly
													1285	1290	1295
Ser	Pro	Ser	Leu	Gly	Arg	His	Leu	Gly	Gly	Ser	Gly	Ser	Val	Val	Pro
													1300	1305	1310

Gly Ser Pro Cys Leu Asp Arg His Val Ala Tyr Gly Gly Tyr Ser Thr
 1315 1320 1325
 Pro Glu Asp Arg Arg Pro Thr Leu Ser Arg Gln Ser Ser Ala Ser Gly
 1330 1335 1340
 Tyr Gln Ala Pro Ser Thr Pro Ser Phe Pro Val Ser Pro Ala Tyr Tyr
 1345 1350 1355 1360
 Pro Gly Leu Ser Ser Pro Ala Thr Ser Pro Ser Pro Asp Ser Ala Ala
 1365 1370 1375
 Phe Arg Gln Gly Ser Pro Thr Pro Ala Leu Pro Glu Lys Arg Arg Met
 1380 1385 1390
 Ser Val Gly Asp Arg Ala Gly Ser Leu Pro Asn Tyr Ala Thr Ile Asn
 1395 1400 1405
 Gly Lys Val Ala Ser Pro Val Pro Ser Gly Met Ser Ser Pro Ser Gly
 1410 1415 1420
 Gly Ser Thr Val Ser Phe Ser His Thr Leu Pro Asp Phe Ser Lys Tyr
 1425 1430 1435 1440
 Ser Met Pro Asp Asn Ser Pro Glu Thr Arg Ala Lys Val Lys Phe Val
 1445 1450 1455
 Gln Asp Thr Ser Lys Tyr Trp Tyr Lys Pro Glu Ile Ser Arg Glu Gln
 1460 1465 1470
 Ala Ile Ala Leu Leu Lys Asp Gln Glu Pro Gly Ala Phe Ile Ile Arg
 1475 1480 1485
 Asp Ser His Ser Phe Arg Gly Ala Tyr Gly Leu Ala Met Lys Val Ser
 1490 1495 1500
 Ser Pro Pro Pro Thr Ile Met Gln Gln Asn Lys Lys Gly Asp Met Thr
 1505 1510 1515 1520
 His Glu Leu Val Arg His Phe Leu Ile Glu Thr Gly Pro Arg Gly Val
 1525 1530 1535
 Lys Leu Lys Gly Cys Pro Asn Glu Pro Asn Phe Gly Ser Leu Ser Ala
 1540 1545 1550
 Leu Val Tyr Gln His Ser Ile Ile Pro Leu Ala Leu Pro Cys Lys Leu
 1555 1560 1565
 Val Ile Pro Asn Arg Asp Pro Thr Asp Glu Ser Lys Asp Ser Ser Gly
 1570 1575 1580
 Pro Ala Asn Ser Thr Ala Asp Leu Leu Lys Gln Gly Ala Ala Cys Asn
 1585 1590 1595 1600
 Val Leu Phe Ile Asn Ser Val Asp Met Glu Ser Leu Thr Gly Pro Gln
 1605 1610 1615
 Ala Ile Ser Lys Ala Thr Ser Glu Thr Leu Ala Ala Asp Pro Thr Pro
 1620 1625 1630
 Ala Ala Thr Ile Val His Phe Lys Val Ser Ala Gln Gly Ile Thr Leu
 1635 1640 1645
 Thr Asp Asn Gln Arg Lys Leu Phe Phe Arg Arg His Tyr Pro Leu Asn
 1650 1655 1660
 Thr Val Thr Phe Cys Asp Leu Asp Pro Gln Glu Arg Lys Trp Met Lys
 1665 1670 1675 1680
 Thr Glu Gly Gly Ala Pro Ala Lys Leu Phe Gly Phe Val Ala Arg Lys
 1685 1690 1695
 Gln Gly Ser Thr Thr Cys His Leu Phe Ala Glu Leu Asp Pro Asn Gln
 1700 1705 1710
 Pro Ala Ser Ala Ile Val Asn Phe Val Ser Lys Val Met Leu Asn Ala
 1715 1720 1725
 Gly Gln Lys Arg
 1730

<210> 241

<211> 3557

<212> DNA

<213> Homo sapiens

<400> 241

atgccccggcg	tggcccgccct	ggcgcgtgctg	ctcgcccgtgc	tgctgctccc	gcgtcccccggc	6
cggccgtctgg	acttggccga	ctacacctat	gaccctggcgg	aggaggacga	ctcgaggcccc	120
ctcaactaca	aagacccttg	caaggcggct	gcctttcttgc	gggacattgc	cctggacgaa	180
gaggacotga	gggccttcca	ggtacagcag	gctgtggatc	tcagacggca	cacagctcg	240
aagtccctca	tcaaagctgc	agttccagga	aacacttcta	cccccaactg	ccagagcaccc	300
aacgggcagc	ctcagagggg	agcctgtggg	agatggagag	gtagatccc	tagccggcgg	360
gcggcgcacgt	cccgaccaga	gcgtgtgtgg	cccgtatgggg	tcatccctt	tgtcattgggg	420
ggaaaacttca	ctgttagcca	gagggcagtc	ttccggcagg	ccatgaggca	ctgggagaag	480
cacacctgtg	tcaccttccct	ggagcgcact	gacgaggaca	gctatattgt	gttcacctat	540
cgaccttgcg	ggtgcgtctc	ctacgtgggt	cgcccgccg	ggggccccca	ggccatctcc	600
atcgcaaga	actgtgacaa	gttcggcatt	gtggtccacg	agctggcca	cgtcgtcggc	660
ttctggcacg	aacacactcg	gccagacccg	gaccgcacg	tttccatcgt	tcgtgagaac	720
atccaggccag	ggcaggagta	taacttcctg	aagatggagc	ctcaggaggt	ggagtccctg	780
ggggagacct	atgacttcga	cagcatcatg	cattacgctc	ggaacacatt	ctccaggggc	840
atcttcctgg	ataccattgt	ccccaaatgt	gaggtgaacg	gggtgaaacc	tcccattggc	900
caaaggacac	ggctcagcaa	ggggggacatt	gcccaagccc	gcaagctta	caagtgcaca	960
gcctgtggag	agaccctgca	agacagcaca	ggcaacttct	cttccctgaa	ataccccaat	1020
ggctactctg	ctcacatgca	ctgcgtgtgg	cgcatctctg	tcacacccgg	ggagaagatc	1080
atccctgaact	tcacgtccct	ggacctgtac	cgacgccc	tgtgctgtt	cgactatgtg	1140
gaggtcccgag	atggttctg	gaggaaggcg	ccccctccgag	ggcgctctg	cgggtccaaa	1200
ctccctgagc	ctatcgctc	cactgacagc	cgccctctggg	ttgaattccg	cagcagcagc	1260
aattgggtt	gaaagggttt	ctttgcagtc	tacgaagcca	tctgcgggg	tgatgtgaaa	1320
aaggactatg	gccacattca	atcgcccaac	tacccagacg	attaccggcc	cagcaaagtc	1380
tgcatctggc	ggatccaggt	gtctgagggc	ttccacgtgg	gcctcacatt	ccagtccttt	1440
gagattggc	gccacgacag	ctgtgcctac	gactatctgg	aggtgcgcga	cgggcacagt	1500
gagagcagca	ccctcatcg	gcgctactgt	ggctatgaga	agcctgatga	catcaagagc	1560
acgtccagcc	gcctctggct	caagttcg	tctgacgggt	ccattaaacaa	acggggcttt	1620
gccgtcaact	tttcaaaga	ggtggacgag	tgtctctggc	ccaaccgcgg	gggctgtgag	1680
cagcggtgcc	tcaacaccct	gggcagctac	aagtgcagct	tgaccgggg	gtacgagctg	1740
gccccagaca	agcgccgtg	tgaggctgct	tgtggcggt	tcctcaccaa	gctcaacggc	1800
tccatcacca	gccccggctg	gcccaaggag	tacccccc	acaagaactg	catctggcag	1860
ctggtgcccc	ccacccagta	ccgcacatc	ctgcagttt	acttcttga	gacagagggc	1920
aatgatgtt	gcaagtacga	cttcgtggag	gtgcgcagtg	gactcacagc	tgactccaag	1980
ctgcatggca	agttctgtgg	ttctgagaag	cccggagg	tcaccccttca	gtacaacaac	2040
atgcgtgtgg	agttcaagtc	cgacaacacc	gtgtccaaaa	agggcttca	ggcccacttc	2100
ttctcagaca	aggacgagtg	ctccaggat	aacggcggct	gccagcagga	ctgcgtcaac	2160
acgttccggca	gttatgagtg	ccaatggcgc	agtggcttc	tcctccatga	caacadgcac	2220
gactgcaaag	aaagccggctg	tgaccacaag	gtgacatcca	ccagtggta	catcaccagc	2280
cccaactggc	ctgacaagta	tcccagcaag	aaggagtgc	cgtggccat	ctccagcacc	2340
cccgggcacc	gggtcaagct	gaccttcatg	gagatggaca	tcgagtttca	gcctgagtg	2400
gcctacgacc	acctagaggt	gttcgacggg	cgagacgca	aggccccgt	cctcgcccg	2460
ttctgtggga	gcaagaagcc	cgagccgtc	ctggccacag	gcagccgcat	gttccctgc	2520
ttctactctag	ataactcggt	ccagcggaaag	ggcttccagg	cctcccacgc	cacagagtgc	2580
ggggggcagg	tacgggcaga	cgtgaagacc	aaggacctt	actcccacgc	ccagtttgc	2640
gacaacaact	accctgggg	tgtggactgt	gagtgggtca	tttgtggccga	ggaaggctac	2700
ggcgtggagc	tgtgttcca	gacctttag	gtggaggagg	agaccgactg	cggctatgac	2760
tacatggagc	tttcgacgg	ctacgacagc	acagccccca	ggctggggcg	ctactgtggc	2820
tcagggctc	ctgaggaggt	gtactcg	ggagattctg	tcctgtgtt	gttccactcg	2880
gatgacacca	tcacaaaaaa	aggttccac	ctgcgataca	ccagcaccaa	gttccaggac	2940
acactccaca	gcaggaagt	accactgcct	gagcagggc	ggggactgga	gcctgctgc	3000
cttggtcgc	tagactggat	agtgggggtg	ggcggaaaggc	aacgcaccat	ccctctcccc	3060
caggccccag	gacctgcagg	gccaatggcc	tggtgagact	gtccatagga	gttgggggaa	3120
ctggactccg	gcataagcca	cttccccaca	aaccccccacc	agcaagggc	tggggccagg	3180
gagcagagct	tccacaagac	atttcaagt	catcattcc	ctcttaggg	gccctgcct	3240
gtggcaagag	ggaatgtca	caggacccca	tcggccatccc	tgtgtctcta	cacgctgtat	3300
tgtgtatcac	cggggcatt	attttcattt	taatgttcat	ttcccacccc	tgctccagcc	3360
tcgatttgg	tttattttga	gccccattc	caccacccca	gttctctgg	gcacaagtgt	3420
ctgtgcattgt	cccccaggag	ccaccgtgg	gagccgatgg	ggagggatg	gagaaacaag	3480
acagggcttc	tctcaggccc	agtggccgt	cagccacacc	agggcaccgc	agccaataaa	3540
ccgaaagtgt	tacagcc					3557

<210> 242
 <211> 986
 <212> PRT
 <213> Homo sapiens

<400> 242
 Met Pro Gly Val Ala Arg Leu Pro Leu Leu Leu Gly Leu Leu Leu
 1 5 10 15
 Pro Arg Pro Gly Arg Pro Leu Asp Leu Ala Asp Tyr Thr Tyr Asp Leu
 20 25 30
 Ala Glu Glu Asp Asp Ser Glu Pro Leu Asn Tyr Lys Asp Pro Cys Lys
 35 40 45
 Ala Ala Ala Phe Leu Gly Asp Ile Ala Leu Asp Glu Glu Asp Leu Arg
 50 55 60
 Ala Phe Gln Val Gln Gln Ala Val Asp Leu Arg Arg His Thr Ala Arg
 65 70 75 80
 Lys Ser Ser Ile Lys Ala Ala Val Pro Gly Asn Thr Ser Thr Pro Ser
 85 90 95
 Cys Gln Ser Thr Asn Gly Gln Pro Gln Arg Gly Ala Cys Gly Arg Trp
 100 105 110
 Arg Gly Arg Ser Arg Ser Arg Arg Ala Ala Thr Ser Arg Pro Glu Arg
 115 120 125
 Val Trp Pro Asp Gly Val Ile Pro Phe Val Ile Gly Gly Asn Phe Thr
 130 135 140
 Gly Ser Gln Arg Ala Val Phe Arg Gln Ala Met Arg His Trp Glu Lys
 145 150 155 160
 His Thr Cys Val Thr Phe Leu Glu Arg Thr Asp Glu Asp Ser Tyr Ile
 165 170 175
 Val Phe Thr Tyr Arg Pro Cys Gly Cys Ser Tyr Val Gly Arg Arg
 180 185 190
 Gly Gly Gly Pro Gln Ala Ile Ser Ile Gly Lys Asn Cys Asp Lys Phe
 195 200 205
 Gly Ile Val Val His Glu Leu Gly His Val Val Gly Phe Trp His Glu
 210 215 220
 His Thr Arg Pro Asp Arg Asp Arg His Val Ser Ile Val Arg Glu Asn
 225 230 235 240
 Ile Gln Pro Gly Gln Glu Tyr Asn Phe Leu Lys Met Glu Pro Gln Glu
 245 250 255
 Val Glu Ser Leu Gly Glu Thr Tyr Asp Phe Asp Ser Ile Met His Tyr
 260 265 270
 Ala Arg Asn Thr Phe Ser Arg Gly Ile Phe Leu Asp Thr Ile Val Pro
 275 280 285
 Lys Tyr Glu Val Asn Gly Val Lys Pro Pro Ile Gly Gln Arg Thr Arg
 290 295 300
 Leu Ser Lys Gly Asp Ile Ala Gln Ala Arg Lys Leu Tyr Lys Cys Pro
 305 310 315 320
 Ala Cys Gly Glu Thr Leu Gln Asp Ser Thr Gly Asn Phe Ser Ser Pro
 325 330 335
 Glu Tyr Pro Asn Gly Tyr Ser Ala His Met His Cys Val Trp Arg Ile
 340 345 350
 Ser Val Thr Pro Gly Glu Lys Ile Ile Leu Asn Phe Thr Ser Leu Asp
 355 360 365
 Leu Tyr Arg Ser Arg Leu Cys Trp Tyr Asp Tyr Val Glu Val Arg Asp
 370 375 380
 Gly Phe Trp Arg Lys Ala Pro Leu Arg Gly Arg Phe Cys Gly Ser Lys
 385 390 395 400
 Leu Pro Glu Pro Ile Val Ser Thr Asp Ser Arg Leu Trp Val Glu Phe
 405 410 415
 Arg Ser Ser Ser Asn Trp Val Gly Lys Gly Phe Phe Ala Val Tyr Glu
 420 425 430
 Ala Ile Cys Gly Gly Asp Val Lys Lys Asp Tyr Gly His Ile Gln Ser

435	440	445
Pro Asn Tyr Pro Asp Asp Tyr Arg Pro Ser Lys Val Cys Ile Trp Arg		
450	455	460
Ile Gln Val Ser Glu Gly Phe His Val Gly Leu Thr Phe Gln Ser Phe		
465	470	475
Glu Ile Glu Arg His Asp Ser Cys Ala Tyr Asp Tyr Leu Glu Val Arg		
485	490	495
Asp Gly His Ser Glu Ser Ser Thr Leu Ile Gly Arg Tyr Cys Gly Tyr		
500	505	510
Glu Lys Pro Asp Asp Ile Lys Ser Thr Ser Ser Arg Leu Trp Leu Lys		
515	520	525
Phe Val Ser Asp Gly Ser Ile Asn Lys Ala Gly Phe Ala Val Asn Phe		
530	535	540
Phe Lys Glu Val Asp Glu Cys Ser Arg Pro Asn Arg Gly Gly Cys Glu		
545	550	555
Gln Arg Cys Leu Asn Thr Leu Gly Ser Tyr Lys Cys Ser Cys Asp Pro		
565	570	575
Gly Tyr Glu Leu Ala Pro Asp Lys Arg Arg Cys Glu Ala Ala Cys Gly		
580	585	590
Gly Phe Leu Thr Lys Leu Asn Gly Ser Ile Thr Ser Pro Gly Trp Pro		
595	600	605
Lys Glu Tyr Pro Pro Asn Lys Asn Cys Ile Trp Gln Leu Val Ala Pro		
610	615	620
Thr Gln Tyr Arg Ile Ser Leu Gln Phe Asp Phe Phe Glu Thr Glu Gly		
625	630	635
Asn Asp Val Cys Lys Tyr Asp Phe Val Glu Val Arg Ser Gly Leu Thr		
645	650	655
Ala Asp Ser Lys Leu His Gly Lys Phe Cys Gly Ser Glu Lys Pro Glu		
660	665	670
Val Ile Thr Ser Gln Tyr Asn Asn Met Arg Val Glu Phe Lys Ser Asp		
675	680	685
Asn Thr Val Ser Lys Lys Gly Phe Lys Ala His Phe Phe Ser Asp Lys		
690	695	700
Asp Glu Cys Ser Lys Asp Asn Gly Gly Cys Gln Gln Asp Cys Val Asn		
705	710	715
Thr Phe Gly Ser Tyr Glu Cys Gln Cys Arg Ser Gly Phe Val Leu His		
725	730	735
Asp Asn Lys His Asp Cys Lys Glu Ala Gly Cys Asp His Lys Val Thr		
740	745	750
Ser Thr Ser Gly Thr Ile Thr Ser Pro Asn Trp Pro Asp Lys Tyr Pro		
755	760	765
Ser Lys Lys Glu Cys Thr Trp Ala Ile Ser Ser Thr Pro Gly His Arg		
770	775	780
Val Lys Leu Thr Phe Met Glu Met Asp Ile Glu Ser Gln Pro Glu Cys		
785	790	795
800		
Ala Tyr Asp His Leu Glu Val Phe Asp Gly Arg Asp Ala Lys Ala Pro		
805	810	815
Val Leu Gly Arg Phe Cys Gly Ser Lys Lys Pro Glu Pro Val Leu Ala		
820	825	830
Thr Gly Ser Arg Met Phe Leu Arg Phe Tyr Ser Asp Asn Ser Val Gln		
835	840	845
Arg Lys Gly Phe Gln Ala Ser His Ala Thr Glu Cys Gly Gly Gln Val		
850	855	860
Arg Ala Asp Val Lys Thr Lys Asp Leu Tyr Ser His Ala Gln Phe Gly		
865	870	875
880		
Asp Asn Asn Tyr Pro Gly Gly Val Asp Cys Glu Trp Val Ile Val Ala		
885	890	895
Glu Glu Gly Tyr Gly Val Glu Leu Val Phe Gln Thr Phe Glu Val Glu		
900	905	910
Glu Glu Thr Asp Cys Gly Tyr Asp Tyr Met Glu Leu Phe Asp Gly Tyr		
915	920	925

Asp Ser Thr Ala Pro Arg Leu Gly Arg Tyr Cys Gly Ser Gly Pro Pro
 930 935 940
 Glu Glu Val Tyr Ser Ala Gly Asp Ser Val Leu Val Lys Phe His Ser
 945 950 955 960
 Asp Asp Thr Ile Thr Lys Lys Gly Phe His Leu Arg Tyr Thr Ser Thr
 965 970 975
 Lys Phe Gln Asp Thr Leu His Ser Arg Lys
 980 985

<210> 243

<211> 5015

<212> DNA

<213> Homo sapiens

<400> 243

gcgctccgca	cctgggcact	cccagcgatg	cgcagcgggg	cagcgccggc	cccgcccgatg	60
gagctgctgt	tgctggccgc	gccggccgccc	ggagcgcccc	gctccggcccg	cgcccccgtgc	120
gcctgagcac	cgagctcgcc	cctctccgc	gctaactccg	ccgccccgctc	cccaggccgc	180
cccgccgtccc	cgcgcgcctc	ctcgggctcc	acgcgtcttg	ccccgcagag	gcagccctct	240
ccaggagcgg	ggccctgcac	accatggccc	ccgggtgggc	aggggtcgcc	gccgcccgtgc	300
gcccggcct	ggcgctggcc	ttggcgctgg	cgagcgctct	gagtgggcct	ccagccgtcg	360
cctggccac	caagtgtacc	tgctccgctg	ccagcggtgg	ctggcacggg	ctgggcctcc	420
gcgcggttcc	tcggggcatc	ccccgcAACG	ctgagcgctt	tgacctggac	agaaataata	480
tcaccaggat	caccaagatg	gacttcgctg	ggctcaagaa	cctccgagtc	ttgcattctgg	540
aagacaacca	ggtcagcgtc	atcgagagag	gcccgttcca	ggactctgaag	cagctagagc	600
gactgcgcct	gaacaagaat	aagctgcaag	tccttccaga	attgttttc	cagagcacgc	660
cgaagctcac	cagactagat	tttagtggaaa	accagatcca	ggggatccc	aggaaggcgt	720
tcccgccat	caccgatgtg	aagaacctgc	aactggacaa	caaccacatc	agctgcattg	780
aagatggagc	cttccgagcg	ctgcccgtt	tggagatctt	taccctcaac	aacaacaaca	840
tcagtcgcatt	cctggtcacc	agcttcacc	acatggcggaa	gatccgaaact	ctgcgcctcc	900
actccaacca	cctgtactgc	gactgcccacc	tggcctggct	ctcgattgg	ctgcgcacgc	960
gacggacagt	tggccagttc	acactctgca	tggcttcgt	gcatttgagg	ggcttcacacg	1020
tggccgatgt	gcagaagaag	gagtagtgcgt	gcccagcccc	ccactcgagg	ccccccatct	1080
gcaatgccaa	ctccatctcc	tgcccttcgc	cctgcacgtg	cagaataaac	atcggtgact	1140
gtcgaggaaa	gggcttgatg	gagattctgt	ccaaacttgc	ggagggcata	gtcgaaataac	1200
gcctagaaca	gaactccatc	aaagccatcc	ctgcaggagc	cttcacccag	tacaagaaac	1260
tgaagcgaat	agacatcagc	aagaatcaga	tatcgatata	tgctccagat	gccttcagg	1320
gcctgaaatc	actcacatcg	ctggctctgt	atgggaacaa	gatcaccgag	attgccaagg	1380
gactgtttga	tgggctggtg	tccctacagc	tgctccctct	caatgccaac	aagatcaact	1440
gcctgggggt	gaacacgtt	caggacctgc	agaacctcaa	cttgccttc	ctgttatgaca	1500
acaagctgca	gaccatcagc	aaggggctct	tcgccccctt	gcagtcctac	cagacactcc	1560
acttagccca	aaaccatcc	gtgtcgact	gcccatttgc	gtggctggcc	gactacccct	1620
aggacaaccc	catcgagaca	agcggggccc	gctgcagcag	cccgccgcga	ctcgccaaaca	1680
agcgqatcag	ccagatcaag	agcaagaagt	tccgctgtc	aggctccgag	attaccgca	1740
gcaggttcag	cagcgagtc	tccatggacc	tcgtgtggcc	cgagaagtgt	cgctgtgagg	1800
gcacgattgt	ggactgtcc	aaccagaagc	tggccgcatt	cccaagccac	ctccctgaat	1860
atgtcaccga	cctgcgactg	aatgacaatg	aggatctgt	tctggaggcc	actggcatct	1920
tcaagaagtt	gccccaccc	cgaaaaataaa	atctgagtaa	caataagatc	aaggagggtgc	1980
gagagggagc	tttcgatgga	gcagccagcg	tgccaggagct	gatgtgaca	gggaaccagc	2040
tggagaccgt	gcacggggcgc	gtgtccgt	gcctcagtg	cctccaaaacc	ttgatgctga	2100
ggagtaactt	gatcggtgt	gtgagtaatg	acacctttgc	ccggcctgagt	tcggtgagac	2160
tgctgtccct	ctatgacaat	cgatccacca	ccatcacccc	tggggccttc	accacgcttgc	2220
tctccctgtc	caccataaac	ctccgttcca	accccttcaa	ctgcaactgc	cacctggcct	2280
ggctcgccaa	gtgggtgagg	aagaggcgg	tcgtcagtg	gaaccctagg	tgccagaagc	2340
cattttccct	caaggagatt	cccatccagg	atgtggccat	ccagacttc	acctgtatgg	2400
gcaacgagga	gagtagctgc	cagctgagcc	cgcgctggcc	ggagcagtc	acctgtatgg	2460
agacagtgg	gcgatgcagc	aacaaggggc	tccgcgcctt	ccccagaggc	atgcccagg	2520
atgtgaccga	gctgtaccc	gaaggaaaacc	acctaacacgc	cgtgcccaga	gagctgtccg	2580
ccctccgaca	cctgacgctt	attgacctga	gcaacaacag	catcagcatg	ctgaccaatt	2640
acacccatcg	taacatgtct	cacccttcca	ctctgatctt	gagctacaac	cggctgagg	2700
gcatccccgt	ccacgccttc	aacgggctgc	ggccctgcg	agtgttaacc	ctccatggca	2760

atgacatttc cagcgttccct	gaaggctcct	tcaacgacct	cacatcttt	tcccattctgg	2820
cgctggaaac caacccactc	cactgtact	gcagtcttcg	gtggctgtcg	gagtgggtga	2880
aggcgggta caaggagct	ggcatgcacc	gctgcagtag	ccctgagccc	atggctaca	2940
ggctcctgct caccacccca	acccaccgct	tccagtgc当地	agggccagtg	gacatcaaca	3000
ttgtgccaa atgcaatgcc	tgcctctcca	gcccgtgc当地	gaataacggg	acatgcaccc	3060
aggacctgt ggagctgtac	cgctgtgc当地	gcccctacag	ctacaaggc	aaggactgca	3120
ctgtccccat caaacacctgc	atccagaacc	cctgtcagca	tggaggcacc	tgccacctga	3180
gtgacagcca caaggatggg	ttcagctgct	cctgc当地ctt	gggcttgag	ggcgacggt	3240
gtgagatcaa cccagatgac	tgtgaggaca	acgactgc当地	aaacaatgcc	acctgcgtgg	3300
acgggatcaa caactacgtg	tgtatctgtc	cgccctaacta	cacaggtgag	ctatgcgacg	3360
aggtgattga ccactgtgtg	cctgagctga	acctctgtca	gcatgaggcc	aagtgc当地cc	3420
ccctggacaa aggattcagc	tgcgagtg	tccctggcta	cagcgggaaag	ctctgtgaga	3480
cagacaatga tgactgtgtg	gcccacaagt	gcccacacgg	ggcccagtgc	gtggacaca	3540
tcaatggcta cacatgcacc	tgccccagg	gcttcagtg	acccttctgt	gaacacccccc	3600
caccatggt cctactgcag	accagcccat	gcatgaggcc	cgagtgccag	aacggggccc	3660
agtgc当地ctgt ggtgcagcag	gagccacct	gcccgtgc当地	accaggttcc	gccc当地ccca	3720
gatgcgagaa gctcatca	gtcaacttcg	tgggcaaaa	ctcctacgtg	gaactggct	3780
ccgccaagg	ccgacccac	ccctgc当地gt	ggccactgac	aggacaacg	3840
gcatcctct ctacaaagg	gacaatgacc	ccctggact	ggagctgtac	cagggccacg	3900
tgccgctgt ctatgacagc	ctgagttccc	tcccaaccac	agtgtagact	gtggagacag	3960
tgaatgatgg gcagttcac	agtgtggagc	ttgtgacgct	aaaccagacc	ctgaacctag	4020
tagtgacaa aggaactcca	aagagctgg	ggaagctcca	gaagcagcc	gcagtggca	4080
tcaacagccc cctctacat	ggaggcatcc	ccacctccac	cgccctctcc	gcctgc当地cc	4140
agggcacgga cccgc当地ctca	ggcggttcc	acggatgcat	ccatgagg	cgcatcaaca	4200
acgagctgca gacttcaag	gccc当地ccac	cacagtc当地ctt	gggggtgtca	ccaggctgca	4260
agtc当地ccgc acgtgtca	cacggc当地gt	gccc当地ccgt	ggagaaggac	agcgtgggt	4320
gc当地ccgc cccaggctg	accggcccac	tctgc当地atca	ggaggcccgg	gaccctgccc	4380
tcggccacag atgccc当地at	ggaaaaatgtg	tggcaacttg	gacctcatac	atgtca	4440
gtgccc当地ggg ctatggaggg	gacttgtgt	acaacaagg	tgactctgco	aatgc当地gt	4500
cagccatcaa gtgtc当地at	gggc当地gtcc	acatctca	ccaaggggag	ccctactgccc	4560
tgtgc当地ggcc cggctt当地at	ggc当地gtact	gccaacaagg	gaatccgtgc	ctgggaca	4620
tagtccgaga ggtgatccgc	cgccagaaaag	gttatgc当地t	atgtccaca	gcctcca	4680
tgccc当地atcat ggaatgtgt	gggggtgt	ggccc当地gt	ctgc当地ccccc	acccgc当地ca	4740
agcggc当地aa atacgtctc	cagtgc当地ccg	acggcttcc	gtttgat	gaggtggaga	4800
gacacttaga gtgc当地ggctc	ctcgctgtt	cctaagccccc	tgcccgctg	cctgccc当地ct	4860
ctcgactcc agctt当地atgg	agttggaca	gccatgtgg	acccctt当地gt	gattc当地atcat	4920
gaaggaaatg aagctggaga	ggaaggtaaa	gaagaagaga	atattaagta	tattgtaaaa	4980
taaacaaaaaa atagaactta	tttttattat	ggaaa			5015

<210> 244
 <211> 1523
 <212> PRT
 <213> Homo sapiens

<400> 244
 Met Ala Pro Gly Trp Ala Gly Val Gly Ala Ala Val Arg Ala Arg Leu
 1 5 10 15
 Ala Leu Ala Leu Ala Leu Ala Ser Val Leu Ser Gly Pro Pro Ala Val
 20 25 30
 Ala Cys Pro Thr Lys Cys Thr Cys Ser Ala Ala Ser Val Asp Cys His
 35 40 45
 Gly Leu Gly Leu Arg Ala Val Pro Arg Gly Ile Pro Arg Asn Ala Glu
 50 55 60
 Arg Leu Asp Leu Asp Arg Asn Asn Ile Thr Arg Ile Thr Lys Met Asp
 65 70 75 80
 Phe Ala Gly Leu Lys Asn Leu Arg Val Leu His Leu Glu Asp Asn Gln
 85 90 95
 Val Ser Val Ile Glu Arg Gly Ala Phe Gln Asp Leu Lys Gln Leu Glu
 100 105 110

Arg Leu Arg Leu Asn Lys Asn Lys Leu Gln Val Leu Pro Glu Leu Leu
 115 120 125
 Phe Gln Ser Thr Pro Lys Leu Thr Arg Leu Asp Leu Ser Glu Asn Gln
 130 135 140
 Ile Gln Gly Ile Pro Arg Lys Ala Phe Arg Gly Ile Thr Asp Val Lys
 145 150 155 160
 Asn Leu Gln Leu Asp Asn Asn His Ile Ser Cys Ile Glu Asp Gly Ala
 165 170 175
 Phe Arg Ala Leu Arg Asp Leu Glu Ile Leu Thr Leu Asn Asn Asn Asn
 180 185 190
 Ile Ser Arg Ile Leu Val Thr Ser Phe Asn His Met Pro Lys Ile Arg
 195 200 205
 Thr Leu Arg Leu His Ser Asn His Leu Tyr Cys Asp Cys His Leu Ala
 210 215 220
 Trp Leu Ser Asp Trp Leu Arg Gln Arg Arg Thr Val Gly Gln Phe Thr
 225 230 235 240
 Leu Cys Met Ala Pro Val His Leu Arg Gly Phe Asn Val Ala Asp Val
 245 250 255
 Gln Lys Lys Glu Tyr Val Cys Pro Ala Pro His Ser Glu Pro Pro Ser
 260 265 270
 Cys Asn Ala Asn Ser Ile Ser Cys Pro Ser Pro Cys Thr Cys Ser Asn
 275 280 285
 Asn Ile Val Asp Cys Arg Gly Lys Gly Leu Met Glu Ile Pro Ala Asn
 290 295 300
 Leu Pro Glu Gly Ile Val Glu Ile Arg Leu Glu Gln Asn Ser Ile Lys
 305 310 315 320
 Ala Ile Pro Ala Gly Ala Phe Thr Gln Tyr Lys Lys Leu Lys Arg Ile
 325 330 335
 Asp Ile Ser Lys Asn Gln Ile Ser Asp Ile Ala Pro Asp Ala Phe Gln
 340 345 350
 Gly Leu Lys Ser Leu Thr Ser Leu Val Leu Tyr Gly Asn Lys Ile Thr
 355 360 365
 Glu Ile Ala Lys Gly Leu Phe Asp Gly Leu Val Ser Leu Gln Leu Leu
 370 375 380
 Leu Leu Asn Ala Asn Lys Ile Asn Cys Leu Arg Val Asn Thr Phe Gln
 385 390 395 400
 Asp Leu Gln Asn Leu Asn Leu Ser Leu Tyr Asp Asn Lys Leu Gln
 405 410 415
 Thr Ile Ser Lys Gly Leu Phe Ala Pro Leu Gln Ser Ile Gln Thr Leu
 420 425 430
 His Leu Ala Gln Asn Pro Phe Val Cys Asp Cys His Leu Lys Trp Leu
 435 440 445
 Ala Asp Tyr Leu Gln Asp Asn Pro Ile Glu Thr Ser Gly Ala Arg Cys
 450 455 460
 Ser Ser Pro Arg Arg Leu Ala Asn Lys Arg Ile Ser Gln Ile Lys Ser
 465 470 475 480
 Lys Lys Phe Arg Cys Ser Gly Ser Glu Asp Tyr Arg Ser Arg Phe Ser
 485 490 495
 Ser Glu Cys Phe Met Asp Leu Val Cys Pro Glu Lys Cys Arg Cys Glu
 500 505 510
 Gly Thr Ile Val Asp Cys Ser Asn Gln Lys Leu Val Arg Ile Pro Ser
 515 520 525
 His Leu Pro Glu Tyr Val Thr Asp Leu Arg Leu Asn Asp Asn Glu Val
 530 535 540
 Ser Val Leu Glu Ala Thr Gly Ile Phe Lys Lys Leu Pro Asn Leu Arg
 545 550 555 560
 Lys Ile Asn Leu Ser Asn Asn Lys Ile Lys Glu Val Arg Glu Gly Ala
 565 570 575
 Phe Asp Gly Ala Ala Ser Val Gln Glu Leu Met Leu Thr Gly Asn Gln
 580 585 590
 Leu Glu Thr Val His Gly Arg Val Phe Arg Gly Leu Ser Gly Leu Lys

595	600	605
Thr Leu Met Leu Arg Ser Asn Leu Ile Gly Cys Val	Ser Asn Asp Thr	
610	615	620
Phe Ala Gly Leu Ser Ser Val Arg Leu Leu Ser Leu Tyr Asp Asn Arg		
625	630	635
Ile Thr Thr Ile Thr Pro Gly Ala Phe Thr Thr Leu Val Ser Leu Ser		640
645	650	655
Thr Ile Asn Leu Leu Ser Asn Pro Phe Asn Cys Asn Cys His Leu Ala		
660	665	670
Trp Leu Gly Lys Trp Leu Arg Lys Arg Arg Ile Val Ser Gly Asn Pro		
675	680	685
Arg Cys Gln Lys Pro Phe Phe Leu Lys Glu Ile Pro Ile Gln Asp Val		
690	695	700
Ala Ile Gln Asp Phe Thr Cys Asp Gly Asn Glu Glu Ser Ser Cys Gln		
705	710	715
Leu Ser Pro Arg Cys Pro Glu Gln Cys Thr Cys Met Glu Thr Val Val		720
725	730	735
Arg Cys Ser Asn Lys Gly Leu Arg Ala Leu Pro Arg Gly Met Pro Lys		
740	745	750
Asp Val Thr Glu Leu Tyr Leu Glu Gly Asn His Leu Thr Ala Val Pro		
755	760	765
Arg Glu Leu Ser Ala Leu Arg His Leu Thr Leu Ile Asp Leu Ser Asn		
770	775	780
Asn Ser Ile Ser Met Leu Thr Asn Tyr Thr Phe Ser Asn Met Ser His		
785	790	795
Leu Ser Thr Leu Ile Leu Ser Tyr Asn Arg Leu Arg Cys Ile Pro Val		800
805	810	815
His Ala Phe Asn Gly Leu Arg Ser Leu Arg Val Leu Thr Leu His Gly		
820	825	830
Asn Asp Ile Ser Ser Val Pro Glu Gly Ser Phe Asn Asp Leu Thr Ser		
835	840	845
Leu Ser His Leu Ala Leu Gly Thr Asn Pro Leu His Cys Asp Cys Ser		
850	855	860
Leu Arg Trp Leu Ser Glu Trp Val Lys Ala Gly Tyr Lys Glu Pro Gly		
865	870	875
Ile Ala Arg Cys Ser Ser Pro Glu Pro Met Ala Asp Arg Leu Leu Leu		
885	890	895
Thr Thr Pro Thr His Arg Phe Gln Cys Lys Gly Pro Val Asp Ile Asn		
900	905	910
Ile Val Ala Lys Cys Asn Ala Cys Leu Ser Ser Pro Cys Lys Asn Asn		
915	920	925
Gly Thr Cys Thr Gln Asp Pro Val Glu Leu Tyr Arg Cys Ala Cys Pro		
930	935	940
Tyr Ser Tyr Lys Gly Lys Asp Cys Thr Val Pro Ile Asn Thr Cys Ile		
945	950	955
Gln Asn Pro Cys Gln His Gly Gly Thr Cys His Leu Ser Asp Ser His		960
965	970	975
Lys Asp Gly Phe Ser Cys Ser Cys Pro Leu Gly Phe Glu Gly Gln Arg		
980	985	990
Cys Glu Ile Asn Pro Asp Asp Cys Glu Asp Asn Asp Cys Glu Asn Asn		
995	1000	1005
Ala Thr Cys Val Asp Gly Ile Asn Asn Tyr Val Cys Ile Cys Pro Pro		
1010	1015	1020
Asn Tyr Thr Gly Glu Leu Cys Asp Glu Val Ile Asp His Cys Val Pro		
1025	1030	1035
Glu Leu Asn Leu Cys Gln His Glu Ala Lys Cys Ile Pro Leu Asp Lys		1040
1045	1050	1055
Gly Phe Ser Cys Glu Cys Val Pro Gly Tyr Ser Gly Lys Leu Cys Glu		
1060	1065	1070
Thr Asp Asn Asp Asp Cys Val Ala His Lys Cys Arg His Gly Ala Gln		
1075	1080	1085

Cys Val Asp Thr Ile Asn Gly Tyr Thr Cys Thr Cys Pro Gln Gly Phe
 1090 1095 1100
 Ser Gly Pro Phe Cys Glu His Pro Pro Pro Met Val Leu Leu Gln Thr
 1105 1110 1115 1120
 Ser Pro Cys Asp Gln Tyr Glu Cys Gln Asn Gly Ala Gln Cys Ile Val
 1125 1130 1135
 Val Gln Gln Glu Pro Thr Cys Arg Cys Pro Pro Gly Phe Ala Gly Pro
 1140 1145 1150
 Arg Cys Glu Lys Leu Ile Thr Val Asn Phe Val Gly Lys Asp Ser Tyr
 1155 1160 1165
 Val Glu Leu Ala Ser Ala Lys Val Arg Pro Gln Ala Asn Ile Ser Leu
 1170 1175 1180
 Gln Val Ala Thr Asp Lys Asp Asn Gly Ile Leu Leu Tyr Lys Gly Asp
 1185 1190 1195 1200
 Asn Asp Pro Leu Ala Leu Glu Leu Tyr Gln Gly His Val Arg Leu Val
 1205 1210 1215
 Tyr Asp Ser Leu Ser Ser Pro Pro Thr Thr Val Tyr Ser Val Glu Thr
 1220 1225 1230
 Val Asn Asp Gly Gln Phe His Ser Val Glu Leu Val Thr Leu Asn Gln
 1235 1240 1245
 Thr Leu Asn Leu Val Val Asp Lys Gly Thr Pro Lys Ser Leu Gly Lys
 1250 1255 1260
 Leu Gln Lys Gln Pro Ala Val Gly Ile Asn Ser Pro Leu Tyr Leu Gly
 1265 1270 1275 1280
 Gly Ile Pro Thr Ser Thr Gly Leu Ser Ala Leu Arg Gln Gly Thr Asp
 1285 1290 1295
 Arg Pro Leu Gly Gly Phe His Gly Cys Ile His Glu Val Arg Ile Asn
 1300 1305 1310
 Asn Glu Leu Gln Asp Phe Lys Ala Leu Pro Pro Gln Ser Leu Gly Val
 1315 1320 1325
 Ser Pro Gly Cys Lys Ser Cys Thr Val Cys Lys His Gly Leu Cys Arg
 1330 1335 1340
 Ser Val Glu Lys Asp Ser Val Val Cys Glu Cys Arg Pro Gly Trp Thr
 1345 1350 1355 1360
 Gly Pro Leu Cys Asp Gln Glu Ala Arg Asp Pro Cys Leu Gly His Arg
 1365 1370 1375
 Cys His His Gly Lys Cys Val Ala Thr Gly Thr Ser Tyr Met Cys Lys
 1380 1385 1390
 Cys Ala Glu Gly Tyr Gly Gly Asp Leu Cys Asp Asn Lys Asn Asp Ser
 1395 1400 1405
 Ala Asn Ala Cys Ser Ala Phe Lys Cys His His Gly Gln Cys His Ile
 1410 1415 1420
 Ser Asp Gln Gly Glu Pro Tyr Cys Leu Cys Gln Pro Gly Phe Ser Gly
 1425 1430 1435 1440
 Glu His Cys Gln Gln Glu Asn Pro Cys Leu Gly Gln Val Val Arg Glu
 1445 1450 1455
 Val Ile Arg Arg Gln Lys Gly Tyr Ala Ser Cys Ala Thr Ala Ser Lys
 1460 1465 1470
 Val Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Pro Gln Cys Cys Gln
 1475 1480 1485
 Pro Thr Arg Ser Lys Arg Arg Lys Tyr Val Phe Gln Cys Thr Asp Gly
 1490 1495 1500
 Ser Ser Phe Val Glu Glu Val Glu Arg His Leu Glu Cys Gly Cys Leu
 1505 1510 1515 1520
 Ala Cys Ser

<210> 245
 <211> 4227
 <212> DNA
 <213> Homo sapiens

<400> 245	
gactgggagc	aggcagccc ggcggagcg gccgggtgccg aggacggccc caggcattgc
tctccccgg	gcattgcgcg gcgcgcgtga gggggatgcg gcaggaggcg gcgcggcggg
aggagttagc	g gcggcgc cc tcgggaggga gctgcgcgc ggccagacgg cgcccgagg
ctccgcagt	ccgcgcgt cgcccgagg gctccgcgc ggagccatgt aaccctgcgg
cgggctccgg	gctgctccgt cttcccccag ctcccggtc agcgcggcag cggggccacg
atgaagaagc	atgtcaatcg catgcgccag ctggccaacc agacggtggg cagggctgaa
aagacagaag	tttgagtga agaccttctt caggtggaga agcgtctgga gctgtgaaa
cagggtccc	acagcacgca caagaagctc accgcatgtc tgcaggcaca gcaaggggca
gaggctgaca	agcgctccaa aaagttgcct ttgacaacac tggctcagtg tctgtatggag
gggtcagcta	tcctgggaga tgacacactt ctgggagaaga tgctgaaact ctgtggagag
acggaggaca	agctggctca ggagctgata cattttgagt tgcaagttaga gagagacgtg
attgagcccc	ttttttgtct ggcggagggt gaaatccaa atattcaaa gcagaggaaa
caactagcca	agtttgtgtct ggacatggat tcctcacgaa ccaggtggca gcagacttcc
aagtcttcag	gtttgtccag cagttacag cctgcgggtc ccaaggctga tgccctcagg
gaagaaatgg	aaggagctgc caacagagtg gagatttgc gggaccagct ctcagctgat
atgtacagt	ttgtggccaa agaaatttgc tatgc当地 aacttcaaac gtaataagaa
gtgcaagctg	aataccacag gaagtccctg acactattgc aggctgtatt gcctcagatc
aaagcacaac	aggaggcctg gtagagaaag ctttccttc ggaagccgt ggaggagcac
ctcaccatca	gccccgggaa gatgccttc cccatcgagg cgtgtgtac catgctgtt
gagttgtggg	tgcaggagga gggacttcc cgagtagccc ccttcgtc caaactgaag
aagctgaaag	cggccctgga ctgtgcgtg gtggatgtgc aggactact ggcagacccc
cacgcaattt	caggagctt gaaatttac ctccgagagt tgccagaacc ttttatgacc
tttgaactt	atgtgagtg gatccaggct tccaatgtcc aggagaaga caagaaggt
caggcttat	ggaatgttt tgaaaatgtt cccaaaggca atcacaacaa catccgatac
ttgataaaaat	ttttatccaa gctgtcagaa tatcaagat taaacaaat gactcccagt
aatatggcaa	ttgttttagg accaaacctc ctatggccac aacgagaagg gaacattaca
gagatgtat	ccacagtgtc gtc当地 gttggatca ttgaaacctat catccagcat
gcagactgtt	tcttccctgg ggagatagag ttcaacatta ctggcaatta tggagttcca
gtacacgtga	accataatgc caactacagc tcaatgcct cccagacat ggaccctgct
gaccggcgcc	agcccgagca ggcccggg cccctca gtcggcacgaa taatatgt
ctggagttt	aaaaaaaaggaa tggctttagg aaaaatccaa gcatgggtgt gagggtatg
gacacaaact	gggtggctcg aaggagctcc tcggccgtc ggaaagtgtc ctgcgcggg
ccctccatgc	agcctccgc cccggccgca gagctggctg cggccctgct ttgcgcgt
ccggagcagc	ccctggacag cccggccgca cccctca gtcggcacgaa taatatgt
cagctgggc	ccgagcgcac cagcacaaca aaaaagcaagg aacttctcc aggctctgca
cagaaaggaa	gtccaggctc cagccaggcc acagcctgtc cagggactca accagggct
caacctggag	ctcagccggg cgccagcccc agccccagcc agccgcgtc agaccagagt
cctcacaccc	tccggaaaat ttcaaagaag ctggcacgaa ttccacccaa gttccctt
ggccagccgg	gggctatggc agaccagtcc gctggccagc tgcccaggat cagcctgtcc
cccacccgc	ccagcacccc gtcaaccatat ggactgagct accttcaggg gtactccttg
gcctcgcc	agctctcccc agctgcagct cttccctgg ccttccttc tgccttata
agcacatttga	gcaaatcgcg gcccactctt aagccgcac agagacctac tctgcgcct
cctcagcctc	ccacagtaaa cctctggcc tctagtcac agtccacgga ggccccatg
ctagatggca	tgtccccctgg ggaaagcatg tctacagatc ttgtccactt tgatattccc
tcgatccaca	tagagctcg gtcgacgctc cgcctgagtc ccctggagca catgcggcga
caactcgat	ctgacaagag ggactcggag gaggagtctg agagcaccgc cctctgacat
gacaccgccc	atcctgcctc gctgtatcat acatcacggg ccctaggaac gccgcaggaa
gcagcgtcca	tgagcttgc aagtgttctc tgctggctct ttccgtccac tgccaacacg
agggttggat	ttggcagaaa attgtatct ccagtcgtc tggtgatgtc ggtgtgcag
gtttgtttg	ttcccttcgg gtggtactt cggcctttt tttgacctt gccttttgc
tttgcctc	tttgatcca ctttcagctt ccatgcccaga aaacacccac ctctccatcc
aaggctggc	aggaacgtcc ttgcagggt cgggggtggc cggagaggc tcactttgcc
tggtagacc	caagggctgc tacctttcc ttggacggct catgtcaggt ctgcaggat
cagttaaatg	gccacagaaa ggaagcagga cagcaggccc ccttcaccc acaactggac
caggtccagg	attctagcag tcctggggca ctgaccttgc cagactacat gggggaggc
ttgccactgg	aaaaccttc agggcgcggc catcagtgaa ctccaaagta aatggctgaa
aacaaaaatg	tttcacttcc taacagttt ctttttccatc ctgtgtgact gaaagctcct
atatcattt	atattctga atctataaaa caaaacaaac aacgctgaaa gtgtctggag
gagccaaagg	tggcctccct gtccccaaat atattggcta tatgagagta atttacccc

tctacgtacc	taaaggcacc	cagttcaacta	gtctgtgggg	tcctggagcc	tgtctcttct	3600
ttctggaggt	tcaaactgaa	tagaataat	tacgttaccc	aaagcatgtg	gaggaaaaagt	3660
gaaaccagcc	acggagacgc	tggcccacgg	ctcgccctgc	ggtgtggcct	gctttgccta	3720
ccagcgttag	ccgctcattt	ccttctcatg	aagtcccattc	tggcatggg	gacgagggcc	3780
gggagggcac	cgggttagct	tttcacactt	ggggattagg	ggagtgagaa	aagatttggg	3840
ccatgcatgc	aaagtcaag	tttaaaattt	tatcctttc	aaatagatga	tataatatac	3900
ctatacatga	tataatattt	gtatatatga	aatctctcta	tatttgttta	atttgagcca	3960
ttcaatctaa	accaatgtac	aggtgtacaa	tgaaaaattt	aatgcttag	ttattttcc	4020
caacacagtg	taaagtcaacc	ctcctcttag	agtggatgt	gcagagttt	gatgttgcag	4080
cttgcac	ttcctggcaa	ggcaggtca	tgcctcaatt	tgtaatggga	gtctgggta	4140
agggtggggg	ttgaaaagttg	ttatctttaa	atacatgtac	aaatcggtgt	caaaagtaac	4200
gttattaaaa	tagatttatt	atccctg				4227

<210> 246

<211> 818

<212> PRT

<213> Homo sapiens

<400> 246

Met	Lys	Lys	Gln	Phe	Asn	Arg	Met	Arg	Gln	Leu	Ala	Asn	Gln	Thr	Val
1				5					10					15	
Gly	Arg	Ala	Glu	Lys	Thr	Glu	Val	Leu	Ser	Glu	Asp	Leu	Leu	Gln	Val
					20				25					30	
Glu	Lys	Arg	Leu	Glu	Leu	Val	Lys	Gln	Val	Ser	His	Ser	Thr	His	Lys
					35			40					45		
Lys	Leu	Thr	Ala	Cys	Leu	Gln	Gly	Gln	Gly	Ala	Glu	Ala	Asp	Lys	
					50			55			60				
Arg	Ser	Lys	Lys	Leu	Pro	Leu	Thr	Thr	Leu	Ala	Gln	Cys	Leu	Met	Glu
					65			70			75			80	
Gly	Ser	Ala	Ile	Leu	Gly	Asp	Asp	Thr	Leu	Leu	Gly	Lys	Met	Leu	Lys
					85				90			95			
Leu	Cys	Gly	Glu	Thr	Glu	Asp	Lys	Leu	Ala	Gln	Glu	Leu	Ile	His	Phe
					100			105			110				
Glu	Leu	Gln	Val	Glu	Arg	Asp	Val	Ile	Glu	Pro	Leu	Phe	Leu	Leu	Ala
					115			120			125				
Glu	Val	Glu	Ile	Pro	Asn	Ile	Gln	Lys	Gln	Arg	Lys	His	Leu	Ala	Lys
					130			135			140				
Leu	Val	Leu	Asp	Met	Asp	Ser	Ser	Arg	Thr	Arg	Trp	Gln	Gln	Thr	Ser
					145			150			155			160	
Lys	Ser	Ser	Gly	Leu	Ser	Ser	Ser	Leu	Gln	Pro	Ala	Gly	Ala	Lys	Ala
					165				170			175			
Asp	Ala	Leu	Arg	Glu	Glu	Met	Glu	Glu	Ala	Ala	Asn	Arg	Val	Glu	Ile
					180			185			190				
Cys	Arg	Asp	Gln	Leu	Ser	Ala	Asp	Met	Tyr	Ser	Phe	Val	Ala	Lys	Glu
					195			200			205				
Ile	Asp	Tyr	Ala	Asn	Tyr	Phe	Gln	Thr	Leu	Ile	Glu	Val	Gln	Ala	Glu
					210			215			220				
Tyr	His	Arg	Lys	Ser	Leu	Thr	Leu	Leu	Gln	Ala	Val	Leu	Pro	Gln	Ile
					225			230			235			240	
Lys	Ala	Gln	Gln	Glu	Ala	Trp	Val	Glu	Lys	Pro	Ser	Phe	Gly	Lys	Pro
					245			250			255				
Leu	Glu	Glu	His	Leu	Thr	Ile	Ser	Gly	Arg	Glu	Ile	Ala	Phe	Pro	Ile
					260			265			270				
Glu	Ala	Cys	Val	Thr	Met	Leu	Leu	Glu	Cys	Gly	Met	Gln	Glu	Glu	Gly
					275			280			285				
Leu	Phe	Arg	Val	Ala	Pro	Ser	Ala	Ser	Lys	Leu	Lys	Lys	Leu	Lys	Ala
					290			295			300				
Ala	Leu	Asp	Cys	Cys	Val	Val	Asp	Val	Gln	Glu	Tyr	Ser	Ala	Asp	Pro
					305			310			315			320	
His	Ala	Ile	Ala	Gly	Ala	Leu	Lys	Ser	Tyr	Leu	Arg	Glu	Leu	Pro	Glu
					325			330			335				

Pro Leu Met Thr Phe Glu Leu Tyr Asp Glu Trp Ile Gln Ala Ser Asn
 340 345 350
 Val Gln Glu Gln Asp Lys Lys Leu Gln Ala Leu Trp Asn Ala Cys Glu
 355 360 365
 Lys Leu Pro Lys Ala Asn His Asn Asn Ile Arg Tyr Leu Ile Lys Phe
 370 375 380
 Leu Ser Lys Leu Ser Glu Tyr Gln Asp Val Asn Lys Met Thr Pro Ser
 385 390 395 400
 Asn Met Ala Ile Val Leu Gly Pro Asn Leu Leu Trp Pro Gln Ala Glu
 405 410 415
 Gly Asn Ile Thr Glu Met Met Thr Thr Val Ser Leu Gln Ile Val Gly
 420 425 430
 Ile Ile Glu Pro Ile Ile Gln His Ala Asp Trp Phe Phe Pro Gly Glu
 435 440 445
 Ile Glu Phe Asn Ile Thr Gly Asn Tyr Gly Ser Pro Val His Val Asn
 450 455 460
 His Asn Ala Asn Tyr Ser Ser Met Pro Ser Pro Asp Met Asp Pro Ala
 465 470 475 480
 Asp Arg Arg Gln Pro Glu Gln Ala Arg Arg Pro Leu Ser Val Ala Thr
 485 490 495
 Asp Asn Met Met Leu Glu Phe Tyr Lys Asp Gly Leu Arg Lys Ile
 500 505 510
 Gln Ser Met Gly Val Arg Val Met Asp Thr Asn Trp Val Ala Arg Arg
 515 520 525
 Gly Ser Ser Ala Gly Arg Lys Val Ser Cys Ala Pro Pro Ser Met Gln
 530 535 540
 Pro Pro Ala Pro Pro Ala Glu Leu Ala Ala Pro Leu Pro Ser Pro Leu
 545 550 555 560
 Pro Glu Gln Pro Leu Asp Ser Pro Ala Ala Pro Ala Leu Ser Pro Ser
 565 570 575
 Gly Leu Gly Leu Gln Pro Gly Pro Glu Arg Thr Ser Thr Thr Lys Ser
 580 585 590
 Lys Glu Leu Ser Pro Gly Ser Ala Gln Lys Gly Ser Pro Gly Ser Ser
 595 600 605
 Gln Gly Thr Ala Cys Ala Gly Thr Gln Pro Gly Ala Gln Pro Gly Ala
 610 615 620
 Gln Pro Gly Ala Ser Pro Ser Pro Ser Gln Pro Pro Ala Asp Gln Ser
 625 630 635 640
 Pro His Thr Leu Arg Lys Val Ser Lys Lys Leu Ala Pro Ile Pro Pro
 645 650 655
 Lys Val Pro Phe Gly Gln Pro Gly Ala Met Ala Asp Gln Ser Ala Gly
 660 665 670
 Gln Leu Ser Pro Val Ser Leu Ser Pro Thr Pro Pro Ser Thr Pro Ser
 675 680 685
 Pro Tyr Gly Leu Ser Tyr Pro Gln Gly Tyr Ser Leu Ala Ser Gly Gln
 690 695 700
 Leu Ser Pro Ala Ala Ala Pro Pro Leu Ala Ser Pro Ser Val Phe Thr
 705 710 715 720
 Ser Thr Leu Ser Lys Ser Arg Pro Thr Pro Lys Pro Arg Gln Arg Pro
 725 730 735
 Thr Leu Pro Pro Gln Pro Pro Thr Val Asn Leu Ser Ala Ser Ser
 740 745 750
 Pro Gln Ser Thr Glu Ala Pro Met Leu Asp Gly Met Ser Pro Gly Glu
 755 760 765
 Ser Met Ser Thr Asp Leu Val His Phe Asp Ile Pro Ser Ile His Ile
 770 775 780
 Glu Leu Gly Ser Thr Leu Arg Leu Ser Pro Leu Glu His Met Arg Arg
 785 790 795 800
 His Ser Val Thr Asp Lys Arg Asp Ser Glu Glu Glu Ser Glu Ser Thr
 805 810 815

Ala Leu

<210> 247
 <211> 2850
 <212> DNA
 <213> Homo sapiens

<400> 247

tcccgagccc	tccacccgtc	gtgccggcgc	cggccggacc	gccagatgct	gtgtgtgtg	60
gaccCACCTG	gggttcatgg	agtggggcac	ggggccca	cctaAGCact	gtgcGCCCA	120
gggtgcggc	gcctcctgt	gaggGGTccc	cgtGCCACTG	gctctcacca	ttGCCCTCGC	180
ctggCCatgg	cctctgtgc	ccagcctggg	gccagCTcta	ccgcctgagc	cccctGCCc	240
acttCCAGGAC	tcaccgtacc	ccgatGGGGT	aacgtgacac	aggccccaca	cgtcAGAGGC	300
cgctgtcccc	acggccactg	cccgtgaccc	ctggcccaag	gcagCTGGAG	ttggTTCAgT	360
tcaagttcat	tcttcctctg	gccctGGGGG	gcttGGGGCC	cacctCTGAG	tgaAGGGGGC	420
tgctgtccca	tccaccaatg	tggagAGGGC	gccccGGGT	tgggttccag	ctctggACAC	480
tgcttggcgg	ccgggttac	ttttagTTTT	taagTTTCT	ttgtgtgact	tttttggTTG	540
ttcttttat	tttttgcctc	ttttagacta	tccagCTCTG	agagACGGGA	ttttggagTT	600
gcccgcTTA	ctttggTTGG	tttggGGGGG	gcggcGGGCT	tttttGTTCC	ttttctttt	660
taagagttgg	gttttcttt	ttaattatcc	aaacAGTGGG	cagttcCTC	ccccacACCC	720
aagtatttgc	acaatatttG	tgcGGGGTAT	gggggtGGGT	tttAAATCT	cgTTTCTCTT	780
ggacaAGCAC	agggatCTG	tttcctcat	tttttggGGG	tgtgtGGGG	cttCTCAGGT	840
cgtgtcccc	gccttCTCTG	cagtCCCTTC	tgccCTGCG	ggcccGTCGG	gaggGCCAT	900
ggctcgatg	aaccGCCCGG	ccccGGTGA	ggtgagCTAC	aaacACATGC	gttCCCTCAT	960
cacCCACAAC	cccACCAACG	ccacGCTCAG	cacCCtCATT	gaggACCTGA	agaAGTAcGG	1020
ggctaccact	gtggTgcgtG	tgtgtGAAGT	gacCTATGAC	aaaACGCCG	tggagaAGGA	1080
tggcatcacc	gttGTTGACT	ggcCGTTGA	cgatGGGGCG	ccccCGCCCG	gcaAGGTAGT	1140
ggaagactgg	ctgAGCCTGG	tgaAGGCCAA	gttCTGTAG	gccccGGGCA	gtcgeGTGGC	1200
tgtcactgc	gtggcGGGGC	tggCCGGGGC	tccAGTCTT	gtggcGTG	cccttattGA	1260
gagcGGGATG	aagtacGAGG	acCCATCCA	gttcatCCG	cagaAGCGCC	gcccGAGCAT	1320
caacAGCAAG	cagCTCACCT	acCTGGAGAA	ataccGGCCC	aaACAGAGGC	tgccGTTCAA	1380
agacCCACAC	acgcACAAGA	ccccGGTCTG	cgTTATGTAG	ctcaggACCT	tggCTGGGCC	1440
tggcgtcat	gttagGTCAGG	acCTGGCTG	gacCTGGAGG	ccCTGCCAG	ccctGCTCTG	1500
cccAGCCAG	caggGGCTCC	aggCCTTGGC	tggccccaca	tcgcCTTTT	ctccccGACA	1560
cctCCGTGCA	cttGTTGCTCG	aggAGCGAGG	agcccCTCGG	gcctCTGGGT	gcctCTGGC	1620
ccttTCTCT	gttccCGCCA	ctccCTCTGG	cgGCGCTGGC	cgtGGCTCTG	tctCTCTGAG	1680
gtggGTcGGG	cggCCCTETG	ccggCCCCCTC	ccacACCAGC	caggCTGGTC	tcctCTAGCC	1740
tgtttGTTGT	ggggGTGGGG	tatattttgt	aaccACTGGG	ccccAGCCC	ctctttGCG	1800
accCCTTGTc	ctgacCTGTT	ctcGGCACCT	taaatttATA	gaccCCGGGG	cagtCAGGTG	1860
ctccGGACAC	ccGAAGGCAA	taaaACAGGA	gcccGTGGCG	tgtGTGTGGA	gtggGCTGCA	1920
gcgtcaggcg	gggcGGGGCTG	gtggcCTGGG	ggccccAGAG	gctGCTGTCT	ggatCCtGGG	1980
ctgctGCCCA	ggatGGGGCT	cccGCTGCT	cttgcGCTG	cctCTGGTGG	cgctCTGGG	2040
tccttgcacc	ccgACCCAGG	ggcAGCCCTG	ccctGTCTG	tcctGataCC	gaggGTGGAG	2100
ccctGCTTG	gccAGGGTGG	ccgtGTTGAC	ggttattGGG	actGTGACAT	tggAAAGGCGA	2160
ggcAGGTcAC	cagCActGTC	ctctGcAGGA	tggGCTGGGA	ttaatttGGC	agcttCTCAG	2220
ggcCTGTGTC	cgGCTGGTTG	gtccCTGTG	tggccAAACC	aggTGTCCAC	atTTCCGGCT	2280
ccgaggcgcA	gagaAGGGGG	cagtGTTG	cttggGTGGA	ggaAGTCACC	atCCATCAGC	2340
ccaggGGAGG	aggGTACAC	ctggGcacCT	ggggCTGGAT	gtgAGAGGCC	tggACCAAGG	2400
cccGCCGGAG	ggcGTGGACC	agatGCTCAT	gtgttCTGG	gtcAGTGTG	tgtGTTGGG	2460
gctGGCCCA	ccctGGGCCA	gggtGcatGG	aggGcatGGC	cccAGCGGGG	agGAAGGTGG	2520
gcctAGGGCT	ggctCCAGGG	tgtGGAGAGC	ctggGAGTGG	tctCCGTCT	ggggCCCCAG	2580
gaggTCCCG	caaggAGCGA	ctggGGCAGG	tgctGGAGGA	ggtcAGTGG	caAGATGGGG	2640
agatGTGAA	acCCAAAAG	ccctTTTCA	ggcAGCCCTG	cctCCAAAGAC	cgACAGATGG	2700
ctaAGGGGGC	cgcAGACCTG	gctCCCCCAG	ctcCTGTG	gagaAAAGGGC	aacAGCTGTC	2760
ccggatGGTT	attCTCTCT	ttcCTCAAAC	acatttGGAA	ctcaAGTAAA	tccGATGcat	2820
gttGGGTGAA	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2850

<210> 248
 <211> 173
 <212> PRT
 <213> Homo sapiens

<400> 248

Met Ala Arg Met Asn Arg Pro Ala Pro Val Glu Val Ser Tyr Lys His
 1 5 10 15
 Met Arg Phe Leu Ile Thr His Asn Pro Thr Asn Ala Thr Leu Ser Thr
 20 25 30
 Phe Ile Glu Asp Leu Lys Lys Tyr Gly Ala Thr Thr Val Val Arg Val
 35 40 45
 Cys Glu Val Thr Tyr Asp Lys Thr Pro Leu Glu Lys Asp Gly Ile Thr
 50 55 60
 Val Val Asp Trp Pro Phe Asp Asp Gly Ala Pro Pro Pro Gly Lys Val
 65 70 75 80
 Val Glu Asp Trp Leu Ser Leu Val Lys Ala Lys Phe Cys Glu Ala Pro
 85 90 95
 Gly Ser Cys Val Ala Val His Cys Val Ala Gly Leu Gly Arg Ala Pro
 100 105 110
 Val Leu Val Ala Leu Ala Ile Glu Ser Gly Met Lys Tyr Glu Asp
 115 120 125
 Ala Ile Gln Phe Ile Arg Gln Lys Arg Arg Gly Ala Ile Asn Ser Lys
 130 135 140
 Gln Leu Thr Tyr Leu Glu Lys Tyr Arg Pro Lys Gln Arg Leu Arg Phe
 145 150 155 160
 Lys Asp Pro His Thr His Lys Thr Arg Cys Cys Val Met
 165 170

<210> 249

<211> 3853

<212> DNA

<213> Homo sapiens

<400> 249

gaagctggct ttatttgc	atgtctcgga cagagcctgg	gaagctgcc	gtgagat	ttc	60
agagaccaag agcgcgaagg	ggcggcgat	gtggcaatcc	gtctggatg	tgaaaagcgt	120
ggagcgcatt tagaggcatt	cgacaaaaac	acaggaaatc	actcctctcc	cgctcctggg	180
cggccgtgcc actggggcag	aggactggga	accgcggcag	cggataagt	ggcccagcca	240
gagagcgcag ctccccgccc	cggtcctgccc	ctgcgaacca	gcccggcccc	ctggcgctga	300
ggctgctccg gccatggccc	ctcgcccccg	cgcccgcccc	gggtcgctg	tgcctgctg	360
ctggctcctc actgttgtc	tacgctgctg	cgtatcattc	aatgttgatg	tgaaaaactc	420
aatgactttc agcggccccc	tggaaagacat	gtttggat	actgttcaac	aatatgaaaa	480
tgaagaagga aaatgggtgc	ttattggttc	tccgttagtt	ggccaaacca	aaaacagaac	540
tggagatgtc tataagtgtc	cagttggag	aggtaatca	ttaccttgcg	taaagtgg	600
tctaccagtt aatacatcaa	ttccaaatgt	cacagaagta	aaggagaaca	tgacatttg	660
atcaacttta gtcaccaacc	caaatggagg	atttctggct	tgtggccct	tatatgccta	720
tagatgtgga catttgatt	acacaactgg	aatctgttct	gacgtcagcc	ccacattca	780
agtcgtgaat tccattgccc	ctgtacaaga	atgcagact	caactggaca	tagtcatagt	840
gctggatggt tccaacagta	tttacccatg	ggacagtgtt	acagttttt	taaatgacct	900
cttggaaaaga atggatattg	gtcctaaaca	gacacaggtt	ggaattgtac	agtatggaga	960
aaacgtgacc catgaggta	acccaataaa	gtattctcc	accgaagagg	tacttgtgc	1020
agcaaaagaaa atagtccaga	gagtgcccg	ccagactatg	acagctctg	gaacagacac	1080
agcaagaaaag gaggcattca	cggaagcccc	gggtgcccga	agaggagtta	aaaaagtcat	1140
ggttattgtg acagatggag	agtctcatga	aatcatcga	ctgaagaagg	tcatccaaga	1200
ctgtgaagat gaaaacattc	aacggttttc	catagctatt	cttggcagct	ataaccgagg	1260
aaatttaagc actgaaaaat	ttgtggagga	aataaaatca	attgcaagt	aacccactga	1320
aaagcatttc ttcaatgtct	ctgtatgaa	ggctctagtc	accattgtt	aaactctggg	1380
agaaaagaata ttgcgcctgg	aagccacagc	tgaccagtca	gcagcttcat	ttgaaaatgga	1440
aatgtctcag actggcttca	gtgctcatta	ttcacaggac	tgggtcatgc	ttggagcagt	1500
aggagcctat gattggaatg	gaacagtgt	catgcagaag	gctagtcaaa	tcataatccc	1560
tcgaaacaca acctttaatg	ttgagtctac	caaaaagaat	gaaccgcttg	cttcttattt	1620
aggttacact gtaaaactctg	ctactgcttc	ttctggagat	gtgctctata	ttgctggaca	1680
gcctcggtac aatcatacag	gccaggtcat	tatctacagg	atgaaagatg	gaaacatcaa	1740
aattctccag acgctcagtg	gagaacagat	tggttccat	tttggcagta	tttaacaac	1800

aactgacatt	gacaaggatt	ctaatactga	cattcttcta	gtcggagccc	ctatgtacat	1860
ggaaacagag	aaggaggagc	aagaaaaagt	gtatgttat	gctctcaatc	agacaaggtt	1920
tgaatatcaa	atgagcctgg	aacctattaa	gcagacgtgc	tgttcatctc	ggcagcacaa	1980
ttcatgcaca	acagaaaaca	aaaatgagcc	atgcggggct	cgttttggaa	ctgcaattgc	2040
tgctgtaaaa	gacctcaatc	ttgatggatt	taatgacatc	gtgataggag	ctccgcgtga	2100
agatgatcac	gggggagctg	tgtacattta	tcatggaaat	ggcaagacta	taaggaaaga	2160
gtatgcacaa	cgtattccat	cagtggggg	tggtaagaca	ctgaaaatttt	ttggccagtc	2220
tatccacgga	gaaatggatt	taaatggtga	cggtctgaca	gatgtgacta	ttgggggct	2280
tggtgtgtct	gccctcttct	ggtcccggaga	tgtggccgta	gtttaaagtga	ccatgaattt	2340
tgagccaaat	aaagtgaata	ttcaaaaagaa	aaactgcctt	atggagggaa	aggaaacagt	2400
atgcataaat	gctacagtgt	gttttgaggt	taaattaaag	tctaaagaag	acacgattna	2460
tgaagctgt	ttgcagtacc	gtgtcaccct	agattcaacta	agacaatata	cacgaagtt	2520
tttctctgga	actcaagaga	gaaaggttca	aaggAACATC	acagttcgaa	aatcagaatg	2580
cactaagcac	tccttctaca	tgtggacaa	gcatgacttt	cagactctg	tgagaataac	2640
gttggacttt	aatcttaccg	atccagaaaa	tgggcctgtt	cttgatgatt	ctctaccaaa	2700
ctcagtagat	gaatatattc	ccttgccaa	agattgtgga	aataaggaaa	aatgtatctc	2760
agacctcagc	ctgcatgtcg	ccaccactga	aaaggacctg	ctgattgtcc	gatcccagaa	2820
tgataagttc	aacgttagcc	tcacagtcaa	aaatacaaaag	gacagtgcct	ataacaccag	2880
gacaatagtg	cattattctc	caaatactgt	tttttcagga	attgaggcta	tccaaaaaga	2940
cagttgtgaa	tctaatacata	atatcacatg	taaagttgga	tatcccttcc	tgagaagagg	3000
agagatggta	actttcaaaa	tatttttca	gtttaacaca	tcctatctca	tggaaaatgt	3060
gaccatttat	ttaagtgcaa	caagtgcacag	cgaagaacct	cctgaaacccc	tttctgataa	3120
tgttagtaaac	atttctatcc	cggtaaaata	tgaagttgga	ctacagtttt	acagctctgc	3180
aagtgaatac	cacatttcaa	ttgctgccaa	tgagacagtc	cctgaagtt	ttaatttctac	3240
tgaggacatt	ggaaatgaaa	ttaatatctt	ctacttgatt	agaaaaatgt	gatctttcc	3300
aatgccagag	cttaagctgt	caatttcatt	ccccaaatatg	acatcaaatg	gttaccctgt	3360
gctgtaccca	actggattgt	catcttctga	gaatgcaaac	tgcagacccc	atatcttga	3420
ggatcccttc	agtatcaact	ctgaaaagaa	aatgactaca	tcaactgacc	atctcaaacg	3480
aggcacaatt	ctggactgca	atacatgtaa	atttgctacc	atcacatgt	atctcaactc	3540
ttctgacatc	agccaagtc	atgtttcgct	tatcttggtt	aaaccaactt	ttataaaaatc	3600
atattttcc	agcttaaattc	ttactataag	gggagaactt	cggagtgaaa	atgcatctct	3660
ggtttaagt	agcagcaatc	aaaaaaagaga	gcttgcattt	caaataatcca	aagatgggct	3720
accgggcaga	gtgccattat	gggtcatctc	gctgagtgct	tttgcggat	tgtgctgtt	3780
aatgctgctc	attttagcac	tgtgaaagat	tggattcttc	aaaagaccac	tgaaaaagaa	3840
aatggagaaa	tga					3853

<210> 250
 <211> 1179
 <212> PRT
 <213> Homo sapiens

<400> 250
 Met Ala Pro Arg Pro Arg Ala Arg Pro Gly Val Ala Val Ala Cys Cys
 1 5 10 15
 Trp Leu Leu Thr Val Val Leu Arg Cys Cys Val Ser Phe Asn Val Asp
 20 25 30
 Val Lys Asn Ser Met Thr Phe Ser Gly Pro Val Glu Asp Met Phe Gly
 35 40 45
 Tyr Thr Val Gln Gln Tyr Glu Asn Glu Glu Gly Lys Trp Val Leu Ile
 50 55 60
 Gly Ser Pro Leu Val Gly Gln Pro Lys Asn Arg Thr Gly Asp Val Tyr
 65 70 75 80
 Lys Cys Pro Val Gly Arg Gly Glu Ser Leu Pro Cys Val Lys Leu Asp
 85 90 95
 Leu Pro Val Asn Thr Ser Ile Pro Asn Val Thr Glu Val Lys Glu Asn
 100 105 110
 Met Thr Phe Gly Ser Thr Leu Val Thr Asn Pro Asn Gly Gly Phe Leu
 115 120 125
 Ala Cys Gly Pro Leu Tyr Ala Tyr Arg Cys Gly His Leu His Tyr Thr
 130 135 140
 Thr Gly Ile Cys Ser Asp Val Ser Pro Thr Phe Gln Val Val Asn Ser

145	150	155	160
Ile Ala Pro Val Gln Glu Cys Ser Thr Gln	Leu Asp Ile Val Ile Val		
165	170	175	
Leu Asp Gly Ser Asn Ser Ile Tyr Pro Trp Asp Ser Val Thr Ala Phe			
180	185	190	
Leu Asn Asp Leu Leu Lys Arg Met Asp Ile Gly Pro Lys Gln Thr Gln			
195	200	205	
Val Gly Ile Val Gln Tyr Gly Glu Asn Val Thr His Glu Phe Asn Leu			
210	215	220	
Asn Lys Tyr Ser Ser Thr Glu Glu Val Leu Val Ala Ala Lys Lys Ile			
225	230	235	240
Val Gln Arg Gly Arg Gln Thr Met Thr Ala Leu Gly Thr Asp Thr			
245	250	255	
Ala Arg Lys Glu Ala Phe Thr Glu Ala Arg Gly Ala Arg Arg Gly Val			
260	265	270	
Lys Lys Val Met Val Ile Val Thr Asp Gly Glu Ser His Asp Asn His			
275	280	285	
Arg Leu Lys Lys Val Ile Gln Asp Cys Glu Asp Glu Asn Ile Gln Arg			
290	295	300	
Phe Ser Ile Ala Ile Leu Gly Ser Tyr Asn Arg Gly Asn Leu Ser Thr			
305	310	315	320
Glu Lys Phe Val Glu Glu Ile Lys Ser Ile Ala Ser Glu Pro Thr Glu			
325	330	335	
Lys His Phe Asn Val Ser Asp Glu Leu Ala Leu Val Thr Ile Val			
340	345	350	
Lys Thr Leu Gly Glu Arg Ile Phe Ala Leu Glu Ala Thr Ala Asp Gln			
355	360	365	
Ser Ala Ala Ser Phe Glu Met Glu Met Ser Gln Thr Gly Phe Ser Ala			
370	375	380	
His Tyr Ser Gln Asp Trp Val Met Leu Gly Ala Val Gly Ala Tyr Asp			
385	390	395	400
Trp Asn Gly Thr Val Val Met Gln Lys Ala Ser Gln Ile Ile Ile Pro			
405	410	415	
Arg Asn Thr Thr Phe Asn Val Glu Ser Thr Lys Lys Asn Glu Pro Leu			
420	425	430	
Ala Ser Tyr Leu Gly Tyr Thr Val Asn Ser Ala Thr Ala Ser Ser Gly			
435	440	445	
Asp Val Leu Tyr Ile Ala Gly Gln Pro Arg Tyr Asn His Thr Gly Gln			
450	455	460	
Val Ile Ile Tyr Arg Met Glu Asp Gly Asn Ile Lys Ile Leu Gln Thr			
465	470	475	480
Leu Ser Gly Glu Gln Ile Gly Ser Tyr Phe Gly Ser Ile Leu Thr Thr			
485	490	495	
Thr Asp Ile Asp Lys Asp Ser Asn Thr Asp Ile Leu Leu Val Gly Ala			
500	505	510	
Pro Met Tyr Met Gly Thr Glu Lys Glu Glu Gln Gly Lys Val Tyr Val			
515	520	525	
Tyr Ala Leu Asn Gln Thr Arg Phe Glu Tyr Gln Met Ser Leu Glu Pro			
530	535	540	
Ile Lys Gln Thr Cys Cys Ser Ser Arg Gln His Asn Ser Cys Thr Thr			
545	550	555	560
Glu Asn Lys Asn Glu Pro Cys Gly Ala Arg Phe Gly Thr Ala Ile Ala			
565	570	575	
Ala Val Lys Asp Leu Asn Leu Asp Gly Phe Asn Asp Ile Val Ile Gly			
580	585	590	
Ala Pro Leu Glu Asp Asp His Gly Gly Ala Val Tyr Ile Tyr His Gly			
595	600	605	
Ser Gly Lys Thr Ile Arg Lys Glu Tyr Ala Gln Arg Ile Pro Ser Gly			
610	615	620	
Gly Asp Gly Lys Thr Leu Lys Phe Phe Gly Gln Ser Ile His Gly Glu			
625	630	635	640

Met Asp Leu Asn Gly Asp Gly Leu Thr Asp Val Thr Ile Gly Gly Leu
 645 650 655
 Gly Gly Ala Ala Leu Phe Trp Ser Arg Asp Val Ala Val Val Lys Val
 660 665 670
 Thr Met Asn Phe Glu Pro Asn Lys Val Asn Ile Gln Lys Lys Asn Cys
 675 680 685
 His Met Glu Gly Lys Glu Thr Val Cys Ile Asn Ala Thr Val Cys Phe
 690 695 700
 Glu Val Lys Leu Lys Ser Lys Glu Asp Thr Ile Tyr Glu Ala Asp Leu
 705 710 715 720
 Gln Tyr Arg Val Thr Leu Asp Ser Leu Arg Gln Ile Ser Arg Ser Phe
 725 730 735
 Phe Ser Gly Thr Gln Glu Arg Lys Val Gln Arg Asn Ile Thr Val Arg
 740 745 750
 Lys Ser Glu Cys Thr Lys His Ser Phe Tyr Met Leu Asp Lys His Asp
 755 760 765
 Phe Gln Asp Ser Val Arg Ile Thr Leu Asp Phe Asn Leu Thr Asp Pro
 770 775 780
 Glu Asn Gly Pro Val Leu Asp Asp Ser Leu Pro Asn Ser Val His Glu
 785 790 795 800
 Tyr Ile Pro Phe Ala Lys Asp Cys Gly Asn Lys Glu Lys Cys Ile Ser
 805 810 815
 Asp Leu Ser Leu His Val Ala Thr Thr Glu Lys Asp Leu Leu Ile Val
 820 825 830
 Arg Ser Gln Asn Asp Lys Phe Asn Val Ser Leu Thr Val Lys Asn Thr
 835 840 845
 Lys Asp Ser Ala Tyr Asn Thr Arg Thr Ile Val His Tyr Ser Pro Asn
 850 855 860
 Leu Val Phe Ser Gly Ile Glu Ala Ile Gln Lys Asp Ser Cys Glu Ser
 865 870 875 880
 Asn His Asn Ile Thr Cys Lys Val Gly Tyr Pro Phe Leu Arg Arg Gly
 885 890 895
 Glu Met Val Thr Phe Lys Ile Leu Phe Gln Phe Asn Thr Ser Tyr Leu
 900 905 910
 Met Glu Asn Val Thr Ile Tyr Leu Ser Ala Thr Ser Asp Ser Glu Glu
 915 920 925
 Pro Pro Glu Thr Leu Ser Asp Asn Val Val Asn Ile Ser Ile Pro Val
 930 935 940
 Lys Tyr Glu Val Gly Leu Gln Phe Tyr Ser Ser Ala Ser Glu Tyr His
 945 950 955 960
 Ile Ser Ile Ala Ala Asn Glu Thr Val Pro Glu Val Ile Asn Ser Thr
 965 970 975
 Glu Asp Ile Gly Asn Glu Ile Asn Ile Phe Tyr Leu Ile Arg Lys Ser
 980 985 990
 Gly Ser Phe Pro Met Pro Glu Leu Lys Leu Ser Ile Ser Phe Pro Asn
 995 1000 1005
 Met Thr Ser Asn Gly Tyr Pro Val Leu Tyr Pro Thr Gly Leu Ser Ser
 1010 1015 1020
 Ser Glu Asn Ala Asn Cys Arg Pro His Ile Phe Glu Asp Pro Phe Ser
 1025 1030 1035 1040
 Ile Asn Ser Gly Lys Lys Met Thr Thr Ser Thr Asp His Leu Lys Arg
 1045 1050 1055
 Gly Thr Ile Leu Asp Cys Asn Thr Cys Lys Phe Ala Thr Ile Thr Cys
 1060 1065 1070
 Asn Leu Thr Ser Ser Asp Ile Ser Gln Val Asn Val Ser Leu Ile Leu
 1075 1080 1085
 Trp Lys Pro Thr Phe Ile Lys Ser Tyr Phe Ser Ser Leu Asn Leu Thr
 1090 1095 1100
 Ile Arg Gly Glu Leu Arg Ser Glu Asn Ala Ser Leu Val Leu Ser Ser
 1105 1110 1115 1120
 Ser Asn Gln Lys Arg Glu Leu Ala Ile Gln Ile Ser Lys Asp Gly Leu

	1125	1130	1135												
Pro	Gly	Arg	Val	Pro	Leu	Trp	Val	Ile	Leu	Leu	Ser	Ala	Phe	Ala	Gly
				1140			1145					1150			
Leu	Leu	Leu	Leu	Met	Leu	Leu	Ile	Leu	Ala	Leu	Trp	Lys	Ile	Gly	Phe
				1155			1160				1165				
Phe	Lys	Arg	Pro	Leu	Lys	Lys	Lys	Met	Glu	Lys					
				1170			1175								

<210> 251

<211> 5010

<212> DNA

<213> Homo sapiens

<400> 251

atggggcccc	ggctcagcgt	ctggctgctg	ctgctgccc	ccgccttct	gctccacgag	60
gagcacagcc	ggccgctgc	gaagggtggc	tgtgctggct	ctggctgtgg	caaatgtgac	120
tgccatggag	tgaagggaca	aaagggtgaa	agaggcctcc	cggggttaca	aggtgtcatt	180
gggtttctg	gaatgcagg	acctgagggg	ccacaggac	caccaggaca	aaagggtgat	240
actggagaac	caggactacc	tggAACaaaa	gggacaagag	gacCCCGGG	agcatctggc	300
taccctggaa	accaggact	tcccggatt	cctggccaag	acggcccggc	aggcccccca	360
ggtattccag	gatgcattgg	cacAAAGGGG	gagagaggc	cgctcgggccc	tcctggcttg	420
cctggtttcg	caggAAATCC	cgggaccacca	ggcttaccag	ggatgaaggg	tgatccagg	480
gagatacttg	gcattgtgcc	cgggatgtct	ttggAAAGGT	aaagaggatt	tcccggaaatc	540
ccagggactc	caggcccacc	aggactgcca	gggcttcaag	gtcctgttgg	gcctccagga	600
tttacccggac	caccaggatcc	cccaggccct	cccgccctc	caggtaaaa	gggacaatg	660
ggcttaagtt	ttaaggacc	aaaagggtgac	aagggtgacc	aagggtcag	tgggcctcca	720
ggagtaccag	gacaagctca	agttcaagaa	aaaggagact	tcgcccacca	gggagaaaaag	780
ggccaaaaag	gtgaacctgg	atttcagggg	atgccagggg	tcggagagaa	aggtgaaccc	840
ggaaaaccag	gaccaggagg	caaACCCGA	aaagatggtg	acAAAGGGG	aaaagggagt	900
cccggtttc	ctggtaacc	cgggtaccca	ggactcatag	gccgcagggg	ccgcagggg	960
gaaaagggtg	aagcaggatcc	tcctggccca	cctggattt	ttataggcac	aggaccttt	1020
ggagaaaaag	gagagagggg	ctaccctgg	actccgggc	caagaggaga	gccaggccc	1080
aaaggttcc	caggactacc	aggccAAACC	ggacctccag	gcctccctgt	acctggcag	1140
gctggtggcc	ctggcttccc	tggtaaaa	ggagaaaaag	gtgaccgagg	atttcctgg	1200
acatctctgc	caggaccaag	tggagagat	gggctccgg	gtcctctgg	ttccccccgg	1260
ccccctggc	agcctggcta	cacAAATGG	attgtggat	gtcagccgg	acctccaggt	1320
gaccagggtc	ctcctggaa	tccaggcag	ccaggattt	taggcgaaat	tggagagaaa	1380
ggtcaaaaag	gagagagttt	cctcatctgt	gatatacag	gatatccggg	gcctccggg	1440
ccacaggggac	ccccgggaga	aataggttt	ccagggcagc	cagggccaa	ggcgcacaga	1500
ggtttgcctg	gcagagatgg	tgttgcagga	gtgccaggcc	ctcaaggtac	accaggctg	1560
ataggccagc	caggagccaa	gggggagct	ggtgagttt	atttcgactt	gcggctcaa	1620
ggtgacaaag	gagacccagg	cttccagga	cagccggca	tgccagggag	agcgggttct	1680
cctggaaagag	atggccatcc	gggttccct	ggccccaagg	gtcgcgggg	ttctgttag	1740
ttgaaaggag	agcgtggccc	ccctggagga	gttggattcc	caggcagtc	tgtgacacc	1800
ggccccctg	ggcctccagg	atatgtcct	gtggtccc	ttggtacaa	aggacaagca	1860
ggctttctg	gaggccctgg	atccccaggc	ctgcccaggc	caaagggtg	accaggaaaa	1920
attgttccct	taccaggccc	ccctggagca	gaaggactgc	cgggtcccc	aggctccca	1980
ggtccccaag	gagaccgagg	cttccgg	accccaggaa	ggccaggcct	gccaggagag	2040
aagggcgtg	tggccagcc	aggcattgg	tttccagggg	ccccggccc	caaagggttt	2100
gacggcttac	ctggagacat	ggggccaccg	gggactccag	gtcgcgggg	atttaatggc	2160
ttacctggga	acccagggtt	gcaggccag	aaggagag	ctggagttgg	tctaccgg	2220
ctcaaagggt	tggcagggtct	tcccggcatt	cctggcacac	ccggggagaa	ggggagcatt	2280
ggggtaccag	gcttccctgg	agaacatgg	gcatggac	ccccctggct	tcaaggggatc	2340
agaggtgaac	cgggacctcc	tggattgca	ggctccgtgg	gttctccagg	atgtccagg	2400
ataggcccc	ctggagctag	gggtccccct	ggaggacagg	gaccacccgg	tttgtcaggc	2460
cctcctggaa	taaaaggaga	gaagggtttc	ccggattcc	ctggactgg	catggccggc	2520
cctaaaggag	ataaaaggggc	tcaaggactc	cctggcataa	cgggacagtc	ggggctccct	2580
ggccttcctg	gacagcagg	ggctctggg	attctctgg	ttccagggtt	caaggggaga	2640
atgggctca	tggggacc	cgggcagcc	ggctcaccag	gaccagtgg	tgctcctgg	2700
ttaccgggtg	aaaaaggggg	ccatggctt	ccggctcc	caggacccag	gggagacc	2760
ggctgaaag	gtgataaggg	ggatgtcggt	ctccctggca	agcctggc	catggataag	2820

gtggacatgg	gcagcatgaa	gggccagaaaa	ggagaccaag	gagagaaaagg	acaaatttgg	2880
ccaattttgt	agaagggatc	ccgaggagac	cctgggaccc	caggagtgc	tgaaaaggac	2940
gggcaggcag	gacagcctgg	gcagccagga	cctaaagggt	atccaggtat	aagtggAAC	3000
ccaggtgttc	caggacttcc	gggaccaaaa	ggtatctgtt	gtggatggg	cttgccagg	3060
acacctggag	agaaaagggt	gcctggcatc	cctggcccac	aaggttcacc	tggcttacct	3120
ggagacaaaag	gtgcaaaaagg	agagaaaagg	caggcaggcc	cacctggcat	aggcatccca	3180
ggactgcgt	gtgaaaaggg	agatcaaggg	atagcgggtt	tcccaggaag	ccctggagag	3240
aagggagaaa	aaggaagcat	tggatcccc	ggaatgccag	gttccccagg	ccttaaagg	3300
tctccggga	gtgttggcta	tccaggaagt	cctgggctac	ctggagaaaa	agtgacaaa	3360
ggcctccag	gattggatgg	catccctgg	gtcaaaggag	aagcaggct	tcttggact	3420
cctggcccca	caggcccagc	tggccagaaa	ggggagccag	gcagtgtatgg	aatccccggg	3480
tcagcaggag	agaagggtga	accaggctca	ccaggaagag	gattcccagg	gtttccagg	3540
gccaaggag	acaaaaggttc	aaagggtgag	gtgggttcc	caggattagc	cgggagccca	3600
ggaatttctg	gatccaaagg	agagcaagga	ttcatgggtc	ctccggggcc	ccagggacag	3660
ccggggttac	cgggatcccc	aggccatgcc	acggaggggc	ccaaaggaga	cgcggacct	3720
cagggccagc	ctggcctgcc	aggacttccg	ggacccatgg	ggcctccagg	gtttcctgg	3780
attgtatggag	ttaaagggtga	caaaggaat	ccaggctggc	caggagcacc	cgtgtccca	3840
gggcccagg	gagaccctgg	attccaggc	atgcctggta	tttgtggctc	tccaggaatc	3900
acaggctcta	agggtatata	ggggcctcca	ggagttccag	gatttcaagg	tccaaaagg	3960
cttccttggcc	tccagggat	taaagggtat	caaggcgatc	aaggcgcccc	ggagactaaa	4020
ggtctcccg	gtcctcctgg	ccccccaggt	ccttacgaca	tcatcaaagg	ggagcccccgg	4080
ctccctggc	ctgagggccc	cccaggctg	aaaggccttc	agggactgcc	agccccgaaa	4140
ggccagcaag	gtgttacagg	attgggtgg	atacctggac	ctccaggtat	tcttgggtt	4200
gacgggtccc	ctggccagaa	aggagagatg	ggacctgccc	ggcctactgg	tccaagagga	4260
tttccagggtc	caccaggccc	cgatgggtt	ccaggatcca	tggggcccc	agcaccacccca	4320
tctgttgc	acggcttcct	tgtgaccagg	catagtcaaa	caatagatga	cccacagtgt	4380
ccttcttgg	caaaaattct	ttaccacggg	tactcttgc	tctacgtgc	aggcaatgaa	4440
cgggcccatg	gacaggactt	gggcacggcc	ggcagctgcc	tgcgcagtt	cagcacaatg	4500
cccttcctgt	tctgcaatat	taacaacgt	tgcacactt	catcacgaaa	.tgactactcg	4560
tactggctgt	ccacccctga	gcccatgccc	atgtcaatgg	cacccatcac	gggggaaaac	4620
ataagaccat	ttatttagtag	gtgtctgt	tgtgaggcgc	ctgccatgtt	gatggccgt	4680
cacagccaga	ccattcagat	cccaccgtc	cccagcgggt	ggtcctcgct	gtggatcgcc	4740
tactcttttg	tgatgcacac	cagcgttgg	gcagaaggct	ctggccaaagc	cctggcgtcc	4800
cccggtccct	gcctggagga	gtttagaagt	gcgcattca	tcgagtgtca	cggccgtgg	4860
acctgcaatt	actacgcaaa	cgcttacagc	tttggctcg	ccaccataga	gaggagcggag	4920
atgttcaaga	agcctacgca	gtccacctt	aaggcagggg	agctgcgcac	gcacgtcagc	4980
cgctgccaag	tctgtatgag	aagaacataa				5010

<210> 252
<211> 1669
<212> PRT
<213> *Homo sapiens*

<400> 252

Met	Gly	Pro	Arg	Leu	Ser	Val	Trp	Leu	Leu	Leu	Leu	Pro	Ala	Ala	Leu
1				5				10					15		
Leu	Leu	His	Glu	Glu	His	Ser	Arg	Ala	Ala	Ala	Lys	Gly	Gly	Cys	Ala
					20				25				30		
Gly	Ser	Gly	Cys	Gly	Lys	Cys	Asp	Cys	His	Gly	Val	Lys	Gly	Gln	Lys
					35			40				45			
Gly	Glu	Arg	Gly	Leu	Pro	Gly	Leu	Gln	Gly	Val	Ile	Gly	Phe	Pro	Gly
					50			55			60				
Met	Gln	Gly	Pro	Glu	Gly	Pro	Gln	Gly	Pro	Pro	Gly	Gln	Lys	Gly	Asp
					65			70			75			80	
Thr	Gly	Glu	Pro	Gly	Leu	Pro	Gly	Thr	Lys	Gly	Thr	Arg	Gly	Pro	Pro
						85			90			95			
Gly	Ala	Ser	Gly	Tyr	Pro	Gly	Asn	Pro	Gly	Leu	Pro	Gly	Ile	Pro	Gly
					100				105				110		
Gln	Asp	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Ile	Pro	Gly	Cys	Asn	Gly	Thr

115	120	125
Lys	Gly	Glu Arg Gly Pro Leu
130	135	140
Gly	Asn Pro Gly Pro Pro Gly	Leu Pro Gly Met Lys
145	150	155
Glu	Ile Leu Gly His Val Pro Gly	Met Leu Leu Lys
165	170	175
Phe	Pro Gly Ile Pro Gly Thr	Pro Pro Gly Leu Pro
180	185	190
Gln	Gly Pro Val Gly Pro Pro Gly	Phe Thr Gly Pro Pro
195	200	205
Gly	Pro Pro Gly Pro Pro Gly	Glu Lys Gly Gln Met
210	215	Gly Leu Ser Phe
Gln	Gly Pro Lys Gly Asp Lys	Gly Val Ser Gly Pro
225	230	235
Gly	Val Pro Gly Gln Ala Gln	Val Gln Glu Lys Gly
245	250	Asp Phe Ala Thr
Lys	Gly Glu Lys Gly Gln Lys	Gly Phe Gln Gly Met
260	265	Pro Pro Gly
Gly	Val Gly Glu Lys Gly Glu	Gly Lys Pro Arg Gly
275	280	Lys 285
Pro	Gly Lys Asp Gly Asp Lys	Gly Ser Pro Gly Phe
290	295	Pro Pro
Gly	Glu Pro Gly Tyr Pro Gly	Leu Ile Gly Arg Gln
305	310	Gly Pro Gln Gly
Glu	Lys Gly Glu Ala Gly Pro	Pro Pro Gly Ile Val
325	330	Ile Gly 335
Thr	Gly Pro Leu Gly Glu Lys	Gly Arg Gly Tyr Pro
340	345	Gly Thr Pro
Gly	Pro Arg Gly Glu Pro Gly	Pro Lys Gly Phe Pro
355	360	Gly Leu Pro Gly
Gln	Pro Gly Pro Pro Gly	Leu Pro Val Pro Gly
370	375	Gln Ala Gly Ala Pro
Gly	Phe Pro Gly Glu Arg Gly	Glu Lys Gly Asp Arg
385	390	Gly Phe Pro Gly
Thr	Ser Leu Pro Gly Pro Ser	Gly Arg Asp Gly Leu
405	410	Pro Pro Gly
Gly	Ser Pro Gly Pro Pro Gly	Gln Pro Gly Tyr Thr
420	425	Asn Gly Ile Val
Glu	Cys Gln Pro Gly Pro Pro	Gly Phe Pro Gly Ile
435	440	Pro Pro Gly
Gly	Gln Pro Gly Phe Ile	Gly Glu Ile Gly Glu
450	455	Lys Gly Gln Lys Gly
Glu	Ser Cys Leu Ile Cys Asp	Ile Asp Gly Tyr Arg
465	470	Gly Pro Pro Gly
Pro	Gln Gly Pro Pro Gly Glu	Ile Gly Phe Pro Gly
485	490	Gln Pro Gly Ala
Lys	Gly Asp Arg Gly Leu	Gly Val Ala Gly Val
500	505	Pro
Gly	Pro Gln Gly Thr Pro	Gly Arg Asp Gly Val
515	520	Gly Ala Lys Gly
Glu	Pro Gly Glu Phe Tyr	Phe Asp Leu Arg Leu
530	535	Lys Gly Asp Lys Gly
Asp	Pro Gly Phe Pro Gly	Gln Pro Gly Met Pro
545	550	Gly Arg Ala Gly Ser
Pro	Gly Arg Asp Gly His	Pro Gly Pro Lys Gly
565	570	Ser Pro
Gly	Ser Val Gly Leu Lys	Gly Glu Arg Gly Pro
580	585	Pro Pro Gly Val Gly
Phe	Pro Gly Ser Arg Gly Asp	Thr Gly Pro Pro Gly
595	600	Pro Pro Gly Tyr
		605

Gly Pro Ala Gly Pro Ile Gly Asp Lys Gly Gln Ala Gly Phe Pro Gly
 610 615 620
 Gly Pro Gly Ser Pro Gly Leu Pro Gly Pro Lys Gly Glu Pro Gly Lys
 625 630 635 640
 Ile Val Pro Leu Pro Gly Pro Pro Gly Ala Glu Gly Leu Pro Gly Ser
 645 650 655
 Pro Gly Phe Pro Gly Pro Gln Gly Asp Arg Gly Phe Pro Gly Thr Pro
 660 665 670
 Gly Arg Pro Gly Leu Pro Gly Glu Lys Gly Ala Val Gly Gln Pro Gly
 675 680 685
 Ile Gly Phe Pro Gly Pro Pro Gly Pro Lys Gly Val Asp Gly Leu Pro
 690 695 700
 Gly Asp Met Gly Pro Pro Gly Thr Pro Gly Arg Pro Gly Phe Asn Gly
 705 710 715 720
 Leu Pro Gly Asn Pro Gly Val Gln Gly Gln Lys Gly Glu Pro Gly Val
 725 730 735
 Gly Leu Pro Gly Leu Lys Gly Leu Pro Gly Leu Pro Gly Ile Pro Gly
 740 745 750
 Thr Pro Gly Glu Lys Gly Ser Ile Gly Val Pro Gly Val Pro Gly Glu
 755 760 765
 His Gly Ala Ile Gly Pro Pro Gly Leu Gln Gly Ile Arg Gly Glu Pro
 770 775 780
 Gly Pro Pro Gly Leu Pro Gly Ser Val Gly Ser Pro Gly Val Pro Gly
 785 790 795 800
 Ile Gly Pro Pro Gly Ala Arg Gly Pro Pro Gly Gly Gln Gly Pro Pro
 805 810 815
 Gly Leu Ser Gly Pro Pro Gly Ile Lys Gly Glu Lys Gly Phe Pro Gly
 820 825 830
 Phe Pro Gly Leu Asp Met Pro Gly Pro Lys Gly Asp Lys Gly Ala Gln
 835 840 845
 Gly Leu Pro Gly Ile Thr Gly Gln Ser Gly Leu Pro Gly Leu Pro Gly
 850 855 860
 Gln Gln Gly Ala Pro Gly Ile Pro Gly Phe Pro Gly Ser Lys Gly Glu
 865 870 875 880
 Met Gly Val Met Gly Thr Pro Gly Gln Pro Gly Ser Pro Gly Pro Val
 885 890 895
 Gly Ala Pro Gly Leu Pro Gly Glu Lys Gly Asp His Gly Phe Pro Gly
 900 905 910
 Ser Ser Gly Pro Arg Gly Asp Pro Gly Leu Lys Gly Asp Lys Gly Asp
 915 920 925
 Val Gly Leu Pro Gly Lys Pro Gly Ser Met Asp Lys Val Asp Met Gly
 930 935 940
 Ser Met Lys Gly Gln Lys Gly Asp Gln Gly Glu Lys Gly Gln Ile Gly
 945 950 955 960
 Pro Ile Gly Glu Lys Gly Ser Arg Gly Asp Pro Gly Thr Pro Gly Val
 965 970 975
 Pro Gly Lys Asp Gly Gln Ala Gly Gln Pro Gly Gln Pro Gly Pro Lys
 980 985 990
 Gly Asp Pro Gly Ile Ser Gly Thr Pro Gly Ala Pro Gly Leu Pro Gly
 995 1000 1005
 Pro Lys Gly Ser Val Gly Gly Met Gly Leu Pro Gly Thr Pro Gly Glu
 1010 1015 1020
 Lys Gly Val Pro Gly Ile Pro Gly Pro Gln Gly Ser Pro Gly Leu Pro
 1025 1030 1035 1040
 Gly Asp Lys Gly Ala Lys Gly Glu Lys Gly Gln Ala Gly Pro Pro Gly
 1045 1050 1055
 Ile Gly Ile Pro Gly Leu Arg Gly Glu Lys Gly Asp Gln Gly Ile Ala
 1060 1065 1070
 Gly Phe Pro Gly Ser Pro Gly Glu Lys Gly Glu Lys Gly Ser Ile Gly
 1075 1080 1085
 Ile Pro Gly Met Pro Gly Ser Pro Gly Leu Lys Gly Ser Pro Gly Ser

1090	1095	1100
Val	Gly	Tyr
Pro	Gly	Ser
Pro	Gly	Leu
Pro	Gly	Pro
Gly	Asp	Gly
Ile	Pro	Gly
Val	Lys	Gly
Glu	Gly	Asp
Lys	Gly	Lys
1105	1110	1115
Gly	Leu	Pro
Gly	Leu	Asp
Gly	Ile	Pro
1125	1130	1135
Leu	Pro	Gly
Thr	Pro	Gly
Pro	Thr	Gly
Gly	Pro	Ala
1140	1145	1150
Pro	Gly	Ser
Asp	Gly	Ile
Pro	Gly	Ser
Ala	Gly	Glu
Glu	Lys	Gly
1155	1160	1165
Gly	Leu	Pro
Gly	Arg	Gly
Phe	Pro	Gly
Phe	Pro	Gly
Gly	Ala	Lys
Gly	Asp	
1170	1175	1180
Lys	Gly	Ser
Lys	Gly	Glu
Val	Gly	Phe
Pro	Gly	Leu
Ala	Gly	Ser
Pro	1185	1190
Gly	Ile	Pro
Ser	Lys	Gly
Glu	Gln	Gly
Phe	Met	Gly
Pro	Pro	Gly
1205	1210	1215
Pro	Gln	Gly
Gln	Pro	Gly
Leu	Pro	Gly
Ser	Pro	Gly
His	Ala	Thr
Glu	1220	1225
Gly	Pro	Lys
Lys	Gly	Asp
Arg	Gly	Pro
Gln	Gly	Gln
Pro	Gly	Leu
Pro	1235	1240
Gly	Leu	Pro
Gly	Ile	Asp
Val	1250	1255
Lys	Gly	Asp
Lys	Gly	Asn
Pro	Gly	Trp
Pro	Gly	Ala
Gly	Val	Pro
1265	1270	1275
Gly	Pro	Lys
Lys	Gly	Asp
Pro	Gly	Gly
Gly	Met	Pro
Gly	Ile	Gly
Gly	1285	1290
Ser	Pro	Gly
Ile	Thr	Gly
Ser	Lys	Gly
Asp	Met	Gly
Pro	1300	1305
Gly	Phe	Gln
Gly	Pro	Lys
Gly	Leu	Pro
Gly	Leu	Gln
Gly	Ile	Lys
1315	1320	1325
Gly	Asp	Gln
Gly	Asp	Gln
Gly	Val	Pro
Gly	Ala	Lys
1330	1335	1340
Pro	Pro	Gly
Pro	Pro	Tyr
Gly	Asp	Ile
Ile	Lys	Gly
Glu	Pro	Gly
1345	1350	1355
Leu	Pro	Gly
Gly	Pro	Pro
Gly	Leu	Lys
Gly	Leu	Gly
1365	1370	1375
Pro	Gly	Pro
Lys	Gly	Gln
Gly	Val	Thr
Gly	Leu	Val
Gly	Ile	Pro
1380	1385	1390
Gly	Pro	Pro
Gly	Ile	Pro
Gly	Phe	Asp
Gly	Ala	Pro
Gly	Gln	Lys
1395	1400	1405
Glu	Met	Gly
Pro	Ala	Gly
Pro	Thr	Gly
Gly	Pro	Arg
Gly	Phe	Pro
Pro	1410	1415
1425	1430	1435
Ser	Val	Asp
Asp	His	Gly
Gly	Phe	Leu
Leu	Val	Thr
Thr	Arg	His
His	Ser	Gln
Gly	Thr	Ile
Asp	Ile	Asp
1445	1450	1455
Asp	Pro	Gln
Cys	Pro	Ser
Gly	Thr	Lys
Ile	Leu	Tyr
Tyr	His	Gly
Ser	1460	1465
Leu	Leu	Tyr
Val	Gln	Gly
Gly	Asn	Glu
Arg	Ala	His
His	Gly	Gln
Gly	Asp	Leu
1475	1480	1485
Thr	Ala	Gly
Ser	Cys	Leu
Leu	Arg	Lys
Phe	Ser	Thr
1490	1495	1500
Cys	Asn	Ile
Asn	Asn	Asn
Val	Cys	Asn
Phe	Ala	Ser
1505	1510	1515
Tyr	Trp	Leu
Ser	Thr	Pro
Glu	Pro	Met
Pro	Met	Ser
Met	Ala	Pro
Ile	1525	1530
Thr	Gly	Asn
Ile	Arg	Pro
Phe	Ile	Ser
Gly	Asp	Arg
1540	1545	1550
Ala	Pro	Ala
Ala	Met	Val
Met	Ala	Val
His	Ser	Gln
Gly	Thr	Ile
1555	1560	1565
Pro	Cys	Pro
Ser	Gly	Trp
Ser	Ser	Leu
Leu	Trp	Ile
Ile	Gly	Tyr
Tyr	Ser	Phe
1570	1575	1580

Met His Thr Ser Ala Gly Ala Glu Gly Ser Gly Gln Ala Leu Ala Ser
 1585 1590 1595 1600
 Pro Gly Ser Cys Leu Glu Glu Phe Arg Ser Ala Pro Phe Ile Glu Cys
 1605 1610 1615
 His Gly Arg Gly Thr Cys Asn Tyr Tyr Ala Asn Ala Tyr Ser Phe Trp
 1620 1625 1630
 Leu Ala Thr Ile Glu Arg Ser Glu Met Phe Lys Lys Pro Thr Pro Ser
 1635 1640 1645
 Thr Leu Lys Ala Gly Glu Leu Arg Thr His Val Ser Arg Cys Gln Val
 1650 1655 1660
 Cys Met Arg Arg Thr
 1665

<210> 253
 <211> 2798
 <212> DNA
 <213> Homo sapiens

<400> 253

gccctctccc acagcggagt ccaaaaacagg cctaccagtc agttcttatt tctattgggt	60
gtttccatgc tccaccatgt taagagctaa gaatcagctt tttttacttt cacctcatta	120
cctgaggcag gtaaaaagaat catcaggctc caggctcata cagcaacgc ttctacacca	180
gcaacagccc cttcacccag aatgggctgc cctggctaaa aagcagctga aaggcaaaaa	240
cccagaagac ctaatatggc acaccccgga agggatctct ataaaaccct tgtattccaa	300
gagagatact atggacttac ctgaagaact tccaggagtg aagccattca cacgtggacc	360
atatcctacc atgtataacct ttaggcccctg gaccatccgc cagtagctg gtttttagtac	420
tgtggaagaa agcaataagt tctataagga caacattaag gctggctcagc agggattatc	480
atgtgcctt gatctggcga cacatcgtgg ctatgatcca gacaaccctc gagttcgtgg	540
tgatgttggaa atggctggag ttgctattga cactgtgaa gataccaaaa ttcttttga	600
tggaattcct ttagaaaaaaa tgtcagttc catgactatg aatggagcag ttattccagt	660
tcttgc当地 tttatagtaa ctggagaaga acaagggtta cctaaagaga aacttactgg	720
taccatccaa aatgatatac taaaggaatt tatggttcga aatacataca ttttcctcc	780
agaaccatcc atgaaaaattt ttgctgacat atttgaatat acagcaaagc acatgccaaa	840
attnaattca atttcaatta gtggatacca tatgcagaa gcaggggctg atgccccattct	900
ggagctggcc tatacttttag cagatggatt ggagtactt agaactggac tccaggctgg	960
cctgacaatt gatgaattt caccaaggtt gtcttcttc tgggaaattt gaatgaattt	1020
ctataatggaa atagcaaaga tgagagctgg tagaagactc tggctcact taatagagaa	1080
aatgtttcag cctaaaaact caaaatctct tcttctaaga gcacactgtc agacatctgg	1140
atggtcactt actgagcagg atccctacaa taatattgtc cgtactgcaaa tagaagcaat	1200
ggcagcagta tttggagggc ctcagtcttt gcacacaaat tcttttgcatt aagctttggg	1260
tttgc当地 actgtgaaatg ctcgaattgc caggaacaca caaatcatca ttcaagaaga	1320
atctgggatt cccaaatgtt ctgatccttg gggaggttct tacatgatgg aatgtctcac	1380
aaatgatgtt tatgtatgtc ctttaaagct cattaatgaa attgaagaaa tgggtggaaat	1440
ggccaaagct gtagctgggg gaatacctaa acttcgaatt gaagaatgtg ctgcccgaag	1500
acaagctaga atagattctg gttctgaagt aattgttggaa gtaataaagt accagtttgg	1560
aaaagaagac gctgttagaag ttctggcaat tgataataact tcagtgcgaa acaggcagat	1620
tgaaaaactt aagaagatca aatccagcag ghatcaagct ttggctgaac attgtcttc	1680
tgcactaacc gaatgtgtc cttagcggaga tggaaatatac ctggctcttg cagtggatgc	1740
atctcgggca agatgtacag tgggagaaat cacagatgcc ctgaaaaagg tattttgtga	1800
acataaaagcg aatgtacaa tggtagtgg agcatatcgc cagaaatttg gagaaagtaa	1860
agagataaca tctgttatca agagggttca taaatttcgt gAACGTGAAG gtcgcagacc	1920
tcgtcttctt gtagcaaaaaa tggacaaga tggccatgac agaggagcaa aagttattgc	1980
tacaggattt gctgtatctt gttttgtatgt ggacatagcc cctttttcc agactcctcg	2040
tgaagtggcc cagcaggctg tggatcggaa tggcatgtct gtggcgtaa gcaccctcgc	2100
tgctggc当地 aaaacccttag ttcccttatca agagggttcat catcaaagaa cttactccc ttggacggcc	2160
agatattctt gtcatgtgtc gaggggtgtat accacctcag gattatgaat ttctgtttga	2220
agtttgtt tccaatgtat ttggctctgg gactcgaatt ccaaaggctg ccgttcaggt	2280
gcttgatgtt attgagaagt gtttgaaaaa gaagcagcaa tctgtataat atccctttt	2340
tgtttagct ttgtctaaa atattatcc agttatgtac aaagaagaga gtaaaagctat	2400
gtcttc当地 taatttcaat acctgatttg tactttctt gaaagctta cttaaaata	2460
ccttacttat aggctgttg tcatgtata agtatgtaca tacagttca cttcaaaaat	2520

aaaaaaaaat ccctaaaaac tctctatact ctctataaca atactttac aagaactctg	2580
gacaatggta ttatTTTaa aaatcatggt gatgtattta ttagaatgtt tcttataaaat	2640
ctcttcatt ttatattaa gaattaaact gtacctaaa aaactctgac tattccatt	2700
tctcagtttgcattacatt gtcttgagca ccagaaaata aaatccatat attaattaaa	2760
acctatcttgcattaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaa	2798

<210> 254
 <211> 750
 <212> PRT
 <213> Homo sapiens

<400> 254
 Met Leu Arg Ala Lys Asn Gln Leu Phe Leu Leu Ser Pro His Tyr Leu
 1 5 10 15
 Arg Gln Val Lys Glu Ser Ser Gly Ser Arg Leu Ile Gln Gln Arg Leu
 20 25 30
 Leu His Gln Gln Pro Leu His Pro Glu Trp Ala Ala Leu Ala Lys
 35 40 45
 Lys Gln Leu Lys Gly Lys Asn Pro Glu Asp Leu Ile Trp His Thr Pro
 50 55 60
 Glu Gly Ile Ser Ile Lys Pro Leu Tyr Ser Lys Arg Asp Thr Met Asp
 65 70 75 80
 Leu Pro Glu Glu Leu Pro Gly Val Lys Pro Phe Thr Arg Gly Pro Tyr
 85 90 95
 Pro Thr Met Tyr Thr Phe Arg Pro Trp Thr Ile Arg Gln Tyr Ala Gly
 100 105 110
 Phe Ser Thr Val Glu Glu Ser Asn Lys Phe Tyr Lys Asn Ile Lys
 115 120 125
 Ala Gly Gln Gln Gly Leu Ser Val Ala Phe Asp Leu Ala Thr His Arg
 130 135 140
 Gly Tyr Asp Ser Asp Asn Pro Arg Val Arg Gly Asp Val Gly Met Ala
 145 150 155 160
 Gly Val Ala Ile Asp Thr Val Glu Asp Thr Lys Ile Leu Phe Asp Gly
 165 170 175
 Ile Pro Leu Glu Lys Met Ser Val Ser Met Thr Met Asn Gly Ala Val
 180 185 190
 Ile Pro Val Leu Ala Asn Phe Ile Val Thr Gly Glu Glu Gln Gly Val
 195 200 205
 Pro Lys Glu Lys Leu Thr Gly Thr Ile Gln Asn Asp Ile Leu Lys Glu
 210 215 220
 Phe Met Val Arg Asn Thr Tyr Ile Phe Pro Pro Glu Pro Ser Met Lys
 225 230 235 240
 Ile Ile Ala Asp Ile Phe Glu Tyr Thr Ala Lys His Met Pro Lys Phe
 245 250 255
 Asn Ser Ile Ser Ile Ser Gly Tyr His Met Gln Glu Ala Gly Ala Asp
 260 265 270
 Ala Ile Leu Glu Leu Ala Tyr Thr Leu Ala Asp Gly Leu Glu Tyr Ser
 275 280 285
 Arg Thr Gly Leu Gln Ala Gly Leu Thr Ile Asp Glu Phe Ala Pro Arg
 290 295 300
 Leu Ser Phe Phe Trp Gly Ile Gly Met Asn Phe Tyr Met Glu Ile Ala
 305 310 315 320
 Lys Met Arg Ala Gly Arg Arg Leu Trp Ala His Leu Ile Glu Lys Met
 325 330 335
 Phe Gln Pro Lys Asn Ser Lys Ser Leu Leu Leu Arg Ala His Cys Gln
 340 345 350
 Thr Ser Gly Trp Ser Leu Thr Glu Gln Asp Pro Tyr Asn Asn Ile Val
 355 360 365
 Arg Thr Ala Ile Glu Ala Met Ala Ala Val Phe Gly Gly Thr Gln Ser
 370 375 380
 Leu His Thr Asn Ser Phe Asp Glu Ala Leu Gly Leu Pro Thr Val Lys

385	390	395	400
Ser Ala Arg Ile Ala Arg Asn Thr Gln Ile Ile Ile Gln Glu Glu Ser			
405	410	415	
Gly Ile Pro Lys Val Ala Asp Pro Trp Gly Gly Ser Tyr Met Met Glu			
420	425	430	
Cys Leu Thr Asn Asp Val Tyr Asp Ala Ala Leu Lys Leu Ile Asn Glu			
435	440	445	
Ile Glu Glu Met Gly Gly Met Ala Lys Ala Val Ala Glu Gly Ile Pro			
450	455	460	
Lys Leu Arg Ile Glu Glu Cys Ala Ala Arg Arg Gln Ala Arg Ile Asp			
465	470	475	480
Ser Gly Ser Glu Val Val Gly Val Asn Lys Tyr Gln Leu Glu Lys			
485	490	495	
Glu Asp Ala Val Glu Val Leu Ala Ile Asp Asn Thr Ser Val Arg Asn			
500	505	510	
Arg Gln Ile Glu Lys Leu Lys Ile Lys Ser Ser Arg Asp Gln Ala			
515	520	525	
Leu Ala Glu His Cys Leu Ala Ala Leu Thr Glu Cys Ala Ala Ser Gly			
530	535	540	
Asp Gly Asn Ile Leu Ala Leu Ala Val Asp Ala Ser Arg Ala Arg Cys			
545	550	555	560
Thr Val Gly Glu Ile Thr Asp Ala Leu Lys Val Phe Gly Glu His			
565	570	575	
Lys Ala Asn Asp Arg Met Val Ser Gly Ala Tyr Arg Gln Glu Phe Gly			
580	585	590	
Glu Ser Lys Glu Ile Thr Ser Ala Ile Lys Arg Val His Lys Phe Met			
595	600	605	
Glu Arg Glu Gly Arg Arg Pro Arg Leu Leu Val Ala Lys Met Gly Gln			
610	615	620	
Asp Gly His Asp Arg Gly Ala Lys Val Ile Ala Thr Gly Phe Ala Asp			
625	630	635	640
Leu Gly Phe Asp Val Asp Ile Gly Pro Leu Phe Gln Thr Pro Arg Glu			
645	650	655	
Val Ala Gln Gln Ala Val Asp Ala Asp Val His Ala Val Gly Val Ser			
660	665	670	
Thr Leu Ala Ala Gly His Lys Thr Leu Val Pro Glu Leu Ile Lys Glu			
675	680	685	
Leu Asn Ser Leu Gly Arg Pro Asp Ile Leu Val Met Cys Gly Gly Val			
690	695	700	
Ile Pro Pro Gln Asp Tyr Glu Phe Leu Phe Glu Val Gly Val Ser Asn			
705	710	715	720
Val Phe Gly Pro Gly Thr Arg Ile Pro Lys Ala Ala Val Gln Val Leu			
725	730	735	
Asp Asp Ile Glu Lys Cys Leu Glu Lys Lys Gln Gln Ser Val			
740	745	750	

<210> 255
 <211> 806
 <212> DNA
 <213> Homo sapiens

<400> 255

agcctgggtg acagacttaag actgtcgcca	aaaaagagga	aaaaagttat ccagtgcagt	60
ttctacagag ataaaagaag taatagttct	ggctgggtgt	ggtgccattt gcctgtatc	120
ccaaacactt gggaggccaa ggcagggtga	tcacatgagg	tcaggagttc gagaccagcc	180
tggccaaacat ggccaaaactg tctctactaa	aaatataaaa	attaggtatg gtggcacgtg	240
cctgtactta cagctacttg ggaggcttag	gcatgagatg	acaatctctt gaaccaggaa	300
ggcgagggtt gcagtggatc gagattgcac	cactgcactc	cagcttgggt gatggagtg	360
gactcaaata aaaaaggatc tagttctgca	tttcagatgtt	ggcttgtga accaggctat	420
atgccttccaa gatttaaatg ttttctgta	ttatactctc	aattgtgttt taaaaaaaaatc	480
tcttacagaa atctctaccc	caggcactaa	gtgttatgac atggtagca tattgatatt	540

gaaaacttag	ctaggactc	cagccttta	agataattta	aatgtaaaat	taaatggta	600
accagcaatc	taatgtcatg	tgggtgcag	tttggatatt	gcatgaacag	ctaaggaatc	660
acctgttcta	gtgccaaaga	tcactcattg	ctaattttgt	tctgtacgc	ttatgtata	720
ttttcatggt	ggagacggac	tctgtgtgct	cagggcctg	tctctaggaa	gattttgtca	780
attcccaaata	cagtttggaa	gattca				806

<210> 256
<211> 9192
<212> DNA
<213> Homo sapiens

<400> 256						
atgcggagta	ggctcccccc	agcgcttgcc	gccctggcg	cggccctact	cctgtcttcc	60
attgaggcag	aagttgacc	accttcagac	ttgaatttta	aaattataga	tgaaaaatact	120
gttcatatgt	catgggcaga	accaggatgat	ccaattgtgg	ttacagaat	aacgggtggac	180
cctacaacgg	atgggcctac	taaagaattt	accctttcag	ctagtaccac	tgaaaactta	240
ttgtcagaac	ttgtacctga	aacagagtat	gtggtgacaa	taacttcata	tgatgaagta	300
gaagaaagt	taccagttat	aggacaacta	acaattcaaa	caggtagttc	gacaaagcca	360
gtggagaaga	aacctggaaa	aaccgagata	caaaaatgt	ctgtcagtgc	ctggactgtat	420
ttggtttcc	tcgtggatgg	ctcttggagt	gtgggaagaa	ataatttcaa	gtacatttt	480
gacttcattg	ctgctcttgc	gtctgtttt	gacattgggg	aagagaagac	aagagttgga	540
gttgttcaat	acagctctga	caccaggact	gaatttaact	taaatcaga	ctaccaaagg	600
gatgaacttc	ttgctgcaat	aaaaaaaaatt	ccatataaag	gtggcaacac	aatgacagg	660
gatgccattg	attatttagt	aaaaaatact	ttcacggaa	ctgctgggc	aagagttgc	720
tttcctaaag	tggcaattat	tattacggat	gaaaaatccc	aggatgaagt	gaaaattca	780
gcaagagagc	ttcgtaatgt	tggagttgaa	gttttctcct	tggcattaa	agctgcagat	840
gcaaaaagaac	tcaaacaat	tgcctccaca	ccttcaactga	accatgtttt	caatgtggcc	900
aacttggatg	caattgtgg	tattcagaat	gagatcatct	cccaggtgt	ctcaggagtt	960
gatgagcagc	tttgtgaatt	ggttagtgg	gaagaagttg	ttgagcctcc	ttcaaatttg	1020
attgccccatgg	aagtctcttc	aaaatatgtt	aagctaaattt	ggaatccatc	tcctagtcc	1080
gtgactggct	acaaaagtcat	cctcacacca	atgactgcag	gaagccgaca	gcacgctctg	1140
agtgtggggc	ctcagacaac	cacgctcagt	gttcgcgacc	tctcagcaga	cacggagtac	1200
cagatcagt	tttccgcac	gaagggaaatg	acatccagtg	aaccatccc	ataatggag	1260
aagactcagc	caatgaaaatg	tcaagtggaa	tgttcacgt	gtgtggatat	aaaagccat	1320
attgtgtttt	ttgttgatgg	tcctatagc	attgggatgg	caaactttgt	taaagttaga	1380
gccttttgg	aatgttctgt	aaaaagtttt	gaaatttcac	caaatagggt	ccagattgt	1440
cttgcataat	acagccggga	tcctcataact	gagttcactt	tgaaaaattt	caccaaagg	1500
gaagatataa	ttgaagcaat	aaacaccc	ctttacagag	gaggatctac	aaatactggc	1560
aaagcaatga	tttatgtca	agagaaaata	tttgcctt	gcaagggtatc	aagaagcaat	1620
gtgccaaagg	tcatgattt	tatcacggat	ggggaaatcat	cagatgtttt	cagagatcct	1680
gcfataaaac	tgaggaattt	agatgtgaa	atctttgcag	ttgggtgt	ggatgccgtt	1740
cgctcagaat	ttgaagctat	tgcctctcct	cctgcagaga	cccatgtgtt	cacagtggaa	1800
gattttgatg	cttttcagag	gatattttt	gaactcacac	agtctatctg	tctttagaatt	1860
gagcaagaat	ttgcagctat	aaagaagaaa	gtttacgtcc	ctccaaagga	tcttagttt	1920
tcagaagtg	tttcttatgg	tttcaaaacc	aactggtctc	cagctggaga	aaatgtttt	1980
tcatatcaca	tcacctacaa	ggaagcggct	ggggatgtat	aggtcactgt	ggtggagcca	2040
gcatcgagca	ccagtgttgt	tctcagcagc	ctgaagccag	agaccttgc	tttggtcaat	2100
gtgactgcgg	agtatgagga	tggcttcagc	attcccttag	ctggagagga	gaccaccgaa	2160
gaagtaaaag	gagcacctcg	aaacctaag	gtgacagatg	agactacaga	tagttcaaa	2220
attacttgg	ctcaagctcc	agggagagtt	ttaagatgtc	gaatttatata	tagaccagt	2280
gctggggag	agagcagaga	agttaccacc	ccacccaatc	agaggaggag	aacactggag	2340
aacttggattc	cagacacgaa	atataaacta	tctgtatcc	ctgaataactt	ctcaggacct	2400
ggtactccat	taactggaaa	tgcagccact	gaagaagtt	gagggatcc	aagagactta	2460
agagttctg	accctacgac	gtctactatg	aaattatctt	ggagtggggc	accagggaaa	2520
gtgaaacagt	atctcgatc	atatacccc	gtggcagggg	gtgaaactca	agaggtcact	2580
gtgagggag	atacaaccaa	tacggtgctg	cagggattga	aggaagggac	acaatacgcc	2640
ttatctgtga	cagcactgt	tgcgtctgg	gctggcagc	cccttgg	tgaaggaaca	2700
acacttggaa	aactgtgttc	tcctcaagat	ttagttacta	aagacatcac	tgacacatca	2760
attgggctt	attggacatc	tgctccagga	atgggtcg	gttacagggt	ctcatggaaa	2820
tcactttatg	atgatgttga	cactggagag	aaaaatctgc	ctgaagatgc	aattcatacg	2880
atgatagaaa	atctgcagcc	agagacaaa	tacagaattt	cagtatttgc	cacttacagc	2940

agtggagaag gagaacctt gactggagat gccacaactg aatttatctca agattccaa	3000
accctgaaaag tagatgaaga aacagaaaaac acaatgagag ttacatggaa accagcacca	3060
gggaaagtgc tcaactaccc tggttctat cgcgcctcatg ggagagggaa gcaaatggtt	3120
gctaagggtgc cccccacagt cactcgaca gtgttaaagc gacttcagcc acagaccaca	3180
tatgacatca cagttttcc tatttacaag atgggagaag gaaagcttag gcaaggatca	3240
ggaacaacag cttctcggtt taagtctcct agaaaacctca aaacatctga cccaaccatg	3300
tcaagttcc gagtgacttgg ggagcctgcc cctggggaaag tgaagggtta taaagtca	3360
ttccacccta cgggggatga cagaagactg ggggagttag tggttggacc ctatgacaac	3420
acagttgttt tggaggaact tagggcttgtt accacactata aagtaaatgt ttttggatg	3480
tttgatggag gagaagctc accacttgc ttgacaccctt tgacaccctt ttccgacaca	3540
actgttatgc caattttatc ttctggatg gagtgtctca ccagagctga ggcagacatt	3600
gtgttgcgttgg tggatggatc atggagcatc ggccgggcaa attttagaac cgtgaggagt	3660
ttcatttctc gtattgtgaa agtcttgac attggccca aaagagtaca atttgcttt	3720
gctcaatata gtggggatcc cagaacagag tggcagttaa atgcacacag agacaagaag	3780
agcttgcgtc aagctgtggc aaacctggc taaaaaggag gcaataactct cacaggcatg	3840
gctttaatt tcattcgcca acagaacttc aggacccaag ctggcatgag acctcgact	3900
cgaaaaattt gttgtctcat tactgatgga aatcacaag acgtgttgc agcaccttca	3960
aagaaactca aggatgaggg agtggagctg tttgttattt gtattaaaaa tgctgtatgaa	4020
gtcgaattaa agatgatttc aactgatcct gatgataccctt atgactacaa tttggcagat	4080
ttttagtgcac tctccaggat agtggatgtt ctcaccatattt attttagtgcattt cagttgtcaaa	4140
ggtccagggtt atttggaaagc accttcttac ttgttattt ctgagcgaac ccattgttct	4200
tttagagtga gctggacacc accttcttgc acgtgtggatc gatataaggat ggaataactat	4260
ccagtttctg gaggggaaacg tcaagaattt tatgtgatc gaatggaaac tagcacagtg	4320
ctgaaagatc taaaacacttgc aactgaatattt gttgtcaatg tttttctgtt ggttagaaagat	4380
gaatataatgt agcctcttgc ggggacagaaa aaaaccttgc cagtcctgtt agtcagctg	4440
aatattttatg atgttggccc taccaccatg catgtgcagt ggcagcctgtt gggaggagct	4500
actggctaca tcttgcata caaacctgtt aaggacacag agccacaacaa acccaaagag	4560
gtgcgtttgg gccaacagt gaatgacatg cagctgactt accttgcattt caacacggag	4620
tatgcagtca cagtcctgc acgttcactt gtcgcac gacccatctt gtaacacccatg cactgttgcgg	4680
gaagtccaccc tgccttacc cagacccatg gatctgaaac tcagagatgt gactcacagc	4740
actatgaatg tctttggaa accttgcctt gggaaaagtgc gtaaatatattt ttttcgtatc	4800
aaaacaccatg aagaggatgtt caaagaggtt gagggtggaca gatcagagac cagcacttcc	4860
ctcaaaagacc tcttgcata gacccatcttgc acagtccatg ttttgcgtt acatgacgag	4920
ggggagtctc ctccaggatc tgctcaagaa actaccgc acgttcactt ccgtgcaccc cccaaacaaac	4980
ttaaagatta ctgaagtaac atcagagggtt ttcagagggatc ttggatca tggagcttca	5040
gatgtgtctc tctacagaat aacttggggatc cttttggaa gtcagatataa gatggagacc	5100
atcttaatgtt gagatgaaaaa cacttgggtt ttcgaaaacc tgaaccccaa caccatctt	5160
gaagttccat tttactgcattt ctatgttgcattt ggtttttttt gttttttttt gttttttttt	5220
gagcgcactc tgccttatctt aacaacacaa gtccttccaa gttttttttt gttttttttt	5280
gtgtacaatg caacatcttgc cagctgactt gttttttttt gttttttttt gttttttttt	5340
cagaatataatgtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	5400
ataggaggatc ggcagaaacatg tttttttttt gttttttttt gttttttttt gttttttttt	5460
atcaccgtat cttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	5520
acccaaacccatg tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	5580
aatgtccatgtt gggggatccatg agaggaaat tttttttttt gttttttttt gttttttttt	5640
gcagcaggatc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	5700
aggaatctgc agccagatcatc tttttttttt gttttttttt gttttttttt gttttttttt	5760
gatggggggatc gcacatcataa tttttttttt gttttttttt gttttttttt gttttttttt	5820
caagtataaca tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	5880
gtgtctcaat atcgttgcattt gttttttttt gttttttttt gttttttttt gttttttttt	5940
gttagtgcacccatg tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6000
tccgttgcata tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6060
cgaacgttgc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6120
ctctcgatgtt cttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6180
cccactgttgc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6240
atactgttgc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6300
gatggagatgtt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6360
aacatacaca tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6420
tctccatgtt tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6480
gcctttgttgc tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6540
gatgttgcattt tttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	6600

actacattat	attnaaatgt	aacagatctg	aaaacttacc	agattgggtg	ggatacatc	6660
tgtgtcaaat	ggtcaccta	ccgggcagcc	acctcctaca	ggctaaaact	aagccctgca	6720
gatggAACCA	ggggacaaga	aattacagt	cgtggatcg	aaaccagtca	ctgcttact	6780
ggccttcac	cagacactga	ttatggtgc	actgttttt	tgcagacacc	aatctcgag	6840
ggaccaggag	tctctgttaa	agaacatacc	actgtgaaac	caacagaagc	ccctacagag	6900
ccaccacac	ctcctcccc	tcccaccatt	ccaccagccc	gggatgtatg	caaaggggcc	6960
aaggcagata	ttgtgttctt	gactgatgcc	tcctggagca	ttggggacga	taatttaac	7020
aaagtgtaa	aattcatctt	caatactgt	ggaggcttg	atgaaatcag	tcctgctgg	7080
attcaggtt	catttgtc	atacagcgat	gaggtcaagt	ctgagttcaa	gctgaacacg	7140
tacaatgaca	aggccctagc	ccttggggcc	ctccagaata	ttaggtacag	aggagggaaac	7200
acaagaacag	gcaaggccct	cacgttatac	aaggagaaag	tcttgactt	ggagagcggc	7260
atgaggaaga	atgtccctaa	ggtgtgggtt	gtggtcacgg	acggtcggc	ccaggatgag	7320
gtcaagaagg	cggcttgggt	catccagcag	tcagggttca	gtgtcttgc	agttgggtgt	7380
gctgatgtcg	actacaatga	gcttgcacac	attgcccagca	aaccaagtga	acggcacgtg	7440
ttcattgtgg	acgactttga	atcttttag	aagatcgaag	acaatcttat	tacatttgc	7500
tgtgaaactg	ccacttcaag	ttgtcctctc	atttattttgg	atggctacac	ctcaccaggt	7560
tttaaaatgc	ttgaagcata	caacctgaca	aaaaagaatt	ttgcttctgt	acaaggagta	7620
tctttggagt	cagggtctt	ccccagctac	ttagcataca	ggattcagaa	aatgcgttt	7680
gtgaatcagc	ctacagcaga	cctacaccca	aatggactcc	ctccttcata	cacgattata	7740
ttattattca	gacttctccc	agaaactccc	agtgaccctt	ttgcaatttgc	gcaaatcaca	7800
gacagagact	acaaaccaca	agttggagtg	attgcagatc	cttctagcaa	gacgttatca	7860
ttcttaaca	aggatacaag	aggcgagggt	caaactgtt	catttgacac	agaagaagta	7920
aagacattat	tttatggaaag	ttttcacaag	gttcatatttgc	tagtgcctc	aaaaagtgtt	7980
aagatttaca	ttgactgcta	tgaattata	aaaaaaagaca	tcaaggaagc	tggaaatata	8040
acaactgtat	gttatgaaat	tcttggaaaa	ctccttaaaat	gggaaaggaa	atcagccca	8100
ttccaaatcc	agagtttgc	cattgtctgc	agtccagtgt	ggaccagtag	agacagatgc	8160
tgtgatattc	cctctaggag	agatgaggga	aatggcccttgc	ctttccaaa	ttcttcaca	8220
tgtacacagg	acagcgttgc	acctccaggaa	cctccaggccc	ctgcaggagg	acctgggtgt	8280
aaaggtccca	gaggtgaaag	aggtatcgt	ggggcaatgg	ggcccccctgg	tcctcgtgga	8340
gacataggtc	ctccaggccc	ccaggggtcct	ccagggccctc	agggacccaa	tggactcttgc	8400
attccggag	agcaaggtcg	ccaagggtat	aaaggtgtat	ctggagagcc	aggacttccaa	8460
ggccgaacag	gaaccccagg	attacctggc	ccaccaggac	caatgggacc	tccaggagac	8520
agaggcttca	ctggaaaaaa	cagtcaatgg	ggaccagggg	gccaccagg	gccccccgggaa	8580
agcccaggct	ccccaggagt	cacaggacca	agtggaaagc	caggaaaacc	tggagatcat	8640
ggcagaccag	gtccatctgg	gttggaaagga	aaaaaaagggt	ataggggaga	cattgcttcc	8700
cagaacatga	tgcgagcagt	tgcgagacaa	gtctgtgaac	aattgataag	tggtcagatg	8760
aacagattca	atcagatgt	gaatcagatt	ccaaatgatt	accagtccag	tcgcaaccag	8820
ccagggccgc	cggttccacc	gggacctcct	ggtagcgcag	gaccagagg	agaacactggg	8880
cctggggggc	gcccaggctt	cccgggcaca	ccagggatgc	agggacccccc	tggggacgaa	8940
ggtttgcag	gagagaaagg	tggaaagggt	actggatctt	caggacctcg	ggggctgcct	9000
ggccccccag	gtccacacaagg	agaatccaga	acaggtccac	cagggtccac	agggtcaaga	9060
ggtccccctg	gccccccctgg	ccgttctgg	aactcaggtt	tccagggccc	cccaggctt	9120
cctggatact	gtgattctc	tcagtgtgc	agcatccat	acaacgggca	aagctatcca	9180
ggttccggct	aa					9192

<210> 257
 <211> 3063
 <212> PRT
 <213> Homo sapiens

<400> 257

Met	Arg	Ser	Arg	Leu	Pro	Pro	Ala	Leu	Ala	Leu	Gly	Ala	Ala	Leu	
1				5				10						15	
Leu	Leu	Ser	Ser	Ile	Glu	Ala	Glu	Val	Asp	Pro	Pro	Ser	Asp	Leu	Asn
					20			25						30	
Phe	Lys	Ile	Ile	Asp	Glu	Asn	Thr	Val	His	Met	Ser	Trp	Ala	Glu	Pro
						35		40						45	
Val	Asp	Pro	Ile	Val	Gly	Tyr	Arg	Ile	Thr	Val	Asp	Pro	Thr	Thr	Asp
				50				55						60	

Gly Pro Thr Lys Glu Phe Thr Leu Ser Ala Ser Thr Thr Glu Thr Leu
 65 70 75 80
 Leu Ser Glu Leu Val Pro Glu Thr Glu Tyr Val Val Thr Ile Thr Ser
 85 90 95
 Tyr Asp Glu Val Glu Glu Ser Val Pro Val Ile Gly Gln Leu Thr Ile
 100 105 110
 Gln Thr Gly Ser Ser Thr Lys Pro Val Glu Lys Lys Pro Gly Lys Thr
 115 120 125
 Glu Ile Gln Lys Cys Ser Val Ser Ala Trp Thr Asp Leu Val Phe Leu
 130 135 140
 Val Asp Gly Ser Trp Ser Val Gly Arg Asn Asn Phe Lys Tyr Ile Leu
 145 150 155 160
 Asp Phe Ile Ala Ala Leu Val Ser Ala Phe Asp Ile Gly Glu Glu Lys
 165 170 175
 Thr Arg Val Gly Val Val Gln Tyr Ser Ser Asp Thr Arg Thr Glu Phe
 180 185 190
 Asn Leu Asn Gln Tyr Tyr Gln Arg Asp Glu Leu Leu Ala Ala Ile Lys
 195 200 205
 Lys Ile Pro Tyr Lys Gly Gly Asn Thr Met Thr Gly Asp Ala Ile Asp
 210 215 220
 Tyr Leu Val Lys Asn Thr Phe Thr Glu Ser Ala Gly Ala Arg Val Gly
 225 230 235 240
 Phe Pro Lys Val Ala Ile Ile Ile Thr Asp Gly Lys Ser Gln Asp Glu
 245 250 255
 Val Glu Ile Pro Ala Arg Glu Leu Arg Asn Val Gly Val Glu Val Phe
 260 265 270
 Ser Leu Gly Ile Lys Ala Ala Asp Ala Lys Glu Leu Lys Gln Ile Ala
 275 280 285
 Ser Thr Pro Ser Leu Asn His Val Phe Asn Val Ala Asn Phe Asp Ala
 290 295 300
 Ile Val Asp Ile Gln Asn Glu Ile Ile Ser Gln Val Cys Ser Gly Val
 305 310 315 320
 Asp Glu Gln Leu Gly Glu Leu Val Ser Gly Glu Glu Val Val Glu Pro
 325 330 335
 Pro Ser Asn Leu Ile Ala Met Glu Val Ser Ser Lys Tyr Val Lys Leu
 340 345 350
 Asn Trp Asn Pro Ser Pro Ser Pro Val Thr Gly Tyr Lys Val Ile Leu
 355 360 365
 Thr Pro Met Thr Ala Gly Ser Arg Gln His Ala Leu Ser Val Gly Pro
 370 375 380
 Gln Thr Thr Thr Leu Ser Val Arg Asp Leu Ser Ala Asp Thr Glu Tyr
 385 390 395 400
 Gln Ile Ser Val Ser Ala Met Lys Gly Met Thr Ser Ser Glu Pro Ile
 405 410 415
 Ser Ile Met Glu Lys Thr Gln Pro Met Lys Val Gln Val Glu Cys Ser
 420 425 430
 Arg Gly Val Asp Ile Lys Ala Asp Ile Val Phe Leu Val Asp Gly Ser
 435 440 445
 Tyr Ser Ile Gly Ile Ala Asn Phe Val Lys Val Arg Ala Phe Leu Glu
 450 455 460
 Val Leu Val Lys Ser Phe Glu Ile Ser Pro Asn Arg Val Gln Ile Ser
 465 470 475 480
 Leu Val Gln Tyr Ser Arg Asp Pro His Thr Glu Phe Thr Leu Lys Lys
 485 490 495
 Phe Thr Lys Val Glu Asp Ile Ile Glu Ala Ile Asn Thr Phe Pro Tyr
 500 505 510
 Arg Gly Gly Ser Thr Asn Thr Gly Lys Ala Met Thr Tyr Val Arg Glu
 515 520 525
 Lys Ile Phe Val Pro Ser Lys Gly Ser Arg Ser Asn Val Pro Lys Val
 530 535 540
 Met Ile Leu Ile Thr Asp Gly Lys Ser Ser Asp Ala Phe Arg Asp Pro

545	550	555	560
Ala Ile Lys Leu Arg Asn Ser Asp Val Glu Ile Phe Ala Val Gly Val			
565	570	575	
Lys Asp Ala Val Arg Ser Glu Leu Glu Ala Ile Ala Ser Pro Pro Ala			
580	585	590	
Glu Thr His Val Phe Thr Val Glu Asp Phe Asp Ala Phe Gln Arg Ile			
595	600	605	
Ser Phe Glu Leu Thr Gln Ser Ile Cys Leu Arg Ile Glu Gln Glu Leu			
610	615	620	
Ala Ala Ile Lys Lys Ala Tyr Val Pro Pro Lys Asp Leu Ser Phe			
625	630	635	640
Ser Glu Val Thr Ser Tyr Gly Phe Lys Thr Asn Trp Ser Pro Ala Gly			
645	650	655	
Glu Asn Val Phe Ser Tyr His Ile Thr Tyr Lys Glu Ala Ala Gly Asp			
660	665	670	
Asp Glu Val Thr Val Val Glu Pro Ala Ser Ser Thr Ser Val Val Leu			
675	680	685	
Ser Ser Leu Lys Pro Glu Thr Leu Tyr Leu Val Asn Val Thr Ala Glu			
690	695	700	
Tyr Glu Asp Gly Phe Ser Ile Pro Leu Ala Gly Glu Glu Thr Thr Glu			
705	710	715	720
Glu Val Lys Gly Ala Pro Arg Asn Leu Lys Val Thr Asp Glu Thr Thr			
725	730	735	
Asp Ser Phe Lys Ile Thr Trp Thr Gln Ala Pro Gly Arg Val Leu Arg			
740	745	750	
Cys Arg Ile Ile Tyr Arg Pro Val Ala Gly Gly Glu Ser Arg Glu Val			
755	760	765	
Thr Thr Pro Pro Asn Gln Arg Arg Arg Thr Leu Glu Asn Leu Ile Pro			
770	775	780	
Asp Thr Lys Tyr Glu Val Ser Val Ile Pro Glu Tyr Phe Ser Gly Pro			
785	790	795	800
Gly Thr Pro Leu Thr Gly Asn Ala Ala Thr Glu Glu Val Arg Gly Asn			
805	810	815	
Pro Arg Asp Leu Arg Val Ser Asp Pro Thr Thr Ser Thr Met Lys Leu			
820	825	830	
Ser Trp Ser Gly Ala Pro Gly Lys Val Lys Gln Tyr Leu Val Thr Tyr			
835	840	845	
Thr Pro Val Ala Gly Gly Glu Thr Gln Glu Val Thr Val Arg Gly Asp			
850	855	860	
Thr Thr Asn Thr Val Leu Gln Gly Leu Lys Glu Gly Thr Gln Tyr Ala			
865	870	875	880
Leu Ser Val Thr Ala Leu Tyr Ala Ser Gly Ala Gly Asp Ala Leu Phe			
885	890	895	
Gly Glu Gly Thr Thr Leu Glu Glu Arg Gly Ser Pro Gln Asp Leu Val			
900	905	910	
Thr Lys Asp Ile Thr Asp Thr Ser Ile Gly Ala Tyr Trp Thr Ser Ala			
915	920	925	
Pro Gly Met Val Arg Gly Tyr Arg Val Ser Trp Lys Ser Leu Tyr Asp			
930	935	940	
Asp Val Asp Thr Gly Glu Lys Asn Leu Pro Glu Asp Ala Ile His Thr			
945	950	955	960
Met Ile Glu Asn Leu Gln Pro Glu Thr Lys Tyr Arg Ile Ser Val Phe			
965	970	975	
Ala Thr Tyr Ser Ser Gly Glu Gly Glu Pro Leu Thr Gly Asp Ala Thr			
980	985	990	
Thr Glu Leu Ser Gln Asp Ser Lys Thr Leu Lys Val Asp Glu Glu Thr			
995	1000	1005	
Glu Asn Thr Met Arg Val Thr Trp Lys Pro Ala Pro Gly Lys Val Val			
1010	1015	1020	
Asn Tyr Arg Val Val Tyr Arg Pro His Gly Arg Gly Lys Gln Met Val			
1025	1030	1035	1040

Ala Lys Val Pro Pro Thr Val Thr Ser Thr Val Leu Lys Arg Leu Gln
 1045 1050 1055
 Pro Gln Thr Thr Tyr Asp Ile Thr Val Leu Pro Ile Tyr Lys Met Gly
 1060 1065 1070
 Glu Gly Lys Leu Arg Gln Gly Ser Gly Thr Thr Ala Ser Arg Phe Lys
 1075 1080 1085
 Ser Pro Arg Asn Leu Lys Thr Ser Asp Pro Thr Met Ser Ser Phe Arg
 1090 1095 1100
 Val Thr Trp Glu Pro Ala Pro Gly Glu Val Lys Gly Tyr Lys Val Thr
 1105 1110 1115 1120
 Phe His Pro Thr Gly Asp Asp Arg Arg Leu Gly Glu Leu Val Val Gly
 1125 1130 1135
 Pro Tyr Asp Asn Thr Val Val Leu Glu Leu Arg Ala Gly Thr Thr
 1140 1145 1150
 Tyr Lys Val Asn Val Phe Gly Met Phe Asp Gly Gly Glu Ser Ser Pro
 1155 1160 1165
 Leu Val Gly Gln Glu Met Thr Thr Leu Ser Asp Thr Thr Val Met Pro
 1170 1175 1180
 Ile Leu Ser Ser Gly Met Glu Cys Leu Thr Arg Ala Glu Ala Asp Ile
 1185 1190 1195 1200
 Val Leu Leu Val Asp Gly Ser Trp Ser Ile Gly Arg Ala Asn Phe Arg
 1205 1210 1215
 Thr Val Arg Ser Phe Ile Ser Arg Ile Val Glu Val Phe Asp Ile Gly
 1220 1225 1230
 Pro Lys Arg Val Gln Ile Ala Leu Ala Gln Tyr Ser Gly Asp Pro Arg
 1235 1240 1245
 Thr Glu Trp Gln Leu Asn Ala His Arg Asp Lys Lys Ser Leu Leu Gln
 1250 1255 1260
 Ala Val Ala Asn Leu Pro Tyr Lys Gly Gly Asn Thr Leu Thr Gly Met
 1265 1270 1275 1280
 Ala Leu Asn Phe Ile Arg Gln Gln Asn Phe Arg Thr Gln Ala Gly Met
 1285 1290 1295
 Arg Pro Arg Ala Arg Lys Ile Gly Val Leu Ile Thr Asp Gly Lys Ser
 1300 1305 1310
 Gln Asp Asp Val Glu Ala Pro Ser Lys Lys Leu Lys Asp Glu Gly Val
 1315 1320 1325
 Glu Leu Phe Ala Ile Gly Ile Lys Asn Ala Asp Glu Val Glu Leu Lys
 1330 1335 1340
 Met Ile Ala Thr Asp Pro Asp Asp Thr His Asp Tyr Asn Val Ala Asp
 1345 1350 1355 1360
 Phe Glu Ser Leu Ser Arg Ile Val Asp Asp Leu Thr Ile Asn Leu Cys
 1365 1370 1375
 Asn Ser Val Lys Gly Pro Gly Asp Leu Glu Ala Pro Ser Asn Leu Val
 1380 1385 1390
 Ile Ser Glu Arg Thr His Arg Ser Phe Arg Val Ser Trp Thr Pro Pro
 1395 1400 1405
 Ser Asp Ser Val Asp Arg Tyr Lys Val Glu Tyr Tyr Pro Val Ser Gly
 1410 1415 1420
 Gly Lys Arg Gln Glu Phe Tyr Val Ser Arg Met Glu Thr Ser Thr Val
 1425 1430 1435 1440
 Leu Lys Asp Leu Lys Pro Glu Thr Glu Tyr Val Val Asn Val Tyr Ser
 1445 1450 1455
 Val Val Glu Asp Glu Tyr Ser Glu Pro Leu Lys Gly Thr Glu Lys Thr
 1460 1465 1470
 Leu Pro Val Pro Val Val Ser Leu Asn Ile Tyr Asp Val Gly Pro Thr
 1475 1480 1485
 Thr Met His Val Gln Trp Gln Pro Val Gly Gly Ala Thr Gly Tyr Ile
 1490 1495 1500
 Leu Ser Tyr Lys Pro Val Lys Asp Thr Glu Pro Thr Arg Pro Lys Glu
 1505 1510 1515 1520
 Val Arg Leu Gly Pro Thr Val Asn Asp Met Gln Leu Thr Asp Leu Val

	1525	1530	1535
Pro Asn Thr Glu Tyr Ala Val Thr Val Gln Ala Val Leu His Asp Leu			
1540	1545	1550	
Thr Ser Glu Pro Val Thr Val Arg Glu Val Thr Leu Pro Leu Pro Arg			
1555	1560	1565	
Pro Gln Asp Leu Lys Leu Arg Asp Val Thr His Ser Thr Met Asn Val			
1570	1575	1580	
Phe Trp Glu Pro Val Pro Gly Lys Val Arg Lys Tyr Ile Val Arg Tyr			
1585	1590	1595	1600
Lys Thr Pro Glu Glu Asp Val Lys Glu Val Glu Val Asp Arg Ser Glu			
1605	1610	1615	
Thr Ser Thr Ser Leu Lys Asp Leu Phe Ser Gln Thr Leu Tyr Thr Val			
1620	1625	1630	
Ser Val Ser Ala Val His Asp Glu Gly Glu Ser Pro Pro Val Thr Ala			
1635	1640	1645	
Gln Glu Thr Thr Arg Pro Val Pro Ala Pro Thr Asn Leu Lys Ile Thr			
1650	1655	1660	
Glu Val Thr Ser Glu Gly Phe Arg Gly Thr Trp Asp His Gly Ala Ser			
1665	1670	1675	1680
Asp Val Ser Leu Tyr Arg Ile Thr Trp Gly Pro Phe Gly Ser Ser Asp			
1685	1690	1695	
Lys Met Glu Thr Ile Leu Asn Gly Asp Glu Asn Thr Leu Val Phe Glu			
1700	1705	1710	
Asn Leu Asn Pro Asn Thr Ile Tyr Glu Val Ser Ile Thr Ala Ile Tyr			
1715	1720	1725	
Ala Asp Glu Ser Glu Ser Asp Asp Leu Ile Gly Ser Glu Arg Thr Leu			
1730	1735	1740	
Pro Ile Leu Thr Thr Gln Ala Pro Lys Ser Gly Pro Arg Asn Leu Gln			
1745	1750	1755	1760
Val Tyr Asn Ala Thr Ser Asn Ser Leu Thr Val Lys Trp Asp Pro Ala			
1765	1770	1775	
Ser Gly Arg Val Gln Lys Tyr Arg Ile Thr Tyr Gln Pro Ser Thr Gly			
1780	1785	1790	
Glu Gly Asn Glu Gln Thr Thr Ile Gly Gly Arg Gln Asn Ser Val			
1795	1800	1805	
Val Leu Gln Lys Leu Lys Pro Asp Thr Pro Tyr Thr Ile Thr Val Ser			
1810	1815	1820	
Ser Leu Tyr Pro Asp Gly Glu Gly Arg Met Thr Gly Arg Gly Lys			
1825	1830	1835	1840
Thr Lys Pro Leu Asn Thr Val Arg Asn Leu Arg Val Tyr Asp Pro Ser			
1845	1850	1855	
Thr Ser Thr Leu Asn Val Arg Trp Asp His Ala Glu Gly Asn Pro Arg			
1860	1865	1870	
Gln Tyr Lys Leu Phe Tyr Ala Pro Ala Ala Gly Gly Pro Glu Glu Leu			
1875	1880	1885	
Val Pro Ile Pro Gly Asn Thr Asn Tyr Ala Ile Leu Arg Asn Leu Gln			
1890	1895	1900	
Pro Asp Thr Ser Tyr Thr Val Val Pro Val Tyr Thr Glu Gly			
1905	1910	1915	1920
Asp Gly Gly Arg Thr Ser Asp Thr Gly Arg Thr Leu Met Arg Gly Leu			
1925	1930	1935	
Ala Arg Asn Val Gln Val Tyr Asn Pro Thr Pro Asn Arg Leu Gly Val			
1940	1945	1950	
Arg Trp Asp Pro Ala Pro Gly Pro Val Leu Gln Tyr Arg Val Val Tyr			
1955	1960	1965	
Ser Pro Val Asp Gly Thr Arg Pro Ser Glu Ser Ile Val Val Pro Gly			
1970	1975	1980	
Asn Thr Arg Met Val His Leu Glu Arg Leu Ile Pro Asp Thr Leu Tyr			
1985	1990	1995	2000
Ser Val Asn Leu Val Ala Leu Tyr Ser Asp Gly Glu Gly Asn Pro Ser			
2005	2010	2015	

Pro Ala Gln Gly Arg Thr Leu Pro Arg Ser Gly Pro Arg Asn Leu Arg
 2020 2025 2030
 Val Phe Gly Glu Thr Thr Asn Ser Leu Ser Val Ala Trp Asp His Ala
 2035 2040 2045
 Asp Gly Pro Val Gln Gln Tyr Arg Ile Ile Tyr Ser Pro Thr Val Gly
 2050 2055 2060
 Asp Pro Ile Asp Glu Tyr Thr Thr Val Pro Gly Arg Arg Asn Asn Val
 2065 2070 2075 2080
 Ile Leu Gln Pro Leu Gln Pro Asp Thr Pro Tyr Lys Ile Thr Val Ile
 2085 2090 2095
 Ala Val Tyr Glu Asp Gly Asp Gly His Leu Thr Gly Asn Gly Arg
 2100 2105 2110
 Thr Val Gly Leu Leu Pro Pro Gln Asn Ile His Ile Ser Asp Glu Trp
 2115 2120 2125
 Tyr Thr Arg Phe Arg Val Ser Trp Asp Pro Ser Pro Ser Pro Val Leu
 2130 2135 2140
 Gly Tyr Lys Ile Val Tyr Lys Pro Val Gly Ser Asn Glu Pro Met Glu
 2145 2150 2155 2160
 Ala Phe Val Gly Glu Met Thr Ser Tyr Thr Leu His Asn Leu Asn Pro
 2165 2170 2175
 Ser Thr Thr Tyr Asp Val Asn Val Tyr Ala Gln Tyr Asp Ser Gly Leu
 2180 2185 2190
 Ser Val Pro Leu Thr Asp Gln Gly Thr Thr Leu Tyr Leu Asn Val Thr
 2195 2200 2205
 Asp Leu Lys Thr Tyr Gln Ile Gly Trp Asp Thr Phe Cys Val Lys Trp
 2210 2215 2220
 Ser Pro His Arg Ala Ala Thr Ser Tyr Arg Leu Lys Leu Ser Pro Ala
 2225 2230 2235 2240
 Asp Gly Thr Arg Gly Gln Glu Ile Thr Val Arg Gly Ser Glu Thr Ser
 2245 2250 2255
 His Cys Phe Thr Gly Leu Ser Pro Asp Thr Asp Tyr Gly Val Thr Val
 2260 2265 2270
 Phe Val Gln Thr Pro Asn Leu Glu Gly Pro Gly Val Ser Val Lys Glu
 2275 2280 2285
 His Thr Thr Val Lys Pro Thr Glu Ala Pro Thr Glu Pro Pro Thr Pro
 2290 2295 2300
 Pro Pro Pro Pro Thr Ile Pro Pro Ala Arg Asp Val Cys Lys Gly Ala
 2305 2310 2315 2320
 Lys Ala Asp Ile Val Phe Leu Thr Asp Ala Ser Trp Ser Ile Gly Asp
 2325 2330 2335
 Asp Asn Phe Asn Lys Val Val Lys Phe Ile Phe Asn Thr Val Gly Gly
 2340 2345 2350
 Phe Asp Glu Ile Ser Pro Ala Gly Ile Gln Val Ser Phe Val Gln Tyr
 2355 2360 2365
 Ser Asp Glu Val Lys Ser Glu Phe Lys Leu Asn Thr Tyr Asn Asp Lys
 2370 2375 2380
 Ala Leu Ala Leu Gly Ala Leu Gln Asn Ile Arg Tyr Arg Gly Gly Asn
 2385 2390 2395 2400
 Thr Arg Thr Gly Lys Ala Leu Thr Phe Ile Lys Glu Lys Val Leu Thr
 2405 2410 2415
 Trp Glu Ser Gly Met Arg Lys Asn Val Pro Lys Val Leu Val Val Val
 2420 2425 2430
 Thr Asp Gly Arg Ser Gln Asp Glu Val Lys Lys Ala Ala Leu Val Ile
 2435 2440 2445
 Gln Gln Ser Gly Phe Ser Val Phe Val Val Gly Val Ala Asp Val Asp
 2450 2455 2460
 Tyr Asn Glu Leu Ala Asn Ile Ala Ser Lys Pro Ser Glu Arg His Val
 2465 2470 2475 2480
 Phe Ile Val Asp Asp Phe Glu Ser Phe Glu Lys Ile Glu Asp Asn Leu
 2485 2490 2495
 Ile Thr Phe Val Cys Glu Thr Ala Thr Ser Ser Cys Pro Leu Ile Tyr

2500	2505	2510
Leu Asp Gly Tyr Thr Ser Pro Gly Phe Lys Met Leu Glu Ala Tyr Asn		
2515	2520	2525
Leu Thr Glu Lys Asn Phe Ala Ser Val Gln Gly Val Ser Leu Glu Ser		
2530	2535	2540
Gly Ser Phe Pro Ser Tyr Ser Ala Tyr Arg Ile Gln Lys Asn Ala Phe		
2545	2550	2555
2560		
Val Asn Gln Pro Thr Ala Asp Leu His Pro Asn Gly Leu Pro Pro Ser		
2565	2570	2575
Tyr Thr Ile Ile Leu Leu Phe Arg Leu Leu Pro Glu Thr Pro Ser Asp		
2580	2585	2590
Pro Phe Ala Ile Trp Gln Ile Thr Asp Arg Asp Tyr Lys Pro Gln Val		
2595	2600	2605
Gly Val Ile Ala Asp Pro Ser Ser Lys Thr Leu Ser Phe Phe Asn Lys		
2610	2615	2620
Asp Thr Arg Gly Glu Val Gln Thr Val Thr Phe Asp Thr Glu Glu Val		
2625	2630	2635
2640		
Lys Thr Leu Phe Tyr Gly Ser Phe His Lys Val His Ile Val Val Thr		
2645	2650	2655
Ser Lys Ser Val Lys Ile Tyr Ile Asp Cys Tyr Glu Ile Ile Glu Lys		
2660	2665	2670
Asp Ile Lys Glu Ala Gly Asn Ile Thr Thr Asp Gly Tyr Glu Ile Leu		
2675	2680	2685
Gly Lys Leu Leu Lys Gly Glu Arg Lys Ser Ala Ala Phe Gln Ile Gln		
2690	2695	2700
Ser Phe Asp Ile Val Cys Ser Pro Val Trp Thr Ser Arg Asp Arg Cys		
2705	2710	2715
2720		
Cys Asp Ile Pro Ser Arg Arg Asp Glu Gly Lys Cys Pro Ala Phe Pro		
2725	2730	2735
Asn Ser Cys Thr Cys Thr Gln Asp Ser Val Gly Pro Pro Gly Pro Pro		
2740	2745	2750
Gly Pro Ala Gly Gly Pro Gly Ala Lys Gly Pro Arg Gly Glu Arg Gly		
2755	2760	2765
Ile Ser Gly Ala Ile Gly Pro Pro Gly Pro Arg Gly Asp Ile Gly Pro		
2770	2775	2780
Pro Gly Pro Gln Gly Pro Pro Gly Pro Gln Gly Pro Asn Gly Leu Ser		
2785	2790	2795
2800		
Ile Pro Gly Glu Gln Gly Arg Gln Gly Met Lys Gly Asp Ala Gly Glu		
2805	2810	2815
Pro Gly Leu Pro Gly Arg Thr Gly Thr Pro Gly Leu Pro Gly Pro Pro		
2820	2825	2830
Gly Pro Met Gly Pro Pro Gly Asp Arg Gly Phe Thr Gly Lys Asp Ser		
2835	2840	2845
Ala Met Gly Pro Arg Gly Pro Pro Gly Arg Pro Gly Ser Pro Gly Ser		
2850	2855	2860
Pro Gly Val Thr Gly Pro Ser Gly Lys Pro Gly Lys Pro Gly Asp His		
2865	2870	2875
2880		
Gly Arg Pro Gly Pro Ser Gly Leu Lys Gly Glu Lys Gly Asp Arg Gly		
2885	2890	2895
Asp Ile Ala Ser Gln Asn Met Met Arg Ala Val Ala Arg Gln Val Cys		
2900	2905	2910
Glu Gln Leu Ile Ser Gly Gln Met Asn Arg Phe Asn Gln Met Leu Asn		
2915	2920	2925
Gln Ile Pro Asn Asp Tyr Gln Ser Ser Arg Asn Gln Pro Gly Pro Pro		
2930	2935	2940
Gly Pro Pro Gly Pro Pro Gly Ser Ala Gly Ala Arg Gly Glu Pro Gly		
2945	2950	2955
2960		
Pro Gly Gly Arg Pro Gly Phe Pro Gly Thr Pro Gly Met Gln Gly Pro		
2965	2970	2975
Pro Gly Glu Arg Gly Leu Pro Gly Glu Lys Gly Glu Arg Gly Thr Gly		
2980	2985	2990

Ser Ser Gly Pro Arg Gly Leu Pro Gly Pro Pro Gly Pro Gln Gly Glu
 2995 3000 3005
 Ser Arg Thr Gly Pro Pro Gly Ser Thr Gly Ser Arg Gly Pro Pro Gly
 3010 3015 3020
 Pro Pro Gly Arg Pro Gly Asn Ser Gly Ile Gln Gly Pro Pro Gly Pro
 3025 3030 3035 3040
 Pro Gly Tyr Cys Asp Ser Ser Gln Cys Ala Ser Ile Pro Tyr Asn Gly
 3045 3050 3055
 Gln Ser Tyr Pro Gly Ser Gly
 3060

<210> 258
 <211> 1717
 <212> DNA
 <213> Homo sapiens

<400> 258

gtggattctt	gtccatagtg	cacatcgcttt	aagaattaac	aaaaggcagtg	tcaagacagt	60
aaggattcaa	accatttgcc	aaaaatgagt	ctaagtgcac	ttactctctt	cctggcattg	120
attgggtgta	ccagtgccca	gtactatgat	tatgatttcc	cccttatcaat	ttatgggcaa	180
tcatcaccaa	actgtgcacc	agaatgtaac	tgccctgaaa	gctacccaag	tgccatgtac	240
tgtgtatgagc	tgaaattgaa	aagtgtacca	atggtgctc	ctggaatcaa	gtatcttac	300
ccttaggaata	accagattga	ccatattgat	aaaaaggcct	ttgagaatgt	aactgatctg	360
cagtggtctca	ttcttagatca	caaccttcta	aaaaactcca	agataaaaagg	gagagtttc	420
tctaaattga	aacaactgaa	gaagctgcac	ataaaaccaca	acaacctgac	agagtctgtg	480
ggcccacttc	ccaaatctc	ggaggatctg	cagcttactc	ataacaagat	cacaaagctg	540
ggctcttttgc	aaggatttgt	aaacctgacc	ttcatccatc	tccagcacaa	tcggctgaaa	600
gaggatgctg	tttcagctgc	ttttaaagggt	cttaaatcac	tcgaataac	tgacttgagc	660
ttcaatcaga	tagccagact	gccttctgg	ctccctgtct	ctttctaaac	tctctactta	720
gacaacaata	agatcagcaa	catccctgat	gagtattca	agcgtttaa	tgcattgcag	780
tatctgcgtt	tatctcacaa	cgaactggct	gatagtggaa	tacctggaaa	ttctttcaat	840
gtgtcatccc	tgggtgagct	ggatctgtcc	tataacaagc	ttaaaaacat	accaactgtc	900
aatgaaaacc	ttgaaaacta	ttacctggag	gtcaatcaac	ttgagaagtt	tgacataaaag	960
agcttctgca	agatcctggg	gccattatcc	tactccaaga	tcaagcat	gcgtttggat	1020
ggcaatcgca	tctcagaaac	cagtcttcca	ccggatatgt	atgaatgtct	acgtgttgct	1080
aacgaagtca	ctcttaatta	atatctgtat	cctggaaccaa	tattttatgg	ttatgtttt	1140
ctgtgtgtca	gttttcatag	tatccatatt	ttattactgt	ttattacttc	catgaatttt	1200
aaaatctgag	ggaaatgttt	tgtaaacatt	tattttttt	aaagaaaaaga	tgaaaaggcag	1260
gcctatttca	tcacaagaac	acacacat	acacgaatag	acatcaaact	caatgcctta	1320
tttgtaaatt	tagtgtttt	ttatttctac	tgtcaatga	tgtgaaaaac	cttttactgg	1380
ttgcatggaa	atcagccaag	tttataatc	cttaaatctt	aatgttcctc	aaagcttgg	1440
ttaaatacat	atggatgtta	ctctcttgca	ccaaatttac	ttgatacatt	caaatttg	1500
tggaaaaaaa	ataggtggta	gatattgagg	ccaagaat	tgcaaaaatac	atgaagcttc	1560
atgcacttaa	agaagtattt	ttagaataag	aatttgcata	cttacctagt	aaaactttc	1620
tagaatttt	tttcactcta	agtcatgtat	gtttctctt	gattatttgc	atgttatgtt	1680
taataagcta	ctagcaaaat	aaaacatagc	aatggc			1717

<210> 259
 <211> 338
 <212> PRT
 <213> Homo sapiens

<400> 259

Met	Ser	Leu	Ser	Ala	Phe	Thr	Leu	Phe	Leu	Ala	Leu	Ile	Gly	Gly	Thr
1					5				10				15		
Ser	Gly	Gln	Tyr	Tyr	Asp	Tyr	Asp	Phe	Pro	Leu	Ser	Ile	Tyr	Gly	Gln
					20				25				30		
Ser	Ser	Pro	Asn	Cys	Ala	Pro	Glu	Cys	Asn	Cys	Pro	Glu	Ser	Tyr	Pro
					35				40				45		
Ser	Ala	Met	Tyr	Cys	Asp	Glu	Leu	Lys	Leu	Lys	Ser	Val	Pro	Met	Val
					50				55				60		

Pro Pro Gly Ile Lys Tyr Leu Tyr Leu Arg Asn Asn Gln Ile Asp His
 65 70 75 80
 Ile Asp Glu Lys Ala Phe Glu Asn Val Thr Asp Leu Gln Trp Leu Ile
 85 90 95
 Leu Asp His Asn Leu Leu Glu Asn Ser Lys Ile Lys Gly Arg Val Phe
 100 105 110
 Ser Lys Leu Lys Gln Leu Lys Lys Leu His Ile Asn His Asn Asn Leu
 115 120 125
 Thr Glu Ser Val Gly Pro Leu Pro Lys Ser Leu Glu Asp Leu Gln Leu
 130 135 140
 Thr His Asn Lys Ile Thr Lys Leu Gly Ser Phe Glu Gly Leu Val Asn
 145 150 155 160
 Leu Thr Phe Ile His Leu Gln His Asn Arg Leu Lys Glu Asp Ala Val
 165 170 175
 Ser Ala Ala Phe Lys Gly Leu Lys Ser Leu Glu Tyr Leu Asp Leu Ser
 180 185 190
 Phe Asn Gln Ile Ala Arg Leu Pro Ser Gly Leu Pro Val Ser Leu Leu
 195 200 205
 Thr Leu Tyr Leu Asp Asn Asn Lys Ile Ser Asn Ile Pro Asp Glu Tyr
 210 215 220
 Phe Lys Arg Phe Asn Ala Leu Gln Tyr Leu Arg Leu Ser His Asn Glu
 225 230 235 240
 Leu Ala Asp Ser Gly Ile Pro Gly Asn Ser Phe Asn Val Ser Ser Leu
 245 250 255
 Val Glu Leu Asp Leu Ser Tyr Asn Lys Leu Lys Asn Ile Pro Thr Val
 260 265 270
 Asn Glu Asn Leu Glu Asn Tyr Tyr Leu Glu Val Asn Gln Leu Glu Lys
 275 280 285
 Phe Asp Ile Lys Ser Phe Cys Lys Ile Leu Gly Pro Leu Ser Tyr Ser
 290 295 300
 Lys Ile Lys His Leu Arg Leu Asp Gly Asn Arg Ile Ser Glu Thr Ser
 305 310 315 320
 Leu Pro Pro Asp Met Tyr Glu Cys Leu Arg Val Ala Asn Glu Val Thr
 325 330 335
 Leu Asn

<210> 260
 <211> 6728
 <212> DNA
 <213> Homo sapiens

<400> 260

agcagacggg agtttctcct cggggtcgga gcaggaggca cgcggagtgt gaggccacgc	60
atgagcggac gctaaccccc tccccagcca caaagagtct acatgtctag ggtctagaca	120
tgttcagctt tgtggacctc cggctctgc tcctcttagc ggccaccgcc ctccctgacgc	180
acggccaaga ggaaggccaa gtcgagggcc aagacgaaga catcccacca atcacctgcg	240
tacagaacgg cctcaggtac catgaccgag acgtgtggaa acccgagccc tgccggatct	300
gcgtctgcga caacggcaag gtgttgtgcg atgacgtgat ctgtgacgag accaagaact	360
gccccggcgc cgaagtcccc gagggcgagt gctgtccctg ctgccccgac ggctcagagt	420
cacccaccga ccaagaaaacc accggcgctcg agggacccaa gggagacact ggcccccgag	480
gccccaaagggg accccgcaggc cccctggcc gagatggcat ccctggacag cctggacttc	540
ccggacccccc cggacccccc ggacctcccc gacccctgg cctcggagga aactttgtc	600
cccaagctgtc ttatggctat gatgagaaat caaccggagg aattccgtg cctggcccca	660
tgggtccctc tggtectctgt ggtctccctg gccccctgg tgcacctggt ccccaaggct	720
tccaaagggtcc ccctgggttag cctggcgagc ctggagcttc aggtccccatg ggtccccgag	780
gtccccccagg tccccctgga aagaatggag atgatgggaa agctggaaaa cctggtcgtc	840
ctggtgagcg tgggcctctt gggcctcagg gtgctcgagg attggccggaa acagctggcc	900
tccctggaaat gaaggggacac agaggttca gtggtttggaa tggtgccaaag ggagatgtcg	960
gtcctgtctgg tcctaagggt gacccctggca gcccctggta aaatggagct cctggtcaga	1020
tgggccccccc tggcctgctt ggtgagagag gtcgcctgg agccctggc cctgctggtg	1080

ctcggtggaaa	tgtatggtgct	actggtgctg	ccggggcccc	tggtccccacc	ggcccccgtg	1140
gtcctccctgg	cttccctgg	gctgttgg	ctaagggtga	agctggtccc	caagggcccc	1200
gaggctctga	aggccccca	ggtgtgcgt	gtgagccctgg	ccccccctggc	cctgctgg	1260
ctgctggccc	tgctggaaac	cctgggtctg	atggacagcc	tggtctaaa	gtgtccaatg	1320
gtgctctgg	tattgtctgt	gctctgg	tccctgg	ccgaggcccc	tctggacccc	1380
aggggccccgg	cggccctct	ggtcccaagg	gtaacagcgg	tgaacctgg	gctcctggca	1440
gcaaaggaga	cactgggt	aaggagagc	ctggccctgt	tgggttcaa	ggacccctgt	1500
gccctgtgg	agaggaagga	aaggaggag	ctcgaggt	accgggaccc	actggcctgc	1560
ccggacccccc	tggcgagcgt	ggtgacactg	gtagccgtgg	tttccctggc	gcagatgtg	1620
ttgctggtcc	caagggtccc	gctggtaac	gtgggtctcc	tggccccgct	ggccccc当地	1680
gatctctgg	tgaagctgt	cgcccccgt	aagctgg	gcctgg	aagggtctga	1740
ctggaagcccc	tggcagcc	ggtcctgtat	gcaaaaactgg	ccccccctgg	cccgccgtc	1800
aagatggtcg	ccccggaccc	ccagggccac	ctgggtcccc	tggtaggg	gtgtgtatgg	1860
gattccctgg	acctaaaggt	gctgtggag	agccccggca	ggctggagag	cgaggtgttc	1920
ccggacccccc	tggcgctgt	ggtcctgt	gcaaaagatgg	agaggctgg	gctcaggac	1980
ccccctggccc	tgctggtccc	gctggcgaga	gaggtgaaca	aggccctgt	ggetccccg	2040
gattccaggg	tctccctgt	cctgtgg	ctccaggt	agcaggcaaa	cctggtaac	2100
agggtgttcc	tggagaccc	ggccccc	gcccctctgg	agcaagaggc	gagagaggt	2160
tccctggcga	gcgtgg	caagttcccc	ctgg	tggaccccg	ggggccaacg	2220
gtgctcccg	caacgtgt	gctaagggt	atgtgg	ccctgg	cccggtagcc	2280
aggcgcccc	tggcctt	ggaatgc	gtgaa	ctgg	tttccaggg	2340
ctaagggtga	cagaggt	gctgtccc	aagggt	tgg	ggcaaagatg	2400
gcgtccgtgg	tctgacc	cccattgg	ctcc	tgg	cctgg	2460
agggtgaaag	tggtccc	ggccctgt	gtccc	actgg	ccccccggag	2520
accgtggta	gcctgg	cccgcc	ctgg	tttgc	gtgtg	2580
gccaacctgg	tgctaaaggc	gaactgg	atgtgg	caaaggc	gtgg	2640
ctgggcctgc	cggaccc	ggaccc	gcccatt	taatgt	ctgg	2700
ccaaagggtgc	tcg	gctgt	ctgg	tgtt	gtgt	2760
gccgagtgg	tcctc	ccctc	atgtgg	ccctgg	cctgg	2820
ctggcaaaa	aggcg	ggtccc	gtgagact	ccctgt	gtgtgt	2880
aagttggtcc	ccctgg	cctgg	ctgg	aggatccc	gtgtgtatg	2940
gtcctgtgg	tgctctgt	actccc	ctcaagg	tgctgg	ctgg	3000
tcggcctg	tggtc	ggagagag	gttcc	tcttct	ccctctgt	3060
aacctggca	acaagg	tctgg	gtgtg	tttccc	ggtccatgg	3120
gccccctgg	attgg	ccccctgg	aatctgg	tgaggg	cctgctgg	3180
aaggttcccc	tggac	gttct	gccc	tgaccgt	gagaccgg	3240
ccgctggacc	ccctgg	cctgg	ctgg	ccccgtt	ggccctgt	3300
gcaagagtgg	tgatgt	gagactgg	ctgtgg	ccgggt	gtggcccc	3360
tcggc	ccctgg	ggaccc	gcccc	gtacaagg	gagacagg	3420
aacagg	cata	aagg	gtgg	tggctcc	gtccccc	3480
gccctc	ctctc	gaaca	cctctgg	ctctgt	gtgg	3540
gagg	ttgg	ggtgc	gcaaa	actcaac	ccccctgg	3600
ccat	ggg	ccctgg	ccgtcg	ctgg	gtccccc	3660
gccctc	acctc	cccc	ctccc	ctccc	ttcag	3720
tgccc	acctc	acctc	atgtgg	ccct	gtgtatg	3780
ccaat	tggt	tcgt	gac	ggacc	ctgaggc	3840
agat	cgag	ccat	ccagg	tttcc	acctgg	3900
acct	caag	ccgt	ccagg	atgt	cccaacca	3960
gct	caac	gtgg	gtgg	ccat	acctgt	4020
accc	actc	actc	actgt	ccat	cccaagg	4080
agagg	gtgg	gtgg	actgt	ccat	tatgg	4140
aggg	ccct	ccct	ccat	ccat	atgtcc	4200
aggc	cccc	gaac	acc	ccat	ccat	4260
ctgg	accc	tacc	act	ccat	ccat	4320
aggg	caag	gggt	gggt	ccat	ccat	4380
cctgg	ccgt	ccat	ccat	ccat	ccat	4440
atgt	gggg	gtgg	gtgg	ccat	ccat	4500
tctgtt	ccat	ccat	ccat	ccat	ccat	4560
ccca	actcc	ccat	ccat	ccat	ccat	4620
agaca	atttc	ccat	ccat	ccat	ccat	4680
agtttt	tatc	ccat	ccat	ccat	ccat	4740

aaaaaaaaaa	aaaaaaaaaa	agaataaaata	aataagtttt	taaaaaagga	agcttggtcc	4800
acttgcttga	agacccatgc	gggggtaagt	ccctttctgc	ccgttgggtt	atgaaacccc	4860
aatgtgccc	tttctgctcc	tttctccaca	cccccccttg	cctccctccc	actccttccc	4920
aaatctgtct	ccccagaaga	cacagggaaac	aatgtattgt	ctgcccagca	atcaaaggca	4980
atgctcaaac	acccaagtgg	ccccaccct	cagcccgctc	ctgcccggcc	agcaccccca	5040
ggccctgggg	acctgggggt	ctcagactgc	caaagaagcc	ttgcgcattcg	gcgctcccat	5100
ggctcttgca	acatctcccc	ttcggttttg	agggggatcat	gccgggggag	ccaccagccc	5160
ctcaactgggt	tcggaggaga	gtcaggaagg	gccacgacaa	agcagaaaaca	tcggatttgg	5220
ggaacgcgtg	tcatccctg	tgccgcaggc	tggcgggag	agactgttct	tttctgttcc	5280
tttgtaact	gtgttgcgtg	aagactacat	cgttcttgc	ttgatgtgtc	accggggcaa	5340
ctgcctgggg	gcggggatgg	ggcagggtg	gaagcggctc	cccattttta	taccaaaggat	5400
gctacatcta	tgtgtgggt	gggggtggga	gggaatcat	ggtgcata	aaatttagat	5460
gcccccccaag	gccagcaat	gttcaaaatgc	tatttttat	ccttgatatt	5520	
ttttttttct	ttttttttt	tttttggat	ggggacttgt	aaatgtgtta	5580	
ttaacatgg	gaggagagcg	tgtgcgtcc	agcccagccc	gctgcact	ttccaccctc	5640
tctccacactg	cctctggctt	ctcaggcctc	tgtctccga	cctctctct	ctgaaaacct	5700
cctccacacag	tgcagcccat	cctcccgct	ccctcttagt	ctgtctcg	tcctctgtcc	5760
ccgggtttca	gagacaactt	cccaaagcac	aaagcagttt	ttccctaggg	gtgggaggaa	5820
gcaaaagact	ctgtacctat	tttgcgtgt	tataataatt	tgagatgtt	ttaattattt	5880
tgattgctgg	aataaaagcat	gtggaaatga	cccaaacata	atccgcagt	gcctccta	5940
ttcctctttt	ggagttgggg	gagggtaga	catggggaaag	gggccttggg	gtgatgggct	6000
tgccttccat	tcctgcccctt	tccctccca	ctattcttt	ctagatccct	ccataacccc	6060
actcccctt	ctctcacccct	tcttataccg	caaaccttcc	tacttcctct	ttcattttct	6120
attcttgcaa	tttccttgca	cctttccaa	atcctctttt	cccctgcaat	accatacagg	6180
caatccacgt	gcacaacaca	cacacacact	cttcacatct	ggggttgtcc	aaacctcata	6240
cccaactcccc	ttcaagccca	tccactctcc	accccttgg	tgccctgcac	ttgggtggcg	6300
tgggatgctc	atggatactg	ggagggtgag	ggaggtggaa	cccgtaggaa	ggacctgggg	6360
gcctctcctt	gaactgacat	gaagggatcat	ctggcctctg	ctcccttctc	acccacgctg	6420
acctcctgccc	gaaggagcaa	cgcaacagga	gaggggtctg	ctgagcctgg	cgagggtctg	6480
ggagggacca	ggaggaaggc	gtgctccctg	ctcgctgtcc	tggccctggg	ggagtgaggg	6540
agacagacac	ctgggagagc	tgtggggaaag	gcactcgac	cgtgccttg	ggaaggaagg	6600
agacctggcc	ctgctcacca	cggactgggt	gcctcgacct	cctgaatccc	cagaacacaa	6660
ccccccctggg	ctgggggttgt	ctgggaacc	atcggtcccc	cgcctcccg	ctactcctt	6720
ttaagctt						6728

<210> 261
 <211> 1464
 <212> PRT
 <213> Homo sapiens

<400> 261
 Met Phe Ser Phe Val Asp Leu Arg Leu Leu Leu Ala Ala Thr
 1 5 10 15
 Ala Leu Leu Thr His Gly Gln Glu Glu Gly Gln Val Glu Gly Gln Asp
 20 25 30
 Glu Asp Ile Pro Pro Ile Thr Cys Val Gln Asn Gly Leu Arg Tyr His
 35 40 45
 Asp Arg Asp Val Trp Lys Pro Glu Pro Cys Arg Ile Cys Val Cys Asp
 50 55 60
 Asn Gly Lys Val Leu Cys Asp Asp Val Ile Cys Asp Glu Thr Lys Asn
 65 70 75 80
 Cys Pro Gly Ala Glu Val Pro Glu Gly Glu Cys Cys Pro Val Cys Pro
 85 90 95
 Asp Gly Ser Glu Ser Pro Thr Asp Gln Glu Thr Thr Gly Val Glu Gly
 100 105 110
 Pro Lys Gly Asp Thr Gly Pro Arg Gly Pro Arg Gly Pro Ala Gly Pro
 115 120 125
 Pro Gly Arg Asp Gly Ile Pro Gly Gln Pro Gly Leu Pro Gly Pro Pro
 130 135 140

Gly Pro Pro Gly Pro Pro Gly Leu Gly Gly Asn Phe Ala
 145 150 155 160
 Pro Gln Leu Ser Tyr Gly Tyr Asp Glu Lys Ser Thr Gly Gly Ile Ser
 165 170 175
 Val Pro Gly Pro Met Gly Pro Ser Gly Pro Arg Gly Leu Pro Gly Pro
 180 185 190
 Pro Gly Ala Pro Gly Pro Gln Gly Phe Gln Gly Pro Pro Gly Glu Pro
 195 200 205
 Gly Glu Pro Gly Ala Ser Gly Pro Met Gly Pro Arg Gly Pro Pro Gly
 210 215 220
 Pro Pro Gly Lys Asn Gly Asp Asp Gly Glu Ala Gly Lys Pro Gly Arg
 225 230 235 240
 Pro Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Ala Arg Gly Leu Pro
 245 250 255
 Gly Thr Ala Gly Leu Pro Gly Met Lys Gly His Arg Gly Phe Ser Gly
 260 265 270
 Leu Asp Gly Ala Lys Gly Asp Ala Gly Pro Ala Gly Pro Lys Gly Glu
 275 280 285
 Pro Gly Ser Pro Gly Glu Asn Gly Ala Pro Gly Gln Met Gly Pro Arg
 290 295 300
 Gly Leu Pro Gly Glu Arg Gly Arg Pro Gly Ala Pro Gly Pro Ala Gly
 305 310 315 320
 Ala Arg Gly Asn Asp Gly Ala Thr Gly Ala Ala Gly Pro Pro Gly Pro
 325 330 335
 Thr Gly Pro Ala Gly Pro Pro Gly Phe Pro Gly Ala Val Gly Ala Lys
 340 345 350
 Gly Glu Ala Gly Pro Gln Gly Pro Arg Gly Ser Glu Gly Pro Gln Gly
 355 360 365
 Val Arg Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Ala Ala Gly Pro
 370 375 380
 Ala Gly Asn Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Ala Asn
 385 390 395 400
 Gly Ala Pro Gly Ile Ala Gly Ala Pro Gly Phe Pro Gly Ala Arg Gly
 405 410 415
 Pro Ser Gly Pro Gln Gly Pro Gly Gly Pro Pro Gly Pro Lys Gly Asn
 420 425 430
 Ser Gly Glu Pro Gly Ala Pro Gly Ser Lys Gly Asp Thr Gly Ala Lys
 435 440 445
 Gly Glu Pro Gly Pro Val Gly Val Gln Gly Pro Pro Gly Pro Ala Gly
 450 455 460
 Glu Glu Gly Lys Arg Gly Ala Arg Gly Glu Pro Gly Pro Thr Gly Leu
 465 470 475 480
 Pro Gly Pro Pro Gly Glu Arg Gly Gly Pro Gly Ser Arg Gly Phe Pro
 485 490 495
 Gly Ala Asp Gly Val Ala Gly Pro Lys Gly Pro Ala Gly Glu Arg Gly
 500 505 510
 Ser Pro Gly Pro Ala Gly Pro Lys Gly Ser Pro Gly Glu Ala Gly Arg
 515 520 525
 Pro Gly Glu Ala Gly Leu Pro Gly Ala Lys Gly Leu Thr Gly Ser Pro
 530 535 540
 Gly Ser Pro Gly Pro Asp Gly Lys Thr Gly Pro Pro Gly Pro Ala Gly
 545 550 555 560
 Gln Asp Gly Arg Pro Gly Pro Pro Gly Pro Pro Gly Ala Arg Gly Gln
 565 570 575
 Ala Gly Val Met Gly Phe Pro Gly Pro Lys Gly Ala Ala Gly Glu Pro
 580 585 590
 Gly Lys Ala Gly Glu Arg Gly Val Pro Gly Pro Pro Gly Ala Val Gly
 595 600 605
 Pro Ala Gly Lys Asp Gly Glu Ala Gly Ala Gln Gly Pro Pro Gly Pro
 610 615 620
 Ala Gly Pro Ala Gly Glu Arg Gly Glu Gln Gly Pro Ala Gly Ser Pro

625	630	635	640
Gly Phe Gln Gly Leu Pro Gly Pro Ala Gly Pro Pro Gly Glu Ala Gly			
645	650	655	
Lys Pro Gly Glu Gln Gly Val Pro Gly Asp Leu Gly Ala Pro Gly Pro			
660	665	670	
Ser Gly Ala Arg Gly Glu Arg Gly Phe Pro Gly Glu Arg Gly Val Gln			
675	680	685	
Gly Pro Pro Gly Pro Ala Gly Pro Arg Gly Ala Asn Gly Ala Pro Gly			
690	695	700	
Asn Asp Gly Ala Lys Gly Asp Ala Gly Ala Pro Gly Ala Pro Gly Ser			
705	710	715	720
Gln Gly Ala Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly Ala Ala			
725	730	735	
Gly Leu Pro Gly Pro Lys Gly Asp Arg Gly Asp Ala Gly Pro Lys Gly			
740	745	750	
Ala Asp Gly Ser Pro Gly Lys Asp Gly Val Arg Gly Leu Thr Gly Pro			
755	760	765	
Ile Gly Pro Pro Gly Pro Ala Gly Ala Pro Gly Asp Lys Gly Glu Ser			
770	775	780	
Gly Pro Ser Gly Pro Ala Gly Pro Thr Gly Ala Arg Gly Ala Pro Gly			
785	790	795	800
Asp Arg Gly Glu Pro Gly Pro Pro Gly Pro Ala Gly Phe Ala Gly Pro			
805	810	815	
Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Glu Pro Gly Asp Ala			
820	825	830	
Gly Ala Lys Gly Asp Ala Gly Pro Pro Gly Pro Ala Gly Pro Ala Gly			
835	840	845	
Pro Pro Gly Pro Ile Gly Asn Val Gly Ala Pro Gly Ala Lys Gly Ala			
850	855	860	
Arg Gly Ser Ala Gly Pro Pro Gly Ala Thr Gly Phe Pro Gly Ala Ala			
865	870	875	880
Gly Arg Val Gly Pro Pro Gly Pro Ser Gly Asn Ala Gly Pro Pro Gly			
885	890	895	
Pro Pro Gly Pro Ala Gly Lys Glu Gly Lys Gly Pro Arg Gly Glu			
900	905	910	
Thr Gly Pro Ala Gly Arg Pro Gly Glu Val Gly Pro Pro Gly Pro Pro			
915	920	925	
Gly Pro Ala Gly Glu Lys Gly Ser Pro Gly Ala Asp Gly Pro Ala Gly			
930	935	940	
Ala Pro Gly Thr Pro Gly Pro Gln Gly Ile Ala Gly Gln Arg Gly Val			
945	950	955	960
Val Gly Leu Pro Gly Gln Arg Gly Glu Arg Gly Phe Pro Gly Leu Pro			
965	970	975	
Gly Pro Ser Gly Glu Pro Gly Lys Gln Gly Pro Ser Gly Ala Ser Gly			
980	985	990	
Glu Arg Gly Pro Pro Gly Pro Met Gly Pro Pro Gly Leu Ala Gly Pro			
995	1000	1005	
Pro Gly Glu Ser Gly Arg Glu Gly Ala Pro Ala Ala Glu Gly Ser Pro			
1010	1015	1020	
Gly Arg Asp Gly Ser Pro Gly Ala Lys Gly Asp Arg Gly Glu Thr Gly			
1025	1030	1035	1040
Pro Ala Gly Pro Pro Gly Ala Pro Gly Ala Pro Gly Ala Pro Gly Pro			
1045	1050	1055	
Val Gly Pro Ala Gly Lys Ser Gly Asp Arg Gly Glu Thr Gly Pro Ala			
1060	1065	1070	
Gly Pro Ala Gly Pro Val Gly Pro Val Gly Ala Arg Gly Pro Ala Gly			
1075	1080	1085	
Pro Gln Gly Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu Gln Gly Asp			
1090	1095	1100	
Arg Gly Ile Lys Gly His Arg Gly Phe Ser Gly Leu Gln Gly Pro Pro			
1105	1110	1115	1120

Gly Pro Pro Gly Ser Pro Gly Glu Gln Gly Pro Ser Gly Ala Ser Gly
 1125 1130 1135
 Pro Ala Gly Pro Arg Gly Pro Pro Gly Ser Ala Gly Ala Pro Gly Lys
 1140 1145 1150
 Asp Gly Leu Asn Gly Leu Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg
 1155 1160 1165
 Gly Arg Thr Gly Asp Ala Gly Pro Val Gly Pro Pro Gly Pro Pro Gly
 1170 1175 1180
 Pro Pro Gly Pro Pro Gly Pro Pro Ser Ala Gly Phe Asp Phe Ser Phe
 1185 1190 1195 1200
 Leu Pro Gln Pro Pro Gln Glu Lys Ala His Asp Gly Gly Arg Tyr Tyr
 1205 1210 1215
 Arg Ala Asp Asp Ala Asn Val Val Arg Asp Arg Asp Leu Glu Val Asp
 1220 1225 1230
 Thr Thr Leu Lys Ser Leu Ser Gln Gln Ile Glu Asn Ile Arg Ser Pro
 1235 1240 1245
 Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Lys Met
 1250 1255 1260
 Cys His Ser Asp Trp Lys Ser Gly Glu Tyr Trp Ile Asp Pro Asn Gln
 1265 1270 1275 1280
 Gly Cys Asn Leu Asp Ala Ile Lys Val Phe Cys Asn Met Glu Thr Gly
 1285 1290 1295
 Glu Thr Cys Val Tyr Pro Thr Gln Pro Ser Val Ala Gln Lys Asn Trp
 1300 1305 1310
 Tyr Ile Ser Lys Asn Pro Lys Asp Lys Arg His Val Trp Phe Gly Glu
 1315 1320 1325
 Ser Met Thr Asp Gly Phe Gln Phe Glu Tyr Gly Gly Gln Gly Ser Asp
 1330 1335 1340
 Pro Ala Asp Val Ala Ile Gln Leu Thr Phe Leu Arg Leu Met Ser Thr
 1345 1350 1355 1360
 Glu Ala Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Val Ala Tyr
 1365 1370 1375
 Met Asp Gln Gln Thr Gly Asn Leu Lys Lys Ala Leu Leu Leu Lys Gly
 1380 1385 1390
 Ser Asn Glu Ile Glu Ile Arg Ala Glu Gly Asn Ser Arg Phe Thr Tyr
 1395 1400 1405
 Ser Val Thr Val Asp Gly Cys Thr Ser His Thr Gly Ala Trp Gly Lys
 1410 1415 1420
 Thr Val Ile Glu Tyr Lys Thr Thr Lys Ser Ser Arg Leu Pro Ile Ile
 1425 1430 1435 1440
 Asp Val Ala Pro Leu Asp Val Gly Ala Pro Asp Gln Glu Phe Gly Phe
 1445 1450 1455
 Asp Val Gly Pro Val Cys Phe Leu
 1460

<210> 262

<211> 2574

<212> DNA

<213> Homo sapiens

<400> 262

cctgtttaga	cacatggaca	acaatcccag	cgctacaagg	cacacagtcc	gcttcctcgt	60
cctcagggtt	gccagcgctt	ccttgaagtc	ctgaagctct	cgcaagtgcag	ttagttcatg	120
caccttcttg	ccaaggctca	gtctttggga	tctggggagg	ccgcctgggtt	ttcctccctc	180
cttctgcacg	tctgctgggg	tcttttcctc	tccaggcctt	gccgtcccccc	tggcctctct	240
tcccagctca	cacatgaaga	tgcacttgca	aagggccttg	gtggtcctgg	ccctgctgaa	300
cttgcacg	gtcagcctct	ctctgtccac	ttgcaccacc	ttggacttcg	gccacatcaa	360
gaagaagagg	gttggaaagcca	ttaggggaca	gatcttgagc	aagctcaggc	tcaccagccc	420
ccctgagcca	acggtgatga	cccacgtccc	ctatcaggc	ctggcccttt	acaacagcac	480
ccgggagctg	ctggaggaga	tgcatgggaa	gagggaggaa	ggctgcaccc	aggaaaacac	540
cgagtcggaa	tactatgcca	aagaaatcca	taaattcgac	atgatccagg	ggctggcgga	600

gcacaacgaa	ctggctgtct	gccctaaagg	aattaccc	ttcc	gcttcaatgt	660
gtcctcagt	gagaaaaata	gaaccaac	attccgagca	gaattccggg	tcttcgggt	720
gccccacccc	agctcta	ggaatgagca	gaggatcgag	ctctccaga	tccttcggcc	780
agatgagcac	attgc	acgc	tatata	cgg	aatcgccca	840
tgccgagt	ctgtc	atgt	caactga	cactgtcg	gagtggctgt	900
gtccaactt	ta	gg	tcagcatt	ctgtccatgt	cacac	960
agatatc	aaa	acattc	acgagg	gaaatcaaa	ttcaaaggcg	1020
ggatgaccat	ggc	gtggag	atctggg	cctcaagaag	cagaaggatc	1080
tcatcta	atc	tc	catgt	ccgg	accacaaccc	1140
gaggaagaag	cgg	gtt	ccaca	ctg	acgggggtca	1200
tgtgc	ccc	tc	tacatt	acttccg	gatctgggc	1260
taagggctac	tat	gca	tctgtc	cccttgc	tccatgaacc	1320
aaccac	ac	gca	actgt	cact	gtgcagacac	1380
ttgctgc	cc	cc	gactgt	ctgt	ctgcctcgcc	1440
caaagtggag	cag	ct	gatgtgtt	gatctgt	gagaccccac	1500
gtgcacaga	gag	gg	agagaacc	cactgc	ctggggaaac	1560
acacaagcaa	caa	ac	tgaggg	gg	ggggcaaat	1620
ggctgagat	gagg	ttt	tttgc	ttcttctt	ctgctctg	1680
gttaaagaaa	gt	gt	gg	aggct	gaatcacggt	1740
ctgtgacgca	gac	ag	gggat	cttc	aggctgaact	1800
tggcaat	at	ttt	gg	gg	cataca	1860
ggccagact	ga	ag	gg	gg	ggggat	1920
gctctagg	at	ct	tttgc	ttt	ggat	1980
acgaagaca	ag	cc	tgt	ttt	tttgc	2040
ctttgc	aa	ct	tttgc	ttt	tttgc	2100
ggtcatgc	tt	cc	catca	ttt	tttgc	2160
gaaagg	aa	at	att	ttt	tttgc	2220
tcgatcat	tt	cc	actgt	ttt	tttgc	2280
tggattgt	tt	cc	tttgc	ttt	tttgc	2340
accctgt	catt	tttgc	tttgc	tttgc	tttgc	2400
agctgcacat	gt	cc	tttgc	tttgc	tttgc	2460
agtatgaata	tt	act	tttgc	tttgc	tttgc	2520
atttcatctt	ct	tttgc	tttgc	tttgc	tttgc	2574

<210> 263

<211> 412

<212> PRT

<213> Homo sapiens

<400> 263

Met	Lys	Met	His	Leu	Gln	Arg	Ala	Leu	Val	Val	Leu	Ala	Leu	Leu	Asn
1				5				10				15			
Phe	Ala	Thr	Val	Ser	Leu	Ser	Leu	Ser	Thr	Cys	Thr	Thr	Leu	Asp	Phe
								20		25		30			
Gly	His	Ile	Lys	Lys	Lys	Arg	Val	Glu	Ala	Ile	Arg	Gly	Gln	Ile	Leu
							35		40		45				
Ser	Lys	Leu	Arg	Leu	Thr	Ser	Pro	Pro	Glu	Pro	Thr	Val	Met	Thr	His
						50		55		60					
Val	Pro	Tyr	Gln	Val	Leu	Ala	Leu	Tyr	Asn	Ser	Thr	Arg	Glu	Leu	Leu
						65		70		75		80			
Glu	Glu	Met	His	Gly	Glu	Arg	Glu	Glu	Gly	Cys	Thr	Gln	Glu	Asn	Thr
						85		90		95					
Glu	Ser	Glu	Tyr	Tyr	Ala	Lys	Glu	Ile	His	Lys	Phe	Asp	Met	Ile	Gln
						100		105		110					
Gly	Leu	Ala	Glu	His	Asn	Glu	Leu	Ala	Val	Cys	Pro	Lys	Gly	Ile	Thr
						115		120		125					
Ser	Lys	Val	Phe	Arg	Phe	Asn	Val	Ser	Ser	Val	Glu	Lys	Asn	Arg	Thr
						130		135		140					
Asn	Leu	Phe	Arg	Ala	Glu	Phe	Arg	Val	Leu	Arg	Val	Pro	Asn	Pro	Ser
						145		150		155		160			
Ser	Lys	Arg	Asn	Glu	Gln	Arg	Ile	Glu	Leu	Phe	Gln	Ile	Leu	Arg	Pro

/

Asp	Glu	His	Ile	Ala	Lys	Gln	Arg	Tyr	Ile	Gly	Gly	Lys	Asn	Leu	Pro
165								170					175		
180								185					190		
Thr	Arg	Gly	Thr	Ala	Glu	Trp	Leu	Ser	Phe	Asp	Val	Thr	Asp	Thr	Val
195							200					205			
Arg	Glu	Trp	Leu	Leu	Arg	Arg	Glu	Ser	Asn	Leu	Gly	Leu	Glu	Ile	Ser
210							215				220				
Ile	His	Cys	Pro	Cys	His	Thr	Phe	Gln	Pro	Asn	Gly	Asp	Ile	Leu	Glu
225							230				235			240	
Asn	Ile	His	Glu	Val	Met	Glu	Ile	Lys	Phe	Lys	Gly	Val	Asp	Asn	Glu
245							250						255		
Asp	Asp	His	Gly	Arg	Gly	Asp	Leu	Gly	Arg	Leu	Lys	Lys	Gln	Lys	Asp
260							265						270		
His	His	Asn	Pro	His	Leu	Ile	Leu	Met	Met	Ile	Pro	Pro	His	Arg	Leu
275							280						285		
Asp	Asn	Pro	Gly	Gln	Gly	Gly	Gln	Arg	Lys	Lys	Arg	Ala	Leu	Asp	Thr
290							295						300		
Asn	Tyr	Cys	Phe	Arg	Asn	Leu	Glu	Glu	Asn	Cys	Cys	Val	Arg	Pro	Leu
305							310				315			320	
Tyr	Ile	Asp	Phe	Arg	Gln	Asp	Leu	Gly	Trp	Lys	Trp	Val	His	Glu	Pro
325							330						335		
Lys	Gly	Tyr	Tyr	Ala	Asn	Phe	Cys	Ser	Gly	Pro	Cys	Pro	Tyr	Leu	Arg
340							345						350		
Ser	Ala	Asp	Thr	Thr	His	Ser	Thr	Val	Leu	Gly	Leu	Tyr	Asn	Thr	Leu
355							360						365		
Asn	Pro	Glú	Ala	Ser	Ala	Ser	Pro	Cys	Cys	Val	Pro	Gln	Asp	Leu	Glu
370							375						380		
Pro	Leu	Thr	Ile	Leu	Tyr	Tyr	Val	Gly	Arg	Thr	Pro	Lys	Val	Glu	Gln
385							390						395		400
Leu	Ser	Asn	Met	Val	Val	Lys	Ser	Cys	Lys	Cys	Ser				
							405						410		

<210> 264

<211> 5086

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(5086)

<223> n = A,T,C or G

<400> 264

agcaccacgg	cagcaggagg	tttcggntca	agttggaggt	actggncac	gactgcacg	60
ccgcggccgc	caggtatac	ctccggccgt	gaccagggg	ctctgcgaca	caaggagtct	120
gcatgtctaa	gtgctagaca	tgctcagctt	tgtggatacg	cggaaccttgc	tgctgcttgc	180
agtaaaccta	tgcctagcaa	catgccaatc	tttacaagag	gaaactgtaa	gaaaggggcc	240
agccggagat	agaggaccac	gtggagaaag	gggtccacca	ggccccccag	gcagagatgg	300
tgaagatgg	cccacaggcc	ctccctggtcc	acctggtcct	cctggccccc	ctggctcgg	360
tggaaacttt	gtgtctcagt	atgtggaaa	aggagttgga	cttggccctg	gaccaatggg	420
cttaatggga	cctagaggcc	cacccgggtc	agctggagcc	ccaggccctc	aaggtttcca	480
aggacctgt	gttgagccgt	gtgaacctgg	tcaaaactgtt	cctgcagggt	ctcggtggcc	540
agctggccct	cctggcaagg	ctggtaaga	tggtcaccc	ggaaaacccg	gacgacctgg	600
tgagagagga	gttgggac	cacagggtgc	tctgggttc	cctggaaactc	ctggacttcc	660
tggcttcaaa	ggcatttaggg	gacacaatgg	tctggatgg	ttgaaggggac	agcccggtgc	720
tcctgggtg	aagggtgaac	ctgggtcccc	ttgtgaaaat	ggaactccag	gtcaaacagg	780
agcccggtgg	tttcctgggt	agagaggacg	tgttggtgcc	cctggcccg	ctgggtcccc	840
tggcagtgt	ggaagtgtgg	gtcccggtgg	tcctgtgtt	cccattgggt	ctgtggcccc	900
tccaggcttc	ccaggtgccc	ctggcccca	gggtgaaatt	ggagctgtt	gtaacgttgg	960
tcctgttgtt	cccgccggtc	cccgtggta	agtgggtctt	ccaggcctct	ccggccccgt	1020
tggacctctt	gtaatcctg	gagcaaacgg	ccttactgt	gccaaagggt	ctgctggcct	1080

tcccggcgtt	gctggggctc	ccggcctccc	tggaccccgc	ggtattcccg	gccctgttgg	1140
tgctcccggt	gctactgggt	ccagaggact	tgttggtgag	cctggccag	ctggctccaa	1200
aggagagac	ggtacaacaagg	gtgagcccg	ctctgctggg	ccccaaaggtc	ctccctggtcc	1260
cagtggtaa	gaaggaaaaga	gaggccctaa	tggggaaagct	ggatctgccc	gccctccagg	1320
acctccctggg	ctgagaggta	gtccctggtc	tcgtggtctt	cctggagctg	atggcagagc	1380
tggcgtcatg	ggccctccctg	gtagtcgtgg	tgcaagtggc	cctgtggag	tccgaggacc	1440
taatggagat	gtgggtcgcc	ctggggagcc	tggtctcatg	ggaccaggag	gtcttctgg	1500
ttccctgtga	aatatcgcc	ccgctggaaa	agaaggctct	gtccggctcc	ctggcatacg	1560
cggcaggccct	ggcccaattt	gcccagctgg	agcaagagga	gagccctggca	acattggatt	1620
ccctggaccc	aaaggccccca	ctgggtatcc	tggaaaaaac	ggtgataaaag	gtcatgtgg	1680
tcttgcgtgt	gtcgggggtg	ctccaggctt	tgatggaaac	aatgggtctc	agggacctcc	1740
tggaccacag	ggtgttcaag	gtggaaaagg	tgaacagggt	cccgtggtc	ctccaggctt	1800
ccagggctg	cctggccccc	caggtttccg	ttgtgaagggt	ggcaaaaccag	gagaaagggg	1860
tctccatgtt	gagtttggtc	tccctggtcc	tgctggtcca	agaggggaac	ggggcccccc	1920
aggtgagagt	gtgtgtccgg	gtcctactgg	tcctattggg	agccgaggtc	cttctggacc	1980
cccaggccct	gatggaaaaca	agggtgaacc	ttgtgtgggt	ggtgtgtgg	gcaactgtgg	2040
tccatctgtt	cctagtggac	tcccaggaga	gaggggtgt	gctggcatac	ctgggaggcaa	2100
ggggagaaaag	gtgtgaacctg	gtctcagagg	tggaaattggt	aaccctggca	gagatgggtc	2160
tcgtgggtct	catgggtctg	taggtcccc	tggtcctgt	ggagccacag	gtgaccgggg	2220
cgaagctggg	gtgtgtggtc	ctgctggtcc	tgctggtctt	cgggggaaagcc	ctgggtgaacg	2280
tggcgaggtc	gtgtctgtct	gcccccaacgg	atttgctggt	ccggctgggt	ctgctggtca	2340
accgggtct	aaaggagaaa	gaggagccaa	agggcctaag	ggtaaaaacg	gtgttgggg	2400
tcccacaggc	cccggtggag	ctgctggccc	agctggtcca	aatggtcccc	ccggtcctgc	2460
tggaaagtct	ggtgatggag	gccccctgg	tatgactggg	ttccctgggt	ctgctggacg	2520
gactggtccc	ccaggaccct	ctggattttc	tggccctctt	ggtccccctg	gtcctgtgg	2580
gaaagaaggg	cttcgtggtc	ctcgtgtga	ccaaggtcca	gttggccaa	ctgggagaagt	2640
aggtgcagtt	gttccccctg	gttcgcgtgg	tggaaagggt	ccctctggag	aggctggtag	2700
tgctggacct	cctggcactc	cagggtctca	gggtcttctt	ggtgtctctg	gtattctggg	2760
tctccctggc	tcgagagggt	aacgtggtct	acctggtgtt	gctggtctg	tgggtgaacc	2820
tggtccttct	ggcattgccc	gcccctctgg	ggcccgtgg	cctctgggt	ctgtgggtag	2880
tcctggagtc	aacgggtctc	ctggtaagc	tggtcgtat	ggcaaccctg	ggaacgatgg	2940
tccccaggt	cgcgtggc	aacccggaca	caagggagag	cgcggttacc	ctggcaatat	3000
tggtcccgtt	gggtgtcgag	gtgacccctgg	tcctcatggc	cccggtggtc	ctgctggcaa	3060
acatggaaac	cgtgtgaaa	ctggctttc	ttgtctctgg	ggtctgtctg	gtgctgtgg	3120
cccaagaggt	cctagtggcc	cacaaggcat	tcgtggcgat	aaggagagc	ccgggtaaaa	3180
ggggcccaga	ggtcttcctg	gtttaaaggg	acacaatgg	ttgcaaggtc	tgcctggtat	3240
cgctggtcac	catggtgatc	aagggtctcc	ttgctccgtg	ggtctgtctg	gtcctaggg	3300
ccctgtgggt	ccttctggcc	ctgctggaaa	agatggtcgc	actggacatc	otgg tacgt	3360
tggacctgt	ggcattcgag	gcccctagg	tcaccaaggc	cctgtggcc	cccctggtcc	3420
ccctggccct	cctggacctc	cagggtgtaa	cggtgggtgg	tatgactttg	gttacgatgg	3480
agacttctac	agggctgacc	agggctgatc	agcaccttct	ctcagaccca	aggactatga	3540
agttgatgt	actctgaagt	ctctcaacaa	ccagattgg	acccttctt	ctccctgaagg	3600
ctctagaaag	aacccagctc	gcacatgccc	tgacttgaga	ctcagccacc	cagagtggag	3660
cagtggttac	tactggattt	accctaacc	aggatgcact	atggatgtca	tcaaagtata	3720
ctgtgatttc	tctactggcg	aaacctgtat	ccggggcccaa	cctgaaaaca	tcccagccaa	3780
gaactggtat	aggagctcca	aggacaagaa	acacgtctgg	ctaggagaaa	ctatcaatgc	3840
tggcagccag	tttgaatata	atgtagaagg	agtacttcc	aaggaaatgg	ctacccaact	3900
tgccttcatg	cgcctgtctg	ccaactatgc	ctctcagaac	atcacctacc	actgcaagaa	3960
cagcattgca	tacatggatg	aggagactgg	caacctgaaa	aaggctgtca	ttctacagg	4020
ctctaattat	gttgaactt	ttgctgagg	caacagcagg	ttcacttaca	ctgttcttg	4080
agatggctgc	tctaaaaaga	caaataatg	ggggaaagaca	atcattgtat	acaaaacaaa	4140
taagccatca	cgcctggcc	tccttgatat	tgcacccctt	gacatcggt	gtgctgacca	4200
tgaattctt	gtggacattt	gcccagtctg	tttcaaataaa	atgaactcaa	tctaaattaa	4260
aaaagaaaaga	aatttggaaa	aacttctt	ttgcccattt	ttcttcttct	tttttaactg	4320
aaagctgaat	ccttccattt	cttctgcaca	tctacttgc	taaattgtgg	gcaaaagaga	4380
aaaagaaagg	ttgatcgag	cattgtgcaa	tacagtttca	ttaactccct	cccccgctcc	4440
cccaaaaatt	tgaatttttt	tttcaacact	cttacacctt	ttatggaaaa	tgtcaaccc	4500
tgtaagaaaa	ccaaaataaa	aattggaaaa	taaaaaccat	aaacatttgc	accacttgc	4560
gcttttgaat	atcttccaca	gagggaaagg	taaaaacccaa	acttccaaag	gtttaaacta	4620
cctcaaaaaca	ctttccatg	agtgtatcc	acattgttag	gtgctgaccc	agacagagat	4680
gaactgaggt	ccttgggggg	ttttgttcat	aatacaaagg	tgctaattaa	tagtatttca	4740

gatacttcaa	gaatgttgat	ggtgctagaa	gaatttgaga	agaaaatactc	ctgtatttag	4800
ttgtatcg	tggtgtat	tttaaaaaat	ttgat	ttgcatttc	tccatcttat	4860
tcccaattaa	aagtatgcag	attatttgc	caaagg	ttcttcttca	gattcagcat	4920
ttgttcttgc	ccagtctcat	tttcatcttc	ttccatgg	ccacagaagc	tttgc	4980
gggcaagcag	aaaaattaa	ttgtacctat	tttgatata	tgagatgttt	aaataaattg	5040
tgaaaaaaat	gaaataaagc	atgtttgg	ttccaaaaga	acatat		5086

<210> 265
<211> 1366
<212> PRT
<213> Homo sapiens

<400> 265

Met	Leu	Ser	Phe	Val	Asp	Thr	Arg	Thr	Leu	Leu	Leu	Leu	Ala	Val	Thr
1				5					10						15
Leu	Cys	Leu	Ala	Thr	Cys	Gln	Ser	Leu	Gln	Glu	Glu	Thr	Val	Arg	Lys
						20			25					30	
Gly	Pro	Ala	Gly	Asp	Arg	Gly	Pro	Arg	Gly	Glu	Arg	Gly	Pro	Pro	Gly
				35				40				45			
Pro	Pro	Gly	Arg	Asp	Gly	Glu	Asp	Gly	Pro	Thr	Gly	Pro	Pro	Gly	Pro
					50		55			60					
Pro	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Leu	Gly	Gly	Asn	Phe	Ala	Ala	Gln
					65		70			75				80	
Tyr	Asp	Gly	Lys	Gly	Val	Gly	Leu	Gly	Pro	Gly	Pro	Met	Gly	Leu	Met
					85			90			95				
Gly	Pro	Arg	Gly	Pro	Pro	Gly	Ala	Ala	Gly	Ala	Pro	Gly	Pro	Gln	Gly
				100				105			110				
Phe	Gln	Gly	Pro	Ala	Gly	Glu	Pro	Gly	Glu	Pro	Gly	Gln	Thr	Gly	Pro
				115				120			125				
Ala	Gly	Ala	Arg	Gly	Pro	Ala	Gly	Pro	Pro	Gly	Lys	Ala	Gly	Glu	Asp
				130				135			140				
Gly	His	Pro	Gly	Lys	Pro	Gly	Arg	Pro	Gly	Glu	Arg	Gly	Val	Val	Gly
				145				150			155			160	
Pro	Gln	Gly	Ala	Arg	Gly	Phe	Pro	Gly	Thr	Pro	Gly	Leu	Pro	Gly	Phe
					165			170			175				
Lys	Gly	Ile	Arg	Gly	His	Asn	Gly	Leu	Asp	Gly	Leu	Lys	Gly	Gln	Pro
				180				185			190				
Gly	Ala	Pro	Gly	Val	Lys	Gly	Glu	Pro	Gly	Ala	Pro	Gly	Glu	Asn	Gly
				195				200			205				
Thr	Pro	Gly	Gln	Thr	Gly	Ala	Arg	Gly	Leu	Pro	Gly	Glu	Arg	Gly	Arg
				210				215			220				
Val	Gly	Ala	Pro	Gly	Pro	Ala	Gly	Ala	Arg	Gly	Ser	Asp	Gly	Ser	Val
				225				230			235			240	
Gly	Pro	Val	Gly	Pro	Ala	Gly	Pro	Ile	Gly	Ser	Ala	Gly	Pro	Pro	Gly
					245			250			255				
Phe	Pro	Gly	Ala	Pro	Gly	Pro	Lys	Gly	Ile	Gly	Ala	Val	Gly	Asn	
					260			265			270				
Ala	Gly	Pro	Ala	Gly	Pro	Ala	Gly	Pro	Arg	Gly	Glu	Val	Gly	Leu	Pro
				275				280			285				
Gly	Leu	Ser	Gly	Pro	Val	Gly	Pro	Pro	Gly	Asn	Pro	Gly	Ala	Asn	Gly
				290				295			300				
Leu	Thr	Gly	Ala	Lys	Gly	Ala	Ala	Gly	Leu	Pro	Gly	Val	Ala	Gly	Ala
				305				310			315			320	
Pro	Gly	Leu	Pro	Gly	Pro	Arg	Gly	Ile	Pro	Gly	Pro	Val	Gly	Ala	Ala
					325			330			335				
Gly	Ala	Thr	Gly	Ala	Arg	Gly	Leu	Val	Gly	Glu	Pro	Gly	Pro	Ala	Gly
					340			345			350				
Ser	Lys	Gly	Glu	Ser	Gly	Asn	Lys	Gly	Glu	Pro	Gly	Ser	Ala	Gly	Pro
				355				360			365				

Gln Gly Pro Pro Gly Pro Ser Gly Glu Glu Gly Lys Arg Gly Pro Asn
 370 375 380
 Gly Glu Ala Gly Ser Ala Gly Pro Pro Gly Pro Pro Gly Leu Arg Gly
 385 390 395 400
 Ser Pro Gly Ser Arg Gly Leu Pro Gly Ala Asp Gly Arg Ala Gly Val
 405 410 415
 Met Gly Pro Pro Gly Ser Arg Gly Ala Ser Gly Pro Ala Gly Val Arg
 420 425 430
 Gly Pro Asn Gly Asp Ala Gly Arg Pro Gly Glu Pro Gly Leu Met Gly
 435 440 445
 Pro Arg Gly Leu Pro Gly Ser Pro Gly Asn Ile Gly Pro Ala Gly Lys
 450 455 460
 Glu Gly Pro Val Gly Leu Pro Gly Ile Asp Gly Arg Pro Gly Pro Ile
 465 470 475 480
 Gly Pro Ala Gly Ala Arg Gly Glu Pro Gly Asn Ile Gly Phe Pro Gly
 485 490 495
 Pro Lys Gly Pro Thr Gly Asp Pro Gly Lys Asn Gly Asp Lys Gly His
 500 505 510
 Ala Gly Leu Ala Gly Ala Arg Gly Ala Pro Gly Pro Asp Gly Asn Asn
 515 520 525
 Gly Ala Gln Gly Pro Pro Gly Pro Gln Gly Val Gln Gly Lys Gly
 530 535 540
 Glu Gln Gly Pro Ala Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro
 545 550 555 560
 Ser Gly Pro Ala Gly Glu Val Gly Lys Pro Gly Glu Arg Gly Leu His
 565 570 575
 Gly Glu Phe Gly Leu Pro Gly Pro Ala Gly Pro Arg Gly Glu Arg Gly
 580 585 590
 Pro Pro Gly Glu Ser Gly Ala Ala Gly Pro Thr Gly Pro Ile Gly Ser
 595 600 605
 Arg Gly Pro Ser Gly Pro Pro Gly Pro Asp Gly Asn Lys Gly Glu Pro
 610 615 620
 Gly Val Val Gly Ala Val Gly Thr Ala Gly Pro Ser Gly Pro Ser Gly
 625 630 635 640
 Leu Pro Gly Glu Arg Gly Ala Ala Gly Ile Pro Gly Gly Lys Gly Glu
 645 650 655
 Lys Gly Glu Pro Gly Leu Arg Gly Glu Ile Gly Asn Pro Gly Arg Asp
 660 665 670
 Gly Ala Arg Gly Ala His Gly Ala Val Gly Ala Pro Gly Pro Ala Gly
 675 680 685
 Ala Thr Gly Asp Arg Gly Glu Ala Gly Ala Ala Gly Pro Ala Gly Pro
 690 695 700
 Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly Glu Val Gly Pro Ala
 705 710 715 720
 Gly Pro Asn Gly Phe Ala Gly Pro Ala Gly Ala Ala Gly Gln Pro Gly
 725 730 735
 Ala Lys Gly Glu Arg Gly Ala Lys Gly Pro Lys Gly Glu Asn Gly Val
 740 745 750
 Val Gly Pro Thr Gly Pro Val Gly Ala Ala Gly Pro Ala Gly Pro Asn
 755 760 765
 Gly Pro Pro Gly Pro Ala Gly Ser Arg Gly Asp Gly Gly Pro Pro Gly
 770 775 780
 Met Thr Gly Phe Pro Gly Ala Ala Gly Arg Thr Gly Pro Pro Gly Pro
 785 790 795 800
 Ser Gly Ile Ser Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Lys Glu
 805 810 815
 Gly Leu Arg Gly Pro Arg Gly Asp Gln Gly Pro Val Gly Arg Thr Gly
 820 825 830
 Glu Val Gly Ala Val Gly Pro Pro Gly Phe Ala Gly Glu Lys Gly Pro
 835 840 845
 Ser Gly Glu Ala Gly Thr Ala Gly Pro Pro Gly Thr Pro Gly Pro Gln

850	855	860
Gly Leu Leu Gly Ala Pro Gly Ile Leu Gly Leu Pro Gly Ser Arg Gly		
865	870	875
Glu Arg Gly Leu Pro Gly Val Ala Gly Ala Val Gly Glu Pro Gly Pro		880
885	890	895
Leu Gly Ile Ala Gly Pro Pro Gly Ala Arg Gly Pro Pro Gly Ala Val		
900	905	910
Gly Ser Pro Gly Val Asn Gly Ala Pro Gly Glu Ala Gly Arg Asp Gly		
915	920	925
Asn Pro Gly Asn Asp Gly Pro Pro Gly Arg Asp Gly Gln Pro Gly His		
930	935	940
Lys Gly Glu Arg Gly Tyr Pro Gly Asn Ile Gly Pro Val Gly Ala Ala		
945	950	955
Gly Ala Pro Gly Pro His Gly Pro Val Gly Pro Ala Gly Lys His Gly		960
965	970	975
Asn Arg Gly Glu Thr Gly Pro Ser Gly Pro Val Gly Pro Ala Gly Ala		
980	985	990
Val Gly Pro Arg Gly Pro Ser Gly Pro Gln Gly Ile Arg Gly Asp Lys		
995	1000	1005
Gly Glu Pro Gly Glu Lys Gly Pro Arg Gly Leu Pro Gly Leu Lys Gly		
1010	1015	1020
His Asn Gly Leu Gln Gly Leu Pro Gly Ile Ala Gly His His Gly Asp		
1025	1030	1035
Gln Gly Ala Pro Gly Ser Val Gly Pro Ala Gly Pro Arg Gly Pro Ala		
1045	1050	1055
Gly Pro Ser Gly Pro Ala Gly Lys Asp Gly Arg Thr Gly His Pro Gly		
1060	1065	1070
Thr Val Gly Pro Ala Gly Ile Arg Gly Pro Gln Gly His Gln Gly Pro		
1075	1080	1085
Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Val Ser		
1090	1095	1100
Gly Gly Gly Tyr Asp Phe Gly Tyr Asp Gly Asp Phe Tyr Arg Ala Asp		
1105	1110	1115
Gln Pro Arg Ser Ala Pro Ser Leu Arg Pro Lys Asp Tyr Glu Val Asp		
1125	1130	1135
Ala Thr Leu Lys Ser Leu Asn Asn Gln Ile Glu Thr Leu Leu Thr Pro		
1140	1145	1150
Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Arg Leu		
1155	1160	1165
Ser His Pro Glu Trp Ser Ser Gly Tyr Tyr Trp Ile Asp Pro Asn Gln		
1170	1175	1180
Gly Cys Thr Met Asp Ala Ile Lys Val Tyr Cys Asp Phe Ser Thr Gly		
1185	1190	1195
Glu Thr Cys Ile Arg Ala Gln Pro Glu Asn Ile Pro Ala Lys Asn Trp		
1205	1210	1215
Tyr Arg Ser Ser Lys Asp Lys Lys His Val Trp Leu Gly Glu Thr Ile		
1220	1225	1230
Asn Ala Gly Ser Gln Phe Glu Tyr Asn Val Glu Gly Val Thr Ser Lys		
1235	1240	1245
Glu Met Ala Thr Gln Leu Ala Phe Met Arg Leu Leu Ala Asn Tyr Ala		
1250	1255	1260
Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp		
1265	1270	1275
Glu Glu Thr Gly Asn Leu Lys Lys Ala Val Ile Leu Gln Gly Ser Asn		
1285	1290	1295
Asp Val Glu Leu Val Ala Glu Gly Asn Ser Arg Phe Thr Tyr Thr Val		
1300	1305	1310
Leu Val Asp Gly Cys Ser Lys Lys Thr Asn Glu Trp Gly Lys Thr Ile		
1315	1320	1325
Ile Glu Tyr Lys Thr Asn Lys Pro Ser Arg Leu Pro Phe Leu Asp Ile		
1330	1335	1340

Ala Pro Leu Asp Ile Gly Gly Ala Asp His Glu Phe Phe Val Asp Ile
 1345 1350 1355 1360
 Gly Pro Val Cys Phe Lys
 1365

<210> 266
 <211> 2028
 <212> DNA
 <213> Homo sapiens

<400> 266

atggcatatg caaaagccct gaggctgcag tggagagagc cattgaaagg gaaggccaat	60
aaggagcggt tcaagggaga gtatcaactc acatggccct tgaaggccac gcactgccta	120
gcagcaactc actggagccc ctcttgc(ccc ccgcaacagg ttttgggga cctggaccag	180
gtgaggatga cctcggaggg ctccgactgc cgttgcaagt gcatcatgcg gcccctgagc	240
aaggacgcgt gtagccgagt ggcgactggg cgggcacgcg tggaggactt ctacacggtg	300
gagactgtga gctcggcac tgactgccc tgctcctgtc cccgacactcc ctccctctc	360
aaccctgtg agaacgagtg gaagatggag aaactcaaaa agcaggccgc cgagctcctc	420
aagctgcgt ccatgttgg tctcttggag ggcacccgt acagcatgga cttgtatgaag	480
gtgacacgcct acgtccacaa ggtggcctcc cagatgaaca cactggaaga gagcatcaag	540
gccaaacctga gccgggagaa tgagggtggta aaggacagcg tgcgccacct cagtgagcag	600
ttgaggcact atgagaatca ctctgcccatt atgctggca tcaagaagga gctgtccgc	660
ctggccctcc agctgctgca gaaggatggc gcccggcccc ctggccacccc tgccacgggc	720
actgttagca aggcccaggaa cacagctaga ggaaaaaggca aggacatcag caagtatggc	780
agtgtgcaga aaagcttgc agacagaggc ctcccaaaaac ctcccaagga gaagctgttt	840
cagggtggaga agctgagaaa ggagagcgcc aaggcagtt tcctccagcc cacagccaag	900
ccccggcccc tggcccccgcga gcaggctgtg atccggggct tcacctacta caaggcaggc	960
aaggcaggagg tgaccgaggc ggtggcagac aacaccctcc agggcacttc ctggctggag	1020
caactgccc ccaagggttga gggcagggtcc aactccgcg agcccaactc cgcagagcag	1080
gatgaggctg agcccgaggc etccgagcga gtggacotttgc ttcttggcac ccccacttca	1140
atccctgcca ccaccaccc cgcaccacc acccccaaccc ccaccaccag tctcctgccc	1200
accgagccac ctccagggtcc agaagtctcc agccaaggca gagaggcggag ctgtgaggc	1260
accctccggg ctgtggaccc ccctgtgagg caccacagct atgggcccga cgaggagcc	1320
tggatgaagg accctgcaggc tcgagacgac aggtatctatg tcaccaacta ctactatgg	1380
aacagcctgg tggagttccg caacctggaa aacttcaagc aagccgcgt gagaacatg	1440
tacaagctac cctacaactg gatggcaca ggccacgtgg tgtaccaggc cgcccttac	1500
tacaaccgcg ccttacccaa gaacatcatc aagtacgacc tacggcagcg cttcgtggcc	1560
tcctggcgcc tgcgtcccgat cgtgttat gaggacacca cacttggaa gtggcgccga	1620
cactcggaca ttgacttgc cgtggacgag agccgcgtt ggtcatcta ccccgccgt	1680
gacgaccgcg atgaggccca gcccggatgt atcgtcttgc gtcgtttggaa cccggcgat	1740
ctctccgtgc accggggagac cacgtggaa acacggcgtc ggccggaaactc ctacggAAC	1800
tgcttcctgg tggcgccat cctgtatgcc gtggacacgt acaaccagca ggaaggccag	1860
gtcgctctacg ctttcgacac gcacacgggc accgacggcac gccccccagct gccgttctc	1920
aacgagcagc cttacaccac ccagatcgac tacaacccca aggagcgggt gctgtacgcc	1980
tggacaatg gccaccagct cacttacacc ctccacttgc tggcttga	2028

<210> 267
 <211> 675
 <212> PRT
 <213> Homo sapiens

<400> 267

Met Ala Tyr Ala Lys Ala Leu Arg Leu Gln Trp Arg Glu Pro Leu Lys	
1 5 10 15	
Gly Lys Gly Asn Lys Glu Arg Phe Lys Gly Glu Tyr Gln Leu Thr Trp	
20 25 30	
Ala Leu Lys Ala Thr His Cys Leu Ala Ala Thr His Trp Ser Pro Ser	
35 40 45	
Cys Pro Pro Gln Gln Val Phe Gly Asp Leu Asp Gln Val Arg Met Thr	
50 55 60	
Ser Glu Gly Ser Asp Cys Arg Cys Lys Cys Ile Met Arg Pro Leu Ser	

65	70	75	80
Lys Asp Ala Cys Ser Arg Val Arg Ser Gly Arg Ala Arg Val Glu Asp			
85	90	95	
Phe Tyr Thr Val Glu Thr Val Ser Ser Gly Thr Asp Cys Arg Cys Ser			
100	105	110	
Cys Thr Ala Pro Pro Ser Ser Leu Asn Pro Cys Glu Asn Glu Trp Lys			
115	120	125	
Met Glu Lys Leu Lys Lys Gln Ala Pro Glu Leu Leu Lys Leu Gln Ser			
130	135	140	
Met Val Asp Leu Leu Glu Gly Thr Leu Tyr Ser Met Asp Leu Met Lys			
145	150	155	160
Val His Ala Tyr Val His Lys Val Ala Ser Gln Met Asn Thr Leu Glu			
165	170	175	
Glu Ser Ile Lys Ala Asn Leu Ser Arg Glu Asn Glu Val Val Lys Asp			
180	185	190	
Ser Val Arg His Leu Ser Glu Gln Leu Arg His Tyr Glu Asn His Ser			
195	200	205	
Ala Ile Met Leu Gly Ile Lys Lys Glu Leu Ser Arg Leu Gly Leu Gln			
210	215	220	
Leu Leu Gln Lys Asp Ala Ala Ala Pro Ala Thr Pro Ala Thr Gly			
225	230	235	240
Thr Gly Ser Lys Ala Gln Asp Thr Ala Arg Gly Lys Gly Lys Asp Ile			
245	250	255	
Ser Lys Tyr Gly Ser Val Gln Lys Ser Phe Ala Asp Arg Gly Leu Pro			
260	265	270	
Lys Pro Pro Lys Glu Lys Leu Leu Gln Val Glu Lys Leu Arg Lys Glu			
275	280	285	
Ser Gly Lys Gly Ser Phe Leu Gln Pro Thr Ala Lys Pro Arg Ala Leu			
290	295	300	
Ala Gln Gln Gln Ala Val Ile Arg Gly Phe Thr Tyr Tyr Lys Ala Gly			
305	310	315	320
Lys Gln Glu Val Thr Glu Ala Val Ala Asp Asn Thr Leu Gln Gly Thr			
325	330	335	
Ser Trp Leu Glu Gln Leu Pro Pro Lys Val Glu Gly Arg Ser Asn Ser			
340	345	350	
Ala Glu Pro Asn Ser Ala Glu Gln Asp Glu Ala Glu Pro Arg Ser Ser			
355	360	365	
Glu Arg Val Asp Leu Ala Ser Gly Thr Pro Thr Ser Ile Pro Ala Thr			
370	375	380	
Thr Thr Thr Ala Thr Thr Pro Thr Pro Thr Thr Ser Leu Leu Pro			
385	390	395	400
Thr Glu Pro Pro Ser Gly Pro Glu Val Ser Ser Gln Gly Arg Glu Ala			
405	410	415	
Ser Cys Glu Gly Thr Leu Arg Ala Val Asp Pro Pro Val Arg His His			
420	425	430	
Ser Tyr Gly Arg His Glu Gly Ala Trp Met Lys Asp Pro Ala Ala Arg			
435	440	445	
Asp Asp Arg Ile Tyr Val Thr Asn Tyr Tyr Gly Asn Ser Leu Val			
450	455	460	
Glu Phe Arg Asn Leu Glu Asn Phe Lys Gln Gly Arg Trp Ser Asn Met			
465	470	475	480
Tyr Lys Leu Pro Tyr Asn Trp Ile Gly Thr Gly His Val Val Tyr Gln			
485	490	495	
Gly Ala Phe Tyr Tyr Asn Arg Ala Phe Thr Lys Asn Ile Ile Lys Tyr			
500	505	510	
Asp Leu Arg Gln Arg Phe Val Ala Ser Trp Ala Leu Leu Pro Asp Val			
515	520	525	
Val Tyr Glu Asp Thr Thr Pro Trp Lys Trp Arg Gly His Ser Asp Ile			
530	535	540	
Asp Phe Ala Val Asp Glu Ser Gly Leu Trp Val Ile Tyr Pro Ala Val			
545	550	555	560

Asp Asp Arg Asp Glu Ala Gln Pro Glu Val Ile Val Leu Ser Arg Leu
 565 570 575
 Asp Pro Gly Asp Leu Ser Val His Arg Glu Thr Thr Trp Lys Thr Arg
 580 585 590
 Leu Arg Arg Asn Ser Tyr Gly Ash Cys Phe Leu Val Cys Gly Ile Leu
 595 600 605
 Tyr Ala Val Asp Thr Tyr Asn Gln Gln Glu Gly Gln Val Ala Tyr Ala
 610 615 620
 Phe Asp Thr His Thr Gly Thr Asp Ala Arg Pro Gln Leu Pro Phe Leu
 625 630 635 640
 Asn Glu His Ala Tyr Thr Thr Gln Ile Asp Tyr Asn Pro Lys Glu Arg
 645 650 655
 Val Leu Tyr Ala Trp Asp Asn Gly His Gln Leu Thr Tyr Thr Leu His
 660 665 670
 Phe Val Val
 675

<210> 268
 <211> 1909
 <212> DNA
 <213> Homo sapiens

<400> 268

gacacctttt	aaaatgcaga	actaacttag	gcatttcagt	aactttgttt	tcaaatcaat	60
aaagtcaaat	gtatggaaac	attttgtgcc	ctactctcca	taccctgtgt	actcaaattc	120
tctactgtat	gaatttatgt	ttaagtagaa	ttcagtggca	aggagaactt	ggtgaaataa	180
attattttaa	tttttttttt	atcccttaca	aagccatgg	tttttatttg	ttgatgtgt	240
ctctgtacac	aagccatttc	aataggatgg	agctgttaat	tatttccaa	agagtaatag	300
acatgcaaaa	gtttcaataa	aaactggggc	attaacaaat	aaattaataa	actaataaagc	360
atcccttct	agggttttgc	caaactgcct	atccaataac	aaatttgaga	atcggtgaaa	420
aagctagta	tatttcagag	aaatgatttt	cattattgaa	actgttctcc	ctagcaggcc	480
atttccctt	tttcctggg	gtttagcaag	tttaggagag	aatagtcatg	aaaagaaaagg	540
gaagaaaagg	gagaagggg	gaggttaaaa	agtaagtgc	cagacctatg	aacgtaatcc	600
ctttgctaga	aatatthaag	agcagctcg	cttgggttga	actgagttt	gtcatcttcc	660
atatttgcag	gaaggatttt	tctgacttgc	aatgcagcta	gatgtaaaat	tttattttat	720
catccctagaa	agccctgact	agaaaaatga	ataaaatattg	agggtttcct	gtccatatct	780
ggcttgcatt	tgccagaaag	cagagaatag	aaaatgtaat	ctccaacatc	caagcatcga	840
aacccaagg	gtaggcaatt	ctatgttagt	tttggacatg	aagtttgggt	catcttgggt	900
tatgctggct	caactgcatt	taaacctctc	tggcttata	tctcttcatt	ctattagaca	960
agcacgtatc	gaacacttgc	ttcgacaaag	gctctttagt	taacaattt	gcagctactg	1020
tttgcgttaa	acacactttt	caccaaata	gttctgaggc	aaacgagagc	aatgactatt	1080
taaagaaaagg	cttcccagc	atcaactaca	catccccaaa	ctaaaaagat	caactcttcc	1140
aactgagaaa	agactcctgg	cttgaatgg	aaacttacag	cagagagtca	caggccacgg	1200
caacaacaac	gacaacaaca	aacatttgg	atattattct	caactcacgt	ttaataata	1260
catcttaatt	atttttctag	tagagaaact	acaaatcagc	ctcttcaaca	tttatataca	1320
gtttaataag	cctcttgcaa	gttacttgg	ctctcacctg	aggatttttt	ttcctcccc	1380
ccttgcctt	gttctccct	tcctcttctc	ccttgcag	aggaaatatt	taacatattt	1440
gggtccaact	tcaataatgt	aataattaat	acattaaaag	catttaactt	cctttctaga	1500
aaaatgcaca	ggctaaggca	tagacaaaac	aaagagaaaat	gctgagaaaat	ttgccactgg	1560
agacaagcaa	tctgaataaa	tatttgc当地	aagttctttt	tatgtcatat	agtgtcagga	1620
tttgaaggag	ctatttttt	taatgttgca	actagcaact	catttcgga	agacacagcc	1680
aggagaatga	agtagaaatgt	aaagggtttat	aatccattt	gtaagcattt	atcccatata	1740
ttttaaaattc	aagaaaattt	gtgttatct	ttagaatttt	gtattcaata	ctttatgtac	1800
tatgtgactc	atgcttcgg	ataaataaaag	caccaatata	gtatctgtaa	ccacaaatcac	1860
acatattata	ttaaatatata	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1909

<210> 269
 <211> 83
 <212> PRT
 <213> Homo sapiens

<400> 269

Met Tyr Gly Asn Ile Leu Cys Pro Thr Leu His Thr Leu Cys Thr Gln
 1 5 10 15
 Ile Leu Tyr Cys Met Asn Tyr Ala Leu Ser Arg Ile Gln Cys Gln Gly
 20 25 30
 Glu Leu Gly Glu Ile Asn Tyr Phe Asn Phe Phe Ile Leu Tyr Lys
 35 40 45
 Ala Met Asp Phe Ile Trp Leu Met Cys Ala Leu Tyr Thr Ser His Phe
 50 55 60
 Asn Arg Met Glu Leu Leu Ile Ile Phe Gln Arg Val Ile Asp Met Gln
 65 70 75 80
 Lys Phe Gln

<210> 270

<211> 1720

<212> DNA

<213> Homo sapiens

<400> 270

gactgcagat	gaaatttagta	actgggtgggg	tctgtgggtg	tgaatggtgg	gcgggagcag	60
ctatgtcagt	tgggtgtttt	ctgttatgt	tagggtaatt	ggcacggcc	tttgttaac	120
tgggtgaatat	ctctgaacct	gggcatgaaa	cagagagatg	tcctaactct	gggtgagagg	180
aatcctcatt	tttctctgcc	ctctcactgt	ggcatcctaa	aaaaaaagtt	ttgggttct	240
gcagccatgaa	ggagagctct	gctcccagaa	tttgggagct	ccagatttct	tccagggtgt	300
ggaggcatca	ataatatcagt	ctgggaaagg	ggttccttggg	ccactccagg	agctgagttg	360
ggtggaaggt	gctgagagtg	tgggtgggg	ccacttctga	gcacccatgt	ggcacccact	420
gctggccct	gtttgtgct	gggactcag	aaaaatgttt	ttggtgctaa	gagtaaaaag	480
ccaaccaaca	aacacatctc	tttttctgt	ctattcactg	gaaagtaaaa	gcagtctggg	540
cgcaggctgg	ggacccagat	ggaattcaaa	cttatgcctg	ctctcaaggt	gctcacggtt	600
gctgataaac	agctggataa	aatgaagagt	ctatgagtg	gggatgcaga	gccaggaaag	660
gctggtgag	tgtgccacc	agcacagggg	tatgagttt	cagctgccaa	ggggccaagg	720
gatgagctgg	ggccctcctt	cccaatggca	tctccctctg	gtctggaact	gaagacactg	780
agcaatggtc	cccaagcccc	aaggagatca	gctccctgg	gcccaagtggc	cccaaccagg	840
gagggtgtgg	agaatgcctg	cttccctca	gaggagcatg	agacccattt	ccagaaccct	900
gggaacacga	gactggcag	ctcacccagt	ccccctggg	gtgtctcctc	actgccccga	960
tcccagcggg	atgatctgc	ccttcattca	gaggaggggc	cagccctgga	gccccgtgagc	1020
cgcgggttgg	attatggctt	tgtttccgccc	ctcgtttcc	tggtgagtgg	gatttttctg	1080
gtggtgacag	catacgcct	ccccctgttag	gctcgagtca	atccggacac	agtgacagcg	1140
cgggagatgg	aacgactgga	gatgtactac	ccccccctag	gctcccacct	ggacaggtgc	1200
atcatcgccag	gcctcggct	gctcacggtg	ggcggcatgc	tcttgcgtt	gctgctcatg	1260
gtctccctgt	gcaagggcga	gcttaccgc	cggaggacct	tcttgcgtt	caagggctcc	1320
aggaagacct	acggctccat	taacctgcgc	atgagacagc	tcaatggga	tggggccag	1380
gccctgggtgg	agaatgaagt	tgtccaggct	tcagagacta	gccacaccct	ccagaggtct	1440
taagaacttag	cccacccctt	ctggctgttt	tagtccagg	gctacaagg	ccacccctgt	1500
ctcccgccca	cctgaccctt	gccaaggccc	tgggtttta	aactgagctc	acatagggcc	1560
tttgttggaaa	agtaactgggt	gctggaggg	gagctgggg	cccacccat	gccccacacg	1620
ggcaagcagc	ccactgatct	gttttgtagc	tgaggtttg	catacggtt	tgtttggagg	1680
atggcttctg	ctgctaaaaaa	tacaaaagtt	tggaaaccgc			1720

<210> 271

<211> 256

<212> PRT

<213> Homo sapiens

<400> 271

Met Pro Pro Ala Gln Gly Tyr Glu Phe Ala Ala Ala Lys Gly Pro Arg
 1 5 10 15
 Asp Glu Leu Gly Pro Ser Phe Pro Met Ala Ser Pro Pro Gly Leu Glu
 20 25 30
 Leu Lys Thr Leu Ser Asn Gly Pro Gln Ala Pro Arg Arg Ser Ala Pro

35	40	45													
Leu	Gly	Pro	Val	Ala	Pro	Thr	Arg	Glu	Gly	Val	Glu	Asn	Ala	Cys	Phe
50	55	60													
Ser	Ser	Glu	Glu	His	Glu	Thr	His	Phe	Gln	Asn	Pro	Gly	Asn	Thr	Arg
65	70	75	80												
Leu	Gly	Ser	Ser	Pro	Ser	Pro	Pro	Gly	Gly	Val	Ser	Ser	Leu	Pro	Arg
85	90	95													
Ser	Gln	Arg	Asp	Asp	Leu	Ser	Leu	His	Ser	Glu	Glu	Gly	Pro	Ala	Leu
100	105	110													
Glu	Pro	Val	Ser	Arg	Pro	Val	Asp	Tyr	Gly	Phe	Val	Ser	Ala	Leu	Val
115	120	125													
Phe	Leu	Val	Ser	Gly	Ile	Leu	Leu	Val	Val	Thr	Ala	Tyr	Ala	Ile	Pro
130	135	140													
Arg	Glu	Ala	Arg	Val	Asn	Pro	Asp	Thr	Val	Thr	Ala	Arg	Glu	Met	Glu
145	150	155	160												
Arg	Leu	Glu	Met	Tyr	Tyr	Ala	Arg	Leu	Gly	Ser	His	Leu	Asp	Arg	Cys
165	170	175													
Ile	Ile	Ala	Gly	Leu	Gly	Leu	Leu	Thr	Val	Gly	Gly	Met	Leu	Leu	Ser
180	185	190													
Val	Leu	Leu	Met	Val	Ser	Leu	Cys	Lys	Gly	Glu	Leu	Tyr	Arg	Arg	Arg
195	200	205													
Thr	Phe	Val	Pro	Gly	Lys	Gly	Ser	Arg	Lys	Thr	Tyr	Gly	Ser	Ile	Asn
210	215	220													
Leu	Arg	Met	Arg	Gln	Leu	Asn	Gly	Asp	Gly	Gly	Gln	Ala	Leu	Val	Glu
225	230	235	240												
Asn	Glu	Val	Val	Gln	Val	Ser	Glu	Thr	Ser	His	Thr	Leu	Gln	Arg	Ser
245	250	255													

<210> 272

<211> 1111

<212> DNA

<213> Homo sapiens

<400> 272

ccgcgcgctc	ccccggccgc	tcctgctgca	ccccaggccc	cctcgccgcc	gccaccatgg	60
acgcacatcaa	gaagaagatg	cagatgctga	agctcgacaa	ggagaacgccc	ttggatcgag	120
ctgagcaggc	ggaggccgac	aagaaggcgg	cggaagacag	gagcaaggcag	ctgaaagatg	180
agctgggtgc	actgaaaaag	aaactcaagg	gcaccgaaga	tgaactggac	aaatactctg	240
aggctctcaa	agatgcccag	gagaagctgg	agctggcaga	aaaaaaggcc	accgatgtcg	300
aagccgacgt	agcttctctg	aacagacgca	tccagctgtt	tgaggaagag	ttggatctgt	360
cccaggagcg	tctggcaaca	gctttgcaga	agctggagga	agctgagaag	gcagcagatg	420
agagttagag	aggcatgaaa	gtcattgaga	gtcgagccca	aaaagatgaa	aaaaaatgg	480
aaattcagga	gatccaactg	aaagaggcca	agcacatgc	tgaagatgcc	gaccgcaat	540
acgaagaggt	ggcccgtaag	ctggcatca	ttgagagcga	cctggaacgt	gcagaggagc	600
gggctgagct	ctcagaaggc	aatatgtccg	agcttgaaga	agaattgaaa	actgtgacga	660
acaacttcaa	gtcactggag	gctcaggctg	agaagtactc	gcagaaggaa	gacagatatg	720
aggaagagat	caaggtcctt	tccgacaagc	tgaaggaggc	tgagactcgg	gctgagttg	780
cgagaggtc	agtaactaaa	ttggagaaaa	gcattgtga	cttagaagac	gagctgtacg	840
ctcagaaact	gaagtacaaa	gccatcagcg	aggagctgg	ccacgctctc	aacgatatga	900
cttccatata	agtttctttg	cttcacttct	cccaagactc	cctcgtcgag	ctggatgtcc	960
cacctctctg	agctctgcat	ttgtctattc	tccagctgac	cctgggtctc	tctcttagca	1020
tcctgcctta	gagccaggca	cacactgtgc	tttcttatgt	acagaagctc	ttcgtttcag	1080
tgtcaaataa	acactgtga	agctaaaaaa	a			1111

<210> 273

<211> 284

<212> PRT

<213> Homo sapiens

<400> 273

Met Asp Ala Ile Lys Lys Lys Met Gln Met Leu Lys Leu Asp Lys Glu

1	5	10	15												
Asn	Ala	Leu	Asp	Arg	Ala	Glu	Gln	Ala	Glu	Ala	Asp	Lys	Lys	Ala	Ala
			20			25					30				
Glu	Asp	Arg	Ser	Lys	Gln	Leu	Glu	Asp	Glu	Leu	Val	Ser	Leu	Gln	Lys
			35			40					45				
Lys	Leu	Lys	Gly	Thr	Glu	Asp	Glu	Leu	Asp	Lys	Tyr	Ser	Glu	Ala	Leu
			50			55					60				
Lys	Asp	Ala	Gln	Glu	Lys	Leu	Glu	Leu	Ala	Glu	Lys	Lys	Ala	Thr	Asp
			65			70				75				80	
Ala	Glu	Ala	Asp	Val	Ala	Ser	Leu	Asn	Arg	Arg	Ile	Gln	Leu	Val	Glu
			85			90					95				
Glu	Glu	Leu	Asp	Arg	Ala	Gln	Glu	Arg	Leu	Ala	Thr	Ala	Leu	Gln	Lys
			100			105					110				
Leu	Glu	Glu	Ala	Glu	Lys	Ala	Ala	Asp	Glu	Ser	Glu	Arg	Gly	Met	Lys
			115			120					125				
Val	Ile	Glu	Ser	Arg	Ala	Gln	Lys	Asp	Glu	Glu	Lys	Met	Glu	Ile	Gln
			130			135					140				
Glu	Ile	Gln	Leu	Lys	Glu	Ala	Lys	His	Ile	Ala	Glu	Asp	Ala	Asp	Arg
			145			150					155				160
Lys	Tyr	Glu	Glu	Val	Ala	Arg	Lys	Leu	Val	Ile	Ile	Glu	Ser	Asp	Leu
			165			170					175				
Glu	Arg	Ala	Glu	Glu	Arg	Ala	Glu	Leu	Ser	Glu	Gly	Lys	Cys	Ala	Glu
			180			185					190				
Leu	Glu	Glu	Leu	Lys	Thr	Val	Thr	Asn	Asn	Leu	Lys	Ser	Leu	Glu	
			195			200					205				
Ala	Gln	Ala	Glu	Lys	Tyr	Ser	Gln	Lys	Glu	Asp	Arg	Tyr	Glu	Glu	
			210			215					220				
Ile	Lys	Val	Leu	Ser	Asp	Lys	Leu	Lys	Glu	Ala	Glu	Thr	Arg	Ala	Glu
			225			230					235				240
Phe	Ala	Glu	Arg	Ser	Val	Thr	Lys	Leu	Glu	Lys	Ser	Ile	Asp	Asp	Leu
			245			250					255				
Glu	Asp	Glu	Leu	Tyr	Ala	Gln	Lys	Leu	Lys	Tyr	Lys	Ala	Ile	Ser	Glu
			260			265					270				
Glu	Leu	Asp	His	Ala	Leu	Asn	Asp	Met	Thr	Ser	Ile				
			275			280									

<210> 274

<211> 2032

<212> DNA

<213> Homo sapiens

<400> 274

caccccgccag	ccccggcctcg	gcctccgccc	cttgggttcg	cgccccggcc	gcgagcccg	60
cccgcacgtc	ccccggccggc	ggccaccatg	agcacaggcc	tgcggtacaa	gagcaagctg	120
gcgcaccccg	aggacaagca	ggacattgc	aagcagtacg	tggcttcgc	cacactgccc	180
aaccagggtc	accgcaagtc	ggtgaagaaa	ggctttgact	tcacactcat	ggtggcttgt	240
gagtcaggcc	tggggaaatc	cacactggtc	cacagccctt	tcctgacaga	tttgtacaag	300
gaccggaaatc	tgctcagtc	tgaggagcgc	atcagccaga	cggttagagat	tctaaaacac	360
acgggtggaca	ttgaggagaa	gggagtcaag	ctgaagctca	ccatcgtgga	cacgcccggga	420
ttcggggacg	ctgtcaacaa	caccgagtgc	tggaagccca	tcacccgacta	tgtggaccag	480
cagtttgagc	agtacttccg	tgtgagagc	ggcctcaacc	gaaagaacat	ccaagacaac	540
cgagtgcact	gctgcctata	tttcatctcc	cccttcgggc	atgggctgcg	gccagtggat	600
gtgggtttca	tgaaggcatt	gcatgagaag	gtcaacatcg	tgccctctcat	cgccaaagct	660
gactgtcttg	tccccagtg	gatccggaag	ctgaaggagc	ggatccggga	ggagattgac	720
aagtttggga	tccatgtata	ccagttccct	gagtgtact	cgagcaggg	tgaggacttc	780
aagcagcagg	accgggaact	gaaggagagc	gcgccttcg	ccgttatagg	cagcaacacg	840
gtggggggc	ccaaaggggca	gcgggtccgg	ggccgactgt	accctgggg	gatcgtggag	900
gtggagaacc	aggcgcatcg	cgacttcgt	aagctgcga	acatgctcat	ccgcacgcac	960
atgcacgacc	tcaaggacgt	gacgtgcgc	gtgcactacg	agaactaccg	cgcgactgc	1020
atccagcaga	tgaccagcaa	actgaccagg	gacagccgca	tggagagccc	catccccatc	1080
ctgcccgtgc	ccaccccgga	cgccgagact	gagaagctta	tcaggatgaa	ggatgaggaa	1140

ctgaggcgca	tgcaggagat	gctgcagagg	atgaagcagc	agatgcagga	ccagtgcacgc	1200
tcgcccggaa	cacaccgtcc	gtctccggga	cgccctcgca	cccctggaca	ccagaccggaa	1260
ctgttcccgaa	ccccggagacg	cggggccaca	gcccccaact	gaccctaatt	tatttctcagc	1320
accacccctt	cccaggtcat	tgtgtctgtt	tccgaggggc	ctggaccgt	gccccccgccc	1380
agctggccct	ctctgaccc	ggggatcag	gagcgaagtt	ggggggact	ttagagatcc	1440
gcctcccttg	cccttcccccc	gccccccggac	ggtcacagca	cccaaaccgc	aggcccgtct	1500
ctggcaggca	ggcaaagcta	ggcagaagag	gattcccagg	atcctgggtc	tgttccctgc	1560
cccagtctg	cagaacggac	ttgggagccc	tcctttgcct	gctcccgccg	gtcacccagc	1620
gagtgtctgag	accccatttt	ctgtcgaggc	ggggccgagtc	ttcccttatac	cccagacgcc	1680
tagccggcag	ggttgggctg	aatccaaatgg	gagcccttcca	gacataagga	ggccagaggc	1740
tgcaaggagc	ggggtcgtga	ccgcattacac	cccttcttcca	cagcccgcc	cgacctggag	1800
ggccccccgg	gcactgggctg	gtgagccacc	tcctggcaac	tetcgggtc	gtcccctgccc	1860
ctcgctcgag	gccttttctc	cccagcaccg	ctgtgggtgt	ccgggatct	gagccttaggc	1920
ctcccgatgt	tcccacccgc	atgatccctt	cccgccacac	gatgctccgt	tttcttcgt	1980
tgtgaatgcc	gcgtcctgtc	ctggtgacag	gagaacaatg	ttggtaacg	tc	2032

<210> 275

<211> 369

<212> PRT

<213> Homo sapiens

<400> 275

Met	Ser	Thr	Gly	Leu	Arg	Tyr	Lys	Ser	Lys	Leu	Ala	Thr	Pro	Glu	Asp
1				5				10				15			
Lys	Gln	Asp	Ile	Asp	Lys	Gln	Tyr	Val	Gly	Phe	Ala	Thr	Leu	Pro	Asn
							20		25			30			
Gln	Val	His	Arg	Lys	Ser	Val	Lys	Lys	Gly	Phe	Asp	Phe	Thr	Leu	Met
							35		40			45			
Val	Ala	Gly	Glu	Ser	Gly	Leu	Gly	Lys	Ser	Thr	Leu	Val	His	Ser	Leu
	50					55					60				
Phe	Leu	Thr	Asp	Leu	Tyr	Lys	Asp	Arg	Lys	Leu	Leu	Ser	Ala	Glu	Glu
	65					70				75			80		
Arg	Ile	Ser	Gln	Thr	Val	Glu	Ile	Leu	Lys	His	Thr	Val	Asp	Ile	Glu
						85			90			95			
Glu	Lys	Gly	Val	Lys	Leu	Lys	Leu	Thr	Ile	Val	Asp	Thr	Pro	Gly	Phe
	100						105				110				
Gly	Asp	Ala	Val	Asn	Asn	Thr	Glu	Cys	Trp	Lys	Pro	Ile	Thr	Asp	Tyr
	115						120				125				
Val	Asp	Gln	Gln	Phe	Glu	Gln	Tyr	Phe	Arg	Asp	Glu	Ser	Gly	Leu	Asn
	130					135				140					
Arg	Lys	Asn	Ile	Gln	Asp	Asn	Arg	Val	His	Cys	Cys	Leu	Tyr	Phe	Ile
	145					150				155			160		
Ser	Pro	Phe	Gly	His	Gly	Leu	Arg	Pro	Val	Asp	Val	Gly	Phe	Met	Lys
						165			170			175			
Ala	Leu	His	Glu	Lys	Val	Asn	Ile	Val	Pro	Leu	Ile	Ala	Lys	Ala	Asp
	180						185				190				
Cys	Leu	Val	Pro	Ser	Glu	Ile	Arg	Lys	Leu	Lys	Glu	Arg	Ile	Arg	Glu
	195						200				205				
Glu	Ile	Asp	Lys	Phe	Gly	Ile	His	Val	Tyr	Gln	Phe	Pro	Glu	Cys	Asp
	210					215				220					
Ser	Asp	Glu	Asp	Glu	Asp	Phe	Lys	Gln	Gln	Asp	Arg	Glu	Leu	Lys	Glu
	225					230				235			240		
Ser	Ala	Pro	Phe	Ala	Val	Ile	Gly	Ser	Asn	Thr	Val	Val	Glu	Ala	Lys
						245				250			255		
Gly	Gln	Arg	Val	Arg	Gly	Arg	Leu	Tyr	Pro	Trp	Gly	Ile	Val	Glu	Val
	260					265					270				
Glu	Asn	Gln	Ala	His	Cys	Asp	Phe	Val	Lys	Leu	Arg	Asn	Met	Leu	Ile
	275					280					285				
Arg	Thr	His	Met	His	Asp	Leu	Lys	Asp	Val	Thr	Cys	Asp	Val	His	Tyr
	290					295					300				
Glu	Asn	Tyr	Arg	Ala	His	Cys	Ile	Gln	Gln	Met	Thr	Ser	Lys	Leu	Thr

305	310	315	320
Gln Asp Ser Arg Met Glu Ser Pro Ile Pro Ile Leu Pro Leu Pro Thr			
325	330	335	
Pro Asp Ala Glu Thr Glu Lys Leu Ile Arg Met Lys Asp Glu Glu Leu			
340	345	350	
Arg Arg Met Gln Glu Met Leu Gln Arg Met Lys Gln Gln Met Gln Asp			
355	360	365	
Gln			

<210> 276
<211> 1344
<212> DNA
<213> Homo sapiens

<400> 276

tgcagactga tatggattca ccactgctaa cacccctgg ttggaactac aggaatagaa	60
ctggaaaaggg aaaaaaggca gcattcacca catcccaatc ctgaatccaa gagtctaaga	120
tagtccccca ctcctatctc aggcttagag gattagatta atccctggg gggaaagactc	180
ttccttgaaa cattttttt tattctgcctg tagctattgg gataattcg gaaatccaca	240
gggacagttc aagtcatctt tgccctctac tttctgttgc actctcagcc ttgttctt	300
tttagaaaact gcatggtaac tattatata tagctaaaga gcatctgac ctctgcctg	360
ggacttcctg gatcctcctc ttcttataaa tacaaggca gagctggat cccggggagc	420
caggaagcag tgagcccagg agtcctcggc cagccctgcc tgcccaccag gaggatgaa	480
gtctccgtgg ctgcctctc ctgcctcatg ctttgttgc tccttggatc ccaggcccag	540
ttcacaaaatg atgcagagac agagttaatg atgtcaaaagc ttccactggaa aaatccagta	600
gttctgaaca gcttcactt tgctgctgac tgctgcacct cctacatctc acaaagcatc	660
ccgtgttcac tcatgaaaat ttatTTGAA acgagcagcg agtgctccaa gccagggtgc	720
atattcctca ccaagaaggc gcgcaagtc tggccaaac ccagtggatc gggagttcag	780
gattgcatga aaaagctgaa gcctactca atataataat aaagagacaa aagaggccag	840
ccacccaccc ccaacacctc ctgagccctc gaagctccca ccaggccagc tctcctccca	900
caacagcttc ccacagcatg aagatctccg tggctccat tcccttctc ctccatca	960
ccatcgccct agggaccaag actgaatcc ctcacgggg accttaccac ccctcagagt	1020
gctgttccac ctacactacc tacaagatcc cgctcagcg gattatggat tactatgaga	1080
ccaacagcca gtgctccaaag cccggaaattg tcttcatcac caaaaggggc cattccgtct	1140
gtaccaaccc cagtgacaag tgggtccagg actatatcaa ggacatgaa gagaactgag	1200
tgacccagaa ggggtggcga aggacacagct cagagacata aagagaagat gccaaggccc	1260
cctcctccac ccacgcctaa ctctcagccc cagtcaccct cttggagctt ccctgcttg	1320
aattaaagac cactcatgt ctcc	1344

<210> 277

<211> 93
<212> PRT
<213> Homo sapiens

<400> 277

Met Lys Ile Ser Val Ala Ala Ile Pro Phe Phe Leu Leu Ile Thr Ile	
1 5 10 15	
Ala Leu Gly Thr Lys Thr Glu Ser Ser Ser Arg Gly Pro Tyr His Pro	
20 25 30	
Ser Glu Cys Cys Phe Thr Tyr Thr Thr Tyr Lys Ile Pro Arg Gln Arg	
35 40 45	
Ile Met Asp Tyr Tyr Glu Thr Asn Ser Gln Cys Ser Lys Pro Gly Ile	
50 55 60	
Val Phe Ile Thr Lys Arg Gly His Ser Val Cys Thr Asn Pro Ser Asp	
65 70 75 80	
Lys Trp Val Gln Asp Tyr Ile Lys Asp Met Lys Glu Asn	
85 90	

<210> 278

<211> 1344

<212> DNA
 <213> Homo sapiens

<400> 278

tgcagactga	tatggattca	ccactgctaa	cacccctgg	ttggaactac	aggaataaaaa	60
ctggaaaagg	aaaaaaaggca	gcattcacca	catcccaatc	ctgaatccaa	gagtctaaga	120
tagtccccca	ctccttatc	aggcttagag	gattagatta	atccctgg	ggaaagactc	180
ttccttgaaa	cattttttt	tatctgcctg	tagctattgg	gataattcg	aaaatccaca	240
gggacagttc	aagtcatctt	tgtcctctac	tttctgtgc	actctcagcc	ttgttctt	300
tttagaaact	gcatggtaac	tattatata	ctaaagaaga	gcattctgac	ctctgcctg	360
ggacttcctg	gatcctc	ttcttataaa	tacaaggca	gagctggat	ccgggggagc	420
caggaagcag	tgagcccagg	agtctcgcc	cagccctg	tgcccaccag	gaggatgaag	480
gtctccgtgg	ctgccc	ctgcctcatg	tttgttgc	tccttggatc	ccaggccccag	540
ttcacaaatg	atgcagagac	agagttatg	atgtcaaagc	ttcactgg	aaatccagta	600
gttctgaaca	gctttactt	tgctgctgac	tgctgcac	cctacatc	acaaagcata	660
ccgtgttac	tcatgaaaag	ttatttgaa	acgagcagcg	agtctccaa	gccagggtgc	720
atattccctca	ccaagaagg	gcccgaatc	tgtccaaac	ccagtgg	gggagtttag	780
gattgcatga	aaaagctaa	gcctactca	atataataat	aaaqagacaa	aagaggccag	840
ccacccac	ccaaacac	ctgagcctc	gaagctccaa	ccaggcc	tctcctccca	900
caacagctc	ccacagcatg	aagatctcg	tggctgc	ccatccatca	ccatccatca	960
ccatcgccct	agggaccaag	actgaatc	cctcacggg	acccatccac	ccctcagagt	1020
gctgttac	ctacactacc	tacaagatcc	cgcgtcagcg	gattatggat	tactatgaga	1080
ccaaacagcc	gtgctccaa	cccgaaattg	tcttcatcac	caaaagg	catccgtct	1140
gtaccaaccc	cagtgacaag	tggtccagg	actatataa	ggacatgaag	gagaactgag	1200
tgacccagaa	gggggtggc	aggcacagct	cagagacata	aagagaagat	gccaaggccc	1260
cctctccac	ccaccgctaa	ctctcagccc	cagtcaccc	tttggagctt	ccctgctt	1320
aattaaagac	cactcatgct	cttc				1344

<210> 279
 <211> 93
 <212> PRT
 <213> Homo sapiens

<400> 279

Met	Lys	Ile	Ser	Val	Ala	Ala	Ile	Pro	Phe	Phe	Leu	Leu	Ile	Thr	Ile
1				5				10					15		
Ala	Leu	Gly	Thr	Lys	Thr	Glu	Ser	Ser	Ser	Arg	Gly	Pro	Tyr	His	Pro
					20			25					30		
Ser	Glu	Cys	Cys	Phe	Thr	Tyr	Thr	Thr	Tyr	Lys	Ile	Pro	Arg	Gln	Arg
						35		40			45				
Ile	Met	Asp	Tyr	Tyr	Glu	Thr	Asn	Ser	Gln	Cys	Ser	Lys	Pro	Gly	Ile
	50				55				60						
Val	Phe	Ile	Thr	Lys	Arg	Gly	His	Ser	Val	Cys	Thr	Asn	Pro	Ser	Asp
65					70				75				80		
Lys	Trp	Val	Gln	Asp	Tyr	Ile	Lys	Asp	Met	Lys	Glu	Asn			
					85				90						

<210> 280
 <211> 1344
 <212> DNA
 <213> Homo sapiens

<400> 280

tgcagactga	tatggattca	ccactgctaa	cacccctgg	ttggaactac	aggaataaaaa	60
ctggaaaagg	aaaaaaaggca	gcattcacca	catcccaatc	ctgaatccaa	gagtctaaga	120
tagtccccca	ctccttatc	aggcttagag	gattagatta	atccctgg	ggaaagactc	180
ttccttgaaa	cattttttt	tatctgcctg	tagctattgg	gataattcg	aaaatccaca	240
gggacagttc	aagtcatctt	tgtcctctac	tttctgtgc	actctcagcc	ttgttctt	300
tttagaaact	gcatggtaac	tattatata	ctaaagaaga	gcattctgac	ctctgcctg	360
ggacttcctg	gatcctc	ttcttataaa	tacaaggca	gagctggat	ccgggggagc	420
caggaagcag	tgagcccagg	agtctcgcc	cagccctg	tgcccaccag	gaggatgaag	480

gtctccgtgg	ctgcccttc	ctgcctcatg	cttggatc	ttccatggatc	ccaggcccag	540
ttcacaaatg	atgcagagac	agagttaatg	atgtcaaagc	ttccactgga	aaatccagta	600
gttctgaaca	gcttcactt	tgctgctgac	tgctgcacct	cctacatctc	acaaaagcatc	660
ccgtgttcac	tcatgaaaaag	ttatttgaa	acgagcagcg	agtgcctcaa	gccagggttc	720
atattcctca	ccaagaaggg	gcccgaatgc	tgtgccaac	ccagtggtcc	gggagtttag	780
gattgcatga	aaaagctgaa	gcctactca	atataataat	aaagagacaa	aagagggcag	840
ccacccacct	ccaacaccc	ctgagcctct	gaagctccca	ccaggccagc	tctcctccca	900
caacagcttc	ccacagcatg	aagatctccg	tggctgcccc	tcccttcttc	ctcctcatca	960
ccatcgccct	agggaccaag	actgaatctt	cctcacgggg	accttaccac	ccctcagagt	1020
gctgcttcac	ctacactacc	tacaagatcc	cgcgtcagcg	gattatggat	tactatgaga	1080
ccaacagcca	gtgctccaaag	cccgaaattg	tcttcatcac	caaaaggggc	cattccgtct	1140
gtaccaaccc	cagtgacaag	tgggtccagg	actatataaa	ggacatgaag	gagaactgag	1200
tgacccagaa	gggggtggcga	aggcacagct	cagagacata	aaagagaagat	gc当地agccc	1260
cctcctccac	ccaccgctaa	ctctcagccc	cagtcaccct	cttggagctt	ccctgctttg	1320
aattaaagac	cactcatgct	cttc				1344

<210> 281

<211> 93

<212> PRT

<213> Homo sapiens

<400> 281

Met	Lys	Ile	Ser	Val	Ala	Ala	Ile	Pro	Phe	Phe	Leu	Leu	Ile	Thr	Ile
1					5				10				15		
Ala	Leu	Gly	Thr	Lys	Thr	Glu	Ser	Ser	Ser	Arg	Gly	Pro	Tyr	His	Pro
							20		25				30		
Ser	Glu	Cys	Cys	Phe	Thr	Tyr	Thr	Thr	Tyr	Lys	Ile	Pro	Arg	Gln	Arg
							35		40			45			
Ile	Met	Asp	Tyr	Tyr	Glu	Thr	Asn	Ser	Gln	Cys	Ser	Lys	Pro	Gly	Ile
							50		55			60			
Val	Phe	Ile	Thr	Lys	Arg	Gly	His	Ser	Val	Cys	Thr	Asn	Pro	Ser	Asp
							65		70			75			80
Lys	Trp	Val	Gln	Asp	Tyr	Ile	Lys	Asp	Met	Lys	Glu	Asn			
							85			90					

<210> 282

<211> 2750

<212> DNA

<213> Homo sapiens

<400> 282

tacgatggca	acacccctcg	caaggcccc	aatgagttcc	tgacactcggt	ggtggagetc	60
atcgccgcgg	ccaaggccct	gctggcgtgg	ctggaccgat	tgctatTTTA	tgtgtcaTTT	120
gagagaaaac	agttaataaa	aaactaattt	aatacAAAAT	ttagctgggc	ttgggtggcac	180
atgcctgtaa	tcccagctac	tcggaggct	gaagcaggag	agtgcTTGA	acctgggagg	240
cgttagattgc	agtgagccaa	gatcatccca	ctgcactcca	gcctggcga	cagagtgaga	300
cacagtctca	aacaaaacaa	aacaaaaagg	aatttagAGT	agccatGGG	gtagctatgc	360
ttaccaacat	ccagtggat	ccccgtggat	tctccctacc	ccttttaag	aggattttg	420
ctaccttcta	gggctccgtt	tacagggtac	actgatttct	cagtcacgaa	gaacaaaatt	480
atccagcttt	gcttggacct	gaccactaca	gtccagaagg	attgtttgt	agcggaaatg	540
gaggataaaag	tttttaactgt	ggtaagggtt	ttaaatggca	tctgtgacaa	aacaatccga	600
tctaccacag	atcctgtgt	gagccagtgt	gcatgtctgg	aggaagttca	cttaccaaacc	660
attaaacctg	gggaaggcct	gggcatgtac	atcaaataaa	cctatgtatgg	gttacacgtg	720
attactggaa	ccacagaaaa	ttctcctgca	gacagatctc	agaagattca	tgctggtgac	780
gaagtcatTC	aagttaatca	gcaactgtg	gtgggatggc	agctgaaaaaa	tctgtgaaag	840
aaatttgagag	agaatccac	cgaggttgtg	ttactgctta	agaagcgcCc	caccgggtct	900
ttcaacttta	ctccctgtcc	cctgaaaaac	ctacgggtgg	agccacctct	tgtacagacc	960
tcacccctccac	ccgcgacaac	ccagccccct	gaaagcacta	tggataccctc	actgaagaag	1020
gagaagtcag	ccatcctgg	tcttatatt	cctccctccgc	ctgctgttcc	ctactctccc	1080
cgggatgaga	atggcagttt	tgttatgg	gggtccagta	agtgc当地aca	accattgcct	1140
ggtcctaagg	gttcagagtc	cccgaaattcc	ttcttgacc	aggaaagccg	gagacgaaga	1200

tccaccattg	cagactcgga	tcaaggcct	gggtactcg	tggaaaccaa	cattctgccc	1260
acaaaaatga	gagagaaaac	accatcttat	grcaagccac	ggccttg	catgcctgct	1320
gatgggaact	ggatggggat	tgtggaccct	tttgcagac	ctcgaggtca	tggcagggaaa	1380
ggggaggatg	cccttgc	gtatttcagt	aacgagcgga	ttcctccgat	cattgaagag	1440
agctccttc	ccccataccg	gttctccaga	cccacgaccg	agcggcatct	ggtcgggggt	1500
gcggactaca	tccgaggaag	caggtgtac	atcaactcag	atctccacag	cagcgcac	1560
attccattcc	aggaggaagg	gaccaaaaag	aatctggct	cctcagctac	gaagtctcg	1620
tccacagaac	cgtcccctct	ggtcagctgg	tttacgcg	tcaaactgtt	gactca	1680
gagggaccct	gctcaggcca	cctgcctggc	tcctgc	tttacagtg		1740
gacagccct	tctcg	gcctcagtat	tatgttagg	ccttatg		1800
tttgaaaag	ttatctactg	cccttcttgg	aagtttgcag	gattggatgg	gaacaaattc	1860
agaggatctt	aggtgtggc	ttgtggagac	aaaaggagg	aaatggtag	agcctgtt	1920
tcttgcttcc	ccagagatag	aatgtgaaga	cacgcgctag	aaatgc	cgtccaga	1980
gacgttatgg	tcattgtgag	ggactgtgg	cattgtt	tttgagg	ctggggggac	2040
tcaatttgtt	ggctgtttc	acacagatgt	gttgg	gttcaact	cttata	2100
aaaagccagt	gagaaaacat	tttgattt	attttctaa	actatotacc	atattttaag	2160
tgtacgact	ttgactttgc	aataacgtgg	caagtatctg	atttctc	tgagggcagag	2220
gtttaagtgt	aggcctgtta	cactt	atac	catgac	tcagtgat	2280
tcagttggta	cagaaataca	tgaacacatt	ttgatagggc	ttat	caca	2340
tatggttatt	tgtgtgggt	ggtgtt	tatattattg	tcttta	aaaagaag	2400
ataagattcg	ctgacagcca	aagtatcatt	tagaaaagt	aagaaca	aga	2460
tgaaaagatac	atgagttgc	attttgac	gttcagtgt	tgtcttcc	cacgggtgt	2520
acacttcttc	aaaattgtac	acagttgct	aattaga	atcttgg	aaa	2580
cactaatttt	caactagcat	caggtat	gaaaacgtgt	gtctggat	taactctt	2640
ttaaaactgaa	tgtatgat	tttgttagaa	tggaaaagta	ctatctt	ttt aattt	2700
ttttaaatat	agtgtat	tttcttact	ctaaaaaaaa	aaaaaaa	aaaaaaa	2750

<210> 283
<211> 380
<212> PRT
<213> *Homo sapiens*

<220>
<221> VARIANT
<222> (1)...(380)
<223> Xaa = Any Amino Acid

<400> 283

```

Met Glu Asp Lys Val Leu Thr Val Val Lys Val Leu Asn Gly Ile Cys
   1          5          10          15
Asp Lys Thr Ile Arg Ser Thr Thr Asp Pro Val Met Ser Gln Cys Ala
   20          .          25          30
Cys Leu Glu Glu Val His Leu Pro Asn Ile Lys Pro Gly Glu Gly Leu
   35          .          40          45
Gly Met Tyr Ile Lys Ser Thr Tyr Asp Gly Leu His Val Ile Thr Gly
   50          .          55          60
Thr Thr Glu Asn Ser Pro Ala Asp Arg Ser Gln Lys Ile His Ala Gly
   65          .          70          75          80
Asp Glu Val Ile Gln Val Asn Gln Gln Thr Val Val Gly Trp Gln Leu
   85          .          90          95
Lys Asn Leu Val Lys Lys Leu Arg Glu Asn Pro Thr Gly Val Val Leu
  100          .          105          110
Leu Leu Lys Lys Arg Pro Thr Gly Ser Phe Asn Phe Thr Pro Ala Pro
  115          .          120          125
Leu Lys Asn Leu Arg Trp Lys Pro Pro Leu Val Gln Thr Ser Pro Pro
  130          .          135          140
Pro Ala Thr Thr Gln Ser Pro Glu Ser Thr Met Asp Thr Ser Leu Lys
  145          .          150          155          160
Lys Glu Lys Ser Ala Ile Leu Asp Leu Tyr Ile Pro Pro Pro Pro Ala
  165          .          170          175
Val Pro Tyr Ser Pro Arg Asp Glu Asn Gly Ser Phe Val Tyr Gly Gly

```

	180	185	190												
Ser	Ser	Lys	Cys	Lys	Gln	Pro	Leu	Pro	Gly	Pro	Lys	Gly	Ser	Glu	Ser
			195		200						205				
Pro	Asn	Ser	Phe	Leu	Asp	Gln	Glu	Ser	Arg	Arg	Arg	Arg	Phe	Thr	Ile
			210		215						220				
Ala	Asp	Ser	Asp	Gln	Leu	Pro	Gly	Tyr	Ser	Val	Glu	Thr	Asn	Ile	Leu
				225		230				235			240		
Pro	Thr	Lys	Met	Arg	Glu	Lys	Thr	Pro	Ser	Tyr	Xaa	Lys	Pro	Arg	Pro
				245		250					255				
Leu	Ser	Met	Pro	Ala	Asp	Gly	Asn	Trp	Met	Gly	Ile	Val	Asp	Pro	Phe
				260		265					270				
Ala	Arg	Pro	Arg	Gly	His	Gly	Arg	Lys	Gly	Glu	Asp	Ala	Leu	Cys	Arg
				275		280					285				
Tyr	Phe	Ser	Asn	Glu	Arg	Ile	Pro	Pro	Ile	Ile	Glu	Glu	Ser	Ser	Ser
											290				
				295							300				
Pro	Pro	Tyr	Arg	Phe	Ser	Arg	Pro	Thr	Thr	Glu	Arg	His	Leu	Val	Arg
											305				
				310						315			320		
Gly	Ala	Asp	Tyr	Ile	Arg	Gly	Ser	Arg	Cys	Tyr	Ile	Asn	Ser	Asp	Leu
											325			335	
His	Ser	Ser	Ala	Thr	Ile	Pro	Phe	Gln	Glu	Gly	Thr	Lys	Lys	Lys	
											340			350	
Ser	Gly	Ser	Ser	Ala	Thr	Lys	Ser	Ser	Ser	Thr	Glu	Pro	Ser	Leu	Leu
											355			365	
Val	Ser	Trp	Phe	Thr	Arg	Leu	Lys	Leu	Leu	Leu	Thr	His			
											370			380	

<210> 284

<211> 1789

<212> DNA

<213> Homo sapiens

<400> 284

ggttcaggaa	cctgctgggtt	ctgatacata	aatcagacag	cctctgctgc	atgacacgaa										60
gcttgcttc	gcctggcatc	tgtgagcagc	tgccaggctc	cggccaggat	cccttccttc										120
tcctcattgg	ctgatggatc	ccaaggggct	ccttccttg	accttcgtgc	tgtttctctc										180
cctggctttt	ggggcaagct	acggaacagg	tgggcgcatg	atgaactgcc	caaagattct										240
ccggcagttg	ggaagcaaag	tgctgctgcc	cctgacatat	gaaaggataa	ataagagcat										300
gaacaaaagc	atccacattg	tcgtcacaat	ggcaaaatca	ctggagaaca	gtgtcgagaa										360
caaaaatagt	tctcttgatc	catccgaagc	aggccctcca	cgttatctag	gagatcgcta										420
caagttttat	ctggagaatc	tcaccctggg	gatacggaa	agcaggaagg	aggatgaggg										480
atgttacctt	atgaccctgg	agaaaaatgt	ttcagttcag	cgcttttgcc	tgcagtttag										540
gctttatgag	caggtctcca	ctccagaaaat	taaagtta	aacaagaccc	aggagaacgg										600
gacctgcacc	ttgatactgg	gctgcacagt	ggagaagggg	gaccatgtgg	cttacagctg										660
gagtggaaag	gcgggcacccc	accactgaa	cccagccaa	agctcccacc	tcctgtccct										720
caccctcgcc	ccccagcatg	ctgacaatat	ctacatctgc	acggtgagca	acccttatcag										780
caacaattcc	cagaccttc	gcccggtggcc	cggtatcagg	acagaccctt	cagaaacaaa										840
accatgggca	gtgtatgtc	ggctgtttagg	gggtgtcata	atatttcata	tcatgggt										900
aataactacag	ttgagaagaa	gagttaaaac	gaaccattac	cagacaacag	tggaaaaaaa										960
aagcttacg	atctatgcc	aagtccagaa	accaggctt	cttcagaaga	aacttgactc										1020
cttcccacgt	caggaccctt	gcacccat	atatgttgc	gccacagagc	ctgtccca										1080
gtctgtccag	gaaacaaatt	ccatcacagt	ctatgttagt	gtgacacttc	cagagagctg										1140
acaccagaga	ccaacaaagg	gactttctga	aggaaaatgg	aaaaacccaa	atgaacactg										1200
aacttggcca	caggcccaag	tttctctgg	cagacatgt	gcacgtctgt	acccttctca										1260
gatcaactcc	ctggtgatgt	ttttccaca	tacatctgt	aatagaacaa	ggaagtgggg										1320
cttccaaga	atttagcttg	ctgtgcagt	gctgcaggcg	cagaacagag	cgttacttga										1380
taacagcggt	ccatctttgt	gtttagcag	atgaaatgg	cagtaatgt	agttcagact										1440
ttggccatct	tgctcttggc	tggaaactgt	aataaaaatc	agactgaaag	ccaggacatc										1500
tgagtaccta	tctcacacac	tgaccaccag	tcacaaagtc	tggaaaagtt	tacattttgg										1560
ctatcttac	tttgttctgg	gagctgatca	tgataaacctg	cagacctgtat	caagccctctg										1620
tgcctcagtt	tctctctcag	gataaaagagt	gaatagaggc	cgaagggtgt	atttcttatt										1680
atacataaaa	cactctgata	ttattgtata	aaggaagcta	agaatattat	tttatttgca										1740

aaacccagaa gctaaaaagt caataaacag aaagaatgat tttgagaaa

<210> 285

<211> 335

<212> PRT

<213> Homo sapiens

<400> 285

Met	Asp	Pro	Lys	Gly	Leu	Leu	Ser	Leu	Thr	Phe	Val	Leu	Phe	Leu	Ser
1					5				10					15	
Leu	Ala	Phe	Gly	Ala	Ser	Tyr	Gly	Thr	Gly	Gly	Arg	Met	Met	Asn	Cys
						20		25						30	
Pro	Lys	Ile	Leu	Arg	Gln	Leu	Gly	Ser	Lys	Val	Leu	Leu	Pro	Leu	Thr
						35		40						45	
Tyr	Glu	Arg	Ile	Asn	Lys	Ser	Met	Asn	Lys	Ser	Ile	His	Ile	Val	Val
						50		55				60			
Thr	Met	Ala	Lys	Ser	Leu	Glu	Asn	Ser	Val	Glu	Asn	Lys	Ile	Val	Ser
						65		70		75				80	
Leu	Asp	Pro	Ser	Glu	Ala	Gly	Pro	Pro	Arg	Tyr	Leu	Gly	Asp	Arg	Tyr
						85			90					95	
Lys	Phe	Tyr	Leu	Glu	Asn	Leu	Thr	Leu	Gly	Ile	Arg	Glu	Ser	Arg	Lys
						100			105					110	
Glu	Asp	Glu	Gly	Trp	Tyr	Leu	Met	Thr	Leu	Glu	Lys	Asn	Val	Ser	Val
						115		120						125	
Gln	Arg	Phe	Cys	Leu	Gln	Leu	Arg	Leu	Tyr	Glu	Gln	Val	Ser	Thr	Pro
						130			135					140	
Glu	Ile	Lys	Val	Leu	Asn	Lys	Thr	Gln	Glu	Asn	Gly	Thr	Cys	Thr	Leu
						145		150		155				160	
Ile	Leu	Gly	Cys	Thr	Val	Glu	Lys	Gly	Asp	His	Val	Ala	Tyr	Ser	Trp
						165			170					175	
Ser	Glu	Lys	Ala	Gly	Thr	His	Pro	Leu	Asn	Pro	Ala	Asn	Ser	Ser	His
						180			185					190	
Leu	Leu	Ser	Leu	Thr	Leu	Gly	Pro	Gln	His	Ala	Asp	Asn	Ile	Tyr	Ile
						195			200					205	
Cys	Thr	Val	Ser	Asn	Pro	Ile	Ser	Asn	Asn	Ser	Gln	Thr	Phe	Ser	Pro
						210		215						220	
Trp	Pro	Gly	Cys	Arg	Thr	Asp	Pro	Ser	Glu	Thr	Lys	Pro	Trp	Ala	Val
						225		230		235				240	
Tyr	Ala	Gly	Leu	Leu	Gly	Gly	Val	Ile	Met	Ile	Leu	Ile	Met	Val	Val
						245			250					255	
Ile	Leu	Gln	Leu	Arg	Arg	Gly	Lys	Thr	Asn	His	Tyr	Gln	Thr	Thr	
						260			265					270	
Val	Glu	Lys	Lys	Ser	Leu	Thr	Ile	Tyr	Ala	Gln	Vai	Gln	Lys	Pro	Gly
						275			280					285	
Pro	Leu	Gln	Lys	Lys	Leu	Asp	Ser	Phe	Pro	Ala	Gln	Asp	Pro	Cys	Thr
						290		295						300	
Thr	Ile	Tyr	Val	Ala	Ala	Thr	Glu	Pro	Val	Pro	Glu	Ser	Val	Gln	Glu
						305		310		315				320	
Thr	Asn	Ser	Ile	Thr	Val	Tyr	Ala	Ser	Val	Thr	Leu	Pro	Glu	Ser	
						325			330					335	

<210> 286

<211> 305

<212> PRT

<213> Homo sapiens

<400> 286

Met	Asp	Pro	Lys	Gly	Leu	Leu	Ser	Leu	Thr	Phe	Val	Leu	Phe	Leu	Ser
1					5				10					15	
Leu	Ala	Phe	Gly	Ala	Ser	Tyr	Gly	Thr	Gly	Gly	Arg	Met	Met	Asn	Cys
						20		25						30	

Pro Lys Ile Leu Arg Gln Leu Gly Ser Lys Val Leu Leu Pro Leu Thr
 35 40 45
 Tyr Glu Arg Ile Asn Lys Ser Met Asn Lys Ser Ile His Ile Val Val
 50 55 60
 Thr Met Ala Lys Ser Leu Glu Asn Ser Val Glu Asn Lys Ile Val Ser
 65 70 75 80
 Leu Asp Pro Ser Glu Ala Gly Pro Pro Arg Tyr Leu Gly Asp Arg Tyr
 85 90 95
 Lys Phe Tyr Leu Glu Asn Leu Thr Leu Gly Ile Arg Glu Ser Arg Lys
 100 105 110
 Glu Asp Glu Gly Trp Tyr Leu Met Thr Leu Glu Lys Asn Val Ser Val
 115 120 125
 Gln Arg Phe Cys Leu Gln Leu Arg Leu Tyr Glu Gln Val Ser Thr Pro
 130 135 140
 Glu Ile Lys Val Leu Asn Lys Thr Gln Glu Asn Gly Thr Cys Thr Leu
 145 150 155 160
 Ile Leu Gly Cys Thr Val Glu Lys Gly Asp His Val Ala Tyr Ser Trp
 165 170 175
 Ser Glu Lys Ala Gly Thr His Pro Leu Asn Pro Ala Asn Ser Ser His
 180 185 190
 Leu Leu Ser Leu Thr Leu Gly Pro Gln His Ala Asp Asn Ile Tyr Ile
 195 200 205
 Cys Thr Val Ser Asn Pro Ile Ser Asn Asn Ser Gln Thr Phe Ser Pro
 210 215 220
 Trp Pro Gly Cys Arg Thr Asp Pro Ser Gly Lys Thr Asn His Tyr Gln
 225 230 235 240
 Thr Thr Val Glu Lys Lys Ser Leu Thr Ile Tyr Ala Gln Val Gln Lys
 245 250 255
 Pro Gly Pro Leu Gln Lys Lys Leu Asp Ser Phe Pro Ala Gln Asp Pro
 260 265 270
 Cys Thr Thr Ile Tyr Val Ala Ala Thr Glu Pro Val Pro Glu Ser Val
 275 280 285
 Gln Glu Thr Asn Ser Ile Thr Val Tyr Ala Ser Val Thr Leu Pro Glu
 290 295 300
 Ser
 305

<210> 287
 <211> 298
 <212> PRT
 <213> Homo sapiens

<400> 287
 Met Asp Pro Lys Gly Leu Leu Ser Leu Thr Phe Val Leu Phe Leu Ser
 1 5 10 15
 Leu Ala Phe Gly Ala Ser Tyr Gly Thr Gly Gly Arg Met Met Asn Cys
 20 25 30
 Pro Lys Ile Leu Arg Gln Leu Gly Ser Lys Val Leu Leu Pro Leu Thr
 35 40 45
 Tyr Glu Arg Ile Asn Lys Ser Met Asn Lys Ser Ile His Ile Val Val
 50 55 60
 Thr Met Ala Lys Ser Leu Glu Asn Ser Val Glu Asn Lys Ile Val Ser
 65 70 75 80
 Leu Asp Pro Ser Glu Ala Gly Pro Pro Arg Tyr Leu Gly Asp Arg Tyr
 85 90 95
 Lys Phe Tyr Leu Glu Asn Leu Thr Leu Gly Ile Arg Glu Ser Arg Lys
 100 105 110
 Glu Asp Glu Gly Trp Tyr Leu Met Thr Leu Glu Lys Asn Val Ser Val
 115 120 125
 Gln Arg Phe Cys Leu Gln Leu Arg Leu Tyr Glu Gln Val Ser Thr Pro
 130 135 140

Glu Ile Lys Val Leu Asn Lys Thr Gln Glu Asn Gly Thr Cys Thr Leu
 145 150 155 160
 Ile Leu Gly Cys Thr Val Glu Lys Gly Asp His Val Ala Tyr Ser Trp
 165 170 175
 Ser Glu Lys Ala Gly Thr His Pro Leu Asn Pro Ala Asn Ser Ser His
 180 185 190
 Leu Leu Ser Leu Thr Leu Gly Pro Gln His Ala Asp Asn Ile Tyr Ile
 195 200 205
 Cys Thr Val Ser Asn Pro Ile Ser Asn Asn Ser Gln Thr Phe Ser Pro
 210 215 220
 Trp Pro Gly Cys Arg Thr Asp Pro Ser Glu Thr Lys Pro Trp Ala Val
 225 230 235 240
 Tyr Ala Gly Leu Leu Gly Gly Val Ile Met Ile Leu Ile Met Val Val
 245 250 255
 Ile Leu Gln Leu Arg Arg Arg Gly Lys Thr Asn His Tyr Gln Thr Thr
 260 265 270
 Val Glu Lys Lys Ser Leu Thr Ile Tyr Ala Gln Val Gln Lys Pro Gly
 275 280 285
 Asp Thr His His Gln Thr Ser Asp Leu Phe
 290 295

<210> 288

<211> 3640

<212> DNA

<213> Homo sapiens

<400> 288

aggacgggac	ggagccgggg	cagccagaag	aggtgtggaaa	agcggaggag	gacgcccagg	60
aggaggcgcc	ggcgccggcc	gggaagtgaa	aggctctcgca	aagttcagcgc	gcggctgcgg	120
gccccgagcc	ccgggcttagc	ggcagacgag	cccgcaggcc	cgctccgcgg	ggcagcgcag	180
ccaggccggc	tatggtcccg	gggtctccgc	cgccccccag	gtgccccggg	cccgccaggc	240
cggtcgcgca	gggtcaccccc	acccccccgc	gcccccccg	ccccctggctc	ccagctgcgg	300
gcccaccgct	accgagcccg	gccccccagg	aggaggaaga	aaccaggggcc	ccgttccctc	360
ccgaggacgg	ccggcgttca	tcccgagcc	cagaggcttc	ggctccctcc	ggcacccgcc	420
cggcccggt	gctcccggt	cetcccgcc	atggggagct	gcgcgcggct	gctgctgctc	480
tggggctgca	cggtggtggc	cgcaggactg	agtggagtag	ctggagtgag	ttcccgtgt	540
gaaaaagcct	gcaaccctcg	gatggaaat	ttggctttgg	ggcaaaaact	ctgggcagac	600
accacctgct	gtcagaatgc	taccgaactg	tactgcttct	acagtggagaa	cacggatctg	660
acttgtcgcc	agcccaaatg	tgacaagtgc	aatgctgcct	atcctcacct	ggctcacctg	720
ccatctgcca	tggcagactc	atcctccgg	tttcctcgca	catggtggca	gtctgcggag	780
gatgtgcaca	gagaaaagat	ccagttagac	ctggaaagct	aattctactt	cactcaccta	840
atttgtatgt	tcaagtcccc	cagggccgt	gccatggtgc	tggaccgctc	ccaggacttt	900
gggaaaaacat	ggaagcccta	taagtacttt	gcgactaact	gctccgctac	atttggcctg	960
gaagatgtat	ttgtcaagaa	gggcgtatt	tgtacttcta	aatactccag	tcctttcca	1020
tgcactggag	gagaggttat	ttcaaaagct	ttgtcaccac	catacgatac	agagaaccct	1080
tacagtgcct	aaggttcagga	gcagctgaag	atcaccaacc	ttcgcgtgca	gctgctgaaa	1140
cgacagtctt	gtccctgtca	gagaaatgac	ctgaacgaag	agctctcaaca	ttttacacac	1200
tatgcaatct	atgatttcat	tgtaaaggcc	agctgcttct	gcaatggcca	cgctgatcaa	1260
tgcatacctg	ttcatggctt	cagacctgtc	aaggccccag	gaacattcca	catggtccat	1320
gggaagtgt	tgtgtaaagca	caacacagca	ggcagccact	gccagcactg	tgccccgtta	1380
tacaatgacc	ggccatggga	ggcagctgt	ggcaaaacgg	ggctcccaa	cgagtgcaga	1440
acctgcaagt	gtaatggca	tgctgatacc	tgtcaacttcg	acgtaatgt	gtggggaggca	1500
tcagggaaatc	gtatgtgtgg	tgtctgtat	gactgtcagc	acaacacaga	aggacagtat	1560
tgccagaggt	gcaagccagg	cttctatcg	gacctgcgg	gacccttetc	agctccagat	1620
gcttgcaaac	cgtgttctcg	ccatccagta	ggatcagctg	tccttcctgc	caactcagtg	1680
accttctgcg	accccagcaa	tggtgactgc	ccttgcaagc	ctgggggtggc	agggcgacgt	1740
tgtgacaggt	gcatggtggg	atactggggc	ttcggagact	atggctgtcg	accatgtgac	1800
tgtgcgggga	gctgtgaccc	tatcaccgg	gactgcatca	gcagccacac	agacatagac	1860
tggtatcatg	aagttccatg	cttccgtccc	gtgcacaata	agagcgaacc	agcctggag	1920
tggaggatg	cgcagggtt	ttctgcact	ctacactcag	gtaaatgcga	atgtaaaggaa	1980
cagacattag	gaaatgccaa	ggcattctgt	ggaatggaaat	attcatatgt	gctaaaaata	2040

aagatttat cagctcatga taaaggtact catgttgagg tcaatgtgaa gattaaaaag	2100
gtcttaaat ctaccaaact gaagatttc cgaggaaagc gaacattata tccagaatca	2160
tggacggaca gaggatgcac ttgtccaatc ctcacatctg gtttggata cctttagca	2220
ggacatgagg atataagaac aggcaaacta attgtgaata tggaaaagctt tgtccagcac	2280
tggaaaacctt ctcttggaaag aaaagtcatg gatatttaa aaagagagtg caagtagcat	2340
taagatggat agcacataat ggcaattgtc tatgtacaaa acacaaactt tagagcaaga	2400
agacctcaga cagggaaactg gaattttta aagtgc当地 acatatacgaa atgtttgaat	2460
gcatgggtct tatctaactt atctcttctg gaccatgtt taaatacagt ttatttcatt	2520
gaagagaaat gaaaaccctt acactgatat ctgtttcta tggactgtat tctgaaattc	2580
ttaactatta agaatatttt aatagcagca tgacatttag cagtaatcca ttaagggcag	2640
tacccctcaac aaggacgcct tccagcttca gcgatgttac ttacgttga tgctactaa	2700
agtaatgaat gacgtttaa ggaatcccta accctactat cagaaaaggt gtttgtt当地	2760
gaggccttctc ttgtgttta cgcattgtact ttggctgtt ggttgtt当地 ggaacctctc	2820
catgtgtata tagtatttcc ttgtataaag cacttacta cctaccactt gtgttgtgaa	2880
cgtttgtga ctgctgttga aagaaggaaa agggtgtgtg agaaaggctt ctgaagcagc	2940
agcaactgcca ctacatgtgg acaaaagtga ccatataaaa gaagttgtgc tatttaactc	3000
tgaataacttg gagaaacttag gtgaaagatgc aaccagaaaag gagaatatgt atgcgtgaa	3060
tcttagctt gagctggagg ctagatttca agatgacagc catgtatggaa cttttt当地	3120
aactaaacca gaagagactt taaaataaga gaaagaaaatc ataaatgttag acatatgctt	3180
ggctaaaggd gaaatggact ttaaattttt aagagctcat ttgcaatgca cttgtatata	3240
cttcaaaaat tattgttagac acagaattttt ttatattttt gtgtt当地 tttaaacctg	3300
aacattgaaa cagttttcct cttgtcttt cttAACAGTA atagtcatat tatttacctg	3360
tttttaaca caatgtatgt gatagtcaaa aaatcacagt tttt当地 tattcatctt	3420
ctgtacccac gcataaccac tatacatagt ttctttgtt cttGAATATA caaaacatga	3480
acacagtgcc atatgaataa ttccacatac agaacctttt ttctctgtt gtcctgtgaa	3540
cttgc当地ata tatatatata ttgtttttt aattt当地tatttcat atatgtataa	3600
aaggaatatg atctgaaaaa aaaaaaaaaa aaaaaaaaaa	3640

<210> 289

<211> 628

<212> PRT

<213> Homo sapiens

<400> 289

Met	Gly	Ser	Cys	Ala	Arg	Leu	Leu	Leu	Trp	Gly	Cys	Thr	Val	Val	
1				5				10				15			
Ala	Ala	Gly	Leu	Ser	Gly	Val	Ala	Gly	Val	Ser	Ser	Arg	Cys	Glu	Lys
						20			25				30		
Ala	Cys	Asn	Pro	Arg	Met	Gly	Asn	Leu	Ala	Leu	Gly	Arg	Lys	Leu	Trp
					35				40			45			
Ala	Asp	Thr	Thr	Cys	Gly	Gln	Asn	Ala	Thr	Glu	Leu	Tyr	Cys	Phe	Tyr
					50				55			60			
Ser	Glu	Asn	Thr	Asp	Leu	Thr	Cys	Arg	Gln	Pro	Lys	Cys	Asp	Lys	Cys
	65				70				75			80			
Asn	Ala	Ala	Tyr	Pro	His	Leu	Ala	His	Leu	Pro	Ser	Ala	Met	Ala	Asp
					85				90			95			
Ser	Ser	Phe	Arg	Phe	Pro	Arg	Thr	Trp	Trp	Gln	Ser	Ala	Glu	Asp	Val
					100				105			110			
His	Arg	Glu	Lys	Ile	Gln	Leu	Asp	Leu	Glu	Ala	Glu	Phe	Tyr	Phe	Thr
					115				120			125			
His	Leu	Ile	Val	Met	Phe	Lys	Ser	Pro	Arg	Pro	Ala	Ala	Met	Val	Leu
					130				135			140			
Asp	Arg	Ser	Gln	Asp	Phe	Gly	Lys	Thr	Trp	Lys	Pro	Tyr	Lys	Tyr	Phe
	145				150				155			160			
Ala	Thr	Asn	Cys	Ser	Ala	Thr	Phe	Gly	Leu	Glu	Asp	Asp	Val	Val	Lys
					165				170			175			
Lys	Gly	Ala	Ile	Cys	Thr	Ser	Lys	Tyr	Ser	Ser	Pro	Phe	Pro	Cys	Thr
					180				185			190			
Gly	Gly	Glu	Val	Ile	Phe	Lys	Ala	Leu	Ser	Pro	Pro	Tyr	Asp	Thr	Glu
					195				200			205			
Asn	Pro	Tyr	Ser	Ala	Lys	Val	Gln	Gln	Leu	Lys	Ile	Thr	Asn	Leu	

210	215	220
Arg Val Gln Leu Leu Lys	Arg Gln Ser Cys	Pro Cys Gln Arg Asn Asp
225	230	235
Leu Asn Glu Glu Pro Gln His Phe Thr His Tyr Ala Ile Tyr Asp Phe		240
245	250	255
Ile Val Lys Gly Ser Cys Phe Cys Asn Gly His Ala Asp Gln Cys Ile		
260	265	270
Pro Val His Gly Phe Arg Pro Val Lys Ala Pro Gly Thr Phe His Met		
275	280	285
Val His Gly Lys Cys Met Cys Lys His Asn Thr Ala Gly Ser His Cys		
290	295	300
Gln His Cys Ala Pro Leu Tyr Asn Asp Arg Pro Trp Glu Ala Ala Asp		
305	310	315
Gly Lys Thr Gly Ala Pro Asn Glu Cys Arg Thr Cys Lys Cys Asn Gly		320
325	330	335
His Ala Asp Thr Cys His Phe Asp Val Asn Val Trp Glu Ala Ser Gly		
340	345	350
Asn Arg Ser Gly Gly Val Cys Asp Asp Cys Gln His Asn Thr Glu Gly		
355	360	365
Gln Tyr Cys Gln Arg Cys Lys Pro Gly Phe Tyr Arg Asp Leu Arg Arg		
370	375	380
Pro Phe Ser Ala Pro Asp Ala Cys Lys Pro Cys Ser Cys His Pro Val		
385	390	395
Gly Ser Ala Val Leu Pro Ala Asn Ser Val Thr Phe Cys Asp Pro Ser		400
405	410	415
Asn Gly Asp Cys Pro Cys Lys Pro Gly Val Ala Gly Arg Arg Cys Asp		
420	425	430
Arg Cys Met Val Gly Tyr Trp Gly Phe Gly Asp Tyr Gly Cys Arg Pro		
435	440	445
Cys Asp Cys Ala Gly Ser Cys Asp Pro Ile Thr Gly Asp Cys Ile Ser		
450	455	460
Ser His Thr Asp Ile Asp Trp Tyr His Glu Val Pro Asp Phe Arg Pro		
465	470	475
Val His Asn Lys Ser Glu Pro Ala Trp Glu Trp Glu Asp Ala Gln Gly		480
485	490	495
Phe Ser Ala Leu Leu His Ser Gly Lys Cys Glu Cys Lys Glu Gln Thr		
500	505	510
Leu Gly Asn Ala Lys Ala Phe Cys Gly Met Lys Tyr Ser Tyr Val Leu		
515	520	525
Lys Ile Lys Ile Leu Ser Ala His Asp Lys Gly Thr His Val Glu Val		
530	535	540
Asn Val Lys Ile Lys Lys Val Leu Lys Ser Thr Lys Leu Lys Ile Phe		
545	550	555
Arg Gly Lys Arg Thr Leu Tyr Pro Glu Ser Trp Thr Asp Arg Gly Cys		560
565	570	575
Thr Cys Pro Ile Leu Asn Pro Gly Leu Glu Tyr Leu Val Ala Gly His		
580	585	590
Glu Asp Ile Arg Thr Gly Lys Leu Ile Val Asn Met Lys Ser Phe Val		
595	600	605
Gln His Trp Lys Pro Ser Leu Gly Arg Lys Val Met Asp Ile Leu Lys		
610	615	620
Arg Glu Cys Lys		
625		

<210> 290
<211> 2540
<212> DNA
<213> Mouse

<400> 290

gtcgcgatgc tgctgcgcct gctgctggcc tgggtggccg cggtgccccgc actgggccag

60

gtcccctgga	cgcggagcc	tcgagcccg	tgccggccca	gcagctgcta	cgcgtcttt	120
ccccggcgcc	gcacattct	ggaagcttgg	cggcggtgcc	gcgaattggg	ggcaacctg	180
gccacaccgc	ggaccccaga	ggaggcccag	cgtgtggaca	gcctgggtgg	gtcggggccg	240
gccaacgggc	tgctatggat	tgggttcag	cggcaggcta	ggcaatgcca	gcccagcgc	300
ccactgcggg	gcttcataatg	gaccacggga	gaccaggaca	ccgccttcac	caactggcc	360
cagccggcta	cggaaggacc	ctgcccagcc	cagcgctgtg	cagcccttga	ggccagcgg	420
gagcatcgct	ggctcgaagg	ctcgtcaca	ctggctgtcg	atggctacct	ctgcccagt	480
ggtttgagg	gtgcctgccc	tgccttgcgg	cttgggtgg	gtcaggccgg	tcccgtgtc	540
tacaccacac	ccttcaacct	ggtttccagc	gagttcgaat	ggctgcccctt	tggctccgt	600
gcagctgtgc	agtgc当地	tggcagggga	gcttctctgc	tgtgcgtgaa	acagcctca	660
ggtggcgtgg	gctggtccca	gactggcccg	ctgtgcccag	ggactggctg	tggtcctgac	720
aatgggggtt	gcaacatga	gtgtgtggaa	gaggtggacg	gtgtgtgtc	ctgcccgtgc	780
agtgaaggct	tccgtcttagc	agcagatggg	cacagttgtg	aagaccccctg	tgcccagggcc	840
ccctgtgagc	agcagtgtga	acctggaggg	ccacaaggct	atagctgcca	ctgtcgctt	900
ggcttccggc	cagctgagga	tgatccacac	cgctgcgtgg	acacggatga	gtgcccatt	960
gctgggtgt	gccagcagat	gtgtgtcaac	tatgttggtg	gctttagtg	ttactgcagc	1020
gagggtcacg	agcttgaggg	agatggatc	agctgttagcc	ctgcaggagc	catgggtgcc	1080
caggcttccc	aggatctcg	agatgagtt	ctggatgtatg	gagaagaagg	ggaggatgaa	1140
gaggagccct	gggaggactt	tgatggcacc	tggacagagg	aacagggat	cctatggctg	1200
gcacctacac	atccacactg	ctttggcctg	ccctataggc	ccaacttccc	acaggatgga	1260
gagcctcaga	gattgcacct	ggagccctacc	tggccaccccc	cacttagtgc	ccccaggggc	1320
cccttaccact	cctcagtgtt	gtctgccaca	cggcccatgg	tgtatctctgc	cactcgaccc	1380
acactacctt	ctgcccacaa	gacctctgtt	atttcagacta	cacgcccacc	cctgagccct	1440
gtccacccac	ctgcccattgc	ccctgccaca	cctccagctg	tgttctctga	gcaccagatc	1500
cccaaataatca	aggccaatta	tccagacactg	ccttttggcc	acaagcctgg	gataacctcg	1560
gccactcacc	cagcacggtc	tcctccgtac	cagcccccca	ttatctcaac	caactatccc	1620
caagtcttcc	ctccccacca	ggccctatg	tctccagata	cccacactat	cacttatttg	1680
cctccagttcc	ccccctcacct	tgatcttggg	gataccactt	ctaaagccca	tcaacacccct	1740
ttgctcccag	atgctccagg	tatcagaacc	caggcccccc	agcttctgt	ctcagctctc	1800
cagccccctc	ttccttaccaa	ctccaggct	tctgtccatg	aaactcctgt	gcctgctgcc	1860
aaccagccccc	cagccttccc	ttcttctccc	ctccccccctc	agaggcccac	taaccagacc	1920
tcatcttatca	gccctacaca	ttccttattcc	agagccccctc	tagtcccaag	ggaaggagtt	1980
cccagttccca	aatcagtgtcc	acagctgccc	tcgggtccct	ccacagcagc	tccaacagcc	2040
ctggcagagt	caggtcttgc	aggccaaagc	caaaggatg	accgctggct	gctgggtggca	2100
ctcctgggtgc	caacatgtgt	cttcttggtg	tgctgtcttg	ccctgggcat	tgtgtactgc	2160
actcgctgtg	gctcccacgc	acccaacaag	cggatcacgg	actgtatcg	ctgggtcaca	2220
catgctggga	acaagaggtc	aacagaaccc	atgcccccca	gaggcagct	tacagggta	2280
cagacctgtt	gaaccagtgt	tgatgggt	gcagatgccc	ctttgtggga	tagaagaaaa	2340
ggacttgcctt	tggacacatg	gctgagacca	caccaaggac	ttatggggc	tgcccagctg	2400
acagaggagg	ttctgttctt	tgagcccagc	atccatggca	aaggacacac	caggactcca	2460
ggacttcaag	gggtgggtgc	tggatctc	tccaataaaat	gggtgccaa	cctcacccaa	2520
aaaaaaaaaaaa	aaaaaaaaaaa					2540

<210> 291
<211> 765
<212> PRT
<213> Mouse

<400> 291

Met	Leu	Leu	Arg	Leu	Leu	Leu	Ala	Trp	Val	Ala	Ala	Val	Pro	Ala	Leu
1				5			10		15						
Gly	Gln	Val	Pro	Trp	Thr	Pro	Glu	Pro	Arg	Ala	Ala	Cys	Gly	Pro	Ser
				20			25		30						
Ser	Cys	Tyr	Ala	Leu	Phe	Pro	Arg	Arg	Arg	Thr	Phe	Leu	Glu	Ala	Trp
				35			40		45						
Arg	Ala	Cys	Arg	Glu	Leu	Gly	Gly	Asn	Leu	Ala	Thr	Pro	Arg	Thr	Pro
	50			55			60								
Glu	Glu	Ala	Gln	Arg	Val	Asp	Ser	Leu	Val	Gly	Val	Gly	Pro	Ala	Asn
65					70			75			80				
Gly	Leu	Leu	Trp	Ile	Gly	Leu	Gln	Arg	Gln	Ala	Arg	Gln	Cys	Gln	Pro
				85			90				95				

Gln Arg Pro Leu Arg Gly Phe Ile Trp Thr Thr Gly Asp Gln Asp Thr
 100 105 110
 Ala Phe Thr Asn Trp Ala Gln Pro Ala Thr Glu Gly Pro Cys Pro Ala
 115 120 125
 Gln Arg Cys Ala Ala Leu Glu Ala Ser Gly Glu His Arg Trp Leu Glu
 130 135 140
 Gly Ser Cys Thr Leu Ala Val Asp Gly Tyr Leu Cys Gln Phe Gly Phe
 145 150 155 160
 Glu Gly Ala Cys Pro Ala Leu Pro Leu Glu Val Gly Gln Ala Gly Pro
 165 170 175
 Ala Val Tyr Thr Thr Pro Phe Asn Leu Val Ser Ser Glu Phe Glu Trp
 180 185 190
 Leu Pro Phe Gly Ser Val Ala Ala Val Gln Cys Gln Ala Gly Arg Gly
 195 200 205
 Ala Ser Leu Leu Cys Val Lys Gln Pro Ser Gly Gly Val Gly Trp Ser
 210 215 220
 Gln Thr Gly Pro Leu Cys Pro Gly Thr Gly Cys Gly Pro Asp Asn Gly
 225 230 235 240
 Gly Cys Glu His Glu Cys Val Glu Glu Val Asp Gly Ala Val Ser Cys
 245 250 255
 Arg Cys Ser Glu Gly Phe Arg Leu Ala Ala Asp Gly His Ser Cys Glu
 260 265 270
 Asp Pro Cys Ala Gln Ala Pro Cys Glu Gln Cys Glu Pro Gly Gly
 275 280 285
 Pro Gln Gly Tyr Ser Cys His Cys Arg Leu Gly Phe Arg Pro Ala Glu
 290 295 300
 Asp Asp Pro His Arg Cys Val Asp Thr Asp Glu Cys Gln Ile Ala Gly
 305 310 315 320
 Val Cys Gln Gln Met Cys Val Asn Tyr Val Gly Gly Phe Glu Cys Tyr
 325 330 335
 Cys Ser Glu Gly His Glu Leu Glu Ala Asp Gly Ile Ser Cys Ser Pro
 340 345 350
 Ala Gly Ala Met Gly Ala Gln Ala Ser Gln Asp Leu Arg Asp Glu Leu
 355 360 365
 Leu Asp Asp Gly Glu Glu Gly Glu Asp Glu Glu Glu Pro Trp Glu Asp
 370 375 380
 Phe Asp Gly Thr Trp Thr Glu Glu Gln Gly Ile Leu Trp Leu Ala Pro
 385 390 395 400
 Thr His Pro Pro Asp Phe Gly Leu Pro Tyr Arg Pro Asn Phe Pro Gln
 405 410 415
 Asp Gly Glu Pro Gln Arg Leu His Leu Glu Pro Thr Trp Pro Pro Pro
 420 425 430
 Leu Ser Ala Pro Arg Gly Pro Tyr His Ser Ser Val Val Ser Ala Thr
 435 440 445
 Arg Pro Met Val Ile Ser Ala Thr Arg Pro Thr Leu Pro Ser Ala His
 450 455 460
 Lys Thr Ser Val Ile Ser Ala Thr Arg Pro Pro Leu Ser Pro Val His
 465 470 475 480
 Pro Pro Ala Met Ala Pro Ala Thr Pro Pro Ala Val Phe Ser Glu His
 485 490 495
 Gln Ile Pro Lys Ile Lys Ala Asn Tyr Pro Asp Leu Pro Phe Gly His
 500 505 510
 Lys Pro Gly Ile Thr Ser Ala Thr His Pro Ala Arg Ser Pro Pro Tyr
 515 520 525
 Gln Pro Pro Ile Ile Ser Thr Asn Tyr Pro Gln Val Phe Pro Pro His
 530 535 540
 Gln Ala Pro Met Ser Pro Asp Thr His Thr Ile Thr Tyr Leu Pro Pro
 545 550 555 560
 Val Pro Pro His Leu Asp Pro Gly Asp Thr Thr Ser Lys Ala His Gln
 565 570 575
 His Pro Leu Leu Pro Asp Ala Pro Gly Ile Arg Thr Gln Ala Pro Gln

	580	585	590
Leu Ser Val Ser Ala Leu Gln Pro Pro Leu Pro Thr Asn Ser Arg Ser			
595	600	605	
Ser Val His Glu Thr Pro Val Pro Ala Ala Asn Gln Pro Pro Ala Phe			
610	615	620	
Pro Ser Ser Pro Leu Pro Pro Gln Arg Pro Thr Asn Gln Thr Ser Ser			
625	630	635	640
Ile Ser Pro Thr His Ser Tyr Ser Arg Ala Pro Leu Val Pro Arg Glu			
645	650	655	
Gly Val Pro Ser Pro Lys Ser Val Pro Gln Leu Pro Ser Val Pro Ser			
660	665	670	
Thr Ala Ala Pro Thr Ala Leu Ala Glu Ser Gly Leu Ala Gly Gln Ser			
675	680	685	
Gln Arg Asp Asp Arg Trp Leu Leu Val Ala Leu Leu Val Pro Thr Cys			
690	695	700	
Val Phe Leu Val Val Leu Leu Ala Leu Gly Ile Val Tyr Cys Thr Arg			
705	710	715	720
Cys Gly Ser His Ala Pro Asn Lys Arg Ile Thr Asp Cys Tyr Arg Trp			
725	730	735	
Val Thr His Ala Gly Asn Lys Ser Ser Thr Glu Pro Met Pro Pro Arg			
740	745	750	
Gly Ser Leu Thr Gly Val Gln Thr Cys Arg Thr Ser Val			
755	760	765	

<210> 292

<211> 3020

<212> DNA

<213> Mouse

<400> 292

atgtttcctt	gctaccatgg	tttcctgaac	tcaagtggcc	agtgtgtggg	gcctctgagc	60
cacactctct	tgcccaccc	tgccaccagt	ccacgaagga	tgaggaaggg	tattggattg	120
tcctggacct	cctggaaact	agactagggt	ctggagcaac	gaccggctt	ggactctctg	180
attcaaggttc	ctcctaagcc	tcagagggac	aaaaaagagt	ccctgcaagt	cgtccacggg	240
gctgggagca	gccgggtggc	tcatgactac	tcagagagtc	tgcccaaaga	aaagagtctt	300
gtattggaaa	ggtttctggg	tacctgaccg	tgttgcgtt	gttctaccc	aacgtttaac	360
agagagccca	gagccatgt	gaagaccttg	tccagtggga	actgcacact	caatgtgcct	420
gctaagaact	cctaccgcat	ggtgtgtctg	ggtgccccc	gagtgggcaa	gagctccatt	480
gtctcccgct	tcctcaatgg	ccgcctttag	gaccagtaca	cgcctactat	cgaggacttt	540
catcgcaagg	tgtacaacat	ccacggggac	atgtaccagc	tggatatcc	ggacacccct	600
ggcaaccacc	cattccctgc	catgcgccgg	ctctccatcc	tcacaggaga	tgtcttcatc	660
ctgggttca	gcctggatag	ccgggagtcc	tttgatgagg	tcaagcgcct	ccagaaacag	720
atccctggagg	tcaagtctcg	cctgaagaat	aaaaccaagg	aggcagcaga	gtgtccccatg	780
gtgatctgt	ggaacaagaa	tgaccacagt	gagctgtgcc	gccaggccc	tgccatggag	840
gctgagctgc	tggtgtctgg	tgatggaaaac	tgcgcctatt	tgcagggtgc	agccaagaag	900
aacactaatg	tgaacgagat	gttctatgtc	ctgttcagca	tggccaagct	gccccatgag	960
atgagccctg	cactgcacca	taagatctcc	gtgcagtacg	gcatgtctt	tcaccccccgg	1020
cccttctgc	tgcgtcgac	taaggtcgca	gggtcctatg	gcatggctc	accctttgcc	1080
cgacgccccca	gtgtcaacag	tgacctcaag	tacatcaagg	ccaaggtct	acgggagggc	1140
caggccccag	agaggggacaa	gtgttagcatc	cagttagagg	caggacatc	ggggagggggg	1200
cttgggcagt	gccttaaggg	agggtggctga	ggattccac	tgcgcacatc	ccacagaggg	1260
cccttaggtgt	gtaccctgt	cccattctct	tgttccctgg	acacctcctg	tgagccgtga	1320
gtgtgggtcc	tttggggag	gacggagaca	tgtctaggg	catgacagca	ctcatgccga	1380
gacaagctt	ccgtgggagg	gatcaaaaaa	ggccaggagt	cctgcatcaa	agcaagatgc	1440
tcagtagacaag	tcacaggatg	agaacatctt	agccagatgc	cccagccagg	ttccctgttg	1500
gcctctgctc	cctctgttca	gaccagctt	gtctcagtgt	ccctggagaa	accaccatct	1560
tgggtcttca	gctcctgccg	tctggcccg	ctgtgtacac	tgccccccaa	tttagccct	1620
ggggccatca	tgacctttag	tggaggggg	agagagagag	agagagagag	agagagagag	1680
agagagagag	agagagacct	gtgtccccca	gtcactgcc	tttggctcc	actcccaggc	1740
tcctccatac	gatatttctc	tttgggttga	agtgtcttc	ctttctgtt	tgcagtagac	1800
atgaagtctt	tgtactgtaa	gaggccaatg	ctttgtctt	gaccggctt	cccaattcaa	1860

atccattgct ttggccgggg ttcctccc tgctcccagg caggctgtat tctgcccagt	1920
gtccatcgcc tacaaaagag cccacagtgc cacagtaca gcagtaatct cctgcccctc	1980
ggagaggatg actgggctt gagagagtga ttctaaccctt ctccgcactc ctaactagtt	2040
caggacagag ctctgactag atgcagctt cttctgctt agttccttaa acatctgcc	2100
agcacctacc tgatacttgt cccttgtgtc ctaggcaaca gagagcgagg ggtcctgtgt	2160
gtccccagct cccggcctcg ccctccatg gtgcacaca gctgttgag	2220
gaagtggagc agttgagagc cagagccgag tccaggaaag gttggaagg catattgcag	2280
gacttaccct agtgtttagg ctatgcagg tacacaggag tgggggtgac cctgaaaacc	2340
aaaggcctg ttcaccacact cttatgcat ctgtgcttta gtcttattag tactgcagct	2400
ggcccatggt agatgactt ggataaagac acctgtgcc aagcttcaa cctgagttg	2460
gtccccagggt tccatgttgtt ggaaggagag aagtcatcca ttgacacctca cacaatccatc	2520
atggtacccc tacccccc ccccccattg aattattgaa gctgtatgatt atcagaaaacc	2580
acagcaatct aatagtgcat tctctcaagg cccaggtcac tccctgcaag ctgggtcgcc	2640
catgggcctt ccatacacac cacgtcatac cctgtctctc tggagctccc agtagccggg	2700
atttggatca tgttacatat gccttcctca gagcaatcac tgaggtatc tggatact	2760
gtgcacatttgc tacccttgc tctgcacacc aggcccagcc cagactccat acacacacct	2820
gctgctcagc acaaattgtt cagcacctgc ttctgtccata caatgactcc agccccagtc	2880
ctgagttatac caggtacttg tccaggcaag tctatggctt ggtccatccg gtcaagctct	2940
actgcctgga cctctgtgtt cactatcaat taaagtttgtt ttgttagctg tgaaaaaaaaa	3000
aaaaaaaaaaaa aaaaaaaaaaaa	3020

<210> 293
<211> 266
<212> PRT
<213> Mouse

<400> 293

Met Met Lys Thr Leu Ser Ser Gly Asn Cys Thr Leu Asn Val Pro Ala	
1 5 10 15	
Lys Asn Ser Tyr Arg Met Val Val Leu Gly Ala Ser Arg Val Gly Lys	
20 25 30	
Ser Ser Ile Val Ser Arg Phe Leu Asn Gly Arg Phe Glu Asp Gln Tyr	
35 40 45	
Thr Pro Thr Ile Glu Asp Phe His Arg Lys Val Tyr Asn Ile His Gly	
50 55 60	
Asp Met Tyr Gln Leu Asp Ile Leu Asp Thr Ser Gly Asn His Pro Phe	
65 70 75 80	
Pro Ala Met Arg Arg Leu Ser Ile Leu Thr Gly Asp Val Phe Ile Leu	
85 90 95	
Val Phe Ser Leu Asp Ser Arg Glu Ser Phe Asp Glu Val Lys Arg Leu	
100 105 110	
Gln Lys Gln Ile Leu Glu Val Lys Ser Cys Leu Lys Asn Lys Thr Lys	
115 120 125	
Glu Ala Ala Glu Leu Pro Met Val Ile Cys Gly Asn Lys Asn Asp His	
130 135 140	
Ser Glu Leu Cys Arg Gln Val Pro Ala Met Glu Ala Glu Leu Leu Val	
145 150 155 160	
Ser Gly Asp Glu Asn Cys Ala Tyr Phe Glu Val Ser Ala Lys Lys Asn	
165 170 175	
Thr Asn Val Asn Glu Met Phe Tyr Val Leu Phe Ser Met Ala Lys Leu	
180 185 190	
Pro His Glu Met Ser Pro Ala Leu His His Lys Ile Ser Val Gln Tyr	
195 200 205	
Gly Asp Ala Phe His Pro Arg Pro Phe Cys Met Arg Arg Thr Lys Val	
210 215 220	
Ala Gly Ala Tyr Gly Met Val Ser Pro Phe Ala Arg Arg Pro Ser Val	
225 230 235 240	
Asn Ser Asp Leu Lys Tyr Ile Lys Ala Lys Val Leu Arg Glu Gly Gln	
245 250 255	
Ala Arg Glu Arg Asp Lys Cys Ser Ile Gln	
260 265	

<210> 294
<211> 5520
<212> DNA
<213> Mouse

<400> 294

gggcgccccgg gactcccgct gagcactcct cccgcacgcc cgggtccctc cggccggcga	60
gcccgtccggc ccctgcgtg tagtccccg cggggcgatg gtttgatggg cgccggggga	120
cgcaggatgc cggtgcctcc cgccgttgc ctgtgcgtc cgctgcgtcc ttgtcttcgt	180
ctccctggctc ctggaaactcg gggtgcgcct ggctgcccgg tccctatccg cggttgcag	240
tgctctgggg agcggcccaa gggactaagt ggccggcccc acaaccggc tcgaaggagg	300
gtggtgtgcg gccgtgggaa tctcccgaa cctccagatc cggcccttct gccaaacggc	360
accatcacct tgctctttag caacaacaag attactggc tcccaatgg atccttcttg	420
ggactgtccc tggtggagaa gttgacactg aggagcaatg tcatcagcac tgtgcagcct	480
ggagccccc taggtctggg agagctaaaa cgcttagatc tctccaacaa tcggattggc	540
tgtctcacct ctgagacatt tcaaggcctc cctagacttc tcagactaaa catatctgg	600
aacatctact ctgtctgc acctgggtc tttgatgagc tgccagccct taagattgt	660
gactttggta ctgagtttct gacctgtgac tgccgcctgc gctggctgtc gccctggcc	720
cggaatcaact ccctgcagct gtctgagcgc acactctgtg cctaccccg tggccctgcac	780
gcccatgccc tgagcagcct ccaggagtcc cagcttcgtc gtgaaggggc cctggaaactg	840
cacacccact acctcatccc atcccttcgc caagtgggt tccagggtga cgcgcctgccc	900
ttccagtgtc cagccagcta cttgggcaac gatacccgga tccactggta ccacaatggg	960
gctccatgg agagcgatga gcaggccccg atcgtccttgc ctgaaaacct tatccatgt	1020
tgcacccctca tcaccaggta gctgaccctg tctcacattt gtgtgtggc ctctggtaa	1080
tgggagtgtc ccgtgtccac agtccaaggc aacaccagca agaagggtga gatagtagt	1140
ctggagacct ctgccttcata ctgcctgcg gaggccgtga ccaacaaccg tggggactc	1200
aggtagccccca gAACCTTGGC tggcatcag gcttaccagt cctgtttaca gtaccccttc	1260
acctctgtgc cttttagtgg gggagccccg ggtaccccgag ctcacgcag gtgtgaccga	1320
gctggccgct gggagccagg ggactactcg cactgtctgt acaccaatga catcactcgg	1380
gtgctctaca cttttgtgtc gatccccatc aacgcctcca atgcattgac gttggccac	1440
cagctgcgag tgtataccgc agagcccccc agcttctcag acatgatggc cgtggcttat	1500
gtggctcaga tgatccagaa gtttttgggt tacgttggacc agatcaagga gctgggtggag	1560
gtgatggtgg acatggccag caacctgtat ctggtgatg agcaccttct gttggctggcc	1620
cagagagaag acaaaggctg cagtggcatt gtgggtcccc tggagcgaat cggaggagct	1680
gctcttagcc cccatgcccc gcacatctct gtgaattcaa gaaatgtggc actggaggcc	1740
tacccatca agcctcacag ctacgtgggt ctgacttgcg cggcccccac gaggaggag	1800
gttaggagtgt cgggtgcaca gccaaggcgc gtcggccagg atgcggccatg ggagcccgaa	1860
cccccacgtg atcagcagct tagttccgc tgccacactg ggaggccccaa catttctctg	1920
tcatccttc acatcaagaa tagcgtggcc ctggcctcca tccagctgc ccccaacgt	1980
ttctcaaccc ttccggctgc cctgctccc ccagtcctc cagattgcac cctgcacactg	2040
ctggcttcata gaaatggccg tttttccgc agccacggca acaacactc cctgccttgg	2100
gcagctggcc ctggcaagag gctgggtgtc gcccacccag tcataattgc aggaaccagt	2160
ggctgtggtg tggggaaactt gacggagcccc gtggctgtgt cactgaggca ctgggtgtaa	2220
ggagctgacc ccatggcagc ttgggtggac caggacgggc ctggaggctg gagttctgaa	2280
ggctgcaggc tccgctacag ccagcccaac gtcagctccc tgtaactgcgca gcacttggc	2340
aatgtggccg tgcttatggc gctgaatgc tttccgggg aggcaaggagg ctctgggct	2400
gggttgcatc ccgtcgatc cccctgcacg gctttgtgtc tactctgtc ttctccacc	2460
atcatcacgt acatccctaa ccacagctcc atccacgtt cccggaaaggg ttggccatcg	2520
ctgctgaacc tttgtttcca tatggccatg acctctgtc tcttcgtggg ggggtcag	2580
ctcaccaact accaaatggt ttgtcaagcg gtggcatca ctctgcacta ctctccctg	2640
tcgtcactgc tctggatggg ggtcaaggct cgagtccctc acaaggagct tagttggagg	2700
gcacccccc tggaaagaagg ggaagcagct ccgcctggc ctcggcccat gctccgggtc	2760
tacttgattt ctggaggat cccctcata atctgcggca tcacccgtc ggtcaacatc	2820
cacaactacc gggaccacag tccctattgt tggctgggtt ggcgtccaaag ccttgggtcc	2880
ttctacatac cgggtggcgtt gattctgcct atcacctggc tctacttctt gtgtgcaggc	2940
cttcacttac ggagccatgt ggcccaaaat ccaaaaggcagg gtaacaggat ctctctggag	3000
ccagggaaag agctgagggg ttccaccagg ctcaggagta gtggcgtcct cctgaatgac	3060
tctggttctc ttttggtctac agttagcgca ggagtaggga cacctgcgc cccagaggat	3120
ggtgatggcg tatattctcc tggagtccag ctggggggc tgatgaccac gcatttcctg	3180
tacctggcta tggggcttg tggtgccctt gccgtgtcgc agcgctggct gccccgagtg	3240

gtgtgttagct	gtctgtacgg	cgtggcagct	tcagctcttg	gtctgtttgt	cttcactcac	3300
caactgtgcca	gacgttagaga	tgtccgggct	tcctggcgcg	cctgctgccc	tcctgttgc	3360
ccctccggcct	cccatgtccc	agcccgggcc	ctgcccactg	ctacagagga	tggatccccca	3420
gtgttggggg	agggaccagc	ctctctcaag	tcctcccaa	gtggcagcag	tggccgcgcg	3480
ccgcccccc	cctgcaaact	caccaatctg	caggtggccc	agagtcaagg	gtgcgaggca	3540
agcgtggccg	cccgcggaga	tggagagcca	gagcccacgg	gctcccggtgg	cagccctagct	3600
ccccggcacc	ataacaacct	gcatcatggg	cgccgagtagc	acaagagtcg	ggccaagggg	3660
caccgagccg	gagagactgg	tggtaagagc	cggctcaagg	cggtgcgcgc	gggcacgtcc	3720
ccaggagctc	ccgagcttt	gtccagttag	agcggcagg	tgacacaacag	cccgctctgac	3780
agctacccgg	gcagcagccg	caacagtcca	ggcgacggc	ttccactcga	gggtgagccc	3840
atgcttacgc	cgtcggaggg	cagtacaca	agcgcgcgc	caatcgctga	gacggggcgc	3900
cccgccgcgc	gcccgcagcgc	cagcgtgac	aacctaagg	gcagcggcag	cgcgctggag	3960
agggagagca	agcgcgcgc	ctatccgctc	aacactacca	gtcttaacgg	tgcccccaaa	4020
gggggcaagt	atgaggatgc	cagttaact	ggtcagagg	ccatagcggg	aggctccatg	4080
aagactggcc	tctggaaaag	cgagaccacc	gtcttaggtcc	agatttagga	tggcgggtc	4140
acgcgggctt	gtttactccc	aaatccctt	gggcgttcca	agccgtctac	tgatgttat	4200
gtaggtttaa	ggcgccatg	ctgtatgtgc	ccttgagttc	accatcatta	tttacccagg	4260
ctagggaaaag	gggagggagg	cagatgttg	cccctactgt	ggactatccc	tcagcagtag	4320
cgacagacaa	tcccagacca	gttttgtgg	ccaagttt	gttacccctgc	caggtaggca	4380
taaaacatcc	atcggttccct	agggtaaccc	ataaaacttag	ttgaagagcc	cagcccaggt	4440
aggctcagga	aatgagaggg	agacccggga	actgggttt	ccacaccagg	ccggcaaggt	4500
atccctgtgac	tgccaaagatc	ccaggcctct	ctcccgat	tggcttggga	aaccatccca	4560
gcagggtgagc	caggggggcgt	aacaggtgt	gccttcaga	ttaactatgc	aagggggatg	4620
gggggtggag	gggttagggca	gtgttgtgg	cagctctaga	gatgagcttg	tccctcagga	4680
ggcaggcagg	ttggaaaaagg	tgcattaggg	agacagaatc	cctaactatg	ggagtggtag	4740
acagttttc	cagcagagg	cacagcaa	cctgaacccc	cacacacctg	ggaagtgata	4800
ctgcccagcag	gtgccttaag	actcaagggg	agggagctga	tatgtggatc	tcacaaccta	4860
tacagtggc	tgcaagtggc	tccacttagc	tgcttaattt	taataccac	tgtctgttcc	4920
cagccctcca	actccggggg	actgagggg	aatgcctcca	tgaggtctt	gtggcaaagc	4980
catgctaata	atctgacttc	taactctagt	tagaaaccca	aaatgccaaa	ccacccctcta	5040
actcgctgaa	acccaaaccac	actctgaggg	agcgcctggg	tccaggctgc	tcaagagcct	5100
atgcttccag	ccccccattt	cctcaactca	agatgcctt	taatacagaa	ctacatggaa	5160
gttagaggaac	ccttgggac	tggaaagtag	cagggatccc	agctctgatc	aagtgagagg	5220
acagagcagg	gaagagcaca	tactcgctga	gatgggtccc	attatttatg	catttgcgtca	5280
cagacactat	tagagggaaa	gctttgtatt	actctccac	gtgagctgct	gctgtttacc	5340
ctgccaatgc	cattttactg	gagagcttt	tgcaatatgc	tgggaaaagg	ggagggaggg	5400
gatgaagtgc	caaagaaaac	acattttaaa	agctctggtt	ttatataata	aatgttttc	5460
cagcagatgc	ctctttgttt	taatatatta	aaatcttgc	aaaaaaaaaa	aaaaaaaaaa	5520

<210> 295

<211> 1329

<212> PRT

<213> Mouse

<400> 295

Met	Pro	Val	Pro	Pro	Ala	Arg	Leu	Leu	Leu	Pro	Leu	Leu	Pro	Cys	
1					5				10				15		
Leu	Leu	Leu	Leu	Ala	Pro	Gly	Thr	Arg	Gly	Ala	Pro	Gly	Cys	Pro	Val
							20		25				30		
Pro	Ile	Arg	Gly	Cys	Lys	Cys	Ser	Gly	Glu	Arg	Pro	Lys	Gly	Leu	Ser
							35		40			45			
Gly	Gly	Ala	His	Asn	Pro	Ala	Arg	Arg	Arg	Val	Val	Cys	Gly	Gly	Gly
							50		55			60			
Asp	Leu	Pro	Glu	Pro	Pro	Asp	Pro	Gly	Leu	Leu	Pro	Asn	Gly	Thr	Ile
							65		70			75			80
Thr	Leu	Leu	Leu	Ser	Asn	Asn	Lys	Ile	Thr	Gly	Leu	Arg	Asn	Gly	Ser
							85		90			95			
Phe	Leu	Gly	Leu	Ser	Leu	Leu	Glu	Lys	Leu	Asp	Leu	Arg	Ser	Asn	Val

	100	105	110
Ile Ser Thr Val Gln Pro Gly Ala Phe Leu Gly Leu Gly Glu Leu Lys			
115	120	125	
Arg Leu Asp Leu Ser Asn Asn Arg Ile Gly Cys Leu Thr Ser Glu Thr			
130	135	140	
Phe Gln Gly Leu Pro Arg Leu Leu Arg Leu Asn Ile Ser Gly Asn Ile			
145	150	155	160
Tyr Ser Ser Leu Gln Pro Gly Val Phe Asp Glu Leu Pro Ala Leu Lys			
165	170	175	
Ile Val Asp Phe Gly Thr Glu Phe Leu Thr Cys Asp Cys Arg Leu Arg			
180	185	190	
Trp Leu Leu Pro Trp Ala Arg Asn His Ser Leu Gln Leu Ser Glu Arg			
195	200	205	
Thr Leu Cys Ala Tyr Pro Ser Ala Leu His Ala His Ala Leu Ser Ser			
210	215	220	
Leu Gln Glu Ser Gln Leu Arg Cys Glu Gly Ala Leu Glu Leu His Thr			
225	230	235	240
His Tyr Leu Ile Pro Ser Leu Arg Gln Val Val Phe Gln Gly Asp Arg			
245	250	255	
Leu Pro Phe Gln Cys Ser Ala Ser Tyr Leu Gly Asn Asp Thr Arg Ile			
260	265	270	
His Trp Tyr His Asn Gly Ala Pro Met Glu Ser Asp Glu Gln Ala Gly			
275	280	285	
Ile Val Leu Ala Glu Asn Leu Ile His Asp Cys Thr Phe Ile Thr Ser			
290	295	300	
Glu Leu Thr Leu Ser His Ile Gly Val Trp Ala Ser Gly Glu Trp Glu			
305	310	315	320
Cys Ser Val Ser Thr Val Gln Gly Asn Thr Ser Lys Lys Val Glu Ile			
325	330	335	
Val Val Leu Glu Thr Ser Ala Ser Tyr Cys Pro Ala Glu Arg Val Thr			
340	345	350	
Asn Asn Arg Gly Asp Phe Arg Trp Pro Arg Thr Leu Ala Gly Ile Thr			
355	360	365	
Ala Tyr Gln Ser Cys Leu Gln Tyr Pro Phe Thr Ser Val Pro Leu Ser			
370	375	380	
Gly Gly Ala Pro Gly Thr Arg Ala Ser Arg Arg Cys Asp Arg Ala Gly			
385	390	395	400
Arg Trp Glu Pro Gly Asp Tyr Ser His Cys Leu Tyr Thr Asn Asp Ile			
405	410	415	
Thr Arg Val Leu Tyr Thr Phe Val Leu Met Pro Ile Asn Ala Ser Asn			
420	425	430	
Ala Leu Thr Leu Ala His Gln Leu Arg Val Tyr Thr Ala Glu Ala Ala			
435	440	445	
Ser Phe Ser Asp Met Met Asp Val Val Tyr Val Ala Gln Met Ile Gln			
450	455	460	
Lys Phe Leu Gly Tyr Val Asp Gln Ile Lys Glu Leu Val Glu Val Met			
465	470	475	480
Val Asp Met Ala Ser Asn Leu Met Leu Val Asp Glu His Leu Leu Trp			
485	490	495	
Leu Ala Gln Arg Glu Asp Lys Ala Cys Ser Gly Ile Val Gly Ala Leu			
500	505	510	
Glu Arg Ile Gly Gly Ala Ala Leu Ser Pro His Ala Gln His Ile Ser			
515	520	525	
Val Asn Ser Arg Asn Val Ala Leu Glu Ala Tyr Leu Ile Lys Pro His			
530	535	540	
Ser Tyr Val Gly Leu Thr Cys Thr Ala Phe Gln Arg Arg Glu Val Gly			
545	550	555	560
Val Ser Gly Ala Gln Pro Ser Ser Val Gly Gln Asp Ala Pro Val Glu			
565	570	575	
Pro Glu Pro Leu Ala Asp Gln Gln Leu Arg Phe Arg Cys Thr Thr Gly			
580	585	590	

Arg Pro Asn Ile Ser Leu Ser Ser Phe His Ile Lys Asn Ser Val Ala
 595 600 605
 Leu Ala Ser Ile Gln Leu Pro Pro Ser Leu Phe Ser Thr Leu Pro Ala
 610 615 620
 Ala Leu Ala Pro Pro Val Pro Pro Asp Cys Thr Leu Gln Leu Leu Val
 625 630 635 640
 Phe Arg Asn Gly Arg Leu Phe Arg Ser His Gly Asn Asn Thr Ser Arg
 645 650 655
 Pro Gly Ala Ala Gly Pro Gly Lys Arg Arg Gly Val Ala Thr Pro Val
 660 665 670
 Ile Phe Ala Gly Thr Ser Gly Cys Gly Val Gly Asn Leu Thr Glu Pro
 675 680 685
 Val Ala Val Ser Leu Arg His Trp Ala Glu Gly Ala Asp Pro Met Ala
 690 695 700
 Ala Trp Trp Asn Gln Asp Gly Pro Gly Gly Trp Ser Ser Glu Gly Cys
 705 710 715 720
 Arg Leu Arg Tyr Ser Gln Pro Asn Val Ser Ser Leu Tyr Cys Gln His
 725 730 735
 Leu Gly Asn Val Ala Val Leu Met Glu Leu Asn Ala Phe Pro Arg Glu
 740 745 750
 Ala Gly Gly Ser Gly Ala Gly Leu His Pro Val Val Tyr Pro Cys Thr
 755 760 765
 Ala Leu Leu Leu Cys Leu Phe Ser Thr Ile Ile Thr Tyr Ile Leu
 770 775 780
 Asn His Ser Ser Ile His Val Ser Arg Lys Gly Trp His Met Leu Leu
 785 790 795 800
 Asn Leu Cys Phe His Met Ala Met Thr Ser Ala Val Phe Val Gly Gly
 805 810 815
 Val Thr Leu Thr Asn Tyr Gln Met Val Cys Gln Ala Val Gly Ile Thr
 820 825 830
 Leu His Tyr Ser Ser Leu Ser Ser Leu Leu Trp Met Gly Val Lys Ala
 835 840 845
 Arg Val Leu His Lys Glu Leu Ser Trp Arg Ala Pro Pro Leu Glu Glu
 850 855 860
 Gly Glu Ala Ala Pro Pro Gly Pro Arg Pro Met Leu Arg Phe Tyr Leu
 865 870 875 880
 Ile Ala Gly Gly Ile Pro Leu Ile Ile Cys Gly Ile Thr Ala Ala Val
 885 890 895
 Asn Ile His Asn Tyr Arg Asp His Ser Pro Tyr Cys Trp Leu Val Trp
 900 905 910
 Arg Pro Ser Leu Gly Ala Phe Tyr Ile Pro Val Ala Leu Ile Leu Pro
 915 920 925
 Ile Thr Trp Ile Tyr Phe Leu Cys Ala Gly Leu His Leu Arg Ser His
 930 935 940
 Val Ala Gln Asn Pro Lys Gln Gly Asn Arg Ile Ser Leu Glu Pro Gly
 945 950 955 960
 Glu Glu Leu Arg Gly Ser Thr Arg Leu Arg Ser Ser Gly Val Leu Leu
 965 970 975
 Asn Asp Ser Gly Ser Leu Leu Ala Thr Val Ser Ala Gly Val Gly Thr
 980 985 990
 Pro Ala Pro Pro Glu Asp Gly Asp Gly Val Tyr Ser Pro Gly Val Gln
 995 1000 1005
 Leu Gly Ala Leu Met Thr Thr His Phe Leu Tyr Leu Ala Met Trp Ala
 1010 1015 1020
 Cys Gly Ala Leu Ala Val Ser Gln Arg Trp Leu Pro Arg Val Val Cys
 1025 1030 1035 1040
 Ser Cys Leu Tyr Gly Val Ala Ala Ser Ala Leu Gly Leu Phe Val Phe
 1045 1050 1055
 Thr His His Cys Ala Arg Arg Arg Asp Val Arg Ala Ser Trp Arg Ala
 1060 1065 1070
 Cys Cys Pro Pro Ala Ser Pro Ser Ala Ser His Val Pro Ala Arg Ala

1075	1080	1085
Leu Pro Thr Ala Thr Glu Asp Gly Ser Pro Val	Leu Gly Glu Gly Pro	
1090 1095	1100	
Ala Ser Leu Lys Ser Ser Pro Ser Gly Ser Ser	Gly Arg Ala Pro Pro	
1105 1110	1115 1120	
Pro Pro Cys Lys Leu Thr Asn Leu Gln Val Ala Gln Ser Gln Val Cys		
1125 1130	1135	
Glu Ala Ser Val Ala Ala Arg Gly Asp Gly Glu Pro Glu Pro Thr Gly		
1140 1145	1150	
Ser Arg Gly Ser Leu Ala Pro Arg His His Asn Asn Leu His His Gly		
1155 1160	1165	
Arg Arg Val His Lys Ser Arg Ala Lys Gly His Arg Ala Gly Glu Thr		
1170 1175	1180	
Gly Gly Lys Ser Arg Leu Lys Ala Leu Arg Ala Gly Thr Ser Pro Gly		
1185 1190	1195 1200	
Ala Pro Glu Leu Leu Ser Ser Glu Ser Gly Ser Leu His Asn Ser Pro		
1205 1210	1215	
Ser Asp Ser Tyr Pro Gly Ser Ser Arg Asn Ser Pro Gly Asp Gly Leu		
1220 1225	1230	
Pro Leu Glu Gly Glu Pro Met Leu Thr Pro Ser Glu Gly Ser Asp Thr		
1235 1240	1245	
Ser Ala Ala Pro Ile Ala Glu Thr Gly Arg Pro Gly Gln Arg Arg Ser		
1250 1255	1260	
Ala Ser Arg Asp Asn Leu Lys Gly Ser Gly Ser Ala Leu Glu Arg Glu		
1265 1270	1275 1280	
Ser Lys Arg Arg Ser Tyr Pro Leu Asn Thr Thr Ser Leu Asn Gly Ala		
1285 1290	1295	
Pro Lys Gly Gly Lys Tyr Glu Asp Ala Ser Val Thr Gly Ala Glu Ala		
1300 1305	1310	
Ile Ala Gly Gly Ser Met Lys Thr Gly Leu Trp Lys Ser Glu Thr Thr		
1315 1320	1325	
Val		

<210> 296
 <211> 2840
 <212> DNA
 <213> Mouse

<400> 296

cggggctgct	ccctctgcag	ccggccgccc	cgccgcgcag	accggagggt	cgtcggcgcc	60
caccatgcga	gctcagctct	ggttgctgca	gttgctgcta	ctccgcgggg	ccgcgcgcgc	120
gctcagtccc	gcaacacccg	caggtcacaa	tgaaggtcaa	gactctgcatt	ggactgccaa	180
gaggaccagg	caaggctgga	gtcgaggagacc	ccgagagagc	ccgcgcagg	tgttgaagcc	240
aggcaagacc	cagctaagcc	aggacttggg	tgggggctcc	ctggccatcg	acacacttcc	300
ggacaacagg	actcggggtgg	tggaggacaa	ccataactac	tacgtgtccc	gtgtctacgg	360
cccttggtag	aaacaaaagcc	aggatctgtg	ggtggacactg	gctgtggcca	accggagtca	420
tgttaagatc	cacaggatcc	tctccagttc	tcaccgacag	gcttcaagag	tggttttgtc	480
ctttgatttc	cctttctatg	ggcatcctct	gccccagatc	accatagcaa	ccggaggctt	540
catcttcatg	ggggacatgc	tccacccggat	gtccacagct	acgcagttatg	tggcaccct	600
gatggccaaac	ttcaaccccg	gctactctga	caactccacg	gttgcattact	ttgacaatgg	660
gaccgttttt	ttgggttcagt	gggatcatgt	ttacccatcg	gaccggagg	acagggccag	720
cttacaccc	caggccggcc	tacaccgaga	tggccgcatt	gtcttcggct	acaaagagat	780
ccccatggct	gtcctggata	tcaagtcgtc	ccagcacct	gtcaaggcag	gcctgtccga	840
cgctttcatg	attctcaatt	catccccaga	ggtgccagag	tctcagagac	ggaccatTTT	900
cgaataccac	cgtgtggAAC	tggactccag	caagatcacc	accacctcg	ccgtggagtt	960
caccccggtt	ccaaacctgc	tccagcatca	gagttgcac	acctgcgtgt	cctcgaatct	1020
aacccctcaac	tgcagctgtgt	gccatgtct	gcagagggtgt	tccagttggct	ttgaccgata	1080
ccgccaagaa	tggctgaccc	acggctgtgc	ccaggaggca	gaaggcaaga	catgcgagga	1140
cttcaggat	gatagccact	actcagccctc	ccctgacagc	tccttcagcc	cctttaatgg	1200
cgactccact	accttttct	cccttccat	tgacagccctc	accacagaag	atgacaccaa	1260

gttgaatccc tacgcagaag gagacggcct tccggaccac tcatctccga agtccaaggg	1320
tcctcccgta cacctggca ccacatcgaaa tatcggttt gctgtactcc tggttagggc	1380
catcatccgt gctgggatt acatcagtgg ccaccctaata tccaaatgctg cacttttt	1440
catcgagcgg agacccatccc actggccagc catgaaggatc cataaccacc ccaaccactc	1500
tacctacacc gaggttagagc cctccggca cgagaaggaa ggcttcgtgg aggccgagca	1560
gtgctgagag agcatcgccc cagagacctg gagatggcat gaaagacaag tcacagcaca	1620
gagaagtgtat ttttttctt ggcttcctcg gagatggccc tggggcagga agacaagaca	1680
acagcttgtg gtgccaacac tacagtttg tctgcacacc ccattaaag ggggctcagt	1740
aatacaactg cgaaggctcc ttggggaaaca ctgacctcaa gagttccctg ttcaatggg	1800
aggaggcttc gtttggggc ttcagttgtt ctgcagctat ggcggagccc ctgcccactg	1860
gagacagcct cctgtgtcc tcctgtcac tgaagccccactggccat tgcatccgg	1920
ggtctataga ttcaagagat ggtttgtca gctatggat cagtggccctt ggctccaaac	1980
tttggggctt agaaggctga agaaggggat ccctccctc cgagacgcgt taacctcgag	2040
atgcgctaactg agagagaaaa gtaaccttgg ggaacttgc tttttctggc ttgggtcctt	2100
tgcttcatttgc tttttttgc agagccggg gccaacatcc gagcaactgtt gcctgcagct	2160
catttgtac cttggccctc cctggccctc agcctccacc ctgcaagctg gtctgcattg	2220
gctggcagta atgagttttt cccttactgtt gccatgtgtc tgggtcctgc attactcgtt	2280
aacctgttctt gttatcaacg gcagtagttt ctttcaaaaaga gggggacaat ttacctggct	2340
cctgttttaa cttggcttgc cagatcgat ttcttgcata cattaaaaaac aactaggggg	2400
ccgggtgtgg tgggtgtcac actcaggagg ctgagctctg agatcaaggc cagcctggc	2460
tacagagaga gctgtctt aagaaacaag acaaattgggg ggctagaggt ttccctgaga	2520
caccctgtcc ttagcaaggg gtcagttt gatcccgtt aagcacgggt gccgcgaagg	2580
tagggcagag aaatctggta tgggagggag agaccttgcac ctggaaagcg gcctccatct	2640
ctccagctct gaaaagactt ttggaaactg ggagttgcac ttcccacact cagcctgggt	2700
ttaaggact tctgtccccg tgggtgacca ggacggcttc taaaggacaa tgaaaaccta	2760
gagctcacct tcatccaaa gaagcgtcat cagcaaataa ataaggtata gccctcaaaa	2820
aaaaaaaaaaaa aaaaaaaaaaaa	2840

<210> 297

<211> 500

<212> PRT

<213> Mouse

<400> 297

Met Arg Ala Gln Leu Trp Leu Leu Gln Leu Leu Leu Leu Arg Gly Ala	
1 5 10 15	
Ala Arg Ala Leu Ser Pro Ala Thr Pro Ala Gly His Asn Glu Gly Gln	
20 25 30	
Asp Ser Ala Trp Thr Ala Lys Arg Thr Arg Gln Gly Trp Ser Arg Arg	
35 40 45	
Pro Arg Glu Ser Pro Ala Gln Val Leu Lys Pro Gly Lys Thr Gln Leu	
50 55 60	
Ser Gln Asp Leu Gly Gly Ser Leu Ala Ile Asp Thr Leu Pro Asp	
65 70 75 80	
Asn Arg Thr Arg Val Val Glu Asp Asn His Asn Tyr Tyr Val Ser Arg	
85 90 95	
Val Tyr Gly Pro Gly Glu Lys Gln Ser Gln Asp Leu Trp Val Asp Leu	
100 105 110	
Ala Val Ala Asn Arg Ser His Val Lys Ile His Arg Ile Leu Ser Ser	
115 120 125	
Ser His Arg Gln Ala Ser Arg Val Val Leu Ser Phe Asp Phe Pro Phe	
130 135 140	
Tyr Gly His Pro Leu Arg Gln Ile Thr Ile Ala Thr Gly Gly Phe Ile	
145 150 155 160	
Phe Met Gly Asp Met Leu His Arg Met Leu Thr Ala Thr Gln Tyr Val	
165 170 175	
Ala Pro Leu Met Ala Asn Phe Asn Pro Gly Tyr Ser Asp Asn Ser Thr	
180 185 190	
Val Ala Tyr Phe Asp Asn Gly Thr Val Phe Val Val Gln Trp Asp His	
195 200 205	
Val Tyr Leu Gln Asp Arg Glu Asp Arg Gly Ser Phe Thr Phe Gln Ala	

210	215	220
Ala Leu His Arg Asp Gly Arg Ile Val Phe Gly Tyr Lys Glu Ile Pro		
225	230	235
Met Ala Val Leu Asp Ile Ser Ser Ala Gln His Pro Val Lys Ala Gly		240
245	250	255
Leu Ser Asp Ala Phe Met Ile Leu Asn Ser Ser Pro Glu Val Pro Glu		
260	265	270
Ser Gln Arg Arg Thr Ile Phe Glu Tyr His Arg Val Glu Leu Asp Ser		
275	280	285
Ser Lys Ile Thr Thr Ser Ala Val Glu Phe Thr Pro Leu Pro Thr		
290	295	300
Cys Leu Gln His Gln Ser Cys Asp Thr Cys Val Ser Ser Asn Leu Thr		
305	310	315
Phe Asn Cys Ser Trp Cys His Val Leu Gln Arg Cys Ser Ser Gly Phe		320
325	330	335
Asp Arg Tyr Arg Gln Glu Trp Leu Thr Tyr Gly Cys Ala Gln Glu Ala		
340	345	350
Glu Gly Lys Thr Cys Glu Asp Phe Gln Asp Asp Ser His Tyr Ser Ala		
355	360	365
Ser Pro Asp Ser Ser Phe Ser Pro Phe Asn Gly Asp Ser Thr Thr Ser		
370	375	380
Ser Ser Leu Phe Ile Asp Ser Leu Thr Thr Glu Asp Asp Thr Lys Leu		
385	390	395
Asn Pro Tyr Ala Glu Gly Asp Gly Leu Pro Asp His Ser Ser Pro Lys		
405	410	415
Ser Lys Gly Pro Pro Val His Leu Gly Thr Ile Val Gly Ile Val Leu		
420	425	430
Ala Val Leu Leu Val Ala Ala Ile Ile Leu Ala Gly Ile Tyr Ile Ser		
435	440	445
Gly His Pro Asn Ser Asn Ala Ala Leu Phe Phe Ile Glu Arg Arg Pro		
450	455	460
His His Trp Pro Ala Met Lys Phe His Asn His Pro Asn His Ser Thr		
465	470	475
Tyr Thr Glu Val Glu Pro Ser Gly His Glu Lys Glu Gly Phe Val Glu		480
485	490	495
Ala Glu Gln Cys		
500		

<210> 298
 <211> 2010
 <212> DNA
 <213> Mouse

<400> 298

gagagaggtc	gcggcagccgg	catggcaagg	ttccggaggg	ccgacctggc	cgcagcagga	60
gttatgttac	tttgtcaatt	tttaacagac	cggttccact	tcgcccacgg	ggagccctgga	120
caccatacca	atgattggat	ttatgaagtt	acaaacgctt	ttccttgaa	tgaagagggg	180
gtagaagtgg	actctcaagc	ataacaaccac	aggtggaaaa	gaaatgtgga	cccttttaag	240
gcagtagaca	caaacagagc	cagcatggc	caagcctctc	cagagtccaa	agggttcaact	300
gacctgctac	tggatgacgg	acaggacaat	aacaccaga	tagaggagga	cacggatcac	360
aattactaca	tttctcggtat	atatggtcca	gcggattctg	ccagccggga	tctgtgggtt	420
aacatagacc	aatggaaaa	agacaaaagt	aagattcacg	ggatactttc	caacactcat	480
cggcaagctg	caagagtgaa	tctgtccctc	gattttccat	tttatggtca	ttttctaaat	540
gaagtcactg	tggcaactgg	gggtttcata	tatactggag	aagtgtaca	tcgaatgctc	600
acagctacac	agtatatacg	tcctttaatg	gcaaatttg	atcccagtgt	atccagaaat	660
tcaactgtca	gatatttga	taatggcaca	gctttgttg	tccagtggga	ccatgtccac	720
ctgcaggata	attacaacct	ggaaagctc	acattccagg	ccacactcct	catggacggg	780
cgcacatcatct	ttggatacaa	agaaatccct	gtcttggtca	cacagataag	ttctaccac	840
catccagtga	aagtccgggtt	gtctgatgca	tttgcgtgg	tccacaggat	ccagcaataa	900
cccaatgttc	gaagaagaac	aatttatgaa	tatcaccgag	tagaactaca	aatgtccaaa	960
attaccaaca	tctcagctgt	ggagatgact	ccacttccca	catgtctcca	gttcaatgg	1020

tgtggccctt	gtgtgtcctc	gcagattgg	ttcaactgca	gttgggtcgag	caaacttcaa	1080
agatgctcca	gtggatttga	tcggccatcg	caggactgg	tggacagtgg	atgcccggaa	1140
gaggtacagt	aaaaagagaa	gatgtgtgag	aagacagagc	caggagagac	gtctcaaact	1200
accacgacct	cccacacgac	caccatgca	ttcagggtcc	tgaccaccac	caggagagct	1260
gtgacatcgc	agatgcttac	cagcctgcct	acagaagatg	acacgaagat	agccctacat	1320
ctcaaaagaca	gtggagcctc	cacagatgac	agtgcagctg	agaagaaaagg	aggaaccctc	1380
catgcaggcc	tcattgttgg	aatttcata	tttgtcccta	ttatagcagc	ggccattctg	1440
gtgacagtgt	atatgtatac	ccatccaaca	tcagcagcca	gcatcttctt	cattgagaga	1500
cgcccaagca	gatggccagc	aatgaagttt	cgaagaggtt	caggacaccc	tgcctatgca	1560
gaagttgaac	cagttggaga	gaaagaaggt	tttattgtat	cagagcagtg	ctaaaatttt	1620
aggacagagc	agcaccagta	ctggcttaca	ggtgttaaga	ctaaaacttt	gcttatgcat	1680
ttaagacaaa	cagacacaca	accacacaacc	acacacaaaag	gagccctaaa	ctgctgtaga	1740
cagaaggcgc	acgagattt	tggacaaggc	cagccccagga	acattgaaag	gaaaactcag	1800
acttgtacaa	gacaccatgt	acaatgatta	aagaattccc	tagtggaatg	acatccatgg	1860
ttcacaagga	acatctccgg	tggacttgc	aggagtgtga	cgagatgacg	atgctttgg	1920
tttaggtgca	gggttgcaaa	gaaatcaagg	aaaaaaaaaa	tgacaataaa	taaagcttta	1980
gttcacaagg	aaaaaaaaaa	aaaaaaaaaa				2010

<210> 299

<211> 530

<212> PRT

<213> Mouse

<400> 299

Met	Ala	Arg	Phe	Arg	Arg	Ala	Asp	Leu	Ala	Ala	Gly	Val	Met	Leu	
1						5			10				15		
Leu	Cys	His	Phe	Leu	Thr	Asp	Arg	Phe	His	Phe	Ala	His	Gly	Glu	Pro
									20			25		30	
Gly	His	His	Thr	Asn	Asp	Trp	Ile	Tyr	Glu	Val	Thr	Asn	Ala	Phe	Pro
						35			40			45			
Trp	Asn	Glu	Glu	Gly	Val	Glu	Val	Asp	Ser	Gln	Ala	Tyr	Asn	His	Arg
	50					55			60						
Trp	Lys	Arg	Asn	Val	Asp	Pro	Phe	Lys	Ala	Val	Asp	Thr	Asn	Arg	Ala
	65					70			75			80			
Ser	Met	Gly	Gln	Ala	Ser	Pro	Glu	Ser	Lys	Gly	Phe	Thr	Asp	Leu	Leu
							85		90			95			
Leu	Asp	Asp	Gly	Gln	Asp	Asn	Asn	Thr	Gln	Ile	Glu	Asp	Thr	Asp	
							100		105			110			
His	Asn	Tyr	Tyr	Ile	Ser	Arg	Ile	Tyr	Gly	Pro	Ala	Asp	Ser	Ala	Ser
						115			120			125			
Arg	Asp	Leu	Trp	Val	Asn	Ile	Asp	Gln	Met	Glu	Lys	Asp	Lys	Val	Lys
						130			135			140			
Ile	His	Gly	Ile	Leu	Ser	Asn	Thr	His	Arg	Gln	Ala	Ala	Arg	Val	Asn
							145		150			155			160
Leu	Ser	Phe	Asp	Phe	Pro	Phe	Tyr	Gly	His	Phe	Leu	Asn	Glu	Val	Thr
							165			170			175		
Val	Ala	Thr	Gly	Gly	Phe	Ile	Tyr	Thr	Gly	Glu	Val	Val	His	Arg	Met
						180			185			190			
Leu	Thr	Ala	Thr	Gln	Tyr	Ile	Ala	Pro	Leu	Met	Ala	Asn	Phe	Asp	Pro
						195			200			205			
Ser	Val	Ser	Arg	Asn	Ser	Thr	Val	Arg	Tyr	Phe	Asp	Asn	Gly	Thr	Ala
						210			215			220			
Leu	Val	Val	Gln	Trp	Asp	His	Val	His	Leu	Gln	Asp	Asn	Tyr	Asn	Leu
							225		230			235			240
Gly	Ser	Phe	Thr	Phe	Gln	Ala	Thr	Leu	Leu	Met	Asp	Gly	Arg	Ile	Ile
							245			250			255		
Phe	Gly	Tyr	Lys	Glu	Ile	Pro	Val	Leu	Val	Thr	Gln	Ile	Ser	Ser	Thr
							260			265			270		
Asn	His	Pro	Val	Lys	Val	Gly	Leu	Ser	Asp	Ala	Phe	Val	Val	Val	His
							275			280			285		
Arg	Ile	Gln	Gln	Ile	Pro	Asn	Val	Arg	Arg	Arg	Thr	Ile	Tyr	Glu	Tyr

290	295	300
His Arg Val Glu Leu Gln Met Ser Lys Ile Thr Asn Ile Ser Ala Val		
305	310	315
Glu Met Thr Pro Leu Pro Thr Cys Leu Gln Phe Asn Gly Cys Gly Pro		320
325	330	335
Cys Val Ser Ser Gln Ile Gly Phe Asn Cys Ser Trp Cys Ser Lys Leu		
340	345	350
Gln Arg Cys Ser Ser Gly Phe Asp Arg His Arg Gln Asp Trp Val Asp		
355	360	365
Ser Gly Cys Pro Glu Glu Val Gln Ser Lys Glu Lys Met Cys Glu Lys		
370	375	380
Thr Glu Pro Gly Glu Thr Ser Gln Thr Thr Thr Ser His Thr Thr		
385	390	395
400		
Thr Met Gln Phe Arg Val Leu Thr Thr Arg Arg Ala Val Thr Ser		
405	410	415
Gln Met Pro Thr Ser Leu Pro Thr Glu Asp Asp Thr Lys Ile Ala Leu		
420	425	430
His Leu Lys Asp Ser Gly Ala Ser Thr Asp Asp Ser Ala Ala Glu Lys		
435	440	445
Lys Gly Gly Thr Leu His Ala Gly Leu Ile Val Gly Ile Leu Ile Leu		
450	455	460
Val Leu Ile Ile Ala Ala Ile Leu Val Thr Val Tyr Met Tyr His		
465	470	475
480		
His Pro Thr Ser Ala Ala Ser Ile Phe Phe Ile Glu Arg Arg Pro Ser		
485	490	495
Arg Trp Pro Ala Met Lys Phe Arg Arg Gly Ser Gly His Pro Ala Tyr		
500	505	510
Ala Glu Val Glu Pro Val Gly Glu Lys Glu Gly Phe Ile Val Ser Glu		
515	520	525
Gln Cys		
530		

<210> 300
 <211> 5220
 <212> DNA
 <213> Mouse

<400> 300

cggaactgct tcgactgcaa agcttcaagc gcagcctggg agcggcctgg tggccctatc	60
ccggcagctc cacacagcag aaccccctgg gtccctgaaa ctcgaaaccc gggctcagaa	120
ccagcgaaaa ccaaagcgaatcccttgcac ttctctgaaac aattgtttcc gggcgtttgc	180
tgagagccgg gggacctgac cggagccag gcccgtatg gcgcgcctt gatgtcacac	240
ggacgccagc gaggccagcg ctccggctgc agcatggacc gcgcggggcg cctgggtgcg	300
ggcctgcggg gactctgcgt ggctgactc gtgtctgtgt gcgcggaca cggggccgc	360
cgcgaggatg ggggaccagc ttgctacgga ggattcgacc tctacttcat cctggacaag	420
tcaggaagtg tgctgcacca ctggaatgaa atctactact tcgtggacca gttggctcat	480
agattcatca gcccacagct aaggatgtcc ttcatgtct tctctactcg agggacaact	540
ttaataaaac taactgagga cagggAACAG atccgacaag gcctagaaga gctccagaaa	600
gttctgcac gaggagacac ttacatgcac gaaggattcg agaggccag tgagcagatt	660
tactatgaga acagtcaagg atacaggacg gcgagcgtca tcatcggtt gacggatggg	720
gagctgcacg aggaccttt cttctactca gagagggagg ctaaccgatc ccgagacett	780
ggtgcgatgt ttactgcgt tggctgtgaag gatttcaatg aaactcagtt ggctcgatt	840
gcagacagta aggaccacgt gtttctgtg aacgacggct tccaggctct ccaaggcatt	900
atccactcaa tttaaagaa atccctgcatac gaaattctgg cggctgaacc atccaccatc	960
tgccggag agtcctttca agtggtcgt aagaggaaatg gcttcgcaca tgcccgcaat	1020
gtggacaggg tcctctgcag cttcaaaatc aatgacttag tcacgctcaa tgagaagccc	1080
tttgcgtgg aagacactta ttgctgtgc ccagcaccaa tcttggaaaga agttggcatg	1140
aaagctgcac tgcaggtcag catgaacgac ggcctgtct tcatctccag ttctgtcatc	1200
atcaccacca cacactgttc agacggctcc atccctggca ttgctctgct ggtccctttc	1260
ctgctgtgg ccctggcgct gctctgggg ttctggcccc tctgctgcac agtgcacatc	1320
aaggaggccc ctccaccccc tggaggag agtgagaaag aagacgtga tggtttgc	1380

aagaagaaaat	ggcccacagt	agatgcctct	tattatggtg	gacgcgtgt	gggaggcatt	1440
aaaagaatgg	aggtcccgctg	gggagaaaaag	ggctccacag	aagaaggggc	gaagttagaa	1500
aaggcaaaga	atgcacgagt	caagatgcca	gagcaagaat	atgagttccc	agaaccccg	1560
aacctcaaca	acaacatgca	ccggccttcc	tcgcctcgga	agtgtactc	gcccatcaag	1620
ggaaaactcg	atgccttg	ggttctgctg	agaaaaaggat	atgaccgagt	gtctgtatg	1680
aggccacagc	caggagacac	gggacgctgt	atcaacttca	ccagagtgaa	gaacagttag	1740
ccagccaagt	atccccctgaa	caacacactac	cacccctact	ccccacctcc	cgctccatc	1800
tacacacccc	cacccctgtc	tccccactgc	cctccccccag	ccccactgtc	ccccactctc	1860
cccatctt	ccccaccatc	cacttcccc	cctctccctc	aggccccacc	ccctaaccagg	1920
gcacctcccc	cctcccgacc	tcctccaagg	cctctgtct	agaacccaaa	gtccgagctc	1980
tgggtgcct	gagcaactcc	agcaggaggc	ttctctgtc	aaagaaaagat	ctgcccagcc	2040
tatgtgtgta	gtggcggctg	atgttgac	gatttaaaag	caagtcgtga	tggcagaac	2100
aaaatggca	tttgaactg	cctgaagaca	gacaatgaga	caataacagt	cacattata	2160
cctgtgaccc	ctcacctcta	gaggaagggtt	cccgagatgg	ccacattggc	acagtgcct	2220
cagccagatt	atgtcccat	aagaccagga	agaaagtgc	ttccaaagaat	ggaatgcagc	2280
attggataag	aaacacactgg	ctgagattct	gacctcactc	atttgactct	tgattcttgg	2340
actgggagcc	aggccatctc	cacccctgg	accacccagg	aactctgaaa	atgtgcagt	2400
tccctagtat	gcatcgata	ggtatccaac	tggatctgc	aggtgcctt	ataaaagagca	2460
tatgtcttat	tctctttccc	gaacttctg	gtttcccaat	gatgaggggaa	ggggaaaggt	2520
gttgcctatc	ttagaagtt	gaggacgtca	gtgctcagca	ctgatggaga	agcgttgcgt	2580
ggagtggtca	gctcttacat	ctagaaatgg	ctggctttag	caggcacagt	tcctaaacca	2640
acaaggcttg	tcattgtcaa	aggcaaccta	ctaattgattc	accttaaaca	tcaagggtg	2700
ctgtggcata	ggtcagatgt	gatcacacag	aaccttcccc	atgaaatcg	aagggtcctc	2760
atcttcaaat	acccaggacc	ccagagattt	ctaaatccag	ctaagagaca	gtagtcctg	2820
cttggcaaga	aaaccattcc	cagtgtttt	actctgaaac	aggcgttgt	atgtatggta	2880
tatctcttct	ttggctttca	acctgtcac	aagtattacc	agttatgaa	caaggagaaa	2940
tacatccat	gtgttaataga	aaagctctgc	ccacaatccc	catgtcactc	ctctacatta	3000
ttctgaagct	gttgggtcag	tgagccctt	aacctcatgt	agactctgg	cactgtcacc	3060
caatcatgaa	aacagagggtc	attgtcaaag	gcagtgtata	gcctgtacaa	aatatgtgct	3120
tccttcctca	gtttccacag	gccccaaat	tcctgtctt	ggctctttaa	cctctaaact	3180
ttttcttgg	acaaaagata	taaaacggc	ataagtttt	atgtttgg	ctgtatctc	3240
caaagatcct	tcaagaactc	aagttagcct	catttttcca	gcttggtag	aacagaggca	3300
tccaggtgtc	atgcacttca	tagacacca	tcctgttcc	caaggcagac	attattaatc	3360
aatctcagca	ctagttctca	atttaatcca	attatattt	tccacagtac	ttcacatctc	3420
ttatgacctg	ttgggtcatca	gttagaattt	agagagataa	acactgttt	taatccctac	3480
cttagaaaga	aaagcagagg	agaatgggg	aaccaccagg	ataaaagtt	ttatctgggg	3540
aaaatcgacc	tgaaaagaacg	cccaagtcca	agacctatgg	tgctgacacc	aaagtaacac	3600
tttcccaagt	gtaccccgaga	ccccactt	ctccctgtgg	ccaccactcc	ctgctttca	3660
ggagttgtga	aaaagatctc	cttcacccctt	actgtgcccc	catattagaa	caaggcttgt	3720
ttagtgtat	ccttgcataa	caggtgccag	aatgtctcag	ccacctgaga	tgacattgt	3780
gggccccaga	aaaccattcc	aaggagaatg	ggctcccaag	gctcagagca	tgcaactatg	3840
agcccatggc	aactgtttt	actgtggca	gtacaaaacg	ggccacccca	cattacagct	3900
gcaggatttg	tgcagccata	agaaagtatg	aaccaagatg	ctgggttgtc	tgttcaacaa	3960
gcatgggctt	cggggaaaggc	agcagactcc	gagagcaggc	cttgcgtact	gtcccaaggg	4020
gctgtgtgt	agtgtctgag	gaaaaatgaa	tgctgatata	tggtgatattt	gagaagaatt	4080
tgcaagggtt	gaccttagaa	tttatggaaat	gtctccctg	gtcattcaga	attatggta	4140
gaagtttcta	aaaaccgtca	aggtaatac	ctttcagat	aggtgattac	aggcagggaa	4200
agctttgat	ttgtttacaa	agccatcag	ttctgtgtca	ttccctgtaa	gcaacaggag	4260
atgggtgtt	tgattagcaa	actgcattgt	ttattttttt	gactcttgc	tattgtcctt	4320
acggaggatt	ttttttat	aagccaaatt	ttgttgcata	tattcatatt	ccacgtgaca	4380
gatggaaagca	cttcctatca	gtgtgatata	aaagaacagt	tgtgatata	tattaaagcc	4440
agtgtattca	ttggcagggt	cccttaccaag	ctgtgttgc	tgatctccca	tgaccatact	4500
gcttttacaa	tgtacaaata	gttcttaggt	gacgagaccc	tcctttacat	aatgcccgt	4560
acagccttgc	ttggaaactgc	ggtccttctg	ctgtgacacg	cagctcgaaa	acaggtctcg	4620
cctggagctt	gccacacact	ttagggagac	ataagagctg	tctttccccca	cggtcaggga	4680
caaagctacc	ataaaagaatg	ggaaaagtct	tggctctcca	gcctgggaca	gaggtctctc	4740
tggaaacccca	aggaagagca	gaaatgatcc	ttgcctgc	ctgcacacaa	tgtgtatgg	4800
gaaaatccat	caaggaataa	ttgtgagata	atgaccgaca	gttcaaggcgc	aaagggaaatt	4860
catgtgtgt	aaagtgggt	gaattcgttt	gcaagctatg	caaagcctg	tcttactcac	4920
caggaggatg	gaaagggtt	tttttagttt	ctgagctcag	ctgagtttac	acgcttggag	4980
aaccgattta	aaggaattag	aatatgattt	ctgaatacac	ataacattaa	actcttctct	5040

ttttctatgg taattttagtt atggacgttc agcgtctcg agttattgtt ataaaaagact	5100
tgtcatcacc gcactgtgct gtaggagact gggctgaacc tgtacaatgg tataccctgg	5160
aagttgcctt ttaaaaaaaaaaa aataataata aacacctaata atcaaaaaaaaaaaaaaaa	5220

<210> 301
 <211> 562
 <212> PRT
 <213> Mouse

<400> 301
 Met Asp Arg Ala Gly Arg Leu Gly Ala Gly Leu Arg Gly Leu Cys Val
 1 5 10 15
 Ala Ala Leu Val Leu Val Cys Ala Gly His Gly Gly Arg Arg Glu Asp
 20 25 30
 Gly Gly Pro Ala Cys Tyr Gly Gly Phe Asp Leu Tyr Phe Ile Leu Asp
 35 40 45
 Lys Ser Gly Ser Val Leu His His Trp Asn Glu Ile Tyr Tyr Phe Val
 50 55 60
 Glu Gln Leu Ala His Arg Phe Ile Ser Pro Gln Leu Arg Met Ser Phe
 65 70 75 80
 Ile Val Phe Ser Thr Arg Gly Thr Thr Leu Met Lys Leu Thr Glu Asp
 85 90 95
 Arg Glu Gln Ile Arg Gln Gly Leu Glu Glu Leu Gln Lys Val Leu Pro
 100 105 110
 Gly Gly Asp Thr Tyr Met His Glu Gly Phe Glu Arg Ala Ser Glu Gln
 115 120 125
 Ile Tyr Tyr Glu Asn Ser Gln Gly Tyr Arg Thr Ala Ser Val Ile Ile
 130 135 140
 Ala Leu Thr Asp Gly Glu Leu His Glu Asp Leu Phe Phe Tyr Ser Glu
 145 150 155 160
 Arg Glu Ala Asn Arg Ser Arg Asp Leu Gly Ala Ile Val Tyr Cys Val
 165 170 175
 Gly Val Lys Asp Phe Asn Glu Thr Gln Leu Ala Arg Ile Ala Asp Ser
 180 185 190
 Lys Asp His Val Phe Pro Val Asn Asp Gly Phe Gln Ala Leu Gln Gly
 195 200 205
 Ile Ile His Ser Ile Leu Lys Lys Ser Cys Ile Glu Ile Leu Ala Ala
 210 215 220
 Glu Pro Ser Thr Ile Cys Ala Gly Glu Ser Phe Gln Val Val Val Arg
 225 230 235 240
 Gly Asn Gly Phe Arg His Ala Arg Asn Val Asp Arg Val Leu Cys Ser
 245 250 255
 Phe Lys Ile Asn Asp Ser Val Thr Leu Asn Glu Lys Pro Phe Ala Val
 260 265 270
 Glu Asp Thr Tyr Leu Leu Cys Pro Ala Pro Ile Leu Lys Glu Val Gly
 275 280 285
 Met Lys Ala Ala Leu Gln Val Ser Met Asn Asp Gly Leu Ser Phe Ile
 290 295 300
 Ser Ser Ser Val Ile Ile Thr Thr His Cys Ser Asp Gly Ser Ile
 305 310 315 320
 Leu Ala Ile Ala Leu Leu Val Leu Phe Leu Leu Ala Leu Ala Leu
 325 330 335
 Leu Trp Trp Phe Trp Pro Leu Cys Cys Thr Val Ile Ile Lys Glu Val
 340 345 350
 Pro Pro Pro Pro Val Glu Glu Ser Glu Glu Glu Asp Asp Asp Gly Leu
 355 360 365
 Pro Lys Lys Lys Trp Pro Thr Val Asp Ala Ser Tyr Tyr Gly Gly Arg
 370 375 380

Gly Val Gly Gly Ile Lys Arg Met Glu Val Arg Trp Gly Glu Lys Gly
 385 390 395 400
 Ser Thr Glu Glu Gly Ala Lys Leu Glu Lys Ala Asn Ala Arg Val
 405 410 415
 Lys Met Pro Glu Gln Glu Tyr Glu Phe Pro Glu Pro Arg Asn Leu Asn
 420 425 430
 Asn Asn Met Arg Arg Pro Ser Ser Pro Arg Lys Trp Tyr Ser Pro Ile
 435 440 445
 Lys Gly Lys Leu Asp Ala Leu Trp Val Leu Leu Arg Lys Gly Tyr Asp
 450 455 460
 Arg Val Ser Val Met Arg Pro Gln Pro Gly Asp Thr Gly Arg Cys Ile
 465 470 475 480
 Asn Phe Thr Arg Val Lys Asn Ser Gln Pro Ala Lys Tyr Pro Leu Asn
 485 490 495
 Asn Thr Tyr His Pro Ser Ser Pro Pro Ala Pro Ile Tyr Thr Pro
 500 505 510
 Pro Pro Pro Ala Pro His Cys Pro Pro Pro Ala Pro Ser Ala Pro Thr
 515 520 525
 Pro Pro Ile Pro Ser Pro Pro Ser Thr Leu Pro Pro Pro Pro Gln Ala
 530 535 540
 Pro Pro Pro Asn Arg Ala Pro Pro Pro Ser Arg Pro Pro Pro Arg Pro
 545 550 555 560
 Ser Val

<210> 302
 <211> 2690
 <212> DNA
 <213> Mouse

<400> 302

agctttcccc accacagaat ccaagtccga actcttggca ccatgaaccc agccatcagc	60
gtcgctctcc tgctctcagg tactgggcaa gggtcagggc tggcattcta aggaatctgg	120
cttcctccca tcccggaaag tagcctcttt gccatagtct caggggcaca ggtgggttggg	180
agggtcggggg gtggggagtg gggaggagcc tcaacacctac cagtgggtgt ctttgacata	240
ttagaaactc cataatggat ctaggaactc ctctgctggg tgggtgggtgt tgggtacac	300
accttaatc tcagcactca ggagggcagag tcaggtggat ctgttagtct gaagccagct	360
ggtctacaga gcaaattcca ggacagccag agctattctc aagatagaga atccctttct	420
tgaaaaaacc attaaaaaac aaaaacaaaaa gcaacacact ccttgatct cctgttcttg	480
aaacacattg ttgggaccca gaacttcagt agattgtgg aagttggagt ctgcaagtgg	540
tggAACATCC caccaataacc tcaaggcga gtgcaaaccc cacatcccc cagctcaagc	600
tcactttcc tgcagggtggg aggcccgggt ctgtgtctcc ccaaatttcag agaaggcact	660
gctgtcgagt cttgcagggtg tcccggggc agaagggtac cagcctgaca gcctgcctgg	720
tgaacaaaaa ctttcgcctg gactgccgc atgagaataa caccaaggat aactccatcc	780
agcatgagtt cagcctgacc cgagagaaga ggaagcacgt gctctcaggc acccttggga	840
tacccgagca cacgtaccgc tcccgctca ccctctccaa ccagccctat atcaagggcc	900
ttacccctagc caacttcacc accaaggatg agggcgacta ctttgcgttag cttcaagtct	960
cgggcgcgaa tcccatgagc tccaataaaaa gtatcagtgt gtatagaggt gagactgggt	1020
cccagaaaaga taaaatgtct aggttagcta ggctgggta gccaataaaaa aaaaaaaaaaa	1080
aaaaaaaaaaa aaaaacaggc acctccatta cccttccct aactgctggt ctctggaa	1140
actgctgctg tctatgttag tggggcaaga ttaggggcca gaaaggggga gcttgttagta	1200
aaagcacagt tgagggaaact aaatggggaa ggcagtacag tggtgattct tgggtgtgg	1260
aggttctgtt acagcatccg gtggagccgc taagatgaga aagccgcacgc tagctgcctt	1320
gaacagctga cacctgtctt tgccgcctg agtccgtatc tcccttcctc cccgcaccccc	1380
ttctctatcc acagacaagc tggtaagtg tggcggcata agcctgctgg ttcaagaacac	1440
atccctggatg ctgctgctgc tgctttccct ctccttcctc caagccctgg acttcatttc	1500
tctgtactg gttggggccca aggagaaaaca gggccctcg aggagccctc cgggtccttc	1560
ctctgcagag gtcttgcttc tcccggtcag ctgactccct ccccaagtcc ttcaaatatc	1620
tcagaacatg gggagaaaacg gggaccttgt ccctcctaag gaacccctgt gctgcattgcc	1680
atcatcccccc ccaccctcgc ccccaccccc gccacttctc cttccatgc taccactagc	1740
tgtcattttg tactctgtat ttattctagg gctgcttctg attatctgt ttgttcttc	1800

cctggagacc	tgttagaaaca	taaggcgta	tggtggtag	gggaggcagg	atatcagtcc	1860
ctggggcgag	ttcctccctg	ccaaggaagc	cagatgcctg	aaagagatat	ggatgagggg	1920
agtggactg	tgcctgtacc	tggtacagtc	atactctgtg	gggaatcatc	ggggaggggg	1980
ggggggctca	agatgggaga	gctctgttag	ccttggtga	ccatccaatg	aggatgaggg	2040
cttagattct	accaggtcat	tctcagccac	cacacacaag	cgctctgcca	tcactgaaga	2100
agccccctag	ggccttggc	cagggcacac	tcagtaaaga	tgcagggtca	gtcagggaat	2160
gatggggaaa	ggggtaggag	gtgggggagg	gatcacccccc	tcctctaaaa	cacgagccctg	2220
ctgtctccaa	aggcctctgc	ctgtatgtag	ggtggcagaa	gaagacaagg	agccagaact	2280
ctgactccag	gatctaagt	cgtgcaggaa	ggggatccta	gaaccatccg	gttggaccca	2340
gcttaccaaag	ggagaggctt	tattttctt	tcctctgccc	cctctgtgcc	agccctctt	2400
gctgtccctg	atccccagac	agacgagagt	cttgc当地	gcctgttcca	agacctccct	2460
atctcagggg	caggcgggtgg	agctgagatc	cggcgtgcac	acttttttgt	tgatagctt	2520
ccaaaggatc	ctctccccca	ctggcagctc	tgccctgtccc	atcaccatgt	ataataccac	2580
cactgctaca	gcatctcacc	gaggaaagaa	aatgcacaa	taaaaccaag	cctctggagt	2640
gtgtccttgtt	gtctgtctct	tctgtgtcct	ggcgtctgtc	tcttctgtgt		2690

<210> 303

<211> 162

<212> PRT

<213> Mouse

<400> 303

Met	Asn	Pro	Ala	Ile	Ser	Val	Ala	Leu	Leu	Leu	Ser	Val	Leu	Gln	Val
1				5				10			15				
Ser	Arg	Gly	Gln	Lys	Val	Thr	Ser	Leu	Thr	Ala	Cys	Leu	Val	Asn	Gln
				20				25			30				
Asn	Leu	Arg	Leu	Asp	Cys	Arg	His	Glu	Asn	Asn	Thr	Lys	Asp	Asn	Ser
				35				40			45				
Ile	Gln	His	Glu	Phe	Ser	Leu	Thr	Arg	Glu	Lys	Arg	Lys	His	Val	Leu
				50				55			60				
Ser	Gly	Thr	Leu	Gly	Ile	Pro	Glu	His	Thr	Tyr	Arg	Ser	Arg	Val	Thr
				65				70			75			80	
Leu	Ser	Asn	Gln	Pro	Tyr	Ile	Lys	Val	Leu	Thr	Leu	Ala	Asn	Phe	Thr
				85				90			95				
Thr	Lys	Asp	Glu	Gly	Asp	Tyr	Phe	Cys	Glu	Leu	Gln	Val	Ser	Gly	Ala
				100				105			110				
Asn	Pro	Met	Ser	Ser	Asn	Lys	Ser	Ile	Ser	Val	Tyr	Arg	Asp	Lys	Leu
				115				120			125				
Val	Lys	Cys	Gly	Gly	Ile	Ser	Leu	Leu	Val	Gln	Asn	Thr	Ser	Trp	Met
				130				135			140				
Leu	Leu	Leu	Leu	Ser	Leu	Ser	Leu	Leu	Gln	Ala	Leu	Asp	Phe	Ile	
				145				150			155			160	
Ser	Leu														

<210> 304

<211> 4588

<212> DNA

<213> Mouse

<400> 304

tgcatcccc	tgcggcgcc	tatccgagc	acagcgttag	ggctgtctct	gcacgcagcc	60
ctggcgtcg	ccctccgtac	tctcgtcc	cgagcggcgc	aggatggta	cccatccgac	120
ctgcccctcg	gcccctggcct	cgtcacccgtc	tgcgctgcgt	cttgccttctc	gggggactgc	180
gtctcgccca	cccgccggac	tccggccccc	ccctccgtga	gcctgtatgtc	ttcctcatct	240
tcaagccagg	gatgcagggtc	tgtctggagg	cccagggtgt	gcagggtccga	gtcaccctt	300
tctgcataat	cagtctccct	gcccacgcgt	gaaagtgggt	ctcccgaaac	cgactcttca	360
acctgggtgc	cacacagtgc	ctgggtacag	gttggccagt	caccaacacc	acagtttcc	420
tgggcatgt	tgagtgtgac	agagaggcct	tgagtcttcg	gatggcagt	tcgtacacta	480
ggggaccagt	tgtccctgtct	tctgggggtct	cgtgcaagca	atgcataccaa	gcctggcacc	540
tggagcgcgg	tgaccagacc	cgcagtggcc	attggAACAT	ctatggcagt	gaagaagacc	600

tatgtgctcg	accttactat	gaggtctaca	ccatccaggg	aaactcacac	ggaaagccgt	660
gcactatccc	cttcaaatac	gacaaccagt	ggttccacgg	ctgcaccagc	actggcagag	720
aagatggca	cctgtgggt	gccaccaccc	aggactacgg	caaagatgag	cgctgggct	780
tctccccat	caagagttaac	gactgtgaga	ccttctgga	caaagaccag	ctgactgaca	840
gctttacca	gtttaacttc	caatccacac	tgtcctggag	ggagggctgg	gccagctgcf	900
agcagcagg	tgcagacttg	ctgagtatca	cggagattca	cgagcagacc	tacatcaacg	960
ggctccac	gggctacagc	tccacgctat	ggattggct	taatgacctg	gataccagt	1020
gaggctggca	gtggtcagac	aactcacc	tcaagtacct	caactgggag	agtgtacagc	1080
cggacaaccc	aggtgaggag	aactgtggag	tgtatccggac	tgagtctca	ggcggctggc	1140
agaaccatga	ctgcagcatc	gccctgcct	atgtttgca	gaaaaaccc	aacgctacgg	1200
tcgagccat	ccagccagac	cggtgacca	atgtcaaggt	ggaatgtac	cccagctggc	1260
agcccttcca	gggcccactgc	taccgcctgc	aggccgagaa	gcccagctgg	caggagttca	1320
agagggcgt	tctgcggggt	gggggtgacc	tccttagcat	ccacagcatg	gctgagetgg	1380
agttcatcac	caaacagatc	aagcaagagg	tggaggagct	atggattggc	ctcaatgatt	1440
tgaaactgca	gatgaattt	gaggtgtccg	acggggacct	cgtgagctt	acccactggc	1500
acccttga	gccccaaacaac	tttgcgtaca	gcctggagga	ctgtgtcacc	atctggggc	1560
cggaaggacg	ctggaacac	agtccctgt	accagtctt	gcccattcc	tgcaagaagg	1620
caggccggt	gagccaggc	gctgcggagg	aggaccacga	ctgcccggag	gttggacgt	1680
ggcatagccc	atcctgtac	tggctggag	aggaccaagt	gatctacagt	gtgcccggc	1740
gcctgtgtac	tgaccatggc	tctcagctgg	tcaccatcac	caacaggttt	gaggcggct	1800
tcgtcagcag	cctcatat	aactgggg	gcaaatactt	ctgacagacc	ctgcaagacc	1860
tcaacagttac	tggctccttc	cgttggctca	gtggggatga	agtcatatat	acccatttga	1920
atcgagacca	gcctgggtac	agacgtggag	gctgtgtggc	tctggccact	ggcagtgcca	1980
tggactgt	ggaggtgaag	aactgcacat	cgltccgggc	tcgctacatc	tgccgacaga	2040
gcctgggcac	accggteaca	ccagagctgc	ctggggccaga	cccacgc	agcctactg	2100
gctcctgtcc	ccagggctgg	gtctcagacc	ccaaactccg	acactgtat	aagggttca	2160
gctcagagcg	gctgcagag	aagaagagtt	ggatccaggc	cctgggggtc	tgccgggagt	2220
tggggccca	gctgctgagt	ctggccagct	atgaggagga	gcactttgt	gcccacatgc	2280
tcaacaagat	ctttggtag	tcagagcctg	agagccatga	gcagcactgg	ttttggattt	2340
gcctgaaccg	cagagaccc	agagagggc	acagctggcg	ctgagcgc	gttctagggt	2400
tttccttacca	caattttgc	cggagccgac	atgatgacga	tgatatccga	ggctgtgcag	2460
tgctggacct	ggcctccctg	cagttggatc	ccatgcagt	ccagacgc	cttgcacttga	2520
tctgcaagat	cccttagaggt	gtggatgtc	gggaaccaga	cattggtcga	caaggccgtc	2580
tggagtgggt	acgctttcag	gaggccag	acaagtttt	tgagcaccac	tcctcggtgg	2640
cgcaggcaca	gcmcattctc	acctggttcc	aggcagatct	gacccctcg	cacagccaa	2700
cagaactggg	cttcctggg	caaaacctgc	agaagctgc	ctcagaccag	gagcagact	2760
ggtggatcg	cctgcacacc	ttggagagtg	acggacgtt	caggtggaca	gatggttcta	2820
ttataaactt	catctcttg	gcacccggaa	aacctagacc	cattggcaag	gacaagaagt	2880
gtgtatacat	gacagccaga	caagaggact	ggggggacca	gaggtccat	acggcttgc	2940
cctacatctg	taagcgcagc	aatagctctg	gagagactca	gccccaaagac	ttgccacett	3000
cagccttagg	aggctcccc	tccgggttgg	accagttct	caataagtgt	ttccgaatcc	3060
agggccagga	ccccccaggac	agggtgaat	ggtcagaggc	acagttctcc	tgtgaacagc	3120
aagaagccca	gctggtcacc	attgcaaacc	ccttagagca	agcatttac	acagccagcc	3180
tccccaaacgt	gacctttgac	cttggattt	gcctgcattc	cttcagagg	gacttccagt	3240
ggattgaaca	agaacccctg	ctctatacc	actgggcacc	aggagagccc	tctggcccca	3300
gccctgtcc	cagtggcacc	aagccgacca	gctgtgcgtt	gatccctgcac	agccccctcag	3360
cccacttcac	tggccgtgg	gatgatcgga	gctgcacaga	ggagacgc	ggcttcatct	3420
gccagaaggg	cacagaccc	tcgtaagcc	catccccagc	agcaacacccc	ctgccccgg	3480
gctgtgagct	ctccatatctc	aaccacaccc	tccggctgt	gcagaagcca	ctgcgttgg	3540
aagatgtct	cctgctgtgt	gagagccgaa	atgcccgcct	ggcacacgt	cccgatccct	3600
acacacaaggc	cttcctcaca	cagctgcac	gggggctgca	aaacccactg	tggtatgggc	3660
tggccagtga	ggagggctca	cggaggtatt	cctggctctc	agaggagct	ctgaattatg	3720
tgagctggca	agatgaggag	cccagcact	cgggaggctg	tgctctacgt	gatgtggatg	3780
gaacctggcg	caccaccagc	tgtgatacc	agctgcaggg	ggcagtgtgt	gggggtgagca	3840
ggggggccccc	accccgaaagg	ataaaactacc	gtggcagctg	tcctcaggggc	ttggctgact	3900
cgtcctggat	tcccttcagg	gagcattgt	attctttcca	catggaggt	ctgttgggccc	3960
acaaggaggc	gctgcagcgc	tgtcagaaag	ctgggtggac	ggttctgtcc	attcttgatg	4020
agatggagaa	tgtgtttgtc	tggagcacc	tgcagacagc	tgaagccaa	agtcgagggt	4080
cctgggtggg	catgaacttc	aacccaaag	gaggcagct	ggtctggcaa	gacaacacag	4140
ctgtgaacta	ttctaactgg	ggggccccc	gcctggggcc	tagcatgcta	agccacaaaca	4200
gctgctactg	gatccagac	agcagcggac	tgtggccccc	cggggcttgt	accaacatca	4260

ccatgggagt tgcgtcaag ctccttagag tggaaagagaa cagttcttg ccatcagcag	4320
ccctccccga gagcccggtt gccctgggtgg tgggtctgac agcgggtctg ctccctctgg	4380
ccttgcgtac ggcagccctc atccttacc ggcgcccaca gagtgcggag cgtgggtcct	4440
tcgaggggggc ccgctacagt cgccgcggcc actctggccc cgccagggcc accgagaaga	4500
acatcttgtt gtctgacatg gaaatgaacg aacagcaaga atagagccaa gggcgtggtc	4560
ggggtggagc caaagcgggg gaggcagg	4588

<210> 305
<211> 1479
<212> PRT
<213> Mouse

Met Val Pro Ile Arg Pro Ala Leu Ala Pro Trp Pro Arg His Leu Leu	
1 5 10 15	
Arg Cys Val Leu Leu Leu Gly Gly Leu Arg Leu Gly His Pro Ala Asp	
20 25 30	
Ser Ala Ala Ala Leu Leu Glu Pro Asp Val Phe Leu Ile Phe Ser Gln	
35 40 45	
Gly Met Gln Gly Cys Leu Glu Ala Gln Gly Val Gln Val Arg Val Thr	
50 55 60	
Pro Phe Cys Asn Ala Ser Leu Pro Ala Gln Arg Trp Lys Trp Val Ser	
65 70 75 80	
Arg Asn Arg Leu Phe Asn Leu Gly Ala Thr Gln Cys Leu Gly Thr Gly	
85 90 95	
Trp Pro Val Thr Asn Thr Thr Val Ser Leu Gly Met Tyr Glu Cys Asp	
100 105 110	
Arg Glu Ala Leu Ser Leu Arg Met Ala Val Ser Tyr Thr Arg Gly Pro	
115 120 125	
Val Val Pro Ala Ser Gly Gly Ser Cys Lys Gln Cys Ile Gln Ala Trp	
130 135 140	
His Leu Glu Arg Gly Asp Gln Thr Arg Ser Gly His Trp Asn Ile Tyr	
145 150 155 160	
Gly Ser Glu Glu Asp Leu Cys Ala Arg Pro Tyr Tyr Glu Val Tyr Thr	
165 170 175	
Ile Gln Gly Asn Ser His Gly Lys Pro Cys Thr Ile Pro Phe Lys Tyr	
180 185 190	
Asp Asn Gln Trp Phe His Gly Cys Thr Ser Thr Gly Arg Glu Asp Gly	
195 200 205	
His Leu Trp Cys Ala Thr Thr Gln Asp Tyr Gly Lys Asp Glu Arg Trp	
210 215 220	
Gly Phe Cys Pro Ile Lys Ser Asn Asp Cys Glu Thr Phe Trp Asp Lys	
225 230 235 240	
Asp Gln Leu Thr Asp Ser Cys Tyr Gln Phe Asn Phe Gln Ser Thr Leu	
245 250 255	
Ser Trp Arg Glu Ala Trp Ala Ser Cys Glu Gln Gln Gly Ala Asp Leu	
260 265 270	
Leu Ser Ile Thr Glu Ile His Glu Gln Thr Tyr Ile Asn Gly Leu Leu	
275 280 285	
Thr Gly Tyr Ser Ser Thr Leu Trp Ile Gly Leu Asn Asp Leu Asp Thr	
290 295 300	
Ser Gly Gly Trp Gln Trp Ser Asp Asn Ser Pro Leu Lys Tyr Leu Asn	
305 310 315 320	
Trp Glu Ser Asp Gln Pro Asp Asn Pro Gly Glu Glu Asn Cys Gly Val	
325 330 335	
Ile Arg Thr Glu Ser Ser Gly Gly Trp Gln Asn His Asp Cys Ser Ile	
340 345 350	
Ala Leu Pro Tyr Val Cys Lys Lys Pro Asn Ala Thr Val Glu Pro	
355 360 365	
Ile Gln Pro Asp Arg Trp Thr Asn Val Lys Val Glu Cys Asp Pro Ser	
370 375 380	

Trp Gln Pro Phe Gln Gly His Cys Tyr Arg Leu Gln Ala Glu Lys Arg
 385 390 395 400
 Ser Trp Gln Glu Ser Lys Arg Ala Cys Leu Arg Gly Gly Asp Leu
 405 410 415
 Leu Ser Ile His Ser Met Ala Glu Leu Glu Phe Ile Thr Lys Gln Ile
 420 425 430
 Lys Gln Glu Val Glu Glu Leu Trp Ile Gly Leu Asn Asp Leu Lys Leu
 435 440 445
 Gln Met Asn Phe Glu Trp Ser Asp Gly Ser Leu Val Ser Phe Thr His
 450 455 460
 Trp His Pro Phe Glu Pro Asn Asn Phe Arg Asp Ser Leu Glu Asp Cys
 465 470 475 480
 Val Thr Ile Trp Gly Pro Glu Gly Arg Trp Asn Asp Ser Pro Cys Asn
 485 490 495
 Gln Ser Leu Pro Ser Ile Cys Lys Lys Ala Gly Arg Leu Ser Gln Gly
 500 505 510
 Ala Ala Glu Glu Asp His Asp Cys Arg Lys Gly Trp Thr Trp His Ser
 515 520 525
 Pro Ser Cys Tyr Trp Leu Gly Glu Asp Gln Val Ile Tyr Ser Asp Ala
 530 535 540
 Arg Arg Leu Cys Thr Asp His Gly Ser Gln Leu Val Thr Ile Thr Asn
 545 550 555 560
 Arg Phe Glu Gln Ala Phe Val Ser Ser Leu Ile Tyr Asn Trp Glu Gly
 565 570 575
 Glu Tyr Phe Trp Thr Ala Leu Gln Asp Leu Asn Ser Thr Gly Ser Phe
 580 585 590
 Arg Trp Leu Ser Gly Asp Glu Val Ile Tyr Thr His Trp Asn Arg Asp
 595 600 605
 Gln Pro Gly Tyr Arg Arg Gly Gly Cys Val Ala Leu Ala Thr Gly Ser
 610 615 620
 Ala Met Gly Leu Trp Glu Val Lys Asn Cys Thr Ser Phe Arg Ala Arg
 625 630 635 640
 Tyr Ile Cys Arg, Gln Ser Leu Gly Thr Pro Val Thr Pro Glu Leu Pro
 645 650 655
 Gly Pro Asp Pro Thr Pro Ser Leu Thr Gly Ser Cys Pro Gln Gly Trp
 660 665 670
 Val Ser Asp Pro Lys Leu Arg His Cys Tyr Lys Val Phe Ser Ser Glu
 675 680 685
 Arg Leu Gln Glu Lys Lys Ser Trp Ile Gln Ala Leu Gly Val Cys Arg
 690 695 700
 Glu Leu Gly Ala Gln Leu Leu Ser Leu Ala Ser Tyr Glu Glu Glu His
 705 710 715 720
 Phe Val Ala His Met Leu Asn Lys Ile Phe Gly Glu Ser Glu Pro Glu
 725 730 735
 Ser His Glu Gln His Trp Phe Trp Ile Gly Leu Asn Arg Arg Asp Pro
 740 745 750
 Arg Glu Gly His Ser Trp Arg Trp Ser Asp Gly Leu Gly Phe Ser Tyr
 755 760 765
 His Asn Phe Ala Arg Ser Arg His Asp Asp Asp Asp Ile Arg Gly Cys
 770 775 780
 Ala Val Leu Asp Leu Ala Ser Leu Gln Trp Val Pro Met Gln Cys Gln
 785 790 795 800
 Thr Gln Leu Asp Trp Ile Cys Lys Ile Pro Arg Gly Val Asp Val Arg
 805 810 815
 Glu Pro Asp Ile Gly Arg Gln Gly Arg Leu Glu Trp Val Arg Phe Gln
 820 825 830
 Glu Ala Glu Tyr Lys Phe Phe Glu His His Ser Ser Trp Ala Gln Ala
 835 840 845
 Gln Arg Ile Cys Thr Trp Phe Gln Ala Asp Leu Thr Ser Val His Ser
 850 855 860
 Gln Ala Glu Leu Gly Phe Leu Gly Gln Asn Leu Gln Lys Leu Ser Ser

865	870	875	880
Asp Gln Glu Gln His Trp Trp Ile Gly Leu His Thr Leu Glu Ser Asp			
885	890	895	
Gly Arg Phe Arg Trp Thr Asp Gly Ser Ile Ile Asn Phe Ile Ser Trp			
900	905	910	
Ala Pro Gly Lys Pro Arg Pro Ile Gly Lys Asp Lys Lys Cys Val Tyr			
915	920	925	
Met Thr Ala Arg Gln Glu Asp Trp Gly Asp Gln Arg Cys His Thr Ala			
930	935	940	
Leu Pro Tyr Ile Cys Lys Arg Ser Asn Ser Ser Gly Glu Thr Gln Pro			
945	950	955	960
Gln Asp Leu Pro Pro Ser Ala Leu Gly Gly Cys Pro Ser Gly Trp Asn			
965	970	975	
Gln Phe Leu Asn Lys Cys Phe Arg Ile Gln Gly Gln Asp Pro Gln Asp			
980	985	990	
Arg Val Lys Trp Ser Glu Ala Gln Phe Ser Cys Glu Gln Glu Ala			
995	1000	1005	
Gln Leu Val Thr Ile Ala Asn Pro Leu Glu Gln Ala Phe Ile Thr Ala			
1010	1015	1020	
Ser Leu Pro Asn Val Thr Phe Asp Leu Trp Ile Gly Leu His Ala Ser			
1025	1030	1035	1040
Gln Arg Asp Phe Gln Trp Ile Glu Gln Glu Pro Leu Leu Tyr Thr Asn			
1045	1050	1055	
Trp Ala Pro Gly Glu Pro Ser Gly Pro Ser Pro Ala Pro Ser Gly Thr			
1060	1065	1070	
Lys Pro Thr Ser Cys Ala Val Ile Leu His Ser Pro Ser Ala His Phe			
1075	1080	1085	
Thr Gly Arg Trp Asp Asp Arg Ser Cys Thr Glu Glu Thr His Gly Phe			
1090	1095	1100	
Ile Cys Gln Lys Gly Thr Asp Pro Ser Leu Ser Pro Ser Pro Ala Ala			
1105	1110	1115	1120
Thr Pro Pro Ala Pro Gly Ala Glu Leu Ser Tyr Leu Asn His Thr Phe			
1125	1130	1135	
Arg Leu Leu Gln Lys Pro Leu Arg Trp Lys Asp Ala Leu Leu Cys			
1140	1145	1150	
Glu Ser Arg Asn Ala Ser Leu Ala His Val Pro Asp Pro Tyr Thr Gln			
1155	1160	1165	
Ala Phe Leu Thr Gln Ala Ala Arg Gly Leu Gln Thr Pro Leu Trp Ile			
1170	1175	1180	
Gly Leu Ala Ser Glu Glu Gly Ser Arg Arg Tyr Ser Trp Leu Ser Glu			
1185	1190	1195	1200
Glu Pro Leu Asn Tyr Val Ser Trp Gln Asp Glu Glu Pro Gln His Ser			
1205	1210	1215	
Gly Gly Cys Ala Tyr Val Asp Val Asp Gly Thr Trp Arg Thr Thr Ser			
1220	1225	1230	
Cys Asp Thr Lys Leu Gln Gly Ala Val Cys Gly Val Ser Arg Gly Pro			
1235	1240	1245	
Pro Pro Arg Arg Ile Asn Tyr Arg Gly Ser Cys Pro Gln Gly Leu Ala			
1250	1255	1260	
Asp Ser Ser Trp Ile Pro Phe Arg Glu His Cys Tyr Ser Phe His Met			
1265	1270	1275	1280
Glu Val Leu Leu Gly His Lys Glu Ala Leu Gln Arg Cys Gln Lys Ala			
1285	1290	1295	
Gly Gly Thr Val Leu Ser Ile Leu Asp Glu Met Glu Asn Val Phe Val			
1300	1305	1310	
Trp Glu His Leu Gln Thr Ala Glu Ala Gln Ser Arg Gly Ala Trp Leu			
1315	1320	1325	
Gly Met Asn Phe Asn Pro Lys Gly Gly Thr Leu Val Trp Gln Asp Asn			
1330	1335	1340	
Thr Ala Val Asn Tyr Ser Asn Trp Gly Pro Pro Gly Leu Gly Pro Ser			
1345	1350	1355	1360

Met Leu Ser His Asn Ser Cys Tyr Trp Ile Gln Ser Ser Ser Gly Leu
 1365 1370 1375
 Trp Arg Pro Gly Ala Cys Thr Asn Ile Thr Met Gly Val Val Cys Lys
 1380 , 1385 1390
 Leu Pro Arg Val Glu Glu Asn Ser Phe Leu Pro Ser Ala Ala Leu Pro
 1395 1400 1405
 Glu Ser Pro Val Ala Leu Val Val Val Leu Thr Ala Val Leu Leu Leu
 1410 1415 1420
 Leu Ala Leu Met Thr Ala Ala Leu Ile Leu Tyr Arg Arg Arg Gln Ser
 1425 1430 1435 1440
 Ala Glu Arg Gly Ser Phe Glu Gly Ala Arg Tyr Ser Arg Ser Ser His
 1445 1450 1455
 Ser Gly Pro Ala Glu Ala Thr Glu Lys Asn Ile Leu Val Ser Asp Met
 1460 1465 1470
 Glu Met Asn Glu Gln Gln Glu
 1475

<210> 306
 <211> 3987
 <212> DNA
 <213> Rat

<400> 306

agtatggaga	gaaggtcgtt	taaaaaggca	gatgtccctt	taaggttgc	tttgctgctg	60
cccgtggact	ttagcctaaa	cagggtcccg	cgaagttggc	tttatttgc	catgtctcg	120
acacagcctg	ggtagctgcc	agttagattt	caggggacgga	gcgcgc当地	ggggggggaaa	180
tgtgcata	catctggat	gtgagacgcg	tggagaggc	ttagcagcat	ttgaccaaaa	240
cacagggaaat	cactcctcca	cagtcctgg	gcgcagcagc	ggctggggcc	actgccccac	300
accctcgag	accacacgag	tgacccagag	cgcaagtgc	cagcgtcccg	gttctgcctg	360
ttcctgcccag	ctcctgccc	cgaacccggca	cgtagctgtt	tccagcagcc	gtccagcaa	420
tggtccccag	gcgtcctgcc	agcctagagg	tcactgtgc	ctgcataatgg	cttctcacgg	480
tcatcctagg	cttctgcgtc	tccttcaatg	ttgatgtgaa	aaactcaatg	agtttcaatg	540
gcccagtaga	ggacatgttt	ggatacactg	ttcaacaata	tgaaaacgaa	gaaggcaat	600
gggttcttat	tggttctcct	ttagttggcc	aacccaaagc	aagaactgg	gatgtctata	660
agtgtccgg	tgggagagag	agagcaatgc	cttgcgtgaa	gttggacttg	ccagttaa	720
catcgatccc	caatgtcaca	gaaataaaagg	aaaacatgac	atttggatca	acttttagca	780
ccaaacccgaa	tggaggattt	ctggcatgt	ggcccttgc	tgcctataga	tgtggacatt	840
tgcattatac	aactggaata	tgttctgtat	tcagtcctac	atttcaatgtt	gtgaactcct	900
ttgcccctgt	acaagaatgc	agcacccagc	tggacatagt	catcgctctg	gatggctcca	960
acagcatcta	cccctggaa	agtgtcatcg	cctttttaaa	cgaccttctt	aagaggatgg	1020
atattggccc	taagcagaca	caggcggga	ttgtacagta	tggagagaat	gtaacccatg	1080
agttcaacct	caataagtat	tcatccacag	aagaggctt	tgtcgcagca	aacaaaatag	1140
gccgacaggg	aggcctccaa	acgatgacag	cccttggaa	agacacagcc	aggaaaagagg	1200
cattcaactg	agctcggtt	gccaggaggg	gagttaaaaa	agtcatgg	atttgtaccc	1260
acggagaatc	gcatgacaac	tatcgctga	aacaggatc	ccaagactgc	gaggacgaaa	1320
acattcagcg	attttccata	gctatcctt	gccactataa	caggggaaac	ttaagcactg	1380
aaaaatttgc	ggagggaaata	aaatcgatcg	caagcgagcc	cacggaaaag	cacttctca	1440
atgtctcgga	tgagttggcc	ctggtcacta	ttgtttaa	tctggagaa	aggatattcg	1500
ctttggaa	gacagctgac	cagtcagcag	tttcatttgc	gatggaaatg	tctcagactg	1560
gcttcagtgc	tcactactcc	caggactggg	tcatgcttg	agcgggtgg	gcctatgact	1620
ggaacggaaac	tgtggtcatg	cagaaggcta	accagatgtt	catccctcat	aacaccac	1680
ttcaactg	gcccggcaag	atgaacgagc	ctctggctt	ttattttagt	tacacagtga	1740
actcgccac	catccctgga	gatgtctct	acatcgctgg	gcagcctcg	tacaatcata	1800
cggccaggt	cgtcatctac	aagatggagg	atgggaacat	caacattctg	cagacactcg	1860
gcggagagca	gattggtcc	tactttggta	gtgtcttaac	aacaatttgc	atcgacaaaag	1920
attcttatac	tgtatctgtt	ctcgctggg	ccccatgt	catggggaca	gagaagagg	1980
aacagggcaa	ggtgtacgt	tacgtgt	atcagacaag	gttgaat	caaatgagcc	2040
tggaaccaat	taggcagacc	tgctgctat	ccctgaagga	taatttgc	acgaaaagaaa	2100
acaagaatg	gcccgtccgg	gcccgttgc	gaacagcaat	tgctgctgt	aaagacctca	2160
acgtggatgg	atttaatgac	gtctgtattt	gagctccgc	ggaagatgc	cacgcaggag	2220
ctgttatcat	ttatcatggc	agtggcaaga	ccataaggga	ggcgtatgc	caacgcattc	2280

catcagggtgg ggatggcaag accctgaaat ttttcggcca gtcstatccac ggagagatgg	2340
atttaaatgg tgacggctcg actgacgtga ccattggagg ccttgggtgga gcagccctct	2400
tctggccag agatgtggct gtatgttcaaag tgaccatgaa ttttgaaccc aataaaagtga	2460
atattcaaaa gaaaaactgc cgtgtggagg gcaaaagaaaac agtgtgcata aatgtacaa	2520
tgtgtttca tgtgaaatta aagtctaaag aggactcaat ttacgaggct gatctgcagt	2580
accgtgtcac ccttgattca ctgaggcaga ttcacggag cttttttctt ggaactcagg	2640
aaaggaagat tcaaaagaaaat atcaccgttc gagaatcaga atgcatcagg cactccttct	2700
acatgttggaa caaacatgac tttcaggact ctgtgagagt gactctggat ttaatctca	2760
ctgatccaga aaatggcttct gtacttgatg acgctctgcc aaactcagtc cacgaacaca	2820
ttcccttgc caaagactgt gaaacaagg aaagatgcat ttcaagacctc actctgaatg	2880
tgtccaccac agaaaagagc ctgtgtatcg tcaagtccca gcatgacaag ttcaacgtta	2940
gcctcaccgt caaaaacaaa ggagacagtg cgtacaacac cagacagtg gtgcagcatt	3000
caccaaatct gatTTTcg ggaatttgagg agatccaaa agatagctgt gaatctaattc	3060
aaaatatcac ttgcagagtt ggatattcctt tcctaagagc aggagaaaacg gttaccttca	3120
aaataatatt ccagtttaac acatcccattc tctcgaaaaa tgcaatcatt cacttaagtg	3180
caacaagtga cagtgaggag cccctggaaat ctcttaatga taatgaagta aatatttcca	3240
tcccagtaaa atatgaagtt ggactgcagt ttacagttc tgcgagtgaa catcacattt	3300
cagtgcgtgc caatgagacg atccctgagt ttatataactc cactgaggac attggaaatg	3360
aaattaatgt cttctatacg attagaaaaga gggggcattt cccaatgcca gaacttcagc	3420
tgtcaatttc attccccat ttgacggcag atggttatcc tgtaactgtac ccaattggat	3480
ggtcatcttc agataatgtg aactgttagac cccggagcct tgaggacccc ttggcatca	3540
actctggaa gaaaatgaca atatcgaagt ctgaggtct caaaagagggc acaatccagg	3600
actgcagtag tacgtgtgga gttgccacca tcacgtgtag cctccttctt tccgacactga	3660
gtcaagtgaa tgtctcgctc ctctgtgga aaccgacttt cataagagca cattttcca	3720
gcttaaacct tactctaaga ggagaactta agagtggaaa ttcatcgctg actttaagta	3780
gcagcaaccg gaagcgagag ctggctattc agatatccaa agacgggctc ccaggcagag	3840
tgccgctgtg gtttatcctc ctgagcgcct tcgcggggct actgctgcta atgctccta	3900
tattggctct gtggaaagatt ggattttca aaaggccact gaagaagaaa atggagaaaat	3960
gaaaggtttc atagaaaaaa aaa	3987

<210> 307
 <211> 1180
 <212> PRT
 <213> Rat

<400> 307	
Met Val Pro Arg Arg Pro Ala Ser Leu Glu Val Thr Val Ala Cys Ile	
1 5 10 15	
Trp Leu Leu Thr Val Ile Leu Gly Phe Cys Val Ser Phe Asn Val Asp	
20 25 30	
Val Lys Asn Ser Met Ser Phe Ser Gly Pro Val Glu Asp Met Phe Gly	
35 40 45	
Tyr Thr Val Gln Gln Tyr Glu Asn Glu Glu Gly Lys Trp Val Leu Ile	
50 55 60	
Gly Ser Pro Leu Val Gly Gln Pro Lys Ala Arg Thr Gly Asp Val Tyr	
65 70 75 80	
Lys Cys Pro Val Gly Arg Glu Arg Ala Met Pro Cys Val Lys Leu Asp	
85 90 95	
Leu Pro Val Asn Thr Ser Ile Pro Asn Val Thr Glu Ile Lys Glu Asn	
100 105 110	
Met Thr Phe Gly Ser Thr Leu Val Thr Asn Pro Asn Gly Gly Phe Leu	
115 120 125	
Ala Cys Gly Pro Leu Tyr Ala Tyr Arg Cys Gly His Leu His Tyr Thr	
130 135 140	
Thr Gly Ile Cys Ser Asp Val Ser Pro Thr Phe Gln Val Val Asn Ser	
145 150 155 160	
Phe Ala Pro Val Gln Glu Cys Ser Thr Gln Leu Asp Ile Val Ile Val	
165 170 175	
Leu Asp Gly Ser Asn Ser Ile Tyr Pro Trp Glu Ser Val Ile Ala Phe	
180 185 190	
Leu Asn Asp Leu Leu Lys Arg Met Asp Ile Gly Pro Lys Gln Thr Gln	

195	200	205
Val Gly Ile Val Gln Tyr	Gly Glu Asn Val Thr His	Glu Phe Asn Leu
210	215	220
Asn Lys Tyr Ser Ser Thr	Glu Glu Val Leu Val Ala Ala Asn Lys Ile	
225	230	235
Gly Arg Gln Gly Gly	Leu Gln Thr Met Thr Ala Leu Gly Ile Asp Thr	240
	245	250
Ala Arg Lys Glu Ala Phe Thr	Glu Ala Arg Gly Ala Arg Arg Gly Val	255
	260	265
Lys Lys Val Met Val Ile Val Thr Asp Gly Glu Ser His Asp Asn Tyr		270
	275	280
Arg Leu Lys Gln Val Ile Gln Asp Cys Glu Asp Glu Asn Ile Gln Arg		285
	290	295
Phe Ser Ile Ala Ile Leu Gly His Tyr Asn Arg Gly Asn Leu Ser Thr		300
	305	310
Glu Lys Phe Val Glu Glu Ile Lys Ser Ile Ala Ser Glu Pro Thr Glu		320
	325	330
Lys His Phe Phe Asn Val Ser Asp Glu Leu Ala Leu Val Thr Ile Val		335
	340	345
Lys Ala Leu Gly Glu Arg Ile Phe Ala Leu Glu Ala Thr Ala Asp Gln		350
	355	360
Ser Ala Ala Ser Phe Glu Met Glu Met Ser Gln Thr Gly Phe Ser Ala		365
	370	375
His Tyr Ser Gln Asp Trp Val Met Leu Gly Ala Val Gly Ala Tyr Asp		380
	385	390
Trp Asn Gly Thr Val Val Met Gln Lys Ala Asn Gln Met Val Ile Pro		395
	405	410
His Asn Thr Thr Phe Gln Thr Glu Pro Ala Lys Met Asn Glu Pro Leu		415
	420	425
Ala Ser Tyr Leu Gly Tyr Thr Val Asn Ser Ala Thr Ile Pro Gly Asp		430
	435	440
Val Leu Tyr Ile Ala Gly Gln Pro Arg Tyr Asn His Thr Gly Gln Val		445
	450	455
Val Ile Tyr Lys Met Glu Asp Gly Asn Ile Asn Ile Leu Gln Thr Leu		460
	465	470
Gly Gly Glu Gln Ile Gly Ser Tyr Phe Gly Ser Val Leu Thr Thr Ile		480
	485	490
Asp Ile Asp Lys Asp Ser Tyr Thr Asp Leu Leu Leu Val Gly Ala Pro		495
	500	505
Met Tyr Met Gly Thr Glu Lys Glu Glu Gln Gly Lys Val Tyr Val Tyr		510
	515	520
Ala Val Asn Gln Thr Arg Phe Glu Tyr Gln Met Ser Leu Glu Pro Ile		525
	530	535
Arg Gln Thr Cys Cys Ser Ser Leu Lys Asp Asn Ser Cys Thr Lys Glu		540
	545	550
Asn Lys Asn Glu Pro Cys Gly Ala Arg Phe Gly Thr Ala Ile Ala Ala		555
	565	570
Val Lys Asp Leu Asn Val Asp Gly Phe Asn Asp Val Val Ile Gly Ala		575
	580	585
Pro Leu Glu Asp Asp His Ala Gly Ala Val Tyr Ile Tyr His Gly Ser		590
	595	600
Gly Lys Thr Ile Arg Glu Ala Tyr Ala Gln Arg Ile Pro Ser Gly Gly		605
	610	615
Asp Gly Lys Thr Leu Lys Phe Phe Gly Gln Ser Ile His Gly Glu Met		620
	625	630
Asp Leu Asn Gly Asp Gly Leu Thr Asp Val Thr Ile Gly Gly Leu Gly		640
	645	650
Gly Ala Ala Leu Phe Trp Ala Arg Asp Val Ala Val Val Lys Val Thr		655
	660	665
Met Asn Phe Glu Pro Asn Lys Val Asn Ile Gln Lys Lys Asn Cys Arg		670
	675	680
		685

Val Glu Gly Lys Glu Thr Val Cys Ile Asn Ala Thr Met Cys Phe His
 690 695 700
 Val Lys Leu Lys Ser Lys Glu Asp Ser Ile Tyr Glu Ala Asp Leu Gln
 705 710 715 720
 Tyr Arg Val Thr Leu Asp Ser Leu Arg Gln Ile Ser Arg Ser Phe Phe
 725 730 735
 Ser Gly Thr Gln Glu Arg Lys Ile Gln Arg Asn Ile Thr Val Arg Glu
 740 745 750
 Ser Glu Cys Ile Arg His Ser Phe Tyr Met Leu Asp Lys His Asp Phe
 755 760 765
 Gln Asp Ser Val Arg Val Thr Leu Asp Phe Asn Leu Thr Asp Pro Glu
 770 775 780
 Asn Gly Pro Val Leu Asp Asp Ala Leu Pro Asn Ser Val His Glu His
 785 790 795 800
 Ile Pro Phe Ala Lys Asp Cys Gly Asn Lys Glu Arg Cys Ile Ser Asp
 805 810 815
 Leu Thr Leu Asn Val Ser Thr Thr Glu Lys Ser Leu Leu Ile Val Lys
 820 825 830
 Ser Gln His Asp Lys Phe Asn Val Ser Leu Thr Val Lys Asn Lys Gly
 835 840 845
 Asp Ser Ala Tyr Asn Thr Arg Thr Val Val Gln His Ser Pro Asn Leu
 850 855 860
 Ile Phe Ser Gly Ile Glu Glu Ile Gln Lys Asp Ser Cys Glu Ser Asn
 865 870 875 880
 Gln Asn Ile Thr Cys Arg Val Gly Tyr Pro Phe Leu Arg Ala Gly Glu
 885 890 895
 Thr Val Thr Phe Lys Ile Ile Phe Gln Phe Asn Thr Ser His Leu Ser
 900 905 910
 Glu Asn Ala Ile Ile His Leu Ser Ala Thr Ser Asp Ser Glu Glu Pro
 915 920 925
 Leu Glu Ser Leu Asn Asp Asn Glu Val Asn Ile Ser Ile Pro Val Lys
 930 935 940
 Tyr Glu Val Gly Leu Gln Phe Tyr Ser Ser Ala Ser Glu His His Ile
 945 950 955 960
 Ser Val Ala Ala Asn Glu Thr Ile Pro Glu Phe Ile Asn Ser Thr Glu
 965 970 975
 Asp Ile Gly Asn Glu Ile Asn Val Phe Tyr Thr Ile Arg Lys Arg Gly
 980 985 990
 His Phe Pro Met Pro Glu Leu Gln Leu Ser Ile Ser Phe Pro Asn Leu
 995 1000 1005
 Thr Ala Asp Gly Tyr Pro Val Leu Tyr Pro Ile Gly Trp Ser Ser Ser
 1010 1015 1020
 Asp Asn Val Asn Cys Arg Pro Arg Ser Leu Glu Asp Pro Phe Gly Ile
 1025 1030 1035 1040
 Asn Ser Gly Lys Lys Met Thr Ile Ser Lys Ser Glu Val Leu Lys Arg
 1045 1050 1055
 Gly Thr Ile Gln Asp Cys Ser Ser Thr Cys Gly Val Ala Thr Ile Thr
 1060 1065 1070
 Cys Ser Leu Leu Pro Ser Asp Leu Ser Gln Val Asn Val Ser Leu Leu
 1075 1080 1085
 Leu Trp Lys Pro Thr Phe Ile Arg Ala His Phe Ser Ser Leu Asn Leu
 1090 1095 1100
 Thr Leu Arg Gly Glu Leu Lys Ser Glu Asn Ser Ser Leu Thr Leu Ser
 1105 1110 1115 1120
 Ser Ser Asn Arg Lys Arg Glu Leu Ala Ile Gln Ile Ser Lys Asp Gly
 1125 1130 1135
 Leu Pro Gly Arg Val Pro Leu Trp Val Ile Leu Leu Ser Ala Phe Ala
 1140 1145 1150
 Gly Leu Leu Leu Leu Met Leu Leu Ile Leu Ala Leu Trp Lys Ile Gly
 1155 1160 1165
 Phe Phe Lys Arg Pro Leu Lys Lys Lys Met Glu Lys

1170	1175	1180	
<210> 308 <211> 10 <212> DNA <213> Homo sapiens			
<400> 308 gatctccgtg			
<210> 309 <211> 17 <212> DNA <213> Homo sapiens			
<400> 309 ggggctgccc agctggaa			
<210> 310 <211> 17 <212> DNA <213> Homo sapiens			
<400> 310 catttttatac tactgtc			
<210> 311 <211> 17 <212> DNA <213> Homo sapiens			
<400> 311 ctttctttga gttttaa			
<210> 312 <211> 17 <212> DNA <213> Homo sapiens			
<400> 312 tattaactct ctttgga			
<210> 313 <211> 17 <212> DNA <213> Homo sapiens			
<400> 313 tattaactct ctttggg			
<210> 314 <211> 17 <212> DNA <213> Homo sapiens			
<400> 314 caggagaccc caggccc			
<210> 315 <211> 17 <212> DNA			

<213> Homo sapiens	
<400> 315	
ggaaatgtca gcaagta	17
<210> 316	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 316	
cctggttcag tctccac	17
<210> 317	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 317	
tttttaagaa ctcgggt	17
<210> 318	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 318	
tttgggtttc caaaaaaa	17
<210> 319	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 319	
tttgggtttc caaaaaga	17
<210> 320	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 320	
tttgggtttc caaaaagc	17
<210> 321	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 321	
attttgtatg attttta	17
<210> 322	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 322	
acttttagatg ggaagcc	17

<210> 323
<211> 17
<212> DNA
<213> Homo sapiens

<400> 323
gagtgagacc caggaga 17

<210> 324
<211> 17
<212> DNA
<213> Homo sapiens

<400> 324
gagtgagacc caggagc 17

<210> 325
<211> 17
<212> DNA
<213> Homo sapiens

<400> 325
gtacacacac ccccaacc 17

<210> 326
<211> 17
<212> DNA
<213> Homo sapiens

<400> 326
ccacagggga attcggg 17

<210> 327
<211> 17
<212> DNA
<213> Homo sapiens

<400> 327
ccacagggga ttctcct 17

<210> 328
<211> 17
<212> DNA
<213> Homo sapiens

<400> 328
ttaaaagtca ctgtgca 17

<210> 329
<211> 17
<212> DNA
<213> Homo sapiens

<400> 329
acagactgtt agccaag 17

<210> 330
<211> 17
<212> DNA
<213> Homo sapiens

<p><400> 330 ctataggaga ctgggca</p> <p><210> 331 <211> 17 <212> DNA <213> Homo sapiens</p> <p><400> 331 taccacacctcc ctttcct</p> <p><210> 332 <211> 17 <212> DNA <213> Homo sapiens</p> <p><400> 332 taccacacctcc gttgtat</p> <p><210> 333 <211> 17 <212> DNA <213> Homo sapiens</p> <p><400> 333 gccctttctc cgtagtt</p> <p><210> 334 <211> 17 <212> DNA <213> Homo sapiens</p> <p><400> 334 gccctttctc ttagtt</p> <p><210> 335 <211> 17 <212> DNA <213> Homo sapiens</p> <p><400> 335 ttaaatagca ccttag</p> <p><210> 336 <211> 17 <212> DNA <213> Homo sapiens</p> <p><400> 336 agacatactg acagaat</p> <p><210> 337 <211> 17 <212> DNA <213> Homo sapiens</p> <p><400> 337 tccccccagga gccacca</p> <p><210> 338 <211> 17</p>	<p>17</p>
---	---

<212> DNA
<213> Homo sapiens

<400> 338
tcccccagga gccaccg 17

<210> 339
<211> 17
<212> DNA
<213> Homo sapiens

<400> 339
tacaaatcgt tgtcaaa 17

<210> 340
<211> 17
<212> DNA
<213> Homo sapiens

<400> 340
cattatccaa aaacaat 17

<210> 341
<211> 17
<212> DNA
<213> Homo sapiens

<400> 341
agaaaaccacg gaaatgg 17

<210> 342
<211> 17
<212> DNA
<213> Homo sapiens

<400> 342
acccaaaacca aataggg 17

<210> 343
<211> 17
<212> DNA
<213> Homo sapiens

<400> 343
tgaaaataaac ccagttt 17

<210> 344
<211> 17
<212> DNA
<213> Homo sapiens

<400> 344
tgaaaataaac tcagttat 17

<210> 345
<211> 17
<212> DNA
<213> Homo sapiens

<400> 345
gtggagacgg actctgt 17

<210> 346	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 346	
tttgtgttgtt atattta	17
<210> 347	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 347	
ttatgtttaa tagttga	17
<210> 348	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 348	
tggaaatgac ccaaaaaa	17
<210> 349	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 349	
tggaaatgac ccaacgc	17
<210> 350	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 350	
tgccacacag tgacttg	17
<210> 351	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 351	
gatgaggaga ctggcaa	17
<210> 352	
<211> 17	
<212> DNA	
<213> Homo sapiens	
<400> 352	
atcaaagggtt tgattta	17
<210> 353	
<211> 17	
<212> DNA	
<213> Homo sapiens	

<400> 353
agtacatag tacataa

17

<210> 354
<211> 17
<212> DNA
<213> Homo sapiens

<400> 354
ttcggttggc caaagat

17

<210> 355
<211> 17
<212> DNA
<213> Homo sapiens

<400> 355
ccccacacgg gcaagca

17

<210> 356
<211> 17
<212> DNA
<213> Homo sapiens

<400> 356
ggcttgccctt tttgtat

17

<210> 357
<211> 17
<212> DNA
<213> Homo sapiens

<400> 357
atcccttccc gccacac

17

<210> 358
<211> 69
<212> PRT
<213> Homo sapiens

<400> 358
Ser Leu Gly Asp Arg Val Arg Leu Ser Pro Lys Lys Arg Lys Lys Val
1 5 10 15
Ile Gln Cys Ser Phe Tyr Arg Asp Lys Arg Ser Asn Ser Ser Gly Trp
20 25 30
Val Trp Trp Leu Met Pro Val Ile Pro Thr Leu Trp Glu Ala Lys Ala
35 40 45
Gly Gly Ser His Glu Val Arg Ser Ser Arg Pro Ala Trp Pro Thr Trp
50 55 60
Gln Asn Cys Leu Tyr
65

PEN's
CEN plus
with tagline # 25 (PEN3) + H 47 (PEN6) are G1, rascf are G3

Table 1. Previously characterized and novel Pan Endothelial Markers. The most abundant tags derived by summing the tags from Normal EC (N-EC's) and Tumor EC (T-EC's) SAGE libraries are listed in descending order. N-EC and T-EC SAGE libraries contained 88,684 and 88,688 SAGE tags respectively. For comparison, the corresponding number of SAGE tags found in cultured human umbilical vein endothelial cells (HUVEC), human dermal microvascular endothelial cells (HMVEC), and non-endothelial cell lines (Cell Lines) are shown. The HUVEC SAGE library contained 280,000 tags and the HMVEC library 111,000 tags. Non-endothelial cell lines consisted of 1.8x10⁶ tags derived from a total of 14 different cancer cell lines including colon, breast, lung, and pancreatic cancers, as well as one non-transformed keratinocyte cell line, two kidney epithelial cell lines, and normal monocytes. Tag numbers for each group were normalized to 100,000 transcripts. A 'Description' of the gene product corresponding to each tag is given, followed by alternative names in parentheses. The sequence CATG precedes all tags and the 15th base (11th shown) was determined as previously described by Veilescu et al. (Nat Genet 1999 Dec;23(4):387-8).

no.	Tag Sequence	N-EC's	T-EC's	HUVEC	HMVEC Cell Lines	Description
1	CATATCATTA	247	501	130	87	2 angiotensin (ANG), IGFBP-7, IGFBP-7P1, Mac25, TAF1
2	TGCACTTCAG	328	141	0	0	0 hevin
3	TTTGCACCTT	165	84	191	115	4 connective tissue growth factor (CTGF, IGFBP-7P2)
4	CCCTGTCCG	131	104	1	1	0 ESTs
5	TTGCTGACTT	73	131	2	14	1 collagen, type VI, alpha 1
6	ACCATTGGATT	102	67	0	0	2 Interferon induced transmembrane protein 1 (IF-27, Leu 13)
7	ACACCTCTTC	104	44	60	62	2 guanine nucleotide binding protein 11
8	TTCTGCTCTG	71	67	118	72	0 von Willebrand factor
9	TCCCTGGCGA	68	68	3	13	3 cysteine-rich protein 2 (CRP-2, ESP-1, SmILIM)
10	TAATCCTCAAG	28	108	34	18	1 collagen, type XVIII, alpha 1
11	ATGTCCTTTCT	68	65	17	17	3 insulin-like growth factor-binding protein 4
12	GGGATAAAAGC	40	67	30	14	2 CD148 (S-Endo 1, P1H12, Muc18, MCAM, Mel-CAM)
13	TTAGTGTGCTA	38	69	9	13	0 SPARC (osteonectin, BM-40)
14	TTCTTCCAAAT	20	86	16	84	2 collagen, type IV, alpha 2
15	GTGCTAACGCC	24	74	0	10	2 collagen, type VI, alpha 2
16	GTTTAGGGATA	35	58	11	11	1 matrix Gla protein (MGP)
17	CCCTTTCACAC	52	33	0	0	0 ESTs, Weakly similar to HPBRI-7 protein
18	TGTTCTGGAGA	58	27	18	56	2 gap junction protein, alpha 1, 43kD (connexin 43)
19	AAGATCAAAGAT	34	50	2	4	1 actin, alpha 1, skeletal muscle / actin, alpha 2; smooth muscle, aorta
20	TCTCTGAGCAT	32	48	0	0	0 aggrecanase 1 (metalloproteinase with thrombospondin type 1 motifs, 4)
21	CAGGTTTCATA	22	56	0	0	0 small inducible cytokine subfamily B (Cys-X-Cys), member 14 (BRAFQ)
22	GCACAAGTTCT	43	26	6	22	0 calcitonin receptor-like receptor activity modifying protein 2
23	AGCTTGTGGCC	45	23	0	0	0 calcitonin receptor-like receptor activity modifying protein 3
24	CTTCTGGATAA	13	54	12	0	0 cell division cycle 42 (GTP-binding protein, 25kD)
25	CAACATAATA	42	25	13	6	0 ESTs

G1

TEM's complete web table

Table 2. SAGE tags elevated in tumor endothelium. The top 46 tags with the highest tumor EC (T-EC's) to normal EC (N-EC's) tag ratios are listed in descending order. To calculate tag ratios, a value of 0.5 was assigned in cases where zero tags were observed. The SAGE libraries are the same as those listed in Table 1. Tag numbers for each group were normalized to 100,000 transcripts. A 'Description' of the gene product corresponding to each tag is given, followed by alternative names in parenthesis. †; multiple tags for this gene are due to alternative polyadenylation sites.

no.	Tag Sequence	N-EC's	T-EC's	HUVEC	HMVEC Cell Lines	Description
1	GGGGCTGCCCA	0	28	0	2	ESTs, similarity to thrombomodulin <i>TEM1</i>
2	GATCTCCGTT	0	25	0	0	ESTs, similarity to rat Rhes ras-related protein <i>TEM2</i>
3	CATTTTTATCT	0	23	0	0	ESTs
4	CTTCTTTGAG	0	22	6	20	ESTs, similarity to JNK interacting protein-3 ^a (REIC)
5	TATTAACCTCT	0	21	1	3	ESTs, similarity to MMP-11 (stromelysin 3)
6	CAGGAGCCCC	0	16	2	0	MMP-2 (gelatinase A, 72kD type IV collagenase)
7	GGAAATGTCAA	0	31	53	22	ESTs
8	CCTGGTTCACT	0	15	0	0	ESTs
9	TTTTAAGAAC	0	14	1	4	collagen, type I, alpha 2, transcript A [†]
10	TTTGGGTTTCC	0	5	139	16	ESTs, similarity with sea squirt nitrogen <i>TEM3</i>
11	ATTTTGTATGA	0	13	0	4	ESTs, similarity with homeobox protein DLX-3 <i>TEM4</i>
12	ACTTTAGATGG	1	23	0	8	ESTs, similarity with collagen, type VI, alpha 3
13	GAGTGAGACCC	3	63	0	15	ESTs, Thy-1 cell surface antigen
14	GTACACACACC	0	10	0	0	ESTs / crystallin S
15	CCACAGGGGAT	2	38	0	2	ESTs, collagen, type III, alpha 1
16	TTAAAAGTCAC	1	19	1	1	ESTs, similarity with sea squirt nitrogen <i>TEM5</i>
17	ACAGACTGTTA	4	74	0	0	ESTs, similarity with homeobox protein DLX-3 <i>TEM4</i>
18	CCACTGCAAACC	1	18	0	1	ESTs, similarity with collagen, type I, alpha 2, transcript B [†]
19	CTATAGGAGAC	1	18	0	0	ESTs / pregnancy specific beta-1-glycoprotein 1
20	GTTCACAGAA	0	9	9	1	endo180 lectin
21	TACCACTCTCC	0	9	4	1	ESTs, Okfzp434G162 protein
22	GGCCCTTCTCT	1	17	3	2	bone morphogenic protein 1 (metalloprotease)
23	TTAAATAGCAC	2	33	0	0	ESTs, Okfzp434G162 protein
24	AGACATACTGA	1	16	1	0	ESTs, KIAA0672 gene product
25	TCCCCCAGGGAG	1	16	0	0	ESTs, KIAA0672 gene product
26	AGCCCCAAAGTG	0	8	8	ESTs, KIAA0672 gene product	
27	ACTACCATAAC	1	16	0	0	ESTs, KIAA0672 gene product
all	TACAATCGTT	0	8	8	ESTs, KIAA0672 gene product	

G3

				ESTs
29	TGGGTGAAAA	0	0	0
30	CATTATCCAA	0	0	0
31	AGAAACCACGG	0	0	0
32	ACCAAAACAC	0	0	0
33	TGAAATAAAC	0	0	0
34	TTTGGTTTCC	8	2	7
35	GTGGAGACGGG	6	0	3
36	TTTGTGTGTA	6	1	0
37	TTATGTTAAT	6	2	0
38	TGAAATGACC	15	14	0
39	TGAAATGACC	1	39	0
40	TGCCACACAGT	15	0	0
41	GATGAGGAGAC	3	0	0
42	ATCAAAGGTTT	3	0	0
43	AGTCACATAGT	2	23	0
44	TTCGGTTGGTC	1	11	0
45	CCCCACACGGG	4	45	0
46	GGCTTGCTTT	2	21	0
	ATCCCTTCCC	1	10	0
				peanut-like protein 1

7

63

Table 3. Detection of transcripts in various tumor types by RT-PCR and *In situ* hybridization (ISH). The "+" sign indicates the presence of a robust RT-PCR product or strong positive staining of vessels by *In situ* hybridization. The ":" sign indicates an undetectable signal by *In situ* hybridization or an absent or barely detectable transcript by RT-PCR. The "+/-" sign indicates a very weak signal in a limited number vessels by *In situ* hybridization.

	TEM1	TEM3	TEM4	TEM5	TEM7	TEM8	TEM9	WIF	Hævin
RT-PCR	-	-	-	-	-	-	-	+	ND
	Colon Nor.	+	+	+	+	+	+	+	ND
Colon Tum.	-	-	-	-	-	-	-	+	+
	Colon Tum.	+	+	+	+	+	+	+	+
Liver Met.	+	+/-	+	+	+	+	+	+/-	ND
	Lung Tum.	+	ND	+	+	+	+	+	+
Brain Tum.	+	ND	ND	ND	+	ND	ND	+	+*
	Corpus Lut.	+	+	+	+	-	+	+	+
Wound	+	ND	+	ND	+/-	+/-	ND	+	+

* hævin was localized to both endothelial cells and malignant cells in brain tissue.
ND: not determined.

www.sagenet.org/langlois/table3.htm (to be posted upon publication)

4

Table 9. SAGE tags elevated in normal endothelium. The top 46 tags with the highest normal EC (N-EC's) to tumor EC (T-EC's) tag ratios are listed in descending order. To calculate tag ratios, a value of 0.5 was assigned in cases where zero tags were observed. The SAGE libraries are the same as those listed in Table 1. Tag numbers for each group were normalized to 100,000 transcripts. A 'Description' of the gene product corresponding to each tag is given, followed by alternative names in parenthesis.

no.	Tag Sequence	N-EC's	T-EC's	HUVEC	HMVEC Cell Lines	Description
1	TCTCACGGTCT	26	0	0	0	mucosal vascular addressin cell adhesion molecule 1
2	CTAGCGTTTT	19	0	4	14	serum deprivation response (phosphatidylserine-binding protein)
3	GTGGCTGACG	18	0	1	0	ESTs / intercellular adhesion molecule 4
4	CTCTAAAAAA	34	1	1	0	small inducible cytokine subfamily A (Cys-Cys), member 14
5	TGGGAAGAGG	16	0	3	4	ESTs
6	GTTTAAGGAT	16	0	0	0	ESTs
7	CTTGTGTTTG	15	0	58	32	endothelin 1 / ribosomal protein L27
8	ATTGCCAATC	14	0	0	4	TU3A protein
9	TGTTGAAAAA	21	1	0	0	selectin E (endothelial adhesion molecule 1)
10	ACAAAAAGGC	21	1	0	6	TU3A protein
11	AAGATGCACAC	21	1	1	1	phosphodiesterase 1 - nucleotide pyrophosphatase 2 (autotaxin)
12	GTAGAGGGAA	10	0	0	0	platelet/endothelial cell adhesion molecule (CD31 antigen)
13	TTGTTCAAGG	10	0	0	0	ESTs
14	CTCTTCAAAAAA	19	1	1	0	ESTs / small inducible cytokine subfamily A, member 14
15	TATTAATAATA	18	1	6	1	transforming growth factor, beta receptor II (70-80kD)
16	GAATTCCACCA	9	0	0	14	ESTs
17	AGGGAGAACT	9	0	0	0	small inducible cytokine subfamily A, member 14
18	ATATCTGAC	9	0	2	2	active BCR-related gene
19	TCAGTGACCAG	17	1	4	7	protein kinase C eta
20	GCAGAGTCCC	32	2	1	5	ESTs
21	TAAATACCTTG	8	0	2	0	ESTs (2 unigene clusters)
22	GTCACTAATT	8	0	1	0	ESTs
23	ATAACCTGCA	8	0	0	0	signalling lymphocytic activation molecule
24	TGCATCTGTGC	46	3	1	1	ESTs / glycogenin 2
25	TAAAGGCACA	15	1	4	3	LIM binding domain 2
26	GACGGGGGCT	73	5	11	7	claudin 5
27	ACTCCGGGT	14	1	0	8	ESTs

					GTP-binding protein
28	CTTCTCACCT	27	2	3	0
29	TCGTGCTTG	13	1	0	ESTs
30	GAGCAGTGCT	13	1	4	feline sarcoma viral (v-fes) - Fujinami avian sarcoma viral (v-fps) homolog
31	CTCTAAAAAA	10	1	0	ESTs
32	GAAACCCGGT	10	1	0	phospholipase C, beta 4
33	AACACAGTGC	10	1	7	ESTs
				15	1

This Page Blank (uspto)