GABARITO

- 1. Não é permitido o uso de celulares, calculadoras ou dispositivos eletrônicos!
- 2. A avaliação é individual e não é permitida consulta!
- 3. Respeite as margens do papel!
- 4. Não utilize caneta vermelha ou corretivo!
- 5. Todas as respostas devem ser devidamente justificadas!
- 6. Não pule passagens e use a notação matemática correta!
- 7. O resultado final correto não significa nada se o procedimento estiver errado!

O exercício correspondente a prova que será substituída vale 50 pontos

- **1** [25] Considerando a função $f(x,y) = \sqrt{9-x^2-y^2}-3$
 - a) Determine e esboce o domínio de f
 - b) Determine as curvas de nível de f e esboce três delas
 - c) Calcule o limite $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2}$ ou mostre que ele não existe

a) O domínio de f consiste dos pontos onde é possível avaliar a raiz quadrada, isto é, os pontos que satisfazem $9 - x^2 - y^2 \ge 0$, ou seja,

$$9 - x^{2} - y^{2} \ge 0$$
$$-x^{2} - y^{2} \ge -9$$
$$x^{2} + y^{2} \le 9 = 3^{2}$$

Portanto,

$$D_f = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 9\},$$

que corresponde a um disco de raio 3, centrado na origem.

b) As curvas de nível de f são compostas pelos pontos onde f(x,y) = c para alguma constante c na imagem de f.

Para determinar a imagem de f observamos que $x^2 + y^2$ só pode assumir valores no intervalo [0,9]. Portanto, $9 - x^2 - y^2$ está limitado ao mesmo intervalo. Consequentemente $\sqrt{9 - x^2 - y^2}$ está em [0,3]. Concluímos que os valores de f estão em [-3,0], isto é, $\operatorname{Im}(f) = [-3,0]$

Para qualquer $c \in \text{Im}(f) = [-3, 0]$, temos a curva de nível

$$f(x,y) = c$$

$$\sqrt{9 - x^2 - y^2} - 3 = c$$

$$\sqrt{9 - x^2 - y^2} = c + 3$$

$$9 - x^2 - y^2 = (c+3)^2$$

$$-x^2 - y^2 = (c+3)^2 - 9$$

$$x^2 + y^2 = 9 - (c+3)^2$$

Que corresponde a uma circunferência centrada na origem de raio

$$r = \sqrt{9 - (c+3)^2}$$

Escolhendo os valores c=-3, c=-2 e c=-1, temos as curvas de nível

$$\gamma_1$$
: $x^2 + y^2 = 9 - (-3 + 3)^2 = 9 - 0 = 9$
 γ_2 : $x^2 + y^2 = 9 - (-2 + 3)^2 = 9 - 1 = 8$
 γ_3 : $x^2 + y^2 = 9 - (-1 + 3)^2 = 9 - 4 = 5$

c) Calculando o limite

$$L = \lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2 + y^2}$$

$$= \lim_{(x,y)\to(0,0)} \frac{\sqrt{9 - x^2 - y^2} - 3}{x^2 + y^2}$$

$$= \lim_{(x,y)\to(0,0)} \frac{\sqrt{9 - x^2 - y^2} - 3}{x^2 + y^2} \times \frac{\sqrt{9 - x^2 - y^2} + 3}{\sqrt{9 - x^2 - y^2} + 3}$$

$$= \lim_{(x,y)\to(0,0)} \frac{\left(\sqrt{9 - x^2 - y^2}\right)^2 - 3^2}{\left(x^2 + y^2\right)\left(\sqrt{9 - x^2 - y^2} + 3\right)}$$

$$= \lim_{(x,y)\to(0,0)} \frac{9 - x^2 - y^2 - 9}{\left(x^2 + y^2\right)\left(\sqrt{9 - x^2 - y^2} + 3\right)}$$

$$= \lim_{(x,y)\to(0,0)} \frac{9 - x^2 - y^2 - 9}{\left(x^2 + y^2\right)\left(\sqrt{9 - x^2 - y^2} + 3\right)}$$

$$= \lim_{(x,y)\to(0,0)} \frac{-1}{\sqrt{9 - x^2 - y^2} + 3}$$

$$= \frac{-1}{\sqrt{9 - 0^2 - 0^2} + 3}$$

$$= \frac{-1}{3 + 3} = \frac{-1}{6}$$

- **2** [25] Considerando que a equação $xe^y + ye^z + 2\ln(x) 2 3\ln(2) = 0$ define z como função de x e y.
 - a) Calcule as derivadas $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$
 - b) Encontre os valores de $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ em $(1, \ln(2), \ln(3))$
 - c) Construa a aproximação linear da função z(x,y) no ponto $(1,\ln(2))$
 - a) Considerando z = z(x, y) e derivando por x os dois lados da equação temos

$$xe^{y} + ye^{z(x,y)} + 2\ln(x) = 2 + 3\ln(2)$$

$$\frac{\partial}{\partial x} \left[xe^{y} + ye^{z(x,y)} + 2\ln(x) \right] = \frac{\partial}{\partial x} \left[2 + 3\ln(2) \right]$$

$$\frac{\partial}{\partial x} (xe^{y}) + \frac{\partial}{\partial x} \left(ye^{z(x,y)} \right) + \frac{\partial}{\partial x} (2\ln(x)) = 0$$

$$e^{y} + ye^{z(x,y)} \frac{\partial z}{\partial x} + \frac{2}{x} = 0$$

$$ye^{z(x,y)} \frac{\partial z}{\partial x} = -e^{y} - \frac{2}{x}$$

$$\frac{\partial z}{\partial x} = \frac{-1}{ye^{z(x,y)}} \left(e^{y} + \frac{2}{x} \right)$$

Derivando por y os dois lados da equação temos

$$xe^{y} + ye^{z(x,y)} + 2\ln(x) = 2 + 3\ln(2)$$

$$\frac{\partial}{\partial y} \left[xe^{y} + ye^{z(x,y)} + 2\ln(x) \right] = \frac{\partial}{\partial y} \left[2 + 3\ln(2) \right]$$

$$\frac{\partial}{\partial y} (xe^{y}) + \frac{\partial}{\partial y} \left(ye^{z(x,y)} \right) + \frac{\partial}{\partial y} \left(2\ln(x) \right) = 0$$

$$x\frac{\partial e^{y}}{\partial y} + \frac{\partial y}{\partial y}e^{z(x,y)} + y\frac{\partial}{\partial y}e^{z(x,y)} + 0 = 0$$

$$xe^{y} + e^{z(x,y)} + ye^{z(x,y)}\frac{\partial z}{\partial y} = 0$$

$$ye^{z(x,y)}\frac{\partial z}{\partial y} = -xe^{y} - e^{z(x,y)}$$

$$\frac{\partial z}{\partial y} = -\frac{xe^{y} + e^{z(x,y)}}{ye^{z(x,y)}}$$

b) Avaliando as derivadas no ponto $(1, \ln(2), \ln(3))$

$$\begin{split} \frac{\partial z}{\partial x}(1,\ln(2)) &= \left(\frac{-1}{ye^z}\left(e^y + \frac{2}{x}\right)\right) \bigg|_{(1,\ln(2),\ln(3))} \\ &= \frac{-1}{\ln(2)e^{\ln(3)}}\left(e^{\ln(2)} + \frac{2}{1}\right) \\ &= \frac{-1}{3\ln(2)}\left(2+2\right) \\ &= \frac{-4}{3\ln(2)} \\ \frac{\partial z}{\partial y}(1,\ln(2)) &= \left(-\frac{xe^y + e^{z(x,y)}}{ye^{z(x,y)}}\right) \bigg|_{(1,\ln(2),\ln(3))} \\ &= -\frac{1e^{\ln(2)} + e^{\ln(3)}}{\ln(2)e^{\ln(3)}} \\ &= -\frac{2+3}{3\ln(2)} \\ &= \frac{-5}{3\ln(2)} \end{split}$$

c) A aproximação linear da função z(x,y)no ponto $(x_0,y_0)=(1,\ln(2))$ é

$$L(x,y) = z(x_0, y_0) + (x - x_0) \frac{\partial z}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial z}{\partial y}(x_0, y_0)$$

$$= z(1, \ln(2)) + (x - 1) \frac{\partial z}{\partial x}(1, \ln(2)) + (y - \ln(2)) \frac{\partial z}{\partial y}(1, \ln(2))$$

$$= \ln(3) + (x - 1) \frac{-4}{3\ln(2)} + (y - \ln(2)) \frac{-5}{3\ln(2)}$$

$$= \ln(3) - \frac{4}{3\ln(2)}(x - 1) - \frac{5}{3\ln(2)}(y - \ln(2))$$

Não faz parte da resolução solicitada na prova, mas com o uso de uma calculadora podemos avaliar essa expressão, obtendo uma aproximação para z(x,y) quando $(x,y)\approx (1,0.69)$

$$z(x,y) \approx L(x,y)$$

$$= \ln(3) + \frac{4}{3\ln(2)} + \frac{5}{3} - \frac{4}{3\ln(2)}x - \frac{5}{3\ln(2)}y$$

$$\approx 4,689 - 1,924x - 2,404y$$

3 [25] Encontre os valores máximo e mínimo da função $f(x,y)=2x^2+y^2$ restrita a região fechada limitada $x^2+2y^2\leq 16$

Como a função é contínua e a região é fechada e limitada sabemos que f assume um valor máximo e um valor mínimo na região.

Temos que buscar os pontos críticos no interior e aplicar multiplicadores de Lagrange na fronteira.

Gradiente de f

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(2x^2 + y^2 \right) = 4x$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(2x^2 + y^2 \right) = 2y$$

Pontos críticos: Impondo $\nabla f = 0$ temos o ponto interior

$$P_1 = (0,0)$$

Multiplicadores de Lagrange: Temos a restrição $g(x,y)=x^2+2y^2\leq 16\,$ e seu gradiente é

$$\frac{\partial g}{\partial x} = \frac{\partial}{\partial x} \left(x^2 + 2y^2 \right) = 2x$$

$$\frac{\partial g}{\partial y} = \frac{\partial}{\partial y} \left(x^2 + 2y^2 \right) = 4y$$

Precisamos resolver o sistema

$$4x = 2\lambda x$$

$$2y = 4\lambda y$$

$$x^2 + 2y^2 = 16$$

Que pode ser simplificado

$$2x = \lambda x$$

$$u = 2\lambda u$$

$$x^2 + 2y^2 = 16$$

Da primeira equação temos que x=0 ou $\lambda=2$. Se x=0 a terceira equação se reduz a

$$x^2 + 2y^2 = 16$$

$$2y^2 = 16$$
$$y^2 = 8$$

$$y = \pm 2\sqrt{2}$$

Substituindo qualquer uma delas na segunda equação temos $\lambda=0$. Encontramos o segundo e terceiro pontos

$$P_2 = (0, -2\sqrt{2})$$
 $P_3 = (0, 2\sqrt{2})$

Se $\lambda=2$ a segunda equação se torna y=8y e, portanto, y=0. Substituindo na terceira equação temos $x^2=16$, cujas soluções são x=-4 ou x=4. Encontramos o quarto e quinto pontos

$$P_4 = (-4,0)$$
 $P_5 = (4,0)$

Avaliando a função nos pontos encontrados

$$f(0,0) = 2 \times 0^{2} + 0^{2} = 0$$

$$f\left(0, -2\sqrt{2}\right) = 2 \times 0^{2} + \left(-2\sqrt{2}\right)^{2} = 8$$

$$f\left(0, 2\sqrt{2}\right) = 2 \times 0^{2} + \left(2\sqrt{2}\right)^{2} = 8$$

$$f(-4,0) = 2 \times (-4)^{2} + 0^{2} = 32$$

$$f(4,0) = 2 \times 4^{2} + 0^{2} = 32$$

O valor mínimo de f é 0 e o valor máximo é 32