Détection de zones copiées-déplacées dans des images

GASC Thibault et DIAB Ingo

Plan

- 1. Méthode sans apprentissage profond
- Détection des points d'intérêts
- Algorithme de Clustering
- Résultats
- 2. Méthode avec apprentissage profond
 - Convolutional Neural Network (CNN)
 - ImageDataGenerator
 - Transfer Learning
 - Résultats
- 3. Interface & Démonstration

- Datant de la photographie
- Types de falsification : copier-déplacer, copier-créer, etc..
- Méthodes de détection : contours, compression JPEG, etc..

Source: https://omnilogie.fr/O/Propagande_stalinienne_et_falsification_des_images

Détection des points d'intérêts

Algorithme SIFT

Différence de Gaussiennes

Localisation des points d'intérêts

Détection des points d'intérêts

Image originale

Image falsifiée

Algorithme de Clustering

- Algorithme DBSCAN
- Nécessite 2 paramètres (Epsilon et minPts)
- Classement selon 3 catégories

Algorithme de Clustering

Problème rencontré → Sensible aux paramètres de DBSCAN

Algorithme de Clustering

• Solution \rightarrow Chercher les paramètres optimaux

Résultats

Sélection de 20 images : 10 originales et 10 falsifiées

Accuracy = 0.75 F1-score = 0.76 Rappel = 0.72 Précision = 0.72

Etat de l'art

Utilisation d'un dataset contenant des images et leur label (Apprentissage supervisé)

- Utilisation d'un dataset contenant des images et leur label (Apprentissage supervisé)
- Création d'un modèle à partir de couches de convolutions et d'un réseau de neurones

- Utilisation d'un dataset contenant des images et leur label (Apprentissage supervisé)
- Création d'un modèle à partir de couches de convolutions et d'un réseau de neurones
- Entraînement du modèle sur une partie du dataset (70%) et validation sur la partie restante (30%)

- Utilisation d'un dataset contenant des images et leur label (Apprentissage supervisé)
- Création d'un modèle à partir de couches de convolutions et d'un réseau de neurones
- Entraînement du modèle sur une partie du dataset (70%) et validation sur la partie restante (30%)
- Évaluation et déploiement dans notre interface

Convolutions

Max Pooling

Filtres

☐ Les convolutions permettent d'extraire des patterns de l'image en réduisant sa taille

Convolutions

Flatten

On transforme l'image 2D en un tableau 1D

Réseaux de neurones

- ☐ Input Layer : Nombre de neurones relatifs aux données d'entrées
- Output Layer : Nombre de neurones relatifs au type de classification souhaitée

Entraînement & Evaluation (Apprentissage supervisée)

Forward Propagation

Backward Propagation

Problèmes

- RAM insuffisante pour charger toutes les images de notre Dataset
 - Trop peu de convolutions

Résolution de la RAM : ImageDataGenerator

☐ Charger des batchs d'images : Charger 32 images en mémoire au lieu de + de 10 000

On entraîne directement le modèle en lui donnant le générateur.

Résolution de la RAM : ImageDataGenerator

Data Augmentation
Appliquer des effets de post-processing aux images
(le modèle ne connaît pas les vraies images)

Résolution du nombre de Convolutions : Transfer Learning (Inception V3)

- Récupérer un modèle déjà entraîné sur des millions d'images.
- Enlever (ou non) les couches de neurones si on veut uniquement utiliser les convolutions
 - On peut (ou non) empêcher la backward propagation de toucher aux filtres

Résultats

Notre modèle:

- Prend des images RGB 224x224 (Inception V3)
- Utilise les filtres d'Inception V3
- → Possède 2 couches internes de 256 neurones
- Possède 1 couche de sortie avec 1 neurone (classification binaire)

Résultats

Résultats sur un jeu composé d'images connues par le modèle

Accuracy: 70%

Précision : 70%

Rappel : 70%

F1-Score : 70%