ESP32-MINI-1

Datasheet

Stand-Alone Module with Antenna
Containing Ultra-Low-Power SoC with SingleCore CPU
Supporting 2.4 GHz Wi-Fi, Bluetooth®, and Bluetooth® LE

About This Document

This document provides specifications for the ESP32-MINI-1 module.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation. Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

1 Module Overview

1.1 Features

MCU

- ESP32-U4WDH embedded, Xtensa[®] single-core 32-bit LX6 microprocessor, up to 160 MHz
- 448 KB ROM
- 520 KB SRAM
- 16 KB SRAM in RTC

Wi-Fi

- 802.11b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4 μ s guard interval support
- Center frequency range of operating channel: 2412 ~ 2484 MHz

Bluetooth®

- Bluetooth® V4.2 BR/EDR and Bluetooth® LE specification
- Class-1, class-2, and class-3 transmitter

- AFH
- CVSD and SBC

Hardware

- Interfaces: SD card, UART, SPI, SDIO, I2C, LED PWM, motor PWM, I2S, infrared remote controller, pulse counter, GPIO, touch sensor, ADC, DAC, Two-Wire Automotive Interface (TWAI[®], compatible with ISO11898-1)
- 40 MHz crystal oscillator
- 4 MB SPI flash
- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating temperature range:
 - 85 °C version module: -40 ~ 85 °C
 - 105 °C version module: -40 ~ 105 °C
- Dimensions: (13.2 × 19.0 × 2.4) mm

Certification

Green certification: REACH/RoHS

1.2 Description

ESP32-MINI-1 is a highly-integrated, small-sized Wi-Fi+Bluetooth®+Bluetooth® LE MCU module that has a rich set of peripherals. This module is an ideal choice for a wide variety of IoT applications, ranging from home automation, smart building, consumer electronics to industrial control, especially suitable for applications within a compact space, such as bulbs, switches and sockets.

This module comes in two versions:

- 85 °C version
- 105 °C version

The two versions both come with a PCB antenna and 4 MB SPI flash. The information in this datasheet is applicable to both versions.

The ordering information for the two versions of ESP32-MINI-1 is as follows:

Table 1: ESP32-MINI-1 Ordering Information

Module	Chip embedded	Flash	Module dimensions (mm)
ESP32-MINI-1 (85 °C version)	ESP32-U4WDH	4 MB	13.2 × 19.0 × 2.4
ESP32-MINI-1 (105 °C version)	LOI 02 040011		10.2 \ 10.0 \ 2.4

At the core of this module is ESP32-U4WDH *, an Xtensa® 32-bit LX6 CPU that operates at up to 160 MHz. The user can power off the CPU and make use of the low-power co-processor to constantly monitor the peripherals for changes or exceeding of thresholds.

This ESP32 chip integrates a rich set of peripherals, ranging from capacitive touch sensor, Hall sensor, SD card interface, Ethernet, high-speed SPI, UART, I2S, I2C, etc.

Note:

* For more information on ESP32 chips, please refer to ESP32 Series Datasheet.

1.3 Applications

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- Speech Recognition
- Image Recognition
- Mesh Network
- Home Automation

- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications

Contents

1	Module Overview	3
1.1	Features	3
1.2	Description Applications	3
1.3	Applications	4
2	Block Diagram	9
3	Pin Definitions	10
3.1	Pin Layout	10
3.2	Pin Description	10
3.3	Strapping Pins	12
4	Electrical Characteristics	14
4.1	Absolute Maximum Ratings	14
4.2	Recommended Operating Conditions	14
4.3	DC Characteristics (3.3 V, 25 °C)	14
4.4	Current Consumption Characteristics	15
4.5	Wi-Fi RF Characteristics	16
	4.5.1 Wi-Fi RF Standards	16
	4.5.2 Transmitter Characteristics4.5.3 Receiver Characteristics	16 17
4.6	Bluetooth® Radio	18
7.0	4.6.1 Receiver – Basic Data Rate	18
	4.6.2 Transmitter – Basic Data Rate	18
	4.6.3 Receiver – Enhanced Data Rate	19
	4.6.4 Transmitter – Enhanced Data Rate	20
4.7	Bluetooth® LE Radio	20
	4.7.1 Receiver	20
	4.7.2 Transmitter	21
5	Module Schematics	22
6	Peripheral Schematics	23
7	Physical Dimensions and PCB Land Pattern	24
7 .1	Physical Dimensions	24
7.2	Recommended PCB Land Pattern	25
0	Description (III) and the second	
8	Product Handling	26
8.1	Storage Conditions	26
8.2	Reflow Profile	26
9	MAC Addresses and eFuse	27

10	Learning Resources	28
10.1	Must-Read Documents	28
10.2	Must-Have Resources	28
Rev	vision History	30

List of Tables

1	ESP32-MINI-1 Ordering Information	4
2	Pin Definitions	11
3	Strapping Pins	12
4	Absolute Maximum Ratings	14
5	Recommended Operating Conditions	14
6	DC Characteristics (3.3 V, 25 °C)	14
7	Current Consumption Depending on RF Modes	15
8	Current Consumption Depending on Work Modes	16
9	Wi-Fi RF Standards	16
10	Transmitter Characteristics	17
11	Receiver Characteristics	17
12	Receiver Characteristics – Basic Data Rate	18
13	Transmitter Characteristics – Basic Data Rate	18
14	Receiver Characteristics - Enhanced Data Rate	19
15	Transmitter Characteristics – Enhanced Data Rate	20
16	Receiver Characteristics – Bluetooth® LE	20
17	Transmitter Characteristics – Bluetooth® LE	21

List of Figures

1	ESP32-MINI-1 Block Diagram	9
2	Pin Layout (Top View)	10
3	ESP32-MINI-1 Schematics	22
4	Peripheral Schematics	23
5	Physical Dimensions	24
6	Recommended PCB Land Pattern	25
7	Reflow Profile	26

Block Diagram 2

Figure 1: ESP32-MINI-1 Block Diagram

3 Pin Definitions

3.1 Pin Layout

The pin diagram below shows the approximate location of pins on the module. For the actual diagram drawn to scale, please refer to Figure 7.1 *Physical Dimensions*.

Figure 2: Pin Layout (Top View)

3.2 Pin Description

ESP32-MINI-1 has 55 pins. See pin definitions in Table 2.

Table 2: Pin Definitions

Name	No.	Туре	Function
GND	1, 2, 27, 38 ~ 55	Р	Ground
3V3	3	Р	Power supply
136	4	I	GPIO36, ADC1_CH0, RTC_GPIO0
137	5	I	GPIO37, ADC1_CH1, RTC_GPIO1
138	6	I	GPIO38, ADC1_CH2, RTC_GPIO2
139	7	I	GPIO39, ADC1_CH3, RTC_GPIO3
			High: enables the chip
EN	8	I	Low: the chip powers off
			Note: do not leave the pin floating
I34	9	I	GPIO34, ADC1_CH6, RTC_GPIO4
I35	10	I	GPIO35, ADC1_CH7, RTC_GPIO5
IO32	11	I/O	GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,
			TOUCH9, RTC_GPIO9
IO33	12	I/O	GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,
			TOUCH8, RTC_GPIO8
IO25	13	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0
IO26	14	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1
IO27	15	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
IO14	16	I/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,
			HS2_CLK, SD_CLK, EMAC_TXD2
IO12	17	I/O	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,
			HS2_DATA2, SD_DATA2, EMAC_TXD3
IO13	18	I/O	GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,
			HS2_DATA3, SD_DATA3, EMAC_RX_ER
IO15	19	I/O	GPIO15, ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICS0,
			HS2_CMD, SD_CMD, EMAC_RXD3
102	20	I/O	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,
			SD_DATA0
IO0	21	I/O	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,
			EMAC_TX_CLK
IO4	22	I/O	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,
_			SD_DATA1, EMAC_TX_ER
NC	23	-	No connect
NC	24	-	No connect
109	25	I/O	GPIO9, HS1_DATA2, U1RXD, SD_DATA2
IO10	26	I/O	GPIO10, HS1_DATA3, U1TXD, SD_DATA3
NC	28	-	No connect
105	29	1/0	GPIO5, HS1_DATA6, VSPICSO, EMAC_RX_CLK
IO18	30	1/0	GPIO18, HS1_DATA7, VSPICLK
1023	31	1/0	GPIO23, HS1_STROBE, VSPID
IO19	32	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0

Cont'd on next page

Name No. **Function** Type 1022 33 I/O GPIO22, VSPIWP, U0RTS, EMAC TXD1 1021 34 I/O GPIO21, VSPIHD, EMAC_TX_EN RXD0 35 I/O GPIO3, U0RXD, CLK_OUT2 TXD0 36 I/O GPIO1, U0TXD, CLK OUT3, EMAC RXD2 NC 37 No connect

Table 2 - cont'd from previous page

3.3 Strapping Pins

ESP32 has five strapping pins, which can be seen in Chapter 5 Schematics:

- MTDI = IO12
- GPIO0 = BOOT/IO0
- GPIO2 = IO2
- MTDO = IO15
- GPIO5 = IO5

Software can read the values of these five bits from register "GPIO_STRAPPING".

During the chip's system reset release (power-on-reset, RTC watchdog reset and brownout reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. The strapping bits configure the device's boot mode, the operating voltage of VDD_SDIO and other initial system settings.

Each strapping pin is connected to its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32.

After reset release, the strapping pins work as normal-function pins.

Refer to Table 3 for a detailed boot-mode configuration by strapping pins.

Voltage of Internal LDO (VDD SDIO) Pin 3.3 V 1.8 V Default **MTDI** Pull-down **Booting Mode** Pin SPI Boot Download Boot Default GPI00 Pull-up 0 1 0 GPIO2 Pull-down Don't-care

Table 3: Strapping Pins

¹ Pins GPIO6, GPIO7, GPIO8, GPIO11, GPIO16, and GPIO17 on the ESP32-U4WDH chip are connected to the SPI flash integrated on the module and are not led out.

² For peripheral pin configurations, please refer to ESP32 Series Datasheet.

Enabling/Disabling Debugging Log Print over U0TXD During Booting									
Pin	Default	UOTXD	Active	UOTXE) Silent				
MTDO	Pull-up	-	1	()				
		Timinç	g of SDIO Slave						
		FE Sampling	FE Sampling	RE Sampling	RE Sampling				
Pin	Default	FE Output	RE Output						
MTDO Pull-up 0 0 1 1									
GPIO5	Pull-up	0	1	0	1				

Note:

- FE: falling-edge, RE: rising-edge
- Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave", after booting.
- The module integrates a 3.3 V SPI flash, so the pin MTDI cannot be set to 1 when the module is powered up.

Electrical Characteristics

Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device that should follow the recommended operating conditions

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	-0.3	3.6	V
т	Storage temperature	-40	85 (85 °C version)	°C
store	Storage temperature	-40	105 (105 °C version)	°C

Note:

Please see Appendix IO_MUX of <u>ESP32 Series Datasheet</u> for IO's power domain.

4.2 **Recommended Operating Conditions**

Table 5: Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDD33	Power supply voltage		3.3	3.6	V
I_{VDD}	Current delivered by external power supply	0.5	-	-	Α
т	Operating temperature	-40		85 (85 °C version)	°C
			_	105 (105 °C version)	°C
Humidity	Humidity condition	-	85	-	%RH

4.3 DC Characteristics (3.3 V, 25 °C)

Table 6: DC Characteristics (3.3 V, 25 °C)

Symbol	Paramet	Min	Тур	Max	Unit	
C_{IN}	Pin capacitance		-	2	-	рF
V_{IH}	High-level input voltage		0.75×VDD ¹	-	VDD1+0.3	V
V_{IL}	Low-level input voltage		-0.3	-	0.25×VDD ¹	V
$ I_{IH} $	High-level input current		-	-	50	nA
$ I_{IL} $	Low-level input current	-	-	50	nA	
V_{OH}	High-level output voltage	0.8×VDD ¹	-	-	V	
V_{OL}	Low-level output voltage	-	-	0.1×VDD ¹	V	
	High-level source current	VDD3P3_CPU	_	40	_	mA
	$(VDD^1 = 3.3 \text{ V},$	power domain ^{1, 2}		40	_	ША
$ $ $ $ OH	$V_{OH} >= 2.64 \text{ V},$	VDD3P3_RTC	-	40	-	mA
IOH	output drive strength set	power domain 1, 2				
	to the maximum)	VDD_SDIO power	_	20	_	mA
	to the maximum,	domain ^{1, 3}	-	20	-	111/~

Symbol	Parameter	Min	Тур	Max	Unit
	Low-level sink current				
I_{OL}	$(VDD^1 = 3.3 \text{ V}, V_{OL} = 0.495 \text{ V},$	-	28	-	mA
	output drive strength set to the maximum)				
R_{PU}	Resistance of internal pull-up resistor	-	45	-	kΩ
R_{PD}	Resistance of internal pull-down resistor	-	45	-	kΩ
VII DOT	Low-level input voltage of CHIP_PU	_	_	0.6	\/
V_{IL_nRST}	to power off the chip			0.0	V

Note:

- 1. Please see Appendix IO_MUX of <u>ESP32 Series Datasheet</u> for IO's power domain. VDD is the I/O voltage for a particular power domain of pins.
- 2. For VDD3P3_CPU and VDD3P3_RTC power domain, per-pin current sourced in the same domain is gradually reduced from around 40 mA to around 29 mA, as the number of current-source pins increases.
- 3. Pins occupied by flash and/or PSRAM in the VDD_SDIO power domain were excluded from the test.

4.4 Current Consumption Characteristics

With the use of advanced power-management technologies, ESP32 can switch between different power modes. For details on different power modes, please refer to Section RTC and Low-Power Management in ESP32 Series Datasheet.

Table 7: Current Consumption Depending on RF Modes

Work mode	Description		Peak (mA)
		802.11b, 20 MHz, 1 Mbps, @19.5 dBm	379
Active (RF working)	TX	802.11g, 20 MHz, 54 Mbps, @15 dBm	276
		802.11n, 20 MHz, MCS7, @13 dBm	258
		802.11n, 40 MHz, MCS7, @13 dBm	260
	RX	802.11b/g/n, 20 MHz	112
		802.11n, 40 MHz	118

Note:

- The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.
- The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle.

Table 8: Current Consumption Depending on Work Modes

Work mode		Description	Current consumption (Typ)
	The CPU is	160 MHz	27 ~ 34 mA
Modem-sleep 1, 2	powered on ³	Normal speed: 80 MHz	20 ~ 25 mA
Light-sleep			0.8 mA
	The ULP co-processor is powered on ⁴		150 μA
Deep-sleep	ULP se	nsor-monitored pattern ⁵	100 μA @1% duty
Deep-sieep	RTC	timer + RTC memory	10 μΑ
	RTC timer only		5 μΑ
Power off	CHIP_PU is set to low level, the chip is powered off		1 μΑ

¹ The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle.

4.5 Wi-Fi RF Characteristics

4.5.1 Wi-Fi RF Standards

Table 9: Wi-Fi RF Standards

Name		Description
Center frequency range of operating channel ¹		2412 ~ 2484 MHz
Wi-Fi wireless standard		IEEE 802.11b/g/n
		11b: 1, 2, 5.5 and 11 Mbps
Data rate	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
Data rate		11n: MCS0-7, 72.2 Mbps (Max)
	40 MHz	11n: MCS0-7, 150 Mbps (Max)
Antenna type		PCB antenna

¹ Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

4.5.2 Transmitter Characteristics

Target TX power is configurable based on device or certification requirements. The default characteristics are provided in Table 10.

² When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current consumption changes accordingly.

³ In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.

⁴ During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and RTC I2C are able to operate.

⁵ The "ULP sensor-monitored pattern" refers to the mode where the ULP coprocessor or the sensor works periodically. When ADC works with a duty cycle of 1%, the typical current consumption is 100 μ A.

Table 10: Transmitter Characteristics

Parameter	Rate	Тур	Unit
	11b, 1 Mbps	19.5	
	11b, 11 Mbps	19.5	
	11g, 6 Mbps	18	
TX Power	11g, 54 Mbps	14	dBm
I A FOWEI	11n, HT20, MCS0	18	dbiii
	11n, HT20, MCS7	13	
	11n, HT40, MCS0	18	
	11n, HT40, MCS7	13	

4.5.3 Receiver Characteristics

Table 11: Receiver Characteristics

Parameter	Rate	Тур	Unit
RX Sensitivity	1 Mbps	-97	dBm
	2 Mbps	-94	
	5.5 Mbps	-92	
	11 Mbps	-88	
	6 Mbps	-93	
	9 Mbps	-91	
	12 Mbps	-89	
	18 Mbps	-87	
	24 Mbps	-84	
	36 Mbps	-80	
	48 Mbps	-77	
	54 Mbps	-75	
	11n, HT20, MCS0	-92	
	11n, HT20, MCS1	-88	
	11n, HT20, MCS2	-86	
	11n, HT20, MCS3	-83	
	11n, HT20, MCS4	-80	
	11n, HT20, MCS5	-76	
	11n, HT20, MCS6	-74	
	11n, HT20, MCS7	-72	
	11n, HT40, MCS0	-89	
	11n, HT40, MCS1	-85	
	11n, HT40, MCS2	-83	
	11n, HT40, MCS3	-80	
	11n, HT40, MCS4	-76	
	11n, HT40, MCS5	-72	
	11n, HT40, MCS6	-71	
	11n, HT40, MCS7	-69	

Parameter	Rate	Тур	Unit
RX Maximum Input Level	11b, 1 Mbps	5	dBm
	11b, 11 Mbps	5	
	11g, 6 Mbps	0	
	11g, 54 Mbps	-8	
	11n, HT20, MCS0	0	
	11n, HT20, MCS7	-8	
	11n, HT40, MCS0	0	
	11n, HT40, MCS7	-8	
Adjacent Channel Rejection	11b, 11 Mbps	35	dB
	11g, 6 Mbps	27	
	11g, 54 Mbps	13	
	11n, HT20, MCS0	27	
	11n, HT20, MCS7	12	
	11n, HT40, MCS0	16	
	11n, HT40, MCS7	7	

4.6 Bluetooth® Radio

4.6.1 Receiver - Basic Data Rate

Table 12: Receiver Characteristics - Basic Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @0.1% BER	-	-90	-89	-88	dBm
Maximum received signal @0.1% BER	-	0	-	-	dBm
Co-channel C/I	-	_	+7	-	dB
	F = F0 + 1 MHz	-	-	-6	dB
	F = F0 – 1 MHz	-	-	-6	dB
Adjacent channel calcetivity C/I	F = F0 + 2 MHz	-	-	-25	dB
Adjacent channel selectivity C/I	F = F0 – 2 MHz	-	-	-33	dB
	F = F0 + 3 MHz	-	-	-25	dB
	F = F0 - 3 MHz	-	-	-45	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out of hand blocking parformance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
Out-of-band blocking performance	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

4.6.2 Transmitter - Basic Data Rate

Table 13: Transmitter Characteristics - Basic Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power (see note under Table 13)	-	-	0	-	dBm

Parameter	Conditions	Min	Тур	Max	Unit
Gain control step	-	-	3	-	dB
RF power control range	-	-12	-	+9	dBm
+20 dB bandwidth	-	-	0.9	-	MHz
	$F = F0 \pm 2 MHz$	-	-55	-	dBm
Adjacent channel transmit power	$F = F0 \pm 3 \text{ MHz}$	-	-55	-	dBm
	$F = F0 \pm > 3 MHz$	-	-59	-	dBm
$\Delta \ f1_{ ext{avg}}$	-	-	-	155	kHz
$\Delta~f2_{\sf max}$	-	127	-	-	kHz
$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	-	-	0.92	-	-
ICFT	-	-	-7	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μ s
Drift (DH1)	-	-	6	-	kHz
Drift (DH5)	-	-	6	-	kHz

Note:

There are a total of eight power levels from 0 to 7, and the transmit power ranges from -12 dBm to 9 dBm. When the power level rises by 1, the transmit power increases by 3 dB. Power level 4 is used by default and the corresponding transmit power is 0 dBm.

4.6.3 Receiver - Enhanced Data Rate

Table 14: Receiver Characteristics - Enhanced Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
$\pi/4$	DQPSK				
Sensitivity @0.01% BER	-	-90	-89	-88	dBm
Maximum received signal @0.01% BER	-	-	0	-	dBm
Co-channel C/I	-	-	11	-	dB
	F = F0 + 1 MHz	-	-7	-	dB
Adjacent channel selectivity C/I	F = F0 - 1 MHz	-	-7	-	dB
	F = F0 + 2 MHz	-	-25	-	dB
	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
8	DPSK				
Sensitivity @0.01% BER	-	-84	-83	-82	dBm
Maximum received signal @0.01% BER	-	-	-5	-	dBm
C/I c-channel	-	_	18	-	dB
	F = F0 + 1 MHz	-	2	-	dB
	F = F0 - 1 MHz	-	2	-	dB
Adjacent channel coloctivity C/I	F = F0 + 2 MHz	-	-25	-	dB
Adjacent channel selectivity C/I	F = F0 - 2 MHz	-	-25	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-38	-	dB

4.6.4 Transmitter - Enhanced Data Rate

Table 15: Transmitter Characteristics - Enhanced Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power (see note under Table 13)	-	-	0	-	dBm
Gain control step	-	-	3	-	dB
RF power control range	-	-12	-	+9	dBm
$\pi/4$ DQPSK max w0	-	-	-0.72	-	kHz
$\pi/4$ DQPSK max wi	-	-	-6	-	kHz
$\pi/4$ DQPSK max lwi + w0l	-	-	-7.42	-	kHz
8DPSK max w0	-	-	0.7	-	kHz
8DPSK max wi	-	-	-9.6	-	kHz
8DPSK max lwi + w0l	-	-	-10	-	kHz
π /4 DQPSK modulation accuracy	RMS DEVM	-	4.28	-	%
	99% DEVM	-	100	-	%
	Peak DEVM	-	13.3	-	%
	RMS DEVM	-	5.8	-	%
8 DPSK modulation accuracy	99% DEVM	-	100	-	%
	Peak DEVM	-	14	-	%
	$F = F0 \pm 1 MHz$	-	-46	-	dBm
In-band spurious emissions	$F = F0 \pm 2 MHz$	-	-44	-	dBm
In-band spunous emissions	$F = F0 \pm 3 \text{ MHz}$	-	-49	-	dBm
	F = F0 + /- > 3 MHz	-	-	-53	dBm
EDR differential phase coding	-	-	100	-	%

4.7 Bluetooth® LE Radio

4.7.1 Receiver

Table 16: Receiver Characteristics - Bluetooth® LE

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-	-94	-93	-92	dBm
Maximum received signal @30.8% PER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
Adjacent channel selectivity C/I	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 - 1 MHz	-	-5	-	dB
	F = F0 + 2 MHz	-	-25	-	dB
Adjacent charmer selectivity 0/1	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out of hand blocking performance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
Out-of-band blocking performance	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

4.7.2 Transmitter

Table 17: Transmitter Characteristics – Bluetooth® LE

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power (see note under Table 13)	-	-	0	-	dBm
Gain control step	-	-	3	-	dB
RF power control range	-	-12	-	+9	dBm
	$F = F0 \pm 2 MHz$	-	-55	-	dBm
Adjacent channel transmit power	$F = F0 \pm 3 \text{ MHz}$	-	-57	-	dBm
	$F = F0 \pm > 3 MHz$	-	-59	ı	dBm
$\Delta f 1_{ ext{avg}}$	-	-	-	265	kHz
$\Delta~f2_{ ext{max}}$	-	210	-	-	kHz
$\Delta f 2_{\mathrm{avg}}/\Delta f 1_{\mathrm{avg}}$	-	-	+0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μs
Drift	-	-	2	-	kHz

5 Module Schematics

This is the reference design of the module.

S

Module Schematics

Figure 3: ESP32-MINI-1 Schematics

6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

Figure 4: Peripheral Schematics

- Soldering Pad 55 to the Ground of the base board is not necessary for a satisfactory thermal performance. If users do want to solder it, they need to ensure that the correct quantity of soldering paste is applied.
- To ensure the power supply to the ESP32 chip during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 k Ω and C = 1 μ F. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32's power-up and reset sequence timing diagram, please refer to Section *Power Scheme* in *ESP32 Series Datasheet*.

7 Physical Dimensions and PCB Land Pattern

7.1 Physical Dimensions

Figure 5: Physical Dimensions

7.2 Recommended PCB Land Pattern

Figure 6: Recommended PCB Land Pattern

8 Product Handling

8.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and /90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25 ± 5 °C and /60%RH. If the above conditions are not met, the module needs to be baked.

8.2 Reflow Profile

Figure 7: Reflow Profile

Note:

Solder the module in a single reflow.

MAC Addresses and eFuse

The eFuse in ESP32 has been burnt into 48-bit mac_address. The actual addresses the chip uses in station, AP, Bluetooth® LE, and Ethernet modes correspond to mac_address in the following way:

- Station mode: mac_address
- AP mode: mac_address + 1
- Bluetooth® LE mode: mac_address + 2
- Ethernet mode: mac_address + 3

In the 1 Kbit eFuse, 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including flash-encryption and chip-ID.

Learning Resources

10.1 **Must-Read Documents**

The following link provides documents related to ESP32.

• ESP32 Datasheet

This document provides an introduction to the specifications of the ESP32 hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc.

• ESP32 ECO V3 User Guide

This document describes differences between V3 and previous ESP32 silicon wafer revisions.

• ECO and Workarounds for Bugs in ESP32

This document details hardware errata and workarounds in the ESP32.

• ESP-IDF Programming Guide

It hosts extensive documentation for ESP-IDF ranging from hardware guides to API reference.

• ESP32 Technical Reference Manual

The manual provides detailed information on how to use the ESP32 memory and peripherals.

• ESP32 Hardware Resources

The zip files include the schematics, PCB layout, Gerber and BOM list of ESP32 modules and development boards.

• ESP32 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32 series of products, including the ESP32 chip, the ESP32 modules and development boards.

ESP32 AT Instruction Set and Examples

This document introduces the ESP32 AT commands, explains how to use them, and provides examples of several common AT commands.

• Espressif Products Ordering Information

10.2 **Must-Have Resources**

Here are the ESP32-related must-have resources.

• ESP32 BBS

This is an Engineer-to-Engineer (E2E) Community for ESP32 where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

ESP32 GitHub

ESP32 development projects are freely distributed under Espressif's MIT license on GitHub. It is established to help developers get started with ESP32 and foster innovation and the growth of general knowledge about the hardware and software surrounding ESP32 devices.

• ESP32 Tools

This is a webpage where users can download ESP32 Flash Download Tools and the zip file "ESP32 Certification and Test".

• ESP-IDF

This webpage links users to the official IoT development framework for ESP32.

• ESP32 Resources

This webpage provides the links to all available ESP32 documents, SDK and tools.

Revision History

Date	Version	Release notes
2020-12-04	V0.5	Pre-release

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.