Recall:

1) A square matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$

2) If *A* is diagonalizable then it is easy to compute powers of *A*:

$$A^k = PD^kP^{-1}$$

3) An $n \times n$ matrix A is a diagonalizable if and only if it has n linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$. In such case we have:

$$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$$

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \qquad \begin{array}{l} \lambda_1 = \text{eigenvalue corresponding to } \mathbf{v}_1 \\ \lambda_2 = \text{eigenvalue corresponding to } \mathbf{v}_2 \\ \dots & \dots & \dots \\ \lambda_n = \text{eigenvalue corresponding to } \mathbf{v}_n \end{array}$$

4) Not every square matrix is diagonalizable.

Definition

An orthogonal matrix is square matrix Q such that $Q^TQ = I$ (i.e. $Q^T = Q^{-1}$).

Example.

$$Q = \begin{bmatrix} 2/3 & -2/3 & 1/3 \\ 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \end{bmatrix}$$

Proposition

A square matrix $Q = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_n]$ is an orthogonal matrix if and only if $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is an orthonormal set of vectors, i.e.:

$$\mathbf{u}_i \cdot \mathbf{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Note. If \mathbf{v} , \mathbf{w} are vectors in \mathbb{R}^n then

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w}$$

Example.

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

Definition

A square matrix A is $orthogonally\ diagonalizable$ if there exists an orthogonal matrix Q and a diagonal matrix D such that

$$A = QDQ^{-1} = QDQ^{T}$$

Proposition

An $n \times n$ matrix A is orthogonally diagonalizable if and only if it has n orthogonal eigenvectors.

Definition

A square matrix A is symmetric if $A^T = A$

Example.

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 3 & 5 & 7 & 8 \\ 4 & 6 & 8 & 9 \end{array} \right]$$

Proposition

If a matrix A is orthogonally diagonalizable then A is a symmetric matrix.

Spectral Theorem

Every symmetric matrix is orthogonally diagonalizable.

Theorem

If A is a symmetric matrix and λ_1, λ_2 are two different eigenvalues of A, then eigenvectors corresponding to λ_1 are orthogonal to eigenvectors corresponding to λ_2 .

Recall: If \mathbf{v} , \mathbf{w} are vectors in \mathbb{R}^n then

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w}$$

Example.

Find three orthogonal eigenvectors of the following symmetric matrix:

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right]$$

Upshot. How to find n orthogonal eigenvectors for a symmetric $n \times n$ matrix A :
1) Find a basis of the signment for each signment.
2) Find a basis of the eigenspace for each eigenvalue.3) Use the Gram-Schmidt process to find an orthogonal basis of each eigenspace.
274

Example. Find an orthogonal diagonalization of the following symmetric matrix:

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right]$$