Machine Learning Based Enhanced Sampling Methods: Learning Collective Variables

Ming Chen University of California, Berkeley

Collective Variables (CV): Important Degrees of Freedom

A few degrees of freedom are important to capture the physical essences.

System Coordinates: X

Collective Variables: $\mathbf{q}=(q_1(\mathbf{x}),\cdots,q_{N_s}(\mathbf{x}))$

Free Energy Surface and CVs

Fixing
$$\mathbf{q} = \mathbf{s} = (s_1, \cdots, s_{N_s})$$

Marginal Distribution:
$$P(\mathbf{s}) = C \int d\mathbf{x} e^{-\beta U(\mathbf{x})} \Pi_{\alpha=1}^{N_s} \delta(q_{\alpha}(\mathbf{x}) - s_{\alpha})$$

Free Energy Surface: $A(\mathbf{s}) = -kT \log P(\mathbf{s}) + \tilde{C}$

Enhanced Sampling with CVs

Many Sampling methods enhance transitions along CVs. For example:

- Blue Moon Method
 - E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, *Chem. Phys. Lett.*, **156**, 472 (1989)
- Umbrella Sampling
 - G. M. Torrie and J. P. Valleau, *J. Comput. Phys.* **23**, 187 (1977)
- Metadynamics/Well-tempered Metadynamics
 - A. Laio and M. Parrinello, *Proc. Natl. Acad. Sci. U.S.A.* **99**, 12562 (2002)
 - A. Barducci, G. Bussi, and M. Parrinello, *Phys. Rev. Lett.* **100**, 020603 (2008)
- Driven Adiabatic Free Energy Dynamics/Temperature Accelerate Molecular Dynamics
 - o J. B. Abrams and M. E. Tuckerman, *J. Phys. Chem. B* **112**, 15742 (2008).
 - L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006).
- Adaptive Biasing Force
 - o E. Darve and A. Pohorille, *J. Chem. Phys.* **115**, 9169 (2001).
- Many others...

One Example: Well-tempered Metadynamics

$$U(\mathbf{q}(\mathbf{x}), t) = \sum_{n, t_n = n\Delta t < t} W e^{-U(\mathbf{q}(\mathbf{x}(t_n)), t_n)/\Delta T} \exp \left\{ -\sum_{\alpha=1}^{N_s} \frac{(q_\alpha(\mathbf{x}) - q_\alpha(\mathbf{x}(t_n)))^2}{2\sigma_\alpha^2} \right\}$$

When $t \to \infty$

$$U(\mathbf{q}(\mathbf{x}), t) \to -\frac{\Delta T}{T + \Delta T} A(\mathbf{q}(\mathbf{x}))$$

$$P(\mathbf{s}) \propto Q^{\frac{T}{T + \Delta T}}$$

A. Laio and M. Parrinello, *Proc. Natl. Acad. Sci. U.S.A.* **99**, 12562 (2002).

A. Barducci, G. Bussi, and M. Parrinello, *Phys. Rev. Lett.* **100**, 020603 (2008).

CV and Orthogonal Space Degeneracy

CV and Orthogonal Space Degeneracy

CV and Orthogonal Space Degeneracy

Ramachandran Dihedral Angle is believed as a set of appropriate CVs for alanine dipeptide.

M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, *J. Chem. Phys.* **134**, 124116 (2011).

What about other CVs, e.g. radius and gyration (Rg) and number of hydrogen bond (NH)?

$$\operatorname{Rg:} \sqrt{\frac{1}{N_b} \sum_{i=1}^{N_b} \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2}$$

NH:
$$\sum_{i \in A} \sum_{j \in B} \frac{1 - \left(\frac{r_{ij}}{r_0}\right)^6}{1 - \left(\frac{r_{ij}}{r_0}\right)^{12}}$$

G. Bussi, F. L. Gervasio, A. Laio, M. Parrinello, *J. Am. Chem. Soc.* **128**, 13435 (2006)

J. B. Abrams and M. E. Tuckerman, *J. Phys. Chem. B* **112**, 15742 (2008).

Correlation Function:

$$\frac{\langle \mathbb{1}_A(\mathbf{x}(0))\mathbb{1}_A(\mathbf{x}(t))\rangle}{\langle \mathbb{1}_A^2(\mathbf{x}(0))\rangle}$$

Correlation Function:

$$\frac{\langle \mathbb{1}_A(\mathbf{x}(0))\mathbb{1}_A(\mathbf{x}(t))\rangle}{\langle \mathbb{1}_A^2(\mathbf{x}(0))\rangle}$$

Generating CVs: Empirical Choices

Generating CVs: Training from Simulation

Eigenfunctions of Infinitesimal Generator

Assume Configurations are generated from a diffusion process:

Friction
$$-- \mu d\mathbf{x} = -\nabla_{\mathbf{x}} U dt + \sqrt{2\mu kT} dW$$
 Wiener Process (Brownian Motion)

Assume $f(\mathbf{x})$ is a smooth test function and an ensemble of trajectories starting from \mathbf{X} at time 0, we can evaluate the expectation of $f(\mathbf{x})$ at time t, i.e.

$$g(\mathbf{x}, t) = \mathbb{E}(f(\mathbf{x}(t))|\mathbf{x}(0) = \mathbf{x})$$

The evolution of $g(\mathbf{x},t)$ is described by backward Kolmogorov equation:

$$\mu \frac{\partial g}{\partial t} = -\nabla_{\mathbf{x}} U \cdot \nabla_{\mathbf{x}} g + kT \nabla_{\mathbf{x}}^2 g = \mathbf{D} \qquad \text{Infinitesimal Generator}$$

Eigenfunctions of Infinitesimal Generator

The operator $\mathcal L$ is elliptical with following eigenvalues and eigenfunctions:

$$\mathcal{L}\psi_i = -\lambda_i \psi_i \quad 0 = \lambda_0 > \lambda_1 \ge \lambda_2 \ge \cdots$$

 $q(\mathbf{x},t)$ can be expressed as:

$$g(\mathbf{x},t) = \mathbb{E}(f(\mathbf{x})) + \sum_{i\neq 0} C_i e^{-\lambda_i t} \psi_i(\mathbf{x})$$

It is easy to check in the long time limit

$$\lim_{t \uparrow \infty} g(\mathbf{x}, t) = \mathbb{E}(f(\mathbf{x}))$$

Eigenfunctions of Infinitesimal Generator

$$g(\mathbf{x},t) = \mathbb{E}(f(\mathbf{x})) + \sum_{i\neq 0} C_i e^{-\lambda_i t} \psi_i(\mathbf{x})$$

What can we learn?

- ullet λ_i controls the equilibrium speed, smaller λ_i means slower equilibration.
- ullet ψ_i wth small λ_i are natural "slow motions".
- Assume there exists a spectral gap, i.e. $\lambda_{i+1}\gg\lambda_i$, the first i $\ensuremath{\psi_i}$ can be selected as CVs
- $oldsymbol{\psi}_i$ are usually highly nonlinear functions for real systems with complex interactions.

How to generate $\,\psi_i$ from simulation data?

Examples of Spectral Gap Existing in Chemical Systems

Beta3S

W. Zheng, M. A. Rohrdanz, C. Clementi *J. Phys. Chem. B*, **117**, 12769 (2013)

Diffusion Map

Assume configurations (samples) from MD simulation: $(\mathbf{x}_1,\cdots,\mathbf{x}_N)$, we can define a Markov chain among samples with transition matrix M:

$$K_{ij} = \frac{\exp\{-|\mathbf{x}_i - \mathbf{x}_j|^2 / 2\sigma^2\}}{\sqrt{p(\mathbf{x}_i)p(\mathbf{x}_j)}} \qquad M_{ij} = \frac{K_{ij}}{\sum_j K_{ij}}$$

where $p(\mathbf{x}) = \sum_{i} \exp\{-|\mathbf{x} - \mathbf{x}_i|^2/2\sigma^2\}$ is the kernel density estimation of the

Boltzmann distribution.

Values of ψ_i at each \mathbf{x}_i can be evaluated as the i'th **right** eigenvector of M .

R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler, *Multiscale Modeling and Simulation* **7**, 842 (2008).

M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, *J. Chem. Phys.* **134**, 124116 (2011).

Time-lagged Independent Component Analysis

It has been proved that $\mathbb{E}[\psi_i(\mathbf{x}(t))\psi_i(\mathbf{x}(t+\tau))] = e^{-\lambda_i \tau}$. If $\tilde{\psi}_i$ is an approximation of ψ_i , $\mathbb{E}[\tilde{\psi}_i(\mathbf{x}(t))\tilde{\psi}_i(\mathbf{x}(t+\tau))] \leq e^{-\lambda_i \tau}$.

F. Noé and F. Nüske, *Multiscale Modeling & Simulation* **11**, 635 (2013).

G. Pálrez-Hernández, F. Paul, T. Giorgino, G. D. Fabritiis, and F. Noál, *J. Chem. Phys.* **139**, 015102 (2013).

M. M. Sultan and V. S. Pande, *J. Chem. Theory Comput.* 10.1021/acs.jctc.7b00182 (2017)

Time-lagged Independent Component Analysis

It has been proved that $\mathbb{E}[\psi_i(\mathbf{x}(t))\psi_i(\mathbf{x}(t+\tau))] = e^{-\lambda_i \tau}$. If $\tilde{\psi}_i$ is an approximation of ψ_i , $\mathbb{E}[\tilde{\psi}_i(\mathbf{x}(t))\tilde{\psi}_i(\mathbf{x}(t+\tau))] \leq e^{-\lambda_i \tau}$.

$$ilde{\psi}_i(\mathbf{x}) = \sum_k b_{ik} \chi_k(\mathbf{x})$$
 Variational Principle

$$\mathbf{C}^{\chi}(\tau)\mathbf{b}_i = \varepsilon_i(\tau)\mathbf{b}_i$$
 , where $C^{\chi}_{ij}(\tau) = \mathbb{E}[\chi_i(\mathbf{x}(t))\chi_j(\mathbf{x}(t+\tau))]$

F. Noé and F. Nüske, *Multiscale Modeling & Simulation* **11**, 635 (2013).

- G. Pálrez-Hernández, F. Paul, T. Giorgino, G.
- D. Fabritiis, and F. Noál,
- J. Chem. Phys. 139, 015102 (2013).

Selected Eigenvectors (CVs)

M. M. Sultan and V. S. Pande, J. Chem. Theory Comput. 10.1021/acs.jctc.7b00182 (2017)

Spectral Gap Optimization of Order Parameters

$$\tilde{\psi}_i(\mathbf{x}) = \sum_k b_{ik} \chi_k(\mathbf{x})$$

Optimize CV form so that $\,\omega\,$ has maximum spectral gap.

P. Tiwary and B. J. Berne, *Proc. Natl. Acad. Sci. U.S.A.* **113**, 2839 (2016).

Problems:

Training requires complete sampling.

Low Rank Approximation

M. A. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, *J. Chem. Phys.* **134**, 124116 (2011).

Active Enhanced Sampling

Sample:
$$\{\mathbf{s}_1^h,\cdots,\mathbf{s}_N^h\}$$
 \longrightarrow $\{\mathbf{S}_1^l,\cdots,\mathbf{S}_N^l\}$

 M_{ij}^{high} (M_{ij}^{low}) : Diffusion map transition matrix in \mathbf{q}^h (\mathbf{Q}^l) space

Low Rank Approximation

Kullback-Leibler divergence (t-SNE)

L. van der Maaten and G. Hinton, *J. Mach. Learn. Res.* **9**, 2579 (2008).

Kullback-Leibler divergence (t-SNE)

L. van der Maaten and G. Hinton, *J. Mach. Learn. Res.* **9**, 2579 (2008).

$$C = \sum_{i} \left(\sum_{j} M_{ij}^{high} \log \frac{M_{ij}^{high}}{M_{ij}^{low}} \right)$$

Kullback-Leibler divergence (t-SNE)

L. van der Maaten and G. Hinton, *J. Mach. Learn. Res.* **9**, 2579 (2008).

$$C = \sum_{i} \left(\sum_{j} M_{ij}^{high} \log \frac{M_{ij}^{high}}{M_{ij}^{low}} \right)$$

$$M_{ij}^{low}(\mathbf{S}_1^l, \cdots, \mathbf{S}_N^l) = M_{ij}^{\overline{low}}(F(\mathbf{s}_1^h; W), \cdots, F(\mathbf{s}_N^h; W))$$

Parametrized
$$\mathbf{S}^l = F(\mathbf{s}^h; W)$$

AES Example: Alanine Dipeptide

AES Example: Alanine Dipeptide

Met-enkephalin: A Non-trivial Test

Tyr-Gly-Gly-Phe-Met

Sampling Partially Folded/Unfolded States

V. A. Voelz, et al., J. Am. Chem. Soc.. 134, 12565 (2012).

S. Piana, K. Lindorff-Larsen, and D. E. Shaw, *Proc. Natl. Acad. Sci. U.S.A.* 110, 5915 (2013).

Met-enkephalin: A Non-trivial Test

Extrapolating with Physical CV

AES: Sample Completeness and Sample Quality

Conclusion

- CV selection is critical to enhanced sample efficiency.
- CV selection is a dimensionality reduction problem.
- Kinetic information is important for CV selection.
- "Catch 22" problem between sampling and CV training can be solved in a interactive way in AES.
- AES is able to remove degeneracy on the fly.
- AES can achieve better sampling compared to WTM with physical intuited CVs

Acknowledgment

Prof. Mark E. Tuckerman

Prof. John Zhang

Prof. Yingkai Zhang

Stuffs in NYU Shanghai

Prof. Eran Rabani (Current Advisor)

Jing Zhang (Collaborator)