Problem Sheet 01

Exercise 1.2

Zu zeigen: A ist positiv definit \iff die lineare Abbildung $f(x) = \langle Ax, x \rangle$ ist stark positiv.

Wir brauchen folgende Lemmata:

Lemma 0.1

Sei $\langle \cdot, \cdot \rangle$ das euklidische Skalarprodukt. Für alle reelle Matrizen $A \in \mathbb{R}^{n \times n}$ gilt, dass $\langle Ax, x \rangle = \langle x, A^Tx \rangle$.

Proof. Dies sieht man leicht, denn $\langle x, y \rangle = x^T y$. Also: $\langle Ax, x \rangle = (Ax)^T x = x^T A^T x = \langle x, A^T x \rangle$.

Lemma 0.2

Sei $A\in\mathbb{R}^{n\times n}$ eine symmetrische, positiv definite Matrix. Dann gibt es ein $\alpha>0$, sodass

$$\forall x \in \mathbb{R}^n : f(x) \ge \alpha ||x||^2.$$

Proof. Da $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit ist, gibt es eine orthogonale, reelle Matrix U und eine reelle Diagonalmatrix $D = diag(\lambda_1, ..., \lambda_n)$ mit $\lambda_i > 0$ für alle i = 1, ..., n, sodass $A = UDU^T$. Daher kann man f auch darstellen als $f(x) = \langle Ax, x \rangle = \langle UDU^Tx, x \rangle = \langle UDx, Ux \rangle$, wobei sich letztere Gleichheit aus Lemma 0.1 ergibt. Nun ist das Skalarprodukt invariant gegenüber orthogonale Abbildungen und daher $f(x) = \langle Dx, x \rangle$.

Sei $\lambda^- = \min \lambda_i$ und wähle $\alpha = \lambda^- > 0$. Dann ist $(D - \alpha I)$ eine positiv semidefinite Matrix, denn es besitzt nur Eigenwerte $\lambda_i - \lambda^- > 0$.

Wir erhalten schließlich:

$$\forall x \in \mathbb{R}^n : f(x) - \alpha ||x||^2 = \langle Dx, x \rangle - \langle \alpha x, x \rangle = \langle (D - \alpha I)x, x \rangle \ge 0,$$

woraus dann folgt: $f(x) \ge \alpha ||x||^2$ für alle $x \in \mathbb{R}^n$.

Lemma 0.3

Sei $A\in\mathbb{R}^{n\times n}$ positiv definit. Dann ist der symmetrische Teil von A positiv definit, d.h. $\langle \frac{1}{2}(A+A^T)x,x\rangle>0$ für alle $x\in\mathbb{R}^n\setminus\{0\}$.

Proof. Sei $x \in \mathbb{R}^n$ mit $x \neq 0$. Nach Lemma 0.1 gilt, dass $\langle \frac{1}{2}(A+A^T)x, x \rangle = \frac{1}{2}\langle Ax, x \rangle + \frac{1}{2}\langle x, Ax \rangle = \langle Ax, x \rangle > 0$.

Eigentliche Beweis: \Longrightarrow : Sei $A \in \mathbb{R}^{n \times n}$. Wir zerlegen A in $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$. Also:

$$f(x) = \langle Ax, x \rangle$$

$$= \langle \frac{1}{2}(A + A^T)x, x \rangle + \langle \frac{1}{2}(A - A^T)x, x \rangle$$

$$= \langle \frac{1}{2}(A + A^T)x, x \rangle + \frac{1}{2}(\langle Ax, x \rangle - \langle x, Ax \rangle)$$

$$= \langle \frac{1}{2}(A + A^T)x, x \rangle.$$

Mit Lemma 0.3 ergibt sich, dass $\frac{1}{2}(A-A^T)$ positiv definit ist und mit Lemma 0.2 folgt, dass $f(x) \ge \alpha ||x||^2$, was zu zeigen war.

 \Longleftrightarrow : Sei $f(x) \ge \alpha ||x||^2$ für ein $\alpha > 0$ und für alle $x \in \mathbb{R}$. Da ||x|| > 0 für alle $x \in \mathbb{R}^n \setminus \{0\}$ und $||x|| = 0 \iff x = 0$, ist $f(x) \ge \alpha ||x||^2 > 0$ für alle $x \in \mathbb{R} \setminus \{0\}$.

Exercise 1.3

Sei $A \in \mathbb{R}^{n \times n}$ und $b \in \mathbb{R}^n$.

Zu zeigen: $f(x) = \frac{1}{2}\langle Ax, x \rangle + \langle b, x \rangle$ ist koerzitiv.

Proof. Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}^n$ mit $||x_n||\to\infty$ für $n\to\infty$. Für beliebiges n erhalten wir

$$f(x_n) = \langle Ax_n, x_n \rangle + \langle b, x_n \rangle \ge \alpha ||x_n|| + \langle b, x_n \rangle.$$

Bilden wir den Grenzübergang, so ist

$$\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}(\alpha||x_n||+\langle b,x_n\rangle)=\lim_{n\to\infty}\alpha||x_n||=\infty.$$

Zu zeigen: $f(x) = \frac{1}{2}\langle Ax, x \rangle + \langle b, x \rangle$ besitzt ein globales Minimum.

Wir beweisen das folgende Theorem.

Theorem 0.1

Sei $f:\mathbb{R}^n \to \mathbb{R}$ eine stetige und koerzitive Funktion. Dann besitzt f ein globales Minimum.

Proof. Sei f koezitiv. Das heißt, es gibt ein r>0, sodass für alle x mit ||x||>r gilt:

$$f(x) \ge f(0).$$

Betrachte dann die kompakte Menge $B_r(0)=\{x\in\mathbb{R}^n:||x||\leq r\}$. Wegen der Stetigkeit von f nimmt f auf $B_r(0)$ ein Minimum an, d.h. es gibt ein $x^*\in B_r(0)$ mit

$$\forall x \in B_r(0) : f(x^*) \le f(x)$$

Insbesondere gilt auch $f(x) \ge f(0) \ge f(x^*)$ für alle x mit ||x|| > r. Damit gibt es ein globales Minimum von f.

Eigentliche Beweis: Nun ist f koerzitiv und stetig. Mit dem Theorem ergibt sich, dass f ein globales Minimum besitzt.

Exercise 1.4

Theorem 0.2

Sei X ein metrischer Raum. Sei $f:X\to\mathbb{R}$ eine beliebige Funktion. Wenn epi(f) abgeschlossen ist, so ist f unterhalbstetig.

Proof. Sei epi(f) abgeschlossen, sei $x \in \mathbb{R}^n$ beliebig und y < f(x), sodass $(x,y) \notin epi(f)$. Weil epi(f) abgeschlossen ist, gibt es eine Umgebung $\epsilon > 0$ und ein $\delta > 0$, sodass

$$(B_{\epsilon}(x) \times B_{\delta}(y)) \cap epi(f) = \emptyset.$$

Das bedeutet insbesondere auch

$$B_{\epsilon}(x) \times (-\infty, y - \delta) \cap epi(f) = \emptyset.$$

Also gilt: $f(z) \geq y - \delta$ für alle $z \in U_{\epsilon}(x)$. Jetzt kann man ein $\tilde{\delta} > 0$ so wählen, dass $f(x) - \tilde{\delta} = y - \delta$ gilt (denn y < f(x)). Damit erhalten wir $f(z) \geq f(x) - \tilde{\delta}$ für alle $z \in U_{\epsilon}(x)$. f ist damit unterhalbstetig auf ganz X, denn x war beliebig. \square

Theorem 0.3: theorem

Eine unterhalbstetige Funktion $f:X\to\mathbb{R}$ (X ist ein metrischer Raum) nimmt auf einem Kompaktum ein globales Minimum an.

Proof. Aus der Analysis Vorlesung wissen wir, dass für eine unterhalbstetige Funktion f gilt:

$$\forall x \in X : \liminf_{y \to x} f(y) \ge f(x).$$

Sei $m=\inf_{x\in X}f(x)$ und sei $(x_n)_{n\in\mathbb{N}}$ eine Folge mit $f(x_n)\to m$. Wir wissen, dass X kompakt ist. Also gibt es nach Satz von Bolzano Weierstraß eine konvergente Teilfolge von $(x_n)_{n\in\mathbb{N}}$, die wir mit $(y_n)_{n\in\mathbb{N}}$ bezeichnen. Natürlich gilt $f(y_n)\to m$ und bezeichne $y=\lim_{n\to\infty}y_n$. Es gilt

$$f(y) \le \liminf_{n \to \infty} f(y_n) \le \lim_{n \to \infty} f(y_n) = m.$$

Nach Definition ist $m \geq f(y)$. Also f(y) = m. f besitzt ein globales Minimum.

zu zeigen: Ist f koerzitiv und epi(f) abgeschlossen, so besitzt f mindestens ein globales Minimum.

Proof. f ist koerzitiv. Daher gibt es ein r>0, sodass f(0)< f(x) für alle ||x||>r. Dann sei $K=\{x:||x||\leq r\}$. Die Menge K ist kompakt. Wir verwenden das gerade bewiesene Theorem 0.3 und erhalten ein globales Minimum x^- auf K. Da aber $f(x)>f(0)\geq f(x^-)$ für alle ||x||>r, ist x^- ein globales Minimum auf ganz \mathbb{R}^d .

Exercise 1.5

Betrachte den reellen Folgenraum $\ell^2=\{(x_n)_{n\in\mathbb{N}}: \sum_{n=1}^\infty |x_n|^2<\infty\}$ mit Skalarprodukt $\langle x,y\rangle=\sum_{k=1}^\infty x_ky_k$ für $x,y\in\ell^2$ und $||\cdot||=\sqrt{\langle\cdot,\cdot\rangle}$. ℓ^2 ist auch vollständig und somit ein Hilbertraum.

Sei $T: \ell^2 \to \ell^2, x \mapsto (\frac{1}{n}x_n)_{n \in \mathbb{N}}$. Der Operator T ist linear, beschränkt und positiv definit, was im folgenden gezeigt wird.

• Linear: Seien $x, y \in \ell^2$. Dann ist

$$T(x+y) = (\frac{1}{n}(x_n+y_n))_{n\in\mathbb{N}} = (\frac{1}{n}x_n + \frac{1}{n}y_n)_{n\in\mathbb{N}} = (\frac{1}{n}x_n)_{n\in\mathbb{N}} + (\frac{1}{n}y_n)_{n\in\mathbb{N}} = Tx + Ty.$$

Sei $\lambda \in \mathbb{R}$ und $x \in \ell^2$. Dann ist $T\lambda x = (\frac{\lambda}{n}x_n)_{n \in \mathbb{N}} = \lambda(\frac{1}{n}x_n)_{n \in \mathbb{N}} = \lambda Tx$.

• **Beschränktheit**: Wir wollen zeigen, dass es ein $\alpha > 0$ gibt, sodass

$$\forall x \in \ell^2 : ||Tx|| < \alpha ||x||.$$

Es ist $||Tx||^2 = \langle Tx, Tx \rangle = \sum_{n=1}^{\infty} \frac{1}{n^2} x_n^2 \le \sum_{n=1}^{\infty} x_n^2 = \langle x_n, x_n \rangle = ||x||^2$. Wir können also $\alpha = 1$ wählen.

• Positiv definit: Sei $x \in \mathbb{R}^n \setminus \{0\}$. Dann ist $\langle Tx, x \rangle = \sum_{n=1}^{\infty} \frac{x_n^2}{n} > 0$.

• Der Operator bildet von ℓ^2 nach ℓ^2 . Sei $x \in \ell^2$ und sei y = Tx. Dann ist $\sum_{k=1}^{\infty} |y_k|^2 = \sum_{k=1}^{\infty} \frac{1}{k^2} |x_k|^2 \le \sum_{k=1}^{\infty} |x_k|^2 < \infty.$

Sei nun für jedes $n \in \mathbb{N}$ die Folge $x^{(n)} \in \ell^2$ definiert mit

$$x_i^{(n)} = \begin{cases} 1 & i = n \\ 0 & \text{sonst} \end{cases}$$

Für jedes $n \in \mathbb{N}$ gilt:

$$\langle Tx^{(n)}, x^{(n)} \rangle = \sum_{k=1}^{n} \frac{1}{k} \left(x_k^{(n)} \right)^2 = \frac{1}{n}$$

Es kann kein $\alpha>0$ geben mit $\langle Tx,x\rangle\geq \alpha||x||^2$, da $\langle Tx^{(n)},x^{(n)}\rangle\to 0$ für $n\to 0$ und $||x^{(n)}||=1$.