

MONASH BUSINESS SCHOOL

Forecasting using R

Rob J Hyndman

1.4 Exponential smoothing

Outline

- 1 Simple exponential smoothing
- 2 Trend methods
- 3 Lab session 6
- 4 Seasonal methods
- 5 Lab session 7
- 6 Taxonomy of exponential smoothing methods

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease exponentially.

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{\mathbf{y}}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{y}_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease exponentially.

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{\mathbf{y}}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{y}_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease exponentially.

Simple Exponential Smoothing

Forecast equation

$$\hat{\mathbf{y}}_{\mathsf{T+1}|\mathsf{T}} = \alpha \mathbf{y}_{\mathsf{T}} + \alpha (\mathbf{1} - \alpha) \mathbf{y}_{\mathsf{T-1}} + \alpha (\mathbf{1} - \alpha)^2 \mathbf{y}_{\mathsf{T-2}} + \cdots$$

where 0 < α < 1.

	Weights assigned to observations for:			
Observation	α = 0.2	α = 0.4	α = 0.6	α = 0.8
Ут	0.2	0.4	0.6	0.8
Y ₇₋₁	0.16	0.24	0.24	0.16
Y _{T-2}	0.128	0.144	0.096	0.032
У Т-3	0.1024	0.0864	0.0384	0.0064
Y T-4	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$
Y _{T-5}	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$

Simple Exponential Smoothing

Forecast equation

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1 - \alpha) y_{T-1} + \alpha (1 - \alpha)^2 y_{T-2} + \cdots$$

where 0 < α < 1.

Observation	Weights ass $\alpha = 0.2$	signed to obs α = 0.4	ervations for α = 0.6	: $\alpha = 0.8$
Ут	0.2	0.4	0.6	0.8
Ут-1	0.16	0.24	0.24	0.16
Ут-2	0.128	0.144	0.096	0.032
Ут-3	0.1024	0.0864	0.0384	0.0064
Ут-4	(0.2)(0.8) ⁴	(0.4)(0.6) ⁴	(0.6)(0.4) ⁴	(0.8)(0.2) ⁴
Ут-5	(0.2)(0.8) ⁵	(0.4)(0.6) ⁵	(0.6)(0.4) ⁵	(0.8)(0.2) ⁵

Simple Exponential Smoothing

Component form

Forecast equation ý Smoothing equation

$$\hat{\mathbf{y}}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha \mathbf{y}_t + (1 - \alpha)\ell_{t-1}$$

- ℓ_t is the level (or the smoothed value) of the series at time t.
- $\hat{y}_{t+1|t} = \alpha y_t + (1 \alpha)\hat{y}_{t|t-1}$ Iterate to get exponentially weighted moving average form.

Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j \mathbf{y}_{T-j} + (1-\alpha)^T \ell_0$$

Optimisation

- Need to choose value for α and ℓ_0
- Similarly to regression we choose α and ℓ_0 by minimising SSE:

SSE =
$$\sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$
.

 Unlike regression there is no closed form solution use numerical optimization.

Example: Oil production

Forecasting using R

Outline

- 1 Simple exponential smoothing
- 2 Trend methods
- 3 Lab session 6
- 4 Seasonal methods
- 5 Lab session 7
- 6 Taxonomy of exponential smoothing methods

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$,

- Two smoothing parameters α and β^* (0 $\leq \alpha, \beta^* \leq$ 1).
- ℓ_t level: weighted average between y_t one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.
- Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE.

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$,

- Two smoothing parameters α and β^* (0 $\leq \alpha, \beta^* \leq$ 1).
- ℓ_t level: weighted average between y_t one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.
- Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE.

Holt's method in R

```
window(ausair, start=1990, end=2004) %>%
holt(h=5, PI=FALSE) %>% autoplot
```


Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

Example: Air passengers

```
window(ausair, start=1990, end=2004) %>%
holt(damped=TRUE, h=5, PI=FALSE) %>% autoplot
```


Example: Sheep in Asia

```
livestock2 <- window(livestock, start=1970,</pre>
                       end=2000
fit1 <- ses(livestock2)
fit2 <- holt(livestock2)</pre>
fit3 <- holt(livestock2, damped = TRUE)</pre>
accuracy(fit1, livestock)
accuracy(fit2, livestock)
accuracy(fit3, livestock)
```

Example: Sheep in Asia

	SES	Linear trend	Damped trend
α	1.00	0.98	0.98
eta^*		0.00	0.00
ϕ			0.98
ℓ_{0}	263.92	258.88	253.69
b_0		5.03	5.70
Training RMSE	14.77	13.92	14.00
Test RMSE	25.46	11.88	15.50
Test MAE	20.38	10.67	13.95
Test MAPE	4.60	2.53	3.21
Test MASE	2.26	1.18	1.55

Outline

- 1 Simple exponential smoothing
- 2 Trend methods
- 3 Lab session 6
- 4 Seasonal methods
- 5 Lab session 7
- 6 Taxonomy of exponential smoothing methods

Forecasting using R Lab session 6

Lab Session 6

Forecasting using R Lab session 6

Outline

- 1 Simple exponential smoothing
- 2 Trend methods
- 3 Lab session 6
- 4 Seasonal methods
- 5 Lab session 7
- 6 Taxonomy of exponential smoothing methods

Holt-Winters additive method

Holt and Winters extended Holt's method to capture seasonality.

Component form

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-m}, \end{split}$$

- $h_m^+ = \lfloor (h-1) \mod m \rfloor + 1 =$ largest integer not greater than $(h-1) \mod m$. Ensures estimates from the final year are used for forecasting.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m =period of seasonality (e.g. m = 4 for quarterly data).

Holt-Winters additive method

- Seasonal component is usually expressed as $s_t = \gamma^*(y_t \ell_t) + (1 \gamma^*)s_{t-m}$.
- Substitute in for ℓ_t :

$$s_t = \gamma^* (\mathbf{1} - \alpha) (\mathbf{y}_t - \ell_{t-1} - b_{t-1}) + [\mathbf{1} - \gamma^* (\mathbf{1} - \alpha)] s_{t-m}$$

- We set $\gamma = \gamma^*(1 \alpha)$.
- The usual parameter restriction is $0 \le \gamma^* \le 1$, which translates to $0 \le \gamma \le (1 \alpha)$.

Holt-Winters multiplicative

For when seasonal variations are changing proportional to the level of the series.

Component form

$$\begin{split} \hat{y}_{t+h|t} &= (\ell_t + hb_t) s_{t-m+h_m^+}. \\ \ell_t &= \alpha \frac{y_t}{s_{t-m}} + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1-\beta^*) b_{t-1} \\ s_t &= \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1-\gamma) s_{t-m} \end{split}$$

- With additive method s_t is in absolute terms: within each year $\sum_i s_i \approx 0$.
- With multiplicative method s_t is in relative terms: within each year $\sum_i s_i \approx m$.

Example: Visitor Nights

```
aust <- window(austourists,start=2005)
fit1 <- hw(aust,seasonal="additive")
fit2 <- hw(aust,seasonal="multiplicative")</pre>
```


Estimated components

Holt-Winters damped method

Often the single most accurate forecasting method for seasonal data:

$$\hat{y}_{t+h|t} = [\ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t]s_{t-m+h_m^+}$$

$$\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$$

$$s_t = \gamma \frac{y_t}{(\ell_{t-1} + \phi b_{t-1})} + (1 - \gamma)s_{t-m}$$

Outline

- 1 Simple exponential smoothing
- 2 Trend methods
- 3 Lab session 6
- 4 Seasonal methods
- 5 Lab session 7
- 6 Taxonomy of exponential smoothing methods

Forecasting using R Lab session 7 24

Lab Session 7

Forecasting using R Lab session 7 25

Outline

- 1 Simple exponential smoothing
- 2 Trend methods
- 3 Lab session 6
- 4 Seasonal methods
- 5 Lab session 7
- 6 Taxonomy of exponential smoothing methods

Exponential smoothing methods

		Seasonal Component		
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
Ν	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_{d}	(Additive damped)	(A _d ,N)	(A_d,A)	(A _d ,M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

There are also multiplicative trend methods (not recommended).

Recursive formulae

Trend		Seasonal	
	N	Α	M
	$\hat{y}_{t+h t} = \ell_t$	$\hat{y}_{t+h t} = \ell_t + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = \ell_t s_{t-m+h_m^+}$
N	$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\begin{split} \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha) \ell_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1}) + (1 - \gamma) s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1} \\ s_t &= \gamma(y_t/\ell_{t-1}) + (1-\gamma)s_{t-m} \end{split}$
	$\hat{y}_{t+h t} = \ell_t + hb_t$	$\hat{y}_{t+h t} = \ell_t + hb_t + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = (\ell_t + hb_t)s_{t-m+h_m^+}$
A	$\begin{split} \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} - b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$
	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t$	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t + s_{t-m+h_m^+}$	$\hat{y}_{t+h t} = (\ell_t + \phi_h b_t) s_{t-m+h_m^+}$
A_d	$\begin{split} \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)\phi b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1} - \phi b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$

R functions

- Simple exponential smoothing: no trend. ses(y)
- Holt's method: linear trend. holt(y)
- Damped trend method. holt(y, damped=TRUE)
- Holt-Winters methods

```
hw(y, damped=TRUE, seasonal="additive")
hw(y, damped=FALSE, seasonal="additive")
hw(y, damped=TRUE, seasonal="multiplicative")
hw(y, damped=FALSE, seasonal="multiplicative")
```