Attacks on Autonomous Driving Systems:Automated Model-based Detection

EECE 571K: Security and Reliability in IoT - Project Proposal

Aarti Kashyap
Student number: 19115724
Electrical and Computer Engineering, UBC
akashyap18@ece.ubc.ca

Abdul Rehman Anwer
Student number: 50342690
Electrical and Computer Engineering, UBC
abanwer@ece.ubc.ca

Abstract—Autonomous vehicles (AV) have seen an immense increase in popularity recently and are expected to become fully operational on normal roads in near future. The safety critical nature of autonomous driving systems (ADS) of AVs makes quantifying the resilience properties of such systems highly important, for ensuring public and governmental support for their adoption. Prior work in this area focuses on using Fault Injection techniques to assess the safety and reliability of autonomous vehicles, which do not test for all the possible attacks on ADS. We show that there can be attacks which can evade the safety checks of ADS and lead to catastophic consequences in the physical systems (eg. crashing) We propose using systematic approaches based on formal methods to find vulnerabilities in individual sub-components of an ADS and finding the effect of these vulnerabilities on overall resilience of integrated autonomous driving systems..

I. INTRODUCTION

Fully automated self driving vehicles are poised to take the roads in near future. Partial self driving systems have already been deployed and tested for over a billion miles [2], providing valuable sensor data that is used to improve the performance of automated driving systems. The adoption of autonomous driving systems (ADS) on a large scale in real world is highly dependent on their reliability. Moreover, for the acceptance of deployment of such safety critical systems by wider public, makes it necessary to understand the resilience profiles of autonomous driving systems, identify and improve weaknesses in current designs and exhaustively test these fixes to increase public confidence.

Autonomous Driving System are composed of multiple sub-systems, the major parts being the sensor arrays and the control systems. A wide range of sensors like RGB cameras, radars, lidars, sonar, GPS etc. are used to provide information about the environment to the control system of ADS, which usually uses a Deep Neural Network to find the best course of action and gives commands to actuators, to control the movement of the vehicle. Such a highly integrated systems introduce various concerns about the overall reliability of the system. Moreover as ADS are highly safety critical, regulations and standards impose stringent reliability requirements on their components. For example the SDC FIT rate (Failure-in-Time rate) for of SoC used for DNN inferencing specified

by ISO-26262 is 10 i.e. ten failures in one billion hours of operation [5]. These strict reliability requirements, demand that a reliability analysis be performed on integrated systems and vulnerabilities or faults that can propagate, from one sub-system to other sub-systems be identified and mitigation techniques applied to make the system resilient to such faults.

Studying the autonomous driving system is hindered by resource intensive nature of training and testing solutions in real world scenarios. Dosovitskiy et al. [1] recently introduced CARLA, which is an open source simulator for training and validating autonomous driving platforms. It provides an urban environment setting from which data is captured using a flexible array of sensors and signals that are normally present in ADS, this simulated data can then be used to train and test different sub-systems of an ADS. As CARLA also provides sensor reading in addition to images captured by camera, it can be used to study the effect of a vulnerability present in a single component (for example the LIDAR sensor) on overall reliability of the whole ADS. CARLA operates in a server-client model. Server simulates the environment and generates readings for different sensors which are then provided to the client which acts as a driving agent (DA) taking different control decisions based on the provided sensor inputs. Separation of server and client functionality permits implementation of a wide range of DAs.

II. APPROACH

In this paper, we demonstrate cyber-physical attacks on Autonomous Driving systems when some damage is induced in the sensors of the system. We intend to study the effect of tampering the sensors in a subtle manner (e.g. changing temperature, tampering the communication channel between sensor and the control system, introducing malicious packet in the hardware directly controlling the sensor to cause unexpected activities) on the output of the entire system. This is an unexplored area and the first step in this research involves formulating of attack models for ADS. To detect and mitigate such attacks, we will develop a model-based analysis framework based on the dynamics of the ADS in order to test for any malicious activity.

CARLA will be used as a test platform for development and testing of our approach as it provides a convenient way to instrument and modify the readings of different sensors, as well as the behavior of driver agents that controls the autonomous vehicle. We intend to start our vulnerability analysis, by analyzing the effect on reliability of the system by inducing faults in one of the sensors. This will help in finding out the validity and effectiveness of our approach on a smaller scale so that any adjustment required in our research plan, can be carried out in the initial stages of the project.

Current approaches that analyze resilience of ADS systems on a holistic level perform fault injections to find vulnerabilities in the system which is quite resource intensive. Details about such approaches is provided in section III. Our proposed methodology will forgo such ad hoc approaches and test different components of an ADS in a systematic way by modeling its behavior and using formal methods to validate its correctness and finding any unexpected behavior that introduces vulnerabilities in the ADS system.

III. RELATED WORK

Reliability and safety of individual components in ADS have been previously studied. Li et al. [5] studied the impact of soft errors on DNN using Fault injections on hardware accelerators and proposed solutions for making DNNs more resilient. Using Fault injections for testing reliability of system has inherent disadvantage that for complex systems like DNNs a huge number of FI are required to get statistically meaningful insights, moreover the coverage that FI provides is also dependent on the input used for FI, so in case of DNN where the input has a diverse range, performing FI to get meaningful resilience profile of a DNN sub-system of an ADS can be quite resource intensive, otherwise some corner case may be missed during the analysis. Keeping these things in mind Pi et al. [6] introduced DeepXplore, which tests deep learning systems in a systematic way by finding the inputs for DL systems, that will result in mismatch in output for different DL systems that provide same functionality. In this way corner cases that are not captured by regular testing and training cycle in neural networks are found thus exposing erroneous behavior of the system without a significant overhead of finding corner cases manually. DeepXplore provides also finds input that maximize the fraction of neurons activated when tested, this increasing the tests coverage of DNNs. DeepXplore can provide a good defense against vulnerabilities and erroneous behaviors in DNN part of ADS but for overall reliability of the program other components of the system also need to be analyzed.

Jha et al. [3] developed AVFI which is a fault injector that performs resilient assessment of complete autonomous vehicle(AV) systems. AVFI inject faults in a complete AV system which consists of CARLA simulator and a driving agent which performs the control actions. AVFI can inject hardware faults (modeling soft errors), data faults (modeling error in sensor values), timing faults and machine learning

faults (errors leading to wrong prediction). Jha et al. [4] developed Kayotee which is a FI based tool to inject faults in an ADS and then classifying errors and safety violations impacting the reliability of autonomous vehicles. Kayotee injects faults in both hardware and software components of proprietary Nvidia DriveWorks platform, in a closed looped environment and then error propagation and masking characteristics of the ADS compute stack are evaluated using a predefined ontology model.Kayotee and AVFI provides a holistic view of the system but its fault coverage is also limited, as only those errors can be studied which have been simulated using FI. As whole system is taken into consideration during holistic analysis, trying to increase the test coverage using FI can lead to state space explosion.

REFERENCES

- [1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An Open Urban Driving Simulator. In 1st Conference on Robot Learning (CoRL), 2018, 2018.
- [2] Tesla Inc. Vehicle safety report (Q4-2018). https://www.tesla.com/en_ CA/VehicleSafetyReport.
- [3] Saurabh Jha, Subho S. Banerjee, James Cyriac, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. CARLA: An Open Urban Driving Simulator. In *International Conference on Dependable Systems and Networks Workshops*, 2018. IEEE, 2018.
- [4] Saurabh Jha, Timothy Tsai, Siva Hari, Michael Sullivan, Zbigniew Kalbarczyk, Stephen W. Keckler, and Ravishankar K. Iyer. Kayotee: A Fault Injection-based System to Assess the Safety and Reliability of Autonomous Vehicles to Faults and Errors. In *International Workshop on Automotive Reliability and Test (ART)*, 2018. IEEE, 2018.
- [5] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman, Jeol Emer, and Stephen Keckler. Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications. In *International Conference for High Performance Computing, Networking, Storage, and Analysis (SC)*, 2017. ACM, 2017.
- [6] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore: Automated Whitebox Testing of Deep Learning Systems. In Symposium on Operating Systems Principles (SOSP), 2017, pages 1–18. ACM, 2017.