P	Marek Polewski Cessna 150m rowadzący: Maciej Lasek Grupa: ML6
Projekt2	
Charakterystyka aerodynai	miczna płata
Data oddania projektu	OCENA:

Spis treści

1	Geometria płata	1
2	Charakterystyka profilu	2
	2.1 Poprawka ze względu na liczbę Reynoldsa	4
3	Charakterystyki płata	4
4	Współczynnik a dla płata	5

1 Geometria płata

Cessna 150m posiada obrysk skrzydła składający się części prostokątnej i trapezowej. Powoduje to konieczność skorzystania ze wzoru całkowego na wyznaczenie cięciwy aerodunamicznej c_a oraz x_n .

$$c_{a} = \frac{\int_{-b/2}^{b/2} (c(y))^{2} dy}{\int_{-b/2}^{b/2} c(y) dy} = 1.5m \qquad x_{n} = \frac{\int_{-b/2}^{b/2} c(y)x(y)dy}{\int_{-b/2}^{b/2} c(y)dy} = 0.09m$$

Rys. 1: Kształt skrzydła Cessny 150m

Wielkości geometryczne płata	Wzór	Wartość	Jednostka
Cięciwa główna c ₀		1.6131	m
Cięciwa na końcówce (c _k)		1.12917	m
Rozpiętość (b)		9.94745	m
Kąt skosu (vx0)		0.04363	
Pole powierzchni (s)		15	m^2
$SCA(c_a)$		1.5	m
Zbieżność płata (λ)	$\frac{c_k}{c_0} = \frac{1.129}{1.613}$	0.7	
Wydłużenie geometryczne (Λ)	$\Lambda = \frac{b^2}{S}$	6.59678	
Xn		0.09	m
Yn		2.11091	m

TAB. 1: Podstawowe paramtery geometrii płata

2 Charakterystyka profilu

Profil skrzydła Cessny 150m to profil **NACA 2412**. W tym samolocie prędkość przeciągnięcia to 24.7 $\frac{m}{s}$.

- prędkość przeciągnięcia: $V_s = 24.7 \frac{m}{s}$
- lepkość kinematyczna: $v_0 = 0.00001461 \frac{m^2}{s}$
- $Re = \frac{V_s c_a}{v_0} = 2535934.292$

(A) Wartość współczynnika C_z w zależności od kąta natarcia

(B) Wartość wpółczynnika C_x w zaleności od C_z

Rys. 2: Wartości współczynników

(A) Przybliżenie wielomianem 5-tego stopnia współczynnikami -3.54e-07, 7.06e-07, -1.8183e-05, -0.000102511, 0.106237523, 0.224317418

Rys. 3: Wartości cz

index	alpha	cz	cx	index	alpha	cz	cx
1	-18.5143	-0.8475	0.0123	23	2.8571	0.4972	0.0064
2	-17.1429	-0.8870	0.0131	24	3.4286	0.5989	0.0065
3	-16.5714	-0.9379	0.0145	25	4.8000	0.6893	0.0069
4	-16.1143	-0.9944	0.0165	26	5.9429	0.8023	0.0085
5	-15.0857	-1.0734	0.0202	27	6.6286	0.8927	0.0097
6	-13.4857	-1.0621	0.0196	28	8.0000	1.0282	0.0112
7	-12.0000	-0.9831	0.0161	29	9.1429	1.1525	0.0127
8	-10.7429	-0.8588	0.0125	30	10.1714	1.2316	0.0138
9	-9.3714	-0.7345	0.0107	31	10.7429	1.3277	0.0160
10	-8.6857	-0.6610	0.0101	32	11.8857	1.4011	0.0187
11	-8.0000	-0.5763	0.0095	33	12.6857	1.4520	0.0214
12	-7.3143	-0.5198	0.0090	34	13.7143	1.5254	0.0250
13	-6.6286	-0.4576	0.0085	35	14.4000	1.5989	0.0295
14	-5.2571	-0.2938	0.0076	36	15.3143	1.5876	0.0296
15	-4.3429	-0.2090	0.0073	37	16.5714	1.4746	0.0230
16	-3.4286	-0.1243	0.0070	38	17.0286	1.3785	0.0177
17	-2.0571	0.0056	0.0067	39	18.0571	1.2599	0.0144
18	-1.3714	0.0734	0.0066	40	18.7429	1.2260	0.0137
19	-0.4571	0.1525	0.0064	41	19.4286	1.1695	0.0129
20	0.3429	0.2712	0.0063	42	20.3429	1.1525	0.0127
21	1.0286	0.3446	0.0063	43	20.4571	1.1695	0.0129
22	2.0571	0.4068	0.0063				

Powyższe wartości zostały aproksymowane w Pythonie przy pomocy biblioteki scipy.

Dalsze obliczenia geometrii płata:

• położenie środka erodynamicznego dla $Re = 3.110^6$:

$$-\bar{x}_{s,a} = 0.239c_a = 0.3585m$$

$$-\bar{z}_{s,a} = 0.006c_a = 0.009m$$

- Wartość $C_{m.s.a} = -0.048 \text{ dla } -10^{o} \ \alpha \ 10^{o}$
- wartość $a_{\infty} = \frac{dC_z}{d\alpha} = 0.0997 \frac{1}{deg} = 5.71 \frac{1}{rad}$ na podstawie Rys.4

2.1 Poprawka ze względu na liczbę Reynoldsa

Dane:

- $C_{x_{min}} = 0.0063$
- $C_{x_{min2}} = C_{x_{min1}} \cdot \left(\frac{Re_1}{10 \cdot 10^6}\right)^{0.11} = 0.0054$
- $C_{zmax} = 1.59$
- $\Delta C_x = (C_{xmin} C_{xmin1})(1 \left| \frac{C_z}{C_{zmax}} \right|)$
- $C_{x'\infty} = C_{x\infty} + \Delta C_x$

3 Charakterystyki płata

Współczynnik oporu dla płata o skończonym wydłużeniu wyznaczyć można ze związków:

$$Cx'_p = C'_{x\infty} + \Delta Cx_{tech} + Cx_i$$
 $Cx_i = \frac{Cz^2}{\pi \Lambda} (1 + \delta)$

Wartość współczynnika Cx Cxtech szacuje w sposób przybliżony dla skrzydła z metalu

$$\Delta C x_{tech} = 0.15 \cdot C x_{\infty min} = 0.15 * 0.0063 = 0.0009$$

Średni kąt natarcia dla płata możemy wyliczyć:

$$\alpha_p = \alpha_{\infty} + \alpha_i$$
 $\alpha_i = \frac{Cz}{\pi\Lambda}(1+\tau)$

Wartości współczynnika τ wyznaczyć można dość dokładnie z następujących wzorów:

$$\tau_1 = 0.023 \left(\frac{\Lambda}{\alpha_{\infty}}\right)^3 - 0.103 \left(\frac{\Lambda}{\alpha_{\infty}}\right)^2 + 0.25 \left(\frac{\Lambda}{\alpha_{\infty}}\right) = 0.50601 \qquad \tau_2 = -0.18\lambda^5 + 1.52\lambda^4 - 3.51\lambda^3 + 3.5\lambda^2 - 1.33 + 0.17 = 0.0847$$

$$\tau = \frac{\tau_1 \cdot \tau_2}{0.17} = 0.02523$$

Natomiast współczynnik δ liczymy (dla $\beta = 1.53^{\circ}$):

$$\delta_1 = 0.0537 \frac{\Lambda}{\alpha_{\infty}} - 0.005 = 0.0570$$
 $\delta_2 = -0.43\lambda^5 + 1.83\lambda^4 - 3.06\lambda^3 + 2.56\lambda^2 - \lambda + 0.148 = 0.0199$

$$\delta_3 = \left(-2.2 \cdot 10^{-7} \Lambda^3 + 10^{-7} \cdot \Lambda^2 + 1.6 \cdot 10^{-5}\right) \cdot \beta_{25}^3 + 1 = 0.999 \qquad \delta = \frac{\delta_1 \cdot \delta_2 \cdot \delta_3}{0.048} = 0.023683$$

4 Współczynnik a dla płata

Współczynnik a dla płata odczytany z wykresu będzie wynosił:

$$a = \frac{dCz}{d\alpha_p} = 0.0785 \frac{1}{deg} = 4.5 \frac{1}{rad}$$

Natomiast obliczony z ze wzoru:

$$a = \frac{a_{\infty}}{1 + \frac{a_{\infty}}{\pi \Lambda} \cdot (1 + \tau)} = \frac{5.71}{1 + \frac{4.27}{\pi \cdot 6.59} (1 + 0.05134)} = 4.5$$

Wartości te są bardzo zbliżone i mieszczą się w założonym błędzie 10 %.

Rys. 4: Przybliżenie liniowe i odczytanie wsp. kierukowego

Ostateczne wyniki:

(A) Wartość współczynnika C_z

(B) Wartość współczynnika C_z

index	alpha	cz	cx	cx'	c'x_p	a_i [deg]	$\alpha_p[deg]$
1	-18.5143	-0.8475	0.0123	0.0119	0.0482	-2.3845	-20.8988
2	-17.1429	-0.8870	0.0131	0.0128	0.0524	-2.4957	-19.6386
3	-16.5714	-0.9379	0.0145	0.0142	0.0584	-2.6388	-19.2102
4	-16.1143	-0.9944	0.0165	0.0162	0.0658	-2.7978	-18.9121
5	-15.0857	-1.0734	0.0202	0.0199	0.0776	-3.0203	-18.1060
6	-13.4857	-1.0621	0.0196	0.0193	0.0758	-2.9885	-16.4742
7	-12.0000	-0.9831	0.0161	0.0157	0.0642	-2.7660	-14.7660
8	-10.7429	-0.8588	0.0125	0.0121	0.0493	-2.4163	-13.1591
9	-9.3714	-0.7345	0.0107	0.0102	0.0377	-2.0665	-11.4380
10	-8.6857	-0.6610	0.0101	0.0096	0.0320	-1.8599	-10.5456
11	-8.0000	-0.5763	0.0095	0.0089	0.0262	-1.6214	-9.6214
12	-7.3143	-0.5198	0.0090	0.0084	0.0227	-1.4625	-8.7768
13	-6.6286	-0.4576	0.0085	0.0079	0.0191	-1.2876	-7.9162
14	-5.2571	-0.2938	0.0076	0.0068	0.0120	-0.8266	-6.0838
15	-4.3429	-0.2090	0.0073	0.0065	0.0096	-0.5882	-4.9310
16	-3.4286	-0.1243	0.0070	0.0062	0.0079	-0.3497	-3.7783
17	-2.0571	0.0056	0.0067	0.0058	0.0067	0.0159	-2.0412
18	-1.3714	0.0734	0.0066	0.0057	0.0069	0.2067	-1.1648
19	-0.4571	0.1525	0.0064	0.0056	0.0077	0.4292	-0.0279
20	0.3429	0.2712	0.0063	0.0056	0.0102	0.7630	1.1059
21	1.0286	0.3446	0.0063	0.0056	0.0124	0.9697	1.9983
22	2.0571	0.4068	0.0063	0.0057	0.0148	1.1445	3.2017
23	2.8571	0.4972	0.0064	0.0058	0.0189	1.3989	4.2560
24	3.4286	0.5989	0.0065	0.0060	0.0246	1.6850	5.1136
25	4.8000	0.6893	0.0069	0.0064	0.0307	1.9394	6.7394
26	5.9429	0.8023	0.0085	0.0081	0.0407	2.2573	8.2002
27	6.6286	0.8927	0.0097	0.0094	0.0495	2.5116	9.1402
28	8.0000	1.0282	0.0112	0.0109	0.0639	2.8932	10.8932
29	9.1429	1.1525	0.0127	0.0124	0.0787	3.2429	12.3857
30	10.1714	1.2316	0.0138	0.0136	0.0892	3.4654	13.6369
31	10.7429	1.3277	0.0160	0.0159	0.1036	3.7357	14.4785
32	11.8857	1.4011	0.0187	0.0186	0.1161	3.9423	15.8280
33	12.6857	1.4520	0.0214	0.0214	0.1260	4.0854	16.7711
34	13.7143	1.5254	0.0250	0.0250	0.1404	4.2920	18.0063
35	14.4000	1.5989	0.0295	0.0295	0.1563	4.4987	18.8987
36	15.3143	1.5876	0.0296	0.0296	0.1546	4.4669	19.7812
37	16.5714	1.4746	0.0230	0.0230	0.1309	4.1490	20.7204
38	17.0286	1.3785	0.0177	0.0176	0.1121	3.8787	20.9073
39	18.0571	1.2599	0.0144	0.0142	0.0932	3.5449	21.6021
40	18.7429	1.2260	0.0137	0.0135	0.0884	3.4495	22.1924
41	19.4286	1.1695	0.0129	0.0127	0.0809	3.2906	22.7191
42	20.3429	1.1525	0.0127	0.0124	0.0787	3.2429	23.5857
43	20.4571	1.1695	0.0129	0.0127	0.0809	3.2906	23.7477

Bibliografia

- [1] Wykresy współczynników C_z C_x https://aeroknowledge77.files.wordpress.com/2011/09/58986488-theory-of-wing-sections-including-a-summary-of-airfoil-data.pdf strona 478
- $[2] \ \ GUDMUNDSSON-GENERAL\ AVIATION\ AIRCRAFT\ DESIGN-Appendix\ D-geometry\ of\ lifting\ surfaces$