FIT5047 First Theory Assignment

2022年3月31日 23:06

1 Tentative Control Strategies

(a)Depth First Search (DFS)

List the nodes according to their order of expansion:

list the nodes in the final search tree:

[**44**,24,2,18,5,9,10,**3**, 7]

(b)Breadth First Search (BFS)

List the nodes according to their order of expansion:

2 Backtracking

- (a) Right, Left, Middle
- (b) [44, 24, 5, 10, **3**, 7, 9, 18, 4, 14, 6, 8, 2]
- (c) [44, 24, 5, 10, 3]

3 Algorithm A/A*

(a) Sum of Manhattan Distance as the heuristic function.

$$H(n) = 1 + 2 + 1 + 0 + 0 = 4$$

(b) g(n)= sum of the cost of move

$$f(n) = g(n) + h(n)$$

Where g(n)>0 and $h(n) \le h^*(n)$ (minimum cost path to goal larger than estimate cost: h(n))

4 Irrevocable Control Strategies

(a)representation

- genes: 0, 1 to represent the item is not chosen or is chosen.
- chromosomes: A 10-number string to represent the which items are selected in bag. 10 genes per chromosome. E.g. [1000000000] - the first item is selected.

(b)fitness function

Number of sum the usefulness value of chromosomes' picked items(which

(c)E.g. $[110000000] \rightarrow 2+3 = 5$ (fitness value)

\mathcal{A}_{i}					-	-			_	
A2 A3	0		l	0	l	0	0	0	D'	0
A_3	0	0	0	0	0	l	0	١	0	0
A 4	0	0	0	0	0	0	1	0	0	

Gene **Chyomosome**

population

	Usefulness value	Probabilit		
A1	10	22.2%		
A2	12	26.6%		
A3	10	22.2%		
A4	13	28.8%		

ty
$$10/(0+12+10+13) = 22.2\%$$

 $12/(10+12+10+13) = 26.6\%$
 $10/(10+12+10+13) = 22.2\%$
 $13/(10+12+10+13) = 28.8\%$

5 Adversarial Search (a)MINIMAX

Max

Min

Max

Min

