Relációs adatbázisok tervezése ---1

Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, 2009

- 3.3.1. Bevezetés: anomáliák
- 3.3.2. Relációk felbontása
- 3.1. Funkcionális függőségek
- 3.2. Funk.függőségek szabályai, X+ attribútumhalmaz lezártja, és X+ kiszámítására algoritmus, Funkc.függőségi halmazok lezárása, Funkcionális függőségek vetítése

Folyt. 2.részben: 3.3.3-3.3.4. Boyce-Codd normálforma és 3.4. A felbontások tulajdonságai, 3.részben 3NF, stb.

Relációs adatmodell története

- E.F. Codd 1970-ban publikált egy cikket
 A Relational Model of Data for Large Shared Data Banks
 Link: http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
 amelyben azt javasolta, hogy az adatokat táblázatokban,
 relációkban tárolják. Az elméletére alapozva jött létre a
 relációs adatmodell, és erre épülve jöttek létre a relációs
 adatmodellen alapuló (piaci) relációs adatbázis-kezelők.
- Relációs sématervezés: függőségeken alapuló felbontás, normalizálás: Ezen a kurzuson a funkcionális függőségen alapuló Boyce_Codd normálformát (BCNF) és a 3NF-t, illetve a többértékű függőségen alapuló 4normálformát tanuljuk, és megvizsgáljuk a felbontások tulajdonságait (veszteségmentesség, függőségőrzés).

Tankönyv 3.fejezet: Bevezető példa

Több tábla helyett -> vegyük egy táblában lenne Melyik séma jobb?

Sörivó(név, cím, kedveltSörök, gyártó, aKedvencSör)

név	cím	kedveltSörök	gyártó	kedvencS
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	???	WickedAle	Pete's	???
Spock	Enterprise	Bud	???	Bud

Redundáns adat, a ??? helyén mi szerepel, ha mindenkinek csak egy lakcíme és aKedvencSöre lehet, vagyis a név meghatározza a címet és a aKedvencSör-t és a Söröknek is egy gyártója

Hibás tervezés problémái

A rosszul tervezettség anomáliákat is eredményez Sörivó(név, cím, kedveltSörök, gyártó, aKedvencSör)

név	cím	kedveltSörök	gyártó	kedvencS
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	???	WickedAle	Pete's	???
Spock	Enterprise	Bud	???	Bud

- Módosítási anomália: ha Janeway-t Jane-re módosítjuk, megtesszük-e ezt minden sornál?
- Törlési anomália: Ha senki sem szereti a Bud sört, azzal töröljük azt az infót is, hogy ki gyártotta.
- Beillesztési anomália: és felvinni ilyen gyártót?

Relációs sémák tervezése

- Cél: az anomáliák és a redundancia megszüntetése.
 - Módosítási anomália : egy adat egy előfordulását megváltoztatjuk, más előfordulásait azonban nem.
 - Törlési anomália : törléskor olyan adatot is elveszítünk, amit nem szeretnénk.
 - Beillesztési anomália : megszorítás, trigger kell, hogy ellenőrizni tudjuk (pl. a kulcsfüggőséget)
 - Redundancia (többszörös tárolás feleslegesen)

Dekomponálás (felbontás)

A fenti problémáktól dekomponálással (felbontással) tudunk megszabadulni:

Definíció:

d={R₁,...,R_k} az (R,F) dekompozíciója, ha nem marad ki attribútum, azaz R₁∪...∪R_k=R. Az adattábla felbontását projekcióval végezzük.

Példa:

```
R=ABCDE, d={AD,BCE,ABE}
3 tagú dekompozíció, ahol
R<sub>1</sub>=AD, R<sub>2</sub>=BCE, R<sub>3</sub>=ABE,
```

Felbontásra vonatkozó elvárások

- Elvárások
- (1) A vetületek legyenek jó tulajdonságúak, és a vetületi függőségi rendszere egyszerű legyen (normálformák: BCNF, 3NF, 4NF, később)
- (2) A felbontás is jó tulajdonságú legyen, vagyis ne legyen információvesztés: Veszteségmentes legyen a felbontás (VM)
- (3) Függőségek megőrzése a vetületekben (FŐ)
- Tételek (ezekre nézünk majd algoritmusokat)
 - Mindig van VM BCNF-ra való felbontás
 - Mindig van VM FÖ 3NF-ra való felbontás

Relációs sématervezés (vázlat)

- I. Függőségek: a sématervezésnél használjuk
 - Funkcionális függőség
 - Többértékű függőség
- II. Normalizálás: "jó" sémákra való felbontás
 - Funkcionális függőség -> BCNF
 - Funkcionális függőség -> 3NF
 - Többértékű függőség -> 4NF
- III. Felbontás tulajdonságai: "jó" tulajdonságok
 - Veszteségmentesség
 - Függőségőrző felbontás

Funkcionális függőségek

- X ->Y az R relációra vonatkozó megszorítás, miszerint ha két sor megegyezik X összes attribútumán, Y attribútumain is meg kell, hogy egyezzenek.
 - Jelölés: X, Y, Z,... attribútum halmazokat; A, B, C,... attribútumokat jelöl.
 - Jelölés: {A,B,C} attribútum halmaz helyett ABC-t írunk.

Funkcionális függőségek (definíció)

Definíció. Legyen R(U) egy relációséma, továbbá X és Y az U attribútum-halmaz részhalmazai. X-től funkcionálisan függ Y (jelölésben $X \rightarrow Y$), ha bármely R feletti T tábla esetén valahányszor két sor megegyezik X-en, akkor megegyezik Y-on is \forall t1,t2 \in T esetén (t1[X]=t2[X] \Rightarrow t1[Y]=t2[Y]).

Ez lényegében azt jelenti, hogy az X-beli attribútumok értéke egyértelműen meghatározza az Y-beli attribútumok értékét.

Jelölés: R |= X → Y vagyis
 R kielégíti X → Y függőséget

Példa: Funkcionális függőség

Sörivók(név, cím, kedveltSörök, gyártó, aKedvencSör)

Feltehetjük például, hogy az alábbi FF-ek teljesülnek:

Mert kedveltSörök -> gyártó

Jobboldalak szétvágása (FF)

- > X-> $A_1A_2...A_n$ akkor és csak akkor teljesül R relációra, ha X-> A_1 , X-> A_2 ,..., X-> A_n is teljesül R-en.
- Példa: A->BC ekvivalens A->B és A->C függőségek kettősével.
- Baloldalak szétvágására nincs szabály!!!
- Ezért elég nézni, ha a FF-k jobboldalán egyetlen attribútum szerepel

Kulcs, szuperkulcs

- Funkcionális függőség X → Y speciális esetben, ha Y = U, ez a kulcsfüggőség.
- R(U) relációséma esetén az U attribútum-halmaz egy K részhalmaza akkor és csak akkor szuperkulcs, ha a K → U FF teljesül.
- A kulcsot tehát a függőség fogalma alapján is lehet definiálni: olyan K attribútum-halmazt nevezünk kulcsnak, amelytől az összes többi attribútum függ (vagyis szuperkulcs), de K-ból bármely attribútumot elhagyva ez már nem teljesül (vagyis minimális szuperkulcs)

Példa: szuperkulcs, kulcs

Sörivók(név, cím, kedveltSörök, gyártó, aKedvencSör)

- / név, kedveltSörök} szuperkulcs, ez a két attr. meghatározza funkcionálisan a maradék attr-kat. név -> cím aKedvencSör kedveltSörök -> gyártó
- {név, kedveltSörök} kulcs, hiszen sem {név}, sem {kedveltSörök} nem szuperkulcs. név -> gyártól; kedveltSörök -> cím nem telj.
- Az előbbi kívül nincs több kulcs, de számos szuperkulcs megadható (ami ezt tartalmazza)

Másik példa (több kulcs is lehet)

- Legyen ABC sémán def.FF-ek: AB ->C és C ->B.
 - Példa: A = utca, B = város, C = irányítószám.
- Itt két kulcs is van: {A,B} és {A,C}.

Az implikációs probléma

- Legyenek X₁ -> A₁, X₂ -> A₂,..., X_n -> A_n adott FF-k, szeretnénk tudni, hogy Y -> B teljesül-e olyan relációkra, amire az előbbi FF-k teljesülnek.
 - Példa: A -> B és B -> C teljesülése esetén A -> C biztosan teljesül.
- Implikációs probléma eldöntése definíció alapján (minden előfordulásra ellenőrizni) túl nehéz, de van egyszerűbb lehetőség: levezetési szabályok segítségével, lásd Armstrong-axiómák.

Armstrong-axiómák

Legyen R(U) relációséma és X,Y ⊆ U, és jelölje XY az X és Y attribútum-halmazok egyesítését. F legyen funkcionális függőségek tetsz. halmaza.

Armstrong axiómák:

- ➤ A1 (reflexivitás): Y⊆X esetén X→Y.
- A2 (bővíthetőség): X→Y és tetszőleges Z esetén XZ→YZ.
- \rightarrow A3 (tranzitivitás): X \rightarrow Y és Y \rightarrow Z esetén X \rightarrow Z.

Levezetés fogalma

- F implikálja X→Y-t (F-nek következménye X→Y), ha minden olyan táblában, amelyben F összes függősége teljesül, azokra X→Y is teljesül. Jelölés: F|= X→Y, ha F implikálja X→Y –et.
- X→Y levezethető F-ből, ha van olyan X₁→Y₁, ..., X_k→Y_k,..., X→Y véges levezetés, hogy ∀k-ra X_k→Y_k ∈F vagy X_k→Y_k az FD1,FD2,FD3 axiómák alapján kapható a levezetésben előtte szereplő függőségekből.

Jelölés: F|—X→Y, ha X→Y levezethető F-ből

További levezethető szabályok:

- Szétvághatósági (vagy felbontási) szabály
 F|—X→Y és Z⊆ Y esetén F|—X→Z.
- 5. Összevonhatósági (vagy unió) szabály F|—X→Y és F|—X→Z esetén F|—X→YZ.
- 6. Pszeudotranzitivitás
 F|—X→Y és F|—WY→Z esetén F|—XW→Z.
- Bizonyítás (4): Reflexivitási axióma miatt F|—Y→Z, és tranzitivitási axióma miatt F|—X→Z.
- Bizonyítás (5): Bővítési axióma miatt F|—XX→YX és F|—YX→YZ, és XX=X, valamint a tranzitivitási axióma miatt F|—X→YZ.
- Bizonyítás (6): Bővítési axióma miatt F|—XW→YW, és YW=WY, és a tranzitivitási axióma miatt F|—XW→Z.

Szétvághatóság/összevonhatóság

A szétvághatósági és összevonhatósági szabályok következménye:

$$F \mid X \rightarrow Y \Leftrightarrow \forall A_i \in Y \text{ esetén } F \mid X \rightarrow A_i$$

- A következmény miatt feltehető, hogy a függőségek jobb oldalai 1 attribútumból állnak.
- Fontos! A függőségeknek csak a jobboldalát lehet szétbontani, a baloldalra ez természetesen nem igaz (például {filmcím, év} → stúdió)

Armstrong-axiómák (tétel)

TÉTEL: Az Armstrong-axiómarendszer helyes és teljes, azaz minden levezethető függőség implikálódik is, illetve azok a függőségek, amelyeket F implikál azok levezethetők F-ből.

$$F \mid X \rightarrow Y \Leftrightarrow F \mid X \rightarrow Y$$

Implikáció eldöntése --- Lezárással

- Implikációs probléma: Legyenek X₁ -> A₁, X₂ -> A₂,..., X_n -> A_n adott FF-k, szeretnénk tudni, hogy Y -> B teljesül-e minden olyan relációkra, amire az előbbi FF-k teljesülnek. Hogyan tudjuk ellenőrizni, hogy egy előfordulás nem teljesíti Y -> B ?
- Mivel az Armstrong axiómarendszer helyes és teljes, elegendő a levezetési szabályokkal levezetni. Még a levezetési szabályoknál is van egyszerűbb út: kiszámítjuk Y lezártját: Y +-t
- Attribútum-halmaz lezárására teszt:

Attribútumhalmaz lezártja (definíció)

- Adott R séma és F funkcionális függőségek halmaza mellett, Y⁺ az összes olyan A attribútum halmaza, amire Y->A következik F-ből.
- ▶ (R,F) séma esetén legyen Y ⊆ R.
- Definíció: Y^{+(F)}:={A | F|—Y→A} az Y attribútum-halmaz lezárása F-re nézve.

Attribútumhalmaz lezártja (lemma)

ightharpoonup LEMMA: $F \mid --- Y \rightarrow Z \Leftrightarrow Z \subseteq Y^+$.

Bizonyítás:

- (⇒) $\forall A \in Z$ esetén a reflexivitás és tranzitivitás miatt $F|_Y \rightarrow A$, azaz $Z \subseteq Y^+$. (⇐) $\forall A \in Z \subset Y^+$ esetén $F|_Y \rightarrow A$, és
- az egyesítési szabály miatt F|—Y→Z.
- Lemma következménye: az implikációs probléma megoldásához elég az Y+-t hatékonyan kiszámolni.

Algoritmus X⁺attr.halmaz lezártja

- Input: Y attribútumhz., F funk.függőségek hz.
- Output: Y+ (zárás, típusa: attribútumhalmaz)
- Algoritmus Y+ kiszámítására:

```
/* Iteráció, amíg Y(n) változik */
Y(0):=Y
Y(n+1):= Y(n) ∪ {A| X→Z∈F, A∈Z, X ⊆ Y(n)}
Ha Y(v+1)=Y(v), akkor Output: Y(v)=Y+.
```

Miért működik az Y+ lezárási algoritmus? (Tankönyv 3.2.5. szakasz, 81-83.oldal)

Lezárás (teszt)

- Kiindulás: Y + = Y
- Indukció: Olyan FF-ket keresünk, melyeknek a baloldala már benne van Y+-ban. Ha X-> A ilyen, A-t hozzáadjuk Y+-hoz.

A lezárást kiszámító algoritmus "helyes"

- Az algoritmus "tényleg" Y+-t számítja ki. Vagyis:
 - 1. Ha az A attribútum valamely i-re belekerül Y(i)-be, akkor A valóban eleme Y+-nak.
 - Másfelől, ha A ∈Y⁺, akkor létezik olyan i, amire A belekerül Y(i)-be.
- Az első állítás: Miért csak az igaz funkcionális függőségeket fogadja el a lezárási algoritmus? Könnyen bizonyítható indukcióval [Tk.3.2.5.]

A lezárást kiszámító algoritmus "teljes"

- A második állítás: Miért talál meg minden igaz függőséget a lezárási algoritmus? [Tk.3.2.5.]
- Konstrukciós bizonyítás: Tegyük fel, hogy A ∈Y⁺, és nem olyan i, amire A belekerül Y(i)-be

	X ⁺ elemei	más attribútumok
t	111 111	000 000
S	111 111	111 111

- Ekkor I-re minden F+-beli függőség teljesül
- ▶ I-re viszont nem teljesül X → A

Példa: Attribútumhalmaz lezárása

```
R=ABCDEFG, {AB\rightarrowC, B\rightarrowG, CD\rightarrowEG, BG\rightarrowE}

X=ABF, X<sup>+</sup>=?

X(0):=ABF

X(1):=ABF\cup{C,G}=ABCFG

X(2):=ABCFG\cup{C,G,E}=ABCEFG

X(3):=ABCEFG

X<sup>+</sup>= ABCEFG
```

Tankönyv 3.5.2. feladata (111.o.)

- Órarend adatbázis: Kurzus(K), Oktató(O), Időpont(I), Terem(T), Diák(D), Jegy(J)
- > Feltételek:
 - Egy kurzust csak egy oktató tarthat: K→O. Egy helyen egy időben egy kurzus lehet: IT→K. Egy időben egy tanár csak egy helyen lehet: IO→T. Egy időben egy diák csak egy helyen lehet: ID→T. Egy diák egy kurzust egy végső jeggyel zár: KD→J.
- $ightharpoonup R=KOITDJ F= \{K\rightarrow O, IT\rightarrow K, IO\rightarrow T, ID\rightarrow T, KD\rightarrow J\}$
- Feladat: Határozzuk meg a (R, F) kulcsait az X+ kiszámítási algoritmusa segítségével.

Relációs adatbázisok tervezése ---2

Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009

3.3.3. Boyce-Codd normálforma

3.3.4. BCNF-ra való felbontás

Folyt. 3.4. Információ visszanyerése

a komponensekből. Chase-teszt

a veszteségmentesség ellenőrzésére

FF-i halmaz vetülete (definíció)

- Tegyük fel, hogy adott az R reláció egy F funkcionális függőségi halmazzal.
- Vegyük R egy vetítését L-re: R₁= Π_L (R), ahol L az R reláció sémájának néhány attribútuma.
- Mely függőségek állnak fenn a vetületben?
- Erre a választ az F funkcionális függőségek L-re való vetülete adja, azok a függőségek, amelyek
 - (1) az F-ből levezethetők és
 - (2) csak az L attribútumait tartalmazzák.

FF-ek vetítése

- Motiváció: "normalizálás", melynek során egy reláció sémát több sémára bonthatunk szét.
- Definíció: Függőségek vetülete
 Adott (R,F), és R_i⊆R esetén:
 Π_{Ri}(F):={ X→Y | F | X→Y , XY ⊆ R_i }
- Példa: R=ABCD F={AB -> C, C -> D, D -> A }
 - ▶ Bontsuk fel R-et R_1 =ABC és R_2 =AD-re.
 - Milyen FF-k teljesülnek R₁=ABC-n?
 - ABC -n nemcsak az AB -> C, de a C -> A is teljesül!

Miért igaz az előző példa?

Példa: R=ABCD $F=\{AB->C, C->D, D->A\}$ $d=\{ABC, AD\}$. Milyen FF-k teljesülnek ABC-n?

Emiatt, ha két vetített sor C-n megegyezik A-n is, azaz: *C -> A*. Ezért *ABC* -n az *AB -> C* és a *C -> A* is teljesül!

Boyce-Codd normálforma

- Definíció: R reláció Boyce-Codd normálformában, BCNF-ban (BCNF) van, ha
 - minden X->Y nemtriviális FF-re R-ben (nemtriviális, vagyis Y nem része X-nek)
 - az X szuperkulcs
 (szuperkulcs, vagyis tartalmaz kulcsot).

Példa BCNF-ra

Sörivók(<u>név</u>, cím, <u>kedveltSörök</u>, gyártó, aKedvencSör)

FF-ek: név->cím aKedvencSör, kedveltSörök->gyártó

- Itt egy kulcs van: {név, kedveltSörök}.
- A baloldalak egyik FF esetén sem szuperkulcsok.
- Emiatt az Sörivók reláció nincs BCNF normálformában.

egy másik példa BCNF-ra

Sörök(név, gyártó, gyártóCím)

FF-ek: név->gyártó, gyártó->gyártóCím

- Az egyetlen kulcs {név}.
- név->gyártó nem sérti a BCNF feltételét, de a gyártó->gyártóCím függőség igen.

BCNF-re való felbontás ---1

- Adott R reláció és F funkcionális függőségek.
- Van-e olyan X -> Y FF, ami sérti a BCNF-t?
 - Ha van olyan következmény FF F-ben, ami sérti a BCNF-t, akkor egy F-beli FF is sérti.
- Kiszámítjuk X +-t:
 - Ha itt nem szerepel az összes attribútum, X nem szuperkulcs.

BCNF-re való felbontás ---2

R-t helyettesítsük az alábbiakkal:

1.
$$R_1 = X^+$$
.

2.
$$R_2 = R - (X^+ - X)$$
.

Projektáljuk a meglévő F -beli FF-eket a két új relációsémára.

Dekomponálási kép

Sörivók(<u>név</u>, cím, <u>kedveltSörök</u>, gyártó, aKedvencSör)

- F = név->cím, név->aKedvencSör, kedveltSörök->gyártó
- Vegyük név->cím FF-t:
- {név}+ = {név, cím, aKedvencSör}.
- A dekomponált relációsémák:
 - 1. Sörivók1(<u>név</u>, cím, aKedvencSör)
 - 2. Sörivók2(<u>név</u>, <u>kedveltSörök</u>, gyártó)

- Meg kell néznünk, hogy az Sörivók1 és Sörivók2 táblák BCNF-ben vannak-e.
- Az FF-ek projektálása könnyű.
- A Sörivók1(<u>név</u>, cím, aKedvencSör), az FF-ek név->cím és név->aKedvencSör.
 - Tehát az egyetlen kulcs: {név}, azaz Sörivók1 relációséma BCNF-ben van.

- Az Sörivók2(név, kedveltSörök, gyártó) esetén az egyetlen FF: kedveltSörök->gyártó, az egyetlen kulcs: {név, kedveltSörök}.
 - Sérül a BCNF.
- kedveltSörök⁺ = {kedveltSörök, gyártó}, a Sörivók2 felbontása:
 - 1. Sörivók3(<u>kedveltSörök</u>, gyártó)
 - 2. Sörivók4(<u>név</u>, <u>kedveltSörök</u>)

- Az Sörivók dekompozíciója tehát:
 - Sörivók1(<u>név</u>, cím, aKedvencSör)
 - Sörivók 3(<u>kedveltSörök</u>, gyártó)
 - 3. Sörivók 4(<u>név</u>, <u>kedveltSörök</u>)
- A Sörivók1 a sörivókról, a Sörivók3 a sörökről, az Sörivók4 a sörivók és kedvelt söreikről tartalmaz információt.

Miért működik a BCNF?

- Feladat-1: Az algoritmus befejeződik, mert legrosszabb esetben két attribútumból álló sémáig jutunk. Bebizonyítandó, hogy minden két attribútumú séma BCNF-ban van! (mert nincs olyan FF, ami sértené a BCNF definíciót)
- Feladat-2: A felbontás jó tulajdonágú, vagyis veszteségmentes felbontást ad, visszatérünk erre: Bizonyítsuk be, hogy ha R(A, B, C) reláció esetén B → C teljesül, akkor R₁(A, B), R₂(B, C) felbontás mindig veszteségmentes

Példa: BCNF-ra való felbontás

Tehát d=(AC,BC,ABD) veszteségmentes BCNF dekompozíció. (\emptyset azt jelenti, hogy csak a triviális függőségek teljesülnek a sémában.)

Tankönyv 3.5.2. feladata (111.o.)

- Órarend adatbázis: Kurzus(K), Oktató(O), Időpont(I), Terem(T), Diák(D), Jegy(J)
- Feltételek:
 - Egy kurzust csak egy oktató tarthat: K→O. Egy helyen egy időben egy kurzus lehet: IT→K. Egy időben egy tanár csak egy helyen lehet: IO→T. Egy időben egy diák csak egy helyen lehet: ID→T. Egy diák egy kurzust egy végső jeggyel zár: KD→J.
- $ightharpoonup R=KOITDJ F= \{K\rightarrow O, IT\rightarrow K, IO\rightarrow T, ID\rightarrow T, KD\rightarrow J\}$
- Feladat: Adjuk meg az algoritmussal egy BCNF dekompozícióját!

Relációs adatbázisok tervezése ---2b

Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009

3.4. Információ visszanyerése a komponensekből. Chase-teszt a veszteségmentesség ellenőrzésére

Felbontásra vonatkozó elvárások

- Elvárások
- (1) A vetületek legyenek jó tulajdonságúak, és a vetületi függőségi rendszere egyszerű legyen (normálformák: BCNF, 3NF, 4NF)
- (2) Veszteségmentes legyen a felbontás, vagyis ne legyen információvesztés
- (3) Függőségek megőrzése a vetületekben (FŐ)
- BCNF-ra való felbontás algoritmusa
 - mindig veszteségmentes felbontást ad
 - De nem feltétlen függőségőrző a felbontás

Veszteségmentes szétvágás ---1

A fenti jelölésekkel: ha r = Π_{R1}(r) ⋈ ... ⋈ Π_{Rk} (r) teljesül, akkor az előbbi összekapcsolásra azt mondjuk, hogy veszteségmentes. Itt r egy R sémájú reláció-előfordulást jelöl.

A B C
a b c
d e f
c b c

 $\begin{array}{c|ccc}
R_1 & & & & & \\
A & & & & \\
a & & b & & \\
d & & e & & \\
c & & b & & \\
\end{array}$

B C b c e f

 R_2

Veszteségmentes szétvágás ---2

- Megjegyzés: Könnyen belátható, hogy
 r ⊆ Π_{R1}(r) ⋈ ... ⋈ Π_{Rk} (r) mindig teljesül.
- Példa: itt a szétvágás után keletkező relációk összekapcsolása nem veszteségmentes:

A B C a b c c b e

 $\begin{array}{c|ccc}
R_1 & & & B \\
\hline
 & a & b \\
 & c & b \\
\end{array}$

B C b c e

 R_2

- Példa: adott R(A, B, C, D), F = { A → B, B → C, CD → A } és az R₁(A, D), R₂(A, C), R₃(B, C, D) felbontás. Kérdés veszteségmentes-e a felbontás?
- Vegyük R₁ ⋈ R₂ ⋈ R₃ egy t = (a, b, c, d) sorát. Bizonyítani kell, hogy t R egy sora. A következő tablót készítjük:

Α	В	С	D
а	b ₁	C ₁	d
а	b_2	С	d_2
a_3	b	С	d

Itt pl. az (a, b_1 , c_1 , d) sor azt jelzi, hogy R-nek van olyan sora, aminek R_1 -re való levetítése (a, d), ám ennek a B és C attribútumokhoz tartozó értéke ismeretlen, így egyáltalán nem biztos, hogy a t sorról van szó.

- Az F-beli függőségeket használva egyenlővé tesszük azokat a szimbólumokat, amelyeknek ugyanazoknak kell lennie, hogy valamelyik függőség ne sérüljön.
 - Ha a két egyenlővé teendő szimbólum közül az egyik index nélküli, akkor a másik is ezt az értéket kapja.
 - Két indexes szimbólum esetén a kisebbik indexű értéket kapja meg a másik.
 - A szimbólumok minden előfordulását helyettesíteni kell az új értékkel.
- Az algoritmus véget ér, ha valamelyik sor t-vel lesz egyenlő, vagy több szimbólumot már nem tudunk egyenlővé tenni.

Α	В	С	D
а	b ₁	C ₁	d
a	b_2	С	d_2
a_3	b	С	d

$$A \rightarrow B$$

Α	В	С	D
а	b ₁	C ₁	d
а	b ₁	С	d_2
a_3	b	С	d

$$B \rightarrow C$$

Α	В	С	D
а	b ₁	С	d
а	b ₁	С	d_2
a_3	b	С	d

$$\mathsf{CD} \to \mathsf{A}$$

A	В	С	D
а	b ₁	С	d
а	b ₁	С	d_2
а	b	С	d

- Ha t szerepel a tablóban, akkor valóban R-nek egy sora, s mivel t-t tetszőlegesen választottuk, ezért a felbontás veszteségmentes.
- Ha nem kapjuk meg t-t, akkor viszont a felbontás nem veszteségmentes.
- Példa: R(A, B, C, D), F = { B → AD }, a felbontás: $R_1(A, B)$, $R_2(B, C)$, $R_3(C, D)$.

A	В	С	D	D . AD	Α	В	С	D
а	b	C ₁	d_1	$B \to AD$	а	b	C ₁	d_1
a_2	b	С			а		С	
a_3	b_3	С	d		a_3	b_3	С	d

Itt az eredmény jó ellenpélda, hiszen az összekapcsolásban szerepel t = (a, b, c, d), míg az eredeti relációban nem.

Relációs adatbázisok tervezése ---3

Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009

- 3.2.7. Funkcionális függőségi halmazok lezárása (min.bázis)
- 3.4.4. Függőségek megőrzése
- 3.5. Harmadik normálforma és 3NF-szintetizáló algoritmus

Relációs sématervezés (vázlat)

- I. Függőségek: a sématervezésnél használjuk
 - Funkcionális függőség
 - Többértékű függőség
- II. Normalizálás: "jó" sémákra való felbontás
 - Funkcionális függőség -> BCNF
 - Funkcionális függőség -> 3NF
 - Többértékű függőség -> 4NF
- III. Felbontás tulajdonságai: "jó" tulajdonságok
 - Veszteségmentesség
 - Függőségőrző felbontás

Függőségek megőrzése

- Függőségőrző felbontás: a dekompozíciókban érvényes függőségekből következzen az eredeti sémára kirótt összes függőség.
- Milyen függőségek lesznek érvényesek a dekompozíció sémáiban?
- Példa: R=ABC, F= {A→B, B→C, C→A} vajon a d= (AB, BC) felbontás megőrzi-e a C→A függőséget?

Függőségek megőrzése (definíció)

Definíció: Függőségek vetülete

Adott (R,F), és R_i⊆R esetén:

$$\Pi_{Ri}(F):=\{X\rightarrow Y\mid F\mid X\rightarrow Y, XY\subseteq R_i\}$$

Definíció: Adott (R,F) esetén d=(R₁,...,R_k) függőségőrző dekompozíció akkor és csak akkor, ha minden F-beli függőség levezethető a vetületi függőségekből:

minden X→Y ∈F esetén

$$\Pi_{R1}(F) \cup ... \cup \Pi_{Rk}(F) \models X \rightarrow Y$$

Példa: függőségek vetülete

- ABC, A ->B és B ->C FF-kel.
 Nézzük meg az AC-re való vetületet:
 - A +=ABC ; ebből A ->B, A ->C.
 - Nem kell kiszámítani AB + és AC + lezárásokat.
 - ▶ B+=BC; ebből B->C.
 - ightharpoonup C += C; semmit nem ad.
 - ▶ BC+=BC; semmit nem ad.
- A kapott FF-ek: A ->B, A ->C és B ->C.
- AC -re projekció: A ->C.

Függőségek megőrzése (tételek)

A függőségőrzésből nem következik a veszteségmentesség:

R=ABCD, F= {A→B,C→D}, d={AB,CD} függőségőrző, de nem veszteségmentes.

A veszteségmentességből nem következik a függőségőrzés

R=ABC, F= $\{AB\rightarrow C, C\rightarrow A\}$, $d=\{AC,BC\}$ veszteségmentes, de nem függőségőrző.

A 3normálforma -- motiváció

- Bizonyos FF halmazok esetén a felbontáskor elveszíthetünk függőségeket.
- > AB -> C és C -> B.
 - Példa1: A = utca, B = város, C = irányítószám.
 - Példa2: A = oktató, B = időpont, C = kurzus.
- Két kulcs van: {A,B} és {A,C}.
- C ->B megsérti a BCNF-t, tehát AC, BC-re dekomponálunk.
- A probléma az, hogyAC és BC sémákkal nem tudjuk kikényszeríteni AB -> C függőséget.

A probléma megoldása: 3NF

- 3. normálformában (3NF) úgy módosul a BCNF feltétel, hogy az előbbi esetben nem kell dekomponálnunk.
- Egy attribútum elsődleges attribútum (prím), ha legalább egy kulcsnak eleme.
- X -> A megsérti 3NF-t akkor és csak akkor, ha X nem szuperkulcs és A nem prím.

Példa: 3NF

- Az előző példában AB -> C és C -> B FF-ek esetén a kulcsok AB és AC.
- Ezért A, B és C mindegyike prím.
- Habár C ->B megsérti a BCNF feltételét, de a 3NF feltételét már nem sérti meg.

Miért hasznos 3NF és BCNF?

- A dekompozícióknak két fontos tulajdonsága lehet:
 - Veszteségmentes összekapcsolás: ha a projektált relációkat összekapcsoljuk az eredetit kapjuk vissza.
 - 2. Függőségek megőrzése : a projektált relációk segítségével is kikényszeríthetőek az előre megadott függőségek.
- Az (1) tulajdonság teljesül a BCNF esetében.
- A 3NF (1) és (2)-t is teljesíti.
- A BCNF esetén (2) sérülhet (utca-város-irszám)

Tk.3.2.7. Minimális bázis (definíció)

Egy relációhoz F minimális bázis, amikor az olyan függőségekből áll, amelyre három feltétel igaz:

- F összes függőségének jobb oldalán egy attribútum van.
- 2. Ha bármelyik F-beli függőséget elhagyjuk, a fennmaradó halmaz már nem bázis.
- 3. Ha bármelyik F-beli funkcionális függőség bal oldaláról elhagyunk egy vagy több attribútumot, akkor az eredmény már nem marad bázis.

Minimális bázist kiszámító algoritmus

- Kezdetben G az üreshalmaz.
- Minden X → Y ∈ F helyett vegyük az X →A függőségeket, ahol A ∈ Y – X).
 Megj.: Ekkor minden G-beli függőség X → A alakú.
- 3. Minden X → A ∈ G-re, amíg van olyan B∈X-re A∈(X B)⁺ a G-szerint, vagyis (X B) → A teljesül, akkor X := X B. Megjegyzés: E lépés után minden baloldal minimális lesz.
- 4. Minden X → A ∈ G-re, ha X → A ∈ (G { X → A })⁺, vagyis ha elhagyjuk az X → A függőséget G-ből, az még mindig következik a maradékból, akkor G:=G {X → A}. Megjegyzés: Végül nem marad több elhagyható függőség

Mohó algoritmus minimális bázis előállítására

Jobb oldalak minimalizálása:

X→A1,...,Ak függőséget cseréljük le az X→A1, ..., X→Ak k darab függőségre.

A halmaz minimalizálása:

Hagyjuk el az olyan X→A függőségeket, amelyek a bázist nem befolyásolják, azaz

while F változik

if
$$(F-\{X\rightarrow A\})^*=F^*$$
 then $F:=F-\{X\rightarrow A\}$;

3. Bal oldalak minimalizálása:

Hagyjuk el a bal oldalakból azokat az attribútumokat, amelyek a bázist nem befolyásolják, azaz

while F változik

for all $X \rightarrow A \in F$ for all $B \in X$

if $((F-\{X\rightarrow A\})\cup\{(X-\{B\})\rightarrow A\})^*=F^*$ then $F:=(F-\{X\rightarrow A\})\cup\{X-\{B\})\rightarrow A\}$

- Az algoritmusban különböző sorrendben választva a függőségeket, illetve attribútumokat, különböző minimális bázist kaphatunk.
- F={A→B, B→A, B→C, A→C, C→A}
 (F-{B→A})*=F*, mivel F-{B→A} |— B→A
 F:=F-{B→A}
 (F-{A→C})*=F*, mivel F-{A→C} |— A→C
 F:=F-{A→C}= {A→B,B→C,C→A} minimális bázis, mert több függőség és attribútum már nem hagyható el.
- F={A→B, B→A, B→C, A→C, C→A}
 (F-{B→C})*=F*, mivel F-{B→C}
 — B→C
 F:=F-{B→C}={A→B,B→A,A→C,C→A} is minimális bázis, mert több függőség és attribútum már nem hagyható el.

- Az algoritmusban különböző sorrendben választva a függőségeket, illetve attribútumokat, különböző minimális bázist kaphatunk.
- F={AB→C, A→B, B→A}
 (F-{AB→C}∪{A→C})*=F*, mivel
 (F-{AB→C})∪{A→C} ⊢ AB→C és F ⊢ A→C.
 F:=(F-{AB→C}∪{A→C})= {A→C,A→B,B→A} minimális bázis, mert több függőség és attribútum már nem hagyható el.
- F={AB→C, A→B, B→A}
 (F-{AB→C}∪{B→C})*=F*, mivel
 (F-{AB→C})∪{B→C} ⊢ AB→C és F ⊢ B→C.
 F:=(F-{AB→C}∪{B→C})= {B→C,A→B,B→A} is minimális bázis, mert több függőség és attribútum már nem hagyható el.

- Algoritmus függőségőrző 3NF dekompozíció előállítására:
- Input: (R,F)
 - Legyen G:={X→A,X→B,...,Y→C,Y→D,....} az F minimális bázisa.
 - Legyen S az R sémának G-ben nem szereplő attribútumai.
 - Ha van olyan függőség G-ben, amely R összes attribútumát tartalmazza, akkor legyen d:={R}, különben legyen

$$d:=\{S,XA,XB,...,YC,YD,...\}.$$

- Algoritmus függőségőrző és veszteségmentes 3NF dekompozíció előállítására:
- Input: (R,F)
 - Legyen G:={X→A,X→B,...,Y→C,Y→D,....} az F minimális bázisa.
 - Legyen S az R sémának G-ben nem szereplő attribútumai.
 - Ha van olyan függőség G-ben, amely R összes attribútumát tartalmazza, akkor legyen d:={R}, különben legyen K az R egy kulcsa, és legyen d:={K,S,XA, XB,...,YC,YD,...}.

Normálformák (3NF)

- Algoritmus függőségőrző és veszteségmentes 3NF redukált (kevesebb tagból álló) dekompozíció előállítására:
- Input: (R,F)
 - Legyen G:={X→A,X→B,...,Y→C,Y→D,....} az F minimális bázisa.
 - Legyen S az R sémának G-ben nem szereplő attribútumai.
 - Ha van olyan függőség G-ben, amely R összes attribútumát tartalmazza, akkor legyen d:={R}, különben legyen K az R egy kulcsa, és legyen

$$d:=\{K,S,XAB...,YCD...,..\}.$$

Ha K része valamelyik sémának, akkor K-t elhagyhatjuk.

Miért működik?

3NF-szintetizáló algoritmus:

- Megőrzi a függőségeket: minden FF megmarad a minimális bázisból.
- Veszteségmentes összekapcsolás: a CHASE algoritmussal ellenőrizhető (a kulcsból létrehozott séma itt lesz fontos).
- SNF: a minimális bázis tulajdonságaiból következik.

- Adott X-attr.hz, F-ff.hz. Attr.hz.lezártjának kiszámítása.
- Adott R-rel.séma, F-ff.hz. Kulcsok meghatározása.
- Adott R-rel.séma, F-ff.hz. BCNF-e? (def. alapján)
- Adott R-rel.séma, F-ff.hz. 3NF-e? (def. alapján)

típusú kérdésekhez lásd 1.) gyakorló feladatok :

- 1.) Adott R relációs séma és F funkcionális függőségek halmaza. Attribútum halmaz lezártjának kiszámolására tanult algoritmus felhasználásával határozza meg az adott séma kulcsait, és azt, hogy BCNF-ben vagy 3NF-ben van-e?
- a.) Cím(Város, Utcahsz, Irányítószám) röviden R(V, U, I), és $F = \{I \rightarrow V, VU \rightarrow I\}.$

```
b.) Tankönyv 3.5.2. feladata: Órarend adatbázis
 Jelölje röviden:
    K - Kurzus
    O - Oktató
    I - Időpont
   T - Terem
    D - Diák (hallgató)
    J - Jegy
Feltételek (funkcionális függőséggel megadva)
   K → O vagyis egy kurzust csak egy oktató tarthat
   IT → K nincs óraütközés, egy helyen egy időben egy kurzus lehet
   IO → T az oktatónak nincs óraütközése
   ID → T a diákoknak sincs óraütközése
   KD → J egy diák egy kurzust egy végső jeggyel zár
R=KOITDJ és F= \{K \rightarrow O, IT \rightarrow K, IO \rightarrow T, ID \rightarrow T, KD \rightarrow J\}
```

c.) Adott SzallításiInfo (SzallAzon, SzallNev, SzallCim, AruKod, TermekNev, MeEgys, Ar) reláció séma,

amit így is rövidithetünk R(S, N, C, K, T, M, A), és

a séma feletti funkcionális függőségek: SzallAzon→{SzallNev, SzallCim}, AruKod→{TermekNev, MeEgys}, {SzallAzon, AruKod}→ Ar,

vagyis a röviden $F = \{S \rightarrow NC, K \rightarrow TM, SK \rightarrow A\}.$

- Adott R, F. Bontsuk fel VM BCNF-ra
- Adott R, F. Bontsuk fel VM FÖ 3NF-ra
- Adott R, F és d dekompozíció. Chase algoritmussal döntsük el, hogy veszteségmentes-e a dekompozíció.
- a.) Az 1a. feladat R sémáját szétvágjuk IU, VU sémákra.
- b.) Az 1b. feladat R sémáját szétvágjuk KOIT, IDT, KDJ sémákra.
- c.) Az 1c. feladat R sémáját szétvágjuk SNC, KTMA sémákra.

Relációs adatbázisok tervezése 4.rész Többértékű függőségek

Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009

- 3.6. Többértékű függőségek,
 - Negyedik normálforma
 - Funkcionális és többértékű függőségek következtetése

Többértékű függőségek és 4NF

- Hasonló utat járunk be, mint a funkcionális függőségek esetén:
 - Definiáljuk a többértékű függőséget
 - implikációs probléma
 - axiomatizálás
 - levezethető függőségek hatékony meghatározása (lezárás helyett a séma particiója függőségi bázisa)
 - veszteségmentes dekompozíció
 - 4. normálforma
 - veszteségmentes 4NF dekompozíció előállítása

A TÉF definíciója

- A többértékű függőség (TÉF): az R reláció fölött X ->->Y teljesül: ha bármely két sorra, amelyek megegyeznek az X minden attribútumán, az Y attribútumaihoz tartozó értékek felcserélhetőek, azaz a keletkező két új sor R-beli lesz.
- Más szavakkal: X minden értéke esetén az Y hoz tartozó értékek függetlenek az R-X-Y értékeitől.

Példa: TÉF

Sörivók(név, cím, tel, kedveltSörök)

- A sörivók telefonszámai függetlenek az általuk kedvelt söröktől.
 - név->->tel és név ->->kedveltSörök.
- Így egy-egy sörivó minden telefonszáma minden általa kedvelt sörrel kombinációban áll.
- Ez a jelenség független a funkcionális függőségektől.
 - itt a név->cím az egyetlen FF.

A név->->tel által implikált sorok

Ha ezek a soraink vannak:

név	cím	tel	<u>kedveltSörö</u> k
sue	a	p1	b1
sue	а	p2	b2
sue	a	p2	b1
sue	a	p1	b2
	1		

Akkor ezeknek a soroknak is szerepelnie kell.

Az *X->->Y***TÉF** képe

- Definíció: X,Y⊆R, Z:=R–XY esetén X→→Y többértékű függőség. (tf)
- A függőség akkor teljesül egy táblában, ha bizonyos mintájú sorok létezése garantálja más sorok létezését.
- A formális definiciót az alábbi ábra szemlélteti.
- Ha létezik t és s sor, akkor u és v soroknak is létezniük kell, ahol az azonos szimbólumok azonos értékeket jelölnek.

	X	Y	Z
t	X	y1 _	z1
S	X	y2	z2
∃u	X	y1 —	z2
∃v	X	y2 —	z1

Definíció (Formálisan): Egy R sémájú r reláció kielégíti az $X \rightarrow Y$ függőséget, ha $t,s \in r$ és t[X]=s[X] esetén <u>létezik olyan $u,v \in r$ </u>, amelyre u[X]=v[X]=t[X]=s[X], u[Y]=t[Y], u[Z]=s[Z], v[Y]=s[Y], v[Z]=t[Z].

Állítás: Elég az u,v közül csak az egyik létezését megkövetelni.

TÉF szabályok

- Minden FF TÉF.
 - Ha X -> Y és két sor megegyezik X-en, Y-on is megegyezik, emiatt ha ezeket felcseréljük, az eredeti sorokat kapjuk vissza, azaz: X ->-> Y.
- Komplementálás: Ha X ->->Y és Z jelöli az összes többi attribútum halmazát, akkor X ->->Z.

Nem tudunk darabolni

- Ugyanúgy, mint az FF-ek esetében, a baloldalakat nem "bánthatjuk" általában.
- Az FF-ek esetében a jobboldalakt felbonthattuk, míg ebben az esetben ez sem tehető meg.

Példa: többattribútumos jobboldal

Sörivók(név, tTársaság, tel, kedveltSörök, gyártó)

- Egy sörivónak több telefonja lehet, minden számot két részre otsztunk: tTársaság (pl. Vodafone) és a maradék hét számjegy.
- Egy sörivó több sört is kedvelhet, mindegyikhez egy-egy gyártó tartozik.

Példa folytatás

Mivel a tTársaság-tel kombinációk függetlenek a kedveltSörök-gyártó kombinációtól, azt várjuk, hogy a következő FÉK-ek teljesülnek:

név ->-> tTársaság tel

név ->-> kedveltSörök gyártó

Példa adat

Egy lehetséges előfordulás, ami teljesíti az iménti FÉK-et:

név	tTásaság	tel	kedveltS	gyártó
Sue	30	555-1111	Bud	A.B.
Sue	20	555-1111	WickedAle	Pete's
Sue	70	555-9999	Bud	A.B.
Sue	70	555-9999	WickedAle	Pete's

Ugyanakkor sem a név->->tTársaság sem a név->->tel függőségek nem teljesülnek.

Axiomatizálás

Funkcionális	Többértékű	Vegyes	
függőségek	függőségek	függőségek	
A1 (reflexivitás): Y⊆X esetén X→Y.	A4 (komplementer): $X \rightarrow Y$ és Z=R-XY esetén $X \rightarrow Z$.	A7 (funkcionálisból többértékű): X→Y esetén X→→Y.	
A2 (tranzitivitás): X→Y és Y→Z esetén X→Z.	A5 (tranzivitás): $X \rightarrow Y$ és $Y \rightarrow S$ esetén $X \rightarrow S$ -Y.	A8 (többértékűből és funcionálisból funkcionális):	
A3 (bővíthetőség):	A6 (bővíthetőség):	- X→→Y és W→S,	
X→Y és tetszőleges Z	X→→Y és tetszőleges	ahol S⊆Y, W∩Y=∅	
esetén XZ→YZ.	V⊆W esetén XW→→YV.	esetén X→S.	

Többértékű függőségek Jelölés a továbbiakban:

- - F funkcionális függőségek halmaza
 - M többértékű függőségek halmaza
 - D vegyes függőségek (funkcionális és többértékű függőségek) halmaza
- Tétel (helyes és teljes axiómarendszerek):
 - A1,A2,A3 helyes és teljes a funkcionális függőségekre,
 - A4,A5,A6 helyes és teljes a többértékű függőségekre,
 - A1,A2,A3,A4,A5,A6,A7,A8 helyes és teljes a vegyes <u>füaaőséaekre</u>

- \rightarrow Állítás: X $\rightarrow\rightarrow$ Y-ből nem következik, hogy X $\rightarrow\rightarrow$ A, ha A∈Y. (A jobb oldalak nem szedhetők szét!)
- Bizonyítás: A következő r tábla kielégíti az X→→AB-t, de nem elégíti ki az X→→A-t. q.e.d.

X В Α h X a X е b X е X C

 $X \rightarrow A$ esetén ennek a sornak is benne kellene lenni a

 a	
	-

- Állítás: X→→Y és Y→→V-ből nem következik, hogy X→→V. (A szokásos tranzitivitás nem igaz általában!)
- Bizonyítás: A következő r tábla kielégíti az X→→AB-t, AB→→BC-t, de nem elégíti ki az X→→BC-t. q.e.d.

X→→BC esetén ennek a sornak is benne kellene lenni a táblában.

X	Α	В	С
Х	а	b	С
Х	е	f	g
Х	а	b	g
Х	е	f	С

X	

- A veszteségmentesség, függőségőrzés definíciójában most F funkcionális függőségi halmaz helyett D függőségi halmaz többértékű függőségeket is tartalmazhat.
- Így például d=(R1,...,Rk) veszteségmentes dekompozíciója Rnek D-re nézve, akkor és csak akkor, ha minden D-t kielégítő r tábla esetén r=Π_{R1}(r)|><|...|><| Π_{Rk}(r)
- A következő tétel miatt a veszteségmentesség implikációs problémára vezethető vissza, így hatékonyan eldönthető.
- Tétel: A d=(R1,R2) akkor és csak akkor veszteségmentes dekompozíciója R-nek, ha D |— R1∩R2→→R1-R2.

- A 4.normálforma definiálása előtt foglaljuk össze, hogy melyek a triviális többértékű függőségek, vagyis amelyek minden relációban teljesülnek.
- Mivel minden funkcionális függőség többértékű függőség is, így a triviális funkcionális egyben triviális többértékű függőség is.
- 1. $Y \subseteq X$ esetén $X \rightarrow Y$ triviális többértékű függőség.
- Speciálisan Y=Ø választással X→→Ø függőséget kapjuk, és alkalmazzuk a komplementer szabályt, azaz Z=R-XØ, így az X→→R-X függőség is mindig teljesül, azaz:
- XY=R esetén X→→Y triviális többértékű függőség.
- A minimális szuperkulcsot kulcsnak hívjuk.

- A 4.normálforma hasonlít a BCNF-re, azaz minden nem triviális többértékű függőség bal oldala szuperkulcs.
- Definíció: R 4NF-ben van D-re nézve, ha XY≠R, Y⊄X, és
 - $D \longrightarrow X \longrightarrow Y$ esetén $D \longrightarrow X \longrightarrow R$.
- Definíció: d={R1,...,Rk} dekompozíció 4NF-ben van D-re nézve, ha minden Ri 4NF-ben van $\Pi_{Ri}(D)$ -re nézve.
- Állítás: Ha R 4NF-ben van, akkor BCNF-ben is van.
- Bizonyítás. Vegyünk egy nem triviális D |— X→A funkcionális függőséget. Ha XA=R, akkor D |— X→R, ha XA≠R, akkor a D |— X→A nem triviális többértékű függőség és a 4NF miatt D |— X→R. q.e.d.
- Következmény: Nincs mindig függőségőrző és veszteségmentes 4NF dekompozíció.

- Veszteségmentes 4NF dekompozíciót mindig tudunk készíteni a naiv BCNF dekomponáló algoritmushoz hasonlóan.
- Naiv algoritmus veszteségmentes 4NF dekompozíció előállítására:

Ha R 4NF-ben van, akkor <u>megállunk</u>, egyébként

van olyan nem triviális X→→Y, amely R-ben teljesül, de megsérti a 4NF-et, azaz X nem szuperkulcs.

Ekkor R helyett vegyük az (XY,R-Y) dekompozíciót.

A kettévágásokat addig hajtjuk végre, <u>amíg</u> minden tag <u>4NF</u>-ben nem lesz.

<u>ALGORITMUS VÉGE</u>

- Az is feltehető, hogy X és Y diszjunkt, mert különben Y helyett az Y-X-et vehettük volna jobb oldalnak.
- XY≠R, így mindkét tagban csökken az attribútumok száma.
- XY∩(R-Y)=X→→Y=XY-(R-Y), azaz a kéttagú dekompozícióknál bizonyított állítás miatt veszteségmentes kettévágást kaptunk.
- Legrosszabb esetben a 2 oszlopos sémákig kell szétbontani, amelyek mindig 4NF-ben vannak, mivel nem lehet bennük nem triviális többértékű függőség.

Negyedik normálforma

- A TÉF-ek okozta redundanciát a BCNF nem szünteti meg.
- A megoldás: a negyedik normálforma!
- A negyedik normálformában (4NF), amikor dekomponálunk, a TÉF-eket úgy kezeljük, mint az FF-eket, a kulcsok megtalálásánál azonban nem számítanak.

4NF definíció

- Egy R reláció 4NF -ben van ha: minden X ->->Y nemtriviális FÉK esetén X szuperkulcs.
 - Nemtriviális TÉF :
 - 1. Y nem részhalmaza X-nek,
 - 2. X és Y együtt nem adják ki az összes attribútumot.
 - A szuperkulcs definíciója ugyanaz marad, azaz csak az FF-ektől függ.

BCNF versus 4NF

- Kiderült, hogy minden X -> Y FF X ->-> Y TÉF is.
- ▶ Így, ha R 4NF-ben van, akkor BCNF-ben is.
 - Mert minden olyan FF, ami megsérti a BCNF-t, a 4NF-t is megsérti.
- De R lehet úgy BCNF-ben, hogy közben nincs 4NF-ben.

Dekompozíció és 4NF

- H X ->->Y megsérti a 4NF-t, akkor R-t ugyanúgy dekomponáljuk, mint a BCNF esetén.
 - XY az egyik dekomponált reláció.
 - Az Y X-be nem tartozó attribútumok a másik.

Példa: 4NF dekompozíció

Sörivók(<u>név</u>, cím, <u>tel</u>, <u>kedveltSörök</u>)

FF: név -> cím

FÉK-ek: név ->-> tel

név ->-> kedveltSörök

- Kulcs {név, tel, kedveltSörök}.
- Az összes függőség megsérti 4NF-et.

Példa folytatás

- Dekompozíció név -> cím szerint:
- 1. Sörivók1(<u>név</u>, cím)
 - Ez 4NF-beli; az egyetlen függőség név-> cím.
- Sörivók2(név, tel, kedveltSörök)
 - Nincs 4NF-ben. A név ->-> tel és név ->-> kedveltSörök függőségek teljesülnek. A három attribútum együtt kulcs (mivel nincs nemtriviális FF).

Példa: Sörivók2 dekompozíciója

- Mind a név ->-> tel, mind a név ->-> kedveltSörök szerinti dekompozíció ugyanazt eredményezi:
 - Sörivók3(<u>név</u>, <u>tel</u>)
 - Sörivók4(név, kedveltSörök)