Drum elementar = nu se repeta noduri

Drum simplu = nu se repeta muchii

Graf partial = putem elimina muchii

Subgraf = putem elimina noduri

Graf biconex -> graf care nu are noduri critice

Graf tare conex -> graf in care exista drum de la x la y, oricare ar fi x si y varfuri

Nr max muchii graf bipartit: $par(n^2 / 4) impar(n + 1)(n - 1) / 4$

Graf transpus (doar pe graf orientat) = inversam sensul muchillor

Graf complementar = daca avem muchie -> eliminam

= daca nu aveam original -> add

V = vertices;

E = edges;

Complexitate BFS and DFS -> O(V + E)

BFS -> arborele de inaltime minima

Muchie critica -> niv_min[j] > niv[i], unde j este fiu a lui i.

Nod critic -> radacina -> are cel putin 2 fii in arborele DF

-> alt nod -> are cel putin un fiu j cu niv_min[j] >= niv[i]

Complexitate algoritm muchii/noduri critice: O(V + E)

Complexitate Sortare Topologica -> O(V + E)

Complexitate Kruskal -> O(E log V)

Complexitate Prim -> O(V^2) or O(E log V)

Complexitate Dijkstra -> O(V^2) or O(E log V)

Complexitate Bellman-Ford -> O(E * V)

Complexitate Distante minime in DAG -> O(V+E)

Complexitate Floyd-Warshall -> O(V^3)

Complexitate Edmonds-Karp -> O(V*E^2)

Complexitate algoritmul lui Mickey Mouse (Hierholzer) -> O(E)

Complexitate algoritmul lui Tarjan -> O(V+E)

Taietura in retea -> este o bipartitie a multimii varfurilor a.i. Sursa si destinatia sunt in partitii diferite

Daca graful nu este biconex => nu este hamiltonian

Graf eulerian -> are toate nodurile de grad par

Algoritm verificare graf hamiltonian -> O(n^2 * 2^n)

$$\sum_{f \in F} d_M(f) = 2|E| \qquad |V| - |E| + |F| = 2$$

Fie G=(V, E) un graf planar conex **bipartit** cu n=|V|>2 și m=|E|. Atunci:

a)
$$m \le 2n - 4$$

b)
$$\exists x \in V \operatorname{cu} d(x) \leq 3$$
.

Orice graf planar conex este 6 -colorabil.

Fie G=(V, E) un graf planar conex cu n=|V|>2 și m=|E|.

Atunci:

- a) $m \leq 3n 6$
- b) $\exists x \in V \text{ cu } d(x) \leq 5$.

Demonstrație
$$\sum_{f \in F} d_M(f) = 2 |E|$$

 $d_M(f) \ge 3$
 $|V| - |E| + |F| = 2$
 $|V| - |E| + |2E|/3 <= 2$
 $3|V| - |E| <= 6 -> a$

Dirac's Theorem (1952) — A simple graph with n vertices $(n \ge 3)$ is Hamiltonian if every vertex has degree $\frac{n}{2}$ or greater.

Ore's Theorem (1960) — A simple graph with n vertices ($n \ge 3$) is Hamiltonian if, for every pair of non-adjacent vertices, the sum of their degrees is n or greater.

Fie G un graf conectat cu ordinal $n \ge 3$, conectivitatea $\kappa(G)$, și numărul de independență $\alpha(G)$. Daca $\kappa(G) \ge \alpha(G)$, atunci G este hamiltonian

Daca G este un graf 2-conectat si liber de {K1,3, Z1} atunci G este hamiltonian.

- Arborele DF
 - · rădăcina s este punct critic ⇔

are cel puțin 2 fii în arborele DF

nu există muchii între subarbori (de traversare)

· un alt vârf i din arbore este critic ⇔

are cel puțin un fiu j cu niv min[j]≥nivel[i]

Componente tare conexe: algoritm Kosaraju

- Următorul algoritm de timp liniar (adică Θ(V +E)) determină componentele tare conexe ale unui graf orientat G = (V, E) folosind două căutări în adâncime, una în G şi una în GT.
- Componente-Tare-Conexe(G)
- 1: apelează CA(G) pentru a calcula timpii de terminare f[u] pentru fiecare vârf
- 2: calculează GT
- 3: apelează CA(GT), dar în bucla principală a lui CA, consideră vârfurile în ordinea descrescătoare a timpilor f[u] (calculați în linia 1)
- 4: afișează vârfurile fiecărui arbore în pădurea de adâncime din pasul 3 că o componentă tare conexă separată

Sortare topologică - Algoritm

```
coada C ← Ø;
adauga in C toate vârfurile v cu d⁻[v]=0

cat timp C ≠ Ø executa
   i ← extrage(C);
   adauga i in sortare
   pentru ij ∈ E executa
        d⁻[j] = d⁻[j] - 1
        daca d⁻[j]=0 atunci
        adauga(j, C)
```

Kruskal

Complexitate

Varianta 2 - dacă folosim arbori Union/Find

Prim

Dijkstra

Varianta 2 - memorarea vârfurilor din într-un min-heap Q (min-ansamblu)

```
    Iniţializare Q -> O(n)
    n * extragere vârf minim -> O(n log n)
    actualizare etichete vecini -> O(m log n)
    O(m log n)
```


d/tata	1 [0/a	2	3	4	5	6
	[0 /o,	∞/o ,	∞/o ,	∞/o ,	∞/o ,	∞/o]
Sel. 1:	[- ,	15/1,	11/1,	∞/o ,	∞/o ,	∞/o]
Sel. 3:	[- ,	15/1,	- ,	∞/0,	19/з,	20/з]
Sel. 2:	[- ,	- ,	-,	18/2,	19/з,	17/2]
Sel. 6:	[- ,	- ,	-,	18/2,	19/з,	-]
Sel. 4:	[- ,	- ,	-,	- ,	19/з,	-]
Sel. 5:	[- ,	- ,	- ,	- ,	- ,	-]

Sortare
topologică, 3, 6, 5, 4,
2
s=3 - vârf de
start
Ordine de calcul
distanței, 3, 6, 5, 4,

d/tat a	[∞ ¹ /0,	2 ∞/0,	₫/o,	⁴ ∞/0,	5 ∞ /₀,	6 ∞/₀]
u = 1:			0/ 0,	∞/ 0,	∞/ 0,	∞/ 0]
u = 3:	[∞/o,	8/ 3,	0/ 0,	∞/ 0,	4/ 3,	∞/ 0]
u = 6:	[∞/o,	8/ 3,	0/0,	∞/ 0,	4/ 3,	∞/ 0]
u = 5:	[∞/o,	8/ 3,	0/0,	6/ 5,	4/ 3,	∞/o]
u = 4:	[∞/o,	7/4,	0/0,	6/ 5,	4/ 3,	∞/o]
u = 2:	[∞/o,	7/4,	0/ 0,	6/ 5,	4/ 3,	∞/ 0]

▶ Algoritmi – G=(V, E) graf orientat					
G - neponderat Parcurgere lățime BF	G - ponderat, ponderi >0 Algoritmul lui Dijkstra	G – ponderat fără circuite			
BF(s) coada $C \leftarrow \emptyset$; adauga(s, C)	Dijkstra(s) (min-heap) Q V (se putea incepe doar cu Q (s) +vector viz; veQ v nevizitat)	DAGS(s) SortTop ← sortare_topologica(G)			
pentru fiecare u∈V d[u]=∞;tata[u]=viz[u]=0 viz[s]← 1; d[s] ← 0	pentru fiecare ueV d[u] = 0; tata[u]=0 d[s] = 0	pentru fiecare ueV d[u] = ∞; tata[u]=0 d[s] = 0			
cat timp $C \neq \emptyset$ $u \leftarrow extrage(C)$;	cat timp Q ≠ Ø u = extrage(Q) vårf cu eticheta d minimä	pentru fiecare u ∈ SortTop			
pentru fiecare uveE daca viz[v]=0 d[v] ← d[v]+1 tata[v] ← u adauga(v, C) viz[v] ← 1	pentru fiecare uveE daca ve@ si d[u]+w(u,v) <d[v] d[v]="d[u]+w(u,v)" repara(v,q)<="" tata[v]="u" td=""><td colspan="2">pentru fiecare uveE daca d[u]+w(u,v)<d[v] d[v] = d[u]+w(u,v) tata[v] = u</d[v] </td></d[v]>	pentru fiecare uveE daca d[u]+w(u,v) <d[v] d[v] = d[u]+w(u,v) tata[v] = u</d[v] 			
scrie d, tata	scrie d, tata	scrie d, tata			
0 (n+m)	O(m log(n))/ O(n ²)	O(n+m)			

Închiderea tranzitivă

Graful rezidual G,

BF(s) - în graful rezidual

Nu mai există drum de creștere \Rightarrow s-t flux maxim (valoare 10) + s-t tăietură minimă (de capacitate tot 10, determinată de vârfurile accesibile din s în G_t : $S = \{ s, 1, 3, 2 \}$)

Teorema König - Caracterizarea grafurilor bipartite

Demonstrație ← Presupunem G conex.

Colorăm propriu cu 2 culori un arbore parțial T al său. Orice altă muchie uv din graf are extremitățile colorate diferit deoarece formează un ciclu elementar cu lanțul de la u la v din arbore și acest ciclul are lungime pară, deci u și v se află pe niveluri de paritate diferită în T

