ENGG 201 – Chapter 4 – Liquid/Solid System Example

ENGG 201 – Chapter 4 – Vapor/Liquid System Example

Fall 2000 (Final)

Consider the liquid-vapour phase diagram for two components A and B, shown in the figure.

The molar masses of A and B are: $M_A=45kg/kmol$, $M_B=40kg/kmol$.

- (a) Determine the normal boiling points of A and B.
- (b) Label on the diagram all the phase regions.
- (c) Consider a mixture consisting of 70wt% of A. The mixture has a mass of 3kg and is held at a temperature T=450K.
 - (i) What are the phases present and their compositions?

- (ii) What is the mass of each of the phases you reported in question (i)?
- (d) Consider a new mixture, which is 90wt% A and 10wt% B. The total number of moles in the mixture is equal to 22.5 moles.
 - (i) What is the mass of this mixture?
 - (ii) What are the masses of A and B in the mixture?
 - (iii) What is the boiling temperature of this mixture?
 - (iv) Determine the composition of the first bubble that forms at the boiling temperature of the mixture.
 - (v) The mixture is held at a fixed temperature equal to its boiling temperature, and B is gradually added until all the mixture has become vapour. Determine the mass of B added.
 - (vi) The resulting mixture is cooled down to a temperature T=378K. Determine the phases present at this temperature <u>and</u> their compositions.

Ans. (a)
$$T_A = 550K$$
, $T_B = 500K$,

- (b) See diagram,
- (c) (i) V(60%), $L_2(90\%)$, (ii) V(2kg), $L_2(1kg)$,
- (d) (i) 1kg, (ii) 0.9kg, 0.1kg, (iii) 450K, (iv) 60%, (v) 0.5kg, (vi) L₁(20%), L₂(80%), V(40%).