Mathematics for Machine Learning

Vazgen Mikayelyan

August 15, 2020

Definition

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$. It is said f is differentiable at interior point $x_0 \in X$, if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Definition

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$. It is said f is differentiable at interior point $x_0 \in X$, if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Definition

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$. It is said f is differentiable at interior point $x_0 \in X$, if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Proposition

$$f(x_0 + h) - f(x_0) = f'(x_0) h + o(h), h \to 0.$$

Definition

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$. It is said f is differentiable at interior point $x_0 \in X$, if the following limit exists

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Proposition

$$f(x_0 + h) - f(x_0) = f'(x_0) h + o(h), h \to 0.$$

Theorem

If f has a finite derivative at x_0 then it is continuous at x_0 .

$$(f+g)'=f'+g',$$

$$(f+g)' = f' + g',$$

$$(fg)' = f'g + fg',$$

$$(f+g)' = f'+g',$$

$$(fg)' = f'g + fg',$$

$$(f+g)' = f'+g',$$

$$(fg)' = f'g + fg',$$

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}.$$

Theorem

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$. If f achieves its minimum value at interior point $x_0 \in X$ and it is differentiable x_0 , then $f'(x_0) = 0$.

Theorem

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$. If f achieves its minimum value at interior point $x_0 \in X$ and it is differentiable x_0 , then $f'(x_0) = 0$.

Theorem

Let $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], differentiable on (a,b) and f(a)=f(b). Then there exists $c\in(a,b)$ such that f'(c)=0.

Theorem

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$. If f achieves its minimum value at interior point $x_0 \in X$ and it is differentiable x_0 , then $f'(x_0) = 0$.

Theorem

Let $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], differentiable on (a,b) and f(a)=f(b). Then there exists $c\in(a,b)$ such that f'(c)=0.

Theorem

Let $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Then there exists $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Theorem

Let $f,g:[a,b]\to\mathbb{R}$ are continuous on [a,b], differentiable on (a,b) and $g'(x_0)\neq 0, x\in (a,b)$. Then there exists $c\in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Theorem

Let $f,g:[a,b]\to\mathbb{R}$ are continuous on [a,b], differentiable on (a,b) and $g'(x_0)\neq 0, x\in (a,b)$. Then there exists $c\in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Theorem

If f is differentiable on [a,b] and f'(a) f'(b) < 0, then there exists $c \in (a,b)$ such that f'(c) = 0.

Theorem

Let $f,g:[a,b]\to\mathbb{R}$ are continuous on [a,b], differentiable on (a,b) and $g'(x_0)\neq 0, x\in (a,b)$. Then there exists $c\in (a,b)$ such that

$$\frac{f'\left(c\right)}{g'\left(c\right)} = \frac{f\left(b\right) - f\left(a\right)}{g\left(b\right) - g\left(a\right)}.$$

Theorem

If f is differentiable on [a,b] and f'(a) f'(b) < 0, then there exists $c \in (a,b)$ such that f'(c) = 0.

Theorem

Let $f:X\to\mathbb{R}$ and X is interval. f is increasing (decreasing) on X if and only if $f'(x)\geq 0$ ($f'(x)\leq 0$) for all $x\in X$.

L'Hospital's rule

Theorem

lf

- the functions f and g are differentiable in (a,b) and $g(x) \neq 0, x \in (a,b)$,
- $\bullet \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0,$
- $\bullet \lim_{x \to a} \frac{f'(x)}{g'(x)} = K,$

then
$$\lim_{x\to a}\frac{f\left(x\right)}{g\left(x\right)}=K.$$

L'Hospital's rule

Theorem

If

- the functions f and g are differentiable in (a,b) and $g(x) \neq 0, x \in (a,b)$,
- $\bullet \ \lim_{x \to a} g\left(x\right) = +\infty,$
- $\bullet \lim_{x \to a} \frac{f'(x)}{g'(x)} = K,$

then
$$\lim_{x\to a}\frac{f\left(x\right)}{g\left(x\right)}=K.$$

Definition

Let $f: X \to \mathbb{R}$ and x_0 is an interior point of X. Then x_0 is called local maximum (minimum) point of f, if there exists $\delta > 0$ such that from $x \in (x_0 - \delta, x_0 + \delta)$ follows that $f(x) \le f(x_0)$ $(f(x) \ge f(x_0))$.

Definition

Let $f: X \to \mathbb{R}$ and x_0 is an interior point of X. Then x_0 is called local maximum (minimum) point of f, if there exists $\delta > 0$ such that from $x \in (x_0 - \delta, x_0 + \delta)$ follows that $f(x) \le f(x_0)$ $(f(x) \ge f(x_0))$.

Theorem

If x_0 is an extremum point of f and there exists $f'(x_0)$, then $f'(x_0) = 0$.

Theorem

Let f is differentiable in the intervals $(x_0 - \delta, x_0)$, $(x_0, x_0 + \delta)$ and continuous at x_0 , then

• if f'(x) > 0, $x \in (x_0 - \delta, x_0)$ and f'(x) < 0, $x \in (x_0, x_0 + \delta)$, then x_0 is a local maximum point,

(ロト 4回 ト 4 至 ト 4 巨) 9 Q (^)

9/15

V. Mikayelyan Math for ML August 15, 2020

Theorem

Let f is differentiable in the intervals $(x_0 - \delta, x_0)$, $(x_0, x_0 + \delta)$ and continuous at x_0 , then

- if f'(x) > 0, $x \in (x_0 \delta, x_0)$ and f'(x) < 0, $x \in (x_0, x_0 + \delta)$, then x_0 is a local maximum point,
- ② if f'(x) < 0, $x \in (x_0 \delta, x_0)$ and f'(x) > 0, $x \in (x_0, x_0 + \delta)$, then x_0 is a local minimum point,

Theorem

Let f is differentiable in the intervals $(x_0 - \delta, x_0)$, $(x_0, x_0 + \delta)$ and continuous at x_0 , then

- if f'(x) > 0, $x \in (x_0 \delta, x_0)$ and f'(x) < 0, $x \in (x_0, x_0 + \delta)$, then x_0 is a local maximum point,
- ② if f'(x) < 0, $x \in (x_0 \delta, x_0)$ and f'(x) > 0, $x \in (x_0, x_0 + \delta)$, then x_0 is a local minimum point,
- **3** if f'(x) doesn't change it's sign then x_0 is not an extremum point.

(ロ) (個) (重) (重) (回) (の)

9/15

Theorem

Let $f'(x_0) = 0$ and there exists finite $f''(x_0)$, then

• if $f''(x_0) > 0$, then x_0 is a local minimum point,

Theorem

Let $f'(x_0) = 0$ and there exists finite $f''(x_0)$, then

- if $f''(x_0) > 0$, then x_0 is a local minimum point,
- ② if $f''(x_0) < 0$, then x_0 is a local maximum point.

Definition

The point x_0 is called a saddle point of function f, if there exists $\delta > 0$ such that the tangent line of the graph of the function f at the point $(x_0, f(x_0))$ lies in different sides of the graph in the intervals $(x_0 - \delta, x_0)$ and $(x_0, x_0 + \delta)$.

Definition

The point x_0 is called a saddle point of function f, if there exists $\delta>0$ such that the tangent line of the graph of the function f at the point $(x_0, f(x_0))$ lies in different sides of the graph in the intervals $(x_0 - \delta, x_0)$ and $(x_0, x_0 + \delta)$.

Theorem

Let f be a twice differentiable function at x_0 . If there exists $\delta>0$ such that f'' has different signs in the intervals $(x_0-\delta,x_0)$ and $(x_0,x_0+\delta)$, then x_0 is a saddle point of function f.

11 / 15

V. Mikayelyan Math for ML August 15, 2020

Definition

Let $f:X\to\mathbb{R}$ and $X\subset\mathbb{R}$ is an interval. The function f is called convex if

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

for all $x, y \in X$ and $\alpha \in [0, 1]$.

 V. Mikayelyan
 Math for ML
 August 15, 2020
 12 / 15

Theorem

Let $f:X\to\mathbb{R}$ and $X\subset\mathbb{R}$ is an open interval. If f is convex then it is continuous.

Theorem

Let $f:X\to\mathbb{R}$ and $X\subset\mathbb{R}$ is an open interval. If f is convex then it is continuous.

Theorem

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$ is an interval and f is differentiable. f is convex if and only if f' is increasing.

13 / 15

Theorem

Let $f:X\to\mathbb{R}$ and $X\subset\mathbb{R}$ is an open interval. If f is convex then it is continuous.

Theorem

Let $f: X \to \mathbb{R}$, $X \subset \mathbb{R}$ is an interval and f is differentiable. f is convex if and only if f' is increasing.

Theorem

Let $f:X\to\mathbb{R}$ and $X\subset\mathbb{R}$ is an interval f is twice differentiable. f is convex if and only if $f''\geq 0$.

Theorem

Let $f:X \to \mathbb{R}$ and $X \subset \mathbb{R}$ is an interval. If f is a convex function, then

$$f(\alpha_1 x_1 + \ldots + \alpha_n x_n) \le \alpha_1 f(x_1) + \ldots + \alpha_n f(x_n),$$

for all $x_i \in X$, $\alpha_i \in [0,1]$, $1 \le i \le n$ such that $\sum_{i=1}^n \alpha_i = 1$.

 V. Mikayelyan
 Math for ML
 August 15, 2020
 15 / 15

Let $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Denote $A_n = \sum_{k=1}^n a_k$.

Let $\{a_n\}_{n=1}^\infty$ is a sequence of real numbers. Denote $A_n=\sum_{k=1}a_k.$ If there exists $\lim_{n\to\infty}A_n=A$, then we will write

$$A = \sum_{n=1}^{\infty} a_n.$$

Let $\{a_n\}_{n=1}^\infty$ is a sequence of real numbers. Denote $A_n=\sum_{k=1}a_k.$ If there exists $\lim_{n\to\infty}A_n=A$, then we will write

$$A = \sum_{n=1}^{\infty} a_n.$$

Definition

The series $\sum_{n=1}^{\infty} a_n$ is called convergent if A is finite, otherwise it is called divergent.

15 / 15

V. Mikayelyan Math for ML August 15, 2020