Worksheet 9

To accompany Chapter 4.1 Trigonometric Fourier Series

We will step through this worksheet in class.

You are expected to have at least watched the video presentation of Chapter 4.1
(https://cpjobling.github.io/eg-247-textbook/fourier_series/1/trig_fseries">(https://cpjobling.github.io/eg-247-textbook) before coming to class. If you haven't watch it afterwards!

Motivating Example

In the class I will demonstrate the Fourier Series demo (see Notes (trig fs)).

Symmetry in Trigonometric Fourier Series

There are simplifications we can make if the original periodic properties has certain properties:

- If f(t) is odd, $a_0 = 0$ and there will be no cosine terms so $a_n = 0 \ \forall n > 0$
- If f(t) is even, there will be no sine terms and $b_n = 0 \ \forall n > 0$. The DC may or may not be zero.
- If f(t) has half-wave symmetry only the odd harmonics will be present. That is a_n and b_n is zero for all even values of n (0, 2, 4, ...)

Odd, Even and Half-wave Symmetry

Recall

- An *odd* function is one for which f(t) = -f(-t). The function $\sin t$ is an *odd* function.
- An even function is one for which f(t) = f(-t). The function $\cos t$ is an even function.

Half-wave symmetry

- A periodic function with period T is a function for which f(t) = f(t+T)
- A periodic function with period T, has half-wave symmetry if f(t) = -f(t + T/2)

Symmetry in Common Waveforms

To reproduce the following waveforms (without annotation) publish the script waves.m (waves.m).

Squarewave

- Average value over period T is ...?
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Shifted Squarewave

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Sawtooth

- ullet Average value over period T is
- It is an odd/even function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Triangle

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Symmetry in fundamental, Second and Third Harmonics

In the following, T/2 is taken to be the half-period of the fundamental sinewave.

Fundamental

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Second Harmonic

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Third Harmonic

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Some simplifications that result from symmetry

- The limits of the integrals used to compute the coefficients a_n and b_n of the Fourier series are given as $0 \to 2\pi$ which is one period T
- We could also choose to integrate from $-\pi \to \pi$
- If the function is *odd*, or *even* or has *half-wave symmetry* we can compute a_n and b_n by integrating from $0 \to \pi$ and multiplying by 2.
- If we have half-wave symmetry we can compute a_n and b_n by integrating from $0 \to \pi/2$ and multiplying by 4.

(For more details see page 7-10 of the textbook)

Computing coefficients of Trig. Fourier Series in Matlab

As an example let's take a square wave with amplitude $\pm A$ and period T.

Solution

Solution: See <u>square ftrig.mlx (square ftrig.mlx)</u>. Script confirms that:

- $a_0 = 0$
- $a_i = 0$: function is odd
- $b_i = 0$: for i even half-wave symmetry

ft =

$$(4*A*sin(t))/pi + (4*A*sin(3*t))/(3*pi) + (4*A*sin(5*t))/(5*pi) + (4*A*sin(7*t))/(7*pi) + (4*A*sin(9*t))/(9*pi) + (4*A*sin(11*t))/(11*pi)$$

Note that the coefficients match those given in the textbook (Section 7.4.1).

$$f(t) = \frac{4A}{\pi} \left(\sin \Omega_0 t + \frac{1}{3} \sin 3\Omega_0 t + \frac{1}{5} \sin 5\Omega_0 t + \dots \right) = \frac{4A}{\pi} \sum_{n = \text{odd}} \frac{1}{n} \sin n\Omega_0 t$$

Using symmetry - computing the Fourier series coefficients of the shifted square wave

- As before $a_0 = 0$
- We observe that this function is even, so all b_k coefficents will be zero
- The waveform has half-wave symmetry, so only odd indexed coeeficents will be present.
- Further more, because it has half-wave symmetry we can just integrate from $0 \to \pi/2$ and multiply the result by 4.

See shifted sq ftrig.mlx (shifted sq ftrig.mlx).

$$(4*A*cos(t))/pi - (4*A*cos(3*t))/(3*pi) + (4*A*cos(5*t))/(5*pi) - (4*A*cos(7*t))/(7*pi) + (4*A*cos(9*t))/(9*pi) - (4*A*cos(11*t))/(11*pi)$$

Note that the coefficients match those given in the textbook (Section 7.4.2).

$$f(t) = \frac{4A}{\pi} \left(\cos \Omega_0 t - \frac{1}{3} \cos 3\Omega_0 t + \frac{1}{5} \cos 5\Omega_0 t - \dots \right) = \frac{4A}{\pi} \sum_{n = \text{odd}} (-1)^{\frac{n-1}{2}} \frac{1}{n} \cos n\Omega_0 t$$