CONCOURS SMF JUNIOR

ÉQUIPE TISANE

Problème 2

Auteurs : Chloé Papin Etienne Perrot Victor Quach

May 11, 2017

1 Problème 2

1.1 Partie A

Question 1

On note e_n^d la fonction $x\mapsto e^{in\dot{x}}$ définie sur \mathbb{T}_d ; on omet l'exposant quand il n'y a pas d'ambiguïté. Le coefficient de Fourier $e_n(m)$ vaut 1 si n=m et 0 sinon. Soit f un polynôme trigonométrique. En calculant les coefficients de Fourier de f,on peut les identifier avec les coefficients du polynôme. On a alors $f(x)=\sum_{n\in\mathbb{Z}^d}\hat{f}(n)e^{in\dot{x}}$ pour tout $x\in\mathbb{T}$. Notons que seuls un ensemble fini de coefficients sont non nuls.

Pour toute mesure bornée μ , on a

$$\mu \star f = \int_{\mathbb{T}^d} f(t - x) \mu(dx)$$

$$= \sum_{n \in \mathbb{Z}^d} \hat{f}(n) \int_{\mathbb{T}^d} e_n(t - x) \mu(dx)$$

$$= \sum_{n \in \mathbb{Z}^d} \hat{f}(n) \hat{\mu}(n) e_n(t)$$

$$= T_{\hat{\mu}} f$$

Fixons μ une mesure bornée sur \mathbb{T}^d . Montrons que la suite de ses coefficients de Fourier est un multiplicateur de $W^{1,1}$.

Soit f un polynôme trigonométrique de $W^{1,1}$. Alors

$$||T_{\hat{\mu}}f||_1 = \frac{1}{2\pi} \int_{\mathbb{T}^d} |\mu \star f(t)| dt$$

$$= \frac{1}{2\pi} \int_{\mathbb{T}^d} |\int_{\mathbb{T}^d} f(t-x)\mu(dx)| dt$$

$$\leq \frac{1}{2\pi} \int_{\mathbb{T}^d} \int_{\mathbb{T}^d} |f(t-x)|\mu(dx) dt$$

On intègre d'abord par rapport à la variable t. Comme la mesure dt est invariante par translation, on a

$$||T_{\hat{\mu}}f||_1 \le \int_{\mathbb{T}^d} ||f||_1 \mu(dx)$$

 $\le \mu(\mathbb{T}^d) ||f||_1$

Pour le deuxième terme de la norme de l'espace de Sobolev, nous devons vérifier que l'on a bien

$$\nabla(\mu\star f)=\mu\star\nabla f$$

Alors, le même calcul que ci-dessus donnera $\|\nabla T_{\hat{\mu}}f_i\|_1 \leq \mu(\mathbb{T}^d)\|\nabla f_i\|_1$ pour chaque composante du gradient, ce qui permettra de conclure

$$||T_{\hat{\mu}}f||_{W^{1,1}} \le \mu(\mathbb{T}^d)||f||_{W^{1,1}}$$

Pour cette vérification, soit $1 \le i \le d$. On a

$$\partial_i(\mu \star f) = \partial_i \int_{T^d} f(t - x) \mu(dx)$$
$$= \int_{T^d} \partial_i f(t - x) \mu(dx)$$
$$= \mu \star \partial_i f$$

En effet, l'intégrande est de classe C^{∞} par rapport aux variables x et t et il satisfait donc des conditions suffisantes pour permettre la dérivation sous le signe somme.

Nous avons donc montré que quel que soit le polynôme trigonométrique f, on a une constante C (ici nous avons montré que $\mu(\mathbb{T}^d)$ fonctionne) tele que

$$||T_{\hat{\mu}}f||_{W^{1,1}} \le C||f||_{W^{1,1}}$$

Question 2

Soit m un multiplicateur de $W^{1,1}(\mathbb{T}^d)$. On note donc ||m|| sa norme.

Soit $n \in \mathbb{T}^d$. Prenons le polynôme trigonométrique e_n . Alors pour tout $t \in \mathbb{T}^d$, on a $T_m e_n(t) = m(n)e_n(t)$ donc

$$||T_m e_n||_{W^{1,1}} = |m(n)|||e_n||_{W^{1,1}}$$

Par conséquent, comme $||T_m e_n||_{W^{1,1}} = ||m|| ||e_n||_{W^{1,1}}$, on a $|m(n)| \le ||m||$.

Ainsi, on a sup $|m(n)| \leq ||m||$.

Notons que l'égalité est atteinte dans le cas où m provient d'une mesure, car $\mu(\mathbb{T}^d) = \hat{\mu}(0)$. Cela montre également que la constante trouvée à la question 1 est optimale.

Question 3

Question 4

Pour montrer qu'un contre-exemple en dimension 2 est suffisant pour déduire le cas de la dimension d, montrons que si tout multiplicateur de Fourier en dimension d est la suite des coefficients de Fourier d'une mesure, alors ceci est vrai en dimension 2 également.

Soit d un entier supérieur ou égal à 2.

On définit la projection $p: \mathbb{T}_d \to \mathbb{T}_2$ par

$$p(x_1,\ldots,x_d) = (x_1,x_2)$$

et l'injection $i: \mathbb{Z}_2 \to \mathbb{Z}_d$ par

$$i(n_1, n_2) = (n_1, n_2, 0, \dots, 0)$$

Soit m un multiplicateur de Fourier de \mathbb{T}_2 . Soit $n=(n_1,\ldots,n_d)\in\mathbb{Z}^d$. On construit \tilde{m}' un multiplicateur de Fourier en posant

$$\tilde{m}'(n) = m((n_1, n_2))$$
 si pour $i > 2, n_i = 0$
= 0 sinon

Vérifions que m' est un multiplicateur de Fourier : Soit F un polynôme trigonométrique de \mathbb{T}^d . On a

$$||T_{m'}F||_{W^{1,1}} = ||\sum_{n \in \mathbb{Z}^d} m_d(n)\hat{F}(n)e_n||_{W^{1,1}}$$
$$= ||\sum_{n \in \mathbb{Z}^2} m(n)\hat{F}(n,0)e_{n,0}||_{W^{1,1}}$$

Posons f la fonction de \mathbb{T}_2 définie par

$$f(x) = \int_{\mathbb{T}_{d-2}} F(x, t) dt$$

Calculons ses coefficients de Fourier : soit $n \in \mathbb{Z}^2$, on a

$$\begin{split} \hat{f}(n) &= \int_{T^2} f(x) e_n^2(-x,0) dx \\ &= \int_{T^2} \left(\int_{\mathbb{T}_{d-2}} F(x,t) dt \right) e_n^2(-x) dx \\ &= \int_{T^2} \int_{\mathbb{T}_{d-2}} F(x,t) e_{n,0}^d(-x,0) dx dt \\ &= \int_{T^2} \int_{\mathbb{T}_{d-2}} F(x,t) e_{n,0}^d(-x,t) dx dt \\ &= \hat{F}(n,0) \end{split}$$

Alors on reconnaît précisément dans les inégalités ci-dessus

$$||T_{m'}F||_{W^{1,1}} = ||\sum_{n\in\mathbb{Z}^2} m(n)\hat{f}(n)e_n^2||_{W^{1,1}}$$

Comme f est un polynôme trigonométrique et m un multiplicateur de Fourier, on a

$$||T_{m'}F||_{W^{1,1}} \le C||f||_{W^{1,1}}$$

En outre, on a l'inégalité suivante sur les normes :

$$||f||_1 = \int_{\mathbb{T}}^2 |f(x)| dx$$

$$= \int_{T^2} \left| \int_{\mathbb{T}_{d-2}} F(x, t) dt \right| dx$$

$$\leq \int_{T^2} \left| \int_{\mathbb{T}_{d-2}} |F(x, t)| dt \right| dx$$

$$\leq ||F||_1$$

En procédant de la même manière sur les composantes des gradients (vus comme des vecteurs de \mathbb{C}^2 ou \mathbb{C}^d munis de la norme 2), on montre

$$||f||_{W^{1,1}} \le ||F||_{W^{1,1}}$$

Ainsi, on obtient finalement

$$||T_{m'}F||_{W^{1,1}} \le C||F||_{W^{1,1}}$$

ce qui achève de montrer que m' est bien un multiplicateur de Fourier.

D'après notre hypothèse, m' est donc la suite des coefficients de Fourier d'une mesure bornée notée μ .

Faisons une courte parenthèse pour rappeler comment on peut construire une mesure de \mathbb{T}^2 à partir d'une mesure de \mathbb{T}^d . Soit μ_d une mesure bornée sur \mathbb{T}^d . On pose, pour

toute partie X de \mathbb{T}^2 , $\mu_2(X) = \mu_d(p^{-1}(X))$. Cela définit bien une mesure : $\mu_2(\emptyset) = 0$. De plus, la σ -additivité de μ_2 découle de celle de μ_d et du fait que

$$\forall X, Y \subset \mathbb{T}^2 \quad X \cap Y = \emptyset \implies p^{-1}(X) \cap p^{-1}(Y) = \emptyset$$

Enfin, μ_2 est également bornée.

Pour toute fonction mesurable f de \mathbb{T}^2 , on a $\mu_2(f) = \mu_d(f \circ p)$.

Appliquons cela à la mesure μ dont la suite des coefficients de Fourier est donnée par m'. Alors posons $\mu_0(f) = \mu(f \circ p)$ pour toute fonction mesurable f de \mathbb{T}^2 . On a alors, pour tout $n \in \mathbb{Z}^2$,

$$\hat{\mu}_{0}(n) = \int_{\mathbb{T}^{2}} e_{n}^{2}(x)\mu_{0}(dx)$$

$$= \int_{\mathbb{T}^{d}} e_{n}^{2}(p(z))\mu_{0}(dz)$$

$$= \int_{\mathbb{T}^{d}} e(n, 0)^{d}(z)\mu_{0}(dz)$$

$$= \hat{\mu}(n, 0)$$

$$= m(n)$$

Ainsi, les coefficients de Fourier de μ_0 sont égaux aux termes du multiplicateur m. Par conséquent, nous venons de montrer que si tout multiplicateur de Fourier de \mathbb{T}^d découle d'une mesure bornée, il en va de même sur \mathbb{T}^2 .

En conclusion, pour prouver qu'il existe en dimension d des multiplicateurs de Fourier qui ne proviennent pas d'une mesure bornée, il nous suffit de le montrer en dimension 2.

1.2 Partie B

Question 1

Question 2

Soit a_j une suite finie de complexes et X_j des variables aléatoires de Bernoulli. Comme dans l'énoncé. Soit $\lambda \in \mathbb{R}$. La grandeur

$$\mathbb{E}\left(|\lambda + \sum a_j X_j|^2\right)$$

est positive. Or c'est un polynôme unitaire en λ :

$$\mathbb{E}\left(|\lambda + \sum a_j X_j|^2\right) = \lambda^2 + 2\lambda \mathbb{E}\left(\operatorname{Re}(\sum a_j X_j)\right) + \mathbb{E}\left(|\sum a_j X_j|^2\right)$$

La condition de positivité se traduit donc par la positivité du discriminant. Remarquons d'abord, comme $\mathbb{E}(X_iX_j) = \delta_{ij}$:

$$\mathbb{E}\left(|\sum a_j X_j|^2\right) = \sum a_i \overline{a_j} \mathbb{E}\left(X_i X_j\right) = \sum |a_j|^2$$

Le discriminant suivant est donc positif :

$$4\mathbb{E}\left(\operatorname{Re}(\sum a_j X_j)\right)^2 - 4\sum |a_j|^2 \ge 0$$

Comme la partie réelle d'un complexe est, en valeur absolue, inférieure à son module, l'inégalité

$$\mathbb{E}\left(|\sum a_j X_j|\right)^2 - \sum |a_j|^2 \ge 0$$

est aussi vérifiée.

d'où, en passant à la racine carrée,

$$\left(\sum |a_j|^2\right)^{1/2} \le \mathbb{E}\left(|\sum a_j X_j|\right)$$

Question 3

Montrons que la suite $m := \left(\frac{\varepsilon_n}{(|n|^2+1)^{1/2}}\right)$ est un multiplicateur de Fourier. Soit f un polynôme trigonométrique de $W^{1,1}$.

Alors pour tout $t \in \mathbb{T}^d$

$$T_m f(t) = \sum_{n \in \mathbb{Z}^d} \frac{\varepsilon_n}{(|n|^2 + 1)^{1/2}} \hat{f}(n) e_n(t)$$

On a pour tout $t \in \mathbb{T}^d$

$$|T_m f(t)|^2 \le \sum_{n \in \mathbb{Z}^d} |\hat{f}(n)|^2$$

donc $||T_m f||_2 \le ||f||_2$

Par l'inégalité de Gagliardo-Nirenberg, on dispose donc d'une constante C_1 telle que $||f||_2 \le C_1 ||f||_{W^{1,1}}$, tandis qu'on minore l'autre côté de l'inégalité grâce à l'inégalité de Cauchy-Schwarz :

$$||T_m f||_1 \le C_1 ||f||_{W^{1,1}}$$

C'est un polynôme trigonométrique ; en dérivant par rapport à la variable t_k , on obtient

$$\partial_k T_m f(t) = \sum_{n \in \mathbb{Z}^d} \frac{\varepsilon_n i n_k}{(|n|^2 + 1)^{1/2}} \hat{f}(n) e_n(t)$$

Or $\|\nabla T_m f\|_2^2 = \sum_{k=1}^d |\partial_k T_m f|_2^2$ par théorème de Pythagore, d'où

$$\|\nabla T_m f\|_{L^2}^2 = \sum_{n \in \mathbb{Z}^d} \varepsilon_n \frac{\sum_{k=1}^d |n_k|^2}{|n|^2 + 1} \hat{f}(n)^2$$

$$= \sum_{n \in \mathbb{Z}^d} \varepsilon_n \frac{|n|^2}{|n|^2 + 1} \hat{f}(n)^2$$

$$\leq \sum_{n \in \mathbb{Z}^d} \varepsilon_n \hat{f}(n)^2$$

$$\leq \|f\|_{L^2}^2$$

Or d'après l'inégalité de Cauchy-Schwarz, $\|\nabla T_m f\|_{L^1} \leq \|\nabla T_m f\|_{L^2}$ donc

$$\|\nabla T_m f\|_{L^1} \le \|f\|_{L^2}$$

Ainsi, on a

$$||T_m f||_{W^{1,1}} \le C_1 ||f||_{W^{1,1}} + ||f||_2$$

Or l'inégalité de Gagliardo-Nirenberg permet de majorer le second membre, d'où

$$\|T_m f\|_{W^{1,1}} \leq 2C_1 \|f\|_{W^{1,1}}$$

Nous avons donc montré que m est un multiplicateur de Fourier de norme bornée par la constante $2C_1$.

Question 4