PATENT Docket No.: 16356.807 (DC-05014) Customer No.: 000027683

Claims

What is claimed is:

1	1.	A method for charging a smart battery, the method comprising:
2		receiving an encrypted random string, wherein the encrypted random
3		string includes a random string in an encrypted form;
4		decrypting the encrypted random string to recover the random string;
5		and
6		transferring the random string to a device to authenticate the smart
7		battery for the charging, the device being electrically coupled to the smart
8		battery.
1	2.	The method of claim 1, wherein the receiving comprises:
2		generating a random string, the random string being generated by the
3		device;
4		encrypting the random string, the random string being encrypted with
5		an encryption key included in the device to generate the encrypted random
6		string;
7		transferring the encrypted random string, the encrypted random string
8		being transferred from the device to the smart battery.
1	3.	The method of claim 2, wherein the decrypting requires the encryption key.
1	4.	The method of claim 2, wherein the encryption key is a private key.
1	5.	The method of claim 2, wherein the encrypted form is defined by the device
2		and includes the encryption key to encrypt the random string.

Docket No.: 16356.807 (DC-05014)

Customer No.: 000027683

- 6. The method of claim 2, wherein the encryption key is at least 8 bits. 1
- 7. The method of claim 2, wherein the generating, encrypting and transferring is 1
- performed by a controller included in the device, wherein the device is 2
- included in an information handling system. 3
- 8. The method of claim 1, wherein the device authenticates the smart battery by 1
- verifying the random string is unchanged. 2
- 9. The method of claim 8, wherein the device identifies the smart battery as a 1
- counterfeit when the random string is changed, wherein the device disables 2
- the charging of the counterfeit. 3
- 10. The method of claim 1, wherein the encrypted form is defined by the device 1
- and includes an encryption key to encrypt the random string. 2
- 11. The method of claim 1, wherein the random string is alpha numeric. 1
- 12. The method of claim 1, wherein the random string is a random number.
- 13. The method of claim 1, wherein the transferring of the random string is via an 1
- SMBus. 2

Docket No.: 16356.807 (DC-05014)

Customer No.: 000027683

1	14.	A method for authenticating a smart battery, the method comprising:
2		generating a first random string, the first random string being
3		generated by a device electrically coupled to the smart battery;
4		encrypting the first random string, the first random string being
5		encrypted with a first encryption key included in the device to generate the
6		encrypted first random string;
7		transferring the encrypted first random string, the encrypted first
8		random string being transferred from the device to the smart battery;
9		decrypting the encrypted first random string with the first encryption
10		key to recover a second random string;
11		encrypting the second random string, the second random string being
12		encrypted with a second encryption key included in the smart battery to
13		generate the encrypted second random string;
14		transferring the encrypted second random string, the encrypted
15		second random string being transferred from the smart battery to the device;
16		decrypting the encrypted second random string with the second
17		encryption key to recover the second random string; and
18		verifying the first random string and the second random string match to
19		authenticate the smart battery.
1	15.	The method of claim 14, wherein each of the first and second encryption keys
2		is a private key.
1	16.	The method of claim 14, wherein each of the first and second encryption keys
2		is at least 8 bits.
1	17.	The method of claim 14, wherein each of the first and second random strings
2		is a random number.

PATENT
Docket No.: 16356.807 (DC-05014)
Customer No.: 000027683

1	18.	A smart battery authentication system comprising:
2		a smart battery, wherein the smart battery includes:
3		a smart electronics operable to:
4		receive an encrypted random string, wherein the
5		encrypted random string includes a random string in an
6		encrypted form;
7		decrypt the encrypted random string to recover the
8		random string; and
9		transfer the random string to a controller to authenticate
10		the smart battery;
11		a communications bus for electrically coupling the smart
12		electronics to the controller; and
13		the controller operable to authenticate the smart battery by
14		generating the random string, generating the encrypted random string
15		and verifying the random string is unchanged.
1	19.	The system of claim 18, wherein the encrypted form is defined by the
2		controller and includes an encryption key to encrypt the random string.
1	20.	The system of claim 18, wherein the random string is a random number.

Docket No.: 16356.807 (DC-05014) Customer No.: 000027683

1	21.	An information handling system comprising:
2		a processor;
3		a system bus;
4		a memory coupled to the processor through the system bus;
5		a power supply system operable to provide power to the processor, the
6		bus and the memory, the power supply system being connectable to an AC
7		adapter for deriving power from an AC power source;
8		a controller coupled to the processor and memory through the system
9		bus, the controller operable to control the power supply system; and
10		wherein the power supply system includes:
11		a smart battery having a smart electronics, the smart electronics
12		being operable to:
13		receive an encrypted random string, wherein the
14		encrypted random string includes a random string in an
15		encrypted form;
16		decrypt the encrypted random string to recover the
17		random string; and
18		transfer the random string to the controller to
19		authenticate the smart battery.
1	22.	The system of claim 21, wherein the controller is operable to authenticate the
2		smart battery by generating the random string, generating the encrypted
3		random string and verifying the random string is unchanged.