2024 年全国硕士研究生招生考试(数学一)试题

选择题1-10题(每题5分,共50分)

- 1. 已知函数 $f(x)=\int_0^x e^{\cos t}dt$, $g(x)=\int_0^{\sin x} e^{t^2}dt$, 则 () 。
 - A. f(x) 为奇函数, g(x) 为偶函数
 - B. f(x) 为偶函数, g(x) 为奇函数
 - C. f(x) 与 g(x) 均为奇函数
 - D. f(x) 与 g(x) 均为周期函数
- 2. 设 P=P(x,y,z) , $\ Q=Q(x,y,z)$ 均为连续函数 , $\ \sum$ 为曲面 $z=\sqrt{1-x^2-y^2}$ ($x\geq 0$, $y \geq 0$) 的上侧,则 $\iint_{\Sigma} P dy dz + Q dz dx = ()$ 。

 - A. $\iint_{\Sigma} \left(\frac{x}{z}P + \frac{y}{z}Q\right) dxdy$ B. $\iint_{\Sigma} \left(-\frac{x}{z}P + \frac{y}{z}Q\right) dxdy$ C. $\iint_{\Sigma} \left(\frac{x}{z}P \frac{y}{z}Q\right) dxdy$ D. $\iint_{\Sigma} \left(-\frac{x}{z}P \frac{y}{z}Q\right) dxdy$
- 3. 已知幂函数 $\sum_{n=0}^{\infty}a_nx^n$ 的和函数为 $\ln(2+x)$,则 $\sum_{n=0}^{\infty}na_{2n}=$ () 。
- 4. 设函数 f(x) 在区间 (-1,1) 内有定义, $\lim_{x \to 0} f(x) = 0$,则()。
 - A. 当 $\lim_{x o 0} rac{f(x)}{x} = m$ 时,f'(0) = m
 - B. 当 f'(0)=m 时, $\lim_{x o 0}rac{f(x)}{x}=m$
 - C. 当 $\lim_{x o 0}f'(x)=m$ 时, $f^{''}(0)=m$
 - D. 当 f'(0)=m 时, $\lim_{x\to 0}f'(x)=m$
- 5. 在空间直角坐标系 O-xyz 中,三张平面 $\pi_i:a_ix+b_iy+c_iz=d_i$ (i=1,2,3) 位置关系如图

所示,记
$$lpha_i=(a_i,b_i,c_i)$$
, $eta_i=(a_i,b_i,c_i,d_i)$,若 $regin{pmatrix} lpha_1 \ lpha_2 \ lpha_3 \end{pmatrix}=m$, $regin{pmatrix} eta_1 \ eta_2 \ eta_3 \end{pmatrix}=n$,则(

) 。

- A. n = 1, n = 2
- $\operatorname{B.} m = n = 2$
- C. m = 2, n = 3
- $\mathrm{D.}\, m=n=3$

6. 设向量
$$\alpha_1=\begin{pmatrix}a\\1\\-1\\1\end{pmatrix}$$
, $\alpha_2=\begin{pmatrix}1\\1\\b\\a\end{pmatrix}$, $\alpha_3=\begin{pmatrix}1\\a\\-1\\1\end{pmatrix}$,若 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,且其中任意两个

向量均线性无关,则()。

A.
$$a = 1$$
, $b \neq -1$

B.
$$a = 1$$
, $b = -1$

C.
$$a
eq -2$$
 , $b=2$

$$\mathrm{D.}\,a=-2\text{, }b=2$$

- 7. 3阶矩阵 A 的秩为2,非零向量 α 满足 $A\alpha=0$,任意向量 β ,使得 $\beta^T\alpha=0$,且 $A\beta=\beta$,则下列结论正确的是()。
 - A. A^3 的迹为2
 - B. A^3 的迹为5
 - C. A^5 的迹为7
 - D. A^5 的迹为9
- 8. 设随机变量 X 与 Y 独立, X 服从 N(0,2) 的正态分布, Y 服从 N(-2,2) 的正态分布,若 $P\{2X+Y< a=P\{X>Y\},\; 则\; a=(\;)\;$ 。

A.
$$-2 - \sqrt{10}$$

$$\mathrm{B.}-2+\sqrt{10}$$

$$\mathsf{C.} - 2 - \sqrt{6}$$

D.
$$-2 + \sqrt{6}$$

9. 设随机变量 X 的概率密度为 $f(x)=egin{cases} 2(1-x),&0< x<1\\0,&$ 其它 , 在 X=x (0< x<1)的条件下,Y 在区间 (x,1) 上服从均匀分布,则 $\mathrm{Cov}(X,Y)=$ () 。

A.
$$-\frac{1}{36}$$

B.
$$-\frac{1}{72}$$

C.
$$\frac{1}{72}$$

D.
$$\frac{1}{36}$$

二、填空题: 11-16题(每题5分, 共30分)

10. 设随机变量 X、Y 相互独立,且均服从参数为 λ 的指数分布,令 Z=|X-Y|,则下列随机变量与 Z 同分布的是()。

A.
$$X+Y$$

B.
$$\frac{X+Y}{2}$$

C.
$$2\tilde{X}$$

D.
$$X$$

- 11. 若 $\lim_{x o 0}rac{(1+ax^2)^{\sin x}-1}{x^3}=6$,则a=_____
- 12. z=f(u,v) 有二阶连续导数, $df|_{(1,1)}=3du+4dv$, $y=f(\cos x,1+x^2)$,则 $\left.rac{d^2y}{dx^2}
 ight|_{x=0}=$ ____
- 13. 若函数 f(x)=x+1, $f(x)=rac{a_0}{2}+\sum_{n=0}^{\infty}a_n\cos nx$, $x\in[0,\pi]$,则极限 $\lim_{n o\infty}n^x\sin a_{2n-1}=$ _____
- 14. 微分方程 $y'=rac{1}{(x+y)^2}$,满足条件 y(1)=0 的解为 _____
- 15. 设实矩阵 $A=\begin{pmatrix} a+1&a\\a&a \end{pmatrix}$,若对任意实向量 $\alpha=\begin{pmatrix} x_1\\x_2 \end{pmatrix}$, $\beta=\begin{pmatrix} y_1\\y_2 \end{pmatrix}$, $(\alpha^TA\beta)^2\leq \alpha^TA\alpha\cdot\beta^TA\beta$ 都成立,则 a 的取值范围是 _____

16. 随机试验每次成功的概率为 P,现进行三次独立重复实验,已知至少成功一次的条件下全部成功概率为 $\frac{4}{13}$,则 P=

三、解答题: 17-22 小题, 共 70 分

17. 已知平面区域
$$D=\{(x,y)|\sqrt{1-y^2}\leq x\leq 1, -1\leq y\leq 1\}$$
,计算 $\iint_D rac{x}{\sqrt{x^2+y^2}}\,d\sigma$

- 18. 设 $f(x,y)=x^3+y^3-(x+y)^2+3$,曲面 z=f(x,y) 在 (1,1,1) 处的切平面为 T,T 与 三个坐标面所围有界区域在 xoy 面的投影为 D
 - (1) 求 T 的方程
 - (2) 求 f(x,y) 在 D 上的最大值和最小值

19. 设
$$f(x)$$
 二阶可导, $f'(0)=f'(1)$, $|f''(x)|\leq 1$,证明:
1) 当 $x\in (0,1)$ 时 $|f(x)-f(0)(1-x)-f(1)x|\leq rac{x(1-x)}{2}$ 2) $\left|\int_0^1 f(x)dx-rac{f(0)+f(1)}{2}
ight|\leq rac{1}{12}$

- 20. 已知有向曲线 L 为球面 $x^2+y^2+z^2=2x$ 与平面 2x-z-1=0 的交线从 z 轴正向往 z 轴负向看去为逆时针方向,计算曲线积分 $\int_L (6xyz-yz^2)dx+2x^2zdy+xyzdz$
- 21. 已知数列 $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ 满足 $x_0=-1$, $y_0=0$, $z_0=2$, 且

$$\left\{egin{aligned} x_n &= -2x_{n-1} + 2z_{n-1} \ y_n &= -2y_{n-1} - 2z_{n-1} \ z_n &= -6x_{n-1} - 3y_{n-1} + 3z_{n-1} \end{aligned}
ight.$$

记
$$lpha_n=egin{pmatrix} x_n \ y_n \ z_n \end{pmatrix}$$
,写出满足 $lpha_n=Alpha_{n-1}$ 的矩阵 A ,并求 A^n 及 x_n , y_n , z_n ($n=1,2,\cdots$)

- 22. 设总体 $X\sim U[0,\theta]$ 上的均匀分布,其中 $\theta\in(0,+\infty)$ 为未知参数, X_1,X_2,\cdots,X_n 为来自总体 X 简单随机样本, $X(n)=\max\{X_1,X_2,\cdots,X_n\}$, $T_c=cX(n)$
 - (1) 求 c 时,使得 T_c 为 θ 的无偏估计
 - (2) 记 $h(c)=E(T_c- heta)^2$,求 c 使得 h(c) 最小