くはらはいられてト くはしてはかせらりたゆらりたし

ԿՐԹՈՒԹՅԱՆ, ԳԻՏՈՒԹՅԱՆ, ՄՇԱԿՈՒՅԹԻ ԵՎ ՍՊՈՐՏԻ ՆԱԽԱՐԱՐՈՒԹՅՈՒՆ ՀԱՅԱՍՏԱՆԻ ԱՂԳԱՅԻՆ ՊՈԼԻՏԵԽՆԻԿԱԿԱՆ ՀԱՄԱԼՍԱՐԱՆ

ՏԵՂԵԿԱՏՎԱԿԱՆ ԵՎ ՀԱՂՈՐԴԱԿՑԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐԻ և

ELԵԿՏՐՈՆԻԿԱՅԻ ԻՆՍՏԻՏՈԻՏ ԻՆՏԵԳՐԱԼ ՍԽԵՄԱՆԵՐԻ ԵՎ

ՀԱՄԱԿԱՐԳԵՐԻ ՄՇԱԿՄԱՆ ԾՐԱԳՐԱՅԻՆ ՄԻՋՈՑՆԵՐԻ ԱՄԲԻՈՆ

ԿՈՐՍԱՅԻՆ ԱՇԽԱՏԱՆՔ

խումբ` SS019-U

Առարկա` Դիսկրետ մաթեմատիկա

Թեմա` Միակցման կետերի որոնման ալգորիթմի մշակում և

ծրագրային իրացում

Դասախոս` Սարգսյան Գարեգին

Ուսանող՝ Բաբայան Ալվարդ

Բովանդակություն

ՆԵՐԱԾՈ Ի ԹՅՈԻՆ	3
ԽՆԴՐԻ ԴՐՎԱԾՔ	4
ԽՆԴՐԻ ԼՈԻԾՈՒՄ	5
ՕԳՏԱԳՈՐԾՎԱԾ ԳՐԱԿԱՆՈԻԹՅԱՆ ՑԱՆԿ -	7

Ներածություն

Դիցուք V= { v 1, v 2,..., v $_p$ } ցանկացած ոչ դատարկ վերջավոր բազմություն է, և դիցուք V⁽²⁾-ը V բազմության տարրերի բոլոր ոչ կարգավոր զույգերի բազմությունն է։ Ենթադրենք, որ E \subseteq V⁽²⁾։

(V, E) կարգավոր զույգին կանվանենք գրաֆ, և այն կնշանակենք Gով։

G = (V,E) գրաֆի V բազմության տարրերին կանվանենք գրաֆի գազաթներ, իսկ E բազմության տարրերին` *կողեր*։

ΩhgnLp G = (V, E) gnωΦ L, u,v ∈ V LL e, e' ∈ E:

ս և v գագաթներին կանվանենք հարևան,եթե $u,v \in E$:

ս գագաթին և e կողին կանվանենք կից, եթե $u \in e$:

e և e՛ տարբեր կողերը կանվանենք հարևան,եթե գոյություն ունի v $\in V$ այնպես, որ v կից $t \in V$ և e՛-ին։

եթե G=(V,E) գրաֆում $V=\{v_1,\ ...\ ,\ v_n\}$ և $E=\{e_1,\ ...\ ,\ e_m\}$, ապա այդ գրաֆին համապատասխանեցնենք $n\times n$ կարգի $A(G)=(\alpha_{ij})_{n\times n}$ մատրիցը հետևյալ կերպ

1, եթե v; և v; հարևան են,

 $\alpha_{ii}=$

0, իակառակ դեպքում։

A(G) մատրիցը կանվանենք G գրաֆի *հարևանության մատրից։* Նկատենք, որ ցանկացած i- ի համար $(1 \le i \le n)$ $a_{ii} = 0$, և ցանկացած i, j- ի համար $(1 \le i, j \le n)$ $a_{ij} = a_{ji}$: v գագաթին կից կողերի բազմությունը` j_G $(\{v\})$ - ն, կնշանակենք j_G(v)-ով։

G գրաֆը կոչվում է լրիվ, եթե նրանում ցանկացած երկու գագաթ հարևան են։

H գրաֆը կոչվում E G գրաֆի ենթագրաֆ և կգրենք $H \subseteq G$, եթե $V(H) \subseteq V(G)$ և $E(H) \subseteq E(G)$: <ակառակ դեպքում, կգրենք $H \not\subseteq G$:

Դիցուք G = (V, E) գրաֆ է։ c(G)-ով նշանակենք G գրաֆի կապակցված բաղադրիչների քանակը։

G գրաֆի (u_0,u_k)- շրջանցումը կանվանենք u_0 -ից u_k ճանապարհ կամ (u_0,u_k)- ճանապարհ, եթե u_0 , u_0 ,-ը,..., u_0 u_0 -ն G գրաֆի զույգ առ զույգ տարբեր կողեր են։ Եթե P-ն G գրաֆի ճանապարհ E, ապա |P|-ով կնշանակենք այդ ճանապարհի երկարությունը , այսինքն` այդ ճանապարհի մեջ առկա կողերի քանակը։

G գրաֆը կանվանենք կապակցված, եթե նրա ցանկացած երկու ս և v գագաթների համար G գրաֆում գոյություն ունի (ս,v) - ճանապարհ։

G գրաֆի v գագաթը կոչվում է միակցման կետ, եթե c(G-v)>c(G)։

Խնդրի դրվածքը

Տրված G(V, E) վերջավոր գրաֆի միակցման կետերի որոնման ալգորիթմի մշակում և ծրագրային իրացում։

Խնդրի լուծում

Դիցուք G = (V, E) գրաֆ է.

G գրաֆում միակցման կետերը գտնելու համար կատարենք հետևյալ քայլերը`

- Ներմուծել ֆայլի միջոցով գրաֆի գագաթների քանակը և գրաֆի գագաթների միջև կապերը։
- 🕨 Հաշվում և տպում է գրաֆի հարևանության մատրիցը։
- Գտնում է գրաֆի միակցման կետերը օգտագործելով ծառի ալգորիթմը։
 - > Ստուգելով գրաֆի ծառը, նրա ճյուղերը, ծնողները և երեխաները։
 - Գտևում է գրաֆի միակցման կետերը օգտագործելով ծառը։
 - Նկարում է գրաֆը գունավորելով միակցման կետերը և գրաֆի մյուս գագաթներ համապատասխանաբար կանաչ և կարմիր։

Խնդրի լուծման ծրագրային նկարագրությունը C++ ծրագրավորման լեզվով կարող եք տեսնել անցնելով հղումը` https://github.com/babayanal/discrete math:

Խնդրի լուծում

Օգտագործված գրականության ցանկ

Պ.Ա. Պետրոսյան, Վ.Վ. Մկրտչյան, Ռ.Ռ. Քամալյան - Գրաֆների տեսություն

Ռ.Ն. Տոնոյան - Դիսկրետ մաթեմատիկայի դասընթաց