



### TD N°18 : réseaux informatiques (Révision)

#### **Exercice n°1**: Couche liaison de donnée (trame HDLC)

Suivant un échange *HDLC* entre une station émettrice **ETTD-K** vers une station **ETTD-L**, la station **ETTD-K** émet une trame *HDLC* avec les trames ci-dessous puis se place en attente d'accusé de réception.

1. Remplir le diagramme d'échange ci-dessous par les trames nécessaires ainsi que les types des trames utilisées





#### **Solution:**







Exercice n°2: Couche réseau (adressage FLSM)

Considérons le réseau **40.0.0/8.** Donner le plan d'adressage pour le diviser en 20 sous-réseaux. Donner les informations de 10 premiers sous-réseaux.

**Solution**: Le besoin c'est créer 20 sous-réseaux.  $16 < 20 < 32 = 2^5$ 

Donc, il faut emprunter 5 bits de 2 octet. Le nouveau masque réseau est :

255.11111000.0000000.00000000 ou bien /13

En décimal: 255.248.0.0

Le nombre magique est 256-248 = 8

| Numé<br>ro de<br>s-s<br>réseau | Adresse<br>de s-s<br>réseau | Plage des<br>adresses<br>utilisables | Adresse diffusion |
|--------------------------------|-----------------------------|--------------------------------------|-------------------|
| N 0                            | 40.0.0.0                    | 40.0.0.1 au<br>40.7.255.254          | 40.7.255.255      |
| N 1                            | 40.8.0.0                    | 40.8.0.1 au<br>40.15.255.254         | 40.15.255.255     |
| N 2                            | 40.16.0.0                   | 40. 16.0.1 au<br>40.23.255.254       | 40.23.255.255     |
| N 3                            | 40.24.0.0                   | 40.24.0.1 au<br>40.31.255.254        | 40.31.255.255     |
| N 4                            | 40.32.0.0                   | 40.32.0.1 au<br>40.39.255.254        | 40.39.255.255     |
| N 5                            | 40.40.0.0                   | 40.40.0.1 au<br>40.47.255.254        | 40.47.255.255     |
| N 6                            | 40.48.0.0                   | 40.48.0.1 au<br>40.55.255.254        | 40.55.255.255     |
| N 7                            | 40.56.0.0                   | 40.56.0.1 au<br>40.63.255.254        | 40.63.255.255     |
| N 8                            | 40.64.0.0                   | 40.64.0.1 au<br>40.71.255.254        | 40.71.255.255     |
| N 9                            | 40.72.0.0                   | 40.72.0.1 au<br>40.79.255.254        | 40.79.255.255     |





#### Exercice n°3: Couche réseau (adressage VLSM)

Soit le montage suivant avec le réseau 200.32.10.0/24 :



En utilisant la technique **VLSM** toute les machines de votre réseau (voir le montage ci-dessus) doivent avoir une adresse dans ce réseau.

- 1. Peut-on partitionner le plan d'adressage en affectant le même masque de sous-réseau à chaque sous-réseau ?
- 2. Établissez un partitionnement de la plage d'adresses afin de pouvoir attribuer des adresses IP valides à tous les hôtes dans les différents réseaux.
- **3.** Pour chaque réseau, donnez les plages d'adresses valides ainsi que les adresses réseau et diffusion.



#### Réponse au Q1 :

On ne peut pas partitionner le plan d'adressage en affectant le même masque de sous-réseau à chaque sous-réseau, car la technique VLSM comme son nom l'indique consiste à donner à chaque sous-réseau un masque différent des autres sous-réseaux, d'où le nom masque de sous-réseau à longueur variable (VLSM: Variable Length Subnet Mask). Ce qui assure une gestion efficace des adresses IP, et évite un gaspillage des adresses IP. Autrement, on donne à chaque sous-réseau un nombre adéquat des adresses IP (un masque réseau convenable) qui correspond au besoin de ce dernier en termes des adresses IP.

#### Réponse aux Q2 & Q3:

| Réseau                 | @Réseau &<br>Masque | Première @IP  | Dernière @IP  | @ Diffusion   |
|------------------------|---------------------|---------------|---------------|---------------|
| Réseau 2 : (110 hosts) | 200.32.10.0/25      | 200.32.10.1   | 200.32.10.126 | 200.32.10.127 |
| Réseau 4 : (30 hosts)  | 200.32.10.128/27    | 200.32.10.129 | 200.32.10.158 | 200.32.10.159 |
| Réseau 1 : (19 hosts)  | 200.32.10.160/27    | 200.32.10.161 | 200.32.10.190 | 200.32.10.191 |
| Réseau 3 : (12 hosts)  | 200.32.10.192/28    | 200.32.10.193 | 200.32.10.206 | 200.32.10.207 |
| Réseau 6 : (9 hosts)   | 200.32.10.208/28    | 200.32.10.209 | 200.32.10.222 | 200.32.10.223 |
| Réseau 5 : (6 hosts)   | 200.32.10.224/29    | 200.32.10.225 | 200.32.10.230 | 200.32.10.231 |
| WAN1 R1-R2 (2 hosts)   | 200.32.10.232/30    | 200.32.10.233 | 200.32.10.234 | 200.32.10.235 |
| WAN2 R1-R4 (2 hosts)   | 200.32.10.236/30    | 200.32.10.237 | 200.32.10.238 | 200.32.10.239 |
| WAN3 R4-R3 (2 hosts)   | 200.32.10.240/30    | 200.32.10.241 | 200.32.10.242 | 200.32.10.243 |
| WAN4 R4-R5 (2 hosts)   | 200.32.10.244/30    | 200.32.10.245 | 200.32.10.246 | 200.32.10.247 |
| WAN5 R5-R6 (2 hosts)   | 200.32.10.248/30    | 200.32.10.249 | 200.32.10.250 | 200.32.10.251 |



Exercice n°4: Routage statique



- 1. Dressez les tables de routage pour les routeurs R0, R1, R2, R3, et R4 (les masques des adresses réseau en fonction de la classe de ces adresses)
- 2. Donnez les tables de routage en utilisant la route par défaut des routeurs.

### **Solution**:

#### Routeur R0:

| Adresse réseau<br>destination/Masque | Adresse IP de la Passerelle/prochain nœud |
|--------------------------------------|-------------------------------------------|
| 192.168.0.0/24                       | directly connected                        |
| 1.0.0.0/8                            | directly connected                        |
| 3.0.0.0/8                            | directly connected                        |
| 4.0.0.0/8                            | Via 3.0.0.3                               |
| 2.0.0.0/8                            | Via 1.0.0.2                               |
| 5.0.0.0/8                            | Via 3.0.0.3                               |
| 172.16.0.0/16                        | Via 1.0.0.2                               |
| 0.0.0.0/0                            | Via 1.0.0.2                               |



| Adresse réseau<br>destination/Masque | Adresse IP de la Passerelle/prochain nœud |
|--------------------------------------|-------------------------------------------|
| 1.0.0.0/8                            | directly connected                        |
| 2.0.0.0/8                            | directly connected                        |
| 192.168.0.0/24                       | Via 1.0.0.1                               |
| 3.0.0.0/8                            | Via 1.0.0.1                               |
| 4.0.0.0/8                            | Via 1.0.0.1                               |
| 5.0.0.0/8                            | Via 2.0.0.5                               |
| 172.16.0.0/16                        | Via 2.0.0.5                               |
| 0.0.0.0/0                            | Via 2.0.0.5                               |

## Routeur R2:

| Adresse réseau<br>destination/Masque | Adresse IP de la Passerelle/prochain nœud |
|--------------------------------------|-------------------------------------------|
| 3.0.0.0/8                            | directly connected                        |
| 4.0.0.0/8                            | directly connected                        |
| 192.168.0.0/24                       | Via 3.0.0.1                               |
| 1.0.0.0/8                            | Via 3.0.0.1                               |
| 5.0.0.0/8                            | Via 4.0.0.4                               |
| 2.0.0.0/8                            | Via 4.0.0.4                               |
| 172.16.0.0/16                        | Via 4.0.0.4                               |
| 0.0.0.0/0                            | Via 4.0.0.4                               |

# Routeur R3:

| Adresse réseau<br>destination/Masque | Adresse IP de la Passerelle/prochain nœud |
|--------------------------------------|-------------------------------------------|
| 5.0.0.0/8                            | directly connected                        |
| 4.0.0.0/8                            | directly connected                        |
| 192.168.0.0/24                       | Via 4.0.0.3                               |
| 1.0.0.0/8                            | Via 4.0.0.3                               |
| 3.0.0.0/8                            | Via 4.0.0.3                               |
| 2.0.0.0/8                            | Via 5.0.0.5                               |
| 172.16.0.0/16                        | Via 5.0.0.5                               |
| 0.0.0.0/0                            | Via 5.0.0.5                               |



| Adresse réseau<br>destination/Masque | Adresse IP de la Passerelle/prochain nœud |
|--------------------------------------|-------------------------------------------|
| 5.0.0.0/8                            | directly connected                        |
| 2.0.0.0/8                            | directly connected                        |
| 172.16.0.0/16                        | directly connected                        |
| 192.168.0.0/24                       | Via 2.0.0.2                               |
| 1.0.0.0/8                            | Via 2.0.0.2                               |
| 4.0.0.0/8                            | Via 5.0.0.4                               |
| 3.0.0.0/8                            | Via 5.0.0.4                               |
| 0.0.0.0/0                            | Via 5.0.0.4                               |