CS 3311 Formal Models of Computation — Sample Exam 2

Question 1. (20 points) Give a regular expression for the following sets:

Part a. $L = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ begins and ends with } aa \text{ or } bb\}$

Part b. $L = \{w \mid w \in \{a, b\}^* \text{ and the number of } a$'s in w is divisible by three $\}$

Question 2. (10 points) Consider the following grammar G:

$$S \to aSb \mid A$$

$$A \to cAd \mid B$$

$$B \to eBf \mid \lambda$$

Part a. Give a derivation for a terminal string such that the $S \to aSb$ rule is used exactly twice, and the $A \to cAd$ rule is used exactly once during the derivation.

Part b. Give a derivation for a terminal string such that the $S \to aSb$ rule is used exactly once, the $A \to cAd$ rule is not used, and the $B \to eBf$ rule is used exactly twice during the derivation.

Part c. Use set notation to define the language generated by the grammar.

Question 3. (10 points) Construct a context-free grammar over $\{a, b, c\}$ whose language is $\{a^n b^m c^{2n+m} \mid n, m > 0\}$. Explain how you construct the grammar.

Question 4. (10 points)

Part a. Construct a **context-free grammar** over $\{a, b, c\}$ whose language is $\{a^ib^jc^k \mid i=j \text{ or } j=k \text{ where } i,j,k\geq 0\}$. Explain how you construct the grammar.

Part b. Show that your grammar is ambiguous. Present a comprehensive proof with complete sentences.

Question 5. (10 points) Give a context-free grammar for the set of strings over $\{a, b\}$ where each string has an odd length, and contains exactly one 'b'. Explain how the grammar generates the strings.

Question 6. (10 points) Consider the CFG G defined by the following productions. Prove by induction that $L(G) = \{a^n b^m \mid 0 \le n < m\}$. In other words, prove by induction that every string in L(G) has the form $a^n b^m$ where $0 \le n < m$.

$$S \to aSb \mid B$$
$$B \to bB \mid b$$

Question 7. (20 points) Consider the following grammar G with a non-recursive start symbol (S):

$$\begin{array}{ccc} S \rightarrow T & A \rightarrow aA \,|\, BC & B \rightarrow bB \,|\, \lambda \\ T \rightarrow ABC \,|\, aBC & C \rightarrow cC \,|\, \lambda \end{array}$$

Part a. Show the set of nullable variables in G.

Part b. Construct an essentially noncontracting grammar G_L (with a non-recursive start symbol) equivalent to G.