

Lecture #17 The Memory Hierarchy (Chap. 6)

Prof. Soraya Abad-Mota, PhD

Topics

- Chapter 6: The Memory Hierarchy
 - Storage technologies and trends (there is an article from 2019 on canvas on some developments)
 - Locality of reference
 - Caching in the memory hierarchy

The Memory Hierarchy for Performance Improvement

- Program performance Optimization continues beyond the bounds (covered on Lecture #16) if we are aware of the memory hierarchy and its uses.
- ▶ Sec. 5.12 presents an introduction to the subtleties of the performance of load and store operations, assuming that all data are held in cache.
- Chapter 6: The Memory Hierarchy goes into detail about: how caches work, performance characteristics and how to make the best use of caches.

Memory and Storage Bottlenecks

- Many performance bottlenecks come from getting data to and from the processor
- Multiple levels of storage in the computer optimize the access and transfer of data:
 - On-chip (register) data storage
 - DRAM memory
 - Different forms of secondary storage (disk, SSD)
- Need to understand them to find out how to optimize for them

Random-Access Memory (RAM)

- Key features
 - RAM is traditionally packaged as a chip.
 - Basic storage unit is normally a cell (one bit per cell).
 - Multiple RAM chips form a memory.
- RAM comes in two varieties:
 - SRAM (Static RAM) (faster & more expensive, use +power)
 - DRAM (Dynamic RAM)

SRAM vs DRAM Summary

		Access time		Needs EDC?	Cost	Applications	
SRAM	4 or 6	1X	No	Maybe	1000x	Cache memories	
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers	

Textbook pp. 582-586, has many physical details about these memories. (EDC stands for error detection and correction)

Nonvolatile Memories (pp. 586-589)

- DRAM and SRAM are volatile memories
 - Lose information if powered off.
- Nonvolatile memories retain value even if powered off
 - Read-only memory (ROM): programmed during production
 - Programmable ROM (PROM): can be programmed once
 - Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - Electrically eraseable PROM (EEPROM): electronic erase capability
 - Flash memory: EEPROMs. with partial (block-level) erase capability
 - Wears out after about 100,000 erasings
 - Form of disk-drive based on flash mem (later)

Nonvolatile Memories (cont.)

- Uses for Nonvolatile Memories
 - Programs stored in ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems, etc.) are called *firmware*
 - Solid state disks (SSD) (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops, etc.)
 - Disk caches

Traditional Bus Structure Connecting CPU and Memory (Accessing main memory, 587-589)

- ▶ A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.
- **bus transactions:** series of steps to transfer CPU-memory CPU chip

Memory Read Transaction (1)

CPU places address A on the memory bus.

A is an address represented in one of the forms of expressing it i.e. $Imm(r_i, r, s)$

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Memory Read Transaction (3)

CPU read word x from the bus and copies it into register %rax.

A is an address represented in one of the forms of expressing it i.e. $Imm(r_i, r, s)$

Memory Write Transaction (1)

CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

Memory Write Transaction (2)

CPU places data word y on the bus.

Memory Write Transaction (3)

Main memory reads data word y from the bus and stores it at address A.

Topics

Chapter 6: The Memory Hierarchy

- Storage technologies and trends (cont.)
 - secondary storage in disk drives
- Locality of reference
- Caching in the memory hierarchy

What's Inside A Disk Drive?

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.

Disk Geometry (Muliple-Platter View)

Aligned tracks form a cylinder.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB), where
 1 GB = 10⁹ Bytes.
- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density.

Recording zones

- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track, outer zones have more sectors/track than inner zones.
 - So we use average number of sectors/track when computing capacity.

Computing Disk Capacity

```
Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)
```

Example:

- 512 bytes/sector
- 300 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

```
Capacity = 512 x 300 x 20000 x 2 x 5
= 30,720,000,000
= 30.72 GB
```

Units: $1GB = 10^9$ bytes $1TB = 10^{12}$ bytes

22

Problem 6.2 (p. 592)

What is the capacity of a disk with 2 platters, 10,000 cylinders, an average of 400 sectors per track, and 512 bytes per sector?

Disk Operation (Single-Platter View)

Disk Access – Service Time Components

Topics

Chapter 6: The Memory Hierarchy

- Storage technologies and trends (cont.)
 - secondary storage in disk drives
 - accessing times
 - logical disk blocks, I/O bus, reading and writing on disk
- Locality of reference
- Caching in the memory hierarchy

Disk Access Time

- Average time to access some target sector approximated:
 - Taccess = $T_{avg seek} + T_{avg rotation} + T_{avg transfer}$
- Seek time (T_{avg seek})
 - Time to position heads over cylinder containing target sector.
 - Typical T_{avg seek} is 3—9 ms
- Rotational latency (T_{avg rotation})
 - Time waiting for first bit of target sector to pass under r/w head.
 - $T_{avg\ rotation} = 1/2 \times 1/RPMs \times 60 \sec/1 min$
 - Typical T_{avg rotation} = 7200 RPMs
- Transfer time (T_{avg transfer})
 - Time to read the bits in the target sector.
 - T_{avg transfer} = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Disk Access Time Example

Given:

- Rotational rate = 7,200 RPM
- Average seek time = 9 ms
- Average # sectors/track = 400

Derived:

- $T_{avg\ rotation} = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.$
- $T_{avg\ transfer} = 60/7200\ RPM\ x\ 1/400\ secs/track\ x\ 1000\ ms/sec = 0.02\ ms$
- $T_{access} = 9 \text{ ms} + 4 \text{ ms} + 0.02 \text{ ms}$

Important points:

- Access time dominated by seek time and rotational latency.
- First bit in a sector is the most expensive, the rest are free.
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - Disk is about 40,000 times slower than SRAM,
 - 2,500 times slower than DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of B-sized (sector sized) logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Allows controller to set aside spare cylinders for each zone. (for bad cylinders)
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

Practice Problem 6.4 (pp. 595- 596)

- This exercise is fundamental to understand why good locality is a determining factor on disk access performance.
- Given the characteristics of a disk, calculate the time to access and transfer a file in two different situations:
 - Best case
 - Random case

Parameters for problem 6.4

1 MB file consisting of 512-byte logical blocks is stored on a disk drive with the following characteristics:

Rotational rate: $10,000RPM \rightarrow 60sec/10,000rpm =$

0.006 sec (per rotation) -> 6ms per rotation

 $T_{avgRotation} = \frac{1}{2} T_{maxRotation} = \frac{6}{2} ms = 3 ms$

T_{avgseek}: 5 ms (average seek time)

Average number of sectors/track: 1,000

Surfaces: 4

Sector size: 512 bytes

Statement of Problem 6.4

For each case below, suppose that a Program reads the logical blocks of the file sequentially and that the time to position the head over the first block is Tavgseek + Tavgrotation

- A. Best case: Estimate the optimal time (in ms) required to read the file given the best possible mapping of logical blocks to disk sectors (i.e., sequential).
- B. Random case: Estimate the time (in ms) required toread the file if blocks are mapped randomly to disk sectors.