

WPIONEER

CIRCUIT & MECHANISM DESCRIPTIONS REPAIR & ADJUSTMENTS

ORDER NO. ARP1273-A

MULTI-PLAY COMPACT DISC PLAYER

PD-M70

MODEL PD-M70 COMES IN THREE VERSIONS DISTINGUISHED AS FOLLOWS:

Туре	Power requirement	Export destination
KU	AC120V only	U, S. A.
HEM	AC220V, 240V (switchable)	European continent
нв	AC220V, 240V (switchable)	United Kingdom

- This service manual is applicable to the KU, HEM and HB types.
- As to the HEM and HB types, please refer to pages 110-111.
- Regarding installation of disc table, see PD-X909M(BK) Service manual (ARP1240-A).
- Ce manual d'instruction se refère au mode de réglage, en français.
- Este manual de servicio trata del método ajuste escrito en enpañol.

CONTENTS

1.	SAFETY INFORMATION	2	8. REMOTE CONTROL SECTION	65
2.	EXPLODED VIEWS	4	9. BLOCK DIAGRAM	69
3.	ELECTRICAL PARTS LIST	10	10. CIRCUIT DESCRIPTIONS	71
4.	P.C.BOARDS CONNECTION DIAGRAM	15	11. OPERATION CHART	99
5.	SCHEMATIC DIAGRAM	20	12. FOR HB AND HEM TYPES 1	10
6.	PACKING	31		
7.	ADJUSTMENTS	32		
	RÉGLAGE	43		
	AJUSTE ,	54		

1. SAFETY INFORMATION

(FOR USA MODEL ONLY)-

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service technician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120V AC 60Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5mA.

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND MUST BE CORRECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.

Electrical components having such features are identified by marking with a $\hat{\pm}$ on the schematics and on the parts list in this Service Manual.

The use of a substitute replacement component which does not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock, fire, or other hazards.

Product safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, the PIONEER Service Manual may be obtained at a nominal charge from PIONEER.

LABEL CHECK

(FOR EUROPEAN MODEL ONLY)

CVAROITUS

LAITE SISALTAA LASERDIODIN, JOKA
LAHETTA: NAKYMATONTA, SILMILLE
VAARALL'STA INFRAPUNASATEILYA
LAITTEEN SISALLA ON LASERDIODIN
LÄHEISYYDESSA KUVAN 1. MUKAINEN

LAITTEEN SISALLA ON LASERDIODII LÄHEISYYDESSA KUVAN 1. MUKAINEI VAROITUSMERKKI.

ADVERSE.:
USYNLIG _ASERSTRALING VED ABNING
NAR SIKKERHEDSAFBRYDERE ER UDE
AF FUNKTION UNDGA UDSAETTELSE
FOR STALLING.

Λ

varoitusmerkki

EMITS INVISIBLE INFRARED RADIATION WHICH IS DANGEROUS TO EYES.
THERE IS A WARNING SIGN ACCORDING
TO PICTURE 1 INSIDE THE DEVICE
CLOSE TO THE LASER DIODE.

-WARNING!-

LASER
Picture 1
Warning sign for

IMPORTANT -

DEVICE INCLUDES LASER DIODE WHICH

PIONEER COMPACT DISC PLAYER APPARA-TUS CONTAINS LASER OF HIGHER CLASS THAN 1. SERVICING OPERATION OF THE AP-PARATUS SHOULD BE DONE BY A SPECIALLY INSTRUCTED PERSON.

-	т.	N	 г
-		IV	

2. EXPLODED VIEWS

- Parts cannot be supplied without part number.
 The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your Parts Stock Control, the fast moving items are indicated with the marks ** and *.
 - ** GENERALLY MOVES FASTER THAN *
- This classification should be adjusted by each distributor because it depends on model number, temperature, humidity, etc.
- Parts marked by " @ " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

2.1 PARTS LIST OF EXTERIOR

Mark No		No.	Part No.	Description		No.	Part No.	Description
Δ	0	1	PWZ1044	Main board assembly		36	PNY-599	Play lens
	0	2	PWZ1046	Control board assembly		37	PNY-600	Pause lens
Δ		3	AKP-507	AC socket (AC OUTLET)		38	IPZ30P060FZK	Screw
▲		4	CM-22C	Strain relief		39	PNY-528	Power SW joint
Æ	*	5	PTT1004	Power transformer (AC 120V)		40	PPZ30P080FMC	Screw
		6	BBZ30P060FZK	Screw		41	PPZ30P100FMC	Screw
		7	PEC-107	Binder		42	PPZ30P220FMC	Screw
		8		* * * * * * *		43	PNA1027	Bonnet
		9	BBZ30P060FCC	Screw		44	PYY1019	Door assembly
		10	BBZ30P080FZK	Screw	Δ	45	PDG1002	AC Power cord
					ш.	46	PBK1001	GND plate
		11	BBZ40P080FCC	Screw				
		12	F8T40P080FZK	Screw		101		Audio board assembly
		13	IBZ30P060FCC	Screw		102		Power switch board
		14	IBZ30P080FCC	Screw				assembly
		15	IBZ30P150FCU	Screw		103		Transformer board
								assembly
		16	PMZ30P060FCU	Screw		104		Subcode board assembly
		17	PPZ26PO60FZK	Screw				oabsout books assembly
		18	PPZ30P080FZK	Screw		105		Select board assembly
		19	PXB-494	Leg assembly		106		Remote control board
		20	WA30W100R100	Washer				assembly
						107		Headphone board
		21	PAM1019	Display window				assembly
		22	PAM1020	Window		108		Loading board assembly
		23	PAM1021	FL filter		100		Loading board assembly
		24	PAM1022	Door plate		109		Base
		25	PAN1020	Front panel		110	•	Mount plate
			17111020	rioni paner		111		Rear Panel
		26	PBH-456	Door spring		112		
		27	PEB1007	Side rubber		113		Switch angle
			PNW1058	Control panel		113		Front angle(A)
		29		Headphone knob		114		Front angle(B)
			PAC-321	Power button		115		Front angle(C)
		-	1 AC-021	7 Deeds Doctors		116		P.C.B spacer
		31	PAC1039	Search button		117		
			PAC1040	DT button		118		Friction board
			PAC1040	Eject button		110		Door
			PAD1006	Function button assembly		110		•
		35	PAC1038	Function button		119		Transformer sheet
		33	1 AC1030	ranction gatton		100		(HB, HEM types only)
						120		Shield plate
						121		Mechanism assembly
						122		Cushion
						123		Tape

Parts List of Mechanism Assembly

ark	No.	Part No.	Description	Mark	No.	Part No.	Description
	1	PWY-006	Pickup assembly		41	PBH-466	Spring
**	2	PXM-147	Spindle motor		42	PEB-316	Float rubber
	3	PNY-272	Disc table		43	BBZ30P060FZK	Screw
**	4	PYY-504	Motor assembly (CARRIAGE)		44	PPZ30P100FMC	Screw
	5	PNY-499	Pulley		45	PBA-112	Screw
**	6	PEB-314	Bett		46	PBA-125	Screw
	7	PLB-282	Driver screw		47	PBA-188	Screw
	8	PNY-500	Nut		48	WT25D047D025	Washer
	9	PLB-272	Guide bar		49	WA31D054D025	Washer
**	10	PSH-007	Slide switch (INSIDE,S101)		50	YE25F	E-ring
	11	PMZ20P030FMC	Screw		51	BBZ30P060FCC	Screw
	12	PMZ26P040FMC	Screw		52	PBK-101	Side spring
	13	BBZ30P060FMC	Screw		53	PED-049	Cushion
	14	VNL-268	Receptacle		54	RNH-184	Cord Clamper
-	15	PBH-436	Clamper spring		55	PMZ26P150FMC	Screw
	16	1P230P080FMC	Screw		101		Mechanism chassis
**	17	PYY-508	Motor assembly (LOADING)		102		Motor base
**	18	PYY-507	Motor assembly (DISC SELECT)	103		Guide bar retainer
**	19	PEB-315	Beit		104		GND lead unit
	20	PNY-379	Gear		105		Clamper holder
	21	PNY-501	Gear		106		Steel ball
	22	PNY-502	Stair (L)		107		Clamper guide
	23	PNY-503	Stair (R)		108		Main chassis
	24	PNY-504	Rack		109		Lever
	25	PNY-505	Side guide (L)		110		Side guide R
	26	PNY-585	Lock lever		111	-	Bottom guide
	27	PNY-386	Roller		112		SM select
	28	PXC-016	Damper assembly	•	113		Eject lever
	29	PBH-437	Twist spring		114		Sub chassis
	30	PBH-438	Multi spring		115		* * * * *
	31	PBK-087	Press spring		116		Felt
	32	PBH-465	Eject spring		117		Armor lead unit
	33	PNY-509	Lever		118		BS spacer
	34	PNY-510	Differential lever		119		Sheet
	35	PNY-511	Drive lever		120		BS damper
	36	PBP-001	Steel ball		121		LPF damper
	37	PNY-512	Swing lever		122		Holder axis
	38	PNY-646	Clemper		123		Magnet
	39	PNY-514	Disc guide		124		Select board assembly
	40	PNY-515	Upper tray		125		Loading board assembly
					126		Switch board assembly

3. ELECTRICAL PARTS LIST

NOTES

- When ordering resistors, first convert resistance values into code form as shown in the following examples.
 - Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J=5%, and K=10%).

 560Ω
 56 × 10¹
 561
 RD%PS
 ISIGID
 J

 47kΩ
 47 × 10²
 473
 RD%PS
 ISIGID
 J

 0.5Ω
 0R5
 RN2H
 DBIS
 K

 1Ω
 010
 RS1P
 DBIDIO
 K

- Ex. 2 When there are 3 effective digite (such as in high precision metal film resistors).
 - 5.62k\(\Omega\) 562 \times 10' 5621 \times RN\(\sigma\) RDQD F
- The items mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your Parts Stock Control, the fast moving items are indicated with the marks ** and *.
 - ** GENERALLY MOVES FASTER THAN *

This classification should be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

 Parts marked by " @ " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

Miscellaneous Parts P.C BOARD ASSEMBLIES

Main Board Assembly (PWZ1044) SEMICONDUCTORS

Mark		Symbol & Description	Parts No.	Mari		Symbol & Description	Parts No.
Æ	•	Main board assembly	PWZ1044		**	IC21	NJM7812FA
	0	Control board assembly	PWZ1046		**	IC20	NJM7912FA
		Pick-up assembly	PWY-006		**	1C9	CXD1135Q
			* ,		**	IC10	CXK5816M-12L
<u>*</u>		Audio board assembly	Non supply				(CXK5816M-15L)
A.		Power switch board assembly	Non supply		**	IC6	CX20108
		Transformer board assembly	Non supply				
		Subcode board assembly	Non supply		**	IC4, IC27	BA6109
		Select board assembly	Non supply		**	IC5	CX20109
				Æ	**	IC24, IC25	ICP-F15
		Remote control board assemble	lyNon supply	A	**	IC23	NJM7805FA
		Headphone board assembly	Non supply	A	**	IC22	NJM7905FA
		Loading board assembly	Non supply	,			
		Switch board assembly	Non supply		**	IC32	M51957AL
					**	IC8	M5238LF
ОТН	ERS				**	IC11	PDE003
Mark		Symbol & Description	Parts No.		**	IC7	PD0025
Æ		10 1 10 (10 C) IT! ET!	AMD 503		**	IC12	PD3085
		AC socket (AC OUTLET) Strain relief	AKP-507 CM-22C				
Δ		Power transformer	PTT1004	Δ	**	IC2, IC3	TA7256P
A	*		PDG1002		**	Q22	DTC124ES
Æ		AC power cord			**	Q23	2SA1048
			(PDG1015)				(2SA1015)
		Manage	DVOV FOA		**	Q21	2SA933S
	**	Motor assembly (CARRIAGE)	PYY-504		*	D6	KV1225YBR
	**	Motor assembly (LOADING)	PYY-508				(KV1226YBR)
	**	Motor assembly (DISC SELECT					
	**	Spindle motor	PXM-147		*	D4	MTZ11C
	**	S101 Slide switch	PSH-007		*	D23	RD27EB2
		Remote control unit	PWW1004				(RD27EB3)
					*	D13-D22	S5566B
					*	D27, D28	155254
					*	D3, D24	MTZ5.1 B
							(MTZ5.1C)

flark	Symbol & Description	Parts No.	Mark	Symbol & Description	Parts No.
	L4—L6	LRA010K		R117	RD1/4PM103J
	VL1 VCO coil	PTL-031		R11	RD1/4PM2R7J
				R63, R85, R62, R84	RN1/6PQCICCO
CAPAC	ITORS		A	R10, R190	RD1/6PM3R6J
Mark	Symbol & Description	Parts No.	*	VR3, VR4 Semi-fixed	VRTB6V\$103
	C29	000011220 150	*	VR5 Semi-fixed	VRTB6VS104
	C8, C31	CCCCH330J50		VIDD. VIDO. C C	1/0700/0470
	C46, C66, C67	CCCSL101J50 CCCSL221J50	*	VR2, VR6 Semi-fixed	VRTB6VS473
	C71, C72	CCCSL330J50		Other resistors	RD1/6PM 🗆 🗆 🗓 J
	C25, C26	CCCSL470J50	OTHERS		
	020, 020	00030470330			
	C14, C21, C27	CCCSL560J50	Mark	Symbol & Description	Parts No.
	C7	CCCSL680J50	*	X2 Ceramic resonator	KBR-4.0MS
	C52	CCCUJ221J50	*	X3 Ceramic resonator	KBR-800H
	C53	CCCUJ330J50			
	C48	CEANLO10M50	Control	Board Assembly (PWZ)	1046)
			SEMICO	NDUCTORS	
	C44	CEANPO10M50	Mark	Symbol & Description	Parts No.
	C49	CEANP100M35			
	C34, C57	CEANP2R2M50	**	IC201	PD4063
	C42	CEASR33M50	**	Q201, Q203	DTC124ES
	C22	CEASR47M50	**	Q210—Q213	DTA124ES
			**	0205—0209	2SC1740S
	C137, C138	CEAS101M50	*	D214	MTZ5.18
	C5, C6, C17, C19, C23,	CEAS330M35			(MTZ5.1C)
	C36, C38, C68, C70, C79,			DOLL LED/BALISE	CILL CODODI
	C162, C50, C54 C139	CEACAZONAEO	*	D211 LED(PAUSE) D215 LED(PLAY)	SLH-56DC3H
		CEAS470M50	*	D203-D210	SLH-56MC3H
	C11—C13, C47, C63, C64, C80, C115	CKCYF103Z50		D216-D219	1SS254 SLH-56VC3H
	C10	CKCYF473Z50	*	52.0-52.0	SEIFSOVESH
	C9	CKCYX473M25	SWITCH	ES	
	C37	CQMA102J50	Mark	Symbol & Description	Parts No.
		02.1.1.1.02.000	IVIGIA		Parts No.
	C55, C60	CQMA103J50	**	\$201—\$209, \$211—\$230	PSG-064
	C56	CQMA104J50		Tact switch	
	C15, C39, C41	CQMA104K50		(EJECT, DISC NUMBER,	
	C16, C45	CQMA222J50		TRACK NUMBER, PROGRAM	
	C30, C59	CQMA223J50		MEMORY, CLEAR, TIME,	
				REPEAT, TRACK SEARCH,	
	C33	CQMA224J50		MANUAL SEARCH, RANDOM	
	C20	CQMA333J50		PLAY, PLAY, PAUSE, STOP)	
	C28	CQMA472J50	COILS		
	C40	CQMA682J50		Sumbat & Decadation	Dames Ma
	C35, C43	CQMA683J50	Mark	Symbol & Description	Parts No.
	C58	COMARCO IEO		L201, L202 Inductor	LRA010K
	C133, C134 (2200µF/16V)	CQMA822J50 PCH1037			
	C127, C128 (1000µF/25V)	PCH1041	CAPACIT	ORS	
	C129, C130 (2200µF/25V)	PCH1042	Mark	Symbol & Description	Parts No.
	C135, C136 (3300µF/25V)	PCH1043			
				C204 C201	CEAL100M16
					CEAL3R3M50
RESIST	ORS			C205, C206 C202, C203	CKDYF103Z50
	hen ordering resistors, conve	et the registance walks		G2U2, G2U3	CCDSL331J50
in	to code form, and then rewrite	the part no as before	RESISTO	RS	
Vlark	Symbol & Description	Parts No.		en ordering resistors, convert	the marietanes
			int	o code form, and then rewrite	the part no as 1-4
	R79, R112	RA4S103J		, 0 , wrom 0 / 6 W/ 11 6	pur t no. us del

R79, R112 R101

R111

R113 R8. R9 RA4S103J RA4S473J RA7S103J

RA8S103J RD1/2PM4R7J

Mark	Symbol & Description	Parts No.	Mark	Symbol & Description	Parts No.
*	V201 Fluorescent tube X201 Ceramic resonator	PEL1002 RSS-034	*	X4 Crystal resonator JA1 2P pin jack (AUDIO OUT)	PSS-009 PKB-007
Pick-up	assembly (PWY-006)		Power SWITCH	Switch Board Assembly	
	s mounted on the Pick-up	assembly cannot be	Mark	Symbol & Description	Parts No.
	s a single part.		A **	S401 Power switch (POWER)	PSA-009
	NDUCTORS		CAPACI	TOR	
Mark	Symbol & Description	Parts No.	Mark	Symbol & Description	Parts No.
**	IC15 IC17, C18 IC19	CX20152 M5238PF BU4053B	A	C401 (0.01 µF/AC400V)	RCG-009 (VCG-004)
**	Q17, Q18 Q12	2SD1302 2SA933SLN	Transfor	rmer board assembly TORS	
		(2SA933LN)	Mark	Symbol & Description	Parts No.
**	Q13, Q14 D7, D8, D25, D26	2SK152 HZ6A1L (HZ6A2L)	Δ	C402, C405, C406 C403, C404, C407—C410	CKDYF103Z50 CKDYF103Z50
COIL AN	ID FILTERS	(1120121)	Subcode	Board Assembly	
Mark	Symbol & Description	Parts No.	Mark	Symbol & Description	Parts No.
	F1, F2 Low pass filter L1 OSC coil	PTF1005 PTL-022		JA501 Socket (SUBCODE OUT	7PKP-038
CAPACI	TORS			Board Assembly	
Mark	Symbol & Description	Parts No.	Mark	Symbol & Description	Parts No.
	C82	CCCCH220J50	**	Q601	GP1 A01
	C83	CCCCH680J50			
	C123, C124 C97, C98	CEAS100M50	SWITCH		
	C117, C118	CEAS101M25 CEAS220M50	Mark	Symbol & Description	Parts No.
	0117, 0110	CLASTECIMOO	**	S601 Slide switch (MODE)	PSH-006
	C85, C88, C90, C92	CEAS221M50			
	C81, C94	CKCYB102K50	CAPACI		
	C96, C111 C86	CKCYF103Z50 CQMA103K50	Mark	Symbol & Description	Parts No.
	C99—C104, C107, C108	CQMA104K50		C601	CEAS100M50 CKCYF103Z50
	C144	CQMA333K50	RESISTO	DRS	
	C109, C110 C125, C126	CQSF102J125		nen ordering resistors, conver	t the resistance valu
	C89	CQSF221J125 CEAS330M35		to code form, and then rewrite	
	C87	CEYA470M50	Mark	Symbol & Description	Parts No.
	C121,C122	CQSF102J50		All resistors	RD1/6PM 🗆 🗆 J
	en ordering resistors, cont		SEMICO	control board assemble	
int	o code form, and then rewr	ite the part no. as before.		Symbol & Description	Parts No.
Mark	Symbol & Description	Parts No.	-		
	R129, R143, R144, R147—R149, R150, R137-R1 R130, R133—R136, R145,		**	0204 D212 LED (REMOTE CONTROL SIGNAL RECEPTION	DTA124ES SLH-56VC3H)
	R146, R159, R186, R141,R Other resistors				

OTHERS

Parts No.

RD1/4PM124J D1/6PM 🗆 🗆 🔾

Symbol & Description

R201 -- R205

Other resistors

OTHERS

PD-M70

Mark	Symbo	ol & Description	Parts No.	
**	S240	Slide switch (TIMER MODE)	PSH1002	

RESISTORS

Mark	Symbol & Description	Parts No.	
	R219	RD1/6PM681J	
	R220, R221	RD1/6PM103J	

OTHERS

Mark	Symbol	& Description	Parts No.
	Remote	control receiver	BX-1387

Switch board assembly

Switches

Mark	Symbol & Description	Parts No.
**	S701-S704 Slide switch	PSH-006

Loading board assembly

There are no component parts on the Loading board assembly.

Headphone Board Assembly

SEMICONDUCTORS

Mark	Symbol & Description	Parts No.
**	(C301	M5218L

CAPACITORS

Mark	Symbol & Description	Parts No.
	C301, C302	CQMA104K50
	C304—C306	CKCYB472K50

RESISTORS

		200 000
*	VR301 Variable resistor	PCS-030
	(PHONES LEVEL 20k)	
	R301	RD1/4PM472J
	Other resistors	RD1/6PM□□□J
OTHERS		
Mark	Symbol & Description	Parts No.
	JA301 Jack (PHONES)	PKN1001

Symbol & Description

Parts No.

13

Wave Forms

Note: The waveform voltage and time values are general guides only.

5. SCHEMATIC DIAGRAM

NOTE:

1. RESISTORS.

Indicated in Ω, ¼W, ½ W,±5% tolerance unless otherwise noted k; kΩ, M: MΩ, (F): ±1%, (G): ±2%, (K): ±10%, (M): ±20% tolerance

Indicated in capacity (µF)/voltage (V) unless otherwise noted p; pF. Indication without voltage is 50V except electrolytic capaci-

3. VOLTAGE

; DC voltage (V) at no input signal

4. OTHERS:

; Signal route.

Adjusting point.
mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

marked capacitors and resistors have parts numbers.

SWITCHES:

OUTSIDE OF P. C. BOARD ASSEMBLY

SIOI : INSIDE **FUNCTION BOARD ASSEMBLY**

\$201 : 3 (TRACK No.)

\$202 : 6 (DISC No.) \$203 : PGM MEMORY

S204 : CLEAR

\$205 : 5 (D. No.)

\$206 : 0 (T. No.) \$207 : TIME

S208 : REPEAT

\$209 : RANDOM PLAY S211 : TRACK SEARCH (>H)

\$212 : TRACK SEARCH (44)

\$213 : 9 (T. No.) \$214 : 6 (T. No.)

\$215 : PLAY

S216 : PAUSE

S217 : STOP

S218 : EJECT S219 : 2 (T. No.)

\$220 : 5 (T. No.)

S221 : MANUAL SEARCH (►)

S222 : MANUAL SEARCH(◄)

\$223 : 8(T.No.)

5224 : 7(T.No.) \$225 : 4(T.No.)

\$226 : 1(T.No.)

\$227 : 4(D.No.)

S228 : 3(D.No.)

\$229 : 2(D.No.)

\$230 : 1(D.No.)

POWER SWITCH BOARD ASSEMBLY

S401 POWER SELECT BOARD ASSEMBLY

S601 DISC SELECTOR ON - OFF

(HOME POSITION SW) (HOME POSITION -

OUTSIDE OF HOME POSITION)

MECHANISM BOARD ASSEMBLY

S702

S701 (LPS 1) | LOAD POSITION SW

During the Clamp condition during the STOP eject ON S701 (H) (H) ON ON OFF OFF

(H) (H) S703 (MZS2): MAGAZINE DISCRIMINATE SW

	NO MAGAZINE	SIX MAGAZINE	SINGLE
S703	ON	OFF	OFF
3703	(H)	(L)	(L)
S704	OFF	ON	OFF
3,04	(L)	(H)	(L)

The underlined indicates the switch position.

	Focus servo loop line
	Signal route
	Tracking servo loop lin
	Carriage servo line
	Loading motor route
5	Spindle motor route
	Disc select motor rout
▶ !	Measurement point

5.1 CIRCUIT DIAGRAM SYMBOL CODE TABLE

Symbol	Signal source	Signal name	Function
A			Tracking signal lead code detector
A0 to A10	IC9-38 to 48	Address Line	
APCG	IC1-6	APC GND	
B1 to B4			Respective outputs of 4 divided detector which detects RF and focus signals
BCLK	IC9-76	Bit clock	
С			Tracking signal end code detector
C-OUT	IC6-6	Counter out	Tracking error signal which has carried out noise process
C1F1	1C9-62	Error flag	
C1F2	IC9-63	Error flag	Flag which indicates state in which decoder LSI is carrying out er-
C2F1	1C9-64	Error flag	ror correction processing
C2F2	IC9-65	Error flag	
CA-DR	IC3-2	Carriage drive	Driving output of carriage motor
CLK	IC12-27	Clock	Control data (serial) clock to IC6 and IC9 (discontinuous)
CLMP	S102	Clamp	State of disk tray (Closes at L and opens or being in shift at H)
CRCF	IC9-20		Outputs result of sub-code Q error detection (Outputs synchronized with SCOR signal)
CS	IC9-50	Chip select	Control signal that makes RAM active
D1 to D8	IC9- 37 to 34	Data line	Data line with RAM
DATA	IC9-78	Data	Playback signal data to DAC (serial)
DEMP	IC12-53	De-emphasis	De-emphasis ON/OFF signal (De-emphasis ON at L)
DIRC	IC12-51	Direct	Control signal during 1 track jump (Controls only during t)
EXCK	IC9-21	External clock	External clock input
FO•DR	IC2-2	Focus drive	Drive signal of focus actuator
FO-ER	IC5-16	Focus error	Focus error signal
FO-IN	CN101-6	Focus loop in	Focus servo gain adjusting input
FO•OT	CN101-1	Focus loop out	Focus servo gain adjusting output
FO•RT	CN101-8	Focus return	Detection of focus actuator drive current
FOK	IC5-1	Focus OK	When RF signal is obtained, output at H level that focus has been applied
GFS	IC9-28	GFS	Lock state output of frame SYNC (H during lock state)
GND		GND	
INSD	S101	Inside	Detection signal indicating that pickup has come inside at mechanical section
K			
KD0 to KD5	IC11 9 to 12	Key data	Matrix encode data of key ON/OFF
KS	IC201-11	Key strobe	Output which indicates the key is being pressed (L output at key ON/OFF)
L-IN	IC12-47	Loading in	Control signal of loading in
L•OUT	IC12-48	Loading out	Control signal of loading out
LD ON	IC12-54	Laser diode	Signal which tights up laserdiode (Is lit at H)
LOAD +	104-2		Drive voltage output of loading motor
LOAD ~	IC4-10		attie temas earker a reasons and
LRCK	IC9-80	LR clock	Clock which selects Lch and Rch of decoder (DAC) (44.1kHz)

Symbol	Signal Source	Organia rapanto	Function
MIRR	IC5-18	Mirror	Pitless side (mirror surface) detector signal (pitless side: H)
MUTE	IC12-14	Muting	IC9 digital mute control signal
RESET	IC32-5	Reset	Power ON reset signal
RFCK	CN104-7 (IC9-68)	Read frame clock	Standard frame clock signal (7.35kHz)
RMKS	IC12-58	Remote control key	Remote control key strobe passed from remote control decoder (IC11) to main microprocessor (IC12)
SBS0	IC9-22		Sub-code serial output
SCK	IC12-41	Serial clock	FL display data transfer clock
SCLK	IC15-3	System clock	Audio playback system clock
SCOR	IC9-24		Sub-code sync
SD	IC12-42	Serial data	Control signal passed to FL control CPU
SENS	IC6-5		Detector output bus from ICS & IC9
SP-DR	CN4-5	Spindle drive	Spindle motor drive output
SP-RT	CN4-6	Spindle return	Spindle motor drive current detector
SRES	IC12-57	Sub reset	Key/display/microprocessor reset signal
STS	IC201-12	Status	Display dats "ready to send"
SUBQ	IC9-23	Sub-code Q	Sub-code Q output (address and other data)
TR-DR	IC2-8	Tracking drive	Tracking actuator drive signal
TR-ER	IC5-17	Tracking error	Tracking servo error output
TR-IN	CN101-7	Tracking loop in	Tracking servo gain adjustment input
TR-OT	CN101-2	Tracking loop out	Tracking servo gain adjustment output
TR-RT	CN101-9	Tracking return	Tracking actuator drive current detector
WCLK	IC15-8		Digital filter 88.2kHz strobe signal input
WE	IC9-49	Write enable	RAM write enable
WFCK	IC9-69	Write from clock	Frame clock signal made from data (frame sync. lock: 7.35kHz)
XLT	IC12-12		Servo and decode IC serial data latch clock pulse signal
DCNT	IC12-24	DISC COUNT	Count pulse input to detect DISC SELECT
DCHM	IC12-26	DISC HOME	DISC SELECT home position detection SW input
LPS1	IC12-28	Loading position	Loading position detection SW input
LPS2	IC12-29	Loading position	Loading position detection SW input
MZS1	IC12-30	MAGAZINE DC-TEG	Magazine and its kind detection SW input
MZ\$2	IC12-31	MAGAZINE DC-TEG	Megazine and its kind detection SW input
DSUP	IC12-45	DISC SELECT UP	DISC SELECT motor drive output
DSDW	IC12-46	DISC SELECT DOWN	DISC SELECT motor drive output

5.2 WAVE FORMS

76 g

7. ADJUSTMENTS

Adjustment Items

- 1. LD (Laser Diode) output power verification
- 2. Tracking offset and focus offset adjustments
- 3. Focus lock and spindle lock verification
- 4. Grating adjustment
- 5. Tracking balance adjustment
- 6. Tangential adjustment
- 7. Focus gain adjustment
- 8. Tracking gain adjustment
- 9. VCO free-run frequency adjustment

• Measuring Equipment

- 1. Dual trace oscilloscope
- 2. Laser power meter (LPM-8000)
- 3. Test disc (YEDS-7)
- 4. AF oscillator
- 5. Grating driver (R-882)

Test Mode

All the adjustments should be performed in Test Mode.

Test Mode setting and cancellation procedures -

- To set the Test Mode, turn the POWER switch of the player (S401) ON shorting the TEST MODE TERMINALS.
- (2)To cancel the Test Mode, simply turn the POWER switch of the player OFF.

The various key functions in the Test Mode are listed in Table 7-1.

Adjusting points

VR2: Tracking offset (TR.OF)

VR3: Focus gain (FO.GA)

VR4: Tracking gain (TR.GA)

VR5: Tracking balance (TR.BL)

VR6: Focus offset (FO.OF)

VL1: VCO free-run frequency

Fig. 7-1 Adjustment Points

In the Test Mode, each servo circuit can be closed and opened by separate operations. Consequently, each servo must be closed one at a time (in serial sequence) to set PLAY mode.

Note that PLAY mode is not activated by simply pressing the PAUSE key in the Test Mode.

While a disc is being selected or loaded, do not try to perform other operations.

Example: Switching from STOP to PLAY mode.

 The servo mechanisms operate in a serial sequence in the Test Mode.

• Key Functions in Test Mode

Symbol	Key	Function during test mode	Description
M	TRACK BACK	Laser diode turned ON.	Laser diode lights up.
DDI	TRACK FWD	Focus servo is closed.	Disc is loaded from magazine and clamped. Laser diode lights up. Actuator is moved up/down, then focus servo is closed.
▷	PLAY	Spindle servo is closed.	Spindle starts to rotate and the servo is closed when the revolution reaches the optimum speed.
06	PAUSE	Tracking servo is closed/opened.	Tracking servo is closed by pressing the key once; PAUSE indicator lights up and the player is switched to PLAY mode with the elapsed time indicated on fluores- cent display. Focus and spindle servos must be closed at this time. When the key is pressed again, tracking servo is opened.
⊲ ⊲	MANUAL SEARCH REV	Carriage moves in reverse direction. (towards disc center)	Carriage is moved towards disc center at a fast speed of about 1cm/sec. Since there is no safety mechanism to stop the carriage, release the key when the carriage reaches the end.
DD	MANUAL SEARCH FWD	Carriage moves in forward direction. (towards disc end)	Carriage is moved towards disc end at a fast speed of about 1cm/sec. Since there is no safety mechanism to stop the carriage, release the key when the carriage reaches the end.
0	REPEAT	Lens is moved up/down.	Disc is loaded from magazine end clamped. Laser diode lights up. Actuator is moved up and down twice, then the disc is returned into magazine. Focus servo is not closed.
	STOP	STOP	All servos are opened.
4	EJECT	Magazine is ejected.	Magazine is ejected. However, pickup does not return to the park position.
1-6	DISC 1-6 KEY	Disc is selected.	A disc can be selected in the six-disc system. II TRACK FWD key or REPEAT key is pressed without selecting a disc, the player automatically selects the first disc.
	TIME	All FL/LED lit	Indications circuit check

Table 7-1

NOTE:

- The following adjustment should be performed in the Test Mode.
 Refer to page 32 to set the player in Test Mode.
 The following adjustment except [1. LD OUTPUT POWER VERIFICATION] should be performed with a Test Disc (YEDS-7).
 Place the Test Disc recorded side up in a magazine and load the magazine in the player.
- 3) The description of the following adjustments starts from "STOP".

Step No.	Oscillo Setting		Test Points	Adjusting Points	Check items/ Adjustment specifications	Adjustment procedure
1	LD (LA NOT This	SER DIC	be skipped ur			N fied only when the laser power seems
	*			VR1	0.26mW ± 0.02mW	To verify the laser output power, the pickup has to be removed from Mechanism Chassis in the following procedure. Turn power switch off. Unbelt belt A. Remove guide bar retainer. Unhook drive screw. Slowly lift pickup assembly upside down keeping flat cable connected. Be careful not to short the P.C. board on the pickup to chassis. Set the player to test mode. Place the sensor of Laser Power Meter (LPM-8000) above the objective lens. Press TRACK REV key to turn the laser on. Varify that the laser output power is within the specified range (0.26±0.02mW). If not, adjust VR1 on the pickup to satisfy the specification. Turn power switch off.
2	TRACK	ING OF	FSET AN	D FOCUS C	FFSET ADJUST	MENT
	20mV /div 20mV /div	1mS /div 1mS /div	CN101pin9 (TR.RT) CN101pin3 (FO.ER)	VR2 (TR.OF) VR6 (FO.OF)	OV ± 10mV	Connect oscilloscope or volt meter to CN101 pin9 TR.RT (Tracking Return). Adjust VR2 TR.OF (Tracking Off-set) so that the voltage at CN101 pin9 becomes 0V ± 10mV. Connect oscilloscope or volt meter to CN101 pin3 FO.ER (Focus Error).
{ ,			{			Adjust VR6 FO.OF (Focus Offset) so that the voltage at CN101 pin3 becomes OV ± 10mV.

Step No.	Oscill Settir	loscope	Test Points	Adjusting Points	Check items/ Adjustment	Adjustment procedure
3	FOCU	S LOCK			*pecifications VERIFICATION	
	0.2V /div	10 _# S /div	CN105pin1 (RF)		RF signal is generated Counterclockwise rotation	Press MANUAL SEARCH FWD key to move the pick- up close to the midway of the disc. Note that this step must be performed. Connect oscilloscope to CN105 pin1 RF (RF output) and verify that an RF signal is generated when the TRACK FWD key is pressed (when the focus servo is closed). Press PLAY key and check that the disc rotates at an optimum speed (about 300rpm on the midway of the disc) in the counterclockwise direction.
4	GRAT	ING ADJ	USTMENT			
	1V /div	10mS /div	CN101 pin4 (TR.ER)	Grating	NULL point (Small and smooth envelope)	Press TRACK FWD key and PLAY key by turns to close the focus and spindle servos (leaving the tracking servo open). Connect oscilloscope, to CN101 pin4 TR.ER (tracking error) through a 4kHz L.P.F. as shown in Fig. 7-2. Insert grating driver into the adjusting hole of the pickup as shown in Fig. 7-3. Slowly turn it and find the NULL point, (see photograph 7-1) Note: If the pickup is raised by the grating driver during the adjustment, hold the pickup down slightly. Turn the grating driver clockwise slowly from the NULL point and stop it at the point where the tracking error signal waveform first reaches the maximum. (see photograph 7-3)
	CH-1 50mV /div	X-Y mode	CH-1 CN102pin1 (BKTE)			Connect oscilloscope CH-1 to CN102 pin1 (BKTE) and CH-2 to CN102 pin2 (FWTE). Set AC-GND-DC switch of oscilloscope to AC and mode to X-Y.
	CH-2 50mV /div		CH-2 CN102 pin2 (FWTE)		Straight line of 45 degrees	While observing the Lissajous figure (see photograph 7-4), finely adjust the grating to the point where the Lissajous becomes a slender line in 45 degrees. (see photograph 7-5).
	AC- coupling					To CN101

Fig. 7-3 Grating adjustment

Photograph 7-1 Small and smooth envelope (NULL point)

Photograph 7-2 Small but rough envelope (not NULL point)

Photograph 7-3 Maximum amplitude

Photograph 7-4 Lissajous figures (before adjustment)

36

Photograph 7-5 Lissajous figures (after adjustment)

Step No.	Oscilie Settin	oscope g	Test Points	Adjusting Points	Check items/ Adjustment	Adjustment procedure
	٧	Н	1		specifications	
5	TRACI	KING BA	ALANCE AL	JUSTME	VT	
	1V /div	10mS /div	CN1 O1 pin4 (TR.ER)	VR 5 (TR.BL)	Equal positive & negative amplitude (A = B)	Press MANUAL SEARCH FWD key to move the pick- up close to the midway of the disc. Press TRACK FWD key and PLAY key by turns to start turning the disc. Set GND level of oscilloscope at the center. Connect oscilloscope to CN101 pin4 TR.ER (Tracking Error) through a L.P.F. shown in Fig. 7-2. Adjust VR5 TR.BL (Tracking Balance) so that the positive and negative amplitudes of the waveform become equal as in photograph 7-2.
	** **	10	or a short had	8.		
5	PICKU		notograph 7		→ A - A - A - A - A - A - A - A - A - A	Photograph 7-7 A = B
6	-				→	Photograph 7-7 A = B Press TRACK FWD key, PLAY key and PAUSE key by turns to close all servos. (The PAUSE indicator should be lit up)

					•	turns to close all serve be lit up)
					٠	Connect oscilloscope through a 10k-ohm Use a 5k-ohm resistor clear.
0.2V /div A C - coupling	0.2µS /div	CN105pin1 (RF)	Pickup angle adjustment screw	Best eye pattern	•	Adjust pickup angle a clearest eye pattern The optimum point of way between the two tem starts to deteri adjustment screw is clockwise.
1	1	1 1	1			

- Connect oscilloscope to CN105 pin1 RF (RF output) through a 10k-ohm resistor.
 Use a 5k-ohm resistor instead if the waveform is not
- Adjust pickup angle adjustment screw to obtain the clearest eye pattern as in photograph 7-8. The optimum point of the adjustment is in the midway between the two points from where the eye pattern starts to deteriorate when the pickup angle adjustment screw is turned clockwise or counterclockwise.

Photograph 7-9

Part to be observed

Photograph 7-10

Optimum

Photograph 7-8

Photograph 7-11

Step No.	Oscill Settir	oscope Ig	Test Adjusting Check items/ Adjustment Adjustment procedure		Adjustment procedure	
	V	Н			specifications	
7					HOUT USING AI	N FTG ADJUSTER) 9 41.
	50mV /div	0.5mS /div	AF Osc. output terminal	AF Osc. output control	880Hz 0.2Vp-p	Connect oscilloscope to the output terminal of AF oscillator and adjust its output to 880Hz and 0.2Vp-p. (The AF oscillator output should be adjusted before the connection described below.) Press TRACK FWD key, PLAY key and PAUSE key by turns to close all servos.
	CH-1 20mV /div CH-2 50mV /div	X-Y mode	CH-1 CN101 pin6 (FO.IN) and AF Osc. output CH-2 CN101 pin1 (FO.OT)	VR3 (FO.GA)	Symmetrical Lissajous figures	Connect oscilloscope, AF oscillator and resistor to the player as shown in Fig. 7-5. Set oscilloscope to X-Y mode. Adjust VR3 FO.GA (Focus Gain) so that the Lissajous figures become symmetrical. (see photograph 7-13) CN101 56k Q Fin6 (FO.IN) Pin5 (GND) Pin1 (FO.OT)
						(10:1) Fig. 7-5

Photograph 7-13 Optimum Gain

Photograph 7-14 High gain

tep	Oscillo Settin	scope g	Test Points	Adjusting Points	Check items/ Adjustment	Adjustment procedure
-	V	Н			specifications	
8					VITHOUT USING step and see Page 41	G AN FTG ADJUSTER)
	0.1V /div	0.5mS /div	AF Osc. output terminal	AF Osc. output control	1130Hz 0.4Vp-p	 Connect oscilloscope to the output terminal of A oscillator and adjust its output to 1130Hz and 0.4Vp-f (The oscillator output should be adjusted before th connection described below.) Press the TRACK FWD key, PLAY key and PAUSE ke by turns to close all servos.
	CH-1 50mV /div CH-2 50mV /div	X-Y mode	CH-1 CN101 pin7 (TR.IN) and AF Osc. output CH-2 CN101 pin2 (TR.OT)	VR4 (TR.GA)	Symmetrical Lissajous figures 	 Connect oscilloscope, AF oscillator and a resistor the player as shown in Fig. 7-7. Set oscilloscope to X-Y mode. Adjust VR4 TR.GA (Tracking Gain) so that the Lissipus figures become symmetrical (see photograp 7-16)
						CN101 100k B (10:1) Pin7 (TR.IN) Pin5 (GND) Pin2 (TA.OT) Fig 7-6
Control of the second	Bh	otograph	7.15			
		v gain	r-14		Photograph 7-16 Optimum Gain	6 Photograph 7-17 High gain

Step No.	Oscillo Setting		Test Points	Adjusting Points	Check items/ Adjustment	Adjustment procedure
	V	Н			specifications	
9	FOCUS Note	S AND T e: If you ha	RACKING we adjusted	GAIN AD.	JUSTMENT USI king gains at step 7	NG AN FTG ADJUSTER and 8, skip this step and see Page 42.
	50mV /div	0.5m\$ /div 0.5m\$ /div	TP of FTG- adjuster TP of FTG- adjuster	FREQ-1 Pots of FTG - adjuster GAIN-1 Pots of FTG - adjuster FREQ-2 Pots of FTG - adjuster GAIN-2 Pots of FTG - adjuster VR3 (FO.GA) VR4 (TR.GA)	Green LED (JUST) on Green LED (JUST) on	 Turn power switch of FTG adjuster on. The power switch is located on the right side of the adjuster. Turn the selector switch of the FTG adjuster to 1. The selector switch is located on the left side of the panel. Connect oscilloscope to TP (Test Point) of FTG adjuster. The TP is located on the right side of selector switch. Adjust two FREQ-1 potentiometers of the FTG adjuster so that the output frequency becomes 880Hz. The frequency is indicated by three 7-segment LEDs on the FTG adjuster. Adjust two GAIN-1 potentiometers of the FTG adjuster so that the amplitude of the output signal becomes 0.2Vp-p. Turn the selector switch of FTG adjuster to 2. Adjust two FREQ-2 potentiometers of the FTG adjuster so that the output frequency becomes 1130Hz. Adjust two GAIN-2 potentiometers of the FTG adjuster so that the amplitude of the output signal becomes 0.4Vp-p. Turn the selector switch to the neutral position (center). Connect orange wire of FTG adjuster to CN101 pin6 (FO.in) of the player, brown wire to CN101 pin1 (FO.OT), yellow wire to CN101 pin7 (TR.IN), red wire to CN101 pin2(TR.OT) and black wire to chassis. Press the TRACK FWD key, PLAY key and PAUSE key by turns to close all servos. Turn the selector switch to 1. Adjust VR3 FO.GA (Focus Gain) so that a green LED (JUST) comes on. Turn the selector switch of FTG adjuster to 2. Adjust VR4 TR.GA (Tracking Gain) so that the green LED (JUST) comes on. Turn the selector switch of FTG adjuster to 2. Adjust VR4 TR.GA (Tracking Gain) so that the green LED (JUST) comes on.

Step No.	Oscillo Settin	oscope B	Test Points	Adjusting Points	Check items/ Adjustment specifications	Adjustment procedure
10			N FREQUE	NCY ADJU	JSTMENT	
	0.5V /div	0.1µS /div	TP6 or D27 cathode, or one end of C31			Connect oscilloscope to TP6 (VCO test pin) or D27 cathode, or to one end of C31 (see Fig. 7-7). Press TRACK FWD key and PLAY key by turns to close the focus and spindle servos.
					Waveform is positioned at the center	Turn AC-GND-DC switch of oscilloscope to DC. Adjust vertical position of oscilloscope so that the waveform is positioned at the center. Note: It is not necessary to set the GND level at the center of the oscilloscope in this adjustment. Simply position the waveform at the center of the oscilloscope with the vertical position control.
	* 4			VL1	Waveform is positioned at the center DC level of the waveforms is not changed	Press PAUSE key to close the tracking servo. Adjust VL1 (VCO coil) with a core driver so that the waveform is positioned at the center. Open and close the tracking servo by depressing PAUSE key a few times and verify that the DC level of the waveforms is not changed.
						Observe point Fig. 7-7 Main board assembly

7. RÉGLAGE

· Points de réglage

- 1. Vérification de puissance de sortie de diode laser (LD)
- 2. Réglages de décalage d'alignement et de décalage de mise au point
- 3. Vérification de verrouillage de mise au point et d'axe
- 4. Réglage de quadrillage
- 5. Réglage d'équilibre d'alignement
- 6. Réglage tangentiel
- 7. Réglage de gain de mise au point
- 8. Réglage de gain d'alignement
- 9. Réglage de fréquence de fonctionnement libre VCO

• Equipements de mesure

- 1. Oscilloscope double tracé
- 2. Indicateur de puissance laser (LPM-8000)
- 3. Disque d'essai (YEDS-7)
- 4. Oscillateur AF
- 5. Tournevis de quadrillage (R-882)

• Mode d'essai

Tous les ajustements doivent être effectués en mode d'essai

Procédures de mise en service et annulation du --

- (1)Pour passer en mode d'essai, allumer l'interrupteur d'alimentation (POWER) (S401) du lecteur en établissant un court-circuit entre les bornes TEST MODE.
- (2)Pour annuler le mode d'essai, il suffit de ramener sur OFF l'interrupteur d'alimentation (POWER) du lecteur.

Les diverses fonctions des touches en mode d'essai sont reprises dans le Tableau 7-1.

• Points de réglage

VR2: Décalage d'alignement (TR.OF)

VR3: Gain de mise au point (FO.GA) VR4: Gain d'alignement (TR.GA)

VR5: Equilibre d'alignement (TR.BL)

VR6: Décalage de mise au point (FO.OF)

VL1: Fréquence de fonctionnement libre VCO

Fig. 7-1 Points de réglage

En mode d'essai, chaque servomécanisme peut être fermé et ouvert par des démarches distinctes. Part conséquent, chacun devra être fermé un à la fois (en séquence sérielle) pour passer au mode de lecture (PLAY).

Remarquer que le mode PLAY n'est pas actualisé par simple poussée sur la touche PAUSE en mode d'essai. Pendant la sélection ou le chargement d'un disque, ne pas tenter d'effectuer d'autres opérations.

Exemple: Passage du mode d'arrêt (STOP) au mode de lecture (PLAY).

- En mode d'essai, les servomécanismes fonctionnent en séquence sérielle.
- Fonctions des touches en mode d'essai

Symbole	Touche	Fonction en mode d'essai	Description		
M	TRACK BACK	Diode laser allumée.	La diode laser s'allume.		
DDI	TRACK FWD	Servomécanisme de mise au point fermé.	Le disque est logé depuis le magasin et immobilisé. La diode laser s'allume. L'actuateur se déplace à la verticale, puis le servomécanisme de mise au point est fermà.		
▷	PLAY	Le servomécanisme d'axe est fermé.	L'axe commence à tourner et le servomécanisme est fermé quand la rotation atteint la vitesse optimale.		
G O	PAUSE	Le servomécanisme d'alignement est fermé/ouvert.	Le servomécanisme est fermé en appuyant une fois sur la touche; le témoin PAUSE s'allume et le lecteur passe en mode PLAY tandis que la durée écoulée est indiquée sur l'affichage fluorescent. Les servomécanismes de mise au point et d'axe doivent être fermés à ce stade. Quand la touche est de nouveau actionnée, le servomécanisme d'alignement est ouvert.		
ℴ	MANUAL SEARCH REV	Déplacement arrière du chariot (vers le centre du disque) Déplacement arrière du chariot (vers le centre du disque) Déplacement arrière du chariot (vers le chariot 1 cm/sec. Comme il n'existe pas de mécanisme de s arrêter le chariot, relâcher la touche avant d'à la fin du disque.			
⊳	MANUAL SEARCH FWD	Déplacement avant du chariot (vers le bord du disque)	Le chariot est déplacé vers la fin du disque à vitesse rapide d'environ 1 cm/sec. Comme il n'existe pas de mécanisme de sécurité pour arrêter le chariot, relâcher la touche avant qu'il n'arrive au bord du disque.		
	REPEAT	Déplacement verticale (haut/bas) de l'objectif	Le disque est chargé depuis le magasin et immobilisé. La diode laser s'allume. L'actuateur se déplace deux fois vers le haut et le bas, puis li disque est ramené dans le maga- sin. Le servomécanisme de mise au point n'est pas fermé		
	STOP	STOP	Tous les servomécanismes sont ouverts.		
A	EJECT	Le magasin est éjecté.	Le magasin ressort. Cependant, le capteur ne revient pas à la position de repos.		
1-6	DISC 1-6 KEY	Sélection du disque	Un disque peut être choisi dans le système six-disques. Si la touche TRACK FWD ou REPEAT est actionnée sans sélection d'un disque, le lecteur choisit automatiquement le premier disque.		
	HEURE	Tous les affichages fluorescents/à LED allumés	Verification des circuits d'affichage		

REMARQUES:

- 1) Le réglage suivant doit être effectué en mode d'essai. Consulter la page 43 pour placer le lecteur en mode d'essai.
- 2) Le réglage suivant, sauf (1. Vérification de puissance de sortie de LD) doit être effectué avec un disque d'essai (YEDS-7).
- Placer le disque d'essai avec sa face enregistrée vers le haut dans un magasin et installer celui-ci dans le lecteur.
- 3) La description des réglages suivants commence à partir de l'état "STOP".

N°. de paso	Ajuste oscilo: V	scopio	Puntos deprueba	Puntos de ajuste	itemes de comprobación/ Especificaciones de ajuste	Procedimiento de ajuste
1	VERIFI Rem Ce j	narque: point peut é	itre ignoré lo	rs d'un entretie	SORTIE DE DIC	DDE LASER (LD) cette vérification que si la
				VR1	0,26 mW ± 0,02 mW	Pour vérifier la puissance de sortie du leser, la capteur doit être retiré du châssis du mécanisme par les démarches suivantes. Couper l'interrupteur d'alimentation. Enlever la courrole A. Déposer la fixation de barre de guidage. Desserrer la vis de commande. Soulever lentement l'ensemble du capteur en laissant la câble plat connecté. Prendre soin de ne pas établir un court-circuit entre la plaquette de circuit imprimé sur la capteur et le châssis. Régler le lecteur en mode d'essai. Placer la senseur de d'indicateur de puissance de laser (LPM-8000) sur l'objectif. Appuyer sur la touche TRACK REV pour mettre le laser en service. Vérifier que la puissance de sortie du laser respecte la plage spécifiée (0,26±0,02 mW). Dans la négative, ajuster VR1 sur le capteur pour convenir à la spécification. Couper l'interrupteur d'alimentation.
2	REGLA	GE DE I	DECALAG	SE D'ALIGN	IEMENT ET DE	MISE AU POINT
	20mV /div	1 mS /div	CN101 broche 9 (TR.RT)	VR2 (TR.OF)	0V ± 10mV	Reccorder un oscillateur ou un voltmêtre sur CN101 br che 9 TR-RT (retour alignement). Ajuster VR2 TR.OF (décalage alignement) de sorte que la tension à la bro- che 9 de CN101 devienne OV ± 10 mV.
	20 mV /div	1 mS /div	CN101 broche 3 (FO.ER)	VR6 (FO.OF)	0V±10 mV	 Raccorder un oscillateur ou un voltmètre sur la bro- che 3 de CN101 FO.ER (erreur de mise au point). Ajuster VR6 FO.OF (décalage de mise au point) de sorte que la tension à la broche 3 de CN101 devienn OV ± 10 mV.

N°. de	Ajuste oscilos	copio	Puntos deprueba	Puntos de ajuste	Itemes de comprobación/ Especificaciones	Procedimiento de ajuste
3	VERIFI	CATION	DU VERI	ROUILLAGE	DE MISE AU POINT ET D'AXE	
	0,2 V /DIV	10 μS /DtV	Broche 1 CN105 (RF)		Un signal RF est produit.	Appuyer sur la touche MANUAL SEARCH FWD pour amener le capteur vers le milieu du disque. Remarquer que cette démarche doit être accomplie. Raccorder l'oscilloscope à CN105 broche 1 RF (sortie RF et vérifier que le signal haute fréquence est produit quand la touche TRACK FWD est actionnée (quand le servomécanisme de mise au point est fermé). Appuyer sur la touche PLAY et vérifier que le disque
					anti-horaire	tourne à la vitesse optimale (environ 300 tr/mn au milieu de disque) dans le sens anti-horaire.
4	REGLA	GE DU	QUADRIL	LAGE		
						 Appuyer sur les touches TRACK FWD et PLAY pour fermer les servomécanismes de mise au point et d'axe (en laissant ouvert le servomécanisme d'alignement).
						 Raccorder l'oscilloscope sur CN101 broche 4 TR.ER (erreur d'alignement) par un L.R.F. de 4 kHz comme indiqué sur la Fig. 7-2.
	1V /DIV	10mS /div	CN101 broche 4 (TR.ER)	Quadrillage	Point NUL (enveloppe petite et douce	Insérer le tournevis dans l'orifice de réglage du cap- teur comme indiqué à la Fig. 7-3. Le tourner lente- ment et trouver le point NUL. (Voir photo 7-1) Remarque: Si le capteur est levé par le tourne- vis pendant ce réglage, abaisser légèrement le capteur.
						 Tourner lentement le tournevis dans le sens des aiguil- les à partir du point NUL et arrêter au point où la forme d'onde du signal d'erreur d'alignement atteint le maxi- mum (voir photo 7-3)
	CH-1 50mV/div	mode X-Y	CH-1 CN102 broche 1 (BKTE)			Recorder l'oscilloscope CH-1 sur CN102 broche 1 (BKTE) et CH-2 à CN102 broche 2 (FWTE). Régler l'interrupteur AC-GND-DS de l'oscilloscope sur AC et le mode sur X-Y.
	CH-2 50mV/div Couplage CA		CH-2 CN102 broche 2 (FWTE)		Ligne droite de 45 degrés	 Tout en observant la figure Lissajous (voir photo 7-4), ajuster le quadrillage avec précision jusqu'au point où le Lissajous devient une ligne oblique p 45 degrés. (Voir photo 7-5).
						L.P.F. 39kΩ A CN101 broche 4 (TR.ER) Fig. 7-2 4kHz L.P.F.

Fig. 7-3 Réglage de quadrillage

Photo 7-1 Enveloppe petite et douce (point NUL)

Photo 7-2 Enveloppe petite mais grossière (pas le point NUL)

Photo 7-3 Amplitude maximum

Photo 7-4 Figures Lissajous (avant réglage)

Photo 7-5 Figures Lissajous (après réglage)

d' étape	Régla ₍ d'osci	ge Noscope H	Points d'essai	Points de réglage	Postes de contrôle/ Spécifications de régisge	Procédure de réglage					
5	REGLA	REGLAGE D'EQUILIBRE D'ALIGNEMENT									
	1 V /div	10 mS /div	CN101 broche 4 (TR.ER)	VR5 (TR.BL)	Amplitude positive et négative égale (A = B)	Appuyer sur la touche MANUAL SEARCH FWD pour déplacer la capteur près du milieu du disque. Appuyer sur la touche TRACK FWD et PLAY pour lancer la ratation du disque. Régler le niveau GND de l'oscilloscope au centre. Raccorder l'oscilloscope à CN101 broche 4 TR.ER (erret d'alignement) per un L.P.F. indiqué sur la Fig. 7-2. Ajuster VR5 TR.B. (lequilibre d'alignement) de sorte que l'amplitude positive et négative de la forme d'onde soit égale, comme sur la photo 7-7.					
	A		Photo 7-	V		Photo 7-7 A = 8					
6	REGLA	AGE PICK	Photo 7-		→ A B B B B B B B B B B B B B B B B B B	Photo 7-7 A = B					

Photo 7-9

Photo 7-10

1)

Photo 7-8

Photo 7-11

q, No		oscope	Points d'essai	Points de réglage	Postes de contrôle/ Spécifications	Procédure de réglage
étape	٧	Н			de réglage	
7						TILISATION D'UN AJUSTEUR FTG) t passer en page 52.
	50 mV /div	0.5 mS /div	Borne de sortie Osc. AF	Réglage de sortie Osc. AF	880Hz 0,2Vp-p	Raccorder l'oscilloscope à la borne de sortie de l'oscilloscope AF et ajuster sa sortie à 880 Hz et 0,2 Vc-c. (La sortie d'oscillateur AF doit être ajustée avant la connexion décrite ci-après.) Appuyer tour à tour sur les touches TRACK FWD, PLAY et PAUSE pour farmer tous les servomécanismes.
,	Ch-1 20 mV /div CH-2 50 mV /div	Mode X-Y	CH-1 CN101 broche 6 (FO. IN et sortie Osc. AF) CH-2 CN101 broche 1 (FO.OT)	VR3 (FO.GA)	Figures Lissajous symétriques	Raccorder l'oscilloscope, un oscillateur AF et une résistance au lecteur comme indiqué sur la Fig. 7-5. Régler l'oscilloscope en mode X-Y. Ajuster VR3 FO.GA (gain de mise au point) de sorte que les figures Lissajous deviennent symétriques. (Voir photo 7-13) Broche 6 (FO.IN) Broche 5 (GND) Broche 1 (FO.OT) Fig. 7-5

Photo 7-12 Gain faible

Photo 7-13 Gain optimal

Photo 7-14 Gain élevé

q, N.	Régle _i d'osci	je Noscope	Points d'essai	Points de réglage	Postes de contrôle/ Spécifications	Procédure de réglage		
étape	٧	н			de réglage			
8					T (SANS UTILIS er cette démarche et	SATION D'UN AJUSTEUR FRG) voir en page 52.		
	O,1V /div	0,5 mS /div	Borne de sortie Osc. AF	Réglage de sortie Osc. AF	1130Hz 0,4Vc-c	Raccorder l'oscilloscope à la borne de sortie de l'oscillateur AF et ajuster sa sortie à 1130 Hz et 0,4 Vc-c. (La sortie d'oscillateur doit être ajustée avant la connexion décrite ci-après.) Appuyer tour à tour sur les touches TRACK FWD, PLAY et PAUSE pour fermer tous les servomécanismes.		
	CH-1 50mV /div CH-2 50mV /div	Mode X-Y	CH-1 CN101 broche 7 (TR.IN et sortie OSC. AF) CH-2 CN101 broche 2 (TR.OP)	VR4 (TR.GA)	Figures Lissajous symétriques	Raccorder l'oscilloscope, l'oscillateur AF et une résistance au lecteur comme illustré sur la Fig. 7-6. Régler l'oscilloscope en mode X-Y. Ajuster VR4 TR.GO (gain d'alignement de sorte que les figures Lissajous soient symétriques. (Voir photo 7-16) Broche 7 (TR.IN) Broche 5 (GND) Broche 2 (TR.OT) Fig. 7-6		

Photo 7-15 Gain faible Photo 7-16 Gain optimal

Photo 7-17 Gain élevé

d'	Réglag d'oscill		Points d'essai	Points de réglage	Postes de contrôle/ Spécifications	Procédure de réglage				
étape 9	AJUST	EUR FT	G			GNEMENT AVEC UTILISATION D'UN nement aux démarches 7 et 8, ignorer				
	cette étape et passer en page 53.									
						Allumer l'interrupteur POWER qui se trouve sur le flanc droit de l'ajusteur FTG. Tourner sur 1 le sélecteur de l'ajusteur FTG, situé sur le côté gauche du panneau. Raccorder l'oscilloscope sur TP (point d'essai) de l'ajusteur FTG. Le point TP est situé sur le côté droit du sélecteur.				
				Potentiomètres FREQ-1 d'ajusteur FTG	*	Ajuster les potentiomètres FREQ-1 de l'ajusteur FTG de sorte que la fréquence de sortie devienne 880 Hz. La fréquence est indiquée par trois diodes LED à 7 segments sur l'ajusteur FTG.				
	50 mV /div	0,5 mS /div	TP d'ajusteur TFG	Potentiomètres GAfN-1 d'ajusteur FTG		Ajuster les 2 potentiomètres GAIN-1 de l'ajusteur FTG de sorte que l'amplitude du signal de sortie devienne 0.2 Vc-c.				
						Tourner sur 2 le sélecteur de l'ajusteur FTG.				
		·		Potentiomètres FREQ-2 d'ajusteur FTG		Ajuster les deux potentiomètres FREQ-2 de l'ajusteur FTG de sorte que la fréquence de sortie devienne 1130Hz.				
	0,1V /div	0,5 mV /div	TP d'ajusteur FTG	Potentiomètres GAIN-2 d'ajusteur FTG		 Ajuster les deux potentiomètres GAIN-2 de l'ajusteur FTG de sorte que l'amplitude du signal de sortie devienne 0,4 Vc-c. 				
						Tourner le Sélecteur à la position neutre (centre).				
						Recorder le fil orange de l'ajusteur FTG sur CN101broche 5 (FO.IN) du lecteur, le fil brun sur CN101broche 1 (FO.OT), le fil jaune sur CN101broche 7 (TR.IN), le fi rouge sur CN101 broche 2 (TR.OT) et le fil noir au châssis. Appuyer tour à tour sur les touches TRACK FWD, PLAY et PAUSE pour fermer tous les servomécanismes.				
				VR3 (FO.GA)	Diode LED verte (JUST) allumée	Tourner à 1 le Sélecteur. Ajuster VR3 FO.GA1 (gain de mise au point) de sorte que s'allume la diode LED verte (JUST).				
				VR4 (TR.GA)	Diode LED verte (JUST) allumée	Tourner à le Sélecteur de l'ajusteur FTG. Ajuster VR4 TR.GO (gain d'alignement) de sorte que s'allume la diode LED verte (JUST).				
						Photo 7-18 Ajusteur FTG				

N° ď	Réglas d'osci	je Iloscope	Points d'essai	Points de réglage	Postes de contrôle/ Spécifications	Procedimiento de ajuste
étape	V	Н]		de réglage	
10	REGLA	AGE DE	FREQUEN	CE DE FOI	NCTIONNEMENT	LIBRE VCO
	0.5V /DIV	0.1 μS /DIV	TP6 ou cathode de D27 ou une extrémité de C31			 Connecter l'oscilloscope à TP6 (point test de VCO) ou à la cathode de D27 ou à une extrémité de C31. (voir Fig.7-7). Appuyer tour à tour sur les touches TRACK FWD et PLAY pour fermer les servomécanismes de mise au point et d'axe.
						 Tourner sur DC le sélecteur AC-GND-DC de l'oscil- loscope.
					Forme d'onde positionnée au centre	 Ajuster la position verticale de l'oscilloscope de sorte que la forme d'onde soit positionnée au centre. Remarque: Il n'est pas nécessaire de régler la niveau GND au centre de l'oscilloscope au cours de ce réglage. Positionner simplement la forme d'onde au centre de l'oscilloscope par le réglage de position verticale.
						Appuyer sur la touche PAUSE pour fermer le servo- mécanisme d'alignement.
				VL1	Forme d'onde positionnée au centre	 Ajuster VL1 (bobine VCO) avec un tournevis de sorte que la forme d'onde soit positionnée au centre.
					Le niveau CC	Ouvrir et fermer le servomécanisme d'alignement par quelques poussées sur lii touche PAUSE et vérifier que
					des formes d'onde n'est pas changé.	le niveau DC des formes d'ondes n'est pas changé.
						Point à observer

7. AJUSTE

• Tipos de ajustes

- Verificación de la energía de salida del LD (diodo de láser)
- 2. Ajustes del descentramiento de seguimiento y del descentramiento del enfoque
- Verificación de bloqueo del enfoque y de bloqueo del pivote
- 4. Ajuste de la rejilla
- 5. Ajuste de equilibrio de seguimiento
- 6. Ajuste tangencial
- 7. Ajuste de ganancia de enfoque
- 8. Ajuste de ganancia de seguimiento
- Ajuste de la frecuencia de funcionamiento libre del VCO.

• Equipos de medición

- 1. Osciloscopio de trazado doble
- 2. Medidor de energía de láser (LPM-8000)
- 3. Disco de prueba (YEDS-7)
- 4. Oscilador de AF
- 5. Excitador de rejilla (R-882)

· Mode de prueba

Todos los ajustes deben efectuarse en el modo de prueba.

Ajuste del modo de prueba y procedimientos de -cancelación

- (1)Para ajustar el modo de prueba conecte (ON) el interruptor de alimentación (POWER) del reproductor (S401) cortocircuitando los terminales del mode de prueba (TEST MODE TERMINAL).
- (2) Para cancelar el mode de prueba, desconecte (OFF) simplemente el interruptor de alimentación (POWER) del reproductor.

Las funciones de las diversas teclas en el modo de prueba se enumeran en la tala 7-1.

• Puntos de ajuste

VR2: Descentramiento de seguimiento (TR.OF)

VR3: Ganancia de enfoque (FO.GA)

VR4: Ganancia de seguimiento (TR.GA)

VR5: Equilibrio de seguimiento (TR.BL)

VR6: Descentramiento de enfoque (FO.OF)

VL1: Frecuencia de funcionamiento libre del VCO.

Fig. 7-1 Funtos de ajuste

En el modo de prueba, cada servocircuito puede cerrarse y abrirse mediante operaciones independientes. Consecuentemente, cada servocircuito debe estar cerrado en cierto momento (secuencia en serie) para establecer el modo de reproducción (PLAY).

Tenga presente que el modo de reproducción (PLAY) no se activa presionando simplemente la tecla de reproducción (PAUSE) en el modo de prueba.

Mientras se selecciona o carga un disco, no intente efectuar otras operaciones.

Ejemplo: Conmutación del modo del parada (STOP) al de reproducción (PLAY)

 Los servomecanismos operar en secuencia en serie durante el modo de prueba.

• Funciones de las teclas en el modo de prueba

Símbolo	Tecla	Función durante el modo de prueba	Descripción
M	TRACK BACK	Diodo láser activado (ON).	Se enciende el diodo láser.
DDI	TRACK FWD	El servomecanismo de enfoque está cerrado.	Se carga el disco desde al compartimiento y se enclava. Se enciende el diodo láser. El accionador se mueve ha- cia arriba y abajo y luego se cierra el servomecanismo de enfoque.
▷	PLAY	El servomecanismo del pivote está cerrado.	El pivote empieza a girar y el servomecanismo se cierra cuando las revoluciones alcanzan la velocidad óptima.
00	PAUSE	El servomecanismo de seguimiento está cerrado/abierto.	El servomecanismo de seguimiento se cierra presionando una vez la tecla, se enciende el indicador de pausa (PAUSE) y el reproductor se establece en el modo de reproducción (PLAY) con el tiempo transcurrido indicado en el visualizador fluorescente. Los servomecanismo de enfoque y de pivote deben estar cerrados en este momento. Cuando se presiona de nuevo la tecla, se abre el servomecanismo de seguimiento.
ಶಶ	MANUAL SEARCH REV	El carro se mueve hacia atrás (hacia el centro del disco)	El carro se mueve hacia el centro del diaco a rápida velo- cidad de aprox. 1 cm/s. Puesto que no hay mecanismo de seguridad para dete- ner el carro, suelte la tecla cuando el carro llegue al final.
DD	MANUAL SEARCH FWD	El carro se mueve hacia adelante (hacia el extremo del disco)	El carro se mueve hacia el extremo del disco a rápida ve- locidad de aprox. 1 cm/s. Puesto que no hay mecanismo de seguridad para dete- ner el carro, suelte la tecla cuando el carro llegue al final.
0	REPEAT	El objetivo se mueve hacia arriba y abajo.	El disco se carga desde el compartimiento y se enclava. Se enciende el diodo láser. El accionador se mueve ha- cia arriba y abajo dos veces y el disco se repone en el compartimiento. El servomecanismo de enfoque no se cierra.
	STOP	Parada (STOP)	Se abren todos los servomecanismos.
≙	EJECT	Sale expulsado el compartimiento	El compartimiento sale expulsado. Sin embargo, el fono- captor no retorna a la posición de reposo.
1-6	DISC 1-6 KEY	Se selecciona el disco	Puede seleccionarse un disco del sistema de seis discos. Si se presionan las teclas de avance de canciones (TRACK FWD) o de repetición (REPEAT) sin haber seleccionado un disco, el reproductor selecciona automáticamente el primer disco.
	TIEMPO	Todos los FL/LED encendidos	Comprobación del circuito de indicaciones

NOTAS:

- 1) Los ajustes siguientes deben efectuarse en el modo de prueba. Consulte la página 54 para establecer el reproductor en el modo de prueba.
- 2) El ajuste siguiente, excepto [1. VERIFICACION DE LA ENERGIA DE SALIDA DEL DIODO LASER] debe efectuarse con un disco de prueba (YEDS-7). Ponga el disco de prueba grabado en la parte de arriba en el compartimiento e inserte el compartimiento en el reproductor.

 3) La descripción de los ajustes siguientes empieza por "STOP".

N°. de paso	Ajuste del osciloscopio	Puntos de prueba	Puntos de ajuste	itemes de comprobación/ Especificaciones	Procedimiento de ajuste			
1	V H de ajuste VERIFICACION DE LA ENERGIA DE SALIDA DEL DIODO DE LASER NOTE: Este îtem puede saltarse bajo el servicio normal. Debe verificarse sólo cuando la energia de láser parezca ser débil o cuando el diodo láser parezca estar defectuoso.							
			VR1	0.26 mw ±0.02 mW	Para verificar la energia de salida de láser, debe sacarse el foocaptor del clasis del mecanismo en elprocedimiento siguiente. Desconecte el interruptor de alimentación. Libere fa correa A. Saque el retenedor de la barra guía. Afloje el tornillo de fijación. Levante lentamente el conjunto del fonocaptor al revés manteniendo el cable plano conectado. Tenga cuidado en no cortocircuitar la tajerta de circuito impreso del fonocaptor con el chasis. Ajuste el reproductor al modo de prueba. Ponga el sensor del medidor de energía de láser (LPM-8000) encima del objetivo. Presione la tecla TRACK REV para activar al láser. Verifique que la energía de salida de láser esté dentro del margen especificado (0,26 ± 0,02 mW). Si no es así, siuste VR1 del fonocaptor para satisfacer las especificaciones. Desconecte el interruptor de alimentación.			
2	AJUSTE DE	L DESCENTI	RAMIENTO	DE SEGUIMIENT	TI Y DESCENTRAMIENTO DE ENFOQUE			
	20 mV 1 m /div 20 mV 1 m /div	de CN101 (TR.RT)	VR2 (TR.OF) VR6 (FO.OF)	0V ± 10 mV	Conecte el osciloscopio o voltímetro a la patilla 9 de CN101 TR.RT (retorno de seguimiento). Ajuste VR2 TR.OF (descentramiento de seguimiento) de modo que la tensión en la patilla 9 de CN101 pase a ser de 0 V ± 10mW. Conecte el osciloscopio o voltímetro a la patilla 3 de CN101 FO.ER (error de enfoque). Ajuste VR6 FO.OF (descentramiento de enfoque) de modo que la tensión en la patilla 3 de CN101 pase a ser de 0 V ± 10 mW.			

N°. de	Ajuste del osciloscopio		Puntos de prueba	Puntos Itemes de comprobación/ de ajuste Especificaciones	Procedimiento de ajuste	
paso	V	Н			de ajuste	
3	VERIFI	CACION	DE BLOC	DUEO DE I	ENFOQUE Y BLO	OQUEO DE PIVOTE
	0.2V /div	10 μs /div	Patilla 1 de CN105 (RF)		Se genera la señal de RF	Presione la tecla MANUAL SEARCH FWD para mover el fonocaptor más cerca de la parte intermedia del dis- co. Tenga presente que este paso debe realizarse. Conecte el osciloscopio a 1 apatilla 1 de CN105 RF (sali- da RF) y verifique que se genera la señal de RF cuan- do se presiona la tecla TRACK FWD (cuando se cierra
					Rotación hacia là izquierda	el servomecanismo de enfoque). • Presione la tecla PLAY y compruebe que gire el disco a la velocidad óptima (unas 300 rpm en la mitad del disco) en la dirección hacia la izquierda.
4	AJUST	E DE LA	REJILLA	<u> </u>		
						 Presione las teclas TRACK FWD y PLAY por turnos para cerrar los servomecanismos de enfoque y del pi- vote (dejando al servomecanismo de seguimiento abierto).
						 Conecte el osciloscopio a la patilla 4 de CN101 TR.ER (error de seguimiento) a través de L.P.F. de 4 kHz co- mo se muestra en la Fig. 7-2.
	1V /div	10 ms /div	Patilla 4 de CN101 (TR.ER)	Rejilla	Punto NULL (envolvente pequeña y uniforme)	Inserte el excitador de rejila en elorificio de ajuste del fonocaptor como se muestra en la Fig. 7-3. Gírelo lentamente y busque el punto nulo (NULL) (vea la fotografía 7-1) Nota: Si se levanta el fonocaptor con al excitador de rejilla durante el ajuste, retenga un poco bajado al fonocaptor.
					Amplitud máxima	Gire ill excitador de rejilla lentamente hacia la derecha desde el punto NULL y párelo en ill punto en que la forma de onda de la señal de error de seguimiento lle- gue primero al punto máximo. (Vea la fotografíe 7-3)
	Canal 1 50 mV/div Canal 2 50 mV/div	Modo X-Y	Canal 1 Patilla 1 de CN102 (BKTE)			Conecte el canal 1 del osciloscopio a la patilla 1 de CN102 (BKTE) y el canal 2 a la patilla 2 de CN102(FWTE). Ajuste el interruptor AC-GND-DC del oscilloscopio a AC y el modo a X-Y.
	Acoplamie de CA	nto	Canal 2 Patilla 2 de CN102 (FWTE)		Línea recta de 45 grados	 Mientras observa el patrón de Lissajous (veala fotogra- fía 7-4), ajuste con precisión la rejilla al punto en el que el patrón de Lissajous pase a ser una línea fina en 45 grados (vea la fotografía 7-5).
						L.P.F. A Iπ patilla
	'					Fig. 7-2 L.P.F. de 4 kHz

Fig. 7-3 Ajuste de la rejilla

Fotografía 7-2 Envolvente pequeña pero gruesa (no el punto NULL)

Fotografía 7-4 Patrones de Lissajous (antes del ajuste)

Fotografía 7-1 Envolvente pequeña y uniforme (punto NULL)

Fotografía 7-3 Amplitud máxima

Fotografía 7-5 Patrones de Lissajous (después del ajuste)

	Ajust oscilo	e del ecopio	Puntos de prueba	Puntos de ajuste	Itemes de comprobación/ Especificaciones	Procedimiento de ajuste		
1850	٧	Н	1		de ajuste			
5	AJUSTE DEL EQUILIBRIO DE SEGUIMIENTO							
						 Presione la tecla MANUAL SEARCH FWD para mover el fonocaptor más cerca de la parte intermedia del disco. Presione las teclas TRACK FWD y PLAY por turnos para iniciar las vueltas del disco. 		
					1	Ajuste Bi nivel de tierra (GND) del osciloscopio en El centro.		
	1V /div	10 ms /div	Patilla 4 de CN101 (TR.ER)	VR5 (T8.BL)	Amplitud positiva y negativa iguales (A = B)	 Conecte el osciloscopio a la patilla 4 de CN101 TR.E. (error de seguimiento) a través de L.P.F. mostrado en la Fig. 7-2. Ajuste VRS TR.BL (equilibrio de se- guimiento) de modo que la amplitud positiva y nega- tiva de la forma de onda sean iguales que en la fotografía 7-7. 		
	A -+B				→ H			
	Ţ	VIIIIIII I	T Him.			No.		
-	1	V	otografia	7-6 A <b< td=""><td></td><td>Fotografía 7-7 A = B</td></b<>		Fotografía 7-7 A = B		
6	AJUST		otografía :			Fotografía 7-7 A = B		
6	AJUST					Presione las teclas TRACK FWD, PLAY y PAUSE por turnos para cerrar todos los ervomecanismos. (El in- dicador PAUSE deberá encenderse.)		
6	AJUST					Presione las teclas TRACK FWD, PLAY y PAUSE por turnos para cerrar todos los ervomecanismos. (El in-		

ajuste tangencial se gira hacia la derecha o hacia la

izquierda. Tornillo de ajuste ángulo

Fotografía 7-11

N°. de paso	Ajusti oscilo V	del scopio	Puntos de prueba	Puntos de ajuste	Itemes de comprobación/ Especificaciones de ajuste	Procedimiento de ajuste			
7	AJUSTE DE LA GANANCIA DE ENFOQUE (SIN EMPLEAR UN AJUSTADOR FTG) Note: Si dispone de un ajustador FTG, salte este paso y consulte la página 63.								
	50 mV /div	0,5 ms /div	Terminal de salida del osc. de AF	Control de salida del osc. de AF	880Hz 0.2Vp-p	Conecte unosciloscopio ill terminal de salida del oscilador de AF y ajuste su salida a 880 Hz y 0,2 Vp-p. (Le salida del oscilador de AF debe ajustarse antes de la conexión descrita a continuación.) Presione las teclas TRACK FWD, PLAY y PAUSE por turnos para cerrar todos los servomecanismos.			
	Canal 1 20 mV /div Canal 2 50 mV /div	Modo X-Y	Canal 1 Patilla 5 de CN101 (FO.IN) y salida del osc. de AF Canal 2 Patilla 1 de CN101 (FO.OT)	VR3 (FO.GA)	Patrones de Lissajous simétricos	Conecte el osciloscopio, oscilador de AF y un reaistor al reproductor como se muestra en la Fig. 7-5. Ajuste el osciloscopo al modo X-Y. Ajuste VR3 (FO.GA) (ganancia de enfoque) de modo que los patrones de Lissajous sean simétricos (vea la fotografía 7-13) CN101 56k Ω (10:1) Patilla 6 (SPO.IN) Patilla 1 (FO.OT) Fig. 7-5			
						10.146			

Fotografía 7-12 Baja ganancia

Fotografía 7-13 Ganancia óptima

Fotografía 7-14 Alta ganancia

N°. de naso		scopio	Puntos de prueba	Puntos de ajuste	itemes de comprobación/ Especificaciones	Procedimiento de ajuste			
paso	V	Н			de ajuste				
8	AJUSTE DE LA GANANCIA DE SEGUIMIENTO (SIN EMPLEAR UN AJUSTADOR FTG)								
	Not	a: Si dispo	ne de un ajus	stador FTG, sa	ilte este paso y consu	Ite la página 63.			
	0,1 V /div	0,5 ms /div	Terminal de salida del osc. de AF	Control de salida del osc. de AF	1130Hz 0.4Vp-p	 Conecte un osciloscopio al terminal de salida del os- cilador de AF y ajuste su salida a 1130 Hz y 0,4 Vp-p. (La salida del oscilador de AF debe ajustarse antes de la conexión descrita a continuación.) 			
						 Presione las teclas TRACK FWD, PLAY y PAUSE por turnos para cerrar todos los servomecanismos. 			
	Canal 1 50 mV /div	Modo X-Y	Canal 1 Patilla 7 de CN101	VR4 (TR.GA)	Patrones de Lissajous simétricos	 Conecte #i osciloscopio, oscilador de AF y un resistor al reproductor como se muestra en la Fig. 7-6. Ajuste el osciloscopo al modo X-Y. 			
	Canal 2 50 mV /div		(TR.IN) y salida del osc. de AF			Ajuste VR4 TR.GA (ganancia de seguimiento) de mo- do que los patrones de Lissajous sean simétricos (vea la fotografía 7-16) .			
			Canal 2 Patilla 2 de CN101 (TR.OT)			Patilla 7 CN101 100k II (10:1) (TR.IN) Patilla 5 (GND) (GND) 0.4Vp-p			
						Patilla 2 (TR.OT) (10:1) Fig. 7-6			
			1						

N°. de	Ajuste oscilo:		Puntos de prueba	Puntos de ajuste	îtemes de comprobación/ Especificaciones	Procedimiento de ajuste				
paso	V	Н	L		de ajuste					
9		E DE L		NCIA DE	ENFOQUE Y	DE SEGUIMIENTO EMPLEANDO UN				
,	Nota: Si usted ha ajustado las ganancias de enque y seguimiento en los pasos 7 y 8, sale este paso y vea la página 64.									
						Conecte à linterruptor de alimentación del ajustador FTG. EL interruptor está situado a la derecha del ajustador. Gire al selector del ajustador FTG a 1. El selector está situado a la izquierda del panel.				
						Conecte el osciloscopio a TP (punto de prueba) del ajustador FTG. El TP está situado a la derecha del selector.				
	:			Potenc. de FREQ-1 del ajustador FTG		 Ajuste dos potenciómetros de FREQ-1 del ajustador FTG de modo que la frecuencia de salida pase a ser de 880 Hz. La frecuencia se indica con LEDs de 7 seg- mentos en el ajustador FTG. 				
	50 mV /div	0,5 ms /div	TP del ajustador FTG	Potenc. de GAIN-1 del ajustador FTG		 Ajuste dos potenciómetros de GAIN-1 del ajustador FTG de modo que la amplitud de la señal de salida sea de 0,2 Vp-p. 				
						Gire el Selector del ajustador FTG a 2.				
				Potenc. de FREQ-2 del ajustador FTG		 Ajuste dos potenciómetros de FREQ-2 del ajustador FTG de modo que la frecuencia de salida pase a ser de 1130 Hz. 				
	0,1 V /div	0,5 ms /div	TP del ajustador FTG	Potenc. de GAIN-2 del ajustador FTG		 Ajuste dos potenciómetros de GAIN-2 del ajustador FTG de modo que la amplitud de la señal de salida sea de 0,4 Vp-p. 				
						Gire el Selector a la posición neutra (centro).				
						 Conecte el conductor naranja del ajustador FTG a la patilla 6 de CN101(FO.IN) del reproductor, ill conductor marrón a la patilla 1 de CN101(FO.OT), el conductor ama- rillo a la patilla 7 de CN101 (TR.IN), al conductor rojo a la patilla 2 de CN101 (TR.OT), y el conductor negro al chasis. 				
					s*	Presione las teclas TRACK FWD, PLAY y PAUSE por turnos para cerrar todos los servocircuitos.				
				VR3 (FO.GA)	LEO verde (JUST) encendido	Gire el Selector a 1. Ajuste VR3 FO.GA (ganancia de enfoque) de modo que se encienda un LED verde (JUST).				
				VR4 (TR.GA)	LED verde (JUST) encendido	 Gire el Seiector del ajustador FTG a 2. Ajuste VR4 TR.GA (ganancia de seguimiento) de modo que se encienda el LED verde (JUST). 				
						Fotografía 7-18 Ajustador FTG				

Fotografía 7-15 Baja ganancia

PD-M70

N°. de paso	Ajuste oscilo: V		Puntos de prueba	Puntos de ajuste	itemes de comprobación/ Especificaciones de ajuste	Procédure de réglage
10		•	A FRECU	NCIA DE		ITO LIBRE DE VCO
	0,5 V /div	0,1 μs /div	Cátodo del TP6 o D27, o un			Conectar el osciloscopio ili cátodo del TP6 o D27, o a un extremo del C31 (ver Fig. 7-9).
			extremo del C31			Presione las teclas TRACK FWD y PLAY por turnos para cerrar los servocircuitos de enfoque y del pivote.
						Gire #I selector AC-GND-DC del osciloscopio a DC.
			ı	·	La forma de onda se sitúa en El centro	Ajuste la posición vertical del osciloscopio de modo que la forma de onda quede situada en ili centro. Nota: No es necesario ajustar il nivel de GND en el centro del osciloscopio en este ajuste. Situe simplemente la forma de onda en el centro del osciloscopio con il control de posición vertical.
						Presione la tecla PAUSE para cerrar el servomecanis- mo de seguimiento.
				VL1	La forma de onda se sitúa en el centro	Ajuste VL1 (bobina de VCO) con un excitador de núcleo de modo que la forma de onda quede situada en el centro.
		4			El nivel de CC de las formas de ondas no cambia	Abra y cierre el servomecanismo de seguimiento pre- sionando la tecla PAUSE algunas veces y verifique que el nivel de CC de las formas de ondas no haya cambiado.
						Punto de observación Fig. 7-7 Conjunto del tablero de Main

8. REMOTE CONTROL SECTION

8.1 EXPLODED VIEWS

8.2 P.C.BOARD PATTERN

1. RESISTORS:

Indicated in Ω , 1/4W, 1/6W and 1/8W, \pm 5% tolerance unless otherwise noted k; k Ω , M; M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%, (M); \pm 20% tolerance

2. CAPACITORS:

Indicated in capacity (μF)/voltage (V) unless otherwise noted p; pF. Indication without voltage is 50V except electrolytic capacitor.

3. SWITCHES:

374111			
S 1	1(T.No.)	S 21	E(MEMORY)
S 2		S 22	5 (D.No.)
S 3		S 23	6(T.No.)
S 4		S 24	F(MEMORY)
S 5		S 25	6 (D.No.)
S 6		S 26	MANUAL ◀◀
S 7		S 27	PROGRAM (MEMORY)
S 8		S 28	PAUSE II
S 9		S 29	RANDAM PLAY
S 10		S 30	MANUAL >>
S 11		S 31	STOP •
	9(T.No.)	S 32	TRACK >>
S 13			
S 14		S 34	REPEAT
S 15		S 35	+(LEVEL)
S 16		S 36	TRACK 🖊
S 17		S 37	CLEAR
S 18	D(MEMORY)	S 38	PLAY 🕨
S 19		S 39	TIME
S 20		S 40	-(LEVEL)

SW1 RESET

4. OTHERS:

B

External Appearance of Transistors and ICs.

8.3 SCHEMATIC DIAGRAM

PD-M70

8.4 ELECTRICAL PARTS LIST

NOTES.

- When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J=5%, and K=10%).

GHU YIK	Onthe (Lote) mice		-070, 6114 11-107071
560Ω	56 × 101	561	. RD%PS 🗵 🗗 🗸 J
$47k\Omega$	47 × 103	473	. RD%PS 🗷 🗗 🗓 J
0.5Ω	0R5		. RN2H (O)(R)(3) K
10	010		RSIP OFFIOI K

- Ex. 2 When there are 3 effective digits (such as in high precision metal film resistors).
- 5.62kΩ 562 × 10' 5621 RN%SR 56221 F
- The
 \(\text{mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your Parts Stock Control, the fast moving items are indicated with the marks ★★ and ★.
- ** GENERALLY MOVES FASTER THAN *

This classification should be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

 Parts marked by "

" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

REMOTE CONTROL UNIT

 $(0.1 \mu F)$

C4—C7 (100pF) C8, C9 (30pF)

RESISTORS

SCIAILC	DINDUCTORS		NEGIGIONO.				
Mark	Symbol & Description	Parts No.	Mark	Symbol & Description	Parts No.		
**	IC1, IC2	PDB002		R1 (22K)	RS1/10S223J		
**	IC3	PCX1014		R2, R5-7 (10K)	RS1/10S103J		
**	Q1	2SC2412K		R3, R9 (3Ω)	RS1/10S030J		
**	02	2SC2411K		R8 (10M)	RS1/10S107J		
*	LED1	SLR932A					
			OTHERS				
SWITCI	Н		Mark	Symbol & Description	Parts No.		
Mark	Symbol & Description	Parts No.		X1. X2 CERAMIC FILTER	CS8500EBL		
	SW1 TACT SWITCH	PSG1001	*	X3 CRYSTAL RESONATOR	PSS1002		
CAPAC	ITORS			LCD1 LCD	PCX 1013		
Mark	Symbol & Description	Parts No.					
	C1 (0.047F/5.5V)	PCL1017					
	C2 (47 uF/6.3V)	CEAL470M6R3					

CKSQYF104Z25

CCSQCH101K50

CCSQCH300J50

68

9. BLOCK DIAGRAM

10. CIRCUIT DESCRIPTIONS

10.1 SERVO SECTION

Servo control in this CD player is performed using two LSIs (CX20109, CX20108) configured around a system control CPU. Each LSI is connected to the CPU by a data bus. All control is performed using the serial data from the CPU. The data pattern will be described later.

The primary servo control systems of the CD player are listed below.

- 1. Focus servo
- 2. Tracking servo
- 3. Spindle servo

An explanation of these three systems follows.

10.1.1 The Focus Servo Loop Purpose:

To control the distance between lens and disk so as to keep the laser beam always focused on the pits on the CD.

Fig. 10-1 Focus servo loop circuit

Fig.10-2 Block diagram of focus servo

FOCUS SERVO

When the focus servo does not lock, focus-in is performed one more time. If the result is still unsatisfactory, focusin operation is stopped.

START-UP CONDITIONS

- 1. Disc is loaded.
- 2. Laser diode is emitting a beam.
- 3. Focus start-up data is being output from the system control PD3085 (IC12).

SUMMARY OF OPERATION

- 1. Lens is forcibly moved down and then up (internally processed by CX20108 (IC6)).
- 2. The related signals are as follows when the zero cross is discovered during this lens movement:
- a) SENS output: Goes to focus lock after generation.*1
- b) Focus OK output (H level): If system control does not confirm the existence of this output, focus lock is not performed. Furthermore, this output is checked again before proceeding to the next step.
- c) Focus error signal: Generates zero cross (s-curve).
- *1: When zero cross is detected using the ---- the focus servo loop is SENS output, closed
- 3. The next step is acceleration of the spindle motor and

Serial data output to P8 of IC6 by the CPU. CLK XLT is also outputed. (For data format, see Fig. 10-17)

The internal circuit of IC6 is converted with the internal switch and the signal to UP/DOWN the focus lens with P21 of IC6 is output

The RF output is added to P5 and P6 of IC5.

The RF signal is compared at the FOK circuit and the FOK signal is output from IC5 P1 to the CPU.

If the RF signal becomes larger than the FOK circuit comparator level, FOK output is sent to the CPU so that the CPU is aware that an input exists for which the focus servo can be applied.

When the CPU receives the FOK signal, the down edge of the SENS signal is judged to be the FO ER signal zero cross point, and the focus servo loop is closed.

If the SENS output becomes H, data to close the focus servo loop at the down edge is sent from the CPU to P8 of IC6.

When focused at the zero cross point of the FO ER signal.

Data from the CPU causes the internal switch of the internal circuit of IC6 to be converted, and the focus servo is closed.

FO.ER

SENS

Fig. 10-4

Initial Settings for Reading of Table of Contents

at least × sec. elapsed since beginning of TOC reading?

STOP

Conditions: START ★ Carriage is inside and the inside switch S102 ★ Loading is completed and loading switch Laser diode on. S101 is on. First focusing attempt. NO Successful focusing? NO Second attempt. Spindle motor kick. STOP Spindle motor rotation by rough VCO free run conditions servo. 500 msec Tracking spindle closes. Is the spindle motor locked? If GFS YES signal is longer than two seconds, is Spindle motor lock. level "L"? CPU determines that GFS signal (CN104-1) is "H". YES STOP

TOC reading completed?

SEARCH

YES

CPU determines END data which

is recorded in TOC.

10.1.2. Tracking Servo Loop Circuit PURPOSE:

To control output from pickup so that the laser beam always hits the track (continuous bits) on the disk. Other than the aforementioned, when jumping or the intended music searching the intended music is searched by adroitly turning ON and OFF the tracking servo.

Start-up Conditions

- 1. Proper focusing (FOK signal)
- 2. Spindle motor rotating.

Fig. 10-5 Tracking servo loop circuit

Fig. 10-6 Block diagram of tracking servo

Summary of Operation

- 1. When the FOK signal is confirmed by the system control, acceleration of the spindle motor begins and the "start tracking" data are output.
- 2. The RF and TE signals are obtained from the pickup. The RF signal is then used to produce the MIRR signal. When RF exists, this signal is "L"; when RF does not exists, the MIRR signal is "H".
- 3. The system controller indirectly knows tracking has begun because
 - (1) When RF signal exists, FOK becomes "H"
 - (2) The GFS signal exists. (For details, see spindle servo.)
- 4. The next step is spindle lock.

10.1.3. Spindle Servo Loop Operation Purpose:

To control disc rotation speed so that constant linear velocity (CLV) is maintained. (When the outside of the disk is read, it is low speed, and the inside is high speed.)

Standard:

The servo controls the spindle rotation speed to maintain the frame synch encoded in the disc pits at 7.35 kHz.

Start-up conditions

1. Proper focusing (FOK signal)

Summary of Spindle Lock Operations

- When the focus OK signal is confirmed by the system control, spindle acceleration is triggered for an interval of 300m sec.
- When tracking (with ON TRACK) has begun and the PLL is locked, CXD1135Q generates an "H" GFS signal.
- 3. This GFS signal is how the system control knows the tracking and spindle servo loops are locked.

Fig. 10-7

Fig. 10-8 Block diagram of spindle servo

10.2 CIRCUIT DESCRIPTIONS

10.2.1. Preamp

This section processes the output signal received from the pickup and then sends signals to the servo section of the next stage, the demodulator and the controller. CX20109 and other parts of the preamp are described below.

The IC is a 24-pin flat package; its internal configuration is shown in Fig. 10-9.

A description of the internal parts of the IC follows.

1) RF amp

The pin diode currents input at PD1 and PD2 each undergo I-V conversion at the 60kohm equivalent input resistors of RF I-V amps (1) and (2). Then (B1 + B2 + B3 + B4), added at the RF summing amp, is output to RFO. (An eye pattern check can be performed at this terminal.)

The low frequency component of the RFO output voltage VRFO is:

 $VRFO = -[(R30 + R32)/10kohms] \times (VA + VB)$ = [(R30 + R32)/10kohms] × (iPD1 + iPD2) × 60kohms

Furthermore, C29 and R33 have been provided because they are necessary for equalizing the EFM eye pattern and are set to match the system.

Fig. 10-9

This equalizer raises high range gain at an external circuit. The equalizer has a response peak in the high range to compensate for the drop in high range gain in the IC itself. The RFO output (pin 3) is an RF (DC) signal having a peak of 2.3V (DC) and a bottom of 0.5V (DC).

The high range pole setting is 2.5.MHz, however this is attenuated above around 1MHz because of the high range characteristics of the op amp inside the IC. As a result, the amplitude of high range signals such as 3T is raised.

Fig. 10-10

(2) Focus error amp

The difference between the output of the RF I-V amp (1)(B2 + B4) and RF I-V amp (2)(B1 + B3), B1 + B3 - B2 - B4, is computed and output.

Fig.10-11 Focus error amp circuit

When R27 = R36, the FE output voltage (low frequency) is:

VFE = $(R27/15 \text{kohms}) \times (VA - VB) = (R27/15 \text{kohms})$ $\times (iPD2 - iPD1) \times 60 \text{k}$

C21, C27 are needed to prevent leakage of the EFM component into the focus error output. Due to the gain setting, R27 = R36 = 100 (kohms) and C21 = C27 = 56 (pF). That means fc = 28.4 kHz. For the pin 16 output, a 5 Vp-p output in the form of an S curve is output.

(3) Tracking error amp

Fig.10-12 Tracking error amp circuit

The current of the sidespot pin diode that is input at E and F undergoes I-V conversion at the E and F I-V amps (R28 and R29 + VRS) in the following manner:

VE = iAR28VF = iC (R29 + VR5) Furthermore, by taking the difference of EI-V and FI-V amps with the tracking error amp, the (E-F) output is obtained. The gain of the tracking error amp at 11 (21 dB) is:

VTE = (VE-VF) \times 11 = (iA-iC) \times R28 \times 11 C25 and C26 are necessary to prevent leakage of the EFM component into the tracking error output

The gain setting makes R28 = R29 + VR5 = 150kohms and C25 = C26 = 47 pF. Here, fc = 22.6kHz.

R29 + VR5 includes adjustment VR. This is tracking error balance for the purpose of obtaining a DC balanced tracking error signal such as the one shown in Fig. 10-17. It is needed primarily to perform tracking jump properly. The output of pin 17 is a 4V p-p tracking error signal.

(4) Focus OK circuit

The focus OK circuit makes the timing window for switching on the focus servo from the focus search mode.

Fig. 10-13 Focus OK circuit

The threshold value VTH of the focus OK comparator is set so that it is reversed when VG = -0.4V. Therefore the focus OK comparator is reversed when VRFO = VC = 0.4V. The threshold value of this comparator is stable due to the accuracy of the reference voltage within the IC.

C28 determines the time constants for the EFM comparator, mirror circuit high-pass filter and focus OK amp low-pass filter. This makes it possible to prevent the worsening of the black error rate caused by the RF envelope loss when scratches and other disc damage is encountered.

In this system, $0.0047\mu F$ is used as the optimum value for C28. It is fc = 3.4 kHz for this value.

(5) Mirror circuit

After amplifying the RFI signal, peak and bottom hold are performed. For peak hold, the time constant is such that the 30kHz traverse can also be followed. For bottom hold, the time constant is such that the rotation cycle envelope fluctuations can be followed.

The DC restored envelope signal is obtained by performing differential amplification of these peak/bottom hold signals \bigoplus and \bigcirc . By comparing this signal \bigcirc

with the signal (©) held by peak hold at 2/3 of the peak level using the large time constant, the mirror output is obtained. In other words, mirror output is "L" when over a track and "H" when between tracks. Furthermore, "H" is also output when a defect is detected. The time constant for mirror hold must be sufficiently larger than the traverse signal.

Fig.10-14 Mirror circuit

(6) EFM comparator

The EFM comparator serves to convert the RF signal into a signal having two values. Problems caused by disc asymmetry cannot be dealt with by AC linkage alone. Therefore, the EFM comparator reference voltage is controlled by using the fact that a 1.0 occurrence probability becomes 50% for each of the two EFM signals.

Because this EFM comparator is a current switch type unit, the H and L levels do not become the same as that of the power supply voltage. It is, therefore, necessary to

apply feedback through a CMOS buffer. R25, R90, C22 and C60 are the low-pass filter needed to obtain DC +2.5V. If fc is 500Hz or more, leakage of the reduced component of EFM becomes serious, resulting in a worsening of the block error rate. This system has two stages, one in which R25 = 100kohms and C22 = 0.47μ F so that fc = 3.4Hz and a second in which R90 = 10kohms and C60 = 0.01μ F so that fc = 1.6kHz.

Fig. 10-15 EFM comparator circuit

10.2.2. Servo Section

This section uses an external control signal for focus servo, tracking servo and carriage servo operation (normal servo operation) and special servo control operation such as focusing and track jump. Its primary component is an IC CX20108 chip. To improve servo performance with regard to disc scratches and other disc defects, a discrete defect correction circuit is included.

The IC is a 30-pin flat package having a construction as shown in Fig. 10-16. A description of each section follows. The operation modes and data of this IC are shown in Table 10-1.

COMMAND		ADDRESS			DATA				SENSE
		06	D5	04	03	02	Ð1	00	SENSE
FOCUS CONTROL	0	0	0	0	FS4 FOCUS ON	FS3 GAIN DOWN	FS2 SEARCH ON	FS I SEARCH UP	FZC
TRACKING CONTROL	٥	0	О	1	ANTI SHOCK	BREAK	TG 2 GAIN	TGI SET *	AS
TRACKING MODE	0	٥	1	0	TRACE	CING *		.ED #	тис

TRACKI	NG	MODE	SLED	MO	DE
	03	D2		01	DO
OFF	0	o	OFF	0	О
ON	O	1	ON	0	1
FWD JUMP	f	0	FWD MOVE	1	0
REV LIMP	1	1	REV MOVE	1	- 1

Table 10-1

Fig. 10-16

(1) Command Codes

The modes of both IC CX20108 and the demodulator IC CXD1135Q, which will be discussed later, are controlled by the serial data (from the control microcomputer). All types of detection outputs are output from the "SENS" terminal. These control data and detection outputs link the control microcomputer, CX20108 and CXD1135Q in the form of a control bus line. The DATA, CLK (serial) for mode control and XLT timing for starting execution are shown in figure 10-17.

Fig. 10-17

ltern	C-4-		Unit		
Item	Code	Min.	Std.	Max.	Unit
Clock frequency	FCK			250	kHz
Clock pulse width	TWCK	2			μS
Set-up time	TSU	-0.1			μS
Hold time	TH	4			μS
Delay time	TD	4			μS
Latch pulse width	TWL	1			μS

Table 10-2

(2) Focus servo system

(a) Focus-in sequence

The focusing sequence moves the lens to within the focus S-curve and closes the servo loop at the center of the S. For moving the lens up and down, the following section of the IC is used.

Fig. 10-18

Operation of FS1 and FS2 is as follows. The numbers shown in Fig.10-18(and in this section) are pin numbers of CX20108. Opl is the op amp used for the focus servo. The FS2 output is sustained at the reverse terminal. For 1, FS2 is on and operates as a normal voltage follower. For 0, FS2 becomes a switch to give this output a high impedance. FS1 is simply a current switch that is off for 1 and produces a current of 60μ A for 0. The 60μ A figure is the valuewhen 240μ A is sent to ISET (pin 14). The focus search voltage can, therefore, be produced by using FS1 and FS2.

In this system, $89\mu A$ is fed to ISET. That means the positive current supply is $22\mu A$ and the negative current supply is $11\mu A$. Here, the voltage of pin 16 is:

When FS1 is off: $-11\mu A \times 20 \text{kohms} = -0.22 \text{V}$

When FS1 is on: $(22 - 11)\mu A \times 20 \text{kohms} = + 0.22 \text{V}$ This is returned to original form and used to perform up/down lens movement. Furthermore, all current supplies for the tracking servo drive described below are $22 \mu A$.

Fig. 10-19

In the sequence shown in Fig. 10-19, focusing is being performed. First, for lens up/down movement, FS1 of Fig. 10-18 causes the control microcomputer to reset CX20108 when power on is reset. As a result, the internal register becomes \$00, the focus mode. At this time, FS1 is on so the voltage at pin 16 is +0.22V.

Although the focusing sequence is as shown in Fig. 10-19, positive charging of pin 16 when power is switched on corresponds to lens drive in the downward direction. Consequently, switching FS2 on immediately would cause the lens to move downward rapidly. To prevent this from occurring, FS1 is switched off and negative charging is performed. FS2 is then switched on to begin the drive sequence only after pin 16 has reached ground potential (approximately).

The usual sequence is as follows. The lens is lowered (max. of 1mm) and then raised. When the lens approaches the S-curve, "FOK" (the focus output based on the RF output) goes to "H", the center of the S-curve is detected using the SENS output and the servo loop is closed.

The maximum amount of lens movement in the upward direction is also 1mm (see Fig.10-4). If focusing can not be done the first time, the lens is lowered and raised again in a second attempt to attain proper focusing. Focusing is attempted no more than two times. If proper focusing is still not possible, the unit proceeds to a processing routine.

For focus error zero cross detection in this system, a window comparator in CX20108 is used. Their put for this comparator is pin 19 "ATSC". As is shown in the table, comparator output is obtained from "SENS" when in the tracking control mode. By doing this, instability occurring immediately before and after a focus error and mistaken zero cross point detection due to focus error offset are eliminated. Here, the threshold is about ±0.65V.

(b) Main loop

This loop consists of a one stage low range gain compensator, one stage high range phase compensator and two stage high-cut filter for high range noise attenuation. The main loop is designed to provide a residual error of less than $-1~\mu m$ as well as excellent playability, taking into consideration the above characteristics and disc standards (including pickup actuator characteristics).

(3) Tracking servo system

(a) Brake mode circuit

The brake mode circuit is provided to make possible the smooth closing of tracking when the pickup and disc are moving in relation to each other. The directions of pickup and disc movement are detected using the phase relationship between the envelope and tracking error (at RF). Switching is conducted in such a way that the accelerating side of the tracking error is cut. Consequently, only the decelerating side is used. This operation, called the brake mode, is shown in Figs.10-20 and 10-21. External control of the activity and inactivity of this mode is possible.

The brake mode is used when closing tracking after focusing. By doing this, smooth focus closing is possible even for tracks (lines of pits) whose distance to the pick-up is varying greatly due to disc eccentricity, warping and other factors.

Fig. 10-20

Fig. 10-21

(external waveform)
Description of Fig. 10-20

(b) Main loop

There are two gain settings for normal disc play, the normal gain setting and the higher gain setting for track jump. The main loop consists of a one stage fixed low range gain compensator, one stage switching reduced gain compensator, one stage fixed high range phase compensator, one stage switching high range phase compensator and two stage high range noise cut filter. The necessary characteristics can be obtained by switching simultaneously the two switching stages section.

As shown in the diagram, there are two low range and two high range stages at the normal gain setting and two low range and one high range stage at the high gain setting. Fig.10-22 shows the circuit configuration of this section. For normal gain, both TG1 and TG2 are on; for the high gain, both TG1 and TG2 are off.

The drive current supply is, as is shown previously, 22μ A. Therefore, in this system the output voltage of pin 27 is the voltage obtained when this current is applied to the resistance between pins 28 and 27 (9.1kohms). In this case, the output voltage is 200 mV. This becomes the kick and brake drive voltage (the output voltage of pin 27). This output voltage is then used for current drive of the tracking actuator in the final driver.

Fig. 10-22

(4) Carriage servo system

The return resistance voltage of the tracking actuator current driver final stage is used as the input (see Fig. 10-23). The required carriage movement components are obtained by using the filter characteristics.

The carriage movement drive is performed by controlling the current supply in CX20108 with the serial data so that the output is a DC voltage. Because this type of

Fig. 10-23

carriage drive system is used, the final stage employs voltage drive. The power supply is unregulated, so the drive voltage is also unregulated when carriage movement is started. Due to the gain setting, the movement drive is limited at about ± 13 V. Consequently, motor drive becomes a DC voltage when the unregulated voltage becomes high.

Fig. 10-24

10.2.3 Demodulator

The demodulator is composed primarily of LSI CXD1135Q; it also includes a small amount of added-on circuits. Its functions are:

- 1. Bit clock regeneration using the EFM-PLL circuit.
- 2. Demodulation of the EFM data.
- 3. Detection, protection and internal extension of the frame sync signal.
- 4. Thorough error detection and correction.
- 5. Interpolation using averaging or previous value hold.
- 6. Demodulation of the sub-code and error detection for sub-code Q.
- 7. CLV servo for the spindle motor.
- 8. 8-bit tracking counter.
- 9. CPU interface using the serial bus.
- 10. Built-in 35th digital filter.

Of these ten functions, an external circuit is required for the PLL section and CLV servo. All other functions are performed by the LSI alone. Here, the external discrete circuitry will be discussed.

The external circuitry consists of a loop filter and its amplifier and VCO.

Pin 11"PDO" of CXD1135Q emits an output when an error is encountered. The loop filter is a low-pass filter for this output having a 70Hz pole and 1.6kHz zero point. The output is amplified by the error amp and sent to VCO. The main amplifier of VCO is within CXD1135Q.

An output signal is produced from MDP and MDS according to the CLV servo mode of CXD1135Q. The mixed filter section is a low-pass filter having a cut-off at about 500Hz and the loop filter is a low-pass filter having a cutoff at about 300kHz. FSW switches the mixed filter cutoff to about 20Hz with regard to the CLV servo mode. MON causes the loop filter output to become 0V; it is operated by the stop mode.

Fig. 10-25

Fig. 10-26

10.2.4. Audio Section

Fig. 10-27 Audio circuit

10.2.5. MECHANICAL CONTROL SECTION

Fig. 10-28 Mechanism control bolck diagram

The mechanical control section consists of the following four blocks.

1) Mode Detection Section

The block which detects the mode from the respective SWs and introduces to the input port of the system control microcomputer IC12.

MZS1 MZS2 Existence / Non-existence of magazine and detection of kinds

Н	L	L	
L	Н	L	
Magazine is non-existent	6-sheet magazine	1-sheet magazine	

LPS1 Loading mode detection

Н	L	L	Н
Н	Н	L	L
STOP	During loading	Clamp mode	During ejection

DCHM

Home detection of disc selection mechanism

Н	L
Home position	Others

2 Loading Section

The loading motor performs the following operations:

- 1) Pulls out an arbitrary tray from the magazine and sets the disc to clamp mode.
- Restores the disc, which has been in the clamp mode, to the tray and stores in the magazine.
- 3 Ejects the magazine from the main body.

is performed by turning the loading motor normally. and 3 are performed by turning the loading motor reversely. This operation is to receive the binary of logic, which is output from pins 44 and 45 of the system control microcomputer IC12, and to output the motor control voltage from the output pin of IC4.

	Motor normal rotation	Motor reverse rotation	Stop
L IN IC12 44PIN	Н	L	Н
L OUT IC12 45PIN	L	Н	Н
LOAD+IC4 10PIN	+Vcc	L	L
LOAD-IC4 2PIN	L	+Vcc	L

+Vcc: Motor control voltage

Operation 1 becomes completed when LPS2 becomes "L" from "H" (clamp mode).

Operation 2 becomes completed when LPS1 becomes "H" \rightarrow "L" \rightarrow "H" (loading home position).

Operation 3 becomes completed when LPS2 becomes "H" by rotating the loading motor normally after rotating it reversely until it becomes "H" at MZS1 and becomes "L" at MZS2.

3 Disc Selection Section

It consists of the disc selecting motor, which moves the loading mechanism section and clamp mechanism section up and down by adjusting them to the tray position, in order to select an arbitrary tray from the magazine, motor driver IC27, and system control microcomputer IC12.

Assuming that the direction to operate the loading mechanism section and clamp mechanism section from the first sheet to the sixth sheet of the 6-sheet magazine is normal rotation direction and the reverse direction is the reverse rotation direction, the motor is driven with the following logic.

	Motor normal rotation	Motor reverse rotation	Stop
DS UP IC12 46PIN	Н	L	Н
DS DW IC12 47PIN	L	Н	Н
DS+IC27 10PIN	L	+Vcc	L
DS-IC27 2PIN	+Vcc	. L	L

+Vcc: Motor control voltage

4 Disc Counting Section

When the loading mechanical section moves up and down due to the disc selection motor, simultaneously the Q601 photo interrupter detects the positions of the first tray to sixth tray.

The tray position is detected through the windows of the stair which are provided between the photo interrupter and the slits.

When this counted number and the selected disc number are matched, the disc selection motor is stopped.

Fig.10-29 Disc detection

10.2.6. Digital Level Control

Instead of the previous method, place a digital attenuator IC in front of the audio circuit. By controlling the output level with an 8-bit data of the microcomputer and a 16-bit audio signal from the digital circuit and multiplying both within the attenuator IC, it is possible to obtain an audio signal which does not damage the quality of the audio circuit. (See Fig. 10-30) By operating the UP/DOWN key of the remote controller, every 1 dB of 25 steps (0 dB to-25 dB) level adjustment may be made and the adjustment of dispersions of the sound volume with 6 discs has become possible.

Fig.10-30 Digital level control

10.3 IC DATA10.3.1 PD0025

Pin Description

No. S							
	Symbol	Name	1/0				
1 1	16/24	16/24	1	Data mode selection pin			
2	TEST	TEST	1	Input pin for test. Normally "L" level.			
3 F	RESET	RESET	1	Reset pin within IC (Attenuation level: OdB)			
4 [DOUT	DATA OUT	ı	16-bit serial data output pin for DAC (2's complement, 1st of MSB)			
5	ACLK	ATTENUATION CLOCK	ı	Attenuation level writing clock signal			
6 A	ADATA	ATTENUATION DATA	1	Attenuation level data input pin (Binary, 1st of MSB)			
7	ALAT	ATTENUATION LATCH PULSE	1	Attenuation level latch pulse input pin			
8	vss			Grounding pin			
9	9 DO ATTENUATION DATA O		0	Attenuation level (OdB) display pin			
10	0 D1 ATTENUATION DATA 1		0	Attenuation level (O to —6dB) display pin			
11	D2	ATTENUATION DATA 2	0	Attenuation level (O to -12dB) display pin			
12	D3	ATTENUATION DATA 3	0	Attenuation level (O to -24dB) display pin			
13 V	WCLK	WORD CLOCK	I Word clock input pin				
14 (DATA	DATA	١	16-bit serial data input pin (2's complement, 1st of MSB) for DAC			
15 1	BCLK	BIT CLOCK	1	Bit clock input pin			
16	VDD			Power supply pin			

10.3.2. CXD1135Q

Pin Description

1

Pin No.	Pin name	1/0	Function			
1	FSW	0	Output filter time constant selection output of spindle motor			
2	MON	0	ON/OFF control output of spindle motor			
3	MDP	0	Drive output of spindle motor. Rough control during CLV-S mode and phase control during CLV-P mode.			
4	MDS	0	Drive output of spindle motor. Speed control during CLV-S mode.			
5	EFM	1	EFM signal input from the RF amplifier			
6	ASY	0	utput to control slice level of EMF signal			
7	LOCK	0	Perform sampling with WFCK/16 of GFS signal and if it is "H", outputs "H" consecutively 8 times. If it is "L", outputs "L".			
8	vcoo	0	VCO output. When it is locked to EFM signal, f=8.6436MHz.			
9	VCOI	1	VCO input			
10	TEST	1	(OV)			
11	PDO	0	Phase comparative output of EFM signal and VCO/2			
12	VSS		GND (OV)			
13	CLK	ı	Serial data transfer clock input from CPU. Latches data at rising edge of clock.			
14	XLT	ı	Latches input from CPU. Latches data (serial data from CPU) of 8-bit shift register to each register.			
15	DATA	ı	Serial data input from the CPU			
16	XRST	1	System reset input. Reset during "L".			
17	CNIN	1	Tracking pulse input			
18	SENSE	0	Outputs internal condition corresponding to address			
19	MUTG	ı	Muting input. When the ATTM of the internal register is "L", normal condition with MUTG at "L" and no sound condition at "H".			
20	CRCF	0	Outputs CRC checking result of sub-code Q			
21	EXCK		Clock input for the serial output of the sub-code			
22	SBSO	0	Serial output of sub-code			
23	SUBQ	1	Sub-code Q output			
24	SCOR	0	Sub-code SYNC S0+S1 output			
25	SQCK	1/0	Reading clock of sub-code Q			
26	SQEX		Selection input of SQCK			
27	DOTX	0	Digital audio interface output (When OFF, outputs WFCK) (OPTION)			
28	GFS	0	Displays output of locked condition of frame SYNC.			
29	D808	1/0	Data pin of external RAM. DATA8 (MSB).			
30	DB07	1/0	Data pin of external RAM. DATA7.			
31	DB06	1/0	Data pin of external RAM. DATA6.			
32	D805	1/0	Data pin of external RAM. DATA5.			
33	VDD	_	Power supply (+5V)			
34	D804	1/0	Data pin of external RAM. DATA4.			
35	DB03	1/0	Data pin of external RAM. DATA3.			
36	DB02	1/0	Data pin of external RAM. DATA2.			
37	DB01	1/0	Data pin of external RAM. DATA1 (LSB).			
38	RA01	0	Address output of external RAM. ADDR01 (LSB).			
39	RA02	0	Address output of external RAM. ADDR02			
40	RA03	0	Address output of external RAM. ADDR03			
41	RA04	0	Address output of external RAM. ADDR04			
42	RA05	0	Address output of external RAM. ADDR05			
43	RA06	0	Address output of external RAM. ADDR06			
44	RA07	0	Address output of external RAM. ADDR07			
45	RA08	0	Address output of external RAM. ADDR08			

Pin No.	Pin name	1/0	Function		
46	RA09	0	Address output of external RAM. ADDR09		
47	RA10	0	Address output of external RAM. ADDR10		
48	RA11	0	Address output of external RAM. ADDR11 (MSB)		
49	RAWE	0	Write Enable signal output to the external RAM. (Active during "L".)		
50	RACS	0	Chip Select signal output to the external RAM. (Active during "L".)		
51	C4 M	0	1/2-divided output of crystal. f=4.2336MHz.		
52	VSS		GND (OV)		
53	XTAL	1	Crystal oscillating circuit input. f=8.4672MHz or f=16.9344MHz.		
54	XTAO	0	Crystal oscillating circuit output. f=8.4672MHz or f=16.9344MHz.		
55	MD1	ı	Mode selection input 1		
56	MD2	ı	Mode selection input 2		
57	MD3	!	Mode selection input 3		
58	SLOB	ı	Code selection input of audio data output. 2's complement output during "L" and offset binary output during "H".		
59	PSSL	1	Mode selection input of audio data output. Serial output during "L" and parallel output during "H".		
60	APTR	0	Aperture compensation control output. 88.2kHz during filter ON and 44.1kHz during OFF.		
61	APTL	0	Aperture compensation control output. 88.2kHz during filter ON and 44.1kHz during OFF.		
62	DA01	0	DA01 (LSB of parallel audio data) output when PSSL="H". C1F1 output when PSSL="L".		
63	DA02	0	DA02 output when PSSL="H". C1F2 output when PSSL="L".		
64	DA03	0	DA03 output when PSSL="H". C2F1 output when PSSL="L".		
65	DA04	0	DA04 output when PSSL="H". C2F2 output when PSSL="L".		
66	DA05	0	DA05 output when PSSL="H". C2FL output when PSSL="L".		
67	DA06	0	DA06 output when PSSL="H". C2PO output when PSSL="L".		
68	DA07	0	DA07 output when PSSL="H". RFCK output when PSSL="L".		
69	DA08	0	DA08 output when PSSL="H". WFCK output when PSSL="L".		
70	DA09	0	DA09 output when PSSL="H". PLCK output when PSSL="L".		
71	DA10	0	DA10 output when PSSL="H". UGFS output when PSSL="L".		
72	DA11	0	DA11 output when PSSL="H". GTOP output when PSSL="L".		
73	VDD	_	Power supply (+5V)		
74	DA12	0	DA12 output when PSSL="H". RAOV output when PSSL="L".		
75	DA13	0	DA13 output when PSSL="H". C4LR output when PSSL="L".		
76	DA14	0	DA14 output when PSSL="H". C210 output when PSSL="L".		
77	DA15	0	DA15 output when PSSL="H". C210 output when PSSL="L".		
78	DA16	0	DA16 (MSB of parallel audio data) output when PSSL="H". Data output when PSSL="L".		
79	WDCK	0	Strobe signal output. 176.4kHz during filter ON and 88.2kHz during OFF.		
80	LRCK	0	Strobe signal output. 88.2kHz during filter ON and 44.1kHz during OFF.		

Pin Description (PD3085)

No.	Symbol	Name	1/0	Function	
1	VSS	Name	1,0	GND	
2	RES		-	CPU reset input	RESET RUN
3	INT	WFCK	i i	Cr O reset input	
4	STBY	WICK	 	+5V (CPU standby input)	STAND-BY RUN
5	XTAL		 	Built-in clock circuit input	
6	EXTAL			Built-in clock circuit input	
7	NUM			GND (Use for manufacturers)	
8	TIMER	Unused	<u> </u>	(Connect with SENS)	
9	A7	TEST	+	Test mode selection input	TEST NORMAL
10	A6	Unused	H	GND	
11	A5	TMRP		Timer random play selection input	START OFF
12	~~ A4	XLT	0	LSI control data executing pulse output	EXECUTE
13	A3	SENS	ī	LSI operating mode multi-mode input	
14	A2	MUTG	0	Muting output	OFFON
15	A1	CRCF	1	Sub-code Q-CRC checking result input	NG OK
16	A0	SUBQ	<u> </u>	Sub-code Q data input	
17	<i>7</i> -€	SCOR	<u> </u>	Sub-code sync input	SYNC
18	B6	GFS	<u> </u>	Frame sync lock input	NG LOCK
19	B5	FOK		Exact focus input	NG OK
20	B4	TMPL	H	Timer play selection input	START OFF
21	B3	ALAT	0	ATT level data latch pulse output	LATCH
22	B2	ADAT	0	ATT level data serial output	
23	B1	ACLK	0	ATT level data serial transfer clock	700000
24	BO	DCNT	ı	Disc count pulse input	700006
25	TX(SO)	DATA	0	LSI control data serial output	0 1 2 3 4 5 6 7
26	C6	DCHM	1	Disc selector home SW input	NOT HOME
27	ČK	CLK	0	Serial transfer clock	
28	C4	LPS1	1		CLAMP HOME
29	C3	LPS2		Loading position SW input	LOAD EJECT
30	C2	MZS1	1		MAGAZINE IN EJECT
31	C1	MZS2	1	Magazine discrimination SW input	6 sheets 1 sheet
32	co	ĪNSD	ı	Slider inside SW input	INSIDE NOT
33	VCC	_	_	+5V	
		l .			
34	D1	KD0	ı	Main unit key code input (LSB)	
34 35			-	Main unit key code input (LSB) Main unit key code input	
<u> </u>	D1	KD0	ı		
35	D1 D2	KD0 KD1	1	Main unit key code input	
35 36	D1 D2 D3	KD0 KD1 KD2	-	Main unit key code input Main unit key code input	
35 36 37	D1 D2 D3 D4	KD0 KD1 KD2 KD3		Main unit key code input Main unit key code input Main unit key code input	ON D FF
35 36 37 38	D1 D2 D3 D4 D5	KD0 KD1 KD2 KD3 KD4	-	Main unit key code input Main unit key code input Main unit key code input Main unit key code input (MSB)	ON DFF INHIBIT PERMIT
35 36 37 38 39	D1 D2 D3 D4 D5 D6	KD0 KD1 KD2 KD3 KD4 KS		Main unit key code input Main unit key code input Main unit key code input Main unit key code input (MSB) Main unit key strobe input	
35 36 37 38 39 40	D1 D2 D3 D4 D5 D6 D7	KD0 KD1 KD2 KD3 KD4 KS STS	 	Main unit key code input Main unit key code input Main unit key code input Main unit key code input (MSB) Main unit key strobe input Display data transfer permission input	
35 36 37 38 39 40 41	D1 D2 D3 D4 D5 D6 D7 E0	KD0 KD1 KD2 KD3 KD4 KS STS SCK	 	Main unit key code input Main unit key code input Main unit key code input Main unit key code input (MSB) Main unit key strobe input Display data transfer permission input Display data serial transfer clock	
35 36 37 38 39 40 41 42	D1 D2 D3 D4 D5 D6 D7 E0 E1	KD0 KD1 KD2 KD3 KD4 KS STS SCK SD	 	Main unit key code input Main unit key code input Main unit key code input Main unit key code input (MSB) Main unit key strobe input Display data transfer permission input Display data serial transfer clock Display data serial output	
35 36 37 38 39 40 41 42 43	D1 D2 D3 D4 D5 D6 D7 E0 E1 E2	KD0 KD1 KD2 KD3 KD4 KS STS SCK SD Unused		Main unit key code input Main unit key code input Main unit key code input Main unit key code input (MSB) Main unit key strobe input Display data transfer permission input Display data serial transfer clock Display data serial output (Open) (Open)	INHIBIT PERMIT UP BRAKE
35 36 37 38 39 40 41 42 43	D1 D2 D3 D4 D5 D6 D7 E0 E1 E2 E3	KD0 KD1 KD2 KD3 KD4 KS STS SCK SD Unused Unused		Main unit key code input Main unit key code input Main unit key code input Main unit key code input (MSB) Main unit key strobe input Display data transfer permission input Display data serial transfer clock Display data serial output (Open)	INHIBIT PERMIT

No.	Name	1/0	Symbol	Content
39	SEG32	0	S.OT25	LCD segment output
40	SEG31	0	S.OT24	LCD segment output
41	SEG30	0	S.OT23	LCD segment output
42	SEG29	0	S.0T22	LCD segment output
43	SEG28	0	S.0T21	LCD segment output
44	SEG27	0	S.0T20	LCD segment output
45	SEG26	0	S.OT19	LCD segment output
46	SEG25	0	S.OT18	LCD segment output
47	SEG24	0	S.OT17	LCD segment output
48	SEG23	0	S.OT16	LCD segment output
49	SEG22	0	S.OT15	LCD segment output
50	SEG21	0	S.0T14	LCD segment output
51	SEG20	0	S.OT13	LCD segment output
52	SEG19	0	S.0T12	LCD segment output
53	SEG18	0	S.OT11	LCD segment output
54	SEG17	0	S.OT10	LCD segment output
55	SEG16	0	S.OT9	LCD segment output
56	SEG15	0	S.OT8	LCD segment output
57	SEG14	0	S.OT7	LCD segment output
58	SEG13	0	S.OT6	LCD segment output
59	SEG12	0	S.OT5	LCD segment output
60	SEG11	0	S.OT4	LCD segment output
61	SEG10	0	S.OT3	LCD segment output
62	SEG9	0	S.OT2	LCD segment output
63	SEG8	0	S.OT1	LCD segment output
64	SEG7			N.C. " .

Note: This unit operates its performance when two units (master and slave) are connected in series. However, the descriptions in the above list show the references of the master unit.

11. OPERATION CHART

Multi-CD-Player Mode Transition Diagram

Multi-CD-Player Play Mode Transition Diagram

DISC-SELECT/RETURN/EJECT Operation Chart

Note: MZS2 has no correlation with signals LPS1 and LPS2.

*1 : When starting count, if it is DCNT=L, recount by returning to HOME.

STOP Mode Timing Chart

(1) Normal stop (During GFS locking)

(2) Abnormal stop (GFS-NG or FOCUS deviation)

Note: * Do not confuse H/L in this timing chart withthe outputs of the ports, etc. since they are written merely for technical convenience.

SET-UP Mode Timing Chart

Note: * Do not confuse H/Ls in this timing chart with the outputs of the ports, etc. since they are written merely for technical convenience.

SEARCH Mode Access Operation Timing Chart

(3) 10-track jump (7 tracks)

(4) 1-track jump

- * 50 tracks/7-track jump is performed by varying the KICt time, etc. It is used in MANUAL-SEARCH.
- * All the above-mentioned timings are in the case of FWI jump. In the case of the REV jump, the sending direction of section of the TRACKING/SLIDER and the polarity of the SENS input become inversed.
- Do not confuse H/LS in this timing chart with the outputs of the ports, etc. since they are written for technical convenience.

Loading disc select

12. FOR HB AND HEM TYPES

CONTRAST OF MISCELLANEOUS PARTS

The PD-M70/HB and HEM types are the same as the PD-M70/KU type with the exception of the following sections.

				Part No.			
Mark			Symbol & Description	PD-M70			Remarks
				KU type	HB type	HEM type	
Δ	•		Main board assembly	PWZ1044	PWZ1099	PWZ1099	
Æ	•		Control board assembly	PWZ1046	PWZ1101	PWZ1101	
Δ			Power switch board assembly	Non supply	Non supply	Non supply	
A			1P AC socket (AC OUTLET)	AKP-507	AKP-509	AKP-508	
⚠			Strain relief	CM-22C	CM-22B	CM-22B	
A			AC power cord	PDG1002	PDG1004	PDG1003	
			Packing case	PHG1024	PHG1026	PHG1026	
			Bonnet	PNA1027			
			Bonnet assembly		PXA1027	PXA1027	
			Operating instructions				
e.			(English)	PRB1008	PR B1008	, , , , ,	
			(English/German/French/Italian)			PRE1008	
Æ	*	T1	Power transformer				
			(AC 120V)	PTT1004			
			(AC220/240V)		PTT1005	PTT1005	
Æ	**	FU1	Fuse (T2A/250V)			REK-086	

▲ Marks: Regardless of differences on parts numbers, the P.C. board assemblies for the HB and HEM types are identical with the KU type.

- Line voltage selection
- 1. Disconnect the AC power cord.
- 2. Remove the bonnet case.
- 3. Change the position of the jumper (A) as follows.

Voltage	Jumper A position
220∨	1
240V	2

Schematic diagram for HB type

Schematic diagram for HEM type.

