2、变质量动力学在火箭 发射中的应用

(1) 单级火箭

设火箭在真空中运动且不受任何外力作用,其喷射出的气体相对速度v_r的大小不变,方向与火箭速度方向相反,此问题称齐奥尔科夫斯基第一类问题。

变质量质点的运动微分方程
$$m\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = \mathbf{F}^{(\mathrm{e})} + \mathbf{F}^{\phi}$$

在运动方向的投影为:
$$m \frac{\mathrm{d}v}{\mathrm{d}t} = -v_r \frac{\mathrm{d}m}{\mathrm{d}t}$$
 或 $\mathrm{d}v = -v_r \frac{\mathrm{d}m}{m}$

设在初始时刻t=0时, $v=v_0$, $m=m_0$,积分上式得: $v=v_0+v_r \ln \frac{m_0}{m}$

设燃料燃尽时质量为 $m_{\rm f}$, 速度为v, 并令 $N = \frac{m_0}{m_f}$ —质量比

令 $v_f = v_r \ln N$ 称为火箭的特征速度,代表火箭在 v_0 的基础上所能增加的速度。

如果火箭在真空中且处于均匀的重力场内,沿铅垂方向向上运动,此问题称齐奥尔科夫斯基第二类问题。

此时在运动方向的投影为:
$$m\frac{\mathrm{d}v}{\mathrm{d}t}=-mg-v_r\frac{\mathrm{d}m}{\mathrm{d}t}$$
 设在初始时刻 t =0时, v = v_0 , m = m_0 ,积分得: $v=v_0-gt+v_r\ln\frac{m_0}{m}$

2、变质量动力学在火箭发射中 的应用

(2) 二级火箭

设第一级火箭总质量为 m_1 ,其内携带的燃料质量为 m_{1c} ,且 m_{1c} = ϵm_1 ;第二级火箭总质量为 m_2 ,其内携带的燃料质量为 m_2 。载荷的质量为 m_p 。设燃料喷出的相对速度vr大小不变,方向与火箭速度方向相反,每秒喷出的燃料质量也为常数。火箭由静止开始运动,略去重力。

由一级火箭的结果,可知当第一级火箭燃料燃尽时,火箭的速度为:

$$v_1 = v_r \ln \frac{m_1 + m_2 + m_P}{m_1 + m_2 + m_P - \varepsilon m_1}$$

然后,抛掉第一级,初始总质量变为 $m_2 + m_P$,初始速度为 v_1 。当第二级火箭燃料燃尽时,火箭的速度为:

$$v_2 = v_1 + v_r \ln \frac{m_2 + m_P}{m_2 + m_P - \varepsilon m_2}$$

如果取 $m_1=m_2=50~m_P$, $\varepsilon=0.8$, $v_r/g=300$ s, 则由上两式得到 $v_2\approx6000$ m/s 如果采用单级火箭,仍然应用这些参数的话, $v\approx4600$ m/s,比采用二级火箭速度要低得多。

设两级火箭的总量 $m_1 + m_2 = m$ 为常量,如何分配 m_1 与 m_2 的比例使得 v_2 最大,是二级火箭必须考虑的问题。由上述结果得到:

$$v_2 = v_r \ln \frac{m + m_P}{m + m_P - \varepsilon m_1} + v_r \ln \frac{m_2 + m_P}{m_2 + m_P - \varepsilon m_2}$$

2、变质量动力学在火箭发射中 的应用

$$v_2 = -v_r \ln \left[1 - \frac{\varepsilon (m - m_2)}{m + m_P} \right] - v_r \ln \left[1 - \frac{\varepsilon m_2}{m_2 + m_P} \right]$$

对 m_2 求导,并令 $dv_2/dm_2=0$,得: $\frac{\varepsilon/(m_1+m_P)}{1-\varepsilon(m-m_2)/(m+m_P)} = \frac{\varepsilon m_P/(m_2+m_P)^2}{1-\varepsilon m_2/(m+m_P)}$

由
$$m_2 > 0$$
,且同除以 m ,得: $\frac{m_2}{m} = -\frac{m_P}{m} + \left(\frac{m_P^2 + m_P m}{m^2}\right)^{\frac{1}{2}} = -\frac{m_P}{m} + \left(\frac{m_P^2}{m^2} + \frac{m_P}{m}\right)^{\frac{1}{2}}$

由于mp/m<<0,将上式按照幂级数展开,取近似

$$\frac{m_2}{m} = -\frac{m_P}{m} + \left(\frac{m_P}{m}\right)^{\frac{1}{2}} \left(1 + \frac{1}{2} \frac{m_P}{m} + \cdots\right) = \left(\frac{m_P}{m}\right)^{\frac{1}{2}} - \frac{m_P}{m} + \frac{1}{2} \left(\frac{m_P}{m}\right)^{\frac{3}{2}} + \cdots$$

因 $m_P/m << 0$, 略去 m_P/m 的一次项及高阶项,上式的近似结果为:

$$\frac{m_2}{m} = \left(\frac{m_P}{m}\right)^{\frac{1}{2}} = \sqrt{\frac{m_P}{m}}$$
 满足此式的质量比(第二级火箭质量与一二级火箭总质量之比)将使二级火箭末速度达到最大值。

代入 v_2 的表达式得到: $v_{2\max} = -2v_r \ln \left\{ 1 - \varepsilon \left[1 - \left(m_P/m \right)^{1/2} \right] \right\}$ 如果取 $m_P/m=1/100$,则 $m_2/m=1/10$, $m_1/m=9/10$,仍然采用 $\varepsilon=0.8$, $v_r/g=300$ s,则 $v_{2\max} \approx 7500$ m/s,比平均分配时的速度6000m/s大得多。

2、变质量动力学在火箭发射中 的应用

(3) 多级火箭

设多级火箭中各级火箭的质量分别为 m_1 , m_2 ,, m_n , 各级火箭携带的燃料质量为 $\epsilon_i m_i$; 载荷的质量为 m_p ; 各级火箭喷射气体的相对速度方向与火箭速度方向相反,大小分别为 ν_{r1} , ν_{r2} ,, ν_{rn} , 不计重力,则第i级火箭在燃料燃尽时火箭所增加的速度(特征速度)为:

$$\Delta v_{i} = v_{ri} \ln \frac{m_{i} + m_{i+1} + \dots + m_{n} + m_{P}}{(1 - \varepsilon_{i})m_{i} + m_{i+1} + \dots + m_{n} + m_{P}}$$

当第n级(最后一级)火箭燃料燃尽时,火箭的速度为:

$$v_n = \sum_{i=1}^n v_{ri} \ln \mu_i$$

通常把载荷送上预定轨道所需的v_n是定值,如何分配各级火箭的质量比例使得火箭的总质量最小呢?

火箭第i级到第n级的质量与第i+1级到第n级的质量(均包括载荷)之比为:

$$\frac{m_i + m_{i+1} + \dots + m_n + m_P}{m_{i+1} + m_{i+2} + \dots + m_n + m_P} = \frac{\varepsilon_i \mu_i}{1 - (1 - \varepsilon_i) \mu_i}$$

2、变质量动力学在火箭发射中 的应用

2、变质量动力学在火箭发射中 的应用

设火箭的总质量(不包括载荷)为m,则有:

$$\frac{m + m_P}{m_P} = \left(\frac{m_1 + m_2 + \dots + m_n + m_P}{m_2 + m_3 + \dots + m_n + m_P}\right) \left(\frac{m_2 + m_3 + \dots + m_n + m_P}{m_3 + m_4 + \dots + m_n + m_P}\right) \cdot \cdot \cdot \left(\frac{m_n + m_P}{m_P}\right)$$

$$= \prod_{i=1}^{n} \frac{\varepsilon_{i} \mu_{i}}{1 - (1 - \varepsilon_{i}) \mu_{i}} \quad \text{Notation in } \frac{m + m_{P}}{m_{P}} = \sum_{i=1}^{n} \left\{ \ln \mu_{i} + \ln \varepsilon_{i} - \ln[1 - (1 - \varepsilon_{i}) \mu_{i}] \right\}$$

因为火箭的载荷 m_p 为给定值,因此求 $\ln[(m+m_p)/m_p]$ 的最小值即为求m的最小值。

为了简单起见,假设各级火箭 v_{ri} 相同, ε_i 相同,得: $\mu_1 = \mu_2 = \cdots \mu_n = \mu = e^{v_n/nv_r}$

欲使火箭总质量最小,每一级火箭燃料燃尽后所增加的速度 Δv_i 的值应相同。

满足该条件的
火箭总质量为:
$$m_{\min} = \left\{ \frac{\varepsilon^n e^{v_n/v_r}}{\left[1 - e^{v_n/nv_r} (1 - \varepsilon)\right]^n} - 1 \right\} m_P$$

180
160
140
120
120

对于近地轨道,仍取此前参数,单级火箭 m_{\min} <0; 二级火箭(n=2), $m_{\min} \approx 147 m_{\rm p}$; 三级火箭(n=3), $m_{\min} \approx 51 m_{\rm p}$; $\frac{60}{40}$ 四级火箭(n=4), $m_{\min} \approx 40 m_{\rm p}$; 五级火箭(n=5), $m_{\min} \approx 36 m_{\rm p}$; $\frac{60}{40}$ 0 1 2 3 4 5 $\frac{60}{100}$ 7 8 9

各级火箭质量比为:
$$\frac{m_i}{m_{i+1}} = \frac{\varepsilon \mu}{1 - \mu(1 - \varepsilon)}$$
 例如二级火箭 $(n=2)$, $m_1: m_2 = 12:1$; 三级火箭 $(n=3)$, $m_1: m_2: m_3 \approx 13.7:3.7:1$.