TEORIA DE GRAFOS E COMPUTABILIDADE

PLANARIDADE

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

Problema das 3 casas

É possível conectar as três casas aos três serviços sem cruzar as tubulações?

Problema das 3 casas

Problema das 3 casas

Grafo bipartido completo $-K_{3,3}$

Grafo planar

Um grafo G é planar se existe uma representação gráfica de G no plano sem cruzamento de arestas.

Grafo planar

Um grafo G é planar se existe uma representação gráfica de G no plano sem cruzamento de arestas.

Grafo planar e grafo plano

 Usaremos o termo grafo plano para uma representação planar de um grafo planar.

Grafo planar e grafo plano

 Usaremos o termo grafo plano para uma representação planar de um grafo planar.

Grafos planares e Kuratowski

 Existem dois grafos não planares que são muito importantes para o estudo de planaridade. Eles são chamados de grafos de Kuratowski

□ K₅: grafo não planar com o menor número de vértices

□ K_{3,3}: grafo não planar com o menor número de arestas

- \square Propriedades em comum de K_5 e $K_{3,3}$
 - 1. Ambos são regulares
 - 2. Ambos são não planares
 - A remoção de uma aresta ou um vértice torna ambos os grafos planares

□ A remoção de uma aresta ou vértice torna K_{3,3} planar?

Planaridade

Região (ou face): uma representação gráfica planar de um grafo divide o plano em regiões ou faces.
 Cada região é caracterizada pelas arestas que a contornam.

- Cada aresta de G pertence à fronteira de uma ou duas faces de G.
- O grau (comprimento), de uma face f de G, representado por d(F) é igual ao número de arestas da fronteira de F.

□ Cada face da representação planar de um grafo corresponde a um passeio fechado do grafo constituído pelos vértices e arestas que delimitam a face. Chamamos grau da face, d(f), ao comprimento do passeio correspondente.

□ Quantas faces temos neste grafo?

□ Quantas faces temos neste grafo?

□ Quantas faces temos neste grafo? SEIS

Face infinita:
porção infinita do
plano que não é
contornada por
arestas

Fórmula de Euler

TEOREMA: Seja G um grafo conexo planar com n
 vértices e e arestas. O número de faces do grafo é

$$f = e - n + 2$$

Fórmula de Euler

□ TEOREMA: Seja G um grafo conexo planar com n
 vértices e e arestas. O número de faces do grafo é

$$f = e - n + 2$$

Fórmula de Euler

 \square COROLÁRIO: $e \le 3n - 6$

 Condição necessária mas não suficiente para um grafo SIMPLES ser planar

 Um grafo desconexo é planar se e somente se cada um de seus componentes for planar

- Um grafo desconexo é planar se e somente se cada um de seus componentes for planar
- □ Se G é planar, então, a inclusão ou remoção de:
 - arestas paralelas
 - loops
 - vértices de grau 2 (arestas em série)
- □ não afetam a planaridade de G

□ Técnica de redução auxilia nesta detecção

□ Redução elementar
enquanto G tem loops, arestas paralelas ou em série faça
remover loops
remover as arestas paralelas
contrair as arestas em série
fim enquanto

enquanto G tem loops, arestas paralelas ou em série faça remover loops remover as arestas paralelas contrair as arestas em série fim enquanto

enquanto G tem loops, arestas paralelas ou em série faça remover loops

remover as arestas paralelas contrair as arestas em série fim enquanto

enquanto G tem loops, arestas paralelas ou em série faça remover loops

remover as arestas paralelas contrair as arestas em série fim enquanto

□AE e EB

enquanto G tem loops, arestas paralelas ou em série faça remover loops

remover as arestas paralelas contrair as arestas em série fim enquanto

□AE e EB

enquanto G tem loops, arestas paralelas ou em série faça

remover loops

remover as arestas paralelas

contrair as arestas em série

fim enquanto

- □AE e EB
- □BD e DC

enquanto G tem loops, arestas paralelas ou em série faça

remover loops

remover as arestas paralelas

contrair as arestas em série

fim enquanto

- □AE e EB
- □BD e DC

enquanto G tem loops, arestas paralelas ou em série faça remover loops remover as arestas paralelas contrair as arestas em série fim enquanto

enquanto G tem loops, arestas paralelas ou em série faça remover loops remover as arestas paralelas contrair as arestas em série fim enquanto

enquanto G tem loops, arestas paralelas ou em série faça remover loops remover as arestas paralelas contrair as arestas em série

fim enquanto

enquanto G tem loops, arestas paralelas ou em série faça remover loops

remover as arestas paralelas contrair as arestas em série

fim enquanto

□CA e AB

enquanto G tem loops, arestas paralelas ou em série faça
remover loops
remover as arestas paralelas
contrair as arestas em série

fim enquanto

□CA e AB

- De maneira geral, após aplicar o procedimento a cada um dos componentes Gi, qual será o grafo reduzido Hi?
 - 1. Uma única aresta, ou
 - 2. Um grafo completo com 4 vértices, ou
 - 3. Um grafo simples com $n \ge 5$ e e ≥ 7

- 1. Uma única aresta, ou
- 2. Um grafo completo com 4 vértices, ou
- 3. Um grafo simples com $n \ge 5$ e e ≥ 7

- 1. Uma única aresta, ou
- Um grafo completo com 4 vértices, ou
- 3. Um grafo simples com $n \ge 5$ e e ≥ 7

- 1. Uma única aresta, ou
- 2. Um grafo completo com 4 vértices, ou
- 3. Um grafo simples com $n \ge 5$ e e ≥ 7

INVESTIGAR!!

3. Um grafo simples com n ≥ 5 e e ≥ 7 INVESTIGAR!!

- \square Podemos verificar se e $\leq 3n-6$.
 - Se o grafo reduzido não satisfaz a inequação, então o grafo é não planar. Se a inequação for satisfeita, é necessário fazer testes adicionais.

Homeomorfismo

- Dois grafos G₁ e G₂ são homeomorfos se os grafos
 H₁ e H₂ obtidos a partir das reduções elementares de
 G₁ e G₂ forem isomorfos
- \square G_1 e G_2 são **homeomorfos** se pudermos obter G_2 a partir da inserção de vértices intermediários nas arestas de G_1

Homeomorfismo

Homeomorfismo

□ Um grafo G é planar se e somente se nenhum subgrafo seu for homeomorfo a K_5 ou $K_{3,3}$.

□ Um grafo G é planar se e somente se nenhum subgrafo seu for homeomorfo a K_5 ou $K_{3,3}$.

 \square Um grafo G é planar se e somente se nenhum subgrafo seu for homeomorfo a K_5 ou $K_{3,3}$.

□ Um grafo G é planar se e somente se nenhum subgrafo seu for homeomorfo a K_5 ou $K_{3,3}$.

□ Um grafo G é planar se e somente se nenhum subgrafo seu for homeomorfo a K_5 ou $K_{3,3}$.

- Dado um grafo G planar, o grafo G*, chamado dual de G, é construído da seguinte forma:
 - □ para cada face f de G, G* tem um vértice

- □ una os vértices de G* da seguinte forma
 - se 2 regiões f_i e f_k são adjacentes (possuem alguma aresta em comum) coloque uma aresta entre v_k e v_k interceptando a aresta em comum
 - lacktriangle se existirem mais de uma aresta em comum entre f_i e f_k coloque uma aresta entre v_i e v_k para cada aresta em comum
 - se uma aresta está inteiramente em uma região, f_i, coloque um loop no vértice v_i.

□ Qual é o dual deste grafo G?

- □ Qual é o dual deste grafo G?
 - Arestas contidas em uma região tornam-se loops no dual

