Analízis 2. Programtervező informatikus A. szakirány

Bizonyítások 2022-2023. tanév 1. félév

Petrányi Bálint

2022. szeptember 22.

Tartalomjegyzék

1.	A differenciálhatóság átfogalmazása	2
2.	A folytonosság és a differenciálhatóság kapcsolata	•
3.	Deriválási szabályok	2

1. A differenciálhatóság átfogalmazása

Tétel:

Legyen $f \in \mathbb{R} \to \mathbb{R}, a \in \text{int } \mathcal{D}_f$. Ekkor

$$f\in D\{a\}$$

$$\updownarrow$$

$$\exists A\in\mathbb{R}, \text{ \'es }\epsilon:\mathcal{D}_f\to\mathbb{R}, \lim_a\epsilon=0 \quad \text{\'ugy, hogy} \ f(x)-f(a)=A(x-a)+\epsilon(x)(x-a)$$

Bizonyítás:

$$\implies f \in D\{a\}$$
 esetén legyen $A := f'(a)$, és $\epsilon(x) := \frac{f(x) - f(a)}{x - a} - f'(a)$.

Ezzel a választással egyrészt

$$A(x-a) + \epsilon(x)(x-a) = f'(a)(x-a) + \Big(\frac{f(x) - f(a)}{x-a} - f'(a)\Big)(x-a) = f(x) - f(a),$$

másrészt a differenciálhatóság miatt

$$\lim_{x \to a} \epsilon(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = 0.$$

 \Leftarrow Ha az A szám és az ϵ függvény teljesítik az állítást feltételeit, akkor

$$\frac{f(x) - f(a)}{x - a} = A + \epsilon(x), s \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = A = f'(a) \in \mathbb{R}$$

2. A folytonosság és a differenciálhatóság kapcsolata

Tétel:

$$f \in \mathbb{R} \to \mathbb{R}, \quad f \in D\{a\} \implies f \in C\{a\}$$

Szóban: Ha egy valós-valós függvény differenciálható egy pontban, akkor folytonos abban a pontban.

Megjegyzés: Fordítva nem igaz. Az abszolútérték függvény folytonos a 0 pontban de nem deriválható 0-ban. Kompatibilitási probléma is van: folytonosság esetében nem szükséges, hogy a pont az értelmezési tartomány belső pontja legye.

Bizonyítás:

Nyilván $f(x) = \frac{f(x) - f(a)}{x - a}(x - a) + f(a)$. f differenciálhatósága miatt, ezért

$$\lim_{a} f = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} (x - a) + f(a) \right) = f'(a) \cdot 0 + f(a) = f(a)$$

3. Deriválási szabályok

Tételek: