HHL - Algorithmus

Alfred Nguyen

Fakultät der Informatik Technische Universität München 85758 Garching, Bavaria

June 2023

Gliederung

HHL Algorithmus Übersicht

Der Algorithmus

Gliederung

HHL Algorithmus Übersicht

Der Algorithmus

Vergleich klassische zur quanten Version

Klassisch	Quanten Version
$A\vec{x} = \vec{b}$	$A\ket{x}=\ket{b}$
$\vec{x} = A^{-1}\vec{b}$	$ x\rangle = A^{-1} b\rangle$

A kann man auch in der Spektralzerlegung darstellen

$$A = \sum_{i=0}^{2^{n_b}-1} \lambda_i |u_i\rangle \langle u_i|$$

$$A^{-1} = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} |u_i\rangle \langle u_i|$$

- $\triangleright \lambda_i$ sind Eigenwerte von A
- $ightharpoonup |u_i\rangle$ sind Eigenvektoren von A

 \vec{b} kann in der Eigenbasis von A dargestellt werden

$$|b\rangle = \sum_{j=0}^{2^{n_b}-1} b_j |u_j\rangle$$

- $ightharpoonup b_i$ sind die koeffizienten von \vec{b}
- $ightharpoonup |u_i
 angle$ sind Eigenvektoren von A

Setzen wir nun alles ein:

$$|x\rangle = A^{-1} |b\rangle = \left(\sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} |u_i\rangle \langle u_i|\right) \left(\sum_{j=0}^{2^{n_b}-1} b_j |u_j\rangle\right)$$

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} |u_i\rangle \langle u_i| b_j |u_j\rangle$$

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_i\rangle \langle u_i| u_j\rangle$$

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_i\rangle \delta_{ij}$$

Setzen wir nun alles ein (Fort.):

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_i\rangle \,\delta_{ij}$$
$$|x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_j\rangle$$
$$|x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_j\rangle$$

- 1. Ermittle die Eigenwerte und Eigenvektoren von A
- 2. bilde $|b\rangle$ in Eigenbasis A ab
- 3. Invertiert Eigenwerte
- 4. lies das Ergebnis $|x\rangle$ aus

Der Algorithmus

Ablauf

- 1. State Preparation
 - Enkodiere Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittle Eigenwerte und Eigenvektoren
 - ightharpoonup bilde $|b\rangle$ in Eigenbasis A ab
- 3. Ancilla Bit Rotation
 - ► Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation
 - löst verschränkte Qubits auf
- 5. Messung
 - liest das Ergebnis $|x\rangle$ aus

Quantum Circuit

- 1. Ancilla (Helfer): a-register
 - ▶ Indikator qubit zeigt an ob Zustände verschränkt sind
- 2. Register: c-register
 - beinhaltet später die eigenwerte
- 3. Input: b-register
 - ightharpoonup beinhaltet den Vektor \vec{b}

Quantum Circuit

Wo befindet sich die Matrix A?

Wir als Unitary (Einheitsmatrix) in die Phase Estimation enkodiert.

$$U = e^{iAt}$$

Quantum Circuit

Wir starten im 0 Zustand

$$|\Psi_0
angle=|0
angle_b\ |0
angle_c\ |0
angle_a$$

State Preparation

Nun werden wir \vec{b} als Quantenzustand $|b\rangle$ kodieren, indem wir die Elementen von \vec{b} den Amplituden von $|b\rangle$ zuordnen.

$$ec{b} = egin{pmatrix} b_0 \ b_1 \ ... \ b_n \end{pmatrix} \Leftrightarrow b_0 \ket{0} + b_1 \ket{1} + ... + b_n \ket{n} = \ket{b}$$

State Preparation

Dann erhalten wir:

$$|\Psi_1
angle=|b
angle_b\,\,|0...0
angle_c\,\,|0
angle_a$$

Quantum Phase Estimation

Wir wenden QPE an, um die Eigenwerte von A zu erhalten. Dann erhalten wir:

$$\ket{\Psi_2} = \ket{b}_b \ket{\widetilde{\lambda_j}}_c \ket{0}_a$$

Rotation des Ancilla Bits

- lacktriangle Ancilla-Bit $|0
 angle_a$ wird anhand der Eigenwerte $|\widetilde{\lambda}_j
 angle$ rotiert
- hat eine Fehlerwahrscheinlichkeit, da Operation nicht unitär

Ancilla-Qubit wird gemessen und kollabiert zu

- 1. $|0\rangle$: Ergebnis wird verworfen, Berechnung wird wiederholt
 - wir haben verschränkte Qubits
 - dies wird Amplitudenverstärkung genannt (wie Grover)
- 2. $|1\rangle$: Ergebnis wird akzeptiert

Rotation des Ancilla Bits

$$|\Psi_{3}\rangle = \sum_{j=0}^{2^{n_{b}-1}} b_{j} |u\rangle_{j} |\widetilde{\lambda}_{j}\rangle \left(\sqrt{1 - \frac{C^{2}}{\widetilde{\lambda}_{j}^{2}}} |0\rangle_{a} + \frac{C}{\widetilde{\lambda}_{j}} |1\rangle_{a}\right)$$

$$|\Psi_{3}\rangle = |b\rangle_{b} |\widetilde{\lambda}_{j}\rangle_{c} |??\rangle_{a}$$

Gehen wir davon aus, dass unsere Ancilla-Qubit auf $|1\rangle$ kollabiert.

$$\begin{split} |\Psi_{3}\rangle &= \frac{1}{\sqrt{\sum_{j=0}^{2^{n_{b}}-1}|\frac{b_{j}C}{\widetilde{\lambda}_{j}}|^{2}}} \sum_{j=0}^{2^{n_{b}}-1} b_{j} |u_{j}\rangle |\widetilde{\lambda}_{j}\rangle \frac{C}{\widetilde{\lambda}_{j}} |1\rangle_{a} \\ |\Psi_{3}\rangle &= |b\rangle_{b} |\widetilde{\lambda}_{j}\rangle_{c} \widetilde{\lambda^{-1}} |1\rangle_{a} \end{split}$$

Dann erhalten wir:

$$\left|\Psi_{3}\right\rangle =\left|b\right\rangle _{b}\left|\widetilde{\lambda_{j}}\right\rangle _{c}\widetilde{\lambda^{-1}}\left|1\right\rangle _{a}$$

Uns fällt auf, dass wir schon sehr nah an unserem Ergebnis sind

$$|\Psi_3\rangle = |b\rangle_b |\widetilde{\lambda_j}\rangle_c \widetilde{\lambda^{-1}} |1\rangle_a \qquad |x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_i |u_i\rangle$$

- ► Eigenwerte sind invertiert.
- ▶ aber b-Register mit c-Register verschränkt, $|\widetilde{\lambda}_j\rangle$.
- müssen den Zustand auflösen (alle bisherigen Schritte rückgäng machen)

Inverse Quantum Phase Estimation

Dann erhalten wir:

$$|\Psi_4\rangle = |x\rangle_b |0...0\rangle_c |1\rangle_a$$

Measurment

- $|x\rangle_b$ kann nicht ausgelesen werden, da nur $log_2(n)$ Einträge
- ▶ können Erwartungswert durch Messungen *M* ermitteln

$$E(x) := \langle x | M | x \rangle$$

Measurment

Dann erhalten wir:

$$|x\rangle \Rightarrow E(x) = \langle x|M|x\rangle$$

Was das

Ablauf

- 1. State Preparation
 - Enkodiere Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittle Eigenwerte und Eigenvektoren
 - ightharpoonup bilde $|b\rangle$ in Eigenbasis A ab
- 3. Ancilla Bit Rotation Invertieren der Eigenwerte
- 4. Inverse Quantum Phase Estimation
- Messung