- I) Dados los vectores $\vec{u} = \langle 1, \beta, 0
 angle$ y $\vec{v} = 2 \vec{j} + \vec{k}$.
 - a) Halle, si existe, un vector \vec{w} ortogonal a \vec{u} y a \vec{v} de modulo $\sqrt{9}$.
 - b) Considere $\beta=2$
 - **b1)** Cuál es el ángulo entre \vec{w} y \vec{u} ?
 - b2) Determine el vector $Proy_{\vec{v}}\vec{u}$.
- II) Dada la ecuación simétrica de la recta es $L:rac{x+1}{-2}=rac{y-1}{3}=rac{z}{-1}.$
 - a) El punto $P(1,1,1) \in L$? .
 - b) Halle una ecuación del plano π que contiene a la recta L y al punto P(1,1,1) .
 - c) El conjunto de puntos del plano π es un espacio vectorial? Justifique su respuesta.

I) Considere el sistema no homogéneo Ax=b. La forma escalonada por renglones de la matriz \setminus (A \setminus) es

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

- a) Clasificar y resolver el Sistema Homogéneo \(Ax = 0\).
- b) La matriz \(A\), ¿tiene inversa?. Justifique la respuesta.
- c) El el sistema no homogéneo Ax=b ¿Puede ser compatible determinado? Justifique la respuesta.
- II) Considere la matriz

$$M=\left(egin{array}{cc} 1 & -1 \ 2 & 0 \end{array}
ight)$$
 y la matriz

simétrica N de orden 2 tal $\left|N\right|=3$.

Calcular, si es posible, los siguients determinantes. (Justifique)

a)
$$|(N + N^t)M|$$
.

b)
$$|(M + M^t)N|$$
.

Dada la siguiente matriz
$$oldsymbol{A} = egin{pmatrix} 1 & 0 & 0 \ 0 & 2 & 0 \ 1 & 0 & 1 \end{pmatrix}$$
,

- a) Exprese con sus palabras como verificaría que el vector $ec v=egin{pmatrix}0\\1\\0\end{pmatrix}$ es un autovector de la matriz A, sabiendo que el correspondiente autovalor asociado es $\lambda=2$.
 - b) Realice el cálculo de un autovector de la matriz A sabiendo que su autovector asociado es $\lambda=1$. Exprese
- además, un segundo autovector asociado al autovalor $\lambda=1$.
 - c) Indique todos los autovalores de A.
 - d) Exprese el Espacio Característico asociado al autovalor $\,\lambda=1$.
- e) Observando lo obtenido en el item c) y d), exprese la multiplicidad geométrica y algebraica de cada uno de los autovalores.

Dada la siguiente transformación
$$Tegin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} x-y \ 2y-4z \end{pmatrix}$$
 ,

- a) ¿Cuál es el espacio vectorial de partida asociado a la transformación?.
- b) Que concepto teórico utilizaría para calcular el núcleo de la transformación ?. Expréselo y utilícelo para determinar el núcleo de la transformación. Además exprese su resultado teniendo en cuenta la definición de espacio generado por un conjunto de vectores.
 - c) ¿Cuál es la representación geométrica del núcleo?.
 - d) Indique una base del núcleo.
 - e) Realice la transformación del vector $ec{x} = egin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$.
 - f) Indique el rango de la transformación y a partir de él, el conjunto imagen.
 - g) Exprese dos bases para el conjunto imagen.

- I) Dada la siguiente ecuación canónica $rac{(x-1)^2}{4}+(y+1)^2=1$,
 - a) Indique que cónica representa.
 - b) Halle, si los tiene, el o los focos de la misma.
 - c) Realice su gráfica.
- II) Considere los números complejos $z_1=8e^{i\pi/2}$, $z_2=3-i$, y $z_3=2-2i$.
 - a) Represente z_1 y z_2 en el plano complejo.
 - **b)** Calcule $\frac{z_1^2}{(z_2-z_3)^2}$ y exprese el resultado en forma binómica.
 - c) Resolver la ecuación $z^3-z_1=0$.