

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

BAYESIAN BELIEF NETWORKS

Naive Bayes classifier

 which assumes that all the variables are conditionally independent given the value of the target variable,

Bayesian belief networks

- which allows stating conditional independence assumptions that apply to subsets of the variables.
- It provide an intermediate approach that is less constraining than the global assumption of conditional independence made by the naive Bayes classifier.

Bayesian Belief Networks (BBN)

- □ Graphical (Directed Acyclic Graph) Model
- □ Nodes are the features:
 - Each has a set of possible parameters/values/ states
 - Weather = {sunny, cloudy, rainy}; Sprinkler = {off, on}; Lawn = {dry, wet}
- Edges / Links represent relations between features
- BBN is a probabilistic graphical model (PGM)
- □ Each node/feature is a random variable

Weather

Lawn

Sprinkler

Bayesian Belief Networks

- We call these probabilities of occurring states Beliefs
 - □ Example: our belief in the state {coin='head'} is 50%
- All beliefs of all possible states of a node are gathered in a single CPT - Conditional Probability Table
- □ BBN is a 2-component model:
 - Graph
 - CPTs

Lawn

Weather

Sprinkler

Joint Space

- \square set of random variables $Y_1 \ldots Y_n$,
- \square each variable Y_i can take on the set of possible values $V(Y_i)$.
- □ The **joint space** of the set of variables Y is the cross product $V(Y_1) \times V(Y_2) \times \ldots V(Y_n)$.
- The probability distribution over this joint' space is called the joint probability distribution

 \square A and B are independent

$$P(A,B) = P(A)P(B)$$

 \square A and B are <u>conditionally independent</u> given C

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(A \mid C, B) = P(A \mid C)$$

- Bayesian Belief Network represents the full joint distribution over the set of variables more compactly with a smaller number of parameters.
- Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule).
- How do we get the local parameterizations?

Answer:

 Graphical structure encodes conditional and marginal independences among random variables

Network represents joint probability distribution over all variables

• In general,

$$P(y_1, \dots, y_n) = \prod_{i=1}^n P(y_i|Parents(Y_i))$$

where $Parents(Y_i)$ denotes immediate predecessors of Y_i in graph

Network represents joint probability distribution over all variables

• In general,

$$P(y_1, \dots, y_n) = \prod_{i=1}^n P(y_i|Parents(Y_i))$$

where $Parents(Y_i)$ denotes immediate predecessors of Y_i in graph

• So joint distribution is fully defined by graph, plus the $P(y_i|Parents(Y_i))$

Conditionally independent effects:

- $\square P(A,B,C) = P(B|A)P(C|A)P(A)$
- B and C are conditionally independent given A
 - For example, A is a disease, and we model B and C as conditionally independent symptoms given A
 - For example, A is Fire, B is Heat, C is Smoke.
 - "Where there's Smoke, there's Fire."
 - If we see Smoke, we can infer Fire.
 - If we see Smoke, observing Heat tells us very little additional information.

B

□ Smoke and Heat are conditionally independent given Fire.

What is P(Fire = t | Smoke = t, Heat = f)?

P(Fire)
0. 1

A=
Fire

Smoke

C=
Heat

P (Fire =	$t \wedge Smok$	xe = t, Heat	= f) =
- 1			0) 11 0 000	

 $= P(Fire = t \land Smoke = t \land Heat = f)$

	Jilloke		
Fire	P(Smoke)		
t f	.90 .001		

Fire	P(Heat)
t	.99
f	.0001

$$= P(Fire = t)P(Smoke = t|Fire = t)P(Heat = f|Fire = t)$$

$$= 0.1 \times .90 \times .01$$

$$= 0.0009$$

□ Smoke and Heat are conditionally independent given Fire.

What is $P(Fire = t \mid Smoke = t)$? $P(Fire = t \land Smoke = t) =$ $= \sum_{heat} P(Fire = t \land Smoke = t \land heat)$ $= \sum_{heat} P(Fire = t)P(Smoke = t \land heat \mid Fire = t)$

$$= \Sigma_{heat} P(Fire = t) P(Smoke = t | Fire = t) P(heat | Fire = t)$$

$$= P(Fire = t)P(Smoke = t|Fire = t)P(heat = t|Fire = t)$$

$$+ P(Fire = t)P(Smoke = t|Fire = t)P(heat = f|Fire = t)$$

$$= (0.1 \times 0.90 \times 0.99) + (0.1 \times 0.90 \times .01)$$
$$= 0.09$$

- P(A,B,C) = P(C|A,B)P(A)P(B)
- P(A) 0.33
- A B P(C)

 t t 0.2
 t f 0.4

0.3

0.3

directed graph:

- Node = random variable
- Directed Edge = conditional dependence
- □ Absence of Edge = conditional independence

Dependence/independence represented via a

- Allows concise view of joint distribution relationships:
 - Graph nodes and edges show conditional relationships between variables.
 - Tables provide probability data.

Marginal Independence:

 $\square P(A,B,C) = P(A) P(B) P(C)$

Independent Causes:

 $\square P(A,B,C) = P(C|A,B)P(A)P(B)$

Markov dependence:

 $\square P(A,B,C) = P(C|B) P(B|A)P(A)$

Types of probabilistic relationships

BAYESIAN BELIEF NETWORKS EXAMPLE

- Assume your house has an alarm system against burglary. You live in the seismically active area and the alarm system can get occasionally set off by an earthquake.
- You have two neighbors, Mary and John, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
 - Burglary, Earthquake, Alarm, Mary calls and John calls

Directed acyclic graph

Nodes = random variables (Burglary, Earthquake,
 Alarm, Mary calls and John calls)

Directed acyclic graph

Links = direct (causal) dependencies between variables.

Directed acyclic graph

The chance of Alarm is influenced by Earthquake,
 The chance of John calling is affected by the Alarm.

Local conditional distributions

relate variables and their parents.

□ Full joint distribution: local conditional distributions

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,...n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

 Assume the assignment of values to random variables

Example 1:

- $\square B = t, E = t, A = t, J = t, M = f$
- Then its probability is:
- = P(B = t, E = t, A = t, J = t, M = f)

$$= P(B = t)P(E = t)P(A = t | B = t, E = t)P(J = t | A = t)P(M = f | A = t)$$

Example 1:

$$\square B = t, E = t, A = t, J = t, M = f$$

$$= P(B = t, E = t, A = t, J = t, M = f)$$

$$= P(B = t)P(E = t)P(A = t | B = t, E = t)P(J = t | A = t)P(M = f | A = t)$$

$$= 0.001 \times 0.002 \times 0.95 \times 0.90 \times 0.3$$

$$= 5.13e - 07$$

Acknowledgement

Tom Mitchel, Russel & Norvig, Wolfram Burgard, Maren Bennewitz, Marco Ragni