50	11000	00	dina
20	urce	ω	any

Which horse won in the horse racing?

X	Pr	Code I	Code II
0	1/2	000	0
1	1/4	001	10
2	1/8	010	110
3	1/16	011	1110
4	1/64	100	111100
5	1/64	101	111101
6	1/64	110	111110
7	1/64	111	111111

$$H(X) = -\sum p_i \log p_i = 2$$
bits

Which code is better?

Data compression

- We interpret that H(X) is the best achievable data compression.
- We want to develop practical lossless coding algorithms that approach, or achieve the entropy limit H(X).

Terminology

X	Pr	Code I	Code II
0	1/2	000	0
1	1/4	001	10
2	1/8	010	110
3	1/16	011	1110
4	1/64	100	111100
5	1/64	101	111101
6	1/64	110	111110
7	1/64	111	111111

- Source alphabet $\mathcal{X} = \{0, 1, 2, 3, 4, 5, 6, 7\}.$
- Code alphabet $\mathcal{D} = \{0, 1\}$.
- Codeword, e.g., 010 for X = 2 in Code 1.
- ullet Codeword length, e.g., codeword length for Code 1 is 3.
- Codebook: all the codewords.

Source Coding

Notation (Alphabet Extension)

The set of all possible sequences based on a finite alphabet $\mathcal D$ is denoted by $\mathcal D^*.$ E.g.,

$$\mathcal{D} = \{0,1\} \rightarrowtail \mathcal{D}^* = \{0,1,00,01,10,11,000,...\}.$$

Definition (Source Code)

Let $\mathcal X$ be the alphabet of a random variable X, and $\mathcal D$ be the alphabet of code. A *source code* $\mathcal C$ for the random variable X is a map

$$C: \mathcal{X} \to \mathcal{D}^*$$

 $x \mapsto C(x)$

where C(x) is the codeword associated with x. Let $\ell(x)$ denote the length of C(x).

Definition

The expected length L(X) of a source code C for a random variable X with probability mass function p(x) is

$$L(X) = E\ell(X) = \sum_{x \in \mathcal{X}} p(x)\ell(x).$$

	X	Pr	Code I	Code II
	0	1/2	000	0
	1	1/4	001	10
	2	1/8	010	110
	3	1/16	011	1110
	4	1/64	100	111100
	5	1/64	101	111101
	6	1/64	110	111110
	7	1/64	111	111111
ď				

$$L_1(X) = 3$$

 $L_2(X) = 2$

Set of codes

For $\mathcal{X} = \{1, 2, 3, 4\}$ and $\mathcal{D} = \{0, 1\}$, consider

	X	p(x)	C_I	C_{II}	C_{III}	C_{IV}
	1	1/2	0	0	10	0
	2	1/4	0	1	00	10
	3	1/8	1	00	11	110
	4	1/8	10	11	110	111
	H(X)	1.75	_	_	_	_
I	$E\ell(X)$	_	1.125	1.25	2.125	1.75

- Code efficiency = $H(X)/E[\ell(X)]$
- Which code is best? Would we prefer C_I or C_{II} ? Consider C_I and decode string: 00001. It would come from 1, 2, 1, 2, 3 or 2, 1, 2, 1, 3 or 1, 1, 1, 1, 3, or etc.
- Consider C_{III} . Can we decode 1100000000?

Yes. But if we only see a prefix, such as 11, we don't know until we see more bits to the end.

1100000000 = 3, 2, 2, 2, 211000000000 = 4, 2, 2, 2, 2

• Consider C_{IV} . This code seems at least feasible (since $E[\ell] \geq H$). Decoding seems easy: (e.g., 1111110100 = 111, 110, 10, 0 = 4, 3, 2, 1

Code types

Definition (Nonsingular Code)

A code C is called *nonsingular* if every realization of \mathcal{X} maps onto a difference codeword in \mathcal{D}^* , i.e.,

$$x \neq x' \Rightarrow C(x) \neq C(x')$$
.

Definition (Code Extension)

The *extension* of a code $C: \mathcal{X} \to \mathcal{D}^*$ is defined by $C(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n).$

Definition (Unique Decodable Code)

A code is called *uniquely decodable* if its extension is nonsingular.

$$x_1x_2...x_m \neq x_1'x_2'...x_n' \Rightarrow C(x_1x_2...x_m) \neq C(x_1'x_2'...x_n')$$

C1与C11会产生歧义

G要读完最后一个bit才能解码

不同的realization有不同旬编码。

不同的sequence有不同的编码

U.d. HU Singwar强. 区分所不可用,看其是否u.d.

Definition (Prefix Code)

A code C is called a prefix code (a.k.a. instantaneous) iff no codeword of C is a prefix of any other codeword of C.

For $\mathcal{X} = \{1, 2, 3, 4\}$ and binary code, consider

X		p(x)	C_{I}	C_{II}	C _{III}	C_{IV}
1		1/2	0	0	10	0
2		1/4	0	1	00	10
3		1/8	1	00	11	110
4		1/8	10	11	110	111
H(X		1.75	_	_	_	_
$E\ell(X$	()	_	1.125	1.25	2.125	1.75

- C₁ is singular.
- C_{II} is non-singular, but not uniquely decodable.
- C_{III} is non-singular, uniquely decodable, but NOT prefix.
- \bullet C_{IV} is non-singular, uniquely decodable, and prefix.

Classes of codes

• Goal: to find a prefix code with minimum expected length.

Kraft Inequality

Theorem 5.2.1 (Kraft Inequality)

For any prefix code over an alphabet of size D, the codeword lengths $\ell_1, \ell_2, \dots, \ell_m$ must satisfy the inequality

$$\sum_i D^{-\ell_i} \leq 1.$$

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a prefix code with these codeword lengths.

Proof Idea. (A small example) To prove: A prefix code with lengths $\ell_1,\ell_2,\dots,\ell_m$, the inequality $\sum_i D^{-\ell_i} \leq 1 \qquad \text{holds.}$ Depth: $0 \quad 1 \quad 2 \quad 3$

$$\sum_{i} D^{-\ell_i} \le 1 \qquad \text{holds}$$

Depth: 0 1 2 3

$$\frac{x \mid c(x)}{1 \mid 0}$$
 $\frac{z \mid 10}{3 \mid 110}$
 $2 \mid 10$
 $2 \mid 10$

区分战不好用着其是否prefix

• Represent the set of prefix codes on a *D*-ary tree:

- Codewords correspond to leaves
- Path from root to each leaf determines a codeword
- Prefix condition: won't get to a codeword until we get to a leaf (no descendants of codewords are codewords)
- $\ell_{\text{max}} = \max_{i}(\ell_{i})$ is the length of the longest codeword.
- We can expand the full-tree down to depth ℓ_{max} :

The nodes at the level ℓ_{max} are either

- codewords
- descendants of codewords
- neither
- Consider a codeword i at depth ℓ_i in tree
- There are $D^{\ell_{\max}-\ell_i}$ descendants in the tree at depth ℓ_{\max}
- Descendants of code i are disjoint from decedents of code j (prefix free condition)
- All the above implies:

$$\sum_i D^{\ell_{\mathsf{max}} - \ell_i} \leq D^{\ell_{\mathsf{max}}} \quad \Rightarrow \sum_i D^{-\ell_i} \leq 1$$

Proof. (in general)

• Conversely: given codewords lengths $\ell_1, \ell_2, \dots, \ell_m$ satisfying Kraft inequality, try to construct a prefix code.

$$\{\ell_1, \ell_2, \ell_3\} = \{1, 2, 3\}$$

$$2^{-1} + 2^{-2} + 2^{-3} \le 1$$

$$\frac{x \mid c(x)}{1 \mid 0}$$

$$\frac{2 \mid 11}{3 \mid 101}$$

$$C \text{ is prefix.}$$

$$2^{-\ell_1} \cdot 2^{\ell_{\text{max}}}$$

到对子节点的路径二编码 lmax=maxl(x)= 权的深度 对于在深度的剧的编码节色C(Xi),其在full expand的时候会生出 Delmax-li个后代 C(Xi)与C(Xj)的full expand 节点个会重合. 因此,所有编码节度新长生的节点数之和, (点状分子多类的节点数,也即至 Shaar-lie Demoor 为西尼节点时从浅到深

Outline

- Extended Kraft inequality for prefix code
- Kraft inequality for uniquely decodable code

Uniquely decodable code does NOT provide more choices than prefix code

Bounds on optimal expected length

Entropy length is achievable when jointly encoding a random sequence.

Extended Kraft Inequality

Theorem 5.5.1 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of codewords, i.e., the codeword lengths satisfy the extended Kraft inequality,

$$\sum_{i=1}^{\infty} D^{-\ell_i} \le 1$$

Conversely, given any ℓ_1, ℓ_2, \ldots satisfying the extended Kraft inequality, we can construct a prefix code with these codeword lengths.

Theorem 5.2.2 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of codewords.

Proof.

Consider the ith codeword $y_1y_2\cdots y_{\ell_i}$. Let $0.y_1y_2\cdots y_{\ell_i}$ be the real number given by the D-ary expansion

$$0.y_1y_2\cdots y_{\ell_i} = \sum_{i=1}^{\ell_i} y_j D^{-j},$$

which corresponds to the interval

$$[0.y_1y_2\cdots y_{\ell_i}, 0.y_1y_2\cdots y_{\ell_i} + \frac{1}{D^{\ell_i}}).$$

不同Codeword 映新到的区间是五不相交的。

的国场以中外

*2 [0.y, , 0.y, +古) 与[0.y, y, , o.y, y, +古) 星不相交

Proof. (cont.)

By the prefix condition, these intervals are disjoint in the unit interval [0,1]. Thus, the sum of their lengths is ≤ 1 . This proves that

$$\sum_{i=1}^{\infty} D^{-\ell_i} \leq 1.$$

For converse, reorder indices in increasing order and assign intervals as we walk along the unit interval.

Kraft Inequality for Uniquely Decodable Codes

Theorem 5.2.3 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must satisfy the Kraft inequality

$$\sum D^{-\ell_i} \leq 1.$$

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a uniquely decodable code with these codeword lengths.

Proof.

Consider C^k , the k-th extension of the code by k repetitions. Let the codeword lengths of the symbols $x \in \mathcal{X}$ be $\ell(x)$. For the k-th extension code, we have

$$\ell(x_1,x_2,\ldots,x_k)=\sum_i^k\ell(x_i).$$

Proof. (cont.)

Consider

$$\left(\sum_{x \in \mathcal{X}} D^{-\ell(x)}\right)^k = \sum_{x_1 \in \mathcal{X}} \sum_{x_2 \in \mathcal{X}} \cdots \sum_{x_k \in \mathcal{X}} D^{-\ell(x_1)} D^{-\ell(x_2)} \cdots D^{-\ell(x_k)}$$

$$= \sum_{x_1, x_2, \dots x_k \in \mathcal{X}^k} D^{-\ell(x_1)} D^{-\ell(x_2)} \cdots D^{-\ell(x_k)}$$

$$= \sum_{x^k \in \mathcal{X}^k} D^{-\ell(x^k)}$$

Proof. (cont.)

Let ℓ_{max} be the maximum codeword length and a(m) is the number of source sequences x^k mapping into codewords of length m. Unique decodability implies that $a(m) \leq D^m$. We have

$$\left(\sum_{x \in \mathcal{X}} D^{-\ell(x)}\right)^k = \sum_{x^k \in \mathcal{X}^k} D^{-\ell(x^k)} = \sum_{m=1}^{k\ell_{\text{max}}} a(m) D^{-m}$$

$$\leq \sum_{m=1}^{k\ell_{\text{max}}} D^m D^{-m}$$

$$= k\ell_{\text{max}}$$

Proof. (cont.)

$$\left(\sum_{x\in\mathcal{X}}D^{-\ell(x)}\right)^k\leq k\ell_{\max}.$$

Hence,

$$\sum_{i} D^{-\ell_j} \leq (k\ell_{\mathsf{max}})^{1/k}$$

holds for all k. Since the RHS $\rightarrow 1$ as $k \rightarrow \infty$, we prove the Kraft inequality. For the converse part, we can construct a prefix code as in **Theorem 5.2.1**, which is also uniquely decodable.

Problem To find the set of lengths $\ell_1, \ell_2, \dots, \ell_m$ satisfying the Kraft inequality and whose expected length $L = \sum p_i \ell_i$ is minimized.

Optimization:

minimize $L = \sum p_i \ell_i$ subject to $\sum D^{-\ell_i} \leq 1$ and ℓ_i 's are integers.

Theorem 5.3.1

The expected length L of any prefix D-ary code for a random variable X is no less than $H_D(X)$, i.e.,

L-Hpix1= I prl: - Zpilog pi = - Zpilog Dli + Zpilog Pi

= 2 Pilogo Pi + Z Pilogoc

由于 c=2 D-li <1, 即 -logo (>0. 日有 D(p11r) >0 放

由于 $C=2D^{-1}$ () P ()

= ZPilogo Pi

= D(pllr) - logoc

with equality iff
$$D^{-\ell_i} = p_i$$
. $L \ge H_D(X)$ 数的 概 为り

Proof

$$L - H_D(X) = \sum p_i \ell_i - \sum p_i \log_D \frac{1}{p_i}$$

$$= -\sum p_i \log_D D^{-\ell_i} + \sum p_i \log_D p_i$$

$$= \sum p_i \log_D \frac{p_i}{r_i} - \log_D c$$

$$= \sum p_i \log_D \frac{p_i}{r_i} - \log_D c$$
and $r_i = p_i$.
$$= D(\mathbf{p} \| \mathbf{r}) + \log_D \frac{1}{c} \ge 0$$

where $r_i = D^{-\ell_i}/\sum_j D^{\ell_j}$ and $c = \sum D^{-\ell_i} \leq 1$.

Definition

A probability distribution is called *D*-adic if each of the probabilities is equal to D^{-n} for some n. Thus, we have equality in the theorem iff the distribution of X is D-adic.

Remark

 $H_D(X)$ is a lower bound on the optimal code length. The equality holds iff p is D-adic.

Bound on the Optimal Code Length

Theorem 5.4.1 (Shannon Codes)

Let $\ell_1^*, \ell_2^*, \dots, \ell_m^*$ be optimal codeword lengths for a source distribution **p** and a D-ary alphabet, and let L* be the associated expected length of an optimal code $(L^* = \sum p_i \ell_i^*)$. Then $H_D(X) \le L^* < H_D(X) + 1$.

Proof.

Take
$$\ell_i = \lceil -\log_D p_i \rceil$$
. Since

$$\sum_{i\in\mathcal{X}} D^{-\ell_i} \le \sum p_i = 1,$$

these lengths satisfy Kraft inequality and we can create a prefix code. Thus, $L^* \leq \sum p_i \lceil -\log_D p_i \rceil$

$$0 \leq \sum p_i |-\log_D p_i|$$

 $< \sum p_i (-\log_D p_i + 1)$
 $= H_D(X) + 1.$

	hec	rem	5.4	.2																																	
			a sys																																		
			ymb exp												I ne	9																					
			$I(X_1)$														~	+	+ (x	1) 4	£]	*	<	(()	()-	1	١	5 n	~>c	>> t	X	13	جہ ک	' Н(X)		
				n				-n \			n			n.			7		1.47	,		-1		10		10		4			J	<u>بر</u>	L	<i>/</i> ((^/		
G	roo	t															Æ	2	200	10		4	1t	3.7	T E/	n II	太-	₽Ð V	水.		-	×. 5	7 1-	,-	\rightarrow	2	
	irst,																7	3 7	291	NET 1	ue `-	/FI	11	A)	יא ן	ΊK	a,	rı C	æ	置	. 6	<u> </u>		-	1 4	ی	
			_ ,				\ ~ <i>(</i>				1	L					3	里々	り	紟	γI	生	٠.														
	_n =	$\frac{1}{n}$	p(x_1, x	۲ ₂ ,	$., x_r$	$_{n})\ell(x)$	x_1, x_2		$, x_n)$	$=\frac{1}{I}$	$\frac{-E[\ell]}{2}$	$(X_1,$	X_{2}	,	$X_n)$																					
_ V	Ve a	lso h	nave																																		
+	$I(X_1)$	$, X_{2}$, ,	$, X_n)$	$\leq E$	E[ℓ()	X_1, λ	ζ_2, \dots	. , X	(n)] <	< H(X_1 ,	X_2 , .	د,	(n)	- 1.																					
_ S	ince	X_1	X_2 ,	, .	X_n a	are i.	i.d.,	$H(\lambda$	ζ_1, X	2,	$., X_r$,) =	nH((X).																							
																																7					
																													179								
																														-							