An Attack-Resilient and Energy-Adaptive Monitoring System for Smart Farms

Qisheng Zhang (presenter) ¹ Yash Mahajan ² Ing-Ray Chen ³ Dong Sam Ha ⁴ Jin-Hee Cho ⁵

^{1,2,3,5}Department of Computer Science, Virginia Tech

⁴Bradley Department of Electrical and Computer Engineering, Virginia Tech

IEEE GLOBECOM 2022, December 2022

Outline

- Introduction
- Related Work
- Problem Statement
- System Model
 - Network Model
 - Node Model
 - Attack Model
- DRL-based Animal Monitoring
 - Uncertainty-Aware Animal Monitoring
 - DRL-based Monitoring Update
 - Data Aggregation at LoRa Gateways
- Experimental Setup
- Experimental Results and Analyses
- Conclusions and Future Work

Motivation

- Lack of security-aware smart farm technologies under resource constraints
- Introducing serious, possible food contamination when animal conditions are not properly monitored (The World Health Organization, 2020)
- Potential high revenue loss of farmers due to the failure of protecting farms from cyberattacks, such as false information injection

Key Contributions

- Propose an energy-adaptive monitoring smart farm system to ensure high monitoring quality under network dynamics and cyberattacks.
- Leverage deep reinforcement learning and belief model (i.e., Subjective Logic) to achieve autonomous decision-making under uncertainty.
- Demonstrate the effectiveness of the proposed DRL-based monitoring system in monitoring quality, system overload, and energy consumption.
- Observe the robustness of the proposed smart farm monitoring system against both inside and outside attackers.

Related Work

Applications in wireless sensor networks

- Rule-based
 - Energy management system (Qi et al., 2019)
- DRL-based
 - Sleep scheduling system (Chen et al., 2016)
 - Communication routing protocol (Kiani, 2017)
 - Power control scheme (Chen et al., 2018)
 - Access control scheme (Chen et al., 2019)

Limitations

- Limited number of DRL agents
- Limited adversarial attack behaviors
- No data uncertainty considered

Problem Statement

■ **Objective function** : Minimize monitoring error (\mathcal{ME}) and system overload (\mathcal{OL})

$$\underset{P = \{p_1, p_2, \dots, p_T\}}{\text{arg max}} \sum_{i=1}^T f(g_i(p_1, p_2, \dots, p_i)), \quad s.t. \quad \forall i \in [1, T], p_i \in \mathcal{P},$$

T: total monitoring step

P : update policy

 p_i : monitoring action at time step i

 \mathcal{P} : action space

 g_i : sensor network at time step i

$$f:g\mapsto -\mathcal{ME}(g)-\mathcal{OL}(g)$$

System Model

- Network Model: A wireless solar sensor network-based smart farm environment
 - Bluetooth Low Energy (BLE) protocol
 - 100*m* coverage
 - 2Mbps data rate
 - Long Range (LoRa) protocol
 - > 1km coverage
 - 27kbps data rate
- Node Model

■ Temperature: $temp_t^i$

■ Heart beat: hbⁱ

■ Velocity: maⁱ_t

Battery level: blⁱ_t

Figure 1: Wireless Solar Sensor Node-based Smart Farm Environment.

System Model

Attack Model

- Non-compliance to the protocol: P_{NCA}
 - Reject the data request
- False data injection
 - Inject from internal/external attacker: P_{IDA}/P_{EDA}
- Denial-of-Service (DoS): P_{IDA}
 - Send redundant data requests

HBS: high battery sensors; LBS: low battery sensors; MIMA: man-in-the-middle attackers

Uncertainty-Aware Animal Monitoring

- SL-based Formulation of a Multinomial Opinion
 - A multinomial opinion X: $\omega_X = (\boldsymbol{b}_X, u_X, \boldsymbol{a}_X)$
 - $\sum_{x \in \mathbb{Y}} \boldsymbol{b}_X(x) + u_X = 1$

 $m{b}_X$: belief mass distribution over $\mathbb X$

 u_X : uncertainty mass representing vacuity of evidence

 a_X : base rate distribution over X

■ The dissonance $\boldsymbol{b}_X^{\text{Diss}}$ of an opinion X:

$$m{b}_{X}^{ ext{Diss}} = \sum_{x_i \in \mathbb{X}} \left(rac{m{b}_{X}(x_i) \sum\limits_{x_j \in \mathbb{X} \setminus x_i} m{b}_{X}(x_j) \mathsf{Bal}(x_j, x_i)}{\sum\limits_{x_j \in \mathbb{X} \setminus x_i} m{b}_{X}(x_j)}
ight)$$

relative mass balance:

$$\mathsf{Bal}(x_j, x_i) = 1 - \frac{|\bm{b}_X(x_j) - \bm{b}_X(x_i)|}{\bm{b}_X(x_j) + \bm{b}_X(x_i)}$$

DRL-based Monitoring Update

States:

Global critic state:

$$s_t^i = g_t(k_1, k_2, \ldots, k_t)$$

- Local actor state:
 - $s_t^i = g_t^i(k_1, k_2, \dots, k_t)$
- \mathbf{g}_t/g_t^i is represented by the history action sequence

Actions:

- n_t^i : the total number of LBS
- Action space: $\mathbf{a}_t^i = \{0, \lfloor \frac{n_t^i}{2} \rfloor, n_t^i \}$

Rewards:

• $r_i^i = f(g_t(k_1, k_2, \dots, k_t))$ based on $f(g_t) = -\mathcal{ME}(g_t) - \mathcal{OL}(g_t)$ given in Eq. (6) where k_i is an action taken in step i

Figure 2: The proposed Multi-Agent Deep Reinforcement Learning (MADRL) framework.

Data Aggregation at LoRa Gateways

- Uncertainty (vacuity) Maximization
 - Move belief mass b_X to uncertainty mass u_X
 - Update uncertainty based on recent data

$$\omega_X = (\boldsymbol{b}_X, u_X, \boldsymbol{a}_X) \longrightarrow \ddot{\omega}_X = (\ddot{\boldsymbol{b}}_X, \ddot{u}_X, \boldsymbol{a}_X)$$
$$\ddot{u}_X = \min_i \left[\frac{\boldsymbol{P}_X(x_i)}{\boldsymbol{a}_X(x_i)} \right],$$
$$\ddot{\boldsymbol{b}}_X(x_i) = \boldsymbol{P}_X(x_i) - \boldsymbol{a}_X(x_i) \cdot \ddot{u}, \text{ for } x_i \in \mathbb{X}$$

Trigger condition: $u_X < \rho$

Experimental Setup

■ Dataset: EmbediVet Devices (EVD)

Metric	Description	
Serial	A unique animal identifier	
Heart rate	Heart bits per min.	
Average-temperature	Average body temperature in Celsius	
Min-temperature	Minimum temperature in Celsius	
Max-temperature	Maximum temperature in Celsius	
Average-activity	Average-activity Average activity recorded by the number of	
	steps taken	
Battery-level	ttery-level Residual battery life	
Timestamp	Date and time of transmission	

Environmental Setup

- Modeling sun's movement in a day
- Consensus agreement: ensuring maximum number of requests executed in the consolidated priority list based on Hopcroft–Karp algorithm ¹
- Gateway locations: covering the whole farm with same coverage of each gateway

¹ Hopcroft et al., 1973

Experimental Setup

Param.	Meaning	Value
$T_{\mathcal{M}}$	A minimum battery level to transmit sensed data by a	30%
	sensor	
P_i^{mv}	Cow i's probability to move	[0.3, 0.7]
P_A	Probability for an attacker or a compromised node to	0.1
	perform a certain attack (e.g., P_{NCA} , P_{IDA} , P_{EDA})	
n	Total number of cows (sensors)	20
A	Area of a given smart farm	40 acres
а	length of a given smart farm	402 m
ρ	Uncertainty maximization threshold	0.05
t ₀	Hyper-parameter used in sun model	0.2
T _u	Time interval for a sensor to send sensed data	30 s
Ta	Time interval for a gateway to take an action to adjust k	60 s
φ	A constant factor to normalize freshness of a received	0.01
	sensed data	

Performance Comparison $(\mathcal{R}, \mathcal{ME}, \mathcal{OL})$

- (a) Accum. reward (\mathcal{R}) (b) Monitoring error (\mathcal{ME}) (c) Overload (\mathcal{OL})
- MAPPO-UM has a stationary decision process and achieves the best performance among all comparing schemes.
- DRL algorithms with uncertainty maximization perform better than their counterparts without uncertainty maximization.
- Uncertainty maximization (UM) can update the uncertainty information from time to time, which reflects the sensor network status in a timely manner.

Performance Comparison $(\mathcal{BML}, \mathcal{U}, \mathcal{FR})$

- (d) Batt. maintenance level (\mathcal{BML}) (e) Uncertainty (\mathcal{U})
- (f) Freshness (\mathcal{FR})
- **MAPPO-UM** achieves the best battery maintenance level (\mathcal{BML}) compared to other schemes.
- Different schemes could have very different policies due to two conflict goals our multi-objective function.
- The overall performance order of the considered schemes is: MAPPO-UM > $MADQN-UM \approx MAPPO-NUM \geq MADQN-NUM \geq Greedy \geq Random.$

Conclusions and Future Work

Conclusions: Our proposed MAPPO-UM achieves

- A strong resilience against attacks by achieving the best monitoring quality and minimum system overload.
- Intelligently leveraging the uncertainty information and achieves the best energy maintenance level.
- Enhancing further monitoring quality and energy-adaptive operation with the uncertainty maximization (UM) technique using more recent evidence.

Future Work:

- Use more gateways to use more DRL agents to achieve high scalability of the proposed smart farm system.
- Leverage *transfer learning* algorithms to further expedite the speed of learning convergence by the DRL agents.
- Identify an optimal energy level that can be used for low-energy solar sensors to request data transmission to nearby high-energy sensors.

Any Questions?

Thank you!

Qisheng Zhang at qishengz19@vt.edu

National Capital Region Campus 7054 Haycock Rd., Office 314 Falls Church, VA 22043

Google scholar:

Project website: