机器人技术与实践

A/P ZHOU, Chunlin (周春琳)

Institute of Cyber-system and Control

College of Control Science and Engineering, Zhejiang University

Email: c_zhou@zju.edu.cn

3. FORWARD KINEMATICS I

3.1 Position & Orientation

The position of the reference point P on a end-effector of a manipulator can be represented by a position vector, \overrightarrow{OP} .

$${}^{0}\mathbf{r} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}, \qquad {}^{1}\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix}$$

where ${}^{0}\mathbf{d}$ is a vector in the global frame 0; ${}^{0}R_{1}$ is a matrix transforming a vector in the local frame 1 into frame 0.

Homogeneous Transformation

Position of P:
$$\overrightarrow{OP} = {}^{0}\mathbf{r} = {}^{0}\mathbf{d} + {}^{0}R_{1}{}^{1}\mathbf{r}$$

$$\Omega$$

$$\begin{bmatrix} {}^{0}\mathbf{r} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{0}R_{1} & {}^{0}\mathbf{d} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} {}^{1}\mathbf{r} \\ 1 \end{bmatrix} = {}^{0}T_{1} \begin{bmatrix} {}^{1}\mathbf{r} \\ 1 \end{bmatrix}$$

Homogeneous Transformation Matrix

$${}^{0}T_{1} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{X} \\ r_{21} & r_{22} & r_{23} & d_{X} \\ r_{31} & r_{32} & r_{33} & d_{X} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
 representation. The appended element c is a scale factor and
$$\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} cr \\ c \end{bmatrix} = \begin{bmatrix} cx \\ cy \\ cz \\ c \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \\ c \end{bmatrix}$$
 If $c \neq 0$, homogeneous coordinates always represent the same vector as c varies.

Note: Representation of an *n*-element vector by an (n+1) element vector is called homogeneous

$$\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \begin{bmatrix} cr \\ c \end{bmatrix} = \begin{bmatrix} cx \\ cy \\ cz \\ c \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ c \end{bmatrix}$$

Homogeneous coordinates

Homogeneous Transformation

Position of P:
$$\overrightarrow{OP} = {}^{0}\mathbf{r} = {}^{0}\mathbf{d} + {}^{0}R_{1} {}^{1}\mathbf{r}$$

$$\begin{bmatrix} {}^{0}\mathbf{r} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{0}R_{1} & {}^{0}\mathbf{d} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix} \begin{bmatrix} {}^{1}\mathbf{r} \\ 1 \end{bmatrix} = {}^{0}T_{1} \begin{bmatrix} {}^{1}\mathbf{r} \\ 1 \end{bmatrix}$$

The homogeneous transformation matrix relates coordinates in 1 and 0. It represents both pose and position information by two basic transformations:

> Rotation transformation

$${}^{0}T_{1} = \begin{bmatrix} {}^{0}R_{1} & \mathbf{0}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \qquad {}^{0}T_{1} = \begin{bmatrix} \mathbf{I}_{3\times3} & {}^{1}\mathbf{d} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

Translation transformation

$${}^{0}T_{1} = \begin{bmatrix} \mathbf{I}_{3\times3} & {}^{1}\mathbf{d} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

Successive Transformation

✓ The final global position of a point P in a rigid body B with position vector \mathbf{r} , after a sequence of transformation T_1 , T_2 , T_3 , ..., T_n about the global axes can be found by

$${}^{1}\mathbf{r} = {}^{1}R_{2} {}^{2}\mathbf{r} + {}^{1}\mathbf{d}_{2}$$

$${}^{0}\mathbf{r} = {}^{0}R_{1} {}^{1}\mathbf{r} + {}^{0}\mathbf{d}_{1}$$

$$= {}^{0}R_{1} ({}^{1}R_{2} {}^{2}\mathbf{r} + {}^{1}\mathbf{d}_{2}) + {}^{0}\mathbf{d}_{1}$$

$$= ({}^{0}R_{1} {}^{1}R_{2}) {}^{2}\mathbf{r} + ({}^{0}R_{1} {}^{1}\mathbf{d}_{2} + {}^{0}\mathbf{d}_{1})$$

$$= {}^{0}R_{2} {}^{2}\mathbf{r} + {}^{0}\mathbf{d}_{2}$$

$${}^{0}R_{2} = {}^{0}R_{1}{}^{1}R_{2}$$

$${}^{0}\mathbf{d}_{2} = {}^{0}R_{1}{}^{1}\mathbf{d}_{2} + {}^{0}\mathbf{d}_{1}$$

$${}^{\scriptscriptstyle 0}\mathbf{r}={}^{\scriptscriptstyle 0}T_{\scriptscriptstyle n}{}^{\scriptscriptstyle n}\mathbf{r}$$

where
$${}^{0}T_{n} = {}^{0}T_{1}{}^{1}T_{2}...{}^{n-1}T_{n}$$

EX 3-1-1

Find the position & pose of a rigid body B in G after B turns α about X-axis, translates a along X-axis, translates d along Z-axis and turns θ about Z-axis.

$$T = T_{Z,\theta} T_{Z,d} T_{X,a} T_{X,\alpha} I_{4\times 4}$$

$$= \begin{bmatrix} c\theta & -s\theta & 0 & 0 \\ s\theta & c\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha & s & 0 \\ 0 & s\alpha & c\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

EX 3-1-2

$${}^{0}T_{i} = ?$$
 ${}^{i-1}T_{i} = ?$ ${}^{j}T_{i} = ?$

Usg properties of transformation matrix

$${}^{0}T_{1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & e+c \\ 0 & -1 & 0 & a-d \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{1}T_{2} = \begin{bmatrix} 0 & -1 & 0 & b \\ 0 & 0 & -1 & a-d \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}T_{2} = \begin{bmatrix} 0 & 1 & 0 & -b \\ -1 & 0 & 0 & e+c \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse Homogeneous Transformation

✓ The advantage of simplicity to work with homogeneous transformation matrices come with the penalty of **loss the orthogonality property.**

$${}^{\scriptscriptstyle{0}}T_{\scriptscriptstyle{1}} = \begin{bmatrix} {}^{\scriptscriptstyle{0}}R_{\scriptscriptstyle{1}} & {}^{\scriptscriptstyle{0}}\mathbf{d} \\ \mathbf{0}_{\scriptscriptstyle{1\times3}} & 1 \end{bmatrix}$$

$${}^{o}T_{1}^{-1} = {}^{1}T_{0} = \begin{bmatrix} {}^{0}R_{1}^{T} & -{}^{0}R_{1}^{T} {}^{0}\mathbf{d} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix} \neq {}^{o}T_{1}^{T}$$

 $-{}^{0}R_{1}^{T}{}^{0}\mathbf{d}$ is a vector denoting \overrightarrow{oO} and is represented in B

EX 3-1-3

The figure depicts an R||R||P (SCARA) robot with a global coordinate frame $G(OXY\ Z)$ attached to the base link along with the coordinate frames $B_1(o_1x_1y_1z_1)$ and $B_2(o_2x_2y_2z_2)$ attached to link (1) and the tip of link (3). Find pose and position of the end-effector.

1. The T matrix mapping points in B2 to B1 is

$$^{B_1}T_{B_2} = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & l_2\cos\theta_2\\ \sin\theta_2 & \cos\theta_2 & 0 & l_2\sin\theta_2\\ 0 & 0 & 1 & -h\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{G}T_{B_{1}} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & l_{1}\cos\theta_{1} \\ \sin\theta_{1} & \cos\theta_{1} & 0 & l_{1}\sin\theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. The T matrix mapping points in B_2 to G is

The origin of B2 can also be found by

2. The *T* matrix mapping points in
$$B_1$$
 to *G*:
$$G_{\mathbf{r}_2} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & l_1 \cos \theta_1 \\ \sin \theta_1 & \cos \theta_1 & 0 & l_1 \sin \theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} l_1 \cos \theta_1 + l_2 \cos (\theta_1 + \theta_2) \\ l_1 \sin \theta_1 + l_2 \sin (\theta_1 + \theta_2) \\ -h \\ 1 \end{bmatrix}$$

EX 3-1-4

Find the homogeneous transformation matrix for a rotation about an axis not through origin of coordinate frame.

Rotation about **u** is equivalent to

- 1. Translate **u** to make it through the origin
- 2. Rotate about the translated **u**
- 3. Translate rotated quantities back

$$T = T(\mathbf{d})T_{\mathbf{u}}(\varphi)T(-\mathbf{d})$$

$$= \begin{bmatrix} I & \mathbf{d} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} R_{\mathbf{u}}(\varphi) & 0 \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} I & -\mathbf{d} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$= \begin{bmatrix} R_{\mathbf{u}}(\varphi) & (I - R_{\mathbf{u}}(\varphi))\mathbf{d} \\ \mathbf{0} & 1 \end{bmatrix}$$

Code Session

Ch3_1.m

3.2 Denavit-Hartenberg Method

- ✓ Serial articulated robot (a robotic arm) has diversified structure, which brings complexity to the control of robot.
- ✓ It is necessary develop a generic method to define the geometry of a robotic arm in order to control different arms usg the unified method.
- ✓ One of the most useful methods uses the so called Denavit-Hartenberg notations that can describe the structure of a robotic arm in a generic manner.

Notations of Links

- ✓ A robot with *n* joints will have *n* movable links and 1 ground fixed link;
- ✓ Numbering of links starts from 0 for the grounded base link to 1 for the first link of the robot, and increases sequentially up to n for the end-effector link;
- ✓ The link *i* is connected to its lower link *i*–1 at its proximal end by joint *i* and is connected to its upper link *i*+1 at its distal end by joint *i*+1;

Denavit-Hartenberg Parameters

- ✓ Solving the forward kinematics problem is a process to find T between link i and link i-1 if their relative motions are given;
- ✓ The pose and position of the link *i* with respect to link *i*-1 are decided by two aspects: the **rotation** and the **geometries of mechanical parts**;

■ Rotation

1. Relative rotation angle θ

■ Geometries of mechanical parts

- 2. Distance of links
- 3. Twist of links
- 4. Offset of links

DH Parameters

✓ The process using the 4 geometric parameters to determine T is known as Denavit-Hartenberg (DH) method

Step 1: Setup coordinate frames

z-axis

- aligned with the axis of the distal
 end joint of the ith link
- or aligned with the translation direction for a prismatic joint
- both directions are applicable

Step 1: Setup coordinate frames

Origin o_i

• intersect point of the common normal between the z_{i-1} and z_i axes with z_i

x_i-axis

 along the common normal between the z_{i-1} and z_i axes, pointing from the z_{i-1} to the z_i-axis

$$x_i = \pm \left(z_{i-1} \times z_i\right) / \left\|z_{i-1} \times z_i\right\|$$

 if two z-axes are parallel, collinear with that of the previous joints

$$y_i$$
-axis $y_i = (z_i \times x_i) / ||z_i \times x_i||$

Step 2: Identify DH parameters

- **1.** Joint distance d_i : distance between x_{i-1} and x_i axes along the z_{i-1} -axis.
- **2.** Joint angle θ_i : rotation of the x_{i-1} -axis about the z_{i-1} -axis to become parallel to the x_i -axis
- 3. Link length a_i : distance between z_{i-1} and z_i axes along the x_i -axis
- **4.** Link twist α_i : rotation of z_{i-1} -axis about x_i -axis to be parallel to z_i -axis

Joint parameters

 $\theta_i d_i$

Link parameters

 $a_i \quad \alpha_i$

Ex 3-2-1

Fill in the table of DH parameters (type I) for the 3R robotic arm

Ex 3-2-1

Find the forward kinematics solution.

Frame No.	a_i	α_i	d_i	$ heta_i$
1	а	0	0	θ_1
2	b	-90°	0	$ heta_2$
3	0	0	0	$ heta_3$

Notes on DH parameters

- The configuration of a robot at which all the joint variables are zero is called the home configuration or rest position, which is the reference for all motions of a robot.
- 2. The DH coordinate frames are not unique because the direction of z_i -axes are arbitrary, and x-axis will be arbitrary if z_{i-1} and z_i intersects.
- 3. The direction x_i is to set a more convenient reference frame when most of the joint parameters are zero.
- 4. The best rest position is where it makes as many axes parallel to each other and coplanar as possible.

Ex 3-2-2 Fill in the table of DH parameters for the PUMA200 robot

Ex 3-2-2

Fill in the table of DH parameters for the PUMA200 robot

✓ The DH coordinate frames are not unique.

No.	a_i	α_i	d_i	$ heta_i$
1	0	-90°	13	θ_1
2	8	0	0	$ heta_2$
3	0	90°	- е	$\theta_{3}(90^{\circ})$
4	0	90°	8	$\theta_4(180^{\circ})$
5	0	90°	0	$\theta_{5}(90^{\circ})$
6	0	0	t	θ_6

Code Session

No code