Multiple Linear Regression

When we want to understand the relationship between a single predictor variable and a response variable, we often use simple linear regression.

However, if we'd like to understand the relationship between *multiple* predictor variables and a response variable then we can instead use **multiple linear regression**.

If we have p predictor variables, then a multiple linear regression model takes the form:

$$Y = \beta 0 + \beta 1X1 + \beta 2X2 + ... + \beta pXp + \varepsilon$$

where:

- **Y**: The response variable
- **Xj**: The jth predictor variable
- **βj**: The average effect on Y of a one unit increase in Xj, holding all other predictors fixed
- ε: The error term

The values for $\beta 0$, $\beta 1$, B2, ..., βp are chosen using **the least square method**, which minimizes the sum of squared residuals (RSS):

$$RSS = \Sigma(yi - \hat{y}i)2$$

where:

- Σ : A greek symbol that means *sum*
- yi: The actual response value for the ith observation
- ŷi: The predicted response value based on the multiple linear regression model

$$b_{1} = \frac{\left(\sum x_{2}^{2}\right)\left(\sum x_{1}y\right) - \left(\sum x_{1}x_{2}\right)\left(\sum x_{2}y\right)}{\left(\sum x_{1}^{2}\right)\left(\sum x_{2}^{2}\right) - \left(\sum x_{1}x_{2}\right)}$$

$$b_{2} = \frac{\left(\sum x_{1}^{2}\right)\left(\sum x_{2}y\right) - \left(\sum x_{1}x_{2}\right)\left(\sum x_{1}y\right)}{\left(\sum x_{1}^{2}\right)\left(\sum x_{2}^{2}\right) - \left(\sum x_{1}x_{2}\right)}$$

$$a = b_{0} = Y - b_{1}X_{1} - b_{2}X_{2}$$

Example: Multiple Linear Regression by Hand

Suppose we have the following dataset with one response variable *y* and two predictor variables X1 and X2:

У	X ₁	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11

Use the following steps to fit a multiple linear regression model to this dataset.

Step 1: Calculate X12, X22, X1y, X2y and X1X2.

у	X_1	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11
181.5	69.375	18.125
1452	555	145

X ₁ ²	X ₂ ²	X ₁ y	X ₂ y	X ₁ X ₂
3600	484	8400	3080	1320
3844	625	9610	3875	1550
4489	576	10653	3816	1608
4900	400	12530	3580	1400
5041	225	13632	2880	1065
5184	196	14400	2800	1008
5625	196	15900	2968	1050
6084	121	16770	2365	858
38767	2823	101895	25364	9859

Mean Sum Sum

Step 2: Calculate Regression Sums.

Next, make the following regression sum calculations:

- $\Sigma x 12 = \Sigma X 12 (\Sigma X 1)2 / n = 38,767 (555)2 / 8 = 263.875$
- $\Sigma x22 = \Sigma X22 (\Sigma X2)2 / n = 2,823 (145)2 / 8 = 194.875$
- $\Sigma x 1y = \Sigma X 1y (\Sigma X 1\Sigma y) / n = 101,895 (555*1,452) / 8 = 1,162.5$
- $\Sigma x2y = \Sigma X2y (\Sigma X2\Sigma y) / n = 25,364 (145*1,452) / 8 = -953.5$
- $\Sigma x 1x2 = \Sigma X1X2 (\Sigma X1\Sigma X2) / n = 9,859 (555*145) / 8 = -200.375$

Sum

у	X ₁	X_2	
140	60	22	
155	62	25	
159	67	24	
179	70	20	
192	71	15	
200	72	14	
212	75	14	
215	78	11	
181.5	69.375	18.125	
1452	555	145	

X ₁ ²	X ₂ ²	X ₁ y	X ₂ y	X_1X_2
3600	484	8400	3080	1320
3844	625	9610	3875	1550
4489	576	10653	3816	1608
4900	400	12530	3580	1400
5041	225	13632	2880	1065
5184	196	14400	2800	1008
5625	196	15900	2968	1050
6084	121	16770	2365	858
38767	2823	101895	25364	9859

Mean Sum

Reg Sums	263.875	194.875	1162.5	-953.5	-200.375

Step 3: Calculate b0, b1, and b2.

The formula to calculate b1 is: $[(\Sigma x22)(\Sigma x1y) - (\Sigma x1x2)(\Sigma x2y)] / [(\Sigma x12)(\Sigma x22) - (\Sigma x1x2)2]$

Thus, $\mathbf{b1} = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875)(194.875) - (-200.375)2] =$ **3.148**

The formula to calculate b2 is: $[(\Sigma x12)(\Sigma x2y) - (\Sigma x1x2)(\Sigma x1y)] / [(\Sigma x12)(\Sigma x22) - (\Sigma x1x2)2]$

Thus,
$$\mathbf{b2} = [(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875)(194.875) - (-200.375)2] = -1.656$$

The formula to calculate b0 is: y - b1X1 - b2X2

Thus,
$$\mathbf{b0} = 181.5 - 3.148(69.375) - (-1.656)(18.125) = \mathbf{-6.867}$$

Step 5: Place b0, b1, and b2 in the estimated linear regression equation.

The estimated linear regression equation is: $\hat{y} = b0 + b1*x1 + b2*x2$

In our example, it is $\hat{y} = -6.867 + 3.148x1 - 1.656x2$

How to Interpret a Multiple Linear Regression Equation

Here is how to interpret this estimated linear regression equation: $\hat{y} = -6.867 + 3.148x1 - 1.656x2$

b0 = -6.867. When both predictor variables are equal to zero, the mean value for y is -6.867.

 $\mathbf{b1} = 3.148$. A one unit increase in x1 is associated with a 3.148 unit increase in y, on average, assuming x2 is held constant.

b2 = -1.656. A one unit increase in x2 is associated with a 1.656 unit decrease in y, on average, assuming x1 is held constant.