Quiz di algebra lineare e geometria

Spazi vettoriali, sottospazi vettoriali, vettori linearmente dipendenti, insiemi di generatori

- Sappiamo che un campo K è anche uno spazio vettoriale. Ma, in generale, uno spazio vettoriale V è un campo?
 - o No
- In generale uno spazio vettoriale non è un campo. Infatti in un campo è definita l'operazione di moltiplicazione di due elementi e dato un elemento $a \neq 0$ deve esistere il suo inverso a^{-1} . In uno spazio vettoriale invece è definita la somma di vettori e il prodotto di un vettore per uno scalare, ma non è definito il prodotto di due vettori (quindi sicuramente dato un vettore $v \neq 0$ non ha alcun senso parlare del suo inverso v^{-1}).
- o Sì
- Il sottoinsieme di \mathbb{R}^2 costituito dai vettori v=(a,b) con $a\geq 0$ e $b\geq 0$ è un sottospazio vettoriale di \mathbb{R}^2 .
 - o Vero
 - o Falso
 - Non è un sottospazio vettoriale in quanto non contiene l'opposto di un vettore. Infatti se v=(a,b) è un vettore con $a \ge 0$ e $b \ge 0$ il suo opposto -v=(-a,-b) ha le componenti ≤ 0 , quindi non appartiene all'insieme in questione.
- Il sottoinsieme di \mathbb{R}^2 costituito dai vettori v=(2a,3a) al variare di $a\in\mathbb{R}$ è un sottospazio vettoriale di \mathbb{R}^2 .
 - Vero
 - È un sottospazio vettoriale in quanto è chiuso per le operazioni di addizione e di moltiplicazione per uno scalare. Infatti se v=(2a,3a) e w=(2b,3b), si ha v+w=(2(a+b),3(a+b)) e per ogni scalare $\lambda \in \mathbb{R}$ si ha $\lambda v=(2(\lambda a),3(\lambda a))$.
 - o Falso
- Il sottoinsieme di \mathbb{R}^2 costituito dai vettori $v=(a,a^2)$ al variare di $a\in\mathbb{R}$ è un sottospazio vettoriale di \mathbb{R}^2 .
 - o Vero
 - Falso
 - Questo sottoinsieme non è un sottospazio vettoriale in quanto non è chiuso per l'operazione di addizione. Ad esempio, per a=2 si ottiene il vettore $v_1=(2,4)$ e per a=3 si ottiene il vettore $v_2=(3,9)$. La loro somma è il vettore $v_1+v_2=(5,13)$ che però non appartiene all'insieme dato, visto che 13 non è uguale a 5^2 .
- Nello spazio vettoriale \mathbb{R}^2 due vettori non nulli e non paralleli sono linearmente indipendenti.
 - o Vero
 - Dire che i vettori v e w non sono paralleli significa che non esiste alcun $\lambda \in \mathbb{R}$ tale che $v = \lambda w$. Quindi nessuno dei due vettori è combinazione lineare dell'altro e pertanto i due vettori sono linearmente indipendenti.
 - Falso
- In uno spazio vettoriale V se ho tre vettori e nessuno di questi è parallelo a uno degli altri due, allora i tre vettori dati sono linearmente indipendenti.
 - Vero
 - Falso

- Ad esempio, in \mathbb{R}^2 prendiamo i vettori $v_1=(1,0),\ v_2=(0,1)$ e $v_3=(1,1)$. I tre vettori dati hanno tutti direzioni diverse ma $v_3=v_1+v_2$, quindi tali vettori sono linearmente dipendenti.
- Se v_1, v_2, v_3 sono tre vettori linearmente dipendenti, allora sicuramente v_1 si può scrivere come combinazione lineare dei vettori v_2 e v_3 .
 - o Vero
 - o Falso
 - Certamente uno dei tre vettori si può scrivere come combinazione lineare degli altri due, ma potrebbe non essere il primo. Ad esempio, i vettori $v_1=(1,0),\,v_2=(0,1)$ e $v_3=(0,2)$ sono linearmente dipendenti e si ha $v_3=2v_2+0v_1$, ma non è certo possibile scrivere v_1 come combinazione lineare di v_2 e v_3 .
- Consideriamo i seguenti vettori di \mathbb{R}^3 : $v_1 = (2, 0, -1)$, $v_2 = (1, 1, 2)$, $v_3 = (0, 2, a)$. Per quale valore di $a \in \mathbb{R}$ essi sono linearmente dipendenti?
 - \circ a = 0
 - \circ a=5
 - Per a = 5 si verifica che $v_3 = 2v_2 v_1$
 - \circ per nessun valore di a
 - \circ a=3
- Consideriamo i seguenti vettori di \mathbb{R}^4 : $v_1=(1,-1,2,-1), v_2=(3,1,a,3), v_3=(0,2,-1,3)$. Per quale valore di $a\in\mathbb{R}$ essi sono linearmente dipendenti?
 - \circ a=-2
 - \circ a=0
 - \circ a=4
 - Per a = 4 si verifica che $v_3 = 3v_1 + 2v_2$
 - o per nessun valore di a
 - \circ a = -5
- In \mathbb{R}^3 i vettori $v_1 = (1, -1, 2)$ e $v_2 = (0, 2, 1)$ formano un sistema di generatori.
 - o Vero
 - Faso
 - Ad esempio, il vettore (1,0,0) non si può scrivere come combinazione lineare di v_1 e v_2 .

Vettori linearmente dipendenti, insiemi di generatori, basi, dimensione, equazioni dei sottospazi vettoriali, intersezione, somma e somma diretta di sottospazi vettoriali

- Prendendo quattro vettori in \mathbb{R}^3 essi saranno linearmente dipendenti?
 - o Sì, sempre.
 - I quattro vettori devono necessariamente essere linearmente dipendenti. Infatti \mathbb{R}^3 ha dimensione 3 e il numero di vettori linearmente indipendenti non può essere maggiore della dimensione dello spazio vettoriale.
 - o Dipende da come scelgo i vettori
- Sia V uno spazio vettoriale di dimensione n e siano $v_1, v_2, \dots, v_k \in V$. Una delle seguenti affermazioni è corretta:
 - o se $v_1, v_2, ..., v_k$ sono linearmente dipendenti allora $k \ge n$
 - se $k \le n$ allora $v_1, v_2, ..., v_k$ sono linearmente indipendenti
 - \circ se $v_1, v_2, ..., v_k$ sono linearmente indipendenti allora $k \leq n$
 - In uno spazio vettoriale il numero di vettori linearmente indipendenti è sempre minore o uguale della dimensione dello spazio stesso.

- Sia V uno spazio vettoriale di dimensione n e siano $v_1, v_2, \dots, v_k \in V$. Una delle seguenti affermazioni è corretta:
 - o se $v_1, v_2, ..., v_k$ sono un insieme di generatori di V allora $k \le n$
 - \circ se $v_1, v_2, ..., v_k$ sono un insieme di generatori di V allora $k \ge n$
 - In uno spazio vettoriale il numero di vettori che formano un insieme di generatori è sempre maggiore o uguale della dimensione dello spazio stesso.
 - o se $k \geq n$. allora v_1, v_2, \dots, v_k sono un insieme di generatori di V
- Dati tre vettori $v_1, v_2, v_3 \in \mathbb{R}^4$ tali che nessuno di essi è parallelo a uno degli altri due, il sottospazio vettoriale da essi generato ha necessariamente dimensione 3.
 - o Vero
 - o Falso
 - Infatti, ad esempio, i vettori $v_1=(1,0,0), \ v_2=(0,1,0), \ v_3=(1,1,0)$ sono tali che nessuno di essi è parallelo a uno degli altri due. Tuttavia il sottospazio da essi generato è formato dai vettori del tipo (a,b,0), al variare di $a,b\in\mathbb{R}$ ed ha quindi dimensione 2.
- In \mathbb{R}^4 il sottospazio di equazione $x_1 2x_3 + x_4 = 0$ ha dimensione:
 - 0 1
 - o **2**
 - o **3**
- Dall'equazione $x_1 2x_3 + x_4 = 0$ si può ricavare $x_1 = 2x_3 x_4$ la quale ha infinite soluzioni che dipendono da TRE parametri liberi di variare (x_2, x_3, x_4) . Questo implica che la dimensione di tale sottospazio è 3.
- In \mathbb{R}^3 il sottospazio U di equazione $x_2 = 0$ ha dimensione:
 - 0 0
 - o **2**
- I vettori di tale sottospazio devono avere $x_2=0$ ma x_1 e x_3 sono indeterminati. Quindi U contiene tutti i vettori del tipo (a,0,b) al variare di a e b in \mathbb{R} . Questo significa che U ha dimensione 2.
- 0 1
- Siano U e W sottospazi vettoriali di \mathbb{R}^n . Se U e W sono in somma diretta, allora deve necessariamente essere $U+W=\mathbb{R}^n$.
 - o Vero
 - Falso
 - Dire che *U* e *W* sono in somma diretta significa solo che la loro intersezione è {0}.
 Non viene fornita nessuna informazione sulle loro dimensioni o sulla somma delle loro dimensioni.
- Siano U_1, U_2, W sottospazi vettoriali di V. Se $U_1 \oplus W = U_2 \oplus W$ allora deve necessariamente essere $U_1, = U_2$.
 - o Vero
 - Falso
 - Se $V=\mathbb{R}^2$ e se prendiamo U_1 il sottospazio generato dal vettore (1,0), U_2 il sottospazio generato dal vettore (0,1) e W il sottospazio generato dal vettore (1,1), si ha $U_1 \oplus W = U_2 \oplus W = \mathbb{R}^2$ ma $U_1 \neq U_2$.

- Siano U_1 , U_2 due sottospazi vettoriali di \mathbb{R}^n , entrambi di dimensione 2 e tali che $U_1 \oplus U_2 = \mathbb{R}^4$. Allora è sempre possibile trovare un sottospazio vettoriale W di \mathbb{R}^4 tale che $U1 \oplus W = \mathbb{R}^4$ e $U2 \oplus W = \mathbb{R}^4$.
 - o Vero
 - Un tale sottospazio W esiste sempre! Se U_1 è generato da due vettori u_1, u_2 e U_2 è generato da due vettori u_3, u_4 allora è sufficiente prendere due vettori w_1, w_2 tali che i vettori u_1, u_2, w_1, w_2 siano linearmente indipendenti e, analogamente, i vettori u_3, u_4, w_1, w_2 siano linearmente indipendenti. Il sottospazio W generato dai vettori w_1, w_2 soddisfa le richieste.
 - o Falso
- Sia V uno spazio vettoriale di dimensione 6 e siano U_1 , U_2 sottospazi di V, con dim $U_1 = 5$ e dim $U_2 = 2$. Una delle seguenti affermazioni è vera.
 - $U_1 \cap U_2$ può avere dimensione 3 e in tal caso si ha dim $(U_1 + U_2) = 4$
 - $\circ \quad U_1 \cap U_2$ può avere dimensione 0 e in tal caso U_1 e U_2 sono in somma diretta
 - La dimensione di $U_1 \cap U_2$ può essere solo 1 oppure 2
 - $U_1 \cap U_2$ non può avere dimensione 0 altrimenti $U_1 + U_2$ avrebbe dimensione 5 + 2 = 7, il che è impossibile dato che V ha dimensione 6.

Funzioni lineari, nucleo e immagine, matrice di una funzione lineare, operazioni sulle matrici

- Per quale valore di t la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita ponendo f(x, y) = 2x 3y + txy è lineare?
 - o Per ogni valore di t
 - \circ Per t=0
 - \circ Per t=1
- Sia V lo spazio vettoriale dei polinomi nella variabile x, a coefficienti reali. La funzione che ad ogni polinomio $p(x) \in V$ associa la sua derivata p'(x) è una funzione lineare.
 - o Vero
 - L'operazione di derivazione è lineare! Infatti la derivata della somma di due funzioni è uguale alla somma delle derivate delle singole funzioni, e la derivata del prodotto di una costante k per una funzione f(x) è uguale al prodotto di k per la derivata f'(x).
 - o Falso
- Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, ..., v_k \in V$ vettori linearmente indipendenti. I vettori $w_1 = f(v_1), w_2 = f(v_2), ..., w_k = f(v_k)$ sono linearmente indipendenti?
 - o Sì, se il nucleo di $f \in \{0\}$
 - Se f non è iniettiva potremmo avere due vettori linearmente indipendenti v_1 e v_2 per i quali si ha $f(v_1) = f(v_2)$.
 - o Sì, ma solo se $v_1, v_2, ..., v_k$ sono una base di V
 - Sì, sempre
- Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, ..., v_k \in V$ un sistema di generatori di V. I vettori $w_1 = f(v_1), w_2 = f(v_2), ..., w_k = f(v_k)$ sono un sistema di generatori di W?
 - \circ Sì, ma solo se f e suriettiva
 - Infatti, in generale, le immagini tramite f di un sistema di generatori di V sono un sistema di generatori dell'immagine di f e non del codominioW. Naturalmente se f è suriettiva l'immagine di f coincide con il codominio W.
 - \circ Sì, ma solo se $v_1, v_2, ..., v_k$ sono una base di V
 - o Sì, sempre

- Siano $f: \mathbb{R}^4 \to \mathbb{R}^3$ e $g: \mathbb{R}^3 \to \mathbb{R}^4$ due funzioni lineari. Il nucleo della funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ deve necessariamente avere dimensione ≥ 1 ?
 - \circ Sì, indipendentemente da f e g
 - Dato che l'immagine di f è contenuta in \mathbb{R}^3 , il nucleo di f deve avere almeno dimensione 1, quindi esiste sicuramente un vettore non nullovv tale che f(v)=0. Si ha allora $(g\circ f)(v)=g(f(v))=g(0)=0$, quindi v appartiene anche al nucleo di $g\circ f$ il quale deve avere pertanto dimensione ≥ 1 .
 - No, può anche avere dimensione 0
- Sia $f: V \to V$ una funzione lineare. Una delle seguenti affermazioni è vera.
 - \circ Se f è iniettiva non è detto che sia anche suriettiva
 - \circ Se f è suriettiva non è detto che sia anche iniettiva
 - \circ Se f è iniettiva allora deve essere anche suriettiva
 - Sappiamo che la somma della dimensione del nucleo di f e della dimensione dell'immagine di f è uguale alla dimensione di V. Se f è suriettiva la dimensione dell'immagine di f è uguale alla dimensione di V. Questo implica che il nucleo di f è uguale a {0} e quindi f è iniettiva.
- Esiste una funzione lineare $f: \mathbb{R}^5 \to \mathbb{R}^5$ tale che il nucleo di a è uguale all'immagine di f.
 - o Vero
 - Falso
 - Una tale funzione non può esistere. Infatti sappiamo che la somma della dimensione del nucleo di f e dell'immagine di f deve essere uguale a f (che è la dimensione di f f). Se il nucleo di f fosse uguale all'immagine di f allora entrambi dovrebbero avere dimensione $\frac{5}{2}$, che non è un numero intero.
- Esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che il nucleo di f è uguale all'immagine di f.
 - Vero
 - Una tale funzione esiste. Ad esempio, f può essere definita come segue. Siano e_1,e_2,e_3,e_4 i vettori della base canonica di \mathbb{R}^4 e poniamo $f(e_1)=0,f(e_2)=0,f(e_3)=e_1,f(e_4)=e_2$. Da questa definizione si vede che il nucleo di f è generato dai vettori e_1,e_2 e l'immagine di f, che è generata dalle immagini dei vettori della base canonica, è anch'essa generata da e_1,e_2 , quindi l'immagine di f è uguale al nucleo di f
 - o Falso
- Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ la funzione lineare definita ponendo f(x,y) = (2x 3y, x + 4y). Sia $v_1 = (1,1), v_2 = (2,-1)$. La matrice di f rispetto alla base di \mathbb{R}^2 formata dai vettori v_1, v_2 è:
 - $\circ \quad {3 \quad 1 \choose -2 \quad 3}$
 - Si ha $f(v_1)=f(1,1)=(-1,5)=3v_1-2v_2$, quindi gli elementi della prima COLONNA della matrice cercata sono $3 \ e \ -2$. Si ha poi $f(v_2)=f(2,-1)=(7,-2)=1v_1+3v_2$, quindi gli elementi della seconda COLONNA della matrice cercata sono $1 \ e \ 3$.

$$\begin{array}{ccc}
\circ & \begin{pmatrix} -1 & 7 \\ 5 & -2 \end{pmatrix} \\
\circ & \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}
\end{array}$$

- Esistono matrici non nulle A e B tali che la matrice prodotto AB sia nulla.
 - o Vero
 - Come esempio possiamo prendere le matrici seguenti: $A = \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.
 - o Falso

Funzioni lineari, nucleo e immagine, matrice di una funzione lineare, cambiamento di basi, sistemi lineari, riduzione di una matrice in forma a scala

- Esistono delle matrici A e B tali che AB = I ma $BA \neq I$.
 - Vero
 - Ad esempio, se prendiamo $A = \begin{pmatrix} \frac{1}{2} & 0 & -1 \\ 0 & 0 & 2 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 0 & \frac{1}{2} \end{pmatrix}$ si ha $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e

$$BA = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 0 & 5 \\ 0 & 0 & 1 \end{pmatrix}$$

- o Falso
- Date due matrici A e B si ha, in generale, $^{T}(AB) = {^{T}A^{T}B}$.
 - o Vero
 - o Falso
 - La formula corretta è $^{T}(AB) = {^{T}B^{T}A}$.
- Per quale valore di t la seguente matrice non ha rango 3? $\begin{pmatrix} 2 & -1 & 3 \\ 1 & -2 & 2 \\ 1 & t & 0 \end{pmatrix}$
 - \circ t=3
 - oten t = 4
 - Per t=4 la seconda colonna è uguale al quadruplo della prima colonna meno il triplo della terza.
 - \circ t=0
- Se A è una matrice quadrata tale che $A^2 = 0$ allora la matrice I A è invertibile.
 - o Vero
 - Infatti se $A^2 = 0$ si ha $(I A)(I + A) = I A + A A^2 = I$, quindi la matrice I + A è l'inversa di I A.
 - o Falso
- Sia A una matrice reale quadrata di ordine n, con $n \ge 2$. Siano P e Q matrici reali quadrate invertibili di ordine n. Allora la matrice A' = PAQ ha lo stesso rango di A.
 - Vero
 - Infatti in tal caso le matrici A e A' rappresentano la stessa funzione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ rispetto a basi diverse del dominio e del codominio (le matrici P e Q, e le loro inverse P^{-1} e Q^{-1} , sono le matrici di cambiamento di base). Pertanto il rango di A e il rango di A' sono entrambi uguali alla dimensione dell'immagine di f.
 - o Falso
- Sia V uno spazio vettoriale reale e $f: V \to V$ una funzione lineare. Sia $\mathbf{v} = \{v_1, v_2, \dots, v_n\}$ una base di V e indichiamo con A la matrice di f rispetto alla base \mathbf{v} . Supponiamo che A = aI, ove I è la matrice identica e $a \in \mathbb{R}$. Allora la matrice A' di f rispetto ad una qualunque altra base $\mathbf{v}' = \{v_1', v_2', \dots, v_n'\}$ di V deve necessariamente essere uguale alla matrice A.
 - Vero
 - Le matrici A e A' sono legate dall'uguaglianza $A' = PAP^{-1}$, per una qualche matrice invertibile P (la matrice di cambiamento di base). Se A = aI si ha: $A' = PAP^{-1} = PaIP^{-1} = aPIP^{-1} = aPP^{-1} = aI$, quindi A e A' sono uguali.
 - o Falso

- Sia V uno spazio vettoriale e siano $\mathbf{v} = \{v_1, v_2, \dots, v_n\}$ e $\mathbf{v}' = \{v_1', v_2', \dots, v_n'\}$ due basi di V. Le colonne della matrice di cambiamento di base $M_v^{v'}(id)$ sono:
 - o le coordinate dei vettori $v_1, v_2, ..., v_n$ rispetto alla base $v_1', v_2', ..., v_n'$
 - Si vada a rivedere la definizione della matrice $P = M_v^{v'}(id)$ negli appunti.
 - \circ le coordinate dei vettori v_1', v_2', \dots , v_n' rispetto alla base v_1, v_2, \dots , v_n
- Sia V uno spazio vettoriale e siano $v = \{v_1, v_2, ..., v_n\}$ e $v' = \{v'_1, v'_2, ..., v'_n\}$ due basi di V. La matrice di cambiamento di base $M_v^{v'}(id)$ agisce nel modo seguente:
 - o $M_v^{v'}(id)$ moltiplica il vettore colonna delle coordinate di un vettore u rispetto alla base $v = \{v_1, v_2, ..., v_n\}$ e dà come risultato il vettore colonna delle coordinate di u rispetto alla base $v' = \{v'_1, v'_2, ..., v'_n\}$
 - Si vada a rivedere la definizione della matrice $P = M_v^{v'}(id)$ negli appunti.
 - o $M_v^{v'}(id)$ moltiplica il vettore colonna delle coordinate di un vettore u rispetto alla base $v' = \{v'_1, v'_2, ..., v'_n\}$ e dà come risultato il vettore colonna delle coordinate di u rispetto alla base $v = \{v_1, v_2, ..., v_n\}$
- Una matrice triangolare superiore è sempre una matrice a scala.
 - o Vero
 - o Falso
 - La matrice seguente è triangolare superiore ma non è in forma a scala:

$$\begin{pmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- Un sistema lineare in cui sono presenti più incognite che equazioni ha sempre infinite soluzioni.
 - o Vero
 - o Falso
 - Ad esempio, il sistema $\begin{cases} x+y+z=2\\ 2x+2y+2z=5 \end{cases}$ non ammette soluzioni.

Funzioni lineari e matrici, operazioni elementari, calcolo del rango di una matrice, eliminazione di Gauss, sistemi di equazioni lineari, determinanti

- Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice rispetto alle basi canoniche è $\begin{pmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. In questo caso è possibile trovare una base $\mathbf{v} = (v_1, v_2, v_3)$ del dominio tale che la matrice di f rispetto alla base \mathbf{v} del dominio e alla base canonica del codominio sia $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 - Vero
 - Osserviamo che la matrice A ha rango 2, quindi l'immagine di f ha dimensione 2 e il nucleo di f ha dimensione 1. Risolvendo il sistema AX=0 troviamo che il vettore (1,1,-1) appartiene al nucleo di f, cioè f(1,1,-1)=(0,0,0). Dire che la matrice di f rispetto alla base $\mathbf{v}=(v_1,v_2,v_3)$ del dominio e alla base canonica del codominio è $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ significa che $f(v_1)=(1,0,0),\ f(v_2)=(0,1,0)$ e $f(v_3)=(0,0,0)$.

Come vettore v_3 possiamo quindi scegliere il vettore $v_3=(1,1,-1)$ che appartiene al nucleo di f. Per trovare il vettore v_1 dobbiamo risolvere il sistema $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Questo sistema ha infinite soluzioni e una possibile scelta di v_1 è $v_1 = \left(\frac{2}{5}, \frac{1}{5}, 0\right)$.

Analogamente per trovare il vettore v_2 dobbiamo risolvere il sistema $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

Questo sistema ha infinite soluzioni e una possibile scelta di v_2 è $v_2=\left(-\frac{3}{5},0,\frac{2}{5}\right)$.

- o Falso
- Il rango di una matrice A è:
 - o il numero di righe non nulle di *A*
 - o il numero di colonne lineamenti indipendenti di A
 - \circ il numero di righe linearmente indipendenti di A
 - \circ il numero di righe non nulle in una forma a scala di A
 - o il numero di colonne non nulle di *A*
 - \circ il numero di colonne non nulle in una forma a scala di A
- Volendo determinare il rango di una matrice mediante la riduzione in forma a scala si possono effettuare operazioni elementari sia sulle righe che sulle colonne.
 - o Vero
 - Ciò deriva dal fatto che in ogni matrice il rango per righe (numero di righe linearmente indipendenti) è sempre uguale al rango per colonne (numero di colonne linearmente indipendenti).
 - o Falso
- Sia A una matrice $m \times n$. Allora:
 - \circ Rango(A) = max{m, n}
 - \circ Rango(A) = mmin{m, n}
 - \circ Rango(A) \leq min{m, n}
 - Il rango di A è uguale al numero di colonne (o righe) linearmente indipendenti.
- L'insieme delle soluzioni di un sistema lineare non omogeneo è un sottospazio vettoriale.
 - o Vero
 - o Falso
 - L'insieme delle soluzioni di un sistema lineare non omogeneo AX = B (cioè con $B \neq 0$) non contiene il vettore nullo X = 0, quindi non può essere un sottospazio vettoriale.
- Il sistema lineare AX = B ha soluzione se e solo se:
 - \circ Rango(A) < rango(A|B)
 - \circ Rango(A|B) = rango(A) + 1
 - $\circ \quad \mathsf{Rango}(A) = \mathsf{rango}(A|B)$
 - Questo è l'enunciato del teorema di Rouché-Capelli.
- Un sistema lineare AX = B ammette soluzioni se e solo se:
 - o B appartiene allo spazio generato dalle righe di A
 - B appartiene allo spazio generato dalle colonne di A
 - Dire che B = AX equivale a dire che B è combinazione lineare delle colonne di A.
- Volendo calcolare l'inversa della matrice $\begin{pmatrix} 2 & t \\ 4 & 6 \end{pmatrix}$ utilizzando l'eliminazione di Gauss, per quale valore di t non è posibile determinare A^{-1} ?
 - \circ t=-1
 - otag t = 3
 - Solo per t = 3 la matrice ha rango 1, quindi non è invertibile.
 - \circ t=6
 - \circ t=0

- Nella permutazione $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 2 & 3 \end{pmatrix}$ quante sono le inversioni presenti?
 - 0 3
 - 0 4
 - o **5**
- Nel dettaglio, si ha: 1 < 2 ma $\sigma(1) = 4 > \sigma(2) = 1$; 1 < 4 ma $\sigma(1) = 4 > \sigma(4) = 2$; 1 < 5 ma $\sigma(1) = 5 > \sigma(5) = 3$; 3 < 4 ma $\sigma(3) = 5 > \sigma(4) = 2$; 3 < 5 ma $\sigma(3) = 5 > \sigma(5) = 3$.
- Il determinante della matrice $\begin{pmatrix} 0 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$ è uguale a:
 - o **7**
- Per calcolare il determinante di una matrice 3 x 3 si può usare, ad esempio, la regola di Sarrus.
- 0 0
- 0 5

Determinanti, autovalori, autovettori, diagonalizzazione di una matrice

- Moltiplicando tutti gli elementi di una matrice quadrata per uno stesso numero α il determinante della matrice risulta moltiplicato per α .
 - o Vero
 - o Falso
 - Infatti se moltiplichiamo una riga (oppure una colonna) per α il determinante risulta moltiplicato per α . Ma se A è una matrice quadrata di ordine n e la moltiplichiamo per α allora ciascuna delle n righe viene moltiplicata per α e, di conseguenza, il determinante di A risulta moltiplicato per α^n .
- Se A è una matrice quadrata di ordine n si ha det(-A) = -det(A).
 - o Vero
 - Falso
 - Infatti se moltiplichiamo una riga (oppure una colonna) per -1 il determinante risulta moltiplicato per -1. Ma se A è una matrice quadrata di ordine n e la moltiplichiamo per -1, cioè consideriamo la matrice -A, allora ciascuna delle n righe viene moltiplicata per -1 e, di conseguenza, si ha $\det(-A) = (-1)^n \det(A)$.
- Se due matrici quadrate di ordine *n* hanno lo stesso determinante allora sono simili.
 - o Vero
 - Falso
 - Quello che è vero è che se due matrici quadrate sono simili allora hanno lo stesso determinante (ma non vale il viceversa). Ad esempio le matrici $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ hanno lo stesso determinante ma non sono simili.
- Se una funzione lineare $f: V \to V$ non è iniettiva allora il determinante della matrice di f rispetto a una qualunque base di V è uguale a 0.
 - Vero
 - Infatti se f non è iniettiva allora non è invertibile e, di conseguenza, anche la matrice di f (rispetto a una qualunque base di V) non è invertibile e pertanto deve avere determinante = 0 (altrimenti sarebbe invertibile).
 - o Falso

- Se una funzione lineare $f: V \to V$ è suriettiva allora il determinante della matrice di f rispetto a una qualunque base di V è necessariamente diverso da 0.
 - Vero
 - Infatti se f è suriettiva allora è anche iniettiva, quindi è biiettiva e quindi è invertibile. Di conseguenza anche la matrice di f (rispetto a una qualunque base di V) deve essere invertibile e pertanto il suo determinante deve essere $\neq 0$.
 - o Falso
- Esistono matrici quadrate di ordine *n*, diverse dalla matrice identica, che sono simili alla matrice identica.
 - o Vero
 - o Falso
 - Se una matrice quadrata A è simile alla matrice identica I, allora deve necessariamente essere A=I. Infatti affermare che A è simile a I significa che esiste una matrice invertibile P tale che $A=PIP^{-1}$. Ma in tal caso si ha $A=PIP^{-1}=PP^{-1}=I$.
- Se due matrici quadrate di ordine n, A e B, sono entrambe diagonalizzabili, allora ciò significa che A e B sono simili.
 - Vero
 - Falso
 - Infatti se due matrici sono simili allora devono avere lo stesso polinomio caratteristico (e quindi gli stessi autovalori). Dire che A e B sono entrambe diagonalizzabili significa che ciascuna di esse è simile a una matrice diagonale, ma gli elementi sulla diagonale (cioè gli autovalori di A e B) potrebbero essere diversi.
- Se v_1 e v_2 sono autovettori di $f: V \to V$ allora sicuramente anche $v_1 + v_2$ è un autovettore di f.
 - o Vero
 - Falso
 - In generale la somma di due autovettori non è un autovettore. Solo nel caso in cui v_1 e v_2 appartengono allo stesso autospazio (cioè sono autovettori relativi allo stesso autovalore) si ha che ogni combinazione lineare di v_1 e v_2 appartiene ancora allo stesso autospazio.
- Se due matrici quadrate A e B hanno lo stesso polinomio caratteristico allora sono simili.
 - o Vero
 - Falso
 - Quello che è vero è che se due matrici quadrate sono simili allora hanno lo stesso polinomio caratteristico (ma non vale il viceversa). Ad esempio le matrici $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ hanno lo stesso polinomio caratteristico ma non sono simili.
- Se λ è un autovalore di una matrice quadrata A allora, per ogni intero $n \ge 1$, λ^n è un autovalore di A^n .
 - Vero
 - Infatti se v è un autovettore associato all'autovalore λ , si ha $Av=\lambda v$. Di conseguenza si ha anche $A^2v=A(Av)=A(\lambda v)=\lambda Av=\lambda^2 v$ e, analogamente, $A^3v=A(A^2v)=A(\lambda^2v)=\lambda^2 Av=\lambda^3 v$, ecc. In questo modo si dimostra che $A^nv=\lambda^n v$ e dunque λ^n è un autovalore di A^n .
 - o Falso

Prodotto scalare di vettori, angoli, aree, volumi, ortogonalità tra vettori e tra sottospazi, proiezioni ortogonali

- Se $v, w \in \mathbb{R}^n$ sono due vettori paralleli, si ha sempre ||v + w|| = ||v|| + ||w||.
 - o Vero
 - o Falso
 - Infatti se prendiamo, ad esempio, w = -v allora v e w sono paralleli ma si ha ||v + w|| = ||v v|| = 0 mentre ||v|| + ||w|| = ||v|| + ||-v|| = 2 ||v||.
- Siano $v_1, v_2, ..., v_n \in \mathbb{R}^n$ vettori non nulli a due a due ortogonali, cioè tali che $v_i \cdot v_j = 0$ per ogni $i \neq j$. Allora essi sono linearmente indipendenti e quindi sono una base di \mathbb{R}^n .
 - Vero
 - n vettori a due a due ortogonali in \mathbb{R}^n formano una base ortogonale.
 - o Falso
- Siano v = (a, b) e w = (c, d) vettori di \mathbb{R}^2 e sia P il parallelogramma di lati v e w. L'area di P è uguale al valore assoluto del determinante della matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - o Vero
 - o Falso
- Se $S \subset \mathbb{R}^n$ non è un sottospazio vettoriale e se poniamo $S^{\perp} = \{v \in \mathbb{R}^n | v \cdot u = 0, \forall u \in S\}$ S^{\perp} è comunque un sottospazio vettoriale di \mathbb{R}^n .
 - o Vero
 - Infatti se v e w sono vettori che sono ortogonali a tutti i vettori di S, allora anche av + bw è ortogonale a tutti i vettori di S, per ogni $a, b \in \mathbb{R}$. Questo significa che S^{\perp} è un sottospazio vettoriale di \mathbb{R}^n .
 - o Falso
- Se $S \subset \mathbb{R}^n$ non è un sottospazio vettoriale e se poniamo $S^{\perp} = \{v \in \mathbb{R}^n | v \cdot u = 0, \forall u \in S\}$ allora si ha $(S^{\perp})^{\perp} = S$.
 - o Vero
 - o Falso
 - Non si può avere $(S^{\perp})^{\perp} = S$ per il semplice fatto che $(S^{\perp})^{\perp}$ è sempre un sottospazio vettoriale mentre in questo caso S non lo è.
- Siano U e W sottospazi vettoriali di \mathbb{R}^n . Allora si ha $(U+W)^{\perp}=U^{\perp}+W^{\perp}$.
 - o Vero
 - o Falso
 - Questa affermazione è falsa, in generale. Ad esempio, se U e W sono due rette distinte in \mathbb{R}^3 , allora U+W è un piano e quindi $(U+W)^{\perp}$ è una retta (perpendicolare a tale piano). Invece U^{\perp} è un piano e W^{\perp} è un altro piano e quindi $U^{\perp}+W^{\perp}$ è la somma di due piani che non è certo uguale a una retta.
- Siano U e W sottospazi vettoriali di \mathbb{R}^n . Allora si ha $(U \cap W)^{\perp} = U^{\perp} \cap W^{\perp}$.
 - o Vero
 - o Falso
 - Questa affermazione è falsa, in generale. Ad esempio, se U e W sono due piani distinti in \mathbb{R}^3 , allora $U \cap W$ è una retta e quindi $(U \cap W)^\perp$ è un piano (perpendicolare a tale retta). Invece U^\perp è una retta e W^\perp è un'altra retta e quindi $U^\perp \cap W^\perp$ è l'intersezione di due rette che non è certo uguale a un piano.

- Sia U un sottospazio vettoriale di \mathbb{R}^n e consideriamo due vettori $v_1, v_2 \in \mathbb{R}^n$. Siano u_1 e u_2 le proiezioni ortogonali di v_1 e v_2 su U. Allora la proiezione ortogonale di $v_1 + v_2$ su U è data dalla somma $u_1 + u_2$.
 - o Vero
 - Infatti la funzione che associa a ogni vettore la sua proiezione ortogonale su un sottospazio è una funzione lineare.
 - o Falso
- In \mathbb{R}^3 sono dati i vettori v=(2,-1,0) e w=(1,1,-2). L'area del parallelogramma determinato dai vettori v e w è:
 - \circ $\sqrt{29}$
 - \circ $\sqrt{15}$
 - \circ $\sqrt{34}$
 - \circ $\sqrt{27}$
- In \mathbb{R}^3 sono dati i vettori v=(1,0,1) e w=(0,1,-1). L'angolo compreso tra i vettori $v\in w$ è:
 - 120 gradi
 - Ricordiamo che vale la formula $v \cdot w = ||v|| ||w|| \cos \phi$, ove ϕ è l'angolo compreso tra i due vettori.
 - o 90 gradi
 - o 30 gradi
 - o 60 gradi

Basi ortogonali e ortonormali, forme bilineari simmetriche, matrici delle forme bilineari simmetriche, forme definite positive, negative, indefinite, vettori isotropi

- La funzione $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definita ponendo $g((x_1, y_1), (x_2, y_2)) = 3x_1x_2 y_1y_2 + 2x_1y_2$ è una forma bilineare simmetrica.
 - o Vero
 - o Falso
 - Si può verificare che g è bilineare, ma non è simmetrica. Infatti $g\left((x_1,y_1),(x_2,y_2)\right)=3x_1x_2-y_1y_2+2x_1y_2$ è diverso da $g\left((x_2,y_2),(x_1,y_1)\right)=3x_2x_1-y_2y_1+2x_2y_1$
- Sia $V=M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $g:V\times V\to \mathbb{R}$ la funzione che associa a due matrici $A,B\in V$ la traccia della matrice prodotto AB (la traccia di una matrice quadrata è la somma degli elementi sulla diagonale principale). La funzione g così definita è una forma bilineare simmetrica.
 - Vero
 - La verifica che g è una forma bilineare simmetrica consiste in un calcolo diretto.
 - Falso
- Sia $g: V \times V \to \mathbb{R}$ una forma bilineare simmetrica e sia S l'insieme dei vettori isotropi: $S = \{v \in V \mid g(v, v) = 0\}$. S è sempre un sottospazio vettoriale di V.
 - o Vero
 - o Falso
 - In generale l'insieme dei vettori isotropi non è chiuso per l'operazione di somma. Se $v \in w$ sono due vettori isotropi, e quindi si ha g(v,v)=0 e g(w,w)=0, il vettore somma v+w non è isotropo (in generale). Infatti si ha g(v+w,v+w)=g(v,v)+g(v,w)+g(w,v)+g(w,w)=2g(v,w), che è diverso da zero, in generale.

- Due matrici A e B sono congruenti se esiste una matrice invertibile P tale che:
 - \circ $B = P^{-1}AP$
 - $\circ \quad \boldsymbol{B} = \boldsymbol{P}^T \boldsymbol{A} \boldsymbol{P}$
- Due matrici congruenti G e G' hanno lo stesso determinante.
 - o Vero
 - Falso
 - Infatti se G e G' sono congruenti esiste una matrice invertibile P tale che $G' = P^T G P$ e pertanto si ha $\det G' = \det(P^T) \det G \det P = (\det P)^2 \det G$.
- Due matrici congruenti G e G' non hanno necessariamente lo stesso determinante, ma $\det G$ e $\det G'$ hanno lo stesso segno.
 - Vero
 - Infatti se G e G' sono congruenti esiste una matrice invertibile P tale che $G' = P^T G P$ e pertanto si ha $\det G' = \det(P^T) \det G \det P = (\det P)^2 \det G$. Dato che $(\det P)^2$ è positivo, $\det G$ e $\det G'$ devono necessariamente avere lo stesso segno.
 - o Falso
- La matrice $G = \begin{pmatrix} -1 & 2 & 1 \\ 2 & -2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ è:
 - o definita negativa
 - o definita positiva
 - indefinita
 - Basta applicare il criterio che richiede di calcolare i minori principali e di controllarne il segno.
- Sia $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ una forma bilineare simmetrica indefinita. Allora esistono sicuramente dei vettori isotropi non nulli.
 - Vero
 - Dato che g è indefinita esiste un vettore v tale che g(v,v)>0 e un vettore w tale che g(w,w)<0. Poniamo u=av+bw. Si ha $g(u,u)=g(av+bw,av+bw)=a^2g(v,v)+2abg(v,w)+b^2g(w,w)$. Ricordando che g(v,v)>0 e g(w,w)<0 è facile verificare che si possono sempre trovare $a,b\in\mathbb{R}$ tali che si abbia g(u,u)=0, quindi u è un vettore isotropo.
 - o Falso
- Sia V = M₂(ℝ) lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia g: V × V → ℝ la forma bilineare simmetrica che associa a due matrici A, B ∈ V la traccia della matrice prodotto AB (la traccia di una matrice quadrata è la somma degli elementi sulla diagonale principale). La forma g è:
 - o definita negativa
 - o definita positiva
 - indefinita
 - Infatti se I è la matrice identica e se poniamo $A=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ si ha g(I,I)=2 mentre g(A,A)=-2. Questo dimostra che g è identica.
- La forma bilineare simmetrica $g:\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la cui matrice (rispetto alla base canonica) è G=

$$\begin{pmatrix} -1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & -3 \end{pmatrix}$$
è:

- degenere
 - Si ha detG = 0, quindi g è degenere.
- non degenere