Appl. No. 10/738,455 Amdt. dated March 7, 2007 Reply to Office Action of January 12, 2007

Amendments to the Specification:

Please replace the paragraph under the title CROSS-REFERENCES TO RELATED APPLICATIONS with the following amended paragraph:

--This application is a division of USSN 09/719,919, now U.S. Patent No. 6,680,180, which is the national phase under 35 U.S.C. §371 of PCT/US99/14945, filed June 30, 1999, and claims the benefit of USSN 60/091,466, filed July 1, 1998, herein incorporated by reference in the entirety.--

Please replace the paragraph beginning on page 23, line 6, with the following amended paragraph:

--Another example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990), respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information web site (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.

Appl. No. 10/738,455 Amdt. dated March 7, 2007 Reply to Office Action of January 12, 2007

The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.--

Please replace the paragraph beginning on page 53, line 10, with the following amended paragraph:

--Methods of non-viral delivery of nucleic acids include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Lipofection is described in, e.g., US Pat. No. 5,049,386, US Pat No. 4,946,787; and US Pat. No. 4,897,355 and lipofection reagents are sold commercially (e.g., Transfectam TRANSFECTAMTM and Lipofectin LIPOFECTINTM). Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424, WO 91/16024. Delivery can be to cells (*ex vivo* administration) or target tissues (*in vivo* administration).--