Cell	T(°C)	X_1	X_2	X_3	X_4	X_{12}/X_{1234}
Simone	215	-0.02(12)	-0.10(14)	-	-	-0.04(12)
	255	0.13(08)	0.08(09)	-	-	0.11(06)
Sosa	160	0.22(07)	0.28(09)	0.32(15)	0.18(09)	$0.24(06)^{\dagger}$
	170	0.24(07)	0.37(15)	-	-	0.27(06)
	180	0.45(08)	0.40(09)	0.50(17)	0.45(09)	$0.43(06)^{\dagger}$
	190	0.59(16)	0.57(17)	-	-	0.58(12)
Boris	235	0.21(14)	0.31(14)	-	-	0.26(10)
Sam.	235	0.08(06)	0.22(09)	-	-	0.12(05)
Alex	235	0.34(09)	0.35(09)	0.63(20)	0.29(10)	$0.34(06)^{\dagger}$
Astral	235	0.15(07)	0.22(10)	0.20(14)	0.14(07)	$0.17(05)^{\dagger}$
Steph.	235	0.31(17)	0.31(10)	-	-	0.31(08)
Brady	235	0.13(07)	0.15(09)	0.23(14)	0.11(07)	$0.14(05)^{\dagger}$
Antoinette	215	0.27(09)	0.44(17)	0.30(19)	$0.\overline{25(11)}$	$0.28(08)^{\dagger}$
	235	0.20(09)	0.34(12)	0.36(17)	0.15(09)	$0.24(07)^{\dagger}$
	255	0.55(26)	0.54(16)	0.50(30)	0.56(26)	$0.55(13)^{\dagger}$

Table 1: Shown are the values of the X factor at the indicated over set temperatures. The last column is a weighted average of results from either the first two methods or all four methods. A † indicates combined values computed with all 4 methods.

$$P_{pc}(t) = \gamma_{se} P_A t - \frac{1}{2} \gamma_{se} P_A (\gamma_{se} + \Gamma_{pc} + d_{pc}) t^2$$
(1a)

$$P_{tc}(t) = \frac{1}{2} \gamma_{se} P_A d_{tc} t^2 \tag{1b}$$

This is a test:

$$\frac{1}{T} = \frac{1}{T_K} \frac{S}{V} \int_0^\infty f(l)^2 e^{-U(l)/kT} dl$$
 (2)

 $10^{-10}mbar \cdot l/s$

Figure 1: Shown is a glass-to-metal-to-glass seal. The metal tube is 5" long by 1" outer diameter. The glass is wetted onto the knife-edge of copper on both ends.

See in Fig. 1

The energy levels of 87 Rb are shown in Fig. ??. where Γ_A is the pressure dependent FWHM, $\Gamma_A \approx 0.04 nm/amg \cdot [^3He]$.

Bibliography