

7) Déagonalisation: -D= NTAN 8 / Quadratic form: 1 (coeff of 21,243) 1 (coeff ognine) A = coeff of x12

\( \frac{1}{2} \) \( \text{coeff of x1x2} \) Coeff of ×22 1 (coeff of x223) 1 (coeff. of x2x3) 1 (coeff of x1x3) coeff of 2132 21 an a12 a13 22 | 021 022 023 23 a31 a32 a33 3 3 x 3 9) Indea (1):-The number of +ve square terms in the canonical form. 10/2 signalute (s):siff. Of no. of the terms and -ve terms in canonical form. 11) Rank (01) :-Non. of non-zeux elements in the eigen values.

| Nature of Canonical forem: 3 (D) |                                                              |                             |                                                       |
|----------------------------------|--------------------------------------------------------------|-----------------------------|-------------------------------------------------------|
|                                  | 1 n = 91 = b, then D is positive definete matrix.            |                             |                                                       |
| 2                                | 2) y et=p but et en, then Dist tre semi-<br>definite matrix. |                             |                                                       |
|                                  |                                                              |                             |                                                       |
| 3                                | If n=r but $b=0$ , then $8 - ve$<br>semi-definite materix.   |                             |                                                       |
| . (4)                            | g ren but \$=0, the Dis-ve Semi definite Matrix.             |                             |                                                       |
|                                  |                                                              |                             |                                                       |
|                                  | Sl.                                                          | Nalure                      | Condinon                                              |
|                                  | 1/0                                                          | Positive<br>Definéle        | In > 0 (+ve) or<br>Au the eigen values able (+) ve.   |
|                                  |                                                              |                             |                                                       |
|                                  | 2/0                                                          | Negative                    | In (0 (-ve) or<br>Authe eigen values avec 6 ve.       |
|                                  |                                                              |                             |                                                       |
|                                  | 37                                                           | Positive semi-<br>definité  | Dn 70 and atleast one value is zero.                  |
|                                  |                                                              |                             | (or)                                                  |
|                                  |                                                              | The Andrews                 | Au the eigen values 708                               |
|                                  | 10                                                           | Nagabin Same                | atleast one value is zoro.                            |
| 1                                | 41                                                           | Negative Semi-<br>Définé le | Dn < 0 and atleast one value<br>Es Zero. (or).        |
|                                  |                                                              |                             | All the eigen values < 0 & atteast one value is zero. |
|                                  | 57                                                           | Indefinité                  | All other cases.                                      |

8/9 P/T quad. form  $n_1^2 + 2\alpha_2^2 + 3\alpha_3^2 + 2\alpha_1\alpha_2 +$   $2\alpha_2\alpha_3 - 2\alpha_1\alpha_3$  is indefinitie. 1912 + 1 3 J + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D + 2 D  $D_2 = |a_{11} \ a_{12}| = |a_{12}| = |a_{1$ D3 = 00 1A1 = 1 (6-1) 1- 1 (3+1) 1+ 1-1(1+2) = 5 - 4 - 3 = (-2) o. The nature is Indefinite. (Proved) Discuss the nature of the quad form 22,72+22223-22113 w/o reducing ento Canonical  $D_1 = 0$ ;  $D_2 = |0| = 0 - 1 = (-1)$ D3=1A1=0-1(0+1)-1(1-0) o The nature is Negative Semidefinite,

# UNIT-I

Vertotal differential equations:

$$2 = f(x,y)$$
 $\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial x}{\partial y}$ 
 $\frac{\partial u}{\partial x_1} = \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial u}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_2} + \frac{\partial f}{\partial x_3} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_3} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial x}{\partial x_1} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_1} + \frac{\partial f}{\partial x_2} \cdot \frac{\partial u}{\partial x_1} + \cdots$ 
 $\frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_1} + \frac$ 

5) If 
$$(u,v)$$
 are functions of  $(x,y)$ , where  $(x,z)$  are functions of  $(x,y)$ ; then

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{bmatrix} \partial(u,v) & \frac{\partial(x,y)}{\partial(x,y)} \end{bmatrix}$$
5) If  $(x,y) = \begin{bmatrix} \partial(u,v) & \frac{\partial(x,y)}{\partial(x,y)} \end{bmatrix}$ 

8) If  $(x,y) = \begin{bmatrix} \partial(u,v) & \frac{\partial(x,y)}{\partial(x,y)} \end{bmatrix}$ 

# ONT III \*\* Summanization (Unit 3)

# ODE (with contant coefficients):

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{m2} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_1 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_2 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_2 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_2 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_2 + m_2$$

$$(x = Ae^{mx} + Be^{mx} ; m_2 + m_2$$

$$(x = Ae^{mx} + Be$$

Scanned by TapScanner

PI= 
$$x \left[ \frac{1}{f(o)}, g(x) \right] - f(x) \left[ \frac{1}{f(x)^{1}}, g(x) \right]$$

# Method of variation of bosometris:

 $CF = Af_1 + Bf_2$ 
 $PI = Pf_1 + gf_2$ 
 $PI = Pf_1 + gf_2$ 

Scanned by TapScanner



where, = (wydo)  $P = \left[ \frac{(4^2 + 41^2)^{3/2}}{4^2 + 27^2 - 77^2} \right]$ H2= (d2p/de2) 2) Centre of convaluere x = | x - y, (4+ y,2) 37 circle of Curvalure  $(x-x)^2 + (y-y)^2 = 2$  Rading 4° Evolules of First write parameteric forum. 5/ Envelopes i) A<sup>2</sup> X + B X + C = 0; X > Parameter ii) Regd envelope of curve, B2- 4AC = 0 (.y.d)=0 } solve the eq ng, (n,y, a)=0 } elimentef(n.y.a)=0

Scanned by TapScanner

#WINIT-WS  $\left\{\frac{1}{n^2}\right\}$  - Convergent Series. Sn 3 - Divergent Series. E(-1) ny - Oscillales fourtely {(-1)<sup>n</sup> n<sup>2</sup> } -> Oscillates Infinitely. Necessary condition for Convergence & Divergence :-→ 2f a tre tour serves ≤ n=1 un és Convergent, then lem un =0; non-zero finite. -> 9f lim 4n≠0, the soules ≤ n=1 un is divergent. \*) Geometric Series  $= \sum_{n=0}^{\infty} \chi^{n} = 1 + \chi + \chi^{2} + \dots + \chi^{n}$ of It IXIXI, then \( \int\_{n=0}^{\infty} \alpha^n \) converges of If [x]?, then \sum n=0 x" diverges

\* Millary Serves  $=\frac{1}{n}$   $=\frac{1}{n}$ - Deverges if P<1 \* Dimit Comparison Test lim Un = fourte (non-zero) (Convergent) Vn = Brighest degree of un en numerator highest degree of un'un demountmatore Condi D'Alembert's Rans Teel 2<1 -> Converges 2>1 -> Diverges 2=1 - Pest fails Raabe's Test

\* Raabe's Test (apply if D'stembert's Test  $n\left(\frac{u_n}{u_{n+1}}-1\right)=l$ y 1<1 - Convergent 171 - sivergent \* Logarithmic Test (apply if Raabe's Test fails) leur n log un+1 = l ey l < 1, Eun converges 4 171, 5 un diverges \* Cauchy Root Test lim Un m - l l<1 -> Sun is convergent 171 -> Eun is divergent. l = 1 -> test fails. Alternating Serves An alternating serves is given by  $\sum_{n=1}^{\infty} (-1)^n u_n$ = . 500 (-1) un= -u,+ u2 +- u3+uy-...

\* Leibnitz Test Quantikun for all'u'

Quantikun for all'u'

North then,  $\leq_{n=1}^{\infty}(-1)^n u_n$  is convergent Absolute Convergence -> [ Alternating series, convergent y ≥ 1 (-1) "un converges. Condéhonal Convergence -> Convergent series but not absolutely.

Scanned by TapScanner