- 1 2 つの関数 $f(x)=-px^2+2\ (p>0)$, g(x)=|x|-2 が与えられていて , 放物線 y=f(x) が 2 点 $(-3\sqrt{2},0)$, $(3\sqrt{2},0)$ を通るとする .
- (1) pの値を求めよ.
- (2) y = f(x) と y = g(x) の交点をすべて求めよ.
- (3) (2) で求めた交点のうち,x 座標が最小となる点を $A(a,\,f(a))$ とする.このとき,点 A における y=f(x) の接線 y=h(x) を求めよ.また,この接線 y=h(x) と y=g(x) の,点 A とは異なる,交点 $B(b,\,g(b))$ を求めよ.
- (4) 次の連立不等式の定める図形の面積を求めよ.

$$a \le x \le b$$
, $y \le h(x)$, $y \ge f(x)$, $y \ge g(x)$