Міністерство освіти і науки України Харківський національний університет радіоелектроніки

Факультет	Інфокомунікацій
•	(повна назва)
Кафедра	Інфокомунікаційної інженерії імені В.В. Поповського
1 1	(повна назва)

3ВІТ з лабораторної роботи №2

з дисципліни **Прогнозування та моделювання в соціальній сфері**

Варіант №10

Виконав:	
студент 2 курсу, групи _	КУІБ-19-2
Нестер	енко Є.В.
	е, ініціали)
Перевірив: завідувач каф	едри ІКІ ім. В.В. Поповсь-
<u>КОГО</u>	
Леме	шко О.В.
(посада, пр	ізвище, ініціали)

МЕТА РОБОТИ

Здобуття практичних навичок з побудови прогнозів на основі методу експоненціального згладжування. Оцінка точності побудови прогнозів за множиною показників. Проведення порівняльного аналізу ефективності досліджуваних методів прогнозування за якісними та кількісними критеріями.

ХІД ВИКОНАННЯ

Завдання 1. Отримання індивідуального варіанту завдань, представленого часовим рядом

Варіант завдання, представлений у вигляді часового ряду представлений.

Таблиця 1 – Індивідуальні значення для побудови прогнозу

Період	Завдання 10			
	Середня заробітна плата в Україні (екв.			
	дол.)			
на 31.12.2009	239,5			
на 31.12.2010	289,3			
на 31.12.2011	340,7			
на 31.12.2012	375,3			
на 31.12.2013	393,8			
на 31.12.2014	213,8			
на 31.12.2015	173,4			
на 31.12.2016	221,5			
на 31.12.2017	275,3			
на 31.12.2018	332,3			
на 31.12.2019	430,5			
на 31.12.2020	437,6			

Завдання 2. Опис моделей

Опис методу експоненціального згладжування

У порівнянні з методами ковзаючих середніх, де задіяні лише найбільш свіжі дані, в методі простого експоненціального згладжування застосовується зважене (експоненціально) ковзне усереднення всіх даних попередніх спостережень.

Ця модель найчастіше застосовується до даних, про які заздалегідь не відомо, чи мають вони тренд.

Метою такого підходу ϵ оцінка поточного стану, результати якої і визначать всі наступні прогнози.

Експоненціальне згладжування передбачає постійне оновлення моделі за рахунок найбільш свіжих даних. Цей метод грунтується на усередненні (згладжування) часових рядів минулих спостережень в низхідному (експоненціально) напрямку.

Більш пізнім подіям присвоюється більшу вагу.

Вага присвоюється наступним чином: для останнього спостереження вагою буде величина α (постійна зглажування), для передостаннього (1 - α), для того, яке було перед ним, - (1 - α) $^{\wedge}$ 2 і т.д. де $0 < \alpha < 1$.

$$\hat{Y}_{t+1} = \alpha Y_t + (1 - \alpha)\hat{Y}_t.$$
 (1.1)

- 1. Коли $\alpha \to 1$, то модель співпадає з наївною моделлю.
- 2. Обчислення значень моделі носять рекурсивний характер.
- 3. Для вибору відповідного значення а прогнозист звичайно керується або інтуїцією, або попереднім досвідом.
- 4. Постійної зглажування α може динамічно змінювати своє значення. Наприклад, при підвищенні точності прогнозу α зменшується, а при зниженні точності значення α має зростати.

Завдання 3. Програмна реалізація методу.

Реалізація експоненціального згладжування

На рис. 3.1, наведена ілюстрація програмної реалізації методу експоненціального згладжування, де Y – вхідні дані.

```
Y=[239.5; 289.3; 340.7; 375.3; 393.8; 213.8; 173.4; 221.5; 275.3; 332.3; 430.5; 437.6;]'; %12
 Y_avg=mean(Y);
 a 1=1;
 a 3=1;
 a_4=0.4;
 a_5=0.15;
 Y ez=Y;
 Y ez 2=Y;
 Y ez 3=Y;
 Y ez 4=Y;
 Y_ez_5=Y;
□ for i=(n):N-1
     Y = z(i+1) = a 1*Y(i) + (1-a 1)*Y = z(i);
     Y_ez_3(i+1)=a_3*Y(i)+(1-a_3)*Y_ez_3(i);
     Y_ez_4(i+1)=a_4*Y(i)+(1-a_4)*Y_ez_4(i);
     Y_ez_5(i+1)=a_5*Y(i)+(1-a_5)*Y_ez_5(i);
 end;
 Y_ez=Y_ez(n+1:N);
 Y_{ez_3=Y_{ez_3}(n+1:N)};
 Y = 2 4=Y = 2 4(n+1:N);
 Y_ez_5=Y_ez_5(n+1:N);
 %ПТ для методу експоненціального згладжування
 step_1=Y_ez_3(1)
 e_ez=Y(N/2+1)-Y_ez_3
 delta_ez=abs(Y(n+1)-Y_ez_3)
 eps_ez=abs(Y(n+1)-Y_ez_3)/Y(n+1)
```

Рисунок 3.1 — Графічна ілюстрація програмної реалізації методу експоненціального згладжування.

Завдання 4. Отримання результатів досліджень

Результати досліджень наведені на рис. 4.1.

Рисунок 4.1 – Графічна ілюстрація заданого часового ряду та прогнозування, створеного на основі методу експоненціального згладжування.

Завдання 5. Оцінка точності побудованого прогнозу за множиною показників. Занесення отриманих результатів розрахунку в порівняльну таблицю.

Оцінка точності прогнозів проводиться за такими ознаками:

1. Помилка прогнозу:

$$e_j = y_j - \hat{y}_j. \tag{5.1}$$

2. Абсолютна помилка прогнозу:

$$\Delta_j = |y_j - \hat{y}_j|. \tag{5.2}$$

3. Середня абсолютна помилка прогнозу:

$$MAE = \left(\frac{\sum_{j=1}^{N} |y_j - \hat{y}_j|}{N}\right). \tag{5.3}$$

4. Відносна похибка прогнозу:

$$\varepsilon_{j} = \left(\frac{|y_{j} - \hat{y}_{j}|}{y_{j}}\right) \cdot 100. \tag{5.4}$$

5. Середня абсолютна відсоткова помилка:

$$MAPE = \frac{1}{N} \cdot \left(\sum_{j=1}^{N} \frac{\left| y_j - \hat{y}_j \right|}{y_j} \right) \cdot 100\%.$$
 (5.5)

6. Середня відсоткова помилка:

MPE =
$$\frac{1}{N} \cdot \left(\sum_{j=1}^{N} \frac{(y_j - \hat{y}_j)}{y_j} \right) \cdot 100\%.$$
 (5.6)

7. Коефіцієнт детермінації:

$$R^{2} = 1 - \frac{\sum_{t=1}^{N} (e_{t}^{2})}{\sum_{t=1}^{N} (y_{t} - \bar{y}_{t})^{2}}.$$
 (5.7)

Таблиця 2 – Отримані у результаті розрахунків дані

Метод прогнозу /показник точності прогнозу	Прогноз (на один часовий інтервал вперед)	Помилка прогнозу	Абсол. помилка прогнозу	Відн. помилка прогнозу	Сер. абс. помилка прогнозу	Сер. абс. відсоткова помилка прогнозу	Сер. відсотк. помилка прогнозу	Коеф. детерм.
Метод крайніх точок	208,6600	-35,26	35,26	0,2033	127,71	35,4561	28,678	0,22
Метод середніх точок	310,5028	-137,1028	137,1028	0,7907	87,6083	32,4343	-11,7763	0,0133
ЛМ	327,5562	-154,1562	154,1562	0,8890	84,6940	34,5528	34,5528	0,0631
ПМ	188,4434	-15,0434	15,0434	0,0868	788,6305	217,8830	217,8830	- 64,347
EM	313,1069	-139,7069	139,7069	0,8057	82,0277	31,8018	31,8018	0,0844
НМ	213,8	-40,4	40,4	0,233	50,7667	17,6905	9,9243	-4,1575
HMM1	139,6	33,8	33,8	0,8051	61,55	25,6474	18,708	-0,8708
HMM2	116,0753	57,3247	57,3247	0,3306	50,8698	18,2653	7,2002	-1,3474
KC	327,6333	-154,2333	154,2333	0,8895	10334	37,0461	1,5533	0,0985
ПС	308,7333	-135,3333	135,3333	0,7805	9079,9	31,9706	-4,9428	0,0683
ЕЗ	213,8	-40,4	40,4	0,233	50,7667	17,6905	17,6905	0,9969

ВИСНОВКИ

Середня абсолютна відсоткова помилка прогнозу ЕЗ дорівнює 17,6905%, що знаходиться у проміжку між 10 та 20 відсотками і ϵ гарним результатом. Помилка прогнозу на 1 крок вперед склала 40,4.

Отже, прогнозування заданого часового ряду методом експоненціального згладжування має невелику помилку прогнозу на 1 крок у порівнянні з раніше досліджуваними методами. Результати оцінки точності ЕЗ майже однакові з результатами оцінки НМ.