Kapitel 3, 10 16 Punkte

Geben Sie die Formeln für die Verteilung folgender Zufallsvariablen in Abhängigkeit ihrer Parameter an. (mündliche Anmerkung: bei kontinuierlichen Zufallsvariablen die Formeln für die Verteilungsfunktion)

1	. Bernoulli (p)	1 Punkt
2	. Nicht verschobene geometrische Verteilung (p)	1 Punkt
3	. Binomial (n, p)	2 Punkte
4	. Negative Binomial verteilung (s, p)	3 Punkte
5	. Poisson-Verteilung (y)	2 Punkte
6	. Zipf-Verteilung (N, s)	3 Punkte
7	. Exponentielle Verteilung (λ)	1 Punkt
8	. Pareto-Verteilung (k, x_{\min})	3 Punkte

Kapitel 4		
Sowohl Konfidenzintervalle als auch Standardabweichungen können bei der Ergebnisdarstellung als Abweichung von simulierten Mittelwerten angezeigt werden.		
1. Wie wird die Varianz einer zeitdiskreten Zufallsvariable berechnet? Geben Sie einer Formel an!	ine 1 Punkt	
2. Wie wird im Gegensatz dazu die Varianz einer Stichprobenmenge berechnet? Geb Sie eine Formel an!	en 1 Punkt	
3. Wie wird ein Student-t-Konfidenzintervall berechnet? Geben Sie eine Formel an	! 2 Punkte	
4. Erklären Sie, was dieses Konfidenzintervall aussagt!	2 Punkte	
5. Wie wird die Standardabweichung berechnet?	1 Punkt	
6. Wofür ist sie ein Maß?	1 Punkt	
7. Wie wird der Variationskoeffizient berechnet?	1 Punkt	
8. Was muss erfüllt sein, damit seine Benutzung sinnvoll ist?	1 Punkt	
9. Wie verhält sich das Konfidenzintervall bei zunehmenden Stichprobenumfang?	1 Punkt	
10. Wie verhält sich die Standardabweichung bei zunehmenden Stichprobenumfang	? 1 Punkt	

Kapitel 6	12 Punkte
Gegeben sei ein stochastischer Prozess $X(t), 0 \le t < \infty$. Einzelne Realisierungen können mit $x_i(t)$ unterschieden werden.	
1. Geben Sie die Formel für das Zeit-Mittel $\overline{X_T^k}$ dieses Prozesses $X(t)$ über die Zeit T an!	2 Punkte
2. Geben Sie die Formel für das Ensemble-Mittel $\overline{m_k(t)}$ zum Zeitpunkt t an!	2 Punkte
3. Was bedeutet Ergodizität für das k-te Moment? Benutzen Sie die korrekten Limesausdrücke!	2 Punkte
4. Geben Sie ein Beispiel für einen ergodischen Prozess an, gerne ein Warteschlangenmodell in Kendall-Notation!	1 Punkt
5. Geben Sie ein Beispiel für einen nicht-ergodischen Prozess an, gerne ein Warteschlangenmodell in Kendall-Notation!	1 Punkt
6. Nennen Sie zwei Verfahren zur Erzeugung von Konfidenzintervallen für korrelierte Zeitreihen!	2 Punkte
7. Welches dieser Verfahren kann für nicht-ergodische Prozesse verwendet werden?	1 Punkt
8. Warum kann das andere Verfahren für nicht-ergodische Prozesse nicht verwendet werden? Erklären Sie das anhand Ihres Beispiels für einen nicht-ergodischen Prozess!	1 Punkt

Kapitel 7	
Für Erneuerungsprozesse können Rekurrenzzeiten berechnet werden.	
1. Erklären Sie, was man unter Rekurrenzzeit versteht!	? Punkte
2. Für welche Verteilung eines zeitkontinuierlichen Erneuerungsprozesses weist die Rekurrenzzeit dieselbe Verteilung auf?	? Punkte
3. Wie heißt dieser Prozess und warum nennt man ihn gedächtnislos?	? Punkte

Kapitel ?
?

Kapitel 8 10 Punkte

Wir betrachten einen On-Off-Sprachprozess. Wenn die modellierte Datenquelle nach einem möglichen Zustandsübergang im On-Zustand ist, wird ein Sprachpaket erzeugt, ansonsten nicht. Die Quelle bleibt mit Wahrscheinlichkeit p im On-Zustand und mit Wahrscheinlichkeit q im Off-Zustand.

1. Definieren Sie geeignete Zustände, um das System zu modellieren, und erklären Sie deren Semantik.

2 Punkte

2. Geben Sie das Zustandsübergangsdiagramm incl. Übergangswahrscheinlichkeiten an.

2 Punkte

3. Stellen Sie die Übergangsmatrix für die Markov-Kette auf.

2 Punkte

4. Wie lautet der Name der Verteilung, mit der sich die Anzahl von gesendeten Paketen während einer On- bzw. Off-Phase beschreiben lässt? Geben Sie den Mittelwert für diese Verteilung in Abhängigkeit von p und q an!

2 Punkte

5. Berechnen Sie die Wahrscheinlichkeit, mit der sich die Quelle im On- bzw. Off- Zustand befindet, in Abhängigkeit von p bzw. q!

2 Punkte

Kapitel 9			
Gegeben ist ein M/M/n Verlustsystem mit Ankunftsrate λ und Bedienrate $\mu.$			
1. Geben Sie eine Formel für die angebotene Last an!	1 Punkt		
2. In welcher Pseudo-Einheit wird sie gemessen? Was ist daran Pseudo?	1 Punkt		
3. Geben Sie eine Formel für die relative angebotene Last an!	1 Punkt		
4. Zeichnen Sie das Übergangsdiagramm der zeitkontinuierlichen Markov-Kette, mit der ein $M/M/3$ Verlustsystem untersucht werden kann, inklusive aller Zustandsübergangsraten!	4 Punkte		
5. Was ist die mittlere Bedienzeit in diesem System?	1 Punkt		
6. Was kann man mit der Erlang-Formel berechnen?	1 Punkt		
7. Was kann man mit der Erlang-B-Formel berechnen?	1 Punkt		
8. Eine Telefonvermittlungsstelle hat ein Angebot von 90 Erlang. Erklären Sie, wie man mithilfe des $M/M/n$ -Systems herausfinden kann, wie viele ausgehende Leitungen benötigt werden, damit eine gewünschte Blockierwahrscheinlichkeit p_b erreicht wird!	3 Punkte		
9. Erklären Sie den Begriff Bündelungsgewinn in diesem Kontext!	2 Punkte		

Kapitel 12 10 Punkte

?