Language Models as Knowledge Bases?

Ben Kabongo M1 DAC, Sorbonne Université

01/03/2022

Sommaire

- Problématique
- Modèles de langage
- LAMA: Language Models Analysis
 - Bases de connaissances
 - Baseline
 - Métriques
 - Choix d'implémentation
- Résultats
- Conclusions

Problématique

- Avantages des <u>modèles de</u> <u>langage</u> par rapport aux bases de connaissance :
 - Pas de supervision dans les modèles de langage : pas de schéma
 - Classe ouverte de relations
 - Facilement extensible

Les bases de connaissance et les grands modèles de langage peuvent répondre aux mêmes questions.

Problématique

- Les modèles de langage peuvent-ils donc être utilisés comme des bases de connaissance ?
 - Connaissances relationnelles des modèles de langage : ELMo, BERT
 - Quantité des connaissances relations des modèles
 - Différences avec d'autres types de connaissances : faits, bons sens, réponses aux questions
 - Comparaison des performances avec les bases de connaissance
- Quel apport dans les tâches faisant intervenir le sens commun ? Apprentissage par renforcement ?
 - Lien avec le projet :
 - Les modèles de langage sont-ils capables de générer des instructions pour les robots?

Modèles de langages

Model	Based-model	#Param	#Corpus	
fairseq-fconv	ConvNet	324M	103M	
Transformer-XL	Transformer	257M	103M	
ELMo (original)	BiLSTM	93.6M	800M	
ELMo (5.5B)	BiLSTM	93.6M	5.5B	
BERT (base)	Transformer	110M	3.3B	
BERT (large)	Transformer	340M	3.3B	

LAMA: LAnguage Model Analysis

- Corpus de faits (tirés de bases de connaissances)
 - **Fait :** triplet (sujet, relation, objet) ou couple (question, réponse)
 - o Transformation des données pour l'étude
- Test des connaissances factuelles et de sens commun des modèles de langage
 - Prédiction du jeton manquant
 - (?, relation, objet); (sujet, ?, objet); (sujet, relation, ?)
 - (?, réponse); (question, réponse)
- Evaluation des modèles
 - Classification du jeton manquant par rapport à un vocabulaire fixe.

Bases de connaissances de référence

- Google-RE (Sujet-Relation-Objet)
 - Relations considérées :
 - place of birth, date of birth, place of death
- <u>T-REX</u> (Sujet-Relation-Objet)
 - 41 relations considérées
- <u>ConceptNet</u> (Sujet-Relation-Objet)
 - La base de connaissance que nous étudions dans ce projet
 - 16 relations considérées
- <u>SQuAD</u> (Question-Réponses)
 - o Jeu de données de questions-réponses
 - o 305 questions contextuelles

LAnguage Model Analysis: Baseline

- <u>Freq</u>: (Sujet-Relation-Objet)
 - Pour chaque (<u>sujet</u>, <u>rel</u>) indique la fréquence des (sujet=?, relation=<u>rel</u>, objet=<u>sujet</u>)
 - Modèle qui pour une relation donnée prédit tout le temps les mêmes objets
 - Performance de la limite supérieure
- RE: (Sujet-Relation-Objet)
 - Modèle d'extraction de relations : extraction des triplets étant donnée une phrase
 - Entrées : ensemble de faits -> Sortie : graphe de triplets
 - Usage: retrouver le sujet dans le graphe, classification des objets en fonction des scores donnés par RE
 - Variantes: différentes implémentations des liaisons d'entités
 - REn: correspondance exacte des chaînes
 - **REo**: correspondance exacte + oracle
- <u>DrQA</u>: (Question-Réponse)
 - Prédit la réponse aux questions
 - Recherche TF-IDF des documents pertinents
 - Extraction des réponses
 - Contraintes sur la réponse des modèles : un seul token

Métriques

- Métriques basées sur le rang
 - Calcul par relation
 - Valeurs moyennes par relation
- Précision moyenne à k (P@k)
 - Valeur à 1 si classification parmi les k premiers résultats
 - o O sinon

LAMA: considérations et choix d'implémentation

- Modèles définis manuellement
 - Définition pour chaque relation d'un modèle d'interrogation de l'emplacement objet de la relation
 - Les bases de connaissance traditionnelles n'ont qu'une seule façon d'interroger les connaissances
 - working-for est complètement différent de is-working-for
 - Mesure de la limite inférieure des connaissances des modèles de langage
- Token unique
 - La prédiction ne porte que sur un seul token
- Interrogation sur les emplacements d'objets
 - Les interrogations portent sur les emplacements d'objets : (sujet, relation, ?)
 - Inclusion des relations inverses : contient, contenu par
- Intersection des vocabulaires des modèles de langage
 - Taille du vocabulaire utilisé : 21K

Résultats

Corpus	Relation	Statistics		Baselines		KB		LM					
		#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	Bl
Google-RE	birth-place	2937	1	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1
	birth-date	1825	1	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4
	death-place	765	1	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0
	Total	5527	3	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5
T-REx	1-1	937	2	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5
	<i>N</i> -1	20006	23	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2
	N-M	13096	16	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3
	Total	34039	41	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3
ConceptNet	Total	11458	16	4.8	-	-	-	3.6	5.7	6.1	6.2	15.6	19.2
SQuAD	Total	305	-	-	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4

Conclusions

- Modèle le plus performant : BERT-large
- Les performances d'extraction de relations puissent être difficiles à améliorer avec plus de données
- Extraction d'une base de connaissance non trivale
- Réponse à la problématique :
 - Les modèles de langage formés sur des grands corpus pourraient devenir une alternative viable aux bases de connaissances traditionnelles extraites du texte à l'avenir.