Problem Statement

Although different banks set their own approval standards, they generally look out for the same type of customers. From machine learning, we can predict the indicators that will drive a successful credit card application.

Import neccessary libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
```

Import Dataset

```
In [303... #data set from: https://www.kaggle.com/datasets/samuelcortinhas/credit-card-approved df = pd.read_csv('/Users/alisonc/Documents/PERSONAL/Data Science Bootcamp/credit_card-approved to the pd.read_csv('/Users/alisonc/Documents/PERSONAL/Data Bootcamp/credit_card-approved to the pd.read_csv('/Users/alisonc/Documents/PERSONAL/Data Bootcamp/credit_card-approved to the pd.read_csv('/Users/alisonc/Documents/PERSONAL/Data Bootcamp/credit_csv('/Users/alisonc/Documents/PERSONAL/Data Bootca
```

Data cleaning & EDA

```
In [304... #get info

df.shape
    df.head()
    df.info() #check for strings that might relate to the approval
    df.describe()

Out[304]: Gender Age Debt Married BankCustomer Industry Ethnicity YearsEmployed PriorDefau
```

	Gender	Age	Debt	Married	BankCustomer	Industry	Ethnicity	YearsEmployed	PriorDefau
0	1	30.83	0.000	1	1	Industrials	White	1.25	
1	0	58.67	4.460	1	1	Materials	Black	3.04	
2	0	24.50	0.500	1	1	Materials	Black	1.50	
3	1	27.83	1.540	1	1	Industrials	White	3.75	
4	1	20.17	5.625	1	1	Industrials	White	1.71	

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 690 entries, 0 to 689
Data columns (total 16 columns):
```

#	Column	Non Null Count	Dtype
#	COTUMN	Non-Null Count	Dtype
0	Gender	690 non-null	int64
1	Age	690 non-null	float64
2	Debt	690 non-null	float64
3	Married	690 non-null	int64
4	BankCustomer	690 non-null	int64
5	Industry	690 non-null	object
6	Ethnicity	690 non-null	object
7	YearsEmployed	690 non-null	float64
8	PriorDefault	690 non-null	int64
9	Employed	690 non-null	int64
10	CreditScore	690 non-null	int64
11	DriversLicense	690 non-null	int64
12	Citizen	690 non-null	object
13	ZipCode	690 non-null	int64
14	Income	690 non-null	int64
15	Approved	690 non-null	int64
dtyp	es: float64(3),	int64(10), object	t(3)
	06 4.	I/D	

memory usage: 86.4+ KB

	_		_		-	-	-	
- (111	-		2	ſλ	71	- 1	

customer rearsemployeu	PriorDefau
90.000000 690.000000	690.00000
0.763768 2.223406	0.52318
0.425074 3.346513	0.49982
0.000000 0.000000	0.00000
1.000000 0.165000	0.00000
1.000000 1.000000	1.00000
1.000000 2.625000	1.00000
	0.763768 2.223406 0.425074 3.346513 0.000000 0.000000 1.000000 0.165000 1.000000 1.000000

Legend

Gender: 0=Male 1=Female Debt: Outstanding Debt

Married: 0=Single/Divorced 1=Married BankCustomer: 0=Not customer 1=Customer PriorDefault: 0=Not employed 1=Employed DriversLicense: 0=No license 1=With license

Approved: 0=Not approved 1=Approved

Rename column header for better understanding

```
df = df.rename({'Debt':'OutsDebt','Approved':'ApprovalStatus'},axis=1)
In [305...
```

Identify the objects and find out the value count of them

```
string_cols = df.select_dtypes('object').columns
string_cols
```

```
value_count = df[string_cols].apply(pd.value_counts, normalize=True)
value_count
value_count.index # preview to multiindex, you also get this when doing df.groupby
# we don't need such high granularity usually, so do in loop
for col in string_cols:
    df[col].value_counts()
```

Out[306]: Index(['Industry', 'Ethnicity', 'Citizen'], dtype='object')

Out[306]:

	Industry	Ethnicity	Citizen
Asian	NaN	0.085507	NaN
Black	NaN	0.200000	NaN
ByBirth	NaN	NaN	0.905797
ByOtherMeans	NaN	NaN	0.082609
CommunicationServices	0.055072	NaN	NaN
ConsumerDiscretionary	0.085507	NaN	NaN
ConsumerStaples	0.078261	NaN	NaN
Education	0.036232	NaN	NaN
Energy	0.211594	NaN	NaN
Financials	0.073913	NaN	NaN
Healthcare	0.076812	NaN	NaN
Industrials	0.092754	NaN	NaN
InformationTechnology	0.059420	NaN	NaN
Latino	NaN	0.082609	NaN
Materials	0.113043	NaN	NaN
Other	NaN	0.040580	NaN
Real Estate	0.043478	NaN	NaN
Research	0.014493	NaN	NaN
Temporary	NaN	NaN	0.011594
Transport	0.004348	NaN	NaN
Utilities	0.055072	NaN	NaN
White	NaN	0.591304	NaN

```
146
           Energy
Out[306]:
          Materials
                                     78
           Industrials
                                     64
          ConsumerDiscretionary
                                     59
           ConsumerStaples
                                     54
          Healthcare
                                     53
           Financials
                                     51
           InformationTechnology
                                     41
           CommunicationServices
                                     38
                                     38
          Utilities
           Real Estate
                                     30
           Education
                                     25
           Research
                                     10
          Transport
                                      3
          Name: Industry, dtype: int64
          White
                    408
Out[306]:
          Black
                     138
          Asian
                      59
           Latino
                      57
                      28
           Name: Ethnicity, dtype: int64
           ByBirth
                           625
Out[306]:
           ByOtherMeans
                            57
           Temporary
                             8
           Name: Citizen, dtype: int64
           from sklearn.preprocessing import LabelEncoder
In [307...
           le = LabelEncoder()
           for col in df:
               if df[col].dtypes=='object':
                   df[col]=le.fit_transform(df[col])
           df
```

Out[307]:		Gender	Age	OutsDebt	Married	BankCustomer	Industry	Ethnicity	YearsEmployed	Prior
	0	1	30.83	0.000	1	1	7	4	1.25	
	1	0	58.67	4.460	1	1	9	1	3.04	
	2	0	24.50	0.500	1	1	9	1	1.50	
	3	1	27.83	1.540	1	1	7	4	3.75	
	4	1	20.17	5.625	1	1	7	4	1.71	
	•••									
	685	1	21.08	10.085	0	0	3	1	1.25	
	686	0	22.67	0.750	1	1	4	4	2.00	
	687	0	25.25	13.500	0	0	6	2	2.00	
	688	1	17.92	0.205	1	1	2	4	0.04	
	689	1	35.00	3.375	1	1	4	1	8.29	
	690 r	ows × 16	5 colum	nns						

Check for duplicates

```
In [308... df.duplicated().sum()
    #Result: 0 duplicates to drop
Out[308]: 0
```

Results: No duplicates to drop

Check for missing data

Results: No missing data to fill

Observe the mean of the varients compared to the approval status

Basic observation through mean

- The mean of Gender and Age in relations to the approval status does not have a big variance. It does not seem to affect approval status.
- A higher Outstanding Debt did not seem to affect the approval rate. It could be that the bank also consider on time debt repayment, as long as the repayment is done on time, it will not affect the approval rate.
- Being Married or a Customer of the bank have very little affect on the approval rate as well.
- Longer Years Employed, Being Employed, good Credit Score and a high income does seem to have push more approvals
- Having Prior Payment seem to lower the approval rate
- Having a Drivers License and Zipcode location dont seem to have any relations to the approval status

Use Pairplot to identify correlations of the different varients

```
In [313... sns.pairplot(df, hue ='ApprovalStatus')
plt.show()
Out[313]: <seaborn.axisgrid.PairGrid at 0x1a491adc2b0>
```


Identify correlations of the varients through pairplot

- Gender, Marital Status, Citizen, Bank Customer, Employed, Ethnicity and Drivers License does not seem to have any correlations to any other variants
- Age, Industry, Oustanding Debt, Years Employed, Prior Default, Credit Score, Zipcode and Income seem to have come correslations to each other that we can explore and understand better.

Further use of heatmap to observe correlations

In [314...

df.corr()

Οι	14	Γ	2	1	/	٦	
Οl	1 L	L	\mathcal{L}	+	+	J	

	Gender	Age	OutsDebt	Married	BankCustomer	Industry	Ethnicity	Y
Gender	1.000000	0.035044	-0.041746	-0.068062	-0.071250	-0.111889	0.029492	
Age	0.035044	1.000000	0.202177	0.106929	0.099477	-0.038746	-0.179534	
OutsDebt	-0.041746	0.202177	1.000000	0.074649	0.083781	0.064553	-0.075789	
Married	-0.068062	0.106929	0.074649	1.000000	0.992033	0.021652	0.008226	
BankCustomer	-0.071250	0.099477	0.083781	0.992033	1.000000	0.024677	0.006648	
Industry	-0.111889	-0.038746	0.064553	0.021652	0.024677	1.000000	-0.013881	
Ethnicity	0.029492	-0.179534	-0.075789	0.008226	0.006648	-0.013881	1.000000	
YearsEmployed	0.086544	0.391464	0.298902	0.069945	0.075905	0.048689	-0.177111	
PriorDefault	-0.026047	0.204434	0.244317	0.145073	0.138535	0.154645	-0.114148	
Employed	-0.077784	0.086037	0.174846	0.175428	0.170268	0.134769	-0.030250	
CreditScore	-0.024630	0.187327	0.271207	0.113968	0.111077	0.080107	-0.068072	
DriversLicense	0.051674	0.053599	-0.013023	-0.009784	-0.002402	0.011010	-0.035688	
Citizen	0.075413	-0.006481	-0.116975	0.024319	0.052141	-0.122211	0.070235	
ZipCode	0.086007	-0.078690	-0.217903	-0.017074	-0.009513	0.020551	-0.040003	
Income	-0.002063	0.018719	0.123121	-0.006899	0.057273	0.027820	-0.034251	
ApprovalStatus	-0.028934	0.164086	0.206294	0.180583	0.188964	0.202158	-0.075558	

Out[315]: <AxesSubplot:>

- Looking at both the pair plot as well as the heatmap, we can roughly determine the variables that most affect the approval status. - Namely, Age, Industry, Outstanding Debt, Years Employed, Credit Score and

Income. - We can look at dropping the rest of the columns that does not seem to have a significant effect to the approval rate.

[316	df										
t[316]:		Gender	Age	OutsDebt	Married	BankCustomer	Industry	Ethnicity	YearsEmp	loyed	Prior
	0	1	30.83	0.000	1	1	7	4		1.25	
	1	0	58.67	4.460	1	1	9	1		3.04	
	2	0	24.50	0.500	1	1	9	1		1.50	
	3	1	27.83	1.540	1	1	7	4		3.75	
	4	1	20.17	5.625	1	1	7	4		1.71	
	•••										
(685	1	21.08	10.085	0	0	3	1		1.25	
(686	0	22.67	0.750	1	1	4	4		2.00	
(687	0	25.25	13.500	0	0	6	2		2.00	
	688	1	17.92	0.205	1	1	2	4		0.04	
	689	1	35.00	3.375	1	1	4	1		8.29	
6	90 r	ows × 1	6 colum	ns							
											•
317	df =	df.dro	pp([' <mark>Ge</mark> r	nder', 'B	ankCustom	mer', 'Marrie	d', 'Dri	versLicer	nse', 'Cit	izen'	, 'Z:
	df =	: df.dro	op([' <mark>Ge</mark> r	nder', 'B	ankCustom	er', 'Marrie	d', 'Dri	versLicer	nse', 'Cit	izen'	, 'Z:
18						ployed PriorDe					
318	df			Industry	YearsEmp					Incom	
318	df 0	Age (OutsDebt	i Industry	YearsEmp	oloyed PriorDe	fault Em	ployed C	reditScore	Incom	е А р
318	0 1	Age 30.83	OutsDebt	: Industry) 7) 9	YearsEmp	oloyed PriorDe	r fault Em	ployed C r	reditScore	Incom	е А р 0
318	0 1 2	Age 30.83 58.67	DutsDebt 0.000 4.460	: Industry) 7) 9	YearsEmp	oloyed PriorDe 1.25 3.04	r fault Em 1 1	ployed C r 1	reditScore 1 6	Incom () 560	е А р 0
318	0 1 2 3	Age 30.83 58.67 24.50	0.000 4.460 0.500	i Industry 7 9 9 7	YearsEmp	1.25 3.04 1.50	fault Em 1 1 1	ployed C	reditScore 1 6 0	560 824	e A F 0 0
318	0 1 2 3	Age 30.83 58.67 24.50 27.83	0.000 4.460 0.500 1.540	t Industry 7 9 7 7 7 7 7 7 7	YearsEmp	1.25 3.04 1.50 3.75	fault Em 1 1 1 1	ployed C 1 1 0 1	reditScore 1 6 0 5	566 82-	e A p 0 0 4
318 (0 1 2 3 4	Age 30.83 58.67 24.50 27.83 20.17	0.000 4.460 0.500 1.540 5.625	i Industry 7 9 7 7 7 7 7	YearsEmp	1.25 3.04 1.50 3.75 1.71	1 1 1 1 1 1 1 1	ployed C 1 1 0 1	1 6 0 5 0	566 824	e Ar 0 0 4 3
318 (0 1 2 3 4 	Age 30.83 58.67 24.50 27.83 20.17	0.000 4.460 0.500 1.540 5.625	1 Industry	YearsEmp	1.25 3.04 1.50 3.75 1.71	fault Em 1 1 1 1 1	ployed C 1 1 0 1	1 6 0 5 0	566 824	e AF 0 0 4 3 0
318 (0 1 2 3 4 	Age 30.83 58.67 24.50 27.83 20.17 21.08	0.000 4.460 0.500 1.540 5.625 	1 Industry 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	YearsEmp	1.25 3.04 1.50 3.75 1.71 	1 1 1 1 1 0	ployed C 1 1 0 1 0	1 6 0 5 0 0	566 82-	e AF 0 0 4 3 0
18 (0 1 2 3 4 685 686	Age 30.83 58.67 24.50 27.83 20.17 21.08 22.67	0.000 4.460 0.500 1.540 5.625 10.085 0.750	1 Industry 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	YearsEmp	1.25 3.04 1.50 3.75 1.71 1.25 2.00	1 1 1 1 1 0 0	ployed C 1 1 0 1 0 1	reditScore 1 6 0 5 0 0 2	566 82-	e AF 0 0 4 3 0 0 4 1
1.8 (0 1 2 3 4 685 686 687 688	Age 30.83 58.67 24.50 27.83 20.17 21.08 22.67 25.25	0.000 4.460 0.500 1.540 5.625 10.085 0.750	1 Industry 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	YearsEmp	1.25 3.04 1.50 3.75 1.71 1.25 2.00 2.00	1 1 1 1 1 1 0 0 0 0	ployed C 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1	reditScore 1 6 0 5 0 0 2 1	566 82- 39-	e AF 0 0 4 3 0 0 4 1
218 (c)	0 1 2 3 4 685 686 687 688	Age 30.83 58.67 24.50 27.83 20.17 21.08 22.67 25.25 17.92 35.00	0.000 4.460 0.500 1.540 5.625 10.085 0.750 13.500 0.205	1 Industry 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	YearsEmp	1.25 3.04 1.50 3.75 1.71 1.25 2.00 2.00 0.04	1 1 1 1 1 1 0 0 0 0 0 0	ployed C 1 1 0 1 0 1 1 0 1 0 1 0 1 0	reditScore 1 6 0 5 0 0 2 1	566 82- 39-	e AF 0 0 0 4 3 0 4 1 0

How does Age affect Approval Status

Pulling out potential correlations between different variants from the pairplot earlier

```
fig = plt.figure(figsize = (10, 5))
In [319...
           # creating the bar plot
           plt.bar(x=df['ApprovalStatus'], height=df['Age'], color ='maroon',
                   width = 0.2)
           plt.xlabel('Approval Status: 0 being Rejected, 1 being Approved')
           plt.ylabel('Age')
           plt.title('Age vs Approval Status')
           plt.show()
           <BarContainer object of 690 artists>
Out[319]:
           Text(0.5, 0, 'Approval Status: 0 being Rejected, 1 being Approved')
Out[319]:
          Text(0, 0.5, 'Age')
Out[319]:
           Text(0.5, 1.0, 'Age vs Approval Status')
Out[319]:
```


- From the bar chart, age does not seem to affect approval status

How does Credit Score affect Approval Status

Out[320]: Text(0.5, 1.0, 'Credit Score vs Approval Status')

- We can see that when credit score is higher, , there is higher approval rate

How does Prior Default affect Approval Status

```
sns.set_theme(style='darkgrid')
In [321...
         fig = plt.subplots(figsize=(10,5))
         PriorDefaultPlot.set(xlabel='Prior_Default', ylabel='Approval_Status')
         PriorDefaultPlot.set xticklabels(['Default', 'No Default'])
         plt.legend(title='Appplicaton Status', labels=['1=Approved', '0=Rejected'], loc='u
         plt.title('Prior_Default VS Approval_Status')
         plt.show()
         [Text(0.5, 0, 'Prior_Default'), Text(0, 0.5, 'Approval_Status')]
Out[321]:
         [Text(0, 0, 'Default'), Text(1, 0, 'No Default')]
Out[321]:
         <matplotlib.legend.Legend at 0x1a4b3c11f10>
Out[321]:
         Text(0.5, 1.0, 'Prior_Default VS Approval_Status')
Out[321]:
```


In []: - When there is no default, there is higher approval rate and when there are defaul

How does Income affect Approval Status

```
fig = plt.figure(figsize = (10, 5))
In [322...
           # creating the bar plot
           plt.bar(x=df['ApprovalStatus'], height=df['Income'], color ='green',
                   width = 0.2)
           plt.xlabel('Approval Status: 0 being Rejected, 1 being Approved')
           plt.ylabel('Income')
           plt.title('Income vs Approval Status')
           plt.show()
           <BarContainer object of 690 artists>
Out[322]:
          Text(0.5, 0, 'Approval Status: 0 being Rejected, 1 being Approved')
Out[322]:
          Text(0, 0.5, 'Income')
Out[322]:
          Text(0.5, 1.0, 'Income vs Approval Status')
Out[322]:
```


- High income increases approval rate

How does being Employed affect Approval Status

```
sns.set_theme(style='darkgrid')
In [323...
           fig = plt.subplots(figsize=(10,5))
           EmployedPlot = sns.countplot(data=df,x='Employed', hue='ApprovalStatus', palette='6
           EmployedPlot.set(xlabel='Employed', ylabel='Approval_Status')
           EmployedPlot.set_xticklabels(['Employed', 'Not Employed'])
           plt.legend(title='Appplication Status', labels=['1=Approved', '0=Rejected'], loc='u|
           plt.title('Employed VS Approval_Status')
           [Text(0.5, 0, 'Employed'), Text(0, 0.5, 'Approval_Status')]
Out[323]:
           [Text(0, 0, 'Employed'), Text(1, 0, 'Not Employed')]
Out[323]:
           <matplotlib.legend.Legend at 0x1a4b1a34fd0>
Out[323]:
           Text(0.5, 1.0, 'Employed VS Approval_Status')
Out[323]:
```


- Being employed increases the approval rate compared to not being employed

How does being Years Employed affect Approval Status

```
fig = plt.figure(figsize = (10, 5))
In [324...
           # creating the bar plot
           plt.bar(x=df['ApprovalStatus'], height=df['YearsEmployed'], color ='yellow',
                   width = 0.2)
           plt.xlabel('Approval Status: 0 being Rejected, 1 being Approved')
           plt.ylabel('Years Employed')
           plt.title('Years Employed vs Approval Status')
           plt.show()
           <BarContainer object of 690 artists>
Out[324]:
           Text(0.5, 0, 'Approval Status: 0 being Rejected, 1 being Approved')
Out[324]:
           Text(0, 0.5, 'Years Employed')
Out[324]:
           Text(0.5, 1.0, 'Years Employed vs Approval Status')
Out[324]:
```


- Longer history of employment increases approval rate

How does being Industry affect Approval Status

```
Out[292]: Text(0, 0.5, 'Industry')
Out[292]: Text(0.5, 1.0, 'Industry vs Approval Status')
```


- Approval status does not seem to related to industry the person is working in

How does being Years Outstanding Debt affect Approval Status

```
In [325...
         fig = plt.figure(figsize = (10, 5))
          # creating the bar plot
          plt.bar(x=df['ApprovalStatus'], height=df['OutsDebt'], color ='purple',
                   width = 0.2)
          plt.xlabel('Approval Status: 0 being Rejected, 1 being Approved')
          plt.ylabel('Outstanding Debt')
          plt.title('Outstanding Debt vs Approval Status')
          plt.show()
          <BarContainer object of 690 artists>
Out[325]:
          Text(0.5, 0, 'Approval Status: 0 being Rejected, 1 being Approved')
Out[325]:
          Text(0, 0.5, 'Outstanding Debt')
Out[325]:
          Text(0.5, 1.0, 'Outstanding Debt vs Approval Status')
Out[325]:
```


- Surprised that outstanding debt does not affect approval status much. The bank likely also take into account the timely repayment. If repayment is done on time, the amount of debt does not affect the status.

Further Clean the Data

Drop column that does not affect the Approval Status

In [326	df =	<pre>df = df.drop(['Industry', 'OutsDebt', 'Age'], axis = 1)</pre>										
In [327	df											
Out[327]:		YearsEmployed	PriorDefault	Employed	CreditScore	Income	ApprovalStatus					
	0	1.25	1	1	1	0	1					
	1	3.04	1	1	6	560	1					
	2	1.50	1	0	0	824	1					
	3	3.75	1	1	5	3	1					
	4	1.71	1	0	0	0	1					
	•••											
	685	1.25	0	0	0	0	0					
	686	2.00	0	1	2	394	0					
	687	2.00	0	1	1	1	0					
	688	0.04	0	0	0	750	0					
	689	8.29	0	0	0	0	0					

690 rows × 6 columns

Machine Learning

Determine the classifier with the highest accuracy

Knearest neighbors

```
#import libraries for KNN
In [328...
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import accuracy_score
          from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import MinMaxScaler
In [329...
          # y=df.ApprovalStatus
          # X=df.drop('ApprovalStatus',axis=1)
          # STEP 1: split X and y into training and testing sets (using random_state for rep
In [334...
          X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=99)
          # STEP 2: train the model on the training set (using K=1)
          knn = KNeighborsClassifier(n_neighbors=1)
          knn.fit(X_train, y_train) #first stage is always train, dont use test
          # STEP 3: test the model on the testing set, and check the accuracy
          y_pred_class = knn.predict(X_test)
          print(accuracy_score(y_test, y_pred_class))
          KNeighborsClassifier(n_neighbors=1)
Out[334]:
          0.5606936416184971
          Optimise hyperparameter
          # test with 50 neighbors
In [335...
          knn = KNeighborsClassifier(n_neighbors=50)
          knn.fit(X_train, y_train)
          y_pred_class = knn.predict(X_test)
          print(accuracy_score(y_test, y_pred_class))
          KNeighborsClassifier(n_neighbors=50)
Out[335]:
```

0.6705202312138728

```
In [338... # test with 80 neighbors
knn = KNeighborsClassifier(n_neighbors=80)
knn.fit(X_train, y_train)
y_pred_class = knn.predict(X_test)
print(accuracy_score(y_test, y_pred_class))
```

Out[338]: KNeighborsClassifier(n_neighbors=80)

0.6589595375722543

```
In [342... # test with 46 neighbors
knn = KNeighborsClassifier(n_neighbors=46)
knn.fit(X_train, y_train)
y_pred_class = knn.predict(X_test)
print(accuracy_score(y_test, y_pred_class))
```

Out[342]: KNeighborsClassifier(n_neighbors=46)

0.653179190751445

Highest Accuracy using n_neighbors=50: ~65.31%

Logistic Regression

```
df_standardized = (df-df.mean())/df.std()
 In [343...
            df_standardized.mean()
            df_standardized.std()
            YearsEmployed
                              1.879334e-16
 Out[343]:
            PriorDefault
                             -5.399867e-16
            Employed
                             -7.852012e-16
            CreditScore
                              2.067589e-16
            Income
                             -1.448117e-18
            ApprovalStatus
                             -5.766724e-16
            dtype: float64
            YearsEmployed
                             1.0
 Out[343]:
            PriorDefault
                              1.0
            Employed
                              1.0
            CreditScore
                              1.0
            Income
                              1.0
            ApprovalStatus
                              1.0
            dtype: float64
 In [348...
            from sklearn.linear model import LogisticRegression
            from sklearn.model_selection import train_test_split
            from sklearn.metrics import accuracy_score
            logreg = LogisticRegression()
            X = df.drop('ApprovalStatus',axis=1)
            y = df.ApprovalStatus
            X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
            logreg.fit(X_train, y_train)
            y_pred = logreg.predict(X_test)
            print('Accuracy: ', accuracy_score(y_test, y_pred))
            C:\Users\alisonc\Documents\DataScience\lib\site-packages\sklearn\linear_model\_log
            istic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
            STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
            Increase the number of iterations (max iter) or scale the data as shown in:
                https://scikit-learn.org/stable/modules/preprocessing.html
            Please also refer to the documentation for alternative solver options:
                https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
              n_iter_i = _check_optimize_result(
            LogisticRegression()
 Out[348]:
            Accuracy: 0.8728323699421965
Accuracy: ~87.28%
```

Decision Tree

```
In [349... X = df.drop('ApprovalStatus',axis=1)
y = df.ApprovalStatus
```

```
from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()

#still using the same train size 80%, test size 20%

X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=2, test_size)

#scaling the features
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_X_train = scaler.fit_transform(X_train)
scaled_X_test = scaler.fit_transform(X_test)

dt.fit(scaled_X_train,y_train)

y_preds = dt.predict(scaled_X_test)
accuracy_score(y_test,y_preds)
```

Out[349]:

DecisionTreeClassifier()

Out[349]:

0.8043478260869565

Accuracy: ~80.43%

Summary

- KNN, Logistic Regression and Decision Tree were applied to predict a new customer's credit card approval rate. - Among all 3 classifiers, Logistic Regression's accuracy is the highest. - I feel like i might have dropped to many columns while doing EDA. I should consider exploring different chart types to plot different types of variants to make a better decision.