Bamboo Programming Language

Table of Contents

- Introduction
- Terminology
- Syntax and Behavior
- Comments
- Constants and Variable Declarations
- Type Annotations
- Naming
 - Conventions
- Semicolons
- Values and Types
 - Booleans
 - Numeric Literals
 - Integers
 - Floating-Point Numbers
 - Addresses
 - Any
 - Never
 - Optionals
 - Nil-Coalescing Operator
 - Conditional Downcasting Operator
 - Strings and Characters
 - String Fields and Functions
 - Arrays
 - Array Types
 - Array Indexing
 - Array Fields and Functions
 - Variable-size Array Functions
 - Dictionaries
 - Dictionary Types
 - Dictionary Access
 - Dictionary Fields and Functions
 - Dictionary Keys
- Operators

- Negation
- Assignment
- Arithmetic
- Logical Operators
- Comparison operators
- Ternary Conditional Operator
- Precedence and Associativity

• Functions

- Function Declarations
- Function overloading
- Function Expressions
- Function Calls
- Function Types
 - Argument Passing Behavior
- Function Preconditions and Postconditions

Control flow

- Conditional branching: if-statement
- Optional Binding
- Looping: while-statement
- Immediate function return: return-statement
- Scope
- Type Safety
- Type Inference
- Composite Data Types
- Composite Data Type Declaration and Creation
 - Composite Data Type Fields
 - Composite Data Type Field Getters and Setters
 - Synthetic Composite Data Type Fields
 - Composite Data Type Functions
 - Composite Data Type Behaviour
 - Structures
 - Resources
 - Resources in Arrays and Dictionaries
 - Unbound References / Nulls
 - Inheritance and Abstract Types
- Access control
- Interfaces
 - Interface Declaration
 - Interface Implementation
 - Interface Type

- Interface Implementation Requirements
- Interface Nesting
- Nested Type Requirements
- Equatable Interface
- Hashable Interface
- Attestations
- Accounts
- · Account Storage
- Transactions
 - Deployment
 - Interacting with Deployed Resources
- Built-in Functions
 - Transaction information
 - o panic
 - Example
 - assert

Introduction

The Bamboo Programming Language is a new high-level programming language intended for smart contract development.

The language's goals are, in order of importance:

- Safety and security: Focus on safety, e.g. by providing a strong static type system, design by contract, and linear types; and security, by providing a capability system, and design by contract.
- Auditability: Focus on readability: make it easy to verify what the code is doing, and make intentions explicit, at a small cost of verbosity.
- Simplicity: Focus on developer productivity and usability: make it easy to write code, provide good tooling.

Terminology

In this document, the following terminology is used to describe syntax or behavior that is not allowed in the language:

Invalid means that the invalid program will not even be allowed to run. The error is detected and reported statically by the type checke

Error refers to bad behavior that will result in a runtime error.

Syntax and Behavior

The programming language's syntax and behavior is inspired by Kotlin, Swift, Rust, TypeScript, and Solidity.

Comments

Comments can be used to document code. A comment is text that is not executed.

Single-line comments start with two slashes (//). These comments can go on a line by themselves or they can go directly after a line of code.

```
// This is a comment on a single line.
// Another comment line that is not executed.
let x = 1 // Here is another comment after a line of BPL code.
```

Multi-line comments start with a slash and an asterisk (/*) and end with an asterisk and a slash (*/):

```
/* This is a comment which
spans multiple lines. */
```

Comments may be nested.

```
/* /* this */ is a valid comment */
```

Constants and Variable Declarations

Constants and variables are declarations that bind a value to a name. Constants can only be initialized with a value and cannot be reassigned afterwards. Variables can be initialized with a value and can be reassigned later. Declarations are valid in any scope, including the global scope.

Constant means that the name is constant, not the value - the value may still be changed if it allows it, i.e. is mutable.

Constants are declared using the let keyword. Variables are declared using the var keyword. The keywords are followed by the name, an optional type annotation, an equals sign = , and the initial value.

```
// Declare a constant named `a`
//
let a = 1

// Invalid: re-assigning to a constant
//
a = 2

// Declare a variable named `b`
//
var b = 3

// Assign a new value to the variable named `b`
//
b = 4
```

Variables and constants must be initialized.

```
// Invalid: the constant has no initial value
//
let a
```

Once a constant or variable is declared, it cannot be redeclared with the same name, with a different type, or changed into the corresponding other kind (variable to a constant and vice versa). They also cannot be redeclared with the same name in a subscope.

```
// Declare a constant named `a`
//
let a = 1

// Invalid: cannot re-declare a constant with name `a`,
// as it is already used in this scope
//
let a = 2

// Declare a variable named `b`
//
var b = 3
```

```
// Invalid: cannot re-declare a variable with name `b`,
// as it is already used in this scope
//
```

```
var b = 4

// Invalid: cannot declare a variable with the name `a`,
// as it is already used in this scope,
// and it is declared as a constant
//
var a = 5

// Invalid: cannot declare a variable with the name "b",
// in a subscope because "b" is already in scope
{
    var b = 5
}
```

Type Annotations

When declaring a constant or variable, an optional type annotation can be provided, to make it explicit what type the declaration has.

If no type annotation is provided, the type of the declaration is inferred from the initial value.

```
// Declare a variable named `initialized` which has an explicit type annotation.
//
// `Bool` is the type of booleans
//
var initialized: Bool = false

// Declare a constant named `inferred`, which has no type annotation
// and for which the type is inferred to be `Int`,
// based on the initial value
//
let inferred = 1
```

If a type annotation is provided, the initial value must be of this type, and new values assigned to variables must match the declaration's type. This type safety is explained in more detail in a separate section.

```
// Invalid: declare a variable with an explicit type `Bool`,
// but the initial value has type `Int`.
//
// `Int` is the type of arbitrary-precision integers
//
let booleanConstant: Bool = 1
// Declare a variable that has type `Bool`
//
var booleanVariable = false
// Invalid: assign a value with type `Int` to a variable which has type `Bool`
//
booleanVariable = 1
```

Naming

Names may start with any upper or lowercase letter (A-Z, a-z) or an underscore (__). This may be followed by zero or more upper and lower case letters, underscores, and numbers (0-9). Names may not begin with a number.

```
// Valid, title-case
//
PersonID

// Valid, with underscore
//
token_name

// Valid, leading underscore
//
```

```
_balance

// Valid, with number

// account2

// Invalid, leading number

// 1something

// Invalid, various invalid characters

// !@#$%^&*
```

Conventions

By convention, variables, constants, and functions have lowercase names; and types have title-case names.

Semicolons

Semicolons (;) are used as statement separators. Semicolons can be placed after any statement, but can be omitted if only one statemen appears on the line. Semicolons must be used to separate multiple statements if they appear on the same line.

```
// Declare a constant, without a semicolon
//
let a = 1

// Declare a variable, with a semicolon
//
var b = 2;

// Declare a constant and a variable on a single line, separated by semicolons
//
let d = 1; var e = 2
```

Values and Types

Values are objects, like for example booleans, integers, or arrays. Values are typed.

Booleans

The two boolean values true and false have the type Bool.

Numeric Literals

Numbers can be written in various bases. Numbers are assumed to be decimal by default. Non-decimal literals have a specific prefix.

Numeral system	Prefix	Characters	
Decimal	None	one or more numbers (0 to 9)	
Binary	0b	one or more zeros or ones (0 or 1)	
Octal	00	one or more numbers in the range 0 to 7	
Hexadecimal	0x	one or more numbers, or characters a to f, lowercase or uppercase	

```
// A decimal number
//
1234567890

// A binary number
//
0b101010
```

```
// An octal number
//
0o12345670

// A hexadecimal number
//
0x1234567890ABCDEFabcdef

// Invalid: unsupported prefix 0z
//
0z0
```

Decimal numbers may contain underscores (_) to logically separate components.

```
let largeNumber = 1_000_000
```

Underscores are allowed for all numeral systems.

```
let binaryNumber = 0b10_11_01
```

Integers

Integers are whole numbers without a fractional part. They are either *signed* (positive, zero, or negative) or *unsigned* (positive or zero) an are either 8 bits, 16 bits, 32 bits, 64 bits or arbitrarily large.

The names for the integer types follow this naming convention: Signed integer types have an Int prefix, unsigned integer types have a UInt prefix, i.e., the integer types are named Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, and UInt64.

```
• Int8: -128 through 127
```

- Int16: -32768 through 32767
- Int32: -2147483648 through 2147483647
- Int64: -9223372036854775808 through 9223372036854775807
- **UInt16**: 0 through 65535
- **UInt32**: 0 through 4294967295
- **UInt64**: 0 through 18446744073709551615

```
// Declare a constant that has type `UInt8` and the value 10
let smallNumber: UInt8 = 10

// Invalid: negative literal cannot be used as an unsigned integer
//
let invalidNumber: UInt8 = -10
```

In addition, the arbitrary precision integer type Int is provided.

Negative integers are encoded in two's complement representation.

Floating-Point Numbers

There is **no** support for floating point numbers.

Contracts are not intended to work with values with error margins and therefore floating point arithmetic is not appropriate here. Fixed point numbers should be simulated using integers and a scale factor for now.

Addresses

The type Address represents an address. Addresses are unsigned integers with a size of 160 bits. Hexadecimal integer literals can be used to create address values.

```
// Declare a constant that has type `Address`
//
let someAddress: Address = 0x06012c8cf97bead5deae237070f9587f8e7a266d

// Invalid: Initial value is not compatible with type `Address`,
// it is not a number
//
let notAnAddress: Address = ""

// Invalid: Initial value is not compatible with type `Address`,
// it is a number, but larger than 160 bits
//
let alsoNotAnAddress: Address = 0x06012c8cf97bead5deae237070f9587f8e7a266d123456789
```

Integer literals are not inferred to be an address.

```
// Declare a number. Even though it happens to be a valid address,
// it is not inferred as it.
//
let aNumber = 0x06012c8cf97bead5deae237070f9587f8e7a266d
// `aNumber` has type `Int`
```

Any

Any is the top type, i.e., all types are a subtype of it.

```
// Declare a variable that has the type `Any`.
// Any value can be assigned to it, for example an integer.
//
var someValue: Any = 1
// Assign a value with a different type, `Bool`
someValue = true
```

However, using Any does not opt-out of type checking. It is invalid to access fields and call functions on Any typed values, as it has no fields and functions.

```
// Declare a variable that has the type `Any`. The initial value is an integer,
// but the variable still has the explicit type `Any`.
//
let a: Any = 1

// Invalid: Operator cannot be used for an `Any` value (`a`, left-hand side)
// and an `Int` value (`2`, right-hand side)
//
a + 2
```

Never

Never is the bottom type, i.e., it is a subtype of all types. There is no value that has type Never . Never can be used as the return type for functions that never return normally. For example, it is the return type of the function panic .

```
// Declare a function named `crashAndBurn` which will never return,
// because it calls the function named `panic`, which never returns
//
fun crashAndBurn(): Never {
   panic("An unrecoverable error occurred")
}
```

Optionals

Optionals are values which can represent the absence of a value. Optionals have two cases: either there is a value, or there is nothing.

An optional type is declared using the ? suffix for another type. For example, Int is a non-optional integer, and Int? is an optional integer, i.e. either nothing, or an integer.

The value representing nothing is nil.

```
// Declare a constant which has an optional integer type,
// with nil as its initial value
//
let a: Int? = nil

// Declare a constant which has an optional integer type,
// with 42 as its initial value
//
let b: Int? = 42
```

Optionals can be created for any value, not just for literals.

```
// Declare a constant which has a non-optional integer type,
// with 1 as its initial value
//
let x = 1

// Declare a constant which has an optional integer type.
// An optional with the value of `x` is created
//
let y: Int? = x
```

Nil-Coalescing Operator

let c = 1 ?? 2

The nil-coalescing operator ?? returns the value inside an optional if it contains a value, or returns an alternative value if the optional has no value, i.e., the optional value is nil.

If the left-hand side is non-nil, the right-hand side is not evaluated.

```
// Declare a constant which has an optional integer type
//
let a: Int? = nil

// Declare a constant with a non-optional integer type,
// which is initialized to `a` if it is non-nil, or 42 otherwise
//
let b: Int = a ?? 42
// `b` is 42, as `a` is nil
```

The nil-coalescing operator can only be applied to values which have an optional type.

```
// Declare a constant with a non-optional integer type
//
let a = 1

// Invalid: nil-coalescing operator is applied to a value which has a non-optional type
// (a has the non-optional type `Int`)
//
let b = a ?? 2

// Invalid: nil-coalescing operator is applied to a value which has a non-optional type
// (the integer literal is of type `Int`)
//
```

The alternative value, i.e. the right-hand side of the operator, must be the non-optional or optional type matching the type of the left-hand side.

```
// Declare a constant with an optional integer type
//
let a: Int? = 1

// Invalid: nil-coalescing operator is applied to a value of type `Int`,
// but the alternative has type `Bool`
//
let b = a ?? false
```

Conditional Downcasting Operator

Status: The conditional downcasting operator as? is implemented, but it only supports values that have the type Any.

The conditional downcasting operator as? can be used to type cast a value to a type. The operator returns an optional. If the value has a type that is a subtype of the given type that should be casted to, the operator returns the value as the given type, otherwise the result is nil.

```
// Declare a constant named `something` which has type `Any`,
// with an initial value which has type `Int`
//
let something: Any = 1

// Conditionally downcast the value of `something` to `Int`.
// The cast succeeds, because the value has type `Int`
//
let number = something as? Int
// `number` is 1 and has type `Int?`

// Conditionally downcast the value of `something` to `Bool`.
// The cast fails, because the value has type `Int`,
// and `Bool` is not a subtype of `Int`
//
let boolean = something as? Bool
// `boolean` is nil and has type `Bool?`
```

Downcasting works for nested types (e.g. arrays), interfaces (if a resource interface not to a concrete resource), and optionals.

```
// Declare a constant named `values` which has type `[Any]`,
// i.e. an array of arbitrarily typed values
//
let values: [Any] = [1, true]

let first = values[0] as? Int
// `first` is `1` and has type `Int?`

let second = values[1] as? Bool
// `second` is `true` and has type `Bool?`
```

Strings and Characters

Status: Characters are not implemented yet.

Strings are collections of characters. Strings have the type String, and characters have the type Character. Strings can be used to work with text in a Unicode-compliant way. Strings are immutable.

String and character literals are enclosed in double quotation marks (").

```
let someString = "Hello, world!"
```

String literals may contain escape sequences. An escape sequence starts with a backslash (\):

- \0 : Null character
- \\ : Backslash
- \t : Horizontal tab
- \n : Line feed
- \r : Carriage return
- \" : Double quotation mark
- \': Single quotation mark
- \u : A Unicode scalar value, written as \u{x}, where x is a 1–8 digit hexadecimal number which needs to be a valid Unicode scalar value, i.e., in the range 0 to 0xD7FF and 0xE000 to 0x10FFFF inclusive

```
// Declare a constant which contains two lines of text
// (separated by the line feed character `\n`), and ends
// with a thumbs up emoji, which has code point U+1F44D (0x1F44D)
//
let thumbsUpText =
   "This is the first line.\nThis is the second line with an emoji: \u{1F44D}"
```

The type Character represents a single, human-readable character. Characters are extended grapheme clusters, which consist of one c more Unicode scalars.

For example, the single character \ddot{u} can be represented in several ways in Unicode. First, it can be represented by a single Unicode scalar value \ddot{u} ("LATIN SMALL LETTER U WITH DIAERESIS", code point U+00FC). Second, the same single character can be represented by two Unicode scalar values: u ("LATIN SMALL LETTER U", code point U+0075), and "COMBINING DIAERESIS" (code point U+0308). The combining Unicode scalar value is applied to the scalar before it, which turns a u into a \ddot{u} .

Still, both variants represent the same human-readable character ü.

```
let singleScalar: Character = "\u{FC}"
// `singleScalar` is `ü`
let twoScalars: Character = "\u{75}\u{308}"
// `twoScalars` is `ü`
```

Another example where multiple Unicode scalar values are rendered as a single, human-readable character is a flag emoji. These emojis consist of two "REGIONAL INDICATOR SYMBOL LETTER" Unicode scalar values.

```
// Declare a constant for a string with a single character, the emoji
// for the Canadian flag, which consists of two Unicode scalar values:
// - REGIONAL INDICATOR SYMBOL LETTER C (U+1F1E8)
// - REGIONAL INDICATOR SYMBOL LETTER A (U+1F1E6)
//
let canadianFlag: Character = "\u{1F1E8}\u{1F1E6}"
// `canadianFlag` is `Pa``
```

String Fields and Functions

Strings have multiple built-in functions you can use.

• length: Int: Returns the number of characters in the string as an integer.

```
let example = "hello"

// Find the number of elements
let length = example.length
// `length` is 5
```

• concat(_ other: String): String: Concatenates the string other to the end of the original string, but does not modify the original string. This function creates a new string whose length is the sum of the lengths of the two parameter strings.

```
let example = "hello"
let new = "world"
```

```
// Concatenate the new string onto the example string and return the new string
let helloWorld = example.concat(new)
// `helloWorld` is now "helloworld"
```

• slice(from: Int, upTo: Int): String: Returns a string slice of the characters in the given string from start index from up to, but not including, the end index upTo. This function creates a new string whose length is upto – from. It does not modify the original string. If either of the parameters are out of the bounds of the string, the function will fail.

```
let example = "helloworld"

// Create a new slice of part of the original string
let slice = example.slice(from: 3, upTo: 6)

// `slice` is now `"lowo"`

// Error: Out of bounds index
let outOfBounds = example.slice(from: 2, upTo: 10)
```

Arrays

Arrays are mutable, ordered collections of values. All values in an array must have the same type. Arrays may contain a value multiple times. Array literals start with an opening square bracket [and end with a closing square bracket].

```
// An empty array
//
[]

// An array with integers
//
[1, 2, 3]

// Invalid: mixed types
//
[1, true, 2, false]
```

Array Types

Arrays either have a fixed size or are variably sized, i.e., elements can be added and removed.

Fixed-size arrays have the form [T; N], where T is the element type, and N is the size of the array. For example, a fixed-size array of 3 Int8 elements has the type [Int8; 3].

Variable-size arrays have the form [T] , where T is the element type. For example, the type [Int16] specifies a variable-size array of elements that have type Int16 .

It is important to understand that arrays are value types and are only ever copied when used as an initial value for a constant or variable, when assigning to a variable, as function parameter, or returned from a function call.

```
let array: [Int8; 2] = [1, 2]
let arrays: [[Int16; 3]; 2] = [
     [1, 2, 3],
     [4, 5, 6]
]
```

Array Indexing

To get the element of an array at a specific index, the indexing syntax can be used: The array is followed by an opening square bracket [the indexing value, and ends with a closing square bracket].

Accessing an element which is out of bounds results in a fatal error.

```
// Declare an array
let numbers = [42, 23]
```

```
// Get the first number
//
numbers[0] // is 42

// Get the second number
//
numbers[1] // is 23

// Error: Index 2 is out of bounds
//
numbers[2]
```

```
let arrays = [[1, 2], [3, 4]]

// Get the first number of the second array
//
arrays[1][0] // is 3
```

To set an element of an array at a specific index, the indexing syntax can be used as well.

```
let numbers = [42, 23]

// Change the second number

//
// NOTE: The declaration `numbers` is constant, which means that

// the *name* is constant, not the *value* - the value, i.e. the array,

// is mutable and can be changed

//
numbers[1] = 2

// `numbers` is [42, 2]
```

Array Fields and Functions

Arrays have multiple built-in functions you can use to manipulate the elements. length, concat, and contains apply to all array types whether they are statically sized or dynamic.

• length: Int: Returns the number of elements in the array.

```
let numbers = [42, 23, 31, 12]

// Find the number of elements
let length = numbers.length

// `length` is 4
```

• concat(_ array: T): T: Concatenates the parameter array to the end of the original array, but does not modify the original array. Both arrays must be the same type T. This function creates a new array whose length is the sum of the lengths of the two arrays.

```
let numbers = [42, 23, 31, 12]
let moreNumbers = [11, 27]

// Concatenate the array `moreNumbers` to the array `numbers`
// and declare a new variable for the result
let allNumbers = numbers.concat(moreNumbers)

// `allNumbers` is `[42, 23, 31, 12, 11, 27]`
// `numbers` is still `[42, 23, 31, 12]`
// `moreNumbers` is still `[11, 27]`
```

• contains(_ element: T): Bool: Indicates whether the given element of type T is in the array

```
let numbers = [42, 23, 31, 12]

// Check if the array contains 11
let containsEleven = numbers.contains(11)
```

```
// `containsEleven` is false

// Check if the array contains 12
let containsTwelve = numbers.contains(12)
// `containsTwelve` is true

// Invalid: Check if the array contains the string "Kitty".

// This results in a type error, as the array only contains integers
//
let containsKitty = numbers.contains("Kitty")
```

Variable-size Array Functions

The following functions can only be used on variable-sized arrays. It is invalid to use one of these functions on a statically sized array.

• append(_ element: T): Void: Adds an element of type T to the array. The element is added to the end of the array. The given value must be the same type as all the other elements in the array.

```
let numbers = [42, 23, 31, 12]

// Add a new element
numbers.append(20)

// `numbers` is now `[42, 23, 31, 12, 20]`

// Invalid: Wrong type
numbers.append("SneakyString")
```

• insert(at index: Int, _ element: T): Void: Inserts an element of type T at the given index of the array. The value must be of the same type as the array and the index must be less than the length of the array. The existing element at the supplied index is not overwritten. All the elements after the new inserted element are simply shifted to the right by one.

```
let numbers = [42, 23, 31, 12]

// Insert a new element at position 1 of the array
numbers.insert(at: 1, 20)

// `numbers` is now `[42, 20, 23, 31, 12]`

// Error: Out of bounds index
numbers.insert(at: 12, 39)
```

- remove(at index: Int): T: Removes the element at the given index from the array and returns it. index must be within the bounds of the array.
- removeFirst(): T : Removes the first element from the array and returns it.
- removeLast(): T: Removes the last element from the array and returns it.

```
let numbers = [42, 23, 31, 12]

// Remove element at position 1 of the array
let twentyThree = numbers.remove(at: 1)

// `numbers` is now `[42, 31, 12]`

// `twentyThree` is `23`

// Invalid: Out of Bounds index
numbers.remove(at: 19)

// remove the first element of the array
let fortytwo = numbers.removeFirst()

// `numbers` is now `[31, 12]`

// `fortywo` is `42`

// Remove the last element of the array
let twelve = numbers.removeLast()

// `numbers` is now `[31]`

// `twelve` is `12`
```

Dictionaries

Dictionaries are mutable, unordered collections of key-value associations. In a dictionary, all keys must have the same type, and all values must have the same type. Dictionaries may contain a key only once and may contain a value multiple times.

Dictionary literals start with an opening brace { and end with a closing brace } . Keys are separated from values by a colon, and key-value associations are separated by commas.

```
// An empty dictionary
//
{}

// A dictionary which associates integers with booleans
//
{
    1: true,
    2: false
}

// Invalid: mixed types
//
{
    1: true,
    false: 2
}
```

Dictionary Types

Dictionaries have the form $\{K: V\}$, where K is the type of the key, and V is the type of the value. For example, a dictionary with Int keys and Bool values has type $\{Int: Bool\}$.

```
// Declare a constant that has type `{Int: Bool}`,
// a dictionary mapping integers to booleans
//
let booleans = {
    1: true,
    0: false
}

// Declare a constant that has type `{Bool: Int}`,
// a dictionary mapping booleans to integers
//
let integers = {
    true: 1,
    false: 0
}
```

Dictionary Access

To get the value for a specific key from a dictionary, the access syntax can be used: The dictionary is followed by an opening square bracket [, the key, and ends with a closing square bracket].

Accessing a key returns an optional: If the key is found in the dictionary, the value for the given key is returned, and if the key is not found nil is returned.

```
// Declare a constant that has type `{Bool: Int}`,
// a dictionary mapping integers to booleans
//
let booleans = {
    1: true,
    0: false
}

// The result of accessing a key has type `Bool?`
//
booleans[1] // is true
booleans[0] // is false
```

```
booleans[2] // is nil

// Invalid: Accessing a key which does not have type `Int`

//
booleans["1"]
```

```
// Declare a constant that has type `{Bool: Int}`,
// a dictionary mapping booleans to integers
//
let integers = {
    true: 1,
    false: 0
}

// The result of accessing a key has type `Int?`
//
integers[true] // is 1
integers[false] // is 0
```

To set the value for a key of a dictionary, the access syntax can be used as well.

```
let booleans = {
    1: true,
    0: false
}
booleans[1] = false
booleans[0] = true
// `booleans` is `{1: false, 0: true}`
```

Dictionary Fields and Functions

- length: Int: Returns the number of elements in the dictionary.
- remove(key: K): V?: Removes the value for the given key of type K from the dictionary. Returns the value of type V if the dictionary contained the key as an optional, otherwise nil.

Dictionary Keys

Dictionary keys must be hashable and equatable, i.e., must implement the Hashable and Equatable interfaces.

Most of the built-in types, like booleans, integers, are hashable and equatable, so can be used as keys in dictionaries.

Operators

Operators are special symbols that perform a computation for one or more values. They are either unary, binary, or ternary.

- Unary operators perform an operation for a single value. The unary operator symbol appears before the value.
- Binary operators operate on two values. The binary operator symbol appears between the two values (infix).
- Ternary operators operate on three values. The operator symbols appear between the three values (infix).

Negation

The - unary operator negates an integer:

```
let a = 1
-a // is -1
```

The ! unary operator logically negates a boolean:

```
let a = true
!a // is false
```

Assignment

The binary assignment operator = can be used to assign a new value to a variable. It is only allowed in a statement and is not allowed in expressions.

```
var a = 1
a = 2
// `a` is 2
```

The left-hand side of the assignment must be an identifier, followed by one or more index or access expressions.

```
let numbers = [1, 2]

// Change the first number

//
numbers[0] = 3

// `numbers` is [3, 2]
```

```
let arrays = [[1, 2], [3, 4]]

// Change the first number in the second array
//
arrays[1][0] = 5

// `arrays` is [[1, 2], [5, 4]]
```

```
let dictionaries = {
  true: {1: 2},
  false: {3: 4}
}

dictionaries[false][3] = 0

// `dictionaries` is {
  // true: {1: 2},
  // false: {3: 0}
  //}
```

Arithmetic

There are four arithmetic operators:

```
Addition: +
Subtraction: -
Multiplication: *
Division: /
Remainder: %
```

```
let a = 1 + 2
// `a` is 3
```

The arguments for the operators need to be of the same type.

Arithmetic operators do not cause values to overflow.

```
let a: Int8 = 100
let b: Int8 = 100
let c = a * b
// `c` is 10000, and has type `Int`
```

If overflow behavior is intended, overflowing operators are available, which are prefixed with an &:

Overflow addition: &+
Overflow subtraction: &Overflow multiplication: &*

For example, the maximum value of an unsigned 8-bit integer is 255 (binary 11111111). Adding 1 results in an overflow, truncation to 8 bits and the value 0.

```
// 11111111 = 255
// &+ 1
// = 100000000 = 0

let a: UInt8 = 255
a &+ 1 // is 0
```

Similarly, for the minimum value 0, subtracting 1 wraps around and results in the maximum value 255.

```
// 00000000

// &- 1

// = 11111111 = 255

let b: UInt8 = 0

b &- 1 // is 255
```

Signed integers are also affected by overflow. In a signed integer, the first bit is used for the sign. This leaves 7 bits for the actual value fo an 8-bit signed integer, i.e., the range of values is -128 (binary 10000000) to 127 (01111111). Subtracting 1 from -128 results in 127.

```
// 10000000 = -128
// &- 1
// = 01111111 = 127

let c: Int8 = -128
c &- 1 // is 127
```

Logical Operators

Logical operators work with the boolean values true and false.

• Logical AND: a && b

```
true && true

// is true

true && false

// is false

false && true

// is false

false && false

// is false
```

If the left-hand side is false, the right-hand side is not evaluated.

• Logical OR: a || b

```
true || true // is true
```

```
true || false
// is true
false || true
// is true
false || false
// is false
```

If the left-hand side is true, the right-hand side is not evaluated.

Comparison operators

Comparison operators work with boolean and integer values.

• Equality: == , for booleans and integers (possibly optional)

```
1 == 1
// is true
1 == 2
// is false
true == true
// is true
true == false
// is false
let x: Int? = 1
x == nil
// is false
let x: Int = 1
x == nil
// is false
let x: Int? = 2
let y: Int? = nil
x == y
// is false
let x: Int? = 2
let y: Int? = 2
x == y
// is true
```

• Inequality: != , for booleans and integers (possibly optional)

```
1 != 1
// is false
1 != 2
// is true
true != true
// is false
true != false
// is true
```

```
let x: Int? = 1
    x != nil
    // is true
    let x: Int = 1
    x != nil
    // is true
    let x: Int? = 2
    let y: Int? = nil
    x != y
// is true
   let x: Int? = 2
   let y: Int? = 2
    x != y
    // is false
• Less than: < , for integers
   1 < 1
    // is false
    1 < 2
   // is true
    2 < 1
    // is false
• Less or equal than: <= , for integers
   1 <= 1
   // is true
   1 <= 2
   // is true
    2 <= 1
    // is false
• Greater than: > , for integers
    1 > 1
   // is false
    1 > 2
    // is false
    2 > 1
    // is true
• Greater or equal than: >= , for integers
    1 >= 1
    // is true
    1 >= 2
    // is false
    2 >= 1
   // is true
```

Ternary Conditional Operator

There is only one ternary conditional operator, the ternary conditional operator (a ? b : c).

It behaves like an if-statement, but is an expression: If the first operator value is true, the second operator value is returned. If the first operator value is false, the third value is returned.

```
let x = 1 > 2 ? 3 : 4
// `x` is 4
```

Precedence and Associativity

Operators have the following precedences, highest to lowest:

```
Multiplication precedence: *, &*, /, %
Addition precedence: +, &+, -, &-
Relational precedence: <, <=, >, >=
Equality precedence: ==, !=
Logical conjunction precedence: &&
Logical disjunction precedence: ||
Ternary precedence: ? :
```

All operators are left-associative, except for the ternary operator, which is right-associative.

Expressions can be wrapped in parentheses to override precedence conventions, i.e. an alternate order should be indicated, or when the default order should be emphasized, e.g. to avoid confusion. For example, (2 + 3) * 4 forces addition to precede multiplication, and (6 * 7) reinforces the default order.

Functions

Functions are sequences of statements that perform a specific task. Functions have parameters (inputs) and an optional return value (output). Functions are typed: the function type consists of the parameter types and the return type.

Functions are values, i.e., they can be assigned to constants and variables, and can be passed as arguments to other functions. This behavior is often called "first-class functions".

Function Declarations

Functions can be declared by using the fun keyword, followed by the name of the declaration, the parameters, the optional return type, and the code that should be executed when the function is called.

The parameters need to be enclosed in parentheses. The return type, if any, is separated from the parameters by a colon (:). The function code needs to be enclosed in opening and closing braces.

Each parameter needs to have a name, the name that is used within the function. An additional argument label can be provided to require function calls to use the label to provide an argument value for the parameter. Argument labels precede the parameter name. The special argument label _ indicates that a function call can omit the argument label. If no _ argument label is provided, the function call must use the parameter name.

Each parameter needs to have a type annotation, which follows the parameter name after a colon.

```
// Declare a function named `double`, which multiples a number by two.
//
// The special argument label _ is specified for the parameter,
// so no argument label has to be provided in a function call
//
fun double(_ x: Int): Int {
    return x * 2
}
// Call the function named `double` with the value 4 for the first parameter.
```

```
//
// The argument label can be omitted in the function call as the declaration
// specifies the special argument label _ for the parameter
//
double(2) // returns 4
```

It is possible to require argument labels for some parameters, and not require argument labels for other parameters.

```
// Declare a function named `clamp`. The function takes an integer value,
// the lower limit, and the upper limit. It returns an integer between
// the lower and upper limit.
// For the first parameter the special argument label _ is used,
// so no argument label has to be given for it in a function call.
// For the second and third parameter no argument label is given,
// so the parameter names are the argument labels, i.e., the parameter names
// have to be given as argument labels in a function call.
fun clamp(_ value: Int, min: Int, max: Int): Int {
   if value > max {
        return max
   if value < min {
       return min
   }
   return value
}
// Declare a constant which has the result of a call to the function
// named `clamp` as its initial value.
// For the first argument no label is given, as it is not required by
// the function declaration (the special argument label `_` is specified).
// For the second and this argument the labels must be provided,
// as the function declaration does not specify the special argument label `_`
// for these two parameters.
// As the function declaration also does not specify argument labels
// for these parameters, the parameter names must be used as argument labels.
//
let clamped = clamp(123, min: 0, max: 100)
// `clamped` is 100
```

Argument labels make code more explicit and readable. For example, they avoid confusion about the order of arguments when there are multiple arguments that have the same type.

Argument labels should be named so they make sense from the perspective of the function call.

```
// Declare a function named `send`, which transfers an amount
// from one account to another.
//
// The implementation is omitted for brevity.
// The first two parameters of the function have the same type, so there is
// a potential that a function call accidentally provides arguments in
// the wrong order.
//
// While the parameter names `sendingAccount` and `receivingAccount`
// are descriptive inside the function, they might be too verbose
// to require them as argument labels in function calls.
//
// For this reason the shorter argument labels `from` and `to` are specified,
// which still convey the meaning of the two parameters without being overly
// verbose.
// The name of the third parameter, `amount`, is both meaningful inside
```

```
// the function and also in a function call, so no argument label is given,
// and the parameter name is required as the argument label in a function call.
//
fun send(from sendingAccount: Account, to receivingAccount: Account, amount: Int) {
   // ...
// Declare a constant which refers to the sending account.
// The initial value is omitted for brevity
let sender: Account = // ...
// Declare a constant which refers to the receiving account.
// The initial value is omitted for brevity
//
let receiver: Account = // ...
// Call the function named `send`.
// The function declaration requires argument labels for all parameters,
// so they need to be provided in the function call.
//
// This avoids ambiguity. For example, in some languages (like C) it is
// a convention to order the parameters so that the receiver occurs first,
// followed by the sender. In other languages, it is common to have
\ensuremath{//} the sender be the first parameter, followed by the receiver.
//
// Here, the order is clear — send an amount from an account to another account.
//
send(from: sender, to: receiver, amount: 100)
```

The order of the arguments in a function call must match the order of the parameters in the function declaration.

```
// Declare a function named `test`, which accepts two parameters, named `first` and `second`
//
fun test(first: Int, second: Int) {
    // ...
}

// Invalid: the arguments are provided in the wrong order,
// even though the argument labels are provided correctly
//
test(second: 1, first: 2)
```

Functions can be nested, i.e., the code of a function may declare further functions.

```
// Declare a function which multiplies a number by two, and adds one
//
fun doubleAndAddOne(_ x: Int): Int {
    // Declare a nested function which multiplies a number by two
    //
    fun double(_ x: Int) {
        return x * 2
    }
    return double(x) + 1
}
doubleAndAddOne(2) // is 5
```

There is **no** support for optional parameters, i.e. default values for parameters.

Function overloading

Status: Function overloading is not implemented.

It is possible to declare functions with the same name, as long as they have different sets of argument labels. This is known as function overloading.

```
// Declare a function named "assert" which requires a test value
// and a message argument
//
fun assert(_ test: Bool, message: String) {
    // ...
}

// Declare a function named "assert" which only requires a test value.
// The function calls the `assert` function declared abov
//
fun assert(_ test: Bool) {
    assert(test, message: "test is false")
}
```

Function Expressions

Functions can be also used as expressions. The syntax is the same as for function declarations, except that function expressions have no name, i.e., anonymous.

```
// Declare a constant named `double`, which has a function as its value.
//
// The function multiplies a number by two when it is called
//
// This function's type is `((Int): Int)`
//
let double =
   fun (_ x: Int): Int {
      return x * 2
   }
```

Function Calls

Functions can be called (invoked). Function calls need to provide exactly as many argument values as the function has parameters.

```
fun double(_ x: Int): Int {
    return x * 2
}

// Valid: the correct amount of arguments is provided
//
double(2) // is 4

// Invalid: too many arguments are provided
//
double(2, 3)

// Invalid: too few arguments are provided
//
double()
```

Function Types

Function types consist of the function's parameter types and the function's return type.

The parameter types need to be enclosed in parentheses, followed by a colon (:), and end with the return type. The whole function type needs to be enclosed in parentheses.

```
// Declare a function named `add`, with the function type `((Int, Int): Int)`
//
fun add(a: Int, b: Int): Int {
   return a + b
}
```

```
// Declare a constant named `add`, with the function type `((Int, Int): Int)`
//
let add: ((Int, Int): Int) =
  fun (a: Int, b: Int): Int {
    return a + b
}
```

If the function has no return type, it implicitly has the return type Void .

```
// Declare a constant named `doNothing`, which is a function
// that takes no parameters and returns nothing
//
let doNothing: ((): Void) =
   fun () {}
```

Parentheses also control precedence. For example, a function type ((Int): ((): Int)) is the type for a function which accepts one argument with type Int, and which returns another function, that takes no arguments and returns an Int.

The type [((Int): Int); 2] specifies an array type of two functions, which accept one integer and return one integer.

Argument Passing Behavior

When arguments are passed to a function, they are copied. Therefore, values that are passed into a function are unchanged in the caller's scope when the function returns. This behavior is known as call-by-value.

```
// Declare a function that changes the first two elements
// of an array of integers
//
fun change(_ numbers: [Int]) {
    // Change the elements of the passed in array.
    // The changes are only local, as the array was copied
    //
    numbers[0] = 1
    numbers[1] = 2
    // `numbers` is [1, 2]
}
let numbers = [0, 1]
change(numbers)
// `numbers` is still [0, 1]
```

Parameters are constant, i.e., it is not allowed to assign to them.

```
fun test(x: Int) {
    // Invalid: cannot assign to a parameter (constant)
    //
    x = 2
}
```

Function Preconditions and Postconditions

Functions may have preconditions and may have postconditions. Preconditions and postconditions can be used to restrict the inputs (values for parameters) and output (return value) of a function.

Preconditions must be true right before the execution of the function. Preconditions are part of the function and introduced by the pre keyword, followed by the condition block.

Postconditions must be true right after the execution of the function. Postconditions are part of the function and introduced by the post keyword, followed by the condition block. Postconditions may only occur after preconditions, if any.

A conditions block consists of one or more conditions. Conditions are expressions evaluating to a boolean. They may not call functions, i.e., they cannot have side-effects and must be pure expressions. Also, conditions may not contain function expressions.

Conditions may be written on separate lines, or multiple conditions can be written on the same line, separated by a semicolon. This synta: follows the syntax for statements.

Following each condition, an optional description can be provided after a colon.

In postconditions, the special constant result refers to the result of the function.

```
fun factorial(_ n: Int): Int {
       // Require the parameter `n` to be greater than or equal to zero
       //
       n \ge 0:
            "factorial is only defined for integers greater than or equal to zero"
   }
    post {
       // Ensure the result will be greater than or equal to 1
       //
       result >= 1:
            "the result must be greater than or equal to 1"
   }
   if n < 1 {
       return 1
    return n * factorial(n - 1)
}
factorial(5) // returns 120
// Error: the given argument does not satisfy the precondition `n >= 0` of the function
factorial(-2)
```

In postconditions, the special function before can be used to get the value of an expression just before the function is called.

Control flow

Control flow statements control the flow of execution in a function.

Conditional branching: if-statement

If-statements allow a certain piece of code to be executed only when a given condition is true.

The if-statement starts with the if keyword, followed by the condition, and the code that should be executed if the condition is true inside opening and closing braces. The condition must be boolean and the braces are required. Parentheses around the condition are optional.

```
let a = 0
var b = 0

if a == 0 {
    b = 1
}

// parentheses can be used around the condition, but are not required
if (a != 0) {
    b = 2
}

// `b` is 1
```

An additional, optional else-clause can be added to execute another piece of code when the condition is false. The else-clause is introduced by the else keyword followed by braces that contain the code that should be executed.

```
let a = 0
var b = 0

if a == 1 {
    b = 1
} else {
    b = 2
}

// `b` is 2
```

The else-clause can contain another if-statement, i.e., if-statements can be chained together.

```
let a = 0
var b = 0

if a == 1 {
    b = 1
} else if a == 2 {
    b = 2
} else {
    b = 3
}

// `b` is 3
```

Optional Binding

Optional binding allows getting the value inside an optional. It is a variant of the if-statement.

If the optional contains a value, the first branch is executed and a temporary constant or variable is declared and set to the value contained in the optional; otherwise, the else branch (if any) is executed.

Optional bindings are declared using the if keyword like an if-statement, but instead of the boolean test value, it is followed by the let or var keywords, to either introduce a constant or variable, followed by a name, the equal sign (=), and the optional value.

```
let maybeNumber: Int? = 1

if let number = maybeNumber {
    // branch is executed as `maybeNumber` is not `nil`.
    // `number` is `1` and has type `Int`
} else {
    // branch is not executed as `maybeNumber` is not `nil`
}
```

```
let noNumber: Int? = nil

if let number = noNumber {
    // branch is not executed as `noNumber` is `nil`.
} else {
    // branch is executed as `noNumber` is `nil`.
    // constant `number` is *not* available
}
```

Looping: while-statement

While-statements allow a certain piece of code to be executed repeatedly, as long as a condition remains true.

The while-statement starts with the while keyword, followed by the condition, and the code that should be repeatedly executed if the condition is true inside opening and closing braces. The condition must be boolean and the braces are required.

The while-statement will first evaluate the condition. If the condition is false, the execution is done. If it is true, the piece of code is executed and the evaluation of the condition is repeated. Thus, the piece of code is executed zero or more times.

```
var a = 0
while a < 5 {
    a = a + 1
}
// `a` is 5</pre>
```

The continue statement can be used to stop the current iteration of the loop and start the next iteration.

```
var i = 0
var x = 0
while i < 10 {
    i = i + 1
    if i < 3 {
        continue
    }
    x = x + 1
}
// `x` is 8</pre>
```

The break statement can be used to stop the loop.

```
var x = 0
while x < 10 {
    x = x + 1
    if x == 5 {
        break
    }
}
// `x` is 5</pre>
```

Immediate function return: return-statement

The return-statement causes a function to return immediately, i.e., any code after the return-statement is not executed. The return-statement starts with the return keyword and is followed by an optional expression that should be the return value of the function call.

Scope

Every function and block ({ ... }) introduces a new scope for declarations. Each function and block can refer to declarations in its scope or any of the outer scopes.

```
let x = 10

fun f(): Int {
    let y = 10
    return x + y
}

f() // returns 20

// Invalid: the identifier `y` is not in scope
//
y
```

```
fun doubleAndAddOne(_ n: Int): Int {
    fun double(_ x: Int) {
        return x * 2
    }
    return double(n) + 1
}

// Invalid: the identifier `double` is not in scope
//
double(1)
```

Each scope can introduce new declarations, i.e., the outer declaration is shadowed.

```
let x = 2
fun test(): Int {
    let x = 3
    return x
}
test() // returns 3
```

Scope is lexical, not dynamic.

```
let x = 10

fun f(): Int {
    return x
}

fun g(): Int {
    let x = 20
    return f()
}

g() // returns 10, not 20
```

Declarations are **not** moved to the top of the enclosing function (hoisted).

```
let x = 2

fun f(): Int {
    if x == 0 {
        let x = 3
            return x
    }
    return x
}
```

Type Safety

The Bamboo programming language is a type-safe language.

When assigning a new value to a variable, the value must be the same type as the variable. For example, if a variable has type Bool, it can only be assigned a value that has type Bool, and not for example a value that has type Int.

```
// Declare a variable that has type `Bool`
var a = true

// Invalid: cannot assign a value that has type `Int` to a variable which has type `Bool`
//
a = 0
```

When passing arguments to a function, the types of the values must match the function parameters' types. For example, if a function expects an argument that has type Bool, only a value that has type Bool can be provided, and not for example a value which has type Int.

```
fun nand(_ a: Bool, _ b: Bool): Bool {
    return !(a && b)
}

nand(false, false) // returns true

// Invalid: integers are not booleans
//
nand(0, 0)
```

Types are **not** automatically converted. For example, an integer is not automatically converted to a boolean, nor is an Int32 automaticall converted to an Int8, nor is an optional integer Int? automatically converted to a non-optional integer Int, or vice-versa.

```
fun add(_ a: Int8, _ b: Int8): Int {
    return a + b
}

// The arguments are not declared with a specific type,
// but they are inferred to be `Int8` since the parameter types are `Int8`
add(1, 2) // returns 3

// Declare two constants which have type `Int32`
//
let a: Int32 = 3_000_000_000
let b: Int32 = 3_000_000_000

// Invalid: cannot pass arguments which have type `Int32` to parameters which have type `Int8`
//
add(a, b)
```

Type Inference

Status: Only basic type inference is implemented.

If a variable or constant is not annotated explicitly with a type, it is inferred from the value.

Integer literals are inferred to type Int.

```
let a = 1
// `a` has type `Int`
```

Array literals are inferred based on the elements of the literal, and to be variable-size.

```
let integers = [1, 2]
// `integers` has type `[Int]`
```

```
// Invalid: mixed types
//
let invalidMixed = [1, true, 2, false]
```

Dictionary literals are inferred based on the keys and values of the literal.

```
let booleans = {
    1: true,
    2: false
}
// `booleans` has type `{Int: Bool}`

// Invalid: mixed types
//
let invalidMixed = {
    1: true,
    false: 2
}
```

Functions are inferred based on the parameter types and the return type.

```
let add = (a: Int8, b: Int8): Int {
    return a + b
}
// `add` has type `((Int8, Int8): Int)`
```

Type inference is performed for each expression / statement, and not across statements.

There are cases where types cannot be inferred. In these cases explicit type annotations are required.

```
// Invalid: not possible to infer type based on array literal's elements
//
let array = []

// Invalid: not possible to infer type based on dictionary literal's keys and values
//
let dictionary = {}
```

Composite Data Types

Status: Resources are not implemented yet.

Composite data types allow composing simpler types into more complex types, i.e., they allow the composition of multiple values into one Composite data types have a name and consist of zero or more named fields, and zero or more functions that operate on the data. Each field may have a different type.

There are two kinds of composite data types. The kinds differ in their usage and the behaviour when a value is used as the initial value for a constant or variable, when the value is assigned to a variable, when the value is passed as an argument to a function, and when the value is returned from a function:

- Structures are copied, i.e. they are value types. Structures are useful when copies with independent state are desired.
- Resources are moved, they are linear types and must be used exactly once.

Resources are useful when it is desired to model ownership (a value exists exactly in one location and it should not be lost).

Certain constructs in a blockchain represent assets of real, tangible value, as much as a house or car or bank account. We have to worry about literal loss and theft, perhaps even on the scale of millions of dollars.

Structs are not an ideal way to represent this ownership because they can be copied. If resources could be copied, this would mean that there could be a risk of having multiple copies of certain assets floating around, which breaks the scarcity requirements needed for these assets to have real value. A struct is much more useful for representing information that can be grouped together in a logical

way, but doesn't have value or a need to be able to be owned or transferred. A struct could be used to contain the information associated with a division of a company, but a resource would be used to represent the assets that have been allocated to that organization for spending.

Two composite data types are compatible if and only if they refer to the same declaration by name, i.e., nominal typing applies instead of structural typing.

Composite data types can only be declared globally, i.e. not inside of functions.

Composite Data Type Declaration and Creation

Structures are declared using the struct keyword and resources are declared using the resource keyword. The keyword is followed by the name.

```
struct SomeStruct {
    // ...
}
resource SomeResource {
    // ...
}
```

Structures and resources are types.

Structures are created (instantiated) by calling the type like a function.

```
SomeStruct()
```

Resource are created (instantiated) by using the create keyword and calling the type like a function.

```
create SomeResource()
```

Composite data types can only be declared globally and not locally in functions. They can also not be nested.

Composite Data Type Fields

Fields are declared like variables and constants, however, they have no initial value. The initial values for fields are set in the initializer. All fields **must** be initialized in the initializer. The initializer is declared using the init keyword. Just like a function, it takes parameters.

However, it has no return type, i.e., it is always Void. The initializer always follows any fields.

There are three kinds of fields.

Constant fields are also stored in the composite value, but after they are initialized with a value, they **cannot** have new values assigned to them. They are declared using the let keyword.

Variable fields are stored in the composite value and can have new values assigned to them. They are declared using the var keyword.

Synthetic fields are **not** stored in the composite value, i.e. they are derived/computed from other values. They can have new values assigned to them and are declared using the synthetic keyword. Synthetic fields must have a getter and a setter. Getters and setters are explained in the next section. Synthetic fields are explained in a separate section.

Field Kind	Stored in memory	Assignable	Keyword
Variable field	Yes	Yes	var
Constant field	Yes	No	let
Synthetic field	No	Yes	synthetic

```
// Declare a structure named `Token`, which has a constant field
// named `id` and a variable field named `balance`.
//
// Both fields are initialized through the initializer
//
// The public modifier is used here to allow these fields to be
// read in outer scopes. Access control will be explained
// in a later section.
//
struct Token {
   pub let id: Int
   pub var balance: Int

   init(id: Int, balance: Int) {
      self.id = id
      self.balance = balance
   }
}
```

In initializers, the special constant self refers to the composite value that is to be initialized.

Fields can be read (if they are constant or variable) and set (if they are variable), using the access syntax: the composite value is followed by a dot (.) and the name of the field.

```
let token = Token(id: 42, balance: 1_000_00)

token.id // is 42
token.balance // is 1_000_000

token.balance = 1
// `token.balance` is 1

// Invalid: assignment to constant field
//
token.id = 23
```

Initializers support overloading. This allows for example providing default values for certain parameters.

```
// Declare a structure named `Token`, which has a constant field
// named `id` and a variable field named `balance`.
//
// The first initializer allows initializing both fields with a given value.
// A second initializer is provided for convenience to initialize the `id` field
// with a given value, and the `balance` field with the default value `0`
//
struct Token {
   let id: Int
   var balance: Int
   init(id: Int, balance: Int) {
       self.id = id
       self.balance = balance
   init(id: Int) {
       self.id = id
       self.balance = 0
   }
}
```

Composite Data Type Field Getters and Setters

Fields may have an optional getter and an optional setter. Getters are functions that are called when a field is read, and setters are functions that are called when a field is written. Assignments are not allowed at all in getters and setters.

Getters and setters are enclosed in opening and closing braces, after the field's type.

Getters are declared using the get keyword. Getters have no parameters and their return type is implicitly the type of the field.

```
struct GetterExample {
    // Declare a variable field named `balance` with a getter
   // which ensures the read value is always non-negative
   pub var balance: Int {
       get {
          post {
              result >= 0
           if self.balance < 0 {</pre>
               return 0
           return self.balance
   }
   init(balance: Int) {
        self.balance = balance
}
let example = GetterExample(balance: 10)
// `example.balance` is 10
example balance = -50
// `example.balance` is 0. without the getter it would be -50
```

Setters are declared using the set keyword, followed by the name for the new value enclosed in parentheses. The parameter has implicitly the type of the field. Another type cannot be specified. Setters have no return type.

The types of values assigned to setters must always match the field's type.

```
struct SetterExample {
   // Declare a variable field named `balance` with a setter
   // which requires written values to be positive
   pub var balance: Int {
       set(newBalance) {
           pre {
               newBalance >= 0
           }
           self.balance = newBalance
       }
   }
   init(balance: Int) {
       self.balance = balance
   }
let example = SetterExample(balance: 10)
// `example.balance` is 10
// error: precondition of setter for field balance failed
example balance = -50
```

Synthetic Composite Data Type Fields

Fields which are not stored in the composite value are *synthetic*, i.e., the field value is computed. Synthetic can be either read-only, or readable and writable.

Synthetic fields are declared using the synthetic keyword.

Synthetic fields are read-only when only a getter is provided.

```
struct Rectangle {
   pub var width: Int
   pub var height: Int
   // Declare a synthetic field named `area`,
   // which computes the area based on the width and height
   //
   pub synthetic area: Int {
       get {
           return width * height
   }
   // in this case, since a getter is provided for `area`,
    // it cannot be assigned a value
   init(width: Int, height: Int) {
       self.width = width
       self.height = height
   }
}
```

Synthetic fields are readable and writable when both a getter and a setter is declared.

```
// Declare a struct named `GoalTracker` which stores a number
// of target goals, a number of completed goals,
// and has a synthetic field to provide the left number of goals
//
// NOTE: the tracker only implements some functionality to demonstrate
// synthetic fields, it is incomplete (e.g. assignments to `goal` are not handled properly)
//
struct GoalTracker {
   pub var goal: Int
   pub var completed: Int
   // Declare a synthetic field which is both readable
   // and writable.
   // When the field is read from (in the getter),
   // the number of left goals is computed from
   // the target number of goals and
   // the completed number of goals.
   // When the field is written to (in the setter),
   // the number of completed goals is updated,
   // based on the number of target goals
   // and the new remaining number of goals
   pub synthetic left: Double {
       get {
           return self.goal - self.completed
       set(newLeft) {
           self.completed = self.goal - newLeft
   }
    init(goal: Int, completed: Int) {
       self.goal = goal
        self.completed = completed
   }
}
let tracker = GoalTracker(goal: 10, completed: 0)
// `tracker.goal` is 10
// `tracker.completed` is 0
// `tracker.left` is 10
```

```
tracker.completed = 1
// `tracker.left` is 9

tracker.left = 8
// `tracker.completed` is 2
```

It is invalid to declare a synthetic field with only a setter.

Composite Data Type Functions

Composite data types may contain functions. Just like in the initializer, the special constant self refers to the composite value that the function is called on.

```
// Declare a structure named "Rectangle", which represents a rectangle
// and has variable fields for the width and height
struct Rectangle {
   pub var width: Int
   pub var height: Int
   init(width: Int, height: Int) {
       self.width = width
       self.height = height
   }
   // Declare a function named "scale", which scales
   // the rectangle by the given factor
   //
   pub fun scale(factor: Int) {
       self.width = self.width * factor
       self.height = self.height * factor
   }
}
let rectangle = Rectangle(width: 2, height: 3)
rectangle.scale(factor: 4)
// `rectangle.width` is 8
// `rectangle.height` is 12
```

Functions support overloading.

```
// Declare a structure named "Rectangle", which represents a rectangle
// and has variable fields for the width and height
//
struct Rectangle {
   pub var width: Int
   pub var height: Int
    init(width: Int, height: Int) {
       self.width = width
       self.height = height
    // Declare a function named "scale", which independently scales
   // the width by a given factor and the height by a given factor
   pub fun scale(widthFactor: Int, heightFactor: Int) {
       self.width = self.width * widthFactor
        self.height = self.height * heightFactor
   // Declare a another function also named "scale", which scales
   // both width and height by a given factor.
    // The function calls the `scale` function declared above
   //
   pub fun scale(factor: Int) {
       self.scale(
           widthFactor: factor,
           heightFactor: factor
```

```
}
}
```

Composite Data Type Behaviour

Structures

Structures are **copied** when used as an initial value for constant or variable, when assigned to a different variable, when passed as an argument to a function, and when returned from a function:

```
// Declare a structure named `SomeStruct`, with a variable integer field
//
struct SomeStruct {
   pub var value: Int

   init(value: Int) {
      self.value = value
   }
}

// Declare a constant with value of structure type `SomeStruct`
//
let a = SomeStruct(value: 0)

// *Copy* the structure value into a new constant
//
let b = a

b.value = 1
a.value // is *0*
```

Resources

Resources are types that can only be stored in one location at a time. They are **moved** when used as an initial value for a constant or variable, when assigned to a different variable, when passed as an argument to a function, and when returned from a function.

When the resource was moved, the constant or variable that referred to the resource before the move becomes invalid.

Invoking a member field or method of a resource does not destroy it.

To make the move explicit, the move operator <- must be used when the resource is the initial value of a constant or variable, when it is moved to a different variable, or when it is moved to a function.

```
// Declare a resource named `SomeResource`, with a variable integer field
//
resource SomeResource {
   pub var value: Int

   init(value: Int) {
      self.value = value
   }
}

// Declare a constant with value of resource type `SomeResource`
//
let a <- SomeResource(value: 0)

// *Move* the resource value to a new constant
//
let b <- a

// Invalid: Cannot use constant `a` anymore as the resource
// it referred to was moved to constant `b`
//
a.value</pre>
```

```
// Constant `b` owns the resource
//
b.value = 1

// Declare a function which accepts a resource.
//
// The parameter has a resource type, so the type name must be prefixed with `<-`
//
fun use(resource: <-SomeResource) {
    // ...
}

// Call function `use` and move the resource into it
//
use(<-b)

// Invalid: Cannot use constant `b` anymore as the resource
// it referred to was moved into function `foo`
//
b.value</pre>
```

Resources must be used exactly once. To destroy a resource, the destroy keyword must be used.

```
// Declare another, unrelated value of resource type `SomeResource`
//
let c <- create SomeResource(value: 10)

// Invalid: `c` is not used, but must be! `c` cannot be lost

// Declare another, unrelated value of resource type `SomeResource`
//
let d <- create SomeResource(value: 20)

// Destroy the resource referred to by constant `d`</pre>
```

To make it explicit that the type is moved, it must be prefixed with <- in type annotations.

// Invalid: Cannot use constant `d` anymore as the resource

```
// Declare a constant with an explicit type annotation.
//
// The constant has a resource type, so the type name must be prefixed with `<-`
//
let someResource: <-SomeResource <- create SomeResource(value: 5)

// Declare a function which consumes a resource.
//
// The parameter has a resource type, so the type name must be prefixed with `<-`
//
fun use(resource: <-SomeResource) {
    destroy resource
}

// Declare a function which returns a resource.
//
// The return type is a resource type, so the type name must be prefixed with `<-`
//
fun get(): <-SomeResource {
    return create SomeResource()
}</pre>
```

destroy d

// d.value

// it referred to was destroyed

Arrays and dictionaries behave differently when they contain resources: When a resource is **read** from the array at a certain index, or it is **read** from a dictionary by accessing a certain key, the resource is **moved** out of the array or dictionary.

```
let resources = [
    SomeResource(value: 1),
    SomeResource(value: 2).
    SomeResource(value: 3)
// **Move** the first resource into a new constant
let firstResource <- resources[0]</pre>
// **Move** the second resource into a new constant
let secondResource <- resources[0]</pre>
\ensuremath{//} `resources` only contains one element,
// the initial third resource!
// The first two resources were moved out of the array when
// they were read, i.e., the were removed from the array
//
// Accessing a field of a resource does not move the resource
resource[0].value // is 3
// Error: cannot access second element of `resources`,
// as it only has one element left after the first two elements
// were accessed above
resource[1]
```

Unbound References / Nulls

There is **no** support for null.

Inheritance and Abstract Types

There is **no** support for inheritance. Inheritance is a feature common in other programming languages, that allows including the fields and functions of one type in another type.

Instead, follow the "composition over inheritance" principle, the idea of composing functionality from multiple individual parts, rather than building an inheritance tree.

Furthermore, there is also **no** support for abstract types. An abstract type is a feature common in other programming languages, that prevents creating values of the type and only allows the creation of values of a subtype. In addition, abstract types may declare functions but omit the implementation of them and instead require subtypes to implement them.

Instead, consider using interfaces.

Access control

årrå O

Status: Access control is not implemented yet.

Access control allows making certain parts of the program accessible/visible and making other parts inaccessible/invisible. Top-level declarations (variables, constants, functions, structures, resources, interfaces) and fields (in structures, and resources) are either private or public.

- Private means the declaration is only accessible/visible in the current and inner scopes. For example, a private field can only be accessed by functions of the type is part of, not by code that uses an instance of the type in an outer scope.
- Public (using the pub keyword) means the declaration is accessible/visible in all scopes. This includes the current and inner scopes like for private, and the outer scopes. For example, a public field in a type can be accessed using the access syntax on an instance of the type in an outer scope. This does not allow the declaration to be publicly writable though.

By default, everything is private.

The (set) suffix can be used to make variables also publicly writable.

To summarize the behavior for variable declarations, constant declarations, and fields:

Declaration kind	Access modifier	Read scope	Write scope
let		Current and inner	None
let	pub	All	None
var		Current and inner	Current and inner
var	pub	All	Current and inner
var	<pre>pub(set)</pre>	All	All

To summarize the behavior for functions, structures, resources, and interfaces:

Declaration kind	Access modifier	Access scope
fun , struct , resource , struct interface , resource interface		Current and inner
fun , struct , resource , struct interface , resource interface	pub	All

```
// Declare a private constant, inaccessible/invisible in outer scope
//
let a = 1
// Declare a public constant, accessible/visible in all scopes
//
pub let b = 2
```

```
// Declare a public struct, accessible/visible in all scopes
pub struct SomeStruct {
   // Declare a private constant field,
   // only readable in the current and inner scopes
   let a: Int
   // Declare a public constant field, readable in all scopes
   pub let b: Int
   // Declare a private variable field,
   // only readable and writable in the current and inner scopes
   //
   var c: Int
   // Declare a public variable field, not settable,
   // only writable in the current and inner scopes,
   // readable in all scopes
   //
   pub var d: Int
   // Declare a public variable field, settable,
   // readable and writable in all scopes
   pub(set) var e: Int
   // NOTE: initializer implementation skipped
   // Declare a private function,
   // only callable in the current and inner scopes
   fun privateTest() {
```

```
// ...
   // Declare a public function,
   // callable in all scopes
   pub fun privateTest() {
       // ...
   // The initializer is omitted for brevity.
}
let some = SomeStruct()
// Invalid: cannot read private constant field in outer scope
some.a
// Invalid: cannot set private constant field in outer scope
some_a = 1
// Valid: can read public constant field in outer scope
some.b
// Invalid: cannot set public constant field in outer scope
some_b = 2
// Invalid: cannot read private variable field in outer scope
// Invalid: cannot set private variable field in outer scope
some_c = 3
// Valid: can read public variable field in outer scope
some.d
// Invalid: cannot set public variable field in outer scope
some_d = 4
// Valid: can read publicly settable variable field in outer scope
some.e
// Valid: can set publicly settable variable field in outer scope
some_e = 5
```

Interfaces

An interface is an abstract type that specifies the behavior of types that *implement* the interface. Interfaces declare the required function and fields, the access control for those declarations, and preconditions and postconditions that implementing types need to provide.

There are two kinds of interfaces:

- Structure interfaces: implemented by structures
- Resource interfaces: implemented by resources

Structure and resource types may implement multiple interfaces.

Interfaces consist of the function and field requirements that a type implementing the interface must provide implementations for. Interface requirements, and therefore also their implementations, must always be at least public.

Variable field requirements may be annotated to require them to be publicly settable.

Function requirements consist of the name of the function, parameter types, an optional return type, and optional preconditions and postconditions.

Field requirements consist of the name and the type of the field. Field requirements may optionally declare a getter requirement and a setter requirement, each with preconditions and postconditions.

Calling functions with preconditions and postconditions on interfaces instead of concrete implementations can improve the security of a program, as it ensures that even if implementations change, some aspects of them will always hold.

Interface Declaration

Interfaces are declared using the struct or resource keyword, followed by the interface keyword, the name of the interface, and the requirements, which must be enclosed in opening and closing braces.

Field requirements can be annotated to require the implementation to be a variable field, by using the var keyword; require the implementation to be a constant field, by using the let keyword; or the field requirement may specify nothing, in which case the implementation may either be a variable field, a constant field, or a synthetic field.

Field requirements and function requirements must specify the required level of access. The access must be at least be public, so the pub keyword must be provided. Variable field requirements can be specified to also be publicly settable by using the pub(set) keyword

The special type Self can be used to refer to the type implementing the interface.

```
// Declare a resource interface for a fungible token.
// Only resources can implement this resource interface
resource interface FungibleToken {
   // Require the implementing type to provide a field for the balance
   // that is readable in all scopes (`pub`).
   //
   // Neither the `var` keyword, nor the `let` keyword is used,
   // so the field may be implemented as either a variable field,
   // a constant field, or a synthetic field.
   // The read balance must always be positive.
   // NOTE: no requirement is made for the kind of field,
   // it can be either variable or constant in the implementation
   pub balance: Int {
       set(newBalance) {
               newBalance >= 0:
                    "Balances are always non-negative"
            }
       }
       get {
           post {
                result >= 0:
                    "Balances are always non-negative"
           }
        }
    // Require the implementing type to provide an initializer that
   // given the initial balance, must initialize the balance field
    //
    init(balance: Int) {
       pre {
            balance >= 0:
                "Balances are always non-negative"
       }
       post {
            self.balance == balance:
                "the balance must be initialized to the initial balance"
       }
```

```
// NOTE: no code
   }
   // Require the implementing type to provide a function that is
    // callable in all scopes, which withdraws an amount from
   // this fungible token and returns the withdrawn amount as
   // a new fungible token.
   // The given amount must be positive and the function implementation
    // must add the amount to the balance.
   //
    // The function must return a new fungible token.
   //
   // NOTE: `<-Self` is the resource type implementing this interface
   pub fun withdraw(amount: Int): <-Self {</pre>
       pre {
            amount > 0:
                "the amount must be positive"
            amount <= self.balance:</pre>
                "insufficient funds: the amount must be smaller or equal to the balance"
        }
            self.balance == before(self.balance) - amount:
                "the amount must be deducted from the balance"
        }
        // NOTE: no code
   }
   // Require the implementing type to provide a function that is
   // callable in all scopes, which deposits a fungible token
   // into this fungible token.
   // The given token must be of the same type — a deposit of another
   // type is not possible.
   //
    // No precondition is required to check the given token's balance
   // is positive, as this condition is already ensured by
   // the field requirement.
   // NOTE: the first parameter has the type `<-Self`,</pre>
    // i.e. the resource type implementing this interface
   pub fun deposit(_ token: <-Self) {</pre>
        post {
            self.balance == before(self.balance) + token.balance:
                "the amount must be added to the balance"
        }
        // NOTE: no code
   }
}
```

Note that the required initializer and functions do not have any executable code.

Interfaces can only be declared globally, i.e. not inside of functions.

Interface Implementation

Declaring implementations for an interface is done in the type declaration of the composite data type (e.g., structure, resource). The kind and the name are followed by a colon (:) and the name of one or more interfaces to implement.

This will tell the checker to enforce any requirements from the specified interfaces onto the declared type.

```
// Declare a resource named `ExampleToken` that has to implement the `FungibleToken` interface.
// It has a variable field named `balance`, that can be written by functions of the type, but outer scopes can only rea
//
resource ExampleToken: FungibleToken {
```

```
// Implement the required field `balance` for the `FungibleToken` interface.
           // The interface does not specify if the field must be variable, constant,
           // so in order for this type (`ExampleToken`) to be able to write to the field,
           // but limit outer scopes to only read from the field, it is declared variable,
           // and only has public access (non-settable).
           //
           pub var balance: Int
           // Implement the required initializer for the `FungibleToken` interface:
           // accept an initial balance and initialize the `balance` field.
           // This implementation satisfies the required postcondition
           //
           // NOTE: the postcondition declared in the interface
           // does not have to be repeated here in the implementation
           //
           init(balance: Int) {
                      self.balance = balance
           // Implement the required function named `withdraw` of the interface
           \ensuremath{//} `FungibleToken`, that withdraws an amount from the token's balance.
           // The function must be public.
           //
           // This implementation satisfies the required postcondition.
           // NOTE: neither the precondition nor the postcondition declared
           // in the interface have to be repeated here in the implementation
           pub fun withdraw(amount: Int): <-ExampleToken {</pre>
                      self.balance = self.balance - amount
                       return create ExampleToken(balance: amount)
           // Implement the required function named `deposit` of the interface
           // `FungibleToken`, that deposits the amount from the given token % \left( 1\right) =\left( 1\right) \left( 1\right) \left
           // to this token.
           //
           // The function must be public.
           // NOTE: the type of the parameter is `<-ExampleToken`,</pre>
           // i.e., only a token of the same type can be deposited.
           //
           // This implementation satisfies the required postconditions.
           // NOTE: neither the precondition nor the postcondition declared
           // in the interface have to be repeated here in the implementation
           //
           pub fun deposit(_ token: <-ExampleToken) {</pre>
                       self.balance = self.balance + token.balance
                      destroy token
           }
}
// Declare a constant which has type `ExampleToken`,
// and is initialized with such an example token
let token <- create ExampleToken(balance: 100)</pre>
// Withdraw 10 units from the token.
// The amount satisfies the precondition of the `withdraw` function
// in the `FungibleToken` interface.
// Invoking a member of a resource does not destroy it, so the `token` resource is still valid.
//
let withdrawn <- token.withdraw(amount: 10)</pre>
// The postcondition of the `withdraw` function in the `FungibleToken`
// interface ensured the balance field of the token was updated properly.
// `token.balance` is 90
```

```
// `withdrawn.balance` is 10

// Deposit the withdrawn token into another one.
let receiver: ExampleToken <- // ...
receiver.deposit(<-withdrawn)

// Error: precondition of function `withdraw` in interface
// `FungibleToken` is not satisfied: the parameter `amount`
// is larger than the field `balance` (100 > 90)

//
token.withdraw(amount: 100)

// Withdrawing tokens so that the balance is zero does not destroy the resource.
// the resource has to be destroyed explicitly.
token.withdraw(amount: 90)
```

The access level for variable fields in an implementation may be less restrictive than the interface requires. For example, an interface may require a field to be at least public (i.e. the pub keyword is specified), and an implementation may provide a variable field which is public, but also publicly settable (the pub(set) keyword is specified).

```
struct interface AnInterface {
   // Require the implementing type to provide a publicly readable
   // field named `a` that has type `Int`. It may be a constant field,
   // a variable field, or a synthetic field.
   pub a: Int
}
struct AnImplementation: AnInterface {
   // Declare a publicly settable variable field named `a`that has type `Int`.
   // This implementation satisfies the requirement for interface `AnInterface`:
   // The field is at least publicly readable, but this implementation also
   // allows the field to be written to in all scopes.
   //
   pub(set) var a: Int
   init(a: Int) {
       self.a = a
}
```

Interface Type

Interfaces are types. Values implementing an interface can be used as initial values for constants and variables that have the interface as their type.

```
// Declare an interface named `Shape`.
// Require implementing types to provide a field which returns the area,
// and a function which scales the shape by a given factor.
11
struct interface Shape {
   pub area: Int
   pub fun scale(factor: Int)
// Declare a structure named `Square` the implements the `Shape` interface
struct Square: Shape {
   // In addition to the required fields from the interface,
   \ensuremath{//} the type can also declare additional fields.
   pub var length: Int
    // Since `area` was not declared as a constant, variable,
   // field in the interface, it can be declared.
   pub synthetic area: Int {
        get {
         return self.length * self.length
```

```
pub init(length: Int) {
       self.length = length
   // here we have provided the implementation of the required `scale` function.
   pub fun scale(factor: Int) {
       self.length = self.length * factor
}
// Declare a structure named `Rectangle` that also implements the `Shape` interface.
struct Rectangle: Shape {
   pub var width: Int
   pub var height: Int
   pub synthetic area: Int {
       get {
           return self.width * self.height
   }
   pub init(width: Int, height: Int) {
       self.width = width
       self.height = height
   // As long as the function names and parameters match those
    // of the required functions, the implementations can differ.
   pub fun scale(factor: Int) {
       self.width = self.width * factor
       self.height = self.height * factor
   }
}
// Declare a constant that has type `Shape`, which has a value that has type `Rectangle`.
var shape: Shape = Rectangle(width: 10, height: 20)
```

Values implementing an interface are assignable to variables that have the interface as their type.

```
// Assign a value of type `Square` to the variable `shape` that has type `Shape`.
//
shape = Square(length: 30)

// Invalid: cannot initialize a constant that has type `Rectangle`.
// with a value that has type `Square`.
//
let rectangle: Rectangle = Square(length: 10)
```

Fields declared in an interface can be accessed and functions declared in an interface can be called on values of a type that implements the interface.

```
// Declare a constant which has the type `Shape`.
// and is initialized with a value that has type `Rectangle`.
//
let shape: Shape = Rectangle(width: 2, height: 3)

// Access the field `area` declared in the interface `Shape`.
//
shape.area // is 6

// Call the function `scale` declared in the interface `Shape`.
//
```

```
shape.scale(factor: 3)
shape.area // is 54
```

Interface Implementation Requirements

Interfaces can require implementing types to also implement other interfaces of the same kind. Interface implementation requirements can be declared by following the interface name with a colon (:) and one or more names of interfaces of the same kind, separated by commas.

```
// Declare a structure interface named `Shape`.
//
struct interface Shape {}

// Declare a structure interface named `Polygon`.
// Require implementing types to also implement
// the structure interface `Shape`.
//
struct interface Polygon: Shape {}

// Declare a structure named `Hexagon` that implements the `Polygon` interface.
// This also is required to implement the `Shape` interface, because the `Polygon` interface requires it.
//
struct Hexagon: Polygon {}
```

Interface Nesting

Interfaces can be arbitrarily nested. Declaring an interface inside another does not require implementing types of the outer interface to provide an implementation of the inner interfaces.

```
// Declare a resource interface `OuterInterface`, which declares
// a nested structure interface named `InnerInterface`.
//
// Resources implementing `OuterInterface` do not need to provide
// an implementation of `InnerInterface`.
//
// Structures may just implement `InnerInterface`.
//
resource interface OuterInterface {
   struct interface InnerInterface {}
// Declare a resource named `SomeOuter` that implements the interface `OuterInterface`
//
// The resource is not required to implement `OuterInterface.InnerInterface`.
resource SomeOuter: OuterInterface {}
// Declare a structure named `SomeInner` that implements `InnerInterface`.
// which is nested in interface `OuterInterface`.
struct SomeInner: OuterInterface.InnerInterface {}
```

Nested Type Requirements

Interfaces can require implementing types to provide concrete nested types. For example, a resource interface may require an implementing type to provide a resource type.

```
// Declare a resource interface named `FungibleToken`.
//
// Require implementing types to provide a resource type named `Vault`
// which must have a field named `balance`.
//
```

```
resource interface FungibleToken {
    pub resource Vault {
        pub balance: Int
    }
}

// Declare a resource named `ExampleToken` that implements the `FungibleToken` interface

//
// The nested type `Vault` must be provided

// to conform to the interface.

//
resource ExampleToken: FungibleToken {
    pub resource Vault {
        pub var balance: Int
        init(balance: Int) {
            self.balance = balance
        }
    }
}
```

Equatable Interface

Status: The Equatable interface is not implemented yet.

An equatable type is a type that can be compared for equality. Types are equatable when they implement the Equatable interface.

Equatable types can be compared for equality using the equals operator (==) or inequality using the unequals operator (!=).

Most of the built-in types are equatable, like booleans and integers. Arrays are equatable when their elements are equatable. Dictionaries are equatable when their values are equatable.

To make a type equatable the Equatable interface must be implemented, which requires the implementation of the function equals, which accepts another value that the given value should be compared for equality. Note that the parameter type is Self, i.e., the other value must have the same type as the implementing type.

```
struct interface Equatable {
   pub fun equals(_ other: Self): Bool
}
```

```
// Declare a struct named `Cat`, which has one field named `id`
// that has type `Int`, i.e., the identifier of the cat.
//
// `Cat` also will implement the interface `Equatable`
// to allow cats to be compared for equality.
//
struct Cat: Equatable {
   pub let id: Int
   init(id: Int) {
       self.id = id
   pub fun equals(_ other: Self): Bool {
       // Cats are equal if their identifier matches.
        return other.id == self.id
}
Cat(1) == Cat(2) // is false
Cat(3) == Cat(3) // is true
```

Hashable Interface

A hashable type is a type that can be hashed to an integer hash value, i.e., it is distilled into a value that is used as evidence of inequality. Types are hashable when they implement the Hashable interface.

Hashable types can be used as keys in dictionaries.

Hashable types must also be equatable, i.e., they must also implement the Equatable interface. This is because the hash value is only evidence for inequality: two values that have different hash values are guaranteed to be unequal. However, if the hash values of two value are the same, then the two values could still be unequal and just happen to hash to the same hash value. In that case equality still needs to be determined through an equality check. Without Equatable, values could be added to a dictionary, but it would not be possible to retrieve them.

Most of the built-in types are hashable, like booleans and integers. Arrays are hashable when their elements are hashable. Dictionaries ar hashable when their values are equatable.

Hashing a value means passing its essential components into a hash function. Essential components are those that are used in the type's implementation of Equatable.

If two values are equal because their equals function returns true, then the implementation must return the same integer hash value for each of the two values.

The implementation must also consistently return the same integer hash value during the execution of the program when the essential components have not changed. The integer hash value must not necessarily be the same across multiple executions.

```
struct interface Hashable: Equatable {
   pub hashValue: Int
}
```

```
// Declare a structure named `Point` with two fields
// named `x` and `y` that have type `Int`.
// `Point` is declared to implement the `Hashable` interface,
// which also means it needs to implement the `Equatable` interface
//
struct Point: Hashable {
   pub(set) var x: Int
   pub(set) var y: Int
   init(x: Int, y: Int) {
       self.x = x
       self.y = y
   // Implementing the function `equals` will allow points to be compared
    // for equality and satisfies the `Equatable` interface
   pub fun equals(_ other: Self): Bool {
       // Points are equal if their coordinates match.
       // The essential components are therefore the fields
       // `x` and `y`, which must be used in the `Hashable`
       // implementation.
       //
       return other.x == self.x
           && other.y == self.y
   }
   // Providing an implementation for the hash value field
    // satisfies the `Hashable` interface
   pub synthetic hashValue: Int {
       get {
            var hash = 7
           hash = 31 * hash + self.x
           hash = 31 * hash + self.y
            return hash
```

```
}
}
```

Attestations

Status: Attestations are not implemented yet.

Attestations are values that prove ownership without giving any control over it. They can be created for resources to show that they exists

Attestations are useful in cases where ownership of some asset/resource should be demonstrated to potentially untrusted code.

As an analogy, a bank statement is a proof of ownership of money. However, unlike a bank statement, an attestation is "live", i.e. it is not just a snapshot at the time it was created, but it reflects the current state of the underlying resource.

Attestations can only be created from resources, i.e., they cannot be forged by parties who do not have ownership of the resource, and can be safely handed to untrusted parties.

An attestation reflects the current state of a resource. The state is read-only, so the resource that is referred to cannot be modified. It is not possible to change the ownership of a resource through an attestation, or store an attestation.

Attestations of resources are created using the @ operator. Attestation types have the name of the resource type, prefixed with the @ symbol.

```
// Declare a resource named `Token`
//
resource Token {}

// Create a new instance of the resource type `Token`.
//
let token <- create Token()

// Declare a constant named `attestation` that has the attestation type `@Token`,
// and has an attestation for the token value as its initial value
//
let attestation: @Token = @token</pre>
```

Like resources, attestations are associated with an account.

Accounts

🚧 Status: Accounts are not implemented yet.

```
struct interface Account {
   address: Address
   storage: Storage // explained below
}
```

Account Storage

All accounts have a storage object which contains the stored values of the account.

Account storage is a key-value store where the **keys are types**. The access operator [] is used for both reading and writing stored values. Accounts will usually store a mixture of contracts, resources, and structs within their storage.

The stored value must be a subtype of the type it is keyed by. This means that if a Vault type is being stored as the key, the value must be a value that has the type Vault or has any of the subtypes of Vault.

Initializing values in account storage can only happen within the body of a transaction. Initialize a storage value within a member function of a struct or resource that is already in your account storage is not permitted.

When a value is stored in an account's account.storage[], or when a type is deployed to an account using the deploy function, the type of the data you just stored is also recorded in the account.types[] record. account.types[] is used to publish type definitions that other accounts can have access to, which will be covered later. account.types[] will never need to be writted to.

```
// Declare a resource named `Counter`
//
resource Counter {
    pub var count: Int

    pub init(count: Int) {
        self.count = count
    }
}
let account: Account = // ...

// Create a new instance of the resource type `Counter` and move it
// into the storage of the account.
//
// The type `Counter` is used as the key to refer to the stored value
//
account.storage[Counter] <- create Counter(count: 0)</pre>
```

Transactions

. .

Status: The usage of external types is not implemented yet.

Transactions are objects that are signed by one or more accounts and are sent to the chain to interact with it.

Transactions are structured as such:

Before the transaction declaration, there can be imports of any necessary local or external types and interfaces that are needed, using th import keyword, followed by from, and then followed by the location. If importing a local file's type definition, the location will be the path to the file that has the definition. If importing an external type that has been published by another account, that account's Address must be included

Importing an external resource does not move it from the account that holds it. It simply imports the type definition so that it can be used within a transaction.

```
// type import from a local file
import Counter from "examples/counter.bpl"

// type import from an external account
import Counter from 0x299F20A29311B9248F12
```

Next is definitions of any new types that will be used or deployed within the transaction. These are kind of like global constants or variables.

Next is the body of the transaction, which is broken into three main phases: Preparation, execution, and postconditions, only in that order Each phase is a block of code that executes sequentially.

The **prepare phase** acts like the initializer in a composite data type, i.e., it initializes fields that can then be used in the execution phase. The preparer has the permissions to read from and write to the storage of all the accounts that signed the transaction.

The **execute phase** is where all interaction with external contracts happens. This usually involves interacting with contracts with public types and functions that are deployed in other accounts.

The postcondition phase is where the transaction can check that its functionality was executed correctly.

Transactions are declared using the transaction keyword.

Within the transaction, but before the prepare phase, any number of constants and/or variables can be declared. These are valid within the entire scope of the transaction.

The preparer is declared using the prepare keyword and the execution phase can be declared using the execute keyword. The post section can be used to declare postconditions.

Deployment

Transactions can deploy resources and resource interfaces to the storage of any of the signing accounts. Here is an example of a resource interface that will be deployed to an account. Imagine it is in a file called <code>FungibleToken.bpl</code>.

```
// Declare a resource interface for a fungible token.
// It requires implementing types to provide a resource implementation named `Vault`,
// which needs to implement the interfaces `Provider` and `Receiver`
//
pub resource interface Provider {
   pub fun withdraw(amount: Int): <-Vault {</pre>
       pre {
           amount > 0:
                "withdrawal amount must be positive"
        }
        post {
           result.balance == amount:
                "incorrect amount returned"
   }
}
pub resource interface Receiver {
   pub fun deposit(vault: <-Vault)</pre>
// Vault is an interface that implements both Provider and Receiver
pub resource interface Vault: Provider, Receiver {
   pub balance: Int {
        set(newBalance) {
           post {
                newBalance >= 0:
                    "Balances are always non-negative"
            }
        }
       get {
           post {
              result >= 0:
                    "Balances are always non-negative"
```

```
init(balance: Int) {
        post {
            self.balance == balance:
                "the balance must be initialized to the initial balance"
    }
    pub fun withdraw(amount: Int): <-Self {</pre>
        pre {
            amount <= self.balance:</pre>
                "insufficient funds: the amount must be smaller or equal to the balance"
        }
        post {
            self.balance == before(self.balance) - amount:
                "Incorrect amount removed"
        }
    }
    pub fun deposit(vault: <-Self) {</pre>
        post {
            self.balance == before(self.balance) + vault.balance:
                "the amount must be added to the balance"
        }
    }
}
```

The transaction will import the above file to use it in the code.

Transactions can refer to local code with the import keyword, followed by the name of the type, the from keyword, and the string litera for the path of the file which contains the code of the type.

The preparer can use the signing account's deploy function to deploy the resource interface. This essentially stores the resource interface in the account's types object so it can be used again.

Once deployed, the resource interface is available in the account's types object, which is how the deployed types are accessed.

When deploying a resource or interface to an account, it is private by default, just like fields and functions within the resources. This is a second layer of access control that BPL adds to ensure that certain interfaces and resources are not available to anyone. The publish action can be used to override this access control and make certain subsets of the resources public.

The publish operator is used to make the resource or interface type publicly available. After a resource or interface is published, any account can import it into a transaction and use it to import the type, call the functions defined in the resource at the owners address, or call the functions in an published interface in a resource that implements it.

```
// Refer to the resource interface type `Vault`
// in the local file "FungibleToken.bpl"
import Vault from "FungibleToken.bpl"
// Define a transaction which deploys the code for
// the resource interface `Vault`, and makes
// the deployed interface type publicly available
//
transaction {
   prepare(signer: Account) {
        // Deploy the resource interface type `Vault`
        // in the signing account
       signer.deploy(Vault)
        // Make the deployed type publicly available
        // now, anyone can import the `Vault` interface from your account
       publish signer.types[Vault]
   }
}
```

Now, anybody can import the vault interface from the account storage if they want to use it for their resources.

Just like resource interfaces it is possible to deploy resources. Imagine this resource definition below is also in the local file FungibleToken.bpl that was used above.

```
// Declare a resource named `FungibleToken` which implements
// the resource interface `Vault`
//
resource FungibleToken: Vault {
    pub var balance: Int
    init(balance: Int) {
        self.balance = balance
    }

    pub fun withdraw(amount: Int): <-Vault {
        self.balance = self.balance - amount
        return create Vault(balance: amount)
    }

    pub fun deposit(_ vault: <-Vault) {
        self.balance = self.balance + vault.balance
        destroy vault
    }
}</pre>
```

Now, in the same transaction that was used to deploy and publish the interface, the resource can also be stored and published.

```
import FungibleToken from "FungibleToken.bpl"

// Execute a transaction which deploys the code for

// the resource `FungibleToken`, and makes the deployed

// type publicly available

//

transaction {

    prepare(signer: Account) {
        signer.deploy(Vault)
        publish signer.types[Vault]

        signer.storage[FungibleToken)
        signer.storage[FungibleToken] <- create FungibleToken(balance: 100)
        publish signer.types[FungibleToken]
    }
}</pre>
```

Now, the Vault and the FungibleToken types are deployed to the account and published so that anyone who wants to use them or interact with them can easily do so by importing them.

In many scenarios, publishing the entire interface for the resource may be necessary because everyone might want to be able to access all functionality of the type. In most situations though, including this one, it is important to expose only a subset of the functionality of the resources because some of the functionality should only be visible to the owner. In this example, the withdraw function should only be callable by the account owner, so instead of publishing the Vault and FungibleToken interface, the receiver interface is the only one that should be published.

The next section will show how an account can deploy its own instance of FungibleToken based on a published external type and publis the correct interface.

Interacting with Deployed Resources

In addition to storing resources it is also possible to store references to **stored** resources or even other references. References can only be keyed by (and therefore accessed through) **resource interfaces**.

References are created by using the & operator, followed by the stored resource or reference, the as operator, and the resource interface type.

```
// Refer to the resource type `FungibleToken` which was "deployed" above
// at example address 0x42
//
import FungibleToken from 0x42
// Execute a transaction which creates a new example token vault
// for the signing account
//
transaction {
    prepare(signer: Account) {
       // Create a new example token vault for the signing account.
       // NOTE: the vault is not publicly accessible
       //
       signer.storage[FungibleToken] <- create FungibleToken()</pre>
       // Store two storage references in the signing account:
       // One reference to the stored vault, keyed by the resource
       // interface `Provider`, and another reference to the stored vault,
       // keyed by the resource interface `Provider`
       // these are the references to the different ways that your token can be
        // interacted with. Provider for the owner(you). Receiver for any
       // external accounts.
       //
       signer.storage[FungibleToken.Provider] =
           &signer.storage[FungibleToken.Vault] as FungibleToken.Provider
       signer.storage[FungibleToken.Receiver] =
           &signer.storage[FungibleToken.Vault] as FungibleToken.Receiver
       // Publish only the receiver so it can be accessed publicly.
       // NOTE: neither the vault nor the publisher are published
       publish signer.storage[FungibleToken.Receiver]
   }
}
```

```
// Refer to the resource type `FungibleToken` deployed
// at example address 0x42
//
import FungibleToken from 0x42
// Execute a transaction which sends five coins from one account to another.
// The transaction fails unless there is a `FungibleToken.Provider` available
// for the sending account and there is a public `FungibleToken.Receiver`
// available for the recipient account.
// Only a signature from the sender is required.
// No signature from the recipient is required, as the receiver
// is published/publicly available (if it exists for the recipient)
transaction {
   let sentFunds: FungibleToken.Vault
   prepare(signer: Account) {
        // Call the stored provider's withdraw function
       // and move a 5 token instance of it to the field `sentFunds`
        // As the access is performed in the preparer,
       // the unpublished reference `FungibleToken.Provider`
       // can be accessed (if it exists)
       self.sentFunds <- signer.storage[FungibleToken.Provider].withdraw(amount: 5)</pre>
```

```
execute {
    // The recipient account
    //
    let recipient: Account = // ...

    // Deposit the amount withdrawn from the signer
    // in the recipient's vault through the stored receiver in the recipient account
    //
    recipient.storage[ExampleToken.Receiver].deposit(vault: <-self.sentFunds)
}</pre>
```

Built-in Functions

Transaction information

There is currently no built-in function that allows getting the address of the signers of a transaction, the current block number, or timestamp. These are being worked on.

panic

```
fun panic(_ message: String): Never
```

Terminates the program unconditionally and reports a message which explains why the unrecoverable error occurred.

Example

```
let optionalAccount: Account? = // ...
let account = optionalAccount ?? panic("missing account")
```

assert

```
fun assert(_ condition: Bool, message: String)
```

Terminates the program if the given condition is false, and reports a message which explains how the condition is false. Use this function for internal sanity checks.

The message argument is optional.