Backups

Cody Glickman CPBS Update Talk

Nov 12th, 2018

Research Update Outline

Virulence Factors in Bacteriophages In preperation

Building Up Domains: Lysogenic Host Discovery Incorporated into large collaborative NCBI initative

Hybrid Viral Contig Prediction
In Preperation

Progress of Other Projects

Asthma Environmental Microbiome Submitted abstract to ATS

Clinical NTM Gene Databases
Submitted ... https://mra.asm.org/latest

Duobiome: 18S/16S Parallel Analysis

In progress

Genomic Retrieval and Blast Database Creation Accepted Poster ISME 2018

Hawaiian Soil Chemistry and Culture Submitted ...

Nontuberculous Mycobacterial (NTM) Infections

Number of Cases

The number of NTM cases is estimated over 100K

Increasing Case

The rate of cases is estimated to grow at 8% every year

Populations at risk of developing NTM

- Immunocompromised individuals
- Patients with lung damage or malfunction
- Residents of warm costal areas especially Hawaii

Viral Focus

Bacteriophages (Phages)

Phages are DNA viruses that infect prokaryotes

Phage Diversity

Investigating how phage abundance and diversity affect susceptibility to NTM lung infection

Phage Vectors

Researching how phages act as carriers of bacterial genes within clinical NTM infections

Species Identification of NTM at NJH

Clinical NTM Gene Database

Developed updated database to characterize clinical NTM

Limitations of Current Methods

Redundant Records

Sequences between species are indistinguishable at the gene level

Mislabeled Species

Naming conventions are constantly updated

Different Regions

Current protocols amplify a specific region of gene

Curated Gene Databases

Line probe to determine Mycobacterial status (rpoB amplification) Mycobacteriology lab depends on targets for sequencing Creating a more efficent database

Number of Sequences per Species

Currenlty only two sequences per species are deposited into curated database

Selection Protocol

Culture Collection, internationally recognized strains, deposited in multiple locations

Clinical Gene Databases

Gene	Region Size	Unique Species
hsp65	382 bases	185
rpoB	657 bases	134
16s rRNA	1470 bases	184

Table: Table 1 highlights the regions lengths and size of the respective databases

Species Overlap

107 species overlap between all three databases

Database Validation

hsp65

how many species: 197 documented species: Actual species counts remove clusters 156 full length hsp65 genes compared against the hsp65 database

- 151/156 (96.73%) returned the exact species
- 2/5 are in the top 5 hits & 2/5 missing from database

Tree Comparison

rpoB-hsp65 Tree

rings around edges and lines for colors

Growth Rate

- rapid
- slow

Group

- abscessus-chelonae
- avium
- a celatum
- a fotuitum-smegmatis
- Other
- Outgroup
- a pathogens
- a simiae
- a terrae

Conclusions and Future Directions

Representation

The subsetted databases are highly representative of prior published works

Benefits of Curated Database

- Aligned sequences to shared region
- Preferentially selected established culture codes
- Condensed and explicitly labeled ambiguous sequences

Limitations

Size of the gene regions in databases may not differentiate between species or subspecies in this version

Microbiome

16S Ribosomal RNA Sequencing

- Amplifies a region of gene
- Community level analysis

Traditional Limitations

- Multiple copies of 16S
- Prokaryotic specific

Yarza, P., et al. Nature Reviews Microbiology 2014

Degenerate Primers

Feature of Degenerate Primers
Dual amplification of eukaryotic
(18S) and prokaryote (16S)

Universal 16S/18S Primer 515F - 806R primer

Caporaso, J.G., et al. PNAS 2011 Wang, Y., et al. PLOS One 2014

Objective

Develop an optimized pipeline to accurately describe composition of an environmental sample.

Methods Testing

- Standard OTU Picking with expanded database
- Error correction with expanded database
- Filtering 18S by merging status and parallel processing

Simulated Metagenome

not using mutation, used three different composition
Pamela Russell

Testing pipelines

Research Update Outline

Virulence Factors in Bacteriophages In preperation

Building Up Domains: Lysogenic Host Discovery Incorporated into large collaborative NCBI initative

Hybrid Viral Contig Prediction
In Preperation

Metagenomics

What is Metagenomics?

Unbiased study of all genetic material in a sample

Importance of Metagenomics

- Functional capabilities of a sample
- Species level distinctions
- Due to lack of a universal gene marker, phages are studied by metagenomics

Methods to Isolate Phages in Metagenomics

Biological Isolations

Filtrations and density gradiants to collect small particles

Sequence Similarity

Mapping to genomes, BLAST, and Hidden Markov Models

Machine Learning Methods

Linear discriminant analysis classier on sequence k-mer profiles

Two-Step Hybrid Model

Insert Pipeline

Methods

HMMs from Earth Virome Python developed model with standalone operability Mycobacterium, Pseudomonas, Lactobacillus

Concluding Remarks

Improve Abundance Calculations

Infer Biological Relationships Quantify
Virulence and
Antibiotic
Resistances

DuoBiome

Optimized methods to simultaneously explore eukaryotic and prokaryotic communities

Hybrid Viral Contig Prediction

A hybrid model to identify phage elements in metagenomics and connect them with bacteria

Virulence Factors in Phages

First quantification of bacterial virulence factors within phage genomes

Elaine Epperson

Pamela Russell

Nabeeh Hasan

Josephina Hendrix

Michael Strong

Computational Bioscience Program

Chris Miller

Cathy Lozupone

James Costello

Kirk Harris

<u>Funding</u>

NLM: 2 T15 LM 9451-11

Questions?

Cody Glickman

cody.glickman@ucdenver.edu www.github.com/glickmac www.codyglickman.com