

Chimie Niveau moyen Épreuve 3

24 pages

Vendredi 12 mai 2017 (matin)

	IN	ume	ro ae	ses	sion (au ca	naia	at	
Γ									
l									
L									

1 heure

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du recueil de données de chimie est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [35 points].

Section A	Questions
Répondez à toutes les questions.	1 – 2

Section B	Questions
Répondez à toutes les questions d'une des options.	
Option A — Les matériaux	3 – 6
Option B — La biochimie	7 – 11
Option C — L'énergie	12 – 14
Option D — La chimie médicinale	15 – 19

[1]

Section A

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

- Il existe un lien entre la consommation énergétique mondiale et les émissions de dioxyde de carbone.
 - (a) Le graphique suivant représente la consommation énergétique mondiale selon le type d'énergie pour les années de 1988 à 2013.

[Source: BP statistical review of world energy, www.bp.com]

Estimez le pourcentage de la consommation d'énergie qui n'a pas directement produit

2	

(Suite de la question à la page suivante)

de CO₂ en 2013.

(Suite de la question 1)

(b) Les émissions de CO₂ liées à la production d'électricité consomment de l'O₂. Le graphique montre la relation entre la production d'électricité mondiale et les émissions de CO₂ entre 1994 et 2013.

[Source: BP statistical review of world energy, www.bp.com]

Calculez la masse d'oxygène gazeux consommée, en millions de tonnes, qui se retrouve dans le CO_2 lors de la production de 18 000 térawatts d'électricité, en vous servant de l'équation de la droite de meilleur ajustement fournie. Donnez votre réponse avec 2 chiffres significatifs.

Supposez que le charbon est la seule source d'énergie.

 											•							•												٠					
 		 _																																	

(Suite de la question à la page suivante)

Tournez la page

[2]

(Suite de la question 1)

(c) On peut étudier les changements d'origine climatique dans les eaux océaniques à l'aide de mesures telles que le traceur appelé oxygène atmosphérique potentiel (APO, de l'anglais Atmospheric Potential Oxygen). Les tendances de la concentration d'oxygène atmosphérique potentiel provenant de deux stations, une dans chaque hémisphère, sont illustrées ci-dessous.

Tendances de l'oxygène atmosphérique potentiel (APO) basées sur les moyennes mensuelles entre 1990 et 2010.

[Source: www.ioos.noaa.gov]

(i)	L'expression de l'équilibre de l'échange de O_2 entre l'atmosphère et les eaux de l'océan est $O_2(g) \rightleftharpoons O_2(aq)$. Identifiez un facteur qui déplace l'équilibre vers la droite.	[1]
(ii)	Les facteurs tels que la photosynthèse et la respiration sont exclus, de sorte que l'oxygène atmosphérique potentiel n'est influencé que par les changements océaniques. Suggérez pourquoi les cycles saisonniers de la station d'Alert et de l'observatoire de Cape Grim sont différents.	[2]

(Suite de la question à la page suivante)

[1]

(Suite de la question 1)

(iii) La variation du rapport O_2/N_2 de l'APO, exprimée en unités « per meg », est mesurée relativement à un rapport O_2/N_2 de référence.

$$\Delta(O_2/N_2) = \left(\frac{(O_2/N_2)_{\text{échantillon}}}{(O_2/N_2)_{\text{référence}}} - 1\right) \times 10^6$$

Calculez la valeur de $\Delta(O_2/N_2)$ de l'APO pour une concentration d'oxygène de 209 400 ppm en supposant que toute variation de la concentration de N_2 est négligeable. Les valeurs de référence pour N_2 et N_2 sont 209 460 et 790 190 ppm respectivement.

	(iv)		rez e er		son	pou	ır la	і ре	nte	gé	nér	ale i	nég	ativ	e d	le la	о со	urb	e d	e ľ.	AP()	[1	

2. Les briquets jetables en plastique contiennent du butane gazeux. Dans le but de déterminer la masse molaire du butane, on peut recueillir le gaz par deplacement d'eau, tel qu'illustré ci-dessous :

(a)	Énumérer les données que l'élève doit recueillir dans cette expérience.	[4]
(b)	(i) Expliquez pourquoi cette expérience pourrait donner un résultat faible pour la masse molaire du butane.	[2]
	(ii) Suggérez une amélioration pour cette expérience.	[1]

Section B

Répondez à **toutes** les questions d'**une** des options. Rédigez vos réponses dans les cases prévues à cet effet.

Option A — Les matériaux

que les matéria	sites de polymères possèdent souvent un ux conventionnels. La gravure lithographic odes d'assemblage de ces matériaux nanc	que et la coordination de métaux
(a) Exprimez	les deux phases distinctes d'un composite	e. [2]
(b) Identifiez I	es méthodes d'assemblage des nanocom	posites en remplissant le tableau. [2]
	Physique ou chimique	De bas en haut ou de haut en bas
Lithographie		
Coordination des métaux		
pas s'écha	particules fixent les plastifiants dans le PV0 apper facilement du polymère.	
(i) Expl	iquez comment la structure des plastifiants	s leur permet d'assouplir le PVC. [3]
` ,	gérez une raison pour laquelle les nanopart tifiants dans le polymère.	ticules peuvent mieux fixer les [1]

Tournez la page

(Suite de l'option A)

4. Les spectres infrarouges (IR) peuvent être utilisés pour distinguer les différents types de matières plastiques. Quelques spectres IR simplifiés sont fournis ci-dessous.

[Source : M Rozov, TK Valdez, L Valdez et RK Upmacis, (2013), « Teaching Green Chemistry Principles to Undergraduate Students », *Athens Journal of Sciences*.]

Expliquez, en faisant référence à la structure moléculaire, quels sont les deux types de

n	าล	iti	é	re	98		р	la	S	ti	iq	U	ıe	95	3	q	u	i	n	е	ŗ	Э	eι	J۱	/6	er	٦t	t	p	a	S	É	ètı	re	,	di	is	ti	in	g	u	és	S	ра	ar	. 5	sp	е	ct	r	25	SC	Ю	p	ie	1	R	2.		•	-									
																																																	_																					
•	-	-		-						-	-	-	-		-	-					-	-	-					-		-		-		-	-				-	-		-			-	_			-	-					_	-	-	-	-	-				-		-		-	-	
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•			•		•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	 •	•	•	•	•	•	
•	•	•	•	•	•		•			•	•	•	•	•	•	•	•		•	•	•	•	•	•	•			•		•	•	•	•	•	•				•	•	•	•	•	•	•			•	•	•	•			•	•	•	•	•	•	•				 •	•	•	•	•	•	

(Suite de l'option A)

5 .	cata	lytique	n et le palladium sont souvent utilisés ensemble dans les convertisseurs es. Le rhodium est un bon catalyseur de réduction, alors que le palladium est un seur d'oxydation.	
	(a)		s un convertisseur catalytique, le monoxyde de carbone est converti en dioxyde de one. Résumez le processus de cette conversion en vous référant au métal utilisé.	[3]
	(b)	(i)	Le nickel est également utilisé comme catalyseur. Il est préparé à partir d'un minerai jusqu'à l'obtention d'une solution de chlorure de nickel(II). À l'aide des sections 24 et 25 du recueil de données, identifiez un métal qui ne réagira pas avec l'eau et qui peut être utilisé pour extraire le nickel de la solution.	[1]
		(ii)	Déduisez l'équation redox de la réaction de la solution de chlorure de nickel(II) avec le métal identifié dans la partie (b)(i).	[1]
	(c)	nicke 2,50	autre méthode d'obtention du nickel est l'électrolyse d'une solution de chlorure de el(II). Calculez la masse de nickel, en g, obtenue en faisant passer un courant de A dans la solution durant exactement 1 heure.	
		Char	$ge(Q) = courant(I) \times temps(t).$	[2]

(Suite de l'option A)

6.

6.	lumi	cristaux liquides sur silicium, CLS, utilisent des cristaux liquides pour contrôler l'intensité ineuse d'un pixel. Le degré de rotation du plan de la lumière polarisée est déterminé par ension reçue de la puce de silicium.	
	(a)	Une molécule de cristal liquide doit posséder deux propriétés importantes : être une molécule polaire et avoir une longue chaîne alkyle. Expliquez pourquoi ces propriétés sont des composantes essentielles d'une molécule de cristal liquide.	[2]
	Mol	écule polaire :	
	Lon	gue chaîne alkyle :	
	(b)	On peut analyser les impuretés métalliques au cours de la production des CLS au moyen de la spectroscopie ICP-MS. Chaque métal possède une limite de détection au-dessous de laquelle l'incertitude des données est trop élevée pour être valide. Suggérez un facteur qui pourrait influencer une limite de détection dans la spectroscopie ICP-MS/ICP-OES.	[1]

Fin de l'option A

Option B — La biochimie

7. Les structures des acides aminés cystéine, glutamine et lysine sont fournies à la section 33 du recueil de données.

(a)	Deduisez la formule structurale du dipeptide Cys-Lys.	[2

(b) Identifiez le type de liaison entre deux résidus cystéine dans la structure tertiaire d'une protéine.

[1]

٠.	•	•	•	 	٠	٠	•	٠	•	٠	•	•	•	•	٠	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	٠	٠	•	•	٠	•	 •		•	•	 	 •	٠	•	٠	•	•	•	•	•		 		•	•	٠	•	•	•	٠	•	•

(c) Déduisez la formule structurale de la forme prédominante de la cystéine à pH 1,0.

[1]

(d) Un mélange des trois acides aminés, cystéine, glutamine et lysine, est placé au centre d'une plaque carrée couverte de gel de polyacrylamide. Le gel est saturé d'une solution tampon à pH 6,0. Des électrodes sont connectées aux côtés opposés du gel et une différence de potentiel est appliquée.

Sur le schéma, representez des lignes montrant les positions relatives des trois acides aminés après l'électrophorèse.

[2]

(Suite de l'option B)

	le de tournesol contient les acides gras stéarique, oléique et linoléique. Les formules cturales de ces acides sont fournies à la section 34 du recueil de données.	
(a)	Expliquez lequel de ces acides gras possède le point d'ébullition le plus élevé.	[2]
(b)	10,0 g d'huile de tournesol réagissent complètement avec 123 cm³ d'une solution d'iode 0,500 mol dm⁻³. Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier le plus proche.	[3]
(b)	0,500 mol dm ⁻³ . Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier	[3]
(b)	0,500 mol dm ⁻³ . Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier	[3]
(b)	0,500 mol dm ⁻³ . Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier	[3]
(b)	0,500 mol dm ⁻³ . Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier	[3]
(b)	0,500 mol dm ⁻³ . Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier	[3]
(b)	0,500 mol dm ⁻³ . Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier	[3]
(b)	0,500 mol dm ⁻³ . Calculez l'indice d'iode de l'huile de tournesol arrondi au nombre entier	[3]

(Suite de l'option B)

9. Une réaction chimique se produit lorsqu'un phospholipide est chauffé avec un excès d'hydroxyde de sodium.

(a) Le glycérol est un produit de la réaction. Identifiez les deux autres produits organiques. [2]

(b) Identifiez le type de réaction qui a lieu. [1]

(Suite de l'option B)

10. Les monosaccharides peuvent se combiner pour former des disaccharides et des polysaccharides.

(a) Identifiez les groupements fonctionnels présents dans seulement une structure du glucose.

[2]

Seulement dans la forme à chaîne linéaire :
Seulement dans la structure cyclique :

(b) Le saccharose est un disaccharide formé de α -glucose et de β -fructose. Déduisez la formule structurale du saccharose.

[1]

(Option B, suite de la question 10)

(c)	L'amidon est un constituant de nombreuses matières plastiques. Suggérez une raison pour inclure l'amidon dans les matières plastiques.	[1]
(d)	Suggérez un des défis auxquels font face les scientifiques lorsqu'ils augmentent la production de la synthèse d'un nouveau composé.	[1]

Fin de l'option B

À l'aide de la section 35 du recueil de données, suggérez, du point de vue de sa structure, pourquoi la vitamine D est liposoluble.

Tournez la page

[1]

Option C — L'énergie

12.	Le Sol	eil e	st la principale source d'énergie utilisée sur Terre.	
	(a) (i)	Une réaction de fusion qui se produit dans le Soleil est la fusion du deutérium, 2_1H , avec le tritium, 3_1H , pour former l'hélium, 4_2He . Exprimez une équation nucléaire de cette réaction.	[1]
	(ii)	À l'aide de la section 36 du recueil de données, expliquez pourquoi cette réaction de fusion libère de l'énergie.	[2]
	(iii)	Exprimez la technique utilisée pour démontrer que le Soleil est principalement composé d'hydrogène et d'hélium.	[1]
	` '		molécules colorées absorbent la lumière solaire. Identifiez les caractéristiques des ons dans de telles molécules.	[1]

(Suite de l'option C)

- **13.** Il existe de nombreuses sources d'énergie disponibles.
 - (a) Exprimez **un** avantage et **un** inconvénient pour chaque source d'énergie dans le tableau.

[4]

Source d'énergie	Avantage	Inconvénient
Biocarburants		
Combustibles fossiles		
	lez l'énergie spécifique de l'hydrogène, e ez-vous aux sections 1, 6 et 13 du recuei	
utilisé	rogène a une énergie spécifique plus élev comme source principale de carburant d vantages de l'utilisation de l'hydrogène.	

(Suite de l'option C)

14. La combustion des combustibles fossiles produit de grandes quantités de CO₂, un gaz responsable de l'effet de serre. Le schéma ci-dessous illustre une gamme de longueurs d'onde dans le spectre électromagnétique.

(a) Identifiez quelle région, **A** ou **B**, correspond à chaque type de rayonnement en complétant le tableau.

[1]

Type de rayonnement	Région
Rayons solaires incidents	
Renvoyés par la surface de la Terre	
Absorbés par le CO ₂ dans l'atmosphère	

(b) (i) Les océans peuvent agir comme des puits de carbone, en captant du CO₂(g) de l'atmosphère.

$$CO_2(g) \rightleftharpoons CO_2(aq)$$

Le dioxyde de carbone aqueux, CO₂ (aq), réagit rapidement avec l'eau de l'océan selon une nouvelle réaction d'équilibre. Construisez l'équation d'équilibre de cette réaction en incluant les symboles précisant l'état physique.

[1]

(Option C, suite de la question 14)

	(ii)	Décrivez comment de grandes quantités de CO_2 peuvent réduire le pH de l'océan, en utilisant une équation pour étayer votre réponse.	[2]
(c)	est i char	laz de synthèse, ou syngaz, principalement composé de $CO(g)$ et de $H_2(g)$, une forme alternative de combustible. Il peut être produit par la gazéification du bon ou de la biomasse, en faisant passer de la vapeur sur la matière première sun environnement à faible teneur en oxygène.	
	(i)	Suggérez une équation de la production du gaz de synthèse à partir du charbon.	[1]
	(ii)	Le procédé Fischer-Tropsch, une méthode de liquéfaction indirecte du charbon, convertit CO(g) et H ₂ (g) en hydrocarbures de poids moléculaire plus élevé et en vapeur. Déduisez l'équation de la production de l'octane par ce procédé.	[1]
	(iii)	Suggérez une raison pour laquelle le gaz de synthèse peut être considéré comme une alternative viable au pétrole brut.	[1]

Fin de l'option C

Tournez la page

[2]

Option D — La chimie médicinale

- **15.** L'aspirine est un des médicaments les plus largement utilisés dans le monde.
 - (a) L'aspirine a été synthétisée à partir de 2,65 g d'acide salicylique (acide 2-hydroxybenzoïque) ($M_r = 138,13$) et de 2,51 g d'anhydride éthanoïque ($M_r = 102,10$).

(i) Calculez les quantités, en mol, de chaque réactif. [1]

(ii) Calculez, en g, le rendement théorique en aspirine. [1]

(iii) Exprimez **deux** techniques, qui pourraient être utilisées pour confirmer l'identité de l'aspirine.

	(b)	(i)	Exprimez comment l'aspirine peut être convertie en aspirine soluble dans l'eau.	[1]
		(ii)	Comparez, en donnant une justification, la biodisponibilité de l'aspirine soluble à celle de l'aspirine.	[1]
16.		eil de Expl	ures de la morphine, de l'héroïne et de la codéine sont fournies à la section 37 du données. liquez pourquoi l'héroïne traverse la barrière hémato-encéphalique (sang – eau) plus facilement que la morphine.	[2]
	(b)	Sug	gérez un réactif utilisé pour préparer l'héroïne à partir de la morphine.	[1]
	(c)	dans	gérez une raison pour laquelle la codéine est disponible sans prescription s certains pays alors que l'administration de la morphine n'intervient que sous eillance médicale stricte.	[1]

(L'option D continue sur la page suivante)

Tournez la page

(Suite de l'option D)

17. Un certain nombre de médicaments ont été mis au point pour traiter l'excès d'acidité gastrique.

(a)	Résumez comment la ranitidine (Zantac) et l'oméprazole (Prilosec) fonctionnent pour
	réduire l'acidité gastrique.

[2]

Ranitid	ine:																
			 	 	 ٠.	٠.	 ٠.		 	 							
			 	 	 	 	 	 	 ٠.	 	 		 	-	 	 	
Omepr	azole	:															

(b) 0,500 g de carbonate de sodium anhydre solide, Na₂CO₃(s), est dissous dans 75,0 cm³ d'une solution d'hydrogénocarbonate de sodium 0,100 mol dm⁻³, NaHCO₃(aq). Supposez que le volume ne varie pas lorsque le sel est dissous.

$$HCO_3^-(aq) \rightleftharpoons CO_3^{2-}(aq) + H^+(aq)$$
 $pK_a = 10,35$.

Calculez le pH de la solution tampon.

[2]

(Quita	d۸	ľantian	וח
Juile	ue	l'option	וטו

- **18.** Les structures de l'oseltamivir (Tamiflu) et du zanamivir (Relenza) sont fournies à la section 37 du recueil de données.
 - (a) (i) Comparez et opposez les structures de l'oseltamivir et du zanamivir, en exprimant les noms des groupements fonctionnels.

[2]

Une	similitude :	
Une	différence :	
	(ii) À l'aide de la section 26 du recueil de données, déduisez le nombre d'onde d'une absorbance observée dans le spectre IR de seulement un des composés.	[1]
(b)	Suggérez une considération éthique à laquelle les chercheurs en médecine sont confrontés lorsqu'ils mettent au point des médicaments.	[1]

Tournez la page

Suite	de	ľoi	otion	D)
- aito	40	. ~,		_,

13.	La production de nombreux produits pharmaceutiques implique rutilisation de solvants.										
	(a)	Suggérez un problème associé aux solvants organiques chlorés comme déchets chimiques.	[1]								
	(b)	Suggérez comment les principes de la chimie verte peuvent être utilisés pour résoudre les problèmes environnementaux causés par les solvants organiques.	[1]								

Fin de l'option D

