

NKING IS ALL YOU

BY SUIKA

Apakah

Paper A

mereferensikan

Paper B

Automated Reference Check

Embedding Types

DATASET

Metadata

Object

doi title authors

publication_date

type

paper_id

concept

Integer

publication_year cited_by_count

Paper Database

on .txt

4354 Paper

Train & Test

paper referenced_paper
Train 773 3834
Test 773 3834

is_referenced

value_counts()

0 406399

1 4292

imbalanced?

Data Loading

Data

papers_metadata

train.csv

test.csv

extract paper .txt

Paper from db id

Paperxx.txt — 1

Paperxx.txt — 2

Paperxx.txt — 3

Paperxx.txt — 4

Data Preprocessing

Metadata Imputation

Missing title

Missing DOI

Missing Authors

.txt adjusting

end sentence and whitespace removal

Data Loading & Preprocessing

Choosing Embedder

Fine Tuning timeline of Specter

In-Batch Negative Sampling
Sinyal Relasi Kutipan Eksplisit
Projection Head untuk Retrieval

Structure of BERT (12 layered)

BERT —— Pretrained on → Wikipedia, Books

Document-Level Embedding & FE

Embedding process

For each paper on paper_db

Inisialisasi

Batch Inference

batch_size = 16 max_length = 512 **Tokenize**

Padding

Truncation

Ekstraksi Embedding

CLS

classification token

768 dimensi

Local MCC CV 0.372

Document level FE Creation

Pendekatan chunking kami

Document-Level Embedding

Chunk Level Embedding

x = similaritas tinggi

x = similaritas rendah

A

B

Cosine similarity ≈ 0.35

A

B

Chunking with iterative approach on MiniLM-L6-v2

Chunk-level menemukan kesamaan lokal di bagian metodologi paper A dengan isi paper B.

Diekstrak menjadi

- Max similarity
- Mean Similarity
- Std Similarity
- Fraction Above 0.8

Chunk di line 2 (paper A dan line 5 (paper B) similarity ≈ 0.82

Chunking & Chunk-Level Feature Extraction

Pendekatan chunking kami

Disimpan menjadi data embed untuk feature extraction lanjutan di train dan test.

Local MCC CV 0.510

Chunk level FE Extraction

maximal similarity

mean

similarity

Embed Paper

Saved Embeded Result

Embed Ref Paper

Dihitung per baris di data train dan test

Std Similarity

Fraction Above 0.8

Local MCC CV 0.567

Data Assembly Process

Feature Assembly

Top 10 most important feat (XGboost)

Trained on final Dataset

Feature Extraction based on the top 200 features by Feature Importance

Hyperparameter Tuning

Tree-Structured Parzen Estimator (TPE)

$$\mathrm{EI}_{y^{\star}}[oldsymbol{x}|\mathcal{D}]\coloneqq\int_{-\infty}^{y^{\star}}(y^{\star}-y)p(y|oldsymbol{x},\mathcal{D})dy.$$

Function of expected improvement

simple hyperparameter space example

Bayes-opt library: membangun dua model probabilistik

"Better" high reward parameter

"lesser" parameter

$$\frac{\operatorname{argmax}(\frac{I(x)}{g(x)})}{g(x)}$$

Hyperparameter Tuning

hyperparameter tuning process with optuna

Local CV 0.609

Private leaderboard 0.616

Tuned Hyperparameter

'lambda' 'n_estimators' 'alpha' 'max_depth' 'colsample_bytree' 'min_child_weight' 'subsample' 'gamma' 'learning_rate'

Optimalisasi MCC

$$\mathrm{MCC} = \frac{\mathit{TP} \times \mathit{TN} - \mathit{FP} \times \mathit{FN}}{\sqrt{(\mathit{TP} + \mathit{FP})(\mathit{TP} + \mathit{FN})(\mathit{TN} + \mathit{FP})(\mathit{TN} + \mathit{FN})}}$$

Model Training & Tuning

Pendekatan kami melalui django webplatform

Run on local

Responsif ke pasangan baru

Modular Approach

Tidak perlu retrain boosted model

p0678 referensi ke p0508

p0678 tidak referensi ke p4101

KESIMPULAN

Sinergi antara pemahaman global, lokal, dan konteks bibliografis secara signifikan meningkatkan akurasi prediksi kutipan.

REKOMENDASI

Eksplorasi teknik ensembel lanjutan

hillclimbing ensemble graph searching global max

Integrasi fitur graf sitasi

Penggunaan model embedding yang lebih kuat

malteos/scincl

scincl at Huggingface

Kesimpulan dan Rekomendasi

