- 1. Let $\mathsf{OPT}(x)$ be the maximum value of any solution and let $\mathsf{A}(x)$ be the value of the solution returned by the algorithm, on input x. Then, $A(x) \le OPT(x)$ (by definition of OPT) and the approximation ratio is the factor by which A(x) is smaller than OPT(x): A(x) >= OPT(x) / r(n) -- or equivalently, $OPT(x) \le r(n) * A(x)$.
- 2. Let G = (V, E) where $V = \{v_1, ..., v_n\}, E = \{(v_1, v_i) : i >= 2\}.$ Then $\{v_1\}$ is a vertex cover of size OPT = 1 in G but, if the algorithm begins with v_1 , it will output $\{v_2, \ldots, v_n\}$ instead, with size A = n-1. The ratio is therefore at least A(G)/OPT(G) = (n-1)/1 = n-1.

The algorithm must examine every edge in the graph, for every node that is considered -- this takes time Omega (mn).

- 3. (a) Repeatedly pick a vertex of largest degree and put it in C, removing all edges incident on that vertex, until no edge remains.
 - (b) Counting degree of each vertex: O(n + m) -- linear time. Placing each vertex in a priority queue, by degree -- O(n). Extracting each vertex from the priority queue -- O(n log n). Updating degrees for each vertex removed -- O(m log n) overall. TOTAL = $O((n + m) \log n)$.
 - (c) Ratio not constant.
 - Start with edges (a_1,b_1), ..., (a_k,b_k)
 - Add vertices c_1, ..., c_j as follows:
 - . create groups of 3 $\{b_1, b_2, b_3\}$, $\{b_4, b_5, b_6\}$, ... and connect each one to a new c vertex (this may leave some b vertices unconnected, which is OK)
 - . create groups of 4 {b_1,b_2,b_3,b_4}, ... and connect each one to a new c vertex (this may leave some b vertices unconnected, which is OK)

 - . create a group of k-1 { $b_1, b_2, ..., b_{k-1}$ } and connect it to a new c vertex
 - . create a group of $k \{b_1, b_2, \ldots, b_k\}$ and connect it to a new c vertex
 - The last c vertex created has degree k, but every other vertex has degree at most k-1, so the last c vertex will be picked first. After it is removed, every vertex will have degree at most k-2 except for the second-last c vertex (with degree k-1), so it will be picked next. This will continue picking c vertices one by one (they will always have the largest remaining degree) until only the edges $(a_1,b_1), \ldots, (a_k,b_k)$ remain, at which point one vertex will be picked from each edge.
 - Total number of vertices picked = k + number of c vertices. Number of c vertices = floor(k/3) + floor(k/4) + ... +floor (k/k) and it's possible to prove that this grows like the Harmonic series $(k + k/2 + ... + k/k = k * H_k)$, i.e., there are

Theta(k log k) c vertices. So the algorithm picks Theta(k log k) vertices when the minimum vertex cover $\{b_1, \ldots, b_k\}$ has size only k. This means that in general, approximation ratio $>= \log k$.

- In particular, try this with k=10: the graph will contain 12 c vertices and the algorithm will pick 22 vertices, more than twice the minimum of 10.
- * Proof that approximation ratio is <= log n? See Sections 9.2.1 and 5.4 in the textbook. [This is NOT required reading, just for your own reference.]