ANÁLISE DE CRÉDITO BANCÁRIO

SCORE DE RISCO COM CLASSIFICAÇÃO INTELIGENTE DE CLIENTES INADIMPLENTES

CONTEXTO E OBJETIVOS

CONTEXTO

queda da taxa de juros %

amento na demanda de
pedidos por crédito

DIFICULDADE

processo manual

pressão por decisões mais ágeis e assertivas

OBJETIVOS

como identificar, de forma simples e eficiente, os clientes com maior risco de inadimplência?

METODOLOGIAS E PROCESSOS APLICADOS

Tratamento e limpeza 1	Análise exploratória 2	Técnicas aplicadas 3
 Identificação e tratamento de variáveis-chave com dados faltantes. 	 Mapeamento dos perfis com maior taxa de inadimplência por faixa etária, renda e dívidas. 	 Cálculo do risco relativo para identificação de grupos com maior probabilidade de inadimplência.
 Identificação de inconsistências no cálculo do índice de dívida sobre patrimônio, dificultado pela ausência de variáveis essenciais 	 Segmentação das variáveis em grupos de risco com base na distribuição dos dados. 	Construção de um score simplificado com variáveis binárias (alta ou baixa exposição ao risco).
como salário.	 Criação do grupo extremo (Q5), 	
Tratamento de variáveis cruciais, como salário e número de dependentes, preservando sua tipologia e a consistência da análise.	com risco significativamente "acima da média".	Validação do modelo com matriz de confusão e análise da força preditiva do score.

COMPOSIÇÃO DOS DADOS

População

35.575

clientes

Apenas **622 clientes são** classificados como **inadimplentes.**

Volume de empréstimos

305.335

empréstimos

Cada cliente possui, em média, **9 empréstimos registrados.**

Taxa de inadimplência

1,75%

inadimplentes

Cenário altamente desbalanceado, o que exige atenção nos modelos preditivos

JUL/2025

PANORAMA GERAL DA BASE

TAXA DE DADOS FALTANTES

19,77%

Clientes não informaram dados essenciais como **salário e número de dependentes**, o que pode impactar diretamente a análise de perfil e renda.

MEDIANA SALARIAL

R\$4.416,00

A média é distorcida por outliers, como valores extremos de até R\$ 1.560.000,00, que não refletem o perfil geral da base.

FAIXA ETÁRIA PREDOMINANTE

21 - 42 Anos

A base é composta majoritariamente por **adultos jovens**, com maior propensão ao consumo de crédito.

TIPO DE EMPRÉSTIMO MAIS SOLICITADO

99,4%

A maioria dos registros está classificada como "Other", limitando a interpretação sobre a finalidade do crédito solicitado.

Score Tradicional: Metodologia e Resultados

SCORE INICIAL: ESTRUTURA E PREMISSAS

1 Identificar os quartis com maior f taxa f de f inadimplencia na base, através do cálculo de f risco f relativo.

Uma **pontuação binária** por variável foi elaborada, **marcando os clientes presentes nesses grupos** de maior risco.

Cada cliente recebeu uma soma de pontos, proporcional à quantidade de características de risco.

Matriz de Confusão - Score Tradicional

Acurácia	76,2%	Acurácia	89,1%
Recall	82,4%	Recall	53,6%
Precisão	5,7%	Precisão	8,5%

Matriz de Confusão - Score Tradicional

SCORE AGRAVANTE: EXPONDO RISCOS CAMUFLADOS

• Perfis de risco camuflados:

Alguns clientes não atingem a pontuação mínima do score tradicional, mas apresentam sinais claros de risco. Como o uso excessivo de crédito, múltiplos empréstimos em aberto, atrasos recorrentes e ausência de informações cruciais.

• Desequilíbrio entre recall e precisão:

Cortes mais baixos identificavam mais inadimplentes (alta sensibilidade), mas com muitos falsos positivos. Cortes mais altos eram mais precisos, mas deixavam inadimplentes passarem.

• Trade-off estratégico na classificação:

A escolha do ponto de corte envolve uma decisão de negócio: priorizar a redução de inadimplência ou evitar reprovações injustas. O Q5 entra como uma camada complementar para equilibrar esse jogo.

Preenchidos

Faltantes

97,44%

19,76%

Salários Faltantes

2,56%

N° de Dependentes Faltantes

Matriz de Confusão - Score com Risco Agravado

Acurácia	71,4%	Acurácia	82,1%
Recall	86,6%	Recall	62,7%
Precisão	5,07%	Precisão	5,1%

Matriz de Confusão - Score com Risco Agravado

SCORE REFINADO: PERFORMANCE COM MENOS VARIÁVEIS

• POR QUE CRIAR UM SCORE REFINADO?

Com a análise, foi possível identificar que algumas variáveis estavam camuflando o perfil real de risco, gerando muitos falsos positivos e prejudicando o equilíbrio entre as métricas.

- Variáveis removidas:
 - **Dependentes** (200 inadimplentes)
 - Faixa de salário (201 inadimplentes)
- Motivo:
 - Alta taxa de falsos positivos
 - Baixa contribuição preditiva
 - Pior desempenho em testes com matriz de confusão

Mariah Lisboa

JUL/2025

Matriz de Confusão - Score Refinado

Acurácia	66,2%	Acurácia	88,3%
Recall	96,4%	Recall	72,0%
Precisão	4,8%	Precisão	10,3%

Matriz de Confusão - Score Refinado com Risco Agravado

CONCLUSÕES

- Dados faltantes aumentaram falsos positivos e dificultaram a classificação de bons pagadores.
- Variáveis com baixa força preditiva, quando removidas, podem melhorar o equilíbrio entre precisão e recall.
- A criação da flag Q5 trouxe uma nova camada de análise, revelando perfis camuflados com alto risco apesar do score tradicional baixo.
- O modelo evoluiu para uma versão mais interpretável e eficaz, focando no risco real e não apenas na ausência de dados.

Mariah Lisboa JUL/2025

Recomendações Estratégicas

01 - Modelo de Score

Adotar o modelo refinado com corte ≥ 3 + Q5, que oferece melhor equilíbrio entre acurácia (85%), recall (77,9%) e precisão (8,3%). 02 - Idade (21-42 anos)

Jovens têm maior risco de inadimplência, possivelmente por menor estabilidade financeira.

Estratégia: crédito progressivo, limites menores, educação financeira e acompanhamento mais próximo.

03 - Renda (até R\$ 3.400)

Baixa renda = risco 4x maior.

Capacidade de pagamento é fator-chave.

Estratégia: comprovação rigorosa de renda, política de crédito compatível, incentivo à sustentabilidade financeira.

04 - Dependentes (0 ou +2)

Risco elevado nos extremos.

Pode indicar sobrecarga ou isolamento financeiro.

Estratégia: avaliar composição familiar + renda, atenção a perfis com vulnerabilidades invisíveis.

05 - Poucos empréstimos (1 a 5)

Menor histórico = maior risco.

Pode indicar novos clientes ou uso limitado do crédito.

Estratégia: análise reforçada para iniciantes, foco em educação financeira e renegociação antes de novas concessões.

06 - Endividamento (> 46%)

Quanto mais endividado, maior o risco.

Estratégia: monitoramento contínuo, renegociação preventiva e gestão ativa do risco antes de requalificar.

07 - Uso do limite de crédito (> 52%)

Uso extremo = grupo mais arriscado.

Estratégia: alertas automáticos, bloqueios preventivos, renegociação e análise manual antes de renovação.

08 - Histórico de atraso (> 0)

Atrasos prévios = risco 559x maior. **Mesmo valores baixos indicam alta propensão à inadimplência.**

Estratégia: monitoramento em tempo real, reclassificação no score e campanhas de negociação proativa.

