

Trouve ton job dans l'IA

Fengfeng ZHANG Asmae ADNADANE David KOROBETSKI Formation Dév IA2

03-02-2023

Sommaire **Contexte et Objectifs du projet** Objectifs Mission de travail en groupe Méthodologie Intégration / Préparation / Nettoyage ☐ Analyse descriptive et exploratoire Modélisation Développement d'une application web Résultats ☐ Situations actuelles de recrutement sur l'IA 10 Prévoyez votre futur paiement d'emploi 22 avec notre application

04 Conclusion

Contexte FIND JOBS Intitulé Data analyst où Developer Compétences Data scientist SQL HTML \$350 indeed Lancer la recherche Avis sur les entreprises Estimation de salaire Télécharger votre CV Entreprises / Publier une annonce Connexion Quoi AI Où Ville ou code postal Rechercher Q Astuce : indiquez une ville ou un code postal dans la barre "où" afin d'afficher des résultats localisés. Date de publication Posté par 🔻 Télétravail * Estimation du salaire Secteurs -Type de poste ▼ Lieu -Entreprise *

Objectifs du projet

Mission de travail en groupe

Méthodologie


```
# Pipeline
# dictionnaire utilisé pour la recherche des meilleurs de paramètres
params RFR = {
    "criterion" : ['absolute_error', 'friedman_mse'],
    "random_state" : [n for n in range(39, 67)],
    "n_estimators" : [n for n in range(8, 27)]
111
pipe_cat = Pipeline(
    steps=[
        ('pipe_imp', SimpleImputer(strategy='most_frequent')),
        ('pipe_enc', OneHotEncoder(sparse=False))
tf cat = ColumnTransformer(
   transformers=[
        ('tf_cat', pipe_cat, ['Intitulé du poste', 'Nom de la société', 'Type de contrat']),
        ('tf comp', CountVectorizer(), 'competences')
RFR pipe max = Pipeline(
   steps=[
        ('transformation', tf_cat),
        ('model', RandomForestRegressor(n_estimators=26, random_state=66, criterion='absolute_error'))
RFR_pipe_min = Pipeline(
   steps=[
        ('transformation', tf cat),
        ('model', RandomForestRegressor(n_estimators=9, random_state=40, criterion='friedman_mse'))
```



```
# Evaluation du score de prédiction pour le salaire maximum

RFR_pipe_max.fit(X_train, y_train)
y_max_pred = RFR_pipe_max.predict(X_test)
print("RFR:", round(r2_score(y_test, y_max_pred), 5))
# print("best params : ", RFR_pipe_max['model'].best_params_)
```

RFR: 0.86616

```
# Evaluation du score de prédiction pour le salaire minimum

RFR_pipe_min.fit(X_train, y_train)
y_min_pred = RFR_pipe_min.predict(X_test)
print("RFR:", round(r2_score(y_test, y_min_pred), 5))
# print("best params : ", RFR_pipe['model'].best_params_)
```

RFR: 0.83544

Salaire maximal

Masse salariale en fonction de la colonne 'Nom de la société'

Salaire maximal

Masse salariale en fonction de la colonne 'Lieu'

Salaire maximal

Masse salariale en fonction de la colonne 'Intitulé du poste'

Masse salariale en fonction de la colonne 'Nom de la société'

Salaire minimum

Salaire minimum

Salaire minimum

Les compétences les plus recherchées

Les compétences les plus demandées

Répartition des compétences en fonction de la colonne 'Intitulé du poste'

Répartition des compétences en fonction de la colonne 'Nom de la société'

Analyse descriptive et exploratoire

Conclusion

01

Partie résultats

- Feedback
- ♦ UI
- Scalabilité
- Déploiement

02

Partie sur la technique

- Données manquantes
- ❖ r² score correct
- Bon travail dans la groupe
- Nettoyage approximatif
- Exploration à approfondir

