Confluent Unfolding in the λ -calculus with letrec

Jan Rochel and Clemens Grabmayer

Dept. of Information & Computing Sciences

Dept. of Philosophy

Utrecht University

28 June 2013

$\lambda_{\mathsf{letrec}}$ and unfolding semantics

Example

```
[letrec f = \lambda x. f x \text{ in } f] = \lambda x. (\lambda x. (...) x) x
```

$\lambda_{\mathsf{letrec}}$ and unfolding semantics

Example

letrec $f = \lambda x. f x$ in $f \longrightarrow \nabla \lambda x. (\lambda x. (...) x) x$

A CRS for unfolding $\lambda_{\mathsf{letrec}}$ -terms

Example

```
letrec f = \lambda x. f x \text{ in } f

\rightarrow_{\text{rec}} letrec f = \lambda x. f x \text{ in } \lambda x. f x

\rightarrow_{\lambda} \lambda x. letrec f = \lambda x. f x \text{ in } f x

\rightarrow_{\mathbb{Q}} \lambda x. (letrec f = \lambda x. f x \text{ in } f) (letrec f = \lambda x. f x \text{ in } x)

\rightarrow_{\text{red}} \lambda x. (letrec f = \lambda x. f x \text{ in } f) (letrec in x)

\rightarrow_{\text{nil}} \lambda x. (letrec f = \lambda x. f x \text{ in } f) x

\rightarrow_{\text{rec}} \lambda x. (...) x
```

A CRS for unfolding λ_{letrec} -terms

Confluence by Decreasing Diagrams

Usually:

$$\rightarrow_{\nabla} = \bigcup \{ \rightarrow_i \mid i \in I \}$$

Here:

$$\rightarrow_{\mathcal{A}} = \bigcup \{ - \not \mapsto_{\rho_d} \mid (d, \rho) \in \mathbb{N} \times Rules \}$$

where $\xrightarrow{}_{\rho_d}$ is a parallel ρ -step at letrec-depth d.

It holds:

$$\rightarrow_{\nabla} \subseteq \rightarrow_{\mathcal{A}} \subseteq \twoheadrightarrow_{\nabla}$$
 or equivalently $\twoheadrightarrow_{\mathcal{A}} = \twoheadrightarrow_{\nabla}$

Confluence by Decreasing Diagrams

letrec B_0 in letrec B_1 in L

$$e = d + 1$$

letrec B_0 in letrec B_1 in L

$$(e=d+1)$$

