In [52]:

```
import sys
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns. set()
```

In [2]:

df=pd.read_csv("G:/研究生学习资料/Illinois Courses/Fall 2019/IE 598 Machine Learning/assignment/HW3/df.head()

Out[2]:

	CUSIP	Ticker	Issue Date	Maturity	1st Call Date	Moodys	S_and_P	Fitch	Bloomber Composite Ratine
0	000324AA1	FLECIN	7/1/2014	7/1/2019	10/23/2017	Nan	Nan	Nan	Naı
1	00080QAB1	RBS	3/15/2004	6/4/2018	Nan	Ba1	BB+	BBB	BB·
2	00081TAD0	ACCO	5/14/2010	3/15/2015	Nan	WR	NR	BB+	NF
3	00081TAH1	ACCO	6/17/2013	4/30/2020	Nan	WR	NR	WD	NF
4	00081TAJ7	ACCO	12/22/2016	12/15/2024	12/15/2019	В1	BB-	ВВ	ВВ

5 rows × 37 columns

→

In [11]:

```
print("Number of Rows of Data = "+ str(df.shape[0]))
print("Number of Columns of Data = "+ str(df.shape[1]))
print("CSV size: "+str(df.shape))
```

Number of Rows of Data = 2721 Number of Columns of Data = 37

CSV size: (2721, 37)

In [31]:

```
print (df.iloc[0,:])
#Reference: https://zhuanlan.zhihu.com/p/31360526
```

CUSIP	000324AA1
Ticker	FLECIN
Issue Date	7/1/2014
Maturity	7/1/2019
1st Call Date	10/23/2017
Moodys	Nan
S_and_P	Nan
Fitch	Nan
Bloomberg Composite Rating	Nan
Coupon	12
Issued Amount	4.05e+08
Maturity Type	CALLABLE
Coupon Type	PAY-IN-KIND
Maturity At Issue months	60.87
Industry	Real Estate
LiquidityScore	10.8914
Months in JNK	Nan
Months in HYG	Nan
Months in Both	Nan
IN_ETF	No
LIQ SCORE	0. 108914
n_trades	301
volume_trades	2.64004e+08
total_median_size	1e+06
total_mean_size	877089
n_days_trade	128
days_diff_max	1132
percent_intra_dealer	0.00664452
percent_uncapped	0. 292359
bond_type	5
Client_Trade_Percentage	0. 521595
weekly_mean_volume	3. 10593e+06
weekly_median_volume	2e+06
weekly_max_volume	1.898e+07
weekly_min_volume	60000
weekly_mean_ntrades	3. 54118
weekly_median_ntrades	1
Name: 0, dtype: object	

In [32]:

print(df.dtypes)	
print (ar. atypes)	

CUSIP object Ticker object Issue Date object Maturity object 1st Call Date object Moodys object S_and_P object Fitch object Bloomberg Composite Rating object Coupon float64 float64 Issued Amount Maturity Type object Coupon Type object Maturity At Issue months float64 object Industry float64 LiquidityScore Months in JNK object Months in HYG object Months in Both object IN ETF object LIQ SCORE float64 int64 n_trades volume_trades float64 total_median_size float64 total_mean_size float64 n days trade int64 days_diff_max int64 percent_intra_dealer float64 percent_uncapped float64 int64 bond_type Client_Trade_Percentage float64 weekly mean volume float64 weekly_median_volume float64 weekly_max_volume float64 float64 weekly min volume weekly_mean_ntrades float64 weekly median ntrades int64

localhost:8888/notebooks/IE598_F18_HW3.ipynb

dtype: object

In [34]:

```
# descriptive statistics for the numeric variables
percentiles = np.array([2.5, 25, 50, 75, 97.5])
df.describe()
#https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html
```

Out[34]:

	Coupon	Issued Amount	Maturity At Issue months	LiquidityScore	LIQ SCORE	n_trades	volu
count	2721.000000	2.721000e+03	2721.000000	2721.000000	2721.000000	2721.000000	2.7
mean	10.307872	8.299295e+08	113.968997	18.218230	0.182182	2700.696435	7.2
std	63.051382	5.802790e+08	101.893176	7.872071	0.078721	5572.262205	1.0
min	0.000000	3.700000e+08	11.930000	4.388758	0.043888	1.000000	7.0
25%	5.000000	5.000000e+08	65.170000	12.738630	0.127386	116.000000	6.1
50%	6.250000	6.500000e+08	97.370000	16.538471	0.165385	674.000000	3.4
75%	7.750000	1.000000e+09	121.770000	22.120108	0.221201	2467.000000	9.3
max	999.000000	7.364026e+09	1217.570000	54.673908	0.546739	57935.000000	8.9

8 rows × 21 columns

→

In [56]:

```
# unique categories in each categorical attribute
BCR=df['Bloomberg Composite Rating']
Categories=set(BCR)
sys. stdout. write("Unique Label Values \n")
print(Categories)
sys. stdout. write(" \n")
```

```
Unique Label Values {'AA-', 'CC+', 'A+', 'BBB+', 'DDD', 'CCC-', 'CC-', 'BBB-', 'CCC', 'A-', 'BB-', 'BB B', 'AAA', 'AA+', 'Nan', 'NR', 'BB', 'B', 'C+', 'DD+', 'B+', 'CC', 'BB+', 'B-', 'CCC +', 'A', 'AA', 'C'}
```

In [57]:

```
sys.stdout.write("\nCounts for Each Value of Categorical Label \n")
catCount={}
for elt in BCR:
    if elt in catCount:
        catCount[elt] += 1
    else:
        catCount[elt]=1
print(catCount)
```

```
Counts for Each Value of Categorical Label {'Nan': 41, 'BB+': 258, 'NR': 1136, 'BB-': 196, 'BB': 179, 'AA-': 63, 'A': 22, 'B-': 124, 'B+': 150, 'B': 116, 'A+': 26, 'CCC+': 70, 'CCC': 54, 'BBB-': 163, 'BBB': 33, 'CCC-': 16, 'CC': 6, 'CC+': 16, 'AA': 7, 'AAA': 12, 'A-': 8, 'DDD': 2, 'BBB+': 11, 'DD+': 2, 'C': 3, 'C+': 5, 'CC-': 1, 'AA+': 1}
```

In [66]:

```
import scipy.stats as stats
fig=plt.figure()
ax=fig.add_subplot(111)
stats.probplot(df['Issued Amount'], dist="norm", plot=ax)
plt.show()
```


In [67]:

```
from pandas import DataFrame
print(df.head())
print(df.tail())
summary = df. describe()
print(summary)
                                       Maturity 1st Call Date Moodys S_and_P
       CUSIP
               Ticker
                        Issue Date
0
   000324AA1
               FLECIN
                          7/1/2014
                                       7/1/2019
                                                    10/23/2017
                                                                   Nan
                                                                            Nan
   00080QAB1
                  RBS
                         3/15/2004
                                       6/4/2018
                                                                   Ba1
                                                                            BB+
1
                                                           Nan
2
   00081TAD0
                 ACCO
                         5/14/2010
                                      3/15/2015
                                                           Nan
                                                                    WR
                                                                             NR
3
   00081TAH1
                 ACCO
                         6/17/2013
                                      4/30/2020
                                                           Nan
                                                                    WR
                                                                             NR
4
  00081TAJ7
                 ACCO
                       12/22/2016
                                    12/15/2024
                                                    12/15/2019
                                                                    B1
                                                                            BB-
  Fitch Bloomberg Composite Rating
                                      Coupon ...
                                                     percent_intra_dealer
0
    Nan
                                 Nan
                                        12.00
                                                                  0.006645
1
    BBB
                                 BB+
                                         4.65
                                                                  0.425018
2
    BB+
                                  NR
                                        10.63
                                                                  0.115207
                                               . . .
3
     WD
                                  NR
                                         6.75
                                                                  0.426332
                                 BB-
                                         5.25
                                                                  0.157216
4
     BB
                                               . . .
  percent_uncapped bond_type
                                Client_Trade_Percentage weekly_mean_volume
0
          0.292359
                                                 0.521595
                             5
                                                                  3105926, 765
                             2
1
          0.974071
                                                 0.337071
                                                                  1721696, 774
2
                             5
          0.594470
                                                 0.467742
                                                                  4200313.433
3
          0.892462
                             3
                                                 0.212864
                                                                  6321559.783
           0.000700
```

In [96]:

```
from pandas.plotting import parallel_coordinates
tmp = df[['LIQ SCORE', 'percent_intra_dealer', 'percent_uncapped', 'Client_Trade_Percentage']][0:60]
parallel_coordinates(tmp, 'LIQ SCORE')
plt.legend(loc='best', ncol=5)
plt.show()
```


In [98]:

```
plt. scatter(df['percent_intra_dealer'], df['percent_uncapped'])
plt. xlabel("percent_intra_dealer")
plt. ylabel(("percent_uncapped"))
plt. show()
```


In [117]:

```
target=[]
for i in range(60):
    if df['IN_ETF'][i] == "Yes":
        target.append(1.0)
    else:
        target.append(0.0)
tmp=np.array(target)
plt.scatter(df['LIQ SCORE'][:60], target, alpha=0.5, s=120)
```

Out[117]:

<matplotlib.collections.PathCollection at 0x2095ba94128>

In [120]:

```
sys. stdout.write("Correlation between attribute V(n_trades) and W(volume_trades) \n")
tmp=np.corrcoef(df['n_trades'], df['volume_trades'])[0, 1]
print(tmp)
```

Correlation between attribute V(n_trades) and W(volume_trades) $0.\,7693223728724927$

In [121]:

```
from pandas import DataFrame
corMat = DataFrame(df.corr())
```

In [122]:

```
plt.pcolor(corMat)
plt.show()
```


In [123]:

```
print("My name is {Zihan Chen}")
print("My NetID is: {zihanc7}")
print("I hereby certify that I have read the University policy on Academic Integrity and that I am n
```

```
My name is \{Zihan\ Chen\}
My NetID is: \{zihanc7\}
I hereby certify that I have read the University policy on Academic Integrity and th at I am not in violation.
```

In []: