

LB - KB

DELTA series absolute filters for duct flows

Product	LB	KB	
MPPS efficiency *	99,95 %	99,95 %	
CEN EN 1822 classification	H 13	H 13	
Suggested final pressure drop	600 Pa	600 Pa	
Maximum pressure drop	1000 Pa	1000 Pa	
Maximum operating temperature	90 °C	100 °C	
Maximum relative humidity	90 %	100 %	

^{*} Average efficiency. Punctual efficiency has an admitted penetration rate 5 times higher.

LB -KB Delta absolute filters are deep pleated, with top quality construction, limited pressure drop, high dust holding capacities, strong mechanical resistance and are long-lasting. These filters are made of two materials different from the one used for the frame: MDF wood (LB) and galvanized steel (KB). Both have a special single piece gasket. They come in two different depths: 149 and 292 mm which allow face air speeds of 0.75 and 1.5 m/s respectively. All the filters are tested individually and labeled to assure the compliance with the measured features.

Applications LB and KB filters can be used in various applications:

- final stage of air treatment units for rooms with cleanness class M4 and M5 (FS 290E)
- protection stage for very high efficiency filters (ULPA)
- in Canister systems to assure the required emission levels of exhausted air
- in line in Modulo systems to improve the efficiency of filtration systems
- in DIF.K/DIF.S terminal hoods in controlled contamination rooms.

Installation No matter what is the installation position, LB and KB filters always allow for the use of the entire filtration surface. We suggest installing the proper high-efficiency pre-filters to increase their operating life. On request we also supply frames and housings to improve and simplify the installation of the filters. Models LB can be burned completely.

Type	Sizes (mm)				N	Nominal air flow rate Q.			Filtering		Initial	
LB						LB	KB	LB	KB	surfa	ce m²	pressure drop
KB	Α		В		С	m ⁻	³/h	m³/s	к10 ^{-3*}	LB	KB	Pa
0.1	205		005		000	500	550	400	450	4 =	4.0	050
31	305	Х	305	Х	292	500	550	139	153	4,7	4,9	250
53	457	Х	457	Х	292	1200	1320	333	366	10,4	10,9	250
52	305	Х	610	Х	292	1000	1100	278	306	9,3	9,7	250
5	610	Х	610	Х	292	2000	2200	555	612	19	20	250
6	762	Х	610	Х	292	2500	2750	694	764	23,5	25	250
55	289	Х	595	Х	292	950	-	264	-	8,8	-	250
54	595	Х	595	Х	292	1900	-	528	-	18,2	-	250
3	305	Х	305	Х	149	270	-	75	-	2,2	-	250
43	457	Х	457	Х	149	620	-	172	-	5	-	250
42	305	Х	610	Х	149	550	600	153	166	4,5	4,7	250
4	610	X	610	×	149	1080	1190	300	330	9.5	9.8	250

[•] Product ready in STOCK

Typical curves

^{*1} $m^3/s \times 10^{-3} = 1 l/s$