Семинар 2.

1. Рассмотрим модель парной регрессии

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i.$$

Получите выражения для:

- (a) $Var(\beta_1)$, $Var(\beta_2)$;
- (b) $cov(\beta_1, \beta_2)$.
- 2. Рассмотрим модель парной регрессии

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i.$$

Найдите МНК-оценку для дисперсии σ^2 случайной составляющей.

- 3. Пусть $Y_i=\beta_1+\beta_2X_i+\varepsilon_i$ и $i=1,\ldots,5$ классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5Y_i^2=55,\sum_{i=1}^5X_i^2=3,\sum_{i=1}^5X_iY_i=12,\sum_{i=1}^5Y_i=15,\sum_{i=1}^5X_i=3.$
 - (a) Найдите $\hat{\beta}_1, \, \hat{\beta}_2, \, Corr(\hat{\beta}_1, \hat{\beta}_2).$
 - (b) Найдите TSS, ESS, RSS, R^2 , $\hat{\sigma}^2$.
- 4. Все предпосылки классической линейной модели выполнены, $Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$. Рассмотрим альтернативную оценку коэффициента β_2 ,

$$\hat{\beta}_{2,IV} = \frac{\sum Z_i(Y_i - \bar{Y})}{\sum Z_i(X_i - \bar{X})}.$$

1

- (а) Является ли оценка несмещённой?
- (b) Любые ли Z_i можно брать?
- (c) Найдите $Var(\hat{\beta}_{2,IV})$.