Planification du pompage dans un réseau de distribution d'eau potable ramifié

Optimisation non-linéaire en nombre entier

Robinson Beaucour

Décembre 2022

Figure 1: Réseau de distribution simple

Variables de décision

$Q_{pompe,t}^{(k)}$	Débit sortant de la pompe k à l'instant t	\mathbb{R}_{+}
$Q_{reserv,t}^{(r)}$	Débit entrant du réservoire r à l'instant t	\mathbb{R}_{+}
$P_{pompe,t}^{(k)}$	Puissance électrique consommée par la pompe k à l'instant t	\mathbb{R}_{+}
$V_t^{(r)}$	Volume du réservoire r à l'instant t	$[V_{min}^{(r)},V_{max}^{(r)}]$
$N_{on,t}^{(k)}$	Etat de la pompe k (allumé/éteint) à l'instant t	$\{0, 1\}$

Contraintes

Objectif

$$\text{Minimiser } \sum_t \sum_k P_{pompe,t}^{(k)} \cdot C_t$$