Temperature Relationships of Great Lakes Fishes:

A Data Compilation

by

Donald A. Wismer 1

and

Alan E. Christie

Great Lakes Fishery Commission Special Publication No. 87-3

Citation: Wismer, D.A. and A.E. Christie. 1987. Temperature Relationships of Great Lakes Fishes: A Data Compilation. Great Lakes Fish. Comm. Spec. Pub. 87-3. 165 p.

GREAT LAKES FISHERY COMMISSION 1451 Green Road Ann Arbor, MI48105 USA

July, 1987

¹ Environmental Studies & Assessments Dept. Ontario Hydro 700 University Avenue, Location H10 F2 Toronto, Ontario M5G 1X6 Canada

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
1.1 1.2 1.3 1.4	Purpose Summary Literature Review Database Advantages and Limitations	1 1 1 2
2.0	METHODS	2
2.1 2.2 2.3	Species List Database Design Considerations Definition of Terms	2 2 3
3.0	DATABASE SUMMARY	9
3.1 3.2	Organization Content	9 10
4.0	REFERENCES	18
5.0	FISH TEMPERATURE DATABASE	29
5.1	Abbreviations	29
	LIST OF TABLES	
		Page
1	Great Lakes Fish Species and Types of Temperature Data	11
2	Alphabetical Listing of Reviewed Fish Species by Common Name	15
	LIST OF FIGURES	
		Page
1	Diagram Showing Temperature Relations of Fish	5

1.0 INTRODUCTION

1.1 Purpose

The purpose of this report is to compile a temperature database for Great Lakes fishes. The database was prepared to provide a basis for preliminary decisions concerning the siting, design, and environmental performance standards of new generating stations and appropriate mitigative approaches to resolve undesirable fish community interactions at existing generating stations.

The contents of this document should also be useful to fisheries research and management agencies in the Great Lakes Basin.

1.2 Summary

The data base provides easy and rapid access to temperature data on fish species in terms of temperature categories which are pertinent to assessment of thermal effects on fish populations.

Thermal criteria for 116 fish species inhabiting the Great Lakes are summarized from published scientific literature. These data are categorized in four tables for each species as follows:

- (1) Lethal temperatures and thermal resistances
- (2) Temperature preferences and avoidances
- (3) Optimal and limiting temperatures for growth
- (4) Temperatures for reproduction and early development

The database tables are preceded by a brief text. The contents of the text are summarized in this paragraph. Section 1.3 is a review of similar literature. Section 1.4 presents a short discussion of the advantages and limitations of this report. The methods are outlined in Section 2.0. Section 2.1 is a discussion of the species list. The format used for the temperature data tables is described in detail in Section 2.2. The terms used in the database tables are defined in Section 2.3. A brief overview of the content of the temperature database tables is provided in Section 3.0. Section 3.1 explains the species cataloguing and organization. The distribution of temperature data across species is described in Section 3.2. References for the text and database tables are in Section 4.0. Section 5.0 is the fish temperature database, the first page of which is a list of abbreviations.

1.3 Literature Review

The published information on the temperature requirements of freshwater fishes is found in thousands of documents. It is convenient that several authors have condensed this information into reviews of the literature. The general reviews of fisheries biology by Carlander (1969,1977) and Scott and Crossman (1973) include some temperature data. Several reviewers have focussed on thermobiology, specifically: lethal and/or preference temperatures (Coutant 1977a; Cherry et al 1977; Kowalski et al 1978; Houston 1982). Others have widened their reviews to include data on growth, preference and lethal temperatures (Leidy and Jenkins 1977; McCauley and Casselman 1980; Jobling 1981). Comprehensive reviews on the whole range of temperature requirements for fishes (i.e., lethal. preference, growth, reproductive) were given by EPA (1974) and Brown (1974).

A summary of thermal effects literature is published each year for aquatic organisms in the June issue of the Journal of the Water Pollution Control Federation (Talmage and Coutant 1978, 1979, 1980; Cravens 1981, 1982; Cravens et al 1983; Harrelson et al 1984).

The temperature requirements of Great Lakes fishes have been reviewed by two authors. Firstly, Reutter and Herdendorf (1976) presented lethal and preference temperatures for 46 species of Lake Erie fishes. Secondly, Spotila et al (1979) reviewed 80 species covering: thermal requirements for survival, temperature preference, growth, reproduction and early development.

1.4 Database Advantages and Limitations

The major limitation of this document is its lack of an overall synthesis. The initial terms of reference did not provide for any attempt to integrate the data into summary values, figures or discussion. A brief overview of the distribution of temperature data among families of species is provided in Section 3.0. The reader is referred elsewhere for scholarly discussion of the use and application of fish temperature data (Cherry et al 1977; Richards et al 1977; Spotila et al 1979; McCauley and Casselman 1980; Jobling 1981; Mathur et al 1981; Houston 1982; Giattinna and Garton 1982; Ellis 1984).

The data summary in this report enjoys several advantages over other similar reviews. One of these is that it is current. This is the only compilation in the published literature since 1982. More importantly, the scope of the review is wider than any previous one in relation to the total species coverage and scope of thermobiological information. Furthermore, the design of the database tables makes for easy data access which aids comparisons within and across species. Access to the review of data by Spotila et al (1979) was hindered by the use of inconsistent categories of data within each table.

2.0 METHODS

2.1 Species List

The species list for this study was compiled from Christie (1982) and Scott and Crossman (1973). A total of 116 Great Lakes fishes were included. This species total is representative for the Great Lakes (Manny 1984).

Several species were omitted that no longer have a Great Lakes distribution. These species were: Atlantic salmon (Salmo salar); blue pike (Stizostedion vitreum glaucom); deepwater cisco (Coregonus johannae); and blackfin cisco (Coregonus nigripinnis) (Scott and Crossman 7973; McAllister et al 1985). The only species of the family Petromyzontidae represented in this summary was the sea lamprey (Petromyzon marinus). Three other Great Lakes species of this family not included in this summary were:. northern brook lamprey (Ichthyomyzon fossor); silver lamprey (Ichthyomyzon unicuspis); american brook lamprey /Lampetra lamottei). Also, I have included the stoneroller (Campostoma anomalum) in the database since it is reported to have a marginal Great Lakes distribution (Scott and Crossman 1973; Spotila et al 7979; McAllister et al 1985).

2.2 Database Design Considerations

The design of the temperature database was developed after review of the literature, some of which was cited in Section 1.4. The goal was to structure a database format that would accommodate the major thermal requirements for fishes. These temperature requirements have been identified by others as pertaining to: survival, temperature preference; growth; reproduction and early development (EPA 1974; Gift 1977; Jobling 1981; Giattinna and Garton 1982). The temperature criteria for preference - avoidance and survival are useful for predicting short-term direct effects on fish

behaviour and metabolism. The thermal requirements for reproduction and growth provide a basis for estimating the long-term sublethal effects of unnatural temperature change on fish populations.

2.3 Definition of Terms

The types of data furnished in the fish temperature database are described and defined in this Section. All temperatures are in degrees Celsius. Data are listed under the scientific name of the fish species, arranged in alphabetical order. Within each species category, the information is organized in four different tables. These tables are titled as follows in order of their appearance in the database:

- (1) THERMAL TOLERANCES
- (2) PREFERRED TEMPERATURES
- (3) GROWTH TEMPERATURES
- (4) SPAWNING AND DEVELOPMENT TEMPERATURES

The types of temperature data found within each of these four major categories are described below.

(1) THERMAL TOLERANCES

This table contains data on laboratory-derived lethal temperatures and thermal resistances. These temperature thresholds were observed in experiments that were explicitly designed to measure thermal doses. Other lethal temperaturevalues were reported in the literature from laboratory studies whose experimental designs did not conform to the accepted standards for determination of thermal tolerances and resistances. These standard methods are described in Fry et al (1946) and McCauley (1981). These latter temperature values and those reported from the field studies are less reliable than those derived from standard experimental designs. The less robust estimates of thermal tolerances are reported elsewhere in the table entitled: SPAWNING AND DEVELOPMENT TEMPERATURES. These include lethal temperature thresholds for entrainment, heat shock and cold shock.

(a) Size or Age:

Lethal temperatures vary with size and age of fish. The various descriptions of size and age used in the database are explained in Section 5.0.

(b) Acclimation Temperature:

The acclimation temperature is defined as a constant temperature in the laboratory at which fish have been held for a time sufficiently long to erase the influence of previous thermal exposure (McCauley 1981).

(c) Acclimation Time:

The time for holding fish at a given acclimation temperature. This is usually assumed a standard seven days unless reported otherwise.

(d) Season:

Lethal temperatures vary seasonally. See Section 5.0 for abbreviations used in the database.

(e) Upper Incipient Lethal Temperature:

and

(f) Lower Incipient Lethal Temperature:

The upper and lower incipient lethal temperatures represent the temperature values beyond which 50 percent of the population can no longer live given an indefinite period of time (Giattinna and Garton 1982). A standard seven-day week is used as the lethal test exposure time (McCauley 1981). The incipient lethal levels define the upper and lower boundaries to the "zone of thermal tolerance" within which there is no mortality from temperature (Figure 1).

(g) Thermal Resistance Equation:

A glance at Figure 1 will show a "zone of thermal resistance" located above the upper incipient lethal temperature. Within this zone, mortality due to temperature extremes occurs as a function of time. The length of time that 50 percent of the population will survive temperatures above the upper incipient lethal temperature is calculated from a regression relationship as follows:

log (time in minutes) = a + b (temperature in °C),

where a and b are the intercept and slope, respectively, determined from each acclimation temperature (EPA 1974).

The values of the intercept a and slope b are provided to four decimal places in the fish temperature database tables. The value of b is almost always negative and is preceded by a minus sign in the table. This minus sign, located between the values for a and b, should not be erroneously misinterpreted as signifying a range of values.

(h) Data Limits (Upper and Lower):

These are the data limits of the regression relationship as reported by Brown (1974).

(i) Exposure Temperature:

This is the test temperature a fish is exposed to in the laboratory in order to determine the time to mortality.

(j) Resistance Time:

This value is the amount of time that a sample of test fish were able to resist an exposure temperature before 50 percent mortality, or some other specified survival level, is experienced. The resistance time equation can be used to calculate thermal tolerance limits for a fish species for several time intervals up to 10,000 minutes (seven days) (Jinks et al 1981).

(k) Critical Thermal (Max):

The upper boundary of the "zone of thermal resistance" is the critical thermal maximum (CTM) (Figure 1). The CTM is lethal if fish are allowed to remain at or above that temperature (Bonin et al 1981). The CTM is determined in the laboratory by gradually increasing the water tempera-

Broken line (line of equality) represents points at which preferred temperature equals acclimation temperature, and is often used in estimating final preferendum. CTM = critical thermal maximum; UILT = upper incipient lethal temperature; LILT = lower incipient lethal temperature; UUILT = ultimate upper incipient lethal temperature; UA = upper avoidance threshold; LA = lower avoidance threshold.

Adopted from Jobling (1981), Giatinna and Garton (1982)

FIGURE 1
Diagram Showing Temperature Relations of Fish

ture from acclimation levels to the temperature at which the onset of spasms occurs, followed by complete loss of equilibrium. This differs from determination of the upper incipient lethal temperature (I(e)) in which fish are transferred directly and abruptly into a constant lethal temperature bath from acclimation temperatures (McCauley 1981). The rate of temperature increase used by any single investigator to determine CTM can vary within a range of 1 to 60°C h for routine applications (Becker and Genoway 1979; Bonin et al 1981).

(I) Location:

This is a laboratory. Sometimes its geographic location is given.

(2) PREFERRED TEMPERATURES:

This table contains temperature preference and avoidance values. These are derived from both field and laboratory observations.

(a) Size or Age:

Preferred and avoided temperatures vary with size and age, See Section 5.0 for a description of life stages and units of size used in the database.

(b) Season:

Preferred and avoided temperatures vary with season. See Section 5.0 for abbreviations.

(c) Day or Night:

Diurnal variation in temperature preference and avoidance is common (Coutant 1977a, Giattinna and Garton 1982). See Section 5.0 for abbreviations.

(d) Upper and Lower Avoidance:

The avoidance threshold is defined as the temperature at which fish spend significantly less time in comparison to controls. Avoidance temperatures (upper and lower) can be measured directly in the lab by providing fish with a choice between water which is heated or cooled and water at the acclimation temperature of the fish (Giattinna and Garton 1982). The upper and lower avoidance temperatures define the boundary of the "zone of thermal preference" (Figure 1). Avoidance temperatures reported from field studies are less precise than those of laboratory studies because they include the influence of other non-thermal environmental influences (i.e., competition, predation, changes in water quality, food availability, physiological condition).

(e) Final Preferendum:

Within a laboratory thermal gradient, over a short period of time (two hours or less) fish will gravitate toward certain temperatures. These are termed "acute thermal preferenda" (PT) and are highly dependent upon acclimation temperature (Cherry et al 1977; Giattinna and Garton 1982) (Figure 1). The "final temperature preferendum" (FP) is the temperature around which fish will ultimately congregate in an infinite temperature gradient (Giattinna and Garton 1982) (Figure 1).

The values for PT and FP are both entered in the column labelled *Final Preferendum* in the database. One can distinguish between the two values since PT are usually accompanied by values for *Acclimation Temperatures* in the seventh column of this table. Values cited from

Coutant (1977a) are for FP only. Review of the data in Coutant (1977a) indicates values for FP vary within a narrow range of 4C. Estimates of FP from field studies whose ranges exceed 4C should be assumed to be PT for the given season and location. The manner in which temperature preference data was typically reported in the literature did not allow explicit separation of values for PT and FP. Field reported values include much uncontrolled error due to the influence of other non-thermal environmental factors. Some of the reported values from field studies are representative of only a single point-in-time field occurrence. Users of the database are encouraged to refer to the source literature for an indication of the reliability of the preferendum temperature.

(f) Acclimation Temperature:

This term was previously defined for laboratory investigations (see item I(b) in the THERMAL TOLERANCES section). In field situations, fish are exposed to a whole set of conditions and are usually subjected to fluctuating rather than constant temperatures. Adaptation to all of these variables is known as acclimatization or sometimes field acclimation (McCauley 1981).

(g) Acclimation Time:

This term was previously defined (see Item 1 (c) in the THERMAL TOLERANCES section).

(3) GROWTH TEMPERATURES:

This table contains data on thermal limits and optima for growth.

(a) Size or Age:

Sizes and or ages are specified since younger, smaller fish grow faster than older, larger fish. See Section 5.0 for a description of the terms and units of size and age.

(b) Optimum:

The optimal temperature for growth is the temperature at which growth rate is highest. This value is determined while fish are reared under conditions of maximum, or excess feeding and held at constant temperatures over the temperature range tolerated by the species (Jobling 1981; McCauley and Casselman 1980). The difference between the final thermal preferendum and temperature for optimum growth is less than 2°C for some species (Kellogg and Gift 1983) (see Figure 1).

(c) Range:

This value is the range of temperatures over which growth is known to occur.

(d) MWAT:

The maximum weekly average temperature for growth (MWAT) is a measure of the upper temperature limit for long-term exposure. The MWAT lies somewhere between the physiological optimum temperature and the ultimate upper incipient lethal temperature (UUILT). The UUILT is the highest temperature to which the species can be acclimated; above this all temperatures are lethal regardless of previous thermal exposure (Jobling 1981) (Figure 1). The MWAT is calculated as one third of the range between the optimum temperature for growth and the UUILT (EPA 1974; Wrenn 1980).

(e) ST Max:

These values are the maximum temperatures for short-term exposure (24 hours) during the

growth season to prevent against lethal effects (Wrenn 1980). It is calculated as the difference between the upper incipient lethal temperature, at an acclimation temperature equal to the MWAT, minus 2°C (EPA 1974).

No Growth Limits (Upper and Lower): (f)

> These are estimates of the actual temperature end points, above or below which no growth is possible.

SPAWNING AND DEVELOPMENT TEMPERATURES (4)

This table contains information on temperature requirements for reproduction and larval development. The table also has data on lethal temperatures that are not the conventional incipient lethals or critical thermal maximas defined previously. This includes temperatures reported in the literature from field observations of mortality or lethal values which were not derived from standard laboratory techniques for estimating thermal dose. (These standard methods are described in McCauley (1981)).

(a) Event:

This column contains a keyword(s) that describes the type of temperature requirement referred to in the corresponding row. These "events" are aspects of reproduction and larval development or thermal effects from power plant cooling water intakes or discharges. The event categoriesfound in thiscolumn include: life stage (egg, embryo, larval, juvenile, adult); mode of reproductive behaviour (migration, spawning, incubation, hatching, embryo or larval development); and type of power plant effect (entrainment, heat or cold shock). The three types of power plant effects included above are defined as follows:

entrainment: The passage of icthyoplankton (eggs, larvae, small juveniles) through the screens of cooling water intakes into the condenser cooling system of a power plant; subject to mechanical, chemical and thermal stresses. (Temperature requirements are derived from laboratory simulation studies; laboratory thermal tolerance work and in situ studies of fish survival at operating power plants (Jinks et al 1981).

heat shock:

Fish resident in a power plant thermal discharge are subject to a rapid increase in temperature due to changes in power plant operations.

cold shock:

Fish resident in warm water discharges are exposed to a rapid decrease in temperature and a sustained exposure to low temperature that induces responses of abnormal behaviour and physiological function often leading to death (Coutant 1977b). Cold shock events occur usually in colder months due to planned or accidental shutdowns.

Season and/or Acclimation Temperature: (b)

> Numerical values in this column are acclimation temperatures in degrees Celsius. The letter symbols in this column representing the four seasons are defined in Section 5.0.

Optimum Temperature: (c)

The temperature of peak occurrence, or most frequently associated with the given event.

(d) Temperature Range:

The range of temperatures over which the given event is reported to occur.

(e) MWAT:

The maximum weekly average temperature during the month of peak spawning. This should not exceed the optimum temperature for spawning or, if such data are not available, the middle of the reported range of temperatures for spawning (EPA 1974; Wrenn 1984).

(f) ST Max for Embryo Survival:

The short-term (24-hour) maximum temperature for successful embryo survival from experimental data, or if not available, the reported maximum temperature for spawning (EPA 1974; Wrenn 1984).

(g) Acclimation Time:

See item 1 (c) in THERMAL TOLERANCE section for definition.

(h) Lethal Limit (Upper and Lower):

These are any lethal temperatures observed in the field or from laboratory experiments that do not conform to the prescribed methods for determining lethal temperatures as set out in Fry (1946) and McCauley (1981).

(i) Median Lethal ΔT:

This value represents the increase from a base temperature required to kill larval fish during entrainment. This lethal value is usually much higherthan a conventional upper incipient lethal temperature since the time of exposure to the lethal ΔT in a condenser is very brief allowing for no gradual acclimation (Moore 1979).

A median lethal ΔT for heat shock or cold shock events represents the change in temperature above a given acclimation level that causes abnormal behavioura! or physiological responses. The numerical value for the median lethal ΔT is preceded by a plus (+) or minus (-) sign in the table to indicate whether it pertains to heat shock (+) or cold shock (-).

(j) Median Lethal Final:

This is the ultimate lethal temperature value experienced by entrained fish (ambient or base temperature + ΔT) Moore (1979).

3.0 DATABASE SUMMARY

3.1 Organization

A summary of the species list and general categories of temperature data recorded for each species is given in Table 1. The species are listed by family, scientific name and common name. The species grouping is phylogenetic as is conventional in fisheries surveys (Christie 1982; Scott and Crossman 1973; Jobling 1981; Houston 1982). An alphabetical listing of the reviewed fish species by common name is provided in Table 2.

The bulk of the report consists of the fish temperature database tables arranged in taxonomic order by family. The species within families are in alphabetical order, according to their scientific name. Temperature data tables for each species appear in the following order: thermal tolerances; preferred temperatures; growth temperatures; spawning and development temperatures.

3.2 Content

The species frequency distribution for the four temperature data tables is summarized in Table 1. Evaluation of the availability of this data with respect to both these four temperature categories and fish species highlights the fact that large gaps in the available data presently exist. Complete temperature data, in all four major categories, was available for only 45 species. Of the remaining 71 species, only 17 were represented by data in three categories, 24 species represented in two categories and 23 species in only one category. In the database, a total of 45 commercial/game fish species were listed. Of these, 84 percent were represented in at least three of the four major tables of temperature data. This contrasts sharply with the situation for forage/coarse fish species where only 41 percent of a total of 71 species were represented in the database by at least three major data tables. Spotila et al (1979) noted the lack of temperature data on forage or coarse fish species such as darters (Etheostomidae), minnows (Cyprinidae), and suckers (Castostomidae), which are among the most thermally sensitive species. The temperature requirements of salmons and trouts (Salmonidae); basses and sunfishes (Centrarchidae) are the most completely represented.

The database was also reviewed in relation to the relative frequency of occurrence of each of the four major types of temperature data (i.e. tolerances, preferred, growth, spawning and development). The category with the poorest (least) representation was GROWTH TEMPERATURES. This was not surprising in view of the fact that experimental determinations of temperature requirements for growth are more difficult and costly than those for survival, preference and reproduction (McCauley and Casselman 1980; Jobling 1981; Kellogg and Gift 1983). The paucity of growth data is unfortunate since changes in growth rate provide one of the few long-term indicators of species response to thermal effects (Kellogg and Gift 1983). Growth may be considered as an integrator of the mix of stresses affecting the metabolism of fish and, as such, a more sensitive index of environmental effects than mortality (Rodgers and Griffiths 1983). Recent contributions to the scientific literature have shown that growth criteria may be approximated from temperature preferenda and lethal temperatures (McCauley and Casselman 1980; Jobling 1981; Kellogg and Gift 1983).

Table 1. Great Lakes Fish Species and Types of Temperature Data.

Blank Space Means No Data Available.

Scientific and Common Names from Scott and Crossman (1973).

			Type of Temperature Data						
Family	Species	Common Name	Thermal Toler-	Preferred'	Growth ³	Spawning and ⁴ Develop- ment			
Petromyzontidae (Lampreys)	Petromyzon marinus	sea lamprey	Х	Х	Х	X			
Acipenseridae (Sturgeons)	Acipenser fulvescens	lake sturgeon				Χ			
Lepisosteidae (Gars)	Lepisosteus oculatus Lepisosteus osseus	spotted gar* longnose gar		X X	Х				
Amiidae (Bowfin)	Amia calva	bowfin	Х	Χ		X			
Clupeidae (Herrings)	Alosa pseudoharengus Dorosoma cepedianum	alewife gizzard shad	X X	X X	X X	X X			
Salmonidae (Salmons, trouts whitefishes)	Oncorhynchus gorbuscha Oncorhynchus kisutch Oncorhynchus nerka Oncorhynchus	pink salmon coho salmon kokanee salmon	X X X	X X X	X X X	X X X			
	tshawytscha Salmo trutta Salmo gairdneri Salvelinus fontinalis Salvelinus namaycush	chinook salmon brown trout rainbow trout brook trout lake trout	X X X X	X X X X	X X X X	X X X X			
	Salvelinus fontinalis x S. namaycush Coregonus alpenae Coregonus artedii	splake longjaw cisco cisco,	X	X	٧	X			
	Coregonus hoyi Coregonus kiyi Coregonus reighardi Coregonus zenithicus Coregonus clupea	lake herring bloater* kiyi* shortnose cisco* shortjaw cisco	X X	X X X	X	X X X			
	formis Prosopium coulteri Prosopium cylindraceum	lake whitefish pygmy whitefish* round whitefish	Χ	X X	X	X X			
Osmeridae (Smelts)	Osmerus mordax	rainbow smelt	Х	X	Х	Χ			
Hiodontidae (Mooneyes)	Hiodon tergisus	mooneye		Х		Χ			

Table 1. - Continued

Table 1 Continu	ued	Type of Temperature Data				
Family	Species	Common Name	Thermal Toler-	Preferred'	Growth ³	Spawning and ⁴ Develop- ment
Umbridae (Mudminnows)	Umbra limi	central mud minnow	Х	X		X
Esocidae (Pikes)	Esox americanus vermiculatus	grass pickerel*		X		Χ
,	Esox lucius	northern pike	Χ	×	X	Χ
	Esox masquinongy	muskellunge	Χ	X	X	Χ
Cyprinidae (Minnows)	Campostoma anomalum Chrosomus eos	stoneroller* northern redbelly	Х	X	X	Χ
(11111110110)	Omosomus cos	dace	Х	Χ		Χ
	Chrosomus neogaeus	finescale dace	X	,		X
	Couesius plumbeus	lake chub	^			X
	Cyprinus carpio	carp	Х	Х	Х	X
	Exoglossum maxillingua	cutlips minnow	^	X	^	X
	Hybognathus hankinsoni	brassy minnow		,		X
	Hybognathus nuchalis	silvery minnow				X
	Hybopsis storeriana	silver chub				X
	Nocomis biguttatus	hornyhead chub				X
	Nocomis micropogon Notemigonus	river chub	Χ			Χ
	crysoleucas	golden shiner	Χ	X		Χ
	Notropis anogenus	pugnose shiner*		X		
	Notropis atherinoides	emerald shiner	Χ	Χ	Χ	Χ
	Notropis bifrenatus	bridle shiner				Χ
	Notropis cornutus	common shiner	Χ			Χ
	Notropis heterodon	blackchin shiner	Χ			
	Notropis heterolepis	blacknose shiner				
	Notropis hudsonius	spottail shiner	Χ	Χ	Χ	X
	Notropis rubellus	rosyface shiner	Χ	Χ	Χ	X
	Notropis spilopterus	spotfin shiner	Χ	Χ	Χ	Χ
	Notropis stramineus	sand shiner	Х			
	Notropis umbratilis	redfin shiner				
	Notropis volucellus	mimic shiner	V	V	V	V
	Pimephales notatus	bluntnose minnow	X X	X X	X X	X
	Pimephales promelas	fathead minnow	X	^	٨	X
	Rhinichthys atratulus Rhinichthys cataractae	blacknose dace	X	Х	V	X X
	Semotilus	longnose dace	^	^	Х	۸
	atromaculatus	creek chub	Χ			Χ
	Semotilus corporalis	fall fish		Χ		X
	Semotilus margarita	pearl dace				Χ
	Carassius auratus	gold fish	Χ	Χ	Χ	Χ
Castostomidae	Carpoides cyprinus	quillback	Χ	Χ		Χ
(Suckers)	Catostomus catostomus	longnose suckers	Χ	Χ		Χ
•	Catostomus commersoni	white sucker	Χ	Χ	Χ	X
	Erimyzon sucetta	lake chubsucker*				Χ
	Hypentelium nigricans	northern hog sucker	Х	X	Х	Х
				**	, ,	,,

Table 1. - Continued

			Type of Temperature Data					
Family	Species	Common Name	Thermal Toler- ances	Preferred	Growth ³	Spawning and ⁴ Develop- ment		
Castostomidae (Suckers)	Ictiobus cyprinellus Minytrema melanops Moxostoma anisurum Moxostoma	bigmouth buffalo* spotted sucker* silver redhorse shorthead red	X	X X		X X X		
	macrolepidotum	horse		Χ		Χ		
Ictaluridae (Catfishes)	Ictalurus melas Ictalurus natalis	black bullhead yellow bullhead	X X	X X		Χ		
	Ictalurus nebulosus	brown bullhead	Χ	Х	Х	X		
	Ictalurus punctatus	channel catfish	Χ	X	×	Χ		
	Noturus flavus	stonecat	Χ	X		Χ		
	Noturus gyrinus Noturus miurus	tadpole madtom brindled madtom*	Х			Х		
Auguillidae (Eels)	Anguilla rostrata	american eel		Х	X	Х		
Cyprinodontidae (Killifishes)	Fundulus diaphanus	banded killifish	X	X		X		
Gadidae (Cods)	Lota lota	burbot	Х	Х	X	Х		
Atherinidae (Silversides)	Labiddesthes sicculus	brook silverside		Х				
Gasterosteidae (Sticklebacks)	Culaea inconstans Gasterosteus aculeatus	brook stickleback threespine	Х			Χ		
,	Pungitius pungitius	stickleback Ninespine	Χ	X	Χ	Χ		
		stickleback		Х		Χ		
Percopsidae (Trout-perches)	Percopsis omiscomaycus	trout-perch	X	Х	Χ	Х		
Percichthyidae	Morone americana	white perch	X	Х	Х	Χ		
(Temperate Basses)	Morone chrysops	white bass	X	X	X	X		
Centrarchidae	Ambloplites rupestris	rock bass	Х	Χ	Х	Х		
(Sunfishes)	Lepomis cyanellus	green sunfish*	Χ	X	Χ	Χ		
	Lepomis gibbosus	pumpkinseed	Χ	X	Χ	Χ		
	Lepomis macrochirus	bluegill	Χ	Χ	Χ	Χ		
	Lepomis megalotis	longear sunfish*	Χ	Χ		Χ		
	Micropterus dolomieui	smallmouth bass	X	Χ	X	Χ		
	Micropterus dolomieui	smallmouth bass largemouth bass	X X	X X	X X	X X		

Table 1. - Continued

			Type of Temperature Data						
Family	Species	Common Name	Thermal Toler- ances	Preferred	Growth ³	Spawning and ⁴ Develop ment			
Percidae (Perches)	Perca flavescens Stizostedion canadense Stizostedion vitreum Ammocrypta pellucida Etheostoma blennoides Etheostoma caerulum Etheostoma exile Etheostoma flabellare Etheostoma microperca Etheostoma nigrum Percina caprodes Percina copelandi Percina maculata	yellow perch sauger walleye eastern sand darter* greenside darter rainbow darter lowa darter fantail darter least darter* johnny darter log perch channel darter* blackside darter	X X X X X	X X X X X	X X X	X X X X X X X X			
Sciaenidae (Drums)	Aplodinotus grunniens	freshwater drum	Х	Х	Х	Х			
Cottidae (Sculpins)	Cottus bairdi Cottus cognatus Cottus ricei Myoxocephalus quadricornis	mottled sculpin slimy sculpin Spoonhead sculpin deepwater sculpin	X X	x x x		X X X			

^{*} listed as rare or threatened species by McAllister et al (1985).

^{1.} Includes: upper and lower incipient lethal; thermal resistance equations and times; critical thermal maximum.

^{2.} Includes: final preferendum; upper and lower avoidance temperatures; preferred temperatures.

^{3.} Includes: growth optimum and range; upper and lower thermal limits for growth: maximum weekly average temperature for growth over long term; maximum temperature for non-lethal, short-term exposure.

^{4.} Includes: temperature optimum and range for spawning: maximum weekly average for spawning; embryo survival temperature; larval entrainment temperatures and survival levels; impingement temperatures; heat and cold shock temperatures.

TABLE 2

ALPHABETICAL LISTING OF REVIEWED FISH SPECIES BY COMMON NAME

Common Name	Scientific Name	Family Name
Alewife	Alosa pseudoharengus	Clupeidae
American Eel	Anguilla rostrata	Anguillidae
Banded Killifish	Fundulus diaphanus	Cyprinodontidae
Bigmouth Buffalo	Ictiobus cyprinellus	Castostomidae
Black Bullhead	Ictalurus melas	Ictaluridae
Black Crappie	Pomoxis nigromaculatus	Centrarchidae
Blackchin Shiner	Notropis heterodon	Cyprinidae
Blacknose Dace	Rhinichthys atratulus	Cyprinidae
Blackside Darter	Percina maculata	Percidae
Bloater	Coregonus hoyi	Salmonidae
Bluegill	Lepomis macrochirus	Centrarchidae
Bluntnose Minnow	Pimephales notatus	Cyprinidae
Bowfin	Amia calva	Amiidae
Brassy Minnow	Hybognathus hankinsoni	Cyprinidae
Bridle Shiner	Notropis bifrenatus	Cyprinidae
Brindled Madtom	Noturus miurus	Ictaluridae
Brook Silverside	Labbiddesthes sicculus	Atherinidae
Brook Stickleback	Culaea inconstans	Gasterosteidae
Brook Trout	Salvelinus fontinalis	Salmonidae
Brown Bullhead	Ictalurus nebulosus	Ictaluridae
Brown Trout	Salmo trutta	Salmonidae
Burbot	Lota lota	Gadidae
Carp	Cyprinus carpio	Cyprinidae
Central Mudminnow	Umbra limi	Umbridae
Channel Cat	Ictalurus punctatus	Ictaluridae
Channel Darter	Percina copelandi	Percidae
Chinook Salmon	Oncorhynchus tshawytscha	Salmonidae
Cisco, Lake Herring	Coregonus artedii	Salmonidae
Coho Salmon	Oncorhynchus kisutch	Salmonidae
Common Shiner	Notropis cornutus	Cyprinidae
Creek Chub	Semotilus atromaculatus	Cyprinidae
Cutlips Minnow	Exoglossum maxillingua	Cyprinidae
Deepwater Sculpin	Myoxocephalus quadricornis	Cottidae
Eastern Sand Darter	Ammocrypta pellucida	Percidae
Emerald Shiner	Notropis atherinoides	Cyprinidae
Fall Fish	Semotilus corporalis	Cyprinidae
Fantail Darter	Etheostoma flabellare	Percidae
Fathead Minnow	Pimephales promelas	Cyprinidae
Finescale Dace	Chrosomus neogaeus	Cyprinidae
Freshwater Drum	Aplodinotus grunniens	Sciaenidae
Gizzard Shad	Dorosoma cepedianum	Clupeidae
Golden Shiner	Notemigonus crysoleucas	Cyprinidae

TABLE 2 - Continued

Common Name	Scientific Name	Family Name
Coldfieb	Corposius auratus	Cyprinidae
Goldfish	Carassius auratus	Esocidae
Grass Pickerel	Esox americanus vermiculatus	Centrarchidae
Green Sunfish	Lepomis cyanellus	Percidae
Greenside Darter	Etheostoma blennoides	
Hornyhead Chub	Nocomis biguttatus	Cyprinidae Percidae
lowa Darter	Etheostoma exile	Percidae
Johnny Darter	Etheostoma nigrum	
Kiyi	Coregonus kiyi	Salmonidae
Kokanee Salmon	Oncorhynchus nerka	Salmonidae
Lake Chub	Couesius plumbeus	Cyprinidae
Lake Chubsucker	Erimyzon sucetta	Castostomidae
Lake Herring, Cisco	Coregonus artedii	Salmonidae
Lake Sturgeon	Acipenser fulvescens	Acipenseridae
Lake Trout	Salvelinus namaycush	Salmonidae
Lake Whitefish	Coregonus clupeaformis	Salmonidae
Lamprey, Sea	Petromyzon marinus	Petromyzontidae
Largemouth Bass	Micropterus salmoides	Centrarchidae
Least Darter	Etheostoma microperca	Percidae
Log Perch -	Percina caprodes	Percidae
Longear Sunfish	Lepomis megalotis	Centrarchidae
Longnose Dace	Rhinichthys cataractae	Cyprinidae
longnose Gar	Lepisosteus osseus	Lepisosteidae
Longnose Sucker	Catostomus catostomus	Castostomidae
Mooneye	Hiodon tergisus	Hiodontidae
Mottled Sculpin	Cottus bairdi	Cottidae
Muskellunge	Esox masquinongy	Esocidae
Ninespine Stickleback	Pungitius pungitius	Gasterosteidae
Northern Hogsucker	Hypentelium nigricans	Castostomidae
Northern Pike	Esox lucius	Esocidae
Northern Redbelly dace	Chrosomus eos	Cyprinidae
Pearl Dace	Semotilus margarita	Cyprinidae
Pink Salmon	Oncorhynchus gorbuscha	Salmonidae
Pugnose Shiner	Notropis anogenus	Cyprinidae
Pumpkinseed	Lepomis gibbosus	Centrarchidae
Quillback	Carpoides cyprinus	Cyprinidae
Rainbow Darter	Etheostoma caerulum	Percidae
Rainbow Smelt	Osmerus mordax	Osmeridae
Rainbow Trout	Salmo gairdneri	Salmonidae
River Chub	Nocomis micropogon	Cyprinidae
Rock Bass	Ambloplites rupestris	Centrarchidae
Rosyface Shiner	Notropis rubellus	Cyprinidae
Round Whitefish	Prosopium cylindraceum	Salmonidae
Sand Shiner	Notropis stramineus	Cyprinidae
Sauger	Stizostedion canadense	Percidae
Sea Lamprey	Petromyzon marinus	Petromyzontidae
Sheepshead (Freshwater Drum)	Aplodinotus grunniens	Sciaenidae

TABLE 2 - Continued

Common Name	Scientific Name	Family Name
Shorthead Redhorse	Movestome magrelenidatum	Castostomidae
Silver Chub	Moxostoma macrolepidotum	
Silver Redhorse	Hybopsis storeriana	Cyprinidae Castostomidae
	Moxostoma anisurum	
Silvery Minnow	Hybognathus nuchalis	Cyprinidae
Slimy Sculpin	Cottus cognatus	Cottidae
Smallmouth Bass	Micropterus dolomieui	Centrarchidae
Spoonhead Sculpin	Cottus ricei	Cottidae
Splake	Salvelinus fontinalis x S. namaycush	Salmonidae
Spotfin Shiner	Notropis spilopterus	Cyprinidae
Spottail Shiner	Notropis hudsonius	Cyprinidae
Spotted Gar	Lepisosteus oculatus	Lepistosteidae
Spotted Sucker	Minytrema melanops	Castostomidae
Stonecat	Noturus flavus	Ictaluridae
Stoneroller	Campostoma anomalum	Cyprinidae
Tadpole Madtom	Noturus gyrinus	lctaluridae
Threespine Stickleback	Gasterosteus aculeatus	Gasterosteridae
Trout-perch	Percopsis omiscomaycus	Percopsidae
Walleye	Stizostedion vitreum	Percidae
White Bass	Morone chrysops	Percichthyidae
White Crappie	Pomoxis annularis	Centrarchidae
White Perch	Morone americana	Percichthyidae
White Sucker	Catostomus commersoni	Castostomidae
Yellow Bullhead	Ictalurus natalis	Ictaluridae
Yellow Perch	Perca flavescens	Percidae
Yellow Pickerel (Walleye)	Stizostedion vitreum	Percidae

4.0 REFERENCES

Adams, S.M., R.B. McLean and M.M. Huffman. 1982. Structuring of a Predator Population Through Temperature-Mediated Effects on Prey Availability. Can. J. Fish. Aguat. Sci 39:1175-1184

Adelman, I.R. 1980. Uptake of ¹⁴C-Glycine by Scales as an Index of Fish Growth: Effect of Fish Acclimation Temperature. Trans. Am. Fish. Soc. 109:187-194.

Argyle, R.L. 1982. Alewives and Rainbow Smelt in Lake Huron: Midwater and Bottom Aggregations and Estimates of Standing Stocks. Trans. Am. Fish. Soc. 111:267-285.

Balon, E.K. 1984. Reflections on Some Decisive Events in the Early Life of Fishes. Trans. Am. Fish. Soc. 113:178-185.

Bartnik, V.C. 1970. Reproductive Isolation Between Two Sympatric Dace, *Rhinichthys atratulus* and *R. cataractae* in Manitoba. J. Fish. Res. Board Can 27:2125-2141.

Becker, C.D. and R.G. Genoway. 1979. Evaluation of the CTM for Determining Thermal Tolerance of Freshwater Fish. Env. Biol. of Fishes 4:245-256.

Beitinger, T.L. 1976. Behavioural Thermoregulation by Bluegill Exposed to Various Rates of Temperature Change p176-179. In G.W. Esch and R.W. McFarlane [ed]. Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, Va. 404p.

Beitinger, T.L. and J.J. Magnuson 1979. Growth Rates and Temperature Selection of Bluegill, (Lepomis *macrochirus*). Trans. Am. Fish. Soc. 108:378-382.

Beltz, J.R., J.E. Johnson, D.L. Cohen and F.B. Pratt. 1974. An annotated Bibliography of the Effects of Temperature on Fish with Special Reference *to* the Freshwater and Andromous Species of New England. Research Bulletin No. 605. July 1974. Massachusetts Agr. Expt. Station, Univ. of Massachusetts, Amherst. 97p.

Bonin, J.D. and J.R. Spotila 1978. Temperature Tolerance of Larval Muskellunge (Esox *masquinongy* Mitchell) and F₁ Hybrids Reared Under Hatchery Conditions. Comp. Biochem. Physiol. 59A:245-248.

Bonin, J.D., R.M. Lee and J.N. Rinne. 1981. Measuring Thermal Limits of Fish. Trans. Am. Fish. Soc. 110:662-664.

Brandt, S.B., J.J. Magnuson, and L.B. Crowder. 1980a. Thermal Habitat Partitioning by Fishes in Lake Michigan. Can. J. Fish. Aquat. Sci. 37: 1557-I 564.

Brandt, S.B. 1980b. Spatial Segregation of Adult and Young-of-the-Year alewives across a thermocline in Lake Michigan. Trans. Am. Fish. Soc. 190: 469-478.

Brazo, D.C. C.R. Liston and R.C. Anderson. 1978. Life History of the Longnose Dace, *Rhinichthys cataractae* in the surge zone of eastern Lake Michigan near Ludington, Michigan. Trans. Am. Fish. Soc. 107:550-556.

Brown, H.W. 1974. Handbook of the Effects of Temperature on Some North American Fishes. American Electric Power Service Corp., Canton, Ohio. 524 p and App (12).

Brown, J.H., U.T. Hammer and G.D. Koshinosky. 1970. Breeding Biology of the Lake Chub, Couesius *plumbeus*, at Lac La Ronge, Saskatchewan. J. Fish. Res. Board Can. 27:1005-1015.

Buynak, G.L. and H. W. Mohr, Jr. 1978. Larval Development of the Northern Hog Sucker (*Hypentelium nigricans*), from the Susquehanna River. Trans. Am. Fish. Soc. 107:595-599.

Buynak, G.L. and H.W. Mohr, Jr. 1979. Larval Development of the Shorthead Redhorse (*Moxostoma macrolepidotum*) from the Susquehanna River. Trans. Am. Fish. Soc. 108: 161-I 65.

Cada, G.F. and G.L. Hergenrader, 1980. Natural Mortality Rates of Freshwater Drum Larvae in the Missouri River. Trans. Am. Fish. Soc. 109:479-483.

Cada, G.F., J.S. Sufferin, K.D. Kumar and J.A. Soloman. 1981. Investigations of Entrainment Mortality Among Larval and Juvenile Fishes Using a Power Plant Simulator pp 111-122. In L.D. Jensen [ed] Issues Associated with Impact Assessment. Proceedings 5th National Workshop on Entrainment and Impingement. May 5-7, 1980, San Francisco. Ecological Analysts Inc. and Electric Power Research Inst. MD 307p.

Carey, W.E. 1982. Pickering Round Whitefish Studies Field Component, 1981-82. Ontario Hydro Research Division Report No. 82-539-K.15p.

Carey, W.E. 1984. Pickering NGS B Interim Aquatic Study, 1983. Ontario Hydro Research Division Report No. 84-341-K.29p.

Carlander, K.E. 1969. Handbook of Freshwater Fishery Biology. Volume One. 3rd edition. Iowa State University Press, Ames, Iowa 752 p.

Carlander, K.E. 1977. Handbook of Freshwater Fishery Biology. Volume Two. Iowa State University Press, Ames, Iowa 431 p.

Carlson, A.R. and L.J. Herman. 1978. Effect of Long-Term Reduction and Diet Fluctuation in Dissolved Oxygen on Spawning of Black Crappie, *Pomoxis nigromaculatus*. Trans. Am. Fish. Soc. 107:742-746.

Carmichael, G.J. 1983. Scale-number Differences of Central Stonerollers Incubated and Reared at Different Temperatures. Trans. Am. Fish. Soc. 112:441-444.

Casselman, J.M. 1978. Effects of Environmental Factors on Growth, Survival, Activity, and Exploitation of Northern Pike. Am. Fish. Soc. Spec. Publ. 11:114-128.

Cherry, D.S., K.L. Dickson, J. Cairns Jr., and J. R. Stauffer, 1977. Preferred, Avoided and Lethal Temperatures of Fish During Rising Temperature Conditions. J. Fish. Res. Board. Can. 34:239-246.

Cherry, D.S., S.R. Larrick, J.D. Giattina, J. Cairns Jr., and J. Van Hassel. 1982. Influence of Temperature Selection Upon the Chlorine Avoidance of Cold-Water and Warm-Water Fishes. Can. J. Fish. Aquat. Sci. 39:162-173.

Cheshire, W.F. and K.L. Steel 1972. Hatchery Rearing of Walleye Using Artificial Food. Prog. Fish. Cult. 34(2): 96-99.

Christie, A.E. 1982. Fish Species of Ontario -A Summary of Some Characteristics and Their Validity to Predict Presence at a Given Site. Ontario Hydro Design and Development Division Report No. 82287. May 1982.37p.

Clugston, J.P., J.L. Oliver, and R. Ruelle 1978. Reproduction, Growth, and Standing Crops of Yellow Perch in Southern Reservoirs. Am. Fish. Soc. Spec. Publ. 11:89-99.

Corbett, B. and P.M. Powler 1983. Spawning and Early-Life Ecological Phases of the White Sucker in Jack Lake, Ontario. Trans. Am. Fish. Soc. 112:308-313.

Coutant, C.C. 1977a. Compilation of Temperature Preference Data. J. Fish. Res. Board Can. 34:739-745

Coutant, C.C. 1977b. Cold Shock to Aquatic Organisms: Guidance for Power Plant Siting, Design, and Operation. Nuclear Safety 18(3):329-342.

Coutant, C.C. and D.L. DeAngelis. 1983. Comparative Temperature-Dependent Growth Rates of Largemouth and Smallmouth Bass Fry. Trans. Am. Fish. Soc. 112:416-423.

Coutant, C.C., D.K. Cox, K.W. Moored, Jr. 1976. Further Studies of Cold Shock Effects on Susceptibility of Young Channel Catfish to Predation. pp 154-158. *In* G.W. Esch and R.W. McFarlane [eds]. Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, Va 404p.

Cravens, J.B. 1981. Thermal Effects. J. Water Pollution Control Federation 53(6): 949-965.

Cravens, J.B. 1982. Thermal Effects. J. Water Poll. Control Fed. 54(6):812-829.

Cravens, J.B., M.E. Harrelson and S.S. Talmage. 1983. Thermal Effects. Journal Water Pollution Control Federation 55(6): 787-800.

Crippen, R.W. and F.K. Fahmy 1981. Biological Effects of Once-Through Cooling Systems on Entrained Planktonic Organisms. pp E-I to E-77 In A.E. Christie [ed] Biological Investigations to Improve Once-Through Cooling System Designs for the Great Lakes. Report No. 81481. Environmental Studies and Assessments Department, Design and Development Division, Ontario Hydro, December 1981, Toronto, Ontario.

Crowder, L.B. and H.L. Crawford. 1984. Ecological Shifts in Resource Use by Bloaters in Lake Michigan. Trans. Am. Fish. Soc. 113:694-700.

Crowder, L.B., J.J. Magnuson and S.B. Brandt 1981. Complementarity in the Use of Food and Thermal Habitat by Lake Michigan Fishes. Can. J. Fish. Aquat. Sci. 38:662-668.

de Montalembert, G., C. Bry and R. Billard. 1978. Control of Reproduction in Northern Pike. Am. Fish. Soc. Spec. Publ. 11:217-225.

Dodson, J.J. and J.C. Young. 1977. Temperature and Photoperiod Regulation of Rheotropic Behaviour in Prespawning Shiners, *Notropis cornutus*. J. Fish. Res. Board Can. 34:341-346.

Dunford, W.E. 1978. Field Fish Spawning Study Lennox GS 1976. Ontario Hydro Research Division Report No. 78-28-K 26p.

Dunford, W.E. 1980. Whitefish Spawning Study Darlington GS-1977 Final Report. Ontario Hydro Research Division Report No. 80-371-K.

Dunstall. T.G. 1978. Response of Larval Lake Whitefish (*Coregonus clupeaformis*) to Thermal Simulation of Once-Through Cooling Regimes. Ontario Hydro Research Division Report No. 78-564-K 23p.

Dunstall, T. 1979. Response of Yellow Perch (*Perca flavescens*) Larvae to Thermal Simulation of Once-Through Cooling Regimes. Ontario Hydro Research Division Report No. 79-477-K.

Edsall, T.A. and T.G. Yocom. 1972. Review of recent technical information concerning the adverse effects of once-through cooling on Lake Michigan. Prepared for L. Mich Enforcement Conference Sept 19-21, 1972, Chicago, III. by G.L. Fishery Laboratory, Ann Arbor, Michigan.

Ellis, C.J. 1984 Predicted Survival of Selected Fish Species Released Via Fish Pump to Untempered Discharge Water at Nanticocke TGS. Report No: 84355. Env. Studies &Assessments Department 44p and App.

Ellison, D.G. 1984. Trophic Dynamics of a Nebraska Black Crappie and White Crappie Population. North Am. J. Fish. Manage. 4:355-364.

EPA 1974. 316(a) Technical Guidance - Thermal Discharges. Draft. September 30, 1974. Water Planning Division, Office of Water and Hazardous Materials, Env. Prot. Agency 187p

EPA 1976. Yellow Perch Select Unnaturally High Temperatures in Laboratory Gradient Tanks p 14. *In* Quarterly Report of the. Environmental Research Laboratory - Duluth, Minn. January - March 1976. U.S. EPA. Office of Research and Development. 16p.

EPA 1978a. Temperature Determines Species Population Structure and Composition. pp 4-6 *In* Quarterly Report Oct-Dee 1978 U.S. EPA Environmental Research Lab, Duluth Mn. 20p.

EPA 1978b. Day Length and Season Alter Growth Patterns of White Suckers pp 10-11 *In* Quarterly Report Jan-Mar 1978. U.S. EPA Environmental Research Lab - Duluth, Mn 16p.

Evans, D.O. 1977. Seasonal Changes in Standard Metabolism, Upper and Lower Thermal Tolerance and Thermoregulatory Behaviour of the Pumpkinseed, *Lepomis gibbosus*, Linnaeus, Doctoral dissertation. Dept. Zoology, Univ. Toronto, Toronto, 429p.

Farmer, G.J., F.W.H. Beamish and F.L. Lett 1977. Influence of Water Temperature on the Growth Rate of the Landlocked Sea Lamprey (*Petromyzon marinus*) and the associated rate of host mortality. J. Fish. Res. Board Can. 34: 1373-1378.

Fitz, R.B. and J.A. Holbrook II. 1978. Sauger and Walleye in Norris Reservoir, Tennessee. Am. Fish. Soc. Spec. Publ. 11:82-88.

Floyd, K.B., R.D. Hoyt, and S. Timbrook, 1984. Chronology of Appearance and Habitat Partitioning by Stream Larval Fishes. Trans. Am. Fish. Soc. 113:217-223.

Fry, F.E.J., J.S. Hart and K.F. Walker. 1946. Lethal Temperature Relations for a Sample Young Speckled Trout, *Salvelinus fontinalis*. Pbl. Ont. Fish. Res. Lab. No. 66; Univ. of Toronto Stud, Biol. Ser. No. 54, Univ. of Toronto Press.

Fuiman, L.A. 1979. Descriptions and Comparisons of Catastomid Fish Larvae: Northern Atlantic Drainage Species. Trans. Am. Fish. Soc. 108:560-603.

Fuiman, L.A. and D.C. Witman 1979. Descriptions and comparisons of catostomid fish larvae: *Catostomus Catostomus* and *Moxostoma erythrurum*. Trans. Am. Fish. Soc. 108:604-619.

Gale, W.F. 1983. Fecundity and Spawning Frequency of Caged Bluntnose Minnows - Fractional Spawners. Trans. Am. Fish. Soc, 112:398-402.

Gale, W.F. and G.L. Buynak 1982. Fecundity and Spawning Frequency of the Fathead Minnow - A Fractional Spawner. Trans. Am. Fish. Soc. 111:35-40.

Gee, J.H. and K. Machniak 1972. Ecological Notes on a Lake-Dwelling Population of Longnose Dace (*Rhinichthys cataractae*) J. Fish. Res. Board Can. 29:330-332.

Giattinna, J.D. and R.R. Garton. 1982. Graphical Model of Thermoregulatory Behaviour by Fishes with a New Measure of Eurythermality. Can. J. Fish. Aquat. Sci. 39:524-528.

Gift, J.J. 1977. Application of Temperature Preference Studies to Environmental Impact Assessment. J. Fish. Res. Board. Can. 34:746-749.

Gowans, W.L. 1982. Pickering Nuclear Generating Station Winter Thermal Plume Study (1979-1980) Round Whitefish Egg Incubation Simulations. Ontario Hydro Design and Development Report No. 81263, January 1982.41 p and App.

Griffiths, J.S. 1978. Effects of Low Temperature in the Survival and Behaviour of Threadfin Shad, *Dorosoma petenense*. Trans. Am. Fish. Soc. 107:63-70.

Griffiths, J.S. 1978. Potential Effects of Unstable Thermal Discharge Plumes on Yellow Perch Eggs. Ontario Hydro Research Division Report No. 78-586-K.

Griffiths, J. S. 1978. Potential Effects of Unstable Thermal Discharge Plumes on Great Lakes Rainbow Smelt Eggs. Ontario Hydro Research Division Report No. 78-343-K 58p.

Griffiths, J.S. 1978. Fish Growth at Great Lakes Generating Station Sites. Ontario Hydro Research Division Report No. 78-52-K.

Griffiths, J.S. 1979. Potential Effects of Unstable Thermal Discharges on Incubation of Lake Whitefish Eggs. Ontario Hydro Research Division Report No. 79-521-K.

Griffiths, J.S. 1980. Potential Effects of Unstable Thermal Discharges on Incubation of Round Whitefish Eggs. Ontario Hydro Research Division Report No. 80-140-K.

Griffiths, J.S. 1981. Potential Effects of Fluctuating Thermal Regimes on Incubation of Walleye Eggs. Ontario Hydro Research Division Report No. 81-77-K.

Haas, R.C. 1978. The Muskellunge in Lake St. Clair. Am. Fish. Soc. Spec. Publ. 11:334-339.

Harrelson, M.E., S.S. Talmage and J.B. Cravens, 1984. Thermal Effects. Journal Water Pollution Control Federation 56(6): 708-718.

Harrison, E.J. and W. F. Hadley. 1979. Biology of Muskellunge (Esox masquinongy) in the Upper Niagara River. Trans. Am. Fish Soc. 108:444-451.

Haymes, G.T. 1984. Atkikokan GS Preoperational Aquatic Survey Year III, 1983-1984 Report No. 84--K, Ontario Hydro Research Division.

Heist, B.G. and W.A. Swenson 1983. Distribution and Abundance of Rainbow Smelt in Western Lake Superior as Determined from Acoustic Sampling. J. Great Lakes Res. 9(3):343-353.

Hester, R.A. 1985, Entrainment of Fish Eggs and Larvae at NGD Facilities on the Great Lakes. Ontario Hydro Technical & Training Services Division Report No. RMEP-IR-07260-8, January 1985. 49p.

Hokanson, K.E.F. 1977. Temperature requirements of Some Percids and Adaptations to the Seasonal Temperature Cycle. J. Fish. Res. Board Can. 34:1524-I 550.

Hokanson, K.E.F., C.F. Kleiner, and T.W. Thorslund. 1977. Effects of Constant Temperatures and Diel Temperature Fluctuations on Specific Growth Rate and Mortality Rates and Yield of Juvenile Rainbow Trout, *Salmo gairdneri*. J. Fish. Res. Board Can. 34:639-648.

Holland, L.E. and J. R. Sylvester. 1983. Distribution of Larval Fishes Related to Potential Navigation Impacts on the Upper Mississippi River, Pool 7, Trans. Am. Fish. Soc. 112:293-301

Horrall, R.S. 1981. Behavioural Stock-Isolating Mechanisms in Great Lakes Fishes with Special Reference to Homing and Site Imprinting. Can. J. Fish. Aquatic Sci. 38:1481-1496.

Houston, A.H. 1982. Thermal Effects Upon Fishes. Report NRCC No. 18566. National Research Council of Canada. Associate Committee on Scientific Criteria for Environmental Quality. 200p.

Hutchison, V.H. 1976. Factors Influencing Thermal Tolerances of Individual Organisms pp 10-26. *In* G.W. Esch and R.W. McFarlane ..ed Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, Va. 404p.

Ihssen, P.E., D.O. Evans, W.J. Christie, J.A. Reckahn and R.L. Desjardine. 1981. Life History, Morphology, and Electrophoretic Characteristics of Five Allopatric Stocks of Lake Whitefish (*Coregonus clupeaformis*) in the Great Lakes Region. Can. J. Fish. Aquatic Sc. 38:1790-1887.

Inskip, P.D. and J.J. Magnuson 1983. Changes in Fish Populations Over an 80-Year Period: Big Pine Lake, Wisconsin, Trans. Am. Fish. Soc. 112:378-389.

Jinks, SM., G.J. Lauer and M.E. Loftus. 1981. Advances in Techniques for Assessment of Ichthyoplankton Entrainment Survival, pp 92-I 10 In L.D. Jensen [ed] Issues Associated with Impact Assessment: Proc. 5th National Workshop on Entrainment and Impingement, held at San Francisco, Calif., May 5-7, 1980. Ecological Analysts, Inc. and Electric Power Research Inst, Sparks, Md. 307p.

Jobling, M. 1981. Temperature Tolerance and the Final Preferendum -Rapid Methods for the Assessment of Optimum Growth Temperatures. J. Fish Biol. 19:439-455.

Kellogg, R.L. and J.J. Gift. 1983. Relationship Between Optimum Temperature for Growth and Preferred Temperatures for the Young of Four Fish Species. Trans. Am. Fish. Soc. 112:424-430.

Kelso, J.R.M. and F.J. Ward 1972. Vital Statistics, Biomass and Seasonal Production of an Unexploited Walleye (*Stizostedion vitreum vitreum* (Mitchill)) Population in West Blue Lake, Manitoba. J. Fish. Res. Board Can. 29: 1043-l 052.

Kitchell, J.F., D.J. Stewart and D. Weininger. 1977. Application of a Bioenergetics Model to Yellow Perch (*Perca flavescens*) and Walleye (*Stizostedion vitreum vitreum*) J. Fish. Res. Board Can 34: 1922-I 935.

Kowalski, K.T., J.P. Schubauer, L.L. Scott and J.R. Spotila, 1978. Interspecific and Seasonal Differences in the Temperature Tolerance of Stream Fish. J. Thermal Biol. (3) 105-108.

Kwain, W. and R.W. McCauley. 1978. Effects of Age and Overhead Illumination on Temperatures Preferred by Under-yearling Rainbow Trout, *Salmo gairdneri*, in a vertical temperature gradient. J. Fish. Res. Board Can. 35:1430-1433.

Lee, R.M. and J.N. Rinne. 1980. Critical Thermal Maxima of Five Trout Species in the Southwestern United States. Trans. Am. Fish Soc. 109:632-635.

Leidy, G.R. and R.M. Jenkins, 1977. The Development of Fishery Compartments and Population Rate Coefficients for Use in Reservoir Ecosystem Modelling, Final Report - June 1977. Contract Report 4-77-I. Office, Chief of Engineers, U.S. Army, Washington, D.C. by USDI Fish and Wildlife Service, National Reservoir Research Program, Fayetteville, Ark. 225p.

Maclean, J.A., D.O. Evans, N.V. Martin and R.L. Desjardine, 1981. Survival, Growth, Spawning, Distribution and Movements of Introduced and Native Lake Trout (*Salvelinus namaycush*) in two inland Ontario lakes, Can. J. Fish. Aquatic Sci. 38:1685-1700.

Madness, J.D. and V.H. Hutchison 1980. Acute Adjustment of Thermal Tolerance in Vertebrate Ectothermy Following Exposure to Critical Thermal Maxima. J. Thermal. Biol. (5)225-233.

Magnuson, J.J., L.B. Crowder and P.A. Medvic. 1979. Temperature as an Ecological Resource. Amer. Zool. 19:331-343.

Manion, P.J. and L.H. Hanson. 1980. Spawning Behaviour and Fecundity of Lampreys from the Upper Three Great Lakes. Can. J. Fish. Aquatic Sci. 37:1635-1640.

Manny, B.A. 1984. Potential Impacts of Water Diversions on Fishery Resources in the Great Lakes. *Fisheries* (9)5:19-23.

Mansfield, P.J. 1984, Reproduction of Lake Michigan fishes in a tributary stream. Trans. Am. Fish. Soc. 113:231-237.

Mansfield, P.J. and D.J. Jude 1983. Distribution and Abundance of Larval Burbot and Deepwater Sculpin in Lake Michigan. Trans. Am. Fish. Soc. 112:162-172.

Marcy, B.C. Jr. 1976a. Fishes of the Lower Connecticut River and the Effects of the Connecticut Yankee Plant. pp 61-113 *In* D. Merriman and L.M. Thorpe (eds). The Connecticut River Ecological Study: The Impact of a Nuclear Power Plant. Monograph No. 1. American Fisheries Society. 251 pp.

Marcy, B.C. Jr., 1976b. Planktonic Fish Eggs and Larvae of the Lower Connecticut River and the Effects of the Connecticut Yankee Plant Including Entrainment. pp 115-139. In D. Merriman and L.M. Thorpe ..ed. The Connecticut River Ecological Study: The Impact of a Nuclear Power Plant. Monograph No. 1. American Fisheries Society 251 p.

Marshall, T.R. 1977. Morphological, Physiological and Ethological Differences Between Walleye (Stizostedion vitreum vitreum) and Pikeperch (S. Lucioperea) J. Fish. Res. Board Can. 34: 1515-l 523.

Mathur, D., R.M. Schutsky, E.J. Purdy, Jr., C.A. Silver. 1981. Similarities in Acute Temperature Preferences of Freshwater Fishes. Trans. Am. Fish. Soc. 110:1-13.

McAllister, D. E., B.J. Parker and P.M. McKee. 1985. Rare, Endangered and Extinct Fishes in Canada. Syllogeus No. 54. National Museums of Canada, Ottawa. 192pp.

McCauley A. and N. Huggins, 1976. Behavioural Thermal Regulation by Rainbow Trout in a Temperature Gradient pp 171-175. *In* G.W. Esch and R.W. Mcfarlane [ed] Thermal Ecology II, Natl. Tech. Inf. Serv., Springfield, Va 404p.

McCauley, R.W. 1981. Laboratory Studies on Directive and Acute Lethal Effects of Temperature on Alewife (*Alosa pseudoharengus*) and Rainbow Smelt (*Osmerus mordax*) collected at Pickering GS pp H1-H27. In A.E. Christie [ed] Biological Investigations to Improve Once-Through Cooling System Designs for the Great Lakes. Report No. 81481. Environmental Studies and Assessments Dept. Design and Development Division, Ontario Hydro December 1981, Toronto, Ontario.

McCauley, R.W. and J.M. Casselman 1980. The Final Preferendum as an Index of the Temperature for Optimum Growth in Fish. United Nations Food and Agriculture Organization, European Inland Fisheries Advisory Commission, Symposium 80/E76, Rome, Italy pp83-93.

McCormick, J.H. 1978. Effects of Temperature on Hatching Success and Survival of Larvae in the White Bass. Prog. Fish. Cult. 40:133-139

McCormick, J.H., B.R. Jones and K.E.F. Hokanson 1977. White Sucker (*Catostomus commersoni*) Embryo Development, and Early Growth and Survival at Different Temperatures. J. Fish. Res. Board Can. 34:1019-1025.

McFarlane, R.W., B.C. Moore and S.E. Williams 1976. Thermal Tolerance of Stream Cyprinid Minnows pp 141-144. *In* G.W. Esch and R.W. McFarlane [ed]. Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, Va. 404p.

Michaud, D.T. 1981. Ambient Temperature Tolerance of some Lake Michigan fishes. pp 281-287 In L.D. Jensen [ed]. Issues Associated with Impact Assessment: Proc. 5th National Workshop on Entrainment and Impingement, held at San Francisco, Calif. May 5-7, 1980. Ecological Analysts, Inc. and Electric Power Research Inst, Sparks, Md. 307p.

Miles, R.L. 1978. A Life History Study of the Muskellunge in West Virginia. Am. Fish. Soc. Spec. Publ. 11:140-145.

Minor, J.D. and E.J. Crossman, 1978. Home Range and Seasonal Movements of Muskellunge as Determined by Radiotelemetry. Am. Fish. Soc. Spec. Publ. 11:146-153.

Moore, L.F. 1979. Fisheries Considerations in Setting Temperature Guidelines for Power Stations. Rev. Can. Biol. 38(4): 293-299.

Morgan II, R.P. and V.J. Rasin, Jr. 1982. Influence of Temperature and Salinity on Development of White Perch Eggs. Trans. Am, Fish. Soc. 111:396-398.

Morman, R.H., D.W. Cuddy and P.C. Rugen 1977. Factors Influencing the Distribution of Sea Lamprey (*Petromyzon marinus*) in the Great Lakes. Can. J. Fish. Aquatic Sci. 37: 181 I-1826.

Murphy, J. C., C.T. Gar-ten, Jr., M.H. Smith and E.A. Standora. 1976. Thermal Tolerance and Respiratory Movement of Bluegill from Two Populations Tested at Different Levels of Acclimation Temperature and Water Hardness, p 145-147. *In* G.W. Esch and R.W. McFarlane [ed] Thermal Ecology II. Natl. Tech Inf. Serv., Springfield, Va 404p.

Ney. J.J. 1978. A Synoptic Review of Yellow Perch and Walleye Biology. Am. Fish. Soc. Spec. Publ, 11:1-12.

Nickum, J.G. 1978. Intensive Culture of Walleyes: The State of the Art. Am. Fish. Soc. Spec. Publ. 11: 187-I 94.

O'Brien, W.J., B. Loveless and D. Wright. 1984. Feeding Ecology of Young White Crappie in a Kansas Reservoir. North Am. J. Fish. Manage. 4:341-349.

Otto, R.G. and J.O. Rice 1977. Responses of a Freshwater Sculpin (*Cottus cognatus gracilis*) to temperature. Trans. Am. Fish. Soc. 106:89-94.

Otto, R.G., M.A. Kitchel and J.O. Rice. 1976, Lethal and Preferred Temperatures of the Alewife (*Alosa pseudoharengus*) in Lake Michigan. Trans. Am. Fish. Soc. 105: 96-106.

Peck, J.W. 1982. Extended Residence of Young-of-the-Year Lake Trout in Shallow Water. Trans. Am. Fish. Soc. 111:775-778.

Peterson, S.E., and R.M. Schutsky. 1976. Some Relationships of Upper Thermal Tolerances to Preference and Avoidance Responses of the Bluegill. p 148-153. /n G.W. Esch and R.W. McFarlane [ed] Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, Va. 404p.

Prince, E.D. and L.J. Mengel 1981. Aggregation of Spottail Shiners in the Heated Discharge of a Nuclear Power Station. Trans. Am. Fish. Soc. 110:221-225.

Reutter, J.M. and C.E. Herdendorf. 1976. Thermal Discharge from a Nuclear Power Plant: Predicted Effects on Lake Erie Fish. Ohio J. Science 26:39-45

Reynolds, W.W. and M.E. Casterlin. 1978. Behavioural Thermoregulation and Diel Activity in White Suckers (*Catostomus commersoni*) Comp. Biochem. Physiol. 59A:261-262.

Richards, F.P. and R.M. Ibara. 1978. The Preferred Temperatures of the Brown Bullhead, (*Ictalurus nebulosus*) with Reference to its Orientation to the Discharge Canal of a Nuclear Power Plant. Trans. Am. Fish. Soc. 107:288-294.

Richards, F.P., W.W. Reynolds, and R.W. McCauley. 1977. Temperature Preference Studies in Environmental Impact Assessments: An Overview with Procedural Recommendations. J. Fish. Res. Board Can. 34: 728-761.

Richkus, W.A. and H.E. Winn. 1979. Activity Cycles of Adult and Juvenile Alewives, *Alosa pseudoharengus*, Recorded by Two Methods. Trans. Am. Fish. Soc. 108:358-365.

Rodgers, D.W. and J.S. Griffiths. 1983. Effects of Elevated Thermal Regimes on Survival of Rainbow Trout (*Salmo gairdneri*) alevins. J. Great Lakes Res. 9(3):421-424.

Schneider, M.J. and C.D. Becker et al. 1975. Aquatic Physiology of Thermal and Chemical Discharges, p 547-556. *In* Environmental Effects of Cooling Systems at Nuclear Power Plants. (IAEA) Int. Atomic Energy Agency, Vienna.

Scott, W.B. and E.J. Crossman. 1973. Freshwaster Fishes of Canada. Bulletin 184. Fisheries Research Board of Canada, Ottawa 966p.

Shuter, B.J., J.A. MacLean, F.E.J. Fry, and H.A. Regier. 1980. Stochastic simulation of temperature effects on first-year survival of smallmouth bass. Trans. Am. Fish. Soc. 109:1-34.

Smagula, C.M. and R. Adelman 1982. Temperature and Scale Size Errors in the Use of [14C] Glycine Uptake by Scales as a Growth Index. Can. J. Fish. Aquatic Sci. 39:1366-1372.

Smith, L.L. Jr., and W.M. Koenst. 1975. Temperature Effects on Eggs and Fry of Percoid Fishes. Report EPA 660/3-75-017, May 1975. U.S. EPA National Environmental Research Centre, Office of Research and Development, Corvallis, Ore.

Spigarelli, S.A. and D.W. Smith. 1976. Growth of Salmonid Fishes from Heated and Unheated Areas of Lake Michigan - Measured by RNA-DNA Ratios pp 100-105. *In* G.W. Esch and R.W. McFarlane [ed]. Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, Va 404p.

Spigarelli, S.A. and M.M. Thommes. 1979. Temperature Selection and Estimated Thermal Acclimation by Rainbow Trout (Salmo *gairdneri*) in a Thermal Plume. J. Fish. Res. Board Can. 36:366-376.

Spotila, J.R., K.M. Terpin, R.R. Koons and R.L. Benati, 1979. Temperature Requirements of Fishes from Eastern Lake Erie and the Upper Niagara River: A Review of the Literature. Env. Biol. Fish. Vol. 4(3):281-307.

Stasiak, R.H. 1978. Reproduction, Age, and Growth of the Finescale Dace, Chrosomus *neogaeus*, in Minnesota. Trans. Am. Fish. Soc 107:720-723.

Stuntz, W.E., and J.J. Magnuson 1976. Daily Ration, Temperature Selection and Activity of Bluegill p180-184. *In* G.W. Esch and R.W. McFarlane ..ed. Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, V a . 404p.

Talmage, S.S. 1978. Thermal Effects on Aquatic Organisms: An Annotated Bibliography of the 1976 Literature Report ORNL/E1S-124. Oak Ridge National Laboratory, Oak Ridge, Tenn. 249p.

Talmage, S.S. and C.C. Coutant. 1980. Thermal Effects. J. Water Pollution Control Federation 52:1575-1616.

Talmage, S.S. and C.C. Coutant 1979. Thermal Effects. J. Water Pollution Control Federation 51:1517-1554.

Talmage, S.S. and C.C. Coutant 1978. Thermal Effects. J. Water Pollution Control Federation 50:1514-1553.

Teleki, G.C. 1976. The Incidence and Effect of Once-Through Cooling on Young-of-the-Year Fishes at Long Point Bay, Lake Erie: A Preliminary Assessment pp 387-393 *In* G.W. Esch and R.W. McFarlane [eds]. Thermal Ecology II: Natl. Tech. Info. Serv., Springfield, Va. 404p.

Thorgaard, G.H., M.E. Jazwin and A.R. Stier. 1981. Polyploidy Induced by Heat Shock in Rainbow Trout. Trans. Am. Fish. Soc. 110:546-550.

Thorpe, J.E. 1977. Morphology, Physiology, Behaviour and Ecology of Perca *fluviatilis* and P. *flavescens* Mitchell. J. Fish. Res. Board Can. 34:1504-1514.

Tin, H.T. and D.J. Jude 1983. Distribution and Growth of Larval Rainbow Smelt in Eastern Lake Michigan, 1978-1981. Trans. Am. Fish. Soc. 112:517-524.

Tyler, A.V. 1966. Some Lethal Temperature Relations of Two Minnows of the Genus Chrosomus. Can. J. Zool. 44:349-364.

Uziel, M.S. 1980. Entrainment and Impingement at Cooling Water Intakes. Journal of Water Pollution Control Federation 52(6): 1616-l 630.

Venables, B.J., L.C. Fitzpatrick and W.D. Pearson. 1978. Acclimation Temperature and Temperature Tolerance in Fingerling Largemouth Bass (*Micropoterus salmoides*). Environ. Pollut. 17: 161-165.

Witzel, L.D. and H.R. MacCrimmon 1983. Redd-site Selection by Brook Trout and Brown Trout in Southwestern Ontario Streams. Trans. Am. Fish Soc. 112:760-771.

Wolters, W.R., and C. C. Coutant. 1976. The Effect of Cold Shock on the Vulnerability of Young Bluegill to Predation. p162-164. *In* G.W. Esch and R.W. McFarlane [ed]. Thermal Ecology II. Natl. Tech. Inf. Serv., Springfield, Va 404p.

Wrenn, W.B. 1976. Preliminary Assessment of Larval Fish Entrainment, Colbert Steam Plant, Tennessee River pp. 381-386 In Esch, G.W. and R.W. McFarlane (eds) Thermal Ecology II: Natl. Tech. Inf. Serv., Springfield, Va. 404 pp.

Wrenn, W.B. 1980. Effects of elevated temperature on growth and survival of smallmouth bass. Trans. Am. Fish. Soc. 109:617-625.

Wrenn, W.B. 1984. Smallmouth Bass Reproduction in Elevated Temperature Regimes at the Species' Native Southern Limit. Trans. Am. Fish. Soc. 113:295-303.

Wrenn, W.B. and T.D. Forsythe. 1978. Effects of Temperature on Production and Yield of Juvenile Walleyes in Experimental Ecosystems. Am. Fish. Soc. Spec. Publ. 11:66-73.

Wyman, R.L. 1981. Fish Residency and Spawning Activity in Generating Station Discharges. pp G-I to G-161 *In* A.E. Christie [ed]. Biological Investigations to Improve Once-Through Cooling System Designs for the Great Lakes, Report No. 81481. Env. Stud. &Assessments Dept. Design & Devel Div., Ontario Hydro, Dec 1981.

Yoder, C.O. and J.R. Gammon, 1976, Seasonal Distribution and Abundance of Ohio River Fishes at the J.M. Stuart Electric Generating Station, pp 284-295 *In Esch*, G.W. and R.W. McFarlane (eds). Thermal Ecology II: Natl. Tech. Info. Serv., Springfield, Va. 404pp.

ACKNOWLEDGEMENTS

The authors wish to thank reviewers from the University of Toronto and the Ontario Ministry of Natural Resources and those from the following Ontario Hydro departments who provided technical comments on this document: Radioactivity Management and Environmental Protection, Chemical Research, Environmental Protection (Central Thermal Services).

The authors are continually updating the document with plans to design a fish computer information database. Any comments, corrections or additional data and/or references are requested to be forwarded to the authors at Ontario Hydro.

5.0 FISH TEMPERATURE DATABASE

5.1 Abbreviations

Size

TL = total length in millimeters. See Carlander (1977) for definition.

FL = fork length in millimeters. See Carlander (1977) for definition. A single number or range of numbers in the size column of a database table represents FL in millimeters.

SL = standard length in millimeters. See Carlander (1977) for definition.

g = weight in grams

in = length in inches

Age

d = day(s)

mo = month(s)

wk = week(s)

yr = year

YOY = young-of-the-year

egg = embryo inside egg envelope (Balon 1984)

free embryo (yolk-sac

larva) = hatched but uses endogenous food supply - yolk sac (Balon 1984).

embryo = endogenous feeding, not free-swimming

fry = exogenous feeding, free-swimming, rising or risen from nesting site, jerky swimming.

larval = can include fry stage, but usually implies the transition from jerky to fluent freeswimming is complete, beginning of schooling, dispersing from nest site.

juvenile = older YOY; less than or equal to one year old; younger yearlings (aged 1-1.5 year). A sub-adult is a juvenile older than 1.5 years up to the age of first maturity (McCauley and Casselman 1980).

adult = sexually mature

Temperature

Temperature, values in the columns of the database tables are given in degrees celsius unless otherwise indicated as degrees Farenheit by F symbol after the number.

Seasons

SP = Spring

Su = Summer

F = Fall

Wi or W = Winter

Day or Night

D = Day

N = Night

SPECIES: Petromyzon marinus (sea lamprey)

	Accli-	Accli-	Upper Incip.	Lower	log time =			Expo-	Resis- tance	Critical	THERMAL TOLERANCES:	
Size or Age (mm)	mation Temp	mation Se Time so	a- Lethal on Temp	Lethal Temp	a + b (temp) a b	_	Limits er Lower	sure Temp	Time (Min)	Thermal (Max)	Location	Reference
egg (64 cell)	18		12									Spotila et al 1979
egg (64 cell)	18		14									Spotila et al 1979
egg (64 cell)	18		23									Spotila et al 1979
egg	18		20 31 > 29.5									Spotila et al 1979 Jobling 1981 Carlander 1969
prolarva ammocoetes	15		28.5		17.5642-0.4680	34	29			29.5 30	Great Lakes	Brown 1974 Spotila et al 1979 Spotila et al 1979
	25		31.4							31		Spotila et al 1979 Spotila et al 1979

SPECIES: Petromyzon marinus (sea lamprey)

Size or Age	Season	Day or	Unner	Final	Lower	Acclimation	Acclimation	PREFERRED	TEMPERATURES:		
(mm)	2000011	Night	Avoidance	Preferendum				Location		Reference	
larvae				13.6						Jobling 1981	
adult				14.3		10				Talmage and	Coutant 1979
	s u			6-15						Morman et al	1980
	SP			< 6						Morman et al	1980
ammocoetes	Su			10-26.1				Streams		Morman et al	1980
larvae				15-20				L. Superior t	ributaries	Morman et al	1980

SPECIES: Petromyzon marinus (sea lamprey)

Size or Age	Optimum		(a)	(b) ST	No Growt	h Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	M W A T		Upper	Lower	Location	Reference
30-90 g; large							land locked	Farmer et al 1977
10-30 g; sma	II 20					<3		Farmer et al 1977 Farmer et al 1977
			20.5	28				This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Petromyzon marinus (sea lamprey)

											SPAWNING AND DEVELOPMENT TEMPERATURES:		
Event	Season and/or Accli- mation Temp	Optimum Temp		(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference	
spawning migration			>4.4									Scott and Crossman 1973	
spawning onset			11.1-11.	7								Scott and Crossman 1973	
spawning hatching (14d)		14.4-15.6	11.1-24.4 13.9-18.3								hatchery Cayuga L N.Y.	Scott and Crossman 1973 Scott and Crossman 1973	
swim-up		18.3 21.7										Scott and Crossman 1973 Scott and Crossman 1973	
hatching metamor- phosis		20-21	15.5-21 7-21								Lab	Carlander 1969 Cravens 1982	
egg incubation	7.527	18.5					21.5	16				Beltz et al 1974	
spawning spawning spawning spawning spawning larval devel		15.5 14.0 15.7 18.2 20-21	12.8-18.3 10-22.8 11.1-26.3 11-25 10-26,1								L. Huron Gt. Lakes Gt. Lakes Gt. Lakes	Manion and Hanson 1980 Manion and Hanson 1980 Manion and Hanson 1980 Manion and Hanson 1980 Morman et al 1980 Morman et al 1980	

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Accli- Embryo mation Survival Time	(c) Lethal Limit Upper	(c)) Location	Reference
spawning hatching		13-18 15.6-17.8							Scott and Crossman 1973 Scott and Crossman 1973
(5-8d) spawning spawning spawning		18.4	12-15 12-19	15.5	19			Wisc. Ont. Que.	Carlander 1969 Carlander 1969 Carlander 1969 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

YOY

adult

SPECIES: Lepisosteus oculatus (spotted gar)

Cina an Assa	0	Da.,	Hanna	Final	Lawan	A Hon - Hon	A 1: 4:	PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
			>35					Colbert G.S. Tennessee R.	Beltz et al 1974
				15-17				Rondeau Bay, L. Erie	McAllister et al 1985
SPECIES: Lep	pisosteus o	sseus (lor	ngnose gar)						
								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large				30-31.8				L. Monona, Wisc.	Coutant 1977a
large			34.5		29			Wabash R., Ind.	Coutant 1977a

Lab Lab

J.M. Stuart GS, Ohio R., Ohio

J.M. Stuart GS, Ohio R.. Ohio

J.M. Stuart GS, Ohio R., Ohio

Wabash R., Ind.

White R., Ind.

Coutant 1977a

Coutant 1977a

Yoder and Gammon 1976

Yoder and Gammon 1976

Yoder and Gammon 1976

Yoder and Gammon 1976 Yoder and Gammon 1976

SPECIES: Lepisosteus osseus (longnose gar)

Su

s u

Su

W

				(b)	No. Occupito I invite			GROWTH TEMPERATURES:
Size or Age (mm)	Optimum " C	Range	(a) MWAT	ST Max	No Growt Upper	Lower	Location	Reference
	26.4						Lab	Scott and Crossman 1973

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature -optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

25.3

33.1

30-34

24-28

12-16 33-35

34

				Upper	Lower						Resis-		THERMAL TOLERANCES	
	Accli-	Accli-	_	Incip.	Incip.	•	time =			Expo-	tance	Critical		
Size or Age (mm)	mation Temp	motion Time		Lethal Tamp	Lethal Temp	a + b a	(temp) b		Limits er Lower	sure Temp	Time (Min)	Thermal (Max)	Location	Reference
	23.8		su									37	Lab	Reutter and Herdendorf 1970
SPECIES: Ami	ia calva (b	oowfin)												
												PREFE	ERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night		er dance	Final Prefer	endum	Lower Avoida		Acclimat Temper	tion A ature T	cclimation ime	Locat	ion	Reference
					30.5							Lab		Houston 1982
SPECIES: Am	ia calva (t	oowfin)												
													SPAWNING AND DEVELO	PMENT TEMPERATURES:
	Season					(b)								
	and/or					ST I		ooli	(c)	(c)	Modian	(d)		
		Optir	m u m	Temp	(a)	ST N	Α	ccli- nation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal		
Event	and/or Accli-	O p t i r Temp	m u m	T e m p Range	(a) MWAT	ST N for Emb	Α	nation	Lethal	Lethal	Lethal	Median	Location	Reference

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Nor incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrannment temperatures.

_												THERMAL TOLERANCES:	
	Accli-	Accli-		Upper incip .	Lower Incip.	log tin	ne ==		Expo-	Resis- tance	Critical		
Size or Age		mation	Sea-	-	Lethal	a + b		Data Limits	sure	Time	Thermal		
(mm)	Temp	Time		Temp	Temp	а	b	Upper Lower		(Min)	(Max)	Location	Reference
	47		SU	24.5					31	10		Lob	N. O. J. 4004
juvenile	17			24.5					30	57		Lab Lab	McCauley 1331
juvenile 	17		su							106			McCauley 1981
juvenile 	17		su						23 28			Lab	McCauley 1381
juvenile	17		SU							1060		Lab	McCauley 1981
juvenile	17		su						27	1880		Lab	McCauley 1981
juvenile	17		SU						26	2800		Lab	McCauley 1981
juvenile	17		SU						25	2150		Lab	McCauley 1981
juvenile	9		SU	<23								Lab	McCauley 1981
juvenile	20			24.5								Lab	McCauley 1981
adult	17			8.5								Lab	McCauley 1981
adult	15			7								Lab	McCauley 1981
juvenile			s u	5-10					_			Lab	McCauley 1981
adult			s u						5	3600		Lab (L. Ont.)	McCauley 1981
adult			s u						6	4980		Lab (L. Ont.)	McCauley 1981
adult			s u						7	9480		Lab (L. Ont.)	McCauley 1981
adult			s u						8	8100		Lab (L. Ont.)	McCauley 1981
adult			s u						9	>12360		Lab (L. Ont.)	McCauley 1981
adult			s u						5	1620		Lab (L. Ont.)	McCauley 1981
adult			SU						6	2181		Lab (L. Ont.)	McCauley 1981
adult			Su							2550		Lab (L. Ont.)	McCauley 1981
adult			s u						8	1662		Lab (L. Ont.)	McCauley 1981
adult			Su						9	2250		Lab (L. Ont.)	McCauley 1981
adult			s u						10	6054		Lab (L. Ont.)	McCauley 1981
adult					2.5							Lab (L. Ont.)	McCauley 1981
adult	20				8								McCauley 1981
adult			W		4								McCauley 1981
	0.6-19.5										25-32		McCauley 1981
	16.9										30.5-31.8		McCauley 1981
adult				31 34									Cravens et al 1983

											THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
	23.9-30							33.5	12.5-25		Connecticut Yankee GS	Brown 1974
	23.9-30							28.2	50-100		comicondut rames co	Brown 1974
YOY	5							17	180			Brown 1974
YOY	5							15	4800		Lab	Brown 1974
YOY	9							26	60		Lab	Brown 1974
YOY	5			15				22.5	40		Lab	Brown 1974
YOY	9			22.6							Lab	Brown 1974
adult	10			> 2 0				24	180		Lab	Brown 1974
adult	20			<22.8				24	4800		Lab	Brown 1974
adult	20							28	300		Lab	Brown 1974
adult	15			22.8								Brown 1974
adult	28.3			33.3								Brown 1974
			Su	31.4							Maritimes stream	Brown 1974
	20		Su	23.2							Lab	McCauley 1981
	18.2		Su							30.2	Lab	Reutter and Herdendorf 1976

SPECIES: Alosa pseudoharengus (alewife)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
				18.8				Cayuga L. N.Y.	Coutant 1977a
			22		8.0			L. Michigan	Coutant 1977a
adult	Sp			21.3				Lab	Coutant 1977a
	· ·				10				Brown 1974
	su		30	27.8-28.3					Brown 1974
adult				17.2		25	48h		McCauley 1981
young	su			17-19				L. Michigan	Talmage and Coutant 1980
				11-14				L. Michigan	Talmage and Coutant 1980
adult	F			11-16				L. Michigan	Talmage and Coutant 1980
				16-21					Wyman 1981
YOY				16-20				L. Michigan	Brandt et al 1980b
YOY				24-28				L. Michigan	Brandt et al 1980b
YOY		D		17-20				L. Michigan	Brandt et al 1980b
all sizes					3.0				Uziel 1980
	year		16	8-10	4			L. Michigan	Michaud 1981
subadult	F			12.3-14.5				L. Huron (27-40 m)	Argyle 1982
<140; adul	lt F			12.3-16.1				L. Huron (27-42 m)	Argyle 1982
YOY	su			31.3				Lab	Spotila et al 1979
adult	F			19.6				Lab	Spotila et al 1979
adult	W			12.0		1-3		Lab	Otto et al 1976
adult	SP			21		7-I 1		Lab	Otto et al 1976
adult	Su			19		10-11		Lab	Otto et al 1976
adult	su			16		15-18		Lab	Otto et al 1976
adult	F			16		10-12		Lab	Otto et al 1976
adult	F			16		5-9		Lab	Otto et al 1976
adult	W			11		1-4		Lab	Otto et al 1976
YOY	su			25		15-18		Lab (L. Michigan)	Otto et al 1976
YOY	SU			25		24-25		Lab (L. Michigan)	Otto et al 1976
YOY	F			24		10-12		Lab (L. Michigan)	Otto et al 1976
YOY	F			21		5-9		Lab (L. Michigan)	Otto et al 1976
YOY	W			19		1-4		Lab (L. Michigan)	Otto et al 1976
YOY	F	D		19-20				L. Michigan	Crowder et al 1981
YOY	F	N		17-18				L. Michigan	Crowder et al 1981
adult	F	D		11-14				L. Michigan	Crowder et al 1981
adult	F	N		13-16				L. Michigan	Crowder et al 1981

SPECIES: Alosa pseudoharengus (alewife)

	0 - 1			(b)	No. Crowdle	Lineite				GROWTH TEMPERATURES:
Size or Age (mm)	Optimum ℃	Range	(a) MWAT	ST Max	No Growth Upper	Lower	Loca	ation		Reference
YOY age 1.2				34.4-35		2.2-5.6 2.2-5.6	L. Er	rie a	b	Brown 1974 Griffiths 1978

- (a) MWAT [maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature-optimum temp for growth)
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Alosa pseudoharengus (alewife)

											SPAWNING AND DEVELOR	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning			6.7 22.2	14 4								Brown 1974
spawning		12.9-13.1	V. 7 LL.L								L. Mattamuskeet, N.C.	Brown 1974
spawning		13-16									Wis.	Brown 1974
spawning		13-21									Me.	Brown 1974
spawning		15.6-26.7									Lab	Brown 1974
spawning		17 19									L. Hopateong, N.J.	Brown 1974
embryo deve	el.	17.8	10-26.7		27.8						Lab	Brown 1974
,	23.9-30						35.5					Brown 1974
YOY	16					2.5d	31.2					Brown 1974
entrainment	2 0								18	38		Moore 1979
cold shock	33-34								-23-24	10		Coutant 1977b
hatching	12.7-29.7	20.8					29.7					Cravens et al 1983
larvae	14-15					24h	31					Cravens et al 1983
spawning		22										Carlander 1969
heat shock	27-28						33.3					Carlander 1969
heat shock	20								+ 18.2		Lab (onshore)	Fahmy and Crippen 1981
heat shock	20								+ 19.0		Lab (tempering)	Fahmy and Crippen 19131
heat shock	20								3 18.6		Lab (offshore)	Fahmy and Crippen 1981
hatching		17.7										Spotila et al 1979
entrainment							30-35				Hudson R. powerplants	Hester 1985
entrainment	14-24									36.1	Hudson R. powerplants	Hester 1985
cold shock	21							6.0	-15.0		Lab	Otto et al 1976

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

					Lower						Dania		THERMAL TOLERANCES:	_
Size or Age (mm)		Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log tim a + b a		Data L Upper	imits Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
adult	15.9 25 25 25		Fa su su su							35.5 35 34.5	7-20 50 110	31.7	Lab	Reutter and Herdendorf 1976 Ellis 1984 Ellis 1984 Ellis 1984
under- yearling	25 30 35 25 30 35		su	34-34.5 36.0 36.5	10.8 14.5 20.0	38.0658 31.5434 32.1348 44.1030	3-1.3010 3-0.9694 4-0.7710 3-0.8698 0-0.0547 6-0.8176	38.0 39.0 35.5 38.0	34.5 36.5 37.0 35.0 36.5 36.5			31.0	Put-in-Bay. Ohio Put-in-Bay, Ohio Put-in-Bay, Ohio Knoxville, Tenn Knoxville, Tenn Knoxville. Tenn L. Darnadelle, Ark Mississippi R.	Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Talmage and Coutant 1980 Talmage 1978
juvenile <133 >133	25				9					34	300			Wrenn 1976 Adams et al 1982 Adams et al 1982

SPECIES: Dorosoma cepedianum (gizzard shad)

0:	0	5		Final	Lawar	Acalimatian	Acclimation	PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Opper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature		Location	Reference
adult	Su F			19.0 20.5				Lab Lab	Ruetter and Herdendorf 1976 Ruetter and Herdendorf 1976
large large	su		30	23.0 26-34 10-12 > 1.2	23.5			Wabash R. Ind. Norris Res. Tenn. Nanticoke GS L. Mich Ottoville Quarry, Ohio	Coutant 1977a Coutant 1977a Ellis 1984 Brown 1974 Talmage and Coutant 1980
adult 190 190 190 240	su F W su		31	26-34 10-22 4-10 28.5-31	8			Power plant, Ohio R. Power plant, Ohio R. Power plant. Ohio R. Lab	Wyman 1981 Yoder and Gammon 1976 Yoder and Gammon 1976 Yoder and Gammon 1976 Yoder and Gammon 1976

SPECIES: Dorosoma cepedianum (gizzard shad)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	MWAT			Lower	Location	Reference
		29.6-31.0		>37.5		18.3	L. Erie, White R., Wabash R. Ind.	Brown 1974 Brown 1974
	16-18							Leidy and Jenkins 1977
			23.2					This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature. optimum temp for growth)
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Dorosoma cepedianum (gizzard shad)

											SPAWNING AND DEVELO	PMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal ΔT	(d) Median Lethai Final	Location	Reference
heal shock	W								+ 12/ + 1	6	Gt. Lakes power plant	Ellis 1964
spawning			10-21.1									Brown 1974
hatch		22.2									Lake Erie	Brown 1974
cold shock	W 26								- 6			Brown 1974
heat shock	W						31.7				Sandusky R. Ohio	Brown 1974
heat shock	W						35.7					Brown 1974
spawning		22									L. Erie	Carlander 1969
cold shock	W 27								- 18			Coutant 1977b
cold shock	10							0	- 10			Edsall and Yocum 1972
cold shock	15							3.5	- 11.6			Edsall and Yocum 1972
cold shock	20							7.5	- 13			Edsall and Yocum 1972
cold shock	25							11	- 14			Edsall and Yocum 1972
cold shock	30							14.6	- 16.6			Edsall and Yocum 1972
cold shock	15-20							6-7				Talmage, 1978
cold shock	W								4		Gt. Lakes power plant	Ellis 1994
				22	722.2							This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less then or equal to optimum. or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli- mation mation Temp Time	Upper Incip. Sea- Lethal son Temp	Lower Incip. Lethal Tamp	log time - a + b (temp) a b	Data l Uppe		Έχρο· sure r Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
young 381; fry	5 10	23.9 21.3 22.5		11.1627-0.4215 11.9021-0.3865	26.5	22 23				Lab, Wash. Lab, Wash.	Scott and Crossman 1973 Brown 1974 Brown 1974
	15 20 24	23.1 23.9 23.9		12.6937-0.4074 16.2444-0.4074 14.7111-0.4459	27.5	23.5 24 24.5				Lab, Wash. Lab, Wash. Lab, Wash.	Brown 1974 Brown 1974 Brown 1974

SPECIES: Oncorhynchus gorbuscha (pink salmon)

				PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
Aonuð		12 14			Scott and Crossman 1973
small newly		11.7		Lab	Coulant 1977a
emerged		11.7-12.8		Lab	Coulant 1977a
50 days		9.3		Lab	Coutant 1977a
-		11.7		Lab	Jobling 1961
\$36 weeks		10		Lab; L. Superior fish	Cravens et al 1983

SPECIES: Oncorhynchus gorbuscha (pink salmon)

Cina or Ago	Ontimum		(a)	(b) ST	No Growth limits		GROWTH TEMPERATURES:
Size or Age (mm)	Optimum "C	Range			Upper Lower	-acotion	Reference
	15.5						Jobling 1981
			18.3	21.7			This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Oncorhynchus gorbuscha (pink salmon)

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) M W A T	(b) ST Man for Embryo Survival	Accli- motion Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final		PMENT TEMPERATURES: Reference
spawning		10	116	10	> 7 15						Lab; L. Superior fish	Scott and Crossman 1973 Cravens et al 1983 This study

- (a) MWAT maximum weekly average temperature during mouth of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning,
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

									THERMAL TOLERANCES:	-
Size or Age (mm)	Accli- Accli- mation mation Sea Temp Time so	Upper Incip. - Lethal n Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data Limits Upper Lower		Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
fry 478; fry 478; fry 478; fry 478; fry 478; fry fingerling adult	5 10 15 20 23 2.6 4.8	25.1 22.9 23.7 24.3 25 25	0.2 1.7 3.5 4.5 6.4 -0.1	21.3050-0.7970 19.5721-0.6820 20.4066-0.6858 20.4022-0.6713 18.9736-0.6	26 24.5 27 24.5	24 26 26.5 26.5 27	150 90 155 90 500	26.5	Lab Lab, B.C. Lab, B.C. Lab, B.C. Lab, B.C. Lab, B.C. Lab	Scott and Crossman 1973 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Houston 1982 Houston 1982
90-130; juvenile	5							25.3	Lab (18C/h)	Becker and Genoway 1979
90-130; juvenile 90-l 30;	10							30.1	Lab (18C/h)	Becker and Genoway 1979
juvenile	15							28.7	Lab (18C/h)	Becker and Genoway 1979
90-130; juvenile 90-130; juvenile5	20							35.1 27.7	Lab (18C/h) Lab (18C/h)	Backer and Genoway 1979 Becker and Genoway 1979
90-130; juvenile	15 12	21						29.6	Lab (18C/h) Lab	Becker and Genoway 1979 Cherry et al 1982

SPECIES: Oncorhynchus kisutch (coho salmon)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
				12-14				Lab	Scott and Crossman 1973
adult	SP			11.4				Lab	Coutant 1977a
adult	•			16.6				L. Michigan	Coutant 1977a
				15/13					Jobling 1981
				20				Lab	Brown 1974
			>23.9					Granby Res., Colo.	Brown 1974
			17	8/12-16	3			Point Beach, L. Michigan	Michaud 1981
				15.6				Lab	Cherry et al 1982
			21	14.3	6	12		Lab	Cherry et al 1982
			21	16.6	12	18		Lab	Cherry et al 1982

SPECIES: Oncorhynchus kisutch (coho salmon)

				(b)				GROWTH TEMPERATURES:
Size or Age (mm)	Optimum ° C	Range M	(a) 1 W A T	ST M a x	No Growth Upper	Limits Lower	Location	Reference
	14.8		18	24			Lab	Jobling 1981 EPA 1974
	17	14-17				<10	Field in late summer Lab L. Michigan	Brown 1974 Brown 1974 Brown 1974

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Oncorhynchus kisutch (coho salmon)

											SPAWNING AND DEVELOPM	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	lab MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
hatching (38d) (48d) heat shock	10	10.7 8.9		10	13	3 min			> + 10		Calif. Calif. Lab (physiological stress)	Scott and Crossman 1973 Scott and Crossman 1973 Spotila et al 1979 EPA 1974
spawning migration spawning cold shock cold shock cold shock cold shock	10 15	<10	4.4-11.1 4.4-7.7						-4.5 - 8 - 12.5 -15		Sand Ck., Oregon Columbia R., Lab Lab Lab	Brown 1974 Brown 1974 Edsall and Yocum 1972 Edsall and Yocum 1972 Edsall and Yocum 1972 Edsall and Yocum 1972

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to OptimUm, or middle of range of spawning temperatures
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1948).
- (d) Simulated larval entrainment temperatures.

THERMAL TOLERANCES:

Size or Age (mm)	Accli- mation Temp	Accli- mation Time	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	$\begin{array}{cccc} \log & \text{time} & = \\ \underline{a + b & (\text{temp})} \\ \overline{a & b & U_{\parallel}} \end{array}$	Data pper	Limits Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
young			24.4 24.8									Scott and Crossman 1973 Jobling 1981
449g;	_		00.0	•	47 7007 0 0000	0.4	00.5				Lab Wash	D 4074
juvenile	5		22.2	0	17.7887-0.6623	24	22.5				Lab, Wash.	Brown 1974
449g; juvenile	10		23.4	3.1	14.7319-0.4988	26.5	23.5				Lab, Wash.	Brown 1974
449g; juvenile	15		24.4	4.1	15.8799-0.5210	27.5	24.5				Lab, Wash.	Brown 1974
449g;	13		24.4	4.1	13.0799-0.3210	21.5	24.5				Lab, Wasii.	BIOWIT 1974
juvenile	20		24.8	4.7	19.3821-0.6378	27.5	24.5				Lab, Wash.	Brown 1974
449g; juvenile	23		24.8	6.7	20.0020-0.6496	6 26.5	24.5				Lab, Wash.	Brown 1974

SPECIES: Oncorhynchus nerka (kokanee salmon)

								PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season D	•	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
adult young				1o-15 12-14						Scott and Crossman 1973
young				10						Scott and Crossman 1973 Carlander 1969
			0.4	10.6-12.8				Horsetooth R	,	Coutant 1977a
small			21	14.5				Okanagan R., Lab	Wash.	Coutant 1977a Coutant 1977a

SPECIES: Oncorhynchus nerka (kokanee salmon)

Size or Age (mm)	Optimum ° C	Range	(a) M W A T	(b) ST Max	No Growth Upper	n Limits Lower	Location	GROWTH TEMPERATURES: Reference
juvenile	15	5-15	18.3	23	24	≺ 0		Jobling 1981 Magnuson et al 1979 Cravens et al 1983 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Oncorhynchus nerka (kokanee salmon)

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation	(c) Lethal Limit	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING AND DEVELOR	PMENT TEMPERATURES: Reference
Event	remp	remp	Nange	IVIVVAI	Sulvival	111116	Upper	Lower		ı ıııaı	Location	Reference
spawning hatching			5-10.5									Scott and Crossman 1973
(140d) (48d) (70-824) spawning		4 15	13-5.1 7-12								Lab Lab; decreasing temp. Calif	Scott and Crossman 1973 Scott and Crossman 1973 Scott and Crossman 1973 Carlander 1969
egg dev.				8.5	12		15.5 13.5	5.1			Lab	Carlander 1969 Beltz et al 1974 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

THERMAL TOLERANCES: Lower Resis-Upper Accli-Accli-Incip. Incip. log time = Expotance Critical Size or Age mation mation Sea- Lethal Lethal a + b (temp) sure Time Thermal а b Upper Lower Temp (Min) Location (mm) Temp Time son Temp Temp (Max) Reference 25.1 Scott and Crossman 1973 444; fry 5 21.5 9.3155-0.3107 25 22.5 Lab. Wash. Brown 1974 8.0 444; fry 10 24.3 16.4595-0.5575 26.5 24.5 Lab, Wash. Brown 1974 444; fry 15 25 2.5 16.4454-0.5364 27 25.5 Lab, Wash. Brown 1974 444; fry 20 25.1 4.5 22.9065-0.7611 27.5 25 Lab, Wash. Brown 1974 25.1 7.4 Lab, Wash. Brown 1974 444; fry 24 18.9940-0.5992 27.5 25 22 Spotila et al 1979 1-2 yr 17 25.1 Lab (UUILT) 21-22 adult 18-19 Houston 1982

SPECIES: Oncorhynchus tshawytscha (chinook salmon)

	_	_						PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
small adult			23.3	12-14 11.7 17.3				Lab L. Michigan Thermal disc L. Michigan (max. body	v	Scott and Crossman 1973 Coutant 1977a Coutant 1977a Spigarelli and Smith 1976

SPECIES: Oncorhynchus tshawytscha [chinook salmon)

Cina an Ana	0		(2)	(b) ST	No Growt	h Limita		GROWTH TEMPERATURES:
Size or Age (mm)	Optimum ° C	Range	(a) MWAT		Upper	Lower	Location	Reference
	15.5							Jobling 1981
	<12						Lab	Cravens et al 1983
fingerling	14.4		18.7	20			Lab	Beltz et al 1974 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature-optimum temp for growth),
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Oncorhynchus tshawytscha (chinook salmon)

											SPAWNING AND DEVELOPM	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) lethal Limit Lower	Median Lethal	(d) Median Lethal Final	Location	Reference
cold shock cold shock cold shock cold shock	7 10 15 20							0	- 6 - 9 -12.5 -15		Lab Lab Lab Lab	Edsall and Yocum 1972 Edsall and Yocum 1972 Edsall and Yocum 1972 Edsall and Yocum 1972
egg dev.		11.1			10		14.9	5.1			Lab Lab	Cravens et al 1983 Beltz et al 1977

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (19461.
- (d) Simulated larval entrainment temperatures.

							PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	-	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Acclimation Temperature T i m e	Location	Reference
fry,								
fingerlings				13-15 121		10.6/12.7	Lab	Talmage and Coutant 1980 Talmage and Coutant 1980
adult red				18.9-21.7			Horsetooth Res., Colo.	Coutant 1977a
fingerlings starved		D/N		22			Lab	Coutant 1977a
fingerlings		D/N		18			Lab	Coutant 1977a
fingerlings			22	18-19	14		Lab	Coutant 1977a
adult				13			Lab	Coutant 1977a
adult				16.5			L. Michigan	Coutant 1977a
50 400 FI			19	18	13		Lab	Coutant 1977a
50-100 FL; young			18	14.1	6	12	Lab (rising water temp.)	Cherry et al 1977
50-100 FL; young W-100 FL;			21	17.1	9	15	Lab (rising water temp.)	Cherry et al 1977
young 50-100 FL;			21	18.6	12	18	Lab (rising water temp.)	Cherry et al 1977
young 50-100 FL;			27	20.2	12	21	Lab (rising water temp.)	Cherry et al 1977
young 50-100 FL;			26	22.2	15	24	Lab (rising water temp.)	Cherry et al 1977
young				19.2 16			Lab (rising water temp.)	Cherry et al 1977 Jobling 1981
adult				11.3				Jobling 1981
				14				Jobling 1981
				15.8		10	Lab	Spotila et al 1979
				17.5		15	Lab	Spotila et al 1979
				22		20	Lab	Spotila et al 1979
				11.6		6	Lab	Spotila et al 1979
				12.6		9	Lab	Spotila et al 1979
			00.5	S-17			Lab	Brown 1974
			23.5				Thermal discharge L. Michigan (max body temp)	Spigarelli and Smith 1976
150-250g;								
yearlings			22.24	16.7			Lab	McCauley and Huggins 1976
small; <1kg			23-24	19			Point Beach NGS	Spigarelli and Thommes 1979
large; >2.5kg			20-21	15			discharge L. Michigan Point Beach NGS	Spigarelli and Thommes 1979
4.0.5 km			22	19			discharge L. Michigan Pt. Beach NGS, L. Mich.	Spigarelli and Thommes 1979
1-2.5 kg m o n t h s				17-21			i i. Deadii NOO, L. MICII.	Kwain and McCauley 1978
>1 year				13				Kwain and McCauley 1978
<6 months				17-19			Lab	Kwain and McCauley 1978
7-11 months				14-16.8			Lab	Kwain and McCauley 1978

SPECIES: Salmo gairdneri (rainbow trout)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits					GROWTH TEMPERATUR	ES:
(mm)	°C	Range	MWAT	Мах	Upper	Lower	Location				Reference	
juvenile	17.2 16.5 17 12 16.8		19	24	>20 24	<10					Jobling, 1981 Jobling, 1981 Jobling, 1981 Spotila et al 1979 McCauley and Casselmar EPA 1974 Brown 1974 Brown 1974	n 1980
juvenile	17-18.6		17	23	22	8	Lab				Hokansonetal 1977 Hokanson et al 1977	
SPECIES: Sa	almo gairdne	ri (rainbow		20							. ishanoon or all 1977	
	0				4.						SPAWNING AND DEVELOPMI	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Surviva	Accli- mation al Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
spawning			10-15.5									Scott and Crossman 1973
hatching (18-101d) heat shock heat shock heat shock	15 9.7 9.7 9.7	7-10	3.2-15.5	9	<15 13		>15 >29	3	+ 14 + 19.5 + 20.6 +18.7		Lab Lab (onshore discharge) Lab (tempering discharge) Lab (offshore discharge)	Spotila et al 1979 Crippen and Fahmy 1981 Crippen and Fahmy 1981(d) Crippen and Fahmy 1981(d) Crippen and Fahmy 1981(d) EPA 1974
spawning spawning egg dev. egg dev. larval dev.		6-8 5-7 5-6-12.2 12.8-I 8.9	0.3-10 5.5-13 1.7-16.1								Bothwells Ck, Ont. Finger Lakes, N.Y.	Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974
heat shock heat shock heat shock	12.2 10 6						24-30		+11.1 +19	29	Lab Lab (simulated entrainment) Lab	Brown 1974 Moore 1979 Cravens et al 1983
heat shock (egg)	10						36				Lab	Thorgaard et al 1981

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

													THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp		ime = b (temp) b	Data Uppe	Limits r Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
50-100FL;	12-24			23									Lab	Cherry et al 1977
young				26.4										Jobling 1981
adult	14-18											25	Lab (death point)	Spotila et al 1979
adult	26											26	Lab (death point)	Spotila et al 1979
fry	5-6											22.5	Lab (death point)	Spotila et al 1979
fry	20											23	Lab (death point)	Spotila et al 1979
newly hatched fry	6			22		12.77	756-0.4010	28	20				Lab; England	Brown 1974
•				24.7									Lab	Brown 1974
	23			25.3								28.3	N.Y. (limiting temp)	Brown 1974
										26.8	1440		Lab	Brown 1974
										27.8	720		Lab	Brown 1974
150-200TL;	10											29	Lab (Arizona; 0.02 c/min)	Lee and Rinne 1980
	20											30	Lab (Arizona; 0.02 c/min)	Lee and Rinne 1980
SPECIES: Sa	ılmo trutta	(brown tre	out)											

							PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
			18.3-23.9					Scott and Crossman 1973
			12				L. Oredon, France	Coutant 1977a
		20					Lab	Coutant 1977a
young			17.6				Lab	Coutant 1977a
adult			13.8				L. Michigan	Coutant 1977a
50-100FL; young		15	11.7	6	12		Lab (rising water temps)	Cherry et al 1977
50-100FL; young		18	15.5	9	15		Lab (rising water temps)	Cherry et al 1977
50-100FL; young		21	17.9	12	18		Lab (rising water temps)	Cherry et al 1977
50-100FL; young		24	18.8	15	21		Lab (rising water temps)	Cherry et al 1977
50-100FL;		25	18.5	17	23		Lab (rising water temps)	Cherry et al 1977
young 50-100FL; young			17.4				Lab (rising water temps)	Cherry et al 1977
young			12.2					Jobling 1981
			12.4-17.6					Spotila et al 1979
44g; small			19.9				L. Michigan thermal discharge	Brown 1974
30009; large			16.9				L. Michigan thermal discharge	Brown 1974
2200, .a. 90		21.3					L. Michigan thermal discharge (max body temp)	Spigarelli and Smith 1976
			12-16				L. Michigan thermal discharge	Harrelson et al 1984

SPECIES: Salmo trutta (brown trout)

Size or Age (mm)	Optimum ° C	Range	(a) M W A T	(b) ST Max	No Growth Upper	Limits Lower	Location	GROWTH TEMPERATURES: Reference
juvenile	10 15.5 12 12.8 12.6	7-19	19.1	21	<29.1	5		Jobling 1981 Jobling 1981 Jobling 1981 Jobling 1981 McCauley and Casselman 1980 Brown 1974 Brown 1974 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Salmo trutta (brown trout)

	_										SPAWNING AND DEVELOPME	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal Δ T	(d) Median Lethal Final	Location	Reference
spawning			6.7-8.9	12.8							S.E. Ontario	Scott and Crossman 1973 Brown 1974
incubation (34-148d)			1.9-11.2	12.0			27				Lab	Brown 1974
embryo spawning			4-l 1	7.5	11.2		15				streams SW Ontario	Cravens et al 1983 Witzel and MacCrimmon 1983 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

								THERMAL TOLERANCES:	
Size or Age (mm)	Accli- Accli- mation matio Temp Time	Incip. n Sea- Lethal	Lower Incip. log time = Lethal a + b (temp) Temp a b	Data Limits Upper Low	Expo- sure er Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
50-I00FL;	12-24	24						Lab	Cherry et al 1977
young		25.3 20.1							Jobling 1981 Jobling 1981
2-25g; yearling	3	23.5	13.4325-0.4556	3 26 23.5	26	40		Lab, Ontario	Brown 1974
2-25g; yearling	11	24.6	14.6256-0.4728	3 28 25				Lab, Ontario	Brown 1974
2-25g; yearling	15	25	15.1846-0.4833	3 28.5 25.5	27.5	30		Lab, Ontario	Brown 1974
2-25; yearling	20	25.3	15.0331-0.4661	29 25.5				Lab, Ontario	Brown 1974
2-25g; yearling	22	25.5	17.1967-0.5367	29 26.5				Lab, Ontario	Brown 1974
2-25g; yearling	24	25.5	17.8467-0.5507	30 25.5	28.5	40		Lab, Ontario	Brown 1974
2-25g; yearling	25	25.5	17.8467-0.5567	29 26				Lab, Ontario	Brown 1974
eggs newly hatched	12	12.7 20.4						Lab, Ontario Lab, Ontario	Brown 1974 Brown 1974
swim-up	12	24.3					24.5 25.3	Lab, Ontario Lab, (UUILT ₅₀)	Brown 1974 Brown 1974
larvae		20.1							Houston 1982
juvenile	13	24						Lab	Houston 1982
	16 19	24.9 25.8						Lab Lab	Houston 1982 Houston 1982
150-200FL;	10	23.0					28.7	Lab (Arizona; 0.02 c/m)	Lee and Rinne 1980
150-200FL;	20						29.8	Lab (Arizona; 0.02 c/m)	Lee and Rinne 1980

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
	Su			<20					Scott and Crossman 1973
				19				field	Coutant 1977a
				20.3				Moosehead L., Me.	Coutant 1977a
				20				Redrock L., Ontario	Coutant 1977a
			20					field	Coutant 1977a
adult				15.7				S. Ont. streams	Coutant 1977a
adult				14.8				L. Michigan	Coutant 1977a
small				16				Lab	Coutant 1977a
small	F		20	16				Lab	Coutant 1977a
small	w			8-12				Lab	Coutant 1977a
small				18				Lab (fed)	Coutant 1977a
			20	18	14			Lab	Coutant 1977a
small				16				Lab (starved)	Coutant 1977a
young				16				Lab	Coutant 1977a
50-100FL;			15	13.7	6	12		Lab (rising water temps)	Cherry et al 1977
young									
50-100FL;			18	15.2	9	15		Lab (rising water temps)	Cherry et al 1977
young									
50-100FL;			21	17.2	15	18		Lab (rising water temps)	Cherry et al 1977
young						•			
50-100FL;			24	18.3	15	21		Lab (rising water temps)	Cherry et al 1977
young			00		40	0.4			0
50-100FL;			26	19.0	18	24		Lab (rising water temps)	Cherry et al 1977
young				45.5				Lab (data a contact to the contact t	01 1 1077
50-100FL;				15.5				Lab (rising water temps)	Cherry et al 1977
young				4.4					1.11. 4004
				14		4		Lab	Jobling 1981
fry			0.4	10	-	4			Brown 1974
			21	0145	7	10 6 10 7		Lakes N.S.	Brown 1974
fry				9-I 1.5		10.6-12.7		Lab	Talmage and Coutant 1980
fingerlings				17.5		12.1		Lab	Talmage and Coutant 1980

SPECIES: Salvelinus fontinalis (brook trout)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range				Lower	Location	Reference
	13 14							Jobling 1981 Jobling 1981
	16.1		19	23				Jobling 1981 EPA 1974
	15.4 IO-IS	9.8-17.9			>20	8	Lab	Brown 1974 Brown 1974

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature-optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Salvelinus fontinalis (brook trout)

	Season				(b)						SPAWNING AND DEVELO	DPMENT TEMPERATURES:
Event	season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
hatching (50-100d)			1 0-5									Scott and Crossman 1973
eggs				9	13		11.7					Scott and Crossman 1973 EPA 1974
spawning spawning		10.7	2.2-11.7								Minn.	Brown 1974 Brown 1974
incubation (15-28d)			1.5-14.8								Lab	Brown 1974
hatching spawning		6	4-13		14.8		18				SW Ont. streams	Brown 1974 Witzel and MacCrimmon 1983

- (a) MWAT-c maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp		ime = o (temp) b	Data l Upper	<u>Limit</u> s r Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
27.7/82.8g; 1-2 yr	15			25.1 22.7 23.5		14.5	20-0.5 14 123-0.4	866 27					Hatcheries,	, Ont.	Spotila et al 1979 Brown 1974 Brown 1974
SPECIES: Salv	20 relinus na	maycush	(lake tr	23.5 -out)		17.36	84-0.5818	3 27	24			DDEE	Hatcheries,		Brown 1974
Size or Age (mm)	Season	Day or Night	Uppe Avoid		Final Prefere	e n d u m	Lower Avoidar		Acclima Temper		Acclimation Time			PERATURES:	Reference
yearling young adult YOY 1-2 yrs juvenile	SU		13 11 15 14 17.2 11.7		10 14 10 15.5 11.7 11.5 11.8 12		5.6 3.9					Moose Lac L Louise Cayug Lab Lab L. Mi L. Su L. Su L. Su	a L., N.Y. chigan perior perior		Scott and Crossman 1973 Coutant 1977a Spotila et al 1979 Brown 1974 Brown 1974 Brown 1974
fry fingerlings adult YOY			15.5 18.2 >14 14 15		7.2-12.8 14 9-11.5		a <1 4		10.6-12.7 1-17	,		field L. Or	tario Beach, L. M chigan	lichigan	Brown 1974 Brown 1974 Michaud 1981 Talmage and Coutant 1980 Cravens et al 1983 Peck 1982

SPECIES: Salvelinus namaycush (lake trout)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	M W A T		Upper	Lower	Location	Reference
yearling 1-2 yrs	11.7 16.5							Leidy and Jenkins 1977 Leidy and Jenkins 1977
. = 3.3		4-18	19.4	21.5			Lake Louisa, Ont.; Cayuga L., N.Y.	Leidy and Jenkins 1977 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Salvelinus namaycush (lake trout)

	Season			(b)						SPAWNING AND DEVELOR	PMENT TEMPERATURES:
vent	and/or Accli- mation Temp	Optimum Temp	Temp (a Range M	ST M for) Embr	Acc	ition Limi	t Limit	Median Lethal S T	(d) Median Lethal Final	Location	Reference
awning			8.9-13.9								Scott and Crossman 1973
ubation -21 wk)			0.3-1.0							Algonquin Pk., Ontario	Scott and Crossman 1973
at shock	8.8					14.8		+ 6		Lab	Wyman 1981
wning			11-14							L. Simcoe, Ontario	Brown 1974
			a.	.9							Brown 1974
ubation -162d)			1.8-10							Lab	Brown 1974
			7 4 4 4 4	<10							Brown 1974
awning			7.1-14.4							L. Simcoe, Ontario	MacLean et al 1981
awning			5.5-10	14.4						L. Simcoe, Ontario	MacLean et al 1981 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli- mation mation Temp Time	Upper Incip. Sea- Lethal son Temp	Lower Incip. Lethal Temp	log time = a t b (temp) a b	Data I Upper	_imits · Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
	5 10	23.5-25.5 25.5-26.7								Lab	Crippen and Fahmy 1981
	20.8	27.5-28.7									
uvenile	10 15	23.5-24		13.2634-0.4381 16.9596-0.5540	26.5 28	24 24.5				Lab, Ontario Lab, Ontario	Brown 1974 Brown 1974
	20	24-24.5		19.4449-0.6342	28	24.5				Lab, Ontario	Brown 1974

							PREFERRED	TEMPERATURES:		
Size or Age (mm)	Season Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference	
young fry			13.1 12 9-11.5		10.6-12.7		Jack and Sprou Lab Lab	ule L., Ont.	Coutant 1977a Coutant 1977a Talmage and Coutant 19	80

SPECIES: Salvelinus fontinalis x S. namaycush (splake)

Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper		ethal	(d) Median Lethal Final	SPAWNING AND DEVELOPM Location	ENT TEMPERATURES: Reference
heat shoo	ck 3							20).5		Lab (onshore discharge)	Crippen and Fahmy 1981 (d)
heat shoo	ck 3							22	2.1		Lab (tempering discharge)	Crippen and Fahmy 1981 (d)
heat shoo								22	2.4		Lab (offshore discharge)	Crippen and Fahmy 1981 (d)
hatching	8.8						14.8	+	6		Lab	Wyman 1981
eggs spawning		7.8						+	10		Lab (fall spawned)	Griffiths 1978 Griffiths 1980
eggs								+7	7.8		Lab (+ ambient; TL50)	Griffiths 1980

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Coregonus artedii (cisco, lake herring)

FECILO: OOK	-										THERMAL TOLERANCES:	
size or Age mm)	Accli- mation Temp	Accli- mation Time	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data L Upper		Expo- sure r Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
arvae uvenile uvenile uvenile juvenile juvenile juvenile juvenile juvenile juvenile	2 5 IO 20 25 2 5 10 20 25	8 w k 4 w k 2 w k 2 w k 3 w k 8 w k 4 w k 2 w k 3 w k	26 19.8 26.2 19.7 21.7 24.2 26.2 25.7	<0.3 to.5 3.0 4.7 9.7	16.51X-0.6688 10.2799-0.364 12.4993-0.409 17.2967-0.533 15.1204-0.449 2.7355 0.338 2.5090 0.268 1.7154 0.165	5 24 8 28 3 30 3 30 1.5 1 3 5 4.5	19 20 24 26 25 0.3 0.5 0.5 0.5				Lab (Mich.)	Scott and Crossman 1973 Jobling 1981 Jobling 1981 Brown 1974

SPECIES: Coregonus artedii (cisco, lake herring)

								PREFERRED T	EMPERATURES:	
Size or Age	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
,			15.5 17-20 20	13 10				L. SuperiorL. Nippissing,L. Nippissing,Cayuga L., N.Y.	Ontario	Carlander 1969 Carlander 1969 Coutant 1977a Coutant 1977a
large large			20	7.2 13-18				Atikokan GS pi		Spotila et al 1979 Haymes 1984
larval	SP			9-14						

SPECIES: Coregonus artedii (cisco, lake herring)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	MWAT		Upper	Lower	Location	Reference
	18.1		17	25				Jobling 1981 EPA 1974

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth),
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Coregonus artedii (cisco, lake herring)

											SPAWNING AND DEVEL	OPMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit L o w e r	Lethal	(d) Median Lethal Final	Location	Reference
spawning incubation		3.3 5.6	3.3-5								Wisc. Lab	Scott and Crossman 1973 Scott and Crossman 1973
(92d) incubation spawning incubation			0.5-5.6 1.0-5.0 2.4-3.3								Lab Great Lakes L. Mendota, Wisc.	Scott and Crossman 1973 Carlander 1969 Carlander 1969
(111-125d) spawning larval devel.		<3.8 5.6	2-8	٥	≼ 7							Spotila et al 1979 Spotila et al 1979 Spotila et al 1979
incubation cold shock cold shock cold shock	10 15	6		3	8				- 6 - 7 -12 -15.5		Lab	EPA 1974 Cravens 1981

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures,

											THERMAL TOLERANCES:	
Size or Age (mm)	Accli- Accli- mation mation So Temp Time	Upper Incip. ea- Lethal son Temp	Lower Incip. Lethal Temp	log tim <u>a + b (</u> a			<u>Limits</u> er Lower	Expo- sure Temp	Resi tance Time (Min)	s - Critical Thermal (Max)	Location	Reference
60; age 1 60; age 1	5 10	22.2 23.6		15.8243 9.0700	-0.5831 -0.2896	26 30	22 23				Lab, L. Michigan Lab, L. Michigan	Brown 1974 Brown 1974
60; age 1 60; age 1	15 20	24.8 26.2		17.1908 28.6392	,		24.5 25.5				Lab, L. Michigan Lab, L. Michigan	Brown 1974 Brown 1974
60; age 1	25	26.7		21.351			26.5			0.7	Lab, L. Michigan	Brown 1974
60; age 1 60; age 1 60; age 1	8 20 25									27 28 29	Lab, (death point) Lab, (death point) Lab, (death point)	Brown 1974 Brown 1974 Brown 1974
age 3	8	26-27									Lab	Brown 1974

SPECIES: Coregonus hoyi (bloater)

0: 4	0	D		Final	Laws	A 1: 4:	Acclimation	PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Opper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature		Location		Reference
larval			4.8 >11.4	3.8-7	>1.5			L. Michigan L. Michigan		Scott and Crossman 1973 Carlander 1969
large	su		IO 16	0.0 1	6 5			L. Michigan L. Michigan		Coutant 1977a Cravens et al 1983
80-140 FL: juvenile 150-200 FL:	SU			11-14				L. Michigan		Crowder and Crawford 1984
adult	su			7-10				L. Michigan		Crowder and Crawford 1984
YOY YOY larval	F F	D N		22 7-18 4.7				L. Michigan L. Michigan Gt. Lakes (90	l-110m)	Crowder and Crawford 1984 Crowder and Crawford 1984 McAllister et al 1985

Event

											SPAWNING AND DEV	/ELOPMENT TEMPERATURES:
	Season and/or Accli- mation Temp	Optimu Temp	m Temp Range		(b) ST Max for Embryo Surviva	Accli- mation I Time	(c) Lethal Limit Upper	(c) Lethal Limit L o w e	Median Lethal r Δ T	(d) Median Lethal Final	Location	Reference
arval dev.		<4.7									L. Michigan	Carlander 1969
SPECIES: Co	regonus kiyi	(kiyi)										
SPECIES: Co											ERRED TEMPERATURE	ES:
SPECIES: Co Size or Age (mm)	Season	Day or	Upper Avoidance	Final Prefere		ower roidance	Acclima Tempe	ition A rature T	cclimation			ES: Reference
Size or Age	Season	Day or										
Size or Age (mm)	Season	Day or Night		Prefere								Reference
Size or Age	Season	Day or Night		Prefere								Reference

spawning	1.7-3.4	Great Lakes	Scott and Crossman 1973

(c)

Lethal

Lower $\Delta extsf{T}$

Limit

(d)

Lethal

Final

Location

Reference

Median Median

Lethal

(c)

Lethal

Limit

Upper

Accli-

mation

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

(b)

for

ST Max

Embryo

Survival Time

(c) Not incipient lethal temperatures as defined by Fry et al (1946).

Optimum

Temp

Temp (a)

Range MWAT

(d) Simulated larval entrainment temperatures.

Season

and/or

mation

Temp

Accli-

SPAWNING AND DEVELOPMENT TEMPERATURES: Season (d) ST Max (c) and/or (c) Accli-Lethal Lethal Median Median Acclifor Lethal Embryo mation Limit Limit Lethal mation Optimum Temp (a) Lower, ΔT Final Location Reference Survival Time Event Temp Temp Range MWAT Upper L. Michigan Scott and Crossman 1973 3.8-4.7 spawning

SPECIES: Coregonus clupeaformis (lake whitefish)

Size or Age (mm)	Accli- mation Temp	Uppe Accli- Incip. mation Sea- Letha Time son Temp	Incip. I Lethal	log time = a + b (temp) a b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
YOY YOY YOY YOY YOY YOY YOY YOY YOY	5 10 15 20 22.5 17 17 17	26.6 20.6 22.7 25.8 26.6 26.6				27.2 29.4 31.7 33.7	65 7 0.8 0.1		Lab (L. Michigan) Lab (L. Michigan) Lab (L. Michigan) Lab (L. Michigan)	Jobling 1981 Spotila et al 1979 Edsall and Yocum 1972

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Coregonus clupeaformis (lake whitefish)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
small; 2 yrs				12.7				Lab	Coutant 1977a
juvenile larvae				17				South Bay, Lake Huron Ontario	Coutant 1977a
12.9; larvae				12-16				Lab	Coutant 1977a
17.8; larvae			17	13.5	12			Lab	Coutant 1977a
23.1; larvae			19	15.5	14.5			Lab	Coutant 1977a
				11.9				Moosehead L., Me.	Coutant 1977a
4.2-7.2g;				10				Lab	Spotila et al 1979
fingerling									
1.1-1.7g;				17				Lab	Spotila et al 1979
young larval				4				L. Erie, L. Ontario (surface water temp)	Brown 1974
YOY				17					
larval	Sp		14		8			Atikokan GS, (preop.)	Haymes 1984
	•		12	4	0			Point Beach, L. Michigan	Michaud 1981
adult				< 9		o-13		L. Michigan	Cravens et al 1983
larval	SP			6.9-9.5				L. Opeongo, Ontario	Ihssen et al 1981
larval	SP			3.5-15				L. Simcoe, Ontario	Ihssen et al 1981
larval	SP			4-12				Bay of Quinte, L. Ontario	Ihssen et al 1981
larval	SP			4.5-9				South Bay, L. Huron	Ihssen et al 1981

SPECIES: Coregonus clupeaformis (lake whitefish)

Size or Age (mm)	Optimum ° C	Range	(a) M W A T	(b) ST Max	No Growth Upper	Limits Lower	Location	GROWTH TEMPERATURES: Reference
	13.5 16.8					<10		Jobling 1981 Jobling 1981 Brown 1974

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

											SPAWNING AND DEVELOPMENT TEMPERATURES:		
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference	
spawning			≤ 7.8								L. Erie	Scott and Crossman 1973	
incubation spawning		0.5	0.5-6.1 ≤10				10				Lab Bay of Quinte, L. Ont.	Scott and Crossman 1973 Carlander 1969	
spawning			0.5-4.5								•	Carlander 1969	
larval devel. incubation		0.5	0.5-1.7								Heming L. field	Carlander 1969 Carlander 1969	
(120-140d)											liciu	Carianuer 1909	
incubation (40-141d)			0.5-8				10	0			Lab	Carlander 1969	
spawning		85.5										Spotila et al 1979	
hatching		0.5			<6.1		>10					Spotila et al 1979	
incubation		4-7.8	3.2-8.1		\0.1							Spotila et al 1979 Spotila et al 1979	
hatching (42d)		10										Spotila et al 1979	
hatching		0.5										Spotila et al 1979	
(182d) incubation	0.5-10						-0					M/	
spawning	0.5-10	<6.1	0.5-9.4				≪ 8					Wyman 1981 Brown 1974	
hatching			4.6-6.9								L. Erie	Brown 1974	
heat shock YOY	18						29+		> † 11			Brown 1974	
spawning		4									Lakes Nathalie + Helene; James Bay	Talmage and Coutant 1979	
larval devel.		4-6									Lab	Griffiths 1979	
spawning		4-7									L. Opeongo, Ont.	Ihssen et al 1981	
spawning		3-6									L. Simcoe, Ont.	Ihssen et al 1981	
spawning		6-8 4-8									Bay of Quinte, L. Ont. South Bay, L. Huron	Ihssen et al 1981	
spawning incubation		4-0	1-7								South Bay, L. Huron	Ihssen et al 1981 Ihssen et al 1981	
(167d)			1-7								Court Buy, E. Fluron	msserret ar 1901	
incubation			1-12								Bay of Quinte., L. Ont.	Ihssen et al 1981	
(160d) hatching			4-12								Bay of Quinte., L. Ont.	Ihssen et al 1981	
hatching			4-12 4-7								South Bay, L. Huron	Ihssen et al 1981	
heat shock	17.1		- 7 -1						+11		L. Michigan (Lab)	Edsall and Yocum 1972	
(fry)													

	Season and/or Accli- mation	Optimum	Temp	(a)	(b) ST Max for Embryo	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal	SPAWNING AND DEVELO	PMENT TEMPERATURES:
Event	Temp	Temp	Range	MWAT	Survival	Time	Upper	Lower	ΔT	Final	Location	Reference
heat shock entrainment hatching hatching heat shock spawning egg	6	4	2.8-6.7 4-8 0.5-10	7	10		28.9		i-31 +25 +6		Lab (simulated entrain) Lab (simulated entrain) L. Superior L. Ontario Lab (untempered) Lab (+ ambient)	Dunstall 1978 Dunstall 1978 Dunstall 1978 Dunstall 1978 Dunstall 1978 Dunstall 1978 (d) Dunford 1980 Griffiths 1980 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryosurvival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Prosopium cylindraceum (round whitefish)

											ERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or U Night A	Jpper Avoidance	Final Prefere	Low endum Avo		Acclima Tempe	tion Ad rature Ti	cclimation me	Loca	tion	Reference
				17.5							sehead L. Me.	Coutant 1977a
	W			3-5.8							nt. near Pickering GS	Carey 1982
	F			2.1-3.6						L. O	nt. near Pickering GS	Carey 1984
SPECIES: Pr	rosopium c	ylindraceum	(round white	efish)								
											SPAWNING AND DEVELOR	PMENT TEMPERATURES:
	Season				(b)		1.5					
	and/or				ST Max		(c)	(c)		(d)		
	Accli-		_	4.1	for	Accli-	Lethal	Lethal				
_	mation	•	um Temp		Embryo	mation	Limit	Limit	Lethal	Lethal	1	
Event	Tamp	Temp	Range	MWAI	Survival	iime	Upper	Lower	ΑТ	Final	Location	Reference
spawning		4.5									L. Superior	Scott and Crossman 1973
hatching												
(140d)		2.2										Scott and Crossman 1973
spawning		€3									L. Ontario	Carey 1982
egg survival		1-5										Gowans 1982
spawning		3	2-4.4								L. Ontario	Dunford 1980
incubation		1-2										Dunford 1980
incubation			1710		-10							Griffiths 1980
(37-168d)			1.7-10		<10						Lab (above ambient)	Griffiths 1980
egg									+ 6 4.8		Lab (above ambient) Lab (above ambient-TL50)	Griffiths 1980
egg				2	_				4.0		Lab (above ambient-1150)	This study
				3	5							

SPECIES: Osmerus mordax (rainbow smelt)

											THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	me = (temp) b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
	<10 <6 15		W	19 >24				22	51	28.5		Ellis 1984 Ellis 1984 Ellis 1984 Ellis 1984
	6 5.3-6.2		SP					21 23 22 21 20	736 12 51 736 1630		Lab (April 13)	Ellis 1984 McCauley 1981 McCauley 1981 McCauley 1981 McCauley 1981 McCauley 1981
	5.7-6.2		SP					24 23 22 27	13 30 88 854		Lab (April 20)	McCauley 1981 McCauley 1981 McCauley 1981 McCauley 1981
150-210:	6 10.2-15		SP	21.5-28.5						24.9	Lab Lab	Reutter and Herdendorf 1976 Brown 1974 Houston 1982
adult	17		W SP	19 18.9	8.5			37	<1			Teleki 1976 McCauley 1981
adult	1.0 1.6 3.1 5.4 6.5 8.2 12.2		SP SP SP SP SP SP SP							22.6 22.8 23.3 24.1 20.1 25.1 26.4		McCauley 1981

SPECIES: Osmerus mordax (rainbow smelt)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
			14	6.6-8.3 12.8	6			Cayuga L., N.Y. L. Michigan L. Champlain, N.Y.	Coutant 1977a Coutant 1977a Coutant 1977a Ellis 1984
adult	su		>15.6	18 7.2				Field L. Erie	Ellis 1984 Brown 1974
adult adult adult young adult YOY <25; larvae	F F SU Sp/Su s u	D D N	14	6-8 7.8 11-16 >21 <12.8 <10 13-14 10.1-14 14.1-16	6	O-18		 L. Michigan L. Michigan L. Michigan L. Erie L. Cayuga, N.Y. L. Michigan L. Michigan L. Michigan L. Michigan 	Brandt et al 1980a Brandt et al 1980a Brandt et al 1980a Brandt et al 1980a Brown 1974 Brown 1974 Michaud 1976 Tin and Jude 1983
adult	s u	N N	15.5	7-8 11-16 15				L. Erie L. Superior Lab	Heist and Swenson 1983 Heist and Swenson 1983 McCauley 1981
adult	F F	N D	12	7.6 11-14 13-16				Lab L. Michigan L. Michigan	McCauley 1981 Crowder et al 1981 Crowder et al 1981

72

SPECIES: Osmerus mordax (rainbow smelt)

				(b)				GROWTH TEMPERATURES:
Size or Age (mm)	Optimum "C	Range	(a) M W A T	ST Max	No Growth Upper	Lower	Location	Reference
						18.3	L. Erie	Brown 1974

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature- optimum temp for growth)
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Osmerus mordax (rainbow smelt)

											SPAWNING AND DEVELOP	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(al MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal AT	(d) Median Lethal Final	Location	Reference
avoidance c	of								+10.5		Field (summer)	Ellis 1984
spawning spawning ru	un		2.2-14.5 3.9-5.6								L. Superior	Brown 1974 Brown 1974
spawning incubation		10	5-15								L. Erie	Brown 1974 Brown 1974
spawning heat shock	8.5		8.9-18.3						+22.2	30.5	Great Lakes streams Lab (simulated onshore discharge)	Scott and Crossman 1973 Crippen and Fahmy 1981(d)
hatching		14		13.6	23							McCauley 198 1 This study
eggs spawning embryo dev (6d) embryo dev (35d)		11-17	9-19 < 6 22.5								Lab Lennox GS, L. Ont. Lab	Griffiths 1978 Griffiths 1978 Griffiths 1978 Griffiths 1978

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age	Season	Day or	Upper	Final	Lower	Acclima	tion <i>F</i>	Acclimation		FERRED TEMPERATURES:	
(mm)			Avoidance	Prefere	endum Avoidance	Tempe	ature T	ime	Loca	tion	Reference
large larval	SU		27	22	22					ash R., Ind. er Mississippi R.,	Coutant 1977a Holland and Sylvester 1983
SPECIES: Hi	odon tergis	us (moone	eye)								
	Season				(b)	(-)	(-)		4.10	SPAWNING AND DEVELO	PMENT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimu Temp	um Temp Range	(a) MWAT	ST Max for Accli- Embryo mation Survival Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal Δ T	(d) Median Lethal Final	Location	Reference
spawning		10-13		11.5	13					Assiniboine R., Man.	Talmage 1978 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Umbra limi (central mudminnow)

											THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log t <u>a + b</u> a	ime - o (temp) b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
			≤ 38								Shallow pond. Mich.	Beltz et al 1974

SPECIES: Umbra limi (central mudminnow)

0:	20000	Day as Harr		Final	Low		Acclima	tion A	cclimation		FERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Uppe Night Avoid	dance		endum Avo			rature T		Loca	tion	Reference
	s u SP	>28.9	9		8					Onta Onta		Scott and Crossman 1973 Scott and Crossman 1973
SPECIES: Ur	mbra limi (c	entral mudminr	now)									
	Season and/or Accli-				(b) ST Max for	Accli-	(c) Lethal	(c) Lethal	Median	(d) Median	SPAWNING AND DEVELOPM	ENT TEMPERATURES:
Event	mation Tamp	Optimum 7 Temp	Temp Range	(a) MWAT	Embryo Survival	mation Time	Limit Upper	Limit Lowe	Lethal r $\Delta {f T}$	Lethal Final	Location	Reference
spawning spawning spawning		13 12.8	<15.6	13	15.6						N.Y.; flood vegetation Jones Ck., Ont.	Carlander 1969 Scott and Crossman 1973 Scott and Crossman 1973 This study
SPECIES: Es	ox americar	nus vermiculatus	s (grass	pickerel)								
											FERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Uppe Night Avoid	er dance	Final Prefere	Low ndum Avoi		Acclima Temper	tion A ature T	.cclimation ime	Loca	tion	Reference
Small		28.9		26 25.5 25.6						Lab		Coutant 1977a Carlander 1969 Scott and Crossman 1973
SPECIES: Es	ox american	us vermiculatus	s (grass	pickerel)								
	Season				(b)						SPAWNING AND DEVELOPM	IENT TEMPERATURES:
	and/or Accli- mation	Optimum	Temn	(a)	ST Max for Embryo	Accli-	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal		
Event	Temp		Range	MWAT	Survival		Upper	Lower	Δͳ	Final	Location	Reference
spawning hatching		7.2-11.7 7.8-8.9		9.5								Scott and Crossman 1973 Scott and Crossman 1973

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

				Upper	Lower						Resis-		THERMAL TOLERANCES:	
ize or Age mm)	Accli- mation Temp	Accli- mation Time		Incip.	Incip. Lethal Temp	log tin a -t b a		Data L Upper	imits Lower	Expo- sure Temp	tance Time (Min)	Critical Thermal (Max)	Location	Reference
ubadult				29.4 30	0.1								Lab	Casselman 1978 Casselman 1978
	30			33 29										Spotila et al 1979 Casselman 1978
50; uvenile	25			32.25		17.306	6-0.4523	34.5	32.5	34.5	>50		Lab; Maple, Ont.	Brown 1974
50; uvenile	27.5			32.75		17.443	9-0.4490	35.0	33.0	35	60		Lab; Maple, Ont.	Brown 1974
50; uvenile	30			33.25		17.096	1-0.4319	35.5	33.5	33.5	>400	33.25	Lab; Maple, Ont.	Brown 1974
50; uvenile	2527.5									32.2- 33.2	<2000			Brown 1974
rval mbryo	17.7			28.5 18.9	5									Brown 1974 Brown 1974
mbryo ewly	17.7			16.8-20.5 25.5										Brown 1974 Brown 1974
hatched dult	25			32										Brown 1974
				35.6131.7									surface/bottom Clear L., Iowa	Brown 1974
				34 28.4										Jobling 1981 Jobling 1981
rvae venile	18 31-36.5				3							30.8		EPA 1974 Houston 1982
olk- saclarvae	14-15	24h		31								00.0		Cravens et al 1983
olk-sac arvae	17.7			24.8										Bonin and Spotila 1978
ggs, 2-4 cells				19.8										Spotila et al 1979
gs eyed	11.8			28.0 24.1										Spotila et al 1979 Spotila et al 1979
olk-sac arvae														
	6.1		su	20.6 30.8										Spotila et al 1979 Spotila et al 1979

SPECIES: Esox lucius (northern pike)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
adult larval			23	19-20 - 2 6 14-19 8-24	6			Lab Wickett L., Ont. SE L. Michigan	Casselman 1978 Casselman 1978 Casselman 1978 Brown 1974
fry			22	23-24 9.9-l 1.1 16.0	12.9			Connecticut R., Conn. (mean occurrence)	McCauley and Casselman 1980 Spotila et al 1979 Marcy 1976a

SPECIES: Esox lucius (northern pike)

Size or Age (mm)	Optimum ' C	Range	(a) M W A T	(b) ST M a x	No Grow Upper	th Limits Lower	Location	GROWTH TEMPERATURES: Reference
283-431FL	19	10-23			27.5	< 4	Lab (gain in weight)	Casselman 1978
0.0	21				28.2	4	Lab (gain in length)	Casselman 1978
2-3 yr	20.9						Lab	Casselman 1978
2-3 yr	19.8						Wickett L., Manitoulin Isl.	Casselman 1978
larval	26						Lab	Jobling 1981
lantal	40.05.0		23.1	30	00.0			This study
larval	18-25.6				23.9			Brown 1974
juvenile and subadult	19-21							McCauley and Casselman 1980
			28	30				EPA 1974
larvae	21	18-26						EPA 1974
juvenile	26							EPA 1974

⁽a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature - optimum temp for growth).

⁽b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPAWNING AND DEVELOPMENT TEMPERATURES: Season (b) and/or ST Max (c) (c) (d) Acclifor Accli-Lethal Lethal Median Median mation Optimum Temp (a) Embryo mation Limit Limit Lethal Lethal Temp Range Survival Time **Event** Temp MWAT Upper Lower ΔT Final Location Reference cold shock 218 L. Wabamun, Alta 4.9 -16.9 Casselman 1978 12 DeMontalembert et al 1978 9.4-1 4.4 Ont spawning Brown 1974 L. Simcoe Ont. Brown 1974 6 7-7 8 spawning spawning 4.4-1 1.1 Canada Scott and Crossman 1973 incubation 2.2-16.6 Wis. Lake Brown 1974 incubation 6.5-17.7 2-23 Brown 1974 cold shock 10.5 -5.5 Brown 1974 (embryo) heat shock 16 34.5 +8.5 Brown 1974 (larvae) 4.9 cold shock 21.8 -17 power plant outfall, Brown 1974 L. Wabamun, Alta. 12 19 EPA 1974 spawning 4-19 EPA 1974 incubation 12 7-19 EPA 1974 and hatch spawning <10 Niagara R. tributaries Talmage and Coutant 1979 (N.Y.) 20.8 <26.7 29.7 hatching Cravens et al 1983 24.2 hatch 6.4-17.7 5.8-21 Spotila et al 1979

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of Spawning temperatures,

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

SPECIES: Esox masquinongy (muskellunge)

Size or Age	Accli- Accli-	Upper Incip. Sea- Lethal	Lower Incip. Lethal	log time = a + b (temp)	Data I	Limits	Expo- sure	Resis- tance Time	Critical Thermal	THERMAL TOLERANCES:	
(mm)	Temp Time	son Temp	Temp	a b	Upper	Lower	Temp	(Min)	(Max)	Location	Reference
≽50; juvenile	25	32.25		18.8879-0.5035	34.5	32.5	34.5	>35		Deer Lake Hatchery. Ontario	Brown 1974
≥50; juvenile	27.5	32.75		20.0817-0.5283	35	33.0	35	>40			Brown 1974
≽50; juvenile	30.0	33.25		18.9506-0.4851	35.5	33.5	35.5	55			Brown 1974
≽50; juvenile	25-30						32.5- 33.5	500			Brown 1974
		29									Jobling 1981
		34									Jobling 1981
new hatch	7								28.8		Houston 1982
	15								31.9		Houston 1982
	25								34.5		Houston 1982
1-15d; post hatch	15								30.3-32.4		Houston 1982
25d; post swim-up	25								32.8		Houston 1982
>50 mm	25	32.5					32.5	400		Hatchery, N.Y.	Bonin and Spotila 1978

SPECIES: Esox masquinongy (muskellunge)

7 8

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
				>25.5				Stony L., Ontario	Minor and Crossman 1978
	sp/su			14				L. St. Clair	Haas 1978
small				24 25.1				Lab	Coutant 1977a Jobling 1981
200-250		D		21.9				Lab	Talmage and Coutant 1980
		D	32.2	27.3 25.6				Lab	Talmage and Coutant 1980 Scott and Crossman 1973

SPECIES: Esox masquinongy (muskellunge)

Size or Age	Optimum		(a)	(b) ST	No Growt	h limite		GROWTH TEMPERATURES:
(mm)	°C	Range	M W A T		Upper	Lower	Location	Reference
fingerling	24-26.6				>30			Jobling 1981 Carlander 1969
migering			28.4	32	- 30	10	Niagara R., N.Y.	This study Harrison and Hadley 1979

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 113 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Esox masquinongy (muskellunge)

	Season				(b)						SPAWNING AND DEVELOP	MENT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimum Temp	Temp (Range	(a) MWAT	ST Max for A	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal Δ T	(d) Median Lethal Final	Location	Reference
spawning hatching an	nd	>10									Middle Island Ck. W. Va.	Miles 1978
developme			8-19								Lab	Miles 1978
spawning			10.5-15.5								Nogies Ck., Ontario	Minor and Crossman 1978
spawning		13 16-18									Niggara D. N.V	Haas 1978
spawning spawning		10-10	9.5-15.5								Niagara R., N.Y.	Talmage and Coutant 1979 Carlander 1969
spawning		12.8	9.4-1 5									Scott and Crossman 1973
hatching			11.7-17.2									Scott and Crossman 1973
				12.2	19							This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Compostoma anomalum (stone roller)

Size or Age (mm)	Accli- mation Temp	Accli- mation Time	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log ti <u>a + b</u> a	me = b (temp) b	Data Limits ₋ Upper Lower	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	12-30		31							Lab		Cherry et al 1977

SPECIES: Compostoma anomalum (stone roller)

					Accellance	Acallactic	PREFERRED TEMPER	RATURES:	
Size or Age (mm)	Season Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
all		23.8					New R., Va.		Coutant 1977a
			26.8				Lab		Coutant 1977a
adult		33	29	24			Lab		Coutant 1977a
			28.5				Lab		Houston 1982
			26.2						Houston 1982
			19-27						Spotila et al 1979
			13.4		6		Lab		Spotila et al 1979
			15.2		9		Lab		Spotila et al 1979
			20.7		12		Lab		Spotila et al 1979
			21.7		15		Lab		Spotila et al 1979
			22.3		18		Lab		Spotila et al 1979
			23.6		21		Lab		Spotila et al 1979
			25.3		24		Lab		Spotila et al 1979
			28.6		27		Lab		Spotila et al 1979
50-100 FL		21	16.5	9	12		Lab (rising temperatu	ires)	Cherry et al 1977
50-100 FL		24	17	12	15		Lab (rising temperatu	ires)	Cherry et al 1977
50-100 FL		24	21	15	18		Lab (rising temperatu	ıres)	Cherry et al 1977
50-100 FL		27	22.4	18	21		Lab (rising temperatu	ires)	Cherry et al 1977
50-100 FL		30	25.1	21	24		Lab (rising temperatu		Cherry et al 1977
50-100 FL		33	28.2	21	27		Lab (rising temperatu		Cherry et al 1977
50-100 FL		33	27.4	21	30		Lab (rising temperatu	ıres)	Cherry et al 1977

SPECIES: Compostoma anomalum (stone roller)

(b) Size or Age Optimum (a) ST	No. Crowth Limite	GROWTH TEMPERATURES:
(2)	No Growth Limits Upper Lower Location	Reference
26.6123 27 30		Jobling 1981 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Compostoma anomalum (stone roller)

Event	Season and/or Accli- mation Temp	O p t i m u m Temp		(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING AND	DEVELOPME	NT TEMPERATURES:	
nest building spawning			12815.6 14.4-23.9								N.Y.		Brown 1974 Brown 1974	
nest building spawning spawning hatching (70l (4d) (6d))	21 24.3 17.7 13.9	12 24-27 18.3-26.7	22.5	>24.3 27						Illinois Illinois Illinois Lab (Missouri) Lab (Missouri) Lab (Missouri)		Brown 1974 Brown 1974 Brown 1974 Carlander 1969 Carmichael 1983 Carmichael 1983 Carmichael 1983 This study	

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

													THERMAL TOLERANCES:	
ze or Age nm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time a + b (a		Da <u>ta Li</u> Upper		Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
	21				2.7									Carlander 1969
	25-26			33.1										Carlander 1969
	9			28									Lab (Toronto)	Tyler 1966
	20											29	Lab (Toronto)	Tyler 1966
	6		su	21.5									Lab (Toronto)	Tyler 1966
	9.5		W	26.5									Lab (Toronto)	Tyler 1966
	10		su	30									Lab (Toronto)	Tyler 1966
	15		su	31									Lab (Toronto)	Tyler 1966
	15		W	28									Lab (Toronto)	Tyler 1966
	20		SU	31.5									Lab (Toronto)	Tyler 1966
	20		W	29.5									Lab (Toronto)	Tyler 1966
	25		Su	32.7									Lab (Toronto)	Tyler 1966
	25		W	31									Lab (Toronto)	Tyler 1966
Size or Age	Season	Day or Night		er dance	Final Prefere		ower voidan		cclimat emper	ion A ature T	.cclimation ime		erred Temperatures:	Reference
adult					25.3			6	-33					Cravens 1981
SPECIES: Ch	irosomus e	os (northe	ern red	ibelly da	ce)									
													SPAWNING AND DEVELOP	MENT TEMPERATURES:
	Season and/or Accli-	0 - 11		T	(-)	(b) ST Max for Embryo	Acc	li- L	c) .ethal .imit	(c) Lethal Limit	Median Lethal	(d) Median Lethal		
Event	mation Temp	Temp		Temp Range	(a) MWAT	Surviv			Jpper	Lower		Final	Location	Reference
Hatching														Scott and Crossman 1973
				21.1-26.7	-									

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).

(d) Simulated larval entrainment temperatures.

THERMAL TOLERANCES: Resis-Lower Upper Accli-Accli-Incip. Incip. log time = Expotance Critical Lethal Size or Age mation mation Sea- Lethal a + b (temp) Data Limits sure Time Thermal Upper Lower Temp (Min) Time son Temp Temp (mm) Temp (Max) Location Reference 20 28.5 Lab (Toronto) Tyler 1966 W 9 27 Lab (Toronto) Tyler 1966 W 28 15 Lab (Toronto) Tyler 1966 15 s u 31 Lab (Toronto) Tyler 1966 19 W 30.3 Lab (Toronto) Tyler 1966 22 32.2 Lab (Toronto) Tyler 1966 s u 25 W 31.3 Lab (Toronto) Tyler '1966 32.2 Lab (Toronto) Tyler 1966 25 su

SPECIES: Chrosomus neogaeus (finescale dace)

											SPAWNING AND DEVELOPME	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) M W A T	lb) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
Spawning		>15									French Ck., Minn.	Stasiak 1978
Hatching (6d) Spawning		20	17-22	20	22						French Ck., Minn. Lab {Minn.)	Stasiak 1978 Stasiak 1978 This Study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, fess than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

	Season				(6)						SPAWNING AND DEVEL	OPMENT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning migration		14/19									Lac Saugay, Que. (tributary/lake)	Scott and Crossman 1973
spawning		4		19							Montreal R ., Sask	This study Brown et al 1970
onset spawning spawning hatching (10d)			4-a 10 8-19								Montreal R., Sask Lac La Ronge, Sask Lab	Brown et al 1970 Brown et al 1970 Brown et al 1970

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Cyprinus carpio (carp)

Size or Age (mm)	Accli- Acc mation mat Temp Tim	tion Sea-	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	_	time = b (temp) b	Data Limits Upper Lower	Expo- sure Temp	Res tand Tim (Mir	ce ne	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	20		31-34									Lab		Spotila et al 1979
small	26		35.7								38-39			Spotila et al 1979 Spotila et al 1979
large			35-36								30-33			Spotila et al 1979
	23.3	su		0.7							39.0	Lab		Spotila et al 1979 Leidy and Jenkins 1977(a)
eggs			31-35	0.7										Brown 1974
55	26.3										40.6			Brown 1974(b)
eggs	25		35					25	1	0		Lab		Jinks et al 1981
larval	19-27		38.8									Lab		Talmage 1978 Talmage 1978
late stage embryo	16-21		36.4 40-42.5									Lab Lab		Crippen and Fahmy 1981

- (a) hybrid C. carpio x Carassius auratus
- (b) heating rate 3 c/h

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
				17		10			Spotila et al 1979
				25		15			Spotila et al 1979
				27		20			Spotila et al 1979
				31		25			Spotila et al 1979
				31		30			Spotila et al 1979
				32		35			Spotila et al 1979
				32					Spotila et al 1979
adult	SP			27.4				Lab	Spotila et al 1979
adult	su			29.7				Lab	Spotila et al 1979
large			34.5		27			Wabash R., Ind.	Coutant 1977a
large		D		29.3-31.9				L. Monona, Wis.	Coutant 1977a
large		N		28.2-30.7				L. Monona, Wis.	Coutant 1977a
γoung			35	32	28			Lab	Coutant 1977a
young		D	33.5	31.9	30			Lab	Coutant 1977a
young		N	32.3	32	29.5			Lab	Coutant 1977a
adult			>31	2 9	24				LabCoutant 1977a
				29					Jobling 1981
				25-30					Wyman 1981
	su			26-34				J.M. Stuart GS, Ohio R., Ind.	Yoder and Gammon 1976
	F			16-20				J.M. Stuart GS, Ohio R., Ind.	Yoder and Gammon 1976
	W			5-16				J.M. Stuart GS, Ohio R., Ind.	Yoder and Gammon 1976
large				20.7-24.8				Point Beach Nuclear Power Plant	Brown 1974
			>36.1					Discharge effluent, White R., Ind.	Brown 1974
			39.2	24 21.6	5.1			Connecticut R., Conn. (mean occurrence)	Talmage and Coutant 1978 Marcy 1976a

SPECIES: Cyprinus carpio (carp)

Size or Age	Optimum °C	Pango	(a) M W A T	(lb) ST	No Grow		Location	GROWTH TEMPERATURES: Reference
(mm)	°C	Range	WWAI	IVI a x	Upper	Lower	Location	кетегенсе
	27							Spotila et al 1979
	30/32							Jobling 1981
	32							Leidy and Jenkins 1977
	27							Brown 1974
	20-25							Brown 1974
	23-27				29-30	10		Brown 1974
		23-30						Cravens 1981
		11-19					Israel (winter)	Carlander 1969
early fry		14.5-18.5	5			>4.5	. ,	Carlander 1969
,,	30				>35			Talmage and Coutant 1978
			34	38				This study

⁽a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature- optimum temp for growth).

⁽b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

											SPAWNING AND DEVELOR	PMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal $\Delta \mathbf{T}$	(d) Median Lethal Final	Location	Reference
embryo larval dev. spawning		20-25	17-28		38							Spotila et al 1979 Spotila et al 1979 Scott and Crossman 1973
incubation/		19-23	16-26 17-22	21	26							EPA 1974 EPA 1974 EPA 1974
hatch spawning incubation		<22	14.525									Brown 1974 Brown 1974
heat shock heat shock, larvae	20 25						35 37-38		>+10 +13		Lab	Brown 1974 Brown 1974
heat shock, larvae							33.5				Discharge, Nuclear Plant, Conn.	Brown 1974
heat shock heat shock, larvae	28.3						33.3 36.1		+ 5 +18.1		Discharge (warmed) Lab; Simulated Entrainment	Brown 1974 Talmage and Coutant 1980
hatching heat shock,		23.4	11-32				42.5					Carlander 1969 Crippen and Fahmy 1981
eggs spawning larval dev. (5.22 mm)		27 23-24.9	22-27 13.8-26								Connecticut R., Conn. Connecticut R., Conn.	Marcy 1976b Marcy 1976b

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

SPECIES: Exoglossum maxillingua (cutlips minnow)

								PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
			18.3		ō			Heated discl	., Penn.	Brown 1974
			19.4		10			(field occur Heated disch Delaware R. (field occur	narge, ., Penn.	Brown 1974

SPECIES: Exoglossum maxillingua (cutlips minnow)

Event	Season and/or Accli- mation Temp	O p t i m u m Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	AND DEVELOPMEN	IT TEMPERATURES:	
spawning spawning		<15	17-21.5	19	21.5								Brown 1974 Brown 1974 This study	

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	. ,	lb) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING Location	AND DEVELOPME	ENT TEMPERATURES: Reference	
spawning			10-12.8	11.5	12.8								Scott and Crossman 1973 This study	_

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Hybognathus nuchalis (silvery minnow)

	Season and/or Accli- mation	Optimum	Temn	(a)	(b) ST Max for Embryo	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal		DEVELOPMENT TEMPERATURES:
Event	Temp	Temp	Range	MWAT	Survival		Upper	Lower		Final	Location	Reference
spawning			13-20.5	16.8	20.5							Scott and Crossman 1973 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) M W A T	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final		EVELOPMENT TEMPERATURES: Reference
spawning		21	18-21 t	21	21 +						Ohio	Scott and Crossman 1973 Carlander 1969 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	ld) Median Lethal Final	SPAWNING Location	AND DEVELOPM	ENT TEMPERATURES: Reference
spawning		23.9		23.9									Scott and Crossman 1973 This study
SPECIES:	Nocomis micr	ropogon (river	chub)										
											THERMAL	TOLERANCES:	

Size or Age (mm)	Accli- mation Temp		Upper Incip. Lethal Temp	Lethal	fog time = a + b (temp) a b	Data Limits Upper Lower	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	15							30.9	Lab (N.Y.)		Spotilla et al 1979

											SPAWNING	AND DEVELOPME	NT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location		Reference
spawning			19-28								Illinois		Carlander 1969
nest building nest			11.9-20.6										Brown 1974
building			19.4-27.8	23.5	28						Illinois		This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

												THERMAL TOLERANCES:	
Size or Age	mation m	ccli- ation ime		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	$\frac{\text{log time =}}{\text{a + b (temp)}}$	<u>Data</u> Upper	Limits Lower	Expo- sure T e m p	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
•											30.5	Lab	Reulter & Herdendorf 1976
adult	14.4		SP	20.2		42.7095-1.3507	30.5	29.5				Lab (Ohio, Ont., Fla.)	Brown 1974 Brown 1974
adult	10			29.3 30.5	1 E	30.2861-0.8933		31				Lab (Ohio, Ont Fla.)	
adult	15				1.5	31.0275-0.87						Lab (Ohio, Ont., Fla.)	Brown 1974
adult	20			31.8	4.0	34.2505-0.9						Lab (Ohio, Ont., Fla.)	Brown 1974
adult	25			33.2	7.0	26.3829-0.66						Lab (Ohio, Ont., Fla.)	Brown 1974
adult	30			34.7	11.2	20.3029-0.00	10 37.0	33				Lab (May 28)	Spotila et al 1979
			SP	30.3								Lab (June 17)	Spotila et al 1979
			su	31.8								Lab (June 28)	Spotila et al 1979
			su	33.5								Lab (July 8)	Spotila et al 1979
3.49 in;	22		su	33.4								Lab (July 28)	Spotila et al 1979
J. 45 III,			SU	33.2								Lab (Aug 91	Spotila et al 1979
			su	32.8								Lab (Aug 26)	Spotila et al 1979
			su	31.6								Lab (Sep 8)	Spotila et al 1979
			F	30.4								Lab (Ont)	Carlander 1969
	17.1-17.5			31-31.6								Lab (Ont.)	Carlander 1969
	21				3.4							Lab (Ont.)	Carlander 1969
	22.8			32.7	3.4							Lab (Ont)	Carlander 1969
	25-26			33.2								Field	Carlander 1969
	23-20			27-35									Brown 1974
											39.5	Lab	Brown 1014
70-80;	22											(temp incr 0.75C/d)	Brown 1974
											40	Lab	Blown 1374
	22											(temp incr 0.75C/d)	Brown 1974
				26.7								Lab	Brown 1974
	0			26.7						35	100	Lab	610WII 1974
	25			35								(Algonquin Pk., Ont.)	D
										30.5	30	Lab	Brown 1974
	10											(Algonquin Pk., Ont.)	
										32.5	15	Lab	Brown 1974
	15											(Algonquin Pk., Ont.)	
										35	>1000	Lab	Brown 1974
	30											(Algonquin Pk., Ont.)	
										33	800	Lab	Brown 1974
	20											(Algonquin Pk., Ont.)	
												Heated discharge,	Brown 1974
	25-26.1			36								Delaware R Penn.	
												Michigan lake	Brown 1974
				38								mortality	
											40	ortanty	Leidy and Jenkins 1977
											40 33		Hutchison 1976
	10										33		Hutchison 1976
											35		Hutchison 1976
	15										36		Hutchison 1976
	20										38		Hutchison 1976
	25										39		Beltz et al 1974
	30			40									
	22			70									

Size or Age (mm)	Season	Day or Night		Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
adult	W SP su F		>30	16.8 23.7 22.3 21.0				Lab	Reutter and Herdendorf 1976 Reutter and Herdendorf 1976 Reutter and Herdendorf 1976 Reutter and Herdendorf 1976 Carlander 1969
			>32.2					Heated discharge, Delaware Ft., Penn.	Brown 1974
			>37.2	23.9-28.9				Heated discharge, Delaware R., Penn.	Brown 1974
			>35					Heated discharge, Delaware R., Penn.	Brown 1974
			40	24	6.7			Heated discharge, Connecticut R., Conn	Marcy 1976a

SPECIES: Notemigonus crysoleucas (golden shiner)

											SPAWNING AND DEVELOPME	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning		20										Scott and Crossman 1973
spawning		20-21									N.Y. ponds	Carlander 1969
hatching												
(1st)		20									Ponds, Alab.	Carlander 1969
			15 6 01				>33-35				Field	Carlander 1969
spawning			15.6-21									Brown 1974
hatching (4d) heat shock		15.6+										Brown 1974
(1.5-4.5 in) heat shock	15.6								+11.1		Lab (spring)	Brown 1974
(1.5-4.5 in)	15.6								+21.7		Lab (winter 5% mortality)	Brown 1974
spawning	10.0	<27									Lab (gonad regression)	Talmage and Coutant 1978
opaiiig				20	25						.5 0 /	This study

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

SPECIES: Notropis anogenus (pugnose shiner)

		15-18		Rondeau Harbour, L. Erie	McAllister et al 1385
Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
				PREFERRED TEMPERATURES:	

SPECIES: Notropis atherinoides (emerald shiner)

													THERMAL TOLERANCES:	
Size or Age (mm)	mation	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log tim a <u>+ b (t</u> a			<u>imits</u> er Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
	7.8		SP									28.6	Lab	Reutter and Herdendorf 1376
0-1.9 g;			٥.											
juvenile														
, (<1 yr)	5			23.3		20.353	2-0.795	9					Lab (Chippewa Ck, Ont.)	Brown 1374
	10			26.7		36.502	3-1.273	6					Lab (Chippewa Ck, Ont.)	Brown 1374
	15			28.9	1.6	47.4849	-1.5441						Lab (Chippewa Ck, Ont.)	Brown 1374
	20			30.7	5.2	33.471	4-0.985	8					Lab (Chippewa Ck, Ont.)	Brown 1974
	25			30.7	8.0	26.703	6-0.733	7					Lab (Chippewa Ck, Ont.)	Brown 1374
												34.3	Lab	Ellis 1384
				35.2									Lab	Ellis 1384
	20									32	60		Lab	Ellis 1384
	5			23									Lab	Carlander 1369
	10			27									Lab	Carlander 1963
	15			28.9	1.6								Lab	Carlander 1963
	20			31	5-5.2								Lab	Carlander 1363
												30.7	(ultimate upper lethal)	Carlander 1369
	20									33	30			Ellis 1984
	25									34	35			Brown 1374
				27-28										Brown 1374
	5									24	175			Brown 1974
	10									27	150			Brown 1974
	15									29.5	70			Brown 1374
YOY				35.2								34.3		Talmage 1378
	20-25			32.6										Talmage 1978

SPECIES: Notropis atherinoides ([emerald shiner)

								PREFERRED	TEMPERATURES:			
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference		
adult	w			8.3				Lab		Reutter and	Herdendorf	1976
YOY	W			10-12				Lab		Reutter and	Herdendorf	1976
YOY	SP			13-15				Lab		Reutter and	Herdendorf	1976
YOY	su			22-23				Lab		Reutter and	Herdendorf	1976
YOY	F			13-14				Lab		Reutter and	Herdendorf	1976
adult	W			5-6				Lab		Reutter and	Herdendorf	1976
	SP			16				Lab		Reutter and	Herdendorf	1976
	SU			22-24				Lab		Reutter and	Herdendorf	1976
	F			15-17				Lab		Reutter and	Herdendorf	1976
			>28-30							Spotila et al	1979	
			>31.1					White R., Ind. heated disc		Brown 1974		
			42		6			Field occurre	ence	Ellis 1984		
				27.8125.1						Jobling 1981		
				25				L. Simcoe, O	nt.	Brown 1974		
	su			25				L. Simcoe, O	nt.	EPA 1974		
	W			27				Ohio R.		EPA 1974		

SPECIES: Notropis atherinoides (emerald shiner)

Size or Age (mm)	Optimum "C	Range	(a) M W A T	(b) ST Max	No Growth Upper	Limits Lower	Location	GROWTH TEMPERATURES: Reference
	24-28.9 27							Spotila et al 1979 Jobling 1981
YOY juvenile	29	24-31	20	24		21	L. Erie	Carlander 1969 Brown 1974
YOY	28.9	19-29	30	31	29	<19	Lab (Minn.)	EPA 1974 Talmage 1978

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

											SPAWNING AND DEVELOP	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
spawning		24										Scott and Crossman 1973
spawning			20-27									Brown 1974
hatch (24h)		23.9			07						L. Erie	Brown 1974
	40			23	27			0	-12.5		Lab	EPA 1974 Edsall and Yocum 1972
cold shock	13 15							1.7	- 12.5		Lab	Edsall and Yocum 1972
cold shock	20							5	- 15.5		Lab	Edsall and Yocum 1972
cold shock	25							7.6	-17.5		Lab	Edsall and Yocum 1972
SPECIES:	Notropis bifre	natus (bridle	shiner)									
	Season				(b)						SPAWNING AND DEVELOP	MENT TEMPERATURES:
	and/or				(b) ST Max		(c)	(c)		(d)		
	Accli-				for	Accli-	Lethal	Lethal	Median	Median		
	mation	Optimum	Temp	(a)	Embryo	mation	Limit	Limit	Lethal	Lethal		
Event	Temp	Temp	Range	MWAT	Survival	Time	Upper	Lower	АТ	Final	Location	Reference
spawning			14-27								N.H.	Carlander 1969
spawiiiig					27							

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

SPECIES: Notropis cornutus (common shiner)

Size or Age (mm)	Accli- Accli- mation mation Temp. Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	$\frac{\text{log time =}}{\text{a + b (temp)}}$	Data L Upper	imits Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
4.46 in; adult	15 15 5 10 15 20 25 25-26 10	W SP	32 26.7-27 28.6-29 30.3 31-32.3 33.5 32 29 30.5	0 3.7-4 7.8	45.4331-1.3979		29 31	29 31.5	50 28	30.6 31.9	Lab (Dec 15) Lab (Mar 15) Lab (Toronto, Ont.) Lab (Toronto, Ont.)	Spotila et al 1979 Kowalski et al 1978 Kowalski et al 1978 Carlander 1969 Carlander 1969 Carlander 1969 Carlander 1969 Carlander 1969 Carlander 1969 Brown 1974 Brown 1974
4-5 g; adult (2 yr)	20 25 25 30 5 10 15 20 25 7.2	w F	31 31 31 31 26.7 28.6 30.3 31 31 30.6 31.1	3.7 7.8	34.5324-1.0116 24.9620-0.6878 28.5059-0.7741 28.1261-0.7316 40.7738-1.3522 45.0972-1.3874 34.5324-1.0116 24.9620-0.6878	34 35.5 36.5 30 32 33	31.5 32 32 34 29 31 31.5 32	33 34 35.5 36.5	17 35 15 20 5000	31	Lab (Toronto, Ont.) Lab (Toronto, Ont.) Lab (Toronto, Ont.) Lab (Toronto, Ont.1 Lab (Don R., Ont.) Delaware R., Penn. Delaware R., Penn.	Brown 1974

											SPAWNING AND DEVELO	OPMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optim (Temp	um Te Range	m p (a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median L e t h Final	a I Location	Reference
spawning spawning spawning spawning initial			15.6-18.3 28.3 19-21-k 15-25.5	;							Ithaca. N.Y. L. Erie tributary	Scott and Crossman 1973 Scott and Crossman 1973 Carlander 1969 Brown 1974
spawning spawning spawning initial		20	13-15.6 18.9-21.1 <28								Cayuga L., N.Y. Big Sandy L., Minn.	Brown 1974 Brown 1974 Brown 1974
spawning spawning		17.8	18	20	28						S. Michigan Central N.Y.	Brown 1974 Brown 1974 This study
inshore migration spawning			12-l 5.5 13.5-18							,		Dodson and Young 1917 Dodson and Young 1977

- (a) MWAT= maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Notropis heterodon (black chin shiner)

											THERMAL TOLERANCES:	
			Upper	Lower					Resis-			
	Accli-	Accli-	Incip.	Incip.	log tir	me =		Expo-	tance	Critical		
ze or Age	mation	mation	Sea- Lethal	Lethal	a + b	(temp)	Data Limits	sure	Time	Thermal		
nm)	Temp	Time	son Temp	Temp	а	b	Upper Lower	Temp	(Min)	(Max)	Location	Reference

												THERMAL TOLERANCES:	
Size or Age	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log ti <u>a + b (</u> a	Data L Upper	imits Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
adult	21.7		su	>35							32.8	Lab Field (active)	Reutter and Herdendorf 1976 Carlander 1969
	7.2		W	30.6								Lab (0.6-1.1C/h)	Brown 1974
13-36;	11.1			31.1								Lab (0.6-1.1C/h)	Brown 1974
juvenile	23			37.3					37.3	5		Lab	Jinks et al 1981
13-36;				00					00			Lab	Enter of al 4004
juvenile 13-36;	23			36					36	10		Lab	Jinks et al 1981
juvenile 13-36;	23			36					36	30		Lab	Jinks et al 1981
juvenile	26			38.1					38.1	5		Lab	Jinks et al 1981
13-36;													
juvenile	26			37.9					37.9	10		Lab	Jinks et al 1981
13-36; juvenile	26			36.8					36.8	30		Lab	Jinks et al 1981
20-65; YOY	9			30.5					30.5	60		Lab	Jinks et al 1981
20-65; YOY	17			32.4					32.4	60		Lab	Jinks et al 1981
20-65; YOY	23-24			34.3					34.3	60		Lab	Jinks et al 1981
20-65; YOY	26			35.8					35.8	60		Lab	Jinks et al 1981
21; young	26			34.7							33-34	Lab	Kellogg and Gift 1983

SPECIES: Notropis hudsonius (spottail shiner)

								PREFERRED TEMPERATURES:	
Size or Age	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
()		D		>13 II-16				L. Michigan L. Michigan L. Michigan	Brandt et al 1980 Brandt et al 1980 Brandt et al 1980 Reutter and Herdendorf 1976
adult	w SP	D/N	>22	17-20 9 14.3 14	13			Lab Lab L. Michigan Delaware R., Penn.	Reutter and Herdendorf 1976 Spotila et al 1979 Coutant 1977a Brown 1974
large 110-116; adult	SU		>35	13.9		15		(6% salinity) estuary heated discharge into Delaware R., Penn.	Brown 1974 Brown 1974 Houston 1982
adult	W F	D N		10.2 17-20 19-20 17-18	15 11			L. Michigan L. Michigan L. Michigan	Talmage and Coutant 1980 Crowder et al 1981 Crowder et al 1981
24.4 TL;	г			28.5		25		Lab (N.Y.)	Kellogg and Gift 1983
young 22.9 TL;				29.9		25		Lab (N.Y.)	Kellogg and Gift 1983
young 21-30 TL; young			39.2	29 20.1	5.1			Lab (N.Y.) Heated discharge into Connecticut R., Conn.	Kellogg and Gift 1983 Marcy 1976a

SPECIES: Notropis hudsonius (spottail shiner)

Size or Age (mm)	Optimum "C	Range	(a) M W A T	(b) ST Max	No Growth Upper	Limits Lower	Location	GROWTH TEMPERATURES: Reference
Young						18	L. Erie	Carlander 1969
					>35		Delaware R., Penn.	Brown 1974
YOY						10	Lower Red L., Minn.	Brown 1974
Young	27.3	22.8-32.7	7		34	<20	Lab (N.Y.)	Kellogg and Gift 1983
			30	32.7				This study
	>26						Clear L., Iowa	Prince and Mengel 1981

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth)
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Notropis hudsonius (spottail shiner)

	Season				(b)						SPAWNING AND DEVELO	PMENT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	ST Max for	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal Δ T	(d) Median Lethal Final	Location	Reference
spawning hatching		20 20									L. Erie L. Erie	Carlander 1969 Brown <i>1974</i>
cold shock	21.8							4.9	-16.9		L. Wabamun, Alta. (30 min delta -T)	Coutant 1977b
spawning		18C	15-20								L. Michigan tributary Great Lakes	Mansfield 1984 Mansfield 1984
heat shock							28				Connecticut R., Conn. Nuclear GS	Talmage 1978
				17.5	20							This study.

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	•	ime = o (temp) b	<u>Data Li</u> Upper		Exposure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL Location	TOLERANCES:	Reference
	12-23			33									Lab		Cherry et al 1977
SPECIES: Not	ropis rube	llus (rosy	face s	hiner)											
												PREF	ERRED TEN	MPERATURES:	
Size or Age (mm)	Season	Day or Night		er dance	Final Prefere	ndum	Lower Avoidan		cclimat		Acclimatior Fime	n Locat	ion		Reference
adult adult			31		26.8 27.6		21					Lab			Coutant 1977a Houston 1982
50-100 FL;			21		20.8		9	1	2			Lab	(rising water	temperatures)	Cherry et al 1977
adult 50-100 FL; adult			24		21.7		12	1	5			Lab	rising water	temperatures)	Cherry et al 1977
50-100 FL; adult			21		22.2		15	1	8			Lab	(rising water	temperatures)	Cherry et at 1977
50-100 FL; adult			27		22.5		15	2	11			Lab	(rising water	temperatures)	Cherry et at 1977
50-100 FL; adult			27		25.8		21	2	24			Lab	(rising water	temperatures)	Cherry et al 1977
50-100 FL; adult			33		28.1		21	2	27			Lab	(rising water	temperatures)	Cherry et al 1977
50-100 FL;			33		28.0		21	3	80			Lab	(rising water	temperatures)	Cherry et al 1977
adult 50-100 FL; adult			34		27.7		24	3	3			Lab	(rising water	temperatures)	Cherry et al 1977
50-100 FL; adult					26							Lab	(rising water	temperatures)	Cherry et al 1977
SPECIES: No	tropis rube	ellus (rosy	yface s	shiner)											
					b)								GROW	/TH TEMPERATU	RES:
Size or Age (mm)	Optimu "C			a) S MWAT N		lo Gro [.] Jpper	wth Limits Lowe		cation				Refere	ence	

25.7/25.3 Jobling 1981

⁽a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature -optimum temp for growth).

⁽b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPAWNING AND DEVELOPMENT TEMPERATURES:

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp (a) Range MWA ⁻	Embryo	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit L o w e r	Median Lethal Δ T	(d) Median Lethal Final	Location	Reference
spawning spawning			26.1-28.9 20-22.2							N.Y. Penn.	Scott and Crossman 1973 Scott and Crossman 1973
hatching (59h) spawning spawning		21.1 >21.1 >20	24.5	28						Penn. N.Y.	Scott and Crossman 1973 Carlander 1969 Brown 1974 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Notropis spilopterus (spotfin shiner)

ize or Age mm)	Accli- mation Temp	Accli- mation Time	Sea-	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log tin a + b a	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
					·							

SPECIES: Notropis spilopterus (spotfin shiner)

						PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
adult		35	29.5	26		Lab	Coutant 1977a
adult			29.4			Lab	Jobling 1981
		>31.1				White R., heated discharge, Ind.	Brown 1974
50-100 FL;						32,	
adult		27	21.4	9	12	Lab (rising water temperatures)	Cherry et al 1977
		24	21.8	12	15	Lab (rising water temperatures)	Cherry et al 1977
		27	24.1	15	18	Lab (rising water temperatures)	Cherry et al 1977
		27	26.4	18	21	Lab (rising water temperatures)	Cherry et al 1977
		30	27.3	21	24	Lab (rising water temperatures)	Cherry et al 1977
		33	30.6	21	27	Lab (rising water temperatures)	Cherry et al 1977
		36	31.8	24	30	Lab (rising water temperatures)	Cherry et al 1977
		36	31	24	33	Lab (rising water temperatures)	Cherry et al 1977
		38	29.2 31	27	36	Lab Irking water temperatures)	Cherry et al 1977

SPECIES: Notropis spilopterus (spotfin shiner)

Size or Age	Optimum		la)	(b) ST	No Growth	ı Limits		GROWTH TEMPERATURES:	
(mm)	°C	Range	MWAT	Мах	Upper	Lower	Location	Reference	
	28.6/29.2		31.3	35				Jobling 1981 This study	

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature -optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal Δ T	(4) Median Lethal Final	SPAWNING Location	AND DEVELOPMEN	NT TEMPERATURES:	
heat shock							>33	<22	>11 <11		Lab Lab		Talmage 1978 Talmage 1978	

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Notropis stramineus (sand shiner)

Size or Age	mation n	Upper Accli- Incip. mation Sea- Lethal Time son Temp	Lower Incip. log time = Lethal <u>a + b (temp)</u> Data Limit Temp a b Upper Low	 Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
	15 15 15	w w SP			32.3 32.3 33.0	Lab (Dec 15) N.Y. Lab (Jan 15) N.Y. Lab (Mar 15) N.Y.	Kowalski et al 1978 Kowalski et al 1978 Kowalski et al 1978

SPECIES: Pimephales notatus (bluntnose minnow)

												THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data L Upper	Limits Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
adult	6.0 15		SP								27.8 31.9 34.8	Lab Lab (N.Y.) Lab (1C/h)	Reutter and Herdendorf 1976 Spotila et al 1979 Spotila et al 1979
0-2 g;	12-30			32								Lab	Cherry et al 1977
adult (1 yr)	5			26		24.6417-0.860	2 27	26.5	27	25		Etobicoke Ck., Ont.	Brown 1974
0-2 g; adult (1 yr)	10			28.3		55.8357-1.858	8 29.5	29	29.5	10		Etobicoke Ck Ont.	Brown 1974
0-2 g; adult (1 yr)	15			30.6	10	28.0377-0.833	7 32	32	32	20		Etobicoke Ck., Ont.	Brown 1974
0-2 g; adult (1 yr) o-2 g;	20			31.7	4.2	34.3240-0.9688	2 34	32.5	34	15		Etobicoke Ck., Ont.	Brown 1974
adult (1 yr)	25			33.3	7.5	50.8212-1.418	35	34	35 38	21 >120		Etobicoke Ck., Ont. S. Michigan pond	Brown 1974 Brown 1974
17-23; young adult				38								S. Michigan pond (one fish)	Brown 1974

SPECIES: Pimephales notatus (bluntnose minnow)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
				23-29.5				Field	Spotila et al 1979
				15.7		6		Lab	Spotila et al 1979
				17.2		9		Lab	Spotila et al 1979
				20.5		12		Lab	Spotila et al 1979
				20.4		15		Lab	Spotila et al 1979
				21.5		18		Lab	Spotila et al 1979
				22.8		21		Lab	Spotila et al 1979
				25.7		24		Lab	Spotila et al 1979
				28.9		27		Lab	Spotila et al 1979
adult			31	29	21			Lab	Coutant 1977a
			>31.1					(max temp of occurrence	Brown 1974
								in field) discharge	
								White R., Ind.	
				28.4				Lab	Houston 1982
				28.1				Lab	Houston 1982
50-100 FL;			21	19.3	9	12		Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;			24	20.9	12	15		Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;			27	21.9	15	18		Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;			27	23.2	18	21		Lab (rising water temperatures)	Cherry et al 1977
50-100 FL:			27	26.4	21	24		Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;			30	27.9	21	27		Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;			33	29 28.1	24	30		Lab (rising water temperatures)	Cherry et al 1977

SPECIES: Pimephales notatus (bluntnose minnow)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range			Upper	Lower	Location	Reference
	27.2124							Jobling 1981
	27.2121		27.9	31				This study

⁽a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature - optimum temp for growth).

⁽b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

											SPAWNING AND DEVELOP	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(4) Median L e t h Final	a I Location	Reference
spawning spawning			≥20 21.1-26.1								Illinois	Scott and Crossman 1973 Carlander 1969
spawning spawning			>21 19-31								Michigan Outdoor spawning pools, Penn.	Carlander 1969 Gale 1983
				25	31						i Gilli.	This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperaturesas defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

													THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		al	Lower Incip. Lethal Temp	٠,	time = b (temp) b		Limits r Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
			33.2											Jobling 1981
	10		28											Carlander 1969
	20		31.7		2									Carlander 1969
	21				21									Carlander 1969
	25-6		32.3											Carlander 1969
	30		33		10.5									Carlander 1969
2-3.9 g;														
adult (1 yr)	10		28.2			60.77	782-2.000	30	29.5				Don R., Thornhill, Ont.	Brown 1974
	20		31.7			6.99	970-0.1560	33	28.5				Don R., Thornhill, Ont.	Brown 1974
	30		33.2			41.36	696-1.131	7 36	34				Don R., Thornhill, Ont.	Brown 1974
larval	21		-	3	4					34	>5760	33-34	Lab Lab	Jinks et al 1981 Madness & Hutchison 1980

SPECIES: Pimephales promelas (fathead minnow)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
				28.5				Lab	Coutant 1977a
adult			32	29	25			Lab	Coutant 1977a
<74;			28	23.4				Lab	Coutant 1977a
50-100FL;				26.6				Lab	Jobling 1981
50-100FL			18	19.5	9	12		Lab (rising temperatures)	Cherry et al 1977
50-100FL			24	21.2	12	15		Lab (rising temperatures)	Cherry et al 1977
50.100FL			24	20.9	15	18		Lab (rising temperatures)	Cherry et al 1977
50.100FL			27	22	15	21		Lab (rising temperatures)	Cherry et al 1977
50.100FL			30	25.4	21	24		Lab (rising temperatures)	Cherry et al 1977
50-100FL			33	27.6	21	27		Lab (rising temperatures)	Cherry et al 1977
50-100FL			32	28.7	24	30		Lab (rising temperatures)	Cherry et al 1977
50-100FL				22.6				Lab	Beltz et al 1974

Size or Age	Optimum		(a)	(b) ST	No Growt	h Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	MWAT	Мах	Upper	Lower	Location	Reference
	26/25.5					<2-7	experiment Alabama (winter)	Jobling 1981 Carlander 1969
			28	33	32			Beltz et al 1974 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Pimephales promelas (fathead minnow)

	Season				(b)						SPAWNING AND DEVELOPME	NT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
spawning			15.6-17.8								Lake, Que. (minimum temp)	Scott and Crossman 1973
hatching (5d) spawning		25										Scott and Crossman 1973
onset spawning	SP	15.6										Carlander 1969
cessation spawning		>27	15.6-18.4									Carlander 1969 Carlander 1969
spawning	Su		15.6-28.9								Outdoor exptal pool, Penn.	Gale and Buynak 1982
spawning		<23.5	<32	23	28						Lab	Beltz et al 1974 This study

- (a) MWAT maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

											THERMAL TOLERANCES:	
Size or Age (mm)	Accli- Accli- mation matio Temp Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log tin a + b a	me = (temp) b	Data Limits Upper Lowe	Expo- sure r Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
	_		05									Onderster 4000
	5		25 27									Carlander 1969 Carlander 1969
	10		29.3	1								Carlander 1969 Carlander 1969
adult	20 5		29.3 27	1								Cariander 1909
adult	15		29.3		19 81	58-0 57	71 31.5 30				Lab (Toronto, Ont.)	Brown 1974
adult	20		29.3				061 33 30				Lab (Toronto, Ont.)	Brown 1974
adult	25		29.3				389 35 32				Lab (Toronto, Ont.)	Brown <i>1974</i>
Z-3.9; adult 5			26.5				59 27.5 27				Lab (Don. R., Ont.)	Brown 1974
2-3.9; adult	10		28.8		49.146	9-1.6021	I 30.5 29.5				Lab (Don. R., Ont.)	Brown 1974
2-3.9; adult	15		29.6		19.69	75-0.57	34 31.5 30				Lab (Don. R., Ont.)	Brown 1974
2-3.9; adult	20		29.3	2.2	26.595	2-0.7719	9 33.5 29.5				Lab (Don. R., Ont.)	Brown 1974
2-3.9; adult	25		29.3	5	23.57	65-0.6	629 34 30			29.5	Lab (Don. R., Ont.)	Brown 1974
	5	W						27	50		Lab (Toronto, Ont.)	Brown 1974
	10	W						30	40		Lab (Toronto, Ont.)	Brown 1974
	15	W						31.5	50		Lab (Toronto, Ont.)	Brown 1974
	20	W						33	20		Lab (Toronto, Ont.)	Brown 1974
	25	W						34	20		Lab (Toronto, Ont.)	Brown 1974
	28	W						35.5	15		Lab (Toronto, Ont.)	Brown 1974
	7.2		31.7								Lab (2 F/h) Penn.	Brown 1974
adult										29.3		Houston 1982
	20		29.9								Lab (16 h day/8 h night)	Houston 1982
	20		28.8								Lab (8 h day/l6 h night)	Houston 1982
	20		30								Lab (24 h day/O h night)	Houston 1982
										31.9		

Event	Season and/or Accli- mation Temp	O p t i m u m Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING AND DEVELOPI	MENT TEMPERATURES: Reference
spawning		21.1									Upstate N.Y.	Scott and Crossman 1973
spawning			16-22.2								M/ M-	Brown 1974
spawning spawning		22.2	15.6-17.8								W. Va. N.Y.	Brown 1974
				21	22.2							This study
spawning onset		19									Mink R.; Valley R., Man.	Bartnik 1970

- (a) MWAT maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Rhinichthys cataractae (longnose dace)

	Accli-	Accli-	Upper Incip.	Lower Incip.	log time =		Expo-	Resis- tance	Critical	THERMAL TOLERANCES:	
Size or Age (mm)	mation Temp	mation Sea- Time son	Lethal Temp	Lethal Temp	a + b (temp) a b	Data Limits Upper Lower	sure Temp	Time (Min)	Thermal (Max)	Location	Reference
	15								31.4	Lab (N.Y.)	Spotila et al 1979

SPECIES: Rhinichthys cataractae (longnose dace)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
	W			10-19.7				heated discharge into	Brown 1974
5-1 34;	S	Р		8-14	5.2			Delaware R., Penn. L. Michigan	Brazo et al 1978
1-104;	su			10-22.7				(nearshore occurrence) L. Michigan (nearshore occurrence)	Brazo et al 1978
2-116;	F			7.2-14.7				L. Michigan (nearshore occurrence)	Brazo et al 1978

				(b)				GROWTH TEMPERATURES:
Size or Age (mm)	Optimum ° C	Range	(a) M W A T	ST Max	No Growth Upper	Limits Lower	Location	Reference
						(1.2	L. Michigan (fall nearshore last occurrence)	Brazo et al 1978

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Rhinichthys cataractae (longnose dace)

Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(4) Median Lethal Final	SPAWNING AND DEVELOPME	ENT TEMPERATURES: Reference
spawning		11.7									Nicola R., B.C.	Scott and Crossman 1973
hatching (7-10d) spawning		15.6									Manitoba	Scott and Crossman 1973
migration spawning spawning	Sp	> 8 15	14-19	15	20						L. Michigan L. Michigan L. Winnipeg	Brazo et al <i>1978</i> Brazo et al <i>1978</i> Brazo et al 1978 This study
spawning			15.5-20	10	20						L. Winnipeg	Gee and Machniak 1972

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

		_		-	_		_			-	_	THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal T e m	log time = a 4 b (tar	np) D <u>a</u>	ata Limits oper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
	5			24.7									Carlander 1969
	10			27									Carlander 1969
	17.1- 17.5			30.1-30.5	5								Carlander 1969
	20			30	1.0								Carlander 1969
	21-21.9			31.8	1.7								Carlander 1969
	22.8			32.1									Carlander 1969
	25-26			32.6									Carlander 1969
2-3.9 g;													
adult	5			24.7		42.1859-1.	6021 26	25			30.3	Don Ft., Thornhill, Ont.	Brown 1974
	10			27.3		31.0755-1.	0414 29	28				Don R., Thornhill, Ont.	Brown 1974
	15			29.3		20.8055-0.	6226 31	30				Don R., Thornhill, Ont.	Brown 1974
20				30.3	0.7	21.0274-0.	5933 33	.5 30.5				Don R., Thornhill, Ont.	Brown 1974
	25			30.3	4.5	16.8951-0.	4499 35	31				Don R., Thornhill, Ont.	Brown 1974
	10			27.5			29	28	29	55	31.5	Toronto, Ont.; Knoxville, Tenn.	Brown 1974
	15			29		20.8055-0.	6226 31	30	31	35		Toronto, Ont.; Knoxville, Tenn.	Brown 1974
	20			30.5		19.1315-0.	5328 33	30.5	33	30		Toronto, Ont.; Knoxville, Tenn.	Brown 1974
	25			31.5		19.3186-0.	4717 36	32	35.5	50		Toronto, Ont.; Knoxville, Tenn.	Brown 1974
	30			31.5		22.8982-0.	5844 37	33	37	20		Toronto, Ont.; Knoxville. Tenn.	Brown 1974
	7.2			31.1								Lab (Delaware R; 2F/h)	Brown 1974
				01.1							32.3	Lab (Savannah R., 4C/h)	McFarlane et al 1976
SPECIES: Se	motilus atro	omaculatı	ıs (cre	ek chub)									
												SPAWNING AND DEVELOPM	MENT TEMPERATURES:
	Season and/or Accli- mation	Optim	um	Temp (a)	(b) ST Max for Embryo	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal		
Event	Temp	Temp			MWAT	Survival		Upper	Lower		Final	Location	Reference
spawning onset spawning		12.8		12.8-26.7							Ŋ.A.	Illinois a n i t o b a	Scott and Crossman 1973 Brown 1974 Brown 1974
spawning		>14			19.8	27					IVI	απιτουα	This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum. or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age	Season	Day or	Upper	Final	Lov	wer	Acclima	tion A	cclimation		ERRED TEMPERATURE	ES:
mm)		Night	Avoidance	Prefere		oidance		ature Ti		Loca	tion	Reference
			28							Easte	rn U.S.	Scott and Crossman 1973
SPECIES: Se	emotilus cor	poralis (fa	ll fish)									
											SPAWNING AND DEV	/ELOPMENT TEMPERATURES:
	Season and/or Accli-				(b) ST Max for	Accli-	(c) Lethal	(c) Lethal		(d) Median		
Event	mation Temp	Optimi Temp	um Temp Range	(a) MWAT	Embryo Survival	mation Time	Limit Upper	Limit Lower	Lethal A T	Lethal Final	Location	Reference
nest building		12									Brome L., Que.	Scott and Crossman 1973
spawning		16.6		16.6	28						Brome L., Que.	Scott and Crossman 1973 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Semotilus margarita (pearl dace)

	Season				(b)						SPAWNING AND DEVEL	OPMENT TEMPERATURES:
Event	and/or Accli- mation Temp	O p t i m u m Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(4) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning spawning		17.2 18.3		17.2	>18.3						Pentwater R., Mich. Pine Ck., Mich.	Scott and Crossman 1983 Scott and Crossman 1983 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

								THERMAL TOLERANCES:	
Size or Age (mm)		Upper Incip. Sea- Lethal son Temp	Lower Incip. Lethal Temp	log time - a + b (temp) E a b	Expo- D <u>ata Limits</u> sure Upper Lower Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
	5-30 5-40	38.6 40 29-38.6 29.9-41					36.6		Jobing 1981 Jobing 1981 Spotila et al 1979 Spotila et al 1979
Juvenile	23.9 19 24 38		1.0 5.0 15.5				>35	Lab	Reutter and Herdendorf 1976 Houston 1982 Houston 1982 Houston 1982
	I-2 9.3	28 F					41 >25.3	Lab	Houston 1982 Reutter and Herdendorf 1976(a)
	10 35 32 38	40.5	0	20.0213-0.4523 21.9234-0.4773					Leidy and Jenkins 1977 Leidy and Jenkins 1977 Brown 1974 Brown 1974
larval	21-23	39.3 38.5 37.5						Lab Lab Lab	Jinks et al 1981 Jinks et al 1981 Jinks et al 1981
	25 5						37.6 32	Lab Lab	Talmage and Countant 1979 Talmage and Countant 1979

(a) hybrid C. carpio x Carassius auratus

SPECIES: Carassius auratus (goldfish)

								PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
small			33	30				Lab		Coutant 1977a
small				28.1				Lab		Coutant 1977a
dult	w			24.2				Lab		Coutant 1977a
dult	SP			25.3				Lab		Coutant 1977a
dult	su			27.0				Lab		Coutant 1977a
dult	F			24.0				Lab		Coutant 1977a
nedium				27.9				Lab		Coutant 1977a
				29.7			26-30	Lab		Talmage and Coutant 1979
0-100 mm				19.2			15			Talmage and Coutant 1980
				26			25			Talmage and Coutant 1980
				28						Talmage and Coutant 1980

SPECIES: Carassiusauratus (goldfish)

Size or Age	Ontimum		(0)	(b) ST	No Growth	Limite		GROWTH TEMPERATURE	ES:
Size or Age (mm)	Optimum ° C	Range	(a) M W A T		Upper	Lower	Location	Reference	
Juvenile	25 28.1		30.4	32				Jobing 1981 Leidy and Jenkins 1977 This study	

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Carassius auratus (goldfish)

											SPAWNING AND DEVELOP	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(4) Lethal Limit Lower	Median Lethal Δ T	(d) Median Lethal Final	Location	Reference
incubation spawning 1st hatching spawning			18.5-29.5 18.4-24.9 15.5-18.4 17-24		29.5							Scott and Crossman 1973 Scott and Crossman 1973 Carlander 1969 Talmage and Coutant 1978 This Study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Upper Accli- Accli- Incip. mation mation Sea- Lethal Temp Time son Temp	 Expo- Data Limits sure	Resistance Critical Time Thermal (Min) (Max)	THERMAL TOLERANCES:	Reference
	23.3		37.2	Lab	Spotila et al 1979

SPECIES: Carpoides cyprinus (quillback)

							PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
adult large	F	34.5	22.1	27.0			Lab Wabash, R., Ind.	Coutant 1977a Coutant 1977a
90	su	·	26.32				J.M. Stuart, GS, Ohio R., Ind.	Yoder and Gammon 1976
	W		10-16				J.M. Stuart, GS, Ohio R., Ind.	Yoder and Gammon 1976

SPECIES: Carpoides cyprinus (quillback)

											SPAWNING AND DEVELOPM	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit L o w e r	Lethal	(d) Median Lethal Final	Location	Reference
spawning			19-28	23.5	28						Four Mile Ck., Ohio	Talmage 1978 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperaturesas defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli- mation mation Sea- Temp Time son	Incip. Inc Lethal Let	 Expo- <u>Data Limits</u> sure <u>Upper Lower Temp</u>	Resistance Critical Time Thermal (Min) (Max)	THERMAL TOLERANCES:	Reference
44 9; 44 9;	14 11.5	26.5 27				Scott and Crossman 1973 Carlander 1969

SPECIES: Catostomus catostomus (longnose sucker)

Size or Age	Season	Day or	Upper	Final	Lower	Acclimation	Acclimation	PREFERRED	TEMPERATURES:	
(mm)		Night	Avoidance	Preferendum	Avoidance	Temperature	Time	Location		Reference
				11-11.6				Moosehead L	, Me.	Coutant 1977a
				8-17 8				Pt. Beach, L. Escanaba, L.	· ·	Michaud 1981 Michaud 1981

SPECIES: Catostomus catostomus (longnose sucker)

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp (Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING AND DEVEL	OPMENT TEMPERATURES:
spawning r	un	5	10-15								B.C. B.C.	Scott and Crossman 1973 Scott and Crossman 1973
(8-11d) migration spawning spawning		>15 5	11-14	5-10	13						Pyramid L., Sask Gt. Slave Lake Stream	Brown 1974 Brown 1974 Fuiman and Witman 1979 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

THERMAL TOLERANCES:

SPECIES: Catostomus commersoni (white sucker)

							PREFERRED TEMPERATURES:	_
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
large adult	F		20.6	20.6 18.3 18.9-21.1 22.4 14.1-18.3	< 5 11.8		Wisconsin lakes Moosehead L. Me. Horse tooth Res., Colo Lab	Coutant 1977a Coutant 1977a Coutant 1977a Coutant 1977a Brown 1974
	SP su Year su F		20.6 >29.4 20 17	23.9 25-27 16-19 24	14 8	17.2	Discharge Point Beach L Mich. Ohio R. Ohio R.	Brown 1974 Brown 1974 Haymes 1984 Michaud 1981 Yoder and Gammon 1976 Yoder and Gammon 1976 EPA 1978a McCormick et al 1977
adult			31.2	19-21			Oswego or Pickering GS L. Ontario	Wyman 1981
			26.1	24.1 26.7	22.8		Lab New River, Va.	Reynolds and Casterlin 1978 Reynolds and Casterlin 1978
Larval			19.9 30	14.4	10		Connecticut R., Conn. (mean field occurrence) Jack L., Ont.	Marcy 1976a Corbett and Powles 1983

SPECIES: Catostomus commersoni (white sucker)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	M W A T		Upper	Lower	Location	Reference
larvae	27	24-27	28	30				EPA 1974
100; juvenile	24	12-29				<12	Lab	EPA 1974
4-5 mg; larva							Lab	EPA 1974
100; juvenile							Lab (summer)	EPA 1978b
juvenile							Lab (winter)	EPA 1978b
larvae	26.9	15.7-26.9	9		29.7	10	Lab	McCormick et al 1977
adult	24						Lab	Smagula and Adelman 1982
104; age I	24	12-30					Lab	Adelman 1980
263; age II	24	12-30					Lab	Adelman 1980

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

											SPAWNING AND DEVELOPM	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max far Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(4) Lethal Limit Lower	Lethal	(4) Median Lethal Final	Location	Reference
spawning		10	4-18	10	21							EPA 1974
incubation/ hatch spawning		15	8-21 10-20									EPA 1974 Brown 1974
heat shock incubation/	12		.0 _0						20	32	Lab	Moore 1979(d)
hatch spawning	6.2-42.1	15.2 17.8	9-17.2 27.2		<24.1		24.1	6.2			Lab	McCormick et al 1977 McCormick et al 1977
cold shock	16							0	- 16		Lab	Edsall and Yocum 1972
cold shock	20							3	- 17		Lab	Edsall and Yocum 1972
cold shock	25							6	- 19		Lab	Edsall and Yocum 1972
cold shock	33-34							10	- 13		Sandusky, R. (L. Erie)	Coutant 1977b
cold shock	27							2	- 25		Susquehanna R.	Coutant 1977b
heat shock	12.2								+20.6		Lab, simulated onshore discharge	Crippen and Fahmy 1981
	12.2								+23.5		Lab, simulated tempering discharge	Crippen and Fahmy 1981
	12.2								i-23.3		Lab, simulated offshore discharge	Crippen and Fahmy 1981
spawning		11.16									N.Y. and Penn.	Fuiman 1979
spawning		23.4	12.2-24								Connecticut R., Conn.	Marcy 1976b
larval dev. spawning		23.8	14.0-24								Connecticut R., Conn.	Marcy 1976b
migration		211.8	3-16.5								Jack L., Ont.	Corbett and Powles 1983
spawning larval dev.		16.8	10-16.9-	k							Jack L., Ont.	Corbett and Powles 1983
(9-11 mm TL)		6-16.8								Jack L., Ont.	Corbett and Powles 1983

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

	0				(1.)						SPAWNING AND DEVELOPM	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	O p t i m u m Temp	-	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
hatching			22-29.5									Scott and Crossman 1973
(6.7d) spawning			15-22								N.Y. and Penn. (E. oblongus)	Fuiman 1979
				18.5	22						(E. Obioligae)	This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Hypentelium nigricans (northern hog sucker)

Size or Age mm)	Accli- mation Temp	Accli- mation Time	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log ti a + b a	me = (temp) b	Data Limits Upper	Expo- sure Lower Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
	15									30.8		Kowalski et al 1978
	18-33		33								Lab	Cherry et al 1977
	18		27									Cherry et al 1977
	21		30									Cherry et al 1977
	24		33									Cherry et al 1977
	27		33									Cherry et al 1977
	30		33									Cherry et al 1977
	33		34									Cherry et al 1977

SPECIES: Hypentelium nigricans (northern hog sucker)

				PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
		26.6			Jobling 1981
50-100 FL;		15.3	12	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		20.2	15	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		16.9	18	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		23	21	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		27	24	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		28.7	27	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		29.4	30	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		28.8	33	Lab (rising water temperatures)	Cherry et al 1977
50-100 FL;		28.6		Lab (rising water temperatures)	Cherry et al 1977
		29.2			Cherry et al 1977
		25.2		Wabash Ft., Ind.	Brown 1974

SPECIES: Hypentelium nigricans (northern hog sucker)

				(b)				GROWTH TEMPERATURES:
Size or Age (mm)	Optimum "C	Range	(a) M W A T	ST Max	No Growth Upper	Limits Lower	Location	Reference
		13.3-15.	5				Annulus formation	Scott and Crossman 1973
	25.8/25.3					3 1 0		Scott and Crossman 1973 Jobling 1981
	20.0/20.0		28.1	30				This study

- (a) MWAT (maximum weekly average temperature for growth) = Optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Hypentelium nigricans (northern hog sucker)

											SPAWNING AND	DEVELOPMEN	T TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp		(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	ŗ	Reference
spawning spawning hatching			> 15.6 12-23 17.4								N.Y. and Penn. Lab	F	Scott and Crossman 1973 Fuiman 1979 Buynak and Mohr, Jr. 1978
(10d)				17.5	23							Т	his study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (19461.
- (d) Simulated larval entrainment temperatures.

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season [Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large			34.5		27			Wabash R., Ind. (buffalo sp.)	Coutant 1977a
	W			6-24				J.M. Stuart GS. Ohio R., Ohio (I. bubalus)	Yoder and Gammon 1976
	F			18-26				J.M. Stuart GS, Ohio R., Ohio (I. bubalus)	Yoder and Gammon 1987
	su			22-23				J.M. Stuart GS, Ohio R., Ohio (I. bubalus)	Yoder and Gammon 1976

SPECIES: Ictiobus cyprinellus (bigmouth buffalo)

	0				4.)						SPAWNING A	AND DEVELOPME	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT		Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location		Reference
spawning spawning		15.5-18.3	14.4-26.7	17	27								Scott and Crossman 1973 Carlander 1969 EPA 1974
spawning hatching		17	14-27	17	26.7								EPA 1974 EPA 1974 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli- mation matic Temp Time	on Sea- Lethal	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
(11111)	20	SU	Теттр	- a 5	Opper Lower		(WIIII)	>31	Lab		Reutter and Herdendorf 1976

SPECIES: Minytrema melanops (spotted sucker)

0	Caasaa Daw aa Haasa	Et al.	Andimetica Applimation	PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
	SU F	25-27 16-19		J.M. Stuart, GS, Ohio R., J.M. Stuart, GS, Ohio R.,	Yoder and Gammon 1976 Yoder and Gammon 1976

SPECIES: Minytrema melanops (spotted sucker)

	Season and/or Accli-				(b) ST Max for	Accli-	(c) Lethal	(c) Lethal	Median	(d) Median	SPAWNING A	AND DEVELOPME	NT TEMPERATURES:
Event	mation Temp	Optimum Temp	Temp Range	(a) MWAT	Embryo Survival	mation Time	Limit Upper	Limit Lower	Lethal Δ T	Lethal Final	Location		Reference
spawning			15-17.8	16.4	17.8						Oklahoma		Scott and Crossman 1973 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

									SPAWNING AND DEVELOPMENT	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Te Temp Ran		(b) ST Max for Accli- Embryo mation Survival Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median L e t h Final	a I Location	Reference
spawning spawning		13.3 13.5	13.5							Scott and Crossman 1973 Carlander 1969 This study
SPECIES: I	Moxostoma	macrolepidotum (sh	orthead redho	rse)						
								PREF	ERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Upper Night Avoidan	Final ce Prefer	Lower endum Avoidance	Acclima Tempe	ation A rature Ti	cclimatior ime	n Loca	ion	Reference
large		37.2 26		22					ash R., Ind. ostoma sp.)	Scott and Crossman 1973 Coutant 1977
SPECIES: I	Moxostoma	macrolepidotum (sh	26-27.5 orthead redho							Yoder and Gammon 1976
									SPAWNING AND DEVELOPI	MENT TEMPERATURES:
	Season and/or Accli- mation	Optimum Te	mp (a)	(b) ST Max for Accli- Embryo mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal		
Event	Temp	Temp Rar		Survival Time	Upper	Lower		Final	Location	Reference
spawning spawning spawning hatching		11 16 12 15.6							Iowa Big Rock Ck, III. Susquehanna R., Penn. Lab	Scott and Crossman 1973 Talmage and Coutant 1978 Buynak and Mohr, Jr. 1979 Buynak and Mohr, Jr. 1979
(8d)			10.5							This should

(a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum. or middle of range of spawning temperatures.

This study

(b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

16+

13.5

- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age	Accli- Accli- mation matio Temp Time	n Sea-	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
YOY YOY	23 33-37	su SU su	35 35.7 35.7 35.7				35.7	2880	37.5	Lab Mississippi R.	Carlander 1969 Spotila et al 1979 Jinkes et al 1981 Talmage 1978

SPECIES: Ictalurus melas (black bullhead)

Size or Age	Season Day or		Final	Lower	Acclimation	Acclimation	PREFERRED	TEMPERATURES:	
(mm)	Night	Avoidance	Preferendum	Avoidance	Temperature	IIMe	Location		Reference
juvenile	su	35					Discharge L. Steam GS, V		Beltz et al 1974
	W	14					Discharge L. Steam GS, W		Beltz et al 1974

SPECIES: Ictalurus melas (black bullhead)

Event Temp spawning	Temp 21	Range	MWAT	Survival	Time	Upper	Lower	АТ	Final	Location	Reference Scott and Crossman 1973
Seasc and/o Accli- matio		Temp	(a)	(b) ST Max for Embryo	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal	SPAWNING AND	DEVELOPMENT TEMPERATURES:

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

-	_
1	೨
¢	0

Size or Age (mm)	Accli- Accli- mation matio Temp Time	Upper Incip. n Sea- Lethal son Temp	Lower Incip. Lethal Temp	log time = <u>a + b (temp</u> a b	Da <u>ta Limits</u> Upper Lowe	Expo- sure r Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference	
	22.2	s u						36.4			Spotila et al 1979	

SPECIES: Ictalurus natalis (yellow bullhead)

6:	0		E' a d	Lawas	A 1: 4:	A 1: 4:	PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
adult juvenile adult	su		28.3 28.8 27.6				Lab		Coutant 1977a Coutant 1977a Coutant 1977a

											THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	$\begin{array}{ccc} \log & \text{time} & = \\ \underline{a + b & (\text{temp})} \\ a & b \end{array}$	Data Limit Upper Lo	Expo- s sure wer Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
				36. I								Scott and Crossman 1973
	5-6			28.6-29								Carlander 1969
	10			30-30.2								Carlander 1969
	20			33-33.4								Carlander 1969
	25			35.5	1.3							Carlander 1969
	30			36.5-37								Carlander 1969
	36			37.5	7.0							Carlander 1969
	37-38			37.2								Carlander 1969
	10			29								Spotila et al 1979
	20			32.3								Spotila et al 1979
	25			33.7								Spotila et al 1979
	30			34.7								Spotila et al 1979
	5			29.9								Spotila et al 1979
	10			31.5								Spotila et al 1979
	15			33								Spotila et al 1979
	20			35								Spotila et al 1979
	25			37.5								Spotila et al 1979
	30			39								Spotila et al 1979
	35			41								Spotila et al 1979
	40			41								Spotila et al 1979
			SU	35.5								Spotila et al 1979
			W	29.0	_							Spotila et al 1979
			SP	29.1-32.6							Algonquin Pk., stream Ont.	Spotila et al 1979
			su	33.2-35.)							Spotila et al 1979
			F	32.9								Spotila et al 1979
	23		su					_		37.8		Spotila et al 1979
	5			27.8		14.6802-0.4539	29.5 28.	0			Florida to Ontario	Brown 1974
								_			(combined)	_
	10			29		16.4227-0.4842	2 31.5 29.	5			Florida to Ontario	Brown 1974
								_			(combined)	
	15			31		28.3281-O-823	9 33 32.	5			Florida to Ontario	Brown 1974
								_			(combined)	
	20			32.5	0.5	23.9586-0.6473	35 32.	5			Florida to Ontario	Brown 1974
											(combined)	D 4074
	25			33.8	4.0	22.4970-0.5732	37 34				Florida to Ontario	Brown 1974
								_			(combined)	D
	30			34.8	6.8	24.2203-0.5917	38.5 35.	5			Florida to Ontario	Brown 1974
											(combined)	
	34			34.8		19.3194-0.4500	37.5 36.	0			Florida to Ontario	Brown 1974
											(combined)	
										≥38	S. Michigan pond	Brown 1974
			SP	28							L. Opeongo	Brown 1974
			su	34.8							L. Opeongo	Brown 1974

Size or Age	Accli-	Accli-	Sea-	Upper Incip. Lethal	Lower Incip. Lethal	log ti a + b		Data Li	mits	Expo-	Resis- tance Time	Critical Thermal	THERMAL	TOLERANCES:	
(mm)	Temp.		son		Temp	a	b		Lower		(Min)	(Max)	Location		Reference
larval	25			38.2						38.2	IO		Lab		Jinks et al 1981
				36.4						36.4	30		Lab		Jinks et al 1981
				36.4						36.4	60		Lab		Jinks et al 1981
early	26			37.6						37.6	IO		Lab		Jinks et al 1981
juvenile															
				36.5						36.5	30		Lab		Jinks et al 1981
44; YOY	24			35.9						35.9	60		Lab		Jinks et al 1981
44; YOY	24			35.6						35.6	1440		Lab		Jinks et al 1981
44; YOY	24			35.7						35.7	5760		Lab		Jinks et al 1981

SPECIES: Ictalurus nebulosus (brown bullhead)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
			40					Delaware R., discharge	Brown 1974
								power plant	
adult	W			11.9				Lab	Coutant 1977a
adult	SP			23.5				Lab	Coutant 1977a
adult	su			24.9				Lab	Coutant 1977a
adult	F			23.6				Lab	Coutant 1977a
adult				29-31				Lab	Coutant 1977a
93-1 93				27.3				Lab	Coutant 1977a
				26				Lab	Spotila et al 1979
	W			10.9				Lab	Reutter and Hendendorf 1976
	SP			22.4				Lab	Reutter and Hendendorf 1976
				29-31					Jobling 1981
young				31					Wyman 1981
young			40	19.6	5.1			Connecticut R., Conn.	Marcy 1976a
								(field occurrence)	-
young				31.1		26.1			Brown 1974
young			36.1			25			Brown 1974
93-193			21	13	7	3.5		Lab	Richards and Ibara 1978
93-193			26	15-16	7	11.0		Lab	Richards and Ibara 1978
93-193			24	17-18	9	15.5		Lab	Richards and Ibara 1978
93-193			26	25	21	21		Lab	Richards and Ibara 1978
93-1 93			28	27	22	28		Lab	Richards and Ibara 1978
93-193			30			•		Connecticut Yankee GS,	Richards and Ibara 1978
17 170			- -					Connecticut R., Conn.	

SPECIES: Ictalurus nebulosus (brown bullhead)

Size or Age	Optimum		(2)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	(a) M W A T		Upper	Lower	Location	Reference
	32					<18		Carlander 1969 Spotila et al 1979
	28.2/29.9					4-10	Connecticut Yankee GS, Connecticut R. Conn. (winter migration)	Jobling 1981 Richards and Ibara 1978
			32	37				This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Ictalurus nebulosus (brown bullhead)

											SPAWNING AND DEVELOPM	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning hatching		21.1	20.6-25									Scott and Crossman 1973 Brown 1974
(6-9d) spawning		> 4									Connecticut Yankee GS,	Richards and Ibara 1978
migration				21.1	25						Connecticut River, Conn.	This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival iincubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age	Accli- mation Temp	Accli- mation Sea- Time son	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data L Upper	imits Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	15 20 25		30.3 32.8 33.5 35	0 2.5 6.0						22.5			Carlander 1969 Carlander 1969 Carlander 1969 Carlander 1969
44-57d;	26		36.6		34.7119-0.8816	39	36.6			33.5	Hatchery,	Ark.	Carlander 1969 Brown 1974
juvenile 44-57d;	30		37.8		32.1736-0.7811	40.6	37.4						Brown 1974
juvenile 44-57d; juvenile	34		38.0		26.4204-0.61	49 42	38						Brown 1974
juverille	12 16 20 24 28 32 22.7	su								34.5 34.2 35.5 37.7 39.2 41.0 38.0			Spotila et al 1979
			36.1 36.4										Jobling 1981 Jobling 1981
11.5 mo; juvenile	25		35.5		34.5554-0.8854	37.5	35.5				Hatchery,	Ark.	Brown 1974
11.5 mo; juvenile	30		37		17.7125-0.4058	40	37.5				Hatchery,	Ark.	Brown 1974
11.5 mo; juvenile	35		38		28.3031-0.6554	41	38				Hatchery,	Ark.	Brown 1974
adult adult adult adult	15 20 25 7.2 11.		30.4 32.8 33.5 32.8 35	0 0 0	34.7829-1.0637 39.4967-1.1234 46.2155-1.2899	34	30.5 33 44		32.8 35	60 60	Put-in-Bay	, Ohio + Fla , Ohio + Fla , Ohio + Fla	Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large			32		26			Wabash R., Ind.	Coutant 1977a
large			34					White R., Ind.	Coutant 1977a
adult	SU			25.2				Lab	Coutant 1977a
adult	F			25.3				Lab	Coutant 1977a
	•		35	30.5	23			Lab	Coutant 1977a
				23-32.5				in field	Spotila et al 1979
				>32					Spotila et al 1979
				18.9		6			Spotila et al 1979
				20.4		9			Spotila et al 1979
				19.9		12			Spotila et al 1979
				21.7		15			Spotila et al 1979
				22.9		18			Spotila et al 1979
				26.1		21			Spotila et al 1979
				29.4		24			Spotila et al 1979
				29.5		27			Spotila et al 1979
				30.5		30			Spotila et al 1979
				17		12			Spotila et al 1979
				21		16			Spotila et al 1979
				22		20			Spotila et al 1979
				28		24			Spotila et al 1979
				26		28			Spotila et al 1979
				30		32			Spotila et al 1979
			28.5	15.2		5.1		Connecticut R., Conn. (field occurrence)	Marcy 1976a
fry				28-29				()	Brown 1974
ii y	su			32-36				J.M. Stuart GS, Ohio R., Ohio	Yoder and Gammon 1976
	F			30-32				J.M. Stuart GS, Ohio R., Ohio	Yoder and Gammon 1976
	W			s-14				J.M. Stuart GS, Ohio R., Ohio	Yoder and Gammon 1976

0.				(b)	N	1211.		GROWTH TEMPERATURES:
Size or Age (mm)	° C	Range	(a) M W A T	ST Max	No Growth Upper	Limits	Location	Reference
	29 30 28-30							Jobling 1981 Jobling 1981 Jobling 1981
larvae	29/31	21-34			36			Brown 1974
juvenile	28/32	18.3-34			>34	15.6		Brown 1974
			32	36				EPA 1974
	30							Leidy and Jenkins 1977
	30					10		Cravens 1981

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth),
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Ictalurus punctatus (channel cat)

											SPAWNING AND DEVELOR	PMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	O p t i m u m Temp	T e m p Range	(al MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal Δ T	(d) Median Lethal Final	Location	Reference
spawning		26.7	23.9-29.5	i								Scott and Crossman 1973
hatching			15.6-27.8	}								Scott and Crossman 1973
(5-10d)		22.0										Carlandar 1060
spawning		23.9	23.9-22.8				>28.4					Carlander 1969
hatching		22	23.9-22.0	27	29		~20.4					Brown 1974 EPA 1974
spawning		27	21-29	21	29							EPA 1974
hatch		21	18-29									EPA 1974
wintering			5-15									Yoder and Gammon 1976
cold shock			0 .0						-6/-10)	Lab	Coutant et al 1976
heat shock									+15		Lab; simulated entrainment	Cada et al 1981
(16-26 mm)												
cold shock	34								- 1 4		Sandusky R. to L. Erie	Coutant 1977b

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli mation mati Temp. Time	ion Sea- Lethal	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Expo- Data Limits sure Upper Lower Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	1.6	W					29.0			Spotila et al 1979

SPECIES: Noturus flavus (stone cat)

				PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
adult adult	W F	5.5 25.1		Lab Lab	Coutant 1977a Coutant 1977a

SPECIES: Noturus flavus (stone cat)

	Season and/or Accli- mation	Optimum		. ,	(b) ST Max for Embryo Survival	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Lethal	(d) Median Lethal Final	SPAWNING ANI	D DEVELOPMENT TEMPERATURES: Reference
spawning	Temp	7 e m p 27.8	Range	MWAT 27.8	Julyival		Upper	Lower		i iliai	Location	Scott and Crossman 1973 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- mation Temp	Accli- mation Time	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log tin a + b a	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
									38	Shallow I	Michigan	Beltz et al 1974

SPECIES: Noturus miurus (brindled madtom)

	Season and/or Accli- mation	Optimum	Temn	(a)	(b) ST Max for Embryo	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal	SPAWNING A	ND DEVELOPME	NT TEMPERATURES:
Event	Temp	Temp	Range	MWAT	Survival		Upper	Lower		Final	Location		Reference
spawning		25.6		25.6							Michigan		Scott and Crossman 1973 This study
spawning			25-27	_0.0							Ohio		McAllister et al 1985

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Anguilla rostrata (american eel)

								PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	•	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
			33-35							Carlander 1969
adult			33	16.7 20.5	11.9	6-30		Maryland Connecticut discharge, Co		Cravens 1961 Marcy 1976a

SPECIES: Anguilla rostrata (american eel)

				(b)		GROWTH TEMPERATURES:		
Size or Age (mm)	Optimum ° C	Range	(a) M W A T	ST Max	No Growth Upper	Limits Lower	Location	Reference
	25					10	Lab	Talmage and Coutant 1978

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Anguilla rostrata (american eel)

	Season and/or Accli- mation	Optimum		. ,	(b) ST Max for Embryo	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Lethal	(d) Median Lethal		
Event	Temp	Temp	Range	MWAT	Survival	Time	UPPer	Lower	ΑT	Final	Location	Reference
spawning		17.		17	35						Ocean	Scott and Crossman 1973 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures,

Size or Age (mm)	Accli- mation Tamp	Accli- mation Time	- 1		Lower Incip. Lethal Temp	log tim a + b a		Data L Upper	<u>limits</u> Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
adult adult	15 25		;	27.5 ≥38.3 34.5 26.5									Lab Field	Brown 1974 Leidy and Jenkins 1977 Houston 1982 Beltz et al 1974
SPECIES: Fu	ındulus diar	ohanus (ba	inded k	illifish)										
Size or Age (mm)	Season	Day or Night	Upper Avoida		Final Prefere	l ndum A	.ower voidan		Acclima Temper	tion A ature T	acclimation ime		ERRED TEMPERATURES:	Reference
adult			>15		19.3	().5		6-33			SW P	enn.	Cravens 1982 Talmage and Coutant 1978
SPECIES: Fu	undulus dia _l	phanus (ba	anded k	illifish)										
	Season and/or Accli- mation Temp	ophanus (ba Optim Temp	um Ta	a m p	(a) MWAT	(b) ST Mar for Embry Surviv	Aco ma	cli- ition	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal Δ T	(d) Median Lethal Final	SPAWNING AND DEVELOP	MENT TEMPERATURES: Reference
Event spawning hatching	Season and/or Accli- mation	Optim	um Ta R	a m p	` '	ST Mar for Embry	Aco ma	cli- ition	Lethal Limit	Lethal Limit	Lethal	Median Lethal Final		
Event Spawning hatching (11-12d) spawning spawning	Season and/or Accli- mation	Optim Temp	um Ta R 22 22	a m p ange 1-23 2-26.7	` '	ST Mar for Embry	Aco ma	cli- ition	Lethal Limit	Lethal Limit	Lethal	Median Lethal Final	Location	Reference Scott and Crossman 1973

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

THERMAL TOLERANCES: Resis-Lower Upper Accli-Incip. Incip. log time tance -Critical Accli-Expo-Thermal Lethal Data Limits Time Size or Age mation mation Sea- Lethal a + b (temp) sure Upper Lower Temp Reference Time son Temp а (Min) (Max) Location (mm)

23.3 Scott and Crossman 1973

SPECIES: Lota lota (burbot)

							PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
small			21.2 21.2				Lab		Spotila et al 1979 Coutant 1977a
	Sp/Su		11.4 8-17				Moosehead l Atikokan GS	, Me. Preop Study, Ontario	Coutant 1977a Haymes 1984
3-7.5	Sp/Su		6-11				L. Michigan	in top stady, smalls	Mansfield et al 1983

SPECIES: Lota lota (burbot)

Size or Age	Optimum		(0)	(b) ST	No Growth	Limite		GROWTH TEMPERATURES:
Size or Age (mm)	°C	Range	(a) M W A T			Lower	Location	Reference
	15.6-18.3		20	24				Scott and Crossman 1973 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature- optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

									SPAWNING AND DEVELOPM	ENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp Temp Range	(a) MWAT	(b) ST Max for Accli- Embryo mation Survival Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning incubation		0.6-1.7 o-1.5							Surface water temp.	Scott and Crossman 1973 Mansfield et al 1983
(70d) hatching		<8-10	1.2	1.7						Mansfield et al 1983 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Labiddesthes sicculus (brook silverside)

Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	PREFERRED TEMPERATURES: Location	Reference
larval	SU	22-27		Mississippi R.	Holland and Sylvester 1983

Size or Age	Accli- Accli- mation mation Sea		Lower Incip. Lethal	log time = a + b (temp)	Data Limits	Expo- sure	Resistance . Critical	THERMAL TOLERANCES:	Reference
(mm)	25-26	30.6	Temp	a b	Upper Lowe	remp	(Min) (Max)	Location	Reference Carlander 1969

SPECIES: Culaea inconstans (brook stickleback)

											SPAWNING AND DEVELOR	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
spawning hatching		18.3	8-19									Scott and Crossman 1973 Scott and Crossman 1973
(8-9d) spawning hatching			4.5-21 15-18	18.3	21							Carlander 1969 Carlander 1969 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperaturesas defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli- mation mation : Temp Time	Upper Lower Incip. Incip. Sea-Lethal Lethal son Temp Temp	log time = a + b (temp) Data Limits a b Upper Lower	sure Time The	THERMAL TOLERANCES: tical ermal ax) Location	Reference
37 mm	19 19	28.5 25.8 25.8 26	19.3491-9.5940 32 26		Columbia R., Oregon	Jobling 1981 Houston 1982 Brown 1974 Talmage 1978 Carlander 1969(a)

(a) fatal body temperature

SPECIES: Gasterosteus aculeatus (three spine stickleback)

				<u>-</u>		A college the co	A !! !!	PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
				7.5-10						Jobling 1981
				16-18						Jobling 1981
				12-16						Wyman 1981
adult				4-8		11				Cravens 1981
				10		20				Talmage and Coutant 1980
					4.0					Talmage 1978
				16						Talmage and Coutant 1978

SPECIES: Gasterosteus aculeatus (three spine stickleback)

Size or Age (mm)	Optimum ° C	(a) Range MWA	(b) ST T Max	No Growth Limits Upper Lower	Location	GROWTH TEMPERATURES: Reference
	>19	12.8-19.3 3-19 22.4	28.5			Jobling 1981 Jobling 1981 Cravens et al 1983 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Gasterosteus aculeatus (three spine stickleback)

Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit L o w e r	Lethal	(d) Median Lethal Final	SPAWNING AND DE	EVELOPMENT TEMPERATURES: Reference
hatching (19	5-20									Scott and Grossman 1973 Carlander 1969
				19	20							This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Pungitius pungitius (nine spine stickleback)

							PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Upper Night Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
	SU		17-24				Atikokan GS,	Ontario	Haymes 1974
	F	N	5-6				L. Michigan (bottom traw	1)	Brandt et al 1980
	F	D	13-14				L. Michigan (bottom traw	1)	Brandt et al 1980

SPECIES: Pungitius pungitius (nine spine stickleback)

Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Accli- Embryo mation Survival Time	(c) Lethal Limit Upper	(c) Lethal Med Limit Lett Lower A		AND DEVELOPME	NT TEMPERATURES: Reference
eggs		19-24	16-26	21	26					Carlander 1969 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24111 maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli- mation mation Temp. Time	Incip. Sea- Lethal son Temp	Incip. Lethal Temp	log time = a + b (temp) a b	Data Limits Upper Lower	Expo- sure Temp	tance Time (Min)	Critical Thermal (Max)	Location		Reference
		Upper	Lower			_	Resis-	0.315.41	THERMAL	TOLERANCES:	

SPECIES: Percopsis omiscomaycus (trout perch)

				- : .			an Applimation	PREFERRED	TEMPERATURES:		
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference	
adult			16		10			L. Michigan		Coutant 1977a	
adult				16-18				L. Michigan		Brandt et al 1980	
adult		D		15-16				L. Michigan		Brandt et al 1980	
adult		N		7-16				L. Michigan		Brandt et al 1980	
adult	F	D		15-16				L. Michigan		Crowder et al 1981	
	F	N		7-8				L. Michigan		Crowder et al 1981	

SPECIES: Percopsis omiscomaycus (trout perch)

				(b)				GROWTH TEMPERATURES:
Size or Age (mm)	Optimum ° C	Range	` '	ST Max	No Growt Upper	h Limits Lower	Location	Reference
						15.5	L. Erie	Carlander 1969

L. Erie Carlander 1969

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	PMENT TEMPERATURES: Reference
spawning spawning spawning spawning		15 20	16-20 6-11 19-21.4	20	21.4						Twelvepole Ck., W. Va. L. Winnebago, Wis. Heming L., Man. L. Erie	Talmage 1978 Carlander 1969 Carlander 1969 Carlander 1969 This study

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946)

⁽d) Simulated larval entrainment temperatures.

Size or Age	Accli- Accli- mation mation Temp Time	Upper Incip. Sea- Lethal son Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data Limits Upper Lowe	Expo- sure r Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
		32.4-34	ļ.				24-336h	n 35.6-36.4		Ellis 1964
larvae		33-36					10			Talmage and Coutant 1979
	8	27	8							Talmage 1978
	26	35								Talmage 1978
larvae	15	35.6					10		Lab	Jinks et al 1981
		31.4					30		Lab	Jinks et al 1981
		30.3					1440		Lab	Jinks et al 1981
	21-22	38.4					10		Lab	Jinks et al 1981
		35.2					30		Lab	Jinks et al 1981
		34.8					60		Lab	Jinks et al 1981
		31.0					1440		Lab	Jinks et al 1981
	24	38					10		Lab	Jinks et al 1981
		36.1					30		Lab	Jinks et al 1981
		35.4					60		Lab	Jinks et al 1981
34-41	26-27	36.8					5		Lab	Jinks et al 1981
		36.8					10		Lab	Jinks et al 1981
		37.2					30		Lab	Jinks et al 1981
31-35	25-26	35.4					60		Lab	Jinks et al 1981
		34.6					1440		Lab	Jinks et al 1981
		34.5					5760		Lab	Jinks et al 1981
larvae	18-24	38.5							Lab	Jinks et al 1981
juvenile	27	36							Lab	Jinks et al 1981
larvae		34.8							Lab	Kellogg and Gift 1983

SPECIES: Morone americana (white perch)

		n Day or		Final L	Lower		PREFERRED TEMPE	ERATURES:
Size or Age (mm)	Season	Day or Night	Upper Avoidance			Acclimation Acclin Temperature Time	ation Location	Reference
Small			35	32			Lab	Coutant 1977a
			40	27.5	5.7		Connecticut Yankee	plant Marcy 1976a
				> 2 4				Scott and Crossman 1973
51-65				28.9-30.6		6-33	Lab	Talmage and Coutant 1980
				31.6-32.5		6-33	Lab N.C.	Talmage and Coutant 1979
				29.3-30.6		6-33	Lab Maryland	Talmage and Coutant 1979
				29.2-29.6		6-33	Lab N.J.	Talmage and Coutant 1979
larvae			32					Talmage and Coutant 1979
	s u		31-34	29-32		26		
	W		24-25	13-19	9-10	3-4	Lab	Talmage 1978
32-39 TL				30			L a b	Kellogg and Gift 1983
35.1 TL				30.6		26	Lab	Kellogg and Gift 1983
29.5 TL				29.3		26	Lab	Kellogg and Gift 1983
3.88; larvae	sp/su			21-27			Connecticut R.	Marcy 1976b

SPECIES: Morone americana (white perch)

Size or Age	Optimum		(a)	(b) ST	No Growth Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	M W A T		Upper Lower	Location	Reference
27.5	28.5	26.3-31.7	30.6	33	34	Lab, Hudson R. N.Y.	Kellogg and Gift 1983 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature -optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Morone americana (white perch)

	Season and/or			(b) ST Max	(c)	(c)		(d)	SPAWNING AND DEVELOPM	IENT TEMPERATURES:
Event	Accli- mation Temp	Optimum Temp	Temp (a) Range MWAT	for Accli- Embryo mation Survival Time	Lethal Limit Upper	Lethal Limit Lower	Median Lethal Δ T	Median Lethal Final	Location	Reference
spawning hatch			11-15 15-20						Bay of Quinte, L. Ont	Scott and Crossman 1973 Scott and Crossman 1973
hatch	8-26	14.1/17.6	10 20							Cravens et al 1983
eggs	18			18	24		6			Wyman 1981
cold shock	20					2	- 18			Talmage 1978
spawning		15.6-19.4	12-22.2 17	25					Lab	Morgan II and Rasin, Jr. 1982
hatch		14.1	10-24						Lab	Morgan II and Rasin. Jr. 1982
embryo		17.6	10-24						Lab	Morgan II and Rasin, Jr. 1982
spawning			8.9-27						Connecticut R.	Marcy 1976b
eggs		19.0-20.9							Connecticut R.	Marcy 1976b
heat shock					28					Marcy 1976b
heat shock	27						t 8.5		Lab	Beltz et al 1974

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a b (temp) a b	Data Limits Upper Lowe	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
larvae YOY	14-26 21.7			30-32 33.5					24h 48h	25.2	Lab	Ellis 1984 Ellis 1984
larvae	14 18 20 26 14-26			31.7 30.8 32.0 30.6 31.3	12.8					35.3	Lab Lab	Reutter & Herdendorf 1976 McCormick 1978 McCormick 1978 McCormick 1978 McCormick 1978 McCormick 1978 McCormick 1978
YOY	30-35		su	36.1 33.5 33.5							Mississippi R.	Talmage 1978 Houston 1982 Spotila et al 1979

SPECIES: Morone chrysops (white bass)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large			29					Wabash R., Ind.	Coutant 1977a
YOY	W			10-13				Lab	Coutant 1977a
YOY	SP			16-18				Lab	Coutant 1977a
YOY	su			31.0				Lab	Coutant 1977a
YOY	F			28.0				Lab	Coutant 1977a
YOY	su			27.8				Lab	Coutant 1977a
adult	W			12-17				Lab	Coutant 1977a
adult	SP			12-17				Lab	Coutant 1977a
adult	su			28-30				Lab	Coutant 1977a
adult	F			16-17				Lab	Coutant 1977a
			>29.8					Pickering GS L. Ont	Ellis 1984
			>34					Colbert plant, Alabama	Ellis 1984
				29				J.M. Stuart GS, Ohio R.	Brown 1974
				33.9-34.4				Power plant discharge, Tennessee R.	Brown 1974
adult	SU		35	30-34				L. Erie	Brown 1984 Ellis 1984
	su			27.8				Lab	Reutter and Herdendorf 1976
young	su			30-32					Wyman 1981
,	SU			26-29				Power plant, Ohio R., Ohio	Yoder and Gammon 1976
	F			16-28				•	Yoder and Gammon 1976
	Wi			12-16					Yoder and Gammon 1976
			29-34.4					Ohio R., Ind.	Spotila et al 1979

SPECIES: Morone chrysops (white bass)

				(b)				GROWTH TEMPERATURES:
Size or Age (mm)	Optimum ° C	Range	(a) M W A T	ST Max	No Growth Upper	n Limits Lower	Location	Reference
Juvenile larvae juvenile	23-24 16		26.7	34	19	15.6	Reservoir, S.D.	EPA 1974 Brown 1974 Brown 1974 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 113 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Morone chrysops (white bass)

											SPAWNING AND DEVELOP	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
Spawning incubation/			12-24	19	24							EPA 1974
hatch		16-17									I Ed.	EPA 1974
hatch spawning		23.9	14.4-21.	1							L. Erie L. Erie	Brown 1974 Scott and Crossman 1973
cold shock	w 27							9	- 18		Little-Three Mile Ck. Ohio A.	Coutant 1977b
eggs	19		18-26 1 I-23.9		26		30.2	10			Lab	McCormick 1978 McCormick 1978
spawning		14.7-16.3									Lewis & Clark L. (S.D.)	Talmage & Coutant 1978
spawning			13-26								L. Mendota. Wis.	Horrall 1981

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

											THERMAL	TOLERANCES:
Size or Age (mm)	mation m		l ea- L	Jpper ncip. ethal emp	Lower Incip. Lethal Temp	log time = a + b (temp	Data Limits Upper Lowe	Expo- sure r Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
50-1 00												
<1 yr	18-36 23.9	5		36 37.5								
adult	23.5 30	\$	su 3	35								

SPECIES: Ambloplites rupestris (rock bass)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
				21.3				Wisconsin lakes	Coutant 1377a
				20.7				S. Ontario Streams	Coutant 1377a
		D		27-27.8				L. Monona, Wisc.	Coutant 1377a
		N		26.8-28.3				L. Monona, Wisc.	Coutant 1377a
small		D	29.0	26.2	25.5			Lab	Coutant 1377a
small		N	29.5	28.8	26.0			Lab	Coutant 1377a
adult	W			21.6				Lab	Coutant 1377a
adult	SP			20.5				Lab	Coutant 1377a
adult	F.			22.8				Lab	Coutant 1977a
50-100 FL									
≤ 1 yr	su			30.6				Lab	Cherry et al 1977
50-100 FL	su		27		15	18		Lab	Cherry et al 1977
50-100 FL	su		30		18	21		Lab	Cherry et al 1377
50-100 FL	su		33		21	24		Lab	Cherry et al 1377
50-100 FL	SU		33		24	27		Lab	Cherry et al 1377
50-100 FL	su		33		24	33		Lab	Cherry et al 1377
50-100 FL	su		35		27	33		Lab	Cherry et al 1377
48-59 TL									
juvenile				27.3				Lab	Brown 1974
98-182 TL									
adult				27.5				L. Monona, Wisc.	Brown 1974
				27.4				Wabash R.	Brown 1374
				30					Talmage and Coutant 1373
adult	SP			19.6				Lab	Reutter & Herdendorf 1976
	SU			20.2					Reutter & Herdendorf 1376
		N	30.5	_+	27				Carlander 1377
	su	••		18.7					Spotila et al 1379
				***					•

SPECIES: Ambloplites rupestris (rock bass)

Size or Age	Optimum ° C	Range	(a) M W A T	(b) ST Max	No Growtl Upper	h Limits Lower	Location	GROWTH TEMPERATURES: Reference
	27.7 29		31.8	35		8.5	Ontario stream	Carlander 1977 Jobling 1981 Jobling 1981 This study

- (a) MWAT (maximumweekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth)
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Ambloplites rupestris (rock bass)

											SPAWNING AND DEV	/ELOPMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning survival spawning		20.5-21 15.6-21.1	20.5-26	21	26		38				Lab Michigan pond	Brown 1974 Brown 1974 Scott and Crossman 1973 Carlander 1977 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures
- (b) Short-term (24h) rnaximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age	Accli- Accl mation mati Temp Time	on Sea-	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log ti a + b a	me = (temp) b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
										> 36	White R., I		Brown 1974 Brown 1974 Carlander 1977 Leidy and Jenkins 1977

SPECIES: Lepomis cyanellus (green sunfish)

								PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
			>36.1							Brown 1974
				15.9		6				Carlander 1977
				22.7		15				Carlander 1977
				30.6		30				Carlander 1977
				26.8						Beltz et al 1974
<74;			30	27.3	24			Lab		Coutant 1977a
adult			33	30.6	23			Lab		Coutant 1977a
small			30.3	28.2	26.5			Lab		Coutant 1977a

SPECIES: Lepomis cyanellus (green sunfish)

Size or Age (mm)	Optimum ° C		(a) M W A T	(b) ST Max	No Growtl Upper	h Limits Lower	Location	GROWTH TEMPERATURES: Reference
	28	13.2-28			>34	20		Carlander 1977 Beitinger and Magnuson 1979

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Lepomis cyanellus (green sunfish)

											SPAWNING	AND DEVELOPME	NT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location		Reference
spawning spawning	16.7		15.6-28				21.1						Brown 1974 Brown 1974
heat shock spawning hatching	F/W/SU	29.1	20-24	21.8	28				>11.1				Brown 1974 Carlander 1977 Carlander 1977 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larvalentrainment temperatures.

												THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp	Accli- mation Time		Incip. Lethal	Lower Incip. Lethal Temp	-	ime = b (temp) b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
17-18	18 24		su	<38 28 30.2								Pond (Mich.)	Brown 1974 Brown 1974 Brown 1974
adult	21.1 23.1		su	38.9							37.5 >35.6	Lab Lab	Brown 1974 Reutter and Herdendorf 1976 Carlander 1977
	25.26 25			34.5 24.5 36.6 34.8								Lab	Carlander 1977 Leidy and Jenkins 1977 Jobling 1981 Jobling 1981
	30 25				8.5 5								Schneider and et al 1975 Schneider and et al 1975
90-140	10 20										30.1 35.1	Lab Lab	Becker and Genoway 1979 Becker and Genoway 1979
adult	12		su	27.7-28.3								Lab	Evans 1977
adult	20		su	32.3-32.9								Lab	Evans 1977
adult	28		su	35.2-35.3								Lab	Evans 1977
adult	34		su		16.1							Lab	Evans 1977
adult	5		Wi		1.1							Lab	Evans 1977
adult	10		Wi	00.5	1.2							Lab	Evans 1977
adult	12		W i	28.5	C 4							Lab	Evans 1977
adult	20		W i	31.6	6.4							Lab	Evans 1977
adult	28		W i W i	31.9	12.4							Lab Lab	Evans <i>1977</i> Evans 1977
adult	30		Wi	33.5	13.4							Lab	Evans 1977
adult	32			33.5 31.7	5.9								Evans 1977 Evans 1977
adult	20		F F	31.7 37.0	5.8							Lab Lab	Evans 1977 Evans 1977
adult	34			37.0	5.9							Lab	Evans 1977 Evans 1977
YOY YOY	20 12		su		2.1							Lab	Evans 1977 Evans 1977
			su F	31.7	6.0							Lab	Evans 1977 Evans 1977
YOY	20		г Wi	31.7 26	0.0								Evans 1977 Evans 1977
YOY	8											Lab	
YOY	16		W i	30.5								Lab Lab	Evans 1977
YOY	24		Wi	34.2								Lau	Evans 1977

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large		D		28.5-32				L. Monona, Wis.	Coutant 1977a
large		N		27-29				L. Monona, Wis.	Coutant 1977a
small				31.5				Lab	Coutant 1977a
adult	SP			24.2				Lab	Coutant 1977a
adult	su			27.7				Lab	Coutant 1977a
large			>31	26	>22			Lab	Coutant 1977a
YOY	F/W		31.4		24.5	20			Evans 1977
100-161TL		D		28				L. Monona, Wis.	Brown 1974
100-161TL		N		30.5				L. Monona, Wis.	Brown 1974
			32.2					Delaware R.	Brown 1974
adult	W			28.5				Lab	Talmage and Coutant 1979
	SP			31.7				Lab	Talmage and Coutant 1979
	su			31.7				Lab	Talmage and Coutant 1979
			31.7	31.5	31			Lab	Carlander 1977
			34					Lab	Beitinger and Magnuson 1979
			40	28.4	11.9			Connecticut R., Conn.	Marcy 1976a
								(field occurrence)	·
adult	W		26.1	22.9	18.5	8		Lab	Evans 1977
adult	W		29.2	25.3	20.8	12		Lab	Evans 1977
adult	W		30.3	26.9	23	20		Lab	Evans 1977
adult	W		31	27	22.4	24		Lab	Evans 1977
adult	SP		25	23.2	21.4	8		Lab	Evans 1977
adult	SP		28.8	25.5	21.2	12		Lab	Evans 1977
adult	SP		31.4	28.8	25.9	20		Lab	Evans 1977
adult	SP		32.3	29.5	25.6	24		Lab	Evans 1977
adult	su		29.3	25.6	21.8	12		Lab	Evans 1977
adult	su		31.3	28.1	24.5	20		Lab	Evans 1977
adult	su		32.7	30.3	26.7	24		Lab	Evans 1977

SPECIES: Lepomis gibbosus (pumpkinseed)

Size or Age (mm)	Optimum ° C	Range	(a) M W A T	W ST Max	No Growth Upper	Limits Lower	Location	GROWTH TEMPERATURES: Reference
underyearling	25 30		29.3	36		13 5	Gt. lakes	Carlander 1977 Jobling 1981 Griffiths 1978 Spotila et al 1979 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 113 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Lepomis gibbosus (pumpkinseed)

	Season				(b)						SPAWNING AND DEVELOR	PMENT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimum Temp	Temp Range	(al M W A T	ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning		28	20-29								Lake, N.Y. Lab	Brown 1974 Brown 1974
		24										Brown 1974
hatching		28	00.07.0								O Davi Outania	Brown 1974
spawning spawning			20-27.8 13-18								Georgian Bay, Ontario	Scott and Crossman 1973 Carlander 1977
cold shock	15							0.5	- 10	1.8	Lab	Scheider and Becker et al 1975
cold shock	20							2	-10	2.7	Lab	Scheider and Becker et al 1975
cold shock	25							5	- 18	8.5	Lab	Scheider and Becker et al 1975
cold shock	25								-10	6.3	Lab	Scheider and Becker et at 1975
cold shock	30							8.5	- 18	12	Lab	Scheider and Becker et al 1975
cold shock	30								- 1 o	8-9	Lab	Scheider and Becker et al 1975

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

											Di-		THERMAL	TOLERANCES:	
	Accli-	Accli-		Upper Incip.	Lower Incip.	log ti	me =			Expo-	Resis- tance	Critical			
Size or Age	mation	mation	Sea-		Lethal	•	(temp)	Data L	imits	sure	Time	Thermal			
(mm)	Temp	Time	s o n	Temp	Temp	а	b		Lower	Temp	(Min)	(Max)	Location		Reference
adult	15			31	3										EPA 1974
juvenile	12			27	3										EPA 1974
adult	20			32	5										EPA 1974
adult	25			33	7										EPA 1974
juvenile	26			36	10										EPA 1974
adult	30			34	11										EPA 1974
juvenile	33			37	15										EPA 1974
adult	22.8		SU	35.5								38.3 41.5	Lab		Reutter and Herdendorf 1976 Carlander 1977
juvenile	19			33	6										Carlander 1977
eggs	26			33.8	21.9										Carlander 1977
fry	26			34	11										Carlander 1977
,	16											31.5			Murphy et al 1976
	24											35.6-37.5			Murphy et al 1976
	32											38.5-41.4			Murphy et al 1976
90	27			35.8									Lab		Peterson and Schutsky 1976
	13			29.3									Lab		Peterson and Schutsky 1976
	1			23.3									Lab		Peterson and Schutsky 1976
	25											35.6-37.3			Beitinger and Magnuson 1979
	30											37.8			Spotila et al 1979
	35											40 43.4			Spotila et al 1979 Spotila et al 1979
			su	28.5											·
										38	48				Brown 1974
	25		_	38.3								41.4			Brown 1974
50-1 00	12-36		Su	36		00.00	47 4 050		0.4				Lab		Cherry et al 1977
adult 5.8-14.2g	20-23 30			33.8			47-1.058 ² 09-0.7657		34 36	36.5	240				Brown 1974 Brown 1974

SPECIES: Lepomis macrochirus (bluegill1

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
a d u l t				31		26			Cravens 1982
uvenile				31.2		25			Talmage and Coutant 1978
uvenile			33.1		29.5	25			Talmage and Coutant 1978
a				31				Lab	Talmage and Coutant 1980
50-100; <1 yr	Su			31.4					Talmage and Coutant 1980
				29.4-31.3				L. Monona, Wis.	Coutant 1977a
53-99		D		28.8-31.2				L. Monona, Wis.	Coutant 1977a
53-99		N		27-29				L. Monona, Wis.	Coutant 1977a
100-193		D		29.6-32.6				L. Monona, Wis.	Coutant 1977a
100-193		N		27.2-29				L. Monona, Wis.	Coutant 1977a
oung/				32.3				Lab	Coutant 1977a
oung/		D	32.1	30.2	28.5			Lab	Coutant 1977a
/oung		N	32.5	31.5	28.5			Lab	Coutant 1977a
young			33.1	31.2	29.3			Lab	Coutant 1977a
adult	W			27.4				Lab	Coutant 1977a
adult			35	32	26			Lab	Coutant 1977a
45-110			33	32.3	26			Lab	Coutant 1977a
120-155				30.5				Lab	Coutant 1977a
	W		33.6					Thermal discharge	Brown 1974
								White R., Ind.	
			35	30		30-34		Penn.	Brown 1974
				18.7		6			Carlander 1977
				19.6		9			Carlander 1977
	su		34		22			Ohio R.	Yoder and Gammon 1976
	F		24		14			Ohio R.	Yoder and Gammon 1976
	W		а		5			Ohio R.	Yoder and Gammon 1976
			33.5	30.7	27			Lab	Peterson and Schutsky 1976
			30.3	24.6	13			Lab	Peterson and Schutsky 1976
			27.6		1			Lab	Peterson and Schutsky 1976
			33.4	31.8	30.2				Beitinger 1976
			34						Beitinger and Magnuson 1979

160

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	MWAT		Upper	Lower	Location	Reference
						13	Gt. Lakes	Griffiths 1978
						16-20	Indiana Lakes	Evans 1984
	30	20-36						Talmage and Coutant 1978
	30							Cravens 1981
juvenile	30-31							Talmage and Coutant 1980
juvenile	30.1							McCauley and Casselman 1980
subadult	29-30							McCauley and Casselman 1980
	31							McCauley and Casselman 1980
		24-34		32.2				Brown 1974
adult	24-27	16-30						Brown 1974
			29	32				EPA 1974
					26.7	10-13	Ponds	Carlander 1977
	27			31			Lab	Carlander 1977
75-125	31.2							Stuntz and Magnuson 1976

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Lepomis macrochirus (bluegill)

Event	Season and/or Accli- mation Temp	O p t i m u m Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	SPAWNING Location	AND DEVELOPME	NT TEMPERATURES:
spawning hatching heat shock heat shock heat shock	26	22.2-23.9	17-26	25	34		33.8		+ 16.7 + 17.8 +20				Carlander 1977 Spotila et al 1979 Brown 1974 Brown 1974 Brown 1974 EPA 1974
spawning		25		20	01								EPA 1974
hatching cold shock	25	22-24	22-34						-10		Lab		EPA 1974 Wolters and Coutant 1976
cold shock									-14		Lab		Wolters and Coutant 1976 Wolters and Coutant 1976
cold shock									-16		Lab		Wolters and Coutant 1976
heat shock									+16.7/+ +20	20			Brown 1974
heat shock	Su								+ 6.7				Brown 1974

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

												THERMAL TOLERANCES:	
ize or Age mm)	Accli- mation Temp	Accli- mation Time			Lower Incip. Lethal Temp	$\frac{\text{log time =}}{\text{a + b (temp)}}$	Data Uppei	Limits r Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
12; juvenile	25			35.6		35.4953-0.9331	36.9	35.4				Middle Fork & White R., Ark.	Brown 1974
>12; juvenile	30			36.8		20.5981-0.4978	39	36.5				Middle Fork & White R., Ark.	Brown 1974
>12; juvenile	35			37.5		30.7245-9.7257	41.5	37.3				Middle Fork & White FL, Ark.	Brown 1974
oung/	25	14h		35.5					36.9	8		Lab	Brown 1974
	30	14h		36.6					39	10		Lab	Brown 1974
young	35	14h		38.2					41.5	8		Lab	Brown 1974
oung	25	1711		JU.2					35.6	160		Lab	Brown 1974
young	30								36.7	<250		Lab	Brown 1974
oung/													
oung/	35								37.3	9000		Lab	Brown 1974
	15.5			31.1									Houston 1982
	>30			37.9									Houston 1982
						< 7						Field Study	Leidy and Jenkins 1977
SPECIES: Lep	omis meg	alotis (loi	ngear si	unfish)									
Size or Age		alotis (loi Day or Night		r	Final Prefere	Lower endum Avoidan	ce	Acclima Temper		acclimatio ime		TERRED TEMPERATURES:	Reference
Size or Age		Day or	r Uppei	r ance			ce				n		Reference Carlander 1977
SPECIES: Lep	Season	Day or Night	V Upper Avoid	r ance		endum Avoidan	ce				n		Carlander 1977
Size or Age (mm)	Season	Day or Night	r Upper Avoid >37.8 ngear su	r ance unfish)			li- tion			ime Median Lethal	n	tion	Carlander 1977

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

۲	-
C	מכ

THERMAL TOLERANCES:

									THERMAL TOLERANCES:	
Size or Age (mm)	Accli- Acc mation. ma Temp Tim	tion Sea-	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a + b (temp) Data Limits a - b Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Ther (Max)	m a I Location	Reference
larvae			33							EPA 1974
juvenile			35							EPA 1974
juvenile	15			2						EPA 1974
larvae				4						EPA 1974
juvenile	18			4						EPA 1974
juvenile	22			7						EPA 1974
juvenile	26			10						EPA 1974
YOY	35		37						Outdoor expt.	Wrenn 1980
									channels, Alabama	
adult	35		37							Ellis 1984
fry			38						field and lab	Wrenn 1980
larvae			30	10					Lab	Shuter et al 1980
juvenile	15			2					Lab	EPA 1974
juvenile	18			4					Lab	EPA 1974
juvenile	22			7					Lab	EPA 1974
juvenile	26			10					Lab	EPA 1974
	23.3	SU						36.3	Lab	Reutter and Herdendorf 1976
	12.8		29.4-32.	2						Brown 1974
adult/			35							Wrenn 1980
juvenile										
50-I 00; ≤1 yr	18-33	su	35						Lab	Cherry et al 1977
larvae			35.8							Fahmy and Crippen 1981
juvenile	26			10.1					Lab	Leidy and Jenkins 1977
•	35			1.6					Lab	Leidy and Jenkins 1977

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
small				28				Lab	Coutant 1977a
YOY	W			18				Lab	Coutant 1977a
YOY	SP			19-24				Lab	Coutant 1977a
				21.3				Nebish L., Wis.	Coutant 1977a
				21.4				S. Ont. streams	Coutant 1977a
YOY	su			31				Lab	Coutant 1977a
YOY	F			24-27				Lab	Coutant 1977a
YOY	F			26.6				Lab	Coutant 1977a
YOY		D	35	31.1	25			Lab	Coutant 1977a
adult	W			12-13				Lab	Coutant 1977a
adult	SP			15-16				Lab	Coutant 1977a
adult	su			30				Lab	Coutant 1977a
adult	F			21-23				Lab	Coutant 1977a
			33	31.3	26			Lab	Coutant 1977a
adult	su			30-31				Tennessee R., Alab.	Wrenn 1980
								(outdoor exptal channels)	
juvenile				28-29				Lab	Shuter et al 1980
		D		30.1				Lab	Talmage and Coutant 1979
		N		26.6				Lab	Talmage and Coutant 1979
50-100; ≪ 1yr				30.3				Lab	Cherry et al 1977
50-l00;&lyr			27		15	18		Lab	Cherry et al 1977
50-100; ≤ 1yr			30		18	21		Lab	Cherry et al 1977
50-100;*lyr			33		21	24		Lab	Cherry et al 1977
50.100;*lyr			33		24	27		Lab	Cherry et al 1977
50-100; ≤ 1yr			33		24	30		Lab	Cherry et al 1977
50-100; ≤ 1yr			35		27	33		Lab	Cherry et al 1977
adult	F			26.6				Lab	Cherry et al 1977
	W			20		1			Ellis 1984
			136.7						Spotila et al 1979

SPECIES: Micropterus dolomieui (smallmouth bass)

Size or Age	Optimum		(a)	(b) ST	No Growth	Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	MWAT	Мах	Upper	Lower	Location	Reference
YOY juvenile	28	14-31.5	29		35	7	Lab and field (Baie du Dore, L. Huron)	Shuter et al 1980 EPA 1974
juvenile/adult			32/33	35		10-12	Tennessee R (outdoor exptal channels), Alab.	Wrenn 1990
15-35SL; fry	25-26 25 29 27						Lab	Coutant and DeAngelis 1983 McCauley and Casselman 1980 McCauley and Casselman 1980 McCauley and Casselman 1980
						10		Carlander 1977

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth)
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Micropterus dolomieui (smallmouth bass)

											SPAWNING AND DEVELOP	MENT TEMPERATURES:
≣vent	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT		Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
pawning		18	15-17	17	26						Baie du Dore. L. Huron Tennessee R., Ala. (outdoor expt. channel)	Shuter et al 1980 Wrenn 1984
					25						(catacor expt. chamion)	EPA 1974
gg/larval evel.		21	13-26				30	10			Lab and field (Baie du Dore, L. Huron)	Shuter et al 1980
3 7 61.	19						29	17			,	Brown 1974
99	16.1						23.1		+7			Brown 1974
eat shock	20								+17	37		Moore 1979 (d)
old shock	27								-20	2		Coutant 1977b
eat shock	20								+16.6		Lab (onshore discharge)	Crippen and Fahmy 1981
eat shock	20								+17.7		Lab (tempering discharge)	Crippen and Fahmy 1981

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures,

THERMAL TOLERANCES:

Size or Age	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time a + b (te a		<u>Data l</u> Upper	<u>Limit</u> s Lower	Expo- sure Tamp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
juvenile	12 20 25 30			36 33 35 36	5 7 11									Cherry et al 1982 EPA 1974 EPA 1974 EPA 1974
9-11 months 9-11 months S-11 months adult adult	35 20 25 30 20 25 30			36 32 33 33.7 32.5 34.5 36.4		35.5107 19.9918 17.5645 50.8091 - 26.3169 - 29.0213 -	-0.5123 -0.4200 1.4638 -0.6846	3 34 3 36.5	33 35 37				Put-in-Bay, Ohio Put-in-Bay. Ohio Put-in-Bay. Ohio	EPA 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974
under yearling	20 30 30 35			36.4 36.4	5.5 11.8	36.0620) 23.9185			37 37.5				Put-in-Bay, Ohio Put-in-Bay, Ohio Knoxville, Tenn. Knoxville, Tenn.	Brown 1974 Brown 1974 Brown 1974
	22 30 7.2 11.1	21 h 43h		31.5 30.6 35		34.3649 - 35.2777 -	0.9789	9 33.8	32.0 35.5				Lake Mendota, Wis. Lake Mendota, Wis. Pennsylvania	Brown 1974 Brown 1974 Brown 1974 Brown 1974
0.18g; fingerling 0.18g; fingerling	15 20			35 35									Lab (Texas)	Venables et al 1978 Venables et al 1978
0.18; fingerling 0.18; fingerling	25 30			40	10					40	10 ~		Lab (Texas)	Venables et al 1978 Venables et al 1978
0.18; fingerling 0.18;	35 35			40	15					15	19m 12-20h		Lab (Texas)	Venables et al 1978 Venables et al 1978
fingerling adult eggs	0.7 20-21		W	36.7/389 28.9 32.5)							>12.0	Lab	Reutter and Herdendorf 1976 Carlander 1977 Spotila et al 1979 Spotila et al 1979
	20 28		SU	35.6								36.7 40.1		Spotila et al 1979 Spotila et al 1979 Spotila et al 1979

PREFERRED TEMPERATURES: Size or Age Final Acclimation Acclimation Season Day or Upper Lower Temperature T i m e Night Avoidance Preferendum Avoidance (mm) Location Reference 26.6-27.7 Norris Res., Tenn. Coutant 1977a large 30 27-30 Par Pond. S.C. large Coutant 1977a L. Monona, Wis. 29.3-30.9 Coutant 1977a 72-99; D 29.3-32 L. Monona, Wis. 100-408; Coutant 1977a L. Monona, Wis. Ν 26.5-29.1 100-408; Coutant 1977a 29 27 25.5 small lakes, Tenn. Coutant 1977a adult 30-32 Lab Coutant 1977a small 29 27.5 Lab small 30.7 Coutant 1977a Pond C, Savannah Ft. GS, adult 30 Coutant 1977a S.C. 30.1 D Lab Coutant 1977a 110-160; YOY D 30 21 Lab Coutant 1977a 110-150; YOY 34 50-460g Ν 30.2 Lab Coutant 1977a 27.2 65-75TL; 31 29.1 Brown 1974 30.6-32.8 25 Brown 1974 50-90TL; 3-8 Lab adult 28 Cravens 1981 27-32 Lab adult Talmage and Coutant 1979 29.5 Lab Ν Talmage and Coutant 1979 D 27.1 Lab Talmage and Coutant 1979 24 30.4 9 12 Lab Cherry et al 1982 33 21 24 Lab Cherry et al 1982 28.7 21.3 14.8 Connecticut R., Conn. Marcy 1976a (field occurrence)

SPECIES: Micropterus salmoides (largemouth bass)

SPECIES: Micropterus salmoides (largemouth bass)

Sizo or Ago	Ontimum		(-)	(b) ST	No Growth	Limita		GROWTH TEMPERATURES:
Size or Age (mm)	Optimum " C	Range	(a) M W A T		Upper	Lower	Location	Reference
juvenile	25							McCauley and Casselman 1980
subadult	26-28		00	0.4				McCauley and Casselman 1980
I a moral	07	20.20	32	34			Lab	EPA 1974
larval	27	20-30					Lab	EPA 1974
juvenile	30	23-31 15.9-32.5					l ab	EPA 1974
fry	22.0	10.9-32.0					Lab Texas reservoirs	Brown 1974 Brown <i>1974</i>
45.050L . f	23.9							Coutant and DeAngelis 1983
15.35SL; fry	27	17.5-27.5				40	Lab	Coulant and DeAngelis 1903 Carlander 1977
fry	25-30 18	11.5-21.5	1		>36	10	Lab	Smagula and Adelman 1982 Spotila et al <i>1979</i>

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature -optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

heat shock Su

heat shock 15-35

(adult)

(larval)

SPAWNING AND DEVELOPMENT TEMPERATURES: Season (b) (d) (c) and/or ST Max (c) Lethal Median Median Acclifor Accli-Lethal Limit Limit Lethal Optimum Embryo mation Lethal mation Temp (a) Event Temp Temp Range MWATSurvival Time Upper Lower AT Final Location Reference 21 27 EPA 1974 15.6-21 12-20 field Carlander 1977 spawning 20 13-26 EPA 1974 hatching 32.5 Brown 1974 eggs 23.9 Brown 1974 spawning 29-32 Lab (Wis., Minn.) EPA 1978 32.1 Lab Cravens 1982 embryo devel.20 embryo devel. 24 32.1 Lab Cravens 1982 embryo devel.27 32.1 Lab Cravens 1982 32.1 Cravens 1982 embryo devel.30 Lab 26.7 Lab (N.Y.) Venables et al 1978 17-21 eggs spawning 20 Lab (Minn.) Carlander 1977 10-30 Carlander 1977 hatching

+10

+ 20-25 35-40

Lab (Texas)

Brown 1974

Venables et al 1978

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- mation Temp	Accli- mation Sea- Time son	Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a + b (temp) a b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
juvenile adult	24.4	su	<33						>32.8	Lab (UUILT) Lab	EPA 1974 Reutter and Herdendorf 1976

SPECIES: Pomoxis annularis (white crappie)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large	10/		27	40.0	22			Wabash R., Ind.	Coutant 1977a
adult adult	W SP			19.8 18.3				Lab Lab	Coutant 1977a Coutant 1977a
adult	F			10.4				Lab	Coutant 1977a
adult	su			19.4				Lab	Reutter and Herdendorf 1976
	SU		31		26			Ohio R.	Yoder and Gammon 1976
	F		26		18				Yoder and Gammon 1976
	W		8		5				Yoder and Gammon 1976
	su	D	24-30	23				Kansas Reservoir	O'Brien et al 1984
	F	D		23-24					O'Brien et al 1984

SPECIES: Pomoxis annularis (white crappie)

Size or Age	Optimum		(a)	(b) ST	No Growth			GROWTH TEMPERATURES:
(mm)	°C	Range	MWAT	Мах	Upper	Lower	Location	Reference
juvenile	25		27	32.2	07	45.0		EPA 1974 Brown 1974
	27-28.5	5-30			27	15.6	Ohio R.	Carlander 1977 Yoder and Gammon 1976 O'Brien et al 1984

- (a) MWAT (maximum weekly averagetemperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Pomoxis annularis (white crappie)

Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING AND DEVE	ELOPMENT TEMPERATURES: Reference
spawning spawning	sp/su	16-20 18-20	14-23	18	23							EPA 1974 EPA 1974 EPA 1974
hatching spawning		14-16	18.3-20	10	23							Carlander 1977 O'Brien et al 1984

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Pomoxis nigromaculatus (black crappie)

Size or Age (mm)	Accli- mation Temp	Accli- mation Se Time s	Upper Incip. ea- Lethal on Temp	Lower Incip. Lethal Temp	log time = <u>a + b (temp)</u> a b U	<u>Data Limits</u> pper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES:	Reference
juvenile	29 7.2	1°C/h	<33 28.9							Lab (UUILT) Lab	EPA 1974 Brown 1974
adult	23.8	S	u 34						34.9	Lab	Reutter and Herdendorf 1976 Carlander 1977
>200TL		s	32.5 u 26-28							Hayes Centre L., Neb. (observed)	Leidy and Jenkins 1977 Ellison 1984

SPECIES: Pomoxis nigromaculatus (black crappie)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large large small small adult adult adult adult medium larvae adult 75-88TL; adult adult	w Sp SU F Su s u	D N	30 29.5 26 34	27.8-29.8 27-28.2 20.5 21 21.7 22.2 24 18-20 28.3 20.7 24.6	26.5 25.5 20 24			L. Monona, Wis. L. Monona, Wis. Lab	Coutant 1977a EPA 1974 BPOWN 1974 Reutter and Herdendorf 1976 Reutter and Herdendorf 1976 Carlander 1977
			27.3	21.3	16.5			Connecticut R., Conn. (field occurrence)	Marcy 1976a

SPECIES: Pomoxis nigromaculatus (black crappie)

				(b)				GROWTH TEM
Size or Age (mm)	Optimum °C	Range	(a) MWAT	ST Max	No Grow Upper	th Limits Lower	Location	Reference
juvenile	22-25		27	32.2	30	11) NAV-	EPA 1974 Brown 1974 Brown 1974
<76TL;		27-29				6.5	L. Monona, Wis. Ontario	Carlander 197 Ellison 1984
>200TL;	9-17	9-25			26 27		Hayes Center State Lake, Neb. Clear L., Iowa	Ellison 1984

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

S. Pomoxis nigromaculatus (black crappie)

SPAWNING AND DEVELOPMENT TEMPERATURES:

Fuant	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Surviva	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	(d) Median Lethal Final	Location	Reference
			14-18									EPA 1974 EPA 1974
spawning spawning		19-20	14-20								Buckeye L., Ohio	Scott and Crossman 1973 Carlander 1977
spawning spawning		17.8-20	4.4-15.6								Wis. L. Opinicon, Ont.	Carlander 1977 Carlander 1977 Carlander 1977
spawning larval devel.		18.3	13-23								Lab (Minn.)	Carlson and Herman 1978 Carlson and Herman 1978
hatching spawning hatching/		16-20	14-21									This study
devel.				8	2							

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

				Upper	Lower					_	Resis-		THERMAL TOLERANCES:	
Size or Age (mm)	Accli- mation Temp.	Accli- mation Time		Incip. Lethal Temp	Incip. Lethal Temp	_	time = b (temp) b	Data Uppe	Limits r Lower	Expo- sure Temp	tance Time (Min)	Critical Thermal (Max)	Location	Reference
adult larvae adult adult larvae adult	5 10 11 15 19 18 25		su	21 10 25 28 19 26.5 32.3	4								Toronto, Ontario	EPA 1974 EPA 1974 EPA 1974 EPA 1974 EPA 1974 Spotila et al 1979 EPA 1974
juvenile 49; juvenile 4 yr; adult	25 19 5 11 15 25	4 day		21.3 25.0 27.7 28.7	1.1	7.00 17.6 12.4	3601-0.4 195-0.22 3536-0.60 149-0.364 718-0.590	14 26.5)21 26.5 ·1 30.5	22				Columbia R., Oregon Black Ck., L.Simcoe, Ont. Black Ck., L.Simcoe, Ont. Black Ck., L.Simcoe, Ont. Black Ck., L.Simcoe, Ont.	EPA 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974 Brown 1974
larvae young young young 125 TL adult	22-23 22-23 22-23 23-25		SU	23.9 29.6 29.6 29.6 30.9						31.5 32 34	240 60 15			Brown 1974 Brown 1974 Brown 1974 Brown 1974 Hokanson 1977
30-50 TL adult larval	22 15		Su	26 33.7 31.3	9.8						10 30	35	Lab	Cherry et al 1977 Reutter and Herdendorf 1976 Jinks et al 1981 Jinks et al 1981 Dunford 1978
embryo 6-24 g juvenile	25		W	19.9 29.7	6.8							33.4		Hokanson 1977 Hokanson 1977
0.5 g juvenile	28		su	33-34										Hokanson 1977
larval larval hatch swim-up larvae	7.6 15.8 22-24			>24 >26.6 29.2 19.9 18.8	6.8 9.8							34.8 37.6	Lab	Dunstall 1979 Dunstall 1979 Spotila et al 1979 Spotila et al 1979 Spotila et al 1979

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
small				12.2				Muskellunge L., Wis.	Coutant 1977a
large				20.2				Muskellunge L., Wis.	Coutant 1977a
				20.2				Silver L Wis.	Coutant 1977a
				21.0				Nebish L., Wis.	Coutant 1977a
				20.8				Trout L., Wis.	Coutant 1977a
				19.7				L. Nipissing, Ont.	Coutant 1977a
				21.1				L. Opeongo, Ont.	Coutant 1977a
adult	W			21.0				Costello L., Ont.	Coutant 1977a
					11			L. Michigan	Coutant 1977a
small				21.0				Lab	Coutant 1977a
small				24.2				Lab	Coutant 1977a
small		D	26.5	23.3	20.2			Lab	Coutant 1977a
small		N	25	22.5	19.5			Lab	Coutant 1977a
small				23.3				Lab	Coutant 1977a
adults				20.1				Lab	Coutant 1977a
YOY	W			10-13				Lab	Coutant 1977a
YOY	SP			18.0				Lab	Coutant 1977a
YOY	su			25-27				Lab	Coutant 1977a
YOY	F			28.0				Lab	Coutant 1977a
adult	W			7-12				Lab	Coutant 1977a
adult	SP			13-16				Lab	Coutant 1977a
adult	su			27.0				Lab	Coutant 1977a
adult	F			22-25				Lab	Coutant 1977a
adult	W			14.1				Lab	Coutant 1977a
adult	su			20.9				Lab	Coutant 1977a
adult	F			19.9				Lab	Coutant 1977a
juvenile	W			22				Lab	EPA 1974
juvenile	su			24				Ont. Lakes	EPA 1974
juvenile				20-23		24		Lab	EPA 1974
adult				18-20		24		Lab	EPA 1974
larva				13-18					Brown 1974

Page 2 of 2

							PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
small			30.5				L. Monona, Wis.	Brown 1974
underyear-	W			13		1		Brown 1974
lings 82-118TL			26	23	20	20-22		Brown 1974
82-1181L 121-169TL			33.3-34.4	23	20	25		Brown 1974 Brown 1974
30-50FL			21	19.2	12	15	Lab	Cherry et al 1977
30-50FL			27	20.4	15	18	Lab	Cherry et al 1977 Cherry et al 1977
30-50FL			27	21.1	18	21	Lab	Cherry et al 1977
30-50FL			29	22.4	18	24	Lab	Cherry et al 1977
30-50FL				21.4			Lab	Cherry et al 1977
juvenile	F	D		>15			L. Michigan	Brandt et al 1980
juvenile	F	N		>17			L. Michigan	Brapdt et al 1980
larvae	su			12-25			Atikokan GS, Ont.	Haymes 1984
adult	F			12.3-13.8		5	Lab	EPA 1976
adult	F			13.5-18.8		10	Lab	EPA 1976
adult	F			17.6-20.2		15	Lab	EPA 1976
adult	F			16.1-24.2		20	Lab	EPA 1976
adult	Wi			25			Lab	EPA 1976
adult	su			17			Lab	EPA 1976
adult	Wi			6.3		5.4	power plant thermal effluent	Cravens et al 1983
adult				8.0		0		Cravens et al 1983
adult	147:			22		18	D	Cravens et al 1983
	Wi Wi			5.4			Pokegamma Res., Minn.	Cravens 1981
- dl4	F			6.3 7-8, 11-17			near thermal outfall, Minn.	Cravens 1981
adult	Г			7-0, 11-17 14-19			L. Michigan Wickett L., Manitoulin Isl., Ont.	Talmage and Coutant 1980
00				20.2		20	Lab	Talmage and Coutant 1980
60 g				20.2		20	Lab	Talmage and Coutant 1980
newly hat- ched larvae				24.3		20		Talmage and Coutant 1980
3				24.2		23		Talmage and Coutant 1979
				21.7		25		Talmage and Coutant 1979
8-11	SP		>29	12-16			Keowee Res., S.C.	Clugston et al 1978
adult	su			18-21				Clugston et al 1978
juvenile	su			20-24				Clugston et al 1978
-								

SPECIES: Perca flavescens (yellow perch)

Size or Age	Optimum		(a)	(b) ST	No Growt	h Limits		GROWTH TEMPERATURES:
(mm)	°C	Range	M W A T		Upper	Lower	Location	Reference
			22	29				EPA 1974
adult		13-20				12.513		EPA 1974
juvenile	22.5							McCauley and Casselman 1980
•	23							Smagula and Adelman 1982
juvenile		20-23.3						Leidy and Jenkins 1977
adult		17.6-20.1	1					Leidy and Jenkins 1977
	24.2							Leidy and Jenkins 1977
5.2-23.7 g	23							Jobling 1981
0.5 g	28							Jobling 1981
	23-24							Jobling 1981
YOY	29				32			Kitchell et al 1977
juvenile/adult	23				28			Kitchell et al 1977
	26-30							Ney 1978
	24.7							Casselman 1978

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 113 (upper incipient lethal temperature -optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Perca flavescens (yellow perch)

Page 1 of 2

					(h)						SPAWNING AND DEVE	LOPMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range		(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit L o w e r	Lethal	(d) Median Lethal Final	Location	Reference
spawning		12	7-15	12	20							EPA 1974
ncubation/ hatch		10-20	7-20									EPA 1974
wintering		<6	4-11									Brown 1974
spawning		7.8-1 2.2	7-16									Brown 1974
ncubation			7-15								L. Monona, Wis.	Brown 1974
neat shock							32					Ellis 1984
							<37					Teleki 1976
spawning		5-6	3								Big Point, Bay of Quinte, L. Ont.	Dunford 1978

	Season				(b)						SPAWNING AND DEVELOPM	MENT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	ST Max for	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
larval devel		13.1-18.2									Lab	Griffiths 1978
hatching		<12	8-19								Lab	Griffiths 1978
hatching		8.4	7-10								Lab	Griffiths 1978
heat shock	7								+17	24		Moore 1979(d)
spawning		8-10									Long Point Bay, L. Erie	Talmage and Coutant 1978
spawning		10									Lab	Talmage and Coutant 1980
spawning		10									Keowee Res., S.C.	Talmage and Coutant 1980
incubation		9.9									Lab	Talmage and Coutant 1980
Incubation		<16					22				Lab	Wyman 1981
heat shock/ larvae	7								+17		Lab; simulated onshore discharge	Crippen and Fahmy 1981
heat shock/ larvae	7								+21.6		Lab; simulated tempering discharge	Crippen and Fahmy 1981
heat shock/ larvae	7								+15.5		Lab; simulated offshore discharge	Crippen and Fahmy 1981
spawning			4-18.5	11.9								Hokanson 1977
spawning		6-12										Houston 1982
spawning		<9-10									L. Opinicon, L. Ont.	Thorpe 1977
	70456		7.2-l 1								Wisc.	Clugston et al 1978
heat shock (larval)	7.6-15.8								> ∤ 15		Lab; simulated once- through cooling	Dunstall 1979

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

Size or Age	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	•	ime = o (temp) b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL TOLERANCES: Location	Reference
119; juvenile	25.8		F	30.4	0.0								Hokanson 1977
larval	10.1			20.9	6.0				27	114		Lab	Hokanson 1977
119; juvenile	10.1			26.6						68		Lab	Smith and Koenst 1975
119; juvenile	12.0			26.7					28				Smith and Koenst 1975
119; juvenile	13.9			28.4					30	16		Lab	Smith and Koenst 1975
119; juvenile	16.0			28.6					30	18		Lab	Smith and Koenst 1975
119; juvenile	18.3			28.7					30	19		Lab	Smith and Koenst 1975
119; juvenile	19.9			29.5					31	122		Lab	Smith and Koenst 1975
119; juvenile	22.0			29.9					31	545		Lab	Smith and Koenst 1975
119; juvenile	23.9			30.4					32	348		Lab	Smith and Koenst 1975
119; juvenile	25.8			30.4					32	246		Lab	Smith and Koenst 1975
juvenile	26			31									EPA 1974

SPECIES: Stizostedion canadense (sauger]

			Unner				PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Acclimation Temperature Time	n Location	Reference
large				19.2			Norris Res., Tenn.	Coutant 1977a
large			28		22		Wabash R., Ind.	Coutant 1977a
				22.6				Jobling 1981
				21.3				Jobling 1981
				18.6-19.2			lake	Hokanson 1977
				22-28			stream	Hokanson 1977
				19			field	EPA 1974
adult	su			27-29			Wabash Ft., Ind.	EPA 1974
	F			14-21			power plant, Ohio R.	Yoder and Gammon 1976
	W			8-11			power plant, Ohio R.	Yoder and Gammon 1976
				26-28			power plant, Ohio R.	Yoder and Gammon 1976
	SP			7.2			Norris Res., Tenn.	Brown 1974
	su			21.1			Norris Res., Tenn.	Brown 1974
				<20			Lewis and Clark Res., S.D.	Brown 1974

SPECIES: Stizostedion canadense (sauger)

0:	0.41		(-)	(b)	No Growth	Limita		GROWTH TEMPERATURES:
Size or Age (mm)	Optimum ° C	Range	(a) M W A T	ST Max	Upper	Lower	Location	Reference
juvenile	22	16.1-26	25	30	26		Lab	Smith and Koenst 1975 EPA 1974
	315.4					5		Talmage and Coutant 1980 Fitz and Holbrook II 1978

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth).
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Stizostedion canadense (sauger)

											SPAWNING AND DEVELOR	PMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
spawning			4-14.4								N. Dak., Tenn.	Hokanson 1977
spawning		9-15										Hokanson 1977
incubation		12-15										Hokanson 1977
spawning		9	S-12									Smith and Koenst 1975
				10	21							EPA 1974
spawning		10	6-14								Norris Res., Tenn	EPA 1974
incubation/ hatch		12-15	10-16									EPA 1974
spawning			3.0-1 1 1									Brown 1974

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

										THERMAL TOLERANCES:	
Size or Age	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log time = a → b (temp) <u>Data Limits</u> U op per Lower	Expo- sure T e m p	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
115; juvenile	25.8		F	31.6	6.0						Hokanson 1977
larval	8.0			19.2 27	6.0					Lab	Hokanson 1977 Smith and Koenst 1975
115; juvenile 115; juvenile	10.1			28.6						Lab	Smith and Koenst 1975
115; juvenile	12.1			29						Lab	Smith and Koenst 1975
115; juvenile	13.9			29.5						Lab	Smith and Koenst 1975
115; juvenile	16.0			30.6						Lab	Smith and Koenst 1975
115; juvenile	18.2			30.5						Lab	Smith and Koenst 1975
115; juvenile	20.2			30.5						Lab	Smith and Koenst 1975
115; juvenile	22.1			30.5						Lab	Smith and Koenst 1975
115; juvenile	24.0			31.5						Lab	Smith and Koenst 1975
adult	23.3		su						234.4	Lab	Reutter and Herdendorf 1976
adult	7.2			28.9							Ellis 1984
adult				31							Ellis 1984
42;	26			34						Wheeler Res Tenn.	Wrenn and Forsythe 1978

SPECIES: Stizostedion vitreum (walleye)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large				20.6				Trout Lake, Wis.	Coutant 1977a
large				23.2 23				Norris Res., Tenn.	Coutant 1977a Jobling 1981
				20.6-23.2				field	Houston 1982
larvae	SP			21 16 10.6-11.2				field Atikokan GS, Ont. (epilimnion) West Blue Lake, Man.	Houston 1982 Haymes 1984 Talmage and Coutant 1980
			24					Norris Res., Tenn.	Fitz and Holbook II 1978
adult adult			21	22 20				L. Winnibigoshish, Minn.	Inskip and Magnuson 1983 Spotila et al 1979 Spotila et al 1979

SPECIES: Stizostedion vitreum (walleye)

Size or Age	Optimum "C	Range	(a) M W A T	(b) ST Max	No Growth Upper	Limits Lower	Location	GROWTH TEMPERATURES: Reference
age 0 85 65 1.81-2.00 g	22.1 25.2 22 22.6	12-28 19-25	25	31 32-33	27 29	12	West Blue Lake. Man. outdoor experimental channels, Alabama	This study Cheshire and Steel 1972 Kelso and Ward 1972 Hokanson 1977 Hokanson 1977 Smith and Koenst 1975 Talmage and Coutant 1980 Casselman 1978 Niskum 1978
<35; fry 4 2 5 ; fingerling	15 22				20 27	10	Lab Lab	Nickum 1978 Nickum 1978

⁽a) MWAT (maximum weekly average temperature for growth) = optimum t 113 (upper incipient lethal temperature -optimum temp for growth).

⁽b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

spawning

spawning

spawning

hatching

spawning

(42 mm)

juvenile

spawning

incubation

heat shock

26

Frant	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation	(c) Lethal Limit	(c) Lethal Limit Lower	Lethal	(d) Median L e t h Final		D. C. C. C.
Event	теттр	remp	Range	WWAI	Sulvival	rime	Upper	Lower	AI	rillai	Location	Reference
spawning		6	2.2-15.6 6-12								Wis.	Hokanson 1977
hatching spawning		8	4.4-14.4									Hokanson 1977 Marshall 1977
hatching		9-15									Lab	Smith and Koenst 1975
spawning		6-12									Lab	Smith and Koenst 1975
incubation		19-15						20.9			Lab	Smith and Koenst 1975
larval devel		9-21									Lab	Smith and Koenst 1975
heat shock (fry-5 day)	6						21		+15		Lab	Smith and Koenst 1975
cold shock	11							6	- 5		Lab	Smith and Koenst 1975
(fry-2 day)								_				
cold shock	21							6	- 15		Lab	Smith and Koenst 1975
(fry-7 day)	25							0.4	40.0		I als	0 11 116 1 1075
cold shock (80-100 mn								8.1	-16.9		Lab	Smith and Koenst 1975
hatching	''')	17.8-19.4										Smith and Koenst 1975
spawning		6.1-8.3	4.4-10.0								Kawartha Lakes, Ont.	Smith and Koenst 1975
incubation		7.8-8.9									Northern Minn.	Smith and Koenst 1975
spawning			6.7-13.0								Manitoba	Smith and Koenst 1975
spawning		7.2-10									Lake Gogebic, Mich.	Smith and Koenst 1975
. •											o -, -	

SPAWNING AND DEVELOPMENT TEMPERATURES:

Smith and Koenst 1975

Spotila et al 1979

This study

Griffiths 1981

Talmage and Coutant 1980

Wrenn and Forsythe 1978

Muskegon R., Mich.

Northern Wis.

Lab

Lab

Lab

+6

Bay of Quinte, L. Ont.

Clinch and Powell R, Tenn.

Wheeler Res., Tenn. Ft.,

20

15.6

4.4-6.7

3.4-10

5-10

21

7.1-9.9

10.5-15.5

16.7-19.4

8-12

5-19

8.9

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

Size or Age	Season	Day or	Upper	Final	Lower	Acclimation	Acclimation	PREFERRED	TEMPERATURES:	
(mm)		Night	Avoidance	Preferendum	Avoidance	Temperature	Time	Location		Reference
										-
				25				Chateauguay	R., Que	Scott and Crossman 1973
				24				0,	Mountains, Que.	Scott and Crossman 1973

SPECIES: Etheostoma blennoides (greenside darter)

size or Age mm)	Accli- mation Temp	Accli- mation Sea Time so	Incip. a- Lethal n Temp	Incip. Lethal Temp	log time a + b (te a		tance Time (Min)	Critical Thermal (Max)	Location		Reference
	A If	A I'	Upper	Lower	Leave Const	.	Resis-	0.315.41	THERMAL	TOLERANCES:	

Size or Age (mm)	Upper Accli- Accli- Incip. mation mation Sea- Lethal Temp Time son Temp	Incip.	log time = <u>a -t b (temp) Data Limits -</u> a b Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	15					32.1	Lab (N.Y.)		Kowalski et al 1978

SPECIES: Etheostoma caeruleum (rainbow darter)

•				PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
prolarva	SP	20		Drake's Ck., Ky.	Floyd et al 1984

SPECIES: Etheostoma caeruleum (rainbow darter)

Event	Season and/or Accli- mation Temp	O p t i m u m Temp	T e m p Range	 (b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING Location	AND DEVELOPME	ENT TEMPERATURES:
hatching (IId)		17-18.5										Scott and Crossman 1973

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for Spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age	Season Day or Upper	Final Lower	Acclimation Acclimation	PREFERRED TEMPERATURES:	
(mm)	Night Avoidance	Preferendum Avoidance	Temperature Time	Location	Reference
larval	Sp/Su	12-25		Field, Atikokan GS site, Ont.	Haymes 1984

SPECIES: Etheostoma exile (Iowa darter)

Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(at MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final		NT TEMPERATURES:	
hatching		13-16										Scott and Crossman 197	73

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

hatching

SPECIES. E	tneostoma ti	abellare (fanta	ii darter)									
Size or Age (mm)	Accli- mation Tamp	Accli- mation Sea- Time sor	Upper incip. Lethal Temp	Lower Incip. Lethal Temp	log time a + b (to a	emp) <u>Dat</u>	a Limits per Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL Location	TOLERANCES: Reference
	15									32.1	Lab, N.Y.	Kowalski et al 1978
SPECIES: Ef	theostoma fl	abellare /fanta	il darter)									
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	SPAWNING Location	AND DEVELOPMENT TEMPERATURES: Reference
hatching spawning spawning migration hatching (30-354) hatching (21d) hatching (14-16d)		21.1 21-22 23.5	18.9-24.4 7-15 17-20	ı							N.Y. N.Y.	Scott and Crossman 1973 Brown 1974 Cooper 1979 Cooper 1979 Cooper 1979 Cooper 1979
SPECIES: E	Season and/or Accli- mation	microperca (lea			(b) ST Max for Embryo	Accli- mation	(c) Lethal Limit	(c) Lethal Limit	Median Lethal	Median Lethal	SPAWNING	AND DEVELOPMENT TEMPERATURES:
Event	mation Temp	Temp		(a) MWAT	Survival		Upper	Lower		Final	Location	Reference

(a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.

Scott and Crossman 1973

18-20

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

Size or Age (mm)	Accli- Accli- mation mation Temp Time	Upper Incip. Sea- Lethal son Temp	Lower Incip. Lethal Temp	$\frac{\text{log time =}}{\text{a + b (temp)}}$	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	15 15	W SP						30.7 31.4	N.Y. Lab N.Y. Lab		Kowalski et al 1978 Kowalski et al 1978

SPECIES: Etheostoma nigrum (johnny darter)

Size or Age	Season Day	v or Upper	Final	Lower	Acclimation Acclimatio	PREFERRED TEMPERATURES:	
(mm)	Nigh		Preferendum		Temperature Time	Location	Reference
larval	SP	28.8	11-22 17-20 24.5	20.1		Oswego GS, L. Ont. Drake's Ck., Ky. Connecticut Ft., Conn. (field occurrences)	Wyman 1981 Floyd et al 1984 Marcy 1976a

SPECIES: Etheostoma nigrum (johnny darter)

	Season				(b)					(1)	SPAWNING AND D	DEVELOPMENT TEMPERATURES:
Event	and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
hatching		22-24									L. Erie,	Scott and Crossman 1973

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Percina caprodes (logperch)

				PREFERRED TEMPERATURES:	
Size or Age (mm)	Season Day or Upper Night Avoidance	Final Lower Preferendum Avoidance	Acclimation Acclimation Temperature Time	Location	Reference
larval larval prolarva mesolarva metalarva	SP SP SP Sp/Su	16 9-16 11.8 20-23 21-25		Field, Atikokan GS site Mississippi R. Drake's Ck., Ky. Drake's Ck., Ky. Drake's Ck., Ky.	Haymes 1984 Holland and Sylvester 1983 Floyd et al 1984 Floyd et al 1984 Floyd et al 1984

SPECIES: Percina caprodes (logperch)

	Season				(b)						SPAWNING AND I	DEVELOPMENT	T TEMPERATURES:	
Event	and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	R	Reference	
egg/larval			22-25								Texas	E	Brown 1974	

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures,
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

							OF AWARING AND DEVELOR IN	LIVI ILIMI LIVITORLO.
	Season		(b)					
	and/or		ST Max	(c)	(c)	(d)		
	Accli-		for Accli-	Lethal	Lethal Me	dian Median		
	mation	Optimum Temp (a)	Embryo mation	Limit	Limit Let	thal Lethal		
Event	Temp	Temp Range MWAT	Survival Time	Upper	Lower AT	Final	Location	Reference

SPAWNING AND DEVELOPMENT TEMPERATURES:

spawning 20.5-21.2 Cheboygan Ft., Mich. Scott and Crossman 1973

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et a) (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Percina maculata (blackside darter)

	Cassan				(1.)						SPAWNING AND	DEVELOPMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning		16.5									S. Michigan	Scott and Crossman 1973

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Aplodinotus grunniens (freshwater drum)

Sire or Age (mm)	Accli- Accli- mation matior Temp Time	I		Lower Incip. Lethal Temp	log time a + b (te	Data Limits _ Upper Lower		Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
adult YOY	21.2 29-35		32.8 32.8				32.8	2880	34.0	Lab		Reutter and Herdendorf 1976 Houston 1982 Jinks et al 1981

SPECIES: Aplodinotus grunniens [freshwater drum)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
large				22.2				Norris Res., Tenn	Coutant 1977a
large			30		22			Wabash R., Ind.	Coutant 1977a
small		D		29.5-30.3				L. Monona, Wis.	Coutant 1977a
small		N		27.529				L. Monona, Wis.	Coutant 1977a
YOY	su			31.3				Lab	Coutant 1977a
adult	su			26.5				Lab	Coutant 1977a
adult	F			19.6				Lab	Coutant 1977a
				21.1-26.1				Lewis and Clark L., S.D. (CUE)	Brown 1974
				22				thermal discharge, Ohio R.	Brown 1974
				29-31				thermal discharge, Wabash R., Ind.	Brown 1974
	F			22-30				J.M. Stuart GS, Ohio R., Ohio	Yoder and Gammon 1976
	Wi			6-11				J.M. Stuart GS, Ohio R., Ohio	Yoder and Gammon 1976
5-10; larvae				20-28				Missouri R., Nebr. (CUE)	Cada and Hergenrader 1980

SPECIES: Aplodinotus grunniens (freshwater drum)

Size or Age	Optimum		(2)	(b) ST	No Growth Li	imite		GROWTH TEMPERATURES:
Size or Age (mm)	°C	Range	(a) M W A T			ower	Location	Reference
	22				14	1.4	L. Erie	Brown 1974
			25.6	33	18	8.3	L. Erie	Brown 1974 This study

- (a) MWAT (maximum weekly average temperature for growth) = optimum + 1/3 (upper incipient lethal temperature optimum temp for growth)
- (b) Maximum temperature for short-term exposure during growth season to protect against lethal effects.

SPECIES: Aplodinotus grunniens (freshwater drum)

	0				4.						SPAWNING AND DEVELOPM	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	Temp Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Median Lethal A T	(d) Median Lethal Final	Location	Reference
spawning spawning hatching (36-22h)		21	18922.2 18.0-24.5 21-25								Wis. Lewis and Clark L., S.D.	Brown 1974 Brown 1974 Brown 1974
hatching heat shock	W	23.9		21	26		35.6				L. Erie winter thermal discharge, Sandusky R.	Brown 1974 Brown 1974 EPA 1974
spawning incubation and hatch		21	19-24 22-26		20							EPA 1974 EPA 1974
cold shock	27							9	- 18			Coutant 1977b

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

Size or Age	Accli- mation Temp	Accli- mation Time	Upper Incip. Lethal Temp	_	 Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	THERMAL	TOLERANCES:	Reference
	15							30.9			Spotila et al 1979

SPECIES: Cottus bairdii (mottled sculpin)

								PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season D N	•	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
				16.5 16.7				S. Ontario str	eams	Coutant 1977a Wyman 1981

SPECIES: Cottus bairdii (mottled sculpin)

											SPAWNING AND DEVEL	OPMENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning hatching		12.8	5.0 - 16.1 7.8-17.3								Lab	Brown 1974 Brown 1974
(21-28d) spawning cold shock	18.7	10		10	16.1				7	-11.7	Field, N.Y. L. Huron, (Seiche)	Scott and Crossman 1973 Scott and Crossman 1973 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for Spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

												THERMAL TOLERANCES:	
Size or Age	Accli- mation Temp	Accli- mation Time		Upper Incip. Lethal Temp	Lower Incip. Lethal Temp	log ti a + b a	me = (temp) b	Data Limits Upper Lower	Expo- sure Temp	Resis- tance Time (Min)	Critical Thermal (Max)	Location	Reference
0-1 00				26.5								Lab, L. Mich.	Otto and Rice 1977
70-80	5		SP	18.5	<1						22.7	Lab, L. Mich.	Otto and Rice 1977
70-80	10		SP	22.5	<1						24.8	Lab, L. Mich.	Otto and Rice 1977
70-80	15		SP	23.5	3.5						26.3	Lab, L. Mich.	Otto and Rice 1977
70-80	20		SP								29.4	Lab, L. Mich.	Otto and Rice 1977
80-100	5		W								24	Lab, L. Mich.	Otto and Rice 1977
80-I 00	10		W								25.1	Lab, L. Mich.	Otto and Rice 1977
30-l 00	15		W								27.3	Lab, L. Mich.	Otto and Rice 1977
30-100	20		W								29.4	Lab, L. Mich.	Otto and Rice 1977
40-100	5								19	305		Lab, L. Mich.	Otto and Rice 1977
10-100	5								22	25		Lab, L. Mich.	Otto and Rice 1977
40-100	10								23	8800		Lab, L. Mich.	Otto and Rice 1977
40-100	10								26	8		Lab, L. Mich.	Otto and Rice 1977
40-100	15								24	3000		Lab, L. Mich.	Otto and Rice 1977
40-100	15								27	35		Lab, L. Mich.	Otto and Rice 1977
40-100	20			25									Talmage 1978

SPECIES: Cottus cognatus (slimy sculpin)

								PREFERRED TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location	Reference
arge			6		4			L. Michigan	Coutant 1977a
- 3-				6-8				L. Michigan	Brandt et al 1980
	F	N		4-6				L. Michigan	Brandt et al 1980
			15.2	9		5		Lab	Otto and Rice 1977
			21.5	12		15		Lab	Otto and Rice 1977
				10				Lab	Otto and Rice 1977
			16			10		Lab	Otto and Rice 1977
				13		20			Talmage 1978

SPAWNING AND DEVELOPMENT TEMPERATURES:

												SPAWINING AND DEVEL	OF WENT TEWFERATORES.
Event	Season and/or Accli- mation Tamp	Optimum Temp	ı Temp Range	(a) MWAT	(b) ST M for Embr Surv		Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning		5										Cayuga L., N.Y.	Scott and Crossman 1973
spawning		10										Trib. Fall Ck., N.Y.	Scott and Crossman 1973
spawning		8										Montreal, R., Sask.	Scott and Crossman 1973
40-100 mm; heat	5							22		+17		Lab	Otto and Rice 1977
shock	10							26		+16		Lab	Otto and Rice 1977
shock	15							27		+12		Lab	Otto and Rice 1977
cold shock	15								2.5	- 12.5		Lab	Otto and Rice 1977
				8.	1	0							This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainment temperatures.

SPECIES: Cottus ricei (Spoonhead sculpin)

											SPAWNING AND DEVELOP	MENT TEMPERATURES:
Event	Season and/or Accli- mation Temp	Optimum Temp	T e m p Range	(a) MWAT	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location	Reference
spawning		4.5		4.5							Pemichangan L., Quebec	Scott and Crossman 1973 This study

- (a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.
- (b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.
- (c) Not incipient lethal temperatures as defined by Fry et al (1946).
- (d) Simulated larval entrainmenttemperatures.

SPECIES: Myoxocephalus quadricornis (deepwater sculpin)

								PREFERRED	TEMPERATURES:	
Size or Age (mm)	Season	Day or Night	Upper Avoidance	Final Preferendum	Lower Avoidance	Acclimation Temperature	Acclimation Time	Location		Reference
large			4.5		4			L. Michigan Field		Coutant 1977a
	F	N	10	< 5				L. Michigan (bottom traw	1)	Coutant 1977a Brandt et al 1980
9-18TL 9-18TL	SP	N N		2-10 2-6				L. Michigan L. Michigan	•	Mansfield et al 1983 Mansfield et al 1983

SPECIES: Myoxocephalus quadricornis (deepwater sculpin)

											SPAWNING A	AND DEVELOPME	NT TEMPERATURES:
Event	Season and/or Accli- mation Temp	O p t i m u m Temp	T e m p Range	(a) M W A T	(b) ST Max for Embryo Survival	Accli- mation Time	(c) Lethal Limit Upper	(c) Lethal Limit Lower	Lethal	(d) Median Lethal Final	Location		Reference
ncubation (97d)		1.5											Mansfield et al 1983

⁽a) MWAT = maximum weekly average temperature during month of peak spawning, less than or equal to optimum, or middle of range of spawning temperatures.

⁽b) Short-term (24h) maximum temperature for successful embryo survival (incubation temp) or maximum temperature for spawning.

⁽c) Not incipient lethal temperatures as defined by Fry et al (1946).

⁽d) Simulated larval entrainment temperatures.

- 79-1 Illustrated field guide for the classification of sea lamprey attack marks on Great Lakes lake trout. 1979. E. L. King and T. A. Edsall. 41 p.
- 82-1 Recommendations for freshwater fisheries research and management from the Stock Concept Symposium (STOCS). 1982. A. H. Berst and G. R. Spangler. 24 p.
- 82-2 A review of the adaptive management workshop addressing salmonid/lamprey management in the Great Lakes. 1982. Edited by J. F. Koonce, L. Greig, B. Henderson, D. Jester, K. Minns, and G. Spangler. 40 p.
- 82-3 Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage. 1982. Edited by N. A. Auer. 744 p.
- 83-1 Quota management of Lake Erie fisheries. 1983. Edited by J. F. Koonce, D. Jester, B. Henderson, R. Hatch, and M. Jones. 39 p.
- 83-2 A guide to integrated fish health management in the Great Lakes basin. 1983. Edited by F. P. Meyer, J. W. Warren, and T. G. Carey. 262 p.
- 84-1 Recommendations for standardizing the reporting of sea lamprey marking data. 1984. R. L. Eshenroder, and J. F. Koonce. 21 p.
- 84-2 Working papers developed at the August 1983 conference on lake trout research. 1984. Edited by R. L. Eshenroder, T. P. Poe, and C. H. Olver.
- 84-3 Analysis of the response to the use of "Adaptive Environmental Assessment Methodology" by the Great Lakes Fishery Commission. 1985. C. K. Minns, J. M. Cooley, and J. E. Forney. 21 p.
- 85-1 Lake Erie fish community workshop (report of the April 4-5, 1979 meeting). 1985. Edited by J. R. Paine and R. B. Kenyon. 58 p.
- 85-2 A workshop concerning the application of integrated pest management (IPM) to sea lamprey control in the Great Lakes. 1985. Edited by G. R. Spangler and L. D. Jacobson. 97 p.
- 85-3 Presented papers from the Council of Iake Committees plenary session on Great Iakes predator-prey issues, March 20, 1985. 1985. Edited by R. L. Eshenroder. 134 p.
- 85-4 Great Lakes fish disease control policy and model program. 1985. Edited by J. G. Hnath. 24 p.
- 85-5 Great Lakes Law Enforcement/Fisheries Management Workshop (Report of the 21, 22 September 1983 meeting). 1985. Edited by W. L. Hartman and M. A. Ross. 26 p.
- 85-6 TFM vs. the sea lamprey: a generation later. 1985. 17 p.
- 86-1 The lake trout rehabilitation model: program documentation. 1986. C. J. Walters. L. D. Jacobson and G. R. Spangler. 32 p.
- 87-1 Guidelines for fish habitat management and planning in the Great Lakes (Report of the Habitat Planning and Management Task Force and Habitat Advisory Board of the Great Lakes Fishery Commission). 1987. 15 p.
- 87-2 Workshop to Evaluate Sea Lamprey Populations "WESLP" (Background papers and Proceedings of the August 1985 workshop). 1987. Edited by B. G. H. Johnson.