South by Southwest Tweet Content

Elizabeth Webster October 2022

Introduction

This project explores the use of a classification model in order to predict the sentiment of a tweet.

We will be using natural language processing to increase the accuracy of our model.

Outline

- Business Problem
- Data
- Methods
- Models
- Text Patterns
- Recommendations
- Next Steps

Business Problem

- South by Southwest SXSW
- Enhance experience for future attendees
- Ability to assess how a current conference is progressing

Data

Dataset from CrowdFlower

- Over 9,000 tweets pertaining to SXSW
- Three columns:
 - Tweet Text
 - Product
 - Sentiment
- Sentiments:
 - Positive
 - Negative
 - No Emotion
 - I Can't Tell

Distribution of Data By Sentiment

Methods

Data Cleaning:

- Finding and filling missing data
- Removing unnecessary data
- Train-test split

Natural Language Processing:

- Removing stopwords and punctuation
- Distilling words to their root Lemmatization
- Adding features

Models - Multinomial Naive Bayes

- Baseline Model 60.2% accuracy
 - As accurate as assigning 'No Emotion' to all
- Removing stopwords 60.8% accuracy
- Lemmatizing 60.7% accuracy
- Increasing Features 64% accuracy

Models - Confusion Matrix

 Model is overwhelmingly predicting 'No Emotion'

 Model is not predicting 'Negative Emotion' at all

Text Patterns

Positive Word Cloud

Negative Word Cloud

Recommendations

Collect more data labelled as positive or negative

Identify and remove SXSW specific stopwords

Utilize the Multinomial Naive Bayes model to make predictions

Next Steps

Explore sentiments for specific products

 Part of speech tagging for more accurate lemmatization

Thank You!

Email: eaw524@gmail.com

GitHub: https://github.com/elizabeth524