

Физтех-Школа Прикладной математики и информатики (ФПМИ) МФТИ

- Задание 3

Классификация текстов

В этом задании вам предстоит попробовать несколько методов, используемых в задаче классификации, а также понять насколько хорошо модель понимает смысл слов и какие слова в примере влияют на результат.

```
1 import pandas as pd
2 import numpy as np
3 import torch
4
5 from torchtext import datasets
6
7 from torchtext.legacy import datasets
8 from torchtext.legacy.data import Field, LabelField, BucketIterator
9
10 from torchtext.vocab import Vectors, GloVe
11
12 import torch.nn as nn
```

```
13 import torch.nn.functional as F
14 import torch.optim as optim
15 import random
16 from tqdm.autonotebook import tqdm
```

В этом задании мы будем использовать библиотеку torchtext. Она довольна проста в использовании и поможет нам сконцентрироваться на задаче, а не на написании Dataloader-a.

```
1 TEXT = Field(sequential=True, lower=True, include_lengths=True) # Поле текста
2 LABEL = LabelField(dtype=torch.float) # Поле метки

1 SEED = ØxDEAD
2
3 torch.manual_seed(SEED)
4 torch.backends.cudnn.deterministic = True
```

Датасет на котором мы будем проводить эксперементы это комментарии к фильмам из сайта IMDB.

```
1 train, test = datasets.IMDB.splits(TEXT, LABEL) # загрузим датасет
2 train, valid = train.split(random_state=random.seed(SEED)) # разобьем на части
   downloading aclImdb_v1.tar.gz
   aclImdb_v1.tar.gz: 100% 84.1M/84.1M [00:03<00:00, 24.5MB/s]
1 TEXT.build_vocab(train)
2 LABEL.build_vocab(train)
1 device = "cuda" if torch.cuda.is_available() else "cpu"
3 train_iter, valid_iter, test_iter = BucketIterator.splits(
    (train, valid, test),
4
    batch size = 64,
5
    sort within batch = True,
6
7
    device = device)
```

- RNN

Для начала попробуем использовать рекурентные нейронные сети. На семинаре вы познакомились с GRU, вы можете также попробовать LSTM. Можно использовать для классификации как hidden_state, так и output последнего токена.

```
4
 5
          super(). init ()
 6
 7
          self.bidirectional = bidirectional
 8
           self.dropout = dropout
 9
10
          self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx = pad_idx)
11
12
          self.rnn = nn.LSTM(input_size=embedding_dim, hidden_size=hidden_dim,
                              num_layers=n_layers, dropout=dropout, bidirectional=bidirect
13
14
15
          # self.rnn = nn.GRU(input_size=embedding_dim, hidden_size=hidden_dim,
16
                                num_layers=n_layers, dropout=dropout, bidirectional=bidire
17
           if self.bidirectional:
              self.fc = nn.Linear(2 * hidden dim, output dim) # YOUR CODE GOES HERE
18
19
          else:
20
              self.fc = nn.Linear(hidden_dim, output_dim)
21
      def forward(self, text, text_lengths):
22
23
24
           #text = [sent len, batch size]
25
26
          embedded = self.embedding(text)
27
28
          #embedded = [sent len, batch size, emb dim]
29
30
          #pack sequence
31
          packed embedded = nn.utils.rnn.pack padded sequence(embedded, text lengths.cpu(
32
33
          # cell arg for LSTM, remove for GRU
34
          packed output, (hidden, cell) = self.rnn(packed embedded)
35
36
          # for gru
37
          # packed_output, hidden= self.rnn(packed_embedded)
38
          #unpack sequence
39
          output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output)
40
41
          #output = [sent len, batch size, hid dim * num directions]
42
          #output over padding tokens are zero tensors
43
44
          #hidden = [num layers * num directions, batch size, hid dim]
45
          #cell = [num layers * num directions, batch size, hid dim]
46
          #concat the final forward (hidden[-2,:,:]) and backward (hidden[-1,:,:]) hidden
47
48
          #and apply dropout
49
          if self.bidirectional:
50
              hidden = torch.cat([hidden[-2,:,:], hidden[-1,:,:]], dim=1) # YOUR CODE GO
51
           else:
52
              hidden = hidden[-1,:,:]
53
54
          #hidden = [batch size, hid dim * num directions] or [batch size, hid dim * num
55
          hidden = nn.Dropout(p=self.dropout)(hidden)
56
57
          return self.fc(hidden)
```

```
1 vocab_size = len(TEXT.vocab)
 2 \text{ emb dim} = 100
 3 \text{ hidden dim} = 256
 4 \text{ output\_dim} = 1
 5 \text{ n layers} = 2
 6 bidirectional = False
 7 dropout = 0
 8 PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]
 9 patience=3
 1 model = RNNBaseline(
   vocab size=vocab size,
 3
     embedding_dim=emb_dim,
   hidden_dim=hidden_dim,
 4
 5
     output_dim=output_dim,
 6
     n_layers=n_layers,
 7
     bidirectional=bidirectional,
 8
     dropout=dropout,
 9
      pad_idx=PAD_IDX
10 )
 1 model = model.to(device)
 1 opt = torch.optim.Adam(model.parameters())
 2 loss_func = nn.BCEWithLogitsLoss(reduction='sum', )
 4 \text{ max\_epochs} = 20
```

Обучите сетку! Используйте любые вам удобные инструменты, Catalyst, PyTorch Lightning или свои велосипеды.

```
1 %time
 2 import numpy as np
 4 min loss = np.inf
 6 cur_patience = 0
 7
 8 for epoch in range(1, max_epochs + 1):
 9 train_loss = 0.0
10
     model.train()
     pbar = tqdm(enumerate(train_iter), total=len(train_iter), leave=False)
11
     pbar.set_description(f"Epoch {epoch}")
12
13
     for it, batch in pbar:
          #YOUR CODE GOES HERE
14
15
          opt.zero_grad()
          output = model(batch.text[0].to(device), batch.text[1].to(device))
16
```

```
17
          loss = loss func(output.squeeze(1), batch.label)
          loss.backward()
18
          train loss += loss.item()
19
20
          opt.step()
21
      train_loss /= len(train_iter)
22
23
      val_loss = 0.0
24
      model.eval()
25
      pbar = tqdm(enumerate(valid iter), total=len(valid iter), leave=False)
      pbar.set_description(f"Epoch {epoch}")
26
      for it, batch in pbar:
27
          # YOUR CODE GOES HERE
28
          output = model(batch.text[0], batch.text[1])
29
          val_loss = loss_func(output.squeeze(1), batch.label).item()
30
31
32
      val_loss /= len(valid_iter)
33
      if val_loss < min_loss:</pre>
34
35
          min_loss = val_loss
36
          best_model = model.state_dict()
37
      else:
38
          cur patience += 1
39
           if cur_patience == patience:
               cur_patience = 0
40
41
               break
42
      print('Epoch: {}, Training Loss: {}, Validation Loss: {}'.format(epoch, train_loss,
43
44 model.load_state_dict(best_model)
     CPU times: user 2 μs, sys: 0 ns, total: 2 μs
    Wall time: 5.25 µs
     Epoch: 1, Training Loss: 43.59233463593643, Validation Loss: 0.07081056853472176
     Epoch: 2, Training Loss: 40.25798383420401, Validation Loss: 0.06330045603089414
     Epoch: 3, Training Loss: 30.986384597137896, Validation Loss: 0.057714442075309104
     Epoch: 4, Training Loss: 20.135748187990956, Validation Loss: 0.016463057469513456
     Epoch: 5, Training Loss: 12.470059507084589, Validation Loss: 0.007022834935430753
     Epoch: 6, Training Loss: 7.142795572968295, Validation Loss: 0.0020590225013635928
     Epoch: 7, Training Loss: 7.073025200706329, Validation Loss: 0.010574527716232558
     Epoch: 8, Training Loss: 6.931653290116874, Validation Loss: 0.0014015540985737817
     Epoch: 9, Training Loss: 1.879023780053767, Validation Loss: 0.004321309974638082
     Epoch: 10, Training Loss: 0.8456091671692629, Validation Loss: 0.00018960947833829007
     <All keys matched successfully>
```

Посчитайте f1-score вашего классификатора на тестовом датасете.

Ответ:

```
1 pred_labels = []
2 true_labels = []
3 for batch in test_iter:
4     pred_labels_batch = list((model(batch.text[0],batch.text[1]) > 0.5).float().cpu().r
5     true_labels_batch = list(batch.label.cpu())
6
```

```
7    pred_labels += pred_labels_batch
8    true_labels += true_labels_batch
1 from sklearn.metrics import f1_score
2
3 f1_score(true_labels, pred_labels)
0.7941511251203922
```

Istm with bi - 0.8318078698271141 Istm without bi - 0.7941511251203922` gru with bi 0.8255858138062064 gru without bi 0.5913393537155914

- CNN

Для классификации текстов также часто используют сверточные нейронные сети. Идея в том, что как правило сентимент содержат словосочетания из двух-трех слов, например "очень хороший фильм" или "невероятная скука". Проходясь сверткой по этим словам мы получим какой-то большой скор и выхватим его с помощью MaxPool. Далее идет обычная полносвязная сетка. Важный момент: свертки применяются не последовательно, а параллельно. Давайте попробуем!

```
1 TEXT = Field(sequential=True, lower=True, batch_first=True) # batch_first тк мы исполь
2 LABEL = LabelField(batch_first=True, dtype=torch.float)
3
4 train, tst = datasets.IMDB.splits(TEXT, LABEL)
```

```
5 trn, vld = train.split(random state=random.seed(SEED))
 7 TEXT.build vocab(trn)
 8 LABEL.build vocab(trn)
10 device = "cuda" if torch.cuda.is available() else "cpu"
 1 train_iter, val_iter, test_iter = BucketIterator.splits(
           (trn, vld, tst),
 3
          batch_sizes=(128, 256, 256),
 4
          sort=False,
 5
          sort_key= lambda x: len(x.src),
 6
          sort_within_batch=False,
 7
          device=device,
          repeat=False,
 8
 9)
```

Вы можете использовать Conv2d c in_channels=1, kernel_size=(kernel_sizes[0], emb_dim)) или Conv1d c in_channels=emb_dim, kernel_size=kernel_size[0]. Но хорошенько подумайте над shape в обоих случаях.

```
1 class CNN(nn.Module):
      def __init__(
          self,
 3
          vocab_size,
 4
          emb_dim,
 5
 6
          out_channels,
 7
          kernel sizes,
 8
          dropout=0.5,
 9
      ):
          super().__init__()
10
11
12
          self.embedding = nn.Embedding(vocab_size, emb_dim)
13
          self.conv 0 = nn.Conv1d(emb dim, out channels, kernel size=kernel sizes[0], pad
14
15
          self.conv 1 = nn.Conv1d(emb dim, out channels, kernel size=kernel sizes[1], pad
16
17
18
          self.conv_2 = nn.Conv1d(emb_dim, out_channels, kernel_size=kernel_sizes[2], pad
19
          self.fc = nn.Linear(len(kernel sizes) * out channels, 1)
20
21
22
          self.dropout = nn.Dropout(dropout)
23
24
25
      def forward(self, text):
26
27
          embedded = self.embedding(text)
28
29
          embedded = embedded.permute(0, 2, 1) # may be reshape here
30
```

```
31
           conved_0 = F.relu(self.conv_0(embedded)) # may be reshape here
32
           conved 1 = F.relu(self.conv 1(embedded)) # may be reshape here
33
           conved 2 = F.relu(self.conv 2(embedded)) # may be reshape here
34
35
           pooled_0 = F.max_pool1d(conved_0, conved_0.shape[2]).squeeze(2)
           pooled_1 = F.max_pool1d(conved_1, conved_1.shape[2]).squeeze(2)
36
           pooled_2 = F.max_pool1d(conved_2, conved_2.shape[2]).squeeze(2)
37
38
           cat = self.dropout(torch.cat((pooled_0, pooled_1, pooled_2), dim=1))
39
40
41
           return self.fc(cat)
 1 \text{ kernel\_sizes} = [3, 4, 5]
 2 vocab_size = len(TEXT.vocab)
 3 out channels=64
 4 dropout = 0.5
 5 \dim = 300
 6
 7 model = CNN(vocab_size=vocab_size, emb_dim=dim, out_channels=out_channels,
               kernel_sizes=kernel_sizes, dropout=dropout)
 1 model.to(device)
    CNN(
       (embedding): Embedding(201630, 300)
       (conv_0): Conv1d(300, 64, kernel_size=(3,), stride=(1,))
       (conv_1): Conv1d(300, 64, kernel_size=(4,), stride=(1,))
       (conv_2): Conv1d(300, 64, kernel_size=(5,), stride=(1,))
       (fc): Linear(in_features=192, out_features=1, bias=True)
       (dropout): Dropout(p=0.5, inplace=False)
 1 opt = torch.optim.Adam(model.parameters())
 2 loss_func = nn.BCEWithLogitsLoss()
 1 \text{ max epochs} = 30
Обучите!
 1 min_loss = np.inf
 2
 3 cur_patience = 0
 4
 5 for epoch in range(1, max_epochs + 1):
 6
      train_loss = 0.0
 7
      model.train()
      pbar = tqdm(enumerate(train_iter), total=len(train_iter), leave=False)
 8
      pbar.set_description(f"Epoch {epoch}")
 9
10
      for it, batch in pbar:
11
           #YOUR CODE GOES HERE
12
           opt.zero_grad()
13
           output = model(batch.text)
```

```
loss = loss_func(output.squeeze(1), batch.label)
14
15
          loss.backward()
          train_loss += loss.item()
16
17
          opt.step()
18
      train_loss /= len(train_iter)
19
      val_loss = 0.0
20
21
      model.eval()
      pbar = tqdm(enumerate(val_iter), total=len(val_iter), leave=False)
22
      pbar.set_description(f"Epoch {epoch}")
23
      for it, batch in pbar:
24
          # YOUR CODE GOES HERE
25
          output = model(batch.text)
26
          val_loss += loss_func(output.squeeze(1), batch.label).item()
27
28
      val_loss /= len(val_iter)
29
      if val_loss < min_loss:</pre>
30
          min_loss = val_loss
31
32
          best_model = model.state_dict()
33
      else:
34
          cur_patience += 1
          if cur_patience == patience:
35
              cur_patience = 0
36
37
              break
38
      print('Epoch: {}, Training Loss: {}, Validation Loss: {}'.format(epoch, train_loss,
39
40 model.load_state_dict(best_model)
```

```
Epoch 1: 100%
                                                       137/137 [00:39<00:00, 3.55it/s]
     Epoch 1: 97%
                                                      29/30 [00:07<00:00, 3.90it/s]
     Epoch: 1, Training Loss: 0.5067113494350962, Validation Loss: 0.42657203574975333
     Epoch 2: 100%
                                                       137/137 [00:38<00:00, 3.56it/s]
     Epoch 2: 97%
                                                      29/30 [00:07<00:00, 3.88it/s]
     Epoch: 2, Training Loss: 0.43463385213900657, Validation Loss: 0.3943417410055796
     Epoch 3: 100%
                                                       137/137 [00:39<00:00, 3.82it/s]
     Epoch 3: 97%
                                                      29/30 [00:07<00:00, 3.90it/s]
     Epoch: 3, Training Loss: 0.3772826199113888, Validation Loss: 0.36494067311286926
Посчитайте f1-score вашего классификатора.
Ответ: 0.8473694279701549
     1 pred_labels = []
 2 true_labels = []
 3 for batch in test iter:
     pred_labels_batch = list((model(batch.text) > 0.5).float().cpu().numpy().reshape(-1
 5
      true_labels_batch = list(batch.label.cpu().numpy())
 6
 7
      pred_labels += pred_labels_batch
      true_labels += true_labels_batch
 9 f1_score(true_labels, pred_labels)
     0.8473694279701549
     באסכרוו: י, ווימדוודוו רחצף: מידאסטלקמסדדו אמבאסט' אמדדמשרדוטוו רחצף: מי־פאסאסס
Интерпретируемость
Посмотрим, куда смотрит наша модель. Достаточно запустить код ниже.
     ⊏µ∪∪11 ∀. 1∪∪ 70
                                                       13//13/ [00.30\00.00, 3.4 11/5]
 1 !pip install -q captum
          1.4 MB 5.3 MB/s
 1 from captum.attr import LayerIntegratedGradients, TokenReferenceBase, visualization
 3 PAD_IND = TEXT.vocab.stoi['pad']
 5 token reference = TokenReferenceBase(reference token idx=PAD IND)
 6 lig = LayerIntegratedGradients(model, model.embedding)
 1 def forward with softmax(inp):
       logits = model(inp)
 3
       return torch.softmax(logits, 0)[0][1]
 5 def forward_with_sigmoid(input):
      return torch.sigmoid(model(input))
```

```
7
 8
 9 # accumalate couple samples in this array for visualization purposes
10 vis data records ig = []
11
12 def interpret_sentence(model, sentence, min_len = 7, label = 0):
13
      model.eval()
14
       text = [tok for tok in TEXT.tokenize(sentence)]
15
       if len(text) < min len:</pre>
           text += ['pad'] * (min_len - len(text))
16
       indexed = [TEXT.vocab.stoi[t] for t in text]
17
18
19
      model.zero grad()
20
       input indices = torch.tensor(indexed, device=device)
21
       input_indices = input_indices.unsqueeze(0)
22
23
       # input_indices dim: [sequence_length]
24
25
       seq_length = min_len
26
27
      # predict
28
       pred = forward_with_sigmoid(input_indices).item()
29
       pred_ind = round(pred)
30
31
       # generate reference indices for each sample
       reference_indices = token_reference.generate_reference(seq_length, device=device).u
32
33
       # compute attributions and approximation delta using layer integrated gradients
34
       attributions_ig, delta = lig.attribute(input_indices, reference_indices, \
35
36
                                              n_steps=5000, return_convergence_delta=True)
37
      print('pred: ', LABEL.vocab.itos[pred_ind], '(', '%.2f'%pred, ')', ', delta: ', abs
38
39
40
       add_attributions_to_visualizer(attributions_ig, text, pred, pred_ind, label, delta,
41
42 def add attributions to visualizer(attributions, text, pred, pred ind, label, delta, vi
       attributions = attributions.sum(dim=2).squeeze(0)
43
       attributions = attributions / torch.norm(attributions)
44
       attributions = attributions.cpu().detach().numpy()
45
46
47
       # storing couple samples in an array for visualization purposes
       vis data records.append(visualization.VisualizationDataRecord(
48
49
                               attributions,
50
                               pred,
51
                               LABEL.vocab.itos[pred ind],
52
                               LABEL.vocab.itos[label],
53
                               LABEL.vocab.itos[1],
54
                               attributions.sum(),
55
                               text,
56
                               delta))
 1 interpret_sentence(model, 'It was a fantastic performance !', label=1)
 2 interpret sentence(model, 'Best film ever', label=1)
```

```
3 interpret_sentence(model, 'Such a great show!', label=1)
4 interpret_sentence(model, 'It was a horrible movie', label=0)
5 interpret_sentence(model, 'I\'ve never watched something as bad', label=0)
6 interpret_sentence(model, 'It is a disgusting movie!', label=0)
7 interpret_sentence(model, 'an awfully good movie!', label=1)
8 interpret_sentence(model, 'movie is so good that I slept', label=0)

pred: pos ( 0.95 ) , delta: tensor([3.5385e-05], device='cuda:0', dtype=torch.float pred: neg ( 0.02 ) , delta: tensor([6.6953e-08], device='cuda:0', dtype=torch.float pred: neg ( 0.39 ) , delta: tensor([2.9517e-05], device='cuda:0', dtype=torch.float pred: neg ( 0.00 ) , delta: tensor([4.1141e-05], device='cuda:0', dtype=torch.float pred: neg ( 0.17 ) , delta: tensor([6.1732e-05], device='cuda:0', dtype=torch.float pred: neg ( 0.09 ) , delta: tensor([2.6798e-05], device='cuda:0', dtype=torch.float pred: neg ( 0.02 ) , delta: tensor([0.0002], device='cuda:0', dtype=torch.float pred: neg ( 0.02 ) , delta: tensor([1.2505e-05], device='cuda:0', dtype=torch.float
```

Попробуйте добавить свои примеры!

```
1 print('Visualize attributions based on Integrated Gradients')
2 visualization.visualize_text(vis_data_records_ig)
```

 Γ

	Negative Ne		Attailantian				
True Label	Predicted Label	Attribution Label	Attribution Score	Word Importance			
pos	pos (0.95)	pos	1.64	It was a fantastic performance ! pad			
pos	neg (0.02)	pos	1.58	Best film ever pad pad pad pad			
pos	neg (0.39)	pos	0.82	Such a great show! pad pad pad			
neg	neg (0.00)	pos	-0.27	It was a horrible movie pad pad			
neg	neg (0.17)	pos	0.81	I've never watched something as bad pad			
neg	neg (0.09)	pos	0.74	It is a disgusting movie! pad pad			
pos	pos (0.64)	pos	1.69	Ужасно хороший фильм! pad pad pad pad			
pos	neg (0.02)	pos	0.11	an awfully good movie! pad pad pad			
pos	pos (0.95)	pos	1.64	It was a fantastic performance ! pad			
pos	neg (0.02)	pos	1.58	Best film ever pad pad pad pad			
pos	neg (0.39)	pos	0.82	Such a great show! pad pad pad			
neg	neg (0.00)	pos	-0.27	It was a horrible movie pad pad			
neg	neg (0.17)	pos	0.81	I've never watched something as bad pad			
neg	neg (0.09)	pos	0.74	It is a disgusting movie! pad pad			
pos	neg (0.02)	pos	0.11	an awfully good movie! pad pad pad			
neg	neg (0.00)	pos	-0.61	Incredibly bad movie pad pad pad pad			
neg	pos (0.67)	pos	2.35	movie is so good that I sleept			
neg	pos (0.61)	pos	1.77	movie is so good that I slept			
pos	pos (0.95)	pos	1.64	It was a fantastic performance ! pad			
pos	neg (0.02)	pos	1.58	Best film ever pad pad pad pad			
pos	neg (0.39)	pos	0.82	Such a great show! pad pad pad			
neg	neg (0.00)	pos	-0.27	It was a horrible movie pad pad			
neg	neg (0.17)	pos	0.81	I've never watched something as bad pad			
neg	neg (0.09)	pos	0.74	It is a disgusting movie! pad pad			
pos	neg (0.02)	pos	0.11	an awfully good movie! pad pad pad			
neg	pos (0.61)	pos	1.77	movie is so good that I slept			
Leave de C Newstine C Newtral C Decit							

Legend: \square Negative \square Neutral \square Positive True Dradicted Attribution Attribution

Эмбеддинги слов

Вы ведь не забыли, как мы можем применить знания о word2vec и GloVe. Давайте попробуем! nea (0.00) pos -0.27 It was a horrible movie pad pad 1 TEXT.build_vocab(trn, vectors=GloVe())# YOUR CODE GOES HERE 2 # подсказка: один из импортов пока не использовался, быть может он нужен в строке выше 3 LABEL.build_vocab(trn) 4 5 word_embeddings = TEXT.vocab.vectors 7 kernel sizes = [3, 4, 5]8 vocab size = len(TEXT.vocab) 9 dropout = 0.5 $10 \dim = 300$.vector_cache/glove.840B.300d.zip: 2.18GB [07:00, 5.18MB/s] 2196016/2196017 [05:08<00:00, 7129.39it/s] 100% neg (v.vv) it was a norrible movie pad pad neg pos -U.Z/ 1 train, tst = datasets.IMDB.splits(TEXT, LABEL) 2 trn, vld = train.split(random_state=random.seed(SEED)) 3 4 device = "cuda" if torch.cuda.is_available() else "cpu" 5 6 7 train_iter, val_iter, test_iter = BucketIterator.splits((trn, vld, tst), 8 batch_sizes=(128, 256, 256), 9 sort=False, 10 11 sort key= lambda x: len(x.src), sort_within_batch=False, 12 13 device=device, 14 repeat=False, 15) 1 model = CNN(vocab size=vocab size, emb dim=dim, out channels=64, 2 kernel sizes=kernel sizes, dropout=dropout) 3 4 word_embeddings = TEXT.vocab.vectors 5 6 prev_shape = model.embedding.weight.shape 7 8 model.embedding.weight.data.copy (word embeddings) # инициализируйте эмбэдинги 10 assert prev_shape == model.embedding.weight.shape 11 model.to(device) 12 13 opt = torch.optim.Adam(model.parameters())

Вы знаете, что делать.

```
1 import numpy as np
 2
 3 min_loss = np.inf
 5 cur_patience = 0
 7 for epoch in range(1, max_epochs + 1):
      train loss = 0.0
      model.train()
9
10
      pbar = tqdm(enumerate(train_iter), total=len(train_iter), leave=False)
      pbar.set_description(f"Epoch {epoch}")
11
     for it, batch in pbar:
12
13
          #YOUR CODE GOES HERE
14
          opt.zero_grad()
15
          output = model(batch.text)
          loss = loss_func(output.squeeze(1), batch.label)
16
          loss.backward()
17
          train_loss += loss.item()
18
          opt.step()
19
20
      train_loss /= len(train_iter)
21
22
      val_loss = 0.0
23
      model.eval()
      pbar = tqdm(enumerate(val_iter), total=len(valid_iter), leave=False)
24
25
      pbar.set_description(f"Epoch {epoch}")
26
      for it, batch in pbar:
27
          # YOUR CODE GOES HERE
28
          output = model(batch.text)
29
          val_loss += loss_func(output.squeeze(1), batch.label).item()
30
31
      val loss /= len(val iter)
       if val_loss < min_loss:</pre>
32
33
          min_loss = val_loss
          best_model = model.state_dict()
34
35
      else:
36
          cur_patience += 1
37
          if cur patience == patience:
38
               cur_patience = 0
39
               break
40
       print('Epoch: {}, Training Loss: {}, Validation Loss: {}'.format(epoch, train_loss,
41
42 model.load_state_dict(best_model)
```

```
Epoch 1: 25%
                                                        30/118 [00:07<00:23, 3.80it/s]
     Epoch: 1, Training Loss: 0.30204641536204485, Validation Loss: 0.2985475242137909
     Epoch 2: 100%
                                                         137/137 [00:39<00:00, 3.53it/s]
     Epoch 2: 25%
                                                        30/118 [00:07<00:22, 3.86it/s]
     Epoch: 2, Training Loss: 0.1839325635211311, Validation Loss: 0.28009043584267296
     Epoch 3: 100%
                                                         137/137 [00:38<00:00, 3.58it/s]
     Fnoch 3: 25%
                                                        30/118 [00:07<00:22 3 87it/e]
 1 pred_labels = []
 2 true_labels = []
 3 for batch in test iter:
      pred_labels_batch = list((model(batch.text) > 0.5).float().cpu().numpy().reshape(-1
      true_labels_batch = list(batch.label.cpu().numpy())
 5
 6
 7
      pred_labels += pred_labels_batch
      true_labels += true_labels_batch
 8
 9 f1_score(true_labels, pred_labels)
    0.8653351304987135
Посчитайте f1-score вашего классификатора.
Ответ: 0.8653351304987135
Проверим насколько все хорошо!
 1 PAD_IND = TEXT.vocab.stoi['pad']
 3 token reference = TokenReferenceBase(reference token idx=PAD IND)
 4 lig = LayerIntegratedGradients(model, model.embedding)
 5 vis_data_records_ig = []
 6
 7 interpret sentence(model, 'It was a fantastic performance !', label=1)
 8 interpret_sentence(model, 'Best film ever', label=1)
 9 interpret sentence(model, 'Such a great show!', label=1)
10 interpret sentence(model, 'It was a horrible movie', label=0)
11 interpret sentence(model, 'I\'ve never watched something as bad', label=0)
12 interpret_sentence(model, 'It is a disgusting movie!', label=0)
13 interpret sentence(model, 'an awfully good movie!', label=1)
14 interpret sentence(model, 'movie is so good that I slept', label=0)
     pred: pos ( 0.92 ) , delta: tensor([0.0002], device='cuda:0', dtype=torch.float64)
    pred: neg ( 0.16 ) , delta: tensor([8.6935e-06], device='cuda:0', dtype=torch.float
    pred: neg (0.37), delta: tensor([2.6935e-06], device='cuda:0', dtype=torch.float
    pred: neg ( 0.00 ) , delta: tensor([1.0840e-05], device='cuda:0', dtype=torch.float
    pred: neg ( 0.50 ) , delta: tensor([4.0545e-05], device='cuda:0', dtype=torch.float
    pred: neg ( 0.00 ) , delta: tensor([1.2201e-06], device='cuda:0', dtype=torch.float
    pred: neg (0.01), delta: tensor([4.0200e-05], device='cuda:0', dtype=torch.float
```

pred: pos (0.56) , delta: tensor([0.0002], device='cuda:0', dtype=torch.float64)

137/137 [00:39<00:00, 3.30it/s]

Epoch 1: 100%

1 print('Visualize attributions based on Integrated Gradients')

2 visualization.visualize_text(vis_data_records_ig)

Visualize attributions based on Integrated Gradients

Legend:	☐ Negative ☐ Ne	eutral Positive		
True Label	Predicted Label	Attribution Label	Attribution Score	Word Importance
pos	pos (0.92)	pos	1.85	It was a fantastic performance ! pad
pos	neg (0.16)	pos	1.25	Best film ever pad pad pad pad
pos	neg (0.37)	pos	1.54	Such a great show! pad pad pad
neg	neg (0.00)	pos	-0.46	It was a horrible movie pad pad
neg	neg (0.50)	pos	1.67	I've never watched something as bad pad
neg	neg (0.00)	pos	-0.91	It is a disgusting movie! pad pad
pos	neg (0.01)	pos	-0.19	an awfully good movie! pad pad pad
neg	pos (0.56)	pos	1.80	movie is so good that I slept
Legend:	☐ Negative ☐ Ne	eutral Positive		
True Label	Predicted Label	Attribution Label	Attribution Score	Word Importance
pos	pos (0.92)	pos	1.85	It was a fantastic performance ! pad
pos	neg (0.16)	pos	1.25	Best film ever pad pad pad pad
pos	neg (0.37)	pos	1.54	Such a great show! pad pad pad
neg	neg (0.00)	pos	-0.46	It was a horrible movie pad pad
neg	neg (0.50)	pos	1.67	I've never watched something as bad pad