19831704.2

Henkel KGaA VTP Semrau / BL 13.07.1998

Patentanmeldung

H 3517

"Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper"

Die vorliegende Erfindung liegt auf dem Gebiet der Herstellung wasch- und reinigungsaktiver Formkörper. Sie betrifft insbesondere Verfahren zur Herstellung mehrphasiger
Wasch- und Reinigungsmittelformkörper, bei denen durch die Aufteilung in mehrere Phasen Vorteile bei der Wasch- und Reinigungsaktivität erzielt werden. Solche Wasch- und
Reinigungsmittelformkörper umfassen beispielsweise Waschmittelformkörper für das Waschen von Textilien, Reinigungsmittelformkörper für das maschinelle Geschirrspülen oder
die Reinigung harter Oberflächen, Bleichmittelformkörper zum Einsatz in Wasch- oder
Geschirrspülmaschinen, Wasserenthärtungsformkörper oder Fleckensalztabletten.

Wasch- und Reinigungsmittelformkörper der genannten Peroduktklassen sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tablettierte Wasch- und Reinigungsmittel haben gegenüber pulverförmigen oder flüssigen Produkten eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Es existiert daher ein äußerst breiter Stand der Technik zu Wasch- und Reinigungsmittelformkörpern, der sich auch in einer umfangreichen Patentliteratur niederschlägt. Schon früh ist dabei den Entwicklern tablettenförmiger Produkte die Idee gekommen, über unterschiedlich zusammengesetzte Bereiche der Formkörper bestimmte Inhaltsstoffe erst unter definierten Bedingungen im Wasch- oder Reinigungsgang freizusetzen, um so den Reinigungserfolg zu verbessern. Hierbei haben sich neben den aus der Pharmazie hinlänglich bekannten Kern/Mantel-Tabletten und Ring/Kern-Tabletten

insbesondere mehrschichtige Formkörper durchgesetzt, die heute für viele Bereiche des Waschens und Reinigens oder der Hygiene angeboten werden.

Mehrphasige Reinigungstabletten für das WC werden beispielsweise in der EP 055 100 (Jeyes Group) beschrieben. Diese Schrift offenbart Toilettenreinigungsmittelblöcke, die einen geformten Körper aus einer langsam löslichen Reinigungsmittelzusammensetzung umfassen, in den eine Bleichmitteltablette eingebettet ist. Diese Schrift offenbart gleichzeitig die unterschiedlichsten Ausgestaltungsformen mehrphasiger Formkörper. Die Herstellung der Formkörper erfolgt nach der Lehre dieser Schrift entweder durch Einsetzen einer verpreßten Bleichmitteltablette in eine Form und Umgießen dieser Tablette mit der Reinigungsmittelzusammensetzung, oder durch Eingießen eines Teils der Reinigungsmittelzusammensetzung in die Form, gefolgt vom Einsetzen der verpreßten Bleichmitteltablette und eventuell nachfolgendes Übergießen mit weiterer Reinigungsmittelzusammensetzung. Das Ausgießen von vorgefertigten Mulden wird in dieser Schrift weder beschrieben noch nahegelegt.

Auch die EP 481 547 (Unilever) beschreibt mehrphasige Reinigungsmittelformkörper, die für das maschinelle Geschirrspülen eingesetzt werden sollen. Diese Formkörper haben die Form von Kern/Mantel-Tabletten und werden durch stufenweises Verpressen der Bestandteile hergestellt: Zuerst erfolgt die Verpressung einer Bleichmittelzusammensetzung zu einem Formkörper, der in eine mit einer Polymerzusammensetzung halbgefüllte Matrize eingelegt wird, die dann mit weiterer Polymerzusammensetzung aufgefüllt und zu einem mit einem Polymermantel versehen Bleichmittelformkörper verpreßt wird. Das Verfahren wird anschließend mit einer alkalischen Reinigungsmittelzusammensetzung wiederholt, so daß sich ein dreiphasiger Formkörper ergibt. Über die Möglichkeit, Stoffe über den Weg einer Schmelze in Formkörper einzubringen, wird in dieser Schrift nichts ausgeführt.

Der Aspekt der "kontrollierten Freisetzung" von Inhaltsstoffen, neudeutsch geme als "controlled release" bezeichnet, wurde und wird auch auf dem Gebiet der Wasch- und Reinigungsmittel intensiv bearbeitet, so daß hierzu ebenfalls eine Vielzahl von Veröffentlichungen existiert. Auf dem Gebiet der wasch- und reinigungsaktiven Formkörper schlagen die meisten Schriften eine durch Desintegrationshilfsmittel oder Brausesysteme beschleu-

nigte Freisetzung bestimmter Formkörperbereiche vor, während das langsamere Freisetzen einzelner Bestandteile, z.B. durch Beschichtung, Umhüllung oder gezielte Löseverzögerung eine eher untergeordnete Stellung einnimmt.

3

Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Herstellverfahren für mehrphasige Wasch- und Reinigungsmittelformkörper bereitzustellen, das es gestattet, Formkörper zu erzeugen, die eine gezielte Freisetzung bestimmter Inhaltsstoffe zu vorbestimmbaren Zeitpunkten im Wasch- und Reinigungsgang ermöglichen. Insbesondere sollten durch das erfindungsgemäße Verfahren Wasch- und Reinigungsmittelformkörper herstellbar sein, die sich durch eine hervorragende Lager- und Transportstabilität auszeichnen und die gegenüber herkömmlichen Produkten überlegene Leistungen in den unterschiedlichsten Anwendungsbereichen zeigen können. Eine weitere Anforderung an das bereitzustellende Verfahren lag daher darin, daß es bezüglich der herzustellenden Wasch- und Reinigungsmittelformkörper eine Höchstmaß an Formulierungsfreiheit für die unterschiedlichsten Anwendungsbereiche ermöglicht.

Es wurde nun gefunden, daß sich Wasch- und Reinigungsmittelformkörper mit den gewünschten Eigenschaften auf eine flexible und einfache Art herstellen lassen, wenn man Formkörper herstellt, die eine Mulde aufweisen, welche nachfolgend mit einer Schmelzdispersion bzw. –emulsion von bestimmten Aktivsubstanzen ausgegossen wird.

Der Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, das die Schritte

- a) Verpressen eines teilchenförmigen Vorgemischs zu Formkörpern, die eine Mulde aufweisen.
- Herstellung einer Schmelzsuspension oder –emulsion aus einer Hüllsubstanz, die einen Schmelzpunkt oberhalb von 30°C aufweist und einem oder mehreren in ihr dispergierten oder emulgierten Aktivstoff(en),
- Befüllen der Muldenformkörper mit der Schmelzsuspension oder –emulsion bei Temperaturen oberhalb des Schmelzpunkts der Hüllsubstanz
- d) Abkühlen und optionale Nachbehandlung der befüllten Wasch- und Reinigungsmittelformkörper

umfaßt.

Verfahrensschritt a):

Das zu verpressende teilchenförmige Vorgemisch kann je nach gewünschtem Verwendungszweck der nach dem erfindungsgemäßen Verfahren hergestellten Wasch- und Reinigungsmittelformkörper die üblicherweise in Wasch- und Reinigungsmitteln enthaltenen Inhaltsstoffe in variierenden Mengen enthalten. Insbesondere Stoffe aus der Gruppe der Tenside, der Gerüststoffe (Builder) und der Komplexbildner, der Bleichmittel, der Bleichaktivatoren, der Enzyme, der Polymere sowie der Farb- und Duftstoffe können im Vorgemisch enthalten sein. Bestimmte Stoffe aus den genannten Gruppen können jedoch gezielt aus dem Vorgemisch weggelassen und als Aktivsubstanz in die Schmelzsuspension bzw. – emulsion des Verfahrensschritts b) eingearbeitet werden. Je nach Auswahl von Hüllmaterial und Aktivsubstanz können so Formkörper hergestellt werden, die bestimmte Aktivstoffe frühzeitig oder zeitverzögert aus dem Formkörper freisetzen.

Bevorzugte Inhaltsstoffe des teilchenförmigen Vorgemischs sind Stoffe aus der Gruppe der Builder. Neben den waschaktiven Substanzen sind solche Gerüststoffe die wichtigsten Inhaltsstoffe von Wasch- und Reinigungsmitteln. In den erfindungsgemäß hergestellten Wasch- und Reinigungsmittelformkörpern können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Sillikate, Carbonate, organische Cobuilder und – wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate. Die genannten Gerüststoffe können auch in tensidfreien Formkörpern eingesetzt werden, so daß es erfindungsgemäß möglich ist, Formkörper herzustellen, die zur Wasserenthärtung eingesetzt werden können.

Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSi₂O_{2x+1} H₂O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind

sowohl β- als auch δ-Natriumdisilikate Na,Si,O₃ yH,O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.

Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na,O: SiO, von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.

Der einsetzbare feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel

 $nNa_2O \cdot (1-n)K_2O \cdot Al_2O_3 \cdot (2-2,5)SiO_2 \cdot (3,5-5,5) H_2O$

beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.

Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.

Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.

Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden.

Wenn nach dem erfindungsgemäßen Verfahren Formkörper für das maschinelle Geschirrspülen hergestellt werden sollen, sind wasserlösliche Builder bevorzugt, da sie auf Geschirr und harten Oberflächen in der Regel weniger dazu tendieren, unlösliche Rückstände zu bilden. Übliche Builder, die im Rahmen der erfindungsgemäßen Herstellung von maschinellen Geschirrspülmitteln zwischen 10 und 90 Gew.-% bezogen auf das zu verpressende Vorgemisch zugegen sein können, sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Carbonate, Phosphate und Silikate. Bevorzugt werden zur Herstellung von Formkörpern für das maschinelle Geschirrspülen Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem, das eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat enthält.

Unabhängig vom gewünschten Verwendungszweck der nach dem erfindungsgemäßen Verfahren hergestellten Wasch- und Reinigungsmittelformkörper enthält das in Schritt a) verpreßte teilchenförmige Vorgemisch Builder üblicherweise in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Vorgemisch.

Das Vorgemisch kann außer den oben beschriebenen Gerüststoffen auch die bereits erwähnten waschaktiven Substanzen enthalten, die insbesondere für Waschmitteltabletten wichtige Inhaltsstoffe sind. Je nach herzustellendem Formkörper sind bei der Beantwortung der Fragen, ob und wenn ja welche Tenside man einsetzt, unterschiedliche Antworten möglich. Üblicherweise können Formkörper für das Waschen von Textilien die unterschiedlichsten Tenside aus den Gruppen der anionischen, nichtionischen, kationischen und amphoteren Tenside enthalten, während Formkörper für das maschinelle Geschirtspülen vorzugsweise nur schwachschäumende nichtionische Tenside enthalten und Wasserenthärtungstabletten oder Bleichmitteltabletten frei von Tensiden sind. Dem Fachmann sind bei der Inkorporation der Tenside in das zu verpressende Vorgemisch hinsichtlich der Formulierungsfreiheit keine Grenzen gesetzt.

Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise $C_{\nu,13}$ -Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C_{12-18} -Monoolefinen mit endoder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C_{12-18} -Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α -Sulfofettsäuren (Estersulfonate), z.B. die α -sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.

Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprinsäure, Aurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C₁₂-C₁₅-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C₁₀-C₂₀-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C₁₂-C₁₆-Alkylsulfate und C₁₂-C₁₅-Alkylsulfate beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.

Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C_{2:1}-Alkohole, wie 2-Methyl-verzweigte C_{6:1}-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C_{12:18}-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.

Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C_{b-18}-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.

Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder
Tri-ethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer
Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.

Im Rahmen der vorliegenden Erfindung ist die Herstellung von Waschmitteltabletten bevorzugt, die 5 bis 50 Gew.-%, vorzugsweise 7,5 bis 40 Gew.-% uns insbesondere 10 bis 20 Gew.-% anionische Tensid(e), jeweils bezogen auf das Formkörpergewicht, enthalten. Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Waschmittelformkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des Formkörpers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate und Fettalkoholsulfate, wobei bevorzugte Waschmittelformkörper 2 bis 20 Gew.-%, vorzugsweise 2,5 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% Fettalkoholsulfat(e), jeweils bezogen auf das Formkörpergewicht, enthalten

Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfettoder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C₁₂₋₁₄-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12. 18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.

Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G), in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.

Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.

Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte der Formkörper an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.

Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,Ndimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (II),

in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R¹ für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zukkers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (III),

$$R^{1}$$
-O- R^{2} | R-CO-N-[Z] (III)

in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R¹ für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R² für einen linearen, verzweigten oder cyclischen
Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen
steht, wobei C₁₋₄-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.

[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

Bei der Herstellung von Formkörpern für das maschinelle Geschirrspülen kommen als Tenside prinzipiell ebenfalls alle Tenside in Frage. Bevorzugt sind für diesen Anwendungszweck aber die vorstehend beschriebenen nichtionischen Tenside und hier vor allem die schwachschäumenden nichtionischen Tenside. Besonders bevorzugt sind die alkoxylierten Alkohole, besonders die ethoxylierten und/oder propoxylierten Alkohole. Dabei versteht der Fachmann allgemein unter alkoxylierten Alkoholen die Reaktionsprodukte von Alkylenoxid, bevorzugt Ethylenoxid, mit Alkoholen, bevorzugt im Sinne der vorliegenden Erfindung die längerkettigen Alkohole (C10 bis C18, bevorzugt zwischen C12 und C16, wie z. B. C., -, C., -, C., -, C., -, C., -, C., -, C., - und C., -Alkohole). In der Regel entstehen aus n Molen Ethylenoxid und einem Mol Alkohol, abhängig von den Reaktionsbedingungen ein komplexes Gemisch von Additionsprodukten unterschiedlichen Ethoxylierungsgrades. Eine weitere Ausführungsform besteht im Einsatz von Gemischen der Alkylenoxide bevorzugt des Gemisches von Ethylenoxid und Propylenoxid. Auch kann man gewünschtenfalls durch eine abschließende Veretherung mit kurzkettigen Alkylgruppen, wie bevorzugt der Butylgruppe, zur Substanzklasse der "verschlossenen" Alkoholethoxylaten gelangen, die ebenfalls im Sinne der Erfindung eingesetzt werden kann. Ganz besonders bevorzugt im Sinne der vorliegenden Erfindung sind dabei hochethoxylierte Fettalkohole oder deren Gemische mit endgruppenverschlossenen Fettalkoholethoxylaten.

Bei der Herstellung von Formkörpern für das maschinelle Geschirrspülen mit Hilfe des erfindungsgemäßen Verfahrens sind Verfahrensvarianten bevorzugt, bei denen das in Schritt a) verpreßte teilchenförmige Vorgemisch Tensid(e), vorzugsweise nichtionische(s) Tensid(e), in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 0,75 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.

Neben den oben beschriebenen Inhaltsstoffen aus der Gruppe der Gerüststoffe und der Tenside kann das zu verpressende Vorgemisch weitere übliche Inhaltsstoffe von Waschund Reinigungsmitteln, insbesondere aus den Gruppen der Desintegrationshilfsmittel, Bleichmittel, Bleichmittel, Bleichmittel, Enzyme, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Korrosionsinhibitoren usw. enthalten. Diese Stoffe, die ebenso wie die vorstehend genannte Builder und Tenside auch über den Verfahrensschritt b) verarbeitet werden können, werden nachfolgend beschrieben.

Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.

Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert
(Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden
kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische
Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise
synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder CaseinDerivate.

In bevorzugten Verfahrensvarianten enthalten die zu verpressenden Vorgemische 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 5 Gew.-% und insbesondere 2 bis 4 Gew.-% eines Desintegrationshilfsmittels, jeweils bezogen auf das Vorgemisch.

Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 5 Gew.-% und insbesondere 2 bis 4 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C_oH₁₀O₅)_n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseseter und -ether sowie Aminocellulosen.

Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.

Unter den als Bleichmittel dienenden, in Wasser H₂O₂ liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmittel-tabletten zur Textilwäsche eingesetzt werden, ist der Einsatz von Natriumpercarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylper-oxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, E-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.

Als Bleichmittel in Formkörpern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.

Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in das zu verpressende Vorgemisch eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.

Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.

Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mi-

schungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Formkörpern kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.

Zusätzlich kann das zu verpressnde Vorgemisch für die Herstellung von Waschmittelformkörpern auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich,
wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu
den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische
Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil
an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis
15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem
Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw.
von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten
von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäureund der Terephthalsäure-Polymere.

Das zu verpressende Vorgemisch kann, wenn man Textilwaschmittelformkörper herstellen will, als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4.4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.

Farb- und Duftstoffe können dem Vorgemisch im erfindungsgemäßen Verfahren zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, ptert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenől, Wacholderbeeről, Vetiveről, Olibanumől, Galbanumől und Labdanumől sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.

Die Duftstoffe können direkt in das Vorgemisch eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfürns auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfürn-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.

Um den ästhetischen Eindruck der erfindungsgemäß hergestellten Mittel zu verbessern, kann das Vorgemisch (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern oder Geschirrteilen, um diese nicht anzufärben.

Sollen Formkörper für das maschinelle Reinigen von Geschirr nach dem erfindungsgemäßen Verfahren hergestellt werden, so kann das zu verpressende Vorgemisch zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüberhinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.

Das Vorgemisch kann wie vorstehend beschrieben aus den unterschiedlichsten Substanzen zusammengesetzt sein. Unabhängig von der Zusammensetzung der in Verfahrensschritt a)

zu verpressenden Vorgemische können physikalische Parameter der Vorgemische so gewählt werden, daß vorteilhafte Formkörpereigenschaften resultieren.

So weisen in bevorzugten Varianten des erfindungsgemäßen Verfahrens die in Schritt a) verpreßten teilchenförmigen Vorgemische Schüttigewichte oberhalb von 600 g/l, vorzugsweise oberhalb von 700 g/l und insbesondere oberhalb von 800 g/l auf.

Auch die Partikelgröße in den zu verpressenden Vorgemischen kann zur Erlangung vorteilhafter Formkörpereigenschaften eingestellt werden. In bevorzugten Verfahren weist das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung auf, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-% und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 µm oder kleiner als 200 µm sind. Hierbei sind engere Teilchengrößenverteilungen weiter bevorzugt. Besonders vorteilhafte Verfahrensvarianten sind dabei dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 µm aufweisen.

Bei der Durchführung des Verfahrensschritts a) ist das erfindungsgemäße Verfahren nicht darauf beschränkt, daß lediglich ein teilchenförmiges Vorgemisch zu einem Muldenformkörper verpreßt wird. Vielmehr läßt sich der Verfahrensschritt a) auch dahingehend erweitern, daß man in an sich bekannter Weise mehrschichtige Formkörper herstellt, indem man zwei oder mehrere Vorgemische bereitet, die aufeinander verpreßt werden. Hierbei wird das zuerst eingefüllte Vorgemisch leicht vorverpreßt, um eine glatte und parallel zum Formkörperboden verlaufende Oberseite zu bekommen, und nach Einfüllen des zweiten Vorgemischs zum fertigen Formkörper endverpreßt. Bei drei- oder mehrschichtigen Formkörperm erfolgt nach jeder Vorgemisch-Zugabe eine weitere Vorverpressung, bevor nach Zugabe des letzten Vorgemischs der Formkörper endverpreßt wird.

Aufgrund des zunehmenden technischen Aufwands sind in der Praxis maximal zweischichtige Formkörper bevorzugt. Bereits bei diesem Zwischenschritt im erfindungsgemä-

H 3517

ßen Verfahren können aus der Aufteilung bestimmter Inhaltsstoffe auf die einzelnen Schichten Vorteile erzielt werden.

22

So sind beispielsweise Verfahren bevorzugt, bei denen in Schritt a) zweischichtige Formkörper, die eine Mulde aufweisen, hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Enzyme enthält. Nicht nur diese Trennung von Bleichmittel und Enzymen kann Vorteile bringen, auch die Trennung von Bleichmitteln und optional einzusetzenden Bleichaktivatoren kann vorteilhaft sein, so daß erfindungsgemäße Verfahrensvarianten bevorzugt sind, bei denen in Schritt a) zweischichtige Formkörper, die eine Mulde aufweisen, hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichaktivatoren enthält.

Zur Herstellung der Formkörper mit Mulde im Verfahrensschritt a) wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.

Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zer-

drückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.

Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des
Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für
kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei
denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer
Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser
Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ
von einigen hundert bis maximal 3000 Tabletten pro Stunde.

Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die
Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen
im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die
Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel
mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erfor-

derlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.

Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.

Im Rahmen der vorliegenden Erfindung für die Durchführung des Verfahrensschritts a) geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.

Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.

Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen oder der Dosierkammer handelsüblicher Geschirtspülmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflösen, bzw. von wo aus sie während des Reinigungsvorgangs freigesetzt werden. Selbstverständlich ist aber auch ein Einsatz der Wasch- und Reinigungsmittelformkörper über Dosierhilfen problemlos möglich.

Ein wesentliches Merkmal des erfindungsgemäßen Verfahrens ist es, daß die Formkörper, die in Schritt a) hergestellt werden, eine Mulde aufweisen, welche in Schritt c) mit der in Schritt b) hergestellten Schmelzsuspension oder –emulsion befüllt wird. Diese Mulde kann die unterschiedlichsten geometrischen Ausgestaltungsformen aufweisen, wobei die Geometrie der Mulde unabhängig von der Geometrie der Formkörper ist. So sind beispielsweise runde Formkörper mit runden, ellipsenförmigen, drei-, vier-, fünf- oder mehreckigen Mulden denkbar. Die genannten Muldenformen können ebenso bei rechteckigen oder quadratischen Formkörperm verwirklicht werden, wobei die Ecken der Formkörper abgerundet sein können.

Auch die Seitenwände der Mulde können unterschiedlich verlaufen – denkbar sind hier sämtliche Übergangsformen von der vertikalen Seitenwand bis hin zu flacher verlaufenden Geraden oder kurvenförmig ausgestalteten Muldenwänden. Besonders geeignete Muldengeometrien sind in der älteren deutschen Patentanmeldung 198 22 973.9 beschrieben. Die in dieser Schrift offenbarten geometrischen Faktoren gelten bevorzugt auch für die im Schritt a) des erfindungsgemäßen Verfahrens hergestellten Muldenformkörper.

H 3517 26

Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach

$$\sigma = \frac{2P}{\pi Dt}$$

Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.

Verfahrensschritt b):

Im Verfahrensschritt b) wird eine Schmelzsuspension oder -emulsion aus einer Hüllsubstanz, die einen Schmelzpunkt oberhalb von 30°C aufweist und einem oder mehreren in ihr dispergierten oder suspendierten Aktivstoff(en) hergestellt. Als Aktivstoff(e) eignen sich dabei prinzipiell alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Inhaltsstoffe, insbesondere die bereits weiter oben als optionale Inhaltsstoffe des zu verpressenden Vorgemischs genannten und ausführlich beschriebenen Inhaltsstoffe. Besonders bevorzutet Aktivstoffe werden weiter unten nochmals gesondert beschrieben.

Hüllsubstanzen:

An die Hüllsubstanzen, die die "Basis" der in Schritt b) hergestellten Schmelzsuspension bzw. -emulsion bilden, werden verschiedene Anforderungen gestellt, die zum einen das Schmelz- beziehungsweise Erstarrungsverhalten, zum anderen jedoch auch die Materialeigenschaften der Umhüllung im erstarrten Bereich bei Umgebungstemperatur betreffen. Da die Umhüllung die darin eingeschlossenen Aktivstoffe bei Transport oder Lagerung dauerhaft gegen Umgebungseinflüsse schützen soll, muß sie eine hohe Stabilität gegenüber beispielsweise bei Verpackung oder Transport auftretenden Stoßbelastungen aufweisen. Die Umhüllung sollte also entweder zumindest teilweise elastische oder zumindest plastische Eigenschaften aufweisen, um auf eine auftretende Stoßbelastung durch

elastische oder plastische Verformung zu reagieren und nicht zu zerbrechen. Die Umhüllung sollte einen Schmelzbereich (Erstarrungsbereich) in einem solchen Temperaturbereich aufweisen, bei dem die zu umhüllenden Aktivstoffe keiner zu hohen thermischen Belastung ausgesetzt werden. Andererseits muß der Schmelzbereich jedoch ausreichend hoch sein, um bei zumindest leicht erhöhter Temperatur noch einen wirksamen Schutz für die eingeschlossenen Aktivstoffe zu bieten. Erfindungsgemäß weisen die Hüllsubstanzen einen Schmelzpunkt über 30°C auf.

Es hat sich als vorteilhaft erwiesen, wenn die Hüllsubstanz keinen scharf definierten Schmelzpunkt zeigt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich aufweist.

Die Hüllsubstanz weist vorzugsweise einen Schmelzbereich auf, der zwischen etwa 45°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vorzugsweise etwa 2 bis etwa 3°C.

Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf.

Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.

Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett,

Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.

Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.

Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als Hüllmaterialien einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimolf* 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol* ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin* 90 (Goldschmidt), ein Glycerinmonostearat-palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist erfindungsgermäß als Hüllmaterial einsetzbar.

Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der erfindungsgemäß umhüllten Feststoffpartikel kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der Umhüllung einsetzbar sind im Rahmen der vorliegenden Erfindung

Fettsäureglycerinester oder Fettsäurealkanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.

Bevorzugt enthält die beim erfindungsgemäßen Verfahrensschritt b) verwendete Hüllsubstanz im überwiegenden Anteil Paraffinwachs. Das heißt, daß wenigstens 50 Gew.-% der
Umhüllung, vorzugsweise mehr, aus Paraffinwachs bestehen. Besonders geeignet sind
Paraffinwachsgehalte in der Umhüllung von etwa 60 Gew.-%, etwa 70 Gew.-% oder etwa 80
Gew.-%, wobei noch höhere Anteile von beispielsweise mehr als 90 Gew.-% besonders
bevorzugt sind. In einer besonderen Ausführungsform der Erfindung besteht die Umhüllung
ausschließlich aus Paraffinwachs.

Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, daß in einer alkalischen Reinigungsmittelumgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestern zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält

Paraffinwachse bestehen hauptsächlich aus Alkanen, sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 70°C, besonders bevorzugt von mehr als 60°C auf. Anteile hochschmelzender Alkane im Paraffin können bei Unterschreitung dieser Schmelztemperatur in der Reinigungsmittelflotte nicht erwünschte Wachsrückstände auf den zu reinigenden Oberflächen oder dem zu reinigenden Gut hinterlassen. Solche Wachsrückstände führen in der Regel zu einem unschönen Aussehen der gereinigten Oberfläche und sollten daher vermieden werden.

Die im erfindungsgemäßen Schritt b) eingesetzte Hüllsubstanz enthält bevorzugt mindestens ein Paraffinwachs mit einem Schmelzpunkt von etwa 50°C bis etwa 55°C.

Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 30°C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung. Mit zunehmenden Anteil an festen Wachsbestandteilen steigt die Belastbarkeit der Umhüllung gegenüber Stößen oder Reibung an anderen Oberflächen an, was zu einem länger anhaltenden Schutz der umhüllten Aktivstoffe führt. Hohe Anteile an Ölen oder flüssigen Wachsbestandteilen können zu einer Schwächung der Umhüllung führen, wodurch Poren geöffnet werden und die umhüllten Aktivstoffe den Eingangs genannten Umgebungseinflüssen ausgesetzt werden.

Die Umhüllung kann neben Paraffin als Hauptbestandteil noch eine oder mehrere der oben genannten Wachse oder wachsartigen Substanzen enthalten. Grundsätzlich sollte das die Umhüllung bildende Gemisch so beschaffen sein, daß die Umhüllung wenigstens weitgehend wasserunlöstlich ist. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 me/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen.

In jedem Fall sollte die Umhüllung jedoch eine möglichst geringe Wasserlöslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der umhüllten Aktivsubstanzen möglichst weitgehend zu vermeiden.

Die in Verfahrensschritt b) hergestellte Schmelzsuspension bzw. –emulsion kann variierende Mengen an Hüllsubstanz, Hilfsstoffen und zu umhüllender Aktivsubstanz enthalten. In bevorzugten Verfahren macht die Hüllsubstanz 20 bis 95 Gew.-%, vorzugsweise 30 bis 70 Gew.-% und insbesondere 40 bis 50 Gew.-% der in Schritt b) hergestellten Schmelzsuspension oder –emulsion aus.

Aktivstoff(e):

Die in die Schmelzsuspension bzw. –emulsion einzuarbeitenden Aktivstoffe können bei der Verarbeitungstemperatur sowohl in fester als auch in flüssiger Form vorliegen, solange die Schmelzsuspension bzw. –emulsion unterhalb ihres Schmelzpunktes bzw. Erstarrungsbereichs in fester Form vorliegt, um die Mulde dauerhaft auszufüllen.

Die in der Schmelzsuspension bzw. -emulsion enthaltenen Aktivstoffe erfüllen im erfindungsgemäß hergestellten Wasch- und Reinigungsmittelformkörper bestimmte Aufgaben. Durch die Trennung bestimmter Substanzen oder durch die zeitlich beschleunigte oder verzögerte Freisetzung zusätzlicher Substanzen kann dadurch die Wasch- oder Reinigungsleistung verbessert werden. Aktivstoffe, die bevorzugt in die Schmelzsuspension bzw. -emulsion eingearbeitet werden, sind daher solche Inhaltsstoffe von Wasch- und Reinigungsmitteln, die entscheidend am Wasch- bzw. Reinigungsprozeß beteiligt sind.

In bevorzugten Verfahren sind daher der bzw. die Aktivstoff(e) in der in Schritt b) hergestellten Schmelzsuspension oder -emulsion ausgewählt aus der Gruppe der Enzyme, Bleichmittel, Bleichaktivatoren, Tenside, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder und/oder Duftstoffe.

Durch das Einarbeiten von Tensiden in aufgschmolzenes Hüllmaterial läßt sich eine Schmelzsuspension bzw. –emulsion herstellen, welche im fertigen Wasch- und Reinigungsmittelformkörper zu einem vorherbestimmbaren Zeitpunkt zusätzliche waschaktive Substanz bereitstellt. Beispielsweise lassen sich auf diese Weise nach dem erfindungsgemäßen Verfahren Formkörper für das maschinelle Geschirrspülen herstellen, die das zusätzliche Tensid erst bei Temperaturen freisetzen, welche haushaltsübliche Geschirrspülmaschinen erst im Klarspülgang erreichen. Auf diese Weise steht im Klarspülgang zusätzlich Tensid zur Verfügung, welches das Ablaufen des Wassers beschleunigt und so Flecken am Spülgut wirkungsvoll verhindert. Bei geeigneter Menge an erstarrter Schmelzsuspension bzw. –emulsion in den nach dem erfindungsgemäßen Verfahren hergestellten Formkörpern kann so auf die Verwendung heute üblicher zusätzlicher Klarspülmittel verzichtet werden. Statt der getrennten Dosierung und Abmessung zweier Produkte ist so nur eine problemlose Zugabe eines Formkörpers erforderlich, was Zeit, Mühe und Kosten spart.

In bevorzugten Verfahren ist/sind daher der bzw. die Aktivstoff(e) in der in Schritt b) hergestellten Schmelzsuspension oder –emulsion ausgewählt aus der Gruppe der nichtionischen Tenside, insbesondere der alkoxylierten Alkohole. Diese Substanzen wurden weiter oben ausführlich beschrieben. Eine weitere Klasse von Aktivsubstanzen, die sich mit besonderem Vorteil in die Schmelzsuspension bzw. –emulsion einarbeiten lassen, sind Bleichmittel. Hierbei können Waschund Reinigungsmittelformkörper hergestellt werden, die das Bleichmittel erst beim Erreichen bestimmter Temperaturen freisetzen, beispielsweise Waschmitteltabletten, die im
Vorspülgang enzymatisch reinigen und erst im Hauptspülgang das Bleichmittel freisetzen.
Auch Reinigungsmitteltabletten für das maschinelle Geschirrspülen sind so herstellbar, die
im Klarspülgang zusätzliches Bleichmittel freisetzen und so schwierige Flecken, beispielsweise Teeflecken wirkungsvoller entfernen.

In bevorzugten Verfahren ist/sind daher der bzw. die Aktivstoff(e) in der in Schritt b) hergestellten Schmelzsuspension oder –emulsion ausgewählt sind aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel. Auch diese Substanzen sind weiter oben ausführlich beschrieben.

Als Aktivsubstanzen lassen sich auch Duftstoffe in die Schmelzsuspension bzw. –emulsion einarbeiten. Sämtliche weiter oben ausführlich beschriebenen Duftstoffe können dabei als Aktivsubstanz verwendet werden. Bei Einarbeitung von Duftstoffen in die Schmelzsuspension bzw. –emulsion resultieren Wasch- und Reinigungsmittelformkörper, die das gesamte oder einen Teil des Parfüms zeitverzögert freisetzen. Auf diese Weise sind nach dem erfindungsgemäßen Verfahren beispielsweise Formkörper für das maschinelle Geschirrspülen herstellbar, bei denen der Verbraucher auch nach beendigter Geschirreinigung beim Öffnen der Maschine die Parfümnote erlebt. Auf diese Weise kann der unerwünschte "Alkaligeruch", der vielen maschinellen Geschirrspüllmitteln anhaftet, beseitigt werden.

Auch Korrosionsinhibitoren lassen sich als Aktivstoff in die nach dem erfindungsgemäßen Verfahren hergestellten Formkörper einbringen, wobei auf die dem Fachmann geläufigen Substanzen zurückgegriffen werden kann. Als Belagsinhibitor hat sich beispielsweise eine Kombination aus Enzym (z.B. Lipase) und Kalkseifendispergiermittel bewährt.

Unabhängig von der Substanzklasse, die als Aktivstoff eingesetzt wird, machen der bzw. die Aktivstoff(e) üblicherweise 5 bis 50 Gew.-%, vorzugsweise 10 bis 45 Gew.-% und ins-

H 3517 33

besondere 20 bis 40 Gew.-% der in Schritt b) hergestellten Schmelzsuspension oder --emulsion aus.

Hilfsstoffe:

Bei außergewöhnlich niedrigen Temperaturen, beispielsweise bei Temperaturen unter 0°C, kann die Umhüllung bei Stoßbelastung oder Reibung zerbrechen. Um die Stabilität bei solch niedrigen Temperaturen zu verbessern, können der Umhüllung gegebenenfalls Additive zugemischt werden. Geeignete Additive müssen sich vollständig mit dem geschmolzenen Wachs vermischen lassen, dürfen den Schmelzbereich der Hüllsubstanzen nicht signifikant ändern, müssen die Elastizität der Umhüllung bei tiefen Temperaturen verbessern, dürfen die Durchlässigkeit der Umhüllung gegenüber Wasser oder Feuchtigkeit im allgemeinen nicht erhöhen und dürfen die Viskosität der Schmelze des Hüllmaterials nicht soweit erhöhen, daß eine Verarbeitung erschwert oder gar unmöglich wird. Geeignet Additive, welche die Sprödigkeit einer im wesentlichen aus Paraffin bestehenden Umhüllung bei tiefen Temperaturen herabsetzen, sind beispielsweise EVA-Copolymere, hydrierte Harzsäuremethylester, Polyethylen oder Copolymere aus Ethylacrylat und 2-Ethylhexylacrylat.

Ein weiteres zweckmäßiges Additiv bei der Verwendung von Paraffin als Urnhüllung ist der Zusatz einer geringen Menge eines Tensids, beispielsweise eines C₁₂₋₁₅-Fettalkoholsulfats. Dieser Zusatz bewirkt eine bessere Benetzung des einzubettenden Materials durch die Urnhüllung. Vorteilhaft ist ein Zusatz des Additivs in einer Menge von etwa < 5 Gew.-%, bevorzugt < etwa 2 Gew.-%, bezogen auf die Hüllsubstanz. Der Zusatz eines Additivs kann in vielen Fällen dazu führen, daß auch Aktivsubstanzen urnhüllt werden können, die ohne Additivzusatz in der Regel nach dem Schmelzen des Urnhüllungsmaterials einen zähen, plastischen Körper aus Paraffin und teilgelöster Aktivsubstanz bilden.

Es kann im erfindungsgemäßen Verfahrensschritt b) von Vorteil sein, der Hüllsubstanz weitere Additive hinzuzufügen, um beispielsweise ein frühzeitiges Absetzen der zu umhüllenden Aktivstoffe während des Erkaltens zu verhindern. Die hierzu einsetzbaren Antiabsetzmittel, die auch als Schwebemittel bezeichnet werden, sind aus dem Stand der Technik, beispielsweise aus der Lack- und Druckfarbenherstellung, bekannt. Um beim Übergang vom plastischen Erstarrungsbereich zum Feststoff Sedimentationserscheinungen

und Konzentrationsgefälle der zu umhüllenden Substanzen zu vermeiden, bieten sich beispielsweise grenzflächenaktive Substanzen, in Lösungsmitteln dispergierte Wachse, Montmorillonite, organisch modifizierte Bentonite, (hydrierte) Ricinusölderivate, Sojalecithin, Ethylcellulose, niedermolekulare Polyamide, Metallstearate, Calciumseifen oder hydrophobierte Kieselsäuren an. Weitere Stoffe, die die genannten Effekte bewirken, stammen aus den Gruppen der Antiausschwimmittel und der Thixotropiermittel und können chemisch als Silikonöle (Dimethylpolysiloxane, Methylphenylpolysiloxane, Polyethermodifizierte Methylalkylpolysiloxane), oligomere Titanate und Silane, Polyamine, Salze aus langkettigen Polyaminen und Polycarbonsäuren, Amin/Amid-funktionelle Polyester bzw.

Zusatzmittel aus den genannten Stoffklassen sind kommerziell in ausgesprochener Vielfalt erhältlich. Handelsprodukte, die im Rahmen des erfindungsgemäßen Verfahrens vorteilhaft als Additiv zugesetzt werden können, sind beispielsweise Aerosil® 200 (pyrogene Kiselsäure, Degussa), Bentone® SD-1, SD-2, 34, 52 und 57 (Bentonit, Rheox), Bentone® SD-3, 27 und 38 (Hectorit, Rheox), Tixogel® EZ 100 oder VP-A (organisch modifizierter Smectit, Südchemie), Tixogel® VG, VP und VZ (mit QAV beladener Montmorillonit, Südchemie), Disperbyk® 161 (Blockcopolymer, Byk-Chemie), Borchigen® ND (sulfogruppenfreier Ionenaustauscher, Borchers), Ser-Ad® FA 601 (Servo), Solsperse® (aromatisches Ethoxylat, ICI), Surfynol®-Typen (Air Products), Tamol®- und Triton®-Typen (Rohm&Haas), Texaphor®963, 3241 und 3250 (Polymere, Henkel), Rilanit®-Typen (Henkel), Thixcin® E und R (Ricinusöl-Derivate, Rheox), Thixatrol® ST und GST (Ricinusöl-Derivate, Rheox), Thixatrol® SR, SR 100, TSR und TSR 100 (Polyamid-Polymere, Rheox), Thixatrol® 289 (Polyetsre-Polymer, Rheox) sowie die unterschiedlichen M-P-A®-Typen X, 60-X, 1078-X, 2000-X und 60-MS (organische Verbindungen, Rheox).

Die genannten Hilfsmittel können im erfindungsgemäßen Verfahren je nach Umhüllungsmaterial und zu umhüllenden Material in variierenden Mengen eingesetzt werden. Übliche Einsatzkonzentrationen für die vorstehend genannten Antiabsetz-, Antiausschwimm-, Thioxotropier- und Dispergiermittel liegen im Bereich von 0,5 bis 8,0 Gew.-%, vorzugsweise zwischen 1,0 und 5,0 Gew.-%, und besonders bevorzugt zwischen 1,5 und 3,0 Gew.-%, jeweils bezogen auf die Schmelzsuspension bzw.-emulsion.

Im Rahmen der vorliegenden Erfindung sind daher Verfahren bevorzugt, bei denen die in Schritt b) hergestellte Schmelzsuspension oder –emulsion weitere Hilfsstoffe aus der Gruppe der Antiabsetzmittel, Schwebemittel, Antiausschwimmittel, Thixotropiermittel und Dispergierhilfsmittel in Mengen von 0,5 bis 8,0 Gew.-%, vorzugsweise zwischen 1,0 und 5,0 Gew.-%, und besonders bevorzugt zwischen 1,5 und 3,0 Gew.-%, jeweils bezogen auf die Schmelzsuspension oder –emulsion, enthält.

Insbesondere bei der Herstellung von Schmelzsuspensionen bzw. –emulsionen, die Aktivstoffe enthalten, welche bei der Verarbeitungstemperatur flüssig sind, ist der Einsatz spezieller Emulgatoren vorteilhaft. Es hat sich gezeigt, daß insbesondere Emulgatoren aus der
Gruppe der Fettalkohole, Fettsäuren, Polyglycerinester und der Polyoxyalkylensiloxane
äußerst gut geeignet sind.

Unter Fettalkoholen werden dabei die aus nativen Fetten bzw. Ölen über die entsprechenden Fettsäuren (siehe unten) erhältlichen Alkohole mit 6 bis 22 Kohlenstoffatomen verstanden. Diese Alkohole können je nach der Herkunft des Fetts bzw. Öls, aus dem sie gewonnen werden, in der Alkylkette substituiert oder stellenweise ungesättigt sein.

Als Emulgatoren werden im erfindungsgemäßen Verfahrensschritt b) als Emulgator(en) daher bevorzugt C₆₋₂₂-Fettalkohole, vorzugsweise C₈₋₂₂-Fettalkohole und insbesondere C₁₂₋₁₈-Fettalkohole unter besonderer Bevorzugung der C₁₆₋₁₈-Fettalkohole, eingesetzt.

Als Emulgatoren können auch sämtliche aus pflanzlichen oder tierischen Ölen und Fetten gewonnenen Fettsäuren verwendet werden. Die Fettsäuren können unabhängig von ihrem Aggregatzustand gesättigt oder ein- bis mehrfach ungesättigt sein. Auch bei den ungesättigten Fettsäuren sind die bei Raumtemperatur festen Spezies gegenüber den flüssigen bzw. pastösen bevorzugt. Selbstverständlich können nicht nur "reine" Fettsäuren eingesetzt werden, sondern auch die bei der Spaltung aus Fetten und Ölen gewonnenen technischen Fettsäuregemische, wobei diese Gemische aus ökonomischer Sicht wiederum deutlich bevorzugt sind.

36

So lassen sich als Emulgatoren im Rahmen der vorliegenden Erfindung beispielsweise einzelne Spezies oder Gemische folgender Säuren einsetzen: Caprylsäure, Pelargonsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Octadecan-12-ol-säure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, 10-Undecensäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Elaidinsäure, Ricinolsäure, Linolaidinsäure, α - und β -Eläosterainsäure, Gadoleinsäure Erucasäure, Brassidinsäure. Selbstverständlich sind auch die Fettsäuren mit ungerader Anzahl von C-Atomen einsetzbar, beispielsweise Undecansäure, Tridecansäure, Pentadecansäure, Heptadecansäure, Nonadecansäure, Heneicosansäure, Tricosansäure, Pentacosansäure, Heptacosansäure.

In bevorzugten Verfahrensschritten b) werden als Emulgator(en) $C_{6:2^*}$ -Fettsäuren, vorzugsweise $C_{6:2^*}$ -Fettsäuren und insbesondere $C_{12:18}$ -Fettsäuren unter besonderer Bevorzugung der $C_{16:18}$ -Fettsäuren, eingesetzt.

Besonders bevorzugte Emulgatoren sind im Rahmen der vorliegenden Erfindung Polyglycerinester, insbesondere Ester von Fettsäuren mit Polyglycerinen. Diese bevorzugten Polyglycerinester lassen sich durch die allgemeine Formel III beschreiben

in der R¹ in jeder Glycerineinheit unabhängig voneinander für H oder einen Fettacylrest mit 8 bis 22 Kohlenstoffatomen, vorzugsweise mit 12 bis 18 Kohlenstoffatomen, und n für eine Zahl zwischen 2 und 15, vorzugsweise zwischen 3 und 10, steht.

Diese Polyglycerinester sind insbesondere mit den Polymerisationsgraden n = 2, 3, 4, 6 und 10 bekannt und kommerziell verfügbar. Da Stoffe der genannten Art auch in kosmetischen Formulierungen weite Verbreitung finden, sind etliche dieser Substanzen auch in der INCI-Nomenklatur klassifiziert (CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997). Dieses kosmetische Standardwerk beinhaltet beispielsweise Informationen zu den

Stichworten POLYGLYCERYL-3-BEESWAX, POLYGLYCERYL-3-CETYL ETHER, POLYGLYCERYL-4-COCOATE, POLYGLYCERYL-10-DECALINOLEATE, POLY-GLYCERYL-10-DECAOLEATE, POLYGLYCERYL-10-DECASTEARATE, POLY-GLYCERYL-2-DIISOSTEARATE, POLYGLYCERYL-3-DIISOSTEARATE, POLY-GLYCERYL-10-DIISOSTEARATE. POLYGLYCERYL-2-DIOLEATE, POLY-GLYCERYL-3-DIOLEATE, POLYGLYCERYL-6-DIOLEATE, POLYGLYCERYL-10-POLYGLYCERYL-3-DISTEARATE, POLYGLYCERYL-6-DIOLEATE. POLYGLYCERYL-10-DISTEARATE, POLYGLYCERYL-10-DISTEARATE. HEPTAOLEATE, POLY-GYLCERYL-12-HYDROXYSTEARATE, POLYGLYCERYL-10-HEPTASTEARATE, POLYGLYCERYL-6-HEXAOLEATE, POLYGLYCERYL-2-ISOSTEARATE, POLY-GLYCERYL-4-ISOSTEARATE. POLY-GLYCERYL-6-POLY-GLYCERYL-10-LAURATE. POLY-ISOSTEARATE. LYCERYLMETHACRYLATE. POLYGLYCERYL-10-MYRISTATE, POLYGLYCERYL-2-OLEATE, POLYGLYCERYL-3-OLEATE, POLYGLYCERYL-4-POLYGLYCERYL-6-OLEATE, OLEATE. POLYGLYCERYL-8-OLEATE, POLYGLYCERYL-10-OLEATE, POLYGLYCERYL-6-PENTAOLEATE. POLYGLYCERYL-6-PENTASTEARATE, POLYGLYCERYL-10-PENTAOLEATE. POLYGLYCERYL-2-SESQUI-POLYGLYCERYL-10-PENTASTEARATE, IOSOSTEARATE. POLYGLYCERYL-2-SESOUIOLEATE, POLYGLYCERYL-2-STEARATE, POLYGLYCERYL-3-STEARATE, POLYGLYCERYL-4-STEARATE, POLYGLYCERYL-8-STEARATE. POLYGLYCERYL-10-STEARATE, POLY-POLYGLYCERYL-10-TETRAOLEATE. GLYCERYL-2-TETRAISOSTEARATE, POLYGLYCERYL-2-TETRASTEARATE, POLYGLYCERYL-2-TRIISOSTEARATE. POLYGLYCERYL-6-TRISTEARATE. POLYGLYCERYL-10-TRIOLEATE. Die kommerziell erhältlichen Produkte unterschiedlicher Hersteller, die im genannten Werk unter den vorstehend genannten Stichwörtern klassifiziert sind, lassen sich im erfindungsgemäßen Verfahrensschritt b) vorteilhaft als Emulgatoren einsetzen.

Eine weitere Gruppe von Emulgatoren, die im erfindungsgemäßen Verfahrensschritt b) Verwendung finden können, sind substituierte Silicone, die mit Ethylen- bzw. Propylenoxid umgesetzte Seitenketten tragen. Solche Polyoxyalkylensiloxane können durch die allgemeine Formel IV beschrieben werden

38

in der jeder Rest R¹ unabhängig voneinander für -CH, oder eine Polyoxyethylen- bzw.
-propylengruppe -{CH(R²)-CH₂-O],H-Gruppe, R² für -H oder -CH₃, x für eine Zahl
zwischen 1 und 100, vorzugsweise zwischen 2 und 20 und insbesondere unter 10, steht und n
den Polymerisationsgrad des Silikons angibt.

Optional können die genannten Polyoxyalkylensiloxane auch an den freien OH-Gruppen der Polxoxyethylen- bzw. Polyoxypropylen-Seitenketten verethert oder verestert werden. Das unveretherte und unveresterte Polymer aus Dimethylsiloxan mit Polyoxyethylen und/oder Polyoxypropylen wird in der INCI-Nomenklatur als DIMETHICONE COPOLYOL bezeichnet und ist unter den Handeldnamen Abil® B (Goldschmidt), Alkasil® (Rhône-Poulenc), Silwet® (Union Carbide) oder Belsil® DMC 6031 kommerziell verfügbar.

Das mit Essigsäure veresterte DIMETHICONE COPOLYOL ACETATE (beispielsweise Belsil* DMC 6032, -33 und -35, Wacker) und der DIMETHICONE COPOLYOL BUTYL ETHER (bsp KF352A, Shin Etsu) sind im Rahmen des erfindungsgemäßen Verfahrensschritts b) ebenfalls als Emulgatoren einsetzbar.

Bei den Emulgatoren gilt wie bereits bei den Umhüllungsmaterialien und den zu umhüllenden Substanzen, daß sie über einen breit variierenden Bereich eingesetzt werden können. Üblicherweise machen Emulgatoren der genannten Art 1 bis 25 Gew.-%, vorzugsweise 2 bis 20 Gew.-% uns insbesondere 5 bis 10 Gew.-% des Gewichts der Schmelzsuspension bzw.

In bevorzugten Verfahren enthält die in Schritt b) hergestellte Schmelzsuspension oder
—emulsion zusätzlich Emulgatoren aus der Gruppe der Fettalkohole, Fettsäuren, Polyglycerinester und/oder Polyoxyalkylensiloxane in Mengen von 1 bis 20 Gew.-%, vorzugsweise
von 2 bis 15 Gew.-%, und besonders bevorzugt von 2,5 bis 10 Gew.-%, jeweils bezogen
auf die Schmelzsuspension oder —emulsion.

Verfahrensschritt c):

Im Verfahrensschritt c) werden die separat hergestellten Muldenformkörper mit der separat hergestellten Schmelzsuspension bzw. —emulsion bei Temperaturen oberhalb der Schmelztemperatur der Hüllsubstanz befüllt. Die Temperatur der einzufüllenden Schmelze kann dabei beliebig hoch gewählt werden, im Hinblick auf temperaturempfindliche Inhaltsstoffe ist es aber bevorzugt, daß der Verfahrensschritt c) bei Temperaturen durchgeführt wird, die maximal 10°C, vorzugsweise maximal 5°C und insbesondere maximal 2°C oberhalb der Erstarrungstemperatur der Schmelzsuspension oder —emulsion liegen.

Das Eindosieren der Schmelzsuspension oder -emulsion in die Mulde des vorgefertigten Formkörpers erfolgt dabei vorzugsweise mittels einer Kolbendosierpumpe, einer pneumatischen Pumpe, einer Schlauchpumpe oder einer Zahnradpumpe.

Diese Pumpen sind dem Fachmann für die unterschiedlichsten Anwendungsgebiete geläufig, so daß er je nach Zusammensetzung der Schmelzsuspension bzw. –emulsion keine
Schwierigkeiten hat, die hinsichtlich Dimension, Material und Arbeitsweise richtige Pumpe auszuwählen. Für Schmelzsuspensionen bzw. –emulsionen, die Tenside, Bleichmittel
oder Duftstoffe enthalten, haben sich dabei insbesondere Kolbendosierpumpen bewährt.

Die Formkörper können vor dem Befüllen mit der Schmelze vorbehandelt worden sein, um die Haftung der Schmelze in der Mulde zu verbessern. So ist es beispielsweise möglich, einen geeigneten Haftvermittler auf die Muldenflächen aufzubringen, der die Haftung der Schmelze am Formkörper sicherstellt, so daß bei Transport und Handhabung der Formkörper sich die erstarrte Muldenfüllung nicht vom Formkörper trennen kann.

Verfahrenstechnisch eleganter und einfacher ist es, daß die Muldenformkörper vor dem Befüllen mit der Schmelzsuspension oder –emulsion aufgewärmt werden, um die Haftung der erkaltenden Schmelze zu verbessern. Auf diese Weise kann die erkaltende Schmelze zumindest teilweise in die Randbereiche der Mulde eindringen und sorgt bei Erstarren so für einen dauerhaften und festen Haftverbund.

40

Beispiele:

Herstellung von Reinigungsmitteltabletten für das maschinelle Geschirrspülen

Verfahrensschritt a): Herstellung von Muldenformkörpern:

Durch Verpressen zweier unterschiedlicher Vorgemische wurden zweischichtige rechtekkige Formkörper hergestellt, die eine Mulde in Form einer Halbellipse aufwiesen. Die Zusammensetzung (in Gew.-%, bezogen auf das jeweilige Vorgemisch) der beiden Vorgemische und damit der zwei unterschiedlichen Phasen der Muldenformkörper zeigt die nachstehende Tabelle:

	Vorgemisch 1	Vorgemisch 2	
	(Unterphase)	(Oberphase)	
Natriumcarbonat	32,0	-	
Natriumtripolyphosphat	52,0	91,4	
Natriumperborat	10,0	-	
Tetraacetylethylendiamin	2,5	-	
Benzotriazol	1,0	-	
C ₁₂ -Fettalkohol mit 3 EO	2,5	-	
Farbstoff		0,2	
Enzyme	Ŷ	6,0	
Parfiim		0,4	
Silikonöl		2,0	

Verfahrensschritt b): Herstellung von Schmelzsuspensionen/-emulsionen:

Durch Erhitzen des Hüllmaterials und Einrühren der Aktivsubstanzen und optionalen Hilfsstoffe wurden drei Schmelzdispersionen/-emulsionen SDE 1 bis 3 hergestellt, deren Zusammensetzung (Gew.-%, bezogen auf die Schmelze) in der nachstehenden Tabelle angegeben ist:

	SDE 1	SDE 2	SDE 3
	(Bleichkern)	(Tensidkern)	(Duftkern)
Paraffin 57-60°C	50,0	60,0	95,0
Dichlorisocyanursäure	35,0		
Poly Tergent SLF-18B-45*	-	33,3	-
Parfiim	-	-	5,0
Tylose MH 50	15,0	•	-
Polyglycerin-12-hydroxystearat	-	6,7	-

^{*:} Alkoholalkoxylat der Firma Olin Chemicals, Erweichungspunkt 25-45°C

Verfahrensschritt c): Eingießen der Schmelzsuspensionen/-emulsionen in die Formkörper:

Die in Schritt b) hergestellten Schmelzdispersionen/-emulsionen wurden in folgenden Gewichtsverhältnissen (Angaben in Gew.-%, bezogen auf den fertig befüllten Formkörper) in die im Verfahrensschritt a) hergestellten Muldenformkörper eingegossen, wobei die Formkörper vor dem Eingießen auf 40°C erwärmt worden waren:

	Muldenformkörper mit Bleichmittelkern	Muldenformkörper mit Tensidkern	Muldenformkörper mit Parfümkern
Muldenformkörper	96,0	96,0	96,0
SDE 1	4,0	-	•
SDE 2	•	4,0	-
SDE 3		- .	4,0

Verfahrensschritt d): Abkühlen und Nachbehandlung:

Die befüllten Formkörper wurden bei Raumtemperatur erkalten gelassen und nachfolgend einzeln verpackt.

Die Muldenformkörper mit Bleichmittelkern weisen gegenüber analog zusammengesetzten Formkörpern, in denen die Inhaltsstoffe der Schmelzdispersion/-emulsion einzeln und nicht in Form einer Schmelze zum Vorgemisch gegeben wurden, deutlich bessere Reinigungsleistungen, insbesondere an Teeflecken auf.

Die Muldenformkörper mit Tensidkern weisen gegenüber analog zusammengesetzten Formkörpern, in denen die Inhaltsstoffe der Schmelzdispersion/-emulsion einzeln und nicht in Form einer Schmelze zum Vorgemisch gegeben wurden, deutlich bessere Klarspülleistungen auf, die sich in einer erheblich verringerten Belagsbildung auf Gläsern manifestieren

Die Muldenformkörper mit Duftkern weisen gegenüber analog zusammengesetzten Formkörpern, in denen die Inhaltsstoffe der Schmelzdispersion/-emulsion einzeln und nicht in Form einer Schmelze zum Vorgemisch gegeben wurden, eine deutlich bessere Parfümnote beim Öffnen der Maschine auf.

Alle vorstehend genannten Tests wurden in mehreren handelsüblichen Geschirrspülmaschinen von mehreren Testpersonen durchgeführt, wobei die Formkörper in die Dosierkammer der Maschine gelegt wurden und ein 55°C-Programm bei beladener Maschine ablaufen gelassen wurde. In keinem der Tests wurden zusätzliche Reinigungs- oder Klarspülmittel eingesetzt.

Patentansprüche:

- Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, gekennzeichnet durch die Schritte
 - Verpressen eines teilchenf\u00f6rmigen Vorgemischs zu Formk\u00f6rpern, die eine Mulde aufweisen,
 - b) Herstellung einer Schmelzsuspension oder -emulsion aus einer Hüllsubstanz, die einen Schmelzpunkt oberhalb von 30°C aufweist und einem oder mehreren in ihr dispergierten oder suspendierten Aktivstoff(en),
 - Befüllen der Muldenformkörper mit der Schmelzsuspension oder –emulsion bei Temperaturen oberhalb des Schmelzpunkts der Hüllsubstanz,
 - Abkühlen und optionale Nachbehandlung der befüllten Wasch- und Reinigungsmittelformkörper.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch Builder in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch Tensid(e), vorzugsweise nichtionische(s) Tensid(e), in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 0,75 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch ein Schüttgewicht oberhalb von 600 g/l, vorzugsweise oberhalb von 700 g/l und insbesondere oberhalb von 800 g/l aufweist.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung auf-

weist, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-% und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 μ m oder kleiner als 200 μ m sind.

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 µm aufweisen.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in Schritt a) mehrschichtige Formkörper, die eine Mulde aufweisen, in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß in Schritt a) zweischichtige Formkörper, die eine Mulde aufweisen, hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Enzyme enthält.
- 9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß in Schritt a) zweischichtige Formkörper, die eine Mulde aufweisen, hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Bleichaktivatoren enthält.
- 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Hüllsubstanz in Schritt b) einen Schmelzbereich von 45°C bis 75°C aufweist.
- Verfahren nach einem der Ansprüche Lbis 10, dadurch gekennzeichnet, daß die Hüllsubstanz mindestens ein Paraffinwachs mit einem Schmelzbereich von 50°C bis 55°C enthält.

- 12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Hüllsubstanz 20 bis 95 Gew.-%, vorzugsweise 30 bis 70 Gew.-% und insbesondere 40 bis 50 Gew.-% der in Schritt b) hergestellten Schmelzsuspension oder –emulsion ausmacht.
- 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der bzw. die Aktivstoff(e) in der in Schritt b) hergestellten Schmelzsuspension oder –emulsion ausgewählt sind aus der Gruppe der Enzyme, Bleichmittel, Bleichaktivatoren, Tenside, Korro- sionsinhibitoren, Belagsinhibitoren, Cobuilder und/oder Duftstoffe.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der bzw. die Aktivstoff(e) in der in Schritt b) hergestellten Schmelzsuspension oder -emulsion ausgewählt sind aus der Gruppe der nichtionischen Tenside, insbesondere der alkoxylierten Alkohole.
- 15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der bzw. die Aktivstoff(e) in der in Schritt b) hergestellten Schmelzsuspension oder -emulsion ausgewählt sind aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel.
- 16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der bzw. die Aktivstoff(e) 5 bis 50 Gew.-%, vorzugsweise 10 bis 45 Gew.-% und insbesondere 20 bis 40 Gew.-% der in Schritt b) hergestellten Schmelzsuspension oder --emulsion ausmachen.
- 17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die in Schritt b) hergestellte Schmelzsuspension oder –emulsion weitere Hilfsstoffe aus der Gruppe der Antiabsetzmittel, Schwebemittel, Antiausschwimmittel, Thixotropiermittel und Dispergierhilfsmittel in Mengen von 0,5 bis 8,0 Gew.-%, vorzugsweise zwischen 1,0 und 5,0 Gew.-%, und besonders beyorzugt zwischen 1,5 und 3,0 Gew.-%, jeweils bezogen auf die Schmelzsuspension oder –emulsion, enthält.

H 3517

18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die in Schritt b) hergestellte Schmelzsuspension oder -emulsion zusätzlich Emulgatoren aus der Gruppe der Fettalkohole, Fettsäuren, Polyglycerinester und/oder Polyoxyalkylensiloxane in Mengen von 1 bis 20 Gew.-%, vorzugsweise von 2 bis 15 Gew.-%, und besonders bevorzugt von 2,5 bis 10 Gew.-%, jeweils bezogen auf die Schmelzsuspension oder -emulsion, enthält.

47

- 19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der Verfahrensschritt e) bei Temperaturen durchgeführt wird, die maximal 10°C, vorzugsweise maximal 5°C und insbesondere maximal 2°C oberhalb der Erstarrungstemperatur der Schmelzsuspension oder –emulsion liegen.
- 20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß in Verfahrensschritt c) die Schmelzsuspension oder –emulsion mittels einer Kolbendosierpumpe, einer pneumatischen Pumpe, einer Schlauchpumpe oder einer Zahnradpumpe in die Muldenformkörper eingefüllt wird.
- 21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß die Muldenformkörper vor dem Befüllen mit der Schmelzsuspension oder -emulsion aufgewärmt werden, um die Haftung der erkaltenden Schmelze zu verbessern.

Zusammenfassung:

"Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper"

Die vorliegende Erfindung beschreibt ein Verfahren zur Herstellung mehrphasiger Waschund Reinigungsmittelformkörper, bei dem ein teilchenförmiges Vorgemisch zu Formkörpern, die eine Mulde aufweisen, verpreßt wird, welche mit einer Schmelzsuspension oder emulsion aus einer Hüllsubstanz, die einen Schmelzpunkt oberhalb von 30°C aufweist und
einem oder mehreren in ihr dispergierten oder suspendierten Aktivstoff(en) bei Temperaturen oberhalb des Schmelzpunkts der Hüllsubstanz befüllt wird. Nach dem Abkühlen erhält
man auf diese Weise Wasch- und Reinigungsmittelformkörper, die sich durch eine hervorragende Lager- und Transportstabilität auszeichnen und die gegenüber herkömmlichen
Produkten überlegene Leistungen in den unterschiedlichsten Anwendungsbereichen zeigen.