МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа аэрокосмических технологий

Отчет о выполнении лабораторной работы 1.1.1

Определение удельного сопротивления нихромовой проволоки

Ефремова Татьяна, Б03-503

1 Аннотация

Цели работы: измерить удельное сопротивление нихромовой проволоки; вычислить систематические и случайные погрешности при использовании линейки, микрометра, штангенциркуля, вольтметра, амперметра и моста постоянного тока.

$\mathbf{2}$ Теоретические сведения

Удельное сопротивление проволоки круглого сечения:

$$\rho = \frac{R_{\rm np}}{l} \frac{\pi d^2}{4},\tag{1}$$

где $R_{\rm np}$ — сопротивление проволоки, d — диаметр, l — длина. Сопротивление параллельного соединения проволоки и вольтметра:

$$R_{\rm np1} = \frac{V_{\rm v}}{I_{\rm a}},\tag{2}$$

где $V_{\rm v}$ – напряжение вольтметра, $I_{\rm A}$ – сила тока через амперметр. Ввиду неидлеальности вольтметра, спротивление проволоки:

$$R_{\rm np} = \frac{R_{\rm v} R_{\rm np1}}{R_{\rm v} - R_{\rm np1}},\tag{3}$$

где $R_{
m v}$ — сопротивление вольтметра.

Рис. 1: Схема цепи

Оборудование 3

Используемое оборудование

Отрезок нихромовой проволоки, вольтметр, амперметр, источник ЭДС, мост постоянного тока, реостат, линейка, штангенциркуль, микрометр.

3.2 Инструментальные погрешности

линейка: $\Delta_{\text{лин}} = \pm 0,5$ мм (маркировка производителя). При определении положений контактов имеется дополнительная погрешность, которая может быть оценена как $\Delta_{\text{лин}} \approx \pm 2$ мм.

штангенциркуль: $\Delta_{\text{шт}} = \pm 0, 1$ мм (маркировка производителя).

микрометр: $\Delta_{\text{мкм}} = \pm 0,01$ мм (маркировка прозиводителя).

амперметр: абсолютная погрешность в диапазоне 80-150 мA: $\Delta_{\rm A}=\pm 0.01$ mA.

вольтметр: шкала линейная, 150 делений; класс точности -0.5; предел измерений -0.75В. Абсолютная погрешность по цене деления: $\Delta_{\rm B}=\pm\frac{0.75}{150*2}=\pm2.50~{\rm mV};$ Абсолютная погрешность по классу точности: $\Delta_{\rm B}=\pm\frac{0.75*0.5}{2}=\pm1.875~{\rm mV}.$

мост постоянного тока P4833: разрядность магазина сопротивлений – 5 ед; класс точности – 0,1; Используемый диапазон измерений: $10^{-4} - 10$ Ом (для множителя $N = 10^{-2}$). Погрешность измерений в используемом диапазоне: $\Delta_{\text{мпт}} = \pm 0,010 \,\, \text{Ом}.$

Результаты измерений и обработка данных 4

4.1 Измерение диаметра d проволоки

Таблица 1: Измерения диаметра проволоки штангенциркулем и микрометром

	1	2	3	4	5	6	7	8	9	10
d_{iiit} , mm	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
d_{mkm} , mm	0,36	0,37	0,36	0,36	0,37	0,36	0,35	0,36	0,36	0,36

$$\bar{d}_{\text{imt}} = 0, 4 \text{ mm}; \ \bar{d}_{\text{mkm}} = 0, 361 \text{ mm}$$

При измерении диаметра проволоки штангенциркулем отсутствует случайная погрешность, т.е. результат измерений определяет лишь точность прибора: $d_{\text{шт}}=0,4\pm0,1$ мм.

При измерении диаметра проволоки присутствуют как случайная, так и систематическая погрешности:

$$\sigma_{
m oth} = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(d_i-\bar{d})^2} \approx 6\cdot 10^{-3}$$
 мм; $\sigma_{
m cp} = \frac{\sigma_{
m oth}}{\sqrt{N}} \approx 2\cdot 10^{-3}$ мм; $\sigma_{
m полн} = \sqrt{\sigma_{
m cp}^2+\Delta_{
m мкм}^2} \approx 0,01$ мм;
Т. к. $\sigma_{
m cp} << \sigma_{
m мкм}$, можно считать, что проволока однородная, а погрешность при измерении ее диаметра

определяется лишь точностью микрометра: $d_{\text{мкм}} = 0,361 \pm 0,010$ мм.

Измерение сопротивления $R_{\rm np}$ проволоки

Результаты измерений зависимостей показаний вольтметра V от показаний амперметра I в схеме рис. 1при разных длинах l проволоки представлены в табл. 2. Соответствующие графики зависимостей изображены на рис. 2.

Таблица 2: Показания приборов и значения сопротивления

	$l=50\ { m cm}$													
I, mA	30,5	40,6	50,7	60,7	75,2	81,0	85,7	90,8	99,9	110,8	120,5	131,0	140,0	150,3
U, mV	150	200	250	300	375	402	425	450	500	550	600	650	700	750
R, Om	4,918	4,926	4,931	4,942	4,986	4,969	4,959	4,959	5,001	4,964	4,979	4,962	5,0	4,991
	$l=30~\mathrm{cm}$													
I, mA	35,5	39,3	52,0	59,9	69,6	76,3	85,3	101,4	110,5	119,6	148,0	161,6	205,1	218,7
U, mV	100	110	150	175	200	225	250	300	325	350	450	500	610	650
R, Om	2,817	2,799	2,885	2,922	2,874	2,949	2,931	2,959	2,940	2,926	3,041	3,094	2,974	2,972
	$l=20~\mathrm{cm}$													
I, mA	69,9	86,6	101	113,3	137,9	149,9	161,6	189	206,2	222,1	240,0	297,0	323,0	350,0
U, mV	140	175	200	225	275	300	325	375	415	450	490	595	655	710
R, Om	2,003	2,021	1,980	1,986	1,994	2,001	2,011	1,984	2,013	2,026	2,042	2,003	2,028	2,029

Внутреннее сопротивление вольтметра $R_B = \frac{0.75~\mathrm{B}}{0.135~\mathrm{mA}} = 5~\mathrm{кOm}.$

Т.к. поправка измерения $\frac{R_{\rm np}}{R_B}=0,1\%$ дает изменение не более, чем $\delta R=5\cdot 10^{-3}$ Ом, нет смысла пересчитывать значения сопротивления. Будем работать с данными, представленными в табл. 2.

Таблица 3: Погрешности и результаты измерения сопротивления проволоки

	l = 50 cm	l=30 cm	l=20 см
R_0 , Ом	5,090	3,051	2,093
$R_{\rm cp} = rac{\sum_{i=1}^{N} V \cdot I}{\sum_{i=1}^{N} I^2}, { m Om}$	4,977	2,981	2,017
$\sigma_{\text{отд}} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (R_i - R_{\text{cp}})^2}, \text{ Om}$	0,779	1,218	0,232
$\sigma_{ m cp} = \frac{\sigma_{ m orr}}{\sqrt{N}}, { m Om}$	0,208	0,325	0,062
$\sigma_{ ext{chct}} = R_{ ext{cp}} \sqrt{\left(rac{\Delta_B}{V_{ ext{max}}} ight)^2 + \left(rac{\Delta_A}{I_{ ext{max}}} ight)^2}, ext{Om}$	0,012	0,008	0,005
$\sigma_{ ext{полн}} = \sqrt{\sigma_{ ext{cp}}^2 + \Delta_{ ext{мкм}}^2}, \; ext{Om}$	0,208	0,325	0,062

Итак,

 $R_{l=50}=4,977\pm0,208$ Om,

 $R_{l=30}=2,981\pm0,325~{\rm Om},$

 $R_{l=20}=2,017\pm0,062$ Om.

Рис. 2: Линейная аппроксимация результатов измерения напряжения V в зависимости от силы тока I методом наименьших квадратов

4.3 Вычисление удельного сопротивления ho_{np} проволоки

Таблица 4: Погрешности и результаты измерения сопротивления проволоки

	l = 50 cm	$l = 30 { m cm}$	$l=20~\mathrm{cm}$
$ ho = (1), \mathrm{O}_{\mathrm{M}} \cdot {}_{\mathrm{M}}$	$1,019 \cdot 10^{-6}$	$1,017 \cdot 10^{-6}$	$1,032 \cdot 10^{-6}$
$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$, Om·m	$0.051 \cdot 10^{-6}$	$0,114 \cdot 10^{-6}$	$0.044 \cdot 10^{-6}$

$$\rho = (1,022\,\pm\,0,070)\,\cdot\,10^{-6}$$
Ом · м $(\epsilon_\rho = 6,8\%)$

5 Выводы

В результате работы было измерено удельное сопротивление образца нихромовой проволоки с точностью $\approx 6,8\%$. Табличные значения для нихрома при 20° лежат в диапазоне от $0,97\cdot 10^{-6}$ м до $1,12\cdot 10^{-6}$ м (согласно справочнику "Физические величины. М.: Энергоиздат, 1991. С. 444). Наиболее близкое значение к полученному в работе имеет сплав 70-80% Ni, 20% Cr, 0-2% Mn, однако точно определить состав сплава погрешность измерений не позволяет. Для уменьшения ее требуется проиозводить измерения на более точном оборудовании, т.к. систематическая погрешность вносит в результат куда больший вклад, чем случайная, и просто увеличить количество измерений будет недостаточно.