IN5280 Home Exam

1. Asset identification, categorization, and criticality assessment

To identify the information assets in the application, we take a firm look at what features the system is supposed to support. Through such an analysis, we found 3 categories of information that the system contains:

- 1. Statistics
- 2. Personal
- 3. Integrations

These are the assets we have identified:

Asset	Category	C	I	A	Total
COVID-19 statistics - general	Statistics	Insignificant	Medium	Medium	Medium
Vaccination statistics - general	Statistics	Insignificant	Medium	Medium	Medium
COVID-19 statistics - app users	Statistics	Low	Medium	Medium	Medium
Vaccination statistics - app users	Statistics	Low	Medium	Medium	Medium
Payment methods	Personal	High	High	High	High
Location data	Personal	High	High	High	High
Telephone numbers	Personal	High	High	High	High
Email addresses	Personal	High	High	High	High
Personal test data	Personal	High	High	High	High
Authentication details	Personal	High	High	High	High
Facebook account link	Integrations	Low	High	High	High
Google account link	Integrations	Low	High	High	High

Some of our justifications for the ratings provided above

Statistics information is in general non-confidential information, although as the app user data is an important part of the product we sell it should be considered company internal data. As for the integrity, it is quite important that the data is correct, for the same reason. Still, we do not consider it at high criticality as the economic consequences of a slight mistake in the data is unlikely to be very large. This presupposes that the mistake is slight and gets fixed at a not-too-distant later point; if the data is always off, our service is far less useful and is unlikely to take off. With regards to availability, the time lag in testing and tracing means updated data on an hourly basis does not make that much sense; making sure availability is on a day to day basis seems appropriate for the type of system we are examining.

With regards to personal data, it is all considered of high criticality in all categories. When we store such data we must be cognizant of the sensitivity of this data across the board; thus we found no reason to classify any of these assets' criticality in a different way.

Finally, there is the category of integrations between our app and other services, like Facebook and Google. We don't see confidentiality to be very important in this area, as these tend to be semi-public anyway. However, integrity is needed as failing to link, or worse, linking the wrong accounts, has potentially serious effects for our users. Additionally, as these integrations are a big part of our login system, it is important for these to not go down. If they do, our app is useless to anyone who authenticates through those integrations.

2.a Dataflow diagram and attack surfaces https://miro.com/app/board/o9J IRL0fao=/

2.b and 2.c Threat agents and attack goals:

Threat agent	Goal		
State-actors, who are interested in local politicians' location tracks and their personal data, may be other people's data, they will be interested in the future. Any exploitable vulnerability will be interesting.	Extract moving patterns/routes and location tracks of central politicians		
	Create massive false-positive corona-reports to create panic		
	Gain overview over all registered users and their personalia		
Organized criminals pursuing profit,	Encrypt all data in location tracks and require service owners to pay (ransomware)		
who are willing to damage any service, regardless of its purpose or	Hack user database to sell userdata, like name and email on blackmarket		
importance for the public.	Fetch users credit/debit card details		
	Acquire specific users location tracks, which are secret from their spouse, for blackmailing		
Covid-19 apps competitors, other	Rewire location tracks to random users, making the service worthless		
applications, who wish to have their market share and are making money	Scrape user location tracks data from the storage to provide similar service		
on the latest correct information and paying users.	Change a subscription price to an extremely high value, so users would want to delete their subscriptions as soon as possible and use a similar service from a competitor		
Anti-vaxxers, people who have limited resources to hack, but have one purpose to find alternative facts or change the data to "create" alternative facts.	Change vaccination statistics so it shows, for example, a correlation between high vaccination rates and high infection-rates statistics		
	Broadcast fake-news to the users, like vaccines gives severe side-effects and can even cause death to a healthy person		

(cont.)	Download users records to further use them in disinformation campaign		
Script-kiddies, lone wolves. People who have limited resources, not so much knowledge, but a lot of time due to lockdowns. They do it for fun or because of boredom.	oadcast spam via email or sms		
	lake corona information service unavailable		
	Confirm positive SARS-CoV-2 for every user in database		
	"Facerape" users who have chosen to authenticate with Facebook		

2.d Attack trees.

Assumptions:

- 1. Users GPS-location storage is in a public cloud provider like Amazon
- 2. The source code is in a public repository on GitHub
- 3. Business logic is running on the HTTP-server
- 4. Amazon SNS triggers on each uploaded file to Amazon S3 and sends its content to execute in Amazon Lambda Function
- 5. User database is a relational database running in the Amazon cloud
- 6. Amazon account owner has his email in Microsoft Exchange running on premises (having MS Exchange exploit announced last week)
- 7. Database changes triggers sending of broadcast SMS and email messages to other users about possible infection

Covid-19 apps competitors - rewire location tracks to random users, making the service worthless https://miro.com/app/board/o9J IQnfZjU=/

Anti-vaxxers - Broadcast fake-news to the users, like vaccines gives severe side-effects and can even cause death to a healthy person

https://miro.com/app/board/o9J IQLyrsQ=/

3. Risk analysis, using the RMF

a. Identify business goals for this system

Business goals				
BG1	An easier way to view the infection statistics.			
BG2	An easier way to view the vaccination statistics.			
BG3	More information on infection tracking.			
BG4	A viable business model through a monthly fee.			
BG5	Providing authentic information.			

b. From the business goals, identify business risks

Business risks				
BR1	Inaccurate statistics.			
BR2	Wrong location input.			
BR3	Users may receive fake additional fees to pay.			
BR4	Information might not be trustworthy.			

c. From the attack trees and Data flow diagram, identify technical risks for the system

Technical risks				
TR1	Brute-force.			
TR2	Database breach.			
TR3	Cross-site scripting.			
TR4	Social engineering.			
TR5	Hacking with AWS.			
TR6	GitHub token scanning.			
TR7	SQL injection.			
TR8	URL-tampering.			

d. Link the technical risks to the business risks – what technical risks affect what business risks?

Technical risks	Probability	Consequences	Risks	Mitigation		
BR1: Inaccurate statistics.						
TR1: social engineering.						
TR1.1: Users providing inaccurate infection information	Н	М	Н	Require users to document their inputs.		
TR2: cross-site scripting.						
TR2.1: change JavaScript.	M	Н	Н	Encode data on input.		
TR3: URL-tampering						
TR3.1: web parameter tampering software	М	Н	Н	Enable session state protection.		

Technical risks	Probability	Consequences	Risks	Mitigation		
BR2: wrong location input.						
TR1: brute-force.						
TR1.1: hack user authentication.	L	М	M	Limit failed login attempts.		
TR2: database breach.						
TR2.1: hack stolen user database.	M	Н	Н	Use encrypted data.		

Technical risks	Probability	Consequences	Risks	Mitigation			
BR3: users may receive fake additional fees to pay.							
TR1: social engineering.	TR1: social engineering.						
TR1.1: Facebook/ Google phishing.	L	L	L	Make users more aware of such incidents.			
BR4: information might not be trustworthy.							
TR1: hacking with AWS.							
TR1.1: storage cloud hack.	L	Ι	M	Enable multi-factor authentication.			
TR2: SQL injection.							
TR2.1: manipulation of information.	L	Н	M	Input validation.			

4. Security requirements

- The system should verify location tracks before using them.
- The system should validate user data input.
- The source code should not be public.
- Administering pages should have a limited availability to certain geographical areas.
- The system should perform regular data backups and have data recovery procedures.
- It should be possible to pause SMS and email broadcasting.
- All users with administrative access should utilize multi-factor authentication.
- The system should anonymize personal data about the users.