1

Assignment 2

Raghav Juyal - EP20BTECH11018

Download all python codes from

https://github.com/RaghavJuyal/AI1103/blob/main/ Assignment2/Codes/Assignment2.py

and latex-tikz codes from

https://github.com/RaghavJuyal/AI1103/tree/main/ Assignment2/Assignment2.tex

QUESTION 17, GATE CS 2020

Let \mathcal{R} be the set of all binary relations on the set $\{1,2,3\}$. Suppose a relation is chosen from \mathcal{R} at random. The probability that the chosen relation is reflexive is?

Solution

Let A be a set of n numbers. No. of pairs formed from elements of A:

$${}^{n}C_{1} \times {}^{n}C_{1} = n^{2}$$
 (0.0.1)

For each pair we have 2 choices, whether to include it in the relation or not.

 \therefore Number of binary relations on A:

$$2 \times 2 \times ... \ n^2 \text{ times } = 2^{n^2}$$
 (0.0.2)

Definition 1. A reflexive relation is one in which every element maps to itself, i.e., a relation R on set A is reflexive if $(a, a) \in R \ \forall \ a \in A$.

For example, consider the set $A = \{1, 2, 3\}$. A possible reflexive relation on A is $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ as every element in A is related to itself in R_1 while relation $R_2 = \{(1, 1), (2, 2), (1, 2)\}$ is not a reflexive relation on A as $3 \in A$ but $(3, 3) \notin R_2$.

In a reflexive relation, out of the n^2 pairs (0.0.1), n have to be included (n pairs of the form (a,a)) which means there is only 1 way to include them.

For the remaining $n^2 - n$ pairs we have 2 choices, whether to include it in the relation or not.

:. Number of reflexive relations are:

$$1 \times 2^{n^2 - n} = 2^{n^2 - n} \tag{0.0.3}$$

Let $X \in \{0,1\}$ be a random variable where 0 represents reflexive relation chosen from \mathcal{R} and 1 represents non-reflexive relation chosen from \mathcal{R} . In this case, n=3.

$$Pr(X = 0) = \frac{2^{n^2 - n}}{2^{n^2}}$$
= $\frac{2^6}{2^9}$ (0.0.4)
∴ Answer = $\frac{1}{8}$ (0.0.5)