DATA MINING

Test: SEGMENTATION

Exercice 1 (10 pts)

On désire appliquer la méthode CAH sur les données suivantes :

	X ₁	X ₂	Хз
l ₁	10	5	14
l ₂	8	16	12
l ₃	14	5	12
14	8	10	10

- Citer l'avantage de la classification hiérarchique ascendante par rapport à la méthode Kmeans
- 2. Déterminer, pour chaque phase de l'algorithme, la mise à jour des individus et la matrice des distances. NB: Utiliser la distance de Manhattan d(I, J) = |X1(I) X1(J)| + |X2(I) X2(J)|
- 3. Tracer le dendrogramme de la classification hiérarchique ascendante en graduant l'axe vertical
- 4. On suppose maintenant qu'on va travailler avec une autre métrique de distance en utilisant la formule suivante d(I, J) = MAX (|X1(I) X1(J)|, |X2(I) X2(J)|, |X3(I) X3(J)|)

 Refaire le même travail : matrices de distance et dendrogramme obtenu.
- 5. Interpréter l'obtention des deux dendrogrammes.

Exercice 2 (10 pts)

Soit le tableau1 de six individus caractérisés par 3 variables. On souhaite construire deux groupes homogènes à partir de ces individus via la méthode K-means.

- 1. Décrire les étapes de l'algorithme de la méthode K-means.
- 2. Citer deux inconvénients de la méthode K-means.

On propose de commencer la construction à partir des deux groupes du tableau2.

3. Continuer la construction des groupes en utilisant la distance euclidienne pour mesurer la similarité entre individus.

Individus	V1	V2	V3
l1	4-5	2	1
12	3.5	4	2.5
13	5	7	3-5
14	3	4	2
15	1.5	2	1
16	1	1	0.5

	Individus
Groupe 1	13
Groupe 2	16