

Università degli Studi di Milano – Bicocca Corso di Laurea Magistrale in Data Science Anno Accademico 2021/2022 Corso di Data Visualization

REPORT PER IL PROGETTO: «Indice di Qualità (IQA) nell'agglomerato di Milano: analisi dell'andamento stagionale e annuale»

Progetto di:

Gianluca CAVALLARO matricola n. 826049 Gianluca SCURI matricola n. 886725 Giorgio CARBONE matricola n. 811974 Remo MARCONZINI matricola n. 883256

INTRODUZIONE AL PROBLEMA, AL DOMINIO E ALLA DOMANDA DI RICERCA

Cos'è l'Indice di Qualità dell'Aria (IQA)?

- L'esposizione prolungata ad aria inquinata può causare **problemi respiratori e** cardiovascolari
- Per questo è importante monitorare i livelli di inquinamento atmosferico
- L'Indice di Qualità dell'Aria (IQA) è un indicatore sintetico per la definizione della qualità dell'aria ed è calcolato sulla base dei livelli dei 5 principali inquinanti: PM10, PM2.5, O3, NO2 e SO2
- La qualità dell'aria è valutata in funzione di ciascuno dei 5 inquianti, sulla base dei limiti europei
- L'IQA complessivo dipende, però, dall'inquinante che ottiene la valutazione peggiore e definisce la qualità dell'aria complessiva come: Molto Buona, Buona, Accettabile, Scarsa, Molto Scarsa

Monitoraggio dell'aria nell'agglomerato di Milano

- ARPA Lombardia effettua la valutazione della qualità dell'aria in maniera sistematica e costante, sull'intero territorio regionale (secondo la Direttiva 2008/50/CE, recepita dal D. Lgs. 155/2010), attraverso una rete di stazioni diffuse sul territorio
- I dati ottenuti dalle rilevazioni effettuate da ARPA sono pubblicati sulla piattaforma <u>Open Data di Regione</u> <u>Lombardia</u>
- Il territorio lombardo è suddiviso in zone e agglomerati urbani
- ☐ I territori della Val Padana, per via dell'alto tasso di urbanizzazione e di fattori orografici e meteorologici, sono tra le zone più inquinate d'Europa
- L'agglomerato di Milano include circa 3 milioni di abitanti, comprende le città di Milano, Monza, Como e territori limitrofi e viene costantemente monitorato attraverso 39 stazioni

Mappa dei comuni dell'agglomerato di Milano e posizione delle stazioni di monitoraggio

Domande di ricerca

- Qual è stato l'impatto dell'implementazione delle misure legislative e tecnologiche Europee sulla qualità dell'aria nell'agglomerato di Milano dal 2006 a oggi ?
- Come è caratterizzato l'andamento stagionale della qualità dell'aria nell'agglomerato di milano?
 - ☐ Quali sono i fattori meteorologici e antropici che ne determinano l'andamento?
- Qual'è stato l'andamento dei livelli dei singoli inquinanti principali, e più pericolosi per la salute umana e l'ambiente, dal 2006 a oggi ?
 - Quali sono le fonti di emissioni antropogeniche maggiori ?
 - ☐ Quali sono i fattori meteorologici e antropici che influenzano l'andamento stagionale dei singoli inquinanti ?

I DATI: FONTI, TOOLS, PREPARAZIONE E ANALISI

Tools utilizzati per la preparazione e l'analisi

- ☐ Linguaggio di programmazione e piattaforma utilizzata:
 - <u>Python</u>: linguaggio di programmazione
 - <u>Jupyter notebook</u>: applicazione web open-source per il calcolo interattivo
- ☐ **Librerie** utilizzate:
 - <u>Pandas</u>: libreria open-souce per l'analisi e la manipolazione dei dati
 - <u>Numpy</u>: libreria per il calcolo scientifico
 - <u>Seaborn</u>: libreria per la visualizzazione dei dati
- Altri software:
 - <u>Tabula</u>: software gratuito per lo scraping da file PDF

Dataset relativi alla qualità dell'aria: descrizione e fonti

- Dati sensori aria riporta i valori misurati dai sensori di rilevazione della concentrazione degli inquinanti dal 1996 al 2021, in particolare contiene:
 - Rilevazione di ogni sensore per ogni istante (IdSensore, Valore, Data) con frequenza oraria (NO2, SO2, O3) e giornaliera (PM)
 - Indicazioni sulla validità del dato (dato) e se si tratta di un dato aggregato (idOperatore)
- Stazioni qualità dell'aria contiene uno storico dei sensori installati negli anni sul suolo lombardo
 - Attributi che identificano il sensore (IdSensore, NomeTipoSensore, UnitaMisura)
 - Attributi che identificano la stazione (IdStazione, NomeStazione, DataStart, DataStop)
 - Attributi di localizzazione (Provincia, Comune)

	IdSensore	Data	Valore	Stato	idOperatore
0	5504	1996-01-01 00:00:00	61.0	VA	1
1	5505	1996-01-01 00:00:00	61.0	VA	1
2	5506	1996-01-01 00:00:00	53.9	VA	1
98291919	10331	2021-12-20 18:00:00	27.6	VA	1
98291920	10333	2021-12-25 11:00:00	84.7	VA	1
98291921	10331	2021-12-21 04:00:00	34.3	VA	1

98291922 rows × 5 columns

	IdSensore	Nome Tipo Sensore	UnitaMisura	Idstazione	Nome Stazione	Quota	Provincia	Comune	Storico	Utm_Nord
0	17286	Biossido di Azoto	μg/m³	1374	Monza Parco	181	MB	Monza	N	5049780
1	17284	Ammoniaca	μg/m³	1374	Monza Parco	181	MB	Monza	N	5049780
2	17290	PM10 (SM2005)	μg/m³	1374	Monza Parco	181	MB	Monza	N	5049780
3	17285	Ossidi di Azoto	μg/m³	1374	Monza Parco	181	MB	Monza	N	5049780
4	17288	Ozono	μg/m³	1374	Monza Parco	181	MB	Monza	N	5049780
961	6606	Particolato Totale Sospeso	μg/m³	591	Seriate v. Garibaldi	256	BG	Seriate	S	5059449
962	6382	Ossidi di Azoto	μg/m³	569	Sondrio v.Mazzini	307	SO	Sondrio	N	5113078
963	6607	Particolato Totale Sospeso	μg/m³	591	Seriate v. Garibaldi	256	BG	Seriate	S	5059449
964	20523	Ammoniaca	μg/m³	583	Bergamo v.Meucci	249	BG	Bergamo	N	5059922
965	12597	Cadmio	ng/m³	609	Casirate d'Adda v. Cimitero	108	BG	Casirate d'Adda	N	5038450

966 rows × 10 columns

Dataset relativi alla qualità dell'aria: preparazione dei dati

- □ Dataset rilevazioni sensori qualità dell'aria:
 - Rimozione righe con valori mancanti (~11% delle righe totali)
 - Rimozione righe con IdOperatore non valido
 - Risultato: dataset composto da 87 milioni di righe
- □ Dataset lista dei sensori:
 - Rimozione sensori di grandezze diverse da PM2.5, PM10, NO2, SO2 e O3 (gli inquinati considerati nel calcolo dell'IQA)

Dataset relativi alla qualità dell'aria: analisi dei dati

- □ Raggruppamento delle righe del dataset delle misurazioni rispetto al singolo sensore e al giorno e calcolo delle grandezze aggregate
 - Calcolo della media, del massimo, dei conteggi (numero di valori mediati) e della deviazione standard
- Unione dei due dataset (rilevazioni e lista dei sensori) rispetto all'Id del sensore (attributo usato come key del JOIN)
 - Conseguente perdita delle rilevazioni di 88 sensori poiché non sono presenti nel dataset lista dei sensori
- Verifica validità delle medie ottenute
 - Le rilevazioni dei sensori del PM2.5 e del PM10 sono medie giornaliere ed hanno un conteggio pari a 1
 - Per gli altri sensori vengono rimosse le medie giornaliere ottenute da meno di 8 osservazioni che corrispondono a 8 ore
- Scelta della valore aggregato corretto per ogni tipo di sensore rispetto al valore richiesto nel calcolo dell'indice di qualità dell'aria
 - Per PM2.5 e PM10 tengo il valore medio giornaliero -> La qualità dell'aria in funzione di PM è valutata in termini di concentrazione media giornaliera
 - Per NO2, SO2 e O3 tengo il valore massimo giornaliero -> La qualità dell'aria in funzione di questi inquinanti è valutata in termini di concentrazione oraria massima giornaliera

Dataset relativi alla zonizzazione: descrizione e fonti

- ☐ Tabella zonizzazione del territorio lombardo è un file PDF contenente la lista di tutti i comuni lombardi con associata un zona di appartenenza
 - L'attributo Comune è il nome della municipalità
 - L'attributo Zona può asummere i valori: A, B, C, D, Agglomerato di Milano, Agglomerato di Bergamo, Agglomerato di Brescia

1. Classificazione dei Comuni del territorio lombardo all'interno degli agglomerati e delle zone A, B, C e D in relazione a tutti gli inquinanti, ad esclusione dell'ozono.

Provincia	Codice Istat	Comune	Zona	Residenti 2008	Superficie (ha)
BG	16009	AMBIVERE	Α	2341	327
BG	16013	ARZAGO D'ADDA	Α	2836	944
BG	16018	BAGNATICA	Α	4119	639
BG	16020	BARIANO	Α	4396	714
BG	16021	BARZANO'	Α	5178	356
BG	16028	BOLGARE	Α	5538	859
BG	16030	BONATE SOPRA	Α	8637	605
BG	16031	BONATE SOTTO	Α	6538	634
BG	16034	BOTTANUCO	Α	5243	581
BG	16038	BREMBATE DI SOPRA	Α	7768	439
BG	16040	BRIGNANO GERA D'ADDA	Α	5798	1201
BG	16043	CALCINATE	Α	5791	1517

Dataset relativi alla zonizzazione: preparazione dei dati

☐ Creazione di un **file csv a partire dal file PDF** utilizzando il software Tabula

	Provincia	Codice Istat	Comune	Zona	Residenti 2008	Superficie (ha)
0	BG	16009	AMBIVERE	Α	2341	327
1	BG	16013	ARZAGO D'ADDA	Α	2836	944
2	BG	16018	BAGNATICA	Α	4119	639
1542	VA	12132	VARANO BORGHI	С	2313	328
1543	VA	12135	VEDDASCA	С	290	1701
1544	VA	12139	VIGGIU'	С	5243	928

1545 rows × 6 columns

Dataset relativi alla zonizzazione: analisi dei dati

- ☐ Unione del dataset zonizzazione con il dataset ottenuto precedentemente dall'unione dei valori dei sensori della qualità dell'aria con le relative stazioni
 - Unione rispetto all'attributo testuale Comune
- Raggruppamento delle righe del dataset appena ottenuto rispetto al singolo sensore, al giorno e alla zona, e calcolo delle grandezze aggregate
 - Calcolo della media, dei conteggi e della deviazione standard
- Subsetting
 - Rimozione delle righe corrispondenti ad osservazioni di stazioni ubicate fuori dalla zona Agglomerato di Milano
 - Decidiamo di non considerare gli anni dal 1996 al 2005 poiché non erano presenti sensori per la rilevazione individuale di PM2.5 e PM10
- ☐ Calcolo dell'indice di qualità dell'aria relativa al singolo inquinante considerando gli intervalli tabulati da ARPA Lombardia e calcolo dell'indice di qualità complessivo prendendo il valore dell'inquinante peggiore in quel giorno

Dataset relativi al meteo: descrizione e fonti

- Dati sensori meteorologici riporta i valori misurati dai sensori dal 2017 al 2021
 - Rilevazione di ogni sensore con frequenza di 10 minuti
 - Indicazioni sulla validità del dato e se si tratta di un dato aggregato (Stato, idOperatore)
- Stazioni meteorologiche contiene uno storico dei sensori installati negli anni sul suolo lombardo
 - Attributi che identificano il sensore (IdSensore, Tipologia, Unita DiMisura)
 - Attributi che identificano la stazione (IdStazione, NomeStazione)
 - Attributi di localizzazione (Provincia, Ing, lat)

	IdSensore	Valore	Stato	idOperatore	Data_corretta
2	10377	1.4	VA	1	2017-01-01
3	10381	81.6	VA	1	2017-01-01
4	10382	3.2	VA	1	2017-01-01
7	10551	-2.6	VA	1	2017-01-01
8	10552	100.0	VA	1	2017-01-01

288126365 rows × 5 columns

	Id Sensore	Tipologia	Unità DiMisura	Id Stazione	Nome Stazione	Quota	Provincia	Data Start	Data Stop	Storico	UTM_Nord	UTM_Est
0	22006	Umidità Relativa	%	1890	Tavernole sul Mella Monte Guglielmo	1790	BS	14/10/2019	NaN	N	5067376	591417
1	22007	Direzione Vento	۰	1890	Tavernole sul Mella Monte Guglielmo	1790	BS	14/10/2019	NaN	N	5067376	591417
2	22003	Temperatura	°C	1890	Tavernole sul Mella Monte Guglielmo	1790	BS	14/10/2019	NaN	N	5067376	591417
1259	19394	Direzione Vento	۰	1650	Bormio eliporto	1172	SO	29/09/2016	20/10/2020	s	5145365	604906
1260	12757	Temperatura	°C	1511	Rescaldina	215	MI	25/11/2020	NaN	N	5050479	496327
1261	19393	Velocità Vento	m/s	1650	Bormio eliporto	1172	SO	29/09/2016	20/10/2020	S	5145365	604906

1262 rows × 15 columns

Dataset relativi al meteo: preparazione dei dati

Dataset rilevazioni:

- Rimozione righe con stato nullo
- Rimozione righe con IdOperatore non valido
- Risultato: dataset composto da 246 milioni di righe

Dataset sensori:

Rimozione sensori di grandezze diverse da temperatura e radiazione globale

Dataset relativi al meteo: analisi dei dati

- Raggruppamento del dataset dei valori, rispetto al singolo sensore e al giorno, e calcolo delle grandezze aggregate
 - Calcolo della media, del massimo, dei conteggi e della deviazione standard
- Unione dei due dataset rispetto all'Id del sensore
- Verifica delle medie ottenute
 - Rimuovo le rilevazioni con conteggio inferiore a 130, che corrispondono a meno di 21 ore di rilevazione in un giorno
- Rimozione delle righe corrispondenti a stazioni non ubicate nella provincia di Milano
- **Aggregazione** del dataset dei valori rispetto al singolo e al tipo di sensore in modo da unire le rilevazioni delle diverse stazioni
 - Calcolo della media, del massimo e della deviazione standard
- ☐ Scelta della misurazione corretta per i due tipi di sensore
 - Valore massimo giornaliero per la temperatura
 - Valore medio per la radiazione globale

Altri dataset utilizzati: descrizione e fonti

- Dati sulle emissioni mostra le tonnellate emesse per ogni inquinante, catalogate per le diverse fonti antropiche (rilevazioni compiute nel 2017)
 - Fonti divise per macrosettori, settori e attività
 - Dal sito INEMAR è possibile scaricare un dataset personalizzato, nel nostro caso relativo all'Agglomerato di Milano aggregando i dati per macrosettori
- Dati pressione atmosferica contiene i dati sulla pressione atmosferica dal 2016 al 2021 di una stazione ubicata a Milano in zona Zama
 - Dati aggregati per giorno

REALIZZAZIONE DELL'INFOGRAFICA: DASHBOARD e VISUALIZZAZIONI

Obiettivi dell'infografica

Fornire le informazioni necessarie alla comprensione globale del problema dell'inquinamento atmosferico nella Val Padana e in particolare **nell'agglomerato urbano di Milano** Rappresentare l'evoluzione della qualità dell'aria (in termini di IQA) nell'agglomerato di Milano negli ultimi 15 anni, in relazione all'implementazione di limiti legislativi e norme, sempre più stringenti, in materia di emissioni Rappresentare gli **andamenti stagionali** della qualità dell'aria (in termini di IQA) e porla in **relazione** a fattori meteorologici e atropici Fornire una visione di dettaglio riguardo gli inquinanti atmosferici più pericolosi in termini di: □ Caratteristiche e pericolosità Principali fonti antropogeniche coinvolte Andamento annuale e cause di eventuali innalzamenti o abbasamenti dei livelli rilevati Andamento stagionale e cause meteorologiche e antropiche di eventuali innalzamenti o abbasamenti dei livelli rilevati

Strumenti utilizzati e struttura dell'infografica

- ☐ Per lo sviluppo dell'infografica è stato utilizzato il software di analisi e visualizzazione *Tableau*
- L'infografica proposta è formata da **più visualizzazioni (worksheet) interattive** organizzate, insieme a **elementi testuali di context** di ausilio alla comprensione delle visualizzazioni, **in cinque pagine** (dashboard)
 - La prima pagina è fornisce una visione di insieme sul tema della qualità dell'aria e il suo andamento nell'agglomerato di milano, mentre le altre quattro pagine sono schede di approfondimento relative ai singoli inquinanti
 - ☐ Le pagine sono connesse tra loro mediante bottoni di navigazione integrati nelle pagine stesse:

- ☐ L'infografica è stata pubblicata sulla piattaforma <u>Tableau Public</u>
- Di seguito verranno analizzate nel dettaglio le singole pagine dell'infografica, le sezioni in esse presenti e i grafici proposti

Le pagine dell'infografica

1/ 2/ 3/

→ OZONO PM NO2 SO2 Ozono (O3) troposferico

4/ 5

Pagina iniziale: visione di insieme

- La prima pagina dell'infografica fornisce una visione di insieme riguardo il **tema dell'inquinamento atmosferico** e la sua declinazione specifica **nell'agglomerato di Milano**. La pagina presenta **diverse sezioni**:
 - In «Cos'è l'Indice di Qualità dell'Aria ?» viene descritto il significato e le modalità di calcolo dell'Indice di Qualità dell'Aria in Lombardia e gli inquinanti principali considerati
 - In «Monitoraggio dell'aria nell'agglomerato di Milano» viene espresso sinteticamente il concetto di zonizzazione del territorio lombardo e vengono mostrati, con una mappa interattiva, i comuni inclusi nell'agglomerato urbano di Milano e le stazioni di monitoraggio ARPA
 - 3. Con la «**Timeline interattiva**: il quadro politico, istituzionale e normativo» vengono esposti i principali eventi e normative che hanno caratterizzato il panorama internazionale, europeo e nazionale in materia di inquinamento dell'aria
 - 4. Con la **visualizzazione «IQA giornaliero dal 2006 al 2021** nell'agglomerato di Milano» viene mostrato l'andamento giornaliero e annuale dell'IQA nell'agglomerato di Milano negli ultimi 15 anni e con il *context* associato vengono esplorate le cause dei *trend* annuali e stagionali

Schede di approfondimento inquinanti

- Le **altre quattro pagine** dell'infografica consistono in schede di approfondimento riguardanti i **singoli inquinanti** considerati nel calcolo dell'Indice di Qualità dell'Aria: particolato fine (PM10 e PM2.5), ozono troposferico (O3), biossido di azoto (NO2) e biossido di zolfo (SO2)
- Tutte le schede di approfondimento presentano la medesima struttura:
 - Nella sezione «caratteristiche e valori soglia» vengono descritte le proprietà organolettiche, gli effetti sulla salute umana e sull'ambiente dei singoli inquinanti. Inoltre vengono esposti i limiti e le soglie europee che permettono di definire la qualità dell'aria durante una giornata come Molto Buona, Buona, Accettabile, Scarsa, Molto Scarsa in funzione del singolo inquinante
 - 2. In «Formazione e fonti antropogeniche» sono descritti i principali processi di formazione dell'inquiante in atmosfera e visualizzati i macrosettori coinvolti nelle emissioni dell'inquinante nell'agglomerato urbano di Milano
 - 3. Con la **visualizzazione «Qualità dell'aria giornaliera** in relazione ai livelli del singolo inquiante» viene mostrato l'andamento giornaliero e annuale dell'IQA nell'agglomerato di Milano negli ultimi 15 anni e con il *context* associato vengono esplorate le cause dei *trend* annuali e stagionali
 - 4. Il context relativo all'andamento stagionale dei livelli di inquinante viene arricchito con visualizzazioni che descrivono l'andamento stagionale delle proprietà meteorologiche associate a significative variazioni nella concentrazione dell'inquinante

Visualizzazione principale: obiettivo

- □ La visulizzazione principale ha l'obiettivo di mostrare l'andamento giornaliero e annuale della qualità dell'aria nell'agglomerato urbano di Milano dal 2006 a oggi
- La visualizzazione è utilizzata **sia** per mostrare la qualità dell'aria complessiva in termini di **IQA** nella pagina principale, **che** per visualizzare la qualità dell'aria in relazione al **singolo inquinante** nelle schede di approfondimento

Visualizzazione principale: caratteristiche

	sualizzazione principale è composta da due visualizzazioni affiancate associate alla trasmissione di diverse mazioni: una <i>heat map</i> e uno <i>100% stacked bar chart</i>
	a heat map viene associato ad ogni giorno dell'anno (ogni cella della matrice) un colore corrispondente a unc e modalità della scala di valutazione della qualità dell'aria
	È stata scelta una <i>palette</i> di colori discreta che permettesse di esprimere la natura ordinale della variabile categoriale della qualità dell'aria e che permettesse di associare, visivamente, a una qualità dell'aria "Scarsa" e "Accettabile" un'accezione negativa e una positiva a "Molto Buona" e "Buona"
	La visualizzazione consente di osservare la distribuzione delle valutazioni di qualità dell'aria nei diversi mesi e nelle diverse stagioni, permettendo all'osservatore di individuare eventuali concentrazioni di giorni con qualità dell'aria simile
	La sovrapposizione delle diverse righe della matrice della heat map, relative ai diversi anni studiati, permette di evidenziare la presenza di <i>pattern</i> stagionali ricorrenti ed eventuali miglioramenti/peggioramenti in certi periodi dell'anno
map	copo del 100% stacked bar chart è quello di mostrare un'informazione non facilmente deducibile dalla heat o, ovvero la percentuale di giorni classificati con una certa valutazione di qualità dell'aria sul totale di giorni strati durante l'anno
	Le diverse modalità della scala di qualità dell'aria sono state ordinate
	La sovrapposizione delle barre relative ad anni successivi permette di evidenziare un eventuale miglioramento/peggioramento della qualità dell'aria negli anni

Visualizzazione principale: interazioni

- Posizionando il cursore su una delle celle della heat map (nella visulizzazione relativa all'IQA nella pagina principale) viene attivata l'apertura di un tooltip contenente informazioni di dettaglio su:
 - IQA nel giorno specifico
 - Qualità dell'aria relativa ai singoli inquinanti: consentendo all'utente di determinare il contributo dei diversi inquinanti alla qualità dell'aria complessiva

- Data: 17-Jul-2010 Indice di Qualità dell'Aria: Accettabile Qualità dell'aria in funzione dei singoli inquinanti principali con effetti nocivi sulla salute: Ozono troposferisco: Accettabile PM10: Buona PM2.5: Accettabile Biossido di azoto: Buona Biossido di zolfo: Molto Buona
- ☐ Posizionando il cursore su una delle celle della heat map (nelle pagine relative ai **singoli inquinanti**) viene attivata l'apertura di un tooltip contenente informazioni di dettaglio su:
 - Qualità dell'aria relativa al singolo inquinante nel giorno specifico
 - Concentrazione di inquinante nel giorno specifico, associata a un valore di incertezza nella stima (intervallo di

Data: 22-Jul-2013

μ**g/m^3** (95% CI)

Qualità dell'aria in funzione dei livelli di ozono troposferico: Scarsa

Massima concentrazione oraria media, durante la giornata, di ozono troposferico nell'agglomerato di Milano: 181.5 ± 10.0

confidenza al 95%)

Visualizzazione principale: interazioni

Posizionando il cursore su una delle sezioni di ogni barra del 100% stacked bar chart (nella visulizzazione relativa all'IQA nella pagina principale e anche nelle schede di approfodimento) viene attivata l'apertura di un tooltip contenente informazioni di dettaglio riguardo il numero e la percentuale di giorni classificati con una certa valutazione di qualità dell'aria sul totale di giorni registrati durante l'anno

Premendo sugli **elementi della legenda** associate alle diverse valutazioni della qualità dell'aria è possible **evidenziare** le porzioni di grafico corrispondenti (sia nel bar chart che nella heat map)

Visualizzazioni secondarie: mappa agglomerato di Milano

- Nella pagina principale è presente una mappa interattiva dei comuni dell'agglomerato di Milano e delle stazioni di monitoraggio ARPA presenti sul territorio
- Passando con il cursore sul territorio dei comuni viene mostrato un tooltip contenente il nome del cumune
- → Passando con il cursore sulle singole stazioni (indicate con cerchi di colore azzurro) viene mostrato un tooltip con alcuni dettagli sulle stesse

Visualizzazioni secondarie: timeline interattiva

- Nella sezione «Timeline interattiva: il quadro politico, istituzionale e normativo» della pagina principale é stata inserita una timeline interattiva che prevede cinque anni selezionabili
- La visualizzazione ha l'obiettivo di **esporre i principali eventi e normative** che hanno caratterizzato il panorama internazionale, europeo e nazionale in materia di **inquinamento atmoferico** e il suo impatto sulla **salute umana**
- □ Interazione:
 - premendo sugli elementi della timeline è possible visualizzare un titolo e una breve descrizione relativa all'evento (o gli eventi) corrispondente
 - La porzione di timeline relativa al 'passato' (rispetto all'evento selezionato) assume un colore acceso, la porzione relativa al 'futuro' mantiene una corolazione scura

Visualizzazioni secondarie: fonti antropogeniche delle emissioni dei principali inquianti

- In ogni **scheda di approfondimento** relativa a un singolo inquianante, nella sezione «Formazione e fonti antropogeniche», è stato insierito un *100% stacked bar chart*
- La visualizzazione ha l'obiettivo di mostrare i principali macrosettori (industriali e non) coinvolti nelle emissioni dello specifico inquinante e quindi fornire informazioni utili alla comprensione degli andamenti dei livelli di inquinanti descritti nella visualizzazione principale
- ☐ Interazione: il passaggio del cursore sulle diverse porzioni di ogni barra provoca l'apertura di un tooltip contenente informazioni di dettaglio riguardo:
 - ☐ I fenomeni e i settori specifici che caratterizzano ogni macrosettore
 - ☐ La percentuale di emissioni attribuibile al macrosettore rispetto al totale
 - ☐ La massa di inquinante emessa, attribuibile al macrosettore nell'anno di riferimento

Visualizzazioni secondarie: andamenti delle variabili meteorologiche

- Nelle schede di approfondimento dei singoli inquinanti, il context relativo agli andamenti stagionali è stato integrato con alcune visualizzazioni riguardati gli andamenti delle principali variabili meteorologiche che possono determinare variazioni significative nella concentrazione dell'inquinante
- La variabile studiata in relazione all'**andamento stagionale** delle concentrazioni di NO2, PM10 e PM2.5 è la pressione atmoferica
 - Le condizioni di **alta pressione** e l'assenza di ventilazione, che caratterizzano la stagione invernale nella Pianura Padana, causano una maggiore frequenza e intensità del fenomeno dell'**inversione termica**, che **impedisce** una normale **dispersione** degli **inquinanti** considerati
 - Si è scelto quindi di usare un *line chart* per rappresentare l'andamento della pressione atmosferica mensile media, mediata ulteriormente negli ultimi 5 anni, a Milano
 - L'asse delle **ordinate** è stato **troncato**. È stata però scelta una **linea di riferimento** (più utile rispetto alla pressione atmosferica nulla) in corrispondenza del valore di pressione atmoferica normale (1 atm) al livello del mare: al di sotto di essa sono presenti stati di bassa pressione, al di sopra di alta pressione
 - È stata rappresentata la **dispersione dei dati intorno alla media** in termini di **deviazione standard**: lo scopo è quello di mostrare come fenomeni di alta pressione siano più frequenti in inverno piuttosto che in estate

Visualizzazioni secondarie: andamenti delle variabili meteorologiche

- La variabili studiate, in relazione all'andamento stagionale delle concentrazioni di O3, sono la temperatura massima giornaliera e la radiazione solare globale nella provincia di Milano
- Alte temperature e forte irraggiamento solare favoriscono infatti la reazione di formazione dell'ozono nella troposfera a partire dai suoi precursori
- ☐ Le misurazioni di entrambe le variabili sono state mediate mensilmente e negli ultimi 5 anni
- Per la visualizzazione si è scelto di usare un line chart
- □ Il valore medio è stato accompagnato da un valore di incertezza nella stima (intervallo di confidenza al 95%) rappresentato visivamente attraverso una banda e specificato, insieme al valore medio in un tooltip

VALUTAZIONE DI QUALITÁ

Valutazione euristica

- □ Problemi di usabilità emersi, ed in seguito risolti, coinvolgendo 6 utenti esterni al progetto:
 - Difficoltà nel riconoscere la presenza di tasti ed elementi interattivi
 - Colorazione controintuitiva della timeline
 - Basso contrasto tra le diverse linee di riferimento al context nella visualizzazione principale
 - Mancanza riferimento cromatico nei grafici di temperatura e radiazione solare

Valutazione euristica: etichette elementi interattivi

- Sono state riscontrate delle difficoltà nel riconoscere quali fossero gli elementi interattivi della visualizzazione poiché non erano adeguatamente segnalati
- Questa problematica è stata risolta con l'aggiunta di etichette in prossimità degli elementi interattivi in modo da aumentare la fruibilità

Valutazione euristica: colorazione timeline

- □ La colorazione originale della timeline prevedeva un colore blu scuro che, venendo confuso per grigio, sembrava definire un andamento a ritroso nel tempo e quindi controintuitivo
- Questa problematica è stata risolta cambiando il colore del periodo 'passato' rispetto all'evento selezionato

Valutazione euristica: riferimenti ai mesi

- ☐ Inizialmente i **riferimenti al context** mensile della visualizzazione principale erano dello **stesso colore** e non permettevano a colpo d'occhio di rintracciare la didascalia corretta
- Questa problematica è stata risolta differenziando i colori dei riferimenti

Valutazione euristica: mancanza riferimento cromatico

- □ I line chart interessati da questo problema sono quelli nelle pagine relative all'ozono troposferico, al PM e al biossido di azoto
- In queste pagine le visualizzazioni relative alle variabili meteorologiche di temperatura massima e radiazione solare globale sono sovrapposti
- Anche in questo caso si tratta di una cattiva scelta dei colori che non permette di riconoscere a colpo d'occhio il grafico a cui si fa riferimento nel context: inizialmente le linee presenti nei due grafici erano rappresentate con lo stesso colore
- Questa problematica è stata **risolta differenziando i colori** delle linee nei due grafici per poterli richiamare più facilmente all'interno del context (colorando il testo con il colore corrispondente)

User test: Task 1

Mira a valutare la corretta interpretazione della viualizzazione principale, in particolare sfruttando l'interazione della bar chart che mostra la percentuale di giorni classificati con una certa valutazione in un certo anno

- «Dal 2006 ad 2021 quale anno ha avuto il maggior numero di giorni con una qualità dell'aria classificata 'molto scarsa'?»
 - Tempo di esecuzione ottimale ottenuto mediando i tempi dei 4 sviluppatori: 167.7 ± 19.5s (IC 95%)
 - Valore medio del tempo impiegato dai 13 utenti testati: 188.3 ± 18.0s (IC 95%)
- Il task è stato portato a termine da tutti gli utenti in un tempo simile a quello ottimale

Esiti primo task

Distribuzione dei tempi di risposta rispetto al "valore ottimale" del primo task (13 utenti)

User test: Task 2

Mira a valutare la corretta interpretazione della visualizzazione principale (in particolare della heatmap), per quanto riguarda gli andamenti stagionali della qualità dell'aria

- «Quale inquinante influenza maggiormente il punteggio nei mesi estivi? E quale fenomeno meteorologico è fortemente correlato alla sua concentrazione?»
 - Tempo di esecuzione ottimale ottenuto mediando i tempi dei 4 sviluppatori: 29.9 ± 15.7s (IC 95%)
 - Valore medio del tempo impiegato dai 13 utenti testati: 59.0 ± 27.1s (IC 95%)
- □ Il task è stato portato a termine da tutti gli utenti, da notare come 3 utenti abbiano impiegato un tempo molto elevato poiché hanno navigato le schede relative ai singoli inquinanti per dare la risposta e non hanno utilizzato l'interazione e il context della visualizzazione nella pagina principale

Esiti Secondo task

Distribuzione dei tempi di risposta rispetto al "valore ottimale" del secondo task (13 utenti)

Questionario psicometrico: distribuzione dei voti

- Il questionario psicometrico è stato somministrato a 28 utenti e mira a valutare la qualità della visualizzazione
- È basato sulla scala Cabitza-Locoro che mira a valutare utilità, chiarezza, informatività e bellezza della visualizzazione
 - Le votazioni rispetto ai singoli aspetti sono state tutte positive (punteggio >3) tranne per l'aspetto della chiarezza che ha ricevuto due voti discreti
 - Dai violin plot si può apprezzare la distribuzione dei voti nei diversi aspetti valutati: tutti i parametri risultano molto alti (5 e 6) mentre come già notato l'aspetto della chiarezza è stato leggermente penalizzato

Voti positivi vs voti negativi del sondaggio (28 questionari)

Distribuzione dei voti del questionario per ogni aggettivo (28 questionari)

Questionario psicometrico: correlazione tra i voti

- Dal grafico delle correlazioni tra i voti si nota che i gli attributi più legati al valore complessivo dell'infografica sono quelli dell'utilità e dell'informatività
- □ Data la **correlazione positiva** si evince quindi come chi ha valutato positivamente la visualizzazione abbia anche apprezzato l'utilità e l'informatività della stessa

Correlazione tra i voti del questionario (28 questionari complessivi)

Bibliografia e sitografia

- Actis-Grosso R. & Batini C. Locoro A. Cabitza F. "Static and interactive infographics in daily tasks: A value-in-use and quality of interaction user study." In: Computers in Human Behavior (2017).
- → ARPA Lombardia. (2021). LA VALUTAZIONE DELLA QUALITÀ DELL'ARIA IN LOMBARDIA.
 https://www.arpalombardia.it/Pages/Aria/Da-sapere.aspx
- □ Dlgs 155/2010 Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa (15 settembre 2010) https://web.camera.it/parlam/leggi/deleghe/testi/10155dl.htm
- European Commission. (2021). Existing Legislation Air Quality Environment European Commission. Ec.Europa.Eu. https://ec.europa.eu/environment/air/quality/existing_leg.htm
- Indice di qualità dell'aria | ARPA Lombardia https://www.arpalombardia.it/Pages/Aria/Modellistica/Indice-qualit%C3%A0-aria.aspx

Bibliografia

- ☐ Zonizzazione | ARPA Lombardia https://www.arpalombardia.it/Pages/Aria/Rete-di-rilevamento/Zonizzazione.aspx?firstlevel=Rete%20di%20rilevamento
- □ DIRETTIVA (UE) 2016/2284 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO. (2016). Gazzetta Ufficiale Dell'Unione Europea. https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32016L2284&from=IT
- Commission to the Council and the European Parliament. (2005). Thematic Strategy on Air Pollution. D. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM:128159
- GARD ITALIA INQUINAMENTO ATMOSFERICO E CAMBIAMENTI CLIMATICI: Elementi per una strategia nazionale di prevenzione. https://www.salute.gov.it/imgs/C_17_pubblicazioni_2945_allegato.pdf