- 1. (总 8 分) 试列表判断如下扩发过程是否具有独立增量性、平稳增量性、Markov 性质: (1) 齐次 Poisson 过程; (2) 非齐次 Poisson 过程; (3) 标准更新过程; (4) 布朗运动.
- 2. (总 12 分, 每小题 4 分) 设 $\{N(t), t \ge 0\}$ 是以独立同分布的随机变量序列 $\{X_n, n \ge 1\}$ 为间隔的更新过程,其中 $P(X_1 = 1) = p$, $P(X_1 = 0) = 1 p$, 其中 o .
 - (1) 求于时刻 0 点发生的更新个数随机变量 N(0) 的概率分布;
 - (2) 求于时刻 2 点发生的更新个数随机变量的概率分布;
 - (3) 求 $\lim_{t\to\infty} E[N(t)]/t$.
- 3. (总 20 分, 每小题 10 分) 连续抛掷一枚非均匀硬币, 每次抛出正面的概率为 $p \in (0,1)$, 抛出反面的概率为 q = 1 p.
 - (1) 求直到出现花样"正、反、正、反、正、反、正"时抛掷次数的期望.
 - (2) 求直到抛出上述花样时抛出正面的期望次数.
- 4. (总 24 分,每小题 6 分) 设 A、B 两盒中共装有 N 个编号分别为 1、2、···、N 的小球. 考虑如下试验: 先从 N 个小球中随机地取出一个小球 (每球被取出的概率等可能),再任意指定一个盒子 (A 盒被指定的概率为 p, B 盒被指定的概率为 q=1-p),然后把所取出的小球放入指定的盒子中. 如此不停地重复试验. 记 X_n 为 n 次试验后 A 盒中小球的个数, X_0 表示试验之前 A 盒中小球的个数,则 $\{X_n, n \geq 0\}$ 构成一个 Markov 链。
 - (1) 求该 Markov 链转移概率矩阵 P;
 - (2) 试判断此链是否可约? 每个状态是否具有常返性? 每个状态是否有周期? (其中假定 0)
 - (3) 当 N=3, p=1/2 时, 试求该 Markov 链的平稳分布 $\pi=(\pi_0,\pi_1,\pi_2,\pi_3)$;
 - (4) 记 ${\bf P}^{(n)}$ 为该 Markov 链的 n 步转移概率矩阵. 当 N=3, p=1/2 时, 求 $\lim_{n\to\infty} {\bf P}^{(n)}$,并对结果做出解释.

- 5. (总 24 分,前两小题各 10 分,第 3 小题 4 分) 一个修理工照看机器 1 和机器 2. 每次修复后,机器 i 保持正常运行,运行时间服从参数 (失效率) λ_i 的指数分布, i=1,2. 当机器 i 失效时,需要进行修理,修理时间服从参数 μ_i 的指数分布. 机器 1 的修理具有优先权,在机器 1 失效时总是先修理它. 例如,若正在修理机器 2 时机器 1 突然失效,则修理工将立刻停止修理机器 2,而开始修理机器 1.
 - (1) 为该题建立有限状态的连续时间 Markov 链,写成相应的转移强调 Q 矩阵;
 - (2) 设 $\lambda_i \mu_i = 1 + i$, i = 1, 2. 若系统长时间运行下去, 求机器 2 失效的时间占比;
 - (3) 每当两台机器同时处于失效状态时,求同时处于失效状态持续的时长分布.

解: (1) 考虑如下状态"(x,y)", $x,y \in \{0,1\}$, "0"表示失效状态, "1"表示工作状态. 这样一共有如下四个状态: (1,1), (0,1), (1,0) 和 (0,0), 为简化分别记为状态 (0,1), (1,2) 和 (1,0) 和 (1,0) 和 (1,0) 为简化分别记为状态 (1,1) 表示时刻 (1,2) 表示的 (1,2) 表示的

$$\mathbf{Q} = \begin{bmatrix} -\lambda_1 - \lambda_2 & \lambda_1 & \lambda_2 & 0 \\ \mu_1 & -\lambda_2 - \mu_1 & 0 & \lambda_2 \\ \mu_2 & 0 & -\lambda_1 - \mu_2 & \lambda_1 \\ 0 & 0 & \mu_1 & -\mu_1 \end{bmatrix},$$

稳态分布 (Po, P1, P2, P3) 满足

$$(P_0, P_1, P_2, P_3) = (P_0, P_1, P_2, P_3) \cdot \mathbf{Q},$$

- 6. (总 12 分,每小题 6 分) 设 $\{B(t), t \ge 0\}$ 是一个标准布朗运动,定义随机变量序列 $X_n = B^2(n) n, n \ge 1.$
 - (1) 证明 $\{X_n, n \ge 1\}$ 为一个鞅;
 - (2) 求如下的概率

$$\mathsf{P}\left(\max_{0\leq s\leq n}B(s)\geq u_{0.05}\sqrt{n}\right),\,$$