

Streaming ETL Patterns with DLT

Agenda

Streaming ETL Patterns with DLT

Lesson Name	Lesson Name	
Lecture: <u>Data Ingestion Patterns</u>	Lecture: <u>Data Modeling</u>	
Data Ingestion Patterns		
ADE 2.1 - Follow Along Demo - Auto Load to Bronze	ADE 2.5 - Follow Along Demo - Data Modeling - SCD Type 2	
ADE 2.2 - Follow Along Demo - Stream from Multiplex Bronze		
Lecture: <u>Data Quality Enforcement Patterns</u>	Lecture: <u>Streaming Joins and Statefulness</u>	
ADE 2.3 - Follow Along Demo - Data Quality Enforcement	ADE 2.6 - Follow Along Demo - Streaming Joins	
ADE 2.4L - Streaming ETL Lab		

Data Ingestion Patterns

Why Do We Need These Patterns?

Limitations at Data Ingestion Stage

- Streaming sources like Kinesis, Kafka and EventHubs only retain data for a limited amount of time
- Need for retention full history of data
 - Reprocessing raw data
 - Perform GDPR and compliance tasks
 - Recover data
- Need for a simple, maintainable and scalable architecture
- Keeping full history in the streaming source is expensive

Pattern 1: Use Delta for Infinite Retention

Delta provides cheap, elastic and governable storage for transient sources

cloud_files

& kafka

Use a **short retention** period to avoid compliance risks and reduce costs

CREATE STREAMING LIVE TABLE AS ...

Avoid complex transformations that could have bugs or drop important data

TBLPROPERTIES (pipelines.reset.allowed=false bronze

Retain history
Easy to perform GDPR and other
compliance tasks

CREATE STREAMING LIVE TABLE AS ...

pipelines.reset.allowed=false
ensures that downstream computation can
be full-refreshed without losing data

Pattern 2: Up-to-date Replica with CDC

Maintain an up-to-date replica of a table stored elsewhere

- Use Change Data Capture (CDC) from RDMS and create replica as Delta
- A variety of 3rd party tools can provide a streaming change feed

Pattern 3: Multiplex Ingestion

Multiplexing is used when a set of independent streams all share the same source

Simplex

Multiplex

Pattern 3: Multiplex Ingestion

Anti-Pattern: Using Kafka as Bronze Table

Don't use Kafka as Bronze Table:

- Data retention limited by Kafka;
 expensive to keep full history
- All processing happens on ingest
- If stream gets too far behind, data is lost
- Cannot recover data (no history to replay)

Pattern 3: Multiplex Ingestion Pattern

Multiplexing is used when a set of independent streams all share the same source

Demo: Auto Load to Bronze

Demo: Stream from Multiplex Bronze

Data Quality Enforcement Patterns

Silver Layer for Quality Enforcement

Silver Layer Objectives

- Validate data quality and schema
- Enrich and transform data
- Optimize data layout and storage for downstream queries
- Provide single source of truth for analytics

Schema Enforcement & Evolution

- Enforcement prevents bad records from entering table
 - Mismatch in type or field name
- Evolution allows new fields to be added
 - Useful when schema changes in production/new fields added to nested data
 - Cannot use evolution to remove fields
 - All previous records will show newly added field as Null
 - For previously written records, the underlying file isn't modified.
 - The additional field is simply defined in the metadata and dynamically read as null

Alternative Quality Check Approaches

- Add a "validation" field that captures any validation errors and a null value means validation passed.
- Quarantine data by filtering non-compliant data to alternate location
- Warn without failing by writing additional fields with constraint check results to Delta tables

Pattern: Quarantine Invalid Records

What if we want to save the records that violate data quality constraints for analysis?

Method 1: Create Inverse Expectation Rules

Limitations:

Processes the data twice

Method 2: Add a validation status column and use for partitioning

ld	Name	V		ld	Name	V
1	Α	1	Partition by V	1	Α	1
2	В	0	•	4	D	1
3	С	0		2	В	0
4	D	1		3	С	0

Limitations:

 Doesn't use expectations; data quality metrics are not available in the event logs or the pipelines UI.

Pattern: Verify Data with Row Comparison

Validate row counts across tables to verify that data was processed successfully without dropping rows.

Solution:

- Add an additional table to your pipeline that defines an expectation to perform the comparison.
- The results of this expectation appear in the event log and the Delta Live Tables UI.

Pattern: Define Tables for Adv. Validation

Perform advanced data validation with DLT expectations

- Complex data quality checks examples;
 - A derived table contains all records from the source table
 - Guaranteeing the equality of a numeric column across tables
- Solution:
 - Define DLT using aggregate and join queries and use the results of those queries as part of your expectation checking.

```
-- Validates all expected records are present in the "report" table

CREATE LIVE TABLE compare_tests(
    CONSTRAINT no_missing_records
    EXPECT (r.key IS NOT NULL)
)

AS SELECT * FROM LIVE.validation_copy v
LEFT OUTER JOIN LIVE.report r ON v.key = r.key
```


ADE 2.3 – Data Quality Enforcement

ADE 2.4L – Streaming ETL Lab

Data Modeling

Learning Objectives

By the end of this lesson, you should be able to:

- Describe main concepts of dimensional modeling
- Describe SCD tables and implementation with Delta Live Tables
- Explain a common pipeline wherein a streaming data source joins to a static table.

Slowly Changing Dimensions in the Lakehouse

Dimensional Modeling

Fact Tables vs. Dimension Tables

- Fact Tables: Often contain a granular record of activities
- Dimension Tables: Often contain data may be updated or modified over time.

Modeling Guidelines:

- Denormalize dimension and fact tables
- Use conformed dimensions
- Use slowly changing dimensions as necessary

Dimensional Modeling

Fact Tables as Incremental Data

- Often is a time series
- No intermediate aggregations
- No overwrite/update/delete operations
- Often append-only operations

Slowly Changing Dimensions (SCD)

3 types of dimension tables

Type 0

- No changes allowed
- Tables are either static or append only
- Examples: static lookup tables, append-only fact tables

Type 1

- Overwrite but no history is maintained
- May contain recording of when record was entered, but not previous values
- Example: valid customer mailing address

Type 2

- Add a new row; mark old row as obsolete
- Strong history is maintained
- Example: tracking product price changes over time

Slowly Changing Dimensions (SCD)

3 types of dimension tables

Type 0 / Type 1

user_id	street	name
1	123 Oak Ave	Sam
2	99 Jump St	Abhi
3	1000 Rodeo Dr	Kasey

Type 2

user_id	street	name	valid_from	current
1	123 Oak Ave	Sam	2020-01-01	true
2	99 Jump St	Abhi	2020-01-01	false
3	1000 Rodeo Dr	Kasey	2020-01-01	false
2	430 River Rd	Abhi	2021-10-10	true
3	1000 Rodeo Dr	Casey	2021-10-10	true

SCD Type 2 with DLT

Keep a record of how values changed over time

APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

SEQUENCE BY ts

STORED AS SCD TYPE 2

__starts_at and __ends_at will take on the type of the SEQUENCE BY field (ts).

city_updates

```
{"id": 1, "ts": 1, "city": "Bekerly, CA"}
{"id": 1, "ts": 2, "city": "Berkeley, CA"}
```

cities

id	city	starts_at	ends_at
1	Bekerly, CA	1	2
1	Berkeley, CA	2	null

Applying SCD Principles to Facts

- Fact table usually append-only (Type 0)
- Can leverage event and processing times for append-only history

order_i	d user_id	occurred_at	action	processed_time
123	1	2021-10-01 10:05:00	ORDER_CANCELLED	2021-10-01 10:05:30
123	1	2021-10-01 10:00:00	ORDER_PLACED	2021-10-01 10:06:30

ADE 2.5 – Data Modeling

Streaming Joins and Statefulness

The Components of a Stateful Stream

```
windowedDF =
  (eventsDF
    .groupBy(window("eventTime",
        "10 minutes",
        "5 minutes"))
    .count()
    .writeStream
    .trigger(processingTime="5 minutes")
)
```


Statefulness vs. Query Progress

- Some operations are specifically stateful in that the results of processing earlier records from the stream affect the processing of later records.
 - Examples include deduplication, aggregation, and stream-stream joins
- Other transformations just need to store incremental query progress and are not stateful.
 - Examples include simple transformations and stream-static joins
- Progress and state are stored in checkpoints and managed by the driver during query processing.

Stream-Static Joins

Using Dimension Tables in Incremental Updates

- Delta Lake enables dynamic stream-static joins
- Each micro-batch captures the most recent state of the Delta table that is the static side of the join
 - This does not occur if the static side of the join is another format such as Parquet
- Allows modification of dimension while maintaining downstream composability

Note: Because Delta Lake does not enforce foreign key constraints, it is possible that joined data will go unmatched.

Streaming Queries are Not Stateful

Each input row is processed only once

A change to a streaming live table's definition does not recompute results by default:

```
CREATE STREAMING LIVE TABLE raw_data

AS SELECT a + 1 AS a a * 2 AS a

FROM cloud_files("/data", "json")
```


Streaming Joins are Not Stateful

Enrich data by joining with an up-to date-snapshot stored in Delta

A change to joined table snapshot does not recompute results by default:

```
CREATE STREAMING LIVE TABLE raw_data
AS SELECT *
FROM cloud_files("/data", "json") f
JOIN prod.cities c USING id
```


id	city
1	Bekerly, CA

Berkeley, CA

Clear State in DLT

Perform backfills after critical changes using full refresh

Full-refresh clears the table's data and the queries state, reprocessing all the data.

CREATE STREAMING LIVE TABLE raw_data

AS SELECT a * 2 AS a

FROM cloud_files("/data", "json")

Stream-Static Join & Merge

- Join driven by streaming data
- Join triggers shuffle
- Join itself is stateless
- Control state information with predicate
- Goal is to broadcast static table to streaming data
- Broadcasting puts all data on each node

1. Main input stream

2. Join item category lookup

```
itemSalesSDF = (
    salesSDF
    .join(
        spark.table("items")
        .filter("category='Food'), #
Predicate
        on=["item_id"]
    )
)
```


ADE 2.6 – Streaming Joins

Knowledge Check

Which of the following is considered a recommended best practice for ingesting streaming data?

- A. Use streaming live tables for raw data and streaming tables for bronze, silver, and gold quality data.
- B. Use streaming tables for bronze quality data and streaming live tables for silver and gold quality data.
- C. Use streaming live tables for bronze quality data and streaming tables for silver and gold quality data.
- D. Use streaming tables for raw data and streaming live tables for bronze, silver, and gold quality data.

A data engineer has data that needs to be updated. However, they need to have access to a recorded history of the information previously stored in the dataset before the update. Which of the following table types should the data engineer use for their data?

- A. Type 0
- B. Type 1
- C. Type 2
- D. Type 1 or Type 2

Which of the following operations can be performed on stateless tables to limit the state dimension?

- A. Stream-stream join
- B. Stream-static join
- C. Stateful aggregation
- D. Drop duplicates

Which of the following statements about fact tables and dimension tables are true?

Select two responses.

- A. Transactional guarantees and Delta Lake ensure that the newest version of a dimension table will be referenced each time a query is processed for incremental workloads.
- B. Joined data cannot go unmatched because of Delta Lake's foreign key constraint.
- C. Dimension tables contain a granular record of activities, while fact tables contain data that is updated or modified over time.
- D. Modern guidelines suggest denormalizing dimension and fact tables.

The following line of code is supposed to create a set of inverted rules for a quarantine table.

```
quarantine_rules = _____
```

Which of the following correctly fills in the blank?

```
A. {"invalid_record": f"NOT({' AND '.join(rules.values())})"}
B. {"invalid_record": f"&&({' ! '.join(rules.values())})"}
C. {"invalid_record": f"NOT({' OR '.join(rules.values())})"}
D. {"invalid_record": f"IF({' NULL '.join(rules.values())})"}
```

