

(1) FaMAF, Universidad Nacional de Córdoba, Argentina, (2) Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

INTRODUCTION

We propose a **refinement** algorithm that generates referring expressions that are:

- Relational: ball on the blue cube
- Overspecified: small green ball on the blue cube
- Non-deterministic: green ball, small ball on the right

Figure 2: Scene as a relational model

LEARNING PROBABILITIES OF USE

If there is corpus available:

$$R.p_{use} = \frac{\text{# of REs in } C \text{ in which R appears}}{\text{# of REs in } C}$$

■ Feature used to learn R.p_{use} when there is not corpus available

R.target-has	true if the target is in R
R.landmark-has	true if a landmark is in R
R.discrimination	1 / # objects in the model that have R
#bin-relations	number of binary relations of the target
#relations	number of relations of the target

REFINEMENT ALGORITHMS NON-DETERMINISM AND OVER-SPECIFICATION

```
Algorithm 1: Computing \mathcal{L}-similarity classes
RE \leftarrow \{T\}
    while \exists (\varphi \in RE).(\# \|\varphi\| > 1) do
          RE' ← RE
          for (R, R.p_{nse}) \in Rs do
               if R.rnd<sub>use</sub> \leq R.p<sub>use</sub> then
                                                                           Probabilistic
                    for \varphi \in RE do add<sub>\mathcal{E}_{\mathcal{L}}</sub> (R, \varphi, RE)
                                                                        Non-deterministic
                                                                                step
               if RE \neq RE' then
                     exit
          if RE = RE' then
               exit
                                                                          Completeness
    for (R,R,p_{use}) \in Rs do R,p_{use} \leftarrow R,p_{use} + R,inc_{use}
                                                                                 step
until \forall ((R,R,p_{use}) \in Rs).(R,p_{use} \geq 1)
```

Algorithm 2: $add_{\mathscr{E}\mathscr{L}}(R, \varphi, RE)$

```
if FirstLoop? then

Informative \leftarrow TRUE

else Informative \leftarrow \|\psi \sqcap \exists R.\varphi \| \neq \|\psi \|;

for \psi \in \mathsf{RE} with \#\|\psi\| > 1 do

if \psi \sqcap \exists \mathsf{R}.\varphi is not subsumed in RE and

\|\psi \sqcap \exists \mathsf{R}.\varphi \| \neq \emptyset and

Informative then

add \psi \sqcap \exists \mathsf{R}.\varphi to RE

remove subsumed formulas from RE
```

Overspecification Step/ (Egocentric)

Refinement Step/(Adjustment)

EVALUATION WITH PRECISION

Accuracy between the REs in the corpus and those generated using puse values computed from the scene, machine learned, random and uniform.

	Scene p _{use}	Learned p _{use}	Random p _{use}	Uniform p _{use}
Scene 1	85.75%	84.49%	17.95%	5.37%
Scene 3	82.81%	80.51%	9.89%	4.40%
Scene 6	90.11%	83.30%	4.13%	4.16%
Scene 8	86.52%	64.06%	16.32%	9.75%
Scene 10	89.49%	75.80%	7.56%	3.70%
Scene 12	80.21%	81.29%	57.09%	6.68%
Scene 13	89.98%	50.79%	9.30%	3.59%
Scene 21	92.13%	80.01%	8.45%	6.77%
Average	87.13%	75.03%	16.34%	5.55%

EVALUATION WITH CROSS ENTROPY

Cross-entropy between the corpus distribution and different runs of the algorithm.

Our algorithm is able to generate different referring expressions for the same target with a frequency similar to that observed in corpora.
 Our results support the psycholinguistic theory that puts forward an egocentric explanation of language production (Keysar, 1998).