

VIENNA UNIVERSITY OF TECHNOLOGY

FACULTY OF PHYSICS

LABORATORY III

Laboratory Report

Röntgen

Authors: Raul Wagner Martin Kronberger Group 301 **Supervisor:** Someone

conducted on: 21 May 2025

Measurement Setup and Preparations

Setup

Figure 1: Measurement Setup with following compenents: (a) collimator mount, (b) sensor holder, (c) flat ribbon cable, (d) goniometer guide rods, (e) sensor mount, (f) insertion edge of absorber set l, and (g) goniometer target holder.

Preparations

- Carefully align the guide rod while inserting the collimator into the collimator mount (a).
- Secure the goniometer onto the guide rods (d) before connecting the flat ribbon cable (c) for control.
- After removing the protective cap, install the window counter tube into the sensor mount (e) and plug its cable into the GM-tube socket in the experimental area.
- Remove the goniometer's target holder (g) to lift off the target table.
- Slide the insertion edge of absorber set l (f) into the quarter-circle groove of the target holder until it clicks into place.
- Swap out the sensor holder with X-ray energy detector for the holder equipped with the window counter tube.
- Reinstall the target holder carrying absorber set l.
- Press the "Zero" button to set target and sensor to their null positions.
- Verify (and adjust if needed) the zero position of both the blank aperture in the absorber set and the sensor (see "Setting the measurement zero position" in the X-ray manual).
- Finally, slide the goniometer to position the collimator at 5 cm from the blank aperture, then slide the sensor holder (b) to set 5 cm between aperture and sensor slit. = Dependence of attenuation on absorber thickness

Experiment 1: Attenuation of X-Ray Radiation

Objectives

- Investigate the attenuation of X-ray intensity as a function of absorber thickness and material.
- Verify Lambert's law of exponential attenuation.
- Demonstrate the wavelength dependence of the attenuation coefficient.

Theory

When a narrow beam of X-rays of initial count rate R_0 passes through an absorber of thickness x, the transmitted count rate R satisfies

$$T = \frac{R}{R_0} \quad \text{where} \quad T(x) = e^{-\mu x} \quad \rightarrow \quad \ln \, T = -\mu x$$

where μ is the linear attenuation coefficient.

Setup

- 1. Mount the collimator and goniometer on the X-ray tube as shown in Fig. 1.
- 2. Insert the Geiger-Müller detector in the sensor arm and connect via "GM Tube".
- 3. Align the target (absorber holder) and detector so that the slit-to-target and target-to-detector distances are each ≈ 5 cm.
- 4. Zero-position both arms with the "Zero" button.

Attenuation vs. Absorber Thickness

Without zirconium filter

- 1. Set tube voltage U=21 kV, emission current I=0.05 mA, measurement time $\Delta t=100$ s.
- 2. Set absorber angles corresponding to the corresponding thicknesses, press **Scan**, wait Δt , then read count rate R via **Replay**.
- 3. Record in Table 1.

d / mm	R / s^{-1}
0	1618
0.5	787.4
1	403.5
1.5	226.4
2	49.1
2.5	30.55
3	16.11

Table 1: Some Caption

With zirconium filter

- 1. Mount Zr filter, set I = 0.15 mA, $\Delta t = 200$ s.
- 2. Repeat step 1.1 at the same angles.
- 3. Record in Table 2.

d / mm	R / s ⁻¹
0	775.1
0.5	337
1	149.8
1.5	72.1
2	33.85
2.5	18.6
3	7.85

Table 2: Some caption

Laboratory Work III - Röntgen

Data Analysis

- Compute transmission: $T(d) = \frac{R(d)}{R(0)}$.
- Plot T(d) vs d and In T(d) vs d.
- Fit $\ln T(d) = -\mu d$ to extract μ for both unfiltered and filtered cases.

Dependence of attenuation on the absorber material

Without zirconium filter

Some text

Ab-	Z	$\frac{I}{\mathrm{mA}}$	$\frac{\Delta t}{\mathrm{s}}$	$\frac{R}{\mathrm{hz}}$	Т	$\frac{\mu}{\mathrm{cm}^{-1}}$
sorber						
leer	0	0.02	30	89550	1	0
С	6	0.02	30	85050	0.95	17
Al	13	0.02	30	54150	0.605	168
Fe	26	1	300	7355	0.082	833
Cu	29	1	300	15.55	0	2886
Zr	40	1	300	181.8	0.002	2067
Ag	47	1	300	56.65	0.001	2455

Table 3: Some caption

With a zirconium filter

some Text

Ab- sorber	Z	$\frac{I}{\text{mA}}$	$\frac{\Delta t}{\mathrm{s}}$	$\frac{R}{\mathrm{hz}}$	Т	$\frac{\mu}{\mathrm{cm}^{-1}}$
leer	0	0.02	30	36915	1	0
С	6	0.02	30	34730	0.941	20
Al	13	0.02	30	19545	0.529	212
Fe	26	1	300	2585	0.07	886
Cu	29	1	300	5.7	0	2925
Zr	40	1	300	107.3	0.003	1947
Ag	47	1	300	12.05	0	2676

Table 4: Some caption

Data Analysis

Figure 4: Linear attenuation coefficient μ as a function of the absorber's atomic number Z

Zero effect: $R_{\rm zero} = 0.174~{\rm hz}$

Experiment 2: Bragg Reflection

Objectives

- Investigate the Bragg reflection of Mo K-characteristic X-rays on a NaCl single crystal.
- Determine the wavelengths of the $K\alpha$ and $K\beta$ lines up to third order diffraction.
- Confirm Bragg's law and the wave nature of X-radiation.

Theory

When X-rays hit parallel crystal planes spaced by distance d, constructive interference occurs at angles θ satisfying Bragg's law:

$$n\sin\theta = n\frac{\lambda}{2d}$$

where n is the diffraction order and λ is the wavelength.

Apparatus

- X-ray tube with collimator mount and goniometer guide rods.
- Geiger–Müller detector in the sensor mount.
- NaCl single crystal fixed on the crystal stage.
- Distances: collimator–crystal \approx 5 cm; crystal–detector \approx 6 cm.

Procedure

- 1. Connect PC via USB, start the "X-ray Device" software, select automatic scan mode.
- 2. Set parameters: tube voltage U=35 kV, current I=1.00 mA, measurement time $\Delta t=10$ s, angle step $\Delta \beta=0.1^\circ$; press COUPLED; set scan range $\beta_{\min}=2.5^\circ$, $\beta_{\max}=30^\circ$.
- 3. Start scan to record the spectrum; save data with F2.
- 4. Identify peak angles θ for K α and K β lines at orders n=1,2,3 and record in tables.
- 5. Calculate wavelengths via $\lambda = 2d \sin \theta$ using d = 282.01 pm.

Results

Figure 5: Some Caption

Laboratory Work III - Röntgen

Conclusions

Measured wavelengths agree with literature and validate Bragg's law and the wave character of X-rays.

Experiment 3: Duane-Hunt Law and Planck's Constant

Objectives

- Determine the cutoff wavelength λ_{\min} of the Bremsstrahlung continuum as a function of tube voltage U.
- Verify the Duane–Hunt relation $\lambda_{\min} = \frac{hc}{eU}$.
- Extract Planck's constant h from the slope of λ_{\min} vs $\frac{1}{U}$.

Theory

Complete conversion of electron kinetic energy into photon energy gives:

$$\lambda_{\min} = \frac{hc}{eU}$$

where e is the elementary charge and c the speed of light.

Apparatus

- Same goniometer and NaCl crystal setup as in Experiment 2.
- "X-ray Device" software with Planck-mode register.
- Geiger–Müller detector.

Procedure

- 1. For tube voltages U=22,24,26,28,30,32,34,35 kV at I=1.00 mA, set measurement time and angle range as in Table 1.
- 2. Perform automatic scans; save each spectrum.
- 3. In Planck mode, determine λ_{\min} for each U.
- 4. Plot λ_{\min} vs. $\frac{1}{U}$ and fit a line through the origin; extract slope A.

Results

Figure 6: Some Caption

Laboratory Work III - Röntgen

Figure 7: Some Caption

 $A=1137~\rm pm~kV$

Conclusions

The Duane–Hunt law is confirmed, and the measured Planck constant agrees closely with the literature value.

Planks konstant as a wavelenth-voltage factor is about $1240~\mathrm{pm}$ kV