

INTITUTO TECNOLÓGICO NACIONAL DE LA HEROICA CIUDAD DE TLAXIACO

CARRERA: INGENERIA EN SISTEMAS COMPUTACIONALES
DOCENTE: INGENIERO JOSÉ ALFREDO ROMAN CRUZ
ASIGNATURA: MATEMATICAS DISCRETAS
-- CONVERSIONES DE SISTEMAS
NUMERICOS

ALUMNOS
PAULA MARIA CASTELLANOS CTS.
MARCOS DANIEL CORTES PÉREZ.
MARCOS GABRIEL HERNANDEZ VELASCO.

1AS

Contenido

TABLA DE FIGURAS	1
OBJETIVO	3
MATERIALES	3
INTRODUCCIÓN	4
1.1 CONVERSIÓN DE BINARIO A DECIMAL	4
1.2 CONVERSIÓN DE BINARIO A OCTAL	8
1.3 CONVERSIÓN DE BINARIO A HEXADECIMA	11
1.4 CONVERSIÓN DE DECIMAL A BINARIO	15
1.5 CONVERSIÓN DE DECIMAL A OCTAL	17
1.6 CONVERSIÓN DE DECIMAL A HEXADECIMAL	19
1.7 CONVERSIÓN DE OCTAL A BINARIO	22
1.8 CONVERSIÓN DE OCTAL A DECIMAL	24
1.9 CONVERSIÓN DE OCTAL A HEXADECIMAL	27
2.0 CONVERSIÓN DE HEXADECIMAL A BINARIO	28
2.1 CONVERSIÓN DE HEXADECIMAL A DECIMAL	30
2.2 CONVERSIÓN DE HEXADECIMAL A OCTAL	32
LISTA DE RESULTADOS	35
RESULTADOS	36
CONCLUSIÓN	37

TABLA DE FIGURAS

llustración 1	5
Ilustración 2	5
Ilustración 3	5
Ilustración 4	5
Ilustración 5	6
Ilustración 6	6
Ilustración 7	6
Ilustración 8	7
Ilustración 9	7
Ilustración 10	8
Ilustración 11	8
Ilustración 12	8
Ilustración 13	9
Ilustración 14	9
Ilustración 15	9
Ilustración 16	10
Ilustración 17	10
Ilustración 18	10
Ilustración 19	10
Ilustración 20	11
Ilustración 21	11
Ilustración 22	12
Ilustración 23	12
Ilustración 24	12
Ilustración 25	13
Ilustración 26	13
Ilustración 27	13
Ilustración 28	14
Ilustración 29	14
Ilustración 30	15
Ilustración 31	16
Ilustración 32	16
Ilustración 33	16
Ilustración 34	17
Ilustración 35	18
Ilustración 36	18
Ilustración 37	18
Ilustración 38	19
Ilustración 39	19
Ilustración 40	20
Ilustración 41	20
Ilustración 42	20

Ilustración 43	20
Ilustración 44	21
Ilustración 45	22
Ilustración 46	22
Ilustración 47	23
Ilustración 48	23
Ilustración 49	24
Ilustración 50	24
Ilustración 51	25
Ilustración 52	25
Ilustración 53	25
Ilustración 54	26
Ilustración 55	26
Ilustración 56	27
Ilustración 57	27
Ilustración 58	28
Ilustración 59	28
Ilustración 60	29
Ilustración 61	29
Ilustración 62	29
Ilustración 63	30
Ilustración 64	30
Ilustración 65	30
Ilustración 66	31
Ilustración 67	31
Ilustración 68	32
Ilustración 69	33
Ilustración 70	33
Ilustración 71	33
Ilustración 72	33
Ilustración 73	34
Ilustración 74	34

OBJETIVO

El proposito de esta muestra de ejercicios de conversión, es que el alumnado mediante la práctica y muestra de dichas operaciones pueda aprender a realizar cada una de estas conversiones de los sitemas numéricos, y que esta practica sea de su agrado he interes, así mismo aprendan a realizarlo de una manera didáctica y con los métodos correctos, poniendolo en practica como retroalimentacion de los temas ya vistos.

MATERIALES

- Lapiz
- Libreta
- Goma
- Sacapunta
- Lapiceros
- Laptop
- Tabla de conversiones

INTRODUCCIÓN

Los sistemas numéricos, son base de muchas áreas de nuestros conocimientos, siendo mostrada en nuestra vida cotidiana, apoyándonos para situar un orden, comprar, repartir, comparar, codificar y entre otras tantas en las cuales aprendemos a usar correctamente los números.

Como bien sabemos cada sistema numérico tiene sus reglas o pasos a seguir para su desarrollo de cada una, y con esto poder manipular grandes cantidades, y así mismo permite la facilitación de los cálculos y operaciones.

Dentro de lo que abarca las áreas de la informática, son de suma importancia conocer y desarrollar de manera correcta estos sistemas numéricos, ya que este es esencial para la codificación, transmitir y almacenar datos y así mismo crear un buen algoritmo, y entre otras más funciones que esta nos permita, ya que su gama se puede expandir en otras muchas divisiones más, pero lo esencial en esta rama es que las computadoras operan más con el sistema que trabajamos que es el sistema binario.

Cada sistema operativo tiene aplicaciones específicas, las cuales su capacidad va dependiendo del área en el que sea ocupado. Las conversiones entre estos sistemas numéricos son la mayor herramienta en la vida de un programador por eso es de suma importancia conocerlo al derecho y al revés, para que así podamos asegurar que los datos sean muy bien interpretados y su uso sea el correcto y el adecuado según el sistema.

Así igual, la ocupación de diversos sistemas operativos genera en veces una confusión con las funciones de los sistemas numéricos, por dicho motivo es importante igual conocer cada uno de estos y así llegado un caso, saber qué sistema numérico debemos ocupar según el sistema operativo del equipo que nos encontramos ocupando.

1.1 CONVERSIÓN DE BINARIO A DECIMAL Ejemplo 1:

10101 a decimal.

 Para resolver este tipo de ejercicios debemos comenzar de derecha a izquierda multiplicando consecutivamente por 2 ya que es la base del binario, aunque las potencias serán de acuerdo a la posición del número.

Ilustración 1

Ilustración 2

2. Después de haber resuelto las potencias y multiplicaciones sumamos los resultados.

Ilustración 3

3. El resultado final es la conversión del sistema binario a decimal.

Ilustración 4

4. Así que el 10101 binario convertido a decimal es 2110.

Ejemplo 2:

00101 a decimal.

 Para realizar estos ejercicios haremos los mismos pasos que en el ejercicio anterior, así que comenzaremos haciendo las multiplicaciones consecutivas por 2 porque es la base del binario, aunque las potencias dependerán de la posición del número.

Ilustración 5

Ilustración 6

- 2. Una vez resueltas las operaciones de cada inciso sumaremos los resultados.
- 3. En este caso el resultado es 5, así que podemos decir que 00101 binario es 5 decimal.

A continuación, unos ejemplos más.

Ilustración 7

Ejemplo 3:

Ilustración 8

Ejemplo 4:

Ilustración 9

Ejemplo 5:

Ilustración 10

1.2 CONVERSIÓN DE BINARIO A OCTAL

Ejemplo 1:

Ilustración 11

110111011 a octal.

- 1. Para resolver este ejercicio primero debemos separar en términos de 3 comenzando de izquierda a derecha.
- 2. Después nos apoyaremos de una tabla la cual representa el valor de cada agrupación.

binarro	Octal
000	0 +
001	1
010	2
011	3
100	4
101	S
110	6
111	7

Ilustración 12

3. Anotaremos el valor debajo de cada agrupación.

Ilustración 13

El resultado de 110111011 binario convertido a octal es igual a 6738.

Ejemplo 2:

1011111 a octal.

1. Para resolver este ejercicio debemos agruparlos en términos de tres de derecha a izquierda.

Ilustración 14

2. si tenemos menos de 3 numero en el ultimo termino le agregamos uno o mas 0 para que sean 3 términos.

Ilustración 15

3. Con la ayuda de la tabla ubicamos el valor de cada agrupación.

Así que la conversión a octal es igual a 1378.

binarro	Octal
000	0 +
001	1
010	2
011	3
100	4
101	S
110	6
(11	7

Ilustración 17

Ilustración 18

Ejemplo 3:

Ilustración 19

Ejemplo 4:

Ilustración 20

Ejemplo 5:

Ilustración 21

1.3 CONVERSIÓN DE BINARIO A HEXADECIMA**L** Ejemplo 1:

101111011011 a hexadecimal.

1. Para convertir un numero binario a hexadecimal primero debemos agrupar los bits en grupos de 4, de izquierda a derecha.

Ilustración 22

2. Después de eso utilizaremos nuestra tabla de conversión, que en este caso será de hexadecimal a binario.

Haxadecimal	
0	0000
	0001
2	0010
3	0011
4	0100
S	0101
6	0110
7	0111
8	1000
9 1	1001
٨	1010
B	1011
C	1100
0	1101
E	1110
T I	1110

Ilustración 23

3. Después buscamos el valor de cada agrupación

Ilustración 24

Así que el valor 101111011011 es BDB.

Ejemplo 2:

1110100001 a hexadecimal.

1. Primero agruparemos los bits en grupos de 4 de izquierda a derecha.

Ilustración 25

2. Si hacen falta números en la última agrupación, agregamos ceros hasta que sean 4 dígitos.

Ilustración 26

3. Después buscamos el valor de cada agrupación en la tabla de conversión.

Ilustración 27

4. Así que el numero 001110100001 convertido a hexadecimal es igual 3A1

Ejemplo 3:

Ilustración 28

Ejemplo 4:

Ilustración 29

Ejemplo 5:

Ilustración 30

1.4 CONVERSIÓN DE DECIMAL A BINARIO

Ejercicio 1:

Decimal 32

 Lo primero a realizarse es la división del número 523 a binario, para ello lo dividiremos entre su base que es 2, tomaremos solo el cociente entero y el residuo será anotado a un costado del resultado, con ello tomando en cuenta que el residuo solo puede ser 0 y 1. Si el número es par el residuo será 0 y si es impar será 1.

Ilustración 31

2. Esta operación de división se llevará a cabo hasta que el ultimo cociente sea 0.

5	2	3	60	2	=	261	91
2	6	1	00	2	=	730	01
7	3	0	00	2	=	65	0
-	6	5	00	2	=	32	91
9	3	2	00	2	=	16	00
	1	6	0	7	=	8	0
		8	00	2	=	4	0
		4	00	2	=	2'	0
		2	0.	2	=	17	0
		1	000	2	=	09	1
				1000		7	

Ilustración 32

3. Al finalizar se tomarán los residuos desde abajo hacia arriba, esto será nuestro resultado a la conversión.

Ilustración 33

4. Ahora ya se podrá decir que 523 convertido en binario es 1000001011.

OTROS EJEMPLOS DE DECIMAL-BINARIO

Ilustración 34

1.5 CONVERSIÓN DE DECIMAL A OCTAL

Ejemplo 1

Decimal 524

1. Para esta conversión, se dividirá el número decimal entre la base del octal que es 8, y se anota el cociente y residuo.

Ilustración 35

2. Se repite hasta que el cociente sea 0.

Ilustración 36

3. Para el resultado de la conversión se leen los números del residuo desde abajo hacia arriba.

Ilustración 37

OTROS EJEMPLOS DE DECIMAL-OCTAL

Ilustración 38

1.6 CONVERSIÓN DE DECIMAL A HEXADECIMAL EJEMPLO 1

DECIMAL 2604

1. para las conversiones de hexadecimales ahora se divide entre la base de esta que es igual a 16.

Ilustración 39

2. Se toma el cociente y el residuo.

Ilustración 40

3. Se repite hasta que el cociente sea 0.

Ilustración 41

4. Se utiliza la tabla de equivalencias para asignar valor a los residuos respecto a los hexadecimales.

Ilustración 42

5. Para obtener el resultado final se ocupa las equivalencias las cuales se leen de abajo hacia arriba.

Ilustración 43

OTROS EJEMPLOS DE DECIMAL-HEXADECIMAL

1	0	5 6	0 0 5 4		1	6 6	и и и	640	5,	10 1	1) 11 11	A 1 4	1 0	050)10	= 1		1 1	A 16	90 00
4	2 2	6 6 1	2	6 1 1 1 1	6	11111	2010		6,6	1	5	4	26:	10	= 0	76	616		NO 00 00	ele ore ple
3	0 1	3 7 9 1	0 000 0000	7 1 1 1	-	11 11 11 10	1 1 0	9	110	Ŧ	0	3(7710	, =	0 = 3	1 -8	116	11 11 11	00 00 00	ale di de
2	6 1	2 0 6 1	6 000000	0 1 1 1	6 6	2 = =	1 1 0	6	2,00	9		+4	26	010	401	0	000	2	(16)	The state of the s

Ilustración 44

1.7 CONVERSIÓN DE OCTAL A BINARIO EJEMPLO 1

Octal 326

1. Un numero octal equivale a tres dígitos binarios.

BINARIO	OCTAL
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

2. Se le da una equivalencia y ase ordena.

Ilustración 45

3. Y para el resultado se lee de arriba abajo.

Ilustración 46

OTROS EJEMPLOS DE OCTAL-BINARIO

Ilustración 47

Ilustración 48

1.8 CONVERSIÓN DE OCTAL A DECIMAL

Ejemplo 1

Octal 2751

1. Ahora en este apartado a cada digito octal se le da una potencia, comenzando de derecha a izquierda, posteriormente se acomodan los dígitos octales para indicar la operación a realizar.

Ilustración 49

Ilustración 50

2. Comenzamos por las potencias y luego las multiplicaciones, o de igual forma si domina el tema pasa directo.

Ilustración 51

3. Se suman los resultados de arriba hacia abajo.

Ilustración 52

4. El resultado decimal es lo que nos da la suma.

Ilustración 53

OTROS EJEMPLOS DE OCTAL-DECIMAL

3 2	NAME OF TAXABLE PARTY.	100000			D	eci	mo	=	2	5	9		
3	X	800	-	3	X	64	11 11 11	1	9	2	P	8	28
2 1	×	00°	フニ	1	×	1	=	1	0			0	P
10	12	+	1	6+	1		=				0		
		2 1				De	209	m	al	=	2	1	5
3 2	×	82	11 1	3	X	64	11 11	1 1	9	2			
7	X	80	1 11	7	X	1	=	7					
1	9	2	+	1	6	+	7	=	2	1	5		

Ilustración 54

		1			8	8	Dec	dim	nal	=	2	6	6
4 1 2	X X	8,	= = 7	4 1 2	XXX	64	11 11 11	2 8 2	5	6	08		100
2	6		+ 4				= 1000				9	6	4
4	6	X	82 81 80	=	1	X	8	=	8		4		
3	8	4	+	8	+	4	17	3	9	6			

Ilustración 55

1.9 CONVERSIÓN DE OCTAL A HEXADECIMAL

Ejemplo 1

Octal 401

1. Para la conversión de un octal a un hexadecimal, primero debemos transformar este octal a binario posteriormente a hexadecimal. Cada digito octal se convierte en tres dígitos binarios siguiendo la tabla.

BINARIO	OCTAL
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Ilustración 56

2. Luego los agrupamos en grupos de 4 dígitos, comenzando de la derecha y agregando ceros a la izquierda.

Ilustración 57

3. Ahora se le agrega valores siguiendo la tabla de hexadecimales.

Ilustración 58

4. Finalmente, el resultado es el valor equivalente: 401 = 101

OTROS EJEMPLOS DE OCTAL-HEXADECIMAL

Ilustración 59

2.0 CONVERSIÓN DE HEXADECIMAL A BINARIO Ejemplo 1

Hexadecimal 3CA

1. Convertimos cada digito hexadecimal en su equivalente binario siguiendo la tabla.

Ilustración 60

2. Unimos los valores dando según el orden de los números hexadecimales, y así obtenemos el resultado.

Ilustración 61

OTROS EJEMPLOS DE HEXADECIMAL-BINARIO

Ilustración 62

Ilustración 63

2.1 CONVERSIÓN DE HEXADECIMAL A DECIMAL

Ejemplo 1

Hexadecimal B2

1. Se le asigna una potencia a cada digito hexadecimal.

Ilustración 64

2. Convertimos cada digito a su valor decimal.

Ilustración 65

3. Multiplicamos cada valor decimal por 16 (base de los hexadecimales) elevado a la potencia de su posición.

Ilustración 66

4. Sumamos el valor resultante de la multiplicación, y el resultado de dicha suma será nuestro valor decimal.

Ilustración 67

OTROS EJEMPLOS DE HEXADECIMAL-DECIMAL

Ilustración 68

2.2 CONVERSIÓN DE HEXADECIMAL A OCTAL Ejemplo 1

Hexadecimal E2

1. Primeramente, debemos transformar este valor hexadecimal a binario para

posteriormente pasarlo a octal.

Ilustración 69

2. Ahora que ya está en binario, lo agrupamos en bloques de tres dígitos, comenzando desde la derecha.

Ilustración 70

BINARIO	OCTAL
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

3. Convertimos cada grupo de tres dígitos en dígitos binarios ocupando.

Ilustración 71

4. Y así obtenemos el resultado.

Ilustración 72

OTROS EJEMPLOS DE HEXADECIMAL-OCTAL

Ilustración 73

Ilustración 74

LISTA DE RESULTADOS

Conversión de binario a decimal

Ejemplo 1: 10101=2110

Ejemplo 2: 00101=5

Conversión de binario a octal

Ejemplo 1: 110111011=6738

Ejemplo 2: 1011111=1378

Conversión de binario a hexadecimal

Ejemplo 1: 1011111011011=BDB

Ejemplo 2: 1110100001=3 A 1

Conversión de decimal a binario

Ejemplo 1: 32=100000

Conversión de decimal a octal

Ejemplo 1: 524=1015

Conversión de decimal a hexadecimal

Ejemplo 1: 2604=6C7

Conversión de octal a binario

Ejemplo 1: 326=011010110

Conversión de octal a decimal

Ejemplo 1: 2751=1583

Conversión de octal a hexadecimal

Ejemplo 1: 401=101

Conversión de hexadecimal a binario

Ejemplo 1: 3CA=001111001010

Conversión de hexadecimal a decimal

Ejemplo 1: B2=178

Conversión de hexadecimal a octal

Ejemplo 1: E2=42

RESULTADOS

Como resultado de esta practica, cada uno de los mienbros del equipo tuvo un aprendizaje nuevo aunado a que, hay problemas que eran mas difisiles para la solucion y que otros eran mas faciles, así mismo, a su vez algunos contaban con tablas de equivalencias las cuales hacian que la practica de esta fuera mas habil y mas rapida que en algunas otras que conllebaban un proceso y una secuencia de pasos a realizar. Obtuvimos un nuevo conocimiento tanto individual como en equipo.

CONCLUSIÓN

El sistema de numeración, los diversos tipos de números reconocidos tienen un valor añadido, lo cual lo hace demasiado valioso en la extensión de la palabra, dado que los números son ocupados en todos los aspectos de la vida diaria de un humano, así mismo no solo son de uso para el estudio de alguna carrera, sino que las aplicamos a la vida cotidiana.

Aprender de un sistema de numeración nuevo es equivalente a obtener nuevos conocimientos los cuales, mediante la investigación, análisis y practica de dichas se pueden ocupar y ser necesitadas en el mismo ámbito dándoles de esta manera un buen uso a cada una de ellas y a todas las demás que busquemos necesarias y aplicadas para ellas.

Por dicho motivo de conocimiento, los números han llevado una ligera movilidad de estas las cuales desde los años más remotos son, serán, y seguirán siendo los más necesarios y ocupados dado que la necesidad de estos ser ocupados desde los años más remotos forma parte de la vida cotidiana.

La necesidad del hombre para hallar un modo de expresión abarca desde lo más simple hasta lo más complejo que son los sistemas numéricos, por la misma razón nosotros nos tomamos la molestia de conllevar una investigación la cual nos llevó a saber lo necesario para poder llevar a cabo la transformación de los números binarios, decimales, octales y hexadecimales.