On the problem of measure of sets of points on a line*

Giuseppe Vitali

Bologna, Gamberini e Parmeggiani, 1905

The problem of the measure of sets of points on a line r is to determine for each set A of points of r a positive real number $\mu(A)$, to be said **measure** of A, such that:

- 1°) Two sets which coincide by means of a rigid motion have the same measure.
- 2°) The union of a family of a finite or countable number of sets, pairwise with no common points, has the sum of measures as measure.
- 3°) The measure of the set of all points in the interval (0,1) is 1. $^{(*)}$

Let x be a point in r. Points in r which differ from x by any rational number, be it positive, negative or zero, do form a countable set A_x . If A_{x_1} and A_{x_2} are two such sets, they have no element in common or they do coincide.

Let us consider all sets A_x , viewed as elements of a set H. If P is any point of r, then it exists one and only one element in H whom P belongs.

Let us consider for each element α of H a point P_{α} in the interval $(0, \frac{1}{2})$ that belongs to α and let us denote by G_0 the set of all points P_{α} . Moreover, if ρ is any rational number, let us denote by G_{ρ} the set of points $P_{\alpha} - \rho$.

The sets G_{ρ} corresponding to different rational values of ρ are pairwise with no common points, and moreover they are a countable set and they have, by $1^{\rm a}$), the same measure.

The sets

$$G_0, \quad G_{\frac{1}{2}}, \quad G_{\frac{1}{3}}, \quad G_{\frac{1}{4}}, \dots$$

lie all in the interval (0,1), therefore their union must have measure $m \leq 1$. But one also has

$$m = \mu(G_0) + \sum_{n=2}^{\infty} \mu\left(G_{\frac{1}{n}}\right)$$
$$= \lim_{n=\infty} n \cdot \mu(g_0),$$

^{*}Some terms are translated in their modern counterpart: for example gruppo translates as set and not as group in this context, etc.

^(*)v. Leçons sur l'intègration etc. par H. Lebesgue p.103. Paris, Gauthier-Villars, 1904.

so that

$$\mu(G_0) = 0.$$

Therefore, the union of all G_{ρ} corresponding to different rational values of ρ also has measure zero. But this union is the set of all points in r hence it should have infinite measure. That is enough to conclude that: the problem of measure of sets of points on a line is impossible.

One could object something about the consideration of set G_0 . That can be be perfectly justified if one admits that the continuum can be well ordered. For people who don't want to accept this our result means: the possibility of the problem of measure for sets of points on a line and the possibility to well order the continuum cannot coexist.