AI VIETNAM All-in-One Course (TA Session)

Support Vector Machine

Extra

Dinh-Thang Duong – TA

Getting Started

***** Objectives

Our objectives:

- Introduction to SVM.
- Learn the definition and the technique of SVM.
- Train SVM models for a classification and a regression problem.

AI VIETNAM All-in-One Course (TA Session)

Outline

- > Introduction
- > Support Vector Machine
- > Classification Problem
- **Regression Problem**
- Question

AI VIETNAM All-in-One Course (TA Session)

Introduction

***** Getting Started

Machine Learning (ML): A branch of AI and Computer Science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy.

***** Getting Started

Suppose you got some dataset:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	bko Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
5	Amir Johnson	Boston Celtics	90.0	PF	29.0	6-9	240.0	NaN	12000000.0
6	Jordan Mickey B	Boston Celtics	55.0	PF	21.0	6-8	235.0	LSU	1170960.0
7	Kelly Olynyk	Boston Celtics	41.0	С	25.0	7-0	238.0	Gonzaga	2165160.0
8	Terry Rozier	Boston Celtics	12.0	PG	22.0	6-2	190.0	Louisville	1824360.0
9	Marcus Smart	Boston Celtics	36.0	PG	22.0	6-4	220.0	Oklahoma State	3431040.0
10	Jared Sullinger	Boston Celtics	7.0	С	24.0	6-9	260.0	Ohio State	2569260.0
11	Isaiah Thomas	Boston Celtics	4.0	PG	27.0	5-9	185.0	Washington	6912869.0
12	Evan Turner Boston Celtics	Boston Celtics	11.0	SG	27.0	6-7	220.0	Ohio State	3425510.0
13 James	James Young	Boston Celtics	13.0	SG	20.0	6-6	215.0	Kentucky	1749840.0

And you want to make a program to automatically predict value of 1 column based on others.

AI VIETNAM All-in-One Course (TA Session)

Introduction

***** Getting Started

Input X Output Y

Since we use a labeled dataset to train ML Model.

=> This is called **Supervised-learning**.

Supervised Learning

In ML Superivsed-learning algorithms, we often deal with Regression and Classification

Supervised Learning: Regression

Regression: A task involving predicting a **continuous value** based on given inputs.

In general, we want to find the line that best fit the data distribution.

Supervised Learning: Classification

Classification: A task involving predicting a discrete (categorical) value based on given inputs.

In general, we want to find the line that best separates the dataset into classes.

AI VIETNAM All-in-One Course (TA Session)

Support Vector Machine

***** Introduction

Support Vector Machine (SVM): A supervised-learning ML algorithm that works by identifying the optimal hyperplane that best separates data into different classes.

SVM was originally built for classification task (SVC) but was later modified to fit for regression task (SVR) too.

Getting Started

How should we draw a line so that we can perfectly separate this dataset into 2 classes?

***** Getting Started

There are many ways to draw the line

***** Getting Started

Getting Started

This point is classified as **Class 1** since it lies on right hand side of the line.

Getting Started

SVM idea

SVM idea: Find the line that best separates the data into classes while maximizing the distances between nearest points.

* Margin

***** Hard Margin SVM Idea

SVM idea: Find the line that best separates the data into classes while **maximizing the margin**. This is called **Hard Margin SVM**.

***** Hard Margin SVM Problem

However, assume we have an outlier

Using Hard Margin SVM, we might have a line like this.

Soft Margin SVM

How to avoid this case?

To avoid this, we should **allow** misclassifications.

❖ Soft Margin SVM

However, when we have a new data point, we might get it right.

Soft Margin SVM

When we **allow misclassifications**, the distance between the observations and the decision boundary is called **Soft Margin** => **Soft Margin SVM (Support Vector Classifier).**

Soft Margin SVM

To better have a sense of relation between data points and Soft Margin, we draw two parallel lines to the Decision Boundary on **Support Vectors**.

***** Why "Support" Vector Machine

We called "Support" Vector Classifier because the **data points on the edge and within the Soft Margin** are called Support Vectors.

SVM: Hyperplane

SVM: Hyperplane

In 2D space, decision boundary is a line

But in 3D, decision boundary is instead a plane

***** Hard Margin SVM: Prediction

How to use Hard Margin SVM for making prediction? **X3 X1 X2 X4 X5 X6** Xn **W2 W3** W4 W5 **W6** W1 Wn b

***** Hard Margin SVM: Prediction

How to use Hard Margin SVM for making prediction?

***** Hard Margin SVM: Prediction

Equation of Hyperplane

$$w \cdot x + b = 0$$

Hypothesis Function h(x)

•
$$h(x_i) = \begin{cases} +1 & \text{if } w \cdot x + b \ge 1 \\ -1 & \text{if } w \cdot x + b < -1 \end{cases}$$

•
$$h(x_i) = sign(w \cdot x + b)$$

With w = (1, -1) and b = -3 we get this hyperplane.

We use the hypothesis function to predict the class of a data point.

***** Hard Margin SVM: Prediction

With w = (1, -1) and b = -3, the equation of hyperplane becomes:

$$w \cdot x + b = x_1 - x_2 - 3 = 0$$

X1	X2	\mathbf{Y}	$w \cdot x + b = x_1 - x_2 - 3 = 0$
			<u> </u>
3	4	-1	$(1*3) + (-1*4) + (-3) = -7 < 0 \qquad y_{predict} = -1$
1	4	-1	
2	3	-1	Classifying a data point using the hyperplane.
6	-1	1	
7	-1	1	$(1*7) + (-1*-1) + (-3) = 5 > 0$ $y_{predict} = +1$
5	-3	1	

In this example, we use X1 and X2 to predict Y.

*****Hard Margin SVM: Optimal Hyperplane

Hyperplane = $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$

*****Hard Margin SVM: Optimal Hyperplane

Objective: $\max_{w,b} \frac{2}{\|w\|}$

Objective: $\min_{w,b} \frac{1}{2} ||w||^2$

Constraints:

- For y=1: $w \cdot x + b \ge 1$
- For y=-1: $w \cdot x + b \le -1$

$$\Rightarrow$$
 y($w \cdot x + b$) ≥ 1

 $w^T \cdot x_i + b \le -1$ for x_i having class -1 $w^T \cdot x_i + b \ge 1$ for x_i having class +1

$$0.25 * 1 + (-0.25) * 3 + (-0.75) = -1.25 < -1$$

 $\sim 0.25 * 8 + (-0.25) * (-2) + (-0.75) = 1.75 > 1$

Soft Margin SVM: Optimal Hyperplane

Objective: $\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \zeta_i$

Constraint: $y_i(w \cdot x_i + b) \ge 1 - \zeta_i$

 $(\zeta_i \ge 0, i = 1, ..., m)$

SVM Parameter C

Support Vector Machine

SVC Problem

1-Dimensional Space

Can SVC handle this kind of data?

***** Kernel SVM Idea

y 1

Consider a 2-Dimensional space (with the same data points from previous example).

Now let's make $y = x^2$

***** Kernel SVM Idea

y **1**

But why $y = x^2$, can we use other equations, how can we decide y?

Support Vector Machine

***** Kernel

To decide the y, or to decide SVC in higher dimensions, we use **Kernel Functions**.

Input Space

Output Space

Type of kernels

In general, we have some kernel types:

- Linear
- Polynomial
- Radial Basis Function (RBF)
- Sigmoid

Different results from different kernels using sklearn

***** Coding Problems

Description: Build a Support Vector Classifier for Breast Cancer Recurrence Classification and a Support Vector Regression for Auto Insurance Prediction.

Classification Problem

BCR Prediction Step 1: Import libraries

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 5 from sklearn.svm import SVC
 6 from sklearn.preprocessing import (
      StandardScaler,
      LabelEncoder,
 8
      OneHotEncoder,
      OrdinalEncoder
10
11)
12 from sklearn.compose import ColumnTransformer
13 from sklearn.model selection import train test split
14 from sklearn.metrics import accuracy score
```


BCR Prediction Step 2: Read <u>dataset</u>

```
1 dataset path = './breast-cancer.csv'
 2 df = pd.read csv(
       dataset path,
 3
 4
       names=[
            'age',
 6
            'meonpause',
            'tumor-size',
            'inv-nodes',
            'node-caps',
            'deg-malig',
10
11
            'breast',
            'breast-quad',
12
13
            'irradiat',
            'label'
14
15
16)
17 df
```

```
    7. Attribute Information:

            Class: no-recurrence-events, recurrence-events
            age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
            menopause: lt40, ge40, premeno.
            tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.

    inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.
    node-caps: yes, no.
    deg-malig: 1, 2, 3.
            breast: left, right.
            breast-quad: left-up, left-low, right-up, right-low, central.

    irradiat: yes, no.
```

Detail information of the dataset here.

Classification Problem

BCR Prediction Step 2: Read <u>dataset</u>

ā	age	meonpause	tumor-size	inv-nodes	node-caps	deg-malig	breast	breast-quad	irradiat	label
0 '40-	0-49'	'premeno'	'15-19'	'0-2'	'yes'	'3'	'right'	'left_up'	'no'	'recurrence-events'
1 '50-	60-59'	'ge40'	'15-19'	'0-2'	'no'	'1'	'right'	'central'	'no'	'no-recurrence-events'
2 '50-	60-59'	'ge40'	'35-39'	'0-2'	'no'	'2'	'left'	'left_low'	'no'	'recurrence-events'
3 '40-	0-49'	'premeno'	'35-39'	'0-2'	'yes'	'3'	'right'	'left_low'	'yes'	'no-recurrence-events'
4 '40-	0-49'	'premeno'	'30-34'	'3-5'	'yes'	'2'	'left'	'right_up'	'no'	'recurrence-events'
281 '50-	60-59'	'ge40'	'30-34'	'6-8'	'yes'	'2'	'left'	'left_low'	'no'	'no-recurrence-events'
282 '50-	60-59'	'premeno'	'25-29'	'3-5'	'yes'	'2'	'left'	'left_low'	'yes'	'no-recurrence-events'
283 '30-	80-39'	'premeno'	'30-34'	'6-8'	'yes'	'2'	'right'	'right_up'	'no'	'no-recurrence-events'
284 '50-	0-59'	'premeno'	'15-19'	'0-2'	'no'	'2'	'right'	'left_low'	'no'	'no-recurrence-events'
285 '50-	60-59'	'ge40'	'40-44'	'0-2'	'no'	'3'	'left'	'right_up'	'no'	'no-recurrence-events'
4 '40 281 '50- 282 '50- 283 '30- 284 '50-	 60-59' 60-59' 80-39'	'premeno' 'ge40' 'premeno' 'premeno' 'premeno'	'30-34' '30-34' '25-29' '30-34' '15-19'	'3-5' '6-8' '6-8' '6-8' '0-2'	'yes' 'yes' 'yes' 'yes' 'yes'	'2' '2' '2' '2' '2'	'left' 'left' 'left' 'right' 'right'	'right_up' 'left_low' 'left_low' 'right_up' 'left_low'	'no' 'no' 'yes' 'no' 'no'	'recurrence-ev' 'no-recurrence-ev' 'no-recurrence-ev' 'no-recurrence-ev'

286 rows x 10 columns

BCR Prediction Step 3: Dataset Information

```
1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 286 entries, 0 to 285
Data columns (total 10 columns):
# Column Non-Null Count Dtype
```

#	Column	Non-Null Count
0	age	286 non-null
1	meonpause	286 non-null
2	tumor-size	286 non-null
3	inv-nodes	286 non-null
4	node-caps	278 non-null
5	deg-malig	286 non-null
6	breast	286 non-null
7	breast-quad	285 non-null
8	irradiat	286 non-null
9	label	286 non-null
• .		

dtypes: object(10)

memory usage: 22.5+ KB

Dtype
---object
object
object
object
object
object
object
object
object

1 df.describe()

	age	meonpause	tumor-size	inv-nodes	node-caps	deg-malig
count	286	286	286	286	278	286
unique	6	3	11	7	2	3
top	'50-59'	'premeno'	'30-34'	'0-2'	'no'	'2'
freq	96	150	60	213	222	130

label	irradiat	breast-quad	breast
286	286	285	286
2	2	5	2
'no-recurrence-events'	'no'	'left_low'	'left'
201	218	110	152

BCR Prediction Step 4: Filling missing values

Fill with the most appears value.

X1	X2	Х3
1	Α	yes
1	В	yes
2	Υ	no
5	Т	yes
1	Α	yes
1	Α	yes

Classification Problem

BCR Prediction Step 4: Filling missing values

1 df.describe()

	age	meonpause	tumor-size	inv-nodes	node-caps	deg-malig	breast	breast-quad	irradiat	label
count	286	286	286	286	286	286	286	286	286	286
unique	6	3	11	7	2	3	2	5	2	2
top	'50-59'	'premeno'	'30-34'	'0-2'	'no'	'2'	'left'	'left_low'	'no'	'no-recurrence-events'
freq	96	150	60	213	230	130	152	111	218	201

Missing values are filled.

BCR Prediction Step 5: Encode categorical features

```
1 for col_name in df.columns:
       n_uniques = df[col_name].unique()
       print(f'Unique values in {col_name}: {n_uniques}')
Unique values in age: ["'40-49'" "'50-59'" "'60-69'" "'30-39'" "'70-79'" "'20-29'"]
Unique values in meonpause: ["'premeno'" "'ge40'" "'lt40'"]
Unique values in tumor-size: ["'15-19'" "'35-39'" "'30-34'" "'25-29'" "'40-44'" "'10-14'" "'0-4'"
 "'20-24'" "'45-49'" "'50-54'" "'5-9'"]
Unique values in inv-nodes: ["'0-2'" "'3-5'" "'15-17'" "'6-8'" "'9-11'" "'24-26'" "'12-14'"]
Unique values in node-caps: ["'yes'" "'no'"]
Unique values in deg-malig: ["'3'" "'1'" "'2'"]
Unique values in breast: ["'right'" "'left'"]
Unique values in breast-quad: ["'left_up'" "'central'" "'left_low'" "'right_up'" "'right_low'"]
Unique values in irradiat: ["'no'" "'yes'"]
Unique values in label: ["'recurrence-events'" "'no-recurrence-events'"]
```

All features are categorical feature.

BCR Prediction Step 5: Encode categorical features

BCR Prediction Step 5: Encode categorical features

- Non-ranking features: ['meonpause', 'node-caps', 'breast', 'breast-quad', 'irradiat']
- Ranking features: ['age', 'tumor-size', 'inv-nodes', 'deg-malig']

BCR Prediction Step 5: Encode categorical features

```
1 non rank features = [
 2
       'meonpause',
 3
       'node-caps',
       'breast',
 4
       'breast-quad',
 5
       'irradiat'
 6
 8 rank features = [
       'age',
 9
       'tumor-size'.
10
      'inv-nodes',
      'deg-malig'
12
13 ]
14
15 y = df['label']
16 X = df.drop('label', axis=1)
```

- For non-ranking features: Apply One-hot Encoding
- For ranking features: Apply Ordinal Encoding

BCR Prediction Step 5: Encode categorical features

X 1	X2
0	yes
1	no
2	no
3	yes
4	yes
5	yes

Encoding

X1	X2
0	1
1	0
2	0
3	1
4	1
5	1

X 1	X2_Yes	X2_No
0	1	0
1	0	1
2	0	1
3	1	0
4	1	0
5	1	0

Ordinal Encoder

Onehot Encoder

BCR Prediction Step 5: Encode categorical features

	meonpause_'lt40'	meonpause_'premeno'	node- caps_'yes'	breast_'right'	breast- quad_'left_low'	breast- quad_'left_up'	breast- quad_'right_low'	breast- quad_'right_up'	irradiat_'yes'	age	tumor- size	inv- nodes	deg- malig
0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	2.0	2.0	0.0	2.0
1	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	3.0	2.0	0.0	0.0
2	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	3.0	6.0	0.0	1.0
3	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	1.0	2.0	6.0	0.0	2.0
4	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	2.0	5.0	4.0	1.0
281	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	3.0	5.0	5.0	1.0
282	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	3.0	4.0	4.0	1.0
283	0.0	1.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	5.0	5.0	1.0
284	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	3.0	2.0	0.0	1.0
285	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	3.0	7.0	0.0	2.0

286 rows x 13 columns

BCR Prediction Step 6: Encode label

X1	Y
0	yes
1	no
2	no
3	yes
4	yes
5	yes

X1	Y
0	1
1	0
2	0
3	1
4	1
5	1
	61

BCR Prediction Step 7: Normalization

Using sklearn.preprocessing.StandardScaler() to scale all values in dataset.

```
1 normalizer = StandardScaler()
2 X_normalized = normalizer.fit_transform(
3 | X_encoded
4 )
```

```
z=rac{x_i-\mu}{\sigma}
```

1 X normalized

```
array([[-0.15839699, 0.95219046, 2.02660871, ..., -0.96065727, -0.55562266, 1.29056424],
[-0.15839699, -1.05021006, -0.49343516, ..., -0.96065727, -0.55562266, -1.42341644],
[-0.15839699, -1.05021006, -0.49343516, ..., 0.90204089, -0.55562266, -0.0664261],
...,
[-0.15839699, 0.95219046, 2.02660871, ..., 0.43636635, 2.03245684, -0.0664261],
[-0.15839699, 0.95219046, -0.49343516, ..., -0.96065727, -0.55562266, -0.0664261],
[-0.15839699, -1.05021006, -0.49343516, ..., 1.36771543, -0.55562266, 1.29056424]])
```

Number of val samples: 58

Number of test samples: 29

Classification Problem

BCR Prediction Step 8: Split train, val, test set

```
1 val size = 0.2
2 test size = 0.125
 3 random_state = 0
4 is_shuffle = True
 6 X_train, X_val, y_train, y_val = train_test_split(
      X_normalized, y_encoded,
      test_size=val_size,
      shuffle=is_shuffle,
10
       random_state=random_state
11)
12 X_train, X_test, y_train, y_test = train_test_split(
13
      X_train, y_train,
      test size=test size,
14
      shuffle=is shuffle,
15
16
       random_state=random_state
17)
```

```
1 print(f'Number of training samples: {X_train.shape[0]}')
2 print(f'Number of val samples: {X_val.shape[0]}')
3 print(f'Number of test samples: {X_test.shape[0]}')
Number of training samples: 199
```

Original Dataset

Train Set

Val set

Test set

BCR Prediction Step 8: Train and evaluate SVM model

```
1 classifier = SVC(
2    random_state=random_state
3 )
4 classifier.fit(X_train, y_train)
```

```
▼ SVC
SVC(random_state=1)
```

```
1 y_val_pred = classifier.predict(X_val)
2 y_test_pred = classifier.predict(X_test)
3 val_scores = accuracy_score(y_val_pred, y_val)
4 test_scores = accuracy_score(y_test_pred, y_test)
5
6 print('Evaluation results on validation and test set:')
7 print(f'Val accuracy: {val_scores}')
8 print(f'Test accuracy: {test_scores}')
```

Evaluation results on validation and test set: Val accuracy: 0.7241379310344828
Test accuracy: 0.7586206896551724

QUIZ

Regression Problem

Auto Insurance Prediction Step 1: Import libraries

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4
 5 from sklearn.svm import SVR
 6 from sklearn.preprocessing import StandardScaler
 7 from sklearn.model selection import train test split
8 from sklearn.metrics import (
 9
      mean absolute error,
10
      mean squared error
11)
```


Auto Insurance Prediction Step 2: Read <u>dataset</u>

```
Auto Insurance in Sweden

In the following data

X = number of claims

Y = total payment for all the claims in thousands of Swedish Kronor for geographical zones in Sweden
```

Detail information of the dataset here.

Auto Insurance Prediction Step 3: Dataset information

total_payment	n_{claims}
392.5	108
46.2	19

2	13	15.7

3	124	422.2
4	40	119.4

59	31	209.8

87.4

60 14 95.5

61	53	244.6

62 26	187.5
--------------	-------

1 df.describe()

	n_{claims}	total_payment
count	63.000000	63.000000
mean	22.904762	98.187302
std	23.351946	87.327553
min	0.000000	0.000000
25%	7.500000	38.850000
50%	14.000000	73.400000
75%	29.000000	140.000000
max	124.000000	422.200000


```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63 entries, 0 to 62
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 n_claims 63 non-null int64
1 total_payment 63 non-null float64
dtypes: float64(1), int64(1)
memory usage: 1.1 KB
```

58

Auto Insurance Prediction Step 4: Dataset Visualization

	n_claims	total_payment
0	108	392.5
1	19	46.2
2	13	15.7
3	124	422.2
4	40	119.4
58	9	87.4
59	31	209.8
60	14	95.5
61	53	244.6
62	26	187.5

63 rows × 2 columns

Auto Insurance Prediction Step 5: Normalization

Using sklearn.preprocessing.StandardScaler() to scale all values in dataset.

```
1 normalizer = StandardScaler()
2 df_normalized = normalizer.fit_transform(
3 | df
4 )
```

```
z=rac{x_i-\mu}{\sigma}
```

```
1 df_normalized
```

```
array([[ 3.67330185e+00, 3.39728625e+00],
       [-1.68556660e-01, -6.00095564e-01],
       [-4.27558357e-01, -9.52160668e-01],
       [ 4.36397304e+00, 3.74011686e+00],
        7.37949280e-01, 2.44860684e-011,
       [ 1.47178742e+00, 8.39331269e-01],
       [ 4.11113805e-03, -4.76584200e-01],
       [-3.84391408e-01, -2.38795966e-01],
       [ 9.53784027e-01, 1.33683966e+00],
       [-5.57059206e-01, -3.79622008e-01],
       [-7.72893953e-01, -8.92136453e-01],
       [ 1.08328488e+00, 1.73045999e+00],
       [-5.13892256e-01, -8.62124346e-01],
       [ 4.11113805e-03, -6.76280144e-01],
       [-6.86560054e-01, -5.70083457e-01],
```

17)

Regression Problem

Auto Insurance Prediction Step 6: Split X, y and create train, val, test dataset

```
2 X = X.reshape(-1, 1)
 1 val size = 0.2
 2 test size = 0.125
 3 random state = 0
 4 is_shuffle = True
 6 X_train, X_val, y_train, y_val = train_test_split(
      Χ, γ,
      test_size=val_size,
       shuffle=is_shuffle,
10
       random state=random state
11)
12 X_train, X_test, y_train, y_test = train_test_split(
13
      X train, y train,
14
      test size=test size,
15
       shuffle=is_shuffle,
16
       random state=random state
```

1 X, y = df_normalized[:, 0], df_normalized[:, 1]

```
1 print(f'Number of training samples: {X_train.shape[0]}')
2 print(f'Number of val samples: {X_val.shape[0]}')
3 print(f'Number of test samples: {X_test.shape[0]}')
Number of training samples: 43
Number of val samples: 13
Number of test samples: 7
```

Auto Insurance Prediction Step 7: Train and evaluate SVM model

```
▼ SVR
SVR()
```

```
1 y_val_pred = regressor.predict(X_val)
2 y_test_pred = regressor.predict(X_test)
3 val_mae = mean_absolute_error(y_val_pred, y_val)
4 val_mse = mean_squared_error(y_val_pred, y_val)
5 test_mae = mean_absolute_error(y_test_pred, y_test)
6 test_mse = mean_squared_error(y_test_pred, y_test)
7
8 print('Evaluation results on validation and test set:')
9 print(f'Mean Absolute Error\tVal: {val_mae}\tTest: {test_mae}')
10 print(f'Mean Squared Error\tVal: {val_mse}\tTest: {test_mse}')
```

Summarization and QA

Summarization

Summarization

In this lecture, we have discussed:

- 1. Introduction to SVM and how SVM works.
- 2. Use SVM to solve a classification and a regression tasks.

Question

