Chapter 3: APPLICATIONS of DIFFERENTIATION

Duong T. PHAM

CALCULUS I

Duong T. PHAM July 26, 2022 1 / 53

Outline

- Maximum and minimum values
- 2 Derivative and shape of a graph
- 3 Indeterminate forms and L'Hopital Rule
- Optimization problems
- Newton's method
- 6 Antiderivatives

Chapter 3 (Applications of differentiation):
Related rates,
Maxima and minima,
Optimization problems,
Mean value theorem,
First and second derivative tests,
Concavity,
Shape of curves,
L'Hospital Rule,
Newton's methods,
Antiderivative/Indefinite Integral.

2 / 53

Duong T. PHAM July 26, 2022

Applications in Optimization

Important optimization problems require differential calculus, e.g.

- What is the shape of a can that minimizes manufacturing costs?
- What is the maximum acceleration of a space shuttle?
- What is the interest rate that the banks earn most in the market?
- What is the shape of a racing car or an aircraft to minimize drag?
- etc.
- \implies finding the minimum and maximum of a function .

Duong T. PHAM July 26, 2022 3 / 53

Maximum and minimum of a function

Definition.

Let $f: D \to \mathbb{R}$ be a function and let $c \in D$.

• f has an absolute maximum (global maximum) at c if

$$f(x) \le f(c) \quad \forall x \in D.$$

Then, f(c) is called the **maximum value** of f.

• f has an absolute minimum (global minimum) at c if

$$f(x) \ge f(c) \quad \forall x \in D.$$

Then, f(c) is called the **minimum value** of f.

 The maximum and minimum values of f are called the extreme values of f.

Duong T. PHAM July 26, 2022

Maximum and minimum of a function

- f(a) is the absolute minimum of f;
- f(d) is the absolute maximum of f
- $f(c) \le f(x) \quad \forall x \in (c_1, c_2) \Longrightarrow f(c)$ is a local minimum of f

Duong T. PHAM July 26, 2022

Local maximum and minimum

Definition.

Let $f: D \to \mathbb{R}$ be a function and let $c \in D$.

• f has an **local maximum** (relative maximum) at c if there exists an interval $(c_1, c_2) \subset D$ such that $c \in (c_1, c_2)$ and

$$f(x) \leq f(c) \quad \forall x \in (c_1, c_2).$$

• f has an **local minimum** (relative minimum) at c if if there exists an interval $(c_1, c_2) \subset D$ such that $c \in (c_1, c_2)$ and

$$f(x) \geq f(c) \quad \forall x \in (c_1, c_2).$$

Duong T. PHAM July 26, 2022

Local maximum and local minimum

- f(c) is a local minimum
- f(b) is the local maximum of f;
- f(d) is the local maximum of f (also an absolute maximum)
- f(e) is a local minimum of f

Duong T. PHAM July 26, 2022

The Extreme value Theorem

Theorem.

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b]. Then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a, b].

Remark: The theorem is not true if we replace the closed interval [a, b] by the open interval (a, b) or other interval (a, b) or [a, b).

Ex: The function $f(x) = \frac{1}{x}$ does not attain an absolute maximum value on (0,5].

Duong T. PHAM July 26, 2022

The Extreme value Theorem

Duong T. PHAM July 26, 2022 9 / 53

The Fermat's Theorem

• f attains local maximum at c and local minimum at $d \Longrightarrow What$ is special about f at x = c and x = d?

Theorem (The Fermat's Theorem:).

If f attains local maximum or local minimum at c and if f'(c) exists, then f'(c) = 0

Duong T. PHAM July 26, 2022 10 / 53

Proof of Fermat's Theorem

The Fermat's Theorem: If f attains local maximum or local minimum at c and if f'(c) exists, then f'(c) = 0

$$\implies \forall x \in (c_1, c_2) : f(x) \leq f(c)$$

$$\int \frac{f(x) - f(c)}{x - c} \ge 0 \quad \forall c_1 < x < c$$

$$\Rightarrow \left\{ \frac{f(x) - f(c)}{x - c} \le 0 \quad \forall c < x < c \le 0 \right\}$$

$$\Rightarrow \begin{cases} \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \ge 0 \end{cases}$$

$$\lim_{x\to c^+}\frac{f(x)-f(c)}{x-c}\leq 0$$

$$\Longrightarrow M = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} \Longrightarrow \begin{cases} M \ge 0 \\ M \le 0 \end{cases} \Longrightarrow M = 0$$

Proof: Suppose
$$f$$
 attains local maximum at c .

$$\Rightarrow \forall x \in (c_1, c_2) : f(x) \le f(c)$$

$$\begin{cases} \frac{f(x) - f(c)}{x - c} \ge 0 & \forall c_1 < x < c \\ \frac{f(x) - f(c)}{x - c} \le 0 & \forall c < x < c_2 \end{cases}$$

$$\begin{cases} \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \le 0 & \text{Since } f'(c) \text{ exists, } \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = M \text{ exists} \end{cases}$$

$$\lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0$$

Since
$$f'(c)$$
 exists, $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = M$ exist

$$\int_{c^+}^{c} \frac{f(x) - f(c)}{x - c} \Longrightarrow \begin{cases} M \ge 0 \\ M < 0 \end{cases}$$

Duong T. PHAM July 26, 2022

The Fermat's Theorem

Remark: "Local maximum and local minimum at c" + existence of $f'(c) \implies f'(c) = 0$. But (\Longleftrightarrow) is NOT true.

Ex: Let $f(x) = x^3$. We have $f'(x) = 3x^2$ and f'(0) = 0 but f does NOT attain local max. or local min. at 0.

Duong T. PHAM July 26, 2022 12 / 53

Local minimum and local maximum

Ex: Function f(x) = |x| attains local minimum at x = 0 but it is NOT differentiable at x = 0.

Duong T. PHAM July 26, 2022 13 / 53

Critical number of a function

Definition.

A number c is called a **critical number** of a function f if f'(c) = 0 or f'(c) does not exists.

$$f'(c) = 0$$

 $f'(c)$ does NOT exist $\implies c$ is a critical number of f

Ex: Find critical points of $f(x) = \sqrt{x(1-x)}$.

Ans:
$$f'(x) = \frac{1-x}{2\sqrt{x}} - \sqrt{x} = \frac{1-x-2x}{2\sqrt{x}} = \frac{1-3x}{2\sqrt{x}}$$

• We have $f'(x) = 0 \iff \frac{1-3x}{2\sqrt{x}} = 0 \iff x = \frac{1}{3}$

- f is not differentiable at x = 0
- The critical numbers are $\frac{1}{3}$ and 0

Duong T. PHAM July 26, 2022

Critical numbers of a function

Corollary.

If f has a local minimum or local maximum at c then c is a critical number of f

Proof:

$$f'(c) = 0$$

 $f'(c)$ does NOT exist $\implies c$ is a critical number of f

• f has local min. or local max. at $c \Longrightarrow$ There are 2 cases:

15 / 53

Duong T. PHAM July 26, 2022

Finding absolute minimum and absolute maximum

The closed interval method: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. To find the absolute max. and absolute min. of f, we follows the steps:

- Find the values of f at critical numbers of f in (a, b);
- 2 Find the values f(a) and f(b);
- **3** The largest number in steps 1 and 2 is the absolute maximum value of f, and the smallest number in steps 1 and 2 is the absolute minimum of f.

Ex: Find abs. max. and abs. min. of $f(x) = 2x^3 - 9x^2 + 12x + 2$ in [0,3]

Ans:
$$f'(x) = 6x^2 - 18x + 12 = 6(x^2 - 3x + 2)$$

- **1** $f'(x) = 0 \iff x = 1 \text{ or } x = 2, \text{ and } f(1) = 7, f(2) = 6$
- 2 f(0) = 2 and f(3) = 11
- Omparing the 4 values in Steps 1 and 2, we conclude

$$\max_{[0,3]} f = f(3) = 11$$
 and $\min_{[0,3]} f = f(0) = 2$

16 / 53

Duong T. PHAM July 26, 2022

The closed interval method

Duong T. PHAM July 26, 2022 17 / 53

Rolle's Theorem

Theorem.

Rolle's Theorem: Let $f:[a,b] \to \mathbb{R}$ be a function satisfying

- \bullet f is continuous in [a, b]
- \bigcirc f is differentiable in (a, b)
- 3 f(a) = f(b). Then there exists a $c \in (a, b)$ such that f'(c) = 0

Proof: The case: $f(x) = c \ \forall x \in [a, b]$. Then clearly

$$f'(c) = 0 \quad \forall c \in (a, b).$$

 $f'(c)=0 \quad \forall c\in (a,b).$ The case: $\exists x\in (a,b)$ s.t. f(x)>f(a)=f(b) . Since f is continuous in $[a,b] \overset{\textit{ExtremeValueTh.}}{\Longrightarrow} \exists c \in (a,b) \text{ such that}$

$$f(c) = \max_{[a,b]} f$$

 \implies f has a local max. at c + "f'(c) exists" $\stackrel{\text{Fermat's Th.}}{\Longrightarrow} f'(c) = 0$ The case: $\exists x \in (a, b)$ s.t. f(x) < f(a) = f(b) . (Similarly as above)

Rolle's Theorem

Ex: Prove that equation $x^3 + x^2 + 3x + 1 = 0$ has exactly one real root.

Ans: Denote $f(x) = x^3 + x^2 + 3x + 1$.

- f is a polynomial $\Longrightarrow f$ is differentiable (and thus continuous) in $(-\infty, \infty)$.
- f(-1) = -2 and f(0) = 1. Since f is continuous in [-1,0] and since f(-1) < 0 < f(0), the Intermediate value Theorem $\Longrightarrow \exists c \in (-1,0)$ s.t. $f(c) = 0 \Longrightarrow$ the equation has one root $c \in (-1,0)$
- Suppose that $d \neq c$ is another root of the equation.
 - If c < d, then f is differentiable in [c, d] and $f(c) = f(d) = 0 \stackrel{\text{Rolle's Th.}}{\Longrightarrow}$ exists $e \in (c, d)$ s.t. f'(e) = 0.

 On another hand, $f'(x) = 3x^2 + 2x + 3 > 0$ for all $x \in \mathbb{R}$ \Longrightarrow Contradiction
 - If c > d, similar argument \Longrightarrow Contradiction
- The equation has exactly one root $c \in (-1,0)$.

Duong T. PHAM July 26, 2022 19 / 53

Rolle's Theorem

Duong T. PHAM July 26, 2022 20 / 53

Recall the Rolle's Theorem

- The slope of secant connecting (a, f(a)) and (b, f(b)) is $\frac{f(b) f(a)}{b a} = 0$
- Rolle's Theorem: $\exists c \in (a, b)$ s.t. f'(c) = 0

$$\implies f'(c) = \frac{f(b) - f(a)}{b - a} \iff \boxed{t//L}$$

Duong T. PHAM July 26, 2022

The Mean Value Theorem

Theorem.

Let $f:[a,b] \to \mathbb{R}$. Then

$$\begin{cases} f \text{ is continuous in } [a, b] \\ f \text{ is differentiable in } (a, b) \end{cases} \implies \exists c \in (a, b) \text{ s.t. } f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof: Denote $h(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a) - f(a)$. Then h is continuous in [a, b] and h is differentiable in (a, b). Furthermore,

$$h(a) = f(a) - \frac{f(b) - f(a)}{b - a}(a - a) - f(a) = 0$$

$$h(b) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a) - f(a) = 0$$

$$\implies h(a) = h(b).$$

Rolle's Theorem: there is a $c \in (a, b)$ such that $h'(c) = 0 \implies$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Duong T. PHAM July 26, 2022

The Mean Value Theorem

Theorem.

Let $f:(a,b)\to\mathbb{R}$ be a function which is differentiable in (a,b) and f'(x) = 0 for all $x \in (a, b)$. Then f is a constant function.

Proof: Let $x_1, x_2 \in (a, b)$. Then f is continuous in $[x_1, x_2]$ and differentiable in (x_1, x_2) . By the Mean Value Theorem, there is a $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$
 Since $f'(x) = 0$ for all $x \in (x_1, x_2)$, we have
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0.$$

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0$$

It means that $f(x_1) = f(x_2)$ and this is true for any $x_1, x_2 \in (a, b)$. Hence, f is a constant function in (a, b).

Duong T. PHAM July 26, 2022

Derivative and shape of a graph

Increasing and decreasing Test: Let $f:(a,b)\to\mathbb{R}$ be a differentiable function.

- If f'(x) > 0, $\forall x \in (a, b)$, then f is increasing in (a, b).
- ② If $f'(x) < 0, \forall x \in (a, b)$, then f is decreasing in (a, b).

Duong T. PHAM July 26, 2022

Increasing and decreasing Test

Ex: Determine when the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and decreasing.

Ans:
$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x-2)(x+1)$$

 $\implies f'(x) = 0 \iff x = -1 \lor x = 0 \lor x = 2$

X	$-\infty$	1		0		2		∞
x-2	_	000	_		_	0	+	
X	. 16	€,	_	0	+		+	
x+1	02	- 0	+		+		+	
f'(x)	_	- 0	+	0	_	0	+	
f(x)	\	<u>√</u> 0	7	5	\searrow	-27	7	

Duong T. PHAM July 26, 2022 25 / 53

Increasing and decreasing Test

Duong T. PHAM July 26, 2022 26 / 53

The First derivative Test: Suppose that c is a critical number of a continuous function f.

- (i) If f' changes from positive to negative at c, then f has a local maximum at c.
- (ii) If f' changes from negative to positive at c, then f has a local minimum at c.
- (iii) If f' does not change sign at c (for example, if f' is positive on both sides of c or negative on both sides), then f has no local maximum or minimum at c.

local minimum local maximum no local min. or maxo.local min. or max

Duong T. PHAM July 26, 2022 27 / 53

The first derivative Test

Ex: Find the local minimum and maximum values of the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$

Ans:
$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x-2)(x+1)$$

 $\implies f'(x) = 0 \iff x = -1 \lor x = 0 \lor x = 2$

X	$-\infty$		-1(0		2		∞
x-2		_		_		_	0	+	
X		- (6	_	0	+		+	
x + 1		75	0	+		+		+	
f'(x)		2 <u>~</u>	0	+	0	_	0	+	
f(x)		7	0	7	5	7	-27	7	

• f attains local minimum at -1 and 2; and attains local maximum at 0.

Duong T. PHAM July 26, 2022 28 / 53

The first derivative Test

Duong T. PHAM July 26, 2022 29 / 53

Definition.

Let $f: I \to \mathbb{R}$.

- If the graph of f lies above all of its tangent lines, then f is said to be upward concave on I
- If the graph of f lies below all of its tangent lines, then f is said to be downward concave on I

Duong T. PHAM July 26, 2022

Concavity Test

Concavity Test: Let $f: I \to \mathbb{R}$. Then

- (a) If $f''(x) > 0 \ \forall x \in I$, then the graph of f is concave upward on I.
- (b) If $f''(x) < 0 \ \forall x \in I$, then the graph of f is concave downward on I.

Discussion:

- f''(x) > 0 for all $x \in I \Longrightarrow f'(x)$ is increasing on I
- f''(x < 0) for all $x \in I \Longrightarrow f'(x)$ is decreasing on I

f' decreases \rightarrow downward concave

31 / 53

Duong T. PHAM July 26, 2022

Inflection Point

Definition.

A point P on a curve y = f(x) is called an inflection point if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P

Duong T. PHAM July 26, 2022

The second derivative Test

The second derivative Test: Let f be a function such that f'' is continuous near c. Then

- (a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c,
- (b) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

Duong T. PHAM July 26, 2022 33 / 53

The second derivative Test

Ex: Discuss the concavity, inflection points, local maxima and local minima of the curve $y = x^4 - 4x^3$.

Ans: Denote
$$f(x) = x^4 - 4x^3$$
. Then

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$

$$f''(x) = 12x^2 - 24x = 12x(x-2)$$

•
$$f'(x) = 0 \iff x = 0 \ \lor x = 3 \text{ and } f''(x) = 0 \iff x = 0 \ \lor x = 2$$

X		0	6:	2		3	
$-x^2$	+	0	(T)		+		+
x-3	_	1/6) _		_	0	+
x-2	- <	$\mathcal{I}_{\mathcal{N}}$	_	0	+		+
f'(x)	_	0	_		_	0	+
f''(x)	+	0	_	0	+		+
f(x)	>	0	\searrow	-16	\searrow	-27	7
	up.con.	infl.p.	down.con.	infl.p.	up.con.	local min.	up.con.

Duong T. PHAM July 26, 2022

The second derivative Test

Duong T. PHAM July 26, 2022 35 / 53

Indeterminate forms

Indeterminate forms: consider $\lim_{x\to a} \frac{f(x)}{g(x)}$. Then

- (a) If $f(x) \to 0$ and $g(x) \to 0$ when $x \to a$, then the limit is called an indeterminate form of type $\frac{0}{0}$
- (b) If $f(x) \to \infty$ (or $-\infty$) and $g(x) \to \infty$ (or $-\infty$) when $x \to a$, then the limit is called an **indeterminate form of type** $\frac{\infty}{\infty}$

Ex: Evaluate
$$\lim_{x \to 1} \frac{x^3 - x}{x - 1}$$

$$\lim_{x \to 1} \frac{x^3 - x}{x - 1} = \lim_{x \to 1} \frac{x(x^2 - 1)}{x - 1} = \lim_{x \to 1} \frac{x(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} [x(x + 1)] = 1(1 + 1) = 2.$$

Ex: $\lim_{x \to 1} \frac{\ln x}{x - 1}$ \Longrightarrow we need a tool to evaluate this limit.

Duong T. PHAM July 26, 2022

L'Hopital's Rule

L'Hopital's Rule: Let f and g be differentiable functions on an interval (b,c), except possibly at number $x=a\in(b,c)$. Suppose further that $g'(x)\neq 0$ for all $x\in(b,c)\setminus\{a\}$. If

- $\bullet \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$
- or $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$,

then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided the limit on the right hand side exists (or is ∞ or $-\infty$)

Ex:
$$\lim_{x \to 1} \frac{\ln x}{x - 1} \stackrel{\text{L'Hopital.}}{=} \lim_{x \to 1} \frac{(\ln x)'}{(x - 1)'} = \lim_{x \to 1} \frac{\frac{1}{x}}{1} = 1.$$

Duong T. PHAM July 26, 2022

L'Hopital's Rule

Ex:

$$\lim_{x \to \infty} \frac{e^{x}}{x^{2}} \stackrel{\text{L'Hopital.}}{=} \lim_{x \to \infty} \frac{\left(e^{x}\right)'}{\left(x^{2}\right)'} = \lim_{x \to \infty} \frac{e^{x}}{2x}$$

$$\stackrel{\text{L'Hopital.}}{=} \lim_{x \to \infty} \frac{\left(e^{x}\right)'}{\left(2x\right)'} = \lim_{x \to \infty} \frac{e^{x}}{2} = \infty.$$

Ex:

$$\lim_{x \to 0} \frac{\sin x}{x} \stackrel{\text{L'Hopital.}}{=} \lim_{x \to 0} \frac{(\sin x)'}{(x)'} = \lim_{x \to 0} \frac{\cos x}{1} = 1.$$

Duong T. PHAM July 26, 2022

Indeterminate products

Intermediate products: The limit $\lim_{x\to a}[f(x)g(x)]$ in which $f(x)\to 0$ and $g(x)\to \infty$ (or $-\infty$) as $x\to a$ is called an indeterminate form of type $0\cdot \infty$

Ex: Evaluate $\lim_{x\to 0^+} x \ln x$

Ans: We have

$$\lim_{x \to 0^{+}} x \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}} \stackrel{\text{1-Hopital.}}{=} \lim_{x \to 0^{+}} \frac{(\ln x)'}{(\frac{1}{x})'} = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}$$
$$= \lim_{x \to 0^{+}} (-x) = 0.$$

Duong T. PHAM July 26, 2022

Indeterminate differences

Indeterminate difference: If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$, then the limit $\lim_{x\to a} [f(x) - g(x)]$

is called an **indeterminate form of type** $\infty - \infty$.

Ex: Compute $\lim_{x\to 0} (\sec x - \tan x)$

Ans: We have

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) = \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x}$$

$$\stackrel{\text{L'Hopital.}}{=} \lim_{x \to (\pi/2)^{-}} \frac{(1 - \sin x)'}{(\cos x)'} = \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x}$$

$$= 0.$$

Duong T. PHAM July 26, 2022

Indeterminate powers

The limit $\lim_{x\to a} [f(x)]^{g(x)}$ when f and g satisfy

- (a) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ type 0^0
- (b) $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = 0$ type ∞^0
- (c) $\lim_{x\to a}f(x)=1$ and $\lim_{x\to a}g(x)=\pm\infty$ type 1^∞ are indeterminate powers.

Remark: To evaluate the above limits we can either

- write $y = [f(x)]^{g(x)}$ and thus $\ln y = g(x) \ln f(x)$, and then evaluate $\lim_{x \to a} \ln y$ first; after that, we deduce $\lim_{x \to a} y$.
- 2 We can write $[f(x)]^{g(x)} = e^{g(x) \ln f(x)}$.
- **3** By these ways, we transfer it to the problem of finding limit of the type $0 \cdot \infty$.

Duong T. PHAM July 26, 2022 41 / 53

Indeterminate powers

Ex: Evaluate
$$\lim_{x\to 0^+} (1+4\sin 4x)^{\cot x}$$

Ans: Denote
$$y = (1 + 4\sin 4x)^{\cot x}$$
 $\Longrightarrow \ln y = \cot x \ln(1 + 4\sin 4x)$

Ans: Denote
$$y = (1 + 4 \sin 4x)^{\cot x}$$
 $\implies \ln y = \cot x \ln(1 + 4 \sin 4x)$

• Then
$$\lim_{x \to 0^{+}} \ln y = \lim_{x \to 0^{+}} \cot x \ln(1 + 4 \sin 4x) = \lim_{x \to 0^{+}} \frac{\ln(1 + 4 \sin 4x)}{\tan x}$$

$$\stackrel{\text{L'Hopital.}}{=} \lim_{x \to 0^{+}} \frac{\frac{16 \cos 4x}{1 + 4 \sin 4x}}{\frac{1}{\cos^{2} x}} = \lim_{x \to 0^{+}} \frac{16 \cos 4x \cdot \cos^{2} x}{1 + 4 \sin 4x}$$

$$= 16$$

• Hence, $\lim_{x \to 0^+} y = \lim_{x \to 0^+} e^{\ln y} = e^{\lim_{x \to 0^+} \ln y} = e^{16}$.

Duong T. PHAM July 26, 2022 42 / 53

Optimization problems

Ex: A man wants to build a rectangular fish pond in his garden and he wants to save money by using bricks left out from his house construction. The amount of bricks is enough to build 50 m of the pond banks. One side of the rectangular fish pond will be built from rocks which there are in abundance around his house. **Question:** Determine the shape of the fish pond which has the largest area and is built from the materials the man has.

- 2x + y = 50
- Area = $x \cdot y$

43 / 53

max Area?

Duong T. PHAM July 26, 2022

Optimization problems

Ex: Mathematical model: $\begin{cases} \text{Find } \max(xy)? \\ 2x + y = 50 \end{cases}$

Ans: We have A = xy and since 2x + y = 50, we replace y = 50 - 2x in

$$A(x) = x(50 - 2x).$$

A to obtain A(x)=x(50-2x). Our task is now to find: max A(x), where $0\leq x\leq 25.$ We have A'-50-4x and

$$A' = 0 \iff 50 - 4x = 0 \iff x = 12.5.$$
 $\begin{array}{c|ccc} x & 0 & 12.5 & 25 \\ \hline A' & 50 & + & 0 & - & -50 \\ \hline A & 0 & \nearrow & 312.5 & \searrow & 0 \\ \end{array}$

We can deduce from the table that

$$\max A = 312.5 \text{m}^2$$
 when $x = 12.5 \text{m}$

Duong T. PHAM July 26, 2022

Optimization problems

Duong T. PHAM July 26, 2022 45 / 53

Applications in business and economics

- The **cost function** C(x) = the cost of producing x units of a certain product.
- The marginal cost (= C'(x)) is the change of C(x) w.r.t. x
- The **demand function (or price function)**, denoted by p(x), is the price per unit that the company can charge if it sells x units
- If the company sells x units and the price per unit is p(x), then the total revenue is denoted by the **revenue function**,

$$R(x) = xp(x)$$

- The derivative R' is the marginal revenue function
- If x units are sold, the total profit

$$P(x) = R(x) - C(x)$$

46 / 53

and *P* is called the **profit function**.

P' is called the marginal profit function

Duong T. PHAM July 26, 2022

Applications in business and economics

Ex: A store sells 200 DVD burners a week at \$350 each.

- Survey: if each \$10 rebate is offered, 20 more units will be sold every week.
- Q.: Find demand and revenue functions. How large a rebate should be to maximize its revenue?

Ans: Denote by x the number of units sold every week \implies weekly increase in sales is x-200.

- If the price per unit decreases by \$10, more 20 units are sold.
 the price per unit so that the weekly sale is x units, is
 - the price per unit so that the weekly sale is \times units, $\times -200$

$$p(x) = 350 - \frac{x - 200}{20} \cdot 10 = 450 - \frac{x}{2}.$$

- The revenue function is $R(x) = xp(x) = 450x \frac{x^2}{2}$
- Our task: Find the absolute maximum of $R(x) = 450x \frac{x^2}{2}$

Duong T. PHAM July 26, 2022 47 / 53

Applications in business and economics

Our task: Find the absolute maximum of $R(x) = 450x - \frac{x^2}{2}$

- R'(x) = 450 x, and $R'(x) = 0 \iff x = 450$. consider the table

X	350	450	
R'(x)	100 +	0	_
R(x)	96250 /	101250	×

- The revenue has an absolute maximum (101250) when the number of weekly sold units is 450.
- The price per unit is then $p(450) = 450 \frac{450}{2} = 225$
- The rebate should then be offered as 350 225 = 125

Duong T. PHAM July 26, 2022 48 / 53

Newton's method

Some examples:

• Solve
$$2x + 5 = 0 \iff x = -\frac{5}{2}$$

- Solve $x^2 5x + 4 = 0$.
 - $\Delta = (-5)^2 4 \cdot 1 \cdot 4 = 9$
 - The solutions

$$\begin{bmatrix} x_1 = \frac{5 - \sqrt{\Delta}}{2} = \\ x_2 = \frac{5 + \sqrt{\Delta}}{2} \end{bmatrix} \iff \begin{bmatrix} x_1 = \frac{5 - \sqrt{9}}{2} \\ x_2 = \frac{5 + \sqrt{9}}{2} \end{bmatrix} \iff \begin{bmatrix} x_1 = 1 \\ x_2 = 4 \end{bmatrix}$$

• Solve $\cos x - x = 0$?

Duong T. PHAM July 26, 2022

Newton's method

Duong T. PHAM July 26, 2022 50 / 53

Newton's method

Ex: Find, correct to six decimal places, the root of the equation $\cos x = x$

Ans: The equation is equivalent to $\cos x - x = 0$.

- Denote $f(x) = \cos x x$. Then $f'(x) = -\sin x 1$
- Newton's method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n + \frac{\cos x_n - x_n}{\sin x_n + 1}$$

• Choose $x_1 = 0$. Then

$$x_2 = 0 + \frac{\cos 0 - 0}{\sin 0 + 1} = 1;$$
 $x_3 = 1 + \frac{\cos 1 - 1}{\sin 1 + 1} = 0.750363868$
 $x_4 = 0.737151911;$ $x_5 = 0.739446670$
 $x_6 = 0.739018516;$ $x_7 = 0.739097442$
 $x_8 = 0.739082860;$ $x_9 = 0.739085553$
 $x_{10} = 0.739085055;$ $x_{11} = 0.739085147$

Duong T. PHAM July 26, 2022

Antiderivatives

Def: A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all x in 1.

Ex:
$$F(x) = \frac{x^3}{3}$$
 is an antiderivative of $f(x) = x^2$ for any $x \in \mathbb{R}$.

Indeed,
$$F'(x) = \left(\frac{x^3}{3}\right)' = x^2 = f(x)$$

Theorem: If F is an antiderivative of f on an interval I, then the most general antiderivative of f on the interval I is

$$F(x) + C$$

where C is an arbitrary constant.

Duong T. PHAM July 26, 2022 52 / 53

Table of antiderivatives formulas

Function	antiderivative	Function	antiderivative
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{x}$	In x
e ^x	e ^x	cos x	sin x
sin x	$-\cos x$	$\sec^2 x$	tan x
$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1} x$	$\frac{1}{1+x^2}$	$tan^{-1}x$

Ex: Find
$$f$$
 if $f'(x) = e^x + 20(1 + x^2)^{-1}$ and $f(0) = -2$. The general antiderivative is

$$f(x) = e^x + 20 \tan^{-1} x + C.$$

Since
$$f(0) = -2$$
, we have $e^0 + 20 \tan^{-1} 0 + C = -2 \Longrightarrow 1 + C = -2 \Longrightarrow C = -3$. Hence, $f(x) = e^x + 20 \tan^{-1} x - 3$

Duong T. PHAM July 26, 2022