Greenberg Midterm 1 Pilot Review

09/21/2025

Important Concepts

- Molecular Orbital Theory
 - Conservation of orbitals
 - Bonding/Antibonding orbitals
 - Bond order
- Valence Bond Theory
 - Hybridization
 - Orbital Overlap
 - Resonance
- Acid/Base Chemistry
 - pKa
 - Comparing acidity
 - Favoring products or reactants

- Structures
 - Skeletal Structures
 - Newman Projections
 - Fischer Projections
- Stereochemistry
 - Isomers
 - Chairs
 - Absolute configuration
- Chemical Reactivity
 - Nucleophiles
 - Electrophiles
 - Acid/Base

 Draw all implicit hydrogens on the molecule below and name the hybridizations of each atom. For all sp3 hybridized atoms, determine whether they are primary, secondary, tertiary, or quaternary.

Problem 1 Solution

• Determine the number of chiral centers, total number of stereoisomers, absolute configuration of each stereoisomer and the degrees of unsaturation.

Problem 2 Solution

• Determine whether the molecule is chiral, and the 3D geometry of the central atom.

$$CI \xrightarrow{C}_{CI}^{CI} H_3C \xrightarrow{C}_{CH_3}^{CH_3} HO \xrightarrow{\nearrow}_{C}^{C}$$

Problem 3 Solution

$$CI \stackrel{H}{\stackrel{C}{\stackrel{}}} CI \qquad H_3C \stackrel{C}{\stackrel{}} CH_3 \ HO \stackrel{C}{\stackrel{}} C$$

• Determine the hybridization of every atom.

$$H_3C-N$$
 H_3C-N

Problem 4 Solution

$$H_3C-N$$

• Draw resonance structures for the following molecules (for the right molecule, just consider the resonance in the rings)

Problem 5 Solution

• Determine the HOMO and LUMO for the following molecules.

Problem 6 Solution

• Determine which molecule is more acidic and explain why.

Problem 7 Solution

$$CI \underbrace{\hspace{1cm}}^{O}_{OH} \hspace{1cm} Br \underbrace{\hspace{1cm}}^{O}_{OH}$$

• Shown below is trifluoromethanesulfonic acid, which is classified as a superacid. Draw the conjugate base and explain why.

Problem 8 Solution

 Determine the most acidic proton and rank the molecules from most to least acidic.

Problem 9 solution

• For the following molecules, choose the atom which is most likely to be protonated when acid is added.

Problem 10 Solution

• Determine whether the following reactions favor products or reactants. (Hint: The pKa of HF is ~3.2)

Problem 11 Solution

$$tBu \rightarrow OH$$
 + $Na^{+-}OH$ $tBu \rightarrow O^{-+}Na$ + H_2O

• Draw the eclipsed intermediate and calculate the barrier of rotation. Then, draw the molecule in its most stable conformation and determine the stereochemistry of all chiral centers.

<u>Interaction</u> Me-Br <i>gauche</i>	Energy kJ/mol 4.0		
Me-Me gauche	3.8	/ Me	Me
H-H eclipse	4.0	Me H	Me Me
Br-H <i>eclipse</i>	7.0	INIG / / I	
Me-Me <i>eclipse</i>	11.0		\
Br-Me <i>eclipse</i>	13.0	H´\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H´\\\ Br
		Мe	Ĥ

Problem 12 Solution

• Draw both conformations of (1R, 2S, 4R)-1,2,4-trimethylcyclohexane and determine the energy difference between the structures (Me-H 1,3-diaxial interactions are 3.8 kJ/mol).

Problem 13 Solution

• Draw a meso tetrasubstituted cyclohexane with a K_{eq} of 1. Use the molecular formula $C_{14}H_{28}$.

Problem 14 Solution

 Determine the degrees of unsaturation for C₃H₆O. Then draw all constitutional isomers.

Problem 15 Solution

 Consider the following Fischer projection. Convert this molecule to a Newman projection and find the absolute configuration of all chiral centers.

Problem 16 Solution

How many stereoisomers do the following molecules have?

$$\begin{array}{c|c}
O & O \\
N & \longrightarrow & CI \\
O & Br
\end{array}$$

$$\begin{array}{c|c}
CI \\
CH_3
\end{array}$$

Problem 17 Solution

$$\begin{array}{c|c}
 & O \\
 & N \\
 & O
\end{array}$$

$$\begin{array}{c}
 & CI \\
 & CH_{2}
\end{array}$$

• Determine if the following molecules are enantiomers, diastereomers, identical, or meso.

Problem 18 Solution

Good luck on your midterm!