Welcome to the CoGrammar Data Cleaning

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.

Data Science Session Housekeeping

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
 (Fundamental British Values: Mutual Respect and Tolerance)
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
 wish to ask any follow-up questions. Moderators are going to be
 answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Data Science Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- Report a safeguarding incident:
 www.hyperiondev.com/safeguardreporting
- We would love your feedback on lectures: Feedback on Lectures

Data Cleaning

- Data cleaning is a crucial step in the data science pipeline
- Ensures data quality and reliability for analysis and modeling
- Common data quality issues include missing data, duplicates,
 inconsistent formatting, and outliers

Learning objectives

- Describe techniques for **handling missing data** and when each is appropriate to use.
- Demonstrate how to identify and remove duplicate records in a dataset using Pandas.
- Explain the importance of consistent data formatting and apply methods to standardise data.
- Define **outliers** and discuss strategies for detecting and handling them appropriately based on the data context.

Missing Data

CoGrammar

Handling Missing Data

Missing data refers to the absence of values in one or more variables in a dataset.

- Identifying missing values:
 - Look for null, NaN, or empty cells in the dataset.
 - Use functions like isnull() or isna() in Pandas

```
# Identify missing values
   df missing.isnull().sum()
 √ 0.0s
total_bill
               10
tip
               10
sex
smoker
day
time
                0
size
                0
dtype: int64
```


Understand Missing Data Mechanisms

- These mechanisms are more important if you do research in the field, so we're going to glaze over it
- It helps us understand what techniques to use, but we could intuit it in most cases
- Here is the <u>original paper</u>

Understand Missing Data Mechanisms

- MCAR: Missing Completely at Random (missingness unrelated to any variables)
 - Smoking status is not recorded in a random sample of patients
- MAR: Missing at Random (missingness depends on observed variables)
 - > Smoking status is not documented in female patients because the doctor was to shy to ask
- MNAR: Missing Not at Random (missingness depends on missing values themselves)
 - > Smoking status is not recorded in patients admitted as an emergency, who are also more likely to have worse outcomes from surgery

Techniques for Handling Missing Data

- Deletion: Remove records with missing values (only suitable if missing data is minimal and random).
 - Suitable for random missingness
 - Not the first resort, dropping data means losing some important context or skewing the dataset in some cases

```
df.shape

✓ 0.0s
(244, 7)
```


Techniques for Handling Missing Data

- Imputation: Fill in missing values with estimated or calculated values.
 - Simple imputation: Mean, median, or mode imputation

```
# Simple Imputation: Fill missing values with mean for numeric columns and mode for categorical
# columns

df_imputed = df_missing.copy()

df_imputed['total_bill'] = df_imputed['total_bill'].fillna(df_imputed['total_bill'].mean())

df_imputed['sex'] = df_imputed['sex'].fillna(df_imputed['sex'].mode()[0])
```

- Advanced imputation: K-Nearest Neighbors (KNN), Multiple Imputation by Chained Equations (MICE)
 - We'll get to KNN in another lecture

Techniques for Handling Missing Data

```
# Advanced Imputation: KNN Imputation
from sklearn impute import KNNImputer
# Create a copy of the dataset for KNN imputation
df imputed_knn = df_missing.copy()
# Initialize and fit the KNN imputer
imputer = KNNImputer(n neighbors=5)
df_imputed_knn[['total_bill', 'tip', 'size']] = imputer.fit_transform(
    df imputed knn[['total bill', 'tip', 'size']]
```


Which of the following is NOT a common data quality issue?

- A. Missing values
- B. Duplicates
- C. Inconsistent formatting
- D. Small sample size

Which of the following is NOT a common data quality issue?

- A. Missing values
- B. Duplicates
- C. Inconsistent formatting
- D. Small sample size

Which technique is suitable for handling missing data only if the amount is minimal and missing at random?

- A. Mean imputation
- B. Deletion
- C. K-Nearest Neighbours imputation
- D. Multiple Imputation by Chained Equations

Which technique is suitable for handling missing data only if the amount is minimal and missing at random?

- A. Mean imputation
- B. Deletion
- C. K-Nearest Neighbours imputation
- D. Multiple Imputation by Chained Equations

Duplicates

Dealing with Duplicates

Identify duplicates using functions like duplicated() in Pandas

```
# Show all duplicated rows
df_duplicates[df_duplicates.duplicated(keep=False)]
```

keep = False just marks all duplicates.

	total_bill	tip	sex	smoker	day	time	size
46	22.23	5.00	Male	No	Sun	Dinner	2
92	5.75	1.00	Female	Yes	Fri	Dinner	2
123	15.95	2.00	Male	No	Thur	Lunch	2
158	13.39	2.61	Female	No	Sun	Dinner	2
198	13.00	2.00	Female	Yes	Thur	Lunch	2
202	13.00	2.00	Female	Yes	Thur	Lunch	2
234	15.53	3.00	Male	Yes	Sat	Dinner	2
244	22.23	5.00	Male	No	Sun	Dinner	2
245	15.53	3.00	Male	Yes	Sat	Dinner	2
246	13.39	2.61	Female	No	Sun	Dinner	2
247	5.75	1.00	Female	Yes	Fri	Dinner	2
248	15.95	2.00	Male	No	Thur	Lunch	2

Dealing with Duplicates

 Dropping duplicates is fine and encouraged, it does not cause the data to lost necessary context

```
# Remove duplicate records
df_deduplicated = df_duplicates.drop_duplicates()
```


In Pandas, which function can be used to identify duplicate records in a dataset?

- A. find_duplicates()
- B. duplicated()
- C. is_duplicate()
- D. has_duplicates()

In Pandas, which function can be used to identify duplicate records in a dataset?

- A. find_duplicates()
- B. duplicated()
- C. is_duplicate()
- D. has_duplicates()

Data Formatting and Standardization

- Consistent data formatting is essential for accurate analysis and compatibility
- Common formatting issues:
 - ➤ **Date and time formats:** Ensure consistent representation (e.g., YYYY-MM-DD, HH:MM:SS)
 - > **Text case inconsistencies:** Convert text to a consistent case (lowercase or uppercase)
 - Inconsistent value representations: Standardize values (e.g., "Yes"/"No" vs.

"Y"/"N")

Data Formatting and Standardization

- Techniques for standardizing data:
 - Convert date/time columns using to_datetime()
 - Convert text case using str.lower() or str.upper()
 - Map inconsistent values to standardized representations

```
df['sex'] = df['sex'].str.upper()
  df['smoker'] = df['smoker'].str.title()
  df.head()
✓ 0.0s
  total_bill
                                         time size
             ait
            1.01 FEMALE
                              No Sun
                                       Dinner
     10.34
            1.66
                   MALE
                              No Sun
                                       Dinner
                   MALE
            3.50
                                       Dinner
            3.61
                 FEMALE
                              No Sun Dinner
```


Which of the following is a technique for standardising inconsistent text case?

- A. astype()
- B. to_datetime()
- C. upper() or lower()
- D. strip()

Which of the following is a technique for standardising inconsistent text case?

- A. astype()
- B. to_datetime()
- C. upper() or lower()
- D. strip()

Outliers

Outliers

 Outliers are data points that significantly deviate from the rest of the data distribution

Identifying Outliers

Visual inspection using plots like box plots, scatter plots, or

histograms

Identifying Outliers

- Statistical methods like z-score or interquartile range (IQR)
 - Much less common given how good box plot already show outliers

- Removal: Remove outliers if they are erroneous or irrelevant to the analysis
 - > Use when outliers are clearly erroneous or irrelevant to the analysis
 - Be cautious, as removing outliers may result in loss of information

```
# Removal: Remove outliers
df_removed = df[~((df['total_bill'] < (Q1 - 1.5 * IQR)) | (df['total_bill'] > (Q3 + 1.5 * IQR)))]
df_removed.shape

/ 0.0s
MagicPython
(235, 9)
```


- Transformation: Apply mathematical transformations (e.g., logarithmic, square root) to reduce the impact of outliers
 - Use when outliers are valid but have a skewed distribution
 - > Helps to reduce the impact of outliers while preserving the data

- Winsorization: Replace extreme values with the nearest non-outlier values
 - > Use when outliers are valid but need to be treated to reduce their influence
 - ➤ Maintains the overall distribution shape while limiting the extreme values

Which strategy replaces outlier values with the nearest non-outlier values?

- A. Removal
- B. Transformation
- C. Winsorisation
- D. Standardisation

Which strategy replaces outlier values with the nearest non-outlier values?

- A. Removal
- B. Transformation
- C. Winsorisation
- D. Standardisation

Iterative Data Cleaning

Iterating

- Data cleaning is an iterative process that may require multiple rounds
- Continuously assess and refine the cleaned data based on analysis results and feedback
- Integrate data cleaning with data analysis and modeling for optimal results

Libraries

CoGrammar

fuzzywuzzy

- Provides string matching and similarity scoring functions
- ❖ Key features:
 - > Ratio: Calculates the similarity ratio between two strings
 - > Partial Ratio: Calculates the similarity ratio considering substrings
 - > Token Set Ratio: Calculates the similarity ratio considering common tokens

fuzzywuzzy

!pip3 install fuzzywuzzy python-Levenshtein

from fuzzywuzzy import fuzz

```
fuzz.ratio("apple", "appel")

v 0.0s
```

```
fuzz.partial_ratio("apple", "app")

v  0.0s
```

```
# Gives a 100 if every token in the first string is in the second string fuzz.token_set_ratio("apple orange", "orange apple")

✓ 0.0s

100
```

CoGrammar

chardet

- Detects the encoding of a given byte string
- Key features:
 - Supports various encodings (e.g., UTF-8, ISO-8859-1, etc.)
 - > Provides confidence scores for detected encodings

!pip3 install chardet

import chardet

Further Learning

KDNuggets - Learn Data Cleaning and Preprocessing for Data Science with This Free eBook

Kaggle - Short Data Cleaning Course

Questions and Answers

Thank you for attending

