

Slide 1 of 18

iiiii oddoti

i iogress

Example

Next Steps

PhD Committee Meeting #1

Dan Szymczak

Computing and Software Department Faculty of Engineering McMaster University

June 24, 2015

Slide 2 of 18

itroduction

Progress

Example

Mext Oteh

Overview

- 1 Introduction
- 2 Current Progress
- 3 Example.
- 4 Next Steps.

Slide 3 of 18

Introduction
Progress
Example

Next Steps

Who am I?

Dan Szymczak

Slide 4 of 18

Introduction

Progress

Example

Next Step

Education History

- Ph.D. Software Engineering
 - Currently in progress. Started Autumn 2014.
- M.A.Sc. Software Engineering
 - McMaster University 2014
 - Thesis Generating Learning Algorithms: Hidden Markov Models as a Case Study
- B.Eng Software (Game Design)
 - McMaster University 2011

Slide 5 of 18

Introduction

Progress

Example

Next Ste

Current Program Progress

- Completed 3/4 necessary graduate courses.
 - CAS703 Software Design: A (11)
 - CAS708 Scientific Computation: A+ (12)
 - CAS761 Generative Programming: A+ (12)
- Completed part one of the comprehensive examination.
- Research and prototype system development are underway.

Slide 6 of 18

Introduction

Progress

Example

Next Steps

Current Program Progress Cont'd

- Attending conferences over the coming months
 - CICM 2015 Doctoral Programme
 - ICFP 2015 Programming Languages Mentoring Workshop
- Preparing to submit for SPLASH and SEHPCCSE

Slide 7 of 18

Introduction

Progress

Example

Next Step

Research Topic What? Why?

Literate Software Development for Scientific Software

- One "source," multiple views
 - Requirements
 - Design
 - Test Cases
 - Build instructions
 - •
- Motivation
 - Improve verifiability, maintainability and reusability.
 - Save money and time

Slide 8 of 18

Introduction

Progress

Example

Next Steps

Research Topic

Knowledge Capture!

- Advantages
 - Avoid duplication through chunk reuse.
 - Improve understandability, traceability and reproducibility.
 - · Increased flexibility

Slide 9 of 18

Introduction

Progress

Example

Next Steps

Example: h_g A simple example taken from the SRS for FP

 h_g is a symbol which appears in several locations including:

- The Software Requirements Specification
- The Literate Programmer's Manual
- The Source Code

Let's take a look!

Slide 10 of 18

مرم تغمر بالم مسغم

Progress

Example

Next Step

Example: h_g SRS Definition for h_g (original)

Number	DD1
Label	h_g
Units	$ML^{0}t^{-3}T^{-1}$
SI	$\frac{kW}{m^2(^{\circ}C)}$
Equation	$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p}$
Description	h_g is the gap conductance $ au_c$ is the clad thickness h_p is initial gap film conductance k_c is the clad conductivity NOTE: Equation taken from the code
Sources	source code

Slide 11 of 18

ntroductioi

Progress

Example

Mext Steps

Example: h_g LPM Definition for h_g (original)

$$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p} \tag{1}$$

The corresponding C code is given by:

Slide 12 of 18

Introduction

Progress

Example

Next Step

Example: h_g A simple example taken from the SRS for FP

Modifying h_g to reflect changes in requirements is not a simple matter. It involves, at the very least, the following steps:

- Update the definition in the SRS, LPM, and all other documents which reference the symbol
- Modify the source code to reflect the new requirements
- Trace all dependencies
- Modify dependents to accommodate the change
- Ensure each of the documents is now up to date and consistent

Slide 13 of 18

Introductio

Progres

Example

Next Steps

Example: h_g Simplifying the process

Here is an example of a "chunk" for h_a :

```
{-----}
h g :: Chunk
h g = newChunk $
  [(Symbol, S "h" :-: S "g"),
  (Equation, E h g eq),
  (SIU, S "($\\mathrm{\\frac{kW}{m^2C}}$)"),
  (Description, S
   "effective heat transfer coefficient between clad and fuel surface")
h g dep :: Dependency
h g dep = get dep h g eq
h g eq :: Expr
h g eq = ((Int 2):*(C k c):*(C h p)) :/ ((Int 2):*(C k c):+((C tau c):*(C h p)))
```


Slide 14 of 18

Introduction

Progres

Example

Next Otep

Example: h_g How do we generate?

What do we do with the "chunk"? That depends on the "recipe"!

To create our SRS we use the following recipe:

```
createSRS :: Doc
createSRS = spre $$ doctitle $$
author auth $$ srsComms $$
begin $$ srsBody $$ end
```

To create our LPM we use the following recipe:

```
createLPM :: Doc
createLPM = lpre $$ doctitle $$
author auth $$ lpmComms $$
begin $$ lpmBody $$ endL
```


Slide 15 of 18

مر ما تعمد بام مسعم

Progress

Example

Next Step

Example: h_g Generated SRS Output

Number	DD2
Label	h_g
Units	$ML^{0}t^{-3}T^{-1}$
SI	$\frac{kW}{m^2 {}^{\circ}C}$
Equation	$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p}$
Description	h_g is the effective heat transfer coefficient between clad and fuel surface k_c is the clad conductivity h_p is the initial gap film conductance τ_c is the clad thickness NOTE: Equation taken from the code
Sources	source code

Slide 16 of 18

Hitroductio

Progress

Example

Next Steps

Example: h_g Generated LPM Output

$$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p} \tag{2}$$

The corresponding C code is given by:

```
double calc_h_g(double k_c, double h_p, double tau_c) { return 2*k_c*h_p/(2*k_c+tau_c*h_p); }
```


Slide 17 of 18

Introductio

Progres

Example

Next Steps

Next Steps Broad Strokes

What next?

- Comprehensive examination part two.
- Complete final graduate level course.
 - Looking for a category theory course, but open to suggestions.
- Complete thesis.

Slide 18 of 18

ntroductio

Progress

Example

Next Steps

Thank You!