Architecture des ordinateurs - TD 07

1 Minterms et Maxterms

Nous considérerons la fonction logique, $XOR3(A,B,C)=A\oplus B\oplus C$, qui correspond à une porte XOR à trois entrées.

- 1. Donner la table de vérité de XOR3.
- 2. Écrire les minterms de XOR3.
 - Remarquez que la somme des minterms donne une forme disjonctive de XOR3.
 - Remarquez que pour chaque minterm, seule une combinaison unique (a, b, c) rends le terme vrai. On identifiera donc le minterm avec la valeur décimale correspondante au mot binaire abc_2 .
- 3. Écrire les minterms de $\overline{XOR3}$. Donner une forme disjonctive de $\overline{XOR3}$.
- 4. En utilisant la loi De Morgan, donner une forme conjonctive de XOR3. Chaque terme de la forme conjonctive ainsi obtenue est appellé un maxterm.
- 5. Pour chaque maxterm, y a t'il une unique combinaison de (a, b, c) qui rends le maxterm vrai?
- 6. Pour chaque maxterm, y a t'il une unique combinaison de (a, b, c) qui rends le maxterm faux?
- 7. Proposez un système permettant d'identifier chaque maxterm avec une valeur décimale.

2 Circuits additioneurs (retour)

1. Soit deux nombres positifs : $A = a_3 a_2 a_1 a_0$ et $B = b_3 b_2 b_1 b_0$, implémenter le circuit de la fonction C(A, B) = A < B en utilisant un circuit additionneur.

Solution: On se sert d'un additionneur 5 bits. On remarque que $A < B \equiv A - B < 0$. On peut obtenir -B en CA2 avec $\overline{B} + 1$. Puis on calcule A - B avec l'additionneur 5 bits et on teste le bit de signe du résultat.

3 Quine-McCluskey

1. $f(a, b, c, d) = \Sigma m(4, 5, 6, 7, 12, 13, 14, 15)$, on donne la colonne 2^2 de la table de QMC. Donner la colonne 2^3 et retrouver ce résultat par la table de Karnaugh.

	2^{2}	2^3
4,5,6,7	01	
4,5,12,13	-10-	
4,6,12,14	-1-0	
5,7,13,15	-1-1	
6,7,14,15	-11-	
12,13,14,15	11	

Solution: On retrouve un seul implicant premier : -1--. L'implicant est donc essentiel et f=b Sur le tableau de Karnaugh on peut ainsi regrouper tous les 1 dans un rectangle de taille 8.

2. Donner tous les implicants de la fonction $f(a,b,c) = \sum m(0,1,5,7)$

Solution:

$$\begin{array}{c|cccc} 2^0 & 2^1 \\ \hline 000 & 00- \\ \hline 001 & -01 \\ \hline 101 & 1-1 \\ \hline 111 \\ \end{array}$$

On trouve trois implicants. Les implicants 1 et 3 sont essentiels.

		U	1	9	1	
1	0,1	X	X			-
ls.	1,5		X	X		
	5.7			X	X	

- 3. On considère la table des implicants ci-dessous.
 - (a) Simplifiez la et déduisez en une forme disjonctive minimale.

Solution: On peut remarquer pour la simplification que $\bar{c}d$ est inclus dans bd.

(b) Donnez toutes les formes disjonctives minimales possibles.

- $--bd+\overline{a}b$
- $-bd+b\overline{c}$
- $--\overline{a}b+b\overline{c}$
- $--\overline{a}b+\overline{c}d$

4. Mêmes questions pour la table des implicants ci-dessous.

	0	1	2	5	6	7	8	9	10	14
$\overline{b}.\overline{c}$	X	X					X	X		
$\overline{b}.\overline{d}$	X		X				X		X	
$c.\overline{d}$			X		X				X	X
$\overline{a}.\overline{c}.d$		X		X						
$\overline{a}.b.d$				X		X				
$\overline{a}.b.c$					X	X				

Solution:
$$\overline{b}.\overline{c} + c.\overline{d} + \overline{a}.b.d$$

- 5. $f(a, b, c, d) = \sum m(4, 8, 10, 11, 12, 15) + d(9, 14)$:
 - (a) Déterminer les nombres binaires correspondant aux décimaux et les répartir en groupes (en fonction du nombre de bits à 1).
 - (b) Déterminer les implicants premiers de la fonction.

- (c) Construire la table des implicants et déterminer les implicants premiers essentiels.
- (d) Déterminer une solution minimale.
- (e) Déterminer toutes les solutions minimales.

Solution: (La table ci-dessous a été générée avec l'excellent logiciel libre Bmin de J. Zelenka)

Size 1 prime	5		Size 2 p	rimes	Size 4 primes			
Number of 1s	Minterm	0-cube	Minterm	1-cube	Minterm	2-cube		
1	m4 m8	0100 1000	m(4,12) m(8,9) m(8,10) m(8,12)	-100* 100- 10-0 1-00	m(8,9,10,11) m(8,10,12,14)	10* 10*		
2	m9 m10 m12	1001 1010 1100	m(9,11) m(10,11) m(10,14) m(12,14)	1-10	m(10,11,14,15)	1-1-*		
3	m11 m14	1011 1110	m(11,15) m(14,15)					
4	m15	1111						

Prime Implicants Table

	4	8	10	11	12	15
m(4,12)	X				Х	
m(8,9,10,11)		X	Х	X		
m(8,10,12,14)	Г	Х	Х		X	
m(10,11,14,15)			Х	X		X

Le premier et dernier implicants sont essentiels. On about it à deux expressions minimales possibles :

- $-b.\overline{c}.\overline{d} + a\overline{d} + a.c$
- $-b.\overline{c}.d + a\overline{b} + a.c$
- 6. Simplifier avec la méthode de QMC l'expression $f(a,b,c,d,e) = \sum m(0,2,3,5,7,9,11,13,14,16,18,24,26,28,30)$.

Size 1 p	rimes			Size 2 p	rimes	Size 4 primes	
Number o	f 1s	Minterm	0-cube	Minterm	1-cube	Minterm	2-cube
0		mΘ	00000	m(0,2) m(0,16)	000-0 -0000	m(0,2,16,18)	-00-0*
1	- 1	m2 m16		m(2,3) m(2,18) m(16,18) m(16,24)	-0010 100-0	m(16,18,24,26)	1-0-0*
2		m3 m5 m9 m18 m24	01001 10010	m(3,7) m(3,11) m(5,7) m(5,13) m(9,11) m(9,13) m(18,26) m(24,26) m(24,28)	0-011* 001-1* 0-101* 010-1* 01-01* 1-010 110-0	m(24,26,28,30)	110*
3		m13 m14	00111 01011 01101 01110 11010 11100	m(14,30) m(26,30) m(28,30)	11-10		
4		m30	11110				

	0	2	3	5	7	9	11	13	14	16	18	24	26	28	30
m(0,2,16,18)	X	Х	Г	Г	Г	Г				X	X				
m(2,3)	Г	Х	X	Г		Г									
m(3,7)			X		X										
m(3,11)			X				X								
m(5,7)				X	Х										
m(5,13)				X				X							
m(9,11)						Х	X								
m(9,13)			Г	Г		Х		Х							
m(14,30)	Г	Г	Г	Г	Г	Г			X						Х
m(16,18,24,26)			Г	Г						Х	Х	Х	Х		
m(24.26.28.30)	Г	Г	Г	Г	П	Г						Х	Х	Х	Х

Une solution minimale est : $\overline{E}.\overline{C}.\overline{B} + \overline{E}.D.C.B + \overline{E}.B.A + E.D.\overline{B}.\overline{A} + E.\overline{D}.\overline{C}.\overline{A} + E.\overline{C}.B.\overline{A}$.

4 Circuit Multiplieur

On souhaite réaliser un circuit multiplieur.

- 1. Réaliser à la main la multiplication de 1011×1100 .
- $2.\,$ Construire un circuit qui multiplie deux nombres positifs sur 4 bits. Vous disposez d'additioneurs 4 bits.

3. Ce schéma marche t'il pour des entrées codées en complément à 2. Si ce n'est pas le cas, comment faudrait-il le modifier?

Solution: On veut multiplier A et B, mais cette fois ci ils peuvent être signés. On décompose le produit de la manière suivante :

$$B \times A = (-b_3 \times 2^3 + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0) \times A$$

Ici c'est la définition de B en CA2 où le dernier bit est bit de signe. Puis par distributivité du produit :

$$B \times A = (A \times (-b_3)) \times 2^3 + (A \times b_2) \times 2^2 + \dots + (A \times b_0)$$

Maintenant il suffit d'additionner les facteurs (ou produits partiels) entre eux. Deux remarques importantes :

- Le terme $(A \times (-b_3)) \times 2^3$ peut être réécrit $(-A \times b_3) \times 2^3$. Or par définition du CA2, $-A = \overline{A} + 1$, c'est pourquoi on complémente A lorsque b3 est à 1.
- Lorsque l'on additionne des produits partiels en CA2, il faut faire attention à propager le bit de signe. Par exemple, supposons que le résultat du premier étage est 11 (-1 sur deux bits) et le résultat du deuxième étage est 100 (-4 sur trois bits). Si on additionne sans extension de signe 11+100=111, le résultat est -1 sur 3 bits ce qui est faux. C'est pourquoi il faut étendre le bit de signe 111+100=1011: le résultat devient -8+2+1=-5, ce qui est correct.

