CS 6601: Midterm study guide

Note: R&N = AI, A Modern Approach, by Russell & Norvig

- Adversarial search (R&N <u>Chapter 5</u>)
 - Observable games (e.g. isolation)
 - o Minimax
 - o Alpha-beta pruning
 - Performance improvement
 - Utility and evaluation functions
 - Sensitivity
 - Optimization tricks
 - Move-ordering
 - Symmetry
 - o Iterative deepening
 - o Multiplayer games
 - Probabilistic games
 - o Partially observable games (e.g. poker)
- Search (R&N Chapter 3, <u>uninformed</u> and <u>informed</u>)
 - Uninformed
 - Breadth-first search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening depth-first search
 - Uniform-cost search
 - o Informed
 - Greedy search
 - A* search
 - Heuristics
 - Consistency/admissibility
 - Dominance
 - Derivation by relaxation
 - Bidirectional
 - o Tridirectional
 - o Tree vs. graph search
 - o Completeness, space/time complexity, path optimality
- Agent design (R&N Chapter 2)

- Rationality
- PEAS
 - Performance
 - Environment
 - Observability
 - Deterministic/stochastic
 - Episodic/sequential
 - Static/dynamic
 - Discrete/continuous
 - Single/multi-agent
 - Actuators
 - Sensors
 - Uncertainty
- o Agent types
 - Reflex
 - Reflex with state
 - Goal-based
 - Utility-based
 - Learning
- Random algorithms (part of R&N Chapter 4)
 - o Hill-climbing
 - o Beam search
 - o Iterative improvement
 - Simulated annealing
 - o Genetic algorithms
 - o Local vs. global maximum
 - Local stochastic search
- Constraint satisfaction problems (R&N Chapter 6)
 - Variables, domains, constraints
 - Standard search
 - Backtracking
 - Heuristics
 - Minimum remaining values
 - Least constraining value
 - Forward-checking
 - Arc consistency
 - Path consistency
 - o Problem re-structuring
- Probability (R&N Chapters <u>13</u> and <u>14a</u>, <u>14b</u>)

- o Independence/dependence
- o Discrete/continuous variables
- Joint distribution
- Central Limit Theorem
- Conditional probabilities
 - Bayes' Rule
 - Chain Rule
 - Conditional independence
- Bayesian networks
 - How to construct
 - Local independence
 - Inference
 - Exact (calculation)
 - Enumeration
 - o Variable elimination
 - Inexact (sampling)
 - o Rejection sampling
 - o Stochastic simulation
 - o MCMC simulation
- o Decision/utility theory
 - Expected value