GANs & Style Transfer

LaMa: Large Mask Inpainting with Fourier Convolutions

Roman Suvorov Arsenii Ashukha Elizaveta Logacheva Aleksei Silvestrov Anton Mashikhin Naejin Kong Victor Lempitsky Anastasia Remizova Harshith Goka

Нейронные сети и обработка текста

Современные методы автоматической обработки текста -- это поиск по смыслу, машинный перевод, чат-боты, построение баз знаний... Как к этому подступиться? Больше практики! Авторы курса, эксперты Центра ИИ Samsung, доступным языком рассказывают, как начать работать с текстами при помощи нейросетей.

Алексей Сильвестров

GANs & Aiva.ai

Aiva.ai

- → Объявление в VK: видели 100 человек, написали 5, на интервью пришли 2
- → Фаундер выступил на ТЕД
- → Новый домен: нет сеток ни для чего
- → Гудфеллоу и Хуангу не показалось бредом генерить картинку с нотами

Martin Arjovsky¹, Soumith Chintala², and Léon Bottou^{1,2}

The Cramer Distance as a Solution to Biased Wasserstein Gradients

Fisher GAN

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

8 Gaussians 25 Gaussians

Swiss Roll

что-то про функан и оптимизацию

Optimal transport dual

· Primal:

$$T(P,Q) = \inf_{\Gamma \in \mathcal{P}(x \sim P, y \sim Q)} \mathbb{E}_{(x,y) \sim \Gamma} \left[c(x,y) \right]$$

Dual (Wasserstein-1 metric):

$$T(P,Q) = W_1(P,Q) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x)$$

Earth Mover Distance

$$\mathbb{E}_{(x,y)\sim\gamma}\big[\,\|x-y\|\,\big]$$

		κ_{l}	χ_{2}	x_3	χ_{4}	
		0.4	0.1	0.3	0.2	
4,	0.3	0,3	0	0	0	Transport
42	0.4	0.1	0.1	0.2	0	plan
y ₃	0.3	0	0	0.1	0.2	42.4.

Cramer GAN

критика праотца

- → 1. The authors claim the energy distance kernel might be a better choice for GAN training. I am not convinced of the argument: theory-wise....
- → 2. The Critic (discriminator) is not correct: Unfortunately, the paper makes a problematic approximation, which causes the critic not to correctly compare and match the generator and reference distributions.

Cramer GAN

критика праотца

- → 1. The authors claim the energy distance kernel might be a better choice for GAN training. I am not convinced of the argument: theory-wise....
- → 2. The Critic (discriminator) is not correct: Unfortunately, the paper makes a problematic approximation, which causes the critic not to correctly compare and match the generator and reference distributions.

- → В итоге, если учесть комментарии Греттона, мы получим MMD-GAN
- → Статью в итоге не приняли

Which Training Methods for GANs do actually Converge?

Method	Local convergence (a.c. case)	Local convergence (general case)
unregularized (Goodfellow et al., 2014)	/	X
WGAN (Arjovsky et al., 2017)	×	X
WGAN-GP (Gulrajani et al., 2017)	×	X
DRAGAN (Kodali et al., 2017)	1	X
Instance noise (Sønderby et al., 2016)	1	1
ConOpt (Mescheder et al., 2017)	1	1
Gradient penalties (Roth et al., 2017)	1	1
Gradient penalty on real data only	1	1
Gradient penalty on fake data only	1	1

Frechet Inception Distance

$$FID = \left\| \mu_r - \mu_g
ight\|^2 + T_r (\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2})$$

- → Сегодня стала одной из дефолтных метрик:
 - ◆ Inception V₃ в основе
 - ♦ Лица (?)
 - Любые картинки природы, города и интерьера

Frechet Domain Distance

Какой автоэнкодер лучше: проверим на обученном GAN

Frechet <...> Distance

- → Посмотрите на Kernel Inception Distance: в диффузных статьях он снова мелькает
- → Из любопытства посмотрите на Frechet Audio Distance: https://arxiv.org/pdf/1812.08466.pdf

Style Transfer

2015-2020

обученные

Patches from Input Image

Layer 1 Structure

The first hidden layer learns to identify basic structural elements such as edges and color blobs

Patches from Input Image

CNNs learn hierarchical structure after several layers

Layer 5 Structure

A Neural Algorithm of Artistic Style

A Neural Algorithm of Artistic Style

InstanceNorm -> CondIN -> AdaIn

Instead, it adaptively computes the affine parameters from the style input:

AdaIN
$$(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$
 (8)

M-UNIT

$$\mathcal{L}_{GAN}^{x_2} = \mathbb{E}_{c_1 \sim p(c_1), s_2 \sim q(s_2)}[\log(1 - D_2(G_2(c_1, s_2)))] + \mathbb{E}_{x_2 \sim p(x_2)}[\log D_2(x_2)]$$

HIDT

Figure 2: Diagram of the Adaptive U-Net architecture: an encoder-decoder network with dense skip-connections and content-style decomposition (c, s).

