The group G is isomorphic to the group labelled by [35,1] in the Small Groups library. Ordinary character table of $G\cong \mathrm{C35}$:

1	a $7a$	7b	7c	7d	7e	7f	5a	35a	35b	35c	35d	35e	35f	5b	35g	35h	35i	35j	35k	35l	5c	35m	35n	35o	35p	35q	35r	5d	35s	35t	35u	35v	35w	35x
χ_1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	. 1	1	1	1	1	1	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^4$
χ_3	. 1	1	1	1	1	1	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^3$
χ_4	. 1	1	1	1	1	1	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^2$
χ_5	. 1	1	1	1	1	1	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{2}$	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)	E(5)
$ \chi_6 $	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^4$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$
$ \chi_7 $	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	E(5)	$E(35)^{12}$	$E(35)^{17}$	$E(35)^{22}$	$E(35)^{27}$	$E(35)^{32}$	$E(35)^{2}$	$E(5)^{2}$	$E(35)^{19}$	$E(35)^{24}$	$E(35)^{29}$	$E(35)^{34}$	$E(35)^4$	$E(35)^9$	$E(5)^{3}$	$E(35)^{26}$	$E(35)^{31}$	E(35)	$E(35)^{6}$	$E(35)^{11}$	$E(35)^{16}$	$E(5)^4$	$E(35)^{33}$	$E(35)^{3}$	$E(35)^{8}$	$E(35)^{13}$	$E(35)^{18}$	$E(35)^{23}$
χ_8	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	$E(5)^{2}$	$E(35)^{19}$	$E(35)^{24}$	$E(35)^{29}$	$E(35)^{34}$	$E(35)^4$	$E(35)^9$	$E(5)^{4}$	$E(35)^{33}$	$E(35)^{3}$	$E(35)^{8}$	$E(35)^{13}$	$E(35)^{18}$	$E(35)^{23}$	E(5)	$E(35)^{12}$	$E(35)^{17}$	$E(35)^{22}$	$E(35)^{27}$	$E(35)^{32}$	$E(35)^{2}$	$E(5)^{3}$	$E(35)^{26}$	$E(35)^{31}$	E(35)	$E(35)^{6}$	$E(35)^{11}$	$E(35)^{16}$
$ \chi_9 $	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^4$	$E(7)^{5}$	$E(7)^{6}$	$E(5)^{3}$	$E(35)^{26}$	$E(35)^{31}$	E(35)	$E(35)^{6}$	$E(35)^{11}$	$E(35)^{16}$	E(5)	$E(35)^{12}$	$E(35)^{17}$	$E(35)^{22}$	$E(35)^{27}$	$E(35)^{32}$	$E(35)^{2}$	$E(5)^{4}$	$E(35)^{33}$	$E(35)^{3}$	$E(35)^{8}$	$E(35)^{13}$	$E(35)^{18}$	$E(35)^{23}$	$E(5)^{2}$	$E(35)^{19}$	$E(35)^{24}$	$E(35)^{29}$	$E(35)^{34}$	$E(35)^4$	$E(35)^9$
χ_{10}	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^4$	$E(7)^{5}$	$E(7)^{6}$	$E(5)^{4}$	$E(35)^{33}$	$E(35)^{3}$	$E(35)^{8}$	$E(35)^{13}$	$E(35)^{18}$	$E(35)^{23}$	$E(5)^{3}$	$E(35)^{26}$	$E(35)^{31}$	E(35)	$E(35)^{6}$	$E(35)^{11}$	$E(35)^{16}$	$E(5)^{2}$	$E(35)^{19}$	$E(35)^{24}$	$E(35)^{29}$	$E(35)^{34}$	$E(35)^4$	$E(35)^9$	E(5)	$E(35)^{12}$	$E(35)^{17}$	$E(35)^{22}$	$E(35)^{27}$	$E(35)^{32}$	$E(35)^2$
$ \chi_{11} $	$E(7)^2$	$E(7)^4$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^4$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^5$
χ_{12}	$E(7)^2$	$E(7)^4$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	E(5)	$E(35)^{17}$	$E(35)^{27}$	$E(35)^{2}$	$E(35)^{12}$	$E(35)^{22}$	$E(35)^{32}$	$E(5)^{2}$	$E(35)^{24}$	$E(35)^{34}$	$E(35)^9$	$E(35)^{19}$	$E(35)^{29}$	$E(35)^4$	$E(5)^{3}$	$E(35)^{31}$	$E(35)^{6}$	$E(35)^{16}$	$E(35)^{26}$	E(35)	$E(35)^{11}$	$E(5)^{4}$	$E(35)^{3}$	$E(35)^{13}$	$E(35)^{23}$	$E(35)^{33}$	$E(35)^{8}$	$E(35)^{18}$
χ_{13}	$E(7)^2$	$E(7)^4$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	$E(5)^{2}$	$E(35)^{24}$	$E(35)^{34}$	$E(35)^9$	$E(35)^{19}$	$E(35)^{29}$	$E(35)^4$	$E(5)^{4}$	$E(35)^{3}$	$E(35)^{13}$	$E(35)^{23}$	$E(35)^{33}$	$E(35)^{8}$	$E(35)^{18}$	E(5)	$E(35)^{17}$	$E(35)^{27}$	$E(35)^{2}$	$E(35)^{12}$	$E(35)^{22}$	$E(35)^{32}$	$E(5)^{3}$	$E(35)^{31}$	$E(35)^{6}$	$E(35)^{16}$	$E(35)^{26}$	E(35)	$E(35)^{11}$
$ \chi_{14} $	$E(7)^2$	$E(7)^4$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	$E(5)^{3}$	$E(35)^{31}$	$E(35)^{6}$	$E(35)^{16}$	$E(35)^{26}$	E(35)	$E(35)^{11}$	E(5)	$E(35)^{17}$	$E(35)^{27}$	$E(35)^{2}$	$E(35)^{12}$	$E(35)^{22}$	$E(35)^{32}$	$E(5)^{4}$	$E(35)^{3}$	$E(35)^{13}$	$E(35)^{23}$	$E(35)^{33}$	$E(35)^{8}$	$E(35)^{18}$	$E(5)^{2}$	$E(35)^{24}$	$E(35)^{34}$	$E(35)^9$	$E(35)^{19}$	$E(35)^{29}$	$E(35)^4$
χ_{15}	$E(7)^2$	$E(7)^4$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	$E(5)^{4}$	$E(35)^{3}$	$E(35)^{13}$	$E(35)^{23}$	$E(35)^{33}$	$E(35)^{8}$	$E(35)^{18}$	$E(5)^{3}$	$E(35)^{31}$	$E(35)^{6}$	$E(35)^{16}$	$E(35)^{26}$	E(35)	$E(35)^{11}$	$E(5)^{2}$	$E(35)^{24}$	$E(35)^{34}$	$E(35)^9$	$E(35)^{19}$	$E(35)^{29}$	$E(35)^4$	E(5)	$E(35)^{17}$	$E(35)^{27}$	$E(35)^{2}$	$E(35)^{12}$	$E(35)^{22}$	$E(35)^{32}$
χ_{16}	$E(7)^3$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$
$ \chi_{17} $	$E(7)^3$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	E(5)	$E(35)^{22}$	$E(35)^2$	$E(35)^{17}$	$E(35)^{32}$	$E(35)^{12}$	$E(35)^{27}$	$E(5)^{2}$	$E(35)^{29}$	$E(35)^9$	$E(35)^{24}$	$E(35)^4$	$E(35)^{19}$	$E(35)^{34}$	$E(5)^{3}$	E(35)	$E(35)^{16}$	$E(35)^{31}$	$E(35)^{11}$	$E(35)^{26}$	$E(35)^{6}$	$E(5)^{4}$	$E(35)^{8}$	$E(35)^{23}$	$E(35)^3$	$E(35)^{18}$	$E(35)^{33}$	$E(35)^{13}$
χ_{18}	$E(7)^3$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	$E(5)^{2}$	$E(35)^{29}$	$E(35)^9$	$E(35)^{24}$	$E(35)^4$	$E(35)^{19}$	$E(35)^{34}$	$E(5)^{4}$	$E(35)^{8}$	$E(35)^{23}$	$E(35)^{3}$	$E(35)^{18}$	$E(35)^{33}$	$E(35)^{13}$	E(5)	$E(35)^{22}$	$E(35)^{2}$	$E(35)^{17}$	$E(35)^{32}$	$E(35)^{12}$	$E(35)^{27}$	$E(5)^{3}$	E(35)	$E(35)^{16}$	$E(35)^{31}$	$E(35)^{11}$	$E(35)^{26}$	$E(35)^6$
χ_{19}	$E(7)^3$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	$E(5)^{3}$	E(35)	$E(35)^{16}$	$E(35)^{31}$	$E(35)^{11}$	$E(35)^{26}$	$E(35)^{6}$	E(5)	$E(35)^{22}$	$E(35)^2$	$E(35)^{17}$	$E(35)^{32}$	$E(35)^{12}$	$E(35)^{27}$	$E(5)^4$	$E(35)^{8}$	$E(35)^{23}$	$E(35)^3$	$E(35)^{18}$	$E(35)^{33}$	$E(35)^{13}$	$E(5)^{2}$	$E(35)^{29}$	$E(35)^9$	$E(35)^{24}$	$E(35)^4$	$E(35)^{19}$	$E(35)^{34}$
χ_{20}	$E(7)^3$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	$E(5)^{4}$	$E(35)^{8}$	$E(35)^{23}$	$E(35)^{3}$	$E(35)^{18}$	$E(35)^{33}$	$E(35)^{13}$	$E(5)^{3}$	E(35)	$E(35)^{16}$	$E(35)^{31}$	$E(35)^{11}$	$E(35)^{26}$	$E(35)^{6}$	$E(5)^{2}$	$E(35)^{29}$	$E(35)^9$	$E(35)^{24}$	$E(35)^4$	$E(35)^{19}$	$E(35)^{34}$	E(5)	$E(35)^{22}$	$E(35)^{2}$	$E(35)^{17}$	$E(35)^{32}$	$E(35)^{12}$	$E(35)^{27}$
χ_{21}	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^3$
χ_{22}	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	E(5)	$E(35)^{27}$	$E(35)^{12}$	$E(35)^{32}$	$E(35)^{17}$	$E(35)^{2}$	$E(35)^{22}$	$E(5)^{2}$	$E(35)^{34}$	$E(35)^{19}$	$E(35)^4$	$E(35)^{24}$	$E(35)^9$	$E(35)^{29}$	$E(5)^{3}$	$E(35)^{6}$	$E(35)^{26}$	$E(35)^{11}$	$E(35)^{31}$	$E(35)^{16}$	E(35)	$E(5)^{4}$	$E(35)^{13}$	$E(35)^{33}$	$E(35)^{18}$	$E(35)^{3}$	$E(35)^{23}$	$E(35)^8$
χ_{23}	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	$E(5)^{2}$	$E(35)^{34}$	$E(35)^{19}$	$E(35)^4$	$E(35)^{24}$	$E(35)^9$	$E(35)^{29}$	$E(5)^{4}$	$E(35)^{13}$	$E(35)^{33}$	$E(35)^{18}$	$E(35)^{3}$	$E(35)^{23}$	$E(35)^{8}$	E(5)	$E(35)^{27}$	$E(35)^{12}$	$E(35)^{32}$	$E(35)^{17}$	$E(35)^{2}$	$E(35)^{22}$	$E(5)^{3}$	$E(35)^{6}$	$E(35)^{26}$	$E(35)^{11}$	$E(35)^{31}$	$E(35)^{16}$	E(35)
χ_{24}	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	$E(5)^{3}$	$E(35)^{6}$	$E(35)^{26}$	$E(35)^{11}$	$E(35)^{31}$	$E(35)^{16}$	E(35)	E(5)	$E(35)^{27}$	$E(35)^{12}$	$E(35)^{32}$	$E(35)^{17}$	$E(35)^{2}$	$E(35)^{22}$	$E(5)^{4}$	$E(35)^{13}$	$E(35)^{33}$	$E(35)^{18}$	$E(35)^{3}$	$E(35)^{23}$	$E(35)^{8}$	$E(5)^{2}$	$E(35)^{34}$	$E(35)^{19}$	$E(35)^4$	$E(35)^{24}$	$E(35)^9$	$E(35)^{29}$
χ_{25}	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	$E(5)^{4}$	$E(35)^{13}$	$E(35)^{33}$	$E(35)^{18}$	$E(35)^{3}$	$E(35)^{23}$	$E(35)^{8}$	$E(5)^{3}$	$E(35)^{6}$	$E(35)^{26}$	$E(35)^{11}$	$E(35)^{31}$	$E(35)^{16}$	E(35)	$E(5)^{2}$	$E(35)^{34}$	$E(35)^{19}$	$E(35)^4$	$E(35)^{24}$	$E(35)^9$	$E(35)^{29}$	E(5)	$E(35)^{27}$	$E(35)^{12}$	$E(35)^{32}$	$E(35)^{17}$	$E(35)^{2}$	$E(35)^{22}$
χ_{26}	$E(7)^5$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^2$
$ \chi_{27} $	$E(7)^5$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	E(5)	$E(35)^{32}$	$E(35)^{22}$	$E(35)^{12}$	$E(35)^{2}$	$E(35)^{27}$	$E(35)^{17}$	$E(5)^{2}$	$E(35)^4$	$E(35)^{29}$	$E(35)^{19}$	$E(35)^9$	$E(35)^{34}$	$E(35)^{24}$	$E(5)^{3}$	$E(35)^{11}$	E(35)	$E(35)^{26}$	$E(35)^{16}$	$E(35)^{6}$	$E(35)^{31}$	$E(5)^{4}$	$E(35)^{18}$	$E(35)^{8}$	$E(35)^{33}$	$E(35)^{23}$	$E(35)^{13}$	$E(35)^3$
χ_{28}	$E(7)^5$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	$E(5)^{2}$	$E(35)^4$	$E(35)^{29}$	$E(35)^{19}$	$E(35)^9$	$E(35)^{34}$	$E(35)^{24}$	$E(5)^{4}$	$E(35)^{18}$	$E(35)^{8}$	$E(35)^{33}$	$E(35)^{23}$	$E(35)^{13}$	$E(35)^{3}$	E(5)	$E(35)^{32}$	$E(35)^{22}$	$E(35)^{12}$	$E(35)^{2}$	$E(35)^{27}$	$E(35)^{17}$	$E(5)^{3}$	$E(35)^{11}$	E(35)	$E(35)^{26}$	$E(35)^{16}$	$E(35)^{6}$	$E(35)^{31}$
χ_{29}	$E(7)^5$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	$E(5)^{3}$	$E(35)^{11}$	E(35)	$E(35)^{26}$	$E(35)^{16}$	$E(35)^{6}$	$E(35)^{31}$	E(5)	$E(35)^{32}$	$E(35)^{22}$	$E(35)^{12}$	$E(35)^{2}$	$E(35)^{27}$	$E(35)^{17}$	$E(5)^{4}$	$E(35)^{18}$	$E(35)^{8}$	$E(35)^{33}$	$E(35)^{23}$	$E(35)^{13}$	$E(35)^{3}$	$E(5)^{2}$	$E(35)^4$	$E(35)^{29}$	$E(35)^{19}$	$E(35)^9$	$E(35)^{34}$	$E(35)^{24}$
χ_{30}	$E(7)^5$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	$E(5)^{4}$	$E(35)^{18}$	$E(35)^{8}$	$E(35)^{33}$	$E(35)^{23}$	$E(35)^{13}$	$E(35)^{3}$	$E(5)^{3}$	$E(35)^{11}$	E(35)	$E(35)^{26}$	$E(35)^{16}$	$E(35)^{6}$	$E(35)^{31}$	$E(5)^{2}$	$E(35)^4$	$E(35)^{29}$	$E(35)^{19}$	$E(35)^9$	$E(35)^{34}$	$E(35)^{24}$	E(5)	$E(35)^{32}$	$E(35)^{22}$	$E(35)^{12}$	$E(35)^{2}$	$E(35)^{27}$	$E(35)^{17}$
χ_{31}	$E(7)^6$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^2$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)
χ_{32}	$E(7)^6$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	E(5)	$E(35)^{2}$	$E(35)^{32}$	$E(35)^{27}$	$E(35)^{22}$	$E(35)^{17}$	$E(35)^{12}$	$E(5)^{2}$	$E(35)^9$	$E(35)^4$	$E(35)^{34}$	$E(35)^{29}$	$E(35)^{24}$	$E(35)^{19}$	$E(5)^{3}$	$E(35)^{16}$	$E(35)^{11}$	$E(35)^{6}$	E(35)	$E(35)^{31}$	$E(35)^{26}$	$E(5)^{4}$	$E(35)^{23}$	$E(35)^{18}$	$E(35)^{13}$	$E(35)^{8}$	$E(35)^{3}$	$E(35)^{33}$
χ_{33}	$E(7)^6$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	$E(5)^{2}$	$E(35)^9$	$E(35)^4$	$E(35)^{34}$	$E(35)^{29}$	$E(35)^{24}$	$E(35)^{19}$	$E(5)^{4}$	$E(35)^{23}$	$E(35)^{18}$	$E(35)^{13}$	$E(35)^{8}$	$E(35)^3$	$E(35)^{33}$	E(5)	$E(35)^2$	$E(35)^{32}$	$E(35)^{27}$	$E(35)^{22}$	$E(35)^{17}$	$E(35)^{12}$	$E(5)^{3}$	$E(35)^{16}$	$E(35)^{11}$	$E(35)^6$	E(35)	$E(35)^{31}$	$E(35)^{26}$
$ \chi_{34} $	$E(7)^6$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	$E(5)^{3}$	$E(35)^{16}$	$E(35)^{11}$	$E(35)^{6}$	E(35)	$E(35)^{31}$	$E(35)^{26}$	E(5)	$E(35)^2$	$E(35)^{32}$	$E(35)^{27}$	$E(35)^{22}$	$E(35)^{17}$	$E(35)^{12}$	$E(5)^4$	$E(35)^{23}$	$E(35)^{18}$	$E(35)^{13}$	$E(35)^{8}$	$E(35)^3$	$E(35)^{33}$	$E(5)^{2}$	$E(35)^9$	$E(35)^4$	$E(35)^{34}$	$E(35)^{29}$	$E(35)^{24}$	$E(35)^{19}$
χ_{35}	$E(7)^6$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	$E(5)^{4}$	$E(35)^{23}$	$E(35)^{18}$	$E(35)^{13}$	$E(35)^8$	$E(35)^3$	$E(35)^{33}$	$E(5)^{3}$	$E(35)^{16}$	$E(35)^{11}$	$E(35)^{6}$	E(35)	$E(35)^{31}$	$E(35)^{26}$	$E(5)^{2}$	$E(35)^9$	$E(35)^4$	$E(35)^{34}$	$E(35)^{29}$	$E(35)^{24}$	$E(35)^{19}$	E(5)	$E(35)^2$	$E(35)^{32}$	$E(35)^{27}$	$E(35)^{22}$	$E(35)^{17}$	$E(35)^{12}$

Trivial source character table of $G \cong C35$ at $p = 7$:							
Normalisers N_i		N_1		N_2			
p-subgroups of G up to conjugacy in G		P_1			P	2	
Representatives $n_j \in N_i$	1a $5a$	5b	5c	5d $1a$	5a $5b$	5c 5	\overline{d}
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 $	7 7	7	7	7 0	0 0	0 (,
	$7 * E(5)^2$	$7 * E(5)^4$	7 * E(5) 7	$*E(5)^3 \mid 0$	0 0	0 ()
	$7 * E(5)^3$	7 * E(5)	$7 * E(5)^4 7$	$*E(5)^2 \mid 0$	0 0	0 ()
	7 * E(5)	$7 * E(5)^2$	$7 * E(5)^3 7$	$*E(5)^4 \mid 0$	0 0	0 ()
	$7 * E(5)^4$	$7 * E(5)^3$	$7 * E(5)^2$ 7	*E(5) 0	0 0	0 (,
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 $	1 1	1	1	1 1	1 1	1 1	-
	$1 E(5)^2$	$E(5)^4$	E(5)	$E(5)^3 1$	$E(5)^2$ $E(5)^2$	E(5) $E(5)$	i) ³
	$1 E(5)^3$	E(5)	$E(5)^4$	$E(5)^2 \mid 1$	$E(5)^3$ $E(5)$	-(") -($\mathfrak{i})^2$
	1 $E(5)$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4 1$	E(5) $E(5)$	() ($\mathfrak{s})^4$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 $	1 $E(5)^4$	$E(5)^{3}$	$E(5)^2$	E(5) 1	$E(5)^4$ $E(5)$	$E(5)^2 E(5)$	(5)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(6, 7, 8, 9, 10, 11, 12)]) \cong C7$

 $N_1 = Group([(1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12)]) \cong C35$ $N_2 = Group([(1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12)]) \cong C35$