Chapter 5: Descriptive Statistics

Objectives:

- Understand the workflow in a market research study
- Know univariate and bivariate statistics and graphs
- Be able to transform data
- Learn how to handle outliers and missing data
- Learn what a codebook is
- Applications in Stata

Weeks	1	2	3	4	5	6	7	8	9	10	11
Chap.1 Intro	X										
Qualtrics	X										
Chap.2 MR Process		X									
Chap.3 Data			X	X							
Chap.4 Getting Data				X							
Guest Lecture: Research Ethics					X						
Chap.5 Descriptive Statistics						X					
Chap.10 Communicating the Results							X				
Chap.6 Hypothesis Testing								X			
Chap.7 Regression Analysis									X		
Gauss-Markov and GLM										X	
Guest Lecture: Business Application											X

5. Descriptive Statistics

- Workflow and structure of a market research project
- Applications in Stata

Market research projects are complex enough. Keep them

organised with a structured workflow!

- Helps to prevent mistakes
- Helps to collaborate
- Helps to stay on time
- Helps to document the whole project

1.	Create structure	
2.	Enter data	
3.	Clean data	
4.	Describe data	
5.	Detect outliers	
	(Transform data)	
6.	Create codebook	

1. Create structure:

- Store different types of Stata files in different directories

Subdirectory	√ \data	\output	\syntax	\temp	\others
Contents	Data files (.dta and .zip for backup)	Output files, e.g. .gph	do files (.do)	Revised files	Related files (.pdf, .txt, .doc)

- Variables:
 - Short, clear, meaningful <u>names</u> (e.g. "satisf_room" instead of "hotel11")
 - Explicit, more informative <u>descriptions</u> (e.g. "Satisfied with the room")
- Coding (= assigning values to specific questions)
 - Quantitative data: no special requirements
 - Qualitative data (e.g. open-ended questions):
 Collecting → grouping (attention: subjectivity) → recoding

3. Data cleaning:

- Check for all kinds of "errors"
 - Data entry errors
 - Obvious errors (e.g. a "333" instead of a "3" on a threepoint ordinal scale): Detection by descriptive statistics like minimum, maximum, range. Correction in the dataset with a new variable. Make a note in your codebook.
 - More subtle errors (e.g. a "2" instead of a "3" in the same scale): Detection only by checking randomly selected surveys for correctness.

• 3. Data cleaning:

- Check for all kinds of "errors"
 - Interviewer cheats
 - Never base an interviewer's compensation on the number of completed questionnaires
 - Use testing techniques (next chapters)
 - Ask interviewed people if they have been interviewed
 - Quality-check the interviewer during the field phase

3. Data cleaning:

- Check for errors (ctd.)
 - Missing data
 - Survey non-response (5-25%): Try to prevent it by creating proper questionnaires
 - <u>Item</u> non-response (2-10%): Check: is it a systematic (always the same question) or a random error (alternating)?

3. Data cleaning:

- Check for errors (ctd.)
 - Missing data
 - → Small number of items are missing? Impute these cases (giving the item the most likely value, e.g., by using Bayesian multiple imputation)
 - → Higher amount of missingness: Use Multiple Imputation (MI) Predictive Mean Matching (PMM)
 - → MI, PMM, and FIML How-To in Stata:

Piehlmaier, D. M. (2022). Predictive approaches to customer loyalty: the impact of missing data on the predictability of customer loyalty models. In *Handbook of Research on Customer Loyalty* (pp. 129-141). Edward Elgar Publishing.

SCHOOL

- 4. Describe data:
 - Types of description
 - Univariate descriptives (one variable at a time)
 - Bivariate descriptives (two variables at a time)
 - Multivariate descriptives (more than two variables at a time)
 - Types of presentation:
 Univariate/bivariate/multivariate graphs/charts/tables
 are easy to understand and interpret by a general audience
 - Types of statistics:
 Univariate/bivariate/multivariate statistics
 The more variables, the more difficult to understand and interpret

• 4. Describe data:

Overview: Univariate and bivariate descriptives

# of Variables	Graphs/Charts/Tables	Statistics
univariate	Histogram	Centrality:
	Pie-Chart	Mean, Mode, Median
	Frequency table	Dispersion:
	Bar Chart	Minimum/Maximum,
	Line Chart	Range, Variance
	Box plot	
bivariate	Scatter plots	Correlations
	Crosstabulation	Covariance

• 4. Describe data:

Overview: Univariate graphs, charts, and tables

Histogram

Pie Chart

Frequency table

Line chart

BUSINESS SCHOOL

Bar chart

- 4. Describe Data:
 <u>Univariate</u> graphs, charts, and tables
 - Histogram:
 - How often does a certain variable value occur? A histogram creates <u>classes</u> for values, the height represents the classcount
 - Good for: Ratio and interval data scale
 - Good: Shows the distribution of a variable
 - Not good: With a very large number of classes

- 4. Describe Data:
 <u>Univariate</u> graphs, charts, and tables
 - Bar chart:
 - How often does a certain variable value occur? A bar chart does not create classes but shows each and every value with its frequency.
 - Good: Nominal and ordinal data scales

- 4. Describe Data:
 <u>Univariate</u> graphs, charts, and tables
 - Pie chart:
 - Visual and easy to understand how different values are distributed
 - Good: less than 10 categories, interpretation based on "100%" /percentage in general
 - Not good: multitude of categories (<10 var.)

4. Describe Data:
 <u>Univariate</u> graphs, charts, and tables

Box plots

- 4. Describe Data:
 <u>Univariate</u> graphs, charts, and tables
 - Line chart:
 - Also describes different variable values occurring in a variable, but connects each value → continuity requirement
 - Good: If continuity fits the data (e.g., time series)

- 4. Describe Data:
 <u>Univariate</u> graphs, charts, and tables
 - Frequency table
 - Shows all possible values of a specified variable in a dataset.

RETAIL SALES TAX RATE

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	.00	5	9.8	9.8	9.8
	3.00	1	2.0	2.0	11.8
	3.50	1	2.0	2.0	13.7
	4.00	8	15.7	15.7	29.4
	4.22	1	2.0	2.0	31.4
	4.50	2	3.9	3.9	35.3
	4.88	1	2.0	2.0	37.3
	4.90	1	2.0	2.0	39.2
	5.00	13	25.5	25.5	64.7
	5.75	1	2.0	2.0	66.7
	6.00	10	19.6	19.6	86.3
	6.25	2	3.9	3.9	90.2
	6.50	3	5.9	5.9	96.1
	7.00	2	3.9	3.9	100.0
	Total	51	100.0	100.0	

4. Describe Data:
 <u>Univariate</u> graphs, charts, and tables

Univariate statistics

- Centrality
 - Mode
 - Mean
 - Median
- Dispersion
 - Minimum and maximum
 - Variance/standard deviation

4. Describe Data:

Overview: Bivariate graphs, charts, and tables

Anxiety * Tension Crosstabulation

			Tension		
			low	high	Total
Anxiety	low	Count	5	21	26
		% within Anxiety	19.2%	80.8%	100.0%
		% within Tension	25.0%	75.0%	54.2%
		% of Total	10.4%	43.8%	54.2%
	high	Count	15	7	22
		% within Anxiety	68.2%	31.8%	100.0%
		% within Tension	75.0%	25.0%	45.8%
		% of Total	31.3%	14.6%	45.8%
Total		Count	20	28	48
		% within Anxiety	41.7%	58.3%	100.0%
		% within Tension	100.0%	100.0%	100.0%
		% of Total	41.7%	58.3%	100.0%

Scatterplot

Crosstabulation

- 4. Describe Data:
 <u>Bivariate</u> graphs, charts, and tables
 - Scatterplot
 - Two variables, one on the x-axis, one on the y-axis (sometimes a third variable on the z-axis)
 - Shows how variables relate to each other
 - Good: For interval and ratio data scales

- 4. Describe Data:
 Bivariate graphs, charts, and tables
 - Crosstabulation
 - Creates a contingency table from the frequency distribution of a variables
 - Good: For all data scales

- 4. Describe Data:
 Bivariate statistics
 - Covariance
 - Describes how two variables are associated
 - Is the degree to which variables vary together
 - Correlation
 - Describes how strongly two variables are associated
 - +1 (-1) stands for a perfect positive (negative) correlation
 - 0 stands for independence of two variables (+/- 0.1)
 - In practice: < 0.30 (weak) / 0.30-0.49 (moderate) / >0.50 (strong)

- 4. Describe Data:
 Bivariate statistics
 - Common types of correlation coefficients
 - Bravais-Pearson for interval and ratio scaled variables
 - Spearman if at least one variable is ordinally scaled
 - Kendalls Tau for few cases with ordinally scaled variables (Likert)

5. Detecting outlier:

- Extreme values that seem detached from other values (hint: mean >> median and mode)
- Different forms:
 - Produced by errors during data collection / data entry
 - Real values
 - Certain extremely rare combinations of variables

• 5. Detecting outlier:

- Finding them:
 - Minimum / Maximum
 - Scatterplot (for rare combinations)
- What most books say:
 - If they are real values: delete them from the data set
 - Typing or data entry error: correct if possible, otherwise delete them
 - Case of doubt: better delete them than keep
- My recommendation:
 - Transform the variable, e.g., through log-linearization
 - Real data should never be deleted or altered (academic code of conduct)

BUSINESS SCHOOL

Transforming data:

- Optional in market research
- Reason for transforming:
 - Grouping, e.g., income will be separated in two groups: high and low
 - Procedure to prepare for other statistical analyses (e.g., standardization of variables for cluster analysis)
 - Binary (dummy) variables, e.g., if some variable should get the status true (=1) or false (=0)
 - Creating constructs from more than one variable (e.g., satisfaction with the service at Subway regarding friendliness of employees and wait time)
 - Aggregation: Bringing variables from a lower level to a higher level

- 6. Creating a codebook
 - Contains all important details regarding the data of a study
 - Content:
 - Introduction (aim of the data collection)
 - Questionnaire (consisting of all versions and all pretest-results)
 - Description of the variables (verbally, including the measurement level)
 - Summary statistics (for a fast glance)
 - Datasets (name of all the datasets used in the study)

5. Descriptive Statistics

- Workflow and structure of a market research project
- Applications in Stata

