```
-1-
                                SEQUENCE LISTING
<110> ICOS Corporation, et al.
<120> MACROPHAGE DERIVED CHEMOKINE (MDC), MD\phi ANALOGS, MDC
      INHIBITOR SUBSTANCES, AND USES THEREOF
<130> 27866/34810PCT
<140>
<141>
<150> 09/067,447
<151> 1998-04-28
<150> 08/939,107
<151> 1997-09-26
<150> 08/660,542
<151> 1996-06-07
<150> 08/558,658
<151> 1995-11-16
<150> 08/479,620
<151> 1995-06-07
<160> 46
<170> PatentIn Ver. 2.0
<210> 1
<211> 2923
<212> DNA
<213> Homo sapiens - human MDC cDNA
<220>
<221> CDS
<222> (20)..(298)
<220>
<221> mat_peptide
<222> (92)..(298)
<400> 1
gagacataca ggacagage atg gct cgc cta cag act gca ctc ctg gtt gtc 52
                      Met Ala Arg Leu Gln Thr Ala Leu Leu Val Val
ctc gtc ctc ctt gct gtg gcg ctt caa gca act gag gca ggc ccc tac
                                                                     100
Leu Val Leu Leu Ala Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr
                                                   -1
             -10
                                  - 5
                               SUBSTITUTE SHEET (RULE 26)
```

												1				
														cgt Arg		148
														gac Asp		196
														gag Glu 50		244
														aag Lys		292
_	caa Gln	tga	agag	ect a	actc	tgat	ga co	gtg	geet	t /ggd	etect	tcca	gga	aggci	tca	348
ggag	gaaat	cac	ctcc	ctgc	ca t	tatag	gctgo	t tc	cccg	cag	aag	cctg	tgc	caact	tctctg	408
catt	ccct	tga	tctc	catc	cc t	gtgg	ctgto	c ac	cctf	ggtc	acc	tccg	tgc	tgtc	actgcc	468
atct	ccc	ccc	tgac	ccct	ct a	accca	atcct	t ct	gckt	ccct	ccc	tgca	gtc	agag	ggtcct	528
gtt	cccat	tca	gcga	ttcc	cc t	gctta	aaac	c ct	teca	tgac	tcc	ccac	tgc	ccta	agctga	588
ggt	cagto	ctc	ccaa	gcct	gg c	atgt	ggcc	c to	gga	tctg	ggt	tcca	tct	ctgt	ctccag	648
cct	gccc	act	taca	ttca	tg a	atgt	tggg	t to	tagc	tccc	tgt	tctc	caa	accc	atacta	708
caca	atcc	cac	ttct	gggt	ct t	tgcc	tggga	a tg	ttgc	tgac	act	caga	aag	tece	accacc	768
tgc	acat	gtg	tagc	ccca	cc a	gccc	tccaa	a /gg	catt	gctc	gcc	caag	cag	ctgg	taattc	828
cat	ttca	tgt	atta	gatg	tc c	cctg	gece	ct;	gtcc	cctc	tta	ataa	ccc	tagt	cacagt	888
ctc	cgca	gat	tctt	ggga	tt t	aaaa:	gted	t ct	cccc	cacc	tct	ccac	tag	ttgg	accaag	948
gtt	tctag	gct	aagt	tact	ct a	gtct	ccala	gcc	tcta	gcat	aga	gcac	tgc	agac	aggccc	1008
tgg	ctca	gaa	tcag	agcc	ca g	aaag	tgge	gc	agac	aaaa	tca	ataa	aac	taat	gtccct	1068
ccc	ctct	ccc	tgcc	aaaa	gg c	agtt	acaf	a tc	aata	caga	gac	tcaa	ggt	cact	agaaat	1128
9 9 9	ccag	ctg	ggtc	aatg	tg þ	agcc	ccaa	a tt	tgcc	caga	ttc	acct	ttc	ttcc	cccact	1188
ccc	tttt	ttt	tttt	tttt	tt/t	ttga	gatg	g ag	ttte	gctc	ttg	tcac	cca	cgct	ggagtg	1248
caa	tggt	gtg	gtct	tggc	tt\a	ttga	agcc	t ct	gcct	cctg	ggt	tcaa	gtg	attc	tcttgc	1308
ctc	agcc	tcc	tgag	tagc	tg g	gatt	acag	g tt	cctg	ctac	cac	gccc	agc	taat	ttttgt	1368
att	ttta	gta	gaga	cgag	gc t	tcac	catg	t tg	gcca	ggct	ggt	ctcg	aac	tcct	gtcctc	1428

aggtaatccg cccacctcag cctcccaaag tgctgggatt acaggcgt/ga gccacagtgc 1488 ctcactctgt cgcccaggct ggagtgcagt ggcgtgatct cggctcacta caacctcgac 1608 ctcctgggtt caagtgattc tcccacccca gcctcccaag tagdtgggat tacaggtgtg 1668 tgccactacg gctggctaat tittgtatti ttagtagaga caggtticac catattggcc 1728 aggetggtet tgaacteetg aceteaagtg atceacette c#tgtgetee caaagtgetg 1788 agattacagg cgtgagctat cacacccagc ctccccttt #tttcctaat aggagactcc 1848 tgtacctttc ttcgttttac ctatgtgtcg tgtctgctta/catttccttc tcccctcagg 1908 ctttttttgg gtggtcctcc aacctccaat acccaggcct ggcctcttca gagtaccccc 1968 cattccactt tecetgeete etteettaaa tagetgaeda teaaatteat getatggtgt 2028 gaaagactac ctttgacttg gtattataag ctggagtfat atatgtattt gaaaacagag 2088 taaatactta agaggccaaa tagatgaatg gaagaakttt aggaactgtg agagggggac 2148 aaggtgaage ttteetggee etgggaggaa getgg/etgtg gtagegtage getetetete 2208 tctgtctgtg gcaggagcca aagagtaggg tgta/attgag tgaaggaatc ctgggtagag 2268 accattetea ggtggttggg ceaggetaaa gadtgggagt tgggtetate tatgeettte 2328 tggctgattt ttgtagagac ggggttttgc ca/tgttaccc aggctggtct caaactcctg 2388 ggctcaagcg atcctcctgg ctcagcctcc daaagtgctg ggattacagg cgtgaatcac 2448 tgcgcctggc ttcctcttcc tcttgagaaa/tattcttttc atacagcaag tatgggacag 2508 cagtgtccca ggtaaaggac ataaatgtaa caagtgtctg gtcctttctg agggaggctg 2568 gtgccgctct gcagggtatt tgaadctgtg gaattggagg aggccatttc actccctgaa 2628 cccagcctga caaatcacag tg/gaatg//t caccttatag gcttgctgtg gggctcaggt 2688 tgaaagtgtg gggagtgaca c/tgccta/ggc atccagctca gtgtcatcca gggcctgtgt 2748 ccctcccgaa cccagggtca/acctg¢ctgc cacaggcact agaaggacga atctgcctac 2808 tgcccatgaa cggggccctd aagcgtcctg ggatctcctt ctccctcctg tcctgtcctt 2868 gccctcagg actgctggaa aataaatcct ttaaaatagt aaaaaaaaa aaaaa 2923

<210> 2

<211> 93

<212> PRT

<213> Homo sapiens - human MDC

PCT/US98/20270

WO 99/15666

that there the Buch

1.5

Ħ

H

1.11 4.11 1.11 1.11 1.11 1.11

Ļs

Fij

[]

WO 99/15666	PCT/US98/20270
-5-	
<210> 6	•
<211> 22	
<212> DNA /	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer T7.1	
_	
<400> 6	22
gtaatacgac tcactatagg gc	22
<210> 7	•
<211> 35	
<212> DNA /	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer 390-1F	
<400> 7	
totatotaga ggcccctacg gcgccaacat ggaag	35
<210> 8	
<211> 33 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer 390-2R	
<400> 8	33
caccggatcc tcattggctc agcttattga gaa	33
<210> 9	
<211> 29	
<212> DNA /	
<213> Artificial Sequence /	
<220>	
<pre><220> <223> Description of Artificial Sequence: Primer 390-4R</pre>	
<400> 9	
aatggatcca cagcacggag gtgaccaag	29
<210> 10	
<211> 31	
<212> DNA /	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer 390-3R	
SUBSTITUTE SHEET (RULE 26)	

4Ü

M

WO 99/15666 PCT/U\$98/20270 -7-<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer 390RcX <400> 15 29 tggatctaga agttggcaca ggcttctgg <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Primer DC03 <400> 16 20 cgaaattaat acgactcact <210> 17 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer 390mycRX <400> 17 tggatctaga tcaattcaag tcctcccccc tgatcagctt ctgctcttgg ctcagcttat 60 67 tgagaat <210> 18 <211> 99 <212> PRT - Hu MCP <213> Homo sapiens/ <220> <400> 18 Met Lys Ala Ser Ala Ala Leu Cys Leu Leu Thr Ala Ala Ala -10 -20 -15 Phe Ser Pro Gln Gly Leu Ala Gln Pro Val Gly Ile Asn Thr Ser Thr - 5 Thr Cys Cys Tyr Arg/Phe Ile Asn Lys Lys Ile Pro Lys Gln Arg Leu Glu Ser Tyr Arg Arg Thr Thr Ser Ser His Cys Pro Arg Glu Ala Val 40 SUBSTITUTE SHEET (RULE 26)

50

```
Ile Phe Lys Thr Lys Leu Asp Lys Glu Ile Cys Ala Asp Pro Thr Gln
                                50
Lys Trp Val Gln Asp Phe Met Lys His Leu Asp Lys Lys Thr Gln Thr
                            65
Pro Lys Leu
    75
<210> 19
<211> 99
<212> PRT
<213> Homo spapiens - Hu MCP-1
<400> 19
Met Lys Val Ser Ala Ala Leu Leu Cys Leu Leu Leu Ile Ala Ala Thr
                                -15
Phe Ile Pro Gln Gly Leu Ala Gln Pro Asp Ala Ile Asn Ala Pro Val
        - 5
Thr Cys Cys Tyr Asn Phe Thr Asn Arg Lys Ile Set Val Gln Arg Leu
                    15
Ala Ser Tyr Arg Arg Ile Thr Ser Ser Lys Cys/Pro Lys Glu Ala Val
                                    35
Ile Phe Lys Thr Ile Val Ala Lys Glu Ile ¢ys Ala Asp Pro Lys Gln
                                50
                                                                          80
            45
Lys Trp Val Gln Asp Ser Met Asp His Leu Asp Lys Gln Thr Gln Thr
                                                 70
                            65
        60
Pro Lys Thr
    75
<210> 20
<211> 76
<212> PRT
<213> Homo sapiens - Hy MCP-
<220>
<400> 20
Gln Pro Asp Ser Val Ser Lie Pro Ile Thr Cys Cys Phe Asn Val Ile
                                      10
Asn Arg Lys Ile Pro Ile Gln Arg Leu Glu Ser Tyr Thr Arg Ile Thr
                                  25
             20
Asn Ile Gln Cys Pro Lys Glu Ala Val Ile Phe Lys Thr Lys Arg Gly
         35
Lys Glu Val Cys Ala Asp Pro Lys Glu Arg Trp Val Arg Asp Ser Met
```

SUBSTITUTE SHEET (RULE 26)

55

60

```
Lys His Leu Asp Gln Ile Phe Gln Asn Leu Lys Pro
<210> 21
<211> 91
<212> PRT
<213> Homo sapiens - RANTES
<220>
<400> 21
Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala
                                -15
                                                      -10
Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser/Asp Thr Thr Pro
Cys Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Árg Ala His Ile Lys
10
Glu Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val Val Phe
                30
Val Thr Arg Lys Asn Arg Gln Val Cys Ala Asn Pro Glu Lys Lys Trp
                                 50
Val Arg Glu Tyr Ile Asn Ser Leu Glu/Met Ser
<210> 22
<211> 91
<212> PRT
<213> Homo sapiens - MIP-1 bețá
<220>
<400> 22
Met Lys Leu Cys Val Thr Val/ Yeu Ser Leu Leu Met Leu Val Ala Ala
                                 -15
             -20
Phe Cys Ser Pro Ala Leu Ser Ala Pro Met Gly Ser Asp Pro Pro Thr
Ala Cys Cys Phe Ser Tyr Thr Arg Gla Ala Ser Ser Asn Phe Val Val
                     Ser Ser Leu Cys Ser Gln Pro Ala Val Val Phe
Asp Tyr Tyr Glu Thr
Gln Thr Lys Arg Ser Lys Gln Val Cys Ala Asp Pro Ser Glu Ser Trp
             45
                Val Tyr Asp Leu Glu Leu Asn
Val Gln Glu Tyr/
         60
                        SUBSTITUTE SHEET (RULE 25)
```

```
WO 99/15666
                                    -10-
<210> 23
<211> 92
<212> PRT
<213> Homo sapiens - MIP-1 alpha
<220>
<400> 23
Met Gln Val Ser Thr Ala Ala Leu Ala Val Leu Leu Cys Thr/ Met Ala
Leu Cys Asn Gln Phe Ser Ala Ser Leu Ala Ala Asp Thr Pro Thr Ala
Cys Cys Phe Ser Tyr Thr Ser Arg Gln Ile Pro Gln Asn Phe Ile Ala
                    15
                                     20
Asp Tyr Phe Glu Thr Ser Ser Gln Cys Ser Lys Pro/Gly Val Ile Phe
Leu Thr Lys Arg Ser Arg Gln Val Cys Ala Asp pro Ser Glu Glu Trp
Val Gln Lys Tyr Val Ser Asp Leu Glu Leu Ser Ala
<210> 24
<211> 96
<212> PRT
<213> Homo sapiens - I-309
```

<220> <400> 24

Met Gln Ile Ile Thr Thr Ala/Ley Val Cys Leu Leu Leu Ala Gly Met **/1**5

Trp Pro Glu Asp Val/Asp Ser Kys Ser Met Gln Val Pro Phe Ser Arg

Cys Cys Phe Ser Phe Ala Glu Glu Ile Pro Leu Arg Ala Ile Leu 15 20 10

Cys Tyr Arg Asn Thr Ser Ser Me Cys Ser Asn Glu Gly Leu Ile Phe

Lys Leu Lys Arg Gly Lys Glu Ala Cys Ala Leu Asp Thr Val Gly Trp 50

Val Gln Arg His Arg Lys Met Leu Arg His Cys Pro Ser Lys Arg Lys 60 65

<210> 25

<211> 93

<212> PRT

<213> Artificial Sequence - Human MDC analog

<220>

<223> The amino acid at position 24 is selected from the group consisting of arg, gly_ ala, val, leu, ile, pro, ser, thr, phe, tyr, trp, aspartate, glutamate, asn, gln, cys, and met

<220>

<223> The amino acid at position 27 is independently selected from the group consisting of lys, gly, ala, val, leu, ile, pro, ser, thr, phe, tyr, trp, aspartate, glutamate, asn, gln, cys, and met

<220>

<223> The amino acid at position 30 is independently selected from the group consisting of tyr, ser, lys, arg, his, aspartate, glutamate, asn, gln, and cys

<220>

<223> The amino acid at position 50 is independently selected from the group consisting of glu, lys, arg, his, gly, and ala

<220>

<223> The amino acid at position \$9 is independently selected from the group consisting of trp, ser, lys, arg, his, aspartate, glutamate, asn, gln, and cys

<220>

<223> The amino acid at position 60 is independently selected from the group consisting of val. ser, lys, arg, his, aspartate, glutamate, asn, gln, and cys

<400> 25

Met Ala Arg Leu Gla Thr Ala Leu Leu Val Val Leu Val Leu Leu Ala
-20 -15 -10

Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr Gly Ala Asn Met Glu
-5 5 5

Asp Ser Val Cys Cys Arg Asp Tyr Val Arg Tyr Arg Leu Pro Leu Xaa

Val Val Xaa His Phe Xaa Trp Thr Ser Asp Ser Cys Pro Arg Pro Gly 30 35 40

```
-12-
Val Val Leu Leu Thr Phe Arg Asp Lys Xaa Ile Cys Ala Asp Pro Arg
Val Pro Xaa Xaa Lys Met Ile Leu Asn Lys Leu Ser Gln
<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer 390/7F
<400> 26
                                                                    30
tattggatcc gttctagctc cctgttctcc
<210> 27
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer 390-8R
<400> 27
                                                                    31
ccaagaattc ctgcagccac tttctgggct c
<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer ARA1
<400> 28
                                                                    20
gcgactctct actgtttctc
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer ARA2
<400> 29
                                                                     20
cacaggaaac agcta#gacc
                          SUBSTITUTE SHEET (RULE 26)
```

```
<210> 30
<211> 70
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Human MDC /analog
Leu Gly Pro Tyr Gly Ala Asn Met Glu Asp Ser Val Cys Cys Arg Asp
Tyr Val Arg Tyr Arg Leu Pro Leu Arg Val Val Lys His Phe Tyr Trp
Thr Ser Asp Ser Cys Pro Arg Pro Gly Val Val Leu Thr Phe Arg
                             40
                                                  45
Asp Lys Glu Ile Cys Ala Asp Pro Arg Val Pro Trp Val Lys Met Ile
                                             60
Leu Asn Lys Leu Ser Gln
<210> 31
<211> 69
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Human MDC analog
<400> 31
Gly Pro Tyr Gly Ala Asn Met Glu Ásp Ser Val Cys Cys Arg Asp Tyr
                                      10
Val Arg Tyr Arg Leu Pro heu Arg Val Val Lys His Phe Tyr Trp Thr
             20
                                  25
Ser Asp Ser Cys Pro Arg Pro Gly Val Val Leu Leu Thr Phe Arg Asp
                             40
         35
                        Pro Arg Val Pro Tyr Leu Lys Met Ile Leu
Lys Glu Ile Cys Ala Asp
                          55
                                              60
Asn Lys Leu Ser Gln
 65
<210> 32
<211> 69
<212> PRT
<213> Artificial Séquence
<223> Description of Artificial Sequence: Human MDC analog
<400> 32
```

Gly 1	Pro	Tyr	Gly	Ala 5	Asn	Met	Glu	Asp	Ser 10	Val	Cys	Cys	Arg	Asp 15	Tyr	
Val	Arg	Tyr	Arg 20	Leu	Pro	Leu	Arg	Val 25	Val	Lys	Glu	Tyr	Phe 30	Tyr	Thr	
Ser	Asp	Ser 35	Cys	Pro	Arg	Pro	Gly 40	Val —	Val	Leu	Leu	Thr 45	Phe	Arg	Asp	
Lys	Glu 50	Ile	Cys	Ala	Asp	Pro 55	Arg	Val	Pro	Trp	Val 60	Lys /	M∉t	Ile	Leu	
Asn 65	Lys	Leu	Ser	Gln												
<213 <213 <213 <223 <223	0> 1> Cl	677 NA omo s	sapi6	ens -	- hun	nan (CCR4	CDNA	Ā			/				
	0> 3:		rate	ttct!	te e	cctt	ctttt	c ctt		ette	ttct	ttcc	ett (catac	ctcc	c 60
~55	9999								/							
tct	ctca	ttt (cccti	tctc	ct to	ctaca	ctcag	g tcj	/ ccad	catt	caa	catto	gac a	aagto	catt	c 120
								/								c 120
aga:	aaag	caa q	getg	cttc:	tg gi	ttggg	gccc	a gad gat a	cctgo	cctt	gagg ctc g	gage gat g	ctg 1		gttaa ita	
aga:	aaag atg Met . 1 agc	caa g aac g Asn i	getge ccc : Pro '	acg g Thr i	gat Asp :	ata g	gccca gca gra gaa	a gad gat a Asp :	acc a Thr T	acc of the latest the	gaggetc g	gaged gat g Asp (gaa a Slu :	tagag	gttaa ita ile 15 aaa	a 180
aga aa i tac Tyr	aaag Met 1 agc Ser	caa g aac g Asn i aat Asn	getg ecc : Pro ' tac Tyr	acg grant tat	gat Asp : Ctg Leu	ata gata la	geoca gra gaa Glu	gat a Asp agt ser	acc a Thr 1 atc Ile 25	acc (Thr 10 10 ccc	gagg etc g Leu i aag Lys	gat	gaa ; Slu ; tgc Cys	agc a Ser I acc Thr	ttaa ita ile 15 aaa Lys	227
agaa aa tac Tyr gaa Glu	aaag atg Met 1 agc Ser ggc Gly	aac Asn aat Asn atc Ile	gctg ccc pro tac Tyr aag Lys 35	tat Tyr 20 gca ala	gat s gat s Asp : ctg Leu ttt Phe	ata sata sata sata sata sata sata sata	gaa Glu gaag Glu	a gad gat a Asp agt ser ctc Leu 40	acc a Thr 1 atc Ile 25 ttc Phe	cctt acc (Thr 1 10 ccc Pro ctg Leu	gagg etc g Leu i aag Lys ccc pro	gat	tgc tgc Cys ctg Leu 45	agc a Ser I acc Thr 30	ttaa ita ile 15 aaa Lys tcc Ser	227 275
agaa tac Tyr gaa Glu ttg Leu	aaag atg Met . agc Ser ggc Gly gtt Val	aac Asn aat Asn atc Ile ttt Phe 50 aaa	gctg ccc ; Pro ' tac Tyr aag Lys 35 gta Val	tat Tyr 20 gca Ala ttt Phe	gat Asp : Ctg Leu ttt Phe ggt Gly	tagg ata g ile i tat Tyr ggg Gly ctg Leu	gccca gca gaa Glu gag Glu ctt Leu 55	a gad gat a Asp agt Ser ctc Leu 40 gga Gly	acc acc acc acc acc atc Ile 25 ttc Phe aat Asn	cctt acc (Thr 1 10 ccc Pro ctg Leu tct ser	gagg etc g Leu i aag Lys ccc Pro gtg Val	gat	tgc Cys ctg Leu 45 gtt Val	agc a Ser I acc Thr 30 tat Tyr	ttaa ita ile 15 aaa Lys tcc Ser gtc Val	a 180 227 275 323

			- 15-		
ggc tac tat Gly Tyr Tyr	gca gca gac Ala Ala Asp 100	cag tgg gtt Gln Trp Val	ttt ggg cta ggt Phe Gly Leu Gly 105	/	515
Met Ile Ser	tgg atg tac Trp Met Tyr : 115	ttg gtg ggc Leu Val Gly 120	ttt tac agt ggc Phe Tyr Ser Gly	ata ttc ttt Ile Phe Phe 125	563
gtc atg ctc Val Met Leu 130	atg agc att Met Ser Ile	gat aga tac Asp Arg Tyr 135	ctg gcg ata gtg Leu Ala Ile Val 140	cac/gcg gtg His Ala Val	611
ttt tcc ttg Phe Ser Leu 145	Arg Ala Arg	acc ttg act Thr Leu Thr 150	tat ggg gtc atc/ Tyr Gly Val Ile 155	acc agt ttg Thr Ser Leu	659
gct aca tgg Ala Thr Trp 160	tca gtg gct Ser Val Ala 165	gtg ttc gcc Val Phe Ala	tcc ctt cct/ggc Ser Leu Pro Gly 170	ttt ctg ttc Phe Leu Phe 175	707
Ser Thr Cys	Tyr Thr Glu 180	Arg Asn His	acc tac tgc aaa Thr Tyr Cys Lys 185	Thr Lys Tyr 190	755
Ser Leu Asn	Ser Thr Thr 195	Trp Lys Val 200	ctc agc tcc ctg Leu Ser Ser Leu	Glu Ile Asn 205	803
Ile Leu Gly 210	Leu Val Ile	Pro Leu Gly	atc atg ctg ttt /Ile Met Leu Phe 220	Cys Tyr Ser	851
Met Ile Ile 225	Arg Thr Leu	Øln His Cys 230	aaa aat gag aag Lys Asn Glu Lys 235	Lys Asn Lys	899
Ala Val Lys 240	Met Ile Phe 245	Ala Val Val	gtc ctc ttc ctt Val Leu Phe Leu 250	Gly Phe Trp 255	947
Thr Pro Tyr	Asn fle Val	Leu Phe Leu	gag acc ctg gtg Glu Thr Leu Val 265	Glu Leu Glu 270	995
gtc ctt cag Val Leu Gln	gac tgc acc Asp Cys Thr 275	ttt gaa aga Phe Glu Arg 280	tac ttg gac tat Tyr Leu Asp Tyr	gcc atc cag Ala Ile Gln 285	1043
Ala Thr Glu 290	Thr Leu/Ala	Phe Val His	tgc tgc ctt aat Cys Cys Leu Asn 300	Pro Ile Ile	1091
tac ttt ttt Tyr Phe Phe 305	ctg ggg gag Leu Gly Glu	aaa ttt cgc Lys Phe Arg 310	aag tac atc cta Lys Tyr Ile Leu 315	cag ctc ttc Gln Leu Phe	1139

aaa acc tgc agg ggc ctt ttt gtg ctc tgc caa tac tgt ggg ctc ctc Lys Thr Cys Arg Gly Leu Phe Val Leu Cys Gln Tyr Cys Gly Leu Leu 320 325 330 335	1187
caa att tac tot got gac acc coc ago toa tot tac acg cag toc acc Gln Ile Tyr Ser Ala Asp Thr Pro Ser Ser Ser Tyr Thr Gln Ser Thr 340 345 350	1235
atg gat cat gat ctt cat gat gct ctg taggaaaaat gaaatggtga Met Asp His Asp Leu His Asp Ala Leu 355 360	1282
aatgcagagt caatgaactt ttccacattc agagcttact ttaaaattgg tatttttagg	1342
taagagatcc ctgagccagt gtcaggagga aggcttacac ccacagtgga aagacagctt	1402
ctcatcctgc aggcagettt ttctctccca ctagacaagt ccagcctggc aagggttcac	1462
ctgggctgag gcatccttcc tcacaccagg cttgcctgca ggcatgagtc agtctgatga	1522
gaactetgag cagtgetiga atgaagttgt aggtaatatt geaaggeaaa gaetatteee	1582
ttctaacctg aactgatggg tttctccaga gggaattgca gagtactggc tgatggagta	1642
aatcgctacc ttttgctgtg gcaaatgggc cccg	1677
<210> 34 <211> 360	
<212> PRT <213> Homo sapiens - human CCR4	
/ / //	
<pre><400> 34 Met Asn Pro Thr Asp Fle Ala/Asp Thr Thr Leu Asp Glu Ser Ile Tyr</pre>	
1 5/ // 10 15	
Ser Asn Tyr Tyr Leu Tyr/Glu Ser Ile Pro Lys Pro Cys Thr Lys Glu 20 25 30	
Gly Ile Lys Ala Phe Gly Glu Leu Phe Leu Pro Pro Leu Tyr Ser Leu 35 40 45	
Val Phe Val Phe Gly Leu Leu Gly Asn Ser Val Val Leu Val Leu 50 55 60	
Phe Lys Tyr Lys Arg Leu Arg Ser Met Thr Asp Val Tyr Leu Leu Asn 65 70 75 80	
1	

Tyr Tyr Ala Ala Asp Gln Trp Val Phe Gly Leu Gly Leu Cys Lys Met 100 105 110

Ile Ser Trp Met Tyr Leu Val Gly Phe Tyr Ser Gly Ile Phe Phe Val

Met Leu Met Ser Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe 130 135 ___ 140

Ser Leu Arg Ala Arg Thr Leu Thr Tyr Gly Val Ile Thr Ser Leu Ala 145 150 155 160

Thr Trp Ser Val Ala Val Phe Ala Ser Leu Pro Gly Phe Leu Phe Ser

Thr Cys Tyr Thr Glu Arg Asn His Thr Tyr Cys Lys Thr Lys Tyr Ser 180 185 190

Leu Asn Ser Thr Thr Trp Lys Val Leu Ser Ser/Leu Glu Ile Asn Ile
195 200 205

Leu Gly Leu Val Ile Pro Leu Gly Ile Met Leu Phe Cys Tyr Ser Met 210 215 220

Ile Ile Arg Thr Leu Gln His Cys Lys Asn Glu Lys Lys Asn Lys Ala
225 230 235 240

Val Lys Met Ile Phe Ala Val Val Leu Phe Leu Gly Phe Trp Thr
245 250 255

Pro Tyr Asn Ile Val Leu Phe Leu/Glu Thr Leu Val Glu Leu Glu Val
260 / 265 270

Leu Gln Asp Cys Thr Phe Glu Arg Tyr Leu Asp Tyr Ala Ile Gln Ala 275 /280 285

Thr Glu Thr Leu Ala Phe Vai His Cys Cys Leu Asn Pro Ile Ile Tyr 290 / 295 300

Phe Phe Leu Gly Glu Lys Phe Arg Lys Tyr Ile Leu Gln Leu Phe Lys 305 310 315 320

Thr Cys Arg Gly Leu Phe Val Leu Cys Gln Tyr Cys Gly Leu Leu Gln 325 330 335

Ile Tyr Ser Ala Asp Thr Pro Ser Ser Ser Tyr Thr Gln Ser Thr Met
340 345 350

Asp His Asp Leu His Asp Ala Leu 355 / 360

<210> 35 <211> 1784

1	ı	1	4	
ı			1	
•		,	7	
		•		

	•
<212>	DNA
<213>	murine MDC cDNA
200	
<220>	
<221>	CDS
<222>	(1)(276)
<220>	
<221>	mat_peptide
<222>	(73)(276)
<400>	35
atg to	ct aat ctg cgt gtc
Met Se	er Asn Leu Arg Val -20

400> 35
atg tct aat ctg cgt gtc cca ctc ctg gtg gct ctc gtc ctt ctt gct 48
Met Ser Asn Leu Arg Val Pro Leu Leu Val Ala Leu Val Leu Leu Ala
-20 -15 -10

gtg gca att cag acc tct gat gca ggt ccc tat gg/t gcc aat gtg gaa 96
Val Ala Ile Gln Thr Ser Asp Ala Gly Pro Tyr Gly Ala Asn Val Glu
-5 -1 1 5

gac agt atc tgc tgc cag gac tac atc cgt cac cct ctg cca tca cgt

Asp Ser Ile Cys Cys Gln Asp Tyr Ile Arg H.s Pro Leu Pro Ser Arg

10 15 20

tta gtg aag gag ttc ttc tgg acc tca aaa tcc tgc cgc aag cct ggc
Leu Val Lys Glu Phe Phe Trp Thr Ser Lys Ser Cys Arg Lys Pro Gly
25 30 35 40

gtt gtt ttg ata acc gtc aag aac cga gat atc tgt gcc gat ccc agg 240
Val Val Leu Ile Thr Val Lys Asn Arg Asp Ile Cys Ala Asp Pro Arg
45 50 55

cag gtc tgg gtg aag aag cta ctc/cat aaa ctg tcc tagggaggag 286
Gln Val Trp Val Lys Lys Leu Leu His Lys Leu Ser
60 65

gacctgatga ccatgggtct ggtgggtcc agggaggctc agcaagccct attetetge 346 catteragea agageettge caacgacgec acetttacte acetecatee eetgggetgt 406 cactetgtca ggetetggte eetetacete eetetatee ettecagett atececette 466 aatgtggcag etgggaaaca catteaggee ageettacee aatgeetaet eeecaatget 526 ttagatgaga ecagegteet tgttttgatg eeetgateet atgatgeett eeecaateee 586 ageettggee eeettetett ettgeatgta gggaaggeee ataggttea aatatgtget 646 aeetaettee ettetetggg ggttetaata eeeageatgt tttteetget geaggeacet 706 atecagtgee acacacetee eaagttteta teagteecag tgggcateea ecaageecea 766 aaetteagae tteettggee teeacetaet eteagtagaa ttetgggagt tteaggetgg 826 teeaceagge eeeeeagggt taggeeaagg teeceaceag ageteeteet gttettggt 886

<210> 36 <211> 92 <212> PRT

<213> murine MDC

<400> 36

Met Ser Asn Leu Afg Val Pro Leu Leu Val Ala Leu Val Leu Leu Ala

Val Ala Ile Gln Thr Ser Asp Ala Gly Pro Tyr Gly Ala Asn Val Glu
-5 -1 1 5

Asp Ser Ile Cys Cys Gin Asp Tyr Ile Arg His Pro Leu Pro Ser Arg
10 20

Leu Val Lys Glu Phe Phe Trp Thr Ser Lys Ser Cys Arg Lys Pro Gly 25 30 35 40

Val Val Leu Ile Thr Val Lys Asn Arg Asp Ile Cys Ala Asp Pro Arg
45 50 55

Gln Val Trp Va Lys Lys Leu Leu His Lys Leu Ser

<210> 37 <211> 958	
<212> DNA <213> rat MDC cDNA	
<220> <221> CDS <222> (1)(243)	
<220> <221> mat_peptide <222> (40)(243)	
<400> 37	
ctc gtc ctt ctt gct gtg gca ctt cag acc tcc gat gca ggt ccc tat 48 Leu Val Leu Leu Ala Val Ala Leu Gln Thr Ser Asp Ala Gly Pro Tyr -10 -5 -1 1	3
ggt gcc aat gtg gaa gac agt atc tgc tgc cag gac tac atc cgt cac 96 Gly Ala Asn Val Glu Asp Ser Ile Cys Cys Gln Asp Tyr Ile Arg His 5 10 15	6
cct ctg cca cca cgt ttc gtg aag gag ttc tac tgg acc tca aag tcc Pro Leu Pro Pro Arg Phe Val Lys Glu Phe Tyr Trp Thr Ser Lys Ser 20 25 30 35	44
tgc cgc aag cct ggc gtc gtt ttg ata acc atc aag aac cga gat atc Cys Arg Lys Pro Gly Val Val Leu Ile Thr Ile Lys Asn Arg Asp Ile 40 45 50	92
tgt gct gac ccc ang atg ctc tgg gtg aag aag ata ctc cac aag ttg Cys Ala Asp Pro Xaa Met Leu Tap Val Lys Lys Ile Leu His Lys Leu 55 60 65	40
gcc tagggagaag ggcctgatga ccadgggtct ggtgtctcca caaggctcag 29	93
caaaccctat ccttctgcca tccagcaaga gccttgccaa caactccacc tttgctcacc 3	53
tccatccct gggttgtcac tctgtgaage ctcgggtccc tgtacttcct gtccgtcccc 4	13
tocageteat tetetteeaa egreggeagee gggaageact tetggetage ettaceeaat 4	
actactcccc actgctttaa atgagaccag ggtccttgtt ttggtgcctt tggatcctat 5	
gatgccttcc cagtctccag ccttggcccc cttctcttct	
atctttcaag tatgtgctac ccaattcctc ttcctcggag gctgctggga cccggaatat 6	
tateccetge tgeaggeete tecaageace acteacetee caggetttee atecgteeca 7	
gtcccaagcc ccatgottca gaacttccct tggcccccc ctacactcca caaattctgg 7	
ggaagtetea enaactgggt ecceteagge ecceaeggga aggaaggtee eccneeaaca 8	333

acntectect gttttecceg gtetecence neegggantt gggeneeena atececaakt 893 tetgaanang aacngeceat tentecentt aaaattaace ttteececee teectgangt 953 958 taggn <210> 38 <211> 81 <212> PRT <213> rat <400> 38 Leu Val Leu Leu Ala Val Ala Leu Gln Thr Ser Asp Ala Gly Pro Tyr -5 -10 Gly Ala Asn Val Glu Asp Ser Ile Cys Cys Gln Asp Tyr Ile Arg His Trp Thr Ser Lys Ser Pro Leu Pro Pro Arg Phe Val Lys Glu Phe Tyr 20 Cys Arg Lys Pro Gly Val Val Leu Ile Thr/Ile Lys Asn Arg Asp Ile Cys Ala Asp Pro Xaa Met Leu Trp Val Lys Lys Ile Leu His Lys Leu 60 Ala <210> 39 <211> 506 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: S. cerevisiae alpha factor prepro/human MDC cDNA/chimeri/c construct <221> CDS <222> (15) .. (476) <220> <221> mat_peptide <222> (270)..(476) <400> 39 atctcgagct cacg atg /aga ttt cct tca att ttt act gca gtt tta ttc Met/Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe -75 -85 -80 gca gca tcc tcc gca tta gct gct cca gtc aac act aca aca gaa gat Ala Ala Ser Ser Ála Leu Ala Ala Pro Val Asn Thr Thr Glu Asp

SUBSTITUTE SHEET (RULE 26)

-60

-70

			_													1,0030,20
									-22-							<i>/</i> *
													tta Leu			146
													agc Ser			194
													gct Ala			242
													gcc Ala 5			290
													ctg Leu			338
													ccg Pro			386
													gcc Ala			434
									aat Asn 65							476
tga	aggc	ctt	ctag	agcg	gc c	gcat	cgat	a								506
<21 <21 <21	0> 4 1> 1 2> P 3> C 0> 4	54 RT DNA		/			/		/	/	/					
	Arg		Pro	ser	Ile		Thr	Ala	Val	Leu -75		Ala	Ala	Ser	Ser -70	
Ala	Leu	Ala	Ala	P1Q -65		Asn	Thr	Thr	Thr -60		Asp	Glu	Thr	Ala -55		
Ile	Pro	Ala	-50		/val	Ile	Gly	Tyr -45		Asp	Leu	Glu	Gly -40	Asp	Phe	
Asp	Val	Ala -35		. Leu	Pro	Phe	Ser		Ser	Thr	Asn	-25	Gly	Leu	. Leu	
Phe	: Ile -20		Thr	Thr	Ile	-15		lle	· Ala	Ala	Lys -10		Glu	Gly	Val	
					St	JBSTI	TUTE	SHEE	ET (RI	JLE 2	6)					

Pro Leu Asp Lys Arg Gly Pro Tyr Gly Ala Asn Met Glu Asp Ser Val

Cys Cys Arg Asp Tyr Val Arg Tyr Arg Leu Pro Leu Arg Val Val Lys

15 20 25

His Phe Tyr Trp Thr Ser Asp Ser Cys Pro Arg Pro Gly Val Val Leu
30 35 _ 40

Leu Thr Phe Arg Asp Lys Glu Ile Cys Ala Asp Pro Arg Val Pro Trp
45 50 55

Val Lys Met Ile Leu Asn Lys Leu Ser Gln 60 65

<210> 41

<211> 93

<212> PRT

<213> Artificial Human MDC analog

<220>

<223> The amino acid at position 2 is not proline

<220>

<400> 41

Met Ala Arg Leu Gln Thr Ala Leu Leu Val Val Leu Val Leu Leu Ala
-20 -15 -10

Val Ala Leu Gln Ala Thr Glu Ala Gly Xaa Tyr Gly Ala Asn Met Glu
-5 5

Asp Ser Val Cys Cys Arg Asp Tyr Val Arg Tyr Arg Leu Pro Leu Arg

Val Val Lys His Phe Tyr Typ Thr Ser Asp Ser Cys Pro Arg Pro Gly
25 30 35 40

Val Val Leu Leu/Thr Phe Arg Asp Lys Glu Ile Cys Ala Asp Pro Arg
50
55

Val Pro Trp Val Lys Met Ile Leu Asn Lys Leu Ser Gln
60 65

<210> 42

<211> 538

<212> DNA

<213> Homo sapiéms

<220>

<221> CDS

<222> (53)..(\(\beta\)34)

<220>

10

<221> mat_peptide <222> (122)..(334) <400> 42 ccctgagcag agggacctgc acacagagac tccctcctgg gctcctggca cc atg gcc 58 Met Ala cca ctg aag atg ctg gcc ctg gtc acc ctc ctc ctg ggg gct/ tct ctg 106 Pro Leu Lys Met Leu Ala Leu Val Thr Leu Leu Gly Ala Ser Leu -15 -20 cag cac atc cac gca gct cga ggg acc aat gtg ggc cgg gag tgc tgc 154 Gln His Ile His Ala Ala Arg Gly Thr Asn Val Gly Arg Glu Cys Cys 202 ctg gag tac ttc aag gga gcc att ccc ctt aga aag ctg aag acg tgg Leu Glu Tyr Phe Lys Gly Ala Ile Pro Leu Arg Lys Leu Lys Thr Trp tac cag aca tot gag gac tgc tcc agg gat gc¢ atc gtt ttt gta act 250 Tyr Gln Thr Ser Glu Asp Cys Ser Arg Asp Ala Ile Val Phe Val Thr 30 35 gtg cag ggc agg gcc atc tgt tcg gac ccq aac aac aag aga gtg aag 298 Val Gln Gly Arg Ala Ile Cys Ser Asp Pro Asn Asn Lys Arg Val Lys 45 50 55 aat gca gtt aaa tac ctg caa agc ctt/ gag agg tct tgaagcctcc 344 Asn Ala Val Lys Tyr Leu Gln Ser Leú Glu Arg Ser 70 60 65 tcaccccaga ctcctgactg tctccccggga ctacctggga cctccaccgt tggtgttcac 404 cgcccccacc ctgagcgcct/gggtcaggg gaggccttcc agggacgaag aagagccaca 464 gtgagggaga teccatecee ttgtetgaae tggagecatg ggcacaaagg geccagatta 524 538 aagtctttat cctc <210> 43 <211> 94 <212> PRT <213> Homo sapiens <400> 43 Met Ala Pro Leu Lys/Met Leu Ala Leu Val Thr Leu Leu Gly Ala -20 Ser Leu Gln His The His Ala Ala Arg Gly Thr Asn Val Gly Arg Glu -5 -1 Cys Cys Leu Glu Tyr Phe Lys Gly Ala Ile Pro Leu Arg Lys Leu Lys

SUBSTITUTE SHEET (RULE 26)

15

Val Lys Asn Ala Val Lys Tyr Leu Gln Ser Leu Glu Arg Ser

60 65 _ 70

<210> 44

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 44

atgggaccat atggagcaaa tatggaagat agt

33

<210> 45

<211> 335

<212> DNA

<213> Macaque MDC

<220>

<221> CDS

<222> (19)..(297)

<400> 45

agacatacag gacagage atg gct cgc cta cag act gtg ttc ctg ggt gtc 51

Met Ala Arg Leu Gln Thr Val Phe Leu Gly Val

-20 -15

ctc atc ctc ctt gct gtg gcg ctt caa gca act gag gca ggc ccc tat 99
Leu Ile Leu Leu Ala Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr
-10 5 -1 1

ggc gcc aac atg gaa gac agc gtc tgc tgc cgt gat tac gtc cgt tac 147 Gly Ala Asn Met Glu Asp Ser Val Cys Cys Arg Asp Tyr Val Arg Tyr 5 / 10 15

cgt atg ccc ctg cgt gtg gtg aaa cac ttc tac tgg acc tca gac tcc 195
Arg Met Pro Leu Arg Val Val Lys His Phe Tyr Trp Thr Ser Asp Ser
20 35

tgc ccg agg cct ggc gtg gtg ttg cta acc tcc agg gat aag gag atc 243
Cys Pro Arg Pro Gly Val Val Leu Leu Thr Ser Arg Asp Lys Glu Ile
45 50

tgt gcc gat ccc aga gtg ccc tgg gtg aag atg att ctc aat aag ctg 291 Cys Ala Asp Pro Arg Val Pro Trp Val Lys Met Ile Leu Asn Lys Leu 55 60 65

age caa tgaagageet actatgatga eegtggeeta ageaagee Ser Gln 335

<210> 46

<211> 93

<212> PRT

<213> Macaque MDC .

<400> 46

Met Ala Arg Leu Gln Thr Val Phe Leu Gly Val Leu/Ile Leu Leu Ala
-24
-20
-15
-10

Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr Gly Ala Asn Met Glu

Asp Ser Val Cys Cys Arg Asp Tyr Val Arg Tyr Arg Met Pro Leu Arg
10 15 20

Val Val Lys His Phe Tyr Trp Thr Ser Asp Ser Cys Pro Arg Pro Gly
25 30 40

Val Val Leu Leu Thr Ser Arg Asp Lys Gl/u Ile Cys Ala Asp Pro Arg
45 50 55

Val Pro Trp Val Lys Met Ile Leu Asn/Lys Leu Ser Gln
60 65