- G, G_i denote groups.
- **103.** Find all normal subgroups in (a) D_4 ; (b) S_3 ; (c) \mathbf{Z}_{24} .
- **104.** Let $H \leq G$ and assume bH = Hb for some $b \in G \setminus H$. Does this imply $H \triangleleft G$ if |G : H| is (a) 3; (b) 4; (c) 5?
- **105.** (a) Prove that the center $Z(G) \triangleleft G$, moreover all its subgroups are normal in G.
 - (b) Determine the center of (b1) \mathbb{Z}_n ; (b2) D_n ; (b3) S_n .
- 106. (a) Describe all factor groups of the groups in Problem 103.
 - (b) Find a relation between the order of g in G and the order of gN in G/N.
 - (c) Prove: If $|G:N| < \infty$, then $g^{|G:N|} \in N$ for every $g \in G$.
- **107.** True or false? (N, N_i) are non-trivial normal subgroups in G.)
 - (a) If G is commutative, then so is N. (b) If N is commutative, then so is G.
 - (c) If G is commutative, then so is G/N. (d) If G/N is commutative, then so is G.
 - (e) If N is commutative, then so is G/N. (f) If G/N is commutative, then so is N.
 - (g) If G is cyclic, then so is G/N.
- (h) If G/N is cyclic, then so is G.
- (i) If N is cyclic, then so is G/N.
- (j) If G/N is cyclic, then so is N.
- (k) If $N_1 \cong N_2$, then $G/N_1 \cong G/N_2$.
- (1) If $G/N_1 \cong G/N_2$, then $N_1 \cong N_2$.
- 108. Let G be a finite non-abelian group. Prove:
 - (a) G/Z(G) is not cyclic.
 - (b) $|Z(G)| \leq |G|/4$ and equality can hold.
- *(c) (Some measure of commutativity.) Let $\alpha(G)$ be the ratio of the pairs of elements which commute, i.e. $\alpha = \frac{|\{(a,b) \mid ab = ba\}|}{|G|^2}$. Then $\alpha \leq 5/8$ and equality can hold.
- **109.** Let $\varphi: G_1 \to G_2$ be a group homomorphism, $g \in G_1$. Prove:
 - (a) If $o(g) = \infty$, then $o(\varphi(g))$ can be any integer or ∞ .
 - (d) If $o(g) < \infty$, then $o(\varphi(g)) \mid o(g)$.
- **110.** For which finite groups G is $\varphi(g) = g^2$ a $G \to G$ isomorphism?
- **111.** If $|G_1| < \infty$ and $\varphi : G_1 \to G_2$ is a homomorphism, then $|G_1| = |\operatorname{Ker} \varphi| \cdot |\operatorname{Im} \varphi|$.
- **112.** For which integers n does there exist a homomorphism $\varphi: D_n \to G_2$ such that $\operatorname{Im} \varphi$ is a Klein group?
- **113.** (a) $G_1 \times G_2$ is commutative iff both G_1 and G_2 are commutative;

(b)
$$o((a,b)) = \begin{cases} [o(a),o(b)], & \text{if } o(a),o(b) < \infty; \\ \infty & \text{otherwise.} \end{cases}$$

- 114. Find the number of subgroups in $\mathbf{Z}_p \times \mathbf{Z}_p$ where p is a prime.
- 115. (a) Represent the following groups as a direct product of cyclic groups \mathbf{Z}_{p^k} where p is a prime: (a1) K(=Klein group); (a2) \mathbf{Z}_{3000} ; (a3) the symmetry group of a brick.
 - (b) Determine the number of pairwise non-isomorphic Abelian groups having 144 elements.
 - (c) Let A(k) be the number of pairwise non-isomorphic Abelian groups. Show that if k and m are coprime, then A(km) = A(k)A(m).

freud@caesar.elte.hu

freud.web.elte.hu/bsm/index.html