

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

NIS Studient
N° étudiant :
Prénom :
Nom :
iuste et à soustraire un

Le principe de notation associé au QCM consiste à attribuer deux points à une réponse juste et à soustraire un point pour une réponse fausse. L'absence de réponse se traduit par zéro. Une seule réponse par question. **Pour** les questions 4b, 8 et 9c qui ne sont pas du type QCM, appelées « EX », aucun point bien sûr n'est retiré en cas

de réponse fausse.	, qui o o p ao an o, p o a	,ciii, appere				
1:QCM (/2)						
Dans le cadre de l'étude	des capteurs, un capteur	faisant preuv	e de finesse es	t		
☐ intelligent	□ discret	☐ miniatu	re	☐ fragile		
2 : QCM (/2)						
Une chaîne de mesure d'un champ magnétique supposée linéaire sur l'étendue de mesure a une sensibilité de 10 mV/T. L'incertitude sur la mesure de la tension est de ±1 mV. En conséquence, quelle est l'incertitude sur la valeur du champ magnétique ?						
□ ±0,01 T	□ ±0,1 T	□ ±1 T		□ ±10 T		
3 : QCM (/2)						
Le coefficient d'un thermocouple, supposé constant sur l'étendue de mesure, est égal à 35 mV/K. Quel est l'écart de température (en valeur absolue) entre la température de référence et la température à mesurer si on mesure une tension aux bornes du thermocouple de 70 mV ?						
□ 2 K	□ 0,5 °C	□ 275 °C		□ 275 K		
4: QCM (/2) et EX (/4)						
4a. Dans le domaine des	s capteurs, CTN signifie					
☐ Capteur Thermostaté au Nitrogène ☐ Coefficient de Température Négatif						
☐ Coefficient Thermoco	☐ Capteui	☐ Capteur Tungstène Nitrogène				
en déduit R _{CTN} puis T) et sont parfaits (résistance	empérature T grâce à une (t de la fig.2 (I ₀ imposé et V ce nulle pour l'ampèrem ue, expliquez simplement s	mesuré: on lètre et infi	en déduit R _{CTN} nie pour le v	puis T) où les oltmètre). Du	appareils de mesure u point de vue de	
		£ (R _{CTN}	- A	I ₀ R _{CTN} I ₀	

A est un ampèremètre

Fig.1

Fig.2

5: QCM (/6)

La caractéristique d'une photodiode est donnée sur la fig.3 pour différents éclairements. Cette photodiode est placée dans le circuit de la fig.4 où E = 1,2 V et R_{LOAD} = 12 k Ω .

5a. Que vaut I_D et V_D pour ϕ_r = 1,6 mW/cm² ? (Il est fortement conseillé, pour vous aider, de dessiner la droite de charge sur la fig.3.)

- \square V_D = -0,2 V et I_D = -0,083 mA
- \square V_D = +0,25 V et I_D = -0,05 mA

 \square V_D = +0,25 V et I_D = 0,05 mA

 $\square V_D = -1 V \text{ et } I_D = -0.083 \text{ mA}$

5b. Lequel de ces schémas équivalents modélise le mieux cette photodiode placée dans le circuit de la fig.4?

- \square un générateur de tension orienté convenablement délivrant une tension V= $K\phi_r$ avec K=5 cm²/A et ϕ_r en mW/cm²
- un générateur de courant orienté convenablement délivrant un courant $I = K\phi_r$ avec K = 0.05 cm²/V et φ_r en mW/cm²
- ☐ un générateur de tension délivrant une tension de 0 V
- \square une résistance de 12 k Ω

5c. On mesure $V_{mes} = 0.6 \text{ V}$. Que vaut ϕ_r ?

- $\square \approx 0.4 \text{ mW/cm}^2$
- $\square \approx 0.7 \text{ mW/cm}^2$ $\square \approx 1 \text{ mW/cm}^2$ $\square \approx 1.3 \text{ mW/cm}^2$

Fig.4

Fig.3

ER2 - 1 heure -	le 6	novem	bre	2014
-----------------	------	-------	-----	------

Sans document ni calculatrice

6: QCM (/4)

Rappelons que pour un capteur à effet Hall de coefficient de Hall R_H , d'épaisseur e, dans lequel circule un courant I, la tension mesurée est reliée au champ magnétique par : $V_{mes} = R_H IB/e$.

6a. Pour une même épaisseur e et un même courant I, le capteur à effet Hall le plus sensible est celui dont le coefficient de Hall R_H vaut

 \Box -7.10⁻¹¹ m³/C

 \Box +3.10⁻¹¹ m³/C

 $\Box -2.10^{-3} \text{ m}^3/\text{C}$

 \Box -7.10⁻³ m³/C

6b. Un capteur à effet Hall du commerce contient généralement également un amplificateur de tension. Le constructeur donne la courbe de la tension de sortie (en volts) en fonction du champ magnétique (en gauss ; rappel : 10000 gauss = 1 tesla) (fig. 5). Quelle est la sensibilité de ce capteur ?

□ 2,5 V/G

☐ 25 mV/G

☐ 2,5 mV/G

□ 25 μV/G

Fig.5

7: QCM (/8)

Pour un éclairement de 1000 W/m^2 et à 25°C , un panneau solaire a une tension $V_{mpp} = 20 \text{ V}$ et un courant $I_{mpp} = 1 \text{ A}$. La charge est choisie, quelle que soit la configuration, de façon que la tension et le courant délivrés par un seul panneau soient égaux à 20 V et 1 A. On dispose de trois panneaux solaires de ce type qu'on peut placer soit les trois en série, soit les trois en parallèle.

7a. Quel est le courant maximum que peut délivrer l'ensemble des trois panneaux sous 1000 W/m² et à 25°C?

□ 0,33 A

 \Box 1 A

□ 3 A

□ 20 A

7b. Quelle est la tension maximale que peut délivrer l'ensemble des trois panneaux sous 1000 W/m^2 à 25°C ?

□ 1 V

□ 6,66 V

□ 20 V

□ 60 V

7c. Quelle est la puissance maximale que peut délivrer l'ensemble des trois panneaux sous 1000 W/m^2 et à 25°C ?

□ 0,33 W

□ 6,66 W

□ 60 W

□ 120 W

7d. On donne les coefficients de température suivants pour ces panneaux : α = +0,5 mA/°C et β = -100 mV/°C. Toujours sous 1000 W/m², que valent le courant I_{mpp} et la tension V_{mpp} quand la température est de 15°C ?

 \square V_{mpp} = 21 V et I_{mpp} = 1,005 A

 $\square V_{mpp} = 21 \text{ V et } I_{mpp} = 0.995 \text{ A}$

 \Box V_{mpp} = 19 V et I_{mpp} = 1,005 A

 $\square V_{mpp} = 19 \text{ V et } I_{mpp} = 0.995 \text{ A}$

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

8: EX (/12)

Soit le capteur de position de la fig.6. Il est constitué :

- D'un substrat (isolant) sur lequel est déposé un matériau magnétorésistif constituant une résistance filiforme de longueur L dont la surface de la section du fil est appelée S : l'extrémité gauche est appelée le point A, l'extrémité droite le point D et le point du milieu est appelé C. En l'absence du champ magnétique considéré, la résistivité du matériau magnétorésistif vaut ρ₀, en présence du champ magnétique considéré, elle vaut 2ρ₀. Le substrat et la résistance sont immobiles par rapport au repère.
- D'un aimant (fixé à un système) engendrant une zone supposée rectangulaire (de largeur d) où il y a un champ magnétique B uniforme (il y a le même champ dans toute la zone, il est nul en dehors). L'aimant et donc la zone de champ sont mobiles suivant l'axe des x (translation suivant x). On impose d < L/2.

Le mesurande, bien sûr variable, est α : c'est la distance entre le centre de la zone de champ et l'origine x = 0. Les grandeurs électriques mesurées sont les résistances entre les points A, C et D (R_{AC} ou/et R_{AD} ou/et R_{CD}). Remarque : quand la zone de champ magnétique est centrée (autant sur la partie AC que sur la partie CD), α = 0.

Rappel: pour un fil, la résistance est égale à la résistivité du matériau le constituant multipliée par la longueur du fil divisées par la surface de la section du fil.

Avant tout, un expérimentateur mesure R_{AD} en l'absence de champ : cette valeur est donc supposée connue.

Fig.6

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

8a. Quelle est la particularité essentielle d'un matériau magnétorésistif?
8b. Exprimez en fonction de L, S et ρ_0 les résistances R_{AC} (résistance entre A et C) et R_{CD} (résistance entre C et D) si la zone de champ magnétique ne couvre pas du tout la partie allant des points A à D (autrement dit : $ \alpha > L/2 + d/2$).
R _{AC} =
$R_{CD} =$
8c. Exprimez en fonction de L, d et α la résistance R_{AC} divisée par la résistance R_{CD} (R_{AC}/R_{CD}) si la zone de champ magnétique couvre partiellement la partie allant des points A à C et partiellement la partie allant des points C à D (autrement dit : $ \alpha < d/2$).
Résultat : $R_{AC}/R_{CD} =$
8d. α est maintenant quelconque. On mesure R_{AC} et R_{CD} et on trouve $R_{AC} = R_{CD}$. L'un des expérimentateurs dit alors que α = 0, l'autre que le matériau magnétorésistif est en dehors de la zone de champ magnétique. Comment les départager sans mesure supplémentaire?

ER2 - 1 heure - le 6 novembre 2014

Sans document ni calculatrice

9 : QCM	(/6) et EX (/2)				
9a. Pour	transporter l'énergie électrique a	vec un minimum de p	erte, il faut que l'amp	olitude de la tension soit	
☐ la plus	basse possible	☐ la plus haute possible (dans les limites supportées par le câble)			
☐ proportionnelle à la fréquence		☐ inversement proportionnelle à la fréquence			
9b. Quell	e est la fréquence du réseau élect	rique européen ?			
□ 10 Hz	□ 50 Hz	□ 110 Hz	□ 220) Hz	
	le transport de l'énergie électriqu seau alternatif monophasé.	e, donnez un avantag	e d'utiliser un réseau	alternatif triphasé plutôt	
9d. Un « :	smart grid » est				
	une voiture électrique intelligente	et propre			
	un système permettant de transf de gérer cette énergie intelligemr	_	rique non utilisée en	ı énergie non électrique et	
(un système électrique capable d'i consommateurs ou producteurs sécurisée et économique	_	_		
	un réseau de centrales nuclé	aires interconnectée	es et capable de	gérer un incident grave	