Złoża minerałów Problem ID: mineraldeposits

Zajmujesz się przetwarzaniem sygnałów dla pozaziemskiej firmy wydobywczej, a Twój statek właśnie zbliża się do asteroidy. Wstępne skany wskazują na obecność k złóż minerałów na asteroidzie, ale ich dokładne lokalizacje nie są znane.

Powierzchnia asteroidy może być postrzegana jako siatka współrzędnych całkowitych. Każde ze złóż minerałów znajduje się w nieznanych współrzędnych całkowitych, tak że i-te złoże ma współrzędne (x_i,y_i) spełniające $-b \le x_i \le b$ oraz $-b \le y_i \le b$ dla pewnej liczby całkowitej b odpowiadającej rozmiarowi Twojego początkowego skanu.

Aby określić dokładne położenie złóż minerałów, możesz wysłać na powierzchnię asteroidy sondy. Sondy są wysyłane w falach po kilka sond jednocześnie.

odująca ściana błota odsłaniająca nowe minerały. Zdjęcie: Michae D. Turnbull, licencia: CC BY-SA

Powiedzmy, że wysłałeś jedną falę d sond na powierzchnię na współrzędne (s_j,t_j) dla $1 \le j \le d$. Kiedy sonda dociera do swoich współrzędnych, określa odległości w metryce Manhattan do każdego z k złóż minerałów i wysyła odległości z powrotem na statek. Wszystkie pakiety danych docierają w tym samym czasie i nie jest możliwe określenie, które sondy zwróciły jakie odległości. Tak wiec fala zwraca $k \cdot d$ odległości całkowitych

$$|x_i - s_j| + |y_i - t_j|$$
 dla każdego $i \in \{1, \dots, k\}$ oraz $j \in \{1, \dots, d\}$.

Musisz zminimalizować liczbę fal sond, które są wysyłane na powierzchnię.

Interakcja

Jest to problem interaktywny. Interakcja rozpoczyna się od wczytania ze standardowego wejścia pojedynczego wiersza zawierającego trzy liczby całkowite b, k oraz w: granica siatki b, liczbę złóż minerałów k, i maksymalna liczba w fal, które możesz wysłać.

Następnie zadajesz co najwyżej w zapytań, każde odpowiadające jakiejś fali. Zapytanie składa się z ?, po którym następuje 2d liczb całkowitych oddzielonych spacją, na przykład "? $s_1\ t_1\cdots s_d\ t_d$ ", gdzie liczba d sond w tej fali musi spełniać wymagania $1\leq d\leq 2000$. Wartości (s_i,t_i) są interpretowane jako współrzędne i-tej sondy i muszą spełniać $-10^8\leq s_i\leq 10^8$ oraz $-10^8\leq t_i\leq 10^8$. Odpowiedzią jest jeden wiersz zawierający $k\cdot d$ liczb całkowitych w kolejności niemalejącej: wszystkie pary odległości w metryce Manhattan pomiędzy złożami mineralnymi oraz współrzędnymi sondy. Całkowita liczba sond we wszystkich falach nie może przekroczyć $2\cdot 10^4$.

Interakcja kończy się wypisaniem pojedynczego wiersza składającego się ze znaku !, po którym następuje k punktów $x_1, y_1, x_2, y_2, \dots x_k, y_k$, oddzielone spacją. To musi być ostatni wiersz wypisany przez Ciebie na standardowe wyjście.

Twoje zgłoszenie zostanie uznane za poprawne, jeśli wypiszesz wszystkie lokalizacje złóż minerałów. Możesz je wypisać w dowolnej kolejności.

Ograniczenia i punktacja

Zawsze jest spełnione $1 \le b \le 10^8$, $1 \le k \le 20$, oraz $2 \le w \le 10^4$.

Twoje rozwiązanie zostanie przetestowane na zestawie grup testowych, z których każda jest warta pewną liczbę punktów. Każda grupa testowa zawiera zestaw przypadków testowych. Aby uzyskać punkty za daną grupę testową należy rozwiązać wszystkie przypadki testowe w tej grupie. Twój ostateczny wynik będzie maksymalnym wynikiem pojedynczego zgłoszenia.

Grupa	Punkty	Ograniczenia
1	16	$k = 1, w = 10^4$
2	19	$w \ge 500$
3	11	$w \ge 210$
4	13	$w \ge 130$
5	14	$w \ge 3, b \le 10^4$
6	14	$w \ge 3, b \le 10^7$
7	13	Brak dalszych ograniczeń

Przykład

W tym przykładzie, na pozycjach (1,2) oraz (-3,-2) znajdują się k=2 złoża mineralne, zareprezentowane jako czerwone gwiazdy. W pierwszym rzucie możesz wysłać d=3 sondy na pozycje (-4,-3), (-1,0) oraz (2,-1), zareprezentowane jako czarne kropki. Ta fala zwróciłaby 6 odległości

$$2, 4, 4, 4, 6, 10$$
.

W następnej fali można wysłać sondy d=2 do (1,2) oraz (0,-2). Ta fala zwróciłaby 4 odległości

$$0, 3, 5, 8$$
.

Read	Sample Interaction 1	Write
4 2 10		
	? -4 -3 -1 0 2 -1	
2 4 4 4 6 10		
	? 1 2 0 -2	
0 3 5 8		
	! 1 2 -3 -2	