SI LV6 Linjär Algebra

Gustav Örtenberg | gusort@student.chalmers.se

2017-12-04

1

Låt $f(\vec{x}) = f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$.

- a) Bevisa att $f(\vec{x})$ är en linjär avbildning.
- b) Låt $\vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Beräkna $f(\vec{v})$.
- c) Beräkna standardmatrisen A för $f(\vec{x})$.
- d) Beräkna nu $\vec{v} \cdot A$ och verifiera att det stämmer med ert svar i b).

2

Bestäm standardmatrisen för den linjära avbildning i R^2 som först roterar $\frac{\pi}{3}$ och sedan projicerar ortogonalt på y-axeln.

3

Låt

$$D = \begin{bmatrix} 5 & 2 & -1 \\ 6 & 3 & 7 \\ -3 & 2 & 3 \end{bmatrix}, \ \vec{u} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}$$

Låt f_D vara matrisavbildningen m a p D. Beräkna

- a) $f_D(\vec{u})$
- b) $f_D(\vec{v})$
- c) $f_D(\vec{u} + \vec{v})$
- d) $f_D(\vec{2u})$

4

Låt det finnas 2 funktioner f(), g() så att f(): $R^2 \to R^3$ och g(): $R^3 \to R^6$. f() har matrisavbildningen A och g() har matrisavbildningen B.

$$A = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 5 & -1 \\ 0 & 0 & -10 \end{bmatrix}$$

- a) Visa att $g(f(\vec{v}))$ är en linjär avbildning.
- b) Räkna ut matrisavbildningen av den sammansatta avbildningen g(f()).
- c) För vektorn $\vec{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ räkna ut $g(f(\vec{x})).$
- d) Skriv en funktion $h(): R^6 \to R^2$ som håller likheten $h(g(f(\vec{x}))) = \vec{x}$. Ange dess matrisavbildning.

5

Tenta IT, 2014 mars, uppg. 1

Låt f vara den linjära avbildning av planet som speglar i linjen y = -x. Låt g vara den linjära avbildning av planet som roterar medurs vinkeln $\pi/4$ kring origo. Bestäm matrisen för den sammansatta avbildningen som först avbildar först med g^{-1} , sedan med f, och sist med g.

6

Tenta IT, 2012 mars, uppq. 4

Låt $\vec{v} = \begin{bmatrix} 2\\2\\1 \end{bmatrix}$. Bestäm en vektor \vec{w} sådan att mellan \vec{v} och \vec{w} är $\pi/4$ radiander (45 grader).