

Machine Learning

Reuf Kozlica & Maximilian Schirl March 20, 2020

Course Outline

	Dates	Lecture	Assignment
ILV01	24.03.2020	Recap Feature Engineering	Not Graded
LB02	31.03.2020	Naive Bayes	Before Next Lecture
LB03	05.05.2020	The Perceptron	Before Next Lecture
ILV04	19.05.2020	Interpreting Learning Progress	Not Graded
LB05	26.05.2020	Multilavar Paraantran (Paramatar Tuning	14.06.2020
LB06	26.05.2020	Multilayer Perceptron & Parameter Tuning	14.06.2020

Course Grading

Assignment	Percentage
LB02	25%
LB03	25%
LB05 & LB06	50%
This course constitutes 33%	of your overall grade.

Toolkit

- Anaconda for Python 3.7 with Jupyter Notebook
- scikit-learn 0.22.1
- Keras 2.3.1
- TensorFlow 2.1.0
- ... or use the given Docker image

Preparation

- Install Docker for your operating system
- Follow the usage section of the custom Docker image
- Within the Docker container, change your working directory to /notebooks
- Clone the given repository https://github.com/mschirl/machine-learning.git

Submission of Assignments

- Export your Jupyter Notebook as HTML file
- Upload the exported file to Moodle before the deadline specified in the Course Outline

Jupyter Notebook HTML Export

