Welthright code: WM 0615 7410

** Scientific notation

$$10^{3} = 1000 000 000 = 1 \text{ lillion}$$
 $10^{9} : \text{ giga}, G = (Gm = 10^{9} \text{ m})$
 $10^{6} : \text{ miga}, M$
 $10^{3} : \text{ kilo}, \text{ k}$
 $1 = 10^{-2} : \text{ centi}, \text{ c} = 1 \text{ cm} = 10^{-2} \text{ m} = 0.01 \text{ m}$
 $10^{-3} : \text{ milli}, \text{ m}$
 $10^{-6} : \text{ mico}, \text{ m}$
 $10^{-9} : \text{ nano}, \text{ n} = 7$
 $10^{-12} : \text{ pico}, \text{ p}$

ES = $\times 10^{5}$
 $10^{5} = 1 \times 10^{5} = 1 \text{ E5}$
 $10 \times 10^{5} = 10^{6}$
 $1 \text{ m}^{3} = (100 \text{ cm})^{3} = (100)^{3} \text{ cm}^{3}$
 $= 10^{6} \text{ cm}^{3}$
 $= 10^{6} \text{ cm}^{3}$
 $= 1000 000 \text{ cm}^{3}$

exygen absorption N Area N L. 2TT R

Oxygen use N Volume N TT R² L

viability factor N Area N 2TT R

Volume TR²V R

	* Scalars vs. vector
	scalar = quantity without direction couly has a magnitude time, mass, temperature
	as only has a magnitude
	time, mass, Temparature
=	vectors = quantities with both magnitude and a direction
	a diection
	velocity, displacement, force change in position
	change in position
	Example: magnitude = 60 km direction = NW
	direction = NN
	$\Delta \overset{\sim}{\times}$, $\Delta \overset{\sim}{\times}$, $\Delta \overset{\sim}{\times}$, dold
	K
	coordinate system 60km
	vector are the same if magnitude is the same direction regardless of where they apply
	direction
	regardless of where they apply
	DX = magnitude of displace mut vector 60 km = scalar
	60 km = scalar

* Kinematis vs. Dynamics kinematics = study of motion without regards
to its origins
chapter 2-3 dynamics = study of motion and its causes chapter 4-5 Galileo, Newfor (1600-1675) * 1D kinematics direction of vectors in 10 = + or - sign

$\vec{x}(t)$	20	
Telth	[m] x(t)	to [s]
	0	0
		l l
	2	2
		3
+	t -3	4
	-5	4
ē		`

total distance average speed = total time displacement = $\Delta \vec{x}$ tobal time Δt = vector = ∇_{avg} average velocity -