Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

Alguns Problemas e Exames Resolvidos de Álgebra Linear LEAmb, LEAN, LEMat, LQ, MEBiol, MEQ 1º Semestre 2008/2009

 $Prof. \ Paulo \ Pinto \\ http://www.math.ist.utl.pt/\sim ppinto/$

Conteúdo

1	Alguns problemas resolvidos	2
	1.1 Resolução de alguns exames	. 16
	1.2 Exames sem resolução	. 4
2	Consultar exames em:	
	$http://www.math.ist.utl.pt/\sim ppinto/AL/exames.html$	22

1 Alguns problemas resolvidos

1.1 O sistema linear

$$\begin{cases} x+z=3\\ x+2y+2z=6\\ 3y+3z=6 \end{cases}$$

na forma matricial é

$$\left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 2 & 2 \\ 0 & 3 & 3 \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{c} 3 \\ 6 \\ 6 \end{array}\right].$$

Consideremos então a matriz aumentada e o consequente método de eliminação de Gauss:

$$\begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 1 & 2 & 2 & | & 6 \\ 0 & 3 & 3 & | & 6 \end{bmatrix} \xrightarrow{-L_1 + L_2} \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 2 & 1 & | & 3 \\ 0 & 3 & 3 & | & 6 \end{bmatrix} \xrightarrow{-\frac{3}{2}L_2 + L_3} \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 2 & 1 & | & 3 \\ 0 & 0 & \frac{3}{2} & | & \frac{3}{2} \end{bmatrix}.$$

Logo,

$$\begin{cases} x+z=3\\ 2y+z=3\\ \frac{3}{2}z=\frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} x=2\\ y=1\\ z=1. \end{cases}$$

1.2 O sistema linear

$$\begin{cases} 3z - 9w = 6 \\ 5x + 15y - 10z + 40w = -45 \\ x + 3y - z + 5w = -7 \end{cases}$$

é equivalente a

$$\begin{bmatrix} 0 & 0 & 3 & -9 \\ 5 & 15 & -10 & 40 \\ 1 & 3 & -1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 6 \\ -45 \\ -7 \end{bmatrix}.$$

Consideremos então a matriz aumentada e o consequente método de eliminação de Gauss:

$$\begin{bmatrix} 0 & 0 & 3 & -9 & | & 6 \\ 5 & 15 & -10 & 40 & | & -45 \\ 1 & 3 & -1 & 5 & | & -7 \end{bmatrix} \xrightarrow[\frac{1}{5}L_2]{} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 1 & 3 & -2 & 8 & | & -9 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} \xrightarrow[-L_1+L_2]{}$$

$$\longrightarrow \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} \xrightarrow[3L_2+L_3]{} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Logo,

$$\begin{cases} x + 3y - z + 5w = -7 \\ -z + 3w = -2 \end{cases} \Leftrightarrow \begin{cases} x = -3y - 2w - 5 \\ z = 3w + 2. \end{cases}$$

As incógnitas $y \in w$ são livres e as incógnitas $x \in z$ são não livres. A solução geral do sistema é:

$$X = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} -3y - 2w - 5 \\ y \\ 3w + 2 \\ w \end{bmatrix},$$

para quaisquer $y, w \in \mathbb{R}$, isto é, o conjunto solução é dado por:

$$S = \{(-3y - 2w - 5, y, 3w + 2, w) : y, w \in \mathbb{R}\}.$$

Neste exemplo o sistema tem infinitas soluções e diz-se possível e indeterminado.

1.3 Seja $a \in \mathbb{R}$. O sistema linear

$$\begin{cases} x + 2y + z = 3 \\ x + y - z = 2 \\ x + y + (a^2 - 5)z = a \end{cases}$$

é equivalente a

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & a^2 - 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ a \end{bmatrix}.$$

Consideremos então a matriz aumentada e o consequente método de eliminação de Gauss:

$$\begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & -1 & 2 \\ 1 & 1 & a^2 - 5 & a \end{bmatrix} \xrightarrow[-L_1 + L_3]{-L_1 + L_2} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -1 & -2 & -1 \\ 0 & -1 & a^2 - 6 & a - 3 \end{bmatrix} \xrightarrow[-L_2 + L_3]{-L_2 + L_3} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -1 & -2 & -1 \\ 0 & 0 & a^2 - 4 & a - 2 \end{bmatrix}.$$

Se a=2, então o sistema é possível e indeterminado:

$$\begin{cases} x + 2y + z = 3 \\ -y - 2z = -1 \end{cases} \Leftrightarrow \begin{cases} x = 3z + 1 \\ y = -2z + 1, \end{cases}$$

a incógnita z é livre, as incógnitas x e y são não livres e a solução geral do sistema é

$$X = \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 3z+1 \\ -2z+1 \\ z \end{array} \right],$$

para qualquer $z \in \mathbb{R}$, isto é, o conjunto solução é dado por:

$$S = \{(3z+1, -2z+1, z) : z \in \mathbb{R}\}.$$

Assim, se a = 2, o sistema tem infinitas soluções e diz-se possível e indeterminado.

Se a = -2, o sistema não tem solução e diz-se impossível.

Se $a \neq -2$ e $a \neq 2$, o sistema tem a solução única:

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (a+5)/(a+2) \\ a/(a+2) \\ 1/(a+2) \end{bmatrix}$$

e diz-se possível e determinado.

1.4 (Inversão de Matrizes)

(i) Seja
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 2 & 3 & 5 \end{bmatrix}$$
. Tem-se

$$[A \mid I] = \begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 2 & 1 & 4 & | & 0 & 1 & 0 \\ 2 & 3 & 5 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\substack{-2L_1 + L_2 \\ -2L_1 + L_3}} \begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -1 & 2 & | & -2 & 1 & 0 \\ 0 & 1 & 3 & | & -2 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 + L_3}$$

$$\longrightarrow \left[\begin{array}{cccc|ccc|ccc|ccc|ccc|ccc|} 1 & 1 & 0 & | & 9/5 & -1/5 & -1/5 \\ 0 & -1 & 0 & | & -2/5 & 3/5 & -2/5 \\ 0 & 0 & 1 & | & -4/5 & 1/5 & 1/5 \end{array} \right] \xrightarrow[L_2 + L_1]{}$$

$$\longrightarrow \left[\begin{array}{cccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & 0 & | & 7/5 & 2/5 & -3/5 \\ 0 & -1 & 0 & | & -2/5 & 3/5 & -2/5 \\ 0 & 0 & 1 & | & -4/5 & 1/5 & 1/5 \end{array} \right] \xrightarrow[-L_2]{}$$

$$\longrightarrow \left[\begin{array}{cccccccc} 1 & 0 & 0 & | & 7/5 & 2/5 & -3/5 \\ 0 & 1 & 0 & | & 2/5 & -3/5 & 2/5 \\ 0 & 0 & 1 & | & -4/5 & 1/5 & 1/5 \end{array} \right].$$

Portanto A é invertéel e

$$A^{-1} = \begin{bmatrix} 7/5 & 2/5 & -3/5 \\ 2/5 & -3/5 & 2/5 \\ -4/5 & 1/5 & 1/5 \end{bmatrix}.$$

(ii) Seja
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$
. Tem-se

$$[A \mid I] = \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 1 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-L_1 + L_2} \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & -1 & -1 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 + L_3}$$

$$\longrightarrow \left[\begin{array}{cccc|ccc|ccc|ccc|ccc|ccc|} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & -1 & -1 & | & -1 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & 1 & 1 \end{array} \right].$$

Logo, A é singular e como tal não é invertível.

1.5 (Regra de Laplace para calcular um determinada entrada da matriz inversa)
Seja

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right].$$

A entrada (2,3) da matriz A^{-1} é dada por

$$(A^{-1})_{23} = \frac{1}{\det A} \left((cof A)^T \right)_{23} = \frac{1}{\det A} \left((-1)^{3+2} \det A_{32} \right) = \frac{1}{-3} \left(-\det \left(\begin{bmatrix} 1 & 0 \\ 4 & 6 \end{bmatrix} \right) \right) = 2.$$

1.6 (Regra de Cramer)

O sistema de equações lineares

$$\begin{cases} 2x + y = 8 \\ -x + 2y + 4z = 7 \\ -x + z = 1 \end{cases}$$

pode ser resolvido usando a regra de Cramer:

$$x = \frac{\begin{vmatrix} 8 & 1 & 0 \\ 7 & 2 & 4 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & 0 \\ -1 & 2 & 4 \\ -1 & 0 & 1 \end{vmatrix}} = 13, \quad y = \frac{\begin{vmatrix} 2 & 8 & 0 \\ -1 & 7 & 4 \\ -1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & 0 \\ -1 & 2 & 4 \\ -1 & 0 & 1 \end{vmatrix}} = -18 \quad e \quad z = \frac{\begin{vmatrix} 2 & 1 & 8 \\ -1 & 2 & 7 \\ -1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & 0 \\ -1 & 2 & 4 \\ -1 & 0 & 1 \end{vmatrix}} = 14.$$

- **1.7** Sejam $E = L(\{(1,1,1),(1,2,2)\})$ e $F = L(\{(0,1,-1),(1,1,2)\})$.
- (a) Determine a dimensão de E + F.
- (b) Determine a dimensão de $E \cap F$.

Resolução: (a) Temos que $E + F = L(E \cup F) = L(\{(1,1,1),(1,2,2),(0,1,-1),(1,1,2)\}).$

Escrevendo as componentes destes vectores como linhas de uma matriz e usando eliminação de Gauss

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

obtemos uma matriz de característica 3 pelo que a dimensão de E+F é 3.

- (b) Como os vectores (1,1,1), (1,2,2) são linearmente independentes, por não serem múltiplos um do outro, a dimensão de E é 2. Analogamente se vê que a dimensão de F é 2. Dado que dim $E+F=\dim E+\dim F-\dim E\cap F$ e pela alínea anterior dim E+F=3, temos que a dimensão de $E\cap F$ é 1.
- 1.8 (Uma matriz com valores próprios distintos)

$$A = \left[\begin{array}{rrr} 1 & 5 & -1 \\ 0 & -2 & 1 \\ -4 & 0 & 3 \end{array} \right]$$

O polinómio característico é dado por

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 5 & -1 \\ 0 & -2 - \lambda & 1 \\ -4 & 0 & 3 - \lambda \end{vmatrix} =$$

$$= (1 - \lambda)(-2 - \lambda)(3 - \lambda) - 20 + 4(2 + \lambda) =$$

$$= (1 - \lambda)(-2 - \lambda)(3 - \lambda) + 4\lambda - 12 =$$

$$= (3 - \lambda)[(\lambda - 1)(\lambda + 2) - 4] =$$

$$= (3 - \lambda)(\lambda^2 + \lambda - 6) =$$

$$= (3 - \lambda)(\lambda - 2)(\lambda + 3).$$

Os valores próprios de A são os valores de λ para os quais $\det(A-\lambda I)=0$. Logo, os valores próprios de A são

$$\lambda_1 = 3, \quad \lambda_2 = 2 \quad e \quad \lambda_3 = -3.$$

Os vectores próprios de A associados ao valor próprio λ são os vectores não nulos $u \in \mathbb{R}^3$ para os quais

$$(A - \lambda I) u = 0,$$

isto é, são os vectores não nulos de Nuc $(A - \lambda I)$.

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_1 = 3$. Tem-se

Nuc
$$(A - \lambda_1 I)$$
 = Nuc $\begin{pmatrix} \begin{bmatrix} -2 & 5 & -1 \\ 0 & -5 & 1 \\ -4 & 0 & 0 \end{bmatrix} \end{pmatrix}$ = $L(\{(0, 1, 5)\})$.

Logo, o subespaço próprio E_{λ_1} é dado por

$$E_{\lambda_1} = \text{Nuc}(A - \lambda_1 I) = L(\{(0, 1, 5)\}).$$

Os vectores próprios de A associados ao valor próprio $\lambda_1=3$ são

$$u = (0, s, 5s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_2 = 2$. Tem-se

Nuc
$$(A - \lambda_2 I)$$
 = Nuc $\begin{pmatrix} \begin{bmatrix} -1 & 5 & -1 \\ 0 & -4 & 1 \\ -4 & 0 & 1 \end{bmatrix} \end{pmatrix}$ = $L(\{(1, 1, 4)\})$.

Logo, o subespaço próprio E_{λ_2} é dado por

$$E_{\lambda_2} = \text{Nuc}(A - \lambda_2 I) = L(\{(1, 1, 4)\}).$$

Os vectores próprios de A associados ao valor próprio $\lambda_2=2$ são

$$u = (s, s, 4s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_3 = -3$. Tem-se

Nuc
$$(A - \lambda_3 I)$$
 = Nuc $\begin{pmatrix} \begin{bmatrix} 4 & 5 & -1 \\ 0 & 1 & 1 \\ -4 & 0 & 6 \end{bmatrix} \end{pmatrix}$ = $L(\{(3, -2, 2)\})$.

Logo, o subespaço próprio E_{λ_3} é dado por

$$E_{\lambda_3} = \text{Nuc}(A - \lambda_3 I) = L(\{(3, -2, 2)\}).$$

Os vectores próprios de A associados ao valor próprio $\lambda_3=-3$ são

$$u = (3s, -2s, 2s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

1.9 Determine todos os vectores e valores próprios da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ representada em relação à base canónica de \mathbb{R}^2 pela matriz $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$.

Resolução O polinómio característico de A é:

$$p(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & -2 \\ -2 & 4 - \lambda \end{bmatrix} = (1 - \lambda)(4 - \lambda) - 4 = \lambda^2 - 5\lambda,$$

pelo que os valores próprios de T (os mesmos que os de A) são $\{0,5\}$. Resta-nos encontrar os vectores próprios associados a cada valor próprio. O espaço próprio E(0) associado a valor próprio $\lambda=0$ é $E(0)=\operatorname{Nuc}(A-0I)=\operatorname{Nuc}(A)$, cuja base é $\{(2,1)\}$. Portanto os vectores próprios associados ao valor próprio $\lambda=0$ são $\{(2a,a)\}$ para qualquer escalar a não nulo.

Finalmente, o espaço próprio E(5) associado ao valor próprio $\lambda = 5$ é

$$E(5) = \operatorname{Nuc}(A - 5I) = \operatorname{Nuc} \begin{bmatrix} -4 & -2 \\ -2 & -1 \end{bmatrix},$$

cuja base é $\{(1,-2)\}$, donde $\{(b,-2b):b\neq 0\}$ são os vectores próprios associados ao valor próprio $\lambda=5$.

- **1.10** Seja $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ matriz invertível.
- (a) Prove que 0 não é valor próprio de A.
- (b) Encontre os valores e vectores próprios de A^{-1} em função dos de A.

Resolução: (a) Comece por notar que, por definição, 0 é valor próprio de A sse 0 é raiz do polinómio característico $p(\lambda) = \det(A - \lambda I)$, i.e. $0 = p(0) = \det(A - 0I) = \det(A)$. Pelo que 0 é valor próprio de A sse $\det A = 0$, ou seja sse A não é invertível. Conclusão: A invertível sse $p(0) \neq 0$.

(b) Seja λ valor próprio de A. Por (a), $\lambda \neq 0$. Vamos agora provar que $1/\lambda$ é valor próprio de A^{-1} . Usando propriedades dos determinantes temos:

$$\det(A^{-1} - \frac{1}{\lambda}I) = \det(A^{-1} - \frac{1}{\lambda}A^{-1}A) = \det(A^{-1})\det(I - \frac{1}{\lambda}A) = \det(A^{-1})\det(\frac{1}{\lambda}\lambda I - \frac{1}{\lambda}A) = \det(A^{-1})\det(\frac{1}{\lambda}\lambda I - \frac{1}{\lambda}A) = \det(A^{-1})\det(A$$

pelo que $\lambda^n \det(A) \det(A^{-1} - 1/\lambda I) = (-1)^n \det(A - \lambda I)$. Portanto λ é valor próprio de A sse $1/\lambda$ é valor próprio de A^{-1} .

Seja v um vector próprio de A associado a um valor próprio λ . Portanto $Av = \lambda v$ por definição. Aplicando a inversa de A em ambos os membros desta igualdade obtemos $A^{-1}Av = \lambda A^{-1}v$, logo $v = \lambda A^{-1}v$. Portanto $A^{-1}v = \frac{1}{\lambda}v$. Assim concluimos que v também é vector próprio de A^{-1} associado ao valor próprio $1/\lambda$.

1.11 Prove que
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$$
 não é diagonalizável.

Resolução: O polinómio característico de A é

$$p(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 3 \\ 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^2,$$

pelo que A tem $\lambda=2$ como único valor próprio (com multiplicidade algébrica dupla). O respectivo espaço próprio $E(2)=\operatorname{Nuc}\begin{bmatrix}0&3\\0&0\end{bmatrix}$ cuja base é formada por um só vector $e_1=(1,0)$. Como a multiplicidade geométrica deste valor próprio $\lambda=2$ não é igual à sua multiplicidade algébrica, conclui-se de imediato que a matriz A não é diagonalizável.

1.12 Para cada
$$\alpha \in \mathbb{R}$$
, seja $A_{\alpha} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & \alpha \end{bmatrix}$.

- (a) Encontre os valores próprios de A_{α} e respectivas multiplicidades algébricas. Diga, quando A_{α} é invertível e nesse(s) caso(s), calcule os valores próprios de A_{α}^{-1} .
- (b) Determine base para cada espaço próprio $E(\lambda)$ de A_{α} .
- (c) Prove que A_{α} é diagonalizável para qualquer α , e encontre uma matriz mudança de base S_{α} e matriz diagonal D_{α} tal que $A_{\alpha} = S_{\alpha}^{-1} D_{\alpha} S_{\alpha}$.
- (d) Faça a alínea anterior usando a matriz A_{α}^{-1} (sempre que A_{α}^{-1} exista).
- (e) Prove que $\langle u, v \rangle = u A_{\alpha} v^t$ não mune \mathbb{R}^3 com um produto interno (para todo o α).

Resolução: (a) O polinómio característico de A_{α} é (usando a regra de Laplace):

$$p(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} 1 - \lambda & 2 & 0 \\ 2 & 1 - \lambda & 0 \\ 0 & 0 & \alpha - \lambda \end{bmatrix} = ((1 - \lambda)^2 - 4)(\alpha - \lambda) = (\lambda + 1)(\lambda - 3)(\alpha - \lambda),$$

pelo que os valores próprios de A_{α} são $\{-1,3,\alpha\}$. As multiplicidades algébricas são todas simples, quando $\alpha \notin \{-1,3\}$. Se $\alpha = -1$ a multiplicidade algébrica de $\lambda = -1$ é dois, e a de $\lambda = 3$ é um. No caso $\alpha = 3$, a multiplicidade algébrica de $\lambda=3$ é dois, e a de $\lambda=-1$ é um.

A matriz A_{α} é invertível sse $\alpha \neq 0$, e os valores próprios de A^{-1} são $\{-1,1/3,1/\alpha\}$ (ver exercício 1.10). (b) Caso $\alpha \notin \{-1, 3\}$:

• O espaço próprio associado a $\lambda=-1$ é $E(-1)=\operatorname{Nuc}(A-(-1)I)=\operatorname{Nuc}\begin{bmatrix}2&2&0\\2&2&0\\0&0&\alpha+1\end{bmatrix}.$ Pelo que a base de E(-1) é $\{(-1,1,0)\}.$

• O espaço próprio associado a $\lambda=3$ é $E(3)=\operatorname{Nuc}(A-3I)=\operatorname{Nuc}\left|\begin{array}{cccc}-2&2&0\\2&-2&0\\0&0&\alpha-3\end{array}\right|.$

Portanto $\{(1,1,0)\}$ é uma base para E(3).

• O espaço próprio associado a $\lambda = \alpha$ é $E(\alpha) = \text{Nuc}(A - \alpha I) = \text{Nuc} \begin{vmatrix} 1 - \alpha & 2 & 0 \\ 2 & 1 - \alpha & 0 \\ 0 & 0 & 0 \end{vmatrix}$.

Logo $\{(0,0,1)\}$ é uma base para $E(\alpha)$.

Falta investigar dois casos singulares. No caso $\alpha = -1$, $\{(-1, 1, 0), (0, 0, 1)\}$ forma uma base para E(-1), enquanto $\{(1,1,0)\}$ forma uma base para E(3). No caso $\alpha=3,\{(-1,1,0)\}$ forma uma base para E(-1), e $\{(1,1,0),(0,0,1)\}$ forma uma base para E(3).

(c) A matriz A_{α} é diagonalizável para todo o α porque é simetrica $A_{\alpha}^{T}=A_{\alpha}$. (Alternativelmente, verifique que a multiplicidade algébrica e geométrica de cada valor próprio coincidem.)

Sendo $S_{\alpha} = M(id; B_{vp}, Bc)$ a matriz mudança de base, as colunas de S_{α} são formadas pelos vectores que provêm das bases dos espaços próprios, e as entrada na matriz diagonal D_{α} são os valores próprios

correspondentes aos vectores próprios em S_{α} . Assim, e em todos os casos, $S_{\alpha} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $D_{\alpha} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \alpha \end{bmatrix}.$ Note que se A_α representa a transformação linear T_α na base canónica, S_α é a matriz

mudança de base (da base formada por vectores próprios para a base canónica) e D_{α} representa T_{α} na base formada pelo vectores próprios (verifique!).

- (d) A matriz é invertível sse $\alpha \neq 0$. Os valores próprios de A^{-1} são pelo exercício 1.10, $\{-1, 1/3, 1/\alpha\}$. As bases para os espaços próprios E(-1), E(1/3) e $E(1/\lambda)$ de A^{-1} coincidem (novamente pelo exercício 1.10) com as bases para os espaços próprios E(-1), E(3) e $E(\alpha)$ de A, respectivamente. Temos trivialmente $A_{\alpha}^{-1} = S_{\alpha}^{-1} D_{\alpha}^{-1} S_{\alpha}$, onde S_{α} e D_{α} são as matrizes calculadas em (c).
- (e) Observe que A_{α} tém pelo menos um valor próprio negativo (para qualquer α)!
- **1.13** Considere a matriz $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ e $x(t) = (x_1(t), x_2(t), x_3(t))$ para cada $t \in \mathbb{R}$.
- (a) Encontre a solução geral do sistema de equações diferencias x'=Ax, onde $x'(t)=(x'_1(t),x'_2(t),x'_3(t))$.

(b) Calcule a solução de x'(t) = Ax(t) que passa no ponto x(0) = (1, 1, 1).

Resolução: (a) • Comece por observar que A é simétrica, portanto A é diagonalizável. Vamos encontrar, em primeiro lugar, matriz mudança de base S e matriz diagonal D tais que $S^{-1}AS = D$.

O polinómio característico de A é $p(\lambda) = -\lambda(\lambda - 2)^2$, pelo que os valores próprios de A são $\{0, 2\}$. O vector (-1, 0, 1) forma uma base para E(0), enquanto (1, 0, 1), (0, 1, 0) fornecem uma base para o espaço próprio E(2). Logo

$$S = \left[\begin{array}{ccc} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right], \quad D = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right].$$

- De seguida, vamos resolver o sistema de equações diferenciais y' = Dy. Como D é diagonal, a solução geral desta equação é imediata: $y(t) = (c_1e^{0t}, c_2e^{2t}, c_3e^{2t}) = (c_1, c_2e^{2t}, c_3e^{2t})$ com c_1, c_2, c_3 constantes.
- Finalmente, a solução geral de x' = Ax obtém-se da de y' = Dy da seguinte forma

$$x(t) = Sy(t) = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 e^{2t} \\ c_3 e^{2t} \end{bmatrix} = \begin{bmatrix} -c_1 + c_3 e^{2t} \\ c_2 e^{2t} \\ c_1 + c_3 e^{2t} \end{bmatrix}.$$

(b) Já vimos em (a) que a solução geral de x' = Ax é $x(t) = (-c_1 + c_3e^{2t}, c_2e^{2t}, c_1 + c_3e^{2t})$. Falta-nos determinar os valores das constantes c_1, c_2, c_3 , pelo que temos de usar a condição x(0) = (1, 1, 1) da seguinte maneira:

$$(1,1,1) = x(0) = (-c_1 + c_3, c_2, c_1 + c_3)$$

donde $c_1 = 0, c_2 = 1, c_3 = 1$. Portanto $x_1(t) = e^{2t}, x_2(t) = e^{2t}$ e $x_3(t) = e^{2t}$.

- **1.14** No espaço dos polinómios reais de grau menor ou igual a 3, P_3 , considere os vectores $v_1 = 1 + x^3$, $v_2 = 1 + x^2 + x$, $v_3 = x x^3$, $v_4 = 1 x$.
- (a) Verifique que $B = (v_1, v_2, v_3, v_4)$ é uma base de P_3 .
- (b) Sendo $T: P_3 \to P_3$ a transformação linear tal que

$$T(y_1v_1 + y_2v_2 + y_3v_3 + y_4v_4) = (y_1 + y_2)v_3 + (y_3 + y_4)v_1$$

determine a imagem, o núcleo e os subespaços próprios de T.

- (c) Escreva a matriz C que representa T em relação à base $B_2 = (1, x, x^2, x^3)$ e diga justificando se C é diagonalizável.
- (d) Resolva a equação $T(p(x)) = 3v_3$.

Resolução:

(a) Escrevendo as componentes destes vectores em relação à base $B_1 = (1, x, x^2, x^3)$ de P_3 como linhas de uma matriz e usando eliminação de Gauss

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

concluímos que, dado que a dimensão do espaço das linhas da matriz é 4, também a expansão linear $L(\{v_1, v_2, v_3, v_4\})$ tem dimensão 4 (igual à dimensão de P_3), donde $B = (v_1, v_2, v_3, v_4)$ é uma base de P_3 .

(b) Como $T(v_1) = v_3, T(v_2) = v_3, T(v_3) = v_1, T(v_4) = v_1$, a matriz que representa T em relação à base B (ou seja M(T;B)) é

$$A = \left[\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

O espaço de colunas desta matriz é $L(\{(0,0,1,0),(1,0,0,0)\})$, e logo $ImT = \{v \in P_3 : v_B \in \mathcal{C}(A)\} = L(\{v_3,v_1\})$. O núcleo de A é

 $\{(x,y,z,w)\in \mathbb{R}^4: x+y=0 \ \text{e} \ z+w=0\}=\{(-y,y,-w,w): y,w\in \mathbb{R}\}=L(\{(-1,1,0,0),(0,0,-1,1)\}),$ e logo

Nuc $T = \{v \in P_3 : v_B \in Nuc(A)\} = L(\{-v_1 + v_2, -v_3 + v_4\}).$

O polinómio característico $p(\lambda)$ de A é

$$p(\lambda) = \det \begin{bmatrix} -\lambda & 0 & 1 & 1 \\ 0 & -\lambda & 0 & 0 \\ 1 & 1 & -\lambda & 0 \\ 0 & 0 & 0 & -\lambda \end{bmatrix} = (-\lambda) \det \begin{bmatrix} -\lambda & 0 & 1 \\ 0 & -\lambda & 0 \\ 1 & 1 & -\lambda \end{bmatrix} = (-\lambda) \left((-\lambda) \left((-\lambda) \det \begin{bmatrix} -\lambda & 0 \\ 1 & -\lambda \end{bmatrix} + \det \begin{bmatrix} 0 & 1 \\ -\lambda & 0 \end{bmatrix} \right) = (-\lambda) (-\lambda^3 + \lambda) = \lambda^2 (\lambda^2 - 1) = \lambda^2 (\lambda - 1) (\lambda + 1). \text{ Logo os valores próprios de } T \text{ são } 0, 1, -1.$$

O subespaço próprio associado a 0 é o núcleo de T, que já foi determinado.

Temos
$$A - 1I = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

Usando eliminação de Gauss

$$\begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix},$$

concluímos que

Nuc $(A-1I)=\{(x,y,z,w)\in\mathbb{R}^4: -x+z=0\ {\rm e}\ y=0\ {\rm e}\ w=0\}=\{(x,0,x,0): x\in\mathbb{R}\}=L(\{(1,0,1,0)\})$ donde o subespaço próprio de V associado a 1 é o subespaço $L(\{v_1+v_3\})$.

Temos
$$A + 1I = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
.

Usando eliminação de Gauss

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

concluímos que

Nuc $(A-1I) = \{(x, y, z, w) \in \mathbb{R}^4 : x + z = 0 \text{ e } y = 0 \text{ e } w = 0\} = L(\{(-1, 0, 1, 0)\}) \text{ donde o subespaço próprio de } V \text{ associado a } -1 \text{ é o subespaço } L(\{-v_1 + v_3\}).$

(c) Seja
$$G = M(id; B, B_2) = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$
.

A matriz G^{-1} é a matriz $M(id; B_2, B)$ e pode ser determinada (determine!) pelo método de Gauss-Jordan ou usando a matriz dos cofactores, i.e.

$$G^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -2 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & -2 & -1 \\ 1 & -1 & 0 & -1 \end{bmatrix}.$$

Sendo A = M(T; B) temos que $C = M(T; B_2) = GAG^{-1}$ (calcule C!).

Dado que, pelas alíneas anteriores, sabemos que a soma das dimensões dos subespaços próprios de T é 4, a transformação T é diagonalizável ou seja P_3 admite uma base B_3 constituída por vectores próprios de T. A matriz D de T em relação a esta base é diagonal e C é semelhante a D, por representar T em relação a outra base de \mathcal{P}_3 . Logo C é diagonalizável.

(d) As soluções da equação $T(p(x))=3v_3$ são exactamente os elementos da imagem completa inversa $T^{-1}(v_3)$. Sabemos que $T(v_1)=v_3$ pelo que $T(3v_1)=3v_3$ e logo as soluções da equação dada são os elementos de $3v_1+NucT$. Se quisermos descrever em extensão este conjunto obtemos $3v_1+NucT=\{(3-a)v_1+av_2-bv_3+bv_4:a,b\in\mathbb{R}\}$, dado que

Nuc
$$T = L(\{-v_1 + v_2, -v_3 + v_4\}) = \{-av_1 + av_2 - bv_3 + bv_4 : a, b \in \mathbb{R}\}.$$

Ideia para uma resolução alternativa: As coordenadas do vector $3v_3$ em relação à base B são (0,0,3,0) e logo

$$T^{-1}(v_3)=\{v\in V:v_B \text{ \'e solução de }AX=\left[egin{array}{c} 0\\0\\3\\0 \end{array}
ight]\}.$$
 Resolvendo este sistema obtemos o conjunto

solução pretendido.

1.15 Em \mathbb{R}^3 , considere o seguinte produto interno:

$$\langle (x, y, z), (a, b, c) \rangle = 2xa + xb + ya + yb + zc$$

o qual se fixa em todas as alíneas que se seguem.

(a) Prove que $\langle \cdot, \cdot \rangle$ é de facto um produto interno em \mathbb{R}^3 .

- (b) Encontre uma base ortogonal para $E = L(\lbrace e_1, e_2 \rbrace)$ onde $e_1 = (1, 0, 0)$ e $e_2 = (0, 1, 0)$.
- (c) Determine uma base para o complemento ortogonal E^{\perp} . Verifique que $\dim(E) + \dim(E^{\perp}) = \dim\mathbb{R}^3$.
- (d) Encontre a representação matricial da projecção ortogonal $P_E:\mathbb{R}^3 \to \mathbb{R}^3$ na base canónica. Qual é a representação matricial de $P_{E^{\perp}}$?
- (e) Calcule o ponto de E mais próximo de $e_3 = (0, 0, 1)$.
- (f) Calcule a distância de v = (2,0,1) a E^{\perp} .

Resolução (a) Sejam $u=(x,y,z), u'=(x',y',z'), v=(a,b,c) \in \mathbb{R}^3$ e $\lambda \in \mathbb{R}$. O axioma da simetria verifica-se porque $\langle u, v \rangle = 2xa + xb + ya + yb + zc = 2ax + bx + ay + by + cz = \langle v, u \rangle$. Por outro lado,

$$\langle \lambda u + u', v \rangle = 2(\lambda x + x')a + (\lambda x + x')b + (\lambda y + y')a + (\lambda y + y')b + (\lambda z + z')c = \lambda \langle u, v \rangle + \langle u', v \rangle$$

pelo que o axioma da linearidade é verificado. Finalmente, falta provar o axioma da positividade, i.e. $\langle u,u\rangle \geq 0$ para todo $u\in\mathbb{R}^3$ e $\langle u,u\rangle = 0$ sse u=(0,0,0). Para esse fim, é suficiente observar que $\langle u, u \rangle = 2x^2 + 2xy + y^2 + z^2 = x^2 + (x+y)^2 + z^2.$

Resolução alternativa de (a): comece por notar que $\langle u, v \rangle = \begin{bmatrix} x & y & z \end{bmatrix} A \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ onde $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

pelo que a simetria e a linearidade são óbvias. Para provar a positividade, é suficiente aplicar o critér
$$A=A^t, \det[2]>0, \det\begin{bmatrix}2&1\\1&1\end{bmatrix}=1>0$$
 e $\det A>0$

(ou então verifique que os valores próprios de A são todos positivos).

(b) Note, em primeiro lugar, que $\{e_1, e_2\}$ é uma base de E. Aplicamos de seguida o processo de ortogonalização de Gram-Schmidt para obter a base ortogonal $\{w_1, w_2\}$:

$$w_1 = e_1$$

$$w_2 = e_2 - \frac{\langle e_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = e_2 - \frac{1}{2} e_1 = (\frac{-1}{2}, 1, 0)$$

 $w_2 = e_2 - \frac{\langle e_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = e_2 - \frac{1}{2} e_1 = (\frac{-1}{2}, 1, 0).$ (c) Por definição $E^{\perp} = \{ u \in \mathbb{R}^3 : \langle u, e \rangle = 0, \text{ para todo o } e \in E \}.$ Como e_1, e_2 geram E,

$$E^{\perp} = \{ u = (x, y, z) : \langle u, e_1 \rangle = 0 = \langle u, e_2 \rangle \} = \{ u \in \mathbb{R}^3 : 2x + y = 0 = x + y \} = \text{Nuc} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Donde $e_3 = (0, 0, 1)$ base (ortogonal) de E^{\perp} .

(d) Note que $P_{E^{\perp}}(e_1) = (0,0,0) = P_{E^{\perp}}(e_2)$ porque e_1,e_2 pertencem a $(E^{\perp})^{\perp} = E$. Mais, $P_{E^{\perp}}(e_3) = e_3$

(d) Note que
$$P_{E^{\perp}}(e_1) = (0,0,0) = P_{E^{\perp}}(e_2)$$
 porque e_1,e_2 pertencem a $(E^{\perp})^{\perp} = E$. Mais, $P_{E^{\perp}}(e_3) = e_3$ porque $e_3 \in E^{\perp}$. Logo a matriz $\mathcal{P}_{E^{\perp}}$ que representa $P_{E^{\perp}}$ é $\mathcal{P}_{E^{\perp}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Como $P_E + P_{E^{\perp}} = I$, a matriz \mathcal{P}_E que representa P_E na base canónica é $\mathcal{P}_E = I - \mathcal{P}_{E^{\perp}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

(e) O ponto de E mais próximo de $e_3 = (0, 0, 1)$ é dado por $P_E(e_3)$. Por (d), $\mathcal{P}_E(e_3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Donde $P_E(e_3) = (0,0,0)$. Ou então, como $e_3 \in E^{\perp}$, $P_{E^{\perp}}(e_3) = e_3$, $P_E(e_3) = (0,0,0)$

(f) A distância é dada por

$$\operatorname{dist}(v, E^{\perp}) = ||P_E(v)|| = ||(2, 0, 0)|| = \sqrt{\langle (2, 0, 0), (2, 0, 0) \rangle} = \sqrt{8} = 2\sqrt{2}.$$

- **1.16** Considere em \mathbb{R}^4 o produto interno usual e sejam E = L((1,0,0,1),(0,1,1,1)), F = L((1,0,0,1)).
- (a) Será que $E^{\perp} \subseteq F^{\perp}$? Calcule $\dim E$, $\dim E^{\perp}$, $\dim F$ e $\dim F^{\perp}$.
- (b) Determine base ortogonal para E.
- (c) Determine base ortogonal para E^{\perp} (o complemento ortogonal de E).
- (d) Calcule a distância de p = (1, 1, 0, 0) a F.
- (e) Encontre as equações cartesianas da recta \mathcal{R} paralela a F que passa no ponto p=(1,1,0,0).
- (f) Encontre as equações do 2-plano \mathcal{P} que passa no ponto p=(1,1,0,0) e é perpendicular a E.
- (g) Encontre a matriz que representa $P_{F^{\perp}}: \mathbb{R}^4 \to \mathbb{R}^4$ na base canónica. Verifique que $P_{F^{\perp}} \circ P_{F^{\perp}} = P_{F^{\perp}}$.

Resolução (a) Sim, porque $F \subset E$. Temos que $\dim E = \dim E^{\perp} = 2$, $\dim F = 1$ e $\dim F^{\perp} = 3$.

(b) Sendo $v_1 = (1,0,0,1), v_2 = (0,1,1,1)$ base para E, vamos aplicar o processo de ortogonalização de Gram-Scmidt para obter uma base ortogonal $\{w_1, w_2\}$ para E:

$$w_1 = v_1 = (1, 0, 0, 1)$$

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = (\frac{-1}{2}, 1, 1, \frac{1}{2}).$$

(c) Em primeiro lugar temos que encontrar uma base $\{s_1, s_2\}$ de E^{\perp} , e de seguida apelar ao processo de ortogonalização de Gram-Schmidt para obter uma base ortogonal $\{t_1, t_2\}$ de E^{\perp} .

Como v_1, v_2 geram E,

$$E^{\perp} = \{ u = (x, y, z, w) : \langle u, v_1 \rangle = 0 = \langle u, v_2 \rangle \} = \text{Nuc} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

cuja base é $s_1 = (-1, -1, 0, 1)$ e $s_2 = (0, -1, 1, 0)$. Finalmente, aplicando Gram-Schmidt:

$$t_1 = s_1 = (-1, -1, 0, 1)$$

$$t_2 = s_2 - \frac{\langle s_2, t_1 \rangle}{\langle t_1, t_1 \rangle} t_1 = (0, -1, 1, 0) - \frac{1}{3} (-1, -1, 0, 1) = (\frac{1}{3}, \frac{-2}{3}, 1, \frac{-1}{3})$$

 $t_2 = s_2 - \frac{\langle s_2, t_1 \rangle}{\langle t_1, t_1 \rangle} t_1 = (0, -1, 1, 0) - \frac{1}{3}(-1, -1, 0, 1) = (\frac{1}{3}, \frac{-2}{3}, 1, \frac{-1}{3}).$ (d) A distância de p a F é dist $(p, F) = ||P_{F^{\perp}}(p)||$. Agora ou se usa uma base ortonormada $\{u_1, u_2, u_3\}$ de F^{\perp} e então $P_{F^{\perp}}(p) = \langle p, u_1 \rangle u_1 + \langle p, u_2 \rangle u_2 + \langle p, u_3 \rangle u_3$, ou se usa o facto de $P_F + P_{F^{\perp}} = I$, i.e.

$$P_{F^{\perp}}(p) = p - P_{F}(p) = p - \frac{\langle p, (1, 0, 0, 1) \rangle}{\langle (1, 0, 0, 1), (1, 0, 0, 1) \rangle} (1, 0, 0, 1) = (\frac{1}{2}, 1, 0, \frac{-1}{2}).$$

Portanto dist $(p, F) = \sqrt{6}/2$.

(e) Primeiro vamos encontrar uma base para F^{\perp} . Como estamos a usar o produto usual de \mathbb{R}^4 , temos que $F^{\perp} = \text{Nuc} \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$, cuja base é $\{(-1,0,0,1), (0,1,0,0), (0,0,1,0)\}$. Donde $F = \{(x,y,z,w): (0,0,1,0,0), (0,0,1,0)\}$. -x+w=0, y=0, z=0}. Como a recta \mathcal{R} é paralela a F, as equações de \mathcal{R} obtêm-se das de F impondo a condição $p \in \mathcal{R}$ (originando eventualmente equações não homogénias). Facilmente se constata que as equações cartesianas de \mathcal{R} são: -x + w = -1, y = 1, z = 0.

Note que
$$F = \text{Nuc} \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
.

(f) Vimos em (b) que $\{(1,0,0,1),(0,1,1,1)\}$ é uma base de E, pelo que as equações cartesianas de E^{\perp} são: x + w = 0, y + z + w = 0. Como o 2-plano \mathcal{P} é paralelo a E^{\perp} e $p \in \mathcal{P}$, concluimos que as equações cartesianas de \mathcal{P} são: x + w = 1, y + z + w = 1.

Recorde que dada uma base ortonormada $\{u_i\}$ de um espaço $E, P_E(w) = \sum_i \langle w, u_i \rangle u_i$. De forma similar, dada uma base ortonormada $\{v_j\}$ de E^{\perp} , $P_{E^{\perp}}(w) = \sum_j \langle w, v_j \rangle v_j$. Mais: $P_E(w) + P_{E^{\perp}}(w) = w$ para todo o vector w.

(g) Como dimF é menor que dim F^{\perp} , vamos encontrar a matriz que representa P_F e depois usa-se o facto de $P_{F^{\perp}} = I - P_F$. Sendo $\{e_1, e_2, e_3, e_4\}$ a base canónica de \mathbb{R}^4 , $P_F(e_i) = \frac{\langle e_i, (1,0,0,1) \rangle}{\langle (1,0,0,1), (1,0,0,1) \rangle} (1,0,0,1)$, com i = 1, 2, 3, 4. Pelo que

$$P_F(e_1) = (1/2, 0, 0, 1/2), \ P_F(e_2) = (0, 0, 0, 0), \ P_F(e_3) = (0, 0, 0, 0), \ P_F(e_4) = (1/2, 0, 0, 1/2).$$

$$\text{Pelo que a matriz que representa $P_{F^{\perp}}$ \'e} \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] - \left[\begin{array}{cccccccc} 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 \end{array} \right] = \left[\begin{array}{cccccccc} 1/2 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1/2 & 0 & 0 & 1/2 \end{array} \right].$$

- **1.17** Seja E um espaço Euclideano de dimensão n, F um subespaço linear de E, $P_F : E \to E$ a projecção ortogonal sobre F e \mathcal{P}_F a matriz que representa P_F numa base de E.
- (a) Prove que o conjunto dos valores próprios de P_F é um subconjunto de $\{0,1\}$.
- (b) Será \mathcal{P}_F diagonalizável?

Resolução: Se F=E ou $F=\{0_E\}$ o exercício é trivial. Para fazer os outros casos observe que se λ é valor próprio de P_F então λ^2 também é valor próprio de P_F^2 . De seguida use o facto de $P_F^2=P_F$. Finalmente \mathcal{P}_F é diagonalizável, tomando, p. ex., a base $\mathcal{B}=\mathcal{B}_F\cup\mathcal{B}_{F^{\perp}}$ de E, onde \mathcal{B}_F (resp. $\mathcal{B}_{F^{\perp}}$) é uma base de F (resp. F^{\perp}). Indique então S e D tais que $S^{-1}\mathcal{P}_FS=D$, com D matriz diagonal.

1.18 Prove que a distância de um ponto (x_0, y_0, z_0) ao plano \mathcal{P}_d de equação ax + by + cz = d é

$$\frac{|ax_0 + by_0 + cz_0 - d|}{(a^2 + b^2 + c^2)^{1/2}}.$$

Resolução: O plano \mathcal{P}_0 que passa na origem (0,0,0) e é paralelo a \mathcal{P}_d tem equação cartesiana dada por ax+by+cz=0. Por outro lado $\{(a,b,c)\}$ é uma base para o complemento ortogonal \mathcal{P}_0^{\perp} e $(0,0,d/c)\in\mathcal{P}_d$ se $c\neq 0$. Note que $(a,b,c)\neq (0,0,0)$, pelo que se $b\neq 0$, podemos usar o ponto $(0,d/b,0)\in\mathcal{P}_d$, ou ainda $(a/d,0,0)\in\mathcal{P}_d$ se $a\neq 0$. Portanto (denotando por $P_{\mathcal{P}_0^{\perp}}$ a projecção ortogonal sobre \mathcal{P}_0^{\perp}) temos

$$\operatorname{dist}\Big((x_0,y_0,z_0),\mathcal{P}_d\Big) = ||P_{\mathcal{P}_0^{\perp}}((x_0,y_0,z_0) - (0,0,d/c))|| = ||\frac{\langle (x_0,y_0,z_0 - d/c),(a,b,c)\rangle}{a^2 + b^2 + c^2}(a,b,c)||$$

donde o resultado.

- 1.19 Seja $T: \mathcal{P} \to \mathcal{P}_2$ a transformação linear cuja matriz na base canónica é $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- (a) Prove que $p(x) = 1 x^2$ e $q(x) = 1 2x + x^2$ são vectores próprios de T. Indique os valores próprios associados.
- (b) Verifique se T é diagonalizável.

1.1 Resolução de alguns exames

Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

TESTE DE ÁLGEBRA LINEAR LEIC-Alameda

Nome do Aluno:	
Número do Aluno:	
Curso:	Turma:
Advertência: há 8 enunciados parecidos mas distintos	

Pergunta Resposta(pág.) Classificação

Grupo I 1

Grupo II (a)

Grupo II (b)

Grupo II (c)

Grupo II (d)

Grupo III (a)
Grupo III (b)
TOTAL

GRUPO I (4 valores) Perguntas de escolha múltipla

Cotação de cada pergunta de escolha múltipla: 1v. Resposta em branco: 0v. Resposta errada: -0,3v.

Respostas do Grupo I (a preencher pelo **Aluno**)

1	2	3	4

(04/NOVEMBRO/2005)

Duração: 1h:30m

1. Seja \mathcal{S}_{γ} o sistema de equações lineares representado matricialmente por

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & \gamma \\ -1 & 0 & -1 \end{bmatrix} X = \begin{bmatrix} 2 \\ 0 \\ -\gamma^2 \end{bmatrix}$$

onde γ é um parâmetro real. Qual das seguintes afirmações é verdadeira?

- A) Existem infinitos valores de γ para os quais o sistema de equações S_{γ} é possível.
- B) Existe exactamente um valor de γ para o qual o sistema é possível.
- C) Existem exactamente dois valores de γ para os quais o sistema S_{γ} é possível e tem grau de indeterminação 2.

- D) Existe mais do que um valor de γ para os quais o sistema \mathcal{S}_{γ} é possível e tem grau de indeterminação 1.
- 2. Seja $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ e B tal que $B^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Considere a seguinte lista de afirmações:
 - $I) (AB)^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}.$
 - II) $Nuc(B) = \{(0,0)\}.$
 - III) $\operatorname{Nuc}(A + B^{-1}) = \operatorname{Nuc}(A) + \operatorname{Nuc}(B^{-1}).$

A lista completa de afirmações correctas é

- **A)** I **B)** II **C)** I e II **D)** III
- 3. Considere o espaço linear $V = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$ e os vectores $v_1 = (1, -1, 1, -1), v_2 = (-1, -2, 3, 0), v_3 = (0, 0, 1, -1)$ e $v_4 = (0, -3, 4, -1)$. Considere a seguinte lista de afirmações:
 - I) Os vectores v_1, v_2, v_3, v_4 são linearmente independentes.
 - II) Os vectores v_1, v_2, v_3, v_4 geram V, mas não geram \mathbb{R}^4 .
 - III) A dimensão de V é 3 (isto é, $\dim(V) = 3$).

A lista completa de afirmações correctas é

- A) II B) II e III C) III D) I e III
- 4. Seja $W = L(\{v_1, v_2\})$ o espaço gerado pelos vectores $v_1 = (1, 1, 1)$ e $v_2 = (0, -1, 1)$. Considere a seguinte lista de afirmações:
 - I) Se (1,2) são as coordenadas do vector $u \in W$ na base $\{v_1, v_2\}$, então u = (1,-1,3).
 - II) O conjunto $\{v_1 + v_2, v_1 v_2\}$ constitui uma base para W.
 - III) Existe um vector v_3 de \mathbb{R}^3 tal que $v_3 \notin W$ e $\{v_1, v_2, v_3\}$ é uma base de \mathbb{R}^3 .

A lista completa de afirmações correctas é

A) I e II e III B) II e III C) I e III D) I e II

Nesta parte, Grupos II e III, apresente todos os cálculos e justificações relevantes

GRUPO II (4,5 valores)

Para cada parâmetro real
$$k$$
, seja $A_k = \begin{bmatrix} 1 & k & k \\ 1 & 1 & k \\ k & 1 & 1 \\ k & k & 1 \end{bmatrix}, \quad u = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{e} \quad b = \begin{bmatrix} 1 \\ 3 \\ -1 \\ -3 \end{bmatrix}.$

- a) Discuta a característica de A_k em função do parâmetro k.
- b) Faça a discussão das dimensões do espaço das colunas e do núcleo de A_k .
- c) Determine uma base para $Nuc(A_{-1})$ (onde A_{-1} é a matriz A_k para k=-1).
- d) Verifique se (2,1,0) é solução do sistema linear $A_{-1}u=b$. Encontre o conjunto solução de $A_{-1}u=b$.

GRUPO III (1,5 valores)

Seja $E=\{f:\mathbb{R}\to\mathbb{R}\}$ o espaço linear das funções reais de variável real munido com as operações habituais. Considere os subconjuntos E_+ e F de E definidos como se segue:

 $E_{+} = \{ f \in E : f(x) > 0, \text{ para qualquer } x \in \mathbb{R} \},$

 $F = \{g \in E : g(x) = \log(f(x)), \text{ para alguma função } f \in E_+\}.$

- a) Prove que E_+ não é subespaço linear de E.
- b) Prove que F é subespaço linear de E.

Resolução do Teste

Escolha múltipla: Grupo I

A chave para esta versão de teste é:

1	2	3	4
D	\mathbf{C}	В	\mathbf{A}

Problema 1. Aplicando o método de eliminação de Gauss temos:

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 3 & \gamma & 0 \\ -1 & 0 & -1 & -\gamma^2 \end{bmatrix} \xrightarrow[L_1+L_3]{} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 3 & \gamma & 0 \\ 0 & 0 & 0 & 2 - \gamma^2 \end{bmatrix}.$$

Portanto o sistema \mathcal{S}_{γ} é possível se e só se $2-\gamma^2=0$. Em ambos os casos $\gamma=\pm\sqrt{2}$ cada sistema \mathcal{S}_{γ} é possível e determinado. Além disso, para estes casos o número de variáveis livres é igual a 1 = grau de indeterminação. O sistema \mathcal{S}_{γ} é impossível para cada γ tal que $\gamma\neq\pm\sqrt{2}$. Portanto a única afirmação verdadeira é a afirmação D).

Problema 2. Se
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 então $A^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$. Portanto

$$(AB)^{-1} = B^{-1}A^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix},$$

pelo que a afirmação I) é verdadeira. A afirmação II) é verdadeira porque a matriz B é invertível. Finalmente a afirmação III) é falsa, pois $\mathrm{Nuc}(A)+\mathrm{Nuc}(B^{-1})=\{(0,0)\}$ uma vez que A e B^{-1} são matrizes invertíveis e

$$Nuc(A+B^{-1}) = Nuc \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix},$$

que não sendo uma matriz invertível o seu núcleo é diferente do vector nulo (ver $\underline{\text{teorema }30}$ das aulas teóricas).

Problema 3. A afirmação I) é falsa, porque se considerar a matriz A cujas colunas são formadas pelos vectores v_1,v_2,v_3 e v_4 , a sua característica é 3 e não 4. A afirmação II) é verdadeira:

$$V = \{(x, y, z, w) : x = -y - z - w\} = \{(-y - z - w, y, z, w) : y, z, w \in \mathbb{R}\} = \{y(-1, 1, 0, 0) + z(-1, 0, 1, 0) + w(-1, 0, 0, 1)\}$$

pelo que $\dim(W)=3$. Como a $\operatorname{car}(A)=3$ onde A é a matriz anterior e $v_1,v_2,v_3,v_4\in W$ concluimos que eles geram W, embora não sejam linearmente independentes. A $\dim(\mathbb{R}^4)=4$ e $\operatorname{car}(A)=3$, pelo que eles não podem gerar \mathbb{R}^4

A afirmação III) também é verdadeira -- ver cálculos na afirmação II).

Problema 4. A afirmação I) é verdadeira porque $u=\mathbf{1}v_1+\mathbf{2}v_2$. A afirmação II) é verdeira porque $\dim(W)=2$ e os vectores $v_1+v_2=(1,0,2)$ e $v_1-v_2=(1,2,0)$ são linearmente independentes (considere a matriz A cujas colunas são os vectores (1,0,2) e (1,2,0). A $\mathrm{car}(A)=2$ =número de vectores).

Finalmente, a afirmação III) também é verdadeira, basta considerar a matriz B cujas colunas são os vectores v_1 , v_2 e $v_3=(a,b,c)$ e discuta a característica de B em função dos parâmetros a,b e c. Há casos em que $\operatorname{car}(B)=3$, por exemplo $v_3=(1,0,0)$ é um vector que não pertence a W e é tal que $\{v_1,v_2,v_3\}$ é uma base de \mathbb{R}^3 .

Grupo II

Aplicando sucessivamente o método de eliminação de Gauss obtém-se a matriz A_k^\prime em escada de linhas como se segue:

$$A_k = \begin{bmatrix} 1 & k & k \\ 1 & 1 & k \\ k & 1 & 1 \\ k & k & 1 \end{bmatrix} \xrightarrow[\stackrel{-L_1 + L_2}{-kL_1 + L_3} \stackrel{-L_1 + L_2}{-kL_1 + L_4} \begin{bmatrix} 1 & k & k \\ 0 & 1 - k & 0 \\ 0 & 1 - k^2 & 1 - k^2 \\ 0 & k - k^2 & 1 - k^2 \end{bmatrix} \xrightarrow[\stackrel{-(1+k)L_2 + L_3}{-k(1+k)L_2 + L_4} \stackrel{1}{\begin{pmatrix} 1 & k & k \\ 0 & 1 - k & 0 \\ 0 & 0 & 1 - k^2 \\ 0 & 0 & 1 - k^2 \end{bmatrix}} \xrightarrow[\stackrel{-L_3 + L_4}{-L_3 + L_4} \begin{bmatrix} 1 & k & k \\ 0 & 1 - k & 0 \\ 0 & 0 & 1 - k^2 \\ 0 & 0 & 0 & 1 - k^2 \end{bmatrix} =: A_k'.$$

- a) Portanto, por definição de característica, temos $\mathrm{car}(A_k)=\left\{\begin{array}{ll} 3, & k\notin\{-1,1\}\\ 2, & k=-1\\ 1, & k=1 \end{array}\right.$
- b) Seja \mathcal{C}_{A_k} o espaço gerado pelas colunas de A_k . Usando o $\underline{ ext{teorema } 26}$ das aulas teóricas:

$$\dim(\mathcal{C}_{A_k}) = \operatorname{car}(A_k)$$

para todo o k. Usando novamente o teorema 26 e a alínea a) temos:

$$\dim \operatorname{Nuc}(A_k) = \text{número de } \underline{\operatorname{colunas}} \ \operatorname{de} \ A_k - \operatorname{car}(A_k) = 3 - \operatorname{car}(A_k) = \begin{cases} 0, & k \notin \{-1, 1\} \\ 1, & k = -1 \\ 2, & k = 1 \end{cases}.$$

c)
$$\operatorname{Nuc}(A_{-1}) = \operatorname{Nuc}(A'_{-1}) = \operatorname{Nuc}\begin{bmatrix} 1 & -1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \{(x, y, z) \in \mathbb{R}^3: \ x - y - z = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0, \ 2y = 0\} = \{(x, y, z) \in \mathbb{R}^3: \ x - y = 0$$

 $\mathbb{R}^3: x=z, y=0\} = \{(z,0,z) \in \mathbb{R}^3: z \in \mathbb{R}\}.$

Como, para cada esclalar z, (z,0,z)=z(1,0,1) conclui-se que o vector (1,0,1) gera $\mathrm{Nuc}(A_{-1})$. Além disso, (1,0,1) é um vector linearmente independente, portanto o conjunto $\{(1,0,1)\}$ é uma base de $\mathrm{Nuc}(A_{-1})$.

 $S = (2, 1, 0) + \{(x, 0, x) : x \in \mathbb{R}\} = \{(x + 2, 1, x) : x \in \mathbb{R}\}.$

Resolução alternativa: pode aplicar o método de eliminação de Gauss à matriz aumentada $[A_{-1}|b]$ e chegar ao mesmo resultado. Note que o sistema $A_{-1}u=b$ <u>não é</u> equivalente ao sistema $A'_{-1}u=b$!!!)

Grupo III

- a) O ''vector nulo'' do espaço linear E é a função constante igual a zero. Esta função não pertence ao conjunto E_+ , portanto E_+ não é subespaço linear de E.
- b) (i) 0 ''vector nulo'' pertence a F, uma vez que $0 = \log(1)$ onde 1 é função constante igual a 1.
- (ii) Se $g_1 = \log(f_1)$ e $g_2 = \log(f_2)$ onde $f_1, f_2 \in E_+$, então

$$(g_1 + g_2)(x) = g_1(x) + g_2(x) = \log(f_1(x)) + \log(f_2(x)) = \log(f_1(x)f_2(x)) = \log((f_1f_2)(x)), \quad \forall x \in \mathbb{R},$$

pelo que $(g_1+g_2)(x)=\log\big((f_1f_2)(x)\big)$ e portanto $g_1+g_2\in F$.

(iii) Sejam $\lambda \in \mathbb{R}$ e $g = \log(f) \in F$. Como

$$(\lambda g)(x) = \lambda g(x) = \lambda \log(f(x)) = \log(f(x)^{\lambda}), \quad \forall x \in \mathbb{R},$$

pelo que $(\lambda g)(x)=\log(f(x)^\lambda)$ e portanto $\lambda g\in F$. Por um resultado das aulas teóricas F é subsespaço linear de E. QED

Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

\mathbf{E}	$\mathbf{X}\mathbf{A}$	ME	\mathbf{DE}	ÁL(GEBF	RA	LINE	\mathbf{A}	R
Curs	sos:	LEC	C. LF	TC-	Alame	eda.	LEN	e i	LET

(19/JANEIRO/2006)

Duração: 3h

Nome do Aluno:		Número:
Curso:	Turma:	

Advertência: há 8 enunciados parecidos....mas distintos.

preencher por	Aluno	Docente
Pergunta	Resposta(pág.)	Classificação
Grupo I	1	
Grupo II (a)		
Grupo II (b)		
Grupo III (a)		
Grupo III (b)		
Grupo III (c)		
Grupo IV (a)		
Grupo IV (b)		
TOTAL		

GRUPO I (9 valores) Perguntas de escolha múltipla Cotação de cada pergunta de escolha múltipla: 1,5v. Resposta em branco: 0v. Resposta errada: -0,5v.

Respostas do Grupo I (a preencher pelo Aluno)

1	2	3	4	5	6

1. Sejam $A_{\gamma} = \begin{bmatrix} 1 & \gamma & 1 \\ 0 & 0 & \gamma \\ \gamma & -1 & 0 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ onde $\gamma \in \mathbb{C}$ é um parâmetro complexo. Considere a seguinte lista de afirmações:

- I) Existe um único valor de γ para o qual $car(A_{\gamma}) \neq 3$.
- II) O sistema $A_{\gamma}x = b$ é determinado para infinitos valores de γ .
- III) O sistema $A_{\gamma}x = b$ é possível para qualquer valor de γ .
- IV) O sistema homogéneo $A_{\gamma}x = 0$ é possível para qualquer valor de γ .

A lista completa de afirmações correctas é

- A) II e IV
- B) II e III e IV
- C) I e III e IV
- D) I e II

2. Considere o espaço linear $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ das matrizes quadradas 2×2 , munido das operações habituais, e a seguinte lista de afirmações:

- I) O conjunto $\{M \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) : \det(M) = 0\}$ não é um subespaço linear de $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$.
- II) O conjunto $\{M \in \operatorname{Mat}_{2\times 2}(\mathbb{R}) : \frac{1}{3}M = M^T\}$ é um subespaço linear de $\operatorname{Mat}_{2\times 2}(\mathbb{R})$ de dimensão 0.
- III) Existe uma transformação linear $T: \operatorname{Mat}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^2$ injectiva.

A lista completa de afirmações correctas é

- A) I e II
- **B**) II
- **C**) I
- D) III

3. Seja $U=\{(x,y,z)\in\mathbb{R}^3:\ x-y=0\}.$ Considere a seguinte lista de afirmações:

- I) $\dim(U) = 2 \in \{(1, -1, 0), (0, 0, 1)\}$ forma uma base de U.
- II) O conjunto $\{(1, 1, 0), (0, 0, 3)\}$ é uma base de U.

III)
$$U = \text{Nuc}(A)$$
 onde $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

IV)
$$U = \operatorname{Nuc}(A)$$
 onde $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \end{bmatrix}$.

A lista completa de afirmações correctas é

- A) II e IV
- B) I e III
- C) I e IV
- D) II e III

4. Para $\alpha, \beta \in \mathbb{R}$, seja $A = \begin{bmatrix} \beta+3 & 0 & \beta \\ \alpha & 3 & \alpha \\ 1 & 0 & -1 \end{bmatrix}$. Considere a seguinte lista de afirmações:

- I) $\det((2A)^2) = 4\det(A)^2$ para qualquer valor de β .
- II) A é invertível para qualquer valor de β .
- III) det(A) não depende do valor de α .
- IV) O valor $\lambda = 3$ é um valor próprio de A para quaisquer valores de α e β .

A lista completa de afirmações correctas é

- A) I e II e IV
- B) III e IV
- C) II e III
- D) III

- 5. Considere em \mathbb{R}^4 um produto interno e $\{u_1, u_2, u_3, u_4\}$ uma base ortonormada de \mathbb{R}^4 . Denote por F o subespaço de \mathbb{R}^4 gerado pelos vectores u_1 e u_2 . Considere a seguinte lista de afirmações:
 - I) $||u_1 + u_2 + u_3 + u_4|| = \sqrt{2}$ para algum produto interno.
 - II) $||u_1 + u_2 + u_3 + u_4|| = 2$, independentemente do produto interno.
 - III) $\dim(F^{\perp})=1$.
 - IV) $\{u_3, u_4\}$ é uma base ortogonal de F^{\perp} .

A lista completa de afirmações correctas é

- **A)** I e III **B)** II e III e IV
- C) II e IV
- **D**) I e IV
- 6. Seja $T: \mathcal{P}_2 \to \mathcal{P}_2$ a aplicação definida como se segue T(p(x)) = p(x+1).
 - I) T não é uma transformação linear.
 - II) $p(x) = 1 + x + x^2$ é uma solução da equação linear $T(p(x)) = 3 + 2x + x^2$.
 - III) A transformação linear T é bijectiva.
 - IV) O polinómio p(x) = 3 é um vector próprio de T.

A lista completa de afirmações correctas é

- **A)** I **B)** II
- C) III
- **D)** III e IV

Nesta parte, Grupos II, III e IV, apresente todos os cálculos e justificações relevantes

Considere o produto interno usual em \mathbb{R}^4 e o espaço linear $E = L(\{v_1, v_2, v_3, v_4\})$ gerado pelos vectores $v_1 = (1, 0, 0, 1), \ v_2 = (1, 1, -1, -1), \ v_3 = (0, 0, 1, 1)$ e $v_4 = (1, 0, 1, 2)$.

- a) Determine bases ortogonais para E e para E^{\perp} .
- b) Calcule a distância de $u_0 = (2, 1, 0, 1)$ a E^{\perp} .

Para cada parâmetro $\gamma \in \mathbb{R}$, seja $T_{\gamma} : \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por:

$$T_{\gamma}((x,y,z)) = (\gamma x + 2z, -y + 2z, z).$$

- a) Determine uma base de \mathbb{R}^3 na qual T_γ é representada pela matriz $A_\gamma = \begin{bmatrix} \gamma & 0 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$.
- b) Identifique o conjunto dos valores de γ para os quais T_{γ} é diagonalizável. Para $\gamma = -1$, determine uma base de \mathbb{R}^3 constituída por vectores próprios de T_{-1} .
- c) Resolva, em \mathbb{R}^3 , a equação linear $T_{\gamma}((x,y,z)) = (2,2,1)$.

Considere o espaço Euclidiano \mathbb{R}^n com o produto interno usual e seja $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ uma matriz simétrica $A = A^T$.

a) Prove que vectores próprios associados a diferentes valores próprios de A são ortogonais.

b) Prove que existe uma base ortogonal de \mathbb{R}^n formada por vectores próprios de A.

Resolução do Exame

Grupo I

A chave para esta versão de exame é:

1	2	3	4	5	6
A	A	A	В	\mathbf{C}	D

Grupo II

a) Seja A a matriz cujas linhas são formadas pelos vectores v_1,v_2,v_3 e v_4 . Portanto $E=L_A$ é o espaço linhas de A enquanto $E^\perp=\mathrm{Nuc}(A)$. Aplicando o método de eliminação de Gauss obtém-se a matriz A' em escada de linhas como se segue:

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 2 \end{bmatrix} \xrightarrow[-L_1 + L_2 \\ -L_1 + L_4 \\ \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow[-L_3 + L_4 \\ \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = A'.$$

Como car(A)=3, dim(E)=3 e $\{v_1,v_2,v_3\}$ é uma base de E. Vamos aplicar a esta base o método de ortogonalização de Gram-Schmidt para obter uma base $\{w_1,w_2,w_3\}$ ortogonal de E:

$$\begin{aligned} w_1 &= v_1 = (1,0,0,1), \\ w_2 &= v_2 - \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = v_2 - \frac{0}{\langle v_1, v_1 \rangle} v_1 = v_2 = (1,1,-1,-1), \\ w_3 &= v_3 - \frac{\langle v_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \frac{\langle v_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = (0,0,1,1) - \frac{-2}{4} (1,1,-1,-1) - \frac{1}{2} (1,0,0,1) = (0,\frac{1}{2},\frac{1}{2},0). \end{aligned}$$

Vamos de seguida encontrar uma base para o complemento ortogonal E^{\perp} . Note que como $\dim(E)=3$ e $\dim(E)+\dim(E^{\perp})=\dim(\mathbb{R}^4)$ concluimos de imediato que $\dim(E^{\perp})=1$. Como v_1,v_2,v_3 é uma base de E

$$E^{\perp} = \{(x, y, z, w) \in \mathbb{R}^4 : \langle (x, y, z, w), v_1 \rangle = 0, \langle (x, y, z, w), v_2 \rangle = 0, \langle (x, y, z, w), v_3 \rangle = 0\},$$

portanto

$$\begin{split} E^{\perp} &= \{(x,y,z,w) \in \mathbb{R}^4: \ x+w=0, \ x+y-z-w=0, \ z+w=0\} = \\ &\{(x,y,z,w) \in \mathbb{R}^4: \ x=-w, \ y=w, \ z=-w\} = \{(-w,w,-w,w): \ w \in \mathbb{R}\}. \end{split}$$
 Portanto $\{u_1 = (-1,1,-1,1)\}$ é uma base (ortogonal) de E^{\perp} .

b) Por definição de distância, $\operatorname{dist}(u_0, E^\perp) = ||P_E(u_0)||$, isto é, a norma da projecção ortogonal de u_0 sobre E. Sabemos que $P_E(u_0) = u_0 - P_{E^\perp}(u_0)$, portanto usando a base (ortogonal) $\{u_1\}$ de E^\perp encontrada em a) obtém-se:

$$||P_E(u_0)|| = ||u_0 - P_{E^{\perp}}(u_0)|| = ||u_0 - \frac{\langle u_0, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1|| = ||u_0 - \frac{0}{\langle u_1, u_1 \rangle} u_1|| = ||u_0|| = \sqrt{6}.$$

Grupo III

a) Seja $Bc=\{e_1,\ e_2,\ e_3\}$ a base canónica de \mathbb{R}^3 onde $e_1=(1,0,0),\ e_2=(0,1,0)$ e $e_3=(0,0,1).$ Como temos

$$T_{\gamma}(e_1) = (\gamma, 0, 0) = \gamma e_1 + 0e_2 + 0e_3$$
,

$$T_{\gamma}(e_2) = (0, -1, 0) = 0e_1 + 1e_2 + 0e_3,$$

$$T_{\gamma}(e_3) = (2,2,1) = 2e_1 + 2e_2 + 1e_3$$
,

podemos concluir que, por definição de representação matricial, a matriz $M(T_\gamma;Bc,Bc)$ que representa T_γ em relação à base canónica de \mathbb{R}^3 é a matriz A_γ .

b) Como A_γ representa T_γ na base canónica de \mathbb{R}^3 , os valores e vectores próprios da matriz A_γ coincidem com os valores e vectores da transformação linear T_γ . Seja $p(\lambda)$ o polinómio característico de A_γ . Então:

$$p(\lambda) = \det(A_{\gamma} - \lambda I) = \det \begin{bmatrix} \gamma - \lambda & 0 & 2 \\ 0 & -1 - \lambda & 2 \\ 0 & 0 & 1 - \lambda \end{bmatrix} = (\gamma - \lambda)(-1 - \lambda)(1 - \lambda),$$

uma vez que o determinante de uma matriz triangular superior é igual ao produto das entradas na diagonal principal. Portanto $\{-1,1,\gamma\}$ são os valores próprios de A_γ . Temos 3 casos a considerar:

Caso 1: Se $\gamma \notin \{-1,1\}$, então temos 3 valores próprios diferentes em \mathbb{R}^3 , pelo que a matriz A_γ é diagonalizável. Note que nestes casos a multiplicidade algébrica (ma) de cada valor próprio é igual a 1_e portanto a multiplicidade geométrica (mg) de cada valor próprio

Caso 2: Seja $\gamma=1$. Então $\{-1,1\}$ são os valores próprios de A_1 em que a multiplicidade algébrica do primeiro valor próprio é 1 enquanto que a do segundo valor próprio é 2. Vamos determinar a multiplicidade geométrica do segundo valor próprio (a do primeiro é obviamente 1): o espaço próprio associado ao valor próprio $\lambda=1$ é

$$E(1) = \text{Nuc}(A_1 - 1I) = \text{Nuc} \begin{bmatrix} 0 & 0 & 2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Como car $(A_1-II)=2$, dim Nuc $(A_1-II)=1$ e portanto a multiplicidade geométrica deste

pelo que a matriz A_{γ} para $\gamma=1$ não é diagonaizável, pois a multiplicidades algébrica e geométrtica do valor próprio $\lambda=1$ são diferentes.

Caso 3: Seja $\gamma=-1$. Então $\{-1,1\}$ são os valores próprios de A_1 em que a multiplicidade algébrica do primeiro valor próprio é 2 enquanto que a do segundo valor próprio é 1. Vamos determinar a multiplicidade geométrica do primeiro valor próprio O Espaço próprio associado ao valor próprio $\lambda=-1$ é

$$E(-1) = \text{Nuc}(A_{-1} - (-1)I) = \text{Nuc} \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

pelo que a multiplicidade geométrica é igual a 2 (note que ${\sf car}(A_{-1} - (-1)I) = 1$). Em

	valor próprio	ma	mg
resumo	-1	2	2
	1	1	1

e portanto A_{γ} para $\gamma = -1$ é diagonalizável.

Conclusão: A_{γ} é diagonalizável se e só se $\gamma \neq 1$.

Finalmente para construirmos uma base de \mathbb{R}^3 formada por vectores próprios teremos que determinar bases para os espaços próprios E(-1) e E(1) da matriz A_{γ} para $\gamma=-1$:

$$E(-1) = \operatorname{Nuc}(A_{-1} - (-1)I) = \operatorname{Nuc} \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \operatorname{Nuc} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$$

pelo que $\{(1,0,0),(0,1,0)\}$ é uma base para E(-1);

$$E(1) = \operatorname{Nuc}(A_{-1} - I) = \operatorname{Nuc} \begin{bmatrix} -2 & 0 & 2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} = \operatorname{Nuc} \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} =$$

$$= \{(x, y, z) \in \mathbb{R}^3: -x + z = 0, -y + z = 0\},\$$

pelo que $\{(1,1,1)\}$ é uma base de E(-1). Logo $\{(1,0,0),(0,1,0),(1,1,1)\}$ é uma base de \mathbb{R}^3 formada por vectores próprios de A_{-1} .

c) Temos que encontrar a solução geral do sistema cuja matriz aumentada é:

$$\left[\begin{array}{ccc|c} \gamma & 0 & 2 & 2 \\ 0 & -1 & 2 & 2 \\ 0 & 0 & 1 & 2 \end{array}\right].$$

Conclui-se facilmente que o conjunto solução é $S=\{(x,0,1):\ \gamma x=0\}$. Note que para $\gamma\neq 0$, $S=\{(0,0,1)\}$. Para $\gamma=0$, $S=\{(x,0,1):\ x\in\mathbb{R}\}$.

Grupo IV

a) Usando o produto interno usual verifique que

$$\langle Au, v \rangle = \langle u, A^T v \rangle$$

para qualquer matriz $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ e quaisquer vectores $u, v \in \mathbb{R}^n$.

Suponha agora que $A=A^T$ e sejam u e v vectores próprios de A associados a valores próprios λ e μ , respectivamente, tal que $\lambda\neq\mu$. Então, usando a equação acima, $Au=\lambda u,\ Av=\mu v$ e o axioma da linearidade do produto interno, obtém-se:

$$\lambda \langle u, v \rangle = \langle \lambda u, v \rangle = \langle Au, v \rangle = \langle u, A^T v \rangle = \langle u, Av \rangle = \langle u, \mu v \rangle = \mu \langle u, v \rangle$$

pelo que $\lambda \langle u, v \rangle = \mu \langle u, v \rangle$, isto é

$$(\lambda - \mu)\langle u, v \rangle = 0.$$

Se $\langle u,v\rangle \neq 0$ então conclui-se que $\lambda=\mu$ o que é absurdo. Conclusão: $\langle u,v\rangle=0$, isto é u e v são vectores ortogonais.

b) Como A é uma matriz simétrica então A é diagonalizável. Portanto podemos construir uma base de \mathbb{R}^n formada por vectores próprios de A. Em seguida aplica-se o processo de ortogonalização de Gram-Schmidt a cada base de cada espaço próprio. Finalmente usa-se a alínea a) para garantir que se obtém uma base ortogonal de \mathbb{R}^n formada por vectores próprios de A considerando todas as bases ortogonais dos espaços próprios.

EXAME DE ÁLGEBRA LINEAR 2^a fase, Alameda

(19/JANEIRO/2007)

Duraçã o: 3H

Nome do Aluno:	Número:
Curso:	Turma:

Advertência: há 7 enunciados parecidos...mas distintos

Teste 2 (1h30m de duração): problemas I 4 I 5 I 6 II b II c II d II e IV b

Resolução

GRUPO I (9 valores) Perguntas de escolha múltipla

Cotação de cada pergunta de escolha múltipla: 1,5v. Resposta em branco: 0v. Resposta errada: -0,5v.

Respostas do Grupo I

1	2	3	4	5	6
C	C	C	В	В	В

- 1. Sejam $a \in \mathbb{R}, \ A = \begin{bmatrix} a & 1 \\ 4 & a \end{bmatrix}$. Sabendo que $\det(A) = -3$, considere a seguinte lista de afirmações:
 - I) O escalar a = 1 é o único valor que satisfaz det(A) = -3.
 - II) O sistema Au = b é impossível para algum a e alguma matriz coluna $b \in \mathrm{Mat}_{2 \times 1}(\mathbb{R})$.
 - III) $\det(-A) = -3 \operatorname{e} \det(A^{-1}) = -1/3$.
 - IV) $\operatorname{car}(A) = \operatorname{car}([A|b])$ para quaisquer $a \in \mathbb{R}$ e $b \in \operatorname{Mat}_{2 \times 1}(\mathbb{R})$, onde [A|b] designa a matriz aumentada.

A lista completa de afirmações correctas é

A afirmação I é falsa pois, $det(A) = a^2 - 4$, portanto $a^2 - 4 = -3$ tem duas soluções diferentes.

A afirmação II é falsa porque $\det(A) \neq 0$ implica que o sistema Au = b é possível e determinado para qualquer b, e a única solução é $u = A^{-1}b$.

A afirmação III é verdadeira porque: $\det(-A) = (-1)^2 \det(A)$ e $\det(A^{-1}) = \frac{1}{\det(A)}$.

A afirmação IV é verdadeira, tendo $\det(A) \neq 0$, $\operatorname{car}(A) = 2$, $\operatorname{logo} \operatorname{car}([A|b]) = 2$.

- 2. Sejam $A \in \operatorname{Mat}_{n \times n}(\mathbb{R}), b \in \operatorname{Mat}_{n \times 1}(\mathbb{R})$ com $b \neq 0$. Qual das seguintes afirmações é verdadeira?
 - A) Se x_0 é solução de Au=0 e x_1 é solução de Au=b, então πx_0-x_1 é solução de Au=b.
 - B) O sistema Au = b é determinado se det(A) = 0.
 - C) $\operatorname{Nuc}(A) \subseteq \operatorname{Nuc}(A^2)$.
 - D) Se b é solução de Au = b então o escalar 1 não é valor próprio de A.

A afirmação A é falsa, porque $A(\pi x_0 - x_1) = \pi A x_0 - A x_1 = \pi 0 - b = -b$, uma vez que $A x_0 = 0$ e $A x_1 = b$.

A afirmação B é falsa, porque se det(A) = 0 então A é não invertível e portanto Au = b nunca será determinado.

A afirmação C é verdadeira. Para provar que $\text{Nuc}(A) \subseteq \text{Nuc}(A^2)$ teremos que provar que dado $u \in \text{Nuc}(A)$ então $u \in \text{Nuc}(A^2)$. Mas se $u \in \text{Nuc}(A)$, então Au = 0 o que implica $A^2u = A0 = 0$ muliplicando a equação Au = 0 por A. Isto significa que $u \in \text{Nuc}(A^2)$.

A afirmação D é falsa, porque se b é solução de Au = b então Ab = b. Como $b \neq 0$ concluimos que o escalar 1 é valor próprio de A (e b é um vector próprio associado a este valor próprio).

- 3. Seja $B = \{v_1, v_2\}$ a base do subespaço linear W de \mathbb{R}^3 , onde $v_1 = (1, 1, 1)$ e $v_2 = (1, 0, 1)$. Considere a seguinte lista de afirmações:
 - I) $(1,2,1) \in W$.
 - II) $W = \{(x, y, z) : x z = 0\}.$
 - III) As coordenadas v_B do vector v = (2, 3, 2) na base B são $v_B = (2, 1)$.
 - IV) Se $v_B = (3, -1)$ são as coordenadas de v na base B, então v = (2, 3, 2).

A lista completa de afirmações correctas é

A) I e IV **B)** II e III **C)** I, II e IV **D)** I, III e IV

A afirmação I é verdadeira, porque (1, 2, 1) = (1, 1, 1) + (1, 0, 1), i.e. (1, 2, 1) é combinação linear dos vectores da base dada de W.

A afirmação II é verdadeira, porque p.ex. $\dim(W)=2$, $\dim\{(x,y,z): x-z=0\}=2$ e os vectores $(1,1,1),(1,0,1)\in\{(x,y,z): x-z=0\}$, pelo que W tem diemsão 2 e é subespaço de um espaço de dimensão 2.

A afirmação III é falsa, porque $(2,3,2) \neq 2v_1 + 1v_2$.

A afirmação IV é verdadeira, porque $(2,3,2) = 3v_1 - 1v_2$.

- 4. Considere a base $B = \{v_1, v_2\}$ de \mathbb{R}^2 onde $v_1 = (1, 2), v_2 = (0, 1)$ e $T : \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que $M(T; B, B) = \begin{bmatrix} 1 & -1 \\ 4 & -4 \end{bmatrix}$. Qual das seguintes afirmações é verdadeira?
 - A) $(1,1) \in Nuc(T)$.
 - B) T((2,3)) = (3,18).
 - C) Zero não é valor próprio de T.
 - D) T é injectiva.

A afirmação A é falsa, porque $(1,1) \in \text{Nuc}(T)$ sse $1v_1 + 1v_2 \in \text{Nuc}(A)$ onde A é a representação de T na base B. Mas $1v_1 + 1v_2 = (1,3)$ e $(1,3) \notin \text{Nuc}(A)$.

A afirmação B é verdadeira. Para calcular T((2,3)) temos que em primeiro lugar encontrar as coordenadas v_B de (2,3) na base B, depois Av_B fornece as coordenadas de T((2,3)) na base B, por definição de representação matricial. Concretamente, $(2,3) = 2v_1 - 1v_2$, $A\begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \end{bmatrix}$ e finalmente

$$T((2,3)) = 3v_1 + 12v_2 = (3,18).$$

A afirmação C é falsa, porque os valores próprios de T e da matriz A são iguais e 0 é valor próprio da matriz uma vez que A é não invertível.

A afirmação D é falsa porque a injectividade de T é equivalente a verificar que dimNuc(A) = 0. Todavia é óbvio que dimNuc(A) = 1 (=número de colunas de A - car(A)).

- 5. Seja $T: \mathcal{P}_2 \to \mathcal{P}_2$ definida por $T(p(x)) = p(-1) p(1)x^2$ onde \mathcal{P}_2 designa o espaço linear dos polinómios de grau menor ou igual a 2. Considere a seguinte lista de afirmações:
 - I) $T(1+x^2) = 2-2x^2$.
 - II) $M(T; B, B) = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$, onde $B = \{1, x, x^2\}$ é a base canónica de \mathcal{P}_2 .
 - III) T é sobrejectiva.

IV) $\{1-x^2, -1+x^2\}$ é uma base para a imagem de T.

A lista completa de afirmações correctas é

A afirmação I é verdadeira, porque considerando $p(x)=1+x^2$, então p(-1)=2, p(1)=2, pelo que $T(1+x^2)=2-2x^2$.

A afirmação II é verdadeira, porque $T(1) = 1 - x^2 = 1 + 0x - 1x^2$ e assim obtém-se a primeira coluna da matriz, por definição de representação matricial. A segunda e terceira colunas resultam de $T(x) = -1 - x^2$ e $T(x^2) = 1 - x^2$, respectivamente.

A afirmação III é falsa, porque T é sobrejectiva sse $\dim(\operatorname{Im}(T)) = \dim(\mathcal{P}_2)$ porque \mathcal{P}_2 é o espaço de chegada de T. Ora $\dim(\operatorname{Im}(T)) = \operatorname{car}(A) = 2$ e $\dim(\mathcal{P}_2) = 3$.

A afirmação IV é falsa, porque p.ex. os polinómios dados são linearmente dependentes.

- 6. Seja $W=\{(x,y,z,w)\in\mathbb{R}^4:x+y+z=0\}$ e p=(1,1,-2,0). Considere a seguinte lista de afirmações:
 - I) $\dim(W^{\perp}) = 1$.
 - II) dist $(p, W^{\perp})=0$.
 - III) dist(p, W)=0.
 - IV) $\{(1,0,-1,0),(0,1,-1,0),(0,0,0,1)\}$ é uma base ortogonal de W.

A lista completa de afirmações correctas é

A) I e II

A afirmação I é verdadeira, porque $\dim(W)=3$, e portanto $\dim(W^{\perp})=1$.

A afirmação II é falsa, porque $p \in W$, portanto $\operatorname{dist}(p, W^{\perp}) = ||p||$.

A afirmação III é verdadeira, porque $p \in W$.

A afirmação IV é falsa, porque os vectores da lista formam de facto uma base de W, no entanto dois deles não são ortogonais.

Nesta parte, Grupos II, III e IV, apresente todos os cálculos e justificações relevantes

Para cada parâmetro real α , seja $A = \begin{bmatrix} \alpha & \alpha^2 - 1 & 0 \\ 0 & 2\alpha & \alpha \\ 0 & z \end{pmatrix}, \ \mathbf{e} \ \langle \cdot, \cdot \rangle : \ \mathbb{R}^3_a \times \mathbb{R}^3 \to \mathbb{R}$ a aplicação definida por: $\langle (x,y, \overset{0}{z}), (a,b,c) \rangle = \overset{2}{a} x \quad y \quad z \ A \begin{bmatrix} b \\ b \\ c \end{bmatrix}.$

- a) Calcule $\det(A)$ e verifique que o sistema homogéneo $A\mathbf{x}=0$ é indeterminado se e só se $\alpha=0$.
- b) Determine o polinómio característico e os valores próprios de A, em função de α .
- c) Para $\alpha = 2$ encontre bases para os espaços próprios de A e verifique se A é diagonalizável (para $\alpha = 2$).
- d) Determine os valores de α para os quais $\langle \cdot, \cdot \rangle$ define um produto interno em \mathbb{R}^3 .
- e) Usando o(s) produto(s) interno(s) em \mathbb{R}^3 da alínea d), calcule o ângulo entre os vectores u=(0,1,0) e v=(0,0,1).

Resolução:

a) Usando a regra de Laplace na primeira coluna de A temos

$$\det(A) = \alpha \det \begin{bmatrix} 2\alpha & \alpha \\ \alpha & 2\alpha \end{bmatrix} = \alpha(4\alpha^2 - \alpha^2) = 3\alpha^3.$$

O sistema homogéneo $A\mathbf{x} = 0$ é indeterminado sse a matriz A for não invertível sse $3\alpha^3 = 0$. Logo $\alpha = 0$ é o único valor que torna o sistema homogéneo Ax = 0 indeterminado.

b) O polinómio característico de A é, usando novamente a regra de Laplace na primeira coluna,

$$p(\lambda) = \det(A - \lambda I) = \begin{bmatrix} \alpha - \lambda & \alpha^2 - 1 & 0 \\ 0 & 2\alpha - \lambda & \alpha \\ 0 & \alpha & 2\alpha - \lambda \end{bmatrix} = (\alpha - \lambda) \det \begin{bmatrix} 2\alpha - \lambda & \alpha \\ \alpha & 2\alpha - \lambda \end{bmatrix} =$$

$$(\alpha - \lambda) \Big((2\alpha - \lambda)^2 - \alpha^2 \Big) = (\alpha - \lambda)(2\alpha - \lambda - \alpha)(2\alpha - \lambda + \alpha) = (\lambda - \alpha)^2 (3\alpha - \lambda).$$

Portanto $\{\alpha, 3\alpha\}$ são os valores próprios de A.

c) Para $\alpha=2,\ A=\begin{bmatrix}2&3&0\\0&4&2\\0&2&4\end{bmatrix}$ cujos valores próprios são $\{2,6\}$ por b). Observe que a multiplicidade algébrica

algébrica do primeiro valor próprio é 2 (raiz dupla de $p(\lambda)$) enquanto que a multiplicidade algébrica

do segundo valor próprio é 1. Vamos determinar bases para cada espaço próprio
$$E_2$$
 e E_6 . Como $E_2 = \text{Nuc}(A-2I) = \text{Nuc}\begin{bmatrix} 0 & 3 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$, concluimos que

$$E_2 = \{(x, y, z) : 3y = 0, 2y + 2z = 0\} = \{(x, 0, 0), x \in \mathbb{R}\}.$$

Logo $\dim E_2 = 1$ (=multiplicidade geometrica) e $\{(1,0,0)\}$ é uma base de E_2 . Para o segundo valor próprio obtém-se $E_6 = \operatorname{Nuc}(A - 6I) = \begin{bmatrix} -4 & 3 & 0 \\ 0 & -2 & 2 \\ 0 & 2 & -2 \end{bmatrix}$. Portanto

$$E_6 = \{(x, y, z): -4x + 3y = 0, -2y + 2z = 0\} = \{(x, y, z): x = \frac{3}{4}z, y = z\} = \{(\frac{3}{4}z, z, z), z \in \mathbb{R}\}.$$

Logo dim $E_6 = 1$ e $\{(\frac{3}{4}, 1, 1)\}$ é uma sua base.

A matriz A (com $\alpha = 2$) não é diagonalizável uma vez que as muliplicidades algébrica e geometrica do primeiro valor próprio não são iguais.

d) A aplicação $\langle \cdot, \cdot \rangle$ define um produto interno em \mathbb{R}^3 sse a matriz for simétrica $A = A^T$ e todos os valores próprios de A forem reais estritamente positivos.

Ora $A = A^T$ implica $\alpha^2 - 1 = 0$, i.e. A é simétrica somente para $\alpha \in \{-1, 1\}$. Finalmente usando b) concluimos que $\langle \cdot, \cdot \rangle$ define um produto interno em \mathbb{R}^3 sse $\alpha = 1$.

e) Por definição o ângulo $\angle(u,v)$ entre os vectores u=(0,1,0) e v=(0,0,1) é arccos $\frac{\langle u,v\rangle}{||u||||v||}$. Usando a

$$\text{matriz } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \text{ com } \alpha = 1 \text{, veja d), temos } \langle u, v \rangle = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 1,$$

$$||u|| = \sqrt{\langle u, u \rangle} = \sqrt{\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}} A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}} = \sqrt{\begin{bmatrix} 0 & 2 & 1 \end{bmatrix}} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}} = \sqrt{2} \text{ e analogamente } ||v|| = \sqrt{2}. \text{ Portanto,}$$

$$\angle(u, v) = \arccos \frac{1}{\sqrt{2}\sqrt{2}} = \arccos \frac{1}{2} = \frac{\pi}{3}.$$

GRUPO III (4 valores)

Considere as matrizes
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
 e $b = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ 3 \end{bmatrix}$.

- a) Determine todas as soluções de mínimos quadrados associadas ao sistema Ax = b.
- b) Foi observado que os lucros obtidos pelo venda de um automóvel novo na União Europeia nas 3 primeiras semanas foram:

Semana		2	3
Lucros (em milhões de euros)	1,5	0, 5	3

Vamos representar as semanas por x e o lucro semanal por y. Encontre a recta $y = \alpha + \beta x$ de mínimos quadrados relacionando x e y. Use a recta obtida para estimar os lucros na semana 6.

Resolução:

a) As soluções de mínimos quadrados de $A\mathbf{x} = b$ são as soluções do sistema $A^T A \hat{x} = A^T b$, onde $\hat{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Neste caso, temos $A^T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, $A^T A = \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix}$, $A^T b = \begin{bmatrix} 5 \\ \frac{23}{2} \end{bmatrix}$. Note que como as colunas de A são vectores linearmente independentes, existe uma única solução de mínimos quadrados. Tendo as matrizes $A^T A$ e $A^T b$ podemos recorrer, p.ex., ao método de eliminação para obter $\hat{x} = \begin{bmatrix} \frac{1}{6} \\ \frac{3}{4} \end{bmatrix}$.

b) Note que $1,5=\frac{3}{2}$ e $0,5=\frac{1}{2}$. Queremos determinar a recta $y=\alpha+\beta x$ que $melhor\ aproxima$ os pontos $(1,\frac{3}{2}),(2,\frac{1}{2}),(3,3),$ i.e. $\begin{cases} \alpha+\beta=\frac{3}{2}\\ \alpha+2\beta=\frac{1}{2}\\ \alpha+3\beta=3 \end{cases}$. Portanto as matrizes dos coeficientes deste sistema são as

matrizes A e b acima indicadas e a solução de mínimos quadrados da-nos a recta que melhor aproxima os dados da tabela (note que os sitema $A\mathbf{x}=b$ é impossvel!). Por a) temos $\alpha=\frac{1}{6},\beta=\frac{3}{4}$. Portanto a recta é $y=\frac{1}{6}+\frac{3}{4}x$. Portanto para x=6 temos $y=\frac{1}{6}+\frac{18}{4}=\frac{14}{3}\approx 4,66$ milhões de euros.

GRUPO IV (2 valores)

Sejam $A \in \operatorname{Mat}_{n \times p}(\mathbb{R})$ e $b \in \operatorname{Mat}_{n \times 1}(\mathbb{R})$. Considere o sistema linear Au = b e designe por S_1 o seu conjunto solução. Seja ainda o sistema $A^T Av = A^T b$ e S_2 o seu conjunto solução.

- a) Prove que $S_1 \subseteq S_2$.
- b) Prove que $S_1 = S_2$ se $S_1 \neq \emptyset$.

Resolução:

- a) Para provar que $S_1 \subseteq S_2$ temos que provar que dado $u \in S_1$ então $u \in S_2$. Ora isto é trivial uma vez que Au = b implica $A^TAu = A^Tb$, multiplicando Au = b por A^T .
- b) Por a) basta provar que $S_2 \subseteq S_1$. Seja $v \in S_2$. Queremos provar que $v \in S_1$. Como $S_1 \neq \emptyset$ concluimos que $b \in \mathcal{C}_A$ onde \mathcal{C}_A designa o espaço gerado pelas colunas de A (note que $Av \in \mathcal{C}_A$ para qualquer vector v). Portanto $Av b \in \mathcal{C}_A$.

Provamos agora que $Av - b \in \mathcal{C}_A^{\perp}$ o complemento ortogonal do espaço das colunas de A. Ora se $A^TAv = A^Tb$ então $A^T(Av - b) = 0$ pelo que $Av - b \in \operatorname{Nuc}(A^T)$. Por outro lado $\operatorname{Nuc}(A^T) = \mathcal{C}_A^{\perp}$ (uma vez que $\mathcal{C}_A = \mathcal{L}_{A^T}$ e $\mathcal{L}_{A^T}^{\perp} = \operatorname{Nuc}(A^T)$). Logo $Av - b \in \mathcal{C}_A \cap \mathcal{C}_A^{\perp}$, mas $\mathcal{C}_A \cap \mathcal{C}_A^{\perp} = \{0\}$ pelo que Av - b = 0 logo Av = b, portanto $v \in S_1$. QED.

30

Instituto Superior Técnico Departamento de Matemática Sec cã o de Álgebra e Análise

Nome do Aluno:
Número:Curso:Curso:
Advertência: há 6 enunciados parecidos mas distintos Cotação das perguntas de escolha múltipla: 0,6v. Resposta em branco: 0v. Resposta errada: -0,2v.
1. Para cada parâmetro real α sejam $A_{\alpha}=\begin{bmatrix}1&2&3\\4&5&6\\7&8&3\alpha\end{bmatrix}$ e $b_{\alpha}=\begin{bmatrix}1\\2\\3\alpha\end{bmatrix}$. Considere as seguinte afirmações:
I) O sistema $A_{\alpha}u=b_{\alpha}$ é impossível para qualquer valor de α .
II) O sistema $A_{\alpha}u=b_{\alpha}$ é impossível para pelo menos um valor de α .
III) O sistema $A_{\alpha}u=b_{\alpha}$ é possível para qualquer valor de α .
IV) A matriz A_{α} é invertível para $\alpha = -3$.
A lista completa de afirmações correctas é
\square I, II \square III, IV \square II, III
Resolução: Usando o método de eliminação de Gauss temos
$\begin{bmatrix} 1 & 2 & 3 & & 1 \\ 4 & 5 & 6 & & 2 \\ 7 & 8 & 3\alpha & & 3\alpha \end{bmatrix} \xrightarrow{-4L_1+L_2 \\ -7L_1+L_3} \begin{bmatrix} 1 & 2 & 3 & & 1 \\ 0 & -3 & -6 & & -2 \\ 0 & -6 & 3\alpha-21 & & \alpha-7 \end{bmatrix} \xrightarrow{-2L_2+L_3} \begin{bmatrix} 1 & 2 & 3 & & 1 \\ 0 & -3 & -6 & & -2 \\ 0 & 0 & 3\alpha-9 & & 3\alpha-3 \end{bmatrix}$ e portant a afirmaç ao I é falsa, assim como III uma vez que $A_{\alpha}u = b_{\alpha}$ é impossível para $\alpha = 3$.
2. Seja $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ e I a matriz identidade 3×3 . Considere as seguintes afirmações:
I) $(1,0,0)$ é solução do sistema homogéneo $Au=0$.
II) $car(A^{-1})=3$.
III) $det(A - \lambda I) = (1 - \lambda)^2 (2 - \lambda)$ para qualquer $\lambda \in \mathbb{R}$.
A lista completa de afirmações correctas é
\square I, II \square II, III \square I, III \square I, III, III
Resolução: Como A é invertível, o sistema $Au=0$ é possível e determinado, cuja única solução $u=(0,0,0)$. Ou então verifique que $A\begin{bmatrix}1\\0\\0\end{bmatrix}\neq\begin{bmatrix}0\\0\\0\end{bmatrix}$. Portanto I é falsa. A afirmação II é clarament
verdadeira uma vez que sendo A invertível, $car(A) = car(A^{-1}) = 3$. A afirmação III é verdadeir porque $A - \lambda I$ é uma matriz triangular superior, pelo que so seu determinante é igual ao produt das entradas da diagonal principal de $A - \lambda I$ (que coincide com a expressão da afirmação III).
3. Sejam $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ com $\det(A) = 1$. Considere as seguintes afirmações:
I) $det(\alpha A) = \alpha det(A)$ para qualquer $\alpha \in \mathbb{R}$.
II) AB invertível se e só se B invertível.
III) Os sistemas homogéneos $(AB)u=0$ e $Bu=0$ têm o mesmo conjunto solução.
A lista completa de afirmações correctas é

Resolução: A afirmação I é falsa: a equação correcta é $\det(\alpha A) = \alpha^n \det(A)$. A afirmação II é equivalente a: $\det(AB) \neq 0$ sse $\det(B) \neq 0$. Mas como $\det(A) \neq 0$ e $\det(AB) = \det(A) \det(B)$, concluimos que II é verdadeira. A afirmação II também é verdadeira porque dado que A é invertível (AB)u = b sse $Bu = A^{-1}\mathbf{0}$ mas $A^{-1}\mathbf{0} = \mathbf{0}$ donde $Bu = \mathbf{0}$.

- 4. Escreva a matriz $A = [a_{ij}] \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ definida por $a_{ij} = (i j)$ e determine A^{-1} .
- [0.7 valores] Resolução: Temos $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$

E facilmente concluimos que $A^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, usando p.ex. o método de Gauss-Jordan.

- 5. Considere as seguintes matrizes $A = \begin{bmatrix} 1 & 3 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \in \operatorname{Mat}_{3 \times 2}(\mathbb{R}) \text{ e } b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \in \operatorname{Mat}_{3 \times 1}(\mathbb{R}).$
 - a) Calcule $\det(A^T A)$ e verifique se $A^T A$ é invertível. [1.0 valores]
 - b) Determine o conjunto solução do sistema linear Au = b. [0.5 valores]
 - c) Determine o conjunto solução do sistema linear $(A^TA)x = A^Tb$. [0.5 valores]

Resolução: por definição de transposta e produto matricial temos:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & -1 & 0 \end{bmatrix}, \quad A^T A = A = \begin{bmatrix} 1 & 3 \\ 3 & 11 \end{bmatrix}, \quad A^T b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

- a) Assim $\det(A^TA) = 11 9 = 2$. Como $\det(A^TA) \neq 0$ concluimos que A^TA é invertível.
- b) Usando o método de eliminação de Gauss facilmente concluimos que o sistema Au=b é impossível, pelo que o conjunto solução deste sistema é $S=\emptyset$.
- c) Podemos usar novamenteo método de eliminação de Gauss para concluir que o conjunto solução de $(A^TA)\mathbf{x} = A^Tb$ é $S = \{(0,0)\}$. Mais fácil ainda: observar que a matriz A^TA é invertível pelo que o sistema (homogéneo) $(A^TA)\mathbf{x} = A^Tb$ é determinado, e que portanto o seu conjunto solução é $S = \{(0,0)\}$.
- 6. Sejam $A \in \operatorname{Mat}_{n \times m}(\mathbb{R})$ e $b \in \operatorname{Mat}_{n \times 1}(\mathbb{R})$. Designe por S_1 o conjunto solução de Au = b e por S_2 o conjunto solução de $(A^T A)x = A^T b$. Prove que $S_1 \subseteq S_2$. [0.7 valores]

Resolução: Temos que provar que $x_1 \in S_1 \Rightarrow x_1 \in S_2$, i.e. dado x_1 solução de Au = b, então o mesmo x_1 também é solução de $(A^TA)\mathbf{x} = A^Tb$. De forma equivalente, temos que provar que:

$$Ax_1 = b \Rightarrow (A^T A)x_1 = A^T b.$$

Mas isto é trivial, pois basta multiplicar a equação matricial $Ax_1 = b$ pela matriz A^T para obter $(A^TA)x_1 = A^Tb$, como pertendido. Como observação, note-se que pelo problema 5, podemos concluuir que em geral $S_1 \neq S_2$.

Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

TESTE DE ÁLGEBRA LINEAR LEAmb, LEMat, LQ, MEBiol, MEQ

(04/DEZEMBRO/2007) Duração o: 45m

Nome do Aluno:

Número:_____Curso:_____

Advertência: há 7 enunciados parecidos.... mas distintos

Cotação das perguntas de escolha múltipla: 0,6v. Resposta em branco: 0v. Resposta errada: -0,2v.

- 1. Seja $A = \begin{bmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \end{bmatrix}$ e \mathcal{C}_A o espaço colunas de A. Considere as seguintes afirmações:
 - I) O conjunto $\{(x,y)\in\mathbb{R}^2:\ \begin{bmatrix}x&y\end{bmatrix}A\begin{bmatrix}x\\0\\y\end{bmatrix}=[0]\}$ é um subespaço linear de $\mathbb{R}^2.$
 - II) $\dim(\operatorname{Nuc}(A)) = 1$.
 - III) $\dim(\mathcal{C}_A) = 1$.
 - IV) $C_A = \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}.$

A lista completa de afirmações correctas é

 \square I, III \square II, IV \square II, III \boxtimes III, IV

Resolução: Usando o produto matricial $\begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ 0 \\ y \end{bmatrix} = (x-2y)(x+y)$, pelo que o conjunto dado na afirmação I não é subespaço linear de \mathbb{R}^3 . Portanto I é falsa. Como car(A)=1, pelo que

na afirmação I não é subespaço linear de \mathbb{R}^3 . Portanto I é falsa. Como $\operatorname{car}(A)=1$, pelo que $\operatorname{dim}(\operatorname{Nuc}(A))=n^0$ de colunas de A- $\operatorname{car}(A)=3$ -1=2 e $\operatorname{dim}(\mathcal{C}_A)=\operatorname{car}(A)=1$. Portanto a afirmação II é falsa e a afirmação III é verdadeira. A afirmação IV é veradeira pois $\{(1,-2)\}$ é uma base para \mathcal{C}_A ("colunas de A que correspondem às colunas com pivô na matriz final em escada de linhas") e por outro lado facilmente concluimos que o mesmo vector também é uma base para a recta $\{(x,y)\in\mathbb{R}^2:\ 2x+y=0\}$.

- 2. Seja $v_1 = (1, 2, 3), v_2 = (3, 2, 1)$ e $v_3 = v_1 + v_2$. Considere $U = L(\{v_1, v_2\})$ o subespaço de \mathbb{R}^3 gerado por v_1, v_2 e $V = L(\{v_3\})$ o subespaço de \mathbb{R}^3 gerado por v_3 . Considere as seguintes afirmações:
 - I) Os vectores v_1, v_2, v_3 geram \mathbb{R}^3 .
 - II) Os vectores v_1, v_2, v_3 são linearmente dependentes.
 - III) $\dim(U+V)=2$.
 - IV) $\dim(U \cap V) = 1$.

A lista completa de afirmações correctas é

 \square I, II, III \square III, IV \square I, II \square III, IV

Resolução: Por definição o vector v_3 é combinação linear de v_1, v_2 , portanto v_1, v_2, v_3 geram um plano em \mathbb{R}^3 (note que v_1 e v_2 não são colineares. Logo a característica da matriz 3x3 cujas colunas são os 3 vectores é igual a 3 – verifique!). Portanto a afirmação I é falsa. A afirmação II é verdadeira porque v_3 é combinação linear de v_1, v_2 . Como $V \subseteq U$, temos que U + V = U e $U \cap V = U$. Como dimV = 1 e dimV = 10, podemos concluir que as afrimações III e IV são verdadeiras.

3. As coordenadas v_B do vector v = (3, 2, 0) na base ordenada $B = \{(1, 1, -1), (1, 0, 2), (1, 1, 0)\}$ de \mathbb{R}^3 são: $\Box v_B = (1, 2, 0)$ $\boxtimes v_B = (2, 1, 0)$ $\Box v_B = (1, 0, 2)$ $\Box v_B = (0, 1, 2)$

Resolução: Sendo $v_B=(\alpha_1,\alpha_2,\alpha_3)$ as coordenadas de v na base B, então $v=\alpha_1v_1+\alpha_2v_2+\alpha_3v_3$. Facilmente determinamos que $\alpha_1=2,\ \alpha_2=1$ e $\alpha_3=0$.

- 4. Considere o espaço linear \mathcal{P}_2 dos polinómios de grau ≤ 2 na variável \mathbf{x} e o seguinte subespaço linear $V = \{p \in \mathcal{P}_2 : p(-2) = 0\}$. Considere as seguintes afirmações:
 - I) $p(x) = 1 + x x^2 \in V$.
 - II) $\dim(V) = 2$.

III) $\{2 + x, -4 + x^2\}$ é uma base de V.

A lista completa de afirmações correctas é

Resolução: Sendo $p(x)=1+x-x^2, \ p(-2)=1-2-(-2)^2=1-2-4=-5$ portanto $p(-2)\neq 0$ logo a afirmação I é falsa. Dado um elemento $p(x)=a+bx+cx^2$ em $\mathcal{P}_2, \ p\in V$ sse p(-2)=a-2b+4c=0, pelo que

$$p(x) = (2b - 4c) + bx + cx^{2} = b(2+x) + c(-4+x^{2})$$

portanto $\{2+\mathtt{x}, -4+\mathtt{x}^2\}$ gera V, como são linearmente independentes (não são colineares) concluimos que a afirmação III é verdadeira.

- 5. Considere a seguinte matriz $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.
 - a) Determine o polinómio característico e os valores próprios de A.
 - b) Encontre bases para os espaços próprios de A
 - c) Verifique se A é diagonalizável.
- 6. Seja $E = \{f : \mathbb{R} \to \mathbb{R}\}$ o espaço linear das funções reais de variável real munido com as operações habituais. Considere $V = L(\{f_1, f_2\})$ o subespaço de E gerado pelas funções f_1, f_2 , onde para cada $a, b \in \mathbb{R}$ define-se $f_1(t) = e^{at}$ e $f_2(t) = e^{bt}$. Determine dim(V), para cada a, b.

Resolução:

5 a) O polinómio característico de A é

$$p(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 (2 - \lambda).$$

Como os zeros de $p(\lambda)$ são os valores próprios de A, concluimos que $\{1,2\}$ são os valores próprios de A.

5 b) O espaço próprio associado a $\lambda=1$ é

$$E(1) = Nuc(A - 1I) = Nuc \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} = Nuc \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}$$
$$= \{(-y, y, z) \in \mathbb{R}^3 : y, z \in \mathbb{R}\},$$

pelo que $\{(-1,1,0),(0,0,1)\}$ é uma base de E(1).

O espaço próprio E(2) associado ao valor próprio $\lambda=2$ é

$$E(2) = Nuc(A - 2I) = Nuc \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & -1 \end{bmatrix} = Nuc \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \{(x, y, z) \in \mathbb{R}^3 : x = 0, y - z = 0\}$$
$$= \{(0, z, z) \in \mathbb{R}^3 : z \in \mathbb{R}\}$$

portanto $\{(0,1,1)\}$ é uma base de E(2).

5 c) Como ma(1) = mg(1) e ma(2) = mg(2) concluimos que a matriz A é diagonalizável. (onde ma designa a multiplicidade algébrica e mg a multiplicidade geométrica)

6) A resposta é dim(V)=
$$\begin{cases} 1 & \text{se } a = b \\ 2 & \text{se } a \neq b \end{cases}$$

É óbvio que se a = b, então dim(V)=1, uma vez que neste caso $f_1 = f_2 \neq 0$.

Vamos então supor que $a \neq b$ e provar que f_1, f_2 são linearmente independentes. Sejam $\alpha_1, \alpha_2 \in \mathbb{R}$ tais que

$$\alpha_1 f_1(t) + \alpha_2 f_2(t) = 0$$
, para todo $t \in \mathbb{R}$ (*)

Então fazendo t=0 em (*) obtém-se $\alpha_1+\alpha_2=0$ e por outro lado usando t=1 em (*) obtém-se $\alpha_1e^a+\alpha_2e^b=0$. Ora a única solução destas duas equações é de facto a solução trivial $\alpha_1=\alpha_2=0$ uma vez que $a\neq b$. (Verifique!!)

1.2 Exames sem resolução

Instituto Superior Técnico Departamento de Matemática Secç ao de Álgebra e Análise

EXAME DE ÁLGEBRA LINEAR

(24/JUNHO/2005)

(Semestre Alternativo, Alameda)

Duraç ão: 3h

Nome de Aluno:	
Número de Aluno:	
Curso:	Turma:
A J	1:4:.4

Advertência: há 8 enunciados parecidos.... mas distintos

preencher por: Aluno Docente:

Pergunta	Resposta (página)	Classificação
Grupo I	1	
Grupo II (1a)		
Grupo II (1b)		
Grupo II (1c)		
Grupo II (1d)		
Grupo II (1e)		
Grupo II (2a)		
Grupo II (2b)		
Grupo III		
TOTAL		

GRUPO I (9 valores)

Perguntas de escolha múltipla

 \mathbf{Cota} ção de cada pergunta de escolha múltipla: $\mathbf{1.5}$ v. Resposta em branco: $\mathbf{0}$ v. Resposta errada: $\mathbf{-0.5}$ v.

Respostas do Grupo I (a preencher pelo Aluno)

1	2	3	4	5	6

- 1. Considere o espaço linear $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ das matrizes quadradas 2×2 , munido das operações habituais, e a seguinte lista de afirmações:
 - I) Existe uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ injectiva.
 - II) O conjunto $\{M \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) : M \text{ \'e invert\'ivel}\}\ \text{\'e um subespaço linear de } \operatorname{Mat}_{2 \times 2}(\mathbb{R}).$
 - III) O conjunto $\{M\in \mathrm{Mat}_{2\times 2}(\mathbb{R}): M=-M^T\}$ é um subespaço linear de $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ de dimensão 1.

A lista completa de afirmações correctas é

- A) I e III
- **B**) II
- C) III
- **D**) I
- 2. Considere o espaço linear $V = L(\{v_1, v_2\})$ gerado pelos vectores $v_1 = (1, 1, 1)$ e $v_2 = (1, 1, 0)$. Considere ainda a base ordenada $B = \{v_1, v_2\}$ de V e a seguinte lista de afirmações:
 - I) O vector de coordenadas em relação à base B do vector $v=(4,4,1)\in V$ é (4,4,1).
 - II) O vector de coordenadas em relação à base B do vector $v = (4, 4, 1) \in V$ é (1, 3).
 - III) O vector $v \in V$ cujo vector de coordenadas em relação à base $B \notin v_B = (1, -1) \notin v = (0, 0, 1)$.
 - IV) Os vectores $v_1, v_2, v_1 v_2$ são linearmente independentes.

A lista completa de afirmações correctas é

- A) I e II e IV
- B) III e IV
- C) II e III
- D) I e II
- 3. Seja $A = \begin{bmatrix} a & b \\ a & 1 \end{bmatrix}$. Sabendo que det A = -2, considere a seguinte lista de afirmações:
 - I) $\det \begin{bmatrix} 2a & 2b \\ 2a & 1+b \end{bmatrix} = -4.$
 - II) 0 não é valor próprio de A.
 - III) $\det \begin{bmatrix} 2a & 2b \\ 2a & 2 \end{bmatrix} = 4.$
 - IV) A é não-singular.

A lista completa de afirmações correctas é

- A) I e III e IV
- B) I e II e IV
- C) I e III
- D) II e IV.
- 4. Seja A uma matriz 2×2 invertível e a seguinte lista de afirmações:
 - I) A matriz dos cofactores de A é invertível.
 - II) A matriz A não tem duas linhas iguais.
 - III) A matriz A não tem nenhum 0 na diagonal principal

A lista completa de afirmações correctas é

- A) I e II e III
- B) II e III
- C) I e III
- D) I e II
- 5. Seja \langle , \rangle a aplicação que associa um escalar a cada par de vectores de \mathbb{R}^2 definida da seguinte forma:

$$\langle (x,y), (a,b) \rangle = 3xa + xb + ya + yb.$$

Qual das seguintes afirmações é verdadeira?

- A) Esta aplicação define um produto interno em \mathbb{R}^2 em que, por exemplo, $||(1,0)|| = \sqrt{3}$.
- B) Esta aplicação não define um produto interno em \mathbb{R}^2 , porque existem vectores $u, v, w \in \mathbb{R}^2$ tais que $\langle u + v, w \rangle \neq \langle u, w \rangle + \langle v, w \rangle$.
- C) Esta aplicação não define um produto interno em \mathbb{R}^2 , porque existem vectores $u, v \in \mathbb{R}^2$ tais que $\langle u, v \rangle \neq \langle v, u \rangle$.
- D) Esta aplicação não define um produto interno em \mathbb{R}^2 , porque existe um vector $u \in \mathbb{R}^2$ não nulo tal que $\langle u, u \rangle \leq 0$.
- 6. Considere em \mathbb{R}^3 o produto interno usual e os vectores $v_1 = (1, 1, 1), v_2 = (-1, 2, -1)$. Seja $E = L(\{v_1\})$ o espaço gerado por v_1 . Considere ainda a seguinte lista de afirmações:
 - I) A dimensão do complemento ortogonal E^{\perp} de E é 1, isto é, dim $(E^{\perp}) = 1$.
 - II) O conjunto $\{v_1, v_2, v_1 v_2\}$ é uma base de \mathbb{R}^3 , pois dim $(\mathbb{R}^3) = 3$.
 - III) Existe um vector $v \in E^{\perp}$ não nulo tal que a projecção ortogonal de v sobre E é v, isto é, $P_E(v) = v$ para algum $v \in E^{\perp}$ não nulo.
 - IV) A distância de v_1 a E é 0 e a distância de v_1 a E^{\perp} é $\sqrt{3}$.

A) I e II e III B) II e IV C) I e III D) IV

Nesta parte do exame, II 1, II 2 e III, apresente todos os cálculos e justificações relevantes

Considere, para cada parâmetro real γ , a matriz A_{γ} e o vector v_{γ} definidos por:

$$A_{\gamma} = egin{bmatrix} \gamma & 0 & 0 & \gamma \ 3 & 0 & 0 & 3 \ 2 & 0 & 0 & 2 \ 1 & 0 & 0 & 1 \end{bmatrix}, \qquad v_{\gamma} = egin{bmatrix} \gamma \ 3 \ 2 \ 1 \end{bmatrix}.$$

- 1. a) Determine o escalar $\lambda \in \mathbb{R}$, em função do parâmetro, tal que $A_{\gamma}v_{\gamma} = \lambda v_{\gamma}$.
 - b) Discuta as dimensões do $Nuc(A_{\gamma})$ e do espaço $\mathcal{C}_{A_{\gamma}}$ gerado pelas colunas de A_{γ} , em função de γ .
 - c) Determine, em função de γ , bases para Nuc (A_{γ}) e $\mathcal{C}_{A_{\gamma}}$.
 - d) Determine, em função de γ , os valores próprios de A_{γ} .
 - e) Identifique os valores de γ para os quais A_{γ} é diagonalizável.
- 2. Considere o espaço linear real $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ das matrizes 2×2 e a transformação linear $T:\mathrm{Mat}_{2\times 2}(\mathbb{R})\to\mathrm{Mat}_{2\times 2}(\mathbb{R})$ definida por

$$T(X) = \operatorname{tr}(X) \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}.$$

onde tr(X) designa o traço da matriz X (i.e., a soma das entradas da diagonal principal de X).

a) Determine γ tal que a matriz que representa T relativamente à base ordenada $\mathcal{B}c$ de $\operatorname{Mat}_{2\times 2}(\mathbb{R})$ seja A_{γ} , onde $\mathcal{B}c = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ e A_{γ} é a matriz introduzida no início do grupo II.

b) Resolva, em $\operatorname{Mat}_{2\times 2}(\mathbb{R})$, a equação linear $T(X)=\begin{bmatrix}1&3\\2&1\end{bmatrix}$.

GRUPO III (2 valores)

Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear tal que qualquer vector (não nulo) é vector próprio de T. Denote por $I: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação identidade, i.e. I(u)=u para qualquer $u \in \mathbb{R}^2$. Prove que então existe um escalar λ tal que $T=\lambda I$.

Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

EXAME DE ÁLGEBRA LINEAR

(Semestre Alternativo, Alameda)

(08/JULHO/2005) Duração: 3h

Nome do Aluno:	
Número do Aluno:	
Curso:	Turma:
Advortôncia: há & anunciados paracidos	mag distintes

preencher por	Aluno	Docente
Pergunta	Resposta(pág.)	Classificação
Grupo I	1	
Grupo II (1a)		
Grupo II (1b)		
Grupo II (1c)		
Grupo II (1d)		
Grupo II (1e)		
Grupo II (2a)		
Grupo II (2b)		
Grupo III		
TOTAL		

GRUPO I (9 valores) Perguntas de escolha múltipla

 \mathbf{Cota} ção de cada pergunta de escolha múltipla: $\mathbf{1.5}$ v. Resposta em branco: $\mathbf{0}$ v. Resposta errada: $\mathbf{-0.5}$ v.

Respostas do Grupo I (a preencher pelo **Aluno**)

1	2	3	4	5	6

- 1. Considere o espaço linear \mathcal{P}_2 dos polinómios, na variável x, de grau menor ou igual a dois munido das operações habituais, e a seguinte lista de afirmações:
 - I) O conjunto $\{p \in \mathcal{P}_2 : p(0)p(\mathbf{x}) = 2\}$ é um subespaço linear de \mathcal{P}_2 .
 - II) O conjunto $\{p \in \mathcal{P}_2 : p(\mathbf{x}) = p(0)\}$ é um subespaço linear de \mathcal{P}_2 de dimensão 2.
 - III) O conjunto $\{1+x,1-x+x^2,2+x^2\}$ não gera \mathcal{P}_2 .

- A) III B) II C) I D) II e III
- 2. Considere E e F os subespaços lineares de \mathbb{R}^4 definidos por: $E = L(\{v_1, v_2\})$ é o espaço gerado pelos vectores $v_1 = (1, -1, 0, 0)$ e $v_2 = (1, -1, 1, 1)$ e $F = \{(x, y, z, w) \in \mathbb{R}^4 : x + y = 0\}$. Considere ainda a seguinte lista de afirmações:

I)
$$\dim(E) = 2 e \dim(F) = 3$$
.

II)
$$\dim(E+F)=3$$
.

III)
$$E \subseteq F$$
.

IV)
$$\dim(E \cap F) = 2$$
.

3. Sejam
$$A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$$
, $D = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix}$, $S = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$. Considere a seguinte lista de afirmações:

I) A matriz
$$A$$
 é diagonalizável.

II) Os vectores
$$v_1 = (1, -2)$$
 e $v_2 = (-2, -1)$ são vectores próprios da matriz A .

III)
$$A = SDS^{-1}$$
.

IV)
$$D = SAS^{-1}$$
.

A lista completa de afirmações correctas é

4. Seja
$$A \in \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$$
 uma matriz do tipo 2×2 com entradas nos inteiros \mathbb{Z} , $\det(A) = 1$ e $B \in \operatorname{Mat}_{2 \times 1}(\mathbb{R})$.

Qual das seguintes afirmações é verdadeira?

A) Existe uma matriz
$$B$$
 tal que o sistema $AX = B$ é indeterminado.

B) A solução de
$$AX = B$$
 é $X = BA^{-1}$, porque A é invertível.

C)
$$\det(A^k) = k \det(A)$$
 para cada $k \in \mathbb{Z}$.

D) A matriz inversa de
$$A$$
 também tem todas as entradas em \mathbb{Z} .

5. Seja
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 a transformação linear definida por $T(x,y,z) = (x+y+z,2x-y)$ e $A = M(T; Bc_{\mathbb{R}^3}, Bc_{\mathbb{R}^2})$ a representação matricial de T nas bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 , respectivamente. Considere a seguinte lista de afirmações:

$$I) \ \ A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \end{bmatrix}.$$

II)
$$A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$
.

IV) A transformação linear
$$T$$
 é injectiva.

6. Considere o produto interno usual em
$$\mathbb{R}^4$$
, $E = \text{Nuc}(A)$ onde $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \end{bmatrix}$ e a seguinte lista de afirmações:

- I) A dimensão do complemento ortogonal E^{\perp} é 2, isto é, dim $(E^{\perp}) = 2$.
- II) O conjunto $\{(1,-1,0,0),(0,0,1,-1)\}$ constitui uma base ortogonal de E.
- III) O ângulo entre os vectores $v_1 = (0, 1, 1, 0)$ e $v_2 = (0, 1, 0, 0)$ é de $\pi/4$ radianos (i.e. 45^o).
- IV) O conjunto $\{(0,1),(1,0)\}$ constitui uma base para o espaço das colunas \mathcal{C}_A de A.

A) I B) II C) III D) I e II e III e IV

Nesta parte, II 1, II 2 e III, apresente todos os cálculos e justificações relevantes

GRUPO II (9 valores)

Para cada parâmetro real β , seja $A_{\beta} = \begin{bmatrix} 1 & 0 & \beta \\ 0 & \beta & 0 \\ \beta & 0 & 1 \end{bmatrix}$ e $\langle \cdot, \cdot \rangle$: $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ a aplicação definida por:

$$\langle (x, y, z), (a, b, c) \rangle = \begin{bmatrix} x & y & z \end{bmatrix} A_{\beta} \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

- 1. a) Prove que a matriz A_{β} é singular se e só se $\beta \in \{-1, 0, 1\}$.
 - b) Determine, em função de β , os valores próprios de A_{β} .
 - c) Diga, justificando, para que valores de β a matriz A_{β} é diagonalizável.
 - d) Para que valores de β a aplicação $\langle \cdot, \cdot \rangle$ define um produto interno em \mathbb{R}^3 ?
 - e) Para os valores de β encontrados na alínea anterior, calcule ||(0,1,0)||.
- 2. Seja \mathcal{P}_2 o espaço linear real dos polinómios, na variável x, de grau menor ou igual a 2 e $\mathcal{B}c = \{1, x, x^2\}$ a base canónica de \mathcal{P}_2 . Seja $T: \mathcal{P}_2 \to \mathcal{P}_2$ a transformação linear tal que a matriz que representa T em $\mathcal{B}c$ é A_1 ($\beta = 1$), onde A_β é a matriz introduzida no início do grupo II.
- a) Verifique se q(x) = x é um vector próprio de T.
- b) Resolva, em \mathcal{P}_2 , a equação linear $T(p) = \mathbf{x}$.

GRUPO III (2 valores)

Uma matriz $R \in \operatorname{Mat}_{3\times 3}(\mathbb{R})$ diz-se de rotação se $R^{-1} = R^T$ e $\det(R) = 1$, onde R^T designa a matriz transposta de R. Dada uma matriz de rotação $R \in \operatorname{Mat}_{3\times 3}(\mathbb{R})$, prove que R fixa um vector $v \in \mathbb{R}^3$ não nulo (i.e., Rv = v para algum $v \neq \mathbf{0}$).

Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

> EXAME DE ÁLGEBRA LINEAR Cursos: LEC, LEIC-Alameda, LEN e LET

(05/JANEIRO/2006)

Duração: 3h

Nome do Aluno:	Número:
Curso:	Turma:

Advertência: há 8 enunciados parecidos....mas distintos

Teste 2 (1h30m de duração) para alunos da LEIC: problemas I 4 | I 5 | I 6 | II a | II b | II c | IV b

preencher por	Aluno	Docente
Pergunta	Resposta(pág.)	Classificação
Grupo I	1	
Grupo II (a)		
Grupo II (b)		
Grupo II (c)		
Grupo III (a)		
Grupo III (b)		
Grupo IV (a)		
Grupo IV (b)		
TOTAL		

GRUPO I (9 valores) Perguntas de escolha múltipla

Cotação de cada pergunta de escolha múltipla: 1,5 v. Resposta em branco: 0 v. Resposta errada: -0,5 v.

Respostas do Grupo I (a preencher pelo **Aluno**)

1	2	3	4	5	6

1. Seja \mathcal{S}_{α} o sistema de equações lineares representado matricialmente por

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 3 & \alpha \\ -2 & 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \alpha^2 \end{bmatrix}$$

onde $\alpha \in \mathbb{C}$ é um parâmetro complexo. Qual das seguintes afirmações é verdadeira?

- A) Existem infinitos valores de α para os quais o sistema de equações \mathcal{S}_{α} é possível.
- B) Existe mais do que um valor de α para os quais o sistema S_{α} é possível e tem grau de indeterminação 1.
- C) Existem exactamente dois valores de α para os quais o sistema \mathcal{S}_{α} é possível e tem grau de indeterminação 2.
- D) Existe exactamente um valor de α para o qual o sistema S_{α} é possível.
- 2. Seja $A = \begin{bmatrix} 3 & 2 & 1 & -1 \\ 1 & 2 & 2 & 0 \\ 3 & 4 & 4 & 0 \\ 3 & 1 & 0 & 0 \end{bmatrix}$. Considere a seguinte lista de afirmações:
 - I) A matriz A é não invertível.
 - II) A entrada (1,4) da matriz inversa de A é igual a 0.
 - III) A matriz $\frac{1}{3}A^2$ é invertível.

A lista completa de afirmações correctas é

A) I **B)** II e III **C)** II **D)** III

- 3. Para cada k seja $V_k = \{(x,y) \in \mathbb{R}^2 : x + ky = k^2 1, \quad kx + y = 1 k\}$. Considere a seguinte lista de afirmações:
 - I) O conjunto V_k é um subespaço linear de \mathbb{R}^2 para um único valor de k.
 - II) $\dim(V_1) = 1$ e $\{(1,1)\}$ é uma base de V_1 (onde V_1 designa V_k fazendo k = 1).
 - III) As coordenadas de v=(a,b) na base ordenada $\{(1,1),(1,-1)\}$ são $(\frac{a+b}{2},\frac{a-b}{2})$.

- A) I B) I e III C) II e III D) III
- 4. Seja $A = \begin{bmatrix} a & b & c \\ a & 1 & 2 \\ b & 2 & 4 \end{bmatrix}$. Sabendo que $\det(A) = 3$, considere a seguinte lista de afirmações:
 - I) $\det \begin{bmatrix} a & 1 & 2 \\ a & b & c \\ 4b & 8 & 16 \end{bmatrix} = -12.$
 - II) $b \neq 2a$.
 - III) $\det(-3A) = -9.$

A lista completa de afirmações correctas é

- A) I B) II C) III D) I e II
- 5. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear, v_1 e v_2 dois vectores próprios associados aos valores próprios $\lambda_1 = 1$ e $\lambda_2 = -1$, respectivamente. Considere a seguinte lista de afirmações:
 - I) O vector $v_1 + v_2$ também é vector próprio de T.
 - II) $\lambda_1 + \lambda_2$ é um valor próprio de T.
 - III) A transformação T é diagonalizável.
 - IV) T é invertível.

A lista completa de afirmações correctas é

- A) I e III B) II e IV C) I e II e III e IV D) III e IV
- 6. Seja $T: \mathbb{R}^3 \to \mathbb{R}^4$ a transformação linear definida por T(x,y,z) = (x+2y,x-y,x,x-z) e $A = M(T; Bc_{\mathbb{R}^3}, Bc_{\mathbb{R}^4})$ a representação matricial de T nas bases canónicas de \mathbb{R}^3 e \mathbb{R}^4 , respectivamente. Considere a seguinte lista de afirmações:

I)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$
.

II)
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
.

- III) A transformação linear T é sobrejectiva.
- IV) A transformação linear T é injectiva.

A lista completa de afirmações correctas é

A) I **B)** II **C)** I e III **D)** I e IV

Nesta parte, Grupos II, III e IV, apresente todos os cálculos e justificações relevantes

GRUPO II (4 valores)

Para cada parâmetro real α , seja $A_{\alpha}=\begin{bmatrix}1&0&\alpha\\0&1&0\\\alpha&0&1\end{bmatrix}$, e $\langle\cdot,\cdot\rangle:\mathbb{R}^{3}\times\mathbb{R}^{3}\to\mathbb{R}$ a aplicação definida por:

$$\langle (x, y, z), (a, b, c) \rangle = \begin{bmatrix} x & y & z \end{bmatrix} A_{\alpha} \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

- a) Determine os valores próprios de A_{α} , em função de α . Justifique que A_{α} é diagonalizável para cada α .
- b) Encontre os valores de α para os quais $\langle \cdot, \cdot \rangle$ define um produto interno em \mathbb{R}^3 .
- c) Para os valores de α encontrados na alínea anterior, calcule a distância de $u_0=(1,1,1)$ a $S=\{(x,y,z)\in\mathbb{R}^3:\ y=0\}.$

GRUPO III (4 valores)

Seja \mathcal{P}_2 o espaço linear dos polinómios de grau menor ou igual a 2, na variável x e $\{1, x, x^2\}$ a sua base canónica. Considere a transformação linear $T: \mathcal{P}_2 \to \mathbb{R}^3$ cuja representação matricial nas bases

canónicas é a matriz
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

- a) Determine bases para o núcleo e contradomínio de T.
- b) Resolva, em \mathcal{P}_2 , a equação T(p(x)) = (1, 4, 7).

Seja E um espaço Euclidiano real de dimensão finita, F um subespaço de E e $B_F = \{u_1, u_2, \cdots, u_p\}$ uma base de F. Considere $T: E \to E$ a transformação linear definida como se segue:

$$T(v) = \sum_{i=1}^{p} \frac{\langle v, u_i \rangle}{\langle u_i, u_i \rangle} u_i, \quad v \in E.$$

- a) Prove que $Nuc(T) = F^{\perp}$. Conclua que T é invertível se e só se F = E.
- b) Seja λ um valor próprio de T. Prove que $\lambda \in \mathbb{R}_0^+$.

Instituto Superior Técnico Departamento de Matemática Sec cã o de Álgebra e Análise

EXAME DE ÁLGEBRA LINEAR 2^a fase, Alameda

(08/FEVEREIRO/2007) Duraçã o: 3H

Cursos: LEGM, LEMat, LEAmb, LEAN, LMAC, MEAer, MEBiol, MEC, MEEC, MEFT, MEMec, MEQ

Nome do Aluno:_____ Número:____ Curso:_____ Turma:_____

Advertência: há 7 enunciados parecidos...mas distintos

preencher por	Aluno	Docente
Pergunta	Resposta(pág.)	Classificação
Grupo I	1	
Grupo II (a)		
Grupo II (b)		
Grupo II (c)		
Grupo II (d)		
Grupo III (a)		
Grupo III (b)		
Grupo III (c)		
Grupo IV (a)		
Grupo IV (b)		
	TOTAL	

GRUPO I (9 valores) Perguntas de escolha múltipla

Cotação de cada pergunta de escolha múltipla: 1,5v. Resposta em branco: 0v. Resposta errada: -0,5v.

Respostas do Grupo I (a preencher pelo Aluno)

1	2	3	4	5	6

- 1. Para cada $\alpha \in \mathbb{R}$ seja $A_{\alpha} = \begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}$, $x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ e $b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Considere a seguinte lista de afirmações:
 - I) Se x_0 é solução de $A_{\alpha}u = b$, então $\alpha = 1$.
 - II) Se x_1 é solução do sistema homogéneo $A_{\alpha}u=0,$ então $\alpha=1.$
 - III) Para $\alpha = 1$, $x_0 + kx_1$ é solução de $A_1u = b$, para todo o $k \in \mathbb{R}$.
 - IV) Se A_{α} for invertível, então $u = A_{\alpha}b$ é a única solução do sistema $A_{\alpha}^{-1}u = b$.

- A) I e III B) II e III C) III e IV **D)** I, II, III e IV
- 2. Considere os vectores $v_1 = (1, 1, 1), v_2 = (1, 2, 3)$. Qual das seguintes afirmações é verdadeira?
 - A) Os vectores v_1 e v_2 geram uma recta em \mathbb{R}^3 .
 - B) O conjunto $\{v_1, v_2, v_1 + v_2\}$ é uma base de \mathbb{R}^3 .
 - C) O vector w = (1, 1, -2) é ortogonal a v_1 e a v_2 .
 - D) As coordenadas de u = (5, 7, 9) na base $B = \{v_1, v_2\}$ de $L(\{v_1, v_2\})$ são $u_B = (3, 2)$.

3. Para cada $a \in \mathbb{R}$, seja $A = \begin{bmatrix} a & 1 \end{bmatrix} \in \operatorname{Mat}_{1 \times 2}(\mathbb{R})$. Considere a seguinte lista de afirmações:

I)
$$A^T A = \begin{bmatrix} a^2 & a \\ a & 1 \end{bmatrix}$$
.

- II) $A^T A$ é invertível para algum a.
- III) Existe mais do que uma solução de mínimos quadrados associada ao sistema $A^T u = b$, para algum $b \in \operatorname{Mat}_{2 \times 1}(\mathbb{R})$.
- IV) A matriz AA^T é invertível para algum $a \in \mathbb{R}$.

A lista completa de afirmações correctas é

- A) I e II
- B) II e III
- C) III e IV
- D) I e IV
- 4. Considere $T: \mathbb{R}^2 \to \mathcal{P}_1$ a transformação linear tal que $M(T; Bc, Bc) = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, onde \mathcal{P}_1 designa o espaço dos polinómios de grau menor ou igual a 1, na variável x. Bc designa base canónica de \mathbb{R}^2 e \mathcal{P}_1 , respectivamente. Qual das seguintes afirmações é verdadeira?
 - A) $(1,1) \in Nuc(T)$.
 - B) T é injectiva.
 - C) T((2,3)) = (5,10).
 - D) T((2,3)) = 5 + 10x.
- 5. Para cada $\gamma \in \mathbb{R}$, seja $A_{\gamma} = \begin{bmatrix} 1 & 0 & \gamma \\ 0 & 1 & 0 \\ \gamma & 0 & 1 \end{bmatrix}$. Considere a seguinte lista de afirmações:
 - I) A matriz A_{γ} é diagonalizável para algum γ .
 - II) A matriz A_{γ} é diagonal para todo o γ .
 - III) Se $u = (1,0,1) \in \text{Nuc}(A_{\gamma})$ então $\gamma = -1$.
 - IV) O vector v = (0, 1, 0) é um vector próprio de A_{γ} , pois $A_{\gamma}v = 1v$ para todo o γ .

A lista completa de afirmações correctas é

- A) I, II e III
- **B)** I, II e IV
- C) III e IV
- **D)** I, III e IV
- 6. Seja $W = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z = 0\}$ e p = (1, 0, -1, 0). Considere a seguinte lista de afirmações:
 - I) $\dim(W) = 3$.
 - II) $\operatorname{dist}(p, W^{\perp}) = 0$.
 - III) $\operatorname{dist}(p, W) = 0$.
 - IV) $\{(0,1,-1,0),(1,0,-1,0),(0,0,0,1)\}$ é uma base ortogonal de W.

- A) I e II
- B) II e III
- C) III e IV
- D) I e III

GRUPO II (5 valores)

Para cada α e β escalares reais, considere as matrizes $A_{\alpha}=\begin{bmatrix}1&2&1\\2&1&-1\\0&3&3\alpha\end{bmatrix}$ e $b_{\beta}=\begin{bmatrix}4\\2\\6\beta\end{bmatrix}$. Seja ainda

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear tal que a sua representação matricial na base canónica é dada pela matriz A_1 (isto é, A_{α} tomando $\alpha = 1$).

- a) Determine os valores de α e β para os quais $A_{\alpha}u = b_{\beta}$ é possível e indeterminado.
- b) Determine o conjunto solução do sistema $A_1u = b_1$, com $\alpha = \beta = 1$.
- c) Verifique se T é injectiva ou sobrejectiva e determine uma base para a imagem de T.
- d) Determine o ângulo $\angle \left(T(u), T(v)\right)$ entre os vectores T(u) e T(v) onde u=(1,1,1) e v=(2,0,2), usando o produto interno usual.

GRUPO III (4 valores)

Considere as matrizes
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}, \quad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
 e $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$

- a) Calcule a matriz inversa de P.
- b) Determine os valores próprios de A, bases para cada espaço próprio e justifique que A é diagonalizável. Justifique também que temos $A = PDP^{-1}$, sem fazer cálculos.
- c) Calcule a entrada (3,2) da matriz A^{10} .

Resolução:

GRUPO IV (2 valores)

Sejam $A \in \operatorname{Mat}_{n \times p}(\mathbb{R})$ e $B \in \operatorname{Mat}_{n \times n}(\mathbb{R})$, e designe por \mathcal{L}_A , \mathcal{L}_{BA} os espaços gerados pelas linhas de A e BA, respectivamente.

- a) Prove que $Nuc(A) \subseteq Nuc(BA)$ e $\mathcal{L}_{BA} \subseteq \mathcal{L}_A$.
- b) Sendo B invertível, prove que Nuc(A) = Nuc(BA) e $\mathcal{L}_{BA} = \mathcal{L}_A$.

Resolução:

Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

EXAME	DE ÁLO	GEBI	RA	LINE	\mathbf{AR}
LEAmb,	LEMat,	LQ,	ME	Biol,	MEG

(11/JANEIRO/2008) Duração: 3H

Nome do Aluno:		Número:
Curso:	_ Turma:	
Advertência: há 9 enunciados parecidos	mas distintos	

Advertencia: na 9 enunciados parecidos...mas distintos

Teste 3 (1h30m de duração): problemas I 5 | I 6 | I 7 | I 8 | II a | II b | II c | II d | IV b

GRUPO I (8 valores) Perguntas de escolha múltipla 1. Para cada parâmetro real α , considere o sistema de equações lineares cuja matriz aumentada [A|b]

é
$$\begin{bmatrix} 1 & 1 & \alpha & | & 1 \\ 0 & \alpha & 0 & | & \alpha \\ \alpha & 0 & -1 & | & 1 \end{bmatrix}$$
. Considere as seguintes afirmações:

- I) Se $(\frac{1}{2}, 1, -\frac{1}{2})$ é solução de Au = b, então $\alpha = 1$.
- II) O sistema Au = b é possível e indeterminado para um único valor de α .
- III) O sistema Au = b é possível e determinado para um único valor de α .
- IV) O sistema Au = b é impossível para um único valor de α .

A lista completa de afirmações correctas é

- **A)** I, II **B)** III, IV **C)** I, IV **D)** II, III
- 2. Sejam $a, b \in \mathbb{R}$, $A = \begin{bmatrix} a^2 & -b \\ b & b \end{bmatrix}$ e $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ tais que $\det(A) = 1$. Considere a seguinte lista de afirmações:
 - I) $\det(PA) = \det(AP) = 1$.
 - II) $\det(2A) = 2$.
 - III) $\det((I+P)(A^3+2A^2+I))=0$, onde I designa a matriz identidade 2×2 .
 - IV) A entrada (1,2) de A^{-1} é b.

A lista completa de afirmações correctas é

- **A)** II, III **B)** I, IV **C)** III, IV **D)** II, IV
- 3. Para cada $a \in \mathbb{R}$ sejam $v_1 = (1, 0, 0, 2), v_2 = (1, 0, 1, 0)$ e $v_3 = (2, 0, 1, a)$. Seja ainda $V = L(\{v_1, v_2, v_3\})$. Considere a seguinte lista de afirmações:
 - I) Os vectores v_1, v_2, v_3 são linearmente dependentes para um único valor de a.
 - II) $\dim(V)=3$ para $a \neq 2$.
 - III) O conjunto $\{v_1, v_2\}$ é uma base de V para a=2.
 - IV) dim(V)=3 para qualquer valor de a.

A lista completa de afirmações correctas é

A) II, III, IV **B)** I, II, III **C)** I, IV **D)** II, III

- 4. Seja $W = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$. Considere a seguinte lista de afirmações:
 - I) $\dim(W) = 1$.
 - II) $\{(-1,1,0,0),(-1,0,1,0),(1,0,0,-1)\}$ é uma base de W.
 - III) $\{(1,1,1,1)\}$ é uma base de W^{\perp} , usando o produto interno usual.

- **A)** I, II
- B) II, III
- **C**) I, III
- **D)** I, II, III
- 5. Considere a base canónica $Bc = \{e_1, e_2\}$ de \mathbb{R}^2 e $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que $M(T; Bc, Bc) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Qual das seguintes afirmações é verdadeira?
 - A) $(1, -1) \in Nuc(T)$.
 - B) T((2,3)) = (2,-3)
 - C) O escalar $\lambda = 0$ é valor próprio de T.
 - D) Para quaisquer $u, v \in \mathbb{R}^2$, $\angle (u, v) = \angle (T(u), T(v))$, onde \angle designa o ângulo.
- 6. Sejam $v_1 = (2,1,0), v_2 = (-1,0,1), p = (1,1,1)$ e $E = L(\{v_1,v_2\})$ o subespaço linear de \mathbb{R}^3 gerado por v_1 e v_2 . Usando o produto interno usual em \mathbb{R}^3 , considere a seguinte lista de afirmações:
 - I) $\dim(E^{\perp}) = 1$.
 - II) $\{(1,2,1)\}$ é uma base de E^{\perp} .
 - III) $\{(-1,0,1),(1,1,1)\}$ é uma base ortogonal de E.
 - IV) dist(p, E) = 0.

A lista completa de afirmações correctas é

- **A)** I, II, III
- B) II, III, IV
- C) I, III, IV
- **D)** I, II, III, IV
- 7. Seja F o espaço linear das funções de $\mathbb R$ para $\mathbb R$, infinitamente diferenciáveis e $T:F\to F$ a aplição linear T(f) = f', onde f' designa a derivada de f. Considere a lista de afirmações:
 - I) Para cada $a \in \mathbb{R}$, a função $f(x) = e^{ax}$ é um vector próprio de T.
 - II) Se f é um polinómio de grau 99, então T(f) também é um polinómio de grau 99.
 - III) T é injectiva.
 - IV) O número de valores próprios de T é finito.

A lista completa de afirmações correctas é

- **A**) I
- B) II
- C) III
- **D)** I, IV
- 8. Considere o sistema de equações diferenciais com valor inicial: $\begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = 3y_2 \\ y_1(0) = 8 \text{ e } y_2(0) = 5. \end{cases}$

A solução deste sistema é:

- A) $y_1(t) = 3e^{3t} + 5e^t$, $y_2(t) = 5e^t$ B) $y_1(t) = 8e^t$, $y_2(t) = 5e^{3t}$ C) $y_1(t) = 3e^t + 5e^{3t}$, $y_2(t) = 5e^{3t}$ D) $y_1(t) = 3e^t + 5e^{2t}$, $y_2(t) = 5e^{3t}$

GRUPO II (4 valores)

Considere as transformações lineares $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ definidas como se segue:

$$T_1((x,y)) = (5y, x - 3y, -2y),$$
 $T_2((x,y,z)) = (x + y + z, x + 2z).$

- a) Determine as representações matricias de T_1 e T_2 nas bases canónicas.
- b) Determine bases para $\operatorname{Im}(T_1)$ e $\operatorname{Nuc}(T_2)$ e verifique que $\dim(\operatorname{Im}(T_1) \cap \operatorname{Nuc}(T_2)) = 0$.
- c) Resolva a equação linear $T_2((x, y, z)) = (3, 3)$.
- d) Determine $T_2 \circ T_1((x,y))$.

Resolução:

GRUPO III (5 valores)

Para cada parâmetro real α , seja $A = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & 2\alpha & \alpha \\ \langle (x,y) \rangle^2, \overline{(a,b,c)} \rangle = 2 \begin{bmatrix} \alpha \\ z \end{bmatrix}, \mathbf{e} \ \langle \cdot, \cdot \rangle : \ \mathbb{R}^3_a \times \mathbb{R}^3 \to \mathbb{R}$ a aplicação definida por: $\langle (x,y) \rangle^2, \overline{(a,b,c)} \rangle = 2 \begin{bmatrix} \alpha \\ z \end{bmatrix}, \mathbf{e} \ \langle \cdot, \cdot \rangle : \ \mathbb{R}^3_a \times \mathbb{R}^3 \to \mathbb{R}$ a aplicação definida por: $\langle (x,y) \rangle^2, \overline{(a,b,c)} \rangle = 2 \begin{bmatrix} \alpha \\ z \end{bmatrix}, \mathbf{e} \ \langle \cdot, \cdot \rangle : \ \mathbb{R}^3_a \times \mathbb{R}^3 \to \mathbb{R}$

- a) Calcule det(A) e verifique que o sistema homogéneo Au = 0 é indeterminado se e só se $\alpha = 0$.
- b) Determine o polinómio característico e os valores próprios de A, em função de α .
- c) Para $\alpha = 3$ encontre bases para os espaços próprios de A e verifique se A é diagonalizável (para $\alpha = 3$).
- d) Determine os valores de α para os quais $\langle \cdot, \cdot \rangle$ define um produto interno em \mathbb{R}^3 .
- e) Usando o(s) produto(s) interno(s) em \mathbb{R}^3 da alínea d), calcule ||(0,1,0)||. Resolução:

GRUPO IV (3 valores)

Seja $S = \{v_1, v_2, \dots, v_k\}$ um conjunto não vazio de vectores linearmente independentes em \mathbb{R}^n , E = L(S) o subespaço linear de \mathbb{R}^n gerado por S e P_E a projecção ortogonal sobre E. Considere a matriz $A = [v_1 \ v_2 \cdots v_k] \in \operatorname{Mat}_{n \times k}(\mathbb{R})$ cuja coluna j é o vector v_j escrito em coluna, $j = 1, \dots, k$, e seja $Q = A(A^TA)^{-1}A^T$.

- a) Prove que $Q = Q^T$ e $Q^2 = Q$.
- b) Prove que $P_E(u) = Q(u)$ para todo $u \in \mathbb{R}^n$.

Resolução:

Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise

EXAME DE ÁLGEBRA LINEAR LEAmb, LEMat, LQ, MEBiol, MEQ

(25/JANEIRO/2008) Duração: 3H

Nome do Alı	ino:	Número:
Curso:	Turma:	

Advertência: há 5 enunciados parecidos...mas distintos

GRUPO I (8 valores)
Perguntas de escolha múltipla

1. Para cada parâmetro real α , considere o sistema de equações lineares cuja matriz aumentada [A|b]

é
$$\begin{bmatrix} 1 & 1 & \alpha & 1 \\ 0 & \alpha & 0 & \alpha \\ \alpha & 0 & -1 & 1 \end{bmatrix}$$
. Considere as seguintes afirmações:

- I) Existe pelo menos um valor de α tal que (0,0,1) é solução de Au=b.
- II) A matriz A é invertível se e só se $\alpha \neq 0$.
- III) O sistema Au = b é possível e determinado para um único valor de α .
- IV) O sistema Au = b é possível e indeterminado para um único valor de α .

A lista completa de afirmações correctas é

- A) II, IV
- B) III, IV
- C) I, III
- **D)** I, II
- 2. Sejam $a, b \in \mathbb{R}$, $A = \begin{bmatrix} b & b \\ -b & a^2 \end{bmatrix}$ e $P = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ tais que $\det(A) = 1$. Considere a seguinte lista de afirmações:
 - I) b = 0.
 - II) $\det(PA) = \det(AP) = 1$.
 - III) $\det(2A) = 4$.
 - IV) $\det((P-I)(A^3-A^2+I))=0$, onde I designa a matriz identidade 2×2 .

A lista completa de afirmações correctas é

- A) II, IV
- B) III, IV
- C) I, III
- **D**) I, II
- 3. Para cada $a \in \mathbb{R}$ sejam $A = \begin{bmatrix} 1 & 1 \\ a & a \end{bmatrix}$ e v = (1,1). Considere a seguinte lista de afirmações:
 - I) $\lambda = 0$ é valor próprio de A, para qualquer a.
 - II) Se v é vector próprio de A, então a = -1.
 - III) $p(\lambda) = \lambda^2 (1+a)\lambda$ é o polinómio característico de A.
 - IV) Se A tem um valor próprio duplo, então a = 0.

A lista completa de afirmações correctas é

- A) II, IV
- B) III, IV
- C) I, III
- **D**) I, II
- 4. Sejam $W = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$ e $v_1 = (-1, 1, 0, 0), v_2 = (-1, 0, 1, 0)$. Considere a seguinte lista de afirmações:
 - I) $v_1 \in W$.
 - II) $\dim(W) = 3$.
 - III) $\{v_1, v_2\}$ é uma base de W.

- A) I, III
- B) II, III
- C) I, II, III
- **D)** I, II
- 5. Considere a base canónica $Bc = \{e_1, e_2\}$ de \mathbb{R}^2 e $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que $M(T; Bc, Bc) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Qual das seguintes afirmações é verdadeira?

- A) $(1,1) \in Nuc(T)$.
- B) T((2,3)) = (-1,-5).
- C) O escalar $\lambda = 0$ é valor próprio de T.
- D) T((x,x)) = (0,2x), para qualquer $x \in \mathbb{R}$.
- 6. Sejam $v_1 = (-1,0,1), v_2 = (2,1,0), v_3 = (1,2,1)$ e $E = L(\{v_1,v_2\})$ o subespaço linear de \mathbb{R}^3 gerado por v_1 e v_2 . Usando o produto interno usual em \mathbb{R}^3 , considere a seguinte lista de afirmações:
 - I) $\dim(E^{\perp}) = 1$.
 - II) $\{v_3\}$ é uma base de E^{\perp} .
 - III) $\{v_1, v_1 + v_2\}$ é uma base ortonormada de E.
 - IV) $dist(2v_3, E) = 2(dist(v_3, E))$.

- **A)** I, IV
- B) I, III
- C) II, IV
- **D)** III, IV
- 7. Seja \mathcal{P}_2 o espaço linear dos polinómios de grau menor ou igual a 2, na variável x e $T:\mathcal{P}_2\to\mathcal{P}_2$ a transformação linear definida por T(p) = p' - p, onde p' designa a derivada de p. Considere a lista de afirmações:
 - I) $T(1+x+x^2) = x-x^2$.
 - II) O polinómio nulo $p(x) = 0 + 0x + 0x^2 \notin \text{Nuc}(T)$.
 - III) $\lambda = -1$ é um valor próprio de T.
 - IV) O polinómio nulo $p(x) = 0 + 0x + 0x^2$ é vector próprio de T

A lista completa de afirmações correctas é

- **A)** I, IV
- B) I, III
- C) II, IV
- **D)** III, IV
- 8. Seja \mathcal{S} o conjunto solução da equação diferencial y'(t) = 2y(t). Considere as seguintes funções $y_1(t) = e^{2t}, \ y_2(t) = e^{2t} + \pi, \ y_3(t) = \pi e^{2t}, y_4(t) = e^{2t+\pi}.$

Qual das seguintes afirmações é verdadeira?

- **A)** $y_1, y_2, y_3 \in \mathcal{S}$ **B)** $y_1, y_2, y_4 \in \mathcal{S}$
- **C)** $y_1, y_3, y_4 \in \mathcal{S}$ **D)** $y_2, y_3, y_4 \in \mathcal{S}$

GRUPO II (6 valores)

Para cada parâmetro real α , sejam $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ e $b = \begin{bmatrix} \alpha \\ -1 \\ -1 \\ \alpha \end{bmatrix}$.

- a) Verifique que o sistema Au = b é possível se e só se $\alpha = -1$.
- b) Justifique que o sistema $(A^T A)\hat{u} = A^T b$ é indeterminado para qualquer α .
- c) Prove que que $F = \{\hat{u} \in \mathbb{R}^3 : (A^T A)\hat{u} = A^T b\}$ é subespaço linear se e só se $\alpha = 1$.
- d) Para cada α , determine todas as soluções de mínimos quadrados do sistema Au = b.
- e) Determine dist $(A\hat{u}, C_A^{\perp})$, onde \hat{u} é uma solução de mínimos quadrados de Au = b e C_A^{\perp} designa o complemento ortogonal do espaço colunas C_A de A.

Resolução:

GRUPO III (4 valores)

Considere as transformações lineares $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^3 \to \mathbb{R}^3$ definidas como se segue:

$$T_1((x,y,z)) = (2x+z,y,x+z), \qquad T_2((x,y,z)) = (x-z,y,-x+2z).$$

Sejam A_1 e A_2 as representações matricias de T_1 e T_2 , respectivamente, na base canónica de \mathbb{R}^3 .

- a) Determine A_1 e A_2 .
- b) Verifique que T_1 e T_2 são transformações lineares invertíveis.
- c) Prove que os polinómios característicos de A_1 e A_2 são iguais e justifique que ambas são diagonalizáveis.
- d) Verifique que $T_2^{-1}((x,y,z)) = T_1((x,y,z))$ para qualquer $(x,y,z) \in \mathbb{R}^3$. Resolução:

Sejam A, B matrizes reais $n \times n$ e $\langle u, v \rangle = \sum u_i v_i$ o produto interno usual do espaço linear $E = \operatorname{Mat}_{n \times 1}(\mathbb{R})$ tais que: $\langle u, v \rangle = \langle Au, Bv \rangle$, para quaisquer $u, v \in E$. Prove que A e B são matrizes invertíveis e que além disso temos $A^{-1} = B^T$.

2 Consultar exames em:

 $http://www.math.ist.utl.pt/\sim ppinto/AL/exames.html$