

Instytut Teleinformatyki

Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska

Mikroprocesory i mikrokontrolery

"Liczniki i timery"

laboratorium: 03

autor: mgr inż. Michał Lankosz

dr hab. Zbisław Tabor, prof. PK

Spis treści

Sı	ois treści	2
1.	Wiadomości wstępne	3
2.	Przebieg laboratorium	6
	2.1. Zadanie 1. Na ocenę 3.0 (dst)	6
	2.2. Zadanie 2. Na ocenę 4.0 (db)	6
	2.3. Zadanie 3. Na ocenę 4.0 (db)	6
	2.4. Zadanie 4. Na ocenę 5.0 (bdb)	7

1. Wiadomości wstępne

Pierwsza część niniejszej instrukcji zawiera podstawowe wiadomości teoretyczne dotyczące omawianego tematu. Poznanie tych wiadomości umożliwi prawidłowe zrealizowanie praktycznej części laboratorium.

Mikrokontroler 8051 jest wyposażony w dwa timery (TIMER0 i TIMER1), które obsługiwane są w ten sam sposób. Timery są konfigurowane poprzez dwa rejestry TMOD i TCON. Poza tym do każdego timera są przyporządkowane po dwa rejestry służące do zapisu wartości timera (TH0/TL0 i TH1/TL1). **Tabela 1** przedstawia rejestry specjalnego przeznaczenia skojarzone z timerami.

Tabela 1 Rejestry skojarzone z timerami

SFR	Opis	Adres
TH0	starszy bajt TIMERa0	8Ch
TL0	młodszy bajt TIMERa0	8Ah
TH1	starszy bajt TIMERa1	8Dh
TL1	młodszy bajt TIMERa1 8Bh	
TCON	on/off, sygnalizacja przepełnienia 88h	
TMOD konfiguracja pracy timerów		89h

Sposób pracy timerów jest kontrolowany poprzez ustawienie odpowiednich bitów rejestru TMOD, co przedstawiono w **Tabeli 2**.

Tabela 2 Konfiguracja timerów - rejestr TMOD (89h)

Bit	t Nazwa bitu Funkcja		Timer
7	GATE1	Po ustawieniu tego bitu timer timer odlicza tylko wtedy gdy na wejściu INT1 (P3.3) jest sygnał 1. Po wyczyszczeniu tego bitu timer odlicza niezależnie od stanu INT1.	1
6	C/T1	Po ustawieniu tego bitu timer odlicza zdarzenia na wejściu T1 (P3.5), a więc staje się licznikiem. Po wyzerowaniu tego bitu timer jest powiększany o 1 w każdym cyklu maszynowym.	1

5	T1M1 Tryb pracy		1
4	T1M0 Tryb pracy		1
3	GATE0	Po ustawieniu tego bitu timer timer odlicza tylko wtedy gdy na wejściu INTO (P3.2) jest sygnał 1. Po wyczyszczeniu tego bitu timer odlicza niezależnie od stanu INTO.	0
2	Po ustawieniu tego bitu timer odlicza zdarzenia na wejściu T0 (P3.4), a więc C/T0 staje się licznikiem. Po wyzerowaniu tego bitu time jest powiększany o 1 w każdym cyklu maszynowym.		0
1	T0M1	Tryb pracy	0
0	T0M0 Tryb pracy		0

Tryb pracy timerów reguluje się ustawiając bity TxM0 i TxM1:

TxM1	TxM0	Tryb pracy	Opis
0	0	0	timer 13-bitowy
0	1	1	timer 16-bitowy
1	0	2	timer 8-bitowy, zadana wartość na starcie
1	1	3	dwa niezależne timery 8-bajtowe

Przy 2 trybie pracy timera do rejestru THx użytkownik wprowadza swoją wartość, która będzie odtwarzana w rejestrze TLx każdorazowo po wystąpieniu przepełnienia w TLx.

Start/stop odliczania oraz detekcja przepełnienia następuje poprzez odpowiednie ustawienie/odczytanie bitów rejestru TCON, zgodnie z **Tabelą 3**.

Tabela 3 Bity rejestru TCON (88h)

Bit	Nazwa	Adres	Funkcja	Timer
7	TF1	8Fh	Bit ustawiany w momencie przepełnienia na timerze 1.	1
6	TR1	8Eh	On/off timera: 1-on, 0-off	1
5	TF0	8Dh	Bit ustawiany w momencie przepełnienia na timerze 0.	0
4	TR0	8Ch	On/off timera: 1-on, 0-off	0

Timery można użyć do odmierzania zadanych odcinków czasu po wstawieniu odpowiednich wartości do rejestrów THx, TLx i umieszczeniu w programie instrukcji kontrolującej stan bitu TFx. Odmierzanie 1/20 sekundy (przy rezonatorze kwarcowym o częstotliwości 11,059MHz) przedstawiono na listingu:

```
MOV TH0,#76
MOV TL0,#01
MOV TMOD,#01 ; 16-bitowy timer 0
SETB TR0 ; startujemy timer 0
JNB TF0,$ ; Jeżeli TF0 nie jest ustawione to nie ma przepełnie
```

; nia, przebieg jałowy

Timery można użyć do odmierzania czasu trwania zdarzeń poprzez ustawienie bitów GATEx rejestru TMOD. Timery można również użyć do zliczania zdarzeń po ustawieniu bitu C/Tx.

Literatura:

- [1] http://www.8052.com/tut8051
- [2] http://www.keil.com/support/man/docs/is51/is51 instructions.htm

2. Przebieg laboratorium

Druga część instrukcji zawiera zadania do praktycznej realizacji, które demonstrują zastosowanie technik z omawianego zagadnienia.

2.1. Zadanie 1. Na ocenę 3.0 (dst)

Proszę napisać program, który zapala i gasi diodę przy każdym przepełnieniu Timera 0. Program powinien:

- Skonfigurować timer do pracy 16-bitowej i odmierzania czasu
- Testować stan przepełnienia
- Po wystąpieniu przepełnienia zmieniać stan diody, zresetować flagę przepełnienia
- Powrócić do pętli odmierzania czasu

2.2. Zadanie 2. Na ocenę 4.0 (db)

Proszę napisać program, który będzie odmierzał na timerze 0 czas wciśnięcia przycisku. Program powinien:

- Skonfigurować timer 0 do trybu 16-bitowego i odmierzania 0.05 sekundy;
- Program główny czeka na wciśnięcie przycisku i wtedy startuje timer;
- Po każdym przepełnieniu wartość akumulatora jest powiększana o 1;
- Po zwolnieniu przycisku timer jest zatrzymywany;
- Po upłynięciu zadanego odcinka czasu zapalana jest kolejna dioda.

2.3. Zadanie 3. Na ocenę 4.0 (db)

Proszę napisać program, który wyznaczy szybkość wciskania przycisku w zadanym odcinku czasu. W zadaniu należy użyć dwa timery - jeden jako licznik zdarzeń, drugi jako licznik czasu. Wynik powinien być wyświetlany na diodach.

2.4. Zadanie 4. Na ocenę 5.0 (bdb)

Proszę przepisać program do wyznaczania refleksu (poprzedni zestaw) z użyciem timerów.