Graded Modules and Hilbert Functions

June 30, 2020

Contents

1	Graded Rings and Graded Modules	2				
	1.1 Graded Rings and Graded K-Algebras					
2	Hilbert Function and Dimension 2.1 Properties of the Hilbert Function and Hilbert-Poincare Series	7 7 7				
3	Hilbert polynomial and the second Hilbert series 3.1 Properties of the Hilbert Polynomial	8 10				
4	Examples					
5	Filtrations and the Lemma of Artin-Rees	16				
6	The Hilbert-Samuel Function					
7	Characterization of the Dimension of Local Rings	20				

1 Graded Rings and Graded Modules

1.1 Graded Rings and Graded K-Algebras

Definition 1.1. Let H be an additive semigroup with identity 0. An H-graded ring A is a ring together with a direct sum decomposition

$$A = \bigoplus_{h \in H} A_h,$$

where the A_h are abelian groups which satisfy the property that if $a_{h_1} \in A_{h_1}$ and $a_{h_2} \in A_{h_2}$, then $a_{h_1}a_{h_2} \in A_{h_1+h_2}$ (an equivalent way of saying this is $A_{h_1}A_{h_2} \subseteq A_{h_1+h_2}$). The A_h are called **homogeneous components** and the elements of A_h are called **homogeneous elements** of **degree** h. A **graded** K-algebra is a K-algebra which is an K-graded ring such that K is a K-vector space for all K and K and K are called K-algebra which is an K-degree K.

Remark 1.

- 1. We are mostly interested in the case where $H = \mathbb{N}_0$ or $H = \mathbb{Z}$, where $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Unless otherwise specified, when we omit H and simply say "let A be a graded ring", we mean A is an N_0 -graded ring.
- 2. Let $A = \bigoplus_{i \geq 0} A_i$ be an graded ring, then A_0 is a subring of A. This follows since $1 \cdot 1 = 1$, hence $1 \in A_0$. This makes A into a graded A_0 -algebra. For a K-algebra A, this implies already $K \subset A_0$, but to be a graded K-algebra, we require even $K = A_0$.
- 3. Let *A* be any ring, then $A_0 := A$ and $A_i := 0$ for all i > 0 defines a trivial structure of a graded ring for *A*.

One of the most basic examples of a graded K-algebra is the polynomial ring A := K[x,y,z]: Let A_i be the K-vector space generated by the monomials $x^{\alpha_1}y^{\alpha_2}z^{\alpha_3} \in A$ such that $\alpha_1 + \alpha_2 + \alpha_3 = i$. We clearly have $A_iA_j \subseteq A_{i+j}$. We also have a direct sum decomposition

$$A = \bigoplus_{i>0} A_i,$$

The first few homogeneous components of A start out as

$$A_0 = K$$

 $A_1 = Kx + Ky + Kz$
 $A_2 = Kx^2 + Kxy + Kxz + Ky^2 + Kyz + Kz^2$
:

The next proposition gives us a generalization of this construction.

Proposition 1.1. Let $A = K[x_1, ..., x_n]$, $w = (w_1, ..., w_n)$ be a vector of positive integers, and let A_d be the K-vector space generated by all monomials of the form $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ with $w_1\alpha_1 + \cdots + w_n\alpha_n = d$. Then $A = \bigoplus_{i \ge 0} A_i$ is a graded K-algebra.

Proof. We clearly have $A_0 = K$. If $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in A_d$ and $x_1^{\beta_1} \cdots x_n^{\beta_n} \in A_{d'}$, then

$$w_1(\alpha_1+\beta_1)+\cdots+w_n(\alpha_n+\beta_n)=w_1\alpha_1+w_1\beta_1\cdots+w_n\alpha_n+w_n\beta_n=d+d'$$

implies
$$x_1^{\alpha_1} \cdots x_n^{\alpha_n} \cdot x_1^{\beta_1} \cdots x_n^{\beta_n} \in A_{d+d'}$$
.

Remark 2. Note that for each i we have $x_i \in A_{w_i}$. The elements of A_d are called **quasihomogeneous** or **weighted homogeneous** polynomials of **weighted degree** d with respect to the weights w_1, \ldots, w_n . If $w_1 = \cdots = w_n = 1$, we obtain the usual notion of homogeneous polynomials.

For example, let A be the polynomial ring K[x, y, z]. There is a direct sum decomposition

$$A=\bigoplus_{0\leq i}A_i,$$

where A_i is K-vector space generated by the monomials $x^{\alpha_1}y^{\alpha_2}z^{\alpha_3} \in A$ where $\alpha_1 + 2\alpha_2 + 3\alpha_3 = i$. This gives A the structure of a graded K-algebra with respect to the weights w = (1,2,3). The homogeneous components of A start out as

$$A_0 = K$$

$$A_1 = Kx$$

$$A_2 = Kx^2 + Ky$$

$$A_3 = Kx^3 + Kxy + Kz$$
.

1.2 Graded Modules

Definition 1.2. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded ring. An A-module M, together with a direct sum decomposition $M = \bigoplus_{i \in \mathbb{Z}} M_i$ into abelian groups is called a **graded** A-module if $A_i M_j \subset M_{i+j}$ for all $i \geq 0$ and $j \in \mathbb{Z}$. The elements of M_i are called **homogeneous** of **degree** i. If $m = \sum_i m_i$, with $m_i \in M_i$, then m_i is called the **homogeneous part** of **degree** i of m.

Remark 3. Again, we can easily generalize this construction to H-graded modules, but for our purposes, we are mainly interested in $H = \mathbb{Z}$ or $H = \mathbb{N}_0$.

Example 1.1. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded K-algebra and consider the free module $A^m = \bigoplus_{i=1}^m Ae_i$ where e_i denotes the standard basis element in A^m . Let $k = (k_1, \ldots, k_m) \in \mathbb{Z}^m$, define $\deg(e_i) := k_i$, and let M_k be the A_0 -module generated by all fe_i with $f \in A_{k-k_i}$. Then $A^m = \bigoplus_{k \in \mathbb{Z}} M_k$ is a graded A-module.

Example 1.2. Continuing Example (4.2), let M be the graded A-module A^2 with weights k = (1,2). The homogeneous components of M start out as

$$\begin{aligned} &\vdots \\ &M_0 = 0 \\ &M_1 = Ke_1 \\ &M_2 = Kxe_1 + Ke_2 \\ &M_3 = Kx^2e_1 + Kye_1 + Kxe_2 \\ &\vdots \end{aligned}$$

Definition 1.3. Let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a graded A-module and define $M(d) := \bigoplus_{i \in \mathbb{Z}} M(d)_i$ with $M(d)_i := M_{i+d}$. Then M(d) is a graded A-module, especially A(d) is a graded A-module. M(d) is called the d'th twist or the d'th shift of M.

Example 1.3. The module M in Example (1.2) is isomorphic to $A(-1) \oplus A(-2)$.

Lemma 1.1. Let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a graded A-module and $N \subset M$ a submodule. The following conditions are equivalent:

- 1. N is graded with the induced grading, that is $N = \bigoplus_{i \in \mathbb{Z}} (M_i \cap N)$.
- 2. N is generated by homogeneous elements.
- 3. Let $m = \sum m_i$ with $m_i \in M_i$. Then $m \in N$ if and only if $m_i \in N$ for all i.

Definition 1.4. A submodule $N \subset M$ satisfying the equivalent conditions of Lemma (1.1) is called a **graded** (or **homogeneous**) submodule. A graded submodule of a graded ring is called a **graded** (or **homogeneous**) ideal.

Remark 4. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded ring, and let $I \subset A$ be a homogeneous ideal. Then the quotient A/I has an induced structure as a graded ring: $A/I = \bigoplus_{i \geq 0} (A_i + I)/I \cong \bigoplus_{i \geq 0} A_i/(I \cap A_i)$.

Example 1.4. Let A = K[x,y] and $I = \langle xy + y^2, x^3 \rangle$. Then I is a homogeneous ideal, and therefore is graded with the induced grading $I = \bigoplus_{i \in \mathbb{Z}} (A_i \cap I)$. Before we write down the first few homogeneous components of I, we first use Singular to compute a Gröbner basis of G of I with respect to graded reverse lex order. We obtain $G = \{f_1, f_2, f_3\}$. where $f_1 = xy + y^2$, $f_2 = x^3$, and $f_3 = y^4$. Now we write the first few homogeneous components of I:

$$I_{0} = 0$$

$$I_{1} = 0$$

$$I_{2} = Kf_{1}$$

$$I_{3} = Kxf_{1} + Kyf_{1} + Kf_{2}$$

$$I_{4} = Kx^{2}f_{1} + Kxyf_{1} + Ky^{2}f_{1} + Kxf_{2} + Kyf_{2}$$

$$I_{5} = A_{5}$$
:

The quotient A/I is also graded. Using the Gröbner basis we just calculated, we see that the homogeneous

components of the quotient start out as

$$(A/I)_0 = K \cdot \overline{1}$$

$$(A/I)_1 = K\overline{x} + K\overline{y}$$

$$(A/I)_2 = K\overline{x}^2 + K\overline{y}^2$$

$$(A/I)_3 = K\overline{y}^3$$

$$(A/I)_4 = 0$$
:

Example 1.5. Let $S = K[x_1, ..., x_n]$ and I be a homogeneous ideal in S, so S/I is a graded K-algebra. Define $S_I := \operatorname{Span}_K(x^{\alpha} \mid x^{\alpha} \notin \langle \operatorname{LT}(I) \rangle)$. There is an obvious decompostion of S_I into homogeneous pieces $(S_I)_i$, where $(S_I)_i = \operatorname{Span}_K(x^{\alpha} \mid x^{\alpha} \notin \langle \operatorname{LT}(I) \rangle)$ and $|\alpha| = i$. In fact, S/I and S_I are isomorphic as graded K-algebras.

To see this, let $G = \{g_1, g_2, \dots, g_r\}$ be the reduced Gröbner basis for I with respect to a fixed monomial ordering. Recall that $f \in K[x_1, \dots, x_n]$ can be written in the form f = g + r, where $g \in I$ and no term of r is divisible by any element of LT(I), and, moreover, g and r are uniquely determined. We use the notation $f^G := r$ and call this the **normal form of** f **with respect to** f (or simply the **normal form of** f if the there is no confusion of the ideal f). It follows from uniqueness of f and f - f that taking the normal form of a polynomial is a f-linear map:

$$c_1 f_1^G + c_2 f_2^G = (c_1 f_1 + c_2 f_2)^G$$
 for all $c_1, c_2 \in K$ and $f_1, f_2 \in S$. (1)

The isomorphism from S/I to S_I is given by mapping $\overline{f} \in (S/I)$ to $f^G \in S_I$, where K-linearity follows from (1). The inverse to this isomorphism is given by mapping $f \in S_I$ to $\overline{f} \in S/I$.

Using this isomorphism, we can carry multiplication from S/I over to S_I to turn S_I into a K-algebra: For $f_1, f_2 \in S_I$, we define multiplication as

$$f_1 \cdot f_2 = (f_1 f_2)^G$$
.

Bilinearity of \cdot follows from bilinearity of multiplication and linearity of $-^G$. Also, $-^G$ preserves homogeneity, and so S_I is isomorphic to S/I as a graded K-algebra.

Example 1.6. Let A = K[x, y, z] and $I = \langle y^3 - z^2, x^3 - z \rangle$. Then I is homogeneous if we consider A as a graded ring with respect to the weights w = (1, 2, 3). Next let $M = \langle (y^3 - z^2)e_1 + (x^3 - z)e_2, x^3e_1 + e_2 \rangle$. Then M is a homogeneous submodule of A^2 if we consider A^2 as a graded A-module with respect to weights k = (0, 3).

Example 1.7. Let A = K[x,y,z] and $I = \langle y^5 - z^2, x^3 - z, x^6 - y^5 \rangle$. Can we give A a grading so that I is a homogeneous ideal? Yes. To find a grading for A such that I is a homogeneous ideal, we need to solve the following system of equations

$$5w_2 - 2w_3 = 0$$
$$3w_1 - w_3 = 0$$
$$6w_1 - 5w_2 = 0$$

where $w_1, w_2, w_3 \in \mathbb{Z}$. A solution to this is given by $w_1 = 5$, $w_2 = 6$, and $w_3 = 15$. On the other hand, $J = \langle y^5 - z^2, x^3 - z, x^7 - y^5 \rangle$ cannot be made into a homogeneous ideal with respect to some grading since

$$\begin{vmatrix} \begin{pmatrix} 0 & 5 & -2 \\ 3 & 0 & -1 \\ 7 & -5 & 0 \end{pmatrix} = -5 \neq 0.$$

Definition 1.5. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded ring and $M = \bigoplus_{i \in \mathbb{Z}} M_i$, $N = \bigoplus_{i \in \mathbb{Z}} N_i$ be graded A-modules. A homomorphism $\varphi : M \to N$ is called **homogeneous** (or **graded**) of degree d if $\varphi(M_i) \subset N_{i+d}$ for all i. If φ is homogeneous of degree zero we call φ just **homogeneous**.

Example 1.8. Let be the graded K-algebra K[x, y, z, t] with respect to the weights w = (1, 1, 1, 1). Then the matrix

$$\varphi = \begin{pmatrix} x+y+z & w^2 - x^2 & x^3 \\ 1 & x & xy+z^2 \end{pmatrix}$$

defines a homomorphism $\varphi: A(-1) \oplus A(-2) \oplus A(-3) \to A \oplus A(-1)$ which is graded of degree zero.

Definition 1.6. Let A be a ring and let Q be an ideal in A. The **associated graded ring of** A **with respect to** Q is

$$\operatorname{Gr}_{Q}(A) = \bigoplus_{i=0}^{\infty} Q^{i}/Q^{i+1}.$$

The multiplication in $Gr_Q(A)$ is induced by the multiplication $Q^i \times Q^j \to Q^{i+j}$, and $Gr_Q(A)$ is a graded ring with $Gr_Q(A)_0 = A/Q$. If M is an A-module, one similarly constructs the **associated graded module**

$$\operatorname{Gr}_{Q}(M) = \bigoplus_{i=0}^{\infty} Q^{i} M / Q^{i+1} M.$$

It is straightforward to verify that $Gr_O(M)$ is a graded $Gr_O(A)$ -module.

Example 1.9. Let A = K[x, y, z] and let $Q = \langle x^2, xy \rangle$. We want to compute $Gr_Q(A)$. An easy computation shows that $Q^2 = \langle x^4, x^3y, x^2y^2 \rangle$. Let us write down the first few homogeneous components of $Gr_Q(A)$ using a K-basis:

$$Gr_{Q}(A)_{0} = A/Q = K + K\overline{x} + K\overline{y} + K\overline{y}^{2} + K\overline{y}^{3} + K\overline{y}^{4} + K\overline{y}^{5} + K\overline{y}^{6} + K\overline{y}^{7} + K\overline{y}^{8} \cdots$$

$$Gr_{Q}(A)_{1} = Q/Q^{2} = K\overline{x}^{2} + K\overline{x}\overline{y} + K\overline{x}^{3} + K\overline{x}^{2}\overline{y} + K\overline{x}\overline{y}^{2} + K\overline{x}\overline{y}^{3} + K\overline{x}\overline{y}^{4} + K\overline{x}\overline{y}^{5} + \cdots$$

$$\vdots$$

This way of writing things down isn't very illuminating. However, there is another way to think of $Gr_Q(A)$. First we note that we have a surjective morphism of graded (A/Q)-algebras

$$\varphi: (A/Q)[s,t] \to \operatorname{Gr}_Q(A)$$

where φ is the map induced by mapping $s \mapsto \overline{x}^2 \in Q/Q^2$ and $t \mapsto \overline{xy} \in Q/Q^2$. However, this map is not injective, because

$$\varphi(\overline{y}s - \overline{x}t) = \overline{y}\varphi(s) - \overline{x}\varphi(t)$$
$$= \overline{y}x^2 - \overline{x}x\overline{y}$$
$$= 0.$$

and $\overline{y}s - \overline{x}t \neq 0$ in (A/Q)[s,t]. This isn't the only nontrivial relation though.

Lemma 1.2. Let $A = \bigoplus_{i \geq 0} A_i$ be a Noetherian graded ring and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated graded A-module. Then

- 1. There exists $m \in \mathbb{Z}$ such that $M_i = \langle 0 \rangle$ for i < m;
- 2. M_i is a finitely generated A_0 -module for all $i \in \mathbb{Z}$. In particular, if A is a Noetherian graded K-algebra, then $dim_K(M_i)$ is finite for all $i \in \mathbb{Z}$.

Proof.

- 1. Is obvious because *M* is finitely generated and a graded *A*-module.
- 2. First we show A_i is a finitely generated A_0 -module for each $i \ge 0$. Since A is Noetherian, $\langle A_i \rangle$ is finitely generated, say by $x_1, \ldots, x_{\lambda_i} \in A$. Since $1 \in A_0$, $1 \cdot x_j = x_j$ implies $x_j \in A_i$ for all $j = 1, \ldots, \lambda_i$. Then

$$\langle A_i \rangle = \langle x_1, \dots, x_{\lambda_i} \rangle$$

$$= Ax_1 + \dots + Ax_{\lambda_i}$$

$$= (A_0x_1 + \dots + A_0x_{\lambda_i}) \oplus (A_1x_1 + \dots + A_1x_{\lambda_i}) \oplus (A_2x_1 + \dots + A_2x_{\lambda_i}) \oplus \dots$$

Clearly $A_i = A_0x_1 + \cdots + A_0x_{\lambda_i}$, since $A_jx_1 + \cdots + A_jx_{\lambda_i} \in A_{i+j}$ for all j > 0, which shows A_i is a finitely generated A_0 -module. Next, since M is finitely generated, there exists finitely many homogeneous elements m_1, \ldots, m_k in M such that

$$M = Am_1 + \cdots + Am_k$$

where $m_i \in M_{e_i}$ for all i = 1, ..., k. Then

$$M_n = A_{n-e_1}m_1 + \cdots + A_{n-e_k}m_k.$$

This implies that M_n is a finitely generated A_0 -module because the A_i are finitely generated A_0 -modules.

Definition 1.7. Let H be an additive semigroup with identity 0. A **semigroup ordering** on H is a partial ordering > on H such that

- 1. > is a total ordering, i.e. either $h_{\alpha} > h_{\beta}$ or $h_{\beta} > h_{\alpha}$ for all $h_{\alpha}, h_{\beta} \in H$.
- 2. > is translate invariant, i.e. $h_{\alpha} > h_{\beta}$ implies $h_{\alpha} + h_{\gamma} > h_{\beta} + h_{\gamma}$ for all h_{α} , h_{β} , $h_{\gamma} \in H$.
- 3. > is a well-ordering, i.e. every non-empty subset of H has a least element in this ordering.

Example 1.10. The integers \mathbb{Z} and the natural numbers \mathbb{N} can be equipped with the usual semigroup ordering >.

Theorem 1.3. Let M be a Noetherian graded module over a Noetherian graded ring A, where the grading is by a semigroup H equipped with a semigroup ordering >. Then every associated prime $\mathfrak p$ of M is a homogeneous ideal.

Proof. If \mathfrak{p} is an associated prime of M, it is the annihilator of a nonzero element

$$u=u_{j_1}+\cdots+u_{j_t}\in M,$$

where the u_{j_v} are nonzero homogeneous elements of degrees $j_1 < \cdots < j_t$. Choose u such that t is as small as possible. Suppose that

$$a = a_{i_1} + \cdots + a_{i_s}$$

kills u, where for every v, a_{i_v} has degree i_v , and $i_1 < \cdots < i_s$. We shall show that every a_{i_v} kills u, which proves that \mathfrak{p} is homogeneous. It suffices to show that a_{i_1} kills u (since $a - a_{i_1}$ kills u and we can proceed by induction). Since au = 0, the unique least degree term $a_{i_1}u_{i_1} = 0$. Therefore

$$u' = a_{i_1}u = a_{i_1}u_{j_2} + \cdots + a_{i_1}u_{j_t}.$$

If this element is nonzero, its annihilator is still \mathfrak{p} , since $Au \cong A/\mathfrak{p}$ and every nonzero element has annihilator \mathfrak{p} . Since $a_{i_1}u_{j_\nu}$ is homogeneous of degree i_1+j_ν , or else is 0, u' has fewer nonzero homogeneous components than u does, contradicting our choice of u.

Corollary 1. If I is a homogeneous ideal of a Noetherian ring A graded by a semigroup H equipped with a semigroup ordering >, then every minimal prime of I is homogeneous.

Proof. This is immediate, since the minimal primes of I are among the associated primes of A/I.

Proposition 1.2. Let A be a graded ring, where the grading is by a semigroup H equipped with a semigroup ordering > and let I be a homogeneous ideal. Then \sqrt{I} is homogeneous.

Proof. Let

$$f_{i_1}+\cdots+f_{i_k}\in\sqrt{I}$$

with $i_1 < \cdots < i_k$ and each f_{i_j} nonzero of degree i_j . We need to show that every $f_{i_j} \in \sqrt{I}$. If any of the components are in \sqrt{I} , we may subtract them off, giving a similar sum whose terms are the homogeneous components not in \sqrt{I} . Therefore it suffices to show that $f_{i_1} \in \sqrt{I}$. But

$$\left(f_{i_1}+\cdots+f_{i_k}\right)^N\in I$$

for some N > 0. When we expand, there is a unique term formally of least degree, namely $f_{i_1}^N$, and therefore this term is in I, since I is homogeneous. But this means that $f_{i_1} \in \sqrt{I}$, as required.

Corollary 2. Let A be a finitely generated graded K-algebra and let $\mathfrak{m} = \bigoplus_{d=1}^{\infty} A_d$ be the homogeneous maximal ideal of A. Then $dim(A) = height(\mathfrak{m}) = dim(A_{\mathfrak{m}})$.

Proof. The dimension of A will be equal to the dimension of A/\mathfrak{p} for one of the minimal primes \mathfrak{p} of A. Since \mathfrak{p} is minimal, it is an associated prime and therefore is homogeneous. Hence, $\mathfrak{p} \subseteq \mathfrak{m}$. The domain A/\mathfrak{p} is finitely generated over K, and therefore its dimension is equal to the height of every maximal ideal including, in particular, $\mathfrak{m}/\mathfrak{p}$. Thus,

$$\dim(A) = \dim(A/\mathfrak{p}) = \dim((A/\mathfrak{p})_{\mathfrak{m}}) \le \dim(A_{\mathfrak{m}}) \le \dim(A),$$

and so equality holds throughout, as required.

2 Hilbert Function and Dimension

The Hilbert function of a graded module associates to an integer n the dimension of the nth graded part of the given module. For sufficiently large n, the values of this function are given by a polynomial, the Hilbert polynomial.

Definition 2.1. Let $A = \bigoplus_{i \geq 0} A_i$ be a Noetherian graded K-algebra and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated graded A-module. The **Hilbert function** $H_M : \mathbb{Z} \to \mathbb{Z}$ of M is defined by

$$H_M(n) := \dim_K(M_n),$$

and the **Hilbert-Poincare series** HP_M of M is defined by

$$HP_M(t) := \sum_{n \in \mathbb{Z}} H_M(n) t^n \in \mathbb{Z}[[t]][t^{-1}].$$

By definition, H_M (and, hence, HP_M) depend only on the graded structure of M, i.e. the M_i are K-vector spaces, hence, if $\varphi: B \to A$ is a graded K-algebra map, then it does not matter whether we consider M as an A-module or B-module. In particular, since $A/Ann_A(M)$ is a graded A-algebra, we may always consider M as an $A/Ann_A(M)$ -module when computing the hilbert function.

2.1 Properties of the Hilbert Function and Hilbert-Poincare Series

Lemma 2.1. Let $A = \bigoplus_{i>0} A_i$ be a Noetherian graded K-algebra, and let M be a finitely generated graded A-module.

1. Let $N \subset M$ be a graded submodule, then

$$H_M(n) = H_N(n) + H_{M/N}(n)$$

for all n, in particular, $HP_M(t) = HP_N(t) + HP_{M/N}(t)$.

2. Let d be an integer, then

$$H_{M(d)}(n) = H_M(n+d)$$

for all n, in particular, $HP_{M(d)}(t) = t^{-d}HP_{M}(t)$.

3. Let d be a non-negative integer, let $f \in A_d$, and let $\varphi : M(-d) \to M$ be defined by $\varphi(m) := f \cdot m$. Then Ker φ and Coker φ are graded (A/f)-modules with the induced gradings and

$$H_M(n) - H_M(n-d) = H_{Coker(\varphi)}(n) - H_{Ker(\varphi)}(n-d),$$

in particular, $HP_M(t) - t^d HP_M(t) = HP_{Coker(\varphi)}(t) - t^d HP_{Ker(\varphi)}(t)$.

Proof.

- 1. Holds, because $N_i = N \cap M_i$ and $(M/N)_i = M_i/N_i$.
- 2. An immediate consequence of the definition of M(d).
- 3. Consequence of (1) and (2).

2.1.1 Reading off the Hilbert Function from a Free Resolution

Proposition 2.1. Let $A = \bigoplus_{i \geq 0} A_i$ be a Noetherian graded K-algebra on n generators and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated graded A-module. Suppose

$$0 \longrightarrow \bigoplus_{j \in \mathbb{Z}} A(-m_{r,j}) \stackrel{\varphi_r}{\longrightarrow} \cdots \stackrel{\varphi_2}{\longrightarrow} \bigoplus_{j \in \mathbb{Z}} A(-m_{1,j}) \stackrel{\varphi_1}{\longrightarrow} \bigoplus_{j \in \mathbb{Z}} A(-m_{0,j}) \longrightarrow M \longrightarrow 0$$

is an exact sequence of graded A-modules. Then

$$HP_M(t) = rac{\sum_{i=0}^{r} (-1)^i \left(\sum_j t^{m_{i,j}}\right)}{(1-t)^n}.$$

Proof. The exact sequence of graded A-modules

$$0 \longrightarrow \bigoplus_{i \in \mathbb{Z}} A(-m_{r,i}) \stackrel{\varphi_r}{\longrightarrow} \cdots \stackrel{\varphi_2}{\longrightarrow} \bigoplus_{i \in \mathbb{Z}} A(-m_{1,i}) \stackrel{\varphi_1}{\longrightarrow} \bigoplus_{i \in \mathbb{Z}} A(-m_{0,i}) \longrightarrow M \longrightarrow 0$$

gives rise to an exact sequence of *K*-vector spaces

$$0 \longrightarrow \bigoplus_{j \in \mathbb{Z}} (A(-m_{r,j}))_i \longrightarrow \cdots \longrightarrow \bigoplus_{j \in \mathbb{Z}} (A(-m_{1,j}))_i \longrightarrow \bigoplus_{j \in \mathbb{Z}} (A(-m_{0,j}))_i \longrightarrow M \longrightarrow 0$$

for each $i \in \mathbb{Z}$. Now apply Lemma (2.1).

2.1.2 The Structure of the Hilbert-Poincare Series

Theorem 2.2. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded K-algebra, and assume that A is generated, as a K-algebra, by $x_1, \ldots, x_r \in A_1$. Then, for any finitely generated (positively) graded A-module $M = \bigoplus_{i \geq 0} M_i$,

$$HP_M(t) = \frac{Q(t)}{(1-t)^r}$$

for some $Q(t) \in \mathbb{Z}[t]$.

Proof. We prove the theorem using induction on r. In the case r = 0, M is a finite dimensional K-vector space, and therefore, there exists an integer n such that $M_i = \langle 0 \rangle$ for $i \geq n$. This implies $HP_M(t) \in \mathbb{Z}[t]$.

Assume that $r \ge 0$ and consider the map $\varphi: M(-1) \to M$ defined by $\varphi(m) := x_1 \cdot m$. Using Lemma (2.1), we obtain

$$(1-t)\cdot HP_M(t) = HP_{Coker(\varphi)}(t) - t\cdot HP_{Ker(\varphi)}(t).$$

Now both $\operatorname{Ker}(\varphi)$ and $\operatorname{Coker}(\varphi)$ are graded (A/x_1) -modules. Using the induction hypothesis we obtain $\operatorname{HP}_{\operatorname{Coker}(\varphi)}(t) = Q_1(t)/(1-t)^{r-1}$ and $\operatorname{HP}_{\operatorname{Ker}(\varphi)}(t) = Q_2(t)/(1-t)^{r-1}$ for some $Q_1,Q_2 \in \mathbb{Z}[t]$. This implies

$$HP_M(t) = \frac{Q_1(t) - tQ_2(t)}{(1-t)^r}$$

Theorem 2.3. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded K-algebra, and assume that A is generated, as a K-algebra, by x_1, \ldots, x_r where $x_i \in A_{w_i}$. Then, for any finitely generated (positively) graded A-module $M = \bigoplus_{i \geq 0} M_i$,

$$HP_M(t) = \frac{Q(t)}{(1-t^{w_1})(1-t^{w_2})\cdots(1-t^{w_n})}$$

for some $Q(t) \in \mathbb{Z}[t]$.

Proof. The proof is nearly identical to the proof of Theorem (2.2).

3 Hilbert polynomial and the second Hilbert series

Let $A = \bigoplus_{\nu \geq 0} A_{\nu}$ be a Noetherian graded *K*-algebra, and let $M = \bigoplus_{\nu \geq 0} M_{\nu}$ be a finitely generated (positively) graded *A*-module. From Theorem (2.2), we know that $HP_M(t) = Q(t)/(1-t)^r$, where $Q(t) \in \mathbb{Z}[t]$. After canceling all common factors in the numerator and denominator of $HP_M(t)$, and we obtain

$$\operatorname{HP}_M(t) = \frac{G(t)}{(1-t)^s}, \qquad 0 \le s \le r, \qquad G(t) = \sum_{i=0}^d g_i t^i \in \mathbb{Z}[t],$$

such that $g_d \neq 0$ and $G(1) \neq 0$, that is, s is the pole order of $HP_M(t)$ at t = 1.

- 1. The polynomial Q(t), respectively G(t), defined above, is called the **first Hilbert series**, respectively the **second Hilbert series**, of M.
- 2. Let d be the degree of the second Hilbert series G(t), and let s be the pole order of the Hilbert-Poincare series $HP_M(t)$ at t = 1, then

$$P_M := \sum_{i=0}^d g_i \cdot \binom{s-1+n-i}{s-1} \in \mathbb{Q}[n]$$

is called the **Hilbert polynomial** of M (with $\binom{n}{k} = 0$ for k < 0).

Lemma 3.1. Let $P(x) \in \mathbb{Q}(x)$ be a polynomial of degree s-1. Then the following conditions are equivalent:

- 1. $P(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.
- 2. There exists $a_0, \ldots, a_{s-1} \in \mathbb{Z}$ such that

$$P(x) = \sum_{i=0}^{s-1} a_i \binom{x}{i}.$$

Proof. (2) implies (1) is trivial. For the converse, observe that the polynomials $\binom{x}{i}$, where $i \in \mathbb{N}$, form a Q-basis of $\mathbb{Q}[x]$. Therefore $P(x) = \sum_{i=0}^{s-1} a_i \binom{x}{i}$ with $a_i \in \mathbb{Q}$. Let $\Delta : \mathbb{Q}[x] \to \mathbb{Q}[x]$ denote the forward difference operator, given by $(\Delta f)(x) = f(x+1) - f(x)$. Then

$$a_k = (\Delta^k P)(0) = P(k) - P(0) \in \mathbb{Z}.$$

Corollary 3. With the above assumptions, P_M is a polynomial in n with rational coefficients, of degree s-1, and satisfies $P_M(n) = H_M(n)$ for $n \ge d$. Moreover, there exist $a_i \in \mathbb{Z}$ such that

$$P_M(n) = \sum_{i=0}^{s-1} a_i \cdot \binom{n}{i} = \frac{a_{s-1}}{(s-1)!} \cdot n^{s-1} + lower terms in n,$$

where $a_{s-1} = G(1) > 0$.

Proof. The equality $1/(1-t)^s = \sum_{i=0}^{\infty} {s-1+i \choose s-1} \cdot t^i$ implies

$$\sum_{i=0}^{\infty} H_M(i)t^i = \mathrm{HP}_M(t) = \left(\sum_{i=0}^d g_i t^i\right) \cdot \sum_{j=0}^{\infty} \binom{s-1+j}{s-1} \cdot t^j.$$

After expressing $P_M(n)$ in long form notation, we see that the leading term of P_M is $G(1) \cdot n^{s-1}/(s-1)!$. In particular, we obtain $\deg(P_M) = s-1$. Next, we have to prove that $P_M = \sum_{i=0}^{s-1} a_i \cdot \binom{n}{i}$ for suitable $a_i \in \mathbb{Z}$ and $a_{s-1} > 0$. Suppose that we can find such $a_i \in \mathbb{Z}$. Then

$$P_M(n) = \frac{a_{s-1}}{(s-1)!} \cdot n^{s-1} + \text{ lower terms in } n.$$

Now, $P_M(n) = H_M(n) > 0$ for n sufficiently large implies $a_{s-1} > 0$. Finally, the existence of suitable integer coefficients a_i is a consequence Lemma (3.1), since $P_M(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

Example 3.1. Let's compute some explicit examples of hilbert polynomials. First assume d=2. Then

$$H_M(t) = \left(g_0 + g_1 t + g_2 t^2\right) \left(\binom{s-1}{s-1} + \binom{s-1+1}{s-1} t + \binom{s-1+2}{s-1} t^2 + \binom{s-1+3}{s-1} t^3 + \cdots\right).$$

After expanding, we see that

$$H_{M}(0) = g_{0} {s-1 \choose s-1}$$

$$H_{M}(1) = g_{0} {s-1+1 \choose s-1} + g_{1} {s-1 \choose s-1}$$

$$H_{M}(2) = g_{0} {s-1+2 \choose s-1} + g_{1} {s-1+1 \choose s-1} + g_{2} {s-1 \choose s-1} = P_{M}(2)$$

$$H_{M}(3) = g_{0} {s-1+3 \choose s-1} + g_{1} {s-1+2 \choose s-1} + g_{2} {s-1+1 \choose s-1} = P_{M}(3)$$

$$\vdots$$

So we've defined a rational polynomial P_M in a way so that $P_M(n) = H_M(n)$ for $n \ge 2$. Now assume s = 1. Then

$$P_M(n) = g_0 \binom{n}{0} + g_1 \binom{n-1}{0} + g_2 \binom{n-2}{0} = g_0 + g_1 + g_2$$

Now assume s = 2. Then

$$P_M(n) = g_0 \binom{n+1}{1} + g_1 \binom{n}{1} + g_2 \binom{n-1}{1} = (g_0 + g_1 + g_2)n + (g_0 - g_2)$$

Now assume s = 3. Then

$$P_M(n) = g_0\binom{n+2}{2} + g_1\binom{n+1}{2} + g_2\binom{n}{2} = \frac{(g_0 + g_1 + g_2)n^2 + (3g_0 + g_1 - g_2)n + 2}{2}$$

Now assume s = 4. Then

$$P_{M}(n) = g_{0}\binom{n+3}{3} + g_{1}\binom{n+2}{3} + g_{2}\binom{n+1}{3} = \frac{(g_{0} + g_{1} + g_{2})n^{3} + (6g_{0} + 3g_{1})n^{2} + (11g_{0} + 2g_{1} - g_{2})n + 6g_{1}\binom{n+3}{3}}{6}$$

3.1 Properties of the Hilbert Polynomial

In this section we prove that, for a graded *K*-algebra $A = K[x_1, ..., x_r]/I$, we have $\dim(A) - 1$ is equal to the degree of the Hilbert polynomial P_A .

Definition 3.1. Let $A = \bigoplus_{\nu \geq 0} A_{\nu}$ be a Noetherian graded *K*-algebra, and let $M = \bigoplus_{\nu \in \mathbb{Z}} M_{\nu}$ be a finitely generated, (not necessarily positively) graded *A*-module. Then we introduce

$$M^{(0)}:=igoplus_{
u\geq 0}M_
u$$
 ,

and define the **Hilbert polynomial** of M to be the Hilbert polynomial of $M^{(0)}$, that is, $P_M := P_{M^{(0)}}$.

Example 3.2. Let $A = \bigoplus_{\nu > 0} A_{\nu}$ be a Noetherian graded *K*-algebra. Then

$$P_{A(d)}(n) = P_A(n+d) = P_A(n) + \text{terms of lower degree in } n.$$

Definition 3.2. Let A be a Noetherian graded K-algebra and M a finitely generated graded A-module, and let $P_M = \sum_{i=0}^{s-1} a_i \cdot \binom{n}{i}$ be the Hilbert polynomial of M. Then we set

$$d(M) := \deg(P_M) = s - 1$$
,

and we define the **degree** of *M* as

$$deg(M) := a_{s-1}$$
.

Remark 5. If M is positively graded and $HP_M(t) = G(t)/(1-t)^s$ with $G(1) \neq 0$, then d(M) = s-1 and deg(M) = G(1).

Proposition 3.1. Let A be a Noetherian graded K-algebra, and let M, N be finitely generated graded A-modules. Then

- 1. If there is a surjective graded morphism $\varphi: M \to N$, then $d(M) \ge d(N)$.
- 2. $d(M) \le d(A)$.
- 3. If there is a homogeneous element $m \in M$ such that $Ann_A(m) = 0$, then d(M) = d(A).
- 4. Let $x \in A_d$ be a homogeneous nonzerodivisor for M. Then

$$d(M/xM) = d(M) - 1,$$
 $deg(M/xM) = d \cdot deg(M).$

Proof.

1. Let $\varphi: M \to N$ be a graded and surjective homomorphism of A-modules. Then, for all n, the restriction to M_n , denoted $\varphi_{|M_n}: M_n \to N_n$, is surjective too. This implies

$$H_M(n) = \dim_K(M_n) \ge \dim_K(N_n) = H_N(n).$$

Hence $P_M(n) \ge P_N(n)$ for all n sufficiently large, which is only possible if $\deg(P_M) \ge \deg(P_N)$, since the leading coefficients are positive.

2. Since M is finitely generated, we may choose homogeneous generators m_1, \ldots, m_k of degree d_1, \ldots, d_k . Now consider the map

$$\varphi: \bigoplus_{i=1}^k A(-d_i) \to M$$

defined by $\varphi(a_1,\ldots,a_k) = \sum_{i=1}^k a_i m_i$. Obviously, φ is graded and surjective. Using (1), we obtain

$$d\left(igoplus_{i=1}^k A(-d_i)
ight) \geq d(M).$$

On the other hand, for n sufficiently large, we have

$$P_{\bigoplus_{i=1}^{k} A(-d_i)}(n) = \sum_{i=1}^{k} P_{A(-d_i)}(n)$$

$$= \sum_{i=1}^{k} P_{A}(n - d_i)$$

$$= k \cdot P_{A}(n) + \text{terms of lower degree in } n,$$

which implies

$$d\left(\bigoplus_{i=1}^k A(-d_i)\right) = d(A).$$

- 3. Let $m \in M_d$ such that $\operatorname{Ann}_A(m) = 0$. Then $\varphi : A(-d) \to M$ defined by $\varphi(a) := am$ is graded and injective. This implies that, for n sufficiently large, $P_A(n-d) = P_{A(-d)}(n) \le P_M(n)$, which is only possible if $\deg(P_M) \ge \deg(P_A)$. Together with (2), this implies d(M) = d(A).
- 4. Using the exact sequence

$$0 \longrightarrow M(-d) \stackrel{x}{\longrightarrow} M \longrightarrow M/xM \longrightarrow 0$$

of graded A-modules, we obtain, by Lemma (2.1),

$$(1 - t^d) HP_M(t) = HP_{M/xM}(t).$$

If $HP_M(t) = G(t)/(1-t)^{d(M)+1}$ with $G(1) \neq 0$, then

$$HP_{M/xM}(t) = \frac{G(t)(1-t^d)}{(1-t)^{d(M)}(1-t)} = \frac{G(t) \cdot \sum_{\nu=0}^{d-1} t^{\nu}}{(1-t)^{d(M)}}.$$

Then $HP_{M/xM}$ has pole order d(M) at t = 1, hence,

$$d(M/xM) = d(M) - 1 \quad \text{and} \quad \deg(M/xM) = \left(G(t) \cdot \sum_{\nu=0}^{d-1} t^{\nu}\right)_{|t=1} = \deg(M) \cdot d.$$

Theorem 3.2. Let $I \subset K[x_1, ..., x_r]$ be a homogeneous ideal. Then

$$dim(K[x_1,...,x_r]/I) = d(K[x_1,...,x_r]/I) + 1.$$

Proof. Using Noether normalization, $K[x_1, ..., x_r]/I$ can be considered as a finitely generated graded $K[y_1, ..., y_s]$ -module. The assumptions of Proposition (3.1) (3) are satisfied and, therefore,

$$\deg(P_{K[x_1,...,x_r]/I}) = \deg(P_{K[y_1,...,y_s]})$$

$$= s - 1$$

$$= \dim(K[x_1,...,x_r]/I) - 1.$$

4 Examples

We now wish to give several examples which demonstrate concepts introduced above.

Example 4.1. Let A be the graded ring K[x,y,z] with respect to the weights w=(1,1,1). Then

$$HP_A(t) = \frac{1}{(1-t)^3}$$
 and $P_A(n) = {2+n \choose 2} = \frac{n^2 + 3n + 2}{2}$.

Example 4.2. Let A be the graded ring K[x,y,z] with respect to the weights w=(1,2,3). Then

$$H_A(n) = \{(a,b,c) \in \mathbb{Z}_{\geq 0} \mid a+2b+3c=n\} \text{ and } HP_A(t) = \frac{1}{(1-t)(1-t^2)(1-t^3)}.$$

Example 4.3. Let A be the graded ring K[x,y,z] with respect to the weights w=(1,2,3), B be the graded ring K[x,y,z] with respect to the weights w=(1,1,3), M be the graded A-module A^2 with respect to weights k=(1,2), and B be the graded B-module B with weight B with B with

$$HP_M(t) = (t + t^2)HP_A(t)$$

$$= \frac{t + t^2}{(1 - t)(1 - t^2)(1 - t^3)}$$

$$= \frac{t}{(1 - t)^2(1 - t^3)}$$

$$= HP_N(t).$$

Therefore M and N have the same graded structure. Moreover, one can check that the map from $M_n o N_n$ given by $e_2 \mapsto ye_1$, $y \mapsto y^2$, and fixing everything else the same, is an isomorphism of K-vector spaces. We can interpret $H_M(n)$ as the number of elements $(a,b,c) \in \mathbb{Z}^3_{\geq 0}$ such that a+2b+3c=n-1 plus the number of elements $(a,b,c) \in \mathbb{Z}^3_{\geq 0}$ such that a+2b+3c=n-2. Similarly, we can interpret $H_N(n)$ as the number of elements $(a,b,c) \in \mathbb{Z}^3_{\geq 0}$ such that a+b+3c=n-1.

Example 4.4. Let A be the graded ring K[x,y,z] with respect to weights w=(1,1,1) and let $I=\langle x^2,y^2,z^2\rangle$. Since I is homogeneous, A/I is a graded A-module. The homogeneous components of A/I are

$$(A/I)_0 = K$$

$$(A/I)_1 = K\bar{x} + K\bar{y} + K\bar{z}$$

$$(A/I)_2 = K\bar{x}\bar{y} + K\bar{x}\bar{z} + K\bar{y}\bar{z}$$

$$(A/I)_3 = K\bar{x}\bar{y}\bar{z}.$$

In particular, A/I is an 8-dimensional K-vector space.

Example 4.5. Let A be the graded ring K[x,y,z] with respect to weights w=(1,1,1), let $I=\langle x^3+y^3+z^3\rangle$, and let $J=\langle x^3+y^3+z^3,x\rangle$. Since I and J are homogeneous, A/I and A/J are graded A-modules. We have an exact sequence of graded A-modules:

$$0 \longrightarrow A(-3) \xrightarrow{\cdot (x^3 + y^3 + z^3)} A \longrightarrow A/I \longrightarrow 0$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/I}(t) = \frac{1 - t^3}{(1 - t)^3}$$
$$= \frac{1 + t + t^2}{(1 - t)^2}$$

From the reduced expression of $HP_{A/I}(t)$, we see that

$$P_{A/I}(n) = \binom{n+1}{1} + \binom{n}{1} + \binom{n-1}{1} = 3n.$$

By tensoring the exact sequence above with $A(-1) \xrightarrow{\cdot x} A$, we obtain another exact sequence of graded A-modules

$$0 \longrightarrow A(-4) \xrightarrow{\begin{pmatrix} -x^3 - y^3 - z^3 \\ x \end{pmatrix}} A(-1) \oplus A(-3) \xrightarrow{\begin{pmatrix} x & x^3 + y^3 + z^3 \end{pmatrix}} A \longrightarrow A/J \longrightarrow 0$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/J}(t) = \frac{1 - t - t^3 + t^4}{(1 - t)^3}$$
$$= \frac{1 + t + t^2}{1 - t}.$$

Notice that $(1-t)HP_{A/J}(t) = HP_{A/I}(t)$ because of the way tensoring complexes works. From the reduced expression of $HP_{A/J}(t)$, we see that

$$P_{A/J}(n) = \binom{n}{0} + \binom{n-1}{0} + \binom{n-2}{0} = 3.$$

The graded parts of A/J starts out as

$$\vdots$$

$$(A/J)_0 = K$$

$$(A/J)_1 = K\bar{y} + K\bar{z}$$

$$(A/J)_2 = K\bar{y}^2 + K\bar{y}\bar{z} + K\bar{z}^2$$

$$(A/J)_3 = K\bar{y}^2\bar{z} + K\bar{y}\bar{z}^2 + K\bar{z}^3$$

$$(A/J)_4 = K\bar{y}^2\bar{z}^2 + K\bar{y}\bar{z}^3 + K\bar{z}^4$$

$$\vdots$$

As we can see, the dimension of the graded parts eventually agrees with the hilbert polynomial, which is just 3. Also, note that we could have also calculated $P_{A/I}(n)$ by

$$P_{A/I}(n) = P_A(n) - P_A(n-3) - P_A(n-1) + P_A(n-4).$$

Now let LT(J) be the ideal generated by lead terms of elements in J with respect to graded lex ordering. From the theory of Gröbner bases, this is just LT(J) = $\langle x, y^3 + z^3 \rangle$. The graded parts of A/LT(J) starts out as

$$\vdots
(A/LT(J))_0 = K
(A/LT(J))_1 = K\bar{y} + K\bar{z}
(A/LT(J))_2 = K\bar{y}^2 + K\bar{y}\bar{z} + K\bar{z}^2
(A/LT(J))_3 = K\bar{y}^2\bar{z} + K\bar{y}\bar{z}^2 + K\bar{z}^3
(A/LT(J))_4 = K\bar{y}^2\bar{z}^2 + K\bar{y}\bar{z}^3 + K\bar{z}^4
\vdots$$

Notice that A/I and A/LT(I) have the same graded structure.

$$G = \{g_0, g_1, f_1, f_2, f_3\}$$

$$g_0 = xz + z^2$$

$$g_1 = xy + y^2$$

$$g_2 = y^2z - yz^2$$

$$g_0, g_1$$

$$xg_0, yg_0, zg_0, xg_1, yg_1, g_2$$

 $x^2g_0, xyg_0, y^2g_0, yzg_0, z^2g_0, x^2g_1, xyg_1, y^2g_1$

Formally set

$$d(g_0) = d(g_1) = d(g_2) = 0$$

Now what about S/I? First observe that we have an isomorphism

$$S/S \cap I \to \operatorname{Span}_{\kappa} \{ \text{monomials } m \in S \mid m \notin \operatorname{LT}(I) \},$$

given by mapping \overline{f} to \overline{f}^G , where \overline{f}^G is division of $f \in I$ by G.

$$yg_0 - zg_1 = z^2y - y^2z$$

 $S(g_1, g_2) = y^3z + xyz^2$

Example 4.6. Let A be the graded ring K[x,y] with respect to weights w=(1,1) and let I be the ideal in A given by $I=\langle x^2,xy\rangle$. Since I is a homogeneous ideal of A, A/I is a graded A-module. A free resolution of A/I is given by

$$A(-3) \xrightarrow{\begin{pmatrix} -y \\ x \end{pmatrix}} A(-2)^2 \xrightarrow{\begin{pmatrix} x^2 & xy \end{pmatrix}} A \xrightarrow{} A/I$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/I}(t) = \frac{1 - 2t^2 + t^3}{(1 - t)^2}$$
$$= \frac{1 + t - t^2}{1 - t}.$$

From the reduced expression of $HP_{A/I}(t)$, we see that

$$P_{A/I}(n) = \binom{n}{0} + \binom{n-1}{0} - \binom{n-2}{0} = 1.$$

Example 4.7. Let A be the graded ring K[x,y,z] with respect to weights w=(1,1,1) and let I be the ideal in A given by $I=\langle xz,yz\rangle$. Since I is a homogeneous ideal of A, A/I is a graded A-module. A free resolution of A/I is given by

$$A(-3) \xrightarrow{\begin{pmatrix} -y \\ x \end{pmatrix}} A(-2)^2 \xrightarrow{\begin{pmatrix} xz & yz \end{pmatrix}} A \xrightarrow{} A/I$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/I}(t) = \frac{1 - 2t^2 + t^3}{(1 - t)^3}$$
$$= \frac{1 + t - t^2}{(1 - t)^2}.$$

From the reduced expression of $HP_{A/I}(t)$, we see that

$$P_{A/I}(n) = \binom{n+1}{1} + \binom{n}{1} - \binom{n-1}{1} = n+2.$$

The graded parts of A/I starts out as

$$(A/I)_0 = K$$

$$(A/I)_1 = K\bar{x} + K\bar{y} + K\bar{z}$$

$$(A/I)_2 = K\bar{x}^2 + K\bar{x}\bar{y} + K\bar{y}^2 + K\bar{z}^2$$

$$(A/I)_3 = K\bar{x}^3 + K\bar{x}^2\bar{y} + K\bar{x}\bar{y}^2 + K\bar{y}^3 + K\bar{z}^3$$

$$\vdots$$

Notice that

$$(A/I)_n = (A/\langle xz, yz\rangle)_n$$

$$= (A/(\langle z\rangle \cap \langle x, y\rangle))_n$$

$$\cong ((A/\langle z\rangle) \oplus (A/\langle x, y\rangle))_n$$

$$\cong (A/\langle z\rangle)_n \oplus (A/\langle x, y\rangle)_n$$

Example 4.8. Let A be the graded ring K[x,y,z] with weights w=(1,2,3), I be the ideal in A given by $I=\langle x^3+z\rangle$, and B be the graded ring K[s,t] with respect to weights w=(1,2). Since I is a homogeneous ideal of A, A/I is a graded A-module. We have an exact sequence of graded A-modules

$$0 \longrightarrow A(-3) \xrightarrow{\cdot (x^3+z)} A \longrightarrow A/I \longrightarrow 0$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/I}(t) = \frac{1 - t^3}{(1 - t)(1 - t^2)(1 - t^3)}$$
$$= \frac{1}{(1 - t)(1 - t^2)}$$
$$= HP_B(t).$$

Example 4.9. Let A be the graded ring K[x,y,z] with weights w=(1,2,3) and let $I=\langle x^3+z,y^3+z^2\rangle$. Since I is a homogeneous ideal of A, A/I is a graded A-module. We have an exact sequence of graded A-modules

$$0 \longrightarrow A(-9) \xrightarrow{\begin{pmatrix} -y^3 - z^2 \\ x^3 + z \end{pmatrix}} A(-3) \oplus A(-6) \xrightarrow{\begin{pmatrix} x^3 + z & y^3 + z^2 \end{pmatrix}} A \longrightarrow A/I \longrightarrow 0$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/I}(t) = \frac{1 - t^3 - t^6 + t^9}{(1 - t)(1 - t^2)(1 - t^3)}$$
$$= \frac{(1 - t + t^2)(1 + t + t^2)}{1 - t}$$

Example 4.10. (Twisted Cubic) Let A be the graded ring K[x,y,z,w] with respect to weights w=(1,1,1,1), B be the graded ring K[s,t] with respect to weights w=(1,1), I be the ideal in A given by $I=\langle xz-y^2,yw-z^2,xw-yz\rangle$, and M be the B-module B^3 with respect to weights k=(0,1,1). Since I is a homogeneous ideal of A, A/I is a graded A-module. A free resolution of A/I is given by

$$A(-3)^{2} \xrightarrow{\begin{pmatrix} w & z \\ y & x \\ -z & -y \end{pmatrix}} A(-2)^{3} \xrightarrow{\begin{pmatrix} xz-y^{2} & yw-z^{2} & xw-yz \end{pmatrix}} A \xrightarrow{A/I}$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/I}(t) = \frac{1 - 3t^2 + 2t^3}{(1 - t)^4}$$
$$= \frac{1 + 2t}{(1 - t)^2}$$
$$= HP_M(t).$$

Let's write out the graded components of A/I and M side by side:

$$A/I = \langle 1 \rangle \oplus \langle x, w, y, z \rangle \oplus \langle x^2, w^2, xw, xy, xz, yw, zw \rangle \oplus \cdots \qquad M = \langle e_0 \rangle \oplus \langle se_0, te_0e_1, e_2 \rangle \oplus \langle s^2e_0, ste_0, t^2e_0, se_1, se_2, te_1, te_2 \rangle \oplus \cdots$$

It's easy to see that we get an isomorphism of K-vector spaces $(A/I)_n \to M_n$ by mapping $x \mapsto se_0$, $w \mapsto te_0$, $y \mapsto e_1$, $z \mapsto e_2$, and treating e_0 as the identity. The idea is that the twisted cubic is really a one dimensional object, which is why the K[x,y,z,w]-module A/I and the K[s,t]-module M have the same graded structure. From the reduced expression of $HP_{A/I}(t)$ and $HP_M(t)$, we see that

$$P_{A/I}(n) = P_M(n) = \binom{n+1}{1} + 2\binom{n}{1} = 3n+1.$$

Example 4.11. Let A be the graded ring $K[x_1,...,x_r]$ with respect to weights w=(1,1...,1) and let $f \in A$ be a homogeneous polynomial of degree d. Since $\langle f \rangle$ is a homogeneous ideal of A, A/f is a graded A-module. We have an exact sequence of graded A-modules

$$0 \longrightarrow A(-d) \stackrel{\cdot f}{\longrightarrow} A \longrightarrow A/f \longrightarrow 0$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/f}(t) = \frac{1 - t^d}{(1 - t)^r}$$
$$= \frac{1 + t + t^2 + \dots + t^{d-1}}{(1 - t)^{r-1}}$$

From the reduced expression of $HP_{A/I}(t)$, we see that

$$P_{A/f}(n) = {r-2+n \choose r-2} + {r-2+n-1 \choose r-2} + \cdots + {r-2+n-d-1 \choose r-2} = \frac{d}{(r-2)!}n^{r-2} + \text{ terms of lower degree.}$$

For example, if r = 3 and d = 4, we have

$$P_{A/f} = \binom{n+1}{1} + \binom{n}{1} + \binom{n-1}{1} + \binom{n-2}{1} = 4n-2.$$

5 Filtrations and the Lemma of Artin-Rees

Throughout this section, let *A* be a Noetherian ring and $Q \subset A$ be an ideal.

Definition 5.1. A set $\{M_n\}_{n\geq 0}$ of submodules of an *A*-module *M* is called a *Q*-filtration of *M* if

- 1. $M = M_0 \supset M_1 \supset M_2 \supset \cdots$
- 2. $QM_n \subset M_{n+1}$ for all $n \geq 0$.

A *Q*-filtration $\{M_n\}_{n\geq 0}$ of *M* is called **stable** if $QM_n=M_{n+1}$ for all sufficiently large *n*.

Example 5.1. Let M be an A-module and $M_n := Q^n M$ for $n \ge 0$. Then $\{M_n\}_{n \ge 0}$ is a stable Q-filtration of M.

Lemma 5.1. Let $\{M_n\}_{n\geq 0}$ and $\{N_n\}_{n\geq 0}$ be two stable Q-filtrations of M. Then there exists some non-negative integer n_0 such that $M_{n_0+n} \subset N_n$ and $N_{n+n_0} \subset M_n$ for all $n \geq 0$.

Proof. Without loss of generality, assume $N_n := Q^n M$. Now $\{M_n\}_{n\geq 0}$ being stable implies that there exists some non-negative integer n_0 such that $M_{n_0+n} = Q^n M_{n_0}$ for all $n \geq 0$. Therefore

$$M_{n+n_0} = Q^n M_{n_0}$$

$$\subset Q^n M$$

$$= N_n.$$

Conversely, as $\{M_n\}_{n\geq 0}$ is a Q-filtration, we have $QM_n\subset M_{n+1}$ for all $n\geq 0$, which implies, in particular

$$N_{n+n_0} \subset N_n$$

$$= Q^n M$$

$$= Q^n M_0$$

$$\subset M_n.$$

On the other hand, $Q^n M_{n_0} \subset Q^n M = N_n$ implies $M_{n+n_0} \subset N$.

Lemma 5.2. Let $\varphi: N \to M$ be an A-linear map of A-modules, and let $\{M_n\}_{n\geq 0}$ be a Q-filtration of M. Then $\{\varphi^{-1}(M_n)\}_{n\geq 0}$ is a Q-filtration of N

Proof. We have
$$Q\varphi^{-1}(M_n) \subset \varphi^{-1}(QM_n) \subset \varphi^{-1}(M_{n+1})$$
 for all $n \geq 0$.

Definition 5.2. Let A be a ring, $Q \subset A$ an ideal, and M and A-module. The **blowup algebra of** Q **in** A is the A-algebra

$$B_O(A) := A + tQ + t^2Q^2 + t^3Q^3 + \cdots$$

The multiplication in $B_Q(A)$ is induced by the multiplication $Q^i \times Q^j \to Q^{i+j}$. We also define the **blowup** module

$$B_Q(M) := M + tQM + t^2Q^2M + t^3Q^3M + \cdots$$

Remark 6. Note that $B_O(A)/QB_O(A) \cong Gr_O(A)$ and $B_O(M)/QB_O(M) \cong Gr_O(M)$.

Proposition 5.1. Let A be a Noetherian ring and $Q \subset A$ an ideal. Then $B_O(A)$ is a Noetherian ring.

Proof. Since A is Noetherian, Q is finitely generated, say $Q = \langle f_1, \ldots, f_r \rangle$. Then the map $\varphi : A[x_1, \ldots, x_r] \to B_Q(A)$, induced by $\varphi(x_i) = tf_i$, is a surjective ring homomorphism from a Noetherian ring. Therefore $B_Q(A)$ is a Noetherian ring.

Example 5.2. Let $A = K[x,y]/\langle y^2 - x^3 - x^2 \rangle$ and $Q = \langle x,y \rangle$. Then the map $\varphi : K[x,y,u,v] \to B_Q(A)$, induced by $u \mapsto xt$, and $v \mapsto yt$, is a surjective ring homomorphism. The kernel of φ is an ideal which is homogeneous in the variables u,v:

$$Ker(\varphi) = \langle v^2 - (x+1)u^2, xv - yu, y^2 - x^3 - x^2 \rangle.$$

In particular, $B_O(A)$ corresponds to an algebraic subset $Z \subset \mathbb{A}^2 \times \mathbb{P}^1$.

Example 5.3. Let $R = \mathbb{F}_2[x,y]/\langle y^2 + x^3 + x^2 \rangle$ and $\mathfrak{m} = \langle \overline{x}, \overline{y} \rangle \subset R$. Then the map $\varphi : \mathbb{F}_2[x,y,u,v] \to B_{\mathfrak{m}}(R)$, induced by $u \mapsto \overline{x}t$, and $v \mapsto \overline{y}t$, is a surjective ring homomorphism. The kernel of φ is an ideal which is homogeneous in the variables u,v and is given by $\operatorname{Ker}(\varphi) = \langle f_1, f_2, f_3, f_4, f_5 \rangle$, where

$$f_1 = yu^3 + u^2v + v^3$$

$$f_2 = xu^2 + u^2 + v^2$$

$$f_3 = x^2u + xu + yv$$

$$f_4 = xv + yu$$

$$f_5 = x^3 + x^2 + y^2$$

Therefore, $K[x, y, u, v]/\langle f_1, f_2, f_3, f_4, f_5 \rangle \cong B_{\mathfrak{m}}(R)$.

$$Ker(\varphi) = \langle yu^3 + u^2v + v^3, xu^2 + u^2 + v^2, x^2u + xu + yv, xv + yu, x^3 + x^2 + y^2 \rangle.$$

In particular, $B_Q(A)$ corresponds to an algebraic subset $Z \subset \mathbb{A}^2 \times \mathbb{P}^1$.

Remark 7. Let $\varphi: K[y_1, \ldots, y_m] \to K[x_1, \ldots, x_n]/I$ be a K-algebra homomorphism, induced by mapping $y_i \mapsto \overline{f}_i$, and let J be the ideal in $K[y_1, \ldots, y_m, x_1, \ldots, x_n]$ given by

$$J = IK[y_1, \ldots, y_m, x_1, \ldots, x_n] + \langle f_1 - y_1, \ldots, f_m - y_m \rangle.$$

Then $\operatorname{Ker}(\varphi) = J \cap K[y_1, \dots, y_m]$. In the example above, we can view φ as ring homomorphism from K[x, y, u, v] to $K[x, y, t] / \langle y^2 - x^3 - x^2 \rangle$.

Example 5.4. Let $A = K[x,y]/\langle x^2 + y^2 - z^2 \rangle$ and $Q = \langle x,y,z \rangle$. Then the map $\varphi : K[x,y,z,u,v,w] \to B_Q(A)$, induced by $u \mapsto xt$, $v \mapsto yt$, and $w \mapsto zt$ is a surjective ring homomorphism. Since $B_Q(A) \subset A[t] = K[t,x,y,z]/\langle x^2 + y^2 - z^2 \rangle$, we can view φ as a map from K[x,y,z,u,v,w] to $K[t,x,y,z]/\langle x^2 + y^2 - z^2 \rangle$. Then the kernel of φ can be computed by eliminating t from the ideal generated by $J = \langle u - xt, v - yt, w - zt, x^2 + y^2 - z^2 \rangle \subset K[t,x,y,z,u,v,w]$. We obtain

$$Ker(\varphi) = \langle u^2 + v^2 - w^2, yw - zv, xw - zu, xv - yu, xu + yv - zw, x^2 + y^2 - z^2 \rangle.$$

Lemma 5.3. (Artin-Rees) Let $\{M_n\}_{n\geq 0}$ be a stable Q-filtration of the finitely generated A-module M and $N\subset M$ a submodule, then $\{M_n\cap N\}_{n\geq 0}$ is a stable Q-filtration of N.

To prove the lemma, we need a criterion for stability. Let M be a finitely generated A-module and $\{M_n\}_{n\geq 0}$ be a Q-filtration. Let

$$B_{Q}(A) := A + tQ + t^{2}Q^{2} + t^{3}Q^{3} + \cdots$$

$$B_{Q}(M) := M + tQM + t^{2}Q^{2}M + t^{3}Q^{3}M + \cdots$$

$$\overline{M} := M + tM_{1} + t^{2}M_{2} + t^{3}M_{3} + \cdots$$

$$\overline{M}_{1} := M + tM_{1} + t^{2}QM_{1} + t^{3}Q^{2}M_{1} + \cdots$$

$$\overline{M}_{2} := M + tM_{1} + t^{2}M_{2} + t^{3}QM_{2} + \cdots$$

$$\overline{M}_{n} := M + M_{1}t + \cdots + M_{n-1}t^{n-1} + B_{Q}(A)M_{n}t^{n}$$

Lemma 5.4. (Criterion for stability). \overline{M} is a finitely generated $B_Q(A)$ -module if and only if $\{M_n\}_{n\geq 0}$ is Q-stable.

Proof. Since *A* is Noetherian and *M* is finitely generated, it follows that the submodules M_n , $n \ge 0$, are finitely generated. Let

$$\overline{M}_n := M + M_1 t + \dots + M_{n-1} t^{n-1} + B_Q(A) M_n t^n$$

$$= M + M_1 t + \dots + M_{n-1} t^{n-1} + M_n t^n + Q M_n t^{n+1} + Q^2 M_n t^{n+2} + \dots$$

then \overline{M}_n is a finitely generated $B_Q(A)$ -module, because $\bigoplus_{i=0}^n M_i$ is a finitely generated A-module. Moreover, $\overline{M}_n \subset \overline{M}_{n+1}$ for all $n \geq 0$ and $\bigcup_{n=0}^{\infty} \overline{M}_n = \overline{M}$.

By Proposition (5.1), $B_Q(A)$ is a Noetherian ring. This implies that \overline{M} is a finitely generated $B_Q(A)$ -module if and only if there exists a non-negative integer n_0 such that $\overline{M}_{n_0} = \overline{M}$. This is the case if and only if $M_{n_0+r} = Q^r M_{n_0}$ for all $r \ge 0$.

Corollary 4. Let A be a Noetherian ring, \mathfrak{p} be a prime ideal of A, and I be an ideal of A. For any map $\varphi: I \to A/\mathfrak{p}$, there exists a number d such that φ factors through $I/(\mathfrak{p}^d \cap I) \cong (\mathfrak{p}^d + I)/\mathfrak{p}^d$.

Proof. By Artin-Rees, $\{I \cap \mathfrak{p}^n\}_{n \geq 0}$ is a stable \mathfrak{p} -filtration. Therefore $I \cap \mathfrak{p}^d = \mathfrak{p}\left(I \cap \mathfrak{p}^{d-1}\right)$ for some $d \geq 1$. This implies $I \cap \mathfrak{p}^d \subset \operatorname{Ker}(\varphi)$.

Proposition 5.2. Let A be a ring, Q an ideal in A, and let

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

be a short exact sequence of A-modules. Then

$$0 \longrightarrow B_Q(M_1) \longrightarrow B_Q(M_2) \longrightarrow B_Q(M_3)$$

is exact.

Proof.

6 The Hilbert-Samuel Function

In the previous section, we defined Hilbert functions and Hilbert polynomials for graded modules over a Noetherian graded K-algebra. It turns out that we can define something analogous for modules over local Noetherian rings. Let A be a local Noetherian ring with maximal ideal \mathfrak{m} . We assume (for simplicity) that $K = A/\mathfrak{m} \subset A$. Moreover, let Q be an \mathfrak{m} -primary ideal and M a finitely generated A-module.

Lemma 6.1. Let $\{M_n\}_{n>0}$ be a stable Q-filtration of M and let

$$HS_{\{M_n\}_{n>0}}(k) := dim_K(M/M_k).$$

Moreover, suppose that Q is generated by r elements. Then

- 1. $HS_{\{M_n\}_{n>0}}(k) < \infty \text{ for all } k \geq 0;$
- 2. There exists a polynomial $HSP_{\{M_n\}_{n\geq 0}}(t) \in \mathbb{Q}[t]$ of degree at most r such that $HS_{\{M_n\}_{n\geq 0}}(k) = HSP_{\{M_n\}_{n\geq 0}}(k)$ for all sufficiently large k;
- 3. The degree of $HSP_{\{M_n\}_{n\geq 0}}$ and its leading coefficient do not depend on the choice of a stable Q-filtration $\{M_n\}_{n\geq 0}$. Proof.
- 1. Recall that $Gr_Q(A) = \bigoplus_{i \geq 0} Q^i/Q^{i+1}$ is a graded (A/Q)-algebra which is generated by r elements of degree 1. Now, let

$$\operatorname{Gr}_{\{M_n\}}(M) := \overline{M}/Q\overline{M} = \bigoplus_{i>0} M_i/M_{i+1}.$$

Since $\{M_n\}_{n\geq 0}$ is a stable Q-filtration, \overline{M} is a finitely generated $B_Q(A)$ -module. Thus, $\operatorname{Gr}_{\{M_n\}}(M)$ is a finitely generated $\operatorname{Gr}_Q(A)$ -module. Now as $QM_i \subset M_{i+1}$, the quotients M_i/M_{i+1} , $i\geq 0$, are annihilated by Q and, therefore, are finitely generated (A/Q)-modules, but A/Q is a finite dimensional K-vector space since Q is m-primary. Hence $\dim_K(M_i/M_{i+1}) < \infty$, and therefore

$$\dim_K(M/M_n)=\sum_{i=1}^n\dim_K(M_{i-1}/M_i)<\infty.$$

2. Note that $H_{\mathrm{Gr}_{\{M_n\}}(M)}(k) = \dim_K(M_k/M_{k+1})$. For sufficiently large k, $H_{\mathrm{Gr}_{\{M_n\}}(M)}(k) = P_{\mathrm{Gr}_{\{M_n\}}(M)}(k)$, and $P_{\mathrm{Gr}_{\{M_n\}}(M)}$ is a polynomial of degree at most r-1. Let

$$P_{Gr_{\{M_n\}}(M)}(k) = \sum_{i=0}^{r-1} a_i \binom{k}{i},$$

then we have

$$\begin{aligned} \operatorname{HS}_{\{M_n\}_{n\geq 0}}(k+1) - \operatorname{HS}_{\{M_n\}_{n\geq 0}}(k) &= \dim_K(M/M_{k+1}) - \dim_K(M/M_k) \\ &= \dim_K(M_k/M_{k+1}) \\ &= H_{\operatorname{Gr}_{\{M_n\}}(M)}(k) \\ &= P_{\operatorname{Gr}_{\{M_n\}}(M)}(k), \end{aligned}$$

for sufficiently large k. On the other hand

$$\sum_{i=1}^{r} a_{i-1} \binom{k+1}{i} - \sum_{i=1}^{r} a_{i-1} \binom{k}{i} = \sum_{i=0}^{r-1} a_{i} \binom{k}{i} = \mathrm{HS}_{\{M_n\}_{n \geq 0}}(k+1) - \mathrm{HS}_{\{M_n\}_{n \geq 0}}(k).$$

Hence $\operatorname{HS}_{\{M_n\}_{n\geq 0}}(k) - \sum_{i=1}^r a_{i-1}\binom{k}{i}$ is constant if k is sufficiently large. Let C be this constant and set $\operatorname{HSP}_{\{M_n\}_{n\geq 0}}(k) := \sum_{i=1}^r a_{i-1}\binom{k}{i} + C$. Then $\operatorname{HS}_{\{M_n\}_{n\geq 0}}(k) = \operatorname{HSP}_{\{M_n\}_{n\geq 0}}(k)$, a polynomial of degree at most r, for sufficiently large k.

3. Let $\{M'_n\}_{n\geq 0}$ be another stable Q-filtration of M, and choose k_0 such that $M_{k+k_0}\subset M'_k$ and $M'_{k+k_0}\subset M_k$ for all $k\geq 0$. This implies the inequalities $\mathrm{HS}_{\{M_n\}_{n\geq 0}}(k)\leq \mathrm{HS}_{\{M'_n\}_{n\geq 0}}(k+k_0)$ and $\mathrm{HS}_{\{M'_n\}_{n\geq 0}}(k)\leq \mathrm{HS}_{\{M_n\}_{n\geq 0}}(k+k_0)$ and, therefore

$$1 = \lim_{k \to \infty} \frac{\mathrm{HS}_{\{M_n\}}(k)}{\mathrm{HS}_{\{M'_n\}}(k)} = \lim_{k \to \infty} \frac{\mathrm{HSP}_{\{M_n\}_{n \ge 0}}(k)}{\mathrm{HSP}_{\{M'_n\}_{n \ge 0}}(k)}.$$

Definition 6.1. With the notation of Lemma (6.1) we define:

- 1. $HS_{M,Q} := HS_{\{Q^nM\}_{n>0}} = \dim_K(M/Q^nM)$ is called the **Hilbert-Samuel function** of M with respect to Q.
- 2. $HSP_{M,Q} := HSP_{\{Q^nM\}_{n\geq 0}}$ is called the **Hilbert-Samuel polynomial** of M with respect to Q;
- 3. Let $\mathrm{HSP}_{M,Q}(k) = \sum_{\nu=0}^d a_\nu k^\nu$ with $a_d \neq 0$. Then $\mathrm{mult}(M,Q) := d! a_d$ is called the **Hilbert-Samuel multiplicity** of M with respect to Q.
- 4. $mult(M) := mult(M, \mathfrak{m})$ is called the **Hilbert-Samuel multiplicity** of M.

Proposition 6.1. Let

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$$

be an exact sequence of finitely generated A-modules, and Q an m-primary ideal. Then

$$HSP_{M,O} = HSP_{M/N,O} + HSP_{N,O} - R$$
,

where R is a polynomial of degree strictly smaller than that of $HSP_{N,Q}$.

Proof. The exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$$

induces the exact sequence

$$0 \longrightarrow N/(Q^nM \cap N) \longrightarrow M/Q^nM \longrightarrow (M/N)/Q^n(M/N) \longrightarrow 0.$$

Therefore,

$$HSP_{M,Q} = HSP_{M/N,Q} + HSP_{\{Q^nM \cap N\}}.$$

The proof of Lemma (6.1) shows that, indeed,

$$HSP_{\{O^nM\cap N\}} = HSP_{N,Q} - R$$
,

where R is a polynomial of degree strictly smaller than that of $HSP_{N,Q}$.

In the proof of (Lemma (6.1), we actually proved more than just the claim. We can summarize the additional results as a comparison between the Hilbert-Samuel polynomial of M with respect to Q and the Hilbert polynomial of the graded $Gr_O(A)$ -module $Gr_O(M)$.

Corollary 5. Let (A, \mathfrak{m}) be a Noetherian local ring, $Q \subset A$ be an \mathfrak{m} -primary ideal, and M a finitely generated A-module. Then

- 1. $HSP_{M,Q}(k+1) HSP_{M,Q}(k) = P_{Gr_O(M)}(k)$.
- 2. If $P_{Gr_O(M)}(k) = \sum_{\nu=0}^{s-1} a_{\nu} {k \choose \nu}$, then

$$HSP_{M,Q}(k) = \sum_{\nu=1}^{s} a_{\nu-1} {k \choose \nu} + c$$

with $c = dim_K(M/Q^{\ell}M) - \sum_{\nu=1}^s a_{\nu-1}\binom{\ell}{\nu}$ for any sufficiently large ℓ . In particular, we obtain $mult(M,Q) = deg(Gr_O(M))$ and

$$deg(HSP_{M,Q}) = deg(P_{Gr_O(M)}) + 1.$$

Example 6.1. Let $A = K[x,y,z]_{\langle x,y,z\rangle}/\langle x^2+y^3+z^4,xy+xz+z^3\rangle$. A standard basis for $\langle x^2+y^3+z^4,xy+xz+z^3\rangle$ with respect to ds order is given by

$$f_1 = x^2 + y^3 + z^4$$

$$f_2 = xy + xz + z^3$$

$$f_3 = y^4 + y^3z - xz^3 + yz^4 + z^5$$

Therefore $Gr_{\mathfrak{m}}(A) \cong K[x,y,z]/\langle x^2,xy+xz,y^4+y^3z-xz^3\rangle$. A free resolution K[x,y,z] of $Gr_{\mathfrak{m}}(A)$ is given by

$$A(-3) \oplus A(-5) \xrightarrow{\begin{pmatrix} x & y^3 \\ -y-z & -z^3 \\ 0 & -x \end{pmatrix}} A(-2) \oplus A(-2) \oplus A(-4) \xrightarrow{\begin{pmatrix} xy+xz & x^2 & y^4+y^3z-xz^3 \end{pmatrix}} A \xrightarrow{A/I}$$

$$Gr_{\mathfrak{m}}(A) \cong K[x,y,z]/\langle x^2, xy + xz, y^4 + y^3z - xz^3 \rangle$$

Therefore by Proposition (2.1), we conclude that

$$HP_{Gr_{\mathfrak{m}}(A)}(t) = \frac{1 - (t^2 + t^2 + t^4) + (t^3 + t^5)}{(1 - t)^3}$$
$$= \frac{1 + 2t + t^2 + t^3}{1 - t}.$$

In particular, $\deg(\operatorname{Gr}_{\mathfrak{m}}(A))=5$ and $\deg(P_{\operatorname{Gr}_{\mathfrak{m}}(A)})=0$. Therefore $\operatorname{mult}(A,\mathfrak{m})=5$ and $\deg(\operatorname{HSP}_{M,Q})=1$. Finally, we list the first few graded pieces of $\operatorname{Gr}_{\mathfrak{m}}(A)$:

$$A/\mathfrak{m} = K$$

$$\mathfrak{m}/\mathfrak{m}^2 = Kx + Ky + Kz$$

$$\mathfrak{m}^2/\mathfrak{m}^3 = Kxz + Ky^2 + Kyz + Kz^2$$

$$\mathfrak{m}^3/\mathfrak{m}^4 = Kxz^2 + Ky^3 + Ky^2z + Kyz^2 + Kz^3$$

$$\mathfrak{m}^4/\mathfrak{m}^5 = Kxz^3 + Ky^3z + Ky^2z^2 + Kyz^3 + Kz^4$$

$$\mathfrak{m}^5/\mathfrak{m}^6 = Kxz^4 + Ky^3z^2 + Ky^2z^3 + Kyz^4 + Kz^5$$
:

7 Characterization of the Dimension of Local Rings

Proposition 7.1. Let A be a Noetherian local ring and M a finitely generated A-module such that $Ann_A(M) = 0$. Then

$$deg(HSP_{M,\mathfrak{m}}) = deg(HSP_{A,\mathfrak{m}}).$$

$$\square$$

Let A be a Noetherian local ring, \mathfrak{m} its maximal ideal and assume $k = A/\mathfrak{m} \subset A$. We shall prove that the dimension of a local ring is equal to the degree of the Hilbert-Samuel polynomial and equal to the least number of generators of an \mathfrak{m} -primary ideal.

Definition 7.1. We introduce the following non-negative integers:

- $\delta(A)$:= the minimal number of generators of an m-primary ideal of A,
- $d(A) := \deg(HSP_{Am}),$
- $\operatorname{edim}(A) := \operatorname{the} \operatorname{\mathbf{embedding}} \operatorname{\mathbf{dimension}} \operatorname{of} A$, defined as the minimal number of generators for \mathfrak{m} . Hence, $\operatorname{\mathbf{edim}}(A) = \operatorname{\mathbf{dim}}_K(\mathfrak{m}/\mathfrak{m}^2)$, by Nakayama's Lemma.

Theorem 7.1. Let (A, \mathfrak{m}) be a Noetherian local ring. Then, with the above notation, $\delta(A) = d(A) = \dim(A)$.

We first prove the following proposition:

Proposition 7.2. Let (A, \mathfrak{m}) be a Noetherian local ring, let M be a finitely generated A-module, and let Q be an \mathfrak{m} -primary ideal. Then

- 1. $deg(HSP_{M,O}) = deg(HSP_{M,m})$
- 2. Moreover, if $x \in A$ is a nonzerodivisor for M, then $deg(HSP_{M/xM,O}) \leq deg(HSP_{M,O}) 1$.

Proof.

- 1. Suppose $\mathfrak{m} = \langle x_1, \ldots, x_r \rangle$. Choose s such that $\mathfrak{m} \supset Q \supset \mathfrak{m}^s$. Then $\mathfrak{m}^k \supset Q^k \supset \mathfrak{m}^{sk}$ for all k implies $\mathrm{HSP}_{M,\mathfrak{m}}(k) \leq \mathrm{HSP}_{M,Q}(k) \leq \mathrm{HSP}_{M,\mathfrak{m}}(sk)$ for sufficiently large k. But this is only possible if $\mathrm{deg}(\mathrm{HSP}_{M,Q}) = \mathrm{deg}(\mathrm{HSP}_{M,\mathfrak{m}})$.
- 2. Apply Proposition (6.1) to the exact sequence

$$0 \longrightarrow M \stackrel{\cdot x}{\longrightarrow} M \longrightarrow M/xM \longrightarrow 0$$

and conclude that $deg(HSP_{M/xM,O}) \leq deg(HSP_{M,O}) - 1$.

Definition 7.2. Let (A, \mathfrak{m}) be a Noetherian local ring and let $d = \dim(A)$, $\{x_1, \ldots, x_d\}$ is called a **system of parameters** of A, if $\langle x_1, \ldots, x_d \rangle$ is \mathfrak{m} -primary. If moreover, $\langle x_1, \ldots, x_d \rangle = \mathfrak{m}$, then it is called a **regular system of parameters**.

Example 7.1. Let > be a local degree ordering, $A = K[x_1, \ldots, x_r]$, and let $I \subset \langle x \rangle = \langle x_1, \ldots, x_r \rangle \subset K[x]$. Then since

$$(A/I)/\mathfrak{m}^{k}(A/I) \cong (A/I)/(\mathfrak{m}^{k}/I \cap \mathfrak{m}^{k})$$

$$\cong (A/I)/((I+\mathfrak{m}^{k})/I)$$

$$\cong A/(I+\mathfrak{m}^{k})$$

$$= A/(I+\langle x \rangle^{k}),$$

we see that $HS_{A/I,m}(k) = \dim_K(A/(I + \langle x \rangle^k))$.

Proposition 7.3. Let > be a local degree ordering on $K[x] = K[x_1, ..., x_r]$, and let $I \subset \langle x \rangle = \langle x_1, ..., x_r \rangle \subset K[x]$ be an ideal. Then

$$HS_{K[x]_{\langle x \rangle}/I,\langle x \rangle} = HS_{K[x]_{\langle x \rangle}/L(I),\langle x \rangle}.$$

Proof. We have to prove that

$$\dim_K K[x]_{\langle x \rangle} / (I + \langle x \rangle^k)_{\langle x \rangle} = \dim_K K[x]_{\langle x \rangle} / (L(I) + \langle x \rangle^k)_{\langle x \rangle}.$$

Clearly, for each $k \ge 0$, the set $S := \{x^\alpha \notin L(I) \mid \deg(x^\alpha) < k\}$ represents a K-basis of $K[x]_{\langle x \rangle} / (L(I) + \langle x \rangle^k)_{\langle x \rangle} \cong (K[x]/(L(I) + \langle x \rangle^k))_{\langle x \rangle} \cong K[x]/(L(I) + \langle x \rangle^k)$. On the other hand, using reduction by a standard basis of I, we can write each $f \in K[x]$ as

$$f = g + \sum_{x^{\alpha} \in S} c_{\alpha} x^{\alpha} \bmod \langle x \rangle^{k}$$

for some $g \in I$ and uniquely determined $c_{\alpha} \in K$. This is possible without multiplying f by a unit, because we are working modulo $\langle x \rangle^k$. Therefore, S also represents a K-basis of $K[x]/(I+\langle x \rangle^k) \cong (K[x]/(L(I)+\langle x \rangle^k))_{\langle x \rangle} \cong K[x]_{\langle x \rangle}/(L(I)+\langle x \rangle^k)_{\langle x \rangle}$.

Example 7.2. Let $A = K[x, y, z]_{\langle x, y, z \rangle}$, $\mathfrak{m} = \langle x, y, z \rangle$, $I = \langle y^2 \rangle$, and let $J = \langle y^2, xyz + y^4 \rangle$. The table below gives the first few values various Hilbert-Samuel functions:

k	$HS_{A,\mathfrak{m}}(k)$	$HS_{A/I,\mathfrak{m}}(k)$	$HS_{A/J,\mathfrak{m}}(k)$
1	1	1	1
2	4	4	4
3	10	10 - 1 = 9	10 - 1 = 9
4	20	20 - 3 = 17	20 - 3 - 1 = 16
5	35	35 - 6 = 29	35 - 6 - 3 + 1 = 27
6	56	56 - 10 = 46	56 - 10 - 6 + 3 = 43

Example 7.3. Let $A = K[x,y,z]_{\langle x,y,z\rangle}/\langle z^2-z,yz-y\rangle$. The table below gives the first few values various Hilbert-Samuel functions:

k	$HS_{A,\mathfrak{m}}(k)$	$HS_{A/I,\mathfrak{m}}(k)$	$HS_{A/J,\mathfrak{m}}(k)$
1	1	1	1
2	4	4	4
3	10	10 - 1 = 9	10 - 1 = 9
4	20	20 - 3 = 17	20 - 3 - 1 = 16
5	35	35 - 6 = 29	35 - 6 - 3 + 1 = 27
6	56	56 - 10 = 46	56 - 10 - 6 + 3 = 43

Example 7.4. Let $A = K[x,y]_{\langle x,y \rangle} / \langle y^2 - x^3 - x^2 \rangle$ and $\mathfrak{m} = \langle x,y \rangle$. Then

$$\mathfrak{m} = \langle x, y \rangle$$

$$\mathfrak{m}^2 = \langle x^2, xy, y^2 \rangle$$

$$\mathfrak{m}^3 = \langle x^2 - y^2, xy^2, y^3 \rangle$$

$$\mathfrak{m}^4 = \langle x^2 - y^2 + x^3, xy^3, y^4 \rangle$$
.

The ring homomorphism $\varphi: K[s,t] \to Gr_{\mathfrak{m}}(A)$ given by $s \mapsto x$ and $t \mapsto y$ has kernel $\langle s^2 - t^2 \rangle$. Therefore we have an isomorphism $Gr_{\mathfrak{m}}(A) \cong K[s,t]/\langle s^2 - t^2 \rangle$.

Example 7.5. Let A be the graded ring K[x,y,z] with respect to weights w=(1,1,1) and let I be the ideal in A given by $I=\langle x^2,xy+xz,y^4+y^3z-xz^3\rangle$. Since I is a homogeneous ideal of A, A/I is a graded A-module. A free resolution of A/I is given by

$$A(-3) \oplus A(-5) \xrightarrow{\begin{pmatrix} x & y^3 \\ -y-z & -z^3 \\ 0 & -x \end{pmatrix}} A(-2) \oplus A(-2) \oplus A(-4) \xrightarrow{\begin{pmatrix} xy+xz & x^2 & y^4+y^3z-xz^3 \end{pmatrix}} A \xrightarrow{} A/I$$

Therefore by Proposition (2.1), we conclude that

$$HP_{A/I}(t) = \frac{1 - (t^2 + t^2 + t^4) + (t^3 + t^5)}{(1 - t)^3}$$
$$= \frac{1 + 2t + t^2 + t^3}{1 - t}.$$

The graded parts of A/I starts out as

$$\vdots$$

$$(A/I)_0 = K$$

$$(A/I)_1 = K\bar{x} + K\bar{y} + K\bar{z}$$

$$(A/I)_2 = K\bar{x}^2 + K\bar{x}\bar{y} + K\bar{y}^2 + K\bar{z}^2$$

$$(A/I)_3 = K\bar{x}^3 + K\bar{x}^2\bar{y} + K\bar{x}\bar{y}^2 + K\bar{y}^3 + K\bar{z}^3$$

$$\vdots$$

Notice that

$$(A/I)_n = (A/\langle xz, yz\rangle)_n$$

$$= (A/(\langle z\rangle \cap \langle x, y\rangle))_n$$

$$\cong ((A/\langle z\rangle) \oplus (A/\langle x, y\rangle))_n$$

$$\cong (A/\langle z\rangle)_n \oplus (A/\langle x, y\rangle)_n$$