Homework 13-14

(Due time: 24:00, May. 15, 2020)

- 1. Calculate $\dot{\theta}_{12}$, $\dot{\theta}_{23}$, t_1 , t_2 , and t_3 for a two-segment linear function with parabolic blends (LFPB). For this joint, $\theta_1 = 5.0^{\circ}$, $\theta_2 = 15.0^{\circ}$, $\theta_3 = 40.0^{\circ}$. Assume that $t_{d12} = t_{d23} = 1.0$ seconds and that the default acceleration to use during blends is 80 degrees/second². Use Matlab to sketch plots of position, velocity, and acceleration of θ . The derivation, Matlab code, and result graphs are required.
- 2. Use Matlab to sketch graphs of position, velocity, and acceleration for a two-segment spline where each segment is a cubic. Sketch them for a joint where $\theta_0 = 5.0^{\circ}$ for the initial point, $\theta_v = 15.0^{\circ}$ is a via point, and $\theta_g = -10.0^{\circ}$ is the goal point. Assume that each segment has a duration of 2.0 seconds and that the velocity at the via point is to be 0.0 degrees/second. The derivation, Matlab code, and result graphs are required.
- 3. A single cubic trajectory is given by

$$\theta(t) = 10 + 90t^2 - 60t^3$$

and is used over the time interval from t = 0 to t = 1. What are the starting and final positions, velocities, and accelerations?

- 4. It is desired for the tool point to follow a linear trajectory with parabolic blends that starts at $P_1 = [0.0 \ 0.0]^T$ and ends at $P_3 = [3.0 \ 3.0]^T$, with $P_2 = [2.0 \ 1.0]^T$ as a via point. The desired segment durations are $t_{d12} = t_{d23} = 1$ and the acceleration magnitudes are $\ddot{x} = \ddot{y} = 6$. Plot the x-y coordinates of this trajectory. The derivation, Matlab code, and result graphs are required.
- 5. For the two-link planar manipulator shown below.

Model each link as a homogenous rectangular bar with mass $m_1=m_2=12~Kg$, length $l_1=l_2=1.0~m$, $r_1=r_2=0.5~m$ and moment of inertia tensor

$$I_1 = I_2 = \begin{bmatrix} 0.0125 & 0 & 0\\ 0 & 1.0025 & 0\\ 0 & 0 & 1.01 \end{bmatrix}$$

relative to a frame attached at the center of mass of the link and aligned with the principle axes of the bar.

- (a) Derive the dynamic equations of the manipulator.
- (b) Write a Matlab program to compute the time history of torques needed to move the arm along the trajectory of Problem 1&2 and make the plots.
- (c) Do the position control simulation in joint space of the manipulator with Matlab&Simulink to move the arm along the trajectory of Problem 1&2, while the maximum joint torque $\tau_{1max} = \tau_{2max} = 20 \, N/m$, with the controllers the following three controller. Try to obtain the best performance of the tracking problem, provide the chosen control parameters, K_p and K_v . The torque, position, velocity history graphs are required. Try to compute position error history for both joint angles. Discuss the relationship between the joint position error and the control parameters.
 - i) Computed torque control.
 - ii) PD control
 - iii) Augmented PD control