

Defect Prediction on Production lines

École d'ingénieurs

Télécom Physique Strasbourg

AIT BACHIR R., ALLEMAND F. FLORET A., JARDOT C.

TABLE OF CONTENTS

- Presentation of the challenge
- Data analysis
- Data Preparation
- Model Selection
- Model Fine Tuning
- Conclusion

PRESENTATION OF THE CHALLENGE

STARTER ENGINE

Data description

In-Depth Analysis

Feature "insertion cap" contains more than 50 % missing values

Not a relevant feature?

In-Depth Analysis

<u>Projection in reduced spaced</u>

In-Depth Analysis

Resume

Solve the problem of unbalanced data

Deal with insertion cap feature

Found the best ML methods to fit a model to the data

Missing Values

id	0
angle_1	0
snap_ring_peak_force	0
angle_2	0
rodage_i	0
<pre>snap_ring_final_stroke</pre>	0
vissage_m8_torque	0
capuchon_insertion	18627
rodage_u	0
torque 1	0
start_line_peak_force	0
vissage_m8_angle	0
<pre>snap_ring_midpoint_force</pre>	0
torque_2	0

id	0
angle_1	0
snap_ring_peak_force	0
angle_2	Θ
rodage_i	0
snap_ring_final_stroke	0
vissage_m8_torque	0
capuchon insertion	110
rodage_u	0
torque_1	0
start_line_peak_force	0
vissage_m8_angle	Θ
snap_ring_midpoint_force	0
torque_2	0

Accuracy (cv 1)	0.990728669
Accuracy (cv 2)	0.991018398
Accuracy (cv 3)	0.991018398
Accuracy (cv 4)	0.991018398
Accuracy (cv 5)	0.991163262
Average Accuray	0.990989425
Accuracy Std. Deviation	0.000141938

Precision (cv 1)	0.000000000
Precision (cv 2)	0.000000000
Precision (cv 3)	0.000000000
Precision (cv 4)	0.000000000
Precision (cv 5)	0.000000000
Average Precision	0.000000000
Precision Std. Deviation	0.000000000
Recall (cv 1)	0.000000000
Recall (cv 2)	0.000000000
Recall (cv 3)	0.000000000
Recall (cv 4)	0.000000000
Recall (cv 5)	0.000000000
Average Recall	0.000000000
Recall Std. Deviation	0.000000000
F1 (cv 1)	0.000000000
F1 (cv 2)	0.000000000
F1 (cv 3)	0.000000000
F1 (cv 4)	0.000000000
F1 (cv 5)	0.000000000
Average F1	0.000000000
F1 Std. Deviation	0.000000000

KNN - Raw dataset

KNN - Balanced dataset (valid items removed)

Unmodified Dataset

Balanced dataset (valid items removed)

MODEL SELECTION

Two types of algorithms:

Supervised learning

- \rightarrow k-Nearest Neighbours
- \rightarrow Naïve Bayes Classifier
- \rightarrow Random Forest
- \rightarrow Multilayer Perceptron

Unsupervised learning - novelty detection

 \rightarrow One-Class SVM

MODEL SELECTION

Metrics used to evaluate models:

- Precision
- · Recall
- \rightarrow F1-Score
- Area under ROC curve (metric requested by Valeo)

 \rightarrow Model Chosen: Naive Bayes Classifier for its relatively high recall and area under ROC curve

MODEL FINE TUNING

Model Chosen : the Naive Bayesian classifier

-> Using Grid Search
Var_smoothing ≈ 1e-7

Accuracy (cv 1)	0.643343474
Accuracy (cv 2)	0.667390989
Accuracy (cv 3)	0.650441837
Accuracy (cv 4)	0.679849341
Accuracy (cv 5)	0.687816891
Average Accuray	0.665768506
Accuracy Std. Deviation	0.016880892

CONCLUSION

Results

- \rightarrow Classification is a difficult task
- \rightarrow Good understanding of the situation
- \rightarrow Critical thinking
- → Testing

How can we get better results?

- \rightarrow Learn more about the dataset with a specialist from Valeo
- \rightarrow By getting even more data to train deeper models
- \rightarrow Changing metrics (F1-score depends on class imbalance)

