Application	HTTP, FTP, SMTP
Transport	TCP, UDP
Internetwork	Datagrams
Link	MAC, Frames
Physical	Ethernet, WiFi

Glossary

MTU Maximum Transmission Unit

- Calculated as the smallest MTU of all links in the path.
- If a packet is larger than the MTU, it is fragmented.

ECN Explicit Congestion Notification

- A bit in the IP header that is set by the router to indicate congestion.
- Related to TCP's congestion control.

Subnetting Dividing a network into smaller networks.

- Done by borrowing bits from the host portion of the address.
- Done to reduce broadcast traffic and improve security.

Supernetting Combining multiple networks into a single network.

- Done by borrowing bits from the network portion of the address.
- Done to reduce routing table size.

Physical

CAT Category (twisted pair) cable for Ethernet.

Coax Coaxial cable for Ethernet.

Link

MAC Media Access Control

- Unique identifier for a network interface.
- ullet 48 bits, often represented as 6 groups of 2 hexadecimal digits.
- First 24 bits are the OUI (Organizationally Unique Identifier).
- Example: 00:1A:2B:3C:4D:5E

ARP Address Resolution Protocol

- Who has IP_B ? Tell IP_A at MAC_A .
 - 1. Any listening devices may receive this request and update their local cache of IP_A 's MAC_A .
 - 2. If the receiving machine is not IP_B , it will stop processing the request.
 - 3. Otherwise, it will send an ARP reply to MAC_A . Since this reply is not broadcasted, no other machines can update their cache.
- Typical cache timeout of 20 minutes.
- \bullet Gratuitous ARP is used to update caches.
 - 1. A machine sends an ARP request for its own IP.
 - 2. All machines update their cache with the new MAC.
 - $3.\,$ This is useful for updating caches after a machine has changed its MAC.

Switch A device that forwards packets based on MAC addresses. (Layer 2)

Hub A device that broadcasts packets to all connected devices. (Layer 1)

Link

Transmission

Direct and Indirect Deliver Direct is on the same network, indirect is on a different network.

Unicast, Broadcast, Multicast Unicast is one-to-one, broadcast is one-to-all, multicast is one-to-many.

Switching Forwarding packets based on MAC addresses.

Spanning Tree Protocol Prevents loops in a network.

Internetwork

IP Datagrams

Fragmentation

- Done by routers when the packet is too large for the next hop.
- DF (Don't Fragment) bit in the IP header can be set to prevent fragmentation.
- MF (More Fragments) bit is set on all fragments except the last.
- Fragment Offset field is used to reassemble the fragments.
- \bullet Identification field is used to identify the original packet.
- \bullet Total Length field is the size of the fragment.
- \bullet Header Checksum is recalculated for each fragment.

\mathbf{UDP}

- Connectionless, unreliable.
- Includes psuedo-header in checksum calculation.
- ·

- Stream Orientation.
- Virtual Circuit.

TCP

- $\bullet\,$ Buffered, unstructured stream.
- Full duplex.

Schemas

Ethernet Frame

Preamble	Destination Address	Source Address	Type	Frame Data	CRC
8 octets	6 octets	6 octets	2	46 - 1500 octets	4 octets

IPv4 Datagram

0		8	16			31
VERS	HLEN	SERVICE TYPE		TOTAL I	LENGTH	
IDENTIFICATION		FLAGS	FRAGM	IENT OFFSET		
TTL PROTOCOL			HEADER C	HECKSUM		
	SOURCE IP					
DESTINATION IP						
	IP OPTIONS (IF ANY) PADDING					
	DATA					

UDP Header

0	16	31
SOURCE PORT	DESTINATION PORT	
LENGTH	CHECKSUM (or 0)	
DAT	"A	

UDP Psuedo Header

0	8	16	31
SOURCE IP			
DESTINATION IP			
Zero PROTOCOL UDP LENGTH			

Addressing

Classful Addressing

Class A	OXXXXXXX	/8
Class B	10XXXXXX	/16
Class C	110XXXXX	/24
Class D	1110XXXX	/31
Class E	1111XXXX	/32

^{&#}x27;This' network' has host bits set to 0. **Broadcast** has host bits set to 1.

ARP

all 0s This host

all 0s	host	Host on this network

all 1s	Limited broadcast	(local net)

net all 1s	Directed broadcast for net
------------	----------------------------

127 anything (often 1) Loopback