Collection of Results

April 5, 2022

1 Setup

- Sampling periods: 1972-07-01 (i.e. $\min(t-L)$) to 2020-08-01 (i.e. $\max t$). Max lag L is set to 60 months.
- 43 single-sorted rank-weighted portfolios. The resulting tensor in the full-sample is of dimension (519, 60, 43).
- Tensor X contains excess returns (simple, not log, return) $R \in \mathbb{R}^{T \times L \times C}$. X is not return in excess of the lag-one return.
- Full-sample setup
 - Run PARAFAC on 3D tensor $X \in \mathbb{R}^{T \times L \times C}$, which is decomposed into factors $F \in \mathbb{R}^{T \times K}$, lag loadings $W \in \mathbb{R}^{L \times K}$, character loadings $B \in \mathbb{R}^{C \times K}$, and scalers $S \in \mathbb{R}^{K}$. K is the pre-specified number of factors. X is not centered.
 - Unconstrained specification: the first column of W is not constrained to be constant.
 - Normalize columns of F, W, and B to have norm 1. Normalize each column in F to have positive time-series mean. Move sign and scaling to S. Reorder factors by magnitude of the corresponding scaling factors in S.

• Out-of-sample setup

- Estimate a model using data in a rolling window of size 60 or 120 months. Results are calculated in the common out-of-sample period 1987-06-01 to 2020-08-01.
- For the tensor model, obtain loadings W and B and scalars S in the rolling window. Regress X_{t+1} at the next period on W, B, and S to get factors F_{t+1} for the out-of-sample period. Combine factors in F_{t+1} using mean-variance weights on F.
- For the PCA model, obtain loadings L in the rolling window. Regress X_{t+1} on L to get factors F_{t+1} .
- For the one-lag PCA model, for which only portfolio returns based on the most recent characteristic values are included, factors are obtained in the same way as PCA.
- For all of the competing models, calculate out-of-sample SR based on the mean-variance combination of factors. We also record fitted \hat{X}_{t+1} to evaluate out-of-sample fitting quality.
- Full-sample multi-period return setup
 - -X is converted into log return

- Horizons up to 3 years. Rolling window of size 60 or 120 months.
- Models:
 - * Tensor: See Markus' notes for the setup.
 - * Model-free: For each horizon, calculate overlapping multi-period returns for each of the 43 portfolios. Use mean-variance weights to combine these multi-period returns. Newey-west covariance estimator is used.
 - * PCA: For each horizon, use PCA to extract the first K factors from overlapping multi-period return of the 43 portfolios. Use mean-variance weights to combine these factors. Newey-west covariance estimator is used.
- Out-of-sample multi-period return setup
 - X is converted into log return
 - Horizons up to 3 years. Rolling window of size 60 or 120 months. Results are calculated in the common out-of-sample period 1987-06-01 to 2017-09-01.
 - Tensor: Fit a tensor model in the rolling window. For horizon h and factor k, calculate the approximate multi-period return starting at time t as $FW_t = F_{k,t} \sum_{s=1}^h W_{k,s}$ in the rolling window. For each horizon, calculate the mean-variance weight for combining these multi-period factors. To get out-of-sample results, for each horizon h, calculate one-period out-of-sample factor F_{t+h} by regressing X_{t+h} on loadings W and B and scalars S estimated in the rolling window. Then, calculate out-of-sample multi-period returns as $\sum_{s=1}^h F_{k,t+s}W_{k,s}$ and use mean-variance weights to combine them.
 - Model-free: For each horizon h, calculate multi-period portfolio returns in the rolling window as $\sum_{s=1}^{h} X_{t+s,s}$. $X_{t+s,s}$ is the one-period return at t+s using characteristic values with lag s. For horizon h, calculate mean-variance weights for combining multi-period returns. Newey-west covariance estimator is used. Then, calculate out-of-sample h-period return starting at the first out-of-sample period. For each h separately, combine multi-period returns using the mean-variance weights estimated in the rolling window.
 - PCA: For horizon h, use PCA to extract the first K factors from multi-period portfolio returns as defined above. For each out-of-sample period following the rolling window, get factors F by regressing multi-period returns on PCA loadings. Use mean-variance weights to combine these PCA factors out-of-sample. Newey-west covariance estimator is used.

2 Collection of results

- Evaluation (in-sample):
 - SR: Figure 40
 - Fitting RMSE (time, lag, and portfolio dimensions): Figures 41, 42, 43
 - Reconstruction error as a function of the number of factors for PCA and the tensor model: Figure 39
 - Averaged alpha and unexplained variance (XS- α and σ_{ϵ} as in Markus' notes)
 - * Normalized averaged alpha XS- α : Figure 44
 - * Averaged alpha for the lag dimension: Figures 47 and 48

- * Averaged alpha for the portfolio dimension: Figures 45 and 46
- * Unexplained variance: Figure 49
- Term structure of (fitted) mean returns: Figures 51 to 55 for fitted return. Figure 50 for mean returns (model free).
- Term structure of alpha: Figures 56 to 60
- Decomposition of alpha into stale and dynamic components: Figures 61 to 65 for the stale component. Figures 66 to 70 for the dynamic component.
- Evaluation (out-of-sample):
 - SR: Figures 4 (window size: 60 months) and 5 (window size: 120 months)
 - Averaged alpha and unexplained variance (XS- α and σ_{ϵ} as in Markus' notes)
 - * Normalized averaged alpha XS- α : Figure 6
 - * Averaged alpha for the lag dimension: Figures 12 and 14
 - * Averaged alpha for the portfolio dimension: Figures 8 and 10
 - * Unexplained variance: Figure 16
 - Term structure of (fitted) mean returns: Figures 19 to 23 for fitted return. Figure 18 for mean returns (model free).
 - Term structure of alpha: Figures 24 to 28
 - Term structure of CAPM alpha: Figures 29 to 33
- Multi-period evaluation (in-sample and out-of-sample): SR as a function of horizon and number of factors: Figures 2 and 1
- Illustrations for the tensor model (in-sample, up to 20 factors):
 - Plots for the tensor components
 - * Time pattern: Figure 34
 - * Portfolio pattern: Figure 36
 - * Lag pattern: Figures 37 and 37
 - Cumulative excess returns of factors: Figure 35
- Illustration for PCA (in-sample):
 - PCA loadings: Figure 3

List of Figures

1	Out-of-sample SR of multi-period returns	6
2	In-sample SR of multi-period returns	7
3	PCA loadings	8
4	Out-of-sample SR; Window size: 60 months	9
5	Out-of-sample SR; Window size: 120 months	9
6	Normalized averaged alpha (OOS); Window size: 60 months	10
7	Normalized averaged alpha (OOS); Window size: 120 months	10
8	Cross-sectional averaged alpha for portfolios (OOS); Tensor model; Window size: 60	
	months	11
9	Cross-sectional averaged alpha for portfolios (OOS); Tensor model; Window size:	
	120 months	11
10	Cross-sectional averaged alpha for portfolios (OOS); PCA model; Window size: 60	
	months	12
11	Cross-sectional averaged alpha for portfolios (OOS); PCA model; Window size: 120	
	months	12
12	Averaged alpha for the lag dimension (OOS); Tensor model; Window size: 60 months	13
13	Averaged alpha for the lag dimension (OOS); Tensor model; Window size: 120 months	13
14	Averaged alpha for the lag dimension (OOS); PCA; Window size: 60 months	13
15	Averaged alpha for the lag dimension (OOS); PCA; Window size: 120 months	14
16	Normalized unexplained variance σ_{ϵ} (OOS): Window size: 60 months	14
17	Normalized unexplained variance σ_{ϵ} (OOS): Window size: 120 months	15
18	Term structure of mean returns (OOS)	15
19	Term structure of fitted mean returns with rank 1 (OOS); Window size: 60 months .	16
20	Term structure of fitted mean returns with rank 3 (OOS); Window size: 60 months.	17
21	Term structure of fitted mean returns with rank 5 (OOS); Window size: 60 months.	18
22	Term structure of fitted mean returns with rank 10 (OOS); Window size: 60 months	19
23	Term structure of fitted mean returns with rank 20 (OOS); Window size: 60 months	20
24	Term structure of alpha with rank 1 (OOS); Window size: 60 months	21
25	Term structure of alpha with rank 3 (OOS); Window size: 60 months	22
26	Term structure of alpha with rank 5 (OOS); Window size: 60 months	23
27	Term structure of alpha with rank 10 (OOS); Window size: 60 months	24
28	Term structure of alpha with rank 20 (OOS); Window size: 60 months	25
29	Term structure of CAPM alpha with rank 1 (OOS); Window size: 60 months	26
30	Term structure of CAPM alpha with rank 3 (OOS); Window size: 60 months	27
31	Term structure of CAPM alpha with rank 5 (OOS); Window size: 60 months	28
32	Term structure of CAPM alpha with rank 10 (OOS); Window size: 60 months	29
33	Term structure of CAPM alpha with rank 20 (OOS); Window size: 60 months	30
34	Time pattern	31
35	Cumulative excess returns of factors	32
36	Portfolio pattern	33
37	Lag pattern	34
38	Lag pattern (line plot)	35
39	Reconstruction error with refit as a function of rank	36
40	In-sample SR	36
41	RMSE of time pattern fitting	37
42	RMSE of lag pattern fitting	38

43	RMSE of portfolio pattern fitting	39
44	Normalized averaged alpha	39
45	Cross-sectional averaged alpha for portfolios; Tensor	40
46	Cross-sectional averaged alpha for portfolios; PCA	40
47	Averaged alpha for the lag dimension; Tensor	40
48	Averaged alpha for the lag dimension; PCA	41
49	Normalized unexplained variance σ_{ϵ}	
50	Term structure of mean returns	42
51	Term structure of fitted mean returns with rank 1	43
52	Term structure of fitted mean returns with rank 3	44
53	Term structure of fitted mean returns with rank 5	45
54	Term structure of fitted mean returns with rank 10	46
55	Term structure of fitted mean returns with rank 20	47
56	Term structure of alpha with rank 1	48
57	Term structure of alpha with rank 3	49
58	Term structure of alpha with rank 5	50
59	Term structure of alpha with rank 10	51
60	Term structure of alpha with rank 20	52
61	Term structure of alpha (stale) with rank 1	53
62	Term structure of alpha (stale) with rank 3	54
63	Term structure of alpha (stale) with rank 5	55
64	Term structure of alpha (stale) with rank 10	56
65	Term structure of alpha (stale) with rank 20	57
66	Term structure of alpha (dynamic) with rank 1	58
67	Term structure of alpha (dynamic) with rank 3	59
68	Term structure of alpha (dynamic) with rank 5	60
69	Term structure of alpha (dynamic) with rank 10	61
70	Term structure of alpha (dynamic) with rank 20	62

Figure 1: Out-of-sample SR of multi-period returns

OOS period: 1987-06-01 to 2017-09-01; Window size: 60 Tensor PCA 0.4 0.4 K=1 K=1 K=3 K=3 K=5 K=5 0.3 0.3 K=10 K=10 K=20 K=20 ···· Model-Free ····· Model-Free 0.2 0.2 1-Month SR 1-Month SR 0.1 0.1 0.0 0.0 -0.1 -0.1 20 Horizon Ó 10 15 25 30 35 10 15 20 25 30 35 Horizon OOS period: 1987-06-01 to 2017-09-01; Window size: 120 Tensor PCA 0.4 0.4 K=1 K=1 K=3 K=3 K=5 K=5 0.3 0.3 - K=10 K=10 K=20 K=20 Model-Free Model-Free 0.2 0.2 1-Month SR 0.1 0.1 0.0 0.0 -0.1 -0.1 20 Horizon 10 15 25 30 35 10 20 Horizon 25 35 30

Figure 2: In-sample SR of multi-period returns

Figure 4: Out-of-sample SR; Window size: 60 months

Figure 5: Out-of-sample SR; Window size: 120 months

Figure 6: Normalized averaged alpha (OOS); Window size: 60 months

Figure 7: Normalized averaged alpha (OOS); Window size: 120 months

Figure 8: Cross-sectional averaged alpha for portfolios (OOS); Tensor model; Window size: 60 months

Figure 9: Cross-sectional averaged alpha for portfolios (OOS); Tensor model; Window size: 120 months

Figure 10: Cross-sectional averaged alpha for portfolios (OOS); PCA model; Window size: 60 months

Figure 11: Cross-sectional averaged alpha for portfolios (OOS); PCA model; Window size: 120 months

Figure 12: Averaged alpha for the lag dimension (OOS); Tensor model; Window size: 60 months

Figure 13: Averaged alpha for the lag dimension (OOS); Tensor model; Window size: 120 months

Figure 14: Averaged alpha for the lag dimension (OOS); PCA; Window size: 60 months

Figure 15: Averaged alpha for the lag dimension (OOS); PCA; Window size: 120 months

Figure 16: Normalized unexplained variance σ_{ϵ} (OOS): Window size: 60 months

Figure 17: Normalized unexplained variance σ_{ϵ} (OOS): Window size: 120 months

Figure 18: Term structure of mean returns (OOS)

Figure 19: Term structure of fitted mean returns with rank 1 (OOS); Window size: 60 months

Figure 20: Term structure of fitted mean returns with rank 3 (OOS); Window size: 60 months

Figure 21: Term structure of fitted mean returns with rank 5 (OOS); Window size: 60 months

Figure 22: Term structure of fitted mean returns with rank 10 (OOS); Window size: 60 months

Figure 23: Term structure of fitted mean returns with rank 20 (OOS); Window size: 60 months

price age shvol

13

25

Lags

-0.0006

Figure 24: Term structure of alpha with rank 1 (OOS); Window size: 60 months

37

49

Figure 25: Term structure of alpha with rank 3 (OOS); Window size: 60 months

Lags

Figure 26: Term structure of alpha with rank 5 (OOS); Window size: 60 months

Lags

Figure 33: Term structure of CAPM alpha with rank 20 (OOS); Window size: 60 months

1977/06 1979/09 - 0.4 1982/01 1984/04 - 0.3 1986/07 1988/10 - 0.2 1991/02 1993/05 - 0.1 1995/08 1997/11 - 0.0 2000/03 2002/06 - -0.1 2004/09 2006/12 -0.2 2009/04 2011/07 -2013/10 -0.3 2016/01 -2018/05 -0.4 2020/08 10 11 12 Factor indexes

Figure 34: Time pattern

Figure 35: Cumulative excess returns of factors

Figure 36: Portfolio pattern

Figure 37: Lag pattern

Figure 38: Lag pattern (line plot)

Figure 39: Reconstruction error with refit as a function of rank

Figure 40: In-sample SR

Figure 41: RMSE of time pattern fitting

Figure 42: RMSE of lag pattern fitting

Figure 43: RMSE of portfolio pattern fitting

Figure 44: Normalized averaged alpha

Figure 45: Cross-sectional averaged alpha for portfolios; Tensor

Figure 46: Cross-sectional averaged alpha for portfolios; PCA

Figure 47: Averaged alpha for the lag dimension; Tensor

Figure 48: Averaged alpha for the lag dimension; PCA

Figure 49: Normalized unexplained variance σ_{ϵ}

Figure 50: Term structure of mean returns

Figure 51: Term structure of fitted mean returns with rank 1

Figure 52: Term structure of fitted mean returns with rank 3

Figure 53: Term structure of fitted mean returns with rank 5

Figure 54: Term structure of fitted mean returns with rank 10

Figure 55: Term structure of fitted mean returns with rank 20

Figure 56: Term structure of alpha with rank 1

Figure 57: Term structure of alpha with rank 3

Figure 58: Term structure of alpha with rank 5

Figure 59: Term structure of alpha with rank 10

Figure 60: Term structure of alpha with rank 20

Figure 61: Term structure of alpha (stale) with rank 1

Figure 62: Term structure of alpha (stale) with rank 3

Figure 63: Term structure of alpha (stale) with rank 5

Figure 64: Term structure of alpha (stale) with rank 10

Figure 65: Term structure of alpha (stale) with rank 20

Figure 66: Term structure of alpha (dynamic) with rank 1

Figure 67: Term structure of alpha (dynamic) with rank 3

Figure 68: Term structure of alpha (dynamic) with rank 5

Figure 69: Term structure of alpha (dynamic) with rank 10

Figure 70: Term structure of alpha (dynamic) with rank 20