I. OPÉRATIONS SUR LES DAS

Soit \mathcal{B} , resp. \mathcal{A} , l'ensemble des fonctions complexes définies et continues sur $[x_0, +\infty[$ qui sont continues et bornées, resp. qui admettent un DAS en $+\infty$.

- 1. Si $f \in \mathcal{A}$ admet un DAS $f(x) \approx \sum a_n x^n$, on a $\lim_{x \to +\infty} f(x) = a_0$, donc $|f(x)| \leq |a_0| + 1$ sur un voisinage $]x_1, +\infty[$ de $+\infty$. Par ailleurs la continuité de f implique que f est bornée sur $[x_0, x_1]$, donc f est bornée sur $[x_0, +\infty[$. Par suite $\mathcal{A} \subset \mathcal{B}$. On a bien sûr $\mathcal{A} \neq \mathcal{B}$, par exemple $f(x) = \sin x$ est bornée et n'a pas de limite en $+\infty$, donc $f \notin \mathcal{A}$.
- 2. Soit $f \in \mathcal{A}$. Montrons par récurrence sur n que les coefficients a_n du DAS de f sont uniques. Pour n = 0, on doit avoir $a_0 = \lim_{x \to +\infty} f(x)$. Si a_0, \ldots, a_{n-1} sont déterminés de manière unique, la formule évidente

$$a_n = \lim_{x \to +\infty} x^n \left(f(x) - a_0 - \frac{a_1}{x} - \dots - \frac{a_{n-1}}{x^{n-1}} \right)$$

montre que a_n est lui aussi unique.

- 3. La fonction $f(x) = e^{-x}$ est non identiquement nulle, cependant son DAS a tous ses coefficients nulls puisque $\lim_{x\to +\infty} x^n e^{-x} = 0$ pour tout n.
- 4. Supposons que g(t) = f(1/t) se prolonge en une fonction de classe C^{∞} sur $[0, 1/x_0]$. Alors la formule de Taylor-Young montre que g admet un développement limité à tout ordre

$$g(t) = \sum_{0 \le k \le n} a_k t^k + t^n \varepsilon(t)$$
 avec $a_k = \frac{g^{(k)}(0)}{k!}$, $\lim_{t \to 0} \varepsilon(t) = 0$.

En substituant t=1/x, on voit que $f(x)\approx \sum a_k x^{-k}$, par ailleurs f(x)=g(1/x) est continue sur $[x_0,+\infty[$, donc $f\in\mathcal{A}$.

5. Soient f, g dans \mathcal{A} , avec $f(x) \approx \sum a_n x^{-n}$, $g(x) \approx \sum b_n x^{-n}$. Alors il est classique que f + g et fg admettent des développements limités à tout ordre n, obtenus en faisant la somme (resp. le produit tronqué à l'ordre n) des développements limités de f et g.

Si $a_0 = \lim_{x \to +\infty} f(x) = 0$, alors 1/f n'a pas de limite finie en $+\infty$ et donc pas de DAS. Si $a_0 \neq 0$, alors $|f(x)| > |a_0|/2$ sur un certain intervalle $[x_1, +\infty[$, donc 1/f est bien définie sur un voisinage de $+\infty$. Par ailleurs, pour tout entier n,

$$\frac{1}{f(x)} = \frac{1}{a_0(1+u(x))} \quad \text{avec} \ u(x) = \frac{a_1}{a_0}x^{-1} + \dots + \frac{a_n}{a_0}x^{-n} + x^{-n}\varepsilon(x), \quad \lim_{x \to +\infty} \varepsilon(x) = 0.$$

On obtient $1/f = \frac{1}{a_0} \left(1 - u + u^2 - \ldots + (-1)^n u^n + u^n \eta(u)\right)$ avec $\eta(t) = (-1)^{n+1} t/(1+t) \to 0$ quand $t \to 0$ et $u(x) = O(x^{-1})$. On voit donc que 1/f admet un développement à l'ordre n, obtenu en substituant u(x) par son expression en fonction des puissances de x^{-1} et en tronquant au delà du degré n.

6. Soit f une application de classe C^1 sur $[x_0, +\infty[$ telle que $f' \in A : f'(x) \approx \sum c_n x^{-n}$. Pour tout entier n, on peut écrire

(†)
$$f'(x) = c_0 + c_1 x^{-1} + c_2 x^{-2} + \dots + c_n x^{-n} + x^{-n} \varepsilon_n(x)$$
 avec $\lim_{x \to +\infty} \varepsilon_n(x) = 0$.

On cherche à intégrer cette relation et on pose donc $r_n(x) = -\int_x^{+\infty} t^{-n} \varepsilon_n(t) dt$. La fonction ε_n étant bornée sur $[x_0, +\infty[$ (puisque continue et tendant vers 0 en $+\infty$), on voit que l'intégrale définissant $r_n(x)$ converge absolument pour tout $n \geq 2$. Par définition $r'_n(x) = x^{-n} \varepsilon_n(x)$, et pour tout $\varepsilon > 0$ il existe $x_1 \geq x_0$ tel que $|\varepsilon_n(x)| \leq \varepsilon$ pour $x \geq x_1$, d'où

$$|r_n(x)| \le \varepsilon \int_x^{+\infty} t^{-n} dt = \varepsilon \frac{x^{1-n}}{n-1}.$$

Ceci montre que $\lim_{x\to +\infty} x^{n-1} r_n(x) = 0$, c'est-à-dire $r_n(x) = o(x^{1-n})$. Par intégration de la relation (†) on obtient alors

$$f(x) = A + c_0 x + c_1 \ln x - c_2 x^{-1} - \dots - \frac{c_n}{n-1} x^{1-n} + r_n(x)$$

où A est une constante. En particulier $f(x) = A + c_0 x + c_1 \ln x + O(1/x)$, donc f est bornée si et seulement si $c_0 = c_1 = 0$. Inversement si c'est le cas, on voit que f admet un DAS de coefficients $a_0 = A = \lim_{x \to +\infty} f(x)$ et $a_{n-1} = -c_n/(n-1)$ pour tout $n \geq 2$. Par suite $f \in \mathcal{A}$ si et seulement si $c_0 = c_1 = 0$.

II. ETUDE DE CERTAINES FONCTIONS DÉFINIES PAR DES INTÉGRALES

Soit $\Omega = \{(\alpha, \beta) \in \mathbb{C}^2 ; \operatorname{Re} \alpha > 0 \text{ ou } \operatorname{Re} \alpha = 0, \alpha \neq 0, \operatorname{Re} \beta > 0\}$. Soit $(\alpha, \beta) \in \Omega$. On pose $a = \operatorname{Re} \alpha$, $b = \operatorname{Re} \beta$ et

$$\psi_{\beta}(x) = e^{\alpha x} x^{\beta}, \quad J_{\beta}(x) = \int_{x_0}^x \psi_{\beta}(t) dt, \quad Q_{\beta}(x) = \frac{J_{\beta}(x)}{\psi_{\beta}(x)} = \int_{x_0}^x e^{\alpha(t-x)} \left(\frac{t}{x}\right)^{\beta} dt.$$

1. Une intégration par parties donne

$$J_{\beta}(x) = \int_{x_0}^x e^{\alpha t} t^{\beta} dt = \left[\frac{1}{\alpha} e^{\alpha x} x^{\beta} \right]_{x_0}^x - \int_{x_0}^x \frac{1}{\alpha} e^{\alpha t} \beta t^{\beta - 1} dt, \quad \text{soit}$$

$$J_{\beta}(x) = \frac{1}{\alpha} (\psi_{\beta}(x) - \psi_{\beta}(x_0)) - \frac{\beta}{\alpha} J_{\beta - 1}(x).$$

2. On suppose ici $a = \text{Re } \alpha > 0$. Comme $\psi_{\beta}(x) = \exp(\alpha x + \beta \ln x)$, on trouve $|\psi_{\beta}(x)| = \exp(ax + b \ln x)$, soit $|\psi_{\beta}(x)| = e^{ax}x^b$. L'inégalité $t^b \leq 2^{|b|}x^b$ pour $t \in [x/2, x]$ implique

$$|J_{\beta}(x)| \le \int_{x_0}^x e^{at} t^b dt = \int_{x_0}^{x/2} + \int_{x/2}^x \le e^{ax/2} \int_{x_0}^{x/2} t^b dt + 2^{|b|} x^b \int_{x/2}^x e^{at} dt$$
$$\le e^{ax/2} \left(\frac{x}{2} - x_0\right) \max\left(x_0^b, (x/2)^b\right) + \frac{2^{|b|}}{a} e^{ax} x^b \le C e^{ax} x^b$$

pour $x \ge x_1$ assez grand, avec disons $C = 2^{|b|}/a + 1$. La formule de récurrence du 1. donne alors

$$\left|Q_{\beta}(x) - \frac{1}{\alpha}\right| = \frac{\left|J_{\beta}(x) - \frac{1}{\alpha}\psi_{\beta}(x)\right|}{|\psi_{\beta}(x)|} \le \frac{\left|\psi_{\beta}(x_0)\right| + \left|\beta\right|\left|J_{\beta-1}(x)\right|}{|\alpha|\left|\psi_{\beta}(x)\right|} \le \frac{\left|\psi_{\beta}(x_0)\right| + \frac{\left|\beta\right|}{\alpha}e^{ax}x^{b-1}}{|\alpha|e^{ax}x^b} \le \frac{\left|\psi_{\beta}(x_0)\right|}{|\alpha|e^{ax}x^b} + \frac{\left|\frac{C\beta}{\alpha}\right|}{x}.$$

Le membre de droite tend vers 0 quand x tend vers $+\infty$ donc $\lim_{x\to+\infty}Q_{\beta}(x)=\frac{1}{\alpha}$ et $J_{\beta}(x)\sim\frac{1}{\alpha}\psi_{\beta}(x)$.

3. En supposant toujours $a=\operatorname{Re}\alpha>0,$ montrons par récurrence sur n que

$$Q_{\beta}(x) = \frac{1}{\alpha} + \sum_{1 \le k \le n} (-1)^k \frac{\beta(\beta - 1) \dots (\beta - k + 1)}{\alpha^{k+1} x^k} + \frac{\varepsilon(x)}{x^n}.$$

La question 2. montre que le résultat est vrai pour n=0. La formule obtenue à la question 1. donne par ailleurs

$$(\star) \qquad Q_{\beta}(x) = \frac{J_{\beta}(x)}{\psi_{\beta}(x)} = \frac{1}{\alpha} - \frac{\beta}{\alpha} \frac{J_{\beta-1}(x)}{\psi_{\beta}(x)} - \frac{1}{\alpha} \frac{\psi_{\beta}(x_0)}{\psi_{\beta}(x)} = \frac{1}{\alpha} - \frac{\beta}{\alpha x} Q_{\beta-1}(x) + x^n \varepsilon(x),$$

car le dernier terme $\psi_{\beta}(x_0)/\psi_{\beta}(x)$ a un développement asymptotique nul. En appliquant l'hypothèse de récurrence d'ordre n-1 à $Q_{\beta-1}$, on trouve

$$Q_{\beta}(x) = \frac{1}{\alpha} - \frac{\beta}{\alpha x} \left(\frac{1}{\alpha} + \sum_{1 \le k \le n-1} (-1)^k \frac{(\beta-1)(\beta-2)\dots(\beta-k)}{\alpha^{k+1} x^k} + \frac{\varepsilon(x)}{x^{n-1}} \right).$$

En faisant le changement d'indice k'=k+1, on voit que ceci est précisément le résultat cherché à l'ordre n.

4. Dans le cas où Re $\alpha = 0$, on a pour $J_{\beta}(x)$ la majoration

$$|J_{\beta}(x)| \le \int_{x_0}^x t^b dt \le \frac{x^{b+1} - x_0^{b+1}}{b+1}, \quad \text{resp.} \le \ln \frac{x}{x_0}$$

si $b \neq -1$, resp. si b = -1. En appliquant la formule de récurrence pour $J_{\beta-1}(x)$ dans (\star) , il vient

$$Q_{\beta}(x) = \frac{1}{\alpha} - \frac{\beta}{\alpha^2 x} + \frac{\beta(\beta - 1)}{\alpha^2} \frac{J_{\beta - 2}(x)}{\psi_{\beta}(x)} + \frac{\beta}{\alpha^2} \frac{\psi_{\beta - 1}(x_0)}{\psi_{\beta}(x)} - \frac{1}{\alpha} \frac{\psi_{\beta}(x_0)}{\psi_{\beta}(x)}.$$

Les deux derniers termes tendent vers 0 puisque $|\psi_{\beta}(x)| = x^b$ tend vers $+\infty$. Par ailleurs

$$\left| \frac{J_{\beta-2}(x)}{\psi_{\beta}(x)} \right| = x^{-b} |J_{\beta-2}(x)| \le \begin{cases} \frac{x^{-1}}{b-1} & \text{si } b > 1, \\ x^{-1} \ln \frac{x}{x_0} & \text{si } b = 1, \\ \frac{x^{-b} x_0^{b-1}}{1-b} & \text{si } b < 1. \end{cases}$$

Ceci entraı̂ne dans tous les cas que $J_{\beta-2}/\psi_{\beta}$ tend vers 0, par suite on obtient encore $\lim_{x\to+\infty}Q_{\beta}(x)=\frac{1}{\alpha}$. 5. Pour $(\alpha,\beta)\in\Omega$, on pose

$$\varphi_{\beta}(x) = 1/\psi_{\beta}(x) = e^{-\alpha x} x^{-\beta}, \quad I_{\beta}(x) = \int_{x}^{+\infty} \varphi_{\beta}(t) dt, \quad P_{\beta}(x) = \frac{I_{\beta}(x)}{\varphi_{\beta}(x)} = \int_{x}^{+\infty} e^{-\alpha(t-x)} \left(\frac{t}{x}\right)^{-\beta} dt.$$

Une intégration par parties donne

$$\int_{T}^{A} e^{-\alpha t} t^{-\beta} dt = \left[-\frac{1}{\alpha} e^{-\alpha t} t^{-\beta} \right]_{x}^{A} - \int_{T}^{A} \frac{1}{\alpha} e^{-\alpha t} \beta t^{-\beta - 1} dt.$$

Si $a=\operatorname{Re}\alpha>0$, les intégrales des deux membres sont absolument convergentes quand $A\to +\infty$, car on a par exemple $|e^{-\alpha t}t^{-\beta}|\leq e^{-at/2}$ pour t assez grand. Si $a=\operatorname{Re}\alpha=0$ et $b=\operatorname{Re}\beta>0$, on a $|e^{-\alpha t}t^{-\beta}|=t^{-b}$, donc l'intégrale du membre de gauche n'est absolument convergente que si b>1. L'intégrale de droite est toujours absolument convergente puisque b+1>1. Il en résulte que l'intégrale de gauche a toujours une limite quand $A\to +\infty$. Par suite l'intégrale $I_{\beta}(x)$ est convergente (semi-convergente pour a=0, $b\in]0,1]$, absolument convergente dans les autres cas), et on a

$$I_{\beta}(x) = \frac{1}{\alpha} \varphi_{\beta}(x) - \frac{\beta}{\alpha} I_{\beta+1}(x).$$

6. Si $a = \operatorname{Re} \alpha > 0$, on a $t^{-b} \le 4^{|b|} x^{-b}$ pour $t \in [x, 4x]$ et $e^{-at} \le e^{-2ax} e^{-at/2}$ pour $t \in [4x, +\infty[$, d'où la majoration

$$|I_{\beta}(x)| \leq \int_{x}^{+\infty} e^{-at} t^{-b} dt = \int_{x}^{4x} + \int_{4x}^{+\infty} \leq 4^{|b|} x^{-b} \int_{x}^{4x} e^{-at} dt + e^{-2ax} \int_{4x}^{+\infty} e^{-at/2} t^{-b} dt$$
$$\leq \frac{4^{|b|}}{a} e^{-ax} x^{-b} + C e^{-2ax} \leq C' e^{-ax} x^{-b},$$

par suite $|P_{\beta}(x)| \leq C'$ est borné. La formule du 5. implique

$$P_{\beta}(x) = \frac{1}{\alpha} - \frac{\beta}{\alpha x} P_{\beta+1}(x),$$

donc $\lim_{x\to+\infty} P_{\beta}(x) = \frac{1}{\alpha}$ puisque $P_{\beta+1}$ est lui aussi borné. Une récurrence immédiate donne alors le développement limité

$$P_{\beta}(x) = \frac{1}{\alpha} + \sum_{1 \le k \le n} (-1)^k \frac{\beta(\beta+1)\dots(\beta+k-1)}{\alpha^{k+1}x^k} + \frac{\varepsilon(x)}{x^n}$$

pour tout entier $n \in \mathbb{N}$.

7. Si $a = \operatorname{Re} \alpha = 0$ et $b = \operatorname{Re} \beta > 0$, on a

$$|I_{\beta}(x)| \le \int_{x}^{+\infty} t^{-b} dt = \frac{x^{1-b}}{b-1}$$
 si $b > 1$.

Il en résulte déjà que $|P_{\beta}(x)| \le x/(b-1)$ si b>1. La formule de récurrence appliquée deux fois donne

$$P_{\beta}(x) = \frac{1}{\alpha} - \frac{\beta}{\alpha^2 x} + \frac{\beta(\beta+1)}{\alpha^2 x^2} P_{\beta+2}(x) \quad \text{avec} \quad P_{\beta+2}(x) = O(x),$$

ce qui entraı̂ne qu'on a encore $\lim_{x\to+\infty} P_{\beta}(x) = \frac{1}{\alpha}$. Une récurrence identique à celle faite en 6. montre que le DAS de P_{β} est valable dans ce cas aussi.

III. Une équation intégrale

Soit Δ l'ensemble des (x,t) de \mathbb{R}^2 tels que $x_0 \leq x \leq t$, K une application continue de Δ dans \mathbb{C} et soit $A = \sup_{\Delta} K$. Pour $g \in \mathcal{B}$, on note $||g|| = \sup_{[x_0, +\infty[} |g|]$ sa norme uniforme. On sait que \mathcal{B} est un espace de Banach pour cette norme.

1,2,3. Si $h \in \mathcal{B}$, on pose

$$(Th)(x) = \int_{x}^{+\infty} \frac{K(x,t)h(t)}{t^2} dt.$$

On voit aussitôt que l'intégrale est absolument convergente et que

$$|(Th)(x)| \le \int_{x}^{+\infty} \frac{|K(x,t)h(t)|}{t^2} dt \le A||h|| \int_{x}^{+\infty} \frac{dt}{t^2} \le A \frac{||h||}{x},$$

en particulier $||Th|| \le A||h||/x_0 < +\infty$. Le théorème de convergence dominée montre que Th est continue, donc $Th \in \mathcal{B}$ (poser t = xu, dt = x du pour se ramener à $\int_1^{+\infty}$ et observer que $K(x, xu)h(xu)/(xu^2)$ est continue en (x, u), dominée par la fonction intégrable $u \mapsto A||h||/(x_0u^2)$ pour $x \ge x_0$, $u \ge 1$). Ceci entraı̂ne que T est une application linéaire continue de \mathcal{B} dans \mathcal{B} (la linéarité est évidente), de norme $|||T||| \le A/x_0$.

4. Montrons par récurrence sur $n \in \mathbb{N}$ que

$$\left| (T^n h)(x) \right| \le A^n \frac{\|h\|}{n! \, x^n}.$$

C'est vrai pour n=0 puisque $T_0=I$, et aussi pour n=1 d'après 2. Si la majoration est vraie à l'ordre n-1, alors

$$\begin{aligned} \left| (T^n h)(x) \right| &= \left| \int_x^{+\infty} \frac{K(x,t) \, T^{n-1} h(t)}{t^2} dt \right| \le \int_x^{+\infty} A \, A^{n-1} \frac{\|h\|}{(n-1)! \, t^{n-1}} \frac{dt}{t^2} \\ &\le A^n \frac{\|h\|}{(n-1)!} \int_x^{+\infty} \frac{dt}{t^{n+1}} = A^n \frac{\|h\|}{n! \, x^n}. \end{aligned}$$

En particulier on obtient $||T^n h|| \leq ||h|| A^n/(n!x_0^n)$ et $|||T^n||| \leq A^n/(n!x_0^n)$, d'où

$$\left\| \sum_{n>0} T^n h \right\| \le \sum_{n>0} \|T^n h\| \le e^{A/x_0} \|h\|.$$

Ceci entraı̂ne que la série $\sum T^n h$ est normalement convergente sur $[x_0, +\infty[$ et que sa somme est dans \mathcal{B} .

5. L'application linéaire I-T est inversible d'inverse $(I-T)^{-1}=\sum_{n=0}^{+\infty}T^n,$ car

$$(I-T) \circ \sum_{n=0}^{N} T^n = \sum_{n=0}^{N} T^n \circ (I-T) = I - T^{N+1},$$

et les majorations du 4. montrent que $\lim_{N\to+\infty} |||T^{N+1}||| = 0$. Par conséquent, si $h\in\mathcal{B}$, l'équation g-Tg=h, qui peut encore s'écrire (I-T)g=h, admet une solution unique

$$g = (I - T)^{-1}h = \sum_{n=0}^{+\infty} T^n h$$
 dans \mathcal{B} .

IV. DAS DE LA SOLUTION D'UN PROBLÈME DU TYPE PRÉCÉDENT

1. Soit $(\alpha, \beta) \in \Omega$ fixé. On pose, pour tout $(x, u) \in \Delta$,

$$L(x,u) = \int_{x}^{u} e^{2\alpha(t-u)} \left(\frac{t}{u}\right)^{2\beta} dt.$$

On peut encore écrire

$$L(x,u) = e^{-2\alpha u} u^{-2\beta} \left(\int_{x_0}^u e^{2\alpha t} t^{2\beta} dt - \int_{x_0}^x e^{2\alpha t} t^{2\beta} dt \right).$$

La fonction apparaissant sous le signe intégral est de classe \mathcal{C}^{∞} sur $[x_0, +\infty[$, il en est donc de même pour les primitives $\int_{x_0}^u$ et $\int_{x_0}^x$ comme fonctions de u et de x. De même $u\mapsto e^{-2\alpha u}u^{-2\beta}$ est de classe \mathcal{C}^{∞} sur $[x_0, +\infty[$. Il en résulte que L est de classe \mathcal{C}^{∞} sur $[x_0, +\infty[^2, \infty]^2]$, en particulier L est continue sur Δ .

2. On a $|e^{2\alpha(t-u)}(t/u)^{2\beta}| = e^{2a(t-u)}(t/u)^{2b}$, et pour $(t,u) \in \Delta$ on a $t-u \leq 0$ et $t/u \leq 1$. Si a=0, alors par hypothèse b>0, donc la fonction est bornée par 1. Si a>0, on peut utiliser la majoration

$$(t/u)^b \le (u/t)^{|b|} \le (1 + (u-t)/t)^{|b|} \le (1 + (u-t)/x_0)^{|b|}.$$

En posant $s = u - t \ge 0$ on obtient

$$\left| e^{2\alpha(t-u)} (t/u)^{2\beta} \right| \le M = \sup_{s \ge 0} e^{-2as} (1 + s/x_0)^{|b|},$$

et $M < +\infty$ car la fonction apparaissant au membre de droite est continue en s et tend vers 0 à l'infini.

3. Si on pose $L_0(u)=L(x_0,u)=\int_{x_0}^u e^{2\alpha(t-u)}(t/u)^{2\beta}dt$, alors on a

$$L(x,u) = \int_{x_0}^{u} - \int_{x_0}^{x} e^{2\alpha(t-u)} \left(\frac{t}{u}\right)^{2\beta} dt = L_0(u) - e^{2\alpha(x-u)} \left(\frac{x}{u}\right)^{2\beta} L_0(x).$$

Pour montrer que L est bornée sur Δ , il suffit d'après 2. de montrer que L_0 est bornée sur $+\infty$. Or on voit que L_0 coïncide avec la fonction $Q_{2\beta}$ associée au couple $(2\alpha, 2\beta) \in \Omega$. La fonction L_0 est continue et les questions II 2. et II 4. impliquent que $\lim_{u\to+\infty} L_0(u) = \lim_{u\to+\infty} Q_{2\beta}(u) = 1/(2\alpha)$, par conséquent L_0 est bornée sur $[x_0, +\infty[$.

4. Soit $n \in \mathbb{N}$ quelconque. Montrons que $x \mapsto \int_x^{+\infty} L(x, u) u^{-n-2} du$ admet un DAS. La relation entre L et L_0 obtenue à la question 3. permet d'écrire

$$\int_{x}^{+\infty} \frac{L(x,u)}{u^{n+2}} du = \int_{x}^{+\infty} \frac{L_0(u)}{u^{n+2}} du - L_0(x) \int_{x}^{+\infty} \frac{e^{2\alpha(x-u)}(x/u)^{2\beta}}{u^{n+2}} du$$

$$= \int_{x}^{+\infty} \frac{L_0(u)}{u^{n+2}} du - x^{-n-2} L_0(x) \int_{x}^{+\infty} e^{-2\alpha(u-x)} (u/x)^{-2\beta-n-2} du$$

$$= \int_{x}^{+\infty} \frac{L_0(u)}{u^{n+2}} du - x^{-n-2} L_0(x) P_{2\beta+n+2}(x).$$

Si $a=\operatorname{Re}\alpha>0$, on sait que $L_0(u)=Q_{2\beta}(u)$ admet un DAS d'après II 3. Il en est de même pour la fonction $P_{2\beta+n+2}$ associée au couple $(2\alpha,2\beta+n+2)\in\Omega$ (voir III). Comme $L_0(u)/u^{n+2}$ admet un DAS dont les coefficients en degrés 0 et 1 sont nuls, la primitive $\int_x^{+\infty}L_0(u)/u^{n+2}du$ admet un DAS d'après I 6. On conclut finalement par I 5.

Si a=0, on ne peut plus raisonner de la même manière car on ne sait pas a priori si L_0 admet un DAS (en fait il n'en a pas). On peut s'en tirer en effectuant des intégrations par parties successives dans L(x,u). Après k intégrations par parties du facteur exponentiel, la fonction à intégrer devient $c_k e^{2\alpha(t-u)} t^{2\beta-k} u^{-2\beta}$ et par récurrence sur q on obtient

$$L(x,u) = \int_{x}^{u} c_{q} e^{2\alpha(t-u)} t^{2\beta-q} u^{-2\beta} dt + \frac{1}{2\alpha} \sum_{0 \le k \le q-1} c_{k} \left(u^{-k} - e^{2\alpha(x-u)} x^{2\beta-k} u^{-2\beta} \right)$$

avec $c_k = (-1)^k (2\alpha)^{-k} 2\beta(2\beta - 1) \dots (2\beta - k + 1)$. Pour q assez grand tel que q - 2b > 0, on peut écrire

$$\int_{x}^{u} c_{q} e^{2\alpha(t-u)} t^{2\beta-q} u^{-2\beta} dt = c_{q} u^{-q} \int_{x}^{u} e^{2\alpha(t-u)} \left(\frac{t}{u}\right)^{-(q-2\beta)} dt = c_{q} u^{-q} \left(\int_{x}^{+\infty} - \int_{u}^{+\infty}\right)$$

$$= c_{q} u^{-q} \left(P_{q-2\beta}(x) e^{2\alpha(x-u)} (x/u)^{-(q-2\beta)} - P_{q-2\beta}(u)\right),$$
soit
$$L(x, u) = c_{q} \left(P_{q-2\beta}(x) e^{2\alpha(x-u)} x^{2\beta-q} u^{-2\beta} - u^{-q} P_{q-2\beta}(u)\right)$$

$$+ \frac{1}{2\alpha} \sum_{0 \le k \le q-1} c_{k} \left(u^{-k} - e^{2\alpha(x-u)} x^{2\beta-k} u^{-2\beta}\right),$$

où $P_{q-2\beta}$ est associée au couple $(-2\alpha, q-2\beta) \in \Omega$ (les parties réelles sont Re $(-2\alpha) = 0$ et q-2b > 0). Après multiplication par du/u^{n+2} et intégration, il vient

$$\int_{x}^{+\infty} \frac{L(x,u)}{u^{n+2}} du = c_q x^{-q-n-2} P_{q-2\beta}(x) \int_{x}^{+\infty} e^{-2\alpha(u-x)} (u/x)^{-(2\beta+n+2)} du - c_q \int_{x}^{+\infty} u^{-q-n-2} P_{q-2\beta}(u) du$$

$$+ \frac{1}{2\alpha} \sum_{0 \le k \le n-1} c_k \left(\int_{x}^{+\infty} u^{-k-n-2} du - x^{-k-n-2} \int_{x}^{+\infty} e^{-2\alpha(u-x)} (u/x)^{-(2\beta+n+2)} du \right)$$

$$= c_q x^{-q-n-2} P_{q-2\beta}(x) P_{2\beta+n+2}(x) - c_q \int_{x}^{+\infty} u^{-q-n-2} P_{q-2\beta}(u) du$$

$$+ \frac{1}{2\alpha} \sum_{0 \le k \le n-1} c_k \left(\frac{1}{k+n+1} x^{-k-n-1} - x^{-k-n-2} P_{2\beta+n+2}(x) \right).$$

L'existence du DAS de l'intégrale $\int_x^{+\infty} L(x,u)/u^{n+2}du$ résulte alors du fait que $P_{q-2\beta}$ et $P_{2\beta+n+2}$ admettent tous deux des DAS.

5. Soit $\rho: [x_0, +\infty[\to \mathbb{C} \text{ admettant un développent limité à l'ordre } n \text{ en } +\infty, \text{ de la forme } \rho(u) = \sum_{0 \le k \le n} c_k u^{-k} + u^{-n} \varepsilon(u)$. Alors on peut écrire

$$\int_{x}^{+\infty} \frac{L(x,u)\rho(u)}{u^2} du = \sum_{0 \le k \le n} c_k \int_{x}^{+\infty} \frac{L(x,u)}{u^{k+2}} du + \int_{x}^{+\infty} \frac{L(x,u)\varepsilon(u)}{u^{n+2}} du.$$

Chaque terme de la sommation admet un DAS d'après la question 4. Le terme restant est majoré par $Mx^{-n-1}\widetilde{\varepsilon}(x)$ où M est une borne supérieure pour L(x,u) (voir 3.) et où $\widetilde{\varepsilon}(x)=\sup_{[x,+\infty[}|\varepsilon(u)|$ tend vers 0 quand x tend vers $+\infty$. Il en résulte aussitôt que $\int_x^{+\infty}L(x,u)\rho(u)/u^2du$ admet un développement limité à l'ordre n+1 au moins.

6. Soit $F \in \mathcal{A}$ et T l'opérateur intégral défini par

$$(Tg)(x) = -\int_x^{+\infty} \frac{F(u)L(x,u)}{u^2} g(u) du,$$

associé comme dans III 1. au noyau K(x,u) = -F(u)L(x,u). Ce noyau étant borné, la question III 5. montre qu'il existe une unique solution $g \in \mathcal{B}$ de l'équation $g - Tg = \lambda$ pour tout $\lambda \in \mathbb{C}$, soit une unique $g \in \mathcal{B}$ telle que

$$g(x) = \lambda - \int_{x}^{+\infty} \frac{F(u)L(x,u)}{u^2} g(u) du \quad \text{pour } x \ge x_0.$$

Montrons par récurrence sur n que g admet un développement limité à l'ordre n. Pour n=2, il suffit de montrer que g a une limite: comme F, L et g sont bornées, l'intégrale Tg(x) est absolument convergente, donc $\lim_{x\to +\infty} Tg(x)=0$ et $\lim_{x\to +\infty} g(x)=\lambda$. La question 5. appliquée à $\rho(u)=F(u)g(u)$ montre que l'existence d'un développement limité à l'ordre n pour g entraı̂ne l'existence d'un développement limité à l'ordre n+1. Par conséquent g admet un DAS.

7. On a vu à la question 1. que la fonction $(x,u) \mapsto L(x,u)$ est de classe \mathcal{C}^{∞} sur Δ . Comme L(x,x) = 0 et $L'_x(x,u) = -e^{2\alpha(x-u)}(x/u)^{2\beta}$ par définition de L, le théorème de dérivation sous le signe somme avec

bornes variables, appliqué à l'équation intégrale définissant g, montre que g est de classe \mathcal{C}^1 et que

$$g'(x) = \left[\frac{F(u)L(x,u)}{u^2}g(u)\right]_{u=x} - \int_x^{+\infty} \frac{F(u)L'_x(x,u)}{u^2}g(u) du$$
$$= \int_x^{+\infty} e^{2\alpha(x-u)} \left(\frac{x}{u}\right)^{2\beta} \frac{F(u)g(u)}{u^2} du.$$

On voit facilement que cette formule peut-être dérivée encore une fois au moins, donc g est en fait de classe C^2 ; plus généralement, si F est de classe C^p , on peut vérifier par récurrence sur p que g est de classe C^{p+2} .

8. Puisque g a un DAS d'après 6. et que $F \in \mathcal{A}$, la fonction $\rho(u) = F(u)g(u)$ admet un DAS $\sum c_n u^{-n}$. Or, pour tout entier $n \in \mathbb{N}$ la fonction

$$-\int_{x}^{+\infty} L'_{x}(x,u)u^{-n-2}du = \int_{x}^{+\infty} e^{2\alpha(x-u)} \left(\frac{x}{u}\right)^{2\beta} u^{-n-2}du = x^{-n-2}P_{2\beta+n+2}(x)$$

admet un DAS, $P_{2\beta+n+2}$ étant associée au couple $(2\alpha, 2\beta+n+2) \in \Omega$. Un raisonnement identique à celui de 5. montre que $g'(x) = -\int_x^{+\infty} L'_x(x,u)\rho(u)u^{-2}du$ admet un DAS (dont les coefficients de degrés 0 et 1 sont nuls).

V. Solutions normales de
$$y'' + qy = 0$$

Soit $q \in \mathcal{A}$, $q(x) \approx \sum a_n x^{-n}$ avec $a_0 \neq 0$, et soit (\mathcal{E}) l'équation différentielle y'' + qy = 0. On dit qu'une solution f de \mathcal{E} est normale si on peut écrire $f(x) = e^{-\alpha x} x^{-\beta} g(x)$ avec $(\alpha, \beta) \in \mathbb{C}^2$ et g de classe \mathcal{C}^2 telle que $g \in \mathcal{A}$, $g' \in \mathcal{A}$ et $\lim_{x \to +\infty} g(x) \neq 0$.

1. Cherchons l'équation différentielle $(\mathcal{E}_{\alpha,\beta})$ transformée de (\mathcal{E}) par le changement de fonction inconnue $y = e^{-\alpha x} x^{-\beta} z$. Des calculs aisés donnent

$$y' = e^{-\alpha x} x^{-\beta} (z' - \alpha z - \beta x^{-1} z),$$

$$y'' = e^{-\alpha x} x^{-\beta} (z'' - 2\alpha z' - 2\beta x^{-1} z' + \beta x^{-2} z + \beta^2 x^{-2} z + 2\alpha \beta x^{-1} z + \alpha^2 z).$$

On voit alors que (\mathcal{E}) se transforme en

$$(\mathcal{E}_{\alpha,\beta}) \qquad z'' - (2\alpha + 2\beta x^{-1})z' + (\beta(\beta + 1)x^{-2} + 2\alpha\beta x^{-1} + \alpha^2 + q(x))z = 0.$$

- 2. Si $f(x) = e^{-\alpha x} x^{-\beta} g(x)$ est une solution normale de (\mathcal{E}) , alors g satisfait $(\mathcal{E}_{\alpha,\beta})$, ce qui peut s'écrire $g'' = q_1 g' q_2 g$ avec $q_1(x) = 2\alpha + 2\beta x^{-1}$, $q_2(x) = \beta(\beta+1)x^{-2} + 2\alpha\beta x^{-1} + \alpha^2 + q(x)$, donc $q_1, q_2 \in \mathcal{A}$. Comme par hypothèse $g, g' \in \mathcal{A}$, la question I 5. implique $g'' \in \mathcal{A}$.
- 3. Avec les notations de 2., posons $g(x) \approx \sum c_n x^{-n}$ avec $c_0 \neq 0$. On sait que g', g'' ont des DAS $g'(x) \approx \sum d_n x^{-n}$ et $g''(x) \approx \sum e_n x^{-n}$; la question I 6. donne les relations inverses $d_0 = d_1 = 0$, $d_{n+1} = -nc_n$ et $e_0 = e_1 = 0$, $e_{n+1} = -nd_n$, d'où les formules $g'(x) = -\sum_{n\geq 1} n c_n x^{-n-1} = O(x^{-2})$ et $g''(x) = \sum_{n\geq 1} n(n+1)c_n x^{-n-2} = O(x^{-3})$. En reportant ceci dans $(\mathcal{E}_{\alpha,\beta})$, il vient

$$(\beta(\beta+1)x^{-2} + 2\alpha\beta x^{-1} + \alpha^2 + q(x))g(x) = O(x^{-2}).$$

Comme par hypothèse g(x) a une limite finie non nulle c_0 en $+\infty$, on voit que le terme entre parenthèses doit être lui-même $O(x^{-2})$. Le calcul des coefficients de x^0 et x^{-1} conduit, après substitution du DAS $q(x) \approx \sum a_n x^{-n}$, aux conditions nécessaires

(S)
$$\begin{cases} \alpha^2 = -a_0 \\ 2\alpha\beta = -a_1. \end{cases}$$

Tenant compte de ces équations, l'égalité des DAS des deux membres de l'équation $(\mathcal{E}_{\alpha,\beta})$ fournit

$$\sum_{n\geq 1} n(n+1)c_n x^{-n-2} + (2\alpha + 2\beta x^{-1}) \sum_{n\geq 1} n c_n x^{-n-1} + (\beta(\beta+1)x^{-2} + \sum_{n\geq 2} a_n x^{-n}) \sum_{n\geq 0} c_n x^{-n} \approx 0.$$

En égalant à 0 le coefficient de x^{-n-2} dans cette expression, on obtient pour tout $n \in \mathbb{N}$ les relations

$$n(n+1)c_n + 2\alpha(n+1)c_{n+1} + 2\beta nc_n + (\beta(\beta+1) + a_2)c_n + \sum_{k\geq 3} a_k c_{n+2-k} = 0$$

$$c_{n+1} = -\frac{1}{2\alpha(n+1)} \Big((n(n+1) + 2\beta n + \beta(\beta+1) + a_2)c_n + \sum_{k\geq 3} a_k c_{n+2-k} \Big), \quad (\alpha \neq 0).$$

Cette relation de récurrence montre que la suite (c_n) est déterminée de manière unique par son coefficient c_0 et que l'ensemble des suites (c_n) solutions du problème forme un espace vectoriel de dimension 1.

4. Comme $a_0 \neq 0$, il existe exactement deux couples (α, β) satisfaisant (S), à savoir $\alpha = \pm \sqrt{-a_0}$, $\beta = -a_1/(2\alpha)$. Ces couples étant opposés, on les notera (α, β) et $(-\alpha, -\beta)$, en fixant le signe \pm de sorte que $\operatorname{Re} \alpha > 0$ (resp. $\operatorname{Re} \beta \geq 0$ si $\operatorname{Re} \alpha = 0$). Dans ce cas on a bien $(\alpha, \beta) \in \Omega$, à moins que $\operatorname{Re} \alpha = \operatorname{Re} \beta = 0$, c'est-à-dire $a_0 = -\alpha^2 = (\operatorname{Im} \alpha)^2 > 0$ et $a_1 = -2\alpha\beta = 2\operatorname{Im} \alpha\operatorname{Im} \beta \in \mathbb{R}$. Hormis le cas $(a_0, a_1) \in]0, +\infty[\times \mathbb{R}$ où les deux couples $(\pm \alpha, \pm \beta)$ sont purement imaginaires, on voit qu'il existe un seul couple $(\alpha, \beta) \in \Omega$.

VI. DÉVELOPPEMENT DES SOLUTIONS DE (\mathcal{E})

1. On suppose désormais $(a_0, a_1) \notin]0, +\infty[\times \mathbb{R}, \text{ de sorte que } (\alpha, \beta) \in \Omega.$ On pose $\varphi(x) = e^{-2\alpha x} x^{-2\beta}$. En multipliant $(\mathcal{E}_{\alpha,\beta})$ par $\varphi(x)$, on fait apparaître $\varphi'(x)$ comme coefficient de z'. L'équation $(\mathcal{E}_{\alpha,\beta})$ peut donc s'écrire

$$\frac{d}{dx}\left(\varphi(x)\frac{dz}{dx}\right) + \frac{\varphi(x)}{x^2}F(x)z = 0$$

avec

$$F(x) = x^{2} ((\beta(\beta+1)x^{-2} + 2\alpha\beta x^{-1} + \alpha^{2} + q(x)) \approx \beta(\beta+1) + \sum_{n>2} a_{n} x^{-(n-2)},$$

comme on le voit en utilisant les conditions (S). On a donc bien $F \in \mathcal{A}$.

2. a. Soit g une solution bornée de $(\mathcal{E}_{\alpha,\beta})$ et $(x,X) \in \Omega$. Par intégration sur [x,X] de l'équation obtenue à la question 1. (avec z=g), on obtient

$$\varphi(X)g'(X) - \varphi(x)g'(x) = -\int_x^X \frac{\varphi(t)F(t)g(t)}{t^2}dt.$$

b. Comme φ , F et g sont bornées, l'intégrale ci-dessus est abolument convergente sur $[x, +\infty[$. Ceci entraı̂ne que $\ell = \lim_{X \to +\infty} \varphi(X)g'(X)$ existe.

c. Soit $M=\sup_{[x_0,+\infty[}|Fg|$. Comme $|\varphi(x)|=e^{-2ax}x^{-2b}$ est décroissante sur $[x_1,+\infty[$ pour x_1 assez grand, l'intégrale du a. donne en valeur absolue

$$|\varphi(X)g'(X) - \varphi(x)g'(x)| \le |\varphi(x)| \int_x^X \frac{M}{t^2} dt \le M|\varphi(x)| \left(\frac{1}{x} - \frac{1}{X}\right) \quad \text{pour } x \ge x_1.$$

En faisant tendre X vers $+\infty$ et en divisant par $|\varphi(x)|$ on obtient

$$|\ell - \varphi(x)g'(x)| \le M|\varphi(x)|\frac{1}{x} \Longrightarrow \left|g'(x) - \frac{\ell}{\varphi(x)}\right| \le \frac{M}{x}.$$

Par intégration sur $[x_1, +\infty[$, on en déduit

$$\left| g(x) - g(x_1) - \ell \int_{x_1}^x e^{2\alpha t} t^{2\beta} dt \right| \le \ln(x/x_1) \quad \text{pour } x \ge x_1.$$

D'après II 2. et II 4. l'intégrale $\int_{x_1}^x e^{2\alpha t} t^{2\beta} dt \sim \frac{1}{2\alpha} e^{2\alpha x} x^{2\beta}$ croît comme une fonction puissance ou exponentielle quand $x \to +\infty$; comme g est bornée, ceci n'est possible que si $\ell=0$. Par conséquent $|g'(x)| \leq M/x$ et $\lim_{x \to +\infty} g'(x) = 0$.

d. Si on fait tendre X vers $+\infty$ dans a. et si on divise par $\varphi(x)$, il vient

$$g'(x) = \int_{x}^{+\infty} \frac{\varphi(t)F(t)g(t)}{\varphi(x)t^{2}} dt = \int_{x}^{+\infty} \frac{F(t)g(t)}{t^{2}} e^{2\alpha(x-t)} \left(\frac{x}{t}\right)^{2\beta} dt.$$

3. a. Soit $h(x) = \int_x^X L(x,t)F(t)g(t)/t^2dt$ avec X fixé. Comme L(x,x) = 0 et $L_x'(x,t) = -e^{2\alpha(x-t)}(x/t)^{2\beta}$, une dérivation sous le signe somme donne

$$h'(x) = -[L(x,t)F(t)g(t)/t^{2}]_{t=x} + \int_{x}^{X} L'_{x}(x,t)F(t)g(t)/t^{2}dt$$

$$= -\int_{x}^{X} e^{2\alpha(x-t)}(x/t)^{2\beta}F(t)g(t)/t^{2}dt$$

$$= \int_{X}^{+\infty} -\int_{x}^{+\infty} = g'(X)e^{2\alpha(x-X)}(x/X)^{2\beta} - g'(x).$$

En substituant u à x et en intégrant pour $u \in [x, X]$ il vient

$$h(X) - h(x) = -h(x) = g'(X)L(x, X) - (g(X) - g(x)), \quad \text{soit}$$
$$g(X) - g(x) = g'(X)L(x, X) + \int_{x}^{X} \frac{L(x, t)F(t)g(t)}{t^{2}}dt.$$

b. La majoration $|g'(x)| \leq M/x$ obtenue au 2.c. entraı̂ne par intégration $|g(x)| \leq M \ln x + O(1)$. Les fonctions L et F étant bornées, on en déduit que l'intégrale $\int_x^{+\infty} L(x,t)F(t)g(t)/t^2dt$ est absolument convergente. Comme par ailleurs $\lim_{X\to+\infty} g'(X)=0$, on voit en faisant tendre X vers $+\infty$ dans la formule finale du a. que g(X) a une limite λ en $+\infty$ telle que

$$\lambda - g(x) = \int_{x}^{X} \frac{L(x,t)F(t)g(t)}{t^{2}} dt.$$

4. On sait d'après IV 6. qu'il existe une unique solution $g \in \mathcal{B}$ de l'équation intégrale

$$g(x) = \lambda - \int_{x}^{X} \frac{L(x,t)F(t)g(t)}{t^{2}} dt.$$

L'unicité montre que la solution associée à la valeur λ est le produit par λ de la solution associée à $\lambda=1$. D'après VI 3. b., il existe donc à un facteur multiplicatif près au plus une solution bornée de $(\mathcal{E}_{\alpha,\beta})$, qui ne peut être que la fonction $g \in \mathcal{B}$ ci-dessus; par conséquent il existe au plus une solution normale bornée $f(x) = e^{-\alpha x} x^{-\beta} g(x)$ de (\mathcal{E}) à un facteur multiplicatif près. Pour voir que f est effectivement solution de (\mathcal{E}) , il suffit de vérifier que g est bien solution de $(\mathcal{E}_{\alpha,\beta})$; or la formule IV 7. appliquée à g implique

$$\varphi(x)g'(x) = e^{-2\alpha x}x^{-2\beta}g'(x) = \int_{x}^{+\infty} e^{-2\alpha u}u^{-2\beta}\frac{F(u)g(u)}{u^{2}}du,$$

ce qui donne bien

$$\frac{d}{dx}\left(\varphi(x)\frac{dg}{dx}\right) = -e^{-2\alpha x}x^{-2\beta}\frac{F(x)g(x)}{x^2} = -\frac{\varphi(x)}{x^2}F(x)g(x).$$

De plus IV 6., IV 8. montrent que g admet un DAS de coefficient initial λ et que g' admet aussi un DAS. Par conséquent f est une solution normale bornée de (\mathcal{E}) si $\lambda \neq 0$.

5. Soit f la solution normale bornée de (\mathcal{E}) associée à $\lambda=1$. Cherchons les solutions de (\mathcal{E}) sous la forme y=fw avec w de classe \mathcal{C}^2 (méthode de variation des constantes). La formule de Leibnitz donne y''=fw''+2f'w'+f''w, donc comme f''+qf=0 l'équation y''+qy=0 se réduit à fw''+2f'w'=0, soit w''/w'=-2f'/f. Une intégration conduit à $w'(x)=\mu/f(x)^2$, d'où $w(x)=\lambda+\mu\int_{x_1}^x 1/f(t)^2dt$ et

$$y(x) = \lambda f(x) + \mu f(x) \int_{x_1}^{x} \frac{1}{f(t)^2} dt.$$

Ce calcul suppose évidemment que f ne s'annule pas sur l'intervalle $[x_1, x]$; c'est bien le cas si x_1 est assez grand et $x \ge x_1$, puisque $f(x) = e^{-\alpha x} x^{-\beta} g(x)$ avec $\lim_{x \to +\infty} g(x) = \lambda = 1$. La fonction $h(x) = f(x) \int_{x_1}^x 1/f(t)^2 dt$ est bien solution de (\mathcal{E}) sur $[x_1, +\infty[$, et on sait a priori qu'elle se prolonge en une solution globale sur $[x_0, +\infty[$ (théorie des équations différentielles linéaires). Cette solution est indépendante de f puisque le rapport h/f est non constant (de dérivée $1/f^2 \ne 0$). Comme l'espace

vectoriel des solutions est de dimension 2, on en déduit que les solutions de (\mathcal{E}) sont les combinaisons linéaires $\lambda f + \mu h$. On a

$$h(x) = e^{-\alpha x} x^{-\beta} g(x) \int_{x_1}^x e^{2\alpha t} t^{2\beta} g(t)^{-2} dt = e^{\alpha x} x^{\beta} k(x) \quad \text{avec} \quad k(x) = g(x) \int_{x_1}^x e^{2\alpha (t-x)} \left(\frac{t}{x}\right)^{2\beta} g(t)^{-2} dt.$$

D'après I 5., $g(x)^{-2}$ admet un DAS de coefficient initial 1, et d'après II 2. la fonction $Q_{2\beta+n}$ associée à $(2\alpha, 2\beta+n)$ admet un DAS de coefficient initial $1/2\alpha$ (si Re $\alpha>0$). On en déduit facilement que k admet un DAS de coefficient initial $1/2\alpha$ (raisonner de manière analogue à IV 5.). Donc h est une solution normale non bornée, et toute solution y de (\mathcal{E}) non proportionnelle à f est de ce type si Re $\alpha>0$.

VII. UN EXEMPLE

1. Soit (\mathcal{E}_0) l'équation différentielle $y'' - \lambda^2 x^m y = 0$ avec Re $\lambda > 0$. On effectue le changement de variable $t = \int_0^x u^{m/2} du$ et le changement de fonction inconnue $y = x^{-m/4} z$. Il vient

$$dt = x^{m/2} dx$$
, $\frac{dy}{dx} = x^{m/2} \frac{dy}{dt}$, $\frac{d^2y}{dx^2} = \frac{m}{2} x^{m/2 - 1} \frac{dy}{dt} + x^m \frac{d^2y}{dt^2}$

et $t = \frac{1}{m/2+1}x^{m/2+1}$, d'où l'équation différentielle

$$x^{m} \frac{d^{2}y}{dt^{2}} + \frac{m}{2} x^{m/2 - 1} \frac{dy}{dt} - \lambda^{2} x^{m} y = 0 \Longleftrightarrow \frac{d^{2}y}{dt^{2}} + \frac{m/2}{m/2 + 1} \frac{1}{t} \frac{dy}{dt} - \lambda^{2} y = 0.$$

En multipliant ceci par $t^{\frac{m/4}{m/2+1}}$ et en utilisant la formule de Leibnitz, on obtient

$$\frac{d^2}{dt^2} \left(t^{\frac{m/4}{m/2+1}} y \right) - \frac{m/4}{m/2+1} \left(\frac{m/4}{m/2+1} - 1 \right) t^{\frac{m/4}{m/2+1}-2} y - \lambda^2 t^{\frac{m/4}{m/2+1}} y = 0,$$

soit, puisque $t^{\frac{m/4}{m/2+1}}y$ est proportionnel à $x^{m/4}y=z$:

$$\frac{d^2z}{dt^2} + \left(\frac{k}{t^2} - \lambda^2\right)z = 0, \quad \text{avec } k = \frac{m(m+4)}{4(m+2)^2}$$

2. Cette équation est de la forme y'' + qy = 0 avec $q(t) = -\lambda^2 + k/t^2$, et q satisfait les hypothèses du V. Le système (S) donne $\alpha^2 = \lambda^2$ et $2\alpha\beta = 0$, d'où $\alpha = \lambda$ et $\beta = 0$ puisqu'on convient de choisir $\operatorname{Re} \alpha \geq 0$. Comme les coefficients a_n du DAS de q sont nuls pour $n \geq 3$ et que $a_2 = k$, les coefficients c_n du DAS de q satisfont d'après V 3. la relation de récurrence

$$n(n+1)c_n + 2\lambda(n+1)c_{n+1} + kc_n = 0$$
, soit $c_{n+1} = -\frac{n^2 + n + k}{2\lambda(n+1)}c_n$, $c_n = -\frac{n^2 - n + k}{2\lambda n}c_{n-1}$.

En choisissant $c_0 = 1$, on obtient la solution normale bornée

$$f(t) = e^{-\lambda t} g(t), \quad g(t) \approx \sum_{n \in \mathbb{N}} (-1)^n \frac{k(2+k)\dots(n^2-n+k)}{(2\lambda)^n n!} t^{-n}.$$

L'autre solution de (\mathcal{E}_1) s'obtient en changeant formellement la racine λ en $-\lambda$, d'où

$$h(t) = e^{\lambda t} k(t), \quad k(t) \approx \sum_{n \in \mathbb{N}} \frac{k(2+k)\dots(n^2 - n + k)}{(2\lambda)^n n!} t^{-n}.$$

Ces DAS sont toujours divergents (règle de d'Alembert: $\lim_{n\to+\infty} |c_{n+1}/c_n| = +\infty$).

3. Considérons par exemple l'équation (\mathcal{E}_0) y'' - xy = 0 obtenue pour $\lambda = m = 1$. On trouve alors k = 5/36, $t = (2/3)x^{3/2}$ et $n^2 - n + 5/36 = (6n - 1)(6n - 5)/36$. Ceci donne pour (\mathcal{E}_0) deux solutions ayant des développements asymptotiques fractionnaires divergents:

$$y_1(x) \approx x^{-1/4} \exp\left(-\frac{2}{3}x^{3/2}\right) \sum_{n \in \mathbb{N}} (-1)^n \frac{\left[5 \dots (6n-1)\right] \left[1 \dots (6n-5)\right]}{48^n n!} x^{-3n/2},$$
$$y_2(x) \approx x^{-1/4} \exp\left(\frac{2}{3}x^{3/2}\right) \sum_{n \in \mathbb{N}} \frac{\left[5 \dots (6n-1)\right] \left[1 \dots (6n-5)\right]}{48^n n!} x^{-3n/2}.$$