Aula 4: Teoremas de Circuitos

Lista de material

- Fonte de alimentação;
- Multímetro;
- Resistores diversos;
- Potenciômetro de $10 \text{ k}\Omega$.

Instruções

Código de cores

Cores	1ª faixa: 1º digito	2ª faixa: 2º digito	3ª faixa: Multiplicador	4ª faixa: Tolerância
(Ausência)	-	-	-	20%
Prateado	-	-	10-2 = 0,01	10%
Dourado	-	-	10-1 = 0,1	5%
Preto	0	0	100 = 1	-
Marrom	1	1	101 = 10	1%
Vermelho	2	2	$10^2 = 100$	2%
Laranja	3	3	103 = 1 000	3%
Amarelo	4	4	104 = 10 000	4%
Verde	5	5	105 = 100 000	-
Azul	6	6	106 = 1 000 000	-
Violeta	7	7	107 = 10 000 000	-
Cinza	8	8	-	-
Branco	9	9	-	-

Roteiro da experiência

1) 1^a Lei de Kirchhoff:

a) Monte o circuito da figura abaixo e adote R_1 = 12 k Ω , R_2 = 120 Ω e R_3 = 1,2 k Ω . Na dúvida, meça os valores dos resistores com o multímetro.

- b) Ajuste a fonte V_F para 15 V.
- c) Conecte o multímetro em série com cada um dos resistores para medir a corrente. Anote os valores lidos na Tabela 1 e compare com os <u>valores teóricos</u>.

Tabela 1

Corrente	Valor teórico	Valor medido	Confere?
I_1			
I_2			
I_x			

o?	d) O que diz a 1ª de Kirchhoff? Ela está validada a partir desse experimento?

2) 2ª Lei de Kirchhoff:

a) Monte o circuito da figura abaixo e adote R_1 = 1,2 k Ω e R_2 = 560 Ω . Na dúvida, meça os valores dos resistores com o multímetro.

- b) Ajuste a fonte V_F para 15 V.
- c) Conecte o multímetro em paralelo com cada um dos resistores para medir a tensão. Anote os valores lidos na Tabela 1 e compare com os <u>valores teóricos</u>.

Tabela 2

Tensão	Valor teórico	Valor medido	Confere?
V_1			
V ₂			
V _F			

d) O que diz a 2ª de Kirchhoff? Ela está validada a partir desse experimento?				

3) Teorema de Thèvenin:

a) Monte o circuito abaixo adotando os valores indicados.

b) Meça os valores de tensão e corrente entre os pontos a e b adotando valores de resistência de carga de 2200 Ω , 3300 Ω e 5600 Ω . Anote os valores lidos na primeira coluna da Tabela 3.

Tabela 3

Carga	Tensão	Circuito original	Eq. de Thèvenin	Confere?
2200 Ω	V_{ab}			
	I_{ab}			
3300 Ω	V_{ab}			
	I _{ab}			
5600 Ω	V_{ab}			
	I_{ab}			

d) Monte o circuito equivalente de Thèvenin com os valores calculados, conforme ilustra a figura abaixo.

e) Meça os valores de tensão e corrente entre os pontos a e b adotando valores de resistência de carga de 2200 Ω , 3300 Ω e 5600 Ω . Anote os valores lidos na segunda coluna da Tabela 3.

4) Teorema da Máxima Transferência de Potência

- a) Utilize o mesmo circuito montado no item 3 (d), mas substitua o resistor de carga por um potenciômetro de 10 k Ω .
- b) Qual valor de resistência deve ser ajustado no potenciômetro para se obter a máxima transferência de potência?

-	

- c) Meça os valores de tensão e corrente entre os pontos *a* e *b* para diferentes valores de resistência de carga, incluindo a que garanta a máxima transferência de potência, e preencha a Tabela 4.
- d) Calcule a potência para cada ponto de operação medido e verifique a validade do teorema.

Tabela 4

Tensão	Corrente	Resistência	Potência

5) Teorema da Superposição

a) Monte o circuito abaixo adotando R_1 = 3,3 k Ω , R_2 = 3,3 k Ω , R_3 = 1,0 k Ω , V_1 = 5 V, V_2 = -15 V e V_3 = 15 V. Chame o professor para conferir a montagem do circuito.

b) Meça os valores de tensão e corrente no resistor R_3 . Anote os valores lidos na Tabela 5 e compare com os <u>valores teóricos</u>.

Tabela 5

Fontes	Tensão Teórica	Tensão Medida	Corrente Teórica	Corrente Medida
V1, V2 e V3				
Apenas V1				
Apenas V2				
Apenas V3				
Superposição				