Refuting CSPs: Even Covers to Eigenvalues to SDPs and Back

Pravesh Kothari CMU

Jackson Abascal CMU

Venkat Guruswami CMU/Berkeley

Peter Manohar CMU

Refuting CSPs

Refutation Algorithm:

Input: An instance ϕ of k-SAT with m clauses on n variables.

Output: A value $v \in [0, 1]$.

Correctness: $val(\phi) \le v$. " $val(\phi) = \max$ frac of constraints satisfiable"

The algorithm weakly refutes a formula ϕ if v < 1.

strongly refutes if $v < 1 - \delta$

 $\delta > 0$, abs. const.

Goal: refute largest possible family of instances ϕ : $val(\phi) < 0.99$.

Random: clause structure (instance hypergraph), literal patterns uniform random **Semi-random:** clause structure worst-case, literal patterns uniform random **Smoothed:** worst-case instance \rightarrow perturb each literal w.p. 0.01

The story of random k-SAT

```
Exp of
run-time
~ n
        [Chvátal-Szemerédi'88],...,
        [Beame-Pitassi'96],...,
        [Beame-Karp-Pitassi-Saks'98]
        No poly size resolution proofs when m \ll n^{k/2}
        [Grigoriev'01]...,
        [Barak,Chan,K'15]
        [K,Mori,O'Donnell,Witmer'17]
        Sum-of-Squares Lower Bounds
                                        n^{k/2}
                                                                        # of constraints m
                                                                            (in log-scale)
```

The story of random k-SAT

Over $x \in \{\pm 1\}^n$, 4-XOR constraints are of the form: $\{x_1x_2x_3x_4 = \pm 1, ...\}$

Instance: A 4-uniform hypergraph \mathcal{H} and a set of "RHS" b_C for each $C \in \mathcal{H}$.

$$\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_{C_1} x_{C_2} x_{C_3} x_{C_4} = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C$$

...is a deg 4 polynomial that computes "advantage over $\frac{1}{2}$ " of assignment x.

Goal: Certify that $\phi(x) \le \epsilon$ for all $x \in \{\pm 1\}^n$

Goal: Certify that
$$\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$$
 for all $x \in \{\pm 1\}^n$

Idea: write $\phi(x)$ as the quadratic form of some matrix! [Goerdt, Krivilevich'01...]

Analysis: Succeeds in refuting if $m \ge \sim n^2$.

Matrix Chernoff, trace method,...all work easily to bound $||A||_2$

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$

Which matrix?

"rectangulum non quadratum"

-Marcus Aurelius, 150 AD maybe

Goal: Certify that
$$\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$$
 for all $x \in \{\pm 1\}^n$

Which matrix? the n^2 by n^2 matrix of the "Cauchy-Schwarzed" instance...

Entries no longer independent ($\sim n^2$ non-zeros, $\sim n^{1.5}$ indep bits...)

Analyze spectral norm using the trace moment method, Needs randomness in both the clauses and the RHS

the trace moment method

[Fei'07] Weak ref for smoothed 3-SAT with $\tilde{O}(n^{1.5})$ clauses.

- Relies on spectral methods and even covers
- > Extends to 3-CSPs but not to strong ref or >3-CSPs.

[Abascal-Guruswami-K'21]

Poly time strong refutation of semirandom k-XOR with $m \sim n^{\frac{n}{2}}$ constraints.

A new analysis for the random case that only needs standard matrix conc.

Extend via SDP/SoS Proofs to semirandom setting with:

instance decomposition

+ row bucketing

The story of random k-SAT

The story of random k-SAT

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$ Full trade-off for 4-XOR? $n^{O(\ell)}$ time vs $m \sim \frac{n^2}{\ell}$ constraints.

[RRS'16] use a "symmetrized tensor power matrix" who quad. form is $\phi(x)^{2\ell}$

Issue: Fairly technical application of the trace method Crucially uses randomness of \mathcal{H} .

Two recent papers [Ahn'19, Wein-Alaoui-Moore'19] succeed in simplifying for even k.

[Wein-Alaoui-Moore'19] Introduce *Kikuchi* matrix and significantly simplify even-arity random k-XOR refutation.

Doesn't work for odd random k-XOR

Let's see their neat idea!

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$

Idea: write $\phi(x)$ as the quadratic form of a $\binom{n}{\ell} \times \binom{n}{\ell}$ matrix.

$$\begin{pmatrix}
[n] \\
\ell
\end{pmatrix} \ni \begin{cases}
b_C & \text{if } S\Delta T = C \\
0 & \text{otherwise}
\end{cases}$$

$$A = \sum_{C \in \mathcal{H}} A_C$$

Then,
$$\phi(x) = \frac{1}{D_{\ell}} (x^{\odot \ell})^{\mathsf{T}} A(x^{\odot \ell}) = \frac{1}{D_{\ell}} \sum_{S,T} A(S,T) x_S x_T$$

$$= \frac{1}{D_{\ell}} \sum_{S,T} A(S,T) x_{S\Delta T} \le \frac{1}{D_{\ell}} {n \choose \ell} ||A||_2$$

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$

Idea: write $\phi(x)$ as the quadratic form of a $\binom{n}{\ell} \times \binom{n}{\ell}$ matrix.

Analysis: How can we bound $||A||_2$?

Analysis: Apply matrix Chernoff inequality.

Succeeds in refuting if $m \ge \sim \frac{n^2}{\ell}$.

Strongly refuting semirandom k-XOR?

[Guruswami-K-Manohar'21]

 $n^{O(\ell)}$ time strong ref. of smoothed k-XOR with $m \sim n \left(\frac{n}{\ell}\right)^{\frac{n}{2}-1}$ constraints.

A new analysis via pruned-spectral-norm of a Kikuchi-like matrix for random...

Extend via SDP/SoS Proofs to semirandom and smoothed via:

A new hypergraph regularity decomposition lemma

- + pruned-spectral-norm (via conc of polynomials with combinatorial structure)
- + row bucketing + matrix conc.

The story of random k-SAT

The story of smoothed k-SAT

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Question: What's the maximum girth of a graph on n vertices and $\frac{nd}{2}$ edges?

for d=2: clearly, n (e.g., n-cycle).

for d>2: $\leq 2 \log_{d-1} n + 2$ [Alon, Hoory, Linial'02] "Moore Bound" sharp up to the factor 2 (e.g., some Ramanujan graphs)

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Moore bound: max girth of a graph on n vertices and $\frac{nd}{2}$ edges is $\sim 2 \log_{d-1} n$ What about 3 (and more generally, k)-uniform hypergraphs?

A cycle is a subgraph that touches every vertex an even # of times.

Hypergraph Cycles (Even Covers)

A hypergraph cycle = set of hyperedges touching each vertex an. even # of times.

= size of a smallest linearly-dependent subset of k-sparse linear equations mod 2.

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Moore bound: max girth of a graph on n vertices and $\frac{nd}{2}$ edges is $\sim 2 \log_{d-1} n$ Hypergraph Cycles (a.k.a. even covers)

A hypergraph cycle = set of hyperedges touching each vertex an. even # of times.

Feige's Conjecture (2008):

Every hypergraph with $m \sim n \cdot \left(\frac{n}{\ell}\right)^{\left(\frac{\kappa}{2}-1\right)}$ hyperedges has a cycle of length $\leq \ell \log_2 n$.

= rate-idles tange treade hypterformalishe withoutes with bakumry the parkengahity-though matrices.

Random hypergraphs known to achieve it (up to log factor slack in m).

Feige's Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008):

Every hypergraph with $m \ge n \cdot \left(\frac{n}{\ell}\right)^{\left(\frac{\kappa}{2}-1\right)}$ hyperedges has a cycle of length $\le \ell \log_2 n$.

there are $O(\frac{m}{\ell \log_2 n})$ hyperedge-disjoint cycles of length $\leq \ell \log_2 n$.

[Feige,Kim,Ofek'06]:

True for *random* k-uniform hypergraphs via a "2nd moment method" argument.

Non-trivial weak refutation for random k-XOR.

"non-trivial weak refutation of k-XOR" \rightarrow weak refutation of k-SAT.

Feige's Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008): Every hypergraph with $m \ge n \cdot \left(\frac{n}{\ell}\right)^{(\frac{k}{2}-1)}$ hyperedges has a cycle of length $\le \ell \log_2 n$.

[Feige,Kim,Ofek'06]:

True for *random* k-uniform hypergraphs via a "2nd moment method" argument.

[Naor-Verstraete'08], [Feige'08]:

True for all hypergraphs for $\ell = O(1)$ up to a $\log \log n$ factor slack in m.

[Alon, Feige'09]: A suboptimal trade-off for k=3: $m \sim \frac{n^2}{\ell}$ for $\ell \log_2 n$ length cycles.

[Feige, Wagner'16]: A combinatorial approach via sub-hypergraphs of bounded min-degree.

Feige's Conjecture: now a theorem!

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008): Every hypergraph with $m \ge n \cdot \left(\frac{n}{\ell}\right)^{(\frac{k}{2}-1)}$ hyperedges has a cycle of length $\le \ell \log_2 n$.

Theorem [Guruswami, K, Manohar'21]

Feige's conjecture is true for all k and ℓ up to a $\log^{2k} n$ factor slack in m

"Spectral double counting"

"No small hypergraph cycle \rightarrow no sub-exp size spectral refutations for semirandom k-XOR."

Gist: 1. If you randomly perturb each literal independently with small prob, the k-SAT instance becomes **as easy as random** with same # of constraints. For both algorithms, and FKO style certificates.

2. Spectral: Random:: SDP: Semirandom/Smoothed

3. Spectral succeeds only when there are even covers...

4.

"The only true wisdom is knowing that *Kikuchi* matrices are the right object for proving stuff about CSPs...or hypergraphs...or tensors..."

-Socrates, 350 BC maybe

Thank you.

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle.

Proof Idea:

If not, our refutation algo (with same ℓ) from previous slide works for *arbitrary* RHS b_C s. Since there are satisfiable k-XOR instances ($b_C = 1 \ \forall C$), contradiction.

Key Step:

If there are no cycles of length $\sim \ell \log_2 n$, then regardless of $b_C s$, can prove an **upper** bound on $|A|_2$ that matches the one when $b_C s$ are indep. random.

fixed, deterministic matrix.

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle.

Key Step:

If there are no cycles of length $\sim \ell \log_2 n$, then regardless of $b_C s$, can prove an upper bound on $|A|_2$ that matches the one when $b_C s$ are indep. random.

Trace Method:
$$||A||_2 \sim Tr(A^{2r})^{\frac{1}{2r}}$$
 for $r \sim \log\binom{n}{\ell} \sim \ell \log_2 n$.

$$Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$$

"2r-length walk" on "vertices" of the "Kikuchi Graph"

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. **Trace Method:** $||A||_2 \sim Tr(A^{2r})^{\frac{1}{2r}}$ for $r \sim \log\binom{n}{\ell} \sim \ell \log_2 n$.

$$Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$$

Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \oplus S_2 = C$ for some $C \in \mathcal{H}$.

Each term contributes a +1 or 0. So RHS is the number of contributing walks.

When $b_C s$ are independent ± 1 , only "even returning walks" contribute.

Returning Walk: walk that uses the same "edge" (i.e., (T, U)) an even # of times.

Observation: If \mathcal{H} has no cycle of length $\sim \log \binom{n}{\ell}$, exact same set of walks contribute regardless of $b_C s$.

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle.

$$Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$$

Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \oplus S_2 = C$ for some $C \in \mathcal{H}$.

Observation: If \mathcal{H} has no cycle of length $\sim \log \binom{n}{\ell}$, only even returning walks contribute.

Proof: Any contributing term $(S_1, S_2, ..., S_{2r})$ corresponds to $S_1, C_1, C_2, ..., C_{2r}$.

$$S_1 \oplus S_2 = C_1$$

$$S_2 \oplus S_3 = C_2$$
...
$$S_{2r} \oplus S_1 = C_{2r}$$

Add both sides modulo 2,

$$C_1 \oplus C_2 \cdots \oplus C_{2r} = 0$$

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle.

$$Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$$

Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \oplus S_2 = C$ for some $C \in \mathcal{H}$.

Observation: If \mathcal{H} has no cycle of length $\sim \log \binom{n}{\ell}$, only even returning walks contribute.

Proof: Any contributing term $(S_1, S_2, ..., S_{2r})$ corresponds to $S_1, C_1, C_2, ..., C_{2r}$.

$$C_1 \oplus C_2 \cdots \oplus C_{2r} = 0$$

If all C_i s are distinct, must be a cycle of length 2r in \mathcal{H} .

So, can happen only if each C_i occurs an even number of times.

⇔ the corresponding walk is **even returning**.

What about *semi-random* instances?

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$ \mathcal{H} arbitrary (worst-case), b_C s indep. random.

Spectral norm of A is too large and cannot work.

Obs: "Offending" quadratic forms are on *sparse* vectors. While we only care about "flat" vectors.

"Row bucketing" allows bounding flat quadratic forms of semirandom matrices.

[Abascal, Guruswami, K'20]

What about *odd-arity* instances?

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$ \mathcal{H} arbitrary (worst-case), b_C s indep. random.

Define an appropriate Kikuchi matrix.

Spectral norm of A is too large and cannot work even for random 3-XOR!.

Idea: "Row Pruning" - removing some appropriate rows enough for random case.

More generally, works for hypergraphs with small spread.

Hypergraph Regularity Decomposition:

Decompose a k-uniform hypergraph into k'-uniform hypergraphs for $k' \le k$ + "error" such that each non-error piece has *small spread*.

What about semi-random instances?

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$

Let's now see how to improve this to a full trade-off for 3-XOR....

Issue: Natural matrices are rectangular. So spectral norm works only if $m \gg n^2$.

Idea: "Cauchy-Schwarz trick"

$$\phi(x)^{2} = \left(\frac{1}{m}\sum_{i}x_{i}\sum_{C\ni i}b_{C}x_{C\setminus i}\right)^{2} \leq \frac{n}{m^{2}}\sum_{C,C'\ni i}b_{C}b_{C'}x_{C\setminus i}x_{C'\setminus i}$$
4-xor clause

Now use the square matrix for 4-XOR.

Issue: Significantly less randomness in matrix A than in case of 4-XOR. Analysis via trace-moment method. Crucially uses randomness of \mathcal{H} .

