ViennaSHE: A Semiconductor Device Simulator based on the Spherical Harmonics Expansion Method

Karl Rupp^{1,2}, Markus Bina¹, Andreas Morhammer¹, Tibor Grasser¹, Ansgar Jüngel²

 Institute for Microelectronics
 Institute for Analysis and Scientific Computing Technische Universität Wien, Austria

Applied Mathematics and Simulation for Semiconductors March 13th, 2015 - WIAS Berlin, Germany

Contents

The Spherical Harmonics Expansion Method

Unstructured grids
Adaptive variable-order expansions
Parallelization

ViennaSHE

Features and rationale
Development infrastructure
User requirements

Semiconductor Devices in 3D: FinFET

Semiconductor Devices in 3D: FinFET

Electron Energy Distribution?

Electron Energy Distribution?

Macroscopic Transport Models

Invalid in deca-nanometer regime
"Fitting" only treats the symptoms, not the cause
Only averaged quantities of the carrier ensemble modeled

Boltzmann Transport Equation (BTE)

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{k}) \cdot \nabla_{\mathbf{x}} f + \mathbf{F}(\mathbf{x}) \cdot \nabla_{\mathbf{k}} f = Q\{f\}$$

Best semi-classical description of carrier transport Posed in a seven-dimensional (x, k, t) space Most popular solution method: Monte Carlo

Electron Energy Distribution?

Spherical Harmonics Expansion Method

Spherical Symmetries

Maxwell distribution of carriers at equilibrium Dispersion relation (Herring-Vogt transform, approx.)

Spherical Harmonics Expansion (SHE)

$$f(\boldsymbol{x}, \boldsymbol{k}, t) \simeq \sum_{l=0}^{L} \sum_{m=-l}^{l} f_{l,m}(\boldsymbol{x}, E, t) Y_{l,m}(\theta, \varphi)$$

New unknowns: $f_{l,m}(\mathbf{x}, E, t)$

Solution in five-dimensional (x, E, t)-space

S.-M. Hong and C. Jungemann, *J Comput Electron* (2009): Fifth-order, three-dim. (x, E)-space, 26 GB memory, 12 hours

Unstructured Grids

Unstructured Grids

State-of-the-art in modern TCAD

Only structured grids in publications on higher-order SHE in 2D [S.-M. Hong and C. Jungemann (2008), S.-M. Hong and C. Jungemann (2009)]

Extension of discretization proposed by Hong and Jungemann

Summary

Spherical Harmonics Expansion

$$f(\boldsymbol{x}, \boldsymbol{k}, t) \simeq \sum_{l=0}^{L} \sum_{m=-l}^{l} f_{l,m}(\boldsymbol{x}, E, t) Y_{l,m}(\theta, \varphi)$$

 $(L+1)^2$ unknown functions $f_{l,m}(x,E,t)$

L=0 sufficient in equilibrium

Higher-order expansions in active regions

Therefore: Variable-order SHE:

$$f(\boldsymbol{x}_i, \boldsymbol{k}_n, t) \simeq \sum_{l=0}^{L(\boldsymbol{x}_i, E_n)} \sum_{m=-l}^{l} f_{l,m}(\boldsymbol{x}_i, E_n, t) Y_{l,m}(\theta, \varphi)$$

How to choose $L(x_i, E_n)$ in the simulation domain?

Motivation from Fourier series

L = 3: 306 261 instead of 476 061 unknowns (factor 1.5)

L = 5: 606 671 instead of 1 146 120 unknowns (factor 1.9)

Summary

Preconditioner for Iterative Linear Solvers

No fast general-purpose parallel preconditioner available Physics-based parallel block preconditioner developed

Scaling of Solution Variables

Exponential decay with energy: $f(E_i) \sim \exp(-\frac{E_i}{k_{\rm R}T})$

Rescale unknowns: $\tilde{f}(E_i) = \exp(\frac{E_i}{k_{\rm B}T})f(E_i)$

Benchmark results for a FinFET (INTEL Core i7 960, NVIDIA GTX 580)

Benchmark results for a FinFET (INTEL Core i7 960, NVIDIA GTX 580)

Results

Results

Summary

ViennaSHE

Features

Unstructured grids in 1d, 2d, 3d

Adaptive variable-order expansions

Parallelization (shared memory, GPUs)

Carrier-carrier scattering

Free open source MIT/X11 license

Rationale

Open Science

Reproducibility

Extensibility

"More than toy problems"

Development Infrastructure

Developer Repository on GitHub

Development Infrastructure

Nightly Test Suite

Nightly										
Site	Build Name	Update	Configure		Build		Test			Build Time
		Files	Error	Warn	Error	Warn	Not Run	Fall	Pass	Juliu Tillio
jwein3	■ Darwin-GCC-4.2.1-Debug-master ④		0	0	0	0	0	- 1	28	Mar 12, 2015 - 08:45 UTC
jwein3	■ Darwin-GCC-4.2.1-Debug-next		0	0	0	0	0	- 1	29	23 hours ago
centos5	∆ Linux-GCC-4.1.2-Debug-master		0	0	0	0	0	- 1	28	21 hours ago
centos5	△ Linux-GCC-4.1.2-Debug-next ④		0	0	0	0	0	- 1	29	22 hours ago
jwein3	■ Darwin-GCC-4.2.1-Release-master		0	0	0	0	0	0	29	23 hours ago
jwein3	Darwin-GCC-4.2.1-Release-next		0	0	0	0	0	0	30	23 hours ago
krupp2	△ Linux-Clang-3.3-Debug-master		0	0	0	0	0	0	29	Mar 12, 2015 - 04:34 UTC
krupp2	△ Linux-Clang-3.3-Debug-next		0	0	0	0	0	0	30	Mar 12, 2015 - 03:58 UTC
krupp2	△ Linux-Clang-3.3-Release-master		0	0	0	0	0	0	29	Mar 12, 2015 - 04:05 UTC
krupp2	△ Linux-Clang-3.3-Release-next		0	0	0	0	0	0	30	Mar 12, 2015 - 03:28 UTC
centos5	△ Linux-GCC-4.1.2-Release-master		0	0	0	0	0	0	29	21 hours ago
centos5	∆ Linux-GCC-4.1.2-Release-next		0	0	0	0	0	0	30	23 hours ago
centos5	△ Linux-GCC-4.4.7-Debug-master		0	0	0	0	0	0	29	22 hours ago
centos5	∆ Linux-GCC-4.4.7-Debug-next		0	0	0	0	0	0	30	23 hours ago
centos5	△ Linux-GCC-4.4.7-Release-master		0	0	0	0	0	0	29	22 hours ago
centos5	∆ Linux-GCC-4.4.7-Release-next		0	0	0	0	0	0	30	23 hours ago
krupp2	△ Linux-GCC-4.8.2-Debug-master		0	0	0	0	0	0	29	Mar 12, 2015 - 04:07 UT
krupp2	∆ Linux-GCC-4.8.2-Debug-next		0	0	0	0	0	0	30	Mar 12, 2015 - 03:30 UT

Development Infrastructure

Library Centric Development

User Requirements

Input/Output

Reader/writer for commercial file formats Material parameter tweaks Robustness of solver

Lessons Learnt

C++ is a golden cage Long-term investments in research hard Each parameter needs to adjustable

Conclusion

SHE Method

Viable alternative to Monte Carlo
Full 3d device simulations possible
Convergence behavior similar to drift-diffusion model

ViennaSHE

Free open source simulator based on SHE method Fully open development infrastructure http://viennashe.sourceforge.net/

Thanks to the organizers for AMaSiS 2015!

