0.1. Integration and measure

• Dirichlet's function: $f:[0,1]\to\mathbb{R}$,

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

1. The real numbers

- $a \in \mathbb{R}$ is an **upper bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \leq a$.
- $c \in \mathbb{R}$ is a **least upper bound (supremum)** if $c \leq a$ for every upper bound a.
- $a \in \mathbb{R}$ is an **lower bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \geq a$.
- $c \in \mathbb{R}$ is a **greatest lower bound (supremum)** if $c \geq a$ for every upper bound a.
- Completeness axiom of the real numbers: every subset E with an upper bound has a least upper bound. Every subset E with a lower bound has a greatest lower bound.
- Archimedes' principle:

$$\forall x \in \mathbb{R}, \exists n \in \mathbb{N} : n > x$$

- Every non-empty subset of \mathbb{N} has a minimum.
- The rationals are dense in the reals:

$$\forall x < y \in \mathbb{R}, \exists r \in \mathbb{Q} : r \in (x, y)$$

1.1. Conventions on sets and functions

• For $f: X \to Y$, **preiamge** of $Z \subseteq Y$ is

$$f^{-1}(Z) := \{ x \in X : f(x) \in Z \}$$

• $f: X \to Y$ injective if

$$\forall y \in f(X), \exists ! x \in X : y = f(x)$$

• $f: X \to Y$ surjective if Y = f(X).

1.2. Open and closed sets

• $U \subseteq \mathbb{R}$ is open if

$$\forall x \in U, \exists \varepsilon : (x - \varepsilon, x + \varepsilon) \subseteq U$$

- Arbitrary unions of open sets are open.
- Finite intersections of open sets are open.
- $x \in E \subseteq \mathbb{R}$ is **point of closure** if

$$\forall \delta > 0, \exists y \in E : |x - y| < \delta$$

Equivalently, x is point of closure if every open interval containing x contains another point of E.

- Closure of E, \overline{E} , is set of points of closure.
- If $A \subset B \subseteq \mathbb{R}$ then $\overline{A} \subset \overline{B}$. Exercise (todo): prove this.
- $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

2. Further analysis of subsets of \mathbb{R}

TODO: up to here, check that all notes are made from these topics

2.1. Countability and uncountability

- A is **countable** if $A = \emptyset$, A is finite or there is a bijection $\varphi : \mathbb{N} \to A$ (in which case A is **countably infinite**). Otherwise A is **uncountable**. φ is called an **enumeration**.
- Examples of countable sets:
 - \mathbb{N} $(\varphi(n) = n)$
 - $2\mathbb{N} \ (\varphi(n) = 2n)$
- Exercise (todo): show that any subset of \mathbb{N} is countable.
- Exercise (todo): show that if there is an injection from A to \mathbb{N} , or if there is a surjection from \mathbb{N} to A, then A is countable.
- Q is countable.
- Exercise (todo): show that \mathbb{N}^k is countable for any $k \in \mathbb{N}$.
- Exercise (todo): show that if a_n is a nonnegative sequence and $\varphi : \mathbb{N} \to \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}a_{\varphi(n)}$$

• Exercise (todo): show that if $a_{n,k}$ is a nonnegative sequence and $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}a_{n,k}=\sum_{n=1}^{\infty}a_{\varphi(n)}$$

- $f: X \to Y$ is monotone if $x \ge y \Rightarrow f(x) \ge f(y)$ or $x \le y \Rightarrow f(x) \ge f(y)$.
- Let f be monotone on (a, b). Then it is discountinuous on a countable set.
- Set of sequences in $\{0,1\},$ $\{((x_n))_{n\in\mathbb{N}}: \forall n\in\mathbb{N}, x_n\in\{0,1\}\}$ is uncountable.
- \mathbb{R} is uncountable.

TODO: problem sheet one