Task 1

Emissivity (ε): the ratio of the energy radiated from a material's surface to that radiated a blackbody, at the same temperature, wavelength and under the same viewing conditions

Absorptivity(\alpha): the property of a body that determines the fraction of incident radiation absorbed or absorbable by the body.

Reflectivity(p): the property of a body that determines the total radiations reflected by the surface at a given temp. divided by the quantity of incident radiations on the same surface.

The view factor: The view factor F12 is the fraction of energy exiting an isothermal, opaque, and diffuse surface 1 (by emission or reflection), that directly intercepted by surface 2 (to be absorbed, reflected, or transmitted).

 $F_{12} \ = \frac{\dot{q}_{\downarrow} emittedBySurface1 And Receivedin Surface2}{\dot{q}_{emittedBySurface1}}$

The heat exchange between two Black surfaces:

- A blackbody is considered as a perfect emitter and absorber of radiation
- A black body is body that completely absorbs all wavelengths of thermal radiation incident on it.
 Such bodies do not reflect light.
- The radiation energy per unit time from a black body is proportional to the fourth power of the absolute temperature and can be expressed with Stefan-Boltzmann Law as

 $q = \sigma T^4 A$

where

q = heat transfer per unit time (W) σ = 5.6703 10⁻⁸ (W/m²K⁴) - **The Stefan-Boltzmann Constant** T = absolute temperature in kelvins (K) A = area of the emitting body (m²)

The heat exchange between two Gray surfaces: is a surface which its properties are independent from wavelength. Therefore, the emissivity of a gray, diffuse surface is the total hemispherical (or simply the total) emissivity of that surface. A gray surface should emit as much as radiation as the real surface it represents at the same temperature

All the surfaces of the enclosure are opaque ($\tau = 0$), diffuse and gray

- Radiative properties such as ρ , ϵ and α are uniform and independent of direction and frequency
- Irradiation and heat flux leaving each surface are uniform over the surface
- Each surface of the enclosure is isothermal
- The enclosure is filled with a non-participating medium (such as vacuum or air)

Radiative resistances: It is the resistance produced by the media to transfer radiation. It is found between the emissive power of the surface i and the radiosity produced by the same surface used to measure the energy produced by the loss of resistance

Task 2

Radiative heat exchange between two parallel plates

$$A_1 = 1.5 \text{ m}_2$$
, $F_{12} = 0.01$, $T_1 = 298 \text{ K}$, $T_2 = 308 \text{ K}$, $\sigma = 5.67*10-8 \text{ W/m}2\text{K}$ 4

$$\begin{array}{c}
\varepsilon_{1} = 0.2 \\
T_{1} = 800 \text{ K} \\
\dot{Q}_{12} \\
\varepsilon_{2} = 0.7 \\
T_{2} = 500 \text{ K}
\end{array}$$

• When the $\epsilon_1 = \epsilon_2 = 0.1$

$$\dot{Q'}_{12} = \frac{A\sigma(T_1^4 - T_2^4)}{\frac{1}{\epsilon'_1} + \frac{1}{\epsilon'_2} - 1} = A * 5.67 * 10^{-8} * \frac{800^4 - 500^4}{\frac{1}{0.1} + \frac{1}{0.1} - 1} = 1035.72W.A$$

• When the ϵ_1 =0.2 and ϵ_2 =0.7

$$\dot{Q}_{12} = \frac{A\sigma(T_1^4 - T_2^4)}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1} = A * 5.67 * 10^{-8} * \frac{800^4 - 500^4}{\frac{1}{0.2} + \frac{1}{0.7} - 1} = 3624.68 \, W. A$$

Therefore, We can conclude that the emissivity is directly proportional to the radiation of heat transfer.