

Optimize Performance:

Start your algorithm development with the imaging subsystem

Ryan Johnson

May 2018

twisthink

Twisthink – Booth #109

Leading business through the art + science of what's next

Human Centered Design

Embedded Vision

Αl

Connectivity

Internet of Things

UI / UX

Vision-based Detection System

Start your algorithm development with the imaging subsystem

Vision-based Detection System

Start your algorithm development with the imaging subsystem

Why?

- Algorithm performance is limited by image quality
- Imaging subsystems are complex

Outline

Start your algorithm development with the imaging subsystem

IterationSampling and SharpnessEvaluation

Iterative Approach

Build-Measure-Learn: A flexible framework for focused learning Iteration leads to an optimized solution

Linear Barcode Reader Example

Outline

Start your algorithm development with the imaging subsystem

Iteration

Sampling and Sharpness

Evaluation

Sampling

Sampling is pixel count over a given area (e.g. pixels per inch)
Insufficient sampling reduces discriminating detail

Sampling Requirements:

- Physical size of distinguishing features
- Max detection distance
- Start with 4-5 pixels across key features

Sampling: Image Subsystem Parameters

Use a camera model to quickly evaluate sampling

	Inputs			
Image Sensor				
Horizontal Pixel Count	2592	Horizontal Dimension (mm)	5.70	Sensor Spatial Resolution (lp/mm) 227.27
Vertical Pixel Count	1944	Vertical Dimension (mm)	4.28	
Pixel Size (um)	2.2	Diagonal Dimension (mm)	7.13	
		Optical Format (in)	0.42	
Lens				
Focal Length (mm)	2.2	Horizontal FOV (degrees)	104.69	Note: FOV as focused at infinity
F/#	2	Vertical FOV (degrees)	88.37	
Circle of Confusion (mm)	0.00334	Diagnonal FOV (degrees)	116.63	Near Sampling (px per mm) 6.13701
Focus Distance (mm)	213.25	Hyperfocal Distance (mm)	726.75	Far Sampling (px per mm) 3.34788
		Near DOF (mm)	165.15	Near Magnification 0.01350
		Far DOF (mm)	300.90	Far Magnification 0.00736
		DOF Working Distance (mm)	135.75	

Download Twisthink worksheet at: www.twisthink.com/embedded-vision-summit

Sharpness

Sharpness is a measure of spatial frequency

Blur reduces high-frequency content and discriminating detail

Use a sensitivity study to understand sharpness requirements

Sharpness: Image Subsystem Parameters

Static

Environment Fog, particulate, lens surface contaminate, ...

Lens Temperature, mfg. variation, ...

Image Sensor Varies with wavelength

Dynamic

Motion speed Limit speed, limit exposure

Exposure duration Affects image brightness, lighting intensity, ...

Outline

Start your algorithm development with the imaging subsystem

Iteration

Sampling and Sharpness

Evaluation

Algorithm Development Framework

Modeling Signal Path

Modeling Signal Path

Conclusions

Start your algorithm development with the imaging subsystem

Iteration Be focused and intentional Find the right solution

Sampling and Sharpness

High-impact image quality factors
Focus here first

Evaluation Use datasets and modeling Evaluate often

Resources

Edmund Optics MTF Intro

Measuring Sharpness

Slanted Edge: International Standard ISO 12233:2000(E)

www.twisthink.com/embedded-vision-summit

- Download Presentation
- Download Twisthink Sampling Worksheet

Appendix

Finding the Right Solution

Image Subsystem "Noise Sources"

Noise Source	Image Degradation	Improvement Options
Insufficient sampling	Loss of spatial information, aliasing artifacts (Moiré patterns, staircasing)	Higher resolution sensor, increased magnification, anti-aliasing filters
Blur	Removal of high frequency content, Reduction in discriminating detail	Increased lens quality, sharpening algorithms
Low Signal Amplitude	Reduced signal-to-noise ratio (SNR)	Increased exposure time/gain, increased light source intensity, improved sensor sensitivity
Image Noise	Additive random unwanted signal, Reduced signal-to-noise ratio (SNR)	Minimize gain, filtering, temporal averaging, increased contrast, improved pixel design
False contouring (low gray-level quantization)	Dull and washed out gray look, saturated or undersaturated signal	Increased quantizer levels, high dynamic range sensor
Color Inaccuracy	Loss of discriminating color information	Auto white balance, color calibration
And others		

Sharpness: Neglecting Effect of Temperature

Sharpness per Temperature

