openOBD Automotive Telematics Unit

Nicholas Mulvenna Kaibo Ma

Ehsan Ahmadi

Isaiah Thiessen

Project Goal

- Vehicle data acquisition through OBD-2 port
- Open source platform
- Easy integration of new hardware & software
- Modular software & hardware design
- More control over functions & features
- More customizable data from devices

What is OBD-2?

OBD-2 is a standard for vehicle self-diagnostic and reporting. (mandatory in U.S. since 1996)

It provides real time data communication in addition to a set of diagnostic trouble codes called PIDs (Parameterized IDs).

0A	1	Fuel pressure (gauge pressure)	0	765	kPa	3A
0в	1	Intake manifold absolute pressure	0	255	kPa	A
0C	2	Engine RPM	0	16,383.75	rpm	$\frac{256A+B}{4}$
0D	1	Vehicle speed	0	255	km/h	A
0E	1	Timing advance	-64	63.5	° before TDC	$\frac{A}{2}-64$
0F	1	Intake air temperature	-40	215	°C	A-40

What is CAN Bus?

CAN = Controller Area Network

(found in most N. American cars ~2001 onward)

CANbus is composed of nodes connected to a bus.

It is a multi-master serial bus, i.e. there is no single centralized processing unit.

Each Node (or ECU, Electronic Control Unit) consists of:

- A Processing Unit / CPU (e.g. a microcontroller)
- A CAN Controller
- A CAN Transceiver

High-Level Design

CPU: Raspberry Pi Zero

Communicates with all hardware

Power: Wide input switching buck converter

Provides power from OBD

Ignition on/off detection for low power mode

CAN: Controller implements CAN protocol

Transceiver translates signals to and from bus

Sensors: GPS+GSM module provides

GPS data and network connectivity;

IMU provides accel, gyro, temperature,

ADC for battery voltage

Code: Python Scripts read inputs,

Object/Interface-oriented framework

Hardware Design Choices

Raspberry Pi Zero: Great online community

Plenty of processing power for a small cost

GPIO for hardware interface

Power Supply: Reduces energy consumption. Less heat dissipated

High Frequency, small footprint, wide input range

CAN: Linux drivers + open source libraries available for controller

Simple interfacing over SPI, 3.3V compatible

Sensors: Simple interfacing over I2C (IMU module), Open Source libraries

Network/GPS: SIM808 module combines 2 features; open

documentation & simple implementation; smaller footprint

PCB (rev 1.0)

High density compact design.

Only 3mm wider than Raspberry pi 0 footprint.

External antenna connections.

Sim card holder and ignition detection for low power mode

Software Design - Overview

Software Design - Devices

Software Testing - Example using a Mock Class

