基礎化學

第五章 生活中的物質

- 5-1 食品與化學:
- 1. 醣:分為單醣、雙醣及多醣

	單醣	雙醣	多醣
結晶性	白色結晶	白色結晶或無定形	無定形
溶解性	易溶於水	可溶於水	多不溶於水
甜味	有	有	無
分子式	$C_n(H_2O)_m$	$C_n(H_2O)_m$	$(C_6H_{10}O_5)_n$
組成	單醣	二個單醣縮合反應去	多個單醣縮合反應去
		$-分子H_2O$	多分子 <i>H₂O</i>
實例	葡萄糖、果糖、半乳	蔗糖、麥芽糖、乳糖	澱粉、幾丁質、纖維
	糟		素、肝醣

- (1)兩個以上的單醣可以縮合聚合成雙醣或多醣,反之,雙醣或多醣也可以 水解成為小分子的醣。
- (2) 澱粉的水解過程

$$(C_6H_{10}O_5)_n + nH_2O \rightleftharpoons nC_6H_{12}O_6$$

澱粉—^{水解}→糊精—^{水解}→寡糖—^{完全水解}→葡萄糖

寡糖: 單醣數在 2~10 的醣類縮合物稱為寡糖。

(3) 雙醣的水解

蔗糖 葡萄糖 + 果糖

乳糖 + 水 $\xrightarrow{H^+}$ 葡萄糖 + 半乳糖

麥芽糖 葡萄糖 + 葡萄糖

(4) 人體內的葡萄糖由氧化作用,把貯存在分子內的化學能釋放出來,供應 日常活動所需之能量。每克葡萄糖完全氧化成二氧化碳和水,大約放出 15.6kJ 的能量。

(5)醣類的檢驗

- (a) 澱粉遇到碘液呈藍色。
- (b)醣類遇濃硫酸會產生焦黑的碳。
- (c) 葡萄糖遇到熱的本氏液或斐林試液(藍色,含 Cu^{2+})都生成紅色氧化亞銅 (Cu_2O) ,而蔗糖及多醣不具還原性,沒有反應。

2. 蛋白質:

(1)蛋白質是由胺基酸聚合而成,人體的必需胺基酸有二十餘種。胺基酸的通

(2) 胺基酸的結構:由式中 R 示不同的取代基,

如甘胺酸 麩胺酸

$$\begin{array}{ccc} H & H \\ H-\overset{\mid}{C}-COOH & HOOC-CH_2-CH_2-\overset{\mid}{C}-COOH \\ NH_2 & NH_2 \end{array}$$

(3)蛋白質的水解與聚合

- (4)蛋白質的功用:
 - (a) 構成身體的組織,如肌、膚、羽、角等。
 - (b)組成各種酵素以利用動物內各項作用進行。
 - (c) 當解毒劑,因蛋白質加氯化汞會凝聚,誤用氯化汞或其他重金屬如銀、 鉛而中毒,常用牛奶或蛋白質為解毒劑。
- (5)蛋白質的檢驗
 - (a) 可溶於水的蛋白質,遇熱凝固,如雞蛋蛋白質受熱,由透明狀凝固成白色塊狀。
 - (b)蛋白質遇濃硝酸呈黃色,再加入過量氨水轉呈橙色。
- (6)蛋白質腐敗:蛋白質在空氣中放置過久會因細菌分解而腐敗 產生 H_2S, NH_3 及硫醇等臭氣及有毒的屍鹼(戊二胺, $NH_2(CH_2)_5NH_2$),誤食 容易發生食物中毒。
- (7)必需胺基酸為人體生長發育所必需,但身體無法自行合成的,一般動物性蛋白質所含必需胺基酸的種類較完全,營養價值較高。

3. 脂肪:

(1)結構:脂肪是由有機酸與醇類所形成的酯類

(2)分類:

- (4) 脂肪酸中的碳鏈若含有雙鍵,稱為不飽和脂肪酸,不飽和脂肪酸較易為人 體分解吸收。如麻油就含有較多的不飽和脂肪酸。
- (5)人類代謝食物的順序,首先是醣類,其次是脂肪,最後才是蛋白質,若是 攝取太多,則過多的熱量會以脂肪的形式貯存於人體而導致肥胖。

4. 茶:

不醱酵茶: 先用蒸氣或焙炒方法破壞茶葉中之氧化酵

素,使其失去活性而乾燥之,如緣茶等。 職酵茶:把茶葉加以萎凋、揉捻等操作,利用茶葉中之 氧化酵素的作用,使其酸酵後再焙炒製造之, 如紅茶等。

使氧化酵素之作用達某一程度,尚未醱酵完 全即焙炒而製造之,如烏龍茶等。

(2)成分:

茶

咖啡因及茶鹼:使茶具有苦味,有與奮及利尿的功能,

濃茶有助於中毒症狀之解除。

鞣質(單字):使茶具有澀味,與亞鐵離子(Fe²⁺)會形

成藍黑色的鞣酸亞鐵。

揮發油:使茶具有香味及顏色,包括茶黃素、茶玉紅素 等多元酚,可以阻斷氧的自由基,可以幫助預 防心臟病、肝病和中風。

黃酮醇:無色可溶於水,可與尿激酶結合,而抑制癌細 胞所需尿激酶的活性,綠茶含量較紅茶多。

其他:灰分(含鈣、鉀、磷酸等)、少量的維生素 B 及 C

茶鹼結構式

(3) 茶的學問:泡茶要注意水質、水量、水溫及浸泡時間。

(1)水質:泡茶時使用蒸餾水、軟水、或永久硬水,泡出茶的茶色較清淺,但暫時硬水(含碳酸氫鈣)的鹼性較強,會增加多元酚的游離數量,使茶顏色變深。

(2)浸泡時間:茶葉浸泡時間較長,則單寧酸濃度增加,茶味 較澀。適當的泡茶時間以能使咖啡因充分溶 解,並含適量的單寧酸為官。

(4) 喝茶解酒:這是錯誤的觀念,酒在正常情況下,是在肝臟中 氧化為乙醛,再氧化成乙酸排出體外,但茶是利 尿性,在有毒的乙醛未能完全氧化成乙酸前,即 經過腎臟,會損害腎臟。

5. 咖啡:

(1)製造:

- (2)目前流行的「即溶咖啡」的製法,是以咖啡豆和配料混合後,先經烘焙再研碎,並加熱水萃取可溶性成分。過濾後,以真空昇華法將濾液中的水分揮發,乾燥後形成粉粒或結晶,即是「即溶咖啡」。
- (3) 喜愛咖啡的香味,又不想攝取太多的咖啡因,可嘗試「無咖啡因咖啡」,其製法把濕豆放入壓力鍋內加熱到 70°C,將超臨界二氧化碳流體通過,把咖啡因萃取帶走,以免除傳統用有機溶劑萃取,易有溶劑殘留的缺點。

5-2 衣料與化學

1. 纖維:

(1)

各種纖維的比較

最份經濟。	植物纖維	動物纖維	人造纖維
例子	棉、麻	(蠶)絲、(羊)毛	再生:醋酸纖維、 嫘縈
(3) 88 88		,	合成:耐綸、奧 綸、達克 綸
主要成分	纖維素 (多醣類)	蛋白質	再生:纖維素 合成:不一定
遇酸	遇硫酸脫 水呈焦炭	遇硝酸呈黃色	較耐酸
遇鹼	耐鹼	皺縮(不可在肥 皂水中清洗)	耐鹼
漂白(氯)	可	不可	可(耐綸),不可 (達克綸)
點火燃燒	不生臭味	難聞氣味,捲曲	末端呈小球狀
		(微氨臭及硫化 物)	
特性	柔軟、舒 適、透氣	彈性、保暖	不變形,不透氣 保暖,易生靜電

(2) 合成纖維:耐綸以-COOH及 $-NH_2$ 脫水產生醯胺鍵聚合而成,比較像蛋白質;奧綸以C=C-CN 聚合而成的聚烯類;達克綸以-COOH及-OH形成的聚酯類。

2. 肥皂和清潔劑:

(1) 皂化反應: $C_3H_5(OCOR)_3 + 3NaOH \rightarrow 3RCOONa + C_3H_5(OH)_3$

脂肪酸甘油脂 脂肪酸鈉(肥皂) 丙三醇比較

(2) 比較

	肥皂	合成清潔劑
製造原料	天然油脂皂化	精煉石油所得的產品再處理
分子中的親 水性離子團	COO- (羧基)	─SO ₃ ¯(磺酸基)或─OSO ₃ ¯ (硫酸根)
在酸性水中 的清潔效能	清潔效能降低	清潔效能不受影響
在硬水中的 清潔效能	形成鈣皂及鎂皂:不	不會與鈣離子或鎂離子形成 浮渣;少量清潔劑即可產生泡 沫;清潔效能保持不變
是否生物可 分解的	生物可分解的	分子中碳鏈若為直鏈的是生 物可分解的;分子中碳鏈若含 支鏈的是生物不可分解的

(3) 結構

(4)清潔劑上烷基具有支鏈者,生物難分解,稱為硬性清潔劑;若烷基為直 鏈者,較易被生物分解,故稱為軟性。

(5) 去污原理:

5-3 材料與化學

1. 塑膠:

(1)常見的塑膠種類; 性質及用途:

分類	塑膠名稱	用途
熱	聚乙烯(<i>PE</i>)	塑膠袋、玩具、塗料
塑	聚丙烯(<i>PP</i>)	塑膠瓶
性	聚氯乙烯(PVC)	雨衣、地板、人造皮
	聚甲基丙烯酸甲酯(壓克力)	高品質透明塑膠製品
	聚四氟乙烯(Teflon)	不沾鍋
	聚乙烯對苯二甲酸酯(PET)	保特瓶
熱	酚甲醛樹脂(PF)	電器的插頭、絕緣材料
固	三聚氰胺甲醛樹脂(泡綿)	沙發的塡充料
性	尿素甲醛樹脂(UF)	電線插頭、炊具把手

- (2) 熱塑性:加熱後會軟化而具有可塑性的塑膠稱為熱塑性塑膠,通常分子呈鏈狀。
- (3) 熱固性: 加工成形後, 加熱不再軟化的塑膠, 稱為熱固性塑膠, 通常分子 交互接連呈網狀。
- (4) 塑膠是由許多稱為單體的小單元聚合而成的聚合物。

2. 玻璃:

(1) 成分:由二氧化矽、灰石、碳酸鈉等原料以適當比例混合,分析成分是矽

酸鈉 $(Na_2O \cdot xSiO_2)$ 和矽酸鈣 $(CaO \cdot xSiO_2)$ 。

(2)常見商業玻璃的成分、特性及用途:

玻璃	成分或處理	特性	用途
石英玻璃	SiO ₂ (99.8%)	耐酸、膨脹率	日光燈管、理
		小、可透過紫	化器具
		外光	
水玻璃	SiO_2 Na_2O	黏性透明液體	洗滌劑、黏接
			劑
鈉鈣玻璃	SiO_2 Na_2O_2 CaO	微帶青色、易	窗玻璃、玻璃
		吸收紫外光	瓶
鉀鈣玻璃	SiO_2 Na_2O , K_2O ,	耐高溫、耐藥	理化器具、光
	CaO、PbO	品、機械強度	學儀器
		大	
硼玻璃	SiO_2 Na_2O_1 K_2O_2	耐溫度變化、	理化器具、燈
	$Na_2B_4O_7\cdot 10H_2O($ 硼砂)、	膨脹率小	泡
	Al_2O_3		
鉛玻璃	SiO_2 Na_2O_2 K_2O_2 PbO_2	富光澤	裝飾品
鋼化玻璃	離子交換法改變其表面化	耐強大壓力、	防彈玻璃
	學成分	碰撞	
層合玻璃	兩玻璃片間夾一膠膜	破裂不亂飛濺	汽車安全玻璃
強化玻璃	表面急速冷卻	碎裂呈粒狀不	櫥窗、汽車門
		傷人	窗
光纖	內層玻璃纖維、外層折射率	可使光在光纖	通訊材料
	低的玻璃	中行進	

(3)各種玻璃顏色及添加色物

添加物	顏色	添加物	顏色
氧化亞銅 (Cu_2O)	紅	二氧化錳(MnO ₂)	紫
硫化鎘(CdS)	黃	氟化鈣(CaF ₂)	乳白
三氧化二鈷(Co ₂ O ₃)	綠	氧化亞鍚(SnO)	不透明
氯化亞鈷(CoCl ₂)	藍	氯化物	變色

3. 陶瓷與磚瓦:

- (1) 均以黏土為主原料的矽酸鹽類,陶瓷中鐵的氧化物含量較少,磚瓦中含鐵量較多。磚瓦燒製後自然冷卻者會呈現赤鐵礦(Fe_2O_3)的紅色,稱為紅磚。如果淋水冷卻,磚中的 Fe^{3+} 被還原為 Fe^{2+} 而成青色,稱為青磚。
- (2) 黏土的主要成分 $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$ 純度較高者稱為瓷土或高嶺土。

(3) 現代陶瓷:

類型	例子	特性與應用
金屬氧化物	鋁瓷器 (Al_2O_3)	熱、電絕緣體、電子零件
金屬氮化物	氮化硼、氮化矽	耐高溫的陶瓷引擎
金屬碳化物	碳化鎢、碳化矽、碳化鈦	高硬度的切削、磨輪材料
超導體	鈮釩合金、鑭鋇銅氧化物	高溫超導體

4. 水泥:

(1) 常用的為波特蘭水泥,以灰石+黏土(4:1)混合鍛燒後,磨成粉而得。主要 為矽酸鈣和鋁酸鈣的混合物。

5-4 藥物與化學

1. 胃藥:

(1)原理:目前最廣泛的胃藥是制酸劑,它具有吸收胃液和抑制胃酸分泌的功能,並能夠中和胃酸(*HCl*),提高胃內的 *pH* 值至 5 左右,進而促進潰瘍的癒合。

(2)常見的胃藥:

	碳酸氫鈉	氫氧化鋁	氧化鎂或氫氧化鎂
化學式	NaHCO ₃	$Al(OH)_3$	MgO 或 $Mg(OH)_2$
溶解度	易溶於水	難溶於水	難溶於水
藥效	速效型制酸劑	長效型制酸劑	長效型制酸劑
特點	產生 $CO_2 \rightarrow$ 脹氣 吸收 $Na^+ \rightarrow$ 鈉滯留 可作酸中毒之解毒劑	便秘、噁心、嘔吐 長期服用妨礙磷吸 收,不適於血液透析	不會脹氣,有輕瀉作 用,可用於便秘者
		病人	

2. 消炎劑:

(1)可直接殺死病原微生物或產生抑制作用,對人體毒性低的化學治療劑,主要有磺胺藥物與抗生素兩類。

(2)

	磺胺藥物	抗生素
發現	杜買克發現磺胺劑	弗萊明發現青黴素
常見型式	H ₂ N-\(\sigma\)-SO ₂ NHR	青黴素(盤尼西林)、土黴素、鏈 黴素、四環素等。
來源	化學方法合成	由微生物培養液提取
作用	抑制細菌的繁殖	由微生物所產生的化合物,可 殺死或抑制另一種微生物的生 長
適用病症	梅毒、葡萄球菌等發炎症狀	病毒、心內膜炎、肺炎、霍亂、 尿道

磺胺取代對 胺,堵住活化 口而不脫離, 抑制細菌繁殖

(3) 例如:

3. 止痛劑:

- (1)藥物如果能阻斷身體神經的傳導,使其失去知覺者,稱為止痛劑。非麻醉性止痛劑如阿斯匹靈;麻醉性止痛劑如鴉片、鹽酸古柯鹼。
- (2)阿斯匹靈學名乙醯柳酸,有解熱鎮痛作用,另外也有抑制血小板凝集作用,近來也作為預防血管阻塞用藥。血友病患宜改用乙醯胺基苯酚為解熱鎮痛劑。

(3) 阿斯匹靈(乙醯柳酸)的結構式 對乙醯胺基苯酚

4. 毒品:

(1)常見的毒品:

	一些易成瘾毒品及吸	食後的症狀	
毒品名稱	化學式及性質	初期症狀	經常服用引起的症狀
安非他命 (amphetamine)	C ₆ H ₅ CH ₂ CH(NH ₂)CH ₃ 苯基異丙胺・通常製成白色晶 狀的硫酸鹽・易溶於水。	舉動唐突、善辯、 脈搏加速、瞳孔放 大、食態減退、不 易疲勞。	興奮、抑鬱、急躁不 安、體重減輕、外表 疲憊、精神散漫、記 憶力減退、妄想、呈 慢性中毒現象、甚至 腦、胃出血而死。
快樂丸(搖頭丸) MDMA (3,4-methylene dioxy-N-methyl amphetamine)	CH ₂ O ₂ C ₆ H ₃ CH ₂ CHCH ₃ NHCH ₃ 3,4-亞甲二氧基-N-甲基安非他 命・藥效比安非他命更強。	多話、食慾減退、 幻覺、狂喜、情緒 高亢。	常在吵雜、高溫下狂 歡,易引起體溫過高 而痙攣,造成神經系 統的損傷,產生情緒 不穩、失眠、幻覺、 妄想症、易發生意外 傷害。
印度大麻 (marijuana)	主要成分是四氫大麻酸THCA (C ₂₂ H ₂₆ O ₄)加熱起脫羧酸反應變 為四氫大麻醇THC(C ₂₁ H ₂₆ O ₂) 四 氫大麻醇作用於中樞神經,具 有麻醉作用。	產生幻覺,損傷記憶力、判斷力及解 決問題的能力、疲 後、不重儀容、做 事提不起勁。	慢性支氣管炎、引發 肺癌。損傷生殖系統 以致性能力下降。
嗎啡 (morphine)	C ₁₇ H ₁₉ NO ₃ ・爲鴉片的主要成分・爲白色針狀晶體。	作用於中樞神經、 會體產生幻覺、精 神縣怠平衡感喪失。	作用於中樞神經產生 興奮、短時間間隔性 攻擊慾、體重減輕、 便秘。
海洛因 (heroin)	C ₂₁ H ₂₃ NO ₅ 是以嗎啡為原料經乙 酸化反應所得的白色品體。	語言發生障礙、嘔 吐、瞳孔萎縮。	暫時性性無能、軟弱 無力、自暴自棄、急 於想依賴毒品。

課後練習:

5-1 食品與化學:

一. 單一選擇題

- 1、()醣類又稱為什麼化合物? (A)氮氫化合物。 (B)碳氫化合物。 (C) 碳水化合物。 (D)氮水化合物。
- 2、()人體內的葡萄糖可經由下列何種作用,把儲存在分子內的化學能釋放 出來。 (A)氧化。 (B)還原。 (C)酸鹼中和。 (D)沈澱。
- 3、()植物可經由下列何種作用生成葡萄糖。 (A)光合。 (B)呼吸。 (C) 蒸發。 (D)醱酵。
- 4、()糖尿病患者的症狀是在尿液中含有下列何種物質? (A)蔗糖。 (B) 果糖。 (C)葡萄糖。 (D)麥芽糖。
- 5、()米飯在口中嚼了一段時間後,即有甜味。在杯內放約 50 毫升稀飯湯,加入少許唾液,靜置一段時間後應加入下列何種試劑共熱以驗證是否有「甜味的物質」產生? (A)碘溶液。 (B)本氏液。 (C)酚酞溶液。 (D)氯化亞鈷溶液。
- 6、()端午節製作鹼粽時,可以三偏磷酸鈉代替對人體有害的硼砂,此三偏磷酸鈉的分子式為下列何者? (A)Na₂HPO₃ (B)Na₃PO₄ (C)Na₃P₃O₉ (D)Na₅P₃O₁₀

二. 多重選擇題

- 7、() 下列敘述何者為真? (A)喝茶有助於解酒是一種正確的觀念。 (B)咖啡在醫學上可以作為興奮劑、利尿劑使用。 (C)茶中的多元酚帶澀味,可以阻斷氧的自由基,防止心臟病、肝病、中風。 (D)人體中食物代謝的順序,以脂肪最為優先。 (E)人體所需要的胺基酸皆可以自行合成。
- 8、() 下列關於葡萄糖的敘述,何者正確? (A)血液中的葡萄糖稱做血糖,糖尿病患的血糖濃度過高。 (B)蔗糖水解可得到的單糖只有葡萄糖。 (C)葡萄糖在酵母菌催化下生成乙醇和二氧化碳。 (D)葡萄糖是多羥醛,加氫氣還原後,可產生六元醇。 (E)葡萄糖與硝酸銀的氨溶液共熱產生羧酸離子。

5-2 衣料與化學

一. 單一選擇題

- 1、()將植物纖維素置於酸性水溶液中可生成下列何種物質? (A)澱粉。 (B)蔗糖。 (C)果糖。 (D)葡萄糖。
- 2、()蠶絲的主要成分是哪一種物質? (A)纖維素。 (B)脂肪。 (C)澱粉。

(D)蛋白質。

- 3、()合成清潔劑中加入下列何種物質,可以軟化硬水。 (A)草酸鹽。 (B) 硫酸鹽。 (C)碳酸鹽。 (D)磷酸鹽。
- 4、()羊毛纖維的蛋白質分子之間,除了靠分子間作用力聚集成束之外,還 利用下列何種原子作為結合的橋樑,所以羊毛的韌性比棉和蠶絲都要 大。 (A)磷。 (B)氮。 (C)硫。 (D)矽。
- 5、()燃燒時會發出微氨臭和硫化物的刺激臭味的是哪一種纖維? (A)嫘 縈。 (B)耐綸。 (C)羊毛。 (D)棉花。
- 6、()耐綸是一種人造含氮的合成纖維,但是比棉、絲、羊毛等三種天然纖維更為強韌。它們的化學結構都可以和水產生氫鍵,從元素組成與化學鍵結的觀點來看,下列哪一種纖維與其他三種有明顯的差異?(A)絲。(B)耐綸。(C)棉。(D)羊毛。
- 7、()甲、乙、丙三種衣料做纖維檢驗,得結果如下表:

	甲衣料	乙衣料	丙衣料
靠近火焰	稍為縮小	無變化	尖端熔成小珠
			狀
燃燒的氣味	有異味	無異味	無異味
浸於 3%NaOH	變脆弱	稍為膨脹	幾乎無變化
浸於 10%H ₂ SO ₄	幾乎無變	變脆弱	無變化
	11	ک	

下列哪一項是檢驗甲、乙、丙衣料纖維最適合的結論? (A)甲為棉; 乙為絲;丙為耐綸。 (B)甲為絲;乙為棉;丙為耐綸。 (C)甲為耐綸; 乙為絲;丙為棉。 (D)甲為棉;乙為耐綸;丙為絲。

8、()從前在沒有清潔劑的時代,媽媽會拿煮飯後燒過的灰燼來洗油膩鍋子,鍋子的油污也可以清洗乾淨,請問是灰燼中的那一成分與油反應,使油分子變成可溶於水的物質?(A)酸性物質。(B)鹼性金屬。(C)氧。(D)肥皂分子。

二. 多重選擇題

9、() 以下哪些物質為合成纖維? (A)嫘縈。 (B)耐綸。 (C)達克綸。 (D)奧綸。 (E)蠶絲。

- 10、() 下列敘述何者為真? (A)肥皂是由動物的油脂和強酸性物質反應生成的。 (B)合成清潔劑又叫做非肥皂。 (C)在肥皂分子中,非極性的碳氫長鏈部分是親水性的。 (D)合成清潔劑的成分是烷基苯磺酸鹽(簡稱 ABS)。(E)合成纖維較天然纖維不吸水。
- 11、() 下列纖維中,哪些種類會產生靜電感應? (A)棉花。 (B)蠶絲。 (C)達克綸。 (D)耐綸。 (E)奧綸。
- 12、() 下列纖維中,哪些種類<u>不可以</u>在肥皂或鹼性洗滌液中洗滌? (A) 棉花。 (B)蠶絲。 (C)達克綸。 (D)羊毛。 (E)奧綸。

5-3 材料與化學

一. 單一選擇題

- 1、()PE 塑膠袋組成的單體是什麼分子?(A)甲烷 (B)丙酮 (C)乙烷 (D) 乙烯。
- 2、()PVC 雨衣組成的單體是什麼分子?(A)丙酮。(B)丙醛。(C)氯乙烯。(D)乙烯。
- 3、()PP 塑膠瓶組成的單體是什麼分子? (A)丙烯。 (B)丙酮。 (C)氯乙烯。 (D)乙烯。
- 4、()下列的哪一種玻璃可以讓紫外光透過。(A)石英玻璃。(B)鈉鈣玻璃。(C)鉀鈣玻璃。(D)硼玻璃。
- 5、()保利龍餐盒是聚合物定型發泡加工而成,它使用方便,但是事後只能 焚化處理,它是下列何種聚合物? (A)聚乙烯。 (B)聚丙烯。 (C) 聚苯乙烯。 (D)聚氯乙烯。
- 6、()塑膠回收再利用是減廢及資源再利用的方式之一,保特瓶可被回收是因為: (A)可裂解成單體。 (B)熱塑性可熔融再次加工。 (C)可焚化產生能源。 (D)可掩埋分解。

二. 多重選擇題

- 7、() 可以用來製造玻璃的原料有哪些物質? (A)二氧化矽。 (B)硫酸銅。 (C)氯化鈉。 (D)輝石。 (E)碳酸鈉。
- 8、() 下列有關光纖的敘述何者為真? (A)光在光纖中通行,強度幾乎不變,可傳至遙遠地方。 (B)利用光纖傳輸通訊,比電波傳

輸優良。 (C)同一粗細的光纖纜線所包含的光纖絲遠多於傳統的銅絲。 (D)同一粗細的光纖纜線所能傳輸的信號量為銅絲的數萬倍。 (E)光纖是目前最優異的通訊技術。

9、() 下列有關陶瓷的敘述何者為真? (A)陶瓷是一種既不是金屬,也不是有機物的固體物質。 (B)近代陶瓷開發超導材料具有零電阻的優點,稱為超導體。 (C)陶瓷具有不溶水性。 (D)陶瓷不具化學安定性。 (E)金屬碳化物(如碳化鎢、碳化矽)硬度很大,可以比美金剛石,適於作切削工具及磨輪材料。

5-4 藥物與化學

一. 單一選擇題

- 1、()目前最廣泛的胃藥是下列何種物質? (A)制酸劑。 (B)制鹼劑。 (C) 還原劑。 (D)氧化劑。
- 2、()胃藥能夠中和胃酸,使潰瘍早日癒合。因為它可提高胃內的 pH 值到 (A)3。(B)5。(C)7。(D)9。
- 3、()服用碳酸氫鈉作為胃藥使用會產生脹氣,是因為和胃酸反應而產生了 大量的何種氣體? (A)SO₂。 (B)O₂。 (C)H₂。 (D)CO₂。
- 4、()磺胺藥物是下列常用的何種藥劑? (A)麻醉劑。 (B)止痛劑。 (C) 消炎劑。 (D)胃藥。
- 5、()阿司匹靈是脂溶性的,人體非常容易經由胃壁吸收。當服用過量的阿司匹靈而中毒時,可以利用酸鹼中和的原理,立即灌入大量稀釋的小蘇打(碳酸氫鈉)水急救,那麼阿司匹靈應該是下列哪一種酸鹼?(A)強鹼。(B)弱鹼。(C)強酸。(D)弱酸。

二. 多重選擇題

- 6、() 下列藥劑中,哪些是屬於四環藥劑? (A)青黴素。 (B)阿司匹靈。 (C)土黴素。 (D)盤尼西林。 (E)鏈黴素。
- 7、() 下列藥劑中,哪些是內服止痛劑? (A)鴉片。 (B)盤尼西林。 (C)嗎啡。 (D)古柯鹼。 (E)阿司匹靈。
- 8、() 下列有關止痛劑的敘述何者為真? (A)鴉片中含有嗎啡,對人 體產生很強的止痛效果,但同時有成癮作用。 (B)鴉片中至少 包括 20 種植物鹼。 (C)鹽酸古柯鹼塗敷在黏膜組織數分鐘後會

發生局部麻痺。 (D)古柯鹼的毒性極大,對中樞神經具有極強的興奮作用。 (E)鹽酸古柯鹼和鹽酸普卡因每天的使用最大劑量僅 10mg,使用過量會危害生命。

- 9、() 下列有關阿司匹靈的敘述何者為真? (A)阿司匹靈是一種常見 且藥性比較溫和的止痛劑。 (B)胃潰瘍患者服用阿司匹靈時會 導致胃出血。 (C)阿司匹靈可以治療熱症,但不具有預防心臟 病的功能。 (D)阿司匹靈具有鹼性。 (E)阿司匹靈遇水分解, 產生醋酸。
- 10、() 下列哪些化合物可以當作胃酸過多時之制酸劑的主要成分? (A)氫氧化鎂。(B)氫氧化鈉。(C)氯化鈣。(D)碳酸氫鈉。(E)碳酸鈣。

答案

- 5-1 食品與化學:
- 一. 單一選擇題
- 1, (C) 2, (A) 3, (A) 4, (C) 5,
- (B) 6, (C)
- 二. 多重選擇題
- 7、(BCD) 8、(ACDE)
- 5-2 衣料與化學
- 一. 單一選擇題
- 1, (D) 2, (D) 3, (D) 4, (C) 5, (C) 6,
- (C)7, (B)8, (B)
- 二. 多重選擇題
- 9、(BCD) 10、(BDE) 11、(CDE) 12、(BD)
- 5-3 材料與化學
- 一. 單一選擇題
- 1, (D) 2, (C) 3, (A) 4, (A) 5,
- (C) 6, (B)
- 二. 多重選擇題
- 7、(ADE) 8、(ABCDE) 9、(ABCE)
- 5-4 藥物與化學

- 一. 單一選擇題
- 1、(A)2、(B)3、(D)4、(C)5、(D)
- 二. 多重選擇題
- 6、(CE) 7、(ACDE) 8、(ABCDE)
- 9、(ABE) 10、(AD)