Recitation 4

- 1. Measuring the price level
 - a. Complete the table below! The typical consumption basket is 1 apple, 4 bananas, and 7 coconuts. Use Year 1 as the base year!

	Year 1	Year 2	Year 3
P(A)	4	5	3
Q(A)	2	1	2
P(B)	7	7	7
Q(B)	2	3	7
P(C)	5	1	5
Q(C)	1	10	1
nGDP	27	36	60
rGDP	27	75	62
GDP deflator	100	48	96.8
Cost of basket	67	40	66
СРІ	100	59.7	98.5

(1)

n GDP = P(A) * Q(A) + P(B) * Q(B) + P(C) * Q(C) when calculating nominal GDP, you should use given year's prices.

n GDP at year
$$3 = 3*2 + 7*7 + 5*1 = 60$$

(2) for real GDP, always use base year's prices. P(A)=4; P(B)=7; P(C)=5

r GDP at year
$$2 = 4*1 + 7*3 + 5*10 = 75$$

r GDP at year
$$3 = 4*2 + 7*7 + 5*1 = 62$$

GDP deflator =
$$\frac{nGDP}{rGDP} * 100$$

(3) (please memorize this formula)

GDP deflator at year 1= 27/27*100=100

GDP deflator at year 2= 36/75*100=48

GDP deflator at year 3= 60/62*100=9.8

(4) By question, the typical consumption basket is 1 apple(good A), 4 bananas(good B),, and 7 coconuts(good C),.

cost of basket=P(apple)*1 + P(banana)*4 + P(coconut)*7

cost of basket at year 1 = 4*1 + 7*4 + 5*7 = 67

cost of basket at year 2 = 5*1 + 7*4 + 1*7 = 40

cost of basket at year 3 = 3*1 + 7*4 + 5*7 = 66

(5)
$$CPI_t = \frac{Cost(basket)_t}{Cost(basket)_{base\ year}} * 100$$

$$CPI_1 = \frac{\text{Cost(basket)}_1}{\text{Cost(basket)}_{base\ year}} * 100 = \frac{67}{67} * 100 = 100$$

$$CPI_2 = \frac{\text{Cost(basket)}_2}{\text{Cost(basket)}_{base\ year}} * 100 = \frac{40}{67} * 100 = 59.7$$

$$CPI_3 = \frac{Cost(basket)_3}{Cost(basket)_{base\ year}} * 100 = \frac{66}{67} * 100 = 98.5$$

2. Measuring the inflation

a. Complete the table below! The typical consumption basket is 4 apples, 4 bananas, and 4 coconuts. Use Year 1 as the base year!

	Year 1	Year 2	Year 3
P(A)	3	7	11
P(B)	1	1	1
P(C)	4	3	2
Cost of basket	32	44	56
СРІ	100	137.5	175
Inflation	-	37.5	27.3

(1)

By question, the typical consumption basket is 4 apples(good A), 4 bananas(good B), and 4 coconuts(good C),.

cost of basket=P(apple)*4 + P(banana)*4 + P(coconut)*4

cost of basket at year 1 = 3*4 + 1*4 + 4*4 = 32

cost of basket at year 2 = 7*4 + 1*4 + 3*4 = 44

cost of basket at year 3 = 11*4 + 1*4 + 2*4 = 56

(2)
$$CPI_t = \frac{Cost(basket)_t}{Cost(basket)_{base \ vear}} * 100$$

$$CPI_1 = \frac{Cost(basket)_1}{Cost(basket)_{base\ vear}} * 100 = 32 * 100 = 100$$

$$CPI_2 = \frac{Cost(basket)_2}{Cost(basket)_{base\ year}} * 100 = \frac{44}{32} * 100 = 137.5$$

$$\mathbf{CPI}_3 = \frac{\mathbf{Cost(basket)}_3}{\mathbf{Cost(basket)}_{base\ year}} * \mathbf{100} = \frac{56}{32} * \mathbf{100} = \mathbf{175}$$

(3)

Inflation rate_t = $\frac{\text{CPI}_t - \text{CPI}_{t-1}}{\text{CPI}_{t-1}}$ * 100 (the denominator is the CPI for the last period, not base year)

1

Inflation rate
$$_2 = \frac{\text{CPI}_2 - \text{CPI}_1}{\text{CPI}_1} * 100 = \frac{137.5 - 100}{100} * 100 = 37.5$$

Inflation rate₃ =
$$\frac{\text{CPI}_3 - \text{CPI}_2}{\text{CPI}_2} * 100 = \frac{175 - 137.5}{137.5} * 100 = 27.3$$

3. Standardizing economic variables

We can use the following two formulas in next two questions.

$$real_t = \frac{nominal_t}{CPI_t} * 100 \text{ or } real_t = \frac{nominal_t}{GDP \ deflator_t} * 100$$

a. What is the nominal wage rate if the real wage is \$22/hour, and the CPI is 112?

According to the first formula, real wage =
$$\frac{nominal\ wage}{CPI}$$
 * 100,
Then 22= $\frac{nominal\ wage}{112}$ * 100, the nominal wage is \$24.64/hour.

b. What is the nominal wage rate if the nominal GDP per capita is \$250,000, the real GDP per capita is \$10,000, and the real wage rate is \$16/hour?

We can use the second formula, real wage= $\frac{nominal\ wage}{GDP\ Deflator}$ * 100, then we just need to calculate GDP deflator

GDP deflator=
$$\frac{nominal\ GDP}{real\ GDP} = \frac{nominal\ GDP/population}{real\ GDP\ /population} = \frac{nominal\ GDP\ per\ capita}{real\ GDP\ per\ capita} = \frac{250000}{10000} * 100 = 2500$$

$$16 = \frac{nominal\ wage}{2500} * 100$$
, we can get nominal wage is \$400/h.

c. What is the real interest rate if the inflation rate is 7.5% and the nominal interest rate is 10%?

real interest rate = nominal interest rate - inflation rate=10%-7.5%=2.5%