

Diagonalización - Matrices Semejantes [] Ay A' son semegantes si existe una matriz P invertible tal que A'= P-1 AP BF P P AP P BP Se trata de buscar en une base E en el cuel of se representa por una matriz diagonal, es decir, doch une matriz A en una base cualquiera, se busa una matrit d'agonal semejante a alla A este proceso le llamamos Diagonalizar una matrit * La bosqueda de la P El Endomorfismo Matriz diagonalizable: A es diagonalizable si es somejante a une matrix D; es der hay una Preguler Por desgracia esto no siempre sera posible

Calculo VAPS & VEPS De Si Juese competible determinado $A\vec{x} = \lambda\vec{z}$ y solo tourese la solvesen trivid no nos savinia paque x no puede ser d $A\vec{x} - 2\vec{x} = 0$ $(A-\lambda J) \overrightarrow{x} = 0$ Polinomio carocterístico de la matrit A Polinomia de grado n que surgo de cabular det (A-71) barica-en de es resto 2 a toda la diagonal Ecuación característica), A det (A-2I) = 0

Ill de la metrique d Multiplicidad Algebraica de los valores propios The el nomero de voces que aporece Di (vap)
como solución de la ecuación característica. Dado REIK Res el valor propio del endomorfismo J si y solo si liff-1. [] - O donde Id es la Al de And (A-2iI) = O - Compatille indeferminado

Subespacio propio asociado a cada volor propia D Si x, y son 2 vectores propios cuclesquiera de la matrix A asociados al mismo vap 2

Describión es un vector propio asociodo a 2 la es avalquier etro vector de la forme Mx dende pu es un escalor no nolo. Subespacio propio asociado a un usp. Eveps à asociados al vop 2 jundo con con como asociado al constitujen un espacio vectoral E (subspecio propio asociado al velor propio 2) - 15 H 2i | Multiplicital Geometrica de sen VAP dimension del suberposió propio osociado a un vap d:m (H2:) Para coda Vap desemos terri en cuesta - Multiplicidad Applicien Para diagonalizar

Propiedades VAPS y VE	EPS 111''
Description de los novalores propios	de una matriz es igual
Des valores propies de una matri	+ y so transpoesta
Coinciden	
les igual a su determinante	ios de una matrit
DDos matricos semejantes tienen la ly por tarle mis-os vaps	misma econción caracterissa
Ditriangular liene de vaps los est	le-ento de la diagonal
p Naps délevels tre-en veps 2]	
PUn mismo vep no poede es	tar asociodo a dos
lvap	
Teorema	
Multiplicidous geometrica	2. 4
1 \(\dim\tag{\tau} \) \(\dim\tag{\tau} \)	se ni es 2 entonco dim (Hi)
eviliplicad s	siempre sera 1
Algebraica e	s décir solo tiene 1 up
dados 22 2 r vaps diferentes de la m	natrix A & Mn (M)
y u, ur veps asociodos con ella	enfonces ely el son I

		_									1								
j	1- - je	3 C	, (C)	Ó	2	_	\sum	≥.	<u> </u>	رد	1	, د کتا	حره						
6																			

leorema Cayley-Hamilton $A \cdot \epsilon M_n(IK)$ p A(x) = |A - xIn| = p f(x) f-DTeore-c $A \in \mathcal{M}_n(lk)$ $R_A(A) = O$ R(A-AI) = ONos permite expresar la inversa sin hacer el procedimiento norme) os permite capa- $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ Que E(K) $\begin{pmatrix} x \\ 1 & -x & -2 \\ -4 & 1 & -x \end{pmatrix}$ $-x^{3} + \alpha x^{2} - 2x + 1$ RA(A)=0 ->- A3+a.A2-2A+I3=0 Es one some de matrico, por la que deserros sostituir el 1 por la ldentido) (2 por 21, ...) |A|=RA(0)=1 #0 # Es invertible * EL TERMINO INDEPENDIENTE DEL POLINOMIO CARACTERISTICO ES EL DETERMINANTE $T_3 = A_3 - \alpha A^2 + 2A \rightarrow A^{-1} = (A^3 - \alpha A^2 + 2A) \cdot A^{-\frac{1}{2}} = A^2 - \alpha \cdot A + 2I_3$ $A^{-2} = A^2 - \alpha A + 2I_3$

Jeorema Diagonalización $\gamma = \text{vops}$ $P(x) = \det(A - xI) = (x - \lambda_1)^{n_1} \cdot \cdot \cdot \cdot (x - \lambda_r)^{n_r}$ Mar multiplitud con Inst-..+ n, = n) y cada i=1...r ri=dim (Hzi)
Esto quiere decir: DEl polinomio coracteristico descompone totalmente en factores lineales P La multiplicidar de codo espo de estos soctores
lineales coincide con la dimensión del respectivo
subespacio asociado Del punto de vista M A sea diagonalizable es que para cada vap 2i su multiplicided elgaraica ni coincida con su multiplicided goometrica dim (Hai)

* Si una matrit tiene vaps déferentes uniende ses basses de E

BH2, ... BH2, ... BE

Se A tiene n vaps diferentes habra n veps []

por tanto A sera diaganalizable.

1	7						1									
1	(0)	er	œ		ar	n f	o (i	a _C	10							

Algoritmo Diagonalización

Resumen.

A sero diagonalizable si todos sus vaps son numeros reales a complejos y se comple um de las siguientes dos condiciones

o Los vaps son multiples y los multiplícios des algebraicas y geometricas son igoales para todos ellos.

Ademos la matriz D contendra en su diagonal principal los vaps de A complira la siguiente igualdad.

D = (VP)-2 A (VP)

D -> matri + con vaps de A par diogonol

VP -> matri + que tiene por columnes los n

"vectores propios L1" de A

Los vaps de D desen ir en el mismo orden que sus veps en la matriz de combio de bose VP

Procedimiento Diagonalización

1. Encontrar el polinomio carecteristico Polinomia de rado n que surgo de cabular def (A - 21) barica - en de es reste 2 a teda la diagonal 2. Obtener las raices de la ecuación corecteristica es decir, sus l'aps) y sus multiplicidades Algebraica, ni Halabor cuanta, veces saled vap como solveion de polinomio caracter:st.co 3. Resolver para coda li el sistema (A-li I) x = O pars encontror los veps despejames el vector x que sera el vector propio (vep) LI Si ni = dim (Hz.) Vi. es dia ganaliza le 5. La matriz Diene como elementos de la diagonal principal los vaps

a matriz D tiene como elementos de la diagonal principal los vaps

de la matriz A, D = (VP)-1 A(VP) donde la matriz VP es la

matriz que tiene por columnas los ne veps LI de A en el mismo

orden que los vaps en D

D = (VP)-1 A(VP)

D-> matrix on vaps of A poor diagonal

VP-> matrix que tiene por columno.

VP-0 matriz que tiene por columnos los ne ucotores propios LI" de A

Diagonalización Ortogonal II Diagonalización Los matrices reales simetricas son siempre diagonalizable. Es decir, tienen una base de vectores propios I a demas tiene una sox ortonormales. Matrix antaganal
Su inverse y transposta coinciden $Q^{-1} = Q^{\dagger}$ Matriz ortagonalmente diogonaliza la Si tien una base de vectores propios ortonormales Qt A Q = matrit diagonal que en su diagonal tiene los volores propios de A Si A es una matrit cuadreda real simetrice de orden n, se verifica: 1-1- Vaps son reales 1 2. Veps asociados a vops diforentes son ortogonales 3 Tene n veps . Es der or diagonalizable 4. Tiene n veps ortonormales. Es decir, A es ortogonalmente diagonalizable.

Fjerci	cio D	lagona	lización	Com	pleto	
A = (a+)	2 io] 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d	A	E M3 (17.	2) + sir	netrica	
(1	1 a+2)	1),ago	R			