VWS4LS: 15.10.2024 – Öffentliche Ergebnistagung

1	10:00	Einlass	Alle			
2	10:30	Begrüßung aller Teilnehmer und Vorstellung der Agenda	Christian Kosel (ARENA2036), Georg Schnauffer (ARENA2036)			
3	10:40	Einführung in die ARENA2036 und Projektfamilie Leitungssatz	Georg Schnauffer (ARENA2036)			
4	11:00	VWS4LS und der Projektergebnisse der vergangenen 3 Jahre	Christian Kosel (ARENA2036)			
5	11:30	80 Ergebnis 1 – Funktionale Vorstellung des Gesamt-Demonstrators Christian Kosel (ARENA2036)				
6	12:00	Mittagspause	Alle			
7	13:00	Ergebnis 2 – Pilotanbindung der Verwaltungsschale und Catena-X	Mario Angos (Coroplast), Lena Beil (Dräxlmaier)			
8	13:20	Ergebnis 3 – Beschreibung von Capabilities für Produkt, Prozess und Ressourcen	Matthias Freund (Festo)			
9	13:40	Ergebnis 4 – Entwicklung und Anwendung der OPC-UA Companion Specification for Wiring Harness	Pascal Neuperger (Komax)			
10	14:00	Ergebnis 5 – Automatisierten Verhandlungsverfahren in der Produktion	Gerd Neudecker (Kromberg und Schubert), Melanie Stolze (Ifak Magdeburg)			
11	14:20	Ergebnis 6 – Integration der Domänen-Standards "KBL" und "VEC" und Verwaltungsschale	Matthias Freund (Festo)			
12	14:40	Pause	Alle			
13	14:50	Ergebnis 7 – Architekturergebnisse rund um die Verwaltungsschale (je 7 Minuten)	Pascal Neuperger (Komax), Melanie Stolze (Ifak Magdeburg), Rene Fischer (Fraunhofer IESE), Jannis Jung (Fraunhofer IESE) und Gerd Neudecker (Kromberg und Schubert)			
14	15:40	Ergebnis 8 – Referenzarchitektur für die Virtuelle Inbetriebnahme von Verbundkomponenten auf Grundlage der VWS	Pascal Neuperger (Komax), Toni Kristicevic (Festo)			
15	16:00	Ergebnis 9 – Entwicklung von IDTA – Submodellen (Data-Retention-Policies und Bill-Of-Process)	Alexander Salinas (Dräxlmaier), Pascal Neuperger (Komax)			
16	16:30	Zusammenfassung und Ausblick	Christian Kosel (ARENA2036)			
17	16:45	Q+A	Alle			
18	17:00	Abschluss der Veranstaltung + Abendveranstaltung	Alle			

103

Ergebnis 3 – Beschreibung von Capabilities für Produkt, Prozess und Ressourcen

ARENA2036

Zu fertigendes Produkt

Welche Ressource kann mein Produkt fertigen?

→ Fähigkeitsbasierte Auswahl

Verfügbare Ressourcen

Quelle: Wezag

Quelle: Komax

Herausforderung: Kombinatorik und "zusammengesetzte" Fähigkeiten

Adapter-Übersicht							
	SSC / UP 35 BA	UP 35	UP 40	UP 60	UP 65 / UP 150		UP 15
	wii wii		Wor wor	WIFE	200		· D . w.
SS 30 / CK 100	1481-02010	1481-06010	1481-06010	1481-03009		CSE 33 Safety	0394-00000
S 12		1481-26047	1481-26047	1481-28021		CSE 30 Safety	0391-00000
/DT	1481-02011	1481-06011	1481-06011	1481-03006		CSV-Adapter	1388-44001
SSV 10		1481-06022	1481-06022			AE 0816 Kopf	0367-04000
AP-Holder	1481-02009	1481-06031				CSE 300 SDE (TE)	0385-19002
leavy Duty				1481-03005	1481-05014		
				- 100			

Quelle: Wezag

- UC1: Finden einer vorhandenen Maschine (+ Werkzeug), die eine bestimmte Fähigkeit ausführen kann
- UC2: Ermittlung, welches Werkzeug (wie) in eine gewählte Maschine eingesetzt werden muss, damit sie eine bestimmte Fähigkeit ausführen kann
- UC3: Konfiguration und Bestellung einer neuen Maschine

Konzept "Required Capabilities"

- Nutzung des aktuellen Arbeitsstandes IDTA Submodel "Capabilities"
- Modellierung auf Basis der im Projekt erarbeiteten "Prozessliste"
 - ➤ Prozessparameter → Capability-Properties
- Beispiel "Crimp":

6.1.6 Crimp

Semanticld: https://arena2036.de/vws4ls/capability/1/0/CrimpCapability

Parameter:

- WireType (xs:string)
- WireCrossSectionArea (xs:double)
- TerminalPartNumber (xs:string)
- · CrimpForceMonitoring (xs:boolean)
- CrimpHeightUpperLimit (xs:double)
- CrimpHeightLowerLimit (xs:double)
- CrimpWidthUpperLimit (xs:double)
- CrimpWidthLowerLimit (xs:double)

6.1.7 Mark Wire

Semanticld: https://arena2036.de/vws4ls/capability/1/0/MarkWireCapability

Parameter:

MarkingType (ve:etring)

Anlegen von Capabilities im AASX Package Explorer

(https://github.com/VWS4LS/vws4ls-aaspe-plugin)

Maschinenebene

Komax Sigma 688

Ich kann Crimpen!

Aber nur, wenn ich ein entsprechendes Modul und einen Applikator verbaut habe...

Modulebene

Werkzeugebene

Schäfer 21.2020

Ich kann Crimpen! Und zwar Kontakte vom Typ PLK 14,5 und Leitungen bis Querschnitt 2,5mm^2!

Aber nur, wenn ich in einer entsprechenden Maschine verbaut bin...

Modellierung aktueller Maschinenstrukturen per Teilmodell "BOM"

 Nutzung des Teilmodells "Hierarchical Structures enabling Bills of Material" (IDTA 02011)

- Nutzung des "Extension"-Konzepts der Verwaltungsschale (Möglichkeit für Erweiterungen ohne Notwendigkeit zur Definition neuer Teilmodelle)
- Neue Maschinen, Module und Werkzeug mit wenig Aufwand einfach integrierbar

Konzept Capability Matching

Beispiel:

Mod

- Erfüllbar: ja

 Voraussetzungen: Montage Applikator Schäfer 21.2020 -> erfordert Crimp-Modul C1340 oder C1370

Werkzeugebene

Schäfer 21.2020

Schritte für das Capability Matching:

- Kann die Maschine die Capability grundsätzlich bieten?
 - --> Auswertung Offered Capabilities der Maschine
- Welche Werkzeuge sind bekannt, die zur Realisierung der Capabilities genutzt werden können?
 - --> Auswertung Offered Capabilities der Werkzeuge
- 3. (Wie) können die möglichen Werkzeuge in die Maschine montiert werden?
 - --> Auswertung möglicher Maschinenstrukturen
- 4. Welche der gefundenen Kombinationen erfüllen alle Constraints?
 - --> Auswertung der Capability Constraints auf allen Ebenen

- Umsetzung als eigener Node (Implementierung in Javascript)
 - -> s. https://github.com/VWS4LS/vws4ls-capability-matching

- · Generische Implementierung
- Einfache Einbindung möglich (bspw. Verhandlungsprozesse)

Anbindung von Skills

- Ausgangspunkt: Durchgeführter Fähigkeitenabgleich → zu nutzende Maschine ermittelt
- Frage: Wie kann die Fähigkeit/der Prozess auf der gewählten Maschine ausführt werden?
- Übergang von Capability (Fähigkeit) zu Skill (aufrufbare Fertigkeit) notwendig

- Verweis auf Implementierung in OPC UA-Server
- Analyse verschiedener Ansätze/Teilmodelle:
 - ControlComponent, OPC UA Server Datasheet (in Entwicklung), Asset Interface Description (AID)
- Nutzung Teilmodell "Asset Interface Description" (IDTA 02017)
 - > Prototypische Erweiterung um OPC UA (Job Management/OPC UA 4 Wire Harness)

Verknüpfung Capability ←→ Skill

- Automatische, f\u00e4higkeitsbasierte Auswahl von Maschinen zur Fertigung eines Produktes bzw. zur Ausf\u00fchrung der ben\u00f6tigten Prozesse
- Besonderes Augenmerk auf "zusammengesetzte Fähigkeiten"
- Verweis auf ausführbare Fertigkeiten (Skills) ermöglicht automatische Ausführung von Prozessen bspw. durch ein MES