1DR2243:A - Teoria i metody optymalizacji, lab. Sekwencyjna metoda bariery

(opracował: M.T., ostatnia modyfikacja: 11 września 2022)

1 Wstęp

1.1 Notacja

Często będziemy pisać $i \in \mathbf{m}$ zamiast $i = 1, \dots, m$.

1.2 Optymalizacja z ograniczeniami nierównościowymi

Rozpatrujemy zadanie optymalizacji wypukłej

$$\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} \quad f_0(\boldsymbol{x})
\text{subject to} \quad f_i(\boldsymbol{x}) \leq 0, \quad i \in \mathbf{m}$$

Dla zadania tego możemy zdefiniować zbiór dopuszczalny (feasible set)

$$\Omega = \{ \boldsymbol{x} \in \mathbb{R}^n \, | \, f_i(\boldsymbol{x}) \leqslant 0, \ i \in \mathbf{m} \},$$
 (2)

który jest zbiorem wypukłym z uwagi to, że funkcje $f_i(\boldsymbol{x})$, $i \in \mathbf{m}$, są wypukłe. Zadania powyższego typu można rozwiązywać metodami funkcji bariery (barrier function). Zastosowanie funkcji bariery umożliwia sprowadzenie zadań optymalizacji z ograniczeniami nierównościowymi do sekwencji zadań bez ograniczeń do rozwiązania których możemy zastosować poznane wcześniej metody np. metode Newtona.

Będziemy w dalszym ciągu zakładać, że funkcje ograniczeń nierównościowych $f_i(\boldsymbol{x}), i \in \mathbf{m}$ oraz funkcja celu f_0 są dwukrotnie różniczkowalne. Dodatkowo zakładamy, że wartość optymalna p^* funkcji celu jest skończona i osiągana w punkcie optymalnym \boldsymbol{x}^* , oraz że zadanie jest ściśle dopuszczalne (strictly feasible), tzn. że istnieje pewien punkt (wektor) $\bar{\boldsymbol{x}} \in \mathbb{R}^n$ taki, że

$$f_i(\bar{\boldsymbol{x}}) < 0, \quad i \in \mathbf{m}.$$
 (3)

1.3 Logarytmiczna funkcja bariery

Funkcję ciągłą $\varphi: \mathbb{R}^n \to \mathbb{R}$ nazywamy wypukłą funkcją bariery (convex barrier function) dla zbioru Ω , jeśli jest wypukła na zbiorze Ω oraz $\varphi(\boldsymbol{x}) \to \infty$ dla \boldsymbol{x} dążących do brzegu zbioru Ω . Najczęściej używa się tzw. logarytmicznej funkcji bariery (logarithmic barrier function)

$$\varphi(\boldsymbol{x}) = \begin{cases} -\sum_{i=1}^{m} \log\left(-f_i(\boldsymbol{x})\right) & \text{dla } \boldsymbol{x} \in \mathbf{relint } \Omega \\ +\infty & \text{dla } \boldsymbol{x} \notin \mathbf{relint } \Omega \end{cases}, \quad (4)$$

gdzie

relint
$$\Omega = \{ \boldsymbol{x} \in \mathbb{R}^n \mid f_i(\boldsymbol{x}) < 0, \ i \in \mathbf{m} \}.$$
 (5)

Zauważmy, że dla $i \in \mathbf{m}, \, k \in \mathbf{n}, \, \text{mamy}$

$$\frac{\partial \log (-f_i(\boldsymbol{x}))}{\partial x_k} = \frac{1}{f_i(\boldsymbol{x})} \frac{\partial f_i(\boldsymbol{x})}{\partial x_k},\tag{6}$$

zatem dla $i \in \mathbf{m}$

$$\nabla \log \left(-f_{i}(\boldsymbol{x})\right) = \begin{bmatrix} \frac{1}{f_{i}(\boldsymbol{x})} \frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{1}} \\ \frac{1}{f_{i}(\boldsymbol{x})} \frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{2}} \\ \vdots \\ \frac{1}{f_{i}(\boldsymbol{x})} \frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{n}} \end{bmatrix} = \frac{1}{f_{i}(\boldsymbol{x})} \nabla f_{i}(\boldsymbol{x}).$$
(7)

Gradient funkcji φ jest zatem równy

$$\nabla \varphi(\boldsymbol{x}) = -\sum_{i=1}^{m} \nabla \log \left(-f_i(\boldsymbol{x}) \right)$$
$$= -\sum_{i=1}^{m} \frac{1}{f_i(\boldsymbol{x})} \nabla f_i(\boldsymbol{x}), \tag{8}$$

zaś jej hesjan jest równy

$$\nabla^2 \varphi(\boldsymbol{x}) = D \nabla \varphi(\mathbf{x})$$

$$= \sum_{i=1}^{m} \left(\frac{\nabla f_i(\boldsymbol{x}) \nabla f_i(\boldsymbol{x})^{\mathrm{T}}}{\left(f_i(\boldsymbol{x}) \right)^2} - \frac{\nabla^2 f_i(\boldsymbol{x})}{f_i(\boldsymbol{x})} \right). \tag{9}$$

Rysunek 1: Wykres funkcji $-(1/t)\log(-u)$ dla różnych wartości parametru t.

Idea rozwiązania zadania (1) polega na zastąpieniu go przybliżeniem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f_0(x) + \frac{1}{t}\varphi(x) \tag{10}$$

gdzie t > 0 jest parametrem. Zakłóżmy, że punkt optymalny zadania (10) istnieje i jest jedyny, oznaczmy go \boldsymbol{x}_t^{\star} , oraz że istnieje punkt startowy \boldsymbol{x}_0 , który spełnia

$$f_i(\mathbf{x}_0) < 0, \quad i \in \mathbf{m}. \tag{11}$$

Użycie funkcji $\varphi(\boldsymbol{x})$ zapobiega opuszczeniu przez rozwiązanie obszaru Ω , innymi słowy $\varphi(\boldsymbol{x})$ jest swego rodzaju barierą zbioru Ω , ponieważ $\varphi(\boldsymbol{x}) = +\infty$ dla $\boldsymbol{x} \notin \Omega$ oraz $\varphi(\boldsymbol{x})$ dąży do $+\infty$ kiedy \boldsymbol{x} zbliża się do brzegu zbioru Ω . (Mówiąc bardziej precyzyjnie, $\varphi(\boldsymbol{x}) = +\infty$ dla $\boldsymbol{x} \notin \operatorname{relint} \Omega$ oraz $\varphi(\boldsymbol{x})$ dąży do $+\infty$ kiedy \boldsymbol{x} zbliża się do względnego brzegu zbioru Ω . Więcej informacji na temat względnego wnętrza zbioru i względnego brzegu zbioru można znaleźć w [1]).

Minimalizator x_t^* (tzn. rozwiązanie) zadania (10) jest ściśle dopuszczalny (*strictly feasible*) dla zadania (1) tzn.

$$f_i(\boldsymbol{x}_t^{\star}) < 0, \quad i \in \mathbf{m}.$$
 (12)

Przyjmijmy oznaczenie

$$\psi_t(\mathbf{x}) = f_0(\mathbf{x}) + \frac{1}{t}\varphi(\mathbf{x}). \tag{13}$$

Z warunków optymalności pierwszego rzędu mamy

$$\nabla \psi_t(\boldsymbol{x}_t^{\star}) = \nabla_{\boldsymbol{x}} \left[f_0(\boldsymbol{x}) + \frac{1}{t} \varphi(\boldsymbol{x}) \right]_{\boldsymbol{x} = \boldsymbol{x}^{\star}} = 0, \quad (14)$$

zatem

$$\nabla f_0(\boldsymbol{x}_t^{\star}) + \sum_{i=1}^m \frac{1}{-tf_i(\boldsymbol{x}_t^{\star})} \nabla f_i(\boldsymbol{x}_t^{\star}) = 0.$$
 (15)

Zdefiniujmy

$$(\lambda_t^{\star})_i = \frac{1}{-tf_i(\boldsymbol{x}_t^{\star})} > 0, \quad i \in \mathbf{m}.$$
 (16)

Zauważmy, że lagranżjan dla zadania (1) jest postaci

$$L(\boldsymbol{x}, \boldsymbol{\lambda}) = f_0(\boldsymbol{x}) + \sum_{i=1}^{m} \lambda_i f_i(\boldsymbol{x}).$$
 (17)

Zauważmy, że dla

$$\lambda_i = (\lambda_t^{\star})_i = \frac{1}{-tf_i(\boldsymbol{x}_t^{\star})} > 0, \quad i \in \mathbf{m}$$
 (18)

lagranżjan ten

$$L(\boldsymbol{x}, \boldsymbol{\lambda}_t^{\star}) = f_0(\boldsymbol{x}) + \sum_{i=1}^{m} (\lambda_t^{\star})_i f_i(\boldsymbol{x})$$
(19)

osiąga minimum w x_t^{\star} ponieważ

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \lambda_{t}^{\star})|_{\boldsymbol{x} = \boldsymbol{x}_{t}^{\star}} = \nabla L(\boldsymbol{x}_{t}^{\star}, \lambda_{t}^{\star})$$

$$= \nabla f_{0}(\boldsymbol{x}_{t}^{\star}) + \sum_{i=1}^{m} (\lambda_{t}^{\star})_{i} \nabla f_{i}(\boldsymbol{x}_{t}^{\star})$$

$$= \nabla f_{0}(\boldsymbol{x}_{t}^{\star}) + \sum_{i=1}^{m} \frac{1}{-t f_{i}(\boldsymbol{x}_{t}^{\star})} \nabla f_{i}(\boldsymbol{x}_{t}^{\star})$$

$$= \mathbf{0}. \tag{20}$$

Biorac pod uwagę, że dualna funkcja Lagrange'a

$$g(\lambda) = \min_{x} L(x, \lambda) \qquad \lambda \geqslant 0$$
 (21)

jest dolnym ograniczeniem dla wartości optymalnej p^* zadania (1), tzn.

$$g(\lambda) \leqslant p^{\star},$$
 (22)

otrzymujemy dla $\lambda = \lambda_t^{\star}$

$$p^{\star} \geqslant g(\boldsymbol{\lambda}_{t}^{\star})$$

$$= L(\boldsymbol{x}_{t}^{\star}, \boldsymbol{\lambda}_{t}^{\star})$$

$$= f_{0}(\boldsymbol{x}_{t}^{\star}) + \sum_{i=1}^{m} (\boldsymbol{\lambda}_{t}^{\star})_{i} f_{i}(\boldsymbol{x}_{t}^{\star})$$

$$= f_{0}(\boldsymbol{x}_{t}^{\star}) + \sum_{i=1}^{m} \frac{1}{-t f_{i}(\boldsymbol{x}_{t}^{\star})} f_{i}(\boldsymbol{x}_{t}^{\star})$$

$$= f_{0}(\boldsymbol{x}_{t}^{\star}) - \frac{m}{t}, \qquad (23)$$

czyli

$$f_0(\boldsymbol{x}_t^{\star}) - \frac{m}{t} \leqslant p^{\star} \tag{24}$$

czyli

$$f_0(\boldsymbol{x}_t^{\star}) - p^{\star} \leqslant \frac{m}{t}$$
 (25)

Nierówność (25) stanowi podstawowe uzasadnienie metody funkcji bariery, ponieważ oznacza, że rozwiązanie $x^*(t)$ zadania bez ograniczeń (10) jest ϵ -suboptymalnym rozwiązaniem zadania z ograniczeniami (1), tzn. dla danego $\epsilon > 0$ zachodzi

$$f_0(\boldsymbol{x}_t^{\star}) - p^{\star} \leqslant \epsilon \quad \text{jeśli} \quad \frac{m}{t} \leqslant \epsilon,$$
 (26)

skąd otrzymujemy

$$f_0(\boldsymbol{x}_t^{\star}) \stackrel{t \to \infty}{\longrightarrow} p^{\star}.$$
 (27)

Przykład 1. Weźmy pod uwagę następujące zadanie optymalizacji

$$\begin{array}{ll}
\text{minimize} & cx \\
\text{subject to} & x \geqslant a \\
x \leqslant b.
\end{array}$$

Zakładamy, że $b>a,\,c\neq0.$ Zadanie to możemy zapisać w postaci standardowej

gdzie $f_0(x) = cx$, m = 2, $f_1(x) = a - x$, $f_2(x) = x - b$. Zdefiniujmy funkcję

$$\psi_t(x) = cx - \frac{1}{t} \left[\log(x - a) + \log(-x + b) \right].$$
 (28)

Pierwsza i druga pochodna funkcji $\psi_t(x)$ wyrażają się następująco

$$\psi_t'(x) = c - \frac{1}{t} \left[\frac{1}{x - a} + \frac{1}{x - b} \right], \tag{29}$$

$$\psi_t''(x) = \frac{1}{t} \left[\frac{1}{(x-a)^2} + \frac{1}{(x-b)^2} \right]. \tag{30}$$

Zauważmy, że wewnątrz przedziału (a,b) mamy $\psi_t''(x) > 0$ czyli funkcja ψ jest wypukła. Przyrównując do zera pochodną funkcji $\psi_t(x)$ otrzymujemy równanie kwadratowe

$$x^{2} - \left(a + b + \frac{2}{ct}\right)x + ab + \frac{a+b}{ct} = 0.$$
 (31)

Równanie to ma dwa pierwiastki

$$x = \frac{a+b+\frac{2}{ct} \pm \sqrt{(b-a)^2 + \left(\frac{2}{ct}\right)^2}}{2}.$$
 (32)

Interesuje nas rozwiązanie wewnątrz przedziału (a,b), zatem mamy

$$x_{t}^{\star} = \begin{cases} \frac{a+b+\frac{2}{ct} - \sqrt{(b-a)^{2} + \left(\frac{2}{ct}\right)^{2}}}{2} & \text{dla } c > 0\\ \frac{a+b+\frac{2}{ct} + \sqrt{(b-a)^{2} + \left(\frac{2}{ct}\right)^{2}}}{2} & \text{dla } c < 0. \end{cases}$$
(33)

Pamiętając, że b > a, dla c > 0 mamy

$$\lim_{t \to +\infty} x_t^* = \lim_{t \to +\infty} \frac{a + b + \frac{2}{ct} - \sqrt{(b - a)^2 + (\frac{2}{ct})^2}}{2}$$

$$= \frac{a + b - |b - a|}{2}$$

$$= \frac{a + b - (b - a)}{2}$$

$$= a, \tag{34}$$

a dla c < 0 mamy

$$\lim_{t \to +\infty} x_t^* = \lim_{t \to +\infty} \frac{a + b + \frac{2}{ct} + \sqrt{(b - a)^2 + \left(\frac{2}{ct}\right)^2}}{2}$$

$$= \frac{a + b + |b - a|}{2}$$

$$= \frac{a + b + (b - a)}{2}$$

$$= b. \tag{35}$$

Na Rys. 2-4, dla $a=0.5,\,b=2,\,c=0.9,$ przedstawiono wykresy funkcji $f_0(x),\,\psi_t(x),\,\psi_t'(x)$ i $\psi_t''(x),$ dla wybranych wartości parametru t (Tab. 1), w Tab. 1 podano również wartości rozwiązań zadania

$$\underset{x \in \mathbb{D}}{\text{minimize}} \quad \psi_t(x) \tag{36}$$

dla tych wartości parametru t.

Tabela 1

	t	1	2	4	8	16	32
ĺ	x_t^{\star}	1.0206	0.8722	0.7280	0.6261	0.5662	0.5339

Rysunek 2: Wykresy funkcji $f_0(x)$ (kolor czerwony), $\psi_t(x) = cx - \frac{1}{t} [\log(x-a) + \log(-x+b)]$ (kolor niebieski) dla wartości parametru t z Tab. 1 oraz a=0.5, b=2, c=0.9. Niebieskimi kropami zaznaczono minima funkcji $\psi_t(x)$.

Rysunek 3: Wykres pochodnej (gradientu) $\psi_t'(x)$ (kolor niebieski) oraz pochodnej (gradientu) $f_0'(x)$ (kolor czerwony), dla wartości parametru t z Tab. 1 oraz a=0.5, b=2, c=0.9. Niebieskimi kropami zaznaczono miejsca zerowe $\psi_t'(x)$ odpowiadające minimom funkcji $\psi_t(x)$.

Rysunek 4: Wykres drugiej pochodnej (hesjanu) $\psi_t''(x) = \frac{1}{t} \left[\frac{1}{(x-a)^2} + \frac{1}{(x-b)^2} \right]$ dla wartości parametru t z Tab. 1 oraz $a=0.5,\ b=2,\ c=0.9.$

1.4 Sekwencyjna metoda bariery

Mogłoby się wydawać, że najprościej przyjać

$$t \geqslant \frac{m}{\epsilon} \tag{37}$$

i rozwiązać (10) używając np. metody Newtona. W praktyce takie podejście może okazać się mało skuteczne, nie tylko dla tego, że punkt startowy \boldsymbol{x}_0 może być położny daleko od punktu optymalnego \boldsymbol{x}^\star , ale przede wszystkim dlatego, że funkcja (13) jest na ogół źle uwarunkowana dla dużych t (tzn. hesjan funkcji ψ_t zmienia się szybko w pobliżu brzegu zbioru Ω), co powoduje, że metoda Newtona może potrzebować bardzo wielu iteracji aby zbiec do \boldsymbol{x}_t^\star . Ponadto, jeśli f_0 jest funkcją lionową, to dla dużych wartości t hesjan

$$\nabla^2 \left(f_0(\boldsymbol{x}) + \frac{1}{t} \varphi(\boldsymbol{x}) \right) \tag{38}$$

dla x, które nie znajdują się blisko brzegu obszaru dopuszczalnego, będzie macierzą bliską osobliwej, co może powodować trudności numeryczne przy stosowaniu metody Newtona (Rys. 4). W związku z tym, w praktyce, rozwiązuje się sekwencję zadań (10) zaczynając od niedużych wartości t i zwiększając je stopniowo, aż do spełnienia warunku

$$\frac{m}{t} \leqslant \epsilon.$$
 (39)

Postępowanie takie można przedstawić w postaci algorytmu podanego w ramce na końcu sekcji.

Każdą iterację k w powyższym algorytmie nazywamy krokiem centrującym (centering step) lub iteracją zewnętrzną (outer iteration), punkt \boldsymbol{x}_k^* nazywamy k-tym punktem centralnym (central point), zaś krzywą, którą tworzą minima \boldsymbol{x}_k^* funkcji (13) dla kolejnych wartości k, nazywamy ścieżką centralną (central path), zawiera się ona w zbiorze dopuszcalnym Ω . Z tego powodu sekwencyjna metoda bariery należy do tzw. metod punktu wewnętrznego (interior-point methods).

Każdy krok centrujący wymaga pewnej liczby iteracji wewnętrznych, które są iteracjami algorytmu Newtona, potrzebnymi do wyznaczenia \boldsymbol{x}_k^\star z zadaną dokładnością.

Sekwencyjna metoda bariery (ang. sequential barrier method)

dane: ściśle dopuszczalny x_0 , t_{init} , $\gamma > 1$, $\epsilon > 0$

- 1. Podstawiamy $k = 0, t = t_{init}$.
- 2. Używając metody Newtona z tłumieniem rozwiązujemy zadanie

$$\underset{\boldsymbol{x}}{\text{minimize}} \quad f_0(\boldsymbol{x}) + \frac{1}{t}\varphi(\boldsymbol{x})$$

dla punktu startowego x_k , oznaczamy rozwiązanie optymalne tego zadania przez x_k^* .

- 3. Aktualizujemy $x_{k+1} \leftarrow x_k^*$.
- 4. Jeśli $m/t \leq \epsilon$, zwracamy \boldsymbol{x}_k^{\star} i kończymy algorytm.
- 5. Aktualizujemy $t \leftarrow \gamma t, \, k \leftarrow k+1$ i przechodzimy punktu 2.

1.4.1 Liczba iteracji metody SBM

Jak już wspomniano, podstawienie $t_{\rm init} \geq m/\epsilon$ zagwarantowałoby zbieżność omówionej metody w jednym kroku centrującym (iteracji zewnętrznej), jednak mogłoby znacznie zwiększyć liczbę iteracji wewnętrznych, dlatego zwiększa się stopniowo wartość t podstawiając $t_{k+1} = \gamma t_k$ gdzie t_k oznacza wartość t w k-tym kroku centrującym. Liczba iteracji zewnętrznych (kroków centrujących) potrzebnych do znalezienia rozwiązania z zadaną dokładnością ϵ wynosi

$$\left[\frac{\log(m\epsilon^{-1}/t_{\text{init}})}{\log\gamma} + 1\right] \tag{40}$$

gdzie $\lceil x \rceil$ oznacza funkcję sufit (ang. ceiling), tzn. najmniejszą liczbę całkowitą nie mniejszą od x. Wyprowadzenie wzoru (40) można znaleźć w [1].

1.5 Wyznaczanie ściśle dopuszczalnego punktu początkowego

Metoda bariery wymaga znajomości ściśle dopuszczalnego (strictly feasible) punktu startowego \boldsymbol{x}_0 , który można wyznaczyć rozwiązując pomocnicze zadanie optymalizacji, nazywane często zadaniem pierwszej fazy (phase I problem). Punkt \boldsymbol{x} dla którego zachodzi

$$f_i(\boldsymbol{x}) < 0, \quad i \in \mathbf{m} \tag{41}$$

można znaleźć rozwiązując zadanie optymalizacji

$$\begin{array}{ll}
\text{minimize} & s \\
subject to & f_i(\mathbf{x}) \leq s, \quad i \in \mathbf{m},
\end{array} \tag{42}$$

dla której zawsze możemy łatwo znaleźć ściśle dopuszczalny punkt startowy, wybierając dowlny punkt \tilde{x}_0 (np. $\tilde{x}_0=0$) a następnie dobierając wartość s_0 tak, że

$$s_0 > \max\{f_1(\tilde{\boldsymbol{x}}_0), \dots, f_m(\tilde{\boldsymbol{x}}_0)\},\tag{43}$$

np. kładąc

$$s_0 = 1 + \max\{f_1(\tilde{x}_0), \dots, f_m(\tilde{x}_0)\}.$$
 (44)

Rozwiązując zadanie pomocnicze (42), np. metodą SBM, otrzymujemy punkt optymalny (\tilde{x}^*, s^*) , wówczas możemy wyróżnić trzy przypadki.

- 1. Jeśli $s^* < 0$ to znaczy, że $f_i(\tilde{\boldsymbol{x}}^*) \leq s^* < 0$, zatem $\tilde{\boldsymbol{x}}^*$ jest punktem sciśle dopuszczalnym dla zadania (1)
- 2. Jeśli $s^* = 0$ to znaczy, że zadanie wyjściowe nie ma ściśle dopuszczalnego rozwiązania.
- 3. Jeśli $s^* > 0$ to znaczy, że zadanie wyjściowe nie ma rozwiązania (infeasible)

W praktyce jeśli $s^{\star} < -\epsilon$ dla pewnego "rozsądnego" $\epsilon > 0$, to $\tilde{\boldsymbol{x}}^{\star}$ jest ściśle dopuszczalny (strictly feasible). Warunek $s^{\star} < 0$ można przyjąć jako kryterium stopu przy rozwiązywaniu (42).

Przykład 2. Chcemy wyznaczyć $x \in \mathbb{R}^n$ taki, że Ax < b, dla $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. W tym celu formułujemy zadanie optymalizacji

$$\begin{array}{ll}
\text{minimize} \\
\mathbf{x} \in \mathbb{R}^n, \mathbf{s} \in \mathbb{R} \\
\text{subject to} \quad \mathbf{A}\mathbf{x} - \mathbf{b} \leqslant \mathbf{1}\mathbf{s}
\end{array} \tag{45}$$

gdzie

$$\mathbf{1} = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^{\mathrm{T}}.\tag{46}$$

Zauważmy, że dla $\boldsymbol{x}=0$ oraz $1+\max(-\boldsymbol{b}$ nierówność w (45) jest spełniona w sposób ostry, tzn.

$$Ax - b < 1s \tag{47}$$

zatem przyjmując oznaczenia

$$\tilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{x} \\ s \end{bmatrix} \in \mathbb{R}^{n+1}, \quad \tilde{\boldsymbol{A}} = \begin{bmatrix} \boldsymbol{A} & -1 \end{bmatrix} \in \mathbb{R}^{m \times (n+1)},$$
 (48)

$$\tilde{\boldsymbol{b}} = \boldsymbol{b} \in \mathbb{R}^m, \quad \tilde{\boldsymbol{c}} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} \in \mathbb{R}^{n+1}$$
 (49)

możemy zapisać zadanie (45) w postaci

$$\begin{array}{ll}
\text{minimize} & \tilde{\boldsymbol{c}}^{\mathsf{T}} \tilde{\boldsymbol{x}} \\
\tilde{\boldsymbol{x}} \in \mathbb{R}^{n+1} & \tilde{\boldsymbol{b}},
\end{array} \tag{50}$$
subject to $\tilde{\boldsymbol{A}} \tilde{\boldsymbol{x}} \leqslant \tilde{\boldsymbol{b}}$,

dla którego możemy podać ściśle dopuszczalny punkt startowy

$$\tilde{x} = \begin{bmatrix} \mathbf{0} \\ 1 + \max(-\mathbf{b}) \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 1 - \min(\mathbf{b}) \end{bmatrix}.$$
 (51)

Znając ściśle dopuszczalny punkt startowy możemy metodą SBM rozwiązać zadanie (50) i tym samym, korzystając z tego, że

$$\tilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{x} \\ s \end{bmatrix} \in \mathbb{R}^{n+1},\tag{52}$$

znaleźć punkt $x \in \mathbb{R}^n$ taki, że Ax < b.

2 Rozwiązywanie zadań LP metodą SBM

2.1 Logarytmiczna funkcja bariery dla zadania LP

Dla zadania LP

$$\begin{array}{ll}
\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} & \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} \\
\text{subject to} & \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} \leqslant b_i, \quad i \in \mathbf{m}
\end{array} \tag{53}$$

mamy

$$\varphi(\boldsymbol{x}) = -\sum_{i=1}^{m} \log(b_i - \boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x}), \tag{54}$$

$$\nabla \varphi(\boldsymbol{x}) = \sum_{i=1}^{m} \frac{\boldsymbol{a}_i}{b_i - \boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x}},\tag{55}$$

$$\nabla^{2}\varphi(\boldsymbol{x}) = \sum_{i=1}^{m} \frac{\boldsymbol{a}_{i}\boldsymbol{a}_{i}^{\mathrm{T}}}{(b_{i} - \boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x})^{2}}.$$
 (56)

2.2 Nierówności liniowe i wielościany

Zbiór punktów $\boldsymbol{x} \in \mathbb{R}^n$ spełniających liniową nierówność $\boldsymbol{a}^{\scriptscriptstyle \mathrm{T}} \boldsymbol{x} \leqslant b$ dla $b \in \mathbb{R}$ jest domkniętą półprzestrzenią (ang. closed half-space). Wektor \boldsymbol{a} jest normalny do brzegu tej półprzestrzeni i wskazuje na zewnątrz. Układ m liniowych nierówności

$$\mathbf{a}_{i}^{\mathrm{T}} \mathbf{x} \leqslant b_{i}, \quad i \in \mathbf{m},$$
 (57)

wyznacza obszar w \mathbb{R}^m , który jest przecięciem m półprzestrzeni i który nazywamy wielościanem (ang. polyhedron). Wielościan jest zbiorem wypukłym (jako przecięcie zbiorów wypukłych). W zależności od układu nierówności

$$\mathbf{a}_{i}^{\mathrm{T}} \mathbf{x} \leqslant b_{i}, \quad i \in \mathbf{m},$$
 (58)

wielościan może być ograniczony lub nieograniczony. Wielościan ograniczony nazywamy wielokomórką (ang. polytope). Przyjmując oznaczenia

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{a}_1^{\mathrm{T}} \\ \boldsymbol{a}_2^{\mathrm{T}} \\ \vdots \\ \boldsymbol{a}_m^{\mathrm{T}} \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \tag{59}$$

możemy napisać układ nierówności

$$\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x} \leqslant b_{i}, \quad i \in \mathbf{m},$$
 (60)

w postaci macierzowo-wektorowej

$$Ax \leqslant b, \tag{61}$$

gdzie nierówność jest rozumiana jako nierówność odpowiednich elementów (ang. component-wise inequality), tzn. dla

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}, \tag{62}$$

napis

$$v \leqslant w$$
 (63)

onacza, że $v_i \leqslant w_i$, $i \in \mathbf{m}$.

Rysunek 5: Wielokomórka opisana zależnościami (64) i (65). Wielokomórka jest przecięciem (częśą wspólną), półpłaszczyzn opisanych nierównościami $a_i^{\rm T}x\leqslant b_i$, gdzie $a_i^{\rm T}$ jest i-tym wierszem macierzy A, natomiast b_i jest i-tym elementem wektora b. Innymi słowy wielokomórka jest opisana nierównością $Ax\leqslant b$. Linie przerywane są wykresami prostych (ogólnie hiperpłaszczyzn) postaci $a_i^{\rm T}x\leqslant b_i$.

Przykład 3. Weźmy pod uwage układ nierówności

$$Ax \leqslant b, \tag{64}$$

gdzie

$$\mathbf{A} = \begin{bmatrix} 0.4873 & -0.8732\\ 0.6072 & 0.7946\\ 0.9880 & -0.1546\\ -0.2142 & -0.9768\\ -0.9871 & -0.1601\\ 0.9124 & 0.4093 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1 \end{bmatrix}. \tag{65}$$

Mamy więc 6 nierówności liniowych, z których każada definiuje pewną półprzestrzeń, natomiast ich układ definiuje wielościan (Rys. 2.). Wielokomórkę reprezentowaną przez przecięcie półprzestrzeni nazywamy \mathcal{H} -wielokomórką (ang. \mathcal{H} -polytope).

3 Zadania

Zadanie 1. Napisać w środowisku Matlab funkcję, która dla zadanych macierzy \boldsymbol{A} i wektora \boldsymbol{b} będzie zwracać wektor \boldsymbol{x} taki, że $\boldsymbol{A}\boldsymbol{x}<\boldsymbol{b}$.

Zadanie 2. Napisać w środowisku Matlab skrypt do rozwiązywania zadania LP

$$egin{array}{ll} & \min _{oldsymbol{x} \in \mathbb{R}^n} & oldsymbol{c}^{ \mathrm{\scriptscriptstyle T} } oldsymbol{x} \ & \mathrm{subject \, to} & oldsymbol{A} oldsymbol{x} \leqslant oldsymbol{b} \ \end{array}$$

metodą SBM przy założeniu, że znany jest ściśle dopuszczalny punkt startowy (przyjąć $\boldsymbol{x}_0 = 0$), gdzie $\boldsymbol{c} = [-0.5 \ 0.5]^{\text{T}}$, zaś $\boldsymbol{A}, \boldsymbol{b}$ są dane przez (65).

Wykonać odpowiednie wykresy (jak na Rys. 5 i Rys. 6, można skorzystać z polecenia fill, colorbar). Porównać otrzymany wynik z rozwiązaniem znalezionym za pomocą funkcji linprog.

Wskazówka 1: Dla zadania LP metoda SBM ma postać

Sekwencyjna metoda bariery dla zadania LP

dane: ściśle dopuszczalny $x_0, t_{\text{init}}, \gamma > 1, \epsilon > 0$

- 1. Podstawiamy k = 0, $t = t_{init}$.
- 2. Używając metody Newtona z tłumieniem rozwiązujemy zadanie

$$\underset{\boldsymbol{x}}{\text{minimize}} \quad \psi_t(\boldsymbol{x}) \tag{66}$$

dla punktu startowego x_k , gdzie

$$egin{aligned} \psi_t(oldsymbol{x}) &= f_0(oldsymbol{x}) + rac{1}{t} arphi(oldsymbol{x}) \ &= oldsymbol{c}^{ ext{T}} oldsymbol{x} - rac{1}{t} \sum_{i=1}^m \log(b_i - oldsymbol{a}_i^{ ext{T}} oldsymbol{x}), \
abla \psi_t(oldsymbol{x}) &=
abla f_0(oldsymbol{x}) + rac{1}{t}
abla arphi(oldsymbol{x}) \ &= c + rac{1}{t} \sum_{i=1}^m rac{oldsymbol{a}_i}{b_i - oldsymbol{a}_i^{ ext{T}} oldsymbol{x}}, \
abla^2 \psi_t(oldsymbol{x}) &=
abla^2 f_0(oldsymbol{x}) + rac{1}{t}
abla^2 arphi(oldsymbol{x}) \end{aligned}$$

$$abla^2 \psi_t(oldsymbol{x}) =
abla^2 f_0(oldsymbol{x}) + rac{1}{t}
abla^2 arphi(oldsymbol{x})$$

$$= rac{1}{t} \sum_{i=1}^m rac{oldsymbol{a}_i oldsymbol{a}_i^{\mathrm{T}}}{(b_i - oldsymbol{a}_i^{\mathrm{T}} oldsymbol{x})^2}.$$

Rozwiązanie optymalne zadania (66) oznaczamy przez \boldsymbol{x}_k^{\star} .

- 3. Aktualizujemy $x_{k+1} \leftarrow x_k^*$.
- 4. Jeśli $m/t \leqslant \epsilon$, zwracamy \boldsymbol{x}_k^\star i kończymy algorytm.
- 5. Aktualizujemy $t \leftarrow \gamma t, \ k \leftarrow k+1$ i przechodzimy punktu 2.

Rysunek 6: Wykres obszaru dopuszczalnego, punktów centralnych oraz poziomic funkcji bariery dla Zadania 1. Czarnym kwadratem zaznaczono punkt startowy x_0 . Czarnymi kropami kolejne minima iteracji zewnętrznych. Liniami przerywanymi zaznaczono poziomice funkcji celu. Rozwiązaniem jest punkt wierzchołkowy $x_{\rm opt} = [0.9126, -0.6359]^{\rm T}$ (zaznaczony czerwoną kropą).

Wskazówka 2: Przyjmując oznaczenia

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{a}_{1}^{\mathrm{T}} \\ \boldsymbol{a}_{2}^{\mathrm{T}} \\ \vdots \\ \boldsymbol{a}_{m}^{\mathrm{T}} \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{b} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, \quad (67)$$

możemy wyrażenia

$$\sum_{i=1}^{m} \log(b_i - \boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x}), \quad \sum_{i=1}^{m} \frac{\boldsymbol{a}_i}{b_i - \boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x}}, \quad \sum_{i=1}^{m} \frac{\boldsymbol{a}_i \boldsymbol{a}_i^{\mathrm{T}}}{(b_i - \boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x})^2} \quad (68)$$

zapisać w środowisku Matlab nstępująco

$$A'*(1./(b-A*x))$$

Wskazówka 3: Jak już wspomniano, rysując wykres polikomórki 2D można skorzystać z polecenia fill. Wierzchołkami polikomórki opisanej zależnościami (64) i (65) są kolumny macierzy V

$$V = \begin{bmatrix} 0.1562 & 0.9127 & 1.0338 & 0.8086 & -1.3895 & -0.8782 \\ -1.0580 & -0.6358 & 0.1386 & 0.6406 & 2.3203 & -0.8311 \end{bmatrix} (69)$$

Wskazówka 4: Można przyjąć $t_0 = 1, \gamma = 2.5.$

Zadanie 3. Rozbudować skrypt z Zadania 2 w taki sposób, aby ściśle dopuszczalny punkt startowy był wyznaczany automatycznie (metodą opisaną w paragrafie 1.5).

Zadanie 4. Napisać funkcję w środowisku Matlab, do rozwiązywania metodą SBM zadań LP postaci

$$egin{array}{ll} & \min & egin{array}{ll} & oldsymbol{c}^{ ext{T}} oldsymbol{x} \ & oldsymbol{x} \in \mathbb{R}^n \ & ext{subject to} & oldsymbol{A} oldsymbol{x} \leqslant oldsymbol{b} \end{array}$$

dla dowolnych danych wejściowych tzn. $\boldsymbol{A},\,\boldsymbol{b}$ i \boldsymbol{c} .

Literatura

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004.