МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет "Львівська політехніка" Інститут комп'ютерних наук та інформаційних технологій Кафедра автоматизованих систем управління

ГРАФІЧНО-РОЗРАХУНКОВА РОБОТА

з дисципліни

"Математичні методи дослідження операцій" для студентів першого (бакалаврського) рівня вищої освіти спеціальності 122 "Комп'ютерні науки"

Мета графічно-розрахункової роботи:

закріпити і поглибити теоретичні знання методів розв'язання задач дослідження операцій, сформувати практичні навички розв'язання задач.

Вимоги до звіту з РГР

Звіт про виконання розрахунково-графічної роботи повинен містити:

- титульна сторінка (зразок додається нижче);
- індивідуальне завдання (варіант визначено викладачем);
- виконання всіх пунктів індивідуального завдання;
- висновки по кожному завданню.

Оформити звіт слід засобами текстового редактора.

Шрифт – Times New Roman 14 pt, інтервал 1,15.

Параметри сторінки: розмір А4; відступи: зліва 25 мм, зверху і знизу 20 мм, справа 10 мм.

Обов'язково додати нумерацію сторінок (знизу, справа), та прізвище автора на кожній сторінці (знизу, зліва).

Варіанти завдань розрахунково-графічної роботи з дисципліни «Математичні методи дослідження операцій»

Варіант – порядковий номер студента у журналі групи.

Завдання 1. Одновимірна оптимізація.

Знайти мінімальне / максимальне значення функції f(x) на проміжку [a,b]. Точку x^* визначити з точністю $\varepsilon = 0.01$. Розрахунки зробити вручну двома методами, вказати кількість ітерацій, необхідних для досягнення заданої точності. Зробити висновок про ефективність методів. Варіанти завдань наведено в таблиці.

№ п/п	Функція	Інтервал	f_{\min} / f_{\max}	Метод
1.	$f(x) = x - 0.5x^2 + x^3 - (1/7)x^7$	[1;1.5]	$f_{ m min}$	Пауела Ділення інтервалу наполовину
2.	$f(x) = 5x + x^2 - 0.25x^4$	[2;3]	f_{\max}	Загального перебору Пауела
3.	$f(x) = 1 + x - 2.5x^2 + 0.25x^4$	[0;1]	$f_{ m max}$	Ньютона-Рафсона Ділення інтервалу наполовину
4.	$f(x) = 2x + 3.5x^2 - (5/3)x^3 + 0.5x^4$	[0;0.5]	f_{\min}	Золотого січення Ньютона-Рафсона
5.	$f(x) = 2x^2 - (x+1)^4$	[-3;2]	f_{\max}	Пауела Золотого січення
6.	$f(x) = 2x + x^2 - (1/5)x^3$	[-1;-0.5]	f_{\min}	Ділення інтервалу наполовину Ньютона-Рафсона
7.	$f(x) = x - 2x^2 + (1/5)x^5$	[1;2]	f_{\min}	Загального перебору Пауела
8.	$f(x) = 1 - 6x - 3x^2 - x^6$	[-1;0]	f_{\max}	Золотого січення Ньютона-Рафсона
9.	$f(x) = 2x^2 + 3(5-x)^{4/3}$	[1.5;2]	f_{\min}	Пауела Загального перебору
10.	$f(x) = 20x - 5x^2 + 8x^{5/4}$	[3;3.5]	f_{\max}	Золотого січення Пауела
11.	$f(x) = x + x^2 - x^3 + (2/3)x^4 - (4/5)x^5 + (5/3)x^6$	[-1;0]	$f_{ m min}$	Пауела Ділення інтервалу наполовину
12.	$f(x) = x\sin(x) + 2\cos(x)$	$[\pi/4;\pi/3]$	$f_{ m min}$	Ділення інтервалу наполовину Ньютона-Рафсона
13.	$f(x) = \sqrt{1 + x^2} + e^{-2x}$	[0;1]	f_{\min}	Загального перебору Пауела
14.	$f(x) = 72x + 6x^2 - 8x^3 - x^4$	[1.5;2]	f_{\max}	Загального перебору Ньютона-Рафсона
15.	$f(x) = 2x - x^2 - e^{-x}$	[1;1.5]	$f_{ m min}$	Ділення інтервалу наполовину Ньютона-Рафсона

16.	(() 2::() (()	0;π/4]		Паугата
10.	$f(x) = 2\sin(x) - tg(x)$	0, 17 4]	f_{max}	Пауела
				Ділення інтервалу
				наполовину
17.	$f(x) = 1 - 32x + 4x^2 + x^4$	[1;2]	f_{\min}	Золотого січення
				Пауела
18.	$f(x) = 1 + 4x + 2x^2$	[-1;0]	f_{\min}	Ньютона-Рафсона
				Загального перебору
19.	$f(x) = 2 + 5x - 10x^2 - 5x^3 - x^5$	[-3;2]	f_{max}	Ділення інтервалу
	$\int (x) = 2 + 3x + 10x + 3x + x$		- III	наполовину
				Пауела
20.	$f(x) = 3 + 120x - 4x^2 - x^4$	[2.5;3]	f_{\min}	Золотого січення
	f(x) = 3 + 120x - 4x - x		J min	Ньютона-Рафсона
21.	$f(x) = 80x - 30x^2 - 0.25x^4$	[1;2]	f_{max}	Ділення інтервалу
	$f(x) = 80x - 30x^{2} - 0.25x^{3}$	[-5,-]	J max	наполовину
22.	200	[1;1.5]	f	Загального перебору
22.	$f(x) = 1 + 2x + 0.5x^2 - (1/6)x^6$	[1,1.5]	f_{max}	Пауела
23.	2	[0.5;1]		-
23.	$f(x) = 10x \lg(x/e) - x^2/2$	[0.3,1]	f_{\min}	Ньютона-Рафсона
2.4		[1 5 2]		Загального перебору
24.	$f(x) = 0.5x^2 + x(\lg(x/e) - 2)$	[1.5;2]	f_{\min}	Пауела
		50.517		Загального перебору
25.	$f(x) = (1/3)x^2 + x(\ln x - 1)$	[0.5;1]	f_{max}	Золотого січення
				Пауела
26.	$f(x) = (1/3)x^3 - (1+x)(\ln(1+x) - 1)$	[-0.5;0.5]	f_{\min}	Ділення інтервалу
				наполовину
				Ньютона-Рафсона
27.	$f(x) = (1/\ln(2))2^x - 2x^2$	[3.5;4.5]	f_{\min}	Загального перебору
	<i>y</i> (<i>x</i>) (1) III(2))2 2 <i>x</i>			Пауела
28.	$f(x) = (1/3)x^3 - e^x - 2x$	[-2;1]	f_{max}	Ньютона-Рафсона
	$\int (\lambda) - (1/3)\lambda \epsilon 2\lambda$		JIIIGA	Ділення інтервалу
				наполовину
29.	$f(x) = x - 0.5x^2 + \cos(x)$	[0;1]	f_{max}	Золотого січення
	$J(x) = x - 0.5x + \cos(x)$		J max	Ньютона-Рафсона
30.	$f(x) = 0.5x^2 - \sin(x)$	[0.5;1]	f_{\min}	Пауела
50.	$f(x) = 0.5x^2 - \sin(x)$	[0.5,1]	J min	Ділення інтервалу
<u></u>				наполовину

Завдання 2. Лінійне програмування.

- Сформувати таблицю вхідних даних задачі відповідно до варіанту (різні задачі для парних і непарних варіантів);
- Побудувати математичну модель задачі з поясненням змінних, обмежень і цільової функції;
- Привести математичну модель задачі ЛП до канонічної форми;
- *Знайти рішення задачі: вручну, або з використанням Excel пошук рішення, або з використанням MathCAD, або скласти власну програму.
- Вихідні дані для задачі подано у таблиці 1.

Задача для парних варіантів.

Підприємство випускає n видів продукції з використанням m видів обмежених ресурсів. Відомі наступні величини:

 $b_i(i = \overline{1, m})$ — запас ресурсу i-го виду;

 $a_{ij}(i=\overline{1,m}; j=\overline{1,n})$ — кількість ресурсу *i*-го виду, що йде на виготовлення одиниці продукції *j*-го виду;

 $c_j(j=\overline{1,n})$ — доход від реалізації одиниці продукції *j*-го виду.

Потрібно скласти такий план випуску продукції, щоб при її реалізації одержати максимальний доход.

Задача для непарних варіантів.

 \in *п* типів спеціалізованих автомобілів для перевезення поштових відправлень. Необхідно за певним маршрутом перевезти *m* видів поштових відправлень (контейнери, посилки, мішки). Відомі наступні величини:

 $b_i(i=\overline{1,m})$ — кількість поштових відправлень *i*-го виду, які необхідно перевезти;

 $a_{ij}(i=\overline{1,m};\ j=\overline{1,n})$ — місткість поштових відправлень *i*-го виду, за один рейс автомобіля *j*-го типу;

 $c_j(j=\overline{1,n})$ — витрати на один рейс автомобіля *j*-го типу.

Потрібно скласти такий план перевезення поштових відправлень, щоб при їхньому перевозі витрати були мінімальні.

Таблиця 1.

№ варіанту	a ₁₁	a12	au	a21	a22	a23	a31	a32	<i>a</i> ₃₃	b ₁	b ₂	b3 p.,	C1	C ₂	C3
1	8	20	14	16	10	13	12	9	21	360	250	350	16	14	13
2	9	10	21	14	13	20	14	15	10	400	270	360	17	16	8
3	10	11	16	10	12	19	15	13	9	380	280	370	20	9	14
4	11	12	10	11	15	17	16	14	7	360	280	380	15	10	17
5	12	13	11	12	13	10	17	12	8	510	420	390	5	13	16
6	13	14	12	13	9	12	19	10	12	490	410	400	7	11	12
7	14	15	13	14	11	7	20	17	13	470	400	430	9	12	13
8	11	16	14	16	10	9	18	15	10	450	390	420	11	13	14
9	10	17	15	18	9	17	16	13	11	430	370	410	13	14	11
10	2	18	16	20	7	17	14	11	16	410	350	390	15	15	8
11	7	19	17	19	8	16	12	10	11	390	330	400	17	16	9
12	8	20	18	18	9	15	9	12	19	370	310	340	19	17	10
13	9	21	19	17	10	9	11	13	9	350	200	350	21	18	11
14	10	18	16	16	13	18	13	14	8	330	210	360	20	19	13
15	11	17	19	15	14	6	15	18	7	310	230	370	19	20	15
16	12	8	20	14	16	7	17	19	9	320	250	356	18	8	17
17	13	14	8	13	20	9	19	17	11	340	270	290	17	9	19
18	14	9	16	12	22	8	10	15	8	360	290	260	16	10	6
19	15	10	20	11	21	14	12	13	9	380	290	330	15	12	7
20	16	12	19	10	20	11	14	11	15	400	300	320	14	14	8
21	17	13	18	9	19	12	16	10	16	420	320	310	13	16	9
22	18	14	17	8	18	15	18	9	14	440	340	300	12	18	16
23	19	15	16	7	17	15	22	8	12	460	360	290	11	21	15
24	18	17	15	6	16	14	9	16	13	480	380	280	10	20	14
25	21	16	14	5	15	13	12	14	9	500	400	270	9	19	13
26	22	9	10	4	14	12	11	12	17	520	420	260	8	18	12
27	14	20	7	21	9	16	19	17	15	280	410	380	14	12	9
28	20	17	8	20	8	15	18	9	12	290	420	390	13	11	10
29	19	24	9	19	7	14	17	10	8	300	400	400	9	14	12
30	18	23	10	18	19	13	16	13	10	310	410	410	10	9	8

Завдання 3. Багатопараметрична оптимізація.

Розв'язати задачу багатопараметричної оптимізації вказаним методом прямого пошуку. Цільова функція — це функція двох змінних, тип екстремуму вказано у варіанті (мінімум/максимум). Зробити висновок про ефективність методу. Варіанти завдань наведено в таблиці.

№ п.п.	Функція	Метод		
1.	$x^2 + xy + 3y^2 - 12x - 15y + 2$	Знайти мінімум за допомогою методу пошуку по симплексу		
2.	$-x^2 - 2xy - 5y^2 + 12x + 15y$	Знайти максимум методом Нелдера- Міда		
3.	$x^2 + 4xy + 2y^2 - 6x - 8y$	Знайти мінімум методом Хука-Джівса		
4.	$-x^2 - xy - 3y^2 + 12x + 11y - 6$	Знайти максимум за допомогою методу пошуку по симплексу		
5.	$x^2 + 2xy + y^2 - 3x - 14y$	Знайти мінімум методом Нелдера-Міда		
6.	$3x^2 - 2xy + 4y^2 - 3x + 2y + 5$	Знайти мінімум методом Хука-Джівса		
7.	$3x^2 - 2xy + 2y^2 - 2x - 10y$	Знайти мінімум за допомогою методу пошуку по симплексу		
8.	$-2x^2 + 2xy - 2y^2 + 12x + 12y + 3$	Знайти максимум методом Хука-Джівса		
9.	$-2x^2 - 5xy - 2y^2 + 20x + 15y + 2$	Знайти максимум за допомогою методу пошуку по симплексу		
10.	$x^2 + xy + 2y^2 - 5x - 10y - 10$	Знайти мінімум методом Нелдера-Міда		
11.	$x^2 + 4y^2 - xy - 6x - 4y + 2$	Знайти мінімум за допомогою методу пошуку по симплексу		
12.	$-4x^2 - 2xy - y^2 + 16x + 10y - 2$	Знайти максимум методом Хука-Джівса		
13.	$-2x^2 - 5xy - 4y^2 + 3x - 5y + 6$	Знайти максимум за допомогою методу пошуку по симплексу		
14.	$4x^2 - 2xy + 2y^2 - 12x - 2y + 4$	Знайти мінімум методом Нелдера-Міда		
15.	$2x^2 + 2y^2 - xy - 16x - 10y - 2$	Знайти мінімум за допомогою методу пошуку по симплексу		
16.	$-2x^2 + xy - y^2 + 12x + y6 + 5$	Знайти максимум методом Хука-Джівса		
17.	$-2x^2 - xy - 4y^2 + 20x + 12y - 4$	Знайти максимум за допомогою методу пошуку по симплексу		
18.	$x^2 - xy + 3y^2 - 12x - 14y + 6$	Знайти мінімум методом Нелдера-Міда		
19.	$x^2 + 2xy + 4y^2 - 3x - 6y + 8$	Знайти мінімум за допомогою методу пошуку по симплексу		

20.	$-x^2 - xy - 3y^2 + 10x + 14y - 2$	Знайти максимум методом Хука-Джівса
	x = xy = 3y + 10x + 14y = 2	
21.	$4x^2 + xy + 5y^2 - 50x + 60y - 5$	Знайти мінімум за допомогою методу
		пошуку по симплексу
22.	$3x^2 - 3xy + 2y^2 - 10x - 8y + 5$	Знайти мінімум методом Хука-Джівса
23.	$-8x^2 - 4xy - 6y^2 + 16x + 10y + 2$	Знайти максимум за допомогою методу
		пошуку по симплексу
24.	$5x^2 - xy + y^2 - 10x - y - 5$	Знайти мінімум методом Нелдера-Міда
25.	$-4x^2 - 4xy - 2y^2 - 2x + 10y + 8$	Знайти максимум методом Хука-Джівса
26.	$x^2 + 3xy + y^2 - 10x - 12y - 6$	Знайти мінімум за допомогою методу
		пошуку по симплексу
27.	$-2x^2 - xy - 5y^2 - 4x + 5y - 6$	Знайти максимум методом Нелдера-
		Міда
28.	$5x^2 + 3xy + y^2 + 3x - 4y$	Знайти мінімум методом Хука-Джівса
29.	$-x^2 - 3xy - 2y^2 - x + 5y + 3$	Знайти максимум за допомогою методу
		пошуку по симплексу
30.	$5x^2 + 3xy + 4y^2 + 5x - y - 4$	Знайти мінімум методом Нелдера-Міда

Завдання 4. Градієнтні методи.

Розв'язати задачу знаходження мінімуму функції, використовуючи вказаний градієнтний метод. Зробити висновок про ефективність методу. Варіанти завдань наведено в таблиці.

№ п.п.	Функція, початкова точка	Метод пошуку
1.	$f(x) = 6x_1^2 + 4x_1x_2 + 3x_2^2 - 3x_1, x^{(0)} = [8, 8]^T$	Метод Коші
2.	$f(x) = 4x_1^2 + 2x_1x_2 + 5x_2^2 + 2x_2, x^{(0)} = [9, 9]^T$	Метод Ньютона
3.	$f(x) = 5x_1^2 + 2.8x_1x_2 + 4.2x_2^2, \ x^{(0)} = [7.0, 7.2]^T$	Метод Марквардта
4.	$f(x) = 4x_1^2 - 4x_1x_2 + 3x_2^2 + x_1, \ x^{(0)} = [0, \ 0]^T$	Метод Флетчера- Рівса
5.	$f(x) = 3.5x_1^2 - 2x_1x_2 + 3x_2^2 + 2x_1, \ x^{(0)} = [0, \ 0]^T$	Метод Девідона- Флетчера-Пауела
6.	$f(x) = 2x_1^2 + 4x_1x_2 + x_2^2 - x_2, x^{(0)} = [4, 4.5]^T$	Метод Ньютона
7.	$f(x) = 4x_1^2 - 2x_1x_2 + 3.5x_2^2 - x_1, x^{(0)} = [5, 5]^T$	Метод Коші
8.	$f(x) = 5x_1^2 + 2x_1x_2 + 2x_2^2 - x_1 + x_2, \ x^{(0)} = [5, 2]^T$	Метод Марквардта
9.	$f(x) = 2x_1^2 - 6x_1x_2 + 7x_2^2 - 2x_1, \ x^{(0)} = [1, 1]^T$	Метод Девідона- Флетчера-Пауела
10.	$f(x) = 2x_1^2 - 4x_1x_2 + 3x_2^2 + x_1 - x_2, \ x^{(0)} = [2, 1]^T$	Метод Флетчера- Рівса
11.	$f(x) = 8x_1^2 + 4x_1x_2 + 5x_2^2 - 2x_2, x^{(0)} = [6, 6]^T$	Метод Ньютона
12.	$f(x) = 4x_1^2 - 4x_1x_2 + 3x_2^2 + x_1 - 2x_2, \ x^{(0)} = [1, \ 0]^T$	Метод Марквардта
13.	$f(x) = 6x_1^2 - 8x_1x_2 + 3x_2^2 + x_1 + 4x_2, \ x^{(0)} = [0, \ 0]^T$	Метод Девідона- Флетчера-Пауела
14.	$f(x) = 3x_1^2 - 7x_1x_2 + 3.5x_2^2 + 3x_2, x^{(0)} = [2, 5]^T$	Метод Коші
15.	$f(x) = 2x_1^2 - 7x_1x_2 + 3x_2^2 + x_1 - x_2, \ x^{(0)} = [2, 1]^T$	Метод Флетчера- Рівса
16.	$f(x) = 2x_1^2 - 5x_1x_2 + 3x_2^2 + x_1 - x_2, \ x^{(0)} = [0, 0]^T$	Метод Ньютона
17.	$f(x) = 2x_1^2 - 2x_1x_2 + 4x_2^2 + x_1 - 3x_2, \ x^{(0)} = [0, -1.5]^T$	Метод Марквардта

18.	$f(x) = 2.8x_1^2 - x_1x_2 + 3.3x_2^2 - 2x_1 + 4x_2, \ x^{(0)} = [0, \ 0]^T$	Метод Флетчера- Рівса
19.	$f(x) = 4x_1^2 - 7.5x_1x_2 + 3x_2^2 - 3x_1 - 3x_2, \ x^{(0)} = [0, \ 0]^T$	Метод Девідона- Флетчера-Пауела
20.	$f(x) = 5.4x_1^2 - 7.2x_1x_2 + 6x_2^2 - 10x_1 - x_2, \ x^{(0)} = [2,2]^T$	Метод Марквардта
21.	$f(x) = 8x_1^2 - 6x_1x_2 + 3x_2^2 - 7x_1 + 10x_2, x^{(0)} = [1.5, 2.5]^T$	Метод Коші
22.	$f(x) = 8.5x_1^2 + 4x_1x_2 + 5x_2^2 + 4x_1 - 2.4x_2, x^{(0)} = [1.7, 1.7]^T$	Метод Ньютона
23.	$f(x) = 12x_1^2 - x_1x_2 + 3x_2^2 - 2x_1 + 10x_2, \ x^{(0)} = [0.5, \ 0.1]^T$	Метод Девідона- Флетчера-Пауела
24.	$f(x) = 2x_1^2 - 7x_1x_2 + 3x_2^2 + 0.7x_1 - 4x_2, \ x^{(0)} = [1.2, 1.2]^T$	Метод Флетчера- Рівса
25.	$f(x) = 7x_1^2 + 2.8x_1x_2 + 4x_2^2, \ x^{(0)} = [7.5, 7.5]^T$	Метод Марквардта
26.	$f(x) = 4x_1^2 - 2x_1x_2 + 3.5x_2^2 - x_1 + 10x_2, x^{(0)} = [0.5, 0.5]^T$	Метод Коші
27.	$f(x) = x_1^2 - 5x_1x_2 + 4x_2^2 - x_1 + 10x_2, \ x^{(0)} = [2, 1.2]^T$	Метод Флетчера- Рівса
28.	$f(x) = 2x_1^2 - 7x_1x_2 + x_2^2 - 2x_1 + 3x_2, \ x^{(0)} = [0.1, \ 0.1]^T$	Метод Девідона- Флетчера-Пауела
29.	$f(x) = x_1^2 + 4x_1x_2 + 3x_2^2 + 10x_1 - 8x_2, \ x^{(0)} = [0, \ 0.1]^T$	Метод Марквардта
30.	$f(x) = 4x_1^2 - 7.5x_1x_2 + 3x_2^2 - 3x_1 - 3x_2, \ x^{(0)} = [0, \ 0]^T$	Метод Девідона- Флетчера-Пауела

Завдання 5. Транспортна задача.

Знайти оптимальний план транспортної задачі, якщо відома матриця вартості перевезень (C_{ij}) одиниці вантажу, запаси (a_i) і потреби (b_i) вантажів. Задачу розв'язати методом мінімальної вартості (або північно-західного кута, або Фогеля) та перевірити на оптимальність методом потенціалів. Порівняти початковий опорний план і оптимальний план, зробити висновок. Побудувати математичну модель транспортної задачі, а також двоїсту до неї.

Варіанти завдань наведено нижче.

1.
$$C_{ij} = \begin{pmatrix} 15 & 3 & 5 & 10 \\ 12 & 8 & 5 & 7 \\ 6 & 7 & 4 & 8 \end{pmatrix}, a_i = 350; 250; 150, b_j = 100; 230; 120; 180.$$

2.
$$C_{ij} = \begin{pmatrix} 6 & 7 & 8 & 10 \\ 4 & 2 & 6 & 5 \\ 7 & 3 & 8 & 2 \end{pmatrix}, a_i = 200; 350; 250, b_j = 140; 305; 240; 100.$$

3.
$$C_{ij} = \begin{pmatrix} 12 & 3 & 5 & 10 \\ 13 & 10 & 2 & 8 \\ 10 & 5 & 8 & 7 \end{pmatrix}, a_i = 150; 250; 100, b_j = 250; 70; 65; 185.$$

3.
$$C_{ij} = \begin{pmatrix} 12 & 3 & 5 & 10 \\ 13 & 10 & 2 & 8 \\ 10 & 5 & 8 & 7 \end{pmatrix}$$
, $a_i = 150$; 250; 100, $b_j = 250$; 70; 65; 185.
4. $C_{ij} = \begin{pmatrix} 8 & 9 & 10 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 10 & 11 & 12 \end{pmatrix}$, $a_i = 250$; 120; 220, $b_j = 240$; 160; 100; 80.

5.
$$C_{ij} = \begin{pmatrix} 5 & 4 & 3 & 8 \\ 8 & 7 & 6 & 4 \\ 10 & 11 & 8 & 10 \end{pmatrix}, a_i = 190; 180; 120, b_j = 270; 140; 100; 110.$$

6.
$$C_{ij} = \begin{pmatrix} 8 & 9 & 10 & 3 \\ 5 & 7 & 7 & 6 \\ 3 & 10 & 11 & 12 \end{pmatrix}, a_i = 200; 150; 250, b_j = 180; 140; 120; 80.$$

5.
$$C_{ij} = \begin{pmatrix} 5 & 4 & 3 & 8 \\ 8 & 7 & 6 & 4 \\ 10 & 11 & 8 & 10 \end{pmatrix}$$
, $a_i = 190$; 180; 120, $b_j = 270$; 140; 100; 110.
6. $C_{ij} = \begin{pmatrix} 8 & 9 & 10 & 3 \\ 5 & 7 & 7 & 6 \\ 3 & 10 & 11 & 12 \end{pmatrix}$, $a_i = 200$; 150; 250, $b_j = 180$; 140; 120; 80.
7. $C_{ij} = \begin{pmatrix} 6 & 8 & 12 & 10 \\ 10 & 12 & 11 & 13 \\ 10 & 7 & 8 & 6 \end{pmatrix}$, $a_i = 450$; 150; 180, $b_j = 220$; 180; 210; 150.

8.
$$C_{ij} = \begin{pmatrix} 14 & 13 & 12 & 11 \\ 8 & 10 & 12 & 9 \\ 10 & 9 & 8 & 7 \end{pmatrix}, a_i = 200; 190; 130, b_j = 120; 180; 200; 200.$$
9. $C_{ij} = \begin{pmatrix} 5 & 9 & 7 & 12 \\ 10 & 8 & 9 & 11 \\ 10 & 8 & 9 & 7 \end{pmatrix}, a_i = 280; 190; 160, b_j = 180; 210; 170; 120.$

9.
$$C_{ij} = \begin{pmatrix} 5 & 9 & 7 & 12 \\ 10 & 8 & 9 & 11 \\ 10 & 8 & 9 & 7 \end{pmatrix}, a_i = 280; 190; 160, b_j = 180; 210; 170; 120.$$

10.
$$C_{ij} = \begin{pmatrix} 9 & 10 & 8 & 7 \\ 6 & 5 & 3 & 10 \\ 3 & 2 & 9 & 8 \end{pmatrix}, a_i = 280; 180; 90, b_j = 220; 100; 200; 70.$$

11.
$$C_{ij} = \begin{pmatrix} 6 & 5 & 1 & 2 \\ 2 & 4 & 3 & 7 \\ 9 & 8 & 10 & 5 \end{pmatrix}, a_i = 120; 130; 90, b_j = 95; 105; 130; 70.$$

12.
$$C_{ij} = \begin{pmatrix} 10 & 9 & 8 & 7 \\ 4 & 3 & 5 & 6 \\ 9 & 7 & 10 & 11 \end{pmatrix}, a_i = 200; 170; 250, b_j = 190; 130; 230; 110.$$

$$\mathbf{12.} C_{ij} = \begin{pmatrix} 10 & 9 & 8 & 7 \\ 4 & 3 & 5 & 6 \\ 9 & 7 & 10 & 11 \end{pmatrix}, \quad a_i = 200; \quad 170; \quad 250, \\ b_j = 190; \quad 130; \quad 230; \quad 110.$$

$$\mathbf{13.} C_{ij} = \begin{pmatrix} 9 & 9 & 14 & 13 \\ 4 & 6 & 7 & 8 \\ 3 & 10 & 9 & 5 \end{pmatrix}, \quad a_i = 180; \quad 140; \quad 220, \\ b_j = 100; \quad 110; \quad 140; \quad 160.$$

$$\mathbf{14.} \, C_{ij} = \begin{pmatrix} 5 & 6 & 7 & 4 \\ 1 & 4 & 3 & 2 \\ 7 & 8 & 10 & 9 \end{pmatrix}, \quad \begin{aligned} a_i &= & 120; & 140; & 100, \\ b_j &= & 85; & 115; & 120; & 90. \end{aligned}$$

$$\mathbf{15.} C_{ij} = \begin{pmatrix} 5 & 9 & 6 & 8 \\ 10 & 8 & 7 & 11 \\ 10 & 9 & 6 & 5 \end{pmatrix}, \quad a_i = 280; \quad 150; \quad 120, \\ b_j = 170; \quad 220; \quad 160; \quad 130.$$

16.
$$C_{ij} = \begin{pmatrix} 2 & 2 & 4 & 5 \\ 6 & 7 & 3 & 4 \\ 9 & 7 & 8 & 6 \end{pmatrix}, a_i = 170; 130; 80, b_j = 160; 180; 120; 140.$$

17.
$$C_{ij} = \begin{pmatrix} 4 & 4 & 5 & 6 \\ 3 & 2 & 7 & 8 \\ 2 & 10 & 5 & 9 \end{pmatrix}, a_i = 340; 160; 200, b_j = 180; 220; 185; 135.$$

18.
$$C_{ij} = \begin{pmatrix} 13 & 12 & 10 & 11 \\ 7 & 10 & 6 & 8 \\ 4 & 3 & 4 & 9 \end{pmatrix}, a_i = 190; 110; 90, b_j = 100; 110; 120; 80.$$

$$\mathbf{19.} \ C_{ij} = \begin{pmatrix} 5 & 2 & 3 & 7 \\ 3 & 4 & 7 & 2 \\ 5 & 6 & 7 & 8 \end{pmatrix}, \quad \begin{aligned} a_i &= & 180; & 140; & 120, \\ b_j &= & 160; & 100; & 140; & 30. \end{aligned}$$

20.
$$C_{ij} = \begin{pmatrix} 2 & 1 & 3 & 3 \\ 5 & 7 & 3 & 4 \\ 9 & 8 & 7 & 6 \end{pmatrix}, a_i = 170; 130; 250, b_j = 160; 180; 140; 120.$$

21.
$$C_{ij} = \begin{pmatrix} 10 & 9 & 8 & 7 \\ 7 & 6 & 4 & 5 \\ 3 & 2 & 6 & 8 \end{pmatrix}, \quad \begin{aligned} a_i &= & 210; & 170; & 190, \\ b_j &= & 180; & 200; & 150; & 120. \end{aligned}$$

22.
$$C_{ij} = \begin{pmatrix} 9 & 8 & 9 & 10 \\ 6 & 8 & 5 & 7 \\ 3 & 2 & 4 & 6 \end{pmatrix}, a_i = 130; 100; 180, b_j = 190; 110; 80; 90.$$

23.
$$C_{ij} = \begin{pmatrix} 3 & 5 & 7 & 9 \\ 8 & 4 & 6 & 3 \\ 7 & 6 & 4 & 2 \end{pmatrix}, a_i = 220; 150; 280, b_j = 150; 200; 160; 200.$$

24.
$$C_{ij} = \begin{pmatrix} 9 & 10 & 4 & 10 \\ 12 & 11 & 3 & 8 \\ 7 & 6 & 5 & 2 \end{pmatrix}, a_i = 240; 300; 210, b_j = 130; 170; 140; 160.$$

25.
$$C_{ij} = \begin{pmatrix} 5 & 8 & 10 & 3 \\ 7 & 3 & 1 & 3 \\ 2 & 4 & 6 & 5 \end{pmatrix}, a_i = 340; 210; 320, b_j = 180; 140; 150; 170.$$

26.
$$C_{ij} = \begin{pmatrix} 12 & 14 & 13 & 10 \\ 11 & 5 & 6 & 3 \\ 2 & 3 & 5 & 4 \end{pmatrix}, a_i = 280; 150; 120, b_j = 140; 130; 180; 120.$$

$$\mathbf{27.} C_{ij} = \begin{pmatrix} 10 & 8 & 7 & 6 \\ 3 & 5 & 9 & 4 \\ 4 & 2 & 2 & 9 \end{pmatrix}, \quad a_i = 200; \quad 175; \quad 225, \\ b_j = 120; \quad 180; \quad 200; \quad 110.$$

28.
$$C_{ij} = \begin{pmatrix} 5 & 7 & 9 & 3 \\ 8 & 4 & 10 & 8 \\ 3 & 9 & 6 & 7 \end{pmatrix}, a_i = 280; 150; 180, b_j = 160; 140; 180; 150.$$

$$\mathbf{29.} C_{ij} = \begin{pmatrix} 10 & 9 & 8 & 6 \\ 11 & 12 & 10 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}, \quad a_i = 200; \quad 260; \quad 210, \\ b_j = 210; \quad 180; \quad 200; \quad 160.$$

30.
$$C_{ij} = \begin{pmatrix} 4 & 5 & 9 & 8 \\ 9 & 7 & 6 & 3 \\ 2 & 1 & 4 & 10 \end{pmatrix}, a_i = 220; 120; 150, b_j = 110; 230; 150; 200.$$

Рекомендована література

- 1. Катренко А.В. Дослідження операцій. Підручник. Львів: Магнолія Плюс, 2004.
- 2. Барвінський А.Ф., Олексів І.Я., Крупка З.І. Математичне програмування: приклади і задачі. Львів: "Інтелект-Захід", 2004.
- 3. Зайченко Ю.П. Дослідження операцій. Підручник. Сьоме видання. К.: Видавничий дім «Слово», 2006.
- 4. Бартіш М.Я., Дудзяний І.М. Дослідження операцій: підручник. Частини 1-5. Львів: Видавничий центр ЛНУ ім. Івана Франка, 2007-2013.
- 5. Теслюк В.М., Андрійчук М.І. Конспект лекцій з курсу «Методи синтезу та оптимізації» для студентів базового напряму «Комп'ютерні науки», Ч.1. Львів, 2005 64 с.
- 6. Теслюк В.М., Пелешко Д.Д. Методи цілочисельного програмування та нульового порядку. Конспект лекцій з курсу «Методи синтезу та оптимізації» для студентів базового напряму 6.050101 «Комп'ютерні науки», Ч.2. Львів, 2013. 84 с.
- 7. Теслюк В.М. Градієнтні методи розв'язання оптимізаційних задач. Конспект лекцій з курсу «Методи синтезу та оптимізації» для студентів базового напряму 6.050101 «Комп'ютерні науки», Ч.З. Львів, 2013. 67 с.
- 8. Цегелик Г.Г. Лінійне програмування. Львів: Світ, 1995.
- 9. Зайченко О.Ю., Зайченко Ю.П. Дослідження операцій. Збірник задач. К.: Видавничий дім «Слово», 2007.

Зразок титульної сторінки

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра автоматизованих систем управління

РОЗРАХУНКОВО-ГРАФІЧНА РОБОТА

з дисципліни

«Математичні методи дослідження операцій»

Прийняла: доц. кафедри АСУ

Казимира І. Я.

Львів, 2023