Liam Hardiman February 20, 2020

271B - Homework 2

Problem 1. Let S, T, and $T_n, n = 1, 2, ...$ be stopping times (with respect to some filtration $\{\mathcal{F}_t\}_{t \geq 0}$). Show that $T \vee S, T \wedge S, T + S$, $\sup_n T_n$ are also stopping times.

Proof. The pointwise minimum, maximum, sum, and supremum of measurable functions are measurable. For the minimum and maximum we have

$$\{(T \land S) \le t\} = \{T \le t\} \cup \{S \le t\}$$

$$\{(T\vee S)\leq t\}=\{T\leq t\}\cap \{S\leq t\}.$$

Unions and intersections of measurable sets are measurable, so both of these sets live in \mathcal{F}_t . Thus, $T \wedge S$ and $T \vee S$ are stopping times. For the sum, we can write the set $\{T + S \leq t\}$ as a countable union:

$$\{T+S \le t\} = \bigcup_{\alpha,\beta \in \mathbb{Q}, \ \alpha+\beta \le t} \{T \le \alpha\} \cap \{S \le \beta\}.$$

As \mathcal{F}_t -measurability is closed under countable union and intersection, the sum is a stopping time. Finally, we have

$$\{\sup_{n} T_n \le t\} = \bigcap_{n=1}^{\infty} \{T_n \le t\},\,$$

which is measurable, so the supremum is also a stopping time.

Problem 2. Let X_t be an adapted and continuous stochastic process, and define

$$T_{\Gamma} = \inf\{t \ge 0 : X_t \in \Gamma\}$$

for Γ a closed set. Show that T_{Γ} is a stopping time.

Proof. asdf
$$\Box$$

Problem 3. Show that if X_t is a martingale with respect to some filtration (say \mathcal{F}_t) then it is also a martingale with respect to the filtration generated by itself.

Proof. Let $\mathcal{G}_t = \sigma(X_s : s \leq t)$ be the filtration X generates. We then have $\mathcal{G}_t \subseteq \mathcal{F}_t$ for all t since \mathcal{G}_t is the smallest σ -algebra with respect to which X_t is measurable. By the law of total expectation and the martingale property of X_t with respect to \mathcal{F}_t we have for any $s \leq t$

$$\mathbb{E}[X_t \mid \mathcal{G}_s] = \mathbb{E}[\mathbb{E}[X_t \mid \mathcal{F}_s] \mid \mathcal{G}_s] = \mathbb{E}[X_s \mid \mathcal{G}_s] = X_s.$$

Thus, X_t is a martingale with respect to $\{\mathcal{G}_t\}$.

Problem 4. Let a, b be deterministic and f, g of class I. Show that if

$$a + \int_0^T f_s \, dB_s = b + \int_0^T g_s \, dB_s \tag{1}$$

then a = b and f = g a.a. for $(t, \omega) \in (0, T) \times \Omega$.

Proof. Since f and g are of class I, $\int_0^t f_s dB_s$ and $\int_0^t g_s dB_s$ are martingales and $\int_0^0 f_s dB_s = 0$ a.s. (the same holds for g). Taking the expectation of both sides of the given relation shows that a = b a.s. and

$$\int_0^T (f_s - g_s) \ dB_s = 0.$$

By the Itô isometry we have

$$0 = \mathbb{E}\left[\left(\int_0^T (f_s - g_s) \ dB\right)^2\right] = \mathbb{E}\left[\int_0^T (f_s - g_s)^2 \ ds\right].$$

We conclude that $f_t(\omega) = g_t(\omega)$ for almost all $(t, \omega) \in (0, T) \times \Omega$.

Problem 5. Assume that X_t is of class I and continuous in mean square on [0,T], that is for $t \in [0,T]$

$$\mathbb{E}[X_t^2] < \infty, \quad \lim_{s \to t} \mathbb{E}[(X_t - X_s)^2] = 0.$$

Define

$$\phi_t^{(n)} = \sum_j X_{t_{j-1}^{(n)}} \chi_{[t_{j-1}^{(n)}, t_j^{(n)})}(t), \ t_j^{(n)} = j2^{-n}.$$

Show that for $0 \le t \le T$

$$\int_0^t X_s \ dB_s = \lim_{n \to \infty} \int_0^t \phi_s^{(n)} \ dB_s,$$

where the limit is n $L^2(\mathbb{P})$.

Proof. For any n we have by the Itô isometry

$$\mathbb{E}\left[\left(\int_0^t (X_s - \phi_s^{(n)}) \ dB_s\right)^2\right] = \mathbb{E}\left[\int_0^t (X_s - \phi_s^{(n)})^2 \ ds\right] = \mathbb{E}\left[\sum_j \int_{t_{j-1}^{(n)}}^{t_j^{(n)}} (X_s - X_{t_{j-1}^{(n)}})^2 \ ds\right].$$

Now we claim that continuity in mean square on the compact set [0,T] implies uniform continuity in mean square. Assuming this claim, we can choose n large enough so that $\mathbb{E}[(X_s - X_{t_{j-1}^{(n)}})^2]$ is smaller than say ϵ for all j. For n at least this large we have

$$\mathbb{E}\left[\left(\int_0^t (X_s - \phi_s^{(n)}) dB_s\right)^2\right] \le \sum_j (t_j^{(n)} - t_{j-1}^{(n)})\epsilon = \epsilon T.$$

Since the L^2 distance between $\int_0^t \varphi_s^{(n)} dB_s$ and $\int_0^t X_s dB_s$ can be made arbitrarily small, we conclude that $\int_0^t \varphi_s^{(n)} dB_s \to \int_0^t X_s dB_s$ in L^2 .