Část I

Regulární jazyky

1 Úvod do regulárních jazyků

1.1 Základní pojmy z oblasti formálních jazyků

- symbol
- abeceda
- řetězec
 - délka řetězce
 - prázdný jazyk
- formální jazyk nad abecedou
- Konkatenace nad řetězci (symbol ·)
 - signatura operace $\Sigma^* \times \Sigma^* \to \Sigma^*$
 - $-w,w'\in\Sigma^*$:
 - $w = a_1 a_2 ... a_n,$
 - $-w' = a'_1 a'_2 ... a'_m, n, m \ge 0$
 - $w \cdot w' = a_1 a_2 ... a_n a_1' a_2' ... a_m'$
 - Vlastnosti: asociativní operace, neutrální prvek ε vzhledem k operaci ·
- Další pojmy: prefix, sufix, podřetězec, podposloupnost,
- mocnina řetězce a^i
- operace nad jazyky:
 - jsou definovány množinové operace (sjednocení, průnik, doplněk, rozdíl, . . .)
 - konkatenace jazyků L_1 a L_2
 - * signatura operace: $2^{\Sigma^*}\times 2^{\Sigma^*} \to 2^{\Sigma^*}$
 - *vstup: L_1 nad Σ_1 a L_2 nad Σ_2

- * výstup: jazyk L nad $\Sigma_1 \cup \Sigma_2$
- $* L_1 \cdot L_2 = \{ xy \mid x \in L_1 \land y \in L_2 \}$
- iterace jazyků:
 - $* L^0 = \{\varepsilon\}$
 - $* L^n = L \cdot L^{n-1}$
 - $* L^* = \bigcup_{n>0} L^n$
 - $* L^{+} = \bigcup_{n>1}^{-} L^{n}$
- Gramatika $G = (N, \Sigma, P, S), N \cap \Sigma = \emptyset$
 - P je množina pravidel ve tvaru $(\alpha, \beta) \in P$, kde α obsahuje alespoň jeden nonterminál a beta je libovolná posloupnost terminálů a nonterminálů
 - zápis pomocí relace: $(N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$
 - alternativně: zápis pomocí funkce $(N \cup \Sigma)^* N (N \cup \Sigma)^* \to (N \cup \Sigma)^*$
- Relace přímé derivace \Rightarrow je definována na množině $(N \cup \Sigma)^*$
 - $-\lambda \Rightarrow \mu \stackrel{def}{\Longleftrightarrow} \lambda = \gamma \alpha \delta \wedge \mu = \gamma \beta \delta \wedge (\alpha, \beta) \in P$
- Relace derivace \Rightarrow^+ je tranzitivní uzávěr relace přímé derivace
 - Pokud platí $\lambda \Rightarrow^+ \mu$, pak existuje posloupnost derivací délky $n \ge 1$, přičemž derivace délky n obsahuje n+1 prvků z množiny $(N \cup \Sigma)^*$
- $\bullet \ \Rightarrow^*$ je potom tranzitivní a relflexivní uzávěr relace přímé derivace
- Větná forma: $S \Rightarrow^* \alpha$, kde $\alpha \in (N \cup \Sigma)^*$
- Věta: $S \Rightarrow^* \alpha$, kde $\alpha \in \Sigma^*$
- jazyk generovaný gramatikou $G: L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$
- Chomského hierarchie:
 - Typ 0 neomezené gramatiky: $(N \cup \Sigma)^* N (N \cup \Sigma)^* \to (N \cup \Sigma)^*$
 - Typ 1 kontextové gramatiky:
 - Typ 2 bezkontextové gramatiky: $A \rightarrow \alpha$
 - Typ 3 regulární gramatiky: $A \to xB|x|\varepsilon$

1.2 Konečné automaty a regulární jazyky

- NKA $M = (Q, \Sigma, \delta, q_0, F)$
 - $-\delta: Q \times \Sigma \to 2^Q$
 - pokud $\forall q \in Q \ \forall a \in \Sigma : |\delta(q, a)| \le 1$, potom M je DKA
- lze definovat DKA s upravenou přechodovou funkcí $\delta \colon Q \times \Sigma \to Q$
- lze definovat RKA s rozšířenou přechodovou funkcí $\delta \colon Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$
- konfigurace je prvek (q, w) z $Q \times \Sigma^*$
 - q je aktuální stav
 - w je doposud nezpracovaná část vstupního řetězce
- počáteční konfigurace: $(q_0, a_1 a_2 \dots a_n)$
- koncová konfigurace: (q_F, ε) , kde $q_F \in F$
- přechodová relace automatu M je binární relace \vdash na množině konfigurací $(Q \times \Sigma^*), \ \vdash\subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$
 - $-(q,w) \vdash_{M} (q',w') \stackrel{def}{\Longleftrightarrow} w = aw' \land q' \in \delta(q,a), \text{ pro } q,q' \in Q, a \in \Sigma, w, w' \in \Sigma^*$
- \bullet řetězec přijímaný NKA je definován: $(q_0,w) \overset{*}{\underset{M}{\vdash}} (q,\varepsilon), \ q \in F$
- epsilon uzávěr je funkce, ε -uzávěr $(q)=\{p\mid \exists w\in \Sigma^*: (q,w)\stackrel{*}{\vdash} (p,w)\}$
- zobecnění pro libovolnou množinu $T\subseteq Q$: ε -uzávěr $(T)=\bigcup_{s\in T}\varepsilon$ -uzávěr(s)

1.3 Regulární množiny a výrazy

Následující množiny jsou regulární množiny nad Σ a žádné jiné:

- Ø
- $\{\varepsilon\}$
- {*a*}

- \bullet je-li R a S regulární množina, potom:
 - $-R \cup S$
 - $-R\cdot S$
 - $-R^*$

Regulární výrazy označují regulární množiny, tak, že:

- $\bullet~\emptyset$ je RV značící regulární množinu \emptyset
- ε RV značící regulární množinu $\{\varepsilon\}$
- $\bullet \ a$ RV značící regulární množinu $\{a\},$ pro všechna $a\in \Sigma$
- $\bullet\,$ je-lir a s RV značící regulární množiny R a S, pak:
 - (r+s)je RV značící regulární množinu $R \cup S$
 - (rs)je RV značící regulární množinu $R\cdot S$
 - (r^{*}) je RV značící regulární množinu R^{*}