P. Maurer

ENS Rennes

Recasages: 213, 234, 261.

Référence : Brianes & Pages, Théorie de l'intégration.

Théorème de Radon Nikodym

Théorème 1. (de représentation de RIESZ).

Soit $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert. Alors l'application $\mathcal L$ définie par

$$\mathcal{L}: \left\{ \begin{array}{ll} H & \to & H' \\ a & \mapsto & \mathcal{L}_a = (x \mapsto \langle x, a \rangle) \end{array} \right.$$

est une bijection antilinéaire isométrique.

Théorème 2. (de RADON-NIKODYM)

Soit (X, A) un espace mesurable et μ, ν deux mesures positives σ -finies sur (X, A). Il y a équivalence entre :

1.
$$\forall A \in \mathcal{A} \quad \mu(A) = 0 \implies \nu(A) = 0 \quad (on \ note \ \nu \ll \mu).$$

2.
$$\exists f: (X, \mathcal{A}) \to (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+)) \ \mu$$
-intégrable telle que $\forall A \in \mathcal{A} \ \nu(A) = \int_A f d\mu$.

En outre, la fonction f est unique (à une égalité μ -presque partout près).

On note $f = \frac{d\nu}{d\mu}$ et on dit que f est la dérivée de RADON-NIKODYM, ou la densité de ν par rapport à μ .

Démonstration.

 \longleftarrow Le sens indirect est immédiat, puisque pour $A \in \mathcal{A}$ tel que $\mu(A) = 0$, on a

$$\nu(A) = \int_A f d\mu = \int_X \mathbf{1}_A \cdot f$$
, et $\mathbf{1}_A$ est nulle μ -presque partout.

Pour le sens direct, on commence par le cas où σ et μ sont des mesures finies. En particulier, on a dans ce cas $L^2(\mu) \subset L^1(\mu)$.

• Etape 1 : cas où $\nu \leq \mu$.

On suppose dans cette étape que $\nu \leq \mu$. Alors pour toute fonction g mesurable positive, on a $\int g d\nu \leq \int g d\mu : \text{en particulier}, \ L^2(\mu) \subset L^2(\nu), \ \text{donc on peut considérer l'application linéaire}$

$$\Phi: \left\{ \begin{array}{ll} L^2(\mu) & \to & \mathbb{R} \\ f & \mapsto & \int_X f d\nu \end{array} \right.$$

1

L'application Φ est linéaire et continue. En effet, pour $g \in L^2(\mu)$, on a

$$|\Phi(g)| = \left| \int_{X} g d\nu \right|$$

$$\leq \int_{X} |g| d\nu$$

$$\leq \|g\|_{L^{2}(\nu)} \cdot \sqrt{\nu(X)}$$

$$\leq \|g\|_{L^{2}(\mu)} \cdot \sqrt{\nu(X)}$$

où l'on a appliqué l'inégalité de CAUCHY-SCHWARZ pour obtenir la seconde inégalité.

Le théorème de représentation de RIESZ assure alors l'existence d'une fonction $f \in L^2(\mu) \subset L^1(\mu)$ tel que

$$\forall g \in L^2(\mu) \quad \Phi(g) = \langle f, g \rangle_{L^2(\mu)}$$

Autrement dit, pour tout $g \in L^2(\mu)$ on a

$$\int_{X} g d\nu = \int_{X} f g d\mu.$$

Pour $A \in \mathcal{A}$, comme μ est finie, $\mathbf{1}_A \in L^2(\mu)$ donc on a en particulier

$$\nu(A) = \int_X \mathbf{1}_A d\nu = \int_X \mathbf{1}_A \cdot f d\mu = \int_A f d\mu.$$

Montrons maintenant que f est positive. On suppose par l'absurde que $\mu(\{f < 0\}) > 0$. Alors il existe un entier n_0 tel que $\mu\left(\left\{f \le -\frac{1}{n_0}\right\}\right) > 0$. On en déduit que :

$$\nu\bigg(\left\{f\leq -\frac{1}{n_0}\right\}\bigg) = \int_{\left\{f\leq -\frac{1}{n_0}\right\}} \!\! f d\mu \leq -\frac{\mu(X)}{n_0} < 0.$$

Ceci contredit que la mesure ν est positive. Ainsi, on a $\mu(\{f < 0\}) = 0$. De la même manière, on peut montrer que $\mu(\{f > 1\}) = 0$, et on en déduit en fait que f est μ -presque partout à valeurs dans [0,1].

• Etape 2 : cas général.

On applique l'étape 1 aux mesures finies ν et $\mu + \nu$. Il existe $f \in L^1(\mu + \nu)$ avec $f \in [0, 1]$ $(\mu + \nu)$ -presque partout, tel que

$$\forall A \in \mathcal{A} \quad \nu(A) = \int_A f d(\mu + \nu).$$

On a alors:

$$\forall A \in \mathcal{A} \quad \int_{A} (1 - f) \, d\nu = \int_{A} f d\mu.$$

Notons $N := \{f=1\}$. Alors $\mu(N) = \int_N f d\mu = \int_N (1-f) d\nu = 0$, donc comme $\nu \ll \mu$, on en déduit $\nu(N) = 0$. Pour $A \in \mathcal{A}$, on peut décomposer $A = (A \cap N) \sqcup (A \cap N^c)$, et on obtient

$$\begin{split} \nu(A) &= \nu(A \cap N) + \nu(A \cap N^c) \\ &= \nu(A \cap N^c) \\ &= \int_A \mathbf{1}_{N^c} \frac{1}{1-f} (1-f) \, d\nu \\ &= \int_A \mathbf{1}_{N^c} \frac{f}{1-f} \, d\mu, \end{split}$$

avec $\varphi := \mathbf{1}_{N^c} \frac{f}{1-f} \ge 0$ μ -presque partout car $1-f \ge 0$ $(\mu+\nu)$ -presque partout. Par ailleurs, on a $\int_X \varphi \, d\mu = \nu(X) < \infty$ donc $\varphi \in L^1(\mu)$: ainsi φ vérifie la propriété 2. du théorème.

• Etape 3 : unicité.

On suppose que f et g vérifient 2. On a

$$\nu(\lbrace f > g \rbrace) = \int_{\lbrace f > g \rbrace} f d\mu$$
$$= \int_{\lbrace f > g \rbrace} g d\mu$$

Ainsi, $\int_X \mathbf{1}_{\{f>g\}}(f-g)d\mu = 0$: comme $\mathbf{1}_{\{f>g\}}(f-g)$ est positive, elle est nulle μ -presque partout, donc $\mu(\{f>g\})=0$. On obtient de même que $\mu(\{g>f\})=0$, donc f=g μ -presque partout.

On traite à présent le cas où ν et μ sont σ -finies, en se ramenant au cas fini. On considère deux partitions $(F_n)_{n\geq 0}$ et $(G_n)_{n\geq 0}$ de X constituées d'éléments de A vérifiant

$$\forall n \in \mathbb{N} \quad \mu(F_n) < \infty \quad \text{et} \quad \nu(G_n) < \infty.$$

On pose alors, pour $(k,\ell) \in \mathbb{N}^2$, $E_{k,\ell} := F_k \cap G_\ell$. Alors $\bigcup_{(k,\ell) \in \mathbb{N}^2} E_{k,\ell}$ contient $F_0 \cap \bigcup_{\ell \in \mathbb{N}} G_\ell = X$, donc $(E_{k,\ell})_{(k,\ell) \in \mathbb{N}^2}$ forme une partition de X, et on a $\nu(E_{k,\ell}) \le \nu(G_\ell) < \infty$ et $\mu(E_{k,\ell}) \le \mu(F_k) < \infty$.

Comme \mathbb{N}^2 est dénombrable, on peut supposer que ces ensembles sont indexés par \mathbb{N} : on les note dorénavant $(E_n)_{n\in\mathbb{N}}$, et on pose, pour tout $n\in\mathbb{N}$, $\mu_n=\mu(\cdot\cap E_n)$ et $\nu_n=\nu(\cdot\cap E_n)$.

Les mesures μ_n et ν_n sont finies, donc d'après ce qui précède, il existe $f \in L^1(\mu_n)$ telle que

$$\forall A \in \mathcal{A} \quad \nu(A \cap E_n) = \int_A f d\mu_n = \int_A f \mathbf{1}_{E_n} d\mu.$$

On définit alors $f := \sum_{n \in \mathbb{N}} f_n \mathbf{1}_{E_n}$. Alors d'après le théorème de convergence monotone, il vient

$$\int_{A} f d\mu = \int_{A} \sum_{n \geq 0} f_{n} \mathbf{1}_{E_{n}} d\mu$$

$$= \int_{X} \sum_{n \geq 0} \mathbf{1}_{A} f_{n} d\mu_{n}$$

$$= \sum_{n \geq 0} \int_{X} \mathbf{1}_{A} f_{n} d\mu_{n}$$

$$= \sum_{n \geq 0} \nu(A \cap E_{n})$$

$$= \nu(A).$$

L'unicité se prouve alors comme dans le cas où σ et μ sont finies.

Application 3. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, et X une variable aléatoire réelle sur Ω . On dit que la loi P_X de X admet une densité par rapport à la mesure de LEBESGUE λ sur \mathbb{R} si on a $P_X \ll \lambda$.

Dans ce cas, la fonction de répartition F_X de X s'écrit

$$F_X(t) = \int_{-\infty}^t f_X(x) \, d\lambda(x),$$

où $f_X = \frac{dP_X}{d\lambda}$ est la dérivée de RADON-NIKODYM de P_X par rapport à λ .

Remarque 4. Le résultat est faux si on ne suppose plus que μ est σ -finie.

Considérons l'espace mesurable ([0,1], $\mathcal{B}([0,1])$) muni respectivement de la mesure de comptage m et de la mesure de LEBESGUE λ .

Pour $A \in \mathcal{B}([0,1])$, si m(A) = 0, c'est que $A = \emptyset$, et on a donc en particulier $\lambda(A) = 0$. Ainsi, on a bien $\lambda \ll m$. Supposons qu'il existe $f: \mathbb{R} \to \mathbb{R}_+$ borélienne vérifiant

$$\forall A \in \mathcal{B}(\mathbb{R}) \quad \lambda(A) = \int_A f dm.$$

Comme $\lambda([0,1]) = 1$, f est m-intégrable. L'inégalité de MARKOV assure alors que $D := \{f > 0\}$ est dénombrable : en effet, pour tout $n \ge 1$, on a :

$$m \bigg(\left\{ x \in [0,1] \ : \ f(x) > \frac{1}{n} \right\} \bigg) \leq n \int_{[0,1]} \!\! f dm < \infty.$$

Donc cD est un borélien de mesure de LEBESGUE $\lambda(^cD)=1$. Par ailleurs, on a :

$$\int_{cD} f dm = \int_{[0,1]} f \, \mathbf{1}_{\{f=0\}} \, dm = 0.$$

Donc $\lambda(^{c}D) = 0$: on obtient une contradiction.