Biostatistics

Applications in Medicine

Nuno Sepúlveda, 25.11.2024

Syllabus

1. General review

- a. What is Biostatistics?
- b. Population/Sample/Sample size
- c. Type of Data quantitative and qualitative variables
- d. Common probability distributions
- e. Work example Malaria in Tanzania

2. Applications in Medicine

- a. Construction and analysis of diagnostic tools Binomial distribution, sensitivity, specificity, ROC curve,Rogal-Gladen estimator
- b. Estimation of treatment effects generalized linear models
- c. Survival analysis Weibull regression, Kaplan-Meier curve, log-rank test, Cox's proportional hazards model

3. Applications in Genetics, Genomics, and other 'omics data

- Genetic association studies Hardy-Weinberg test, homozygosity, minor allele frequencies, additive model, multiple testing correction
- b. Methylation association studies M versus beta values, estimation of biological age
- c. Gene expression studies based on RNA-seq experiments Tests based on Poisson and Negative-Binomial

4. Other Topics

- a. Estimation of Species diversity Diversity indexes, Poisson mixture models
- b. Serological analysis Gaussian (skew-normal) mixture models
- c. Advanced sample size and power calculations

Parametric analysis

versus

Non-parametric analysis

Parametric analysis

Non-parametric analysis

Non-parametric methods

Comparison of different survival curves

Log-rank test Peto-Peto test

Semi-parametric regression

Cox's proportional hazard model

Comparison of different survival curves

Two treatments under comparison

Time to clinical response

$$H_0: S_1(t) = S_2(t)$$
 versus $H_0: S_1(t) \neq S_2$

Log-rank test as a Mantel-Haenszel test for categorical data

Mantel-Haenszel test

Analysis of the association in $K \times 2 \times 2$ contingency tables (an extension of Fisher's exact test to K tables 2×2).

Stratum	Treatment	Responded	Not Responded
1	Α		
	В		
2	Α		
	В		
3	Α		
	В		

In stratum i

$$\Delta_i = \frac{\pi_{1i}(1 - \pi_{2i})}{(1 - \pi_{1i})\pi_{2i}}$$

 π_{1i} = prob. of response to treatment 1

 π_{2i} = prob. of response to treatment 2

$$H_0: \Delta_1 = \cdots = \Delta_K = 1$$
 (t) versus $H_1: \exists_{i,j} \Delta_i \neq \Delta_j = 1$

under the assumption of $\Delta_1 = \cdots = \Delta_K = \Delta$

Log-rank test

Adaptation of the classical Mantel-Haenszel test for k x 2 x 2 contigency tables where k is the number of different timepoints in which it was observed the event of interest

Basic idea

There are k 2 x 2 tables like this one

Group	Number of "deaths" at $t_{(i)}$	Number of "survivors" beyond $t_{(i)}$	Total
1	d_{1i}	$n_{1i} - d_{1i}$	n_{1i}
2	d_{2i}	$n_{2i} - d_{2i}$	n_{2i}
Total	d_i	$n_i - d_i$	n_i

Conditional probalitity (see Fisher's exact test)

$$H_0: S_1(t) = S_2(t)$$
 versus $H_1: S_1(t) \neq S_2(t)$

$$H_0: \pi_{1i} = \pi_{2i} = \pi \text{ versus } H_1: \pi_{1i} \neq \pi_{2i}$$

 π_{1i} = probability of "death" at time $t_{(i)}$ in group 1

 π_{2i} = probability of "death" at time $t_{(i)}$ in group 2

$$d_{li} \mid \pi_{li}, n_{li} \rightsquigarrow \text{Binomial}(n = n_{li}, \pi = \pi_{li}), l = 1,2$$

$$d_i \mid \pi_{li}, n_{li}, H_0 \rightsquigarrow \text{Binomial}(n = n_i, \pi = \pi_i)$$

Basic idea

Calculate the distribution of d_{1i} conditional to the total marginals

Group	Number of "deaths" at $t_{(i)}$	Number of "survivors" beyond $t_{(i)}$	Total
1	a_{1i}	$n_{1i} - d_{1i}$	n_{1i}
2	d_{2i}	$n_{2i} - d_{2i}$	n_{2i}
Total	(d_i)	$n_i - d_i$	(n_i)

Conditional probability (see Fisher's exact test)

$$d_{1i} \mid d_i, n_i, n_{1i}, H_0 \Rightarrow$$
 Hypergeometric $(N = n_i, M = d_i, n = n_{1i})$

$$P\left[d_{1i} = d \mid d_{i}, n_{i}, n_{1i}, H_{0}\right] = \frac{\binom{d_{i}}{d} \binom{n_{i} - d_{i}}{n_{1i} - d}}{\binom{n_{i}}{n_{1i}}}$$

$$E\left[d_{1i} \mid d_i, n_i, n_{1i}, H_0\right] = n_{1i} \frac{d_i}{n_i} \qquad Var\left[d_{1i} \mid d_i, n_i, n_{1i}, H_0\right] = n_{1i} \frac{d_i}{n_i} (1 - \frac{d_{d_i}}{n_i}) \frac{n_i - n_{1i}}{n_i - 1}$$

Test statistic

Incorporating information from k 2 x 2 contingency tables

$$U = \sum_{i=1}^{k} \left(d_{1i} - e_{1i} \right)$$

$$e_{1i} = E\left[d_{1i} \mid d_i, n_i, n_{1i}, H_0\right] = n_{1i} \frac{d_i}{n_i}$$

$$E\left[U|H_0\right] = 0$$

$$v_{1i} = Var \left[d_{1i} | d_i, n_i, n_{1i}, H_0 \right]$$

$$Var\left[U|H_{0}\right] = \sum_{i=1}^{k} v_{1i}$$

$$= n_{1i} \frac{d_i}{n_i} \left(1 - \frac{d_{d_i}}{n_i} \right) \frac{n_i - n_{1i}}{n_i - 1}$$

Log-rank test

For large samples

$$Q = \frac{U - \overbrace{E(U)}^{=0}}{\sqrt{var(U)}} | H_0 \Rightarrow \text{Normal}(\mu = 0, \sigma = 1)$$

$$Q^* = \frac{U^2}{var(U)} | H_0 \rightsquigarrow \chi^2_{(1)}$$

Decision rule

$$p = P\left[Q^* > q_{obs} \mid H_0\right] \qquad \qquad \begin{cases} \text{do not reject } H_0, & \text{if } p > \alpha \\ & \text{reject } H_0, & \text{otherwise} \end{cases}$$

A general class of non-parametric tests

$$Q^* = \frac{\left[\sum_{i=1}^k w_i \left(d_{1i} - e_{1i}\right)\right]^2}{\sum_{i=1}^k w_i^2 v_{1i}} | H_0 \rightsquigarrow \chi^2_{(1)}$$

for large samples

Choices of the weights

$$w_i = 1$$
, log-rank test

$$w_i = \sqrt{n_i}$$
, Tarone-Ware test

$$w_i = n_i$$
, Gehan test

$$w_i = \prod_{j:t(j) \le t(j)} \left(1 - \frac{d_j}{n_j + 1}\right)$$
, Peto-Peto test

A general statistic for non-parametric tests

$$Q^* = \frac{\left[\sum_{i=1}^k w_i \left(d_{1i} - e_{1i}\right)\right]^2}{\sum_{i=1}^k w_i^2 v_{1i}} | H_0 \rightsquigarrow \chi^2_{(1)}$$

for large samples

Choices of the weights

$$w_i = 1$$
, log-rank test

$$w_i = \sqrt{n_i}$$
, Tarone-Ware test

$$w_i = n_i$$
, Gehan test

$$w_i = \prod_{j:t(j) \le t(j)} \left(1 - \frac{d_j}{n_j + 1}\right)$$
, Peto-Peto test

Harrington-Fleming class of tests (Survival package)

$$Q^* = \frac{\left[\sum_{i=1}^k w_i \left(d_{1i} - e_{1i}\right)\right]^2}{\sum_{i=1}^k w_i^2 v_{1i}} | H_0 \rightsquigarrow \chi^2_{(1)}$$

for large samples

$$w_i = \hat{S}^{\rho}_{t_{(i)}} (1 - \hat{S}_{t_{(i)}})^{\gamma},$$

 \hat{S}_{t_G} = Kaplan-Meier estimates for the common survival function

$$\rho=0\Rightarrow w_i=1\text{ - log-rank test}$$

$$\gamma=0\Rightarrow w_i=\hat{S}^\rho_{t_{(i)}}$$

$$\rho=1\Rightarrow w_i=\hat{S}_{t_{(i)}}\text{ - Peto-Peto test}$$

Exercise 1: rituximab clinical trial data

survival package (analysis)

survminer package (plotting)

Plot survival curves (surfit command) of time to treatment response for:

- (i) males versus females
- (ii) patients with and without an infection disease trigger
- (iii) patients with and without family history of autoimmune diseases

Compared with the curves for each case using log-rank and Peto-Peto tests (survdiff function from survival package)

Draw your conclusions.

Non-parametric methods

Comparison of different survival curves

Log-rank test Peto-Peto test

Semi-parametric regression

Cox's proportional hazard model

Cox's proportional hazard model

$$h_{x_{ij}}(t) = h_0(t) e^{\sum_{j=1}^{p} \beta_j x_{ij}}$$

"All models are wrong, some are useful."

George Box (1976)

John Wiley

https://rss.onlinelibrary.wiley.com > doi > j.2517-6161.1...

Regression Models and Life-Tables - Cox - 1972

by DR Cox · 1972 · Cited by 60930 — Cox, D. R. (1959). The analysis of exponentially distributed life-times with two types of failure. J. R. Statist. Soc. B, 21, 411–421. Cox, D. R....

Cox's proportional hazard model

$$\log \frac{h_{x_{ij}}(t)}{h_0(t)} = \sum_{j=1}^{p} \beta_j x_{ij}$$

Let be two individuals i and k with covariates $\{x_{ij}\}$ and $\{x_{kj}\}$

$$\frac{h_{x_{ij}}(t)}{h_{x_{kj}}(t)} = e^{\sum_{j=1}^{p} \beta_j(x_{ij} - x_{kj})}$$

Interpretation of the coefficients

Let be two individuals i and k with covariates $\{x_{ij}\}$ and $\{x_{kj}\}$

$$\{x_{ij}\}$$
 and $\{x_{kj}\}$ are only different at x_{1k} and x_{2k} in one unit

$$\frac{h_{x_{ij}}(t)}{h_{x_{kj}}(t)} = e^{\beta_j}$$

$$h_{x_{kj}}(t)$$

Relative risk when one changes one unit in covariate k while maintaining the remaining covariates fixed

Estimation

$$t_{(1)} < \dots < t_{(k)}, k < n$$

$$R_i = R(t_{(i)}) = \left\{ j : t_j \ge t_{(i)} \right\}$$

$$D = \left\{i : t_{(i)}\right\}$$

Maximisation of the following function

$$L(\beta_1, ..., \beta_p) = \prod_{i \in D} \frac{e^{\sum_{j=1}^p \beta_j x_{(i)j}}}{\sum_{l \in R_i} e^{\sum_{j=1}^p \beta_j x_{lj}}}$$

(numerical methods)

A theoretical note

$$L(\beta_1, ..., \beta_p) = \prod_{i \in D} \frac{e^{\sum_{j=1}^p \beta_j x_{(i)j}}}{\sum_{l \in R_i} e^{\sum_{j=1}^p \beta_j x_{lj}}}$$

Partial likelihood (because it is independent of the baseline hazard function)

This is not a likelihood function in the strict sense as it does not represent the probability of a given event.

A theoretical note

True likelihood

$$h(t) = \frac{f(t)}{S(t)} \Leftrightarrow f(t) = S(t) \times h(t)$$

$$L(\beta_1, \dots, \beta_p, h_0(t)) = \prod_{i} (h_0(t)e^{\sum_{j} \beta_j x_{ij}} S_0(t))$$

$$L(\beta_1, ..., \beta_p; h_0(t)) = L(\beta_1, ..., \beta_p) \times \prod_{i \in D} \left(h_0(t) \sum_{l \in R_i} e^{\sum_j \beta_j x_{lj}} \right) \times \prod_{i=1}^n S_0(t)^{exp\left\{\sum_j x_{ij}\right\}}$$

Exercise 2: rituximab clinical trial data

Fit a Cox's proportional hazard model including the following covariates

- (i) gender
- (ii) age
- (iii) history of autoimmune diseases
- (iv) disease duration

Draw your conclusions.

Model selection and comparison

$$M_1 \subset M_2$$

$$M_1: \log \frac{h_{x_{ij}}(t)}{h_0(t)} = \beta_1 x_{i1} + \dots + \beta_1 x_{ip}$$

$$M_2: \log \frac{h_{x_{ij}}(t)}{h_0(t)} = \beta_1 x_{i1} + \dots + \beta_1 x_{ip} + \beta_1 x_{i,p+1} + \dots + \beta_1 x_{i,p+m}$$

Are AIC or BIC applicable?

Analysis of Residuals

Cox-Snel Residual

$$r_i = e^{\hat{\beta}_1 x_{i1} + \cdots \hat{\beta}_p x_{ip}} \hat{H}_0(t)$$
 $r_i \rightsquigarrow Exponential(1)$

 $\hat{H}_0(t)$ is the estimated cumulative baseline hazard

$$H(t) = \int_0^t h(u)du$$
 $\hat{H}_0(t) = -\log \hat{S}_0(t)$

$$H(t) = -\log S(t)$$

Syllabus

1. General review

- a. What is Biostatistics?
- b. Population/Sample/Sample size
- c. Type of Data quantitative and qualitative variables
- d. Common probability distributions
- e. Work example Malaria in Tanzania

2. Applications in Medicine

- a. Construction and analysis of diagnostic tools Binomial distribution, sensitivity, specificity, ROC curve,Rogal-Gladen estimator
- b. Estimation of treatment effects generalized linear models
- c. Survival analysis Weibull regression, Kaplan-Meier curve, log-rank test, Cox's proportional hazards model

3. Applications in Genetics, Genomics, and other 'omics data

- a. Genetic association studies Hardy-Weinberg test, homozygosity, minor allele frequencies, additive model, multiple testing correction
- b. Methylation association studies M versus beta values, estimation of biological age
- c. Gene expression studies based on RNA-seq experiments Tests based on Poisson and Negative-Binomial

4. Other Topics

- a. Estimation of Species diversity Diversity indexes, Poisson mixture models
- b. Serological analysis Gaussian (skew-normal) mixture models
- c. Advanced sample size and power calculations

Do you know these people?

Mendelian genetics

Mendelian genetics

Phenotype /Trait = Biological Characteristic Under study (categorical)

Gene = Unit of Inheritance

Genotype = Composition of gene in terms of alleles

Allele = Variant of a gene

AA

Mendel's idea/interpretation

Generation F0

Phenotype A x Phenotype a

AA x aa Aa Aa x Aa Aa or aA aa

First two Mendel's laws

The law of Dominance and Uniformity

Some alleles are dominant over the other alleles for a given gene

The law of Segregation

Two alleles for each gene separate from each other during gametogenesis so that the parent may only pass off one allele; thus, the offspring can only inherit one allele from each parent

Exercise 1: data_mendel_single_trait.csv

TABLE I

Data given in Mendel (1866) for the single trait experiments. "A" ("a") denotes the dominant (recessive) phenotype; A (a) denotes the dominant (recessive) allele; n is the total number of observations per experiment (that is, seeds for the seed trait experiments and plants otherwise); n", n", n", n", n", n", n and n n denote observed frequencies

					Obs.	freq.	Theor. ratio
	Trait	"A"	"a"	n	n _{"A} "	n"a"	"A": "a"
	Seed shape	round	wrinkled	7324	5474	1850	3:1
	Seed color	yellow	green	8023	6022	2001	3:1
	Flower color	purple	white	929	705	224	3:1
F_2	Pod shape	inflated	constricted	1181	882	299	3:1
	Pod color	yellow	green	580	428	152	3:1
	Flower position	axial	terminal	858	651	207	3:1
	Stem length	long	short	1064	787	277	3:1

Test Mendel's predictions for each trait using an appropriate statistical test.

Draw your conclusions.

Third Mendel's law

The law of Independent Assortment (law of reassortment)

Alleles of different genes segregate independently of one another during gametogenesis

Combined genotypes

X	BB Bb		bb
AA	AA/BB	AA/Bb	AA/bb
Aa	Aa/BB		Aa/bb
aa	aa aa/BB		aa/bb

Possibilities (n=16)

Cross	BB	Bb	bb
AA	1	2	1
Aa	2	4	2
aa		2	1

Possibilities (n=16)

Cross	BB	Bb	bb
AA	Phenoty 1	ype A/B 2	Phenotype A/b 1
Aa	2	4	2
aa	Phenoty 1	ype a/B 2	Phenotype a/b 1

Possibilities (n=16)

Cross	BB	Bb	bb
AA	Phenoty 1	pes A/B 2	Phenotypes A/b 1
Aa	2	4	2
aa	Phenoty 1	pes a/B 2	Phenotypes a/b 1

Exercise 2:

TABLE 2 Data from the bifactorial experiment [as organized by Fisher (1936)]				
	AA	Aa	aa	Total
BB	38	60	28	126
Bb	65	138	68	271
bb	35	67	30	132
Total	138	265	126	529

Test the third Mendel's law predictions for each trait using an appropriate statistical test.

Draw your conclusions.