Домашнее задание 4

1) Найти области определения функций:

$$a) f(x) = ln(x + 2)$$

Для определения аргумента задаю (x + 2) > 0

Тогда
$$x > -2$$

Соответственно, областью определения являются все значения x, которое делают выражение определенным: $D(f) = [-2, \infty]$

2) Построить график функции:

a)
$$y = x^2 + 4x + 3$$

 $a = 1$, $b = 4$, $c = 3$
 $x^2 + 4x + 3 = 0$
 $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$
 $D = b^2 - 4ac = 4^2 - 4 \cdot 1 \cdot 3 = 4$
 $x_1 = \frac{-4 + \sqrt{4}}{2 \cdot 1} = -1$
 $x_2 = \frac{-4 - \sqrt{4}}{2 \cdot 1} = -3$

$$6) y = -2 \sin 3x$$

$$a \sin(bx - c) + d$$

$$a = -2 \Rightarrow$$
 амплитуда $|a| = 2$

$$b=3\Rightarrow$$
 период $\frac{2\pi}{b}=\frac{2\pi}{3}$

$$c = 0 \Rightarrow$$
 сдвиг периода (фазовый сдвиг) $\frac{c}{b} = \frac{0}{3} = 0$ (на 0 вправо)

d = 0 — вертикальное смещение (вертикальный сдвиг)

3) Найти пределы

$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x^2 - 25} = \left[\frac{0}{0} \right] = \lim_{x \to 5} \frac{x^2 - 2 \cdot 3x + 9 - 9 + 5}{x^2 - 25} = \lim_{x \to 5} \frac{(x^2 - 2x3 + 9) - 9 + 5}{x^2 - 25} =$$

 $\lim_{x \to 5} \frac{(5-3)^2-4}{5^2-25} = \frac{0}{0} = \infty$ — бесконечно большая последовательность

2)

$$\lim_{x \to -1} \frac{x^3 + x + 2}{x^3 + 1} = \left[\frac{0}{0} \right] = \lim_{x \to -1} \frac{\lim_{x \to -1} x^3 + \lim_{x \to -1} x + \lim_{x \to -1} 2}{\lim_{x \to -1} x \cdot \lim_{x \to -1} x \cdot \lim_{x \to -1} x + 1} = \frac{(-1) \cdot (-1) \cdot (-1) + (-1) + 2}{(-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) + (-1) + 2}{(-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 1} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2} = \frac{(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) + 2}{(-1) \cdot (-1) \cdot (-1$$

$$\frac{0}{0} = \infty$$
 — бесконечно большая последовательность

$$\lim_{x \to 3} \frac{\sqrt{2x+3}-3}{\sqrt{x-2}-1} = \lim_{x \to 3} \frac{\frac{\sqrt{2x+3}-3}}{\sqrt{2x+3}-3} = \lim_{x \to 3} \frac{1}{\frac{\sqrt{x-2}-1}{\sqrt{2x+3}-3}} = \lim_{x \to 3} \frac{1}{\frac{\sqrt{3-2}-1}{\sqrt{2x+3}-3}} = 1 - \lim_{x \to 3} \frac{1}{\sqrt{x-2}-1} = \lim_{x \to 3} \frac{1}{\sqrt{x-2}-1} = 1 - \lim_{x \to 3} \frac{1}{\sqrt{x-2}-1} = \lim_{x \to 3} \frac{1}{\sqrt{x-2}-1} = 1 - \lim$$

ограниченная последовательность

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{x} - \frac{\cos x}{x}}{\frac{x^2}{x}} = \lim_{x \to 0} \frac{\frac{1}{x} - 1}{x} =$$

$$\lim_{x \to 0} \frac{\frac{x}{x} - \frac{1}{x}}{\frac{x}{x}} = \lim_{x \to 0} \left(1 - \frac{1}{x} \right) = 1$$
 — ограниченная последовательность

5)

$$\lim_{x \to 0} x \cdot ctg x = \lim_{x \to 0} x \cdot \lim_{x \to 0} ctg x = 0$$
 — бесконечно малая последоват.

$$\lim_{x \to 0} \sqrt[2x]{1 + 3x} = \lim_{x \to 0} (1 + 3x)^{\frac{1}{2x}} = 1 -$$
огранич. последовательность

$$\lim_{x \to 0} \left(\frac{3+5x}{3+2x} \right)^{\frac{1}{x}} = \lim_{x \to 0} \left(\frac{3+5\cdot 0}{3+2\cdot 0} \right)^{\frac{1}{0}} = 1$$
 — огранич. последовательность