

BEST AVAILABLE COPY

BEST AVAILABLE COPY

.)

5/7

2-sided calendering by vertical stacks

		Τ				_																							_											Ū	<u> </u>
M3, %		2	יני) LC	י כ	י כ	S	Ŋ	ιC	יני.	י נכ	י כ	י ט	Q	ιO	ß	2	rC.	ינ	ט כ	טנ	o r	ດ ເ	က	ည	വ	2	5	5	, rc	, ro	יע	ט ענ	יי	ט עמ	ט עמ	יו	ט נ	ט גס	— <u>—</u>	ဂ
E ₂ , %		3,3	3,8	4.3) (f	1 0	٠,٠	4,2	3,3	3.8	6.4	- c	י כ ס'ר	٥, ر	4,2	3,5	9,6	4,4	3.6	ο (κ.), A	ָר ע ר כ	o, c	ນ໌. ນ໌.	4,4	3,6	3,9	4,4	3,3	4.2	3,3	4.2	3.6	4 4	9.	4 4	27	. c.	3, 6		
M2 ₁ ,	%	8,3	8,8	6.3	83	ν α	- (o (2,8	8 3	8,8	9,3	8	0 0	- (o (2,2	8,5	6'8	9,4	9,8	6.0	46	, α . ι) a) c	ນຸດ 4. ດ	α'ο 9	ල හ	9,4	8,3	9,2	8,3	9,2	8,6	9.4	9.0	9,4	7.7	. 8	8,2	α.	
W ₂ ,	g/m²	<u>ر</u> س	1,6	ر ق	1,5	. σ	- c	7,	ر ن	1,6	1,9	1.5	. τ	- c	7,1	0,2	0,4	2,0	6,0	0,5	0.8	0	1,0	t	- c	ວ ເ ວັເ	၄'၃	8,0	7,5	2,1	1,5	2,1	6,0	8,0	6,0	0,8	1-1		0,0	0.1	;
M2 ₀ , %]	œ	9	9	9	g	o cc	> (9	9	9	9	œ	, α	> 0	Σ (∞	ω '	· &	ω	œ	∞	· œ	ο α	οα)	0 0		9	9	9	9	80	æ	œ	&	9	9	8	80	
₩, %	100	٥, ١	4,	4,6	ဗ	3.6	4 0	- c	٥, ١	4,	4,6	3,4	3.7	4.1	- 0 - 0	o 0	λ, υ,	4,4	2,9	3,2	3,6	3,6	3,9	44	. v.	 - ~	2. c	0,0	2,4	3,0	2,5	3,1	2,1	2,7	2,2	2,8	2,5	3,1	2,2	2,8	
W1, %	70	, o	10,1	10,6	6, 6	96	10.0	2 0	, 's	10,1	10,6	9,4	9,7	101	. 7	- , - ,	n - 0	12,4	10,9	11,2	11,6	11,6	11,9	12.4	11.1	11.4	t α	0 ,	α, 4, 6	0,6	α τζ .	დ. :	10,1	10,7	10,2	10,8	8,5	9,1	10,2	10,8	
W tot	2 8	2 0	4, 4 O 0	4 5	4,	4,3	4,6	26	, c	χ'ς	ر در و	2,8	3,0	3.3	ָר ה	, r	ין אַ ע	ບ ກ ບັດ	υ, 1 Σ, 1	5,5	2,8	3,8	4,0	4,3	4.0	4.2	. 4 i 7	2 4	ດ່ເ	ე ე (7,7	2,6	4,7	5,1	3,4	3,8	2,2	2,6	3,4	3,8	
a/m²	13) <	- 4 ‡ u		4,1	1,5	1,6	0.9	, ,	- 4 5 4	- 0	٥,٢	1,1	1,2	1.7	α	. .	 	_	n (2,0	1,3	4,1	1 ,5	1,4	1,5	1.6	1.0	- + 1 <	- C	0, 0	ວ່. ວັດ	<u>o</u> .	Σ.	2,5	1,3	8,0	6 , 0	1,2	1,3	
g/m² g/m²	5	2,6	, υ Σ α	, c	7,7	ζ',	3,0	1,7	ά α	o c	7 t	ρ <u>'</u>	2,0	2,1	3,2	3.3	3,5) r	t u	1 C	, o	2,4	2,6	2,8	2,6	2,7	2,9	23	, c c	, 4 , 4	- - -	-, -	٠ د د	າ ເ	2,2	2,4	- , 4	7,7	7,7	2,4	
3	33	m) (T) (r	י כ	o (m	ເນ	70		טע	י כ	ر د	ည	က	က	က	(7)) e	י כי	Э Ц	n ı	o i	ဂ ု	2	വ	5	က	o cr	ס גנ	י ע) (י מ	טע	n u	ر ا د	o t	O 1	n i	5	
	5+2	5+5	5+5	η + 1	יי לי לי) L	၁ + ၁	2+2	5+5	5+5	7. 7. 7.	ָ טַ טַ	က + ဂ	ე + ე	2+2	5+5	5+5	5+5	5+5	, t.	. ה ה		היי	Ω 1 Ω	2+2	2+2	2+2	3+5	3+5	3+5	3+5	3+5	3 5	, c	2+5 2+5	245	2 0	0+0	٠ ا ا	3+5	
m/min	1000	1500	2000	1000	1500	0000	7000	1000	1500	2000	1000	1200	000	2000	1000	1500	2000	1000	1500	2000	1000	1500		7000	000	1500	2000	1000	2000	1000	2000	1000	2000	1000	2000	1000	2000	1000	200	2000	
ge , g/m²	52	25	25	09	09	9	3 2	7C	52	52	09	90	8 6	8 2	7 c	52	52	09	90	09	52	52	52	40	8 8	00	99	09	09	09	09	09	09	90	09	09	90	8 6	2 0	8	
grade	SC-A																											SC-B								SC-C					