UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO FACULTAD DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

Ejercicios Propuestos de Programación Numérica

CURSO: Programación Numérica

DOCENTE: TORRES CRUZ FRED

INTEGRANTES:

• Cutipa Ramos, Nayelin Brisbany

SEMESTRE: IV

GRUPO: "A"

PUNO – PERÚ

2025

ÍNDICE

			Página
1.	Ejer	cicio 1	3
	1.1.	Solución	3
		1.1.1. Restricciones	3
		1.1.2. Formulación matemática	3
		1.1.3. Representación gráfica	3
2.	Ejer	rcicio 2	5
	2.1.	Planteamiento del problema	5
	2.2.	Formulación matemática	5
		2.2.1. Restricciones	5
		2.2.2. No se puede asignar tiempo negativo	5
	2.3.	Transformación para graficar	5
	2.4.	Representación gráfica	5
	2.5.	Interpretación de la solución gráfica	6
3.	Ejer	rcicio 3	7
	3.1.	Planteamiento del problema	7
		Formulación matemática	
	3.3.	Transformación para graficar	7
		Vértices de la región factible (exactos)	
	3.5.	Interpretación	
4.	Eier	cicio 4	9
		Planteamiento	9
		Formulación matemática	
	4.3.	Transformación para graficar	
	4.4.	Región factible (gráfica)	
	4.5.	Interpretación / ejemplos de soluciones	
5.	Eier	cicio 5	11
	•	Planteamiento	
	5.2.	Formulación matemática	
	5.3.	Transformación para graficar	
		Vértices de la región factible (cálculo)	
		Interpretación	4.0

Un desarrollador tiene 15 horas semanales para dedicar al desarrollo de software de frontend (x) y back-end (y). Además:

- Debe dedicar al menos 5 horas al desarrollo de front-end para cumplir con los entregables del cliente.
- El tiempo total no puede exceder 15 horas por restricciones de tiempo del sprint.

Formule las restricciones, represéntelas gráficamente e identifique las combinaciones posibles de tiempo a invertir en cada actividad.

1.1. Solución

1.1.1. Restricciones

- 1. $x \ge 5$ (mínimo 5 horas de front-end).
- 2. $x + y \le 15$ (tiempo total máximo).
- 3. $x \ge 0, y \ge 0$ (no hay tiempo negativo).

1.1.2. Formulación matemática

$$\begin{cases} x \ge 5 \\ x + y \le 15 \\ x \ge 0 \\ y \ge 0 \end{cases} \tag{1}$$

1.1.3. Representación gráfica

Para graficar, transformamos las restricciones en rectas:

- x = 5 (recta vertical).
- y = -x + 15 (recta con pendiente -1).
- Ejes coordenados.

La región factible es el área en el primer cuadrante, a la derecha de la recta x = 5 y debajo de la recta y = -x + 15.

Figura 1: Representación gráfica del Ejercicio $1\,$

Un ingeniero de datos administra dos tipos de servidores en la nube: Servidores A y Servidores B. El costo por hora de Servidor A es S/3 y de Servidor B es S/5. El presupuesto máximo semanal asignado para mantener los servidores es de S/20. Determine cuantas horas puede mantener activos cada tipo de servidor, formule el sistema de ecuaciones y represéntelo gráficamente.

2.1. Planteamiento del problema

Un ingeniero de datos administra dos tipos de servidores en la nube:

- ullet Servidores A ightarrow costo de 3 soles/hora
- Servidores $B \to \cos \phi$ de 5 soles/hora

El presupuesto semanal máximo asignado es de 20 soles.

Definimos:

- x: número de horas activas de servidores A.
- y: número de horas activas de servidores B.

2.2. Formulación matemática

2.2.1. Restricciones

1. Restricción de costo: $3x + 5y \le 20$

2.2.2. No se puede asignar tiempo negativo

$$x \ge 0, y \ge 0$$

2.3. Transformación para graficar

La restricción principal es:

$$3x + 5y \le 20 \quad \Rightarrow \quad y \le -\frac{3}{5}x + 4$$

La recta límite:

$$y = -0.6x + 4$$

2.4. Representación gráfica

- La recta y = -0.6x + 4 divide el plano.
- La región factible está debajo de la recta, en el primer cuadrante.
- Es un triángulo con vértices aproximados:
 - (0,0)

•
$$\left(\frac{20}{3}, 0\right) \approx (6,67,0)$$

• (0,4)

Figura 2: Representación gráfica del Ejercicio 1

2.5. Interpretación de la solución gráfica

- Cualquier punto dentro de la región factible son combinaciones posibles de horas activas de Servidores A y B que cumplen con el presupuesto.
- Ejemplos de soluciones factibles:
 - $x = 4, y = 1 \rightarrow \text{costo} = 3(4) + 5(1) = 17 \le 20.$
 - $x = 2, y = 2 \to costo = 3(2) + 5(2) = 16 \le 20.$
- Puntos fuera de la región implican que el presupuesto semanal se excede.

Un administrador de proyectos tecnológicos organiza su tiempo entre reuniones con stakeholders (x) y trabajo en la documentación técnica (y). Las reuniones requieren al menos 4 horas semanales y la documentación al menos 6 horas. Si dispone de 12 horas para ambas actividades, determine la región factible y analice las combinaciones posibles de tiempo.

3.1. Planteamiento del problema

Un administrador organiza su tiempo entre reuniones con stakeholders (x) y trabajo en documentación técnica (y).

- Las reuniones requieren al menos 4 horas semanales.
- La documentación requiere al menos 6 horas semanales.
- Dispone de 12 horas en total para ambas actividades.

3.2. Formulación matemática

$$\begin{cases} x \ge 4 \\ y \ge 6 \\ x + y \le 12 \\ x \ge 0, \ y \ge 0 \end{cases}$$
 (2)

(Obs.: las últimas dos son las no-negatividades; con las primeras queda implícito que estamos en primer cuadrante.)

3.3. Transformación para graficar

• La restricción de suma se transforma en la recta límite:

$$x + y \le 12 \quad \Rightarrow \quad y \le -x + 12$$

Para graficar dibujamos:

- la recta y = -x + 12
- la recta vertical x = 4
- la recta horizontal y = 6

La región factible queda en el primer cuadrante, a la derecha de x=4, arriba de y=6, y debajo de y=-x+12.

3.4. Vértices de la región factible (exactos)

Intersecciones relevantes:

•
$$x = 4 \text{ y } y = 6 \to \text{punto } (4, 6).$$

- $x = 4 \text{ con } x + y = 12 \rightarrow y = 8 \rightarrow (4, 8).$
- $y = 6 \text{ con } x + y = 12 \rightarrow x = 6 \rightarrow (6, 6).$

Entonces la región factible es el triángulo con vértices (4,6), (4,8), (6,6).

```
### Comparison of Comparison (Comparison of Comparison of
```

Figura 3: Representación gráfica del Ejercicio 1

3.5. Interpretación

- El administrador debe dedicar como mínimo 4 horas a reuniones y 6 horas a documentación.
- Sólo tiene un margen pequeño para mover horas entre actividades: por ejemplo:
 - (4,6) usa 10 horas en total (queda 2 horas sin usar).
 - (5,7) usa 12 horas (ajusta ambas y agota el tiempo).
 - (6,6) usa 12 horas (más reuniones, mínima doc).
 - (4,8) usa 12 horas (más documentación, mínima reuniones).
- Cualquier punto fuera del triángulo viola al menos una restricción (no cumple mínimos o excede 12 horas).

Una empresa de desarrollo de videojuegos produce dos tipos de assets: Modelos 3D (P1) y Texturas (P2). Cada modelo 3D requiere 2 horas de trabajo y cada textura requiere 3 horas. El equipo de arte tiene un total de 18 horas disponibles semanalmente. Formule las restricciones, represéntelas gráficamente y determine cuántos assets de cada tipo pueden producirse en función del tiempo disponible.

4.1. Planteamiento

- x = cantidad de Modelos 3D (P1).
- y = cantidad de Texturas (P2).
- Cada modelo 3D requiere 2 horas.
- Cada textura requiere 3 horas.
- Horas disponibles por semana: 18 horas.

4.2. Formulación matemática

$$2x + 3y \le 18$$

y no negatividad:

$$x \ge 0, \quad y \ge 0$$

(Si la producción exige números enteros, $x, y \in \mathbb{Z}_{>0}$; si no, se permite solución continua.)

4.3. Transformación para graficar

Despejando y:

$$3y \le 18 - 2x \quad \Rightarrow \quad y \le -\frac{2}{3}x + 6$$

Recta límite: $y = -\frac{2}{3}x + 6$.

Interceptos (puntos donde corta ejes):

- Si $x = 0 \to y = 6$.
- Si $y = 0 \rightarrow 2x = 18 \Rightarrow x = 9$.

4.4. Región factible (gráfica)

- Es el área en el primer cuadrante, por debajo de la recta $y = -\frac{2}{3}x + 6$.
- Vértices del polígono factible: (0,0), (9,0), (0,6). (Si consideramos solo la desigualdad y ejes, la región es el triángulo formado por esos vértices.)

Figura 4: Representación gráfica del Ejercicio 1

4.5. Interpretación / ejemplos de soluciones

- Combinaciones válidas (ejemplos):
 - $(x,y) = (0,6) \to 0$ modelos, 6 texturas $(3 \cdot 6 = 18 \text{ horas})$.
 - $(9,0) \rightarrow 9$ modelos, 0 texturas $(2 \cdot 9 = 18 \text{ horas})$.
 - $(3,4) \rightarrow 3 \mod (6 \text{ h}) + 4 \text{ texturas } (12 \text{ h}) = 18 \text{ h}.$
 - $(2,3) \rightarrow 2 \cdot 2 + 3 \cdot 3 = 4 + 9 = 13$ horas (factible y sobra tiempo).
- Si se requieren cantidades enteras, las soluciones factibles son los pares enteros dentro del triángulo (por ejemplo (1,5) no es válido porque $2 \cdot 1 + 3 \cdot 5 = 17 \rightarrow$ sí es válido; (4,4) no: $2 \cdot 4 + 3 \cdot 4 = 20 > 18$).

Una startup de hardware dispone de un máximo de 50 unidades de componentes electrónicos. Para ensamblar un dispositivo tipo A se necesitan 5 unidades y para un dispositivo tipo B se necesitan 10 unidades. Determine cuántos dispositivos de cada tipo puede ensamblar sin exceder las 50 unidades de componentes. Formule el problema, resuélvalo gráficamente y explique las posibles combinaciones de producción.

5.1. Planteamiento

Una fábrica produce dos productos:

- x = unidades del producto A.
- y = unidades del producto B.

Recursos disponibles por semana:

- Material: 48 unidades.
 - Cada A consume 4 unidades de material.
 - Cada B consume 6 unidades de material.
- Mano de obra: 12 horas.
 - Cada A consume 1 hora.
 - Cada B consume 2 horas.

Además, no se producen cantidades negativas:

$$x \ge 0, \quad y \ge 0$$

5.2. Formulación matemática

Restricciones:

$$\begin{cases} 4x + 6y \le 48 & \text{(material)} \\ x + 2y \le 12 & \text{(mano de obra)} \\ x \ge 0, \ y \ge 0 \end{cases}$$
 (3)

5.3. Transformación para graficar

Despejando y para ambas rectas:

■ De $4x + 6y \le 48$:

$$6y \le 48 - 4x \quad \Rightarrow \quad y \le -\frac{4}{6}x + 8 \quad \Rightarrow \quad y \le -\frac{2}{3}x + 8.$$

Recta límite: y = -0.6667x + 8 (puedes usar -0.6667).

■ De $x + 2y \le 12$:

$$2y \le 12 - x \quad \Rightarrow \quad y \le -\frac{1}{2}x + 6.$$

Recta límite: y = -0.5x + 6.

5.4. Vértices de la región factible (cálculo)

Intersecciones importantes:

- Intersección con ejes:
 - Si x = 0: de la primera recta $y \le 8$, de la segunda $y \le 6 \to el$ límite es $y \le 6$. Entonces el vértice en el eje y es (0,6).
 - Si y = 0: de la primera $4x \le 48 \Rightarrow x \le 12$, de la segunda $x \le 12 \rightarrow$ vértice en eje x es (12,0).
- Intersección entre las dos rectas:
 - Resolver 4x + 6y = 48 y x + 2y = 12.
 - De la segunda x = 12 2y. Sustituyendo: $4(12 2y) + 6y = 48 \Rightarrow 48 8y + 6y = 48 \Rightarrow -2y = 0 \Rightarrow y = 0 \rightarrow x = 12$.
 - Esa intersección es (12,0) (ya coincide con el punto en el eje x).

Por tanto, la región factible acotada es el triángulo con vértices: (0,0), (12,0), (0,6).

Figura 5: Representación gráfica del Ejercicio 1

5.5. Interpretación

- La región factible contiene todas las combinaciones de producción (x, y) que no superan ni el material ni la mano de obra disponibles.
- Ejemplos de soluciones factibles:
 - (0,6): usa 0 A y 6 B \rightarrow material = $6 \cdot 6 = 36 \le 48$, mano de obra = $2 \cdot 6 = 12$.
 - (12,0): usa 12 A y 0 B \rightarrow material = $4 \cdot 12 = 48$, mano de obra = $1 \cdot 12 = 12$.
 - (6,3): material = $4 \cdot 6 + 6 \cdot 3 = 24 + 18 = 42 \le 48$; mano de obra = $6 + 2 \cdot 3 = 12$ (en la frontera).

- Si se requieren cantidades enteras, las soluciones válidas son los pares enteros dentro del triángulo (por ejemplo (5,2), (8,1), etc.).
- Cualquier punto fuera del triángulo viola al menos una restricción (falta material o mano de obra).