Math 104B HW 2

Qingze Lan 3046380

```
In [1]: from numpy import exp, array, log, linspace, geomspace, log10
from pandas import DataFrame, options
import matplotlib.pyplot as plt
from scipy.stats import linregress
from math import pi
```

Problem 1

```
Let f(x) = e^x
```

(a) We'll compute the centered difference for $x_0 = 1/2$ and $h = 0.1/2^n$ for n = 0, 1, ..., 10. We'll verify too, the quadratic rate of convergence.

```
In [2]: fun = lambda x: exp(x) # Our function
        x 0 = 1/2 \# x0
        h ar = array( [0.1/2**n for n in range(0,10+1)] ) # h
        # Computing centered difference
        # Input: f,x0,h
        # Output: D h^0 f(x0)
        def cent diff(f,x0,h):
            return (f(x0 + h) - f(x0 - h))/2/h
        D = cent_diff(fun, x_0, h_ar)
        error = abs(D-exp(1/2))
        # Plot of error vs h
        plt.scatter(h ar, error,
                    marker = '.', label = '(Error, $h$)')
        plt.legend()
        plt.ylim(-max(error)*0.1, max(error)*1.1)
        plt.show()
        # Data
        data 1 = {'$h$':h ar,'$D h^0 f(1/2)$':D,'Error':error}
        print("The actual value of the derivative is f'(1/2) = %.6f" % exp(
        1/2))
        DataFrame(data_1)
```


The actual value of the derivative is f'(1/2) = 1.648721

Out[2]:

	$D_h^0 f(1/2)$	h	Error
0	1.651471	0.100000	2.749243e-03
1	1.649408	0.050000	6.870531e-04
2	1.648893	0.025000	1.717472e-04
3	1.648764	0.012500	4.293579e-05
4	1.648732	0.006250	1.073388e-05
5	1.648724	0.003125	2.683467e-06
6	1.648722	0.001563	6.708665e-07
7	1.648721	0.000781	1.677166e-07
8	1.648721	0.000391	4.192926e-08
9	1.648721	0.000195	1.048235e-08
10	1.648721	0.000098	2.621470e-09

From the plot at the table we can verify the quadratic rate of convergence. We can confirm it by taking the \log of the error and h, and finding the slope of a linear regression.

```
In [3]: # Finding rate of convergence
l_error = log(error)
l_h = log(h_ar)
slope = linregress(l_h,l_error)[0]
print('We have found a slope = %.5f' % slope)
```

We have found a slope = 2.00002

We'll find now the optimal value of h considering round-off and truncation errors. If the difference is

computed exactly, we'll have, for
$$|\delta_x|, |\delta_y| < \epsilon$$
:
$$\frac{f(x_0+h)(1+\delta_x)-f(x_0-h)(1-\delta_y)}{2h} = \frac{f(x_0+h)-f(x_0-h)}{2h} + r_h$$

with

$$|r_h| = \left| \frac{f(x_0 + h)\delta_x - f(x_0 - h)\delta_y}{2h} \right| \le \left(|f(x_0 + h)| + |f(x_0 - h)| \right) \frac{\epsilon}{2h} \approx \frac{|f(x_0)|\epsilon}{h}$$

Now we can bound the total error with:

$$M_3h^2 + \frac{|f(x_0)|\epsilon}{h}$$

where $M_3 = |f'''(\eta)|/6$. This is minimized when $h = h_0$:

$$h_0 = \left(\frac{3\epsilon |f(x_0)|}{M_3}\right)^{1/3} = c\epsilon^{1/3} \sim \epsilon^{1/3}$$

We'll verify numerically that the error is minimum in this case.

```
In [4]: # Verifying optimal value of h
        eps = 2**(-52)
        h_{opt} = (eps)**(1/3)
        h range 1 = geomspace(1e-8, 1e-3, 100)
        D 21 = cent diff(fun, 1/2, h range 1)
        error 21 = abs(D 21-exp(1/2))
        # Taking logarithms for better visualization
        l h 1 = log10(h range 1)
        l_error_1 = log10(error_21)
        h range 2 = linspace(h opt - h opt/0.3, h opt + h opt/0.5,15)
        D 22 = cent diff(fun, 1/2, h range 2)
        error 22 = abs(D 22-exp(1/2))
        # Large range of h
        plt.scatter(l h 1, l error 1,marker = '.')
        plt.scatter(log10(h_opt),
                     log10(abs(cent diff(fun, 1/2, h opt) - exp(1/2))),
                   marker = '.', label = '$h 0$')
        plt.legend()
        plt.xlabel('$\log {10}(h)$')
        plt.ylabel('$\log_{10}(error)$')
        plt.show()
        # Plot near h 0
        plt.title('$(h 0-\delta,h 0+\delta)$')
        plt.scatter(h_range_2, error_22,
                    marker = '.', label = '(Error, $h$)')
        plt.scatter(h_opt,abs(cent_diff(fun,1/2,h_opt)-exp(1/2)),
                    label = '(Error, $h_{0}$)')
        plt.legend()
        plt.xlim(h range 2[0]*1.16,h range 2[-1]*1.16)
        plt.ylim(min(error 22), max(error 22))
        plt.show()
```


6 5 4 3 2 1 -0.0000150.0000160.000009.0000000.0000050.0000100.0000150.000020

In light of the above we see that we have the order of the minimum error when taking $h_0=\epsilon^{1/3}$. Note that, the best error we can get is $\sim 10^{-11}$, which differs in 5 orders of magnitude from the machine precision. This is exactly $O(e^{2/3})$.

(c) We'll construct a fourth order approximation to f'(1/2) by using Richardson extrapolation. We know that:

$$D_h^0 f(x_0) = f'(x_0) + c_2 h^2 + c_4 h^4 + \dots$$

By writing
$$D_{h/2}^0 f(x_0)$$
 and substracting we can get:
$$D_h^{ext} f(x_0) = \frac{4D_{h/2}^0 f(x_0) - D_h^0 f(x_0)}{3} = f'(x_0) + Ch^4 + \dots$$

Using this we can compute an approximation to f'(1/2). We'll verify as in the previous case, the rate of convergence.

The actual value of the derivative is f'(1/2) = 1.648721270700128

Out[5]:

	$D_h^{ext} f(.5)$	h	Error
0	1.648720927114287	0.1000000000000000	0.000000343585841
1	1.648721249230807	0.0500000000000000	0.000000021469321
2	1.648721269358376	0.0250000000000000	0.00000001341752
3	1.648721270616254	0.0125000000000000	0.000000000083874
4	1.648721270694935	0.0062500000000000	0.00000000005193
5	1.648721270699838	0.003125000000000	0.000000000000290
6	1.648721270700146	0.001562500000000	0.000000000000017

We can verify the rate of convergence in the same way as before

We have found a slope = 4.03879

We have found then that the error goes approximately as h^4 as we expected. In this case the total error is bounded by:

$$Ch^4 + \frac{|f(x_0)|\epsilon}{h}$$

Then we will find the minimum error when this two terms become comparable, this is when $h_0 \sim \epsilon^{1/5}$. This implies that the minimum error is approximately $\epsilon^{4/5}$. We can do a similar plot to verify it.

```
# Verifying optimal value of h
In [7]:
        h opt r = (eps)**(1/5) # Close to optimal h
        h range r = geomspace(1e-8, 5e-2, 100)
        D_21_r = rich_cent_diff(fun, 1/2, h_range_r) # Centered differences
        h range
        error 21 r = abs(D 21 r-exp(1/2)) \# Error
        # Taking logarithms for better visualization
        l h r = log10(h range r)
        l error 1 r = log10(error 21 r)
        # Large range of h
        plt.scatter(l_h_r, l_error_1_r,marker = '.')
        plt.scatter(log10(h opt r),
                     log10(abs(rich cent diff(fun, 1/2, h opt r) - exp(1/2))),
                   marker = '.', label = '$h 0$')
        plt.legend()
        plt.xlabel('$\log_{10}(h)$')
        plt.ylabel('$\log {10}(error)$')
        plt.show()
```


As seen in the plot, the minimum error we can make is $\sim 10^{-14}$.