TP1 : Echantillonnage de distribution de probabilités

Le but du travail est de générer une série de nombres aléatoires ayant une distribution de probabilités donnée.

- 1) Ecrire un programme qui génère une série de valeurs d'un variable aléatoire X: X₁, X₂, ... X_N. Prendre N grand.
- 2) Calculer les estimateurs statistiques pour la moyenne et la variance de la variable aléatoire X, selon les formules:

$$\overline{X}_{N} = \frac{1}{N} \sum_{i=1}^{N} X_{i} \quad \text{et} \quad S_{N}^{2} = \frac{1}{N} \sum_{i=1}^{N} (X_{i} - \overline{X}_{N})^{2} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_{i})^{2}\right) - (\overline{X}_{N})^{2}$$

et vérifier que \overline{X}_N est proche de E(X), et S_N^2 est proche de Var(X).

- 3) Trier les couples de valeurs (X_i, U_i) par valeurs croissantes de X. Produire un graphe qui représente U en fonction de X. On doit observer la courbe de F(x)
- 4) Pour la variable X continue, calculer $m = Min\{X_i\}$ et $M = Max\{X_i\}$. Définir L = (M m)/10. Remplir le tableau suivant:

Classe	Centre	Effectif	Cumul	$N \times F(x)$
[m, m+L[$x_1 = (2m + L)/2$	n_1	n_1	$N \times F(x_1)$
[m+L,m+2L[$x_2 = (2m + 3L)/2$	n_2	$n_1 + n_2$	$N \times F(x_2)$
[m+2L,m+3L[$x_3 = (2m + 5L)/2$	n_3	$n_1 + n_2 + n_3$	$N \times F(x_3)$
:	:			
[m+9L, m+10L]	$x_{10} = (2m + 19L)/2$	n_{10}	N	$N \times F(x_{10})$
		N		

Les deux dernières colonnes doivent être proches

5) Pour la variable X discrète, remplir le tableau suivant:

X	Effectif	Cumul	$N \times F(x)$
x_1	n_1	n_1	$N \times F(x_1)$
x_2	n_2	$n_1 + n_2$	$N \times F(x_2)$
x_3	n_3	$n_1 + n_2 + n_3$	$N \times F(x_3)$
i			
x_k	n_k	N	$N \times F(x_k)$
	N		

Les deux dernières colonnes doivent être proches

Distributions

- 1. X suit une distribution uniforme U(0,1). On a E(X) = 1/2, Var(X) = 1/12 et F(X) = x; $x \in [0,1]$
- 2. X suit une distribution exponentielle $Exp(\lambda)$. $E(X) = 1/\lambda$, $Var(X) = 1/\lambda^2$ et $F(X) = 1 e^{-\lambda x}$; x > 0
- 3. X a une distribution discrète définie par: P(X=0)=0.3, P(X=2)=0.2, P(X=6)=0.5 E(X)=3.4 et Var(X)=7.24

© Y. Ouinten - UATL