Problem Set 3 MATH 27000

3 Cauchy's Integral Formula

Set A: Graded for Completion

4/12: 1. Fischer and Lieb (2012), QII.3.1. Using the Cauchy integral formulas, compute the following integrals.

(a)
$$\int_{|z+1|=1} \frac{\mathrm{d}z}{(z+1)(z-1)^3}.$$

(b)
$$\int_{|z-i|=3} \frac{\mathrm{d}z}{z^2 + \pi^2}$$
.

(c)
$$\int_{|z|=1/2} \frac{e^{1-z}}{z^3(1-z)} dz$$
.

(d)
$$\int_{|z-1|=1} \left(\frac{z}{z-1}\right)^n dz \text{ for any } n \ge 1.$$

- 2. Fischer and Lieb (2012), QII.4.2. Assume that the power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ converges on $D = D_r(0)$.
 - (a) Show that if f is real-valued on $\mathbb{R} \cap D$, then all a_k are real.
 - (b) Show that if f is an even (resp. odd) function, then $a_k = 0$ for all odd (resp. even) k.
 - (c) Show that if f(iz) = f(z), then a_k can only be nonzero if k is divisible by 4.
 - (d) Discuss the equation $f(\rho z) = \mu f(z)$, where $\rho, \mu \in \mathbb{C} \setminus \{0\}$ are given.
- 3. Fischer and Lieb (2012), QII.6.1. Determine the type of singularity that each of the following functions has at z_0 . If the singularity is removable, calculate the limit as $z \to z_0$; if the singularity is a pole, find its order and the principal part of f at z_0 .
 - (a) $(1 e^z)^{-1}$ at $z_0 = 0$.
 - (b) $(z \sin z)^{-1}$ at $z_0 = 0$.
 - (c) $ze^{iz}/(z^2+b^2)^2$ at $z_0=ib$ (b>0).
 - (d) $(\sin z + \cos z 1)^{-2}$ at $z_0 = 0$.
- 4. Let \mathbb{D} denote the unit disk and suppose that $f \in \mathcal{O}(\mathbb{D})$.
 - (a) Prove that for any $R \in (0,1)$ and any z with |z| < R, we have that

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\theta}) \operatorname{Re}\left(\frac{Re^{i\theta} + z}{Re^{i\theta} - z}\right) d\theta$$

Hint: Observe that setting $w = R^2/\bar{z}$, we have that the integral of $f(\zeta)/(\zeta - w)$ over the circle of radius R centered at the origin is 0.

(b) Compute that

$$\operatorname{Re}\left(\frac{Re^{i\theta}+r}{Re^{i\theta}-r}\right) = \frac{R^2-r^2}{R^2-2Rr\cos\theta+r^2}$$

(c) Now suppose that u = Re(f), so u is a harmonic function. Deduce the **Poisson integral** representation formula: For $z = re^{i\theta}$, we have

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - \phi) u(\phi) d\phi$$

where $P_r(\psi)$ is the **Poisson kernel** for the disk, given by

$$P_r(\psi) = \frac{1 - r^2}{1 - 2r\cos\psi + r^2}$$

Problem Set 3 MATH 27000

Set B: Graded for Content

- 1. Fischer and Lieb (2012), QII.4.6.
 - (a) Suppose the domain G is symmetric with respect to the real axis and that f is holomorphic on G and real-valued on $G \cap \mathbb{R}$. Show that $f(\bar{z}) = \overline{f(z)}$ for all $z \in G$.
 - (b) Suppose $G = D_r(0)$ and f is holomorphic on G and real-valued on $G \cap \mathbb{R}$. Show that if f is even (resp. odd), then the values of f on $G \cap i\mathbb{R}$ are real (resp. imaginary). Prove this without using the power series expansion of f.
- **2.** Some setup: Suppose that f is holomorphic on the unit disk $\mathbb{D} = \{|z| < 1\}$. A point w on the circle $\partial D = \{|z| = 1\}$ is **regular** if there is an open neighborhood U of w and an analytic function g on U such that f = g on $U \cap \mathbb{D}$. Notice that f can be analytically continued outside the boundary of \mathbb{D} if and only if there is a point w on ∂D that is regular for f.

Now define the function

$$f(z) = \sum_{k=1}^{\infty} z^{2^k}$$

Show that f converges on \mathbb{D} , and that it cannot be analytically continued past \mathbb{D} .

3. Suppose that f is an entire function and that, for all sufficiently large z, we have $|f(z)| \leq |z|^n$. Prove that f must be a polynomial.