Aula 2 – Representação do Conhecimento

Parte 2 – Raciocínio para Categorias 22705/1001336 - Inteligência Artificial 2019/1 - Turma A Prof. Dr. Murilo Naldi

Agradecimentos

 Agradecimentos pela base do material utilizado nesta aula foi cedido ou adapatado do material dos professores Maria Carmo Nicoletti, Maria Carolina Monard, Solange Rezende, Andréia Bonfante, Heloísa Camargo e Ricardo Cerri.

Representação do conhecimento

- Conhecimento pode ser representado de diversas formas
 - Lógica
 - Regras
 - Relações entre dados
 - Categorias
 - outras...

Categorias

- Organizar objetos em categorias é vital para expressar conhecimento
 - Categorias possuem caraterísticas e possibilitam a aplicação de regras
 - Que se aplicam a todos os objetos da categoria
 - São estendidos para novos objetos quando esses tornam-se da categoria

Organização do conhecimento

- Taxonomia ou hierarquia taxonômica
 - <objeto> ElementoDe <categoria>
 - <categoria> SubconjuntoDe <categoria>

Herança

- Categorias compartilham suas características para objetos de seus subcategorias
 - Esse fenômeno é chamado de herança
 - Exemplo:
 - Categoria: Alimento (as instâncias são comestíveis)
 - Categoria Fruta é subclasse de Categoria Alimento
 - Categoria Maçã é subclasse de Categoria Fruta

Formas de organização

- Categorias disjuntas:
 - duas ou mais categorias são disjuntas se elas não têm elementos em comum.

Formas de organização

- Decomposição exaustiva:
 - todos os elementos da classe devem obrigatoriamente pertencer a uma das subclasses Decomposição Exaustiva

Decomposição Exaustiva({americanos, canadenses, mexicanos}, NorteAmericanos)

Formas de organização

Partição:

É uma decomposição exaustiva em categorias disjuntas
Partição

Partição({machos, fêmeas}, Animais)

(Decomposição exaustiva de NorteAmericanos não é uma partição porque algumas pessoas tem dupla cidadania)

Categorias e lógica

- Lógica de primeira ordem (ou de predicados) é uma das formas de representar categorias
 - Como predicado
 - bolaDeBasquete(b)
 - Como objeto único constante
 - BolaDeBasquete
 - Como relação (b ∈ bolaDeBasquete)
 - elemento(b,bolaDeBasquete)
 - Entre categorias (bolasDeBasquete ⊆ bolas)
 - subconjunto(bolaDeBasquete, bolas)

Categorias e propriedades

- Categorias podem possuir características ou propriedades
 - -(X ∈ bolaDeBasquete) ⇒ esférica(X)
- Propriedades podem ser utilizadas para definir elementos de uma categoria
 - laranja(X) \land redonda(X) \land diâmetro(X) = 23,75cm \land X ∈ bolas ⇒ X ∈ bolasDeBasquete
- Uma categoria pode estar contida em outra e, portanto, herdar suas propriedades
 - cães ⊆ espéciesDomesticadas

Composição

- Usamos a relação parteDe para dizer que alguma coisa faz parte da outra:
 - parteDe(bucareste, romênia)
 - parteDe(romênia, europaOriental)
 - parteDe(europaOriental, europa)
 - parteDe(europa, terra)
- A relação parteDe é transitiva:
 - parteDe(x,y) \land parteDe(y,z) \Rightarrow parteDe(x,z)
- Assim podemos concluir que:
 - parteDe(bucareste, terra)

Composição

- Objetos podem ser compostos por medidas, utilizando funções de unidade
 - comprimento(l1) = polegadas(1,5) = centímetros(3,81)
- Assim como outras propriedades, medidas podem ser usadas para descrever objetos
 - diâmetro(bolaDeBasquete) = centímetros(23,75).
 - preco(bolaDeBasquete) = \$(19).
 - -d ∈ dias ⇒ duração(d) = horas(24).

Composição

- Uma característica importante de medidas é que elas podem ser ordenadas (ordinais)
 - Se numéricas, podem ser comparadas diretamente pelos números
 - Se categóricas, é preciso estabelecer relação de ordem
- Exemplo: Exercícios de Norvig são mais trabalhosos que os de Russel (dar pontuação menor aos exercícios de Norvig).
 - $e_1 \in exercícios \land e_2 \in exercícios \land escreveu(norvig, e_1)$ $\land escreveu(russell, e_2) \Rightarrow dificuldade(e_1) >$ $dificuldade(e_2)$

Sistemas de raciocínio em categorias

- Redes semânticas: oferece recursos gráficos para visualizar uma base de conhecimento, e algoritmos eficientes para dedução de propriedades de um objeto, de acordo com sua pertinência a uma categoria.
- Lógicas descritivas: fornecem uma linguagem formal para construção e combinação de definições de categorias, e algoritmos eficientes para definir relacionamentos de subconjuntos e superconjuntos entre categorias.

Redes Semânticas

- Família de representações baseadas em grafos.
- O significado de um objeto é definido em termos de uma rede de associações com outros objetos.
- Representa objetos, categorias de objetos e relações entre objetos.
- Representação gráfica:
 - Objetos, classes e valores: nós do grafo
- Relações entre classes e propriedades: arcos rotulados do grafo

- O arco elementoDe entre piu-piu e canário corresponde a asserção
 - piu-piu ∈ Canário
- O arco subconjuntoDe entre canário e pássaro corresponde a asserção
 - canário ⊆ pássaro
- Algumas propriedades só podem ser identificadas no elemento e não em sua categoria. Exemplo: só se define cor em canário
- O arco cor entre canário e amarelo corresponde a asserção
 - $\forall X, X \in \text{canário} \Rightarrow \text{cor}(X,\text{amarelo})$

Tipos de relações semânticas

A subconjuntoDe B Classe A está contida na classe B

A elementoDe B Objeto A pertence a classe B

$$A \xrightarrow{R} B$$
 Todos os membros de A possuem a propriedade B

 Arco amigoDe entre piu-piu e kowalski corresponde à asserção amigoDe(piupiu, kowalski)

∀X, X ∈ pessoas ⇒ [∀Y (temMãe(X,Y) ⇒ Y ∈ pessoasFemininas]

Herança em redes semânticas

- Os objetos de uma categoria mais específica (subcategoria) herdam as propriedades atribuídas a categorias mais gerais
- Herança permite:
 - Armazenar informações em nível mais alto
 - Reduzindo o tamanho da base de conhecimento
 - Simplificar modelo
 - Aumentando a eficiência da rede

Herança Múltipla

- A herança múltipla ocorre quando um objeto pode pertencer a mais de uma categoria
 - Ou quando uma categoria pode ser um subconjunto de mais de uma outra categoria.
- Nesses casos o mecanismo de herança pode encontrar dois ou mais valores conflitantes que respondem a consulta.

Valores padrão

- Uma das vantagens das redes semânticas é a habilidade para representar valores padrões
 - Associados a categorias.
- Ou seja, categorias definem propriedades padrão para todos seus objetos
- Porém, pode ser contestada por valores dados a objetos específicos
 - Nesse caso, o valor padrão é redefinido pelo específico
 - Geralmente para definir exceção

- Podemos considerar que:
 - Ave voa
 - Pinguim é ave
 - Pinguim não voa
- Portanto, uma informação específica redefine o valor padrão
 - Cria uma exceção
- Isso gera uma contradição na base de conhecimento
 - Que deve ser tratada

Implementando SBC

- Sistemas baseados em conhecimento podem ser implementados de diferentes formas
 - Uso de regras e lógica é a forma mais natural
 - Lógica de predicados facilita o uso de categorias
 - Prolog (veremos mais a frente no curso)
 - Mas programação orientada a objetos pode ser uma boa opção
 - Com uma pouco mais de dificuldade

Exemplo de aplicação - Taxonomia

Exemplo de aplicação - Organizacional

