Departamento de Matemática

ALGA — Agrupamento IV (ECT, EET, EI)

Teste 3

7 de janeiro de 2015 — Duração: **1h30**

	N.° Mec	Escreva o número mecanográfico também na(s) folha(s) de rascunho
70 contos	1. Considere a matriz $A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	e responda às seguintes questões.
	 (a) Justifique que os valores próprios de A são 1 e -1. Especifique a multiplicidade de cada um. (b) Indique o conjunto de vetores próprios associados a cada valor próprio. 	
	Conjunto de vetores próprios de 1:	
	Conjunto de vetores próprios de –	1:
	(c) Determine a matriz D diagonal e	a matriz P ortogonalmente diagonalizante de A tais que $P^{-1}AP=D$:
	$D = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	
		seguinte superfície $-2xy + z^2 - 1 = 0$ e identifique-a.
70 oontos	2. Considere a transformação linear ϕ : \mathbb{R} (a) Determine a imagem de ϕ , $\operatorname{im}(\phi)$	$x^3 o \mathbb{R}^2$ dada por $\phi(x,y,z) = (x+y,2x+z)$ para todos os $(x,y,z) \in \mathbb{R}^3$.
	(a) Determine a imagein de ϕ , $\min(\phi)$ (b) ϕ é sobrejectiva? É injectiva? Just	
		a da transformação ϕ relativamente às bases $\mathcal{S} = \big((1,1,0),(1,0,0),(1,1,1)\big)$
	(d) Usando a matriz A (obtida na alínea anterior), calcule $\phi(2,0,0)$. (NOTA: Se não determinou a matriz A na alínea (c), e apenas nesse caso, suponha que A é uma matriz com todos os seus elementos iguais a 2 .)	
60	3. Identifique, escrevendo A, B, C e D na caixa correspondente, os conjuntos definidos pelas seguintes equações.	
ontos	$A: x^2 + z^2 + 2 = y^2 - 1$	$+2z \text{ em } \mathbb{R}^3;$ $B: x^2 - 2y^2 + 4y = 2 \text{ em } \mathbb{R}^2;$
	$C: x^2 + 1 = y + z^2$ er	$\mathbb{D} : 3x^2 + y^2 = 6x - 2 \text{ em } \mathbb{R}^2.$
	elipse hipérbole	parábola cónica degenerada quádrica degenerada
	elipsóide hipérbolóide de	1 ou 2 folhas parabolóide elíptico ou hiperbólico