

On the Mazur–Ulam theorem in fuzzy n–normed strictly convex spaces

M. Eshaghi Gordji

Department of Mathematics, Semnan University,

P. O. Box 35195-363, Semnan, Iran

Tel:0098-231-4459905

Fax:0098-231-3354082

e-mail: madjid.eshaghi@gmail.com

S. Abbaszadeh

Department of Mathematics, Semnan University,

P. O. Box 35195-363, Semnan, Iran

e-mail: s.abbaszadeh.math@gmail.com

Th. M. Rassias

Department of Mathematics, National Technical University of Athens,

Zografou, Campus 15780 Athens, Greece

e-mail: trassias@math.ntua.gr

Abstract. In this paper, we generalize the Mazur–Ulam theorem in the fuzzy real n-normed strictly convex spaces.

Mathematics Subject Classification. Primary 46S40; Secondary 39B52, 39B82, 26E50, 46S50.

Key words and phrases: Fuzzy n-normed space; Mazur–Ulam theorem; Fuzzy n-isometry.

1. INTRODUCTION

The theory of isometric began in the classical paper [16] by S. Mazur and S. Ulam who proved that every isometry of a real normed vector space onto another real normed vector space is a linear mapping up to translation. The property is not true for normed complex vector space(for instance consider the conjugation on \mathbb{C}). The hypothesis of surjectivity is essential. Without this assumption, Baker [2] proved that every isometry from a normed real space into a strictly convex normed real space is linear up to translation. A number of the mathematicians have had dealt with the Mazur–Ulam theorem.

The main theme of this paper is the proof of the Mazur–Ulam theorem in a fuzzy n-normed strictly convex space.

In 1984, Katsaras [12] defined a fuzzy norm on a linear space and at the same year Wu and Fang [24] also introduced a notion of fuzzy normed space and gave the generalization of the Kolmogoroff normalized theorem for fuzzy topological linear space. In [4], Biswas defined and studied fuzzy inner product spaces in linear space. In 1994, Cheng and Mordeson introduced a definition of fuzzy norm on a linear space in such a manner that the corresponding induced fuzzy metric is of Kramosil and Michalek type [14]. In 2003, Bag and Samanta [1] modified the definition of Cheng and Mordeson [6] by removing a regular condition. They also established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy norms (see [1]).

In [8, 9], Gähler introduced a new approach for a theory of 2-norm and n-norm on a linear space. In [10], Hendra Gunawan and Mashadi gave a simple way to derive an (n-1)-norm from the n-norm and realized that any n-normed space is an (n-1)-normed space. Al. Narayanan and S. Vijayabalaji have introduced the notion of fuzzy n-normed linear space in [17]. Also, S. Vijayabalaji, N. Thillaigovindan and Y. B. Jun, extended n-normed linear

spaces to fuzzy n-normed linear spaces in [23]. We mention here the papers and monographs [3, 5, 7, 11, 13, 15, 18, 19, 20, 21, 22] and [25] concerning the isometries on metric spaces.

2. PRELIMINARIES

In this section, we state some essential definitions and results which will be needed in the sequel.

Definition 2.1. Let X be a real linear space. A function $N : X \times \mathbb{R} \rightarrow [0, 1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X , if for all $x, y \in X$ and all $s, t \in \mathbb{R}$:

- (N_1) $N(x, t) = 0$ for $t \leq 0$;
- (N_2) $x = 0$ if and only if $N(x, t) = 1$ for all $t > 0$;
- (N_3) $N(tx, s) = N(x, \frac{s}{|t|})$ if $t \neq 0$;
- (N_4) $N(x + y, t + s) \geq \min\{N(x, t), N(y, s)\}$;
- (N_5) $N(x, \cdot)$ is non-decreasing function on \mathbb{R} and $\lim_{t \rightarrow \infty} N(x, t) = 1$;
- (N_6) For $x \neq 0$, $N(x, \cdot)$ is (upper semi) continuous on \mathbb{R} .

The pair (X, N) is called a fuzzy normed linear space. One may regard $N(x, t)$ as the truth value of the statement "the norm of x is less than or equal to the real number t ".

Definition 2.2. Let $n \in \mathbb{N}$ (natural numbers) and let X be a real vector space of dimension $d \geq n$. A real valued function $\|\bullet, \dots, \bullet\|$ on $X \times \dots \times X$ satisfying the following four properties:

- (1) $\|x_1, \dots, x_n\| = 0$, if and only if x_1, \dots, x_n are linearly dependent;
- (2) $\|x_1, \dots, x_n\|$ is invariant under any permutation;
- (3) $\|\alpha x_1, \dots, \alpha x_n\| = |\alpha| \|x_1, \dots, x_n\|$, for any $\alpha \in \mathbb{R}$;
- (4) $\|x_1, \dots, x_{n-1}, y + z\| \leq \|x_1, \dots, x_{n-1}, y\| + \|x_1, \dots, x_{n-1}, z\|$;

is called an n -norm on X and the pair $(X, \|\bullet, \dots, \bullet\|)$, is called an n -normed space.

Definition 2.3. Let X be a real linear space over a real field F . A fuzzy subset N of $X^n \times \mathbb{R}$ (\mathbb{R} is the set of real numbers) is called the fuzzy n -normed on X , if and only if for every $x_1, \dots, x_n, x'_n \in X$:

- (nN_1) For all $t \in \mathbb{R}$ with $t \leq 0$, $N(x_1, \dots, x_n, t) = 0$;
- (nN_2) For all $t \in \mathbb{R}$ with $t > 0$, $N(x_1, \dots, x_n, t) = 1$, if and only if x_1, \dots, x_n are linearly dependent;
- (nN_3) $N(x_1, \dots, x_n, t)$ is invariant under any permutation of x_1, \dots, x_n ;
- (nN_4) For all $t \in \mathbb{R}$ with $t > 0$, $N(x_1, \dots, cx_n, t) = N(x_1, \dots, x_n, \frac{t}{|c|})$, if $c \neq 0$, $c \in F$ (field);
- (nN_5) For all $s, t \in \mathbb{R}$, $N(x_1, \dots, x_n + x'_n, s + t) \geq \min\{N(x_1, \dots, x_n, t), N(x_1, \dots, x'_n, s)\}$;
- (nN_6) $N(x_1, \dots, x_n, t)$, is left continuous and non-decreasing function of $t \in \mathbb{R}$ and

$$\lim_{t \rightarrow \infty} N(x_1, \dots, x_n, t) = 1;$$

In this case, the pair (X, N) is called a fuzzy n -normed linear space.

Example 2.4. Let $(X, \|\bullet, \dots, \bullet\|)$ be an n -normed space. We define

$$N(x_1, \dots, x_n, t) := \begin{cases} \frac{t}{t + \|x_1, \dots, x_n\|}, & \text{when } t \in \mathbb{R} \text{ with } t > 0, (x_1, \dots, x_n) \in X \times \dots \times X, \\ 0, & \text{when } t \leq 0, \end{cases}$$

Then it is easy to show that (X, N) is a fuzzy n -normed linear space.

Definition 2.5. A fuzzy n -normed space is called strictly convex, if and only if for every $x_1, \dots, x_n, x'_n \in X$ and $s, t \in \mathbb{R}$, $N(x_1, \dots, x_n + x'_n, s + t) = \min\{N(x_1, \dots, x_n, t), N(x_1, \dots, x'_n, s)\}$ and for any $z_1, \dots, z_n \in X$, $N(x_1, \dots, x_n, t) = N(z_1, \dots, z_n, s)$ implies that $x_1 = z_1, \dots, x_n = z_n$ and $s = t$.

Definition 2.6. Let (X, N) and (Y, N) be two fuzzy n -normed spaces. We call $f : (X, N) \rightarrow (Y, N)$ a fuzzy n -isometry, if and only if

$$N(x_1 - x_0, \dots, x_n - x_0, t) = N(f(x_1) - f(x_0), \dots, f(x_n) - f(x_0), t),$$

for all $x_0, x_1, \dots, x_n \in X$ and all $t > 0$.

Definition 2.7. Let X be a real linear space and x, y, z mutually disjoint elements of X . Then x, y and z are said to be 2-collinear if $y - z = t(x - z)$, for some real number t .

3. MAZUR–ULAM PROBLEM

In this section we prove the Mazur–Ulam theorem in the fuzzy real n -normed strictly convex spaces. From now on, let (X, N) and (Y, N) be two fuzzy n -normed strictly convex spaces and $f : (X, N) \rightarrow (Y, N)$ be a function.

Lemma 3.1. For each $x_1, \dots, x_n, x'_n \in X$ and $t \in \mathbb{R}$,

- (i) $N(x_1, \dots, x_n - x'_n, t) = N(x_1, \dots, x'_n - x_n, t);$
- (ii) $N(x_1, \dots, x_i, \dots, x_j, \dots, x_n, t) = N(x_1, \dots, x_i + \alpha x_j, \dots, x_j, \dots, x_n, t)$, for all $\alpha \in \mathbb{R};$

Proof.

$$\begin{aligned} N(x_1, \dots, x_n - x'_n, t) &= N(x_1, \dots, (-1)(x'_n - x_n), t) = N(x_1, \dots, x'_n - x_n, \frac{t}{|-1|}) \\ &= N(x_1, \dots, x'_n - x_n, t). \end{aligned}$$

To prove (ii), assume that $s, t \in \mathbb{R}$ and $s, t > 0$ and $z = \frac{1}{\alpha}x_i + x_j$. By using (i) and (nN_2) and (nN_6) , we have

$$\begin{aligned} N(x_1, \dots, x_i, \dots, x_j, \dots, x_n, t) &\leq N(x_1, \dots, x_i, \dots, x_j, \dots, x_n, t + s) \\ &= N(x_1, \dots, \alpha(z - x_j), \dots, x_j, \dots, x_n, t + s) \\ &= N(x_1, \dots, z - x_j, \dots, x_j, \dots, x_n, \frac{t+s}{|\alpha|}) \\ &= \min\{N(x_1, \dots, z, \dots, x_j, \dots, x_n, \frac{t}{|\alpha|}), N(x_1, \dots, x_j, \dots, x_n, \frac{s}{|\alpha|})\} \\ &= N(x_1, \dots, z, \dots, x_j, \dots, x_n, \frac{t}{|\alpha|}) \\ &= N(x_1, \dots, \alpha z, \dots, x_j, \dots, x_n, t) \\ &= N(x_1, \dots, x_i + \alpha x_j, \dots, x_j, \dots, x_n, t) \\ &\leq N(x_1, \dots, x_i + \alpha x_j, \dots, x_j, \dots, x_n, t + s) \\ &= \min\{N(x_1, \dots, x_i, \dots, x_j, \dots, x_n, t), N(x_1, \dots, \alpha x_j, \dots, x_j, \dots, x_n, s)\} \\ &= N(x_1, \dots, x_i, \dots, x_j, \dots, x_n, t) \end{aligned}$$

Hence, $N(x_1, \dots, x_i, \dots, x_j, \dots, x_n, t) = N(x_1, \dots, x_i + \alpha x_j, \dots, x_j, \dots, x_n, t)$, for all $\alpha \in \mathbb{R}$. \square

Lemma 3.2. Let $x_0, x_1 \in X$ be arbitrary and $t > 0$. Then $u = \frac{x_0+x_1}{2}$ is the unique element of X satisfying

$$\begin{aligned} N(x_1 - u, x_1 - x_n, x_2 - x_n, \dots, x_{n-1} - x_n, t) \\ = N(x_0 - x_n, x_0 - u, x_2 - x_n, \dots, x_{n-1} - x_n, t) \\ = N(x_0 - x_n, x_1 - x_n, \dots, x_{n-1} - x_n, 2t) \end{aligned}$$

for every $x_2, \dots, x_n \in X$ and u, x_0 and x_1 are 2-collinear.

Proof. Since $u = \frac{x_0+x_1}{2}$, we can write

$$\begin{aligned} x_0 - u &= x_0 - \frac{x_0 + x_1}{2} = \frac{x_0}{2} - \frac{x_1}{2} = \frac{x_0 + x_1 - x_1}{2} - \frac{x_1}{2} \\ &= -(x_1 - \frac{x_0 + x_1}{2}) = -(x_1 - u). \end{aligned}$$

Thus we conclude by the Definition 2.7 that u , x_0 and x_1 are 2-colinear.
By using Lemma 3.1, we can see that

$$\begin{aligned} N(x_1 - u, x_1 - x_n, \dots, x_{n-1} - x_n, t) \\ &= N(x_1 - \frac{x_0 + x_1}{2}, x_1 - x_n, \dots, x_{n-1} - x_n, t) \\ &= N(x_1 - x_0, x_1 - x_n, \dots, x_{n-1} - x_n, 2t) \\ &= N(x_0 - x_n, x_1 - x_n, \dots, x_{n-1} - x_n, 2t), \end{aligned}$$

and similarly

$$\begin{aligned} N(x_0 - x_n, x_0 - u, x_2 - x_n, \dots, x_{n-1} - x_n, t) \\ &= N(x_0 - x_n, x_1 - x_n, \dots, x_{n-1} - x_n, 2t). \end{aligned}$$

Now, we prove the uniqueness of u .

Assume that $v \in X$, satisfies the above properties. Since v , x_0 and x_1 are 2-colinear, there exists a real number s such that $v := sx_0 + (1-s)x_1$. In view of Lemma 3.1 and Definition 2.5, we obtain

$$\begin{aligned} N(x_0 - x_n, x_1 - x_n, \dots, x_{n-1} - x_n, 2t) \\ &= N(x_1 - v, x_1 - x_n, x_2 - x_n, \dots, x_{n-1} - x_n, t) \\ &= N(x_1 - (sx_0 + (1-s)x_1), x_1 - x_n, \dots, x_{n-1} - x_n, t) \\ &= N(x_1 - x_0, x_1 - x_n, \dots, x_{n-1} - x_n, \frac{t}{|s|}) \\ &= N(x_0 - x_n, x_1 - x_n, \dots, x_{n-1} - x_n, \frac{t}{|s|}). \end{aligned}$$

So, $2t = \frac{t}{|s|}$. Since $t > 0$, $|s| = \frac{1}{2}$. Also

$$\begin{aligned} N(x_0 - x_n, x_1 - x_n, \dots, x_{n-1} - x_n, 2t) \\ &= N(x_0 - x_n, x_0 - v, x_2 - x_n, \dots, x_{n-1} - x_n, t) \\ &= N(x_0 - x_n, x_0 - (sx_0 + (1-s)x_1), x_2 - x_n, \dots, x_{n-1} - x_n, t) \\ &= N(x_0 - x_n, x_0 - x_1, x_2 - x_n, \dots, x_{n-1} - x_n, \frac{t}{|1-s|}) \\ &= N(x_0 - x_n, x_1 - x_n, \dots, x_{n-1} - x_n, \frac{t}{|1-s|}). \end{aligned}$$

So $2t = \frac{t}{|1-s|}$. Hence $\frac{1}{2} = |s| = |1-s|$ and so $s = \frac{1}{2}$. Thus we obtain that $u = v$ and this complete the proof. \square

Lemma 3.3. *Let $f : (X, N) \rightarrow (Y, N)$ is a fuzzy n -isometry;*

(i) *For every $x_0, x_1, x_2 \in X$, if x_0, x_1 and x_2 are 2-colinear, then $f(x_0), f(x_1)$ and $f(x_2)$ are 2-colinear.*

(ii) *If $f(0) = 0$, then for every $z_1, \dots, z_n \in X$ and $t > 0$*

$$N(z_1, \dots, z_n, t) = N(f(z_1), \dots, f(z_n), t)$$

Proof. Since x_0, x_1 and x_2 are 2-colinear, there exists a real number s such that $x_1 - x_0 = s(x_2 - x_0)$. So, for each $x_3, \dots, x_{n+1} \in X$ we have

$$\begin{aligned} & N(f(x_1) - f(x_0), f(x_3) - f(x_0), \dots, f(x_{n+1}) - f(x_0), t) \\ &= N(x_1 - x_0, x_3 - x_0, \dots, x_{n+1} - x_0, t) \\ &= N(x_2 - x_0, x_3 - x_0, \dots, x_{n+1} - x_0, \frac{t}{|s|}) \\ &= N(f(x_2) - f(x_0), f(x_3) - f(x_0), \dots, f(x_{n+1}) - f(x_0), \frac{t}{|s|}) \\ &= N(s(f(x_2) - f(x_0)), f(x_3) - f(x_0), \dots, f(x_{n+1}) - f(x_0), t), \end{aligned}$$

and by definition 2.5, we conclude that $f(x_1) - f(x_0) = s(f(x_2) - f(x_0))$.

To prove the property (ii), we can write

$$\begin{aligned} N(z_1, \dots, z_n, t) &= N(z_1 - 0, \dots, z_n - 0, t) \\ &= N(f(z_1) - f(0), \dots, f(z_n) - f(0), t) \\ &= N(f(z_1), \dots, f(z_n), t). \end{aligned}$$

□

Theorem 3.4. *Every fuzzy n-isometry $f : (X, N) \rightarrow (Y, N)$ is affine.*

Proof. $f : (X, N) \rightarrow (Y, N)$ is affine, if the function $g : (X, N) \rightarrow (Y, N)$ defined by $g(x) = f(x) - f(0)$, is linear. Its obvious that g is an n-isometry and $g(0) = 0$. Thus, we may assume that $f(0) = 0$. Hence, it is enough to show that f is linear.

Let $x_0, x_1 \in X$. By Lemma 3.1, for every $x_2, \dots, x_n \in X$ we have

$$\begin{aligned} & N(f(x_0) - f(x_n), f(x_0) - f(\frac{x_0 + x_1}{2}), f(x_2) - f(x_n), \dots, f(x_{n-1}) - f(x_n), t) \\ &= N(f(x_n) - f(x_0), f(\frac{x_0 + x_1}{2}) - f(x_0), f(x_2) - f(x_0), \dots, f(x_{n-1}) - f(x_0), t) \\ &= N(x_n - x_0, \frac{x_0 + x_1}{2} - x_0, x_2 - x_0, \dots, x_{n-1} - x_0, t) \\ &= N(x_n - x_0, x_1 - x_0, x_2 - x_0, \dots, x_{n-1} - x_0, 2t) \\ &= N(f(x_n) - f(x_0), f(x_1) - f(x_0), f(x_2) - f(x_0), \dots, f(x_{n-1}) - f(x_0), 2t) \\ &= N(f(x_0) - f(x_n), f(x_1) - f(x_n), f(x_2) - f(x_n), \dots, f(x_{n-1}) - f(x_n), 2t). \end{aligned}$$

And we can obtain

$$\begin{aligned} & N(f(x_1) - f(\frac{x_0 + x_1}{2}), f(x_1) - f(x_n), f(x_2) - f(x_n), \dots, f(x_{n-1}) - f(x_n), t) \\ &= N(f(\frac{x_0 + x_1}{2}) - f(x_1), f(x_n) - f(x_1), f(x_2) - f(x_1), \dots, f(x_{n-1}) - f(x_1), t) \\ &= N(\frac{x_0 + x_1}{2} - x_1, x_n - x_1, x_2 - x_1, \dots, x_{n-1} - x_1, t) \\ &= N(x_0 - x_1, x_n - x_1, x_2 - x_1, \dots, x_{n-1} - x_1, 2t) \\ &= N(f(x_0) - f(x_1), f(x_n) - f(x_1), f(x_2) - f(x_1), \dots, f(x_{n-1}) - f(x_1), 2t) \\ &= N(f(x_0) - f(x_n), f(x_1) - f(x_n), f(x_2) - f(x_n), \dots, f(x_{n-1}) - f(x_n), 2t). \end{aligned}$$

By (i) of Lemma (3.3), we obtain that $f(\frac{x_0 + x_1}{2})$, $f(x_0)$ and $f(x_1)$ are 2-colinear. Now, from Lemma 3.2, we have

$$f(\frac{x_0 + x_1}{2}) = \frac{f(x_0)}{2} + \frac{f(x_1)}{2}$$

for all $x_0, x_1 \in X$. It follows that f is \mathbb{Q} -linear (\mathbb{Q} is the set of rational numbers). We have to show that f is \mathbb{R} -linear.

Let $r \in \mathbb{R}^+$ and $x \in X$. By (i) of Lemma (3.3), $f(0)$, $f(x)$ and $f(rx)$ are 2-colinear. Since

$f(0) = 0$, there exists $s \in \mathbb{R}$ such that $f(rx) = sf(x)$. From (ii) of Lemma (3.3), for every x_1, \dots, x_{n-1} and $t > 0$, we have

$$\begin{aligned} N(x, x_1, x_2, \dots, x_{n-1}, \frac{t}{r}) &= N(rx, x_1, \dots, x_{n-1}, t) \\ &= N(f(rx), f(x_1), f(x_2), \dots, f(x_{n-1}), t) \\ &= N(sf(x), f(x_1), f(x_2), \dots, f(x_{n-1}), t) \\ &= N(f(x), f(x_1), f(x_2), \dots, f(x_{n-1}), \frac{t}{|s|}) \\ &= N(x, x_1, x_2, \dots, x_{n-1}, \frac{t}{|s|}). \end{aligned}$$

Hence $s = \pm r$. The proof is completed if $s = r$. If $s = -r$, that is, $f(rx) = -rf(x)$. Then there exists $q_1, q_2 \in \mathbb{Q}$ such that $0 < q_1 < r < q_2$. For each $z_1, \dots, z_n \in X$, we have

$$\begin{aligned} N(f(x), f(z_1) - f(q_2x), \dots, f(z_{n-1}) - f(q_2x), \frac{t}{q_2 + r}) \\ &= N(q_2f(x) - (-rf(x)), f(z_1) - f(q_2x), \dots, f(z_{n-1}) - f(q_2x), t) \\ &= N(f(rx) - f(q_2x), f(z_1) - f(q_2x), \dots, f(z_{n-1}) - f(q_2x), t) \\ &= N(rx - q_2x, z_1 - q_2x, \dots, z_{n-1} - q_2x, t) \\ &= N(x, z_1 - q_2x, \dots, z_{n-1} - q_2x, \frac{t}{q_2 - r}) \\ &\geq N(x, z_1 - q_2x, \dots, z_{n-1} - q_2x, \frac{t}{q_2 - q_1}) \\ &= N(q_1x - q_2x, z_1 - q_2x, \dots, z_{n-1} - q_2x, t) \\ &= N(f(q_1x) - f(q_2x), f(z_1) - f(q_2x), \dots, f(z_{n-1}) - f(q_2x), t) \\ &= N(f(x), f(z_1) - f(q_2x), \dots, f(z_{n-1}) - f(q_2x), \frac{t}{q_2 - q_1}). \end{aligned}$$

By (nN₆), we have $q_2 + r \leq q_2 - q_1$ which is a contradiction. Hence $s = r$, that is, $f(rx) = rf(x)$ for all positive real numbers r . Therefore f is \mathbb{R} -linear, as desired. \square

REFERENCES

- [1] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, *Fuzzy Sets Syst.* 151 (2005) 513–547.
- [2] J. A. Baker, Isometries in normed spaces, *Amer. Math. Monthly* (1971) 655–658.
- [3] S. Banach, Theorie des operations lineaires, Chelsea, Warsaw, 1932.
- [4] R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, *Inform. Sci.* 53 (1991) 185–190.
- [5] D. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, *Duke Math.* 16(1949), 385–397.
- [6] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, *Bull. Calcutta Math. Soc.* 86 (1994) 429–436.
- [7] M. Day, Normed linear spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [8] S. Gähler, Linear 2-normierte Raume, *Math. Nachr.* 28 (1964), 1–43.
- [9] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Raume, I, II, III., *Math. Nachr.* 40 (1969), 165–189.
- [10] H. Gunawan and M. Mashadi, On n-normed spaces, *Int. J. Math. Math. Sci.* 27 (2001), no. 10, 631–639.
- [11] S.-M. Jung and Th.M. Rassias, On distance-preserving mappings, *J. Korean Math. Soc.* 41(4)(2004), 667–680.
- [12] A. K. Katsaras, Fuzzy topological vector spaces II, *Fuzzy Sets Syst.* 12 (1984) 143–154.
- [13] D. Koehler and P. Rosenthal, On isometries of normed linear spaces, *Studia Math.* 34(1970), 213–216.

- [14] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, *Kybernetika* 11 (1975) 326–334.
- [15] H. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin, 1974.
- [16] S. Mazur, S. Ulam, Sur les transformation isométriques despace vectoriels normés, *C. R. Acad. Sci. Paris* 194 (1932) 946–948.
- [17] Al. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear spaces, *Int. J. Math. Math. Sci.* 2005 (2005), no. 24, 3963–3977.
- [18] C. Park and Th.M. Rassias, Isometric additive mappings in quasi-Banach spaces, *Non-linear Functional Analysis and Applications* 12(3)(2007), 377–385.
- [19] C. Park and Th.M. Rassias, d-isometric linear mappings in linear d-normed Banach modules, *J. Korean Math. Soc.* 45(2008)(1), 249–271.
- [20] Th.M. Rassias, Is a distance one preserving mapping between metric spaces always an isometry, *American Mathematical Monthly* 90(1983), 200.
- [21] Th.M. Rassias and P. Semrl, On the Mazur–Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, *Proc. Amer. Math. Soc.* 118(1993), 919–925.
- [22] Th.M. Rassias and C.S. Sharma, Properties of isometries, *Journal of Natural Geometry* 3(1993), 1–38.
- [23] S. Vijayabalaji, N. Thillaigovindan, and Y. B. Jun, Intuitionistic fuzzy n-normed linear space, *Bull. Korean. Math. Soc.*, Vol. 44, no. 2, May 2007.
- [24] C. Wu and J. Fang, Fuzzy generalization of Klomogoroffs theorem, *J. Harbin Inst. Technol.* 1 (1984) 1–7.
- [25] M. Zaidenberg, A representation of isometries of function spaces, *Institute Fourier (Grenoble)* 305(1995), 1–7.