A számításelmélet alapjai I. (Ötödik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. március 12.

Tematika

 A nemdeterminisztikus (NVDA) és a determinisztikus véges automaták (VDA) ekvivalenciája.

Példa 1

Konstruáljunk egy A' véges determinisztikus automatát, amely ugyanazt a nyelvet fogadja el, mint az $A=(Q,T,\delta,Q_0,F)$ nemdeterminisztikus véges automata, ahol $Q=\{q_0,q_1,q_2,q_3\},\ T=\{a,b\},\ Q_0=\{q_0\},\ F=\{q_3\}$ és δ az alábbi táblázattal adott:

		а	b
\rightarrow	q_0	$\{q_0,q_1\}$	$\{q_0,q_1\}$
	q_1	$\{q_1,q_2\}$	{q ₂ }
	q_2	$\{q_2,q_3\}$	$\{q_2,q_3\}$
\leftarrow	q ₃	$\{q_3\}$	$\{q_3\}$

Elégséges megadni az A' véges determinisztikus automata állapot átmeneteinek táblázatát.

Példa 1

Megjegyzés

- Ismeretes, hogy minden $A=(Q,T,\delta,Q_0,F)$ nemdeterminisztikus véges automatához meg tudunk konstruálni egy $A'=(Q',T,\delta',q_0',F')$ determinisztikus véges automatát úgy, hogy L(A)=L(A') teljesül.
- A konstrukció a következő: Legyen Q' a Q halmaz összes részhalmazainak halmaza. Definiáljuk a $\delta': Q' \times T \to Q'$ függvényt a következőképpen: $\delta'(q',a) = \bigcup_{q \in q'} \delta(q,a)$.
- Továbbá legyen $q_0' = Q_0$ és $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}.$

- $\begin{array}{l} \bullet \ \ Q' \ \ \text{elemei tehát:} \ \emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_3\}, \{q_0, q_1\}, \{q_0, q_2\}, \\ \{q_0, q_3\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_2, q_3\}, \{q_0, q_1, q_2\}, \{q_0, q_1, q_3\}, \\ \{q_0, q_2, q_3\}, \{q_1, q_2, q_3\}, \{q_0, q_1, q_2, q_3\}. \end{array}$
- $q_0' = \{q_0\}$
- $F' = \{\{q_3\}, \{q_0, q_3\}, \{q_1, q_3\}, \{q_2, q_3\}, \{q_0, q_1, q_3\}, \{q_0, q_2, q_3\}, \{q_1, q_2, q_3\}, \{q_0, q_1, q_2, q_3\}\}.$

Példa 1

Az új állapotátmenet táblázat:

		а	Ь
\rightarrow $\{q_0\}$		$\{q_0,q_1\}$	$\{q_0,q_1\}$
	$\{q_1\}$	$\{q_1,q_2\}$	$\{q_2\}$
	$\{q_2\}$	$\{q_2,q_3\}$	$\{q_2,q_3\}$
\leftarrow	$\{q_3\}$	$\{q_3\}$	$\{q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$
	$\{q_0,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_1,q_3\}$

		а	Ь
	$\{q_1,q_2\}$	$\{q_1, q_2, q_3\}$	$\{q_2,q_3\}$
\leftarrow	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_2,q_3\}$
\leftarrow	$\{q_2,q_3\}$	$\{q_2,q_3\}$	$\{q_2,q_3\}$
	$\{q_0,q_1,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_0,q_1,q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_1,q_2,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_2,q_3\}$
\leftarrow	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$

Példa 2

Konstruáljunk egy A' véges determinisztikus automatát, amely ugyanazt a nyelvet fogadja el, mint az $A=(Q,T,\delta,Q_0,F)$ nemdeterminisztikus véges automata, ahol $Q=\{q_0,q_1,q_2,q_3\},\ T=\{a,b\},\ Q_0=\{q_0\},\ F=\{q_1\}$ és δ az alábbi táblázattal adott:

		а	b
\rightarrow	q_0	$\{q_1,q_3\}$	$\{q_0,q_1\}$
\leftarrow	q_1	$\{q_1\}$	$\{q_0,q_2\}$
	q_2		$\{q_3\}$
	q ₃	$\{q_0\}$	

Elégséges megadni az A' véges determinisztikus automata állapot átmeneteinek táblázatát.

- $\begin{array}{l} \bullet \ \ Q' \ \ \text{elemei tehát:} \ \emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_3\}, \{q_0, q_1\}, \{q_0, q_2\}, \\ \{q_0, q_3\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_2, q_3\}, \{q_0, q_1, q_2\}, \{q_0, q_1, q_3\}, \\ \{q_0, q_2, q_3\}, \{q_1, q_2, q_3\}, \{q_0, q_1, q_2, q_3\}. \end{array}$
- $q_0' = \{q_0\}.$
- $F' = \{\{q_1\}, \{q_0, q_1\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_0, q_1, q_2\}, \{q_0, q_1, q_3\}, \{q_1, q_2, q_3\}, \{q_0, q_1, q_2, q_3\}\}.$

Példa 2

Az új állapotátmenet táblázat:

	a	Ь	
\rightarrow	$\{q_0\}$	$\{q_1,q_3\}$	$\{q_0,q_1\}$
\leftarrow	$\{q_1\}$	$\{q_1\}$	$\{q_0,q_2\}$
	$\{q_2\}$		$\{q_3\}$
	$\{q_3\}$	$\{q_0\}$	
\leftarrow	$\{q_0,q_1\}$	$\{q_1,q_3\}$	$\{q_0,q_1,q_2\}$
	$\{q_0,q_2\}$	$\{q_1,q_3\}$	$\{q_0,q_1,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_1\}$

		а	Ь
\leftarrow	$\{q_1,q_2\}$	$\{q_1\}$	$\{q_0, q_2, q_3\}$
\leftarrow	$\{q_1,q_3\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
	$\{q_2,q_3\}$	$\{q_0\}$	$\{q_3\}$
\leftarrow	$\{q_0,q_1,q_2\}$	$\{q_1,q_3\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_0,q_1,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_1,q_2\}$
	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_1,q_3\}$
\leftarrow	$\{q_1,q_2,q_3\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
\leftarrow	$\{q_0, q_1, q_2, q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0, q_1, q_2, q_3\}$