

Review - 1

Earthquake Magnitude Prediction from Precursor Signals August 11, 2025

Course:

Foundations of Data Science (BCSE206L)

Guided by:

Prof. Nalini N

Submitted By:

Ashwin Anand (22BCE2721)

Yagnit Mahajan (22BCE2588)

INDEX

S. No.	CONTENT	Pg No.
1.	Problem Statement	2
2.	Abstract	2
3.	Objective	3
4.	Literature Survey	3-6
5.	Research Gaps	7
6.	Datasets	7-8

PROBLEM STATEMENT:-

Earthquakes cause significant loss of life and property. Accurate early detection of earthquake magnitude based on precursor signals can improve disaster preparedness. This project uses real-world earthquake datasets to analyze precursor—magnitude relationships and build detection models.

ABSTRACT:-

This project focuses on early detection of earthquake magnitudes by analyzing precursor signals using a real-world dataset of over 9,000 earthquake events. The approach involves extensive data cleaning, exploratory data analysis, and predictive modeling to understand the relationship between precursor signals and earthquake magnitude. Python is used for data processing and analysis, SQL helps in data aggregation and querying, and Tableau is employed for visualizing spatial patterns and trends. This multidisciplinary workflow aims to enhance disaster preparedness by providing actionable insights from seismic data through effective data analysis and machine learning techniques. This project aligns well with SDG 3 – Good Health and Well Being.

OBJECTIVES:-

- Clean and preprocess a dataset of 9000+ records to ensure data quality and consistency.
- Perform exploratory data analysis to uncover key trends and patterns.
- Use SQL for data aggregation and manipulation to support analysis.
- Create interactive visualizations in Tableau to communicate insights effectively.
- Predict approximate earthquake magnitude based on precursor signals.

LITERATURE SURVEY:-

This section summarizes the key findings and limitations of 10 research papers focused on earthquake magnitude detection using machine learning approaches. Based on this review, the critical research gaps are identified to justify the need for the current study.

RESEARCH PAPERS:-

S. N	Paper	Author	Journ als and Public ation and Year	Methodolog y	Key Findings	Limitations
1.	Improving earthquake prediction accuracy in Los Angeles with machine learning	Cemil Emre Yavas, Lei Chen, Christopher Kadlec, Yiming Ji	Scient ific Report s, 2024	Comprehensi ve feature matrix synthesis using sixteen algorithms to optimize seismic pattern classification.	Random Forest achieved nearly 98% accuracy predicting maximum earthquake magnitude within 30 days.	Model trained on Los Angeles data; performance on other seismic regions remains unverified.

2.	Earthquake Prediction using Hybrid Machine Learning Techniques	Mustafa Abdul Salam, Lobna Ibrahim, Diaa Salama Abdelminaa m	Intern ational Journa l of Advan ced Comp uter Scienc e and Applic ations (IJAC SA), 2021	FPA optimization integrates Extreme Learning Machine with Support Vector Machine parameters.	Hybrid FPA-LS-SVM outperformed other models, improving 15-day magnitude prediction accuracy significantly.	Study limited to Southern California datasets; feature selection optimization needed for better accuracy.
3.	Long-Term Forecasting of Strong Earthquake s in North America, South America, Japan, Southern China and Northern India with Machine Learning	Victor Manuel Velasco Herrera, Eduardo Antonio Rossello, Maria Julia Orgeira, Lucas Arioni, Willie Soon, Graciela Velasco, Laura Rosique-de la Cruz, Emmanuel Zúñiga, Carlos Vera	Fronti ers in Earth Scienc e, 2022	Wavelet transforms decompose seismic signals for Bayesian probabilistic temporal pattern recognition.	Bayesian ML identified cycles of seismicity, enabling probabilistic rather than precise earthquake forecasting.	Does not support accurate short-term forecasts; physical—statistical model integration remains unfinished.
4.	Universal Neural Networks		Nature Comm	Generalized earthquake data trains	Neural networks predicted earthquake location and	Requires real-world deployment;

	for Real-	Xiong	unicati	universal	magnitude within 4	latency
	Time	Zhang,	on,	networks for	seconds of P-wave	reduction
	Earthquake	Miao Zhang	2024	cross-	detection.	essential for
	Early	8		regional P-		high-density
	Warning			wave		urban safety
	8			magnitude		applications.
			ļ	estimation.		11
				Convolutiona		Validation
	Local	Zhang,		l layers with		limited to
	Magnitude	Aitaro Kato,	Seism	attention	Attention-based	certain
	Estimation	Huiyu Zhu,	ologic	mechanisms	model rapidly	regions;
	via an	Wei Wang	al	process	estimated local	integration
5.	Attention-	8	Resear	STEAD	magnitudes from	with
	Based		ch	waveform	real-time seismic	national-
	Machine		Letter	features	waveforms for early	scale
	Learning		S,	automatically	warning.	seismic
	Model		2024			networks
			ļ			still pending.
	Magnitude			Multi-layer		1 8
	Estimation		ļ	CNN	on 77 1 1	
	System	Ji'an Liao,	Result	architecture	CNN-based system	-
	based on	Siran Yang,	s in	extracts	surpassed traditional	Detection
6.	Convolutio	Yanwei	Engin	hierarchical	algorithms for real-	accuracy
	nal Neural	Wang	eering,	features from	time earthquake	drops for
	Networks		2025	raw seismic	magnitude estimation	small events.
	(MESCNN		ļ	time-series	in U.S. networks.	
)			data.		
	,		Applic	EQTransform		C1
		Sebastián	ations	er model		Slow in
		Gamboa-	in	processes		rejecting false
	Analyzia of	Chacón,	Advan	three-	Deep learning	
	Analysis of	Esteban	ced	component	(EQTransformer)	positives;
7	earthquake	Meneses,	Mathe	waveforms	improved detection	needs
7.	detection	Esteban J.	matica	for	rates and reliability	transfer
	using deep	Chaves	1	automated P	compared to classical	learning for diverse
	learning		Conce	and S	detection methods.	
			pts	detection.		geographical
			and			regions.
		1	Disco			

			veries (AAM			
			CD), 2025			
8.	Feature- Based Magnitude Estimates for Small Earthquake s in Yellowston e, USA	Alysha D. Armstrong, Ben Baker, Keith D. Koper	Bulleti n of the Seism ologic al Societ y of Ameri ca, 2024	Automated pipeline extracts waveform characteristic s for rapid small-earthquake magnitude estimation systems.	Feature-based ML pipeline rapidly estimated magnitudes for thousands of small earthquakes in Yellowstone.	Model tuned for Yellowstone; adaptation for tectonically diverse areas remains challenging.
9.	A New Algorithm for Earthquake Prediction Using Machine Learning	Nada Badr Jarah, Abbas Hanon Hassin Alasadi, Kadhim Mahdi Hashim	Journa 1 of Comp uter Scienc e, 2024	Ensemble boosting combines multiple base learners with weighted voting for prediction.	Ensemble machine learning significantly improved prediction accuracy using boosting over traditional classifiers.	Real-time deployment and integration with USGS hazard tools are still undeveloped
10	Machine learning— powered earthquake early warning system	Vijaya Saraswathi R	Journa l of Engin eering Resear ch and Report s, 2024	Multi- algorithm framework integrates real-time data streams for automated seismic event classification.	Random Forest-based early warning achieved 96% accuracy, reducing false positives in simulations.	Lacks validation in nationwide operational scenarios and during multiple simultaneou s seismic events.

RESEARCH GAPS:-

Key research gaps emerging from this literature review are:

- 1. **Regional Generalizability:** Many models are developed using data from specific geographic areas, limiting their applicability across diverse seismic regions.
- 2. **Physical model integration:** ML rarely combined with physical/geophysical models for better forecasts.
- 3. **Feature selection & data diversity:** Limited use of diverse, optimized features reduces model robustness.
- 4. **Operational deployment:** Few models tested for real-time or multi-event scenarios in warning systems.
- 5. **Model Transferability:** The adaptation and transfer of models across regions with differing tectonic characteristics and data sparsity remain underexplored.
- 6. Benchmarking Against Established Methods: Several studies lack rigorous comparison with traditional statistical seismology models, limiting assessment of practical utility.

DATASET:-

The dataset consists of over 9,000 recorded earthquake events from across various states in the USA, spanning from December 27, 2023, to January 26, 2024. It includes detailed information such as the time and location (latitude and longitude), depth, magnitude, and other relevant seismic parameters, enabling comprehensive analysis of earthquake characteristics and patterns.

In this dataset, precursor signals refer to measurable seismic parameters that may indicate the likelihood or intensity of an impending earthquake. These include features like the number of reporting stations (nst), measurement gaps (gap), minimum distances to stations (dmin), and error margins in location and magnitude estimations. Monitoring changes or patterns in these signals helps in detecting early signs of seismic activity before a major event occurs.

• Raw Dataset

time	latitude	longitude	depth	mag	magType	nst ga	ip	dmin	rms	ne	t id	updated	place	type	horizontalError	depthError	magError	magNst status	locationSource	magSource
2024-01-26T04:52:42.967Z	31.604	-104.213	3 4.41	98	1.7 ml	18		69	0.1	0.5 tx	tx2024bubg	2024-01-26T05:08:27.774Z	51 km NW of Toyah, Texas	earthquake	0	1.292058988	0.1	13 automatic	tx	tx
2024-01-26T04:42:50.711Z	64.501	-146.9058	3 4	1.2	1.4 ml					0.75 al	ak024172lv8v	2024-01-26T05:01:12.516Z	2 km S of Salcha, Alaska	earthquake		0.2		automatic	ak	ak
2024-01-26T04:32:51.471Z	63.529	-147.5543	3 13	3.1	1.6 ml					0.62 al	ak024172jq57	2024-01-26T04:34:54.160Z	71 km ESE of Denali Park, Alaska	earthquake		0.3		automatic	ak	ak
2024-01-26T04:29:01.180Z	38.833168	-122.7971649	9 1.	73	0.4 md	9		65 0.007	7468	0.02 no	nc73994061	2024-01-26T04:46:12.828Z	6 km W of Cobb, CA	earthquake	0.34	0.97	0.31	. 10 automatic	nc	nc
2024-01-26T04:23:14.444Z	63.5462	-150.9719	9	0	1.2 ml					0.8 al	ak024172hpuc	2024-01-26T04:25:43.831Z	37 km E of Denali National Park, Alaska	earthquake		0.4		automatic	ak	ak

• Cleaned Dataset

latitude	longitude	depth	mag	magType	gap rr	ns net	id	updated	place	type	horizontalError	depthError	magError	status	locationSource	magSource	date	time_only
31.604	-104.213	4.4198		1.7 ml	69	0.5 tx	tx2024bubg	2024-01-26T05:08:27.774Z	51 km NW of Toyah, Texas	earthquake	0	1.292058988	0.	1 automatic	tx	tx	1/26/2024	52:43.0
64.501	-146.9058	4.2		1.4 ml	89.91	0.75 ak	ak024172lv8v	2024-01-26T05:01:12.516Z	2 km S of Salcha, Alaska	earthquake	0.46	0.2	0.17	3 automatic	ak	ak	1/26/2024	42:50.7
63.529	-147.5543	13.1		1.6 ml	89.91	0.62 ak	ak024172jq57	2024-01-26T04:34:54.160Z	71 km ESE of Denali Park, Alaska	earthquake	0.46	0.3	0.17	3 automatic	ak	ak	1/26/2024	32:51.5
38.833168	-122.7971649	1.73		0.4 md	65	0.02 nc	nc73994061	2024-01-26T04:46:12.828Z	6 km W of Cobb, CA	earthquake	0.34	0.97	0.3	1 automatic	nc	nc	1/26/2024	29:01.2
63.5462	-150.9719	(1.2 ml	89.91	0.8 ak	ak024172hpuc	2024-01-26T04:25:43.831Z	37 km E of Denali National Park, Alaska	earthquake	0.46	0.4	0.17	3 automatic	ak	ak	1/26/2024	23:14.4