Definition: Vector Space

A vector space over a field $\mathbb F$ is a set V, with two operations: (where $\vec v, \vec u, \vec w \in V)$

- A binary operation named vector addition: v + w
- Scalar multiplication: $x \mapsto \alpha x$, which is an operation from $F \times V$ to V

That satisfy the following axioms:

- Associativity of addition: $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
 - Commutativity of addition: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
 - Identity element of addition: there exists an element $\vec{0} \in V$, called the [[Zero n-Tuple—zero vector]], such that $\vec{v} + \vec{0} = \vec{v}$ for all $\vec{v} \in V$
 - Inverse elements of addition: For every $\vec{v} \in V$ there exists an element $-\vec{v} \in V$, called the additive inverse of \vec{v} such that $\vec{v} + (-\vec{v}) = \vec{0}$

• Compatibility of scalar multiplication with field multiplication

- $\alpha (\beta \vec{v}) = (\alpha \beta) \vec{v}$ Identity element of scalar multiplication: $1\vec{v} = \vec{v}$ where 1 is the
- Identity element of scalar multiplication: 1v = v where 1 is the multiplicative identity in \mathbb{F}
- Distributivity of scalar multiplication with respect to vector addition: $\alpha (\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$
 - Distributivity of scalar multiplication with respect to field addition $(\alpha + \beta) \vec{v} = \alpha \vec{v} + \beta \vec{v}$