Regularization

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

$$AIC = 2k - 2\ln(L)$$
parameters Log likelihood

While awarding goodness of fit, penalize model complexity

Cost function

Takes a model (specific parameter values), returns a score

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta = 1.5$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million
 $\beta_1 = 1.5$
 $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

Cost function

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

Cost function

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

Cost function Add a penalty for the size of each parameter!

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

L2 Regularization

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Ridge Regression

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Effect of λ ?

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

zero

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

very small

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

"just right"

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

VERY LARGE

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

VERY LARGE

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$\stackrel{\approx 0}{\downarrow} \quad \stackrel{\approx 0}{\downarrow} \quad \stackrel{\approx 0}{\downarrow} \quad \stackrel{\approx 0}{\downarrow} \quad \stackrel{\approx 0}{\downarrow}$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Error vs. regularization λ

Error vs. regularization λ

Ridge Regularization (L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Ridge Regularization (L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Lasso Regularization (L1)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \left| \beta_j \right|$$

Ridge Regularization (L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Lasso Regularization (L1)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \left| \beta_j \right|$$

Elastic Net (L1 + L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y_{\beta}(x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 + \lambda_1 \sum_{j=1}^{k} \left| \beta_j \right| + \lambda_2 \sum_{j=1}^{k} \beta_j^2$$

We were doing:

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X,Y)
```

We were doing:

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)
```

To use Ridge Regularization:

```
from sklearn.linear_model import Ridge model = Ridge(1.0) model.fit(X, y) \lambda (sklearn Calls It alpha)
```

We were doing:

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)
```

To use Lasso:

```
from sklearn.linear_model import Lasso model = Lasso(1.0) model.fit(X, y) \lambda (sklearn Calls It alpha)
```

We were doing:

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)

To use Elastic Net:

from sklearn.linear_model import ElasticNet
model = ElasticNet(1.0, l1_ratio = 0.5)
model.fit(X, y)

total weight for the full penalty term

ratio of I1/I2 penalty

My model is not awesome enough.

What do I do?

Try these and check test error (and AIC,BIC,etc.) again:

Use a smaller set of features

Regularization: Increase/decrease λ

Try adding polynomials

Check functional forms for each feature

Try including other features

Use more data (bigger training set)