Orientation Fields on Evolving Surfaces A Diffuse Domain Approach

27.04.2015

- Problem Setup
- 2 Diffuse Domain Modelling for stationary Surfaces
 - Model
 - Validation
- 3 Diffuse Domain Modelling for evolving Surfaces
 - Shell Coalescence
 - Cahn Hilliard Surface Evolution
 - Onsager Relations
 - Coupled Dynamics

Problem

Problem:

• Find Vectorfield **p** on $S = \partial B \subset \mathcal{R}^3$ such that:

minimize distortion energy
$$E(\mathbf{p})$$

 $\mathbf{p} \cdot \mathbf{n} = 0$ and $\|\mathbf{p}\| = 1$ on S

B bounded, connected Set

Geometric Frustration: [1]

- physical preferred local order cannot propagate throughout the system
- ullet order is locally broken o defects
- curvature plays crucial role in position of defects

Defects in Orientation Fields

Poincare Hopf Theorem

Let M be a compact orientable differentiable Manifold. Let v be a Vector Field on M with isolated Zeroes.

Then the Sum of the Indices is over all the isolated Zeroes of v equals the Euler Characteristic of M.

- different Types of Zeroes/Defects with different Indices Source(+1), Sink(+1), Vortex(+1) and Saddlepoint(-1)
- Euler Characteristic: Sphere/Ellipsoid = 2, Torus = 0

Existing Approaches

Frank Oseen Energy

$$E = \int_{S} \frac{K_o}{2} ||\nabla \mathbf{p}||_F^2 + \text{Penality Terms } dS$$

Spherical Harmonics

$$p \in TS$$

$$\frac{K_n}{4} \left(\|\mathbf{p}\|^2 - 1 \right)^2$$

Explicit Domain

$$\textbf{p} \in \mathcal{R}^3$$

$$\frac{K_t}{2}(\mathbf{p} \cdot \mathbf{n})^2 + \frac{K_n}{4} \left(\|\mathbf{p}\|^2 - 1 \right)^2$$

Constitutive Equation

$$rac{\partial \mathbf{p}}{\partial t} = -rac{\delta e}{\delta \mathbf{p}}$$

molecular Field
$$h=-rac{\delta e}{\delta \mathbf{p}_i}$$
 (generalized force)

Diffuse Domain Model

diffuse approximation of B and S

$$\chi_{B} = \lim_{\epsilon_{\phi} \to 0} c$$

$$\chi_{S} = \lim_{\epsilon_{\phi} \to 0} B(c)$$

Free Energy and Constitutive Equation

$$E = \int_{\Omega} B(c) \frac{K_o}{2} \|\nabla \mathbf{p}\|_F^2 d\Omega$$

$$+ \int_{\Omega} B(c) \left(\frac{K_t}{2} (\mathbf{p} \cdot \mathbf{n})^2 + \frac{K_n}{4} (\|\mathbf{p}\|^2 - 1)^2\right) d\Omega$$

$$\frac{(c) \mathbf{p}}{\Omega} = B(c) h$$

Evolution Equations

Diffuse Domain Evolution Equations

$$\tilde{B}(c) \frac{\partial \mathbf{p}}{\partial t} - K_o \nabla \cdot \tilde{B}(c) \nabla \mathbf{p} \\
+ B(c) K_t \left(\mathbf{n} \otimes \mathbf{n}^T \right) \cdot \mathbf{p} + B(c) K_n \left(\|\mathbf{p}\|^2 - 1 \right) \mathbf{p} = 0 \quad \Omega \\
\frac{\partial \mathbf{p}}{\partial \mathbf{n}} = 0 \quad \Gamma$$

- normal extended intial values on S, $\mathbf{n} pprox rac{
 abla c}{|
 abla c|}$
- $B(c) = \tilde{C}c^2(1-c)^2$
- ⇒ AMDiS can be applied straight forward

Analytical Solution on Unit Sphere

$$\mathbf{p}(\mathbf{x}) = \frac{1}{\sqrt{1 - \mathbf{x}_3^2}} \begin{bmatrix} \mathbf{x}_1 \mathbf{x}_3 \\ \mathbf{x}_2 \mathbf{x}_3 \\ \mathbf{x}_3^2 - 1 \end{bmatrix}$$

Defect Trajectories on Unit Sphere

start at non minimal energy configuration with deterministic defect behaviour

- ⇒ compare diffuse domain model to results of other methods
- ⇒ Spherical-Harmonics and Explicit Domain approach

Defect Trajectories on Unit Sphere

start at non minimal energy configuration with deterministic defect behaviour

- \Rightarrow compare diffuse domain model to results of other methods
- ⇒ Spherical-Harmonics and Explicit Domain approach

Outline

- informative example: shell coalescence 3D and director fields
 - \bullet decoupled dynamics \to sequence of minimal energy states, on prescribed surfaces
 - get a idea about possible interactions
- a basic surface relaxation coupled with director field dynamics
 - ullet use basic free energy driven surface evolution o Cahn Hilliard
 - use Onsager Relations to develop possible coupling mechanisms
 - investigate influence of coupling on relaxation trajectorie
- continous forced system

Equilibrium Configurations on evolving Surface

Surface evolution is presicribed by external results [2]

- **intial state:** "touching spheres", 4 defects with toplogical charge 4
- **intermediate state:** saddle points occur, 6 defects with topological charge 2
- **critical event:** pair of source/sink gets annihilated by merging with saddle points, 2 defects with topological charge 2
- late phase: remaining defect pair relocates to final position, topological charge 2

Model - Surface Evolution

Surface Evolution defined by Cahn Hilliard Interface Evolution

Free Energy

$$E = \int_{\Omega} K_c \left(\frac{1}{\epsilon} B(c) + \frac{\epsilon}{2} |\nabla c|^2 \right) d\Omega$$

Constitutive Equation given by Diffusive Transport and Chemical Potential μ (generalized force $\Delta \mu$)

Constitutive Equation

$$\mu = \mathcal{K}_c \frac{\delta e_C}{\delta c}$$

$$\frac{\partial c}{\partial t} = \Delta \mu$$

Combined Free Energy

Free Energy - Directors on evolving Surface

$$\begin{split} E = & \int_{\Omega} K_{c} \underbrace{\left(\frac{1}{\epsilon}B\left(c\right) + \frac{\epsilon}{2}|\nabla c|^{2}\right)}_{e_{C}} \, \mathbf{d}\Omega \\ & + \int_{\Omega} R\left(c\right) \underbrace{\frac{K_{o}}{2}\|\nabla \mathbf{p}\|_{F}^{2}}_{e_{P1}} \, \mathbf{d}\Omega \\ & + \int_{\Omega} R\left(c\right) \underbrace{\left(\frac{K_{t}}{2}(\mathbf{p} \cdot \mathbf{n})^{2} + \frac{K_{n}}{4}\left(\|\mathbf{p}\|^{2} - 1\right)^{2}\right)}_{e_{P2}} \, \mathbf{d}\Omega \end{split}$$

conjugated flux-forces pairs: $\left(\frac{\partial c}{\partial t}, \triangle \mu\right)$ and $\left(\frac{\partial R(c)\mathbf{p}}{\partial t}, R(c)h\right)$, each with parities (-1,1)

Onsager Relations

Constitutive Equations

$$\frac{\partial c}{\partial t} = \triangle \mu + \Lambda \mathbf{p} \cdot R(c) h$$

$$\frac{\partial R(c) \mathbf{p}}{\partial t} = \Lambda \mathbf{p} \triangle \mu + R(c) h$$

Onsager Relations

Constitutive Equations

$$\frac{\partial c}{\partial t} = \triangle \mu + \Lambda \mathbf{p} \cdot R(c) h$$

$$\frac{\partial R(c) \mathbf{p}}{\partial t} = \Lambda \mathbf{p} \triangle \mu + R(c) h$$

Rate of Dissipation

$$\Pi = -\left(\triangle\mu \frac{\partial c}{\partial t} + R(c) h \cdot \frac{\partial R(c) \mathbf{p}}{\partial t}\right)$$

$$\Pi = -\left((\triangle\mu)^2 + R(c)^2 h^2 + \Lambda(1 + R(c)) R(c) \mathbf{p} \cdot h\triangle\mu\right)$$

Onsager Relations

to preserve mass continuity of c and ensure $\Pi < 0$ we choose $\Lambda = 0$

Constitutive Equations

equations
$$\frac{\partial c}{\partial t} = \triangle \mu$$

$$\frac{\partial R(c) \mathbf{p}}{\partial t} = R(c) h$$

Coupling

$$\frac{\partial R(c) \mathbf{p}}{\partial t} = R(c) \frac{\partial \mathbf{p}}{\partial t} + R'(c) \frac{\partial c}{\partial t} \mathbf{p}$$

$$\mu = K_c \frac{\delta e_c}{\delta c} + (e_{p1} + e_{p2}) \frac{\delta R(c)}{\delta c}$$

Chemical Potential Coupling

Chemical Potential

for
$$R(c) = (\frac{1}{\epsilon}B(c) + \frac{\epsilon}{2}|\nabla c|^2) = e_C$$
:

$$\mu = \frac{\tilde{C}}{\epsilon} \left(c^3 - c \right) \left(K_c + e_{P1} + e_{P2} \right) - \epsilon \nabla \cdot \left(K_c + e_{P1} + e_{P2} \right) \nabla c$$

Chemical Potential Coupling

Chemical Potential

for
$$R(c) = (\frac{1}{\epsilon}B(c) + \frac{\epsilon}{2}|\nabla c|^2) = e_C$$
:

$$\mu = \frac{\tilde{C}}{\epsilon} \left(c^3 - c \right) \left(K_c + e_{P1} + e_{P2} \right) - \epsilon \nabla \cdot \left(K_c + e_{P1} + e_{P2} \right) \nabla c$$

non defect region:

$$e_{P1} + e_{P2} \approx 0$$

$$K_{c}$$

Chemical Potential Coupling

Chemical Potential

for
$$R(c) = (\frac{1}{\epsilon}B(c) + \frac{\epsilon}{2}|\nabla c|^2) = e_C$$
:

$$\mu = \frac{C}{\epsilon} (c^3 - c) (K_c + e_{P1} + e_{P2}) - \epsilon \nabla \cdot (K_c + e_{P1} + e_{P2}) \nabla c$$

non defect region:

$$e_{P1} + e_{P2} \approx 0$$

 K_{c}

defect region:

$$\|\mathbf{p}\| \approx 0$$
, $\|\nabla \mathbf{p}\|_F \approx \frac{1}{r}$

$$K_c + \frac{K_o}{2r} + \frac{K_n}{4}$$

Summary

Diffuse Domain Director Field Dynamics

- set up diffuse domain modelling for arbitrary stationary surfaces in 3D
- validated model's capacities to reproduce minimal energy states as well as defect dynamics

Basic Coupled Surface Director Field Evolution

- discussed several possible couplings between Cahn Hilliard and Director Dynamics
- highlighted possible influence of defects on surface relaxation

Outlook

- Quantive influence of defects in relaxation trajectorie of surface, at different values of K_C
- possible forcings on system:
 - external forces on surface
 - add chemical concentration to generate stress on p
 - add chemical concentration to modify prefered curvature of surface
- apply Onsager relations to other surface evolutions
 - dendritic growth

Shell Coalescence Cahn Hilliard Surface Evolution Onsager Relations Coupled Dynamics

Thanks for your attention!

Mark J. Bowick and Luca Giomi.

Two-dimensional matter: order, curvature and defects.

Advances in Physics, 58(5):449–563, 2009.

Venkateshwarlu Yadha and Joseph J. Helble.

Modeling the coalescence of heterogenous amorphous particles.

Journal of Aerosol Science, 35(6):665 - 681, 2004.