

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS STUDIJŲ PROGRAMA

Report

Comparison of two computer achitectures Motorola 68HC11 vs. Intel i960

Karina Babenskaitė

ELEMENTARY BASE OF THE PROCESSOR

Intel i960

The Intel i960 is fabricated using CMOS technology and belongs to the Very Large Scale Integration (VLSI) category.

Motorola 68HC11

The Motorola 68HC11 is based on CMOS technology, which uses transistors fabricated as integrated circuits (ICs). It is categorized as a Large Scale Integration (LSI) device. The integration includes the CPU, RAM, ROM, EEPROM, and I/O peripherals on a single chip.

PHYSICAL CHARACTERISTICS

Intel i960

Typically available in advanced package types like HL-PBGA (High Lead Plastic Ball Grid Array), which are compact. For example, the encapsulant size is 22.38 mm x 22.38 mm, with a height of approximately 1.54 mm. It is designed to operate at 3.3V, with efficient power usage depending on workload. The processor includes features for power management.

Motorola 68HC11

Available in various package types such as PLCC (Plastic-Leaded Chip Carrier), DIP (Dual In-line Package), and QFP (Quad Flat Pack). These packages are small and light, typically weighing a few grams and measuring a few centimeters on each side. Operates on a 5V supply with low power consumption, typically drawing a few milliamps, depending on the operating mode.

ARCHITECTURE TYPE

Intel i960

The Intel i960 family is based on a RISC (Reduced Instruction Set Computer) architecture. This makes the i960 fundamentally a register-based architecture.

Motorola 68HC11

The Motorola 68HC11 microcontroller lineage is built upon the earlier 6800 architecture. This family is primarily accumulator-based.

ADDRESSING

Intel i960

Three-address machine, supporting instructions that specify two source operands and one destination operand explicitly, typical of RISC architectures.

Motorola 68HC11

One-address machine, with instructions typically involving one explicit operand and an implicit accumulator as the other operand and destination.

REGISTERS

Intel i960

Intel i960 includes a significant number of registers: general-purpose registers as well as specialized registers for certain functions.

Number of Registers:

- Global Registers: 16 registersLocal Registers: 16 registers
- Control Registers: A set of specialized registers for system control, interrupt handling, and processor configuration.
- Total: 32 general-purpose registers plus several specialized control registers.

Register Widths:

All general-purpose registers are 32-bit wide. Specialized control registers vary in width but are typically 32-bit to match the processor's word size.

Motorola 68HC11

Motorola 68HC11 has registers as part of its Central Processor Unit (CPU). The architecture primarily features specialized registers, although a few have some general-purpose functionality depending on the context.

Number of Registers:

- Accumulators: A and BIndex Registers: X and Y
- Stack Pointer (SP)
- Program Counter (PC)
- Condition Code Register (CCR), used for status flags.
- Total: 6 primary registers and one condition code register.

Register Widths:

Accumulators: 8-bit
Index Registers: 16-bit
Stack Pointer: 16-bit
Program Counter: 16-bit

• Condition Code Register: 8-bit

FLAGS

Intel i960

The Intel i960 uses memory-mapped control registers to check and manage status and conditions.

Flags:

- Fault Status Flags
- Debugging and Trace Flags
- Register State Flags

Motorola 68HC11

Motorola 68HC11 architecture includes a Condition Code Register (CCR), which contains several flags used for arithmetic, logical, and control operations.

Flags:

- C (Carry/Borrow): Indicates a carry out of the most significant bit in addition or a borrow in subtraction.
- V (Overflow): Indicates an arithmetic overflow.
- Z (Zero): Indicates if the result of an operation is zero.
- N (Negative): Indicates if the result of an operation is negative (most significant bit is 1).
- H (Half Carry): Used for BCD (Binary-Coded Decimal) arithmetic operations.
- I (Interrupt Mask): Masks interrupts when set.
- X (External Interrupt Mask): Masks non-maskable interrupts when set.
- S (Stop Disable): Used for controlling low-power modes.

DATA WIDTH

Intel i960

The machine word size for Intel i960 is 32 bits

Motorola 68HC11

The machine word size for Motorola 68HC11 is 8 bits, though it can handle 16-bit addresses and some 16-bit operations.

MEMORY LAYOUT

Intel i960

The i960 architecture features a 32-bit flat memory space. Address width is 32 bits. The total addressable memory is 4 GB.

Typical memory configuration:

- On-chip caches (4 KB instruction cache, 2 KB data cache).
- Integrated 1 KB data RAM.

Motorola 68HC11

Uses a flat, continuous address space of 64 KB. Address width is 16 bits. The total addressable memory is 64 KB.

Typical memory configuration:

- 768 bytes of RAM
- 12 KB of ROM/EPROM
- 512 bytes of EEPROM