MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

(Formerly West Bengal University of Technology) Syllabus of BCA

(Effective from 2023-24 Academic Sessions)

SEMESTER: IV

DEFINITION OF CREDIT

1 HR LECTURE PER WEEK	1 CREDIT
1 HR TUTORIAL PER WEEK	1CREDIT
2 HR PRACTICAL PER WEEK	1 CREDIT

SUBJECT NUMBERING SCHEME:

CODE FOR THE DEPT.	SUBJECT TYPE	SEM	SUBJECT CODE
OFFERING SUBJECT			

C CORE MAJOR	
--------------	--

SUBJECT NAME: Data Base Management System Credit: 5 (3L + 2P)

SUBJECT CODE: BCAC401

COURSE OBJECTIVE:

The course on Database Management Systems (DBMS) aims to equip students with a comprehensive understanding of the core principles and practical applications of managing data effectively within organizational contexts. Throughout the course, students will delve into the fundamental concepts of database design, data manipulation, and database administration. They will learn to design efficient and robust databases using entity-relationship modeling and normalization techniques, ensuring data integrity and optimal performance. By the end of the course, students will be proficient in designing, implementing, and managing databases to support decision-making processes and organizational objectives effectively.

COURSE OUTCOME					
CO1	Understand the fundamental concepts and principles of database management systems (DBMS), including data modeling, database design, and normalization.				
CO2	Demonstrate proficiency in using SQL (Structured Query Language) to perform data definition, manipulation, and query tasks in a relational database environment.				

CO3	Apply indexing and query optimization techniques to enhance the performance of database systems
CO4	Evaluate different types of database architectures, such as centralized, distributed, and client-server architectures, and comprehend their advantages and limitations.

DETAILED SYLLABUS:

Module	NAME OF THE TOPIC	HOURS	L	T	MAR
No:					KS
M1	Introduction: Concept & Overview of DBMS,	2	2		2
	Data Models, Database Languages, Database				
	Administrator, Database Users, Data				
	Abstraction, Three Schema architecture of				
	DBMS.				
M2	Entity Relationship Model: Entity Set, Simple	5	4	1	10
	and composite Attribute, Single valued and				
	multivalued attribute, Relatonship sets,				
	Mapping cardinality, keys, Binary vs n-ary				
	relationship,				
	Entity Relationship Diagram: Need for E-R				
	Model, Various steps of database design,				
	Mapping Constraints, E-R diagram, Subclass,				
	Generalization, Specialization, Aggregation,				
	Strong Entity-Weak Entity, Tabular				
	representation of Strong entity set, tabular				
	representation of weak entity set, ER diagram				
	and corresponding UML diagram				
M3	Relational Algebra: Select operation, Project	4	3	1	8
	Operation, Set operations (union, intersection,				
	difference), Join operations,				
	Division operation, outer join and outer union,				
	Examples queries in Realtional Algebra				
M4	SQL : Concept of DDL, DML. Basic Structure	4	3	1	10
	Relational databases and tables, Set operations,				
	Aggregate Functions, Null Values, Domain				
	Constraints, Referential Integrity Constraints,				
	assertions, views, Nested Subqueries, Stored				
	procedures, cursors and triggers.				
M5	Relational Model and Relational Database	10	7	3	14
	Design: Concept of Relational Model, Design				
	Issues, Keys, Closure set, Functional				
	Dependency, Different anomalies in designing				
	a Database., Normalization using functional				
	dependencies, Decomposition, Boyce-Codd				

	Normal Form, 3NF, Normalization using multivalued dependencies, 4NF,5NF.				
M6	Indexing and Hashing: Ordered indices (Primary Index, Dense and Sparse Indices), Secondary Index, B tree and B+ tree indexing, Hashing Concepts and its implementation Basic query optimization techniques, Cost estimation in query optimization	10	7	3	14
M7	Transaction Management: Transaction definition, properties, transaction state diagram, commit and rollback, Serializability (Conflict and View), Concurrency control, lock based protocols, Two phase locking, Timestamp ordering protocol, Recovery management, Deadlock handling and prevention	10	8	2	12
	INTERNAL EXAMINATION	3			30
	TOTAL	48	34	11	100

Practical:

SUBJECT NAME: DBMS Lab Credit: 2

SUBJECT CODE: BCAC491

Use any database for the SQL implementation

List of sample Questions for Practical:

- 1. Write a SQL query to retrieve all columns from a table named "Employees."
- 2. How do you select distinct values from a column in SQL?
- 3. Write a SQL query to retrieve all records from the "Orders" table where the order amount is greater than 1000.
- 4. Explain the difference between INNER JOIN and LEFT JOIN in SQL with an example.
- 5. How do you use the WHERE clause to filter rows in SQL?
- 6. Write a SQL query to calculate the total number of orders for each customer from the "Orders" table.
- 7. What is the purpose of the GROUP BY clause in SQL? Provide an example query.
- 8. How do you use the HAVING clause in SQL? Provide an example.
- 9. Write a SQL query to update the salary of an employee with ID 101 to 50000.
- 10. How do you delete records from a table in SQL? Provide an example.
- 11. Explain the concept of foreign keys in SQL with an example.
- 12. Write a SQL query to retrieve the top 5 highest-paid employees from the "Employees" table.
- 13. How do you use the ORDER BY clause in SQL? Provide an example query.
- 14. Explain the difference between the UNION and UNION ALL operators in SQL.