NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

Module: MA1508E Linear Algebra for Engineering

Year/Semester: 2018-2019 (Semester 2)

Tutorial: 2

1. (Application) Electrical networks provides information about power sources, such as batteries, and devices powered by these sources, such as light bulbs or motors. A power source 'forces' a current of electrons to flow through the network, where it encounters various resistors, each of which requires that a certain amount of force be applied in order for the current to flow through it.

The fundamental law of electricity is Ohm's law, which states exactly how much force E is needed to drive a current I through a resistor with resistance R. Ohm's law states E = IR, in other words, force = current \times resistance. Here, force is measured in volts, resistance in ohms and current in amperes.

The following two laws (discovery due to Kirchhoff), govern electrical networks. The first is a 'conservation of flow' law at each node; the second is a 'balancing of votage' law around each circuit.

(Kirchoff's Current Law (KCL)) At each node, the sum of the currents flowing into any node is equal to the sum of the currents flowing out of that node. For example, in the diagram below, by KCL, we have $I_1 = I_2 + I_3$.

(Kirchoff's Voltage Law (KVL)) For every circuit, the sum of the voltage drops around the circuit is equal to the total voltage around the circuit (provided by the batteries). For example in the diagram below, by KVL, we have 4I = 10.

Consider the following electrical network. Using both KCL and KVL, form a linear system involving I_1 , I_2 and I_3 . Solve the system to determine the currents in the network.

2. Let
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$.

- (i) Compute each of the following
 - (a) A^3 ;
- (b) B^2 ;
- (c) $(AB)^3$;
- (d) A^3B^3 .
- (ii) If $C = (c_{ij})$ is a 3×3 matrix, write down the expression for the following:
 - (a) (1,3) entry of $(\mathbf{AB})\mathbf{C}$.
 - (b) (2,3) entry of $\boldsymbol{A(CB)}$.
 - (c) (3,2) entry of $(\boldsymbol{BC})\boldsymbol{A}$.
- 3. Let **A** be an $m \times n$ matrix.
 - (a) Let B_1 and B_2 be $n \times p$ and $n \times q$ matrices respectively. Show that

$$A \begin{pmatrix} B_1 & B_2 \end{pmatrix} = \begin{pmatrix} AB_1 & AB_2 \end{pmatrix}$$
.

(In here, $(\mathbf{B_1} \ \mathbf{B_2})$ is an $n \times (p+q)$ matrix such that its jth column is equal to the jth column of $\mathbf{B_1}$ if $j \leq p$ and equal to the (j-p)th column of $\mathbf{B_2}$ if j > p.)

- (b) Let C_1 and C_2 be $r \times m$ matrices. Is it true that $(C_1 \quad C_2) A = (C_1 A \quad C_2 A)$?
- (c) Let $\boldsymbol{D_1}$ and $\boldsymbol{D_2}$ be $s \times m$ and $t \times m$ matrices respectively. Show that

$$egin{pmatrix} egin{pmatrix} D_1 \ D_2 \end{pmatrix} A = egin{pmatrix} D_1 A \ D_2 A \end{pmatrix}$$
 .

(In here, $\begin{pmatrix} \boldsymbol{D_1} \\ \boldsymbol{D_2} \end{pmatrix}$ is an $(s+t) \times m$ matrix such that its ith row is equal to the ith row of $\boldsymbol{D_1}$ if $i \leq s$ and equal to the (i-s)th row of $\boldsymbol{D_2}$ if i > s.)

4. (a) Show that if A, B and A + B are invertible matrices of the same size, then

$$A(A^{-1} + B^{-1})B(A + B)^{-1} = I.$$

- (b) What does this tell you about the invertibility of $A^{-1} + B^{-1}$?
- 5. Consider the matrices A, B, C, D, F shown below.

$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 8 & 1 & 5 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 8 & 1 & 5 \\ 2 & -7 & -1 \\ 3 & 4 & 1 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 3 & 4 & 1 \\ 2 & -7 & -1 \\ 2 & -7 & 3 \end{pmatrix},$$

$$\mathbf{D} = \begin{pmatrix} 8 & 1 & 5 \\ -6 & -8 & -6 \\ 3 & 4 & 1 \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} 8 & 1 & 5 \\ 8 & 1 & 1 \\ 3 & 4 & 1 \end{pmatrix}.$$

For each of the following, find an elementary matrix E that satisfies the given equation.

Are all the 5 given matrices row equivalent?

6. For the given matrices A and B, show that A and B are row equivalent by finding a sequence of elementary row operations that produces B from A, and then use that result to find a matrix C such that CA = B.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 1 \\ 2 & 1 & 9 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 2 & -2 \\ 1 & 1 & 4 \end{pmatrix}.$$