Advanced Membrane Technologies Stanford University, May 07, 2008

Membrane Types and Factors Affecting Membrane Performance

Mark Wilf, Ph.D. Tetra Tech

Outline

Membrane filtration (low pressure applications)

- Membrane materials and modules configuration
- Modes of operation
- Relevant R&R directions

Reverse osmosis and NF membranes (high pressure applications)

- Membrane materials and modules configuration
- Modes of operation
- Relevant R&D directions

Membrane filtration

THE FILTRATION SPECTRUM

UF/MF terms

TMP – trans membrane pressure

$$TMP = (P_f + P_c)/2 - P_p$$

 P_f = feed pressure

 P_c = concentrate pressure

 P_p = permeate pressure

SP – specific permeability

$$SP = Q/(A_m * TMP)$$

Q – filtrate flow rate

 A_m – membrane area

MWCO Determination. Feed Pressure 1 bar (15 psi)

Commercial MF/UF membrane material

CA – Cellulose acetate

PS – polysulfone

PES – Polyether sulfone

PAN – Polyacrilonitrile

PVDF – Polyvinylidiene flouride

PP - Polypropylene

PE - Polyethylene

PVC – Polyvinyl chloride

Important membrane material property

High porosity

Narrow pore distribution or sharp MWCO

High polymer strength: elongation, high burst and collapse pressure

Good polymer flexibility

Permanent hydrophilic character

Wide range of pH stability

Good chlorine tolerance

Low cost

Preferred UF/MF membrane materials

High mechanical strength & durability

PVDF – Polyvinylidiene flouride

PS – polysulfone

PES – Polyether sulfone

PAN – Polyacrilonitrile

Low polymer cost

PE – Polyethylene

Membrane manufacturing and configuration

Spinning – capillary

Casting – flat sheet

Extrusion and stretching – capillary, flat sheet

Thermally induced phase separation (TIPS)

Supported, unsupported membranes

Hollow fibers modules, spiral modules, plate and frame modules, other configurations

Capillary membrane manufacturing process

PRESSURE DRIVEN CAPILLARY TECHNOLOGY

Pressure driven membrane cross section inside – out operation

Pressure driven membrane cross section outside – in operation

Configuration of pressure driven, capillary membrane module

- •Quick release end cap
 - •Maximize membrane area
 - •100% Hydraulic sealing
 - •Integral connection with filtrate core tube
 - •Light weight & streamlined design

Example of pressure driven membrane module

0.8 mm fibre 1.2 mm fibre

HYDRAcap 40: 30 m² (320 ft²) 19 m² (200 ft²)

HYDRAcap 60: 46 m² (500 ft²) 30 m² (320 ft²)

$$TMP = (P_f + P_c)/2 - P_p$$
$$SP = Q/(A_m * TMP)$$

Example of permeability results

Test parameter	New membrane	Field conditions
P _f , bar (psi)	0.25 (3.6)	0.70 (10.1)
P _c , bar (psi)	0.15 (2.2)	0.60 (8.5)
P _p , bar (psi)	0.10 (1.5)	0.15 (2.2)
TMP, bar (psi)	0.10 (1.5)	0.50 (7.2)
Q, I/hr (gpd)	3,500 (22,000)	5,100 (32,300)
A _m , m ² (ft2)	46.5 (500)	46.5 (500)
SP, I/m²-hr (gfd/psi)	750 (29)	219 (8.9)

Integrity test procedure (ASTM D6908-03)

Off line tests

- Bubble point test
- Pressure hold test
- Diffusive air flow test
- Vacuum hold test
 Continuous (on line) tests
- Particle passage counting/monitoring
- Marked particles passage
- Turbidity measurements
- Acoustic sensing

Integrity test procedure pressure or vacuum hold

Pressure decay rate (PDR)

PDR = (Pi-Pf)/t

Pi – initial pressure

Pf – final pressure

t - time interval

PDR = PDR (measured) - rate of diffusion

Vacuum decay rate (VDR)

VDR = VDR (measured) – rate of diffusion

Integrity test sequence

Schematics of pressure driven capillary unit

PRESSURE DRIVEN CAPILLARY SYSTEM

Process step	Objective	Duration	Frequency
Forward flow	Permeate production	15 – 60 min	Continuous
Backwash	Foulants removals	30 – 60 sec	Every 15 – 60 min
Chemicals enhanced backwash (CEB)	Foulanits removal	1 – 15 min	Once – twice a day
Cleaning in place	Foulants removal	2 – 4 hr	Every 1 – 6 months
Integrity test	Verification of membrane integrity	20 min	Every 1 – 7 days

Isometric GA of HYDRAbloc 2D1288

Pressurized UF train ~ 2MGD filtrate flow

Vacuum driven membrane cross section outside – in operation

Schematics of vacuum driven capillary unit

VACUUM DRIVEN CAPILLARY SYSTEM

Process step	Objective	Duration	Frequency
Permeation	Permeate production	15 – 60 min	Continuous
Backwash & tank deconcentration	Foulants removals	15 – 60 sec	Every 15 – 60 min
Chemicals enhanced backwash (CEB)	Foulanits removal	1 – 15 min	Twice a day – once per week
Cleaning in place	Foulants removal	2 – 5 hr	Every 1 – 6 months
Integrity test	Verification of membrane integrity	20 min	Every 1 – 7 days

ZeeWeed® 1000 Cassette for lower solids applications

Cassette capacity 1,500-2,000 m³/d

Submersible membrane train configuration

ZeeWeed® 500 Cassette for High Solids Applications

Cassette capacity

750 - 1,000 m³/d in MBR 2,500 - 3,500 m³/d in water filtration

Application	Flux rate range, I/m2-hr (gfd)	Recovery rate range, %
Potable water	60 – 130 (35 – 75)	90 – 97
Tertiary filtration	34 – 85 (20 – 50)	85 – 92
Seawater filtration	42 – 70 (25 – 40)	85 – 92

Membrane filtration – commercial products

Aquasource

Membrane materials

CA

High hydrophilic, very wettable

Pore size 0.01 µm 35 to100kD

Fibre id 0.93 mm

Cl₂ resistance quite high pH tolerance 3.5 – 8.5

Modified PS

Moderately hydrophilic, wettable

Pore size 0.01 µm 35 to100kD

Fibre id 0.96 mm

Cl₂ resistance quite high pH tolerance 1 – 13

The Modules

DN100 7,2 m²

DN300 55 m²

DN300 64 m²

DN450 125 m²

AQUASOURCE

Inge

Membrane

- Modified PES
- Moderately hydrophilic, easily wettable
- Pore size; UF 10 25 nm
- Fibre id, 0.9 mm; od 4.3 mm
- Cl₂ resistance moderately high
- pH tolerance 1.5 13

Multibore Membrane

Membrane

• 7 single capillaries combined into one fiber

PES blended with a strong, hydrophilic polymer

asymmetric membrane formed from polymer blend

regular foam structure as active layer support

burst pressure > 13 bar (190 psi)

Norit

Membrane

- PES/PVP
- Hydrophilic, easily wettable
- Pore size; UF 20 25 nm
- Fibre id, 0.8 mm (1.5 mm); od 1.3 mm (2.5 mm)
- Cl₂ resistance moderately high
- pH tolerance 1.5 − 13
- Module diameter 200 mm
- Membrane area 40 m²

Norit – UF train 7000m3/day (1.9 mgd)

Memcor (Siemens) submersible – CMF S

Memcor (Siemens) pressurized – CP

Membrane Fouling in Wastewater Reclamation

- Fouling Processes
 - Organic Adsorption
 - Colloidal Material
 - Biogrowth
 - Scaling

Effect of pretreatment on operating parameters in wastewater reclamation systems

RO wastewater reclamation with membrane pretreatment

Orange County, CA GWR System

- MF System
 - Recovery: 90%
 - 0.2 micron pore
- RO System
 - **Recovery:** 80%
 - 85%
 - 5 mgd per train
 - Flux rate: 12 gfd
- UV System
 - LowPressure/HighOutput
 - 8 trains with 3 vessels per train
 - Hydrogen peroxide

Nitrogen and phosphorus reduction process (three stages)

A Basic MBR Production Train

- 1.Biological reactor
- 2.Membranes
- 3.Permeate pump &
- air blower
- 4. Control panel
- 5. Permeate & air
- piping

R&D directions – membrane filtration

- Lower cost of membrane products
- Reduction of energy requirement
- Permanent hydrophilic membranes
- Reduction of fouling tendency
- Easy identification of integrity breach
- Simplified system configuration
- Replacement of chemical membrane cleaning with biological processes

Desalination

Energy usage in desalination processes

MSF – Multistage flash, MED – Multieffect distillation, VC – Vapor compression, SWRO – Sea water RO, BWRO – Brackish water RO, WWRECL- Wastewater reclamation

COMMERCIAL MEMBRANES AND MEMBRANE MODULE CONFIGURATIONS

CH₃

Chemical structure of cellulose triacetate (A) and polyamide (B) membrane material

Manufacturing process of polysulfone membrane support

Manufacturing process of polyamide membrane barrier on polysulfone support

PA membrane surface Polymeric support Fabric backing

Evolution of performance of brackish membranes

Evolution of performance of seawater membranes

Configurations of feed channel and feed spacer net

Osmotic pressure is function of concentration and temperature

Salinity, ppm TDS	5,000	20,000	35,000	70,000	80,000
π @ 30C	3.3 bar	13.9 bar	25.7 bar	51.3 bar	59.0 bar
(86 F)	(48 psi)	(201 psi)	(372 psi)	(744 psi)	(856 psi)
π @ 15C	3.2 bar	13.2 bar	24.5 bar	48.8 bar	56.1 bar
(59 F)	(46 psi)	(191 psi)	(355 psi)	(708 psi)	(813 psi)

NDP - net driving pressure Driving force of the water transport (flux) through the membrane.

NDP =
$$P_f - P_{os} - P_p - 0.5 * P_d$$
 (+ Perm_{os})
$$P_f - feed pressure$$

$$P_{os} - average feed osmotic pressure$$

$$P_p - permeate pressure$$

$$P_{os} - average feed osmotic pressure$$

P_d - pressure drop across RO element

Permos - permeate osmotic pressure

Seawater system: 40,000 ppm TDS, 50% recovery

Concentration factor in RO system

- **♦** Concentrate
- Arithmetic average
- ▲ Logarithmic average

Concentration polarization

TCF - temperature correction factor
Temperature affects water and salt
transport across the membrane,
approximately at the same magnitude.
The transport rate changes at about 3%
per degree C.

TCF = 1/exp(2700*(1/(273+t)-1/298)) t - temperature C

Water transport, Qw:

Qw = Kw * A * NDP * TCF

Kw – water transport coefficient

A - membrane area

Salt transport, Qs:

 $Qs = Ks * A * \Delta C * TCF$

Ks – salt transport coefficient

△C - salt concentration gradient

Permeate salinity

Cp ∝ Qs/Qw

= Ks * A * ∆C * TCF/ Kw * A * NDP * TCF

= Ks * AC / Kw * NDP

∆C ∝ recovery rate NDP ∝ feed pressure

8" and 16" diameter elements

8" element
Membrane area
40m2 (430 ft2)
Nominal flow
45 m3/day
(12,000 gpd)
Avg. field flow
19 m3/day
(5,000 gpd)

16" element
Membrane area
140 m2 (1,500 ft2)
Nominal flow
155 m3/day
(41,000 gpd)
Avg. field flow
68 m3/day
(18,000 gpd)

Permeate flow per vessel at an average permeate flux rate of 20.4 l/m2-hr (12 GFD)

Elements per vessel	8' – 37 m2/el.	8 – 40 m2/el.	16" – 140 m2/el.
	(400 ft2/el.)	(430 ft2/el.)	(1,500 ft2/el.)
4			272 m3/day (72,000 GPD)
5			340 m3/day (90,000 GPD)
6	109 m3/day	117 m3/day	408 m3/day
	(28,800 GPD)	(31,000 GPD)	(108,000 GPD)
7	127 m3/day	136 m3/day	477 m3/day
	(33,600 GPD)	(36,000 GPD)	(126,000 GPD)
8	145 m3/day	156 m3/day	545 m3/day
	(38,400 GPD)	(41,300 GPD)	(144,000 GPD)

Water flow in a pressure vessel assembly

Two Stage RO System

RO membrane categories

Nanofiltration for color removal
Nanofiltration for sulfate reduction
Nanofiltration for hardness reduction
Low pressure brackish RO
High rejection brackish RO
Low pressure seawater RO
High rejection seawater RO

Commercial offering of nanofiltration RO membrane modules

Element model	Hydracore	ESNA-LF	SU620F	NF-90	NF-270
Membrane area, m2 (ft2)	37.1 (400)	37.1 (400)	37.1 (400)	37.1 (400)	37.1 (400)
Permeate flow, m3/d (gpd)	31.0 (8,200)	29.5 (7,800)	21.9 (5,800)	37.9 (10,000)	47.3 (12,500)
Salt rejection,	50.0	80.0	55.0	97.0	97.0
Test flux rate, I/m2-hr (gfd)	34.8 (20.5)	33.2 (19.5)	24.7 (14.5)	42.5 (25.0)	55.9 (32.9)
Permeability, I/m2-hr- bar (gfd/psi)	7.7 (0.31)	7.2 (0.29)	8.7 (0.35)	11.9 (0.48)	15.7 (0.63)
Relative salt transport: salt passage*flux rate	17.4 (10.2)	6.6 (3.9)	11.1 (6.5)	1.3 (0.8)	1.7 (1.0)

Commercial offering of brackish RO membrane modules

Element model	ESPA2+	ESPA4+	TMG20- 430	BW30- XLE440	BW30 LE- 440
Membrane area, m2 (ft2)	40.0 (430)	40.0 (430)	40.0 (430)	40.9 (440)	40.9 (440)
Permeate flow, m3/d (gpd)	41.6 (11,000)	49.2 (13,000)	41.6 (11,000)	48.1 (12,700)	48.1 (12,700)
Salt rejection,	99.60	99.60	99.50	99.0	99.30
Test flux rate, I/m2-hr (gfd)	43.5 (25.6)	51.3 (30.2)	43.5 (25.6)	49.1 (28.9)	49.1 (28.9)
Permeability, I/m2-hr-bar (gfd/psi)	5.0(0.20)	8.2 (0.33)	6.2 (0.25)	7.7 (0.31)	6.0 (0.24)
Relative salt transport: salt passage*flux rate	0.261 (0.153)	0.308 (0.181)	0.218 (0.128)	0.491 (0.289)	0.344 (0.202)

Commercial offering of seawater RO membrane modules

Element model	SWC4+	SWC5	TM820-400	SW30HR- LE	SW30HR- XLE
Membrane area, m2 (ft2)	37.1 (400)	37.1 (400)	37.1 (400)	37.1 (400)	37.1 (400)
Permeate flow, m3/d (gpd)	24.6 (6,500)	34.1 (9,000)	24.6 (6,500)	26.5 (7,000)	34.1(9,000)
Salt rejection,	99.80	99.80	99.75	99.75	99.70
Test flux rate, I/m2-hr (gfd)	27.6 (16.3)	38.2 (22.5)	27.6 (16.3)	31.3 (18.4)	38.2 (22.5)
Permeability, I/m2-hr- bar (gfd/psi)	1.0 (0.04)	1.5 (0.06)	1.0 (0.04)	1.2 (0.05)	1.5 (0.06)
Relative salt transport: salt passage*flux rate	0.055 (0.032)	0.076 (0.045)	0.069 (0.041)	0.078 (0.046)	0.114 (0.067)

SPECIAL NANOFILTRATION MEMBRANE (HYDRACORE)

HYDRACoRe

- Nanofiltration for color removal
- 1000 MWCO
- 50% salt rejection, minimizes product water instability and need for post treatment
- 8,200 gpd for a 365 sq ft element
- Chlorine tolerant

Surface of HydraCoRe at 4000 X magnification

HydraCoRe ion rejection

Anion			A ⁻	A ²⁻
Cation			CI	SO ₄
		Molecular Weight	35	96
M+	Na	23	50%	90%
M ²⁺	Mg	24	20%	35%
	Ca	40	12%	-

Orange County Groundwater Basin Cross-Section

Irvine Ranch Project – membrane elements testing

Parameter	Feed	HydraCoRe permeate	Conventional Nanofiltration permeate
Color , CU	200	<5	<5
Conductivity uS/cm	500	350	48
Calcium mg/L	13	8.5	0.2
Specific flux gfd/psi (l/m3-hr-bar)		0.43 (10.7)	0.48 (11.9)

Irvine Ranch Plant hydraulics

Permeate – 28,000 m3/day (7.35 MGD), Concentrate – 2400 m3/day (0.64 MGD), Recovery – 92%

Irvine Ranch Plant concentrate flow reduction

Permeate – 30,000 m3/day (7.90 MGD), Concentrate – 600 m3/day (0.16 MGD), Recovery – 98%

Irvine Ranch NF Plant: Feed, Permeate and Concentrate Samples

High water pH shifts equilibrium to the right

$$B(OH)3 (aq) + H2O \rightarrow H+(aq) + B(OH)4- (aq)$$

Low water pH shifts equilibrium to the left

Seawater RO system. Recovery rate 50%. Boron concentration in feed 5.0 ppm

Feed pH	Boron rejection, %	Boron passage, %	Boron in permeate, ppm
6.5	70	30	1.5
7.0	70	30	1.5
7.5	74	26	1.3
8.0	78	22	1.1

Brackish RO system. Recovery rate 85%. Boron concentration in feed 2.0 ppm

Feed pH	Boron passage, %	Boron in permeate, ppm	Boron in passage, %	Boron in permeate, ppm
6.5	95	1.9	55	1.1
7.0	95	1.9	55	1.1
7.5	95	1.9	55	1.1
8.0	95	1.9	55	1.1

Brackish membranes

Seawater membranes

Second pass RO system. Recovery rate 90%. Boron concentration in feed 1.4 ppm

Feed pH	Boron rejection, %	Boron passage, %	Boron in permeate, ppm
9.0	30	70	1.0
9.5	48	52	0.7
10.0	72	28	0.4
10.4	83	13	0.2

Seawater RO. Combined recovery rate 50%

Single pass system with pH adjustment of the 1st pass feed

R&D directions – reverse osmosis

- Selective rejection of dissolved species
- Higher boron rejection
- Increased water permeability without increasing solute transport
- Reduction of fouling tendency
- Control of biofouling in seawater systems
- Replacement of chemical membrane cleaning with biological processes
- Reduction of scaling tendency in brackish
 RO processes