MS&E 233 Game Theory, Data Science and Al Lecture 6

Vasilis Syrgkanis

Assistant Professor

Management Science and Engineering

(by courtesy) Computer Science and Electrical Engineering

Institute for Computational and Mathematical Engineering

Computational Game Theory for Complex Games

- Basics of game theory and zero-sum games (T)
- Basics of online learning theory (T)
- Solving zero-sum games via online learning (T)
- HW1: implement simple algorithms to solve zero-sum games
- Applications to ML and AI (T+A)
- HW2: implement boosting as solving a zero-sum game
- Basics of extensive-form games
- Solving extensive-form games via online learning (T)
- HW3: implement agents to solve very simple variants of poker
- General games and equilibria (T)

(3)

- Online learning in general games, multi-agent RL (T+A)
- HW4: implement no-regret algorithms that converge to correlated equilibria in general games

Data Science for Auctions and Mechanisms

- Basics and applications of auction theory (T+A)
- Learning to bid in auctions via online learning (T)
- HW5: implement bandit algorithms to bid in ad auctions

- Optimal auctions and mechanisms (T)
- Simple vs optimal mechanisms (T)
- HW6: calculate equilibria in simple auctions, implement simple and optimal auctions, analyze revenue empirically
- Optimizing mechanisms from samples (T)
- Online optimization of auctions and mechanisms (T)
- HW7: implement procedures to learn approximately optimal auctions from historical samples and in an online manner

Further Topics

- Econometrics in games and auctions (T+A)
- A/B testing in markets (T+A)
- HW8: implement procedure to estimate values from bids in an auction, empirically analyze inaccuracy of A/B tests in markets

Guest Lectures

- Mechanism Design for LLMs, Renato Paes Leme, Google Research
- Auto-bidding in Sponsored Search Auctions, Kshipra Bhawalkar, Google Research

Solving Extensive Form Games via No-Regret Learning

Recap: No-Regret Learning in Sequence Form

 We have successfully turned imperfect information extensive form zero-sum games into a familiar object

$$\max_{\tilde{x} \in X} \min_{\tilde{y} \in Y} \tilde{x}^{\top} A \tilde{y}$$

• X, Y are convex sets, i.e., sequence-form strategies

- We can invoke minimax theorem to prove existence of equilibria
- We can calculate equilibria via LP duality
- We can calculate equilibria via no-regret learning!

Recap: Regret of FTRL

(FTRL)
$$x_t = \underset{x \in X}{\operatorname{argmax}} \underbrace{\sum_{\tau < t} \langle x, u_\tau \rangle} - \underbrace{\frac{1}{\eta} \mathcal{R}(x)}_{\text{tunction of } x \text{ that stabilizes the maximizer}}_{\text{Historical performance}}$$

of always choosing

strategy x

Theorem. Assuming the utility function at each period

$$f_t(x) = \langle x, u_t \rangle$$

is L-Lipschitz with respect to some norm $\|\cdot\|$ and the regularizer is 1-strongly convex with respect to the same norm then

Regret – FTRL(T)
$$\leq \eta L + \frac{1}{\eta T} \left(\max_{x \in X} \mathcal{R}(x) - \min_{x \in X} \mathcal{R}(x) \right)$$

Average stability induced by regularizer

Average loss distortion caused by regularizer

Recap: Regularizer for the Treeplex Space X

 \bullet The only thing we are missing is a good Regularizer for X

$$U_{t-1} = \sum_{\tau < t} u_{\tau}$$

• **Desiderata.** Be strongly convex in x within X and for the optimization problem to be fast to solve

$$\tilde{x}_{t} = \underset{\tilde{x} \in X}{\operatorname{argmax}} \sum_{\tau < t} \langle \tilde{x}, u_{\tau} \rangle - \frac{1}{\eta} \mathcal{R}(\tilde{x}) = \underset{\tilde{x} \in X}{\operatorname{argmax}} \langle \tilde{x}, U_{t-1} \rangle - \frac{1}{\eta} \mathcal{R}(\tilde{x})$$

• X is no longer a "simplex", so entropy is not a good Regularizer

Dilated Entropy

- X is a combination of scaled simplices, i.e., $\tilde{x}=\left(\tilde{x}^j\right)_{j\in\mathcal{J}_1}$
- $\tilde{x}^j = (\tilde{x}_a)_{a \in A_j}$: sequence-form strategies for actions in infoset $j \in \mathcal{J}_1$ $\tilde{x}^j \in \tilde{x}_{p_j} \cdot \Delta_j \quad \Leftrightarrow \quad \tilde{x}^j / \tilde{x}_{p_j} \in \Delta_j$
- Consider a weighted combination of local negative entropies

$$\mathcal{R}(\tilde{x}) \coloneqq \sum_{j} \beta_{j} \, \tilde{x}_{p_{j}} \, \mathrm{H}\left(\tilde{x}^{j} / \tilde{x}_{p_{j}}\right), \qquad \mathrm{H}(u) = \sum_{l \in \mathbb{N}} u_{l} \log(u_{l})$$
Equivalent to the behavioral strategy x^{j}
Negative Entropy

• $\mathcal{R}(\tilde{x})$ is 1/M strongly convex w.r.t. ℓ_1 norm, where $M = \max_{\tilde{x} \in X} ||\tilde{x}||_1$, for appropriate choice of β_i based on game tree structure

Solving the Optimization Problem

Optimization problem decomposes into local simplex problems

$$\sum_{j \in \mathcal{J}_{1}} \left\langle \tilde{x}^{j}, U_{t-1}^{j} \right\rangle - \left| \frac{1}{\eta} \beta_{j} \right| \tilde{x}_{p_{j}} \operatorname{H} \left(\frac{\tilde{x}^{j}}{\tilde{x}_{p_{j}}} \right) = \sum_{j \in \mathcal{J}_{1}} \tilde{x}_{p_{j}} \left\{ \left\langle \frac{\tilde{x}^{j}}{\tilde{x}_{p_{j}}}, U_{t-1}^{j} \right\rangle - \frac{1}{\eta_{j}} \operatorname{H} \left(\frac{\tilde{x}^{j}}{\tilde{x}_{p_{j}}} \right) \right\}$$

• Quantity $\frac{\tilde{x}^j}{\tilde{x}_{p_j}}$ is essentially the behavioral strategy x^j at infoset j

$$\sum_{j \in \mathcal{J}_1} \tilde{x}_{p_j} \left\{ \left\langle x^j, U_{t-1}^j \right\rangle - \frac{1}{\eta_j} H(x^j) \right\}$$

• Quantity x^j over simplex Δ_j is independent of solution x_a for all ancestral actions and only appears in subsequent infosets

Solving the Optimization Problem

• Decomposes in local max over behavioral strategies x^j solved bottom up

$$V^{j} = \max_{x^{j} \in \Delta_{j}} \left\langle x^{j}, U_{t-1}^{j} \right\rangle - \frac{1}{\eta_{j}} H(x^{j}) \Rightarrow \begin{cases} x^{j} \propto \exp\left(\eta_{j} U_{t-1}^{j}\right) \\ V^{j} = \log \sum_{a \in A_{j}} \exp\left(\eta_{j} U_{t-1}^{a}\right) = \operatorname{softmax}_{\eta_{j}} \left(U_{t-1}^{j}\right) \end{cases}$$

• Value V^j multiplies \tilde{x}_{p_j} ; when solving for \tilde{x}_{p_j} we need to take it into account. If $p_j \in A_k$

$$\max_{\boldsymbol{x}^k \in \Delta_k} \langle \tilde{\boldsymbol{x}}^k, \boldsymbol{U}_{t-1}^k \rangle - \eta_k \; \tilde{\boldsymbol{x}}_{p_k} \; \mathbf{H} \left(\frac{\tilde{\boldsymbol{x}}^k}{\tilde{\boldsymbol{x}}_{p_k}} \right) + \tilde{\boldsymbol{x}}_{p_j} \boldsymbol{V}^j + \cdots$$

• Add V^j to "cumulative utility" Q_{p_j} (initialized at U_{t-1,p_j}) associated with p_j

$$Q_{p_j} \leftarrow Q_{p_j} + V^j$$

Sum: Nash via FTRL with Dilated Entropy

Each player chooses \tilde{x}_t , \tilde{y}_t based on FTRL with dilated entropy

- For x-player $u_t = A \tilde{y}_t$ and $U_t = U_{t-1} + u_t$ and initialize $Q = U_t$
- Traverse the tree bottom-up; for each infoset $j \in \mathcal{J}_1$ $x_{t+1}^j \propto \exp(\eta_j Q^j)$, $V^j = \operatorname{softmax}_{\eta_j}(Q^j)$, $Q_{p_j} \leftarrow Q_{p_j} + V^j$
- Define sequence-form strategies top-down: $\tilde{x}_{t+1}^j = \tilde{x}_{p_j} \cdot x_{t+1}^j$ Similarly, for y player

Return average of sequence-form strategies as equilibrium

Interpreting utility vector

$$u_{t,a} = A\tilde{y}_t = \sum_{a' \in A_{P2}} A_{a,a'} \tilde{y}_{t,a'}$$

 $A_{a,a'}$ is zero if the combination of a, a' does not lead to a leaf node

$$u_{t,a} = \sum_{\substack{a \text{ was last P1 action} \\ a' \text{ was last P2 action}}} u(z) \operatorname{Pr} \begin{pmatrix} \operatorname{Chance chooses} \\ \operatorname{sequence on} \\ \operatorname{path to } z \end{pmatrix} \operatorname{Pr} \begin{pmatrix} \operatorname{P2 plays} \\ \operatorname{sequence} \\ \operatorname{leading to } a' \end{pmatrix}$$

Interpretation. If I play with the intend to arrive at action a (i.e. $\tilde{x}_a = 1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

$$U^3 += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(u_{\hat{c}}, u_{\hat{f}}\right)$$

• Go to Infoset 3
$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$1$$

$$y_{f_{*}}$$

$$y_{f_{*$$

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp\left(\eta_{3} Q^{3}\right)$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp(\eta_{3} Q^{3})$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

Go to Infoset 3

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp(\eta_{3} Q^{3})$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

$$U^1 += (u_f, u_r) = \left(\right)$$

Go to Infoset 3

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp(\eta_{3} Q^{3})$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

$$U^1 += (u_f, u_r) = \left(-1\frac{1}{2}, 0\right)$$

Go to Infoset 3

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp(\eta_{3} Q^{3})$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

$$U^{1} += (u_{f}, u_{r}) = \left(-1\frac{1}{2}, 0\right)$$
$$Q^{1} = U^{1} + (0, V^{3}) = \left(-1\frac{1}{2}, V^{3}\right)$$

Go to Infoset 3

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp(\eta_{3} Q^{3})$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

$$U^{1} += (u_{f}, u_{r}) = \left(-1\frac{1}{2}, 0\right)$$

$$Q^{1} = U^{1} + (0, V^{3}) = \left(-1\frac{1}{2}, V^{3}\right)$$

$$x^{1} = (x_{f}, x_{r}) \propto \exp(\eta_{1} Q^{1})$$

Go to Infoset 3

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp\left(\eta_{3} Q^{3}\right)$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

Go to Infoset 1

$$U^{1} += (u_{f}, u_{r}) = \left(-1\frac{1}{2}, 0\right)$$

$$Q^{1} = U^{1} + (0, V^{3}) = \left(-1\frac{1}{2}, V^{3}\right)$$

$$x^{1} = (x_{f}, x_{r}) \propto \exp(\eta_{1} Q^{1})$$

$$U^2 += \left(u_{f'}, u_{r'}\right) = \left($$

Go to Infoset 3

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp(\eta_{3} Q^{3})$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

Go to Infoset 1

$$U^{1} += (u_{f}, u_{r}) = \left(-1\frac{1}{2}, 0\right)$$

$$Q^{1} = U^{1} + (0, V^{3}) = \left(-1\frac{1}{2}, V^{3}\right)$$

$$x^{1} = (x_{f}, x_{r}) \propto \exp(\eta_{1} Q^{1})$$

$$U^{2} += \left(u_{f'}, u_{r'}\right) = \left(1\frac{1}{2}y_{f_{*}} - 3\frac{1}{2}y_{r_{*}}, -1\frac{1}{2}\right)$$

Go to Infoset 3

$$U^{3} += \left(u_{\hat{c}}, u_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_{*}} + 3\frac{1}{2}y_{r_{*}}, -2\frac{1}{2}y_{f_{*}} - 2\frac{1}{2}y_{r_{*}}\right)$$

$$Q^{3} = U^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp(\eta_{3} Q^{3})$$

$$V^{3} = \operatorname{softmax}(\eta_{3} Q^{3})$$

Go to Infoset 1

$$U^{1} += (u_{f}, u_{r}) = \left(-1\frac{1}{2}, 0\right)$$

$$Q^{1} = U^{1} + (0, V^{3}) = \left(-1\frac{1}{2}, V^{3}\right)$$

$$x^{1} = (x_{f}, x_{r}) \propto \exp(\eta_{1} Q^{1})$$

$$U^{2} += \left(u_{f'}, u_{r'}\right) = \left(1\frac{1}{2}y_{f_{*}} - 3\frac{1}{2}y_{r_{*}}, -1\frac{1}{2}\right)$$

$$Q^{2} = U^{2}, \qquad x^{2} = \left(x_{f'}, x_{r'}\right) \propto \exp(\eta_{2}Q^{2})$$

Sum: Nash via FTRL with Dilated Entropy

Each player chooses \tilde{x}_t , \tilde{y}_t based on FTRL with dilated entropy

- For x-player $u_t = A \tilde{y}_t$ and $U_t = U_{t-1} + u_t$ and initialize $Q = U_t$
- Traverse the tree bottom-up; for each infoset $j \in \mathcal{J}_1$ $x_{t+1}^j \propto \exp(\eta_j Q^j)$, $V^j = \operatorname{softmax}_{\eta_j}(Q^j)$, $Q_{p_j} \leftarrow Q_{p_j} + V^j$
- Define sequence-form strategies top-down: $\tilde{x}_{t+1}^j = \tilde{x}_{p_j} \cdot x_{t+1}^j$ Similarly, for y player

Return average of sequence-form strategies as equilibrium

Fast Rates

Theorem. If we use Optimistic FTRL instead of FTRL then we get faster convergence to a Nash equilibrium at rate 1/T instead of $1/\sqrt{T}$. Plus, we get last-iterate convergence instead of only average iterate convergence.

Monte-Carlo Stochastic Approximation of Utilities

- Calculating utilities on all nodes of the tree can be very expensive
- In linear online learning it suffices that we use an unbiased estimate of the utility vector

$$\widetilde{x}_t = \underset{x \in X}{\operatorname{argmax}} \sum_{\tau < t} \langle x, \widehat{u}_{\tau} \rangle - \frac{1}{\eta} \mathcal{R}(x), \qquad E[\widehat{u}_{\tau} | F_{\tau}] = u_{\tau}$$

All random

before period au

variables observed

- By standard martingale concentration inequality arguments, the error vanishes with the number of iterations (we will see later)
- In this setting, it suffices that we "sample a path for opponent" and that we "sample chance moves"

- Sample chance moves based on fixed distribution and opponent moves based on y_t ; Suppose, we sampled A and f_{\ast}
- Go to Infoset 3

$$\widehat{U}^{3} += \left(\widehat{u}_{\hat{c}}, \widehat{u}_{\hat{f}}\right) = (-3, -2)$$

$$\widehat{Q}^{3} = \widehat{U}^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp\left(\eta_{3} \, \widehat{Q}^{3}\right)$$

$$\widehat{V}^{3} = \operatorname{softmax}(\eta_{3} \, \widehat{Q}^{3})$$

$$\widehat{U}^1 += (\widehat{u}_f, \widehat{u}_r) = (-1, 0)$$

$$\widehat{Q}^1 = \widehat{U}^1 + (0, \widehat{V}^3) = (-1, \widehat{V}^3)$$

$$x^1 = (x_f, x_r) \propto \exp(\eta_1 \widehat{Q}^1)$$

Equivalently top down and evaluate recursively

- Sample chance move (e.g. sampled A)
- Go to Infoset 1

$$\widehat{U}^{1} \coloneqq \left(\widehat{U}_{f}, \widehat{U}_{r}\right) += (-1, 0)$$

$$\widehat{Q}^{1} \coloneqq \left(\widehat{Q}_{f}, \widehat{Q}_{r}\right) = \left(\widehat{U}_{f}, \widehat{U}_{r}\right)$$

- Recursively go down tree after action r
- Sample P2 move (e.g. sampled f_*)
- Go down to Infoset 3

$$\widehat{U}^{3} = \left(\widehat{U}_{\hat{c}}, \widehat{U}_{\hat{f}}\right) += (-3, -2)$$

$$\widehat{Q}^{3} = \widehat{U}^{3}, \qquad x^{3} = \left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp\left(\eta_{3} \ \widehat{Q}^{3}\right)$$

$$\widehat{V}^{3} = \operatorname{softmax}(\eta_{3} \widehat{Q}^{3})$$

Go back up to Infoset 1

$$\hat{Q}_r += \hat{V}^3$$
, $x^1 = (x_f, x_r) \propto \exp(\eta_1(\hat{Q}_f, \hat{Q}_r))$

Local Dynamics

- These dynamics seem to be doing "local updates" at each node
- They came out of a specific algorithm FTRL with Dilated Entropy
- Is this a general paradigm?
- Can we decompose the no-regret learning problem into local noregret learners at each node?
- What feedback should each node receive from the learners in nodes below?
- What loss should each learner be optimizing?

Counterfactual Regret Minimization (CRM)

Interpretation of u_a **.** If I play with the intend to arrive at action a (i.e. $\tilde{x}_a = 1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

What if we now want to express: If I play with the intend to arrive at action a (i.e. $\tilde{x}_a = 1$) and then continue playing based on some behavioral policy x, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

Interpretation of u_a. If I play with the intend to arrive at action a (i.e. $\tilde{x}_a = 1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

What if we now want to express: If I play with the intend to arrive at action a (i.e. $\tilde{x}_{\alpha} =$ 1) and then continue playing based on some behavioral policy x, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

• Let C_a be all infosets of the player that are reachable as next infosets after playing a

$$\widetilde{u}_a(x) = \underbrace{\left[u_a\right]}_{k \in C_a} + \underbrace{\left[v_a^k(x)\right]}_{pass \ through \ infoset \ k, \ if \ I \ continue}_{playing \ based \ on \ behavioral \ strategy \ x}$$
 this is the last action I play

playing based on behavioral strategy x

Interpretation of u_a **.** If I play with the intend to arrive at action a (i.e. $\tilde{x}_a = 1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

What if we now want to express: If I play with the intend to arrive at action a (i.e. $\tilde{x}_a = 1$) and then continue playing based on some behavioral policy x, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

• Let C_a be all infosets of the player that are reachable as next infosets after playing a

$$\tilde{u}_a(x) = [u_a] + \sum_{k \in C_a} [V^k(x)]$$
 Continuation E[utility] from paths that pass through infoset k , if I continue playing based on behavioral strategy x this is the last action I play

• Continuation utility $V^{j}(x)$ from paths that pass through infoset j recursively defined:

$$V^{j}(x) = \sum_{a \in A^{j}} x_{a} \, \tilde{u}_{a}(x) = \left[\sum_{a \in A^{j}} x_{a} u_{a}\right] + \left[\sum_{a \in A^{j}} x_{a} \left(\sum_{k \in C_{a}} V^{k}(x)\right)\right]$$
"Instantaneous utility", if "Continuation utility", if I this is the last move I make continue playing based on x

• Continuation utility $V^j(x)$ from paths that pass through j, assuming I play to arrive deterministically at the parent action p_j (i.e., $\tilde{x}_{p_j}=1$)

$$V^{j}(x) = \sum_{a \in A^{j}} x_{a} \, \tilde{u}_{a}(x) = \sum_{a \in A^{j}} x_{a} \left(u_{a} + \sum_{k \in C_{a}} V^{k}(x) \right)$$

- Obviously $V^{\text{root}}(x)$ is total expected utility from behavior strategy x
- From equivalence of behavioral and sequence-form strategies

$$V^{\text{root}}(x) = \langle \tilde{x}, u \rangle$$

The same also holds for regrets

$$R^{\text{root}}(x) = \max_{x'} V^{\text{root}}(x') - V^{\text{root}}(x) = \max_{\tilde{x}' \in X} \langle \tilde{x}', u \rangle - \langle \tilde{x}, u \rangle = R(\tilde{x})$$

Local Regrets

ullet We can also define infoset regrets based on local utilities $ilde{u}_a$

$$R^{j}(x) = \max_{x'} V^{j}(x') - V^{j}(x) = \max_{x'} \sum_{a} x'_{a} \tilde{u}_{a}(x') - x_{a} \tilde{u}_{a}(x)$$

Right-hand-side can be decomposed as:

$$\max_{x'} \left| \sum_{a} x'_a \tilde{u}_a(x) - x_a \tilde{u}_a(x) \right| + \left| \sum_{a} x'_a \left(\tilde{u}_a(x') - \tilde{u}_a(x) \right) \right|$$

Fix continuation strategy to current strategy and only change the behavioral strategy at the current infoset Weighted average of changes in continuation strategy

Local Regrets

ullet We can also define infoset regrets based on local utilities $ilde{u}_a$

$$R^{j}(x) = \max_{x'} V^{j}(x') - V^{j}(x) = \max_{x'} \sum_{a} x'_{a} \tilde{u}_{a}(x') - x_{a} \tilde{u}_{a}(x)$$

Right-hand-side can be decomposed as:

$$\max_{x'} \sum_{a} x'_a \tilde{u}_a(x) - x_a \tilde{u}_a(x) + \sum_{a} x'_a \left(\tilde{u}_a(x') - \tilde{u}_a(x) \right)$$

• Maximum is upper bounded by the decoupled optima

$$\left| \max_{x'} \sum_{a} x'_a \tilde{u}_a(x) - x_a \tilde{u}_a(x) \right| + \sum_{a} \max_{x'} \left(\tilde{u}_a(x') - \tilde{u}_a(x) \right)$$

Local Regret: LR^j(x)

Recursive Bound of Local Regrets

Infoset regrets are bounded by local regret plus continuation terms

$$R^{j}(x) \le LR^{j}(x) + \sum_{a} \max_{x'} (\tilde{u}_{a}(x') - \tilde{u}_{a}(x))$$

The continuation terms are recursive infoset regrets!

$$\tilde{u}_a(x') - \tilde{u}_a(x) = u_a + \sum_{k \in C_a} V^k(x') - u_a - \sum_{k \in C_a} V^k(x)$$

Deriving the recursive upper bound

$$R^{j}(x) \le LR^{j}(x) + \sum_{a} \sum_{k \in C_{a}} \max_{x'} V^{k}(x') - V^{k}(x)$$
$$\le LR^{j}(x) + \sum_{a} \sum_{k \in C_{a}} R^{k}(x)$$

Recursive Bound of Local Regrets

Deriving the recursive upper bound

$$R^{j}(x) \le LR^{j}(x) + \sum_{a} \sum_{k \in C_{a}} R^{k}(x)$$

Recursive Bound of Local Regrets

Deriving the recursive upper bound

$$R^{j}(x) \le LR^{j}(x) + \sum_{a} \sum_{k \in C_{a}} R^{k}(x)$$

Theorem. By induction:

$$R^{j}(x) \le LR^{j}(x) + \sum_{k \text{ eventually reachable from } j} LR^{k}(x)$$

Local Regrets Upper Bound Total Regret

Deriving the recursive upper bound

$$R^{j}(x) \le LR^{j}(x) + \sum_{a} \sum_{k \in C_{a}} R^{k}(x)$$

Theorem. By induction:

$$R^{j}(x) \le LR^{j}(x) + \sum_{k \text{ eventually reachable from } j} LR^{k}(x)$$

Main Corollary. Regret is upper bounded by sum of local regrets

$$R(\tilde{x}) = R^{\text{root}}(x) \le \sum_{k \in \mathcal{J}_1} LR^k(x)$$

Regret over Time

Same inequalities can be followed for the average regret over time

$$R = \max_{\tilde{x}' \in X} \frac{1}{T} \sum_{t} \langle \tilde{x}', u_t \rangle - \langle \tilde{x}_t, u_t \rangle$$

$$LR^{j} = \max_{x^{j}} \frac{1}{T} \sum_{t} \langle x^{j}, \tilde{u}_{t}(x_{t}) \rangle - \langle x_{t}^{j}, \tilde{u}_{t}(x_{t}) \rangle$$

Main CFR Theorem. Regret is upper bounded by local regrets

$$R \le \sum_{j \in \mathcal{L}_1} LR^j$$

Achieving vanishing Local Regrets

$$LR^{j}(x) = \max_{x^{j}} \frac{1}{T} \sum_{t} \langle x^{j}, \widetilde{u}_{t}(x_{t}) \rangle - \langle x_{t}^{j}, \widetilde{u}_{t}(x_{t}) \rangle$$

Counterfactual Regret Minimization

Device local regret algorithms for local regret

$$LR^{j}(x) = \max_{x^{j}} \frac{1}{T} \sum_{t} \langle x^{j}, \tilde{u}_{t}(x_{t}) \rangle - \langle x_{t}^{j}, \tilde{u}_{t}(x_{t}) \rangle$$

• Standard n-action no-regret problem: reward vector at period t is $\tilde{u}^j(x_t)$ and reward for choice x^j is $\langle x^j, \tilde{u}^j(x_t) \rangle$

- At period t run bottom-up recursion to calculate $\tilde{u}^j(x_t)$ for $j \in \mathcal{J}_1$
- Update probabilities x_{t+1}^j using reward vectors $\tilde{u}^j(x_t)$ for $j\in\mathcal{J}_1$

• Go to Infoset 3
$$\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}} \right) = \left(-3\frac{1}{2}y_{f_*} + 3\frac{1}{2}y_{r_*}, -2\frac{1}{2}y_{f_*} - 2\frac{1}{2}y_{r_*} \right)$$

• Go to Infoset 3
$$\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_*} + 3\frac{1}{2}y_{r_*}, -2\frac{1}{2}y_{f_*} - 2\frac{1}{2}y_{r_*}\right)$$

Go to Infoset 3
$$\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_*} + 3\frac{1}{2}y_{r_*}, -2\frac{1}{2}y_{f_*} - 2\frac{1}{2}y_{r_*}\right)$$

$$V^3 \leftarrow x_{\hat{c}}\tilde{u}_{\hat{c}} + x_{\hat{f}}\tilde{u}_{\hat{f}}$$

Go to Infoset 3

$$\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_*} + 3\frac{1}{2}y_{r_*}, -2\frac{1}{2}y_{f_*} - 2\frac{1}{2}y_{r_*}\right)$$

 $V^3 \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}} + x_{\hat{f}} \tilde{u}_{\hat{f}}$

$$\left(\tilde{u}_f, \tilde{u}_r\right) = \left(-1\frac{1}{2}, V^3\right)$$

Go to Infoset 3

$$\left(\tilde{\mathbf{u}}_{\hat{c}}, \tilde{\mathbf{u}}_{\hat{f}}\right) = \left(-3\frac{1}{2}y_{f_*} + 3\frac{1}{2}y_{r_*}, -2\frac{1}{2}y_{f_*} - 2\frac{1}{2}y_{r_*}\right)$$

$$V^3 \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}} + x_{\hat{f}} \tilde{u}_{\hat{f}}$$

$$\left(\tilde{u}_f, \tilde{u}_r\right) = \left(-1\frac{1}{2}, V^3\right)$$

Go to Infoset 3

Go to Infoset 1

$$\left(\tilde{u}_f, \tilde{u}_r\right) = \left(-1\frac{1}{2}, V^3\right)$$

$$\left(\tilde{u}_{f'}, \tilde{u}_{r'}\right) = \left(1\frac{1}{2}y_{f_*} - 3\frac{1}{2}y_{r_*}, -1\frac{1}{2}\right)$$

Go to Infoset 3

Go to Infoset 1

$$\left(\tilde{u}_f, \tilde{u}_r\right) = \left(-1\frac{1}{2}, V^3\right)$$

$$\left(\tilde{u}_{f'}, \tilde{u}_{r'}\right) = \left(1\frac{1}{2}y_{f_*} - 3\frac{1}{2}y_{r_*}, -1\frac{1}{2}\right)$$

Go to Infoset 3

Go to Infoset 1

$$\left(\tilde{u}_f, \tilde{u}_r\right) = \left(-1\frac{1}{2}, V^3\right)$$

Go to Infoset 2

$$\left(\tilde{u}_{f'}, \tilde{u}_{r'}\right) = \left(1\frac{1}{2}y_{f_*} - 3\frac{1}{2}y_{r_*}, -1\frac{1}{2}\right)$$

Update probabilities

$$(x_f, x_r) \leftarrow \text{Update}(\tilde{u}_f, \tilde{u}_r)$$

$$(x_{f'}, x_{r'}) \leftarrow \text{Update}(\tilde{u}_{f'}, \tilde{u}_{r'})$$

$$(x_{\hat{c}}, x_{\hat{f}}) \leftarrow \text{Update}(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}})$$

Recursive Algorithm

```
Value (ActionHistory h, AccOtherProb \pi_{-1})
     Let I be infoset corresponding to h
     If I is terminal node z return \pi_{-1} \cdot u(z)
     If Player(I) = chance
          Return \sum_{a \in A_I} \text{Value}(ha, \pi_{-1}\pi_a^c)
     If Player(I) = 2
          Return \sum_{a \in A_I} Value(ha, \pi_{-1}y_a)
     If Player(I) = 1
          For a \in A_I: \tilde{u}_a += Value(ha, \pi_{-1})
          Return \sum_{a \in A_I} x_a \cdot \text{Value}(ha, \pi_{-1})
Value (\emptyset, 1)
```


Recursive Algorithm

```
Value (ActionHistory h, AccOtherProb \pi_{-1})
Let I be infoset corresponding to h

If I is terminal node z return \pi_{-1} \cdot u(z)

If Player(I) = chance

Return \sum_{a \in A_I} Value(ha, \pi_{-1}\pi_a^c)

If Player(I) = 2

Return \sum_{a \in A_I} Value(ha, \pi_{-1}y_a)

If Player(I) = 1

For a \in A_I: \tilde{u}_a += Value(ha, \pi_{-1})

Return \sum_{a \in A_I} x_a \cdot Value(ha, \pi_{-1})
```

We arrive at the same infoset I multiple times, once for each node in the set; \tilde{u}_a accumulates continuation utility from taking action a from all these possible "arrival paths".

Example. In infoset 3 we arrive once on the left node and add $-3\frac{1}{2}y_{f_*}$ and once on the right node and add $3\frac{1}{2}y_{r_*}$ to $u_{\hat{c}}$

Recursive Algorithm

```
Value (ActionHistory h, AccOtherProb \pi_{-1})
     Let I be infoset corresponding to h
     If I is terminal node z return \pi_{-1} \cdot u(z)
     If Player(I) = chance
          Return \sum_{a \in A_I} \text{Value}(ha, \pi_{-1}\pi_a^c)
     If Player(I) = 2
          Return \sum_{a \in A_I} Value(ha, \pi_{-1}y_a)
     If Player(I) = 1
          For a \in A_I: \tilde{u}_a += Value(ha, \pi_{-1})
          Return \sum_{a \in A_I} x_a \cdot \text{Value}(ha, \pi_{-1})
Value (\emptyset, 1)
```


Equivalent Recursive Algorithm

```
P (A)Ce
CValue (ActionHistory h, AccOtherProb \pi_{-1})
     Let I be infoset corresponding to h
     If I is terminal node z return u(z)
     If Player(I) = chance
           Return \sum_{a \in A_l} \pi_a^c: CValue (ha, \pi_{-1} \pi_a^c)
                                                                           \chi_f
                                                                                           \chi_r
                                                                                                                       x_{f'}
     If Player(I) = 2
           Return \sum_{a \in A} (y_a)CValue(ha, \pi_{-1}y_a)
                                                                         -1
     If Player(I) = 1
           For a \in A_I: \tilde{u}_a + = (\pi_{-1}) \cdot \text{CValue}(ha, \pi_{-1})
                                                                                                                y_{f_*}
                                                                                                                            y_{r_*}
                                                                                                    y_{r_*}
           Return \sum_{a \in A_I} x_a \cdot \text{CValue}(ha, \pi_{-1})
                                                                                                    P1
                                                                                   P1
CValue (\emptyset, 1)
                                                                          \chi_{\hat{c}}
                                                                                        \chi_{\hat{f}}
                                                                                                           \chi_{\hat{f}}
                                                                                                \chi_{\hat{c}}
```

The Typical CRM Algorithm Implementation

```
CValue (ActionHistory h, AccOtherProb \pi_{-1})
     Let I be infoset corresponding to h
     If I is terminal node z return u(z)
     If Player(I) = chance
          Return \sum_{a \in A_I} \pi_a^c \cdot \text{CValue}(ha, \pi_{-1} \pi_a^c)
     If Player(I) = 2
          Return \sum_{a \in A_I} y_a \cdot \text{CValue}(ha, \pi_{-1}y_a)
     If Player(I) = 1
          For a \in A_I: \tilde{u}_a += \pi_{-1} \cdot \text{CValue}(ha, \pi_{-1})
          Return \sum_{a \in A_I} x_a \cdot \text{CValue}(ha, \pi_{-1})
CValue (\emptyset, 1)
```


Recovering Equilibrium from CRM Dynamics

We have run CRM dynamics generating behavioral strategies x_t , y_t for T periods.

How do we calculate the behavioral strategies x^* , y^* that are an approximate Nash equilibrium?

Recovering Nash Equilibrium

We need to translate the behavioral strategies into sequence-form

$$\forall a \in A_j \colon \tilde{x}_{t,a} = \tilde{x}_{t,p_j} \mid x_t$$

• Then average the sequence-form strategies

Product of probabilities of actions of player P1 on path to infoset of action *i*

$$\bar{\tilde{x}} = \frac{1}{T} \sum_{t=1}^{T} \tilde{x}_t$$

• Then translate back to equilibrium behavioral strategies x^*

$$\forall a \in A_j \colon x_a^* = \frac{\bar{\tilde{x}}_a}{\bar{\tilde{x}}_{p_j}}$$

Recovering Nash Equilibrium

We need to translate the behavioral strategies into sequence-form

$$\forall a \in A_j \colon \tilde{x}_{t,a} = \tilde{x}_{t,p_j} \colon x_t$$

• Then average the sequence-form strategies \to Product of probabilities of actions of

player P1 on path to infoset of action i

$$\bar{\tilde{x}} = \frac{1}{T} \sum_{t=1}^{T} \tilde{x}_t = \frac{1}{T} \sum_{t=1}^{T} \tilde{x}_{t,p_j} \cdot x_t$$

• Then translate back to equilibrium behavioral strategies x^*

$$\forall a \in A_j \colon x_a^* = \frac{\bar{\tilde{x}}_a}{\bar{\tilde{x}}_{p_j}} = \frac{\sum_{t=1}^T \tilde{x}_{t,p_j} \cdot x_{t,a}}{\sum_{t=1}^T \tilde{x}_{t,p_j}}$$

The Typical CRM Algorithm Implementation

```
CValue (ActionHistory h_{\bullet}, AccOtherProb \pi_{-1}, AccProb \pi_{1})
     Let I be infoset corresponding to h
     If I is terminal node z return u(z)
     If Player(I) = chance
          Return \sum_{a \in A_I} \pi_a^c \cdot \text{CValue}(ha, \pi_{-1} \pi_a^c, \pi_1)
     If Player(I) = 2
          Return \sum_{a \in A_I} y_a \cdot \text{CValue}(ha, \pi_{-1}y_a, \pi_1)
     If Player(I) = 1
          For a \in A_I: \tilde{u}_a += \pi_{-1} \cdot \text{CValue}(ha, \pi_{-1}, \pi_1 x_a)
         Set q(I) = \pi_1
         Return \sum_{a \in A_1} x_a \cdot \text{CValue}(ha, \pi_{-1}, \pi_1 x_a)
                                                                This is the product of the probabilities of prior actions of player
```

 $CValue(\emptyset, 1)$

P1 before arriving at infoset I

Note. Due to perfect recall this product is the same every time we visit the infoset; irrespective of which node of the infoset we arrived at.

The Typical CRM Algorithm Implementation

```
CValue (ActionHistory h, AccOtherProb \pi_{-1}, AccProb \pi_{1})
     Let I be infoset corresponding to h
     If I is terminal node z return u(z)
     If Player(I) = chance
          Return \sum_{a \in A_I} \pi_a^c \cdot \text{CValue}(ha, \pi_{-1} \pi_a^c, \pi_1)
     If Player(I) = 2
          Return \sum_{a \in A_I} y_a \cdot \text{CValue}(ha, \pi_{-1}y_a, \pi_1)
     If Player(I) = 1
           For a \in A_I: \tilde{u}_a += \pi_{-1} \cdot \text{CValue}(ha, \pi_{-1}, \pi_1 x_a)
           Set q(I) = \pi_1
          Return \sum_{a \in A_1} x_a \cdot \text{CValue}(ha, \pi_{-1}, \pi_1 x_a)
CValue (\emptyset, 1)
```

The Overall Equilibrium Algorithm with CRM

After each period $t \in \{1, ..., T\}$:

- With last period behavior strategies x_t, y_t call $\text{CValue}(\emptyset, 1, 1)$
- Store $\tilde{u}_{t,a}$ and $q_t(I)$ for each action a and infoset I of P1
- Symmetrically, do so for player P2
- Update strategies at all information sets

$$\forall j \in \mathcal{J}_1: x_{t+1}^j \leftarrow \text{Update}\left(\tilde{u}_t^j\right), \qquad \forall j \in \mathcal{J}_2: y_{t+1}^j \leftarrow \text{Update}\left(\tilde{u}_t^j\right)$$

At the end:

$$\forall I \in \mathcal{I}_1 \forall a \in A_I : x_a^* = \frac{\sum_t q_t(I) x_{t,a}}{\sum_t q_t(I)}$$

$$\forall I \in \mathcal{I}_2 \forall a \in A_I : y_a^* = \frac{\sum_t q_t(I) y_{t,a}}{\sum_t q_t(I)}$$

Approximate Equilibrium in Behavioral Strategies

What algorithm to use for local regret updates?

Recursive Value Calculation

After each period *t*:

- With last period behavior strategies x_t, y_t call CValue($\emptyset, 1, 1$)
- Store $\tilde{u}_{t,a}$ and $q_t(I)$ for each action a and infoset I of P1

• For each infoset
$$j \in \mathcal{J}_1$$
:
$$x_{t+1} \leftarrow \operatorname{Update}(\tilde{u}_t) \leftarrow$$

• Symmetrically, do so for player P2

Any no-regret algorithm for the *n*-action no-regret problem can be used, e.g. FTRL, OFTRL, EXP, etc.

What performs well in practice is what is known as Regret Matching!

$$\forall I \in \mathcal{I}_1 \forall a \in A_I : x_a^* = \frac{\sum_t q_t(I) x_{t,a}}{\sum_t q_t(I)}$$

$$\forall I \in \mathcal{I}_2 \forall a \in A_I : y_a^* = \frac{\sum_t q_t(I) y_{t,a}}{\sum_t q_t(I)}$$

Approximate Equilibrium Strategies

Regret Matching and Regret Matching+

- Consider the n action no-regret learning setting; at each period we choose $x_t \in \Delta(n)$, observe utility vector u_t and get utility $\langle x_t, u_t \rangle$
- At each period t calculate regret of not playing action a

$$r_{t,a} = u_{t,a} - \langle u_t, x_t \rangle$$

• Calculate cumulative regret of not playing action a

$$R_{t,a} = \sum_{\tau \le t} r_{t,a} = R_{t-1,a} + r_{t,a}$$

Choose next distribution, proportional to positive part of regret

$$x_{t+1,a} \propto \left[R_{t,a} \right]^+ \coloneqq \max \{ R_{t,a}, 0 \}$$

People typically refer to CFR with RegretMatching as simply "CFR"

Regret Matching+

- Consider the n action no-regret learning setting; at each period we choose $x_t \in \Delta(n)$, observe utility vector u_t and get utility $\langle x_t, u_t \rangle$
- At each period t calculate regret of not playing action a

$$r_{t,a} = u_{t,a} - \langle u_t, x_t \rangle$$

ullet Continuously clip above zero, as you accumulate regret of a

$$R_{t,a} = [R_{t-1,a} + r_{t,a}]^{+}$$

• Choose next distribution, proportional to $R_{t,a}$

$$x_{t+1,a} \propto R_{t,a}$$

• Regret Matching and Regret Macthing+ achieve Regret $\leq \sqrt{n/T}$

Extra Tricks for Empirical Improvement

Monte-Carlo Stochastic Approximation of Utilities

- Sample chance move (e.g. sampled A)
- Go to Infoset 1

$$\hat{\tilde{u}}_f = -1, \qquad \hat{\tilde{u}}_r = 0$$

- Go down tree the r path
- Sample P2 move (e.g. sampled f_*)
- Go down to Infoset 3

$$\hat{\tilde{u}}_{\hat{c}} = -3, \qquad \hat{\tilde{u}}_{\hat{f}} = -1$$

$$\hat{\tilde{u}}_r += x_{\hat{c}}\hat{\tilde{u}}_{\hat{c}} + x_{\hat{f}}\hat{\tilde{u}}_{\hat{f}}$$

• Update probabilities of visited infosets $(x, y, y) \leftarrow \text{Update}(\hat{x}, \hat{y}, \hat{y}, y)$

$$\begin{pmatrix} x_f, x_r \end{pmatrix} \leftarrow \text{Update}(\hat{\tilde{u}}_f, \hat{\tilde{u}}_r) \\ \begin{pmatrix} x_{\hat{c}}, x_{\hat{f}} \end{pmatrix} \leftarrow \text{Update}(\hat{\tilde{u}}_{\hat{c}}, \hat{\tilde{u}}_{\hat{f}}) \end{pmatrix}$$

Typical Monte Carlo Algorithm Implementation

```
MCCValue (ActionHistory h, AccProb \pi_1)
    Let I be infoset corresponding to h
    If I is terminal node z return u(z)
    If Player(I) = chance
         Sample a \sim \pi^{C}
         Return MCCValue(ha, \pi_1)
    If Player(I) = 2
         Sample a \sim y^I
         Return MCCValue(ha, \pi_1)
    If Player(I) = 1
         For a \in A_I: \tilde{u}_a += \text{MCCValue}(ha, \pi_1 \cdot x_a)
         Set q(I) = \pi_1
         Return \sum_{a \in A_1} x_a \cdot \text{MCCValue}(ha, \pi_1 \cdot x_a)
Value (\emptyset, 1)
```

Can Combine with Update Step in One Pass

```
MCCValue (ActionHistory h, AccProb \pi_1)
     Let I be infoset corresponding to h
     If I is terminal node z return u(z)
     If Player(I) = chance
          Sample a \sim \pi^{C}
          Return MCCValue(ha, \pi_1)
     If Player(I) = 2
          Sample a \sim y^I
          Return MCCValue(ha, \pi_1)
     If Player(I) = 1
          For a \in A_I: \tilde{u}_a += \text{MCCValue}(ha, \pi_1 \cdot x_a)
          Set q(I) = \pi_1
          Update x_{\text{next}}^I \leftarrow \text{Update}(\tilde{u}^I)
          Return \sum_{a \in A_I} x_a \cdot \text{MCCValue}(ha, \pi_1 \cdot x_a)
```

Alternation

After each period *t*:

- If t is odd then update the strategy of the x-player
- If t is even then update strategy of the y-player

For most natural algorithms, alternation can only help in terms of reducing the violation of best response constraints!

Can converge faster to equilibrium

Weighted Averaging

 Instead of uniformly weighting all rounds, put more weight on more recent rounds of play

$$\frac{1}{\sum_{t} t^{\alpha}} \sum_{t} t^{\alpha} \tilde{x}_{t}$$

• Typically, one uses linear averaging (i.e., $\alpha=1$)

 The CFR algorithm that uses RegretMatching+, alternation and linear averaging is typically referred to as "CFR+"

Empirical Comparisons

Violations of best response

 $\left\{ \text{Regret}_{y}(x_{*}, y_{*}) + \text{Regret}_{x}(x_{*}, y_{*}) \right\} = \max_{y} x_{*}^{\mathsf{T}} A y - x_{*}^{\mathsf{T}} A y_{*} + x_{*}^{\mathsf{T}} A y_{*} - \min_{x} x^{\mathsf{T}} A y_{*} = \left\{ \max_{y} x_{*}^{\mathsf{T}} A y - \min_{x} x^{\mathsf{T}} A y - \min_{x} x^{\mathsf{T}} A y_{*} \right\}$

$$\begin{bmatrix} R_y + R_x \end{bmatrix} = \max_y \bar{x}^\top A y - \frac{1}{T} \sum_t x_t^\top A y_t + \frac{1}{T} \sum_t x_t^\top A y_t - \min_x x^\top A \bar{y} = \begin{bmatrix} \max_y \bar{x}^\top A y - \min_x x^\top A \bar{y} \end{bmatrix}$$

Sum of learning algorithm regrets

saddle-point gap of average strategies \bar{x} , \bar{y}

saddle-point gap

Elements of the Libratus Al

• The first agent to achieve superhuman performance in two player No-Limit Texas Hold'em poker (10^{161} decision points)

• Prior best was Limit Texas Hold'em (10^{13} decision points); solution is basically "run CFR+"

For No-Limit Texas Hold'em game is too big for this approach!

Elements of Libratus Al

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)