Ques 1:

a) Solve the recurrence relation

Masters theorem

$$T(m) = aT\left(\frac{n}{b}\right) + m^k \log^{b} m$$

a>1, b>1, k>0, p real no.

1) if
$$a > b^k$$
 then $T(m) = \Theta(n^{\log b^a})$

2) if
$$a = b^k$$

a) if
$$\beta > -1$$
 then $T(n) = \Theta(n^{\log b} \log^a n)$

c) if
$$b < -1$$
 then $T(n) = \Theta(n^{\log b^a})$

b) if
$$p < 0$$
 then $T(n) = O(n^k)$

i).
$$T(n) = 6T\left(\frac{n}{3}\right) + n^2 \log n$$

Hore,
$$a < b^k = 6 < 3^2 = 6 < 9$$

$$b=1$$
 i.e. $b>0$

$$T(n) = \Theta(n^2 \log n)$$

ii).
$$T(n) = 2T(\sqrt{n}) + \log n$$

$$\det n = 2^{m} \Rightarrow \log n = m$$

$$T(2^{m}) = 2T(2^{m/2}) + m$$

$$\det T(2^{m}) = 5(m)$$

$$3(m) = 23(m/2) + m$$

$$Using Masters Theorem,$$

$$a = 2 \quad b = 2 \quad k = 1 \quad b = 0$$

$$a = b^{k} \quad and \quad b > -1$$

$$S(m) = \Theta(m^{\log a} \log^{b+1} m) = \Theta(m^{\log a} 2^{2} \log^{1} m) = \Theta(m \log m)$$

$$T(2^{m}) = \Theta(m \log m)$$

$$T(n) = \Theta(\log n \log \log \log n)$$

b). Time complexity of program

void fun (n)

{

int i,j, count = 0;

for (i=n; i>0; i=i/2)

for (j=0; j(=i; j++)

count ++;

Since j loop is dependent on i, so lets unvall it

Value of i	2	7/2	n/4	2/8	••••	2/2
j loop runs	2	7/2	8/4	n/8	• • • •	5/2

Total
$$j$$
 loop runs: $n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \cdots + \frac{n}{n}$

$$: n \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^{\log n}}\right)$$
Sum of $4P$

$$= n \left(\frac{1}{1 - \frac{1}{2}} \right) = 2n = O(n)$$

Ques 2:

#include <iostream>

if (low == high)

return sp;

sp.max = arr[low];
sp.min = arr[low];

dogic: Divide the array in 2 parts and compare the maximum and minimum of the 2 parts to get the maximum and minimum of whole array

using namespace std;

struct Pair {
 int min;
 int max;
};

struct Pair fun(int arr[], int low, int high)
{
 struct Pair sp;

 // If there is only one element

```
// If there are two elements
    if (high == low + 1)
        if (arr[low] > arr[high])
            sp.max = arr[low];
            sp.min = arr[high];
        else
            sp.max = arr[high];
            sp.min = arr[low];
        return sp;
    // If there are more than 2 elements
    int mid = (low + high) / 2;
    struct Pair lp = fun(arr, low, mid);
    struct Pair rp = fun(arr, mid + 1, high);
    // Compare minimums of two parts
    if (lp.min < rp.min)</pre>
        sp.min = lp.min;
    else
        sp.min = rp.min;
    // Compare maximums of two parts
    if (lp.max > rp.max)
        sp.max = lp.max;
    else
        sp.max = rp.max;
    return sp;
int main()
{
    int arr[] = \{100, 11, 35, 8, 55, 30\};
    int n = sizeof(arr)/sizeof(int);
    struct Pair res = fun(arr, 0, n - 1);
    cout << "Minimum element is " << res.min << endl ;</pre>
    cout << "Maximum element is " << res.max << endl;</pre>
    return 0;
```

Recurrence Relation: $T(n) = 2T(\frac{n}{2}) + 1$

```
Solving: a=2 b=2 k=0 p=0
a > b^{k}
2 > 2^{0}
T(n) = \Theta(n^{\log a}) = \Theta(n^{\log^{2} 2}) = \Theta(n)
```

Ques 3:

```
#include <iostream>
using namespace std;
int find(int arr[], int size)
{
    int low = 0;
    int high = size-1;
   while (low <= high)</pre>
       int mid = (low + high)/2;
       if (arr[mid] < mid + 1)
          low = mid + 1;
       else if (arr[mid] > mid + 1)
           high = mid - 1;
       else
          return mid ;
    return -1;
int main()
{
    int arr[] = \{0,1,3,5,6,7\};
    int n = sizeof(arr)/sizeof(int);
    cout << find(arr, n);</pre>
    return 0;
 arr: [0 1 3 5 6 7]
 Ans: 2 indese
```

Ques 4:

Assumption: Evory job takes 1 unit time for completion.

a).

Jobs J1	J2	T3	J4	J5	J 6
Acadhines 5	3	2	2	4	1
Profits 200	180	190	300	120	100

- Sort the jobs in decreasing order of profit

Jobs Acadhines Profits	J4 2	J1 5	53	J2 3	55 4	J6
Profits	300	200	190	180	120	100

- Iterate over the jobs and assign the last slot available Profit

٥

J4:

300

J1:

J	4		5.	1	
 1	2	3	4	5	6

300 +200

J3:

J 3	J4			J L	
	1 2	2 3	3 4	- 6	 6

300+200+190

Ja:

J 3	J4	J2		71	
)	L	2 3	3 4	- 6	6

300 +200 + 190 + 180

J5:

J 3	J 4	J2	35	71	
) 1	L	2 3	3 4	+ 6	5 6

300 +200 + 190 + 180 + 120

Answers:

- b) NO job 6 is not completed
- c) Profit: 300+200+190+180+120 = 990

Ques 5:

Prims:

Total Cost: 3+1+3+2+1+3+4+6=23