Example 1.27. The nilpotent shift semigroup (A-I,2.6) is obviously eventually differentiable, eventually compact and eventually norm continuous. But it is not norm continuous and consequently not differentiable or compact.

Example 1.28. We consider multiplication semigroups (see A-I,2.3). Let $E = C_O(X)$, where X is a locally compact space, or $E = L^D(x, \Sigma, \mu)$, where $1 \le p < \infty$ and (X, Σ, μ) is a σ -finite measure space. Let $m: X \to \mathbb{R}$ be continuous [resp., measurable] such that [ess]-sup $_{X \in X}$ Re $(m(x)) < \infty$. Then Af = $m \cdot f$ with domain $D(A) = \{f \in E : m \cdot f \in E\}$ is the generator of the semigroup $(T(t))_{t \ge 0}$ given by $(T(t)f)(x) = e^{tm(x)}f(x)$

Then Af = m·f with domain $D(A) = \{f \in E : m·f \in E\}$ is the generator of the semigroup $(T(t))_{t \geq 0}$ given by $(T(t)f)(x) = e^{tm(x)}f(x)$ $(t \geq 0, x \in X, f \in E)$. Observe that $\sigma(A) = \overline{m(X)}$ in case $E = C_O(X)$ and $\sigma(A) = [ess]$ -image(m) := $\{\lambda \in \mathbb{C} : \mu((\{x \in X : |m(x) - \lambda| < \epsilon\}) \neq 0 \}$ for all $\epsilon > 0\}$ if $E = L^D$ (see A-II,2.3). Consequently, $s(A) = \omega(A) = [ess]$ -sup_{$x \in X$} Re(m(x)).

a) The semigroup is norm continuous for t>0 if and only if it is eventually norm continuous if and only if $\{\lambda\in\sigma(A):Re\ \lambda\geq b\}$ is bounded for every $b\in\mathbb{R}$. Thus the property proved in Theorem 1.20 characterizes generators of eventually norm continuous semigroups in the case that the semigroup consists of multiplication operators.

<u>Proof.</u> Assume that $\{\lambda \in \sigma(A) : \text{Re } \lambda \geq b\}$ is bounded for every $b \in \mathbb{R}$. Let t' > 0. We show that the semigroup is norm continuous in t'. Let $\epsilon > 0$. Let $b \in \mathbb{R}$ such that $2e^{(t'+1)b} < \epsilon$.

If $Re(m(x)) \le b$, then $|e^{tm(x)} - e^{t'm(x)}| \le e^{t \cdot Re(m(x))} + e^{t' \cdot Re(m(x))} \le 2e^{(t'+1)b} < \epsilon$ whenever $|t-t'| \le 1$.

By hypothesis, the set $H:=\{m(x):x\in X,\ Re(m(x))\geq b\}$ in the case $E=C_0(X)$ and $H:=\{m(x):Re\lambda\geq b \text{ and for all }\eta>0$ $\mu(\{x\in X:|m(x)-\lambda|<\eta\})\neq 0\}$ in the case $E=L^p(X,\Sigma,\mu)$ is a bounded subset of $\mathbb C$.

Thus $\lim_{t\to t'} |e^{tz} - e^{t'z}| = 0$ uniformly for $z \in H$. Hence there exists $\delta \in (0,1]$ such that

[ess]-sup { $|e^{tm(x)} - e^{t'm(x)}| : x \in X$, Re(m(x)) > b} < ϵ whenever $|t-t'| < \delta$. Together with the inequality above, we obtain that ||T(t) - T(t')|| = [ess]-sup { $|e^{tm(x)} - e^{t'm(x)}| : x \in X$ } < ϵ whenever $|t-t'| < \delta$. We have shown that the semigroup is norm continuous for t > 0 whenever { $\lambda \in \sigma(A) : Re\lambda \ge b$ } is bounded for all $b \in \mathbb{R}$.