Generating Functions

Generating functions can be used to solve many types of counting problems

Generating functions can be used to solve recurrence relations by translating a recurrence relation for the terms of a sequence into an equation involving a generating function.

The generating function for the sequence $a_0, a_1, \ldots, a_k, \ldots$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

The *generating function for the sequence* $a_0, a_1, \ldots, a_k, \ldots$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

The generating functions for the sequences $\{a_k\}$ with $a_k = 3$, $a_k = k + 1$, and $a_k = 2^k$ are $\sum_{k=0}^{\infty} 3x^k$, $\sum_{k=0}^{\infty} (k+1)x^k$, and $\sum_{k=0}^{\infty} 2^k x^k$, respectively.

We can define generating functions for finite sequences of real numbers by extending a finite sequence a_0, a_1, \ldots, a_n into an infinite sequence by setting $a_{n+1} = 0, a_{n+2} = 0$, and so on. The generating function G(x) of this infinite sequence $\{a_n\}$ is a polynomial of degree n because no terms of the form $a_j x^j$ with j > n occur, that is,

$$G(x) = a_0 + a_1 x + \dots + a_n x^n.$$

What is the generating function for the sequence 1, 1, 1, 1, 1?

Solution: The generating function of 1, 1, 1, 1, 1 is

$$1 + x + x^2 + x^3 + x^4 + x^5$$
.

We can write this generating function as

$$(x^6 - 1)/(x - 1) = 1 + x + x^2 + x^3 + x^4 + x^5$$

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

formula for the sum of terms of a geometric progression

when $x \neq 1$. Consequently, $G(x) = (x^6 - 1)/(x - 1)$ is the generating function of the

sequence 1, 1, 1, 1, 1, 1.

Let m be a positive integer. Let $a_k = C(m, k)$, for k = 0, 1, 2, ..., m. What is the generating function for the sequence $a_0, a_1, ..., a_m$?

Solution: The generating function for this sequence is

$$G(x) = C(m, 0) + C(m, 1)x + C(m, 2)x^{2} + \dots + C(m, m)x^{m}$$
.

We will now state some important facts about infinite series used when working with generating functions

The function f(x) = 1/(1-x) is the generating function of the sequence $1, 1, 1, 1, \ldots$, because

$$1/(1-x) = 1 + x + x^2 + \cdots$$

for |x| < 1.

We will now state some important facts about infinite series used when working with generating functions

The function f(x) = 1/(1 - ax) is the generating function of the sequence $1, a, a^2, a^3, \ldots$, because

$$1/(1 - ax) = 1 + ax + a^2x^2 + \cdots$$

when |ax| < 1, or equivalently, for |x| < 1/|a| for $a \neq 0$.

Let
$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 and $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$
 and $f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$.

Example

Let
$$f(x) = 1/(1-x)^2$$
.

find the coefficients a_0, a_1, a_2, \ldots in the expansion $f(x) = \sum_{k=0}^{\infty} a_k x^k$.

Solution: We know

$$1/(1-x) = 1 + x + x^2 + x^3 + \cdots$$

$$1/(1-x)^2 = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} 1\right) x^k = \sum_{k=0}^{\infty} (k+1)x^k.$$

TABLE 1 Useful Generating Functions.

G(x)

 a_k

$$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$$
 1 if $k \le n$; 0 otherwise
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$$
 1
$$\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots$$
 a^k 1 if $r \mid k$; 0 otherwise
$$\frac{1}{1-x^r} = \sum_{k=0}^{\infty} x^{rk} = 1 + x^r + x^{2r} + \dots$$
 1 if $r \mid k$; 0 otherwise
$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \dots$$
 $k+1$

Solve the recurrence relation $a_k = 3a_{k-1}$ for k = 1, 2, 3, ... and initial condition $a_0 = 2$.

Solution: Let G(x) be the generating function for the sequence $\{a_k\}$, that is, $G(x) = \sum_{k=0}^{\infty} a_k x^k$. First note that

$$xG(x) = \sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{k=1}^{\infty} a_{k-1} x^k.$$

Using the recurrence relation, we see that

$$G(x) - 3xG(x) = \sum_{k=0}^{\infty} a_k x^k - 3\sum_{k=1}^{\infty} a_{k-1} x^k$$

$$= a_0 + \sum_{k=1}^{\infty} (a_k - 3a_{k-1})x^k$$

= 2.

because $a_0 = 2$ and $a_k = 3a_{k-1}$. Thus,

$$G(x) - 3xG(x) = (1 - 3x)G(x) = 2.$$

Solving for G(x) shows that G(x) = 2/(1-3x). Using the identity $1/(1-ax) = \sum_{k=0}^{\infty} a^k x^k$ from Table 1, we have

$$G(x) = 2\sum_{k=0}^{\infty} 3^k x^k = \sum_{k=0}^{\infty} 2 \cdot 3^k x^k.$$

Consequently, $a_k = 2 \cdot 3^k$

Example 2

Suppose that a valid codeword is an n-digit number in decimal notation containing an even number of 0s. Let a_n denote the number of valid codewords of length n. In Example 4 of Section 8.1 we showed that the sequence $\{a_n\}$ satisfies the recurrence relation

$$a_n = 8a_{n-1} + 10^{n-1}$$

and the initial condition $a_1 = 9$. Use generating functions to find an explicit formula for a_n .

Solution

Setting $a_0 = 1$; when we assign this value to a_0 and use the recurrence relation Still, we get $a_1 = 9$

Multiply both sides of the recurrence relation by x^n to obtain $a_n x^n = 8a_{n-1} x^n + 10^{n-1} x^n$.

Let $G(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function of the sequence a_0, a_1, a_2, \ldots