

Convergence of Approximations to Riccati-based Boundary-feedback Stabilization of Laminar Flows

Peter Benner Jan Heiland

July 13, 2017

IFAC 2017 World Congress, Toulouse/France

1. Introduction

2. Robust Control for Boundary Controlled Incompressible Flows

Stabilization of the Cylinder Wake

- Cylinder wake at moderate Reynolds numbers
- The steady state is a solution, but unstable
- Goal: Stabilizing feedback controller that works in experiments
- Thus, the simulation needs to cope with:
 - → limited measurements
 - short evaluation times
 - system uncertainties
 - actuation at the boundary

Linearization based feedback

- see [Raymond'05, '06] for theory concerning flows
- see [BÄNSCH,PB&AL'15, PB&JH'15] for numerical results
- see also [Breiten&Kunisch'14]

has two major disadvantages when it comes to applications

- 1. small domain of attraction
 - → the target state is unstable
 - → the system is unlikely in a state in which the controller would work
- 2. fragility against system uncertainties
 - → observer-based controller will fail if the system parameters change

Cylinderwake, Re = 80, velocity measurements in the wake

- corrupted linearization about the not quite converged steady state
 - visually undistinguishable from the right linearization point
 - relative difference in norm: 5%

Consider the Oseen linearization

$$\dot{v} + A_{\alpha}v = Bu$$
 in \mathcal{H}_{df} , $y = Cv$

where

- $\mathcal{H}_{df} \subset L^2(\Omega)$ is the space of divergence-free functions (+ boundary conditions)
- A_{α} : $D(A_{\alpha}) \subset \mathcal{H}_{df} \to \mathcal{H}_{df}$ is the *Oseen* operator
 - → linearized incompressible Navier–Stokes Equations
 - ightharpoonup about a steady state v_{α} , i.e. $A_{\alpha}=A(v_{\alpha})$
- $B: \mathbb{R}^p \to \mathcal{H}_{\mathsf{df}}$ is the input operator
- lacksquare $C \colon \mathcal{H}_{\mathsf{df}} o \mathbb{R}^q$ is the output operator

Consider the Oseen linearization

$$\dot{v} + A_{\alpha}v = Bu$$
 in \mathcal{H}_{df} , $y = Cv$

as an input u to output map y with the transfer function:

$$G(v_{\alpha})(s) = C(sI - A_{\alpha})^{-1}B \in \mathbb{C}^{q,r}$$

1. The Oseen System has the transfer function

$$G(v_{\alpha})(s) = C(sI - A_{\alpha})^{-1}B \in \mathbb{C}^{q,r}$$

2. An finite-dimensional approximation to it has the transfer function

$$G(v_{\alpha})_{N}(s) = C(sI - A(v_{\alpha})_{N})^{-1}B_{N} \in \mathbb{C}^{q,r}$$

3. Uncertainty in the linearization point gives another transfer function

$$G(v_{\alpha} + \delta)(s) = C(sI - A(v_{\alpha} + \delta))^{-1}B_{N} \in \mathbb{C}^{q,r}$$

4. Typically, one has both – an approximation to the linearization point and to the system:

$$G(v_{\alpha;N})_N(s) = C(sI - A(v_{\alpha;N})_N)^{-1}B_N \in \mathbb{C}^{q,r}$$

Bad news [IEEE Transaction on Automatic Control ('78)]:

Guaranteed Margins for LQG Regulators

JOHN C. DOYLE

Abstract-There are none.

Good news: The transfer functions of

- [Curtain'03]: Galerkin approximations of evolution systems
- [PB&JH'16]: Oseen systems with changes in the linearization point
- [THIS TALK]: stable mixed-FEM approximation of the Oseen system differ from the exact transfer function through a coprime factor perturbation.
 - → Cf. the observer/controller robustification as proposed by [Curtain&Zwart'95, Curtain'03].

Sufficient conditions for robustified LQG controllers

We generalize the conditions given in [Curtain'03]

• for Galerkin approximations of a generic linear system

$$\dot{x} = Ax + Bu, \quad y = Cx,$$

with

- X Hilbert space
- $A: D(A) \subset X \to X$ generator of a C^0 -semigroup
- lacksquare $B \colon \mathbb{R}^p o X$ bounded
 - → towards mixed-FEM approximations of Oseen systems.

Mixed FEM for incompressible flow equations

State-space of the Oseen equation:

$$\mathcal{H}_{\mathsf{df}} := \{z \in L^2(\Omega) : \mathsf{div}\, z = 0 \text{ and } z \cdot n \big|_{\Gamma_d} = 0\} \subset L^2(\Omega),$$

In mixed FEM, the divergence condition is relaxed through

$$\operatorname{div}^N v^N = 0$$
, if $\int_{\Omega} \operatorname{div} v^N \cdot q^N \, dx = 0$,

for $v^N \in \mathcal{V}^N$ for all basis functions $q \in \mathcal{Q}^N$, where

lacksquare \mathcal{V}^N and \mathcal{Q}^N – FEM spaces for the velocity and the pressure.

Note that, in general, for the state-space

$$\mathcal{H}_{df}^{N} := \ker(\operatorname{div}^{N}) \subset L^{2}(\Omega)$$

of the approximation it holds that $\mathcal{H}_{df}^{N} \not\subset \mathcal{H}_{df}$.

Stable Approximation of the Leray Projector

Let

- $\blacksquare P^N$ the orthogonal projector onto \mathcal{V}^N
- lacksquare $\Pi^N\colon \mathcal{V}^N o\mathcal{V}^N$ orthogonal projection onto $\mathcal{H}^N_{\mathrm{df}}$
 - → the discrete *Leray*-projector

Assumption (A0)

The restriction

$$R^N := \Pi^N P^N \colon \mathcal{V}^N \to \mathcal{H}^N_{df}$$

is bounded independent of N and

$$R^N z \to z$$
, for any $z \in \mathcal{H}_{df}$ as $N \to \infty$.

Stable Approximation of the Leray Projector

Assumption (A0)

The restriction $R^N := \Pi^N P^N : \mathcal{H}_{df} \to \mathcal{H}_{df}^N$ is bounded independent of N and $R^N z \to z$, for any $z \in \mathcal{H}_{df}$ as $N \to \infty$.

For Galerkin schemes: $R^N = P^N \checkmark$. For mixed FEM, we have:

Lemma ([PB&JH'17]**)**

(A0) holds, if (and only if [GIRAULT&RAVIART'86(Lem.II.1.1)]) the FEM spaces \mathcal{V}^N and \mathcal{Q}^N with the refinement parameter N fulfill the condition that

$$\inf_{0\neq q^N\in\mathcal{Q}^N}\sup_{0\neq h^N\in\mathcal{H}^N}\frac{\int_{\Omega}q^N\cdot\operatorname{div}^Nh^N\;\mathrm{d}x}{\|q^N\|_{H^1(\Omega)}\|h^N\|_{L^2(\Omega)}}\geq\beta>0,$$

with a constant β independent of N.

The following assumptions are then standard; see, e.g., [ITO'87].

(A1) Convergence of the semigroups:

$$S^N(t)R^Nz o S(t)z$$
 and $(S^N)^*(t)R^Nz o S^*(t)z,$

for each $z \in \mathcal{H}_{df}$ uniformly for t in bounded subsets of $[0, \infty)$.

- (A2) X Convergence of the input operator: for each $u \in \mathbb{R}^2$, $\Pi^N B^N u \to \Pi B u$.
- (A3) The family of pairs $(\Pi^N A^N, \Pi^N B^N)$ is uniformly stabilizable, and the family of pairs $(\Pi^N A^N, C)$ is uniformly detectable.

Theorem ([Curtain'03, PB&JH'17])

Let assumptions (A0)–(A3) be satisfied. Then, there exists a finite-dimensional LQG-based controller that stabilizes the ∞ -dimensional Oseen system with a robustness margin with respect to coprime factor perturbations.

On the convergence of the boundary control operator

- We relax the Dirichlet control $v\big|_{\Gamma_c} = g_c u \varepsilon (\frac{1}{Re} \frac{\partial v}{\partial n} pn)$
- The input operator: we formally define

$$\langle Bu, w \rangle = -\frac{1}{\varepsilon} \int_{\Gamma_c} n g_c w \, ds \cdot u, \quad w \in \mathcal{H}_{df}$$

- $B: \mathbb{R}^p \to L^2(\Omega)$ is unbounded but ΠB is bounded
 - → Π is the continuous Leray-projector
- We have that $\mathcal{H}_{df}^{N} \to \mathcal{H}_{df}$, but "in" the L^{2} space.
 - → the convergence of

$$\Pi^N B^N u = Bu \big|_{\mathcal{H}_{df}^N} \to Bu \big|_{\mathcal{H}_{df}} = \Pi Bu$$

is not immediate.

Conclusion and Outlook

- Observer-based controllers are fragile
- For Oseen equations the fragility comes from uncertainties through the linearization point or approximation
 - → which are coprime factor perturbations
 - → need particular robustification
 - Curtain/Zwart robustification did not work out of the box
- Sufficient conditions for the existence of robustified controllers for the Oseen system
- Future work:
 - close gaps in theory:
 - → adapt results from [Badra'06]
 - → design and test robust controllers

Thank you for your attention!

Questions? Now or anytime later...

heiland@mpi-magdeburg.mpg.de www.janheiland.de github.com/highlando

M. Badra.

Stabilisation par Feedback et Approximation des Equations de Navier-Stokes.

PhD thesis, Université Paul Sabatier, Toulouse, 2006.

E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt.

Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows.

SIAM J. Sci. Comput., 37(2):A832-A858, 2015.

P. Benner and J. Heiland.

LQG-Balanced Truncation low-order controller for stabilization of laminar flows.

In R. King, editor, *Active Flow and Combustion Control 2014*, volume 127 of *Notes on Numerical Fluid Mechanics and Multidisciplinary Design*, pages 365–379. Springer, Berlin, 2015.

P. Benner and J. Heiland.

Robust stabilization of laminar flows in varying flow regimes.

IFAC-PapersOnLine, 49(8):31 – 36, 2016.

2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2016, Bertinoro, Italy, 13-15 June 2016.

P. Benner and J. Heiland.

Convergence of approximations to Riccati-based boundary-feedback stabilization of laminar flows.

In To be presented at the 2017 IFAC World Congress in Toulouse in July, 2017.

T. Breiten and K. Kunisch.

Riccati-based feedback control of the monodomain equations with the Fitzhugh–Nagumo model.

SIAM J. Cont. Optim., 52(6):4057-4081, 2014.

R. F. Curtain.

Model reduction for control design for distributed parameter systems.

In R. Smith and M. Demetriou, editors, *Research Directions in Distributed Parameter Systems*, pages 95–121. SIAM, Philadelphia, PA, 2003.

R. F. Curtain and H. Zwart.

An Introduction to Infinite-Dimensional Linear Systems Theory, volume 21 of Texts in Applied Mathematics.

Springer-Verlag, New York, 1995.

V. Girault and P.-A. Raviart.

Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin, Germany, 1986.

K. Ito.

Strong convergence and convergence rates of approximationg solutions for algebraic Riccati equations in Hilbert spaces.

In Distributed parameter systems, Proc. 3rd Int. Conf., Vorau/Austria, pages 153–166, 1987.

J.-P. Raymond.

Local boundary feedback stabilization of the Navier-Stokes equations.

In Control Systems: Theory, Numerics and Applications, Rome, 30 March – 1 April 2005, Proceedings of Science. SISSA, 2005.

Available from http://pos.sissa.it.

J.-P. Raymond.

Feedback boundary stabilization of the two-dimensional Navier–Stokes equations. *SIAM J. Cont. Optim.*, 45(3):790–828, 2006.

Sufficient Conditions

Ideas of the proof:

- 1. Let $v \in \mathcal{H}_{df}$, then $P^N v = v_{df}^N + v_c^N$, where $v_{df}^N = R^N v \in \mathcal{H}_{df}^N$ and $v_c^N \in (\mathcal{H}_{df}^N)_{\perp}$.
- 2. We have $\operatorname{div}^N v = 0$ and $\operatorname{div}^N (R^N v) = 0$ (since $v \in \mathcal{H}_{\operatorname{df}}$ is, in particular, discretely div-free)
- 3. so that $\operatorname{div}^N(v P^N v) = \operatorname{div}^N(v R^N v v_c^N) = -\operatorname{div}^N v_c^N$.
- 4. by LBB-stability, div^N has a uniformly bounded right inverse¹:

$$||v_{c}^{N}|| \le \eta ||I - P^{N}|| ||v||$$

5.
$$||R^N v|| = ||P^N v - v_c^N|| \le ||P^N v|| + ||v_c^N|| \le (1+\eta)||v||$$
.

¹[Girault&Raviart '86]