

Datasheet V1.6

confidential information preliminary specification

1 INTRODUCTION

GNS410sLP / GNS413sLP module provide a high performance and super low power multi-GNSS solution in a small form factor.

GNS410sLP / **GNS413sLP** integrate a complete GNSS receiver enabling RF to NMEA solutions that minimize the load on the host processor.

Features

- High performance small GNSS module for power critical applications
- GNSS tracking&navigation sensitivity: -161dBm
- Low load on host CPU
- Standard NMEA0183 interface
- Precision PPS Output
- Low power consumption (22.5mW at GPS 8-ch tracking)
- I/O voltages 1.8V (GNS410sLP) or 3.3V (GNS413sLP)
- Core voltage 1.8V
- Miniature 36 pin module (10x9.3x2.0) mm
- Evaluation Boards:
 - o GNS41x Starter Kit for testing on a PC

Applications

- Navigation
 - o In-vehicle Navigation equipment
 - Dynamic Navigation
 - Portable ("nomadic") devices
 - Netbooks, tablet PCs and mobile phones
- Timing
 - Precision timing via GNSS
- Location based applications
 - o GPS Logger
 - o GPS Tracker
 - o Security devices
 - o Camera equipment

Datasheet V1.6

confidential information preliminary specification

2 INDEX

1	INTRODUCTION -		1
3	DETAILED FEATU	RES	3
	3.1 Block diagra	ກ	3
	3.2 GNSS Featur	es	3
4	TYPICAL APPLICA	TION BLOCK DIAGRAM	4
5	SYSTEM REQUIR	EMENTS	4
	5.1 Real time clo	ck (RTC)	4
	5.2 I/O levels		4
6	DESCRIPTION OF	FUNCTIONS	5
	6.1 Supported S	atellite Systems	-5
		teristics	
	6.3 Power-on re	set	-6
	6.4 RTC clock 6.5 Interface		-6
	6.6 Pulse Per Se	cond (1PPS)	-, -7
	6.7 Fix Available		7
	6.8 GPS Power N	lanagement	8
	6.9 GPS Antenna		9
7	ELECTRICAL CHA	RACTERISTICS:	Ι0
	7.1 Absolute Ma	kimum Ratings	10
	7.2 Recommend	ed Operating Conditions	10
	7.3 DC Characte	ristics Digital IO	10
	7.4 DC Characte	ristics Analog IO	11
	7.5 Current Cons 7.6 RF IN input	characteristics	11
	7.7 RTC Clock ch	aracteristicsaracteristics	11
R		DIAGRAM:	
	8.1 Pin Descripti	DIAGRAM	13
	HARDWARE HOS	T INTERFACE:	14
	9.1 GPS UART In	terface details	14
	9.2 GPS UART A	C characteristics	14
1(0 NMEA DATA		15
1	1 PHYSICAL DIME	NSIONS	16
13	2 RECOMMENDED	PAD LAYOUT:	. 7
11	3 MATERIAL INFO	RMATION:	. , 1 7
Ι.	13.1 Shield Mater	ial Information	⊥ / 17
1,	A DECOMMENDED	SOLDERING REFLOW PROFILE	1 Ω
1.	E TADE INICODMA	TION	10
1.	S TAPE INFORMA	TION	13
16	6 REEL INFORMA	ION	20
		DRMATION	
18	8 CUSTOMER SPE	CIFIC FACTORY OPTIONS & part# assignment	22
19	9 ENVIRONMENTA	AL INFORMATION	23
	19.1 Quality and	Environmental Specifications	24
20	0 DOCUMENT RE	ISION HISTORY	25
2:	1 PACKAGING		26
2	2 DELATED DOCL	MENTC	7

Datasheet V1.6

confidential information preliminary specification

3 DETAILED FEATURES

3.1 Block diagram

3.2 GNSS Features

- A multi-GNSS receiver for GPS, GLONASS, SBAS, QZSS, BeiDou and Galileo
- Ultra-low power consumption
- Embedded NVM (8 Mbit MRAM), no backup battery needed
- Standard NMEA output
- Precision 1PPS output
- GNSS Fix indication output pin

Datasheet V1.6

confidential information preliminary specification

4 TYPICAL APPLICATION BLOCK DIAGRAM

Host System

5 SYSTEM REQUIREMENTS

GNS41xsLP includes a complete GNSS engine.

- GNSS is fully processed without any host processing requirements
- Standard NMEA message output from the solution to the host
- RTC crystal clock (32.768kHz) should be applied externally.

5.1 Real time clock (RTC)

RTC counter maintains GNSS time and is used for the system wakeup/sleep timer function. Its clock sources are the internal RC oscillator or the RTC CLKI pin with 32.768 kHz. See chapter 7.7 RTC Clock characteristics for more details.

5.2 I/O levels

GNS41xsLP core works at 1.8V nominal. I/O section works on either 1.8V (GNS410sLP) or 3.3V (GNS413sLP). Absolute Maximum Ratings should not be exceeded.

Digital pins are in failsafe mode when the interface (VDD_IO and VCORE) power is not supplied (VBAT power must be less than 50 mV. Hi-Z is NOT acceptable). If the pins are in failsafe mode and connected to 1.95 V, protection circuits prevent any unwanted leak current from the pins.

Datasheet V1.6

confidential information preliminary specification

6 DESCRIPTION OF FUNCTIONS

6.1 Supported Satellite Systems

• GPS (L1 C/A)	 GLONASS (L1-OF) 	• QZSS (L1-CA) • QZSS (L1-S)
• SBAS	 BEIDOU (B1)1 	GALILEO (E1 CBOC)1

It is not possible to receive all satellite systems at the same time. Therefore only a selection from one of the following 3 groups can be made at a time:

Group 1: GPS + GALILEO + GLONASS + SBAS + QZSS(L1-CA/L1-S) Group 2: GPS + GALILEO + BEIDOU + SBAS + QZSS(L1-CA/L1-S) Group 3: GPS + GALILEO + GLONASS + BEIDOU + QZSS(L1-CA)

Furthermore, only one system from GLONASS, BEIDOU and GALILEO can be selected within a group besides GPS.

In the default version, the GNS41xsLP is delivered with the combination **GPS & GLONASS & SBAS**.

6.2 GNSS characteristics									
	Position Accuracy								
Item	GPS	GPS & GLONASS	Unit	Remarks					
2DRMS	1.0	1.0	m	Signal strength is -130 dBm					
		Time-To-First-Fix (TTFF)						
Item GPS		GPS & GLONASS	Unit	Remarks					
Cold Start 35		35	S	Signal strength is -130 dBm					
Hot Start	2	2	S						
		Sensitivity							
Item	GPS	GPS & GLONASS	Unit	Remarks					
Cold Start -147		-147	dBm						
Hot Start -160 -160		-160	dBm						
Tracking -161 -161		-161	dBm						

Noise Filter

An embedded noise filter for GNSS signals. It is automatically enabled at the optimum settings for the input noise.

RF Performance								
Item Min. Typ. Max Unit Remarks								
Total NF		3		dB				

Datasheet V1.6

confidential information preliminary specification

6.3 Power-on reset

An internal power-on reset circuit enables autonomous startup without external reset control by the system. To avoid malfunction in boot-up, power-off state must be more than 100 ms. The internal reset is generated from the power-on reset & the externa reset (the NRESET pin).

6.4 RTC clock

RTC counter maintains GNSS time and is used for the system wakeup/sleep timer function. Its clock sources are the internal RC oscillator **or** the RTC_CLK pin with 32.768 kHz.

Because the clock from the RC oscillator is calibrated for the RTC counter but it may have frequency drift by temperature during sleep states, the sleep time also may be drifted. Below figure shows the frequency drifts by temperature around 25 °C at stabled input voltage.

It is recommended to use the external crystal RTC_CLK to reduce the temperature dependence of the RTC counter.

Datasheet V1.6

confidential information preliminary specification

6.5 Interface

The UART interface consists of the connections UART_TX, UART_RX and UART_CTS. The UART interface is used to output NMEA data and to exchange commands and system settings. The interface voltage of the UART interface is VDD_IO (GNS410sLP: 1.8V / GNS413sLP: 3.3V).

6.6 Pulse Per Second (1PPS)

GNS41xsLP provides a so called Pulse Per Second (PPS) for timing purposes. After calculation of a 3D position fix, the PPS signal is accurately aligned to the GPS seconds boundaries. The pulse generated is approximately 1 millisecond in duration and the repetition rate is 1 second.

T1 = 1ms T2 = 1sec

6.7 Fix Available

The FIX_AVAILABLE signal is used to indicate the availability of GPS position information. This is typically used to drive an LED buffer so that the state of the device can be easily indicated. The table below lists the various states.

Fix Available Signal							
State	Indication						
Initial boot up	low						
acquisition	low						
position fix	continuously high						

Datasheet V1.6

confidential information preliminary specification

6.8 GPS Power Management

6.8.1 State Transition

There are some states in the GNS41xsLP operations as shown in the following diagram

	GNS41xsLP								
State	GNSS	CPU	Always-on block	Backup RAM	Main RAM				
S0: Exec	Operation	Operation	Operation	Hold	Hold				
S1: Idle	Standby	Operation	Operation	Hold	Hold				
S2: Sleep0	Power-off	Power-off	Operation	Hold	Hold				
S3: Sleep1	Power-off	Power-off	Operation	Hold	Power-off				
S4: Sleep2	Power-off	Power-off	Operation	Power-off	Power-off				

6.8.2 State Description

S0: Exec

GNSS positioning can be performed.

S1: Idle

This is a command waiting state. The system can accept commands but power consumption is managed to be low.

S2: Sleep0

The GNS41xsLP holds program code, data and satellite date but other logic circuit is powered off. The GNS41xsLP can wake up from this state without loading the data from an embedded NVRAM or an external FLASH memory or the system MCU.

S3: Sleep1

Because the GNS41xsLP holds satellite data only in this state, it must load program data from an embedded NVRAM or an external FLASH memory or the system MCU for wake-up but it can get a position with hot start.

S4: Sleep2

In this state, the GNS41xsLP is powered off except an internal PMU and always-on block.

Datasheet V1.6

confidential information preliminary specification

6.9 GPS Antenna

GNS41xsLP contains all input circuitry needed to connect a passive GPS antenna directly. Depending on the application patch- or chip antennas or combo antennas (combination of GPS and Bluetooth) can be used. However, if there is a long wire between RF_IN RF input and antenna, there should be an LNA (on the antenna side) to compensate for cable losses ("active" antenna). For active antenna configuration, the antenna supply DC must be blocked from the antenna signal line with a inductor **L** of 100nH and a 100pF capacitor **C** as shown in the diagram below.

More information about connecting and implementing a GPS antenna to an application PCB, please refer to **GPS Antenna Connection Design Guide.**

Datasheet V1.6

confidential information preliminary specification

7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Ratings								
Item		Min.	Typ.	Max.	Unit	Remarks		
VCODE valtage	GNS410sLP	-0.30		2.20	V			
VCORE voltage	GNS413sLP	-0.30		2.20	V			
VDD IO voltage	GNS410sLP	-0.30		2.50	V			
VDD_IO voltage	GNS413sLP	-0.30		3.80	V			
RF_IN input power				0	dBm			
Digital input voltage		-0.30		VDD_IO + 0.30	V			
Analog input voltage		-0.30		VCORE + 0.30	V			
Storage temperature		-65		150	°C			
Magnetic field strength				1400	mT			
		_						

7.2 Recommended Operating Conditions Item Min. Typ. Max. Unit Remarks										
	GNS410sLP					Kemarks				
/CORE voltage	GNS413sLP	1.71	1.80	1.89	V					
	GNS410sLP	1.65	1.80	1.95	V					
VDD_IO voltage	GNS413sLP	3.00	3.30	3.60	V					
Drivability	GNS410sLP	1.65	1.00	1.05						
VCORE)	GNS413sLP	1.65	1.80	1.95	V					
Drivability	GNS410sLP	1.65	1.80	1.95	V					
(VDD_IO)	GNS413sLP	3.00	3.30	3.60	V					
Operating temperature		-40	25	85	°C					
Magnetic field strength				45	mT	@ 25°C				
		•		20	mT	@ 105°C				

7.3 DC Characteristics Digital IO										
It	em	Symbol	Min.	Тур.	Max.	Unit	Remarks			
Input voltage	H level	VIH	0.7 x VDD_IO		$VDD_IO + 0.3$	V				
	L level	VIL	-0.3		0.3 x VDD_IO	٧				
Output voltage	H level	Vон	0.8 x VDD_IO			V				
	L level	Vol			0.2 x VDD_IO	V				
Drivability	H level @Voн (min)	Іон	2			mA				
(VDD_IO)	L level @Vol (max)	IoL	2			mA				
Drivability	H level @Voн (min)	Іон	2			mA				
(VCORE)	L level @Vol (max)	Iol	2			mA				

Datasheet V1.6

confidential information preliminary specification

7.4 DC Characteristics Analog IO									
Item	Symbol	Min.	Тур.	Max.	Unit	Remarks			
Input voltage	VI			VCore	٧				
Output voltage	Vo			VCore	V				

7.5 Current Consumption (Core)								
Item	State	Symbol	Min.	Typ.	Max.	Unit	Remarks	
Max load		MAX			50	mA		
Satellite acquisition	CO . Even	GNSACQ		19		mA		
Satellite tracking	S0 : Exec	GNSTRK		12	18	mA	GPS 8-ch tracking	
Idle	S1 : Idle	IDLE		3		mA	Waiting for command	
Sleep0	S2: Sleep0	SLP0		0.3	3	mA		
Sleep1, Sleep2 w/ ext. RTC clock	2 w/	S3: Sleep1, SLP1,		0.04	0.5			
Sleep1, Sleep2 w/o ext. RTC clock	S4 : Sleep2	SLP ₂		0.07		mA		

7.6 RF_IN input characteristics									
Parameter Min Typ Max Unit Note									
Input impedance		59.2 - j10.5		Ω	@ 1.575 GHz				
Maximum input level	0			dBm	before destruction				
Input return loss	-10			dB					

7.7 RTC Clock characteristics						
Item	Symbol	Min.	Typ.	Max.	Unit	
Input Frequency	F _{in}	-	32.768	-	kHz	
Frequency Tolerance	F _{IN T}	-300	-	300	ppm	
Duty Cycle	D _C	5	-	95	%	
RTC_CLK HIGH Voltage		0.7 x Vcore	-	Vcore + 0.3	V	
RTC_CLK LOW Voltage		-0.3	-	0.3 x Vcore	V	

Datasheet V1.6

confidential information preliminary specification

8 <u>DEVICE PINOUT DIAGRAM</u>

TOP VIEW

F	VCORE	VDD_IO	UART_TX	UART_RX	NRESET	RTC_CLKI
E	TCXO_CLKO	GND	UART_CTS	NU_4E	NU_5E	NU_6E
D	NU_1D	NU_2D	GND	NU_4D	NU_5D	NU_6D
С	NU_1C	NU_2C	GND	NU_4C	NU_5C	NU_6C
В	NU_1B	NU_2B	NU_3B	NU_4B	NU_5B	1PPS_OUT
A	NU_1A	RF_GND	RF_IN	RF_GND	FIX_AVAILABLE	BOOT_REC
	1	2	3	4	5	6

Datasheet V1.6

confidential information preliminary specification

		8.1 Pir	n Description
NO	NAME	TYPE ¹	DESCRIPTION
	IVAPIL	1175	Power-Management Signals
		1	GNS410sLP: 1.8V I/O power supply voltage
2F	VDD_IO	P	GNS413sLP: 3.3V I/O power supply voltage
1F	VCORE	P	1.8V main power supply voltage (GNSS core voltage)
11	VCORE	<u>'</u>	1.00 main power supply voltage (GNSS core voltage)
3D	GND	P	Common Ground
2E	GND	P	Common Ground
3C	GND	P	Common Ground
	1	i ·	Clock Signals
1E	TCXO_CLKO	O2	TCXO_CLK signal output. This Pin delivers the high stable TCXO frequency of 26.000 MHz for external components. Although the output is buffered, do not load this pin below 20kOhms // 10pF (TBD). Leave open if not used.
6F	RTC_CLKI	I2	Clock input: 32.768 kHz. External input for internal RC oscillator. The RTC_CLKI should be tied with GND if an external RTC clock isn't used.
			GPS Signals
3A	RF_IN	ANA	GNSS RF Input, direct connection of passive or active GNSS antenna
2A	RF_GND	ANA	GNSS RF Ground
4A	RF_GND	ANA	GNSS RF Ground
6B	1PPS_OUT	01	This output delivers a high-precision pulse-per-second signal that is synchronized to the GNSS time reference. The pulse precision is better than 1*10 ⁻⁷ seconds. Leave open if not used.
6A	BOOT_REC	I2	BOOT Recovery Pin. The pin is used to start the internal bootloader. Tie to GND during normal operation.
5A	FIX_AVAILABLE	01	This pin indicates a fix position. Leave open if not used.
5F	NRESET	I2	Reset input, LOW active. Pull up (or leave open) during operation.
	•		UART
3F	UART_TX	01	Main UART TX.
4F	UART_RX	I1	Main UART RX.
3E	UART_CTS	I1	Main UART CTS.
			NOT USED PINS
1A	NU_1A		Not used , internally not connected
1B	NU_1B		Not used , internally not connected
1C	NU_1C		Not used , internally not connected
1D	NU_1D		Not used , internally not connected
2B	NU_2B		Not used , internally not connected
2C	NU_2C		Not used , internally not connected
2D	NU_2D		Not used , internally not connected
3B	NU_3B		Not used , internally not connected
4B	NU_4B		Not used , internally not connected
4C	NU_4C		Not used , internally not connected
4D	NU_4D		Not used , internally not connected
4E	NU_4E		Not used , internally not connected
5B	NU_5B		Not used , internally not connected
5C	NU_5C		Not used , internally not connected
5D	NU_5D		Not used , internally not connected
5E	NU_5E		Not used , internally not connected
6C	NU_6C		Not used , internally not connected
6D	NU_6D		Not used , internally not connected
6E	NU_6E		Not used , internally not connected

⁽¹⁾ I1 = INPUT (VDD_IO DOMAIN); I2 = INPUT (VCORE DOMAIN); O1 = OUTPUT (VDD_IO DOMAIN); O2 = OUTPUT (VCORE DOMAIN); $P = POWER\ PIN$; ANA = ANALOG PIN.

Datasheet V1.6

confidential information preliminary specification

9 HARDWARE HOST INTERFACE

GNS41xsLP is connected to the host system via a UART. NMEA data but also commands and responses are transmitted via this interface.

The interface voltage domain is VDD_IO.

The idle state of the lines is positive voltage. To interface a standard RS232 UART (e.g. a PC serial interface), please add an inverting level shifter. To interface processors that have a different interfacing voltage level, level shifters are required.

9.1 GPS UART Interface details

- The UART interface is used to send NMEA messages and control data.
- The default baud rate is 9600, other baud rates can be selected by ordering option.

GPS UART Default Settings				
Parameter	Value			
Baud rate	9600			
Data length	8 bits			
Stop bit	1			
Parity	None			

9.2 GPS UART AC characteristics

GPS UART Error Tolerance						
Item	Symbol	Min.	Typ.	Max	Unit	Remarks
UART Error Rate (except TX @ 115.2 kbps)	RBRT_ERR	-1		1	%	Terr_tx / trate_ideal Terr_rx / trate_ideal
UART Error Rate (TX @ 115.2 kbps)	RBRT_ERR_FD_TX	-4		4	%	Terr_TX / trate_ideal

Datasheet V1.6

confidential information preliminary specification

10 NMEA DATA

The GNS41xsLP outputs below sentences of NMEA0183 (ver.4.00) compliant sentences. All active NMEA sentences are sent at the selected rate

	NMEA available sentences					
Header	Talker ID *Note1	Type		Content *Note2		
	GP: Using only GPS for positioning GL: Using only GLONASS for positioning GA: Using only Galileo for positioning BD: Using only BeiDou for positioning GQ: Using only QZS for positioning GN: Using combined satellite systems for positioning	RMC		Recommended Minimum Navigation Information		
	GP	GGA		Global Positioning System Fix Data, Time, Position and fix related data for a GPS receiver		
	GP: Using only GPS for positioning GL: Using only GLONASS for positioning GA: Using only Galileo for positioning BD: Using only BeiDou for positioning GQ: Using only QZS for positioning	GSV		Satellites in view		
\$	GP: Using only GPS for positioning GL: Using only GLONASS for positioning GA: Using only Galileo for positioning BD: Using only BeiDou for positioning GQ: Using only QZS for positioning GN: Using combined satellite systems for positioning	GLL		Geographic Position - Latitude/Longitude		
	GP: Using only GPS for positioning GL: Using only GLONASS for positioning GA: Using only Galileo for positioning BD: Using only BeiDou for positioning GQ: Using only QZS for positioning GN: Using combined satellite systems for positioning	GSA		GPS DOP and active satellites		
	GP: Using only GPS for positioning GL: Using only GLONASS for positioning GA: Using only Galileo for positioning BD: Using only BeiDou for positioning GQ: Using only QZS for positioning GN: Using combined satellite systems for positioning	VTG		Track made good and Ground speed		

Note1: The Talker ID depends on the preset and currently receivable satellite systems.

Note2: For more detailed information on the individual sentences please refer to the NMEA specification.

Datasheet V1.6

confidential information preliminary specification

11 PHYSICAL DIMENSIONS

TOP VIEW

all units in mm tolerance : ±0.1mm for <5mm, ±0.2mm for ≥5mm

Datasheet V1.6

confidential information preliminary specification

12 RECOMMENDED PAD LAYOUT

all units in mm

13 MATERIAL INFORMATION

Contact surface : gold over nickel

13.1 Shield Material Information

"German Silver ", CuNi18Zn27

Cu: 53.5..56.5% Ni: 16.5..19.5% Zn: 24..30% thickness: 0.2mm

Datasheet V1.6

confidential information preliminary specification

14 RECOMMENDED SOLDERING REFLOW PROFILE

Notes:

- 1. GNS41xsLP should be soldered in upright soldering position. In case of head-over soldering, please prevent shielding / GNS41xsLP Module from falling down.
- 2. Do never exceed maximum peak temperature
- 3. Reflow cycles allowed: 1 time
- 4. Do not solder with Pb-Sn or other solder containing lead (Pb)
- 5. This device is not applicable for flow solder processing
- 6. This device is not applicable for solder iron process

Datasheet V1.6

confidential information preliminary specification

15 TAPE INFORMATION

Åo	9.80	+/-	0.1
Во	10.50	+/-	0.1
Ko	2.40	+/-	0.1
F	11.50	+/-	0.1
P1	12.00	+/-	0.1
W	24.00	+/-	0.3

Forming format : Flatbed Estimated max. length : 60 meter/22B3 reel

- (1) Measured from controline of eprocket hole
- (11)
- measured from centraline at sprocess. to centraline of pocket.

 Sumulative tolerance of 10 sprocket hales is ± 0.20.

 Measured from centreline of sprocket hole to centreline of pocket.

 Other material available.
- ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Datasheet V1.6

confidential information preliminary specification

16 REEL INFORMATION

no. of devices: 2000 pcs / reel

Datasheet V1.6

confidential information preliminary specification

17 ORDERING INFORMATION

Ordering information						
Туре	Part#	Laser marking	Description			
GNS410sLP	4037735106147	GNS410sLP yy cw <serial#></serial#>	GNSS Module (VDD_IO = 1.8V) with standard options as defined default in chapter 19			
GNS413sLP	4037735106161	GNS413sLP yy cw <serial#></serial#>	GNSS Module (VDD_IO = 3.3V) with standard options as defined default in chapter 19			
GNS410sLP _ <options></options>	40377351xxxxx	GNS410sLP yy cw xxxxx <serial#></serial#>	GPS Module with user defined options. Part# will be assigned individually. See chapter 19 for option details.			
GNS413sLP _ <options></options>	40377351xxxxx	GNS413sLP yy cw xxxxx <serial#></serial#>	GPS Module with user defined options. Part# will be assigned individually. See chapter 19 for option details.			

Datasheet V1.6

confidential information preliminary specification

18 CUSTOMER SPECIFIC FACTORY OPTIONS & part# assignment

Some features of GNS41xsLP are factory presets, that should be added to your order information. Customers should define the options with the help of the following options table.

In case of an order, GNS will assign a new part#, then. This part# is valid for all following orders.

	Customer specific ordering options						
Туре	Default Value	options	Short	note			
UART baudrate	9,600 baud	Baud=9600bps Baud=19200bps Baud=38400bps Baud=57600bps Baud=115200bps Baud=230400bps Baud=460800bps	9 19 38 57 115 230 460	The serial output baud rate.			
GPS output rate	1 second	Rate is x seconds (x=1,2,3,4,5,10, 30,60)	R <x></x>	This option is useful to optimize transfer times by lowering the rate of NMEA messages. Has no influence on the GPS engine activity.			
NMEA selection	All 6 types	All combinations possible	RMC GGA GSV GLL GSA VTG	saving unused NMEAs. Please specify all types that should be available.			
GSV output rate	1	GSV=1 GSV=5	G1 G5	GSV rate can be selected as a multiple of the GPS output rate. This option is used to reduce average data transfer. G5 with a rate of 1 will produce GSV output every 5 seconds.			
Pulse per second output	active (on)	PPS on PPS off	/P	Activates or deactivates the hardware precision pulse per second. Since active is default, please define /P (no PPS) if PPS should not be available.			

Just replace <options> by the **Short** options given in the table below. Please use a semicolon ";" for separating the options.

Notes:

Datasheet V1.6

confidential information preliminary specification

You do not need to specify option values that are shown to be default.
 If you do not wish any customized options, the part# will be the above mentioned default: 4037735106147 resp. 4037735106161

For example, if you wish to have a baudrate of 115.2k, and only RMC (once per second) and GSV (every 5 seconds) as output data, please order as follows: **GNS410sLP 115;RMC;GSV;G5**

In another example, Baud Rate is 38400bps, all NMEA sentences except GSV and VTG should be sent at a rate of once per 5 seconds: **GNS410sLP 38;RMC;GGA;GLL;GSA;R5**

19 ENVIRONMENTAL INFORMATION

This product is free of environmental hazardous substances and complies to 2015/863/EU. (RoHS 3 directive).

RoHS 3
COMPLIANT
2015/863/EU

Datasheet V1.6

confidential information preliminary specification

19.1 Quality and Environmental Specifications

Test	Standard	Parameters
PCB Inspection	IPC-6012B, Class 2. Qualification and Performance Specification for Rigid Printed Boards - Jan 2007	
Assembly Inspection	IPC-A-610-D, Class 2 "Acceptability of electronic assemblies"	
Temperature Range	ETSI EN 300 019-2-7 specification T 7.3	-30 °C, +25 °C, +85 °C, operating
Damp Heat	ETSI EN 300 019-2-7 specification T 7.3	+70 °C, 80% RH, 96 hrs, non-operating
Thermal Shock	ETSI EN 300 019-2-7 specification T 7.3 E	-40 °C +85 °C, 200 cycles
Vibration	ISO16750-3	Random vibration, 10~1000Hz, 27.8m/s ² , 8hrs/axis, X, Y, Z 8hrs for each 3 axis non-operating
Shock	ISO16750-3	Half-sinusoidal 50g, 6ms, 10time/face, ±X, ±Y and ±Z non-operating
ESD Sensitivity	JEDEC, JESD22-A114 ESD Sensitivity Testing Human Body Model (HBM). Class 2	+2000V - Human hand assembly
1	JEDEC, JESD22-A115 ESD Sensitivity Testing Machine Model (MM), Class B	+250V - Machine automatic final assembly
Moisture/Reflow Sensitivity	IPC/JEDEC J-STD-020	MSL3
Ştorage (Dry Pack)	IPC/JEDEC J-STD-033C	MSL3
Solderability	EN/IEC 60068-2-58 Test Td	More than 90% of the electrode should be covered by solder. Solder temperature 245 °C \pm 5 °C

Moisture Sensitivity

GNS ships all devices dry packed in tape on reel with desiccant and moisture level indicator sealed in an airtight package. If on receiving the goods the moisture indicator is pink in color or a puncture of the airtight seal packaging is observed, then follow J-STD-033 "Handling and Use of Moisture/Reflow Sensitive Surface Mount Devices".

Storage (Out of Bag)

The GNS41xsLP modules meet MSL Level 3 of the JEDEC specification J-STD-020D – 168 hours Floor Life (out of bag) \leq 30 °C/60% RH. If the stated floor life expires prior to reflow process then follow J-STD-033 "Handling and Use of Moisture/Reflow Sensitive Surface Mount Devices".

Datasheet V1.6

confidential information preliminary specification

20 DOCUMENT REVISION HISTORY

V1.0	Mar 13 2020	M.Heinzel	initial
V1.1	Mar 18 2020	M.Heinzel	Corrections in feature list (page1) & chapter 7.5 (current consumption)
V1.2	Mar 26 2020	M.Heinzel	Corrections in chapter 7.2 (Recommended Operating Conditions) Corrections in chapter 3.1 (Block diagram)
V1.3	Apr 6 2020	M.Heinzel	Chapter 3.1 Block Diagram : LNA added Corrections in Chapter 7.1 Absolute Maximum Ratings Corrections in Chapter 9 Hardware Host Interface
V1.4	May 14 2020	M.Heinzel	Chapter 7.1 Vcore Voltage corrected Chapter 7.7 RTC Clock Characteristics added
V1.5	May 26 2020	M.Heinzel	Corrections in feature list (page1)
V1.6	Jun 9 2020	M.Heinzel	Chapter 6.1 Add. information to supported satellite systems

Datasheet V1.6

confidential information preliminary specification

21 PACKAGING

1 reel		
contents	2,000pcs	
GNS part#	2 x 6550000003	
•	1x 6550000011	
dimensions	dia: 330mm thickness:30.4mm	
gross weight	1.195 Kg	with full contents
net weight	0.246 Kg	
2 vacuum bag		
GNS part#	6550000006	
dimensions	400mm x 480mm	
gross weight	1.321 kg	with full contents
net weight	0.068 Kg	
air pressure level	<30mbar	
3 moisture indi	icator	
GNS part#	6550000008	
dimensions	76mm x 51mm	
weight	0.001 Kg	
4 dry pack		
GNS part#	6550000007	
dimensions	145mm x 140mm	
weight	0.068 Kg	
5 Box for reel		
GNS part#	6550000012	
dimensions	350 mm x 350mm x 47mm	
gross weight	1.5357 kg	with full contents
net weight	0.184 kg	
6 Outer box		
contents	max 7 box for reel	(14,000 pcs GNS41xsLP)
dimensions	400mm x 370mm x 360mm	
gross weight	11.6 kg	with full contents
net weight	0.85 kg	

Datasheet V1.6

confidential information preliminary specification

22 RELATED DOCUMENTS

Туре	description	Available from
GNS41xsLP design guide	Contains information about implementation of the module and antenna design	GNS - Electronics GmbH
GNS41xsLP_StarterKit_User manual	Hardware manual for the GNS Starter Kit	GNS - Electronics GmbH

© GNS-ELECTRONICS GMBH 2020

THE INFORMATION IN THIS DOCUMENTATION DOES NOT FORM ANY QUOTATION OR CONTRACT. TECHNICAL DATA ARE DUE TO BE CHANGED WITHOUT NOTICE.

NO LIABILITY WILL BE ACCEPTED BY THE PUBLISHER FOR ANY CONSEQUENCE OF THIS DOCUMENT'S USE. REPRODUCTION IN WHOLE OR IN PART IS PROHIBITED WITHOUT THE PRIOR WRITTEN CONSENT OF THE COPYRIGHT OWNER