Zu Abschnitt 6.1

Zu Abschnitt 6.1

- **6.1.1** Man zeige direkt (ohne Verwendung des Hauptsatzes der Differential- und Integralrechnung):
 - a) $t \mapsto t^2$ ist integrierbar auf [0,1], und $\int_0^1 t^2 dt = 1/3$.
 - b) $t \mapsto 1/t$ ist integrierbar auf [1, e], und $\int_1^e \frac{dt}{t} = 1$.
 - a) Sei $n\in\mathbb{N}$ beliebig, man definiere zwei Treppenfunktionen $\tau_1^{(n)}$ und $\tau_2^{(n)}$ durch

$$\tau_1^{(n)}: [0,1] \quad \to \quad \mathbb{R}$$

$$x \quad \mapsto \quad \left\{ \begin{array}{cc} (\frac{k}{n})^2 & \exists 0 \leq k \leq n-1 : x \in [\frac{k}{n}, \frac{k+1}{n}) \\ 1 & x = 1 \end{array} \right.$$

und

$$\tau_2^{(n)}: [0,1] \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} \left(\frac{k+1}{n}\right)^2 & \exists 0 \le k \le n-1 : x \in \left[\frac{k}{n}, \frac{k+1}{n}\right) \\ 1 & x = 1 \end{cases}$$

Man zeigt nun $\tau_1^{(n)} \leq f \leq \tau_2^{(n)}$ auf [0, 1], sei also $x \in [0, 1]$ beliebig, dann gilt

- Im Fall x=1 ist $\tau_1^{(n)}(1)=f(1)=\tau_2^{(n)}(1)=1$, also gilt die Behauptung.
- Im Fall x < 1 existiert genau ein $0 \le k \le n-1$ mit $x \in [\frac{k}{n}, \frac{k+1}{n})$, dann gilt $\frac{k}{n} \le x \le \frac{k+1}{n}$ und aufgrund der Monotonie der Quadratfunktion auch:

$$\tau_1^{(n)}(x) = (\frac{k}{n})^2 \le f(x) = x^2 \le \tau_2^{(n)}(x) = (\frac{k+1}{n})^2$$

Dies war aber die Behauptung.

Man bestimmt als nächstes die Integrale der Treppenfunktionen $\tau_1^{(n)}$ und $\tau_2^{(n)}$ über [0,1]:

$$\int_{0}^{1} \tau_{1}^{(n)}(t) dt = \sum_{k=0}^{n-1} \left[\left(\frac{k+1}{n} - \frac{k}{n} \right) \cdot \left(\frac{k}{n} \right)^{2} \right]$$

$$= \frac{1}{n^{3}} \cdot \sum_{k=0}^{n-1} k^{2}$$

$$= \frac{1}{n^{3}} \cdot \sum_{k=1}^{n-1} k^{2}$$

$$= \frac{1}{n^{3}} \cdot \frac{(n-1) \cdot n \cdot (2n-1)}{6}$$

$$= \frac{(1 - \frac{1}{n})(2 - \frac{1}{n})}{6}$$

$$\int_{0}^{1} \tau_{2}^{(n)}(t) dt = \sum_{k=0}^{n-1} \left[\left(\frac{k+1}{n} - \frac{k}{n} \right) \cdot \left(\frac{k+1}{n} \right)^{2} \right]$$

$$= \frac{1}{n^{3}} \cdot \sum_{k=0}^{n-1} (k+1)^{2}$$

$$= \frac{1}{n^{3}} \cdot \sum_{k=1}^{n} k^{2}$$

$$= \frac{1}{n^{3}} \cdot \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

$$= \frac{(1 + \frac{1}{n})(2 + \frac{1}{n})}{6}$$

Da f als stetige Funktion auf dem kompakten Intervall [0,1] beschränkt ist, existieren das Ober- und Unterintegral von f und es gilt $I_*(f) \leq I^*(f)$, weiterhin gilt aufgrund der Definition von Ober- und Unterintegral:

$$I_{*}(f) = \sup_{\substack{\tau \in \text{Tr}[0,1] \\ \tau \leq f}} \int_{0}^{1} \tau(t) \, dt$$

$$\geq \sup_{n \in \mathbb{N}} \int_{0}^{1} \tau_{1}^{(n)}(t) \, dt$$

$$= \sup_{n} \in \mathbb{N} \frac{(1 - \frac{1}{n})(2 - \frac{1}{n})}{6}$$

$$= \frac{1}{3}$$

$$I^{*}(f) = \inf_{\substack{\tau \in \text{Tr}[0,1] \\ \tau \geq f}} \int_{0}^{1} \tau(t) \, dt$$

$$\leq \inf_{n \in \mathbb{N}} \int_{0}^{1} \tau_{2}^{(n)}(t) \, dt$$

$$= \inf_{n} \in \mathbb{N} \frac{(1 + \frac{1}{n})(2 + \frac{1}{n})}{6}$$

$$= \frac{1}{3}$$

Zusammen gilt also $I^*(f) \leq \frac{1}{3} \leq I_*(f)$, wegen $I_*(f) \leq I^*(f)$ (dies gilt wegen Lemma 1.4 stets) folgt

$$I_*(f) = I^*(f) = \frac{1}{3}$$

also ist f auf [0,1] integrierbar mit $\int_0^1 t^2 dt = \frac{1}{3}$.

b) Man zeigt zunächst als Vorbereitung:

$$\forall x \in \mathbb{R} : e^x \ge 1 + x$$

Für x=0 gilt die Behauptung wegen ${\bf e}^0=1$, sei also $x\ne 0$, dann existiert nach dem Zwischenwertsatz ein ξ ziwschen 0 und x mit

$$e^{\xi} = \frac{e^x - 1}{x} \iff e^x = 1 + xe^{\xi}$$

Man unterscheidet nun zwei Fälle:

• x > 0Hier ist $\xi \in (0, x)$, also $\xi > 0 \Rightarrow e^{\xi} > 1$ und damit

$$e^x = 1 + xe^{\xi} > 0, e^{\xi} > 1 + x$$

• x < 0Hier gilt analog $\xi < 0, e^{\xi} < 1$, also

$$e^x = 1 + xe^{\xi} = 1 - (-x)e^{\xi^{-x}} > 0, e^{\xi} < 1$$

Das war aber zu zeigen.

Sei $n \in \mathbb{N}$ beliebig, betrachte die beiden Treppenfunktionen $\tau_1^{(n)}$ und $\tau_2^{(n)}$ definiert durch:

$$\begin{array}{cccc} \tau_1^{(n)}:[1,\mathrm{e}] & \to & \mathbb{R} \\ & x & \mapsto & \left\{ \begin{array}{ll} \mathrm{e}^{-\frac{k}{n}} & \exists 0 \leq k \leq n-1: x \in [\mathrm{e}^{\frac{k}{n}},\mathrm{e}^{\frac{k+1}{n}}) \\ \mathrm{e}^{-1} & x = \mathrm{e} \end{array} \right. \end{array}$$

und

$$\begin{array}{cccc} \tau_2^{(n)}: [1, \mathbf{e}] & \to & \mathbb{R} \\ & x & \mapsto & \left\{ \begin{array}{ll} \mathbf{e}^{-\frac{k+1}{n}} & \exists 0 \leq k \leq n-1: x \in [\mathbf{e}^{\frac{k}{n}}, \mathbf{e}^{\frac{k+1}{n}}) \\ \mathbf{e}^{-1} & x = \mathbf{e} \end{array} \right. \end{array}$$

Man zeigt nun $\tau_2^{(n)} \leq f \leq \tau_1^{(n)}$ auf [1, e], sei also $x \in [1, \mathrm{e}]$ beliebig, dann gilt

- Im Fall x = e ist $\tau_1^{(n)}(e) = f(e) = \tau_2^{(n)}(e) = \frac{1}{6}$, also gilt die Behauptung.
- Im Fall x < e existiert genau ein $0 \le k \le n-1$ mit $x \in [e^{\frac{k}{n}}, e^{\frac{k+1}{n}})$, da die Exponentialfunktion bijektiv und streng monoton steigend ist, dann gilt $e^{\frac{k}{n}} \le x \le e^{\frac{k+1}{n}}$ und damit der Exponentialfunktion auch:

$$\tau_2^{(n)}(x) = e^{-\frac{k+1}{n}} \le f(x) = \frac{1}{x} \le \tau_1^{(n)}(x) = e^{-\frac{k}{n}}$$

Dies war aber die Behauptung.

Man bestimmt als nächstes die Integrale der Treppenfunktionen $\tau_1^{(n)}$ und $\tau_2^{(n)}$ über [1, e]:

$$\int_{1}^{e} \tau_{1}^{(n)}(t) dt = \sum_{k=0}^{n-1} \left[\left(e^{\frac{k+1}{n}} - e^{\frac{k}{n}} \right) \cdot e^{-\frac{k}{n}} \right]$$

$$= \sum_{k=0}^{n-1} \left(e^{\frac{1}{n}} - 1 \right)$$

$$= n \cdot \left(e^{\frac{1}{n}} - 1 \right)$$

$$\int_{1}^{e} \tau_{2}^{(n)}(t) dt = \sum_{k=0}^{n-1} \left[\left(e^{\frac{k+1}{n}} - e^{\frac{k}{n}} \right) \cdot e^{-\frac{k+1}{n}} \right]$$

$$= \sum_{k=0}^{n-1} \left(1 - e^{-\frac{1}{n}} \right)$$

$$= n \cdot \left(1 - e^{-\frac{1}{n}} \right)$$

Aufgrund der Vorüberlegung gilt nun:

$$\int_{1}^{e} \tau_{1}^{(n)}(t) dt = n \cdot \left(e^{\frac{1}{n}} - 1\right)$$

$$\geq n \cdot \left(1 + \frac{1}{n} - 1\right)$$

$$= 1$$

$$\int_{1}^{e} \tau_{2}^{(n)}(t) dt = n \cdot \left(1 - e^{-\frac{1}{n}}\right)$$

$$\leq n \cdot \left(1 - 1 + \frac{1}{n}\right)$$

$$= 1$$

Weiter gilt mit Hilfe der Regel von l'Hôpital:

$$\lim_{n \to \infty} n \cdot (e^{\frac{1}{n}} - 1) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} \cdot (e^x - 1)$$

$$= \lim_{\substack{x \to 0 \\ x > 0}} \frac{e^x - 1}{x}$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{e^x}{1}$$

$$= 1$$

$$\lim_{n \to \infty} n \cdot (1 - e^{-\frac{1}{n}}) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} \cdot (1 - e^{-x})$$

$$= \lim_{\substack{x \to 0 \\ x > 0}} \frac{1 - e^{-x}}{x}$$

$$= \lim_{\substack{x \to 0 \\ x > 0}} \frac{1 - e^{-x}}{1}$$

$$= 1$$

Daraus und aus obiger Abschätzung für die Integrale von $\tau_1^{(n)}$ und $\tau_2^{(n)}$ folgt unmittelbar:

$$\inf_{n} \in \mathbb{N} \int_{1}^{e} \tau_{1}^{(n)}(t) dt = 1 = \sup_{n} \in \mathbb{N} \int_{1}^{e} \tau_{2}^{(n)}(t) dt$$

Für Ober- und Unterintegral der Funktion g ergibt sich nun:

$$I_*(g) = \sup_{\substack{\tau \in \mathrm{Tr}[1,e] \\ \tau \leq f}} \int_1^e \tau(t) \, dt$$

$$\geq \sup_{n \in \mathbb{N}} \int_1^e \tau_2^{(n)}(t) \, dt$$

$$= 1$$

$$I^*(g) = \inf_{\substack{\tau \in \mathrm{Tr}[1,e] \\ \tau \geq f}} \int_1^e \tau(t) \, dt$$

$$\leq \inf_{n \in \mathbb{N}} \int_1^e \tau_1^{(n)}(t) \, dt$$

$$= 1$$

Also gilt $I_*(g) \geq 1 \geq I^*(g)$, nach Lemma 1.4 gilt aber $I_*(g) \leq I^*(g)$, also gilt $I_*(g) = I^*(g) = 1$, i.e. g ist integrierbar auf [1,e] und es gilt $\int_1^e \frac{dt}{t} = 1$. Das war aber zu zeigen.

6.1.2 Man zeige, dass

$$t \mapsto \left\{ \begin{array}{ll} t & \text{ falls } t \text{ rational} \\ 0 & \text{ falls } t \text{ irrational} \end{array} \right.$$

nicht integrierbar auf $[\,0,1\,]$ ist.

Nach Lemma 1.4(ii) ist nur zu zeigen:

$$\exists \varepsilon > 0 \ \forall \tau_1, \tau_2 \in \text{Tr}[0, 1] : \tau_1 \le h \le \tau_2 \Rightarrow \int_0^1 (\tau_2 - \tau_1)(t) \ dt > \varepsilon$$

Wähle $\varepsilon := \frac{1}{5}$, seien $\tau_1, \tau_2 \in \text{Tr}[0, 1]$ mit $\tau_1 \leq h \leq \tau_2$.

von $\tau_1(t)$ auf diesem Intervall mit c_k bezeichnet.

• Man zeigt zunächst: $\int_0^1 \tau_1(t) dt \le 0$: Da τ_1 n.V. eine Treppenfunktion ist, kann man $n \in \mathbb{N}$ und $0 = x_0 < x_1 < \cdots < x_n = 1$ so wählen, daß τ_1 für $0 \le k \le n-1$ auf (x_k, x_{k+1}) konstant ist, sei der Wert Für alle $0 \le k \le n-1$ existiert nun aber aufgrund der Dichtheit der irrationalen Zahlen in \mathbb{R} eine irrationale Zahl r so, daß $x_k < r < x_{k+1}$, wegen $\tau_1 \le h$ folgt $c_k = \tau_1(r) \le h(r) = 0$, da r irrational ist.

Man erhält nun:

$$\int_{0}^{1} \tau_{1}(t) dt = \sum_{k=0}^{n-1} c_{k}(x_{k+1} - x_{k})$$

$$\leq \sum_{k=0}^{n-1} 0 \cdot (x_{k+1} - x_{k})$$

$$= 0$$

Das war aber zu zeigen.

• Nun zeigt man: $\int_0^1 \tau_2(t) dt \ge \frac{1}{4}$:

Auch für τ_2 existiert n.V. ein $n \in \mathbb{N}$ und $0 = x_0 < x_1 < \cdots < x_n = 1$, so daß τ_2 für alle $0 \le k \le n-1$ auf (x_k, x_{k+1}) konstant gleich $c_k \in \mathbb{R}$ ist. O.E. gebe es ein $0 < k_0 < n$ mit $x_{k_0} = \frac{1}{2}$ (kann durch Einfügen eines weiteren Unterteilungspunktes stets erreicht werden.

Wegen $\tau_2 \ge h \ge 0$ n.V., gilt für alle k: $c_k \ge 0$, weiterhin existiert aber zu jedem $k_0 \le k \le n-1$ eine rationale Zahl r mit $x_{k_0} \le x_k < r < x_{k+1}$ ($\mathbb Q$ ist dicht in $\mathbb R$), also gilt:

$$c_k = \tau_2(r) \ge h(r) = r \ge x_{k_0} = \frac{1}{2}$$

somit ergibt sich:

$$\int_{0}^{1} \tau_{2}(t) dt = \sum_{k=0}^{n-1} c_{k}(x_{k+1} - x_{k})$$

$$= \sum_{k=0}^{k_{0}-1} c_{k}(x_{k+1} - x_{k}) + \sum_{k=k_{0}}^{n-1} c_{k}(x_{k+1} - x_{k})$$

$$\geq \sum_{k=0}^{k_{0}-1} 0 \cdot (x_{k+1} - x_{k}) + \sum_{k=k_{0}}^{n-1} \frac{1}{2}(x_{k+1} - x_{k})$$

$$= \frac{1}{2} \sum_{k=k_{0}}^{n-1} (x_{k+1} - x_{k})$$

$$\stackrel{\text{Teleskopsumme}}{=} \frac{1}{2}(x_{n} - x_{k_{0}})$$

$$= \frac{1}{2} \cdot \left(1 - \frac{1}{2}\right)$$

$$= \frac{1}{4}$$

Man erhält also, da die Integration auf dem Vektorraum der Treppenfunktionen über [0,1] eine lin. Abbildung ist:

$$\int_{0}^{1} (\tau_{2} - \tau_{1})(t) dt = \int_{0}^{1} \tau_{2}(t) dt - \int_{0}^{1} \tau_{1}(t) dt$$

$$\geq \frac{1}{4} - 0$$

$$= \frac{1}{4} > \frac{1}{5} = \varepsilon$$

Das war aber zu zeigen, somit ist h nach Lemma 1.4(ii) über [0,1] nicht intgrierbar.

- **6.1.3** Wir haben bewiesen, dass Tr[a,b] (a < b) ein Vektorraum ist.
 - a) Man zeige, dass Tr[a,b] unendlich-dimensional ist.

- b) Zeigen Sie, dass mit $f, g \in \text{Tr}[a, b]$ auch $f \cdot g$ in Tr[a, b] liegt. Es seien $a, b \in \mathbb{R}$ mit a < b beliebig, dann:
 - a) Um zu zeigen, daß $\mathrm{Tr}[a,b]$ unendlichde
imensional ist, reicht es zu zeigen, daß $\mathrm{Tr}[a,b]$ eine unendliche linear unabhängige Teilmenge hat, betrachte dazu zu $n\in\mathbb{N}$ die Treppenfunktion $\tau_n\in\mathrm{Tr}[a,b]$ definiert durch:

$$\tau_n : [a, b] \to \mathbb{R}$$

$$x \mapsto \begin{cases}
1 & x \le a + \frac{b-a}{2n} \\
0 & \text{sonst}
\end{cases}$$

Man betrachte nun die Menge $M := \{\tau_n n \in \mathbb{N}\} \subset \text{Tr}[a, b]$ offensichtlich ist M wegen $\tau_{\mu} \neq \tau_{\nu}$ für $\mu \neq \nu$ eine unendliche Menge.

Es bleibt zu zeigen, daß M lin. unabh. ist. Eine unendliche Menge heißt lin. unabhängig, wenn jede endliche Teilmenge lin. unabh. ist. Sei also $A \subset M$ endlich. Zu zeigen ist, daß A lin. unabh. ist. Man zeigt dies durch vollst. Induktion nach der Anzahl $k \in \mathbb{N}$ der Elemente von A:

• Induktionsverankerung: |A| = k = 1Es sei $A = \{\tau_l\} \subset M$ beliebig. Wegen $\tau_l \neq 0$ (die Nullfunktion), da wegen:

$$a < a + \frac{b - a}{2l}$$

sicher $\tau_l(a) = 1$ gilt,ist $\{\tau_l\}$ lin. unabhängig.

- Induktionsvoraussetzung: Für beliebiges, aber festes $k \in \mathbb{N}$ gelte, daß alle höchstens k-elementigen Teilmengen von M lin. unabhängig sind.
- $\bullet \;\; \text{Induktionsschluß:}$

Es sei $A \subset M$ mit |A| = k+1, etwa $A = \{\tau_{n_1}, \ldots, \tau_{n_{k+1}}\}$ mit $n_i \neq n_j$ für $i \neq j$. Weiterhin seien $a_1, \ldots, a_{k+1} \in \mathbb{R}$ so, daß

$$\sigma := \sum_{l=1}^{k+1} a_l \tau_{n_l} = 0 \text{ (die Nullfunktion)}$$

zu zeigen ist: $\forall 1 \leq l \leq k+1 : a_l = 0.$

Die Menge $\{n_i 1 \leq i \leq k+1\}$ hat aufgrund der Wohlordnung von $\mathbb N$ ein kleinstes Element, o.E. sei dies n_1 . Dann gilt $n_i > n_1$ für $1 \neq i$.

Betrachte nun $x_0:=a+\frac{b-a}{2n_1}$ es gilt $x_0\in[a,b]$ weiterhin ist, da σ n.V. die Nullfunktion ist, $\sigma(x_0)=0$, andererseits aber gilt: $\tau_{n_1}(x_0)=1$, aber für $2\leq i\leq k+1$ gilt wegen $n_i>n_1$ auch

$$x_0 = a + \frac{b-a}{2n_1} > a + \frac{b-a}{2n_i} \Rightarrow \tau_{n_i}(x_0) = 0$$

$$\sigma(x_0) = \sum_{l=1}^{k+1} a_l \tau_{n_l}(x_0)$$
$$= \sum_{l=1}^{k+1} a_l \delta_{l1}$$
$$= a_1$$

Somit gilt $a_1=0$. Man betrachte nun die Menge $B:=A\setminus \{\tau_{n_1}\}$, es gilt |B|=k, somit ist B nach Induktionsvoraussetzung lin. unabhängig. Da aber wegen $a_1=0$ gilt, daß σ eine Linearkombination von Elementen aus B ist, folgt

$$a_2 = a_3 = \dots = a_{k+1} = 0$$

D.h. A ist lin. unabhängig, das war aber zu zeigen.

Somit ist M, da jede endliche Teilmenge von M lin. unabhängig ist, mithin auch lin. unabhängig, ${\rm Tr}[a,b]$ hat also eine unendliche lin. unabh. Teilmenge, ist also unendlichdimensional.

b) Es seien $f, g \in \text{Tr}[a, b]$ beliebig. z.Z.: $f \cdot g \in \text{Tr}[a, b]$

Da $f \in \text{Tr}[a,b]$, gibt es ein $n_f \in \mathbb{N}$ und eine Zerlegung $z^f = \{x_0^f, \dots, x_{n_f}^f\}$ von [a,b], so daß f für $0 \le k \le n_f - 1$ auf den Intervallen (x_k^f, x_{k+1}^f) konstant ist. Analog existiert ein $n_g \in \mathbb{N}$ und eine Zerlegung $z^g = \{x_0^f, \dots, x_{n_g}^f\}$, so daß g für $0 \le k \le n_g - 1$ auf (x_k^g, x_{k+1}^g) konstant ist.

Man betrachte nun die Zerlegung $z:=z^f\cup z^g$ von [a,b], da z^f und z^g endlich sind, ist auch z endlich, gelte etwa mit $n\in\mathbb{N}$ geeignet

$$z = \{x_0, \dots, x_n\}$$

Man zeigt nun, daß f und g für $0 \le k \le n-1$ auf (x_k, x_{k+1}) konstant sind, es sei $0 \le k \le n-1$ beliebig:

- Konstanz von f auf (x_k, x_{k+1}) . Es sei $m \in \mathbb{N}$ maximal mit $x_m^f \leq x_k$. Dann gilt, da $z_f \subset z$ ist $x_{m+1}^f \geq x_{k+1}$. Da f aber auf (x_m^f, x_{m+1}^f) konstant ist, ist f auch auf $(x_k, x_{k+1}) \subset (x_m^f, x_{m+1}^f)$ konstant.
- Konstanz von g auf (x_k, x_{k+1}) . Es sei $m \in \mathbb{N}$ maximal mit $x_m^g \leq x_k$. Dann gilt, da $z_g \subset z$ ist $x_{m+1}^g \geq x_{k+1}$. Da g aber auf (x_m^g, x_{m+1}^g) konstant ist, ist g auch auf $(x_k, x_{k+1}) \subset (x_m^f, x_{m+1}^g)$ konstant.

Mit f und g ist aber auch $f \cdot g$ für $0 \le k \le n-1$ auf (x_k, x_{k+1}) konstant, mithin eine Treppenfuktion, also gilt: $f \cdot g \in \text{Tr}[a, b]$.

6.1.4 Beweisen oder widerlegen Sie: Für $f, g \in \text{Int} [a, b]$ gilt

$$\int_a^b (f\cdot g)(x)\,dx = \left(\int_a^b f(x)\,dx\right)\cdot \left(\int_a^b g(x)\,dx\right).$$

(Siehe dazu auch Aufgabe 6.1.6.)

Beh.: Das oben behauptete ist falsch.

Es seien $a, b \in \mathbb{R}$ mit a < b. Man betrachte $\sigma, \tau \in \text{Tr}[a, b] \subset \text{Int}[a, b]$ gegeben durch:

$$\sigma: [a,b] \quad \to \quad \mathbb{R}$$

$$x \quad \mapsto \quad \left\{ \begin{array}{ll} 1 & x \leq \frac{a+b}{2} \\ 0 & \mathrm{sonst} \end{array} \right.$$

und

$$\begin{array}{cccc} \tau: [a,b] & \to & \mathbb{R} \\ & x & \mapsto & \left\{ \begin{array}{ccc} 0 & x \leq \frac{a+b}{2} \\ 1 & \mathrm{sonst} \end{array} \right. \end{array}$$

Es gilt:

$$\int_{a}^{b} \sigma(x) dx = \left(\frac{a+b}{2} - a\right) \cdot 1 + \left(b - \frac{a+b}{2}\right) \cdot 0$$

$$= \frac{a+b}{2} - a$$

$$= \frac{b-a}{2}$$

$$\int_{a}^{b} \tau(x) dx = \left(\frac{a+b}{2} - a\right) \cdot 0 + \left(b - \frac{a+b}{2}\right) \cdot 1$$

$$= b - \frac{a+b}{2}$$

$$= \frac{b-a}{2}$$

$$\left(\int_{a}^{b} \sigma(x) dx\right) \left(\int_{a}^{b} \tau(x) dx\right) = \frac{(b-a)^{2}}{4}$$

$$\int_{a}^{b} \sigma(x) \cdot \tau(x) dx = \left(\frac{a+b}{2} - a\right) \cdot (1 \cdot 0) + \left(b - \frac{a+b}{2}\right) \cdot (0 \cdot 1)$$

$$= 0$$

Wegen a < b ist b - a > 0 und damit $(b - a)^2 > 0$, also

$$\left(\int_{a}^{b} \sigma(x) \ dx\right) \left(\int_{a}^{b} \tau(x) \ dx\right) \neq \int_{a}^{b} \sigma(x) \cdot \tau(x) \ dx$$

Das war aber zu zeigen.

6.1.5 Man finde eine Folge Riemann-integrierbarer Funktionen (f_n) auf [0,1], so dass (f_n) punktweise gegen 0 konvergiert, die Integrale $\int_0^1 f_n(x) dx$ aber mit $n \to \infty$ gegen Unendlich gehen.

Betrachte zu $n \in \mathbb{N}\,$ die Funktion

$$f_n: [0,1] \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} 0 & x = 0 \\ n & 0 < x < \frac{1}{n} \\ 0 & \frac{1}{n} \le x \le 1 \end{cases}$$

 f_n ist auf $(0, \frac{1}{n})$ und $(\frac{1}{n}, 1)$ konstant, mithin eine Treppenfunktion und somit Riemannintegrierbar.

Betrachte nun die Folge (f_n) . Es gilt:

• $f_n \to 0$ (punktweise)

Bew.:

z.Z: $\forall x \in [0,1] \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |f_n(x) - f(x)| \leq \varepsilon$ Es sei $x \in [0,1], \varepsilon > 0$ beliebig, man unterscheidet zwei Fälle:

a) x=0 Wähle $n_0:=1$, dann gilt für alle $n\geq n_0$:

$$|f_n(0)| = 0 \le \varepsilon$$

b) $0 < x \le 1$ Es existiert ein $n_0 \in \mathbb{N}$ mit $\frac{1}{n} \le x$ für alle $x \ge n_0$ (Archimedesaxiom). Für die n gilt dann:

$$|f_n(x)| = 0 \le \varepsilon$$

Also konvergiert (f_n) punktweise gegen 0.

• $\int_0^1 f_n(x) dx \neq 0$

Bew.:

Es sei $n \in \mathbb{N}$, dann gilt:

$$\int_{0}^{1} f_{n}(x) dx = n \cdot (\frac{1}{n} - 0) + 0 \cdot (1 - \frac{1}{n})$$

$$= 1$$

Damit folgt

$$\lim_{n \to \infty} \int_0^1 f_n(x) \ dx = \lim_{n \to \infty} 1 = 1$$

Also konvergiert $\left(\int_0^1 f_n(x) dx\right)_n \in \mathbb{N}$ gegen 1, und damit nicht gegen 0.

Es gibt also eine Folge (f_n) von Funktionen über [0,1], so daß zwar (f_n) punktweise gegen 0, aber $(\int_0^1 f_n(x) dx)$ nicht gegen 0 konvergiert. Das war aber zu zeigen.

6.1.6 Für welche $f \in \text{Tr}[0,1]$ gilt

$$\int_a^b f^2(x) \, dx = \left(\int_a^b f(x) \, dx\right)^2 ?$$

Man definiert zunächst folgendes:

Es sei $f \in \text{Tr}[0,1]$ eine Treppenfunktion zu der Zerlegung $\{x_0,x_1,\ldots,x_n\}$ von [0,1]. f heiße fast konstant, wenn gilt:

$$\exists c \in \mathbb{R} \ \forall 0 \le k \le n - 1 \ \forall x \in (x_k, x_{k+1}) : f(x) = c$$

d.h. wenn f mit Ausnahme der Stützstellen überall den gleichen Wert hat. Beh.: Es gilt für $f \in \text{Tr}[0,1]$ folgende Äquivalenz

$$f$$
 fast konstant $\iff \int_0^1 f^2(x) dx = \left(\int_0^1 f(x)\right)^2$

Bew.:

 \Longrightarrow : Es sei $f \in \text{Tr}[0,1]$ fast konstant. Dann gibt es eine Zerlegung $\{x_0,\ldots,x_n\}$ von [0,1] und ein $c \in \mathbb{R}$, so daß f für bel. $0 \le k \le n-1$ auf (x_k,x_{k+1}) den Wert c hat. Offenbar ist dann auch f^2 eine Treppenfunktion (Tr[0,1] ist eine Algebra) und fast konstant, da f^2 für alle $0 \le k \le n-1$ auf (x_k,x_{k+1}) den Wert c^2 annimmt. Für die Integrale gilt:

$$\left(\int_{0}^{1} f(x) dx\right)^{2} = \left(\sum_{k=0}^{n-1} c \cdot (x_{k+1} - x_{k})\right)^{2}$$

$$= \left(c \cdot \sum_{k=0}^{n-1} (x_{k+1} - x_{k})\right)^{2}$$

$$= c^{2} \cdot (x_{n} - x_{0})^{2}$$

$$= c^{2} \cdot 1$$

$$= c^{2}$$

$$\int_{0}^{1} f^{2}(x) dx = \sum_{k=0}^{n-1} c^{2} \cdot (x_{k+1} - x_{k})$$

$$= c^{2} \cdot (x_{n} - x_{0})$$

$$= c^{2}$$

Also gilt

$$\int_{0}^{1} f^{2}(x) \ dx = \left(\int_{0}^{1} f(x)\right)^{2}$$

Das war aber zu zeigen.

 \Leftarrow : Man zeigt dies durch logische Umkehr, i.e. man zeigt daß die Gleichheit von $(\int_0^1 f(x) \ dx)^2$ und $\int_0^1 f^2(x) \ dx$ für nicht fast konstantes f nicht gegeben ist.

Es sei also $f \in \text{Tr}[0,1]$ nicht fast konstant, da f Treppenfunktion ist, existiert eine Zerlegung $\{x_0,\ldots,x_n\}$ von [0,1] und c_0,\ldots,c_{n-1} so daß

$$\forall 0 \le k \le n - 1 \ \forall x \in (x_k, x_{k+1}) : f(x) = c_k$$

Da f n.V. nicht fastkonstant ist existiert $m\in\mathbb{N}$ mit $0\leq m\leq n-1$ so daß $c_0\neq c_m$. Man zeigt zunächst: Es ist $\int_0^1 f^2(x)\ dx>0$:

Wegen $c_0 \neq c_m$ gilt: $c_0 \neq 0 \lor c_m \neq 0$, also $c_0^2 > 0 \lor c_m^2 > 0$, damit ist

$$\int_{0}^{1} f^{2}(x) dx = \sum_{k=0}^{n-1} c_{k}^{2}(x_{k+1} - x_{k})$$

$$= c_{0}^{2}(x_{1} - x_{0}) + c_{m}^{2}(x_{m+1} - x_{m}) + \sum_{k=1}^{m-1} c_{k}^{2}(x_{k+1} - x_{k})$$

$$+ \sum_{k=m+1}^{n-1} c_{k}^{2}(x_{k+1} - x_{k})$$

$$\geq c_{0}^{2}(x_{1} - x_{0}) + c_{m}^{2}(x_{m+1} - x_{m}) + 0$$

$$> 0$$

Man betrachte nun $\zeta := -\int_0^1 f(x) \ dx \in \mathbb{R}$. Mit f ist offenbar auch die Funktion

$$g: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto f(x) + \zeta$

eine nicht konstante Treppenfunktion, also $\int_0^1 g^2(x) \ dx > 0$, es folgt

$$0 < \int_{0}^{1} g^{2}(x) dx$$

$$= \int_{0}^{1} (f(x) + \zeta)^{2} dx$$

$$= \int_{0}^{1} f^{2}(x) + 2\zeta f(x) + \zeta^{2} dx$$

$$= \int_{0}^{1} f^{2}(x) dx + 2\zeta \int_{0}^{1} f(x) dx + \int_{0}^{1} \zeta^{2} dx$$

$$= \int_{0}^{1} f^{2}(x) dx + 2\zeta \int_{0}^{1} f(x) dx + \zeta^{2}$$

$$\stackrel{\text{Def von } \zeta}{=} \int_{0}^{1} f^{2}(x) dx - 2\left(\int_{0}^{1} f(x) dx\right)^{2} + \left(\int_{0}^{1} f(x) dx\right)^{2}$$

$$= \int_{0}^{1} f^{2}(x) dx - \left(\int_{0}^{1} f(x) dx\right)^{2}$$

$$\iff \left(\int_{0}^{1} f(x) dx\right)^{2} < \int_{0}^{1} f^{2}(x) dx$$

Mithin gilt für nicht fast konstantes f:

$$\left(\int_{0}^{1} f(x) \ dx\right)^{2} \neq \int_{0}^{1} f^{2}(x) \ dx$$

Das war aber zu zeigen.

Insgesamt ergibt sich:

$$\left(\int_{0}^{1} f(x) \ dx\right)^{2} = \int_{0}^{1} f^{2}(x) \ dx$$

gilt für $f \in \text{Tr}[0,1]$ dann und nur dann, wenn f fast konstant ist.

6.1.7 Sei $g \in C[a, b]$. Falls g nichtnegativ ist und $\int_a^b g(t) dt = 0$ gilt, so ist g = 0.

Es sei also $g:[a,b]\to\mathbb{R}$ stetig und $g\geq 0$, weiterhin gelte $\int_a^b g(x)\ dx=0$. z.Z: $g \equiv 0$.

Bew.(durch Widerspruch):

Angenommen es wäre $g(\xi) > 0$ für ein $\xi \in [a, b]$. Aufgrund der Stetigkeit von g kann o.E. $\xi \in (a,b)$ angenommen werden. Da g stetig auf [a,b] insbesondere in ξ ist, gilt

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in [a, b] : |\xi - x| \le \delta \Rightarrow |g(\xi) - g(x)| \le \varepsilon$$

Wähle nun $\delta_1>0$, so daß $|g(\xi)-g(x)|\leq \frac{f(\xi)}{2}$ für alle x mit $|x-\xi|\leq \delta_1$ und $\delta_2>0$, so daß $a\leq \xi-\delta_2<\xi+\delta_2\leq b$, z.B. $\delta_2:=\min\{|a-\xi|,|b-\xi|.$ Wähle nun $\delta:=\min\{\delta_1,\delta_2\}>0$. Nun gilt einerseits $[\xi-\delta,\xi+\delta]\subset [a,b]$ und andererseits

ist für alle $x \in [x - \delta, x + \delta]$

$$|f(x) - f(\xi)| \le \frac{f(\xi)}{2} \Rightarrow f(x) \ge \frac{f(\xi)}{2} > 0$$

Es folgt aus den Rechenregeln für Integrale und wegen $g \ge 0$ auf [a, b]:

$$\begin{split} \int_a^b g(x) \; dx &= \int_a^{\xi - \delta} g(x) \; dx + \int_{\xi - \delta}^{\xi + \delta} g(x) \; dx + \int_{\xi + \delta}^b g(x) \; dx \\ &\geq 0 + \int_{\xi - \delta}^{\xi + \delta} \frac{f(\xi)}{2} \; dx + 0 \\ &= 2\delta \cdot \frac{f(\xi)}{2} \\ &= \delta \cdot f(\xi) > 0 \end{split}$$

Dies ist ein Widerspruch zur Voraussetzung $\int_a^b g(x) dx = 0$. Also war die Annahme falsch, es gilt also $\not\exists \xi \in [a, b] : g(\xi) > 0$.

Wegen $g \geq 0$ folgt $g \equiv 0.$ Das war aber zu zeigen.

6.1.8 Sei $f: \mathbb{R} \to \mathbb{R}$ stetig. Wir nehmen an, dass $\int_{-\infty}^{+\infty} f(t)\phi(t) dt = 0$ für alle $\phi \in \mathbb{CR}$ mit kompaktem Träger ist. Dann ist f = 0.

(Bemerkung: Der Träger einer stetigen Funktion ϕ ist als der Abschluss der Menge $\{t \mid$ $\phi(t) \neq 0$ definiert.)

Es sei $f:\mathbb{R}\to\mathbb{R}$ stetig und für alle stetigen $\varphi:\mathbb{R}\to\mathbb{R}$ mit kompaktem Träger gelte $\int_{\mathbb{R}} f(x)\varphi(x) \ dx = 0.$

z.Z: $f \equiv 0$.

Bew.:

Es sei $\xi \in \mathbb{R}$ beliebig, man schließt nun durch Widerspruch $f(\xi) > 0$ und $f(\xi) < 0$ aus:

• Angenommen es wäre $f(\xi) > 0$ Wähle aufgrund der Stetigkeit von f $a, b \in \mathbb{R}$ mit $a < \xi < b$ und $f(\xi) \geq 0$ f.a. $x \in [a, b]$. Betrachte die Funktion

$$\varphi: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} 0 & x < a \\ \frac{x-a}{\xi-a} & a \le x < \xi \\ \frac{b-x}{b-\xi} & \xi \le x < b \\ 0 & x > b \end{cases}$$

Zunächst gilt es zu bemerken, daß $\varphi \geq 0$ gilt, denn für $a \leq x < \xi$ ist $x-a \geq 0$ und $\xi - a \geq 0,$ also $\varphi(x) \geq 0,$ für $\xi \leq x < b$ ist $b - x \geq 0$ und $b - \xi \geq 0$ und damit auch $\varphi(x) \geq 0$ und für $x \notin (a, b)$ gilt offenbar $\varphi(x) = 0$.

Weiterhin ist φ als Komposition dort stetiger Funktionen offenbar stetig auf $(-\infty, a)$, $(a,\xi), (\xi,b)$ und (b,∞) , man zeigt nun, daß φ auch in a, b und ξ stetig ist:

Es gilt

$$\lim_{\substack{x \to 0 \\ x > 0}} \varphi(a - x) = 0 = \varphi(a) \text{ und } \lim_{\substack{x \to 0 \\ x > 0}} \varphi(a + x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{a + x - a}{\xi - a} = 0 = \varphi(a)$$

Also ist φ auch in a stetig. In ξ gilt:

$$\lim_{\substack{x \to 0 \\ x > 0}} \varphi(\xi - x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\xi - x - a}{\xi - a} = 1 = \varphi(\xi)$$

und

$$\lim_{\substack{x\to 0\\x>0}}\varphi(\xi+x)=\lim_{\substack{x\to 0\\x>0}}\frac{b-\xi-x}{b-\xi}=1=\varphi(\xi)$$

und in b

$$\lim_{\substack{x\to 0\\x>0}}\varphi(b-x)=\lim_{\substack{x\to 0\\x>0}}\frac{b-b+x}{b-\xi}=0=\varphi(b)\text{ und }\lim_{\substack{x\to 0\\x>0}}\varphi(b+x)=0=\varphi(b)$$

Mithin ist φ stetig auf \mathbb{R} , weiter gilt

$$\operatorname{supp}(\varphi) = \overline{(a,b)} = [a,b]$$

d.h. φ hat einen kompakten Träger.

Nach Voraussetzung folgt also:

$$0 = \int_{\mathbb{D}} f(x)\varphi(x) \ dx = \int_{a}^{b} f(x)\varphi(x) \ dx$$

da $f(x)\varphi(x)=\varphi(x)=0$ für $x\not\in[a,b]$. Wegen $f|_{[a,b]}\geq 0$ und $\varphi|_{[a,b]}\geq 0$ gilt auch $f\varphi|_{[a,b]}\geq 0$, nach (a) folgt $f\varphi|_{[a,b]}\equiv 0$, insbesondere

$$f(\xi)\varphi(\xi) = 0 \iff f(\xi) \cdot 1 = 0 \iff f(\xi) = 0$$

Im Widerspruch zur Annahme, also kann $f(\xi) > 0$ nicht gelten.

• Angenommen es wäre $f(\xi) < 0$ Dann wäre $(-f)(\xi) > 0$. Dies ist aber nicht möglich, da für jede stetige Funktion $\varphi : \mathbb{R} \to \mathbb{R}$ mit kompaktem Träger gilt:

$$\int_{\mathbb{R}} (-f)(x)\varphi(x) \ dx = -\int_{\mathbb{R}} f(x)\varphi(x) \ dx = -0 = 0$$

also hat -f die gleiche Eigenschaft wie f, kann also, wie oben gezeigt, an der Stelle ξ keinen positiven Wert haben.

Da also weder $f(\xi) > 0$ noch $f(\xi) < 0$ möglich ist, folgt $f(\xi) = 0$. Da $\xi \in \mathbb{R}$ beliebig war, gilt $f \equiv 0$, das war aber zu zeigen.

6.1.9 Als wir das Wunschprogramm für eine Integrationstheorie zusammengestellt haben, wäre es doch auch sinnvoll gewesen zu fordern, dass die Integration translations invariant ist. Formaler: Ist $f \in \text{Int}[a,b]$ und $g:[a+c,b+c] \to \mathbb{R}$ durch g(x)=f(x-c) definiert, so ist $g \in \text{Int}[a+c,b+c]$ und es gilt

$$\int_{a+c}^{b+c} g(x) dx = \int_a^b f(x) dx.$$

Man zeige, dass das für das Riemann-Integral richtig ist.

Es sei $f \in \text{Int}[a,b], g:[a+c,b+c] \to R, x \mapsto f(x-c)$. Wähle Treppenfunktionen $\tau_{-,n},\tau_{+,n} \in \text{Tr}[a,b]$ mit $\tau_{-,n} \leq f \leq \tau_{+,n}$ und

$$\int_{a}^{b} \tau_{+,n}(x) - \tau_{-,n}(x) \, dx. \le \frac{1}{n}$$

Es sei etwa

$$\tau_{\pm,n}|_{[x_{i,n},x_{i+1,n}]} = c_i^{\pm,n}$$

Definiere nun $\sigma_{\pm,n}:]a+c,b+c[\to \mathbb{R}$ durch $\sigma_{\pm,n}(x):=\tau_{\pm,n}(x-c)$, dann sind $\sigma_{\pm,n}$ Treppenfunktionen wegen $\sigma_{\pm,n}|_{]x_{i,n}+c,x_{i+1,n}+c[}=c_i^{\pm,n}$ und es ist $\sigma_{-,n}\leq g\leq \sigma_{+,n}$ und

$$\int_{a+c}^{b+c} \sigma_{+,n}(x) - \sigma_{-,n}(x) dx = \sum_{i=0}^{N_n-1} (c_i^{+,n} - c_i^{-,n})(x_{i+1,n} + c - x_{i,n} - c)$$

$$= \sum_{i=0}^{N_n-1} (c_{i,n}^{+} - c_{i,n}^{-})(x_{i+1,n} - x_{i,n})$$

$$= \int_a^b \tau^{+,n}(x) - \tau_{-,n}(x) dx.$$

$$\leq \frac{1}{n}.$$

Also ist $g \in \text{Int} [a+c, b+c]$. Weiterhin ist aber nun

$$\int_{a+c}^{b+c} g(x) \, dx = \lim_{n \to \infty} \int_{a+c}^{b+c} \sigma_{n,-}(x) \, dx = \lim_{n \to \infty} \int_{a}^{b} \tau_{n,-} \, dx = \int_{a}^{b} f(x) \, dx$$

und damit ist alles gezeigt.

Zu Abschnitt 6.2

6.2.1 Es sei $f \in C[a,b]$. Definiere $F:[a,b] \to \mathbb{R}$ durch

$$F(x) := \int_{x}^{b} f(t) dt.$$

Zeigen Sie, dass F differenzierbar ist und dass F' = -f gilt. Es ist für $x \in [a, b]$:

$$F(x) = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(t) dt - \int_{a}^{x} f(t) dt$$

also ist F als Summe differenzierbarer Funktionen differenzierbar und es ist

$$F'(x) = 0 - f(x) = -f(x),$$

was zu zeigen war.

6.2.2 Berechnen Sie die folgenden unbestimmten Integrale:

- a) $\int \frac{\ln(x)}{x} dx$
- b) $\int \sin^2(x) dx$ c) $\int \arcsin(x) dx$
- d) $\int e^{ax} \sin(x) dx$ e) $\int \sqrt{1-x^2} dx$ f) $\int x^3 \cos(x) dx$
- g) $\int \frac{x-1}{x^4+x^2} dx$ h) $\int \tan(x) dx$.

Tipp zu (e): Verwenden Sie die Substitution $x = \sin(t)$.

a) Bestimmung von $\int \frac{\ln x}{x} dx$ Es ist:

$$\int \frac{\ln x}{x} dx \qquad \stackrel{\text{1}}{=} \qquad \int \frac{ux}{x} du$$

$$= \qquad \int u du$$

$$= \qquad \frac{u^2}{2}$$
Resubst. (1) $\qquad \frac{(\ln x)^2}{2}$

Die Probe ergibt tatsächlich:

$$\left[\frac{(\ln x)^2}{2}\right]' = \frac{1}{2} \cdot 2 \ln x \cdot \frac{1}{x}$$
$$= \frac{\ln x}{x}$$

Somit gilt

$$\int \frac{\ln x}{x} \, dx = \frac{(\ln x)^2}{2}$$

b) Bestimmung von $\int \sin^2(x) dx$ Man erhält durch partielle Integration

$$\int \sin^2(x) \, dx \stackrel{2)}{=} -\sin(x)\cos(x) + \int \cos^2(x) \, dx$$

$$= -\sin(x)\cos(x) + \int (1 - \sin^2(x)) \, dx$$

$$= -\sin(x)\cos(x) + \int 1 \, dx - \int \sin^2(x) \, dx$$

$$\iff 2 \int \sin^2(x) \, dx = x - \sin(x)\cos(x)$$

$$\iff \int \sin^2(x) \, dx = \frac{x - \sin(x)\cos(x)}{2}$$

Die Probe ergibt:

$$\left[\frac{x - \sin(x)\cos(x)}{2}\right]' = \frac{1}{2} \cdot \left(1 - \cos^2(x) + \sin^2(x)\right)$$
$$= \frac{1}{2} \cdot 2\sin^2(x)$$
$$= \sin^2(x)$$

Man erhält also:

$$\int \sin^2(x) \ dx = \frac{x - \sin(x)\cos(x)}{2}$$

c) Bestimmung von $\int \arcsin(x) dx$ Man erhält mit Hilfe von Substitution und part. Integration:

$$\int \arcsin(x) dx = \int \arcsin(\sin u) \cos u du$$

$$= \int u \cos u du$$

$$= u \sin u - \int \sin u du$$

$$= u \sin u + \cos u$$

$$= u \sin u + \sqrt{1 - \sin^2 u}$$

$$\stackrel{\text{Resubst. (4)}}{=} x \arcsin(x) + \sqrt{1 - x^2}$$

Die Probe ergibt

$$[x \arcsin(x) + \sqrt{1 - x^2}]' = \arcsin(x) + \frac{x}{\sqrt{1 - x^2}} + \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x)$$

= $\arcsin(x)$

¹⁾ Subst.: $u = \ln x$, $u' = \frac{du}{dx} = \frac{1}{x}$, also: $du = \frac{dx}{x}$ 2) part. Int.: $f = \sin(x)$, $g' = \sin(x)$, also $f' = \cos(x)$, $g = -\cos(x)$ 3) Subst.: $x = \sin u$, $x' = \frac{dx}{du} = \cos u$, also $dx = \cos u du$. 4) part Int.: f = u, $g' = \cos u$, also f' = 1, $g = \sin u$.

Man hat also:

$$\int \arcsin(x) \ dx = x \arcsin(x) + \sqrt{1 - x^2}$$

d) Bestimmung von $\int e^{ax} \sin(x) dx$

Durch zweifache Anwendung der partiellen Intergration ergibt sich im Falle $a \neq 0$:

$$\int e^{ax} \sin(x) dx \stackrel{5)}{=} \frac{1}{a} e^{ax} \sin(x) - \frac{1}{a} \int e^{ax} \cos x dx$$

$$\stackrel{6)}{=} \frac{1}{a} e^{ax} \sin(x) - \frac{1}{a^2} e^{ax} \cos(x)$$

$$- \frac{1}{a^2} \int e^{ax} \sin x dx$$

$$\iff \left(1 + \frac{1}{a^2}\right) \int e^{ax} \sin(x) dx = \frac{1}{a} e^{ax} \sin(x) - \frac{1}{a^2} e^{ax} \cos(x)$$

$$\iff \frac{a^2 + 1}{a^2} \int e^{ax} \sin(x) dx = \frac{1}{a} e^{ax} \sin(x) - \frac{1}{a^2} e^{ax} \cos(x)$$

$$\iff \int e^{ax} \sin(x) dx = \frac{a}{a^2 + 1} e^{ax} \sin(x) - \frac{1}{a^2 + 1} e^{ax} \cos(x)$$

Die Probe ergibt:

$$\left[\frac{a}{a^{2}+1}e^{ax}\sin(x) - \frac{1}{a^{2}+1}e^{ax}\cos(x)\right]' = \frac{a \cdot (ae^{ax}\sin(x) + e^{ax}\cos(x))}{a^{2}+1}$$
$$-\frac{ae^{ax}\cos(x) - e^{ax}\sin(x)}{a^{2}+1}$$
$$= \frac{a^{2}e^{ax}\sin(x) + e^{ax}\sin(x)}{a^{2}+1}$$
$$= e^{ax}\sin(x)$$

Im Fall a = 0 gilt:

$$\int e^{0x} \sin(x) \ dx = \int \sin(x) \ dx = -\cos(x)$$

Also gilt insgesamt (also auch für a = 0)

$$\int e^{ax} \sin(x) \ dx = \frac{a}{a^2 + 1} e^{ax} \sin(x) - \frac{1}{a^2 + 1} e^{ax} \cos(x)$$

e) Bestimmung von $\int \sqrt{1-x^2} dx$ Man erhält durch Substitution:

$$\int \sqrt{1-x^2} \, dx \qquad \stackrel{7)}{=} \qquad \int \sqrt{1-\sin^2(t)} \cdot \cos(t) \, dt$$

$$= \qquad \int \cos^2(t) \, dt$$

$$= \qquad \int (1-\sin^2 t) \, dt$$

$$= \qquad t - \int \sin^2 t \, dt$$

$$\stackrel{\text{(b)}}{=} \qquad t - \frac{t-\sin(t)\cos(t)}{2}$$

$$= \qquad \frac{t}{2} + \frac{\sin(t)\sqrt{1-\sin^2(t)}}{2}$$

$$\stackrel{\text{Resubst. (7)}}{=} \qquad \frac{1}{2} \left(\arcsin(x) + x \cdot \sqrt{1-x^2}\right)$$

⁵⁾**part. Int.**: $f = \sin(x)$, $g' = e^{ax}$, also $f' = \cos(x)$, $g = \frac{1}{a}e^{ax}$. ⁶⁾**part. Int.**: $f = \cos(x)$, $g' = e^{ax}$, also $f' = -\sin(x)$, $g = \frac{1}{a}e^{ax}$.

Die Probe ergibt

$$\begin{split} \left[\frac{1}{2} \left(\arcsin(x) + x \cdot \sqrt{1 - x^2} \right) \right]' &= \frac{1}{2} \cdot \left(\frac{1}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} - x \cdot \frac{2x}{2\sqrt{1 - x^2}} \right) \\ &= \frac{1}{2} \cdot \left(\sqrt{1 - x^2} + \frac{1 - x^2}{\sqrt{1 - x^2}} \right) \\ &= \sqrt{1 - x^2} \end{split}$$

Mithin ist:

$$\int \sqrt{1-x^2} \ dx = \frac{1}{2} \left(\arcsin(x) + x \cdot \sqrt{1-x^2} \right)$$

f) Bestimmung von $\int x^3 \cos(x) dx$

Hier ist die partielle Integration dreimal anzuwenden:

$$\int x^{3} \cos(x) dx \stackrel{8)}{=} x^{3} \sin(x) - 3 \int x^{2} \sin(x) dx$$

$$\stackrel{9)}{=} x^{3} \sin(x) + 3x^{2} \cos(x) - 6 \int x \cos(x) dx$$

$$\stackrel{10)}{=} x^{3} \sin(x) + 3x^{2} \cos(x) - 6x \sin(x) + 6 \int \sin(x) dx$$

$$= x^{3} \sin(x) + 3x^{2} \cos(x) - 6x \sin(x) - 6 \cos(x)$$

Zur Probe:

$$[x^{3}\sin(x) + 3x^{2}\cos(x) - 6x\sin(x) - 6\cos(x)]' = x^{3}\cos(x) + 3x^{2}\sin(x) - 3x^{2}\sin(x) + 6x\cos(x) - 6x\cos(x) - 6\sin(x) + 6\sin(x) = x^{3}\cos(x)$$

Also ergibt sich letztendlich

$$\int x^3 \cos(x) \, dx = x^3 \sin(x) + 3x^2 \cos(x) - 6x \sin(x) - 6\cos(x)$$

g) Bestimmung von $\int \frac{x-1}{x^2+x^4} dx$

Dieses Integral bestimmt man durch Partialbruchzerlegung, dazu bestimmt man zunächst die Nullstellen des Nennerpolynoms:

$$x^{2} + x^{4} = 0$$

$$\iff x^{2}(x^{2} + 1) = 0$$

$$\iff x = 0 \quad \lor \quad x^{2} = -1$$

$$\iff x = 0 \quad \lor \quad x = \pm i$$

Man erhält also folgenden Ansatz für die Partialbruchzerlegung mit noch zu bestimmenden Koeffizienten $a, b, c, d \in \mathbb{R}$:

$$\frac{x-1}{x^2+x^4} = \frac{a}{x} + \frac{b}{x^2} + \frac{cx+d}{x^2+1}$$

Auf der rechten Seite ergibt sich duch Hauptnennerbildung:

$$\frac{x-1}{x^2+x^4} = \frac{ax(x^2+1)+b(x^2+1)+x^2(cx+d)}{x^2(x^2+1)}$$
$$= \frac{(a+c)x^3+(b+d)x^2+ax+b}{x^4+x^2}$$

⁷⁾ **Subst.**: $x = \sin(t)$, $x' = \frac{dx}{dt} = \cos(t)$, also $dx = \cos t \, dt$.

8) **part.** Int.: $f = x^3$, $g' = \cos(x)$, also $f' = 3x^2$, $g = \sin(x)$.

9) **part.** Int.: $f = x^2$, $g' = \sin(x)$, also f' = 2x, $g = -\cos(x)$.

10) **part.** Int.: f = x, $g' = \cos(x)$, also f' = 1, $g = \sin(x)$.

Man erhält durch Koeffizientenvergleich:

$$a + c = 0, b + d = 0, a = 1, b = -1 \Rightarrow c = -1, d = 1$$

Man kann nun das gesuchte unbestimmte Integral bestimmen:

$$\int \frac{x-1}{x^2 + x^4} \, dx = \int \left(\frac{1}{x} - \frac{1}{x^2} + \frac{1-x}{x^2 + 1}\right) \, dx$$

$$= \int \frac{dx}{x} - \int \frac{dx}{x^2} + \int \frac{1}{x^2 + 1} \, dx - \int \frac{x}{x^2 + 1} \, dx$$

$$= \ln|x| + \frac{1}{x} + \arctan x - \frac{1}{2} \int \frac{du}{u}$$

$$= \ln x + \frac{1}{x} + \arctan x - \frac{1}{2} \ln u$$

$$\stackrel{\text{Resubst.}}{=} \ln|x| + \frac{1}{x} + \arctan x - \ln \sqrt{1 + x^2}$$

$$= \ln \frac{|x|}{\sqrt{1 + x^2}} + \frac{1}{x} + \arctan x$$

Die Probe ergibt:

$$\left(\ln \frac{|x|}{\sqrt{1+x^2}} - \frac{1}{x} + \arctan x \right)' = \frac{\sqrt{1+x^2}}{x} \cdot \frac{\sqrt{1+x^2} - \frac{2x^2}{2\sqrt{1+x^2}}}{1+x^2} - \frac{1}{x^2} + \frac{1}{1+x^2}$$

$$= \frac{\sqrt{1+x^2}}{x} \cdot \frac{1+x^2-x^2}{\sqrt{1+x^2}(1+x^2)} - \frac{1}{x^2} + \frac{1}{1+x^2}$$

$$= \frac{1}{x(1+x^2)} - \frac{1}{x^2} + \frac{1}{1+x^2}$$

$$= \frac{x-(1+x^2)+x^2}{x^2(1+x^2)}$$

$$= \frac{x-1}{x^2+x^4}$$

Mithin ist:

$$\int \frac{x-1}{x^2 + x^4} \, dx = \ln \frac{|x|}{\sqrt{1+x^2}} + \frac{1}{x} + \arctan x$$

h) Bestimmung von $\int \tan(x) dx$

Man bestimmt dieses Integral durch Substituion:

$$\int \tan(x) \ dx \qquad \stackrel{\text{11}}{=} \qquad \int \tan(\arctan u) \frac{1}{1+u^2} \ du$$

$$= \qquad \int \frac{u}{1+u^2} \ du$$

$$\stackrel{\text{12}}{=} \qquad \int \frac{dv}{2v}$$

$$= \qquad \frac{1}{2} \ln v$$

$$\stackrel{\text{Resubst. (11)}}{=} \qquad \frac{1}{2} \ln(1+u^2)$$

$$\stackrel{\text{Resubst. (12)}}{=} \qquad \frac{1}{2} \ln(1+\tan^2 x)$$

Die Probe ergibt:

$$\left(\frac{1}{2}\ln(1+\tan^2 x)\right)' = \frac{1}{2} \cdot \frac{1}{1+\tan^2 x} \cdot 2\tan x \cdot (1+\tan^2 x)$$

$$= \tan x$$

¹¹⁾ **Subst.**: $x = \arctan u$, $x' = \frac{dx}{du} = \frac{1}{1+u^2}$, also $dx = \frac{du}{1+u^2}$. 12) **Subst.**: $v = 1 + u^2$, $v' = \frac{dv}{du} = 2u$, also $dv = 2u \ du$.

Man erhält also:

$$\int \tan(x) \ dx = \frac{1}{2} \ln(1 + \tan^2 x) = \ln \sqrt{1 + \tan^2 x}$$

6.2.3 Auf $]0, +\infty[$ definieren wir eine Funktion Log durch

$$Log(x) := \int_{1}^{x} \frac{dt}{t}.$$

(Für x<1 ist $\int_1^x(\cdots):=-\int_x^1(\cdots)$.) Zeigen Sie direkt (d.h. ohne Verwendung der Logarithmusgesetze):

- a) $Log(x \cdot y) = Log(x) + Log(y)$
- b) Log ist differenzierbar, streng monoton wachsend und

$$\frac{d \log (x)}{d x} \neq 0 \quad \text{für alle } x \in \,]\, 0, +\infty \,[\,.$$

Weiter ist

$$\lim_{x \to 0} \operatorname{Log}(x) = -\infty \quad \text{sowie} \quad \lim_{x \to \infty} \operatorname{Log}(x) = +\infty.$$

Es existiert also eine differenzierbare Umkehrfunktion Exp : $\mathbb{R} \to]0, +\infty[$.

- c) Die so definierte Funktion Exp erfüllt Exp(0) = 1 und Exp'(x) = Exp(x).
- a) Es seien $x, y \in]0, \infty[$ bel. dann gilt:

$$\operatorname{Log}(x \cdot y) = \int_{1}^{x \cdot y} \frac{dt}{t} \\
= \int_{1}^{x} \frac{dt}{t} + \int_{x}^{x \cdot y} \frac{dt}{t} \\
\stackrel{13)}{=} \int_{1}^{x} \frac{dt}{t} + \int_{1}^{y} \frac{d\tau}{\tau} \\
= \operatorname{Log}(x) + \operatorname{Log}(y)$$

b) Man zeigt zunächst, daß Log diffenzierbar ist: Es sei $x \in]0, \infty[$ beliebig, betrachte die Funktion:

$$\begin{split} f: [\frac{x}{2}, 2x] & \to & \mathbb{R} \\ \xi & \mapsto & \int_{\frac{x}{2}}^{\xi} \frac{dt}{t} \end{split}$$

Die Funktion f ist nach dem Hauptsatz der Differential und Intergralrechnung auf $\left[\frac{x}{2},2x\right]$ differenzierbar und es gilt $f'(\xi)=\frac{1}{\xi}$, weiterhin gilt aber für $\xi\in\left[\frac{x}{2},2x\right]$:

$$f(\xi) = \int_{\frac{x}{2}}^{\xi} \frac{dt}{t}$$

$$= \int_{\frac{x}{2}}^{1} \frac{dt}{t} + \int_{1}^{\xi} \frac{dt}{t}$$

$$= -\int_{1}^{\frac{x}{2}} \frac{dt}{t} + \int_{1}^{\xi} \frac{dt}{t}$$

$$= -\text{Log}(\frac{x}{2}) + \text{Log}(\xi)$$

¹³⁾**Subst.**: $\tau = \frac{t}{x}$, $\tau' = \frac{d\tau}{dt} = \frac{1}{x}$, also $d\tau = \frac{dt}{x}$.

Mithin stimmt f auf dem Intervall $\left[\frac{x}{2},2x\right]$ mit Log bis auf eine Konstante überein, somit ist mit f auch Log auf $\left[\frac{x}{2},2x\right]$ eine Stammfunktion zu $\frac{1}{\xi}$, mithin ist Log auf $\left[\frac{x}{2},2x\right]$, insbesondere im Punkte $\xi=x$ differenzierbar und es gilt:

$$\operatorname{Log}'(x) = \frac{1}{x}$$

da $x \in]0, \infty[$ beliebig war, folgt:

Log ist auf $]0,\infty[$ differenzierbar, es gilt: $Log'(x)=\frac{1}{x}$ f.a. $x\in]0,\infty[$.

Wegen

$$\forall x \in]0, \infty[: \text{Log}'(x) = \frac{1}{x} > 0$$

folgt unmittelbar: Log steigt streng monoton und die Ableitung $\frac{d \text{Log}(x)}{dx}$ hat auf $]0,\infty[$ keine Nullstelle.

Man zeigt nun $\lim_{\substack{x\to [\\x\neq [}}\infty]\mathrm{Log}\,(x)=\infty,$ z.Z. ist (wegen der Monotonie von Log reicht es

zu zeigen, daß Log nach oben unbeschränkt ist:

$$\forall R > 0 \; \exists x \in]0, \infty[: \operatorname{Log}(x) > R$$

Betrachte dazu zunächst zu $n \in \mathbb{N}$ die Funktion τ_n definiert durch

$$\tau_n: [1, n] \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{1}{k+1} & x \in [k, k+1), \ k = 1, \dots, n-1 \\ n & x = \frac{1}{n} \end{cases}$$

Beh: Es ist $\forall x \in [1, n] : \tau_n(x) \leq \frac{1}{x}$. Bew.: Es sei $x \in [1, n]$ beliebig, im Falle x = n ist $\tau_n(x) = \frac{1}{n}$, ansonsten existiert ein $1 \leq k \leq n - 1$, so daß $k \leq x < k + 1$, es folgt $\frac{1}{x} > \frac{1}{k+1} = f(x)$. Das war zu zeigen.

Offenbar ist τ_n als Treppenfunktion über [1, n] integrierbar, es gilt

$$\int_{1}^{n} \tau_{n}(x) dx = \sum_{k=1}^{n} 1 \cdot \frac{1}{k+1}$$
$$= \sum_{k=1}^{n} \frac{1}{k+1}$$

Da die harmonische Reihe unbeschränkt ist, ist auch $\left(\sum\limits_{k=1}^{n}\frac{1}{k+1}\right)$ unbeschränkt.

Nun kann man zeigen, daß Log unbeschränkt ist:

Es sei R > 0 beliebig, wähle $n \in \mathbb{N}$, so daß $\sum_{k=1}^{n} \frac{1}{k+1} > R$ und x := n, dann gilt:

$$Log(x) = Log(n)$$

$$= \int_{1}^{n} \frac{dt}{t}$$

$$\geq \int_{1}^{n} \tau_{n}(t) dt$$

$$= \sum_{k=1}^{n} \frac{1}{k+1}$$

$$> R$$

Das war aber zu zeigen, folglich gilt: $\lim_{\substack{x \to [\\ x \neq [}} \infty] \text{Log} (x) = \infty.$

Weiterhin gilt:

$$\lim_{\substack{x \to 0 \\ x > 0}} \operatorname{Log}(x) = \lim_{\substack{x \to 0 \\ x > 0}} \int_{1}^{x} \frac{dt}{t}$$

$$= -\lim_{\substack{x \to 0 \\ x > 0}} \int_{x}^{1} \frac{dt}{t}$$

$$\stackrel{14)}{=} -\lim_{\substack{x \to 0 \\ x > 0}} \int_{1}^{\frac{1}{x}} \frac{d\tau}{\tau}$$

$$= -\lim_{\substack{x \to 0 \\ x > 0}} \operatorname{Log}(\frac{1}{x})$$

$$= -\lim_{\xi \to \infty} \operatorname{Log}(\xi)$$

$$= -\infty$$

Damit ist alles gezeigt.

c) Man zeigt zunächst: Exp(0) = 1. Nach Definition von Log gilt:

$$Log(1) = \int_{1}^{1} \frac{dt}{t} = 0$$

da Exp und Log inverse Funktionen sind, folgt:

$$\operatorname{Exp}(0) = \operatorname{Exp}(\operatorname{Log}(1)) = 1$$

das war zu zeigen.

Es bleibt die Ableitung von Exp zu bestimmen, aufgrund von (b) und der Umkehrregel gilt mit bel. $x \in \mathbb{R}$:

$$Exp'(x) = \frac{1}{Log'(Exp(x))}$$
$$= \frac{1}{\frac{1}{Exp(x)}}$$
$$= Exp(x)$$

Das war aber zu zeigen.

Somit gilt aufgrund der Eindeutigkeit der Exponentialfunktion Exp=expund da auch Umkehrfunktionen eindeutig bestimmt sind: Log=ln.

6.2.4 Man definiere $a_m:=\int_0^{\pi/2}\sin^m x\,dx$ $(m=0,1,\ldots)$. Zeigen Sie, dass die Rekursionsgleichung

$$a_{m+2} = \frac{m+1}{m+2} a_m$$

gilt. Das soll mit der (ebenfalls zu beweisenden) Ungleichung

$$1 \leq \frac{a_{2m}}{a_{2m+1}} \leq \frac{a_{2m-1}}{a_{2m+1}} \quad \text{ für } m \in \mathbb{N}$$

kombiniert werden, um die folgende Formel (das Wallis-Produkt) herzuleiten:

$$\frac{\pi}{2} = \lim_{m \to \infty} \frac{1}{2m+1} \cdot \frac{(2m)^2 (2m-2)^2 \cdots 2^2}{(2m-1)^2 (2m-3)^2 \cdots 1^2}.$$

¹⁴⁾Subst.: $\tau = \frac{t}{x}$, $\tau' = \frac{dt}{d\tau} = \frac{1}{x}$, also $dt = \frac{d\tau}{x}$.

a) Es sei $m \ge 0$, also $m + 2 \ge 2$, man erhält durch partielle Integration

$$a_{m+2} = \int_{0}^{\frac{\pi}{2}} \sin^{m+2}(x) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{m+1}(x) \cdot \sin(x) dx$$

$$\stackrel{\text{footnotemark}}{=} \sin^{m+1}(x) \cdot (-\cos x) \Big|^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (m+1) \sin^{m}(x) \cdot \cos(x) \cdot (-\cos x) dx$$

$$\stackrel{m \ge 0}{=} 0 + (m+1) \cdot \int_{0}^{\frac{\pi}{2}} \sin^{m}(x) \cdot \cos^{2}(x) dx$$

$$= (m+1) \cdot \int_{0}^{\frac{\pi}{2}} \sin^{m}(x) \cdot (1 - \sin^{2} x) dx$$

$$= (m+1) \cdot \left[\int_{0}^{\frac{\pi}{2}} \sin^{m}(x) dx - \int_{0}^{\frac{\pi}{2}} \sin^{m+2}(x) dx \right]$$

$$= (m+1) \cdot (a_{m} - a_{m+2})$$

$$= (m+1)a_{m} - (m+1)a_{m+2}$$

$$\iff a_{m+2} = \frac{m+1}{m+2}a_{m}$$

Dies war aber zu zeigen.

b) Es sei $m\in\mathbb{N}$ beliebig. Um die obige Ungleichung zu beweisen zeigt man zunächst, daß gilt

$$\forall x \in [0, \frac{\pi}{2}] : 0 \le \sin^{2m+1} x \le \sin^{2m} x \le \sin^{2m-1} x$$

Sei also $x \in [0, \frac{\pi}{2}]$ beliebig, dann gilt $0 \le \sin x \le 1$, es folgt

$$0 \le \sin^2 x \le \sin x \le 1$$

Wegen $0 \le \sin x$ gilt aufgrund der Monotonie der Potenzfunktionen für positive Exponenten auch $0 \le \sin^{2m-1}$, damit folgt

$$0 \le \sin^{2m+1} x \le \sin^{2m} x \le \sin^{2m-1} x$$

Aufgrund der Positivität und Monotonie des Integrals folgt hieraus

$$0 \leq \int_0^{\frac{\pi}{2}} \sin^{2m+1} x \, dx \leq \int_0^{\frac{\pi}{2}} \sin^{2m} x \, dx \leq \int_0^{\frac{\pi}{2}} \sin^{2m-1} x \, dx$$

$$\iff 0 \leq a_{2m+1} \leq a_{2m} \leq a_{2m-1}$$

Nun gilt aber, wie oben gezeigt $0 \le \sin^{2m+1} x$ für bel. $x \in [0, \frac{\pi}{2}]$, weiterhin aber ist

$$\sin^{2m+1}(\frac{\pi}{2}) = 1^{2m+1} = 1 > 0$$

und aus der Stetigkeit von $\sin^{2m+1} x$ auf $[0, \frac{\pi}{2}]$ folgt damit, wie in der letzten Übung gezeigt, $a_{2m+1} = \int_0^{\frac{\pi}{2}} \sin^{2m+1} x \ dx > 0$, damit folgt aus obiger Ungleichung

$$a_{2m+1} \le a_{2m} \le a_{2m-1}$$

$$\stackrel{a_{2m+1} > 0}{\iff} 1 \le \frac{a_{2m}}{a_{2m+1}} \le \frac{a_{2m-1}}{a_{2m+1}}$$

Das war aber die behauptete Ungleichung.

Als nächstes zeigt man durch vollständige Induktion, daß

$$\forall m \in \mathbb{N} \, : a_{2m-1} = \prod_{\mu=1}^{m-1} \frac{2\mu}{2\mu+1}, \quad a_{2m} = \frac{\pi}{2} \cdot \prod_{\mu=1}^m \frac{2\mu-1}{2\mu}$$

¹⁴⁾**part. Int.:** $f = \sin^{m+1} x$, $g' = \sin x$, also $f' = (m+1)\sin^m(x)\cos x$, $g = -\cos x$.

• Induktions anfang: m = 1 Es gilt

$$a_{2m-1} = a_{1}$$

$$= \int_{0}^{\frac{\pi}{2}} \sin x \, dx$$

$$= -\cos x |_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= -\cos(\frac{\pi}{2}) + \cos 0$$

$$= -0 + 1$$

$$= 1$$

$$a_{2m} = a_{2}$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx$$

$$\stackrel{8.\ddot{U}_{bung}}{=} \frac{1}{2} (x - \sin x \cos x) |_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{1}{2} \cdot (\frac{\pi}{2} - 1 \cdot 0 - 0 + 0 \cdot 1)$$

$$= \frac{1}{2} \cdot \frac{\pi}{2}$$

Wegen

$$\prod_{\mu=1}^0 \frac{2\mu}{2\mu+1} = 1, \quad \prod_{\mu=1}^1 \frac{2\mu-1}{2\mu} = \frac{1}{2}$$

war das gerade die Behauptung für m=1.

• Induktionsvoraussetzung: Für ein festes, aber beliebiges $m \in \mathbb{N}$ gelte:

$$a_{2m-1} = \prod_{\mu=1}^{m-1} \frac{2\mu}{2\mu+1}, \quad a_{2m} = \frac{\pi}{2} \cdot \prod_{\mu=1}^{m} \frac{2\mu-1}{2\mu}$$

• Induktionsschluß: Zu zeigen ist:

$$a_{2m+1} = \prod_{\mu=1}^m \frac{2\mu}{2\mu+1}, \quad a_{2m+2} = \frac{\pi}{2} \cdot \prod_{\mu=1}^{m+1} \frac{2\mu-1}{2\mu}$$

Es gilt aber aufgrund der unter (a) bewiesenen Rekursionsformel:

$$a_{2m+1} = \frac{2m}{2m+1} a_{2m-1}$$

$$\stackrel{\text{Ind. Vor.}}{=} \frac{2m}{2m+1} \cdot \prod_{\mu=1}^{m-1} \frac{2\mu}{2\mu+1}$$

$$= \prod_{\mu=1}^{m} \frac{2\mu}{2\mu+1}$$

$$a_{2m+2} = \frac{2m+1}{2m+2} a_{2m}$$

$$\stackrel{\text{Ind. Vor.}}{=} \frac{2m+1}{2m+2} \prod_{\mu=1}^{m} \frac{2\mu-1}{2\mu}$$

$$= \prod_{\mu=1}^{m+1} \frac{2\mu-1}{2\mu}$$

Das war aber gerade die Behauptung.

Aus obiger Ungleichung folgt damit für bel. $m \in \mathbb{N}$:

$$1 \le \frac{a_{2m}}{a_{2m+1}} \le \frac{a_{2m-1}}{a_{2m+1}}$$

$$\iff 1 \le \frac{\frac{\pi}{2} \cdot \prod_{\mu=1}^{m} \frac{2\mu-1}{2\mu}}{\prod_{\mu=1}^{m} \frac{2\mu}{2\mu+1}} \le \frac{\prod_{\mu=1}^{m-1} \frac{2\mu}{2\mu+1}}{\prod_{\mu=1}^{m} \frac{2\mu}{2\mu+1}}$$

$$\iff 1 \le \frac{\pi}{2} \cdot \prod_{\mu=1}^{m} \frac{(2\mu-1)(2\mu+1)}{(2\mu)^2} \le \frac{2m+1}{2m}$$

$$\iff 0 \le \frac{\pi}{2} \cdot \prod_{\mu=1}^{m} \frac{(2\mu-1)(2\mu+1)}{(2\mu)^2} - 1 \le \frac{2m+1}{2m} - 1$$

Betrachte nun die Folge $\left(\frac{2m+1}{2m}-1\right)_n\in\mathbb{N}\,,$ offenbar gilt:

$$\lim_{m \to \infty} \left(\frac{2m+1}{2m} - 1 \right) = \lim_{m \to \infty} \frac{1}{2m} = 0$$

Aufgrund des Majorantenkriteriums ist damit auch

$$\lim_{m \to \infty} \left(\frac{\pi}{2} \cdot \prod_{\mu=1}^{m} \frac{(2\mu - 1)(2\mu + 1)}{(2\mu)^2} - 1 \right) = 0$$

Anwendung der Grenzwertsätze ergibt:

$$\lim_{m \to \infty} \left(\frac{\pi}{2} \cdot \prod_{\mu=1}^{m} \frac{(2\mu - 1)(2\mu + 1)}{(2\mu)^2} - 1 \right) = 0$$

$$\iff \frac{\pi}{2} \cdot \lim_{m \to \infty} \prod_{\mu=1}^{m} \frac{(2\mu - 1)(2\mu + 1)}{(2\mu)^2} = 1$$

$$\iff \frac{\pi}{2} \cdot \lim_{m \to \infty} \frac{1}{\prod_{\mu=1}^{m} \frac{(2\mu)^2}{(2\mu - 1)(2\mu + 1)}} = 1$$

$$\iff \frac{\pi}{2} \cdot \frac{1}{\lim_{m \to \infty} \prod_{\mu=1}^{m} \frac{(2\mu)^2}{(2\mu - 1)(2\mu + 1)}} = 1$$

$$\iff \lim_{m \to \infty} \prod_{\mu=1}^{m} \frac{(2\mu)^2}{(2\mu - 1)(2\mu + 1)} = \frac{\pi}{2}$$

$$\iff \lim_{m \to \infty} \left(\prod_{\mu=1}^{m} \frac{2\mu}{2\mu - 1} \cdot \prod_{\mu=1}^{m} \frac{2\mu}{2\mu + 1} \right) = \frac{\pi}{2}$$

$$\iff \lim_{m \to \infty} \left(\prod_{\mu=1}^{m} (2\mu)^2 \cdot \frac{1}{2m + 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \right) = \frac{\pi}{2}$$

$$\iff \lim_{m \to \infty} \left(\prod_{\mu=1}^{m} (2\mu)^2 \cdot \frac{1}{2m + 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \right) = \frac{\pi}{2}$$

$$\iff \lim_{m \to \infty} \left(\prod_{\mu=1}^{m} (2\mu)^2 \cdot \frac{1}{2m + 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \right) = \frac{\pi}{2}$$

$$\iff \lim_{m \to \infty} \left(\prod_{\mu=1}^{m} (2\mu)^2 \cdot \frac{1}{2m + 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \right) = \frac{\pi}{2}$$

$$\iff \lim_{m \to \infty} \left(\prod_{\mu=1}^{m} (2\mu)^2 \cdot \frac{1}{2m + 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \right) = \frac{\pi}{2}$$

$$\iff \lim_{m \to \infty} \left(\prod_{\mu=1}^{m} (2\mu)^2 \cdot \frac{1}{2m + 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \cdot \prod_{\mu=1}^{m} \frac{1}{2\mu - 1} \right) = \frac{\pi}{2}$$

Also gilt:

$$\frac{\pi}{2} = \prod_{\mu=1}^{\infty} \frac{4\mu^2}{4\mu^2 - 1} = \lim_{m \to \infty} \left(\frac{1}{2m+1} \cdot \prod_{\mu=1}^{m} \frac{(2\mu)^2}{(2\mu - 1)^2} \right)$$

Das war aber zu zeigen.

6.2.5 Gewinnen Sie die Potenzreihenentwicklung von $\operatorname{arctan}(x)$ und $\log(1+x)$. Dazu soll $\frac{1}{1+x^2}$ bzw. $\frac{1}{1+x}$ als Summe einer geometrischen Reihe aufgefasst und gliedweise integriert werden. Begründen Sie die Korrektheit dieser Vorgehensweise.

Man zeigt zunächst folgendes:

Ist $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit dem Konvergenzradius $R \in (0, \infty]$, und

$$f: (-R, R) \longrightarrow \mathbb{R}$$

$$x \mapsto \sum_{n=0}^{\infty} a_n x^n$$

die durch sie darstellte Funktion, so ist die durch formale gliedweise Integration entstehende Funktion

$$F: (-R, R) \to \mathbb{R}$$

$$x \mapsto \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

auf (-R, R) eine Stammfunktion von f.

Man zeigt zunächst, daß mit $\sum_{n=0}^{\infty} a_n x_n$ auch $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ den Konvergenzradius R>0 hat. Der Konvergenzradius der letzteren Reihe sei vorläufig mit $0 \le R^* \le \infty$ bezeichnet, dann gilt:

$$\frac{1}{R^*} = \lim_{n \to \infty} \sqrt[n]{\left| \frac{a_n}{n+1} \right|}$$

$$= \frac{\lim_{n \to \infty} \sqrt[n]{|a_n|}}{\lim_{n \to \infty} \sqrt[n]{n+1}}$$

$$= \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

$$= \frac{1}{R}$$

$$\iff R^* = R$$

also hat auch $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ den Konvergenzradius R. Die Funktion F ist also tatsächlich für $x \in (-R,R)$ erklärt. Weiterhin gilt, da Potenzreihen im Inneren ihres Konvergenzkreises gliedweise differenziert werden dürfen, für bel. $x \in (-R,R)$:

$$F'(x) = \left(\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}\right)' = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (n+1) x^n = \sum_{n=0}^{\infty} a_n x^n = f(x)$$

Somit ist F auf (-R, R) eine Stammfunktion zu f.

Das wollte man aber zeigen.

Nun kann man speziell die beiden gegebenen Funktionen betrachten:

• Die Funktion $f: x \mapsto \arctan x$: Die Funktion f ist auf ganz \mathbb{R} differenzierbar mit $f'(x) = \frac{1}{1+x^2}$. Für $x \in (-1,1)$ ist $|x|^2 \le |x| < 1$ und damit gilt (geometrische Reihe):

$$f'(x) = \frac{1}{1+x^2}$$

$$= \frac{1}{1-(-x^2)}$$

$$= \sum_{n=0}^{\infty} (-x^2)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Aufgrund obiger Überlegungen ist nun die durch

$$F: (-1,1) \longrightarrow \mathbb{R}$$

$$x \mapsto \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

gegebene Funktion F auf (-1,1) eine Stammfunktion zu f'. Da auch f eine Stammfunktion zu f' ist und sich zwei Stammfunktionen nur um eine Konstante unterscheiden gilt

$$\exists c \in \mathbb{R} \ \forall x \in (-1,1) : F(x) - f(x) = c$$

Man erhält durch einsetzen von x = 0:

$$c = F(0) - f(0)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{0^{2n+1}}{2n+1} - \arctan 0$$

$$= 0 - 0 = 0$$

Somit gilt

$$\forall x \in (-1,1) : f(x) = \arctan x = F(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Dies ist aber die geforderte Potenzreihendarstellung von $\arctan x$.

• Die Funktion $g: x \mapsto \log(1+x)$. g ist auf ganz $(-1, \infty)$ differenzierbar mit $f'(x) = \frac{1}{1+x}$. Für $x \in (-1, 1)$ ist |x| < 1 und damit gilt (geometrische Reihe):

$$f'(x) = \frac{1}{1+x}$$

$$= \frac{1}{1-(-x)}$$

$$= \sum_{n=0}^{\infty} (-x)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n x^n$$

Aufgrund obiger Überlegungen ist nun die durch

$$G: (-1,1) \rightarrow \mathbb{R}$$

$$x \mapsto \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

gegebene Funktion G auf (-1,1) eine Stammfunktion zu g'. Da auch g eine Stammfunktion zu g' ist und sich zwei Stammfunktionen nur um eine Konstante unterscheiden gilt

$$\exists d \in \mathbb{R} \ \forall x \in (-1,1) : G(x) - g(x) = d$$

Man erhält durch einsetzen von x = 0:

$$c = G(0) - g(0)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{0^{n+1}}{n+1} - \log 1$$

$$= 0 - 0 = 0$$

Somit gilt

$$\forall x \in (-1,1) : g(x) = \log(1+x) = G(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

Dies ist aber die geforderte Potenzreihendarstellung von log(1+x).

Zu Abschnitt 6.3

6.3.1 Berechnen Sie $\int_{\pi}^{2\pi} (2x+i) \sin(x) dx$. Es ist

$$\int_{\pi}^{2\pi} (2x+i) \sin x \, dx = 2 \int_{\pi}^{2\pi} x \sin x \, dx + i \int_{\pi}^{2\pi} \sin x \, dx$$

$$= 2 \left([-x \cos x]_{\pi}^{2\pi} + \int_{\pi}^{2\pi} \cos x \, dx \right) + i [-\cos x]_{\pi}^{2\pi}$$

$$= 2 \left(-2\pi - \pi + [\sin x]_{\pi}^{2\pi} \right) + i (1+1)$$

$$= -6\pi + 2i.$$

6.3.2 Existiert $\int_1^\infty \frac{2}{\log x} \, dx$? Nein. Denn für $x \geq 1$ ist $\log x \leq x$, also wäre

$$\int_{1}^{\infty} \frac{2}{x} \, dx \le \int_{1}^{\infty} \frac{2}{\log x} \, dx < \infty,$$

was falsch ist. Also ist $\int_1^\infty \frac{2}{\log x} \, dx = \infty$. 6.3.3 Zeigen Sie:

- - a) $\int_0^{+\infty} \frac{\sin x}{x} dx$ existiert.
 - b) $\int_0^{+\infty} \frac{|\sin x|}{x} dx$ existiert nicht.
 - a) Um zu zeigen, daß $\int_0^\infty \frac{\sin x}{x} \, dx$ exisiert, muß man zeigen, daß sowohl $\int_0^1 \frac{\sin x}{x} \, dx$ als auch $\int_1^\infty \frac{\sin x}{x} \, dx$ existieren:
 - Existenz des Intergrals $\int_0^1 \frac{\sin x}{x} dx$. Es sei $(x_n)_n \in \mathbb{N}$ eine Folge in (0,1] mit $\lim_{n\to\infty} x_n = 0$, o.E. sei x_n monoton fallend, zu zeigen ist, daß die Folge der Integrale $(I_n)_n \in \mathbb{N}$ mit

$$I_n := \int_{x_n}^1 \frac{\sin x}{x} \, dx$$

konverigert. Man zeigt dies, indem man zeigt, daß $(I_n)_n \in \mathbb{N}$ monoton wachsend und nach oben beschränkt ist:

Man zeigt zunächst die Beschränktheit: Aufgrund der Regel von de l'Hôpital gilt:

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{\sin x}{x} = \lim_{\substack{x \to 0 \\ x > 0}} \cos x = 1$$

Wähle also $\varepsilon > 0$ so, daß $\varepsilon < 1$ und $\frac{\sin x}{x} < 2$ für $x \in (0, \varepsilon)$. Sei $x \in (0, 1]$ beliebig, dann gilt:

Im Fall $0 < \varepsilon < x$ ist $\frac{\sin x}{x} < 2$ nach Wahl von ε . Gilt $\varepsilon \le x \le 1$, so ergibt sich

$$\frac{\sin x}{x} \le \frac{\sin x}{\varepsilon} \le \frac{1}{\varepsilon}$$

Die Abbildung $x\mapsto \frac{\sin x}{x}$ ist also auf (0,1] durch $M:=\max\{2,\frac{1}{\varepsilon}\}$ nach oben beschränkt. Weiterhin ist $\frac{\sin x}{x}$ für alle $x\in(0,1]$ positiv, also nach unten durch 0 beschränkt. Nun kann man die Beschränktheit der Folge $(I_n)_n\in\mathbb{N}$ zeigen: Es sei $n\in\mathbb{N}$ beliebig, dann gilt:

$$|I_n| = \left| \int_{x_n}^1 \frac{\sin x}{x} \, dx \right|$$

$$= \int_{x_n}^1 \frac{\sin x}{x} \, dx$$

$$\leq \int_{x_n}^1 M \, dx$$

$$= (1 - x_n) \cdot M$$

$$\leq M$$

 $(I_n)_n \in \mathbb{N}$ ist also nach oben beschränkt, es bleibt zu zeigen, daß $(I_n)_n \in \mathbb{N}$ auch monoton wächst:

Es sei $n \in \mathbb{N}$ beliebig, zu zeigen: $I_{n+1} \geq I_n$. Es gilt:

$$I_{n+1} = \int_{x_{n+1}}^{1} \frac{\sin x}{x} dx$$

$$= \int_{x_{n+1}}^{x_n} \frac{\sin x}{x} dx + \int_{x_n}^{1} \frac{\sin x}{x} dx$$

$$\stackrel{x_{n+1} \leq x_n}{\geq} 0 + I_n = I_n$$

Somit ist $(I_n)_n \in \mathbb{N}$ eine monoton wachsende, nach oben beschränkte Folge in \mathbb{R} , mithin also konvergent, damit existiert $\int_0^1 \frac{\sin x}{x} dx$. Das wollte man aber zeigen.

• Existenz von $\int_1^\infty \frac{\sin x}{x} dx$. Zu zeigen ist, daß der Grenzwert

$$\lim_{M \to \infty} \int_{1}^{M} \frac{\sin x}{x} dx$$

existiert.

Es sei M > 1 beliebig, dann gilt

$$\int_{1}^{M} \frac{\sin x}{x} dx \stackrel{\text{15}}{=} -\frac{\cos x}{x} \Big|_{-}^{M} - \int_{1}^{M} \frac{\cos x}{x^{2}} dx$$

$$= \cos 1 - \frac{\cos M}{M} - \int_{1}^{M} \frac{\cos x}{x^{2}} dx$$

Man betrachte nun zunächst $\lim_{M\to\infty}\frac{\cos M}{M},$ es gilt für bel. $M\in[1,\infty)$:

$$\left| \frac{\cos M}{M} \right| \le \frac{1}{M}$$

¹⁵⁾ part. Int.: $f' = \sin x, g = \frac{1}{x}$, also $f = -\cos x, g' = -\frac{1}{x^2}$.

wegen $\lim_{M\to\infty} \frac{1}{M} = 0$ folgt hieraus

$$\lim_{M\to\infty}\frac{\cos M}{M}=0$$

Nun betrachtet man das Integral $\int_1^\infty \frac{\cos x}{x^2} dx$ für $x \in [1, \infty)$ gilt offenbar

$$\left|\frac{\cos x}{x^2}\right| \le \frac{1}{x^2}$$

somit existiert, da $\int_1^\infty \frac{dx}{x^2}$, wie in der Vorlesung bewiesen, existiert, auch $\int_1^\infty \frac{\cos x}{x^2} \ dx.$ Die Anwendung der Grenzwertsätze ergibt:

$$\lim_{M \to \infty} \int_{1}^{M} \frac{\sin x}{x} \, dx \quad \stackrel{\text{GWS}}{=} \quad \cos 1 - \lim_{M \to \infty} \frac{\cos M}{M} - \lim_{M \to \infty} \int_{1}^{M} \frac{\cos x}{x^{2}} \, dx$$
$$= \quad \cos 1 - \int_{1}^{\infty} \frac{\cos x}{x^{2}} \, dx$$

Da wie oben gezeigt, $\int_1^\infty \frac{\cos x}{x^2} \ dx$ existiert, durften die Grenzwertsätze angewandt werden, der Grenzwert

$$\lim_{M \to \infty} \int_{1}^{M} \frac{\sin x}{x} \, dx = \int_{1}^{\infty} \frac{\sin x}{x} \, dx$$

existiert also.

Das war aber zu zeigen.

Da beide uneigentlichen Integrale $\int_0^1 \frac{\sin x}{x} dx$ und $\int_1^\infty \frac{\sin x}{x} dx$ existieren, existiert

$$\int_0^\infty \frac{\sin x}{x} \ dx = \int_0^1 \frac{\sin x}{x} \ dx + \int_1^\infty \frac{\sin x}{x} \ dx$$

Dies sollte gezeigt werde

b) Offenbar reicht es zu zeigen, da
5 $\int_{\pi}^{\infty} \frac{|\sin x|}{x} \, dx$ nicht existiert, man zeigt dies, indem man zeigt, daß die Folge
 $(I_n)_n \in \mathbb{N}$ gegeben durch

$$\forall n \in \mathbb{N} : I_n := \int_{\pi}^{(n+1) \cdot \pi} \frac{|\sin x|}{x}$$

unbeschränkt und damit divergent ist.

Es sei $n \in \mathbb{N}$ beliebig, dann gilt:

$$I_{n} = \int_{\pi}^{(n+1) \cdot \pi} \frac{|\sin x|}{x} dx$$

$$= \sum_{k=1}^{n} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \sum_{k=1}^{n} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{(k+1)\pi} dx$$

$$= \sum_{k=1}^{n} \frac{1}{(k+1)\pi} \cdot \int_{k\pi}^{(k+1)\pi} |\sin x| dx$$
Periodizität
$$\frac{1}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1} \cdot \int_{0}^{\pi} |\sin x| dx$$

$$= \frac{1}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1} \cdot (-\cos x)|^{\pi}$$

$$= \frac{1}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1} \cdot 2$$

$$= \frac{2}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1}$$

Da die Folge $\left(\sum_{k=1}^n \frac{1}{k+1}\right)_n \in \mathbb{N}$ als Partialsummenfolge der harmonischen Reihe unbeschränkt ist, ist aufgrund obiger Abschätzung auch die Folge $(I_n)_n \in \mathbb{N}$ unbeschränkt und damit divergent.

Also existiert $\int_{\pi}^{\infty} \frac{|\sin x|}{x} dx$ und damit $\int_{0}^{\infty} \frac{|\sin x|}{x} dx$ nicht.

6.3.4 Zeigen Sie, dass die Gammafunktion konvex ist.

Man zeigt zunächst, daß für alle $n \in \mathbb{N}$ und $\alpha > -1$ die Funktion

$$f_n: (0,1] \longrightarrow \mathbb{R}$$

$$x \mapsto (\ln x)^n x^{\alpha}$$

über (0,1] uneigentlich inegrierbar ist:

 • Induktionsverankerung: n=1Man beachte zunächst, daß für $\beta>0$ gilt:

$$\lim_{\substack{x \to 0 \\ x > 0}} x^{\beta} \cdot \ln x = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln x}{x^{-\beta}}$$

$$\stackrel{\text{l'Hôpital}}{=} -\frac{1}{\beta} \lim_{\substack{x \to 0 \\ x > 0}} \frac{x^{-1}}{x^{-(\beta+1)}}$$

$$= -\frac{1}{\beta} \lim_{\substack{x \to 0 \\ x > 0}} x^{\beta}$$

$$\stackrel{\beta \ge 0}{=} 0$$

Man erhält nun durch partielle Inegration für bel. $\alpha > -1$:

$$\int_{0}^{1} x^{\alpha} \ln x \, dx = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \int_{\varepsilon}^{1} x^{\alpha} \ln x \, dx$$

$$\stackrel{\text{16}}{=} \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \left(\frac{x^{\alpha+1}}{\alpha+1} \ln x \Big| - \int_{\varepsilon}^{1} \frac{1}{\alpha+1} x^{\alpha} \, dx \right)$$

$$\stackrel{\text{s.o.}}{=} 0 - \frac{1}{\alpha+1} \int_{0}^{1} x^{\alpha} \, dx$$

Dieses Integral existiert aber, damit existiert auch $\int_0^1 x^\alpha \ln x \ dx$. Das war aber zu zeigen.

• Indunktionsvoraussetzung:

Für ein festes, aber beliebiges $n \in \mathbb{N}$ gelte:

$$\forall \beta > 0 : \lim_{\substack{x \to 0 \\ x > 0}} x^{\beta} \cdot (\ln x)^n = 0$$

und $\int_0^1 \ln x x^{\alpha} dx$ existiert für $\alpha > -1$.

• Induktionsschluß:

Es gilt für $\beta > 0$:

$$\lim_{\substack{x \to 0 \\ x > 0}} x^{\beta} \cdot (\ln x)^{n+1} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{(\ln x)^{n+1}}{x^{-\beta}}$$

$$\stackrel{\text{l'Hôpital}}{=} -\frac{n+1}{\beta} \lim_{\substack{x \to 0 \\ x > 0}} \frac{x^{-1} \cdot (\ln x)^n}{x^{-(\beta+1)}}$$

$$= \frac{n+1}{\beta} \lim_{\substack{x \to 0 \\ x > 0}} (\ln x)^n x^{\beta}$$

$$\stackrel{\text{Ind. Vor.}}{=} 0$$

¹⁶⁾ **part. Int.:** $f = \ln x, g' = x^{\alpha}$, also $f' = \frac{1}{x}, g = \frac{1}{\alpha + 1} x^{\alpha + 1}$

Weiterhin erhält man durch partielle Integration für $\alpha > -1$:

$$\int_0^1 x^{\alpha} (\ln x)^{n+1} dx = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \int_{\varepsilon}^1 x^{\alpha} (\ln x)^{n+1} dx$$

$$\stackrel{17)}{=} \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \left(\frac{x^{\alpha+1}}{\alpha+1} (\ln x)^{n+1} \Big| - \int_{\varepsilon}^1 \frac{n+1}{\alpha+1} x^{\alpha} (\ln x)^n dx \right)$$

$$\stackrel{\text{s.o.}}{=} 0 - \frac{n+1}{\alpha+1} \int_0^1 x^{\alpha} (\ln x)^n dx$$

Dieses Integral existiert nach Ind. Vor., also auch $\int_0^1 (\ln x)^{n+1} x^{\alpha} dx$. Das war aber zu zeigen.

Nun kann man zeigen, daß Γ konvex ist:

Eine Funktion $f:(0,\infty)$ ist konvex, wenn sie zweimal differenzierbar ist und wenn

$$\forall t \in (0, \infty) : f''(t) \ge 0$$

Man zeigt also zunächst, daß die Gammafunktion $\Gamma:(0,\infty)\to\mathbb{R}\,$ gegeben durch

$$\Gamma(t) := \int_0^\infty e^{-x} x^{t-1} dx$$

zweimal differenzierbar ist.

Dazu betrachtet man zunächst die Abbildung

$$f: (0, \infty)^2 \to \mathbb{R}$$
$$(t, x) \mapsto e^{-x} x^{t-1}$$

Um zu zeigen, daß Γ differenzierbar ist, muß man zunächst zeigen, daß $\frac{\partial}{\partial t} f(t, x)$ existiert und stetig ist. Als Kompostium nach t partiell differenzierbarer Funktionen ist sie partiell nach t diff'bar und es ist:

$$\frac{\partial}{\partial t} f(t, x) = \frac{\partial}{\partial t} e^{-x} x^{t-1}$$
$$= e^{-x} \cdot x^{t-1} \cdot \ln x$$

Als Kompositum stetiger Funktionen ist $\frac{\partial}{\partial t} f(t,x)$ auf $(0,\infty)^2$ stetig. Es sei $t_0 \in (0,\infty)$ beliebig. Zu zeigen ist, daß es ein $\varepsilon > 0$ (mit $\varepsilon < t_0$) und eine über

Es sei $t_0 \in (0, \infty)$ beliebig. Zu zeigen ist, daß es ein $\varepsilon > 0$ (mit $\varepsilon < t_0$) und eine über $(0, \infty)$ uneigentlich integrierbare Funktion $h: (0, \infty) \to \mathbb{R}$ gibt, so daß

$$\forall t \in (t_0 - \varepsilon, t_0 + \varepsilon) \ \forall x \in (0, \infty) : \left| \frac{\partial}{\partial t} f(t, x) \right| \le h(x)$$

Wähle $\varepsilon := \frac{t_0}{2}$ (dann ist $t_0 - \varepsilon > 0$).

Man zeigt zunächst, daß es eine über (0,1] uneigentlich Integrierbare Majorante für $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ gibt:

Für $x \in (0,1]$ und $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ gilt:

$$\left| \frac{\partial}{\partial t} f(t, x) \right| = \left| \ln x \cdot e^{-x} \cdot x^{t-1} \right|$$

$$= \left| \ln x \right| \cdot e^{-x} \cdot x^{t-1}$$

$$\leq -\ln x \cdot x^{t-1}$$

$$\leq -\ln x \cdot x^{t_0 - \varepsilon - 1}$$

und $-\ln x \cdot x^{t_0-\varepsilon-1}$ ist (s.o.) über (0,1] integrierbar.

17) **part. Int.:**
$$f = (\ln x)^{n+1}, g' = x^{\alpha}$$
, also $f' = \frac{1}{x} \cdot (n+1) \cdot (\ln x)^n, g = \frac{1}{\alpha+1} x^{\alpha+1}$

Für $x \in [1, \infty)$ und $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ gilt zunächst $\ln x \le x$ (folgt aus $e^x \ge x$) und damit:

$$\begin{vmatrix} \frac{\partial}{\partial t} f(t, x) \end{vmatrix} = |\ln x| \cdot e^{-x} \cdot x^{t-1}$$

$$\leq x \cdot e^{-x} \cdot x^{t-1}$$

$$= x^t \cdot e^{-x}$$

$$\leq x^{t_0 + \varepsilon} \cdot e^{-x}$$

und $x^{t_0+\varepsilon} \cdot e^{-x}$ ist wegen $t_0 + \varepsilon > 0$ über $[1, \infty)$ integrierbar (denn das Integral über $e^{-x}x^{t-1}$ existiert für alle t > 1).

Also ist Γ in t_0 differenzierbar, da t_0 beliebig war, somit auf $(0, \infty)$ und es gilt:

$$\Gamma'(t) = \int_0^\infty \ln x \cdot x^{t-1} \cdot e^{-x}$$

Man zeigt nun, daß auch Γ' differenzierbar ist:

Man muß zunächst zeigen, daß $\frac{\partial^2}{\partial t^2} f(t,x)$ existiert und stetig ist. Es ist:

$$\frac{\partial^2}{\partial t^2} f(t, x) = \frac{\partial}{\partial t} \ln x \cdot e^{-x} x^{t-1}$$
$$= e^{-x} \cdot x^{t-1} \cdot (\ln x)^2$$

Als Kompositum stetiger Funktionen ist $\frac{\partial}{\partial t} f(t,x)$ auf $(0,\infty)^2$ stetig. Es sei $t_0 \in (0,\infty)$ beliebig. Zu zeigen ist, daß es ein $\varepsilon > 0$ (mit $\varepsilon < t_0$) und eine über $(0,\infty)$ uneigentlich integrierbare Funktion $h:(0,\infty)\to\mathbb{R}$ gibt, so daß

$$\forall t \in (t_0 - \varepsilon, t_0 + \varepsilon) \ \forall x \in (0, \infty) : \left| \frac{\partial^2}{\partial t^2} f(t, x) \right| \le h(x)$$

Wähle $\varepsilon := \frac{t_0}{2}$ (dann ist $t_0 - \varepsilon > 0$).

Man zeigt zunächst, daß es eine über (0,1] uneigentlich Integrierbare Majorante für $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ gibt:

Für $x \in (0,1]$ und $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ gilt:

$$\left| \frac{\partial}{\partial t} f(t, x) \right| = \left| (\ln x)^2 \cdot e^{-x} \cdot x^{t-1} \right|$$

$$= (\ln x)^2 \cdot e^{-x} \cdot x^{t-1}$$

$$\leq (\ln x)^2 \cdot x^{t_0 - \varepsilon - 1}$$

und $(\ln x)^2 \cdot x^{t_0 - \varepsilon - 1}$ ist (s.o.) über (0, 1] integrierbar.

Für $x \in [1, \infty)$ und $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ gilt zunächst $\ln x \le x$ und damit wegen der Monotonie der Quadratfunktion:

$$\begin{vmatrix} \frac{\partial}{\partial t} f(t, x) \end{vmatrix} = (\ln x)^2 \cdot e^{-x} \cdot x^{t-1}$$

$$\leq x^2 \cdot e^{-x} \cdot x^{t-1}$$

$$= x^{t+1} \cdot e^{-x}$$

$$\leq x^{1+t_0+\varepsilon} \cdot e^{-x}$$

und $x^{1+t_0+\varepsilon} \cdot \mathrm{e}^{-x}$ ist wegen $t_0+\varepsilon>0$ über $[1,\infty)$ integrierbar (denn das Integral über $\mathrm{e}^{-x}x^{t-1}$ existiert für alle t>1).

Also ist Γ in t_0 differenzierbar, da t_0 beliebig war, somit auf $(0, \infty)$ und es gilt:

$$\Gamma''(t) = \int_0^\infty (\ln x)^2 \cdot x^{t-1} \cdot e^{-x}$$

Nun gilt für alle $x \in (0, \infty), t \in (0, \infty)$:

$$(\ln x)^2 \cdot x^{t-1} \cdot e^{-x} \ge 0$$

und somit aufgrund der Positivität des uneigentlichen Integrals (wie im Tutorium gezeigt) auch:

 $\Gamma''(t) = \int_0^\infty (\ln x)^2 \cdot x^{t-1} \cdot e^{-x} dx \ge 0$

Damit ist Γ auf ganz \mathbb{R}^+ konvex.

Das war aber zu zeigen.

Zu Abschnitt 6.4

6.4.1 Berechnen Sie die Ableitungen der folgenden Funktionen:

- a) $g(x) = \int_0^5 \cos(x^2 t^4) dt$,
- b) $g(x) = \int_{-x}^{e^x} \sqrt{1 + t^2 x^2} dt$.
- a) Es ist:

$$g'(x) = \int_0^5 \frac{\partial}{\partial x} \cos(x^2 t^4) dt$$
$$= -\int_0^5 2x t^4 \sin(x^2 t^4) dt$$

b) Es ist nach der Kettenregel:

$$g'(x) = \int_{-x}^{e^x} \frac{\partial}{\partial x} \sqrt{1 + t^2 x^2} dt + \left(\frac{d}{dx}(-x)\right) \sqrt{1 + x^4} - \left(\frac{d}{dx}e^x\right) \sqrt{1 + x^2}e^{2x}$$
$$= \int_{-x}^{e^x} \frac{2xt^2}{2\sqrt{1 + t^2 x^2}} dt - \sqrt{1 + x^4} + e^x \sqrt{1 + x^2}e^{2x}.$$

6.4.2 Zeigen Sie durch Berechnung der Ableitung, dass die durch

$$g(x) = \int_0^5 (1 + x^3 t^4)^2 dt$$

definier te Funktion auf $[\,0,1\,]$ monoton steigend ist.

Es ist

$$g'(x) = \int_0^5 2(1+x^3t^4) \cdot 3x^2t^4 dt$$
$$= \int_0^5 !(6x^2t^4 + 6x^5t^8) dt$$

Nun ist aber für $x \in [0,1]$ und $t \in [0,5]$ sicher $6x^2t^4 + 6x^5t^8 \ge 0$, also $g'(x) \ge 0$, was die Monotonie von g zeigt.

6.4.3 Bestimmen Sie die Ableitung von $g(x)=\int_0^{+\infty}\cos(x^2t^4){\rm e}^{-2t}\,dt$ auf $\mathbb R$. Zunächst ist g wegen

$$\left|\cos(x^2t^4)e^{-2t}\right| \le e^{-2t}$$

sowie

$$|2xt^4\sin(x^2t^4)e^{-2t}| < 2xt^4e^{-2t}$$

und $\int_0^\infty t^n \mathrm{e}^{-2t} \, dt < \infty$ für alle $n \in \mathbb{N}\,$ differenzierbar, weiter folgt dann

$$g'(x) = -\int_0^\infty 2xt^4 \sin(x^2t^4) e^{-2t} dt$$

Zu Abschnitt 6.5

6.5.1 Sei f(x) = x für $x \in [0,1]$. Berechnen Sie die L^p -Normen für $p \in [1,+\infty]$. Es zeigt sich, dass $\|f\|_p$ für $p \to \infty$ gegen $\|f\|_\infty$ geht. Beweisen Sie, dass das für alle Intervalle [a,b] und alle $f \in C[a,b]$ richtig ist.

Es ist für $p < \infty$ zunächst

$$||f||_{p} = \left(\int_{0}^{1} x^{p}; dx.\right)^{1/p}$$
$$= \left(\frac{1}{p+1}\right)^{1/p}$$
$$= (p+1)^{-1/p}$$

und weiter

$$||p||_{\infty} = \max_{x \in [0,1]} |x| = 1.$$

Sei nun $f:[0,1] \to \mathbb{R}$ stetig. Dann ist zunächst für $1 \le p < q < \infty$:

$$\begin{split} \|f\|_{p} &= \||f|^{p}\|_{1}^{1/p} \\ &= \||f|^{p}\mathbf{1}\|_{1}^{1/p} \\ &\stackrel{\text{Hölder}}{\leq} \||f|^{p}\|_{q/p}^{1/p}\|\mathbf{1}\|_{q/(q-p)}^{1/p} \\ &= \left(\int_{0}^{1}|f|^{p\cdot q/p}\,dx\right)^{1/p\cdot p/q} \cdot \left(\int_{0}^{1}1\,dx\right)^{1/p\cdot (q-p)/q} \\ &= \|f\|_{q} \end{split}$$

also ist $p\mapsto \|f\|_p$ monoton. Weiterhin ist für $1\leq p<\infty$:

$$||f||_p = \left(\int_0^1 |f|^p dx\right)^{1/p} \le \left(\int_0^1 ||f||_{\infty}^p\right)^{1/p} = ||f||_{\infty}$$

d.h. $p \mapsto \|f\|_p$ ist beschränkt.

Also existiert $\eta := \lim_{p \to \infty} \|f\|_p$ und es ist $\eta \le \|f\|_\infty$. Es bleibt also $\|f\|_\infty \le \eta$ zu zeigen: Dazu sei $x_0 \in [0,1]$ mit $|f(x_0)| = \|\infty\|_f$. .. hm ..

6.5.2 Für $f \in C[0,1]$ und $p \in [1,+\infty[$ gilt $\|f\|_p \le \|f\|_\infty.$ Für welche f gilt sogar $\|f\|_p = \|f\|_\infty$?

Man hat nach der Hölderschen Ungleichung, dass:

$$||f||_p = ||\mathbf{1}f||_p \le ||\mathbf{1}||_p ||f||_\infty = ||f||_\infty$$

wegen

$$\|\mathbf{1}\|_{p}^{p} = \int_{0}^{1} 1^{p} dx = 1.$$

Gleichheit gilt hier, wenn f und $\mathbf{1}$ linear abhängig sind, d.h. falls $f = \lambda \mathbf{1}$ mit $\lambda \in \mathbb{R}$. Anderenfalls gibt es nämlich $x_0 \in]0,1[$ und $\varepsilon,\delta>0$, so dass

$$|f(x)|^p \le ||f||_{\infty}^p - \delta, \quad x_0 - \varepsilon \le x \le x_0 + \varepsilon$$

es folgt

$$||f||_{p}^{p} = \int_{0}^{1} |f|^{p} dx$$

$$\leq \int_{0}^{x_{0}-\varepsilon} ||f||_{\infty}^{p} dx + \int_{x_{0}-\varepsilon}^{x_{0}+\varepsilon} ||f||_{\infty}^{p} - \delta dx + \int_{x_{0}+\varepsilon}^{1} ||f||_{\infty}^{p} dx$$

$$= ||f||_{\infty}^{p} - 2\varepsilon \delta$$

$$< ||f||_{p}^{p}.$$

6.5.3 Setzen Sie in der Hölderschen Ungleichung f=g und finden Sie so eine Beziehung zwischen den Normen $\|f\|_2$, $\|f\|_p$ und $\|f\|_q$. Es ist

$${\|f\|}_2^{\ 2} = {\||f|}^2{\|}_1 = {\|f^2\|}_1 \leq {\|f\|}_p {\|f\|}_q.$$

Zu Abschnitt 6.6

6.6.1 Sei K ein Körper mit Differentiation. Zeigen Sie, dass die Menge der Konstanten einen Unterkörper bildet.

Es sei $k := \{x \in K \mid x' = 0\}$ die Menge der Konstanten.

Zunächst sind $0, 1 \in k$, denn:

$$0' = (0+0)' = 0' + 0' \iff 0' = 0$$

und (im Falle $1 + 1 \neq 0$) ist:

$$1' = (1 \cdot 1)' = 1' \cdot 1 + 1 \cdot 1' = (1 + 1) \cdot 1' \iff 1' = 0$$

(falls 1 + 1 = 0 ist, gilt $1' = (1 + 1) \cdot 1' = 0$).

Mit $x, y \in k$ ist $x + y, xy \in k$, denn:

$$(x+y)' = x' + y' = 0 + 0 = 0$$

und

$$(xy)' = x'y + xy' = 0y + 0x = 0.$$

Mit $x \in k$ ist $-x \in k$, denn:

$$0 = 0' = (-x + x)' = (-x)' + x' = (-x)'$$

und für $x \in k, x \neq 0$ ist $x^{-1} \in k$, denn:

$$0 = 1' = (xx^{-1})' = x'x^{-1} + x(x^{-1})' = x(x^{-1})' \iff (x^{-1})' = 0$$

also ist k ein Unterkörper.

6.6.2 Beweisen Sie, dass $\sqrt[3]{x+1} - x$ algebraisch über K_{rat} ist.

Es se

$$f(t) := t^3 + 3xt^2 + 3x^2t - (x+1-x^3) \in K_{\text{rat}}[t]$$

dann ist mit $\alpha := \sqrt[3]{x+1}$:

$$f(\sqrt[3]{x+1} - x)$$

$$= (x+1) - 3x\sqrt[3]{(x+1)^2} + 3x^2\sqrt[3]{x+1} - x^3 + 3x(\alpha - x)^2 + 3x^2(\alpha - x) - (x+1-x^3)$$

$$= -3x\alpha^2 + 3x^2\alpha + 3x(\alpha - x)^2 + 3x^2(\alpha - x)$$

$$= -3x\alpha^2 + 3x^2\alpha + 3x\alpha^2 - 6x^2\alpha + 3x^3 + 3x^2\alpha - 3x^3$$

$$= 0.$$

damit ist alles gezeigt.

 ${\bf 6.6.3}$ Geben Sie ein Beispiel für ein t, das gleichzeitig algebraisch, logarithmisch und exponentiell ist.

Betrachte $1 \in K$, es ist 1 Nullstelle von f(t) = t - 1, also algebraisch 1'/1 = 0 = 1', also exponentiell und 1' = 0 = 1'/1, also logaritmisch.

6.6.4 Begründen Sie, dass $e^{x^2/2}$ keine einfache Stammfunktion hat.

Hätte $x \mapsto e^{x^2/2}$ eine einfache Stammfunktion f, so wäre doch

$$f(\sqrt{2}x) - f(0) = \int_0^{\sqrt{2}x} e^{t^2/2} dt = \frac{1}{\sqrt{2}} \int_0^x e^{\tau^2} d\tau$$

d.h.

$$x \mapsto \sqrt{2} \left(f(\sqrt{2}x) - f(0) \right)$$

eine einfache Stammfunktion von e^{x^2} . Widerspruch.

6.6.5 Für $k \in \mathbb{N}$ mit $k \ge 2$ hat e^{x^k} keine einfache Stammfunktion.

Nach Theorem 6.6.2 reicht es zu zeigen, dass $a' + kax^{k-1} = 1$ keine rationale Lösung a hat. Angenommen a = P/Q mit teilerfremden Polynomen P, Q löst diese Differentialgleichung. Wir unterscheiden:

• Q ist konstant: Es sei n der Grad von P, dann hat $ka(x)x^{k-1}$ den Grad n+k-1, a'(x) den Grad n-1, d.h. $a'(x)+ka(x)x^{k-1}$ den Grad n+k-1, ist also $\neq 1$.

• Q hat eine Nullstelle $x_0 \neq 0$, ist x_0 λ -fache Nullstelle, so ist a von der Form

$$a(x) = \sum_{\nu = -\lambda}^{\infty} b_{\nu} (x - x_0)^{\nu}$$

mit $b_{-\lambda} \neq 0$. Damit ist

$$a'(x) = \sum_{\nu=-\lambda}^{\infty} b_{\nu} \nu (x - x_0)^{\nu-1}$$

also ist x_0 ist $ka(x)x^{k-1}$ ein Pol der Ordnung λ , in a'(x) ein Pol der Ordnung $\lambda+1$, d.h. es kann nicht $ka(x)x^{k-1}+a'(x)=1$ sein.

• Q hat 0 als einzige Nullstelle, es sei 0 λ –fache Nullstelle, wir haben wieder:

$$a(x) = \sum_{\nu = -\lambda}^{\infty} b_{\nu} x^{\nu}$$

mit $b_{-\lambda} \neq 0$. Damit ist

$$a'(x) = \sum_{\nu = -\lambda}^{\infty} b_{\nu} \nu x^{\nu - 1}$$

also ist x_0 ist $ka(x)x^{k-1}$ ein Pol der Ordnung $\lambda-k+1$, in a'(x) ein Pol der Ordnung $\lambda+1$, d.h. es kann nicht $ka(x)x^{k-1}+a'(x)=1$ sein.

Also hat e^{x^k} keine einfache Stammfunktion.