ORTHOGONALLY MODULATED CMOS READOUT INTEGRATED CIRCUIT FOR IMAGING APPLICATIONS

Jorge A. García

Visiting Assistant Professor

Electrical and Computer Engineering Department

University of Delaware

December 13, 2004

Research work supported by the Army Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 13 DEC 2004		2. REPORT TYPE		3. DATES COVE 00-00-2004	ERED 4 to 00-00-2004	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
•	ulated CMOS Read	out Integrated Circ	cuit for Imaging	5b. GRANT NUN	MBER	
Applications				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUMBER		
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AE ware,Department of rk,DE,19716		nputer	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	IONITOR'S ACRONYM(S)	
				11. SPONSOR/M NUMBER(S)	IONITOR'S REPORT	
12. DISTRIBUTION/AVAII Approved for publ	ABILITY STATEMENT ic release; distributi	ion unlimited				
13. SUPPLEMENTARY NO	TES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	48		

Report Documentation Page

Form Approved OMB No. 0704-0188

ORTHOGONALLY MODULATED CMOS READOUT INTEGRATED CIRCUIT FOR IMAGING APPLICATIONS

- Introduction and motivation
- Contribution Phase I: Proof of principle
 Orthogonal encoding readout system description
 Prototype system design and verification
 Conclusions
- Contribution Phase II: Improving the system performance

Readout cell improvements

Transimpedance amplifier integration

Conclusion and brainstorm on further improvements

Read Out Integrated Circuit ROIC

ROIC may include:

Amplifier electronics
Control signal generators
Analog-Digital Conversion
On-chip Digital Signal Processing

Distance information: a time of flight measurement

FM/CW LADAR system

Motivation: Readout Integrated Circuit ROIC for active/passive imaging systems

- Introduction and motivation
- Contribution Phase I: Proof of principle
 Orthogonal encoding readout system description
 Prototype system design and verification
 Conclusions
- Contribution Phase II: Improving the system performance

Readout cell improvements

Transimpedance amplifier integration

Conclusion and brainstorm on further improvements

ROIC conventional architecture

Time Domain Multiple Access

Control signals access every readout cell in a time scheduled manner, sampling the voltage signals and transferring them to the readout bus.

It requires faster electronics for bigger photodetector arrays.

Each readout cell must be capable of storing the required charge, which becomes a problem for big array sizes (1024x1024).

Read Out Cell Architectures

From Direct Injection to Capacitive TransImpedance Amplifier

ROIC proposed architecture

Orthogonal encoding ROIC

- Each column is multiplied by a unique code, and the multiplied signals are summed in the row common bus
- Codes are chosen to minimize cross talk
- Current-to-voltage amplifier per row
- Multiplexer scheme to generate single data stream

Orthogonal Encoding ROIC First Phase Design Tasks

(b)

Design of the Active Readout Cell

(a)

To design and fabricate a test chip for a proof of principle of the active 2D readout technique.

Active Readout Cell: Design Requirements

Readout cell for orthogonal encoding

Multiplies the input current by the code Provides detector virtual ground Couples the detector impedance to the bus Reduces charge injection noise

Active Readout Cell: Implementation

Differential code multiplier

Readout cell for orthogonal encoding

$$i_{o}^{+}(t) = i_{in}^{+}(t) \cdot c(t) + n_{c} + i_{in}^{-}(t) \cdot \overline{c}(t) + n_{\overline{c}},$$

$$i_{o}^{-}(t) = i_{in}^{+}(t) \cdot \overline{c}(t) + n_{\overline{c}} + i_{in}^{-}(t) \cdot c(t) + n_{c},$$

Differential output current $i_{od}(t) = i_o^+(t) - i_o^-(t) = [i_{in}^+(t) - i_{in}^-(t)] \cdot [c(t) - \overline{c}(t)],$

Active Readout Cell

Current Locked Loop ILL

Characteristics

Detector virtual ground

$$\frac{v_{g1}}{v_{s1}}\Big|_{low\ freq.} = \frac{-g_1g_4}{g_2g_3 - g_1g_4} = \frac{-\gamma}{1 - \gamma}, \text{ with } \gamma = \frac{g_1g_4}{g_2g_3}$$

Low input impedance

$$Z_{in}\big|_{low\ freq.} = \frac{1}{g_1}(1-\gamma)$$

Active Readout Cell

Test chip implementation

4 instances of cell with input modulator only

Prototype system testing

Custom printed circuit board for electro-optical testing

ROIC electrical verification set up

Code signals generated and conditioned externally

Voltage sources + Resistors emulate electrical current inputs

High-gain off-chip transimpedance amplifiers on the pcb

Data is acquired and processed in the computer

Verification Results

Proof of principle system with 2 encoding cells

Test results

Prototyping phase conclusion

Satisfactory results with the 2 encoding cells experiment confirm validity of the orthogonal encoding scheme for readout circuits

Applicability extends to passive imaging systems

Depending on the system conditions, the orthogonal encoding architecture is advantageous with respect to the conventional time-multiplexed scheme

Integrating the transimpedance amplifiers with improved versions of readout cells should enhance noise performance of the overall system

- Introduction and motivation
- Contribution Phase I: Proof of principle
 Orthogonal encoding readout system description
 Prototype system design and verification
 Conclusions
- Contribution Phase II: Improving the system performance

Readout cell improvements

Transimpedance amplifier integration

Conclusion and brainstorm on further improvements

ILL current gain and noise performance

$$\overline{i_{Q3}^2} = 4kT\gamma g_3$$

$$\overline{i_{Q3}^{2}} = 4kT\gamma g_{3}$$

$$\overline{i_{out}^{2}} = 4kT\gamma g_{5} \left(1 + \frac{g_{5}}{g_{3}}\right) = 4kT\gamma g_{3}m(1+m)$$

Input referred noise

$$\overline{i_{ieq}^2} = \frac{\overline{i_{out}^2}}{m^2} = 4kT\gamma g_3 \frac{(1+m)}{m}.$$

Minimize g_3

Maximize current gain *m*

Fully differential architecture

Additional current mirror for complementary output

Improved charge injection cancellation and offset

Noise from cascode mirrors is minimized

Input impedance engineering

From small-signal model, solve for Z_{in}

$$Z_{in} = \frac{V_s(s)}{I_s(s)} = \left(\frac{1}{sC_{in}}\right) / \frac{(g_3 + sC_P)(g_2 + s(C_{gs1} + C_N)) - g_1g_4}{(g_1 + sC_{gs1})(g_3 + sC_P)(g_2 + sC_N)}$$

Input impedance without C_{in}

Input impedance engineering (cont'd)

Input impedance with C_{in}

ILL pole-zero analysis

$$z_{1} = \frac{K_{z} - C_{gs1}g_{3} - C_{N}g_{3} - C_{P}g_{2}}{2C_{P}(C_{gs1} + C_{N})}$$

$$z_{2} = \frac{-K_{z} - C_{gs1}g_{3} - C_{N}g_{3} - C_{P}g_{2}}{2C_{P}(C_{gs1} + C_{N})}$$

$$p_1 = -\frac{g_3}{C_P}$$

$$p_2 = -\frac{g_2}{C_N}$$

$$p_3 = -\frac{g_1}{C_{gs1}}$$

$$\mathbf{K}_{Z} = \sqrt{C_{gs1}^{2}g_{3}^{2} + 2C_{gs1}(C_{N}g_{3}^{2} + C_{P}(2g_{1}g_{4} - g_{2}g_{3})) + C_{N}^{2}g_{3}^{2} + 2C_{N}C_{P}(2g_{1}g_{4} - g_{2}g_{3}) + C_{P}^{2}g_{2}^{2}}$$

 C_P controls p_1 and z_1 , but also moves z_2 to the left C_N moves p_2 close to z_2 , canceling its effect p_3 determines overall gain-bandwidth

Input impedance engineering (cont'd)

 $C_P = 270 \text{fF}$ and $C_N = 70 \text{fF}$ compensate the input impedance for $C_{in} = 500 \text{fF}$

Improved Active Readout Cell Performance

Frequency response

Designed for 500kHz code bandwidth (16 cells)

Transient response

Current gain of 3.8A/A

Improved Active Readout Cell Performance

Virtual ground regulation

Between -3.1mV and -2.6mV

Noise performance

Input referred noise 400fA/rtHz

Transimpedance amplifier implementation

Capacitive TIA (CTIA)

RST switch injects charge and produces sampling (kT/C) noise

CTIA with correlated double sampling (cds)

CDS structure removes sampling noise

SH capacitor produces voltage divider

CTIA system-level implementation

CTIA system-level implementation

Advantages of fully differential CTIA system

Fully differential CTIA system

Transient response of

Single-ended vs. Differential output

CTIA system-level implementation

External OTA compensation and sizing of switches and capacitors

External OTA compensation

Input stabilization switches

 $C_{CDS} = 5pF$, $C_{SH} = 1pF$, $C_{comp} = 3pF$, $C_{int} = 50fF$

Switches designed for worst-case scenario $R_{\text{SW}}\!\sim\!1\text{k}\Omega$

OTA circuit-level implementation

2-stage Miller compensated OTA, design requirements

Design requirements

- •Gm > 250mSie
- •a_{vo} (2% settling accuracy) > 40k
- •Input referred noise < 5nV/rtHz</p>
- Dominant pole and non-dominant pole more than three decades apart
- Output common-mode < 10mV
- \cdot CMRR > 60dB
- Input differential capacitance not to exceed 15pF
- Output swing of 2.4Vpk-pk
- Dual power supplies of ±2.5V
- Best effort on power consumption and layout area

ccuracy:= E			
Vstep		2.00% 5.00E-08 40.00	sec dB V/V V
Initial d	esign knobs		
Cs) Cp) (assumed) DS cap) cap) t (Vpk-pk) ¹		1.50E-11 5.00E-12 1.00E-12 3.00 0.80	F
Cf+Cp)		1.33E-03 7.51E+02	V/V V/V
ture itor parameters	1.38E-23 300 1.60E-19 NMOS 2.46E-15 2.01E-16	PMOS 2.38E-15 2.61E-16	\$#% K C F/um^2
	cop Gain:= c = Vstep = VSD= -VSS Initial d ck (Cf) (Cs) (Cs) (Cs) (Cs) (Cs) (Cs) (Cs) (Cs	Initial design knobs (Cs) (Cs) (Cs) (Cs) (Cs) (Cs) (Cs) (C	Note

2. Static accuracy im	plications	
Static error:= E_st E_st = E * St.en%	1.600%	
a0 (minimum)		
a0 = 1 / (F.E_st) a0 (dB)	46.94 33.43	k dB
Gain of second stage, a2 (mi	nimum)	
a2=a0 / a1	160.74	W
3. Dynamic Accu	ıracy	
Dynamic error:= E_dyn		
E_dyn = E - E_st	0.400%	
Slewing (N/A for CTIA)		
Slew time (t_slew)	0.00E+00	sec
SR_ext = (B-1).IBIAS / Co		V/us
SR_int = IBIAS / C		V/us
SR_ext = SR_int		
then IBIAS-slew:		
(DeltaVod/2)*C / t_slew	_	A
B(2nd:1st BIAS ratio) = 1 + Co	C	
Linear		
Linear time:= t_lin = ts-t_slew	5.00E-08	sec
Linear accuracy:= E_lin		
E_lin = E_dyn (NO SLEW)	0.400%	
minimum OTA's transcondu		
$Gm_s = -(Co/F)*[In(E_lin)/T_lin]$		
or desired Gm	4.00E-01	
Gm = max(Gm_s, desired Gm	4.00E-01	Sie
Then IBIAS becomes		
THOU IDING DOCUMES		

-		
Requirements for second stage (minimum)	
a2 (minimum)	160.74	
gm8 = Gm / a1 (minimum)	1.37E-03	Sie
R2 = a2 / gm8 (minimum)	1.17E+05	Ohn
SECOND STAGE DESIGN		
From simulations and iteration:		
Gain of second stage a2	150	VN
2nd st. transconduct.gm8	3.60E-04	Sie
R2 = a2 / gm8 (required)	4.17E+05	
Com. src. ro8 (from sims) =	1.48E+05	
Load CS, ro7 (from sims) =	2.89E+05	
Com src. (P) Vov:= V8* (from sims) Load CS (N) Vov:= V7* (from sims)		
Load CS (N) Vov:= V/* (from sims)	3.11E-01	V
R2 (achieved) = ro7 // ro8	9.79E+04	
and gm7 = gm8. V8* / V7*	5.15E-04	
1014 00 (1) 0 1/01 (0	A AFF AL	
IBIAS2 (in paper) = gm8.V8* / 2 IBIAS2 (from sims)	3.05E-04 2.50E-04	
Company of the Compan	ZIOOL OT	
Sizes W = L.gm / (u.Cox.V*)	W(um)	
M8,M10 (common source)	8.56E+01	
M7,M9 (active loads)	7.29E+01	5.00
Input Noise Power Density due to	2nd stage	:
(1/a1)(8/3)(KT/gm8)(1+gm7/gm8)		

3. From total Gm and a2 to second stage design

4. Tweaking in th	e simulato	r
important values so far		
gm1		mSie
R1	205.63	
gm8	0.36	mSie
R2	97.88	kOhm
O Initial transistor sizes	W(um)	L(um)
	221	3.0
M3,M4 (active load)	126	4.0
M8 (common source)	86	4.0
M1,M2 (differential pair) M3,M4 (active load) M8 (common source) M7 (2nd stage bias)	73	
Sizes after tweaking in sim	w	- 1
M1,M2 (differential pair)	200	3.000
M3.M4 (active load)	100	4.000
M8 (common source)	100	
M7 (2nd stage bias)	80	5.000
and for CMFB amplifier (fre	om sims)	
M14,M14a,M15,M15a (diff p		
M16, M17 (act. Load)	80	5.000
M18 (diff pair bias)	100	4.000

M16, M17 (act. Load) M18 (diff pair blas)	5.075 6.3	5.075 4.025
Yielding transistor sizes of	w	L
M1,M2 (differential pair)	198.8	2.975
M3,M4 (active load)	100.8	4.025
M8 (common source)	100.8	4.025
M7 (2nd stage bias)	81.2	5.075
and for CMFB amplifier		
M14, M14a, M15, M15a (diff pair)	9.8	0.875
M16, M17 (act. Load)	81.2	5.075
1140 (diff nois black	400.0	4.005

5. LAYOUT sizes

12.425

5.075

6.3 4.02

6.3 4.02

M1,M2 (differential pair)

13,M4 (active load)

7 (2nd stage bias)

8 (common source)

1	6. Rough verification	
55	Col = Col_factor.W Cgs = (2/3)W.L.Cox + Col Cgd = Col	
9 6 6 6	Cgs1,2 Cgd1,2 Cgs8 Cgd8	1.02E-12 F 4.02E-14 F 6.61E-13 F 2.61E-14 F
	Compensation cap C Check for consistency, hope Cp-new = Cgs1+Cgd1.(1+a1)	
6 6 6 6	Frequency response fd = 1/ (2 pi.R1 (gm8.R2.(C+Cgd8)+ fnd = gm8/(2 pi.Co) att = 20.log(fnd/fd)	####### kHz 255.50 MHz

	SPECS	
COLOR CODES	KNOBS	
	PARTIAL VALS	
	FINAL VALUES	

First and second stage design strategy

Circuit for design of amplification stage

Transistor models from vendor are used to optimize the design of a single stage of amplification with active loading

Bias conditions are replicated, and noise from biasing strategy is properly filtered out

Design results are back-annotated in work sheet

Common-Mode amplifier design

Q13 and Q3 compute common-mode voltage from the OTA output and "compare" it to the desired value (GND)

The amplifier produces a current output that regulates the common-mode voltage in the differential amplifier

Common-mode amplifier circuit

Final schematic for differential OTA

OTA Performance

Open-loop gain

Open-loop gain exceeds 40,000 for the operation

range (2.4Vpk-pk)

Frequency response

Dominant and non-dominant pole about three decade apart

OTA Performance

Frequency response with external compensation

External compensation of 3pF yields phase margin of about 80 degrees

Compensation switch optimally sized for zero-nulling

Input differential capacitance

Cin ~ 12pF at low frequencies

Decays for high frequencies because of absence of Miller effect

OTA Performance

Transient response with external compensation

External compensation of 3pF effectively reduces differential transient ringing

CMFB amplifier is also compensated (1pF) to reduce common-mode voltage transient ringing

Input referred noise density

Low frequency input referred noise around 5nV/rtHz

High frequency noise density is not relevant in this case

Second generation ROIC

Four 1x16 arrays + Fully differential CTIA

TOP OF THE CHIP

Readout cell physical design

CTIA physical design

Matching transistors and capacitors

All differential pairs are designed with multi-finger, common-centroid structure

The differential OTA is divided into differential pair sections

Four-capacitor layout using common-centroid techniques

Dummy cap in the middle shorted to ground

ROIC physical design

Fully differential CTIA amplifier

ROIC physical design

- Introduction and motivation
- Contribution Phase I: Proof of principle
 Orthogonal encoding readout system description
 Prototype system design and verification
 Conclusions
- Contribution Phase II: Improving the system performance

Readout cell improvements

Transimpedance amplifier integration

 Conclusion and brainstorm on further improvements

Conclusion

Satisfactory results with the prototype experiment confirm validity of the orthogonal encoding scheme for readout circuits

Expect system performance improvement with the design optimization of the readout cell and the integration of the fully differential CTIA

$$i_{o}^{+}(t) = i_{in}^{+}(t) \cdot c(t) + n_{c} + i_{in}^{-}(t) \cdot \overline{c}(t) + n_{\overline{c}},$$

$$i_{o}^{-}(t) = i_{in}^{+}(t) \cdot \overline{c}(t) + n_{\overline{c}} + i_{in}^{-}(t) \cdot c(t) + n_{c},$$

$$i_{od}(t) = i_o^+(t) - i_o^-(t) = [i_{in}^+(t) - i_{in}^-(t)] \cdot [c(t) - \overline{c}(t)],$$

The readout cell with the codemodulator only is an outstanding candidate for highly-scalable imaging systems. Its characteristics: only four transistors, zero noise, no power consumption, no band width limitations.

Further improvement is accomplished if differential photodetector devices are used

Conclusion (cont'd)

Take advantage of switched nature of the system to cancel charge injection peaks from readout cells.

With code-modulator-only cells the system becomes highlyscalable but the noise performance of the OTA amplifier needs to be improved by one order of magnitude

Conclusion (cont'd)

Integrating an amplifier to perform differential to singleended conversion inside the chip would improve the system performance (pedestal voltages and vestigial voltage spikes would be cancelled inside the integrated circuit)

Capacitive Transimpedance amplifier per row

Differential amplifier per row

Acknowledgements

Thanks to everybody who has been involved in the dissertation process in one way or another

Fouad, Bill, Mayra

LADAR group, thanks so much for the support