# Machine Learning

# Time series forecasting

Part 3: neural models

# Why deep learning?

# Complex tasks

- primarily excel at highly complex tasks with lots of data:
- big data:
  - high frequency and long history
- complex tasks:
  - o complex relations, e.g. multiple variable seasonalities
  - dynamic, requiring adaptation, with changing patterns and noise
- multivariate time series:
  - many time series, with cross-series relations
- long forecasting horizons:
  - o can be quite precise compared to classical methods

# Direct multi-step (DMS) forecasts

- statistical models basically always perform autoregressive forecasting:
  - o forecast 1 step ahead at a time, assume previous forecasts are true
  - this results in error accumulation and higher error bias
  - also known as iterated multi-step (IMS) forecasting (or recursive forecasting)

- neural networks are typically multioutput, i.e. can easily have many output neurons
- this results in **direct multi-step (DMS)** forecasts, which:
  - avoids error accumulation, but has higher error variance
  - o acts as regularization, since it has to optimize many horizons at a same time

# IMS vs DMS forecasting - additional resources

- CrossValidated Time Series One Step Ahead vs N-Step Ahead
- "Recursive and direct multi-step forecasting: the best of both worlds" S. Taieb, R. Hyndman
- <u>"A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series" M. Marcellino et al.</u>
- "When are Direct Multi-Step and Iterative Forecasts Identical?" T. McElroy
- "Direct Versus Iterated Multiperiod Volatility Forecasts" E. Ghysels et al.
- "An Empirical Investigation of Direct and Iterated Multistep Conditional Forecasts" M. McCracken, J. McGillicuddy

# **Pretraining**

- transfer learning and pretraining of time series recently became possible:
  - novel architectures, particularly transformers
  - available massive datasets
  - utilize previous knowledge and reduce overfitting
- **foundational models** start to emerge, with e.g. few-shot and zero-shot capabilities
- does this work?
  - many works lack fair evaluation, or fail against simple baselines
  - o comparisons are often artificial and unrealistic, e.g. lots of data, highly multivariate
  - just research currently, not well tested in the industry
- definitely a research direction in near future

#### linear networks:

- Linear, DLinear, NLinear, RLinear etc.
- simple, 1-layer networks for univariate time series

#### MLP-based models:

- N-BEATS, N-HiTS, TSMixer, TiDE etc.
- learn complex relations and decompositions by using stacks of MLPs

#### • transformers:

- PatchTST, Autoformer, FEDformer, Pyraformer etc.
- o pure transformer architectures, often with complex attention modifications

#### pretrained foundational models:

- TimesFM, Chronos, Lag-Llama, Moirai, TimeGPT etc.
- first really successful transfer learning for time series

#### • State Space Models (SSMs):

- LSSL, MambaTS, Chimera, SpaceTime etc.
- state-space models theory unifies ETS, CNNs, RNNs, and a few other things

#### graph neural networks (GNNs):

- T-GCN, DGSL, GaAN, STGNN etc.
- typically used for spatio-temporal forecasting, e.g. traffic demand

#### recurrent networks (RNNs):

- old (mostly obsolete), e.g. LSTM, GRU, DeepAR
- modern, e.g. RWKV-TS, TFT, P-sLSTM
- built for sequence prediction, fast inference, but can be hard to train

#### convolutional networks (CNNs):

- old (mostly obsolete), e.g. TCN, DeepTCN
- o modern, e.g. MICN, TimesNet, SCINet
- typically based on dilated convolutions and causal convolutions

classical ones are generally obsolete, but modern ones are noteworthy

# **Agenda**

- we will go over representative architectures from the most commonly used groups:
  - linear models
  - MLP-based
  - transformers
- lastly, we will cover **important research direction** pretrained foundation models
- we omit others, because:
  - SSMs are not well proven or popular (yet)
  - GNNs are specific for spatio-temporal forecasting
  - RNNs and CNNs are mostly obsolete (with some notable exceptions)

# Linear networks

# Linear

#### "Are Transformers Effective for Time Series Forecasting?" A. Zeng et al.

- LTSF-Linear (Long-term Time Series Forecasting Linear)
- just a linear projection from L to T values, no activation function etc.
- in paper called just **Linear** (or Vanilla Linear)
- naturally performs direct multi-step (DMS) forecasts
- Future T timesteps

  History L timesteps
- univariate, but performs very well also for multivariate problems
- why does this work?
  - relies exclusively on order and magnitude of time series values
  - o so only those matter how long ago something happened and how strongly
  - o linearly mixes L last values, which is simple and avoids overfitting

## **DLinear and NLinear**

- **expansions** of the Linear model, from the same paper
- DLinear (Detrended Linear):
  - first detrends time series with moving average
  - uses 2 Linear models, for trend and remainder, forecast is their sum
  - performs better for data with clear trend
- NLinear (Normalized Linear):
  - first normalizes by subtracting the last value from time series
  - predicts normalized series, adds back value to forecast
  - just a normalization that should stabilize training

# Linear model equivalence

"An Analysis of Linear Time Series Forecasting Models" W. Toner, L. Darlow

- authors prove that:
  - DLinear, NLinear and Linear are equivalent to OLS linear regression
  - NLinear is just Linear + constraint (rows sum to 1)
  - all equivalent models have closed formula from OLS
- uses SVD for training, which is great: optimal, fast, stable
- incredibly simple, but wins in 72% of experiments, and performs great
- just a single hyperparameter lookback window L
- even L2 regularization is not required

# Linear networks - pros and cons

#### **Pros:**

- closed formula OLS
- great performance
- very fast, stable, simple
- avoids overfitting
- just a single hyperparameter

#### Cons:

- cannot learn very complex relations
- univariate performs worse for strong cross-series correlations
- requires long time series for larger lookback L and learning long relations

# MLP-based models

### **N-BEATS**

"N-BEATS: Neural basis expansion analysis for interpretable time series forecasting"

B. Oreshkin et al.

#### **Combines a few key ideas:**

- learn everything from raw data
- MLP as a basic building block
- doubly residual stacking
- stacked blocks
- basis expansion
- backcast



## N-BEATS - stacked architecture

- first stack gets raw data of length nH
- model forecast is a sum from all stacks
- each stack has 2 outputs:
  - forecast of length H
  - o **residual** of its inputs
- stack subtracts what it learned from the input
- further ones only have to predict the part of the signal
- encourages **specialized** stacks, e.g. first learn simple shapes (trend), then more complex (seasonality)



## **N-BEATS - variants**

- paper proposed 2 variants: general and interpretable
- general (N-BEATS-G):
  - some N stacks, no structure enforced (linear basis)
  - o free to learn arbitrarily complex relations, but need enough data
- interpretable (N-BEATS-I):
  - 2 stacks: trend and seasonality
  - trend stack: outputs trend forecast & detrended data
  - seasonality stack: outputs seasonality forecast
  - use dedicated basis functions for inductive bias:
    - polynomial (trend)
    - Fourier (seasonality)

## N-BEATS - stack

- similar idea inside each stack, but with blocks
- block has 2 outputs:
  - partial forecast
  - backcast, estimating (reconstructing) its input data
- residual connection:
  - original data backcast = residual
  - input into the next block
  - makes the job easier removes parts of signal (data)
- called **doubly residual learning** in the paper (for stacks and for blocks)
- stack forecast = sum of block forecasts



# N-BEATS - block

- ullet 2 outputs: forecast  $\,\hat{y}_l$  and backcast  $\,\hat{x}_l$
- major idea is to predict basis coefficients of basis g
- allows encoding inductive bias through basis choice, e.g. seasonality is periodic
- forecast and backcast use the same basis, but separate weights
- generic architecture uses linear basis, which just matrix multiplication, i.e. linear projection

$$\hat{y}_l = W_f \theta_f + b_f$$

$$\hat{x}_l = W_b \theta_b + b_b$$



# **N-BEATS - block**

- interpretable variant encodes information in basis choise
- trend is uses **polynomial basis** of low degree, in paper p=2:

$$\hat{y}_l = \sum_{i=0}^p \theta_{f,i} t^i$$

 $t^\imath$  - time steps vector, linear grid raised to a given power

$$t^{i} = [0, 1, 2, ..., H - 2, H - 1]^{i}/H$$

seasonality uses Fourier basis

$$\hat{y}_l = \sum_{i=0}^{\lfloor H/2-1 \rfloor} \theta_{f,i} \cos(2\pi i t) + \theta_{f,i+\lfloor H/2 \rfloor} \sin(2\pi i t)$$



# N-BEATS - recap



# N-BEATS - pros and cons

#### Pros:

- very flexible
- good results
- can model very complex seasonality
- interpretable variant

#### Cons:

- only univariate
- does not scale well to long forecasting horizons (but: N-HiTS)
- no exogenous variables (but: N-BEATSx)

## N-BEATS - additional resources

- "N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting" C. Challu et al.
- "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx" Kin Olivares et al.
- N-BEATS code in PyTorch Forecasting: <u>blocks</u>, <u>whole model</u>
- alternative explanation:
  - "N-BEATS The First Interpretable Deep Learning Model That Worked for Time Series Forecasting" J. Dancker
  - "Optimizing Time Series Forecasting: Exploring N-BEATS Architecture for Improved Predictions" G. Sayago

## **TSMixer**

"TSMixer: An All-MLP Architecture for Time Series Forecasting" S. Chen et al.

#### • idea:

- "mixing" values in time or feature dimensions with MLPs
- o process separately: univariate time, multivariate features, exogenous variables



# TSMixer - mixer layer



# TSMixer - mixer layer

- time mixing: learn about time relations inside series
- feature mixing: learn about cross-series relations
- separate mixing reduces cost and complexity
- typical additions:
  - residuals
  - batch norm
- temporal projection is just a linear projection to horizon H



# **TSMixer - time mixing**

- **inspired by** the Linear model
- the simplest non-linearity: 1-layer MLP
- extracts time-varying information inside a single time series



# **TSMixer - feature mixing**

- **inspired by** the feature mixing in Transformer
- 2-layer MLP to learn more complex covariate relations
- extracts cross-series information





# TSMixer - temporal projection

- **inspired by** the Linear model
- literally just a Linear model simple linear projection from lookback L to to horizon H



# **TMix-Only**

- TSMixer variant for univariate time series
- only time mixing



# TSMixer - exogenous variables

- "auxiliary variables" in the paper
- can be:
  - o **static**, e.g. shop location
  - o **dynamic**, e.g. ongoing promotion
- historical data:
  - time series (1 or more)
  - dynamic auxiliary variables
- added after regular TSMixer forecast
- **correct** the pure time series forecast to account for exogenous variables



# **TSMixer - exogenous variables**

- **historical** data:
  - time series values + past auxiliary dynamic features
  - all concatenated as time series
  - temporal projection to get horizon length
  - feature mixing learns interactions between series and features
- **future** data:
  - future dynamic auxiliary variables
  - o we need to know them!
- **static** data:
  - repeated to horizon length



- they create **align** stage
- allows concatenating them like separate time series
- each has length horizon

## **TSMixer - exogenous variables**

- mixing stage, performs actual learning
- remember that:

mixing layer = temporal mixing + feature mixing

- **first** mix to combine concatenated features
- proceeds with regular mixing layers
- static variables are added each time, since they are always present
- output number of features in a layer can be smaller to avoid overfitting



## **TSMixer - recap**



## **TSMixer - pros and cons**

### **Pros:**

- simple
- can model very complex relations
- uni- and multivariate
- exogenous variables support

### Cons:

- can overfit with too little data
- computational cost (but not too high)
- not interpretable

## **TSMixer - warning!**

- there are two papers with name "TSMixer"
- we talked about the one by Google!
- but there is also a one by IBM:

"TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting" V. Ekambaram et al.

• Google one is better known, much simpler, people generally mean that one

## Other interesting MLP-based models

• TimeMixer:

"TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting" S. Wang et al.

- time series downsampling & multiscale structure
- o differentiable trend-seasonality decomposition (borrowed from Autoformer)
- many different mixings

### • TiDE:

"Long-term Forecasting with TiDE: Time-series Dense Encoder" A. Das et al.

- MLP-based encoder-decoder
- o flexible: univariate, multivariate, with exogenous variables
- quite small and very fast

## Other mixing architectures

- time series:
  - <u>TimeMixer</u>
  - <u>Tiny Time Mixers (TTMs)</u>
  - o <u>U-Mixer</u>
- computer vision:
  - "MLP-Mixer: An all-MLP Architecture for Vision" I. Tolstikhin et al.
  - "Patches Are All You Need?" A. Trockman, J. Kolter ConvMixer
- graphs:
  - "A Generalization of ViT/MLP-Mixer to Graphs" X. He et al.
- NLP:
  - "pNLP-Mixer: an Efficient all-MLP Architecture for Language" F. Fusco et al.

## Transformers

### Time series transformers

- NLP-inspired transformer, but with modifications for time series
- often based on quite **complex attention variants**, especially hierarchical ones
- reduces cost and better learns time series information
- quite varied:
  - architecture: encoder-decoder / encoder-only
  - dimensionality: univariate / multivariate
  - pretraining: pretrained / trained from scratch (more frequent)

• foundational models are also based on transformers, but have visibly different trends in architecture - see further slides

### **Encoder-decoder:**

Autoformer



**PatchTST** 





### A bunch of transformers

no

no

no

2 variants

no

no

yes

no

Learn trend-seasonality and autocorrelation

Conv. subsampling, ProbSparse attention

Frequency enhanced attention

Pyramidal attention with subsampling

Stationarization, De-Stationary attention

Hierarchical learning

Patching, weight sharing, pretraining

Inverted tokenization (series-level)

|          | / ( Balloll of trails of the |              |                           |            |                     |  |  |  |
|----------|------------------------------|--------------|---------------------------|------------|---------------------|--|--|--|
| Model    | Year                         | Architecture | Univariate / multivariate | Pretrained | Innovation          |  |  |  |
| LogTrans | 2019                         | enc-dec      | uni                       | no         | LogSparse attention |  |  |  |

Autoformer

Informer

**FEDformer** 

Pyraformer

NonStationary

Crossformer

PatchTST

iTransformer

2021

2021

2022

2022

2022

2023

2023

2024

enc-dec

enc-dec

enc-dec

2 variants

enc-dec

enc-dec

encoder-only

encoder-only

uni

multi

multi

uni

uni

multi

uni

multi

### **PatchTST**

"A Time Series is Worth 64 Words: Long-term Forecasting with Transformers" Y. Nie et al.

- **encoder-only** transformer, very similar to BERT
- main idea is **patching** tokenizing time series as "patches" of values
- after this, token sequence is just like a text sentence
- can pretrain with masked modeling, simply by masking and reconstructing patches

• uses previous 64 patches, which are equivalent to lookback ⊥=512



## PatchTST - channel independence

- univariate, processes time series separately called **channel independence** in the paper
- but with weight sharing all series have the same transformer!
  - regularizes, encourages better generalization
  - isolates effects from noisy channels
  - allows flexible number of time series



### PatchTST - instance norm

- instance normalization
- time series standardization, before patching

$$x' = \frac{x - \mu}{\sigma}$$

- processes time series separately
- reduces train/test distribution shift, making values distributions more similar
- added back to the final forecast



## PatchTST - patching

- patch is a continuous series of values, creating a token for transformer layers
- greatly reduces complexity (L → L/S tokens) and allows longer lookback
- original paper models: patch length P=16, stride S=8
- overlap is similar to CNNs, slightly reduces overfitting due to shared data



### PatchTST - transformer

- similar to regular transformer layers, with a few changes
- position embedding encodes time and order
- multi-head self attention and 2-layer MLP use
   GELU activation
- batch norm instead of layer norm inside, it works better for time series
- paper parameters:
  - 3 layers
  - 16 attention heads
  - latent dimensionality D=128
  - O MLP uses 128 → 256 → 128 dimensions



## PatchTST - pretraining

- change head to masked modeling
- mask patches randomly and learn to reconstruct them, minimizing MSE
- non-overlapping patches to avoid data leakage, i.e. P=S=16

- typically results in better quality (not always!)
- but finetuning is always much faster than training from scratch
- can also finetune just the classification head, known as linear probing



**Input Univariate Series** 

## PatchTST - recap



## PatchTST - pros and cons

### **Pros:**

- simple and fast (for a transformer)
- pretraining
- uni- and multivariate

### Cons:

- easily overfits with too little data (but: linear probing)
- hard to pretrain effectively
- not interpretable
- no exogenous variables

# Pretrained foundation models

### **Foundation models**

foundation model (<u>Wikipedia</u>):

"Model that is trained on broad data such that it can be applied across a wide range of use cases"

- **size matters:** large models + massive and diverse datasets + lots of computational power
- based on representation learning:
  - creating neural networks encoding general-purpose knowledge
  - internally create useful input representation (at least we hope so)
  - pretrain "domain expert", which can perform well on new tasks
- unique capabilities:
  - few-shot learning with extremely short finetuning
  - o **zero-shot forecasting** no additional training, just input new data and get output

### Time series foundation models

- common features:
  - transformers
  - quite simple architectures
  - patching (tokenization)
  - pretraining on massive datasets

- varied:
  - architecture: encoder-only, enc-dec, decoder-only
  - uni- / multivariate
  - exogenous variables support
- **idea:** rely on data and simple learning, rather than complicated models and handcrafted modules
- novelty: decoder-only, generative pretraining
- we will see if they are worthwhile in the future, for now those are a **research direction**

### Time series foundation models - caution

- **be very cautious** when checking those models
- often made by companies, to create "hype" around "ChatGPT for time series"
- frequently not fully open source (incl. data, code, model weights)
- massive data requirement has its own challenges:
   "Models work great when all test datasets are in your proprietary training dataset"
- whitepapers, preprints, technical notes etc. are **not peer-reviewed papers**

### A bunch of time series foundation models

no

yes

(NeurIPS workshop)

yes (ICML)

no

(TMLR reviews)

yes (ICML)

no

enc-dec

decoder

decoder

both

encoder

encoder

uni

uni

uni

uni

both

multi

| 71 Barrott of anno sories roaliaation in oacts |      |                      |              |                  |              |                              |  |  |
|------------------------------------------------|------|----------------------|--------------|------------------|--------------|------------------------------|--|--|
| Model                                          | Year | Company / university | Open source? | Published paper? | Architecture | Univariate /<br>multivariate |  |  |

no

yes

yes

yes

ves

yes

TimeGPT

Lag-Llama

TimesFM

Chronos

Moirai

UniTS

2023

2023

2024

2024

2024

2024

Nixtla

Various (both)

Google

Amazon

Salesforce

Harvard & MIT

### **TimesFM**

"A decoder-only foundation model for time-series forecasting" A. Das et al.

- Time series Foundation Model (TimesFM)
- decoder-only transformer, very similar to GPT
- **combination** of a few pretty simple ideas:
  - patching (tokenization)
  - decoder-only, generative pretraining
  - reasonable masking strategy
- in addition, they created a massive pretraining dataset, combining, e.g. Google Trends,
   Wikipedia page views, M4 datasets
- also used **synthetic**, generated datasets, exposing the model to different trends, shocks, seasonalities etc.

## TimesFM - architecture



### **TimesFM - architecture**

- basically, a standard GPT transformer
- autoregressive model that also makes direct multi-step (DMS) forecasts
- input patches are the "prompt"
- generates long patches at once, much longer than inputs
- this greatly reduces autoregressive error accumulation



## TimesFM - inputs and outputs

- "prompt" = context
- forecast = generated "words"
- sequence of non-overlapping patches
- input can have variable length, e.g. 32, 64,
   ..., padded when necessary

### • published model:

- input patch length 32
- max context length 512 (16 tokens)
- output patch length 128
- autoregressive forecast makes "full" steps,
   i.e. 128 here



### TimesFM - transformer

- quite standard transformer
- causal attention with masking
- published model is quite wide & deep:
  - 20 layers
  - 16 attention heads
  - hidden size 1280 in all layers
  - 200M parameters in total
- generates 128-element vectors of floats



## **TimesFM - training**

- just a regular training, with one detail patch masking
- **problem:** for naive patches, model might learn to predict well only for context that is multiple of input patch length (e.g. 16, 32, 64, ...)

### • patch masking:

- for each time series in a batch, get a random number *r* from [0, *p*-1]
- mask first *r* elements of the first patch, reducing the context
- o do this enough times and model will see all possibilities

### • example:

- o *p*=32, *r*=4
- o first context is 28 (32-4), second is 60 (28+32), and so on

## TimesFM - pretraining

- trained on a mixture of data
- a lot of **synthetic** data (20%):
  - trends, seasonalities
  - o processes, e.g. ARMA
- real data (80%) chosen to give equal weights to different frequencies
- context depended on frequency:
  - o 512 where possible
  - 256 for weekly
  - 64 for >= monthly

Table 1: Composition of TimesFM pretraining dataset.

| Dataset                       | Granularity | # Time series | # Time points   |  |
|-------------------------------|-------------|---------------|-----------------|--|
| Synthetic                     |             | 3,000,000     | 6,144,000,000   |  |
| Electricity                   | Hourly      | 321           | 8,443,584       |  |
| Traffic                       | Hourly      | 862           | 15,122,928      |  |
| Weather [ZZP <sup>+</sup> 21] | 10 Min      | 42            | 2,213,232       |  |
| Favorita Sales                | Daily       | 111,840       | 139,179,538     |  |
| LibCity [WJJ <sup>+</sup> 23] | 15 Min      | 6,159         | 34,253,622      |  |
| M4 hourly                     | Hourly      | 414           | 353,500         |  |
| M4 daily                      | Daily       | 4,227         | 9,964,658       |  |
| M4 monthly                    | Monthly     | 48,000        | 10,382,411      |  |
| M4 quarterly                  | Quarterly   | 24,000        | 2,214,108       |  |
| M4 yearly                     | Yearly      | 22,739        | 840,644         |  |
| Wiki hourly                   | Hourly      | 5,608,693     | 239,110,787,496 |  |
| Wiki daily                    | Daily       | 68,448,204    | 115,143,501,240 |  |
| Wiki weekly                   | Weekly      | 66,579,850    | 16,414,251,948  |  |
| Wiki monthly                  | Monthly     | 63,151,306    | 3,789,760,907   |  |
| Trends hourly                 | Hourly      | 22,435        | 393,043,680     |  |
| Trends daily                  | Daily       | 22,435        | 122,921,365     |  |
| Trends weekly                 | Weekly      | 22,435        | 16,585,438      |  |
| Trends monthly                | Monthly     | 22,435        | 3,821,760       |  |

## TimesFM - zero-shot results



## TimesFM - pros and cons

### **Pros:**

- simple, yet powerful
- good results
- pretraining on a lot of data
- few-shot and zero-shot capabilities

### Cons:

- computational cost
- only univariate
- no exogenous variables
- not interpretable

# Questions?