Indice

- 1. Serie Numeriche Guida Completa
- 2. Calcolo Integrale Guida Completa
- 3. Equazioni Differenziali Guida Completa
- 4. Limiti e Successioni Guida Completa
- 5. Calcolo Differenziale Guida Completa
- 6. Sviluppi di Taylor Riferimento Completo

Serie Numeriche

Definizioni Base

Una serie numerica è un'espressione del tipo:

$$\sum_{n=1}^{\infty}a_n=a_1+a_2+a_3+\cdots$$

La somma parziale n-esima è: $S_n = \sum_{k=1}^n a_k$

Una serie può essere:

• Convergente: $\lim_{n o\infty}S_n=L\in\mathbb{R}$

• Divergente: $\lim_{n o \infty} S_n = \pm \infty$

• Indeterminata: $\lim_{n \to \infty} S_n$ non esiste

Serie di Riferimento Fondamentali

1. Serie Geometrica

$$\sum_{n=0}^{\infty} r^n = rac{1}{1-r} ext{ se } |r| < 1$$

• Se $|r| \geq 1$, la serie diverge

2. Serie Armonica Generalizzata

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

- Converge se $\alpha>1$
- Diverge se $\alpha \le 1$

Criteri di Convergenza - Spiegazione Dettagliata

Criterio del Confronto

Enunciato: Siano a_n e b_n successioni tali che $0 \le a_n \le b_n$ definitivamente.

- Se $\sum b_n$ converge $\Rightarrow \sum a_n$ converge
- Se $\sum a_n$ diverge $\Rightarrow \sum b_n$ diverge

Criterio del Confronto Asintotico

Enunciato: Se $a_n \sim b_n$ per $n \to \infty$ (cioè $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$), allora $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere.

Quando usarlo: Quando hai espressioni complicate che si comportano come qualcosa di più semplice.

Criterio del Rapporto

Enunciato: Sia a_n una successione a termini positivi. Se $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$:

- $L < 1 \Rightarrow$ serie convergente
- $L>1\Rightarrow$ serie divergente
- $L=1 \Rightarrow$ il criterio non decide

Quando usarlo: Con fattoriali, potenze di n, o quando hai a_{n+1} facilmente calcolabile.

Criterio della Radice

Enunciato: Sia a_n una successione a termini positivi. Se $\lim_{n\to\infty} \sqrt[n]{a_n} = L$:

- $L < 1 \Rightarrow$ serie convergente
- $L > 1 \Rightarrow$ serie divergente
- $L=1\Rightarrow$ il criterio non decide

Criterio di Leibniz (Serie Alternanti)

Enunciato: Per la serie $\sum_{n=1}^{\infty} (-1)^n a_n$ con $a_n > 0$: Se a_n è decrescente e $\lim_{n\to\infty} a_n = 0$, allora la serie **converge**.

Risoluzione Passo-Passo degli Esercizi su Serie

METODO GENERALE:

PASSO 1: Analizza il termine generale a_n

Identifica le funzioni coinvolte

• Studia il comportamento per $n o \infty$

PASSO 2: Calcola il comportamento asintotico

• Usa gli sviluppi di Taylor per espressioni complicate

• Ricorda: $\sin(x) \sim x$, $\cos(x) \sim 1 - rac{x^2}{2}$, $e^x \sim 1 + x$, $\log(1+x) \sim x$ per x o 0

PASSO 3: Scegli il criterio appropriato

• Confronto asintotico: per termini complicati

• Rapporto/Radice: per potenze, fattoriali

• Leibniz: per serie alternanti

Esempio Dettagliato dall'Appello

Esercizio: Determinare per quali valori di $x \in \mathbb{R}$ converge la serie

$$\sum_{n=1}^{\infty} rac{rctan(x^{2n}) an(1/n)}{\cos(1/n^2)}$$

SOLUZIONE PASSO-PASSO:

PASSO 1: Analizziamo il comportamento asintotico per $n \to \infty$:

•
$$\tan(1/n) \sim \frac{1}{n} \ \mathsf{per} \ n \to \infty$$

•
$$\cos(1/n^2) \sim 1 \ \mathsf{per} \ n o \infty$$

PASSO 2: Distinguiamo i casi per x:

Caso 1: |x| > 1

•
$$\lim_{n \to \infty} x^{2n} = +\infty$$

$$ullet \lim_{n o\infty}rctan(x^{2n})=rac{\pi}{2}$$

• Quindi:
$$a_n \sim rac{\pi}{2} \cdot rac{1}{n} \ \mathsf{per} \ n o \infty$$

• Poiché $\sum \frac{1}{n}$ diverge, la serie **diverge**

Caso 2: |x|=1

•
$$\arctan(x^{2n}) = \arctan(1) = \frac{\pi}{4}$$
 per ogni n

• Quindi:
$$a_n \sim rac{\pi}{4} \cdot rac{1}{n} \ \mathsf{per} \ n o \infty$$

La serie diverge

Caso 3: x=0

• $a_n=0$ per ogni n, quindi la serie **converge** (banalmente)

Caso 4: 0 < |x| < 1

•
$$\lim_{n\to\infty} x^{2n} = 0$$

• $\arctan(x^{2n}) \sim x^{2n} \ \mathsf{per} \ n o \infty$

• Quindi: $a_n \sim rac{x^{2n}}{n}$ per $n o \infty$

Studiamo $\sum \frac{x^{2n}}{n}$ con il criterio del rapporto:

$$\lim_{n o \infty} rac{a_{n+1}}{a_n} = \lim_{n o \infty} rac{x^{2(n+1)}/(n+1)}{x^{2n}/n} = x^2 \lim_{n o \infty} rac{n}{n+1} = x^2$$

Poiché $x^2 < 1$, la serie **converge**.

RISPOSTA FINALE: La serie converge per |x| < 1.

Calcolo Integrale

Integrali Indefiniti - Tecniche Complete

1. Integrazione per Parti

Formula: $\int u, dv = uv - \int v, du$

Regola ILATE per scegliere u:

- Inverse trig functions $(\arcsin x, \arctan x, \operatorname{ecc.})$
- Logarithmic functions $(\log x, \ln x)$
- Algebraic functions $(x^n, polinomi)$
- Trigonometric functions $(\sin x, \cos x, \tan x)$
- Exponential functions (e^x, a^x)

Esempio Dettagliato

Calcolare: $\int x^3 e^{-x} dx$

SOLUZIONE: Applichiamo per parti ripetutamente:

Prima applicazione:

$$ullet \ u=x^3\Rightarrow du=3x^2dx$$

•
$$dv = e^{-x} dx \Rightarrow v = -e^{-x}$$

$$\int x^3 e^{-x} dx = -x^3 e^{-x} - \int (-e^{-x}) \cdot 3x^2 dx = -x^3 e^{-x} + 3 \int x^2 e^{-x} dx$$

Seconda applicazione su $\int x^2 e^{-x} dx$:

$$ullet u=x^2\Rightarrow du=2xdx$$

•
$$dv = e^{-x}dx \Rightarrow v = -e^{-x}$$

$$\int x^2 e^{-x} dx = -x^2 e^{-x} + 2 \int x e^{-x} dx$$

Terza applicazione su $\int xe^{-x}dx$:

•
$$u = x \Rightarrow du = dx$$

•
$$dv = e^{-x}dx \Rightarrow v = -e^{-x}$$

$$\int xe^{-x}dx = -xe^{-x} + \int e^{-x}dx = -xe^{-x} - e^{-x}$$

Risultato finale:

$$\int x^3 e^{-x} dx = -e^{-x}(x^3+3x^2+6x+6) + C$$

2. Integrazione per Sostituzione

Metodo: Se $\int f(g(x))g'(x)dx$, poni u=g(x), du=g'(x)dx

Sostituzioni Standard:

•
$$\sqrt{a^2 - x^2} \Rightarrow x = a \sin t$$

•
$$\sqrt{a^2 + x^2} \Rightarrow x = a \tan t$$

•
$$\sqrt{x^2 - a^2} \Rightarrow x = a \sec t$$

Esempio con Sostituzione Trigonometrica

Calcolare: $\int \frac{dx}{\sqrt{4-x^2}}$

SOLUZIONE:

• Poniamo
$$x = 2\sin t, \, dx = 2\cos t, dt$$

•
$$\sqrt{4-x^2} = \sqrt{4-4\sin^2 t} = 2\cos t$$

$$\int \frac{dx}{\sqrt{4-x^2}} = \int \frac{2\cos t, dt}{2\cos t} = \int dt = t + C$$

Tornando alla variabile x: $t = \arcsin\left(\frac{x}{2}\right)$

$$\int \frac{dx}{\sqrt{4-x^2}} = \arcsin\left(\frac{x}{2}\right) + C$$

3. Frazioni Razionali

Per integrare $\frac{P(x)}{Q(x)}$ con $\deg P < \deg Q$:

PASSO 1: Fattorizza Q(x) **PASSO 2**: Decomponi in frazioni parziali **PASSO 3**: Integra termine per termine

Esempio Dettagliato

Calcolare: $\int \frac{1}{x^2-5x+4} dx$

SOLUZIONE:

PASSO 1: Fattorizziamo il denominatore $x^2 - 5x + 4 = (x-1)(x-4)$

PASSO 2: Decomponiamo in frazioni parziali

$$\frac{1}{(x-1)(x-4)} = \frac{A}{x-1} + \frac{B}{x-4}$$

Troviamo A e B:

$$1 = A(x-4) + B(x-1)$$

Metodo dei valori particolari:

- Per x = 1: $1 = A(-3) \Rightarrow A = -\frac{1}{3}$
- Per x = 4: $1 = B(3) \Rightarrow B = \frac{1}{3}$

PASSO 3: Integriamo

$$\int rac{1}{x^2 - 5x + 4} dx = \int \left(-rac{1}{3(x - 1)} + rac{1}{3(x - 4)}
ight) dx$$

$$= -rac{1}{3} \ln|x - 1| + rac{1}{3} \ln|x - 4| + C = rac{1}{3} \ln\left| rac{x - 4}{x - 1}
ight| + C$$

Integrali Impropri

Definizioni

Tipo I (estremi infiniti):

$$\int_{a}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{a}^{t} f(x)dx$$

Tipo II (funzione illimitata): Se f ha singolarità in $c \in [a, b]$:

$$\int_a^b f(x)dx = \lim_{\epsilon o 0^+} \left(\int_a^{c-\epsilon} f(x)dx + \int_{c+\epsilon}^b f(x)dx
ight)$$

Criteri di Convergenza per Integrali Impropri

Integrali di riferimento:

- $\int_1^{+\infty} rac{1}{x^{lpha}} dx$ converge $\Leftrightarrow lpha > 1$
- $\int_0^1 \frac{1}{x^{\alpha}} dx$ converge $\Leftrightarrow \alpha < 1$

Esempio dall'Appello

Studiare la convergenza di: $\int_0^{+\infty} rac{(\sqrt{x}\arctan x)^{lpha}}{x^2-5x+4} dx$ al variare di lpha

SOLUZIONE:

L'integrale è improprio sia in 0 che in $+\infty$, e ha singolarità in x=1 e x=4.

Comportamento per $x \to +\infty$:

- $\arctan x o \frac{\pi}{2}$
- $ullet \ (\sqrt{x} rctan x)^lpha \sim \left(rac{\pi}{2}
 ight)^lpha x^{lpha/2}$
- $x^2 5x + 4 \sim x^2$

Quindi: $f(x) \sim \left(rac{\pi}{2}
ight)^{lpha} x^{lpha/2-2}$ per $x o +\infty$

L'integrale converge per $x o +\infty$ se $rac{lpha}{2}-2 < -1$, cioè lpha < 2.

Equazioni Differenziali

Equazioni del Primo Ordine

1. A Variabili Separabili

Forma generale: y' = f(x)g(y)

Metodo di risoluzione:

- 1. Separa le variabili: $rac{dy}{g(y)}=f(x)dx$
- 2. Integra entrambi i membri: $\int rac{dy}{g(y)} = \int f(x) dx + C$
- 3. Risolvi per y se possibile

Esempio

Risolvere: $y' = \frac{ty}{2\log y} \ {
m con} \ y(0) = e^{-1}$

SOLUZIONE:

PASSO 1: Separiamo le variabili

$$rac{dy}{dt} = rac{ty}{2\log y} \Rightarrow rac{2\log y}{y} dy = tdt$$

PASSO 2: Integriamo entrambi i membri

$$\int \frac{2\log y}{y} dy = \int t dt$$

Per il primo integrale, poniamo $u = \log y$, $du = \frac{dy}{y}$:

$$\int 2udu = \int tdt \Rightarrow u^2 = rac{t^2}{2} + C \Rightarrow (\log y)^2 = rac{t^2}{2} + C$$

PASSO 3: Applichiamo la condizione iniziale $y(0) = e^{-1} \Rightarrow \log(e^{-1}) = -1$

$$(-1)^2=rac{0^2}{2}+C\Rightarrow C=1$$

SOLUZIONE: $(\log y)^2 = \frac{t^2}{2} + 1$

2. Lineari del Primo Ordine

Forma generale: y' + a(x)y = b(x)

Formula risolutiva:

$$y(x) = e^{-A(x)} \left[\int b(x) e^{A(x)} dx + C
ight]$$

dove $A(x) = \int a(x) dx$

Metodo Pratico Passo-Passo

PASSO 1: Calcola $A(x)=\int a(x)dx$ **PASSO 2**: Calcola $e^{A(x)}$ **PASSO 3**: Moltiplica l'equazione per $e^{A(x)}$ **PASSO 4**: Riconosci che il primo membro è $(ye^{A(x)})'$ **PASSO 5**: Integra entrambi i membri

Esempio Dettagliato dall'Appello

Risolvere: $y'(t) = -2ty(t) + t^3 \cos y(0) = 2025$

SOLUZIONE:

PASSO 1: Riscriviamo in forma standard

$$y' + 2ty = t^3$$

Qui a(t) = 2t e $b(t) = t^3$.

PASSO 2: Calcoliamo A(t)

$$A(t)=\int 2tdt=t^2$$

PASSO 3: Calcoliamo $e^{A(t)}=e^{t^2}$

PASSO 4: Moltiplichiamo l'equazione per e^{t^2}

$$e^{t^2}y' + 2te^{t^2}y = t^3e^{t^2}$$

Il primo membro è $(ye^{t^2})'$.

$$(ye^{t^2})'=t^3e^{t^2}$$

$$ye^{t^2}=\int t^3e^{t^2}dt$$

Per calcolare $\int t^3 e^{t^2} dt$, notiamo che $t^3 = t \cdot t^2$ e usiamo integrazione per parti o il suggerimento dall'esercizio che $t^3 = \frac{1}{2} \cdot 2t \cdot t^2$:

$$\int t^3 e^{t^2} dt = rac{1}{2} \int t^2 e^{t^2} \cdot 2t dt$$

Ponendo $u = t^2$, du = 2tdt:

$$rac{1}{2}\int ue^udu = rac{1}{2}[(u-1)e^u] + C = rac{1}{2}(t^2-1)e^{t^2} + C$$

PASSO 6: Risolviamo per y

$$y=e^{-t^2}\left[rac{1}{2}(t^2-1)e^{t^2}+C
ight]=rac{1}{2}(t^2-1)+Ce^{-t^2}$$

PASSO 7: Applichiamo la condizione iniziale

$$y(0) = rac{1}{2}(0-1) + C = -rac{1}{2} + C = 2025$$
 $C = 2025 + rac{1}{2}$

SOLUZIONE FINALE:

$$y(t) = rac{1}{2}(t^2-1) + \left(2025 + rac{1}{2}
ight)e^{-t^2}$$

Equazioni del Secondo Ordine

Lineari Omogenee a Coefficienti Costanti

Forma: y'' + ay' + by = 0

Metodo:

- 1. Scrivi l'equazione caratteristica: $\lambda^2 + a\lambda + b = 0$
- 2. Risolvi per λ
- 3. La soluzione dipende dal discriminante $\Delta=a^2-4b$

Casi:

- $\Delta>0$: due radici reali $\lambda_1,\lambda_2 o y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$
- $\Delta=0$: una radice doppia $\lambda o y=(C_1+C_2x)e^{\lambda x}$
- $\Delta < 0$: radici complesse $lpha \pm eta i extcolor{def}{} y = e^{lpha x} (C_1 \cos(eta x) + C_2 \sin(eta x))$

Limiti e Successioni

Limiti Fondamentali (da memorizzare)

1.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

2.
$$\lim_{x\to\infty} (1+\frac{1}{x})^x = e$$

3.
$$\lim_{x\to 0} \frac{e^x-1}{x} = 1$$

3.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$
4. $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$
5. $\lim_{x\to 0} \frac{(1+x)^{\alpha} - 1}{\alpha x} = 1$

5.
$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{\alpha x} = 1$$

Gerarchia degli Infiniti

Per $x \to +\infty$:

$$(\log x)^a \ll x^b \ll a^x \ll x! \ll x^x$$

dove a, b > 0 e a > 1.

Risoluzione di Limiti con Forme Indeterminate

Esempio dall'Appello

Calcolare:

$$\lim_{x o 0^+}rac{e^{x^2}-\cos(x^2)-\sin(x^2)+x(\sin x-x)}{\sqrt{1+x^4}-\sqrt[3]{1+x^4}}$$

SOLUZIONE con sviluppi di Taylor:

Numeratore:

•
$$e^{x^2} = 1 + x^2 + \frac{x^4}{2} + o(x^4)$$

•
$$\cos(x^2) = 1 - \frac{x^4}{2} + o(x^4)$$

•
$$\sin(x^2) = x^2 + o(x^4)$$

$$\bullet \ \sin x = x - \tfrac{x^3}{6} + o(x^4)$$

Quindi:

$$\sin x-x=-rac{x^3}{6}+o(x^4)$$

$$x(\sin x-x)=-\frac{x^4}{6}+o(x^4)$$

Numeratore completo:

$$N=1+x^2+rac{x^4}{2}-1+rac{x^4}{2}-x^2-rac{x^4}{6}+o(x^4)=rac{5x^4}{6}+o(x^4)$$

Denominatore:

•
$$\sqrt{1+x^4}=(1+x^4)^{1/2}=1+rac{x^4}{2}+o(x^4)$$

•
$$\sqrt[3]{1+x^4} = (1+x^4)^{1/3} = 1 + \frac{x^4}{3} + o(x^4)$$

$$D=1+rac{x^4}{2}-1-rac{x^4}{3}+o(x^4)=rac{x^4}{6}+o(x^4)$$

Risultato:

$$\lim_{x o 0^+}rac{N}{D}=\lim_{x o 0^+}rac{rac{5x^4}{6}+o(x^4)}{rac{x^4}{6}+o(x^4)}=5$$

Sviluppi di Taylor

Sviluppi Fondamentali in x = 0

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + o(x^{5})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + o(x^{7})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + o(x^{6})$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} + o(x^{5})$$

$$\tan x = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + o(x^{5})$$

$$\arctan x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + o(x^{7})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + o(x^{3})$$

Sviluppi Derivati Importanti

$$rac{1}{1+x} = 1-x+x^2-x^3+x^4+o(x^4)$$
 $\sqrt{1+x} = 1+rac{x}{2}-rac{x^2}{8}+rac{x^3}{16}+o(x^3)$
 $rac{1}{\sqrt{1+x}} = 1-rac{x}{2}+rac{3x^2}{8}-rac{5x^3}{16}+o(x^3)$
 $\sinh x = x+rac{x^3}{3!}+rac{x^5}{5!}+o(x^5)$

$$\cosh x = 1 + rac{x^2}{2!} + rac{x^4}{4!} + o(x^4)$$

Regole per gli Sviluppi Composti

Se f(x) = g(h(x)) e $h(x) \rightarrow 0$ per $x \rightarrow 0$:

- 1. Sviluppa h(x) fino all'ordine necessario
- 2. Sostituisci nell'sviluppo di g(u)
- 3. Sviluppa il risultato raccogliendo le potenze

Esempio: Sviluppare $e^{\sin x}$ per x o 0

$$\sin x = x - \frac{x^3}{6} + o(x^3)$$

$$e^u = 1 + u + rac{u^2}{2} + o(u^2)$$

Sostituendo $u = \sin x$:

$$e^{\sin x} = 1 + \left(x - \frac{x^3}{6}\right) + \frac{1}{2}\left(x - \frac{x^3}{6}\right)^2 + o(x^3)$$

$$= 1 + x - \frac{x^3}{6} + \frac{x^2}{2} + o(x^3)$$

$$= 1 + x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3)$$

Strategie d'Esame e Consigli Pratici

Struttura Tipica degli Appelli

- 1. Esercizio 1 (6 punti): Studio di funzione (domini, limiti, derivate, monotonia, asintoti)
- 2. Esercizio 2 (5 punti): Serie numeriche con parametri
- 3. Esercizio 3 (5 punti): Limite con sviluppi di Taylor
- 4. Esercizio 4 (5 punti): Integrali (definiti/impropri) ed equazioni differenziali

Errori Comuni da Evitare

Nelle Serie

- Non studiare il comportamento asintotico del termine generale
- Confondere convergenza semplice e assoluta
- Non considerare tutti i casi quando ci sono parametri

Negli Integrali

- Non verificare la convergenza negli integrali impropri
- Dimenticare la costante di integrazione
- Errori di segno nell'integrazione per parti

Nei Limiti

- Sviluppare all'ordine sbagliato
- Non riconoscere le forme indeterminate
- Errori di sostituzione negli sviluppi composti

Nelle Equazioni Differenziali

- Non verificare le condizioni iniziali
- Errori di segno nelle formule risolutive
- Non identificare correttamente il tipo di equazione

Checklist Pre-Esame

Serie: ✓ Conosci i criteri e quando applicarli **Integrali**: ✓ Sai le tecniche base e riconosci il tipo **Sviluppi**: ✓ Memorizzi quelli fondamentali **Equazioni Diff**: ✓ Identifichi il tipo e applichi la formula corretta **Limiti**: ✓ Riconosci le forme indeterminate e sai usare gli sviluppi

Questa guida ti permetterà di affrontare qualsiasi esercizio tipo dell'appello con sicurezza!