

[CAPSTONE Project Notes -1]

[Supply Chain Management

(2022-2023)

Course Name

Post Graduate Program in Data Science and Business Analytics

Batch Id

(PGP-DSBA-June22C)

Submitted by Jayant Singh

Email Id: jayant101169@gmail.com

Table of Contents

S.No	Review Parameters	Page No.		
1	Introduction of the business problem			
	Defining problem statement	2		
	Need of the study/project			
2	Data Report	3 to 9		
3	Exploratory Data Analysis	10 to 15		
4	Business Insights	16		

Review Parameters

1) Introduction of the business problem

A FMCG company has entered into the instant noodles business two years back. Their higher management has notices that there is a miss match in the demand and supply. Where the demand is high, supply is pretty low and where the demand is low, supply is pretty high. In both the ways it is an inventory cost loss to the company; hence, the higher management wants to optimize the supply quantity in each and every warehouse in entire country.

A. Defining problem statement

Due to the current supply management's inadequate practises, the organisation is experiencing an inventory cost loss.

Noodles. The goal of the management is to maximise supply in each and every warehouse. across the entire nation. This project's aim is to create a model utilising historical data that will Identify the ideal product weight that should be sent each time to the warehouse. PORDUCT_WG_TON is the target variable in this issue. With a variety of possibilities for analysis Considering that the performance of the model depends on the parameters included in the data, choosing the method and machine learning model to utilise can be highly challenging.

This research compares various well-known machine learning classifiers and evaluates their effectiveness to determine

B. Need of the study/project

- Objective To predict the weight of products of a FMCG company for various warehouses with
 different conditions, size & locality. To determine the Ideal Quantity of Product Weight
 Shipped to the various Ware Houses of FMCG Instant Noodles Company in order to reduce
 wastage of the Product, Bridge the Demand Supply Gap and avoid over-stacking of Products
 in the Ware Houses.
- **Scope** To build various linear, non-linear & ensembled models to predict the weight of products of a FMCG company for various warehouses with different conditions, size & locality.
- **Significance of the project** Demand forecasting also becomes very key as this is the driving force behind the entire process. Effective FSCM aims to create a value chain between the demand and supply, with optimum utilization of all resources.
- **Constraints (Out of Scope)** No clear information about the distance between the production center & warehouses & sales in retail stores.

2. Data Report

8]:

	Location_type	WH_capacity_size	zone	WH_regional_zone	num_refill_req_l3m	transport_issue_l1y	Competitor_in_mkt	retail_shop_num	wh_owner
0	Urban	Small	West	Zone 6	3	1	2	4651	R
1	Rural	Large	North	Zone 5	0	0	4	6217	Cor C
2	Rural	Mid	South	Zone 2	1	0	4	4306	Cor C
3	Rural	Mid	North	Zone 3	7	4	2	6000	R
4	Rural	Large	North	Zone 5	3	1	2	4740	Cor C

5 rows × 22 columns

memory usage: 4.2+ MB

9]: data.shape

9]: (25000, 22)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 22 columns):
# Column
                                   Non-Null Count Dtype
0 Location_type
                                 25000 non-null object
                                 25000 non-null object
1
    WH_capacity_size
                                  25000 non-null object
                                 25000 non-null object
 3
    WH_regional_zone
                               25000 non-null int64
25000 non-null int64
25000 non-null int64
25000 non-null int64
25000 non-null object
    num_refill_req_l3m
4
    transport_issue_liy
    Competitor_in_mkt
    retail_shop_num
 8
    wh_owner_type
                                 25000 non-null int64
    distributor_num
 9
 10 flood_impacted
                                 25000 non-null int64
 11 flood_proof
                                 25000 non-null int64
                                 25000 non-null int64
 12 electric_supply
 13 dist_from_hub
                                   25000 non-null int64
                                   24010 non-null float64
 14 workers_num
 15 wh_est_year
                                   13119 non-null float64
16 storage_issue_reported_l3m
                                   25000 non-null int64
                                   25000 non-null int64
17 temp_reg_mach
 18 approved_wh_govt_certificate 24092 non-null object
 19 wh_breakdown_13m
                                   25000 non-null int64
                                   25000 non-null int64
 20 govt_check_13m
21 product wg ton
                                   25000 non-null int64
dtypes: float64(2), int64(14), object(6)
```

	count	unique	top	freq	mean	etd	mIn	25%	50%	75%	mat
Location_t;pe	25000	2	Rural	22967	NaN	NaN	NaN	NaN	NaN	NaN	NaN
W/H_capacity_size	25000	3	Large	10169	NaN	NaN	NaN	NaN	NaN	NaN	NaN
20110	25000		North	10278	NaN	NaN	NaN	NaN	NaN	NaN	NaN
WH_regional_zone	25000	6	Zone 6	8339	NaN	NaN	NaN	NaN	NaN	NaN	NaN
num_refill_req_i3m	250000	NaN	NaN	NaN	4.08904	2.606612	0.0	2Π	ŧΩ	6Д	80
transport_Issue_Isy	250000	NaN	NaN	NaN	0.77368	1.199449	0.0	0.0	0.0	10	50
Competitor_in_mit	250000	NaN	NaN	NaN	3.1042	1.141663	0.0	20	30	ŧΩ	120
retall_elrop_num	250000	NaN	NaN	NaN	4985,71156	1062,826262	1821 🏻	4313.0	4859 II	5 500 .0	11008.0
wh_owner_t;pe	25000	2	CompanyOwned	13578	NaN	NaN	NaN	NaN	NaN	NaN	NaN
dl#trlbutor_num	250000	NaN	NaN	NaN	42.41812	16,064329	150	291	420	961	مور
flood_impacted	250000	NaN	NaN	NaN	0.09816	0.297537	0.0	0.0	0.0	0.0	10
flood_proof	250000	NaN	NaN	NaN	0.05464	0.227281	0.0	0.0	0.0	0.0	10
electric_supply	250000	NaN	NaN	NaN	0.65688	0.474761	0.0	0.0	10	10	10
dlit_from_liub	250000	NaN	NaN	NaN	163.53732	62,718609	55.0	109.0	164∄	2180	2710
workeri_num	240100	NaN	NaN	NaN	28.944398	7.872534	100	240	28.0	330	98.0
Whi_eut_year	13119Д	NaN	NaN	NaN	2009.383185	7.52823	1996Д	20030	20090	2016.0	2023.0
ntorage_Innue_reported_I3m	250000	NaN	NaN	NaN	17,13044	9.161108	0.0	100	180	24□	39.0
temp_reg_mach	250000	NaN	NaN	NaN	0.30328	0.459684	0.0	0.0	0.0	10	10
approved_win_govt_certificate	24092	5	С	5501	Nan	NaN	NaN	NaN	NaN	NaN	NaN
win_breakdown_i3m	250000	NaN	NaN	NaN	3,48204	1.690336	0.0	20	30	50	6Д
govt_clreck_l3m	250000	NaN	NaN	NaN	18.81228	8.632382	10	11.0	210	26.0	32.0
product_wg_ton	250000	NaN	NaN	NaN	22102.63292	11607,755077	206510	13059.0	22101.0	30103.0	55151 <u>D</u>

Data Cleaning 🧹

Null Values Check

	mmm Hall Values Officer		
in [62]:	data.isnull().sum()		
ut[62]:	Location_type	0	
	WH_capacity_size	0	
	zone	0	
	WH_regional_zone	0	
	num_refill_req_l3m	0	
	transport_issue_l1y	0	
	Competitor_in_mkt	0	
	retail_shop_num	0	
	wh_owner_type	0	
	distributor_num	0	
	flood_impacted	0	
	flood_proof	0	
	electric_supply	0	
	dist_from_hub	0	
	workers_num	990	
	wh_est_year	11881	
	storage_issue_reported_13m	0	
	temp_reg_mach	0	
	approved_wh_govt_certificate	908	
	wh_breakdown_13m	0	
	govt_check_13m	0	
	product_wg_ton	0	
	dtype: int64		

Percent of Total Missing Values in the data = 1.0 %

```
6]: ((data.isnull().sum())/data.shape[0]).plot(kind='barh')
plt.title('Fraction of Missing values')
plt.show()
```


zопе 0 0 WH_regional_zone num_refill_req_l3m transport_issue_l1y Competitor_in_mkt ø 0 retail_shop_num
wh_owner_type
distributor_num
flood_impacted
flood_proof 0 0 9 9 electric_supply dist_from_hub 0 0 9 9 workers_num wh_est_year 0 storage_issue_reported_13m temp_reg_mach approved_wh_govt_certificate wh_breakdown_13m ō 0 0 govt_check_13m product_wg_ton dtype: int64 0 0

™Duplicate Value Check

data.duplicated().sum()

. 0

Solving Structural Error

data.value_counts()

Location_type WH_capacity_size zone WH_regional_zone num_refill_req_l3m transport_issue_l1y Competitor_in_mkt retail _shop_num wh_owner_type distributor_num flood_impacted flood_proof electric_supply dist_from_hub workers_num wh_est _year storage_issue_reported_l3m temp_reg_mach approved_wh_govt_certificate wh_breakdown_l3m govt_check_l3m product_w

Rural	Large		Zone 5		0		0	3		4419
Company Owned	37	0		0		0	63	20.000000	2009.383185	11
0	B+		4			14	13083	1		
	Mid	West	Zопе 3		8		0	4		4757
Rented	64	1		0		1	237	28.944398	2009.383185	4
0	B+		3			19	4146	1		
								6		4046
Rented	23	0		0		0	176	34.000000	2004.000000	25
0	В		6			19	29099	1		
										3843
Company Owned	49	0		0		1	95	30.000000	2009.383185	4
1	B+		2			19	5099	1		
										3565
Rented	42	0		0		1	113	29.000000	2014.000000	11
1	В		3			19	14075	1		
	Large	West	Zопе 6		2		2	4		2776
Rented	64	0		0		1	179	28.000000	2009.383185	16
0	A		5			23	20151	1		
								2		5180
Rented	49	0		0		0	170	18.000000	2009.383185	6
0	A		3			6	8972	1		
							1	6		6887
Company Owned	27	0		0		1	90	26.000000	2009.383185	4
0	C		2			29	5130	1		
										3753
Rented	17	0		0		0	135	20.000000	2009.383185	30
0	В		6			23	36066	1		
Urban	Small	West	Zопе 6		8		3	4		4194
Company Owned	48	1		0		1	139	34.000000	2009.383185	22
0	В		6			15	26066	1		
Length: 25000,	dtype: int64									

Checking data distribution

n

Outlier Management

```
In [70]: sns.boxplot(data['num_refill_req_l3m'])
Out[70]: <AxesSubplot:xlabel='num_refill_req_l3m'>
```


/t[71]: <AxesSubplot:xlabel='transport_issue_liy'>

'Competitor_in_mkt

'retail shop num'

<AxesSubplot:xlabel='distributor_num'>

!]: <AxesSubplot:xlabel='workers_num'>

<AxesSubplot:xlabel='workers_num'>

3) Exploratory Data Analysis

Univariate Analysis

Bivariate Analysis

Multivariate Analysis

Business Insights

Q 4 a)

 Class Imbalance has been detected for features location_type, flood_impacted,flood_proof, and temp_reg_mach. We can generate more data using the oversampling technique to remove class imbalances or we can ask for more data regarding the location of type rural that are flood proofed and have Warehouse that has temperature regulating machine indicator.

Q 4 b)

- East side of Zone 5 has the highest product demand across the geography
- Company Owned Warehouses have more product demand in urban areas as compared to rural areas
- Company Owned Warehouses in the North zone have the highest transport issues than the other regions.

Q 4 c)

- storage_issue_reported_l3m and product_wg_ton are highly correlated features as they are 99% correlated. As we can say Intuitively due to storage issues like moisture, rat and fungus can lead to degraded product quality and weight.
- storage_issue_reported_l3m and wh_est_year are highly negatively correlated features as they are 63% negatively correlated. As we can intuitively say that warehouse standards have been improved over the years.
- product_wg_ton and wh_est_year are highly negatively correlated features as they are 61% negatively correlated. As we can intuitively say that product weight standards have been improved for warehousing over the years.
- From univariate analysis we can be sure that Number of times refilling has been done in the last 3 months were more for rural areas as compared to urban.
- From univariate analysis we can be sure that Number of instant noodles competitors in the market are more in rural areas as compared to urban locations as locals want to promote their local brands. Because there are more competitors in the market hence the retail shops.
- From univariate analysis we can be sure that Distance between the warehouse and the production hub is more for rural areas as compared to urban areas, which is contextually correct.