Homework #2: Due: tentatively Oct. 8, 2019

***** (about lecture #1) *****

- 1. (5pts) The definition of unitary operator is that a linear operator \hat{U} is unitary if the inner product $(\hat{U}\phi,\hat{U}\psi)=(\phi,\psi)$ for any states ϕ and ψ . Prove that this condition is equivalent to: $(\hat{U}\psi,\hat{U}\psi)=(\psi,\psi)$ for any state ψ . [Hint: the former condition obviously imply the latter one, try to derive the former condition from the latter one, by assuming an arbitrary linear combination of states]
- 2. \mathcal{H}_1 and \hat{H}_2 are both 2-dimensional Hilbert spaces. \mathcal{H}_1 has complete orthonormal basis $|e_1\rangle$ and $|e_2\rangle$, \mathcal{H}_2 has complete orthonormal basis $|e_1'\rangle$ and $|e_2'\rangle$. In the following we will represent operators in \mathcal{H}_1 and \mathcal{H}_2 as matrices under these basis. Define three nontrivial hermitian operators $\hat{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\hat{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\hat{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, in \mathcal{H}_1 ; and $\hat{\sigma}_1' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\hat{\sigma}_2' = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\hat{\sigma}_3' = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, in \mathcal{H}_2 .
- (a) (5pts) Consider a state in the 4-dimensional Hilbert space $\mathcal{H}_1 \otimes \mathcal{H}_2$ described by the density matrix $\hat{\rho} = \frac{1}{4}\mathbb{I}_{4\times4} + \frac{1}{8}\hat{\sigma}_3 \otimes \hat{\sigma}'_3 + \frac{1}{8}\hat{\sigma}_1 \otimes \hat{\sigma}'_1$, where $\mathbb{I}_{4\times4}$ is the 4×4 identity matrix(identity operator in $\mathcal{H}_1 \otimes \mathcal{H}_2$). Compute the eigenvalues and orthonormal eigenstates of ρ . [Hint: facts about Pauli matrices in Homework#1 might help]
- (b) (5pts) Check that $\hat{\rho}$ defined in (a) is a legitimate density matrix, namely that it is hermitian, positive semi-definite, and has unity trace. Check that whether $\hat{\rho}$ represents a pure state or not. Compute the von Neumann entropy $S[\hat{\rho}] \equiv -\text{Tr}[\hat{\rho}\log\hat{\rho}]$. [Hint: result of (a) is of course useful]
- (c) (5pts) Consider an observable $\hat{O} = \hat{\sigma}_2 \otimes \hat{\sigma}'_2$ defined on $\mathcal{H}_1 \otimes \mathcal{H}_2$. Measure \hat{O} under the state $\hat{\rho}$ defined in (a). What are the possible measurement results, and their corresponding probabilities? For each possible measurement result, what is the density matrix for the collapsed state after measurement? [Hint: check that $[\hat{\rho}, \hat{O}] = 0$, this fact might help]

(d) (5pts) Consider an observable $\hat{Q} = \hat{\sigma}_2 \otimes \mathbb{1}_{2\times 2}$ defined on $\mathcal{H}_1 \otimes \mathcal{H}_2$. Here $\mathbb{1}_{2\times 2}$ is the 2×2 identity matrix. Measure \hat{Q} under the state $\hat{\rho}$ defined in (a). What are the possible measurement results, and their corresponding probabilities? For each possible measurement result, what is the density matrix for the collapsed state after measurement? [Hint: the probabilities will be very different from those in (c)]

***** (about lecture #2) *****

- 3. Consider a single-boson Hilbert space with two complete orthonormal basis states, $|1\rangle$ & $|2\rangle$. Denote the corresponding creation, annihilation operators by $\hat{b}_1^{\dagger}, \hat{b}_1$ (for $|1\rangle$) and $\hat{b}_2^{\dagger}, \hat{b}_2$ (for $|2\rangle$), then $|1\rangle = \hat{b}_1^{\dagger}|\text{vac}\rangle$, $|2\rangle = \hat{b}_2^{\dagger}|\text{vac}\rangle$, where $|\text{vac}\rangle$ is the normalized 'vacuum' state, and $[\hat{b}_i, \hat{b}_j^{\dagger}] = \delta_{i,j}$, $[\hat{b}_i, \hat{b}_j] = [\hat{b}_i^{\dagger}, \hat{b}_j^{\dagger}] = 0$.
- (a). (3pts) Write down a complete orthonormal basis for the Hilbert space of two bosons, in terms of tensor product states $|i\rangle \otimes |j\rangle$, i, j = 1, 2.
- (b). (2pts) A unitary transformation \hat{U} is defined by its action on single-boson basis as: $|1\rangle \mapsto \hat{U}|1\rangle = (u|1\rangle v|2\rangle)$, $|2\rangle \mapsto \hat{U}|2\rangle = (v^*|1\rangle + u^*|2\rangle)$, where u, v are two complex numbers and $|u|^2 + |v|^2 = 1$. Show that the above definition of \hat{U} is indeed a unitary transformation in single-boson Hilbert space.
- (c). (5pts) The action of \hat{U} on a tensor product state will be transforming each of the factors, for example $|1\rangle \otimes |2\rangle \mapsto \hat{U}|1\rangle \otimes \hat{U}|2\rangle$. Write down the transformation results of all two-boson basis in (a) induced by \hat{U} , as linear combinations of the original two-boson basis states. Explicitly show that this transformation in the two-boson Hilbert space is unitary.
- (d). (5pts) \hat{U} can be extended to the entire Fock space as follows: The transformation of an operator \hat{O} by \hat{U} is formally $\hat{U}\hat{O}\hat{U}^{\dagger}$. We demand that the transformation results of \hat{b}_i^{\dagger} are: $\hat{U}\hat{b}_1^{\dagger}\hat{U}^{\dagger} = (u\hat{b}_1^{\dagger} v\hat{b}_2^{\dagger})$, and $\hat{U}\hat{b}_2^{\dagger}\hat{U}^{\dagger} = (v^*\hat{b}_1^{\dagger} + u^*\hat{b}_2^{\dagger})$. Together with $\hat{U}|\text{vac}\rangle = |\text{vac}\rangle$, this can reproduce the definition of \hat{U} in single-boson space, e.g. $\hat{U}|1\rangle = \hat{U}\hat{b}_1^{\dagger}|\text{vac}\rangle = \hat{U}\hat{b}_1^{\dagger}\hat{U}^{\dagger} \cdot \hat{U}|\text{vac}\rangle = (u\hat{b}_1^{\dagger} v\hat{b}_2^{\dagger})|\text{vac}\rangle = u|1\rangle v|2\rangle$. Use the creation operators to represent the two-boson basis in (a), then apply \hat{U} on them, represent the results as linear combinations of the original two-boson basis. The results should be consistent with (c).

- (e). (5pts) Consider $\hat{H} = t \cdot (\hat{b}_1^{\dagger} \hat{b}_2 + \hat{b}_2^{\dagger} \hat{b}_1)$, where t is a real number. You can do a unitary transformation(basis change) to "diagonalize" \hat{H} : find a new set of orthonormal creation (annihilation) operators $\hat{b}_i^{\prime\dagger}(\hat{b}_i^{\prime})$ as linear combinations of $\hat{b}_j^{\dagger}(\hat{b}_j)$, so that $\hat{H} = \epsilon_1 \hat{b}_1^{\prime\dagger} \hat{b}_1^{\prime} + \epsilon_2 \hat{b}_2^{\prime\dagger} \hat{b}_2^{\prime}$, where $\epsilon_{1,2}$ are two c-numbers. These new operators should satisfy the same kind of commutation relations as the old ones, e.g. $[\hat{b}_i^{\prime}, \hat{b}_j^{\prime\dagger}] = \delta_{i,j}$. Solve the new creation operators $\hat{b}_i^{\prime\dagger}$ in terms of \hat{b}_j^{\dagger} , and solve $\epsilon_{1,2}$. Then write down all the eigenvalues and eigenstates of \hat{H} in the entire Fock space.
- (f). (5pts) (DIFFICULT) The explicit form of operator \hat{U} in (d) in the entire Fock space is, $\hat{U} = \exp\left[i\sum_{i,j=1}^2 \hat{b}_i^{\dagger} (a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3)_{i,j} \hat{b}_j\right]$. Here $a_{1,2,3}$ are three real numbers, $\sigma_{1,2,3}$ are Pauli matrices defined in Homework #1 Problem 6. $(a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3)_{i,j}$ is the i^{th} -row- j^{th} -column element of the 2×2 matrix in the bracket. Solve the real numbers $a_{1,2,3}$ in terms of the complex numbers u, v used to define \hat{U} in (b). [Hint: compute $\hat{U}\hat{b}_{1,2}^{\dagger}\hat{U}^{\dagger}$ by the Baker-Hausdorff formula, compare the results with those in (d), some results in Homework #1 will be useful]