Octave: 矩阵计算的新宠

实话实说,MatLab 是迄今为止矩阵计算最强大的工具(没有之一)。可惜 MatLab 是商用的,一般个体还真买不起。MatLab 的 Windows 版本 比 Linux 版本要好些,这让我不敢轻易断言 Windows 一无是处,毕竟其下有 MatLab 这样强悍的软件。以前在Windows 下工作,MatLab 一直是我的首选矩阵计算工具,在统计计算工具 S-PLUS 出现之前,人们快乐地用着 MatLab 简陋的统计工具箱。后来有了 R,它彻底地坐稳了统计计算的 头把交椅,MatLab 似乎也无意去争夺全料冠军,但事实上它在很多方面都做得无可挑剔。这让我们这些买不起却很需要 MatLab 的穷人感慨不 已,MatLab 如果是免费的该多好……

为何选择使用 octave?

导入文件

Octave 与 MatLab 的一些小区别

布尔值的乘积

逻辑运算符、算术运算符

C-风格的自动增量、赋值、屏幕打印

注意空格

直方图内置函数 hist

导入空文件

行续符

if、for 等环境的结束符

R 和 octave 命令的对照表

R 读入 octave 导出的数据

为何选择使用 octave?

SciLab 和 octave 是开源的且免费的矩阵计算工具,二者都有希望成为矩阵计算的新宠。相比之下,

- octave与 MatLab 的兼容性更高。
- octave 遵循 GPL 协议(GNU General Public License),用户可以单独发行 octave 或者包含在其产品中发行。而 scilab 则不允许,你只能免费地使用它。
- octave 没有图形界面,是命令交互的。在某些人眼里这是不可饶恕的缺点,而在另外一些人眼里则是大大的优点。

它们都具备以下特点:以矩阵为基本数据类型,内置支持复数,有内置函数和外部函数库,用户自定义函数的可扩展性等特点。UNIX的很多用户选择使用 octave,看中的就是它与 MatLab 兼容性好这一事实。随着开源运动的深入人心,octave 不断地发展壮大,它会吸引一大批 MatLab 的使用 者。

GNU octave 网站: http://www.octave.org/

好习惯从头开始:

- 首先学会使用 help, 搞不定再到网上查, 最后才求人。
- 学习 octave 的捷径: 读 octave 的函数源码。
- 每个命令都以";"结束,否则矩阵的具体内容会显示出来。
- 学会适当地使用内置命令 clear,从内存中清除一些无用数据或变元。
- 如果没有必要,不要轻易改变矩阵大小。
- 重要的中间结果要保存。

导入文件

octave 和 MatLab 一样用 load 导入数据文件,譬如

```
octave> A = load data.txt;
```

将把 data.txt 里的数据导入 octave 并赋给矩阵 A。对于图像文件, octave 用 imread 将图像导入并存为矩阵 img,

```
img = imread("jam.jpg") ;
```

在 octave 里显示图像很简单,用命令:

```
imshow(img);
```

除了 jpeg 和 png 格式的图像可以直接导入,其他格式的图像必须经过 ImageMagick 的 convert 函数转换后才可读入。ImageMagick 是命令行的强大的图像处理工具,convert 几乎涵盖了所有格式图像的转换。

如果你关心 imread 函数的源码,可以去读 /usr/local/share/octave/packages/image-1.0.8/imread.m, 该函数把灰度图像导入为 MxN 矩阵,把彩色图像导入为 MxNx3 矩阵。具体的帮助文件,可以

```
help imread;
```

或者来个更详细点儿的

help -i imread;

Octave 与 MatLab 的一些小区别

MatLab 用户转而使用 octave 几乎不需要什么培训,只是要一些小细节上注意一下。下面我们罗列一些 octave 和 MatLab 的区别。

布尔值的乘积

```
X = ones(2,2);
prod(size(X)==1)
```

MatLab 和 octave 的输出是不同的:

Matlab: ??? Function 'prod' is not defined for values of class 'logical'. Octave: ans = 0

octave 输出为 0 的原因是 size(X) 为

ans = 2 2

逻辑运算符、算术运算符

Octave与 MatLab 兼容, 甚至更为宽松。如,

运算	Matlab	octave
或		"]"或者"]]"
且	&	& 或者 &&
否	~=	~= 或者!=

MatLab 用 x^2, octave 用 x^2 或者 x**2 表示 "x 的平方"。Octave 用 x**2 是为了照顾 GnuPlot 的用户。总而言之,octave 在运算符方面彻底兼容 MatLab,MatLab 用户放心大胆地用 octave 吧,但 octave 用户用 MatLab 的时候就要小心了。

C-风格的自动增量、赋值、屏幕打印

Octave 允许 C-风格的

```
i++ ; ++i ; i+=1 ;
printf('My result is: %d/n', 4)
```

而 MatLab 不认它们。MatLab 打印至屏幕和文件都用 fprintf 函数。

注意空格

octave 对空格是作为一个符号识别的,在列合并中短的列自然扩充,例如

```
A = ['123 ';'123'] ; size(A)
```

的结果是 2 4, 而 MatLab 则返回列合并有问题:

?? Error using ==> vertcat

另外, 转置符号与矩阵之间如果有空格

在 MatLab 里不允许, octave 则允许, 且与 [0 1]' 的结果是一样的。

直方图内置函数 hist

octave 的 hist 为

hist (Y, X, NORM)

其中 NORM 为所有柱高之和。

导入空文件

MatLab 允许导入空文件, 老版本的 octave 不允许, 新版本的 octave-3.0.3 则允许。

行续符

MatLab 中用 `...' 做行续符,如用

$$A = \text{rand } (1, \dots, 2);$$

表达

A = rand (1, 2) ;

Octave 与 MatLab 兼容,除此之外,octave 还允许如下两种表示方法。

$$A = rand (1, 2);$$

和

$$A = rand (1, / 2);$$

if、for 等环境的结束符

Octave 用

```
end{if,for, ...}
```

而 MatLab 则统一用 end。

R和 octave 命令的对照表

octave 和 R 联合起来用的时候,我们需要下面的命令对照表帮助我们理清楚它们的区别。"无"仅仅是说没有一个命令行的简单表示,并不代表不能表示。这种对比不是比

较谁更强大,而是为了记忆,无论是对 R 用户学习 octave 或者 octave 用户学习 R,都是有所裨益的。

octave	R
帮助	
help -i	help.start()
help	help(help)
help sort	help(sort)
	demo()
lookfor plot	apropros('plot')
	help.search('plot')
复数	
3+4i	3+4i
i	1i%R把"i"视为变量名
abs(3+4i)	Mod(3+4i)
arg(3+4i)	Arg(3+4i)
conj(3+4i)	Conj(3+4i)
real(3+4i)	Re(3+4i)
imag(3+4i)	Im(3+4i)
向量、序列	
1:10	1:10 或 seq(10)
1:3:10	seq(1,10,by=3)
10:-1:1	10:1
10:-3:1	seq(from=10,to=1,by=-3)
linspace(1,10,7)	seq(1,10,length=7)
(1:10)+i	1:10+1i
a=[2 3 4 5]; # 不显示结果	a <- c(2,3,4,5) % 不用加分号

a=[2 3 4 5] #显示结果	(a <- c(2,3,4,5)) % 显示结果
adash=[2 3 4 5]';	adash <- t(c(2,3,4,5))
[a a]	c(a,a)
[a a*3]	c(a,a*3)
a.*a	a*a
a.^3	a^3
向量的合并与重复	
[1:4 a]	c(1:4,a)
[1:4 1:4]	rep(1:4,2)
无	rep(1:4,1:4) % 结果是: 1223334444
无	rep(1:4,each=3) % 结果是: 111222333444
a=1:100;	a <- 1:100
a(2:100)	a[-1] % a 去掉第 1 个元素
a([1:9 11:100])	a[-10] % a 去掉第 10 个元素
无	a[-seq(1,50,3)] % a 去掉第 1,4,7,个元素
向量的赋值	
a(a>90)= -44;	a[a>90] <44
向量的最大、最小	
a=randn(1,4);	a <- rnorm(4)
b=randn(1,4);	b <- rnorm(4)
max(a,b)	pmax(a,b)
max([a' b'])	cbind(max(a),max(b))
max([a b])	max(a,b)
[m i] = max(a)	m <- max(a); i <- which.max(a)

"min" 类似	
向量的秩	
ranks(rnorm(8,1))	rank(rnorm(8))
ranks(rnorm(randn(5,6)))	apply(matrix(rnorm(30),6),2,rank)
矩阵的行合并与列合并	
[1:4;1:4]	rbind(1:4,1:4)
[1:4; 1:4]'	cbind(1:4,1:4) 或 t(rbind(1:4,1:4))
[2 3 4 5]	c(2,3,4,5)
[2 3;4 5]	rbind(c(2,3),c(4,5)) % rbind() 合并行; cbind() 合并列
[2 3;4 5]'	cbind(c(2,3),c(4,5)) 或 matrix(2:5,2,2)
a=[5 6];	a <- c(5,6)
b=[a a;a a];	b <- rbind(c(a,a),c(a,a))
[1:3 1:3 1:3 ; 1:9]	rbind(1:3, 1:9)
[1:3 1:3 1:3 ; 1:9]'	cbind(1:3, 1:9)
无	rbind(1:3, 1:8)
产生矩阵	
ones(4,7)	matrix(1,4,7) 或 array(1,c(4,7))
ones(4,7)*9	matrix(9,4,7) 或 array(9,c(4,7))
eye(3)	diag(1,3) % 对角线都为 1 的对角阵
diag([4 5 6])	diag(c(4,5,6)) % 对角线为 4,5,6 的对角阵
diag(1:10,3)	无
reshape(1:6,2,3)	matrix(1:6,nrow=2) 或 array(1:6,c(2,3))
reshape(1:6,3,2)	matrix(1:6,ncol=2) 或 array(1:6,c(3,2))
reshape(1:6,3,2)'	matrix(1:6,nrow=2,byrow=T)

a=reshape(1:36,6,6);	$a \le matrix(1:36,c(6,6))$
rem(a,5)	a %% 5
a(rem(a,5)==1)=-999	a[a%%5==1] <999
a(:)	as.vector(a)
矩阵中抽取元素	
a=reshape(1:12,3,4);	a <- matrix(1:12,nrow=3)
a(2,3)	a[2,3]
a(2,:)	a[2,]
a(2:3,:)	a[-1,]
a(:,[1 3 4])	a[,-2]
a(:,1)	a[,1]
a(:,2:4)	a[,-1]
a([1 3],[1 2 4])	a[-2,-3]
矩阵赋值	
a(:,1) = 99	a[,1]<- 99
a(:,1) = [99 98 97]'	a[,1] <- c(99,98,97)
矩阵:转置、共轭	
a'	Conj(t(a))
a.'	t(a)
矩阵: 求和	
a=ones(6,7)	a <- matrix(1,6,7)
sum(a)	apply(a,2,sum)
sum(a')	apply(a,1,sum)
sum(sum(a))	sum(a)

cumsum(a)	apply(a,2,cumsum)
cumsum(a')	apply(a,1,cumsum)
矩阵排序	
a=rand(3,4);	a <- matrix(runif(12),c(3,4))
sort(a(:))	sort(a)
sort(a)	apply(a,2,sort)
sort(a')	apply(a,1,sort)
cummax(a)	apply(a,2,cummax)
矩阵: 最大、最小	
a=randn(100,4)	a <- matrix(rnorm(400),4)
max(a)	apply(a,1,max)
$[v i] = \max(a)$	v <- apply(a,1,max); i <- apply(a,1,which.max)
b=randn(4,4);	b <-matrix(rnorm(16),4)
c=randn(4,4);	c <-matrix(rnorm(16),4)
max(b,c)	pmax(b,c)
矩阵的乘法	
a=reshape(1:6,2,3);	a <- matrix(1:6,2,3)
b=reshape(1:6,3,2);	b <- matrix(1:6,3,2)
c=reshape(1:4,2,2);	c <- matrix(1:4,2,2)
v=[10 11];	v <- c(10,11)
w=[100 101 102];	w <- c(100,101,102)
x=[4 5]';	x <- t(c(4,5))
a*b	a %*% b
v*a	v %*% a
a*w'	a %*% w

b*v'	b %*% v
v*x	x %*% v 或 v %*% t(x)
x*v	t(x) %*% v
v*a*w'	v %*% a %*% w
v .* x'	v*x 或_ x*v
a .* [w ;w]	w * a
a .* [x x x]	a * t(rbind(x,x,x)) 或 a*as.vector(x)
v*c	v %*% c
c*v'	c %*% v
其他矩阵操作	
a=rand(3,4);	a <- matrix(runif(12),c(3,4))
fliplr(a)	a[,4:1]
flipud(a)	a[3:1,]
a=reshape(1:9,3,3)	a <- matrix(1:9,3)
vec(a)	as.vector(a)
vech(a)	$a[row(a) \le col(a)]$
size(a)	dim(a)
网格	
[x y]=meshgrid(1:5,10:12);	无
查找	
find(1:10 > 5.5)	which(1:10 > 5.5)
a=diag([4 5 6])	a <- diag(c(4,5,6))
find(a)	which(a != 0) % which() 的变元是布尔变元
[i j]= find(a)	which(a != 0,arr.ind=T)
[i j k]=find(a)	ij <- which(a != 0,arr.ind=T); k <- a[ij]

读文件	
load foo.txt	f <- read.table("~/foo.txt")
	f <- as.matrix(f)
写文件	
save -ascii bar.txt f	write(f,file="bar.txt")
图形输出	
gset output "foo.eps"	postscript(file="foo.eps")
gset terminal postscript eps	plot(1:10)
plot(1:10)	dev.off()
赋值	
string="a=234";	string <- "a <- 234"
eval(string)	eval(parse(text=string))
产生随机数	
均匀分布	
rand(10,1)	runif(10)
2+5*rand(10,1)	runif(10,min=2,max=7) 或 runif(10,2,7)
rand(10)	matrix(runif(100),10)
正态分布	
randn(10,1)	rnorm(10)
2+5*randn(10,1)	rnorm(10,2,5)
rand(10)	matrix(rnorm(100),10)
beta 分布	
hist(beta_rnd(4,2,1000,1)	hist(rbeta(1000,shape1=4,shape2=10)) 或 hist(rbeta(1000,4,10)

FOR 循环	
for i=1:5; disp(i); endfor	for(i in 1:5) {print(i)}
多项式的根	
roots([1 2 1])	polyroot(c(1,2,1))
polyval([1 2 1 2],1:10)	无
集合论	
a = create_set([1 2 2 99 2])	a <- sort(unique(c(1,2,2,99,2)))
b = create_set([2 3 4])	b <- sort(unique(c(2,3,4)))
intersect(a,b)	intersect(a,b)
union(a,b)	union(a,b)
complement(a,b)	setdiff(b,a)
any(a == 2)	is.element(2,a)
绘图	
a=rand(10);	a <- array(runif(100),c(10,10))
help plot	help (plot) and methods(plot)
plot(a)	matplot(a,type="l",lty=1)
plot(a,'r')	matplot(a,type="l",lty=1,col="red")
plot(a,'x')	matplot(a,pch=4)
plot(a,'')	matplot(a,type="l",lty=2)
plot(a,'x-')	matplot(a,pch=4,type="b",lty=1)
plot(a,'x—')	matplot(a,pch=4,type="b",lty=2)
semilogy(a)	matplot(a,type="l",lty=1,log="y")
semilogx(a)	matplot(a,type="l",lty=1,log="x")
loglog(a)	matplot(a,type="l",lty=1,log="xy")

plot(1:10,'r')	plot(1:10,col="red",type="l")
hold on	matplot(10:1,col="blue",type="l",add=T)
plot(10:-1:1,'b')	
grid	grid()
a=randn(10);	a <- matrix(rnorm(100),nr=10)
contour(a)	contour(a)
contour(a,77)	contour(a,nlevels=77); filled.contour(a)
mesh(rand(10))	persp(matrix(runif(100),10),theta=30,phi=30,d=1e9)
文件与操作系统	
system("ls")	system("ls")
pwd	getwd()
cd	setwd()

R 读入 octave 导出的数据

统计计算软件 R 的 foreign 包提供了函数 read.octave,可以读入 octave 用命令 save - ascii 创建的文本数据文件,且支持变量的大多数通用类型,包括标准的原子型(复矩阵,N维数组,字符串,布尔矩阵等)和递归式(结构体,单元和列表)。

在 octave 中用 save -ascii 保存的矩阵数据,也可以在 R 中用命令 read.table 导入,然后用 as.matrix()强制为 R 中的矩阵使用。我比较倾向于这种方法。这样我们就能充分利用 octave 擅长矩阵计算和 R 擅长统计计算的优势,将二者联合起来使用。我们将详细介绍 octave 读入图像文件,输出能被 R 处理的矩阵数据。

下面举个例子: 我们投掷一枚硬币,已知正面出现的概率为 p,恰好掷出 R 正面所用的次数 N 是我们要考察的,我们做 E 次随机试验,看看 N 的经验分布情况。

```
## File : toss.m
## Purpose : The numbers of tossing to get R heads
## Author : Jiangsheng Yu (yujs@pku.edu.cn)
## Data : 11-26-2008
## Available : http://icl.pku.edu.cn/member/yujs/Computing.htm
## Usage : run toss.m

more off ; ## turn the pagination off
E = 10000; ## the number of experiments
result = zeros(E,1); ## the sequence of E results
R = 6 ; ## required number of heads
p = 0.3 ; ## the probability of head
H = 0 ; ## no heads at the beginning
```

```
N = 0;  ## no tosses at the beginning
for i = 1:E
    do
        ## if head, outcome=1; otherwise, outcome=0
        outcome = (rand(1,1) < p);
        H += outcome; ## the total number of heads
        N += 1;  ## the total number of tosses
    until ( H >= R ) ## until R heads
    result(i,1) = N;
    N = 0;
    H = 0;
endfor
hist (result, 40,1);
```

对于 p=0.3 , R=2 做 E=10000 次随机试验得到 N 的直方图如下:

掷出R个正面所用次数的直方图

对于 p=0.3 , R=6 做 E=10000 次随机试验得到 N 的直方图如下:

掷出R个正面所用次数的直方图

我们把结果保存为 result.data, 再读到 R 中处理这些数据。

```
> x = result';
> save result.dat x;
```

在 R 中我们读入数据,然后画出直方图。

```
> library(foreign)
> a <- read.octave("result.dat")
> hist(a$x, freq= FALSE, col="blue", border="pink")
```

得到 p=0.3 , R=6 的直方图:

掷出R个正面所用次数的直方图