Macroeconomics A: Review Session IX

Overlapping Generations

Gregory Auclair allan.auclair@graduateinstitute.ch

Outline

- Introduction to OLG Models
 - Simple Model
 - Productivity Shock

2 Ricardian Equivalance

- 3 Fiscal Policy
 - r g

Table of contents

- Introduction to OLG Models
 - Simple Model
 - Productivity Shock

2 Ricardian Equivalance

- 3 Fiscal Policy
 - r g

Why We Use OLG

- With a relative simple setup, get very rich outcomes
 - Generates saving (in levels)
 - Useful to think about long-term demographic or structural changes
 - Analyze Ricardian equivalence, secular stagnation, etc.
- OLG can also include bequests
- Bequests are main source of wealth for most households
 - Low inheritance taxes have increased the persistence of wealth inequality
 - Interesting area of study :)
- With negative interest rates, rational asset bubbles may emerge
 - OLG models can capture some of these dynamics
 - May explain rising property values, etc.

Basic Structure of OLG

Specification

- We can further simplify the two-period model we saw in class
- Log utility is a special case of CRRA utility where $\theta = 1$

$$U(c_t) = \begin{cases} \frac{c_t^{1-\theta}}{1-\theta} & \theta \geq 0; \theta \neq 1\\ \log(c_t) & \theta = 1 \end{cases}$$

■ We can also specify $\beta = \frac{1}{1+\rho}$, therefore the household problem is

$$\max_{c_1,c_2} \quad U_t = log(c_{1,t}) + \beta \log(c_{2,t+1})$$
 s.t. $c_{1,t} + b_t = w_t n_t$ $c_{2,t} = (1 + r_t)b_{t-1}$

Greg Auclair Review Session IX 5 / 21

Household Optimization Problem

Let's combine the budget constraints into a single equation

$$c_{1,t} + \frac{c_{2,t+1}}{1 + r_{t+1}} = w_t n_t$$

Now we can write the Lagrangian

$$\mathcal{L}_{t} = log(c_{1,t}) + \beta \log(c_{2,t+1}) - \lambda_{t} \left(c_{1,t} + \frac{c_{2,t+1}}{1 + r_{t+1}} - w_{t} n_{t} \right)$$

Accordingly the FOCs are

$$\frac{\partial \mathcal{L}_t}{\partial c_{1,t}} = 0 \implies \frac{1}{c_{1,t}} = \lambda_t$$

$$\frac{\partial \mathcal{L}_t}{\partial c_{2,t+1}} = 0 \implies \frac{\beta(1 + r_{t+1})}{c_{2,t+1}} = \lambda_t$$

$$\implies c_{2,t+1} = \beta(1 + r_{t+1})c_{1,t}$$

Saving and Market Clearing

Using the solution from the previous slide in the budget constraint

$$c_{1,t} + \frac{\beta(1 + r_{t+1})c_{1,t}}{1 + r_{t+1}} = w_t n_t$$
$$c_{1,t} = \frac{1}{1 + \beta} w_t n_t$$

Using the original budget constraint

$$b_t = \frac{\beta}{1+\beta} w_t n_t$$

Households can only save in capital

$$b_t = k_{t+1}$$

Firm Optimization Problem

- Firms are perfectly competitive and set the wage and interest rate
- Output is Cobb-Douglas and firms pay labor and rent capital,

$$\Pi_t = Y_t - w_t n_t - (r_t + \delta) k_t$$
$$Y_t = A_t k_t^{\alpha} n_t^{1-\alpha}$$

Profit maximization gives

$$\frac{\partial \Pi_t}{\partial n_t} = 0 \implies w_t n_t = (1 - \alpha) Y_t$$

$$\frac{\partial \Pi_t}{\partial k_t} = 0 \implies (r_t + \delta) k_t = \alpha Y_t$$

■ We can make hours worked numeraire $(n_t = 1)$

$$w_t = (1 - \alpha)y_t$$
$$y_t = A_t k_t^{\alpha}$$

Putting Things Together

■ We can now solve for the interest rate using $b_t = k_{t+1}$

$$k_{t+1} = \mathbb{E}_t \left[rac{lpha y_{t+1}}{r_{t+1} + \delta}
ight] \quad ext{(capital demand)}$$
 $b_t = rac{eta}{1+eta} (1-lpha) y_t \quad ext{(capital supply)}$

- The interest rate intermediates capital demand and supply
- Easy to solve for the steady state value of r

$$r_t = \frac{\alpha(1+\beta)}{\beta(1-\alpha)} \frac{y_t}{y_{t-1}} - \delta \implies r^* = \frac{\alpha(1+\beta)}{\beta(1-\alpha)} - \delta$$

■ Steady state value of *A* is exogenous, therefore

$$\mathbf{k}^* = \left(\frac{\alpha \mathbf{A}^*}{\mathbf{r}^* + \delta}\right)^{\frac{1}{1 - \alpha}}$$

Modeling a Shock

What happens after a productivity shock?

$$\widetilde{A}_t = arepsilon_t$$
 where $\widetilde{A}_t = \log\left(rac{A_t}{A^*}
ight)$ and $\epsilon_t \sim N(0,\sigma)$

To solve the shock, we can log-linearize the system

$$\widetilde{\mathbf{y}}_t = \widetilde{\mathbf{A}}_t + \alpha \widetilde{\mathbf{k}}_t \tag{1}$$

$$\widetilde{\mathbf{w}}_t = \widetilde{\mathbf{y}}_t$$
 (2)

$$\frac{r^*}{\delta + r^*} \widetilde{r}_t = \widetilde{y}_t - \widetilde{y}_{t-1}$$

$$\widetilde{k}_{t+1} = \widetilde{w}_t$$
(3)

$$\widetilde{k}_{t+1} = \widetilde{w}_t$$
 (4)

$$\widetilde{c}_{1,t} = \widetilde{w}_t \tag{5}$$

$$\widetilde{c}_{2,t} = \frac{r^*}{1 + r^*} \widetilde{r}_t + \frac{\widetilde{k}_t}{k}$$
 (6)

Note that $\tilde{y}_{t-1} = 0$ and $\tilde{k}_t = 0$ as both were set before the shock

Exercise

For $\{\alpha; \ \beta; \ \delta\} = \{1/3; \ 2/3; \ 0\}$ what is $\widetilde{c}_{2,t+2}$ if $\varepsilon_t = 0.1$?

$$r^* = \frac{\frac{1}{3} \cdot \frac{5}{3}}{\frac{2}{3} \cdot \frac{2}{3}} = \frac{5}{4}$$

$$\widetilde{c}_{2,t+2} = \frac{5}{9} \widetilde{r}_{t+2} + \widetilde{k}_{t+2}$$

$$\widetilde{y}_t = \varepsilon_t = 0.1; \quad \widetilde{k}_{t+1} = 0.1$$

$$\widetilde{y}_{t+1} = \alpha \widetilde{k}_{t+1} = \frac{0.1}{3}; \quad \widetilde{k}_{t+2} = \frac{0.1}{3}$$

$$\widetilde{y}_{t+2} = \alpha \widetilde{k}_{t+2} = \frac{0.1}{9}; \quad \widetilde{r}_{t+2} = \frac{0.1 - 0.3}{9} = -\frac{0.2}{9}$$

$$\widetilde{c}_{2,t+2} = \frac{5}{9} \cdot \frac{-0.2}{9} + \frac{0.1}{3} = -\frac{0.7}{9} \approx -0.08$$

Note: this result is in terms of output per effective labor

Table of contents

- 1 Introduction to OLG Models
 - Simple Model
 - Productivity Shock

2 Ricardian Equivalance

- 3 Fiscal Policy
 - r g

Introduction

- Ricardian equivalence: financing government spending out of current taxes or future taxes (and current deficits) will have equivalent effects on the overall economy
- Implies fiscal expansion has small effect
- \blacksquare Higher expected taxes \rightarrow more saving \rightarrow lower aggregate demand
- Fiscal multiplier depends on 'myopia' of households or expectation only future generations will be taxed :(
- Heterogeneity matters: constrained, hand-to-mouth households may spend entire fiscal transfer while well-off may save all of it

Taxes in OLG

Let's add taxes to our model to analyze Ricardian equivalence

$$\max_{c_1,c_2} U_t = log(c_{1,t}) + \beta \log(c_{2,t+1})$$
s.t.
$$c_{1,t} + b_t = w_t n_t + \tau_{1,t}$$

$$c_{2,t} = (1 + r_t)b_{t-1} + \tau_{2,t}$$

Asset market clearing includes government debt d_t

$$b_t = k_{t+1} + d_t$$
$$d_t = \tau_{1,t} + \tau_{2,t}$$

 Government can transfer between generations, incur a net tax and pay down debt, or incur a net transfer and increase debt

Effect of a Transfer between Generations

Let's say the government makes a transfer between generations

$$\tau_{1,t} = -\tau_{2,t} \qquad \tau_{1,t} > 0$$

- There is no change in debt, no crowding-out of capital
- We can define aggregate demand in the steady state as

$$Y^{d} = \underbrace{\frac{1}{1+\beta}(wn+\tau_{1})}_{c_{1}} + \underbrace{(1+r)k+\tau_{2}}_{c_{2}} + \underbrace{\delta k}_{inv}$$

Simple to show the tax has no effect on demand in equilibrium

$$b = \frac{\beta}{1+\beta}(wn+\tau_1) \implies r = \frac{\alpha(1+\beta)}{\beta} \frac{Y}{wn+\tau_1} - \delta$$

■ Since b = k and $\tau_{1,t} = -\tau_{2,t}$

$$Y^{d} = \frac{1}{1+\beta}(wn+\tau_{1}) + \frac{\beta}{1+\beta}(wn+\tau_{1}) + \alpha Y - \tau_{1} = \frac{wn}{1-\alpha}$$

■ What about capital? What is the initial effect of the transfer?

Borrowing on Domestic Markets

Simple to show that crowding-out effect can be strong

$$k_{t+1} = \underbrace{\frac{\beta}{1+\beta}(\mathbf{w}_t n_t + \tau_{1,t})}_{b_t} - \underbrace{(\tau_{1,t} + \tau_{2,t})}_{d_t} \qquad r_{t+1} = \frac{\alpha Y_{t+1}}{b_t - d_t} - \delta$$

- This supports idea that government debt should be used judiciously
- Also begs the question why interest rates are low and what to do...
- While borrowing from abroad works, it also lowers consumption in the steady state (we will see this next semester)
- Important to note that OLG captures long-term dynamics, not short-term fluctuations

Thinking about Demographic Structure

- Size of each generation matters and OLG often includes population growth
- World population getting much, much older than in the past

Table of contents

- 1 Introduction to OLG Models
 - Simple Model
 - Productivity Shock

2 Ricardian Equivalance

- 3 Fiscal Policy
 - r g

Government Budget Constraint

We can write the government budget as

$$\underbrace{P_tG_t + (1 + i_t)B_t}_{\text{expenditures}} = \underbrace{P_tT_t + B_{t+1}}_{\text{revenue}}$$

- Here, all bonds are one-period
- We can define the primary deficit as $D_t^p = P_t G_t P_t T_t$ so that

$$D_t^p + (1+i_t)B_t = B_{t+1}$$

 \blacksquare Furthermore, let's normalize the variables by GDP Y_t where

$$\frac{B_{t+1}}{Y_t} = \underbrace{\frac{B_{t+1}}{Y_{t+1}}}_{b_{t+1}} \underbrace{\frac{Y_{t+1}}{Y_t}}_{1+g_{t+1}}$$

Note that g is the growth rate of nominal GDP in this case

Explosive Debt Dynamics

Using the GDP normalized variables (lower case)

$$\frac{d_t^{\rho}}{1+g_{t+1}}+\frac{(1+i_t)b_t}{1+g_{t+1}}=b_{t+1}$$

■ Set $i_t = i$ and $g_t = g$ for all t and solve recursively with $d^p = 0$

$$\left(\frac{1+i}{1+g}\right)^2 b_t = b_{t+2} \implies \left(\frac{1+i}{1+g}\right)^n b_t = b_{t+n}$$

- When i > g, this is explosive despite no primary deficit
- If i < g, then debt disappears :)
- Even if the government can lock in low interest rate on debt, future growth is somewhat uncertain
- Also, as government issues more debt, interest rates rise

Assessing Debt Sustainably

- The IMF DSA template is available online
- Deficit, real interest rate, and real GDP growth drive dynamics

- What makes debt risky?
 - Currency composition (commitment to pay in hard currency)
 - Type of creditor (domestic vs. foreign)
 - Maturity mismatches and structure of payments
- Note the real interest rate is a function of inflation $r = i \pi$