Cut Tree

Given a tree T with n nodes, how many subtrees (T) of T have at most K edges connected to (T - T')?

Input format

The first line contains two integers n and K followed by n-1 lines each containing two integers a & b denoting that there's an edge between a & b.

Output format

A single integer which denotes the number of possible subtrees.

Constraints

1 <= K <= n <= 50

Every node is indicated by a distinct number from 1 to n.

Sample input

2 3

Sample output

6

Explanation

There are 2³ possible sub-trees:

{} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

But:

the sub-trees $\{2\}$ and $\{1,3\}$ are not valid. $\{2\}$ isn't valid because it has 2 edges connecting to it's complement $\{1,3\}$ whereas K=1 in the sample test-case $\{1,3\}$ isn't valid because, well, it's not a sub-tree. The nodes aren't connected.