CS6041 HW2, Noah Gardner, 000843905

Your assignment must be typed in Word or Latex for exact ONE question per page, and turn in PDF files. Non-typed submissions will NOT be graded.

Problem 1. Design a DFA that accepts the set of decimal strings that are multiples of 5.

The intution for this DFA is that a decimal string that is a multiple of 5 will end in 0 or 5. Therefore, the DFA only needs the two states q_0 and q_1 , where q_0 is the starting and final state of the DFA.

State	0,5	1, 2, 3, 4, 6, 7, 8, 9
$* \rightarrow q_0$	q_0	q_1
q_1	q_0	q_1

Figure 1: Transition Table for a DFA that accepts the set of decimal strings that are multiples of 5.

Figure 2: Diagram showing the transition function described in Figure 1.

Let
$$M = (Q, \sum, \delta, q_0, F)$$
, where $Q = \{q_0, q_1\}$, $\sum = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $\delta = \{\text{Figure 1}\}$, $q_0 = \{q_0\}$, and $F = \{q_0\}$.

Problem 2. Convert the following NFA to DFA, and describe the language it accepts.

	0	1
$\rightarrow p$	$\{p,q\}$	{ <i>p</i> }
q	$\{r,s\}$	{ <i>t</i> }
r	$\{p,r\}$	$\{t\}$
\overline{s}	Ø	Ø
t	Ø	Ø

After subset construction, the states $\{q\}$, $\{r\}$, $\{s\}$, and $\{t\}$ would be unreachable (there is no transition from p). Therefore, the next reachable state would be $\{p,q\}$. The state $\{p,q\}$ can also reach states $*\{p,t\}$ and $*\{p,q,r,s\}$. Thus, the reachable states are:

- 1. $\{p\}$
- 2. $\{p, q\}$
- 3. $*\{p,t\}$
- 4. $*\{p, q, r, s\}$

	0	1
Ø	Ø	Ø
$\rightarrow \{p\}$	$\{p,q\}$	{ <i>p</i> }
f(p,q)	$\{p,q,r,s\}$	$\{p,t\}$
$\{p,t\}$	$\{p,q\}$	{ <i>p</i> }
p,q,r,s	$\{p,q,r,s\}$	$\{p,t\}$

Figure 3: Equivalent DFA transition table for the NFA in the problem description.

This DFA accepts the set of binary strings that either have 00 or 01 adjacent (0 then 0 or 0 then 1) in any position.

Problem 3. Convert the following DFA to a regular expression by finding all $R_{ij}^{(k)}$ in Theorem 3.4. Simplify all $R_{ij}^{(k)}$'s.

	0	1
$\rightarrow q_1$	q_2	q_1
q_2	q_3	q_1
$*q_3$	q_3	q_2

Find and simplify all $R_{ij}^{(k)}$'s.

R_{ij}^0	Simplified	R_{ij}^1	By direct substitution	Simplified
R_{11}^{0}	$\epsilon + 1$	R_{11}^{1}	$\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$	1*
R_{12}^{0}	0	R_{12}^{1}	$0 + (\epsilon + 1)(\epsilon + 1)^*(0)$	1*0
R_{13}^{0}	Ø	R_{13}^{1}	$\emptyset + (\epsilon + 1)(\epsilon + 1)^*(\emptyset)$	Ø
R_{21}^{0}	1	R_{21}^{1}	$1 + (1)(\epsilon + 1)^*(\epsilon + 1)$	1*
R_{22}^{0}	ϵ	R_{22}^{1}	$\epsilon + (1)(\epsilon + 1)^*(0)$	1*0
R_{23}^{0}	0	R_{23}^{1}	$0+(1)(\epsilon+1)^*(\emptyset)$	0
R_{31}^{0}	Ø	R_{31}^{1}	$\emptyset + (\emptyset)(\epsilon + 1)^*(\epsilon + 1)$	Ø
R_{32}^{0}	1	R_{32}^{1}	$1 + (\emptyset)(\epsilon + 1)^*(0)$	1
R_{33}^{0}	$\epsilon + 0$	R_{33}^{1}	$\epsilon + 0 + (\emptyset)(\epsilon + 1)^*(\emptyset)$	$(\epsilon + 0)$
$ \frac{R_{ij}^2}{R_{11}^2} \\ \underline{R_{12}^2} \\ R_{13}^2 $	By direct substitution	Simplified	'	•
R_{11}^{2}	$1^* + (1^*0)(1^*0)^*(1^*)$	$1^* + (1^*0)^*1^*$		
R_{12}^{2}	1*0 + (1*0)(1*0)*(1*0)	1*0 + (1*0)*1*0	-	
R_{13}^{2}	$\emptyset + (1^*0)(1^*0)^*(0)$	1*0(1*0)*0	-	
R_{21}^{2}	$1^* + (1^*0)(1^*0)^*(1^*)$	$1^* + (1^*0)^*1^*$	-	
R_{22}^{2}	1*0 + (1*0)(1*0)*(1*0)	1*0	-	
R_{23}^{2}	0 + (1*0)(1*0)*(0)	$0 + (1^*0)^*0$		
R_{31}^{2}	$\emptyset + (1)(1^*0)^*(1^*)$	1(1*0)*1*	-	
$\frac{R_{31}^2}{R_{32}^2}$	1 + (1)(1*0)*(1*0)	1 + 1(1*0)*1*0		
R_{33}^{2}	$\epsilon + 0 + (1)(1*0)*(0)$	0+1(1*0)*0		

 q_1 is the only starting state and q_3 is the only accepting state. Therefore, the DFA can be described by $(R_{12}^2)(R_{23}^2)$: (1*0 + (1*0)*1*0)(0 + (1*0)*0)

Problem 4. Convert the following DFA to a regular expression, using the state-elimination technique.

$$\begin{array}{c|ccc} & 0 & 1 \\ \hline \rightarrow *p & s & p \\ \hline q & p & s \\ \hline r & r & q \\ s & q & r \\ \hline \end{array}$$

Step 1. Simplify loop
$$p \to s \to q \to p$$

$$0(01)^*00 \tag{1}$$

Step 2. Simplify loop
$$p \to s \to r \to p$$

$$01(0)*10 \tag{2}$$

Step 3. Node p now loops to itself as the only starting and accepting nodes with the original loop $(p \to p)$ or'd with equations 1 and 2.

$$(1 + 0(01)^*00 + 01(0)^*10)^* (3)$$

Problem 5. Convert the following regular expressions to NFA's with ϵ -transitions.

- 01*
- (0+1)01
- $00(0+1)^*$

Figure 4: NFA for the regular expression 01*.

Figure 5: NFA for the regular expression (0+1)01.

Figure 6: NFA for the regular expression $00(0+1)^*$.