Model Question Paper-I with effect from 2022

CBCS SCHEME

	First/Second	Semester B.E	E. Degree 1	Examination	
--	--------------	--------------	-------------	-------------	--

Chemistry for Mechanical Engineering& Allied Stream (BCHEM102/202)

TIME: 03 Hours Max.Marks: 100

Note

- 1: Answer FIVE full questions, choosing ONE full question from each module
- 2: VTU Formula Hand Book is permitted.
- 3: M Marks, L Bloom's Level, C Course Outcomes

3: M	– Marks	s, L – Bloom's Level, C – Course Outcomes					
			M	L	С		
		MODULE 1	l .		<u> </u>		
1	a	What are chemical fuels? Explain about the determination of calorific value of fuel using Bomb calorimeter.	7	L2	CO1		
	b	0.945g of a fuel on complete combustion in excess of oxygen increased temperature of water in a calorimeter from 13.25° C to 19.2° C.The mass of water in calorimeter was 1458 g. Calculate GCV if water equivalent of calorimeter is 144g.	7	L3	CO1		
	c	Explain construction, working of Lithium –ion battery along with its applications.	6	L2	CO1		
		OR					
2	a	Explain the production of hydrogen by electrolysis method, and mention its advantages.	6	L2	CO1		
	b	Explain construction, working of photovoltaic cell along with its advantages.	7	L2	CO1		
	c	Explain construction, working of Methanol-oxygen fuel cell with acid electrolyte	7	L2	CO1		
		MODULE 2			_		
3	a	Define metallic corrosion? Describe the electrochemical theory of corrosion taking iron as an example.	7	L2	CO2		
	b	Explain: (i) Differential metal corrosion & (ii) Water-line corrosion	6	L3	CO2		
	С	Describe galvanizing and mention its applications.	7	L2	CO2		
OR							
4	a	What is CPR? A thick brass sheet of area 400 inch ² is exposed to moist air. After 2 years of period, it was found to experience a weight loss 375 g due to corrosion. If the density of brass is 8.73 g/cm ³ . Calculate CPR in mpy and mmpy.	6	L3	CO2		
	b	What is metal finishing? Mention any five of its technological importance.	7	L2	CO2		
	С	Mention any four properties and applications of QLED	7	L2	CO2		
		MODULE 3					
5	a	Explain the synthesis of Polyvinylchloride and mention its applications	7	L2	CO3		
	b	A polydisperse sample of polystyrene is prepared by mixing three monodisperse samples in the following proportions. 1g	6	L3	СОЗ		

Model Question Paper-I with effect from 2022

		of 10000 molecular weight, 2g of 50000 molecular weight			
		and 2g of 100000 molecular weight. Determine number			
		average and weight average molecular weight.			
	c	Explain the synthesis of Teflon and mention its applications	7	L2	CO3
	•	OR			
6		Explain the synthesis of Polystyrene and mention its		1.0	CO2
	a	applications	6	L2	CO3
	1_	Explain the Condensation method of polymerisation with an	7	L3	CO3
	b	eaxmple			
	c	Describe properties and application of Lubricants	7	L2	CO3
		MODULE 4			
	a	Define phase, components & degree of freedom	7	L2	CO4
	h	Explain the principle, instrumentation and working of	7	1.2	CO4
7	b	potentiometric sensor.	7	L2	CO4
		Explain the process of estimation of copper in industrial	6	L3	CO4
	c	waste by using optical sensor	6		
		OR			
8	0	Explain along with diagram Lead-silver two component	7	L2	CO4
	a	system	/	LZ	CO4
	b	Explain the principle, instrumentation and working of Glass	7	L2	CO4
	U	electrode.			
	c	Explain the principle, instrumentation and working of	6	L2	CO4
		colorimetry.	U		CO+
		MODULE 5			
9	a	Define Alloys. Explain the composition along with properties	7	L2	CO5
		of Brass.	,		
	b	Explain the synthesis of Nanomaterials by Sol-gel method	7	L2	CO5
	c	Explain Size dependant properties of nanomaterials with	6	L2	CO5
		respect to surface area, catalyical and thermal.	U		CO3
		OR	1		
10	a	Define Alloys. Explain the composition along with properties	7	L3	CO5
		of AlNiCo.		13	
	b	Explain the chemical composition, properties and	6	L2	CO5
		applications of perovskites.			
	c	Explain the properties and applications of carbon nanotubes	7	L2	CO5
		and graphene			