REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I nour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection information, including suggestions for reducing this burden to. Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson Davis might have seen to the property (10,4-188) Washington, VA 22024-3032, and to the Office of Management and Budget, Papertyork Reduction Property (10,4-188) Washington, VA 22024-3032.

Davis Highway, Suite 1204 Arrington, VA 2220				
1. AGENCY USE ONLY (Leave blan			ND DATES COVERED	
4. TITLE AND SUBTITLE	30 October 1996	Technical	LE SUNDING NUMBERS	
SYNTHESIS OF INDIUM(III)	SUPERMESITYL DERIVAT	ΓIVES	5. FUNDING NUMBERS	
(SUPERMESITYL = Mes* = 2	Grant N00014-95-1-0194			
(BOT ENGINEEDIT TE = 11105 = 2, 1,0 Bu3(C0112/). 11 1411 STITE			R&T Project 313500816	
			•Dr. Harold E. Guard	
Hamid Rahbarnoohi, Rich			-	
Louise M. Liable-Sands and	nd Arnold L. Rheingold			
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)		e perconante onganica	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
Department of Chemistry Duke University			Technical Report	
Durham, NC 27708-0346)		No. DU/DC/TR-58	
During, 110 27, 00 00 10				
	·			
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(E	:S)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
Office of Naval Research			AGENCY REPORT NOMBER	
300 North Quincy Street		•	1	
Arlington, VA 22217-500	0			
		- 10	961209 041	
11. SUPPLEMENTARY NOTES			901709-041	
Published in Organometall	lics	. •	001200 011	
I donished in Organometan	ics .			
12a. DISTRIBUTION / AVAILABILITY	TATEMENT		112h DISTRIBUTION CORS	
			12b. DISTRIBUTION CODE	
Approved for Public Relea	ise			
Distribution Unlimited			`.	
·				
13. ABSTRACT (Maximum 200 words				
13. Abstract (Maximum 200 Words	a)			
Hooting Most's InBr (Mes	$* - 2.4.6 \text{tBuo}(C_c\text{Ho}))$ at	130-150 °C under re	educed pressure afforded the	
new isomer Mes*(Pr)Inf	$C_{b} = 2,4,0$ Du ₃ $(C_{b} = 12)$ at	(1) in 55% vield. T	The solid-state structure of 1	
was determined by single	-crystal X-ray crystallogi	raphy. The resultant	geomery around the indium	
center can be viewed as n	seudo trogonal bupyrami	dal due to two close	contacts of o-tBu hydrogens	
on the Mes* groups. Read	ction of In(SePh) ₂ I with M	Ies*MgBr resulted in	the quantitative formation of	
$Mes*In(SePh)_2$ (2). An X	-ray structural analysis of	2 revealed a monome	eric molecule.	
	1			
14. SUBJECT TERMS			15. NUMBER OF PAGES	
			13. NUMBER OF PAGES	
indium supermesityl deriv	atives, synthesis, structure	e	16. PRICE CODE	
17. SECURITY CLASSIFICATION 1	8. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC	CATION 20. LIMITATION OF ABSTRACT	
			Unlimited	
Unclassified NSN 7540-01-280-5500	Unclassified	Unclassified	Standard Form 298 (Roy 2 89)	

OFFICE OF NAVAL RESEARCH

Grant N00014-95-1-0194 R&T Project 3135008---16

Dr. Harold E. Guard

Technical Report No. DU/DC/TR-58

SYNTHESIS OF INDIUM(III) SUPERMESITYL DERIVATIVES (SUPERMESITYL = $Mes^* = 2,4,6$ - $^tBu_3(C_6H_2)$). X-RAY CRYSTAL STRUCTURES OF $Mes^*(Br)In[CH_2C(Me)_2C_6H_3^tBu_2]$ and $Mes^*In(SePh)_2$

HAMID RAHBARNOOHI, RICHARD L. WELLS, LOUISE M. LIABLE-SANDS AND ARNOLD L. RHEINGOLD, 2

¹Department of Chemistry, Duke University, Durham, NC 27708 ²Department of Chemistry, University of Delaware, Newark, DE 19716

Published in Organometallics

Duke University
Department of Chemistry,
P. M. Gross Chemical Laboratory
Box 90346
Durham, NC 27708-0346

30 October 1996

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

Notes

Synthesis of Indium(III) Supermesityl Derivatives (Supermesityl = $Mes^* = 2,4,6$ - $^tBu_3(C_6H_2)$). X-ray Crystal Structures of Mes*(Br)In[CH₂C(Me)₂C₆H₃(^tBu)₂] and Mes*In(SePh)₂

Hamid Rahbarnoohi and Richard L. Wells*

Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27708

Louise M. Liable-Sands and Arnold L. Rheingold

Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received May 10, 1996[⊗]

Summary: Heating $Mes*_2InBr$ (Mes* = 2,4,6- $tBu_3(C_6H_2)$) at $130-150~^\circ C$ under reduced pressure afforded the new isomer Mes*(Br)In[$CH_2C(CH_3)_2C_6H_3(^tBu)_2$] (1) in 55% yield. The solid-state structure of 1 was determined by single-crystal X-ray crystallography. The resultant geometry around the indium center can be viewed as pseudo trigonal bipyramidal due to two close contacts of o-tBu hydrogens on the Mes* groups. Reaction of In-(SePh)₂I with Mes*MgBr resulted in the quantitative formation of Mes*In(SePh)2 (2). An X-ray structural analysis of 2 revealed a monomeric molecule.

Introduction

Group 13 compounds possessing bulky alkyl or aryl groups have been studied by several research groups, and sterically demanding ligands have enabled the isolation of several group 13 species with low coordination numbers $^{1-3}$ or lower oxidation states of the metal center. $^{4-12}$ The supermesityl ligand, 2,4,6- 4 Bu₃(C₆H₂), has been used successfully for the synthesis of various compounds which otherwise can be difficult to prepare. Several monomeric compounds of group 213-15 and group

* To whom correspondence should be addressed. Abstract published in Advance ACS Abstracts, August 1, 1996. (1) Jerius, J. T.; Hahn, J. M.; Rahman, A. F. M. M.; Mols, O.; Ilsley,

W. H.; Oliver, J. P. Organometallics 1986, 5, 1812.
(2) Beachley, O. T., Jr.; Churchill, M. R.; Pazik, J. C.; Ziller, J. W. Organometallics 1986, 5, 1814.

(3) Leman, J. T.; Barron, A. R. Organometallics 1989, 8, 2214.
(4) Beachley, O. T., Jr.; Churchill, M. R.; Fettinger, J. C.; Pazik, J. C.; Victoriano, L. J. Am. Chem. Soc. 1986, 108, 4666.

(5) Beachley, O. T., Jr.; Blom, R.; Churchill, M. R.; Faegri, K., Jr.; Fettinger, J. C.; Pazik, J. C.; Victoriano, L. Organometallics 1989, 8,

(6) Wehmschulte, R. J.; Ruhlandt-Senge, K.; Olmstead, M. M.; Hope, H.; Sturgeon, B. E.; Power, P. P. Inorg. Chem. 1993, 32, 2983.
(7) Uhl, W. Z. Naturforsch. 1988, 43B, 1113.

(8) Uhl, W.; Layh, M.; Hildenbrand, T. J. Organomet. Chem. 1989,

(9) Uhl, W.; Layh, M.; Hiller, W. J. Organomet. Chem. 1989, 368,

(10) Uhl, W.; Vester, A.; Kaim, W.; Poppe, J. J. Organomet. Chem.

(11) Schluter, R. D.; Cowley, A. H.; Atwood, D. A.; Jones, R. A.; Bond, M. R.; Carrano, C. J. J. Am. Chem. Soc. 1993, 115, 2070.
(12) Li, X.-W.; Pennington, W. T.; Robinson, G. H. J. Am. Chem. Soc. 1995, 117, 7578.

(13) Ruhlandt-Senge, K. Inorg. Chem. 1995, 34, 3499.

(14) Ruhlandt-Senge, K.; Davis, K.; Dalal, S.; Englich, U.; Senge, M. O. Inorg. Chem. 1995, 34, 2587.

13 are stabilized by the supermesityl ligand because the o-tBu groups of Mes* offer protection to the metal center. Supermesityl derivatives of monomeric monohalides $^{16-18}$ and dihalides 19,20 of Al, Ga, and In have been synthesized, and the stable hydrides of Al and Ga have also been isolated. 18,21-23 In a recent work by Power and coworkers, the synthesis and characterization of MMes*2 (M = Mg, Mn, Fe) was reported15 and, in another paper,24 the formation of several monomeric group 13 compounds (e.g.- Mes*2GaSMe and Mes*2GaSPh) was discussed. Meller et al. reported the formation of Mes*2-GaCl and its transformation to Mes*(Cl)Ga[CH2C(Me)2- $C_6H_3(^tBu)_2]^{17}$ and the cyclometalated product 5,7-di-tertbutyl-3,3-dimethyl-1-(2,4,6-tri-tert-butylphenyl)benzo[b]gallolane,17 where the activation of the C-H bond is achieved by the Ga center. Similarly, the reaction of Mes*2GaCl with LiGaH4 resulted in the formation of Mes*(H)Ga[CH₂C(Me)₂C₆H₃('Bu)₂].²³ The unusual ability of the gallium metal to activate the C-H bond has motivated us to examine whether the indium metal behaves in a similar fashion. To our knowledge, the activation of the C-H bond by the indium center is unprecedented but documented for gallium. 17,23,25 In this note, we report our findings in utilizing the supermesityl group and present the synthesis and characterization of Mes*(Br)In[$CH_2C(Me)_2C_6H_3(^tBu)_2$] (1) and $Mes*In(SePh)_2$ (2).

(21) Wehmschulte, R. J.; Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P. Inorg. Chem. 1994, 33, 6300.

(22) Wehmschulte, R. J.; Power, P. P. Inorg. Chem. 1994, 33, 5611. (23) Cowley, A. H.; Gabbaï, F. P.; Isom, H. S.; Carrano, C. J.; Bond, M. R. Angew. Chem., Int. Ed. Engl. 1994, 33, 1253. (24) Wehmschulte, R. J.; Ruhlandt-Senge, K.; Power, P. P. Inorg.

Chem. 1995, 34, 2593 (25) Waggoner, K. M.; Power, P. P. J. Am. Chem. Soc. 1991, 113,

⁽¹⁵⁾ Wehmschulte, R. J.; Power, P. P. Organometallics 1995, 14, 3264.

⁽¹⁶⁾ Rahbarnoohi, H.; Heeg, M. J.; Oliver, J. P. Organometallics 1994, 13, 2123.

⁽¹⁷⁾ Meller, A.; Pusch, S.; Pohl, E.; Häming, L.; Herbst-Irmer, R. Chem. Ber. 1993, 126, 2255.

⁽¹⁸⁾ Cowley, A. H.; Isom, H. S.; Decken, A. Organometallics 1995,

⁽¹⁹⁾ Petrie, M. A.; Power, P. P.; Dias, H. V. R.; Ruhlandt-Senge, K.; Waggoner, K. M.; Wehmschulte, R. J. Organometallics 1993, 12, 1086. (20) Schulz, S.; Pusch, S.; Pohl, E.; Dielkus, S.; Herbst-Irmer, R.; Meller, A.; Roesky, H. W. Inorg. Chem. 1993, 32, 3343.

Experimental Section

General Considerations. All manipulations of air- and moisture-sensitive materials were performed in a Vacuum Atmospheres HE-493 Dri-Lab containing an argon atmosphere and by general Schlenk techniques. All solvents were distilled over Na/K alloy. Mes*MgBr, 16 Mes*2InBr, 16 and In(SePh)2I26 were made according to the literature. ¹H and ¹³C{¹H} NMR spectra were recorded on a GE-300 spectrometer operating at 300 and 75.4 MHz, respectively. ¹H and ¹³C{¹H} spectra were referenced to TMS by using the residual protons or carbons of deuterated benzene at δ 7.15 or 128 ppm, respectively. Melting points (uncorrected) were obtained with a Thomas-Hoover Uni-melt apparatus, and capillaries were flame-sealed under argon. Elemental analyses were performed by E+R Microanalytical Laboratory, Inc., Corona, NY. Mass spectral data were collected on a JEOL JMS-SX 102A spectrometer operating in the electron ionization mode at 20 eV. IR spectra were acquired for KBr pellets on a BOMEM Michelson MB-100 FT-IR spectrometer. X-ray crystallographic data were obtained at 25 °C on a Siemens P4 diffractometer utilizing graphite-monochromated Mo K α ($\lambda = 0.71073$ Å) radiation.

Preparation of Mes*(Br)In[$CH_2C(CH_3)_2C_6H_3('Bu)_2$] (1). Mes*₂InBr (3.00 g, 4.38 mmol) was placed in a 250 mL Schlenk flask. The flask was then submerged completely in a silicone oil bath and heated under reduced pressure at 130-150 $^{\circ}\mathrm{C}$ for 12 h. After the mixture was cooled to room temperature, a white crystalline solid was obtained and recrystallized from hexane at room temperature to give X-ray-quality colorless crystals of 1 after several days: yield 55%; mp 141 °C. Anal. Calcd (found) for C₃₆H₅₈InBr: C, 63.07 (63.21); H, 8.53 (8.66). ¹H NMR (C₆D₆): ⁴Bu₃C₆H₂, δ 7.44 (2H, s, 3,5-H); 1.29 (9H, s, p^{-t} Bu), 1.26 (18H, s, o^{-t} Bu); 3,5- t Bu₂C₆H₃C(CH₃)₂CH₂, δ 7.39 [2H, d, $(^4J = 1.8 \text{ Hz})$, 2,6-H], 7.33 [1H, t, $(^4J = 1.8 \text{ Hz})$, 4-H], 1.23 (18H, s, 3,5-Bu), 2.03 (2H, s, CH₂), 1.53 (6H, s, 2CH₃). $^{13}C\{^{1}H\}$ NMR (C₆D₆): $^{4}Bu_{3}C_{6}H_{2}$, δ 31.6 [p-C(CH_{3})₃], 32.8 [o-C(CH₃)₃], 34.0 [p-C(CH₃)₃], 37.4 [o-C(CH₃)₃], 122.1 (C-3,5), 138.2 (In-C), 156.1 (C-2,6), 150.3 (C-4), 31.4 [C(CH₃)₂], 34.8 $[C(CH_3)_2]$, 39.3 (CH_2) ; 3,5- $Bu_2C_6H_3$, δ 31.4 $[C(CH_3)_3]$, 39.6 [C(CH₃)₃], 119.5 (C-4), 120.5 (C-2,6), 150.4 (C-3,5), 150.9 (C-1). Mass spectral data (EI mode): peaks at m/e 685, 605, 439, 246, 231 corresponding to fragments of C₃₆H₅₈InBr (M⁺), [M $-Br]^{+}$, $[M - Mes^{+}]^{+}$, $[Mes^{+}H]^{+}$, $[Mes^{+} - Me]^{+}$, respectively. IR (cm⁻¹, KBr pellet): 2957 (s), 2862 (w), 1582 (w), 1360 (w), 1106 (w), 1021 (w), 874 (w), 804 (w), 704 (w), 565 (w), 495 (w).

Preparation of Mes*In(SePh)₂ (2). A 250 mL Schlenk flask equipped with a magnetic stirbar was charged with In-(SePh)₂I (2.00 g, 3.61 mmol) and ca. 40 mL of THF. To this was added 12.2 mL of Mes*MgBr (0.30 M solution in THF) by syringe over about 15 min at room temperature. The formation of salt was apparent after addition of half of the Mes*MgBr. After the complete addition, the solution was stirred overnight at room temperature. The THF was removed in vacuo, and the resultant yellowish solid was extracted with two 25 mL portions of hexane. X-ray quality crystals of 2 formed overnight at -20 °C. The crystals were isolated and washed with 20~mL of cold (-75 °C) pentane. Yield 90%; mp 115 °C. Anal. Calcd (found) for C₃₀H₃₉InSe₂: C, 53.59 (53.79); H, 5.85 (6.00). 1H NMR (C₆D₆): δ 7.59 (4H, m, ortho C₆H₅), 7.43 (2H, s, meta C₆H₂), 6.81 (6H, m, meta and para C₆H₅), 1.37 (18H, s, o-tBu) 1.22 (9H, s, p^{-t} Bu). 13 C{ 1 H} NMR (C₆D₆): t Bu₃C₆H₂, δ 31.9 [p-C(CH₃)₃], 33.0 [o-C(CH₃)₃], 35.2 [p-C(CH₃)₃], 37.5 [o-C(CH₃)₃], 122.6 (meta Mes* ring), 136.4 (ipso Mes* ring), 150.9 (para Mes* ring), 156.3 (ortho Mes* ring), 119.5, 126.6, 129.2 (Ph ring). Mass spectral data (EI mode): peaks at m/e 1191. 789, 674, 644, 517, 487, 246, 231 corresponding to fragments of $[2M - SePh]^{+}$, $[M + In]^{+}$, $C_{30}H_{39}InSe_2(M^+)$, $[M - 2Me]^{+}$, $[M - SePh]^{+}$, $[M - (SePh + 2Me)]^{+}$, $[Mes*H]^{+}$, $[Mes* - 2Me]^{+}$

Table 1. Crystal Data and Structure Refinement for Mes*(Br)In[CH₂C(CH₃)₂C₆H₃('Bu)₂] (1) and Mes*In(SePh)₂ (2)

	1	2
empirical formula	C ₃₆ H ₅₈ InBr	C ₃₀ H ₃₉ InSe ₂
fw	685.55	672.35
temp, K	298(2)	298(2)
radiation	Μο Κα	Μο Κα
(wavelength, Å)	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$
cryst syst	orthorhombic	monoclinic
space group	Fdd2	$P2_1/n$
a, Å	14.968(1)	11.103(2)
b, Å	82.54(2)	18.375(1)
c, Å	11.596(2)	14.951(2)
β , deg	90.0(-)	102.99(1)
V , A^3	14326(5)	2972.2(7)
$D_{ m calcd}$, g cm $^{-3}$	1.271	1.503
\mathbf{Z}	16	4
abs coeff	1.796 mm^{-1}	3.259 mm^{-1}
F (000)	5728	1344
cryst dimens, mm	$0.40\times0.40\times0.15$	$0.30 \times 0.20 \times 0.20$
cryst habit	colorless plate	colorless block
heta range for data collecn, deg	2.24-23.49°	2.18-22.50°
no. of rflns collected	3273	4671
no. of independent rflns	$2990 (R_{\rm int} = 0.0361)$	$3838 (R_{\rm int} = 0.0525)$
no. of data/ restraints/params	2990/1/343	3831/0/296
goodness of fit on F^2	1.285	1.132
final R indices $(I > 2\sigma(I))^a$	R1 = 0.0412	R1 = 0.0468
	wR2 = 0.0941	wR1 = 0.0966
R indices (all data)	R1 = 0.0503	R1 = 0.0859
_	wR2 = 0.0963	wR2 = 0.1098
$D(r)$ and hole, $\mathbf{e} \mathbf{\mathring{A}^{-3}}$	0.510 and -0.624	0.700 and -0.511

^a Quantity minimized: $\sum [w(|F_o^2 - F_c^2)^2] / \sum [(wF_o^2)_2]^{1/2}$. $R = \sum \Delta / \sum (F_o)$. $R_w = \sum \Delta w^{1/2} / \sum (F_o w^{1/2})$. $\Delta = |(F_o - F_c)|$.

Me]⁺. IR (cm⁻¹; KBr pellet): 3140 (w), 3063 (w), 2953 (s), 2866 (w), 1580 (w), 1242 (w), 1066 (w), 1018 (w), 808 (w), 691 (w), 570 (w).

X-ray Structural Solution and Refinement. Crystal, data collection, and refinement parameters are given in Table 1. Suitable crystals were mounted in thin-walled capillaries and flame-sealed under argon.

The photographic data, unit cell parameters, and occurrences of equivalent reflections and systematic absences in the diffraction data are uniquely consistent with the space group Fdd2 for 1 and $P2_1/n$ for 2.

The structures were solved using direct methods, completed by difference Fourier syntheses, and refined by full-matrix least-squares procedures. A semiempirical absorption correction was applied for 1; all data with a glancing angle of $\leq 3^{\circ}$ to the prominent face [001] were rejected, affecting 169 reflections. Semiempirical absorption corrections were applied for 2. All non-hydrogen atoms were refined with anisotropic displacement coefficients, except for the para 'Bu group on the Mes* moiety in 2. Carbon atoms, C(16), C(17), and C(18) are disordered over two positions with an occupancy distribution of 60/40 and were refined isotropically. The hydrogen atoms on these carbons were ignored. All other hydrogen atoms were treated as idealized contributions.

All software and sources of the scattering factors are contained in the SHELXTL (5.3) program libraries.²⁷

Results and Discussion

Heating Mes*₂InBr at 130-150 °C under reduced pressure afforded 1 in 55% yield (eq 1). A small amount

⁽²⁶⁾ Kumar, R.; Mabrouk, H. E.; Tuck, D. G. J. Chem. Soc., Dalton Trans. 1988, 1045.

⁽²⁷⁾ SHELXTL PC; Siemens Analytical X-Ray Instruments, Inc.: Madison, WI, 1990.

of Mes*H was deposited on the outlet valve of the Schlenk flask and was identified by ¹H NMR. No traces of the indium analog of 5,7-di-tert-butyl-3,3-dimethyl-1-(2,4,6-tri-tert-butylphenyl)benzo[b]gallolane¹⁷ (vide supra) was detected. Similar to the mechanism proposed by Cowley et al. for the formation of Mes*(H)Ga-[CH₂C(Me)₂C₆H₃(^tBu)₂],²³ the transformation of Mes*₂-InBr¹⁶ to 1 could occur through the activation of a C-H bond of one of the o-tBu groups of Mes* with subsequent protonation of the ipso carbon. This is a good indication that an agostic interaction between the In center and the o-'Bu groups of one of the Mes* ligands in Mes*2-InBr16 does exist and this agostic interaction might be responsible for the formation of 1. The deviation of one of the Mes* groups from planarity (15°) in Mes*2InBr (Mes* group with close C-H...In contact) is not observed in the molecular structure of 1. This is perhaps due to relief of steric hindrance in 1 compared to the parent isomer, Mes*2InBr.

The reaction of In(SePh)₂I and Mes*MgBr afforded 2 in high yield (eq 2). Compounds 1 and 2 are soluble in

$$\begin{split} \text{Mes*MgBr} + \text{In(SePh)}_2 \text{I} \xrightarrow{\text{THF}} \\ \text{Mes*In(SePh)}_2 + \text{``MgBrI''} \ (2) \end{split}$$

aromatic solvents and saturated hydrocarbons and decompose slowly when exposed to air. The ¹H NMR spectrum of 1 clearly shows a complex pattern which matches that of Mes*(Cl)Ga[CH₂C(Me)₂C₆H₃(⁴Bu)₂].¹⁷ The mass spectrum of 1 showed a fragment corresponding to the parent ion, while the mass spectrum of 2 showed fragments associated with a dimeric species of 2 as well as monomeric M⁺ for 2. Compounds 1 and 2 are volatile, and their mass spectra show isotope patterns that match well with calculated isotope patterns.

The structures of compounds 1 and 2 were determined by single-crystal X-ray diffraction methods, and their molecular drawings are shown in Figures 1 and 2, respectively. Selected bond distances and angles for 1 and 2 are listed in Tables 2 and 3, respectively. The structure of 1 shows it to be a monomer and to be isostructural with the Ga analog Mes*(Cl)Ga[CH₂C-(Me)₂C₆H₃('Bu)₂].¹⁷ The bond distances and angles are comparable to many examples in the literature. ^{16,18–20} One interesting feature is the close proximity of the methyl groups on the Mes* moiety to the indium center. C(9) and C(18) are almost directly above and below the indium atom with In···C(9) = 2.98 Å and In···C(18) = 2.84 Å. Such close In···C contact distances have been documented for several species. ^{16,18,20,28–30} The parent

Figure 1. Molecular structure of Mes*(Br)In[CH₂C(CH₃)₂- C_6H_3 ('Bu)₂] (1) with atoms shown as 30% probability ellipsoids. Hydrogen atoms were omitted for clarity.

Figure 2. Molecular structure of Mes*In(SePh)₂ (2) with carbon atoms C(16), C(17), and C(18) disordered over two positions, with the major contribution shown isotropically. All other atoms are shown as 30% probability ellipsoids. Hydrogen atoms were omitted for clarity.

Table 2. Selected Bond Distances (Å) and Bond Angles (deg) for Mes*(Br)In[CH₂C(CH₃)₂C₆H₃('Bu)₂] (1), with Estimated Standard Deviations in Parentheses

Bond Lengths							
In-C(6)	2.152(9)	In···C(9)	2.98				
In-C(26)	2.166(10)	In···C(18)	2.84				
In-Br	2.5503(14)						
	Bond A	Angles					
C(6)-In-C(26)	131.2(4)	C(6)-In-Br	111.0(2)				
C(26)-In-Br	117.6(3)	C(2)-C(1)-C(6)	119.8(8)				
C(2)-C(1)-C(7)	118.7(7)	C(6)-C(1)-C(7)	121.5(8)				
C(5)-C(4)-C(3)	122.7(9)	C(4)-C(5)-C(6)	119.3(7)				
C(4)-C(5)-C(15)	116.4(8)	C(6)-C(5)-C(15)	123.9(8)				
C(1)-C(6)-C(5)	117.2(8)	C(1)-C(6)-In	120.7(6)				
C(5)-C(6)-In	122.1(6)						

molecule, Mes*₂InBr, also shows short In···C contact distances. ¹⁶ These short In···C contacts support the existence of an agostic or steric interaction between the In and the o-¹Bu groups, and the resultant geometry around the indium center can be viewed as pseudo trigonal bipyrimidal.

Similar to compound 1, compound 2 is a monomeric base-free molecule with close In-C contact distances

⁽²⁸⁾ Blake, A. J.; Cradock, S. J. Chem. Soc., Dalton Trans. 1990, 2393.

⁽²⁹⁾ Rahbarnoohi, H.; Kumar, R.; Heeg, M. J.; Oliver, J. P. Organometallics 1994, 13, 3300.

⁽³⁰⁾ Wuller, S. P.; Seligson, A. L.; Mitchell, G. P.; Arnold, J. Inorg. Chem. 1995, 34, 4854.

Table 3. Selected Bond Distances (Å) and Bond Angles (deg) for Mes*In(SePh)2 (2), with Estimated Standard Deviations in Parentheses

Bond L	engths	
.160(7)	Se(1)-C(30)	1.917(8)
.5261(12)	, , , , , , , ,	1.921(9)
.5507(11)		1.021(0)
Bond A	Angles	
134.9(2)	C(1)-In-Se(2)	121.8(2)
103.34(4)		102.1(2)
98.0(2)		120.1(5
		120.6(7)
	C(29) - C(30) - Se(1)	121.6(7)
	.160(7) .5261(12) .5507(11) Bond A 134.9(2)	$\begin{array}{lll} .5261(12) & \mathrm{Se}(2) - \mathrm{C}(24) \\ .5507(11) & & \\ & \mathrm{Bond\ Angles} \\ 134.9(2) & \mathrm{C}(1) - \mathrm{In} - \mathrm{Se}(2) \\ 103.34(4) & \mathrm{C}(30) - \mathrm{Se}(1) - \mathrm{In} \\ 98.0(2) & \mathrm{C}(2) - \mathrm{C}(1) - \mathrm{In} \\ 119.2(5) & \mathrm{C}(19) - \mathrm{C}(24) - \mathrm{Se}(2) \\ 120.5(7) & \mathrm{C}(29) - \mathrm{C}(30) - \mathrm{Se}(1) \end{array}$

 $(In \cdot \cdot \cdot C(10) = 3.054 \text{ Å and } In \cdot \cdot \cdot C(13) = 3.230 \text{ Å}).$ The In–Se bond lengths in 2 (2.526 and 2.551 Å) are longer than the In-Se bond length in the terminal selenido complex $[Tp(^tBu_2)]InSe$ (Tp = tris(pyrazolyl)hydroborate; <math>In-Se = 2.376(1) Å)³¹ but are comparable with those seen in In[SeC(SiMe₃)₃]₃ (average 2.527 Å)³⁰ and In(SeMes*)₃ (average 2.505 Å)³² and are significantly shorter than the In-Se bond lengths in [Mes₂In(µ-SePh)]₂ (average 2.732 Å),³³ [Mes₂In(μ -SeMes)]₂ (average 2.715 Å),³³ [(neo-Pe)₂In(μ -SePh)]₂ (average 2.743 Å), 34 and polymeric [In(SePh) $_3$] $_{\infty}$ (average 2.78 Å). 35 The Se-In-Se angle in 2 is 103.35°, which deviates from trigonal geometry but is in good accordance with a similar angle in In[SeC(SiMe₃)₃]₃ (103.86°).³⁰ The geometry of the In center is trigonal planar, with the sum

of the angles around In being 359.95%. The In-C bond distance of 2.160(7) Å in 2 is in the same range as for several reported compounds in the literature. 36

Conclusion. Compounds 1 and 2 are monomeric compounds, and the resultant geometry around the indium centers can be viewed as pseudo trigonal bipyramidal. The transformation of Mes*2InBr to 1 in moderate yield can present opportunities to study the reactivity of 1 toward various reagents. The formation of 2 by arylation of In(SePh)2I can provide a synthetic route to other heteroleptic compounds.

Acknowledgment. This work was funded by the Office of Naval Research.

Supporting Information Available: For 1 and 2, complete listings of crystal and X-ray data collection parameters, bond distances and angles, atomic coordinates and anisotropic thermal parameters for the non-hydrogen atoms, and atomic coordinates and isotropic thermal parameters for the hydrogen atoms (14 pages). Ordering information is given on any current masthead page.

OM9603528

⁽³¹⁾ Kuchta, M. C.; Parkin, G. J. Am. Chem. Soc. 1995, 117, 12651. (32) Ruhlandt-Senge, K.; Power, P. P. Inorg. Chem. 1993, 32,

⁽³³⁾ Rahbarnoohi, H.; Kumar, R.; Heeg, M. J.; Oliver, J. P. Orga-

R. K. Polyhedron 1989, 8, 865.

⁽³⁶⁾ For a recent review on group 13 organometallic chalcogen derivatives, see: Oliver, J. P. J. Organomet. Chem. 1995, 500, 269 and references therein.

TECHNICAL REPORTS DISTRIBUTION LIST

ORGANOMETALLIC CHEMISTRY FOR ELECTRONIC & OPTICAL MATERIALS

Dr. Harold E. Guard Code 1113 Chemistry Division, 331 Office of Naval Research 800 N. Quincy Street Arlington, Va 22217-5660

Defense Technical Information Center Building 5, Cameron Station Alexandria, VA 22314

Dr. James S. Murday Chemistry Division, Code 6100 Naval Research Laboratory Washington, DC 20375-5320

Dr. John Fischer, Director Chemistry Division, C0235 Naval Air Weapons Center Weapons Division China Lake, CA 93555-6001 Dr. Richard W. Drisko
Naval Facilities & Engineering
Service Center
Code L52
Port Hueneme, CA 93043

Dr. Eugene C. Fischer Code 2840 Naval Surface Warfare Center Carderock Division Detachment Annapolis, MD 21402-1198

Dr. Bernard E. Douda Crane Division Naval Surface Warfare Center Crane, IN 47522-5000

Dr. Peter Seligman Naval Command, Control and Ocean Surveillance Center RDT&E Division San Diego, CA 93152-5000