

Multilayer Perceptron 2 (regularization)

Prof. Ph.D. Woo Youn Kim Chemistry, KAIST

Goal

5주	주제	Deep learning & multilayer perceptron (MLP)
	목표	Understanding the perceptron concept and a basic principle of deep learning
	내용	Universal approximation theorem
		backpropagation, vanishing gradient, activation function, ReLU
6주	주제	Multilayer perceptron 2
	목표	Knowing various issues on MLP and techniques to resolve them
	내용	Overfitting, regularization, dropout, batch normalization, cross validation
7주	주제	Convolutional Neural Network (CNN) & SMILES
	목표	Understanding CNN and molecular representation with SMILES
	내용	Convolution, receptive field, stride, pooling
		Supervised learning of Log P and TPSA

Contents

- Types of deep learning
- Generalization
- Model capacity
- Regularization
 - Data augmentation
 - Cross validation
 - L1,L2 regularization
 - Dropout

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

Probablistic Hidden Cell

Backfed Input Cell

Output Cell

Match Input Output Cell

Recurrent Cell

Different Memory Cell

Kernel

Convolution or Pool

Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)

Auto Encoder (AE)

Variational AE (VAE)

Denoising AE (DAE)

Sparse AE (SAE)

Markov Chain (MC)

Types of deep learning

Supervised Learning: classification or regression

The network makes its guesses, then compare its answers to the known "correct" ones and make adjustments according to its errors.

Unsupervised Learning: clustering

Searching for a hidden pattern in a data set without known answers.

Reinforcement Learning: game, robotics, self-driving car, etc.

A strategy built on observation.

https://www.youtube.com/watch?v=JFJkpVWTQVM

no labeling

Leap of deep learning: supervised learning

ILSVRC (ImageNet Large Scale Visual Recognition Challenge) Winners

: 2012년 이후로 모든 대회 1등은 'Deep convolutional networks' 를 사용하였다.

2012년을 기점으로 Deep Learning은 전세계에서 활발하게 연구되기 시작

Leap of deep learning: unsupervised learning

Generative model

The first picture defines the scene you would like to have painted.

2 Choose style

Choose among predefined styles or upload your own style image.

3 Submit

Our servers paint the image for you. You get an email when it's done.

- 손석희 아나운서의 목소리를 만들어내는 인공지능 모델 (박근혜 전 대통령, 문재인 대통령도 되었었는데, 현재 삭제된 상태)
- : https://carpedm20.github.io/tacotron/

Leap of deep learning: reinforcement learning

✓ 왜 강화 학습인가?

- 특징: 반복된 경험을 통해 정답(지도) 없이 스스로 학습
- 알파고의 등장으로 각광 받는 최신 인공지능 기술: 자율주행, 언어학습 등
- AlphaGoZero: 강화 학습만으로 이전 알파고 이김
- https://www.youtube.com/watch?v=KJ15iGGJFvQ

ARTICLE

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

Big guys in deep learning

Andrew

- Stanford university
- Google Brain(2011 ~ 2012)
- Baidu (2014~2017.3)

Yoshua Bengio

- Universite de Montreal
- CIFAR

Geoffrey

- University of Toronto
- Google
- BPNN, RBM, Autoencoder,

•••

AlexNet

Ian Goodfellow

Google Brain

OpenAl

- Open AI
- GAN

Yann

- New York University
- Postdortoral student of Geoff
- Facebook
- CNN LeNet

And also you can be ...

Source

Deep Learning

An MIT Press book

lan Goodfellow and Yoshua Bengio and Aaron Courville

<u>Exercises</u> <u>Lectures</u> <u>External Links</u>

The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free.

The deep learning textbook can now be ordered on Amazon.

In literature

Chem Sci. 9, 513 (2018)

- **3.5.1 Logistic regression.** Logistic regression models (Logreg) apply the logistic function to weighted linear combinations of their input features to obtain model predictions. It is often common to use regularization to encourage learned weights to be sparse.⁷⁷ Note that logistic regression models are only defined for classification tasks.
- 3.5.2 Support vector classification. Support vector machine (SVM) is one of the most famous and widely-used machine learning method.⁷⁸ As in classification task, it defines a decision plane which separates data points of different class with maximized margin. To further increase performance, we incorporates regularization and a radial basis function kernel (KernelSVM).

ACS Cent. Sci. 4, 268 (2018)

9 heavy atoms³¹ and another with 250 000 drug-like commercially available molecules extracted at random from the ZINC database.³² We performed random optimization over hyperparameters specifying the deep autoencoder architecture and training, such as the choice between a recurrent or convolutional encoder, the number of hidden layers, layer sizes, regularization, and learning rates. The latent space representations for the QM9 and ZINC data sets had 156 dimensions and 196 dimensions, respectively.

arXiv:1706.04223v3. 2018

The model consists of a discrete autoencoder regularized with a prior distribution,

$$\min_{\phi,\psi} \quad \mathcal{L}_{\text{rec}}(\phi,\psi) + \lambda^{(1)}W(\mathbb{P}_Q,\mathbb{P}_{\mathbf{z}})$$

Generalization

Generalization

- The central challenge in machine learning is that our algorithm must perform well on new, previously unseen inputs
- The ability to perform well on previously unobserved inputs is called generalization.
- Training error: measure on the training set → optimization problem to reduce the training error

$$rac{1}{m^{(ext{train})}}||oldsymbol{X}^{(ext{train})}oldsymbol{w} - oldsymbol{y}^{(ext{train})}||_2^2$$

Test error or generalization error → separating machine learning from optimization

$$rac{1}{m^{(ext{test})}}||oldsymbol{X}^{(ext{test})}oldsymbol{w} - oldsymbol{y}^{(ext{test})}||_2^2$$

The generalization error is defined as the expected value of the error on a new input

Generalization

• **Generalization of a model**: making an algorithm that perform well on new inputs, not just on the training data, i.e., there is no universal model working for all tasks

- The factors determining how well a machine learning algorithm will perform are its ability to
 - 1. Make the training error small.
 - 2. Make the gap between training and test error small.
- The two central challenges in machine learning

Underfitting & Overfitting

- Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training set.
- Overfitting occurs when the gap between the training error and test error is too large
- The main challenge is to find a right model complexity for a given task

More examples

Diagnosis of overfitting

Best way to see if you overfit:

- split data in training (~70%) and test set (~30%)
- train the model on the training set
- evaluate the model on the training set
- evaluate the model on the test set
- generalization error: difference between them,
 measures the ability to generalize

Choose examples for training/testing sets randomly

low error on the training data, but high on the testing data

Variance & Bias

Generalization error can be decomposed into bias and variance.

- bias: tendency to constantly learn the same wrong thing
- variance: tendency to learn random things irrespective to the input data

Question

Three different models trained with a same small set of randomly chosen data points

Which one is underfit or overfit?

Answer

Quadratic model: the best trade-off of bias and variance

Linear model
High bias, low variance → underfit

Cubic model low bias, high variance → overfit

Bias-variance tradeoff

If you train on even fewer data points, then the bias-variance tradeoff will shift in favor of linear models, because the variance term will dominate.

Bias-variance tradeoff

Variance & Bias

Overfitting

I low bias, high variance

Underfitting

high bias, low variance

High Variance

Variance & Bias

Model capacity

Model capacity

- Control an expected error by altering its capacity (= # parameters)
- Insufficient capacity; unable to solve complex tasks → underfit
- High capacity; higher than needed to solve the present task → overfit
- ML algorithms will generally perform best when their capacity is appropriate for the true complexity
 of the task with a given amount of training data.

27

Representational capacity

- Capacity is not determined only by the number of parameters.
- A choice of model specifies which family of functions the learning algorithm can choose.
 - → representational capacity of the model
- For example, linear → nonlinear such as SVM and DNN

Model selection

 Model with a representational capacity in the hypothesis space ex) DNN, CNN, RNN, etc

 Model with optimal complexity (i.e., # parameters)
 ex) # nodes/layer, # layers

Regularization

Regularization

- The main challenge is to find an optimal capacity of model for a given task.
- Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.

Capacity

Strategy

- 1. Data augmentation: Big data
- 2. Model selection vis cross validation
- 3. L1,L2-Regularization
- 4. Dropout

Big Data

- Even an ideal model (let's say oracle) will incur some error on many problems because there may still be some noise in the data distribution.
- The error incurred by an oracle making predictions from the true distribution p(x, y) is called the **Bayes error**.

- Training and generalization error vary as the size of the training set varies.
- Expected generalization error can never increase as the number of training examples increases.

high variance → use more data

Cross validation

Generally cross-validation is used to find the best value of parameters by reducing variability in the data STEP 1: make a cross-validation set to test the performance of our model depending on the parameter

Cross validation

Generally cross-validation is used to find the best value of parameters by reducing variability in the data

STEP 2: perform multiple rounds of cross-validation using different partitions

Because a certain model may show best performance with a specific data set

Cross validation

Generally cross-validation is used to find the best value of parameters by reducing variability in the data

STEP 3: repeat the STEP 1 and 2 process with all model variations (hypothesis and # parameters)

How much deep and wide?

DNNk

DNN1 DNN2 DNN3 · ·

Cross validation

Generally cross-validation is used to find the best value of parameters by reducing variability in the data

STEP 4: choose the best one and apply it to the test set to obtain the final test error

L2 Regularization

Excess reduction of training error may cause undesirable increase of weights to be biased by specific data points such as outlier

$$\mathbf{C} = \mathbf{C_0} + \lambda \mathbf{\Omega} \qquad \mathbf{w} = \mathbf{w} - \alpha \frac{\partial C}{\partial w} = w - \alpha \frac{\partial C_0}{\partial w} - \alpha \lambda \frac{\partial \mathbf{\Omega}}{\partial w}$$

SVM case

L2 (or ridge) regularization

$$C=C_0+\lambda w^T w$$

$$\mathbf{w} = (1 - \alpha \lambda) w - \alpha \frac{\partial C_0}{\partial w}$$

Compared to the original case ($\lambda=0$), large weights decrease by the first term as updated

weight decay

The weight decay prevents some weights enormously increasing which induce "overfitting".

And it means that learning is not affected by "local noise" and "outlier"

L2 Regularization

Compared to the original case ($\lambda = 0$), large weights decrease by the first term as updated → weight decay

L2 Regularization

$$z = f(w \cdot x + b) \rightarrow z \sim w \cdot x + b$$

Small w → active function becomes linear → NN becomes roughly linear regression

L1 Regularization

Excess reduction of training error may cause undesirable increase of weights to be biased by specific data points such as outlier

$$\mathbf{C} = \mathbf{C_0} + \lambda \mathbf{\Omega}$$
 $\mathbf{w} = \mathbf{w} - \alpha \frac{\partial C}{\partial w} = w - \alpha \frac{\partial C_0}{\partial w} - \alpha \lambda \frac{\partial \mathbf{\Omega}}{\partial w}$

L1 (lasso) regularization

$$C = C_0 + \lambda \sum_{i} |w_i| \qquad \qquad w = w - \alpha \lambda \operatorname{sgn}(w) - \alpha \frac{\partial C_0}{\partial w}$$

Compared to the original case ($\lambda = 0$), weights decrease depending on sign as updated \rightarrow small weights go to zero \rightarrow important weights remain non-zero

This helps with feature selection

Dropout

Dropout randomly drops a subset of a layer's perceptron's activations to prevent from biasing specific

data points.

사공이 많으면 배가 산으로 간다

(a) Standard Neural Net

(b) After applying dropout.

A different set of activations is discarded across different iterations of learning.

At last, connect all perceptrons

→ taking average weights from many different neural network architectures.

Summary

- The main challenge is to find an optimal capacity of model for a given task.
- Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.

- 1. Data augmentation: Big data
- 2. Model selection vis cross validation
- 3. L1,L2-Regularization
- 4. Dropout

New terms

- Generalization
- Training error
- Test error
- Regularization
- Overfitting & underfitting
- Model capacity
- Optimal capacity
- Representational capacity
- Variance & bias
- Data augmentation
- Cross validation
- Validation set
- L1,L2 regularization
- Dropout

A mostly complete chart of

Neural Networks

Deep Feed Forward (DFF)

Backfed Input Cell

Kernel

Recurrent Neural Network (RNN)

Memory Cell

Markov Chain (MC)

Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

Deep Belief Network (DBN)

Choose a right model

for a given problem

generalization errors

to minimize

기간	분류	주제	학습활동	결과물
1주	주제	Introduction & math review		
	목표	Review of fundamental mathematics required to follow		
		the course works.		
	내용	Data science, Linear algebra, Probability		
2주	주제	Machine learning fundamentals	Installation of anaconda, py	Assign #1: line
	목표	Understanding the basic principle of machine learning s	thon3, numpy, scikit-learn,	ar regression
		uch as cost function and gradient descent.	RDkit, tensorflow, exercising	
	내용	Linear regression, logistic classification	linear regression	
3주	주제	Support vector machine (SVM) & summary	Exercising SVM for classificatio	Assign #2: reg
	목표	Understanding a key idea of SVM	n problem	ression using S
	내용	SVM, Regression and classification		VM
4주	주제	Deep learning & multilayer perceptron (MLP)	Applying MLP for classification	
	목표	Understanding the perceptron concept and a basic prin	problem and comparison betw	
		ciple of deep learning	een ReLU and sigmoid functio	
	내용	Universal approximation theorem	ns	
		backpropagation, vanishing gradient, activation function		
		, ReLU		

기간	분류	주제	학습활동	결과물
5주	주제	Multilayer perceptron 2	Exercising MLP for supervised I	Assign #3: sup
	목표	Knowing various issues on MLP and techniques to resol ve them	earning	ervised learnin g with MLP an
	내용	Overfitting, regularization, dropout, batch normalization, cross validation		d comparison with SVM
6주	주제	Convolutional Neural Network (CNN) & SMILES	Exercising CNN with SMILES fo	Assign #4: sup
	목표	Understanding CNN and molecular representation with SMILES	r supervised learning of Log P and TPSA	ervised learnin g of various m
	내용	Convolution, receptive field, stride, pooling Supervised learning of Log P and TPSA	Ref. (1)	olecular prope rties with CNN
7주	주제	Molecular graphs & Graph Neural Network (GNN)	3	rovement of v anilla GCN
			Ref. (2), (3), (4)	early-feedback(CELT)

9주	주제	Recurrent neural network (RNN)	Exercising RNN with SMILES for su	Assign #6: supe
	목표	Understanding RNN and molecular representations with SMIL ES	pervised learning of Log P and TPS A	rvised learning with RNN and c
	내용	RNN, LSTM, GRU, Feature extraction of molecules using RNN	Ref. (5)	omparison to G CN and SVM
10주	주제	Message Passing Neural Network (MPNN)	Exercising GGNN with molecular g	Assign #7: supe
	목표	Understanding the most general expression of graph neural n	raphs for supervised learning of Lo	rvised learning
	744	etwork	g P and TPSA	with GGNN and
	내용	MPNN, molecular graph representation, GGNN, supervised le		comparison to
		arning of logP and TPSA	Ref. (4), (6)	GCN, GAT, RNN
11주	주제	Molecular generative model 1	Exercising VAE and CVAE for m	Assign #8:
	목표	Understanding the principle of autoencoder and unsupervised learning	olecular design	Optimization of molecular prop
	내용	Molecular autoencoder, VAE, CVAE, de novo molecular design	Ref. (7)	erties on latent space
12주	주제	Molecular generative model 2	Molecular design from continu	Assign #9: comp
	목표	Understanding difference between GAN and VAE	ous latent space	arison to the re
	내용	GAN, ARAE		sult of assign #8
	110	ARAE: conditional molecular design	Ref. (8), (9)	

기간	분류	주제	학습활동	결과물
13주	주제	Molecular generative model 3	Molecular design with graph gene	Assign #10: scaf
	목표	Understanding and graph structure based generative models	rative models	fold-based mole
	내용	Graph generative model, MolGAN, JTVAE	Ref. (10), (11), (12)	cular design
	주제	No lecture (entrance interview)		
14주	목표			
	내용			
15주	주제	Term project presentation	Student presentation for the result	final feedback(CE
	목표		s of their own term project	LT)
	내용			
16주	주제	Final exam	Student presentation for the result	
	十二	i mai chain	s of their own term project	
13주	목표			
	내용			

Regularization

$$\min \frac{1}{2} \|\vec{w}\|^2 \quad \text{s.t.} \quad y_i(\vec{w} \cdot \vec{x}_i + b) = 1$$

$$\min \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i} \zeta_i \qquad \text{s.t.} \quad y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \zeta_i, \qquad \zeta_i \ge 0$$

Regularization

The control parameter C

Extent of avoiding misclassifying data points

(i) small C

large $\zeta_i \rightarrow$ large margin with more misclassifying

(ii) large C

small $\zeta_i \rightarrow$ small margin with less misclassifying

$$\min \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i} \zeta_i \qquad \text{s.t.} \quad y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \zeta_i, \qquad \zeta_i \ge 0$$

