

TRABALHO DE GRADUAÇÃO

RISC-V SiMPLE

Arthur de Matos Beggs

Brasília, Julho de 2019

UNIVERSIDADE DE BRASILIA

Faculdade de Tecnologia Curso de Graduação em Engenharia de Controle e Automação

TRABALHO DE GRADUAÇÃO

RISC-V SiMPLE

Arthur de Matos Beggs

Relatório submetido como requisito parcial de obtenção de grau de Engenheiro de Controle e Automação

Banca Examinadora		
Prof. Marcus Vinicius Lamar, CIC/UnB Orientador		
Prof. Ricardo Pezzuol Jacobi, CIC/UnB Co-Orientador		

Brasília, Julho de 2019

FICHA CATALOGRÁFICA

ARTHUR, DE MATOS BEGGS

RISC-V SiMPLE,

[Distrito Federal] 2019.

n°???, ???p., 297 mm (FT/UnB, Engenheiro, Controle e Automação, 2019). Trabalho de Gradu-

ação – Universidade de Brasília. Faculdade de Tecnologia.

1. RISC-V 2. ???

I. Mecatrônica/FT/UnB II. Título (Série)

REFERÊNCIA BIBLIOGRÁFICA

BEGGS, ARTHUR DE MATOS, (2019). RISC-V SiMPLE. Trabalho de Graduação em Engenharia de Controle e Automação, Publicação FT.TG-n°???, Faculdade de Tecnologia, Universidade de Brasília, Brasília, DF, ???p.

CESSÃO DE DIREITOS

AUTOR: Arthur de Matos Beggs

TÍTULO DO TRABALHO DE GRADUAÇÃO: RISC-V SIMPLE.

GRAU: Engenheiro ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias deste Trabalho de Graduação e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desse Trabalho de Graduação pode ser reproduzida sem autorização por escrito do autor.

Arthur de Matos Beggs

SHCGN 703 Bl G Nº 120, Asa Norte

70730-707 Brasília — DF — Brasil.

			Dedicatória
Dedico ao pato de borra códigos.	cha especialista em T	I que sempre me aj	uda a depurar meus
		Ar	thur de Matos Beggs

Agradecimentos

A grade cimentos!

 $Arthur\ de\ Matos\ Beggs$

RESUMO

Desenvolvimento de um processador com arquitetura do conjunto de instruções RISC-V em

Verilog sintetizável em FPGA para ser utilizado como recurso de laboratório para a disciplina de

Organização e Arquitetura de Computadores da Universidade de Brasília. O processador contará

com perifericos e.g. saída de vídeo para proporcionar um ambiente completo de desenvolvimento

de hardware e software.

Palavras Chave: RISC-V

ABSTRACT

Abstract.

Keywords: RISC-V

SUMÁRIO

1	\mathbf{Introd}	lução	1
	1.1	Motivação	1
	1.2	Por que RISC-V?	1
	1.3	O Projeto RISC-V SiMPLE	2
2	A Arq	quitetura RISC-V	3
	2.1	Visão Geral da Arquitetura	3
	2.2	Módulo Inteiro	5
	2.3	Extensões	5
	2.3.1	Extensão M	5
	2.3.2	Extensão A	5
	2.3.3	Extensão F	5
	2.3.4	Extensão D	5
	2.3.5	Outras Extensões	5
	2.4	Arquitetura Privilegiada	5
	2.5	Formatos de Instruções	5
	2.6	Formatos de Imediatos	6
3	Field 1	Programmable Gate Arrays	8
	3.1	Arquitetura Generalizada de uma FPGA	9
	3.2	Arquitetura da FPGA Cyclone V SoC	10
	3.2.1	Adaptative Logic Modules	11
	3.2.2	Embedded Memory Blocks	11
	3.2.3	HARD PROCESSOR SYSTEM	11
	3.2.4	Phase-Locked Loops	11
	3.3	A Placa de Desenvolvimento DE1-SoC	11
4	Verilo	g	12
5	Síntes	e em Hardware	13
	5.1	Análise e Síntese	13
	5.2	FITTING	13
	5.3	Timing Analyzed	12

	5.4	Simulação	13
		nentação	
	6.1	Caminho de Dados	14
7	Resulta	ados	17
		sões	
	8.1	Perspectivas Futuras	18
Ar	iexos		19
Ι	Descriç	ão do conteúdo do CD	20
II	Progra	mas utilizados	21

LISTA DE FIGURAS

2.1	Codificação de instruções de tamanho variável da arquitetura RISC-V	3
2.2	Formatos de Instruções da $ISA\ RISC-V$	5
2.3	Formação do Imediato de tipo I	6
2.4	Formação do Imediato de tipo S	6
2.5	Formação do Imediato de tipo B	6
2.6	Formação do Imediato de tipo U $$	7
2.7	Formação do Imediato de tipo J \dots	7
3.1	Abstração da arquitetura de uma FPGA	9
3.2	Funcionamento da chave de interconexão	9
3.3	Arquitetura da FPGA Intel Cyclone V SoC	10
3.4	Diagrama de blocos de um ALM	11
6.1	Caminho de Dados implementado para o módulo I	14

LISTA DE TABELAS

LISTA DE SÍMBOLOS

Siglas

ASIC	Circuito Integrado de Aplicação Específica — Application Specific Integrated
	Circuit
BSD	Distribuição de Software de Berkeley — Berkeley Software Distribution
CSR	Registradores de Controle e Estado — Control and Status Registers
DSP	Processamento Digital de Sinais — Digital Signal Processing
FPGA	Arranjo de Portas Programáveis em Campo — Field Programmable Gate Array
hart	hardware thread
ISA	Arquitetura do Conjunto de Instruções — Instruction Set Architecture
MIPS	Microprocessador sem Estágios Intertravados de Pipeline — Microprocessor
	without Interlocked Pipeline Stages
OAC	Organização e Arquitetura de Computadores
PLL	Malha de Captura de Fase — Phase-Locked Loop
RISC	Computador com Conjunto de Instruções Reduzido — $Reduced\ Instruction\ Set$
	Computer
SDK	Conjunto de Programas de Desenvolvimento — Software Development Kit
SoC	Sistema em um Chip — System on Chip
SiMPLE	Ambiente de Aprendizado Uniciclo, Multiciclo e Pipeline — Single-cycle Mul-
	ticycle Pipeline Learning Environment
RAS	Pilha de Endereços de Retorno — Return Address Stack

Introdução

1.1 Motivação

O mercado de trabalho está a cada dia mais exigente, sempre buscando profissionais que conheçam as melhores e mais recentes ferramentas disponíveis. Além disso, muitos universitários se sentem desestimulados ao estudarem assuntos desatualizados e com baixa possibilidade de aproveitamento do conteúdo no mercado de trabalho. Isso alimenta o desinteresse pelos temas abordados e, em muitos casos, leva à evasão escolar. Assim, é importante renovar as matérias com novas tecnologias e tendências de mercado sempre que possível, a fim de instigar o interesse dos discentes e formar profissionais mais capacitados e preparados para as demandas da atualidade.

Hoje, a disciplina de Organização e Arquitetura de Computadores da Universidade de Brasília é ministrada utilizando a arquitetura MIPS32. Apesar da arquitetura MIPS32 ainda ter grande força no meio acadêmico (em boa parte devido a sua simplicidade e extensa bibliografia), sua aplicação na indústria tem diminuído consideravelmente na última década.

Embora a curva de aprendizagem de linguagens Assembly de alguns processadores RISC seja relativamente baixa para quem já conhece o Assembly MIPS32, aprender uma arquitetura atual traz o benefício de conhecer o estado da arte da organização e arquitetura de computadores.

Para a proposta de modernização da disciplina, foi escolhida a *ISA RISC-V* desenvolvida na Divisão de Ciência da Computação da Universidade da Califórnia, Berkeley como substituta à *ISA MIPS32*.

1.2 Por que RISC-V?

A ISA RISC-V (lê-se "risk-five") é uma arquitetura open source com licença BSD, o que permite o seu livre uso para quaisquer fins, sem distinção de se o trabalho possui código-fonte aberto ou proprietário. Tal característica possibilita que grandes fabricantes utilizem a arquitetura para criar seus produtos, mantendo a proteção de propriedade intelectual sobre seus métodos de implementação e quaisquer subconjuntos de instruções não-standard que as empresas venham a

produzir, o que estimula investimentos em pesquisa e desenvolvimento.

Empresas como Google, IBM, AMD, Nvidia, Hewlett Packard, Microsoft, Qualcomm e Western Digital são algumas das fundadoras e investidoras da *RISC-V Foundation*, órgão responsável pela governança da arquitetura. Isso demonstra o interesse das gigantes do mercado no sucesso e disseminação da arquitetura.

A licença também permite que qualquer indivíduo produza, distribua e até mesmo comercialize sua própria implementação da arquitetura sem ter que arcar com *royalties*, sendo ideal para pesquisas acadêmicas, *startups* e até mesmo *hobbyistas*.

O conjunto de instruções foi desenvolvido tendo em mente seu uso em diversas escalas: sistemas embarcados, *smartphones*, computadores pessoais, servidores e supercomputadores, o que permitirá maior reuso de *software* e maior integração de *hardware*.

Outro fator que estimula o uso do RISC-V é a modernização dos livros didáticos. A nova versão do livro utilizado em OAC, Organização e Projeto de Computadores, de David Patterson e John Hennessy, utiliza a ISA RISC-V.

Além disso, com a promessa de se tornar uma das arquiteturas mais utilizadas nos próximos anos, utilizar o RISC-V como arquitetura da disciplina de OAC se mostra a escolha ideal no momento.

1.3 O Projeto RISC-V SiMPLE

O projeto RISC-V SiMPLE (Single-cycle Multicycle Pipeline Learning Environment) consiste no desenvolvimento de um processador com conjunto de instruções RISC-V, sintetizável em FPGA e com hardware descrito em Verilog. A microarquitetura implementada nesse trabalho é uniciclo, escalar, em ordem, com um único hart e com caminho de dados de 64 bits. Trabalhos futuros poderão utilizar a estrutura altamente configurável e modularizada do projeto para desenvolver as versões em microarquiteturas multiciclo e pipeline.

O processador contém o conjunto de instruções I (para operações com inteiros, sendo o único módulo com implementação mandatória pela arquitetura) e as extensões standard M (para multiplicação e divisão de inteiros) e F (para ponto flutuante com precisão simples conforme o padrão IEEE 754 com revisão de 2008). O projeto não implementa as extensões D (ponto flutuante de precisão dupla) e A (operações atômicas de sincronização), e com isso o soft core desenvolvido não pode ser definido como de propósito geral, G (que deve conter os módulos I, M, A, F e D). Assim, pela nomenclatura da arquitetura, o processador desenvolvido é um RV64IMF.

O projeto contempla traps, interrupções, exceções, CSRs, chamadas de sistema e outras funcionalidades de nível privilegiado da arquitetura.

O soft core possui barramento Avalon para se comunicar com os periféricos das plataformas de desenvolvimento. O projeto foi desenvolvido utilizando a placa DE2–115 com FPGA Altera Cyclone e permite a fácil adaptação para outras placas da Altera.

A Arquitetura RISC-V

2.1 Visão Geral da Arquitetura

A ISA RISC-V é uma arquitetura modular, sendo o módulo base de operações com inteiros mandatório em qualquer implementação. Os demais módulos são extensões de uso opcional. A arquitetura não suporta branch delay slots e aceita instruções de tamanho variável. A codificação das instruções de tamanho variável é mostrada na Figura 2.1. As instruções presentes no módulo base correspondem ao mínimo necessário para emular por software as demais extensões (com exceção das operações atômicas).

Figura 2.1: Codificação de instruções de tamanho variável da arquitetura RISC-V

A nomenclatura do conjunto de instruções implementado segue a seguinte estrutura:

- As letras "RV";
- A largura dos registradores do módulo Inteiro;
- A letra "I" representando a base Inteira. Caso o subconjunto Embarcado (*Embedded*) seja implementado, substitui-se pela letra "E";
- Demais letras identificadoras de módulos opcionais.

Assim, uma implementação com registradores de 64 bits somente com o módulo base de Inteiros é denominado "RV64I".

2.2 Módulo Inteiro

- 2.3 Extensões
- 2.3.1 Extensão M
- 2.3.2 Extensão A
- 2.3.3 Extensão F
- 2.3.4 Extensão D
- 2.3.5 Outras Extensões

2.4 Arquitetura Privilegiada

2.5 Formatos de Instruções

Figura 2.2: Formatos de Instruções da $ISA\ RISC-V$

2.6 Formatos de Imediatos

Figura 2.3: Formação do Imediato de tipo I

Figura 2.4: Formação do Imediato de tipo S

Figura 2.5: Formação do Imediato de tipo B

Figura 2.6: Formação do Imediato de tipo U

Figura 2.7: Formação do Imediato de tipo J

Field Programmable Gate Arrays

Field Programmable Gate Arrays—ou FPGAs—são circuitos integrados que permitem o desenvolvimento de circuitos lógicos reconfiguráveis. Por serem reprogramáveis, as FPGAs geram uma grande economia em tempo de desenvolvimento e em custos como os de prototipagem, validação e manufatura do projeto em relação aos circuitos de aplicações específicas, os ASICs. As FPGAs podem ser tanto o passo intermediário no projeto de um ASIC quanto o meio final do projeto quando a reconfigurabilidade e os preços muito mais acessíveis forem fatores importantes.

Cada fabricante de *FPGAs* possui seus *softwares* de desenvolvimento, ou *SDKs*. A indústria de *hardware* é extremamente protecionista com sua propriedade intelectual, sendo a maioria dessas ferramentas de código proprietário. Para a Intel Altera®, essa plataforma é o Quartus Prime®.

FPGAs mais modernas possuem, além do arranjo de portas lógicas, blocos de memória, PLLs, DSPs e SoCs. Os blocos de memória internos funcionam como a memória cache de um microprocessador, armazenando os dados próximo ao seu local de processamento para diminuir a latência. Os PLLs permitem criar sinais de clock com diversas frequências a partir de um relógio de referência, e podem ser reconfigurados a tempo de execução. DSPs são responsáveis pelo processamento de sinais analógicos discretizados, e podem ser utilizados como multiplicadores de baixa latência. Já os SoCs são microprocessadores como os ARM® presentes em celulares, e são capazes de executar sistemas operacionais como o Linux.

Além de disponíveis na forma de *chips* para a integração com placas de circuito impresso customizadas, as FPGAs possuem kits de desenvolvimento com diversos periféricos para auxiliar no processo de criação de soluções. Esses kits são a principal ferramenta de aprendizagem no universo dos circuitos reconfiguráveis. No Laboratório de Informática da UnB, as placas terasIC DE1-SoC com a FPGA Intel Cyclone V SoC estão disponíveis para os alunos de OAC desenvolverem seus projetos.

3.1 Arquitetura Generalizada de uma FPGA

De forma genérica, uma FPGA possui blocos lógicos, chaves de interconexão, blocos de conexão direta e portas de entrada e saída, conforme apresentado na Figura 3.1.

Figura 3.1: Abstração da arquitetura de uma FPGA Fonte: Olin College of Engineering

Os blocos lógicos possuem *lookup tables*, registradores, somadores e multiplexadores. É neles que a lógica reconfigurável é implementada.

Já as chaves de interconexão são responsáveis por conectar os diversos blocos da FPGA. A Figura 3.2 exemplifica como é feito o roteamento da malha de interconexão. Os blocos de conexão direta são um tipo especial de chave de interconexão, e sua função é ligar blocos lógicos adjacentes.

Por fim, as portas de entrada e saída conectam a FPGA ao "mundo externo" e.g. drivers de áudio e vídeo.

Figura 3.2: Funcionamento da chave de interconexão Fonte: Wikimedia

3.2 Arquitetura da FPGA Cyclone V SoC

A Figura 3.3 apresenta a arquitetura da FPGA Cyclone V SoC.

Figura 3.3: Arquitetura da FPGA Altera Cyclone V SoC Fonte: Intel

3.2.1 Adaptative Logic Modules

Figura 3.4: Diagrama de blocos de um ALM Fonte: Intel

- 3.2.2 Embedded Memory Blocks
- 3.2.3 Hard Processor System
- 3.2.4 Phase-Locked Loops
- 3.3 A Placa de Desenvolvimento DE1-SoC

Verilog

Síntese em Hardware

- 5.1 Análise e Síntese
- 5.2 Fitting
- 5.3 Timing Analyzer
- 5.4 Simulação

Implementação

6.1 Caminho de Dados

O caminho de dados projetado para a implementação da microarquitetura uniciclo é apresentado na Figura 6.1.

Figura 6.1: Caminho de Dados implementado para o módulo I

O datapath possui um banco de 32 registradores de uso geral de 64 bits cada. A memória possui arquitetura Harvard, sendo a memória de instruções (text) read-only e a memória de dados (data) read-write. São implementadas 49 instruções, sendo elas:

• LUI: Load Upper Intermediate;

- AUIPC: Add Upper Intermediate to Program Counter;
- JAL: Jump And Link;
- JALR: Jump And Link Register;
- BEQ: Branch if EQual;
- BNE: Branch if Not Equal;
- BLT: Branch if Less Than;
- BGE: Branch if Greater or Equal;
- BLTU: Branch if Less Than Unsigned;
- BGEU: Branch if Greater or Equal Unsigned;
- LB: Load Byte;
- LH: Load Halfword;
- LW: Load Word;
- LBU: Load Byte Unsigned;
- LHU: Load Halfword Unsigned;
- SB: Store Byte;
- SH: Store Halfword;
- SW: Store Word;
- ADDI: ADD Immediate;
- SLTI: Set on Less Than;
- SLTIU: Set on Less Than Unsigned;
- XORI: XOR Immediate;
- ORI: OR Immediate;
- ANDI: AND Immediate;
- SLLI: Shift Left Logical Immedate;
- SRLI: Shift Right Logical Immediate;
- SRAI: Shift Right Arithmetic Immediate;
- ADD: ADD;
- SUB: SUB;

- SLL: Shift Left Logical;
- SLT: Set on Less Than;
- SLTU: Set on Less Than Unsigned;
- XOR: XOR;
- SRL: Shift Right Logical;
- SRA: Shift Right Arithmetic;
- OR: OR;
- AND: AND;
- LWU: Load Word Unsigned;
- LD: Load Double;
- SD: Store Double;
- ADDIW: ADD Immediate Word-size;
- SLLIW: Shift Left Logical Immedate Word-size;
- SRLIW: Shift Right Logical Immediate Word-size;
- SRAIW: Shift Right Arithmetic Immediate Word-size;
- ADDW: ADD Word-size;
- SUBW: SUB Word-size;
- SLLW: Shift Left Logical Word-size;
- SRLW: Shift Right Logical Word-size;
- SRAW: Shift Right Arithmetic Word-size;

Para que o processador seja completamente compatível com a especificação da *ISA*, falta implementar tratamentos de exceções, interrupções e *traps*, Registradores *CSR*, instruções de chamada ao ambiente (ECALL/EBREAK), instruções de *fencing* de memória, suporte ao acesso desalinhado à memória de dados e pilha de endereço de retorno (RAS).

Resultados

Conclusões

8.1 Perspectivas Futuras

ANEXOS

I. DESCRIÇÃO DO CONTEÚDO DO CD

Descrever CD.

II. PROGRAMAS UTILIZADOS

Quais programas foram utilizados?