Ejercicios de la sección 5.1 Espacios vectoriales y subespacios

(Ejercicios para hacer en clase: 1, 4, 7, 10, 12, 14, 16, 19, 21.) (Ejercicios con solución o indicaciones: 2, 3, 6, 9, 11, 13, 15, 17, 18, 20, 22, 23.)

- ▶1. Sea $A = \begin{pmatrix} 1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3 \end{pmatrix}$ y $\mathbf{u} = \begin{pmatrix} -7 \\ 2 \\ 2 \end{pmatrix}$. ¿Está \mathbf{u} en Nul A? ▶14. ¿Está \mathbf{u} en Col A? Justifica tus respuestas.
- ▶2. Dada $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, halla un vector en Nul A que sea distinto de $\mathbf{0}$ y un vector en Col A que no sea ninguna
- ▶3. Supongamos que una matriz A de orden $n \times n$ es inversible. ¿Qué puede decirse acerca de Col A? ¿Y acerca de
- ▶4. Sean $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -4 \\ -5 \\ 8 \end{pmatrix}$, y $\mathbf{w} = \begin{pmatrix} 8 \\ 2 \\ -9 \end{pmatrix}$. Averigua si \mathbf{w} está en el subespacio de \mathbf{R}^3 generado por \mathbf{v}_1 y \mathbf{v}_2 .

5. Sean
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 4 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ -7 \\ 9 \\ 7 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 5 \\ -8 \\ 6 \\ 5 \end{pmatrix}$, \mathbf{y}

 $\mathbf{u} = \begin{pmatrix} -4 \\ -7 \\ -5 \end{pmatrix}$. Averigua si \mathbf{u} está en el subespacio de \mathbf{R}^4 generado por $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

- ▶6. Sean $\mathbf{v}_1 = \begin{pmatrix} 2 \\ -8 \\ 6 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -3 \\ 8 \\ -7 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -4 \\ 6 \\ -7 \end{pmatrix}$, $\mathbf{p} = \begin{pmatrix} -4 \\ 6 \\ -7 \end{pmatrix}$ $\begin{pmatrix} 6 \\ -10 \\ 11 \end{pmatrix}$ y $A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ (la matriz cuyas columnas son \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3).
 - (a) ¿Cuántos vectores hay en $\{v_1, v_2, v_3\}$?
 - (b) ¿Cuántos vectores hay en Col A?
 - (c) ¿Está p en Col A? ¿Por qué sí o por qué no?

▶7. Sean
$$\mathbf{v}_1 = \begin{pmatrix} -2 \\ 0 \\ 6 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ -\frac{5}{5} \end{pmatrix}$, $\mathbf{y}_3 = \begin{pmatrix} 0 \\ -\frac{5}{5} \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ -\frac{5}{5} \end{pmatrix}$, where $\mathbf{v}_1 = \begin{pmatrix} 0 \\ -\frac{5}{5} \end{pmatrix}$, we have $\mathbf{v}_2 = \begin{pmatrix} 0 \\ -\frac{5}{5} \end{pmatrix}$. Averigues is \mathbf{p} está en Col A , donde $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

- 8. Con A y \mathbf{p} como en el ejercicio 5, averigua si \mathbf{p} está en
- ▶9. Con $\mathbf{u} = (-5, 5, 3)$ y A como en ejercicio 6, averigua si u está en Nul A.

En los ejercicios 10 y 11, halla enteros p y q tales que Nul A sea un subespacio de \mathbf{R}^p y Col A un subespacio de

▶10.
$$A = \begin{pmatrix} 3 & 2 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1 \end{pmatrix}$$
.

▶11.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ -5 & -1 & 0 \\ 2 & 7 & 11 \end{pmatrix}$$
.

- ▶12. Para A como en el ejercicio 10, halla un vector no nulo en Nul A y un vector no nulo en Col A que no sea ninguna de las columnas dadas.
- ▶13. Para *A* como en el ejercicio 11, halla un vector no nulo en Nul A y un vector no nulo en Col A que no sea ninguna de las columnas dadas.

En los ejercicios 14 y 15 indica para cada enunciado si es verdadero o falso. Justifica tus respuestas.

- - (a) Un subespacio de \mathbb{R}^n es cualquier conjunto H tal que (i) el vector cero está en H, (ii) si \mathbf{u} y \mathbf{v} están en H, $\mathbf{u} + \mathbf{v}$ está en H, y (iii) si c es un número y \mathbf{u} está en H, $c\mathbf{u}$ está en H.
 - (b) El espacio columna de una matriz A es el subespacio imagen de la aplicación $\mathbf{x} \mapsto A\mathbf{x}$.
 - Si A es una matriz $m \times n$ y la ecuación $A\mathbf{x} = \mathbf{b}$ es compatible entonces el espacio columna de A es todo \mathbf{R}^m .
 - (d) El núcleo de una aplicación lineal es un espacio vectorial.
 - (e) Si $\mathbf{v}_1, \dots, \mathbf{v}_p$ están en \mathbf{R}^n , entonces Gen $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ es lo mismo que el espacio columna de la matriz
 - (f) El conjunto de todas las soluciones de un sistema de m ecuaciones homogéneas en n incógnitas es un subespacio vectorial de \mathbb{R}^m .
- - (a) Un subconjunto H de \mathbb{R}^n es un subespacio si el vector cero está en H.
 - El espacio nulo de A es el núcleo de la aplicación $\mathbf{x} \mapsto A\mathbf{x}$.
 - El espacio columna de una matriz A es el conjunto de todos los vectores de la forma Ax para algún x.
 - Dados los vectores $\mathbf{v}_1, \dots, \mathbf{v}_p$ en \mathbf{R}^n , el conjunto de todas las combinaciones lineales de estos vectores es un subespacio vectorial de \mathbf{R}^n
 - El espacio nulo de una matriz $m \times n$ es un subespacio vectorial de \mathbb{R}^n .
 - El espacio columna de una matriz A es el conjunto de soluciones de $A\mathbf{x} = \mathbf{b}$.
- ▶16. Construye una matriz A de orden 3×3 y un vector **b** distinto de cero en forma tal que b esté en Col A, pero b no sea igual a ninguna de las columnas de A.
- ▶17. Construye una matriz A de orden 3×3 y un vector **b** tales que **b** no esté en Col A.
- ▶18. Construye una matriz A de orden 3×3 distinta de cero y un vector b diferente de cero tales que b esté en $\operatorname{Nul} A$.

En los ejercicios 19 a 23, responde de la manera más clara que te sea posible y justifica tus respuestas.

- ▶19. Supongamos que F es una matriz de orden 5×5 cuyo espacio columna no es igual a R⁵. ¿Qué puede decirse acerca del espacio nulo Nul F?
- ▶20. Si R es una matriz de orden 6×6 y Nul R no es igual al subespacio cero, Nul $R \neq \{\mathbf{0}\}$, ¿qué puede decirse acerca del espacio columna Col R?
- ▶21. Si Q es una matriz de orden 4×4 y Col $Q = \mathbb{R}^4$, ¿qué puede decirse acerca de las soluciones a las ecuaciones de la forma $Qx = \mathbf{b}$ para \mathbf{b} en \mathbf{R}^4 .
- ▶22. Si P es una matriz de orden 5×5 y Nul P es igual al subespacio cero, Nul $P = \{0\}$, ¿qué puede decirse acerca de las soluciones a las ecuaciones de la forma Px = bpara **b** en **R**⁵?
- ▶23. ¿Qué puede decirse acerca de Nul B si B es una matriz de orden 5 × 4 con columnas linealmente independien-

Pistas y soluciones de ejercicios seleccionados de la sección 5.1

2. En Nul A está el vector (1,0,0,0) y en Col A el vector (1,1,0) (suma de las columnas 2 y 3 de A).

3. Col A es todo \mathbb{R}^n ; Nul A es igual al subespacio cero, Nul $A = \{0\}$.

6. (a) Tres. (b) Infinitos. (c) Sí. Porque \mathbf{p} es combinación lineal de \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 ya que una forma escalonada de la matriz $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{p}]$ es $\begin{pmatrix} 2 & -3 & -4 & 6 \\ 0 & -4 & -10 & 14 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ lo que indica que el sistema $A\mathbf{x} = \mathbf{p}$ es compatible.

9. Basta calcular $A\mathbf{u} = \begin{pmatrix} 2 & -3 & -4 \\ -8 & 8 & 6 \\ 6 & -7 & -7 \end{pmatrix} \begin{pmatrix} -5 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} -37 \\ ? \\ ? \end{pmatrix}$. Como el resultado no es el vector cero, \mathbf{u} no está en Nul A.

11. $A \text{ es } 4 \times 3$, luego p = 3 y q = 4.

13. Primero miramos si existe algún vector no nulo en Nul A, lo que ocurirá sólo si el sistema $A\mathbf{x} = \mathbf{0}$ tiene alguna variable libre. Una forma escalonada de A es

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

y ahí se ve que A tiene una variable libre. Por tanto sí existe algún vector no nulo en Nul A. Sin necesidad de resolver el sistema se ve que en la forma escalonada (denotando \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 a sus columnas) se cumple $\mathbf{a}_3 = (3 - \frac{10}{3})\mathbf{a}_1 + \frac{5}{3}\mathbf{a}_2 = -\frac{1}{3}\mathbf{a}_1 + \frac{5}{3}\mathbf{a}_2$, o sea: $\mathbf{a}_1 - 5\mathbf{a}_2 + 3\mathbf{a}_3 = \mathbf{0}$.

Por tanto lo mismo se cumple con las columnas de A y un vector no nulo de Nul A es (1, -5, 3).

La segunda parte se puede contestar con cualquier reescalado no trivial de cualquier columna de A (por ejemplo, el doble de la tercera columna, $\mathbf{v} = (6,14,0,22)$) o la suma de dos columnas de A (por ejemplo la suma de las dos primeras: $\mathbf{u} = (3,9,-6,9)$).

15. (a) Esa condición no es suficiente, (b) Es la definición de núcleo, (c) Los vectores de la forma $A\mathbf{x}$ son las combinaciones lineales de las columnas de A, (d) Se demuestra facilmente que cumple las tres condiciones, (e) Es el núcleo de la aplicación lineal $\mathbf{R}^n \to \mathbf{R}^m$ definida por la matriz, (f) No son las soluciones, sino los vectores \mathbf{b} para los que hay solución.

17. Basta que las tres columnas de A sean iguales a cualquier vector de \mathbf{R}^3 y que \mathbf{b} sea otro vector de \mathbf{R}^3 que no sea múltiplo del anterior.

18. Basta que A tenga las dos primeras columnas iguales y $\mathbf{b} = (1, -1, 0)$.

20. Que no es igual a \mathbb{R}^6 .

22. Que son únicas para todo $b \in R^5$ (sistemas compatibles determinados).

23. Que Nul *B* es igual al subespacio cero, Nul $B = \{0\}$.