Institutt for datateknologi og informatikk

Eksamensoppgave i TDT4300 Datavarehus og datagruvedrift

Faglig kontakt under eksamen: Kjetil Nørvåg

Tlf.: 41440433

Eksamensdato: 22. mai 2018

Eksamenstid (fra-til): 1500-1900

Hjelpemiddelkode/Tillatte hjelpemidler: D: Ingen trykte eller håndskrevne

hjelpemiddel tillatt. Bestemt, enkel kalkulator tillatt.

Annen informasjon:

Merk! Studenter finner sensur i Studentweb. Har du spørsmål om din sensur må du kontakte instituttet ditt. Eksamenskontoret vil ikke kunne svare på slike spørsmål.

Oppgave 1 – Diverse – 15 % (alle deler teller likt)

- a) Hva er binærisering, og hvordan bør man gjøre dette?
- b) Silhouett-koeffisienten er gitt ved følgende formel: s = (b-a)/max(a,b) Forklar hva denne kan brukes til, og hvordan man regner ut a og b i denne.
- c) Forklar viktigste begrensninger for bruk av hierarkisk agglomerativ klynging (HAC) på store datasett.

Oppgave 2 – Modellering – 10 %

Ilsvika Elektrisitetsverk (IE) leverer strøm til et stort antall beboere i Trøndelag. Alle abonnenter skal nå få montert "smarte strømmålere", som en gang i minuttet sender en melding til IE om strømforbruk siste minuttet. Med smarte strømmålere er det mulig å tilby dynamisk prising, dvs. prisen kan endre seg fra minutt til minutt, slik at man f.eks. må betale mer for strømmen i perioder med høyt strømforbruk (for eksempel når alle lager middag på ettermiddagen), og mindre når det er lavt strømforbruk (f.eks. om natten). En kunde kan ha strøm-abonnement for mer enn en lokasjon, det er da en strømmåler for hver lokasjon. IE ønsker et datavarehus som kan brukes til å analysere strømforbruk.

Eksempel på analyser man skal være i stand til å gjøre mot datavarehuset:

- Total-forbruk for hver time.
- Total-forbruk for hver time for hver kunde.
- Total-forbruk for hver time for hver lokasjon.
- Totalt-forbruk per døgn per kommune.

Beskrivelsen er litt upresis og det er en del av oppgaven å velge ut det som skal være med. Vi er først og fremst ute etter at du skal vise modelleringsprinsippet for datavarehus. Forklar kort eventuelle forutsetninger du finner det nødvendig å gjøre.

Lag et stjerne-skjema for denne case-beskrivelsen. Svar på papir.

Oppgave 3 – OLAP – 10 % (alle deler teller likt)

- a) Gitt en base-kuboid har man tre alternative strategier for datakube-materialisering. Forklar disse, og eventuelle fordeler/ulemper for hver av dem.
- b) Gitt en kube med dimensjoner:

```
Time(day-month-quarter-year)
Item(item_name-brand-type)
Location(street-city-province_or_state-country)
```

Anta følgende materialiserte kuboider:

- 1) {year, brand, city}
- 2) {year, brand, street}
- 3) {month, brand, province_or_state}
- 4) {item_name, province_or_state} where year = 2006

Gitt følgende OLAP-spørring: {*item_name*, *country*} med vilkår "*year* = 2006" Hvilke(n) materialiserte kuboider kan brukes til å prosessere spørringen? Begrunn svaret.

Oppgave 4 – Klynging – 15 % (5 % på a og 10 % på b)

\mathbf{X}	Y
2	4
2	456
2	6
2	10
2	11
3	3
3	11
4	12
4	13
4	16
2 2 2 2 3 3 4 4 4 7	2
7	2

- a) Gitt et *d*-dimensjonalt datasett med 1000 punkt som man ønsker å klynge vha. DBSCAN, forklar hvordan man kan finne passende verdier for parameterne *MinPts* og *Eps*.
- b) Gitt et to-dimensjonalt datasett som vist i tabellen ovenfor. Utfør klynging ved hjelp av DBSCAN på dette datasettet, gitt *MinPts*=4 (inkl. eget punkt) og *Eps*=3 (inkl. punkt som har distanse 3). Bruk Manhattan-distanse som avstandsmål.

Oppgave 5 – Klassifisering – 20 % (5 % på a og 15 % på b)

Nr	A	В	C	D	E	Klasse
1	L	K	R	J	2	J
2	Н	F	S	N	4	J
3	Н	Т	S	N	4	J
4	L	F	S	J	2	N
5	L	F	G	N	5	N
6	Н	Т	G	N	2	N
7	L	F	S	N	6	N
8	L	K	G	N	4	N
9	Н	Т	Н	N	2	J
10	L	F	S	J	5	N
11	L	K	В	N	7	N
12	Н	F	В	N	9	J
13	L	K	R	J	2	N
14	L	F	Н	J	1	N
15	L	F	Н	N	7	N

a) Forklar to teknikker for å redusere problem med overtilpasning ("overfitting") i beslutningstre ("decision tree"). Hvilken av disse er vanligvis foretrukket?

b) Som en del av en større applikasjon ønsker vi å kunne predikere klasse (*J* eller *N*) basert på inndata der hver post består av et sekvensnummer og attributtene A, B, C, D, og E, jfr tabellen ovenfor.

Anta at vi skal bruke *beslutningstre* som klassifiseringsmetode. Vi bruker da data i tabellen over som treningsdata. Vi bruker *Gini index* som mål for urenhet ("impurity"), og følgende to formler kan være til hjelp for å løse oppgaven:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$GAIN_{split} = GINI(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} GINI(i)\right)$$

Oppgave: Målet med klassifiseringen er å kunne predikere "Klasse". Regn ut *GAIN*_{split} for splitting på (1) "A" og (2) "B". Hvilken av disse splittingene ville du valgt for å starte opprettingen av beslutningstreet? Begrunn svaret.

Oppgave 6 – Assosiasjonsregler (1) – 15 % (10 % på a og 5% på b)

TransaksjonsID	Element
T1	ACDK
T2	ADK
T3	CBDJK
T4	CEF
T5	BDEJK
T6	ADK
T7	ABDEJK
T8	BDFJK

- a) Anta handlekorg-data som er gitt ovenfor. Bruk *apriori-algoritmen* til å finne alle frekvente elementsett med minimum støtte på 50 % (dvs. *minimum support count* er 4). Bruk $F_{k-1} \times F_{k-1}$ -metoden for kandidat-generering.
- b) Gitt følgende lukkede frekvente elementsett (closed frequent itemsets): C:3, AC:2, BE:3, BCE:2 (Format: elementsett:støttetall)
 Finn alle frekvente elementsett og deres støttetall.

Oppgave 7 – Assosiasjonsregler (2) - 10 %

TransaksjonsID Element

T1	ABG
T2	ABCD
T3	ACJ
T4	BC
T5	ACH
T6	BCL
T7	ABCD
Т8	ABCDE
Т9	ABK

Anta handlekorg-data som er gitt ovenfor. Du skal nå bruke *FP-growth-algoritmen* til å finne alle frekvente elementsett med minimum støtte på 22 % (dvs. *minimum support count* er 2).

1) Konstruer et FP-tre basert på datasettet. Lever dette på papir som oppgave 8.

- 2) Finn frekvente elementsett ved å bruke FP-growth-algoritmen. Bruk tabell-notasjon med følgende kolonner for å vise resultatet:
 - Element
 - "Conditional pattern base"
 - "Conditional FP-tree"
 - Frekvente elementsett

Oppgave 8 - FP-tre til oppgave 7 - 5%

FP-tre til oppgave 7. Svar på papir.