Parameter Space of Delaunay tessellations: L-types

Mathieu Dutour Sikirić Institute Rudjer Bošković **Achill Schuermann**

Magdeburg University

Frank Vallentin

CWI Amsterdam

April 27, 2012

Gram matrix and lattices

- ▶ What really matters for lattice is their isometry class, i.e., if u is an isometry of \mathbb{R}^n then the lattices L and uL have the same geometry.
- ▶ Denote $S_{>0}^n$ the cone of real symmetric positive definite $n \times n$ matrices and $S_{>0}^n$ the positive semidefinite ones.
- ▶ Lattice L spanned by v_1, \ldots, v_n corresponds to

$$G_v = (\langle v_i, v_j \rangle)_{1 \leq i,j \leq n} \in S^n_{>0}$$
.

 G_{ν} depends only on the isometry class of L.

▶ Given $M \in S_{>0}^n$, one can find vectors v_1, \ldots, v_n such that $M = G_v$.

Empty sphere and Delaunay polytopes

A sphere S(c, r) of radius r and center c in an n-dimensional lattice L is said to be an empty sphere if:

- (i) $||v-c|| \ge r$ for all $v \in L$,
- (ii) the set $S(c,r) \cap L$ contains n+1 affinely independent points.

A Delaunay polytope P in a lattice L is a polytope, whose vertex-set is $L \cap S(c, r)$.

Equalities and inequalities

- ▶ Take $M = G_v$ with $v = (v_1, ..., v_n)$ a basis of lattice L.
- ▶ If $V = (w_1, ..., w_N)$ with $w_i \in \mathbb{Z}^n$ are the vertices of a Delaunay polytope of empty sphere S(c, r) then:

$$||w_i - c|| = r$$
 i.e. $w_i^T M w_i - 2 w_i^T M c + c^T M c = r^2$

Substracting one obtains

$$\{w_i^T M w_i - w_j^T M w_j\} - 2\{w_i^T - w_j^T\} M c = 0$$

- ▶ Inverting matrices, one obtains $Mc = \psi(M)$ with ψ linear and so one gets linear equalities on M.
- ► Similarly $||w-c|| \ge r$ translates into linear inequalities on M: Take $V = (v_0, \ldots, v_n)$ a simplex $(v_i \in \mathbb{Z}^n)$, $w \in \mathbb{Z}^n$. If one writes $w = \sum_{i=0}^n \lambda_i v_i$ with $1 = \sum_{i=0}^n \lambda_i$, then one has

$$||w - c|| \ge r \Leftrightarrow w^T M w - \sum_{i=0}^n \lambda_i v_i^T M v_i \ge 0$$

III. *L*-type domain

L-type domains

- ▶ Take a lattice L and select a basis v_1, \ldots, v_n .
- ► We want to assign the Delaunay polytopes of a lattice. Geometrically, this means that

are part of the same L-type domain.

▶ A *L*-type domain is the assignment of Delaunay polytopes, so it is also the assignment of the Voronoi polytope of the lattice.

Primitive *L*-types

- ▶ If one takes a generic matrix M in $S_{>0}^n$, then all its Delaunay are simplices and so no linear equality are implied on M.
- ► Hence the corresponding *L*-type is of dimension $\frac{n(n+1)}{2}$, they are called primitive

Equivalence and enumeration

- Voronoi's theorem The inequalities obtained by taking adjacent simplices suffice to describe all inequalities.
- ▶ The group $GL_n(\mathbb{Z})$ acts on $S_{>0}^n$ by arithmetic equivalence and preserve the primitive L-type domains.
- Voronoi proved that after this action, there is a finite number of primitive L-type domains.
- Bistellar flipping creates new triangulation. In dim. 2:

- ► Enumerating primitive *L*-types is done classicaly:
 - ► Find one primitive *L*-type domain.
 - ▶ Find the adjacent ones and reduce by arithmetic equivalence.

The partition of $S^2_{>0} \subset \mathbb{R}^3$

If $q(x,y) = ux^2 + 2vxy + wy^2$ then $q \in S_{>0}^2$ if and only if $v^2 < uw$ and u > 0.

The partition of $S^2_{>0} \subset \mathbb{R}^3$

We cut by the plane $\mathrm{u}+\mathrm{w}=1$ and get a circle representation.

The partition of $S^2_{>0} \subset \mathbb{R}^3$

Primitive *L*-types in $S_{>0}^2$:

Rigid lattices

A lattice is rigid (notion introduced by Baranovski & Grishukhin) if its L-type domain has dimension 1.

- ▶ One rigid in dimension 1: \mathbb{Z} .
- No rigid lattices in dimension 2 and 3.
- ▶ one rigid lattice in dimension 4: it is D₄.
- 7 rigid lattices in dimension 5.
 - E. Baranovskii, V. Grishukhin, Non-rigidity degree of a lattice and rigid lattices, European J. Combin. 22-7 (2001) 921–935.
- ▶ In dimension 6, we obtained 25263 rigid lattices. Probably many more.
 - M. Dutour and F. Vallentin, Some six-dimensional rigid lattices, Proceedings of "Third Vorono" Conference of the Number Theory and Spatial Tesselations", 102–108.

Enumeration of *L*-types

Dimension	Nr. <i>L</i> -type	Nr. primitive	Nr rigid lattices	
1	1	1	1	
2	2	1	0	
3	5	1	0	
	Fedorov	Fedorov		
4	52	3	1	
	DeSh	Voronoi		
5	179377	222	7	
	Engel	BaRy, Engel & Gr	↑ BaGr	
6	?	$\geq 2.5.10^{6}$	$\geq 2.10^4$	
		Engel, Va	DuVa	
7	?	?	?	

IV. Covering and optimization

Lattice covering

▶ We consider covering of \mathbb{R}^n by *n*-dimensional balls of the same radius, whose center belong to a lattice L.

▶ The covering density has the expression

$$\Theta(L) = \frac{\mu(L)^n \kappa_n}{\det(L)} \ge 1$$

with $\mu(L)$ being the largest radius of Delaunay polytopes and κ_n the volume of the unit ball B^n .

▶ Objective is to minimize $\Theta(L)$. Solution for $n \leq 5$: A_n^* .

Lattice packing-covering

L is a *n*-dimensional lattice.

- ▶ We want a lattice, such that the sphere packing (resp, covering) obtained by taking spheres centered in L with maximal (resp, minimal) radius are both good.
- ► The quantity of interest is

$$\frac{\Theta(L)}{\alpha(L)} = \left\{ \frac{\mu(L)}{\lambda(L)} \right\}^n \ge 1$$

▶ Lattice packing-covering problem: minimize $\frac{\Theta(L)}{\alpha(L)}$.

Dimension	Solution		
2	A ₂ *	4	H_4 (Horváth lattice)
3	A ₃ *	5	H_5 (Horváth lattice)

J. Horváth, PhD thesis: Several problems of n-dimensional geometry, Steklov Inst. Math., 1986.

Optimization problem

We want to find the best covering, packing-covering.

- ▶ Thm. Given a *L*-type domain *LT*, there exist a unique lattice, which minimize the covering density over *LT*.
- ► Thm. Given a L-type domain LT, there exist a lattice (possibly several), which minimize the packing-covering density over LT.
- See for more details
 - A. Schürmann and F. Vallentin, Computational approaches to lattice packing and covering problems, Discrete Comput. Geom. 35-1 (2006) 73–116.

Radius of Delaunay polytope

- Fix a primitive L-type domain, i.e. a collection of simplexes as Delaunay polytopes D_1, \ldots, D_m .
- ▶ Thm. For every $D_i = Conv(0, v_1, ..., v_n)$, the radius of the Delaunay polytope is at most 1 if and only if

$$\begin{pmatrix} 4 & \langle v_1, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_n, v_n \rangle \\ \langle v_1, v_1 \rangle & \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \dots & \langle v_1, v_n \rangle \\ \langle v_2, v_2 \rangle & \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle & \dots & \langle v_2, v_n \rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \langle v_n, v_n \rangle & \langle v_n, v_1 \rangle & \langle v_n, v_2 \rangle & \dots & \langle v_n, v_n \rangle \end{pmatrix} \in S^{n+1}_{\geq 0}$$

It is a semidefinite condition.

B.N. Delone, N.P. Dolbilin, S.S. Ryškov and M.I. Stogrin, A new construction of the theory of lattice coverings of an n-dimensional space by congruent balls, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 289–298.

Convex programming problems

- A convex programming problem is of the following type Maximize g over C with g convex and C convex.
- ► For many subproblems, there are efficient procedures:
 - quadratically constrained quadratic programming,
 - geometrical programming,
 - approximation in I_p-norms,
 - optimization over the cone of positive semidefinite symmetric matrices,
 - finding extremal ellipsoids, etc.
- See for more details:
 - Y. Nesterov, A. Nemirovskii, *Interior-point polynomial algorithms in convex programming*, (1994) SIAM Studies in Applied Mathematics, 13.

Covering problem

- Fix a primitive *L*-type domain, i.e. a collection of simplexes as Delaunay polytopes D_1, \ldots, D_m .
- ► Minkowski The function $-\log \det(M)$ is strictly convex on $S_{>0}^n$.
- Solve the problem
 - M in the L-type (linear condition),
 - ▶ the Delaunay D_i have radius at most 1 (semidefinite condition),
 - ▶ minimize log det(M) (strictly convex).
- ► The above problem is solved by the interior point methods implemented in MAXDET by Vandenberghe, Boyd & Wu.
- Unicity comes from the strict convexity of the objective function.

Packing covering problem

- We fix a primitive L-type domain.
- ▶ A shortest vector is an edge of a Delaunay. So, from the Delaunay decomposition, we know which vectors v₁,..., v_p can be shortest.
- ▶ We consider the problem on $(M, m) \in S_{>0}^n \times \mathbb{R}$
 - ► *M* belong to the *L*-type domain (linear constraint)
 - all Delaunay have radius at most 1 (semidefinite condition)
 - $m \le ||v_j||^2 = v_i^t M v_j$ for all i (linear constraint)
 - ▶ maximize *m*.
- ► The maximal value of *m* gives the maximal length of shortest vector and so the best packing-covering over a specific primitive *L*-type domain.
- A priori no unicity.

V. L-types of $S_{>0}^n$ -spaces

$S_{>0}^n$ -spaces

- ▶ A $S_{>0}^n$ -space is a vector space SP of S^n , which intersect $S_{>0}^n$.
- ▶ We want to describe the Delaunay decomposition of matrices $M \in S_{>0}^n \cap \mathcal{SP}$.
- Motivations:
 - ▶ The enumeration of *L*-types is done up to dimension 5, perhaps possible for dimension 6 but certainly not for higher dimension.
 - We hope to find some good covering, and packing-covering by selecting judicious \mathcal{SP} . This is a search for best but unproven to be optimal coverings.
- ▶ A *L*-type in SP is an open convex polyhedral set included in $S_{>0}^n \cap SP$, for which every element has the same Delaunay decomposition.

Rigidity and primitivity

- ▶ (SP, L)-types form a polyhedral tessellation of the space $SP \cap S_{>0}^n$.
- ▶ If $M \in \mathcal{SP} \cap S_{>0}^n$, then the rigidity degree of M is the dimension of the smallest L-type containing M, it is computed using the Delaunay decomposition of M.
- ▶ A (SP, L)-type is primitive if it is full-dimensional in SP.
- ▶ A (SP, L)-type is rigid if it is one dimensional.
- ▶ Las Vegas algorithm: Algorithm for finding a primitive (SP, L)-type domain
 - ▶ Generate a random element in $S_{>0}^n \cap \mathcal{SP}$.
 - Compute its Delaunay decomposition.
 - ▶ If the dimension of the (SP, L)-type is maximal, then return it.
 - Otherwise, rerun.

Testing equivalence of (\mathcal{SP}, L) -type

- ▶ Given a primitive (SP, L)-type domain LT, find its extreme rays e_i and normalize the corresponding matrices by imposing that they have integer coefficients with gcd = 1.
- ▶ We associate to the (SP, L)-type \mathcal{LT} the matrix in $S_{>0}^n \cap SP$: $M_{\mathcal{LT}} = \sum_i e_i$
- ▶ Two primitive (SP, L)-type domains LT_1 and LT_2 are isomorphic if there a matrix P such that

$$PM_{\mathcal{LT}_1}{}^tP = M_{\mathcal{LT}_2}$$
 and $PS\mathcal{P}^tP = S\mathcal{P}$

First equation is solved by program Isom and we iterate over the possible solutions for testing the second.

Lifted Delaunay decomposition

▶ The Delaunay polytopes of a lattice L correspond to the facets of the convex cone C(L) with vertex-set:

$$\{(x,||x||^2) \text{ with } x \in L\} \subset \mathbb{R}^{d+1}$$
.

Flipping

- ▶ Take a primitive (SP, L)-type domain with Delaunay polytopes D_1, \ldots, D_p .
- ▶ If F is a facet of D_i and D' is the other Delaunay polytope, then it defines an inequality $f_{D',D_i}(M) \ge 0$. This form a finite set of defining inequalities of the (\mathcal{SP}, L) -type.
- ▶ We can extract relevant inequalities, which correspond to facets of the (SP, L)-type. Select a relevant ineq. $f(M) \ge 0$.
- ▶ One has $f(M) = \alpha_1 f_{D_{j(1)}, D'_1}(M) = \cdots = \alpha_r f_{D_{j(r)}, D'_r}(M)$ for some $\alpha_i > 0$ and some Delaunay D'_i adjacent to $D_{j(i)}$ on a facet F_i .
- ▶ If one moves to f(M) = 0, then all F_i disappear and the corresponding Delaunays merge.

Geometrical expression

- ▶ The "glued" Delaunay form a Delaunay decomposition for a matrix M in the (SP, L)-type satisfying to f(M) = 0.
- ▶ The flipping break those Delaunays in a different way.
- ▶ Two triangulations of \mathbb{Z}^2 correpond in the lifting to:

► The polytope represented is called the repartitioning polytope.

Flipping of a repartitioning polytope

- ▶ Given a Delaunay decomposition D, the graph G(D) is formed of all Delaunays with two Delaunay d_i , d_i adjacent if:
 - $ightharpoonup d_i$ and d_i share a facet
 - the inequality $f_{d_i,d_i}(M) = \alpha f(M)$ for $\alpha > 0$
- ▶ For every connected component C of this graph, the repartitioning polytope R(P) is the polytope with vertex set

$$\{(v, {}^t vMv) \text{ with } v \text{ a vertex of a Delaunay of } C\}$$

Combinatorially flipping correspond to switching from the lower facets to the higher facets of the lifted merging of Delaunay polytopes.

Enumeration technique

- ▶ Find a primitive (SP, L)-type domain, insert it to the list as undone.
- Iterate
 - ▶ For every undone primitive (SP, L)-type domain, compute the facets.
 - Eliminate redundant inequalities.
 - For every non-redundant inequality realize the flipping, i.e. compute the adjacent primitive (\mathcal{SP}, L) -type domain. If it is new, then add to the list as undone.

VI. Applications

Space of invariant forms

▶ Given a subgroup G of $GL_n(\mathbb{Z})$, define

$$\mathcal{SP}(G) = \{ X \in S^n \text{ such that } gX^tg = X \text{ for all } g \in G \}$$

▶ Given a $S_{>0}^n$ -space SP, define

$$Aut(\mathcal{SP}) = \left\{ \begin{array}{l} g \in GL_n(\mathbb{Z}) \text{ such that} \\ gX^tg = X \text{ for all } X \in \mathcal{SP} \end{array} \right\}$$

▶ A Bravais group satisfies to $Aut(\mathcal{SP}(G)) = G$.

Equivariant *L*-type domains

- ▶ Equivariant *L*-type domains are *L*-types of a $S_{>0}^n$ -space SP(G) for G Bravais.
- ► Thm. (Zassenhaus) One has the equality

$$\{g \in \mathsf{GL}_n(\mathbb{Z}) \mid g\mathcal{SP}(G)^t g = \mathcal{SP}(G)\} = \mathsf{N}_{\mathsf{GL}_n(\mathbb{Z})}(G)$$

- ▶ Thm. For a given finite group $G \in GL_n(\mathbb{Z})$, there are a finite number of equivariant L-types under the action of $N_{GL_n(\mathbb{Z})}(G)$.
- Note that if a T-space SP is defined by rational equations, then it does not necessarily have a finite number of L-types under Aut(SP).

Example (courtesy of Yves Benoist):

$$\mathcal{SP} = \mathbb{R}(x^2 + 2y^2 + z^2) + \mathbb{R}(xy)$$

Small dimensions

- ▶ Dimension 6:
 - Vallentin found a better lattice covering than A₆* in the vicinity of E₆*.
 - ▶ No better in Bravais groups of rank 4.
- ▶ Dimension 7:
 - ▶ Vallentin & Schürmann found a better lattice covering than A_7^* in the vicinity of E_7^* .
 - ▶ No better in Bravais groups of rank 4.
- ▶ Dimension 8:
 - ▶ Vallentin & Schürmann proved that E₈ is not a local optimum of the covering density.
 - A. Schürmann and F. Vallentin, Local covering optimality of lattices: Leech lattice versus root lattice E₈, Int. Math. Res. Not. 2005, no. 32, 1937–1955.
 - Conjecture (Zong) E₈ is the best lattice packing-covering in dimension 8.
 - C. Zong, From deep holes to free planes, Bull. Amer. Math. Soc. (N.S.) 39-4 (2002) 533–555.

Extension of Coxeter lattices

- ▶ Anzin & Baranovski computed the Delaunay decompositions of the lattices A_9^5 , A_{11}^4 , A_{13}^7 , A_{14}^5 , A_{15}^8 and found them to be better coverings than A_n^* .
- We do extension along short vectors

or compute in the Bravais space of short vectors.

▶ We manage to find record coverings in dimension 9, 11, 13, 14 and 15.

Lamination

▶ Given a *n*-dim. lattice L, create a n + 1-dim. lattice L':

- ▶ The point *c* is fixed and we adjust the value of *h*.
- ▶ This defines a *T*-space.

Lamination

In terms of Gram matrices

$$Gram(L) = A$$
 and $Gram(L') = \begin{pmatrix} A & A^{\dagger}c \\ cA & \alpha \end{pmatrix}$

c is the projection of the vector $(0, \dots, 0, 1)$ on the lattice L.

▶ The symmetries of L' are the symmetries of L preserving the center c and if $2c \in \mathbb{Z}^n$ the othogonal symmetry

$$\begin{pmatrix} I_n & 0 \\ 2c & -1 \end{pmatrix}$$

- c can be chosen as center of a Delaunay.
- ▶ For the covering problem things are not so simple.
 - ▶ One cannot solve the general problem with *c* unspecified, since it has no symmetry and too much parameters
 - ► One restriction is to assume the value of *c*, this makes a rank 2 problem.
- ▶ Doing lamination over A⁵₉ and A⁴₁₁ one gets a record covering in dimension 10 and 12.

Best known lattice coverings

d	lattice	covering density Θ			
1	\mathbb{Z}^1	1	13	L^c_{13}	7.762108
2	A_2^*	1.209199	14	L^c_{14}	8.825210
3	A*	1.463505	15	$L_{15}^{\hat{c}}$	11.004951
4	A**	1.765529	16	A ₁₆ *	15.310927
5	A*	2.124286	17	$A_{17}^{\bar{9}}$	12.357468
6	L ₆	2.464801	18	A*	21.840949
7	$L^{\check{c}}_7$	2.900024	19	$A_{19}^{\bar{1}\bar{0}}$	21.229200
8	L _g	3.142202	20	A_{20}^{73}	20.366828
9	Lç	4.268575	21	$A_{21}^{f 1f 1}$	27.773140
10	$L^{\check{c}}_{10}$	5.154463	22	٨*	\leq 27.8839
11	$L_{11}^{\tilde{c}^{v}}$	5.505591	23	Λ_{23}^{*}	\leq 15.3218
12	$L_{12}^{\overset{\circ}{c}}$	7.465518	24	Leech	7.903536

THANK YOU