

CHAPTER 6 LINEAR TRANSFORMATIONS

- **6.3 Matrices for Linear Transformations**
- **6.4 Transition Matrices and Similarity**

6.3 Matrices for Linear Transformations

■ Two representations of the linear transformation $T:R^3 \rightarrow R^3$:

$$(1)T(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, -x_1 + 3x_2 - 2x_3, 3x_2 + 4x_3)$$

$$(2)T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Five reasons for matrix representation of a linear transformation:
 - Simpler to write.
 - Simpler to read.
 - More easily adapted for computer use.
 - Easy to represent using a basis representation of a matrix
- Elementary Linear Argebra: Section 6.3, p.320 Elementary Linear Argebra: Section 6.3, p.320

• Thm 6.10: (Standard matrix for a linear transformation)

Pf:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 e_1 + v_2 e_2 + \dots + v_n e_n$$

T is a L.T.
$$\Rightarrow T(\mathbf{v}) = T(v_1 e_1 + v_2 e_2 + \dots + v_n e_n)$$

= $T(v_1 e_1) + T(v_2 e_2) + \dots + T(v_n e_n)$
= $v_1 T(e_1) + v_2 T(e_2) + \dots + v_n T(e_n)$

$$A\mathbf{v} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + \cdots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \cdots + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \cdots + a_{mn}v_n \end{bmatrix}$$

$$= v_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + v_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + v_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

$$= v_1 T(e_1) + v_2 T(e_2) + \dots + v_n T(e_n)$$

Therefore, $T(\mathbf{v}) = A\mathbf{v}$ for each \mathbf{v} in \mathbb{R}^n

• Ex 1: (Finding the standard matrix of a linear transformation)

Find the standard matrix for the L.T. $T: \mathbb{R}^3 \to \mathbb{R}^2$ define by

$$T(x,y,z) = (x-2y,2x+y)$$

Sol:

$$T(e_1) = T(1, 0, 0) = (1, 2)$$

$$T(e_2) = T(0, 1, 0) = (-2, 1)$$

$$T(e_3) = T(0, 0, 1) = (0, 0)$$

Matrix Notation

$$T(e_1) = T\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$T(e_2) = T\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix}$$

$$T(e_3) = T\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

Check:

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 2y \\ 2x + y \end{bmatrix}$$

i.e.
$$T(x, y, z) = (x - 2y, 2x + y)$$

■ Ex 2: (Finding the standard matrix of a linear transformation)
The linear transformation $T: R^2 \to R^2$ is given by projecting each point in R^2 onto the x - axis. Find the standard matrix for T. Sol:

$$T(x,y) = (x,0)$$

$$A = [T(e_1) \mid T(e_2)] = [T(1,0) \mid T(0,1)] = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Notes:

- (1) The standard matrix for the zero transformation from R^n into R^m is the $m \times n$ zero matrix.
- (2) The standard matrix for the identity transformation from R^n into R^n is the $n \times n$ identity matrix I_n .

■ Composition of $T_1:R^n \to R^m$ with $T_2:R^m \to R^p$:

$$T(\mathbf{v}) = T_2(T_1(\mathbf{v})), \quad \mathbf{v} \in \mathbb{R}^n$$

$$T = T_2 \circ T_1$$
, domain of $T =$ domain of T_1

■ Thm 6.11: (Composition of linear transformations)

Let $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^m \to \mathbb{R}^p$ be L.T. with standard matrices A_1 and A_2 , then

- (1) The composition $T: \mathbb{R}^n \to \mathbb{R}^p$, defined by $T(\mathbf{v}) = T_2(T_1(\mathbf{v}))$, is a L.T.
- (2) The standard matrix A for T is given by the matrix product A = ?

Pf:

Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^n and let \mathbf{c} be any scalar then

$$T(\mathbf{u} + \mathbf{v}) = T_2(T_1(\mathbf{u} + \mathbf{v})) = T_2(T_1(\mathbf{u}) + T_1(\mathbf{v}))$$
$$= T_2(T_1(\mathbf{u})) + T_2(T_1(\mathbf{v})) = T(\mathbf{u}) + T(\mathbf{v})$$

$$T(c\mathbf{v}) = T_2(T_1(c\mathbf{v})) = T_2(cT_1(\mathbf{v})) = cT_2(T_1(\mathbf{v})) = cT(\mathbf{v})$$

 $(2)(A_2A_1)$ is the standard matrix for T)

$$T(\mathbf{v}) = T_2(T_1(\mathbf{v})) = T_2(A_1\mathbf{v}) = A_2A_1\mathbf{v} = (A_2A_1)\mathbf{v}$$

■ Note: (1)
$$T_1 \circ T_2 \neq T_2 \circ T_1$$

(2) $T(v) = T_n(T_{n-1} \cdots (T_2(T_1(v))) \cdots)$
 $A = A_n A_{n-1} \cdots A_2 A_1$

• Ex 3: (The standard matrix of a composition)

Let T_1 and T_2 be L.T. from R^3 into R^3 s.t.

$$T_1(x, y, z) = (2x + y, 0, x + z)$$

 $T_2(x, y, z) = (x - y, z, y)$

Find the standard matrices for the compositions

$$T = T_2 \circ T_1$$
 and $T' = T_1 \circ T_2$,

Sol:

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \text{ (standard matrix for } T_{1})$$

$$A_{2} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ (standard matrix for } T_{2})$$

The standard matrix for $T = T_2 \circ T_1$

$$A = A_2 A_1 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The standard matrix for $T' = T_1 \circ T_2$

$$A' = A_1 A_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

• Inverse linear transformation:

If $T_1: \mathbb{R}^n \to \mathbb{R}^n$ and $T_2: \mathbb{R}^n \to \mathbb{R}^n$ are L.T. s.t. for every \mathbf{v} in \mathbb{R}^n

$$T_2(T_1(\mathbf{v})) = \mathbf{v}$$
 and $T_1(T_2(\mathbf{v})) = \mathbf{v}$

Then T_2 is called the inverse of T_1 and T_1 is said to be invertible

Note:

If the transformation T is invertible, then the inverse is unique and denoted by T^{-1} .

■ Thm 6.12: (Existence of an inverse transformation)

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a L.T. with standard matrix A, Then the following condition are equivalent.

- (1) T is invertible.
- (2) T is an isomorphism.
- (3) A is invertible.

Note:

If T is invertible with standard matrix A, then the standard matrix for T^{-1} is A^{-1} .

• Ex 4: (Finding the inverse of a linear transformation)

The L.T. $T \square R^3 \rightarrow R^3$ is defined by

$$T(x_1, x_2, x_3) = (2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + x_3, 2x_1 + 4x_2 + x_3)$$

Show that T is invertible, and find its inverse.

Sol:

The standard matrix for T

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{bmatrix} \leftarrow 2x_1 + 3x_2 + x_3$$

$$\leftarrow 3x_1 + 3x_2 + x_3$$

$$\leftarrow 2x_1 + 4x_2 + x_3$$

$$[A \mid I_3] = \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 3 & 3 & 1 & 0 & 1 & 0 \\ 2 & 4 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Therefore T is invertible and the standard matrix for T^{-1} is A^{-1}

$$A^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix}$$

$$T^{-1}(\mathbf{v}) = A^{-1}\mathbf{v} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ 6x_1 - 2x_2 - 3x_3 \end{bmatrix}$$

In other words,

$$T^{-1}(x_1, x_2, x_3) = (-x_1 + x_2, -x_1 + x_3, 6x_1 - 2x_2 - 3x_3)$$

• the matrix of T relative to the bases B and B':

$$T: V \to W$$
 (a L.T.)
 $B = \{v_1, v_2, \dots, v_n\}$ (a basis for V)
 $B' = \{w_1, w_2, \dots, w_m\}$ (a basis for W)

Thus, the matrix of T relative to the bases B and B' is

$$A = [[T(v_1)]_{B'}, [T(v_2)]_{B'}, \cdots, [T(v_n)]_{B'}] \in M_{m \times n}$$

Transformation matrix for nonstandard bases:

Let V and W be finite - dimensional vector spaces with basis B and B', respectively, where $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$

If $T: V \to W$ is a L.T. s.t.

$$[T(\mathbf{v}_1)]_{B'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad [T(\mathbf{v}_2)]_{B'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \quad [T(\mathbf{v}_n)]_{B'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

then the $m \times n$ matrix whose n columns correspond to $[T(\mathbf{v}_i)]_{R'}$

$$A = [T(v_1) \mid T(v_2) \mid \cdots \mid T(v_n)] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is such that $[T(\mathbf{v})]_{B'} = A[\mathbf{v}]_B$ for every \mathbf{v} in V.

• Ex 5: (Finding a matrix relative to nonstandard bases)

Let
$$T \square R^2 \to R^2$$
 be a L.T. defined by
$$T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2)$$

Find the matrix of T relative to the basis

$$B = \{(1, 2), (-1, 1)\}$$
 and $B' = \{(1, 0), (0, 1)\}$

Sol:

$$T(1,2) = (3,0) = 3(1,0) + 0(0,1)$$

$$T(-1,1) = (0,-3) = 0(1,0) - 3(0,1)$$

$$[T(1,2)]_{B'} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, [T(-1,1)]_{B'} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$$

the matrix for T relative to B and B'

$$A = [[T(1,2)]_{B'} \quad [T(1,2)]_{B'}] = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$$

• Ex 6:

For the L.T. $T \square R^2 \to R^2$ given in Example 5, use the matrix A to find $T(\mathbf{v})$, where $\mathbf{v} = (2, 1)$

Sol:

$$\mathbf{v} = (2,1) = 1(1,2) - 1(-1,1) \qquad B = \{(1,2), (-1,1)\}$$

$$\Rightarrow [\mathbf{v}]_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\Rightarrow [T(\mathbf{v})]_{B'} = A[\mathbf{v}]_B = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\Rightarrow T(\mathbf{v}) = 3(1,0) + 3(0,1) = (3,3) \qquad B' = \{(1,0), (0,1)\}$$

Check:

$$T(2,1) = (2+1,2(2)-1) = (3,3)$$

Notes:

- (1)In the special case where V = W and B = B', the matrix A is called the matrix of T relative to the basis B
- $(2)T:V \to V$: the identity transformation

$$B = \{v_1, v_2, \dots, v_n\}$$
: a basis for V

 \Rightarrow the matrix of T relative to the basis B

$$A = [[T(v_1)]_B, [T(v_2)]_B, \dots, [T(v_n)]_B] = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_n$$

6.4 Transition Matrices and Similarity

$$T: V \to V \qquad (a L.T.)$$

$$B = \{v_1, v_2, \dots, v_n\} \quad (a \text{ basis of } V)$$

$$B' = \{w_1, w_2, \dots, w_n\} \quad (a \text{ basis of } V)$$

$$A = \left[\left[T(v_1) \right]_B, \left[T(v_2) \right]_B, \dots, \left[T(v_n) \right]_B \right] \quad (\text{ matrix of } T \text{ relative to } B)$$

$$A' = \left[\left[T(w_1) \right]_B, \left[T(w_2) \right]_B, \dots, \left[T(w_n) \right]_B, \right] \quad (\text{ matrix of } T \text{ relative to } B')$$

$$P = \left[\left[w_1 \right]_B, \left[w_2 \right]_B, \dots, \left[w_n \right]_B \right] \quad (\text{ transition matrix from } B' \text{ to } B)$$

$$P^{-1} = \left[\left[v_1 \right]_B, \left[v_2 \right]_B, \dots, \left[v_n \right]_B, \right] \quad (\text{ transition matrix from } B \text{ to } B')$$

• Two ways to get from $[\mathbf{v}]_{B'}$ to $[T(\mathbf{v})]_{B'}$:

(1)(direct)

$$A'[\mathbf{v}]_{B'} = [T(\mathbf{v})]_{B'}$$

(2)(indirect)

$$P^{-1}AP[\mathbf{v}]_{B'} = [T(\mathbf{v})]_{B'}$$

$$\Rightarrow A' = P^{-1}AP$$

• Ex 1: (Finding a matrix for a linear transformation)

Find the matrix A' for $T \square R^2 \to R^2$

$$T(x_1, x_2) = (2x_1 - 2x_2, -x_1 + 3x_2)$$

relative to the basis $B' = \{(1, 0), (1, 1)\}$

Sol:

(I)
$$A' = [[T(1,0)]_{B'} [T(1,1)]_{B'}]$$

$$T(1,0) = (2,-1) = 3(1,0) - 1(1,1) \implies [T(1,0)]_{B'} = \begin{vmatrix} 3 \\ -1 \end{vmatrix}$$

$$T(1,1) = (0,2) = -2(1,0) + 2(1,1) \implies [T(1,1)]_{B'} = \begin{bmatrix} -2\\2 \end{bmatrix}$$

$$\Rightarrow A' = [[T(1,0)]_{B'} \quad [T(1,1)]_{B'}] = \begin{vmatrix} 3 & -2 \\ -1 & 2 \end{vmatrix}$$

(II) standard matrix for T (matrix of T relative to $B = \{(1, 0), (0, 1)\}$)

$$A = \begin{bmatrix} T(1,0) & T(0,1) \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix}$$

transition matrix from B' to B

$$P = \begin{bmatrix} \begin{bmatrix} (1,0) \end{bmatrix}_B & \begin{bmatrix} (1,1) \end{bmatrix}_B \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

transition matrix from B to B'

$$P^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

matrix of T relative B'

$$A' = P^{-1}AP = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$$

• Ex 2: (Finding a matrix for a linear transformation)

Let
$$B = \{(-3, 2), (4, -2)\}$$
 and $B' = \{(-1, 2), (2, -2)\}$ be basis for R^2 , and let $A = \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix}$ be the matrix for $T : R^2 \to R^2$ relative to B .

Find the matrix of *T* relative to *B*'.

Sol:

transition matrix from B' to B:
$$P = [[(-1, 2)]_B \quad [(2, -2)]_B] = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$$

transition matrix from B to B': $P^{-1} = [[(-3, 2)]_{B'} [(4, -2)]_{B'}] = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$ matrix of T relative to B':

$$A' = P^{-1}AP = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$

$$B = \{(-3, 2), (4, -2)\}$$
 and $B' = \{(-1, 2), (2, -2)\}$

• Ex 3: (Finding a matrix for a linear transformation)

For the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given in Ex.2, find $[\mathbf{v}]_B$ $[T(\mathbf{v})]_R$ and $[T(\mathbf{v})]_{R'}$, for the vector \mathbf{v} whose coordinate matrix is

 $[\mathbf{v}]_{B'} = \begin{vmatrix} -3 \\ -1 \end{vmatrix}$

$$[\mathbf{v}]_{B} = P[\mathbf{v}]_{B'} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \end{bmatrix} = \begin{bmatrix} -7 \\ -5 \end{bmatrix}$$

$$[T(\mathbf{v})]_B = A[\mathbf{v}]_B = \begin{vmatrix} -2 & 7 & -7 \\ -3 & 7 & -5 \end{vmatrix} = \begin{vmatrix} -21 \\ -14 \end{vmatrix}$$

$$[T(\mathbf{v})]_{B'} = P^{-1}[T(\mathbf{v})]_{B} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -21 \\ -14 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \end{bmatrix}$$

or
$$[T(\mathbf{v})]_{B'} = A'[\mathbf{v}]_{B'} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \end{bmatrix}$$

Similar matrix:

For square matrices A and A' of order n, A' is said to be similar to A if there exist an invertible matrix $P s.t. A' = P^{-1}AP$

• Thm 6.13: (Properties of similar matrices)

Let A, B, and C be square matrices of order n. Then the following properties are true.

- (1) A is similar to A.
- (2) If A is similar to B, then B is similar to A.
- (3) If A is similar to B and B is similar to C, then A is similar to C.

Pf:

(1)
$$A = I_n A I_n$$

(2) $A = P^{-1}BP \implies PAP^{-1} = P(P^{-1}BP)P^{-1}$
 $PAP^{-1} = B \implies Q^{-1}AQ = B \ (Q = P^{-1})$

• Ex 4: (Similar matrices)

$$(a)A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \text{ and } A' = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} \text{ are similar}$$

because
$$A' = P^{-1}AP$$
, where $P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

$$(b)A = \begin{bmatrix} -2 & 7 \\ -3 & 7 \end{bmatrix} \text{ and } A' = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \text{ are similar}$$

because
$$A' = P^{-1}AP$$
, where $P = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$

• Ex 5: (A comparison of two matrices for a linear transformation)

Suppose
$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
 is the matrix for $T : R^3 \to R^3$ relative

to the standard basis. Find the matrix for T relative to the basis

$$B' = \{(1, 1, 0), (1, -1, 0), (0, 0, 1)\}$$

Sol:

The transition matrix from B' to the standard matrix

$$P = [[(1,1,0)]_{B} \quad [(1,-1,0)]_{B} \quad [(0,0,1)]_{B}] = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow P^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

matrix of T relative to B':

$$A' = P^{-1}AP = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Notes: Computational advantages of diagonal matrices:

$$(1)D^{k} = \begin{bmatrix} d_{1}^{k} & 0 & \cdots & 0 \\ 0 & d_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}^{k} \end{bmatrix} \qquad D = \begin{bmatrix} d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n} \end{bmatrix}$$

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

$$(2)D^T = D$$

$$(3)D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{d_n} \end{bmatrix}, d_i \neq 0$$