PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 15/86, 7/00, 15/88, A61K 48/00 //
C07K 14/47

(11) International Publication Number: WO 96/13597

(43) International Publication Date: 9 May 1996 (09.05.96)

(21) International Application Number: PCT/US95/14017 (74) Agents: BAK, Mary, E. et al.; House Corporate Center, P.O

(22) International Filing Date: 27 October 1995 (27.10.95)

(30) Priority Data: 08/331,381 28 October 1994 (28.10.94) US

(60) Parent Application or Grant
(63) Related by Continuation
US
08/331,381 (CIP)
Filed on
28 October 1994 (28.10.94)

(71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; 133 South 36th Street, Philadelphia, PA 19104-3246 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US). FISHER, Krishna, J. [US/US]; 4006 Pine Street, Philadelphia, PA 19104 (US). CHEN, Shu-Jen [-/US]; 3901 Conshohocken Avenue, Philadelphia, PA 19131 (US). WEITZMAN, Matthew [GB/US]; 301 S. 19th Street #2A, Philadelphia, PA 19103 (US).

(74) Agents: BAK, Mary, E. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).

(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: IMPROVED ADENOVIRUS AND METHODS OF USE THEREOF

(57) Abstract

A recombinant adenovirus and a method for producing the virus are provided which utilize a recombinant shuttle vector comprising adenovirus DNA sequence for the 5' and 3' cis-elements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes and a selected minigene linked thereto, and a helper adenovirus comprising sufficient adenovirus gene sequences necessary for a productive viral infection. Desirably the helper gene is crippled by modifications to its 5' packaging sequences, which facilitates purification of the viral particle from the helper virus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy .	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovenia
CM	Cameroon	ш	Liechtenstein	SN	Slovakia
CN	China	LK	Sri Lanka	-	Senegal
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD		TT	Trinidad and Tobago
ES	Spain	MG	Republic of Moldova Madagascar	UA	Ukraine
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	(411.4	MOUROUS	VN	Viet Nam

1

IMPROVED ADENOVIRUS AND METHODS OF USE THEREOF

This invention was supported by the National Institute of Health Grant No. P30 DK 47757. The United States government has rights in this invention.

Field of the Invention

5

15

20

The present invention relates to the field of vectors useful in somatic gene therapy and the production thereof.

Background of the Invention

Human gene therapy is an approach to treating human disease that is based on the modification of gene expression in cells of the patient. It has become apparent over the last decade that the single most outstanding barrier to the success of gene therapy as a strategy for treating inherited diseases, cancer, and other genetic dysfunctions is the development of useful gene transfer vehicles. Eukaryotic viruses have been employed as vehicles for somatic gene therapy. Among the viral vectors that have been cited frequently in gene therapy research are adenoviruses.

Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a therapeutic or reporter 25 transgene to a variety of cell types. Recombinant adenoviruses types 2 and 5 (Ad2 and Ad5, respectively), which cause respiratory disease in humans, are currently being developed for gene therapy. Both Ad2 and Ad5 belong to a subclass of adenovirus that are not 30 associated with human malignancies. Recombinant adenoviruses are capable of providing extremely high levels of transgene delivery to virtually all cell types, regardless of the mitotic state. High titers (10^{13}) plaque forming units/ml) of recombinant virus can be 35 easily generated in 293 cells (the adenovirus equivalent

5

10

15

35

2

to retrovirus packaging cell lines) and cryo-stored for extended periods without appreciable losses. efficacy of this system in delivering a therapeutic transgene in vivo that complements a genetic imbalance has been demonstrated in animal models of various disorders [Y. Watanabe, Atherosclerosis, 36:261-268 (1986); K. Tanzawa et al, <u>FEBS Letters</u>, <u>118</u>(1):81-84 (1980); J.L. Golasten et al, New Engl. J. Med., 309(11983):288-296 (1983); S. Ishibashi et al, J. Clin. Invest., 92:883-893 (1993); and S. Ishibashi et al, J. Clin. Invest., 93:1885-1893 (1994)]. Indeed, a recombinant replication defective adenovirus encoding a cDNA for the cystic fibrosis transmembrane regulator (CFTR) has been approved for use in at least two human CF clinical trials [see, e.g., J. Wilson, Nature, 365:691-692 (Oct. 21, 1993)]. Further support of the safety of recombinant adenoviruses for gene therapy is the extensive experience of live adenovirus vaccines in human populations.

Human adenoviruses are comprised of a linear, approximately 36 kb double-stranded DNA genome, which is divided into 100 map units (m.u.), each of which is 360 bp in length. The DNA contains short inverted terminal repeats (ITR) at each end of the genome that are required for viral DNA replication. The gene products are organized into early (E1 through E4) and late (L1 through L5) regions, based on expression before or after the initiation of viral DNA synthesis [see, e.g., Horwitz, Virology, 2d edit., ed. B. N. Fields, Raven Press, Ltd., New York (1990)].

The first-generation recombinant, replication-deficient adenoviruses which have been developed for gene therapy contain deletions of the entire Ela and part of the Elb regions. This replication-defective virus is grown on an adenovirus-transformed, complementation human

3

embryonic kidney cell line containing a functional adenovirus Ela gene which provides a transacting Ela protein, the 293 cell [ATCC CRL1573]. El-deleted viruses are capable of replicating and producing infectious virus in the 293 cells, which provide Ela and Elb region gene products in trans. The resulting virus is capable of infecting many cell types and can express the introduced gene (providing it carries its own promoter), but cannot replicate in a cell that does not carry the El region DNA unless the cell is infected at a very high multiplicity of infection.

However, in vivo studies revealed transgene expression in these E1 deleted vectors was transient and invariably associated with the development of severe inflammation at the site of vector targeting [S. 15 Ishibashi et al, J. Clin. Invest., 93:1885-1893 (1994); J. M. Wilson et al, Proc. Natl. Acad. Sci., USA, 85:4421-4424 (1988); J. M. Wilson et al, Clin. Bio., 3:21-26 (1991); M. Grossman et al, Som. Cell. and Mol. Gen., 17:601-607 (1991)]. One explanation that has been 20 proposed to explain this finding is that first generation recombinant adenoviruses, despite the deletion of E1 genes, express low levels of other viral proteins. could be due to basal expression from the unstimulated viral promoters or transactivation by cellular factors. 25 Expression of viral proteins leads to cellular immune responses to the genetically modified cells, resulting in their destruction and replacement with nontransgene containing cells.

There yet remains a need in the art for the development of additional adenovirus vector constructs for gene therapy.

10

4

Summary of the Invention

5

10

15

20

25

30

35

In one aspect, the invention provides the components of a novel recombinant adenovirus production system. component is a shuttle plasmid, pAdA, that comprises adenovirus cis-elements necessary for replication and virion encapsidation and is deleted of all viral genes. This vector carries a selected transgene under the control of a selected promoter and other conventional vector/plasmid regulatory components. The other component is a helper adenovirus, which alone or with a packaging cell line, supplies sufficient gene sequences necessary for a productive viral infection. In a preferred embodiment, the helper virus has been altered to contain modifications to the native gene sequences which direct efficient packaging, so as to substantially disable or "cripple" the packaging function of the helper virus or its ability to replicate.

In another aspect, the present invention provides a unique recombinant adenovirus, an AdA virus, produced by use of the components above. This recombinant virus comprises an adenovirus capsid, adenovirus cis-elements necessary for replication and virion encapsidation, but is deleted of all viral genes (i.e., all viral open reading frames). This virus particle carries a selected transgene under the control of a selected promoter and other conventional vector regulatory components. AdA recombinant virus is characterized by high titer transgene delivery to a host cell and the ability to stably integrate the transgene into the host cell In one embodiment, the virus carries as its chromosome. transgene a reporter gene. Another embodiment of the recombinant virus contains a therapeutic transgene.

In another aspect, the invention provides a method for producing the above-described recombinant AdA virus by co-transfecting a cell line (either a packaging cell

5

line or a non-packaging cell line) with a shuttle vector or plasmid and a helper adenovirus as described above, wherein the transfected cell generates the Ad Δ virus. The Ad Δ virus is subsequently isolated and purified therefrom.

In yet a further aspect, the invention provides a method for delivering a selected gene to a host cell for expression in that cell by administering an effective amount of a recombinant AdA virus containing a therapeutic transgene to a patient to treat or correct a genetically associated disorder or disease.

Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

15

20

25

30

5

10

Brief Description of the Figures

Fig. 1A is a schematic representation of the organization of the major functional elements that define the 5' terminus from Ad5 including an inverted terminal repeat (ITR) and a packaging/enhancer domain. The TATA box of the E1 promoter (black box) and E1A transcriptional start site (arrow) are also shown.

Fig. 1B is an expanded schematic of the packaging/enhancer region of Fig. 1A, indicating the five packaging (PAC) domains (A-repeats), I through V. The arrows indicate the location of PCR primers referenced in Figs. 9A and 9B below.

Fig. 2A is a schematic of shuttle vector pAdA.CMVLacZ containing 5' ITR from Ad5, followed by a CMV promoter/enhancer, a LacZ gene, a 3' ITR from Ad5, and remaining plasmid sequence from plasmid pSP72 backbone. Restriction endonuclease enzymes are represented by conventional designations in the plasmid constructs.

PCT/US95/14017

10

15

20

25

6

Fig. 2B is a schematic of the shuttle vector digested with EcoRI to release the modified AdA genome from the pSP72 plasmid backbone.

Fig. 2C is a schematic depiction of the function of the vector system. In the presence of an E1-deleted helper virus Ad.CBhpAP which encodes a reporter minigene for human placenta alkaline phosphatase (hpAP), the AdA.CMVLacZ genome is packaged into preformed virion capsids, distinguishable from the helper virions by the presence of the LacZ gene.

Figs. 3A to 3F [SEQ ID NO: 1] report the top DNA strand of the double-stranded plasmid pAdA.CMVLacZ. The complementary sequence may be readily obtained by one of skill in the art. The sequence includes the following components: 3' Ad ITR (nucleotides 607-28 of SEQ ID NO: 1); the 5' Ad ITR (nucleotides 5496-5144 of SEQ ID NO: 1); CMV promoter/enhancer (nucleotides 5117-4524 of SEQ ID NO: 1); SD/SA sequence (nucleotides 4507-4376 of SEQ ID NO: 1); LacZ gene (nucleotides 4320-845 of SEQ ID NO: 1); and a poly A sequence (nucleotides 837-639 of SEQ ID NO: 1).

Fig. 4A is a schematic of shuttle vector pAdAc.CMVLacZ containing an Ad5 5' ITR and 3' ITR positioned head-to-tail, with a CMV enhancer/promoter-LacZ minigene immediately following the 5' ITR, followed by a plasmid pSP72 (Promega) backbone. Restriction endonuclease enzymes are represented by conventional designations in the plasmid constructs.

Fig. 4B is a schematic depiction of the function of the vector system of Fig. 4A. In the presence of helper virus Ad.CBhpAP, the circular pADAc.CMVLacZ shuttle vector sequence is packaged into virion heads, distinguishable from the helper virions by the presence of the LacZ gene.

7

Figs. 5A to 5F [SEQ ID NO: 2] report the top DNA strand of the double-stranded vector pAdAc.CMVLacZ. The complementary sequence may be readily obtained by one of skill in the art. The sequence includes the following components: 5' Ad ITR (nuclectides 600-958 of SEQ ID NO: 2); CMV promoter/enhancer (nucleotides 969-1563 of SEQ ID NO: 2); SD/SA sequence (nucleotides 1579-1711); LacZ gene (nucleotides 1762-5236 of SEQ ID NO: 2); poly A sequence (nucleotides 5245-5443 of SEQ ID NO: 2); and 3' Ad ITR (nucleotides 16-596 of SEQ ID NO: 2).

Fig. 6 is a schematic of shuttle vector pAdA.CBCFTR containing 5' ITR from Ad5, followed by a chimeric CMV enhancer/β actin promoter enhancer, a CFTR gene, a poly-A sequence, a 3' ITR from Ad5, and remaining plasmid sequence from plasmid pSL1180 (Pharmacia) backbone. Restriction endonuclease enzymes are represented by conventional designations in the plasmid constructs.

Figs. 7A to 7H [SEQ ID NO: 3] report the top DNA strand of the double-stranded plasmid pAdA.CBCFTR. The complementary sequence may be readily obtained by one of skill in the art. The sequence includes the following components: 5' Ad ITR (nucleotides 9611-9254 of SEQ ID NO: 3); chimeric CMV enhancer/β actin promoter (nucleotides 9241-8684 of SEQ ID NO: 3); CFTR gene (nucleotides 8622-4065 of SEQ ID NO: 3); poly A sequence (nucleotides 3887-3684 of SEQ ID NO: 3); and 3' Ad ITR (nucleotides 3652-3073 of SEQ ID NO: 3). The remaining plasmid backbone is obtained from pSL1180 (Pharmacia).

Fig. 8A illustrates the generation of 5' adenovirus terminal sequence that contained PAC domains I and II by PCR. See, arrows indicating righthand and lefthand (PAC II) PCR probes in Fig. 1B.

5

10

15

20

5

10

15

20

25

30

35

8

Fig. 8B illustrates the generation of 5' terminal sequence that contained PAC domains I, II, III and IV by PCR. See, arrows indicating righthand and lefthand (PAC IV) PCR probes in Fig. 1B.

Fig. 8C depicts the amplification products subcloned into the multiple cloning site of pAd.Link.1 (IHGT Vector Core) generating pAd.PACII (domains I and II) and pAd.PACIV (domains I, II, III, and IV) resulting in crippled helper viruses, Ad.PACII and Ad.PACIV with modified packaging (PAC) signals.

Fig. 9A is a schematic representation of the subcloning of a human placenta alkaline phosphatase reporter minigene containing the immediate early CMV enhancer/ promoter (CMV), human placenta alkaline phosphatase cDNA (hpAP), and SV40 polyadenylation signal (pA) into pAd.PACII to result in crippled helper virus vector pAdA.PACII.CMVhpAP. Restriction endonuclease enzymes are represented by conventional designations in the plasmid constructs.

Fig. 9B is a schematic representation of the subcloning of the same minigene of Fig. 9A into pAd.PACIV to result in crippled helper virus vector pAd.PACIV.CMV.hpAP.

Fig. 10 is a flow diagram summarizing the synthesis of an adenovirus-based polycation helper virus conjugate and its combination with a pAdA shuttle vector to result in a novel viral particle complex. CsCl band purified helper adenovirus was reacted with the heterobifunctional crosslinker sulfo-SMCC and the capsid protein fiber is labeled with the nucleophilic maleimide moiety. Free sulfhydryls were introduced onto poly-L-lysine using 2-iminothiolane-HCl and mixed with the labelled adenovirus, resulting in the helper virus conjugate Ad-pLys. A unique adenovirus-based particle is generated by purifying the Ad-pLys conjugate over a CsCl gradient to

9

remove unincorporated poly-L-lysine, followed by extensively dialyzing, adding shuttle plasmid DNAs to Adplys and allowing the complex formed by the shuttle plasmid wrapped around Ad-plys to develop.

Fig. 11 is a schematic dragram of pCCL-DMD, which is described in detail in Example 9 below.

Fig. 12A - 12P provides the continuous DNA sequence of pAdA.CMVmDys [SEQ ID NO:10].

10 Detailed Description of the Invention

15

35

The present invention provides a unique recombinant adenovirus capable of delivering transgenes to target cells, as well as the components for production of the unique virus and methods for the use of the virus to treat a variety of genetic disorders.

The AdA virus of this invention is a viral particle containing only the adenovirus cis-elements necessary for replication and virion encapsidation (i.e., ITRs and packaging sequences), but otherwise deleted of all adenovirus genes (i.e., all viral open reading frames). 20 This virus carries a selected transgene under the control of a selected promoter and other conventional regulatory components, such as a poly A signal. The AdA virus is characterized by improved persistence of the vector DNA in the host cells, reduced antigenicity/immunogenicity, 25 and hence, improved performance as a delivery vehicle. An additional advantage of this invention is that the Ada virus permits the packaging of very large transgenes, such as a full-length dystrophin cDNA for the treatment of the progressive wasting of muscle tissue 30 characteristic of Duchenne Muscular Dystrophy (DMD).

This novel recombinant virus is produced by use of an adenovirus-based vector production system containing two components: 1) a shuttle vector that comprises adenovirus cis-elements necessary for replication and

10

virion encapsidation and is deleted of all viral genes, which vector carries a reporter or therapeutic minigene and 2) a helper adenovirus which, alone or with a packaging cell line, is capable of providing all of the viral gene products necessary for a productive viral infection when co-transfected with the shuttle vector. Preferably, the helper virus is modified so that it does not package itself efficiently. In this setting, it is desirably used in combination with a packaging cell line that stably expresses adenovirus genes. The methods of producing this viral vector from these components include both a novel means of packaging of an adenoviral/transgene containing vector into a virus, and a novel method for the subsequent separation of the helper virus from the newly formed recombinant virus.

I. The Shuttle Vector

5

10

15

20

25

30

35

The shuttle vector, referred to as pAdA, is composed of adenovirus sequences, and transgene sequences, including vector regulatory control sequences.

A. The Adenovirus Sequences

The adenovirus nucleic acid sequences of the shuttle vector provide the minimum adenovirus sequences which enable a viral particle to be produced with the assistance of a helper virus. These sequences assist in delivery of a recombinant transgene genome to a target cell by the resulting recombinant virus.

The DNA sequences of a number of adenovirus types are available from Genbank, including type Ad5 [Genbank Accession No. M73260]. The adenovirus sequences may be obtained from any known adenovirus serotype, such as serotypes 2, 3, 4, 7, 12 and 40, and further including any of the presently identified 41 human types [see, e.g., Horwitz, cited above]. Similarly adenoviruses known to infect other animals may also be employed in the

11

vector constructs of this invention. The selection of the adenovirus type is not anticipated to limit the following invention. A variety of adenovirus strains are available from the American Type Culture Collection, Rockville, Maryland, or available by request from a variety of commercial and institutional sources. In the following exemplary embodiment an adenovirus, type 5 (Ad5) is used for convenience.

However, it is desirable to obtain a variety of pAdA shuttle vectors based on different human adenovirus 10 serotypes. It is anticipated that a library of such plasmids and the resulting AdA viral vectors would be useful in a therapeutic regimen to evade cellular, and possibly humoral, immunity, and lengthen the duration of transgene expression, as well as improve the success of 15 repeat therapeutic treatments. Additionally the use of various serotypes is believed to produce recombinant viruses with different tissue targeting specificities. The absence of adenoviral genes in the AdA viral vector is anticipated to reduce or eliminate adverse CTL 20 response which normally causes destruction of recombinant adenoviruses deleted of only the E1 gene.

Specifically, the adenovirus nucleic acid sequences employed in the pAdA shuttle vector of this invention are adenovirus genomic sequences from which all 25 viral genes are deleted. More specifically, the adenovirus sequences employed are the cis-acting 5' and 3' inverted terminal repeat (ITR) sequences of an adenovirus (which function as origins of replication) and the native 5' packaging/enhancer domain, that contains 30 sequences necessary for packaging linear Ad genomes and enhancer elements for the E1 promoter. These sequences are the sequences necessary for replication and virion encapsidation. See, e.g., P. Hearing et al, J. Virol., 61(8):2555-2558 (1987); M. Grable and P. Hearing, J. 35

12

<u>Virol.</u>, <u>64</u>(5): 2347-2056 (1990); and M. Grable and P. Hearing, <u>J. Virol.</u>, <u>66</u>(2):723-731 (1992).

5

10

15

According to this invention, the entire adenovirus 5' sequence containing the 5' ITR and packaging/enhancer region can be employed as the 5' adenovirus sequence in the pAdA shuttle vector. This left terminal (5') sequence of the Ad5 genome useful in this invention spans bp 1 to about 360 of the conventional adenovirus genome, also referred to as map This sequence is provided units 0-1 of the viral genome. herein as nucleotides 5496-5144 of SEQ ID NO: 1, nucleotides 600-958 of SEQ ID NO: 2; and nucleotides 9611-9254 of SEQ ID NO: 3, and generally is from about 353 to about 360 nucleotides in length. This sequence includes the 5' ITR (bp 1-103 of the adenovirus genome), and the packaging/enhancer domain (bp 194-358 of the adenovirus genome). See, Figs. 1A, 3, 5, and 7.

Preferably, this native adenovirus 5° region is employed in the shuttle vector in unmodified form.

However, some modifications including deletions, substitutions and additions to this sequence which do not adversely effect its biological function may be acceptable. See, e.g., WO 93/24641, published December 9, 1993. The ability to modify these ITR sequences is within the ability of one of skill in the art. See, e.g., texts such as Sambrook et al, "Molecular Cloning. A Laboratory Manual.", 2d edit., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1989).

vector include the right terminal (3') ITR sequence of the adenoviral genome spanning about bp 35,353 - end of the adenovirus genome, or map units ~98.4-100. This sequence is provided herein as nucleotides 607-28 of SEQ ID NO: 1, nucleotides 16-596 of SEQ ID NO: 2; and nucleotides 3652-3073 of SEQ ID NO: 3, and generally is

13

about 580 nucleotides in length. This entire sequence is desirably employed as the 3' sequence of an pAdA shuttle vector. Preferably, the native adenovirus 3' region is employed in the shuttle vector in unmodified form. However, some modifications to this sequence which do not adversely effect its biological function may be

An exemplary pAdA shuttle vector of this invention, described below and in Fig. 2A, contains only those adenovirus sequences required for packaging adenoviral genomic DNA into a preformed capsid head. The pAdA vector contains Ad5 sequences encoding the 5' terminal and 3' terminal sequences (identified in the description of Fig. 3), as well as the transgene sequences described below.

From the foregoing information, it is expected that one of skill in the art may employ other equivalent adenovirus sequences for use in the AdA vectors of this invention. These sequences may include other adenovirus strains, or the above mentioned cis-acting sequences with minor modifications.

The Transgene B.

5

10

15

20

25

35

acceptable.

The transgene sequence of the vector and recombinant virus is a nucleic acid sequence or reverse transcript thereof, heterologous to the adenovirus sequence, which encodes a polypeptide or protein of interest. The transgene is operatively linked to regulatory components in a manner which permits transgene transcription.

30 The composition of the transgene sequence will depend upon the use to which the resulting virus will be put. For example, one type of transgene sequence includes a reporter sequence, which upon expression produces a detectable signal. Such reporter sequences include without limitation an E. coli beta-galactosidase

14

(Lacz) cDNA, a human placental alkaline phosphatase gene and a green fluorescent protein gene. These sequences, when associated with regulatory elements which drive their expression, provide signals detectable by conventional means, e.g., ultraviolet wavelength absorbance, visible color change, etc.

Another type of transgene sequence includes a therapeutic gene which expresses a desired gene product in a host cell. These therapeutic nucleic acid sequences typically encode products for administration and expression in a patient in vivo or ex vivo to replace or correct an inherited or non-inherited genetic defect or treat an epigenetic disorder or disease. therapeutic genes which are desirable for the performance of gene therapy include, without limitation, a normal cystic fibrosis transmembrane regulator (CFTR) gene (see Fig. 7), a low density lipoprotein (LDL) gene [T. Yamamoto et al, Cell, 39:27-28 (November, 1984)], a DMD cDNA sequence [partial sequences available from GenBank, Accession Nos. M36673, M36671, [A. P. Monaco et al, Nature, 323:646-650 (1986)] and L06900, [Roberts et al, Hum. Mutat., 2:293-299 (1993)]] (Genbank), and a number of genes which may be readily selected by one of skill in the art. The selection of the transgene is not considered to be a limitation of this invention, as such selection is within the knowledge of the art-skilled.

C. Regulatory Elements

In addition to the major elements identified above for the pAdA shuttle vector, i.e., the adenovirus sequences and the transgene, the vector also includes conventional regulatory elements necessary to drive expression of the transgene in a cell transfected with the pAdA vector. Thus the vector contains a selected promoter which is linked to the transgene and located,

5

10

15

20

25

15

with the transgene, between the adenovirus sequences of the vector.

Selection of the promoter is a routine matter and is not a limitation of the pAdA vector itself. Useful promoters may be constitutive promoters or 5 regulated (inducible) promoters, which will enable control of the amount of the transgene to be expressed. For example, a desirable promoter is that of the cytomegalovirus immediate early promoter/enhancer [see, e.g., Boshart et al, Cell, 41:521-530 (1985)]. 10 promoter is found at nucleotides 5117-4524 of SEQ ID NO: 1 and nucleotides 969-1563 of SEQ ID NO: 2. Another promoter is the CMV enhancer/chicken B-actin promoter (nucleotides 9241-8684 of SEQ ID NO: 3). Another desirable promoter includes, without limitation, the Rous 15 sarcoma virus LTR promoter/enhancer. Still other promoter/enhancer sequences may be selected by one of skill in the art.

The shuttle vectors will also desirably contain nucleic acid sequences heterologous to the adenovirus 20 sequences including sequences providing signals required for efficient polyadenylation of the transcript and introns with functional splice donor and acceptor sites (SD/SA). A common poly-A sequence which is employed in the exemplary vectors of this invention is that derived 25 from the papovavirus SV-40 [see, e.g., nucleotides 837-639 of SEQ ID NO: 1; 5245-5443 of SEQ ID NO: 2; and 3887-3684 of SEQ ID NO: 3]. The poly-A sequence generally is inserted in the vector following the transgene sequences and before the 3' adenovirus sequences. A common intron 30 sequence is also derived from SV-40, and is referred to as the SV-40 T intron sequence [see, e.g., nucleotides 4507-4376 of SEQ ID NO: 1 and 1579-1711 of SEQ ID NO: 2]. A pAdA shuttle vector of the present invention may also contain such an intron, desirably located between the 35

16

promoter/enhancer sequence and the transgene. Selection of these and other common vector elements are conventional and many such sequences are available [see, e.g., Sambrook et al, and references cited therein].

5 Examples of such regulatory sequences for the above are provided in the plasmid sequences of Figs. 3, 5 and 7.

The combination of the transgene, promoter/
enhancer, the other regulatory vector elements are
referred to as a "minigene" for ease of reference herein.
The minigene is preferably flanked by the 5' and 3' cisacting adenovirus sequences described above. Such a
minigene may have a size in the range of several hundred
base pairs up to about 30 kb due to the absence of
adenovirus early and late gene sequences in the vector.
Thus, this AdA vector system permits a great deal of
latitude in the selection of the various components of
the minigene, particularly the selected transgene, with
regard to size. Provided with the teachings of this
invention, the design of such a minigene can be made by
resort to conventional techniques.

II. The Helper Virus

10

15

20

25

30

35

Because of the limited amount of adenovirus sequence present in the AdA shuttle vector, a helper adenovirus of this invention must, alone or in concert with a packaging cell line, provide sufficient adenovirus gene sequences necessary for a productive viral infection. Helper viruses useful in this invention thus contain selected adenovirus gene sequences, and optionally a second reporter minigene.

Normally, the production of a recombinant adenovirus which utilizes helper adenovirus containing a full complement of adenoviral genes results in recombinant virus contaminated by excess production of the helper virus. Thus, extensive purification of the viral vector

17

from the contaminating helper virus is required. However, the present invention provides a way to facilitate purification and reduce contamination by crippling the helper virus.

One preferred embodiment of a helper virus of this invention thus contains three components (A) modifications or deletions of the native adenoviral gene sequences which direct efficient packaging, so as to substantially disable or "cripple" the packaging function of the helper virus or its ability to replicate, (B) selected adenovirus genes and (C) an optional reporter minigene. These "crippled" helper viruses may also be formed into poly-cation conjugates as described below.

The adenovirus sequences forming the helper virus may be obtained from the sources identified above in the discussion of the shuttle vector. Use of different Ad serotypes as helper viruses enables production of recombinant viruses containing the AAd (serotype 5) shuttle vector sequences in a capsid formed by the other serotype adenovirus. These recombinant viruses are desirable in targeting different tissues, or evading an immune response to the AAd sequences having a serotype 5 capsid. Use of these different Ad serotype helper viruses may also demonstrate advantages in recombinant virus production, stability and better packaging.

A. The Crippling Modifications

A desirable helper virus used in the production of the adenovirus vector of this invention is modified (or crippled) in its 5' ITR packaging/enhancer domain, identified above. As stated above, the packaging/enhancer region contains sequences necessary for packaging linear adenovirus genomes ("PAC" sequences). More specifically, this sequence contains at least seven distinct yet functionally redundant domains

15

20

18

that are required for efficient encapsidation of replicated viral DNA.

Within a stretch of nucleotide sequence from bp 194-358 of the Ad5 genome, five of these so-called Arepeats or PAC sequences are lucalized (see, Fig. 1B). 5 PAC I is located at bp 241-248 of the adenovirus genome (on the strand complementary to nucleotides 5259-5246 of SEQ ID NO: 1). PAC II is located at bp 262-269 of the adenovirus genome (on the strand complementary to nucleotides 5238-5225 of SEQ ID NO: 1). PAC III is 10 located at bp 304-311 of the adenovirus genome (on the strand complementary to nucleotides 5196-5183 of SEQ ID NO: 1). PAC IV is located at bp 314-321 of the adenovirus (on the strand complementary to nucleotides 5186-5172 of SEQ ID NO: 1). PAC V is located at bp 339-15 346 of the adenovirus (on the strand complementary to nucleotides 5171-5147 of SEQ ID NO: 1).

Corresponding sequences can be obtained from SEQ ID NO: 2 and 3. PAC I is located at nucleotides 837-851 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9374-9360 of SEQ ID NO: 3. PAC II is located at nucleotides 859-863 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9353-9340 of SEQ ID NO: 3. PAC III is located at nucleotides 901-916 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9311-9298 of SEQ ID NO: 3. PAC IV is located at nucleotides 911-924 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9301-9288 of SEQ ID NO: 3. PAC V is located at nucleotides 9301-9288 of SEQ ID NO: 3. PAC V is located at nucleotides 936-949 of SEQ ID NO: 2; and on the strand complementary to nucleotides 9276-9263 of SEQ ID NO: 3.

20

25

19

Table 1 below lists these five native Ad5 sequences and a consensus PAC sequence based on the similarities between an eight nucleic acid stretch within the five sequences. The consensus sequence contains two positions at which the nucleic acid may be A or T (A/T). The conventional single letter designations are used for the nucleic acids, as is known to the art.

10	Table 1					
	Adenovirus Genome Base Pair Nos. & A-Repeat Nucleotide sequence					
15	I	241 248 TAG TAAATTTG GGC [SEQ ID NO: 4]				
20	II	262 269 AGT AAGATTTG GCC [SEQ ID NO: 5]				
	III	304 311 AGT GAAATCTG AAT [SEQ ID NO: 6]				
25	IV	314 321 GAA TAATTTTG TGT [SEQ ID NO: 7]				
	v	339 346 CGT AATATTTG TCT [SEQ ID NO: 8]				
30	Consensus 5'	(A/T)AN(A/T)TTTG 3' [SEQ ID NO: 9]				

5

35

40

According to this invention, mutations or deletions may be made to one or more of these PAC sequences to generate desirable crippled helper viruses. A deletion analysis of the packaging domain revealed a positive correlation between encapsidation efficiency and the number of packaging A-repeats that were present at the 5' end of the genome. Modifications of this domain may include 5' adenovirus sequences which contain less than all five of the PAC sequences of Table 1. For example, only two PAC sequences may be present in the crippled virus, e.g., PAC I and PAC II, PAC III and PAC IV, and so on. Deletions of selected PAC sequences may

20

involve deletion of contiguous or non-contiguous sequences. For example, PAC II and PAC IV may be deleted, leaving PAC I, III and IV in the 5' sequence. Still an alternative modification may be the replacement of one or more of the native PAC sequences with one or more repeats of the consensus sequence of Table 1. Alternatively, this adenovirus region may be modified by deliberately inserted mutations which disrupt one or more of the native PAC sequences. One of skill in the art may further manipulate the PAC sequences to similarly achieve the effect of reducing the helper virus packaging efficiency to a desired level.

Exemplary helper viruses which involve the manipulation of the PAC sequences described above are disclosed in Example 7 below. Briefly, as described in that example, one helper virus contains in place of the native 5' ITR region (adenovirus genome bp 1-360), a 5' adenovirus sequence spanning adenovirus genome bp 1-269, which contains only the 5' ITR and PAC I and PAC II sequences, and deletes the adenovirus region bp 270-360.

Another PAC sequence modified helper virus contains only the 5' Ad5 sequence of the ITR and PAC I through PAC IV (Ad bp 1-321), deleting PAC V and other sequences in the Ad region bp322-360.

These modified helper viruses are characterized by reduced efficiency of helper virus encapsidation. These helper viruses with the specific modifications of the sequences related to packaging efficiency, provide a packaging efficiency high enough for generating production lots of the helper virus, yet low enough that they permit the achievement of higher yields of Ada transducing viral particles according to this invention.

5

10

15

20

25

30

₹

21

B. The Selected Adenovirus Genes

Helper viruses useful in this invention, whether or not they contain the "crippling" modifications described above, contain selected adenovirus gene sequences depending upon the call line which is transfected by the helper virus and shuttle vector. A preferred helper virus contains a variety of adenovirus genes in addition to the modified sequences described above.

As one example, if the cell line employed to produce the recombinant virus is not a packaging cell line, the helper virus may be a wild type Ad virus. Thus, the helper virus supplies the necessary adenovirus early genes E1, E2, E4 and all remaining late,

intermediate, structural and non-structural genes of the adenovirus genome. This helper virus may be a crippled helper virus by incorporating modifications in its native 5' packaging/enhancer domain.

A desirable helper virus is replication

defective and lacks all or a sufficient portion of the adenoviral early immediate early gene E1a (which spans mu 1.3 to 4.5) and delayed early gene E1b (which spans mu 4.6 to 11.2) so as to eliminate their normal biological functions. Such replication deficient viruses may also

- have crippling modifications in the packaging/enhancer domain. Because of the difficulty surrounding the absolute removal of adenovirus from AdA preparations that have been enriched by CsCl buoyant density centrifugation, the use of a replication defective
- adenovirus helper prevents the introduction of infectious adenovirus for in vivo animal studies. This helper virus is employed with a packaging cell line which supplies the deficient El proteins, such as the 293 cell line.

22

Additionally, all or a portion of the adenovirus delayed early gene E3 (which spans mu 76.6 to 86.2) may be eliminated from the adenovirus sequence which forms a part of the helper viruses useful in this invention, without adversely affecting the function of the helper virus because this gene product is not necessary for the formation of a functioning virus.

In the presence of other packaging cell lines which are capable of supplying adenoviral proteins in addition to the E1, the helper virus may accordingly be deleted of the genes encoding these adenoviral proteins. Such additionally deleted helper viruses also desirably contain crippling modifications as described above.

C. A Reporter Minigene

10

15

20

25

30

35

It is also desirable for the helper virus to contain a reporter minigene, in which the reporter gene is desirably different from the reporter transgene contained in the shuttle vector. A number of such reporter genes are known, as referred to above. The presence of a reporter gene on the helper virus which is different from the reporter gene on the pAdA, allows both the recombinant AdA virus and the helper virus to be independently monitored. For example, the expression of recombinant alkaline phosphatase enables residual quantities of contaminating adenovirus to be monitored independent of recombinant LacZ expressed by an pAdA shuttle vector or an AdA virus.

D. Helper Virus Polycation Conjugates

Still another method for reducing the contamination of helper virus involves the formation of poly-cation helper virus conjugates, which may be associated with a plasmid containing other adenoviral genes, which are not present in the helper virus. The helper viruses described above may be further modified by resort to adenovirus-polylysine conjugate technology.

23

See, e.g., Wu et al, J. Biol. Chem., 264:16985-16987 (1989); and K. J. Fisher and J. M. Wilson, Biochem. J., 299: 49 (April 1, 1994), incorporated herein by reference.

Using this technolog;, a helper virus 5 containing preferably the late adenoviral genes is modified by the addition of a poly-cation sequence distributed around the capsid of the helper virus. Preferably, the poly-cation is poly-lysine, which attaches around the negatively-charged vector to form an 10 external positive charge. A plasmid is then designed to express those adenoviral genes not present in the helper virus, e.g., the E1, E2 and/or E4 genes. The plasmid associates to the helper virus-conjugate through the charges on the poly-lysine sequence. This modification 15 is also desirably made to a crippled helper virus of this invention. This conjugate (also termed a trans-infection particle) permits additional adenovirus genes to be removed from the helper virus and be present on a plasmid which does not become incorporated into the virus during 20 production of the recombinant viral vector. impact of contamination is considerably lessened.

III. Assembly of Shuttle Vector, Helper Virus and Production of Recombinant Virus

25

30

35

The material from which the sequences used in the pAdA shuttle vector and the helper viruses are derived, as well as the various vector components and sequences employed in the construction of the shuttle vectors, helper viruses, and AdA viruses of this invention, are obtained from commercial or academic sources based on previously published and described materials. These materials may also be obtained from an individual patient or generated and selected using standard recombinant molecular cloning techniques known and practiced by those

24

skilled in the art. Any modification of existing nucleic acid sequences forming the vectors and viruses, including sequence deletions, insertions, and other mutations are also generated using standard techniques.

Assembly of the selected D.JA sequences of the adenovirus, and the reporter genes or therapeutic genes and other vector elements into the pAdA shuttle vector using conventional techniques is described in Example 1 below. Such techniques include conventional cloning techniques of cDNA such as those described in texts [Sambrook et al, cited above], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence. Standard transfection and co-transfection techniques are employed, e.g., CaPO₄ transfection techniques using the HEK 293 cell line. Other conventional methods employed in this invention include homologous recombination of the viral genomes, plaquing of viruses in agar overlay, methods of measuring signal generation, and the like. Assembly of any desired AdA vector or helper virus of this invention is within the skill of the art, based on the teachings of this invention.

A. Shuttle Vector

As described in detail in Example 1 below and with resort to Fig. 2A and the DNA sequence of the plasmid reported in Fig. 3, a unique pAdA shuttle vector of this invention, pAdA.CMVLacZ, is generated. pAdA.CMVLacZ contains Ad5 sequences encoding the 5' terminal followed by a CMV promoter/enhancer, a splice donor/splice acceptor sequence, a bacterial betagalactosidase gene (LacZ), a SV-40 poly A sequence (pA), a 3' ITR from Ad5 and remaining plasmid sequence from plasmid pSP72 (Promega) backbone.

5

10

15

20

25

25

To generate the AdA genome which is incorporated in the vector, the plasmid pAdA.CMVLacZ must be must be digested with EcoRI to release the AdA.CMVLacZ genome, freeing the adenovirus ITRs and making them available targets for replication. Thus production of the vector is "restriction-dependent", i.e., requires restriction endonuclease rescue of the replication template. See, Fig. 2B.

A second type of pAdA plasmid was designed which places the 3' Ad terminal sequence in a head-to-10 tail arrangement relative to the 5' terminal sequence. As described in Example 1 and Figs. 4A, and with resort to the DNA sequence of the plasmid reported in Fig. 5, a second unique AdA vector sequence of this invention, AdAc.CMVLacZ, is generated from the shuttle plasmid 15 pAdAc.CMVLacZ, which contains an Ad5 5' ITR sequence and 3' ITR sequence positioned head-to-tail, followed by a CMV enhancer/ promoter, SD/SA sequence, LacZ gene and pA sequence in a plasmid pSP72 (Promega) backbone. As 20 described in Example 1B, this "restriction-independent" plasmid permits the AdA genome to be replicated and rescued from the plasmid backbone without including an endonuclease treatment (see, Fig. 4B).

B. Helper Virus

25

30

35

As described in detail in Example 2, an exemplary conventional E1 deleted adenovirus helper virus is virus Ad.CBhpAP, which contains a 5' adenovirus sequence from mu 0-1, a reporter minigene containing human placenta alkaline phosphatase (hpAP) under the transcriptional control of the chicken 8-actin promoter, followed by a poly-A sequence from SV40, followed by adenovirus sequences from 9.2 to 78.4 and 86 to 100. This helper contained deletions from mu 1.0 to 9.2 and 78.4 to 86, which eliminate substantially the E1 region and the E3 region of the virus. This virus may be

26

desirably crippled according to this invention by modifications to its packaging enhancer domain.

Exemplary crippled helper viruses of this invention are described using the techniques described in Example 7 and contain the modilied 5' PAC sequences, 5 i.e., adenovirus genome bp 1-269; m.u. 0-0.75 or adenovirus genome bp 1-321; m.u. 0-0.89. Briefly, the 5' sequences are modified by PCR and cloned by conventional techniques into a conventional adenovirus based plasmid. A hpap minigene is incorporated into the plasmid, which 10 is then altered by homologous recombination with an E3 deleted adenovirus d17001 to result in the modified vectors so that the reporter minigene is followed on its 3' end with the adenovirus sequences mu 9.6 to 78.3 and 87 to 100. 15

Generation of a poly-L-lysine conjugate helper virus was demonstrated essentially as described in detail in Example 5 below and Fig. 10 by coupling poly-L-lysine to the Ad.CBhpAP virion capsid. Alternatively, the same procedure may be employed with the PAC sequence modified helper viruses of this invention.

C. Recombinant Ada Virus

20

25

30

35

As stated above, a pAdA shuttle vector in the presence of helper virus and/or a packaging cell line permits the adenovirus-transgene sequences in the shuttle vector to be replicated and packaged into virion capsids, resulting in the recombinant AdA virus. The current method for producing such AdA virus is transfection-based and described in detail in Example 3. Briefly, helper virus is used to infect cells, such as the packaging cell line human HEK 293, which are then subsequently transfected with an pAdA shuttle vector containing a selected transgene by conventional methods. About 30 or more hours post-transfection, the cells are harvested, and an extract prepared. The AdA viral genome is

5

10

15

27

packaged into virions that sediment at a lower density than the helper virus in cesium gradients. Thus, the recombinant AdA virus containing a selected transgene is separated from the bulk of the helper virus by purification via buoyant density ultracentrifugation in a CsCl gradient.

The yield of AdA transducing virus is largely dependent on the number of cells that are transfected with the pAdA shuttle plasmid, making it desirable to use a transfection protocol with high efficiency. One such method involves use of a poly-L-lysinylated helper adenovirus as described above. A pAdA shuttle plasmid containing the desired transgene under the control of a suitable promoter, as described above, is then complexed directly to the positively charged helper virus capsid, resulting in the formation of a single transfection particle containing the pAdA shuttle vector and the helper functions of the helper virus.

The underlying principle is that the helper adenovirus coated with plasmid pAdA DNA will co-transport 20 the attached nucleic acid across the cell membrane and into the cytoplasm according to its normal mechanism of cell entry. Therefore, the poly-L-lysine modified helper adenovirus assumes multiple roles in the context of an 25 AdA-based complex. First, it is the structural foundation upon which plasmid DNA can bind increasing the effective concentration. Second, receptor mediated endocytosis of the virus provides the vehicle for cell uptake of the plasmid DNA. Third, the endosomalytic 30 activity associated with adenoviral infection facilitates the release of internalized plasmid into the cytoplasm. And the adenovirus contributes trans helper functions on which the recombinant AdA virus is dependent for replication and packaging of transducing viral particles. 35 The Ad-based transfection procedure using an pAdA shuttle

28

vector and a polycation-helper conjugate is detailed in Example 6. Additionally, as described previously, the helper virus-plasmid conjugate may be another form of helper virus delivery of the omitted adenovirus genes not present in the pAdA vector. Such a structure enables the rest of the required adenovirus genes to be divided between the plasmid and the helper virus, thus reducing the self-replication efficiency of the helper virus.

A presently preferred method of producing the

recombinant AdA virus of this invention involves
performing the above-described transfection with the
crippled helper virus or crippled helper virus conjugate,
as described above. A "crippled" helper virus of this
invention is unable to package itself efficiently, and
therefor permits ready separation of the helper virus
from the newly packaged AdA vector of this invention by
use of buoyant density ultracentrifugation in a CsCl
gradient, as described in the examples below.

20 IV. Function of the Recombinant AdA Virus

Once the Ada virus of this invention is produced by cooperation of the shuttle vector and helper virus, the Ada virus can be targeted to, and taken up by, a selected target cell. The selection of the target cell also depends upon the use of the recombinant virus, i.e., whether or not the transgene is to be replicated in vitro or ex vivo for production in a desired cell type for redelivery into a patient, or in vivo for delivery to a particular cell type or tissue. Target cells may be any mammalian cell (preferably a human cell). For example, in in vivo use, the recombinant virus can target to any cell type normally infected by adenovirus, depending upon the route of administration, i.e., it can target, without limitation, neurons, hepatocytes, epithelial cells and

25

30

29

the like. The helper adenovirus sequences supply the sequences necessary to permit uptake of the virus by the AdA.

once the recombinant virus is taken up by a cell, the adenovirus flanked transgene is rescued from the parental adenovirus backbone by the machinery of the infected cell, as with other recombinant adenoviruses. Once uncoupled (rescued) from the genome of the AdA virus, the recombinant minigene seeks an integration site in the host chromatin and becomes integrated therein, either transiently or stably, providing expression of the accompanying transgene in the host cell.

V. Use of the AdA Viruses in Gene Therapy

15 The novel recombinant viruses and viral conjugates of this invention provide efficient gene transfer vehicles for somatic gene therapy. These viruses are prepared to contain a therapeutic gene in place of the LacZ reporter transgene illustrated in the exemplary viruses and vectors. By use of the AdA viruses 20 containing therapeutic transgenes, these transgenes can be delivered to a patient in vivo or ex vivo to provide for integration of the desired gene into a target cell. Thus, these viruses can be employed to correct genetic deficiencies or defects. An example of the generation of 25 an AdA gene transfer vehicle for the treatment of cystic fibrosis is described in Example 4 below. One of skill in the art can generate any number of other gene transfer vehicles by including a selected transgene for the 30 treatment of other disorders.

The recombinant viruses of the present invention may be administered to a patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable delivery vehicle. A suitable vehicle includes sterile saline. Other aqueous and non-aqueous isotonic

sterile injection solutions and aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carriers and well known to those of skill in the art may be employed for this purpose.

The recombinant viruses of this invention may be administered in sufficient amounts to transfect the desired cells and provide sufficient levels of integration and expression of the selected transgene to provide a therapeutic benefit without undue adverse effects or with medically acceptable physiological effects which can be determined by those skilled in the medical arts. Conventional and pharmaceutically acceptable parenteral routes of administration include direct delivery to the target organ, tissue or site, intranasal, intravenous, intramuscular, subcutaneous, intradermal and oral administration. Routes of administration may be combined, if desired.

Dosages of the recombinant virus will depend primarily on factors such as the condition being treated, the selected gene, the age, weight and health of the patient, and may thus vary among patients. A therapeutically effective human dosage of the viruses of the present invention is believed to be in the range of from about 20 to about 50 ml of saline solution containing concentrations of from about 1 x 10⁷ to 1 x 10¹⁰ pfu/ml virus of the present invention. A preferred human dosage is about 20 ml saline solution at the above concentrations. The dosage will be adjusted to balance the therapeutic benefit against any side effects. The levels of expression of the selected gene can be monitored to determine the selection, adjustment or frequency of dosage administration.

31

The following examples illustrate the construction of the pAdA shuttle vectors, helper viruses and recombinant AdA viruses of the present invention and the use thereof in gene therapy. These examples are illustrative only, and do not limit the scope of the present invention.

Example 1 - Production of pAdA.CMVLacZ and pAdAc.CMVLacZ Shuttle Vectors

10 A. pAdA.CMVLacZ

5

30

35

A human adenovirus Ad5 sequence was modified to contain a deletion in the Ela region [map units 1 to 9.2], which immediately follows the Ad 5' region (bp 1-360) (illustrated in Figs. 1A). Thus, the plasmid contains the 5' ITR sequence (bp 1-103), the native 15 packaging/enhancer sequences and the TATA box for the Ela region (bp 104-360). A minigene containing the CMV immediate early enhancer/promoter, an SD/SA sequence, a cytoplasmic lacZ gene, and SV40 poly A (pA), was introduced at the site of the Ela deletion. 20 construct was further modified so that the minigene is followed by the 3' ITR sequences (bp 35,353-end). DNA sequences for these components are provided in Fig. 3 and SEQ ID NO: 1 (see, also the brief description of this 25 figure).

This construct was then cloned by conventional techniques into a pSP72 vector (Promega) backbone to make the circular shuttle vector pAdACMVLacZ. See the schematic of Fig. 2A. This construct was engineered with EcoRI sites flanking the 5' and 3' Ad5 ITR sequences. pAdA.CMVLacZ was then subjected to enzymatic digestion with EcoRI, releasing a linear fragment of the vector spanning the terminal end of the Ad 5'ITR sequence through the terminal end of the 3'ITR sequence from the plasmid backbone. See Fig. 2B.

32

B. pAdAc.CMVLacZ

The shuttle vector pAdAc.CMVLacZ (Figs. 4A and 5) was constructed using a pSP72 (Promega) backbone so that the Ad5 5' ITR and 3' ITR were positioned head-totail. The organization of the Ad5 ITRs was based on reports that suggest circular Ad genomes that have the terminal ends fused together head-to-tail are infectious to levels comparable to linear Ad genomes. A minigene encoding the CMV enhancer, an SD/SA sequence, the LacZ gene, and the poly A sequence was inserted immediately following the 5' ITR. The DNA sequence of the resulting plasmid and the sequences for the individual components are reported in Fig. 5 and SEQ ID NO: 2 (see also, brief description of Fig. 5). This plasmid does not require enzymatic digestion prior to its use to produce the viral particle (see Example 3). This vector was designed to enable restriction-independent production of LacZ Ada vectors.

20 Example 2 - Construction of a Helper Virus

The Ad.CBhpAP helper virus [K. Kozarsky et al, Som. Cell Mol. Genet., 19(5):449-458 (1993)] is a replication deficient adenovirus containing an alkaline phosphatase minigene. Its construction involved conventional cloning and homologous recombination techniques. The adenovirus DNA substrate was extracted from CsCl purified d17001 virions, an Ad5 (serotype subgroup C) variant that carries a 3 kb deletion between mu 78.4 through 86 in the nonessential E3 region (provided by Dr. William Wold, Washington University, St. Louis, Missouri). Viral DNA was prepared for co-transfection by digestion with ClaI (adenovirus genomic bp position 917) which removes the left arm of the genome encompassing adenovirus map units 0-2.5. See lower diagram of Fig. 1B.

25

30

5

10

33

A parental cloning vector, pAd.BglII was designed. It contains two segments of wild-type Ad5 genome (i.e., map units 0-1 and 9-16.1) separated by a unique BglII cloning site for insertion of heterologous sequences.

The missing Ad5 sequences between the two domains (adenovirus genome bp 361-3327) results in the deletion of Ela and the majority of Elb following recombination with viral DNA.

10

20

A recombinant hpAP minigene was designed and inserted into the BglII site of pAd.BglII to generate the complementing plasmid, pAdCBhpAP. The linear arrangement of this minigene includes:

- (a) the chicken cytoplasmic β-actin promoter [nucleotides +1 to +275 as described in T. A. Kost et al,
 Nucl. Acids Res., 11(23):8287 (1983); nucleotides 9241-8684 of Fig. 7];
 - (b) an SV40 intron (e.g., nucleotides 1579-1711 of SEQ ID NO: 2),
 - (C) the sequence for human placental alkaline phosphatase (available from Genbank) and
 - (d) an SV40 polyadenylation signal (a 237 Bam HI-BCII restriction fragment containing the cleavage/poly-A signals from both the early and late transcription units; e.g., nucleotides 837-639 of SEQ ID NO: 1).

The resulting complementing plasmid, pAdCBhpAP contained a single copy of recombinant hpAP minigene flanked by adenovirus coordinates 0-1 on one side and 9.2-16.1 on the other.

Plasmid DNA was linearized using a unique NheI site immediately 5' to adenovirus map unit zero (0) and the above-identified adenovirus substrate and the complementing plasmid DNAs were transfected to 293 cells [ATCC CRL1573] using a standard calcium phosphate transfection procedure [see, e.g., Sambrook et al, cited above]. The end result of homologous recombination

34

involving sequences that map to adenovirus map units 916.1 is hybrid Ad.CBhpAP helper virus which contains
adenovirus map units 0-1 and, in place of the Ela and Elb
coding regions from the d17001 adenovirus substrate, is
the hpAP minigene from the plasmid, followed by Ad
sequences 9 to 100, with a deletion in the E3 (78.4-86
mu) regions.

Example 3 - Production of Recombinant Ada Virus

5

10

15

20

25

30

35

The recombinant AdA virus of this invention are generated by co-transfection of a shuttle vector with the helper virus in a selected packaging or non-packaging cell line.

As described in detail below, the linear fragment provided in Example 1A, or the circular AdA genome carrying the LacZ of Example 1B, is packaged into the Ad.CBhpAP helper virus (Example 2) using conventional techniques, which provides an empty capsid head, as illustrated in Fig. 2C. Those virus particles which have successfully taken up the pAd shuttle genome into the capsid head can be distinguished from those containing the hpAP gene by virtue of the differential expression of LacZ and hpAP.

In more detail, 293 cells (4 x 10⁷ pfu 293 cells/150 mm dish) were seeded and infected with helper virus Ad.CBhpAP (produced as described in Example 2) at an MOI of 5 in 20 ml DMEM/2% fetal bovine serum (FBS). This helper specific marker is critical for monitoring the level of helper virus contamination in AdA preparations before and after purification. The helper virus provides in trans the necessary helper functions for synthesis and packaging of the AdACMVLacZ genome.

Two hours post infection, using either the restriction-dependent shuttle vector or the restriction-independent shuttle vector, plasmid pAdA.CMVLacZ

35

(digested with McoRI) or pAdAc.CMVLacZ DNA, each carrying a LacZ minigene, was added to the cells by a calcium phosphate precipitate (2.5 ml calcium phosphate transfection cocktail containing 50 μg plasmid DNA).

Thirty to forty hours post-transfection, cells were harvested, suspended in 10 mM Tris-Cl (pH 8.0) (0.5 ml/150 mm plate) and frozen at -80°C. Frozen cell suspensions were subjected to three rounds of freeze (ethanol-dry ice)-thaw (37°C) cycles to release virion capsids. Cell debris was removed by centrifugation (5,000xg for 10 minutes) and the clarified supernatant applied to a CsCl gradients to separate recombinant virus from helper virus as follows.

Supernatants (10 ml) applied to the discontinuous CsCl gradient (composed of equal volumes of CsCl at 1.2 15 g/ml, 1.36 g/ml, and 1.45 g/ml 10 mM Tris-Cl (pH 8.0)) were centrifuged for 8 hours at 72,128Xg, resulting in separation of infectious helper virus from incompletely formed virions. Fractions were collected from the interfacing zone between the helper and top components 20 and analyzed by Southern blot hybridization or for the presence of LacZ transducing particles. For functional analysis, aliquots (2.0 ml from each sample) from the same fractions were added to monolayers of 293 cells (in 25 35 mm wells) and expression of recombinant 8galactosidase determined 24 hours later. More specifically, monolayers were harvested, suspended in 0.3 ml 10 mM Tris-Cl (pH 8.0) buffer and an extract prepared by three rounds of freeze-thaw cycles. Cell debris was removed by centrifugation and the supernatant tested for 30 B-galactosidase (LacZ) activity according to the procedure described in J. Price et al, Proc. Natl. Acad. Sci., USA, 84:156-160 (1987). The specific activity (milliunits B-galactosidase/mg protein or reporter

5

36

enzymes was measured from indicator cells. For the recombinant virus, specific activity was 116.

5

10

15

20

25

30

35

Fractions with B-galactosidase activity from the discontinuous gradient were sedimented through an equilibrium cesium gradient to further enrich the preparation for Ada virus. A linear gradient was generated in the area of the recombinant virus spanning densities 1.29 to 1.34gm/ml. A sharp peak of the recombinant virus, detected as the appearance of the Bgal activity in infected 293 cells, eluted between 1.31 and 1.33 gm/dl. This peak of recombinant virus was located between two major A_{260} nm absorbing peaks and in an area of the gradient with the helper virus was precipitously dropping off. The equilibrium sedimentation gradient accomplished another 102 to 103 fold purification of recombinant virus from helper virus. The yield of recombinant Ada.CMVLacZ virus recovered from a 50 plate prep after 2 sedimentations ranged from 107 to 108 transducing particles.

Analysis of lysates of cells transfected with the recombinant vector and infected with helper revealed virions capable of transducing the recombinant minigene contained within the vector. Subjecting aliquots of the fractions to Southern analysis using probes specific to the recombinant virus or helper virus revealed packaging of multiple molecular forms of vector derived sequence. The predominant form of the deleted viral genome was the size (~5.5 kb) of the corresponding double stranded DNA monomer (Ada.CMVLacZ) with less abundant but discrete higher molecular weight species (~10 kb and ~15 kb) also present. Full-length helper virus is 35kb. Importantly, the peak of vector transduction activity corresponds with the highest molecular weight form of the deleted virus. These results confirm the hypothesis that ITRs and contiguous packaging sequence are the only elements

37

necessary for incorporation into virions. An apparently ordered or preferred rearrangement of the recombinant Ad monomer genome leads to a more biologically active molecule. The fact that larger molecular species of the deleted genome are 2x and 3x 10ld larger than the monomer deleted virus genome suggests that the rearrangements may involve sequential duplication of the original genome.

These same procedures may be adapted for production of a recombinant AdA virus using a crippled helper virus or helper virus conjugate as described previously.

Example 4 - Recombinant Ad& Virus Containing a Therapeutic Minigene

To test the versatility of the recombinant AdA virus system, the reporter LacZ minigene obtained from pAdACMVLacZ was cassette replaced with a therapeutic minigene encoding CFTR.

The minigene contained human CFTR cDNA [Riordan et al, Science, 245:1066-1073 (1989); nucleotides 8622-4065 of SEQ ID NO: 3] under the transcriptional control of a chimeric CMV enhancer/chicken \(\beta\)-actin promotor element (nucleotides +1 to +275 as described in T. A. Kost et al, Nucl. Acids Res., 11(23):8287 (1983); nucleotides 9241-8684 of SEQ ID NO: 3, Fig. 7); and followed by an SV-40 poly-A sequence (nucleotides 3887-3684 of SEQ ID NO: 3, Fig. 7).

The CFTR minigene was inserted into the E1 deletion site of an Ad5 virus (called pAd.E1A) which contains a deletion in E1a from mu 1-9.2 and a deletion in E3 from mu 78.4-86.

The resulting shuttle vector called pAdA.CBCFTR (see Figs. 6 and the DNA sequence of Fig. 7 [SEQ ID NO: 3]) used the same Ad ITRs of pAdACMVLacZ, but the Ad5 sequences terminated with NheI sites instead of EcoRI.

5

10

15

20

25

38

Therefore release of the minigene from the plasmid was accomplished by digestion with NheI.

The vector production system described in Example 3 was employed, using the helper virus Ad.CBhpAP (Example 2). Monolayers of 293 cells grown to 80-90% confluency in 150 mm culture dishes were infected with the helper virus at an MOI of 5. Infections were done in DMEM supplemented with 2% FBS at 20 ml media/150 mm plate. Two hours post-infection, 50 μ g plasmid DNA in 2.5 ml transfection cocktail was added to each plate and evenly distributed.

Delivery of the pAdA.CBCFTR plasmid to 293 cells was mediated by formation of a calcium phosphate precipitate and AdA.CBCFTR virus resolved from Ad.CBhpAP helper virus by CsCl buoyant density ultracentrifugation as follows:

Cells were left in this condition for 10-14 h, afterwhich the infection/transfection media was replaced with 20 ml fresh DMEM/2% FBS. Approximately 30 h post-transfection, cells were harvested, suspended in 10 mM Tris-Cl (pH 8.0) buffer (0.5 ml/150 mm plate), and stored at -80°C.

Frozen cell suspensions were lysed by three sequential rounds of freeze (ethanol-dry ice)-thaw (37°C). Cell debris was removed by centrifugation (5,000 x g for 10 min) and 10 ml clarified extract layered onto a CsCl step gradient composed of three 9.0 ml tiers with densities 1.45 g/ml, 1.36 g/ml, and 1.20 g/ml CsCl in 10 mM Tris-Cl (pH 8.0) buffer. Centrifugation was performed at 20,000 rpm in a Beckman SW-28 rotor for 8 h at 4°C. Fractions (1.0 ml) were collected from the bottom of the centrifuge tube and analyzed for rAAd transducing vectors. Peak fractions were combined and banded to equilibrium. Fractions containing transducing virions were dialyzed against 20 mM HEPES (pH 7.8)/150 mM NaCl

5

10

15

20

25

39

(HBS) and stored frozen at -80°C in the presence of 10% glycerol or as a liquid stock at -20°C (HBS+40% glycerol).

Fractions collected after ultracentrifugation were analyzed for transgene expression and vector DNA. For lacZ ΔrAd vectors, 2 μl aliquots were added to 293 cell monolayers seeded in 35 mm culture wells. Twenty-four hours later cells were harvested, suspended in 0.3 ml 10 mM Tris-Cl (pH 8.0) buffer, and lysed by three rounds of freeze-thaw. Cell debris was removed by centrifugation (15,000 x g for 10 min) and assayed for total protein [Bradford, (1976)] and β-galactosidase activity [Sambrook et al, (1989)] using ONPG (o-Nitrophenyl β-D-galactopyranoside) as substrate.

Expression of CFTR protein from the AdA.CBCFTR 15 vector was determined by immunofluorescence localization. Aliquots of AdA.CBCFTR, enriched by two-rounds of ultracentrifugation and exchanged to HBS storage buffer, were added to primary cultures of airway epithelial cells obtained from the lungs of CF transplant recipients. 20 Twenty-four hours after the addition of vector, cells were harvested and affixed to glass slides using centrifugal force (Cytospin 3, Shandon Scientific Limited). Cells were fixed with freshly prepared 3% paraformaldehyde in PBS (1.4 mM KH2PO4, 4.3 mM Na2HPO4, 25 2.7 mM KCl, and 137 mM NaCl) for 15 min at room temperature (RT), washed twice in PBS, and permeabilized with 0.05% NP-40 for 10 min at RT. immunofluorescence procedure began with a blocking step in 10% goat serum (PBS/GS) for 1 h at RT, followed by 30 binding of the primary monoclonal mouse anti-human CFTR (R-domain specific) antibody (Genzyme) diluted 1:500 in PBS/GS for 2 h at RT. Cells were washed extensively in PBS/GS and incubated for 1 h at RT with a donkey antimouse IgG (H+L) FITC conjugated 35

40

antibody (Jackson ImmunoResearch Laboratories) diluted 1:100 in PBS/GS.

For Southern analysis of vector DNA, 5 μ l aliquots were taken directly from CsCl fractions and incubated with 20 μ l capsid digestion but fer (50 mM Tris-Cl, pH 8.0; 1.0 mM EDTA, pH 8.0; 0.5% SDS, and 1.0 mg/ml Proteinase K) at 50°C for 1 h. The reactions were allowed to cool to RT, loading dye was added, and electrophoresed through a 1.2% agarose gel. Resolved DNAs were electroblotted onto a nylon membrane (Hybond-N) and hybridized with a 32-P labeled restriction fragment. Blots were analyzed by autoradiography or scanned on a Phosphorimager 445 SI (Molecular Dynamics).

10

15

20

25

30

35

The results that were obtained from Southern blot analysis of gradient fractions revealed a distinct viral band that migrated faster than the helper Ad.CBhpAP DNA. The highest viral titers mapped to fractions 3 and 4. Quantitation of the bands in fraction 4 indicated the titer of Ad.CBhpAP was approximately 1.5x greater than AdACBCFTR. However, if the size difference between the two viruses is factored in (Ad.CBhpAP=35 kb; AdACBCFTR=6.2 kb), the viral titer (where 1 particle=1 DNA molecule) of AdACB.CFTR is at least 4-fold greater than the viral titer of Ad.CBhpAP.

While Southern blot analysis of gradient fractions was useful for showing the production of Ad Δ viral particles, it also demonstrated the utility of ultracentrifugation for purifying Ad Δ viruses. Considering the latter of these, both LacZ and CFTR transducing viruses banded in CsCl to an intermediate density between infectious adenovirus helper virions (1.34 g/ml) and incompletely formed capsids (1.31 g/ml). The lighter density relative to helper virus likely results from the smaller genome carried by the Ad Δ viruses. This further suggests changes in virus size

41

influences the density and purification of AdA virus. Regardless, the ability to separate AdA virus from the helper virus is an important observation and suggests further purification may be achieved by successive rounds of banding through CsCl.

This recombinant virus is useful in gene therapy alone, or preferably, in the form of a conjugate prepared as described herein.

Example 5 - Correction of Genetic Defect in CF airway Epithelial Cells with AdACB.CFTR

5

15

20

25

30

35

Treatment of cystic fibrosis, utilizing the recombinant virus provided above, is particularly suited for in vivo, lung-directed, gene therapy. Airway epithelial cells are the most desirable targets for gene transfer because the pulmonary complications of CF are usually its most morbid and life-limiting.

The recombinant AdaCB.CFTR virus was fractionated on sequential CsCl gradients and fractions containing CFTR sequences, migrating between the adenovirus and top components fractions described above were used to infect primary cultures of human airway epithelial cells derived from the lungs of a CF patient. The cultures were subsequently analyzed for expression of CFTR protein by immunocytochemistry. Immunofluorescent detection with mouse anti-human CFTR (R domain specific) antibody was performed 24 hours after the addition of the recombinant virus. Analysis of mock infected CF cells failed to reveal significant binding to the R domain specific CFTR antibody. Primary airway epithelium cultures exposed to the recombinant virus demonstrated high levels of CFTR protein in 10-20% of the cells.

Thus, the recombinant virus of the invention, containing the CFTR gene, may be delivered directly into the airway, e.g. by a formulating the virus above, into a

42

preparation which can be inhaled. For example, the recombinant virus or conjugate of the invention containing the CFTR gene, is suspended in 0.25 molar sodium chloride. The virus or conjugate is taken up by respiratory airway cells and the gene is expressed.

Alternatively, the virus or conjugates of the invention may be delivered by other suitable means, including site-directed injection of the virus bearing the CFTR gene. In the case of CFTR gene delivery, preferred solutions for bronchial instillation are sterile saline solutions containing in the range of from about 1 x 10^7 to 1 x 10^{10} pfu/ml, more particularly, in the range of from about 1 x 10^8 to 1 x 10^9 pfu/ml of the virus of the present invention.

Other suitable methods for the treatment of cystic fibrosis by use of gene therapy recombinant viruses of this invention may be obtained from the art discussions of other types of gene therapy vectors for CF. See, for example, U. S. Patent No. 5,240,846, incorporated by reference herein.

Example 6 - Synthesis of Polycation Helper Virus Conjugate

Another version of the helper virus of this invention is a polylysine conjugate which enables the pAdA shuttle plasmid to complex directly with the helper virus capsid. This conjugate permits efficient delivery of shuttle plasmid pAdA shuttle vector in tandem with the helper virus, thereby removing the need for a separate transfection step. See, Fig. 10 for a diagrammatic outline of this construction. Alternatively, such a conjugate with a plasmid supplying some Ad genes and the helper supplying the remaining necessary genes for production of the AdA viral vector provides a novel way

5

10

15

20

25

43

to reduce contamination of the helper virus, as discussed above.

Purified stocks of a large-scale expansion of Ad.CBhpAP were modified by coupling poly-L-lysine to the virion capsid essentially as described by K. J. Fisher and J. M. Wilson, <u>Biochem. J., 299</u>:49-58 (1994), resulting in an Ad.CBhpAP-(Lys)_n conjugate. The procedure involves three steps.

First, CsCl band purified helper virus Ad.CBhpAP was reacted with the heterobifunctional crosslinker sulfo-10 SMCC [sulfo-(N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate] (Pierce). The conjugation reaction, which contained 0.5 mg (375 nmol) of sulpho-SMCC and 6 x 10^{12} A_{260} helper virus particles in 3.0 ml of HBS, was incubated at 30°C for 45 minutes with constant 15 gentle shaking. This step involved formation of a peptide bond between the active N-hydroxysuccinimide (NHS) ester of sulpho-SMCC and a free amine (e.g. lysine) contributed by an adenovirus protein sequence (capsid protein) in the vector, yielding a maleimide-activated 20 viral particle. The activated adenovirus is shown in Fig. 10 having the capsid protein fiber labeled with the nucleophilic maleimide moiety. In practice, other capsid polypeptides including hexon and penton base are also 25 targeted.

Unincorporated, unreacted cross-linker was removed by gel filtration on a 1 cm x 15 cm Bio-Gel P-6DG (Bio-Rad Laboratories) column equilibrated with 50 mM Tris/HCl buffer, pH 7.0, and 150 mM NaCl. Peak A_{260} fractions containing maleimide-activated helper virus were combined and placed on ice.

30

35

Second, poly-L-lysine having a molecular mass of 58 kDa at 10 mg/ml in 50 mM triethanolamine buffer (pH 8.0), 150 mM NaCl and 1 mM EDTA was thiolated with 2-imminothiolane/HCl (Traut's Reagent; Pierce) to a molar

5

10

15

44

ratio of 2 moles-SH/mole polylysine under N₂; the cyclic thioimidate reacts with the poly(L-lysine) primary amines resulting in a thiolated polycation. After a 45 minute incubation at room temperature the reaction was applied to a 1 cm x 15 cm Bio-Gel P6DG column equilibrated with 50 mM Tris/HCl buffer (pH 7.0), 150 mM NaCl and 2 mM EDTA to remove unincorporated Traut's Reagent.

Quantification of free thiol groups was accomplished with Ellman's reagent [5,5]-dithio-bis-(2-nitrobenzoic acid), revealing approximately 3-4 mol of -SH/mol of poly(L-lysine). The coupling reaction was initiated by adding 1 x 10^{12} A_{260} particles of maleimide-activated helper virus/mg of thiolated poly(L-lysine) and incubating the mixture on ice at 4°C for 15 hours under argon. 2-mercaptoethylamine was added at the completion of the reaction and incubation carried out at room temperature for 20 minutes to block unreacted maleimide sites.

Virus-polylysine conjugates, Ad.CPAP-p(Lys)_n, were
purified away from unconjugated poly(L-lysine) by
ultracentrifugation through a CsCl step gradient with an
initial composition of equal volumes of 1.45 g/ml (bottom
step) and 1.2 g/ml (top step) CsCl in 10 mM Tris/HCl
buffer (pH 8.0). Centrifugation was at 90,000 g for 2
hours at 5°C. The final product was dialyzed against 20
mM Hepes buffer (pH 7.8) containing 150 mM NaCl (HBS).

Example 7 - Formation of AdA/helper-pLys Viral Particle

The formation of Ad.CBhpAP-pLys/pAdA.CMVLacZ

particle is initiated by adding 20 μg plasmid

pAdA.CMVLacZ DNAs to 1.2 x 10¹² A₂₆₀ particles Ad.CBhpAP
pLys in a final volume of 0.2 ml DMEM and allowing the

complex to develop at room temperature for between 10-15

minutes. This ratio typically represents the plasmid DNA

binding capacity of a standard lot of adenovirus-pLys

45

conjugate and gives the highest levels of plasmid transgene expression.

The resulting trans-infection particle is transfected onto 293 cells (4 x 10⁷ cells seeded on a 150 mm dish). Thirty hours after transfection, the particles are recovered and subjected to a freeze/thaw technique to obtain an extract. The extract is purified on a CsCl step gradient with gradients at 1.20 g/ml, 1.36 g/ml and 1.45 g/ml. After centrifugation at 90,000 x g for 8 hours, the AdA vectors were obtained from a fraction under the top components as identified by the presence of LacZ, and the helper virus was obtained from a smaller, denser fraction, as identified by the presence of hpAP.

15 Example 8 - Construction of Modified Helper Viruses with Crippled Packaging (PAC) Sequences

This example refers to Figs. 9A through 9C, 10A and 10B in the design of modified helper viruses of this invention.

Ad5 5' terminal sequences that contained PAC domains I and II (Fig. 8A) or PAC domains I, II, III, and IV (Fig. 8B) were generated by PCR from the wild type Ad5 5' genome depicted in Fig. 1B using PCR clones indicated by the arrows in Fig. 1B. The resulting amplification products (Fig. 8A and 8B) sequences differed from the wild-type Ad5 genome in the number of A-repeats carried by the left (5') end.

As depicted in Fig. 8C, these amplification products were subcloned into the multiple cloning site of pAd.Link.1 (IHGT Vector Core). pAd.Link.1 is a adenovirus based plasmid containing adenovirus m.u. 9.6 through 16.1. The insertion of the modified PAC regions into pAd.Link.1 generated two vectors pAd.PACII (containing PAC domains I and II) and pAd.PACIV (containing PAC domains I, II, III, and IV).

1"

5

10

15

20

25

46

Thereafter, as depicted in Figs. 10A and 10B, for each of these plasmids, a human placenta alkaline phosphatase reporter minigene containing the immediate early CMV enhancer/promoter (CMV), human placenta alkaline phosphatase cDNA (hpA+), and SV40 polyadenylation signal (pA), was subcloned into each PAC vector, generating pAd.PACII.CMVhpAP and pAd.PACIV.CMVhpAP, respectively.

These plasmids were then used as substrates for homologous recombination with d17001 virus, described above, by co-transfection into 293 cells. Homologous recombination occurred between the adenovirus map units 9-16 of the plasmid and the crippled Ad5 virus. The results of homologous recombination were helper viruses containing Ad5 5' terminal sequences that contained PAC domains I and II or PAC domains I, II, III, and IV, followed by the minigene, and Ad5 3' sequences 9.6-78.3 and 87-100. Thus, these crippled viruses are deleted of the E1 gene and the E3 gene.

The plaque formation characteristics of the PAC helper viruses gave an immediate indication that the PAC modifications diminished the rate and extent of growth. Specifically, PAC helper virus plaques did not develop until day 14-21 post-transfection, and on maturation remained small. From previous experience, a standard first generation Ad.CBhpAP helper virus with a complete left terminal sequence would begin to develop by day 7 and mature by day 10.

Viral plaques were picked and suspended in 0.5 ml of

DMEM media. A small aliquot of the virus stock was used
to infect a fresh monolayer of 293 cells and
histochemically stained for recombinant alkaline
phosphatase activity 24 hours post-infection. Six of
eight Ad.PACIV.CMVhpAP (encodes A-repeats I-IV) clones
that were screened for transgene expression were

47

positive, while all three Ad.PACII.CMVhpAP clones that were selected scored positive. The clones have been taken through two rounds of plaque purification and are currently being expanded to generate a working stock.

These crippled helper viruses are useful in the production of the AdA virus particles according to the procedures described in Example 3. They are characterized by containing sufficient adenovirus genes to permit the packaging of the shuttle vector genome, but their crippled PAC sequences reduce their efficiency for self-encapsidation. Thus less helper viruses are produced in favor of more AdA recombinant viruses. Purification of AdA virus particles from helper viruses is facilitated in the CsCl gradient, which is based on the weight of the respective viral particles. facility in purification is a decided advantage of the AdA vectors of this invention in contrast to adenovirus vectors having only E1 or smaller deletions. The AdA vectors even with minigenes of up to about 15 kb are significantly different in weight than wild type or other adenovirus helpers containing many adenovirus genes.

Example 9 - Ada Vector Containing a full-length dystrophin transgene

Duchenne muscular dystrophy (DMD) is a common xlinked genetic disease caused by the absence of
dystrophin, a 427K protein encoded by a 14 kilobase
transcript. Lack of this important sarcolemmal protein
leads to progressive muscle wasting, weakness, and death.

One current approach for treating this lethal disease is
to transfer a functional copy of the dystrophin gene into
the affected muscles. For skeletal muscle, a
replication-defective adenovirus represents an efficient
delivery system.

5

10

15

5

10

25

48

According to the present invention, a recombinant plasmid pAdΔ.CMVmdys was created which contains only the Ad5 cis-elements (i.e., ITRs and contiguous packaging sequences) and harbors the full-length murine dystrophin gene driven by the CMV promoter. This plasmid was generated as follows.

pSL1180 [Pharmacia Biotech] was cut with Not I, filled in by Klenow, and religated thus ablating the Not I site in the plasmid. The resulting plasmid is termed pSL1180NN and carries a bacterial ori and Amp resistance gene.

pAdA.CMVLacZ of Example 1 was cut with EcoRI, klenowed, and ligated with the ApaI-cut pSL1180NN to form pAdA.CMVLacZ (ApaI).

15 The 14 kb mouse dystrophin cDNA [sequences provided in C. C. Lee et al, Nature, 349:334-336 (1991)] was cloned in two large fragments using a lambda ZAP cloning vector (Stratagene) and subsequently cloned into the bluescript vector pSK- giving rise to the plasmid pCCL-DMD. A schematic diagram of this vector is provided in Fig. 11, which illustrates the restriction enzyme sites.

pAdA.CMVLacZ (ApaI) was cut with NotI and the large fragment gel isolated away from the lacZ cDNA. pCCL-DMD was also cut with NotI, gel isolated and subsequently ligated to the large NotI fragment of NotI digested pAdA.CMVLacZ (ApaI). The sequences of resulting vector, pAdA.CMVmdys, are provided in Fig. 12A-12P [SEQ ID NO:10].

This plasmid contains sequences form the leftend of the Ad5 encompassing bp 1-360 (5' ITR), a mouse dystrophin minigene under the control of the CMV promoter, and sequence from the right end of Ad5 spanning

49

bp 35353 to the end of the genome (3' ITR). The minigene is followed by an SV-40 poly-A sequence similar to that described for the plasmids described above.

The vector production system described herein is employed. Ten 150mm 293 plat s are infected at about 90% confluency with a reporter recombinant E1-deleted virus Ad.CBhpAP at an MOI of 5 for 60 minutes at 37°C. These cells are transfected with pAd Δ .CMVmDys by calcium phosphate co-precipitation using 50 μ g linearized DNA/dish for about 12-16 hours at 37°C. Media is replaced with DMEM + 10% fetal bovine serum.

Full cytopathic effect is observed and a cell lysate is made by subjecting the cell pellet to freeze-thaw procedures three times. The cells are subjected to an SW41 three tier CsCl gradient for 2 hours and a band migrating between the helper adenovirus and incomplete virus is detected.

Fractions are assayed on a 6 well plate containing 293 cells infected with 5 λ of fraction for 16-20 hours in DMEM + 2 λ FBS. Cells are collected, washed with phosphate buffered saline, and resuspended in 2 ml PBS. 200 λ of the 2ml cell fractions is cytospun onto a slide.

The cells were subjected to immunofluorescence for dystrophin as follows. Cells were fixed in 10N MeOH at -20°C. The cells were exposed to a monoclonal antibody specific for the carboxy terminus of human dystrophin [NCL-DYS2; Novocastra Laboratories Ltd., UK]. Cells were then washed three times and exposed to a secondary antibody, i.e. 1:200 goat anti-mouse IgG in FITC.

The titer/fraction for seven fractions revealed in the immunofluorescent stains were calculated by the following formula and reported in Table 2 below.

DFU/field = (DFU/200\lambda cells) x 10 = DFU/106 cells = (DFU/5\lambda viral fraction) x 20 = DFU/100\lambda fraction.

5

10

15

20

50

Table 2

	Fraction 1	<u>DFU/100λ</u>
5	2	
	3	6 X 10 ³
10	4	1.8 x 10 ⁴
	5	9.6×10^3
2.5	6	200
15	7	200

A virus capable of transducing the dystrophin minigene is detected as a "positive" (i.e., green fluorescent) cell. The results of the IF illustrate that heat-treated fractions do not show positive immunofluorescence. Southern blot data suggest one species on the same size as the input DNA, with helper virus contamination.

The recombinant virus can be subsequently separated from the majority of helper virus by sedimentation through cesium gradients. Initial studies demonstrate that the functional AdCMVΔmDys virions are produced, but are contaminated with helper virus. Successful purification would render Ada virions that are incapable of encoding viral proteins but are capable of transducing murine skeletal muscle.

Example 10 - Pseudotyping

The following experiment provides a method for preparing a recombinant AdΔ according to the invention, utilizing helper viruses from serotypes which differ from that of the pAdΔ in the transfection/infection protocol. It is unexpected that the ITRs and packaging sequence of

51

Ad5 could be incorporated into a virion of another serotype.

A. Protocol

The basic approach is to transfect the

AdA.CMVlacZ recombinant virus (Ad5) into 293 cells and subsequently infect the cell with the helper virus derived from a variety of Ad serotypes (2, 3, 4, 5, 7, 8, 12, and 40). When CPE is achieved, the lysate is harvested and banded through two cesium gradients.

10 More particularly, the Ad5-based plasmid pAdA.CMVlacZ of Example 1 was linearized with EcoRI. linearized plasmids were then transfected into ten 150 mm dishes of 293 cells using calcium phosphate coprecipitation. At 10-15 hours post transfection, wild type adenoviruses (of one of the following serotypes: 2, 15 3, 4, 5, 7, 12, 40) were used to infect cells at an MOI of 5. The cells were then harvested at full CPE and lysed by three rounds of freeze-thawing. Pellet is resuspended in 4 mL Tris-HCl. Cell debris was removed by centrifugation and partial purification of Ad5A.CMVlacZ 20 from helper virus was achieved with 2 rounds of CsCl gradient centrifugation (SW41 column, 35,000 rpm, 2 hours). Fractions were collected from the bottom of the tube (fraction #1) and analysed for lacZ transducing viruses on 293 target cells by histochemical staining (at 25 20h PI). Contaminating helper viruses were quantitated by plaque assay.

Except for adenovirus type 3, infection with Ad serotypes 2, 4, 5, 7, 12 and 40 were able to produce *lacZ* transducing viruses. The peak of β-galactosidase activity was detected between the two major A₂₆₀ absorbing peaks, where most of the helper viruses banded (data not shown). The quantity of *lacZ* virus recovered from 10 plates ranged from 10⁴ to 10⁸ transducing particles depending on the serotype of the helper. As

52

expected Ad2 and Ad5 produced the highest titer of lacZ transducing viruses (Table 3). Wild type contamination was in general 10^2-10^3 log higher than corresponding lacZ titer except in the case of Ad40.

B. Results

5

10

35

40

Table 3 summarizes the growth characteristics of the wild type adenoviruses as evaluated on propagation in 293 cells. This demonstrated the feasibility of utilizing these helper viruses to infect the cell line which has been transfected with the Ad5 deleted virus.

	* · · · · · · · · · · · · · · · · · · ·	Table 3		
	Adenovirus serotypes	p/ml	pfu/ml	p:pfu
15	2	5 x 10 ¹²	2.5 x 10 ¹¹	20:01
	3	1 x 10 ¹²	6.25 x 10 ⁹	160:1
20	4	3 x 10 ¹²	2 x 10 ⁹	150:1
	5	1 x 10 ¹²	5 x 10 ¹⁰	20:01
	7a	5×10^{12}	1 x 10 ¹¹	50:1
25	12	6 x 10 ¹¹	4 x 10 ⁹	150:1
	35	1.2×10^{12}		
30	40	2.2×10^{12}	4.4×10^8	5000:1

Table 4 summarizes the results of the final purified fractions. The middle column, labeled LFU/ μ l quantifies the production of lacZ forming units, which is a direct measure of the packaging and propagation of pseudotyped recombinant AdA virus. The pfu/ μ l titer is an estimate of the contaminating wild type virus. AdA virus pseudotyped with all adenoviral strains was generated except for Ad3. The titers range between 10^7 - 10^4 .

53

Table 4

	Serotypes	LFU/ml	PFU/ml
5	2	4.6×10^7	1.8 x 10 ⁹
	3	0	NA
10	4	6.7×10^6	9.3×10^{7}
	5	6.3×10^7	1.9 x 10 ⁹
15	7 a	3×10^{6}	1.8 x 10 ⁸
15	12	1.2 x 10 ⁵	3.3 x 10 ⁸
***	40	9.5 x 10 ⁴	1.5×10^3

20

25

Table 5A-5D represents a more detailed analysis of the fractions from the second purification for each of the experiments summarized in Table 4. Again, LFU/ μ l is the recovery of the Ad Δ viruses, whereas pfu/ μ l represents recovery of the helper virus.

Table 5A

30	Ad2 Fraction #	VOLUME/ul	LFU/ul	PFU/ul
	1	120	9532	8 x 10 ⁶
35	2	100	5.8×10^4	3×10^6
	3	100	8.24×10^4	6 x 10 ⁵
	4	100	9.47×10^4	1.2×10^5
40	5	100	6 x 10 ⁴	8 x 10 ⁴
	6	100	2×10^4	6×10^4
45	7	100	5434	5×10^4
47	Total/10 pH		3.32×10^7	1.35×10^9

54

Table 5B

5		Table	58	
	Ad4 Fraction #	VOLUME/ul	LFU/ul	PFU/ul
10	1	100	1000	1.75×10^5
10	2	100	1.79×10^4	2.8 x 10 ⁵
	3	100	1.8×10^4	5.5×10^4
15	4	100	2909	1.25×10^4
	5	100	920	4 × 10 ⁴
20	6	100	153	3×10^3
	Total/10 pH		4 x 10 ⁶	5.6×10^7
25	Ad5 Fraction #	ą,		
	1	120	1.98×10^4	6 x 10 ⁶
30	2	100	5.8×10^4	3×10^6
30	3	100	1.2×10^5	1.5×10^6
	4	100	1 x 10 ⁵	1.4×10^5
35	5	100	7.96×10^4	8×10^4
	6	100	6860	6×10^4
40	Total/10 pH		3.88×10^7	1.2 x 10 ⁹

WO 96/13597

PCT/US95/14017

Table 5C

5	Ad7 Fraction	# VOLUME/ul	LFU/ul	PFU/ul
	1	100	1225	5 x 10 ⁵
10	2	100	5550	4 x 10 ⁵
10	3	100	4938	2 x 10 ⁵
	4	100	3866	8 x 10 ⁴
15	5	100	4134	6 x 10 ⁴
	6	100	995	7 x 10 ⁴
20	7.	100	230	6 x 10 ³
.1	Total/10 pH		2.09 x 10 ⁶	1.3 x 10 ⁸
	ı	e e		
25	Ad12 Fraction	#		
	1	100	31	5 x 10 ⁵
30	2	80	169	8.5×10^{5}
30	3	80	245	1.8 x 10 ⁵
	4	110	161	1.1 x 10 ⁵
35	5	120	62	7×10^{3}
	Total/10 pH		6.14×10^4	1.65 x 10 ⁸

56
Table 5D

5	Ad40 Fraction #	VOLUME/ul	LFU/ul	PFU/ul
9	1	80	61	5
	2	80	184	3
10	3	80	199	3
	4	80	168	1
15	5	80	122	
15	6	100	46	
	7	100	32	
20	Total/10 pH		6.65 x 10 ⁴	1.1×10^3

C. Characterization of the Structure of Packaged Viruses

30

35

Aliquots of serial fractions were analysed by Southern blots using <code>lacZ</code> as a probe. In the case of Ad2 and 5, not only the linearized monomer was packaged but multiple forms of recombinant virus with distinct sizes were found. These forms correlated well with the sizes of dimers, trimers and other higher molecular weight concatamers. The linearized monomers peaked closer to the top of tube (the defective adenovirus band) than other forms. When these forms were correlated with <code>lacZ</code> activity, a better correlation was found between the higher molecular weight forms than the monomers. With pseudotyping of Ad4 and Ad7, no linearized monomers were packaged and only higher molecular weight forms were found.

These data definitively demonstrate the production and characterization of the A virus and the different pseudotypes. This example illustrates a very simple way of generating pseudotype viruses.

57

Example 11 - Add Vector Containing a FH Gene

Familial hypercholesterolemia (FH) is an autosomal dominant disorder caused by abnormalities (deficiencies) in the function or expression of LDL receptors [M.S. Brown and J.L. Goldstein, Science, 232(4746):34-37 5 (1986); J.L. Goldstein and M.S. Brown, "Familial hypercholesterolemia" in Metabolic Basis of Inherited Disease, ed. C.R. Scriver et al, McGraw Hill, New York, pp1215-1250 (1989).] Patients who inherit one abnormal allele have moderate elevations in plasma LDL and suffer 10 premature life-threatening coronary artery disease (CAD). Homozygous patients have severe hypercholesterolemia and life-threatening CAD in childhood. An FH-containing vector of the invention is constructed by replacing the lacZ minigene in the pAdAc.CMVlacZ vector with a minigene 15 containing the LDL receptor gene [T. Yamamoto et al, Cell, 39:27-38 (1984)] using known techniques and as described analogously for the dystrophin gene and CFTR in the preceding examples. Vectors bearing the LDL receptor gene can be readily constructed according to this 20 invention. The resulting plasmid is termed pAdAc.CMV-LDL.

This plasmid is useful in gene therapy of FH alone, or preferably, in the form of a conjugate prepared as described herein to substitute a normal LDL gene for the abnormal allele responsible for the gene.

A. Ex Vivo Gene Therapy

25

30

35

Ex vivo gene therapy can be performed by harvesting and establishing a primary culture of hepatocytes from a patient. Known techniques may be used to isolate and transduce the hepatocytes with the above vector(s) bearing the LDL receptor gene(s). For example, techniques of collagenase perfusion developed for rabbit liver can be adapted for human tissue and used in transduction. Following transduction, the hepatocytes

58

are removed from the tissue culture plates and reinfused into the patient using known techniques, e.g. via a catheter placed into the inferior mesenteric vein.

B. <u>In Vivo Gene Therapy</u>

5

10

15

20

25

30

Desirably, the *in vi.o* approach to gene therapy, e.g. liver-directed, involves the use of the vectors and vector conjugates described above. A preferred treatment involves infusing a vector LDL conjugate of this invention into the peripheral circulation of the patient. The patient is then evaluated for change in serum lipids and liver tissues.

The virus or conjugate can be used to infect hepatocytes in vivo by direct injection into a peripheral or portal vein (10⁷-10⁸ pfu/kg) or retrograde into the biliary tract (same dose). This effects gene transfer into the majority of hepatocytes.

Treatments are repeated as necessary, e.g. weekly. Administration of a dose of virus equivalent to an MOI of approximately 20 (i.e. 20 pfu/hepatocyte) is anticipated to lead to high level gene expression in the majority of hepatocytes.

All references recited above are incorporated herein by reference. Numerous modifications and variations of the present invention are included in the above-identified specification and are expected to be obvious to one of skill in the art. Such modifications and alternations to the compositions and processes of the present invention, such as various modifications to the PAC sequences or the shuttle vectors, or to other sequences of the vector, helper virus and minigene components, are believed to be encompassed in the scope of the claims appended hereto.

59

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Trustees of the University of Pennsylvania Wilson, James M.
 Fisher, Krishna J.
 Chen, Shu-Jen
 Weitzman, Matthew
- (ii) TITLE OF INVENTION: Improved Adenovirus and Methods of Use Thereof
- (iii) NUMBER OF SEQUENCES: 10
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Howson and Howson
 - (B) STREET: Spring House Corporate Cntr, PO Box 457
 - (C) CITY: Spring House
 - (D) STATE: Pennsylvania
 - (E) COUNTRY: USA
 - (F) ZIP: 19477
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/331,381
 - (B) FILING DATE: 28-OCT-1994
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Bak, Mary E.
 - (B) REGISTRATION NUMBER: 31,215
 - (C) REFERENCE/DOCKET NUMBER: GNVPN.008PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 215-540-9200
 - (B) TELEFAX: 215-540-5818

60

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7897 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

50	ATACCTTATT	CATCAATAAT	TGAATTCCAT	AGCTGAAGCT	GAACTCGAGC
100	TGACGTGGCG	GTGGAGTTTG	TAATGAGGGG	GCCAATATGA	TTGGATTGAA
150	GGAGTAACTT	GTTTTAGGGC	GGTGACGTAG	GAACGGGCCG	CGGGGCGTGG
200	ACGTAACGTG	ATGGGAAGTT	TTTTCTTAAA	GGAATTGTAG	GTATGTGTTG
250	TGGCTTTCGT	GTGGGTTTTT	TGAGGAAGTT	AGTGACGATT	GGAAAACGGA
300	TGTGGACTTT	GGGTGTTTTT	GCGGTTTTCT	AGGTTCGCGT	TTCTGGGCGT
350	GCACTTGGCC	TACTCGCTCT	GTCCTATATA	TCATTTTTTA	AACCGTTACG
400	GTGGTGTTTT	GCCGTGTCGA	TTGAGCTGGT	CTGTGACTGA	CTTTTTTACA
450	GGCTGCCGCT	CTGACTGTTA	ACTGGTAAGG	TTTCTTTTTT	TTTAATAGGT
500	TTTGCCTAGG	AGGGTGCTAT	CTGGAGCGGG	GTATGTTGTT	GTGAAGCGCT
550	TTAATTTTGT	TTCTCTCCTA	TTATGTGTTT	TTTCAGGTGT	CAGGAGGGTT
600	CGGGTATGTA	TCTACGCCTG	TAATGTTGTC	ATGGGGGCTG	TATACCTCCT
650	ATCCGAAAAA	ACTCTAGAGG	CTGCAGGTCG	GCTTGCATGC	TTCCCCCCAA
700	TGCAATTGTT	ATAAAATGAA	AACCTGAAAC	CCTCCCCCTG	ACCTCCCACA
750	AAAGCAATAG	GGTTACAAAT	AGCTTATAAT	TGTTTATTGC	GTTGTTAACT
800	TCTAGTTGTG	TTCACTGCAT	AAGCATTTTT	TTCACAAATA	CATCACAAAT
850	cccccccccc	ATGTCTGGAT	GTATCTTATC	ACTCATCAAT	GTTTGTCCAA
900	CAGCGGTTGG	GCAGACCAAA	TTGTCAGAAA	GAGGCCGAGT	GCCTAGAGTC
950	CCGTATCACT	AAAATAATAC	AATAGCGGCA	AGAACAGAGA	AATAATAGCG
1000	AACGGGAAGT	AATCGGGAAA	CATGTAGCCA	TGGTTGATGT	TTTGCTGATA

AGGCTCCCAT	GATAAAAAA	TAAAAGAAA	A AGAATAAACC	GAACATCCAA	1050
AAGTTTGTGT	TTTTTAAATA	GTACATAATO	GATTTCCTTA	CGCGAAATAC	1100
GGGCAGACAT	GGCCTGCCCG	GTTATTATTA	TTTTTGACAC	CAGACCAACT	1150
GGTAATGGTA	GCGACCGGCG	CTCAGCTGTA	A.TCCGCCGA	TACTGACGGG	1200
CTCCAGGAGT	CGTCGCCACC	AATCCCCATA	TGGAAACCGT	CGATATTCAG	1250
CCATGTGCCT	TCTTCCGCGT	GCAGCAGATG	GCGATGGCTG	CTTTCCATCA	1300
GTTGCTGTTG	ACTGTAGCGG	CTGATGTTGA	ACTGGAAGTC	GCCGCGCCAC	1350
TGGTGTGGGC	CATAATTCAA	TTCGCGCGTC	CCGCAGCGCA	GACCGTTTTC	1400
GCTCGGGAAG	ACGTACGGGG	TATACATGTC	TGACAATGGC	AGATCCCAGC	1450
GGTCAAAACA	GGCGGCAGTA	AGGCGGTCGG	GATAGTTTTC	TTGCGGCCCT	1500
AATCCGAGCC	AGTTTACCCG	CTCTGCTACC	TGCGCCAGCT	GGCAGTTCAG	1550
GCCAATCCGC	GCCGGATGCG	GTGTATCGCT	CGCCACTTCA	ACATCAACGG	1600
TAATCGCCAT	TTGACCACTA	CCATCAATCC	GGTAGGTTTT	CCGGCTGATA	1650
AATAAGGTTT	TCCCCTGATG	CTGCCACGCG	TGAGCGGTCG	TAATCAGCAC	1700
CGCATCAGCA	AGTGTATCTG	CCGTGCACTG	CAACAACGCT	GCTTCGGCCT	1750
GGTAATGGCC	CGCCGCCTTC	CAGCGTTCGA	CCCAGGCGTT	AGGGTCAATG	1800
CGGGTCGCTT	CACTTACGCC	AATGTCGTTA	TCCAGCGGTG	CACGGGTGAA	1850
CTGATCGCGC	AGCGGCGTCA	GCAGTTGTTT	TTTATCGCCA	ATCCACATCT	1900
GTGAAAGAAA	GCCTGACTGG	CGGTTAAATT	GCCAACGCTT	ATTACCCAGC	1950
TCGATGCAAA	AATCCATTTC	GCTGGTGGTC	AGATGCGGGA	TGGCGTGGGA	2000
CGCGGCGGG	AGCGTCACAC	TGAGGTTTTC	CGCCAGACGC	CACTGCTGCC	2050
AGGCGCTGAT	GTGCCCGGCT	TCTGACCATG	CGGTCGCGTT	CGGTTGCACT	2100
ACGCGTACTG	TGAGCCAGAG	TTGCCCGGCG	CTCTCCGGCT	GCGGTAGTTC	2150
AGGCAGTTCA	ATCAACTGTT	TACCTTGTGG	AGCGACATCC	AGAGGCACTT	2200
CACCGCTTGC	CAGCGGCTTA	CCATCCAGCG	CCACCATCCA	GTGCAGGAGC	2250
TCGTTATCGC	TATGACGGAA	CAGGTATTCG	CTGGTCACTT	CGATGGTTTG	2300

CCCGGATAAA	CGGAACTGG?	AAAACTGCTG	CTGGTGTTTT	GCTTCCGTCA	2350
GCGCTGGATG	CGGCGTGCGG	TCGGCAAAGA	CCAGACCGTT	CATACAGAAC	2400
TGGCGATCGT	TCGGCGTATC	GCCAAAATCA	CCGCCGTAAG	CCGACCACGG	2450
GTTGCCGTTT	TCATCATATT	TAATCAGCGA	CTCATCCACC	CAGTCCCAGA	2500
CGAAGCCGCC	CTGTAAACGG	GGATACTGAC	GAAACGCCTG	CCAGTATTTA	2550
GCGAAACCGC	CAAGACTGTT	ACCCATCGCG	TGGGCGTATT	CGCAAAGGAT	2600
CAGCGGGCGC	GTCTCTCCAG	GTAGCGAAAG	CCATTTTTTG	ATGGACCATT	2650
TCGGCACAGC	CGGGAAGGGC	TGGTCTTCAT	CCACGCGCGC	GTACATCGGG	2700
CAAATAATAT	CGGTGGCCGT	GGTGTCGGCT	CCGCCGCCTT	CATACTGCAC	2750
CGGGCGGAA	GGATCGACAG	ATTTGATCCA	GCGATACAGC	GCGTCGTGAT	2800
TAGCGCCGTG	GCCTGATTCA	TTCCCCAGCG	ACCAGATGAT	CACACTCGGG	2850
TGATTACGAT	CGCGCTGCAC	CATTCGCGTT	ACGCGTTCGC	TCATCGCCGG	2900
TAGCCAGCGC	GGATCATCGG	TCAGACGATT	CATTGGCACC	ATGCCGTGGG	2950
TTTCAATATT	GGCTTCATCC	ACCACATACA	GGCCGTAGCG	GTCGCACAGC	3000
GTGTACCACA	GCGGATGGTT	CGGATAATGC	GAACAGCGCA	CGGCGTTAAA	3050
GTTGTTCTGC	TTCATCAGCA	GGATATCCTG	CACCATCGTC	TGCTCATCCA	3100
TGACCTGACC	ATGCAGAGGA	TGATGCTCGT	GACGGTTAAC	GCCTCGAATC	3150
AGCAACGGCT	TGCCGTTCAG	CAGCAGCAGA	CCATTTTCAA	TCCGCACCTC	3200
GCGGAAACCG	ACATCGCAGG	CTTCTGCTTC	AATCAGCGTG	CCGTCGGCGG	3250
TGTGCAGTTC	AACCACCGCA	CGATAGAGAT	TCGGGATTTC	GGCGCTCCAC	3300
AGTTTCGGGT	TTTCGACGTT	CAGACGTAGT	GTGACGCGAT	CGGCATAACC	3350
ACCACGCTCA	TCGATAATTT	CACCGCCGAA	AGGCGCGGTG	CCGCTGGCGA	3400
CCTGCGTTTC	ACCCTGCCAT	AAAGAAACTG	TTACCCGTAG	GTAGTCACGC	3450
AACTCGCCGC	ACATCTGAAC	TTCAGCCTCC	AGTACAGCGC	GGCTGAAATC	3500
ATCATTAAAG	CGAGTGGCAA	CATGGAAATC	GCTGATTTGT	GTAGTCGGTT	3550
TATGCAGCAA	CGAGACGTCA	CGGAAAATGC	CGCTCATCCG	CCACATATCC	3600

TGATCTTCCA	GATAACTGCC	GTCACTCCAA	CGCAGCACCA	TCACCGCGAG	3650
GCGGTTTTCT	CCGGCGCGTA	AAAATGCGCT	CAGGTCAAAT	TCAGACGGCA	3700
AACGACTGTC	CTGGCCGTAA	CCGACCCAGC	GCCCGTTGCA	CCACAGATGA	3750
AACGCCGAGT	TAACGCCATC	AAAAATAATT	CLCGTCTGGC	CTTCCTGTAG	3800
CCAGCTTTCA	TCAACATTAA	ATGTGAGCGA	GTAACAACCC	GTCGGATTCT	3850
CCGTGGGAAC	AAACGGCGGA	TTGACCGTAA	TGGGATAGGT	TACGTTGGTG	3900
TAGATGGGCG	CATCGTAACC	GTGCATCTGC	CAGTTTGAGG	GGACGACGAC	3950
AGTATCGGCC	TCAGGAAGAT	CGCACTCCAG	CCAGCTTTCC	GGCACCGCTT	4000
CTGGTGCCGG	AAACCAGGCA	AAGCGCCATT	CGCCATTCAG	GCTGCGCAAC	4050
TGTTGGGAAG	GGCGATCGGT	GCGGGCCTCT	TCGCTATTAC	GCCAGCTGGC	4100
CAAAGGGGGA	TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT	4150
CCCAGTCACG	ACGTTGTAAA	ACGACGGGAT	CGCGCTTGAG	CAGCTCCTTG	4200
CTGGTGTCCA	GACCAATGCC	TCCCAGACCG	GCAACGAAAA	TCACGTTCTT	4250
GTTGGTCAAA	GTAAACGACA	TGGTGACTTC	TTTTTTGCTT	TAGCAGGCTC	4300
TTTCGATCCC	CGGGAATTGC	GGCCGCGGGT	ACAATTCCGC	AGCTTTTAGA	4350
GCAGAAGTAA	CACTTCCGTA	CAGGCCTAGA	AGTAAAGGCA	ACATCCACTG	4400
AGGAGCAGTT	CTTTGATTTG	CACCACCACC	GGATCCGGGA	CCTGAAATAA	4450
AAGACAAAAA	GACTAAACTT	ACCAGTTAAC	TTTCTGGTTT	TTCAGTTCCT	4500
CGAGTACCGG	ATCCTCTAGA	GTCCGGAGGC	TGGATCGGTC	CCGGTCTCTT	4550
CTATGGAGGT	CAAAACAGCG	TGGATGGCGT	CTCCAGGCGA	TCTGACGGTT	4600
CACTAAACGA	GCTCTGCTTA	TATAGACCTC	CCACCGTACA	CGCCTACCGC	4650
CCATTTGCGT	CAATGGGGCG	GAGTTGTTAC	GACATTTTGG	AAAGTCCCGT	4700
TGATTTTGGT	GCCAAAACAA	ACTCCCATTG	ACGTCAATGG	GGTGGAGACT	4750
TGGAAATCCC	CGTGAGTCAA	ACCGCTATCC	ACGCCCATTG	ATGTACTGCC	4800
AAAACCGCAT	CACCATGGTA	ATAGCGATGA	CTAATACGTA	GATGTACTGC	4850
CAAGTAGGAA	AGTCCCATAA	GGTCATGTAC	ТССССАТА АТ	GCCAGGCGGG	4900

64

CCATTTACCG TCATTGACGT CAATAGGGGG CGTACTTGGC ATATGATACA 4950 CTTGATGTAC TGCCAAGTGG GCAGTTTACC GTAAATACTC CACCCATTGA 5000 CGTCAATGGA AAGTCCCTAT TGGCGTTACT ATGGGAACAT ACGTCATTAT 5050 TGACGTCAAT GGGCGGGGT CGTTGGGCGG TCLGCCAGGC GGGCCATTTA 5100 CCGTAAGTTA TGTAACGACC TGCAGGTCGA CTCTAGAGGA TCTCCCTAGA 5150 CAAATATTAC GCGCTATGAG TAACACAAAA TTATTCAGAT TTCACTTCCT 5200 CTTATTCAGT TTTCCCGCGA AAATGGCCAA ATCTTACTCG GTTACGCCCA 5250 AATTTACTAC AACATCCGCC TAAAACCGCG CGAAAATTGT CACTTCCTGT 5300 GTACACCGGC GCACACCAAA AACGTCACTT TTGCCACATC CGTCGCTTAC 5350 ATGTGTTCCG CCACACTTGC AACATCACAC TTCCGCCACA CTACTACGTC 5400 ACCCGCCCG TTCCCACGCC CCGCGCCACG TCACAAACTC CACCCCCTCA 5450 TTATCATATT GGCTTCAATC CAAAATAAGG TATATTATTG ATGATGCTAG 5500 CGAATTCATC GATGATATCA GATCTGCCGG TCTCCCTATA GTGAGTCGTA 5550 TTAATTTCGA TAAGCCAGGT TAACCTGCAT TAATGAATCG GCCAACGCGC 5600 GGGGAGAGGC GGTTTGCGTA TTGGGCGCTC TTCCGCTTCC TCGCTCACTG 5650 ACTCGCTGCG CTCGGTCGTT CGGCTGCGGC GAGCGGTATC AGCTCACTCA 5700 AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG CAGGAAAGAA 5750 CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGCGT 5800 TGCTGGCGTT TTTCCATAGG CTCCGCCCCC CTGACGAGCA TCACAAAAAT 5850 CGACGCTCAA GTCAGAGGTG GCGAAACCCG ACAGGACTAT AAAGATACCA 5900 GGCGTTTCCC CCTGGAAGCT CCCTCGTGCG CTCTCCTGTT CCGACCCTGC 5950 CGCTTACCGG ATACCTGTCC GCCTTTCTCC CTTCGGGAAG CGTGGCGCTT 6000 TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG TCGTTCGCTC 6050 CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCCGAC CGCTGCGCCT 6100 TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG 6150 6200 CCACTGGCAG CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG

65

CGGTGCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA 6250 GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAAAA 6300 AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG CTAGCGGTGG 6350 TTTTTTTTTT TGCAAGCAGC AGATTACGCG CAGAAAAAA GGATCTCAAG 6400 AAGATCCTTT GATCTTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC 6450 TCACGTTAAG GGATTTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA 6500 GATCCTTTTA AATTAAAAAT GAAGTTTTAA ATCAATCTAA AGTATATATG 6550 AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC 6600 TCAGCGATCT GTCTATTTCG TTCATCCATA GTTGCCTGAC TCCCCGTCGT 6650 GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 6700 TGATACCGCG AGACCCACGC TCACCGGCTC CAGATTTATC AGCAATAAAC 6750 CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA CTTTATCCGC 6800 CTCCATCCAG TCTATTAATT GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC 6850 CAGTTAATAG TTTGCGCAAC GTTGTTGCCA TTGCTACAGG CATCGTGGTG 6900 TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT CCCAACGATC 6950 AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT 7000 TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC 7050 ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG 7100 ATGCTTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT 7150 GTATGCGGCG ACCGAGTTGC TCTTGCCCGG CGTCAATACG GGATAATACC 7200 GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA AACGTTCTTC 7250 GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 7300 AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC 7350 GTTTCTGGGT GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT 7400 AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTTGAA 7500

66

TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT TTCCCCGAAA 7550 AGTGCCACCT GACGTCTAAG AAACCATTAT TATCATGACA TTAACCTATA 7600 7650 AAAATAGGCG TATCACGAGG CCCTTTCGTC TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAJACGGTCA CAGCTTGTCT 7700 GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG 7750 7800 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGGA CATATTGTCG TTAGAACGCG GCTACAATTA 7850 ATACATAACC TTATGTATCA TACACATACG ATTTAGGTGA CACTATA 7897

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7852 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

50 GAATTCGCTA GCTAGCGGGG GAATACATAC CCGCAGGCGT AGAGACAACA 100 TTACAGCCCC CATAGGAGGT ATAACAAAAT TAATAGGAGA GAAAAACACA 150 TAAACACCTG AAAAACCCTC CTGCCTAGGC AAAATAGCAC CCTCCCGCTC CAGAACAACA TACAGCGCTT CACAGCGGCA GCCTAACAGT CAGCCTTACC 200 AGTAAAAAG AAAACCTATT AAAAAAACAC CACTCGACAC GGCACCAGCT 250 300 CAATCAGTCA CAGTGTAAAA AAGGGCCAAG TGCAGAGCGA GTATATATAG 350 GACTAAAAA TGACGTAACG GTTAAAGTCC ACAAAAAACA CCCAGAAAAC 400 CGCACGCGAA CCTACGCCCA GAAACGAAAG CCAAAAAAACC CACAACTTCC TCAAATCGTC ACTTCCGTTT TCCCACGTTA CGTAACTTCC CATTTTAAGA 450 AAACTACAAT TCCCAACACA TACAAGTTAC TCCGCCCTAA AACCTACGTC 500 550 ACCCGCCCG TTCCCACGCC CCGCGCCACG TCACAAACTC CACCCCCTCA

TTATCATATT GGCTTCAATC CAAAATAAGG TATATTATTG ATGATGCTAG	500
CATCATCAAT AATATACCTT ATTTTGGATT GAAGCCAATA TGATAATGAG	550
GGGGTGGAGT TTGTGACGTG GCGCGGGGCG TGGGAACGGG GCGGGTGACG	700
TAGTAGTGTG GCGGAAGTGT GATGTTGCAA G'1GTGGCGGA ACACATGTAA 7	750
GCGACGGATG TGGCAAAAGT GACGTTTTTG GTGTGCGCCG GTGTACACAG 8	00
GAAGTGACAA TTTTCGCGCG GTTTTAGGCG GATGTTGTAG TAAATTTGGG 8	50
CGTAACCGAG TAAGATTTGG CCATTTTCGC GGGAAAACTG AATAAGAGGA 9	00
AGTGAAATCT GAATAATTTT GTGTTACTCA TAGCGCGTAA TATTTGTCTA 9	50
GGGAGATCAG CCTGCAGGTC GTTACATAAC TTACGGTAAA TGGCCCGCCT 10	00
GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT 10	50
TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT 11	00
ATTTACGGTA AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA 11	50
AGTACGCCCC CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATTA 12	00
TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG TACATCTACG 12	50
TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA GTACATCAAT 13	00
GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT 13	50
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA 140	00
AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA 149	50
CGGTGGGAGG TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC 150	00
CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA CACCGGGACC 15	50
GATCCAGCCT CCGGACTCTA GAGGATCCGG TACTCGAGGA ACTGAAAAAC 160	00
CAGAAAGTTA ACTGGTAAGT TTAGTCTTTT TGTCTTTTAT TTCAGGTCCC 169	50
GGATCCGGTG GTGGTGCAAA TCAAAGAACT GCTCCTCAGT GGATGTTGCC 170	00
TTTACTTCTA GGCCTGTACG GAAGTGTTAC TTCTGCTCTA AAAGCTGCGG 175	50
AATTGTACCC GCGGCCGCAA TTCCCGGGGA TCGAAAGAGC CTGCTAAAGC 180	00
AAAAAAGAAG TCACCATGTC GTTTACTTTG ACCAACAAGA ACGTGATTTT 185	0

PCT/US95/14017

WO 96/13597 PCT/US

CGTTGCCGGT	CTGGGAGGCA	TTGGTCTGGA	CACCAGCAAG	GAGCTGCTCA	1900
AGCGCGATCC	CGTCGTTTTA	CAACGTCGTG	ACTGGGAAAA	CCCTGGCGTT	1950
ACCCAACTTA	ATCGCCTTGC	AGCACATCCC	CCTTTCGCCA	GCTGGCGTAA	2000
TAGCGAAGAG	GCCCGCACCG	ATCGCCCTTC	CLAACAGTTG	CGCAGCCTGA	2050
ATGGCGAATG	GCGCTTTGCC	TGGTTTCCGG	CACCAGAAGC	GGTGCCGGAA	2100
AGCTGGCTGG	AGTGCGATCT	TCCTGAGGCC	GATACTGTCG	TCGTCCCCTC	2150
AAACTGGCAG	ATGCACGGTT	ACGATGCGCC	CATCTACACC	AACGTAACCT	2200
ATCCCATTAC	GGTCAATCCG	CCGTTTGTTC	CCACGGAGAA	TCCGACGGGT	2250
TGTTACTCGC	TCACATTTAA	TGTTGATGAA	AGCTGGCTAC	AGGAAGGCCA	2300
GACGCGAATT	ATTTTTGATG	GCGTTAACTC	GGCGTTTCAT	CTCTGGTGCA	2350
ACGGGCGCTG	GGTCGGTTAC	GGCCAGGACA	GTCGTTTGCC	GTCTGAATTT	2400
GACCTGAGCG	CATTTTTACG	CGCCGGAGAA	AACCGCCTCG	CGGTGATGGT	2450
GCTGCGTTGG	AGTGACGGCA	GTTATCTGGA	AGATCAGGAT	ATGTGGCGGA	2500
TGAGCGGCAT	TTTCCGTGAC	GTCTCGTTGC	TGCATAAACC	GACTACACAA	2550
ATCAGCGATT	TCCATGTTGC	CACTCGCTTT	AATGATGATT	TCAGCCGCGC	2600
TGTACTGGAG	GCTGAAGTTC	AGATGTGCGG	CGAGTTGCGT	GACTACCTAC	2650
GGGTAACAGT	TTCTTTATGG	CAGGGTGAAA	CGCAGGTCGC	CAGCGGCACC	2700
GCGCCTTTCG	GCGGTGAAAT	TATCGATGAG	CGTGGTGGTT	ATGCCGATCG	2750
CGTCACACTA	CGTCTGAACG	TCGAAAACCC	GAAACTGTGG	AGCGCCGAAA	2800
TCCCGAATCT	CTATCGTGCG	GTGGTTGAAC	TGCACACCGC	CGACGCCACG	2850
CTGATTGAAG	CAGAAGCCTG	CGATGTCGGT	TTCCGCGAGG	TGCGGATTGA	2900
AAATGGTCTG	CTGCTGCTGA	ACGGCAAGCC	GTTGCTGATT	CGAGGCGTTA	2950
ACCGTCACGA	GCATCATCCT	CTGCATGGTC	AGGTCATGGA	TGAGCAGACC	3000
ATGGTGCAGG	ATATCCTGCT	GATGAAGCAG	AACAACTTTA	ACGCCGTGCG	3050
CTGTTCGCAT	TATCCGAACC	ATCCGCTGTG	GTACACGCTG	TGCGACCGCT	3100
ACGGCCTGTA	TGTGGTGGAT	GAAGCCAATA	TTGAAACCCA	CGGCATGGTG	3150

69

CCAATGAATC GTCTGACCGA TGATCCGCGC TGGCTACCGG CGATGAGCGA 3200 ACGCGTAACG CGAATGGTGC AGCGCGATCG TAATCACCCG AGTGTGATCA 3250 TCTGCTCGCT GGGGAATGAA TCAGGCCACG GCGCTAATCA CGACGCGCTG 3300 TATCGCTGGA TCAAATCTGT CGATCCTTCC CGCCCGGTGC AGTATGAAGG 3350 CGGCGGAGCC GACACCACGG CCACCGATAT TATTTGCCCG ATGTACGCGC 3400 GCGTGGATGA AGACCAGCCC TTCCCGGCTG TGCCGAAATG GTCCATCAAA 3450 AAATGGCTTT CGCTACCTGG AGAGACGCGC CCGCTGATCC TTTGCGAATA 3500 CGCCCACGCG ATGGGTAACA GTCTTGGCGG TTTCGCTAAA TACTGGCAGG 3550 CGTTTCGTCA GTATCCCCGT TTACAGGGCG GCTTCGTCTG GGACTGGGTG 3600 GATCAGTCGC TGATTAAATA TGATGAAAAC GGCAACCCGT GGTCGGCTTA 3650 CGGCGGTGAT TTTGGCGATA CGCCGAACGA TCGCCAGTTC TGTATGAACG 3700 GTCTGGTCTT TGCCGACCGC ACGCCGCATC CAGCGCTGAC GGAAGCAAAA 3750 CACCAGCAGC AGTTTTTCCA GTTCCGTTTA TCCGGGCAAA CCATCGAAGT 3800 GACCAGCGAA TACCTGTTCC GTCATAGCGA TAACGAGCTC CTGCACTGGA 3850 TGGTGGCGCT GGATGGTAAG CCGCTGGCAA GCGGTGAAGT GCCTCTGGAT 3900 GTCGCTCCAC AAGGTAAACA GTTGATTGAA CTGCCTGAAC TACCGCAGCC 3950 GGAGAGCGCC GGGCAACTCT GGCTCACAGT ACGCGTAGTG CAACCGAACG 4000 CGACCGCATG GTCAGAAGCC GGGCACATCA GCGCCTGGCA GCAGTGGCGT 4050 CTGGCGGAAA ACCTCAGTGT GACGCTCCCC GCCGCGTCCC ACGCCATCCC 4100 GCATCTGACC ACCAGCGAAA TGGATTTTTG CATCGAGCTG GGTAATAAGC 4150 GTTGGCAATT TAACCGCCAG TCAGGCTTTC TTTCACAGAT GTGGATTGGC 4200 GATAAAAAC AACTGCTGAC GCCGCTGCGC GATCAGTTCA CCCGTGCACC 4250 GCTGGATAAC GACATTGGCG TAAGTGAAGC GACCCGCATT GACCCTAACG 4300 CCTGGGTCGA ACGCTGGAAG GCGGCGGGCC ATTACCAGGC CGAAGCAGCG 4350 TTGTTGCAGT GCACGGCAGA TACACTTGCT GATGCGGTGC TGATTACGAC CGCTCACGCG TGGCAGCATC AGGGGAAAAC CTTATTTATC AGCCGGAAAA 4450

PCT/US95/14017

WO 96/13597

3.

CCTACCGGAT	TGATGGTAGT	GGTCAAATGG	CGATTACCGT	TGATGTTGAA	4500
GTGGCGAGCG	ATACACCGCA	TCCGGCGCGG	ATTGGCCTGA	ACTGCCAGCT	4550
GGCGCAGGTA	GCAGAGCGGG	TAAACTGGCT	CGGATTAGGG	CCGCAAGAAA	4600
ACTATCCCGA	CCGCCTTACT	GCCGCCTGTT	TTGACCGCTG	GGATCTGCCA	4650
TTGTCAGACA	TGTATACCCC	GTACGTCTTC	CCGAGCGAAA	ACGGTCTGCG	4700
CTGCGGGACG	CGCGAATTGA	ATTATGGCCC	ACACCAGTGG	CGCGGCGACT	4750
TCCAGTTCAA	CATCAGCCGC	TACAGTCAAC	AGCAACTGAT	GGAAACCAGC	4800
CATCGCCATC	TGCTGCACGC	GGAAGAAGGC	ACATGGCTGA	ATATCGACGG	4850
TTTCCATATG	GGGATTGGTG	GCGACGACTC	CTGGAGCCCG	TCAGTATCGG	4900
CGGAATTACA	GCTGAGCGCC	GGTCGCTACC	ATTACCAGTT	GGTCTGGTGT	4950
САААААТААТ	AATAACCGGG	CAGGCCATGT	CTGCCCGTAT	TTCGCGTAAG	5000
GAAATCCATT	ATGTACTATT	TAAAAAACAC	AAACTTTTGG	ATGTTCGGTT	5050
TATTCTTTTT	CTTTTACTTT	TTTATCATGG	GAGCCTACTT	CCCGTTTTTC	5100
CCGATTTGGC	TACATGACAT	CAACCATATC	AGCAAAAGTG	ATACGGGTAT	5150
TATTTTGCC	GCTATTTCTC	TGTTCTCGCT	ATTATTCCAA	CCGCTGTTTG	5200
GTCTGCTTTC	TGACAAACTC	GGCCTCGACT	CTAGGCGGCC	GCGGGGATCC	5250
AGACATGATA	AGATACATTG	ATGAGTTTGG	ACAAACCACA	ACTAGAATGC	5300
AGTGAAAAA	ATGCTTTATI	TGTGAAATTI	GTGATGCTAT	TGCTTTATTT	5350
GTAACCATTA	TAAGCTGCAA	TAAACAAGTI	' AACAACAACA	ATTGCATTCA	5400
TTTTATGTTT	CAGGTTCAGG	GGGAGGTGTG	GGAGGTTTTT	TCGGATCCTC	5450
TAGAGTCGAC	GACGCGAGGC	TGGATGGCCT	TCCCCATTAT	GATTCTTCTC	5500
GCTTCCGGCG	GCATCGGGAT	GCCGCGTTC	CAGGCCATGC	TGTCCAGGCA	5550
GGTAGATGAC	GACCATCAGO	GACAGCTTCA	A AGGATCGCTC	CCCCCTCTTA	5600
CCAGCCTAAC	TTCGATCACT	GGACCGCTGA	A TCGTCACGGC	GATTTATGCC	5650
GCCTCGGCGA	GCACATGGA	A CGGGTTGGC	A TGGATTGTAG	GCGCCGCCCT	5700
ATACCTTGTC	TGCCTCCCC	G CGTTGCGTC	G CGGTGCATGO	AGCCGGGCCA	5750

PCT/US95/14017 WO 96/13597

CCTCGACCTG	AATGGAAGCC	GGCGGCACCT	CGCTAACGGA	TTCACCACTC	5800
CAAGAATTGG	AGCCAATCAA	TTCTTGCGGA	GAACTGTGAA	TGCGCAAACC	5850
AACCCTTGGC	AGAACATATC	CATCGCGTCC	GCCATCTCCA	GCAGCCGCAC	5900
GCGGCGCATC	TCGGGCAGCG	TTGGGTCCTG	GJCACGGGTG	CGCATGATCG	5950
TGCTCCTGTC	GTTGAGGACC	CGGCTAGGCT	GGCGGGGTTG	CCTTACTGGT	6000
TAGCAGAATG	AATCACCGAT	ACGCGAGCGA	ACGTGAAGCG	ACTGCTGCTG	6050
CAAAACGTCT	GCGACCTGAG	CAACAACATG	AATGGTCTTC	GGTTTCCGTG	6100
TTTCGTAAAG	TCTGGAAACG	CGGAAGTCAG	CGCCCTGCAC	CATTATGTTC	6150
CGGATCTGCA	TCGCAGGATG	CTGCTGGCTA	CCCTGTGGAA	CACCTACATC	6200
TGTATTAACG	AAGCCTTTCT	CAATGCTCAC	GCTGTAGGTA	TCTCAGTTCG	6250
GTGTAGGTCG	TTCGCTCCAA	GCTGGGCTGT	GTGCACGAAC	CCCCGTTCA	6300
GCCCGACCGC	TGCGCCTTAT	CCGGTAACTA	TCGTCTTGAG	TCCAACCCGG	6350
TAAGACACGA	CTTATCGCCA	CTGGCAGCAG	CCACTGGTAA	CAGGATTAGC	6400
AGAGCGAGGT	ATGTAGGCGG	TGCTACAGAG	TTCTTGAAGT	GGTGGCCTAA	6450
CTACGGCTAC	ACTAGAAGGA	CAGTATTTGG	TATCTGCGCT	CTGCTGAAGC	6500
CAGTTACCTT	CGGAAAAAGA	GTTGGTAGCT	CTTGATCCGG	CAAACAAACC	6550
ACCGCTGGTA	GCGGTGGTTT	TTTTGTTTGC	AAGCAGCAGA	TTACGCGCAG	6600
AAAAAAAGGA	TCTCAAGAAG	ATCCTTTGAT	CTTTTCTACG	GGGTCTGACG	6650
CTCAGTGGAA	CGAAAACTCA	CGTTAAGGGA	TTTTGGTCAT	GAGATTATCA	6700
AAAAGGATCT	TCACCTAGAT	CCTTTTAAAT	TAAAAATGAA	GTTTTAAATC	6750
AATCTAAAGT	ATATATGAGT	AAACTTGGTC	TGACAGTTAC	CAATGCTTAA	6800
TCAGTGAGGC	ACCTATCTCA	GCGATCTGTC	TATTTCGTTC	ATCCATAGTT	6850
GCCTGACTCC	CCGTCGTGTA	GATAACTACG	ATACGGGAGG	GCTTACCATC	6900
TGGCCCCAGT	GCTGCAATGA	TACCGCGAGA	CCCACGCTCA	CCGGCTCCAG	6950
ATTTATCAGC	AATAAACCAG	CCAGCCGGAA	GGGCCGAGCG	CAGAAGTGGT	7000
CCTGCAACTT	TATCCGCCTC	CATCCAGTCT	ATTAATTGTT	GCCGGGAAGC	7050

· ; '

72

TAGAGTAAGT	AGTTCGCCAG	TTAATAGTTT	GCGCAACGTT	GTTGCCATTG	7100
CTGCAGGCAT	CGTGGTGTCA	CGCTCGTCGT	TTGGTATGGC	TTCATTCAGC	7150
TCCGGTTCCC	AACGATCAAG	GCGAGTTACA	TCATCCCCCA	TGTTGTGCAA	7200
AAAAGCGGTT	AGCTCCTTCG	GTCCTCCGAT	CGITGTCAGA	AGTAAGTTGG	7250
CCGCAGTGTT	ATCACTCATG	GTTATGCCAG	CACTGCATAA	TTCTCTTACT	7300
GTCATGCCAT	CCGTAAGATG	CTTTTCTGTG	ACTGGTGAGT	ACTCAACCAA	7350
GTCATTCTGA	GAATAGTGTA	TGCGGCGACC	GAGTTGCTCT	TGCCCGGCGT	7400
CAACACGGGA	TAATACCGCG	CCACATAGCA	CAACTTTAAA	AGTGCTCATC	7450
ATTGGAAAAC	GTTCTTCGGG	GCGAAAACTC	TCAAGGATCT	TACCGCTGTT	7500
GAGATCCAGT	TCGATGTAAC	CCACTCGTGC	ACCCAACTGA	TCTTCAGCAT	7550
CTTTTACTTT	CACCAGCGTT	TCTGGGTGAG	CAAAAACAGG	AAGGCAAAAT	7600
GCCGCAAAAA	AGGGAATAAG	GGCGACACGG	AAATGTTGAA	TACTCATACT	7650
CTTCCTTTTT	CAATATTATT	GAAGCATTTA	TCAGGGTTAT	TGTCTCATGA	7700
GCGGATACAT	ATTTGAATGT	ATTTAGAAAA	ATAAACAAAT	AGGGGTTCCG	7750
CGCACATTTC	CCCGAAAAGT	GCCACCTGAC	GTCTAAGAAA	CCATTATTAT	7800
CATGACATTA	АССТАТАААА	ATAGGCGTAT	CACGAGGCCC	TTTCGTCTTC	7850
AA					7852

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9972 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TCTTCCGCTT CCTCGCTCAC TGACTCGCTG CGCTCGGTCG TTCGGCTGCG 50

GCGAGCGGTA TCAGCTCACT CAAAGGCGGT AATACGGTTA TCCACAGAAT 100

CAGGGGATAA	CGCAGGAAAG	AACATGTGAG	CAAAAGGCCA	GCAAAAGGCC	150
AGGAACCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC	200
CCCTGACGAG	CATCACAAAA	ATCGACGCTC	AAGTCAGAGG	TGGCGAAACC	250
CGACAGGACT	ATAAAGATAC	CAGGCGTTTC	CCCTGGAAG	CTCCCTCGTG	300
CGCTCTCCTG	TTCCGACCCT	GCCGCTTACC	GGATACCTGT	CCGCCTTTCT	350
CCCTTCGGGA	AGCGTGGCGC	TTTCTCATAG	CTCACGCTGT	AGGTATCTCA	400
GTTCGGTGTA	GGTCGTTCGC	TCCAAGCTGG	GCTGTGTGCA	CGAACCCCCC	450
GTTCAGCCCG	ACCGCTGCGC	CTTATCCGGT	AACTATCGTC	TTGAGTCCAA	500
CCCGGTAAGA	CACGACTTAT	CGCCACTGGC	AGCAGCCACT	GGTAACAGGA	550
TTAGCAGAGC	GAGGTATGTA	GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	600
CCTAACTACG	GCTACACTAG	AAGAACAGTA	TTTGGTATCT	GCGCTCTGCT	650
GAAGCCAGTT	ACCTTCGGAA	AAAGAGTTGG	TAGCTCTTGA	TCCGGCAAAC	700
AAACCACCGC	TGGTAGCGGT	GGTTTTTTTG	TTTGCAAGCA	GCAGATTACG	750
CGCAGAAAA	AAGGATCTCA	AGAAGATCCT	TTGATCTTTT	CTACGGGGTC	800
TGACGCTCAG	TGGAACGAAA	ACTCACGTTA	AGGGATTTTG	GTCATGAGAT	850
TATCAAAAAG	GATCTTCACC	TAGATCCTTT	TAAATTAAAA	ATGAAGTTTT	900
AAATCAATCT	AAAGTATATA	TGAGTAAACT	TGGTCTGACA	GTTACCAATG	950
CTTAATCAGT	GAGGCACCTA	TCTCAGCGAT	CTGTCTATTT	CGTTCATCCA	1000
TAGTTGCCTG	ACTCCCCGTC	GTGTAGATAA	CTACGATACG	GGAGGGCTTA	1050
CCATCTGGCC	CCAGTGCTGC	AATGATACCG	CCAGACCCAC	GCTCACCGGC	1100
TCCAGATTTA	TCAGCAATAA	ACCAGCCAGC	CGGAAGGGCC	GAGCGCAGAA	1150
GTGGTCCTGC	AACTTTATCC	GCCTCCATCC	AGTCTATTAA	TTGTTGCCGG	1200
GAAGCTAGAG	TAAGTAGTTC	GCCAGTTAAT	AGTTTGCGCA	ACGTTGTTGC	1250
CATTGCTACA	GGCATCGTGG	TGTCACGCTC	GTCGTTTGGT	ATGGCTTCAT	1300
TCAGCTCCGC	TTCCCAACGA	TCAAGGCGAG	TTACATGATC	CCCCATGTTG	1350
TGCAAAAAAG	CGGTTAGCTC	CTTCGGTCCT	CCGATCGTTG	TCAGAAGTAA	1400

 $Z^{r_{i+1}} = Y^{r_{i}}$

					- -
GTTGGCCGCA	GTGTTATCAC	TCATGGTTAT	GGCAGCACTG	CATAATTCTC	1450
TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	CTGTGACTGG	TGAGTACTCA	1500
ACCAAGTCAT	TCTGAGAATA	GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	1550
GGCGTCAATA	CGGGATAATA	CCGCGCCACA	TAGCAGAACT	TTAAAAGTGC	1600
TCATCATTGG	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	1650
CTGTTGAGAT	CCAGTTCGAT	GTAACCCACT	CGTGCACCCA	ACTGATCTTC	1700
AGCATCTTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	ACAGGAAGGC	1750
AAAATGCCGC	AAAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	1800
ATACTCTTCC	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	1850
CATGAGCGGA	TACATATTTG	AATGTATTTA	GAAAAATAAA	CAAATAGGGG	1900
TTCCGCGCAC	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCTA	AGAAACCATT	1950
ATTATCATGA	CATTAACCTA	TAAAAATAGG	CGTATCACGA	GGCCCTTTCG	2000
TCTCGCGCGT	TTCGGTGATG	ACGGTGAAAA	CCTCTGACAC	ATGCAGCTCC	2050
CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	2100
CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	TGTCGGGGCT	GGCTTAACTA	2150
TGCGGCATCA	GAGCAGATTG	TACTGAGAGT	GCACCATAAA	ATTGTAAACG	2200
TTAATATTT	GTTAAAATTC	GCGTTAAATT	TTTGTTAAAT	CAGCTCATTT	2250
TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	CCTTATAAAT	CAAAAGAATA	2300
GCCCGAGATA	GGGTTGAGTG	TTGTTCCAGT	TTGGAACAAG	AGTCCACTAT	2350
TAAAGAACGT	GGACTCCAAC	GTCAAAGGGC	GAAAAACCGT	CTATCAGGGC	2400
GATGGCCCAC	TACGTGAACC	ATCACCCAAA	TCAAGTTTTT	TGGGGTCGAG	2450
GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	AGGGAGCCCC	CGATTTAGAG	2500
CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	2550
AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	2600
AACCACCACA	CCCGCCGCGC	TTAATGCGCC	GCTACAGGGC	GCGTACTATG	2650
GTTGCTTTGA	CGTATGCGGT	GTGAAATACC	GCACAGATGC	GTAAGGAGAA	2700

7	AATACCGCAT	CAGGCGCCAT	TCGCCATTCA	GGCTGCGCAA	CTGTTGGGAA	2750
C	GGCGATCGG	TGCGGGCCTC	TTCGCTATTA	CGCCAGCTGG	CGAAAGGGGG	2800
7	ATGTGCTGCA	AGGCGATTAA	GTTGGGTAAC	GCCAGGGTTT	TCCCAGTCAC	2850
G	SACGTTGTAA	AACGACGGCC	AGTGCCAAGC	Tranggtgca	CGGCCCACGT	2900
G	GCCACTAGT	ACTTCTCGAG	CTCTGTACAT	GTCCGCGGTC	GCGACGTACG	2950
C	CGTATCGATG	GCGCCAGCTG	CAGGCGGCCG	CCATATGCAT	CCTAGGCCTA	3000
7	TAATATTCC	GGAGTATACG	TAGCCGGCTA	ACGTTAACAA	CCGGTACCTC	3050
1	AGAACTATA	GCTAGCCAAT	TCCATCATCA	ATAATATACC	TTATTTTGGA	3100
1	TGAAGCCAA	TATGATAATG	AGGGGGTGGA	GTTTGTGACG	TGGCGCGGG	3150
C	GTGGGAACG	GGGCGGGTGA	CGTAGGTTTT	AGGGCGGAGT	AACTTGTATG	3200
1	GTTGGGAAT	TGTAGTTTTC	TTAAAATGGG	AAGTTACGTA	ACGTGGGAAA	3250
A	CGGAAGTGA	CGATTTGAGG	AAGTTGTGGG	TTTTTTGGCT	TTCGTTTCTC	3300
G	GCGTAGGTT	CGCGTGCGGT	TTTCTGGGTG	TTTTTTGTGG	ACTTTAACCG	3350
1	TACGTCATT	TTTTAGTCCT	ATATATACTC	GCTCTGCACT	TGGCCCTTTT	3400
1	TACACTGTG	ACTGATTGAG	CTGGTGCCGT	GTCGAGTGGT	GTTTTTTAA	3450
1	AGGTTTTCT	TTTTTACTGG	TAAGGCTGAC	TGTTAGGCTG	CCGCTGTGAA	3500
G	CGCTGTATG	TTGTTCTGGA	GCGGGAGGGT	GCTATTTTGC	CTAGGCAGGA	3550
G	GGTTTTTCA	GGTGTTTATG	TGTTTTTCTC	TCCTATTAAT	TTTGTTATAC	3600
C	TCCTATGGG	GGCTGTAATG	TTGTCTCTAC	GCCTGCGGGT	ATGTATTCCC	3650
C	CCAAGCTTG	CATGCCTGCA	GGTCGACTCT	AGAGGATCCG	AAAAAACCTC	3700
C	CACACCTCC	CCCTGAACCT	GAAACATAAA	ATGAATGCAA	TTGTTGTTGT	3750
T	AACTTGTTT	ATTGCAGCTT	ATAATGGTTA	CAAATAAAGC	AATAGCATCA	3800
C	AAATTTCAC	AAATAAAGCA	TTTTTTTCAC	TGCATTCTAG	TTGTGGTTTG	3850
T	CCAAACTCA	TCAATGTATC	TTATCATGTC	TGGATCCCCC	TAGCTTGCCA	3900
A	ACCTACAGG	TGGGGTCTTT	CATTCCCCCC	TTTTTCTGGA	GACTAAATAA	3950
A	ATCTTTTAT	TTTATCTATG	GCTCGTACTC	TATAGGCTTC	AGCTGGTGAT	4000

 $\mathcal{F}^{i} = \{s^{i}\}$

ATTGTTGAGT	CAAAACTAGA	GCCTGGACCA	CTGATATCCT	GTCTTTAACA	4050
AATTGGACTA	ATCGCGGGAT	CAGCCAATTC	CATGAGCAAA	TGTCCCATGT	4100
CAACATTTAT	GCTGCTCTCT	AAAGCCTTGT	ATCTTGCATC	TCTTCTTCTG	4150
TCTCCTCTTT	CAGAGCAGCA	ATCTGGGGCT	TAGACTTGCA	CTTGCTTGAG	4200
TTCCGGTGGG	GAAAGAGCTT	CACCCTGTCG	GAGGGGCTGA	TGGCTTGCCG	4250
GAAGAGGCTC	CTCTCGTTCA	GCAGTTTCTG	GATGGAATCG	TACTGCCGCA	4300
CTTTGTTCTC	TTCTATGACC	AAAAATTGTT	GGCATTCCAG	CATTGCTTCT	4350
ATCCTGTGTT	CACAGAGAAT	TACTGTGCAA	TCAGCAAATG	CTTGTTTTAG	4400
AGTTCTTCTA	ATTATTTGGT	ATGTTACTGG	ATCCAAATGA	GCACTGGGTT	4450
CATCAAGCAG	CAAGATCTTC	GCCTTACTGA	GAACAGATCT	AGCCAAGCAC	4500
ATCAACTGCT	TGTGGCCATG	GCTTAGGACA	CAGCCCCCAT	CCACAAGGAC	4550
AAAGTCAAGC	TTCCCAGGAA	ACTGTTCTAT	CACAGATCTG	AGCCCAACCT	4600
CATCTGCAAC	TTTCCATATT	TCTTGATCAC	TCCACTGTTC	ATAGGGATCC	4650
AAGTTTTTTC	TAAATGTTCC	AGAAAAAATA	AATACTTTCT	GTGGTATCAC	4700
TCCAAAGGCT	TTCCTCCACT	GTTGCAAAGT	TATTGAATCC	CAAGACACAC	4750
CATCGATCTG	GATTTCTCCT	TCAGTGTTCA	GTAGTCTCAA	AAAAGCTGAT	4800
AACAAAGTAC	TCTTCCCTGA	TCCAGTTCTT	CCCAAGAGGC	CCACCCTCTG	4850
GCCAGGACTT	ATTGAGAAGG	AAATGTTCTC	TAATATGGCA	TTTCCACCTT	4900
CTGTGTATTT	TGCTGTGAGA	TCTTTGACAG	TCATTTGGCC	CCCTGAGGGC	4950
CAGATGTCAT	CTTTCTTCAC	GTGTGAATTC	TCAATAATCA	TAACTTTCGA	5000
GAGTTGGCCA	TTCTTGTATG	GTTTGGTTGA	CTTGGTAGGT	TTACCTTCTG	5050
TTGGCATGTC	AATGAACTTA	AAGACTCGGC	TCACAGATCG	CATCAAGCTA	5100
TCCACATCTA	TGCTGGAGTT	TACAGCCCAC	TGCAATGTAC	TCATGATATT	5150
CATGGCTAAA	GTCAGGATAA	TACCAACTCI	TCCTTCTCCT	TCTCCTGTTG	5200
TTAAAATGGA	AATGAAGGTA	ACAGCAATGA	AGAAGATGAC	AAAAATCATT	5250
TCTATTCTCA	TTTGGAACCA	GCGCAGTGTI	GACAGGTACA	AGAACCAGTT	5300

GGCAGTATGI	AAATTCAGAG	CTTTGTGGAA	CAGAGTTTCA	AAGTAAGGCT	5350
GCCGTCCGAA	GGCACGAAGT	GTCCATAGTC	CTTTTAAGCT	TGTAACAAGA	5400
TGAGTGAAAA	TTGGACTCCT	GCCTTCAGAT	TCCAGTTGTT	TGAGTTGCTG	5450
TGAGGTTTGG	AGGAAATATG	CTCTCAACAT	AATAAAAGCC	ACTATCACTG	5500
GCACTGTTGC	AACAAAGATG	TAGGGTTGTA	AAACTGCGAC	AACTGCTATA	5550
GCTCCAATCA	CAATTAATAA	CAACTGGATG	AAGTCAAATA	TGGTAAGAGG	5600
CAGAAGGTCA	TCCAAAATTG	CTATATCTTT	GGAGAATCTA	TTAAGAATCC	5650
CACCTGCTTT	CAACGTGTTG	AGGGTTGACA	TAGGTGCTTG	AAGAACAGAA	5700
TGTAACATTT	TGTGGTGTAA	AATTTTCGAC	ACTGTGATTA	GAGTATGCAC	5750
CAGTGGTAGA	CCTCTGAAGA	ATCCCATAGC	AAGCAAAGTG	TCGGCTACTC	5800
CCACGTAAAT	GTAAAACACA	TAATACGAAC	TGGTGCTGGT	GATAATCACT	5850
GCATAGCTGT	TATTTCTACT	ATGAGTACTA	TTCCCTTTGT	CTTGAAGAGG	5900
AGTGTTTCCA	AGGAGCCACA	GCACAACCAA	AGAAGCAGCC	ACCTCTGCCA	5950
GAAAAATTAC	TAAGCACCAA	ATTAGCACAA	AAATTAAGCT	CTTGTGGACA	6000
GTAATATATC	GAAGGTATGT	GTTCCATGTA	GTCACTGCTG	GTATGCTCTC	6050
CATATCATCA	AAAAAGCACT	CCTTTAAGTC	TTCTTCGTTA	ATTTCTTCAC	6100
TTATTTCCAA	GCCAGTTTCT	TGAGATAACC	TTCTTGAATA	TATATCCAGT	6150
TCAGTCAAGT	TTGCCTGAGG	GGCCAGTGAC	ACTTTTCGTG	TGGATGCTGT	6200
TGTCTTTCGG	TGAATGTTCT	GACCTTGGTT	AACTGAGTGT	GTCATCAGGT	6250
TCAGGACAGA	CTGCCTCCTT	CGTGCCTGAA	GCGTGGGGCC	AGTGCTGATC	6300
ACGCTGATGC	GAGGCAGTAT	CGCCTCTCCC	TGCTCAGAAT	CTGGTACTAA	6350
GGACAGCCTT	CTCTCTAAAG	GCTCATCAGA	ATCCTCTTCG	ATGCCATTCA	6400
TTTGTAAGGG	AGTCTTTTGC	ACAATGGAAA	ATTTTCGTAT	AGAGTTGATT	6450
GGATTGAGAA	TAGAATTCTT	CCTTTTTTCC	CCAAACTCTC	CAGTCTGTTT	6500
AAAAGATTGT	TTTTTTGTTT	CTGTCCAGGA	GACAGGAGCA	TCTCCTTCTA	6550
ATGAGAAACG	GTGTAAGGTC	TCAGTTAGGA	TTGAATTTCT	TCTTTCTGCA	6600

PCT/US95/14017

WO 96/13597

		•			
CTAAATTGGT	CGAAAGAATC	ACATCCCATG	AGTTTTGAGC	TAAAGTCTGG	6650
CTGTAGATTT	TGGAGTTCTG	AAAATGTCCC	ATAAAAATAG	CTGCTACCTT	6700
CATGCAAAAT	TAATATTTTG	TCAGCTTTCT	TTAAATGTTC	CATTTTAGAA	6750
GTGACCAAAA	TCCTAGTTTT	GTTAGCCATC	AGTTTACAGA	CACAGCTTTC	6800
AAATATTTCT	TTTTCTGTTA	AAACATCTAG	GTATCCAAAA	GGAGAGTCTA	6850
ATAAATACAA	ATCAGCATCT	TTGTATACTG	CTCTTGCTAA	AGAAATTCTT	6900
GCTCGTTGAC	CTCCACTCAG	TGTGATTCCA	CCTTCTCCAA	GAACTATATT	6950
GTCTTTCTCT	GCAAACTTGG	AGATGTCCTC	TTCTAGTTGG	CATGCTTTGA	7000
TGACGCTTCT	GTATCTATAT	TCATCATAGG	AAACACCAAA	GATGATATTT	7050
TCTTTAATGG	TGCCAGGCAT	AATCCAGGAA	AACTGAGAAC	AGAATGAAAT	7100
TCTTCCACTG	TGCTTAATTT	TACCCTCTGA	AGGCTCCAGT	TCTCCCATAA	7150
TCATCATTAG	AAGTGAAGTC	TTGCCTGCTC	CAGTGGATCC	AGCAACCGCC	7200
AACAACTGTC	CTCTTTCTAT	CTTGAAATTA	ATATCTTTCA	GGACAGGAGT	7250
ACCAAGAAGT	GAGAAATTAC	TGAAGAAGAG	GCTGTCATCA	CCATTAGAAG	7300
TTTTTCTATT	GTTATTGTTT	TGTTTTGCTT	TCTCAAATAA	TTCCCCAAAT	7350
CCCTCCTCCC	AGAAGGCTGT	TACATTCTCC	ATCACTACTT	CTGTAGTCGT	7400
TAAGTTATAT	TCCAATGTCT	TATATTCTTG	CTTTTGTAAG	AAATCCTGTA	7450
TTTTGTTTAT	TGCTCCAAGA	GAGTCATACC	ATGTTTGTAC	AGCCCAGGGA	7500
AATTGCCGAG	TGACCGCCAT	GCGCAGAACA	ATGCAGAATG	AGATGGTGGT	7550
GAATATTTTC	CGGAGGATGA	TTCCTTTGAT	TAGTGCATAG	GGAAGCACAG	7600
ATAAAAACAC	CACAAAGAAC	CCTGAGAAGA	AGAAGGCTGA	GCTATTGAAG	7650
TATCTCACAT	AGGCTGCCTI	CCGAGTCAGI	TTCAGTTCTG	TTTGTCTTAA	7700
GTTTTCAATC	ATTTTTTCCA	TTGCTTCTTC	CCAGCAGTAT	GCCTTAACAG	7750
ATTGGATGTI	CTCGATCATT	TCTGAGGTAA	TCACAAGTCT	TTCACTGATC	7800
TTCCCAGCTC	TCTGATCTCT	GTACTTCATO	C ATCATTCTCC	CTAGCCCAGC	7850
CTGAAAAAGG	GCAAGGACTA	TCAGGAAAC	C AAGTCCACAG	AAGGCAGACG	7900

79

CCTGTAACAA CTCCCAGATT AGCCCCATGA GGAGTGCCAC TTGCAAAGGA 7950 GCGATCCACA CGAAATGTGC CAATGCAAGT CCTTCATCAA ATTTGTTCAG 8000 GTTGTTGGAA AGGAGACTAA CAAGTTGTCC AATACTTATT TTATCTAGAA 8050 CACGGCTTGA CAGCTTTAAA GTCTTCTTAT AAATCAAACT AAACATAGCT 8100 ATTCTCATCT GCATTCCAAT GTGATGAAGG CCAAAAATGG CTGGGTGTAG 8150 GAGCAGTGTC CTCACAATAA AGAGAAGGCA TAAGCCTATG CCTAGATAAA 8200 TCGCGATAGA GCGTTCCTCC TTGTTATCCG GGTCATAGGA AGCTATGATT 8250 CTTCCCAGTA AGAGAGGCTG TACTGCTTTG GTGACTTCCC CTAAATATAA 8300 AAAGATTCCA TAGAACATAA ATCTCCAGAA AAAACATCGC CGAAGGGCAT 8350 TAATGAGTTT AGGATTTTTC TTTGAAGCCA GCTCTCTATC CCATTCTCTT 8400 TCCAATTTTT CAGATAGATT GTCAGCAGAA TCAACAGAAG GGATTTGGTA 8450 TATGTCTGAC AATTCCAGGC GCTGTCTGTA TCCTTTCCTC AAAATTGGTC 8500 TGGTCCAGCT GAAAAAAGT TTGGAGACAA CGCTGGCCTT TTCCAGAGGC 8550 GACCTCTGCA TGGTCTCTCG GGCGCTGGGG TCCCTGCTAG GGCCGTCTGG 8600 GCTCAAGCTC CTAATGCCAA AGGAATTCCT GCAGCCCGGG GGATCCACTA 8650 GTTCTAGAGC GGCCGCCACC GCGGTGGCTG ATCCCGCTCC CGCCCGCCGC 8700 GCGCTTCGCT TTTTATAGGG CCGCCGCCGC CGCCGCCTCG CCATAAAAGG 8750 AAACTTTCGG AGCGCGCCGC TCTGATTGGC TGCCGCCGCA CCTCTCCGCC 8800 TCGCCCCGCC CCGCCCCTCG CCCCGCCCCG CCCCGCCTGG CGCGCCCCC 8850 CCCCCCCC CCGCCCCAT CGCTGCACAA AATAATTAAA AAATAAATAA 8900 ATACAAAATT GGGGGTGGGG AGGGGGGGGA GATGGGGAGA GTGAAGCAGA 8950 ACGTGGCCTC GAGTAGATGT ACTGCCAAGT AGGAAAGTCC CATAAGGTCA 9000 TGTACTGGGC ATAATGCCAG GCGGGCCATT TACCGTCATT GACGTCAATA 9050 GGGGGCGTAC TTGGCATATG ATACACTTGA TGTACTGCCA AGTGGGCAGT 9100 TTACCGTAAA TACTCCACCC ATTGACGTCA ATGGAAAGTC CCTATTGGCG 9150 TTACTATGGG AACATACGTC ATTATTGACG TCAATGGGCG GGGGTCGTTG 9200

80

GGCG	GTCAGC	CAGGCGGGCC	ATTTACCGTA	AGTTATGTAA	CGACCTGCAG	9250
GCTG	ATCTCC	CTAGACAAAT	ATTACGCGCT	ATGAGTAACA	CAAAATTATT	9300
CAGA:	TTTCAC	TTCCTCTTAT	TCAGTTTTCC	CGCGAAAATG	GCCAAATCTT	9350
ACTC	GGTTAC	GCCCAAATTT	ACTACAACAT	CCUCCTAAAA	CCGCGCGAAA	9400
ATTG!	TCACTT	CCTGTGTACA	CCGGCGCACA	CCAAAAACGT	CACTTTTGCC	9450
ACAT	CCGTCG	CTTACATGTG	TTCCGCCACA	CTTGCAACAT	CACACTTCCG	9500
CCAC	ACTACT	ACGTCACCCG	CCCCGTTCCC	ACGCCCCGCG	CCACGTCACA	9550
AACT	CCACCC	CCTCATTATC	ATATTGGCTT	CAATCCAAAA	TAAGGTATAT	9600
TATT	GATGAT	GCTAGCATGC	GCAAATTTAA	AGCGCTGATA	TCGATCGCGC	9650
GCAG.	ATCTGT	CATGATGATC	ATTGCAATTG	GATCCATATA	TAGGGCCCGG	9700
GTTA	TAATTA	CCTCAGGTCG	ACGTCCCATG	GCCATTCGAA	TTCGTAATCA	9750
TGGT	CATAGC	TGTTTCCTGT	GTGAAATTGT	TATCCGCTCA	CAATTCCACA	9800
CAAC	ATACGA	GCCGGAAGCA	TAAAGTGTAA	AGCCTGGGGT	GCCTAATGAG	9850
TGAG	CTAACT	CACATTAATT	GCGTTGCGCT	CACTGCCCGC	TTTCCAGTCG	9900
GGAA	ACCTGT	CGTGCCAGCT	GCATTAATGA	ATCGGCCAAC	GCGCGGGGAG	9950
AGGC	GGTTTG	CGTATTGGGC	GC			9972

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

		0.7	
(2)	INFO	RMATION FOR SEQ ID NO:5:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown	
	(i i)	MOLECULE TYPE: DNA (genomic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:	
AGT	AAGAT	TT GGCC	14
(2)	INFO	RMATION FOR SEQ ID NO:6:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown	
	(ii)	MOLECULE TYPE: DNA (genomic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	AGT	GAAATCT GAAT	14
(2)	INFO	RMATION FOR SEQ ID NO:7:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown	
	(ii)	MOLECULE TYPE: DNA (genomic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	GAA'	PAATTTT GTGT	14
(2)	INFO	RMATION FOR SEQ ID NO:8:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown	

3" 3"

72	
(ii) MOLECULE TYFE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CGTAATATTT GTCT	14
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 8 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
(D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
WANWTTTG	8
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19307 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
CCAATTCCAT CATCAATAAT ATACCTTATT TTGGATTGAA GCCAATATGA	50
TAATGAGGGG GTGGAGTTTG TGACGTGGCG CGGGGCGTGG GAACGGGGCG	100
GGTGACGTAG GTTTTAGGGC GGAGTAACTT GTATGTGTTG GGAATTGTAG	150
TTTTCTTAAA ATGGGAAGTT ACGTAACGTG GGAAAACGGA AGTGACGATT	200
TGAGGAAGTT GTGGGTTTTT TGGCTTTCGT TTCTGGGCGT AGGTTCGCGT	250
GCGGTTTTCT GGGTGTTTTT TGTGGACTTT AACCGTTACG TCATTTTTTA	300
GTCCTATATA TACTCGCTCT GCACTTGGCC CTTTTTTACA CTGTGACTGA	350
TTGAGCTGGT GCCGTGTCGA GTGGTGTTTT TTTAATAGGT TTTCTTTTTT	400

ACTGGTAAGG	CTGACTGTTA	GGCTGCCGCT	GTGAAGCGCT	GTATGTTGTT	450
CTGGAGCGGG	AGGGTGCTAT	TTTGCCTAGG	CAGGAGGGTT	TTTCAGGTGT	500
TTATGTGTTT	TTCTCTCCTA	TTAATTTTGT	TATACCTCCT	ATGGGGGCTG	550
TAATGTTGTC	TCTACGCCTG	CGGGTATGTA	T.CCCCCCAA	GCTTGCATGC	600
CTGCAGGTCG	ACTCTAGAGG	ATCCGAAAAA	ACCTCCCACA	CCTCCCCCTG	650
AACCTGAAAC	ATAAAATGAA	TGCAATTGTT	GTTGTTAACT	TGTTTATTGC	700
AGCTTATAAT	GGTTACAAAT	AAAGCAATAG	CATCACAAAT	TTCACAAATA	750
AAGCATTTTT	TTCACTGCAT	TCTAGTTGTG	GTTTGTCCAA	ACTCATCAAT	800
GTATCTTATC	ATGTCTGGAT	CCCCGCGGCC	GCTCTAGAAC	TAGTGGATCC	850
CCCGGGCTGC	AGGAATTCCG	TAACATAACT	GCGTGCTTTA	TTGAGATACA	900
CAGTAAAGCA	GTAATATAAT	ACAATAGTAA	GGCATATATT	TGGTGAAATC	950
TGATATGTTG	TGAAAATGCA	GTAAAACTGA	AGTTTAAAAA	AATAATTAGT	1000
AAATGTTACA	GTGTTGGTGT	TAAAACACAA	TCTATTATGA	TACTCAAGTA	1050
AGAGTCCAGT	ACCTGGAGAC	AATGATGATA	CATGCCATGT	GATGATTATG	1100
CTTCAGTTAC	ACTGATTATG	ATTTACACTT	TAATACTTGA	TGGTTATAAA	1150
GAACATGAAA	TGATGTCCAA	ATTATGCTTA	AAATCAGCAA	TAAAGCTCTC	1200
AGTTTTTATT	CAAATATTTT	GATAGATTCA	CTCCAGAACT	AATATCTAAA	1250
AGATAAAACG	AAAAGATTAA	AACAAAACTA	TGCACTCTAT	CTACCTTGGA	1300
TTTTAGAATG	AAACTTAAAA	CTTCTTAGTA	GGAAAGGAAC	CCCTTGTTTT	1350
AAATCTTGGT	GAAAACAAAT	CCTTGGATAA	AGAAAATGCC	CAGTGCCACA	1400
TAAAGGAGAG	AGAGAGAGAA	AAGCAAGACC	AGAACCAAAT	TTCAATTTGT	1450
TATCTTAGAG	CTTTGGGTTT	TCTTTTGGAA	ATTATAAATG	AAAAAAGGAA	1500
ACTGGTGTCC	ACACAACAGA	CAAGTGGTGA	AGTTGTGAAA	TTAGGTGTGC	1550
ACAATTACTA	GAAACACCCC	AAAACCAAAG	TGAGGTAGAA	ATAGCATGAG	1600
AAGCTGTGTT	TGATGTTAAT	TACAATTAAT	AATGGACAAA	ACCCACTCGC	1650
TAGAAGTTAA	TTACACTTGA	CGTTAGAGGT	AACAGATTTG	CAAAATGATA	1700

84

GGACAGTGAT TTCTATTGAG AGAATGCTCT TTAAATGCTA AGAAGAAGAA 1750 ACTGGCATGA GAGGAGTAAA GCTCTTCCTA GCAGTCCTTA GCTTTCTGTT 1800 1850 GCACTTTTTC TCCTGGTTCA ATGACTTGCA TTTGTTTAGA CATTTCAGCC CGTCAACTAG ACCAGAGAGT TTGGAGACGC TTTTGCTCTC AAAACTTTCC 1900 AACCACTGTG CCTTCTCACC CACAATCCTG TGTGGAGTTA CTTGCAGGGA 1950 2000 AACCAATGCA AAGGAGACAA ATGCAGTTCA TGGGCTTCTG GACTGATATT 2050 CACCAGGGTC ACAATGTGAT TGGGTTACTT TCTTAACAGT AATCCTAAGT CTTGCAGCAT TAAAAAAAA AATCATCACA ATGAAGAAAA AAAAACCCAA 2100 AAAATCTAAA ATCTAAAATT CATCATCATC ATCAACAACA ACAACAACAA 2150 2200 CAACAACAAA ACCACCCACT TCAGGTTGAG TTTATGAAGA GGGCAGAACA 2250 ATTTAGTTGT AATTATAGAG ATGTTTATAT GTATAGTTGT AAATATTCAT CCATTCTTTT ACAGAGTTGT TGCTCCCCTC ATATAAATTG ACTGAGGAGC 2300 2350 CGCAACCTTT AGCTCCTACC ATCTTCCTCC TACTGTCTGG GAGTTAAAAA TGTCATCTGA TGTTCTATTG CAGAAACATC ATTAAATATA ACCCAACAGT 2400 2450 AGGAAGTTGA ATATATCAGC CAACAAATTA CTATGATAGT AAGTCCTGTG TATTCATTCG CATGTTCCTT GAAAAAAATG AATCCTCTAG CTCTCAGTGG 2500 AAAGTTTAAA ACTAGAAACA TCTGGAGCCC TAGACAATAT TTTAGTGTGG 2550 CGGTAGTCTC CTGGCTTTGG GCTCCAGGGA AAATTCACTC TTGCCCAAGC 2600 AGATAAGCCC AGATGACTAG AAGCAATTTC CATTAGGAAG TGGCAAGAAC 2650 2700 ATTTGAAGAA GTAACTTCAT ATCTATTTAT CTATATACCT ATAGTATTTA TATACTTGTA GACATATAGA TGTATAAAAT GAAAGCCCAT AGCCAGCCCC 2750 2800 ACTCAGTCAA CAATTCTCAA AAGAGCAATA TGAAGCAGTC ATTTGGTGGG GTTCGTATGC AAGAAAATAA AAAAACGTCA TGAATTCCAT ATGAATACCA 2850 CGCTAAAGTA ATGCAAAACA ATGTGCTGCC TCAGTGTGTG TGTGTGTGTG 2900 TGTGTGTGT GTGGGTTCGT GCATGTATGT GTGCGTGTGT GTGTGTGTGT 2950 GTGTGTGTGT GTGTGTGC GTGTGTTT GTTTAGGGGT TTTTATAAAC 3000

AACTTTTTTT	ATAAAGCACA	CTTTAGTTTA	CAATCTCTCT	TTATAACTGT	3050
TATAAATTTT	TAAACAACCC	AAAATGCGTT	CCATATAAAG	AAATGGCAAG	3100
TTATTTAGCT	ATCAAGATTT	TACATGTTTT	CTTTTAACTT	TTTTGTACAA	3150
TTGCATAGAC	GTGTAAAACC	TGCCATTGTT	ААЗААААСАА	TAACAGACTT	3200
AGAAACTACT	GAAATCTACA	GTATAGTACC	ACTACCCTTC	ACAAAAATAT	3250
AGATTTTATT	TCTTGTAAAC	TCTTACTGTC	TAATCCTCTT	TGTTGTACGA	3300
ATATTATAAA	AACCATGCGG	GAATCAGGAG	TTGTAAAACA	TTTATTCTGC	3350
TCCTTCTTCA	TCTGTCATGA	CTGAAACTAA	GGACTCCATC	GCTCTGCCCA	3400
AATCATCTGC	CATGTGGAAA	AGGCTTCCTA	CATTGTGTCC	TCTCTCATTG	3450
GCTTTCCGGG	GGCATTTCTT	CCTCTTGAAC	TAGGGAAGGA	GTTGTTGAGT	3500
TGCTCCATCA	CTTCTTCTAA	CCCTGTGCTT	GTGTCCTGGG	GAGGACTCAG	3550
AAGATCTTCC	TCACCCATAG	ATTCTGAAGT	TTGACTGCCA	ACCACTCGGA	3600
GCAGCATAGG	CTGACTGCTA	TCTGACCTCT	GCAGAGAGGT	GGAAGGAGAG	3650
GACACCGTGG	TGCCATTCAC	CTTAGCTTCA	GCCTGGGGCT	GCTCCAGGAG	3700
CTGTCTCAGT	CTATGTAACT	GAGACTCCAG	CTGTTTATTG	TGGTCTTCCA	3750
GGATTTGCAT	CCTGGCTTCC	AGGCGTCCTT	TGTGTTGGCG	CAGTAGCTTA	3800
GCCTCAGCAA	TGAGCTCAGC	ATCCCTGGGA	CTCTGAGGAG	AGGTGGGCAT	3850
CATCTCAGGA	GGAGATGGCA	GTGGAGACAG	GCCTTTATGC	TCATGCTGCT	3900
GCTTCAGGCG	ATCATATTCT	GCTTGCAGAT	TCCTGTTTTC	TTCCTCAAGA	3950
TCTGCTAGGA	TTCTCTCTAG	CTCCCCTCTT	TCCTCACTCT	CTAAGGAAAT	4000
CAAGATCTGG	GCAGGACTAC	GAGGCTGGCT	CAGGGGGGAG	TCCTGGTTCA	4050
AACTTTGGCA	GTAATGCTGG	ATTAACAAAT	GTTCATCATC	TATGCTCTCA	4100
TTAGGAGAGA	TGCTATCATT	TAGATAAGAT	CCATTGCTGT	TTTCCATTTC	4150
TGCTAGCCTG	CTAGCATAAT	GTTCAATGCG	TGAATGAGTA	TCATCGTGTG	4200
AAAGCTGGGG	GGACGAGGCA	GGCGCAGAAT	CTACTGGCCA	GAAGTTGATC	4250
AGAGTAACGG	GAGTTTCCAT	GTTGTCCCCC	TCTAACACAG	TCTGCACTGG	4300

1'

CAGGTAGCCC	ATTCGGGGAT	GCTTCGCAAA	ATACCTTTTG	GTTCGAAATT	4350
TGTTTTTTAG	TACCTTGGCG	AAGTCGCGAA	CATCTTCTCC	GGATGTAGTC	4400
GGAGTGCAAT	ACTCTACCAT	GGGGTAGTGC	ATTTTATGGC	CCTTTGCAAC	4450
TCGGCCAGAA	AAAAAGCAAC	TTTGGCAGAT	GTCATAATTA	AAATGCTTTA	4500
GGCTTCTGTA	CCTGAATCCA	ATGATTGGAC	ACTCCTTACA	GATGTTACAC	4550
TTGGCTTGAT	GCTTGGCAGT	TTCAGCAGCA	GCCACTCTGT	GCAAGACGGG	4600
CAGCCACACC	ATAGACTGGG	GTTCCAGGCG	CATCCAGTCA	AGGAAGAGAG	4650
CAGCTTCAAT	CTCAGGTTTA	TTATTGGCAA	ATTGGAAGCA	GCTCCTGACA	4700
CTCGGCTCAA	TGTTACTGCC	CCCAAAGGAA	GCAACTTCAC	CCAACTGTCT	4750
TGGGATTTGA	ATAGAATCAT	GCAGAAGAAG	ACCCAGCCTA	CGCTGGTCAC	4800
AAAAGCCAGT	TGAACTTGCC	ACTTGCTTGA	AAAGGTATCT	GTACTTGTCT	4850
TCCAAGTGTG	CTTTACACAG	AGAAATGATG	CCAGTTTTAA	AAGACAGGAC	4900
ACGGATCCTC	CCTGTTCGTC	CCGTATCATA	AACATTGAGA	AGCCAGTTGA	4950
GACACATATC	CACACAGAGA	GGGACATTGA	CCAGATTGTT	GTGCTCTTGC	5000
TCCAGACGAT	CATAAATTGT	AGTCAAACAG	TTAATTATCT	GCAGGATATC	5050
CATGGGCTGG	TCATTTTGCT	TGAGGTTGTG	CTGGTCCAGG	GCATCACATG	5100
CAGCTGACAG	GCTCAAGAGA	TCCAAGCAAA	GGGCCTTCTG	GAGCCTTCTG	5150
AGCTTCATGG	CAGTCCTATA	CGCGGAGAAC	CTGACATTAT	TCAGGTCAGC	5200
TAAAGACTGG	TAGAGCTCTG	TCATTTTGGG	GTGGTCCCAA	CAAGTGGTTT	5250
GGGTCTCGTG	GTTGATATAG	TAGGGCACTT	TGTTTGGTGA	GATGGCTCTC	5300
TCCCAGGGAC	CCTGAACTGA	AGTGGAAAGG	AAGTGCTGGG	ATGCAGGACC	5350
AAAGTCCCTG	TGGGCTTCAT	GCAGCTGTCT	GACACGGTCC	TCCACAGCCA	5400
CCTGTAGAAG	CCTCCATCTG	GTATTCAGAT	CTTCCAAAGT	GCTGAGGTTA	5450
TAAGGTGAGA	GCTGAATGCC	CAGTGTGGTC	AGCTGATGTG	CAAGGTCATT	5500
GACACGATTG	ACATTCTCTT	TAAGAGGTGC	AATTTCTCCC	CGAAGTGCCT	5550
TGACTTTTTC	AAGGTGATCT	TGCAGAGAGT	CAATGAGGAG	ATCCCCCACT	5600

GGCTGCCAGG	ATCCCTTGAT	CACCTCAGCT	TGGCGCAACT	TGAGGTCCAG	5650
TTCATCGGCA	GCTTCCTGAA	GTTCCTGGAG	TCTTTCAAGA	GCTTCATCTA	5700
TTTTTCTCTG	CCAATCAGCT	GAGCGCAGGT	TCAATTTGTC	CCATTCAGCG	5750
TTGACCTCTT	CAGCCTGCTT	TCGTAGGAGC	CGAGTGACAT	TCTGAGCTCT	5800
TTCTTCAGGA	GGCAGTTCTC	TGGGCTCCTG	GTAGAGTTTC	TCTAGTCCTT	5850
CCAAAGGCTG	CTCTGTCAGA	AATATTCTCA	CAGTCTCCAG	AGTACTCATG	5900
ATTACAGGTT	CTTTAGTTTT	CAATTCCCTC	TTGAAGGCCC	TATGTATATC	5950
ATTCTGCTTC	TGAACTGCTG	GGAAATCACC	ACCGATGGGT	GCCTGACGGC	6000
TCAGTTCATC	ATCTTTCAGC	TGTAGCCAAA	CAAGAAGTTC	CTGAAGAGAA	6050
AGATGCAAAC	GCTTCCACTG	GTCAGAACTT	GCTTCCAAAT	GGGACCTAAT	6100
GTTGAGAGAC	TTTTTCTGAA	GTTCACTCCA	CTTGAAATTC	ATGTTATCCA	6150
AACGTCTTTG	TAACAGGGGT	GCTTCATCCG	AACCTTCCAG	GGATCTCAGG	6200
ATTTTTTGGC	CATTTTCATC	AAGATTGTGA	TAGATATCTG	TGTGAGTTTC	6250
AATTTCTCCT	TGGAGATCTT	GCCATGGTTT	CATCAGCTCT	CTGACTCCCC	6300
TGGAGTCTTC	TAGGAGCTTC	TCCTTACGGG	AAGCGTCCTG	TAGGACATTG	6350
GCAGTTGTTT	CTGCTTCCGT	AATCCAGGAA	AGAAACTTCT	CCAGGTCCAG	6400
AGGGAACTGC	TGCAGTAATC	TATGAGTTTC	TTCCAAAGCA	GCCTCTTGCT	6450
CACTTACTCT	TTTATGAATG	TTTCCCCAAG	AAGTATTGAT	ATTCTCTGTT	6500
ATCATGTGTA	CTTTTCTGGT	ATCATCAGCA	GAATAGTCCC	GAAGAAGTTT	6550
CAGTGCCAAA	TCATTTGCCA	CGTCTACACT	TATCTGCCGT	TGACGGAGGT	6600
CTTTGGCCAA	CTGCTTGGTT	TCTGTGATCT	TCTTTTGGAT	TGCATCTACT	6650
GTGTGAGGAC	CTTCTTTCCA	TGAGTCAAGC	TTGCCTCTGA	CCTGTCCTAT	6700
GACCTGTTCG	GCTTCTTCCT	TAGCTTCCAG	CCATTGTGTT	GAATCCTTTA	6750
ACATTTCATT	CAACTGTTGT	CTCCTGTTCT	GCAGCTGTTC	TTGAACCTCA	6800
TCCCACTGAA	TCTGAATTCT	TTCAATTCGA	TCAGTAATGA	TTGTTCTAGC	6850
TTCTTGATTG	CTGGTTTTGT	TTTTCAAATT	CTGGGCAGCA	GTAATGAGTT	6900

PCT/US95/14017

1

CTTCCAATTG	GGGGCGTCTC	TGTTCCAAAT	CTTGCAGTGT	TGCCTTCTGT	6950
TTGATGATCA	TTTCATTGAT	GTCTTCCAGA	TCACCCACCA	TCACTCTCTG	7000
TGATTTTATA	ACTCGATCAA	GCAGAGACAG	CCAGTCTGTA	AGTTCTGTCC	7050
AAGCTCGGTT	GAAGTCTGCC	AGTGCAGGTA	CC_CCAACAG	CAAAGAAGAT	7100
GGCATTTCTA	GTTTGGAGAT	GACAGTTTCC	TTAGTAACCA	CAGATTGTGT	7150
CACTAGAGTA	ACAGTCTGAC	TGGCAGAGGC	TCCAGTAGTG	CTCAGTCCAG	7200
GGGCACGGTC	AGGCTGCTTT	GTCCTCAGCT	CCCGAAGTAA	ATGGTTTACA	7250
GCCTCCCACT	CAGACCTCAG	ATCTTCTAAC	TTCCTCTTCA	CTGGCTGAGT	7300
GCTTGGTTTT	TCCTTATACA	AATGCTGCCC	TTTCGACAAA	AGCCTTTCCA	7350
CATCCGCTTG	TTTACCGTGA	ACTGTTACTT	CAATCTCCTT	TATGTCAAAC	7400
GGTCCTGCCT	GACTTGGTTG	GTTATAAATT	TCCAACTGGT	TTCTAATAGG	7450
AGAGACCCAC	AGAAGCAGGT	GATCCAGCTG	CTCTTCAAGC	TGCCTAAAAT	7500
CTTTTAAGTG	AACCTCAAGC	TCTCCTTGTT	TCTCAGGTAA	AGCTCTGGAG	7550
ACCTTTATCC	ACTGGAGATT	TGTCTGTTTG	AGCTTCTTTT	CAAGTTTATC	7600
TIGCTCTTCT	GGCCTTATGG	GAGCACTTAC	AAGTACTGCT	CCTCCTGTTT	7650
CATTTAATTG	TTTTAGAATT	CCCTGGCGCA	GGGGCAACTC	TTCTGCCAGT	7700
AACTTGACTT	GTTCAAGTTG	TTCTTTTAGC	TGCTGCTCAT	CTCCAAGTGG	7750
AGTAATAGCA	ATGTTATCTG	CTTCTTCCAG	CCACAAAACA	AATTCATTTA	7800
AATCTCTTTG	AAATTCTGAC	AAGACATTCT	TTTGTTCTTC	AATCCTCTTT	7850
CTCCTTTCTG	CCAGCTCTTT	GCAGATGTCG	TGCCACCGCA	GACTCAAGCT	7900
TCCTAATTTT	TCTTGTAGAA	TATTGACATC	TGTTTTTGAA	GACTGTTGAA	7950
TTATTTCTTC	CCCAGTTGCA	TTCAGTGTTC	TGACAACAGC	TTGACGCTGC	8000
CCAATGCCAT	CCTGGAGTTC	CTTAAGATAC	CATTTGTATT	TAGCATGTTC	8050
CCAGTTTTCA	GGATTTTGTG	TCTTTTTGAA	AAACTGTTCA	ACTTCATTCA	8100
GCCATTGATT	AAATACCTTC	ATATCATAAT	GAAAGTGTCG	CCATTTTTCA	8150
ACTGATCTGT	CGAATCGCCC	TTGTCGTTCC	TTGTACATTC	TATGAAGTTT	8200

TTCCCCCTGG	AAATCCATCT	GTGCCACGGC	TTCCTGTACT	TTCACCTTTT	8250
CCATGGAGGT	GGCACTTTGC	AAGGCTGCTG	TCTTCTTCTT	GTGAATAATA	8300
TCAATCCGAC	CTGAGATTTG	TTGCAAATTG	TCTTTTATAT	TCTTAAGAGA	8350
CTCCTCTTGC	TTAAAAAGAT	CTTCAAAATC	T.TAGCACAG	AGTTCAGGAG	8400
TATTTAGAAG	ATGATCAACT	TCTGAAAGAG	CTTGTAAGAT	ATGACTGATC	8450
TCGGTCAAAT	AAGTAGAAGG	CACATAAGAA	ACATCCAAAG	GCATATCTTC	8500
AGTCGTCACT	ACCATAGTTT	CTTCATGGAG	AGTGTGAATT	TGTGCAAAGT	8550
TGAGTCTTCG	AAACTGAGCA	AAATTGCTCT	CAATTTGCCG	CCAGCGCTTG	8600
CTGAGCTGGA	TCTGAGTTGG	CTCCACTGCC	ATTGCGGCCC	CATTCTCAGA	8650
CAAGCCCTCA	GCTTGCCTGC	GCACTGCATT	CAGCTCCTCT	TTCTTCTTCT	8700
GCAATTCACG	ATCAATTTCC	TTTAATTTTC	TTTCATCTCT	GGGTTCAGGT	8750
AGGCTGGCTA	ATTTTTTTC	AATTTCATCC	AAGCATTTCA	GGAGATCATC	8800
AGCCTGCCTC	TTGTACTGAT	ACCACTGGTG	AGAAATTTCT	AGGGCCTTTT	8850
TTCTTCTTTG	AGACCTCAAA	TCCTTGAGAG	CATTATGTTT	TGTCTGTAAC	8900
AGCTGCTGTT	TTATCTTTAT	TTCCTCTCGC	TTTCTCTCAT	CTGTGATTCT	8950
TTGTTGTAAG	TTGTCTCCTC	TTTGCAACAA	TTCATTTACA	GTACCCTCAT	9000
TGTCTTCACT	CATATCTTTA	TTGAAGTCTT	CCTCTTTCAG	ATTCACCCCC	9050
TGCTGAATTT	CAGCCTCCAG	TGGTTCAAGC	AATTTTTGTA	TATCTGAGTT	9100
AAACTGCTCC	AATTCCTTCA	AAGGAATGGA	GGCCTTTCCA	GTCTTAATTC	9150
TGTGAGAAAT	AGCTGCAAAT	CGACGGTTGA	GCTCAGAGAT	TTGGGGCTCT	9200
ACTACTTTCC	TGCAGTGGTC	ACCGCGGTTT	GCCATCAATT	TTGCTGCTTG	9250
GTCACGTGTG	GAGTCCACCT	TTGGGCGCAT	GTCATTCATT	TCAGCCTTTA	9300
AACGCTTAAG	AATGTCTTCC	TTTTGTTGTG	GTTTCTTCTT	TTCAGACTCA	9350
	CATCTGCATG				9400
	GTTTCCATGT				9450
ATTCTTCTAC	TCTGGAGGTG	ACAGCTATCC	AGTTACTGTT	CAGAAGACTC	9500

90

AGTTTATCTT CTACCAAGGT TTCTTTCTTG CCCAACACCA TTTTCAAAGA 9550 CTCTCCTAAT TCTGTAACAC TCTTCAAGTG AGCCTTCTGT TTCTCAATCT 9600 CTTTTTGAGT AGCCTTTCCC CAGGCAACTT CAGAATCCAA ATTACTTGGC 9650 ATTCCTTCAA CTGCTGATCT CTTCGTCAAT TC1GTATCTG TTGCTGCCAG 9700 CCATTCTGTT AAGACATTCA TTTCCTTTCT CATCTTACGG GACAACTTCA 9750 AGCATTTCTC CAACTGTTGC TTTCTCTCTG TTACCTTCGC ACCCAACTCA 9800 TTGTAATGCA ATTTCAAAGC TGTTACTCGT TCATCAAGCT CTTTGGGATT 9850 TTCTGTCTGC TTTTTCTGTA CAATTTGACG TCCGGTTTTA ATCACCATTT 9900 CCACTTCAGA CTTGACTTCA CTCAGGCTTT TATACAAGTT CACACAATGA 9950 CTTAGTTGTG ACTGAATTAC TTCCTGTTCA ACACTCTTGG TTTCCAATGC 10000 AGGCAAATGC ATCTTGACTT CATCTAAAAT CATCTTACTT TCCTCTAGAC 10050 GTTGTTCAAA ATTGGCTGGT TTTTGGAATA ATCGAAATTT CATGGAGACA 10100 TCTTGTAATT TTTTCTGTGC AACATCAATT TGTGAAAGAA CCCTTTGGTT 10150 GGCATCCTTC CCCTGGTTAT GTTTCTTCAT TTCTTCTAAA CTTATCTCAT 10200 GACTTGTCAA ATCTGATTGG ATTTTCTGGG CTTCCTGAGG CATTTGAGCT 10250 GCATCCACCT TGTCAGTGAT ATAAGCTGCC AACTGCTTGT CAATGAATTC 10300 AAGCGACTCC TGAATTAAGT GCAAGGACTT TTCAATTTCC TGGGCAGACT 10350 GGATACTCTG TTCAAGCAAC TTTTGTTTCC TCACAGCCTC TTCATGTAGT 10400 TCCCTCCAAC GAGAATTAAA CGTCTCAAGC TCCTCATTGA TCAGTTCATC 10450 CATGACTCCT CCATCTGTAA GAGTCTGTGC CAATAGACGA ATCTGATTTG 10500 GGTTCTCCTC TGAATGATGC ATCAGATTTT CAAGAGATTC TAGCACTTCA 10550 GTGATTTCCT CAGGTCCTGC AGGAACATTT TCCATGGTTT TAAGTTTCAA 10600 TTCTACTTCA TTGAGCCACT TGTTTGCTTT CTCTAAATAT GACAATAACT 10650 CATGCCAACA TGCCCAAACT TCTTCCAAAG TTTTGCATTT TCCATTCAGC 10700 CTGGTGCACA GCCATTGGTA GTTGGTGGTC AGAGTTTCAA GTTCCTTTTT 10750 TAAGGCCTCT TGTGCTGAGG GTGGAGCGTG AGCTATTACA CTATTTACAG 10800

.91

TCTCAGTAAG GAGTTTCACT TTAGTTTCTT TTTGTAGTGC CTCTTCTTTA 10850 GCTCTCTTCA TTTCTTCAAC AGCAGTCTGT AATTCATCTG GAGTTTTATA 10900 TTCAAAATCT CTCTCTAGAT ATTCTTCTTC AGCTTGTGTC ATCCACTCAT 10950 GCATCTCTGA TAGATCTTTT TGGAGGCTTA CGGTTTTTATC CAAACCTGCC 11000 TTTAAGGCTT CCTTTCTGGT GTAGACCTGG CGGCATATGT GATCCCACTG 11050 AGTGTTAAGC TCTCTAAGTT CTGTCTCCAG TCTGGATGCA AACTCAAGTT 11100 CAGCTTCACT CTTTATCTTC TGCCCACCTT CATTAACACT ATTTAAACTG 11150 GGCTGAATTG TTTGAATATC ACCAACTAAA AGTCTGCATT GTTTGAGCTG 11200 TTTTTTCAGG ATTTCAGCAT CCCCCAGGGC AGGCCATTCC TCTTTCAGGA 11250 AAACATCAAC TTCAGCCATC CATTTCTGTA AGGTTTTTAT GTGATTCTGA 11300 AATTTTCGAA GTTTATTCAT ATGTTCTTCT AGCTTTTGGC AGCTTTCCAC 11350 CAACTGGGAG GAAAGTTTCT TCCAGTGCCC CTCAATCTCT TCAAATTCTG 11400 ACAGATATTT CTGGCATATT TCTGAAGGTG CTTTCTTGGC CATCTCCTTC 11450 ACAGTGTCAC TCAGATAGTT GAAGCCATTT TGTTGCTCTT TCAAAGAACT 11500 TTGCAGAGCC TGTAATTTCC CGAGTCTCTC CTCCATTATT TCATATTCAG 11550 TAACACTAAG ATAAGGTACA GAGAGTTTGC TTTCTGACTG CTGGATCCAC 11600 GTCCTGATGC TACTCATTGT CTCCTGATAG CGCATTGGTG GTAAAGTGTC 11650 AAAAATTGTC TGTAGCTCTT TCTCTTTGGC CCTCACACCA TCAAAGATGT 11700 GGTTAAAATG ATTAGTAAAG GCCACAAAGT CTGCATCCAG AAACATTGGC 11750 CCCTGTCCCT TTTCTTCAG TTGTAGACTC TGAATTTTTA ATTGCTCAAT 11800 TTGAGGCTGA AGAGCTGACA ATCTGTTGAC TTCATCCTTA CAAATTTTTA 11850 ACTGGCTTTT AATTGCTGTT GGCTCTGATA GGGTGGTAGA CTGGGTTTTC 11900 AACAAGTTTT CGGCAGTAGT TGTCATCTGT TCCAATTGTT GTAGCTGATT 11950 ATAAAAGGTA ATGATGTTGG TTTGATACTC TAGCCAGTTA ACTCTCTCAC 12000 TCAGCAATTG GCAGAATTCT GTCCACCGGC TGTTCAGTTG TTCTGAAGCT TGTCTGATAC TTTCAGCATT AACACCCTCA TTTGCCATCT GTTCCACCAG 12100

92

GGCCTGAGCT GATCTGCTGC CATCTTGCAG TTTTCTGAAC TTCTCTGCTT 12150 TTTCTCGTGC TATGGCATTG ACTTTTCTT GCAAGTCTGA GATGTTGCCT 12200 TCTTTTCGAT AGACTGCAAA TTCAGAACTC TGTAATACAG CTTCTGAACG 12250 AGTAATCCAA CTGTGAAGTT CAGTTATATC GALATCCAAC CTTTTCCTGA 12300 GTTCAGAATC CACAGTTATC TGCCTCTTCT TTTGAGGAGG TGGTGGTGGA 12350 AGTTCCTCTT GGGCATGTTT TACCATGATT TGTTCCCTTG TGGTCACCAT 12400 AGTTACCGTT TCCATTACAG TTGTCTGTGT TAGGGATGGT TGAGTGGTGG 12450 TGACAGCCTG TGAAATTTGT GCTGAACTCT TTTCAAGTTT TTGGGTTAAA 12500 TTGTCCCAAC GTTGTGCAAA GTTTTCCATC CAGATTTCCA TCTTTTGAGT 12550 CACTGACTTA TTTTCAGTG CCGAAAGTAG ATCTTGATTG AGTGAACTTA 12600 GTTTTTCCAT GGTTGGCTTT TTCTTTTCTA GATCTATTTT TAAAGTAGAT 12650 ATTTTGTGAA GACTTGACAT CATTTCATTT TGATCTTTAA AGCCACTTGT 12700 CTGAATGTTC TTCATTGCAT CTTCTTTTTC TGAAAGCCAT GTACTAAAAA 12750 GGCACTGTTC TTCAGTAAAA TGCTGCCATT TTAGAAGAAT ATCTTGTAAA 12800 ACAATCCAGC GGTCTTCAGT CCATCTGCAG ATATTTGCCC ATCGATCTCC 12850 CAGTACCTTA AGTTGTTCTT CCAAAGCAGC TGTTGCATGA TCACCGCTGG 12900 ATTCATCAAC CACTACTACC ATGTGAGTGA GCGAGTTGAC CCTGACCTGC 12950 TCCTGTTCTA GATCTTCTTG AAGCACCTTA TGTTGTTGTA CTTGGCATTT 13000 TAGATCTTCA AGATCAGGTC CAAAGGGCTC TTCCTCCATT TTCTTAGTTC 13050 TCTCTTCAGT TTTTGTTAAC CAGTCATCTA GTTCTTTTAA TTTCTGATTC 13100 TGGAGATCCA TTAGAACTTT GTGTAATTTG CTTTGTTTTT CCATGCTAGC 13150 TACCCTGAGA CATTCCCATC TTGAATTTAG GAGATTCATT TGTTCTTGCA 13200 CTTCAGCTTC TTCATCTTCT GATAATTTCC CTTTTCCAAC TAGTTGACTT 13250 CCTAACTGTA GAACATTACC AACAAGTCCT TGATGAGATG TCAGATCCAT 13300 CATGAATCCC TCATGAGCAT GAAACTGTTC TTTCACTTCT TCAACATCAT 13350 TTGAAATCTC TCCTTGTGCT CGCAATGTAT CCTCGGCAGA AAGAAGCCAT 13400

93

GAAAGTACTT CTTCTAAAGC AGTTTGGTAA CTATCCAGAT TTACTTCCGT 13450 CTCCATCAAT GAACTGTCAA GTGACTTGTC TCTGGGAGCT TCCAAATGCT 13500 GTGAAGGATA GGGGCTCTGT GTGGAATCAG AGGTGGCAAC ATAAGCAGCC 13550 TGTGTGAAGG CATAACTCTT GAATCGAGGC TIAGGAGATG AAGAAGTTTG 13600 TTCATAGCCC TGTGCTAGAC TGACTGTGAT CTGTTGAGAG TAATGCATCT 13650 GGTGATGTAA TTGAAAATGT TCTTCTCTAG TTACTTTTGA AGATGTCCTG 13700 GGCAACATTT CCACTTCTTG AATGGCTTCA ATGCTCACTT GTTGTGGCAA 13750 AACTTGAAAG AGTGATGTGA TGTACATTAA GATGGACTTC TTGTCTGGAT 13800 AAGTGGTAGC AACATCTTCA GGATCAAGAA GTTTTTCTAT GCCTAACTGG 13850 CATTTTGCAA TGTTGAAGGC ATGTTCCAGT CTTTGGGTGG CTGAGTGCTG 13900 TGAAACCACA CTATTCCAAT CAAACAGGTC GGGCCTGTGA CTATGGATAA 13950 GAGCATTCAA AGCCAACCCG TCGGACCAGC TAGAGGTGAA GTTGATGACG 14000 TTAACCTGTG GATAATTACG TGTTGACTGT CGAACCCAGC TCAGAAGAAT 14050 CTTTTCACTG TTGGTTTGCT GCAATCCAGC CATGATAGTT TTCATCACAT 14100 TTTTGACCTG CCAGTGGAGG ATTATATTCC AAATCAAACC AAGAGTGAGT 14150 TTATGATTTC CATCCACTAT GTCAGTGCTT CCTATATTCA CTAAATCAAC 14200 ATTATTTTC TGTAAGACCC GCAGTGCCTT GTTGACATTG TTCAGGGCAT 14250 GAACTCTTGT AGATCCCTTT TCTTTTGGCA GTTTTTGCCC TGTAAGGCCT 14300 TCCAAGAGGT CTAGGAGGCG TTTTCCATCC TGCAGGTCAC TGAAGAGGTT 14350 GTCTATGTGT TGCTTTCCAA ACTTAGAAAA TTGTGCATTT ATCCATTTTG 14400 TGAATGTTTT CTTTTGAACA TCTTCTCTTT CATAACAGTC CTCTACTTCT 14450 TCCCACCAAA GCATTTGGAA GAAAAAGTAT ATATCAAGGC AGGGATAAAA 14500 ATCTTGGTAA AAGTTTCTCC CAGTTTTATT GCTCCAGGAG GCTTAGGTAC 14550 GATGAGAAGC CAATAAACTT CAGCAGCCTT GACAAAAAA AAAAAAAAA 14600 TAGCACTTCA AGTCTTCCTA TTCGTTTTTT CTATAAAGCT ATTGCCTTCA AGAGCGGAAT TCCTGCAGCC CGGGGGATCC ACTAGTTCTA GAGCGGCCGC 14700

PCT/US95/14017

GGGTACAATT	CCGCAGCTTT	TAGAGCAGAA	GTAACACTTC	CGTACAGGCC	14750
TAGAAGTAAA	GGCAACATCC	ACTGAGGAGC	AGTTCTTTGA	TTTGCACCAC	14800
CACCGGATCC	GGGACCTGAA	ATAAAAGACA	AAAAGACTAA	ACTTACCAGT	14850
TAACTTTCTG	GTTTTTCAGT	TCCTCGAGTA	CCLGATCCTC	TAGAGTCCGG	14900
AGGCTGGATC	GGTCCCGGTG	TCTTCTATGG	AGGTCAAAAC	AGCGTGGATG	14950
GCGTCTCCAG	GCGATCTGAC	GGTTCACTAA	ACGAGCTCTG	CTTATATAGA	15000
CCTCCCACCG	TACACGCCTA	CCGCCCATTT	GCGTCAATGG	GGCGGAGTTG	15050
TTACGACATT	TTGGAAAGTC	CCGTTGATTT	TGGTGCCAAA	ACAAACTCCC	15100
ATTGACGTCA	ATGGGGTGGA	GACTTGGAAA	TCCCCGTGAG	TCAAACCGCT	15150
ATCCACGCCC	ATTGATGTAC	TGCCAAAACC	GCATCACCAT	GGTAATAGCG	15200
ATGACTAATA	CGTAGATGTA	CTGCCAAGTA	GGAAAGTCCC	ATAAGGTCAT	15250
GTACTGGGCA	TAATGCCAGG	CGGGCCATTT	ACCGTCATTG	ACGTCAATAG	15300
GGGGCGTACT	TGGCATATGA	TACACTTGAT	GTACTGCCAA	GTGGGCAGTT	15350
TACCGTAAAT	ACTCCACCCA	TTGACGTCAA	TGGAAAGTCC	CTATTGGCGT	15400
TACTATGGGA	ACATACGTCA	TTATTGACGT	CAATGGGCGG	GGGTCGTTGG	15450
GCGGTCAGCC	AGGCGGGCCA	TTTACCGTAA	GTTATGTAAC	GACCTGCAGG	15500
TCGACTCTAG	AGGATCTCCC	TAGACAAATA	TTACGCGCTA	TGAGTAACAC	15550
AAAATTATTC	AGATTTCACT	TCCTCTTATT	CAGTTTTCCC	GCGAAAATGG	15600
CCAAATCTTA	CTCGGTTACG	CCCAAATTTA	CTACAACATC	CGCCTAAAAC	15650
CGCGCGAAAA	TTGTCACTTC	CTGTGTACAC	CGGCGCACAC	CAAAAACGTC	15700
ACTTTTGCCA	CATCCGTCGC	TTACATGTGT	TCCGCCACAC	TTGCAACATC	15750
ACACTTCCGC	CACACTACTA	CGTCACCCGC	CCCGTTCCCA	CGCCCCGCGC	15800
CACGTCACAA	ACTCCACCCC	CTCATTATCA	TATTGGCTTC	AATCCAAAAT	15850
AAGGTATATT	ATTGATGATG	CTAGCGGGGC	CCTATATATG	GATCCAATTG	15900
CAATGATCAT	CATGACAGAT	CTGCGCGCGA	TCGATATCAG	CGCTTTAAAT	15950
TTGCGCATGC	TAGCTATAGT	TCTAGAGGTA	CCGGTTGTTA	ACGTTAGCCG	16000

95

GCTACGTATA CTCCGGAATA TTAATAGGCC TAGGATGCAT ATGGCGGCCG 16050 GCCGCCTGCA GCTGGCGCCA TCGATACGCG TACGTCGCGA CCGCGGACAT 16100 GTACAGAGCT CGAGAAGTAC TAGTGGCCAC GTGGGCCGTG CACCTTAAGC 16150 TTGGCACTGG CCGTCGTTTT ACAACGTCGT GALTGGGAAA ACCCTGGCGT 16200 TACCCAACTT AATCGCCTTG CAGCACATCC CCCTTTCGCC AGCTGGCGTA 16250 ATAGCGAAGA GGCCCGCACC GATCGCCCTT CCCAACAGTT GCGCAGCCTG 16300 AATGGCGAAT GGCGCCTGAT GCGGTATTTT CTCCTTACGC ATCTGTGCGG 16350 TATTTCACAC CGCATACGTC AAAGCAACCA TAGTACGCGC CCTGTAGCGG 16400 CGCATTAAGC GCGGCGGTG TGGTGGTTAC GCGCAGCGTG ACCGCTACAC 16450 TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG CTTTCTTCCC TTCCTTTCTC 16500 GCCACGTTCG CCGCCTTTCC CCGTCAAGCT CTAAATCGGG GGCTCCCTTT 16550 AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCCAAA AAACTTGATT 16600 TGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGATAGAC GGTTTTTCGC 16650 CCTTTGACGT TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC 16700 TGGAACAACA CTCAACCCTA TCTCGGGCTA TTCTTTTGAT TTATAAGGGA 16750 TTTTGCCGAT TTCGGCCTAT TGGTTAAAAA ATGAGCTGAT TTAACAAAAA 16800 TTTAACGCGA ATTTTAACAA AATATTAACG TTTACAATTT TATGGTGCAC 16850 TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG CCCCGACACC 16900 CGCCAACACC CGCTGACGCG CCCTGACGGG CTTGTCTGCT CCCGGCATCC 16950 GCTTACAGAC AAGCTGTGAC CGTCTCCGGG AGCTGCATGT GTCAGAGGTT 17000 TTCACCGTCA TCACCGAAAC GCGCGAGACG AAAGGGCCTC GTGATACGCC 17050 TATTTTATA GGTTAATGTC ATGATAATAA TGGTTTCTTA GACGTCAGGT 17100 GGCACTTTC GGGGAAATGT GCGCGGAACC CCTATTTGTT TATTTTTCTA 17150 AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAAATGC 17200 TTCAATAATA TTGAAAAAGG AAGAGTATGA GTATTCAACA TTTCCGTGTC GCCCTTATTC CCTTTTTTGC GGCATTTTGC CTTCCTGTTT TTGCTCACCC 17300

96

AGAAACGCTG GTGAAAGTAA AAGATGCTGA AGATCAGTTG GGTGCACGAG 17350 TGGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT TGAGAGTTTT 17400 CGCCCGAAG AACGTTTTCC AATGATGAGC ACTTTTAAAG TTCTGCTATG 17450 TGGCGCGGTA TTATCCCGTA TTGACGCCGG GCANGAGCAA CTCGGTCGCC 17500 GCATACACTA TTCTCAGAAT GACTTGGTTG AGTACTCACC AGTCACAGAA 17550 AAGCATCTTA CGGATGGCAT GACAGTAAGA GAATTATGCA GTGCTGCCAT 17600 AACCATGAGT GATAACACTG CGGCCAACTT ACTTCTGACA ACGATCGGAG 17650 GACCGAAGGA GCTAACCGCT TTTTTGCACA ACATGGGGGA TCATGTAACT 17700 CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC CAAACGACGA 17750 GCGTGACACC ACGATGCCTG TAGCAATGGC AACAACGTTG CGCAAACTAT 17800 TAACTGGCGA ACTACTTACT CTAGCTTCCC GGCAACAATT AATAGACTGG 17850 ATGGAGGCGG ATAAAGTTGC AGGACCACTT CTGCGCTCGG CCCTTCCGGC 17900 TGGCTGGTTT ATTGCTGATA AATCTGGAGC CGGTGAGCGT GGGTCTCGCG 17950 GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG TATCGTAGTT 18000 ATCTACACGA CGGGGAGTCA GGCAACTATG GATGAACGAA ATAGACAGAT 18050 CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAACTG TCAGACCAAG 18100 TTTACTCATA TATACTTTAG ATTGATTTAA AACTTCATTT TTAATTTAAA 18150 AGGATCTAGG TGAAGATCCT TTTTGATAAT CTCATGACCA AAATCCCTTA 18200 ACGTGAGTTT TCGTTCCACT GAGCGTCAGA CCCCGTAGAA AAGATCAAAG 18250 GATCTTCTTG AGATCCTTTT TTTCTGCGCG TAATCTGCTG CTTGCAAACA 18300 AAAAAACCAC CGCTACCAGC GGTGGTTTGT TTGCCGGATC AAGAGCTACC 18350 AACTCTTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA 18400 CTGTTCTTCT AGTGTAGCCG TAGTTAGGCC ACCACTTCAA GAACTCTGTA 18450 GCACCGCCTA CATACCTCGC TCTGCTAATC CTGTTACCAG TGGCTGCTGC 18500 CAGTGGCGAT AAGTCGTGTC TTACCGGGTT GGACTCAAGA CGATAGTTAC 18550 CGGATAAGGC GCAGCGGTCG GGCTGAACGG GGGGTTCGTG CACACAGCCC 18600

AGCTTGGAGC	GAACGACCT?.	CACCGAACTG	AGATACCTAC	AGCGTGAGCT	18650
ATGAGAAAGC	GCCACGCTTC	CCGAAGGGAG	AAAGGCGGAC	AGGTATCCGG	18700
TAAGCGGCAG	GGTCGGAACA	GGAGAGCGCA	CGAGGGAGCT	TCCAGGGGGA	18750
AACGCCTGGT	ATCTTTATAG	TCCTGTCGGG	TT.'CGCCACC	TCTGACTTGA	18800
GCGTCGATTT	TTGTGATGCT	CGTCAGGGGG	GCGGAGCCTA	TGGAAAAACG	18850
CCAGCAACGC	GGCCTTTTTA	CGGTTCCTGG	CCTTTTGCTG	GCCTTTTGCT	18900
CACATGTTCT	TTCCTGCGTT	ATCCCCTGAT	TCTGTGGATA	ACCGTATTAC	18950
CGCCTTTGAG	TGAGCTGATA	CCGCTCGCCG	CAGCCGAACG	ACCGAGCGCA	19000
GCGAGTCAGT	GAGCGAGGAA	GCGGAAGAGC	GCCCAATACG	CAAACCGCCT	19050
CTCCCCGCGC	GTTGGCCGAT	TCATTAATGC	AGCTGGCACG	ACAGGTTTCC	19100
CGACTGGAAA	GCGGGCAGTG	AGCGCAACGC	AATTAATGTG	AGTTAGCTCA	19150
CTCATTAGGC	ACCCCAGGCT	TTACACTTTA	TGCTTCCGGC	TCGTATGTTG	19200
TGTGGAATTG	TGAGCGGATA	ACAATTTCAC	ACAGGAAACA	GCTATGACCA	19250
TGATTACGAA	TTCGAATGGC	CATGGGACGT	CGACCTGAGG	TAATTATAAC	19300
CCGGGCC					19307

98

WHAT IS CLAIMED IS:

1, 1

- 1. A recombinant shuttle vector comprising:
- (a) the DNA sequences of, or corresponding to, a portion of the genome of an auenovirus which comprises DNA sequences of, or corresponding to, the adenovirus 5' and 3' inverted terminal repeats and packaging/enhancer domain necessary for replication and virion encapsidation in the absence of sequence encoding viral genes;
- (b) a selected gene operatively linked to regulatory sequences directing its expression, said gene operatively linked to the DNA of (a) and capable of expression in a target cell in vivo or in vitro.
- 2. The vector according to claim 1 wherein said DNA sequences (a) comprise the native adenovirus 5' inverted terminal repeats and packaging sequences.
- 3. The vector according to claim 1 wherein said DNA sequences (a) comprise the native adenovirus 3' inverted terminal repeat sequences.
- 4. The vector according to claim 1 wherein said selected gene (b) is a reporter gene.
- 5. The vector according to claim 4 wherein said reporter gene is selected from the group consisting of the genes encoding B-galactosidase, alkaline phosphatase and green fluorescent protein.
- 6. The vector according to claim 1 wherein said selected gene (b) is a therapeutic gene.

- 7. The vector according to claim 6 wherein said therapeutic gene is selected from the group consisting of a normal CFTR gene, a DMD Becker allele and a normal LDL gene.
- 8. A crippled adenovirus helper virus comprising a modified adenovirus sequence in place of native adenovirus sequence map units 0-1, which modification reduces the packaging efficiency of said virus, said virus also containing selected adenovirus genes necessary to direct a productive viral infection.
- 9. The helper virus according to claim 8 wherein said modified sequence comprises:
 - a fragment of adenovirus map units 0-1;
- ii. a fragment of (i) containing a 5' inverted terminal repeat and between one to four selected packaging sequences,
- iii. a modified fragment of (i) containing at least one PAC consensus sequence in place of at least one native PAC sequence; and
- iv. a modified fragment of (ii), wherein said native PAC sequences are mutated to contain modified sequences.
- 10. The virus according to claim 8 wherein said modified sequence comprises Ad5 base pairs 1-269.
- 11. The virus according to claim 8 wherein said sequence (ii) comprises Ad5 base pairs 1-321.
- 12. The virus according to claim 8 wherein said helper adenovirus is conjugated to a poly-cation sequence.

4,7

100

13. A method for producing a recombinant adenovirus which comprises transfecting a selected host cell with

- (a) a recombinant shuttle vector comprising
- i. the DNA sequences of, or corresponding to, a portion of the genome of an adenovirus which comprises adenovirus 5' and 3' ciselements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes; and
- ii. a selected gene operatively linked to regulatory sequences directing its expression, said gene linked to the DNA of (a) and capable of expression in a target cell in vivo or in vitro; and
- (b) a helper adenovirus comprising sufficient adenovirus gene sequences necessary for a productive viral infection, wherein said transfected host cell permits the formation of a recombinant virus comprising the DNA of (i) and (ii) in an adenoviral capsid, and

isolating and purifying the recombinant virus from said cell.

- 14. The method according to claim 13, wherein said helper virus is a crippled helper virus comprising a modified adenovirus sequence in place of native adenovirus sequence map units 0-1, which modification reduces the packaging efficiency of said helper virus, said helper virus also containing selected adenovirus genes necessary to direct a productive viral infection.
- 15. The method according to claim 13 wherein said helper adenovirus is associated with a poly-cation sequence.

101

- 16. The method according to claim 13 wherein said vector is associated with said helper adenovirus conjugate in a single particle.
- 17. The method according to claim 13 wherein said helper virus is an adenovirus sequence containing deletions of all or portions of the E1a and E1b genes.
- 18. The method according to claim 13 wherein said helper virus is an adenovirus sequence containing deletions of all or a portion of the E3 gene.
 - 19. A recombinant adenovirus comprising
- i. the DNA of, or corresponding to, a portion of the genome of an adenovirus which comprises adenovirus 5' and 3'cis-elements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes;
- ii. a selected gene operatively linked to regulatory sequences directing its expression, said gene linked to the DNA of (a) and capable of expression in a target cell in vivo or in vitro;

said DNA and gene encapsidated in an adenoviral capsid.

- 20. The virus according to claim 19 wherein said viral capsid is a capsid of an adenovirus serotype selected from the group consisting of types 2, 4, 5, 7, 12 and 40.
- 21. The virus according to claim 19 wherein said selected gene is a CFTR gene, a DMD gene and an LDL gene.

102

22. The use of a recombinant adenovirus according to claim 19 for the manufacture of a pharmaceutical composition suitable for delivering and integrating a selected gene into the chromosome of a target cell.

3/45

FIGURE 3A

GAACTCGAGC AGCTGAAGCT TGAATTCCAT CATCAATAAT ATACCTTATT	50
TTGGATTGAA GCCAATATGA TAATGAGGGG GTGGAGTTTG TGACGTGGCG	100
CGGGGCGTGG GAACGGGCG GGTGACGTAG GTTTTAGGGC GGAGTAACTT	150
GTATGTGTTG GGAATTGTAG TTTTCTTAAA ATGGGAAGTT ACGTAACGTG	200
GGAAAACGGA AGTGACGATT TGAGGAAGTT GTGGGTTTTT TGGCTTTCGT	250
TTCTGGGCGT AGGTTCGCGT GCGGTTTTCT GGGTGTTTTT TGTGGACTTT	300
AACCGTTACG TCATTTTTTA GTCCTATATA TACTCGCTCT GCACTTGGCC	350
CTTTTTTACA CTGTGACTGA TTGAGCTGGT GCCGTGTCGA GTGGTGTTTT	400
TTTAATAGGT TTTCTTTTTT ACTGGTAAGG CTGACTGTTA GGCTGCCGCT	450
GTGAAGCGCT GTATGTTGTT CTGGAGCGGG AGGGTGCTAT TTTGCCTAGG	500
CAGGAGGGTT TTTCAGGTGT TTATGTGTTT TTCTCTCCTA TTAATTTTGT	550
TATACCTCCT ATGGGGGCTG TAATGTTGTC TCTACGCCTG CGGGTATGTA	600
TTCCCCCCAA GCTTGCATGC CTGCAGGTCG ACTCTAGAGG ATCCGAAAAA	650
ACCTCCCACA CCTCCCCCTG AACCTGAAAC ATAAAATGAA TGCAATTGTT	700
GTTGTTAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG	750
CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG	800
GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGGAT CCCCGCGGCC	850
GCCTAGAGTC GAGGCCGAGT TTGTCAGAAA GCAGACCAAA CAGCGGTTGG	900
AATAATAGCG AGAACAGAGA AATAGCGGCA AAAATAATAC CCGTATCACT	950
TTTGCTGATA TGGTTGATGT CATGTAGCCA AATCGGGAAA AACGGGAAGT	1000
AGGCTCCCAT GATAAAAAAG TAAAAGAAAA AGAATAAACC GAACATCCAA	1050
AAGTTTGTGT TTTTTAAATA GTACATAATG GATTTCCTTA CGCGAAATAC	1100
GGGCAGACAT GGCCTGCCCG GTTATTATTA TTTTTGACAC CAGACCAACT	1150
GGTAATGGTA GCGACCGGCG CTCAGCTGTA ATTCCGCCGA TACTGACGGG	1200
CTCCAGGAGT CGTCGCCACC AATCCCCATA TGGAAACCGT CGATATTCAG	1250
CCATGTGCCT TCTTCCGCGT GCAGCAGATG GCGATGGCTG CTTTCCATCA	1300
GTTGCTGTTG ACTGTAGCGG CTGATGTTGA ACTGGAAGTC GCCGCGCCAC	1350

SUBSTITUTE SHEET (RULE 26)

4/45

FIGURE 3B

TGGTGTGGGC CATAATTCAA TTCGCGCGTC CCGCAGCGCA GACCGTTTTC	1400
GCTCGGGAAG ACGTACGGGG TATACATGTC TGACAATGGC AGATCCCAGC	1450
GGTCAAAACA GGCGGCAGTA AGGCGGTCGG GATAGTTTTC TTGCGGCCCT	1500
AATCCGAGCC AGTTTACCCG CTCTGCTACC TGCGCCAGCT GGCAGTTCAG	1550
GCCAATCCGC GCCGGATGCG GTGTATCGCT CGCCACTTCA ACATCAACGG	1600
TAATCGCCAT TTGACCACTA CCATCAATCC GGTAGGTTTT CCGGCTGATA	1650
AATAAGGTTT TCCCCTGATG CTGCCACGCG TGAGCGGTCG TAATCAGCAC	1700
CGCATCAGCA AGTGTATCTG CCGTGCACTG CAACAACGCT GCTTCGGCCT	1750
GGTAATGGCC CGCCGCCTTC CAGCGTTCGA CCCAGGCGTT AGGGTCAATG	1800
CGGGTCGCTT CACTTACGCC AATGTCGTTA TCCAGCGGTG CACGGGTGAA	1850
CTGATCGCGC AGCGGCGTCA GCAGTTGTTT TTTATCGCCA ATCCACATCT	1900
GTGAAAGAAA GCCTGACTGG CGGTTAAATT GCCAACGCTT ATTACCCAGC	1950
TCGATGCAAA AATCCATTTC GCTGGTGGTC AGATGCGGGA TGGCGTGGGA	2000
CGCGGCGGG AGCGTCACAC TGAGGTTTTC CGCCAGACGC CACTGCTGCC	2050
AGGCGCTGAT GTGCCCGGCT TCTGACCATG CGGTCGCGTT CGGTTGCACT	2100
ACGCGTACTG TGAGCCAGAG TTGCCCGGCG CTCTCCGGCT GCGGTAGTTC	2150
AGGCAGTTCA ATCAACTGTT TACCTTGTGG AGCGACATCC AGAGGCACTT	2200
CACCGCTTGC CAGCGGCTTA CCATCCAGCG CCACCATCCA GTGCAGGAGC	2250
TCGTTATCGC TATGACGGAA CAGGTATTCG CTGGTCACTT CGATGGTTTG	2300
CCCGGATAAA CGGAACTGGA AAAACTGCTG CTGGTGTTTT GCTTCCGTCA	2350
GCGCTGGATG CGGCGTGCGG TCGGCAAAGA CCAGACCGTT CATACAGAAC	2400
TGGCGATCGT TCGGCGTATC GCCAAAATCA CCGCCGTAAG CCGACCACGG	2450
GTTGCCGTTT TCATCATATT TAATCAGCGA CTGATCCACC CAGTCCCAGA	2500
CGAAGCCGCC CTGTAAACGG GGATACTGAC GAAACGCCTG CCAGTATTTA	2550
GCGAAACCGC CAAGACTGTT ACCCATCGCG TGGGCGTATT CGCAAAGGAT	2600
CAGCGGGCGC GTCTCTCCAG GTAGCGAAAG CCATTTTTTG ATGGACCATT	2650

5/45

FIGURE 3C

TCGGCACAG	CCGGGAAGGGC	TGGTCTTCAT	CCACGCGCGC	GTACATCGGG	2700
CAAATAATAT	CGGTGGCCGT	GGTGTCGGCT	CCGCCGCCTT	CATACTGCAC	2750
CGGGCGGAA	GGATCGACAG	ATTTGATCCA	GCGATACAGO	GCGTCGTGAT	2800
TAGCGCCGTG	GCCTGATTCA	TTCCCCAGCG	ACCAGATGAT	CACACTCGGG	2850
TGATTACGAT	CGCGCTGCAC	CATTCGCGTT	ACGCGTTCGC	TCATCGCCGG	2900
TAGCCAGCGC	GGATCATCGG	TCAGACGATT	CATTGGCACC	ATGCCGTGGG	2950
TTTCAATATT	GGCTTCATCC	ACCACATACA	GGCCGTAGCG	GTCGCACAGC	3000
GTGTACCACA	GCGGATGGTT	CGGATAATGC	GAACAGCGCA	CGGCGTTAAA	3050
GTTGTTCTGC	TTCATCAGCA	GGATATCCTG	CACCATCGTC	TGCTCATCCA	3100
TGACCTGACC	ATGCAGAGGA	TGATGCTCGT	GACGGTTAAC	GCCTCGAATC	3150
AGCAACGGCT	TGCCGTTCAG	CAGCAGCAGA	CCATTTTCAA	TCCGCACCTC	3200
GCGGAAACCG	ACATCGCAGG	CTTCTGCTTC	AATCAGCGTG	CCGTCGGCGG	3250
TGTGCAGTTC	AACCACCGCA	CGATAGAGAT	TCGGGATTTC	GGCGCTCCAC	3300
AGTTTCGGGT	TTTCGACGTT	CAGACGTAGT	GTGACGCGAT	CGGCATAACC	3350
ACCACGCTCA	TCGATAATTT	CACCGCCGAA	AGGCGCGGTG	CCGCTGGCGA	3400
CCTGCGTTTC	ACCCTGCCAT	AAAGAAACTG	TTACCCGTAG	GTAGTCACGC	3450
AACTCGCCGC	ACATCTGAAC	TTCAGCCTCC	AGTACAGCGC	GGCTGAAATC	3500
ATCATTAAAG	CGAGTGGCAA	CATGGAAATC	GCTGATTTGT	GTAGTCGGTT	3550
TATGCAGCAA	CGAGACGTCA	CGGAAAATGC	CGCTCATCCG	CCACATATCC	3600
TGATCTTCCA	GATAACTGCC	GTCACTCCAA	CGCAGCACCA	TCACCGCGAG	3650
GCGGTTTTCT	CCGGCGCGTA	AAAATGCGCT	CAGGTCAAAT	TCAGACGGCA	3700
AACGACTGTC	CTGGCCGTAA	CCGACCCAGC	GCCCGTTGCA	CCACAGATGA	3750
AACGCCGAGT	TAACGCCATC	AAAAATAATT	CGCGTCTGGC	CTTCCTGTAG	3800
CCAGCTTTCA	TCAACATTAA	ATGTGAGCGA	GTAACAACCC	GTCGGATTCT	3850
CCGTGGGAAC	AAACGGCGGA :	PTGACCGTAA '	TGGGATAGGT	TACGTTGGTG	3900
TAGATGGGCG	CATCGTAACC (GTGCATCTGC (CAGTTTGAGG	GGACGACGAC	3950

6/45

FIGURE 3D

				C GGCACCGCTT	4000
CTGGTGCCG	G AAACCAGGCI	AAGCGCCAT	T CGCCATTCA	G GCTGCGCAAC	4050
TGTTGGGAA	G GGCGATCGGT	CCCCCCTC	Т ТСЭСТАТТА	C GCCAGCTGGC	4100
CAAAGGGGG	A TGTGCTGCAA	GGCGATTAA	G TTGGGTAAC	G CCAGGGTTTT	4150
CCCAGTCAC	ACGTTGTAAA	ACGACGGGA'	r cgcgcttga	G CAGCTCCTTG	4200
CTGGTGTCC	A GACCAATGCC	TCCCAGACC	G GCAACGAAA	A TCACGTTCTT	4250
GTTGGTCAA	GTAAACGACA	TGGTGACTT	C TTTTTTGCT	TAGCAGGCTC	4300
TTTCGATCC	CGGGAATTGC	GGCCGCGGG	r ACAATTCCG	CAGCTTTTAGA	4350
GCAGAAGTAA	CACTTCCGTA	CAGGCCTAG	AGTAAAGGC!	ACATCCACTG	4400
AGGAGCAGTT	CTTTGATTTG	CACCACCAC	GGATCCGGGA	CCTGAAATAA	4450
AAGACAAAA	GACTAAACTT	ACCAGTTAAC	TTTCTGGTTT	TTCAGTTCCT	4500
CGAGTACCGG	ATCCTCTAGA	GTCCGGAGGC	TGGATCGGTC	CCGGTCTCTT	4550
CTATGGAGGT	CAAAACAGCG	TGGATGGCGT	CTCCAGGCGA	TCTGACGGTT	4600
CACTAAACGA	GCTCTGCTTA	TATAGACCTO	CCACCGTACA	CGCCTACCGC	4650
CCATTTGCGT	CAATGGGGCG	GAGTTGTTAC	GACATTTTGG	AAAGTCCCGT	4700
TGATTTTGGT	GCCAAAACAA	ACTCCCATTG	ACGTCAATGG	GGTGGAGACT	4750
TGGAAATCCC	CGTGAGTCAA	ACCGCTATCC	ACGCCCATTG	ATGTACTGCC	4800
AAAACCGCAT	CACCATGGTA	ATAGCGATGA	CTAATACGTA	GATGTACTGC	4850
CAAGTAGGAA	AGTCCCATAA	GGTCATGTAC	TGGGCATAAT	GCCAGGCGGG	4900
CCATTTACCG	TCATTGACGT	CAATAGGGGG	CGTACTTGGC	ATATGATACA	4950
CTTGATGTAC	TGCCAAGTGG	GCAGTTTACC	GTAAATACTC	CACCCATTGA	5000
CGTCAATGGA	AAGTCCCTAT	TGGCGTTACT	ATGGGAACAT	ACGTCATTAT	5050
TGACGTCAAT	GGGCGGGGT	CGTTGGGCGG	TCAGCCAGGC	GGGCCATTTA	5100
CCGTAAGTTA	TGTAACGACC	TGCAGGTCGA	CTCTAGAGGA	TCTCCCTAGA	5150
CAAATATTAC	GCGCTATGAG	TAACACAAAA	TTATTCAGAT	TTCACTTCCT	5200
CTTATTCAGT	TTTCCCGCGA	AAATGGCCAA	ATCTTACTCG	GTTACGCCCA	5250

7/45

FIGURE 3E

AATTTACTAC	AACATCCGCC	TAAAACCGCG	CGAAAATTGT	CACTTCCTGT	5300
GTACACCGGC	GCACACCAAA	AACGTCACTT	TTGCCACATC	CGTCGCTTAC	5350
ATGTGTTCCG	CCACACTTGC	AACATCACAC	TTCCGCCACA	CTACTACGTC	5400
ACCCGCCCCG	TTCCCACGCC	CCGCGCCACG	TCACAAACTC	CACCCCTCA	5450
TTATCATATT	GGCTTCAATC	CAAAATAAGG	TATATTATTG	ATGATGCTAG	5500
CGAATTCATC	GATGATATCA	GATCTGCCGG	TCTCCCTATA	GTGAGTCGTA	5550
TTAATTTCGA	TAAGCCAGGT	TAACCTGCAT	TAATGAATCG	GCCAACGCGC	5600
GGGGAGAGGC	GGTTTGCGTA	TTGGGCGCTC	TTCCGCTTCC	TCGCTCACTG	5650
ACTCGCTGCG	CTCGGTCGTT	CGGCTGCGGC	GAGCGGTATC	AGCTCACTCA	5700
AAGGCGGTAA	TACGGTTATC	CACAGAATCA	GGGGATAACG	CAGGAAAGAA	5750
CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	GAACCGTAAA	AAGGCCGCGT	5800
TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC	CTGACGAGCA	TCACAAAAAT	5850
CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT	AAAGATACCA	5900
GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG	CTCTCCTGTT	CCGACCCTGC	5950
CGCTTACCGG	ATACCTGTCC	GCCTTTCTCC	CTTCGGGAAG	CGTGGCGCTT	6000
TCTCAATGCT	CACGCTGTAG	GTATCTCAGT	TCGGTGTAGG	TCGTTCGCTC	6050
CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT	TCAGCCCGAC	CGCTGCGCCT	6100
TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	CGGTAAGACA	CGACTTATCG	6150
CCACTGGCAG	CAGCCACTGG	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	6200
CGGTGCTACA	GAGTTCTTGA	AGTGGTGGCC	TAACTACGGC	TACACTAGAA	6250
GGACAGTATT	TGGTATCTGC	GCTCTGCTGA	AGCCAGTTAC	CTTCGGAAAA	6300
AGAGTTGGTA	GCTCTTGATC	CGGCAAACAA	ACCACCGCTG	CTAGCGGTGG	6350
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TGCAAGCAGC	AGATTACGCG	CAGAAAAAAA	GGATCTCAAG	6400
AAGATCCTTT	GATCTTTTCT	ACGGGGTCTG	ACGCTCAGTG	GAACGAAAAC	6450
TCACGTTAAG	GGATTTTGGT	CATGAGATTA	TCAAAAAGGA	TCTTCACCTA	6500
GATCCTTTTA	AATTAAAAAT	GAAGTTTTAA	ATCAATCTAA	AGTATATATG	6550

8/45

FIGURE 3F

AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC	6600
TCAGCGATCT GTCTATTTCG TTCATCCATA GTTGCCTGAC TCCCCGTCGT	6650
GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA	6700
TGATACCGCG AGACCCACGC TCACCGGCTC CFGATTATC AGCAATAAAC	6750
CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA CTTTATCCGC	6800
CTCCATCCAG TCTATTAATT GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC	6850
CAGTTAATAG TTTGCGCAAC GTTGTTGCCA TTGCTACAGG CATCGTGGTG	6900
TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT CCCAACGATC	6950
AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT	7000
TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC	7050
ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG	7100
ATGCTTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT	7150
GTATGCGGCG ACCGAGTTGC TCTTGCCCGG CGTCAATACG GGATAATACC	7200
GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA AACGTTCTTC	7250
GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT	7300
AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC	7350
GTTTCTGGGT GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT	7400
AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT	7450
ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTTGAA	7500
TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT TTCCCCGAAA	7550
AGTGCCACCT GACGTCTAAG AAACCATTAT TATCATGACA TTAACCTATA	7600
AAAATAGGCG TATCACGAGG CCCTTTCGTC TCGCGCGTTT CGGTGATGAC	7650
GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTTGTCT	7700
GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGGCGCG TCAGCGGGTG	7750
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA	7800
CTGAGAGTGC ACCATATGGA CATATTGTCG TTAGAACGCG GCTACAATTA	7850
ATACATAACC TTATGTATCA TACACATACG ATTTAGGTGA CACTATA	7897

SUBSTITUTE SHEET (RULE 26)

FIG. 4A

WO 96/13597

PCT/US95/14017

10/45

FIGURE 5A

GAATTCGCT	A GCTAGCGGGG	GAATACATAC	CCGCAGGCGT	AGAGACAACA	50
TTACAGCCC	CATAGGAGGT	ATAACAAAAT	TAATAGGAGA	GAAAAACACA	100
TAAACACCTC	AAAAACCCTC	CTGCCTAGGC	AAAATAGCAC	CCTCCCGCTC	150
CAGAACAACA	TACAGCGCTT	CACAGCGGCA	GCCTAACAGT	CAGCCTTACC	200
AGTAAAAA	AAAACCTATT	AAAAAAACAC	CACTCGACAC	GGCACCAGCT	250
CAATCAGTCA	CAGTGTAAAA	AAGGGCCAAG	TGCAGAGCGA	GTATATATAG	300
GACTAAAAA	TGACGTAACG	GTTAAAGTCC	АСААААААСА	CCCAGAAAAC	350
CGCACGCGAA	CCTACGCCCA	GAAACGAAAG	ССААААААСС	CACAACTTCC	400
TCAAATCGTC	ACTTCCGTTT	TCCCACGTTA	CGTAACTTCC	CATTTTAAGA	450
AAACTACAAT	TCCCAACACA	TACAAGTTAC	TCCGCCCTAA	AACCTACGTC	500
ACCCGCCCCG	TTCCCACGCC	CCGCGCCACG	TCACAAACTC	CACCCCTCA	550
TTATCATATT	GGCTTCAATC	CAAAATAAGG	TATATTATTG	ATGATGCTAG	600
CATCATCAAT	AATATACCTT	ATTTTGGATT	GAAGCCAATA	TGATAATGAG	650
GGGGTGGAGT	TTGTGACGTG	GCGCGGGGCG	TGGGAACGGG	GCGGGTGACG	700
TAGTAGTGTG	GCGGAAGTGT	GATGTTGCAA	GTGTGGCGGA	ACACATGTAA	750
GCGACGGATG	TGGCAAAAGT	GACGTTTTTG	GTGTGCGCCG	GTGTACACAG	800
GAAGTGACAA	TTTTCGCGCG	GTTTTAGGCG	GATGTTGTAG	TAAATTTGGG	850
CGTAACCGAG	TAAGATTTGG	CCATTTTCGC	GGGAAAACTG	AATAAGAGGA	900
AGTGAAATCT	GAATAATTTT	GTGTTACTCA	TAGCGCGTAA	TATTTGTCTA	950
GGGAGATCAG	CCTGCAGGTC	GTTACATAAC	TTACGGTAAA	TGGCCCGCCT	1000
GGCTGACCGC	CCAACGACCC	CCGCCCATTG	ACGTCAATAA	TGACGTATGT	1050
TCCCATAGTA	ACGCCAATAG	GGACTTTCCA	TTGACGTCAA	TGGGTGGAGT	1100
ATTTACGGTA	AACTGCCCAC	TTGGCAGTAC	ATCAAGTGTA	TCATATGCCA	1150
AGTACGCCCC	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATTA	1200
TGCCCAGTAC	ATGACCTTAT	GGGACTTTCC	TACTTGGCAG	TACATCTACG	1250
TATTAGTCAT	CGCTATTACC	ATGGTGATGC (GGTTTTGGCA	GTACATCAAT	1300

11/45

FIGURE 5B

GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT	1350
TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA	1400
AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA	1450
CGGTGGGAGG TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCGC	1500
CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA CACCGGGACC	1550
GATCCAGCCT CCGGACTCTA GAGGATCCGG TACTCGAGGA ACTGAAAAAC	1600
CAGAAAGTTA ACTGGTAAGT TTAGTCTTTT TGTCTTTTAT TTCAGGTCCC	1650
GGATCCGGTG GTGGTGCAAA TCAAAGAACT GCTCCTCAGT GGATGTTGCC	1700
TTTACTTCTA GGCCTGTACG GAAGTGTTAC TTCTGCTCTA AAAGCTGCGG	1750
AATTGTACCC GCGGCCGAA TTCCCGGGGA TCGAAAGAGC CTGCTAAAGC	1800
AAAAAAGAAG TCACCATGTC GTTTACTTTG ACCAACAAGA ACGTGATTTT	1850
CGTTGCCGGT CTGGGAGGCA TTGGTCTGGA CACCAGCAAG GAGCTGCTCA	1900
AGCGCGATCC CGTCGTTTTA CAACGTCGTG ACTGGGAAAA CCCTGGCGTT	1950
ACCCAACTTA ATCGCCTTGC AGCACATCCC CCTTTCGCCA GCTGGCGTAA	2000
TAGCGAAGAG GCCCGCACCG ATCGCCCTTC CCAACAGTTG CGCAGCCTGA	2050
ATGGCGAATG GCGCTTTGCC TGGTTTCCGG CACCAGAAGC GGTGCCGGAA	2100
AGCTGGCTGG AGTGCGATCT TCCTGAGGCC GATACTGTCG TCGTCCCCTC	2150
AAACTGGCAG ATGCACGGTT ACGATGCGCC CATCTACACC AACGTAACCT	2200
ATCCCATTAC GGTCAATCCG CCGTTTGTTC CCACGGAGAA TCCGACGGGT	2250
TGTTACTCGC TCACATTTAA TGTTGATGAA AGCTGGCTAC AGGAAGGCCA	2300
GACGCGAATT ATTTTTGATG GCGTTAACTC GGCGTTTCAT CTCTGGTGCA	2350
ACGGGCGCTG GGTCGGTTAC GGCCAGGACA GTCGTTTGCC GTCTGAATTT	2400
GACCTGAGCG CATTTTTACG CGCCGGAGAA AACCGCCTCG CGGTGATGGT	2450
GCTGCGTTGG AGTGACGGCA GTTATCTGGA AGATCAGGAT ATGTGGCGGA	2500
TGAGCGGCAT TTTCCGTGAC GTCTCGTTGC TGCATAAACC GACTACACAA	2550
ATCAGCGATT TCCATGTTGC CACTCGCTTT AATGATGATT TCAGCCGCGC	2600

12/45

FIGURE 5C

TGTACTGGAG GCTGAAGTTC AGATGTGCGG CGAGTTGCGT GACTACCTAC	2650
GGGTAACAGT TTCTTTATGG CAGGGTGAAA CGCAGGTCGC CAGCGGCACC	2700
GCGCCTTTCG GCGGTGAAAT TATCGATGAG CGTGGTGGTT ATGCCGATCG	2750
CGTCACACTA CGTCTGAACG TCGAAAACCC GAAACTGTGG AGCGCCGAAA	2800
TCCCGAATCT CTATCGTGCG GTGGTTGAAC TGCACACCGC CGACGGCACG	2850
CTGATTGAAG CAGAAGCCTG CGATGTCGGT TTCCGCGAGG TGCGGATTGA	2900
AAATGGTCTG CTGCTGA ACGGCAAGCC GTTGCTGATT CGAGGCGTTA	2950
ACCGTCACGA GCATCATCCT CTGCATGGTC AGGTCATGGA TGAGCAGACC	3000
ATGGTGCAGG ATATCCTGCT GATGAAGCAG AACAACTTTA ACGCCGTGCG	3050
CTGTTCGCAT TATCCGAACC ATCCGCTGTG GTACACGCTG TGCGACCGCT	3100
ACGGCCTGTA TGTGGTGGAT GAAGCCAATA TTGAAACCCA CGGCATGGTG	3150
CCAATGAATC GTCTGACCGA TGATCCGCGC TGGCTACCGG CGATGAGCGA	3200
ACGCGTAACG CGAATGGTGC AGCGCGATCG TAATCACCCG AGTGTGATCA	3250
TCTGCTCGCT GGGGAATGAA TCAGGCCACG GCGCTAATCA CGACGCGCTG	3300
TATCGCTGGA TCAAATCTGT CGATCCTTCC CGCCCGGTGC AGTATGAAGG	3350
CGGCGGAGCC GACACCACGG CCACCGATAT TATTTGCCCG ATGTACGCGC	3400
GCGTGGATGA AGACCAGCCC TTCCCGGCTG TGCCGAAATG GTCCATCAAA	3450
AAATGGCTTT CGCTACCTGG AGAGACGCGC CCGCTGATCC TTTGCGAATA	3500
CGCCCACGCG ATGGGTAACA GTCTTGGCGG TTTCGCTAAA TACTGGCAGG	3550
CGTTTCGTCA GTATCCCCGT TTACAGGGCG GCTTCGTCTG GGACTGGGTG	3600
GATCAGTCGC TGATTAAATA\TGATGAAAAC GGCAACCCGT GGTCGGCTTA	3650
CGGCGGTGAT TTTGGCGATA CGCCGAACGA TCGCCAGTTC TGTATGAACG	3700
GTCTGGTCTT TGCCGACCGC ACGCCCCATC CAGCGCTGAC GGAAGCAAAA	3750
CACCAGCAGC AGTTTTTCCA GTTCCGTTTA TCCGGGCAAA CCATCGAAGT	3800
GACCAGCGAA TACCTGTTCC GTCATAGCGA TAACGAGCTC CTGCACTGGA	3850
TGGTGGCGCT GGATGGTAAG CCGCTGGCAA GCGGTGAAGT GCCTCTGGAT	3900

SUBSTITUTE SHEET (RULE 26)

13/45

FIGURE 5D

GTCGCTCCAC AAGGTAAACA GTTGATTGAA CTGCCTGAAC TACC	
GGAGAGCGCC GGGCAACTCT GGCTCACAGT ACGCGTAGTG CAAC	CGAACG 4000
CGACCGCATG GTCAGAAGCC GGGCACATCA GCGCCTGGCA GCAG	TGGCGT 4050
CTGGCGGAAA ACCTCAGTGT GACGCTCCCC GCCGCGTCCC ACGCC	CATCCC 4100
GCATCTGACC ACCAGCGAAA TGGATTTTTG CATCGAGCTG GGTA	ATAAGC 4150
GTTGGCAATT TAACCGCCAG TCAGGCTTTC TTTCACAGAT GTGGA	ATTGGC 4200
GATAAAAAC AACTGCTGAC GCCGCTGCGC GATCAGTTCA CCCGI	GCACC 4250
GCTGGATAAC GACATTGGCG TAAGTGAAGC GACCCGCATT GACCC	TAACG 4300
CCTGGGTCGA ACGCTGGAAG GCGGCGGCC ATTACCAGGC CGAAG	CAGCG 4350
TTGTTGCAGT GCACGGCAGA TACACTTGCT GATGCGGTGC TGATT	ACGAC 4400
CGCTCACGCG TGGCAGCATC AGGGGAAAAC CTTATTTATC AGCCG	GAAAA 4450
CCTACCGGAT TGATGGTAGT GGTCAAATGG CGATTACCGT TGATG	TTGAA 4500
GTGGCGAGCG ATACACCGCA TCCGGCGCGG ATTGGCCTGA ACTGC	CAGCT 4550
GGCGCAGGTA GCAGAGCGGG TAAACTGGCT CGGATTAGGG CCGCAI	AGAAA 4600
ACTATCCCGA CCGCCTTACT GCCGCCTGTT TTGACCGCTG GGATCT	
TTGTCAGACA TGTATACCCC GTACGTCTTC CCGAGCGAAA ACGGTC	CTGCG 4700
CTGCGGGACG CGCGAATTGA ATTATGGCCC ACACCAGTGG CGCGGC	CGACT 4750
TCCAGTTCAA CATCAGCCGC TACAGTCAAC AGCAACTGAT GGAAAC	CCAGC 4800
CATCGCCATC TGCTGCACGC GGAAGAAGGC ACATGGCTGA ATATCG	
TTTCCATATG GGGATTGGTG GCGACGACTC CTGGAGCCCG TCAGTA	
CGGAATTACA GCTGAGCGCC GGTCGCTACC ATTACCAGTT GGTCTG	
CAAAAATAAT AATAACCGGG CAGGCCATGT CTGCCCGTAT TTCGCG	•
GAAATCCATT ATGTACTATT TAAAAAACAC AAACTTTTGG ATGTTC	
TATTCTTTTT CTTTTACTTT TTTATCATGG GAGCCTACTT CCCGTT	
CCGATTTGGC TACATGACAT CAACCATATC AGCAAAAGTG ATACGGG	
TATTTTTGCC GCTATTTCTC TGTTCTCGCT ATTATTCCAA CCGCTGT	
GTCTGCTTTC TGACAAACTC GGCCTCGACT CTAGGCGGCC GCGGGG	

14/45

FIGURE 5E

AGACATGATA AGATACATTG ATGAGTTTGG ACAAACCACA ACTAGAATGC	5300
AGTGAAAAA ATGCTTTATT TGTGAAATTT GTGATGCTAT TGCTTTATTT	5350
GTAACCATTA TAAGCTGCAA TAAACAAGTT AACAACAACA ATTGCATTCA	5400
TTTTATGTTT CAGGTTCAGG GGGAGGTGTG GGAGGTTTTT TCGGATCCTC	5450
TAGAGTCGAC GACGCGAGGC TGGATGGCCT TCCCCATTAT GATTCTTCTC	5500
GCTTCCGGCG GCATCGGGAT GCCCGCGTTG CAGGCCATGC TGTCCAGGCA	5550
GGTAGATGAC GACCATCAGG GACAGCTTCA AGGATCGCTC GCGGCTCTTA	5600
CCAGCCTAAC TTCGATCACT GGACCGCTGA TCGTCACGGC GATTTATGCC	5650
GCCTCGGCGA GCACATGGAA CGGGTTGGCA TGGATTGTAG GCGCCGCCCT	5700
ATACCTTGTC TGCCTCCCG CGTTGCGTCG CGGTGCATGG AGCCGGGCCA	5750
CCTCGACCTG AATGGAAGCC GGCGGCACCT CGCTAACGGA TTCACCACTC	5800
CAAGAATTGG AGCCAATCAA TTCTTGCGGA GAACTGTGAA TGCGCAAACC	5850
AACCCTTGGC AGAACATATC CATCGCGTCC GCCATCTCCA GCAGCCGCAC	5900
GCGGCGCATC TCGGGCAGCG TTGGGTCCTG GCCACGGGTG CGCATGATCG	5950
TGCTCCTGTC GTTGAGGACC CGGCTAGGCT GGCGGGGTTG CCTTACTGGT	6000
TAGCAGAATG AATCACCGAT ACGCGAGCGA ACGTGAAGCG ACTGCTGCTG	6050
CAAAACGTCT GCGACCTGAG CAACAACATG AATGGTCTTC GGTTTCCGTG	6100
TTTCGTAAAG TCTGGAAACG CGGAAGTCAG CGCCCTGCAC CATTATGTTC	6150
CGGATCTGCA TCGCAGGATG CTGCTGGCTA CCCTGTGGAA CACCTACATC	6200
TGTATTAACG AAGCCTTTCT CAATGCTCAC GCTGTAGGTA TCTCAGTTCG	6250
GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT GTGCACGAAC CCCCCGTTCA	6300
GCCCGACCGC TGCGCCTTAT CCGGTAACTA TCGTCTTGAG TCCAACCCGG	6350
TAAGACACGA CTTATCGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC	6400
AGAGCGAGGT ATGTAGGCGG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA	6450
CTACGGCTAC ACTAGAAGGA CAGTATTTGG TATCTGCGCT CTGCTGAAGC	6500
CAGTTACCTT CGGAAAAAGA GTTGGTAGCT CTTGATCCGG CAAACAAACC	6550

15/45

FIGURE 5F

ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC AAGCAGCAGA TTACGCGCAG	6600
AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTTCTACG GGGTCTGACG	6650
CTCAGTGGAA CGAAAACTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA	6700
AAAAGGATCT TCACCTAGAT CCTTTTAAAT TA\AAATGAA GTTTTAAATC	6750
AATCTAAAGT ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA	6800
TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT	6850
GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC	6900
TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG	6950
ATTTATCAGC AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT	7000
CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC	7050
TAGAGTAAGT AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG	7100
	7150
	7200
	7250
	7300
	7350
	7400
	7450
	7500
	7550
•	7600
	7650
CTTCCTTTTT CAATATTATT GAAGCATTTA TCAGGGTTAT TGTCTCATGA 7	700
	750
CGCACATTTC CCCGAAAAGT GCCACCTGAC GTCTAAGAAA CCATTATTAT 7	800
CATGACATTA ACCTATAAAA ATAGGCGTAT CACGAGGCCC TTTCGTCTTC 7	850
AA 7	852

FIG. 6

WO 96/13597

17/45

PCT/US95/14017

FIGURE 7A

5	TTCGGCTGCG	CGCTCGGTCG	. IGNCICGCIG	oolegelewe	
10	TCCACAGAAT	AATACGGTTA	CAAAGGCGGT	TCAGCTCACT	GCGAGCGGTA
15	GCAAAAGGCC	CAAAAGGCCA	AACATGTGAG	CGCAGGAAAG	CAGGGGATAA
20	GGCTCCGCCC	TTTTTCCATA	GTTGCTGGCG	AAAAGGCCGC	AGGAACCGTA
25	TGGCGAAACC	AAGTCAGAGG	ATCGACGCTC	CATCACAAAA	CCCTGACGAG
30	CTCCCTCGTG	CCCCTGGAAG	CAGGCGTTTC	ATAAAGATAC	CGACAGGACT
35	CCGCCTTTCT	GGATACCTGT	GCCGCTTACC	TTCCGACCCT	CGCTCTCCTG
40	AGGTATCTCA	CTCACGCTGT	TTTCTCATAG	AGCGTGGCGC	CCCTTCGGGA
45	CGAACCCCCC	GCTGTGTGCA	TCCAAGCTGG	GGTCGTTCGC	GTTCGGTGTA
500	TTGAGTCCAA	AACTATCGTC	CTTATCCGGT	ACCGCTGCGC	GTTCAGCCCG
550	GGTAACAGGA	AGCAGCCACT	CGCCACTGGC	CACGACTTAT	CCCGGTAAGA
600	GAAGTGGTGG	CAGAGTTCTT	GGCGGTGCTA	GAGGTATGTA	TTAGCAGAGC
650	GCGCTCTGCT	TTTGGTATCT	AAGAACAGTA	GCTACACTAG	CCTAACTACG
700	TCCGGCAAAC	TAGCTCTTGA	AAAGAGTTGG	ACCTTCGGAA	GAAGCCAGTT
750	GCAGATTACG	TTTGCAAGCA	GGTTTTTTTG	TGGTAGCGGT	AAACCACCGC
800	CTACGGGGTC	TTGATCTTTT	AGAAGATCCT	AAGGATCTCA	CGCAGAAAA
850	GTCATGAGAT	AGGGATTTTG	ACTCACGTTA	TGGAACGAAA	TGACGCTCAG
900	ATGAAGTTTT	AAATTAAAT	TAGATCCTTT	GATCTTCACC	TATCAAAAAG
950	GTTACCAATG	TGGTCTGACA	TGAGTAAACT	AAAGTATATA	AAATCAATCT
1000	CGTTCATCCA	CTGTCTATTT	TCTCAGCGAT	GAGGCACCTA	CTTAATCAGT
1050	GGAGGGCTTA	CTACGATACG	GTGTAGATAA	ACTCCCCGTC	TAGTTGCCTG
1100	GCTCACCGGC	CCAGACCCAC	AATGATACCG	CCAGTGCTGC	CCATCTGGCC
1150	GAGCGCAGAA	CGGAAGGGCC	ACCAGCCAGC	TCAGCAATAA	TCCAGATTTA
1200	TTGTTGCCGG	AGTCTATTAA	GCCTCCATCC	AACTTTATCC	GTGGTCCTGC
1250	ACGTTGTTGC	AGTTTGCGCA	GCCAGTTAAT	TAAGTAGTTC	GAAGCTAGAG
1300	ATGGCTTCAT	GTCGTTTGGT	TGTCACGCTC	GGCATCGTGG	CATTGCTACA

SUBSTITUTE SHEET (RULE 26)

18/45

FIGURE 7B

TCAGCTCCG	C TTCCCAACGA	A TCAAGGCGAG	TTACATGATC	CCCCATGTTG	1350
TGCAAAAA	G CGGTTAGCT	CTTCGGTCCT	CCGATCGTTG	TCAGAAGTAA	1400
GTTGGCCGC	A GTGTTATCAC	C TCATGGTTAT	GGCAGCACTG	CATAATTCTC	1450
TTACTGTCA:	r gccatccgta	AGATGCTTTT	CTGTGACTGG	TGAGTACTCA	1500
ACCAAGTCA	TCTGAGAATA	GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	1550
GGCGTCAAT	A CGGGATAATA	CCGCGCCACA	TAGCAGAACT	TTAAAAGTGC	1600
TCATCATTGO	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	1650
CTGTTGAGAT	CCAGTTCGAT	GTAACCCACT	CGTGCACCCA	ACTGATCTTC	1700
AGCATCTTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	ACAGGAAGGC	1750
AAAATGCCGC	AAAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	1800
ATACTCTTCC	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	1850
CATGAGCGGA	TACATATTTG	AATGTATTTA	GAAAAATAAA	CAAATAGGGG	1900
TTCCGCGCAC	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCTA	AGAAACCATT	1950
ATTATCATGA	CATTAACCTA	TAAAAATAGG	CGTATCACGA	GGCCCTTTCG	2000
TCTCGCGCGT	TTCGGTGATG	ACGGTGAAAA	CCTCTGACAC	ATGCAGCTCC	2050
CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	2100
CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	TGTCGGGGCT	GGCTTAACTA	2150
TGCGGCATCA	GAGCAGATTG	TACTGAGAGT	GCACCATAAA	ATTGTAAACG	2200
TTAATATTTT	GTTAAAATTC	GCGTTAAATT	TTTGTTAAAT	CAGCTCATTT	2250
TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	CCTTATAAAT	CAAAAGAATA	2300
GCCCGAGATA	GGGTTGAGTG	TTGTTCCAGT	TŤGGAACAAG	AGTCCACTAT	2350
TAAAGAACGT	GGACTCCAAC	GTCAAAGGGC	GAAAAACCGT	CTATCAGGGC	2400
GATGGCCCAC	TACGTGAACC	ATCACCCAAA	TCAAGTTTTT	TGGGGTCGAG	2450
GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	AGGGAGCCCC	CGATTTAGAG	2500
CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	2550
AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	2600

19/45

FIGURE 7C

CCCGCCGCGC	TTAATGCGCC	GCTACAGGGC	GCGTACTATG	2650
				2700
CAGGCGCCAT	TCGCCATTCA	GGCTGCGCAA	CTGTTGGGAA	2750
TGCGGGCCTC	TTCGCTATTA	CGCCAGCTGG	CGAAAGGGGG	2800
AGGCGATTAA	GTTGGGTAAC	GCCAGGGTTT	TCCCAGTCAC	2850
AACGACGGCC	AGTGCCAAGC	TTAAGGTGCA	CGGCCCACGT	2900
ACTTCTCGAG	CTCTGTACAT	GTCCGCGGTC	GCGACGTACG	2950
GCGCCAGCTG	CAGGCGGCCG	CCATATGCAT	CCTAGGCCTA	3000
GGAGTATACG	TAGCCGGCTA	ACGTTAACAA	CCGGTACCTC	3050
GCTAGCCAAT	TCCATCATCA	ATAATATACC	TTATTTTGGA	3100
TATGATAATG	AGGGGGTGGA	GTTTGTGACG	TGGCGCGGG	3150
GGGCGGGTGA	CGTAGGTTTT	AGGGCGGAGT	AACTTGTATG	3200
TGTAGTTTTC	TTAAAATGGG	AAGTTACGTA	ACGTGGGAAA	3250
CGATTTGAGG	AAGTTGTGGG	TTTTTTGGCT	TTCGTTTCTC	3300
CGCGTGCGGT	TTTCTGGGTG	TTTTTTGTGG	ACTTTAACCG	3350
TTTTAGTCCT	ATATATACTC	GCTCTGCACT	TGGCCCTTTT	3400
ACTGATTGAG	CTGGTGCCGT	GTCGAGTGGT	GTTTTTTAA	3450
TTTTTACTGG	TAAGGCTGAC	TGTTAGGCTG	CCGCTGTGAA	3500
TTGTTCTGGA	GCGGGAGGGT	GCTATTTTGC	CTAGGCAGGA	3550
GGTGTTTATG	TGTTTTCTC	TCCTATTAAT	TTTGTTATAC	3600
GGCTGTAATG	TTGTCTCTAC	GCCTGCGGGT	ATGTATTCCC	3650
CATGCCTGCA	GGTCGACTCT	AGAGGATCCG	AAAAAACCTC	3700
CCCTGAACCT	GAAACATAAA	ATGAATGCAA	TTGTTGTTGT	3750
ATTGCAGCTT	ATAATGGTTA	CAAATAAAGC	AATAGCATCA	3800
AAATAAAGCA	TTTTTTTCAC	TGCATTCTAG	TTGTGGTTTG	3850
TCAATGTATC	TTATCATGTC	TGGATCCCCC	TAGCTTGCCA	3900
	CGTATGCGGT CAGGCGCCAT TGCGGGCCTC AGGCGATTAA AACGACGGCC ACTTCTCGAG GCGCCAGCTG GGAGTATACG GGTAGCCAAT TATGATAATG GGGCGGGTGA TGTAGTTTTC CGATTTGAGG CGCGTGCGGT ACTGATTGAGG TTTTACTGG TTTTTACTGG TTTTTCTGGA GGTGTTTTC GGCTGTATG	CGTATGCGGT GTGAAATACC CAGGCGCCAT TCGCCATTCA TGCGGGCCTC TTCGCTATTA AGGCGATTAA GTTGGGTAACC AACGACGGCC AGTGCCAAGC ACTTCTCGAG CTCTGTACAT GCGCCAGCTG CAGGCGGCCG GGAGTATACG TAGCCGGCTA TATGATAATG AGGGGGTGGA CGATTTCC TTAAAATGGG CGATTTGAGG AAGTTGTGGG CGCGTGCGGT TTTCTGGGTG TTTTAGTCCT ATATATACTC ACTGATTGAG CTGGTGCCGT TTTTTACTGG TAAGGCTGAC TTGTTCTGGA GCGGGAGGGT GGTGTTTATG TGTTTTTCTC GGCTGTAATG TGTTTTTCTC CATGCCTGCA GGTCGACTCT CCCTGAACCT GAAACATAAA ATTGCAGCTT ATAATGGTTA AAATAAAGCA TTTTTTCAC	CGTATGCGGT GTGAAATACC GCACAGATGC CAGGCGCCAT TCGCCATTCA GGCTGCGCAA TGCGGGCCTC TTCGCTATTA CGCCAGCTGG AGGCGATTAA GTTGGGTAAC GCCAGGGTTT AACGACGGCC AGTGCCAAGC TTAAGGTGCA ACTTCTCGAG CTCTGTACAT GTCCGCGGTC GCGCCAGCTG CAGGCGGCC CCATATGCAT GGAGTATACG TAGCCGGCTA ACGTTAACAA GCTAGCCAAT TCCATCATCA ATAATATACC TATGATAATG AGGGGTGGA GTTTGTGGCG GGGCGGGTGA CGTAGGTTT AGGGCGGAGT TGTAGTTTC TTAAAATGGG AAGTTACGTA CGATTTGAGG AAGTTGTGGG TTTTTTGGCT ACTGATTGAG CTGGTGCCGT GTCGAGTGGT TTTTTACTCG TAAGGCTGAC TGTTAGGCTG TTTTTACTGG TAAGGCTGAC TGTTAGGCTG GGTGTTTATG TGTTTTTCTC TCCTATTAAT GGCTGTAATG TTGTCTTAC GCCTGCGGGT CATGCCTGCA GGTCGACTCT AGAGGATCCG CCCTGAACCT GAAACATAAA ATGAATAAAGC AAATAAAGCA TTTTTTCAC TGCATTCTAG	CCCGCCGCGC TTAATGCGCC GCTACAGGGC GCGTACTATG CGTATGCGGT GTGAAATACC GCACAGATGC GTAAGGAGAA CAGGCGCCAT TCGCCATTCA GGCTGCGCAA CTGTTGGGAA TGCGGGCCTC TTCGCTATTA CGCCAGCTGG CGAAAGGGGG AGGCGATTAA GTTGGGTAAC GCCAGGGTTT TCCCAGTCAC AACGACGGCC AGTGCCAAGC TTAAGGTGCA CGGCCCACGT ACTTCTCGAG CTCTGTACAT GTCCGCGGTC GCGACGTACG GCGCCAGCTG CAGGCGGCCG CCATATGCAT CCTAGGCCTA GGAGTATACG TAGCCGGCTA ACGTTAACAA CCGGTACCTC GCTAGCCAAT TCCATCATCA ATAATATACC TTATTTTGGA TATGATAATG AGGGGTGGA GTTTGTGACC TGGCCGGGGG GGGCGGGTGA CGTAGGTTT AGGGCGGAGT AACTTGTATG TGTAGTTTTC TTAAAATGGG AAGTTACGTA ACGTTGACA CGATTTGAGG AAGTTGTGG TTTTTTGGCT TCGTTTCTC CGCGTGCGGT TTTCTGGGTG TTTTTTTTTT

20/45

FIGURE 7D

AACCTACAGG	TGGGGTCTTT	CATTCCCCCC	TTTTTCTGGA	GACTAAATAA	3950
AATCTTTAT	TTTATCTATG	GCTCGTACTC	TATAGGCTTC	AGCTGGTGAT	4000
ATTGTTGAGT	CAAAACTAGA	GCCTGGACCA	CTGATATCCT	GTCTTTAACA	4050
AATTGGACTA	ATCGCGGGAT	CAGCCAATTC	CATGAGCAAA	TGTCCCATGT	4100
CAACATTTAT	GCTGCTCTCT	AAAGCCTTGT	ATCTTGCATC	TCTTCTTCTG	4150
TCTCCTCTTT	CAGAGCAGCA	ATCTGGGGCT	TAGACTTGCA	CTTGCTTGAG	4200
TTCCGGTGGG	GAAAGAGCTT	CACCCTGTCG	GAGGGGCTGA	TGGCTTGCCG	4250
GAAGAGGCTC	CTCTCGTTCA	GCAGTTTCTG	GATGGAATCG	TACTGCCGCA	4300
CTTTGTTCTC	TTCTATGACC	AAAAATTGTT	GGCATTCCAG	CATTGCTTCT	4350
ATCCTGTGTT	CACAGAGAAT	TACTGTGCAA	TCAGCAAATG	CTTGTTTTAG	4400
AGTTCTTCTA	ATTATTTGGT	ATGTTACTGG	ATCCAAATGA	GCACTGGGTT	4450
CATCAAGCAG	CAAGATCTTC	GCCTTACTGA	GAACAGATCT	AGCCAAGCAC	4500
ATCAACTGCT	TGTGGCCATG	GCTTAGGACA	CAGCCCCCAT	CCACAAGGAC	4550
AAAGTCAAGC	TTCCCAGGAA	ACTGTTCTAT	CACAGATCTG	AGCCCAACCT	4600
CATCTGCAAC	TTTCCATATT	TCTTGATCAC	TCCACTGTTC	ATAGGGATCC	4650
AAGTTTTTTC	TAAATGTTCC	AGAAAAAATA	AATACTTTCT	GTGGTATCAC	4700
TCCAAAGGCT	TTCCTCCACT	GTTGCAAAGT	TATTGAATCC	CAAGACACAC	4750
CATCGATCTG	GATTTCTCCT	TCAGTGTTCA	GTAGTCTCAA	AAAAGCTGAT	4800
AACAAAGTAC	TCTTCCCTGA	TCCAGTTCTT	CCCAAGAGGC	CCACCCTCTG	4850
GCCAGGACTT	ATTGAGAAGG	AAATGTTCTC	TAATATGGCA	TTTCCACCTT	4900
CTGTGTATTT	TGCTGTGAGA	TCTTTGACAG	TCATTTGGCC	CCCTGAGGGC	4950
CAGATGTCAT	CTTTCTTCAC	GTGTGAATTC	TCAATAATCA	TAACTTTCGA	5000
GAGTTGGCCA	TTCTTGTATG	GTTTGGTTGA	CTTGGTAGGT	TTACCTTCTG	5050
TTGGCATGTC	AATGAACTTA	AAGACTCGGC	TCACAGATCG	CATCAAGCTA	5100
TCCACATCTA	TGCTGGAGTT	TACAGCCCAC	TGCAATGTAC	TCATGATATT	5150
CATGGCTAAA	GTCAGGATAA	TACCAACTCT	TCCTTCTCCT	TCTCCTGTTG	5200

21/45

FIGURE 7E

TTAAAATGGA	AATGAAGGTA	ACAGCAATGA	AGAAGATGAC	AAAAATCATT	5250
TCTATTCTCA	TTTGGAACCA	GCGCAGTGTT	GACAGGTACA	AGAACCAGTT	5300
GGCAGTATGT	AAATTCAGAG	CTTTGTGGAA	CAGAGTTTCA	AAGTAAGGCT	5350
GCCGTCCGAA	GGCACGAAGT	GTCCATAGTC	CTTTTAAGCT	TGTAACAAGA	5400
TGAGTGAAAA	TTGGACTCCT	GCCTTCAGAT	TCCAGTTGTT	TGAGTTGCTG	5450
TGAGGTTTGG	AGGAAATATG	CTCTCAACAT	AATAAAAGCC	ACTATCACTG	5500
GCACTGTTGC	AACAAAGATG	TAGGGTTGTA	AAACTGCGAC	AACTGCTATA	5550
GCTCCAATCA	CAATTAATAA	CAACTGGATG	AAGTCAAATA	TGGTAAGAGG	5600
CAGAAGGTCA	TCCAAAATTG	CTATATCTTT	GGAGAATCTA	TTAAGAATCC	5650
CACCTGCTTT	CAACGTGTTG	AGGGTTGACA	TAGGTGCTTG	AAGAACAGAA	5700
TGTAACATTT	TGTGGTGTAA	AATTTTCGAC	ACTGTGATTA	GAGTATGCAC	5750
CAGTGGTAGA	CCTCTGAAGA	ATCCCATAGC	AAGCAAAGTG	TCGGCTACTC	5800
CCACGTAAAT	GTAAAACACA	TAATACGAAC	TGGTGCTGGT	GATAATCACT	5850
GCATAGCTGT	TATTTCTACT	ATGAGTACTA	TTCCCTTTGT	CTTGAAGAGG	5900
AGTGTTTCCA	AGGAGCCACA	GCACAACCAA	AGAAGCAGCC	ACCTCTGCCA	5950
GAAAAATTAC	TAAGCACCAA	ATTAGCACAA	AAATTAAGCT	CTTGTGGACA	6000
GTAATATATC	GAAGGTATGT	GTTCCATGTA	GTCACTGCTG	GTATGCTCTC	6050
CATATCATCA	AAAAAGCACT	CCTTTAAGTC	TTCTTCGTTA	ATTTCTTCAC	6100
TTATTTCCAA	GCCAGTTTCT	TGAGATAACC	TTCTTGAATA	TATATCCAGT	6150
TCAGTCAAGT	TTGCCTGAGG	GGCCAGTGAC	ACTTTTCGTG	TGGATGCTGT	6200
TGTCTTTCGG	TGAATGTTCT	GACCTTGGTT	AACTGAGTGT	GTCATCAGGT	6250
TCAGGACAGA	CTGCCTCCTT	CGTGCCTGAA	GCGTGGGGCC	AGTGCTGATC	6300
ACGCTGATGC	GAGGCAGTAT	CGCCTCTCCC	TGCTCAGAAT	CTGGTACTAA	6350
GGACAGCCTT	CTCTCTAAAG	GCTCATCAGA	ATCCTCTTCG	ATGCCATTCA	6400
TTTGTAAGGG	AGTCTTTTGC	ACAATGGAAA	ATTTTCGTAT	AGAGTTGATT	6450
GGATTGAGAA	TAGAATTCTT	CCTTTTTTCC	CCAAACTCTC	CAGTCTGTTT	6500

SUBSTITUTE SHEET (RULE 26)

22/45

FIGURE 7F

AAAAGATTGT	TTTTTTGTTT	CTGTCCAGGA	GACAGGAGCA	TCTCCTTCTA	6550
ATGAGAAACG	GTGTAAGGTC	TCAGTTAGGA	TTGAATTTCT	TCTTTCTGCA	6600
CTAAATTGGT	CGAAAGAATC	ACATCCCATG	AGTTTTGAGC	TAAAGTCTGG	6650
CTGTAGATTT	TGGAGTTCTG	AAAATGTCCC	ATAAAAATAG	CTGCTACCTT	6700
CATGCAAAAT	TAATATTTTG	TCAGCTTTCT	TTAAATGTTC	CATTTTAGAA	6750
GTGACCAAAA	TCCTAGTTTT	GTTAGCCATC	AGTTTACAGA	CACAGCTTTC	6800
AAATATTTCT	TTTTCTGTTA	AAACATCTAG	GTATCCAAAA	GGAGAGTCTA	6850
ATAAATACAA	ATCAGCATCT	TTGTATACTG	CTCTTGCTAA	AGAAATTCTT	6900
GCTCGTTGAC	CTCCACTCAG	TGTGATTCCA	CCTTCTCCAA	GAACTATATT	6950
GTCTTTCTCT	GCAAACTTGG	AGATGTCCTC	TTCTAGTTGG	CATGCTTTGA	7000
TGACGCTTCT	GTATCTATAT	TCATCATAGG	AAACACCAAA	GATGATATTT	7050
TCTTTAATGG	TGCCAGGCAT	AATCCAGGAA	AACTGAGAAC	AGAATGAAAT	7100
TCTTCCACTG	TGCTTAATTT	TACCCTCTGA	AGGCTCCAGT	TCTCCCATAA	7150
TCATCATTAG	AAGTGAAGTC	TTGCCTGCTC	CAGTGGATCC	AGCAACCGCC	7200
AACAACTGTC	CTCTTTCTAT	CTTGAAATTA	ATATCTTTCA	GGACAGGAGT	7250
ACCAAGAAGT	GAGAAATTAC	TGAAGAAGAG	GCTGTCATCA	CCATTAGAAG	7300
TTTTTCTATT	GTTATTGTTT	TGTTTTGCTT	TCTCAAATAA	TTCCCCAAAT	7350
CCCTCCTCCC	AGAAGGCTGT	TACATTCTCC	ATCACTACTT	CTGTAGTCGT	7400
TAAGTTATAT	TCCAATGTCT	TATATTCTTG	CTTTTGTAAG	AAATCCTGTA	7450
TTTTGTTTAT	TGCTCCAAGA	GAGTCATACC	ATGTTTGTAC	AGCCCAGGGA	7500
AATTGCCGAG	TGACCGCCAT	GCGCAGAACA	ÄTGCAGAATG	AGATGGTGGT	7550
GAATATTTTC	CGGAGGATGA	TTCCTTTGAT	TAGTGCATAG	GGAAGCACAG	7600
ATAAAAACAC	CACAAAGAAC	CCTGAGAAGA	AGAAGGCTGA	GCTATTGAAG	7650
TATCTCACAT	AGGCTGCCTT	CCGAGTCAGT	TTCAGTTCTG	TTTGTCTTAA	7700
GTTTTCAATC	ATTTTTTCCA	TTGCTTCTTC	CCAGCAGTAT	GCCTTAACAG	7750
ATTGGATGTT	CTCGATCATT	TCTGAGGTAA	TCACAAGTCT	TTCACTGATC	7800

23/45

FIGURE 7G

TTCCCAGCTC	TCTGATCTCT	GTACTTCATO	ATCATTCTCC	CTAGCCCAGC	7850
CTGAAAAAGG	GCAAGGACTA	TCAGGAAACO	AAGTCCACAG	AAGGCAGACG	7900
CCTGTAACAA	CTCCCAGATI	AGCCCCATGA	GGAGTGCCAC	TTGCAAAGGA	7950
GCGATCCACA	CGAAATGTGC	: CAATGCAAGI	CCTTCATCAA	ATTTGTTCAG	8000
GTTGTTGGAA	AGGAGACTAA	CAAGTTGTCC	AATACTTATT	TTATCTAGAA	8050
CACGGCTTGA	CAGCTTTAAA	GTCTTCTTAT	AAATCAAACT	AAACATAGCT	8100
ATTCTCATCT	GCATTCCAAT	GTGATGAAGG	CCAAAAATGG	CTGGGTGTAG	8150
GAGCAGTGTC	CTCACAATAA	AGAGAAGGCA	TAAGCCTATG	CCTAGATAAA	8200
TCGCGATAGA	GCGTTCCTCC	TTGTTATCCG	GGTCATAGGA	AGCTATGATT	8250
CTTCCCAGTA	AGAGAGGCTG	TACTGCTTTG	GTGACTTCCC	СТАААТАТАА	8300
AAAGATTCCA	TAGAACATAA	ATCTCCAGAA	AAAACATCGC	CGAAGGGCAT	8350
TAATGAGTTT	AGGATTTTTC	TTTGAAGCCA	GCTCTCTATC	CCATTCTCTT	8400
TCCAATTTTT	CAGATAGATT	GTCAGCAGAA	TCAACAGAAG	GGATTTGGTA	8450
TATGTCTGAC	AATTCCAGGC	GCTGTCTGTA	TCCTTTCCTC	AAAATTGGTC	8500
TGGTCCAGCT	GAAAAAAAGT	TTGGAGACAA	CGCTGGCCTT	TTCCAGAGGC	8550
GACCTCTGCA	TGGTCTCTCG	GGCGCTGGGG	TCCCTGCTAG	GGCCGTCTGG	8600
GCTCAAGCTC	CTAATGCCAA	AGGAATTCCT	GCAGCCCGGG	GGATCCACTA	8650
GTTCTAGAGC	GGCCGCCACC	GCGGTGGCTG	ATCCCGCTCC	CGCCCGCCGC	8700
GCGCTTCGCT	TTTTATAGGG	CCGCCGCCGC	CGCCGCCTCG	CCATAAAAGG	8750
AAACTTTCGG	AGCGCGCCGC	TCTGATTGGC	TGCCGCCGCA	CCTCTCCGCC	8800
TCGCCCCGCC	CCGCCCCTCG	CCCCGCCCCG	CCCCCCCTGG	CGCGCGCCCC	8850
cccccccc	CCGCCCCCAT	CGCTGCACAA	AATAATTAAA	AATAAATAA	8900
ATACAAAATT	GGGGGTGGGG	AGGGGGGGA	GATGGGGAGA	GTGAAGCAGA	8950
ACGTGGCCTC	GAGTAGATGT	ACTGCCAAGT	AGGAAAGTCC	CATAAGGTCA	9000
TGTACTGGGC	ATAATGCCAG	GCGGGCCATT	TACCGTCATT	GACGTCAATA	9050
GGGGGCGTAC	TTGGCATATG	ATACACTTGA	TGTACTGCCA	AGTGGGCAGT	9100

24/45

FIGURE 7H

11ACCG1AM	TACICCACCC	ATTGACGTCA	ATGGAAAGTC	CCTATTGGCG	9150
TTACTATGGG	AACATACGTC	ATTATTGACG	TCAATGGGCG	GGGGTCGTTG	9200
GGCGGTCAGC	CAGGCGGGCC	ATTTACCGTA	AGTTATGTAA	CGACCTGCAG	9250
GCTGATCTCC	CTAGACAAAT	ATTACGCGCT	' ATGAGTAACA	CAAAATTATT	9300
CAGATTTCAC	TTCCTCTTAT	TCAGTTTTCC	CGCGAAAATG	GCCAAATCTT	9350
ACTCGGTTAC	GCCCAAATTT	ACTACAACAT	CCGCCTAAAA	CCGCGCGAAA	9400
ATTGTCACTT	CCTGTGTACA	CCGGCGCACA	CCAAAAACGT	CACTTTTGCC	9450
ACATCCGTCG	CTTACATGTG	TTCCGCCACA	CTTGCAACAT	CACACTTCCG	9500
CCACACTACT	ACGTCACCCG	CCCCGTTCCC	ACGCCCCGCG	CCACGTCACA	9550
AACTCCACCC	CCTCATTATC	ATATTGGCTT	CAATCCAAAA	TAAGGTATAT	9600
TATTGATGAT	GCTAGCATGC	GCAAATTTAA	AGCGCTGATA	TCGATCGCGC	9650
GCAGATCTGT	CATGATGATC	ATTGCAATTG	GATCCATATA	TAGGGCCCGG	9700
GTTATAATTA	CCTCAGGTCG	ACGTCCCATG	GCCATTCGAA	TTCGTAATCA	9750
IGGTCATAGC	TGTTTCCTGT	GTGAAATTGT	TATCCGCTCA	CAATTCCACA	9800
CAACATACGA	GCCGGAAGCA	TAAAGTGTAA	AGCCTGGGGT	GCCTAATGAG	9850
IGAGCTAACT	CACATTAATT	GCGTTGCGCT	CACTGCCCGC	TTTCCAGTCG	9900
GGAAACCTGT	CGTGCCAGCT	GCATTAATGA	ATCGGCCAAC	GCGCGGGGAG	9950
AGGCGGTTTG	CGTATTGGGC	GC			9972

FIG. 8B

FIG. 8C

SUBSTITUTE SHEET (RULE 28)

SUBSTITUTE SHEET (RULE 26)

SURSTITUTE SHEET (RULE 28)

28/45

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

30/45

FIGURE 12A

CCAATTCCAT	CATCAATAAT	ATACCTTATT	TTGGATTGAA	GCCAATATGA	50
TAATGAGGGG	GTGGAGTTTG	TGACGTGGCG	CGGGGCGTGG	GAACGGGGCG	100
GGTGACGTAG	GTTTTAGGGC	GGAGTAACTT	GTATGTGTTG	GGAATTGTAG	150
TTTTCTTAAA	ATGGGAAGTT	ACGTAACGTG	GGAAAACGGA	AGTGACGATT	200
TGAGGAAGTT	GTGGGTTTTT	TGGCTTTCGT	TTCTGGGCGT	AGGTTCGCGT	250
GCGGTTTTCT	GGGTGTTTTT	TGTGGACTTT	AACCGTTACG	TCATTTTTTA	300
GTCCTATATA	TACTCGCTCT	GCACTTGGCC	CTTTTTTACA	CTGTGACTGA	350
TTGAGCTGGT	GCCGTGTCGA	GTGGTGTTTT	TTTAATAGGT	TTTCTTTTTT	400
ACTGGTAAGG	CTGACTGTTA	GGCTGCCGCT	GTGAAGCGCT	GTATGTTGTT	450
CTGGAGCGGG	AGGGTGCTAT	TTTGCCTAGG	CAGGAGGGTT	TTTCAGGTGT	500
TTATGTGTTT	TTCTCTCCTA	TTAATTTTGT	TATACCTCCT	ATGGGGGCTG	550
TAATGTTGTC	TCTACGCCTG	CGGGTATGTA	TTCCCCCCAA	GCTTGCATGC	600
CTGCAGGTCG	ACTCTAGAGG	ATCCGAAAAA	ACCTCCCACA	CCTCCCCCTG	650
AACCTGAAAC	ATAAAATGAA	TGCAATTGTT	GTTGTTAACT	TGTTTATTGC	700
AGCTTATAAT	GGTTACAAAT	AAAGCAATAG	CATCACAAAT	TTCÁCAAATA	750
AAGCATTTTT	TTCACTGCAT	TCTAGTTGTG	GTTTGTCCAA	ACTCATCAAT	800
GTATCTTATC	ATGTCTGGAT	CCCCGCGGCC	GCTCTAGAAC	TAGTGGATCC	850
CCCGGGCTGC	AGGAATTCCG	TAACATAACT	GCGTGCTTTA	TTGAGATACA	900
CAGTAAAGCA	GTAATATAAT	ACAATAGTAA	GGCATATATT	TGGTGAAATC	950
TGATATGTTG	TGAAAATGCA	GTAAAACTGA	AGTTTAAAAA	AATAATTAGT	1000
AAATGTTACA	GTGTTGGTGT	ТААААСАСАА	TCTATTATGA	TACTCAAGTA	1050
AGAGTCCAGT	ACCTGGAGAC	AATGATGATA	CATGCCATGT	GATGATTATG	1100
CTTCAGTTAC	ACTGATTATG	ATTTACACTT	TAATACTTGA	TGGTTATAAA	1150
GAACATGAAA	TGATGTCCAA	ATTATGCTTA	AAATCAGCAA	TAAAGCTCTC	1200
AGTTTTTATT	CAAATATTTT	GATAGATTCA	CTCCAGAACT	AATATCTAAA	1250

31/45

FIGURE 12B

AGATAAAAC	S AAAAGATTAA	AACAAAACTA	TGCACTCTAT	CTACCTTGGA	1300
TTTTAGAATO	AAACTTAAAA	CTTCTTAGTA	GGAAAGGAAC	CCCTTGTTTT	1350
AAATCTTGGT	GAAAACAAAT	CCTTGGATAA	AGAAAATGCC	CAGTGCCACA	1400
TAAAGGAGAG	AGAGAGAGAA	AAGCAAGACC	AGAACCAAAT	TTCAATTTGT	1450
TATCTTAGAG	CTTTGGGTTT	TCTTTTGGAA	ATTATAAATG	AAAAAAGGAA	1500
ACTGGTGTCC	ACACAACAGA	CAAGTGGTGA	AGTTGTGAAA	TTAGGTGTGC	1550
ACAATTACTA	GAAACACCCC	AAAACCAAAG	TGAGGTAGAA	ATAGCATGAG	1600
AAGCTGTGTT	TGATGTTAAT	TACAATTAAT	AATGGACAAA	ACCCACTCGC	1650
TAGAAGTTAA	TTACACTTGA	CGTTAGAGGT	AACAGATTTG	CAAAATGATA	1700
GGACAGTGAT	TTCTATTGAG	AGAATGCTCT	TTAAATGCTA	AGAAGAAGAA	1750
ACTGGCATGA	GAGGAGTAAA	GCTCTTCCTA	GCAGTCCTTA	GCTTTCTGTT	1800
GCACTTTTTC	TCCTGGTTCA	ATGACTTGCA	TTTGTTTAGA	CATTTCAGCC	1850
CGTCAACTAG	ACCAGAGAGT	TTGGAGACGC	TTTTGCTCTC	AAAACTTTCC	1900
AACCACTGTG	CCTTCTCACC	CACAATCCTG	TGTGGAGTTA	CTTGCAGGGA	1950
AACCAATGCA	AAGGAGACAA	ATGCAGTTCA	TGGGCTTCTG	GACTGATATT	2000
CACCAGGGTC	ACAATGTGAT	TGGGTTACTT	TCTTAACAGT	AATCCTAAGT	2050
CTTGCAGCAT	ТАААААААА	AATCATCACA	ATGAAGAAAA	АААААСССАА	2100
AAAATCTAAA	ATCTAAAATT	CATCATCATC	ATCAACAACA	ACAACAACAA	2150
CAACAACAAA	ACCACCCACT	TCAGGTTGAG	TTTATGAAGA	GGGCAGAACA	2200
ATTTAGTTGT	AATTATAGAG	ATGTTTATAT	GTATAGTTGT	AAATATTCAT	2250
CCATTCTTTT	ACAGAGTTGT	TGCTCCCCTC	ATATAAATTG	ACTGAGGAGC	2300
CGCAACCTTT	AGCTCCTACC	ATCTTCCTCC	TACTGTCTGG	GAGTTAAAAA	2350
TGTCATCTGA	TGTTCTATTG	CAGAAACATC	ATTAAATATA	ACCCAACAGT	2400
AGGAAGTTGA	ATATATCAGC	CAACAAATTA	CTATGATAGT	AAGTCCTGTG	2450
TATTCATTCG	CATGTTCCTT	GAAAAAAATG	AATCCTCTAG	CTCTCAGTGG	2500

32/45

FIGURE 12C

AAAGTTTAAA	ACTAGAAACA	TCTGGAGCCC	TAGACAATAT	TTTAGTGTGG	2550
CGGTAGTCTC	CTGGCTTTGG	GCTCCAGGGA	AAATTCACTC	TTGCCCAAGC	2600
AGATAAGCCC	AGATGACTAG	AAGCAATTTC	CATTAGGAAG	TGGCAAGAAC	2650
ATTTGAAGAA	GTAACTTCAT	ATCTATTTAT	CTATATACCT	ATAGTATTTA	2700
TATACTTGTA	GACATATAGA	TGTATAAAAT	GAAAGCCCAT	AGCCAGCCCC	2750
ACTCAGTCAA	CAATTCTCAA	AAGAGCAATA	TGAAGCAGTC	ATTTGGTGGG	2800
GTTCGTATGC	AAGAAAATAA	AAAAACGTCA	TGAATTCCAT	ATGAATACCA	2850
CGCTAAAGTA	ATGCAAAACA	ATGTGCTGCC	TCAGTGTGTG	TGTGTGTGTG	2900
TGTGTGTGTG	GTGGGTTCGT	GCATGTATGT	GTGCGTGTGT	GTGTGTGTGT	2950
GTGTGTGTGT	GTGTGTGTGC	GTGTGTGTTT	GTTTAGGGGT	TTTTATAAAC	3000
AACTTTTTTT	ATAAAGCACA	CTTTAGTTTA	CAATCTCTCT	TTATAACTGT	3050
TATAAATTT	TAAACAACCC	AAAATGCGTT	CCATATAAAG	AAATGGCAAG	3100
TTATTTAGCT	ATCAAGATTT	TACATGTTTT	CTTTTAACTT	TTTTGTACAA	3150
TTGCATAGAC	GTGTAAAACC	TGCCATTGTT	А АСААААСАА	TAACAGACTT	3200
AGAAACTACT	GAAATCTACA	GTATAGTACC	ACTACCCTTC	ACAAAAATAT	3250
AGATTTTATT	TCTTGTAAAC	TCTTACTGTC	TAATCCTCTT	TGTTGTACGA	3300
ATATTATAAA	AACCATGCGG	GAATCAGGAG	TTGTAAAACA	TTTATTCTGC	3350
TCCTTCTTCA	TCTGTCATGA	CTGAAACTAA	GGACTCCATC	GCTCTGCCCA	3400
AATCATCTGC	CATGTGGAAA	AGGCTTCCTA	CATTGTGTCC	TCTCTCATTG	3450
GCTTTCCGGG	GGCATTTCTT	CCTCTTGAAC	TAGGGAAGGA	GTTGTTGAGT	3500
TGCTCCATCA	CTTCTTCTAA	CCCTGTGCTT	GTGTCCTGGG	GAGGACTCAG	3550
AAGATCTTCC	TCACCCATAG	ATTCTGAAGT	TTGACTGCCA	ACCACTCGGA	3600
GCAGCATAGG	CTGACTGCTA	TCTGACCTCT	GCAGAGAGGT	GGAAGGAGAG	3650
GACACCGTGG	TGCCATTCAC	CTTAGCTTCA	GCCTGGGGCT	GCTCCAGGAG	3700
CTGTCTCAGT	CTATGTAACT	GAGACTCCAG	CTGTTTATTG	TGGTCTTCCA	3750

33/45

FIGURE 12D

GGATTTGCAT CCTGGCTTCC AGGCGTCCTT TGTGTTGGCG CAGTAGCTTA	3800
GCCTCAGCAA TGAGCTCAGC ATCCCTGGGA CTCTGAGGAG AGGTGGGCAT	3850
CATCTCAGGA GGAGATGGCA GTGGAGACAG GCCTTTATGC TCATGCTGCT	3900
GCTTCAGGCG ATCATATTCT GCTTGCAGAT TCCTGTTTTC TTCCTCAAGA	3950
TCTGCTAGGA TTCTCTAG CTCCCCTCTT TCCTCACTCT CTAAGGAAAT	4000
CAAGATCTGG GCAGGACTAC GAGGCTGGCT CAGGGGGGAG TCCTGGTTCA	4050
AACTTTGGCA GTAATGCTGG ATTAACAAAT GTTCATCATC TATGCTCTCA	4100
TTAGGAGAGA TGCTATCATT TAGATAAGAT CCATTGCTGT TTTCCATTTC	4150
TGCTAGCCTG CTAGCATAAT GTTCAATGCG TGAATGAGTA TCATCGTGTG	4200
AAAGCTGGGG GGACGAGGCA GGCGCAGAAT CTACTGGCCA GAAGTTGATC	4250
AGAGTAACGG GAGTTTCCAT GTTGTCCCCC TCTAACACAG TCTGCACTGG	4300
CAGGTAGCCC ATTCGGGGAT GCTTCGCAAA ATACCTTTTG GTTCGAAATT	4350
TGTTTTTAG TACCTTGGCG AAGTCGCGAA CATCTTCTCC GGATGTAGTC	4400
GGAGTGCAAT ACTCTACCAT GGGGTAGTGC ATTTTATGGC CCTTTGCAAC	4450
TCGGCCAGAA AAAAAGCAAC TTTGGCAGAT GTCATAATTA AAATGCTTTA	4500
GGCTTCTGTA CCTGAATCCA ATGATTGGAC ACTCCTTACA GATGTTACAC	4550
TTGGCTTGAT GCTTGGCAGT TTCAGCAGCA GCCACTCTGT GCAAGACGGG	4600
CAGCCACACC ATAGACTGGG GTTCCAGGCG CATCCAGTCA AGGAAGAGAG	4650
CAGCTTCAAT CTCAGGTTTA TTATTGGCAA ATTGGAAGCA GCTCCTGACA	4700
CTCGGCTCAA TGTTACTGCC CCCAAAGGAA GCAACTTCAC CCAACTGTCT	4750
TGGGATTTGA ATAGAATCAT GCAGAAGAAG ACCCAGCCTA CGCTGGTCAC	4800
AAAAGCCAGT TGAACTTGCC ACTTGCTTGA AAAGGTATCT GTACTTGTCT	4850
TCCAAGTGTG CTTTACACAG AGAAATGATG CCAGTTTTAA AAGACAGGAC	4900
ACGGATCCTC CCTGTTCGTC CCGTATCATA AACATTGAGA AGCCAGTTGA	4950
GACACATATC CACACAGAGA GGGACATTGA CCAGATTGTT GTGCTCTTGC	5000
TCCAGACGAT CATAAATTGT AGTCAAACAG TTAATTATCT GCAGGATATC	5050

34/45

FIGURE 12E

CATGGGCTGG	TCATTTTGCT	TGAGGTTGTG	CTGGTCCAGG	GCATCACATG	5100
CAGCTGACAG	GCTCAAGAGA	TCCAAGCAAA	GGGCCTTCTG	GAGCCTTCTG	5150
AGCTTCATGG	CAGTCCTATA	CGCGGAGAAC	CTGACATTAT	TCAGGTCAGC	5200
TAAAGACTGG	TAGAGCTCTG	TCATTTTGGG	GTGGTCCCAA	CAAGTGGTTT	5250
GGGTCTCGTG	GTTGATATAG	TAGGGCACTT	TGTTTGGTGA	GATGGCTCTC	5300
TCCCAGGGAC	CCTGAACTGA	AGTGGAAAGG	AAGTGCTGGG	ATGCAGGACC	5350
AAAGTCCCTG	TGGGCTTCAT	GCAGCTGTCT	GACACGGTCC	TCCACAGCCA	5400
CCTGTAGAAG	CCTCCATCTG	GTATTCAGAT	CTTCCAAAGT	GCTGAGGTTA	5450
TAAGGTGAGA	GCTGAATGCC	CAGTGTGGTC	AGCTGATGTG	CAAGGTCATT	5500
GACACGATTG	ACATTCTCTT	TAAGAGGTGC	AATTTCTCCC	CGAAGTGCCT	5550
TGACTTTTTC	AAGGTGATCT	TGCAGAGAGT	CAATGAGGAG	ATCCCCCACT	5600
GGCTGCCAGG	ATCCCTTGAT	CACCTCAGCT	TGGCGCAACT	TGAGGTCCAG	5650
TTCATCGGCA	GCTTCCTGAA	GTTCCTGGAG	TCTTTCAAGA	GCTTCATCTA	5700
TTTTTCTCTG	CCAATCAGCT	GAGCGCAGGT	TCAATTTGTC	CCATTCAGCG	5750
TTGACCTCTT	CAGCCTGCTT	TCGTAGGAGC	CGAGTGACAT	TCTGAGCTCT	5800
TTCTTCAGGA	GGCAGTTCTC	TGGGCTCCTG	GTAGAGTTTC	TCTAGTCCTT	5850
CCAAAGGCTG	CTCTGTCAGA	AATATTCTCA	CAGTCTCCAG	AGTACTCATG	5900
ATTACAGGTT	CTTTAGTTTT	CAATTCCCTC	TTGAAGGCCC	TATGTATATC	5950
ATTCTGCTTC	TGAACTGCTG	GGAAATCACC	ACCGATGGGT	GCCTGACGGC	6000
TCAGTTCATC	ATCTTTCAGC	TGTAGCCAAA	CAAGAAGTTC	CTGAAGAGAA	6050
AGATGCAAAC	GCTTCCACTG	GTCAGAACTT	GCTTCCAAAT	GGGACCTAAT	6100
GTTGAGAGAC	TTTTTCTGAA	GTTCACTCCA	CTTGAAATTC	ATGTTATCCA	6150
AACGTCTTTG	TAACAGGGGT	GCTTCATCCG	AACCTTCCAG	GGATCTCAGG	6200
ATTTTTTGGC	CATTTTCATC	AAGATTGTGA	TAGATATCTG	TGTGAGTTTC	6250
AATTTCTCCT	TGGAGATCTT	GCCATGGTTT	CATCAGCTCT	CTGACTCCCC	6300
TGGAGTCTTC	TAGGAGCTTC	TCCTTACGGG	AAGCGTCCTG	TAGGACATTG	6350

35/45

FIGURE 12F

GCAGTTGTTI	CTGCTTCCGT	AATCCAGGAA	AGAAACTTCT	CCAGGTCCAG	6400
AGGGAACTGC	TGCAGTAATC	TATGAGTTT	TTCCAAAGCA	GCCTCTTGCT	6450
CACTTACTCT	TTTATGAATG	TTTCCCCAAG	AAGTATTGAT	ATTCTCTGTT	6500
ATCATGTGTA	CTTTTCTGGT	ATCATCAGCA	GAATAGTCCC	GAAGAAGTTT	6550
CAGTGCCAAA	TCATTTGCCA	CGTCTACACI	TATCTGCCGT	TGACGGAGGT	6600
CTTTGGCCAA	CTGCTTGGTT	TCTGTGATCT	TCTTTTGGAT	TGCATCTACT	6650
GTGTGAGGAC	CTTCTTTCCA	TGAGTCAAGC	TTGCCTCTGA	CCTGTCCTAT	6700
GACCTGTTCG	GCTTCTTCCT	TAGCTTCCAG	CCATTGTGTT	GAATCCTTTA	6750
ACATTTCATT	CAACTGTTGT	CTCCTGTTCT	GCAGCTGTTC	TTGAACCTCA	6800
TCCCACTGAA	TCTGAATTCT	TTCAATTCGA	TCAGTAATGA	TTGTTCTAGC	6850
TTCTTGATTG	CTGGTTTTGT	TTTTCAAATT	CTGGGCAGCA	GTAATGAGTT	6900
CTTCCAATTG	GGGGCGTCTC	TGTTCCAAAT	CTTGCAGTGT	TGCCTTCTGT	6950
TTGATGATCA	TTTCATTGAT	GTCTTCCAGA	TCACCCACCA	TCACTCTCTG	7000
TGATTTTATA	ACTCGATCAA	GCAGAGACAG	CCAGTCTGTA	AGTTCTGTCC	7050
AAGCTCGGTT	GAAGTCTGCC	AGTGCAGGTA	CCTCCAACAG	CAAAGAAGAT	7100
GGCATTTCTA	GTTTGGAGAT	GACAGTTTCC	TTAGTAACCA	CAGATTGTGT	7150
CACTAGAGTA	ACAGTCTGAC	TGGCAGAGGC	TCCAGTAGTG	CTCAGTCCAG	7200
GGGCACGGTC	AGGCTGCTTT	GTCCTCAGCT	CCCGAAGTAA	ATGGTTTACA	7250
GCCTCCCACT	CAGACCTCAG	ATCTTCTAAC	TTCCTCTTCA	CTGGCTGAGT	7300
GCTTGGTTTT	TCCTTATACA	AATGCTGCCC	TTTCGACAAA	AGCCTTTCCA	7350
CATCCGCTTG	TTTACCGTGA	ACTGTTACTT	CAATCTCCTT	TATGTCAAAC	7400
GGTCCTGCCT	GACTTGGTTG	GTTATAAATT	TCCAACTGGT	TTCTAATAGG	7450
AGAGACCCAC	AGAAGCAGGT	GATCCAGCTG	CTCTTCAAGC	TGCCTAAAAT	7500
CTTTTAAGTG	AACCTCAAGC	TCTCCTTGTT	TCTCAGGTAA	AGCTCTGGAG	7550
ACCTTTATCC	ACTGGAGATT	TGTCTGTTTG	AGCTTCTTTT	CAAGTTTATC	7600

36/45

FIGURE 12G

TTGCTCTTCT	GGCCTTATGG	GAGCACTTAC	AAGTACTGCT	CCTCCTGTTT	7650
CATTTAATTG	TTTTAGAATT	CCCTGGCGCA	GGGGCAACTC	TTCTGCCAGT	7700
AACTTGACTT	GTTCAAGTTG	TTCTTTTAGC	TGCTGCTCAT	CTCCAAGTGG	7750
AGTAATAGCA	ATGTTATCTG	CTTCTTCCAG	CCACAAAACA	AATTCATTTA	7800
AATCTCTTTG	AAATTCTGAC	AAGACATTCT	TTTGTTCTTC	AATCCTCTTT	7850
CTCCTTTCTG	CCAGCTCTTT	GCAGATGTCG	TGCCACCGCA	GACTCAAGCT	7900
TCCTAATTTT	TCTTGTAGAA	TATTGACATC	TGTTTTTGAA	GACTGTTGAA	7950
TTATTTCTTC	CCCAGTTGCA	TTCAGTGTTC	TGACAACAGC	TTGACGCTGC	8000
CCAATGCCAT	CCTGGAGTTC	CTTAAGATAC	CATTTGTATT	TAGCATGTTC	8050
CCAGTTTTCA	GGATTTTGTG	TCTTTTTGAA	AAACTGTTCA	ACTTCATTCA	8100
GCCATTGATT	AAATACCTTC	ATATCATAAT	GAAAGTGTCG	CCATTTTTCA	8150
ACTGATCTGT	CGAATCGCCC	TTGTCGTTCC	TTGTACATTC	TATGAAGTTT	8200
TTCCCCCTGG	AAATCCATCT	GTGCCACGGC	TTCCTGTACT	TTCACCTTTT	8250
CCATGGAGGT	GGCACTTTGC	AAGGCTGCTG	TCTTCTTCTT	GTGAATAATA	8300
TCAATCCGAC	CTGAGATTTG	TTGCAAATTG	TCTTTTATAT	TCTTAAGAGA	8350
CTCCTCTTGC	TTAAAAAGAT	CTTCAAAATC	TTTAGCACAG	AGTTCAGGAG	8400
TATTTAGAAG	ATGATCAACT	TCTGAAAGAG	CTTGTAAGAT	ATGACTGATC	8450
TCGGTCAAAT	AAGTAGAAGG	CACATAAGAA	ACATCCAAAG	GCATATCTTC	8500
AGTCGTCACT	ACCATAGTTT	CTTCATGGAG	AGTGTGAATT	TGTGCAAAGT	8550
TGAGTCTTCG	AAACTGAGCA	AAATTGCTCT	CAATTTGCCG	CCAGCGCTTG	8600
CTGAGCTGGA	TCTGAGTTGG	CTCCACTGCC	ATTGCGGCCC	CATTCTCAGA	8650
CAAGCCCTCA	GCTTGCCTGC	GCACTGCATT	CAGCTCCTCT	TTCTTCTTCT	8700
GCAATTCACG	ATCAATTTCC	TTTAATTTTC	TTTCATCTCT	GGGTTCAGGT	8750
AGGCTGGCTA	ATTTTTTTC	AATTTCATCC	AAGCATTTCA	GGAGATCATC	8800
AGCCTGCCTC	TTGTACTGAT	ACCACTGGTG	AGAAATTTCT	AGGGCCTTTT	8850

37/45

FIGURE 12H

TTCTTCTTTG	AGACCTCAAA	TCCTTGAGAG	CATTATGTTT	TGTCTGTAAC	8900
AGCTGCTGTT	TTATCTTTAT	TTCCTCTCGC	TTTCTCTCAT	CTGTGATTCT	8950
TTGTTGTAAG	TTGTCTCCTC	TTTGCAACAA	TTCATTTACA	GTACCCTCAT	9000
TGTCTTCACT	CATATCTTTA	TTGAAGTCTT	CCTCTTTCAG	ATTCACCCC	9050
TGCTGAATTT	CAGCCTCCAG	TGGTTCAAGC	AATTTTTGTA	TATCTGAGTT	9100
AAACTGCTCC	AATTCCTTCA	AAGGAATGGA	GGCCTTTCCA	GTCTTAATTC	9150
TGTGAGAAAT	AGCTGCAAAT	CGACGGTTGA	GCTCAGAGAT	TTGGGGCTCT	9200
ACTACTTTCC	TGCAGTGGTC	ACCGCGGTTT	GCCATCAATT	TTGCTGCTTG	9250
GTCACGTGTG	GAGTCCACCT	TTGGGCGCAT	GTCATTCATT	TCAGCCTTTA	9300
AACGCTTAAG	AATGTCTTCC	TTTTGTTGTG	GTTTCTTCTT	TTCAGACTCA	9350
TCTAAAAGTT	CATCTGCATG	AATGATCCAC	TTTGTGATTT	GTTCTATGTT	9400
CTGATCAAAG	GTTTCCATGT	GTTTCTGGTA	TTCCAACAAA	AGATTTAGCC	9450
ATTCTTCTAC	TCTGGAGGTG	ACAGCTATCC	AGTTACTGTT	CAGAAGACTC	9500
AGTTTATCTT	CTACCAAGGT	TTCTTTCTTG	CCCAACACCA	TTTTCAAAGA	9550
CTCTCCTAAT	TCTGTAACAC	TCTTCAAGTG	AGCCTTCTGT	TTCTCAATCT	9600
CTTTTTGAGT	AGCCTTTCCC	CAGGCAACTT	CAGAATCCAA	ATTACTTGGC	9650
ATTCCTTCAA	CTGCTGATCT	CTTCGTCAAT	TCTGTATCTG	TTGCTGCCAG	9700
CCATTCTGTT	AAGACATTCA	TTTCCTTTCT	CATCTTACGG	GACAACTTCA	9750
AGCATTTCTC	CAACTGTTGC	TTTCTCTCTG	TTACCTTCGC	ACCCAACTCA	9800
TTGTAATGCA	ATTTCAAAGC	TGTTACTCGT	TCATCAAGCT	CTTTGGGATT	9850
TTCTGTCTGC	TTTTTCTGTA	CAATTTGACG	TCCGGTTTTA	ATCACCATTT	9900
CCACTTCAGA	CTTGACTTCA	CTCAGGCTTT	TATACAAGTT	CACACAATGA	9950
CTTAGTTGTG	ACTGAATTAC	TTCCTGTTCA	ACACTCTTGG	TTTCCAATGC	10000
AGGCAAATGC	ATCTTGACTT	CATCTAAAAT	CATCTTACTT	TCCTCTAGAC	10050
GTTGTTCAAA	ATTGGCTGGT	TTTTGGAATA	ATCGAAATTT	CATGGAGACA	10100
TCTTGTAATT	TTTTCTGTGC	AACATCAATT	TGTGAAAGAA	CCCTTTGGTT	10150

PCT/US95/14017

WO 96/13597

38/45

FIGURE 12I

GGCATCCTTC	CCCTGGTTAT	GTTTCTTCAT	TTCTTCTAAA	CTTATCTCAT	10200
GACTTGTCAA	ATCTGATTGG	ATTTTCTGGG	CTTCCTGAGG	CATTTGAGCT	10250
GCATCCACCT	TGTCAGTGAT	ATAAGCTGCC	AACTGCTTGT	CAATGAATTC	10300
AAGCGACTCC	TGAATTAAGT	GCAAGGACTT	TTCAATTTCC	TGGGCAGACT	10350
GGATACTCTG	TTCAAGCAAC	TTTTGTTTCC	TCACAGCCTC	TTCATGTAGT	10400
TCCCTCCAAC	GAGAATTAAA	CGTCTCAAGC	TCCTCATTGA	TCAGTTCATC	10450
CATGACTCCT	CCATCTGTAA	GAGTCTGTGC	CAATAGACGA	ATCTGATTTG	10500
GGTTCTCCTC	TGAATGATGC	ATCAGATTTT	CAAGAGATTC	TAGCACTTCA	10550
GTGATTTCCT	CAGGTCCTGC	AGGAACATTT	TCCATGGTTT	TAAGTTTCAA	10600
TTCTACTTCA	TTGAGCCACT	TGTTTGCTTT	CTCTAAATAT	GACAATAACT	10650
CATGCCAACA	TGCCCAAACT	TCTTCCAAAG	TTTTGCATTT	TCCATTCAGC	10700
CTGGTGCACA	GCCATTGGTA	GTTGGTGGTC	AGAGTTTCAA	GTTCCTTTTT	10750
TAAGGCCTCT	TGTGCTGAGG	GTGGAGCGTG	AGCTATTACA	CTATTTACAG	10800
TCTCAGTAAG	GAGTTTCACT	TTAGTTTCTT	TTTGTAGTGC	CTCTTCTTTA	10850
GCTCTCTTCA	TTTCTTCAAC	AGCAGTCTGT	AATTCATCTG	GAGTTTTATA	10900
TTCAAAATCT	CTCTCTAGAT	ATTCTTCTTC	AGCTTGTGTC	ATCCACTCAT	10950
GCATCTCTGA	TAGATCTTTT	TGGAGGCTTA	CGGTTTTATC	CAAACCTGCC	11000
TTTAAGGCTT	CCTTTCTGGT	GTAGACCTGG	CGGCATATGT	GATCCCACTG	11050
AGTGTTAAGC	TCTCTAAGTT	CTGTCTCCAG	TCTGGATGCA	AACTCAAGTT	11100
CAGCTTCACT	CTTTATCTTC	TGCCCACCTT	CATTAACACT	ATTTAAACTG	11150
GGCTGAATTG	TTTGAATATC	ACCAACTAAA	AGTCTGCATT	GTTTGAGCTG	11200
TTTTTTCAGG	ATTTCAGCAT	CCCCCAGGGC	AGGCCATTCC	TCTTTCAGGA	11250
AAACATCAAC	TTCAGCCATC	CATTTCTGTA	AGGTTTTTAT	GTGATTCTGA	11300
AATTTTCGAA	GTTTATTCAT	ATGTTCTTCT	AGCTTTTGGC	AGCTTTCCAC	11350
CAACTGGGAG	GAAAGTTTCT	TCCAGTGCCC	CTCAATCTCT	TCAAATTCTG	11400

39/45

FIGURE 12J

ACAGATATTT	CTGGCATATT	TCTGAAGGTG	CTTTCTTGGC	CATCTCCTTC	11450
ACAGTGTCAC	TCAGATAGTT	GAAGCCATTT	TGTTGCTCTT	TCAAAGAACT	11500
TTGCAGAGCC	TGTAATTTCC	CGAGTCTCTC	CTCCATTATT	TCATATTCAG	11550
TAACACTAAG	ATAAGGTACA	GAGAGTTTGC	TTTCTGACTG	CTGGATCCAC	11600
GTCCTGATGC	TACTCATTGT	CTCCTGATAG	CGCATTGGTG	GTAAAGTGTC	11650
AAAAATTGTC	TGTAGCTCTT	TCTCTTTGGC	CCTCACACCA	TCAAAGATGT	11700
GGTTAAAATG	ATTAGTAAAG	GCCACAAAGT	CTGCATCCAG	AAACATTGGC	11750
CCCTGTCCCT	TTTCTTTCAG	TTGTAGACTC	TGAATTTTTA	ATTGCTCAAT	11800
TTGAGGCTGA	AGAGCTGACA	ATCTGTTGAC	TTCATCCTTA	CAAATTTTTA	11850
ACTGGCTTTT	AATTGCTGTT	GGCTCTGATA	GGGTGGTAGA	CTGGGTTTTC	11900
AACAAGTTTT	CGGCAGTAGT	TGTCATCTGT	TCCAATTGTT	GTAGCTGATT	11950
ATAAAAGGTA	ATGATGTTGG	TTTGATACTC	TAGCCAGTTA	ACTCTCTCAC	12000
TCAGCAATTG	GCAGAATTCT	GTCCACCGGC	TGTTCAGTTG	TTCTGAAGCT	12050
TGTCTGATAC	TTTCAGCATT	AACACCCTCA	TTTGCCATCT	GTTCCACCAG	12100
GGCCTGAGCT	GATCTGCTGG	CATCTTGCAG	TTTTCTGAAC	TTCTCTGCTT	12150
TTTCTCGTGC	TATGGCATTG	ACTTTTTCTT	GCAAGTCTGA	GATGTTGCCT	12200
TCTTTTCGAT	AGACTGCAAA	TTCAGAACTC	TGTAATACAG	CTTCTGAACG	12250
AGTAATCCAA	CTGTGAAGTT	CAGTTATATC	GACATCCAAC	CTTTTCCTGA	12300
GTTCAGAATC	CACAGTTATC	TGCCTCTTCT	TTTGAGGAGG	TGGTGGTGGA	12350
AGTTCCTCTT	GGGCATGTTT	TACCATGATT	TGTTCCCTTG	TGGTCACCAT	12400
AGTTACCGTT	TCCATTACAG	TTGTCTGTGT	TÄGGGATGGT	TGAGTGGTGG	12450
TGACAGCCTG	TGAAATTTGT	GCTGAACTCT	TTTCAAGTTT	TTGGGTTAAA	12500
TTGTCCCAAC	GTTGTGCAAA	GTTTTCCATC	CAGATTTCCA	TCTTTTGAGT	12550
CACTGACTTA	TTTTTCAGTG	CCGAAAGTAG	ATCTTGATTG	AGTGAACTTA	12600
GTTTTTCCAT	GGTTGGCTTT	TTCTTTTCTA	GATCTATTTT	TAAAGTAGAT	12650

40/45

FIGURE 12K

ATTTTGTGAA	GACTTGACAT	CATTTCATTT	TGATCTTTA	AGCCACTTGT	12700
CTGAATGTTC	TTCATTGCAT	CTTCTTTTTC	TGAAAGCCAT	GTACTAAAAA	12750
GGCACTGTTC	TTCAGTAAAA	TGCTGCCATT	TTAGAAGAAT	ATCTTGTAAA	12800
ACAATCCAGO	GGTCTTCAGT	CCATCTGCAG	ATATTTGCCC	ATCGATCTCC	12850
CAGTACCTTA	AGTTGTTCTT	CCAAAGCAGC	TGTTGCATGA	TCACCGCTGG	12900
ATTCATCAAC	CACTACTACC	ATGTGAGTGA	GCGAGTTGAC	CCTGACCTGC	12950
TCCTGTTCTA	GATCTTCTTG	AAGCACCTTA	TGTTGTTGTA	CTTGGCATTT	13000
TAGATCTTCA	AGATCAGGTC	CAAAGGGCTC	TTCCTCCATT	TTCTTAGTTC	13050
TCTCTTCAGT	TTTTGTTAAC	CAGTCATCTA	GTTCTTTTAA	TTTCTGATTC	13100
TGGAGATCCA	TTAGAACTTT	GTGTAATTTG	CTTTGTTTTT	CCATGCTAGC	13150
TACCCTGAGA	CATTCCCATC	TTGAATTTAG	GAGATTCATT	TGTTCTTGCA	13200
CTTCAGCTTC	TTCATCTTCT	GATAATTTCC	CTTTTCCAAC	TAGTTGACTT	13250
CCTAACTGTA	GAACATTACC	AACAAGTCCT	TGATGAGATG	TCAGATCCAT	13300
CATGAATCCC	TCATGAGCAT	GAAACTGTTC	TTTCACTTCT	TCAACATCAT	13350
TTGAAATCTC	TCCTTGTGCT	CGCAATGTAT	CCTCGGCAGA	AAGAAGCCAT	13400
GAAAGTACTT	CTTCTAAAGC	AGTTTGGTAA	CTATCCAGAT	TTACTTCCGT	13450
CTCCATCAAT	GAACTGTCAA	GTGACTTGTC	TCTGGGAGCT	TCCAAATGCT	13500
GTGAAGGATA	GGGGCTCTGT	GTGGAATCAG	AGGTGGCAAC	ATAAGCAGCC	13550
TGTGTGAAGG	CATAACTCTT	GAATCGAGGC	TTAGGAGATG	AAGAAGTTTG	13600
TTCATAGCCC	TGTGCTAGAC	TGACTGTGAT	CTGTTGAGAG	TAATGCATCT	13650
GGTGATGTAA	TTGAAAATGT	TCTTCTCTAG	TTACTTTTGA	AGATGTCCTG	13700
GGCAACATTT	CCACTTCTTG	AATGGCTTCA	ATGCTCACTT	GTTGTGGCAA	13750
AACTTGAAAG	AGTGATGTGA	TGTACATTAA	GATGGACTTC	TTGTCTGGAT	13800
AAGTGGTAGC	AACATCTTCA	GGATCAAGAA	GTTTTTCTAT	GCCTAACTGG	13850
CATTTTGCAA	TGTTGAAGGC	ATGTTCCAGT	CTTTGGGTGG	CTGAGTGCTG	13900

PCT/US95/14017

41/45

FIGURE 12L

TGAAACCACA	CTATTCCAAT	CAAACAGGTC	GGGCCTGTGA	CTATGGATAA	13950
GAGCATTCAA	AGCCAACCCG	TCGGACCAGC	TAGAGGTGAA	GTTGATGACG	14000
TTAACCTGTG	GATAATTACG	TGTTGACTGT	CGAACCCAGC	TCAGAAGAAT	14050
CTTTTCACTG	TTGGTTTGCT	GCAATCCAGC	Cî TGATAGTT	TTCATCACAT	14100
TTTTGACCTG	CCAGTGGAGG	ATTATATTCC	AAATCAAACC	AAGAGTGAGT	14150
TTATGATTTC	CATCCACTAT	GTCAGTGCTT	CCTATATTCA	CTAAATCAAC	14200
ATTATTTTTC	TGTAAGACCC	GCAGTGCCTT	GTTGACATTG	TTCAGGGCAT	14250
GAACTCTTGT	AGATCCCTTT	TCTTTTGGCA	GTTTTTGCCC	TGTAAGGCCT	14300
TCCAAGAGGT	CTAGGAGGCG	TTTTCCATCC	TGCAGGTCAC	TGAAGAGGTT	14350
GTCTATGTGT	TGCTTTCCAA	ACTTAGAAAA	TTGTGCATTT	ATCCATTTTG	14400
TGAATGTTTT	CTTTTGAACA	TCTTCTCTTT	CATAACAGTC	CTCTACTTCT	14450
TCCCACCAAA	GCATTTGGAA	GAAAAAGTAT	ATATCAAGGC	AGGGATAAAA	14500
ATCTTGGTAA	AAGTTTCTCC	CAGTTTTATT	GCTCCAGGAG	GCTTAGGTAC	14550
GATGAGAAGC	CAATAAACTT	CAGCAGCCTT	GACAAAAAAA	ААААААААА	14600
TAGCACTTCA	AGTCTTCCTA	TTCGTTTTTT	CTATAAAGCT	ATTGCCTTCA	14650
AGAGCGGAAT	TCCTGCAGCC	CGGGGGATCC	ACTAGTTCTA	GAGCGGCCGC	14700
GGGTACAATT	CCGCAGCTTT	TAGAGCAGAA	GTAACACTTC	CGTACAGGCC	14750
TAGAAGTAAA	GGCAACATCC	ACTGAGGAGC	AGTTCTTTGA	TTTGCACCAC	14800
CACCGGATCC	GGGACCTGAA	ATAAAAGACA	AAAAGACTAA	ACTTACCAGT	14850
TAACTTTCTG	GTTTTTCAGT	TCCTCGAGTA	CCGGATCCTC	TAGAGTCCGG	14900
AGGCTGGATC	GGTCCCGGTG	TCTTCTATGG	AGGTCAAAAC	AGCGTGGATG	14950
GCGTCTCCAG	GCGATCTGAC	GGTTCACTAA	ACGAGCTCTG	CTTATATAGA	15000
CCTCCCACCG	TACACGCCTA	CCGCCCATTT	GCGTCAATGG	GGCGGAGTTG	15050
TTACGACATT	TTGGAAAGTC	CCGTTGATTT	TGGTGCCAAA	ACAAACTCCC	15100
ATTGACGTCA	ATGGGGTGGA	GACTTGGAAA	TCCCCGTGAG	TCAAACCGCT	15150
ATCCACGCCC	ATTGATGTAC	TGCCAAAACC	GCATCACCAT	GGTAATAGCG	15200

SUBSTITUTE SHEET (RULE 26)

PCT/US95/14017

WO 96/13597

42/45

FIGURE 12M

ATGACTAATA	CGTAGATGTA	CTGCCAAGTA	GGAAAGTCCC	ATAAGGTCAT	15250
GTACTGGGCA	TAATGCCAGG	CGGGCCATTT	ACCGTCATTG	ACGTCAATAG	15300
GGGGCGTACT	TGGCATATGA	TACACTTGAT	GTACTGCCAA	GTGGGCAGTT	15350
TACCGTAAAT	ACTCCACCCA	TTGACGTCAA	TGGAAAGTCC	CTATTGGCGT	15400
TACTATGGGA	ACATACGTCA	TTATTGACGT	CAATGGGCGG	GGGTCGTTGG	15450
GCGGTCAGCC	AGGCGGGCCA	TTTACCGTAA	GTTATGTAAC	GACCTGCAGG	15500
TCGACTCTAG	AGGATCTCCC	TAGACAAATA	TTACGCGCTA	TGAGTAACAC	15550
AAAATTATTC	AGATTTCACT	TCCTCTTATT	CAGTTTTCCC	GCGAAAATGG	15600
CCAAATCTTA	CTCGGTTACG	CCCAAATTTA	CTACAACATC	CGCCTAAAAC	15650
CGCGCGAAAA	TTGTCACTTC	CTGTGTACAC	CGGCGCACAC	CAAAAACGTC	15700
ACTTTTGCCA	CATCCGTCGC	TTACATGTGT	TCCGCCACAC	TTGCAACATC	15750
ACACTTCCGC	CACACTACTA	CGTCACCCGC	CCCGTTCCCA	CGCCCCGCGC	15800
CACGTCACAA	ACTCCACCCC	CTCATTATCA	TATTGGCTTC	AATCCAAAAT	15850
AAGGTATATT	ATTGATGATG	CTAGCGGGGC	CCTATATATG	GATCCAATTG	15900
CAATGATCAT	CATGACAGAT	CTGCGCGCGA	TCGATATCAG	CGCTTTAAAT	15950
TTGCGCATGC	TAGCTATAGT	TCTAGAGGTA	CCGGTTGTTA	ACGTTAGCCG	16000
GCTACGTATA	CTCCGGAATA	TTAATAGGCC	TAGGATGCAT	ATGGCGGCCG	16050
GCCGCCTGCA	GCTGGCGCCA	TCGATACGCG	TACGTCGCGA	CCGCGGACAT	16100
GTACAGAGCT	CGAGAAGTAC	TAGTGGCCAC	GTGGGCCGTG	CACCTTAAGC	16150
TTGGCACTGG	CCGTCGTTTT	ACAACGTCGT	GACTGGGAAA	ACCCTGGCGT	16200
TACCCAACTT	AATCGCCTTG	CAGCACATCC	CCCTTTCGCC	AGCTGGCGTA	16250
ATAGCGAAGA	GGCCCGCACC	GATCGCCCTT	CCCAACAGTT	GCGCAGCCTG	16300
AATGGCGAAT	GGCGCCTGAT	GCGGTATTTT	CTCCTTACGC	ATCTGTGCGG	16350
TATTTCACAC	CGCATACGTC	AAAGCAACCA	TAGTACGCGC	CCTGTAGCGG	16400
CGCATTAAGC	GCGGCGGGTG	TGGTGGTTAC	GCGCAGCGTG	ACCGCTACAC	16450

43/45

FIGURE 12N

TTGCCAGCGC CCTAGCGCCC	GCTCCTTTCG	CTTTCTTCCC	TTCCTTTCTC	16500
GCCACGTTCG CCGGCTTTCC	CCGTCAAGCT	CTAAATCGGG	GGCTCCCTTT	16550
AGGGTTCCGA TTTAGTGCTT	TACGGCACCT	CGACCCCAAA	AAACTTGATT	16600
TGGGTGATGG TTCACGTAGT	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	16650
CCTTTGACGT TGGAGTCCAC	GTTCTTTAAT	AGTGGACTCT	TGTTCCAAAC	16700
TGGAACAACA CTCAACCCTA	TCTCGGGCTA	TTCTTTTGAT	TTATAAGGGA	16750
TTTTGCCGAT TTCGGCCTAT	TGGTTAAAAA	ATGAGCTGAT	TTAACAAAAA	16800
TTTAACGCGA ATTTTAACAA	AATATTAACG	TTTACAATTT	TATGGTGCAC	16850
TCTCAGTACA ATCTGCTCTG	ATGCCGCATA	GTTAAGCCAG	CCCCGACACC	16900
CGCCAACACC CGCTGACGCG	CCCTGACGGG	CTTGTCTGCT	CCCGGCATCC	16950
GCTTACAGAC AAGCTGTGAC	CGTCTCCGGG	AGCTGCATGT	GTCAGAGGTT	17000
TTCACCGTCA TCACCGAAAC	GCGCGAGACG	AAAGGGCCTC	GTGATACGCC	17050
TATTTTTATA GGTTAATGTC	ATGATAATAA	TGGTTTCTTA	GACGTCAGGT	17100
GGCACTTTTC GGGGAAATGT	GCGCGGAACC	CCTATTTGTT	TATTTTTCTA	17150
AATACATTCA AATATGTATC	CGCTCATGAG	ACAATAACCC	TGATAAATGC	17200
TTCAATAATA TTGAAAAAGG	AAGAGTATGA	GTATTCAACA	TTTCCGTGTC	17250
GCCCTTATTC CCTTTTTTGC (GGCATTTTGC	CTTCCTGTTT	TTGCTCACCC	17300
AGAAACGCTG GTGAAAGTAA	AAGATGCTGA	AGATCAGTTG	GGTGCACGAG	17350
TGGGTTACAT CGAACTGGAT	CTCAACAGCG	GTAAGATCCT	TGAGAGTTTT	17400
CGCCCGAAG AACGTTTTCC	ATGATGAGC	ACTTTTAAAG	TTCTGCTATG	17450
TGGCGCGGTA TTATCCCGTA T	TTGACGCCGG	GĊAAGAGCAA	CTCGGTCGCC	17500
GCATACACTA TTCTCAGAAT G	SACTTGGTTG	AGTACTCACC	AGTCACAGAA	17550
AAGCATCTTA CGGATGGCAT G	ACAGTAAGA	GAATTATGCA	GTGCTGCCAT	17600
AACCATGAGT GATAACACTG C	GGCCAACTT	ACTTCTGACA	ACGATCGGAG	17650
GACCGAAGGA GCTAACCGCT T	TTTTGCACA	ACATGGGGGA	TCATGTAACT	17700

44/45

FIGURE 120

CGCCTTGATO	GTTGGGAACC	GGAGCTGAAT	GAAGCCATAC	CAAACGACGA	17750
GCGTGACACC	ACGATGCCTG	TAGCAATGGC	AACAACGTTG	CGCAAACTAT	17800
TAACTGGCGA	ACTACTTACT	CTAGCTTCCC	GGCAACAATT	AATAGACTGG	17850
ATGGAGGCGG	ATAAAGTTGC	AGGACCACTT	CTGCGCTCGG	CCCTTCCGGC	17900
TGGCTGGTTT	ATTGCTGATA	AATCTGGAGC	CGGTGAGCGT	GGGTCTCGCG	17950
GTATCATTGC	AGCACTGGGG	CCAGATGGTA	AGCCCTCCCG	TATCGTAGTT	18000
ATCTACACGA	CGGGGAGTCA	GGCAACTATG	GATGAACGAA	ATAGACAGAT	18050
CGCTGAGATA	GGTGCCTCAC	TGATTAAGCA	TTGGTAACTG	TCAGACCAAG	18100
TTTACTCATA	TATACTTTAG	ATTGATTTAA	AACTTCATTT	TTAATTTAAA	18150
AGGATCTAGG	TGAAGATCCT	TTTTGATAAT	CTCATGACCA	AAATCCCTTA	18200
ACGTGAGTTT	TCGTTCCACT	GAGCGTCAGA	CCCCGTAGAA	AAGATCAAAG	18250
GATCTTCTTG	AGATCCTTTT	TTTCTGCGCG	TAATCTGCTG	CTTGCAAACA	18300
AAAAAACCAC	CGCTACCAGC	GGTGGTTTGT	TTGCCGGATC	AAGAGCTACC	18350
AACTCTTTTT	CCGAAGGTAA	CTGGCTTCAG	CAGAGCGCAG	АТАССАААТА	18400
CTGTTCTTCT	AGTGTAGCCG	TAGTTAGGCC	ACCACTTCAA	GAACTCTGTA	18450
GCACCGCCTA	CATACCTCGC	TCTGCTAATC	CTGTTACCAG	TGGCTGCTGC	18500
CAGTGGCGAT	AAGTCGTGTC	TTACCGGGTT	GGACTCAAGA	CGATAGTTAC	18550
CGGATAAGGC	GCAGCGGTCG	GGCTGAACGG	GGGGTTCGTG	CACACAGCCC	18600
AGCTTGGAGC	GAACGACCTA	CACCGAACTG	AGATACCTAC	AGCGTGAGCT	18650
ATGAGAAAGC	GCCACGCTTC	CCGAAGGGAG	AAAGGCGGAC	AGGTATCCGG	18700
TAAGCGGCAG	GGTCGGAACA	GGAGAGCGCA	CGAGGGAGCT	TCCAGGGGGA	18750
AACGCCTGGT	ATCTTTATAG	TCCTGTCGGG	TTTCGCCACC	TCTGACTTGA	18800
GCGTCGATTT	TTGTGATGCT	CGTCAGGGGG	GCGGAGCCTA	TGGAAAAACG	18850
CCAGCAACGC	GGCCTTTTTA	CGGTTCCTGG	CCTTTTGCTG	GCCTTTTGCT	18900
CACATGTTCT	TTCCTGCGTT	ATCCCCTGAT	TCTGTGGATA	ACCGTATTAC	18950

45/45

FIGURE 12P

CGCCTTTGAG	TGAGCTGATA	CCGCTCGCCG	CAGCCGAACG	ACCGAGCGCA	19000
GCGAGTCAGT	GAGCGAGGAA	GCGGAAGAGC	GCCCAATACG	CAAACCGCCT	19050
CTCCCCGCGC	GTTGGCCGAT	TCATTAATGC	AGCTGGCACG	ACAGGTTTCC	19100
CGACTGGAAA	GCGGGCAGTG	AGCGCAACGC	AATTAATGTG	AGTTAGCTCA	19150
CTCATTAGGC	ACCCCAGGCT	TTACACTTTA	TGCTTCCGGC	TCGTATGTTG	19200
TGTGGAATTG	TGAGCGGATA	ACAATITCAC	ACAGGAAACA	GCTATGACCA	19250
TGATTACGAA	TTCGAATGGC	CATGGGACGT	CGACCTGAGG	TAATTATAAC	19300
CCGGGCC					19307

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/86, 7/00, 15/88 A61K 48/00

A3

US

(11) International Publication Number:

WO 96/13597

(43) International Publication Date:

9 May 1996 (09.05.96)

(21) International Application Number:

PCT/US95/14017

(22) International Filing Date:

27 October 1995 (27.10.95)

(30) Priority Data:

08/331,381

28 October 1994 (28.10.94)

(74) Agents: BAK, Mary, E. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).

(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN,

CZ, EE, FI, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ,

VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB,

GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ,

CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG),

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on

08/331,381 (CIP) 28 October 1994 (28.10.94)

28 October 1994 (28.10.94)

(71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; 133 South 36th Street, Philadelphia, PA 19104-3246 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US). FISHER, Krishna, J. [US/US]; 4006 Pine Street, Philadelphia, PA 19104 (US). CHEN, Shu-Jen [-/US]; 3901 Conshohocken Avenue, Philadelphia, PA 19131 (US). WEITZMAN, Matthew [GB/US]; 301 S. 19th Street #2A, Philadelphia, PA 19103 (US).

Published

With international search report.

Before the expiration of the time limit for amending the

ARIPO patent (KE, LS, MW, SD, SZ, UG).

claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:
31 October 1996 (31.10.96)

(54) Title: RECOMBINANT ADENOVIRUS AND METHODS OF USE THEREOF

(57) Abstract

A recombinant adenovirus and a method for producing the virus are provided which utilize a recombinant shuttle vector comprising adenovirus DNA sequence for the 5' and 3' cis-elements necessary for replication and virion encapsidation in the absence of sequence encoding viral genes and a selected minigene linked thereto, and a helper adenovirus comprising sufficient adenovirus gene sequences necessary for a productive viral infection. Desirably the helper gene is crippled by modifications to its 5' packaging sequences, which facilitates purification of the viral particle from the helper virus.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	1E	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SE SI	
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovenia
CM	Cameroon	L	Liechtenstein	SN SN	Slovakia
CN	China	LK	Sri Lanka		Senegal
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	<u>11</u>	Tajikistan
DK	Denmark	MD		Π	Trinidad and Tobago
ES	Spain	MG	Republic of Moldova	UA	Ukraine
FI	Finland	ML.	Madagascar	US	United States of America
FR	France	MN	Mali	ĽZ	Uzbekistan
GA	Gahon	м.\	Mongolia	12.	Vict Nam

INTERNATIONAL SEARCH REPORT

Inten nal Application No PCT/US 95/14017

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 C12N15/86 C12N7/ C12N7/00 C12N15/88 A61K48/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X WO,A,95 27071 (BOARD OF REGENTS, THE 1-6,13, UNIVERSITY OF TEXAS SYSTEM) 12 October 19,20,22 1995 see page 15, line 27 - page 16, line 13 see page 19, line 23 - page 24, line 25 see claims 15,16 X J. VIROLOGY, 8-11 vol. 66, no. 2, February 1992, pages 723-731, XP002012398 GRÄBLE, M. AND HEARING, P.: "cis and trans Requirements for the Selective Packaging of Adenovirus Type 5 DNA* Y see the whole document 12,15 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance. cated to understand the principle or theory underlying the "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the 'O' document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docuother means ments, such combination being obvious to a person stilled document published prior to the international filing date but in the art. later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 0, 09, 96 3 September 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijsmik Tel. (- 31 70) 340-2040, Tx. 31 651 epo nl. Donath, C Fax: (- 31 70) 340-3016

Form PCT ISA 218 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Inten. .ial Application No PCT/US 95/14017

4 consum	Abox) DOCIMENTS CONSIDERED TO BE BEI EVA	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Delmant to alice Al
	and the relevant passages	Relevant to claim No.
,	PROC.NATL.ACAD.SCI.USA, vol. 89, no. 7, 1992, pages 2581-2584, XP002012528 QUANTIN, B. ET AL.: "Adenovirus as an expression vector in muscle cells in vivo" see the whole document	1-7,13, 15-22
,	BL00D, vol. 84, no. 5, 1 September 1994, pages 1492-1500, XP002012529 G00DMAN, S. ET AL.: "Recombinant Adeno-Associated Virus-Mediated Gene Transfer into Hematopoietic Progentitor Cells" see the whole document	1-7,13, 15-22
	BIOCHEM J., vol. 299, no. 1, April 1994, pages 49-58, XP002012399 FISHER, K.J. AND WILSON, J.M.: "Biochemical and functional analysis of an adenovirus-based ligand complex for gene transfer" see page 50, left-hand column, paragraph 1 - page 52, left-hand column, paragraph 1	12,15
	VIROLOGY, vol. 217, no. 1, March 1996, pages 11-22, XP002012530 FISHER, K.J. ET AL.: "Recombinant Adenovirus deleted of all viral genes for gene therapy of cystic fibrosis" see the whole document	1-22

1

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter. nal Application No PCT/US 95/14017

			PC1/US 95/1401/	
Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9527071	12-10-95	AU-B-	2238695	23-10-95

*				
	•			