ANALYTICAL TECHNIQUES

1.

Com	pound E can be oxidised to form a carboxylic acid.	
(i)	State a suitable oxidising mixture for this reaction.	
		[2]
(ii)	Write a balanced equation for this oxidation of compound E .	
	Use [O] to represent the oxidising mixture.	
	H_3C $C = C$ $CH_3CH_2CH_2$ CH_2OH $COMpound E$	[3]
(iii)	Explain how compound E and the carboxylic acid could be distinguished by infra-red spectroscopy.	

	r	[1]
	l	Total 6 marks]

2.	(a)	Buta	n-1-ol can be oxidised to form butanal.	
		(i)	State a suitable oxidising mixture for this reaction.	
				[0]
		(ii)	State the colour change you would see during this oxidation.	[2]
		()	from to	
				[1]
	(b)	infra-	mple of the butanal from (a) was analysed using infra-red spectroscopy. The red spectrum contained an absorption in the region 1680–1750 cm ⁻¹ but did contain a broad absorption in the region 2500–3300 cm ⁻¹ .	
		Refe	er to the Data Sheet for Chemistry provided.	
		(i)	What does the absorption in the region 1680–1750 cm ⁻¹ indicate?	
				[1]
		(ii)	What does the absence of a broad absorption in the region 2500–3300 cm ⁻¹ indicate?	
				[1]
		(iii)	The reaction in (a) was carried out using distillation and not reflux.	ניו
			Explain why.	
				101
			[Total 7	[2] marks]
3.			$_{10}H_{20}O$, occurs naturally in both rose and geranium oils. The structural all formulae of citronellol are shown below.	
		CH ₃	CH ₃	
ı	H₃C	, c	CH CH ₂ CH CH ₂ OH	Н
			structural formula skeletal formula	
	(a)	Nam	e the two functional groups present in citronellol.	
			and	

[1]

[1]

[1]

- (b) The functional groups in citronellol can be identified either by chemical tests or by infrared spectroscopy.
 - (i) State which of the two functional groups you named in (a) is:
 - 1 identified when bromine is added to citronellol,
 - 2 more easily identified from the infra-red spectrum.

(ii) State what you would **see** when bromine is added to citronellol.

(iii) Draw the skeletal formula of the organic product formed when bromine is added to citronellol.

(iv) The infra-red spectrum of citronellol is shown below. Mark on this spectrum, with the letter **X**, the absorption that confirms the presence of the functional group that is most easily identified from this spectrum.

[1]

(c)	Reaction of a sample of citronellol, $C_{10}H_{20}O$, with hydrogen in the presence of a catalyst results in the formation of a saturated compound $\bf C$.					
	(i)	Suggest a catalyst for this reaction.				
			[1]			
	(ii)	Determine the molecular formula of the saturated compound C .				
			[1]			
	(iii)	Construct a balanced equation for this reaction.				
			[1]			
		оТ]	tal 9 marks]			
	CH	I, C ₁₀ H ₁₈ O, is a fragrant oil which is found in lavender. The structural and rmulae of lavandulol are shown below. 3 C C C H H H ₃ C C C H S Skeletal formula	the			
(a)	(i)	Identify two different functional groups in lavandulol.				
		and	[2]			
	(ii)	Why does lavandulol not have <i>cis-trans</i> isomerism?				
			[1]			

4.

(b)	Lavandulol also reacts with bromine to form a saturated organic product.	
	State what you would see in this reaction and deduce the molecular formula of the organic product.	
	observation	
		[1]
	molecular formula	
		[2]
(c)	Lavandulol could be converted into an ester X , which is also found in lavender oil.	

ester X

State a reagent and a catalyst that could be used to form ester **X** from lavandulol.

reagent

catalyst

[1]

[1]

(d) Lavandulol can be oxidised to produce either compound Y or compound Z.

 Write a balanced equation for the oxidation of lavandulol to produce compound Z. Use the molecular formulae given above and use [O] to represent the oxidising agent.

.....

[2]

(ii) An infra-red spectrum of either compound Y or compound Z was obtained and was found to contain an absorption between 1680 – 1750 cm⁻¹.
 However, there was no broad absorption between 2500 – 3300 cm⁻¹.

By referring to your *Data Sheet*, use this information to deduce whether the infra-red spectrum was of compound **Y** or of compound **Z**. Show your reasoning.

The in	fra-red s	spectrum	n was of	compo	ound	be	cause	

[2]

[Total 12 marks]

5.	Bromobutane, CH ₃ CH ₂ CH ₂ CH ₂ Br, can be reacted with hot aqueous sodium hydroxide
	to prepare butan-1-ol.

$$\mathsf{CH_3CH_2CH_2CH_2Br} + \mathsf{OH}^- \to \mathsf{CH_3CH_2CH_2CH_2OH} + \mathsf{Br}^-$$

The butan-1-ol produced can be analysed by mass spectrometry.

(i)	Predict two fragment ions that you would expect to see in the mass spectrum of butan-1-ol and state the m/z value of each ion.	
		[2]
(ii)	State a use of mass spectrometry outside of the laboratory.	
		[1]
	[Total 3 i	marks]

- **6.** Compound **X** is an atmospheric pollutant emitted from fuel combustion of petrol and diesel vehicles. Compound **X** is a potent human carcinogen.
 - Analysis of compound X showed the following percentage composition by mass:
 C, 88.89%; H, 11.1%.
 - Mass spectrometry showed a molecular ion peak at m/z = 54.
 - Compound **X** reacts with H2 in the presence of a nickel catalyst in a 1 : 2 molar ratio.

Analyse and interpret this information to determine a possible structure for compound **X**. Show all your working.

[Total 5 marks]