Using spaCy and Keras to build a neural network classifier

Intro to NLP

Early draft tutorial

Tong Liu, with Cecilia O. Alm

Using word vectors in NLP with deep learning tasks

- Learn multiple layers of feature representations mapping to output
 - Raw inputs such as words, characters, embeddings (e.g., of words)
- Why the visibility of deep learning?
 - Has outperformed other ML techniques in benchmarks
 - Computer vision
 - Speech recognition
- Deep Neural Networks (DNNs) are facilitated by
 - Massive data availability (texts, images, videos, etc.)
 - Hardware acceleration (CPU, GPU)
 - New algorithms, heuristics improving on fundamental NN concepts

Deep learning for NLP

- Use representation learning and deep learning (DL) to solve NLP problems
- Representation learning: techniques to automatically discover the representations from raw data.
 - Such as word2vec, GloVe
- NLP has achieved improvements with DL in recent years:
 - Problems in morphology ¹, syntax ², semantics ³
 - Applications like machine translation ⁴, question answering ⁵, sentiment analysis ⁶
- 1. Luong, Thang, Richard Socher, and Christopher D. Manning. "Better word representations with recursive neural networks for morphology." CoNLL. 2013.
- 2. Socher, Richard, et al. "Parsing natural scenes and natural language with recursive neural networks." *Proceedings of the 28th international conference on machine learning (ICML-11)*. 2011.
- 3. Bowman, Samuel R., Christopher Potts, and Christopher D. Manning. "Recursive neural networks can learn logical semantics." arXiv preprint arXiv:1406.1827 (2014).
- 4. Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever. "Exploiting similarities among languages for machine translation." arXiv preprint arXiv:1309.4168 (2013).
- 5. lyyer, Mohit, et al. "A Neural Network for Factoid Question Answering over Paragraphs." EMNLP. 2014.
- 6. Socher, Richard, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." Proceedings of the conference on empirical methods in natural language processing (EMNLP). Vol. 1631. 2013.

Inspirations for neural network models from biology

Recommended readings from Neuroscience:

https://neurophysics.ucsd.edu/courses/physics_171/annurev.neuro.28.061604.135703.pdf http://www.sciencedirect.com/science/article/pii/S0959438814000130

Feed-Forward Neural Networks

Basic features:

- A multilayer network without cycles between connected neural units
 - In contrast, recurrent NN have cycles
- Outputs from units in one layer are passed to units in the next layer
- Nothing flows back to the previous layers

Multilayer perceptrons (MLPs)

- A feedforward fully-connected NN
- Consists of multiple directed layers of units
 - Layers connected with certain weights (and bias)
- Except for the input nodes, each unit represents a nonlinear activation function

$$h = f(Wx + b)$$

$$z = Uh$$

$$y = softmax(z)$$

x	Input units		
h	Hidden units		
у	Output units (probability distribution)		
f	Non-linear function		
W, U	Weight matrices		
b	Bias vector		
softmax()	A vector normalization function		

Non-linear functions

sigmoid

Computation:
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

[0, 1]

tanh

Computation:
$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Non-linear functions

ReLU (Rectified Linear Unit)

Computation:
$$y = max(0, x)$$

Softmax

Computation:
$$softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$
 $1 \le i \le D$

- 1. A D-dimensional vector z of real values
- 2. *Interesting property:* The calculated probabilities are in the range of [0,1].
- 3. All probabilities are summed up to 1.

Summary overview of deep learning alternatives

Architectures	Conventional (Sequence or Non-Recursive)	Recursive	Combination of Conventional and Recursive
Basic types	Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM) Convolutional Neural Network (CNN)	Recursive Autoencoders (RAE) Recursive NN (RsNN)	Tree-LSTM
Variants	Bi-RNN, Bi-LSTM, CNN-multichannel, CNN-non-static, DCNN	MV-RsNN, RsNTN	DTree-LSTM, CTree-LSTM, Deep RsNN

Activity: Building a DL classifier

- Keras (https://keras.io/): A high-level NN library for DL in Python
- Lets you use <u>TensorFlow</u>, <u>Theano</u> and <u>CNTK</u> low-level libraries
 - <u>TensorFlow</u> is the proposed default installation (compatible with the other backends depending on your application)
- Lets you use out-of-the-box implementations of common NN architectures
 - Convolutional neural networks (CNN)
 - Recurrent neural networks (RNN)
 - Their combinations

Let's get started!

- Download and expand the folder NeuralNetworkLab.zip
- Launch "Jupyter Notebook" in Anaconda. It will start the notebook server and open a page in the web browser
- In the Files tab, navigate to the folder and open "polarity_mlp_glove.ipynb" by clicking on it.

🗂 jupyter

3. Navigate to your folder and open the notebook

C 1 localhost:8888/tree

Task - Classify movie reviews into positive/negative categories

This is an overview of the process you will complete over the rest of the tutorial:

- 1. Convert the dataset into a list of review instances and a parallel list of their polarity labels
 - polarity dataset v2.0 with 1000 positive and 1000 negative movie reviews (http://www.cs.cornell.edu/people/pabo/movie-review-data/)
- 2. Split randomized data into 90% training and 10% validation parts
- 3. Load embedding vectors as input features using pre-trained GloVe vectors from spaCy
- 4. Load this embedding matrix into a Keras sequential model
- 5. Train a binary classifier using a 2-layer NN (extra doc: https://keras.io/getting-started/sequential-model-guide/#training)
- 6. Evaluate it against the held-out (validation) data
- 7. Run 10-fold cross validation if time allows

Preparing the training/test data

- [1] Set the text data directory variable
- [2] Iterate over the folders to read each file, store the text sample and the class label in two lists, respectively
- [3] Check the numbers of texts and labels
- [4] Check the average/maximum/minimum length of reviews in characters
- [5, 6] Load pre-trained vectors from spaCy
- [7] Check the average/maximum/minimum length of reviews in tokens
- [8] Split data (and labels) into training and testing subsets
 - 90% training and 10% testing
 - Check the number of pos/neg samples in each subset (should be equal)

Features and labels

X

[9] Set a maximum sequence length to use in features

- Use the average number of tokens

[10] Define a function to convert words in text into a matrix of vectors as features

 Use a simple concatenate representation in this exercise

[11, 12] Extract features for training and testing data (slow -- just wait)

Y

[13] Converts class labels to numpy arrays

Model training

[14, 15] Create a Sequential model with a linear stack of layers

[16] Add a hidden layer

[17] Add an output layer

[18] Configure the learning process before model training

Optimizer, loss function, classification metrics

[19] Train the model, iterating on the data in batches of 128 samples, 5 epochs

- Epoch: number of forward and backward passes of all training samples
- Batch size: number of samples in one forward and backward pass

Model evaluation

[20] Print a summary of your model

[21] Evaluate the model against the 10% validation data in terms of the loss value & metrics values

 Results may vary, because data are split randomly in cell [8]

[22*] Instantiate a Stratified 10-Folds cross-validator

* if time allows

[23*] Repeat the above process [7-18] for 10 times to get average performance metrics

[24] Delete session from keras backend to free sources

References and further readings

- 1. https://elitedatascience.com/keras-tutorial-deep-learning-in-python
- 2. https://blog.keras.io/category/tutorials.html
- 3. http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
- Stanford CS224d: Deep Learning for Natural Language Processing http://cs224d.stanford.edu/index.html
- 5. Stanford CS231n Convolutional Neural Networks for Visual Recognition https://cs231n.github.io/convolutional-networks/
- 6. https://keras.io/