

Cornell Aniversity Pibrary

BOUGHT WITH THE INCOME FROM THE
SAGE ENDOWMENT FUND

THE GIFT OF

Henry W. Sage

A.3.2258

14)X)is

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

HANDBOOK

 \mathbf{OF}

THERMODYNAMIC TABLES AND DIAGRAMS

McGraw-Hill Book Company

Publishers of Books for

Electrical World The Engineering and Mining Journal

Engineering Record Engineering News

Railway Age Gazette American Machinist

Signal Engineer American Engineer

Electric Railway Journal Coal Age

Metallurgical and Chemical Engineering Power

THERMODYNAMIC TABLES AND DIAGRAMS

A SELECTION OF TABLES AND DIAGRAMS FROM

ENGINEERING THERMODYNAMICS

BY

CHARLES EDWARD LUCKE, PH. D.

PROFESSOR GF MECHANICAL ENGINEERING IN CGLUMBIA UNIVERSITY
NEW YORK CITY

ARRANGED AND AMPLIFIED BY

JOHN J. FLATHER, Ph. B., M. M. E. PROFESSOR OF MECHANICAL ENGINEERING IN UNIVERSITY OF MINNESOTA, MINNEAPOLIS

FIRST EDITION

McGRAW-HILL BOOK COMPANY, Inc. 239 WEST 39TH STREET, NEW YORK 6 BOUVERIE STREET, LONDON, E. C. COPYRIGHT, 1915, BY THE McGraw-Hill Book Company, Inc.

PREFACE

WHILE the following tables and diagrams have been arranged primarily for use with the authors' Textbook of Engineering Thermodynamics it is thought that they will be of considerable value to all students of engineering as well as practicing engineers or others who may have occasion to undertake thermodynamic computations.

Most of the tables have been taken from Dr. Lucke's larger work on Engineering Thermodynamics, but some new ones have been added, among which are the very convenient four place hyperbolic and common logarithms, the plates for which were kindly loaned by Professor E. V. Huntington.

The authors desire to acknowledge their obligations to the various sources of information utilized in the preparation of the tables and diagrams. Special mention is due Professors Marks and Davis, for the use of material from their Steam Tables (Longmans, Green & Co.); to Mr. E. D. Thurston, Jr., whose invaluable help is gratefully acknowledged, and to Mr. T. M. Gunn for aid on part of the work.

C. E. L.

June. 1915.

J. J. F.

CONTENTS

	PAGE
Preface	v
LIST OF TABLES.	ix
LIST OF CHARTS AND DIAGRAMS	xi
Part I	
Introduction	1-4
Tables.	5-137
PART II	
Construction and Use of the Diagrams	39–150
Charts	51–23 0
INDEX	

LIST OF TABLES

MU.		PAGE
1.	Conversion table of units of distance	5
2.	Conversion table of units of surface	5
3.	Conversion table of units of volume	5
4.	Conversion table of units of weights and force	5
5.	Conversion table of units of pressure	6
6.	Conversion table of units of work	6
7.	Conversion table of units of power	7
8.	Units of velocity	7
9.	Heat and power conversion table	7
	Barometric heights, altitudes and pressures	8
	Conversion table inches of mercury to pounds per square inch	10
12.	Piston positions for any crank angle	11
13.	Horse-power per pound mean effective pressure	12
14.	Constants for the curve $PV^s = K$	13
	Values of s for adiabatic expansion of steam	14
	Values of s in the equation $PV = \text{constant}$ for various substances and conditions.	15
17.	Fixed temperatures	15
18.	Temperatures, Centigrade and Fahrenheit	16
19.	Values of x for use in Heck's formula for missing water	18
	Baumé-specific gravity scale	19
	Freezing-point of calcium chloride brine	19
22 .	Specific heats of solids	20-21
2 3.	Specific heats of gases	22-23
24.	Specific heats of liquids	24
25 .	Specific heat of sodium chloride brine	25
	Coefficient of linear expansion of solids	25
27 .	Coefficient of cubical expansion of liquids	26
	Coefficient of volumetric expansion of gases and vapors at constant pressurc	26
	Coefficient of pressure rise of gases and vapors at constant volume	27
	Compressibility of gases by their isothermals	28
	Values of the gas constant R	28
	Density of gases	29
	Ignition temperatures	30
	The critical point	30
	Latent heats of vaporization	31
	Latent heats of fusion	31
37.	Boiling-points	32
38.	International atomic weights	34
	Melting- or freezing-points	34
	Properties of saturated steam	36
	Properties of superheated steam	40
	Properties of saturated ammonia vapor	41
	Properties of saturated carbon dioxide vapor	50
44.	Relation between pressure, temperature and per cent, NH ₃ in solution	54

No	,	Pagi
45.	Values of partial pressure of ammonia and water vapors for various temperatures and per cents. of ammonia in solution	58
46.	Absorption of gases by liquids	60
	Absorption of air in water	60
	Air required for combustion of various substances	61
49.	Radiation coefficients	61
50.	Coefficients of heat transfer	62
51.	Heats of combustion of fuel elements and chemical compounds	63
	Internal thermal conductivity	65
	Relative thermal conductivity	68
	Comparison of cellulose and average wood composition	69
	Composition and calorific power of characteristic coals	70
	Combustible and volatile of coals, lignites and peats	78
57.	Classification of coals by gas and coke qualities	87
	Paraffines from Pennsylvania petroleums	88
	Calorific power of mineral oils by calorimeter and calculation by density formula of	-
	Sherman and Kropff	89
60.	Properties of oil-gas	90
	Composition of natural gases	91
62.	Properties of mineral oils	92
63.	Composition of coke oven and retort coal gas	94
64.	Composition of U. S. coke	98
65.	Products of bituminous coal distillation	99
66.	Average distillation products of crude mineral oils	99
67.		100
68.		102
69.	Composition of blast-furnace gas and air gas	104
70.		106
71.		108
72.		113
7 3.		113
74.	Gas producer tests	114
7 5.		116
76.	C :: 43 :: 6	116
77.	Calorific powers of best air-gas mixtures	117
7 8.	Limits of proportions of explosive air-gas mixtures	118
79.	Rate of combustion of coal	119
80.	Diagram factors for Otto cycle gas engines	122
81.	Heat balances of gas and oil engines	123
82.	Mean effective pressure factors for Otto cycle engines	$\frac{-23}{124}$
83.	Values of C for air flow (Weisbach)	125
84.	Flow change resistance factors F_R (Reitschel)	$\frac{-25}{125}$
85.	Efficiency factors for reciprocating steam engines and turbines	126
86.	Chimanana and airing (TZ-1)	130
87.	Chimney draft	131
88.	Common logarithms, 1.0 to 1.999	132
89.	Common logarithms, 1.0 to 9.99	134
മ	Hyperbolic logarithms 1 0 to 10 0	101

LIST OF CHARTS

CHA		PAGE
1.	Work and horse-power for single-stage compressors	151
2.	Work and horse-power for two-stage compressors	152
3.	Work and horse-power for three-stage compressors	153
4.	Mean effective pressure of compressors, one-, two-, and three-stages	154
5.	Value of supply pressure in maximum work and mean effective pressure	156
6.	Relative work of two- and three-stage compressors compared to single stage	157
7.	Diagram to give economy of exponential cycles referred to isothermal as standard.	158
	Compressor cylinder displacement for given capacity	159
9.	Graphical determination of mean effective pressure for single cylinder engines	160
	Relations for equal distribution of work in compound engine	161
11.	Specific heats of gases	162
	Specific heat of superheated steam	163
13.	Equivalent gas densities at different pressures and temperatures	164
14.	Ammonia pressure-temperature relations, for saturated vapor	165
	Carbon dioxide pressure-temperature relations for saturated vapor	166
16.	Steam, pressure-temperature (Table XL)	167
	Steam, heat of the liquid (Table XL)	168
	Steam, latent heat (Table XL)	169
19.	Steam, total heat (Table XL)	170
	Steam, specific volume and density of the liquid (Table XL)	
	Steam, specific volume and density of the vapor (Table XL)	
	Vapor pressure of hydrocarbons and light petroleum distillates of the gasolene class.	
	Vapor pressure of heavy petroleum distillates of the kerosene class	
	Vapor pressure of the alcohols	175
25.	Relation between wet and dry bulb psychrometer readings and dew point for air	
	and water vapor	176
	Relation between humidity and weight of moisture per cubic foot of saturated air.	
	Ammonia-water solutions, relation between total pressure and temperature	
28.	Ammonia-water solutions, relation between total pressure and per cent. NH ₃ in	
	solution	179
29.	Ammonia-water solutions, relation between temperature and per cent. NH3 in	
	solution	180
	Fractional distillation of kerosene and petroleums	181
	Fractional distillation of gasolenes	
	Composition of hypothetical producer gas from fixed carbon	
	Heats of reaction for hypothetical producer gas from fixed carbon, B.T.U	
34.	variable specific heat	
95	Rate of combustion of coal with draft.	185 186
	Heat per pound of steam above feed temperature. Evaporation per hour per	190
ъо.	boiler horse-power. Factor of evaporation	187
27	Heat balance for locomotive boiler	
	Influence of various factors on boiler efficiency	
30.	Influence of various factors on boiler efficiency	100
ο υ .	influence of various factors on boner emclency,	190

СНА	RT	PAGE
	Constant volume lines for steam on the temperature-entropy diagram	191 192
	Exponential gas changes. Small pressure ratios. Exponential gas changes. Larger pressure ratios.	$\frac{192}{192}$
	Exponential gas changes. Relation between initial and final ratios of pressures,	102
40.	volumes, temperatures, and entropies	193
44	Temperature-entropy diagram with lines of constant pressure and constant quality	200
	for steam	194
45.	The Mollier total heat entropy diagram for steam	195
46.	Rankine cycle. Thermal efficiency. Steam initially dry and saturated	196
	Rankine cycle. Thermal efficiency. Steam initially of any quality	197
48.	Rankine cycle. Work per lb. of steam (m.e.p.) and jet velocity. Steam initially	
	dry saturated	198
49.	Rankine cycle. Work per lb. of steam (m.e.p.) and jet velocity. Steam initially	
	of any quality	199
50 .	Carnot steam cycle and derivatives. Thermal efficiency. Steam initially dry	
	saturated	200
51.	Carnot steam cycle and derivatives. Thermal efficiency. Steam initially of any	- 0.4
	quality	201
52.	Carnot steam cycle and derivatives. Work per lb. of steam (m.e.p.) and jet	000
- 0	velocity. Steam initially dry and saturated	202
53.	Carnot steam cycle and derivatives. Work per lb. of steam (m.e.p.) and jet velocity. Steam initially of any quality	ഹാ
5.4	Thermal efficiency. Non-compression gas cycles, Brown, Lenoir, and Otto and	203
04.	Langen	204
55	Work per lb. of gases and (m.e.p.). Non-compression gas cycles, Brown, Lenoir,	201
00.	and Otto and Langen	205
56.	Stirling gas cycle. Thermal efficiency. Heat of regeneration, plotted against	200
	heat from the fire	206
57 .	Ericsson gas cycle. Thermal efficiency. Heat of regeneration plotted against	
	heat from the fire	207
58.	Stirling gas cycle. Thermal efficiency. Heat of regeneration plotted against com-	
	pression pressure	208
59.	Ericsson gas cycle. Thermal efficiency. Heat of regeneration plotted against	
	compression pressure	209
60.	Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Thermal	
0.1	efficiency, with heat supplied.	210
61.	Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Thermal efficiency, with compression	011
69	Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Work and	211
04.	(m.e.p.) with heat supplied	212
63	Otto, Brayton, Carnot, Diesel, and complete expansion Otto cycles. Work and	414
00.	(m.e.p.) with compression	213
64.	Otto gas cycle. Work and (m.e.p.) for heat added after compression.	214
	Diesel gas cycle. Work and (m.e.p.) for heat added after compression	215
66.	Comparison of rational and empiric formulas for air and steam flow. Any initial	
	pressure	216
67.	Comparison of rational and empiric formulas for air and steam flow. Any back	
	pressure	217
68.	Harter's values of Napier's coefficient and weight of flow for superheated steam	218
69.	Velocity of air in pipes in terms of pitot tube readings	219
70.	Coefficients of friction for air in ducts	220
71.	Diagram to determine chimney diameters	221

	LIST OF CHARTS	xiii
HA	RT	PAGE
2.	Diagram to determine refrigerating effect per pound of ammonia	222
73.	Diagram to determine refrigerating effect per pound of carbon dioxide	223
4.	Density and specific volume of ammonia-water solutions	224
'5 .	Temperature-entropy diagram for ammonia	225
6.	Mollier diagram for ammonia	226
77.	Temperature-entropy diagram for carbon dioxide	227
78.	Mollier diagram for carbon dioxide	228
79.	Work in B.T.U., by ammonia vaporizing to dry saturated vapor	229
30.	Work in B.T.U., by ammonia vaporizing to any quality or superheat at 15 pounds	229
	Work in B.T.U., by carbon dioxide vaporizing to dry saturated vapor	
22	Work in R T II by carbon dioxide vanorizing to any quality or superheat	230

TABLE OF SYMBOLS

A = area in square feet.

a = area in square inches.

= coefficient of linear expansion.

Bé. = Baumé.

B.H.P. = brake horse-power; also boiler horse-power.

(bk. pr.) = back pressure in pounds per square inch.

C = Centigrade.

= coefficient for air flow.

= specific heat.

 C_{p} = specific heat at constant pressure.

 C_v = specific heat at constant volume.

 C_l = clearance expressed in cubic feet.

c = clearance expressed as a fraction of the displacement.

= constant.

D = displacement in cubic feet.

(del. pr.) = delivery pressure in pounds per square inch.

 E_{ν} = volumetric efficiency (apparent).

F =constant in equation for pipe flow.

= Fahrenheit.

 F_R = resistance factor, $F_R \times$ velocity head = loss due to resistances.

g = acceleration due to gravity, 32.2 (approx.) feet per second, per second.

H =as a subscript to denote high-pressure cylinder.

H.P. = horse-power.

h = height in inches.

K = coefficient of thermal conductivity

= constant.

 K_e = engine constant = $\frac{\text{Lan}}{33,000}$ in expression for horse-power = $\frac{aS}{33,000}$

L =as a subscript to denote low-pressure cylinder.

= latent heat.

= length of stroke in feet.

(L.P. Cap.) = low-pressure capacity.

l = length.

(M.E.P.) = mean effective pressure, pounds per square foot.

(m.b.p.) = mean back pressure in pounds per square inch.

(m.e.p.) = mean effective pressure in pounds per square inch.

(m.f.p.) = mean forward pressure in pounds per square inch.

N = revolutions per minute = R.P.M. or R.p.m.

P =pressure in pounds per square foot.

p =pressure in pounds per square inch.

Q = quantity of heat or energy in B.T.U. gained by a body passing from one state to another.

R = gas constant.

 R_C = ratio of cylinder sizes in two-stage air compressor or compound engine.

 R_{p} = ratio of delivery to supply pressure.

(rec. pr.) = receiver pressure in pounds per square inch.

S = piston speed.

= pounds of steam per pound of air in producer blast.

s = general exponent of V in expansion or compression of gases.

sp. gr. = specific gravity.

sp. ht. = specific heat.

(sup. pr.) = supply pressure, in pounds per square inch.

T =temperature, degrees absolute.

t =temperature in degrees scale.

 $T\phi = \text{temperature-entropy}.$

V = volume in cubic feet.

v = volume.

W =work in foot-pounds.

w = weight in pounds.

Wt. = weight.

x =constant in the expression for missing water.

= fraction of total weight liquified from the solid, or vaporized from the liquid = quality. If the vapor be superheated, the number of degrees of superheat also = quality.

y = ratio of the volume of receiver to that of the high-pressure cylinder of the compound engine.

Z = fraction of the stroke of the steam engine completed at cut-off.

z = ratio of R.P.M. to cycles per minute.

 α , (alpha) = coefficient of cubical expansion.

 $\alpha_v = \text{constant}$ in equation for variable specific heat at constant volume.

 α_p = constant in equation for variable specific heat at constant pressure.

 γ , (gamma) = special value for s for adiabatic expansion or compression =

specific heat at constant pressure

specific heat at constant volume

 δ , (delta) = density in pounds per cubic foot.

 ζ , (zeta) = coefficient of friction.

 Σ , (sigma) = summation.

 $\Phi = \phi$, (phi) = entropy.

NOTE. A small letter when used as a subscript to a capital in general refers to a point on a diagram, e.g., P_a designates pressure at the point A. Two small letters used as subscripts together, refer in general to a quantity between two points, e.g., W_{ab} designates work done from point A to point B.

HANDBOOK OF

THERMODYNAMIC TABLES AND DIAGRAMS

PART I

INTRODUCTION

The province of Engineering Thermodynamics is to guide numerical thermal computations dealing with actual substances and apparatus in accordance with the laws of thermodynamic philosophy. In order to do this, numerical values for heat effects must be available for the various substances and materials used in engineering under the varying conditions of practice, and in such units as may readily be applied; these include especially that class of units known as physical constants which embrace, for example, such quantities as the coefficients of expansion, the specific heats, latent heats of fusion and vaporization, the ratio of the pressure-volume product to absolute temperature, the exponent "s" in adiabatic expansion of gases and vapors, and various other quantities. In addition to the physical constants which are necessary in the work of thermodynamic computation, the solution of numerical problems is greatly facilitated by the use of other correlated tables and diagrams many of which are given in the present book of tables, but to correctly use such aids there should be no ambiguity in regard to the units employed.

It should be noted that true pressures are always absolute, that is, measured above a perfect vacuum or counted from zero, while most pressure gages and other devices for measuring pressure, such as indicators, give results measured above or below atmospheric pressure. In all problems involving work of gases and vapors, the absolute values of the pressures must be used; hence, if a gage or indicator measurement is being considered, the pressure of the atmosphere found by means of the barometer must be added to the pressure above atmosphere in order to obtain the absolute or true pressures. When the pressures are below atmosphere the combination with the barometric reading will depend on the record; if the record be taken by an indicator it will be in pounds per square inch below atmosphere and must be subtracted from the barometric equivalent in the same units to give the absolute pressure in pounds per square inch. When, however, a vacuum gage reads in inches of mercury below atmosphere, as such gages do, the difference between its reading and the barometric gives the absolute pressure in inches of mercury directly, which can be converted to the desired units by the proper factors.

In general, steam pressures are most commonly stated in pounds per square

inch and are designated as either gage or absolute. Pressures of compressed air are commonly expressed in the same units as steam, either gage or absolute, though sometimes in atmospheres. Steam pressures below atmosphere are conveniently stated as a vacuum of so many inches of mercury, or they may be given as a pressure of so many inches of mercury absolute or so many pounds per square inch absolute. The pressures of gases stored in tanks under high pressure are frequently recorded in atmospheres due to the convenience of computation of quantities on this basis. Pressures of air obtained by blowers or fans are sometimes given in ounces per square inch above atmosphere, but such pressures, and also differences of pressure of air due to chimney draught, or forced draught, and the pressure of illuminating gas in city mains are commonly stated in inches of water. In many cases the data are given in other units which must be converted by the use of tables, diagrams or otherwise, before the results can be properly interpreted or intelligently compared.

Time is an important item in all engineering work and none the less so in computations, so that convenient tables and diagrams are most essential to the solution of such problems. In some cases graphic methods are the only means of solution; in others the problems may be solved directly without the use of formulas, and in still others certain steps may be shortened. In many engineering calculations no one is justified in using a complicated mathematical formula; if too much time be required to make the calculation in commercial work it will not be made, therefore indirect and often approximate methods are substituted. In such cases the nearest tabular or chart value must be used, and generally the result will be as accurate as the work requires.

In the following tables and charts the accompanying title usually indicates the character of each table or diagram and little explanation is necessary. The tables for dry saturated steam, and properties of superheated steam are those of Marks and Davis. From the investigation made by Marks and Davis it is believed that the properties of saturated steam given in the tables are correct to within one-tenth of 1 per cent. for pressures within the range of ordinary engineering practice.

The unit of heat and of energy in these tables is a mean B.T.U. or $\frac{1}{180}$ of the heat required to raise 1 lb. of water from 32° to 212°.

The value of one mean B.T.U. as used in these tables is equivalent to 777.52 ft.-lbs. when the gravitational constant is 980.665 cm. sec.² which corresponds to 32.174 lbs. and is the value for latitude between 45° and 46°. For many years it has been most common to use in engineering calculations, the round number 778; for most problems this round number is still the best available figure, but where special accuracy is needed it is likely that no closer value can be relied upon than anything between 777.5 and 777.6 for the above latitude.

Investigations, particularly by Knobloch and Jacob, by Thomas and by Henning, show that the specific heat of superheated steam is not constant, but is a function of both pressure and temperature. The curves derived by Marks

and Davis for specific heat of superheated steam from a critical examination of the material available are given in the charts.

As the method used in the derivation of the steam tables is so rational and scientific it has been adopted for a new determination of the relations between pressure and temperature for ammonia and carbon dioxide, both important substances in refrigeration. The tables of properties for ammonia and carbon dioxide thus determined give the final values of total heat, heat of liquid, latent heat, specific volume and density of dry saturated vapor based upon large scale plottings, without equations beyond those for the pressure-temperature relations for saturated vapor. The results are believed to be as reliable as it is possible to have them without more experimental data.

The Mollier total heat-entropy diagram for steam makes possible the solution of many problems involving both saturated and superheated steam. Since this chart is so convenient for turbine work, a scale of corresponding steam-jet velocities has been added to the diagram. Temperature-entropy and Mollier diagrams have also been plotted for ammonia and carbon dioxide, from which the work may readily be obtained.

The analyses of gases, oils, coals, and other fuels given in the tables will be found of great value to the engineer. These values have been selected from the most reliable sources available, but it is worth noting that in the analyses of oil gas there is quite a probability of uncertainty in the hydrocarbons reported. There is also some doubt, at least for gases, in the values given in the table of ignition temperatures (Table XXXIII). The ignition of a combustible is not by any means a simple operation especially when the fuel is in the form of an explosive gas mixture. With the latter the ignition temperature, true or apparent, is different for different proportions of air and fuel, and likewise still different when neutrals are present. For this reason there may be various ignition temperatures for the same substance; this is known to be true for gases. The values given in the tables therefore must be considered as ignition temperatures not the ignition temperature.

Attention is called to the general coal tables (No. LV and LVI), the first of which gives the proximate and ultimate analysis of upward of 200 different coals covering the range from peat to anthracite. For each fuel the calorific power is also given. Table LVI constitutes a new table derived from No. LV in which the chemical and thermal properties have been re-determined as ash and moisture free. In this table the calorific power of the combustible is reported, total and as divided between the fixed carbon and the volatile parts, and finally the calorific power of the volatile itself per pound is found. The product of the fractional weight of the fixed carbon and 14,544, its known calorific power, gives the heat due to the combustion of the fixed carbon part of the combustible, and this subtracted from the B.T.U. per pound of combustible gives the heat per pound of combustible derived from its volatile. The heat per pound of combustible derived from its volatile only, when divided by the fractional weight of volatile in the combustible gives the B.T.U. per pound of

volatile itself. Thus the character of heating power of the volatile of the coals furnishes a new basis of classification with direct reference to availability as fuels, and makes possible the calculation of the calorific power of a coal with fair accuracy, from its easily found proximate analysis.

In general, the charts presented in this book have been drawn to a sufficiently large scale to permit direct solution of most problems with a reasonable degree of accuracy. However, in certain cases it is advisable to plot new diagrams to a larger scale in order to ensure still greater accuracy of result.

Where it has been deemed advisable the derivation and use of the chart has been given in the text; but where this description would involve a lengthy explanation it has been omitted; in such cases the reader is referred to the authors' Textbook of Engineering Thermodynamics for a complete discussion of the construction of the diagrams. It will be understood that the numbers of equations given in the descriptive matter refer to the textbook quoted. In some of the charts the curves have been plotted from tabular values derived from experiment or calculated from formulas; under these conditions the method of derivation is obvious and will not be referred to in the text.

TABLE I
CONVERSION TABLE OF UNITS OF DISTANCE

Meters.1	Kilometers.	Inches.	Feet.	Statute Miles.	Nautical Miles.
1	0.001	39.37	3.28083	0.000621370	0.000539587
1000	1	39370.1	3280.83	0.62137	0.539587
0.0254	0.0000254	1	0.083333	0.0000157828	0.000137055
0.304801	0.0003048	12	1	0.000189394	0.000164466
1609.35	1.60935	63360	5280	1.	0.868382
1853.27	1.85327	72963.2	6080.27	1.15157	1.

¹ In accordance with U. S. Standards (see Smithsonian Tables).

Table II
CONVERSION TABLE OF UNITS OF SURFACE

Sq. Meters.	Sq. Inches.	Sq. Feet.	Sq. Yards.	Acres.	Sq. Miles.
.000645	1550.00 1	10.76387 .00694	1.19599	.000247	
.0929	144	1	.111		
.8361	1296	9	1	.000206	
404 6.87		43560	4840	1	.001562
2589999		27878400	3097600	640	1

TABLE III
CONVERSION TABLE OF UNITS OF VOLUME

Cu. Meters.	Cu. Inches.	Cu. Feet.	Cu, Yards,	Litres (1000 Cu. Cm.)	Gallons (U.S.)
.028317 .76456 .001 .003785	61023.4 1 1728 46656 61.023 231	35.3145 .000578 1 27 .035314 .13368	1.3079 .03704 1 .001308 .004951	1000 .016387 28.317 1 3.7854	264.170 .00433 7.4805 201.974 .26417

Table IV
CONVERSION TABLE OF UNITS OF WEIGHT AND FORCE

Kilogrammes.	Metric Tons.	Pounds.	U. S. or Short Tons.	British or Long Tons.
1.	0.001	2.20462	0.00110231	0.000984205
1000.	1.	2204.62	1.10231	0.984205
0.453593	0.000453593	1.	0.0005	0.000446429
907.186	0.907186	2000.	1.	0.892957
1016.05	1.01605	2240.	1.12000	1.

Table V

CONVERSION TABLE OF UNITS OF PRESSURE

	Pounds per Square Foot.	Pounds per Square Inch.	Inches of Mercury at 32° F.	Atmospheres (Standard at Sea Level).
One lb. per sq. ft	1	0.006944	0.014139	0.0004724
One lb. per sq. in	144.	1.	2.03594	0.06802
One ounce per sq. in	9.	0.0625	0.127246	0.004252
One atmosphere (standard at sea				
level)	2116.1	14.696	29.924	1.
One kilogramme per square meter	20.4817	0.142234	0.289579	0.009678
One gramme per square millimeter.	204.817	1.42234	2.89579	0.09678
One kilogramme per square centi-				•
meter	2048.17	14.2234	28.9579	0.9678
FLUID PRESSURES				
One ft. of water at 39.1° F. (max.				
dens.)	62.425	0.43350	0.88225	0.029492
One ft. of water at 62° F	62.355	0.43302	0.88080	0.029460
One in. of water at 62° F	5.196	0.036085	0.07340	0.002455
One in. of mercury at 32° F. (stand-				
ard) 1	70.7290	0.491174	1.	0.033416
One centimeter of mercury at 0° C	27.8461	0.193376	0.393701	0.013158
One ft. of air at 32° F., one atmos.				
press	0.08071	0.0005604	0.0011412	0.00003813
One ft. of air, 62° F	0.07607	0.0005282	0.0010755	0.00003594

¹ Pressures Measured by the Mercury Column. For temperatures other than 32° F., the density of mercury, pounds per cubic inch, and hence the pressure, pounds per square inch, due to a column of mercury 1 inch high, is given with sufficient accuracy by the following formula:

$$p = 0.4912 - (t - 32) \times 0.0001$$
.

The mercurial barometer is commonly made with a brass scale which has its standard or correct length at 62° F, and a linear coefficient of expansion of about 0.000001 for each degree Fahrenheit. Hence, to correct the standard mercury at 32° F., the corrected reading will be

$$H_{32} = H_t - H_t \times \frac{t - 28.6}{11000}$$

where H_t is the observed height at a temperature of t^o F.

TABLE VI
CONVERSION TABLE OF UNITS OF WORK

Kilogrammeters.	Foot-pounds.	Foot Tons (Short Tons).	Foot Tons (Long Tons).		
1.	7.23300	0.00361650	0.00322902		
0.138255	1.	0.000500	0.000446429		
276.510	2000.	1.	0.892857		
309.691	2240.	1.12000	1.		

TABLE VII
CONVERSION TABLE OF UNITS OF POWER

Foot-pounds per Second.	t-pounds per Foot-pounde per Horee-power.		Cheval-Vapeur.	Kilogrammetere per Minute.
1.	60.	0.00181818	0.00184340	8.29531
0.0166667	1.	0.000030303	0.0000307241	0.138252
550.000	33000.	1.	1.01387	4562.42
542.475	32548.5	0.986319	1.	4500.00
0.120550	7.23327	0.000219182	0.000222222	1.

TABLE VIII UNITS OF VELOCITY

	Feet per Minute.	Feet per Second.
One foot per second	60.	1.
One foot per minute	1.	0.016667
One statute mile per hour	88.	1.4667
One nautical mile per hour=1 knot	101.338	1.6890
One kilometer per hour	54.6806	0.911344
One meter per minute		0.054581
One centimeter per second	2.00848	0.032808

TABLE IX HEAT AND POWER CONVERSION TABLE

Calorie Kilo °C.	B.T.U. Lb. °F.	Lb. ° C.	Kilo °F.	Calorie per Lb.	B.T.U. per Lb.	B.T.U. per Kilo.	Calorie per Kilo.
1. .252 .4536 .5556	3.9683 1. 1.8 2.2046	2.2046 .5556 1. 1.2261	1.8 .4536 .8165 1.	1. .252 .1143 .4536	3.9683 1. .4536 1.8	8.7483 2.2046 1 3.9683	2.2046 .5807 .252

Calorie	B.T.U.	Calorie	B.T.U.
per Cu. Ft.	per Cu. Ft.	per Liter.	per Liter.
1.	3.9683	.0353	.1402
.252	1.	.0089	.0353
28.317	112.37	1.	3.9683
7.136	28.317	.252	1.

FtLb.	B.T.U.	Calorie.	Cent. Heat Unit, At.	H.P. Sec.	H.P. Min.	H.P. Hour.
1 777.5 3086 1399.5 550 3.3×10 ⁴ 1.98×10 ⁵	1.286×10 ⁻³ 1 3.9683 1.8 .7074 42.44 2545	.324×10 ⁻⁸ .252 1 .4536 .1783 10.695 641	.18×10 ⁻⁸ .5556 2.2046 1 .3931 23.578 1.413×10 ⁸	5.61 2.545	2.356×10^{-2}	

TABLE X

TABLE OF BAROMETRIC HEIGHTS, ALTITUDES, AND PRESSURES (Adapted from Smithsonian Tables)

Barometric heights are given in inches and millimeters of mercury at its standard density (32° F.).

Altitudes are heights above mean sea level in feet, at which this barometric height is standard. (See Smithsonian Tables for corrections for latitude and temperature.)

Pressures given are the equivalent of the barometric height in lbs. per sq. in. and per sq. ft.

Standard Barometer.		Altitude, Feet above	Pressure, Pounds per		
Inches.	Centimeters.	_ Altitude, Feet above _ Sea Level.	Square Inch.	Square Foot	
17.0	43.18	15379	8.350	1202.3	
17.2	43.69	15061	8.448	1216.6	
17.4	44.20	14746	8.546	1230.7	
17.6	44.70				
		14435	8.645	1244.8	
17 .8	45.21	14128	8.742	1259.0	
18.0	45.72	13824	8.840	1273.2	
18.2	46.23	13523	8.940	1287.3	
18.4	46.73	13226	9.038	1301.4	
1 8.6	47.24	12931	9.136	1315.6	
18.8	47.75	12640	9.234	1329.7	
19.0	48.26	12352	9.332	1343.8	
19.2	48.77	12068	9.430	1357.9	
19.4	49.28	11786	9.529	1372.1	
19.6	49.78	11507	9.627	1386.3	
1 9.8	50.29				
	30.29	11230	9.726	1400.4	
20.0	50.80	10957	9.825	1414.6	
20.2	51.31	10686	9.922	1428.7	
20.4	51.82	10418	10.020	1442.9	
20.6	52.32	10153	10.118	1457.0	
20.8	52.83	9890	10.217	1471.2	
21.0	53.34	9629	10.315	1485.3	
21.2	53.85	9372	10.414	1499.4	
21.4	54.36	9116	10.511	1513.6	
21.6	54.87	8863	10.609	1527.7	
21.8	55.37	8612	10.707	1541.8	
60 0				1041.0	
$\frac{22.0}{22.2}$	55.88	8364	10.806	1556.0	
	56.39	8118	10.904	1570.1	
2 2.4	56.90	7874	11.002	1584.3	
22.6	57.40	7632	11.100	1598.4	
22 .8	57.91	7392	11.198	1612.6	
23.0	58.42	7155	11.297	1626.7	
23.2	58.92	6919	11.395	1640.8	
23.4	59.44	6686	11.493		
2 3.6	59.95	6454	11.592	1655.0	
2 3.8	60.45	6225		1669.3	
		0220	11.690	1683.3	
24.0	60.96	5997	11.788	1697.4	
24.2	61.47	5771	11.886	1711.6	
24.4	61.98	5547	11.984	1711.0 1725.7	
24.6	62.48	5325	12.083		
24.8	62.99	5105	$\frac{12.035}{12.182}$	1739.9 1754.0	
25.0	63.50	4886			
25.2	64.01	4670	12.280	1768.2	
25.4	64.52		12.377	1782.3	
$\frac{25.4}{25.6}$		4455	12.475	1796.5	
	65.02	4241	12.573	1810.7	
2 5.8	65.53	4030	12.671	1824.8	

TABLES AND DIAGRAMS

Table X—Continued

Standard	Barometer.	Altitude, Feet above _	Pressure, Pounds per			
Inches.	Centimeters.	Sea Level.	Square Inch.	Square Foot.		
26.0	65.04	3820	12.770	1838.9		
26.1	66.30	3715	12.819	1846.0		
26.2	66.55	3611	12.868	1853.1		
26.3	66.80	3508	12.918	1860.2		
26.4	67.06	3404	12.967	1867.3		
26.5	67.31	3301	13.016	1874.3		
26.6	67.57	3199	13.065	1881.4		
26.7	67.82	3097	13.113	1888.5		
26.8	68.08	2995	13 163	1895.5		
26.9	68.33	2894	13.212	1902.6		
27.0	68.58	2793	13.261	1909.7		
27.1	68.84	2692	13.310	1916.7		
27.2	69.09	2592	13.359	1923.8		
27.3	69.34	2493	13.408	1930.9		
27.4	69.60	2393	13.457	1938.0		
27.5	69.85	2294	13.507	1945.1		
27.6	70.10	2195	13.556	1952.1		
27.7	70.35	2097	13.605	1959.2		
27.8	70.61	1999	13.654	1966.3		
27.9	70.87	1901	13.704	1973.3		
28.0	71.12	1804	13.753	1980.4		
28.1	71.38	1707	13.802	1987.5		
28.2	71.63	1610	13.850	1994.5		
28.3	71.88	1514	13.899	2001.6		
28.4	72.14	1418	13.948	2008.7		
28.5	72.39	1322	13.998	2015.7		
28.6	72.64	1227	14.047	2022.8		
28.7	72.90	1132	14.096	2030.0		
28.8	73.15	1038	14.145	2037.0		
28.9	73.40	943	14.194	2044.1		
29.0	73.66	849	14.243	2051.2		
29.1	73.92	756	14.293	2058.2		
29.2	74.16	663	14.342	2065.3		
29.3	74.42	570	14.392	2072.4		
29.4	74.68	477	14.441	2079.4		
29.5	74.94	384	14.490	2086.5		
29.6	75.18	292	14.539	2093.6		
29.7	75.44	261	14.588	2100.7		
29.8	75.69	109	14.637	2107.7		
29.9	75.95	+18	14.686	2114.7		
29.92	76.00	0	14.696	2116. 1		
30.0	76.20	- 73	14.734	2121.7		
30.1	76.46	-163	14.783	2128.8		
30.2	76.71	-253	14.833	2135.9		
30.3	76.96	-343	14.882	2143.0		
30.4	77.22	-433	14.931	2150.1		
30.5	77.47	-522	14.980	2157.2		
30.6	77.72	-611	15.030	2164.2		
30.7	77.98	-700	15.078	2171.3		
30.8	78.23	-788	15.127	2178.4		
30.9	78.48	-877	15.176	2185.5		
31.0	78.74	-965	15.226	2192.6		

 $\begin{tabular}{ll} Table XI \\ CONVERSION TABLE INCHES OF MERCURY TO POUNDS PER SQUARE INCH \\ (Calculated for a Temperature of 32 <math display="inline">^{\circ}$ F.) \\ \end{tabular}

To correct for other temperatures see footnote Table V

						,		,		
In. Hg	0	1	2	3	4	5	6	7	8	9
0		0.0491	0.0982	0.1473	0.1964	0.2456	0.2947	0.3438	0.3929	0.4421
1	0.4912	0.5403	0.5894				0.7859	0.8350	l I	0.9333
$\overset{1}{2}$	0.9824	1.0315	1.0806		1		1.2771	1 3262	1.3753	1.4244
3	1.4736	1.5227	1.5718		1	1	1.7683	1.8174	1.8665	
4	1.9648	2.0139	2.0630					2.3086		
5	2.4560	2.5051	2.5542	2.6033	!			2.7998	l .	2.8981
6	2.9472	2.9963	3.0454			3.1928	3.2419	3.2910		3.3893
7	3.4384	3.4875	3.5366			3.6840	3.7331	3.7822	3.8313	3.8809
8	3.9296	3.9787	4.0278		4.1261	4.1752	4.2243	4.2734	4.3225	4.3717
9	4.4208	4.4699	4.5190					4.7646	4.8137	4.8629
10	4.912	4.9611	5.0102	5.0593	5.1085	5.1576	5.2067	5.2558	5.3049	5.3541
11	5.4032					ľ	5.6979	5.7470		-
12	5.894	5.9435	5.9926		6.0909		ľ	6.2382		
13	6.3856		6.4838	1				6.7294	1	1
14	6.8768				7.0733			7.2206		
15	7.3680	7.4171	7.4662	7.5153	7.5645	7.6136	7.6627	7.7118	7.7609	7.8101
10	7.8592	7.9083	7 0574	0.0005	0.0557	0 1040	0 1500			
16	8.3504					1	1	8.2030		8.3013
17	8.3304					1	I	8.6942		
18 19	9.3328	9.3819				1	1			
20	9.8240		9.4310 9.9222		9.5293	1				f
20	9.0240	9.0731	9.9222	9.9713	10.020	10.069	10.118	10.168	10.217	10.266
21	10.315	10.364	10.413	10.462	10.511	10.561	10.610	10.659	10 700	10 555
22	10.806	10.855		10.953	11.003	11.052	11.101	11.150	$10.708 \\ 11.199$	10.757
23	11.297	11.346	11.396	11.445	11.494	11.543	11.592	11.130	11.690	11.248 11.739
24	11.789	11.838	11.887	11.936	11.985	12.034	12.083	12.132	12.181	1
25	12.280	12.329	12.378	12.427	12.476	12.525	12.574	12.624	12.131 12.673	$12.231 \\ 12.722$
						12.020	12.011	12.024	12.073	12.722
26	12.771	12.820	12.869	12.918	12.967	13.017	13.066	13.115	13.164	13.213
27					13.459	13.508	13.557	13.606	13.104	13.704
28				13.901	13.950	13.999	14.048	14.097	14.146	14.195
29	14.245			14.392	14.441	14.490	14.539	14.588	14.637	14.193
30	14.736	14.785		14.883	14.932	14.981	15.030	15.080	15.129	15.178
31	15.227	15.276	15.325	15.374	15.423	15.473	15.530	15.571	15.620	15.669
	L		L	' 	<u></u>			3.3.1		

TABLE XII
PISTON POSITIONS FOR ANY CRANK ANGLE

From Beginning of Stroke Away from Crank Shaft to Find Piston Position from Dead-Center Multiply Stroke by Tabular Quantity

Crank Angle.	$\frac{l}{r}=4$	$\frac{l}{r}=4.5$	$\frac{l}{r}=5$	$\frac{l}{r} = 5.5$	$\frac{l}{r}=6$	$\frac{l}{r}=7$	$\frac{l}{r}=8$	$\frac{l}{r}=9$
5	.0014	.0015	.0015	.0016	.0016	.0016	.0017	.0019
10	.0057	.0059	.0061	.0062	.0063	.0065	.0067	.0076
15	.0128	.0133	.0137	.0140	.0142	.0146	.0149	.0170
20	.0228	.0237	.0243	.0248	.0253	.0260	.0265	.0302
25	.0357	.0368	.0379	.0388	.0394	.0405	.0413	.0468
30	.0513	.0531	.0545	.0556	.0565	.0581	.0592	.0670
35	.0698	.0721	.0740	.0754	.0767	.0787	.0801	.0904
40	.0910	.0939	.0962	.0981	.0997	.1022	.1041	.1170
45	.1152	.1187	.1215	.1237	.1256	.1286	.1308	.1468
50	. 1416	.1458	.1491	.1518	.1541	.1576	.1607	.1786
55	.1713	.1759	.1828	.1827	.1853	.1892	,1922	.2132
60	.2026	.2079	.2122	.2157	.2186	.2231	.2295	.2500
65	.2374	.2431	.2477	.2514	.2545	.2594	.2630	.2886
70	.2730	.2794	.2844	.2885	.2929	.2973	.3013	.3290
75	.3123	.3187	.3239	.3282	.3317	.3372	.3414	.3705
80	.3516	.3586	.3642	.3687	. 3725	.3784	.3828	.4132
85	.3944	.4013	.4068	. 4113	.4151	.4210	.4254	. 4564
90	.4365	.4437	. 4495	. 4547	.4580	.4641	.4686	. 5000
95	.4816	.4885	.4940	.4985	. 5022	.5081	.5126	. 5436
100	. 5253	. 5323	. 5378	. 5424	. 5461	. 5520	.5564	. 5868
105	.5711	.5775	. 5828	. 5870	. 5905	. 5961	.6002	. 6294
110	.6150	.6214	. 6265	. 6306	. 6340	.6393	.6530	.6710
115	.6600	. 6657	.6703	.6740	.6771	.6820	.6856	.7113
120	. 7026	.7080	.7122	.7157	.7186	.7231	.7265	.7500
125	.7449	.7495	.7533	.7563	.7588	.7628	.7658	.7868
130	.7844	.7885	.7920	.7947	. 7969	.8004	.8030	.8214
135	.8223	.8258	.8286	. 8308	.8327	.8357	.8379	.8535
140	.8570	.8600	.8623	.8642	.8658	.8682	.8703	.8830
145	.8889	.8913	.8931	.8946	.8958	.8978	.8993	.9096
150	.9173	.9191	.9204	.9216	. 9226	.9241	.9252	. 9330
155	.9420	. 9432	.9452	.9451	.9457	.9468	.9476	. 9531
160	.9625	. 9633	.9640	. 9645	. 9650	.9656	.9661	.9698
165	.9787	.9792	.9796	.9799	.9802	. 9805	.9809	. 9829
170	.9905	.9908	. 9909	.9911	.9912	.9913	. 9915	.9924
175	.9976	.9977	.9977	.9977	.9978	.9978	.9979	.9981
180	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

l = length of connecting rod.

r = radius of crank.

TABLE XIII

HORSE-POWER PER POUND MEAN EFFECTIVE PRESSURE

 $\mbox{VALUE OF } K_e = \frac{aS}{33000} = \frac{\mbox{Area} \ \, \square'' \times \mbox{speed in ft.p.m.}}{33000}.$

Diameter of				Speed of	Piston in F	eet per Min	ute.		
Cylinder, Inches.	100	200	300	400	500	600	700	800	900
4	0.0381	0.0762	0.1142	0.1523	0.1904	0.2285	0.2666	0.3046	0.3427
$4\frac{1}{2}$	0.0482	0.0964	0.1446	0.1928	0.2410	0.2892	0.3374	0.3856	0.4338
5	0.0592	0.1190	0.1785	0.2380	0.2975	0.3570	0.4165	0.4760	0.5355
$5\frac{1}{2}$	0.0720	0.1440	0.2160	0.2880	0.3600	0.4320	0.5040	0.5760	0.6480
6	0.0857	0.1714	0.2570	0.3427	0.4284	0.5141	0.5998	0.6854	0.7711
$6\frac{1}{2}$	0.1006	0.2011	0.3017	0.4022	0.5028	0.6033	0.7039	0.8044	0.9050
7	0.1166	0.2332	0.3499	0.4665	0.5831	0.6997	0.8163	0.9330	1.0490
$7\frac{1}{2}$	0.1339	0.2678	0.4016	0.5355	0.6694	0.8033	0.9371	1.0710	1.2049
8	0.1523	0.3046	0.4570	0.6093	0.7616	0.9139	1.0662	1.2186	1.3709
$8\frac{1}{2}$	0.1720	0.2439	0.5159	0.6878	0.8598	1.0317	1.2037	1.3756	1.5476
9	0.1928	0.3856	0.5783	0.7711	0.9639	1.1567	1.3495	1.5422	1.7350
$9\frac{1}{2}$	0.2148	0.4296	0.6444	0.8592	1.0740	1.2888	1.5036	1.7184	1.9532
10	0.2380	0.4760	0.7140	0.9520	1.1900	1.4280	1.6660	1.9040	2.1420
11	0.2880	0.5760	0.8639	1.1519	1.4399	1.7279	2.0159	2.3038	2.5818
12	0.3427	0.6854	1.0282	1.3709	1.7136	2.0563	2.3990	2.7418	3.0845
13	0.4022	0.8044	1.2067	1.6089	2.0111	2.4133	2.8155	3.2178	3.6200
14	0.4665	0.9330	1.3994	1.8659	2.3324	2.7989	3.2654	3.7318	4.1983
15	0.5355	1.0710	1.6065	2.1420	2.6775	3.2130	3.7485	4.2840	4.8195
16	0.6093	1.2186	1.8278	2.4371	3.0464	3.6557	4.2650	4.8742	5.4835
17	0.6878	1.2756	1.9635	2.6513	3.3391	4.0269	4.6147	5.4026	6.1904
18	0.7711	1.5422	2.3134	3.0845	3.8556	4.6267	5.3987	6.1690	6.4901
19	0.8592	1.7184	2.5775	3.4367	4.2858	5.1551	6.0143	6.8734	7.7326
20	0.9520	1.9040	2.8560	3.8080	4.7600	5.7120	6.6640	7.6160	8.5680
21	1.0496	2.0992	3.1488	4.1983	5.2475	6.2975	7.3471	8.3966	9.4462
22	1.1519	2.3038	3.4558	4.6077	5.7596	6.9115	8.0643	9.2154	10.367
23	1.2590	2.5180	3.7771	5.0361	6.2951	7.5541	8.8131	10.072	11.331
24	1.3709	2.7418	4.1126	5.4835	6.8544	8.2253	9.5962	10.072	12.338
25	1.4875	2.9750	4.4625	5.9500	7.4375	8.9250	10.413	11.900	13.388
26	1.6089	3.2178	4.8266	6.4355	8.0444	9.6534	11.262	12.871	14.480
27	1.7350	3.4700	5.2051	6.9401	8.6751	10.410	12.145	13.880	15.615
28	1.8659	3.7318	5.5978	7.4637	9.3296	11.196	13.061	14.927	16.793
29	2.0016	4.0032	6.0047	8.0063	10.008	12.009	14.011	16.013	18.014
30	2.1420	4.2840	6.4260	8.5680	10.710	12.852	14.994	17.136	19.278
31	2.2872	4.5744	6.8615	9.1487	11.436	13.723	16.010	18.287	20.585
32	2.4371	4.8742	7.3114	9.7485	12.186	14.623	17.060	19.497	21.934
33	2.5918	5.1836	7.7755	10.367	12.959	15.551	18.143	20.735	23.326
34	2.7513	5.5026	8.2538	11.005	13.756	16.508	19.259	20.735	24.762
35	2.9155	5.8310	8.7465	11.662	14.578	17.493	20.409	23.224	26.240
36	3.0845	6.1690	9.2534	12.338	15.422	18.507	20.409	23.224 24.676	
37	3.2582	6.5164	9.7747	13.033	16.291	19.549	22.808	26.066	27.760 29.324
38	3.4367	6.8734	10.310	13.747	17.184	20.620	24.057	20.000	
39	3.6200	7.2400	10.860	14.480	18.100	21.720	25.340	28.960	30.930
40	3.8080	7.6160	11.424	15.232	19.040	22.848	26.656	30.464	$32.580 \\ 34.272$
							20.000	00.404	04.412

TABLE XIV

CONSTANTS FOR THE CURVE $PV^{a} = K$

(Modified from Klein and Heck)

The tabular value under "Exp." is equal to $\left(\frac{V_1}{V_2}\right)^s$ corresponding to the given ratio of the assumed increasing volume V_2 to initial volume V_1 ; the tabular value under "Comp." is equal to $\left(\frac{P_2}{P_1}\right)^{\frac{1}{s}}$ corresponding to the given ratio of the assumed increasing pressure P_1 to the initial pressure P_2 .

	Lamanithmia	Constan steam wei		Adiabatic of saturated steam for $x = 0.7$ 0.9 1.0			Compres with steam cylin	sion curve m jacketed ider	Adiabatic of superbeated steam		Adiabatic of air		
Ratio	$\begin{array}{c} \text{expansion} \\ s = 1 \end{array}$	s = 1	.065	1.105 1.125		1.135 s = 1		1.250	s =	s = 1.33		s = 1.406	
		Exp.	Comp.	Exp.	Exp.	Exp.	Exp.	Comp.	Exp.	Comp.	Exp.	Comp.	
1.25	0.8000	0.7885	0.8110	0.7815	0.7780	0.7763	0.7569	0.8365	0.7427	0.8459	0.7307	0.8533	
1.50	0.6667	0.6493	0.6843	0.6389	0.6337	0.6312	0.6024	0.7230	0.5824	0.7378	0.5655	0.7495	
1.75	0.5714	0.5510	0.5913	0.5388	0.5328	0.5299	0.4968	0.6391	0.4742	0.6572	0.4553	0.6716	
2.00	0.5000	0.4780	0.5216	0.4649	0.4585	0.4553	0.4265	0.5743	0.3969	0.5946	0.3774	0.6108	
2.25	0.4444	0.4216	0.4670	0.4082	0.4016	0.3984	0.3629	0.5226	0.3393	0.5443	0.3198	0.5617	
2.50	0.4000	0.3769	0.4230	0.3633	0.3567	0.3535	0.3121	0.4804	0.2947	0.5030	0.2757	0.5212	
2.75	0.3636	0.3405	0.3868	0.3270	0.3204	0.3172	0.2824	0.4451	0.2596	0.4683	0.2412	0.4870	
3.00	0.3333	0.3104	0.3565	0.2970	0.2906	0.2874	0.2533	0.4152	0.2311	0.4387	0.2134	0.4578	
3.50	0.2857	0.2634	0.3084	0.2505	0.2443	0.2413	0.2089	0.3671	0.1882	0.3908	0.1718	0.4102	
4.00	0.2500	0.2285	0.2721	0.2161	0.2102	0.2073	0.1768	0.3299	0.1575	0.3536	0.1424	0.3731	
4.50	0.2222	0.2015	0.2436	0.1898	0.1841	0.1814	0.1526			0.3237			
5.0	0.2000	0.1801	0.2206	0.1689	0.1636	0.1609	0.1337	0.2760	0.1170	0.2991	0.1041	0.3183	
6.0	0.1667	0.1483	0.1859	0.1381	0.1332	0.1309	0.1065	0.2385	0.0917	0.2609	0.0805	0.2796	
7.0	0.1429					0.1099	0.0878			0.2324			
8.0	0.1250					0.0944	0.0743			0.2102			
9.0	0.1111	0.0963	0.1271	0.0882	0.0844	0.0826	0.0642	0.1724	0.0534	0.1925	0.0455	0.2096	
10.0	0.1000	0.0861	0.1151	0.0785	0.0750	0.0733	0.0562	0.1585		0.1778			
12.0	0.0833	0.0709	0.0970	0.0642	0.0611	0.0596	0.0450			0.1551			
14.0	0.0714	0.0602	0.0839	0.0541	0.0514	0.0500				0.1382			
16.0	0.0625	0.0522	0.0740	0.0467	0.0442	0.0430	0.0313	0.1088	0.0248	0.1250	0.0203	0.1392	
18.0	0.0556	0.0460	0.0663	0.0410	0.0387	0.0376	0.0270			0.1144			
20.0	0.0500					0.0334				0.1057			
25.0	0.0400					0.0259				0.0894			
30.0	0.0333	0.0267	0.0410	0.0233	0.0218	0.0211	0.0142	0.0658	0.0107	0.0780	0.0084	0.0890	

Table XV

VALUES OF "8" FOR ADIABATIC EXPANSION OF STEAM.

- A. Expansion of Water from 200 Lbs. Abs.
- B. Expansion of Dry Saturated Steam from 200 Lbs. Abs.

Values of s for 10-lb. Intervals.			Values of s for Whole Range.				of s for ntervals.		Values of s for Whole Range.			
Pressure.	Calcu- lated.	Cor- rected.	200 Lbs. to	Calcu- lated.	Cor- rected.	Range.	Calcu- lated.	Cor- rected.	200 Lbs. to	Calcu- lated.	Cor- rected.	
200-190 190-180 180-170 170-160 160-150 130-120 120-110 110-100 100-90 90-80 80-70 70-60 60-50 50-40 40-30 30-20	.0987 .1435 .1847 .2304 .2671 .3069 .3509 .3911 .4304 .4738 .5166 .5512 .5897 .6320 .6790 .7147 .7658	.1 .141 .182 .223 .264 .305 .346 .387 .428 .470 .510 .551 .592 .633 .674 .716 .760 .808	190 180 170 160 150 140 130 120 110 100 90 70 60 40 30	.0987 .1175 .1348 .1519 .1682 .1843 .2007 .2172 .2341 .2517 .2699 .2889 .3089 .3086 .3547 .3811 .4125 .4518	.100 .118 .135 .153 .168 .184 .202 .218 .235 .252 .270 .290 .310 .332 .356 .382 .412	200-190 190-180 180-170 170-160 150-140 140-130 130-120 120-110 110-100 90-80 80-70 70-60 50-40 40-30 30-20	1.132 1.153 1.142 1.148 1.138 1.128 1.150 1.130 1.135 1.137 1.148 1.126 1.144 1.138 1.125 1.143 1.131	1.145 1.145 1.145 1.145 1.145 1.144 1.143 1.143 1.141 1.140 1.138 1.137 1.136 1.135 1.133 1.131	190 180 170 160 150 140 130 120 110 100 90 70 60 40 30 20	1.132 1.143 1.143 1.144 1.144 1.149 1.140 1.139 1.140 1.138 1.138 1.138 1.138 1.138 1.138	1.143 1.143 1.143 1.143 1.143 1.143 1.142 1.142 1.142 1.141 1.141 1.139 1.139 1.139 1.136 1.137	
30- 20 20- 10 10- 1	.8718 1.0557	.870 1.042	10	.5085	.504	20- 10 10- 1	1.125 1.124	1.128	10 1	1.133	1.131	

- C. Expansion of Steam. Superseated throughout Expansion, from 200 Lbs. Abs. and 540° Super-heat.
- D. Expansion of Steam Initially Superseated and Finally Wet, from 200 Les. Abs. and 150° Superseat.

(Note.—Crosses saturation line at 70 lbs. abs.)

Pressurc.	Calcu-	Cor-					Intervals.		Values of s for Whole Range.			
	10000.	rected.	200 Lbs. to	Calcu- lated.	Cor- rected.	Range.	Calcu- lated.	Cor- rected.	200 Lbs. to	Calcu- lated.	Cor- rected.	
190-180 180-170 170-160 160-150 150-140 140-130 130-120 120-110 110-100 100- 90 90- 80 80- 70 70- 60 60- 50 50- 40 40- 30 30- 20	1.354 1.314 1.455 1.257 1.403 1.213 1.422 1.343 1.329 1.332 1.338 1.287 1.331 1.340 1.315 1.327 1.318 1.327	1. 342 1. 342 1. 342 1. 342 1. 341 1. 341 1. 340 1. 339 1. 336 1. 335 1. 334 1. 336 1. 327 1. 327	190 180 170 160 150 140 120 110 90 80 60 50 40 30 20	1.354 1.333 1.374 1.340 1.354 1.340 1.339 1.338 1.331 1.331 1.331 1.332 1.329 1.328 1.328	1.342 1.342 1.342 1.341 1.341 1.341 1.340 1.339 1.339 1.336 1.335 1.335 1.335 1.335 1.332 1.327	200-190 190-180 180-170 170-160 150-150 150-140 130-120 120-110 110-190 90-80 80-70 70-60 60-50 50-40 40-30 30-20	1.249 1.365 1.396 1.333 1.314 1.325 1.357 1.302 1.270 1.391 1.311 1.337 1.230 1.144 1.138 1.093	1.334 1.332 1.330 1.327 1.324 1.316 1.316 1.300 1.292 1.283 1.272 1.156 1.146 1.140 1.134	190 180 170 160 150 140 120 110 90 80 60 50 40 30 20	1.249 1.306 1.336 1.336 1.331 1.330 1.334 1.325 1.317 1.325 1.317 1.325 1.327 1.314 1.298 1.268 1.246	1.339 1.338 1.337 1.336 1.335 1.333 1.332 1.330 1.328 1.320 1.316 1.304 1.289 1.270 1.250 1.250 1.206	

Note. Irregularities in values of s have been corrected by plotting a smooth curve through calculated values, and taking corrected values from this curve.

		1	i
Substance.		8 `	Remarks or Authority.
All gases	Isothermal	1)	
All gases and vapors		0 (Accepted thermody-
All saturated vapors	Isothermal	l o i	namic law
All gases and vapors	Constant volume	[∞ ∫	
Air	Adiabatic	1.4066	Smithsonian Tables
Air	Compressed in cylinder	1.4	Experience
Ammonia (NH ₃)		1.1	Average
Ammonia (NH ₃)	Adiabatic, superheated	1.3	Thermodynamics
Bromine	Adiabatic	1.293	Strecker
Carbon dioxide (CO ₂).		1.300	Röntgen, Wullner
Carbon monoxide (CO)	Adiabatic	1.403	Cazin, Wullner
Carbon disulphide			,
(CS_2)	Adiabatic	1.200	Bevne
Chlorine (Cl)	Adiabatic	1.323	Strecker
Chloroform			
(CCl ₃ CH(OH) ₂)	Adiabatic	1.106	Beyne, Wullner
Ether $(C_2H_5OC_2H_5)$		1.029	Müller
Hydrogen (H_2)		1.410	Cazin
Hydrogen sulph. (H2S)	Adiabatic	1.276	Müller
Methane (CH ₄)	Adiabatic	1.316	Müller
Nitrogen (N ₂)	Adiabatic	1.410	Cazin
Nitrous oxide (NO2)	Adiabatic	1.291	Wullner
Pintsch gas	Adiabatic	1.24	Pintsch Co.
Sulphide diox (SO ₂)	Adiabatic	1.26	Cazin, Müller
Steam, superheated	Adiabatic	1.300	Smithsonian Tables
Steam, wet	Adiabatic	Variable	(From less than 1 to more than 1.2)
Steam, wet	Adiabatic	1.111	Rankine
Steam, wet		$1+.14\times\%$ moist.	Perry
Steam, wet		$1.035 + 1.0 \times \%$ moist.	Gray
Steam, wet		1.	Average from practice
Steam, dry	Saturation law	1.0646	Regnault
, ,			

TABLE XVII FIXED TEMPERATURES U. S. BUREAU OF STANDARDS

Temperature, °C.	Temperaturs, F.	Determined by the Point at which
232	449	Liquid tin solidifies
327	621	Liquid lead solidifies
419.4	787	Liquid zinc solidifies
444.7	832.5	Liquid sulphur boils
630.5	1167	Liquid antimony solidifies
658	1216	Liquid aluminum, 97.7% pure, solidifies
1064	1947	Solid gold melts
1084	1983	Liquid copper solidifies
1435	2615	Solid nickel melts
1546	2815	Solid palladium melts
1753	3187	Solid platinum melts

TABLE XVIII
TEMPERATURES, CENTIGRADE AND FAHRENHEIT

C .	F.	c.	F.	C.	F.	C.	F.	C.	F.	C.	F.	C.	F.
-40	-40.	26	78.8	92	197.6	158	316.4	224	435.2	290	554	950	1742
-39	-38.2	27	80.6	93	199.4	159	318.2	225	437.	300	572	960	1760
-38	-36.4	28	82.4	94	199.4 201.2	160	320.	226	438.8	310	590	970	1778
-37	-34.6	29	84.2	95	203.	161	321.8	227 228	440.6 442.4	320 330	608 626	980 990	1796 1814
− 36 −35	-32.8 $-31.$	30 31	86. 87.8	96 97	204.8 206.6	162 163	323.6 325.4	228	444.2	340	644	1000	1832
-34	-29.2	32	89.6	98	208.4	164	327.2	230	446.	350	662	1010	1850
-33	-27.4	33	91.4	99	210.2	165	329.	231	447.8	360	680	1020	1868
-32	-25.6	34	93.2	100	212.	166	330.8	232	449.6	370	698	1030	1886
-31	$-23.8 \\ -22.$	35	95.	101	213.8	167	332.6	233	451.4	380 390	716	1040 1050	1904 1922
-30 -29	-22. -20.2	36 37	96.8 98.6	102 103	215.6 217.4	168 169	334.4 336.2	234 235	453.2 455.	400	734 752	1060	1940
-28	-18.4	38	100.4	104	219.2	170	338.	236	456.8	410	770	1070	1958
-27	-16.6	39	102.2	105	221.	171	339.8	237	458.6	420	788	1080	1976
-26	-14.8	40	104.	106	222.8	172	341.6	238	460.4	430	806	1090	1994
-25	-13.	41	105.8	107	224.6	173	343.4	239	462.2	440	824	1100	2012
-24 -23	-11.2 -9.4 -7.6	42 43	107.6 109.4	108 109	226.4 228.2	174 175	345.2 347.	$\frac{240}{241}$	464. 465.8	450 460	842 860	1110 1120	2030 2048
-22	- 7.6	44	111.2	110	230.	176	348.8	242	467.6	470	878	1130	2066
21	5.8	45	113.	111	231.8	177	350.6	243	469.4	480	896	1140	2084
20	- 4.	46	114.8	112	233.6	178	352.4	244	471.2	490	914	1150	2102
-19	- 2.2	47 48	116.6	113	235.4	179	354.2	245	473.	500	932	1160	2120
−18 −17	-0.4 + 1.4	48	118.4 120.2	114 115	237.2 239.	180 181	356. 357.8	246 247	474.8 476.6	510 520	950 968	1170 1180	2138 215 6
-16	3.2	50	122.	116	240.8	182	359.6	248	478.4	530	986	1190	2174
-15	5.	51	123.8	117	242.6	183	361.4	249	480.2	540	1004	1200	2192
-14	6.8	52	125.6	118	244.4	184	363.2	250	482.	550	1022	1210	2210
-13	8.6	53	127.4	119	246.2	185	365.	251	483.8	560	1040	1220	2228
-12 -11	$10.4 \\ 12.2$	54 55	129.2 131.	120 121	248. 249.8	186 187	366.8 368.6	252 253	485.6 487.4	570 580	1058 1076	1230 1240	2246 2264
-10	14.	56	132.8	122	251.6	188	370 4	254	489.2	590	1094	1250	2282
9	15.8	57	134.6	123	253.4	189	372.2	255	491.	600	1112	1260	2300
- 8	17.6	58	136.4	124	255.2	190	374.	256	492.8	610	1130	1270	2318
- 7 - 6	19.4	59	138.2	125	257.	191	375.8	257	494.6	620	1148	1280	2336
- 6 - 5	$\frac{21.2}{23.}$	60 61	140. 141.8	126 127	258.8 260.6	192 193	377.6 379.4	258 259	496.4 498.2	630 640	1166	1290 1300	2354 2372
- 4	24.8	62	143.6	128	262.4	194	381.2	260	500.	650	1184 1202	1310	2390
- 3	26.6	63	145.4	129	264.2	195	383.	261	501.8	660	1220	1320	2408
- 2	28.4	64	147.2	130	266,	196	384.8	262	503.6	670	1238	1330	2426
- 1	30.2	65	149.	131	267.8	197	386.6	263	505.4	680	1256	1340	2444
+ 1	32. 33.8	66 67	150.8 152.6	132 133	269.6 271.4	198 199	388.4 390.2	264 265	507.2	690	1274	1350	2462
2	35.6	68	154.4	134	273.2	200	392.	266	509. 510.8	700 710	1292 1310	1360 1370	2480 2498
3	37.4	69	156.2	135	275.	201	393.8	267	512.6	720	1328	1380	2516
4	39.2	70	158.	136	276.8	202	395.6	268	514.4	730	1346	1390	2534
5	41. 42.8	71 72	159.8	137	278.6	203	397.4	269	516.2	740	1364	1400	2552
6	44.6	73	161.6 163.4	138 139	280.4 282.2	204 205	399.2 401.	270 271	518. 519.8	750 760	1382	1410	2570
8	46.4	74	165.2	140	284.	206	402.8	272	521.6	770	1400 1418	1420 1430	2588 2606
9	48.2	75	167.	141	285.8	207	404.6	273	523.4	780	1436	1440	2624
10	50.	76	168.8	142	287.6	208	406.4	274	525.2	790	1454	1450	2642
11	51.8 53.6	77 78	170.6	143	289.4	209	408.2	275	527.	800	1472	1460	2660
12 13	55.4	78 79	172.4 174.2	144 145	291,2 293.	210 211	410. 411.8	276 277	528.8	810	1490	1470	2678
14	57.2	80	176.	146	294.8	212	413.6	278	530.6 532.4	820 830	1508 1526	1480 1490	2696 2714
15	59.	81	177.8	147	296.6	213	415.4	279	534.2	840	1544	1500	2732
16	60.8	82	179.6	148	298.4	214	417.2	280	536.	850	1562	1510	2750
17	62.6	83	181.4	149	300.2	215	419.	281	537.8	860	1580	1520	2768
18 19	64.4 66.2	84 85	183.2 185.	150 151	302.	216	420.8	282	539.6	870	1598	1530	2786
20	68.	86	186.8	152	303.8 305.6	217 218	422.6 424.4	283 284	541.4 543.2	880	1616	1540	2804
21	69.8	87	188.6	153	307.4	219	426.2	285	545.	890 900	1634 1652	1550 1600	2822 2912
22	71.6	88	190.4	154	309.2	220	428.	286	546.8	910	1670	1650	3002
23	73.4	89	192.2	155	311.	221	429.8	287	548.6	920	1688	1700	3092
24 25	75.2 77.	90 91	194. 195.8	156	312.8	222	431.6	288	550.4	930	1706	1750	3182
20		31	120.0	157	314.6	223	433.4	289	552.2	940	1724	1800	3272
	·								<u> </u>		<u> </u>	<u>' </u>	<u> </u>

TABLE XVIII—Continued

TEMPERATURES, FAHRENHEIT AND CENTIGRADE

						1							
F.	C.	F.	c.	F.	C.	F.	C.	F.	С.	F.	C.	F.	
-40	-40.	26	- 3.3	92	33.3	158	70.	224	106.7	290	143.3	360	182.2
-39	-39.4	27 28	- 2.8	93	33.9	159	70.6	225 226	107.2 107.8	291 292	143.9 144.4	370	187.8 193.3
-38 -37	-38.9 -38.3	28 29	-2.2 -1.7	94 95	34.4 35.	160 161	71.1 71.7	227	107.8	292	144.4	380 390	198.9
-36	-37.8	30	-1.1	96	35.6	162	72.2	228	108.9	294	145.6	400	204.4
-35	-37.2	31	- 0.6	97	36.1	163	72.8	229	109.4	295	146.1	410	210.
-34	-36.7	32	0.	98	36.7	164	73.3	230	110.	296	146.7	420	215.6
-33	-36.1	33	+ 0.6	99	37.2	165	73.9	231	110.6	297	147.2	430	221.1
-32	-35.6	34	1.1	100	37.8	166	74.4	232	111.1	298	147.8	440	226.7
-31	-35.	35	1.7	101	38.3	167	75.	233.	111.7	299	148.3	450	232.2
-30	-34.4	36	2.2	102	38.9	168	75.6	234	112.2	300	148.9	460	237.8
-29	-33.9	37	2.8	103	39.4	169 170	76.1	235 236	112.8 113.3	301 302	149.4 150.	470 480	243.3 248.9
-28 -27	-33.3 -32.8	38 39	3.3 3.9	104 105	40. 40.6	171	76.7 77.2	237	113.9	303	150.6	490	254.4
-26	-32.8	40	4.4	106	41.1	172	77.8	238	114.4	304	151.1	500	260.
-25	$-32.2 \\ -31.7$	41	5.	107	41.7	173	78.3	239	115.	305	151.7	510	265.6
-24	-31.1	42	5.6	108	42,2	174	78.9	240	115.6	306	152.2	520	271.1
-23	-30.6	43	6.1	109	42.8	175	79.4	241	116.1	. 307	152.8	530	276.7
-22	-30.	44	6.7	110	43.3	176	80.	242	116.7	308	153.3	540	282.2
-21	-29.4	45	7.2	111	43.9	177	80.6	243	117.2	309	153.9	550	287.8
-20	-28.9	46	7.8	112	44.4	178	81.1	244	117.8	310	154.4	560	293.3
-19	-28.3	47	8.3	113	45.	179	81.7 82.2	245 246	118.3 118.9	311 312	155. 155.6	570 580	298.9 304.4
-18 -17	-27.8 -27.2	48 49	8.9 9.4	114 115	45.6 46.1	180 181	82.8	247	119.4	313	156.1	590	310.
-16	-26.7	50	10.	116	46.7	182	83.3	248	120.	314	156.7	600	315.6
-15	-26.1	51	10.6	117	47.2	183	83.9	249	120.6	315	157.2	610	321.1
-14	-25.6	52	11.1	118	47.8	184	84.4	250	121.1	316	157.8	620	326.7
-13	-25.	53	11.7	119	48.3	185	85.	251	121.7	317	158.3	630	332.2
-12	-24.4	54	12.2	120	48.9	186	85.6	252	122.2	318	158.9	640	337.8
-11	-23.9	55	12.8	121	49.4	187	86.1	253 254	122.8	319 320	159.4 160.	650 660	343.3 348.9
-10	-23.3	56	13.3	122 123	50. 50.6	188 189	86.7 87.2	255	123.3 123.9	321	160.6	670	364.4
- 9 - 8	-22.8 -22.2	57 58	13.9 14.4	123	51.1	190	87.8	256	124.4	322	161.1	680	360.
- °	-21.7	59	15.	125	51.7	191	88.3	257	125.	323	161.7	690	365.6
- 6	-21.1	60	15.6	126	52.2	192	88.9	258	125.6	324	162.2	700	371.1
- 5	-20.6	61	16 1	127	52.8	193	89.4	259	126.1	325	162.8	710	376.7
- 4	-20.	62	16.7	128	53.3	194	90.	260	126.7	326	163.3	720	382.2
- 3	-19.4	63	16.7 17.2 17.8	129	53.9	195	90.6	261	127.2 127.8	327 328	163.9 164.4	730	387.8 393.3
- 2	-18.9	64	17.8	130	54.4 55.	196 197	91.1 91.7	262 263.	127.8	328	165.	740 750	398.9
- 1 0	-18.3 -17.8	65 66	18.3 18.9	131 132	55.6	198	92.2	264	128.9	330	165.6	760	404.4
+ 1	-17.3	67	19.4	133	56.1	199	92.8	265	129.4	331	166.1	770	410.
2	-16.7	68	20.	134	56.7	200	93,3	266	130.	332	166.7	780	415.6
3	-16.1	69	20.6	135	57.2	201	93.9	267	130.6	333	167.2	790	421.1
4	-15.6	70	21.1	136	57.8	202	94.4	268	131.1	334	167.8	800	426.7
5	-15.	71	21.7	137	58.3	203	95.	269	131.7	335	168.3	810	432.2
6	-14.4	72	22.2	138	58.9	204 205	95.6	270 271	132.2 132.8	336 337	168.9 169.4	820 830	437.8 443.3
7	-13.9	73	22.8 23.3	139 140	59.4 60.	205	96.1 96.7	271	133.3	338	170.	840	448.9
8 9	-13.3 -12.8	74 75	23.3	140	60.6	206	97.2	273	133.9	339	170.6	850	454.4
10	-12.8 -12.2	76	24.4	142	61.1	208	97.8	274	134.4	340	171.1	860	460.
11	-12.2 -11.7	77	25.	143	61.7	209	98.3	275	135.	341	171.7	870	465.6
12	-11.1	78	25.6	144	62.2	210	98.9	276	135.6	342	172.2	880	471.1
13	-10.6	79	26.1	145	62.8	211	99.4	277	136.1	343	172.8	890	476.7
14	-10.	80	26.7	146	63.3	212	100.	278	136.7	344	173.3	900	482.2
15	- 9.4 - 8.9	81	27.2	147	63.9	213	100.6	279	137.2	345	173.9	910 920	487.8 493.3
16		82	27.8	148	64.4	214	101.1	280 281	137.8 138.3	346 347	174.4 175.	920 930	498.9
17	- 8.3	83	28.3	149	65. 65.6	215 216	101.7 102.2	281	138.9	348	175.6	940	504.4
18	- 7.8 - 7.2	84 85	28.9 29.4	150 151	66.1	210	102.2	283	139.4	349	176.1	950	510.
19 20	-6.7	86	30.	152	66.7	218	103.3	284	140.	350	176.7	960	515.6
20 21	- 6.1	87	30.6	153	67.2	219	103.9	285	140.6	351	177.2	970	521.
22	- 5.6	88	31.1	154	67.8	220	104.4	286	141.1	352	177.8	980	526.7
23	- 5.	89	31.7	155	68.3	221	105.	287	141.7	353	178.3	990	532.2
24	- 4.4	90	32.2	156	68.9	222	105.6	288	142.2	354	178.9	1000	537.8
25	- 3.9	91	32.8	157	69.4	223	106.1	289	142.8	356	179.4	1010	543. 3
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>' </u>	<u> </u>					

The missing water, or difference between the actual steam consumption of an engine and that shown by the indicator cards is given by Prof. Heck as:

$$\frac{\text{Missing water}}{\text{Indicated steam}} = \frac{0.27}{\sqrt[3]{N}} \sqrt{\frac{S(x_2 - x_1)}{p_1 Z}}$$

in which S = the ratio of cylinder-displacement surface in sq. ft. to displacement in cu. ft., or

$$S = \frac{2}{L} + \frac{d}{48}$$
; Z = fraction of card length completed at cut-off;—

N = R.P.M. of engine; d = dia. cyl. in in.; L = stroke in ft.

The term (x_2-x_1) is to be supplied from Table XIX and is the difference between the x for the high pressure and that for the low pressure, both absolute.

Absolute Steam Pressure.	\boldsymbol{x}	Absolute Steam Pressure.	x	Absolute Steam Pressure.	x
0	170	70	297.5	165	393
i	175	75	304	170	397
$\bar{2}$	179	80	310	180	405
3	183	85	316	185	409
4	186	90	321.5	190	413
6	191	95	327	195	416.5
8	196	100	332.5	200	420
10	200	105	338	210	427
15	210	110	343	220	431
20	220	115	348	230	441
25	229	120	353	240	447.5
30	238	125	358	250	454
35	246	130	362.5	260	460.5
40	254	135	367	270	467
45	262	140	371.5	280	473
50	269.5	145	376	290	479
55	277	150	380.5	300	485
60	284	155	385		
65	291	160	389		

TABLE XX BAUMÉ SPECIFIC GRAVITY SCALE

Specific gravities are for 60° F. referred to water at same temperature as unity, at which temperature it weighs 62.34 lbs. per cubic foot.

Tabular results are calculated from:

$$\textbf{Degrees Baum\'e} = \begin{cases} \left(145 - \frac{145}{\text{specific gravity}}\right) \text{ for liquids heavier than water.} \\ \left(\frac{140}{\text{specific gravity}} - 130\right) \text{ for liquids lighter than water.} \end{cases}$$

RELATION BETWEEN SPECIFIC GRAVITY AND BAUME

Specific	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
Gravity]	Degrees 1	Baumé.			·	·
.60 .70 .80 .90	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 36.68 20.54	88.75 59.19 36.67 18.94	85.38 56.67 34.71 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	75.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41
1.00 1.10 1.20 1.30 1.40 1.50	0.00 13.18 24.17 33.46 41.43 48.33	1.44 14.37 25.16 34.41 42.16 48.97	2.84 15.54 26.15 35.15 42.89 49.60	4.22 16.68 27.11 35.98 43.60 50.23	5.58 17.81 28.06 36.79 44.31 50.84	6.91 18.91 29.00 37.50 45.00 51.45	8.21 20.00 29.92 38.38 45.68 52.05	9.49 21.07 30.83 39.16 41.36 52.62	10.74 22.12 31.72 39.93 47.03 53.23	11.97 23.15 32.60 40.68 47.68 53.80

Adapted from Smithsonian Tables No. 65.

TABLE XXI FREEZING-POINT OF CALCIUM CHLORIDE

U. S. BUREAU OF STANDARDS

Density of Solution.	Per cent CaCl ₂ by Wt.	Freezing-point, ° C.	Freezing-point,
1.12	14.88	- 9	15.8
1.14	16.97	-13	8.6
1.16	19.07	-16	3.2
1.18	21.13	-20	-4.0
1.20	23.03	-24	-11.2
1.22	24.89	-29	-20.2
1.24	26.77	34	-29.2
1.26	28.55	-40	-40.0

¹ Specific gravity less than 1.00 particularly useful for liquids fuel, oils, and alcohols.

² Specific gravities greater than 1.00 particularly useful for non-freezing brines.

TABLE SPECIFIC HEATS

Class.	Substance.	Atomic Weight H=1.	Specific Gravity.	Authority.
	Aluminum	26.9	2.57	Mallet
	Carbon (amorphous) Carbon graph.	11.99 11.99	2.10–2.32	Smithsonian Tables
	Copper (cast)	63.07 8.8-8.95		Smithsonian Tables
	Iron (pure)	55.41	7.85	Smithsonian Tables
Elements	Iron (pure)	55.41	7.85	Smithsonian Tables
	Lead (cast)	205.46	11.37	Reich
	Mercury Nickel	198.5 58.21	14.18 8.65	Mallet Smithsonian Tables
	Tin (cast)	118.1	7.29	Mathiessen
	Zinc (cast)	64.88	7.05	Smithsonian Tables
	Bronze		8.75–9	Smithsonian Tables
	Brass	• • • • •	7.8-8.6	Smithsonian Tables
	Brick work, Masonry Butter	• • • • •	1.84-2.3	Smithsonian Tables
	Clay	• • • • • •	.865	Smithsonian Tables
	Coal	• • • • • • •	1.80-2.6 1.2-1.5	Smithsonian Tables
	Wood		.4-1.2	Smithsonian Tables Smithsonian Tables
Common substances	Glass		2.4-2.8	Smithsonian Tables Smithsonian Tables
	Ice		.9	Smithsonian Tables
	Cast Iron		6.8-7.5	*
	Wrought Iron		7.4-7.9	*
1	Marble		2.5-2.8	Smithsonian Tables
i	Steel	• • • • • •	7.7–7.9	*
	Sand Stone	•••••	1.45-1.6 2.1-3.4	Smithsonian Tables

^{*} Kent's Mechanical Engineers' Pocketbook.

XXII
OF SOLIDS

Specific Heat.	At Temp	erature.	Specific Heat Calculated from	Authority	
•	C.	F.	Atomic Weights.	•	
.2089	0	32	.238	Bontschew	
.2226	20-100	68-212		Bontschew	
.2739	500	932		Bontschew	
.241	0	32		Olsen	
.1138	-50	-58		Weber	
.1605	+11	52		Weber	
.467	977	1795		Weber	
.310	16-1000	61-1832		Dewar	
.0924	17	62	.102	Naccari	
.0985	300	572		Naccari	
.1162	0	32	.117	Olsen	
.1091	15	59	[Naccari	
.1376	300	572		Naccari	
.1765	500	392	.117	Pionchon	
.218	720-1000	1328-1832		Pionchon	
.1989	1000-1200	1832-2192		Pionchon	
.0299	15	59	.031	Naccari	
.0324	200	392		Naccari	
.0319	-78 to -40	-108 to -40	.0323	Regnault	
.1084	21-99	69-210	.11	Voigt	
.1233	500	932		Tilden	
.1608	1000	1832		Pionchon	
.0545	0-100	32-212	.052	Bunsen	
.0538	16-197	69–387		Spring	
.0915	18	64	.099	Naccari	
.0996	200	392	1000	Naccari	
.0935	0-100	32–212		Bunsen	
.0858	15-98	59-208		Regnault	
.0939	10-90	00 200		Regnault	
About .2			1	*	
.55				Siebel	
.197				Regnault	
				Regnault	
.2241 .4565				* .	
.4565 .1618				Regnault	
.16–.18				Regnault	
.00-				Regnault	
.1298				Regnault	
.1138				Regnault	
.21				Regnault	
.11651175				*	
.195				*	
.2 –.22					

^{*} Kent's Mechanical Engineers' Pocketbook.

TABLE

SPECIFIC HEATS OF GASES:

Substance.	C_{p}	At Te	nperature.	Authority.	Co
		° C.	° F.		
Hydrogen, H ₂	3.3996	-28-+9	-18.4-15.8	Regnault	2.4219
	3.409	12-198	53.6-388.4	Regnault	
	3.410	21-100	70–212	Wiedeman	
Oxygen, O ₂	.2175	13-207	55–405	Regnault	.1603
	. 2240	20-440	68-824	Holborn-Austin	
	.2300	20-630	68–166	Holborn-Austin	1
Nitrogen, N ₂	.2438	0-200	22-392	Regnault	.1715
	. 2419	20-440	68-824	Holborn-Austin	1
	.2464	20-630	68-1166	Holborn-Austin	
	.2497	20-800	68-1472	Holborn-Austin	
Air	.2377	-30-+10	32-50	Regnault	
	.2374	0-100	32-212	Regnault	1
	.2375	0-200	32-392	Regnault	.1703
	.2366	20-440	68-824	Holborn-Austin	
	.2429	20-630	68-1166	Holborn-Austin	1
	.2430	20-800	68-1472	Holborn-Austin	
,	.2389	20-100	68–212	Wiedeman	
Ammonia, NH ₃	. 5202	23-100	73–212	Wiedeman	.4011
	. 5356	27-200	80-392	Wiedeman	
	.5125	24–216	75-421	Regnault	
Carbon diox., CO ₂	.1843	-28-+7	-18-45	D 14	
Carbon diox., CO2	. 2025	15-100	59-212	Regnault	1,550
	.2169	11-214	59-212 52-417	Regnault Regnault	.1558
Carbon monoxide	.2425			_ _	4504
Carbon monoxide	.2426	23–99 26–198	74–210	Wiedeman	.1734
	. 2420	20-198	79–388	Wiedeman	
Methane, CH ₄	. 5929	18-208	64-406	Regnault	.4505
Benzole, C ₆ H ₆	. 2990	34–115	93-239	Wiedeman	.2131
	.3325	35–180	95-259 95-356	Wiedeman	.2131
	.3754	116-218	241-424	Regnault	
Ethylene, C ₂ H ₄	. 4040	10–202	50-396	Regnault	.3404

XXIII
RATIOS AND DIFFERENCES

Determined from	$C_{p}-C_{v}$	$= \frac{777.52(C_p - C_v)}{\left(\frac{PV}{T}\right)} \text{ in ftlbs.}$	$C_p \div C_0 = \gamma$
Wiedeman $C_p = 3.41$ and	.9881	768.267	1.408
$\frac{C_p}{C_\theta}$ =1.408 at 4°-16° C. by Lummer and Pringsheim			
Holborn and Austin $C_p = .2240$ and	.0637	49.528	1.3977
$\frac{C_p}{C_c}$ = 1.3977 at 5° to 14° C.			
Holborn and Austin $C_p = .2419$ and	.0704	54.737	1.4105
$\frac{C_p}{C_q}$ =1.41 by Cazin			
Wiedeman $C_p = .2389$ and	.0686	53.338	1.4028
$\frac{C_p}{C_o}$ = 1.4025 at 5° to 14° C. by Lummer and Pringsheim			
Wiedeman $C_p = .5202$ and mean of $\left(\frac{C_p}{C_q} = 1.3172$ at 0° C. and $\frac{C_p}{C_q} = 1.2770$ at 100° C.	.1191	92.603	1.2969
=1,2971 by Wüllner			
Regnault $C_p = .2025$ and	.0467	36.310	1.2997
$\frac{C_p}{C_v}$ = 1.2995 by Lummer and Pringsheim			
Wiedeman $C_p = .2425$ and mean of	.0691	53.726	1.3985
$\left(\frac{C_p}{C_0} = 1.4032 \text{ at } 0^{\circ} \text{ C. and } \frac{C_p}{C_0} = 1.3946 \text{ at } 100^{\circ} \text{ C.}\right)$ = 1.3989 by Wüllner			
Regnault $C_p = .5929$.1424	110.719	1.316
$\frac{C_p}{C_v}$ =1.316 at 30° C. by Müller			
Wiedeman $C_p = .2990$ and $\frac{C_p}{C_0} = 1.403$ at 60° C. by	.0859	66.789	1.4031
Pagliani	, -		
Regnault $C_p = .4040$ and $\frac{C_p}{C_p} = 1.1870$ at 100° C. by Wüllner	.0636	49.450	1.1867
44 GHHCI		·	

Table XXIV SPECIFIC HEATS OF LIQUIDS

	Substance.	Atomic Weight.	Specific	Authority.	Specific Heat.	At. Temperature.	eraturo.	Specific Heat Calcu-	Authority.
		H=1.			.1		° F.	from At. Wt.	
j H	Bismuth	206.3	10.	Vincentini-Omodei	.0363	280-380	536-716	.031	Person
L P	Lead	205.5	10.6	Vincentini-Omodei	.0356	310	290	.0311	Spring
					.041	360	089	:	Spring
Ĭ	Mercury	198.5	13.5	Regnault	.0335	0	32	.0322	Olsen
Tin	,	118.1	6.97	Smithsonian Tables	.0637	250-350	482-662	:	Person
					.0758	1100	2012	.0541	Pionchon
\mathbf{Common} substances: $ $ Alc	Alcohol, ethyl	:	.79	Smithsonian Tables	.5053	- 20	4-	:	Regnault
	•				.6479	40	104	:	Regnault
AI	Alcohol, methyl	:	808.	Smithsonian Tables	.590	5-10	41-50	:	Regnault
Be	Benzene	:	668.	Smithsonian Tables	.3402	10	50-104	:	De Heen
_					.4233	40	:	:	Deruyts
ਰੰ	Glycerine	:	1.255	Smithsonian Tables	.576	15-50	59-122	:	Emo
Ve	Vegetable oil	:	about .9	Smithsonian Tables	about .4	0-10	32-50	:	Wachsmuth
	1								Weber
Pet	Petroleum	:	88.	Kent	.511	21-58	70-136	:	Pagliani
Ke	Kerosene	:	.882	Kent	.47474766	10-20	20-68	:	Gill
_					.49034997	20-30	96-89	:	Gill
Š	Gasolene	:	789.	Kent	.53325375	10-20	20-68	:	Gill Gill
					.5032555	20-30	86-89	:	Gill
Aq	Aqua ammonia	:	7	Starr	:	:	:	:	
Š	Sea water	:	1.0043		86.	17.5	63.5	:	Thomsen
Se	Sea water	:	1.0235		.938	17.5	63.5	:	Thomsen
Seg	Sea water	:	1.0463		.903	17.5	63.5	:	Thomsen

TABLE XXV
SPECIFIC HEAT OF SODIUM CHLORIDE BRINE

Density, Bé	Sp.gr.	Per cent NaCl by Wt.	Sp. Heat.	Temp. F.	Authority.
1	1.007	1	.992	-0	Common
		1.6	978	64.4	Thomsen
		4.9	.995	66-115	Winkelmann
5	1.037	5.0	.960	-0	Common
10	1.073	10.0	.892	-0	Common
		10.3	.892	59-120	\mathbf{Teudt}
		10.3	.912	59-194	\mathbf{Teudt}
		11.5	.887	61 - 126	Marignac
		12.3	.871	64.4	Winkelmann
15	1.115	15.0	.892	-0	Common
		18.8	.841	63-125	Teudt
		18.8	.854	68 - 192	\mathbf{Teudt}
19	1.150	20.0	.829		Common
		24.3	.7916	64 - 68	Winkelmann
	1	24.5	.791	64	Thomsen
23	1.191	25	.783		Common

TABLE XXVI
COEFFICENT OF LINEAR EXPANSION OF SOLIDS

Substance.	$\alpha \times 10^4$ per degree C.	At Temp. C.	α×10 ⁴	At Temp. F.	Authority.
Aluminum	.23133150	40-600	.1285175	104–1112	Fizeau and Le Chatelier
Antimony	.08821692	40	.049094	104	Fizeau
Carbon coke		40	.03	104	"
Carbon					
graphite	.0786	40	.0437	104	"
Copper	.1678	40	.0932	104	"
Iron	.10611210	40	.0590672	104	"
Steel	.10951322	40	.060850735	104	44
Lead		40	. 1625	104	"
Nickel	.1279	40	.071	104	"
Platinum		40	05	104	"
Tin	.2234	40	.1241	104	44
Zinc	.2918	40	.1621	104	66
Brasses and	•				Limits of
bronze	.1721	0-900	.08891167	32-1652	determination
Rubber	770	16.7-25.3	.4278	62-77.5	Kohlrausch
Glass	.0580897	0–100	.032220498	32–212	Limits of determination
Solder	.2508	0-100	.1338	32-215	Smeaton
Ice	.375	-20 to -1	.2083	-4-30.2	Brunner
Paraffin	1.0662-4.7707	0-16; 38-49	.5921; 2.6505	32–60.8 100.4–120	Rodwell
Porcelain	.0413	20-790	.023	68-145.4	Braun
Wood	.03250614	2-34	.01810341	35.6-93.2	Limits of determination
Wax	2.300-15.227	10–26; 43–57	1.278 8.46	50-78.8 109.4-134.6	Kopp
Concrete	.1430		.0795		Clark
Masonry	.046089		.02560494		Clark

TABLE XXVII
COEFFICIENT OF CUBICAL EXPANSION OF LIQUIDS

Substance.	α X10 ² per ° C.	At Temp. C.	α×10 ² per ° F.	At Temp. F.	Authority.
Alcohol (methyl)	.1433	-38-+70	.0796	-36-158	Pierre
Benzene	.1385	11-81	.0770	32-178	Kopp
Bromine	.1168	-7 - +60	.0649	19-140	Pierre
Calcium chloride, CaCl ₂ , 5.8 per cent.	.0506	18-25	.0281	64-77	Decker
Calcium chloride, CaCl ₂ , 40.9 per cent.	.0510	17-24	.0283	63-75	Decker
Ether	.2150	-15-+38	.1195	5-100	Pierre
Hydrochloric acid, HCl+6.25 H ₂ O	.0489	0-30	.0272	32-86	Marignac
Hydrochloric acid, HCl+50 H ₂ O	.0933	0-30	.0519	32-86	Marignac
Mercury	.0179	[.0099	ļ	
Olive oil	.0742		.0412		Spring
Phenol, C_4H_6O	.0899	3-157	.0500	97-314	Pinette
Petroleum, Sp.gr8467	. 1039	24-120	.0577	75-248	Frankenheim
Sodium chloride, NaCl, 1.6 per cent	.1067		.0593		Marignac
Sulphuric acid, H ₂ SO ₄	.0489	0-30	.0272	32-86	Marignac
Sulphuric acid, H ₂ SO ₄	.0799	0-30	.0444	32-86	Marignac
		0-30	.0444	32-86	Marignac

TABLE XXVIII

COEFFICIENT OF VOLUMETRIC EXPANSION OF GASES AND VAPORS AT CONSTANT PRESSURE

(Heated without change of state.)

· · · · · · · · · · · · · · · · · · ·				
Substance.	Pressure (Cm Hg)	$\alpha_p \times 100$ per Deg. C.	$\alpha_p \times 100$ per Deg. F.	Authority.
Air Air Hydrogen Hydrogen Carbon dioxide Carbon dioxide 0°-64° Carbon dioxide 84°-100°. Carbon dioxide 0°-7.5°. Carbon dioxide 64°-100°. Carbon dioxide 0°-7.5°. Carbon dioxide 0°-7.5°. Carbon dioxide 0°-44°. Carbon dioxide 0°-64°.	76 256 76 254 76 252 17.1 atm. 17.1 atm. 24.81 atm. 24.81 atm. 24.81 atm. 34.49 atm.	3671 .3693 .36613 .36616 .3710 .3845 .5136 .4747 .7000 .5435 .6204 1.097 .8450		Regnault Regnault Regnault Regnault Regnault Regnault Andrews Andrews Andrews Andrews Andrews Andrews Andrews
Carbon dioxide 0°-100° Carbon monoxide. Nitrous oxide. Sulphur dioxide. Sulphur dioxide. Water vapor (steam) 0°-119. Water vapor 0°-141°. Water vapor 0°-162°. Water vapor 0°-200°. Water vapor 0°-247°.	34.49 atm. 76 76 76 98 1 atm. 1 atm. 1 atm. 1 atm.	.6514 .3669 .3719 .3903 .3980 .4187 .4189 .4071 .3938 .3799	.470 .362 .204 .2065 .217 .221 .23261 .23272 .22617 .21878 .2111	Andrews Andrews Andrews Regnault Regnault Regnault Hirn Hirn Hirn Hirn Hirn

TABLE XXIX

COEFFICIENT OF PRESSURE RISE OF GASES AND VAPORS AT CONSTANT VOLUME

(Heated without change of state.)

Substance.	Pressure (Cm Hg)	$\alpha_v \times 100$ per Deg. C.	$\alpha_v \times 100$ per Deg. F.	Authority.
Air	.6	.3767	.20915	Meleander
Air	1.6	.3703	. 2057	Meleander
Air	10.0	.3663	. 2035	Meleander
Air	26.0	.3660	. 20335	Meleander
Air	37.6	.3662	. 20345	Meleander
Air	75.0	.3665	.20360	Meleander
Air	76-83	.3670	.20370	Magnus
Air	11–15	.3648	.20265	Regnault
Air	17-24	.3651	. 20285	Regnault
Air	37-51	.3658	.20320	Regnault
Air	76	.3665	.20360	Regnault
Air	200	.3690	.205	Regnault
Air. 	2000	.3887	.206	Regnault
Air	10000	.4100	.22775	Regnault
Air	76	.3671	.20395	Rowland
Air	1 atm.	.3670	.20290	Jolly
Carbon dioxide	1 atm.	. 3706	.2059	Jolly
Carbon dioxide	1 atm.	.3726	.2070	Meleander
Carbon dioxide	76–104	.3686	.20475	Regnault
Carbon dioxide	174	.3752	.2085	$\mathbf{Regnault}$
Carbon dioxide	793	.4252	.2361	${}^{}$ Regnault
Carbon dioxide 0°–64°	16.4 atm.	.4754	.2641	Andrews
Carbon dioxide 64°–100°.	16.5 atm.	.4607	.256	Andrews
Carbon dioxide 0°-64°	25.87 atm.	.5728	.3182	Andrews
Carbon dioxide 64°–100°.	25.87 atm.	.5406	. 30035	Andrews
Carbon dioxide 0°-64°	33.53	. 6973	.38740	Andrews
Carbon dioxide 64°-100°.	33.53	.6334	.35190	Andrews
Carbon monoxide	1 atm.	.3667	.2037	Regnault
Hydrogen	1 atm.	.3669	.20353	Regnault
Hydrogen	1 atm.	.3656	.2031	Jolly
Nitrogen	1 atm.	.3668	.20375	Regnault
Nitrous oxide	1 atm.	.3676	.20410	Regnault
Nitrous oxide	1 atm.	.3705	.206	Jolly
Oxygen	1 atm.	.3674	.2041	Jolly
Sulphur dioxide, SO2	1 atm.	.3845	.21350	Jolly

TABLE
COMPRESSIBILITY OF GASES BY THEIR ISOTHERMALS. VALUES OF PVAT
AND AT 1 ATMOSPHERE

Pressure in Atmosphere.	1	100	200	300	400	500	600
Oxygen at $\begin{cases} 32^{\circ} \text{ F.} \\ 211.1 \\ 391.1 \end{cases}$	1.000	.9265	.9140 1.4 1.819	.9624 1.4529 1.8849	1.0516 1.532 1.96	1.1560 1.622 2.05	1.2690 1.7202 2.142
Air at $\begin{cases} 32^{\circ} \text{ F.} \\ 210.92 \\ 392.72 \end{cases}$	1.000	.9730	1.010 1.472 1.886	1.0974 1.551 1.9866	1.2144 1.668 2.096	1.3400 1.7825 2.211	1.4700 1 908 2.3298
Nitrogen at $\begin{cases} 32^{\circ} \text{ F.} \\ 211.1 \\ 391.28 \end{cases}$	1.000	.9910	1.0390 1.4890 1.9064	1.1358 1.5903 2.1045	1.2568 1.7060 2.1324	1.3900 1.8275 2.2575	1.5258 1.9548 2.3838
Hydrogen at $\begin{cases} 32^{\circ} \text{ F.} \\ 210.74 \\ 393.5 \end{cases}$	1.000		1.1380 1.5134 1.884	1.2090 1.5858 1.956	1.2828 1.6588 2.030	1.3565 1.7310 2.105	1.4322 1.8036 2.1762
Carbon dioxide $\begin{cases} 32^{\circ} \text{ F.} \\ 212. \\ 388.9 \end{cases}$	1.000	.202 1.03 1.582		.559 .890 1.493		.891 1.201 1.678	
$\mathrm{NH_{\$}} \ \mathrm{at} \left\{ egin{array}{l} 32^{\circ} \ \mathrm{F.} \\ 211.28 \\ 362.48 \end{array} \right.$	1.000		.9290 .9750	. 8625 . 9555	.832 .9380	.7450 .8875	.5850 .8700

Calculated from Smithsonian Tables Nos. 55 and 58, reporting Amagat's results

	Determined from Specific Heats by $R = 777.52(C_p - C_v)$	Determined from Volume of One Lb. at 32° F. and 29.92 ins. Hg.	Authority for Specific Volume.
Hydrogen, H ₂ Oxygen, O ₂ . Nitrogen, N ₂ . Air Ammonia, NH ₃ . Carbon dioxide, CO ₂ . Carbon monoxide, CO Methane, CH ₄ . Benzole, C ₃ H ₅ . Ethylene, C ₂ H ₄ .	49, 528 54, 737 53, 338 92, 603 36, 310 53, 726 110, 719 66, 789	765.893 48.244 55.981 53.332 90.467 35.084 55.135 96.200 Liquid at 32° 54.153	Rayleigh Rayleigh Rayleigh Rayleigh and Leduc Leduc Rayleigh Leduc Thomson Saussure

VARIOUS PRESSURES AND TEMPERATURES; THE VALUE OF PV AT 32° F TAKEN AS 1.00.

 $\mathbf{X}\mathbf{X}\mathbf{X}$

700	800	900	1000	
1.3853 1.827 2.2414	1,5032 1,9336 2,3432	1.6200 2.0412 2.4462	1.7350 2.151	$ \begin{array}{c} \text{Critical point} \left\{ \begin{array}{c} \text{Pressure 50 atm.} \\ \text{Temperature 180.4° F.} \end{array} \right\} \text{Wroblewski} \end{array} $
1.6016 2.0328 2.4514	1.7344 2.1592 2.5752	1.8630 2.2896 2.7	1.992 2.415 2.828	$ \begin{array}{c} \text{Critical point} \left\{ \begin{aligned} &\text{Pressure 39 atm.} \\ &\text{Temperature 220}^{\circ} \text{ F.} \end{aligned} \right\} \text{Olszewski} $
1.6618 2.086 2.5123	1.7920 2.22 2.64	1.9341 2.3544 2.7765	2.0680	
1.5043 1.876 2.2484	1.5776 1.9552 2.32	1.6488 2.1096 2.3913	1.7200 2.093	Critical point Pressure 20 atm. Temperature 390.1° F.
			1.656 1.999	
.8715	.9000		.95	

and Table 62 Roth's results; also Table 218 reporting miscellaneous data.

TABLE XXXII

DENSITIES OF GAS AT ONE ATMOSPHERE=29.92" Hg AND 32° F., COMPARING EXPERIMENTAL VALUES WITH COMPUTED VALUES FROM MOLECULAR WEIGHTS

Gas.	Sp.Gr. Air = 1.	Lbs. per Cu.ft. Exptl.	Cu.ft. per Lb.	Authority.	Molecular Weight Exact. H = 2.	Lbs. Cu.ft. from Exact Molecular Weight.	Molecular Weight Approx. H =2.	Lbs. Cu.ft. from Approx. Molecular Weight.
Hydrogen, H ₂ Oxygen, O ₂ Nitrogen, N ₂ Air	.0696 1.053 .9673 1.000	.08922	177.9093 11.208 12.773 12.390	Rayleigh Rayleigh Rayleigh Rayleigh and Leduc	2. 31.76 27.80	.08926 .07813	2 32 28	.08993 .07869
Ammonia, NH ₈	.597	.04758	21.017	Leduc	16.9	.04750	17	.04778
Carbon dioxide	1.5291	.12269	8.1506	Rayleigh	43.75	.12295	44	.12366
Carbon mon- oxide, CO Methane, CH ₄	.5576	.07807 .04470	12.8090 22.349	Leduc Thomson	27.87 15.99	.07833 .04494	28 16	.07869 .04497
Benzole, C_6H_6 Ethylene, C_2H_4 Ethane, C_2H_6 Butane, C_4H_{10}	.9852 1.075 2.01	Liquid .07951 .08379 .16194	12.578 11.9354 6.1751	Saussure Kolbe Frankland	27.98 29.98 57.96	.07862 .08426 .16289	28 30 58	07868 .08431 .16301
	<u> </u>	<u> </u>	<u> </u>	~	m 11	3T 654	1 000	<u> </u>

Computed from data reported in Smithsonian Tables, Nos. 71 and 276.

Table XXXIII IGNITION TEMPERATURES, °F*

Substance. Ignition Temperature.	Substance.	Ignition Temperature.
Soft coal 600 Anthracite 750 Peat 430 Lignite dust 300 (Strohmeyer) Hydrogen, H ₂ 1077 (Olsen) Hydrogen, H ₂ 1124 (Meyer) Hydrogen, H ₂ 1031 (Le Chatelier) Carbon monoxide, CO 1253 (Allen) Carbon monoxide, CO 1347 (Meyer)	Methane, CH ₄ Methane, CH ₄ Ethane, C ₂ H ₆ Ethylene, C ₂ H ₄ Ethylene, C ₂ H ₄ Propylene, C ₃ H ₆ Acetylene, C ₂ H ₂ Acetylene, C ₂ H ₂ Propane, C ₃ H ₈ Alcohol, C ₂ H ₅ OH Coal gas	1201 (Meyer) 1213 (LeChatelier) 1141 (Allen) 1124 (Allen) 1124 (Meyer) 940 (Allen) 1038 (Allen) 896 (Robinson) 1017 1292 1100 (Robinson)

^{*}Owing to the controlling influences of proportions and other factors on ignition temperatures the value given arc of doubtful accuracy for the ignition temperature, at least for gases.

TABLE XXXIV
THE CRITICAL POINT

		Critical '	Гетр.	Critical sure		Critical Density		Criti-	
Substance.	Symbol.	0° C.	0° F.	Atm.	Lhs. per Sq.in.	Water at 4°C=1.	t	cal vol. Cu.ft. per Lb.	Authority.
Hydrogen	H ₂	-243.5	-390.1	20	294		Olszewski		
Oxygen	O ₂	-118.1	-180.4	501	735	.652	Wroblewski		
							² Dewar		i
Nitrogen	N_2	-146.1	-232.8	35.1	515	.442	¹ Olszewski	İ	ĺ
					1		² Wroblewski	l l	1
Ammonia	NH ₂	+130.0	266.	115.	1690		Dewar	1	ļ
Ammonia	NH	+131.0	267.8	113.	1660		Vincent and	İ	ŀ
~	-					ŀ	Chappuis		,
Carbon dioxide	CO ₂	+ 31.35	88.43		1070	.464	Amagat	1	İ
Carbon dioxide	CO ₂	+ 30.921	87.67	77.1	1130	.452	1 Andrews	İ	
			1			1	² Cailletet and		i
***	,,,,	1050 4				i	Mathias		
Water	H ₂ O	+358.1	676.4			.429	Nadejdini		!
Water	H ₂ O	+364.3	687.7	194.61	2859		Batteli	26.8	Nadejdini
Water	H ₂ O	+365.0	689.	200.5	2944		Cailletet and	13.	Batteli
***	TT 0	1.074			l		Colardeau		
Water	H ₂ O	+374.	705.2			• • • • •	Traube and		
	17.0	1071 0					Teichner		
Water	H ₂ O	+374.6	706.3		3200		Helhorn and	ł	
TT 4 ::	TT A	1074 5	700 4				Baumann		1
Water	H ₂ O	+374.5	706.1		3200		Marks		

TABLE XXXV

LATENT HEAT OF VAPORIZATION AT ONE ATMOSPHERE PRESSURE

Selected from Landolt, Börnstein, Meyerhoff, and Smithsonian Physical Tables.

Substance.	Symbol.	Cal. per Kg.	B.T.U. per Lb.	C.	F.	Authority.
Ammonia	NH.	294.21	530	7.8	4.6	Regnault
		291.32	524.45	11.04	51.87	Regnault
		297.38	535	16.0	60.8	Regnault
		296.5	534	17	62.6	Strombeck
Water	H_2O	535.9	964.6	100	212	Andrews
		532.0	957.6	100	212	Schall
Benzol	C_6H_6	109.	196	0	32	Regnault
'		132.1	238	100	212	Regnault
		154.5	278	210	410	Regnault
Air		44.02	79.3			Shearer
		45.4	81.7			Shearer
Oxygen		58.0	106.1	-188	-306.4	Shearer
on, goz		60.9	109.8			Estreicher
Nitrogen		49.83	89.6			Shearer
Carbon dioxide	CO ₂	72.23	130	-25	- 13	Cailletet
		57.48	103.2	ő	32	Matthias
		56.25	10 .3	ŏ	32	Chappuis
	::::::	50.76	91.5	6.5	43.7	Matthias
		31.80	57.2	22.4	72.3	Matthias
		14.40	25.9	29.85	85.7	Matthias
		11.60	20.9	30	86	Cailletet
		3.72	6.7	30.82	87.4	Matthias
Alcohol, methyl		267.48	482	64.5	148.	Wirtz
Alcohol, ethyl	C ₂ H ₆ OH		372	78	172.4	Schall
Alcohol +5% water	0211011	214.25	386	78.4	173.1	Brix
Decane		60.83	109.5	159.45	319	Louguinine
Hexylene		87.3	157.1	68	154.4	Mabery
	061112		100.12	70	158	Goldstein
Octane	C ₈ H ₁₆	71.1	128	125	257	Goldstein

TABLE XXXVI LATENT HEATS OF FUSION Selected from Landolt, Börnstein, Meyerhoff, and Smithsonian Physical Tables.

Substance.	Symbol.	Cal. per Kg.	B.T.U .per Lb.	C.	F.	Authority.
Aluminum	Al	239.4	432	625	1157	Pionchon
Lead	Pb	5.37	9.66	362.2	619.2	Person
Iron	Fe	6.0	10.8	1000-1050	1832-1922	Pionchon
Copper	Cu	43.0	77.4			Richards
Nickel	Ni	4.64	8. 35			Pionchon
Zinc	$\mathbf{Z}\mathbf{n}$	28.1	50.5	415	779	Person
Tin	$\mathbf{S}\mathbf{n}$	14.25	25.65	233	451.4	Person
Ammonia	NH_8	108.1	195	-75	-102	Massol
Ice-water	H_2O	79.25	142.5	0	32	Person and Regnault
		79.06	142.2	0	32	Regnault
		79.24	142.5	0	32	Desains
}		79.91	143.9	0	32	Smith
		80.025	144.3	0	32	Bunsen
Benzol	C_6H_6	30.08	55.5	5.3	41.6	Fisher

Table XXXVII

BOILING-POINTS (AT 29.92 Hg)

Class.	Substance.	Symbol.	Boilin	g-point.	Authority.
			C.	F	
371	1				D 1001
Elements	Hydrogen	H	-252.5	-412	Dewar, 1901
	Oxygen	0	-182.7	-297	Holborn, 1901
	Nitrogen	N	-194.4	-318	Olszewski
	Chlorine	Cl	- 33.6	-28.5	Regnault
	Mercury	$_{ m Hg}$	357	674	Crafts-Regnault
	Bromine	Br	61.1	142	Mean of Thorpe, van der Plaats
	Phosphorus	P	287	558	Schrötter, 1848
	Potassium	K	712	1372	Perman, Ruff, and Johann- sen
	Sodium	Na	750	1382	Perman, Ruff, and Johann- sen
	Sulphur	S	444.7	837	Rothe, 1903
	Tin	Sn	2270	4118	Greenwood
	Bismuth	Bi	1430	2607	Barus, Greenwood
	Cadmium	$\overline{\mathbf{C}}\mathbf{d}$	782	1440	Barus, 1894
	Lead	Pb	1525	2777	Greenwood
	Zinc	$\overline{\mathbf{Z}}$ n	918	1686	Berthelot
	Antimony	Sb	1440	2622	Greenwood
	Magnesium	Mg	1120	2047	Greenwood
	Aluminum	Al	1800	3272	Greenwood
	Silver	Ag	1955	3552	Greenwood
	Copper	Cu	2310	4192	Greenwood
	Manganese	Mn	1900	3452	Greenwood
	Chromium	Cr	2200	3992	Greenwood
	Iron	Fe	2450	4442	Greenwood
Inorganic com-	Ammonia	NH_3	- 38.5	-37.4	Regnault, 1863
pounds	Carbon monoxide	CO	-191.5	-313	Mean of Wroblewski and Olszewski
	Carbon dioxide.	CO_2	- 79.1	-110.5	Villard and Jarry
	Sulphur dioxide.	SO_2	– 10.8	12.6	Regnault, 1863
	Zinc chloride	$ZnCl_2$	730	1347	Freyer and Meyer
	Air.,		-192.2	-314	Wroblewski
	'	• • • • •	-191.4	-312.5	Olszewski

Table XXXVII—Continued

BOILING-POINTS (AT 29.92 Hg)

Class.	Substance.	Symbol.	Boiling	-point.	Authority.
			C.	F.	
Hydrocarbon (Methane	CH ₄	-165	-265	Young
constituents of	Ethane	C_2H_6	- 93	-135	Ladenberg
liquid and	Propane	C_3H_8	- 45	- 49	Young, Hamlen
gaseous fuels	Butane	C_4H_{10}	+ 1	33.8	Butlerow, Young
•	Pentane	C_5H_{12}	36.3	97.3	Thorpe, Young
	Hexane	C_6H_{14}	69	156.2	Schorlemmer
1	Heptane	C_7H_{16}	98.4	209.1	Thorpe, Young
	Octane	C_8H_{18}	125.5	257.9	Thorpe, Young
	Nonane	C9H20	150	302	Kraft
Paraffine series,	Decane	C10H22	173	343.4	Kraft
C_nH_{2n+2}	Undecane	C11H24	195	384	Kraft
	Dodecane	$C_{12}H_{28}$	214	417.2	Kraft
	Tridecane	$C_{13}H_{28}$	234	453.2	Kraft
	Tetradecane	C14H30	252	485.6	Kraft
	Pentadecane	C ₁₅ H ₃₂	270	518	Kraft
	Hexadecane	C ₁₈ H ₃₄	287	548.6	Kraft
	Heptadecane	C ₁₇ H ₃₈	303	577	Kraft
	Octadecane	C18H38	317	602	Kraft
Į	Nonadecane	C19H40	330	626	Kraft
(Ethylene	C_2H_4	103	-153.4	Olszewski
	Propylene	C_3H_6	-50.2	- 58.5	Ladenburg-Krügel
	Butylene	C_4H_8	+ 1	33.8	Sieben
Ethylene series,	Amylene		36	96.8	Wagner
C ₂ H _{2n}	Hexylene	C_6H_{12}	69	156.2	Wreden
C2II2n	Heptylene	C_7H_{14}	96-99	205-210	Morgan
	Octylene		122–123	251–255	Möslinger
	Nonylene		140–142	284–288	Beilstein
ţ	Decylene	$C_{10}H_{20}$	175	347	Beilstein
	Acetylene	C_2H_2	- 85	-121	Villard
,	Methyl alcohol	CH ₃ OH		150.8	
	Ethyl alcohol	C ₂ H ₅ OH	78	172.4	·
	Naphthas	Mixture		424 app.	
	Benzines	Mixture	1	177 app.	General

Table XXXVIII

INTERNATIONAL ATOMIC WEIGHTS

Selected from Report of the International Committee on Atomic Weights, *Journal Amer. Chem. Soc.*, 1910.

Substance.	Symbol.	Atomic Weight, O=16.	Atomic Weight, H=1.
Aluminum	Al	27.1	26.9
Calcium		40.09	39.77
Carbon		12.00	11.99
Chlorine		35.46	35.19
Copper		63.57	63.07
Hydrogen		1.008	1.00
Iron		55.85	55.41
Lead		207.10	205.46
Magnesium		24.32	24.13
Manganese		54.93	54.49
Mercury		200.00	198.50
Nickel		58.68	58.21
Nitrogen	N	14.01	13.90
Oxygen		16.00	15.88
Platinum		195.00	193.40
Potassium		39.10	38.79
Silicon		28.30	28.20
Sodium	Na	23.00	22.82
Sulphur		32.07	31.82
Tin.		119.00	118.10
Zinc	Zn	65.37	64.88

Table XXXIX

MELTING OR FREEZING-POINTS (AT 29.92 Hg)

Class.	Substance.	Symbols.	Freezin	g-point.	Authority.
			C.	F.	
Elements:	Hydrogen. Oxygen. Nitrogen. Chlorine. Mercury. Bromine. Phosphorus. Potassium. Sodium. Sulphur.	O N Cl Hg Br P K	-258.9 -230 -210.5 -102 - 38.85 - 7.3 44.2 62.5 97 113.5- 119.5		Travers, 1902 General Fischer-Alt Olszewski Vincentini and Omodei, 1888 Van der Plaats, 1886 Helff, 1893 Holt and Sims, 1894 Kurnakow and Puschin, 1902 Depending on form of S

TABLE XXXIX—Continued

MELTING OR FREEZING-POINTS (AT 29.92 Hg)

			Freezin	g-point.	
Class.	Substance.	Symbols.	C.	F.	Authority.
Elements:	Tin	Sn	231.5	451	Kurnakow and Puschin,1902
	Bismuth	Bi ,	269.2	517	Callendar, 1899
	Cadmium	Ca	321	610	Kurnakow and Puschin, 1902
	Lead	Pb	326.9	621	Holborn and Day
	Zinc	Zn	419	787	Holborn and Day
	Antimony	$\mathbf{S}\mathbf{b}$	624	1154	Fay and Ashley
	Magnesium	Mg	632.6	1171	Heycock and Neville, 1895
	Aluminum	Al	657.3	1217	Holborn and Day
	Silver	Ag	961	1651	Holborn and Day
	Gold	Au	1063	1947	Roberts and Austin
	Copper	Cu	1083	1892	Roberts and Austin
	Manganese	Mn	1225	2232	Day-Sosman
	Silicon	Si	1420	2592	General
	Nickel	Ni	1450	2647	Carnelley, Pictet, 1879
	Cobalt	Co	1490	2813	General
	Chromium	Cr	1505	2792	General
	Iron	Fe	1600	2912	Roberts and Austin
	Platinum	Pt W	1755 2950	3192 5347	Mean of three Waidner-Burgess,
-		2777		101	Waterburg
Inorganic com-	Ammonia	NH_3	-75.5	-104	Ladenburg and Krugel, 1900
pounds	Calcium chloride	CaCl ₂	780	1454	Ruff and Plato, 1903
	Carbon monoxide		-203	-331.5	Wroblewski, Olszewski (mean)
	Carbon dioxide	CO_2	– 57	70.8	General
	Sodium chloride .	NaCl	820	1510	Ruff and Plato, 1903
	Sulphur dioxide	SO_2	– 76	-105	Faraday, 1845
	Zinc chloride	$ZnCl_2$	262	504	Braun, 1875
	Air	• • • • • •	-1922	-314	Wroblewski, 1884
TT 1 1 (75.1	0.77	171 4	976 -	LIQUID DENSITY
Hydrocarbon (Ethane	C_2H_6	-171.4 -51	-276.5	.446 at 32° F. .733 at 32° F.
constituents of	Nonane	C_9H_{20}	- 31	- 59.8 - 23.8	.735 at 32 F.
liquid and	Decane Undecane	$C_{10}H_{22}$ $C_{11}H_{24}$	- 26	- 14.8	.756 at 32° F.
gaseous fuel	Dodecane	$C_{12}H_{25}$	- 12	10.4	.765 at 32° F.
Dama Con a garing	Tridecane	C ₁₂ H ₂₈	- 6	21.2	.771 at 32° F.
Paraffine series,	Tetradecane	$C_{14}H_{30}$	+ 5	41.2	.775 at 40° F.
C_nH_{2n+2}	Pentadecane	C ₁₅ H ₃₂	T 10	50	.776 at 10° C.
	Hexadecane	C ₁₆ H ₃₄	18	64.4	.775 at 18° C.
1	Heptadecane	C ₁₇ H ₃₆	$\frac{13}{22}$	71.6	.777 at 22° C.
	Octadecane	C ₁₈ H ₃₈	28	82.4	.777 at 28° C.
l	Nonadecane	C ₁₉ H ₄₀	32	89.6	.777 at 32° C.
Ethylene Series,	Ethylene	C_2H_4	-169	-272	.610
C_nH_{2n}		C ₂ H ₅ OH	-130	-202	.806 at 32° F.

Table XL PROPERTIES OF SATURATED STEAM

(Condensed from Marks and Davis's Steam Tables and Diagrams, 1909, by permission of the publishers, Longmans, Green & Co.)

Vacuum			Total He	at Above					
in inches	Absolute	Tempera-	32	F.	Latent	Volume,	Weight of	l	
Hg or Gauge	Pressure	ture,		1	Heat,	Cu. Ft. in	1 Cu. Ft.	Entropy of the	Entropy of Evap-
Pressure	Pounds per Sq.in.	Fahren- heat.	In the Water,	In the Steam.	L = H - h Heat-units	1 Lh. of Steam.	Steam, Pound.	Water.	oration.
Pounds perSq.in.	por aginni	1 2000	h	H	1	l Steam.	1 ound.		1
per bq.in.			Heat-units	Heat-units					
29.74	0.0886	32	0.00	1073.4	1073.4	3294	0.000304	0.0000	2.1832
29.67	0.1217	40	8.05	1076.9	1068.9	2438	0.000410	0.0162	2.1394
29.56	0.1780	50	18.08	1081.4	1063.3	1702	0.000587	0.0361	2.0865
29.40	0.2562	60	28.08	1085.9	1057.8	1208	0.000828	0.0555	2.0358
29.18	0.3626	70	38.06	1090.3	1052.3	871	0.001148		1.9868
28.89	0.505	80	48.03	1094.8	1046.7	636.8	0.001570	0.0932	1.9398
28.50	0.696	90	58.00	1099.2	1041.2	469.3	0.002131	0.1114	1.8944
28.00	0.946	100	67.97	1103.6	1035.6	350.8	0.002851	0.1295	1.8505
27.88	1	101.83	69.8	1104.4	1034.6	333.0	0.00300	0.1327	1.8427
25.85	2	126.15	94.0	1115.0	1021.0	173.5	0.00576	0.1749	1.7431
23.81	3	141.52	109.4	1121.6	1012.3	118.5	0.00845	0.2008	1.6840
21.78	4	153.01	120.9	1126.5	1005.7	90.5	0.01107	0.2198	1.6416
19.74	5	162.28	130.1	1130.5	1000.3	73.33	0.01364	0.2348	1.6084
17.70	6	170.06	137.9	1133.7	995.8	61.89	0.01616	0.2471	1.5814
15.67	7	176.85	144.7	1136.5	991.8	53.56	0.01867	0.2579	1.5582
13.63	8	182.86	150.8	1139.0	988.2	47.27	0.02115	0.2673	1.5380
11.60	9	188.27	156.2	1141.1	985.0		0.02361	0.2756	1.5202
9.56	10	193.22	161.1	1143.1	982.0		0.02606	0.2832	1.5042
7.52	11	197.75	165.7	1144.9	979.2		0.02849	0.2902	1.4895
5.49	12	201.96	169.9	1146.5	976.6		0.03090	0.2967	1.4760
3.45	13	205.87	173.8	1148.0	974.2		0.03330	0.3025	1.4639
1.42	14	209.55	177.5	1149.4	971.9		0.03569	0.3081	1.4523
lbs.				ł				0.000	
gauge	14.70	212	180.0	1150.4	970.4	26.79	0.03732	0.3118	1.4447
	15	213.0	181.0	1150.7	969.7	26.27	0.03806	0.3133	1.4416
	16	216.3	184.4	1152.0	967.6	24.79	0.04042	0.3183	1.4311
	17	219.4	187.5	1153.1	965.6	23.38	0.04277	0.3229	1.4215
	18	222.4	190.5	1154.2	963.7	22.16	0.04512	0.3273	1.4127
	19	225.2	193.4	1155.2	961.8	21.07	0.04746	0.3315	1.4045
	20	228.0	196.1	1156.2	960.0	20.08	0.04980	0.3355	1.3965
	21	230.6	198.8	1157.1	958.3	19.18	0.05213	0.3393	1.3887
7.3	22	233.1	201.3	1158.0	956.7	18.37	0.05445	0.3430	1.3811
8.3	23	235.5	203.8	1158.8	955.1		0.05676	0.3465	1.3739
	24	237.8	206.1	1159.6	953.5		0.05907	0.3499	1.3670
	25	240.1	208.4	1160.4	952.0		0.0614	0.3532	1.3604
	26	242.2	210.6	1161.2	950.6		0.0636	0.3564	1.3542
	27	244.4	212.7	1161.9	949.2		0.0659	0.3594	1.3483
13.3	28	246.4	214.8	1162.6	947.8		0.0682	0.3623	1.3425
14.3	29	248.4	216.8	1163.2	946.4		0.0705	0.3652	1.3367
	30 j	250.3	218.8	1163.9	945.1		0.0728	0.3680	1.3311
	31	252.2	220.7	1164.5	943.8		0.0751	0.3707	1.3257
	32	254.1	222.6	1165.1	942.5		0.0773	0.3733	1.3205
	33	255.8	224.4	1165.7	941.3		0.0795	0.3759	1.3155
	34	257.6	226.2	1166.3	940.1		0.0818	0.3784	1.3107
20.3	35	259.3	227.9	1166.8	938.9		0.0841	0.3808	1.3060
				<u>_</u>					

TABLE XL—Continued

Gauge	Absolute	Tempera-	Total He	at Above F.	Latent	Volume,	Weight of	_	
Pressure Pounds per Sq.in.	Pressure Pounds	ture, Fahren- heat.	In the Water,	In the Steam,	Heat, $L = H - h$ $Heat$ -unite	Cu. Ft. in 1 Lb. of Steam.	Weight of 1 Cu. Ft. Steam, Pound.	Entropy of the Water.	Entropy of Evap- oration.
			meat-units	Heat-units					
21.3	36	261.0	229.6	1167.3	937.7	11.58	0.0863	0.3832	1.3014
22.3	37	262.6	231.3	1167.8	936.6	11.29	0.0886	0.3855	1.2969
23.3	38	264.2	232.9	1168.4	935.5	11.01	0.0908	0.3877	1.2925
24.3	39	265.8	234.5	1168.9	934.4	10.74	0.0931	0.3899	1.2882
25.3	40	267.3	236.1	1169.4	933.3	10.49	0.0953	0.3920	1.2841
26.3	41	268.7	237.6	1169.8	932.2	10.25	0.0976	0.3941	1.2800
27.3	42	270.2	239.1	1170.3	931.2	10.02	0.0998	0.3962	1.2759
28.3	43	271.7	240.5	1170.7	930.2	9.80	0.1020	0.3982	1.2720
29.3	44	273.1	242.0	1171.2	929.2	9.59	0.1043	0.4002	1.2681
$\begin{array}{c} 30.3 \\ 31.3 \end{array}$	45 46	274.5 275.8	243.4 244.8	1171.6	928.2 927.2	$9.39 \\ 9.20$	0.1065	0.4021	1.2607
32.3	47	277.2	244.8	$ 1172.0 \\ 1172.4$	926.3	9.20	0.1007	0.4059	1.2571
33.3	48	278.5	247.5	1172.4	925.3	8.84	0.1131	0.4077	1.2536
34 .3	49	279.8	248.8	1173.2	924.4	8.67	0.1153	0.4095	1.2502
35.3	50	281.0	250.1	1173.6	923.5	8.51	0.1175	0.4113	1.2468
36.3	51	282.3	251.4	1174.0	922.6	8.35	0.1197	0.4130	1.2432
37.3	52	283.5	252.6	1174.3	921.7	8.20	0.1219	0.4147	1.2405
38.3	53	284.7	253.9	1174.7	920.8	8.05	0.1241	0.4164	1.2370
39.3	54	285.9	255.1	1175.0	919.9	7.91	0.1263	0.4180	1.2339
40.3	55	287.1	256.3	1175.4	919.0	7.78	0.1285	0.4196	1.2309
41.3	56	288.2	257.5	1175.7	918.2	7,.65	0.1307	0.4212	1.2278
42.3	57	289.4	258.7	1176.0	917.4	7.52	0.1329	0.4227	1.2248
43.3	58	290.5	259.8	1176.4	916.5	7.40	0.1350	0.4242	1.2218
44.3	59	291.6	261.0	1176.7	915.7	7.28	0.1372	0.4257	1.2189
45.3	60	292.7	262.1	1177.0	914.9	7.17 7.06	0.1394	$0.4272 \\ 0.4287$	$\begin{array}{ c c c c c } 1.2160 \\ 1.2132 \end{array}$
$\frac{46.3}{47.3}$	61 62	293.8	263.2 264.3	1177.3 1177.6	914.1 913.3	6.95	0.1418	0.4207	1.2104
48.3	63	294.9	265.4	1177.9	912.5	6.85	0.1460	0.4316	1.2077
49.3	64 .	297.0	266.4	1178.2	911.8	6.75	0.1482	0.4330	1.2050
50.3	65	298.0	267.5	1178.5	911.0	6.65	0.1503	0.4344	1.2024
51.3	66	299.0	268.5	1178.8	910.2	6.56	0.1525	0.4358	1.1998
52.3	67	300.0	269.6	1179.0	909.5	6.47	0.1547	0.4371	1.1972
53.3	68	301.0	270.6	1179.3	908.7	6.38	0.1569	0.4385	1.1946
54.3	69	302.0	271.6	1179.6	908.0	6.29	0.1590	0.4398	1.1921
55.3	70	302.9	272.6	1179.8	907.2	6.20	0.1612	0.4411	1.1896
56.3	71	303.9	273.6	1180.1	906.5	6.12	0.1634	0.4422	1.1872
57.3	72	304.8	274.5	1180.4	905.8	6.04	0.1656	0.4437	1.1848
58.3	73	305.8	275.5	1180.6	905.1	5.96	0.1678	0.4449	1.1825
59.3	74	306.7	276.5	1180.9	904.4	5.89	0.1699	0.4462	1 1801
60.3	75	307.6	277.4	1181.1	903.7	5.81	0.1721	0.4474	$egin{array}{c} 1.1778 \ 1.1755 \end{array}$
61.3	76	308.5	278.3	1181.4	903.0	5.74 5.67	$0.1743 \\ 0.1764$	$0.4487 \\ 0.4499$	1.1730
62.3	77	309.4	$279.3 \\ 280.2$	1181.6	902.3	5.60	0.1786	0.4499 0.4511	1.1712
63.3	78	310.3		1182.1	901.7	5.54	0.1808	0.4511 0.4523	1.1687
64.3	79	311.2	281.1 282.0	1182.3	900.3	5.47	0.1829	0.4535	1.1665
$65.3 \\ 66.3$	80 81	312.0	282.9	1182.5	899.7	5.41	0.1851	0.4546	1.1644
67.3	82	313.8	283.8	1182.8	899.0	5.34	0.1873	0.4557	1.1623
68.3	83	314.6	284,6	1183.0	898.4	5.28	0.1894	0.4568	1.1602
00.0	5					l			

Table XL—Continued

			Total He	at Above		V-1	W-:-L+ -4		
Gauge Pressure	Absolute Pressure	Tempera- ture,			Latent Heat,	Volume, Cu. Ft. in	Weight of 1 Cu. Ft. Steam,	Entropy of the	Entropy of Evap-
Pounds per Sq.in.	Pounde per Sq.in.	Fahren- heat.	In the Water.	In the Steam.	L = H - h Heat-units	1 Lb. of Steam.	Steam, Pound.	Water.	oration.
por bq.in.	per equia.		h	H					
			Heat-units	Heat-units					
69.3	84	315.4	285.5	1183.2	897.7	5.22	0.1915	0.4579	1.1581
70.3	85	316.3	286.3	1183.4	897.1	5.16	0.1937	0.4590	1.1561
71.3	86	317.1	287.2	1183.6	896.4	5.10	0.1959	0.4601	1.1540
72.3	87	317.9	288.0	1183.8	895.8	5.05	0.1980	0.4612	1.1520
73.3	88	318.7	288.9	1184.0	895.2	5.00	0.2001	0.4623	1.1500
74.3	89	319.5	289.7	1184.2	894.6	4.94	0.2023	0.4633	1.1481
75.3	90	320.3	290.5	1184.4	893.9	4.89	0.2044	0.4644	1.1461
76.3	91	321.1	291.3	1184.6	893.3	4.84	0.2065	0.4654	1.1442
77.3	92	321.8	292.1	1184.8	892.7	4.79	0.2087	0.4664	1.1423
78.3	93	322.6	292.9	1185.0	892.1	4.74	0.2109	0.4674	1.1404
79.3	94	323.4	293.7	1185.2	891.5	4.69	0.2130	0.4684	1.1385
80.3	95	324.1	294.5	1185.4	890.9	$\frac{4.65}{4.60}$	$0.2151 \\ 0.2172$	0.4694 0.4704	1.1367
$\begin{array}{c} 81.3 \\ 82.3 \end{array}$	96 97	$324.9 \\ 325.6$	295.3 296.1	1185.6 1185.8	890.3 889.7	4.56	$0.2172 \\ 0.2193$	$0.4704 \\ 0.4714$	1.1348 1.1330
83.3	98	326.4	296.8	1186.0	889.2	4.51	$0.2195 \\ 0.2215$	$0.4714 \\ 0.4724$	1.1312
84.3	99	$320.4 \\ 327.1$	297.6	1186.2	888.6	4.47	0.2237	0.4724	1.1295
85.3	100	327.8	298.3	1186.3	888.0	4.429	0.2258	0.4743	1.1277
87.3	102	329.3	299.8	1186.7	886.9	4.347	0.2300	0.4762	1.1242
89.3	104	330.7	301.3	1187.0	885.8	4.268	0.2343	0.4780	1.1208
91.3	106	332.0	302.7	1187.4	884.7	4.192	0.2336	0.4798	1.1174
93.3	108	333.4	304.1	1187.7	883.6	4.118	0.2429	0.4816	1.1141
95.3	110	334.8	305.5	1188.0	882.5	4.047	0.2472	0.4834	1.1108
97.3	112	336.1	306.9	1188.4	881.4	3.978	0.2514	0.4852	1.1076
99.3	114	337.4	308.3	1188.7	880.4	3.912	0.2556	0.4869	1.1045
101.3	116	338.7	309.6	1189.0	879.3	3.848	0.2599	0.4886	1.1014
103.3	118	340.0	311.0	1189.3	878.3	3.786	0.2641	0.4903	1.0984
105.3	120	341.3	312.3	1189.6	877.2	3.726	0.2683	0.4919	1.0954
107.3	122	342.5	313.6	1189.8	876.2	3.668	0.2726	0.4935	1.0924
109.3	124	343.8	314.9	1190.1	875.2	3.611	0.2769	0.4951	1.0895
111.3	126	345.0	316.2	1190.4	874.2	3.556	0.2812	0.4967	1.0865
113.3	128	346.2	317.4	1190.7	873.3	3.504	0.2854	0.4982	1.0837
115.3	130	347.4	318.6	1191.0	872.3	3.452	0.2897	0.4998	1.0809
$117.3 \\ 119.3$	132 134	$348.5 \\ 349.7$	$\begin{array}{c c} 319.9 \\ 321.1 \end{array}$	1191.2 1191.5	871.3 870.4	3.402 3.354	0.2939	0.5013	1.0782
$\frac{119.3}{121.3}$	136	350.8	$\frac{321.1}{322.3}$	1191.7	869.4	3.308	$0.2981 \ 0.3023$	0.5028 0.5043	1.0755 1.0728
123.3	138	352.0	323.4	1192.0	868.5	3.263	0.3065	0.5045	1.0728
125.3	140	353.1	324.6	1192.0	867.6	3.219	0.3107	0.5072	1.0702
127.3	142	354.2	325.8	1192.5	866.7	3.175	0.3150	0.5086	1.0649
129.3	144	355.3	326.9	1192.7	865.8	3.133	0.3192	0.5100	1.0624
131.3	146	356.3	328.0	1192.9	864.9	3.092	0.3234	0.5114	1.0599
133.3	148	357.4	329.1	1193.2	864.0	3.052	0.3276	0.5128	1.0574
135.3	150	358.5	330.2	1193.4	863.2	3.012	0.3320	0.5142	1.0550
137.3	152	359.5	331.4	1193.6	862.3	2.974	0.3362	0.5155	1.0525
139.3	154	360.5	332.4	1193.8	861.4	2.938	0.3404	0.5169	1.0501
141.3	156	361.6	333.5	1194.1	860.6	2.902	0.3446	0.5182	1.0477
143.3	158	362.6	334.6	1194.3	859.7	2.868	0.3488	0.5195	1.0454
145.3	160	363.6	335.6	1194.5	858.8	2.834	0.3529	0.5208	1.0431
147.3	.162	364.6	336.7	1194.7	858.0	2.801	0.3570	0.5220	1.0409

Table XL—Continued

			Total He	at Above					
Gauga	Aheolute	Tempera-			Latent	Volume,	Weight of	Entropy	Entropy
Pressure Pounds	Pressure Pounds	ture, Fahren-	In the	In the	Heat, $L=H-h$	Cu. Ft. in 1 Lb. of	1 Cu. Ft. Steam,	of the	of Evap-
per Sq.in.	per Sq.in.	heat.	Water,	Steam, H	Heat-unita	Steam.	Pound.	Water.	oration.
			Heat-units						
149.3	164	365.6	337.7	1194.9	857.2	2.769	0.3612	0.5233	1.0387
151.3	166	366.5	338.7	1195.1	856.4	2.737	0.3654	0.5245	1.0365
153.3	168	367.5	339.7	1195.3	855.5	2.706	0.3696	0.5257	1.0343
155.3	170	368.5	340.7	1195.4	854.7	2.675	0.3738	0.5269	1.0321
157.3	172	369.4	341.7	1195.6	853.9	2.645	0.3780	0.5281	1.0300
159.3	174	370.4	342.7	1195.8	853.1	2.616	0.3822	0.5293	1.0278
161.3	176	371.3	343.7	1196.0	852.3	2.588	0.3864	0.5305	1.0257
163.3	178	372.2	344.7	1196.2	851.5	2.560	0.3906	0.5317	1.0235
165.3	180	373.1	345.6	1196.4	850.8	2.533	0.3948	0.5328	1.0215
167.3	182	374.0	346.6	1196.6	850.0	2.507	0.3989	0.5339	1.0195
169.3	184	374.9	347.6	1196.8	849.2	2.481	0.4031	0.5351	1.0174
171.3	186	375.8	348.5	1196.9	848.4	2.455	0.4073	0.5362	1.0154
173.3	188	376.7	349.4	1197.1	847.7	2.430	0.4115	0.5373	1.0134
175.3	190	377.6	350.4	1197.3	846.9	2.406	0.4157	0.5384	1.0114
177.3	192	378.5	351.3	1197.4	846.1	2.381	0.4199	0.5395	1.0095
179.3	194	379.3	352.2	1197.6	845.4	2.358	0.4241	0.5405	1.0076
181.3	196	380.2	353.1	1197.8	844.7	2.335	0.4283	0.5416	1.0056
183.3	198	381.0	354.0	1197.9	843.9	2.312	0.4325	0.5426	1.0038
185.3	200	381.9	354.9	1198.1	843.2	2.290	0.437	0.5437	1.0019
190.3	205	384.0	357.1	1198.5	841.4	2.237	0.447	0.5463	0.9973
195.3	210	386.0	359.2	1198.8	839.6	2.187	0.457	0.5488	0.9928
200.3	215	388.0	361.4	1199.2	837.9	2.138	0.468	0.5513	0.9885
205.3	220	389.9	363.4	1199.6	836.2	2.091	0.478	0.5538	0.9841
210.3	225	391.9	365.5	1199.9	834.4	2.046	0.489	0.5562	0.9799
215.3	230	393.8	367.5	1200.2	832.8	2.004	0.499	0.5586	0.9758
220.3	235	395.6	369.4	1200.6	831.1	1.964	0.509	0.5610	0.9717
225.3	240	397.4	371.4	1200.9	829.5	1.924	0.520	0.5633	0.9676
230.3	245	399.3	373.3	1201.2	827.9	1.887	0.530	0.5655	0.9638
235.3	250	401.1	375.2	1201.5	826.3	1.850	0.541	0.5676	0.9600
245.3	260	404.5	378.9	1202.1	823.1	1.782	9.561	0.5719	0.9525
255.3	270	407.9	382.5	1202.6	820.1	1.718	0.582	0.5760	0.9454
265.3	280	411.2	386.0	1203.1	817.1	1.658	0.603	0.5800	0.9385
275.3	290	414.4	389.4	1203.6	814.2	1.602	0.624	0.5840	0.9316
285.3	300	417.5	392.7	1204.1	811.3	1.551	0.645	0.5878	0.9251
295.3	310	420.5	395.9	1204.5	808.5	1.502	0.666	0.5915	0.9187
305.3	320	423.4	399.1	1204.9	805.8	1.456	0.687	0.5951	0.9125
315.3	330	426.3	402.2	1205.3	803.1	1.413	0.708	0.5986	0.9065
325.3	340	429.1	405.3	1205.7	800.4	1.372	0.729	0.6020	0.9006
335.3	350	431.9	408.2	1206.1	797.8	1.334	0.750	0.6053	0.8949
345.3	360	434.6	411.2	1206.4	795.3	1.298	0.770	0.6085	0.8894
355.3	370	437.2	414.0	1206.8	792.8	1.264	0.791	0.6116	0.8840
365.3	380	439.8	416.8	1207.1	790.3	1.231	0.812	0.6147	0.8788
375.3	390	442.3	419.5	1207.4	787.9	1.200	0.833	0.6178	0.8737
385.3	400	444.8	422	1208	786	1.17	0.86	0.621	0.868
435.3	450	456.5	435	1209	774	1.04	0.96	0.635	0.844
485.3	500	467.3	448	1210	762	0.93	1.08	0.648	0.822
535.3	550	477.3	459	1210	751	0.83	1.20	0.659	0.801
5 85.3	600	486.6	469	1210	741	0.76	1.32	0.670	0.783
	l		<u> </u>		L	<u> </u>			

HANDBOOK OF THERMODYNAMIC

TABLE XLI 1 1/22.9

PROPERTIES OF SUPERHEATED STEAM

(Condensed from Marks and Davis's Steam Tables and Diagrams) v = specific volume in cubic feet per pound, h = total heat, from water at 32° F. in B.T.U. per pound, n = entropy, from water at 32°.

Pressure Absolute,	Temp.				Deg	grees of S	Superheat	5.			
Pounds per Sq.in.	Sat. Steam.	0	20	50	100	150	200	250	300	400	500
20	228.0			21.69 1179.9	23.25 1203.5		26.33 1250.6			32.39 1344.8	35.40 1392.2
40	267.3	v 10.49 h 1169.4	$10.83 \\ 1179.3$	1.7652 11.33 1194.0	$12.13 \\ 1218.4$	$12.93 \\ 1242.4$	$13.70 \\ 1266.4$	$14.48 \\ 1290.3$	$15.25 \\ 1314.1$	1361.6	18.30 1409.3
60	292.7	v 7.17	7.40	$\begin{bmatrix} 1.7089 \\ 7.75 \\ 1202.6 \end{bmatrix}$	$egin{array}{c} 1.7392 \ 8.30 \ 1227.6 \end{array}$	8.84	9.36	9.89	10.41	$egin{array}{c} 1.8867 \ 11.43 \ 1372.2 \end{array}$	12.45
80	312.0	v 5.47	5.65	$\begin{bmatrix} 1.6761 \\ 5.92 \\ 1208 8 \end{bmatrix}$	$\begin{bmatrix} 1.7062 \\ 6.34 \\ 1234.3 \end{bmatrix}$	6.75	$1.7603 \\ 7.17 \\ 1283.6$	1.7849 7.56 1307.8	7.95	8.72	1.8908 9.49 1427.9
100	327.8	n 1.6200 v 4.43		$1.6532 \\ 4.79$		$1.7110 \\ 5.47$		$1.7612 \\ 6.12$	$1.7840 \\ 6.44$		1.8658 7.69
120	341.3	n 1.6020 v 3.73	$\frac{1.6160}{3.85}$	$1.6358 \\ 4.04$	$\frac{1.6658}{4.33}$	$1.6933 \\ 4.62$	$\begin{vmatrix} 1.7188 \\ 4.89 \end{vmatrix}$	$1.7428 \\ 5.17$	$1.7656 \\ 5.44$	$1.8079 \\ 5.96$	1.8468 6.48
140	353.1	h 1189.6 n 1.5873 v 3.22	$\frac{1.6016}{3.32}$	$1.6216 \\ 3.49$	$1.6517 \\ 3.75$	1.6789 4.00	$1294.1 \\ 1.7041 \\ 4.24$	$1.7280 \\ 4.48$	1.7505 4.71	$1.7924 \\ 5.16$	$1.8311 \\ 5.61$
160	363.6	h 1192.2 n 1.5747 v 2.83		$1221.4 \\ 1.6096 \\ 3.07$			$1298.2 \\ 1.6916 \\ 3.74$				
180	373.1	h 1194.5 n 1.5639 v 2.53		1224.5 1.5993 2.75			1301.7 1.6810 3.35	1326.2	1350.6	1399.3	
		h 1196.4 n 1.5543	$1209.4 \\ 1.5697$	$1227.2 \\ 1.5904$	$1254.3 \\ 1.6201$	$1279.9 \\ 1.6468$	1304.8 1.6716	$1329.5 \\ 1.6948$	1253.9 1.7169	$1402.7 \\ 1.7581$	$1451.4 \\ 1.7962$
200	381.9	v 2.29 h 1198.1 n 1.5456					$\begin{vmatrix} 3.04 \\ 1307.7 \\ 1.6632 \end{vmatrix}$				
220	389.9	v 2.09 h 1199.6 n 1.5379	$ \begin{array}{r} 2.16 \\ 1213.6 \\ 1.5541 \end{array} $	$egin{array}{c} 2.28 \ 1232.2 \ 1.5753 \end{array}$	$\begin{array}{c} 2.45 \\ 1259.6 \\ 1.6049 \end{array}$	$ \begin{bmatrix} 2.62 \\ 1285.2 \\ 1.6312 \end{bmatrix} $	$\begin{bmatrix} 2.78 \\ 1310.3 \\ 1.6558 \end{bmatrix}$	$\begin{bmatrix} 2.94 \\ 1335.1 \\ 1.6787 \end{bmatrix}$	3.10 1359.8	$3.40 \\ 1408.8 \\ 1.7415$	3.69 1457.7
240	397.4	v 1.92 h 1200.9	1.99 1215.4	1234.3	$[2.26 \\ 1261.9$	$[2.42]{1287.6}$	$ 2.57 \\ 1312.8$	$ 2.71 \\ 1337.6$	$ 2.85 \\ 1362.3$	$3.13 \\ 1411.5$	$\begin{vmatrix} 3.40 \\ 1460.5 \end{vmatrix}$
260	404.5	v 1.78 h 1202.1	$1.84 \\ 1217.1$	$\begin{bmatrix} 1.5690 \\ 1.94 \\ 1236.4 \end{bmatrix}$	$1.5985 \\ 2.10 \\ 1264.1$	2.24	1.6492 2.39 1315.1	2.52	2.65	2.91	3.16
280	411.2	v 1.66	$egin{array}{c} 1.5416 \ 1.72 \ 1218.7 \end{array}$	$egin{array}{c} 1.5631 \ 1.81 \ 1238.4 \end{array}$	1.95	$\begin{bmatrix} 1.6186 \\ 2.09 \end{bmatrix}$	$egin{array}{c} 1.6430 \ 2.22 \ 1317.2 \end{array}$	$\begin{vmatrix} 1.6658 \\ 2.35 \end{vmatrix}$	[1.6874]2.48	$1.7280 \\ 2.72 \\ 1416.4$	$1.7655 \\ 2.95$
300	417.5	n 1.5185 v 1.55	$1.5362 \\ 1.60$	1.5580 1.69 1240.3	$1.5873 \\ 1.83$	1.6133 1.96	$1.6375 \\ 2.09 \\ 1319.3$	$1.6603 \\ 2.21$	$\begin{bmatrix} 1.6818 \\ 2.33 \end{bmatrix}$	$1.7223 \\ 2.55$	1.7597 2.77
350	431.9	n 1.5129 v 1.33	$\begin{bmatrix} 1.5310 \\ 1.38 \end{bmatrix}$	$\begin{bmatrix} 1.5530 \\ 1.46 \end{bmatrix}$	$1.5824 \\ 1.58$	$\begin{bmatrix} 1.6082 \\ 1.70 \end{bmatrix}$	$\begin{bmatrix} 1.6323 \\ 1.81 \end{bmatrix}$	$\begin{vmatrix} 1.6550 \\ 1.92 \end{vmatrix}$	$\begin{vmatrix} 1.6765 \\ 2.02 \end{vmatrix}$	$\begin{bmatrix} 1.7168 \\ 2.22 \end{bmatrix}$	1.7541 2.41
400	444.8	v 1.17	$1.5199 \\ 1.21$	1.5423 1.28	1272.7 1.5715 1.40	$1.5971 \\ 1.50$	$1324.1 \\ 1.6210 \\ 1.60$	1.70	$1.6650 \\ 1.79$	1.97	$1.7422 \\ 2.14$
450	456.5	h 1207.7 n 1.4894 v 1.04	1.5107 1.08	1.14	$\substack{1.5625\\1.25}$	$1303.0 \\ 1.5880 \\ 1.35$	1328.6 1.6117 1.44	$1353.9 \\ 1.6342 \\ 1.53$	$1379.1 \\ 1.6554 \\ 1.61$	$1429.0 \\ 1.6955 \\ 1.77$	1478.9 1.7323 1.93
500	467.3	h 1209 n 1.479 v 0.93	1231 1.502 0.97	$1252 \\ 1.526 \\ 1.03$	$1281 \\ 1.554 \\ 1.13$	1307 1.580 1.22	1333 1.603 1.31	1358 1.626 1.39	1383 1.647 1.47	1434 1.687 1.62	1484 1.723 1.76
		h 1210	1233	1256	1285	1311 1.573	1337 1.597	1362	1388 1.640	1438 1.679	1489 1.715

Entropy of Vapor.	1.437	1.432	1.427	1.422	1.417	1.412	1.407	1.402	1.397	1.392	1.387	1.382	1.378	1.373	1.368	1.363	1.358	1.354	1.349	1.344	1.340	1.335	1.330	1.325	1.320	1.316	1.311
Entropy of Liquid.	.1624	.1600	.1580	.1556	.1532	.1508	.1486	.1462	.1440	.1414	.1393	.1368	.1344	.1320	.1300	.1272	.1232	.1228	.1206	.1184	.1160	.1138	.1116	.1092	.1068	.1048	.1022
Internal Latent Heat.	558.32	557.41	556.55	555.72	554.99	554.03	553.2	552.34	551.46	550.6	549.72	548.86	547.87	547.06	546.21	545.26	544.27	543.43	542.54	541.6	540.68	539.94	539.12	538.29	537.47	536.64	535.82
External Latent Heat.	45.18	45.34	45.50	45.68	45.76	46.02	46.20	46.36	46.54	46.70	46.88	47.04	47.18	47.34	47.49	47.64	47.78	47.92	48.06	48.20	48.32	48.46	48.58	48.71	48.83	48.96	49.08
Density of Liquid, Pounds per Cu.ft.	42.3	42.27	42.24	42.21	42.18	42.15	42.12	42.09	42.06	42.03	42.00	41.96	41.93	41.90	41.87	41.84	41.81	41.78	41.74	41.71	41.68	41.65	41.61	41.57	41.54	41.51	41.47
Sp. Vol. of Liquid, Cu.ft. per Pound.	.02365	.02368	.0237	.02371	.02372	.02373	.02374	.02375	.02377	.02378	.02381	.02383	.02384	.02386	.02388	.02390	.02391	.02393	.02396	.02398	.02400	.02401	.02403	.02405	.02407	.02409	.02411
Density of Vapor, Pounds per Cu.ft.	.0388	.0403	.0417	.0429	.0441	.0452	.0466	.0480	.0491	.0504	.0517	.0530	.0544	.0559	.0573	.0587	.0603	.0618	.0637	.0654	9290.	9890.	.0717	.0730	.0742	.0764	.0787
Sp. Vol. of Vapor, Cu.ft. per Pound.	25.72	24.80	24.00	23.30	22.68	22.10	21.46	20.88	20.36	19.84	19.36	18.86	18.38	17.92	17.46	17.02	16.57	16.12	15.70	15.28	14.86	14.54	14.05	13.70	13.34	13.02	12.70
Total Heat. Above	529.5	529.55	529.85	530.2	530.55	530.85	531.2	531.5	531.7	532	532.2	532.5	532.55	533	533.4	533.6	533.75	534.15	534.4	534.6	534.8	535.3	535.6	535.9	536.2	536.6	536.9
Latent Heat.	603.5	602.75	602.05	601.4	600.75	600.05	599.4	598.7	298	597.3	596.6	595.9	595.05	594.4	593.7	592.9	592.05	591.35	590.6	589.8	589	588.4	587.7	587	586.3	585.6	584.9
Heat of Liquid Above 32° F.	-74	-73.2	-72.2	-71.2	-70.2	-69.2	-68.2	-67.2	-66.3	-65.3	-64.4	-63.4	-62.4	-61.4	~60.3	-59.3	-58.2	-57.2	-56.2	-55.2	-54.2	-53.1	-52.1	-51.1	-50.1	-49.0	-48.0
Pressure, Pounds per Sq.ia. Gage.	-4.85	-4.60	-4.37	-4.10	-3.80	-3.50	-3.10	-2.7	-2.4	-2.0	-1.6	-1.2	7.0-	-0.3	+0.1	0.55	1.00	1.5	2.0	2.35	2.90	3.4	3.9	4.4	4.9	5.5	6.1
Pressure, Pounds per Sq.in. Absolute.	9.85	10.1	10.33	10.6	10.9	11.2	11.6	12	12.3	12.7	13.1	13.5	14	14.4	14.8	15.25	15.7	16.2	16.68	17.15	17.60	18.1	18.6	19 1	19.6	20.2	20.8
Scale, Temp.	-40	-39	-38	-37	-36	-35	-34	-33	-32	-31	-30	-29	-28	-27	-26	-25	-24	-23	-25	-21	-20	-19	-18	-17	-16	-15	-14
Abs. Temp.	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	4	441	442	443	444	445	446

HANDBOOK OF THERMODYNAMIC

Table XLII—Continued

Entropy of Vapor.	1.307	1.302	1.298	1.293	1.289	1.284	1.280	1.275	1.271	1.266	1.262	1.257	1.253	1.249	1,244	1.240	1.236	1.231	1.227	1.222	1.218	1.214	1.210	1.205	1.201	1.197	1.193
Entropy of Liquid.	1000	8260.	.0956	.0930	.0910	.0888	.0864	.0840	.0832	9620.	.0772	.0750	.0728	.0708	.0682	0990	.0636	.0612	.0595	.0572	.0550	.0526	.0504	.0486	.0460	.0440	,0412
Internal Latent Heat.	535.00	534.19	533.38	532.51	531.66	530.90	530.04	529.24	528.32	527.42	526.62	525.67	524.82	524.02	523.32	522.42	521.53	520.64	519.75	518.86	517.98	517.09	516.20	515.32	514.44	513.56	512.58
External Latent Heat.	49.20	49.31	49.42	49.54	49.64	49.75	49.86	49.96	50.08	50.18	50.28	50.38	50.48	50.58	50.68	50.78	50.87	50.96	51.05	51.14	51.22	51.31	51.40	51.48	51.56	51.64	51.72
Density of Liquid, Pounds per Cu.ft.	41.44	41.41	41.37	41.34	41.30	41.27	41.23	41.20	41.16	41.12	41.09	41.05	41.01	40.98	40.94	40.90	40.87	40.83	40.79	40.75	40.71	40.67	40.64	40.60	40.56	40.52	40.48
Sp. Vol. of Liquid, Cu.ft. per Pound.	.02413	.02415	.02417	.02419	.02421	.02423	02426	.02427	02430	.02432	.02433	.02436	.02439	.02440	.02442	.02445	.02446	.02448	02450	.02454	.02457	02459	02460	.02463	.02466	.02468	.02469
Density of Vapor, Pounds per Cu.ft.	.0800	.0820	.0844	.0862	0880	0060.	.0920	.0940	0260.	0660.	.191	.103	.106	.108	.111	.114	.116	.119	.122	.124	.127	.130	. 132	.136	. 139	.142	.145
Sp. Vol. of Vapor, Cu.ft. per Pound.	12.50	12.12	11.84	11.58	11.32	11.06	10.82	10.58	10.34	10.12	6.6	9.66	9.44	9.24	00.6	8.80	8.60	8.40	8.22	8.04	2.86	7.70	7.54	7.38	7.21	7.05	6.90
Total Heat. Above 32° F.	537.2	537.5	537.9	538.15	538.3	538.65	538.9	539.2	539.5	539.8	540.1	540.25	540.5	540.8	541.2	541.4	541.7	541.95	542.2	542.4	542.6	542.8	543.1	543.3	543.6	543.8	543.9
Latent Heat.	584.2	583.5	582.8	582.05	581.3	580.65	579.9	579.2	578.4	577.6	576.9	576.05	575.3	574.6	574	573.2	572.4	571.6	570.8	570	569.2	568.4	567.6	566.8	566	565.2	564.3
Heat of Liquid Above 32° F.	-47.0	-46.0	-44.9	-43.9	-43.0	-42.0	-41.0	-40.0	-38.9	-37.8	-36.8	-35.8	-34.8	133.8	-32.8	-31.8	-30.7	-29.6	-28.6	-27.6	-26.6	-25.6	-24.5	-23.5	-22.4	-21.4	-20.4
Pressure, Pounds per Sq.in. Gage.	6.7	7.3	7.9	8.5	9.1	8.6	10.4	11.0	11.7	12.3	13.0	13.7	14.4	15.0	15.8	16.5	17.2	18.0	18.8	19.6	20.4	21.3	22.2	23.1	24.0	25	25.9
Pressure, Pounds per Sq.in. Absolute.	21.4	22	22.6	23.2	23.8	24.5	25.1	25.7	26.4	27	27.7	28.4	29.1	29.7	30.5	31.2	31.9	32.7	33.5	34.3	35.1	36	36.9	37.8	38.7	39.7	9.04
Scale, Temp. ° F.	-13	-12	-11	-10	6	∞ 1	1 -	9	ا ت	4	က	- 2	1	0	-	গ	က	4	тO	9	7	00	8	10	11	12	13
Abs. Temp.	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473

Table XLII—Continued

Entropy of Vapor.	1 188	1.184	1.180	1.176	1.172	1.167	1.163	1.159	1.155	1.151	1.147	1.143	1.138	1.134	1.130	1.126	1.122	1.118	1.114	1.110	1.106	1.102	1.098	100	060	1.086	1.082
Entropy of Liquid.	.0396	.0372	.0350	.0328	.0306	.0284	.0262	.0240	.0212	9610.	.0173	.0152	.0128	.0106	0084	.0062	.0040	.0020	0.	.0024	.0046	.0072	0600	0112	0134	0156	.0176
Internal Latent Heat.	511.70	510.72	509.84	508.88	508.00	507.02	506.15	505.28	504.41	503.54	502.57	501.70	500.84	499.87	499.00	498.04	497.08	496.12	495.16	494.20	493.24	492.28	491.32	490.26	489.20	488.14	487.14
External Latent Heat.	51.80	51.88	51.96	52.05	52.10	52.18	52.25	52.32	52.39	52.46	52.53	52.60	52.66	52.73	52.80	52.86	52.92	52.98	53.04	53.10	53.16	53.22	53.28	53.34	53.40	53.46	53.51
Density of Liquid, Pounds per Cu.ft,	40.44	40.40	40.36	40.32	40.28	40.24	40.20	40.16	40.11	40.07	40.03	39.99	39,95	39.90	39.86	39.82	39.78	39.73	39.69	39.65	39.60	39.56	39.52	39.47	39.43	39.38	39.34
Sp. Vol. of Liquid, Cu.ft. per Pound.	.02472	.02475	.02478	.02480	.02483	.02485	.02487	02489	.02493	.02495	.02498	.02200	.02503	.02506	.02209	.02511	.02513	.02516	.02518	.02522	.02525	.02527	.02530	.02533	.02536	.02539	.02542
Density of Vapor, Pounds per Cu.ft.	.148	.152	.155	.158	.162	.166	.169	.173	.177	.180	.184	.188	.192	.195	.199	.203	.207	.211	.215	.219	.223	.227	.232	.236	. 242	.246	.251
Sp. Vol. of Vapor, Cu.ft. per Pound.	6.75	09.9	6.45	6.32	6.18	6.04	5.90	5.78	5.66	5.54	5.43	5.32	5.22	5.12	5.02	4.93	4.83	4.74	4.66	4.57	4.48	4.40	4.31	4.23	4.14	4.06	3.98
Total Heat Above 32° F.	544.2	544.4	544.6	544.7	545	545.2	545.4	545.6	545.8	546.1	546.2	546.5	546.8	547	547.2	547.4	547.5	547.6	547.8	248	548.2	548.3	548.6	548.6	548.7	548.8	548.9
Latent Heat.	563.5	562.6	561.8	560.9	560.1	559.2	558.4	557.6	556.8	556	555.1	554.3	553.5	552.6	551.8	550.9	550	549.1	548.2	547.3	546.4	545.5	544.6	543.6	542.6	541.6	540.6
Heat of Liquid Above 32° F.	-19.3	-18.2	-17.2	-16.2	-15.1	-14.0	-13.0	-12.0	-11.0	6.6	6.8	1.8	2.9	- 5.6	- 4.6	3.5	- 2.5	- 1.5	1 0.4	+ 0.7	+1.8	2.8	4.0	+ 5.0	6.1	7.2	& .3
Pressure, Pounds per Sq.in. Gage.	26.9	27.9	28.0	29.9	30.0	31.9	33.0	34.0	35.0	36.1	37.2	38.3	39.4	40.6	41.8	43.1	44.4	45.6	46.9	48.2	49.5	50.9	52.3	53.7	55.1	56.6	58.1
Pressure, Pounds per Sq.in. Absolute.	41.6	42.6	43.6	44.6	45.6	46.6	47.7	48.7	49.7	50.8	51.9	53	54.1	55.3	56.5	57.8	59.1	60.3	61.6	62.9	64.2	65.6	67.0	68.4	8.69	71.3	72.8
Scale, Temp.	14	15	16	17	18	19	20	21	55	83	24	25	5 0	27	28	53	30	31	32	88	34	35	36	37	88	30	40
Abs. Temp.	474	475	476	477	478	479	480	481	485	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200

HANDBOOK OF THERMODYNAMIC

Table XLII — Continued

	Entropy of Vapor.	1.078	1.074	1.070	1.066	1.062	1.058	1.054	1.050	1.045	1.042	1.038	1.033	1.029	1.025	1.021	1.017	1.013	1.009	1.005	1.001	866.	. 994	066.	986	. 982	826.	.974
	Entropy of Liquid.	.0200	.0220	.0242	.0264	.0284	.0306	.0328	.0348	.0368	0380	.0407	.0432	.0452	.0472	.0496	.0512	.0538	.0560	.0580	.0601	.0624	.0645	9990.	8890.	9020.	.0728	.0750
	Internal Latent Heat.	485.94	484.89	483.89	482.89	481.84	480.79	479.75	478.70	477.66	476.62	475.59	474.56	473.52	472.49	471.46	470.43	469.40	468.37	467.35	466.32	465.25	464.18	463.16	462.10	461.03	459.97	458.91
	External Latent Heat.	53.56	53.61	53.66	53.71	53.76	53.81	53.85	53.90	53.94	53.98	54.01	54.04	54.08	54.11	54.14	54.17	54.20	54.23	54.25	54.28	54.30	54.32	54.34	54.35	54.37	54.38	54.33
	Density of Liquid, Pounds per Cu.ft.	39.29	39.25	39.20	39.16	39.11	39.07	39.02	38.98	38.93	38.89	38.84	38.80	38.75	38.70	38.65	38.60	38.55	38.50	38.45	38.40	38.35	38.30	38.25	38.20	38.16	38.11	38.06
	Sp. Vol. of Liquid, Cu.ft. per Pound,	.02544	.02548	.02551	.02554	.02557	02559	.02562	.02564	.02567	.02570	.02574	.02577	.02580	.02583	.02586	.02590	.02594	.02597	.02600	.02604	.02607	.02610	.02614	.02618	.02621	.02624	.02628
	Density of Vapor, Pounds per Cu.ft.	.256	.260	.265	.270	. 274	.280	.285	.291	.296	.301	307	.312	.317	.325	.331	.337	.344	. 350	.357	.361	.367	.375	.380	.387	.397	.401	.410
	Sp. Vol. of Vapor, Cu.ft. per Pound.	3.91	3.84	3.77	3.70	3.64	3.57	3.51	3.44	3.38	3.32	3.26	3.21	3.15	3.08	3.03	2 97	2.91	2.86	2.80	2.77	2.72	2.67	2.63	2.58	2.53	2.49	2.44
1	Total Heat Above 32° F.	548.9	548.9	549.1	549.2	549.3	549.4	549.5	549.6	549.7	549.8	550.1	550.2	550.3	550.4	550.6	550.6	550.7	550.8	550.9	551.0	551.1	551.1	551.2	551.2	551.3	551.3	551.4
	Latent Heat.	539.5	538.5	537.5	536.6	535.6	534.6	533.6	532.6	531.6	530.6	529.6	528.6	527.6	526.6	525.6	524.6	523.6	522.6	521.6	520.6	519.5	518.5	517.5	516.4	515.4	514.3	513.3
1	Heat of Liquid Above 32° F.	9.4	10.4	11.5	12.6	13.7	14.8	15.9	17.0	18.1	19.2	20.5	21.6	22.7	23.8	25.0	26.0	27.1	28.2	29.3	30.4	31.5	32.6	33.7	34.8	35.9	37.0	33.1
	Pressure, Pounds per Sq.in. Gage.	59.5	61.0	62.5	63.9	65.5	67.2	68.89	70.5	72.3	74	75.8	9.77	79.4	81.3	83.2	85.2	87.1	89.1	91.1	93.1	94.9	8.96	8.8	100.8	102.8	104.9	107.1
	Pressure, Pounds per Sq.in. Absolute.	74.2	75.7	77.2	78.6	80.3	81.9	83.6	85.2	87.0	88.7	90.5	92.3	94.1	96	97.9	6.66	101.8	103.8	105.8	107.8	109.6	111.5	113.5	115.5	117.5	119.6	121.8
	Scale, Temp.	41	42	43	4	45	46	47	48	49	20	51	52	53	54	55	56	22	58	59	9	61	62	83	9	.c	99	67
	Abs. Temp.	501	502	503	504	505	206	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527

Table XLII — Continued

Entropy of Vapor.	076.	963	959	.955	.951	.948	.944	.940	. 936	. 932	.928	.925	.921	.917	.913	016.	906.	.902	668.	.895	.891	.887	.883	.880	.876	.872
Entropy of Liquid.	0770	080	.0832	.0852	.0872	.0892	.0913	.0933	.0954	9260.	9660.	9101.	. 1038	.1058	.1080	.1100	.1122	.1142	.1164	.1184	.1206	.1227	.1248	.1268	.1288	.1308
Internal Latent Heat.	457.80	455.68	454.63	453.57	452.52	451.46	450.36	449.26	448.16	447.07	445.97	444.88	443.69	442.49	441.30	440.21	439.02	437.94	436.75	435.67	434.48	433.40	432.22	431.04	429.86	428.68
External Latent Heat.	54.40	54.42	54.42	54.43	54.43	54.44	54.44	54.44	54.44	54.43	54.43	54.42	54.41	54.41	54.40	54.39	54.38	54.36	54.35	54.33	54.32	54.30	54.28	54.26	54.24	54.22
Density of Liquid, Pounds per Cu.ft.	38.01	37.91	37.86	37.81	37.76	37.72	37.67	37.62	37.57	37.52	37.47	37.42	37.37	37.32	37.26	37.21	37.15	37.10	37.05	37.00	36.94	36.89	36.83	36.78	36.72	36.67
Sp. Vol. of Liquid, Cu.ft. per Pound.	.02631	02638	.02642	.02645	.02649	.02652	.02654	.02658	.02661	.02665	.02668	.02672	.02675	.02679	.02683	.02688	.02690	.02695	.02699	.02703	.02706	.02710	.02715	.02719	.02724	.02727
Density of Vapor, Pounds per Cu.ft.	.417	439	440	.448	.455	.463	.472	.481	.488	.497	.505	.515	.524	.532	.541	.550	.559	. 568	.580	.588	.595	909.	.615	.625	.637	.647
Sp. Vol. of Vapor, Cu.ft. per Pound.	2.40	2.93	2.27	2.23	2.20	2.16	2.12	2.08	2.02	2.01	1.98	1.94	1.91	1.88	1.85	1.82	1.79	1.76	1.72	1.70	1.68	1.65	1.62	1.60	1.57	1.54
Total Heat Above 32° F.	551.4	551.6	551.6	551.6	551.7	551.7	551.8	551.7	551.7	551.7	551.7	551.7	551.6	551.5	551.5	551.5	551.5	551.5	551.5	551.5	551.5	551.6	551.7	551.6	551.5	551.4
Latent Heat.	512.2	510.1	509.0	508	506.9	505.9	504.8	503.7	502.6	501.5	500.4	499.3	498.1	496.9	495.7	494.6	493.4	492.3	491.1	490	488.8	487.7	486.5	485.3	484.1	482.9
Heat of Liquid Above 32° F.	39.2	4.04	42.6	43.6	44.8	45.8	47.0	48.0	49.1	50.2	51.3	52.4	53.5	54.6	55.8	56.9	58.0	59.2	60.3	61.5	62.7	63.9	65.2	66.3	67.4	68.5
Pressure, Pounds per Sq.in. Gage.	109.2	113.7	116.1	118.5	120.9	123.3	125.8	128.3	130.8	133.4	136.0	138.5	140.9	143.6	146.3	149.1	152.1	154.5	157.5	160.4	163.3	166.3	169.1	172.1	175.3	178.5
Pressure, Pounds per Sq.in. Absolute.	123.9	120.1	130.8	133.2	135.6	138	140.5	143	145.5	148.1	150.7	153.2	155.6	158.3	161.0	163.8	166.8	169.2	172.2	175.1	178	181	183.8	186.8	190	193.2
Scale, Temp.	89	8 2	7	22	73	74	75	92	7.2	78	79	08	81	82	83	84	85	98	87	88	68	06	91	92	88	94
Abs. Temp.	528	530	531	532	533	534	535	536	537	238	533	540	541	542	543	544	35.	546	547	25 84 84	249	220	251	222	553	554

Table XLII—Continued

Entropy of Vapor.	898.	.864	.860	.857	.853	.849	.846	.842	.838	.836	.831	.827	.823	.820	.816	.812	608.	.805	.801	. 798	.794	.791	787	. 784	.780	.776	.772
Entropy of Liquid.	.1328	.1348	.1369	.1390	.1410	.1432	.1452	. 1472	.1492	.1512	.1532	.1552	.1572	.1592	.1612	. 1632	. 1653	. 1673	. 1693	.1714	.1734	.1753	.1773	. 1793	. 1813	. 1832	.1852
Internal Latent Heat,	427.50	426.33	425.15	424.03	422.71	421.43	420.26	419.09	417.92	416.65	415.48	414.26	412.94	411.77	410.50	409.24	407.98	406.71	405.45	404.19	402.93	401.62	400.31	398.95	397.60	396.24	394.99
External Latent Heat.	54.20	54.17	54.15	54.12	54.09	54.07	54.04	54.01	53.98	53.95	53.92	53.89	53.86	53.83	53.80	53.76	53.72	53.69	53.65	53.61	53.57	53.53	53.49	53.45	53.40	53.36	53.31
Density of Liquid, Pounds per Cu.ft.	36.61	36.55	36.50	36.44	36.39	36.33	36.27	36.22	36.16	36.10	36.04	35.99	35.93	35.87	35.82	35.76	35.70	35.64	35.59	35.53	35.47	35.41	35.35	35.29	35.23	35.17	35.11
Sp. Vol. of Liquid, Cu.ft. per Pound.	.02732	.02735	.02739	.02743	.02747	.02753	.02756	.02761	.02765	.02770	.02775	.02779	.02783	.02787	.02791	.02796	.02801	02806	.02810	.02815	02819	.02824	.02828	.02833	.02839	.02843	.02848
Density of Vapor, Pounds per Cu.ft.	.658	899.	.680	.691	.701	.714	.724	.735	.746	.758	.769	.781	.794	908.	.820	.833	.847	.862	.873	.885	006	.917	.926	.943	.957	. 970	.985
Sp. Vol. of Vapor, Cu.ft. per Pound.	1.52	1.49	1.47	1.44	1.42	1.40	1.38	1.36	1.34	1.32	1.30	1.28	1.26	1.24	1.22	1.20	1.18	1.16	1.14	1.13	1.11	1.09	1.08	1.06	1.04	1.03	1.01
Total Heat Above 32° F.	551.4	551.3	551.3	551.1	551.0	550.8	550.7	550.7	550.7	550.4	550.4	550.3	550.2	550.2	550.1	549.9	549.8	549.6	549.5	549.3	549.2	548.9	548.8	548.5	548.4	548.0	547.9
Latent Heat.	.481.7	480.5	479.3	478.1	476.8	475.5	474.3	473.1	471.9	470.6	469.4	468.1	466.8	465.6	464.3	463	461.7	460.4	459.1	457.8	456.5	455.1	453.8	452.4	451	449.6	448.3
Heat of Liquid Above 32° F.	69.7	70.8	72.0	73.0	74.2	75.3	76.4	77.6	78.8	8.62	81.0	82.2	83.4	84.6	85.8	86.9	88.1	89.3	90.4	91.5	92.7	93.8	95.0	96.1	97.3	98.4	9.66
Pressure, Pounds per Sq.in. Gage.	181.3	184.3	187.7	190.9	194.3	197.8	200.3	203.8	207.3	210.8	214.3	217.8	221.3	224.3	228.3	232.3	236.3	240.3	244.3	248.3	252.3	256.3	260.8	265.3	269.3	273.3	277.3
Pressure, Pound per Sq.in. Absolute.	196	199	202.4	205.6	209	212.5	215	218.5	222	225.5	229	232.5	236	239	243	247	251	255	259	263	267	271	275.5	280	284	800	292
Scale, Temp. ° F.	9.5	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	7.	116	117	118	110	150	121
Abs. Temp.	555	556	557	558	559	560	561	562	563	564	565	566	567	268	269	570	271	572	573	574	77.5	576	577	872	70	200	581

Table XLII—Continued

Entropy of Vapor.	769 765 765 765 766 774 774 773 773 773 773 773 774 771 771 771 771 770 770 693 683 683	.675
Entropy of Liquid.	1872 1893 1913 1953 1953 1953 1993 2013 2002 2013 2002 2112 2112 2113 2113	.2392
Internal Latent Heat.	393.74 392.39 391.13 389.88 388.64 388.65 388.05 388.05 388.05 388.05 388.07 371.65 37	359.25
External Latent Heat.	53.26 53.17 53.17 53.17 53.01 53.01 52.90 52.90 52.73 52.73 52.60 52.60 52.73	51.55
Density of Liquid, Pounds per Cu.ft.	34.05 34.93 34.83 34.83 34.83 34.10	33.43
Sp. Vol. of Liquid, Cu.ft. per Pound.		.02992
Density of Vapor, Pounds per Cu.ft.	1.0 1.00 1.00 1.00 1.00 1.00 1.10 1.11 1.11 1.12 1.13 1.23 1.23 1.24 1.33 1.33 1.33 1.33 1.33 1.41 1.41	1.45
Sp. Vol. of Vapor, Cu.ft. per Pound.	1.000 1.000 1.000 1.000 1.945 1.945 1.920 1.930 1.930 1.930 1.930 1.74 1.77 1.73 1.73 1.73 1.73 1.73 1.73 1.73	69.
Total Heat Above 32° F.	547.8 547.3 547.3 547.3 546.9 546.9 546.9 546.3 545.4 545.4 545.4 545.4 545.4 545.4 545.4 545.3 547.3 548.3 549.3	542.3
Latent Heat.	447.6 444.3 444.3 444.3 441.7 440.3 423.0 423.1 423.1 423.1 423.9	410.8
Heat of Liquid Above 32° F.	100.8 1001.9 1001.9 1001.0 1005.4 1005.6 1100.0 1100.0 1113.6 1113.6 114.8 114.8 114.8 114.8 114.8 114.8 117.1 117.1 118.2 118.6 119	131.5
Pressure, Pounds per Sq.in. Gage.	281.3 284.3 2884.3 2884.3 2884.3 297.3 301.3 310.3 310.3 310.3 320.3 330.3 345.3 345.3 345.3 360.3 360.3 376	409.3
Pressure, Pounds per Sq.in. Absolute.	296 299 307.5 312.5 316 320 330 335 336 336 336 336 336 336 336 412 412	424
Scale, Temp.	122 122 123 123 123 123 123 123 123 123	148
Abs. Temp.	582 584 584 584 584 587 589 589 590 591 592 593 594 595 596 600 601 603 604 604 605	809

Table XLII — Continued

Entropy of Vapor.	.672	899.	.665	.661	.658	.654	.651	.648	.644	.640	.637	.633	.630	.626	.623	619.	.616	.612	809.	.605	.601	.597	.594	. 590	. 586	. 583	.579
Entropy of Liquid.	.2412	.2432	.2450	.2470	.2490	.2511	.2530	.2549	.2569	.2588	.2608	.2628	.2648	.2668	.2688	.2707	.2726	.2746	.2764	.2784	.2802	.2820	.2840	.2860	.2880	.2898	.2918
Internal Latent Heat.	357.84	356.42	355.01	353.70	352.30	350.90	349.40	348.00	346.60	345.10	343.50	342.10	340.71	339.22	377.64	336.15	334.57	333.08	331.50	330.02	328.44	326.86	325.28	323.70	322.12	320.55	318.98
External Latent Heat.	51.46	51.38	51.29	51.20	51.10	51.00	50.90	50.80	50.70	50.60	50.50	50.40	50.29	50.18	50.06	49.95	49.83	49.72	49.60	49.48	49.36	49.24	49.12	49.00	48.88	48.75	48.62
Density of Liquid, Pounds per Cu.ft.	33.37	33.30	33.23	33.17	33.10	33.03	32.97	32.90	32.83	32.76	32.69	32.62	32.55	32.48	32.40	32.33	32.26	32.18	32.11	32.04	31.97	31.90	31.82	31.75	31.67	31.60	31.53
Sp. Vol. of Liquid, Cu.ft. per Pound.	.02998	.03003	.03010	.03016	.03021	.03028	.03034	.03039	.03046	.03053	.03058	.03065	.03072	.03080	03080	.03094	.03100	.03109	.03115	.03122	.03129	.03135	.03143	.03149	.03157	.03165	.03171
Density of Vapor, Pounds per Cu.ft.	1.47	1.49	1.51	1.54	1.56	1.58	1.60	1.62	1.64	1.66	1.68	1.72	1.75	1.76	1.78	1.82	1.85	1.88	1.91	1.94	1.97	1.99	2.02	2.05	2.07	2.10	2.13
Sp. Vol. of Vapor, Cu.ft. per Pound.	89.	.67	99.	.65	.641	.632	.624	.616	809.	009	.594	.588	.578	.568	.560	.550	.542	.532	.524	.516	.508	.502	.494	.488	.482	.476	.470
Total Heat Above 32° F.	542.1	541.8	541.5	541.2	541.0	540.7	540.3	540.0	539.7	539.3	538.9	538.7	538.4	538.0	537.6	537.2	536.8	536.4	536.0	535.6	535.2	534.7	534.1	533.5	533.0	532.5	532.1
Latent Heat.	409.3	407.8	406.3	404.9	403.4	401.9	400.3	398.8	397.3	395.7	394.0	392.5	391.0	389.4	387.7	386.1	384.4	382.8	381.1	379.5	377.8	376.1	374.4	372.7	371.0	369.3	367.6
Heat of Liquid Above 32° F.	132.8	134.0	135.2	136.3	137.6	138.8	140.0	141.2	142.4	143.6	144.9	146.2	147.4	148.6	149.9	151.1	152.4	153.6	154.9	156.1	157.4	158.6	159.7	160.8	162.0	163.2	164.5
Pressure, Pounds per Sq.in. Gage.	414.3	420.3	425.3	433.3	437.3	442.3	448.3	454.3	460.3	466.3	471.3	477.3	483.3	489.3	495.3	503.3	508.3	514.3	521.3	527.3	534.3	541.3	548.3	555.3	560.3	569.3	575.3
Pressure, Pounds per Sq.in. Absolute.	429	435	440	448	452	457	463	469	475	481	486	492	498	504	510	518	523	529	536	542	549	556	563	570	575	584	290
Scale, Temp.	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
Abs. Temp.	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	929	627	628	629	630	631	632	633	634	635

Table XLII — Continued

Entropy of Vapor.	572 558 558 558 558 558 558 558 558 558 55	
Entropy of Liquid.	2936 2956 2956 2976 2994 3010 3020 3089 3128 3128 3224 3224 3224 3234 3324 3334 3334 33	
Internal Latent Heat.	317.50 315.74 312.74 312.50 310.84 300.08 305.36 307.32 307.32 307.32 307.32 309.08 307.32 309.08 307.32 209.08 20	
External Latent Heat.	48.50 48.38 48.38 48.13 47.19 47.19 47.12 47.12 46.98	
Density of Liquid Pounds per Cu.ft.	31.45 31.38 31.38 31.22 31.15 30.92 30.92 30.65 30.65 30.65 30.65 30.65 30.65 30.74 30.74 30.74 30.75	
Sp. Vol. of Liquid, Cu.ft. per Pound.	.03179 .03187 .03187 .03187 .03203 .03218 .03218 .03241 .03250 .03250 .03264 .03264 .03264 .03269 .03269 .03399 .03390 .03390	
Density of Vapor, Pounds per Cu.ft.	61164666666666666666666666666666666666	
Sp. Vol. of Vapor, Cu.ft. per Pound.	444 4644 6644 6644 6644 6644 6644 6644	
Total Heat Above 32° F.	531.7 531.0 530.5 530.0 520.4 529.4 528.0 527.2 526.5 526.5 522.8 522.0 522.0 522.0 521.2 520.3 521.2 521.2 521.2 521.2 521.2 521.2 521.2 521.2 521.2 521.3	
Lateot Heat.	366.0 364.1 362.4 360.6 358.8 355.0 355.0 355.0 347.0 347.0 347.0 341.0 341.0 343.0 341.0 343.0 344.4 330.7 326.5 326.5	
Heat of Liquid Above 32° F.	165.7 166.9 168.1 169.4 170.6 171.8 174.3 174.3 175.5 176.8 177.5 178.0 179.3 180.5 181.8 183.0 184.3 186.8 186.8 199.2 190.4 191.7	
Pressure, Pounds per Sq.in. Gage.	583.3 597.3 605.3 601.3 611.3 619.3 625.3 649.3 664.3 664.3 664.3 677.3 7713.3 7713.3 7721.3	
Pressure, Pounds per Sq.in. Absolute.	598 605 605 620 620 634 634 648 656 664 670 670 670 7702 710 710 710 710 710 710 710 710 710 710	
Scale, Temp.	176 177 178 179 180 181 182 183 184 185 186 190 190 191 192 193 194 196 197 198	
Abs. Temp.	636 637 638 638 640 641 645 644 645 645 651 651 653 653 653 653 653 653 653 653 653 653	

TABLE XLIII

	Entropy of Vapor.	2786 2771 2771 2771 2771 2772 2775 2776 2776 2776 2780 2880 2880 2880 2880 2881 2881 2881 28	
	Entropy of Liquid.	.05129 .05068 .04962 .04769 .04769 .04583 .04583 .04583 .04136 .04136 .04136 .03125 .03925 .03925 .03647 .03518 .03518 .03518	
	Internal Latent Heat.	107.8 107.41 107.41 106.64 106.64 106.87 105.8 105.1 104.29 103.88 103.88 103.88 103.88 103.88 103.98 100.26 101.88 101.9	
# F	External Latent Heat.	14. 80 14. 78 14. 78 14. 76 14. 76 14. 77 14. 68 14. 66 14. 66 14. 66 14. 66 14. 66 14. 55 14. 55 14. 55 14. 55 14. 56 14. 56 16. 56 16. 56 16. 56 16. 56 16. 56 16. 56 16. 56 16. 56 16. 56 16. 56 16. 56 16	
SATURATED CARBON DIOXIDE VAPOR	Density of Vapor, Pounds per Cu.ft.	2.644 2.697 2.808 2.860 2.919 2.976 3.030 3.030 3.143 3.204 3.258 3.143 3.204 3.258 3.317 3.254 3.351 3.367 3.37 3.3	
DIOXID	Sp. Vol. of Vapor, Cu.ft. per Pound.	.3782 .3782 .3784 .3494 .3425 .3360 .3300 .3340 .3380 .3340 .3360 .3370 .2970 .2970 .2970 .2875 .2875 .2875 .2743	
ARBON	Density of Liquid, Pounds per Cu.ft.	63.45 63.37 63.37 63.17 62.97 62.97 62.66 62.25 62.30 62.22 62.30 61.78 61.78 61.78 61.78 61.78 61.78 61.78 61.78 61.78 61.78 61.78 61.78	
ATED C	Sp. Vol. of Liquid Cu.ft. per Pound.	01576 015834 015836 015836 015836 01588 015908 015908 016046 016172 016172 016172 016184 01628 016384 01638	
	Total Heat Above 32° F.	98.6 98.6	
TIES OF	Latent Heat.	122.6 122.2 121.8 121.0 120.0 120.0 120.2 119.8 119.8 118.5 118.5 118.5 116.05 116.05 116.05 116.05 116.05 116.05 116.05 116.05 117.20 116.05 116.05 117.20	
PROPERTIES	Heat of Liquid Above 32° F.	24 25 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20	
	Pressure, Pounds per Sq.in. Gage.	204.8 208.3 213.2 217.9 221.1 221.1 221.1 224.3 224.3 225.3 226.3 226.3 227.9 226.3 227.1	
	Pressure, Pounds per Sq.in. Absolute.	219.5 223.3 227.9 237.8 242.6 248.6 259 259 259 270 271.7 286.2 286.2 290.2 290.2 290.2 308.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7	
	Scale, Temp.		
	Abs. Temp. ° F.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

Table XLIII—Continued

	Entropy of Vapor.	2396 2396 2386 2386 2386 2386 2387 2287 2287 2287 2287 2287 2287 2287	
	Entropy of Liquid.	.02683 .02597 .02468 .02375 .02288 .02197 .01970 .0189 .0158 .01695 .01583 .01458 .01268 .01074 .009248 .009248 .009248 .009248 .009248 .009249 .009249	_
	Internal Latent Heat.	97.22 96.73 96.73 96.73 97.38 94.88 92.98 92.98 92.98 92.98 92.98 90.53 90.53 88.85 90.53 88.85 90.53 88.85 90.53	
æ	Èxternal Latent Heat.	44444444444444444444444444444444444444	
E VAPOR	Density of Vapor, Pounds per Cu.ft.	4 . 1.25 4 . 1.25 4 . 1.25 4 . 1.25 4 . 25 3 . 25 3 . 25 3 . 25 5	_
DIOXIDE	Sp. Vol. of Vapor, Cu.ft. per Pound.	2424 2387 2387 2387 2280 2250 2217 2121 2090 2090 2090 2090 2090 2090 2090	
CARBON	Density of Liquid, Pounds per Cu.ft.	60.58 60.58 60.26 60.12 60.12 60.00	_
ATED C	Sp. Vol. of Liquid, Cu.ft. per Pound.	016472 016504 016563 016563 016664 016664 016772 016772 016884 016884 016884 016924 016924 017004 017004 01708 01708 01708 01708 01708 01708 01708	
SATURATED	Total Heat Above 32° F.	98.88.88.88.88.89.99.99.88.88.88.89.99.9	
TES OF	Latent Heat.	111.65 1111.15 1110.7 1100.20 1009.8 1009.8 1009.8 1008.35 107.9 106.40 106.40 106.40 106.40 106.40 106.40 106.35 103.75 103.75 103.75 103.75 103.75 103.75 103.85 100.13	_
PROPERTIES	Heat of Liquid Above 32° F.	211-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	_
I	Pressure, Pounds per Sq.in. Gage.	330. 3 335. 9 341. 3 341. 3 353. 3 359. 1 365. 3 377. 8 390. 8 397. 3 404. 0 410. 8 417. 3 424. 3 425. 3 455. 3 467. 3 488. 3 488. 3	_
	Pressure, Pounds per Sq.in. Absolute.	345 350.6 356 362 368 373.8 373.8 380 380 380 380 380 405.5 418.7 425.5 439 446 446 446 446 446 446 446 446 446 44	
	Scale, Temp.	0	
	Abs. Temp.	466 468 468 470 471 471 473 473 474 474 477 477 477 478 488 488 488 488	

TABLE XLIII—Continued

PROPERTIES OF SATURATED CARBON DIOXIDE VAPOR

Entropy of Vapor.	. 1987 . 1971 . 1971 . 1952 . 1934 . 1915 . 1880 . 1882 . 1883 . 1782 . 1782 . 1782 . 1783 . 1783 . 1783 . 1783 . 1783 . 1783 . 1784 . 1655 . 1655 . 1655 . 1655 . 1656 . 1657 . 1656 . 1657 . 1656 . 1657 . 1657
Entropy of Liquid.	.001073 .002151 .002151 .005234 .004181 .005419 .006523 .007644 .008753 .008764 .01215 .01215 .01215 .01216 .01218 .01563 .01798 .01798 .01798 .02283 .02283 .02543 .02658
Internal Latent Heat.	83.76 82.55 81.90 81.90 81.90 81.90 80.56 79.93 77.14 77.14 77.14 76.63 72.45 71.61 70.00 69.19 68.38 66.65 66.65
External Latent Heat.	13.99 13.99 13.99 13.85 13.85 13.74 13.67 13.67 13.97 12.97 12.97 12.97 12.97 12.97 12.97 12.97 12.97 12.97 12.97 13.97
Density of Vapor, Pounds per Cu.ft.	6. 123 6. 317 6. 414 6. 523 6. 622 6. 729 6. 840 7. 184 7. 184 7. 184 7. 184 7. 184 7. 184 7. 184 7. 184 8. 110 8. 218 8. 403 8. 118 8.
Sp. Vol. of Vapor, Cu.ft. per Pound.	.1633 .1607 .1583 .1559 .1534 .1510 .1441 .1441 .1441 .1392 .1370 .1370 .1374 .1324 .1371
Density of Liquid, Pounds per Cu.ft.	56.96 56.96 56.96 56.57 56.41 56.22 55.43 55.43 55.43 55.43 55.43 55.43 55.43 55.43 55.43 55.21 55.43 55.23 55.33
Sp. Vol. of Liquid, Cu.ft. per Pound.	017500 017655 017668 017784 017784 017784 017908 017974 018810 018856 018850 018850 018850 018850 018850 018850 0198860 0198860 0198860 0198860 0198860 0198860 0198860 0198860 0198860 0198860
Total Heat Above 32° F.	97.75 97.65 97.65 97.25 97.20 97.05 96.7 96.3 96.7 96.3 96.7 96.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95
Latent Heat,	97.75 96.45 96.45 96.45 97.75 97.75 97.75 97.75 97.75 88.8 88.8 88.0 88.1 88.1 88.1 88.1 88.1
Heat of Liquid Above 32° F.	0.01.00 0.01.00 0.02.00 0.03.00 0.0
Pressure, Pounds per Sq.in. Gage.	503.5 511.3 511.3 5127.3 524.3 542.3 550.3 556.5 573.3 588.8 620.8
Pressure, Pounds per Sq.in. Absolute.	518.2 526 533.7 541 549 557 565 565 572.7 588 586 603.5 611.2 619.2 627.5 661 669 661 669 677 661 677 685 685 685 677 677 677 677 677 677 677 677 677 67
Soale, Temp.	288 4 5 8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4
Abs. Temp.	492 493 494 496 496 496 499 500 500 501 502 503 504 508 508 509 509 509 509 501 501 501 501 501 501 501 501 501 501

Table XLIII—Continued

PROPERTIES OF SATURATED CARBON DIOXIDE VAPOR

Entropy of Vapor.	1425 1425 1400 1374 1348 1319 1291 1293 1234 1205 1176 1114 1114 1114 11048 1082 1082 1048 100495 09495 09798
Entropy of Liquid.	.03105 .03237 .03371 .03507 .03643 .03783 .03783 .04067 .04218 .04517 .04683 .04837 .0500 .05169 .05169 .05343 .05454 .05718
Internal Latent Heat.	63.69 62.67 61.66 60.56 60.56 59.41 57.09 55.09 55.35 53.35 53.35 54.72
External Latent Heat.	11.46 11.33 11.04 11.04 10.89 10.74 10.74 10.75 10.78 9.78 9.78 9.12 8.87 8.87 8.87 8.87 8.87 8.87 8.87 8.8
Density of Vapor, Pounds per Cu.ft.	9.570 9.747 9.940 10.142 10.352 10.571 11.287 11.287 11.820 12.107 12.107 12.107 12.107 12.107 13.055 13.055 13.055 13.405 13.757 14.493 14.4881 16.234
Sp. Vol. of Vapor, Cu.ft. per Pound.	.1045 .1026 .1026 .1006 .0986 .0946 .0926 .0886 .0886 .0886 .0886 .0806 .0786 .0786 .0776 .0778 .0778 .0708
Density of Liquid, Pounds per Cu.ft.	55.52 55.52
Sp. Vol. of Liquid, Cu.ft. per Pound.	019560 019672 019792 019820 020044 020298 020744 020744 020896 0211050 021240 02120 021220 022222 022220 022222 022220 022222 022220 022220 022220 022220 022220 022220 022220 022220
Total Heat Above	90.65 90.15 89.65 89.15 88.15 88.15 88.15 88.15 88.16 88.16 88.16 88.16 88.16 88.16 88.17 70.16 88.16 88.17 88.16 88.17 88.16 88.17 88
Latent Heat.	75.15 72.85 71.60 72.85 71.60 60.3 66.3 66.3 66.3 66.3 66.3 66.3 6
Heat of Liquid Above 32° F.	15.5 16.15 16.15 17.55 18.3 19.3 19.1 19.1 19.1 19.1 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7
Pressure, Pounds per Sq.in. Gage.	714.3 723.3 8 743.3 3 743.3 3 763.3 3 773.3 3 773.3 8 805.8 826.3 826.3 8877.3 8877.3 8877.3 8877.3 8977.3
Pressure, Pounds per Sq.in. Absolute.	729 738.5 748 758 768 778 788 788 788 798.5 830.5 830.5 831.5 860.5 871 871 871 872 973 973 974 974
Scale, Temp.	858 600 600 600 600 600 600 600 600 600 60
Abs. Temp.	518 520 520 521 522 523 524 525 527 528 528 539 531 532 533 533 533 533 533 533 533 533 533

Table
SOLUTIONS OF
RELATION BETWEEN PRESSURE, TEMPERATURE,
Upper figures are Starr values,

										Upper	r ngure	es are	Starr v	alues,
t v n	8.4									Pov	NDS PE	R SQUAI	RE INCE	GAGE
9,5	E E	ecifi avit		1	Ï		ı	l			i		1	
Per Cent NH ₃ by Weight.	Degrees Baumé.	Specific Gravity.	θ	5	10	15	20	25	30	35	40	45	50	55
			206.3	223.6	234.9	247.4	256.2	263.8	270.4	277.1	282.8	288.1	292.9	297.5
1 .	• • • •		204	219	232	242	251	260	267	274	280	286	291.5	297
1.84	11	.993	201.4	219.3	231.5	243.3	251.7	259.4	266.4	272.7	278.4	283.7	288.5	293.1
1.01	**		198.5		226	236.5	245.5	254	261.5	269.5	274.5	281	286.5	292
2	l		201.1	218.5	230.8	242.1	250.9	258.6	265.5	271.9	277.6	282.8	287.7	292.2
			194 195.8	212.5 213.2	225 225.5	235.5 236.6	244.5 245.6	253 253.3	$260.5 \\ 260.2$	267.5 266.8	273.5 272.3	280 277.5	285.5 282.4	291 286.9
3			191	206	219	229	238	246.5	254	261.5	267	274.5	280	285
			191.5	208.8	221	232.3	241	248.7	255.7	262	267.7	272.9	277.8	282.4
3.80	12	.986	186.5	200.5	214	224.5	233	241.5	249.5	256	262.5	269.5	274.5	280.5
4	Ì	i	190.5	207.7	220	231.2	240	247.6	254.7	260.9	266.7	271.8	276.1	281.4
*	• • •	•••	185	200	213	223	232	240.5	248	255	261	268	273.5	279.5
5		l	185.2	202.4	214.6	225.8	234.6	242.2	249.3	255.6	261.4	266.5	271.4	276.1
•		,	180	195	207.5	217.5	226.5	235	242	249	255	262.5	268	273.5
5.30	13	.979	183.5	200.7	212.8	224.1	232.8	240.5	247.5	253.8	259.6	264.8	270.2	274.1
			178 180	192.5 197.1	206 209.2	216 220.5	225 229.2	234 237	240.5 243.9	252.5 250.2	254 256.1	261	266	272
6	ا إ		175	189.5	209.2	212.5	229.2	229.5	237	248.5	249.5	261.2 257	266.7 262.5	$271.2 \\ 268$
		1	175.8	193	205	216.2	224.9	232.6	239.6	246.0	251.8	257	262.1	266.7
6.80	14	.972	171	185.5	198.5	208.5	217	225	232.5	239.5	245.5	252.5	258	263.5
7			170	192.1	204	215.3	223.9	231.7	238.6	245.1	250.8	256.1	261.1	265.8
1	• • • •	• • •	170	184.5	197.5	207.5	216	224	231.5	238.5	244.5	251.5	257	262.5
8			168.8	187.2	199.1	210.3	218.9	226.9	233.7	240.1	245.9	251.2	266.2	260.8
			165.5	180	193	203	211.5	219.5	227	233.5	239.5	246	252	257.5
8.22	15	.966	165.4	185.8 179	197.8	209	217.7	225.4	232.4 226	238.6	244.2	249.3	254.1	258.7
		ļ	164.5 160.8	182.5	191.5 194.5	202 205	210.5 214.3	218.5 222	229	232.5	239 240.8	245	250.5 250.7	256.5
9			161	175.5	188.5	198.5	207	215	222.5	229	235	245.9 241.5	247	255.3 252.5
10		0.00	156	177.7	189.6	200.6	209.2	216.9	223.9	230.1	235.5	240.6	245.4	250
10	16	.960	156.5	171.5	184.5	194.0	203	211	218	225	230.5	237	242.5	247.5
11	[156.4	173.2	185.1	196.1	204.7	212.4	219.4	225.6	231	236.1	240.9	244.5
	•••		152.5	167.5	179.5	190	198.5	206.5	213.5	220	226	232.5	237.5	242.5
12			151.9	168.9	180.6	191.9	199.6	208.3	214.8	221	226.4	231.5	236.4	240.0
			149 151	163	175.5 179.9	185.5	194.5	202.5	209.5	216	222	228	233	238
12.17	17	.953	147.5	168 162	174.5	191.0 184.5	199.6 192.5	207.3	213.6 208.5	219.6 215	225.0 221	230.3 227	234.4	239.0
		Į	147.5	164.4	176.4	187.4	196.1	203.7	210.1	216.1	221.4	226.8	232.5 230.8	237 235.5
13	•••	• • •	144.5	159	171	181.5	190	198	205	211.5	217.5	223.5	228.5	233.5
13.88	18	.946	143.7	160.5	172.3	183.4	192	199.7	206	212.1	217.6	222.7	227.2	231.8
10.00	10	.940	141	155	167.5	178	186.5	194.5	201.5	207.5	214	219.5	224.5	230.0
14			143.2	160	171.8	182.9	191.5	199.2	205.5	211.6	217.1	222.2	226.7	231.3
			140.5	154.5	167	177.5	186	193.5	201	207	213.5	219	224	228.5
15			139 137	155.8 151	167.6 163	178.7	187.3	195.0	201.3	207.4	212.9	218.0	222.5	227.1
			134.8	151.6	163.4	173.5 174.5	182	190	197	203	209.5	215	220.0	225
16			132.5	147	159	169.5	183.1 178	190.8 186	197.1 192.5	203.2 199	208.7 205	213.8	218.3	222.9
			133.8	150.6	162.3	173.3	181.4	189.5	192.5	201.8	207.1	211 212.3	215.5 217.1	$220.5 \\ 221.7$
16.22	19	.94	131.5	146	157.5	168.5	177	185	192	198	204.5	212.3	217.1 215.0	220.0
17	,		130.6	147.4	159.1	170.1	178.2	186.3	192.8	198.6	203.9	209.1	213.9	218.5
11		• • • •	129	143	155	165.5	174	182	188	195	201	207	211.5	216.5
18.03	20	.935	126.2	142.9	154.6	165.6	174.2	181.9	188.9	195.1	200.7	205.7	209.5	214.1
		,,,,,,	125	139	151	161.5	170	177.5	184.5	191	197	202.5	207.5	212.5
19			122.3	138.9	150.7	161.6	170.3	177.9	185.0	191.1	196.8	201.7	205.6	210.1
			121.5	135.5	147.5	157.5	166.5	173,5	180.5	187	193	198.5	203,0	208.5
-										!	!			

XLIV

AMMONIA IN WATER

AND PER CENT NH3 IN SOLUTION

lower figures are new.

BOAE	ONE ST	TANDAR	Атмо	SPRERE								ific vity.	rees mé.	Per Cent
60	6 5	70	75	80	85	90	95	100	105	110	115	Specific Gravity.	Degrees Baumé.	Per
01.9 01.5	306.3 306	310.4 310	314.4 315	318.2 318.5	321.8 322	325.2 325.5	328.5 329	331.7 307.5	334.8 335.5	337.8 339	340.7 341.5			1
97.5	301.8	306	310	313.8	317.4	320.8	324.1	327.3	330.4	333.4	336.3	.993		1.
96.5	301	305.5	310	313.5	317.5	321	324.5	330.5	331	334	337	.993	11	1.
96.7	300.9	305.2	309.2	312.9	316.6	320	323.2	326.5	329.6	332.6	335.4			2
95.5	300	304.5	309	312.5	316	320	323.5	327	330	333	336			-
91.4 289.5	295.6 294.5	300 299	303.9 303	307.6 307	311.3	314.7 314.5	317.9 317.5	321.2 320.5	324.3 324	327.3 327.5	330.1 330			3
86.8	291.1	295.3	299.3	303.1	306.7	310.1	313.4	316.6	319.7	322.7	325.6			_
284.5	290	294	298.5	302	306.5	310	313	316	320	323	325.5	.986	12	3
85.7	290.1	294.2	298.3	302.1	305.6	309.1	312.4	315.5	318.7	321.6	324.5			١.
284	289	293	297.5	301	305.5	309	312	315	318.5	326.5	324.5		• • •	4
280.4	284.8	288.9	293	296.3	300.3	303.8	307.1	310.2	313.4	316.3	319.2	l l		5
78.5	283	287.5	292	295.5	299.5	303	306	310	313	316.5	319		•••	١
279.2	283.5	287.1	291.7	295.5	299.1	302.5	305.8	309	312.1	315.1	318	.979	13	5
276.5	281.5	285.5	290	294	298	801	304.5	307.5	311	315	317.5			ľ
75.6	280	284.1	288.2	291.9	295.5	299	302.2	305.5	308.5	311.6	314.4			e
273	277.6	281.5	286	290	294	302	300.5	304	307	310.5	313.5			l
71.1	275.4	279.6	283.6	287.4	291	294.4	297.1	300.9	304	307 306.5	309, 0 309	.972	14	6
269	278.5	277.5 278.6	281.5 282.7	285.5 286.4	289.5 290.1	303 293.5	296 296.7	300.5 300	303 303	306.1	308.9			1
70.1	274.5	276.5	281	284.5	288.5	302	295	299.5	302	305	308.5		• • •	7
267.5 265.2	277.5 269.6	273.7	281.7	281.5	285.2	288.6	291.7	295.1	298.1	301.2	303.9			ŀ
262	267	271.5	275.5	279.5	283.5	287	290	293	296.5	300	303		• • •	8
263.1	267.4	271.6	275.6	279.4	283	286.4	289.7	292.4	296	299	301.9] _
261	266	270	274.5	278	282.5	286	289	292	295.5	296.5	301.5	.966	15	8
259.7	264	268.2	272,2	276	279.6	283	286.3	289.6	292.6	295.6	308.5	i i		i.
257	262	266.5	270.5	274.5	278	282	285	282	291.5	294.5	297.5	•••	•••	9
254.4	258.7	262.9	266.9	270.7	274.3	277.7	281	284.2	287.3	230.3	293.2	.960	16	10
252.5	257.5	261.5	265.5	269.5	274	277	280	277	287	290	293	.900	10	10
249.9	254.2	258.4	262.4	266.2	268.8	273.2	276.5	279.7	282.8	285.8	288.7	l l		11
247.5	252.5	256.5	260.5	264.5	268.5	272.5	275	272	282	285	288		•••	
245.4	249.8	253.9	257.9	261.7	264.3	268.7	272	275.2	278.3	281.3	289.2			12
2 42 .5	247.5	251.5	256	259.5	264	267.5	270	267	277	280	283			
2 43.4	247.7	251.9	255.4	259.7	263.3	266.7	270	273.2	276.3	279.3	282.2	.953	17	12
242	246.5		255	253.5	263	266.5	269	266.5	276	279	282 278.6			
239.9	244.2	248.4	251.8		259.8	263.1	266.5	269.6 262.5		275.7 275.5	278.5			13
238	243	247	251 248.7	255 252.5	258 256.1	263 259.8	266 262.8	262.5	269.1	272.1	275			
236.2		244 243.5	248.7	250.5	255	259.0	261.5	258	268.5	271.5	274.5	.946	18	13
234.5		243.5	248.2	252	255.6	259.0	262.3	265.5		271.6	274.5			١
235. 7 234	238.5	242.5	246.5	1	254.5	258.5	261	257.5		271	274		• • •	14
231.5	235.8	239.4	244	247.8	251.4	254.8	258.1	261.3		267.4	270.3			
229.5	1	238.5	242.5	246	250	254	256.5	260	263.5	266.5	270	• • •	•••	15
227.3	231.6	235.1	239.8	243.6	247.2	250.6	253.7	257.1	260.2	263.2	266.1			16
225	230	234	237.5	241.5	246	249.5	252	255.5	259	262	265		• • • •	10
226.1	230.4	234.6	238.6	242.4	246	249.4	252.7	255.9		262	264.9	.94	19	16
224.5	229	233.5	237	241	245	248.5	251.5	254.5		261	264	```	10	۱ 🔭
222.9	227.2	231.4	235.4	239.2	242.8	246.2	249.5	252.7	255.8	258.8	261.7			17
221	225.5	230	233	237.5		245	248	251	254.5	257.5	260.5	'''		` ا
218.5	222.8	227	231	234.8	238.4		245.1	248.3		254.4	257.3	.935	20	18
217	221.5	225.5		1	237.5		243.5	247	250	253	256.5			1
214.6		223.1	227	230.9	234.4	237.9	241.1	244.4	247.4	250.5	253.4			19
213	217.5	221.5	225	229	233	237	239.5	243	246	249	252			1 -

SOLUTIONS OF RELATION BETWEEN PRESSURE, TEMPERATURE,

TABLE

		_												
Per Cent NHs by Weight.	Degrees Baumé.	Specific Gravity.								Pou	NDS PEI	SQUA	re Inci	GAGE
Per We	Bai	Sp	0	5	10	15	20	25	30	35	40	45	50	55
19.87	21	.928	119.4 118	135.9 132	147.6 144	158.6 154	167.2 163	174.4 170.5	181.5 177	187.2 184	192.5 189.5	197.5 195.5	202.3 200.5	206.9 205
20			118.9 117.5	135.5 131.5	147.1 143.5	158.2 153.5	166.7 162.5	174.4 170	181.1 176.5	186.7 183.5	192.1 189	197 195	201.9	206.4 204.5
21			115.2 114	131.8 128	143.4 140	154.5 150	163.0 158.5	170.7 166	177.4 173	183.0 179.5	188.4 185	193.3 191	198.2 195.5	202.7
21.75	22	.921	112.9 111.5	129.4 125.5	141 137.5	151.9 147	160.5 155.5	168.2 163.5	174.6 170	180.1 176.5	185.3 182.5	190.3 188	195.1 193.0	199.7 197.5
22			112 110.5	128.5 124	140.1 136.5	151.0 146	159.6 154.5	167.3 162.5	173.7 169	179.2 175.5	184.4 181.5	189.4 187	194.2 191.5	198.8 196
23.03	23	.915	108 107	124.5 120.5	136.1 132.5	147 142.5	155.6 150.5	163.3 158.5	170.0 165	175.4 171.5	180.2 177.5	185.2 183	190.0 187.5	194.6 192.5
24			114.8 103.5	121.3 117	132.9 129	143.8 138	152.4 147	160.1 154.5	166.8 161.5	172.2 168	177.0 174	182 179	186.8 184	191.4 188.5
24.99	24	.909	101.5 99	117.8 113.5	129.3 125.5	140.1 135	148.6 143.5	156.3 151	163 158	$168.4 \\ 164.5$	173.6 170	178.6 175.5	183.2 180	187.8 185
26			98.3 95.5	114.6 110.0	$126.2 \\ 122.0$	136.9 131.5	145.5 140	153.1 147	159.8 154	165.3 160.5	170.4 166.5	175.5 171.5	179.9 176.5	184.7 181
27			95.1 92.5	111.4 106.5	123.1 118.5	133.7 128	142.3 136.5	150.0 143.5	156.6 150.5	162.1 157	167.2 162.5	172.4 168	176.7 172	181.5 177.5
27.66	25	.904	93.0 90.0	109.4 104.0	121.0 116.5	131.7 126	140.1 134	147.9 141.5	154.5 148.5	159.9 154.5	165.1 160.5	170.3 165.5	174.4 171	178.9 175
28	•••	••••	92.0 89.0	108.3	120.0 115	130.6 124.5	139.1 132.5	146.8 140	153.4 147	158.9 153.5	164.0 159	169.3 163	173.3 169.5	177.9 173.5
29	•••	•••	88.9 86.0 87	105.2 99.5	117.0 111.5	127.5 121	136 129	143.8 136.5	150.3 143	155.8 149.5	161 155	166.2 160.5	170.2 165	174.8 170
29.60	26	.898	83.5 85.8	103.3 97.5 102.1	114.7 109.5	125.4 119	133.9 127	141.6 134.5	148.2 141	153.8 147	159 152.5	164.3 158	168.1 163.5	172.7 167.5
30	•••	• • •	82.5 82.6	96.5 98.8	113.5 108 110.2	124.2 117.5 120.9	132.7 125.5	140.4 133	147 139.5	152.6 146	157.8 152	163.1 157	166.9 162	171.8 166
31. 05	27	.891	79.0 80.1	93.0 96.2	104.5 107.6	114 118.3	129.4 122 126.8	137.1 129.5 134.5	143.5 136 140.9	149.2 142	154.5 148	159.8 153	163.6 158.5	168.3 162.5
32	•••	•••	76.0 77.4	89.5 93.5	101 104.9	110.5 115.6	118.5 124.1	126 131.8	132.5 138.7	146.6 138.5 143.9	151.9 144.5	157.2 149.5	161.0 154.5	165.7 159
33	•••	•••	73.0 76.5	86.5 92.6	98 103.9	107 114.6	115.0 123.1	122.0 130.8	129 137.8	135 143	149.2 140.5 148.3	154.5 146 153.6	158.3 151.5	163.0 155.5
33.25	28	.886	72.0 74.6	85.5 90.7	97 102	106.5 112.7	114.5 121.2	121.5 128.9	128 135.9	134 141.1	140 146.4	155.6 145 151.7	157.4 150.0	162.1 154.5
34	***		69.5 72	83.0 88.1	94.5 99.4	104.0 110.1	111.5 118.6	119 126.3	125.5 133.3	131.5 138.5	137.5 143.8	142.5 149.1	155.5 147.5 152.9	160.2 152
35			67.5 70.4	80.0 86.5	91.5 97.8	100.5 108.5	108.5 117	115.5 124.7	122 131.7	128 137.9	134.0 142.2	139	144	157.6 148.5
35.60	29	.881	64.5	78.0 85.6	89 96.9	98.5 107.5	106 116.1	113.5 123.8	120 130.8	126 137.0	132 141.7	147.5 136.5 147.2	151.3 142 151.0	156.0 146
36	•••	•••	63.5 67.2	77 83.3	88 94.6	97 105,2	105 113.8	112.5 121.5	118.5 128.5	124.5 134.7	130 140.7	135 146.8	140 150.2	155. 7 145
37	•••	•••	60.5 65.0	73.3 81.0	85.0 92.3	94 104.9	101.5 111.5	108.5 119.2	115.0 126.2	121.5 132.5	127 138.4	132 143.9	137 149.4	154.9 141 154.0
38			57.5 64.5	70.5 80.5	81.5 91.8	90.5 102.5	98.5 111.0	105.5 118.7	112 125.7	117.5 132	123.5 138.1	138.5 143.6	133.5 149.3	137.5
38.20	30	.875	56.5	70.0	81.0	90	97.5	105	111.5	117.0	123.0	127.5	133	153.9 137.0

XLIV—Continued

AMMONIA, IN WATER

AND PER CENT NH₃ IN SOLUTION

BOVE	ONE ST	ANDARI	о Атмо	SPHERE								ifio ity.	ees né.	Sent by bt.
60	65	70	75	80	85	90	95	100	105	110	115	Specific Gravity.	Degrees Baumé.	Per Cent NH ₃ by Weight.
211.3 209.5	215.6 214	219.8 218	223.8 221.5	227.6 225	231.2 229.5	234.6 233	237.9 236	241.1 239	244.2 242	$247.2 \\ 245.5$	250.1 248	.928	21	19.87
210.8	215.2	219.3	223.4	227.1	230.7	234.1	237.4	240.7	243.8	246.7	249.6			
209	213.5	217.5	221	224.5	229	232.5	235.5	238.5	241.5	245	247.5	•••	• • •	20
207.1	211.5	215.6	219.7	223.3	227	230.4	233.7	237	240.1	243	245.9			21
205	209.5	213.5	217.5	221	224.5	227.5	231	234.5	237.5	240.5	243.5	•••	,	
204.1	208.4 206.5	212.6 210.5	216.6 214	220.4 218	224 221.5	227.4 225.5	230.7 228.5	233.9 232	237 234.5	240 237.5	242.9 240.5	.921	22	21.7
203.2	207.5	211.7	215.7	219.5	223.1	226.5	229.8	233	236.1	239.1	242			
201	205.5	209.5	213	215	220.5	224.5	227	230.5	233	236.5	239.5	• • • •	•••	22
199	203.3	207.5	211.5	215.3	218.9	222.3	225.6	228.8	231.9	234.9	237.8	.915	23	23.03
196.5	201.5	205	209	211	216.5	220	223	226.5	229	232.5	235	.510	23	23.00
195.8	200.1	204.2	208.3	212.1	215.7	219.1	222.4	225.6	228.7	231.7	234.6			24
193 192.2	197.5 196.5	201.5	205 204.7	207 208.5	212.5 212.1	216 215.5	219 218.8	222.5 222	225 225.1	228.5 228.1	231 231			
188.5	193	197.5	201.5	205	208.5	212	215.0	218.5	221.5	224.5	227	.909	24	24.99
189.1	193.3	197.5	201.6	205.3	208.9	212.2		218.9	221.9	225	237.8			00
185.5	190	194	197.5	201.5	205	208	211.5	214.5	271.5	220.5	223.5	• • •	• • • •	26
185.9	190.2	194.3	198.4	202.2	205.7	209	212.5	215.8	218.7	221.8	234.7			27
181.5	186	190	194	197.5	201	204.5		210.5	213.5	216.5	219.5		l	ļ ~·
183.3	187.6	191.8	195.8	199.6	203.2	206.6		213.1	216.2	219.2	222.1	.904	25	27.6
179	183.5	187.5	191.5	195	198.5 202.2	202 205.6	205.5 208.8	208.5 212.1	211 215.1	214.5 218.2	217 221.0			;
183.2 177.5	186.6 182	190.7 186.5	194.8 190	198.5 193.5	197.5	200.5	204	207	210	212.5	215.5			28
180.2	183.5	187.6	191.8	195.4	199.1	202.6	205.7	209.0	212.1	215.1	217.9			00
174	178	182.5	186	190	193.5	196.5	200	203	206	209	211.5	• • • •	- • •	29
178.1	181.4	185.6	189.6	193.4	197.0	200.4	203.7	206.9	210	213.0	215.9	.898	26	29.60
171.5	176	180	184	187.5	191	194.5	198	201	203.5	207	209.5		-	
176.9	180.2	184.4	188.4	192.2	195.8 189.5	199.2 192.5	202.5 196.5	205.7 199.5	208.8	211.8 205	214.7 208		. . .	30
170 173.5	174.5 177.0	179 181.2	182.5 185.2	186 189.0	192.6	192.5	190.3	202.5	206.6	209.6	212.5			
166.5	171	174.5	178.5	182.5	185.5	189	192.5	195.0	198.0	201	204.5	.891	27	31.0
170.9	174.4	178.6	182.6	186.4	190	193.4	196.7	199.9	204	207	209.9			32
163	167	167.5	175	178.5	182	185.5	1	192	194.5	197.5	200.5	•••	•••	32
168.2		175.9	179.9	183.7	187.3	190.7		197.2		204.3	207.2			33
159.5	163.5	163.5	171.5 179	175 182.8	178.5 186.4	181.5 189.8	185 193.1	188 196.3	191.0 200.4	194 203.4	196.5 206.3			ŀ
157.3 169.0	170.8 163	175 162.5	179	174.5	177.5	180.5	184	187.5	190	193	196.0	.886	28	33.2
165.4	ı	173.1	177.1	180.9	184.5	187.9		195.4	198.5	201.5	204.4	1	ļ	
156	160	160	168	171.5	175.5	178	181.5	184.5	187.5	190	193.0	• • • •	• • • •	34
162.8	166.3	170.5	174.5		181.9	185.3			195.9	198.9	201.8			35
152.5		156.5	164	168	171.0	174	177.5	180.5	183.5	187	189.5		***	"
161.2	1	168.9	172.9	176.7	180.3	183.7		191.2	194.3	197.3	200.2 187	.881	29	35.6
150.5		154.5	163 172.7	165.5 176.5		172 183.5	175.5 186.8	178.5 191	181.0 193.9	184.5 196.9	199.8			
160.8 149.0	1	168.7 153.0	160.5	160.5		170.5		177.0		182.5	185.5		• • • •	36
159.7		167.9	171.9		ı	182.7				195.8	198.7			977
145.5	1	149.5	157	153	164.0	167	170.5	4	176.0	179.5	182.0	• • • •	• • • •	37
158.6		167.1	171.1		178.5		4	1		194.7	197.6			38
142	146	146	153.5		160.5	1		1	172.5	175.5	178.5	1		~
158.3		167	171.0					1		194.4	197.3 178	.875	30	38.2
141.5	145.5	145.5	153	149.5	160	163	166	169.5	172	175	1/8		1	

TABLE XLV

AMMONIA—WATER SOLUTIONS

VALUES OF PARTIAL PRESSURES OF AMMONIA AND WATER VAPOR FOR VARIOUS TEMPERATURES AND PER CENTS OF AMMONIA IN SOLUTION

Per cent NH ₄	1	2.5			2.5				E	5.0			7.	5	
Temperature ° F.	Partial Pressure of Ammonia Vapor.	Partial Pressure of Water Vapor.	Total Pressure Sum of Partials.	Total Pressure from New Standards.	Partial Pressure of Ammonia Vapor.	Partial Pressure of Water Vapor.	Total Pressure Sum of Partials.	Total Pressure from New Standards.	Partial Pressure of Ammonia Vapor.	Partial Pressure of Water Vapor.	Total Pressure Sum of Partials.	Total Pressure from New Standards.			
H H	. 1	Press. Inc	hes Hg			Press. In	aches Hg		1	Press. In	ches Hg				
32. 35.6 39.2 42.8 46.4 50.0 53.6 57.2 60.8 71.6 75.2 78.8 82.4 86.8 93.2 96.8 100.4 104.0 111.2 114.8 118.4 122.0 125.6 129.2 132.8 140.4	.236 .256 .276 .276 .295 .315 .354 .394 .434 .492 .552 .611 .670 .729 .807 .885 .985 1.085 1.181 1.455 1.811 1.970 2.15 2.320 2.520 2.740 2.955 3.37	1.177 .197 .236 .276 .315 .355 .413 .472 .590 .670 .748 .847 .945 1.06 1.2 1.36 1.515 1.69 1.89 2.125 2.95 3.21 3.54 3.88 4.29 4.73 5.21 5.77	.413 .453 .512 .571 .630 .709 .807 .902 1 .142 1 .281 1 .318 1 .575 2 .185 2 .145 2 .185 2 .445 2 .695 2 .97 3 .27 3 .586 6 .400 7 .030 7 .685 8 .36 9 .14	1.3 1.5 1.8 2.1 2.5 3.3 4.6 5.2 6.4 7.8 8.2 9	.512 .571 .591 .650 .709 .788 .866 .965 1.18 1.319 1.455 1.592 1.75 1.925 2.125 2.30 2.301 3.29 2.725 3.01 3.29 4.23 4.58 3.90 4.23 4.96 5.35 5.80 6.27 7.2	.158 .197 .236 .276 .315 .355 .394 .452 .511 .590 .649 .728 .826 .925 1.043 1.180 1.34 1.495 1.672 1.870 2.085 2.815 3.11 3.80 4.22 4.65 5.11 5.63	.670 .768 .827 .926 1.024 1.343 1.260 1.417 1.578 2.183 2.418 2.675 2.968 3.305 3.64 4.015 4.397 4.880 5.375 5.375 5.375 5.469 8.40 9.15 10.02 10.90 11.84	1.6 1.9 2.2 2.26 3.5 3.5 4.5 5.2 6.5 7 7.8.5 9 10.11 112.9	7.89 8.55 9.25 9.89 10.06	.158 .197 .216 .295 .335 .374 .433 .473 .552 .611 .689 .786 .985 1.122 1.435 1.615 1.81 2.03 2.765 3.37 3.70 4.5 4.98 5.49	.946 1.064 1.161 1.297 1.455 1.615 1.789 2.008 2.223 2.477 2.736 3.029 3.368 4.075 4.612 4.98 5.035 6.63 7.305 8.68 9.54 10.38 9.54 11.26 12.25 13.32 14.39 11.504 16.94	1.68 2.15 2.59 3.69 4.18 5.58 6.73 8.84 101.3 112.24 115.9			
		10				12	.5			18	5				
32 35.6 39.2 42.8 46.4 50 53.6 57.2 60.8 64.4	1.21 1.24 1.36 1.495 1.67 1.87 2.05 2.28 2.52 2.79	.158 .177 .197 .236 .276 .315 .355 .413 .472 .532	1.368 1.417 1.557 1.731 1.946 2.185 2.405 2.405 2.992 3.322	1 1.5 1.5 1.7 1.9 2 2.4 2.9 3 3.4	1.58 1.72 1.89 2.09 2.31 2.56 2.82 3.12 3.45 3.82	.138 .157 .177 .217 .256 .295 .335 .394 .453 .512	1.718 1.877 2.067 2.307 2.566 2.855 3.155 3.514 3.903 4.332	1.5 1.8 2.1 2.5 2.8 3 3.3 3.7 4	2.11 2.3 2.54 2.79 3.07 3.41 3.76 4.14 4.55 5.02	.138 .157 .177 .217 .256 .295 .335 .374 .433 .492	2.248 2.457 2.717 3.007 3.326 3.705 4.095 4.514 4.983 5.512	2 2.5 2.8 3 3.2 3.8 4.1 4.7 5.5			

Table XLV—Continued

Psr cent		10							il	-		
Psr cent NH:		10				12	.5			1	5 	
Tempersture ° F.	Partial Pressure of Ammonia Vapor.	Partial Pressure of Water Vapor.	Total Pressure Sum of Partials.	Total Pressure from New Standards.	Partial Pressure of Ammonia Vapor.	Partial Pressure of Water Vapor.	Total Pressure Sum of Partials.	Total Pressure from New Standards,	Partial Pressure of Ammonia Vapor.	Partial Pressure of Water Vapor.	Total Pressure Sum of Partials.	Total Pressure from New Standards.
Ten	:	Press. In	ches IIg			Press. In	ches Hg			Press. In	ches Hg	
68 71.6 75.2 78.8 82.4 86 89.6 93.2 96.8 100.4 104.0 107.6 111.2 114.8 118.4 122.0 125.0 129.2 132.8 136.4	3.09 3.4 4.09 4.49 5.35 5.86 6.37 6.94 7.5 8.19 9.6 10.38 11.20 512.95 12.95 13.95 16.5	.590 .670 .767 .847 .965 1.1 1.24 1.555 1.75 1.95 2.165 2.2.42 2.68 2.97 3.25 3.25 3.96 4.37 4.81 5.29	3.680 4.070 4.507 4.937 5.455 6.0 6.59 7.26 7.925 8.69 9.45 10.355 11.35 12.28 13.35 14.47 15.63 16.91 18.32 19.81 21.79	3.8 4.6 5.4 6.1 6.8 7.9 8.8 9.5 10.4 11.2 13.3 14.5 115.5 120.2 21.2	4.22 4.61 5.04 5.55 6.08 6.66 7.26 8.63 9.38 10.18 11.09 12.88 13.85 14.95	.571 .65 .729 .827 .926 1.04 1.132 1.47 1.67 1.87 2.07 2.32 2.56 2.83 3.13	4.791 5.26 5.769 6.377 7.006 7.70 8.44 10.10 11.05 12.05 13.09 14.22 15.44 16.68 18.08	5.4 6.6 7.8 8.5 9.3 10 11 12 13 14.4 15.7 17	5.55 6.1 7.33 7.98 8.66 9.5 10.35 11.28 12.25 13.22 14.30 15.45 16.62 17.9 19.3	.552 .631 .71 .81 .906 1.005 1.12 1.26 1.42 1.59 1.77 1.98 2.24 2.69 2.97	6.102 6.731 7.41 8.14 8.886 9.665 10.62 11.61 12.70 13.84 14.99 16.25 19.06 20.59 22.27	6 7.7 7.6 8 8.9 9.9 10.7 11.9 12.8 13.9 15.3 17.8 19 20.6 22.2
		17	. 5	,,		:	20			22	.5	
32 35.6 39.2 42.8 46.4 50 57.2 60.8 64.4 68 71.6 75.2 78.8 82.4 86 89.6 93.2 96.8 100.4 0.107.6	2.72 3.0 3.29 3.62 4.02 4.87 5.36 5.92 6.5 7.13 7.8 8.55 9.33 10.1 12.1 13.2 14.35 15.6 16.95 18.45	.138 .157 .177 .217 .256 .295 .335 .374 .433 .492 .552 .631 .71 .788 .866 .966 1.08 1.22 1.36 1.55 1.67	2.858 3.157 3.467 3.837 4.276 5.205 5.734 6.353 6.992 7.682 8.431 9.26 17.118 11.066 12.066 13.18 14.24 15.71 118.62 20.30	3.1 3.5 4.8 4.8 5.9 6.5 7.8 9.3 10.3 11.4	3.46 3.84 4.22 4.65 5.12 6.8 7.49 8.2 9.0 9.85 10.75 11.75 13.9 15.05 16.30 17.75 21.05	.118 .138 .158 .177 .256 .295 .335 .394 .453 .512 .571 .65 .73 .85 .905 1.14 1.26 1.4 1.55 1.71	3.578 3.978 4.378 4.827 5.387 5.886 6.495 7.135 7.884 8.653 9.512 10.421 11.40 12.48 13.60 14.805 16.19 17.56 19.15 20.90 22.76	3.5 4.3 4.9 5.19 6.4 7.11 7.86 9.5 10.3 11.5 12.4 13.6 15 16.1 17.9 20.6 22.3	4.37 4.85 5.33 5.86 6.43 7.07 7.74 8.48 9.3 10.18 11.12 12.15 13.25 14.45 17.40	.118 .138 .158 .177 .236 .275 .315 .354 .453 .512 .571 .65 .729 .807	4.488 4.988 5.488 6.037 6.627 7.306 8.015 8.795 9.654 11.573 12.662 13.821 15.10 16.579 18.207	4.6 5.9 7.3 8.9 9.7 10.8 12.9 14.2 17.18

Table XLVI ABSORPTION OF GASES BY LIQUIDS

Selected from Smithsonian Physical Tables.

Values of $x_i =$ volume of gases referred to 32° F. and 29.92 ins. Hg which one volume of water can absorb at atmospheric pressure and temperature of first column.

Temp	erature.	CO2.	c o.	H.	N.	0.	Air.	NHs.	H₂S.	Me-	Ethy-
° C.	° F.			п.	N.	——————————————————————————————————————	Air.	NH3.	1125.	thane.	lene.
0	32	1.797	.0354	.02110	.02399	.04925	.02471	1174.6	4.371	.04573	.2563
5	41	[1.450]	.0315	.02022	.02134	.04335	.02179	971.5	3.965	.04889	.2153
10	50	1.185	.0282	.01944	.01918	.03852	.01953	840.2	3.586	.04367	.1837
15	59	1.002	.0254	.01875	.01742	.03456	01795	756.0	3.233	.03903	. 1615
20	68	. 901	.0232	.01809	.01599	.03137	.01704	683.1	2.905	.03499	.1488
25	77	.772	.0214	.01745	.01481	.02874		610.8	2.604	.02542	
30	86		.0200	.01690	.01370	.02646		٠			
40	104	.506	.0177	.01644	.01195	.02316			1		
50	122		.0161	.01608	.01074	.02080					
100	212	.244	.0141	.01600	.01011	.01690	<i>.</i>				
			Į		1						

TABLE XLVII
ABSORPTION OF AIR IN WATER (WINKLER, 1904)

Air free of CO2 and NH2 measured at 29.92 ins. and 32° F.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temper- ature. ° C.	Cu.ft. Oxygen at 29.92 ins. Hg per 1000 cu.ft. water.	Cu.ft. Nitrogen per 1000 cu.ft. water.	Sum of Oxygen and Nitrogen.	Temper- ature. °C.	Cu.ft. Oxygen at 29.92 ins. Hg per 1000 cu.ft. water.	Cu.ft. Nitrogen per 1000 cu.ft. water.	Sum of Oxygen and Nitrogen.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							20.14 19.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.64	18.05	27.69	18	6.61	12.77	19.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			17.60	26.99	19	6.48	12.54	19.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	9.14	17.18	26.32	20	6.36	12.32	18.68
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		16.77	25 .68	21	6.23	12.11	18.34
8 8.26 15.64 23.90 24 5.89 11.49 17. 9 8.06 15.30 23.36 25 5.78 11.30 17. 10 7.87 14.97 22.84 26 5.67 11.12 16.° 11 7.68 14.65 22.33 27 5.56 10.94 16.° 12 7.52 14.35 21.87 28 5.46 10.75 16.° 13 7.35 14.06 21.41 29 5.36 10.56 15.° 14 7.19 13.78 20.97 30 5.26 10.38 15.°	6					6.11	11.90	18.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7				23	6.00	11.69	17.69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8				24	5.89	11.49	17.38
11 7.68 14.65 22.33 27 5.56 10.94 16. 12 7.52 14.35 21.87 28 5.46 10.75 16. 13 7.35 14.06 21.41 29 5.36 10.56 15. 14 7.19 13.78 20.97 30 5.26 10.38 15.4					25	5.78	11.30	17.08
12 7.52 14.35 21.87 28 5.46 10.75 16.3 13 7.35 14.06 21.41 29 5.36 10.56 15.4 14 7.19 13.78 20.97 30 5.26 10.38 15.4						5.67	11.12	16.79
13					27	5.56	10.94	16.50
14 7.19 13.78 20.97 30 5.26 10.38 15.4						5.46	10.75	16.21
10.00						5.36	10.56	15.92
					30	5.26	10.38	15.64
15 7.04 13.51 20.55	15	7.04	13.51	20.55				

TABLE XLVIII

AIR REQUIRED FOR COMBUSTION FOR VARIOUS SUBSTANCES

(Combustion complete in every case except for C burning to CO)

	Substance		Substance ires Air	1 Cu. Ft. of Substance (Standard) Requires Air		
		Lbs.	Cu.Ft. Standard	Lbs.	Cu.Ft. Standard.	
Carhon,	C to CO2	11.55	143.10	ı		
Carbon,	C to CO	5.77	71.55			
Hydrogen,	H_2	34.64	429.19	. 193	2.39	
Carbon monoxide	, CO	2.47	30.6	.193	2.39	
Sulphur,	S	4.32	53.52			
Methane,	СН	17.32	214.59	.774	9.59	
Ethane,	C_2H_5	16.16	200.22	1.354	16.73	
Ethylene,	C ₂ H ₄	14.85	183.99	1.157	14.34	
Acetylene,	C_2H_2	13.32	165.07	.964	11.95	
Propane,	C ₈ H ₈	15.75	195.14	1.929	23.90	
Propylene,	$\mathbf{C}_3\mathbf{H}_6\dots\dots\dots$	14.85	183.99	1.736	21.51	
Allylene,	C _b H ₄	13.86	172.73	1.543	19.12	
Butane,	C ₄ H ₁₀	15.53	192.42	2.508	31.07	
Butylene,	C ₄ H ₈	14.85	183.99	2.315	28.68	
Pentylene,	$\mathbf{C}_{\mathbf{b}}\mathbf{H}_{10}$	14.85	183.99	2.890	35.85	
Hexane,	$\mathbf{C}_{5}\mathbf{H}_{14}$	15.22	188.58	3.66	45.45	
Benzole,	$\mathbf{C_6H_6}$	13.32	165.07	2.89	35.84	
Heptane,	C_7H_{16}	15.24	188.85	4.243	52.58	
Methyl alcohol,	CH ₃OH	6.49	80.47	.58	7.17	
Ethyl alcohol,	C_2H_bOH	9.04	111.96	1.17	14.34	
				ì		

TABLE XLIX
RADIATION COEFFICIENTS

	Radiating and Absorbing Powers.	Reflecting Power.
Porous carbon (black body)	1.00	0.00
Glass	.90	.10
Ice	.85	.15
Polished cast iron		.75
Wrought iron polished	.23	.77
Steel polished		.81
Brass polished		.93
Copper hammered		.93
Silver polished		.97

$\begin{array}{c} \textbf{Table L} \\ \textbf{COEFFICIENTS OF HEAT TRANSFER} \end{array}$

AVERAGE PRACTICE

Thermal Action	in Substances.	B.T.U. per Hour per Square Foot per	Apparatus.
Giving Up Heat.	Receiving Heat.	Degree.	
	Liquid warming	50–75	Liquid heat exchangers, aqua ammonia water and beer coolers, ammonia absorber cooling coils
Liquid cooling	Gas warming	2-6	Hot-water radiators and cool- ing tower surfaces, depending on air velocity and character of water surface
	Liquid boiling	100 10–20 30–50	Shell brine coolers with circulator; tank brine coolers without circulator; double pipe brine coolers depending on velocity and hot liquid evaporators
	Liquid warming	2–5	Brine coolers in cold storage rooms depending on air circu- lation. Air coolers with water or brine coils; econo- mizers
Gas cooling	Gas warming	2–4	Steam superheaters
	Liquid boiling	2–5	Direct expansion ammonia coils in cold storage rooms de- pending on air circulation. Steam boilers
V	Liquid warming	150–350 1000	Feed-water heaters and steam condensers depending on wa- ter velocity and removal of air on steam side. Experi- mental feed-water heater high velocity
Vapor condensing	Gas warming	2-4	Steam radiators and pipes
	Liquid boiling	400-600	Vacuum evaporators with con- densing exhaust steam de- pending on viscosity of solu- tion

TABLE LI

DOLT AND	B.T.U. per Cu.ft. at 32° F. and 29.92 ins. Hg.			344 341 292	341 338 341		1066 959
TED FROM LAN HERMO-CHEMIST	Authority for Volume.			Rayleigh	Ledoux		Thomsen
OS, SELEC MSEN'S T	Cu.ft. per Lb. at 32° F. and 29.92 ins. Hg.			177.9093	12.8090		22.349
EMICAĽ COMPOUNI V TABLES AND THC	Authority for B.T.U. per Lb.	Favre and Silberman Berthelot Berthelot Favre and Silberman Berthelot	Favre and Silberman Berthelot Calc. from Thomsen	Thomsen Andrews Favre and Silberman Calc. from Thomsen Calc. from Thomsen Favre and Silberman	Thomsen Favre and Silberman Andrews	Thomsen Berthelot Thomsen	Thomsen Berthelot Calc. from Thomsen Calc. from Thomsen
AND CH	B.T.U. per Lb.	14544 14647 14222 14033 14146	4451 4480 4351	61200 60854 61477 60626 51892 51717	4369 4 325 4376	3998 3897 5810	23841 24017 23646 21463
F COMBUSTION OF FUEL ELEMENTS AND CHEMICAL COMPOUNDS, SELECTED FROM LANDOLT BÖRNSTEIN, MEYERHOFFER AND SMITHSONIAN TABLES AND THOMSEN'S THERMO-CHEMISTRY	Products.	² 00	00 00	H ₂ O liquid 64° F. (, 90° F. (, 64° F. 212° F. vapor 212° F.	,,, ,,,	SO ₂ gas '' '' SO ₃ liquid	CO ₃ and H ₂ O liquid 64° F. '' 64 '' 212 '' vapor 212
HEATS OF COMBUSTION BÖRNSTEIN, M	Substance.	Carbon, C. Carbon, C. Graphite, C. Graphite, C. Graphite, C.	Carbon, soft, C	Hydrogen, H ₂	Carbon monoxide, CO:	Sulphur, S:	Methane, CH4:

TABLE LI-Continued

HEATS OF COMBUSTION OF FUEL ELEMENTS AND CHEMICAL COMPOUNDS, SELECTED FROM LANDOLT AND BÖRNSTEIN, MEYERHOFFER AND SMITHSONIAN TABLES AND THOMSEN'S THERMO-CHEMISTRY

Froducts. per Lb. per Lb.
CO ₂ and H ₂ O liquid 64 20674 Favre and Silberman (212 * 20516 Calc. from F. & S. (212 * vapor 212 19268 Calc. from F. & S.
liquid 64 20745 Stoleman t 212 20610 Calc. from Stoleman vapor 212 19195 Calc. from Stoleman
liquid 64 18094 Berthelot t 212 17976 Calc. from Berthelot vapor 212 17305 Calc. from Berthelot
liquid 64 20741 Stoleman '' 212 20640 Calc. from Stoleman vapor 212 19230 Calc. from Stoleman
liquid 64 10250 Thomsen ii 64 9596 Berthelot ii 212 10203 Calc. from Thomsen vapor 212 9113 Calc. from Thomsen
iiquid 64 13325 Thomsen 64 12748 Berthelot 62 212 13246 Calc. from Thomsen 7apor 212 12100 Calc. from Thomsen

* The value at 212° F. based on specific heat calculated by means of atomic weight, † Approximate molecular weights used,

TABLE LII

INTERNAL THERMAL CONDUCTIVITY

Adapted from Landolt, Börnstein, Meyerhoffer, and Smithsonian Physical Tables and Professional Papers.

Total mondants	the state of the s		
Substance.	Small Calories per Second per Sq.em. per Degree C. per Cm. Thick.	B.T.U. per Hour per Sq.ft. per Degree F. per Inch Thick = K.	Authority.
Iron	.1665(1000228t) .209(100147t) .197(10002t) .175(10015t) ← .199(100287t) .1528 at 28° C. .1627 at 100° C.	483 [1000127(t-32)] 606 [100082(t-32)] 571 [1000011(t-32)] 507 [100083(t-32)] 577 [100159(t-32)] 443 at \$2.° F. 472 at \$12.° F.	Lorenz Forbes Tait Stewart Augstrom Hall
Copper	.7189(1+.000051 t) \leftarrow .71 (+.0014 t) 1.08 (1+.0013 t) 1.027 (100214 t) .983 (10015 t) 1.12 (1001 t)	$egin{array}{ll} 2080[1+.0000278(t-32)] & 2060[1+.000788(t-32)] & 3130[1+.000722(t-32)] & 2980[100119(t-32)] & 2850[1000845(t-32)] & 3250[100055(t-32)] & \end{array}$	Lorenz Tait Tait Augstrom Stewart
$\begin{aligned} \mathbf{Brass} & \left\{ \begin{aligned} \mathbf{Yellow} \\ \mathbf{Red} \\ \mathbf{Hard} \end{aligned} \right. \\ \mathbf{Steel} & \left\{ \begin{aligned} \mathbf{Soft} \\ \mathbf{Dessemer} \end{aligned} \end{aligned} \end{aligned}$.2041(1+.003445t) .2460(1+.001492t) .0620 .1110 \leftarrow .0964 at 15° C.	592 $[1+.00136(t-32)]$ 713 $[1+.000892(t-32)]$ 180.0 322.0 279.5	Lorenz Lorenz Kohlrausch Kohlrausch Kirchhoff
Aluminum Lead Tin Zinc Zinc Zinc Zinc Silver (highest of all)	.3435(1+.0005356t) .0836(1000861t) .1528(1000687t) .1528 at 15° C. ← .2653 at 18° C. 1.0960	966 [1+.0002980(t-32)] 242.5[1000479(t-32)] 443 [1000382(t-32)] 443 770 3180	Lorenz Lorenz Lorenz Kirchhoff and Hansem Jaeger and Diesselhorst Weber

The \rightarrow indicates direct measurements which correspond most closely to the probable real value.

Table LII—Continued

1 100 1 100 1 100 100 100 100 100 100 1	Authority.
9.58 15.65	Average
13.6-16.2	Herschel, Lebour, Dunn
2.06	Lees Chorlton
2.03	Lees Chorlton
.958 dry; 4.64 wet	Lees Chorlton
2.7	Herschel, Lebour, Dunn
.58	Herschel, Lebour, Dunn
.812	Hutton, Bland
1.32	Forbes
3.19 to 6.68	Averages
.377	Hutton, Bland
	Weber
6.47; 16.48	Forbes, Newman
1.48	Hjeltström
.348	Forbes
.871	Forbes
1.305	Forbes
1.245	Lees Chorlton
. 435	Lees Chorlton
. 252	Forbes
.125	Forbes
7960.	Forbes
.348	Forbes
.122	Forbes
2.08	Forbes
1.22	Lees Chorlton
	0036 0047 to -0056 00671 0071 00073 dry: .0016 wet 00093 00028 00028 00028 00028 0001 to .0023 0001 to .0026 0001 to .00568 00012 00012 0003 00045 00045 00045 00045 00045 00045 00045 00048

Table LII—Continued

Substance,	Small Calories per Second per Sq.om, per Degree C. per Cm. Thick.	B.T.U. per Hour per Sq.ft. per Degree F. per Inch Thick = K.	Authority.
Liquids Water	.00120 at 0° C. ← .00136 from 9° C. to 15	3.48	Weber Weber
	.00129 at 4° C.	3.74 3.6	Wachsmuth
	.00157 at 30° C.	4.56	Graetz
	.00222 at 108° C.	6.45	Lundquist
Methyl alcoholEthyl alcohol	.000495 from 9° C. to 15 .000423 from 9° C. to 15	1.435	Weber
Ethyl alcohol and water 50%	.0008 at 25° C.	2.32	Lees
Benzole	.000333 from 0° C. to 15 .000355 at 13° C.	.972 1.03	Weber Graetz
Gases	$.0000568(1+.0019t)$ $.0000484 \leftarrow$ $.0000569$ $.000072$.165[1+.000106(t-32)] .1405 .165 .209	Winkelmann Graetz Schwarze Schleiermacher
Ammonia Ethylene Hydrogen Hydrogen Nitrogen Oxygen Methane Carbon monoxide	.0000389(1+.0026t) .0000395(1+.00445t) .000327 (1+.00175t) ← .000319 at 0° C0000524 from 7° C. to 8 .000053 from 7° C. to 8 .000047 .0000499 at 0° C0000499 at 0° C.	.113 [1+.00144(t-32)] .1145[1+.00248(t-32)] .95 [1+.000974(t-32)] .926 .152 .163 .188 .145	Schwarze Winkelmann Winkelmann Eckerlein Winkelman Winkelmann Winkelmann

TABLE LIII

RELATIVE THERMAL CONDUCTIVITY

Substance.	Conductivity Carbon Dioxide = 1.	Resistance = $\frac{1}{\text{Conductivity}}$ Silver = 1.
Iron.	5700	5.23
Iron (Wiederman and Franz)	4165	8.60
Copper	23000	1.52
Copper (Wiederman and Franz)	25760	1.36
Steel	3600	9.74
Steel (Wiederman and Franz)	4165	8.60
Aluminum	11000	3.18
Lead	2700	12.95
Lead (Wiederman and Franz)	2975	11.75
Tin	5000	7
Tin (Wiederman and Franz)	5320	6.58
Zinc	5000	7
Zinc (Wiederman and Franz)	9835	3.56
Silver	35000	1
Slate	117	300
Granite and sandstone	176	199
Marble, limestone, etc	153-182	228-192
Portland cement	23.2	1511
Plaster of Paris	22.8	1531
Soil	10.7 dry; 52.2 wet	3270 dry; 6700 wet
Sand, white dry	30.4	1150
Chalk	6.52	5370
Firebrick	9.12	3840
Carbon	13.2	2650
Glass	35.8 to 75	978 to 467
Diatomic earth	4.24	8260
Paraffine	7.50 at 0° C. to	4670 at 32° F. to 637 at 212°
	55.0 at 100° C.	
Ice	72.7; 18.5	481; 189.0
Sawdust	3.92	8940
Snow, packed	16.6	2110
Woods	9.8 w.g.; 2.94 a.g.	3570 with grain; 11900 ac.gr
Strawboard	9.8	3570
Pasteboard	14.7	2380
Asbestos paper	14.0	2500
Blotting paper	4.9	7150
Felt	2.84	12300
Cotton wool	1.4	25000

TABLE LIII—Continued RELATIVE THERMAL CONDUCTIVITY

Substance.	Conductivity Carbon Dioxide = 1.	Resistance = $\frac{1}{\text{Conductivity}}$ Silver = 1.
Cotton wool, pressed	1.08	32400
Flannel	3.92	8930
Haircloth	1.37	25600
Cork	2.34	1495
Leather, cowhide	13.7	2560
Water	39.09	896
Methyl alcohol	16.12	2170
Methyl alcohol (De Heen)	10.70	3270
Ethyl alcohol	13.78	2540
Ethyl alcohol (Henneberg)	12.07	2900
Ethyl alcohol 90% (Henneberg)	12.53	2990
Ethyl alcohol (Henneberg)	21.22	1650
Benzole	10.83	3240
Benzole (Weber)	11.25	3100
Petroleum	11.56	3030
Air	1.85	18900
Ammonia	1.27	27600
Ammonia (Plank)	1.7	20600
Ethylene	1.28	27400
Ethylene	1.37	2960 -
Hydrogen	10.65	3280
Hydrogen (Stefan)	12.97	2960
Hydrogen (Kindt and Warberg)	13.14	7100
Nitrogen	1.71	20450
Oxygen	1.83	19100
Oxygen (Stefan)	1.89	25500
Methane	2.30	15200
Methane (Stefan)	2.57	18500
Carbon monoxide	1.62	21600
Carbon monoxide (Kindt and Warberg)	1.81	19300
Carbon dioxide	1.00	35000
Carbon dioxide (Stefan)	1.15	30400
Carbon dioxide (Kindt and Warberg)	1.09	32100
Illuminating gas (Plank)	4.94	13600

TABLE LIV
COMPARISON OF CELLULOSE AND AVERAGE WOOD (DRY AND ASH FREE)

Constituent.	Cellulose.	Wood, Average of Maple, Oak, Pine, Willow.	Spores of Club Moss.
Carbon	6.17%	49.2% 6.1%	63.0% 8.6%
Oxygen and nitrogen	, ,	44.7%	28.4%

TABLE LV

		1.45		Proximate	ate.				Ultimate.	ate.			B.T.U.	B.T.U. per Lb.
Š	Name, Source, Size, Authority.	Total H	Mois- ture.	Vola- tile.	Fixed C.	% Ash.	% H ₂ .	% v	% % .:	°, °,	% vi	% Ash.	By Calo- rimeter.	By Calcu- lation.
1	Anth. de la Mare, Grand Couche, France, Mahler.	63.3	4.4	2.5	88.4	4.7	1.37	86.56	:	2.97		7	13449	13420
01 0		52.31	.84	6.67	6.6785.66	6.83	1.73 90.66	99.06	:	22	: :	6.83	14025	14235
% ₹	Anth. Pennsylvania, Mahler	43.35	3.45	2.72	2.7287.92	5.9	2.00	36.46	:	2.2	:	5.9	13471	13787
41 TC	Anth. Hay-Daong (Lonkin), France, Mahler	43.00	3.26	2.24 89.8	89.8	4.00	2.0086.11	36.11	:	4.47	:	4.00	13559	13736
	Anth Kehan France Mahlar	20.00	07.1	1.25 39.03 53.72	53.72	6.00	2.4787.57	57.57	1.04	2.67	:	00.9	13901	14034
^	Anth. Commentive France Mahler	90.3	0 1 -	4.0	9 00 00 67	от С4.0	0,000,00	55.70	:	2 2	:	5.45	14090	14124
· ∞	Anth. Blanzy, Ste. Barbe, France, Mahler	28.52	1.76	1 rd	5 52 56 42	. v	9.09	25 75	:	9.0	:	4.0	12001	12005
6		26.7	2.08	2.27		16.33	2.8175.21	75.21	. & :	2 4	77	16.33	19891	19673
10	Anth. Creusot, France, Mahler	24.4	1.8	10.1086.65			3.66	39.39	3	3.5		1.45	15197	15220
1	Anth., Grande Combe, Purts Petassus, Fr., Mahler.	23.15	.83	11.16 85.74	85.74	7.25	3.6384.07	34.07		4.22	: :	7.25	14130	14428
77	Ruhr coal, Hörde, Germany, Bunte	21.75		13.04 76.32	76.32	9.84	3.68 80.08	80.08	4	11*	1.49	9.84	13468	12937
?		21.68	∞.	13.2381.99	81.99	3.98	4.0485.63	35.63	ر	*99	1.99	3.98	14539	14983
4 +	Semi-fat d'Anzin, Fosse St. Marc, France, Mahler.	21.37	1.35	13.7984.16	84.16	1.7	4.14 88.47	38.47		34*	:	1.7	15106	15377
15	Semi-anth., Coalhill, Ark., Spadra Bed, U.S.G.S., No.5	20.7		12.82 73.69	73.69	12.21	3.74 77.29	77.29	1.39	3.36	2.01	12.21	13406	13589
120	Semi-fat, Roche-la-Mohere, France, Mahler	20.57		13.3982.26	82.26 50.26	4.	4.1785.69	35.69	:	5.24	:	4	15151	14991
19	Semi-fat, Amene, France, Manier	20.48	2	11.3883.99	53.99	4 (2.2	85.93	:	5.24	:	4	15668	15044
10	Penhrass Trande Combe, France, Manier	20.45	0.1	12.7982.80	22.80	χ. .	4.2787.16	37.16	: '	4.16	. ,	<u>د</u> د د د	15058	15265
202	Semi-bit, Pocahontas r. of m W Va Lord & Hass	20.27	· «	14.12/55.55 18/30/73/65	73 65	1.0 2.0 2.0	4.4189.27	12 69 75	2. 74	, t c	1.25	1.63	15194	15707
21	Semi-bit. r. of m., Pochontas, Va., Lord & Haas.	20.11	. 63	18.62 75.12	75.12	5.63	4 25 85 46	55.65	9 %	3 .00		7. K	14512	15090
22	Same	19.84	∞.	18.30 73.65	73.65	7.25	4.2283.75	33.75	8	3.36	57	7.25	14512	14762
83		19.60		16.90 70.80	08.02	11.50	4.03 79.12	9.12	1.04	3.78	23	11.50	13970	13972
4 5	Bituminous r. of m., Windber, Pa., U.S.G.S., No. 1.	19.50	1.10	15.80 75.69	22.69	7.41	4.2081.98	81.98		3.56	1.49	7.41	14499	14529
0 K	Pocahontas run-oi-mine, Lord & Haas	19.45	86.0	85 18.60 75.75		4.80	4.3985.40	55.40		3.94	. 62	4.80	14306	15112
9	* 0+N	19.62	1.84	.84 21.04 73.97		3.15	4.38 85.18	55.18	4	*68	1.06	3.15	14544	14968
												-	_	

Table LV—Continued

			Pro	Proximate.					Ultimate	ste.			B.T.U. per Lb.	er Lb.
No.	Name, Source, Size, Authority.	Total C Total H	Mois-	Vola- tile.	Fixed C.	% Ash.	% Hs.	% °.	% Z 2.	%	% s.	% Ash.	By Calo- rimeter.	By Calcu- lation.
528	Ruhr coal, Friedrichs Ernestine, Germany, Bunte	16.33	1.54	1.54 28.38 65.12	١	4.96	4.94 80.59	0.59	6.85	<u> </u>		4.96	13925	14761
59	Saar coal, St. Ingbert, Germany, Bunte	16.32	1.73	1.7329.8165.63		2.83	4.9981.49 5.7483.62	1.49	8.31	1 64	.65	2.83 9.44	14036	14903 15643
9 E		16.25	? :			H :	4.45 72.34	2.34	.89	12.25	1.0610.16	0.16	11925	13254
62	Gas coal, Bethune, France, Mahler.	16.21	1.2	1.2 28.80 65.90		4.1	5.0982.42	2.42	:	7.19	:	4.1	14778	14983
63	Bit. r. of m., Upper Freeport Bea, Bretz, W. Va.,	16.10	86	.98 28.72 61.87			4.85 78.21	8.21	1.5	6.11	-06	8.43	14139	14376
64	Gas coal, Lens, France, Mahler.	16.04	1.05	1.05 29.55 66.40		က	5.22 83.73	3.73		7.01		က	15111	15343
65		16.04	1.52	:		2.78	5.05 80.97	0.97	9.	_	.41	2.78	13935	14854
99	Ruhr coal, Graf Beust, Germany, Bunte	16.03	.59	.59 24.98 71.14		3.29	5.13 82.24	2.24	10. 95*			3.29	13475	14071
29	Lignitic flaming coal, Blanzy, Ste. Marie, France,	3		-			1	6		5		,	1	0710
		15.98	D.	:	:	1.9	1.97 79.38	9.38	:	08. 60.	:	ي. ا	14158	12/40
99	Bit. r. of m., Upper Freeport Bed, Coarton, W. Va.,	15.90		.65 20.20 59.97 10.18	59.97		4.7876.36		1.48	6.21	.9910.18	0.18	13828	14063
69	klinghausen, Germany, Bur	15.90	Н	1.44 27.18 66.70 4.48	36.70		5.11 81.22		6. 32*		1.43	4.48	14168	14967
20	Bit. r. of m., Kanawha Bed, Powelton, W. Va.,	j j								6	6	i	i	0007
ī	U.S.G.S. No. 9.	15.70		1.01 29.53 62.67 6.79	79.7		5.04 /9.55		1.03	6.03	Š.	67.0	145/1	14090
7,	II S G.S. No. 3.	15.50	1.00	1.00 30.25 58.38 10.37	58.38	0.37	4.71 76.12	6.12	1.44 6.09	60.9	1.07 10.37	10.37	13736	14091
22	Gas coal, Wigan, Lancashire, Eng., Mahler	15.48	9.	:	10.9	6.01	5.06 78.38	8.38	:	5.06	:	10.9	13970	14467
73	Ruhr coal, Ewald, Germany, Bunte	15.45	2.18		:	2.43	5.13 77.27	72.27	10. 36*	*9	.63	.63 2.43	13662	14664
74	Lignitic flaming coal, Montoic, France, Mahler	15.42	4.3	:	:	4.8	5.12 76.31	6.31	:	9.47	:	4.8	14022	14205
22	Ruhr coal, Mont Cenis, Germany, Bunte	15.40	01 - 10 6	25.67 53.96 17.87		7.87	4.3066.20	9 5	7.43*	* *	1.70 17.87	78.7	11563	12303
1.6	Saar coal, Frankenholz, Germany, Bunce	15.35		$1.99 \cdot 67.21 \cdot 34.30$ $1.40 \cdot 35.00 \cdot 51.10$	10	6.50	5.1478.90	9.06	1.42	6.88	119	6.50	13982	14637
200	Saar coal, Dodweiler, Germany, Bunte	15.31		1.32 33.19 59.72		5.77	5.11 78.26	8.26	8. 57*	*		5.77	13508	14520
	* 0 + N	_		_	_	T			_			_	_	

Bit. r. of m., Kanawha field, Ansted, W. Va., 15.30 1.60 22.12 68.92 7.36 5.16 178.7 1.38 6.43 9.4 14161 14844 Cas coad, Commentry, France, Mahler. 15.30 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.2																																
Bit. r. of m., Kanawha field, Ansted, W. Va., 15.30 1.60 32.12 58.92 f. 7.85 59.18 78.71 1.86 5.45 77.8 f. 10.00 3.4 5.25 89.18 1.87 1.86 5.40 1.87 1.86 5.40 1.87 1.87 1.88 6.40 1.88 1.77 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.88 1.87 1.87	14618 14844	15033 13146	15051	13905	13064	13730	14388	14606	12952	14574	12419	12770	14292	14317	13982	13806		14548	13095	13580	13941	0000	13998	14591		14645		14413	13845	14364	6	14013
Bit. r. of m., Kanawha field, Austed, W. Va., Case Case Commentry, France, Mahler. Gas coal, Frincitoshable, Cernany, Bunte. Gas coal, Frincitoshable, Cernany, Bunte. Gas coal, Frincitoshable, Cernany, Bunte. Gas coal, Frincitoshable, Cernany, Bunte. Gas coal, Frincitoshable, Cernany, Bunte. Gas coal, Moutrambert, France, Mahler. Gas coal, Frincitoshable, Cernany, Bunte. Gas coal, Moutrambert, France, Mahler. Gas coal, Moutrambert, France, Mahler. Gas coal, Wortrambert, France, Mahler. 15.27 2.08 37.14 54.36 6.40 4.98 76.20 1.96 8.91 1.86 7.92 1.42 1.82 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84	14153 14166											11759		٠.	٠.	13906										14164				٠.		
Bit. r. of m., Kanawha field, Austed, W. Va, Los of E. S. O. 1.60 22.12 58.92																															1	4.85
Bit. r. of m., Kanawha field, Ansted, W. Va, Lord Cas coal, Commentry, France, Mahler (230 a) (230 a) (231 a	•			_					1.67		I		_			1.05																:
Bit. r. of m., Kanawha field, Austed, W. Va., 15.30 15.30 1.60 32.12 58.92 7.36 5.16 78.75 Cas coal, Commentry, France, Mahler. 15.30 1.23 3.4 5.26 9.18 3.7 5.20 1.23 3.4 5.26 9.18 3.8 5.30 1.23 3.4 5.26 9.3 1.8 1.23 3.4 5.26 9.3 1.8 1.23 3.4 5.26 9.3 1.8 <td></td> <td>• •</td> <td>9.55</td> <td>06.9</td> <td>*19</td> <td>7.87</td> <td>7.22</td> <td>7.56</td> <td>10.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>16.29</td> <td>10.</td> <td>∞</td> <td></td> <td>8.45</td> <td>00.</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>07.11</td>		• •	9.55	06.9	*19	7.87	7.22	7.56	10.3								_		16.29	10.	∞		8.45	00.	5							07.11
Bit. r. of m., Kanawha field, Ansted, W. Va., U.S.G.S.No. 8. U.S.G.S.No. 8. 7.34 Gas coal, Commentry, France, Mahler. 15.30 1.23 1.69 2.45 2.73 Gas coal, Friedrichsthal, Germany, Bunte. 15.27 2.03 3.714 54.43 6.40 Bituminous, Beaver Creek, Pa., Lord & Haas. 15.26 18 3.8 3.8 Pa. bit., Carnege, Lord & Haas. 15.14 2.55.6.55 5.8 8.05 Bit. nut, Thacker coal, W. Va., Lord & Haas. 15.14 2.55.6.55 5.6 5.8 Bit. nut, Thacker coal, W. Va., Lord & Haas. 15.10 6.65 3.4149.56 5.83 5.6 5.8 9.05 Bat. bit., Gurnege, Lord & Haas. 15.09 6.72 7.13 50.32 5.83 9.07 5.83 5.83 5.6 5.83 9.07 5.83 9.07 5.83 9.07 5.83 9.07 5.83 9.07 5.83 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07		:																								_						
U.S.G. S. No. 8. U.S. Kanawha field, Ansted, W. Va., U.S. Gas coal, Commentry, France, Mahler. 15.30 1.23 2.03 2.1 Gas coal, Firminy, France, Mahler. 15.27 2.03 7.14 54.43 6.40 Gas coal, Montrambert, France, Mahler. 15.27 2.03 7.14 54.43 6.40 Gas coal, Montrambert, France, Mahler. 15.27 2.03 7.14 54.43 6.40 Gas coal, Montrambert, France, Mahler. 15.27 1.25 1.5 1.33 55.42 Bluminous, Beaver Creek, Pa., Lord & Haas. 15.13 1.45 36.45 6.53 But, Camedie, Lord & Haas. 15.13 1.45 36.45 6.53 But, Min, Thacker coal, W. Va., Lord & Haas. 15.10 1.35 36.35 6.55 But, Dit, Garnegie, Lord & Haas. 15.10 1.35 36.35 6.55 But, Middle Kitatinny, Wampum, Pa. 15.03 1.45 36.35 7.15 But, Pitchingen, Germany, Bunte. 15.03 1.35 36.35 7.15 But, Pitchingen, Germany, Bunte. 15.03 1.35 37.73 78.55 7.15 But, Wakeford, Ohio, Lord & Haas. 14.93 1.55 7.25 3.34 7.82 But, Wakeford, Ohio, Lord & Haas. 14.93 1.55 7.25 3.34 7.82 Bat, But, Moyes, McTaggart & Craven 14.80 8.93 4.49 50.35 Bat, But, Noyes, McTaggart & Craven 14.75 1.56 3.25 5.35 Bat, Darlington coal, Middle Kitatinny, Burte. 14.74 1.50 34.35 54.25 55.35 Bat, Dark & Haas. 14.91 1.60 36.40 57.65 4.35 Bat, But, Noyes, McTaggart & Craven 14.75 1.56 32.55 55.55 Bat, Dark & Haas. 14.74 1.50 34.49 50.35 50.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35 55.35 Bat, Dark & Haas. 14.74 1.50 34.35 55.35	678.78 580.18	081.27 8/76.20	381.27	9 74.6	4,70.29	6 73.57	0 77.2	28	<u>69</u>	777.9	2 66.5	768.67	076.56	3 76.57	8 74.39	5 75.11		277.8	6 70.5	373.78	5 74 . 48	1	0 74.00	677 9	:	6 78.3		2 76.81	8/73.18	2 76.56	1	74.16
Bit. r. of m., Kanawha field, Ansted, W. Va., U.S.G.S. No. 8. 15.30 1.60 32.12 58.92 Gas coal, Frunnentry, France, Mahler. 15.30 3 3 Gas coal, Fruniny, France, Mahler. 15.27 2.03 37.14 54.43 Gas coal, Frichrichsthal, Germany, Bunte. 15.27 2.03 37.14 54.43 Gas coal, Montrambert, France, Mahler. 15.27 2.03 37.14 54.43 Gas coal, Montrambert, France, Mahler. 15.27 2.03 37.14 54.43 Gas coal, Montrambert, France, Mahler. 15.27 2.03 37.14 54.43 Pa. bit., Clinton, Lord & Haas. 15.14 2.55 55.6 53.8 Pa. bit., Clinton, Lord & Haas. 15.13 1.45 56.25 53.8 Lump,, bit., Hocking Valley, O., Lord & Haas. 15.09 6.72 37.13 50.3 56.73 Lump,, bit., Hocking Valley, O., Lord & Haas. 15.09 6.72 37.13 50.3 53.8 55.77 Barlington coal, Middle Kitatiumy, Wampute. 15.00 16.73 17.75 55.72 53.33 14.95 36.12 56.75 53.24 14.95 36.12 56.70 53.24 14.95 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>īĊ.</td><td></td><td></td></t<>																											_			īĊ.		
Bit. r. of m., Kanawha field, Ansted, W. Va., U.S.G.S. No. 8 Gas coal, Commentry, France, Mahler. Gas coal, Firminy, France, Mahler. Gas coal, Firminy, France, Mahler. Gas coal, Richdrichsthal, Germany, Bunte. Gas coal, Montrambert, France, Mahler. 15.26 Gas coal, Montrambert, France, Mahler. 15.27 Gas coal, Heinitz, Germany, Bunte. Pa. bit., Clinton, Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Darlington coal, Middle Kittatinny, Wampum, Pa., 15.09 Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. Bit., Wakeford, Ohio, Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. 14.93 Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. Lord & Haas.					<u> </u>						9.6	$^{2} 11.2$	9 7.9																		-	
Bit. r. of m., Kanawha field, Ansted, W. Va., U.S.G.S. No. 8 Gas coal, Commentry, France, Mahler. Gas coal, Firminy, France, Mahler. Gas coal, Firminy, France, Mahler. Gas coal, Riedrichsthal, Germany, Bunte Gas coal, Montrambert, France, Mahler. 15.26 Gas coal, Montrambert, France, Mahler. 15.27 Gas coal, Meinitz, Germany, Bunte. Pa. bit., Clinton, Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. 15.09 Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. Lord	2 58.9	14 54 . 4	:	33 55.4	[7 56.1	5.53.8	5	35 56.2	13/50.3	53 55.7	14 49.5	12 53.7	38 56.5	79 55.0	2953.3	37 59.0		40 57.6	$\frac{19}{50.3}$	10 53.5	20 <u>23</u> 20	7	00 00.4	12 58 5	Š	32 55.3		30 25.8	$\frac{3.02}{2}$	18 56.5		<u>:</u> —
Bit. r. of m., Kanawha field, Ansted, W. Va., U.S.G.S. No. 8 Gas coal, Commentry, France, Mahler. Gas coal, Firminy, France, Mahler. Gas coal, Firminy, France, Mahler. Gas coal, Richdrichsthal, Germany, Bunte. Gas coal, Montrambert, France, Mahler. 15.26 Gas coal, Montrambert, France, Mahler. 15.27 Gas coal, Heinitz, Germany, Bunte. Pa. bit., Clinton, Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Darlington coal, Middle Kittatinny, Wampum, Pa., 15.09 Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. Bit., Wakeford, Ohio, Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. 14.93 Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. Lord & Haas.	30 32.1	23	.:	31.5	24 29.1	55 35.6	<u>45 36.4</u>	35 36.	72 37.]	75 38.	65 34.	93 31.1	08 34.	07 37.7	55 37.	61 32.6		60 36.4	98 34.4	7035.	75 36.5	20.07	00.4.	45 36 7		35 36.		20 36.8	23/38.	08 34.4	1	:
Bit. r. of m., Kanawha field, Ansted, W. Va., U.S.C.S. No. 8. Gas coal, Commentry, France, Mahler. Saar coal, Firminy, France, Mahler. Saar coal, Firminy, France, Mahler. Bituminous, Beaver Creek, Pa., Lord & Haas. Pa. bit., Clinton, Lord & Haas. Pa. bit., Clinton, Lord & Haas. Pa. bit., Clinton, Lord & Haas. Pa. bit., Carnegie, Lord & Haas. Pa. bit., Carnegie, Lord & Haas. Bit. nut, Thacker coal, W. Va., Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Bit., Wakeford, Ohio, Lord & Haas. Bit., Wakeford, Ohio, Lord & Haas. Bit., Wakeford, Ohio, Lord & Haas. Bit., Wakeford, Ohio, Lord & Haas. Bit., Wakeford, Ohio, Lord & Haas. Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Lord & Haas. Saar coal, Rionig, Germany, Bunte. Same as 97. Bit. Pittsburgh coal, Turtle Creek, Pa., Lord & Haas. Bit. Pittsburgh coal, Turtle Creek, Pa., Lord & Haas. Bit. Pittsburgh coal, Turtle Creek, Pa., Lord & Haas. Bit. Pittsburgh coal, Garnegie, Pa., Lord & Haas. Bit. Pittsburgh coal, Widdle Kitatinny, Wampum, Pa., Lord & Haas. Lord & Haas. Lord & H																ಣ							٦.		1					-		
		5.5	15.	. 15.	15.	15.	15.	15.	-		. 15.	. 15.	. 15.	. 14.	. 14.	-		- -	. 14.			_	# 7	-	. :		-					<u> </u>
2	m., Kanawha field, Ansted, W. No. 8.	Gas coal, Firminy Saar coal, Friedri	Gas coal, Montra	Bituminous, Beav		Pa. bit., Clinton,	Pa. bit., Carnegie,	Bit. nut, Thacker	Lump., bit., Hoch Darlington coal	Lord & Haas.	Hocking Valley, r.	Saar coal, Püttlin	Pa. bit., Turtle (Bit., Pittsburgh	Bit., Wakeford, (Saar coal, Itzenpl	Darlington coal,	Lord & Haas.				De I and & Tree	Con mon Trans		Bit. r. of m., Pittsburgh Bed, Kingmont,						Lignitic flaming coal, Decazeville,	* O+N

Table LV-Continued

				Proximate.	ate.				Ultimate.	ate.			B.T.U. per Lb.	ber Lb.
No	Name, Source, Size, Authority.	Total C Total H	Mois-	Vola-	Fixed	% % %	% H	% ر	<i>8</i> ° ≥	% &	% v	% %	By Calo-	By Calcu-
			;	-	_ !	i		5	:		i		Imenei:	lations.
109	Saar coal, Kohl	14.61	4.05	4.05 35.74 54.56		5.65	5.03 73.48	3.48	10.86	 9g	.93	5.65	12580	13773
111	U.S.G.S. No.	14.60		1.92 36.56 57.08		4.44	5.36 78.31		1.85	8.80	1.24	4.44	14319	14690
112		14.60 14.55	2.543	2.5436.0846.7914.59 2.4536.6052.708.25	3.79 2.70		4.53 66.5 5.06 73.64		1.28	8.43	4.67 14.59 2.34 8.25	14.59 8.25	12294 13212	12804 13712
113	bit, lump and nut, Warrior Field, Horse Creek, Ala., U.S.G.S. No. 1	14.50		1.55 33.10 53.71 12.64	3.71		4.96	2.16	4.96 72.16 1.66 7.85	7.85	.73	.73 12.64	12958	13572
114	U.S.G.S. No.	14.50	2.583	2.58 33.15 51.74 12.53	1.74	2.53	4.79	9.24	1.55	10.87	4.79 69.24 1.55 10.87 1.02 12.53	2.53	12449	13025
116	Kan., U.S.G	14.50		1.84 37.40 54.97 10.79	1.97		4.96	4.96 71.90	1.09	7.40	3.86 10.79	62.01	13199	13629
117	Opper Freeport coar, East Latesture, Omo, Loru & Hass. Timber Freeport coal, Waterford, Obio, Lord & Hass.	14.46	.823	.82 34.98 52.65 11.89 1.55 37.29 53.34 7.82	2.651		4.88 70.58	0.58	1.24 7.70	7.70	3.65 11.89	11.89	12796	13381
118	Lignitic flamin		7				5 14 75 97	76 77	-	80 01		1	13474	14063
119	$\mathbb{P}_{\!\scriptscriptstyle B}$		1.093	1.0938.9151.14			5.15 74.45	4.45	1.60 7.05	7.05	1.80	8.86	13493	14032
120	Saar coal, Reden, Germany, Bunte	14.43	3.453	3.45 34.25 56.08		6.62	5.06 72.98	2.98	11. 30*	*0%	66.	6.62	12548	13722
171	W. Va., U.S.G.S. No. 2.	14.40	1.464	1.46 40.14 50.50 7.90	.50		5.09 74.44		1.37	7.70	3.50 7.70	7.70	13860	14053
122	Mahoney coal, Salemville, Ohio, Lord & Haas	14.37	3.153	3.15 35.00 50.95 10.90	0.95 10		4.9571.13			9.93	1.86 10.90	06.01	12722	13419
	Ohio bit., Camb	14.35	2.433	2.43 37.79 50.36		9.45	4.92 70.61		1.44	8.17		9.45	12758	13372
124	Darlington coal, Middle Kitatinny, Clinton, Pa., Lord & Haas.	14.31	2.553	2.55 35.50 53.80		8.05	5.14 73.57	3.57	1.24 10.14		1.86	8.05	13140	13901
125	125 Bit., Hartshorne, Hartshorne, Ind. Terr., U.S.G.S.,	14.30	1 703	7 19 46	70 11	30	2-7-	1 40	7.2	- 10	- 2	1 20	14 30 1 70 37 19 40 70 11 39 5 00 71 40 1 79 8 01 1 56 11 29 1 90 60 1 1 56 11 29 1 90 60 1 1 56 11 39 1 90 60 1 90 1 90 1 90 1 90 1 90 1 90	10211
_	* 0+N*	no. ±1	<u> </u>	# NT	55	20:1	ilon:a	F - 1	1	0.91	1.00	70.11	12303	11071

Table LV—Concluded

				Proximate.	rte.				Ultimate.	ate.			B.T.U. pr Lb.	pr Lb.
No.	Name, Source, Size, Authority.	Total C Total H	Mois-	70 % Vola- file.	ixed C	% Ash	% 11.	8 0	8 2	% &	% v	%		By Calcu-
					;		;	;	;		<u>i</u>	_	rimerer.	lation.
154	ĭ													
	No. 4	12.90	3.5737.0046.8012.63	7.004	0.801	2.63	5.04 65.02	5.02	1.07 7.91	7.91	8.3312.63	12.63	12337	12845
155	155 Jackson Co., Ohio, Center, Lord & Haas	12.90	8.2635.1553.49 4.10 2 5025 2540 7700 20	5.1556	3.49	9.10	5.437	0.05	1.49	1.4917.09	1.84	1.84 4.10	12303	13553
157	Hocking Valley coal, r. of m., Middle Kitaninny,	12.30		 #	<u>, </u>		4.04 00.00	3.	6.	.99 8.04	50.0	5.5520.38	11144	11760
1	Ohio, Lord and Haas	12.88	6.65 34.14 49.54	4.144	9.54	9.67	5.16 66.50		1.43 15.57	15.57	1.67	1.67 9.67	11736	12868
158	158 Indiana bit., Lancaster, Noyes, McTaggart & C	12.84	12.84 12.66 37.44 47.22	7.44 4'	7.22		5.56 71.41		1.54 18.42	18.42	.62	2.68	10645	13783
159	Jackson Co., Ohio, South, Lord & Haas	12.77	7.02 37.66 50.82	7.665			5.49 70.12	0.12	1.50	1.50 16.96	1.45	4.48	12348	13684
160	Same, Eastern District, Lord & Haas	12.75	8.50 37.75 57.10	7.75 5	-	2.65	5.55 70.79	0.79	1.46 18.60	09.81	1.95	2.65	12337	14035
161	Hocking Valley coal, lump, Middle Kitaninny, Ohio,						-							
	Lord & Haas	12.72	6.40 36.05 49.05	6.054		8.50	5.36[68.18]	8.18	1.44	1.44 15.09 1.43	1.43	8.50	12132	13224
162	ភ													
	U.S.G.S. No. 2.	12.70	5.3638.9946.27	8.994	6.27	9.38	5.33	7.64	1.25	12.68	3.72	5.33 67.64 1.25 12.68 3.72 9.38	12312	13219
163	163 Indiana bit., New Pittsburgh, Noyes, McTaggart k													
	Craven	12.62	6.83 39.92 39.93 13.3	9.92 3	9.93 1	3.3	5.076	5.0762.88	1.01	1.01 13.06 7.46 13.3	7.46	13.3	11134	12518
164	R. of m., Earlington, Ky., U.S.G.S. No. 3	12.60		6.904	6.961	0.29	5.27	6.75	1.43		3.60	3.6010.27		12048
165	165 R. of m., Barnett, Morgan Co., Mo., U.S.G.S. No. 4	12.60	5.39 44.91 44.47 5.23	4.914	4.47		5.77 72.45	2.45	75	25	5.55	5.55 5.23		14258
166	Saxon brown coal, Alfred, Germany, Bunte	12.58	12.5836.2633.3923.27	3.392	3.27	2.08	3.2941.41	1.41	9.84		3.12	7.08	6734	8143
167	Upper Bavarian coal, Pernsberger, Fördeköhle,		_											
	Germany, Bunte	12.48	12.48 10.18 34.69 33.08 22.05	4.693	3.08[2]		3.8347.78	7.78	10.92	32	5.24	5.24 22.05	8478	10379
168	R. of m., Hamilton, Marion Co., Iowa, U.S.G.S.													
	No. 2.	12.40	4.25 37.02 41.47 16.99	7.024	1.47 1		4.846	4.84 60.36 1.46 11.65	1.46	11.65		5.20 16.99	11182	11538
169	R. of m., Coffeen, Montgomery Co., Ill., U.S.G.S.		_											
1	No. 6.	12.30	5.13 32.68 47.46 14.73	2.684	7.46 1		4.88	4.88 60.51 1.23 14.20	1.23	14.20	4.45	4.45 14.73	11158	11921
170	170 R. of m., Booneville, Warwick Co., Ind., U.S.G.S.			-			_							
	No. 2	12.30	6.24 37.49 42.76 13.51	7.494	2.761		5.116	2.97	1.25	12.56	4.60	5.11 62.97 1.25 12.56 4.60 13.51	11538	12442
	N+0*	_	_	-	-		_	_	_					

12079	12295	$\frac{10962}{9007}$	6763	12302	9054	12304	12039	5843	12400	13191	13097	11725	6000	11569	ònnit	11401	2867	10904	11449	9553	12212	10991	17071	71017
11356	11144	10364 7742	7306	11405	8795	11227	_			10989	11435	10202	704	7000	1000	10791	5909	9061	9491	7187	10355	9358	:	:
6.83 15.53	4.25 13.72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.32	2.5813.81	1.34 11.65	4.46 11.48	1.76 11.22	2.87 15.89	17.31	3.42 13.55	6.64 7.10	1.30 19.22	90				6.91	2.02 12.24			4.79	1.04 14.85	:	:
	4.25	$\frac{4.17}{3.59}$	1.72	2.58	18	4.46	1.76	2.87	5.30	3.42	6.64	1.30	90	ë E	:	.58	.26	$^{2.05}$.63	.61	.63	1.04	: n	0.0
.93 11.16	1.07 13.86	$.80 \frac{12.94}{72}$	69	$1.22 \frac{14.99}{12.16.59}$	1.17 18.02	94 16.56	1.36 20.00	9. 55	.99 15.19	1.22 16.57	1.05 21.14	.98 16.74	0	1 06 95 92	3	1.22 24.95	22	.71 27.15	.91 30.98	29. 18	1.0929.99	.95 25.33	6T	
	1.07	.80					1.36			1.22		86.	0.7	1 06	3								× ×	_
4.93 60.62	5.09 62.01	$\begin{array}{c} 4.54 55.29 \\ 3.73 45.40 \end{array}$	3.67 44.47	5.2062.20	5.3361.79 $3.8646.16$	5.31 61.25	5.25 60.41	2.5428.80	4.96 56.25	5.35 59.89	5.73 64.34	5.65 56.71	19 OF P	4.4049.91	70,07	5.7561.13	3.6638.76	22 52.66	5.61 55.16	4.70 45.93	6.0958.41	5.51 52.06	9.1482.67	10.41/19.04
			8.32 3.											4 7						5.52 4			٠ کو د	<u>-</u>
4.52 40.96 38.99 15.53	6.28 38.92 41.06 13.72		.27 8.	8.6634.8642.6713.81	11.6011.4032.4544.3011.85 11.5916.5 18.5	11.50 10.03 37.27 41.22 11.48	9.05 36.70 43.03 11.22	11.3440.3526.6518.1115.89	9.14 34.53 39.02 17.31	9.22 32.71 44.52 13.55	11.20 10.86 35.14 46.90 7.10	8.13 34.82 37.63 19.22		_			.69 69.	15.42 38.73 33.61 12.24		.64 5.	.56 4.	13.4042.7529.0014.85	:	:
96 38	3.9241	12.20 2.7337.6137.40 12.1729.2735.8327.61	12.10 27.13 37.28 27.27	1.86 42	32.45 44 	7.27	3.7043	3.65 18	4.53 39	2.71 44	5.14 46	1.82 37	000	11.00 16.47 52.28 25.91	7. 1 2/±0	10.60 13.49 37.11 43.03	10.59 29.14 41.26 22.69	3.73 33	16.70 37.10 39.49	9.78 11.06 52.78 27.64	9.6 17.69 37.96 39.56	2.75 29	· :	:
4.52 4(6.28	2.733	7.133	8.663	$\frac{1.403}{6.5}$	0.03	9.053	0.352	$9.14 \overline{3}$	$9.22 \frac{3}{3}$	0.863	8.133		0.47		3.493	9.144	5.423	6.70	1.065	7.69 3	3.404	:	:
12.30	12.20	12.20 12.17	12.10	11.90	$\frac{11.60}{11.59} \frac{11.4}{16.5}$	11.50	11.50	11.34	8	11.20	11.20	11.20	;	11.00	TO:30 TO:00 93:42/40.TT	10.60	10.592	10.1	9.8	9.78		9.4	9.04 2.04	70.7
Lump, Altoona, Polk Co., Iowa, U.S.G.S. No. 3	Lump and nut, Belleville Field, U.S.G.S. No. 1	K. of m., Campria Field, Cambria, wyo., U.S.G.S. No. 2	175 Saxon brown coal, Menzelwitz, Fortschritt, Germany, Bunte	R. of m., Mildred, Sull. Co., Ind., U.S.G.S	Lump, Belleville Field, Troy, III., U.S.G.S. Lignite, Terre de Feu, France, Mahler	Lump, Centerville, Appanoose Co., No. 4.	30 Black lignite and washed nut, Red Lodge, Mont., 11S.G.S. No. 1	Ï	R. of m., Bevier I	183 R. of m., Charlton, Lucas Co., Ia., U.S.G.S. No. 5.		Same, slack, U.S.G.S. No. 2	186 Lignite, Pressdorf von Hofmark Steinfels, Ger-			U.S.G.S. No. 1		Brown lignite, Le	No. 2.	Д			Cannel coal,	Cannel coal, Lasmanite, Lasmania, Nent
171	172	174	17	176	177	17	180	181	180	183	10	185	18	1	188	}	189	190	T	192	193	194	195	<u>8</u>

	PE
	AND PE
	LICATTES
TABLE LVI	COALS
BLE	QF
ŢŢ	A TITE
	VOL
	ON A
	SOMBISTIBLE AND VOLATILE OF COALS LIGHTER
	()

											·qt	
				Combustible = Coal Less (Moisture + Ash).	ble =Co	al Less (Moisture	+Asb).			= ,fc In di- di- o Com	, ,
No.	Name, Source, Size, Authority.	Ratio	Proximate.	mate.		Ultimate.		B.T.1	B.T.U. per Pound.	und.	Lb. Vol. 1 14544 14544 Vol. 1	Katio of FixedC.
		Total. C. H.	Vola- tile,	Fixed C,	₩ %	2%	SN2 3%	Total	From Fixed C.	From Vola- tile.	B.T.U. Comb., Comb. X	Vol.
-	Anth. de la Mure, Grande Couche, France, Mahler .	63.5	2.75	97.25	1.50	95.24	3.26	14789	14144	645	23455	35.36
01 (Anthracite, Treverton, Penn., U.S. A., Isherwood .	52.31	7.23	92.77	1.87	98.18		15190	13492	1698	23480	12.82
თ.	Anthracite, Fennsylvania, U.S. A., Mahler	43.35	9.00	97.00	2.20	95.37	2.43	14816	14107	200	23600	32.33
41	Anthracite, Hoy Daong (Ionkin), France, Mahler.	43.00	3.17	96.83	2.16	92.86	4.99	14618	14083	535	16877	30.54
o.	Bit., Fa., Ormsby, U. S. A., Isberwood	35.50	42.20	57.8	2.66	94.50	2.84	14971	8406	6565	15557	1.37
01	Anthracite, Kedan, France, Manier	30.44	07.70	8. 8 8. 8	3.07	93.40		15357	13788	1569	30173	18.23
(Anthracite, Commentry, France, Manier	29.32	3. Iy	96.81	3.12	91.49		15221	14080	1141	35768	30.34
x 0 c	Anth., blanzy, ore. barbe, France, Manler	9.5	9.00	92.50	3.17	90.60		14725	13671	1054	17567	15.66
ָרָ מַ	Anthracite culm, Scranton, U.S.G.S. No. 3.	7.97	8.91	91.09	3.37	89.88	6.75	15256	13248	2008	22536	10.22
2		24.41	10.44	89.26	3.78	92.93	3.83	15635	13026	5609	24990	8.57
Π	Anth., Grande Combe Purts Petassus, Fr., Mahler.	23.15	6.71	93.29	3.95	91.46	4.59	15372	13568	1804	26885	13.90
12	Ruhr coal, Hörde, Germany, Bunte	21.75	14.6	85.4	4.12	89.62	6.26	15072	12421	2651	18157	5.74
13	Ruhr coal, Bickefeld, Germany, Bunte	21.68	13.9	86.1	4.24	89.93	5.83	15269	12522	2747	19763	6.19
71 ;		21.37	14.08	85.92	4.27	91.26	4.48	15401	12496	2905	20632	6.10
CT	Semi-antn., Spadra bed, Coalniii, Ark., U.S.G.S.	1	7	1	- 6	-	1	1				
•	No. 9.	202.5	14.82	87.08	4.26	88.04	2.70	15497	12388	3109	20978	5.75
10	Semi-tat Koche-la-Monere, France, Manler	20.57	14.0	80.00	4.38	90.11	5.51	15781	12508	3273	23378	6.14
1 2	Somi-fat Grand	90.40	12 22	86.69	4.40	201.10	0.43 24.0	10801	19209	2608	25918	,
9 5	Buhr coal Fröh	20.42	14.5	2 2	7.1	01.13	3 5	15,01	19498	5101	23039	0.47
ន	Semi-bit., Pocar	20.27	19.9	80.1	4.50	91.00	5.5	15789	11650	4132	20763	4.03
21	Semi-bit., r. of n	20.11	19.86	80.14	4.94	90.56	4.50	15717	11655	4062	20413	4.04
22		19.84	19.9	80.10	4.55	90.3		15782	11650	4132	20763	4.03
23		19.60	19.27	80.73	4.55	89.4		15923	11741	4182	21702	4.19
24	Bit., r. of m., Windber, Pa., U.S.G.S. No. 1	19.50	17.27	82.73	4.54	88.54		15847	12032	3815	22090	4.79
22		19.45	19.71	80.29	4.61	89.71	5.68	15799	11674	4122	20913	4.07
		_		_	_		Ī		_			

									-111		•				_						\sim										
3.50	4.53	4.12	3.65	3.92	3.42	8. 90	4.55	4.13	3	4.04	8.38	8.30 100 100 100 100 100 100 100 100 100 1	6.22	4.15	5.58	3.26	3.60	4.19		8 14	 	3.67	3.50	80 80 80 80 80 80 80 80 80 80 80 80 80 8	2.39	2.95	2.79	1.79	2.68	3.24	2.69
17991	19945	21638	18675	20152	12181	90911	15394	21554		22030	20744	20103	27359	17727	25193	16247	19168	20080		20208	21257	17154	19360	22559	15620	16458	13837	14205	16037	17792	15435
3994	3606	4226	4017	4097	2753	4408	2771	4203		4373	4740	4670	3792	3439	5491	3818	4169	3863										2087	4362	4200	4183
11315	11914	11704	11416	11587	11257	11979	11926	11707		11657	11221	11165	12528	11722	11374	11126	11381	11738		• •			11315	•			10704	9336	10588	11111	10603
15309	15520	15930	15433	15684	14010	15700	14697	15910		16030	15961	15835	16320	15161	16865	14944	15550	15601		15850	15943	15103	15613	16179	14861	15028	14357	14423	14950	15311	14786
5.73	7.17	5.44	6.14	8.54	8.80	9	× 57	5.17		5.12	5.63	6.27	2.56		6.05			8.64		6.94	5.47	6.38	5.24	4.74	8.62	6.53	10.68	13.57	8.19	7.38	9.42
89.62	88.28	89.88	89.20	86.87	86.59	60 90	8 6	90.03		80.08	89.53	88.89	92.36	88.82	89.05	87.52	87.84	86.52		88.11	89.23	88.53	89.55	89.43	86.31	87.27	84.31	84.20	86.65	87.39	85.43
4.62	4.55	4.68	4.67	4.59	4.61		4.01			4.80	4.84				4.90													5.65			
77.80	81.92	80.47	78.49	79.67	77.40	7	80 .08			80.15	77.15	76.77	86.14	9.08				80.71		76.94	79.16	78.60	77.80	9.62	70.5	74.7	73.6	64.19	27.8	76.4	72.9
22.2	18.08	19.53	21.51	20.33	22,60		10.12	19.50		19.85	22.85	23.23	13.86	19.40	21.8	23.5	21.75	19.29	•	23.06	20.84	21.40	22.20	20.4	29.5	25.3	26.4	35.81	27.2	23.6	27.1
19.32	19.30	19.20		18.90	18.80	,	10.00	18.75		18.70	18.49	18.36	18.21	18.20	18.17	18.15	18.04	17.92		17.80	17.73	17.46	17.19	17.10	17.02	16.88	16.83	16.81	16.79	16.71	16.60
Ruhr coal, Dannenbaum, Germany, Bunte	Ett., lump, Huntangton Bed, Bonanza, U.S.G.S No. 2	W. Va., U.S.G.S. No. 12.	Fat, Anzin, France,		Bit., lump and slack, Huntington Bed, Jenny Lind, Ark., U.S.C.S. No. 3	മ്			Semi-bit., r. of m.,	U.S.G.S. No. 1		_			Ruhr coal, Mathi	Ruhr coal, Lothri	Fat, Carmaux, F)	Fat, Mines-des-P		W. Va., U.S.G.S. No. 6		Ruhr coal, Holland		_	Ruhr coal,	_	_	Bituminous, Cloy		_	Ruhr coal,
8 5	77	8	ର ଚ	ģ	5	55	65	34	35		8	3	န္	33	40	41	42	43	44		45	46	47	48	49	ಜ	51	52	53	72	55

TABLE LVI—Continued

COMBUSTIBLE AND VOLATILES OF COALS, LIGNITES, AND PEATS

		FixedC.	Yol.	1.49	2 2 2	2.21	1.68		2.29	2.15	2.25	_	2.84		2.19	2 05	2.46		2.12	1 93	2.16		1.70	2.10	1.46
	/ ol. = ' n ' n ' n di Comb.	Lb. Vol. 1 V Vol. 1	B.T.U. B.T.U. Comb. Comb. Vided by	12360	15107	15067	21374		18024	17893	18451		12519	,	16099	17505	16380		17793	17336	18454		16919	14470	14842
	i	ound.	From Vola- tile.	4981	4638		7962		5481	5673			3256		5047	5734			2200	5918					6027
210		B.T.U. per Pound.	From Fixed C.	8983	10108	10006	9126		10121	9934	_		10762		9984	0226			9886	9580				9861	8639
77. 7	e+Ash.)	B.T.1	Total	13664	14/17	14707	17088		15602	15607			14018		15031	15514			15586	15498					14666
אדע למו	Combustible = Coal Less (Moisture + Ash.)		$\left\{\begin{array}{c} O_{2r} \\ N_{2r} \\ S_{2r} \end{array}\right\} \%$	14.12	× × ×	9.39	0.72	14.53	7.60	9.29	7.30	10.12	12.63		10.46	9.66			9.46	9.60	5.72	11.52	10.42	11.46	9.99
CTT TATE	al Less (Ultimate.	೮೫	80.95	85.85 86.19	85.38	93.02	80.52	87.03	85.42	87.26	84.60	82.24		84.26	85.02	86.33		85.13	84 93	88.57	83.10	86.95	83.14	84.51 84.39
i i	ible = Co	1	H2 %	4.93	5. 23 28 23	5.23	6.30	4.95	5.37	5.29	5.44	5.28	5.13		5.27		5.43		5.41						5.50
900	Combust	nate.	Fixed C,	59.7	69.3 5.5.5	8.89	62.75	:	69.29	68.30			74.0		68.65	67 25			67.97	65 87			62.93	67.8	59.4 62.00
		Proximate.	Vola- tile,	40.3			37.25		30.41	31.70			26.0		31.35	32, 75			32.03	34 13					40.6 38.0
ייי ציוו		Ratio	Total. C.	16.42	16.41	16.32	16.31	16.25	16.21	16.10^{1}	16.04	16.04	16.03	1	15.98	15 90	15.90		15.70	15,50	15.48	15.45	15.42	15.40	15.37 15.35
COMPOSITION AND VOLATIONS OF COADS, LIGHTING, AND LEADS	•	Name, Source, Size, Authority.		Saar coal, von der Heydt, Germany, Bunte	Ruhr coal, Friedrich Ernestine, Germany. Bunte	Saar coal, St. Ingbert, Germany, Bunte	Bit., Midlothian, W. Va., U. S. A., Johnson.	Bit., r. of m., Blue Creek, Ala., U. S. A., Phillips	Gas coal, Bethune, France, Mahler. Bit., r. of m., Upper Freeport Bed. Bretz. W. Va.	4	Gas coal, Lens, France, Mahler		Seust, Germany, Bunte	Lignitic flaming coal, Blanzy Purts, Ste. Marie,	France, Manier. Bit., r. of m., Unner Freenort Bed Coelton W. V.	U.S.G.S. No. 5.	Ruhr coal, Recklinghausen, Germany, Bunte.		U.S.G.S. No. 9. Rit r of m. Ilmon Proceed Bod Bisheed W. W.	U.S.G.S. No. 3.	Gas coal, Wigan, Lancashire, Eng., Mahler	Ruhr coal, Ewald, Germany, Bunte	Lignitic flaming coal, Montoic, France, Mahler	Ruhr coal, Mont Cenis, Germany, Bunte	Saar coal, Frankenholz, Germany, Bunte Bit., r. of m., Thacker coal, W. Va., Lord & Haas.
		Š.		56	28	29	9	0	2 63		64	65	90	 6	89	}	69	2		:	72	73	4.	ر د د	39

1.80	1.83	50	.12	.46	.92	.61	92	51	54	55	.36	45	45	72	1.65	46	1.43	81		1.58		1.52	1.46	61	44	1.54	1.50		1.52	1.31	1
_	_	_	2	-	_	-	_	П	1	_		-	_	_	_	_	_	_		⊢ i		-i	- i		_	-			<u>-</u>		_
14709	17381	16021	17314	14283	17158	15111	13410	14923	15569	16453	13650	15320	13140	12681	16007	15747	15200	13227		15465		14985	15515	15009	15183	15570	16553		15287	15584	
5251	6132																6255			5985		5939	6296	5741	6225	6123	6623		6072	6734	_
9352	9413	8732	9887	8638	9560	8981	9570	8752	8824	8834	8369	8601	8610	9206	9048	8625	8559	9366		8915		8780	8642	8981	8581	8824	8725		8767	8260	
14603	15545	15134	15431	14438	15440	14761	14157	14697	14947	15293	14165	14861	13973	13860	15097	15034	14814	14075		14900		14719	14938	14722	14806	14947	15348		14839	14994	
10.27	9.45	8.73	91.13	11.34	9.94	9.43	12.18	12.27	11.14	11.03	15.36	12.57	16.25	13.67	10.23	13.01	12.42	12.79		13.17		14.74	12.56	12.70	11.03	12.34	10.74		12.12	13.98	
84.23	85.01	85.66	85.39	82.21	84.52	85.12	82.38	82.29	83.35	83.45	79.38	81.99	79.47	80.94	84.16	81.53	82.08	81.92		81.37		78.92	81.89	81.75	83.32	82.07	85.65		82.28	80.54	_
5.50	5.57	5.60	5.58	5.45	5.54	5.45	5.44	5.44	5.51	5.52	5.26	5.44	5.28	5.39	5.61	5.46	5.50	5.29		5.46		5.34	5.55	5.55	5.65	5.59	5.61	_	5.6	5.48	
64.3	64.72	60.04	67.98	59.4	65.73	61.75	65.80	60.18	89.09	60.75	57.54	59.14	59.20	63.3	62.21	59.30	58.85	64.4		61.30		60.38	59.45	61.75		60.68	59.99		60.28	56.79	
35.7	35.28	39.96	32.02	40.6	34.27	38.25	34.20	39.83	39.32	39.25	42.46	40.86	40.80	36.7	37.79	40.70	41.15	35.6		38.70		39.62	40.58	38.25	41.0	39.32	40.01		39.72	43.21	-
15.31	15.30	15.30	15.30	15.27	15.26	15.25	15.14	15.14	15.13	15.10	15.09	15.07	15.04	15.02	15.00	14.93	14.93	14.92		14.91	14.80	14.76	14.75	14.74	14.74	14.70	14.70		14.70	14.69	_
78 Saar coal, Dudweiler, Germany, Bunte	U.S.G.S. No. 8		81 Gas coal, Firminy, France, Mahler	Saar coal, Friedric	Gas coal, Montrai	Bit., Beaver Cre	85 Saar coal, Heinitz, Germany, Bunte.	Bit., Clinton, Pa.,	Bit., Carnegie, Pa.	88 Bit., nut, Thacker coal, W. Va., Lord & Haas	Bit., lump, Hockin Darlington coal. N			92 Saar coal, Püttlingen, Germany, Bunte	93 Bit., Turtle Creek, Pa., U.S. A., Lord & Haas	94 Bit., Pittsburgh coal, Carnegie, Pa., Lord & Haas.		Saar coal, Itzenpl	97 Darlington coal; Middle Kitaninny, Hoytdale, Pa.,		98 Bit., Indiana, U.S. A., Keyes, McTaggart & Craven	99) Same as 97. 100 Bit., Pittsburgh coal, Turtle Creek, Pa., Lord &		Pa., Lord & Haas.	102 Saar coal, König, Germany, Bunte		U.S.G.S. No. 1.	105 Darlington coal, Middle Kitaninny, near Wampum,	Pa., Lord & Haas.		
~ ~		œ	00	œ	œ	00	90	00	00	00	ယတ		ဌာ	دب	دب	دب	دب	ယ	Ç	•	، دن	3° E	10		9	20		10	5	3	-

Table LVI—Continued

- 1	COMBUSTIBLE AND V	VOLATILES		OF COA	COALS, L	LIGNITES,		AND PEATS	VIS			
(Comp	ustible =	Coal Le	ss (Moist	Combustible = Coal Less (Moisture + Ash.)	(1		ol. = C in 44 di- in Comb	Rațio
	Name, Source, Size, Authority.	Ratio	Proximate.	mate.	1	Ultimate.		B.T.1	B.T.U. per Pound.	und.	Lb. V Lb. X 145 Y Vol. I	FixedC. Vol.
		Total, C H.	Vola- tile, %	Fixed C,	H, %	, %C	$\begin{pmatrix} 0_2 \\ N_2 \\ S \end{pmatrix} $	Total.	From Fixed C.	From Vola- tile.	B.T.U. B.T.U. Comb., Comb.	
Bit., 1 Haa	ı -	14.67	37.86	62.14	5.67	83.17	11.16	15080	9037	6043	15958	1.64
Mal Mal Saar c	ig coal, Decazevule (Bourran), Fridwald, Germany, Bunte.	14.64 14.61	39.4 39.6	60.6	5.64	81.53 81.37	12.83 13.06	14549 13931	8813 8783	5736 5148	14556 12995	1.54
U.S.	1	14.6	39.04	96.09	5.62	81.94	12.44	15292	8865	6427	16460	1.56
Dit., I	o. 4. Wheatcroit, Western Ello.	14.6	43.54	56.46	5.30	77.86	16.84	14835	8212	6623	15215	1.30
Opper Has	Upper Freeport coal, Falestine, C., Lord & Haas Haas	14.55	40.99	59.01	5.52	80.26	14.22	14803	8582	6221	15177	1.44
1.35 1.35 1.35 1.35	U.S.G.S. No. 1	14.5	37.41	62.59	5.68	82.60	11.72	15100	9103	2669	16030	1.67
Ala.	r reid,	14.5	39.05	60.95	5.48	79.16	15.36	13911	8865	5046	12922	1.56
Kan Kan	Kan, U.S.G.S. No. 5.	14.50	37.08	62.92	5.56	80.6	13.84	14602	9151	5451	14701	1.70
Upper Haa kame o	Ohio, Lord & Haas.	14.46 14.45	39.92 41.18	60.08 58.85	5.54 5.59	80.1 80.7	14.36 13.71	14603 14814	8738 8559	5865 6255	14692 151.89	$\frac{1.51}{1.43}$
Fran Fran Sit., C	g coal, blanzy Furts, Si ler r, Pa., Lord & Haas n, Germany, Bunte	14.45 14.45 14.43	35.8 43.21 37.9	64.2 56.79 62.1	5.60 5.72 5.60	83.17 82.68 80.79	11.14 11.60 13.61	14886 14983 13891	9337 8260 9032	5549 6723 4859	15500 15559 12820	1.79 1.31 1.64
Sit., r W.	Bit., r. of m., Weir-Fittsburgh Bed, Clarksburg, W. Va., U.S.G.S. No. 2	14.40	44.28	55.72	5.52	80.83	13.65	15291	8104	7187	16231	1.26
								,				

								1 43	رد،			71	. 1 1	,	ט	111	U.	. 62	r .t.v.	LO									Ot
1.46	1.51	1.34	1.38	1.37	1.31	1.38	1.45	1.45	1.42	1.31	1.28	.73		1.49	1	1.42	1.36		1.72	66.	1.33	,	1.40	:	1.46	.71	1.62	1.002	
149 93 14388	14982	15400	15654	15300	15324	15263	15412	14897	14915	15561	14724	6913	1	15540		13490	15337		14910	9311	14381	0,01	14948		10505	7610	13617	7323	
6105 6164	2962	6585	6573	6455	6623	6412	6229	6909	6150	6723	6467	3996	0	6230		2999	6203		5479	4686	6165	000	0770	:	4263	4204	5207	3658	
8622 8309	8752	8325		8408	8228	8434	8619	8619	8547	8260	8156	6138	1	8713		8548	8372		9200	7223	8300	0,0	8480	:	8642	9809	8982	7279	
14727 14473	14719	14910	15010	14863	14881					14983	14623	10134		14943		14110	14881		14679	11909	14474	į	14/12	:	12905	10540	14189	10937	
14.61 14.31	14.40	13.75	14.81	13.31	13.37	13.29	13.17	15.39	13.72	12.53	17.65	25.42	1	17.16		15.61	14.39		18.31	25.71	16.32	6	0.35	3	20.45	29.46	13.08	28.63	
79.83 80.11	10.08	80.62	79.62	80.99	80.93	81.0	81.27	79.02	80.58	81.69	76.87	68.89		77.26		78.72	79.85		76.12	69.24	77.95	1	26.77	3	74.03	66.62	80.84	96.36	
5.56	5.59	5.63	5.58	5.7	2.7	5.71	5.66	5.59	5.7	5.78	5.47	5.69	1	5.58		5.67	5.76	· · ·	5.57	5.06	5.75	1	5.73		5.52	4.92	6.08	5.01	
59.28 57.13	60.18	57.24	58.01	57.81	56.78	57.99	59.26	59.26	58.76	56.79	56.08	42.2	-	59.91		58.77	57.56		63.26	49.66	57.13	0	58.35	:	59.42	41.5	61.76	50.05	
40.72	39.82	42.76		19	22	01		74		43.21	43.92			40.0 9		41.23	42,44		36.74			1	41.65	:				49.95	
14.37 14.35	14.31	14.30	14.26	14.22	14.21	14.16	14.16	14.15	[4.15]	14.11	14.10	14.03	(13.90		13.89	13.85	13.77	13.70	13.68	13.61		13.60	10.01	13.40	13.33	13.30	13.24	19.61
122 Mahonny coal, Salineville, Ohio, Lord & Haas 123 Bit., Cambridge, Ohio, Lord & Haas	Lord & Haas.	120 Dit., Hartshorne Ded., Hartshorne, Inc. 1er., U.S.G.S. No. 2.			Upper Freeport co		130 Pittsburgh coal, North Mansfield, Pa., Lord & Haas	Upper Freeport c		133 Pittsburgh coal, Creedmoor, Pa., Lord & Haas	U.S.G.S. No. 3	Saxon brown coal,	Bit., lump, nut, sl		137 Lignitic flaming coal, Decazeville (Tramont), France,	Mabler	Lord & Haas	139 Bit. Mary Lee (top), Ala., W. B. Phillips		Lignite, Trifail (Styria), Mahler.	Upper Freeport coal, Cambridge, O., Lord &	143 Lump and slack, Henryetta, Bed Ind. Terr.,	U.S.G.S. No. I.	Lump and fine,	U.S.G.S. No. 1.	Saxon brown coal, Greppen, Germany, Bunte	West, Lord & Haas	Lignite, Vaurigard, France, Mahler	149 Dit., Osage Kiver, Miss., Johnson
H # # #	- i	-1 ``	i	H	Η	ï	- i	H,	—	— -	Ť	H	H		-	-	4	-	H	H	H	ř	-	-		Ĥ	÷	–	4

HANDBOOK OF THERMODYNAMIC

COMBUSTIBLE AND VOLATILES OF COALS, LIGNITES, AND PEATS Table LVI—Continued

				Combust	ible = Co	oal Less	(Moistur	Combustible = Coal Less (Moisture + Ash.)			il.= in 544 di- n Comb.	
No.	Name, Source, Size, Authority.	Ratio	Proximate.	nate.		Ultimate.		B.T.	B.T.U. per Pound.	und.	Lb. Vo Less C X 148 X 148	Ratio of FixedC.
		Total, C H	Vola- tile,	Fixed C,	H %	%C	$\begin{bmatrix} O_2 \\ N_2 \end{bmatrix}$	Total.	From Fixed C.	From Vola- tile.	B.T.U.] B.T.U. J Comb., Comb., Vided by	Vol.
150		13.13	45.5	54.5	5.57	73.14	21.29	12759	7926	4833	10622	1.20
151	Lump, McAlester Bed, Lengh, Ind. 1er., U.S.G.S. No. 4. Rocking A. Middle Kitaninny O	13.10	46.26	53.74	5.59	72.99	21.42	13941	7816	6125	13240	1.16
153	Lord & Haas. Jackson Co., Ohio, North, Lord & Haas.	12.98 12.95	42.48		6.34	82.48 82.2	11.16	$\frac{14166}{14162}$	8369	5797	13646	1.35
154	Lump, Atchison Field, Atchison, Kan., U.S.G.S. No. 4 Lackson Co. Ohio Center. Lord & Haas	12.90		55.8		74.42				6605	14943	1.26
156	156 R. of m., Rich Hill Field, Sprague, Mo., U.S.G.S.	19 60				74 26			21.00	0000	19980	6#. ·
157	Hocking Valley coal, r. of m., Middle Kitaninny, O.,				9.00	00.07		14040	06//	0680	14750	1.15
Q A	Lord & Haas	12.88				82.78				5362	13142	1.45
159	158 Bit., Lancaster, Ind., Noyes, McTaggart & Craven 159 Jackson Co., Obio. South. Lord & Haas	12.84	44.22	57.42	5.71	81.28	21.15	12573	8113	4460	10088	1.26
160	160 Same, Eastern District	12.75				81.05				4251	10681	1.51
	Lord & Haase, com, tump, strong transmity, c., Lord & Haase, tump and unit Rarlington Ky Western Field	12.72	42.36	57.64	6.58	83.66	9.76	13905	8383	5522	13036	1.36
163	U.S.G.S. No. 2. Bit. New Pittsburgh, Ind., Noves. McTaggart &	12.70	45.73	54.27	5.88	71.65	19.47	14441	7893	6548	14319	1.18
18	Craven	12.62	49.99	50.01	5.85	72.53	24.83	13943		0299	13343	1.002
165	165 R. of m., Barnett, Morgan Co., Mo., U.S.G.S.	12.60	50.25			76.45	17.46		7236	7898	14800 15717	77.1
166	166 Saxon brown coal, Alfred, Germany, Bunte	12.58	58.9	41.1	5.81	73.08	21.11	73.08 21.11 11884	5978	5906	10027	269.

953	1.45	1.14	796.	1.055	*00	. 994		.73	1.22	1.365	. 895	1.105		1.17	,	.706	1.15	1.36	700	1.334	7.00	497	1.017		1.16	. 55	067	/08.
10570 13911	13021	14186	13878	13288	000	10400		8963	11176	13768	10993	14036		13212	1	7415	16036	13797	0010	13129	13039	7798	10325		12213	6324	64401	10773
5412 6563	5310	6628	7110	6466	7	6565 5876	,	5181	5025	5821	5801	6668		2992		4345	7529	5844	000	5623	0.547	5209	5117		5657	4081	1100	2/08
7097 7683	8613	7749	7093	7476	1	7252		6137	8005	8395	6989	7635		7849			7716	8384			7534	4829	7336	200	7808	5163		0/5/
12509 14246	13923	14377	14203	13933	1	13817		11318	13030	14216	12670	14303		13516		10366	15245	14228	0	13938	14081	10038	19453	2017	13465	9242	0	12525
23.85	23.32	21.28	22.40	22.23	0	23.04 27.77	200	25.42	21.80		23.05	24 81	1	26.04		28.38		24.53		24.60	22.33	31 95	30.60	3	28.57	33.67	,	34.05
70.50	96.02	72.81	81.76	78.17		71.12		68.89	72.17	70.10	71.01	60 10	3	68.04		65.81		69.28	0	69.33	20.29	63 09	62.55		65.29	60.61	9	59.99
5.65	5.72		5.84	5.90		5.84 8.84		5.69	_		5.94	9	-	5.92		5.81	00.9	6.19	1	6.17	7.03	5 73	2 2	3	_	5.72	2	5.96
48.8 52.83	59.22	53.28		51.34	0	49.86	P.		55.04		47.23	52.50	3	53.97			.05	57.55		.17	51.80	33.9	-		53.69	35.50	- 9	46.46
51.2	40.78		51.23	48.66		50.14		57.80		28	52.77	47 50	2	46.03		58.6	95	42.35			47.93	08 90	40.56	3.5		64.50		53.54
12.48 12.40	12.30		12.30	12.20			17.71				11.59	7		11.50			9	11.20			11.20	11 00		2	10.60		9	10.10
167 Upper Bayarian coal, Penzberger Förderkohle, Germany, Bunte	<u> </u>		171 Lump, Altoona, Polk Co., Iowa, U.S.G.S. No. 3 172 Lump and nut. Belleville Field. O'Fallen, III.	U.S.G.S. No. 1	173 R. of m., Cambria, Field, Cambria, Wyo., U.S.G.S.	No. 2.	175 Saxon brown coal, Menselwitz Fortschritt. Ger-	many, Bunte	R. of m., Mildred, Sullivan Co., Ind., U.S.G.	Lump, Belleville	Lignite, Terre de Feu, France, Mahler	179 Lump, Centerville, Appanoose Co., Iowa, U.S.G.S.	180 Black lignite, washed nut. Red Lodge, Mont.	U.S.G.S. No. 1	181 Lignite, Josefszeche in Schwanenkirchen, Germany,		182 R. of m., Beyier Field, Mo., U.S.G.S. No. 2		184 Black lignite, lump and slack, Gallop Field, New	Mexico, U.S.G	185 Same, stack, U.S.G.S. No. 2.	Enrice, 1 1000 con	127 Brown lignite Hoat Wood Co Tex 118 C.S. No. 9	Black lignife. Boulder Field	U.S.G.S. No. 1.	schwaige, Germany, Bunte	190 Brown lignite, Lehigh Field, N. Dak., U.S.G.S.	No. 1

Table LVI—Concluded

COMBUSTIBLE AND VOLATILES OF COALS, LIGNITES, AND PEATS

				ombusti	ble = Co	Combustible = Coal Less (Moisture + Ash.)	Moisture	+Asb.)				
No.	Name, Source, Size, Authority.	Ratio	Proximate.	aste.		Ultimate.		B.T.	B.T.U. per Pound.	und.		Ratio of FixedC
		Total. H.C.	Vola- tile,	Fixed C,	H2 %	υ <i>ķ</i>	$\left. \begin{array}{c} O_2 \\ N_2 \\ N_3 \end{array} \right\} \%$	Total.	From Fixed C.	From Vola- tile.	B.T.U.] B.T.U.] Comb., Comb. X vided by	Vol.
191	191 Brown lignite, Williston Field, N. Dak., U.S.G.S.			1	,	3		1 '				
	No. Z	9 8. 8.	48.44	51.56 6.01	6.01	59.13	59.13 34.86	_		4892	10099	1.064
192	Peat of Ostrach, Germany, Bunte	9.78	65.6	34.4	5.84	57.11	37.05			3934	5997	.524
193	Black lignite, Sheridan Field, Wyo., U.S.G.S. No. 1.	09.60	48.97	51.03		61.35	33.31	13357	7422	5935	12120	1.04
194	Bohemian peat, Mahler	9.60	68.93	31.07	5.96	57.21	36.82	10625		6106	8858	.45
195	Brown lignite, Houston Co., Tex., U.S.G.S. No. 1	9.40	59.58	40.42	6.54	61.14		:	5879	:	:	.678
196	Cannel coal, Obertite, Nova Scotia, Kent	9.04										
197	Oak wood, Mahler	8.57	:	:	5.88	50.44	43.69		:	:	:	:
198	Norway pine, Mahler	8.48	:	:	6.02	51.08	42.90		:	:		
199	Cannel coal, Tasmanite, Tasmania, Kent	7.62										:
200	Cellulose, Mahler	7.20	:	:	6.17	44.44	49,39	7560	:	:	:	:
		_	_			_					_	

TABLE LVII

CLASSIFICATION OF COALS BY GAS AND COKE QUALITIES

		Muck.							Hilt.	
			1					Grüner's		
Behavior of Powdered Sample on Heating in Crucible.	:	\$	Ash sno	Ash and Moisture Free.	re Free.	Per	Sexton's English Names.	German Names.	N	Fixed C Volatile
	Name.	Class.	C	H2	°	Coke.			•	Ash and Moisture Free
Does not melt, residue powder, same as	Sand coal.	Anthracite and semi - anthra-	6 33	4 to	3 to	06 20	Anthracite	Lean coal	Anthracite	20 to 9
coal.		cite.	90	4.5	5.5	85			Semi - caking	
Partly melts, residue Molten sand mainly powder, rest coal.	Molten sand coal.	Dry bituminous, long flame.	80 to 27	4.5 to	15 to	60 50 50	Non - caking coal, long flame	Dry coal, long flame	sinter coal, poor in gas	9 to 5.5
Solt.			2	0.0	0.01	3			10 5 4: A 0	
Melts, residue com- pact and hard but	Sinter coal.	Caking bitumi- nous coal, long	85 to	ئ ئ	2 2 2	68 to	Gas coal	Fat coal, long flame	Caking or coking coal	5.5 to 1.2
not puffed.	•	flame gas coal.	80	.8 8	14.2	09			Caking gas	1.2 to 1.5
				1	1	1	Transport	Fot coling		
Melts, residue com- Caking, sin- Caking coal, pact and hard ter coal. proper, or forge somewhat puffed.	Caking, sin- ter coal.	Caking coal, proper, or forge coal.	\$9 \$4	5.5 5.0	5.5 to 11	68 68	Fullace coal	coal	Sinter coal, rich in gas	1.5 to 1.25
Melts thoroughly, residue very hard and	Caking coal.	Caking bitumi- nous coal	91 to	4.5 to	5.5 to	85 to	Coking coal	Fat coal, short flame	Sand coal, rich in gas	1.25 to 1.1
very much puffed.			8	5.5	6.5	74				

			Boilin	g-point.	Specific Gravity	Molec- ular	Comp by W	osition Teight.
p	Name.	Formula.	° C.	° F.	at 32° F.	Weight Approx.	% C.	% н.
Gas	Methane Ethane Propane Butane	$\begin{array}{c} { m CH_4} \\ { m C_2H_6} \\ { m C_3H_8} \\ { m C_4H_{10}} \end{array}$	$ \begin{array}{c c}\\ -25\\ 0 \end{array} $	-13 32		16 30 44 58	81.84	25 19.98 18.16 17.24
,	Pentane normal	C_5H_{12}	38	100.4	.627 at 57	72		16.67
Liquid	Pentane iso. Hexane normal Hexane iso. Heptane normal Heptane iso. Octane iso. Nonane. Decane Endecane. Tridecane. Tetradecane. Pentadecane Hexadecane Octodecane. Eicosane. Tricosane.	C ₅ H ₁₂ C ₆ H ₁₄ C ₆ H ₁₄ C ₇ H ₁₆ C ₇ H ₁₈ C ₈ H ₁₈ C ₈ H ₁₈ C ₉ H ₂₀ C ₁₀ H ₂₂ C ₁₁ H ₂₄ C ₁₂ H ₂₈ C ₁₄ H ₃₀ C ₁₅ H ₃₂ C ₁₆ H ₃₄ C ₁₈ H ₃₅ C ₂₀ H ₄₂ C ₂₃ H ₄₅	30 69 61 97.5 91 125 118 136 173 182 198 216 238 258 280 205 234	86 156.2 141.8 207.5 195.8 257 224.4 276.8 343.4 359.6 388.4 420.8 460.4 496.4 536401.	.658 at 68 .664 .683 at 68 .699 .702 at 68 .703 .718 at 68 .741 .73 at 68 .757 .774 at -15 .765 .773 at -10 .776 .792 .775 at 39775 at 64778 at 99 .779 at 118	72 86 86 100 100 114 114 128 142 156 170 184 198 212 226 254 282 324	83.76 83.76 84.00 84.00 84.21 84.21 84.38 84.51 84.62 84.71 84.78 84.85 84.96 85.02 85.10	16.67 16.24 16.24 16.00 15.79 15.62 15.49 15.38 15.29 15.22 15.15 15.08 14.98 14.98 14.82
Solid	Paraffine (myricle) Paraffine (ceryl)	$C_{26}H_{62} \\ C_{27}H_{58} \\ C_{30}H_{62}$	370	698		352 380 422	85.23 85.26	14.77 14.74 14.69
ETHY	LENES (C_nH_{2n}) AN		THALE TROLI		$C_nH_{2n-6}+H_6$	FROM	RUS	SIAN
Ethyler	•			EUM 				
Propylen Butylene Amylene Hexylene Heptylen	e.	$C_{2}H_{4}$ $C_{3}H_{8}$ $C_{4}H_{8}$ $C_{5}H_{10}$ $C_{6}H_{12}$ $C_{7}H_{14}$ $C_{8}H_{18}$	gas gas 1 36 70 84 119	33.8 96.8 158 183.2 246.2	.635 .76 .714	28 42 56 70 84 98 112	85.7 85.7 85.7 85.7 85.7 85.7 85.7	14.3 14.3 14.3 14.3 14.3 14.3 14.3
Diamyle	Oct. Naphthalene e	$egin{array}{c} \mathrm{C_{9}H_{18}} \\ \mathrm{C_{10}H_{20}} \\ \mathrm{C_{11}H_{22}} \\ \mathrm{C_{12}H_{24}} \end{array}$	136 161 180 	276.5 321.8 356 384.8	.771	106+6 126 140 154 168 162+6	85.7 85.7 85.7 85.7	14.3 14.3 14.3 14.3 14.3 14.3
Triamyle	ene	$C_{14}H_{28} \ C_{15}H_{30} \ C_{20}H_{40}$	240 248 over 390	464. 478.4 over 734		196 210 280	85.7 85.7 85.7	14.3 14.3 14.3

TABLE LIX

CALORIFIC POWER OF MINERAL OILS BY CALORIMETER AND CALCULATION BY DENSITY FORMULA OF SHERMAN AND KROPFF

		Sp.gr.		B.T.U. p	er Pound.	Error.
No.	Class of Oil.	15° C.	Degree Bé.	Calc- rimeter.	Calcul. S.&K.Form.	%
1	Gasolene	.71	67.2	21120	20938	91
2	Gasolene	.7175	65.1	20389	20854	+2.33
3	Gasolene	.72	64.4	20527	20726	+ .99
. 4	Gasolene	.7709	51.6	20038	20314	+1.38
5	Kerosene	.7830	48.8	20018	20206	+ .92
6	California, refined	.7850	48.35	20014	20194	+ .89
7	West Virginia, crude	.7945	46.2	20030	20098	+ .33
8	Kerosene	.795	46.1	20135	20094	20
9		.7964	45.8	20236	20082	76
10	Ohio, crude	.8048	44.0	20068	20010	29 29
11	Pennsylvania, crude	.8059	43.7 43.2	20057	19998 19979	$\begin{vmatrix}29 \\ + .88 \end{vmatrix}$
12 13	California, refined	.8080 .8103	42.8	19802 19963	19979	± .00
14	West Virginia, crudc	.8237	40.0	19766	19850	+ .42
15	California, refined	.8248	39.7	19827	19838	+ .05
16	West Virginia, crude	.8261	39.5	20021	19830	05
17	, ross riginis, order	.8321	38.2	19757	19778	+ .11
18	Pennsylvania, crude	.8324	38.2	19782	19778	02
19	Ohio	.8418	36.3	19710	19702	04
20	Indian Territory	.8421	36.25	19795	19698	48
21		.8436	36.0	19924	19690	-1.17
22	Indian Territory	.8466	35.4	19685	19666	09
23	California, refined	.8500	34.7	19715	19638	38
24	Kansas, crude	.8510	34.5	19724	19630	— .47
25		.8514	34.45	19701	19630	35
26		1	34.05	19784	19610	86
27	Kansas, crude	.8580	33.20	19389	19578	+ .95
28	Illinois, crude	.8597	32.8	19379	19562	+ .95
29	dire :CJ	.8616 .8640	32.5	19741	19550	95 12
30	California, refined Pennsylvania, fuel oil	.8648	32.05 31.9	19555 19656	19530 19526	12 65
31 32	Pennsylvania, fuel oit	.8660	31.65	19555	19516	19
32 33	Pennsylvania, fuel oil	.8670	31.5	19530	19510	10
აა 34	Indian Territory	.8690	31.1	19534	19494	20
3 4 35	indian Territory	.8708	30.8	19654	19482	86
აა 36		.8712	30.7	19614	19478	68
37	Kansas, crude	.8745	30.1	19354	19454	+ .50
38	Pennsylvania, fuel oil	.8773	29.6	19428	19434	+ .03
39	Kansas, crude	.8800	29.0	19447	19410	18
40		.8807	29.0	19435	19410	47
41		.8810	28.9	19435	19406	15

TABLE LIX—Continued
CALORIFIC POWER OF HYDROCARBON OILS BY CALORIMETER AND
CALCULATION BY DENSITY FORMULA OF SHERMAN AND KROPFF

	G	Sp.gr.		B.T.U. I	per Pound.	Error,
No.	Class of Oil.	15 °C.	Degrees Bé.	Calo- rimeter.	Calcul. S.&K. Form	%
42		.8820	28.75	19643	19400	-1.22
43	Kansas, crude	.8828	28.7	19249	19396	+ .73
44		.8833	28.5	19474	19390	42
45	Indian Territory	.8860	28.0	19454	19370	42
46		.8862	28.0	19372	19370	01
47	Indian Territory	.8900	27.3	19418	19342	39
48	Texas, crude	.8914	27.1	19242	19332	+ .45
49		.8970	26.1	19355	19294	31
5 0		.9007	25.4	19359	19267	47
51		.9050	24.7	19228	19238	+ .05
5 2		.9065	24.45	19352	19228	63
53	Kansas, crude	.9066	24.4	19089	19226	+ .69
54		.9087	24.1	19282	19213	35
55	Kansas, crude	.9114	23.6	19303	19194	5 5
56	Texas, crude	.9137	23.2	19028	19178	+ .76
57	Texas, crude	.9153	22.95	19246	19168	39
58	Texas, crude	.9155	22.9	19008	19166	+ .80
59	California, crude	.9158	22.9	18572	19166	+2.58
60	Fuel oil	.9170	22.7	19103	19157	+ .28
61	California, crude	.9179	22.5	18779	19150	+1.94
62	California, crude	.9182	22.5	18985	19149	+ .83
63	Texas, crude	.9336	20.0	19080	19048	16
64	California, crude	. 9644	15.2	18589	18858	+1.42

TABLE LX
PROPERTIES OF OIL GAS

			Vol	lumetr	ic An	alysis	i.		At	32° F.	and 29.9	92" Hg	Pressu	re.
No.	Description.	СН	H_2	Heavy C ₂ H ₄	co.	CO ₂ .	O ₂	N ₂		Cu. Ft. per Lb.	C	J. per Ft.	B.T.I	o
_	m : "			<u> </u>							l			
1 2 3 4 5	Thwaite oil gas Pintsch American oil Pintsch American oil Oil gas	$63.1 \\ 61.2$	5.6 6.4	27.4 28.3 17.4	.4 .4 .2	 	.8 .7	5.06	.03427 .05142 .05109 .04313	19.45 19.6	1260.7	818.0 1074. 1064. 803.9	22815 24710	20889 20854
_	Pintsch gas from petroleum residue	58.0	24.3	17.	١	١			.04081	24 5	990.2	898	24260	22000
6	Pintsch gas from	ا بنا	_{r ^}	00.0			' '	``					1	1
7	paraffine oil American petroleum		5.6	28.9	8.9	.9	٠٠.	• •	.0591	16.92	1126.8	1034.8	19065	17509
8	oil gas	53.7	l	41.2	1			l	.05726		1294.8		1	i
9	General	$\frac{52.5}{48}$.		$\frac{23.5}{16.5}$	1.0	.5	$\frac{.5}{5.0}$	$\frac{3.5}{3.0}$.04777 $.04318$	$17.32 \\ 23.16$	1157.5 901.3	966.5 716.	20060 20874	16940 16583
10	Crude oil Retort gas,	0.5 4		١		l						1	1	1
11	England English shale oil gas,	35.4	6.6	49.4	1.5	1.4	.3	• •	.05972	16.750	1390.7	1107.	23282	18542
**	Young and Bell		16.85	44.83	.63		. 24	1.15	.04670	21.41	1043.1	966.0	22333	20682

The hydrocarbon analyses in this table for oil gas are quite uncertain, but less so than the hydrocarbons equivalent to kerosene and gasolene.

TABLES AND DIAGRAMS

TABLE LXI COMPOSITION OF NATURAL GASES

	Source.	Authority			Volu	ımetric	Analy	rsis.		_
No.	source.	Authority	O ₂ .	CH4.	C2H6.	Н2.	co.	C2 H4.	N2.	CO2.
1	West Virginia	Report Gas Eng. Com. N. E. L. A	.4	99.5	.1					
2	Kansas	Report Gas Eng. Com. N. E. L. A	25	4 6 98.3			.25		1.2	
3	Caucasus	Bunsen		97.57	: : :		2.69	• • •		
4	Caucasus	Bunsen		95.56			4.4			
5	Kokomo, Ind	Levin	.3	94.16		1.7	.55	.3	2.8	.29
6	Kokomo, Ind	Eng. & M. J	.3	94.16		1.42	. 55	.3	2.8	.29
7	St. Mary's, Ohio	Levin	.35	93.85		2.74	.44	.2	2.98	
8		Lucke	.35	93.85		2.14	.44	.2	2.98	
9	Marion, Ind	Eng. & M. J	. 55	93.57		1.2	.6	.15	3.42	.3
10	Marion, Ind	Levin	.55	93.57		1.4	.6	.15	3.42	.3
11	Findlay, Ohio	Eng. & M. J	.39	93.35		1.64	.41	.35	3.41	.25
12	Findlay, Ohio	Levin	.39	93.35		1.84	.41	.35	3.41	
13	English	Lewes		93.16	2.94		1.0		2.9	
14	Russian	Lewes		93.1	3.26	.98			1.9	2.18
15	Caucasus	Bunsen		93.09	3.26	.98	١		.49	2.18
16	Anderson, Ind	Eng. & M. J	.42	93.07		1.86	.73	.47	3.02	.26
17	Anderson, Ind	Levin	.42	93.07		2.01	.73	.47	3.02	.26
18	Ohio	Lewes	.35	92.84	.35	1.89			3.82	.75
19	Fostoria, Ohio	Eng. & M. J	.35	92.84		1.89	.55	.20	3.82	.20
20	Muncie, Ind	Levin	.35	92.67	1	2.5	.4	.25	3.53	
21	Muncie, Ind	Eng. & M. J	.35	92.67		2.35	.45	.25	3.53	.25
22	Findlay, Ohio	Gill	.3	92.6		2.3	.5	.3	3.5	.3
23		Lucke	.34	92.6		2.18	.5	.31	3.61	2.6
24	Caucasus	Bunsen		92.49	4.11	.94	.93		2.13	
25	Caucasus	Bunsen		92.24	4.26		3.50			
26	Leechburg, Pa	Hoyle		89.65		4.79	.26	4.39		.35
27	Penna. & W. Va	Allen & Burrell		83.	16.4			l '	.6	
28	West Virginia	Report Gas Eng.			}	ļ				
		Com. N. E. L. A	.15	81.5	17.6	.2			.55	
29	Butler County, Pa	Hoyle		80.11		13.5		5.72		.66
30	• • • • • • • • • • • • • • • • • • • •	Hoyle		75.44		6.1	٠.	18.12		.34
31	U. S	Ford	1.1	72.18	.7	20.6	1.			.8
32	Pittsburgh, Pa	Levin	.8	72.18		20.	1.	3.0		.8
33	Penna	Jüptner	١	67.0	5.0	22.	.6	1.0	3.0	.6
34	Pittsburgh, Pa	Hoyle	.8	67.0		22.	.6	5.0	3.0	.6
35	U. S	Ford	.8	65.75		26.12				.6
36	U. S	Ford	.78	60.7	1.	29.03		1		
37	U. S	Ford	2.1	57.85	1	9.64	1		23.41	
38	U. S	Ford	.8	49.58	.6	35.92	.4	12.3		.4
	0. 2				<u> </u>					

TABLE LXII

PROPERTIES OF MINERAL OILS

ž			Density.		ן	Ultimate Analysis.	Analysis		Prox		B.T.U. per Pound.	r Pound.	
9	Name and Source.	Sp.Gr.	ŗ.	, Bé.	Ċ.	Н2.	O ₂ +N ₂ .	zá	H2O.	By Calorimeter.	By S. & K. Form	High Value.	Low Value.
П	Coal tar, Paris gas works.	1.044	:	6.112	82	7.6	:	:	:		18595	16533	15870
7		.985	32	12.135	87.1	10.4	2.5	:	:	18146	18735	18983	18065
ಣ	California, fuel	996.	99	14.93	81.52	11.61	6.92	.55		18667	18847	18926	17903
4	California, Whittier	.9637	99	15.28	:	:	:	.845	8.71	18518	18861		
30	_	. 9629	09	15.39	:	:	:	.84		18596	18866		
9	California and Bakersfield fucl	.962	8	15.53	84.43	10.99	3.99	.59	:	:	18871	18976	18005
~	Barbadoes fuel	.958	:	16.114	:	:	:	:	:	17718	18894		
œ	California crude	.9572	09	16.24	86.3	16.7	:	∞.	:	18646	18900	21723	21254
6	Russian residue	.956	:	16.43		:	:	:	:	19440	18907		
10	Hanover	.955	32	16,505	86.2	11.4	2.4	:	:	:	18910	19488	18493
11	California crude	. 9533	09	16.85		11.3	:	.67	:	18797	18924	19356	18363
12	California, Whittier and Los Angeles	.953	09	16.9	:	:	:	86.	4.93	18714	18926		
13	California, Whittier and Los Angeles	.9529	09	16.915	:	:	:	.955	4.62	18754	18926		
14	Texas fuel	.945	:	18.155	:	:	:	:	:	19242	18976		
15	California	.943	09	18.47	:	:	:	.735	1.06	18677	18989		
16	California, Whittier	.9417	99	18.67	:	:	:	.975	-	18626	18997		
17	California	.9410	09	18.783	:	:	:	1.010	.74	18705	19001		
18	California	.9407	09	18.829		:	:	96	.42	18657	19003		
19	Baku Russia heavy	.938	09	19.26	86.6	12.3	1.1	:	:	19440	19021	2002	18978
28	Borneo	. 936	:	19.58	:	:	:	:	:	18831	19033		
77		.928	09	20.95	87.1	11.7	1.2	:	:	22628	19088	19761	18739
22	Petroleum residue, Baku	.928	32	20.95	87.1	11.7	1.2	:	:	19832	19088	19761	18739
23	Petroleum residue, Baku	.928	:	20.95	87.1		1.2	:	:	19260	19088	19761	18739
24	Texas, Beaumont fuel	926	9	21.25	83.26		3.83	χĊ	:	:	19100	19654	18570
25	Texas, Beaumont crude	.924	09	21.56	84.60		2.87	1.63	:	:	19112	18977	18025
8	Java	. 923	8	21.71	87.1		6.	:	:	19496	19119	19943	18095
		_					Ī						

TABLES AND DIAGRAMS

	710											
	920	09	22.17	84.0	12.7	1.2	:	:	• • • • • • • • • • • • • • • • • • • •	19136	19917	18807
	.920	:	22.17		:	:	:	:	18864	19136	07000	1070
	.914	2	23.18		13.9	:	99.	:	:	97.161	20949	19/50
Richardson & Wallace.	.912	2	23.514	85.03	12.3	.92	1.75	:	:	19191	19894	18810
-	912	32	23.514		11.8	1.3	:	:	17474	19191	19792	18761
	912		23.514		11.8	1.3	:	:	17816	19191	19792	18761
	911		23.682		11.5	8.2	:	:	16283	19196	18452	17647
	608	33	26.95		12.7	6.9	:	:	:	19328	19393	18283
	200	}	26.95		12	2.3	:	:	18036	19328	19739	18691
	282	. 09	27 84		13.1	2.7	:	:	18718	19364	20188	19044
e heavy	8	35	28.01		13.7	1.4	:	:	19210	19370	20654	19457
	988	09	28.01		13.7	1.04	:	:	19224	19370	20654	19457
	988	32	28.01		:	:	:	:	19627	19370		
	88	32	28.095		12.6	2.1	:	:	18416	19374	20045	18944
· · · · · · · · · · · · · · · · · · ·	288	32	28.38		13.6	Τ.	:	:	22628	19385	20796	19608
	885	32	28.73	87.4	12.5	1.	:	:	21060	19400	20289	19198
	875		30,005		:	:	:	:	18217	19450		
West Virginia heavy	873	09	30.37		13.3	3.2	:	:	:	19464	20207	19046
	870	09	30.92		12.1	5.7	:	:	18416	19487	19291	18235
	870	32	30.92		12.7	5.7	:	:	18153	19487	19675	18545
	998	09	31.67		13.07	:	:	:	:	19517	20345	19203
	.861	32	32.603		13.3	πċ	:	:	18844	19555	21200	19439
	.844	:	35.87		13.6	:	:	:	20628	19685	20796	19608
	.8412	:	36,435		14.1	1.6	:	:	18502	19705	20809	19578
de	.841	09	36.47		14.1	1.6	:	:	18400	19709	50809	19578
	.841	99	36.47	84.3	14.1	1.6	:	:	21240	19709	20809	19578
	.838	09	37.07		:	:	:	:	19880	19733		
	.829	32	38.89		13.6	6.9	:	:	:	19806	19808	18620
Je	.829	20	38.89		13.8	9.	9.	:	:	19806	20752	19547
	.826	09	39.50		14.8	3.2	:	:	17930	19830	20699	19606
	.822	:	40.32		12.5	-:	:	:	21600	19863	19289	19198
	.82	:	40.73		14.7	1.9	:	:	17588	19879	20042	19758
	.816	:	41.57		14.8	3.2	:	:	17533	19913	19899	19606
	.786	09	48.13		13.4	1.8	:	:	18215	20175	20341	19171
	.786	32	48.13		13.4	1.8	:	:	18218	20175	20341	19171
	:	:	:	83	14.4	က	:	:	19980	:	20801	19544
	:	:	:	85.5	14.2	က	:	:	19883	:	21045	19806
American, heavy residue	:	:		87	13	:	:	:	19620	:	20536	19401
		9		000	17.	0 1			000			908300

TABLE LXIII

COMPOSITION OF COKE OVEN AND RETORT COAL GAS

		† Robinson	ā							
					Volur	Volumetric Analysis.	lysis.			
o O	Description.	H2	CH4.	co.	C2H4.	C,H.	Heavy Hydro- carbons.	CO ₂ .	° 0	Re- mainder and N ₂
н	Retort gas, Wright, 5½ hrs.	67.12	22.58	6.12			1.79	1.50		0.89
01	Wigan cannel coal, retort gas, Henry, 13th hr	0.09	20.0	10.00	:	:	0	:	:	10.0
က	Solvay coke oven	56.9	22.6	8.7	:	:	3.0	3.0	;	5.8
4	Coke oven gas, average German, 1% water vapor	55.0	32.0	7.0	1.5	∞.	:	1.2	:	2.5
က	Magdeburg retort gas	54.9	30.1	7.7	:		3.3	1.4	2.	2.4
9	Retort coal gas, Lewes, 5-6.5 O in coal	54.21	34.37	6.68	2.48	.79	:	1.47		
7	Aachen retort gas	54.0	34.2	5.2	:	:	3.3	1.1	:	2.2
∞	† Norwich retort gas, bit. coal	53.79	36.11	3.40	:	:	3.26	.27	.14	3.03
6	† Southampton retort gas, bit. coal	53.59	36.74	3.59	:	:	3.09	.07	.39	2.53
10	† London retort gas, bit. coal	53.14	36.55	4.11	:	:	2.92	60.		3,19
11	Coke-oven gas	53.0	35.0	0.9	2.0	:	:	2.0		2.0
12	Common coal gas	52.9	31.8	7.18	5.0	:	:	:	:	3.12
13	Retort coal gas, Lewes, 6.5-7.5 O in coal	52.79	34.43	7.19	3.02	66.	:	1.58		
14	Manchester Canal coal retort gas, Wright	52.71	31.05	4.47	:	:	11.19			
15	Retort gas, Wright, 3½ hrs	52.68	33.54	6.21	:	:	3.04		:	3.04
16	Average retort coal, Klumpp	52.5	31.35	8.6	:	:	1.3 - 2.2	1.5	.35	.35-1.05
17	Common coal gas	52.5	34.0	5.0	4.0	:	:	:	.05	4.45
18	Retort coal gas, Sexton	51.88	31.8	9.1	:	:	5.2	:	:	2.03
19	† Brighton retort gas, bit, coal	51.62	38.15	4.14	:	:	3.76	.03	.23	2.07
20	London coal retort gas, Pryce	50.7	37.8	4.1	:	:	4.4	:	:	3.0
21	Retort coal gas, Newton, Mass	50.59	34.80	6.16	:	:	5.23	1.16		2.06
22	† Newcastle, Tyne, retort gas, bit. coal	50.5	36.71	3.37	:	:	3.62	.58	.23	5.29
53	Retort coal gas, Lewes, 7.5–9 O in coal	50.1	35.03	8.21	3.98	99.	:	1.72	:	8.
77	Paris retort gas	50.1	33.1	6.3	:	:	5.8	1.5	20	2.7
25	Common coal gas	50.1	38.0	6.0	4.0	:	:	:	:	1.9
8	Coke oven gas, Wyer	50.0	36.0	6.0	4.0	:	:	1.5	.50	2.0
		_								

27	Taclede Gas Co., hit., coal	8.64	32.3	6.7	-		8.0	2.40	09.	0.2
8	Frankfurt retort gas	49.8	32.6	80	:	:	4.0	2.3	:	2.5
29	Berlin retort gas.	49.7	32.7	9.5	:	:	4.6	2.5	:	1.0
30	Königsberg retort gas	49.0	36.5	5.6	:	:	8.9	1.1	:	1.0
31	† Gloucester retort gas, bit, coal.	48.88	38.25	4.64	:	:	4.95	ල.	.51	2.74
32	Dresden retort gas.	48.7	33.4	8.0	:	:	3.0	1.5	1.4	4.0
33	Retort coal gas, average	48.49	35.9	6.61	:	:	3.83	.12	:	5.05
32	Retort coal gas, Sexton.	48.32	39.55	4.63	:	:	5.18	:	:	2.32
35	† Redhill refort gas, bit. coal	48.18	39.41	3.41	:	:	4.40	.74	.49	3.37
36	Coal gas, Bates.	48.1	36.5	09:	4.3	:	:	œ.	.40	8.6
37	1 Good Solvay average coke oven gas	48.0	35.5	5.1	4.2	1.2	:	1.3	πĠ	4.2
38	Retort coal gas.	48.0	39.5	7.5	:	:	 8.	:	:	1.2
33	London retort gas.	48.0	37.6	3.7	:	:	4.4	:	က္	0.9
40	† London retort gas, bit, coal	47.99	37.64	3.75	:	:	4.41	:	.26	5.95
41	Common coal gas.	47.9	33.3	0.9	12.3	:	:	:	ŗĠ.	
42	Common coal gas	47.73	35.6	6.15	4.88	:	:	1.41	.31	3.92
43	Boston, Mass., retort coal gas	47.29	38.67	1.04	:	:	5.21	1.02	:	6.75
44	Coke oven, Milwaukee.	47.1	34.7	6.2	ლ დ.	:	:	3.1	က့	4.8
45	Average retort coal, Klumpp	47.0	36.0	8.0	:	:	5-4.3	1.6	4.	2.7-6.5
46	Newcastle, Staffordshire	46.31	39.01	3.74	:	:	4.53	80.	11.	6.22
47	Hannover retort gas	46.3	37.5	11.2	:	:	3.2	∞.	:	1.0
48	Hannover, Ger., retort coal gas	46.27	37.55	.81	:	:	3.17	<u>8</u> .	:	11.39
49	Lean coke oven, Klumpp	46.2	27.1	6.2	:	:	2.5	3.0	9.	14.4
20	Heidelberg retort coal gas	46.2	34.02	8.88	:	:	5.09	3.01	39.	2.15
51	Retort coal gas, Wyer	46.0	40.0	0.9	5.0	:	:	ŗċ	ŗċ.	$^{2.0}$
22	London coal retort gas, Chandler	46.0	39.5	7.5	:	:	8.	:	:	3.2
53	Common coal gas	46.0	39.5	7.5	ა დ	:	:	9.	-!	2.5
5 7	Cincinnati, Ohio, retort coal gas	45.85	39.26	.82	:	:	5.17	.82	:	8.08
55	Manchester retort gas	45.6	34.9	9.9	:	:	6.5	3.7	:	2.7
26	Coal retort gas— Bunsen & Roscoc	45.58	34.9	6.64	:	:	6.46	3.67	:	2.75
22	† Nottingham retort gas, bit. coal	45.52	39.66	5.63	:	:	5.63	.81	.24	2.51
28	Retort coal gas, Lewes, 9-11 O in coal	45.45	36.42	98.6	4.44	1.04	:	2.79		
29	† Bristol retort gas, bit. coal	44.57	40.7	4.77	:	:	4.58	:	.27	5.11
09	Common coal gas	44.4	37.1	5.2	2.3	:	:	1.3	1.1	8.6
61	† Preston retort gas, cannel	43.95	39.33	4.64	:	:	6.22	2 8.	.25	4.77
62	Coal gas (16 c.p.)	43.5	35.0	11.5	:	:	5.5	2.0	ŗċ.	2.0
63	† Ipswitch retort gas, bit. coal	43.26	38.73	2.46	:	:	4.53	90.	.12	10.84

Table LXIII—Concluded

GAS
COAL
RETORT
AND
OVEN
? COKE
OF
COMPOSITION

Color Colo						Volun	Volumetric Analysis.	alysis.			
Sheffield retort gas, cannel 43.06 47.2 47.6 88 10 Retort coal gas, Lewes, 11–12 O in coal 42.26 37.14 11.93 4.76 88 3.13 Average oke over, Rumppedge 42.26 37.14 11.93 4.76 88 3.13 Coal retort gas, Humpedge 41.72 41.88 6.3 4.76 1.50 3.6 Leeds retort gas, cannel 40.23 39.0 4.05 4.76 1.50 3.6 Elimingham, Eng., retort coal gas 43.1 4.7 4.7 4.7 4.7 4.7 4.7 4.7 Brimingham, Eng., retort coal gas 39.8 43.1 4.7 4	0	Description.	Н2.	CH4.	со.	CsHr.	CeHe.	Heavy Hydro- carbons.	CO2.	0.5	Re- mainder and N ₂ .
Retort coal gas, Lewes, 11-12 O in coal. 42.26 37.14 11.93 4.76 88 3.13 Average coke oven, Klumpp 41.02 34.3 6.0 4.98 8.72 1.1 Coal retort gas, Elumpedge. 41.02 39.6 6.3 2.8 3.2 4 Otto coke oven, poor part of gas. 40.23 39.7 4.05 7.28 3.2 4 I Enumigham retort gas, cannel. 40.23 39.0 4.05 7.28 3.4 0.7 Brmingham, Eng., retort coal gas. 39.8 43.1 4.7 5.0 4.76 1.50 Bomn retort gas, cannel. 39.78 45.16 7.04 6.38 9.0 Common coal gas. 39.18 40.26 7.14 7.7 4.7 3.0 Glasgow, Scot., retort coal gas. 39.18 40.26 7.14 7.7 4.7 1.00 2.9 Okto coke oven, good part of gas. 37.4 40.4 7.1 5.8 2.0 1.00 Rich coke oven, Klumpp. 40.28	4	† Sheffield retort gas, cannel	43.05	43.05	4.72			6.28	.24	19	2.56
Average coke oven, Klumpp. Coal retort gas, Humpedge. 41.6 Coal retort gas, Humpedge. 41.6 40.23 40.33 40.35 40.3		Retort coal gas, Lewes, 11-12 O in coal	42.26	37.14	11.93	4.76	88.	:	3.13		i i
Cotal retort gas, Humpedge 41.72 41.88 4.98 8.72 3.8 Otto coke oven, poor part of gas. 41.6 29.6 6.3 2.8 3.2 4 F Leeds retort gas, bit. coal. 40.23 49.74 5.02 7.28 3.4 7.28 F Leeds retort gas, cannel. 39.8 43.1 4.7 4.7 1.50 3.6 Bonn retort gas. 39.18 40.26 29 6.38 3.0 1.50 3.9 Common coal gas. 39.18 40.26 7.94 6.38 2.09 1.00 2.9 1.06 2.9 1.6 1.00 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.9 1.06 2.09 1.06 2.09<	1 Q:	Average coke oven, Klumpp	42.0	34.3	0.9	:	:	4.0	2.5	1.1	10.1
Utbo Over over, poor part of gas. 41.6 29.6 6.3 3.2 4.7 1.50 3.6 † Birmingham retort gas, cannel. 40.23 39.7 4.05 7.28 3.7 4.76 1.50 3.6 Elevatingham, Eng., retort coal gas. 39.8 43.1 4.7 5.0 4.76 1.50 3.6 Common coat gas. 39.18 40.28 7.04 6.38 10.0 2.9 0.6 Common coat gas. 39.18 40.26 7.14 6.38 10.0 2.9 0.6 Glasgow, Scot., retort coal gas. 39.18 40.26 7.14 6.3 2.09 0.6 Fetort gas, Wright, 1½ hrs. 38.33 44.03 5.68 5.8 2.09 0.6 Otto coke oven, good part of gas. 37.6 40.4 7.1 6.8 2.0 0.6 St. Andrews retort gas, cannel. 36.63 42.13 5.16 7.90 1.70 1.6 Liverpool, Eng., retort coal gas. 36.44 44.28 3.39	<u>></u>	Coal retort gas, Humpedge	41.72	41.88	4.98	:	:	8.72	:	:	2.70
Firmingtam refort gas, bit, coal 40.23 39. 4.05 7.28 34. 7.28 34. 7.28 34. 7.28 34. 7.28 39. 4.05 4.76 1.50 36. 4.76 1.50 36. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.50 39. 4.76 1.00 29. 39. 4.02 2.94 4.02 2.94 4.04 7.1 2.98 2.09 37. 4.04 7.1 2.88 3.7 4.04 7.1 2.88 3.7 4.04 7.1 2.00 1.70 1.90 1.70 1.00 2.00 1.70 1.00 2.00 1.70 1.00	× ×	Otto coke oven, poor part of gas	41.6	29.6	6.3	:	:	2.8	3.2	4.	16.1
The edst retort gas, cannel.	<u> </u>	Firmingham retort gas, bit. coal	40.23	39.	4.05	:	:	4.76	1.50	.36	10.1
Burningham, Eng., retort coal gas. 40.23 39.0 1.50 4.76 1.50 Bonn retort gas. 39.8 43.1 4.7 4.7 3.0 Common coal gas. 39.18 40.26 2.9 10.0 29 Glasgow, Scot., retort coal gas. 39.18 40.26 7.14 10.0 29 † Glasgow retort gas, cannel. 38.33 44.03 5.68 5.09 5.09 Otto coke oven, good part of gas. 37.4 40.4 7.1 5.8 2.0 Retort gas, Wright, 1½ hrs. 36.63 42.13 5.16 5.8 2.1 1.6 Otto coke oven, Rumpp. 36.63 42.13 5.16 7.9 1.7 4.8 Fix Andrews retort gas, cannel. 36.44 44.28 3.39 7.9 1.7 1.9 Liverpool, Eng., retort coal gas. 36.44 44.28 1.70 7.9 1.7 1.4 Retort gas cannel coal, Sexton. 36.44 44.28 2.04 1.7 1.4 Hoffman coke oven, Bat	2 :	Theeds retort gas, cannel	40.23	42.74	5.02	:	:	7.28	.34	.07	4.32
Bonn retort gas. 39.8 43.1 4.7 3.0 Common coal gas. 39.78 45.16 7.04 6.38 1.08 .06 Glasgow, Scot., retort coal gas. 39.18 40.26 7.14 10.0 29 .06 † Glasgow retort gas, cannel. 38.33 40.8 5.6 5.8 3.7 4 Retort gas, Wright, 1½ hrs. 37.6 40.8 5.6 5.8 3.7 4 Rich coke oven, Rumpp. 37.4 40.4 7.1 5.8 3.7 4 Rich coke oven, Rlumpp. 36.3 42.13 5.16 10.04 2.73 4 Rich coke oven, Rlumpp. 36.44 44.28 3.39 7.90 1.70 1.9 Act. Andrews retort gas, cannel. 36.44 44.28 1.70 2.0 1.70 1.70 Liverpool retort gas, cannel. 36.1 37.8 6.8 1.70 1.70 1.70 Retort gas cannel coal, Sexton. 20.1 37.7 50.0 6.8 1.70	.	Birmingham, Eng., retort coal gas	40.23	39.0	1.50	:	•	4.76	1.50	:	13.01
Common coal gas. 39.78 45.16 7.04 6.38 1.08 .06 Glasgow, Scot., retort coal gas. 39.18 40.26 7.14 10.0 29 .06 f Glasgow retort gas, cannel. 38.33 44.03 5.68 5.98 2.09 .06 Rich coke oven, Wright, 1½ hrs. 37.4 40.4 7.1 5.8 2.1 1.6 Rich coke oven, Klumpp 36.63 42.13 5.16 5.8 2.1 1.6 Rich coke oven, Klumpp 36.63 42.13 5.16 7.9 1.7 4.8 Fish coke oven, Klumpp 36.63 42.13 5.16 7.9 1.7 4.8 Fish coke oven, Klumpp 36.44 44.28 1.7 7.9 1.7 4.8 Fix Andrews retort gas, cannel 36.44 44.28 1.70 7.9 1.70 1.9 Liverpool, Eng., retort coal gas 36.1 37.8 6.8 2.04 1.7 1.4 Retort gas cannel coal, Sexton 33.24 42.93	27 5	Bonn retort gas	39.8	43.1	4.7	:	:	4.7	3.0	:	4.7
Ciasgow, Scot., retort coal gas. 39.18 40.26 29 10.0 29 06 H Glasgow retort gas, cannel. 38.33 44.03 5.68 5.98 2.09 06 Retor gas, Wright, 1½ hrs. 37.4 40.4 7.1 5.8 2.1 1.6 Otto coke oven, Klumpp 37.4 40.4 7.1 5.8 2.1 1.6 Rich coke oven, Klumpp 36.63 42.13 5.16 3.3 2.1 1.6 Rich coke oven, Klumpp 36.44 44.28 3.39 3.39 1.70 1.9 1.7 † St. Andrews retort gas, cannel 36.44 44.28 1.70 1.7 1.9 Liverpool retort gas, cannel 36.44 44.28 1.70 7.90 1.70 1.9 Retort gas cannel coal, Sexton 36.1 37.8 6.8 2.04 11.2 2.0 Cleveland, Ohio, retort coal gas. 42.9 6.8 2.04 1.7 1.4 4.3 Hoffman coke oven, Bates. 27.7 50.0	: O	Common coal gas	39.78	45.16	7.04	6.38	:	:	1.08	98.	.50
Ticklasgow retort gas, cannel. 39.18 40.26 7.14 10.0 29 06 Retort gas, Wright, 1½ hrs. 38.33 44.03 5.68 5.98 2.09 2.09 Retort gas, Wright, 1½ hrs. 37.4 40.4 7.1 5.8 3.7 4.8 Rich coke oven, good part of gas. 37.4 40.4 7.1 5.16 10.04 2.73 4.8 Eich coke oven, Rumpp. 36.43 44.28 3.39 7.90 1.70 1.9 Liverpool retort gas, cannel. 36.44 44.28 1.70 7.90 1.70 1.9 Liverpool, Eng., retort coal gas. 36.1 37.8 6.8 20 1.70 1.0 Retort gas cannel coal, Sexton. 34.8 28.8 20 11.2 20 1.0 Hoffman coke oven, Bates. 33.24 42.93 6.61 12.23 3.35 1.0 Cannel-coal gas. 12.23 33.24 42.93 6.19 12.23 3.35 1.0 Wigan cannel coal, 10 minutes. 20.1 57.38 6.19 12.0 12.0 Wigan cannel coal, retort gas, Henry, 1st hour. 16.0 58.0 12.3 12.0 Wigan cannel coal, retort gas, Henry, 1st hour. 16.0 58.0 12.3 12.0 Wigan cannel coal, retort gas, Henry, 1st hour. 16.0 58.0 12.3	4.	Glasgow, Scot., retort coal gas	39.18	40.26	.29	:	:	10.0	.29	:	96.6
Ketort gas, Wright, 1½ hrs. 38.33 44.03 5.68 5.98 2.09 Otto coke oven, good part of gas. 37.6 40.8 5.6 5.8 3.7 4 Rich coke oven, Klumpp 36.43 42.13 5.16 10.04 2.73 48 † St. Andrews retort gas, cannel. 36.44 44.28 1.70 1.90 1.70 1.9 Liverpool, Eng., retort coal gas. 36.14 44.28 1.70 7.90 1.70 1.9 Liverpool, Eng., retort coal gas. 36.1 37.8 6.8 16.4 1.70 1.9 Retort gas cannel coal, Sexton. 34.8 28.8 20 11.2 20 1.10 Cleveland, Ohio, retort coal gas. 33.24 42.93 6.61 1.2.23 35 1.0 Hoffman coke oven, Bates. 33.24 42.93 6.61 12.23 35 1.0 Cannel-coal gas. Wigan cannel coal retort gas, Henry, 5th hour. 27.7 50.0 6.8 13.0 7.0 10 Wigan cannel co	٠ و و	† Glasgow retort gas, cannel	39.18	40.26	7.14	:	:	10.0	.29	90.	3.07
Otto coke oven, good part of gas. 37.6 40.8 5.6 5.8 3.7 4 Rich coke oven, Klumpp 37.4 40.4 7.1 5.8 2.1 1.6 † St. Andrews retort gas, cannel 36.44 44.28 3.39 7.90 1.70 1.9 † Liverpool retort gas, cannel 36.44 44.28 3.39 7.90 1.70 1.9 Liverpool retort gas, cannel 36.1 37.8 6.8 16.4 1.70 1.9 Retort gas cannel coal, sexton. 33.32 36.31 6.8 20 1.70 1.9 Hoffman coke oven, Bates. 33.32 36.31 6.49 2.04 1.71 4.3 Hoffman coke oven, Bates. 33.24 42.93 6.61 1.23 3.5 1.0 Cannel-coal gas. 27.7 50.0 6.8 13.0 1.71 4.3 Wigan cannel coal retort gas, Henry, 5th hour 21.3 56.0 11.0 7.0 10.62 Neweastle coal, 10 minutes. 20.1 58.0	ē i	Retort gas, Wright, 1½ hrs	38.33	44.03	5.68	:	:	5.98	2.09	:	3.89
Fig. 2.1 Fig. 37.4 40.4 7.1 5.8 2.1 1.6	<u>-</u>	Otto coke oven, good part of gas	37.6	40.8	5.6	:	:	5.8	3.7	4.	6.1
10.04 2.73 48 44.28 3.96 10.04 2.73 48 44.28 44.28 3.39 7.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90 1.70 1.90	∞ <u>:</u>	Kich coke oven, Klumpp	37.4	40.4	7.1	:	:	5.8	2.1	1.6	5.6
Tuverpool retort gas, cannel 36.44 44.28 3.39 7.90 1.70 1.9 1.40 Liverpool, Eng., retort coal gas 36.44 44.28 1.70 1.70 1.70 Retort gas cannel coal, Sexton 36.1 37.8 6.8 11.2 20 Cannel-coal gas 27.7 20.0 6.8 13.0 Wigan cannel coal, retort gas, Henry, 1st hour 20.1 57.38 6.19 Neweastle coal, 10 minutes 20.1 57.38 6.19 Wigan cannel coal, retort gas, Henry, 1st hour 16.0 58.0 12.3 Liverpool Letort gas, Cannel coal, 10 minutes 16.0 20.1 Liverpool Letort gas, Henry, 1st hour 16.0 28.0 Liverpool Letort gas, Henry, 1st hour 16.0 Liverpool Letort gas, Henry, 1st h	g 9	† St. Andrews retort gas, cannel.	36.63	42.13	5.16	:	:	10.04	2.73	.48	2.83
Retort gas cannel coal, Sexton. 36.44 44.28 1.70 7.90 1.70 1.70 1.20 1.70 1.20 1.70 1.20	⊋ ;	Thiverpool retort gas, cannel	36.44	44.28	3.39	:	:	7.90	1.70	.19	6.10
Retort gas cannel coal, Sexton. 36.1 37.8 6.8 16.4 16.4 11.2 20 27.7 20.0 27.7 20.0 27.7 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3 20.1 27.3	5 5	Liverpool, Eng., retort coal gas	36.44	44.28	1.70	::	:	7.90	1.70	:	2.98
Cleveland, Ohio, retort coal gas. 28.8 28. 20 11.2 20	33 S	Retort gas cannel coal, Sexton	36.1	37.8	8.9	:	:	16.4	:	:	2.9
Hoffman coke oven, Bates. 33.32 36.31 6.49 2.04 1.41 .43 † Manchester retort gas, cannel. 33.24 42.93 6.61 12.23 .35 1.0 Cannel-coal gas. 27.7 50.0 6.8 13.0 10 10 Wigan cannel coal, 10 minutes. 20.1 56.0 11.0 7.0 10.62 2.21 Wigan cannel coal, retort gas, Henry, 1st hour. 16.0 58.0 12.3 12.0	. X	Cleveland, Ohio, retort coal gas	34.8	28.8	.20	:	:	11.2	.20	:	24.8
† Manchester retort gas, cannel. 33.24 42.93 6.61 12.23 .35 1.0 Cannel-coal gas. 27.7 50.0 6.8 13.0 7.0 10 Wigan cannel coal, 10 minutes. 20.1 56.0 11.0 7.0 7.0 Wigan cannel coal, retort gas, Henry, 1st hour. 16.0 58.0 12.3 10.62 2.21	₹	Hoffman coke oven, Bates	33.32	36.31	6.49	2.04	:	:	1,41	.43	20.0
Cannel-coal gas. Cannel coal retort gas, Henry, 5th hour. 27.7 50.0 6.8 13.0 6.8 13.0 10 7.0 Wigan cannel coal, 10 minutes. 20.1 57.38 6.19 6.19 10.62 2.21 Wigan cannel coal, retort gas, Henry, 1st hour. 16.0 58.0 12.3 12.3 12.0	25	T Manchester retort gas, cannel	33.24	42.93	6.61	:	:	12.23	.35	1.0	3.64
Wigan cannel coal retort gas, Henry, 5th hour 21.3 56.0 11.0 7.0 Newcastle coal, 10 minutes. 20.1 57.38 6.19 10.62 2.21 Wigan cannel coal, retort gas, Henry, 1st hour 16.0 58.0 12.3 12.0	92	Cannel-coal gas	27.7	50.0	8.9	13.0	:	:	10		2.4
Newcastle coal, 10 minutes	22	Wigan cannel coal retort gas, Henry, 5th hour	21.3	56.0	11.0	:	:	7.0	:		4.7
Wigan cannet coal, retor's gas, frency, iss nour 10.0 58.0 12.3 12.0	20 c	Newcastle coal, 10 minutes.	20.1	57.38	6.19	:	:	10.62	2.21	:	3.50
	ŝ	Wigan cannel coal, retort gas, menry, 1st nour	16.0	28.0	12.3	:	:	12.0	:	:	1.7

Wigan cannel coal retort gas, Henry, 1st hour. Low volatile coal: Solvay oven, Blauvelt, 1st hr. 2d hr. 3d hr.	as, Henry, 1st hour	0	82.5	3.2			13.0	:		•
Low volatile coal: Solvay oven, Blauvelt, 1st 2d '' '' 3d		-	-	!	-				:	L.0
Solvay oven, Blauvelt, 1st					-	,		,	-	,
2d 3d		42.1	31.6	4.6	0.9	යි	:	01.	æ.	34.3
PE ,, 39		51.6	32.8	4.3	3.6	2.	:	.10	æ.	6.1
-		46.8	33.2	4.9	80.00	1.10	:	.10	2.	9.4
4t)		49.6	33.5	4.6	3.3	6.	:	.10	1.10	6.9
P\$,, ,,		50.8	33.1	4.6	3.7	8.	:	.10	<u>8</u> .	6.1
,, ,, 7tl		44.4	30.1	4.4	2.5	2.	:	.20	1.0	16.7
,, ,, st		46.2	32.6	4.5	2.9	.50	:	82.	8.	12.2
,, ,, 10tl		47.4	29.1	4.1	1.6	.40	:	0	6.	16.5
"		53.6	29.5	4.6	1.2	50	:	01.	9.	6.6
,,		69.2	17.0	4.4	9.	20	:	.10	6.	9.7
154		44.0	3.0	5.9	3.5	8.	:	0	4.9	41.4
High volatile coal:										
Solvay oven, Blauvelt, 1st		41.4	41.5	5. 80	3.2	6.	:	90.	.50	5.8
,, ,, 2d		43.8	40.4	5.1	2.6	1.0	:	06:	-40	5.8
ps ,, ,,		47.2	37.6	4.9	2.1	1.0	:	6.	2.	5.6
,, ,, 4t)	4th hr	48.6	36.2	5.0	2.1	1.1	:	1.1	9.	5.5
,, ,, 5ti		49.5	33.3	4.6	1.7	1.0	:	œ.	1.0	8.1
,, ,, ef		49.8	31.4	4.6	1.6	8.	:	1.1	1.1	9.5
74 ,, ,, J4T		47.6	31.0	4.4	1.3	6.	:	2.2	1.6	11.0
[18 ;, ,,]		54.2	31.5	4.8	1.5	1.0	:	8.	50	5.6
,, ,, 10ti		55.3	29.1	4.9	2.0	22	:	1.0	<u>8</u> .	9.9
,, ,, 12t		64.8	23.1	5.3	က်	.10	:	8.	4 .	5.4
,, ,, 14t]		0.79	18.2	5.3	4.	0	:	.50	8.	8.0
,, ,, 16tl		69.4	13.6	6.2	0	0	:	2	4.	10.2

TABLE LXIV

COMPOSITION OF UNITED STATES COKE

(Mainly from U. S. Geological Survey Reports)

Origin.	Moist- ure.	Vol- atile.	Fixed Carbon.	Ash.	Sul- phur.
From Connelsville bituminous coal, 72 hours roasting.	.23	1.32	88.18	10.27	.81
From Connelsville bituminous coal, 48 hours roasting.	.19	.51	89.6	9.7	.63
Foundry Ganley Mountain, U.S.Geological Survey	.75	.35	86.38	12.52	.70
Foundry Milwaukee Solvay, U.S.G.S	.27	.48	89.63	9.62	.79
From Connelsville, U.S.G.S	.18	.32	88.75	10.75	.87
From Alabama coal, U.S.G.S. No. 1	.33	.72	82.63	16.32	.69
From Arkansas coal, U.S.G.S. No. 6	1.30	2.85	78.84	17.01	1.46
From Illinois coal, U.S.G.S. No. 2	1.57	2.83	75.42	20.18	2.75
From Illinois coal, U.S.G.S. No. 3	.96	.44	87.08	11.52	1.19
From Indiana coal, U.S.G.S. No. 1	1.16	1.24	84.81	13.19	1.77
From Indian Territory, U.S.G.S. No. 2	2.60	1.85	80.25	15.30	1.58
From Iowa, U.S.G.S. No. 1.	2.11	1.79	77.01	19.09	4.25
From Iowa, U.S.G.S. No. 3	1.80	1.95	78.64	17.61	4.76
From Kentucky, U.S.G.S. No. 1	.51	.84	93.25	5.40	.87
From Kentucky, U.S.G.S. No. 4	.52	.73	86.40	12.35	2.37
From Missouri, U.S.G.S. No. 2	2.18	1.82	81.34	14.66	2.82
From West Virginia, U.S.G.S. No. 1.	.40	1.95	87.47	.18	.71
From West Virginia, U.S.G.S. No. 2	.59	1.31	86.70	11.40	2.24
From West Virginia, U.S.G.S. No. 3	.38	.87	84.48	14.27	1.19
From West Virginia, U.S.G.S. No. 4	.20	1.15	85.42	13.23	.69
From West Virginia, U.S.G.S. No. 5	.42	.43	84.34	14.81	.83
From West Virginia, U.S.G.S. No. 6	1.00	1.85	89.60	7.55	.70
From West Virginia, U.S.G.S. No. 10	.60	. 55	90.34	8.51	.58
From West Virginia, U.S.G.S. No. 12	1.00	.75	90.37	7.88	1.05
Connelsville average of 3, J. B. Proctor			88.96	9.74	.81
Chattanooga, Tenn., average of 4, J. B. Proctor			80.51	16.34	1.59
Birmingham, Ala., average of 4, J. B. Proctor			87.29	10.54	1.19
Pocahontas, Va., average of 3, J. B. Proctor			92.53	5.74	.60
New River, W. Va., average of 8, J. B. Proctor			92.38	7.21	.56
Big Stone Gap, Ky., average of 7, J. B. Proctor			93.23	5.69	.75
Alabama, run-of-minc, foundry, Moldenke	1.34	1.03	83.35	14.28	1.3
Alabama washed slack, foundry, Moldenke	.75	.75	86.00	11.50	.9
Colorado washed slack, foundry, Moldenke	.44	1.31	82.18	16.07	.44
Illinois washed slack, foundry, Moldenke	2.78	.74	83.35	13.13	2.49
Pennsylvania washed slack, foundry, Moldenke	.23	.29	92.53	6.95	.81
Pennsylvania washed slack, foundry, Moldenke	.91	2.26	80.84	15.99	1.87
Tennessee, foundry, Moldenke	.22	.11	92.44	7.23	.61
Tennessee, foundry, Moldenke	1.67	1.6	76.87	19.86	2.45
Virginia, foundry, Moldenke	.16	.80	93.24	5.80	.42
Virginia, foundry, Moldenke	1.52	1.67	88.52	8.29	1.02
West Virginia, foundry, Moldenke	.67	.46	95.47	4.00	.53
West Virginia, foundry, Moldneke	.60	2.35	84.09	12.96	2.26
Proposed standard foundry coke specification	.5	.75	89.75		.7
Troposed standard roundry coxe specification		.75	09.70	9.0	. 1
		!		!	

TABLE LXV
PRODUCTS OF BITUMINOUS GAS COAL DISTILLATION (JÜPTNER)
(Variation with coal composition)

Coal fro	om	Pas De	Calais.	England.	Commentry	Blanzy.
	Moisture	2.17 9.04	2.70 7.06	3.31 7.21	4.34 8.80	6.17 10.73
Coal composition, per cent by weight	$\left\{ egin{array}{lll} O_2 & \dots & & & \\ H_2 & & & & \\ C & \dots & & & \\ N_2 & & & & \end{array} ight.$	5.56 5.06 88.38 1	6.66 5.36 86.97	7.71 5.40 85.89 1	10.10 5.53 83.37 1	11.70 5.64 81.66 1
Products of distilla- tion, per cent by weight	Gas	13.70 3.90 4.59 71.48 6.33	15.08 4.65 5.57 57.63 7.07	15.81 5.08 6.80 64.90 7.41	16.95 5.48 8.61 60.88 8.08	17.00 5.59 9.86 58.00 9.36
Gas produced per kg coal	Vol. cubic meter	30.13	31.01	30.64	29.73	27.44
Volumetric analysis of gas	$\begin{cases} \text{CO}_2 & \dots \\ \text{CO} & \dots \\ \text{H}_2 & \dots \\ \text{CH}_4 & \dots \\ \text{C}_6 \text{H}_6 & \dots \\ \text{C}_2 \text{H}_4 & \dots \\ \end{cases}$	1.47 6.68 54.21 34.37 .79 2.48	1.58 7.17 52.79 34.43 .99 3.02	1.72 8.81 50.10 35.03 .96 3.98	2.79 9.86 45.45 36.42 1.04 4.44	3.13 11.93 42.26 37.14 .88 4.76

TABLE LXVI
AVERAGE DISTILLATION PRODUCTS OF CRUDE MINERAL OILS (ROBINSON)

Class.	Name of Product.	Average Per Cent Yield.	Specific Gr. 60° F.	Bé.	Boiling- Point, F.
Petroleum ether Petroleum spirit Lamp kerosene Intermediate Heavy oils	$ \begin{cases} \text{Cymogene.} \\ \text{Rhigolene.} \\ \text{Gasolene.} \\ \end{cases} \\ \begin{cases} C \text{ naphtha (benzene).} \\ B \text{ naphtha.} \\ A \text{ naphtha (benzene).} \\ \end{cases} \\ \begin{cases} \text{Water white.} \\ \text{Ordinary kerosene.} \\ \text{Gas oil.} \\ \end{cases} \\ \begin{cases} \text{Lubricating oil.} \\ \text{Paraffine.} \\ \end{cases} \\ \text{Residue and loss.} $.1 1 -1.5 10 2 - 2.5 2- 2.5 12 -20 40 -55 	.590 .625631 .635658 .680700 .71772 .742745 .780785 .800810 .85 .885920	107 94-92 91-83 76-70 65 58 49 44 35 28-22 13	32 64 86–158 140–212 175–250 212–265 300–575 300–700
Petrol Lamp oils Intermediate Lubricating oils Fuel oil	Kerosene Solar oil Spindle oil	25 -40 3 -5	.725765 .817828 .840860 .870897 .908912 .915920	63-53 41-39 37-33 31-26 24 23-22 25-17	D.coite (A)

TABLE LXVII

FRACTIONATION TESTS OF KEROSENES AND PETROLEUMS

		Volumetric	Tempe Distil	rature of lation.	Specific Gravity of	Density,
No.	Class and Density of Original.	Per Cent Distilled.	Deg. F. at Beginning.	Deg. F. at End.	Distillate, 60° F.	Baumé.
1	American kerosene Robinson Sp.gr797 Bé. 45.67	23 11 8 9 10 16 7 3 Left as res.	257 302 347 392 437 482 527 572	302 347 392 437 482 527 572 680	.748 .767 .783 .794 .807 .821 .831 .836	57.21 52.5 49.0 46.5 43.5 40.8 38.8 37.5
2	Russian kerosene Robinson Sp.gr825 Bé. 39.9	9 18 20 13 18 12 6 1 Left as res.	239 284 329 374 419 464 509 554	284 329 374 419 464 509 554 680	.786 .799 .816 .829 .831 .845 .857 .864	48.2 45.4 41.6 38.9 38.5 36.8 33.5 32.2
3	American kerosene Robinson Sp.gr.	25 23 28 13 7	293 338 383 428 473 518	338 383 428 473 518 572		
4	Alsatian petroleum Engler & Schestopal Sp.gr801 Bé. 44.8	.08 30.35 44.7 20.2 3.8	302 392 482 572	302 392 482 572 608		
5	"Kaiser" oil Engler & Schestopal Sp.gr795 Bé. 46.1	29.7 32.3 26.3 11.7	302 392 482 572	392 482 572 608		
6	Pennsylvania kerosene Maschinenfabrik, Augsburg Sp.gr800 Bé. 45	15.8 22 19.25 16.8 26.15	302 392 482 572	302 392 482 572 608		

Table LXVII—Continued

${\tt FRACTIONATION}_{{\scriptscriptstyle \parallel}} \; {\tt TESTS} \; \; {\tt OF} \; \; {\tt KEROSENES} \; \; {\tt AND} \; \; {\tt PETROLEUMS}$

		Volumetric		rature of llation.	Specific	Density,
No.	Class and Density of Original.	Per Cent Distilled.	Deg. F. at Beginning.	Deg. F. at End.	Gravity of Distillate, 60° F.	Baumé.
7	German, benzol Maschinenfabrik, Augsburg Sp.gr873 Bé. 30.5	68 28.7	212 302	212 302		
8	Beaumont, Texas Richardson & Wallace Sp.gr912 Bé. 23.5	2.5 40.0 20.0 25.0	230 302 572 752	302 572 752	.8749 .9089 .9182	30.1 24.2 23.6
9	Ohio Mabey & Noble Sp.gr829 Bé. 38.9	23.0 21.0 21.0 27.0	185 302 572 752	302 572 752	.7297 .8014 .8404 .8643	62.3 45.1 36.8 32.2
10	Pennsylvania Sp.gr914 Bé. 23.2	21.0 41.0 14.0 23.0	176 302 572 752	302 572 752	.7188 .7984 .8334 Paraffine	65.2 45.8 38.3
11	Virginia, petroleum, heavy B. Redwood Sp.gr. at 32° F873, Bé. 30.5	1.0 1.3 12.0	212 284	212 284 356		
12	Virginia, petroleum, light B. Redwood Sp.gr. 32° F8412 Bé. 36.6	1.3 4.3 11.0 17.7 25.2 28.5	212 248 284 320 356	212 248 284 320 356 392		
13	Pennsylvania, light B. Redwood Sp.gr. at 32° F816 Bé. 41.6	4.3 10.7 16.0 23.7 28.7 31.0	212 248 284 320 356	212 248 284 320 356 392		
14	Penn., heavy, B. Redwood Sp.gr. at 32° F886. Bé.	12.0	500	500 536		
15	Java, petroleum B. Redwood Sp.gr. at 32° F923 Bé. 21.8	1.0 1.0 7.7 15.0 22.3 24.3	212 248 320 356 392 428	212 248 320 356 392 428 464		

Table LXVIII

FRACTIONATION TESTS OF GASOLENES

		Volumetric	Temp, of l	Distillation.	Density of	Density,
No.	Class and Density of Original.	Per Cent Distilled.	Deg. F. at Beginning.	Deg. F. at End.	Distillate, 60° F.	Baumé.
1	Gasolene [Blount] Sp.gr739 Bé. 59.5	39 49 7.5 3.5	158 212 248 271	212 248 271	.722 .748 .757 .767	63.9 57.2 55.0 52.6
2	Gasolene [Blount] Sp.gr736 Bé. 60.2	48 37 11.5 2.5	158 212 248 271	212 248 271	.727 .747 .762 .767	62.5 57.5 53.9 52.6
3	Gasolene [Blount] Sp.gr717 Bé. 65.3	65.5 26.5 4.5 2.5	149 212 248 271	212 248 271	.708 .742 .754 .769	67.9 58.8 55.8 52.2
4	Gasolene [Blount] Sp.gr716 Bé. 65.5	69.0 22.0 4.5 3	149 212 248 271	212 248 271	.707 .743 .751 .770	68 58.5 56.5 51.9
5	Gasolene [Blount] Sp.gr716 Bé. 65.5	65.0 26.0 5.0 2.5	145 212 248 271	212 248 271	.704 .742 .753 .772	68.9 58.9 56 51.5
6	Gasolene [Blount] Sp.gr717 Bé. 65.3	70.0 24.0 3.0 1.5	149 212 248 271	212 248 271	.71 .744 .753 .769	67.2 58.2 55.9 52
7	Gasolene [Blount] Sp.gr719 Bé. 64.7	67.0 21.0 6.0 4.5	140 212 248 271	212 248 271	.706 .742 .750 .770	68.2 58.9 56.8 51.9
8	Gasolene [Blount] Sp.gr711 Bé. 66.9	66 24 6.5 2.5	140 212 248 271	212 248 271	.700 .731 .741 .762	70 61.6 58.9 53.8
9	Gasolene [Blount] Sp.gr715 Bé. 65.8	59 28.5 7.0 4.0	145 212 248 271	212 248 271	.701 .736 .750 .765	69.8 60.2 56.6 53.0
10	Gasolene [Blount] Sp.gr712 Bé. 66.7	62.0 25.0 7.0 5.0	145 212 248 271	212 248 271	.699 .730 .742 .758	70.1 61.8 58.8 54.8
11	Gasolene [Blount] Sp.gr710 Bé. 67.2	68 22.5 6.5 2.0	136 212 248 271	212 248 271	.699 .736 .750 .736	70.1 60.2 56.6 60.2

Table LXVIII—Continued

FRACTIONATION TESTS OF GASOLENES

		Volumstrie	Temp. of I	Distillation.	Density of	Danait
No.	Class and Density of Original.	Per Cent Distillsd.	Deg. F. at Beginning.	Deg. F. at End.	Distillats, 60° F.	Density, Baumé.
12	Gasolene [Blount] Sp.gr700 Bé. 70	86.5 11.5 5	133 212 248 271	212 248 271	.692 .739	72.3 59.5
3	Gasolene [Blount] Sp.gr718 Bé. 65	59 29 8 3	145 212 248 271	212 248 271	704 .742 .755 .768	69 58.8 55.5 52.5
14	Gasolene [Blount] Sp.gr717 Bé. 65.3	$\begin{array}{c} 64 \\ 26 \\ 6.5 \\ 2.5 \end{array}$	149 212 248 271	212 248 271	.705 .740 .754 .770	68.8 59.4 55.8 51.7
15	Gasolene [Blount] Sp.gr717 Bé. 65.3	68 23 5.5 2.5	149 212 248 271	212 248 271	.705 .743 .755 .773	68.8 58.6 55.5 51.2
16	Gasolene [Blount] Sp.gr717 Bé. 65.3	67.5 22 5.5 3.5	143 212 248 271	212 248 271	.706 .742 .758 .770	68 58.8 54.9 51.8
17	Gasolene [Blount] Sp.gr715 Bé. 65.8	58 24 9.5 6.5	136 212 248 271	212 248 271	.700 .733 .749 .770	70 61 57 51.8
18	Gasolene [Blount] Sp.gr705 B6, 68.6	73 17.5 5 3	131 212 248 271	212 248 271	.697 .736 .751 .768	71 60.2 56.5 52.5
19	Gasolene [Blount] Sp.gr705 B6. 68.6	74 15.5 5.0 4.0	140 212 248 271	212 248 271	.696 .736 .745 .764	71.1 60.3 57.9 53.2
20	Gasolene [Chambers] Sp.gr71 B6, 67.18	6.67 6.66 6.67 6.67 6.66 6.67 6.66 6.67 6.66 6.67 7.67 5.66 4.37	148.8 149.2 167.0 176 176 186.8 197.6 206.6 212.0 219.2 226.4 233.6 248.0 258.8 284.0	149.2 167.0 176.0 176.0 186.8 197.6 206.6 212.0 219.2 226.4 233.6 248.0 258.8 284.0		

TABLE LXIX
COMPOSITION OF BLAST-FURNACE GAS AND AIR GAS

	00+00	86.88.814.68884.4511888.855	.68
	000	7.22 7.22 7.24	2.15 3.58
sis.	N ₃	29.00 25	58.96
Volumetric Analysis.	: 00	7.4.1.7.7.8.8.1.1.3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	12.1
Volume	°EO	3.5 3.2 3.2 2.77 4.39 4.39 5.0	3.45
ANA C	H,	11.3 10.0	2.0
ACE GAS	00	25.66 25.66	26.1 25.83
TOWN OF THE PROPERTY OF THE PR	Description.	Brymbo-Derby Coke in small Dowson producer, Dowson and Larter Westphalia, Allen Bust-furnace, splint coal, Sexton No. 3 Bust-furnace, blast furnace, max. CO ₂ content in one month Durham coke, blast furnace, max. CO ₂ content in one month Durham coke, blast furnace, max. CO ₂ content in one month Blast furnace, Upper Silesia, Germany Blast furnace, charcoal, Ebelmann Coke, Lackawanna Steel Co. Blast furnace, unwashed, Sexton Blast furnace, unwashed, Sexton Blast furnace, unwashed, Sexton Blast furnace, unwashed, Sexton Blast furnace, splint coal, Sexton No. 2 Blast furnace, Minette District, Germany Blast-furnace gas Blast-furnace gas Blast furnace, Cleveland, Eng., Robinson Blast furnace, Glengarmock, washed, Robinson Blast furnace, Glengarmock, washed, Robinson Blast furnace, Gleveland, Eng., Robinson Blast furnace, Gleveland, Eng., Robinson Blast furnace, Gleveland, Eng., Robinson Blast furnace, Gleveland, Eng., Robinson Blast furnace, Englist coal, Sexton No. 1 Blast furnace, Gleveland, Eng., Robinson Blast furnace, Gleveland, Eng., Robinson Blast furnace, Splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4 Blast furnace, splint coal, Sexton No. 4	Coke, Lackawanna Steel Co. Scotch blast furnace, Wishan.
	No.	12847067889011111111111111111111111111111111111	828

TABLE LXIX—Continued COMPOSITION OF BLAST-FURNACE GAS AND AIR GAS

		00+00 00	73887.73887.7388.659.659.659.659.659.659.659.659.659.659
		වුලි	27.2.8.4.4.2.2.2.2.2.2.3.0.0.0.2.2.2.2.2.2.2.2.2.2
	ysis.	N ₂	+ 55.0 - 55.0
	Volumetric Analysis.	c 03	2.5.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
	Volur	CH4	
		H.	22.00.00.00.00.00.00.00.00.00.00.00.00.0
		8	86.000
TOTAL TO MOTITOD TWO		Description.	Isabella Furnace, U. S. Steel Co., Gayley Producer gas, little steam. Dowson gas, average. Blast furnace, Glengarmock, unwashed, Robinson Producer gas, little steam. Blast furnace, Wishan, Pellcw Blast furnace, Wishan, Pellcw Blast furnace, Lediebas, Germany, (coke) dry Blast furnace coke. Durham coke, Allen. Isabella Furnace, U. S. Steel Co., Gayley Blast furnace, Upper Silesia, Germany. Producer gas, little steam Producer gas, little steam Producer gas, little steam Blast furnace, Lediebas, Germany, coke, 10 per cent HaO. Producer gas, little steam Loomis Pettibone coal Loomis Pettibone coal Loomis Pettibone wood Anthracite before making water gas Mond gas. Mond gas.
		No.	25.54.55.55.55.55.55.55.55.55.55.55.55.55

	m	m:		Volumetri	c Analysis.		
Form of Carbon.	Temp. Deg. F.	Time, Seconds.	CO ₂	co	CO CO ₂		Authority.
Fine, amorphous	1472 1472 1472 1472 1472 1472 1472	480 480 480 480 480 480 480	13.6 39.9 17.1 79.1 83.6 80.1 86.7	86.4 60.1 82.9 20.9 16.4 19.9 13.3	6.43 1.51 4.88 .26 .20 .25 .15	.864 .601 .829 .209 .164 .199 .133	Boudouard
1. Charcoal, 5 mm	1472 1472 1472 1472 1472 1472 1472 1472	189 116 57 46 24 16 12 2.7 1.6	49.7 49.6 48.2 47.8 62.5 71.7 75.5 93.7 96.1	50.3 50.4 51.8 52.2 37.5 28.3 24.5 6.3 3.9	1.01 1.01 1.07 1.09 .60 .40 .32 .067	.503 .504 .518 .522 .375 .283 .245 .063 .039	Clement
2. Charcoal, 5 mm	1562 1562 1562 1562 1562 1562 1562 1562	123 54 24 13 9.3 4.6 3.7 3.3	25.7 29.8 42.8 47.4 70.3 70.3 77.6 77.5	74.3 70.2 57.2 52.6 29.7 29.7 22.4 22.5	2.88 2.36 1.34 1.11 .42 .42 .29 .29	.743 .702 .572 .526 .297 .297 .224 .225	Clement
3. Charcoal, 5 mm	1652 1652 1652 1652 1652 1652	64 44 10 4.3 2.8 2.2	12.7 13.3 29.2 50.2 68.9 65.6	87.3 86.7 70.8 49.8 31.1 34.4	6.87 6.52 2.42 .99 .45	.873 .867 .708 .498 .311 .344	Clement
4. Charcoal, 5 mm	1697 1697 1697 1697 1697 1697	119 81 12 5.8 4.3 2.3	5.3 6.7 15.2 28.2 35.8 62.5	94.7 93.3 84.8 71.8 64.2 37.5	17.9 13.9 5.57 2.54 1.79 .60	.947 .933 .848 .718 .642 .375	Clement
5. Charcoal, 5 mm	1832 1832 1832 1832 1832	70 18.6 8.2 3.7 2.3	5.1 5.7 9.7 20.3 20.5	94.9 94.3 90.3 79.7 79.5	18.6 16.5 9.3 3.92 3.88	. 949 . 943 . 903 . 797 . 795	Clement
Charcoal, 5 mm	2012 2012 2012 2012 2012 2012	36.5 10.4 4.97 3.6 1.9	1.3 1.7 1.9 2.7 5.4	98.7 98.3 98.1 97.3 94.6	75.9 57.8 51.6 36.0 17.5	. 987 . 983 . 981 . 973 . 946	Clement
6. Coke	1652 1652 1652 1652	142 80 44 25	72.4 86.9 90.6 94.3	27.6 13.1 9.4 5.7	.382 .151 .104 .061	.276 .131 .094 .057	Clement

TABLES AND DIAGRAMS

	m	TO:		Volumetric	: Analysis.		
Form of Carbon.	Temp. Deg. F.	Time, Seconds.	CO2	co	CO CO ₂	$\frac{\mathrm{CO}}{\mathrm{CO} + \mathrm{CO_2}}$	Authority.
6. Coke	1652 1652 1652	16 9.6 3.7	95.1 97.4 99.2	4.9 2.6 .8	.051 .027 .008	.049 .026 .008	Clement
7. Coke	1832 1832 1832 1832 1832 1832 1832 1832	123 80 33 19 6.4 4.1 3.1 2.0	21.6 35.6 47.1 68.0 86.1 88.5 90.8 93.7	78.4 64.4 52.9 32.0 13.9 11.5 9.2 6.3	3.62 1.81 1.12 .47 .16 .13 .101 .067	.784 .644 .529 .320 .139 .115 .092 .063	Clement
8. Coke	2012 2012 2012 2012 2012 2012 2012 2012	90 30 13 6.7 3.2 1.8 1.7 1.6 1.5	2.9 14.6 33.9 44.4 68.3 69.6 76.0 77.9 78.6 86.7	97.1 85.4 66.1 55.6 31.7 30.4 24.0 22.1 21.4 13.3	33.6 5.85 1.95 1.25 .46 .437 .316 .284 .272 .154	.971 .854 .661 .556 .317 .304 .240 .221 .214 .133	Clement
9. Coke	2192 2192 2192 2192 2192 2192 2192	19 13 8.3 2.4 1.6 1.1	1.1 2.2 4.7 31.5 56.1 66.5	98.9 97.8 95.3 68.5 43.9 33.5	89.7 44.4 20.2 2.18 .78 .504	.989 .978 .953 .685 .439 .335	Clement
Coke	2372 2372 2372 2372 2372	8.9 4.1 2.1 1.1	.1 2.1 6.8 16.6	99.9 97.9 93.2 83.4	999 46.5 13.7 5.02	.999 .979 .932 .834	Clement
10. Anthracite	2012 2012 2012 2012 2012 2012	34 9.4 5.4 3.3 2.4	12.2 39.9 52.3 69.8 73.5	87.8 60.1 47.7 30.2 26.5	7.2 1.5 .91 .43 .36	.878 .601 .477 .302 .265	Clement
11. Anthracite	2192 2192 2192 2192 2192 2192	47 10 5.1 2.8 1.6	.3 14.4 28.5 57.7 69.0	99.7 85.6 71.5 42.3 31.0	332.3 5.95 2.5 .73 .45	.997 .856 .715 .423 .310	Clement
12. Anthracite	2372 2372 2372 2372 2372 2372 2372	12.4 6.0 3.6 3.0 1.91 1.07	.1 3.5 17.6 19.1 33.7 49.7	99.9 96.5 82.4 80.9 66.3 50.3	999 27.6 4.68 4.23 1.97 1.01	.999 .965 .824 .809 .663 .503	Clement

TABLE LXXI

COMPOSITION OF PRODUCER GAS

				Volum	Volumetric Analysis.	nalysis.			# 	Ratios
No.	Description.	.00	H2.	CH4.	Heavy Hydro car- bons,	CO ₂ .	02.	Re- mainder and N2-	CO CO	*02+02 02
1		34.7	26.8	1.80	0.30	3.60	0.20	1	9.64	206
O)	Charcoal gas, T	34.1	0.20	:	:	0.80			42.6	826
. დ	Charcoal gas, 7	33.8	0.10	:	:	1.30	:		26.0	.964
4 7	Charcoal, Loon	31.4	9.30	1.90	:	1.20	0.20		26.2	.963
o c	From sawdust		6.50	06.9	<u>စ</u> ေ	0.00		50.5	4.97	.833
10	Froducer gas, utule steam.		13.47	01.	:	6.20	.20	51.23	4.65	.824
- 0	From anthracite coal, little steam.	0.18	4.00	4.00	:	4.00		00.09	7.00	.875
0 0	roducer gas, uttle steam.		13.33 0.03	:	:	6.20	_	52.27	4.49	.818
ָ מ	סי		13.33	:	:	6.20	.40	52.27	4.49	818.
2;	Froducer gas, Jones		15.30	-		3.90		51.80	2.08	928.
Ξ;			16.67	:	:	8.40	06.	46.53	3.28	992.
7			6.	3.10	:	12.10	:	56.7	2.25	695
3	Ebelmann producer.	27.2	14.0		:	5.50	:	53.3	4.95	.826
1 1		77.0	06.01	1.28	:	4.50		56.32	00.9	.857
۲.	Anthracite, up drait, less than 4 load	27.00	ლ :	:	:	4.00		54.90	6.75	.873
10	From Dituminous coal, American		13.00	£.	:	4.37	.21	55.12	6.17	98.
1	Dit., Louinis retulbone, down drait	76.90	9.40	1.10	 08.	3.60		58.5	7.47	.882
0 5	Wilson producer, Sexton.	26.89	1.55	1.45	:	4.00	:	56.11	6.72	.870
2 6	Dir. coal, up drait, Duil.	26.80[13.	3.40	4.40	:	4.40	:	51.00	6.10	.859
3 8	Wilson producer, Dit. coal, England, Patterson and Stead	26.8011.50	1.50	1.40	:	4.00		56.30	6.70	.870
77	Anthracite, Koerting, up draft	26.80 13.47	3.47	.10	:	6.20	20	53.23	4.32	.812
3 6	lones	26.50	17.50	67	_	4.40	:	49.50	6.02	.854
3	hearth, steam blast, Sexton	26.40	[2.13]	2.00	:	9.16		50.31	2.88	.744
\$ 6		26.3013.60	3.60	.40	:	4.80	20	54.70	5.49	.846
Ş	Anthracite, Laylor, up draft	26.10	2.00	8	:	5.30		53.2	4.92	.831
-		-	-	-	-					

			-	- (9
Siemans closed hearth	26.00 1.90	.71	4 4	2 2 2	53	67.19 c	50 F	867
Anthracite, Koerting, up draft	26.0014.40	: 02	9:0:		.20 52		4.33	.811
Producer gas		.20		-			. 33	.811
Producer gas	. 25.70 15.30	.20			.40 52		.67	.825
ج-		.20				_	1.67	.824
Bit. and Anth., up draft, Smith, load \(\frac{1}{4} \) to 1\(\frac{1}{4} \).	. 25.60 22.90	- :	.4.8	80	20 46		.35	845
Siemans open hearth, Snelus.	. 25.60	4.40	4.5	80	: 65		.95	.856
Coke fuel, Adams, whole test.	. 25.5 12.0	.40	5.30			_	.81	.828
Producer gas, Witz.	. 25.4 16.5	1.0	4.8	_			.29	.842
as, little steam	. 25.3 9.2	3.10		3.40	58		.43	.883
Bit. coal, up draft.	25.3 9.2	3.10	.80 3.4	40	58		.43	883
Coke fuel, last six hours.	. 25.3 13.2	.35	_		.60 55		.70	.824
Anthracite, up draft, Dowson.	. 25.25 18.50	2.00	5.5	25	49		.85	.829
Anth., English, Dowson, Lewes.	. 25.17 18.90	Н	. 5.0	86	48		- 20	808.
	. 25.07 18.73	.62		_			.82	.792
Dowson producer, Anthracite, Eng., Foster	. 25.07 18.73	33	.31 6.	_	.03 48		.82	.792
From anthracite	. 25.07 18.73	.31		57	49	_	.82	.792
Anthracite pea, English, Lewes	. 25.00 14.00	1.00		_			.17	908
From anth., American, Wyer.	. 25.00 20.00	:					8	.833
Producer gas, little steam	. 24.80 8.50	5.20		_	.40 55		.43	.816
Bit., Loomis Pettibone, down draft	. 24.80 8.50	1.00	.10 4.	_			90.	.859
From Illinois coal	. 24.50 17.80	3.60		_			.62	698.
From bit. coal, American	. 24.47 11.79	.30	ه	_	. 18 59		.18	.860
		2.40	: 	_	55		69	.824
hearth, steam blast, Snelus	. 24.40 8.60	2.40		_			69.	.824
Bituminous and anthracite coal, down draft, Loomis Pettibone			.20	_			.77	.735
Ď.		.57			30 49		89.	.786
Bit. coal, reversible, Thwaite Allen	. 24.00 3.30	:	. 5.	_			08:	.828
ittle g		3.40	40 6.0	_	80 22		8	800
	9	.25	5.5			_	9.	.821
Producer gas, Jones.	. 23.80 19.80	1.30	9	8	48		.77	. 792
	œ	2.20	4	<u> </u>	40 61	_	. 79	.854
Wilson producer gas, Sexton	9	3.05	5.25			59.49 4	.51	.820
Producer gas	. 23.60 12.14	. 10		5.60 3.	3.00 55		.21	808
Anth one im dueft less than I load Smith	92 50 19 00		10			_	2	895

Table LXXI—Continued

COMPOSITION OF PRODUCER GAS

				Volume	Volumetric Analysis.	lysis.			Ra	Ratios
No.	Desorption.	O	H3	CH4.	Heavy Hydro car- bons.	.co.	°.	Re- mainder and N ₂ .	000	CO + CO.
63	Ingham producer, Sexton.	23.41	13.00	2.25	:	4.69	:	56.68	5.00	.834
64	Wilson producer, Sexton.	23.41	13.82	2.25	:	4.69	:	55.86	5.00	.834
99	Wilson producer, Sexton.		14.81	1.14	: 1	4.84		56.10	4.78	.827
67	Producer ass Transhorn	28.00	10.00		٠. ا	9.00	OG:	58.00	4.60	.855
68	Anthracite coal, load \(\frac{1}{4} \) to 1\(\frac{1}{4} \), Smith.		22.60		3 :			52.00 49.40	5.85	.794 .852
69	Anthracite coal, load \(\frac{1}{4} \) to 1\(\frac{1}{4} \), Smith	_	23.50	:	:		2.00	44.50	3.28	792
2	Producer gas.		14.14	:	:	7.60		55.06	3.05	.752
7	Bit., down draft, Loomis Pettibone.		10.13	2.20	:			58.87	4.07	.865
77	Producer gas	8	17.53	:	:		_	51.67	2.92	.745
2	Froducer gas, little steam		8.37	2.56	.36			60.13	4.29	808
4.5	Producer gas.	2	16.57	:	:	7.80		52.93	2.91	.744
2.0	Producer gas.	2	15.10	:	:	7.80	8	54.20	2.91	.744
19	Bituminous coal	9	7.80	1.50	:	4.40	:	63.7	5.15	.838
2 2	Froducer gas, Langer.	က်	24.00	: i	:	7.50		46.0	3.00	.750
3 0	Antu, Dounts Febluone, down draft	ر د د	96.11	2.5	: 2	5.50		00.00	4.05	.802
2 &	roducer gas, node steam	22.50	15 67	3.74	. 34	4.84	3 8	61.78	4.57	.821
8	Anthracite, up draft, load ½ to 1½, Smith.		21.30	: :		36		50.40	4.09	21.8
85	From bituminous coal.		10.50	2.60	99.	5.70		58.20	3.86	794
83	Producer gas		16.80	:	:	8.40	900	52.60	2.61	724
8	Ebelmann producer.		7.64	:	:	90.6		61.47	2.41	.709
8	Producer gas.	21.70	16.04	:	:	8.80	8	53.26	2.47	.711
80	Siemans closed hearth.	21.60	9.60	3.60	:	5.00	:	60.20	4.32	.812
ò	cas from Divuminous coar acter nearing in open-hearth furnace regene- rator, Darby	21.60 17.70	17.70	2.00	.40	.40 10.50	47.80	47,80	2.06	673
-		-	-	_	_	_	:	-	3	•

Table LXXI—Concluded COMPOSITION OF PRODUCER GAS

				Volumetric Analysis	ric Ans	lysis.			Ra	Ratios
No.	Description.	.00	Hr.	*HO	Heavy Hydro car- bons.	CO.	03.	Re- mainder and N ₂	000	00+00 00
125	U.S.G.S.	12.75	10.308	6.758		9.617	1084	60.483	1 ' '	.571
126		12.571	9.529	7.671	:	10.057	.171	.171 60.001	1.25	. 554
127		12.45	10.92	6.52	:	10.87	53	58.95		. 535
128	Kansas No. 5, U.S.G.S.	12.40	9.02	7.417	:	10.267	.133	60.733		.547
129		11.927	9.454	6.4	:	10.327	.218	61.674	1.153	
130		11.46	10.60	6.10	:	11.80	020	59.97	920	-
131	Bituminous, up draft, excess steam, Mond, Humphrey	11.00	29.00	2.00	:	16.00	:	42.0	.687	
132		11.00	28.00	2.50	:	15.50	:	43.0	.710	
133		11.00	27.20	1.80	.40	17.10	:	42.5	.644	
134		11.00	27.50	2.00	:	16.50	:	43.00	999.	
135	Coke and breeze, Mond, Allen	10.80	25.20	.40	:	16.80	:		.643	
136		10.53	7.63	6.33	:	12.07	.20		.873	
137		10.50	24.80	2.60	.70	17.80	:		.590	
138	ss steam to make NH ₃	10.00	23.00	3.00		15.00		49.00	999.	
139		8.10	24.30	16.50	1.40		3.10		.475	
140	coke, German, Meyer, 1st hr.	26.60	6.80	1.30	:	6.50	.10		4.09	
141	2d hr	28.20	5.90	2.70	:	4.80	:		5.87	
142		27.80	6.40	2.60	:	4.20	:		6.62	-
143		26.70	8.80	1.80	:	4.70	01.		5.68	
4		9.90	9.10	2.20	:	5.00	:		5.32	
145			8.00	1.70	:	4.00	:		7.25	-
146		28.40	5.80	2.00	:	4.80	8		5.92	-
147	-	27.80	5.10	1.60	:	4.60	01.		6.05	-
148	Mond producer, bit. coal, Bone & Wheeler, air blast, sat. H ₂ O at 60°		16.60	3.35	:	5.25	:		5.20	•
149	- :		18.30	3.40	:	6.95	:		3.66	•
-		-	_	_	_	_				

TABLE LXXII COMPOSITION OF WATER GAS

			Volu	metric	Analy	sis.		IR	latios.
No.	Description.	H ₂ .	co.	CH4.	CO ₂ ,	O ₂ .	N2.	CO CO ₂	CO CO+CO ₂
$egin{array}{c} 1 \ 2 \end{array}$	Essen water gas, coke, Sexton Dellurck process water gas, Lewes			,		-	0		
	No. 3	52.76	37.50		4.08	.46		9.2	.90
3	Strong water gas, Moore	52.76	35.88	4.11	2.05		4.33	17.5	.95
4	Dellurck Process water gas, Lewes			1					
_	No. 1	52.43	38.30	.:.	4.73	.74			.89
5	Average water gas, Lewes	51.89	40.08	.10	4.80	• •	3.13	8.35	.89
6	From anthracite before carburetting		۱., ۱	. 21	0.5		1.		
7	for illumination, O'Connor		43.4	• • •	3.5		1.3	12.4	.93
4	Dellurck Process water gas, Lewes		20.05		F 20	1 00	2 00	4	00
8	No. 2Blue water gas, Morehead	50.09	13 25		3.0			14.4	.88 .935
9	Water gas, Allen	40.65	49.20	75	2.07		$\frac{3.25}{3.74}$.935
10	Uncarburetted water gas	40 55	45 80	.10	3.87			11.8	.933
11	Uncarburetted water gas							8.45	
12	Essen water gas, coke, Thorpe							16.1	.94
13	Water gas before carburetting,		1	.01		''	1.00	10.1	.01
	Lowell	48.6	43.2	2.0	3.0	.4	2.8	14.4	.93
14	Average water gas, Lewes	48.31	35.93	1.05	4.25	.51			
15.	Water gas before carburetting,		1	1					
	average	47.97	42.75	4.23	2.80	.05	2.2	15.3	.94
16	Water gas before carburetting,								
	average	45.57	[44.85]	4.41			.77	10.1	.91
17	Lowe water gas, anthracite, Thorpe.	44.50	42.10		3.60		9.80	11.7	.92
18	Water gas, anthracite, Loomis Petti-						l .		
	bone		42.4	2.7	3.5	.2	6.9	12.1	.92
19	Water gas, bituminous coke, Loomis							ا ما	
	Pettibone	42.1	32.6	2.9	5.3	.3	16.8	6.15	.86
		<u> </u>	<u> </u>				<u> </u>		

TABLE LXXIII COMPOSITION OF OIL PRODUCER GAS

Name.		Vol	umetric	Analys	is, Per	Cent.		I	Ratio.	B.T.I Cubic	J. per Foot.
Name.	СО	H ₂	CH4	$C_n H_{2n}$	O ₂	CO ₂	N ₂	$\frac{\text{CO}}{\text{CO}_2}$	CO CO+CO ₂	High.	Low.
Process of International Amet. Co. Do Lowe process " "	8.6 7.8 7.3	53.65	16.2 7.0 6.0 28.6 22.50 26.0	2.0 4.2 4.0 10.0 5.4 10.30	.2 .3 .4 .2 .4		57.4 64.4 65.5 4.5 7.45 8.4	1.9 1.6 1.2 3.7 3.7 2.0	.66 .61 .55 .78 .79	275 209 192 661 543 630	249 192 176 605 487 566

TABLE LXXIV

GAS PRODUCER TESTS U.S.G.S.—(Fernald)

	Tar,	50 gals. 13,800 lbs. coal	$^{^{\prime}}$ $^{2\frac{1}{2}}$ bbls. $^{^{\prime}}$ 11,200 lbs. coal	10,200 lbs. coal	60 gals. 9,050 lbs. coal	50 gals. 6,300 lbs. coal	50 gals. yellow 10,933 lbs. coal	Considerable, not measured	2,100 lbs.coal	60 gals. 12,100 lbs. coal	60 gals. 10,500 lbs. coal	, 75 gals. 10,500 lbs.coal
	Ratio, CO CO + CO ₂	.7063	.7007	.6730	$\}$ 6549	.7075	$\left.6322\left\{ \right.$.6711	8080 }		$\left. 5924 \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left.$	15.12 9.98 6.00 9.72 1259.06 1.56 6086
	Ratio, CO CO2	2.40	2.35	2.05	1.90	2.30	1.72	.10 62.24 2.05	1.56	1.52	1.46	1.56
	Diff. and N	.23 51.02 2.40	.11 59.65	.36 59.10 2.05	.20 57.53	.23 58.11 2.30	.55 55.90 1.72	62.24	.24 58.88 1.56	. 59 57.43	.1561.19 1.46	59.06
mes,	ő	1					.55			.59		.12
Gas Analysis by Volumes.	° 00	8.69	4.69 8.25	4.84 9.04	9.60	7.29	5.00 10.11	8.16	15.82 11.06 3.74 10.16	10.21	8.35 4.46 10.53	9.72
alysis	CH ₄ and Others	4.85	4.69	4.84	4.81	6.30	5.00	5.64	3.74	5.52	4.46	6.00
Gas Aı	H	14.33	7.69	8.00	9.63	10.43	11.05	7.20	11.06	10.79	8.35	9.98
	00	20.90 14.33 4.85 8.69	19.39 7.69	18.67	18.22 9.63	17.64 10.43 6.30 7.29	17.38 11.05	16.65 7.20 5.64 8.16	15.82	15.46 10.79 5.52 10.21	15.31	15.12
Eff.	of Pro- ducer Proc- css.	63	64	55	73	88	64	73	83	28	64	69
B.T.U.	Gas Per Pound Dry Coal.	7830	8620	6580	8060	0866	2860	0006	11610	8919	8330	8840
		11255	13455	11934	11086	9.0 33.9640.6816.36 11392	12245	13365	14202 11610	10656 6168	13041	12834
	Ash.	6.36		10.74	7.28	16.36	5.85	3.76 33.45 53.29 9.50	8.82	9.44 35.02 34.82 26.72	7.62 30.87 51.78 9.73	9.22
Proximate Analysis of Coal.	Fixed C.	26.30	5.00 36.51 49.98 8.51	11.4034.5543.3110.74	33.71 29.25 29.76 7.28	40.68	41.65	53.29	1.99 28.89 60.30	34.82	51.78	15.70
Proxi	Vola-	27.78	36.51	34.55	29.25	33.96	32.26	33.45	8.89	5.02	78.0	2.65
Ā	Moist- ure.	39.56 27.78 26.30	5.00	11.40	33.71		20.24 32.26 41.65			9.44	7.62	2.43
	Coal.	Brown lignite, North Dakota, No. 2	Bit. semi-caking, Indian Territory, No. 1	Bit. clinker, Montana, No. 1	Brown lignite, Texas, No. 2	Bit. Indian Territory, No. 4	Black lignite, clinker slight, Colorado, No. 1	Hard bit. non-caking, Alabama, No. 2	Semi-caking bit., West Virginia, No. 4	Bit. non-caking, Wyoming, No. 2	Bit. non-caking, no clinker, er, Illinois, No. 3	Bit. non-caking, no clink- 12.43 32.65 45.70 9.22 12834 8840 er, Illinois, No. 4

50 gals. 6,000 lbs. coal	150 gals. 12,800 lbs. coal	6,900 lbs. coal	50 gals. 8,100 lbs. cosl	70 gals.black 11,700 lbs. coal	120 gals. 1,300 lbs. coal	6;000 lbs. coal	50 gals. 4,833 lbs. coal	100 gals. black 11,100 lbs. coal	4,000 lbs. coal	75 gals. 8,900 lbs. coal	60 gals. 6.900 lbs. coal	3,300 lbs. coal
14.77 9.51 6.65 8.90 .33 59.85 1.66 .6239	.5635	.5772	\$2288	.5877	.5684	.5699.	. 5554	.5338	.5469.	,5359 {	$\}$ 956 $\}$.87 .4659
1.66	1.29	1.36	1.38	1.43	1.32		1.19	1.15		1.16	86.	.87
59.85	.22 56.22 1.29	69.99	.12 57.75 1.38	.25 60.13 1.43	59.55	60.48	60.00	58.95	60.73	.22 60.67 1.16	.07 59.97	63.23
. 23	.22	.10	.12		.20	80.	.17	.29	.13	.22		.20
8.90	14.33 10.59 7.48 11.10	14.34 2.81 5.56 10.50 .10 66.69 1.36	14.21 12.98 4.61 10.34	14.10 9.56 6.08 9.89	13.70 9.55 6.6010.40 .2059.55 1.32	12.75 10.31 6.76 9.62 .08 60.48 1.32	12.57 9.53 7.67 10.06 .17 60.00 1.19	12.45 10.92 6.52 10.87 .29 58.95 1.15	12.40 9.05 7.42 10.27 .13 60.73 1.20	11.93 9.45 6.40 10.33	11.46 10.60 6.10 11.80	74 10.53 7.63 6.33 12.07 .20 63.23
6.65	7.48	5.56	4.61	6.08	6.60	6.76	7.67	6.52	7.42	6.40	6.10	6.33
9.51	10.59	2.81	12.98	9.56	9.55	10.31	9.53	10.92	9.05	9.45	10.60	7.63
14.77	14.33	14.34	14.21	14.10	13.70	12.75	12.57	12.45	12.40	11.93	11.46	10.53
28	99	64	89	09	56	83	88	65	79	62	42	74
11380	. 7260	9260	10150	7730	8150	13140	9300	8610	10500	0206	10140	8820
2.22 31.05 59.83 6.90 14548 11380	33.50 32.34 23.80 10.36 10928 7260	14396	1.43 18.93 73.19 6.45 14825 10150	13037	14580	2.99 21.19 69.15 6.67 14720 13140	10489	7.28 38.57 45.16 8.99 13226 8610	13421	2.66 32.58 59.00 5.76 14558 9070	12953 10140	11882
6.90	10.36	6.14	6.45	10.08	5.73	6.67	20.70	8.99	11.25	5.76	9.73	14.84
59.83	23.80	55.40	73.19	42.37	59.61	69.15	31.19	45.16	52.43	59.00	41.95	38.28
31.05	32.34	36.85	[8.93]	36.04	32.00	21.19	31.42	38.57	31.97	32.58	39.60	35.28
2.22	33.50	1.61	1.43	11.51	2.66	2.99	69.91	7.28	4.35	2.66	8.72 39.60 41.95 9.73	11.60
	Brown lignite clinker, Texas, No. 1	West Virginia, No. 1 1.61 36.85 55.40 6.14 14396 9260	West Virginia, No. 12	Bit. non-caking, Indiana 11.51 36.04 42.37 10.08 13037 7730 No. 1	West Virginia, No. 9 2.66 32.00 59.61 5.73 14580 8150	West Virginia, No. 7	:	Bit. semi-caking, Kentucky, No. 3	Kansas, No. 5 4.35 31.97 52.43 11.25 13421 10500	West Virginia, No. 8	No. 2.	Bit., Missouri, No. 2 11.60 35.28 38.28 14.84 11882 8820

		,	Volumeti	ie Analy	sis, Per	Cent.		Ra	tio.	B.T.U Cubic	J. per Foot.
Sample.	СО	${ m H}_2$	CH4	C_nH_{2n}	O ₂	CO ₂	N ₂	$\frac{\mathrm{CO}}{\mathrm{CO_2}}$		High.	Low.
1 2 3 4 5	15.85 13.52 12.20 18.2 13.8	6.17 11.51 10.50 12.20 10.4	4.09 5.17 3.20 2.1 2.5	.1	1.4 .3 .0 .1	9.2 8.1 7.6 4.9 8.0	63.29 61.40 66.50 62.40 64.80	1.7 1.7 1.6 3.7 1.7	.63 .63 .62 .79 .63	119 140 112 128 118	111 129 103 119 109

TABLE LXXVI COMPOSITION OF BOILER FLUE GASES—(VOLUMETRIC)

	Stat. Bo	ler, Illino	ois Coal, T	J. S. Geologi	cal Survey.	Locon	notive Boi	ler, U. S. (Geological S	Survey.
Average of.		Analysis.		$\frac{\text{CO}}{\text{CO}_2}$	CO		Analysis.		CO CO ₂	co
	CO ₂	O ₂	CO	CO ₂	CO+CO ₂	CO_2	O ₂	СО	CO ₂	CO +CO ₂
4	3.4	17.5	0	0	0	10.16	8.49	.13	.0128	.0126
3	3.7	17.2	0	0	0	11.10	7.84	.23	.0207	.0203
5	4.4	16.3	0	0	0	11.15	7.52	.20	.0179	.0176
5	5.0	15.0	0	0	0	11.45	6.92	.00	0	0
5	5.3	14.7	.1	.0189	.0185	11.46	7.49	.10	.00875	.00865
5	5.9	14.4	.04	.0068	.00674	11.50	7.08	.17	.0148	.0147
6	6.2	14.1	.03	.00485	.00482	11.96	7.00	.23	.0193	.0189
9	6.4	13.7	.07	.0109	.0108	11.96	7.07	.14	.0117	.0155
16	6.6	13.0	.10	.0152	.0149	12.05	6.93	.15	.0125	.0123
9.	6.8	12.6	.01	.00147	.0147	12.20	6.94	.05	.0041	.0407
14	7.0	12.8	.06	.0086	.0085	12.45	5.87	.22	.0177	.0174
20	7.2	12.6	.08	.0111	.011	13.57	4.49	.20	.0147	.0145
18	7.4	12.4	.00	0	0	13.87	4.75	.25	.018	.0177
20	7.6	12.9	.05	.0066	.00655					
14	7.8	12.1	.03	.00385	.00375					
30	8.0	11.7	.04	.005	.00498					
31	8.2	11.6	.10	.0122	.012					
27	8.4	11.3	.10	.0119	.01175					
16	8.6	11.1	.10	.0116	.0115					
17	8.8	10.8	.20	.0228	.0222				1	
19	9.0	10.7	.10	.0111	.011				İ	
14	9.2	10.4	.10	.0109	.01075	ļ				ł
16	9.4	10.1	.20	.0213	.0208	i			1	
10	9.6	9.9	.20	.0208	.0204				ļ	
8	9.8	9.4	.20	.0204	.02					
8	10.0	9.2	.20	.020	.0196			ļ		
6	10.2	9.9	.20	.0196	.0192					
8	10.4	8.9	.5	.048	.046			1		
4	10.8	8.6	.02	.00185	.00185			1		
3	11.0	8.8	.36	.0327	.0317	1	l	1		
2	11.1	8.6	.30	.027	.0253		[
1	11.4	7.9	.40	.035	.034					
	<u>'-</u>	·	1	1	1	'		1	<u>'</u>	<u> </u>

CALORIFIC PROPERTIES OF BEST AIR-GAS MIXTURES—(Low VALUES)
(All at 32° F. and 29.92" Hg.) TABLE LXXVII

Volumetric Analysis, Fer Cent.
CO H ₂ CH ₄ C ₂ H ₄ C ₂ H ₅ C ₅ H ₅
001
100
100
100
$\frac{100}{100}$ $\frac{100}{100}$
.6 52.5 31.35 1.1 100
40.4 2.9
1.3
42 34.3 2.0
0.018.552.511.7 11.8
0
gas
~
25.7 15.3 .2
34 2.81 5.56
14.0
29 2.0
.90 14.33 4.85
: : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : :
$.25 \mid \ldots \mid 98.2 \mid \ldots \mid \ldots \mid \ldots \mid \ldots$

Heating value of gases based on experimental value of constituents.

$\label{total limits} \textbf{Table LXXVIII}$ LIMITS OF PROPORTION FOR EXPLOSIVE AIR-GAS MIXTURES

Gas.	Per Cent of (Gas in the Mixtu	re by Volume.	Anth:
Gas.	Combining Proportion.	When Air is in Excess.	When Gas is in Excess.	Authority
Carbon monoxide	29.6	16.5	74.95	Eitner
"	29.6	16.5	58.4	Bunte
"	29.6	13.0	75	Clowes
Hydrogen	29.6	9.45	66.4	Eitner
11	29.6	9.45	54.4	Bunte
"	29.6	7.69	33.3	M.I.T.
• 11	29.6	5.00	72.0	Clowes
Water gas, theoretical	29.6	12.4	66.75	Eitner
(1	29.6	12.4	54.3	Bunte
" actual	20.0	9.0	55.0	Clowes
()		3.8	16.7	M.I.T.
		8.33	33.3	M.I.T.
Coal gas	14.9	7.9	19	Eitner
((14.9	7.9	11.2	Bunte
"	14.9	5.3	16.7	Clerk
"	14.9	6.0	29	
66	14.0	6.7	20	Clowes
44		6.25	14.28	Clerk
Boston illuminating gas		6.67	25.0	Grover
boston mummating gas		$\begin{bmatrix} 6.67 \\ 6.25 \end{bmatrix}$	1	M.I.T.
		6.25	12.5	M.I.T.
Acetylene	7.9	3.35	20.0	M.I.T.
rectylene	7.9	3.35	52.3	Eitner
	$7.9 \\ 7.9$	3.35 1.54	49.0	Bunte
"	7.9	$\frac{1.54}{2.96}$	47.6	M.I.T.
	7.9	3.0	66.7	C)
Ethylene	6.5	$\frac{3.0}{4.1}$	82.0	Clowes
ti	6.5	4.1	14.6	Eitner
Mathana	• • •		10.5	Bunte
Methane	9.5	6.1	12.8	Eitner
66	9.5	6.1	9.7	Bunte
* * * * * * * * * * * * * * * * * * * *	9.5	5.0	13.0	Clowes
Ether	$\frac{3.4}{2.4}$	2.75	7.7	Eitner
•••••	$\frac{3.4}{2.7}$	2.75	5.0	Bunte
Benzene	2.7	2.65	6.5	Eitner
44	• · · · · · · · · ·	2.65	3.9	Bunte
• • • • • • • • • • • • • • • • • • • •		2.4	4.9	Eitner
Pentane	2.6	2.4	2.5	Bunte
* * * * * * * * * * * * * * * * * * * *	2.6	2.4	4.9	Eitner
Rasolene		2.5	2.4	Bunte
86 Ве		1.54	4.76	M.I.T.
71 De		1.54	4.76	M.I.T.
00 Бе		1.31	4.76	M.I.T.
dcohol	6.5	3.95	13.65	Eitner
"	6.5	3.95	9.7	Bunte
llau oil gas		4.0	8.0	Hallock
intsch oil gas	9.0	5.0	13.0	Lucke
thane		4.0	22.0	Clowes

TABLE LXXIX

RATE OF COMBUSTION OF COAL

U. S. Geological Survey Tests

		Proximate C	Proximate Coal Analysis.		Draft, In	Draft, Inches, H2O.	Pounds per	Pounds per Square Foot per Hour.	per Hour.
Coal.	Moisture.	Volatile.	Fixed C.	Ash.	Hood.	Furnace.	As Fired.	Dry.	Com- bustible.
Alabama No. 1	2.56	31.00	52.52	13.92	.36	.18	20.68	20.72	17.38
" No. 1, briquettes	2.63	33.00	50.96	13.41	.46	.18	19.48	18.97	16.40
", No. 2	4.83	32.98	48.65	13.54	.39	.17	22.60	21.54	18.60
Arkansas No. 1	1.99	18.61	66.36	13.04	.36	.12	17.30	16.90	14.80
" No. 1, briquettes	.94	21.21	67.65	10.20	.35	.15	18.93	18.74	16.63
", No. 2	1.07	16.86	73.65	8.42	.35	.15	16.00	15.70	14.38
". No. 2, briquettes	4.88	22.49	60.30	12.33	.37	.15	18.18	17.31	14.95
:	1.97	16.04	72.74	9.25	.40	.16	20.50	19.68	17.15
" No. 3, briquettes	2.60	17.35	62.04	18,01	09.	.22	21.00	20.49	16.80
" No. 4, briquettes	3.85	14.06	71.98	10.11	.45	.19	20.15	19.41	16.50
", No. 5	2.22	12.54	73.68	11.56	.53	.28	21.87	21.42	16.60
Colorado No. 1, lignite	19.78	35.85	39.00	5.37	99.	.33	22.15	17.80	15.22
:	69.6	36.91	38.21	15.19	.40	.18	27.60	24.90	20.50
". No. 2, washed	10.45	37.77	41.72	10.06	.42	.15	24.95	22.36	20.05
", No. 3	8.51	31.19	48.75	11.55	.58	.21	23.20	21.23	17.90
", No. 4	13.47	33.48	41.59	11.46	.55	.16	23.00	19.84	17.00
" No. 4.	12.58	32.44	43.63	11.35	.52	.21	26.50	23.13	19.90
,, No. 6.	13.19	32.31	39.62	14.88	69.	.23	25.80	22.34	18.88
oriqu	11.74	38.79	43.23	6.24	.54	.144	24.55	21.70	20.05
". No. 1, washed	16.59	35.17	40.41	7.83	.485	.130	26.80	22.39	20.40
:	9.11	38.04	40.40	12.45	.516	.165	22.55	20.51	18.00
Indian Territory No. 1	7.65	33.96	46.30	12.09	.306	.122	20.75	19.17	16.40
", No. 2	3.71	36.21	50.31	9.77	.339	.124	22.25	21.50	18.90
,, No. 3	4.79	37.30	47.58	10.33	.490	.180	22.46	21.43	18.05
" No. 4	6.24	35.44	45.33	12.99	. 590	.210	22.41	21.04	18.50

Table LXXIX—Continued

RATE OF COMBUSTION OF COAL

U. S. Geological Survey Tests

		Proximats Coal Analysis	oal Analysis.		Draft, In	Draft, Inches, H ₂ O.	Pounds per	Pounds per Square Foot per Hour.	per Hour.
Coal.	Moisture.	Volatile.	Fixed C.	Ash.	Hood.	Furnace.	As Fired.	Dry.	Com- bustible.
Iowa No. 1	8.69	33.08	39.89	18.34	.460	.150	25.42	23.23	18.60
" No. 2	14.88	35.35	33.73	16.04	.620	.210	27.30	23.28	19.20
", No. 3	12.44	36.14	35.77	15.65	.580	.220	26.22	22.96	19.43
", No. 4"	13.48	34.09	37.28	15.15	.500	.193	23.15	20.02	16.80
" No. 4. briquettes.	13.24	36.50	37.85	12.41	.590	.220	24.30	21.11	18.15
	16.01	31.76	38.83	13.04	.510	.220	27.61	23.23	20.00
Kansas No. 1	5.90	33.78	49.46	10.86	.430	.240	17.62	16.60	14.80
,, No. 1	4.80	32.68	48.57	13.95	.390	.140	19.10	18.13	15.53
,, No. 2	4.18	31.23	46.68	17.91	.470	.220	19.70	18.90	16.68
", No. 2. washed	5.85	34.32	51.22	8.64	.390	.160	21.30	20.08	17.85
	2.03	33.52	50.99	13.46	.416	.142	19.20	18.77	16.17
No. 3	2.25	34.30	51.05	12.40	.410	.250	16.82	16.45	14.30
No. 4	5.51	36.32	43.59	14.58	.510	.190	19.21	18.18	15.65
No. 5	4.31	32.42	51.36	11.91	.520	.170	21.53	20.62	18.10
Kentucky No. 1	2.89	35.61	55.59	5.91	.400	.150	20.50	19.95	18.40
,, No. 2	7.76	37.91	45.75	8.58	.460	.160	23.58	21.75	19.38
", No. 2. briguettes	7.11	37.07	44.32	11.50	.490	.170	23.52	21.87	19.18
No. 3.	7.92	37.32	44.84	9.95	.470	.120	23.64	21.75	19.52
4.0N	5.89	36.65	45.74	12.72	.550	.195	23.27	21.90	19.05
Missouri No. 1	7.28	34.88	40.64	17.20	.400	.170	24.00	22.30	18.00
	6.38	37.60	41.85	14.17	.440	.170	21,70	20.37	17.15
Was	7.93	36.81	44.21	11.05	.370	.160	22.45	20.71	18.23
,, No 2	13.09	32.88	37.33	16.70	.623	.198	28.74	25.00	19.88
No 2	11.57	31.77	39.76	16.90	.323	.130	22.82	20.20	16.95
" No. 3	18.63	26.18	29.98	25.51	.700	.280	26.75	21.85	15.70
	_					_	_	_	

Missouri No. 3, washed	20.78	31.18	39.61	8.43	.650	.260	27.42	21.72	19.10
No. 4	12.24	40.10	42.11	5.55	.520	.160	23.45	20.64	19.21
New Mexico No. 1	11.90	37.85	41.57	89.8	.360	.140	26.80	23.70	21.60
No. 2	9.92	37.30	36.11	16.67	.490	.230	29.22	26.37	19.71
	6.75	37.56	39.07	16.62	.540	.210	23.83	22.00	16.75
North Dakota No. 1, lignite	35.84	28.13	25.40	10.63	.575	.325	26.65	17.15	15.20
Fennsylvania No. 1	1.10	15.80	75.69	7.41	.480	.165	15.88	15.70	15.00
	. 59	19.91	76.76	6.04	.310	.153	16.72	16.60	16.10
No. 3, briquettes	3.00	27.62	55.00	14.38	.610	.250	19.60	19.01	15.08
No. 4	2.90	28.70	60.82	7.58	.450	.190	19.20	18.67	17.08
Texas No. 1, lignite.	23.27	31.42	29.44	15.87	.520	.340	13.54	10.38	7.80
West Virginia No. 1	1.90	34.64	56.25	7.21	.310	.130	19.33	18.94	17.47
No. 2.	2.01	39.23	48.80	96.6	.460	.240	20.18	19.75	17.78
No. 3	2.54	30.31	56.11	11.04	.500	.200	20.35	19.82	17.42
No. 4	2.53	27.64	59.84	9.66	.480	.180	19.70	18.98	16.98
No. 5	2.11	28.95	58.66	10.28	.510	.190	18.85	18.44	16.47
No. 6	2.14	22.38	70.03	5.45	.450	.160	18.37	17.95	16.70
No. 6	2.11	21.44	71.42	5.03	.463	.181	17.87	17.21	16.27
No. 7	2.68	20.23	68.27	8.82	.530	.217	18.70	18.15	16.63
No. 8	5.26	31.19	56.68	6.87	.370	.120	19.73	18.72	16.80
No. 9	3.42	31.11	59.47	00.9	.500	.180	18.40	17.78	16.35
	1.74	18.23	73.84	6.19	.380	.170	18.45	18.15	16.62
No. 11.	4.85	16.31	68.36	10.48	. 520	.220	19.05	18.13	15.58
No. 12.	1.58	18.26	75.33	4.83	.435	.175	18.00	17.68	16.30
	2.32	24.02	67.46	6.20	.410	.140	18.15	17.66	15.90
Wyoming No. 1, lignite	21.81	40.56	31.61	6.02	.620	.230	28.95	22.69	20.68
No. 2	11.10	35.55	34.58	18.77	.490	.140	29.80	26.51	19.80

$\begin{array}{ccc} \textbf{TABLE} & \textbf{LXXX} \\ . \\ \textbf{DIAGRAM} & \textbf{FACTORS} & \textbf{FOR OTTO CYCLE GAS ENGINES} \end{array}$

	Size in	Inches.	Test	Comp	oression.	Efficiencies	, Per Cent.) D18-
Engine.	Bore.	Stroke.	Authority.	Vol. before	Press. after Press.before	Actual.	Air Card Standard.	gram Factor.
Four cycle	7.8	11.8	Meyer		3.73-6.45	25	44	. 58
				İ	" "	24.4	42	.58
			[ł	" "	21.4	37	.58
					" "	18.8	33	. 57
Four cycle	6	12	Burstall		3.03-8.13	18.9	33	.57
	6	12	4.4		3.03-8.13	21.2	36	.59
	6	12	"		3.03-8.13	21.9	43	.51
	6	12	"		3.03-8.13	23.1	47	.49
	6	12	"		3.03-8.13	16.6	33	.50
	6	12	"		3.03-8.13	18.7	36	.52
	6	12	"		3.03-8.13	17.2	43	.40
	6	$\overline{12}$	4.6		3.03-8.13	18.1	47	.38
40 H.P. four cycle			Hopkinson	6.37		33.5-37.0	52	.64–.71
			110pmmpon	0.01		depending	02	.01 .11
						upon load		
Cockerill	51.18	55.07	Hubert		9.18	22.9	46.9	.49
	33.465	39.37	44		10.35	25.0	48.7	.514
	22.64	37.4	Witz	I	5.8	19.75	39.7	
	23.622	31.5	François	• • • • • •	$\frac{3.8}{7.28}$	$\frac{19.75}{24.3}$	43.4	.498
	23.622	31.5 -	Witz	• • • • • •	8.03	$\frac{24.3}{27.3}$. 56
	20.47	29.92	Allaire				45.0	.606
Cie. Berlin Anhalt		29.92 27.56	Witz	• • • • • •	11.2	25.6	49.9	.514
	16.73	22	Mathot		8.17	26.9	45.2	. 595
			Watnot	• • • • •	13.06	23.8	52.0	.457
	15.75	22.83	"	• • • • • •	7.35	31.3	43.6	.718
Deutz		$\frac{22.87}{20}$	"		11.55	30.4	50.3	.605
	14.5	22			4.83	30.6	36.2	.845
	13.78	22	",		9.12	18.0	46.9	.384
	$\frac{13.78}{10}$	21.26	"	• • • • • •	9.12	24.2	46.9	.515
	13	22.83		• • • • •	9.4	38.8	47.3	.82
	13.78	19	Witz		11.58	31.8	50.4	. 63
	12.2	17.7	Mathot		7.75	31.6	44.5	.71
	11.85	18	"		11.3	31.3	50.1	.625
	11.8	17.7			10.32	25.2	48.7	.518
Benier		17.3	Witz		4.39	13.75	34.3	.4
	11	20	Mathot		10.64	29.8	49.2	.605
	11	18.6	"		4.83	29.2	36.4	.802
	10	19			5.81	27.4	39.7	. 69
• • • • • • • • •	10	19	Witz		6.8	30.1	42.4	.71
National	10	18	Mathot		5.88	21.2	39.9	. 53
Güldner	9.85	15.75	Schrotter		10.6	39.0	49.1	.795
"	9.85	15.75	"		10.6	33.9	49.1	.69
Catteau	9	18	Witz		12.59	37.2	51.5	.723
Tangye	7	16	Hirsch		10.2	25.8	48.6	. 53
Four cycle	6	12	Burstall	4		21.0	42.8	.49
"	6	12	"	2.44		18.0	29.6	.608
44	6	12	"	4		18.0	42.8	.42
"	6	$\overline{12}$	"	$\bar{2}.78$		17.6	33.3	. 529
"	6	12	"	2.7		16.4	32.7	.502
• • • • • • • • • • • • • • • • • • • •	-		I			70.7	04.1	• 004

	Table L	XXX	C—Con	tinued	
DIAGRAM	FACTORS	FOR	OTTO	CYCLE	ENGINES

	Size in	Inches.	Test	Comp	ression.	Efficiencies	, Per Cent.	Dia-
Engine.	Bore,	Stroke.	Authority,	Vol. before Vol. after	Press. after Press.before	Actual.	Air Card Standard.	gram Factor.
Four cycle	6	12	"	2.04		16.2	34.6	.468
"	6	12	"	2.17	l	15.6	26.2	. 595
	6	12		4.0		13.6	42.8	.318
	6	12	"	4.0		13.4	42.8	. 313
	6	12	4.6	1.75		12.6	19.5	.646
	6	12	"	2.7		11.7	32.7	.358
	6	12	"	2.22		19.4	26.9	.721
	6	12	"	2.94		20.0	35.0	.572
	6	12	"	4.0		22.7	42.8	. 53
	$8\frac{1}{2}$	13	Meyer	3.75		32.7	41.2	. 794
	81/2	13	"	3.6		26.8	40.3	. 665
	81/2	13	"	2.84		20.2	35.2	. 574
	<u> </u>	1	!	1	[I	

Compression pressure ratio has been calculated assuming an initial pressure of 14.7 lbs, per square inch.

TABLE LXXXI
HEAT BALANCES OF GAS AND OIL ENGINES (PER CENT OF GAS OR OIL HEAT)

Engine and Authority.	I.H.P.	B.H.P.	Friction.	Exhaust.	Jacket.	Radiation and Un- accounted for.
Donkin	22.32			43.29	32.96	1.43
Beck engine, Kennedy	19.4			42.9	33.0	4.7
Griffin engine, Kennedy	21.1			39.8	35.2	3.9
Atkinson engine, Kennedy	25.5		1	37.9	27.0	9.6
Otto Crossley engine, Kennedy	22.1			35.5	43.2	.8 excess
Comp. Ratio. R.P.M. a/g (Air-gas)						
2.67 187 7.11, Slaby	18.0			30.8	51.2	
2.67 247 7.35, Slaby	18.1			36.3	45.6	
4.32 187 7.43, Slaby	24.4			21.8	53.8	
4.32 247 7.40, Slaby	23.7			26.8	49.5	į.
General, Mathot	33.0	28.0	5.0	31.0*	36.0	
Westinghouse, Bibbins	29.48	24.9	4.58	36.3	34.22	
300 H.P. engine at 197 H.P., Eberly	43.5	33.5	10.0	24.1	34.3	1.9 excess
" 294 H.P., Eberly	45.8	32.2	13.6}†	23.9	31.8	1.5 ''
" 335 H.P., Eberly	41.5	30.9	10.6	24.8	33.8	.1 ''
6 H.P. engine, I.C.E	31.8	26.7	5.1	41.1	27.1],	
24 H.P. engine, I.C.E.	33.3	28.3	5	37.1	$\begin{bmatrix} 27.1 \\ 29.6 \end{bmatrix}$	·
Deutz 2 H.P., Wimplinger	21.5	16.1	5.4	25	50.4	3.1
Güldner 20 H.P., Schröter	42.7			24.1	33.2	
Walrath 75 H.P., Geer and Yane-						
lain	27.1	21.3	.5.8	23.4	49.5	
300 H.P., Goldsmith and Hart-				İ		
wig	24.4	17.1	7.3	50.6	25.0	
Hornsby, Robinson	21	18	3	29	50	
De la Vergne F. H., Towl	40.14	27.52	12.62	20.03	26.50	13.33
Pierce-Arrow, Chase		18			29.4	
	·	_				

^{*} Including radiation. † Including pumps. ‡ Including external radiation.

9.339801-10

TABLE LXXXII MEAN EFFECTIVE PRESSURE FACTORS FOR OTTO CYCLE ENGINES

(m.e.p') = 5.4 $F \frac{H}{a+1} \left[1 - \left(\frac{Pa}{Px} \right) \frac{\gamma - 1}{\gamma} \right]$ Eq. (933) Px $5.4 \left[1 - \left(\frac{Pa}{Px} \right)^{\frac{2}{7}} \right]$ $\left(\frac{Pa}{Px}\right)^{\frac{5}{7}}$ $\left(\frac{Pa}{Px}\right)^{\frac{5}{7}}$ $\left[1-\left(\frac{Pa}{Px}\right)^{\frac{2}{7}}\right]$ $5.4 \left[1 - \left(\frac{Pa}{Pa} \right)^{\frac{2}{7}} \right]$ \overline{Pa} \overline{Pa} Atmos 2150 0000 000 4592 2.481 8.6 9.332501-10 9.662040-10 1.0 1.000 .394658 $\tilde{2}.500$ 878 0508 274 .4628. 2115 1.2 9.43442-10 8.705522-10 9.438140-10 8.8 9.325369-10 9.665384-10 $.39800\bar{2}$ 9.694798-10 786 .0917 2082 4662 $\bar{2}.519$ 9.895623-10 8.962180-10 g 9.318398-10 9.668591-10 $0.401\overline{209}$ 1.4 .1256 1931 4821 2.604 715 9.285714-10 9.683092-10 415710 2.680 9.854271 9.098990-10 9.831608-10 10 1.6 1546 .835 .1804 4960 9.921799-10 9.695456-10 .428074 2.746 9.817662-10 9.189181-10 9.256148-10 11 .971 1695 610 .5083 1797 9.706154-10 9.987069-10 9.229156-10 $.438\overline{172}$ 9. 784979-10 9.254451-10 12 2.0 2017 1.090 .1601 2.807 569 9.304706-10 9.755412-10 9.204328-10 .03732413 9.715552-10 .448170 2.2 5295 $\bar{1}.196$.1518 2.861 9.181337-10 9.723891-10 2.4 9.728421-10 9.344981-10 .077599 14 .456509 1,291 1445 5378 505 2389 2.911 9.159935-10 $.11084\bar{2}$ 2.6 9.703591-10 9.378234-10 1.5 9.731355-10 463973 1.377 2.956 470717479 $\bar{2}549$ 1380 . 5471 9.680601-10 9.406300-10 .138918 16 9.139914-10 9.738099-10 2.8 $\frac{1}{4}56$ 2694 1.456 1322 . 5549 2.998 9.659199-10 9.430398-10 $.16301\bar{6}$ 17 9.121108-10 9.744231-10 .476849 3.0 1.528 1269 . 5621 3.037 436 $\begin{array}{c} 9.10337\widetilde{6}-\widetilde{10} \\ .1221 \end{array}$ 9.639179-10 9.749837-10 482455 9.451403-10 .184021 18 3.2 1.594 .417 9.620372-10 2951 5688 3.073 .202543 9.086604-10 9.754990-10 9.469925-10 19 .487608 3.4 1.656 . 5751 401 3065 1177 3.107 9.602641-10 9.486402-10 20 9.070693-10 9.799751-10 .492369 $.21902\bar{0}$ 3.6 1.713 $.11\bar{3}6$ 3.139 $69-10 \\ .372$ 9.501223-10 9.585869 .23384121 9.055556 9.764169-.496787 3.8 1.7673.169 3271 1099 5865 9.041126-10 . 247233 22 9.768283-10 .500901 4.0 9.569957-10 9.514615-10 1.817 .259422 359 9.554822-10 1065 3.197 .504749 3.224 .3364 5915 9.526804-10 .3451 9.772131-10 9.027337-10 4.2 1.865 1033 5967 347 9.540391-10 9.537983-10 .270601 9.014135-10 9.775741 - 10. 508359 4.4 $\bar{1}.909$ 1003 .336 3534 6014 3.249 9.001471-10 9.526601-10 9.548255-10 $.28087\bar{3}$ 25 9.779127-10 .511745 4.6 327 3612 1.952 .0976 .6058 3.273 9.557760-10 .290378 26 8.989305-10 9.782339-10 9.513399-10 4.8 514947 1.991.0950 3168 3686 .6100 3.296 9.500736-10 9.566579-10 8.977597-10 9.785344-10 .29919727 517962 5.0 2.030 .0925 3080 3757 3.318 .61419.788204-10 9.488569-10 .307413 28 8.966316-10 9.574794-10 .520822 5.2 2998 .3823 2.066 .0902 3.338 9.476861-10 9.582461-10 .315079 29 8.955430-10 9.790918 .523536 5.4 .322**26**6 2.133 ž, 100 .0881 2921 .3887 . 6215 3.358 9.589648-10 30 8.944914-10 9.793504-10 5.6 9.465580-10 .526122 3948 0860 .6251 9.795963-10 2849 3.377 .329028 9.454694-10 9.596410-10 31 8.934741-10 5.8 .528581 3.396 .530923 6285 9.798305-10 2781 4007 2.165 .0841 8.924893-10 9.444178-10 9.602776-10 $.33539\overline{4}$ 6.0 $\bar{2}.195$.0823 .6318 2716 4063 3.413 9.434006-10 9.608794-10 $.34141\overline{4}$ 33 9.915347-10 9.800546-10 .533164 6.2 2.224 3.430 2656 4116 0806.6349 9.614486-10 $.34710\overline{4}$ 34 8.906086-10 9.802691-10 9.424157-10 6.4 .535309 $\hat{2}.252$ 2598 4168 .0789 .6379 3.446 8.897094-10 .0773 9.619886-10 9.414611-10 $.35250\overline{4}$ 35 9.804746-10 537364 6.6 .4217 2.2783.462 .539341 2543 6408 8.888355-10 .0758 9.405351-10 9.625025-10 $.35764\overline{3}$ 36 9.807623-10 6.8 .4265 2.304.6436 3.477 9.396359-10 9.629909-10 .362527 37 8.879056 9.808616-10 7.0 .541234 2.329 .0744 .4311 3.492 7.2 9.387620-10 9.634558-10 .367176 38 8.871583-10 9.810434-10 .543052 2394 2.353 0730 3.506 43556489 8.863525-10 9.379120-10 9.639008 - 10 $.37162\overline{6}$ 39 9.812192-10 7.4 .544810 4398 3.520 2.376 .0717 6514 2340 8.855671-10 9.370847-10 9.643265-10 . 375883 40 546499 9.813881-10 7.6 2.399 2306 4439 0705 3.533 6539 9.647334-10 $.37995\overline{2}$ 8.848011-10 9.362789-10 9.815511-10 7.8 548129 3.546 . 2264 2.440 .0693 .6563 42 9.817082-10 9.354936-10 9.651239 8.840733-10 549700 8.0 .4518 2.446 .0681 .6586 3.558 .387602 9.247276-10 9.654984-10 43 8.833147-10 .551227 8.2 9.818609-10 2.462 .391202 0670 6608 2187 .4556 3.570 8.826105-10 9.658584-10 9.820076-10 44

.552694

TABLE LXXXIII

VALUES OF C FOR AIR FLOW (WEISBACH)

Orifice of	diameter = .394	ins.
------------	-----------------	------

$egin{array}{cccc} R_P & \dots & 1.05 \ C & \dots & .555 \end{array}$	$\substack{\textbf{1.09}\\.589}$	$\substack{1.43\\.692}$	$\substack{1.65\\.724}$	$1.89 \\ .754$	2.15 .788
	Orifice of	f diameter	=.843 ins.		
$R_P \dots 1.05$ $C \dots .558$	1.09 .573	$\substack{\textbf{1.36}\\\textbf{.634}}$		$\substack{2.01\\.723}$	
C1	J:	_ 204 ima	and langet	1 101 ;	3.0

Short tube, diameter = .394 ins.and length = 1.181 ins.

$$R_P \dots 1.05 \qquad 1.10 \qquad 1.30 \\ C \dots .730 \qquad .771 \qquad .830$$

Short tube, diameter = .557 and length = 1.673 ins.

$$R_P \dots 1.41 \qquad 1.69 \\ C \dots .813 \qquad .822$$

Short tube, diameter = .394 ins. and length = .630 ins. rounded entrance

$$R_P \dots 1.24$$
 1.38 1.59 1.85 2.14 $C \dots 979$.986 .965 .971 .978

 $C = \text{coefficient of friction in formula } v = C\sqrt{2gh}$ R_P = ratio of pressures.

The coefficient of efflux, C_e , Weisbach gives as follows:

For conoidal mouthpiece with pressures from 0.23 to 1.1 atm. C_e =.97 to .99 Circular orifices in thin plates,

Short cylindrical mouthpieces,

The same rounded at inner end,

Conical converging,

Conical converging,

Conical converging,

TABLE LXXXIV

FLOW CHANGE RESISTANCE FACTORS F_R (Reitschel)

Condition.	Resistance Factor F_{R}
Sharp 90° elbow	1.1
Long bend: r=width of duct	. 25 . 15
" r=5 to 6 duct widths. Long bend 135°	. 15
Long double offset Outlet register with valves $\frac{2}{3}$ free area and 2×flue area '' face at $\frac{2}{3}$ free area	.6
" wire screens 1.5×flue area. Entrance for square corners	0.0 1.0
" rounded corners." " flue extending into header as short pipe	1.5
Enlargement of area from A_1 to A_2 , sharp corners	$\left(\frac{A_2}{A_1}-1\right)^2$
Reduction of area from A_2 to A_1 , sharp corners	A2/
Free discharge into foom when volonty becomes zero	1.0

TABLE LXXXV

PISTON STEAM ENGINE AND TURBINE EFFICIENCY FACTORS REFERRED TO THE RANKINE CYCLE AS

	Rankine Rankine Cyc.	17 17.3 .63	29.5 65	24.9 .75		26.5 .71		25.3 .68		18.2		16.0			30.8			28.8 .66
Efficiency Per Cent.	Actual.	13.4	19.2	18.7		18.7		17 2		14 1		9.67			22.6			19.05
Woter	Rate, Lbs. per I.H.P.	19	11.74	12.08	14.05	12.33 26	21.3	13.5	12.59	18.06	9.56	56	12.76	21.14	8.97	ox ox	1.98	11.93
Back Pressure.	Inches Hg 1	29.92 29.92	4.23	5.91	4.07	4.00	29.92	4.28	1.91	:	3.07	29.92	2.82	29.92	63	1 79	20 00	2.62
Back P	Lbs. per Sq.in.	14.7 14.7	61	2.9	2.0	1.96	14.7	2.1	.94	16.1	1.5	14.7	1.39	14.7	86.	oc C	7.	1.29
Initial Condition.	Quality.	Dry sat.	98% dry 70° F.	Superheat	Dry gat.	;;;	"	14° sup.	9° sup.	98.7% dry	375° sup.	Dry sat.	20° sup.	Dry sat.	230° sup.	202° sun	316° Sup.	Dry sat.
Initial (Abs. Press. Lbs. per Sq.in.	152 165	190	163	163	164 115	140	138	190	199	157	137	138	182	188	129	441	200
	Description of Engine.	Non-cond. Corliss compound, 12×22×20", 200 R.P.M. Non-cond. four-valve simple, 14×18", 200 R.P.M Manhattan Rv 7000 KW. cross-comound Corliss							Corluss angle comp. cond., Interboro Fower House, N. Y., 42×86×60", 75 R.P.M.	∢ (_	_	Ball compound non-cond., 12×20×13", 271 R.P.M Sulzer 4-vylinder triple-expansion 32×47×58×59"		Cole, Marchent & Morley cross-comp. jacketed, 21× 36×36", 101 R.P.M.	White automobile, $3\times6\times4.5''$, 850 R.P.M	Westinghouse vertical, 5400 H.P., 76 R.P.M.
				тэмо	d le	ner	ep '	səuiz	Eu:	uoj	Pis	rιλ	3 u (oits:	S		-	

.78	. 27. 27.	99.	.72	.74	99.	.74	.70	.75	.70	.72	69.	09.	.58	.65	.64
28.7	27.5	23.1	27.4	28.0	29.4	30.7	30.7	28.1	29.8	29.8	31.2	25.7	20.3 19.0	19.3	19.3
22.25	19.75 20.3	15.3	19.7	20.7	19.4	22.8	21.63	21.06	20.85	21.6	21.6	15.5	11.8	12.5	12.4
9.65	11.51	15.63	11.8	11.5	12.23	12.26	10.33	10.59	11.01	10.00	9.73	15.19	18.9 25.5	19.86	20.14
2.36	2.43	4.07	2.44	3.26	4.23	1.83	1.73	2.44	2.14	1.6	2.6	4.26	: :	:	:
1.15	1.19	2.0	1.2	1.6	-	6.	38.	1.2	1.05	62.	1.28	2.09	15 15	19.4	18.7
110° sup.	Dry sat.	99.1% dry	,, %6.86	99% dry	99.4%	Dry sat.	"	"	"	87.2° sup.	166.3° sup.	98.7% dry	231° sup. Dry sat.	98.4% dry	98.8% dry
170	164	26	136	169	152	215	200	155	165	162	185	164	215 215	223	218
Show pumping engine triple, Louisville, 30×56.5×84 ×60", Corliss		nony duptex Comp. pumping engine, 21 ×42 × R.P.M. Heck	Alis-Chalmers triple-exp, vert. pumping 28×48×74×60', 20 R.P.M	Show pumping engine, urpre, indianapous, 23, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52	120", 19	42", 36 R.P.M.	87×66", 17 I	Auls uriple-exp. pumping engine, r. 94×72", 17 R.P.M.	62×60", 25 F	Wortnington triple-exp. pumping engine, Cincago, 650 H.P., 19 R.P.M	rigoter tripte-exp. pumping engine, Cincago, 10 K23 X 48 X48", 62 R.P.M.	Copper Co., 1905, Channing		Femsylvana K.R. cross comp., Z.cyl. consolidation, 23.x35,x32', 80 R.P.M.	160 R.P.M.

Table LXXXV—Continued

(PISTON STEAM ENGINE AND TURBINE EFFICIENCY FACTORS REFERRED TO THE RANKINE CYCLE AS STANDARD OF REFERENCE

	Efficiency	Factor, Actual Effi. Rankine Cyc.	.71	.56	.64	.56	.65	92.	09.	.72	.56	9	.57 .57	.61	.75	08.	.71	.72
	Per Cent.	Rankine E	19.0	18.8	25	30.5	8.92	17.1	23.4	29.5	29.6	- 6	29.5	29.4	29.8	29.5	34.6	33.8
	Efficiency Per Cent.	Actual.	13.4	10.7	16	17.1	17.4	13.0	14.0	21	16.5	14 64	16.85	17.85	22.4	23.6	24.7	24.5 24.0
	Water	Rate, Lbs. per Hr. per I.H.P.	17.61	23.4	14.98	13.35	13.47	19.3	16.9	9.26	13.66	-	13.4	12.2	9.57	9.29	8.23	8.52
	Back Pressure.	Inches Hg Absolute.	:	:	5.45	1.42	4.70	29.92	8.14	က	1.9	**	2.0	2.72	1.61	2.05	.45	1.02
FINCE	Back P	Lbs. per Sq.in.	17.8	15	2.7	7.	2.3	14.7	4	1.47	.93	80	86.	1.34	1.28	1.99	.22	50.
F REFERENCE	Initial Condition.	Quality.	91° sup.	Dry sat.	98.5% dry	., %5.86	98.5% ''	Dry sat.	"	242° sup.	Dry sat.	1500 01111	Dry sat.	81° sup.	,, ,26	59, ''	147° sup.	95° sup. 130° sup.
SIANDARD OF	Initial (Abs. Press. Lbs. per Sq.in.	203	211	153	180	202	163	162	132	193	100	190	223	192	182	191	209
SIAN		Description of Engine.	Pennsylvania R.R. compound locomotive, 14.2×26.1 ×23.6", 240 R.P.M.	R.P.M.			59", 84×54" Westinghouse	condensing.	As above, con		Parsons low-pressure turbine	Curtis turbine, 5000 KW., Port Morris Station, N. Y.	7	De Laval 200		Westinghouse		Parsons 5000 K.W., Carville Parsons 3500 KW., Brown-Buveri, Frankfort.
}			tive	r	dida	msəj	S gai		ipr	Rec				əui	qπ	T		

.77 66	.65 79	.41	.48	.72	.73	.63	.58	.52	.59	89.	.54	.57	. 54
30.4 33.4 29.5	26.7	14.7	17.3	30.7	13.2	26	18.2	29.9	29	34.0	35.7	13.3	18.9
22.4 25.8 19.5	17.2	6.1	8.4	22.1	9.6	16.5	10.6	15.6	17	23.15	19.15	7.6	10.3
9.58 7.59 10.8	13.42	41.5	29.9	10.27	25.11	14.0	33.6	13.42	12.50	8.71	10.42	17.8	23.1
1.57 .92 1.92	3.22	29.97	29.92	2.3	4.02	4.95	29.92	2.40	4.46	1.09	1.02	.94	1.99
.7. .45	1.58	14.7	14.7		1.97								
90° sup. 285° sup. 140° "	Dry sat.	"	"	97% drv	Dry sat.	10° sup.	Dry sat.	172° sup.	170° "	170° "	230° "	92.1% dry	97.1%
187 188 169	152	165 115	165	198	17.4	179	190	201	205	182	189	16.1	14.7
Zoelly 3500 KW., Escherwyss, Turin. Curtis Rateau 4000 KW., Rummelsburg, A.E.G.	Rateau multicellular, 500 H.P.	Westinghouse Farsons 1250 KW. De Laval 10 KW.	Curtis 75 KW.	Westinghouse Farsons (500 f.W., Int. Rapid Ifalisti, N V	Westinghouse 1000 KW low-pressure turbine	Bateau 1000 KW.	Korr 150 H P	Elektra 200 KW	Reidler Stumpf 1400 KW	Zoelly 2500 KW	Malma Pfanninger 500 KW	Curtis 5000 KW low-pressure Stott and Pigott.	Rateau 500 KW., low pressure

*Water rate in pounds per I.H.P. hr. for turbines bas been calculated from data given, by assuming electric generator efficiency =95 per cent, and mechanical efficiency = 90 per cent.

TABLE LXXXVI

DIMENSIONS OF CHIMNEYS BY KENT'S FORMULA

ni	meter nches	Di: i	30	33	36	33	42	8	54	9	99	72	78	8	06	96	102	108	114	120	132	144
1	equivale sanga sanga nga to nga sadou	lo Side	27	30	32	35	38	43	48	54	59	64	02	75	80	86	91	96	101	107	117	128
	200									_	_	-	1400	1637	1435 1466 1496 1526 1555 1554 1612 1639 1666 1693 1719 1745 1771 1795 1820 1845 1869 1893	2167	2459	2771	3100	2986 3036 3084 3132 3179 3226 3271 3316 3361 3405 3448	3514 3576 3637 3697 3756 3815 3872 3929 3984 4039 4093 4147 4200	5026
	195												1382	1616	1869	2140	2429	2736	3061	3405	4147	4963
	190							-				1151	1364	1595	1845	2112 2140	2397 2429	2700	3022	3361	4093	4899
	185											1136	1346	1574	1820	2084	2366	2664	2982	3316	4039	4834
	180											1120	1328	1553	1795	2056 2084	2333 2366	2628	2941	3271	3984	4768
	175										918	1105	1310	1531	1771	2027	2301	2592	2900	3226	3929	4701
	170										904	1056 1073 1089 1105 1120 1136 1151	1291	1509	1745	1998	2268	2554	2773 2816 2858 2900 2941 2982 3022 3061	3179	3872	4205 4279 4352 4424 4495 4565 4632 4701 4768 4834 4899 4963
	165										891	1073	1272	1487	1719	1968 1998	2234	2516	2816	3132	3815	4565
	160									715	877	1056	1252	1464	1693	1938	2200	8478	2773	3084	3756	4495
et	155	t			_					704			1232	1441	9991	1907	2165	2439	2729	3036	3697	1424
in Fe	150	mod-			_					692	849	1023 1040	1212	1418	1639	1876	2130	5399	2685 2729	2986	3637	4352
nney	145	Horse			_				542	980	835	1000	1192	1394	1612	1845	2094 2130 2165 2200 2234 2268	2359	2640	2936	3576	4279
Chir	140	rcial		_	_				532	699	821	988	1171	1370	1584	1813	2058	2318	2594	2885	3514	4205
Height of Chimney in Feet	135	Commercial Horse-power			_				523	657	908	920	1150	1345	1555			2190 2234 2276 2318 2359 2399 2439 2478 2516 2554 2592 2628 2664 2700 2736 2771	2547 2594 2640	2833 2885 2936	3450	
Heig	130	ŭ				_		396	513	644	791	952	1129	1320	1526	1747	1944 1983 2021	2234	2499			
	125							389	503	632	922	934	1107	1294	1496	1713	1944	2190				
	120		_					381	493	619	200	913	1084	1268	1466	8291	1905			_		
	115							373	482	909	744	968	1038 1062 1084 1107 1129 1150 1171 1192 1212 1232 1252 1272 1291 1310 1328 1346 1364 1382 1400	1214 1241 1268 1294 1320 1345 1370 1394 1418 1441 1464 1487 1509 1531 1553 1574 1595 1616 1637	1435	1643						_
	110						271	365	472	593	728	876	1038	1214								
	105						265	356	461	579	711	856	1014									
	95 100						258	348	449	565	694	835										
	90 95				نئ -	8 214	238 245 251 258	320 330 339 348	415 427 438 449		929				_							
	85 9		10	137	68 17	02 20	38 24	20 33	15 42	536			_						_			
	-08		107 110	133 1	163 168 173	196	231	3113	77			_			_	_	_				_	
91&u	pS ai Teet	вэтА	4.91	5.94 133	7.07	8.30	9.62	12.57	15.90	19.64		28.27	33.18	38.48	44.18	50.27	56.75	63.62	88.04	78.54	95.03	113.10
	meter Inches		30	33	36	39	42				99				90		102	108		120 7	132 9	144 111

H= height in feet; A= area in square feet; effective area, $E=A-0.6\sqrt{A}$ 'square feet. Boiler horse-power = 0.333 $(A-0.6\sqrt{A})\sqrt{H}$ for circular stacks. Assuming 1 H.P. corresponds to 5 pounds of coal burned per hour.

TABLE LXXXVII

THEORETICAL DRAFT PRESSURE IN INCHES OF WATER* IN A CHIMNEY 100 FT. HIGH

(For other heights the draft varies directly as the height)

remperature in			Temp	perature	of Exter	nal Air	(Barome	ter 30 In	18.)		
Chimney Fahr.	00	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
200°	0.453	0.419	0.384	0.353	0.321	0.292	0.263	0.234	0.209	0.182	0.15
220	0.488	0.453	0.419	0.388	0.355	0.326	0.298	0.269	0.244	0.217	0.19
240	0.520	0.488	0.451	0.421	0.388	0.359	0.330	0.301	0.276	0.250	0.22
260	0.555	0.528	0.484	0.453	0.420	0.392	0.363	0.334	0.309	0.282	0.25
280	0.584	0.549	0.515	0.482	0.451	0.422	0.394	0.365	0.340	0.313	0.28
300	0.611	0.576	0.541	0.511	0.478	0.449	0.420	0.392	0.367	0.340	0.31
320	0.637	0.603	0.568	0.538	0.505	0.476	0.447	0.419	0.394	0.367	0.34
340	0.662	0.638	0.593	0.563	0.530	0.501	0.472	0.443	0.419	0.392	0.36
360	0.687	0.653	0.618	0.588	0.555	0.526	0.497	0.468	0.444	0.417	0.39
380	0.710	0.676	0.641	0.611	0.578	0.549	0.520	0.492	0.467	0.440	0.41
400	0.732	0.697	0.662	0.632	0.598	0.570	0.541	0.513	0.488	0.461	0.43
420	0.753	0.718	0.684	0.653	0.620	0.591	0.563	0.534	0.509	0.482	0.45
440	0.774	0.739	0.705	0.674	0.641	0.612	0.584	0.555	0.530	0.503	0.47
460	0.793	0.758	0.724	0.694	0.660	0.632	0.603	0.574	0.549	0.522	0.49
480	0.810	0.776	0.741	0.710	0.678	0.649	0.620	0.591	0.566	0.540	0.51
500	0.829	0.791	0.760	0.730	0.697	0.669	0.639	0.610	0.586	0.559	0.53

^{*} The available draft will be the tabular values less the amount consumed by friction in the stack. In stacks whose diameter is determined by Eq. 1005 the net draft will be 80 per cent of the tabular values. Hence to obtain from the table the height of stack necessary to produce a net draft of say 0.6 in., the theoretical draft will be $0.6 \times 1.25 = 0.75$ in., which can be obtained with a stack 100 ft. high with flue-gas temperature of 420° F., and air temperature of 0° F.; or a stack 125 ft. high when the air temperature is 60° F. and the flue temperature 460° .

	0	1	2	3	4	5	6	7	8	9	10
1.00	0.0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
1.01	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
1.02	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
1.03	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
1.04	0170	0175	0179	0183	0187	0191	0195	019 9	0204	0208	0212
1.05	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
1.06	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294 0334
1.07	0294	0298	0302	0306	0310	0314 0354	0318 0358	0322 0362	0326 0366	0330 0370	0374
1.08 1.09	0334 03 7 4	0338 0378	0342 0382	0346 0386	0350 0390	0394	0398	0402	0406	0410	0414
										0449	0453
1.10 1.11	0.0414 0453	0418 0457	0422 0461	0426 0465	0430 0469	0434 0473	0438 0477	044 1 0481	0445 0484	0488	0492
1.12	0453 0492	0457	0500	0504	0508	0512	0515	0519	0523	0527	0531
1.13	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
1.14	0569	0573	0577	0580	0584	0588	0592	0596	059 9	0603	0 60 7
1.15	0607	0611	0615	0618	0622	062 6	0630	0633	0637	0641	0 645
1.16	0645	0648	0652	0656	0660	0663	0667	0671	0674	0678	0682
1.17	0632	0686	0689	0693	0697	0700	0704	0708	0711	0715	071 9
1.18	0719	0722	0726	0730	0734	073 7	0741	0745	0748	0752	075 5
1.19	0755	075 9	0763	0766	0770	0774	0777	0781	0785	0788	0792
1.20	0.0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	0828
1.21	0828	0831	0835	0839	084 2	0846	084 9	0853	0856	0860	0864
1.22	0864	086 7	0871	0874	0878	0881	0885	0888	0892	0896	0899
1.23	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	0934
1.24	0934	0938	0941	0945	0948	0 95 2	0955	0959	0962	0966	0969
1.25	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
1.26	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
1.27 1.28	1038	1041 1075	1045 1079	1048 1082	1052	1055 1089	1059 1092	1062 1096	1065 1099	1069 1103	10 72 110 6
1.29	1072 110 6	1109	1113	1116	1086 1119	1123	1126	1129	1133	1136	1139
1.30						1156					
1.31	0.1139 11 7 3	1143 1176	1146 1179	1149 1183	1153 1186	1136	1159 1193	1163 1196	1166 1199	1169 1202	1173 1206
1.32	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
1.33	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	1271
1.34	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
1.35	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	133 5
1.36	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
1.37	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
1.38	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
1.39	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
1.40	0.146 1		1467			1477	1480	1483	1486	1489	149 2
1.41	1492		1498			1508			1517		1523
1.42	1523		1529			1538	1541				155 3
1.43	1553	1556			1565	1569	1572				1584
1.44	1584	1587			1596	1599	1602			1611	1614
1.45	1614	1617			1626	1629	1632			1641	1644
1.46	1644	1647			1655	1658	1661				1673
1.47 1.48	1673 1703	1676	1679		168 5 1714	1688 171 7	1691 1720				1703
1.49	1703	1735				1746	1749				1732 1761
~. 17	-104	2143		-/	## TT	-1-10	±177	1154	±1.00	-150	+10T

	0	1	2	3	4	5	6	7	8	9	10
1.50	0.1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
1.51	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
1.52	1818	1821	1824	1827	1830	1833	1836	1838	1841	1 844	1847
1.53	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
1.54	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
1.55	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
1.56	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
1 .5 7	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	198 7
1.58	1987	1989	1992	1995	1998	2000	2003	2006	2009		2014
1.59	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	204 1
1.60	0.2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
1.61	2068	2071	2074	2076	2079	2082		2087		2092	2095
1.62	2095		2101	2103		2109		2114			212 2
1.63	2122	2125	2127	2130	2133	2135	2138	2140	2143		2148
1.64	2148	2151	2154	2156	2159	2162	2164	2167	2170		217 5
1.65	2175	2177	2180	2183	2185	2188	2191	2193	2196		2201
1.66	2201		2206		2212	2214		2219			222 7
1.67	2227		2232		2238	2240	-	2245			2253
1.68	2253	2256	2258	2261		2266		2271			2279
1.69	2279	2281	2284	2287		2292	2294	2297	2299	2302	2304
1.70	0.2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
1.71	2330		2335		2340	2343		2348	2350		235 5
1.72	2355	2358	2360			2368	2370	2373	2375	2378	2380
1.73	2380	2383	2385	2388		2393	2395	2398	2400		2405
1.74	2405		2410	2413		2418	2420	2423	2425	2428	2430
1.75	2430	2433	2435		2440	2443		2448			2455
1.76	2455	2458	2460		2465	2467	2470	2472	2475	2477	2480
1.77	2480	2482	2485	2487		2492	2494	2497	2499		2504
1.78 1.79	2504 2529	2531	2509 2533	2512 2536	2538	2516 2541	2543	2521 2545	2524 2548	2550	2529 255 3
1.80											
1.81	0.2553 2577	2555	2558 2582	2560	2562	2565 2589		25 7 0 2594	2572 2596	2574	257 7 260 1
1.82	2601	2603	2605		2610	2613		2617			2625
1.83	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
1.84	2648	2651	2653	2655	2658	2660	2662	2665	2667		2672
1.85	2672	2674	2676	2679	2681	2683	2686	2688		2693	2695
1.86	2695	2697		2702	2704	2707	2709			2716	2718
1.87	2718	2721	2723	2725	2728	2730	2732	2735	2737		2742
1.88	2742	2744	2746	2749		2753	2755	2758	2760	2762	2765
1.89	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2788
1.90	0.2788	2790	2792	2794	2797	2799	2801	2804	2806	2803	2810
1.91	2810		2815		2819	2822	2824	2826		2831	2833
1.92	2833	2835		2840		2844	2847	2849		2853	2856
1.93	2856	2858	2860	2862	286 5	2867	2869	2871	2874	2876	2878
1.94	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
1.95	2900	2903	2905	2907	2909	291 1	2914	2916	2918	2920	2923
1.96	2923	2925	292 7	2929	2931	2934	2936	2938		2942	2945
1.97	2945	2947	2949	295 1	295 3	2956	2958	2960			2967
1.98	296 7	2969	2971			2978		2982			2989
1.99	2989	2991	299 3	2995	2997	2999	3002	3004	3006	3008	301 0

These two pages give the common logarithms of numbers between 1 and 10, correct to four places. Moving the decimal point n places to the right (or left) in the number is equivalent to adding n (or -n) to the logarithm. Thus, $\log 0.017453 = 0.2419 - 2$ [= $\overline{2}.2419$].

To facilitate interpolation, the tenths of the tahular differences are given at the end of each line, so that the differences themselves need not be considered. In using these aids, first find the nearest tabular entry, and then add (to move to the right) or subtract (to move to the left), as the case may require.

Pages 132-137 are reprinted by permission from Huntingtons "Four Place Tables."

	Pages 1	32–137	1 2 2 A 5 6 7 8 0 10			'ables.''	Ta		ths o							
	0	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
1.0	0.0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	0414					
1.1	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	0792					
1.2	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	1139					
1.3	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	1461		To a	void	inter	rno
1.4	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	1761			in 1		
1.5	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	2041			es,		
1.6	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	2304	•		tabl		
1.7	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2553	pri	eced	ing l)age	
1.8	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	278 8					
1.9	2788	2810	2833	2856	2878	2900	2 923	2945	2967	2989	3010					
2.0	0.3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	3222	2	4	6	8:	11
2.1	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	3424	2	4	6	8 :	10
2.2	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	3617	2	4	6	8 1	10
2.3	3617	3636	365 5	3674	3692	3711	3729	3747	3766	3784	3802	.2	4	5	7	9
2.4	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	3979	2	4	5	7	9
2.5	397 9	3997	4014	4031	4048	4065	4082	4099	4116	4133	4150	2	3	5	7	9
2.6	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	4314	2	3	5	7	8
2.7	4314	4330	43 46	4362	4378	4393	4409	4425	4440	4456	4472	2	3	5	6	8
2.8	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	4624	2	3	5	6	8
2.9	4624	4639	4654	4 669	4683	4698	4713	4728	4742	4757	4771	1	3	4	6	7
3.0	0.4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	4914	1	3	4	6	7
3.1	4914	4928	4942	4 95 5	4969	4983	4997	5011	5024	5038	5051	1	3	4	6	7
3.2	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	5185	1	3	4	5	7
3.3	5185	5198	521 1	5224	523 7	5250	5263	5276	5289	5302	5315	1	3	4	5	6
3.4	5315	5328	5340	5353	5 366	5378	5391	5403	5416	5428	5441	1	3	4	5	6
3.5	5441	5 453	5 465	5478	5490	5502	5514	5527	5 539	5551	5563	1	2	4	5	6
3.6	5563	5575	5587	5 599	5611	5 62 3	5635	5647	5658	5670	5682	1	2	4	5	6
3.7	5682	5694	5705	571 7	5729	5740	5752	5763	5775	5786	5798	1	2	3	5	6
3.8	5798	5809	5821		5843	5855	5866	587 7	5888	5899	5911	1	2	3	5	6
3.9	5911	5922	5933	5944	5955	5 96 6	5977	5988	5999	6010	6021	1	2	3	4	6
4.0	0.6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	6128	1	2	3	4	5
4.1	6128	6138	6149		6170	6180	6191	6201	6212	6222	6232	1	2	3	4	5
4.2	6232	6243	6253		6274	6284	6294	6304	6314	6325	6335	1	2	3	4	5
4.3	6335	6 345	6355	6 365	6375	6385	6395	6405	6415	6425	6435	1	2	3	4	5
4. 4	6435	6444	6454	6 46 4	647 4	6484	6 493	6503	6513	6522	6532	1	2	3	4	5
4.5	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	6 628	1	2	3	4	5
4.6	6628	6 63 7	6646	6656	6665	6675	6684	6693	6702	6712	6721	ī	2	3	4	5
4.7	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	6812	1	2	3	4	5
4.8	6812	6821	6830	6839	6848	6857	6 866	6875	6884	6893	6902	ī	2	3	4	4
4.9	6902	6911	6920	6928	693 7	6 946	6955	6 96 4	6972	6981	6990	1	2	3	4	4

															f the	
	0	1	2	3	4	5	6	7	8	9	10	1		3 ועו	ffere 4	69NS
5.0								-								_
	0.6990	6998			7024	7033	7042	7050			7076	1		3	3	4
5.1	7076	7084				7118	7126	-	7143	-	7160	1	2	3	3	4
5.2	7160	7168			7193	7202	7210				7243	1	2	2	3	4
5.3	7243	7251				7284	7292	7300			7324	1	2	2	3	4
5.4	7324	7332	7340	7348	7 356	7364	7372	7380	7388	7396	7 404	1	2	2	3	4
5.5	7404	7412	7419	7427	7435	7 443	7451	7459	7466	7474	7482	1	2	2	3	4
5.6	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	7559	1	2	2	3	4
5.7	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	7634	1	2	2	3	4
5.8	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	7709	1	1	2	3	4
5.9	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	7782	1	1	2	3	4
6.0	0.7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	7853	1	1	2	3	4
6.1	7853	7860			7882	7889	7896	7903	7910		7924	1	1	2	3	4
6.2	7924	7931		7945	7952	7959	7966	7973	7980		7993	1	1	2	3	3
6.3	7993	8000		8014	8021	8028	8035	8041	8048		8062	1	1	2		3
6.4	8062	8069			8089	8096	8102	8109		8122	8129	i	1	2	3	3
			•												-	
6.5	8129	8136			8156	8162	8169	8176			8195	1	1	2	3	3
6.6	8195	8202		8215		8228	8235	8241		8254	8261	1	1	2	3	3
6.7	8261	8267		8280		8293	8299	8306			8325	1	1	2	3	3
6.8	8325	8331				8357	8363	8370			8388	1	1	2	3	3
6.9	8388	839 5	8401	8407	8414	8420	8426	8432	8439	8445	8451	1	1	2	3	3
7.0	0.8451	845 7	8463	8470	8476	8482	8488	8494	8500	8506	8513	1	1	2	2	3
7.1	8513	8519	8525	8531	8537	8543	8549	8555	8561	856 7	8573	1	1	2	2	3
7.2	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	8633	1	1	2	2	3
7.3	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	8692	1	1	2	2	3
7.4	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	8751	1	1	2	2	3
7.5	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	8808	1	1	2	2	3
7.6	8808	8814			8831	8837	8842	8848	8854	8859	8865	1	i	2	2	3
7.7	8865	8871		8882		8893	8899	8904		8915	8921	î	ī	2	2	3
7.8	8921	8927	8932			8949	8954	8960	-	8971	8976	ī	ī	2	2	3
7.9	8976	8982			8998	9004	9009	9015	9020	9025	9031	ī	ī	2	2	3
8.0							9063									
8.1	0.9031	9036	9042	9047	9053	9058	9117	9069 9122	9074 9128	90 7 9 9133	9085	1	1	2	2	3
8.2	9085	9090	9096 9149	9101 9154	9106 9159	9112 9165	9170	9175	9180	9133	9138	1	1	2	2	3
8.3	9138	9143	9201	9206	9212	9217	9222	9227	9232	9238	9191 9243	1	1	2	2	3
	9191	9196			9212	9217	9274	9279	-	9289		1	1	2	2	3
8.4	9243	9248	9253	9258			-				9294	1	1	2	2	3
8.5	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	9345	1	1	2	2	3
8.6	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	9395	1	1	2	2	3
8.7	9395		9405		9415	9420	9425		9435	9440	9445	0	1	1	2	2
8.8	9445	9450	9455		9465	9469			9484		9494	0	1	1	2	2
8. 9	9494	9 499	9504	9509	9513	9518	9523	9528	9533	9538	9542	0	1	1	2	2
9.0	0.9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	9590	0	1	1	2	2
9.1	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	9638	0	1	1	2	2
9.2	9638		9647			9661	9666	9671	9675	9680	9685	0	1	1	2	2
9.3	9685		9694			9708	9713	9717	9722	9727	9731	0	1	1	2	2
9.4	9731		9741			9754			9768		9777	0	1	1	2	2
9.5			9786			9800			9814		9823	0	1	1		
9.5 9.6	9777 9823		9832			9845			9859		9868	0	ì		2	2
	9823 9868		9877			9890			9903		9912		1	1		
9.7	9868	9872		9001		9934			9948		9912	0	1		2	2
9.8		,		4474	77.11	3734			9991		7730	0		1		2
9.9							9903	2201	シンプト	2220		U	1	1	2	2

These two pages give the natural (hyperbolic, or Napierian) logarithms of numbers between 1 and 10, correct to four places. Moving the decimal point n places to the right (or left) in the numher is equivalent to adding n times 2.3026 (or n times $\overline{3}$.6974) to the logarithm.

2.3026 0.6974 - 33 0.3948 - 54.6052 2 0.0922 - 76.9078 9.2103 0.7897 - 104 0.4871 - 12 0.1845 - 14 5 11.5129 5 6 7 13.8155 6 0.8819 - 17 0.5793 - 19 0.2767 - 21 16.1181 8 18.4207 20.7233 9

$Log_{e}(Base\ e = 2.71828 +)$								Ta	Ter abula		s of Diffe						
	0	1	2	3	4	5	6	7	8	9	10	1	2	2 :	3	4	5
1.0	0.0000	0100	0198	0296	0392	0488	0583	0677	0770	0862	0.0953	10	19	2	9 3	18	48
1.1	0953	1044	1133	1222	1310	1398	1484	1570	1655	1740	1823	9	17	2	6 3	15 4	44
1.2	1823	1906	1989	2070	2151	2231	2311	2390	2469	2546	2624	8	16	3 2	4 3	12 4	40
1.3	2624	2700	2776	2852	2927	3001	3075	3148	3221	3293	3 365	7	7 15	2	2 3	10	37
1.4	3 3 65	3436	3507	3577	3646	3716	3784	3853	3920	3988	4055	7	14	1 2	1 2	:8	34
1.5	4055	4121	4187	4253	4318	4383	4447	4511	4574	4637	4700	6	13	3 1	9 2	63	32
1.6	4700	4762	4824	4886	4947	5 0 08	5068	5128	5188	5247	5306	6	12	1	8 2	43	30
1.7	5 306	5365	5423	5481	5539	5596	5653	5710	5766	582 2	5878	6	11	1	7 2	3 2	29
1.8	5 878	593 3	5988	6043	6098	6152	6206	6259	6313	6366	6 419	5	11	1	62	2 2	27
1.9	6 419	6471	6523	657 5	6627	6 678	6729	6780	6831	6881	0.6931	5	10	1	5 2	1 2	26
2.0	0.6931	6981	7031	7080	7129	7178	7227	7275	7324	7372	7419	5	10	1 (5 2	0 2	24
2.1	7 419	7467	7514	7561	7608	7 65 5	7701	7747	7793	7839	7885	5	; 9	1	41	9 2	23
2.2	7 885	7930	7975	802 0	8065	8109	8154	8198	8242	8286	8329	4	, 9	1	3 1	.8 2	22
2.3	8329	8372	8416	8459	8502	8544	8587	8629	8671	8713	8755	4	ļģ	1	3 1	.7 2	21
2.4	8755	8796	8838	8879	892 0	8961	9002	9042	9083	9123	9163	4	1 8	1	2 1	.6 2	20
2.5	9163	9203	9243	9282	9322	9361	9400	9439	9478	9517	9555	4	} {	3 1	21	62	20
2.6	9555	9594	9632	9670	9708	9746	9783	9821	9858	9895	0.9933	4	} {	3 1	11	.5 1	19
2.7	0.9933	9969	0006	0043	0080	0116	0152	0188	0225	0260	1.0 296	4	1 7	1	11	.5]	18
2.8	1.0296	0332	0367	0 403	0438	0473	05 08	0543	0578	0613	0647	4	1 7	71	11	4 1	18
2.9	0647	0682	0716	0750	0784	0818	0852	0886	0919	0953	1.0986	3	7	1	0 1	.4 1	17
3.0	1.0986	1019	1053	1086	1119	1151	1184	1217	1249	1282	1314	3	3 7	7 1	0 1	.3 2	16
3.1	1314	1346	1378	1410	1442	1474	1506	1537	1569	1600	1632	3	1 6	5 1	0 1	.3 1	16
3.2	1632	1663	1694	1725	1756	1787	1817	1848	1878	1909	1939	3	3 6	5	9 1	2 1	15
3.3	1939	1969	2000	2030	2060	2090	2119	2149	2179	2208	2238	3	, (5	91	12 !	15
3.4	2238	2267	2296	2326	235 5	2384	2413	2442	2470	249 9	2528	3	3 6	5	9 1	2]	14
3.5	2 528	2556	2585	2613	2641	2669	2698	2726	2754	2782	2809	3	3 6	5	8 1	1	14
3.6	2809	2837	2865	2892	2920	2947	2975	3002	3029	305 6	3083	3	3 5	5	8 1	11	14
3.7	3 083	3110	3137	3164	3191	3218	3244	3271	3297	3324	3350	3	3 5	5	8 1	11 :	13
3.8	3350	3376	3403	3429	3455	3481	3507	3533	3558	3584	3610	3	3 5	5	8 1	10	13
3.9	3610	3635	3661	3686	3712	3737	3 762	3788	3813	3838	1.3863	3	3 5	5	8 1	10	13
4.0	1.3863	3888	3913	3938	3962	3987	4012	4036	4061	4085	4110	2	2 5	5	7 1	10	12
4.1	4110	4134	4159	4183	4207	4231	4255	4279	4303	4327	4351	2	2 5	5	7 1	10	12
4.2	4351	4375	4398	4422	4446	4469	4493	4516	4540	4563	4586	2	2 !	5	7	9	12
4.3	4586	4609	4633	4656	4679	4702	4725	4748	4770	4793	4816	2	2 !	5			
4.4	4816	483 9	4861	488 4	4907	4929	4951		4996		5041				7		11
4.5	5041	5063	5085	510 7	5129	5151	5173	5195	5217	5239	5261	:	2 4	4	7	9	11
4.6	5261	5282	5304	5326	5347	5369	5390	5412	5 433	5454	5476	- :	2 4	4	6	9	11
4.7	5476	5497	5518	5539	5560	5581	5602	5623	5644	5665	5686	:	2 .	4	6	8	11
4.8	5686	5 70 7	5728	5748	5769	5790	5810		585 1	5872	5892	:	2 .	4	6	8	10
4.9	5892	5913	5933	5953	5974	5994	6014	6034	6054	6074	1.6094	:	2	4	6	8	10

	Domination to the Dage of								_	Te	nths	of th	18			
	0	1	2	3	4	5	6	7	8	9	10	1			iffere 4	
5.0	1.6094	6114	6134	6154	6174	6194	6214	6233	6253	6273	6292	2	2 4	6	8	10
5.1	6292	6312	6332	6351	6371	6390	6409				6487	2		_		10
5.2	6487		6525			6582	6601	6620	6639	6658	6677	2				10
5.3	6677		6715			6771		6808			6864	2	: 4	6	7	9
5.4	6864	6882	6901	6 919	6938	6956	6974	6993	7011	7029	7047	2	2 4	6	7	9
5.5	7047	7066		7102	7120	7138	7156	7174	7192	7210	7228	2	2 4	- 5	7	9
5.6	7228	7246		7281	7299	7317		7352			7405	2			7	9
5.7	7405	7422		7457		7492	7509	7527	7544	7561	7579	2			7	9
5.8 5.9	7579 775 0	7596		7630 7800		7664	7681	7699		7733	7750	2			7	9
					7817	7834	7851	7867	7884		1.7918	2			7	8
6.0	1.7918		7951	7967		8001	8017		8050		8083	2			7	8
6.1 6.2	8083 8245	8099 8262		8132 8294		8165 8326		8197 8358			8245	2			7	8
6.3	8405	8421		8453	8469	8485		8516	8532		8405 8563	2			6	8
6.4	8563	8579		8610		8641	8656		8687		8718	2			6 6	8 8
6.5	8718	8733								8856						
6.6	8871	8886		8916		8795 8946	8810	8976		9006	8871 9021	2			6 6	8 8
6.7	9021		9051			9095		9125			9169	1			6	7
6.8	9169	9184		9213	9228	9242		9272			9315	1			6	7
6.9	9315		9344	9359		9387	9402	9416	9430	9445	1.9459	1			6	7
7.0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587	9601	1	3	4	6	7
7.1	9601		9629	9643		9671		9699			9741	1			6	7
7.2	9741	9755	9769	9782	9796	9810	9824	9838			1.9879	1			6	7
7.3	1.9879	9892	9906	9920	9933	9947		9 974			2.0015	1	3	4	5	7
7.4	2.0015	0028	0042	0055	0069	0082	0096	0109	0122	0136	0149	1	3	4	5	7
7.5	0149	0162	0176	0189	0202	0215	0229	0242	0255	0268	0281	1	3	4	5	7
7.6	0281	0295		0321		0347		0373	0386		0412	1	3	4	5	7
7.7	0412	0425		0451		0477		0503	0516		0541	1			5	6
7.8	0541		0567			0605		0631		0656	0669	1			5	6
7.9	0669		0694	0707	0719	0732	0744	0757			2.0794	1	3	4	5	6
8.0	2.0794	0807	-	0832		0857	0869	0882	0894		0919	1	_		5	6
8.1 8.2	0919		0943 1066			0980 1102	0992	1005 1126	1017	1029 1150	1041	1			5	6
8.3	1041 1163	1175			1211	1223	1235	1247		1270	1163 1282	1			5 5	6 6
8.4	1282			1318		1342	1353	1365	1377	1389	1401	1			5	6
8.5	1401	1412	1424	1436		1459	1471	1483	1494	1506	1518	_				-
8.6	1518	1529				1576		1599		1622	1633	1		4	5 5	6 6
8.7	1633	1645		1668		1691	1702	1713	1725	1736	1748	1		3	5	6
8.8	1748		1770		1793	1804		1827		1849	1861	î		3	5	6
8.9	1861	1872	1883	1894	1905	1 91 7	1928	1939	1950	1961	2.1972	1	2	3	4	6
9.0	2.1972	1983	1994	2006	2017	2028	2039	2050	2061	2072	2083	1	2	3	4	6
9.1	2083	2094	2105	2116	2127	2138	2148	2159	2170	2181	2192	_	_	3		-
9.2	2192		2214			2246	2257	2268	2279	2289	2300	1	2	3	4	5
9.3	2300		2322			2354		2375			2407	1		3	4	5
9.4	240 7	2418	2428	2439	2450	2460	2471	2481	2492	2502	2513	1	2	3	4	5
9.5	2513		2534			2565		2586			2618	1	2	3	4	5
9.6	2618		2638			2670		2690			2721		2		4	
9.7	2721		2742			2773		2793			2824			3		
9.8	2824		2844			2875		2895			2925 2.3 026				4	
9.9	292 5	2935	2946	4950	2900	2976	29 0 0	4990	2000	2010	4.3020	1	2	3	4	5

PART II

CHARTS

CONSTRUCTION AND USE OF DIAGRAMS

Chart 1. This chart gives the work required to compress and deliver a cubic foot of (sup.pr.) air, or the horse-power to compress and deliver 1000 cu. ft. of (sup.pr.) air per minute, if the ratio of pressure (del.pr.) \div (sup.pr.), the value of s and the (sup.pr.) are known, and compression occurs in one stage. The work or H.P. for any number of cubic feet is directly proportional to number of feet. The curves are dependent upon the formulas, Eq. (31), for the case when s=1, and Eq. (49) for the case when s is not equal to 1. They were drawn as follows:

On a horizontal base various values of R_p are laid off, starting with the value 2 at the origin. The values for work were then found for a number of values of R_p with a constant value of (sup.pr.) and s. A vertical work scale was then laid off from origin of R_p and a curve drawn through the points found by the intersection of horizontal lines through values of work, with vertical lines through corresponding values of R_p . The process was then repeated for other values of s and curves similar to the first, drawn for the other values of s. From the construction so far completed it is possible to find the work per cubic foot for any pressure ratio and any value of s for one (sup.pr.) by projecting up from the proper value of R_p to the curve of value of s and then horizontally to the scale of work. It will be noted from these formulas, however, that the work may be laid off on the horizontal base and a group of lines drawn so that the slope of the line equals ratio of work for any supply pressure to that for the (sup.pr.) originally used. For convenience, in order that the group of s curves and the latter group may be as distinct as possible, the origin of the latter group is taken at the opposite end of the base line. If from the point for work originally found, a projection is made horizontally to the proper (sup.pr.) curve, the value for work with this (sup.pr.) will be found directly below. It will be noted that from point of intersection of the vertical from the R_n value with the s curve, it is only necessary to project horizontally far enough to intersect the desired (sup.pr.) curve, and since no information of value will be found by continuing to the work scale for the original (sup.pr.) this is omitted from the diagram.

In brief, then, the use of this chart consists in projecting upward from the proper value of R_p to the proper s curve, then passing horizontally to the value of (sup.pr.) and finally downward to the work scale. As an example of the use of the curve: Find the work to compress 1000 cu. ft. of free air from 1 to $8\frac{1}{2}$

atmospheres adiabatically. On the curve project upward from $R_p = 8.5$ to curve of s = 1.406, then over to 14.7 (sup.pr.) curve and down to read work = 6,300,000.

Chart 2. This gives the work required to compress and deliver a cubic foot of (sup.pr.) air or the horse-power to compress and deliver 1000 cu. ft. of (sup.pr.) air per minute if the ratio of pressures, the value of s and (sup.pr.) are known and if compression occurs in two stages with best-receiver pressure and perfect intercooling. The work or H.P. for any other number of cubic feet may be found by multiplying work per foot by the number of feet. The method of arriving at this chart was exactly the same as that for one stage.

As an example of the use of the chart, find the work to compress 5 cu. ft. of free air from 1 to $8\frac{1}{2}$ atmospheres adiabatically in two stages. Project upward from $R_p = 8.5$ to curve s = 1.406, then over to 14.7 curve and down to read 5320 ft.-lbs. per cubic foot.

Chart 3. This chart gives the work necessary to compress and deliver a cubic foot of (sup.pr.) air, or horse-power to compress and deliver 1000 cu. ft. of (sup. pr.) air per minute, if the ratio of pressures, the value of s, and the (sup. pr.) are known and if the compression occurs in three stages with best-receiver pressures and perfect intercooling. The work or horse-power for any other number of cubic feet may be found by multiplying the work for one foot by the number of feet.

As an example of use of this chart, determine the horse-power to compress 100 cu. ft. free air per minute adiabatically in three stages from 15 lbs. per square inch abs. to 90 lbs. per square inch gage. From $R_p=7$, project to curve of s=1.4 then over to (sup.pr.) = 15 and down, and the horse-power will be found to be 13.6.

Chart 4. This chart is for finding the (m.e.p.) of compressors. In the case of multi-stage compressors with best-receiver pressure and perfect intercooling, the (m.e.p.) of each cylinder may be found by considering each cylinder as a single-stage compressor; or the (m.e.p.) of the compressor referred to the L.P. cylinder may be found.

The chart depends on the fact that the work per cubic foot of (sup.pr.) gas is equal to the (m.e.p.) for the no-clearance case and that the (m.e.p.) with clearance is equal to the (m.e.p.) for no clearance, times the volumetric efficiency. Diagrams 1, 2 and 4 are reproductions of Charts 2, 3 and 4 to a smaller scale and hence need no explanation as to derivation. Their use may be briefly shown. From the given ratio of pressures project upward to the proper curve, then horizontally to the (sup.pr.) and downward to read work per cubic feet of (sup.pr.) gas.

The volumetric efficiency diagram was drawn in the following manner: From Eq. (59) vol. eff. $=(1+c-cR_{p^{\frac{1}{s}}})$, showing that it depends upon three variables, R_p , c and s. A horizontal scale of values of R_p was laid off. Values of $R_{p^{\frac{1}{s}}}$ were found and a vertical scale of this quantity laid off from the same origin as the R_p values. Through the intersection of the verticals from various

values of R_p with the horizontals drawn through the corresponding values of $(R_p)^{\frac{1}{s}}$ for a known value of s, a curve of this value of s was drawn. In a similar way curves of other values of s were drawn. From the construction so far completed it is possible to find the value of $(R_p)^{\frac{1}{s}}$ by projecting upward from any value of R_p to the curve of s and then horizontally to the scale of $(R_p)^{\frac{1}{s}}$. Values of volumetric efficiencies found for various clearances and the values of $(R_p)^{\frac{1}{s}}$ are laid off on a horizontal base, with the origin at the opposite end of scale from that of R_p values, in order that clearance curves and s curves might be as distinct as possible. These clearance curves were drawn through the intersection of horizontals through the $(R_p)^{\frac{1}{s}}$ values, and of verticals through the vulmetric efficiency values corresponding to them for the particular clearance in question.

To find volumetric efficiency then it is merely necessary to project from value of R_p to the proper s curve, then across to the given clearance and finally down to volumetric efficiency. As the value of $(R_p)^{\frac{1}{s}}$ is not desired, the horizontal projection is carried only to the intersection with the clearance curve and not to the edge of the diagram. To find the (m.e.p.) for single stage, the work per cubic foot is found from the diagram and then the volumetric efficiency, both as described above. The product is (m.e.p.).

For multi-stage compressors with perfect intercooling and best-receiver pressure, as stated above, the (m.e.p.) of each cylinder may be found, considering each to be a single-stage compressor and remembering that (1 rec.pr.) becomes (sup.pr.) for second stage, and (del.pr.) for first stage; and that (2 rec. pr.) becomes (sup.pr.) for third stage, (del.pr.) for second stage. The (m.e.p.) reduced to low-pressure cylinder is found by taking work per cubic foot of (sup.pr.) gas and multiplying by volumetric efficiency of low-pressure cylinder.

To illustrate the use of this curve solve the following problem. A three-stage air compressor runs at 100 R.P.M. with best receiver pressure; the low-pressure cylinder is 32×24 ins., clearance 5 per cent. Compression from atmosphere to 140 lbs. per square inch absolute, s=1.4. Find horse-power and the best receiver pressures.

Projecting upward from the pressure ratio of 9.35 to the line of s=1.4 and then over to (sup.pr.) = 15 in diagram 4, since compression is three stage and from 15 lbs. per square inch to 140 lbs. per square inch, work per cubic foot or (m.e.p.), is found for no clearance to be 37.8 abs. per square inch; since best-receiver pressure assumed is 31.6, which gives a ratio of 2.1 for the low-pressure cylinder. From diagram 3, by projecting upward from $R_p=2.1$ and over to the 5 per cent clearance line, volumetric efficiency is 96.5. The product gives (m.e.p.) reduced to low-pressure cylinder and is 36.5. From the $\frac{(\text{m.e.p.}) Lan}{33.000}$ formula, the horse-power is found to be 358.

Chart 5. There is one (sup.pr.), which for a definite (del.pr.) will give the maximum work of compression. This chart, originated by Mr. T. M. Gunn,

gives a graphical means of finding this value of (sup.pr.) when the (del.pr.), clearance and value of s are known. It also gives on the right-hand of the chart a means for finding the (m.e.p.) for this condition. The figure was drawn by means of Eqs. (139) and (142).

To find the (sup.pr.) to give maximum work for any (del.pr.) it is only necessary to project from the proper value of s to the given clearance curve, and then horizontally to read the value of R_p . The (del.pr.) divided by this gives the (sup.pr.) desired. To obtain the (m.e.p.) project upward from the value of s to the clearance curve, then horizontally to read the ratio $\left(\frac{\text{m.e.p.}}{\text{del.pr.}}\right)$.

The (del.pr.) multiplied by this quantity gives the m.e.p.

As an example of the use of this chart let it be required to find the (sup.pr.) for the case of maximum work for 9×12 in. double-acting compressor running 200 R.P.M., having 5 per cent clearance and delivering against 45 lbs. per square inch gage.; also the horse-power. Compression such that s = 1.3.

Projecting from the value 1.3 for s on the left-hand diagram to the line of 5 per cent clearance find R_p to be 2.8, hence (sup.pr.) = $\frac{60}{2.8}$ = 21.4 lbs. per square inch absolute = 6.4 lbs. per square inch gage. Again, projecting from value 1.3 for s on right-hand diagram to line of 5 per cent clearance find that $\frac{\text{(m.e.p.)}}{\text{(del.pr.)}}$ = .383, hence (m.e.p.). = 23 and I.H.P. = $\frac{23 \times 1 \times 64 \times 400}{33,000}$ = 17.8.

Chart 6. This chart is designed to show the saving in work done in compressing and delivering gases by two-stage or three-stage compression with best-receiver pressure and perfect intercooling over that required for compressing and delivering the same gas between the same pressures in one stage. The chart was made by laying off on a horizontal base a scale of pressure ratios. From the same origin a scale of work for two or three stage divided by the work of one stage was drawn vertically. For a number of values of R_{π} the work to compress a cubic foot of gas was found for one, two and three stage for each value of s. The values found by dividing the work of two or three stage by the work of single stage were plotted above the proper R_n values, and opposite the proper ratio, values and curves drawn through all points for one value of s. To find the saving by compressing in two or three stages project from the proper R_p value to the chosen s curve for the desired number of stages, then horizontally to read the ratio of multi-stage to one-stage work. This value gives per cent power needed for one stage that will be required to compress the same gas multi-stage. Saving by multi-stage as a percentage of single stage is one minus the value read.

To illustrate the use of this chart, find the per cent of work needed to compress a cubic foot of air adiabatically from 1 to $8\frac{1}{2}$ atmospheres in two stages compared to doing it in one stage. From examples under charts Nos. 1 and 2 it was found that work per cubic foot was 6300 ft.-lbs. and 5320 ft.-lbs. respectively, for one- and two-stage compression, or that two stage was 84.5 per cent

of one stage. From R_p , $8\frac{1}{2}$ project up on Chart 6 to s = 1.406 for two stage, and over to read 84.6 per cent, which is nearly the same.

Chart 7. This chart, designed by Mr. T. M. Gunn, shows the economy compared to isothermal compression.

The chart was drawn on the basis of the following equation:

Economy (isothermal) =
$$\frac{\text{m.e.p. isothermal (no clearance)}}{\text{m.e.p. actual} \div E_v}$$
 actual

Values of this expression were worked out for each exponent, for assumed values of R_p . A scale of values of R_p was laid off horizontally and from the same origin a vertical scale of values of the ratio of isothermal to adiabatic. The results found were then plotted, each point above its proper R_p and opposite its ratio value. Curves were then drawn through all the points found for the same value of s. In a similar way a set of curves for two-stage and a set for three-stage compression were drawn.

This chart is also useful in obtaining the (m.e.p.) of the cycle if the (sup.pr.) and the volumetric efficiency of the cylinder be known. A second horizontal scale laid off above the R_p scale shows the (m.e.p.) per pound of (sup.pr. for) the isothermal no-clearance cycle. This is found to be equal to $\log_e R_p$, since the (m.e.p.) for no clearance is equal to the work per cubic foot of (sup.pr.) gas, which, in turn, for the isothermal case is (sup.pr.) $\log_e R_p$ or $\log_e R_p$ when (sup.pr.) = 1.

Knowing the ratio of pressures, economy compared to isothermal can be found as explained above. Also knowing R_p the (m.e.p.) per pound initial is found from the upper scale.

Since the latter quantity is assumed to be known, by multiplying it by factor just found there is obtained (m.e.p.) isothermal. Since volumetric efficiency is assumed known, all the factors are known for the first equation given above which, rearranged, reads

. (m.e.p.) actual =
$$\frac{\text{m.e.p. isothermal (no clearance)}}{(\text{economy isothermal}) \div E_v}$$
,

Chart 8. This chart is drawn to give the cylinder displacement for a desired capacity, with various values of R_p , s and clearance. From the formula Eq. (58): (L.P. Cap.) = $D(1+c-cR_{\pi^{\bar{s}}})$.

The right-hand portion of the diagram is for the purpose of finding values of $(R_p)^{\frac{1}{s}}$ for various values of R_p and s, and is constructed as in Chart 2. The values of the lower scale on the left-hand diagram give values of $D = (L. P. Cap.) \div (1+c-cR_{ps}^{\frac{1}{s}})$, where capacity is taken at 100 cu.ft., this scale was laid out and the clearance curves points found by solving the above equation for various values of $(R_p)^{\frac{1}{s}}$ for each value of c. To obtain the displacement necessary for a certain capacity with a given value of R_p , c and s, project upward from R_p to the proper s curve across to the c curve and down to read displacement per hundred cubic feet. Also on the left-hand diagram are drawn lines of piston speed, and on left-hand edge a scale of cylinder areas and diameters to give displacements found on horizontal scale. To obtain cylinder areas or approximate diameters in inches project from displacement to piston speed line

and across to read cylinder area or diameter. Figures given are for 100 cu.ft. per minute. For any other volume the displacement and area of cylinder will be as desired volume to 100, and diameters will be as $\sqrt{\text{desired volume to 100}}$.

As an example of the use of Chart 8, let it be required to find the low-pressure cylinder size for a compressor to handle 1500 cu. ft. of free air per minute. Receiver pressure to be 45 lbs. per square inch gage and (sup.pr.) to be atmosphere. Piston speed limited to 500 ft. per minute. Compression to be so that s=1.4 and clearance=4 per cent. Projecting upward from $R_p=4$ to s=1.4, across to c=4%, and down to piston speed=500, find the diameter of a cylinder for 100 cu. ft. per minute is 6.3. For 1500 cu. ft. the diameter will be as $\sqrt{15} \times 6.3 = 3.9 \times 6.3 = 24$ ins.

Chart 9. This diagram for mean effective pressure in terms of initial and back pressure, clearance, compression and cut-off, facilitates the solution of Eq. (184). The mean effective pressure is the difference between mean forward and mean back pressure. The former is dependent upon clearance, cut-off and initial pressure. In the example shown on the figure by letters and dotted lines, clearance is assumed 5 per cent, shown at A. Project horizontally to the point F, on the contour line for the assumed cut-off, 12 per cent. Project downward to the logarithmic scale for "mean forward pressure in terms of initial pressure" to the point F. On the scale for "initial pressure" find the point F, representing the assumed initial pressure, 115 lbs. absolute. Through F and F as straight line is passed to the point F on the scale for "mean forward pressure," where the value is read, m.f.p. = 49.5 lbs. absolute.

Mean back pressure is similarly dependent upon clearance, compression and back pressure, and the same process is followed out by the points, A, B, C, D and E, reading the mean back pressure, 3.2 lbs. absolute at the point E. Then by subtraction (m.e.p.) = (m.f.p.) – (m.b.p.) = 49.5 – 3.2 = 46.3 lbs.

Chart 10 is arranged to show what conditions must be fulfilled in order to obtain equal work with *complete expansion in both cylinders* in a compound engine, finite receiver, logarithmic law, no clearance, when low-pressure admission and high-pressure exhaust are not simultaneous. The diagram represents graphically the conditions expressed in Eqs. (283) to (286).

To illustrate its use assume that in an engine operating on such a cycle, the volume of receiver is 1.5 times the high-pressure displacement, 1.5=y, then $\frac{1}{y}=.667$. Locate the point A on the scale at bottom of diagram, corresponding to this value. Project upward to the curve marked "ratio of cut-offs" and at the side, C, read ratio of cut-offs $Z_H/Z_L=.572$. Next extending the line AB to its intersection D, with the curve GH, the point D is found. From D project horizontally to the contour line representing the given ratio of initial to back pressure. In this case, initial pressure is assumed ten times back pressure. Thus the point E is located. Directly above E at the top of the sheet is read the cylinder ratio, at F. $R_C = D_L/D_H = 2.4$.

If cylinder ratio and initial and final pressures are the fundamental data of the problem, the ratio of cut-offs and ratio of high-pressure displacements to receiver volume may be found by reversing the order. Chart 12. Diagram (A) is the Marks and Davis modification of the C_p curve of Knobloch and Jacobs, the integral of which (C) gives the heat of superheat from any temperature of steam generation to actual steam temperature, while (B) shows the values for the mean specific heat above the temperature of saturation for the particular pressure in question.

Chart 13. This diagram is for the purpose of finding the cubic feet per pound, or pounds per cubic foot, of a gas at 32° F. and a pressure of 29.92 ins. of Hg, if its volume or weight per cubic foot be known at any pressure and temperature. The curves depend upon the fact that the pounds per cubic foot (δ) vary directly as the pressure and inversely as the temperature. That is δ_{32} °, $_{29.92}$ " = $\delta_{TP} \frac{T}{492} \frac{29.92}{P}$. The line of least slope is so drawn that for any temperature on the horizontal scale its value when divided by 492 may be read on the vertical scale. The group of lines with the greater slope is so drawn that for any value on the vertical scale this quantity times 29.92/P may be used on the horizontal scale. That is, the vertical scale gives the ratio of densities as affected by temperature for constant pressure, while horizontal scale gives the ratio as affected by both temperature and pressure. A reciprocal scale is given in each case for volume calculations.

To find the pounds per cubic foot of gas at 32° F. and 29.92 ins. of mercury when its value is known for 90° and 13 lbs. per square inch. On the temperature scale, pass vertically until the temperature line is reached, then horizontally until the curve for 13 lbs. absolute is reached. The value on the scale below is found to be 1.265, so that the density under the standard conditions is 1.265 of the value under known conditions. Had it been required to find the cubic feet per pound the process would be precisely the same, the value being taken from the lower scale, which for the example reads .79, or, the cubic feet per pound under standard conditions is 79 per cent of the value under conditions assumed.

Charts 16 to 21. These are diagrams of the properties of steam and give respectively the pressure-temperature values, heat of the liquid, latent heat, total heat, specific volume and density of the liquid, and specific volume and density of the vapor. The values in the charts correspond to the tabular values given in the steam table (XL).

Charts 25 and 26. These diagrams, devised by Professor Parr were derived from Eq. (576), $h=h'-0.000367h_b(t_d-t_w)\left(1-\frac{t_w-32}{1571}\right)$, where h_b is barometric height in inches, after applying all corrections, and h' is pressure of saturated water vapor, in inches of mercury, corresponding to the temperature t_w . The vapor pressure, h, is in ins. of mercury corresponding to given readings of the wet- and dry-bulb thermometers, t_d and t_w , degrees F. The use of the curves is best illustrated by an example: if the dry-bulb reading is 75° F. and the wet-bulb 65° F., find the dew point. The difference of wet- and dry-bulb temperatures is 10°. From 10° at the top of the diagram (B) Chart 25 project downward, and from 75° air temperature at the left of diagram project

to the right to the intersection, where the dew point is read by interpolation between the contour curves at (C) to be 59.5° F. These curves are drawn for a barometric pressure of 29.92 ins. (standard) and will not apply correctly, when the barometer is not equal to this, though with fair approximation, so long as the difference in barometer is not great. Where there is much departure the formula must be used. Chart 26 gives weight of aqueous vapor per cubic foot of mixture, in grains $(\frac{1}{7000}$ lb.) and also the degree of humidity. The temperature of the dew point 59.6° F., is located at (C') on the right-hand side. Interpolation between the ends of the contours for weight, gives 5.6 grains per cubic foot. On the same scale the temperature of the air, F., is represented at point (A) 75°, projecting to the intersecting point D and down to the bottom of the diagram gives on the scale for degree of humidity, 60 per cent.

Charts 27, 28 and 29. These diagrams have been plotted chiefly from experimental data: the lower values are new, but the upper are those given by Starr several years ago and generally accepted by refrigeration engineers, as standard.

These data refer to the equilibrium conditions of the solution, and in using them for practical problems care must be taken to avoid applying them to other conditions, for example to solutions that are not homogeneous, or in which there has not been sufficient time for the establishment of equilibrium.

Charts 30 and 31. These represent various fractionation tests plotted in curve form, on which are indicated the boiling-points of known hydrocarbons, and bands are added for the class of distillate in accordance with the Robinson classification. Horizontal distances represent fractions distilled, a fraction being the per cent by volume that has been discharged between two given temperatures in a boiling mass, the temperature continually rising. Incidentally it may be noted that the temperature is different in the vapor than in the boiling liquid, though that of the liquid is usually taken. The rate of boiling or application of heat very seriously affects these curves, any one of which might easily be changed thereby.

Chart 33. This diagram gives the heats of reaction plotted as a function of S alone, laid off horizontally, and a separate curve drawn for each value of the $\frac{\text{CO}}{\text{CO}_2}$ ratio, 2, 6, 15 and infinity. The vertical distances are heats of reaction, first, per pound of gases produced and second, per pound of carbon, the former being a measure of temperature rise, and the latter of efficiency of reaction. These two heats are derived from Eq. (658) in the two Eqs. (661) and (662). S is the weight of steam per pound of air reacting.

Chart 34. Here one set of the Mallard and Le Chatelier values for the mean specific heat of various gases given in Eq. (674) has been used to calculate the temperature rise above 32° for various quantities of heat. For any heat increment per pound of gases there is a corresponding temperature increment that can be read off directly. Thus, for CO₂, consider 1 lb. to receive 1000 B.T.U.; starting at 32° F., the temperature rise would be 3290° F.—32° F.=3258°,

whereas from 1000° F. as a starting point this same 1000 B.T.U. would yield a temperature of 3690° F. or a rise of 2690°.

Chart 36. The values of the factor of evaporation and equivalent pounds of water per hour per boiler horse-power may be found directly from the curves, which also give the heat per pound for dry saturated, wet or superheated steam above any feed-water temperature. The construction of this chart is given on the diagram.

Charts 38 and 39. These represent a number of boiler tests with some one item of importance, selected to show the effect of various conditions of service and fuels in the same and different boilers, all of which are self explanatory.

Chart 40. Calculation and use of diagram, giving constant volume lines for steam. To illustrate the method, the location of the line of constant volume of 2 cu. ft. will be traced. Let the first temperature be taken at 800° F. absolute for the first point A, corresponding to 340° F. From the steam tables dry saturated steam at 340° F. has a specific volume of 3.786 cu. ft., so that the quality when the volume is 2 cu. ft. is $\frac{3}{3.786} = 52.8$ per cent. The entropy of the water at 340° F., from the steam tables, is 0.4903, therefore the entropy increase in making this steam from 32° F. and at 340° F. = entropy of the steam +entropy of water content-entropy at $32^{\circ} = \phi_a - \phi_{32} = (.528 \times 1.0984 + .4903) -0 = 1.0703$. Another point B is located by assuming a temperature $t_b = 440^{\circ}$ F. or $T_b = 900$, for which $\phi_b - \phi_{32} = 1.5602$ by the same method.

To illustrate the use of the diagram in solving problems, suppose 1 lb. of wet atmospheric pressure steam, occupying 10 cu. ft. be enclosed in tank and heated to raise the pressure to 30 lbs. per square inch absolute, find the final temperature, entropy and dryness. From 14.7 lbs. per square inch on the pressure scale project to point P on the constant volume line of 10 cu. ft. and follow this line to the point C for 30 lbs. per square inch absolute pressure. Projecting from C to D the absolute temperature is found to be 710° or $t=250^{\circ}$ F., and projecting from C to E the entropy $\phi_c - \phi_{32} = 1.332$. The final quality

 $=\frac{\overline{CM}}{\overline{OM}}=72.4$ per cent.

Again, if heat be added to raise the temperature to 842° absolute the entropy is found by following the 10 cu. ft. line to the point K opposite the temperature, and projecting down from K to Q the entropy is found $\phi_k - \phi_{32} = 1.724$. The quality may be read off directly from Chart 44 which carries lines of constant quality that might be superimposed on this constant-volume chart.

Charts 41, 42 and 43. These have been drawn to facilitate calculations of P, V, T relations for expansions and compression having various values of s; Charts 41 and 42 have been plotted to a vertical scale of $\left(\frac{P_1}{P_2}\right)$, with a double horizontal scale for the corresponding $\left(\frac{V_2}{V_1}\right)$ and $\left(\frac{T_1}{T_2}\right)$. Each curve is for a different value of s, as marked on it. These are also given on logarithmic

cross-section paper in Chart 43 as arranged by Gunn, where all lines become straight, to which an entropy scale is added.

Chart 44. Calculation and use of temperature entropy diagram, lines of constant pressure and quality. Let it be assumed that the line of quality 80 per cent is to be located, starting with the pressure of 200 lbs. per square inch absolute, point A. From the steam tables $t=381.9^{\circ}$ F. or $T_a=841.9$, the entropy of the liquid is .5437, of evaporation complete, 1.0019, so that $\phi_a-\phi_{32}=.8\times1.0019+.5437=1.3452$. To locate a point B in the superheat region at the same pressure and for 100° of superheat, the steam tables are found to give directly $\phi_b-\phi_{32}=1.6120$.

The following problem will serve as an example of the use of the diagram. Steam at a pressure of 160 lbs. per square inch absolute, dry and saturated expands adiabatically to atmospheric pressure and to some unknown quality to be found. From the point C representing the initial condition project vertically down to the pressure line 14.7, at point D. By interpolation the quality is found to be 86.5 per cent, as point D lies between the two lines of 80 per cent and 90 per cent quality.

Another example will illustrate the passage into the superheat region. Atmospheric exhaust steam at 20 lbs. per square inch absolute, is superheated 120° by a reheater and then expands adiabatically in an exhaust steam turbine to an absolute pressure of half a pound per square inch absolute, to find the final quality. The initial condition is represented by point E, from which projecting downward to the low-pressure line at H, lying between 80 per cent and 90 per cent, the quality is found by interpolation to be 88.4 per cent and the temperature by projecting to K, is T = 540°. The corresponding volumes may be read off from Chart 40.

Chart 45. The Mollier Diagram. On this diagram the total heats above 32° are ordinates, and entropy from 32° are abscissa, plotted in a series of curves. On this chart the vertical distance from any pressure, temperature or quality, to any other, is the work done in heat units, by the whole cycle including an adiabatic expansion; this can be marked off on a strip of paper and referred to the scale of heat to permit the work to be read directly, or the ordinate of the low can be subtracted from that of the high point. As this is so convenient for turbine work a scale of corresponding steam jet velocities has been plotted beside that for total heats. A large scale chart of this sort is very necessary when many calculations of this nature are to be made and such may be plotted from the steam tables.

Chart 46. To illustrate the use of the diagram, the following problem will be graphically solved. Find the Rankine cycle efficiency, heat and steam consumption for an initial pressure of 150 lbs. per square inch gage and dry saturated steam with a back pressure of 10 lbs. per square inch absolute. Starting at the initial pressure point B, project up to the 10-lb. back pressure curve point C, and then across to the efficiency scale point D, reading there a thermal efficiency of 19.3 per cent and a heat consumption of 13,200 B.T.U. per hour per I.H.P. Continuing across horizontally to the back pressure curve of 10

lbs. in the left-hand angle to point E and thence downward to the water-rate scale point F, the value 12.6 lbs. steam per hour per I.H.P. is read off directly.

- Chart 47. To illustrate the use of this chart, find the thermal efficiency, heat and steam consumption, for the Rankine cycle, when steam is 90 per cent initially dry at 200 lbs. per square inch gage pressure, and the back pressure 15 lbs. per square inch absolute. From the scale of quality at 90 per cent, point E, project up to point F on 15-lb. curve, and then horizontally to point G at 18.98 per cent thermal efficiency and 13,400 B.T.U. per hour per I.H.P. heat consumption. Continue across to H and down to K, reading the water rate value 14.4 lbs. of steam per hour per I.H.P. on the bottom scale.
- Chart 48. To illustrate the use of this diagram, find the jet velocity, work per pound of steam, and mean effective pressure for the Rankine cycle for steam at 75 lbs. initial pressure gage, dry and saturated expanding to 10 lbs. absolute. Project up from point B to point C and across to point F where there is read, work done = 115,000 ft.-lbs. per pound of steam. Continuing across to D and down to E, (m.e.p.) = 23.5 lbs. per square inch, or continuing CD across to G the jet velocity is 2790 ft. per second.
- Chart 49. To illustrate the use of this diagram, find work, jet velocity, and mean effective pressure, for the Rankine cycle when initial pressure is 200 lbs. per square inch gage, 50° superheat and back pressure 1 lb. per square inch absolute. Projecting up from point E to F and across to G, read, work = 272,000 ft.-lbs., velocity = 4190 ft. per second, and stopping on the 1-lb. curve at point H the mean pressure 7.4 lbs. per square inch is read directly below at K.
- Chart 50. Carnot steam cycle. To illustrate the use of the diagram, solve the problem: For the Carnot cycle with dry saturated steam between 150 lbs. per square inch gage and 10 lbs. absolute find the thermal efficiency, heat, and steam consumption. From point B pass up to C and across to D, reading efficiency = 21.1 per cent, and heat consumption 12,060 B.T.U. per hour per I.H.P. Passing horizontally to E and down to F' the water rate of 13.9 lbs. per hour per I.H.P. may be read off directly.
- Charts 51, 52 and 53. Carnot steam cycle. The use of these diagrams requires no special explanation since they follow in general the methods given for the Rankine cycle charts.
- Chart 54. Non-compression gas cycle. To illustrate the use of the diagram find for a Lenoir cycle receiving 800 B.T.U. per pound of working gases the thermal efficiency, heat consumption, and cubic feet of 300 B.T.U. per cubic foot fuel gas per hour per I.H.P. From the 800 point E pass vertically to point F on the Lenoir curve and thence horizontally to G on the efficiency scale, reading 35.2 per cent and heat consumption, 7250 B.T.U. per hour per I.H.P. Passing across to the 300 B.T.U. calorific power curve at H and down to K, the gas consumption is found to be 24 cu. ft. per hour per I.H.P.
- Chart 55. Work of the non-compression gas cycle. The following problem illustrates the use of this diagram: Find the work per pound of working gases and the mean effective pressure for an Otto and Langen cycle receiving

500 B.T.U. per pound of gases. Starting at the 500 B.T.U. point G, pass up to the cycle curve at H and then across to the point K on the work scale, reading 260,000 ft.-lbs. Passing horizontally across to the point L and thence downward to point M the mean effective pressure is found to be 1.18 lbs. per square inch.

Chart 56. Stirling gas cycle. To illustrate the use of this chart, find the efficiency, cyclic and fuel heat consumption for a Stirling cycle, for 300 B.T.U. supplied from fire per pound of working gases, 30 atm. compression, and a furnace efficiency of 40 per cent. Starting at point E at the value 300 on the upper scale, pass vertically up to point F on the efficiency curve referred to fire heat, and horizontally to G, reading thermal efficiency of 62.8 per cent, and cyclic heat supplied 4050 B.T.U. per hour per I.H.P. Continuing across to point H on the 40 per cent furnace efficiency curve and down to fire heat scale at K, the fire heat supplied is found to be 10,200 B.T.U. per hour per I.H.P.

Charts 57 and 59. A similar procedure applies to the curves for the Ericsson cycle, which need no detailed explanation.

Charts 60 and 61. Adiabatic compression cycles. Illustrating the use of the curves the solution of the following problem is traced graphically on Chart 60. Required the thermal efficiency, cyclic heat, and fuel consumption for the Diesel cycle, supplied with an oil yielding 1500 B.T.U. per cubic foot in its vapor, the cycle receiving 600 B.T.U. per pound of working gases after 10 atm. compression. From the 600 point E on the heat-supplied scale pass up to the 10 atm. compression Diesel curve F, and horizontally across to the efficiency scale G reading 28.6 per cent and 8900 B.T.U. per hour per I.H.P. Continuing across to the fuel calorific power curve of 1500 B.T.U. per cubic foot H, and thence down to K, the fuel consumption is found to be 6 cu.ft.

The second set of efficiency curves, Chart 61, is used in exactly the same way as Chart 60, the only difference between the two being the scales.

Charts 66 and 67. Comparison of rational and emperic formulas for air and steam flow. These have been calculated for air from Eq. (25) using $\gamma = 1.4$; and by the Mollier diagram for steam. To this diagram are added some curves of experimental flow laws stated in Eqs. (951), (952) and (953).

Chart 69. Velocity of air pipes. This diagram was calculated from Eq. (968) and also by the simple equation in which density changes are neglected. These give comparative results as indicated in the chart, reproduced from Kneeland.

Chart 71. Chimney diameter. This diagram corresponds to Eq. (1005) which assumes that the minimum-cost steel stack has a diameter depending solely upon the horse-power of the boilers it serves, and a height proportional to the net draft required.

Charts 72 and 73. Refrigerating effect, ammonia and carbon-dioxide. See the diagrams for construction and use.

Chart 1.—Work per Cubic Foot and Horse-power per 1000 Cubic Feet per Minute of Supply Pressure Gas for Single-stage Compressors.

Best Receiver-pressure, Perfect Intercooling.

Best Two-receiver-pressures, Perfect Inter-cooling.

Chart 4.—Mean Effective Pressure of Compressors, One-, Two-, and Three-stages.

Chart 4.—Mean Effective Pressure of Compressors, One-, Two-, and Three-stages.

CHART 5.—Value of Supply Pressure that Results in Maximum Work and Corresponding Mean Effective Pressure.

Chart 6.—Relative Work of Two-stage and Three-stage Compressors

Compared to Single Stage.

CHART 7.—Diagram to give Economy of Exponential Cycles referred to Isothermal as Standard.

Expansion and Compression.

CHART 10.—Relations for Equal Distribution of Work in Compound Engine with Finite Receiver and No Clearance when Expansion is Logarithmic, Complete in both Cylinders and High-Pressure Exhaust and Low-pressure Admission are Not Coincident. Cycle No. VII.

CHART 11.—Specific Heat of Gases at, Mean Specific Heat from 32° F. to, and Total Heat per Pound from 32" F. to, Various Temperatures.

CHART 12.—Specific Heat of Superheated Steam at, Mean Specific Heat from Saturation Temperature to, and Heat of Superheat per pound from Saturation Temperature to, Various Temperatures.

CHART 13.—Equivalent Gas Densities At Different Pressures and Temperatures.

CHART 14.—Ammonia Pressure-temperature Relations, for Saturated Vapor.

CHART 15.—Carbon Dioxide Pressure-temperature Relations for Saturated Vapor.

CHART 16.—Steam, Pressure-temperature (Table XL).

CHART 17.—Steam, Heat of the Liquid (Table XL).

CHART 18.—Steam, Latent Heat (Table XL).

CHART 19.—Steam, Total Heat (Table XL).

CHART 20.—Steam, Specific Volume and Density of the Liquid (Table XL).

Chart 21.—Steam, Specific Volume and Density of the Vapor (Table XL).

Chart 22.—Vapor Pressure of Hydrocarbons and Light Petroleum Distillates of the Gasolene Class.

Chart 23.—Vapor Pressure of Heavy Petroleum Distillates of the Kerosene Class.

CHART 24.—Vapor Pressure of the Alcohols.

CHART 25.—Relation between Wet and Dry Bulb Psychrometer Readings and Dew Point for Air and Water Vapor.

Chart 26.—Relation between Humidity and Weight of Moisture per Cubic Foot of Saturated Air.

Chart 27.—Ammonia-water Solutions, Relation between
Total Pressure and Temperature
(Dotted Lines Mollier Data).

Chart 28.—Ammonia-water Solutions, Relation between Total Pressure and Per Cent NH_3 in Solution.

Chart 29.—Ammonia-water Solutions, Relation between Temperature and Per Cent NH_3 in Solution.

CHART 30.—Fractional Distillation of Kerosene and Petroleums.

CHART 31.—Fractional Distillation of Gasolenes.

Chart 33.—Heats of Reaction for Hypothetical Producer Gas from Fixed Carbon, B. T. U.

Chart 34.—Relation Between Temperatures and Heat for Gases According to the Constant and Variable Specific Heat.

CHART 35.—Rate of Combustion of Coal with Draft.

CHART 36.—Heat per Pound of Steam above Feed Temperature. Evaporation per Hour per Boiler Horse-power. Factor of Evaporation.

Each of the upper curves gives directly the total heat per pound of steam above 32° and the distance between them and the lower curve intercept, that for any feed-water temperature, by a vertical distance. If, therefore, AB be the total heat for the steam above 32° at 100 lbs. per sq. in. absolute and 20° superheat and DE the heat of liquid at 200° F. feed temperature above 32° , then AC, the vertical distance between these two points, is the heat per pound of steam above the feed temperature 200° F. for 100 lbs. steam with 20° superheat. This can be marked on a slip of paper and read off on the extra scale to the right in terms of, heat in B.T.U., or factor of evaporation, or actual weight of water that must be evaporated per hour to give a boiler horse-power.

CHART 37.—Heat Balance for Locomotive Boiler Working Under Various Rates of Evaporation.

CHART 38.—Influence of Various Factors on Boiler Efficiency.

CHART 39.—Influence of Various Factors on Boiler Efficiency.

Chart 42.—Exponential Gas Changes. Relation between Initial and Final Ratios of Pressures, Volumes and Temperatures for Larger Pressure Ratios. CHART 41.—Exponential Gas Changes. Relation between Initial and Final Ratio Pressures, Volumes and Temperatures for Small Pressure Ratios.

CHART 44.—Temperature-entropy Diagram with Lines of Constant Pressure and Constant Quality for Steam.

CHART 45.—The Mollier Total Heat Entropy Diagram for Steam.

Chart 46.—Rankine Cycle, Thermal Efficiency, Heat Consumption per Hour per Horse-power and Water Rate, for Various Back Pressures and any Initial Pressure. Steam Initially Dry and Saturated.

Work per lb. of Steam, (m.e.p.), and Jet Velocity for Various Back Pressures, and any Initial Pressure Initial Pressure (Gauge) Dry Saturated Steam Steam Initially Dry Saturated m.e.p. in lbs. per Sq. In. Chart 48.—Rankine Cycle.

CHART 49.—Rankine Cycle. Work per lb. of Steam (m.e.p.) and Jet Velocity for 200 lbs. per sq. in. gage Initial Pressure and Various Back Pressures, Steam Initial of any Quality.

CHART 50.—Carnot Steam Cycle and Derivatives. Thermal Efficiency, Heat per Hour per Horse-power and Water Rate for Various Back Pressures, and any Initial Pressure, Steam Initially Dry Saturated.

CHART 51.—Carnot Steam Cycle and Derivatives. Thermal Efficiency, B.T.U. per Hour per Horse-power and Water Rate, for 200 lbs. per sq.in. gage Initial and Various Back Pressures, Steam Initially of any Quality,

Work per lb. of Steam, (m.e.p.) and Jet Velocity for Various Back Pressures and any Initial pressure, Steam Initially Dry and Saturated. Chart 52.—Carnot Steam Cycle and Derivatives.

CHART 53.—Carnot Steam Cycle and Derivatives. Work per lb. of Steam, (m.e.p.) and Jet Velocity, for 200 lbs. per sq.in. gage Initial and Various Back Pressures, Steam Initially of any Quality.

CHART 54.—Thermal Efficiency, Heat and Gas Consumption for any amount of Heat Supplied per lb. of Working Gases, for the Non-compression Gas Cycles, Brown, Lenoir, and Otto and Langen.

Thermal Efficiency, Considering or Neglecting Heat of Regeneration, Plotted against Heat from Fire or Total Heat Supplied per lb. Working Gases, Cyclic B.T.U. per Hour per Horse-power and fuel Consumption for Various Furnace Efficiencies. CHART 56.—Stirling Gas Cycle.

CHART 57.—Ericsson Gas Cycle. Thermal Efficiency, Considering or Neglecting Heat of Regeneration Plotted against Heat from the Fire or Total Heat Supplied per lb. of Working Gases, Cyclic B.T.U. per Hour per Horse-power and Fuel Heat Consumption for Various Furnace Efficiencies,

Cyclic B.T.U. per Hour per Horse-power and Fuel Heat Consumption for Various Furnace Efficiencies.

14

Missing Page

CHARD CHAR AND CHARD CASE. Work per lb. of Working Gases and (m.e.p.) for Various Amounts of Heat Added after any Amount of Compression.

CHART 65. Diesel Gas Cycle.—Work per lb. of Working Gases and (m.e.p.) for Various Amounts of Heat. Added after any Amount of Compression.

Initial Pressure.

Flow in Lbs. per Sq. In. per Hr.

any Back Pressure.

Chart 68.—Harter's Values of Napier's Coefficient and Weight of Flow for Superheated Steam.

CHART 69.—Velocity of Air in Pipes in Terms of Pitot Tube Readings, Inches of Mercury, by Approximate and Exact Formulas.

CHART 70.—Coefficients of Friction & for Air in Ducts.

These values of the coefficient of friction are given by Rietschel for straight ducts of brick and iron for velocities up to 50 ft. per second; for iron ducts different values are given for perimeters or circumferences from 8 to 100 in. They are intended especially for air ducts with the usual velocities of air, 6 to 24 ft. per second when served by fans, and 3 to 8 ft. per second when the flow is due to natural draft.

Chart 71.—Curve Showing Diameter of Chimney Stacks at Sea Level. (Stirling). For brick or brick-lined stacks, increase the diameter 6 per cent.

CHART 72.—Chart to Determine Available Refrigerating Effect per Pound of Ammonia for Any Refrigerator Pressure and Any Refrigerator or Liquid Temperature.

Construction and use of Diagrams, Charts 72 and 73. These diagrams are for the purpose of finding the refrigerating effect per pound of fluid, which is made up of the latent heat, or as much of it as is available, less the heat necessary to cool the liquid from its original temperature to that due to the pressure in the coils, plus the heat absorbed in superheating the vapor.

A horizontal scale of pressures is laid off in both directions for a vertical axis carrying a B.T.U. scale. In the section to the right of the center axis curves are drawn representing various temperatures of the liquid before entering the refrigerator coils. These are so drawn that the vertical scale opposite the intersection of a vertical from any pressure with any curve gives the latent heat for that pressure, less the heat required to cool the liquid. This is the available heat for refrigerating if the vapor leaves the coils dry and saturated.

Chart 73.—Chart to Determine Available Refrigerating Effect per Pound of Carbon Dioxide for any Refrigerator Pressure and any Refrigerator or Liquid Temperature.

In the section to the left of the center axis are two sets of curves, the lower, representing temperatures of the vapor leaving the coils, is so drawn that the value of the left-hand vertical scale opposite a point of intersection of a vertical from any pressure with any curve, gives the heat absorbed in superheating the vapor. The sum of this and the value found in the first section gives the total refrigerating effect for the case when the vapor leaves the coils in a superheated state. The upper curves in this section represent quality of the vapor if the liquid has not been entirely evaporated and are so drawn that the value on the vertical scale opposite the point of intersection of a vertical from any pressure with any curve, shows the heat unavailable for refrigerating, due to incomplete evaporation of the liquid, and the difference between this value and that found in the first section gives the total refrigerating effect for the case of wet vapor leaving the coils.

As an example of the use of Chart 72 let it be required to find the refrigerating effect per pound of ammonia when the pressure in the coils is 20 lbs. gage, the temperature of the liquid

CHART 74.—Density and Specific Volume of Ammonia-water Solutions.

before entering the coil is 70° F. and

- (a) Vapor leaves dry and saturated;
- (b) Vapor leaves 92.5 per cent. dry;
- (c) Vapor leaves at a temperature of 30° F.

From 20 in the right-hand section (Chart 72) project up to curve 70° . The value on the vertical scale at this point is 502 B.T.U., which is the value for case (a). From 20 in the left-hand section project to curve 92.5 per cent.; the value on the left-hand vertical scale is 43, therefore, for case (b) the result is 502-43=459 B.T.U. For case (c), project from 20 to curve 30° , the value on the vertical scale corresponding to which is 12.5, hence the result for this case is 502+12.5=514.5.

The refrigeration per pound of fluid may be obtained from Eq. (1030), but since these are all tabular values, except the heat of air and of vapor superheat, the determinations can be readily made by means of the charts. From the data of these diagrams the displacements of compressors and pumps may be computed directly by the use of the sliderule. When superheated vapor densities are to be evaluated, either vapor—ammonia or carbon dioxide—may be assumed to behave as a perfect gas, volumes being directly, and density inversely proportional to absolute temperatures.

The volume per pound of ammonia solutions may be read off directly from Chart 74.

CHART 77.—Temperature Entropy Diagram for Carbon Dioxide (CO₂).

Chart 78.—Mollier Diagram for Carbon Dioxide (CO₂).

Ammonia Supplied as Liquid at any Temperature and Vaporizing to any Quality or Superheat at 15 Pounds per Square Inch Gage.

CHART 79.—Work in B.T.U., per B.T.U. Absorbed in Refrigeration, C. by Ammonia Supplied as Liquid at any Temperature and Vaporizing at any Coil Pressure to Dry Saturated Vapor.

6.0

9.0

ernieraque T wol at Leaperature Work done B.T.U.

0.7

6.3

Pounds per Square Inch Gage.

INDEX

(Numbers refer to pages)

Absorption of air in water (Winkler), table Blast-furnace gas and air gas, composition of. of, 60 table, 99 of gases by liquids, table of, 60 Accuracy of Marks and Davis tables, 2 Boiler efficiency, influence of various factors on, charts, 189, 190 Adiabatic expansion of steam, values of s, flue gases, composition of, table, 106 table, 14 horse-power, evaporation per hour, chart of, 187 Air, absorption of in water, table of, 60 and steam flow, charts of, 216, 217 locomotive, heat balance for, diagram and water vapor, dew point, chart of, of, 188 Boiling points, table of, 32 flow, coefficient of friction for, in ducts, Brayton gas cycle, thermal efficiency, heat chart of, 220 values of C for, table of, 113 and fuel consumption, charts of, 210, 211 blast-furnace, gas, composition use of diagrams, 150 table, 99 Brine, sodium chloride, specific heat of. mixtures, best calorific properties of, table, 25 table, 107 British thermal unit (B.T.U.) vlaue of, 2. explosive, limits of proportion, table of, 108. of steam and gases, variation of with temperature, chart, 185 required for combustion, table of, 61 velocity of, in pipes, chart of, 219 Calcium chloride, freezing points, table of, 19 Alcohols, vapor pressure of, chart, 175 Calorific power and composition of coals, Altitudes and barometric pressures, 8 table of, 70 Ammonia, gas, Mollier diagram for, 226 of hydrocarbon oils, table of, 90 of mineral oils, table of, 89 properties of best air-gas mixtures, pressure-temperature relations, for saturated vapor, chart of, 165 table of, 117 Carbon dioxide, Mollier diagram for, 227 refrigerating effect per pound, chart, solutions, table of relations of, 54 pressure-temperature relations for satutables of properties of, how derived, 3 rated vapor, chart of, 166 refrigerating effect of, per pound, chart $T\phi$ diagram for, 225 vapor, properties of saturated, table of, of, 223 41 tables of properties of, how derived. 3 water solutions, table of partial presvapor, properties of saturated, table of. 50 sures, 58 relation between temperature and per work absorbed in refrigeration by. cent NH₃ in solution chart of, 180 charts of, 230 Carnot steam cycle and derivatives. relation between total pressure and per cent NH3 in solution, chart of, mal efficiency and heat consumption, charts of, 200, 201 179 relation between total pressure and temperature, chart of, 178 work absorbed in refrigeration by, use of charts, 149 work and jet velocity, charts of, 202, 203 Cellulose and wood, comparison of, table, 69 charts of, 229 Centigrade and Fahrenheit temperatures, Atomic weights, international, table of, 34 table of, 16 Average distillation, products of, crude Charts, construction and use of, 139–150 mineral oils, table of, 96 Chemical compounds, heats of combustion of, 63 Balance, heat, for locomotive boiler, diagram Chimneys, dimensions of, by Kent's formula, table, 130 relation of diameter to horse-power, of, 188 Barometric heights, altitudes and pressures, tables of, 8 chart of, 221 pressure, how used, 1 construction of chart, 150 Classification of coals by gas and coke quali-Baumé specific gravity scale, table of, 19 Bituminous gas coal distillation, products of, ties, table of, 87

new basis of, 4

table, 95

232 INDEX

CO from CO₂, rate of formation, table of, 106 Compressor cylinder displacement for Coals, classification of by gas and coke qualities, table of, 87 given capacity, chart of, 159 Compressors, one, two and three stages, combustible and volatile of, table of, 78 mean effective pressures of, charts combustion, rate of, table, 119 new basis of classification of, 4 of, 154 Conductivity, thermal, table of internal, 65 table of relative, 68 new table of chemical and thermal properties of, 3 Constant, gas, values of R, table of, 28 powdered, producer gas, composition of, pressure and constant quality lines for steam with $T\phi$ diagram, 194 volume, gases and vapors, coefficient table, 116 rate of combustion of with draft, diaof pressure rise of, table, 27 lines for steam on the $T\phi$ diagram, 191 gram of, 186 table of composition and calorific power construction and use of diagram, of, 70 Carnot gas cycle, thermal efficiency, heat and fuel consumption, charts of, 147 Constants for the curve $PV^s = K$, table of, 210, 211 use of diagrams, 150 Coefficient of cubical expansion of liquids, for use in Heck's formula for missing water, table of, 18 Construction and use of charts, 139–150 table of, 26 of friction for air in ducts, chart of, 220 Consumption, fuel, Brayton gas cycle, charts of, 210, 211 of heat transfer, table of, 62 Carnot, 210, 211 of linear expansion of solids, table of, 25 of pressure rise of gases and vapors, complete-expansion Otto, 210, 211 constant volume, table of, 27 of radiation, table of, 61 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 of volumetric expansion of gases and vapors, constant pressure, table of, Stirling, 206, 208 gas, and thermal efficiency, non-compression cycles, charts of, 204 heat, and thermal efficiency, Carnot Coke oven, and retort coal gas, composition of, table, 94 United States, composition of, table, steam cycle, charts of, 200, 201 Rankine cycle, steam, charts of, 196, Combustible and volatile of coals lignites and peat, table of, 78 Conversion table, heat and power, 7 Combustion, air required for, table of, 61 inches of mercury to pounds per square heats of, table of, 63 inch, 10 of coal, rate of, table of, 119 of units of distance, 5 rate of with draft, chart of, 186 of power, 7 Complete-expansion Otto, gas cycle, thermal of pressure, 6 efficiency, heat and fuel consumption, charts of, 210, 211 of surface, 5 of volume, 5 use of diagrams, 150 Common logarithms, 132, 134 Composition and calorific power of characof weight and force, 5 of work, 6 Crank angle and piston position, table of, teristic coals, table of, 70 Critical point, table of, 30 of blast-furnace gas and air gas, table of, 99, 104 Crude mineral oils, average distillation, prodof boiler flue gases, table of, 116 ucts of, table, 99 of coke oven and retort coal gas, table of, Cubical expansion of liquids, coefficient of, table, 26 of hypothetical producer gas from fixed Cylinder, compressor, displacement for given capacity, chart of, 159 carbon, chart of, 183 of natural gases, table of, 91 of oil producer gas, table of, 113 Densities, equivalent gas, at different presof powdered coal, producer gas, table of, sures and temperatures, chart of, 164 of producer gas, table of, 108 of gas, comparison of experimental and of United States coke, table of, 98 computed values, table of, 29 Density and specific volume of ammoniaof water gas, table of, 113 Compound engines, equal distribution of water solutions, chart, 224 of the liquid (steam), chart of, 171, 172 Determination of m.e.p. for single-cylinder work in, chart of, 161 Compression gas cycles, thermal efficiency, heat and gas consumption, charts engines, chart of, 160 of, 207-211 construction and use of chart, 144 work and m.e.p., charts of, 212, 213 Dew point for air and water vapor, chart of, Compressibility of gases, table of, 82

Diagram factors for Otto-cycle gas engines. table of, 122 to give economy of exponential cycles

referred to isothermal, chart of, 158 Diesel gas cycle, work and m.e.p. for various amounts of heat added, chart of, 215

thermal efficiency, heat and fuel consumption, charts of, 210, 211

use of diagrams for, 150 Dimensions of chimneys by Kent's formula, table of, 130

Displacement for given capacity of compressor cylinder, chart of, 159

Distance, units of, conversion table, 5 Distillation, average, products of crude mineral oils, table of, 99

of gasolenes, fractional, chart of, 182 of kerosene and petroleums, fractional, chart of, 181

Distillates, vapor pressures of, chart of, 173, 174

Distribution of work, equal, in compound engines, chart of, 161.

Draft, rate of combustion with variation in, diagram of, 186

Economy of exponential cycles referred to isothermal, diagram of, 158

Efficiency, boiler, influence of various factors on, charts, 189, 190 volumetric, of compressors, chart of,

154

Empiric and rational formulas for air and steam flow, charts of, 216, 217 Engine, see under separate headings, steam

and gas cycles.

Engines, Otto cycle, mean effective pressure factors for, tables of, 124 steam, and turbine efficiency factors,

table of, 115

Entropy diagram, total heat for steam, Mollier, 195

-temperature and PV relations of gases, chart of, 193

diagram with constant pressure and constant quality lines for steam,

for ammonia, diagram of, 225 for carbon dioxide, diagram of, 227 for steam, diagram of, 194, 195

Equal distribution of work in compound engines, chart of, 161

construction and use of chart, 144 Equivalent gas densities at different pressures and temperatures, chart of,

Ericsson gas cycle, thermal efficiency, heat and fuel consumption, charts of, 207, 209

use of diagrams, 150 Ethylenes and naphthalenes from Russian petroleum, table of, 88

Evaporation, factor of, chart of, 187 of locomotive boiler, heat balance of, diagram, 188 per hour, per boiler h.p., chart of, 187

Expansion and compression, tabular values for, $PV^* = K$, 13

cubical of liquids, coefficient of, table,

linear of solids, coefficient of, table, 25 volumetric of gases and vapors at constant pressure, coefficient of, table,

Explosive air-gas mixtures, limits of proportion, table of, 118

Exponential cycles referred to isothermal, diagram to give economy, 158 gas changes, charts of, 192, 193 construction of charts, 147

Factor of evaporation, chart of, 187 Factors, efficiency, piston steam engine and

turbine, table of, 126
Fahrenheit and Centigrade temperatures, table of, 16

Feed temperature and heat per pound of steam, chart of, 187

Fixed temperatures, tables of, 15

Flow change resistance factors, table of, 125 Flue gases, boiler, composition of, table, 106 Force and weight, conversion table of units of, 5

Formation of CO from CO₂, table of, 106 Fractional distillation of gasolenes, chart of,

of kerosenes and petroleums, chart of,

Fractionation tests of gasolenes, table of, 102 of kerosenes and petroleums, table of, 100

Freezing, or melting points, table of, 34 point of calcium chloride, table of, 19 Friction, coefficient of, for air in pipes and

ducts, chart of, 220 Fuel consumption, Brayton cycle, charts of,

210, 211

Carnot, 210, 211 complete-expansion Otto, 210, 211 Diesel, 210, 211

Ericsson, 207, 209 Otto, 210, 211

Stirling, 206, 208 elements, heats of combustion of, table,

liquid and gaseous, boiling points of, table, 33

table of composition of coals, 70 Fusion, latent heats of, table of, 31

Gas, air-, mixtures, best, calorific properties of, table of, 117

and air gas, blast-furnace, composition of, table, 104

and oil engines, heat balances of, table,

changes, exponential, charts of, 192, 193 coal distillation, bituminous, products of, table of, 99

constant, R, table of, 28

consumption of, and thermal efficiency, non-compression cycles, charts of, 204

Gas, Brayton cycle, charts of, 210, 211	Heat and fuel consumption, complete-expan-
Carnot, 210, 211	sion Otto, 210, 211
complete-expansion Otto, 210, 211	Diesel, 210, 211
Diesel, 210, 211	Ericsson, 207, 209
Ericsson, 207, 209	Otto, 210, 211
Otto, 210, 211 Stirling cycle, charts of, 206, 208	Stirling, 206, 208 and gas consumption, and thermal
cycles compression, work and m.e.p.	efficiency, non-compression gas
charts, of, Brayton, 210, 211	cycles, charts of, 204
Carnot, 210, 211	and power conversion table, 7
complete-expansion Otto, 210, 211	and temperatures, relation of, for gases,
Diesel, 210, 211, 215	chart of, 185
Ericsson, 207, 209	balance for locomotive boiler, diagram
Otto, 210, 211, 214 Stirling, 206, 208	of, 188 balances of gas and oil engines, table of,
thermal efficiency, heat and fuel con-	123
sumption, charts of,	consumption and thermal efficiency,
Brayton, 210, 211	Carnot steam cycles, charts of,
Carnot, 210, 211	200, 201
complete-expansion Otto, 210, 211	Rankine cycle, (steam), charts of, 196,
Diesel, 210, 211 Ericano 207, 200	197
Ericsson, 207, 209 Otto, 210, 211	latent, steam, chart of, 169 of fusion for various substances, table
Stirling, 206, 208	of, 31
non-compression, thermal efficiency of,	of vaporization for various substances,
charts, 204	table of, 31
work and m.e.p., charts of, 205	of the liquid, steam, chart of, 168
densities equivalent at different pres-	per pound of steam above feed tem-
sures and temperatures, chart of, 164	perature, chart of, 187 specific of gases, chart of, 162; table of,
comparison of experimental and com-	22
puted values of, table of, 29	of liquids, table of, 24
engines, Otto cycle, diagram factors for,	of solids, table of, 20
table of, 122	of superheated steam, 2; chart of, 163
from fixed carbon, heats of reaction for	supplied and work, compression gas cycles, chart of, 214, 215
hypothetic producer, chart of, 184	
composition of hypothetic producer, chart of, 183	total entropy diagram for steam, Mollier, 195
oil producer, composition of, table, 113	steam, chart of, 170
pressure-temperature-volume relations,	transfer, table of coefficients of, 62
charts of, 192	unit of, 2
producer, composition of, table, 101	Heats of combustion of fuel elements and
tests, table of, 114	chemical compounds, table of, 63
PV and T_{ϕ} relations, chart of, 193 water, composition of, table, 113	of reaction for hypothetical producer gas from fixed carbon, chart of, 184
Gases, absorption of by liquids, table of, 60	Heck's formula for missing water, 18
and vapors at constant volume, pres-	Horse-power of chimneys, diameter for,
sure rise of, coefficient of, table, 27	charts of, 221
at constant pressure, coefficient of	per pound m.e.p., table of, 12
volumetric expansion, table of, 26 boiler flue, composition of, table, 116	per 1,000 cu. ft. per minute supply
compressibility of, table, 28	pressure gas, for single-stage com- pressors, chart of, 151
natural, composition of, table, 91	for two-stage compressors, chart of,
relation between temperatures and heat,	152
chart of, 185	for three-stage compressors, chart of,
specific heat of, chart, 162; of table, 22	153
Gasolenes, fractional distillation of, chart of,	construction and use of chart for
fractionation tests of, table of, 102	single-stage, 139
vapor pressure of, chart of, 173	two-stage, 140 three-stage, 140
vapor pressure or, chart or, 170	Humidity and weight of moisture, cubic foot
Harter's weight of flow, superheated steam,	saturated air, chart of, 177
chart of, 218	construction and use of chart, 145
Heat and fuel consumption, compression gas	Hydrocarbon oils, calorific power of, table, 90
cycles, charts of,	Hydrocarbons, vapor pressure of, chart of,
Brayton, 210, 211 Carnot, 210, 211	173 Hyperbolic logarithms, 136
Oarnot, 410, 411	TTANDELOCKE TORRELEGING. 199

Hypothetical producer gas from fixed carbon, composition of, chart of, 183 heats of reaction of, chart, 184

Ignition temperatures, 3; tables of, 30 Inches of mercury to pounds per square inch, conversion table, 10

of water, theoretical draft pressure, table of, 117

Indicator card, missing water from, 18 Internal thermal conductivity, table of, 65 International atomic weights, table of, 34 Isothermals, compressibility of gases by, table of, 28

Jet velocity and work, Carnot steam cycle, charts of, 202, 203

Rankine, cycle (steam), charts of, 198, 199

Kerosene and petroleums, fractional distillation of, chart of, 181 fractional tests of, table of, 100 Kerosenes, vapor pressure of, chart of, 174

Latent heats of fusion, table of, 31 of vaporization, table of, 31

of steam, chart of, 169 Lignite, composition and calorific power of, 75, 77

Lignites, combustible and volatile of, 83, 85, 86 Limits of proportion for explosive air-gas mixtures, table of, 118 Linear expansion of solids, coefficient of,

table, 25

Liquid and gaseous fuels, boiling points of, table, 33

Liquids, absorption of gases by, table of, 60 coefficient of cubical expansion of, table,

specific heats of, table, 24 Logarithms to the base e, 136 to the base 10, 132, 134

Marks and Davis' steam tables, 36, 40 Maximum work and supply pressure, chart

of, 156 Mean B.T.U. value of, 2 effective pressure and h.p., table of, 12 and maximum work, chart of, 156 and work non-compression gas cycles,

chart of, 205 Diesel cycle, for heat added, chart of, 215

Otto cycle, for various amounts of heat added, chart of, 214

compression gas cycles, Brayton, Carnot, Diesel, Otto and completeexpansion Otto, charts of, 212, 213

Mean effective pressure, determination of, for single cylinder engines, chart of,

factors for Otto cycle engines, table of,

of compressors, one, two and three stages, charts of, 154, 155 construction and use of charts, 140

Melting or freezing points, table of, 34 Mineral oils, calorific power of, table of, 89 crude, average distillation, products of. table of, 99

properties of, table of, 92 Missing water, Heck's formula for, 18

Moisture, weight of, per cubic foot of saturated air, chart of, 177

Mollier diagram for ammonia, 226 for carbon dioxide, 227

total heat entropy diagram for steam,

Multi-stage compressors, mean effective pressure of, chart of, 154

Napierian logarithms, 136

Napier's coefficient of steam flow, chart of, 218

Naphthalenes from Russian petroleum, table of, 88

Natural gases, composition of, table, 91 Non-compression cycles, thermal efficiency, heat and gas consumption, charts

of, 204 use of diagrams, 149 work and m.e.p. chart of, 205

Oil and gas engines, beat balances of, table of, $12\bar{3}$

Oil gas, properties of, table of, 90 producer gas, composition of, table of, 113

Oils, hydrocarbon, calorific power of, table of, 90

mineral, calorific power of, table of, 89 crude, average distillation, products of, table of, 99 properties of, table of, 92

Otto-cycle gas engines, diagram factors for, table of, 122

mean effective pressure factors for, tables of, 124

thermal efficiency, heat and fuel consumption, charts of, 210, 211 use of diagrams, 150

work, and m.e.p. for various amounts of heat added, chart of, 214

Paraffines from Pennsylvania petroleum, table of, 88

Parr's psychrometric diagrams, 176, 177 Peat, composition and calorific power of, 77 combustible and volatile of, 86

Petroleum and kerosene, fractional distilla-tion of, chart of, 181 distillates, vapor pressure of heavy,

chart of, 174

ethylenes and naphthalenes from, table of, 88

kerosenes, fractionation tests of, table of,

light, vapor pressure of, chart of, 173 paraffines from, table of, 88

Pipes, velocity of air in, chart of, 192 Piston positions for any crank angle, table of,

Pitot tube readings and velocity of air, chart Rate of combustion of coal with draft, diaof, 219 gram of, 186 table of, 119 Pounds per square inch to inches of mercury, conversion table, 10 of formation of CO from CO2 and carbon, table of, 106 Power and heat, conversion table, 7 Rational and empiric formulas, air and steam (h.p.) and m.e.p., table of, 12 units of, conversion table of, 7 flow, charts of, 216, 217 Pressure, barometric, table of, 8 Reaction, heats of, for hypothetical producer constant of steam, with T_{ϕ} diagram, 194 gas from fixed carbon, chart of, 184 in inches of water, theoretical draft, Refrigerating effect per pound ammonia, chart of, 222 table of, 131 mean effective, for compressors, one two carbon dioxide, chart of, 223 Refrigeration, work absorbed in by amand three stages, chart of, 154 rise, of gases and vapors at constant volume, coefficient of, table, 27 monia, charts of, 229 by carbon dioxide, charts of, 230 temperature, relations for saturated Relative thermal conductivity, table of, 68 vapor, carbon dioxide, chart of, 166 work of two-stage compressors, comfor saturated vapor of ammonia, pared to single-stage, chart of, 157 Resistance factors, flow change, table of, 125 chart of, 165 steam, chart of, 16, 167 Retort coal and coke oven gas, composition volume relations of gases, charts of, of, table of, 94 units of, conversion table, 6 s values of for adiabatic expansion of steam, vapor of heavy petroleum distillates, chart of, 174 table of, 14 for various substances and conditions. of hydrocarbons, chart of, 173 volume and T_{ϕ} relations of gases, chart Saturated ammonia vapor, properties of. of, 193 table, 41 ratios, constants for, table of, 13 carbon dioxide vapor, properties, table values of, for gases, various conditions, table of, 28 steam, table of properties of, 36 Pressures, interpretation of, 1 Single cylinder engines, determination of mean effective pressure in, chart Producer gas, composition of, table of, 108 from fixed carbon, composition of hypofor, 160 -stage compressors, horse-power per thetical, chart of, 183 hypothetical from fixed carbon, B.T.U., 1,000 cu. ft. per minute supply heats of reaction, chart of, 184 pressure gas, chart of, 151 powdered coal, composition of, table of, work per cubic foot supply pressure. 116 chart of, 151 tests of, table of, 114 Products of bituminous gas coal distillation, Sodium chloride brine, specific heat of, table, table of, 99 Solids, coefficient of linear expansion of, of crude mineral oils, average distillatable of, 25 tion, table of, 99 specific heats of, table, 20 Solutions, ammonia-water, relation between total pressure and per cent NH₃ in solution, chart of, 179 Properties of ammonia and carbon dioxide, tables of, how derived, 3 of mineral oils, table of, 92 relation between total pressure and of oil gas, table of, 90 of saturated carbon dioxide vapor, table temperature, chart of, 178 between temperature and per cent of, 50 ammonia vapor, table of, 41 NH₃ in solution, chart of, 180 steam, table of, 36 table of relations of, 54 of superheated steam, tables of, 40 of partial pressures, 58 Psychrometer readings, chart of, 176. Specific gravity scale, Baumé, table of, 19 struction and use of chart, 145 heat of sodium chloride brine, table of, of gases, chart of, 162; table of, 22 of liquids, table of, 24 Quality, constant steam, lines of with T_{ϕ} diagram, 194 of solids, table of, 20 R, gas constant, table of, 28 of superheated steam, 2; chart of, Radiation coefficients, table of, 61 Rankine cycle (steam) thermal efficiency and volume and density of the liquid, (steam), chart of, 171, 172 heat consumption, charts of, 196, Stack, see Chimney. Steam, adiabatic expansion of, values of s use of charts, 148, 149 work and jet velocity, charts of, 198, for, table of, 14 199 and air flow, charts of, 216, 217

Steam, consumption of, and thermal effi-Thermal efficiency and heat consumption, ciency, Carnot cycle, charts of, 200, Rankine cycle (steam), charts of, 196, 197 Rankine cycle, charts of, 196, 197 Carnot steam cycle, charts of, 200, engine (piston) and turbine efficiency factors, table of, 126 heat and fuel consumption, adiabatic piston position and crank angle, table compression cycles, use of diagrams, of, 11 150 Thermal efficiency, heat and fuel consumpexpansion and compression of, tabular values for given ratios of PV, 13 tion, Brayton cycle, charts of, 210, flow, curves of for superheated steam, 218 Carnot cycle, charts of, 210, 211 heat of the liquid, chart of, 168 heat per pound of, above feed tempera-ture, chart of, 187 complete expansion Otto, 210, 211 Diesel, 210, 211 Ericsson, 207, 209 Otto, 210, 211 latent heat, chart of, 169 pressure-temperature, chart of, 167 Stirling, 206, 208 relation between temperatures and non-compression gas cycles, charts of, heat, chart of, 185 204 saturated, table of properties of, 36 Theoretical draft pressure in inches of water, specific heat of, 2 table of, 131 T_{ϕ} and PV relations of gases, chart of, 193 specific volume and density of the liquid, chart of, 171, 172 T_{ϕ} diagram and constant-volume lines, 191 superheated, table of properties of, 40 for ammonia, 225 specific heat of, chart of, 163 for carbon dioxide, 227 tables, saturated 36; superheated, 40 with lines of constant pressure and thermal efficiency and heat consumpquality for steam, 194 tion of (Rankine cycle), charts of, construction and use of diagram, 148 196, 197 Three-stage compressors, horse-power of, chart of, 153 (Carnot cycle) charts of, 200, 201 total heat, chart of, 170 work of, chart of, 153 entropy, diagram for, Mollier, 195 work per pound of and jet velocity (Carnot cycle), charts, 202, 203 Rankine cycle, charts of, 198, 199 Transfer of heat, table of, coefficients for, Turbine and piston engines efficiency factors for, table of, 126 Stirling gas cycle, thermal efficiency, heat and fuel consumption, charts of, Two-stage and three-stage compressors, compared to single-stage, chart of, 206, 208 use of diagrams, 150 Two-stage compressors, horse-power of, Superheated steam, flow of, chart of, 218 chart of, 152 work of, chart of, 152 properties of, table of, 40 specific heat of, 2; chart of, 163 Supply pressure and maximum work, chart Unit of heat, 2 Units of distance, conversion table of, 5 of, 156 construction and use of chart, 141 of heat and power, conversion table, 7 of power, conversion table, 7 of pressure, conversion table, 6 Surface, units of, conversion table, 5 Symbols, table of, xv of surface, conversion table, 5 Table of symbols, xv
Tables, see list of, page ix; also under sepaof velocity, table, 7 of volume, conversation table, 5 of weight and force, conversion table, 5 rate headings. of work, conversion table, 6 relations for am-Temperature-pressure, United States coke, composition of, table of, monia saturated vapor, chart of, 165 relations for carbon dioxide saturated Use and construction of charts, 139 to 150 vapor, 166 Values of C for air flow, table of, 125 for steam, chart of, 167 of the gas constant, R, table of, 28 volume relations of gases, charts of, 192 of s for adiabatic expansion of steam, Temperatures and heat, relation of for gases, table of, 14 chart of, 185 for various substances and condiconstruction of chart, 146 tions, 15 Temperatures, Centigrade and Fahrenheit, of x for use in Heck's formula for missing table of, 16 fixed, table of, 15 water, 18 Vapor pressure of the alcohols, chart of, 175 of ignition, 3; table of, 30 of heavy petroleum distillates, chart of, Thermal conductivity, table of internal, 65

174

table of relative, 68

Vapor pressure of hydrocarbons of the gasolene class, chart of, 173

Vaporization, latent heat of, table of, 31 Velocity of air in pipes, chart of, 219 units of, table of, 7

Volatile and combustible of coals, lignites,

and peat, table of, 78 Volume, pressure and $T\phi$ relations of gases,

charts of, 193
-temperature-pressure relations of gases,
charts of, 192

units of, conversion table, 5

Volumetric efficiency of compressors, chart of, 154

construction and use of chart, 140 expansion of gases and vapors at constant pressure, coefficient of, table of, 26

Water, absorption of air by, table of, 60 gas, composition of, table of, 113 missing, from indicator card, 18

Weight and force, units of, conversion table of, 5

Weights, atomic, international, table of, 34

Wet and dry bulb psychrometer readings, chart of, 176

Wood and cellulose, table of comparison of, 69

Work absorbed in refrigeration by ammonia, charts of, 229 by carbon dioxide, charts of, 230 Work absorbed and jet velocity, Carnot steam cycle, charts of, 202, 203

Rankine cycle, (steam), charts of, 198, 199

and m.e.p. Diesel cycle for various amounts of heat added, chart of, 215

Otto cycle, chart of, 214

for the compression gas cycles, Brayton, Carnot, Diesel, Otto, and complete expansion Otto, chart of, 212, 213, 214, 215

for non-compression gas cycles, charts of, 205

use of diagram, 149

Work, equal distribution of in compound engines, chart of, 161

maximum, and supply pressure, chart of, 156

of two-stage and three-stage compressors, compared to single-stage, chart of, 157

per cubic foot of supply pressure gas for single-stage compressors, chart of, 151

construction and use of chart, 139 for two-stage compressors, chart of, 152

construction and use of chart, 140 for three-stage compressors, chart of, 153

construction and use of chart, 140 units of, conversion table, 6

