



# College of Engineering, Construction & Living Sciences Bachelor of Information Technology ID511001: Programming 2

Level 5, Credits 15

# Classroom Tasks

#### Assessment Overview

In this assessment, you will develop two projects using the **Unity** game engine as well answer questions pertaining to different concepts in the **Unity** game engine.

## Learning Outcomes

At the successful completion of this course, learners will be able to:

- 1. Build interactive, event-driven GUI applications using pre-built components.
- 2. Declare & implement user-defined classes using encapsulation, inheritance & polymorphism.

#### Assessments

| Assessment                                    | Weighting | Due Date                          | Learning Outcomes |
|-----------------------------------------------|-----------|-----------------------------------|-------------------|
| Project 1 (C# Console App): Learner Gradebook | 25%       | 26-04-2023 (Wednesday at 4.59 PM) | 1 & 2             |
| Project 2 (C# Windows Forms App): Pong        | 35%       | 14-06-2023 (Wednesday at 4.59 PM) | 1 & 2             |
| Theory Examination                            | 30%       | 21-06-2023 (Wednesday at 4.45 PM) | 1 & 2             |
| Classroom Tasks                               | 10%       | 07-06-2023 (Wednesday at 4.59 PM) | 1 & 2             |

## Conditions of Assessment

You will complete this assessment during your learner-managed time. However, there will be time during class to discuss the requirements & your progress on this assessment. This assessment will need to be completed by Wednesday, 07 June 2023 at 4.59 PM.

## Pass Criteria

This assessment is criterion-referenced (CRA) with a cumulative pass mark of 50% over all assessments in ID511001: Programming 2.

## Authenticity

All parts of your submitted assessment **must** be completely your work. If you use code snippets from **GitHub**, **StackOverflow** or other online resources, you **must** reference it appropriately using **APA 7th edition**. Provide your references in the **README.md** file in your repository. Failure to do this will result in a mark of **zero** for this assessment.

## Policy on Submissions, Extensions, Resubmissions & Resits

The school's process concerning submissions, extensions, resubmissions & resits complies with **Te Pūkenga** policies. Learners can view policies on the **Te Pūkenga** website located at <a href="https://www.op.ac.nz/about-us/governance-and-management/policies">https://www.op.ac.nz/about-us/governance-and-management/policies</a>.

## **Submission**

You must submit all app files via GitHub Classroom. Here is the URL to the repository you will use for your submission – <a href="https://classroom.github.com/a/YOLzkboo">https://classroom.github.com/a/YOLzkboo</a>. Create a .gitignore & add the ignored files in this resource - <a href="https://raw.githubusercontent.com/github/gitignore/main/Unity.gitignore</a>. The latest app files in the classroom-tasks-unity branch will be used to mark against the Functionality criterion. Please test before you submit. Partial marks will not be given for incomplete functionality. Late submissions will incur a 10% penalty per day, rolling over at 5:00 PM.

### Extensions

Familiarise yourself with the assessment due date. Contact the course lecturer before the due date if you need an extension. If you require more than a week's extension, you will need to provide a medical certificate or support letter from your manager.

#### Resubmissions

Learners may be requested to resubmit an assessment following a rework of part/s of the original assessment. Resubmissions are to be completed within a negotiable short time frame & usually **must** be completed within the timing of the course to which the assessment relates. Resubmissions will be available to learners who have made a genuine attempt at the first assessment opportunity & achieved a **D grade (40-49%)**. The maximum grade awarded for resubmission will be **C-**.

#### Resits

Resits & reassessments are not applicable in ID511001: Programming 2.

#### Instructions

You will need to submit an app & documentation that meet the following requirements:

Classroom Tasks: Unity Game Engine Research

2

## Functionality - Learning Outcomes 1 & 2 (50%)

Complete the two projects as outlined in the classroom-tasks-unity.md file.

## Questions - Learning Outcomes 1 & 2 (50%)

- Provide answers to the following in your repository **README.md** file:
  - Describe some best practices for organising your Unity project.
  - Explain the concept of **GameObjects** & **Components**, & how they are related.
  - Explain the concept of **Prefabs**. What are they, & how do they contribute to the efficiency & reusability?
  - Explain the concept of game object hierarchy. How can you organise & structure game objects using parent-child relationships? Provide an example of a situation where using hierarchy can be beneficial.
  - In the game **Pong**, how would you implement the collision detection between the ball & the paddles using colliders?