PERSISTENT HOMOLOGY

Goals. associate simplicial complexes to data sets

· understand the meaning of Betti numbers

- From data points to simplicial complexes.

In a metric space (X,d) distance, one can draw balls around points: $x \in X$, r > 0 $B(x,r) = \{y \in X : d(x,y) < r\}$

Fix < >0. X = finite set of points

Def Rips_X(X) = the set of simplices [20.... 2h] such that $d(2i,2j) \le x$ for all (i,j).

no connect points that are of-close together.

a, b, c $\in X$ a, b, c $\in X$ $\{a,b\} \in \mathbb{R}$ Rips_d (X) if $\{a,c\} \in A$ and $\{a,c\} \in A$ and $\{a,c\} \in A$ Def Čech $_{\alpha}(X) = \text{set of simplices } [x_0 ... x_h]$ Nowh that the k+1 closed balls $B_c(x_i, \alpha)$ have now- empty intersection.

What if we increase or decrease &?

In fact if & is small enough (& < inf d(xi, xj)) there will be no overlapping balls.

increase d

[abc] & Cech, (X) because

Remark: Rips (X) = Čecha (X) = Pips (X)

& measures the scale at which we observe X.

It is useful to let a vary and observe how the popological invariants associated with the a complexes charge with a.

•