Automotive Mechatronics Laboratory

Topic:

E-Bike simulation

Presenter: Nguyen Duc Tai

INTRODUCTION

Overview of research situation

Domestic:

- Vu, M. N., & Ta, M. C. (2015). A sliding mode algorithm for antilock braking
 /traction control of EVs. VNUHCM
 Journal of Science and Technology
 Development, 18(3), 174-182.
- Phan, T. T., Ngo, H. T., & Huynh, B. T.
 (2022). Application of pid method to
 control traction on the vehicles
 through controlling the brake moment at
 the two driving wheels. Tra vinh
 university journal of science.

International

- Vecchio, C., Tanelli, M., Corno, M., Ferrara, A., & Savaresi, S. M. (2009, June). Second order sliding mode for traction control in ride-by-wire sport motorcycles. In 2009 American Control Conference.
- Cabrera, J. A., Castillo, J. J., Carabias, E., & Ortiz,
 A. (2014). Evolutionary optimization of a motorcycle traction control system based on fuzzy logic. IEEE Transactions on Fuzzy Systems
- Yuniarto, M. N., Wiratno, S. E., Nugraha, Y. U.,
 Sidharta, I., & Nasruddin, A. (2022). Modeling,
 Simulation, and Validation of An Electric Scooter
 Energy Consumption Model: A Case Study of
 Indonesian Electric Scooter

BASIC THEORY

Types of electric motors

- Five main types of electric motors:
 - DC electric motor with DC carbon brush
 - Induction motor
 - Permanent magnet synchronous motor (PMSM)
 - Switched reluctance motor
 - Brushless DC motor (BLDC)
- BLDC motors and permanent magnet motors are more suitable, thanks to their advantages of low pollution and fuel consumption. Less and the power-to-mass ratio is higher.

DC Motor

- DC Motor (1-way electric motor with carbon brush):
 - DC motors (Direct Current Motors) are motors controlled by current with a specific direction. The output of this motor usually consists of two wires.
 - The no-load speed of a DC motor without deceleration can reach from 1000 RPM to 40 000 RPM.

DC Motor

DC motor operating principle

BLDC Motor

- BLDC Motor (brushless motor):
 - BLDC motors are similar to DC motors but the functions of the rotor and stator are reversed.
 - The rotor is made up of a set of permanent magnets.
 - The stator is a controlled electromagnet.
 - Vary the change by controlling the current into the different coil wires to keep the rotor spinning.
- The reversal of the current through the winding wires is carried out by power transistor control according to the position of the rotor through sensors (Hall).

BLDC Motor

DC motor operating principle

BLDC Motor

- Base on position of the rotor, the control system switches on and off the transistors. Each state:
 - 1 coil that is energized positively,
 - 1 coil that is energized negatively,
 - 1 coil that is de-energized.

 Torque is generated by the interaction between the magnetic field created by the stator coils and the permanent magnet.

E-BIKE MODELING

General

Driver & Motor

Motor configuration

Hall signal solving

ha	hb	hc	EMFa	EMFb	EMFc
0	0	0	0	0	0
0	0	1	0	-1	+1
0	1	0	-1	+1	0
0	1	1	-1	0	+1
1	0	0	+1	0	-1
1	0	1	+1	-1	0
1	1	0	0	+1	-1
1	1	1	0	0	0

Hall decoder

Convert EMF into phase signal

EMF_a	EMF_b	EMF_c	G_1	<i>G</i> ₂	<i>G</i> ₃	G_4	G ₅	G_6
0	0	0	0	0	0	0	0	0
0	-1	+1	0	0	0	1	1	0
-1	+1	0	0	1	1	0	0	0
-1	0	+1	0	1	0	0	1	0
+1	0	-1	1	0	0	0	0	1
+1	-1	0	1	0	0	1	0	0
0	+1	-1	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0

Gate signal

Inverter

PID controller configuration for motor

Body & Tire

Body configuration

Wheel configuration

Battery

Battery

SIMULATION

FTP-75 Cycle

• FTP-75 cycle is a standard for testing fuel economy and emissions used by the USA Environmental Protection Agency (EPA). This cycle simulates low-speed city driving conditions in 31 mins, 12km, average speed at 32km/h.

Testing result (FTP-75)

Speed result (FTP-75)

Torque result (FTP-75)

Distance and SOC (FTP-75)

The New York City Cycle (NYCC)

 NYCC cycle is designed to simulate typical stop-and-go traffic conditions in a densely populated urban environment. This cycle simulates low-speed conditions, lasts 10mins, 1.9km, average speed at 11km/h.

Testing result (NYCC)

Distance and SOC (NYCC)

US06 - Supplemental FTP

US06 cycle is designed to represent aggressive driving conditions. This cycle simulates higher speeds and acceleration rates conditions, lasts 10mins,
 12.8km, average speed at 48km/h, peak speed 128km/h.

Testing result (US06)

Distance and SOC (US06)

BIKESIM MODEL

General

Vehicle sprung mass

Wheels

Rear tire

Driver & Motor testing block

Simulink body vs Bikesim body

Input torque at 20 N.m

Input torque at 40 N.m

Input torque at 80 N.m

Thank you

For your attention

Trung-Hieu Nguyen

0962497102

hieuntr@hcmute.edu.vn