			J,	he	Li	nit	(Lau	WS.					
/.	The			1//-										
					શેં ં ૧.				0 -					
					lai		(A)	\$ -\$ 2.() = ر	<u>. </u>				
			um		Lim		= <u>L</u>	. a	rd	Lim	ga) = /	U	
		\mathcal{D}	Lin		(x) +g				1.					
		② ③	Lim Lim X-a	Ifi. I fi	(x)g(x))]= 	ZX lo	L. ESU	nirg	Щ	‡0))		
2.	Prooj	ſ							U					
			et o		M			0.						
		an	int	ewa	l g l ce	ntere	ed a	rt a	l, e	xcept	t ma			
		th	en 3	lima l	A /	+g(x)]=		_		_	x) =	f(x)	+glx
	l	02	et E	£>0		i ouj								
					mi 2. A	SSUM	le (94/	x-a	128	•			

3) Notice before proof.
DWTS: Ling hbx) = 2+M YE, 35
—> fix an arbitrary E.
- reed to find a value of 8 that work for
the E
D'We know: Limfler = 1
-> Can choose a value of E.
-> I a value of & that works for that &
43 Rough Work.
1how- (L+M) = (flo)-L) + (gov-M)
$\leq f(x)-2 + g(x)-M $
$\exists \delta, >0 \text{ s.t. } 0 < x-a < \delta, \Rightarrow f(x)-L < \frac{\varepsilon}{3}$
$\exists 8_2 > 0 \text{ s.t. } 0 < x-a < \delta_2 \Rightarrow g(x) - M < \frac{\mathcal{E}}{2}$
Jake S=min \S,, S2 \(\can get both conclusion
5) Proof.
Let & >0.
Jake = in definition of Lington = L. 38, >0. s.t
$0< x-\alpha <\delta, \Rightarrow f(x)-L <\frac{\varepsilon}{2}$
Jake 5 in definition of Lingu = M. I S2>0 s.t.
$ a = a < \delta_2 = g(x) - M < \frac{\epsilon}{2}$
Take $S = \min \{S_1, S_2\}$
Let x6/R. Assume 0
$0< x-\alpha <\delta$. Thus $ f(x)-2 <\frac{\epsilon}{2}$
0<1x-01<82. Thus g(x)-M1<=

Then. $ h(x) - (L + M) = f(x) - L + (g(x) - M)$ $\leq f(x) - L + g(x) - M $ $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
$\leq f(x)-2 + q(x)-M $
$\langle \frac{\mathcal{E}}{2} + \frac{\mathcal{E}'}{3} = \mathcal{E}.$
0 love above that 1/2/2 (1+1/2) = 00
I have shown that $1h(x)-(L+M)/<\epsilon$, as needed.
needed.

