Fundamentos de Sistemas de Información

DATOS, INFORMACIÓN Y CONOCIMIENTO

Prof. Isaac Yrigoyen

Datos: Definiciones

- Data are defined as symbols that represent properties of objects, of events and their environment. No employed until: Useable form. (Ackoff,1989)
- Data are about projection or communication of facts (Hart and Gregor, 2007)
- A representation of facts, concepts or instructions in a formalized manner suitable for communication, interpretation, or processing by humans or by automatic means." (Hicks, 1993)
- □ ¿Definiciones contradictorias? (Rowley 2007)
 - Data has no meaning or value because it is without context and interpretation
 - Data are discrete and objective observations, which are unorganized and unprocessed, and do not convey any specific meaning

Data: Interés en Diversos Campos

- Distintos campos (compilación de Ballsun-Stanton & Bunker, 2009):
- Semiotic
 - Codificación de signos: representación de significado en símbolos
 - Intérprete
- Philosophy of Science
 - Data are collected by means of observations
 - Data or agglutinations of data generally represent facts

Data: Interés en Diversos Campos

- Information Science and Technology:
 - Storage, processing and retrieval mechanisms
 - Relational algebra and data modeling
 - Data modeling:
 - Data requirements gathering: Understand discourse to collect relevant data
 - Requirements modelling: Synthetic data model (data representing reality)
- Philosophy of Technology
 - Data as structure that helps technology mediates reality

Datos: Lluvia de ideas

- Symbols, or set of signs: Representation of something (Beynon-Davies, 2009)
- Properties of facts, events, and objects (Ackoff, 1989)
- Keys (Baskarada & Koronios, 2013):
 - Unprocessed
 - Unrefined
 - Unorganized
 - Discrete (isolated, elementary)
- Low (or general) Meaning (Chaffey and Wood, 2005)
- Same meaning for all users (Standardization)

Información: Lluvia de ideas

- Fenómeno polimórfico
- General Definition of Information: Data + Meaning
- Philosophy of Information (Floridi, 2005)
 - Conjunto de datos
 - Well-formed: Datos agrupados correctamente (reglas o sintaxis en amplio sentido) (data "In formation": Awad & Ghaziri, 2004)
 - Meaningful: Se refiere a que es interpretable
 - Truthful: True statements (¿información falsa?)
- Otros campos (Economía de la información)
 - Útil: information for decision making, automation, and effective control of organizations
 - Valor: Expectativa de su potencial para cambiar eventos
 - Uncertainty reduction (Locke, Hume, Shannon): zero

Información: Definiciones

- Data that has been processed so that it is meaningful to a decision maker to use in a particular decision (Hicks, 1993)
- Information has a meaning...it comes from selecting data, summarizing it and presenting in such a way that it is useful to the recipient (Avison and Fitzgeraild, 1995)
- □ Difference: Data & information is functional, not structural (Ackoff, 1989)
- Conclusión:
 - Información: engloba un conjunto de datos que tienen forma y significado (well-formed and meaning).
 - Información son datos procesados en una forma que tienen utilidad y valor para el destinatario.
 - Información reduce la incertidumbre en el receptor.
 - Trinity: Syntactic, Semantic, Pragmatic (Zhong, 2017)

Información: Discusiones

- □ Información y Energía (Mattessich, 1993)
 - Energía: Potential to do work
 - Información: Potential to change things
- Truthful (veracidad)
 - Dualidad de la información: Falsa o Verdadera
 - False information is not information (Floridi, 2005)
- Environmental Information
 - Does information exist without an informed subject?
 - Accesibilidad, Interpretación, simbología

Types of Knowledge

- Know-that (declarative/propositional/factual knowledge)
- Know-how (procedural/instructional knowledge)
- Know-when (saber cuándo)
- Know-who (saber quién)
- Know-where (saber dónde)
- Know-why (saber porqué)

Base: Información

Types of Knowledge

- Know-that: Conocimiento declarativo es conocimiento explícito de un hecho (representable conscientemente)
- Know-how: Conocimiento procedural es el conocimiento que se manifiesta en el uso de una habilidad
- Know-wh: Reduccionismo a Know-that

Yo sé quién es experto en design thinking Yo sé, de un profesor, que es un experto en design thinking

Centro Educativo: Política en favor de la Mujer

	Profesores Hombres	Profesores Mujeres
Departamento de Historia	1/5	2/8
Departamento de Geografía	6/8	4/5

¿Qué genero tuvo mayor porcentaje de éxito en su postulación al Dpto de Historia?

¿Qué genero tuvo mayor porcentaje de éxito en su postulación al Dpto de Geografía?

- A. Este centro educativo tiene una política de contratación de profesores en favor de la mujer
- B. Este centro educativo **no** tiene una política de contratación de profesores en favor de la mujer

¿Está explicado? ¿Es verdad? ¿Es creible?

Centro Educativo: Política en favor de la Mujer

	Profesores Hombres		Profesores Mujeres
Departamento de Historia	1/5	<	2/8
Departamento de Geografía	6/8	<	4/5
Universidad	7/13	>	6/13

¿Qué genero tuvo mayor porcentaje de éxito en su postulación al Centro Educativo

¿Qué genero tuvo mayor porcentaje de éxito en su postulación al Dpto de Geografía?

- A. Este centro educativo tiene una política de contratación de profesores en favor de la mujer
- B. Este centro educativo **no** tiene una política de contratación de profesores en favor de la mujer

 Simpson Paradox

Knowledge-that

- Justified True Belief (Platón)
 - Belief Condition
 - Confianza y seguridad que se tiene de esa afirmación
 - Truth Condition
 - KF no ganó las elecciones pasadas
 - Nadie puede saber que KF ganó las elecciones pasadas
 - ¿cómo sabes algo que no sucedió? Uno solo puede conocer aquellas cosas que son verdad
 - Justification Condition
 - Razones y explicación
 - La ausencia de explicación implica un tiro de suerte

¿Importancia?

- Conocimiento declarativo:
 - Lo producimos para otro"s:
 - Belief (predescible)
 - Justified (explicar)
 - True (verificar)
- Conocimiento procedural:
 - Habilidad y Ser capaz de hacer
 - Por experiencia, aplicación

Information Ecosystem

Figure 1. Model of Information Ecosystem.

Fuente: Zhong (2017)

Sistemas de Información

TEORÍA GENERAL DE SISTEMAS

Prof. Isaac Yrigoyen

Definición de Sistemas

"Conjunto de elementos que presentan un funcionamiento interno, transforman entradas en salidas, e interactúan entre sí, para el logro de un fin común, y que se encuentran en un intercambio dinámico con el medio ambiente en el que están inmerso"

Tipos de Sistemas

- Sociales
- Judiciales
- Geográficos
- Administrativos
- □ Biológicos,...

¿Qué sistema conocen más?

- Bertalanffy (1968), Van Gigch (1987)
 - Isomorfismos: Similitudes diferentes campos: Estructuras.
 - Más allá de especialidad (+ interdisciplinariedad) (- Esfuerzo)
 - Ej. Familias/Personas vs empresas

```
¿Nacen?
¿Crecen?
¿Se separan?
¿O adoptan?
¿Se reproducen?
¿Mueren?
```

- Enfoque
 - Holístico (vs Reduccionismo)
- Características:
 - Abierto (vs Cerrado)
 - Interdependencias
 - Objetivo
- Propiedades
 - Descubrimiento de problemas

Reduccionismo vs Holístico

- Pensamiento Cartesiano:
 - Divide y vencerás,
 - Conocer sistema: Ir a subsistemas: Evolución científica.
 - Supuesto aislamiento de partes: Todo se reduce a partes

Pensamiento Sistémico:

- Todo y partes: ¿Interacciones?
- Conducta distinta aislada vs sistémica. (Ej. parejas)
- ¿Qué tipo de trabajo se debe hacer para que los subsistemas interactúen bien? (Ej. músicos)
- Acción de Coordinación (Martzloff): (Coor y Descoor)
- Realidad como todo (Bluaberg y Judin).

Fuente de la imagen: https://optimizacion1cgl.wo rdpress.com/2017/08/20/ka rl-ludwig-von-bertalanffybiografia/

Abierto vs Cerrado

Cerrado

- Ej.: matraces
- No hay intercambio con medio ambiente.
- La misma condición inicial conlleva al mismo estado final

https://es.made-inchina.com/co_joylab/product _Various-Type-Glass-Boiling-Flask_rygesrgsg.html

Abierto

- Frontera permeable o no determinada (Ej. Alumnos fuera de PUCP)
- ¿Solo complejidad interna?: Relación con medio ambiente (¿qué sucede si solo input/output sin retroalimentación? Ej. empresa diseñadora vs amazon)
- Feedback loop: Información sobre éxito o falla del output
- ¿Qué pasa si solo input/output sin retroalimentación?
- Incertidumbre (Medio ambiente impredecible: inputs): Monitorear cambios (Ej. Nuevas normas: AFP, ¿SI?)
- Ecosistema: Ej. ¿qué sistemas compiten con PUCP?)

Interdependencias

- Conexiones
 - Sustanciales o formadoras contribuyen al objetivo (Ej. Empezar por Contabilidad)
 - Reduce diversidad: Enfoque en relaciones fundamentales y observar las no fundamentales (alta centralidad sin ser el core del negocio. Ej. área de transporte)
 - Interdependencia: Cambio en una parte influye en otras (Ej. qué cambios origina un nvo. insumo?)
 - Interacción trae complejidad, pero es la realidad (Ej. funciones)

Equifinality:

- Resultados iguales se alcanzan de distintos caminos
- Vitalidad (Ej. Dos organizaciones: Igual meta → diferentes organizaciones competencias distintas, p.e. negociación)

Objetivo

- No hay dirección en un sistema sin conocer objetivo (Ej. Oftalmólogo-UCI)
- Encargados de subsistemas, ¿Entienden: existencia versus funcionamiento individual? (Ej. Sistemas naturales: Intestino)
- Desapego Ej.: Sociedad e individuos <a>E
 - Problema: Optimización del subsistema (Ej. Grte. Almacén versus Grte. Ventas).
 - Solución: Pérdida individualismo: Personalidad del Sistema.
- Descuidar objetivo sistema por otros objetivos (Ej. Plan prioridades reportes: transaccional)

- Propiedades (Meadows, 2008)
 - ¿Por qué son importantes?
 - ¿Cómo detectamos si un sistema está trabajando bien? (Ej. Hospital Empleado)
 - Armonía en su funcionamiento
 - Buen estado:
 - Resiliencia
 - Self-organization
 - Jerarquía

- Propiedades (Meadows, 2008) (cont.)
 - Resiliencia:
 - Capacidad recuperarse agente perturbador. (Ej. Cuerpo humano, ecosistemas, clases pandemia, Provita caso facturas)
 - Cambio: Dinámico ("Inteligentes")
 - No obvia sin pensamiento sistémico: Vulnerabilidades a lp x cp. (Ej. Aids' programs)
 - Self-organization: (Ej.: IDU, VRI)
 - Crean subsistemas: Sistema que aprende y se diversifica
 - Hacer propia Estructura más Compleja → evoluciona → se adapta
 - Se requiere Creatividad (Ej. Crea elementos)
 - Políticas: Sacrifica creatividad x productividad y estabilidad (Ej. Destajo)
 - Genera heterogeneidad e impredecibilidad
 - Nvas. estructuras: libertad y experimentación,
 - Desorden: miedo → amenaza (Ej. sistema educativo).

- Propiedades (Meadows, 2008) (cont.)
 - Jerarquía
 - Arreglo de sistemas y subsistemas, etc. (Ej. Personas --> Naciones)
 - Sistemas complejos: partes intermedias estables (Parábola Hora y Tempus;
 Ej.: órganos –isomorfismo- módulos de SI)
 - Subsistema: + densidad y fuerte que relación entre subsistemas
 - Sistema auto-organizado genera jerarquías (Ej. Emprendedor)
 - Problemas: Olvidar jerarquía (Ej. Propia meta: miembros equipos, sociedad latina, cáncer)
 - Control central: no detener (autonomía), solo lo suficiente para coordinar objetivo
- Tres propiedades hacen que sistemas dinámicos: Buen funcionamiento y sostenibilidad

- Reconociendo problemas en sistemas (Meadows, 2008)
 - Surprise: ¿Cómo seremos sorprendidos? Si cp (actual) x lp (historia)
 - ¿Qué ocurre?: Observar: Normalidad versus ...
 - Crecimiento, inmovilización, declive, oscilación, aleatoriedad o evolución, etc. ¿Evento o Behavior?
 - Resolver: Structure-Behavior-Events
 - Evento: ¿Evento aislado, anecdótico?
 - Comportamiento: ¿Evento se repite, pero temporal?
 - Estructura: ¿Long-term behavior? (Ej. Odebrecht)
 - Behavior understading: Qué vs Por qué
 - Desenvolvimiento en el tiempo: Eventos Aislados ¿contexto? Eventos acumulados ¿Patrones de comportamiento?
 - ¿Evento superficial? + análisis. Gráficos de tiempo: intuir behavior,
 - Data histórica de lo sucedido en estructura
 - Pensamiento sistémico entre estructura, comportamiento, evento
 - System and Environmental scanning

Edition, Kindle Edition

Read with Our Free App

> 73 Used from \$5.07 40 New from \$14.55

You Earn: 36 pts

The classic book on systems thinking—with more than half a million copies sold worldwide!

Free with your Audible trial

"This is a fabulous book... This book opened my mind and reshaped the way I think about investing."—Forbes

General System Theory: Foundations, Development, (1) Applications Kindle Edition

by Ludwig von Bertalanffy (Author), Wolfgang Hofkirchner (Foreword), David Rousseau (Foreword) Format: Kindle Edition

★★★★☆ × 81 ratings

See all formats and editions

Kindle \$11.99 You Earn: 60 pts

Read with Our Free App

Paperback \$27.95 You Earn: 56 pts

2 Used from \$21.99 8 New from \$21.35

Kindle Rewards Beta

Earn Kindle Points, get Kindle book credit

Earn Kindle Points when you buy books. Redeem for Kindle book credit. Learn more.

Sistemas de Información

SISTEMAS DE INFORMACIÓN: CONCEPTOS, CLASIFICACIÓN Y EVOLUCIÓN

Prof. Isaac Yrigoyen

Tipos de Sistemas

- Sociales
- Judiciales
- Geográficos
- Administrativos
- Biológicos
- □ Información (en las organizaciones)

Definición de Sistemas de Información

"Conjunto de elementos que se interrelacionan dinámicamente produciendo y recibiendo flujos de información y datos de los otros elementos internos del sistema así como de organizaciones, sistemas informáticos y personas externas, con la finalidad de proporcionar información para la toma de decisiones, el control y la ejecución de operaciones en una organización."

Elementos:

Personas, Procesos Organizacionales y Tecnologías de la Información

Proceso

"Conjunto de actividades o tareas realizadas de manera estructurada e interrelacionada para agregar valor a la organización mediante el cumplimiento de uno o más objetivos del negocio. Los procesos se crean para ser repetidos en el tiempo dando soporte al manejo y control de la organización, y permitiendo la producción de bienes o servicios"

¿QUÉ PROCESO CONOCEN?

Sistema de Información: Manual

- □ Tiempo: Consumo excesivo de horas-hombre.
- Falta de Confiabilidad: Errores introducidos por el ser humano.
- Toma de Decisiones: Lentitud por no tener información a tiempo y correcta.
- No motivador: Mecánico, engorroso y repetitivo.

Sistemas de Información: Automatizado

Ventajas

- Información Oportuna y Confiable
- Competitividad en el Mercado (Ej. Movers, Difare)
- Reducción de Costos (Ej. Homebanking)
- Mejora-Servicio al Cliente (Ej. Reclamos)
- Alta Capacidad de Decisión (Ej. BI)
- Incremento de la Productividad (Ej. +,-)
- Estandarización en empresa (procesos core?)

Automatización de Sistemas de Información

- Barreras para la adopción de tecnologías
 - Costo elevado
 - Curva de Aprendizaje: Disminución Inicial de Performance
 - Oposición al cambio
 - Empresa no preparada (Ej. BD errores, procesos sin agregar valor)

Tipos de Procesos de Negocios

- Estratégicos: realizados por la alta gerencia. Definición del rumbo de la organización; planeamiento de metas organizacionales, seguimiento y control de indicadores de gestión, etc.
- Claves: son los que dan valor directamente al giro del negocio. Son conocidos como procesos core o principales. Depende de la naturaleza del negocio: Financieras, manufactureras, etc.
- Soporte: son procesos que dan soporte para que los procesos estratégicos y claves se lleven a cabo.

Primary Activities (Value Added)

Evolución de los Sistemas de Información

■ Manuales (MRP – 70's): Materiales (Joseph Orlicky)

Evolución de los Sistemas de Información

- MRP 70's: Materiales
- □ MRP II 80's: MRP + Capacidad + Prod. + Control
- Sistemas Información Empresariales (ERP-Enterprise Resource Planning, Gartner 1990): SAP, PeopleSoft, BPCS, MAPICS, BAAN, J.D.EDUARS.

Evolución de los Sistemas de Información

- MRP 70's: Materiales (Orlicky)
- MRP II 80's: MRP + Capacidad + Prod. + Control
- Sistemas Información Empresariales (ERP-Enterprise Resource Planning, Gartner 1990): SAP, PeopleSoft, BPCS, MAPICS, BAAN, J.D.EDUARS.
- □ Sistemas Integradores (<u>ERP II</u> Gartner 2002): CRM, SCM.
- 4ta Generación ERP (Gartner): Cloud, BI, Data Analytics, IoT, Social Networks, Blockchain, Open Source, Realidad Aumentada.

Figura 2: BOM DEL ARTÍCULO PF

REGISTRO MRP Para motores.

Producto: Auto; Tiempo de Suministro: Un período; Nivel: Cero;

Período Actual: Período 1

Registro MRP PF		Períodos					
		1	2	3	4	5	6
Necesidades Brutas (NB)		50		70	80	100	100
Disponibilidad Proyectada de Inventario (DPI)	80	30	30				
Necesidades Netas (NN)				40	80	100	100
Lanzamiento de Ordenes (LO)			40	80	100	100	

EMPRESA MAYORÍA TRABAJA POR PERFECCIONAR PROCESOS Compras Producción Marketing AL INTERIOR (47%) I&D Logistica FOCO DE SCM EN 1era CAPA DE PROVEEDORES (34%) KEY SUPPLIER **EMPRESA** FOCO DE SCM EN 1era CAPA KEY CUSTOMERS EMPRESA DE CONSUMIDORES (11%) FLUJO DE INTEGRACION PARA ATRÁS Y ADELANTE KEY SUPPLIERS **EMPRESA** KEY CUSTOMERS (8%) CUSTOMERS SUPPLIERS KEY SUPPLIERS **EMPRESA** KEY CUSTOMERS AÚN NO REALIZADO

Fuente: The rhetoric and reality of supply chain integration, Stanley E. Fawcett, Abril 2002, p354 44

Value Chain y Sistemas de Información

SCM-Supply Chain Management

- Permite la planificación de la demanda y el suministro entre compradores y vendedores .
- Intercambiar información, coordinar y planificar entre actores de la cadena de suministro (proveedores, clientes, socios).

Integración logística

- Manejo de excepciones que surjan de la ejecución de los planes de la cadena y su difusión a los socios.
- Otro nivel: Colaboración entre personas de diferentes empresas de la cadena para hacerla más productiva

CRM - Customer Relationship Management

"Tratar de manera distinta a los diferentes clientes"

Peppers and Roggers

El cliente como foco principal de la estrategia: ventas, postventa, marketing

CRM - Customer Relationship Management

- Mejora funciones de marketing: campañas, segmentación clientes, promociones, etc.
- Administración áreas: por ingresos, productos, línea de productos,

Fuente: http://www.finode.com/index.php/consultoria/crm

- Administración de cuentas: relevamiento y explotación de información de prospectos y clientes
- Gerencia de expectativas
- Servicio personalizado al cliente: Productos y Servicios
- Obtener, Conservar y Desarrollar Clientes

Sistemas Desarrollados Versus Empaquetados

- Implementación
- Implantación
- Ventajas y desventajas.

Lecturas - ERP en las empresas

- Lectura: "Information as Key Resources", "People as Key Resources", "Information Technology as Key Resources", pag. 9-19, de Management Information System, Haag et al., 2004.
- "Los Sistemas y Tecnologías de la Información en la Empresa", Capítulo 1 de "Sistemas de Información -Herramientas Prácticas para la Gestión", Vieites y Rey, 3ª ed., RAMA, 2009, (T 58.6 G689)
- Lectura: "Tipos de Sistemas", páginas 2-6 de "Análisis y Diseño de Sistemas", 6ª ed., Kendall (2005). (T 58.6 K41 2005).

Lecturas - Clasificación de los Sistemas de Información

- Lectura: "ERP implementation", Capítulo 5 de ERP and Supply Chain Management, Madu y Kuei, 2004, (TS 155 M14).
- Lectura: "Sistemas de Información Geográficos", páginas 338-341, 2008, EFFY OZ.
- Lectura: "Sistemas de Administración de la Cadena de Suministro dentro de una Organización", páginas 91-95, 2008, EFFY OZ.

Bibliografía

"Análisis y diseño de un sistema de información para MRP", Yrigoyen Montestruque, José Isaac 2000, TIN 2 0018