Computational Neuroscience: Neurobiology 101

Neurons, Synapses, and Brain Regions

Enter...the Neuron (Brain Cell)

The Neuronal Zoo

(Drawings by Ramón y Cajal, c. 1900)

Neuron Doctrine:

- The neuron is the fundamental structural & functional unit of the brain
- Neurons are discrete cells and not continuous with other cells
- Information flows from the dendrites to the axon via the cell body

The Idealized Neuron

What is a Neuron?

- → A "leaky bag of charged liquid"
- ◆ Contents of the neuron enclosed within a *cell membrane*
- ◆ Cell membrane is a *lipid* bilayer
 - ⇒ Bilayer is <u>impermeable</u> to charged ion species such as Na⁺, Cl⁻, and K⁺
 - ➡ <u>Ionic channels</u> embedded in membrane allow ions to flow in or out

The Electrical Personality of a Neuron

- ★ Each neuron maintains a potential difference across its membrane

 - ❖ [Na+] and [Cl-] higher outside;
 [K+] and organic anions [A-]
 higher inside
 - ❖ *Ionic pump* maintains -70 mV

 difference by expelling Na⁺ out
 and allowing K⁺ ions in

Influencing a Neuron's Electrical Personality

How can the electrical potential be changed in local regions of a neuron?

Ionic Channels: The Gatekeepers

- → Ionic channels in membranes are proteins that are *selective* and allow only specific ions to pass through
 - E.g. Pass Na⁺ but not K⁺ or Cl⁻
- → Ionic channels are gated

 - Chemically-gated: Binding to a chemical causes channel to open
 - Mechanically-gated: Sensitive to pressure or stretch

Outside

Inside

Gated Channels allow Neuronal Signaling

- ◆ Inputs from other neurons → chemically-gated channels (at "synapses") open → Changes in local membrane potential
- ♦ This in turn causes opening/closing of voltage-gated channels in dendrites, body, and axon, resulting in depolarization (positive change in voltage) or hyperpolarization (negative change in voltage)
- Strong enough depolarization causes a spike or "action potential"

Synapse (Junction between neurons)

The Output of a Neuron: Action Potential (Spike)

Voltage-gated channels cause action potentials (spikes)

- 1. Strong depolarization opens Na⁺ channels, causing rapid *Na*⁺ *influx* and more channels to open, until they inactivate
- 2. K^+ outflux restores membrane potential

Propagation of a Spike along an Axon

Active Wiring: Myelination of Axons

- → Myelin due to oligodendrocytes (glial cells) wrap axons and enable fast long-range spike communication
 - ⇒ Action potential "hops" from one non-myelinated region (node of Ranvier) to the next (saltatory conduction)
 - "Active wire" allows lossless signal propagation

What happens
to the spike
(action
potential) when
it reaches the
end of an axon?

Enter...
the Synapse

[Next Lecture]