Lösung zu Übungszettel 9, Aufgabe 1

Jendrik Stelzner

20. Januar 2016

Aufgabe 1.

i).

Wir zeigen die Aussage per Induktion über $\dim(V)$, wobei $\dim(V) \geq 1$.

Induktionsstart. Es sei $\dim(V)=1$ und $f\colon V\to V$ ein Endomorphismus von V. Es sei nun $v\in V$ ein beliebiger Vektor mit $v\neq 0$. Dann ist $\mathcal{B}=(v)$ eine Basis von V. Da $\dim(V)=1$ ist $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)=(a)$ für einen Skalar $a\in K$. Insbesondere ist $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ in oberer Dreiecksform.

Induktionsvoraussetzung. Es sei $n \geq 2$ und für jeden Vektorraum U mit $\dim(U) = n-1$ und jeden Endomorphismus $f \colon U \to U$ gebe es eine Basis $\mathcal B$ von U, so dass $\mathrm{Mat}_{\mathcal B,\mathcal B}(f)$ eine obere Dreiecksmatrix ist, d.h. $\mathrm{Mat}_{\mathcal B,\mathcal B}(f)$ ist von der Form

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-2,n-1} \\ 0 & \cdots & 0 & a_{n-1,n-1} \end{pmatrix}$$

Induktionschritt. Es sei V ein Vektorraum von Dimension $\dim(V)=n$ und $f\colon V\to V$ ein Endomorphismus von V. Da K algebraisch abgeschlossen ist, existiert es einen Eigenvektor $b_1\in V$ von f; es sei $\lambda\in K$ mit $f(b_1)=\lambda b_1$. Wir ergänzen b_1 zu einer Basis $\mathcal{B}'=(b_1,b_2',\ldots,b_n')$ von V (der Strich gibt an, dass dies noch nicht die endgültigen Basiselement sind, die wir gerne hätten). Da $f(b_1)=\lambda b_1$ ist $A:=\operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$ von der Form

$$A = \operatorname{Mat}_{\mathcal{B}', \mathcal{B}'}(f) = \begin{pmatrix} \lambda & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}$$
(1)

Wir betrachten nun die abgeänderte Matrix \tilde{A} mit

$$\tilde{A} = \begin{pmatrix} \lambda & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}.$$

Es sei $\tilde{f}\colon V\to V$ der eindeutige Endomorphismus mit $\mathrm{Mat}_{\mathcal{B}',\mathcal{B}'}(\tilde{f})=\tilde{A}.$ Konkret ist

$$\tilde{f}(b_1) = \lambda b_1$$
 und $\tilde{f}(b'_j) = \sum_{i=2}^n a_{ij}b'_i$ für alle $2 \le j \le n$. (2)

Inbesondere ist deshalb

$$f(b'_j) = a_{1j}b_1 + \sum_{i=2}^n a_{ij}b'_i = a_{1j}b_1 + \tilde{f}(b'_j) \quad \text{für alle } 2 \le j \le n.$$
 (3)

Dabei ergibt sich die erste Gleichung aus (1).

Es sei nun $\mathcal{C}'=(b_2,\ldots,b_n)$ und $U\coloneqq\mathcal{L}(\mathcal{C}')=\mathcal{L}(\{b_2',\ldots,b_n'\})$. Wie in (2) gesehen ist $\tilde{f}(b_j')\in U$ für alle $2\leq j\leq n$, also $\tilde{f}(\{b_2',\ldots,b_n'\})\subseteq U$. Deshalb ist

$$\tilde{f}(U) = \tilde{f}(\mathcal{L}(\{b_2', \dots, b_n'\})) = \mathcal{L}(\tilde{f}(\{b_2', \dots, b_n'\}))$$
$$= \mathcal{L}(\{\tilde{f}(b_2'), \dots, \tilde{f}(b_n')\}) \subseteq \mathcal{L}(U) = U.$$

Also ist U invariant unter \tilde{f} . Deshalb können wir die Einschränkung $\tilde{f}|_U\colon U\to U$ mit $\tilde{f}|_U(u)=\tilde{f}(u)$ für alle $u\in U$ betrachten. (Für f hätten wir dies nicht tun können. Die abgeänderte Version \tilde{f} von f betrachten wir genau deshalb, um diese Einschränkung zu haben. Man bemerke außerdem, dass

$$\operatorname{Mat}_{\mathcal{C}',\mathcal{C}'}(\tilde{f}|_{U}) = \begin{pmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}$$
(4)

gilt.)

Da \mathcal{C}' linear unabhängig und ein Erzeugendensystem von U ist, ist es bereits eine Basis von U. Also ist $\dim(U)=n-1$. Wir können nun die Induktionsvoraussetzung auf U und $\tilde{f}|_U$ anwenden. Nach dieser gibt es eine Basis $\mathcal{C}=(b_2,\ldots,b_n)$ von U, so dass $\mathrm{Mat}_{\mathcal{C},\mathcal{C}}(\tilde{f}|_U)$ eine obere Dreiecksform hat, also

$$\operatorname{Mat}_{\mathcal{C},\mathcal{C}}(\tilde{f}|_U) = egin{pmatrix} c_{22} & c_{23} & \cdots & c_{2n} \\ 0 & \ddots & \ddots & dots \\ dots & \ddots & \ddots & c_{n-1,n} \\ 0 & \cdots & 0 & c_{nn} \end{pmatrix}.$$

(Man beachte die geshifteten Indizes, wie bereits bei $\mathrm{Mat}_{\mathcal{C}',\mathcal{C}'}(\tilde{f}|_U)$ in (4).) Inbesondere ist also

$$ilde{f}(b_j) = ilde{f}|_U(b_j) = \sum_{i=2}^j c_{ij} b_i \quad ext{für alle } 2 \leq j \leq n.$$

(Die Summe geht jeweils nur bis j, da alle weiteren Einträge in der j-ten Zeile 0 sind.)

Es sei nun $\mathcal{B}=(b_1,b_2,\ldots,b_n)$. Dies ist eine Basis von V: Es ist $b_1\in\mathcal{L}(\mathcal{B})$. Außerdem ist \mathcal{C} eine Basis von U, weshalb auch $b_2,\ldots,b_n'\in U=\mathcal{L}(\mathcal{C})\subseteq\mathcal{L}(\mathcal{B})$. Also sind alle Basisvektoren von \mathcal{B}' in $\mathcal{L}(\mathcal{B})$ enthalten; da \mathcal{B}' ein Erzeugendensystem von V ist, ist deshalb auch \mathcal{B} ein Erzeugendensystem von V. Da \mathcal{B} genau n-Elemente enthält, wobei $n=\dim(V)$, ist \mathcal{B} bereits ein minimales Erzeugendensystem von V, und somit eine Basis von V.

Wir zeigen nun, dass $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ eine obere Dreiecksform hat: Wir haben unveränderterweise $f(b_1)=\lambda b_1$. Für alle $2\leq j\leq n$ ist $b_j=\sum_{k=2}^n\mu_k^{(j)}b_k'$ für passende Koeffizienten $\mu_2^{(j)},\ldots,\mu_n^{(j)}\in K$, da $b_j\in U=\mathcal{L}(\mathcal{C}')=\mathcal{L}(\{b_2',\ldots,b_n'\})$. Zusammen mit (3) ergibt sich für alle $2\leq j\leq n$, dass

$$f(b_{j}) = f\left(\sum_{k=2}^{n} \mu_{k}^{(j)} b_{k}'\right) = \sum_{k=2}^{n} \mu_{k}^{(j)} f(b_{k}') = \sum_{k=2}^{n} \mu_{k}^{(j)} (a_{1k} b_{1} + \tilde{f}(b_{k}'))$$

$$= \left(\sum_{k=2}^{n} \mu_{k}^{(j)} a_{1k} b_{1}\right) + \sum_{k=2}^{n} \mu_{k}^{(j)} \tilde{f}(b_{k}') = \left(\sum_{k=2}^{n} \mu_{k}^{(j)} a_{1k} b_{1}\right) + \tilde{f}\left(\sum_{k=2}^{n} \mu_{k}^{(j)} b_{k}'\right)$$

$$= \left(\sum_{k=2}^{n} \mu_{k}^{(j)} a_{1k}\right) b_{1} + \tilde{f}(b_{j}).$$

Für alle $2 \leq j \leq n$ setzen wir $c_{1j} \coloneqq \sum_{k=2}^n \mu_k^{(j)} a_{1k}$. Da $\tilde{f}(b_j) = \sum_{i=2}^j c_{ij} b_i$ (für alle $2 \leq j \leq n$) erhalten wir damit, dass

$$f(b_j) = c_{1j}b_1 + \sum_{i=2}^{j} c_{ij}b_i = \sum_{i=1}^{j} c_{ij}b_i$$
 für alle $2 \le j \le n$.

Zusammen mit $f(b_1) = \lambda b_1$ erhalten wir damit, dass

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f) = \begin{pmatrix} \lambda & c_{12} & c_{13} & \cdots & c_{1n} \\ 0 & c_{22} & c_{23} & \cdots & c_{2n} \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & c_{n-1,n} \\ 0 & 0 & \cdots & 0 & c_{nn} \end{pmatrix}.$$

also ist $Mat_{\mathcal{B},\mathcal{B}}(f)$ eine obere Dreiecksmatrix.

ii).

Für diesen Aufgabenteil benötigen wir nicht, dass K algebraisch abgeschlossen ist.

Wir machen zunächst einige grundlegende Beobachtungen über Dreiecksmatrizen und Zeilenstufenform. Hierfür sei $A \in \mathrm{Mat}(n \times n, K)$.

- 1. Ist A in Zeilenstufenform, so ist A auch eine obere Dreiecksmatrix.
- 2. Ist andererseits A eine obere Dreiecksmatrix, so ist A nicht notwendigerweise in Zeilenstufenform. Siehe etwa

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

3. Ist $A = (a_{ij})_{1 \le i,j \le n}$ eine obere Dreiecksmatrix, also $a_{ij} = 0$ für alle $1 \le j < i \le n$, so ist genau dann $\operatorname{rang}(A) = n$, bzw. äquivalent $\ker(A) = \{0\}$, wenn die Diagonaleinträge von A alle verschieden von Null sind, also $a_{ii} \ne 0$ für alle $1 \le i \le n$.

Ist nämlich $a_{ii} \neq 0$ für alle $1 \leq i \leq n$, so ist A tatsächlich in Zeilenstufenform. Da $a_{nn} \neq 0$ hat A keine Nullzeilen, und somit $\operatorname{rang}(A) = n$.

Gibt es andererseits ein $1 \le k \le n$ mit $a_{kk} = 0$, betrachten wir das homogene lineare Gleichungsystem

$$A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_{k-1} \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0 \tag{5}$$

Dieses ist ein linearen Gleichungssystem in den k Variablen x_1,\ldots,x_k . Betrachten wir die (k+1)-te bis n-te Zeilen von (5), so sind diese 0, da A eine obere Dreiecksmatrix ist. Betrachten wir die k-te Zeile von (5), so ist diese $a_{kk}x_k=0$; da $a_{kk}=0$ ist auch diese Zeile 0. Also ist (5) ein homogenes LGS in k Variablen und k-1 Gleichungen. Also hat (5) nicht-triviale Lösungen. Ist $(y_1,\ldots,y_k)^T\in K^k$ eine nichttriviale Lösung des homogenen LGS (5), so ist $(y_1,\ldots,y_k,0,\ldots,0)^T\in K^n$ eine Lösung des homogenen LGS $A\cdot x=0$. Somit ist $\ker(A)\neq\{0\}$, also $\operatorname{rang}(A)< n$.

Es sei nun $A=(a_{ij})_{1\leq i,j\leq n}$ eine obere Dreiecksmatrix. Ein Skalar $\lambda\in K$ ist genau dann ein Eigenwert von A, falls $\ker(A-\lambda I)\neq\{0\}$, also $\operatorname{rang}(A-\lambda I)< n$. Da A eine obere Dreiecksmatrix ist, ist auch $A-\lambda I$ eine obere Dreiecksmatrix, wobei die Diagonaleinträge von $A-\lambda I$ genau $a_{11}-\lambda,\ldots,a_{nn}-\lambda$. Deshalb ist, wie oben gezeigt, $\operatorname{rang}(A-\lambda I)< n$ genau dann wenn $a_{ii}-\lambda=0$ für ein $1\leq i\leq n$, also genau dann, wenn $\lambda=a_{ii}$ für ein $1\leq i\leq n$. Anders gesagt: λ ist genau dann ein Eigenwert von A, falls λ ein Diagonaleintrag von A ist.

Bemerkung. Die Aussage lässt sich sehr kurz mit der Hilfe des charakteristischen Polynoms lösen: Die Determinante einer oberen Dreiecksmatrix ist das Produkt ihrer Diagonaleinträge. Die Diagonaleinträge von TI-A sind $T-a_{11},\ldots,T-a_{nn}$, weshalb

$$\chi_A(T) = \det(TI - A) = (T - a_{11})(T - a_{22}) \cdots (T - a_{nn}).$$

Da die Eigenwerte von A genau die Nullstellen des charakteristischen Polynoms $\chi_A(T)$ sind, sind genau a_{11}, \ldots, a_{nn} die Eigenwerte von A.

iii).

Angenommen, 0 ist der einzige Eigenwert von f. Wie im ersten Aufgabenteil gezeigt gibt es eine Basis $\mathcal{B}=(b_1,\ldots,b_n)$ von V, wobei $n=\dim(V)$, so dass $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ eine obere Dreiecksmatrix ist, also

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}.$$

Wie im zweiten Aufgabenteil gezeigt sind die Diagonaleinträge a_{11},\ldots,a_{nn} genau die Eigenwerte von $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$, also von f. Da 0 der einzige Eigenwert von f ist, erhalten wir, dass $a_{11}=\cdots=a_{nn}=0$. Also ist

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f) = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1,n} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \cdots & 0 & 0 \end{pmatrix}.$$

bereits eine echte obere Dreickesmatrix.

Wir zeigen per Induktion über k, dass dass $f^k(b_\ell)=0$ für alle $1 \le \ell \le k \le n$. Für den Fall k=n ergibt sich, dass $f^n(b_\ell)=0$ für alle $1 \le \ell \le n$. Da $\mathcal B$ eine Basis von f ist, ist dann bereits $f^n(v)=0$ für alle $v \in \mathcal L(\mathcal B)=V$, also $f^n=0$.

Induktionschritt. Für k=1 ist $f^k(b_1)=0$, da in der erste Spalte von $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ alle Einträge null sind.

Induktionsvoraussetzung. Es sei $1 \le k < n$ mit $f^k(b_\ell) = 0$ für alle $1 \le l \le k$.

Induktionschritt. Für alle $1 \le \ell < k+1$ ist

$$f^{k+1}(b_{\ell}) = f(f^k(b_{\ell})) = f(0) = 0.$$

Zudem ist $f(b_{k+1}) = \sum_{\ell=1}^k a_{\ell,k+1} b_\ell$ (die Summe geht nur bis k, da der (k+1)-te Diagonaleintrag von $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ genau 0 ist) und somit

$$f^{k+1}(b_{k+1}) = f^k(f(b_{k+1})) = f^k\left(\sum_{\ell=1}^k a_{\ell,k+1}b_\ell\right) = \sum_{\ell=1}^k a_{\ell,k+1}\underbrace{f^k(b_\ell)}_{0} = 0.$$

Also ist $f^{k+1}(b_{\ell}) = 0$ für alle $1 \le \ell \le k+1$.