Az általánosított polilogaritmusok integráljai

$$(1) \int \frac{\text{Li}_{(b_1,\dots,b_n)}(x)}{x} \, dx = \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

$$(2) \int \frac{\text{Li}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = \text{Li}_{(1,b_1,\dots,b_n)}(x)$$

$$(2') \int \frac{\text{Li}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = \text{Li}_{(1,b_1,\dots,b_n)}(1-x)$$

$$(3) \int \frac{\text{Li}_{(b_1,\dots,b_n)}(x)}{x \cdot (1-x)} \, dx = \text{Li}_{(1,b_1,\dots,b_n)}(x) + \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

$$(3') \int \frac{\text{Li}_{(b_1,\dots,b_n)}(1-x)}{x \cdot (1-x)} \, dx = -\left(\text{Li}_{(1,b_1,\dots,b_n)}(1-x) + \text{Li}_{(b_1+1,\dots,b_n)}(1-x)\right)$$

$$(1) \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{x} \, dx = \text{Le}_{(b_1+1,\dots,b_n)}(x)$$

$$(2') \int \frac{\text{Li}_{(b_1,\dots,b_n)}(x)}{x} \, dx = \text{Le}_{(1,b_1,\dots,b_n)}(x)$$

$$(2') \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{x \cdot (1-x)} \, dx = \text{Le}_{(1,b_1,\dots,b_n)}(x)$$

$$(3') \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = \text{Le}_{(1,b_1,\dots,b_n)}(x) - \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

$$(3') \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = \text{Le}_{(1,b_1,\dots,b_n)}(x) - \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

$$(3') \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = -\text{Le}_{(1,b_1,\dots,b_n)}(x) - \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

$$(3') \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = -\text{Le}_{(1,b_1,\dots,b_n)}(x) - \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

$$(3') \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = -\text{Le}_{(1,b_1,\dots,b_n)}(x) - \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

$$(3') \int \frac{\text{Le}_{(b_1,\dots,b_n)}(x)}{1-x} \, dx = -\text{Le}_{(1,b_1,\dots,b_n)}(x) - \text{Li}_{(b_1+1,\dots,b_n)}(x)$$

Az 1-átvitel kiszámítása néhány ϵ	esetben				
$\operatorname{Li}_{\boldsymbol{a}}(x)$ $\operatorname{Li}_{(1,a_1,a_n)}(x)$	$\frac{\operatorname{Li}_{(0,a_1,\ldots,a_n)}(x)}{x} = \frac{\operatorname{Li}_{(a_1,\ldots,a_n)}(x)}{1-x}$	$\left \operatorname{Li}_{(a_1, \dots a_n)}(x) \right $	$\frac{\operatorname{Li}_{(a_1-1,\ldots,a_n)}(x)}{x}$		
$\begin{array}{c c} \underline{\operatorname{Li}_{b}(x)} \\ x \end{array} \dots \begin{array}{c c} \underline{\operatorname{Li}_{(b_{1}-1,\dots b_{m})}(x)} \\ x \end{array}$	$\operatorname{Li}_{(b_1,b_m)}(x)$	$\frac{\operatorname{Li}_{(b_1,\dots,b_m)}(x)}{1-x}$	$\operatorname{Li}_{(1,b_1,b_n)}(x)$		
	$b ightarrow^+ l$)			
$\operatorname{Li}_{\boldsymbol{a}}(1-x) \ \ \ldots \ \ \operatorname{Li}_{(1,a_1,\ldots,a_n)}(1$	$-x$) $-\frac{\text{Li}_{(0,a_1,a_n)}(1-x)}{1-x} = -\frac{\text{Li}_{(0,a_1,a_n)}(1-x)}{1-x}$	$\frac{(a_1,\dots,a_n)(x)}{x}$ Li ₀	$(a_1,\ldots a_n)(1-x)$	$\frac{\operatorname{Li}_{(a_1-1,\dots,a_n)}(1-x)}{x}$	<u>·)</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\operatorname{Li}_{(b_1,\dots,b_m)}(x)}{x}$	$-\mathrm{Li}_{(b_1+1,b_n)}(x)$			
	$m{b} ightarrow - (_{+}$	(b)			
$Le_{\boldsymbol{a}}(x)$ $Le_{(1,a_1,a_n)}(x)$	$\frac{\operatorname{Le}_{(0,a_1,\ldots,a_n)}(x)}{x} = \frac{\operatorname{Le}_{(a_1,\ldots,a_n)}(x)}{x \cdot (1-x)}$		$\frac{\operatorname{Le}_{(a_1-1)}}{\operatorname{Le}_{(a_1-1)}}$	$\frac{1}{x}$, a_n) (x)	
$\left \begin{array}{c c} \underline{\mathrm{Li}_b(x)} \\ x \end{array} \right \dots \left \begin{array}{c c} \underline{\mathrm{Li}_{(b_1-1,\dots,b_m)}(x)} \\ x \end{array} \right $	$\operatorname{Li}_{(b_1,b_m)}(x)$	$\frac{\operatorname{Li}_{(b_1,\dots,b_m)}(x)}{x\cdot(1-x)}$		$+ \operatorname{Li}_{(1+b_1, \dots, b_n)}(x)$	
	$b ightarrow^+b^+$	$_{+}b$			

$\operatorname{Le}_{\boldsymbol{a}}(1-x)$ $\operatorname{Le}_{\boldsymbol{0}}(1-x)$	$\frac{1,a_1,\ldots,a_n}{1}(1-x)$ $-\frac{\operatorname{Le}_{(0,a)}}{1}$	$\frac{1}{1-x} = -\frac{\text{Le}_{(a_1,\dots a_n)}(1-x)}{x \cdot (1-x)}$	$\frac{(1-x)}{(x)}$ $\mathbb{E}_{(a_1,\ldots,a_n)}(1-x)$	
$\frac{\operatorname{Li}_{\boldsymbol{b}}(x)}{x}$ Li	$\frac{\mathbf{i}_{(b_1-1,\dots b_m)}(x)}{x}$	$\mathrm{Li}_{(b_1,b_m)}(x)$	$-\frac{\operatorname{Li}_{(b_1,\dots,b_m)}(x)}{x\cdot(1-x)}$	
$\frac{\operatorname{Le}_{(a_1-1,\ldots,a_n)}(x)}{-\left(\operatorname{Li}_{(1,b_1,\ldots,b_n)}(x)-\operatorname{Li}_{(a_1-1,\ldots,a_n)}(x)\right)}$	$\frac{(1-x)}{(1+b_1,\dots,b_n)}(x) \qquad \dots$			
		$oldsymbol{b} ightarrow ^+ oldsymbol{b} + _+ oldsymbol{b}$		

2 Alapvető vektorműveletek, lépések

Az alábbiakban definiálunk négy darab egyváltozós vektorműveletet, amelyek mindegyike egy vektor elejét változtatja meg.

$$(a_1, a_2, \dots a_n) = (1, a_1, a_2, \dots a_n)$$

$$(1, a_2, \dots a_n) = (a_2, a_3, \dots a_n)$$

$$(a_1, a_2, \dots a_n) = (a_1 + 1, a_2, \dots a_n)$$

$$(a_1, a_2, \dots a_n) = (a_1 - 1, a_2, \dots a_n)$$

Ezen egyváltozós műveletek segítségével négy kétváltozós vektorműveletet definiálunk. Ezek mindegyike az általánosított polilogaritmusok integrálásakor alkalmazott lépések egyike. Az első kettő a sztandard lépés, illetve annak duálisa, míg a második kettő at 1-átvitel és annak duálisa.

$$(\mathbf{a} \mid \mathbf{b}) \longrightarrow (-\mathbf{a} \mid +\mathbf{b}) \qquad (a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1 - 1, a_2, \dots a_n \mid b_1 + 1, b_2, \dots, b_m)$$

$$(\mathbf{a} \mid \mathbf{b}) \longrightarrow (-\mathbf{a} \mid +\mathbf{b}) \qquad (a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1 - 1, a_2, \dots a_n \mid 1, b_1, b_2, \dots, b_m)$$

$$(\mathbf{a} \mid \mathbf{b}) \longrightarrow (-\mathbf{a} \mid +\mathbf{b}) \qquad (1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_2, \dots a_n \mid 1, b_1, b_2, \dots, b_m)$$

$$(\mathbf{a} \mid \mathbf{b}) \longrightarrow (-\mathbf{a} \mid +\mathbf{b}) \qquad (1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_2, \dots a_n \mid b_1 + 1, b_2, \dots, b_m)$$

Ha az $(a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m)$ párosban $a_1 > 1$, akkor a sztandard lépés, ha pedig $a_1 = 1$, akkor az 1-átvitel valamelyik változatát hajtjuk végre.

Szükségünk lesz még az alábbi két kétváltozós vektorműveletre, amelyek az általánosított polilogaritmusok integrálásakor az inicializálás megfelelői.

$$(\boldsymbol{a} \mid \boldsymbol{b}) \longrightarrow (\boldsymbol{a} \mid \boldsymbol{+}\boldsymbol{b}) \qquad (a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1, a_2, \dots a_n \mid b_1 + 1, b_2, \dots, b_m)$$
$$(\boldsymbol{a} \mid \boldsymbol{b}) \longrightarrow (\boldsymbol{a} \mid \boldsymbol{+}\boldsymbol{b}) \qquad (a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1, a_2, \dots a_n \mid 1, b_1, b_2, \dots, b_m)$$

3 Fázisok táblázatai

Az a vektor egyértelműen meghatározza a végrehajtandó lépések sorozatát. Például a = (4, 1, 3) indexvektor esetén a lépések sora így alakul:

$$(4,1,3) \stackrel{\mathrm{std}}{\rightarrow} (3,1,3) \stackrel{\mathrm{std}}{\rightarrow} (2,1,3) \stackrel{\mathrm{std}}{\rightarrow} (1,1,3) \stackrel{1-\acute{\mathrm{atv}}}{\rightarrow} (1,3) \stackrel{1-\acute{\mathrm{atv}}}{\rightarrow} (3) \stackrel{\mathrm{std}}{\rightarrow} (2) \stackrel{\mathrm{std}}{\rightarrow} (1) \stackrel{1-\ddot{\mathrm{urit}}}{\rightarrow} (1) \stackrel{1-\ddot{\mathrm$$

Sokkal nehezebb megmondani, hogy egy konkrét integrálási feladatban az egyes fázisokban (lépések végrehajtásakor) mi történik a \boldsymbol{b} vektorral. Egy általános

$$\int \frac{\mathbf{L}_{\boldsymbol{a}}(X_a) \cdot \mathbf{L}_{\boldsymbol{b}}(X_b)}{X} \, \mathrm{d}x$$

integrálási feladat az $L_a = \text{Li/Le}$, $L_b = \text{Li/Le}$, $X_a = x/1 - x$, $X_b = x/1 - x$, X = x/1 - x változók megválasztásától függ, amely összesen $2^5 = 32$ lehetőséget jelent. Ezek mindegyikében megadható a \boldsymbol{b} vektor alakulása a négy különböző fázisban. Ezeket foglaltuk össze az alábbi táblázatokban.

Inicializálás	$\int \frac{1}{x}$	$\int \frac{1}{1-x}$		Sztandard lépés	$L_{\boldsymbol{a}}(x)$	$L_{\boldsymbol{a}}(1-x)$
$\operatorname{Li}_{\boldsymbol{b}}(x)$	+b	+b	_	$\mathrm{Li}_{m{b}}(x)$	+b	-(+b)
$\text{Li}_{\boldsymbol{b}}(1-x)$	-(+b)	$-({}_{+}b)$		$\mathrm{Li}_{\boldsymbol{b}}(1-x)$	-(+b)	$_{+}b$
$Le_{\boldsymbol{b}}(x)$	$_{+}b$	^+b+b		$Le_{\boldsymbol{b}}(x)$	$_{+}b$	$-\left(^{+}b{+}b\right)$
$Le_{\boldsymbol{b}}(1-x)$	-(+b-+b)	$-\left({}_{+}\boldsymbol{b}\right)$		$\text{Le}_{\boldsymbol{b}}(1-x)$	-(+b-+b)	$_{+}b$

Megjegyzés: A sztandard lépés tánlázata csak annyiban különbözik az inicializálás táblázatától, hogy a második oszlopot -1-gyel megszorozzuk.

1-átvitel	$\mathrm{Li}_{m{a}}(x)$	$\operatorname{Li}_{\boldsymbol{a}}(1-x)$	$\text{Le}_{\boldsymbol{a}}(x)$	$\text{Le}_{\boldsymbol{a}}(1-x)$		1-ürítés	$L_{\boldsymbol{a}}(x)$	$L_{\boldsymbol{a}}(1-x)$
$\operatorname{Li}_{\boldsymbol{b}}(x)$	+b	-(+b)	$^{+}b + _{+}b$	$-\left(^{+}b+_{+}b\right)$	•	$\mathrm{Li}_{m{b}}(x)$	+b	$-(_{+}b)$
$\mathrm{Li}_{\boldsymbol{b}}(1-x)$	$-(_{+}b)$	^+b	$-\left(^{+}b+{}_{+}b ight)$	$^+b+_+b$		$\text{Li}_{\boldsymbol{b}}(1-x)$	$-(_{+}b)$	^+b
$\text{Le}_{\boldsymbol{b}}(x)$	$^{+}b{+}b$	$-(_{+}b)$	^+b	$-\left(^{+}\boldsymbol{b}\right)$		$\text{Le}_{\boldsymbol{b}}(x)$	$^{+}b{+}b$	$-(_{+}b)$
$\text{Le}_{\boldsymbol{b}}(1-x)$	$-(_{+}b)$	^+b+b	$-\left(^{+}b\right)$	^+b		$\text{Le}_{\boldsymbol{b}}(1-x)$	$-(_{+}b)$	^+b+b

Megjegyzés: Az 1-ürítés tánlázata megegyezik az 1-átvitel táblázatának első két oszlopával.

A 32 lehetséges esetet egy összefoglaló táblázata:

		$\operatorname{Li}_{oldsymbol{a}}$	(x)	Li _a (1 -	- x)	Le	$\mu(x)$	$\text{Le}_{\boldsymbol{a}}(1 -$	- x)
	$\operatorname{Li}_{\boldsymbol{b}}(x)$	+b	+ b	^+b	-(+b)	+b	+b	$^{+b}$	-(+b)
	210(11)	+ _b	^+b	$-\left(+oldsymbol{b} ight)$	$-\left(+b\right)$	+b+b	^+b	$-\left(^{+}b+{}_{+}b\right)$	$-\left({}_{+}b ight)$
	$\operatorname{Li}_{\boldsymbol{b}}(1-x)$	- (+b)	-(+b)	-(+b)	^+b	- (+b)	-(+b)	-(+b)	+b
$\int \frac{1}{x}$		-(+b)	$-\left({}_{+}b ight)$	$+_{b}$	$+_{m b}$	-(+b++b)	$-\left({}_{+}b ight)$	$^{+}b + _{+}b$	+b
$\int x$	$Le_{\boldsymbol{b}}(x)$	+b	^+b	^+b	+b-+b	+b	^+b	^+b	+b-+b
	0(**)	+b-+b	^+b+b	$-\left(+oldsymbol{b} ight)$	$-\left(+\boldsymbol{b}\right)$	+6	^+b+b	-(+b)	-(+b)
	$Le_{\boldsymbol{b}}(1-x)$	-(+b-+b)	-(+b-+b)	-(+b-+b)	^+b	-(+b-+b)	-(+b-+b)	-(+b-+b)	^+b
		-(+b)	$-\left({}_{+}b ight)$	$^{+}b - {}_{+}b$	$^{+}b{+}b$	-(+b)	$-\left(+b\right)$	$+_{m b}$	^+b+b
	$\operatorname{Li}_{\boldsymbol{b}}(x)$	+ _b	^+b	$+_{b}$	-(+b)	+6	^+b	$+_{m b}$	-(+b)
		+ _b	+b	$-\left(_{m{+}}m{b} ight)$	$-\left({}_{+}b ight)$	+b+b	$+_{b}$	$-\left(^{+}b+{}_{+}b ight)$	$-\left({}_{+}b ight)$
	$\operatorname{Li}_{\boldsymbol{b}}(1-x)$	- (+b)	-(+b)	-(+b)	$_{+}b$	- (+b)	-(+b)	-(+b)	^+b
$\int \frac{1}{1-x}$	O ()	-(+b)	$-\left(+oldsymbol{b} ight)$	$+_{m b}$	+b	-(+b++b)	$-\left(+\mathbf{b}\right)$	$^{+}b + _{+}b$	+6
J 1-x	$Le_{\boldsymbol{b}}(x)$	+b-+b	^+b	$^{+}b - ^{+}b$	+b-+b	+b-+b	^+b	$^{+}b - ^{+}b$	+b-+b
	0(**)	+b-+b	^+b+b	-(+b)	$-\left(+\boldsymbol{b}\right)$	+6	^+b+b	-(+b)	-(+b)
	$Le_{\boldsymbol{b}}(1-x)$	- (+b)	-(+b-+b)	-(+b)	^+b	- (+b)	-(+b-+b)	-(+b)	+b
		-(+b)	$-\left({}_{+}b ight)$	$^{+}b - {}_{+}b$	+b-+b	-(+b)	$-\left(+b\right)$	$+_{b}$	$^{+}b - {}_{+}b$

4 A polilogaritmus integrálok 10 alapesete

Elegendő az alábbi tíz esetet tisztázni, mert ezekből az összes többi tükrözéssel, illetve pozíciócserével megkapható.

$$\int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(1-x)}{1-x} \, \mathrm{d}x \xrightarrow{\operatorname{tükrözés}} \int \frac{\operatorname{Li}_{\boldsymbol{a}}(1-x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x \text{ és } \int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(1-x)}{1-x} \, \mathrm{d}x \xrightarrow{\operatorname{pozíció csere}} \int \frac{\operatorname{Li}_{\boldsymbol{b}}(x) \cdot \operatorname{Li}_{\boldsymbol{a}}(1-x)}{1-x} \, \mathrm{d}x$$

$$\operatorname{LiLi} \quad (1) \int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x \quad (2) \int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{1-x} \, \mathrm{d}x \quad (3) \int \frac{\operatorname{Li}_{\boldsymbol{a}}(1-x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x$$

$$\operatorname{LeLe} \quad (4) \int \frac{\operatorname{Le}_{\boldsymbol{a}}(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x \quad (5) \int \frac{\operatorname{Le}_{\boldsymbol{a}}(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{1-x} \, \mathrm{d}x \quad (6) \int \frac{\operatorname{Le}_{\boldsymbol{a}}(1-x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x$$

$$\operatorname{LiLe} \quad (7) \int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x \quad (8) \int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{1-x} \, \mathrm{d}x \quad (9) \int \frac{\operatorname{Li}_{\boldsymbol{a}}(1-x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x \quad (10) \int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(1-x)}{x} \, \mathrm{d}x$$

	$\underline{\operatorname{Li}_{\boldsymbol{a}}(x)}$	$\cdot \operatorname{Li}_{\boldsymbol{b}}(x)$			$\frac{\operatorname{Li}_{\boldsymbol{a}}(1-x)}{1-x}$	$\cdot \operatorname{Li}_{\boldsymbol{b}}(1-x)$		
1	+ b	x $+\boldsymbol{b}$			$-(+\boldsymbol{b})$			
	$+_{\boldsymbol{b}}$	$+_{m{b}}$			+b			
	$\frac{\operatorname{Li}_{\boldsymbol{a}}(x)}{1}$	$\cdot \operatorname{Li}_{\boldsymbol{b}}(x)$			$\frac{\operatorname{Li}_{\boldsymbol{a}}(1-x)}{x}$	$\cdot \operatorname{Li}_{\boldsymbol{b}}(1-x)$		
2	+ b	$-x$ $+\boldsymbol{b}$			-(+b)			
	+b	^{+}b			+6			
	$\operatorname{Li}_{\boldsymbol{a}}(1-s)$	$(x) \cdot \text{Li}_{\boldsymbol{b}}(x)$	$\frac{\operatorname{Li}_{\boldsymbol{b}}(1-x)}{x}$	$\cdot \operatorname{Li}_{\boldsymbol{a}}(x)$	$\frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{L}}{1 - }$	$\operatorname{d}_{\boldsymbol{b}}(1-x)$	$\frac{\operatorname{Li}_{\boldsymbol{b}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{1 - }$	$\mathbf{i}_{\boldsymbol{a}}(1-x)$
3	+b	x - (+b)	-(+b)	-(+b)	$-(+\boldsymbol{b})$	-x $-(+b)$	+ _b	
			$-(+\boldsymbol{b})$				-(+b)	
	$\underline{\operatorname{Le}_{\boldsymbol{a}}(x)}$				$\frac{\operatorname{Le}_{\boldsymbol{a}}(1-x)}{1-}$			
4		x $+\boldsymbol{b}$			$-(+\boldsymbol{b})$			
		$^{+}b{+}b$				$^{+}b{+}b$		
	$\frac{\operatorname{Le}_{\boldsymbol{a}}(x)}{1}$	$\cdot \operatorname{Le}_{\boldsymbol{b}}(x)$			$\frac{\operatorname{Le}_{\boldsymbol{a}}(1-x)}{x}$	$\cdot \operatorname{Le}_{\boldsymbol{b}} 1 - (x)$		
5	+b-+b				$-(+b-+b)^{3}$	r + b		
		^+b+b				^+b+b		
	$\operatorname{Le}_{\boldsymbol{a}}(1-a)$	$(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)$	$Le_{\boldsymbol{b}}(1-x)$	$\cdot \operatorname{Le}_{\boldsymbol{a}}(x)$	$Le_{\boldsymbol{a}}(x) \cdot L$	$e_{\boldsymbol{b}}(1-x)$	$Le_{\boldsymbol{b}}(x) \cdot L$	$e_{\boldsymbol{a}}(1-x)$
	,	· ·	· · · · · · · · · · · · · · · · · · ·		1_	- m	1_	- <i>x</i>
6	+ b	\overline{x} $-(+b-+b)$	-(+b-+b)	-(+b-+b)	$-(+\boldsymbol{b})$	-x $-(+b-+b)$	$ \frac{\operatorname{Le}_{\boldsymbol{b}}(x) \cdot \operatorname{L}}{1 - 1} + \mathbf{b} - \mathbf{b} $	$-\frac{x}{-(+b-+b)}$
6	$_{+}b$	$-\left(^{+}b{+}b\right)$	$-(+\boldsymbol{b}{+}\boldsymbol{b})^{x}$ $-(+\boldsymbol{b})$	$-\left(^{+}b{+}b\right)$	$-(+\boldsymbol{b})$	$-\left(^{+}b{+}b\right)$	+b-+b	$-\left(^{+}b{+}b\right)$
6	+ b - (+ b)	$-\left(+\boldsymbol{b}-+\boldsymbol{b}\right)$ $-\left(+\boldsymbol{b}\right)$	-(+b-+b) $-(+b)$	$-\left(^{+}b{+}b\right)$ $-\left(_{+}b\right)$	$-(+\mathbf{b})$ $-(+\mathbf{b})$	$-\left(+\boldsymbol{b}-+\boldsymbol{b}\right)$ $-\left(+\boldsymbol{b}\right)$	+b-+b $-(+b)$	$-\left(^{+}b{+}b\right)$ $-\left(_{+}b\right)$
7	$+b$ $-(+b)$ $\underline{\operatorname{Li}_{\boldsymbol{a}}(x)}$	$-(+\mathbf{b} - +\mathbf{b})$ $-(+\mathbf{b})$ $\cdot \operatorname{Le}_{\mathbf{b}}(x)$ x	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{b}(x)\cdot I}{x}$	-(+b - +b) $-(+b)$ $-(a)$ $-(a)$	$-(+\mathbf{b})$ $-(+\mathbf{b})$ $\frac{\text{Li}_{\mathbf{a}}(1-x)}{1-(+\mathbf{b})}$	$-(+b-+b)$ $-(+b)$ $+ Le_b(1-x)$ $+ x$	$ \begin{array}{c c} +b - +b \\ -(+b) \\ \hline & \underline{\text{Li}_{b}(1-x)} \cdot \\ -(+b) \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \underline{-(+b)} \\ -x \\ +b \end{array} $
	$+b$ $-(+b)$ $\frac{\operatorname{Li}_{\boldsymbol{a}}(x)}{+b}$	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline \cdot \operatorname{Le}_{b}(x) \\ x \\ +b \end{array} $	-(+b-+b) $-(+b)$	-(+b-+b) $-(+b)$ $-(a)$ $+b$	$-(+\mathbf{b})$ $-(+\mathbf{b})$ $\frac{\text{Li}_{\mathbf{a}}(1-x)}{1-(+\mathbf{b})}$	$-(+b-+b)$ $-(+b)$ $+ Le_b(1-x)$ $+ x$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \underline{\text{Li}_b(1-x)} \cdot \\ 1 - \\ \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \underline{-(+b)} \\ -x \\ +b \end{array} $
	$ \begin{array}{c} +b \\ -(+b) \\ \underline{\text{Li}_{a}(x)} \\ +b \\ +b-+b \end{array} $	-(+b-+b) $-(+b)$ $+b$ $+b-+b$	$-(+b - +b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}}{x}$ $+b$ $+b++b$	-(+b - +b) $-(+b)$ $-(ab)$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ 1 - \\ -(+b) \\ +b + +b \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$
	$ \begin{array}{c} +b \\ -(+b) \\ \underline{\text{Li}_{a}(x)} \\ +b \\ +b-+b \end{array} $	-(+b-+b) $-(+b)$ $+b$ $+b-+b$	$-(+b-+b)$ $-(+b)$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot\operatorname{I}}{x}$ $+b$	-(+b - +b) $-(+b)$ $-(ab)$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ 1 - \\ -(+b) \\ +b + +b \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$
7	$ \begin{array}{c} +b \\ -(+b) \\ \underline{\text{Li}_{a}(x)} \\ +b \\ +b-+b \\ \underline{\text{Li}_{a}(x)} \\ 1-b-+b \end{array} $	-(+b-+b) $-(+b)$ x $+b$ $+b-+b$ $-x$ $+b$	$-(+b - +b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}}{x}$ $+b$ $+b++b$	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $-(-a(x))$ x $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-(+b-+b)}$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b$ $+b$ $+b$ $+b$	$ \begin{array}{c} +\mathbf{b} - + \mathbf{b} \\ - (+\mathbf{b}) \\ \hline \underline{\text{Li}_{\mathbf{b}}(1-x) \cdot} \\ - (+\mathbf{b}) \\ +\mathbf{b} + + \mathbf{b} \\ \hline \underline{\text{Li}_{\mathbf{b}}(1-x) \cdot} \\ - (+\mathbf{b}) \\ +\mathbf{b} + + \mathbf{b} \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$
7	$ \begin{array}{c} +b \\ -(+b) \end{array} $ $ \begin{array}{c} \text{Li}_{a}(x) \\ +b \\ +b-+b \end{array} $ $ \begin{array}{c} \text{Li}_{a}(x) \\ 1 \\ +b-+b \end{array} $ $ \begin{array}{c} +b-+b \\ +b-+b \end{array} $	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{x}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{1-}$ $+b$ $+b++b$	-(+b-+b) $-(+b)$ $+b$ $+b$ $+a$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-(+b-+b)}$ $-(+b-+b)$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b$ $+b$ $+b$ $+b$	$ \begin{array}{c} +\mathbf{b} - + \mathbf{b} \\ - (+\mathbf{b}) \\ \hline \underline{\text{Li}_{\mathbf{b}}(1-x) \cdot} \\ - (+\mathbf{b}) \\ +\mathbf{b} + + \mathbf{b} \\ \hline \underline{\text{Li}_{\mathbf{b}}(1-x) \cdot} \\ - (+\mathbf{b}) \\ +\mathbf{b} + + \mathbf{b} \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$
7	$ \begin{array}{c} +b \\ -(+b) \end{array} $ $ \begin{array}{c} \text{Li}_{a}(x) \\ +b \\ +b-+b \end{array} $ $ \begin{array}{c} \text{Li}_{a}(x) \\ 1 \\ +b-+b \end{array} $ $ \begin{array}{c} +b-+b \\ +b-+b \end{array} $	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$	$-(+b-+b)$ $-(+b)$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot\operatorname{I}}{x}$ $+b$ $+b++b$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot\operatorname{I}}{1-}$	-(+b-+b) $-(+b)$ $+b$ $+b$ $+a$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-(+b-+b)}$ $-(+b-+b)$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b$ $+b$ $+b$ $+b$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot } \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(1-x) \cdot } \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(x) \cdot \text{Le}} \\ \hline \underline{\text{Li}_{b}(x) \cdot \text{Le}} \\ 1 - \\ \hline \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$
7 8	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1-b}$ $+b-+b$ $\frac{\text{Li}_{a}(1-a)}{+b}$ $+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$ $+(+b-+b)$ $+(+b-+b)$ $+(+b-+b)$	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{x}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{1-}$ $+b$ $+b++b$	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$ $-(+b)$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-(+b-+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(x) \cdot \text{Li}_{a}(x)}{1-(+b)}$	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ -(+b) \\ \hline -(+b) \\ -(+b) \\ -(+b-+b) \\ \hline -(+b-+b) \\ -(+b-+b) \\ -(+b-+b) \end{array} $	$ \begin{array}{c} +\mathbf{b} - + \mathbf{b} \\ - (+\mathbf{b}) \\ \hline \underline{\text{Li}_{\mathbf{b}}(1-x) \cdot} \\ - (+\mathbf{b}) \\ +\mathbf{b} + + \mathbf{b} \\ \hline \underline{\text{Li}_{\mathbf{b}}(1-x) \cdot} \\ - (+\mathbf{b}) \\ +\mathbf{b} + + \mathbf{b} \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+a(1-x)$ $+b$ $+a(1-x)$ $-(+b)$
7 	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1}$ $+b-+b$ $\frac{\text{Li}_{a}(1-a)}{+b}$ $+b$ $-(+b)$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ x $+b-+b$ x $+(b-+b)$ x $-(+b-+b)$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $\frac{\operatorname{Li}_{b}(x) \cdot \operatorname{I}_{x}}{x}$ $+b$ $+b++b$ $\frac{\operatorname{Li}_{b}(x) \cdot \operatorname{I}_{1-}}{1-}$ $+b$ $+b++b$ $\frac{\operatorname{Li}_{b}(1-x)}{x}$ $-(+b)$ $-(+b++b)$	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $-(+b)$ $-(+b)$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-}$ $-(+b)$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-}$ $-(+b-+b)$ $+b-+b$ $\frac{\text{Li}_{a}(x) \cdot \text{Li}_{a}(x)}{1-}$ $-(+b)$	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ -(+b) \\ \hline -(+b) \\ -(+b) \\ \hline -(+b-+b) \\ \hline -(+b-+b) \\ -(+b) \\ -(+b) \\ \hline -(+b) \end{array} $	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_b(1-x) \cdot } \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_b(1-x) \cdot } \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_b(x) \cdot \text{Le}} \\ +b \\ -(+b + +b) \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+a(1-x)$ $+b$ $+a(1-x)$ $-(+b)$ $-(+b)$
7 	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1}$ $+b-+b$ $\frac{\text{Li}_{a}(1-a)}{+b}$ $+b$ $-(+b)$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ x $+b-+b$ x $+(b-+b)$ x $-(+b-+b)$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot\operatorname{I}_{\boldsymbol{x}}}{x}$ $+b$ $+b++b$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot\operatorname{I}_{\boldsymbol{1}-}}{1-}$ $+b$ $+b++b$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(1-x)}{x}$ $-(+b)$	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $-(+b)$ $-(+b)$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-}$ $-(+b)$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-}$ $-(+b-+b)$ $+b-+b$ $\frac{\text{Li}_{a}(x) \cdot \text{Li}_{a}(x)}{1-}$ $-(+b)$	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ -(+b) \\ \hline -(+b) \\ -(+b) \\ \hline -(+b-+b) \\ \hline -(+b-+b) \\ -(+b) \\ -(+b) \\ \hline -(+b) \end{array} $	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_b(1-x) \cdot } \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_b(1-x) \cdot } \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_b(x) \cdot \text{Le}} \\ +b \\ -(+b + +b) \end{array} $	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+a(1-x)$ $+b$ $+a(1-x)$ $-(+b)$ $-(+b)$

A fenti táblázat a tíz alapesetet, és azok transzformáltjait tartalmazza. A táblázatból kiderül, hogy a tíz alapfeladat mindegyikének van olyan ekvivalens változata, amelyben legfeljebb csak egyetlen fázisban jelentkezik a b vektor hasadása.

5 Példák

1. példa

Az L $_a$ = Li, L $_b$ = Le, X_a = 1 - x, X_b = x, X = x, illetve a = (2,3) és b = (4) paraméterek beállításával a szürke kijelzőben rögtön az alábbi kimenet látható:

$$\int \frac{\operatorname{Li}_{(2,3)}(1-x) \cdot \operatorname{Le}_{(4)}(x)}{x} \, \mathrm{d}x \qquad \begin{bmatrix} +\boldsymbol{b} & +\boldsymbol{b} - +\boldsymbol{b} \\ -(+\boldsymbol{b}) & -(+\boldsymbol{b}) \end{bmatrix}$$

Az integrál csak jól kivehetően mutatja a bevitt feladatot. Az elöző táblázatból az is kiolvasható, hogy ez éppen a 9. alapfeladat, melynek fázismátrixa jelenik meg az integrál után. Ebből azt tudjuk meg, hogy a négy különböző fázisban mi történik a \boldsymbol{b} vektorral az integrálási feladat során:

inicializálás:
$$b \to +b$$
 standard lépés: $b \to -(+b-+b) = +b-+b$
1-átvitel: $b \to -(+b)$ 1-ürítés: $b \to -(+b)$

Az a vektor pedig egyértelműen meghatározza a végrehajtandó lépések sorozatát:

$$\stackrel{\text{init}}{\rightarrow} (2,3) \stackrel{\text{std}}{\rightarrow} (1,3) \stackrel{\text{atv}}{\rightarrow} (3) \stackrel{\text{std}}{\rightarrow} (2) \stackrel{\text{std}}{\rightarrow} (1) \stackrel{\text{veg}}{\rightarrow} ()$$

(A fázisokra a következő rövidítéseket használjuk. initializálás: init; standard lépés: std; 1-átvitel: atv; 1-ürítés: veg) A Calculate gombra kattintva az alábbi kimentet kapjuk:

A sor legelső tagja csak a bevitt feladatot jeleníti meg. Minden egyes táblázat fejlécében az \boldsymbol{a} vektor található, a parciális integrálás során fellépő szokásos előjelváltásokkal együtt. A fázismátrix szerint a $\boldsymbol{b}=(4)$ vektor inicializáláskor a $\boldsymbol{b}\to +\boldsymbol{b}$ szabály szerint változik. Ez konkrétan a $+(4)\to +(5)$ eredményt adja. A következő egy standard lépés, amely során a \boldsymbol{b} vektor a $\boldsymbol{b}\to +\boldsymbol{b}-+\boldsymbol{b}$ hasadást szenvedi. Vagyis, az egyetlen $\boldsymbol{b}=(5)$ vektorból képeznünk kell a $_+(5)=(6)$, illetve a $_-(+(5))=-(1,5)$ vektorokat tartalmazó $\{(-(1,5);(6)\}$ vektorhalmazt. Az ezt követő 1-átvitelkor a fázismátrix szerint a $\boldsymbol{b}\to -(_+\boldsymbol{b})$ átalakítást kell elvégeznünk a $\{(-(1,5);(6)\}$ vektorhalmaz minden egyes elmén: $\{(-(1,5);(6)\}\to \{(2,5);-(7)\}$, ami szerencsére nem okozott hasadást. A következő két standard lépés során viszont hasadni fog a most már kételemű \boldsymbol{b} vektorhalmaz, így nyolc eleműre duzzad:

Végül a befejező 1-ürítéskor a fázismátrix szerint a $b \to -({}_+b)$ transzformációt kell alkalmazni a b vektorhalmazon, ami szerencsére nem jelent további hasadást.

Az integrált pedig az összes a vektor és az oszlopában található b vektorok előjeles szorzatösszege adja. Ezt a programmal is kiírathatjuk, ha a kétállású gomb átállításával a HTML kimenet helyett a MathJax kimenetet vállasztjuk, és a beállításokban a Show math as functions jelölő négyzetet kipipáljuk.

$$\int \frac{\operatorname{Li}_{(2,3)}(1-x) \cdot \operatorname{Le}_{(4)}(x)}{x} \, \mathrm{d}x = \operatorname{Li}_{(2,3)}(1-x) \cdot \operatorname{Le}_{(5)}(x) - \operatorname{Li}_{(1,3)}(1-x) \cdot \left[-\operatorname{Le}_{(1,5)}(x) + \operatorname{Le}_{(6)}(x) \right] + \\ + \operatorname{Li}_{(3)}(1-x) \cdot \left[\operatorname{Le}_{(2,5)}(x) - \operatorname{Le}_{(7)}(x) \right] - \operatorname{Li}_{(2)}(1-x) \cdot \left[-\operatorname{Le}_{(1,2,5)}(x) + \operatorname{Le}_{(1,7)}(x) + \operatorname{Le}_{(3,5)}(x) - \operatorname{Le}_{(8)}(x) \right] + \\ + \operatorname{Li}_{(1)}(1-x) \cdot \left[\operatorname{Le}_{(1,1,2,5)}(x) - \operatorname{Le}_{(1,1,7)}(x) - \operatorname{Le}_{(1,3,5)}(x) + \operatorname{Le}_{(1,8)}(x) - \operatorname{Le}_{(2,2,5)}(x) + \operatorname{Le}_{(2,7)}(x) + \operatorname{Le}_{(4,5)}(x) - \operatorname{Le}_{(9)}(x) \right] - \\ - \operatorname{Li}_{(1)}(1-x) \cdot \left[-\operatorname{Le}_{(2,1,2,5)}(x) + \operatorname{Le}_{(2,1,7)}(x) + \operatorname{Le}_{(2,3,5)}(x) - \operatorname{Le}_{(2,8)}(x) + \operatorname{Le}_{(3,2,5)}(x) - \operatorname{Le}_{(3,7)}(x) - \operatorname{Le}_{(5,5)}(x) + \operatorname{Le}_{(10)}(x) \right]$$