Herramientas de Teledetección Cuantitativa

Clase 2

Francisco Nemiña

Unidad de Educación y Formación Masiva Comisión Nacional de Actividades Espaciales

Esquema de presentación

Transferencia radiativa Planteo del problema

Aproximaciones

Absorción constante y sin fuentes
Atmósfera plana

Atmósfera

Absorciones

Dispersión

Soluciones practicas

Reflectancia

Correccion atmosferica

Práctica

Problema

Queremos estudiar el problema de adquirir una imagen satelital cuando hay atmósfera presente. Para esto estudiaremos la variacón de la radiancia.

 L_{λ}

Problema

Queremos estudiar el problema de adquirir una imagen satelital cuando hay atmósfera presente. Para esto estudiaremos la variacón de la radiancia.

 L_{λ}

Interacciones entre la atmósfera y la luz.1

¹John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Diagrama esquemático de la absorción en la atmósfera.²

² John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Diagrama esquemático de las dispersiónes en la atmósfera.³

³John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Formulación matemática

$$dL_{\lambda} = -k_{\lambda}\rho L_{\lambda}ds + j_{\lambda}\rho ds$$

donde $-k_{\lambda}\rho L_{\lambda}ds$ representa absorciones y $j_{\lambda}\rho ds$ representa fuentes,

$$\frac{dL_{\lambda}}{k_{\lambda}\rho ds} = -L_{\lambda} + J_{\lambda}$$

Nombres

- \triangleright k_{λ} mass extintion cross section
- \triangleright j_{λ} source function coefficient
- ρ densidad

Formulación matemática

$$dL_{\lambda} = -k_{\lambda}\rho L_{\lambda}ds + j_{\lambda}\rho ds$$

donde $-k_{\lambda}\rho L_{\lambda}ds$ representa absorciones y $j_{\lambda}\rho ds$ representa fuentes,

$$\frac{dL_{\lambda}}{k_{\lambda}\rho ds} = -L_{\lambda} + J_{\lambda}$$

Nombres

- \triangleright k_{λ} mass extintion cross section
- \triangleright j_{λ} source function coefficient
- $\triangleright \rho$ densidad

Formulación matemática

$$dL_{\lambda} = -k_{\lambda}\rho L_{\lambda}ds + j_{\lambda}\rho ds$$

donde $-k_{\lambda}\rho L_{\lambda}ds$ representa absorciones y $j_{\lambda}\rho ds$ representa fuentes,

$$\frac{dL_{\lambda}}{k_{\lambda}\rho ds} = -L_{\lambda} + J_{\lambda}$$

Nombres

- \blacktriangleright k_{λ} mass extintion cross section
- j_{λ} source function coefficient
- ightharpoonup
 ho densidad

Aproximaciones

Resolver esto en general es imposible. Tendremos que hacer distintas aproximaciones.

Esquema de presentación

Transferencia radiativa Planteo del problema

Aproximaciones
Absorción constante y sin fuentes
Atmósfera plana

Atmósfera Absorciones Dispersión

Soluciones practicas
Reflectancia
Correccion atmosferica

Práctica

$$k_{\lambda}=cte,\,j_{\lambda}=0$$

En este caso nos queda la ecuación

$$dL_{\lambda} = -k_{\lambda}\rho L_{\lambda}ds$$

cuya solución es

$$L_{\lambda}(s_1) = L_{\lambda}(0) \exp\left(-\int_0^{s_1} k_{\lambda} \rho ds\right)$$

$k_{\lambda} = cte, j_{\lambda} = 0$

En este caso nos queda la ecuación

$$dL_{\lambda} = -k_{\lambda}\rho L_{\lambda}ds$$

cuya solución es

$$L_{\lambda}(s_1) = L_{\lambda}(0) \exp\left(-\int_0^{s_1} k_{\lambda} \rho ds\right)$$

$$k_{\lambda}=cte,\,j_{\lambda}=0$$

Notando

$$u = \int_0^{s_1} \rho ds$$

nos queda la ecuación mas compacta

$$L_{\lambda}(s_1) = L_{\lambda}(0)e^{-k_{\lambda}u}$$

conocida como ley de Beer-Bouguer-Lambert.

Definición

Llamamos transmitancia espectral al valor

$$T_{\lambda} = \frac{L_{\lambda}}{L_{\lambda}(0)} = e^{-k_{\lambda}u}$$

Utilidad

Si definimos la transmitancia como arriba:

$$L_{\lambda} = T_{\lambda} L_{\lambda}(0)$$

Definición

Llamamos transmitancia espectral al valor

$$T_{\lambda} = \frac{L_{\lambda}}{L_{\lambda}(0)} = e^{-k_{\lambda}u}$$

Utilidad

Si definimos la transmitancia como arriba:

$$L_{\lambda} = T_{\lambda}L_{\lambda}(0)$$

Atmósfera plana

Suponemos que toda la dependencia espacial es en la dirección z, entonces

$$\mu \frac{dL_{\lambda}}{k_{\lambda}\rho dz} = -L_{\lambda} + J_{\lambda}$$

definiendo a la profundidad óptica como

$$\tau_{\lambda} = \int_{z}^{\infty} k_{\lambda} \rho dz$$

Atmósfera plana

Suponemos que toda la dependencia espacial es en la dirección z, entonces

$$\mu \frac{dL_{\lambda}}{k_{\lambda}\rho dz} = -L_{\lambda} + J_{\lambda}$$

definiendo a la profundidad óptica como

$$\tau_{\lambda} = \int_{z}^{\infty} k_{\lambda} \rho dz$$

Atmósfera plana

Nos queda entonces

$$\mu \frac{dL_{\lambda}}{d\tau} = L_{\lambda} - J_{\lambda}$$

resolver esto ya depende de la atmósfera y no suele haber formas cerradas.

Observacion

Necesito además conocer 2 condiciones de contorno.

- La radiancia solar
- ► La reflectancia en el terreno

Atmósfera plana

Nos queda entonces

$$\mu \frac{dL_{\lambda}}{d\tau} = L_{\lambda} - J_{\lambda}$$

resolver esto ya depende de la atmósfera y no suele haber formas cerradas.

Observacior

Necesito además conocer 2 condiciones de contorno.

- ► La radiancia solar
- ► La reflectancia en el terreno

Atmósfera plana

Nos queda entonces

$$\mu \frac{dL_{\lambda}}{d\tau} = L_{\lambda} - J_{\lambda}$$

resolver esto ya depende de la atmósfera y no suele haber formas cerradas.

Observacion

Necesito además conocer 2 condiciones de contorno.

- ► La radiancia solar
- ▶ La reflectancia en el terreno

Esquema de presentación

Transferencia radiativa Planteo del problema

Aproximaciones
Absorción constante y sin fuentes
Atmósfera plana

Atmósfera Absorciones Dispersión

Soluciones practicas
Reflectancia
Correccion atmosferica

Práctica

- Absorciones
 - Constantes
 - Variables
- Dispersión
 - Rayleigh
 - ▶ Mie
 - Aerosoles

- Absorciones
 - Constantes
 - Variables
- Dispersión
 - Rayleigh
 - ▶ Mie
 - Aerosoles

- Absorciones
 - Constantes
 - Variables
- Dispersión
 - Rayleigh
 - Mie
 - Aerosoles

- Absorciones
 - Constantes
 - Variables
- Dispersión
 - Rayleig
 - Mie
 - Aerosoles

- Absorciones
 - ▶ Constantes
 - Variables
- Dispersión
 - Rayleigh
 - Mie
 - Aerosoles

- Absorciones
 - Constantes
 - ▶ Variables
- Dispersión
 - ► Rayleigh
 - Mie
 - Aerosoles

- Absorciones
 - Constantes
 - Variables
- Dispersión
 - Rayleigh
 - Mie
 - Aerosoles

Composición de la atmósfera.⁴

Comparación entre la irradiancia solar a tope de la atmósfera y de la cobertura.⁵

⁵Wikimedia Commons. Solar Spectrum. 2007.

Variaciones de la absorción por contenido de vapor de agua.⁶

Porcentaje de absorcion tipica

Para Landat 5 - TM

Banda	Ozono	Vapor de agua
490 ± 60 nm	\searrow 1.5 $\%$ - 2.9 $\%$	-
575 ± 75 nm	> 5.2 % − 13.4 %	√ 0.5 %-3 %
670 ± 70 nm	\searrow 3.1 $\%$ - 7.9 $\%$	√ 0.5 %-3 %
837 ± 107 nm	-	√ 3.5 %-14 %
1692 ± 178 nm	-	\searrow 5 %-16 %
2190 ± 215 nm	-	2.5 %-13 %

Variaciones de absorvancia por contenidod de ozono y vapor de agua.⁷

⁷EF Vermote y A Vermenlen. "Atmospheric correction algorithm: spectral reflectances (MOD09). http://modarch.gsfc.nasa.gov". En: MODIS/ATBD/atbd_mod08.pdf 49 ().

Comparación entre la firma espectral y la respuesta espectral para vegetación con errores por absorción de ozono y vapor de agua.⁸

⁸Roger Nelson Clark y col. USGS digital spectral library splib06a. 2007.

Soluciones

- Resolver la ecuación de transferencia radiativa.
- ► Calibrar con datos en el terreno.

Absorciones

- Resolver la ecuación de transferencia radiativa.
- ► Calibrar con datos en el terreno.

Distintos tipos de dispersión en la atmósfera.9

⁹John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Dispersión de Rayleigh

Se da por particulas pequeñas

$$d << \lambda$$

esta siempre presente

$$J_{\lambda} \sim rac{1}{\lambda^4}$$

Dispersión de Rayleigh

Se da por particulas pequeñas

$$d << \lambda$$

esta siempre presente

$$J_{\lambda} \sim rac{1}{\lambda^4}$$

J vs. λ en la zona óptica. 10

Foto de un atardecer para distender. 11

Dispersión de Mie

Se da por particulas de tamaño similar a la longitud de onda

$$d \sim \lambda$$

puede o no estar presente

Dispersión de Mie

Se da por particulas de tamaño similar a la longitud de onda

$$d \sim \lambda$$

puede o no estar presente.

Dispersión por aerosoles

Se da por particulas de mayor que la longitud de onda

$$d >> \lambda$$

puede estar presente en distintas zonas de la imagen.

Dispersión por aerosoles

Se da por particulas de mayor que la longitud de onda

$$d >> \lambda$$

puede estar presente en distintas zonas de la imagen.

Absorciones

Porcentaje de dispersión tipica

Para Landat 5 - TM

Banda	Rayleigh	Aerosol
490 ± 60 nm	→ 0.064 - 0.080	→ 0.007 - 0.048
575 ± 75 nm	→ 0.032 - 0.040	→ 0.006 - 0.040
670 ± 70 nm	→ 0.018 - 0.020	→ 0.005 - 0.034
837 ± 107 nm	→ 0.007 - 0.009	→ 0.003 - 0.023
1692 ± 178 nm	→ 0.000 - 0.001	→ 0.001 - 0.007
2190 ± 215 nm	-	→ 0.001 - 0.004

Variacion de la firma espectral por dispersión de Rayleigh. 12

 $^{^{12}}$ Roger Nelson Clark y col. USGS digital spectral library splib06a. 2007.

- Resolver ecuación de transferencia radiativa
- Calibrar con datos en el terreno.
- ▶ Modelar al comportamiento de forma estadistica.

- Resolver ecuación de transferencia radiativa
- Calibrar con datos en el terreno.
- ▶ Modelar al comportamiento de forma estadistica.

- Resolver ecuación de transferencia radiativa
- Calibrar con datos en el terreno.
- ▶ Modelar al comportamiento de forma estadistica.

Esquema de presentación

Transferencia radiativa Planteo del problema

Aproximaciones
Absorción constante y sin fuentes
Atmósfera plana

Atmósfera Absorciones Dispersión

Soluciones practicas Reflectancia Correccion atmosferica

Práctica

Reflectancia

$$\rho_{toa} = \frac{\pi L}{E_0}$$

$$3.14 * d^2 (g * DN + b) / E0$$

- DN: número digital
- ▶ g : ganancia
- ▶ b : bias
- d : distancia tierra-sol
- ► E_0 : irradiancia solar

Reflectancia

$$\rho_{toa} = \frac{\pi L}{E_0}$$

$$3.14 * d^2 (g * DN + b) / E0$$

- DN: número digital
- ▶ g : ganancia
- ▶ b : bias
- d : distancia tierra-sol
- ► E_0 : irradiancia solar

Reflectancia

$$\rho_{toa} = \frac{\pi L}{E_0}$$

$$3.14 * d^2 (g * DN + b) / E0$$

- DN : número digital
- ▶ g : ganancia
- ▶ b : bias
- d : distancia tierra-sol
- ► E_0 : irradiancia solar

Angulo solar

$$\rho_{\cos} = \frac{\rho_{toa}}{\cos(\theta)}$$

- ▶ DN : reflectancia
- a : ángulo solar

Angulo solar

Calculo

$$\rho_{\cos} = \frac{\rho_{toa}}{\cos(\theta)}$$

DN / cos(a)

- DN : reflectancia
- ▶ a : ángulo solar

Angulo solar

Calculo

$$\rho_{\cos} = \frac{\rho_{toa}}{\cos(\theta)}$$

DN / cos(a)

- ▶ DN : reflectancia
- a : ángulo solar

$$\rho_{\textit{dos}} = \frac{\rho_{\textit{toa}} - \rho_{\textit{p}}}{\cos(\theta)}$$

- DN: reflectancia
- DNmin : reflectancia mínima de la banda
- a : ángulo solar

$$\rho_{dos} = \frac{\rho_{toa} - \rho_p}{\cos(\theta)}$$

- DN : reflectancia
- DNmin : reflectancia mínima de la banda
- a : ángulo solar

$$\rho_{dos} = \frac{\rho_{toa} - \rho_p}{\cos(\theta)}$$

- DN: reflectancia
- DNmin : reflectancia mínima de la banda
- a : ángulo solar

Histogramas por banda mostrando el menor valor en cada una. 13

Esquema de presentación

Transferencia radiativa Planteo del problema

Aproximaciones

Absorción constante y sin fuentes

Atmósfera plana

Atmósfera Absorciones Dispersión

Soluciones practicas
Reflectancia
Correccion atmosferica

Práctica

Práctica

Actividades prácticas de la segunda clase

- 1. Abrir imágenes Landsat 8 y digitalizar coberturas de interes.
- 2. Convertir la imagen a reflectancia.
- 3. Corregir la imagen por el coseno del angulo.
- 4. Corregir la imagen por DOS 1%.
- 5. Comparar las firmas obtenidas por distintos metodos.

