Off-Policy Deep Reinforcement Learning for Optimal Sepsis Treatment

Imran Ahmed and Aniruddh Raghu

Problem outline and goal

- Treatment policies for septic patients are suboptimal
 - Patients react variably to interventions
 - No universally agreed-upon treatment exists
- Goal use observational data to discover treatment policies that improve chances of patient survival
- **Baseline** mortality under physician treatment policy (13.7%)

Cohort

- MIMIC-III cohort patients fulfilling Sepsis-3 criteria
 - Suspicion of infection
 - Evidence of organ dysfunction (SOFA score > 2)
- Include data from up to 24h preceding diagnosis
 - Time period around diagnosis is critical
- Outcome of interest in-hospital mortality

Methods

- Formulation continuous state-space Markov Decision Process (MDP)
 - State continuous vector of patient's physiological measurements + vital signs
 - Actions discretized over doses of vasopressors and IV fluids
 - Rewards depend on model:
 - Sparse: at terminal timesteps, depending on outcome
 - Clinically-guided: also at intermediate timesteps

$$r(s_t, s_{t+1}) = C_0 1(s_{t+1}^{SOFA} = s_t^{SOFA} \& s_{t+1}^{SOFA} > 0) + C_1(s_{t+1}^{SOFA} - s_t^{SOFA}) + C_2 \tanh(s_{t+1}^{Lactate} - s_t^{Lactate})$$

- Finding optimal policy
 - Q-learning to find treatment policy that maximises expected return R (discounted sum of rewards)

Evaluation methodology

- Off-policy evaluation is hard!
- Use Doubly-Robust Value Estimator (Jiang and Li, 2015)
 - Accurately assess quality of learned policy using observational data from clinician actions
- Associate value estimate with mortality
 - Learn mapping between value estimates and mortality from observational data
 - Find value estimate of the learned policy
 - Use mapping to estimate expected mortality
- Qualitative policy evaluation

Results

Policy	Expected Return	Estimated Mortality
Physician Sparse	11.17	$11.9 \pm 0.5\%$
Physician Shaped	11.04	$11.4 \pm 0.6\%$
Dueling DDQN Sparse	10.16	$12.8 \pm 0.5\%$
Dueling DDQN Shaped	13.3	$3.71 \pm 0.6\%$

Discussion and Future Work

- Learned improved treatment policies
 - Better than baseline
- Expected mortality is reduced
 - Our estimates are optimistic, but show promise
- Future work
 - Clinical insights into learned policies
 - Temporal aspects recurrent Q networks, POMDPs

Other results

Other results

