Generalization Bound via PAC-Bayes

A Refined Hierarchy of Hypothesis Class

Pingbang Hu

University of Illinois Urbana-Champaign

July 24, 2024

- Introduction
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
- Look Back and Beyond
- References

- Introduction
 - Overview
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
- Look Back and Beyond
- References

Recap: Uniform Convergence and Beyond

If we look back at what we have done:

As previously seen (Throughout the book [SB14]...)

We characterize the notion of learnability by uniform convergence of a hypothesis class \mathcal{H}^{1} .

¹There are other notions like stability (omitted), compressibility (last time), etc.

Recap: Uniform Convergence and Beyond

If we look back at what we have done:

As previously seen (Throughout the book [SB14]...)

We characterize the notion of learnability by uniform convergence of a hypothesis class \mathcal{H}^{1} .

However, this requirement might be too strong:

Observe

All examples given are simple (even finite) hypothesis classes! What about neural networks?

¹There are other notions like stability (omitted), compressibility (last time), etc.

Recap: Uniform Convergence and Beyond

If we look back at what we have done:

As previously seen (Throughout the book [SB14]...)

We characterize the notion of learnability by uniform convergence of a hypothesis class \mathcal{H}^{1} .

However, this requirement might be too strong:

Observe

All examples given are simple (even finite) hypothesis classes! What about neural networks?

Intuition (Going beyond uniformality)

What if we know some hypotheses are unlikely to appear? I.e., how to encode biases in \mathcal{H} ?

▶ Minimum Description Length (MDL) and Occam's razor principles do exactly this.

¹There are other notions like stability (omitted), compressibility (last time), etc.

The Structure of this Talk

Goal

Introduce non-vacuous generalization bounds for neural networks.

The Structure of this Talk

Goal

Introduce non-vacuous generalization bounds for neural networks.

To achieve this, we will focus on:

- ▶ Naive PAC-Bayes Bound [SB14]: See how does the classical PAC-Bayes theory work.
- ▶ PAC-Bayes Bound on NNs [NBS18]: Get a generalization bound of NNs the first time!!

The Structure of this Talk

Goal

Introduce non-vacuous generalization bounds for neural networks.

To achieve this, we will focus on:

- ▶ Naive PAC-Bayes Bound [SB14]: See how does the classical PAC-Bayes theory work.
- ▶ PAC-Bayes Bound on NNs [NBS18]: Get a generalization bound of NNs the first time!!

If we get time, we will go beyond the above and see (glance):

- ► Rademacher Bound on NNs: Learn about the classical approaches.
- ► Remove the Blow-Up [GRS19]: First class of NNs with independent-size error.

- Introduction
- Naive PAC-Bayes Bound
 - Setup and Preliminary
 - Naive Bound
- PAC-Bayes Bound for Neural Networks
- Look Back and Beyond
- References

From the Bayesian perspective, the prior knowledge can be described as *prior distribution P*.

- **Prior**: Consider a probability distribution P over \mathcal{H} ;
- **Posterior**: The learning algorithm updates P to produce a posterior distribution Q on \mathcal{H} .

Example (Minimum Description Length)

The probability (density) P(h) of $h \in \mathcal{H}$ is proportional to its minimum description length.

From the Bayesian perspective, the prior knowledge can be described as *prior distribution P*.

- **Prior**: Consider a probability distribution P over \mathcal{H} ;
- **Posterior**: The learning algorithm updates P to produce a posterior distribution Q on \mathcal{H} .

Example (Minimum Description Length)

The probability (density) P(h) of $h \in \mathcal{H}$ is proportional to its minimum description length.

For supervised learning, where $\mathcal{H} = \{h \colon \mathcal{X} \to \mathcal{Y}\}$, one can interpret Q as:

- 1. whenever a new instance $x \in \mathcal{X}$ arrives,
- 2. pick $h \sim Q$, and output h(x).

Given a data distribution \mathcal{D} , a sampled dataset $S \sim \mathcal{D}^m$, and a hypothesis class \mathcal{H} , consider

 \triangleright *Prior* and *Posterior*. P and Q over \mathcal{H} , where Q comes from some learning algorithms.

²There is a typo in [SB14]: this should be the correct form. Hence, the constant later will vary.

Given a data distribution \mathcal{D} , a sampled dataset $S \sim \mathcal{D}^m$, and a hypothesis class \mathcal{H} , consider

- **Prior** and **Posterior**: P and Q over \mathcal{H} , where Q comes from some learning algorithms.
- ▶ Loss: the loss of Q on an example z is defined as $\ell(Q,z) := \mathbb{E}_{h\sim Q}[\ell(h,z)]$:
 - ▶ Generalized Loss: $L_{\mathcal{D}}(Q) := \mathbb{E}_{h \sim Q}[L_{\mathcal{D}}(h)]$, where $L_{\mathcal{D}}(h) := \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$.
 - ► Empirical Loss: $L_S(Q) := \mathbb{E}_{h \sim Q}[L_S(h)]$, where $L_S(h) = \frac{1}{m} \sum_{z \in S} \ell(h, z)$.

²There is a typo in [SB14]: this should be the correct form. Hence, the constant later will vary.

Given a data distribution \mathcal{D} , a sampled dataset $S \sim \mathcal{D}^m$, and a hypothesis class \mathcal{H} , consider

- **Prior** and **Posterior**: P and Q over \mathcal{H} , where Q comes from some learning algorithms.
- ▶ Loss: the loss of Q on an example z is defined as $\ell(Q, z) := \mathbb{E}_{h \sim Q}[\ell(h, z)]$:
 - ▶ Generalized Loss: $L_{\mathcal{D}}(Q) := \mathbb{E}_{h \sim Q}[L_{\mathcal{D}}(h)]$, where $L_{\mathcal{D}}(h) := \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$.
 - ► Empirical Loss: $L_S(Q) := \mathbb{E}_{h \sim Q}[L_S(h)]$, where $L_S(h) = \frac{1}{m} \sum_{z \in S} \ell(h, z)$.
- ightharpoonup KL-divergence: $D_{\mathsf{KL}}(P_1\|P_2) := \mathbb{E}_{h\sim P_1}[\mathsf{In}(P_1(h)/P_2(h))]$ for two distributions P_1,P_2 .

That's all notations and definitions we need.

²There is a typo in [SB14]: this should be the correct form. Hence, the constant later will vary.

Given a data distribution \mathcal{D} , a sampled dataset $S \sim \mathcal{D}^m$, and a hypothesis class \mathcal{H} , consider

- ightharpoonup Prior and Posterior. P and Q over \mathcal{H} , where Q comes from some learning algorithms.
- ▶ Loss: the loss of Q on an example z is defined as $\ell(Q, z) := \mathbb{E}_{h \sim Q}[\ell(h, z)]$:
 - ▶ Generalized Loss: $L_{\mathcal{D}}(Q) := \mathbb{E}_{h \sim Q}[L_{\mathcal{D}}(h)]$, where $L_{\mathcal{D}}(h) := \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$.
 - ► Empirical Loss: $L_S(Q) := \mathbb{E}_{h \sim Q}[L_S(h)]$, where $L_S(h) = \frac{1}{m} \sum_{z \in S} \ell(h, z)$.
- ightharpoonup KL-divergence: $D_{\mathsf{KL}}(P_1\|P_2) := \mathbb{E}_{h \sim P_1}[\ln(P_1(h)/P_2(h))]$ for two distributions P_1, P_2 .

That's all notations and definitions we need. One additional lemma we need is the following.

Lemma (Two-sided bound²)

Let X be a random variable with $\mathbb{P}(|X| \ge \epsilon) \le e^{-2m\epsilon^2}$ for $\epsilon > 0$. Then $\mathbb{E}[e^{2(m-1)X^2}] \le 2m$.

²There is a typo in [SB14]: this should be the correct form. Hence, the constant later will vary.

- Introduction
- Naive PAC-Bayes Bound
 - Setup and Preliminary
 - Naive Bound
- PAC-Bayes Bound for Neural Networks
- Look Back and Beyond
- References

Theorem (PAC-Bayes bound)

Consider a loss ℓ bounded in [0,1] and let $\delta \in (0,1)$. With probability at least $1-\delta$ over $S=\{z_i\}_{i=1}^m \sim \mathcal{D}^m$, for all distribution Q over \mathcal{H} , we have

$$L_{\mathcal{D}}(Q) \leq L_{\mathcal{S}}(Q) + \sqrt{\frac{D_{\mathcal{KL}}(Q\|P) + \ln(2m/\delta)}{2(m-1)}}.$$

We observe the following:

Problem (How useful is it?)

- ► It doesn't care about the learning algorithm;
- ► It depends on our prior knowledge P...

Pingbang Hu (UIUC)

Main Theorem II

Proof.

We want to bound $\Delta(h) := L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)$. Consider

$$f(S) := \sup_{Q} \left(2(m-1) \mathbb{E}_{h \sim Q}[\Delta^2(h)] - D_{\mathsf{KL}}(Q \| P) \right).$$

From Markov's inequality, for any f(S), as $e^{f(S)} \ge 0$,

$$\mathbb{P}_S(f(S) \geq \epsilon) = \mathbb{P}_S(e^{f(S)} \geq e^{\epsilon}) \leq \frac{\mathbb{E}_S[e^{f(S)}]}{e^{\epsilon}}.$$

If we can show $\mathbb{E}_S[e^{f(S)}] \leq 2m$, we get $\mathbb{P}_S(f(S) \geq \epsilon) \leq 2m/e^{\epsilon} =: \delta$, i.e., $\epsilon := \ln(2m/\delta)$.

$$\Rightarrow$$
 W.p. $\geq 1-\delta$, for all Q , $2(m-1)\mathbb{E}_{h\sim Q}[\Delta^2(h)]-D_{\mathsf{KL}}(Q\|P)\leq \epsilon=\mathsf{ln}(2m/\delta)$.

The proof is complete by noticing $(\mathbb{E}[\Delta(h)])^2 \leq \mathbb{E}[\Delta^2(h)]$ from Jensen's inequality.

Main Theorem III

Next, we show $\mathbb{E}_S[e^{f(S)}] \leq 2m$. Recall that $f(S) = \sup_Q (2(m-1)\mathbb{E}_{h\sim Q}[\Delta^2(h)] - D_{\mathsf{KL}}(Q\|P))$.

Proof.

Fix some S, then by definition, $2(m-1)\mathbb{E}_{h\sim Q}[\Delta^2(h)] - D_{\mathsf{KL}}(Q\|P)$ is just

$$\underset{h \sim Q}{\mathbb{E}} \left[\ln (e^{2(m-1)\Delta^2(h)}P(h)/Q(h)) \right] \leq \underset{h \sim Q}{\ln \mathbb{E}} [e^{2(m-1)\Delta^2(h)}P(h)/Q(h)] = \ln \mathbb{E}_{\underset{h \sim P}{h \sim P}} [e^{2(m-1)\Delta^2(h)}],$$

hence $\mathbb{E}_S[e^{f(S)}] \leq \mathbb{E}_S[\mathbb{E}_{h \sim P}[e^{2(m-1)\Delta^2(h)}]] = \mathbb{E}_{h \sim P}[\mathbb{E}_S[e^{2(m-1)\Delta^2(h)}]]$. Finally, for all $h \in \mathcal{H}$,

$$\mathbb{P}_{S}(|\Delta(h)| \geq \epsilon) \leq e^{-2m\epsilon^2} \Rightarrow \mathbb{E}_{S}[e^{2(m-1)\Delta^2(h)}] \leq 2m$$

from the Hoeffding's inequality and the two-sided bound lemma (with $X := \Delta(h)$).

³The goal is to get rid of sup_Q, i.e., bounding $\mathbb{E}_S[e^{f(S)}]$ by an expression without Q.

The naive PAC-Bayes bound suggests how we should design our learning algorithm:

Remark (Regularization)

Given a prior P, return a posterior Q that minimizes

$$L_{\mathcal{S}}(Q) + \sqrt{\frac{D_{\mathcal{KL}}(Q\|P) + \ln(2m/\delta)}{2(m-1)}}.$$

This rule is similar to the regularized risk minimization principle. That is, we jointly minimize the empirical loss of Q on the sample and the KL-divergence between Q and P.

- Introduction
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
 - Setup
 - Generalization for Deterministic Models
 - Perturbation Bound for NNs
 - Putting Everything Together
- Look Back and Beyond
- References

Consider the *k-class classification task* with a *d*-layer MLP *model* $f_{\mathbf{w}}: \mathcal{X} \to \mathbb{R}^k$ where

- Parameter: $\mathbf{w} = \text{vec}(\{W_i\}_{i=1}^d)$ such that $f_{\mathbf{w}}(x) = W_d \phi(W_{d-1}\phi(\dots\phi(W_1x)))$:
 - $ightharpoonup \phi$ is the ReLU.
 - $ightharpoonup f_{\mathbf{w}}^{i}(x)$ is the output of layer i before activation.

Consider the *k-class classification task* with a *d*-layer MLP *model* $f_{\mathbf{w}}: \mathcal{X} \to \mathbb{R}^k$ where

- Parameter: $\mathbf{w} = \text{vec}(\{W_i\}_{i=1}^d)$ such that $f_{\mathbf{w}}(x) = W_d \phi(W_{d-1}\phi(\dots\phi(W_1x)))$:
 - $ightharpoonup \phi$ is the ReLU.
 - $ightharpoonup f_{\mathbf{w}}^{i}(x)$ is the output of layer i before activation.
- Width: maximum number h of output units in each layer.

Consider the *k-class classification task* with a *d*-layer MLP *model* $f_{\mathbf{w}}: \mathcal{X} \to \mathbb{R}^k$ where

- Parameter: $\mathbf{w} = \text{vec}(\{W_i\}_{i=1}^d)$ such that $f_{\mathbf{w}}(x) = W_d \phi(W_{d-1}\phi(\dots\phi(W_1x)))$:
 - $ightharpoonup \phi$ is the ReLU.
 - $ightharpoonup f_{\mathbf{w}}^{i}(x)$ is the output of layer i before activation.
- Width: maximum number h of output units in each layer.
- ▶ Input domain: $\mathcal{X} := \mathcal{X}_B := \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \leq B^2\}.$

- Parameter: $\mathbf{w} = \text{vec}(\{W_i\}_{i=1}^d)$ such that $f_{\mathbf{w}}(x) = W_d \phi(W_{d-1}\phi(\dots\phi(W_1x)))$:
 - $ightharpoonup \phi$ is the ReLU.
 - $ightharpoonup f_{\mathbf{w}}^{i}(x)$ is the output of layer i before activation.
- Width: maximum number h of output units in each layer.
- ▶ Input domain: $\mathcal{X} := \mathcal{X}_B := \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \leq B^2\}.$
- ▶ Output domain: $\mathcal{Y} := [k]$, where the predicted class of x by $f_{\mathbf{w}}$ is $\arg\max_{i \in [k]} f_{\mathbf{w}}(x)[i]$.

Setup and Notations

Consider the *k-class classification task* with a *d*-layer MLP *model* $f_{\mathbf{w}}: \mathcal{X} \to \mathbb{R}^k$ where

- Parameter: $\mathbf{w} = \text{vec}(\{W_i\}_{i=1}^d)$ such that $f_{\mathbf{w}}(x) = W_d \phi(W_{d-1}\phi(\dots\phi(W_1x)))$:
 - \blacktriangleright ϕ is the ReLU.
 - $ightharpoonup f_{w}^{i}(x)$ is the output of layer i before activation.
- ▶ Width: maximum number h of output units in each layer.
- ▶ Input domain: $\mathcal{X} := \mathcal{X}_B := \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \leq B^2\}.$
- ▶ Output domain: $\mathcal{Y} := [k]$, where the predicted class of x by $f_{\mathbf{w}}$ is $\arg \max_{i \in [k]} f_{\mathbf{w}}(x)[i]$.

Margin loss: Given a margin $\gamma > 0$, we define

$$\ell(f_{\mathbf{w}},(x,y)) := \mathbb{1}\left\{f_{\mathbf{w}}(x)[y] \leq \gamma + \max_{j \neq y} f_{\mathbf{w}}(x)[j]\right\}.$$

- Introduction
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
 - Setup
 - Generalization for Deterministic Models
 - Perturbation Bound for NNs
 - Putting Everything Together
- Look Back and Beyond
- References

First Step: Generalization Bound of Deterministic Models I

Lemma (Key lemma)

Let $f_{\mathbf{w}} \colon \mathcal{X} \to \mathbb{R}^k$ be a model with parameters \mathbf{w} , and P be any distribution on \mathbf{w} , independent of S. For any \mathbf{w} , consider the posterior $Q(\mathbf{w} + \mathbf{u})$ where \mathbf{u} is random such that

$$\mathbb{P}\left(\max_{\mathbf{x}\in\mathcal{X}}\left\|f_{\mathbf{w}+\mathbf{u}}(\mathbf{x})-f_{\mathbf{w}}(\mathbf{x})\right\|_{\infty}<\frac{\gamma}{4}\right)>\frac{1}{2}.$$

Then, for any $\gamma, \delta > 0$, with probability at least $1 - \delta$ over $S \sim \mathcal{D}^m$, for any \mathbf{w} ,

$$L_D^{(0)}(f_{\boldsymbol{w}}) \leq L_S^{(\gamma)}(f_{\boldsymbol{w}}) + \sqrt{\frac{2D_{KL}(Q\|P) + \ln \frac{8m}{\delta}}{2(m-1)}}.$$

This basically forms our theorem. If we get this, the only job left is to calculate $D_{\mathsf{KL}}(Q\|P)$.

First Step: Generalization Bound of Deterministic Models II

Proof.

Let $\mathbf{w}' \coloneqq \mathbf{w} + \mathbf{u} \sim Q(\mathbf{w}')$, and consider \mathcal{C} be the set of *perturbation*:

$$\mathcal{C} \coloneqq \left\{ oldsymbol{w}' \colon \max_{x \in \mathcal{X}} \lVert f_{oldsymbol{w}'}(x) - f_{oldsymbol{w}}(x)
Vert_{\infty} < rac{\gamma}{4}
ight\}.$$

Then, we consider two distributions conditioned on C and C^c :

$$\widetilde{Q}(\widetilde{w}) := egin{cases} Q(\widetilde{oldsymbol{w}})/Z, & ext{if } \widetilde{oldsymbol{w}} \in \mathcal{C}; \ 0, & ext{if } \widetilde{oldsymbol{w}} \in \mathcal{C}^c, \end{cases} \quad \widetilde{Q}^c(\widetilde{w}) := egin{cases} 0, & ext{if } \widetilde{oldsymbol{w}} \in \mathcal{C}; \ Q(\widetilde{oldsymbol{w}})/(1-Z), & ext{if } \widetilde{oldsymbol{w}} \in \mathcal{C}^c, \end{cases}$$

and we will primarily work with \widetilde{Q} . Note that $Z = \mathbb{P}(\widetilde{w} \in \mathcal{C}) > 1/2$. From the definition of \mathcal{C} :

Observe

Perturbation can change the margin between two output units of $f_{\mathbf{w}}$ by at most $\gamma/2$.

First Step: Generalization Bound of Deterministic Models III

Proof (Continued).

Rigorously, we have $\max_{i,j\in[k],x\in\mathcal{X}}\left||f_{\widetilde{\boldsymbol{w}}}(x)[i]-f_{\widetilde{\boldsymbol{w}}}(x)[j]|-|f_{\boldsymbol{w}}(x)[i]-f_{\boldsymbol{w}}(x)[j]|\right|<\gamma/2$. Using this fact, we can conclude that for any perturbation $\widetilde{\boldsymbol{w}}\sim\widetilde{Q}$,

$$L_D^{(0)}(f_{\mathbf{w}}) \leq L_D^{(\gamma/2)}(f_{\widetilde{\mathbf{w}}}), \quad L_S^{(\gamma/2)}(f_{\widetilde{\mathbf{w}}}) \leq L_S^{(\gamma)}(f_{\mathbf{w}}).$$

Hence, with probability at least $1-\delta$ over S, from the PAC-Bayes bound,

$$\begin{split} L_D^{(0)}(f_{\boldsymbol{w}}) &\leq \underset{\widetilde{\boldsymbol{w}} \sim \widetilde{Q}}{\mathbb{E}} [L_D^{(\gamma/2)}(f_{\widetilde{\boldsymbol{w}}})] \\ &\leq \underset{\widetilde{\boldsymbol{w}} \sim \widetilde{Q}}{\mathbb{E}} [L_S^{(\gamma/2)}(f_{\widetilde{\boldsymbol{w}}})] + \sqrt{\frac{D_{\mathsf{KL}}(\widetilde{Q}\|P) + \ln \frac{2m}{\delta}}{2(m-1)}} \leq \underset{\boldsymbol{w} \sim Q}{\mathbb{E}} [L_S^{(\gamma)}(f_{\boldsymbol{w}})] + \sqrt{\frac{D_{\mathsf{KL}}(\widetilde{Q}\|P) + \ln \frac{2m}{\delta}}{2(m-1)}}. \end{split}$$

The only thing left is to replace \widetilde{Q} with Q in D_{KL} .

Pingbang Hu (UIUC) PAC-Bayes [5B14; NBS18] July 24, 2024 19 / 42

First Step: Generalization Bound of Deterministic Models IV

Proof (Continued).

Recall that $Z := \mathbb{P}(\widetilde{\boldsymbol{w}} \in \mathcal{C})$, and $\widetilde{Q} := Q/Z$ with $\widetilde{Q}^c := Q/(1-Z)$, we have

$$\begin{split} D_{\mathsf{KL}}(Q\|P) &= \int_{\widetilde{\boldsymbol{w}} \in \mathcal{C}} Q \ln \frac{Q}{P} \, \mathrm{d}\widetilde{\boldsymbol{w}} + \int_{\widetilde{\boldsymbol{w}} \in \mathcal{C}^c} Q \ln \frac{Q}{P} \, \mathrm{d}\widetilde{\boldsymbol{w}} \\ &= \int_{\widetilde{\boldsymbol{w}} \in \mathcal{C}} \frac{QZ}{Z} \ln \frac{Q}{ZP} + Q \ln Z \, \mathrm{d}\widetilde{\boldsymbol{w}} + \int_{\widetilde{\boldsymbol{w}} \in \mathcal{C}^c} \frac{Q(1-Z)}{1-Z} \ln \frac{Q}{(1-Z)P} + Q \ln (1-Z) \, \mathrm{d}\widetilde{\boldsymbol{w}} \\ &= ZD_{\mathsf{KL}}(\widetilde{Q}\|P) + (1-Z)D_{\mathsf{KL}}(\widetilde{Q}^c\|P) - H(Z), \end{split}$$

where $H(Z) = -Z \ln Z - (1-Z) \ln (1-Z)$ is the *entropy* of Ber(Z). Finally, since $D_{KL} \ge 0$, and with $Z \in [1/2, 1]$, we have $1 - Z \ge 0$ and $H(Z) \in [0, \ln 2]$,

$$D_{\mathsf{KL}}(\widetilde{Q}\|P) = \frac{1}{Z} \left(D_{\mathsf{KL}}(Q\|P) + H(Z) - (1-Z)D_{\mathsf{KL}}(\widetilde{Q}^c\|P) \right) \leq 2D_{\mathsf{KL}}(Q\|P) + 2\ln 2.$$

This completes the proof.

- Introduction
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
 - Setup
 - Generalization for Deterministic Models
 - Perturbation Bound for NNs
 - Putting Everything Together
- Look Back and Beyond
- References

Second Step: Perturbation Bound for NNs I

Lemma (Perturbation bound)

For any B, d > 0, let $f_{\mathbf{w}}: \mathcal{X}_B \to \mathbb{R}^k$ be a d-layer MLP. Then for any \mathbf{w} , and $\mathbf{x} \in \mathcal{X}_{B,n}$, and any perturbation $\mathbf{u} = \text{vec}(\{U_i\}_{i=1}^d)$ such that $\|U_i\|_2 \le \|W_i\|_2/d$, the change in the output of the network satisfies

$$||f_{\boldsymbol{w}+\boldsymbol{u}}(x) - f_{\boldsymbol{w}}(x)||_2 \le eB\left(\prod_{i=1}^d ||W_i||_2\right) \sum_{i=1}^d \frac{||U_i||_2}{||W_i||_2}.$$

Intuitior

This characterizes the change in the output of a network w.r.t. perturbation of its weight, helping us calculate the KL-divergence term in the previous bound given a margin budgets γ .

Pingbang Hu (UIUC)

Proof.

Let $\Delta_i := \|f_{\mathbf{w}+\mathbf{u}}^i(x) - f_{\mathbf{w}}^i(x)\|_2$. It suffices to show that for all $i \geq 0$,

$$\Delta_i \leq \left(1 + rac{1}{d}
ight)^i \left(\prod_{j=1}^i \lVert W_j
Vert_2
ight) \lVert x
Vert_2 \sum_{j=1}^i rac{\lVert U_j
Vert_2}{\lVert W_j
Vert_2}.$$

For i=0, this is trivial. For any $i\geq 1$, note that $\phi_i(0)=0$, and it's 1-Lipschitz,

$$\Delta_{i+1} = \| (W_{i+1} + U_{i+1}) \phi_i (f_{\mathbf{w}+\mathbf{u}}^i(x)) - W_{i+1} \phi_i (f_{\mathbf{w}}^i(x)) \|_2$$

$$= \| (W_{i+1} + U_{i+1}) (\phi_i (f_{\mathbf{w}+\mathbf{u}}^i(x)) - \phi_i (f_{\mathbf{w}}^i(x))) + U_{i+1} \phi_i (f_{\mathbf{w}}^i(x)) \|_2$$

$$\leq (\| W_{i+1} \|_2 + \| U_{i+1} \|_2) \| \phi_i (f_{\mathbf{w}+\mathbf{u}}^i(x)) - \phi_i (f_{\mathbf{w}}^i(x)) \|_2 + \| U_{i+1} \|_2 \| \phi_i (f_{\mathbf{w}}^i(x)) \|_2$$

$$\leq (\| W_{i+1} \|_2 + \| U_{i+1} \|_2) \| f_{\mathbf{w}+\mathbf{u}}^i(x) - f_{\mathbf{w}}^i(x) \|_2 + \| U_{i+1} \|_2 \| f_{\mathbf{w}}^i(x) \|_2$$

$$= \Delta_i (\| W_{i+1} \|_2 + \| U_{i+1} \|_2) + \| U_{i+1} \|_2 \| f_{\mathbf{w}}^i(x) \|_2.$$

Second Step: Perturbation Bound for NNs III

Proof (Continued).

By the assumption, $||U_{i+1}||_2 \le ||W_{i+1}||_2/d$, we have

$$\begin{split} \Delta_{i+1} & \leq \Delta_i (\|W_{i+1}\| + \|U_{i+1}\|_2) + \|U_{i+1}\|_2 \|f_{\mathbf{w}}^i(x)\|_2 \\ & \leq \Delta_i \left(1 + \frac{1}{d}\right) \|W_{i+1}\|_2 + \|U_{i+1}\|_2 \|x\|_2 \prod_{j=1}^i \|W_j\|_2 \\ & \leq \left(1 + \frac{1}{d}\right)^{i+1} \left(\prod_{j=1}^{i+1} \|W_j\|_2\right) \|x\|_2 \sum_{j=1}^i \frac{\|U_j\|_2}{\|W_j\|_2} + \frac{\|U_{i+1}\|_2}{\|W_{i+1}\|_2} \|x\|_2 \prod_{j=1}^{i+1} \|W_j\|_2 \quad \text{(induction)} \\ & \leq \left(1 + \frac{1}{d}\right)^{i+1} \left(\prod_{j=1}^{i+1} \|W_j\|_2\right) \|x\|_2 \sum_{j=1}^{i+1} \frac{\|U_j\|_2}{\|W_j\|_2}. \quad \text{(multiply 2^{nd} term with $(1+1/d)^{i+1}$)} \end{split}$$

This concludes the proof as $(1+1/d)^d \le e$ and $x \in \mathcal{X}_B$ (i.e., $||x||_2 \le B$).

Table of Content

- Introduction
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
 - Setup
 - Generalization for Deterministic Models
 - Perturbation Bound for NNs
 - Putting Everything Together
- Look Back and Beyond
- References

(Im)Practical Generalization Bound for NNs

With all the build-up, we can finally prove the following.

Theorem (Generalization Bound for MLPs)

For any B, d, h > 0, let $f_{\mathbf{w}} \colon \mathcal{X}_B \to \mathbb{R}^k$ be a d-layer MLP. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over $S \sim \mathcal{D}^m$, for any \mathbf{w} ,

$$L_{\mathcal{D}}^{(0)}(f_{\mathbf{w}}) \leq L_{S}^{(\gamma)}(f_{\mathbf{w}}) + O\left(\sqrt{\frac{B^2d^2h\ln(dh)\prod_{i=1}^{d}\|W_i\|_2^2\sum_{i=1}^{d}rac{\|W_i\|_F^2}{\|W_i\|_2^2} + \lnrac{dm}{\delta}}}{\gamma^2m}
ight).$$

We divide the proof into two steps:

- 1. First, calculate the *maximum allowed perturbation* of parameters to satisfy a given γ .
- 2. Second, calculate the D_{KL} for this value of the perturbation.

Pingbang Hu (UIUC) PAC-Bayes [\$B14; NB\$18] July 24, 2024

"Zero" Step: Reduction

Before we start, we make the following observation:

Observe

Let $\beta := (\prod_{i=1}^d \|W_i\|_2)^{1/d}$, consider a network with "normalized weights" $\widetilde{W}_i := \beta W_i / \|W_i\|_2$.

 \Rightarrow From homogeneity of ReLU, $f_{\widetilde{\mathbf{w}}} = f_{\mathbf{w}}$, hence (empirical & expected) losses are the same.

Moreover, observe that $\prod_{i=1}^d \|W_i\|_2 = \prod_{i=1}^d \|\widetilde{W}_i\|_2$, and $\|W_i\|_F / \|W_i\|_2 = \|\widetilde{W}_i\|_F / \|\widetilde{W}_i\|_2$,

⇒ Excess risk is invariant under this transformation:

$$L_{\mathcal{D}}^{(0)}(f_{\mathbf{w}}) - L_{S}^{(\gamma)}(f_{\mathbf{w}}) = O\left(\sqrt{\frac{B^{2}d^{2}h\ln(dh)\prod_{i=1}^{d}\|W_{i}\|_{2}^{2}\sum_{i=1}^{d}\frac{\|W_{i}\|_{F}^{2}}{\|W_{i}\|_{2}^{2}} + \ln\frac{dm}{\delta}}}\right).$$

Hence, it suffices to consider normalized weights $\widetilde{\boldsymbol{w}}$, i.e., $\|\widetilde{W}_i\|_2 = \beta$ for all i.

Pingbang Hu (UIUC) PAC-Bayes [\$B14; NBS18] July 24, 2024 27 / 4

First Step: Applying Perturbation Bound I

Proof.

Let $P = \mathcal{N}(0, \sigma^2 I)$ and $\mathbf{u} \sim \mathcal{N}(0, \sigma^2 I)$ with the same σ to be determined, depends on β .

Intuition

However, β is determined by \mathbf{w} , which is unknown before the training. Hence, we will set σ based on an approximation $\widetilde{\beta}$. I.e., we pre-determine a grid of $\widetilde{\gamma}$'s and their σ , such that

- ightharpoonup each relevant value of eta is covered by some \widetilde{eta} on the grid:
 - ightharpoonup Covered: $|\beta \widetilde{\beta}| \leq \beta/d$.

Finally, we take a union bound over all $\widetilde{\beta}$ on the grid.

For now, consider a fixed $\widetilde{\beta}$ and some \boldsymbol{w} such that $|\beta - \widetilde{\beta}| \leq \beta/d$, hence

$$\frac{1}{e}\beta^{d-1} \le \widetilde{\beta}^{d-1} \le e\beta^{d-1}.$$

First Step: Applying Perturbation Bound II

Proof (Continued).

Since $\mathbf{u} \sim \mathcal{N}(0, \sigma^2 I)$, the following concentration for the spectral norm of U_i is known:

$$\mathbb{P}_{U_i \sim \mathcal{N}(0,\sigma^2 I)}(\|U_i\|_2 > t) \leq 2he^{-t^2/2h\sigma^2}.$$

Taking a union bound over layers, with probability $\geq 1/2$, $\|U_i\|_2 \leq \sigma \sqrt{2h \ln(4dh)} =: t$. Then

$$\begin{aligned} \max_{x \in \mathcal{X}_B} \|f_{\boldsymbol{w}+\boldsymbol{u}}(x) - f_{\boldsymbol{w}}(x)\|_2 &\leq eB\beta^d \sum_{i=1}^d \frac{\|U_i\|_2}{\beta} \\ &= eB\beta^{d-1} \sum_{i=1}^d \|U_i\|_2 \leq e^2 dB\widetilde{\beta}^{d-1} \sigma \sqrt{2h \ln(4dh)} \leq \frac{\gamma}{4} \end{aligned}$$
 (Perturbation bound)

where we let $\sigma \coloneqq \frac{\gamma}{42dB\widetilde{\beta}^{d-1}\sqrt{h\ln(4hd)}}$. Now, we appeal to the key lemma.

Pingbang Hu (UIUC) PAC-Bayes [SB14; NBS18] July 24, 2024 29 / 42

Second Step: Applying PAC-Bayes Bound I

Proof.

With Q := w + u, we can already apply the key lemma to get

$$L_D^{(0)}(f_{\boldsymbol{w}}) \leq L_S^{(\gamma)}(f_{\boldsymbol{w}}) + \sqrt{\frac{2D_{\mathsf{KL}}(\boldsymbol{w} + \boldsymbol{u} \| P) + \ln \frac{8m}{\delta}}{2(m-1)}}.$$

Hence, we just need to calculate $D_{\mathsf{KL}}(\boldsymbol{w}+\boldsymbol{u}\|P)=D_{\mathsf{KL}}(\mathcal{N}(\boldsymbol{w},\sigma^2I)\|\mathcal{N}(0,\sigma^2I))$. By a direct calculation, it's bounded above by (you will need to believe me for this one)

$$\begin{split} \frac{\|w\|_2^2}{2\sigma^2} &= \frac{42^2 d^2 B^2 \widetilde{\beta}^{2d-2} h \ln(4hd)}{2\gamma^2} \sum_{i=1}^d \|W_i\|_F^2 \\ &\leq O\left(B^2 d^2 h \ln(dh) \frac{\beta^{2d}}{\gamma^2} \sum_{i=1}^d \frac{\|W_i\|_F^2}{\beta^2}\right) = O\left(B^2 d^2 h \ln(dh) \frac{\prod_{i=1}^d \|W_i\|_2^2}{\gamma^2} \sum_{i=1}^d \frac{\|W_i\|_F^2}{\|W_i\|_2^2}\right). \end{split}$$

Pingbang Hu (UIUC) PAC-Bayes [5B14; NBS18] July 24, 2024 30 / 42

Second Step: Applying PAC-Bayes Bound II

Proof (Continued).

Hence, for any $\widetilde{\beta}$, with probability $\geq 1 - \delta$, and for all \boldsymbol{w} such that $|\beta - \widetilde{\beta}| \leq \beta/d$, we have

$$L_D^{(0)}(f_{\mathbf{w}}) \leq L_S^{(\gamma)}(f_{\mathbf{w}}) + O\left(\sqrt{\frac{B^2d^2h\ln(dh)\prod_{i=1}^d \|W_i\|_2^2 \sum_{i=1}^d \frac{\|W_i\|_F^2}{\|W_i\|_2^2} + \ln\frac{m}{\delta}}{\gamma^2m}}\right).$$

Remark

Compared to the theorem, the only difference is $\ln \frac{m}{\delta}$ v.s. $\ln \frac{dm}{\delta}$.

To fix this, recall that we still need to take a union bound over \widetilde{eta} 's.

Pingbang Hu (UIUC)

Second Step: Applying PAC-Bayes Bound III

Proof (Continued).

Observe (Non-trivial range)

We only need to consider β in the range of $\left(\frac{\gamma}{2B}\right)^{1/d} \leq \beta \leq \left(\frac{\gamma\sqrt{m}}{2B}\right)^{1/d}$, so to satisfy $|\beta - \widetilde{\beta}| \leq \beta/d$, we only need $|\widetilde{\beta} - \beta| \leq \frac{1}{d} \left(\frac{\gamma}{2B}\right)^{1/d}$ for β in this range.

This observation leads to the following simple calculation of the cover size:

$$\left(\frac{\gamma\sqrt{m}}{2B}\right)^{1/d} / \frac{1}{d} \left(\frac{\gamma}{2B}\right)^{1/d} = d \cdot m^{\frac{1}{2d}}.$$

Taking a union bound, the corresponding probability is $\delta' := \delta \cdot d \cdot m^{1/2d}$. Expressing everything in terms of δ' , we have $\ln \frac{m}{\delta} = \ln \frac{dm^{1+1/2d}}{\delta'} \approx \ln \frac{dm}{\delta'}$, which completes the proof.

1 04 0004

Table of Content

- Introduction
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
- Look Back and Beyond
 - Look Back: The Road Map
 - Beyond the Exponential Blow-Up
- References

Although the proof is a bit long, but here's the takeaway:

▶ PAC-Bayes bound is applicable to any loss $\ell \in [0,1]$, independent of learning algorithms:

$$L_{\mathcal{D}}(Q) \leq L_{\mathcal{S}}(Q) + \sqrt{rac{D_{\mathsf{KL}}(Q\|P) + \mathsf{ln}(m/\delta)}{2(m-1)}}.$$

► Generalization bound for a d-layer, h-width MLP:

$$L_{\mathcal{D}}^{(0)}(f_{\mathbf{w}}) \leq L_{S}^{(\gamma)}(f_{\mathbf{w}}) + O\left(\sqrt{\frac{B^{2}d^{2}h\ln(dh)\prod_{i=1}^{d}\|W_{i}\|_{2}^{2}\sum_{i=1}^{d}\frac{\|W_{i}\|_{F}^{2}}{\|W_{i}\|_{2}^{2}} + \ln\frac{dm}{\delta}}}\right).$$

Pingbang Hu (UIUC) PAC-Bayes [\$B14; NB518] July 24, 2024 34 /-

Road Map

Although the proof is a bit long, but here's the takeaway:

▶ *PAC-Bayes bound* is applicable to any loss $\ell \in [0,1]$, independent of *learning algorithms*:

$$L_{\mathcal{D}}(Q) \leq L_{\mathcal{S}}(Q) + \sqrt{rac{D_{\mathsf{KL}}(Q\|P) + \mathsf{ln}(m/\delta)}{2(m-1)}}.$$

► Generalization bound for a d-layer, h-width MLP:

$$L_{\mathcal{D}}^{(0)}(f_{\mathbf{w}}) \leq L_{S}^{(\gamma)}(f_{\mathbf{w}}) + O\left(\sqrt{\frac{B^{2}d^{2}h\ln(dh)\prod_{i=1}^{d}\|W_{i}\|_{2}^{2}\sum_{i=1}^{d}\frac{\|W_{i}\|_{F}^{2}}{\|W_{i}\|_{2}^{2}} + \ln\frac{dm}{\delta}}}\right).$$

- \blacktriangleright Key lemma: For a "robust model" (w.r.t. margin γ), PAC-Bayes bound applies.
- Perturbation bound: Provides an analytical bound for the perturbation.
 - ⇒ With normal prior and perturbation, the MLP is "robust" enough from perturbation bound.
 - \Rightarrow *Key lemma* applies.

Observe (Generalization Bound for NNs)

Let's take a closer look at the bound we get finally:

$$L_{\mathcal{D}}^{(0)}(f_{\mathbf{w}}) \leq L_{S}^{(\gamma)}(f_{\mathbf{w}}) + O\left(\sqrt{\frac{B^{2}d^{2}h\ln(dh)\prod_{i=1}^{d}\|W_{i}\|_{2}^{2}\sum_{i=1}^{d}\frac{\|W_{i}\|_{F}^{2}}{\|W_{i}\|_{2}^{2}} + \ln\frac{dm}{\delta}}}\right).$$

- ▶ It's independent of the feature dimensions n, as long as $x \in \mathcal{X}$ is bounded (by B).
- ightharpoonup As $m o \infty$, if d is fixed, then we're in a good shape: the bounds shrinks linearly.
- ▶ If d grows, it's likely that $\prod_{i=1}^{d} ||W_i||_2^2$ dominants 1/m since it's an exponential blow-up.

The last point is why the generalization theory doesn't seem to be useful for *deep* learning.

Pingbang Hu (UIUC) PAC-Bayes [SB14; NBS18] July 24, 2024 35 / 42

Table of Content

- Introduction
- Naive PAC-Bayes Bound
- PAC-Bayes Bound for Neural Networks
- Look Back and Beyond
 - Look Back: The Road Map
 - Beyond the Exponential Blow-Up
- References

What's Next?

Several natural questions should arise if you are still awake:

Problem (Natural questions...)

1. Can the PAC-Bayes approach be applied to other tasks?

What's Next?

Several natural questions should arise if you are still awake:

Problem (Natural questions...)

- 1. Can the PAC-Bayes approach be applied to other tasks?
- 2. Are there other methods to get a similar bound?

What's Next?

Several natural questions should arise if you are still awake:

Problem (Natural questions...)

- 1. Can the PAC-Bayes approach be applied to other tasks?
- 2. Are there other methods to get a similar bound?
- 3. Is the exponential blow-up avoidable?

Several natural questions should arise if you are still awake:

Problem (Natural questions...)

- 1. Can the PAC-Bayes approach be applied to other tasks?
- 2. Are there other methods to get a similar bound?
- 3. Is the exponential blow-up avoidable?

It turns out that, for these questions:

- 1. **Yes**! It is extended to *graph neural networks* in particular:
 - ▶ Graph classification [LUZ20] and semi-supervised node classification [MDM21].

Several natural questions should arise if you are still awake:

Problem (Natural questions...)

- 1. Can the PAC-Bayes approach be applied to other tasks?
- 2. Are there other methods to get a similar bound?
- 3. Is the exponential blow-up avoidable?

It turns out that, for these questions:

- 1. **Yes!** It is extended to *graph neural networks* in particular:
 - ▶ Graph classification [LUZ20] and semi-supervised node classification [MDM21].
- 2. Yes! Classical approach in the context of statistical learning theory is well-developed.
 - First formalizes the generalization error as an *empirical process* $\mathbb{P}_n h \mathbb{P} h$;
 - ▶ Then bounds $S_n := \mathbb{E}[\sup_{h \in \mathscr{H}} \sqrt{n}(\mathbb{P}_n h \mathbb{P}h)]$, leading to a high concentration bound.
 - ▶ Bounding S_n often reduces to bounding *VC-dimension* or *Rademacher complexity* of \mathcal{H} .

Several natural questions should arise if you are still awake:

Problem (Natural questions...)

- 1. Can the PAC-Bayes approach be applied to other tasks?
- 2. Are there other methods to get a similar bound?
- 3. Is the exponential blow-up avoidable?

It turns out that, for these questions:

- 1. **Yes**! It is extended to *graph neural networks* in particular:
 - ► Graph classification [LUZ20] and semi-supervised node classification [MDM21].
- 2. Yes! Classical approach in the context of statistical learning theory is well-developed.
 - ▶ First formalizes the generalization error as an *empirical process* $\mathbb{P}_n h \mathbb{P} h$;
 - ▶ Then bounds $S_n := \mathbb{E}[\sup_{h \in \mathscr{H}} \sqrt{n}(\mathbb{P}_n h \mathbb{P}h)]$, leading to a high concentration bound.
 - ▶ Bounding S_n often reduces to bounding *VC-dimension* or *Rademacher complexity* of \mathcal{H} .
- 3. **Yes** and **No**...

Dealing with Exponential Blow-Up I

Now, let's formalize the last question regarding the exponential blow-up:

Problem

Under what norm-based constraints of NNs, can we avoid the exponential blow-up?

Intuition (Why norm-based constraints?)

For linear hypothesis class, if $\|\mathbf{w}\| \leq M$ and $\|x\| \leq B$, we have $L_{\mathcal{D}}(\mathbf{w}) - L_{\mathcal{S}}(\mathbf{w}) \approx O(MB/\sqrt{m})$.

Actually, if one really think about it, $\prod_{i=1}^{d} ||W_i||$ is unavoidable...but this is fine since:

- ▶ constraints of the form $\prod_{i=1}^{d} ||W_i|| \le R$ is still a form of *norm constraint*.
- ⇒ The problem becomes trimming down other *trailing factors*.

Dealing with Exponential Blow-Up II

Focus on trailing factors (ignoring $B \prod_{i=1}^{d} ||W_i||$ in the following):

- 1. Rademacher complexity used to $\approx \widetilde{O}(2^d/\sqrt{m})$ [NTS15]:
 - \Rightarrow when $d \ge \Omega(\ln m)$, the bound becomes vacuous.
- 2. Rademacher complexity is later improved to $\approx \widetilde{O}(\sqrt{d^3/m})$ [BFT17]:
 - \Rightarrow when $d \ge \Omega(m^{1/3})$, the bound becomes vacuous.
- 3. Our *PAC-Bayes bound* $\approx \widetilde{O}(\sqrt{d^3h/m}R)$ [NBS18]:
 - \Rightarrow when $d\sqrt[3]{h} \ge \Omega(m^{1/3})$, the bound becomes trivial.

Intuition (This seems to be the best we can hope...)

Norm-based constrains reduces the exponential blow-up of the trailing factor to polynomial.

So it seems like our PAC-Bayes bound is doing its best job... Can we do better?

Dealing with Exponential Blow-Up III

The answer is yes. The ground-breaking work [GRS19] proves the following:

Theorem (Size-independent Sample Complexity of Neural Networks [GRS19])

It's possible to get rid of both d and h completely, hence obtains a size-independent generalization error bound for a class of norm-base constrained NNs.

Proof idea.

Under some control over any *Schatten norm* of the parameter matrices (e.g., $\|\cdot\|_F$ and $\|\cdot\|_{tr}$):

Observe (Key observation)

The prediction function computed by such networks can be approximated by the composition of a shallow network and univariate Lipschitz functions.

Then the Rademacher complexity can be bounded nicely.

References I

- [BFT17] Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-Normalized Margin Bounds for Neural Networks. Dec. 5, 2017. DOI: 10.48550/arXiv.1706.08498. arXiv: 1706.08498 [cs, stat]. URL: http://arxiv.org/abs/1706.08498 (visited on 06/27/2024). Pre-published.
- [GRS19] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-Independent Sample Complexity of Neural Networks. Nov. 17, 2019. DOI: 10.48550/arXiv.1712.06541. arXiv: 1712.06541 [cs, stat]. URL: http://arxiv.org/abs/1712.06541 (visited on 11/15/2023). Pre-published.
- [LUZ20] Renjie Liao, Raquel Urtasun, and Richard Zemel. A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks. Dec. 14, 2020. DOI: 10.48550/arXiv.2012.07690. arXiv: 2012.07690 [cs]. URL: http://arxiv.org/abs/2012.07690 (visited on 06/28/2024). Pre-published.
- [MDM21] Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup Generalization and Fairness of Graph Neural Networks. Nov. 30, 2021. DOI: 10.48550/arXiv.2106.15535. arXiv: 2106.15535 [cs]. URL: http://arxiv.org/abs/2106.15535 (visited on 06/10/2023). Pre-published.
- [NBS18] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks. Feb. 23, 2018. DOI: 10.48550/arXiv.1707.09564. arXiv: 1707.09564 [cs]. URL: http://arxiv.org/abs/1707.09564 (visited on 09/03/2023). Pre-published.

References II

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms.

1st ed. Cambridge University Press, May 19, 2014. ISBN: 978-1-107-05713-5 978-1-107-29801-9. DOI: 10.1017/CB09781107298019. URL: https://www.cambridge.org/core/product/identifier/9781107298019/type/book (visited on color (2020)).