1)

On a: 3x + 5 = 2x - 3

c-à-d: 3x - 2x = -3 - 5

Alors: x = -8

D'où la solution de cette équation est: -8

2) a - : $(x+4) \times (1-x) = x - x^2 + 4 - 4x$ = $-x^2 - 3x + 4$ 2) b - On a: $-x^2 - 3x + 4 = 0$

c-à-d : $(x + 4) \times (1 - x) = 0$

c-à-d: x + 4 = 0 ou 1 - x = 0

Alors: x = -4 ou 1 = x

D'où les solutions de cette équation sont : - 4 et 1

3)

On a: $10x \le 50$

Donc: $x \leq \frac{50}{10}$

Alors: $x \le 5$

D'où tous les nombres réels inférieurs ou égaux

 $\grave{a}~5~\text{sont les solutions de cette inéquation}$.

On a: $-3x \le 9$

Donc: $x \ge \frac{c}{2}$

Alors: $x \ge -$

D'où tous les nombres réels supérieurs ou égaux à

3 sont les solutions de cette inéquation .

3- On considère:

(S): $\begin{cases} x + y = 8 \\ 3x + 2y = 21 \end{cases}$

a- le couple (2; -6) est-il solution ??

Pour: x = 2 et y = -6: On a: $\begin{cases} 2 & 1 \\ 2 & 1 \end{cases}$

On a: $\begin{cases} 2 + (-6) = -4 \neq 8 \\ 3 \times 2 + 2 \times (-6) = 6 + (-12) = -6 \neq 21 \end{cases}$

Donc le couple (2 ; -6) n'est pas une solution de ce système .

b- Résolvons le système « Méthode algébrique » :

• On additionne les équations membre à membre : 3x + (-3x) + 3y + (-2y) = 24 + (-21)

Alors: y = 3

• On remplace y par sa valeur dans l'équation (1) :

on a: x + y = 8; c - a - d: x = 8 - y donc: x = 8 - 3

Alors: x = 5

Donc le couple (5; 3) est la solution de ce système.

Le tableau suivant présente le nombre de chambres dans les maisons d'un quartier :

Nombre de chambres par maison	1	2	3	4	5
Nombre de maisons	20	25	20	5	10

1- Le nombre total des maisons de ce quartier :

$$N = 20 + 25 + 20 + 5 + 10 = 80$$

2- Le mode de cette série :

On a 25 est le plus grand effectif, alors le mode de cette série est 2.

3- La moyenne arithmétique de cette série :

$$m = \frac{1 \times 20 + 2 \times 25 + 3 \times 20 + 4 \times 5 + 5 \times 10}{80} = \frac{20 + 50 + 60 + 20 + 50}{80} = \frac{200}{80} = 2,5$$

Exercice 3:

Dans le plan rapporté à un repère orthonormé (0; I; J)

On considère les points suivants : A(1; 1); B(2; -3) et C(2; -2)

On a: A(1; 1); B(2; -3)

• a- les coordonnées du vecteur \overrightarrow{AB} :

On a: $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$

$$\overrightarrow{AB}$$
 (2-1; -3 - 1)

Alors: $\overrightarrow{AB}(1; -4)$

• b- La distance AB: $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

On a: $\overrightarrow{AB}(1; -4)$

Alors: $AB = \sqrt{1^2 + (-4)^2} = \sqrt{1 + 16} = \sqrt{17}$

c-les coordonnées de M le milieu du segment [AB] :

On a: $M_{[AB]} \left(\frac{x_A + x_B}{2} ; \frac{y_A + y_B}{2} \right)$

Donc: $M\left(\frac{1+2}{2}; \frac{1+(-3)}{2}\right)$

Alors: $M\left(\frac{3}{2};-1\right)$

4- Montrons que l'équation réduite de la droite (AB) est : y = -4x + 5

• On sait que : (AB): y = ax + b

• Calculons a: $a = \frac{y_B - y_A}{x_B - x_A} = \frac{-3 - 1}{2 - 1} = \frac{-4}{1} = -4$

Donc: (AB): y = -4x + b

• Calculons b :

On a : A(1; 1) \in (AB) : $y_A = -4 x_A + b$

Donc: 1 = -4 + b

 $1 = -4 \times 1 + b$

 $\begin{array}{rcl}
1 & +4 & = & b \\
5 & = & b
\end{array}$

Alors: (AB): y = -4x + 5

 $\mbox{NB}:\mbox{On peut vérifier que les points}$ A et B appartiens à cette droite .

Pour: A(1; 1): $y = -4 \times 1 + 5 = -4 + 5 = 1 = y_A$

Pour: B(2; -3): $y = -4 \times 2 + 5 = -8 + 5 = -3 = y_B$

Alors y = -4x + 5 est l'équation réduite de la droite (AB)

5) a - l'équation réduite de la droite (D) parallèle à (AB) et passant par C.

• On sait que : (D): y = ax + b

• Calculons a: On a: (D) // (AB)

Donc: $a_{(D)} = a_{(AB)} = -4$

Alors: (D): y = -4x + b

• Calculons b: On a: C(2; -2) \in (D):

 $y_c = -4 x_c + b$

 $-2 = -4 \times 2 + b$

-2 = -8 + b

-2 + 8 = b

6 = b

Alors: (D): y = -4x + 6

b- posons: (Δ): $y = \frac{1}{4}x + 4$ et on a: (AB): y = -4x + 1

• comme: $a_{(\Delta)} \times a_{(AB)} = \frac{1}{4} \times (-4) = -1$, alors: $(\Delta) \perp (AB)$.

6- On a : D l'image de C par la translation du vecteur \overrightarrow{AB} :

Donc: $\overrightarrow{AB} = \overrightarrow{CD}$ et on a: $\overrightarrow{AB} (1; -4)$

Alors les coordonnées de D sont : (3; -6)

7- L'image de la droite (AC) par la translation de vecteur \overrightarrow{AB} :

On a B l'image de A par la translation du vecteur \overrightarrow{AB} .

On a D l'image de C par la translation du vecteur \overrightarrow{AB}

Alors la droite (BD) est l'image de la droite (AC) par la translation du vecteur \overrightarrow{AB}

Exercice 4:

1- f une fonction définie par : f(x) = 3x+4

a- La nature de f:

f est une fonction affine

b - l'image de - 1 par f:

 $f(-1) = 3 \times (-1) + 4 = -3 + 4 = 1$

c – le nombre dont l'image –2 par la fonction f :

C-à-d: f(x) = -2

C-à-d: 3x + 4 = -2

C-à-d: 3x = -2 - 4

Donc: 3x = -6

Alors: $x = \frac{-6}{3} = -2$

Le nombre dont l'image -2 par la fonction f est : -2

On a:
$$a = \frac{g(2)}{2} = \frac{-10}{2} = -5$$
,

$$g(x) = -5x$$

b) La représentation graphique de g :

$$g(x) = -5x$$

$$\begin{array}{c|cc}
O & A \\
\hline
x & 0 & 1 \\
\hline
g(x) & 0 & -5 \\
\end{array}$$

$$O(0;0)$$
 $A(1;-5)$

Exercice 5:

SABCDE est une pyramide de sommet S , de base le carré ABCD tel que : $AB=6\sqrt{2}\ cm$ et de hauteur [SH] telle que : $SH=8\ cm$

1)Le volume de la pyramide AEFGH:

$$V_{SABCD} = \frac{\beta \times h}{3}$$
 β : l'aire de la base « carré »

$$V_{SABCD} = \frac{6\sqrt{2} \times 6\sqrt{2} \times 8}{3}$$

$$V_{SABCD} = \frac{36 \times 2 \times 8}{3} cm^3$$

$$V_{SABCD} = \frac{36 \times 2 \times 8}{3} cm^3$$
$$V_{SABCD} = 192 cm^3$$

2-Calculons AS:

a – Calculons AH:

On a: ABCD un carré

Donc: ABC Triangle rectangle en B

D'après le théorème de Pythagore :

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = (6\sqrt{2})^2 + (6\sqrt{2})^2$$

$$AC^2 = 72 + 72 = 144$$

Alors:
$$AC = \sqrt{144} = 12 \ car (AC > 0)$$

Et comme H est le milieu de [AC] :

Donc:
$$AH = \frac{12}{2} = 6 \ cm$$

b – Calculons AS:

On a : ASH Triangle rectangle en H

D'après le théorème de Pythagore :

$$AS^2 = AH^2 + HS^2$$

$$AS^2 = 6^2 + 8^2$$

$$AS^2 = 36 + 64 = 100$$

Alors:
$$AS = \sqrt{100} = 10 \ car (AS > 0)$$

3 –La pyramide SA'B'C'D' est un agrandissement de la pyramide SABCD par un rapport k

On a:
$$V' = k^3 \times V$$

Donc:
$$k^3 = \frac{V'}{V}$$

C-à-d:
$$k^3 = \frac{1536}{192} = 8 = 2^3$$

Alors:
$$k = 2$$

1)

4x + 1 = -3On a:

4x = -3 - 1c-à-d:

4x = -4c-à-d:

 $x = \frac{-4}{4}$ Donc:

Alors: x = -1

D'où la solution de cette équation est : -1

2) a - : $(x+3) \times (2-x) = 2x - x^2 + 6 - 3x$ $=-x^2-x+6$

 $-x^2 - x + 6 = 0$ **b** - On a:

 $(x+3) \times (2-x) = 0$

x + 3 = 0 ou 2 - x = 0

x = -3 ou 2 = xAlors:

D'où les solutions de cette équation sont : - 3 et 2

3)

 $7x - 5 \le 0$ On a:

 $7x \le 0 + 5$ c-à-d:

 $7x \leq 5$ c-à-d:

 $x \leq \frac{5}{7}$ Alors:

D'où tous les nombres réels inférieurs ou égaux

à $\frac{5}{7}$ sont les solutions de cette inéquation.

 $3x - 1 \le 5x + 7$ On a:

 $3x - 5x \le 7 + 1$ c-à-d:

 $-2x \leq 8$ c-à-d:

 $x \ge -\frac{8}{3}$ Donc:

Alors: $x \ge -4$

D'où tous les nombres réels supérieurs ou égaux à

4 sont les solutions de cette inéquation .

3- On considère:

(S): $\begin{cases} 2x - y = 5 \\ x + 3y = 6 \end{cases}$

a- le couple (2;-1) est-il solution ??

On a: $\begin{cases} 2 \times 2 - (-1) = 4 + 1 = 5 \\ 2 + 3 \times (-1) = 2 + (-3) = -1 \neq 6 \end{cases}$ Pour: x = 2 et y = -1:

Donc le couple (2; -1) n'est pas une solution de ce système.

b- Résolvons le système « Méthode algébrique » :

On a: $\begin{cases} 3 \times \begin{cases} 2x - y = 5 \\ x + 3y = 6 \end{cases}$ c-à-d: $+ \begin{cases} 6x - 3y = 15 \\ x + 3y = 6 \end{cases}$

6x + x - 3y + 3y = 15 + 6• On additionne les équations membre à membre :

donc: 7x = 21

 $x = \frac{21}{7} = 3$ Alors:

On remplace x par sa valeur dans l'équation (2) :

on a: 3+3y=6; $c-\lambda-d: 3y=6-3$ donc: 3y=6

Alors: $y = \frac{6}{3} = 2$

Donc le couple (3; 2) est la solution de ce système.

Le tableau suivant présente le nombre d'enfants par famille dans un quartier :

Nombre d'enfants par famille	0	1	2	3	4
Nombre de familles	5	3	2	7	3

1- Le nombre total des familles du quartier :

$$N = 5 + 3 + 2 + 7 + 3 = 20$$

2- Le mode de cette série :

On a 7 est le plus grand effectif, alors le mode de cette série est 3.

3- La moyenne arithmétique de cette série :

$$m = \frac{5 \times 0 + 3 \times 1 + 2 \times 2 + 7 \times 3 + 3 \times 4}{20} = \frac{0 + 3 + 4 + 21 + 12}{20} = \frac{40}{20} = 2$$

Exercice 3:

Dans le plan rapporté à un repère orthonormé (0; I; J)

On considère les points suivants : A(0; 1); B(1; 4) et C(3; 4)

On a: A(0; 1); B(1; 4)

• a- les coordonnées du vecteur \overrightarrow{AB} :

On a: $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$

 \overrightarrow{AB} (1-0; 4-1)

Alors: \overrightarrow{AB} (1; 3)

• b- La distance AB : $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

On a: \overrightarrow{AB} (1: 3)

Alors: $AB = \sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10}$

c-les coordonnées de k le milieu du segment [AB] :

On a: $k_{[AB]} \left(\frac{x_A + x_B}{2} ; \frac{y_A + y_B}{2} \right)$

Donc: $k_{[AB]} \left(\frac{0+1}{2} ; \frac{1+4}{2} \right)$

Alors: $k_{[AB]}\left(\frac{1}{2}; \frac{5}{2}\right)$

4- Montrons que l'équation réduite de la droite (AB) est : y = 3x + 1

• On sait que : (AB) : y = ax + b

• Calculons a: $a = \frac{y_B - y_A}{x_B - x_A} = \frac{4 - 1}{1 - 0} = \frac{3}{1} = 3$

Donc: (AB): y = 3x + b

• Calculons b :

On a : A(0; 1) \in (AB) : $y_A = 3 x_A + b$

 $1=3\times 0+b$

Donc: 1 = 0 + b

Alors: (AB): y = 3x + 1

NB : On peut vérifier que les points A et B appartiens à cette droite .

Pour: A(0; 1): $y = 3 \times 0 + 1 = 1 = y_A$

Pour: B(1; 4): $y = 3 \times 1 + 1 = 3 + 1 = 4 = y_R$

Alors y = 3x + b est l'équation réduite de la droite (AB)

5) a - l'équation réduite de la droite (D) parallèle à (AB) et passant par C.

• On sait que : (D): y = ax + b

• Calculons a: On a: (D) // (AB)

Donc: $a_{(D)} = a_{(AB)} = 3$

Alors: (D): y = 3x + b

Calculons b: On a: C(3; 4) \in (D):

 $y_c = 3 x_c + b$

 $4 = 3 \times 3 + b$

4 = 9 + b

4 - 9 = b

-5 = b

Alors: (D): y = 3x - 5

b- posons: (Δ): $y = \frac{-1}{3}x + 4$ et on a: (AB): y = 3x + 1

• comme: $a_{(\Delta)} \times a_{(AB)} = \frac{-1}{3} \times 3 = -1$, alors: (D) \perp (AB).

6- On a : D l'image de C par la translation du vecteur \overrightarrow{AB} :

Donc: $\overrightarrow{AB} = \overrightarrow{CD}$

 $x_{B} - x_{A} = x_{D} - x_{C}$ $y_{B} - y_{A} = y_{D} - y_{C}$ $1 = x_{D} - 3$ $1 + 3 = x_{D}$ $4 = x_{D}$ $y_{B} - y_{A} = y_{D} - y_{C}$ $3 = y_{D} - 4$ $3 + 4 = y_{D}$ $7 = y_{D}$

On obtient finalement: D(4;4)

7- L'image de la droite (AC) par la translation de vecteur \overrightarrow{AB} :

On a B l'image de A par la translation de vecteur \overrightarrow{AB} .

On a D l'image de C par la translation de vecteur \overrightarrow{AB}

Alors la droite (BD) est l'image de la droite (AC) par la translation de vecteur \overrightarrow{AB}

Exercice 4:

1- f une fonction linéaire définie par : f(x) = 3x

a- le coefficient de f: a = 3

c- le point E(10; 30) appartient à la représentation graphique de la fonction f?

b – les images :

On a: $f(10) = 3 \times 10 = 30 = y_E$;

• $f(1) = 3 \times 1 = 3$ • $f(-2) = 3 \times (-2) = -6$

Alors E appartient à la représentation graphique de la fonction f

2- g une fonction définie par : g(x) = -5x + 1

a) La nature de g:

g est une fonction affine

le coefficient de g :

$$on a: g(x) = -5x + 1$$

Alors:
$$a = -5$$

b- le nombre dont l'image -9 par la fonction g

On a :
$$g(x) = -9$$

c-à-d:
$$-5x + 1 = -9$$

c-à-d:
$$-5x = -9 - 1$$

donc :
$$-5x = -10$$

alors:
$$x = \frac{-10}{-5} = 2$$

le nombre dont l'image −9 par la fonction g est : 2

Exercice 5:

ABCDEFGH est un parallélépipède rectangle tel que :

$$AB = 8cm$$
; $BC = 6cm$ et $AE = 4cm$.

1-Calculons: AC:

On a: ABCD un rectangle

Donc: ABC Triangle rectangle en B

D'après le théorème de Pythagore :

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 8^2 + 6^2$$

$$AC^2 = 64 + 36 = 100$$

Alors: $AC = \sqrt{100} = 10$; $(car\ AC > 0)$

2-le volume du parallélépipède ABCDEFGH:

$$V = AB \times AE \times BC$$

$$V = 8 \times 4 \times 6 = 192 \ cm^3$$

3 – le parallélépipède IJKDMNOP est une réduction du parallélépipède ABCDEFGH par un rapport de $\frac{1}{2}$

le volume du parallélépipède IJKDMNOP :

$$V' = k^3 \times v$$

$$V' = \left(\frac{1}{2}\right)^3 \times 192$$

$$V' = \frac{1}{8} \times 8 \times 4 \times 6$$

$$V' = 24 \ cm^3$$

Exercice 1:1-2)

1) a- On a:
$$2x + 3 = 0$$

c-à-d:
$$2x = -3$$

Alors:
$$x = \frac{-3}{2}$$

D'où la solution de cette équation est : $\frac{-3}{2}$

b- On a:
$$4x - 2 = x + 1$$

c-à-d:
$$4x - x = 1 + 2$$

Donc:
$$3x = 3$$

Alors:
$$x = \frac{3}{3} = 1$$

D'où la solution de cette équation est : 1

2) a - Développement :

$$(x-5)(2x+2) = 2x^2 + 2x - 10x - 10$$
$$= 2x^2 - 8x - 10$$

b - On a:
$$2x^2 - 8x - 10 = 0$$

c-à-d:
$$(x-5)(2x+2) = 0$$

c-à-d:
$$x - 5$$
 ou $2x + 2 = 0$

c-à-d:
$$x = 5$$
 ou $2x = -2$

Alors:
$$x = 5$$
 ou $x = \frac{-2}{2} = -1$

D'où les solutions de cette équation sont : 5 et - 1

3) On a:
$$6 + 3x \le 12$$
 c-à-d: $3x \le 12 - 6$

c-à-d:
$$3x \le 6$$

Donc: $x \le \frac{6}{3}$

Alors:
$$x < 2$$

D'où tous les nombres réels inférieurs ou égaux à 2 sont les solutions de cette inéquation .

Problème :

4)

Choix de l'inconnue :

Soit : x la somme d'argent de Ali , alors la somme d'argent de Salma est : x + 200

Mise en équation :

Le montant total de Ali et Salma est : 760 Dh

$$x + x + 200 = 760$$

Alors:
$$2x + 200 = 760$$

Résolution de l'équation :

3) On a:
$$2x + 200 = 760$$

c-à-d:
$$2x = 760 - 200 = 560$$

Alors:
$$x = \frac{560}{2} = 280$$

Retour au problème :

la somme d'argent de Ali est: 280

la somme d'argent de Salma: 280+200=480

Vérification:

$$280 + 480 = 760$$

1) On considère:

(S):
$$\begin{cases} 5x - y = 1 \\ 2x + 3y = 14 \end{cases}$$

a- le couple (2; 9) est-il solution??

On a:
$$\begin{cases} 5 \times 2 - 9 = 10 - 9 = 1 \\ 2 \times 2 + 3 \times 9 = 4 + 27 = 31 \neq 14 \end{cases}$$

Donc le couple (2;9) n'est pas une solution de ce système

b- le couple (1; 4) est-il solution??

On a:
$$\begin{cases} 5 \times 1 - 4 = 5 - 4 = 1 \\ 2 \times 1 + 3 \times 4 = 2 + 12 = 14 \end{cases}$$

Donc le couple (2;9) une solution de ce système.

 $\begin{cases} 2x + y = 5 \\ 3x + 2y = 6 \end{cases}$ 2) - Résolvons le système :

• On additionne les équations membre à membre :

$$4x - 3x + 2y - 2y = 10 - 6$$

• On remplace x par sa valeur dans l'équation (1) :

alors:
$$x=4$$
 on remplace x par sa valeur dans l'équation (1):
$$on \ a: \ 2\times 4 + y = 5 \quad ; \quad c-\grave{a}-d: \quad 8+y=5 \qquad donc: \ y=5-8$$

$$Alors: \ y=-3$$

Donc le couple (4; -3) est la solution de ce système.

 $\begin{cases} x + y = 16 \\ x + 2y = 22 \end{cases}$ 3) Résolvons le système :

On a:
$$\begin{cases} x = 16 - y \\ x + 2y = 22 \end{cases}$$
; c-à-d: $\begin{cases} x = 16 - y \\ 16 - y + 2y = 22 \end{cases}$; c-à-d: $\begin{cases} x = 16 - y \\ y = 22 - 16 \end{cases}$; alors: $\begin{cases} x = 16 - 6 = 10 \\ y = 6 \end{cases}$

Donc le couple (10; 6) est la solution de ce système.

Problème:

Choix de l'inconnue:

Soit:

x: le nombre de bouteilles d'une capacité de : 1 ly : le nombre de bouteilles d'une capacité de : 2 l

Mise en système :

Le nombre de bouteilles : x + y = 16Le nombre de litres d'huile : x + 2y = 22

 $\begin{cases} x + y = 16 \\ x + 2y = 22 \end{cases}$ On obtient le système :

Résolution du système :

D'après la question précédente :

La solution de ce système est le couple (10; 6)

Retour au problème :

le nombre de bouteilles d'une capacité de 1l est : 10 le nombre de bouteilles d'une capacité de 2l est : 6

Vérification:

$$\left\{ \begin{array}{ll} 10 + 6 = 16 \\ 10 + 2 \times 6 = 10 + 12 = 22 \end{array} \right.$$

Soit EFGH est un parallélogramme.

1- On a : K l'image de G par la translation t du vecteur \overrightarrow{EF}

Signifie que : $\overrightarrow{EF} = \overrightarrow{GK}$, donc EFKG est un parallélogramme .

2- On a : F l'image de E par la translation t du vecteur \overrightarrow{EF}

K l'image de G par la translation t du vecteur \overrightarrow{EF}

Alors le segment [FK] est l'image de [EG] par la translation t.

3-Soit (C) cercle de centre H et passant par G.

G l'image de H par la translation t du vecteur \overrightarrow{EF}

K l'image de G par la translation t du vecteur \overrightarrow{EF}

Alors l'image de cercle (C): est le cercle de centre G et rayon [GK].

Exercice 4:

Dans le plan rapporté à un repère orthonormé (0; I; J)

A(1; 2);B(2;3)On considère les points suivants :

On a:

• a- les coordonnées du vecteur \overrightarrow{AB} :

On a:

$$\overrightarrow{AB}(x_B-x_A;y_B-y_A)$$

$$\overrightarrow{AB}$$
 (2-1; 3 - 2)

Alors:

$$\overrightarrow{AB}$$
 (1; 1)

• b- La distance AB: $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ On a:

$$\overrightarrow{AB}$$
 (1: 1)

Alors:

$$AB = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$$

c-les coordonnées de k le milieu du segment [AB]

On a:

$$k_{[AB]} \left(\frac{x_A + x_B}{2} ; \frac{y_A + y_B}{2} \right)$$

Donc:
$$k_{[AB]} \left(\frac{1+2}{2}; \frac{2+3}{2} \right)$$

Alors:

$$k_{[AB]}\left(\frac{3}{2};\frac{5}{2}\right)$$

2-a Montrons que l'équation réduite de la droite (AB) est : y = x + 1

On sait que:

$$(AB): y = ax + b$$

Calculons a:
$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{3 - 2}{2 - 1} = \frac{1}{1} = 1$$

Donc:

$$(AB): y = 1x + b$$

Calculons b:

On a : A(1; 2) \in (AB) : $y_A = x_A + b$

$$y_A = x_A + b$$

$$2 = 1 + b$$

Donc:

Alors:

$$2 - 1 = b$$

1 = b

$$(AB): y = x + 1$$

NB : On peut vérifier que les points A et B appartiens à cette droite .

2-b le point C appartient-il à la droite (AB)?

On a: (AB): y = x + 1 et C(4; 5) y = 4 + 1 = 5; alors: $C \in (AB)$

3-l'équation réduite de la droite (Δ) perpendiculaire à (AB) passant par C.

• On sait que : (Δ): y = ax + b

• Calculons a: $(\Delta) \perp (AB)$

Donc: $a_{(\Delta)} \times a_{(AB)} = -1$

Comme: $a_{(AB)} = 1$, alors: $a_{(\Delta)} = -1$

Alors: $(\Delta) : y = -1 x + b$

• Calculons b:

On a: C(4 ; 5) \in (Δ):

$$y_c = -x_c + b$$

$$5 = -4 + b$$

$$5 + 4 = b$$
$$9 = b$$

Alors:

$$(\Delta): \quad y = -x + 9$$

4- On a: (D): y = 4 + x et (AB): y = x + 1

• comme: $a_{(D)} = a_{(AB)} = 1$, alors: (D) // (AB).

Exercice 1:1-2)

a)

On a:

$$5x + 3 = 13$$

c-à-d:

$$5x = 13 - 3$$

c-à-d:

$$5x = 10$$

Donc:

$$x = \frac{10}{5}$$

Alors:

$$x = 2$$

D'où la solution de cette équation est : 2

b) Développement:

$$(3x-2)(x+4) = 3x^2 + 12x - 2x - 8$$
$$= 3x^2 + 10x - 8$$

c)

On a:
$$3x^2 + 10x - 8 = 0$$

(3x-2)(x+4)=0

c-à-d:
$$3x - 2 = 0$$
 ou $x + 4 = 0$

c-à-d:
$$3x = 2 \ ou \ x = -4$$

Alors:
$$x = \frac{2}{3}$$
 ou $x = -4$

D'où les solutions de cette équation sont : $\frac{2}{3}$ et -4

On a: 7x > 21

2 est-il solution de cette inéquation ??

On a: $7 \times 2 = 14 < 21$

Donc : 2 n'est pas une solution de cette inéquation.

On a:

$$7x \ge 21$$

Donc:

$$x \ge \frac{21}{7}$$

Alors:

D'où tous les nombres réels supérieurs ou égaux à

3 sont les solutions de cette inéquation.

3-- On considère:

(S):
$$\begin{cases} 2x - y = 5 \\ x + y = 4 \end{cases}$$

a-le couple (4;3) est-il solution??

Pour:
$$x = 4$$
 et $y = 3$:

On a:
$$\begin{cases} 2 \times 4 - 3 = 8 - 3 = 5 \\ 4 + 3 = 7 \neq 4 \end{cases}$$

Donc le couple (4; 3) n'est pas une solution de ce système.

b- Résolvons le système « Méthode algébrique »:

On a:

$$+ \left\{ \begin{array}{c} 2x - y = 5 \\ x + y = 4 \end{array} \right.$$

• On additionne les équations membre par membre :

$$2x + x - y + y = 5 + 4$$

donc: 3x = 9

$$8r - 9$$

Alors:

$$x = \frac{9}{3} = 3$$

• On remplace x par sa valeur dans l'équation (2) :

on a:

$$x + y = 4$$

donc:

$$v = 4 - x = 4 - 3 = 1$$

Donc le couple (3;1) est la solution de ce système.

Dans le plan rapporté à un repère orthonormé (0; I;J)

On considère les deux points : A(1; 1); B(-1; 3)

On considère la droite (*D*) d'équation réduite : y = 3x + 2

1-Vérifions que les points A et B n'appartiens pas à la droite (D).

On a:
$$(D): y = 3x + 2$$
 et $A(1; 1)$

$$y = 3 \times 1 + 2 = 3 + 2 = 5 \neq 1$$

alors: $A \notin (D)$

On a:
$$(D): y = 3x + 2$$
 et $B(-1; 3)$

$$y = 3 \times (-1) + 2 = -3 + 2 = -1 \neq 3$$

alors: $B \notin (D)$

2-3) On a: A(1; 1) ; B(-1; 3)

2-a- les coordonnées du vecteur \overrightarrow{AB} :

On a: $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$

 \overrightarrow{AB} (-1 - 1); 3 - 1)

Alors: \overrightarrow{AB} (-2;2)

2-b- La distance AB:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On a: \overrightarrow{AB} (-2; 2)

Alors: $AB = \sqrt{(-2)^2 + (2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$

3-a-les coordonnées de k le milieu du segment [AB] :

On a: $k_{[AB]} \left(\frac{x_A + x_B}{2} ; \frac{y_A + y_B}{2} \right)$

Donc: $k_{[AB]} \left(\frac{1+(-1)}{2} ; \frac{1+3}{2} \right)$

Alors: $k_{[AB]} (0; 2)$

3-b-On a: (D): y = 3x + 2 et k(0; 2)

 $y = 3 \times 0 + 2 = 0 + 2 = 2 = y_k$

alors: $k \in (D)$

4- l'équation réduite de la droite (Δ) l'image de la droite (D) par la translation du vecteur \overrightarrow{KA} . (Δ) parallèle à la droite (D) passant par A.

- On sait que : $(\Delta) : y = ax + b$
- Calculons a: Ona:(Δ) //(D)

Donc: $a_{(\Delta)} = a_{(D)} = 3$

Alors: $(\Delta): y = 3x + b$

• Calculons b:

On a: $A(1;1) \in (\Delta)$: $y_A = 3 x_A + b$

$$1 = 3 \times 1 + b$$

$$1 - 3 = b$$

$$-2 = b$$

Alors: $(\Delta) : y = 3x - 2$

1- On considère f la fonction linéaire tel que : f(1) = 4.

a- Le coefficient de f: $\alpha = \frac{f(1)}{1} = \frac{4}{1} = 4$.

b- L'expression de f: f(x) = 4x.

2 - g une fonction affine tel que : g(x) = 4x + 2 :

a- Les images:

•
$$g(0) = 4 \times 0 + 2 = 2$$

•
$$g(-1) = 4 \times (-1) + 2 = -4 + 2 = -2$$

b – le nombre a pour image 6 par g:

$$g(x) = 6$$

$$4x + 2 = 6$$

$$4x = 6 - 2 = 4$$

Alors: $a = \frac{4}{4} = 1$

3 - Les représentations graphiques de *f* et g :

$$g(x) = 4x$$
$$0 \qquad A$$

х	0	1
g(x)	0	4

 $O(0;0) \ A(1;4)$

$$f(x) = 4x + 2$$

$$D$$
 C

x	0	-1
f(x)	2	2

D(0;2) C(-1;2)

4-Les représentations graphique de f et g sont parallèles car f et g de même coefficient 4

Un marchand a compté les billets qu'il possédait, classés en fonction de leur valeur financière.

Valeur financière de billet (DH)	50	100	200
Nombre des billets	40	30	50

1- le montant total qui possède ce marchand :

$$S = 50 \times 40 + 100 \times 30 + 200 \times 50 = 2000 + 3000 + 10000 = 15000$$

2-le pourcentage correspondant à les billets de catégorie 100 DH.

on
$$a: l'effectif total:$$
 $N = 40 + 30 + 50 = 120$.

Alors:
$$P = \frac{30}{120} \times 100 = 25\%$$

3-la moyenne arithmétique de cette série.

$$m = \frac{50 \times 40 + 100 \times 30 + 200 \times 50}{120} = \frac{15000}{120} = 125$$

Exercice 5:

ABCDEFGH est un parallélépipède rectangle

de volume
$$v = 24 cm^3$$
 et $AD = 3cm$ et $AB = 4cm$

1-Calculons DB:

On a: ABCD est un rectangle,

donc DAB est un triangle rectangle en A.

D'après le théorème de Pythagore :

$$DB^2 = AD^2 + AB^2 = 3^2 + 4^2 = 9 + 16 = 25$$

alors:
$$DG = \sqrt{25} = 5$$
. (car $DG > 0$)

2-Vérifions que : AE = 2 cm

On a:
$$v = AB \times AD \times AE$$

$$24 = 4 \times 3 \times AE$$

$$24 = 12 \times AE$$

Alors:
$$AE = \frac{24}{12} = 2 \ cm$$

3-Calculons ${\cal A}$ l'aire du rectangle obtenue par L'agrandissement du rectangle ABCD par un rapport de 2 :

On a:
$$\mathcal{A} = k^2 \times AB \times AD$$

Donc:
$$A = 2^2 \times 4 \times 3$$

Alors:
$$A = 48 cm^2$$

4- Calculons V' le volume de parallélépipède obtenue par la réduction de ABCDEFGH par un rapport de $\frac{1}{2}$:

$$V' = k^3 \times v$$

$$V' = \left(\frac{1}{2}\right)^3 \times 24$$

$$V' = \frac{1}{8} \times 24$$

$$V' = 3 cm^3$$

Exercice 1:1)

On a: 4x = 16

 $Donc: x = \frac{16}{4}$

Alors: x = 4

D'où la solution de cette équation est : 4

On a: $(2x-7) \times (x+9) = 0$

c-à-d: 2x - 7 = 0 ou x + 9 = 0

c-à-d: 2x = 7 ou x = -9

Alors: $x = \frac{7}{2}$ ou x = -9

D'où les solutions de cette équation sont : $\frac{7}{2}$ et -9

2)

On a: $2x \le 22$

c-à-d: $x \le \frac{22}{2}$

Alors: $x \le 11$

D'où tous les nombres réels inférieurs ou égaux à 11 sont les solutions de cette inéquation .

On a: $-5 x \le 6$

Donc: $x \ge \frac{\epsilon}{-}$

Alors: $x \ge -$

D'où tous les nombres réels supérieurs ou égaux à

 $-\frac{6}{5}$ sont les solutions de cette inéquation .

3- On considère:

(S):
$$\begin{cases} 3x - y = 6 \\ x + 2y = 16 \end{cases}$$

a-le couple (5;9) est-il solution??

Pour: x = 5 et y = 9:

On a:
$$\begin{cases} 3 \times 5 - 9 = 15 - 9 = 6 \\ 5 + 2 \times 9 = 5 + 18 = 23 \neq 16 \end{cases}$$

Donc le couple (5;9) n'est pas une solution de ce système.

b- Résolvons le système :

$$\begin{cases} 3x - y = 6 \\ x + 2y = 16 \end{cases}$$

On a: $\begin{cases} 2 \times (3x - y = 6) \\ x + 2y = 16 \end{cases}$

c-à-d: +
$$\begin{cases} 6x - 2y = 12 \\ x + 2y = 16 \end{cases}$$

• On additionne les équations membre à membre :

$$6x + x - 2y + 2y = 12 + 16$$

Donc: 7x = 28

Alors:
$$x = \frac{28}{7} = 4$$

• On remplace *x* par sa valeur dans l'équation (1) :

on $a: 3 \times 4 - y = 6$; $c - \grave{a} - d: 12 - y = 6$ donc: 12 - 6 = yAlors: y = 6

Donc le couple (4;6) est la solution de ce système.

Dans le plan rapporté à un repère orthonormé (0; I; J)

On considère les points suivants : A(-1; 2); B(-2; 4) et C(6; -2)

1)-

On a:
$$B(-2; 4)$$
 et $C(6; -2)$

• a- les coordonnées du vecteur \overrightarrow{BC} :

On a:
$$\overrightarrow{BC}(x_C - x_B; y_C - y_B)$$

$$\overrightarrow{BC}$$
 (6-(-2); -2-4)

 \overrightarrow{BC} (8: -6) Alors:

• b- La distance BC:
$$BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}$$

On a:
$$\overrightarrow{BC}$$
 (8; -6)

Alors:
$$BC = \sqrt{(8)^2 + (-6)^2} = \sqrt{64 + 36} = \sqrt{100} = 10$$

c-les coordonnées de E le milieu du segment [BC] :

On a:
$$E_{[BC]}\left(\frac{x_C+x_B}{2}; \frac{y_C+y_B}{2}\right)$$

Donc:
$$E_{[BC]} \left(\frac{6+(-2)}{2}; \frac{-2+4}{2} \right)$$

$$E_{[BC]}\left(\frac{4}{2};\frac{2}{2}\right)$$

Alors:
$$E_{[BC]}$$
 (2;1)

5- Montrons que l'équation réduite de la droite (BC) est : $y = \frac{-3}{4}x + \frac{5}{2}$

- On sait que: (BC): y = ax + b
- Calculons a:

$$a = \frac{y_C - y_B}{x_C - x_B} = \frac{-2 - 4}{6 - (-2)} = \frac{-6}{8} = \frac{-3}{4}$$

 $(BC): y = \frac{-3}{4}x + b$

Calculons b:

On a:
$$B(-2; 4) \in (BC)$$
: $y_B = \frac{-3}{4}x_B + b$

$$4 = \frac{-3}{4} \times (-2) + b$$

$$4 = \frac{3}{2} + b$$

Donc:
$$\frac{8}{2} - \frac{3}{2} = b$$
Alors:
$$\frac{5}{2} = b$$

Alors:
$$\frac{5}{2} = b$$

Alors:
$$(BC): y = \frac{-3}{4}x + \frac{5}{2}$$

NB: On peut vérifier que les points A et B appartients à cette droite.

5-b-le point A appartient-il à la droite (BC)?

On a:
$$(BC): y = \frac{-3}{4}x + \frac{5}{2}$$
 et $A(-1; 2)$

$$y = \frac{-3}{4} \times (-1) + \frac{5}{2} = \frac{3}{4} + \frac{5}{2} = \frac{3}{4} + \frac{10}{4} = \frac{13}{4} \neq y_A$$

Alors: $A \notin (BC)$

C-l'équation réduite de la droite (Δ) parallèle à la droite (BC) passant par A.

On sait que: $(\Delta): y = ax + b$

• Calculons a: on a: $(\Delta) //(BC)$

Donc: $a(\Delta) = a(BC) = \frac{-3}{4}$

Alors: $(\Delta) : y = \frac{-3}{4}x + b$

Calculons b:

On a: $A(-1; 2) \in (\Delta)$: $y_A = \frac{-3}{4}x_A + b$

 $2 = \frac{-3}{4} \times (-1) + b$ $2 = \frac{3}{4} + b$ $\frac{8}{4} - \frac{3}{4} = b$ $\frac{5}{4} = b$

Donc:

Alors:

 $(\Delta): y = \frac{-3}{4} x + \frac{5}{4}$ Alors:

On a: A' l'image du point A par la translation t qui transforme B en C. 3-a)

Signifie que :

$$\overrightarrow{AA'} = \overrightarrow{BC}$$

$$x_{A'} - x_A = x_C - x_B$$

 $x_{A'} - (-1) = 8$
 $x_{A'} = 8 - 1$
 $x_{A'} = 7$
 $y_{A'} - y_A = y_C - y_B$
 $y_{A'} - 2 = -6$
 $y_{A'} = -6 + 2$
 $y_{A'} = -4$

Alors les coordonnées de A' sont : (7; -4).

On a : A' l'image de A par la translation t du vecteur \overrightarrow{BC} 3-b) C l'image de B par la translation t du vecteur BC

Alors la droite (A'C) est l'image de (AB) par la translation t

Exercice 3:

1- f une fonction définie par : f(x) = 3x - 7

a- La nature de *f* :

f est une fonction affine

b-l'image de 5 par f:

 $f(5) = 3 \times 5 - 7$ on a:

f(5) = 15 - 7 = 8

c- le nombre dont l'image 26 par la fonction *f*

c-à-d : f(x) = 26

3x - 7 = 26c-à-d:

3x = 26 + 7c-à-d:

3x = 33donc:

 $x = \frac{33}{2} = 11$ alors:

le nombre dont l'image 26 par la fonction f est : 11

2- g une fonction linéaire tel que : g(1) = 5

a- L'expression de g :

- Calculons a: $a = \frac{g(1)}{1} = \frac{5}{1} = 5$; donc: g(x) = 5x

Quantité d'oranges (kg)	100	120	140	160	200
Nombre des ouvriers	20	30	10	25	15

1- le nombre total des ouvriers :

$$N = 20 + 30 + 10 + 25 + 15 = 100$$

2-le mode de ce cette série :

On a: 30 est le plus grand effectif, alors le mode de cette série est: 120

3-La moyenne arithmétique de cette série :

$$m = \frac{20 \times 100 + 30 \times 120 + 10 \times 140 + 25 \times 160 + 15 \times 200}{100} = \frac{2000 + 3600 + 1400 + 3000}{100} = \frac{14000}{100} = 140$$

Exercice 5:

SABCD une pyramide de hauteur [SB] à base triangulaire .tel que :

ABC triangle rectangle en A et :SB = 6cm; AB = 4cm; BC = 5cm

1-Calculons: AC

On a : ABC Triangle rectangle en A D'après le théorème de Pythagore :

$$BC^2 = AB^2 + AC^2$$

$$Donc: AC^2 = BC^2 - AB^2$$

$$AC^2 = 5^2 - 4^2$$

$$AC^2 = 25 - 16 = 9$$

Alors:
$$AC = \sqrt{9} = 3$$
 $(car\ AC > 0)$

2 -le volume de la pyramide SABC :

$$V_{SABC} = \frac{\beta \times h}{3}$$

$$\beta$$
: l'aire de la base « Triangle »: $\beta = \frac{3\times4}{2} = 6$

$$V_{SABC} = \frac{6 \times 6}{3}$$

$$V_{SABC} = 12 cm^3$$

3 -Calculons : SQ

La pyramide SPQR est une réduction de la pyramide SABC de rapport : $k=\frac{2}{5}$

On a :
$$SQ = SB \times k$$

$$SQ = 6 \times \frac{2}{5} = \frac{12}{5}$$

3 -le volume V1 de la pyramide réduit SPQR

$$V1 = k^{3} \times V_{SABC}$$

$$V1 = \left(\frac{2}{5}\right)^{3} \times 12$$

$$V1 = \frac{8}{125} \times 12$$

$$V1 = \frac{96}{125} cm^{3}$$

Exercice 1:1)

On
$$a: 4x - 1 = 11$$

c-à-d:
$$4x = 11 + 1$$

c-à-d:
$$4x = 11 + 1$$

c-à-d:
$$4x = 12$$

$$Donc: x = \frac{12}{4}$$

Alors:
$$x = 3$$

D'où la solution de cette équation est : 3

On a:
$$2x \times (3x+5) = 0$$

c-à-d:
$$2x = 0$$
 ou $3x + 5 = 0$

c-à-d:
$$x = 0$$
 ou $3x = -5$

Alors:
$$x = 0$$
 ou $x = \frac{-5}{3}$

D'où les solutions de cette équation sont : 0 et $\frac{-5}{3}$

2)

On a:
$$2x - 3 \le 9$$

c-à-d:
$$2x \le 9 + 3$$

c-à-d:
$$2x ≤ 12$$

c-à-d:
$$x \leq \frac{12}{2}$$

Alors:
$$x \le 6$$

D'où tous les nombres réels inférieurs ou égaux à 6 sont les solutions de cette inéquation.

On a:
$$x - 2 \le 5x + 6$$

c-à-d:
$$x - 5x \le 6 + 2$$

c-à-d:
$$-4x \le 8$$

Donc:
$$x \ge -\frac{1}{2}$$

Alors:
$$x \ge -1$$

D'où tous les nombres réels supérieurs ou égaux à

-2 sont les solutions de cette inéquation.

3- On considère:

(S):
$$\begin{cases} x - 3y = 1 \\ 2x + 3y = 20 \end{cases}$$

a-le couple (10; 3) est-il solution??

Pour:
$$x = 10$$
 et $y = 3$: On a:
$$\begin{cases} 10 - 3 \times 3 = 10 - 9 = 1 \\ 2 \times 10 + 3 \times 3 = 20 + 9 = 29 \neq 20 \end{cases}$$

Donc le couple (10; 3) n'est pas une solution de ce système.

b- Résolvons le système « algébriquement » :

On a:
$$+ \begin{cases} x - 3y = 1 \\ 2x + 3y = 20 \end{cases}$$

• On additionne les équations membre à membre :
$$x + 2x - 3y + 3y = 1 + 20$$

$$donc: 3x = 21$$

Alors:
$$x = \frac{21}{3} = 7$$

• On remplace x par sa valeur dans l'équation (1) :

on
$$a: 7-3y=1$$
; $c-a-d: -3y=1-7$ donc: $-3y=-6$

Alors:
$$y = \frac{-6}{-3} = 2$$

Donc le couple (7; 2) est la solution de ce système.

Dans le plan rapporté à un repère orthonormé (0; I; J)

On considère les points suivants : A(1; 2) ; B(-1; 1) et C(3; 2)

1-2)

3- L'image du cercle de centre A et du rayon 3 cm par la translation T qui transforme A en B:

On a B l'image de A par la translation T.

Alors l'image du cercle de centre A et du rayon 3 cm par la translation T est le cercle de centre B et du rayon 3cm.

4)-

$$A(1; 2); B(-1; 1)$$

On a:
$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$

• a- les coordonnées du vecteur \overrightarrow{AB} :

$$\overrightarrow{AB}$$
 $(-1-1; 1-2)$

$$\overrightarrow{AB}$$
 $(-2; -1)$

• b- La distance AB :
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$\overrightarrow{AB}$$
 (-2; -1)

$$AB = \sqrt{(-2)^2 + (-1)^2} = \sqrt{4+1} = \sqrt{5}$$

c-les coordonnées de k le milieu du segment [AB] :

$$k_{[AB]} \left(\frac{x_A + x_B}{2} ; \frac{y_A + y_B}{2} \right)$$

Donc:
$$k_{[AB]} \left(\frac{1+(-1)}{2}; \frac{2+1}{2} \right)$$

$$k_{[AB]} \left(0; \frac{3}{2} \right)$$

5- Montrons que l'équation réduite de la droite (AB) est : $y = \frac{1}{2}x + \frac{3}{2}$

$$(AB): y = ax + b$$

Calculons a:
$$a = \frac{y_A - y_B}{x_A - x_B} = \frac{2 - 1}{1 - (-1)} = \frac{1}{2}$$

$$(AB): y = \frac{1}{2}x + b$$

Calculons b:

On a :
$$A(1; 2) \in (AB)$$
:

$$y_A = \frac{1}{2} x_A + b$$

$$2 = \frac{1}{2} \times 1 + b$$

$$\frac{4}{2} - \frac{1}{2} = b$$

$$\frac{3}{2} = b$$

$$(AB): y = \frac{1}{2}x + \frac{3}{2}$$

 $\overrightarrow{AB} = \overrightarrow{CD}$, Donc: (AB) // (CD)Signifie que :

Alors: $a_{(CD)} = a_{(AB)} = \frac{1}{2}$ (les droites parallèles ont le même coefficient)

6)- l'équation réduite de la droite (Δ) passant par C et perpendiculaire à (AB).

• On sait que : (Δ) : y = ax + b

• Calculons a: On a: $(\Delta) \perp (AB)$

Donc: $a(\Delta) \times a(AB) = -1$

Comme: $a_{(AB)} = \frac{1}{2}$, alors: $a_{(\Delta)} = -2$

Alors: $(\Delta): y = -2x + b$ Calculons b: On a: C(3; -2) \in (Δ):

 $y_c = -2 x_c + b$

 $-2 = -2 \times 3 + b$

-2 = -6 + b -2 + 6 = b 4 - b

Alors:

Exercice 4:

f une fonction linéaire définie par : $f(x) = \frac{4}{5}x$

a- le coefficient de f: $a = \frac{4}{5}$

b – l'image de 15 par f:

 $f(15) = \frac{4}{5} \times 15 = \frac{4 \times 5 \times 3}{5} = 12$

c — le nombre qui admet pour image 8 par la fonction f

c-à-d: f(x) = 8; c-à-d: $\frac{4}{5}x = 8$

donc: $x = 8 \times \frac{5}{4}$

alors: $x = \frac{4 \times 2 \times 5}{4} = 10$

le nombre qui admet pour image 8 par la fonction f est :10.

2- g une fonction affine tel que : g(0) = -5 et g(1) = 5

L'expression de g :

-Calculons a:

 $a = \frac{g(1) - g(0)}{1 - 0} = \frac{5 - (-5)}{1} = 10$

donc: g(x) = 10x + b

calculons b:

 $g(0) = 10 \times 0 + b = -5$ on a:

b = -5Donc:

g(x) = 10x - 5Alors:

c-Calculons m tel que le point E(m; m + 1) appartient à la représentation graphique de la fonction g.

> g(m) = m + 1c-à-d:

c-à-d: 10m - 5 = m + 1

10m - m = 1 + 5donc:

9m = 6c-à-d :

alors: $m = \frac{6}{9} = \frac{2}{3}$

Quantité de lait consommée en une journée (L)	0	1	2	3	4
Nombre des familles	50	100	200	100	P

1-Vérifier que p = 50.

On a : l'effectif total : N = 500

Donc: 50 + 100 + 200 + 100 + p = 500; c-a-d: 450 + p = 500; alors: p = 500 - 450 = 50

2-le pourcentage correspondant au caractère 2 :

$$\frac{200}{500} \times 100 = 40\%$$

3-La moyenne arithmétique de cette série :

$$m = \frac{50 \times 0 + 100 \times 1 + 200 \times 2 + 100 \times 3 + 50 \times 4}{500} = \frac{100 + 400 + 300 + 200}{500} = \frac{1000}{500} = 2$$

Exercice 6:

ABCDEFGH est un cube tel que : *AB*=4 et I le milieu de [AB].

1-le volume du cube ABCDEFGH:

$$V_{ABCDEFGH} = a \times a \times a$$

$$V_{ABCDEFGH} = 4 \times 4 \times 4 = 64 \ cm^3$$

2 -le volume de la pyramide AEFGH:

$$V_{AEFGH} = \frac{\beta \times h}{3}$$
 β : l'aire de la base « carré »

$$V_{AEFGH} = \frac{4 \times 4 \times 4}{3}$$

$$V_{ADEFGH} = \frac{64}{3} cm^3$$

3-Montrer que : $CI = 2\sqrt{5}$

On a : ABC Triangle rectangle en B(car ABCD un carré) Et comme I un point de [AB]

Alors: IBC triangle rectangle en B.

D'après le théorème de Pythagore :

$$CI^2 = CB^2 + BI^2$$

$$CI^2 = 4^2 + 2^2$$
 (I Le milieu de [AB], BI = 2)

$$CI^2 = 16 + 4 = 20$$

Alors:
$$CI = \sqrt{20} = 2\sqrt{5}$$
 (car $CI > 0$)

4-Calculons : GI.

On a: $(GC) \perp (CB)$ et $(GC) \perp (CD)$

Donc: $(GC) \perp (ABCD)$

Et comme (CI) une droite incluse dans le plan (ABCD)

Alors: (GC) \perp (CI).

D'où IGC est un triangle rectangle en C.

D'après le théorème de Pythagore :

$$GI^2 = CG^2 + CI^2 = 4^2 + \sqrt{20}^2 = 16 + 20 = 36$$

alors: AG =
$$\sqrt{36}$$
 = 6. (car (AG > 0)