- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2015

(Cognome)										-			(No	me)			=	ume	ro d	i ma	trice	ola)			

1	0000
2	
3	0000
4	0000
5	00000
6	0000
7	
8	0000
9	0000
10	0000

1. L'integrale

$$\int_{0}^{3} |x^2 - 1| dx$$

vale

A: 2/3 B: N.A. C: 22/3 D: 0 E: 6

2. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

A: 3e B: N.E. C: $6 \log(2)$ D: $-\log(64)$ E: 0

- 3. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \geq 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x \mathrm{e}^{g(t)} \, dt$ è continua sono A: $|b| \leq 1$ B: $b \leq 1$ C: N.A. D: b = 1 E: $b \in \mathbb{R}$
- 4. La retta tangente al grafico di $y(x)=\sin(\log(x))$ nel punto $x_0=1$ vale A: N.A. B: x C: 1+x D: $\frac{\sin(\log(x))}{x}$ E: x-1
- 5. Modulo e argomento del numero complesso $z=\left(2+2i\right)^{-3}$ sono A: $(1/4,\pi)$ B: $(1/(2\sqrt{2}),\pi)$ C: $(1/(2\sqrt{2}),\pi/4)$ D: N.A. E: (4,0)
- 6. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^3} = \beta$$

A: Nessun valore di β B: N.A. C: $\beta \in (0, +\infty)$ D: $\beta \in \mathbb{R}$ E: $\beta \in]0,1[$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}$$

valgono

A: $(-\infty, N.E, +\infty, N.E.)$ B: $\{-1, -1, +\infty, N.E\}$ C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{-1, N.E, 1., N.E\}$ E: N.A.

8. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \, 3 \log(n^3)}{e^n} (x - 1/e)^n$$

vale

A: 1/e B: e C: 1 D: N.A. E: $+\infty$

- 9. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: 1 B: N.E. C: N.A. D: 0 E: $\sin(\log(y(x)))$
- 10. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a A: 1 B: 2 C: N.A. D: $3e^3$ E: $\log(2e)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2015

(Cognome)										-			(No	me)			=	ume	ro d	i ma	trice	ola)			

1	0000
2	00000
3	00000
4	
5	
6	
7	
8	
9	
10	0000

1. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a A: $3e^3$ B: 1 C: 2 D: $\log(2e)$ E: N.A.

2. L'integrale

$$\int_{0}^{3} |x^2 - 1| dx$$

vale

A: 6 B: 2/3 C: 0 D: 22/3 E: N.A.

- 3. Modulo e argomento del numero complesso $z = (2 + 2i)^{-3}$ sono A: (4,0) B: $(1/4,\pi)$ C: N.A. D: $(1/(2\sqrt{2}),\pi/4)$ E: $(1/(2\sqrt{2}),\pi)$
- 4. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale A: N.A. B: 1 + x C: x 1 D: $\frac{\sin(\log(x))}{x}$ E: x
- 5. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

A: 3e B: $-\log(64)$ C: 0 D: N.E. E: $6\log(2)$

- 6. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \geq 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x \mathrm{e}^{g(t)} \, dt$ è continua sono A: $|b| \leq 1$ B: N.A. C: $b \leq 1$ D: b = 1 E: $b \in \mathbb{R}$
- 7. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: 0 B: $\sin(\log(y(x)))$ C: N.E. D: 1 E: N.A.
- 8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}$$

valgono

A:
$$\{-1, N.E, 1., N.E\}$$
 B: $\{-\infty, N.E., 1, N.E.\}$ C: $(-\infty, N.E, +\infty, N.E.)$ D: $\{-1, -1, +\infty., N.E\}$ E: N.A.

9. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^3} = \beta$$

A: Nessun valore di β B: N.A. C: $\beta \in]0,1[$ D: $\beta \in (0,+\infty)$ E: $\beta \in \mathbb{R}$

10. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \, 3 \log(n^3)}{e^n} (x - 1/e)^n$$

vale

A: 1/e B: $+\infty$ C: N.A. D: 1 E: e

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2015

(Cognome)										-			(No	me)			=	ume	ro d	i ma	trice	ola)			

1	0000
2	
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	0000

1. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^3} = \beta$$

C: $\beta \in (0, +\infty)$ D: Nessun valore di β A: $\beta \in]0,1[$ B: $\beta \in \mathbb{R}$ E: N.A.

2. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \, 3 \log(n^3)}{e^n} (x - 1/e)^n$$

vale

A: e $B: +\infty$ C: 1/e D: 1 E: N.A.

3. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : \ x^4 - x^2 > -\frac{\pi}{2} \}$$

valgono

A: $\{-1, N.E, 1., N.E\}$ B: $\{-\infty, N.E., 1, N.E.\}$ C: $\{-1, -1, +\infty., N.E\}$ $(-\infty, N.E, +\infty, N.E.)$

4. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale

A: 0 B: $\sin(\log(y(x)))$ C: N.A. D: N.E.

5. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a

A: N.A. B: 1 C: $3e^3$ D: 2 E: log(2e)

6. Modulo e argomento del numero complesso $z=\left(2+2i\right)^{-3}$ sono

A: $(1/(2\sqrt{2}), \pi/4)$ B: N.A. C: $(1/(2\sqrt{2}), \pi)$ D: (4,0) E: $(1/4, \pi)$

7. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

D: $6 \log(2)$ E: 3e A: N.E. B: $0 C: -\log(64)$

8. L'integrale

$$\int_0^3 |x^2 - 1| \, dx$$

vale

B: 6 C: 0 D: 22/3 E: 2/3 A: N.A.

9. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x > 2. \end{cases}$

Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x e^{g(t)} dt$ è continua sono

A: $b \in \mathbb{R}$ B: N.A. C: $b \le 1$ D: b = 1 E: $|b| \le 1$

10. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A:
$$\frac{\sin(\log(x))}{x}$$
 B: N.A. C: $1+x$ D: x E: $x-1$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

21 luglio 2015

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0000
2	0000
3	0000
4	0000
5	00000
6	0000
7	
8	0000
9	0000
10	00000

1. L'integrale

$$\int_{0}^{3} |x^{2} - 1| \, dx$$

vale

A: 0 B: N.A. C: 2/3 D: 6 E: 22/3

- 2. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \geq 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x \mathrm{e}^{g(t)} \, dt$ è continua sono A: $|b| \leq 1$ B: $b \in \mathbb{R}$ C: $b \leq 1$ D: N.A. E: b = 1
- 3. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale A: 1 + x B: $\frac{\sin(\log(x))}{x}$ C: N.A. D: x E: x 1
- 4. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^3} = \beta$$

A: Nessun valore di β B: $\beta \in \mathbb{R}$ C: $\beta \in]0,1[$ D: N.A. E: $\beta \in (0,+\infty)$

- 5. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: N.E. B: $\sin(\log(y(x)))$ C: 1 D: N.A. E: 0
- 6. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \, 3 \log(n^3)}{e^n} (x - 1/e)^n$$

vale

A: e B: N.A. C: 1 D: 1/e E: $+\infty$

- 7. Modulo e argomento del numero complesso $z = (2 + 2i)^{-3}$ sono A: N.A. B: $(1/(2\sqrt{2}), \pi/4)$ C: $(1/(2\sqrt{2}), \pi)$ D: $(1/4, \pi)$ E: (4, 0)
- 8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}\$$

valgono

A:
$$(-\infty, N.E, +\infty, N.E.)$$
 B: $\{-\infty, N.E., 1, N.E.\}$ C: N.A. D: $\{-1, -1, +\infty., N.E\}$ E: $\{-1, N.E, 1., N.E\}$

- 9. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a A: N.A. B: 2 C: $3e^3$ D: 1 E: $\log(2e)$
- 10. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

A: $-\log(64)$ B: 3e C: N.E. D: 0 E: $6\log(2)$

21 luglio 2015

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

21 luglio 2015

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

21 luglio 2015

(Cognome)										(Nome)										(Numero di matricola)										

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

21 luglio 2015

(Cognome)										(Nome)										(Numero di matricola)										

21 luglio 2015

PARTE B

1. Studiare il grafico della funzione

$$f(x) = e^{-x} \sin(x)$$
 $x \in [0, 2\pi].$

Soluzione. La funzione in questione è continua e quindi assumerà massimo e minimo assoluto nell'intervallo chiuso $[0, 2\pi]$. Risulta inoltre

$$f'(x) = e^{-x}(\cos(x) - \sin(x))$$

pertanto la funzione risulta crescente in $]0, \pi/4[\cup]5\pi/4, 2\pi[$. Il punto $x_M = \pi/4$ è di massimo (assoluto), mentre $x_m = 5\pi/4$ è di minimo (assoluto). La derivata seconda

$$f''(x) = -2e^{-x}\cos(x)$$

risulta positiva per $x\in]\pi,2\pi[,$ dove la funzione è convessa.

Figura 1: Andamento del grafico di f(x).

2. Studiare al variare di $\alpha \in \mathbb{R}$ la convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{n! n^3}{n^{\alpha n}}$$

Soluzione La serie è a termini non negativi e usiamo la formula di Stirling per approssimare il fattoriale. In tal modo

$$\frac{n!n^3}{n^{\alpha n}} \sim \sqrt{2\pi} \frac{n^{n+1/2+3-\alpha n}}{\mathrm{e}^n}$$

e usando il criterio della radice si ha

$$\lim_{n \to +\infty} \sqrt[n]{\sqrt{2\pi} \frac{n^{n+1/2+3-\alpha n}}{e^n}} = \lim_{n \to +\infty} \sqrt[n]{\sqrt{2\pi}} \frac{n^{1+1/(2n)+3/n-\alpha}}{e} = \begin{cases} 0, \text{ se } \alpha > 1\\ \frac{1}{e}, \text{ se } \alpha = 1\\ +\infty, \text{ se } \alpha < 1 \end{cases}$$

e quindi si ha convergenza per $\alpha \geq 1$.

3. Studiare, al variare del parametro reale $\alpha > 0$, la convergenza dell'integrale generalizzato

$$\int_{1}^{+\infty} \frac{(e^{1/x} - 1)^{2\alpha}}{1 + x^{\alpha} + x^{2\alpha}}$$

Soluzione La funzione integranda è non negativa e continua. Osserviamo che con lo sviluppo di Taylor in zero e cambiando variabile y=1/x si ha che $e^{1/x}-1=\mathcal{O}(1/x)$ per $x\to +\infty$. Pertanto per $x\to +\infty$

$$\frac{(\mathrm{e}^{1/x}-1)^{2\alpha}}{1+x^\alpha+x^{2\alpha}}\sim\frac{x^{-2\alpha}}{1+x^\alpha+x^{2\alpha}}\sim\frac{1}{x^{4\alpha}}$$

e usando il criterio del confronto asintotico, l'integrale converge per $\alpha > \frac{1}{4}$.

4. Trovare, se esistono dei valori $\lambda \in \mathbb{R}^+$ tali che il problema

$$y''(t) + \lambda y(t) = 0$$

$$y(0) = y(\pi) = 0$$

abbia soluzioni non nulle. Soluzione L'equazione caratteristica è $\xi^2 + \lambda = 0$ che ha come soluzioni $\xi = \pm i\sqrt{\lambda}$ quindi l'integrale generale risulta

$$y(t) = c_1 \cos(\sqrt{\lambda}t) + c_2 \sin(\sqrt{\lambda}t).$$

Imponendo y(0) = 0 si ottiene $c_1 = 0$. Pertanto la condizione

$$y(\pi) = c_2 \sin(\sqrt{\lambda}\pi) = 0$$

è soddisfatta con $c_2 \neq 0$ se

$$\sqrt{\lambda}\pi = k\pi \qquad k \in \mathbb{Z}$$

cioè se $\lambda = k^2, k \in \mathbb{N}$.