

planetmath.org

Math for the people, by the people.

bisimilar automata

Canonical name Bisimilar Automata
Date of creation 2013-03-22 19:23:17
Last modified on 2013-03-22 19:23:17

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 14

Author CWoo (3771)
Entry type Definition
Classification msc 68Q85
Classification msc 68Q10

Synonym strongly bisimilar automata

Let $M = (S_M, \Sigma, \delta_M, I_M, F_M)$ and $N = (S_N, \Sigma, \delta_N, I_N, F_N)$ be two NDFA's (non-deterministic finite automata). Let $\approx \subseteq S_M \times S_N$ be a binary relation between the states of the automata M and N. We may extend \approx to a binary relation between subsets of the states of the automata, as follows: for any $P \subseteq S_M$ and $Q \subseteq S_N$, set

$$C(P) := \{ q \in S_N \mid p \approx q \text{ for some } p \in P \} \text{ and } C(Q) := \{ p \in S_M \mid p \approx q \text{ for some } q \in Q \}.$$

Then, using the same notation, define $\approx \subseteq P(S_M) \times P(S_N)$ by

$$P \approx Q$$
 iff $P \subseteq C(Q)$ and $Q \subseteq C(P)$.

Definition. We say that M is *bisimilar* to N if there is a binary relation $\approx \subseteq S_M \times S_N$ such that

- 1. $I_M \approx I_N$,
- 2. if $p \approx q$, then $\delta_M(p, a) \approx \delta_N(q, a)$ for any $a \in \Sigma$,
- 3. if $p \approx q$, then $p \in F_M$ iff $q \in F_N$.

In other words, M is bisimilar to N as automata precisely when M is bisimilar to N as LTS, and satisfy conditions 1 and 3 above.

Any NDFA $M = (S, \Sigma, \delta, I, F)$ is bisimilar to itself, for the identity relation is clearly a bisimulation. Next, if M is bisimilar to N with bisimulation \approx , N is bisimilar to M with the converse relation \approx^{-1} . Finally, if M is bisimilar to N with bisimulation \approx_1 and N is bisimilar to P with bisimulation \approx_2 , M is bisimilar to N with bisimulation $\approx_1 \circ \approx_2$. Therefore, bisimilarity is an equivalence relation on the class of NDFA's.

Another property of bisimulations on NDFA's is that the they are preserved by taking unions: an arbitrary non-empty union of bisimulations is again a bisimulation. From this property, it is not hard to show that if $A \approx B$, then $\delta(A, x) \approx \delta(B, x)$ for any word over Σ . As a result, bismilar NDFA's accept the same set of words.

By taking the union of all bisimulations on a given NDFA $M = (S, \Sigma, \delta, I, F)$, we get a bisimulation that is also an equivalence relation on the set of states of M. For each $p \in S$, let [p] be the equivalence class containing p, and for any subset $A \subseteq S$, let $[A] := \{[p] \mid p \in A\}$. Then we get an NDFA $[M] := ([S], \Sigma, [\Delta], [I], [F])$, with

$$[\Delta]([p], a) := [\delta(p, a)]$$

for any $a \in \Sigma$. It can be shown that [M] is minimal in the sense that [[M]] is isomorphic to [M], and that M is bisimilar to [M]. In addition, if M has no inaccessible states, then M is bisimilar to a unique minimal automaton, in the sense that, if N is any minimal automaton bisimlar to M, then N is isomorphic to [M].