Astronomical Coordinates

Nick van Eijndhoven nick@icecube.wisc.edu http://www.iihe.ac.be

Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

Introduction	1
Time systems	2
Coordinate systems	11
Exercises	30

Introduction

- Exploring the Universe → Need for a coordinate system
- But everything is moving → Complicated situation
 - Earth spins around its axis
 - Influence of Sun, Moon, Planets \rightarrow Earth axis subjected to precession
 - Earth axis also subjected to nutation
 - Earth rotates around the Sun
 - Sun rotates around the center of our Galaxy
 - Our Galaxy moves through space within the local cluster
- What should we take as origin and orientation of the axes?
- * Use different coordinate systems depending on what one wants to observe Okido, we are used to that (e.g. Cartesian, Spherical, Comoving, ...)
- Due to the movements we need also a time system

 Effects of the above movements are observed on very different timescales
- * Use different time systems depending on what one wants to observe Not always practical (a lab with many clocks) \rightarrow Overall time ?

Solar Time

- Elapsed time between two identical observed positions of the Sun Basis of our usual 24 hour day/night system
- Definition: 1 day = 24 hours 1 hour = 60 min. 1 minute = 60 sec. Time definition: 12:00h when the Sun is at the observer's meridian
- Different locations have different values of the Local Time (LT) Definition: Greenwich is defined as origin at the 0° meridian
- * Time rate varies (eccentricity of Earth's orbit and tilt of Earth's spin axis)
- Use the mean rate which averages out these effects → Mean Solar Time
- So at each location we have two times
 - Steady clock with noons 24 hours apart → Local Mean Time (LMT)
 - Actual position of the Sun \rightarrow Local Apparent Time (LAT)
- The difference between LAT and LMT is called the Equation of Time
- * The reference is the **Greenwich Time (GMT or GAT)**

Sidereal Time

- Elapsed time between two identical observed positions of the same Star Closely related to Solar Time but not identical
- Observer outside the Solar system :
 - The Earth spins around its axis in 1 "day"
 - The Earth rotates around the Sun in n "days"
 - After 1 Solar orbit the Earth has made 1 extra revolution around its spin axis
 - \rightarrow 1 sidereal day = (1 1/n) solar day
- Consequently: 1 sidereal day = 23h 56m 04.09s (Mean Solar Time)
 - Time definition: Related to the coord. of a Star at the observer's meridian
 - These coordinates will be explained later
 - These coord. vary due to precession and nutation of the Earth's spin axis

Sidereal time versus Solar time

- Precession effect is stable and well known, nutation effect is more complex Precession period : 25770 years
- Use average epoch (50 years) coordinates to correct for the precession effect
 - → Mean Sidereal Time
- So at each location we have two times
 - Local Mean Sidereal Time (LMST) (i.e. precession included, nutation not)
 - Local Apparent Sidereal Time (LAST) (incl. both precession and nutation)
- * The reference is the **Greenwich Sidereal Time (GMST or GAST)**
- This looks all fine, but what determines the value of the time intervals? In other words: What counts the elapsed number of seconds?

International Atomic Time (TAI)

- The absolute value of the second is defined by atomic transitions Remember that we used ${}^{12}_6{\rm C}$ to define the atomic mass unit (amu)
- $^{133}_{55}$ Cs has a hyperfine $4 \to 3$ transition of the 2S ground state This transition happens very frequently and at a very stable rate 1 atomic (SI) sec. \equiv 9192631770 cycles of this $^{133}_{55}$ Cs transition
- ullet An individual Cs clock has a stability of the order of 10^{-14} per day Using a set of Cs clocks all over the world provides even better stability
- * Basis of TAI: Temps Atomique International
- TAI : Stable time system but not linked with astronomical phenomena TAI was introduced (= start epoch) 01-jan-1958 00:00:00 GAT
 - ightarrow The reference for the absolute TAI time is Greenwich Earth's spin is irregular ightarrow Alternative for TAI needed

Coordinated Universal Time (UTC)

- Astronomical time standard : UTC (Temps Universel Coordonné)
 UTC transpires at the same rate as TAI → Clock ticks every SI second
 Average correction for the irregular Earth spin by introducing leap seconds
- * The leap second correction was introduced on 01-jan-1972 00:00:00 GAT This empirical correction is needed only every few years
 - See https://hpiers.obspm.fr/iers/bul/bulc/Leap_Second.dat
- This implies : TAI-UTC= \triangle AT Currently (2019) \triangle AT=37 sec.
- * UTC is broadcast via various servers using a Network Time Protocol (NTP)

 See for instance http://www.time.gov or http://www.time.gov/widget.html
- * The reference for the absolute UTC time is Greenwich UTC is not updated for Daylight Saving Time (DST)
- GPS timing was started at 06-jan-1980 00:00:00 UTC with Δ AT=19 sec. GPS clocks tick at the same rate as TAI \rightarrow GPS=TAI-19 sec. (fixed)

Universal Time (UT1)

• Time corrected for the actual Earth spin is called Universal Time (UT1) This implies : UT1-UTC= Δ UT1

See https://hpiers.obspm.fr/iers/series/opa/eopc04 for daily updates

 $* |\Delta \mathsf{UT1}|$ is kept < 0.9 sec. by introduction of leap seconds in UTC

Terrestrial Time (TT)

• This is the TAI time corrected for GR effects at average sea level Started at 01-jan-1977 00:00:00 TAI with $TT \equiv TAI + 32.184$ sec. This makes TT a continuation of the predecessor Ephemeris Time (ET)

Geocentric Coordinate Time (TCG)

• The same as TT but for a reference frame not in the Earth's grav. potential Relation : TCG \approx TT+7 \cdot 10⁻¹⁰ Δ T

 $\Delta T \equiv$ elapsed time in SI sec. since 01-jan-1977 00:00:00 TT

Julian Date (JD)

- Comparison of observations over many years is quite cumbersome
 - Varying number of days in a year (leap years) and in various months
 - The absolute time indication is position dependent
 - Some sort of correction may have been applied at some time
- Can't we have a steady ticking clock yielding an overall absolute reference ?
 Yes we can!
- A continuous day counting system has been introduced called Julian Dates
 Origin JD=0 has been defined as 01-jan-4713 BC at 12:00:00 Greenwich
 Each Julian day has exactly 86400 seconds
 - No leap seconds are introduced
 - Each Julian century has 36525 days \rightarrow Each Julian year has 365.25 days
- Example: 02-jan-2000 12:00:00 UT corresponds to JD=2451546.0
- * This day counting system can be used with any time system at Greenwich

Modified Julian Date (MJD)

- To avoid too large numbers a Modified Julian Date has been introduced Same definitions as for the Julian Date but different origin
- * Origin MJD=0 has been defined as 17-nov-1858 at 00:00:00 Greenwich Consequently: MJD=JD-2400000.5
- In practice MJD is used for calculations (computer accuracy), plots etc.

Julian Epoch (JE)

• JE = fractional elapsed Julian year count since 01-jan-0000 12:00:00 Example: 01-jan-1965 12:00:00 UT corresponds to JE=1965.0

Besselian Epoch (BE)

• BE = fractional elapsed Besselian year count since 01-jan-0000 12:00:00 A Besselian (tropical) year is defined to be 365.242198781 days

- ullet Celestial positions : Convenient to use spherical coordinates $(r, heta, \phi)$ In indicating a direction, the distance doesn't matter ullet Ignore r
- Celestial positions are indicated by two angles called latitude and longitude But w.r.t. to which origin are these angles provided ?
- * Define an equator by taking a so called great circle

 Great circle: Centered at the sphere center and encompasses the full sphere
- The equator indicates the zero of latitude
- * Choose a location on the equator as zero for the longitude

 Define the directions of positive and negative latitude and longitude

 The lines of constant longitude are called meridians
- Reference systems like this are called celestial reference systems

 It is obvious that there are many different possibilities for such a system

A generic celestial reference system

Horizon coordinates

- Imagine standing at night in an open field without any houses, trees etc.

 You feel as if you are the centre of everything
- Conventions to define the observer centered reference system

 The point straight above is called Zenith and straight below is called Nadir
- * Take the horizon as equator
 - The (latitude) angle above the horizon of a star's position is called Altitude Alternatively the angle w.r.t. the Zenith (Zenith angle) of a star can be given
- * Take the North point on the equator as zero longitude
 - The (longitude) angle measured eastwards to a star's position is called Azimuth
- * Notes:
 - For an observer at a Pole, Greenwich defines the zero longitude
 - Values of altitude and azimuth depend on the location of the observer
 - Values of altitude and azimuth change fast due to the Earth's spin

The horizon coordinate system

© timeanddate.com

Equatorial coordinates

- Imagine standing on one of the Poles at the Earth's spin axis

 With time the azimuth of a star will change, but not its altitude

 This is quite convenient if one wants to follow a certain object
- * Due to the coincidence of the Zenith-Nadir axis with the Earth's spin axis
 - → Your equator coincides with the Earth's equator
- Conventions to define the equatorial celestial reference system
- * Take the center of the Earth as the center of the reference system
- * Take the (projection of) the Earth equator as equator
 - This projection is called the celestial equator
 - The angle above the equator of a star's position is called Declination
 - The angle of longitude is called Right Ascension
- What to take as zero longitude?
 - Preferably a point that doesn't change with time.

The equatorial celestial reference system

- ullet The Earth rotates around the Sun in a fixed plane The Earth's spin axis is inclined ($\sim 23.4^\circ$) with the normal to this plane
- Imagine that the Earth only rotates around the Sun; no spin around its axis
 Consider the Earth as a perfect sphere
 Observe from the Earth's center the position of the Sun over the year
 - ightarrow This projection is a great circle inclined ($\sim 23.4^\circ$) with the equator This projection of the Sun's trajectory is called the ecliptic
- The ecliptic will cross the equator twice per year Going from South to North in spring \rightarrow Vernal equinox Going from North to South in autumn \rightarrow Autumn equinox

Project the Sun's trajectory on the Earth's surface

* Take the Vernal equinox on the equator as zero longitude

The angle measured eastwards to a star's position is called Right Ascension

The equatorial coordinate system

- Precession of the Earth's spin axis \rightarrow Vernal equinox shifts along the equator One full turn (360°) in 25770 years \rightarrow Quite a stable point Once every 50 years (epoch) the Vernal equinox position is updated
- The nutation of the Earth's spin axis induces also (minor) shifts in declinations

Notation conventions

- Declination (δ) is indicated in degrees (North +, South -)
- Right Ascension (α) is indicated in hours, minutes, seconds 1 Full revolution (360°) in 24 hours \rightarrow 1 hour = 15°
- The average epoch coordinates we call Mean coordinates

 The Mean (α, δ) contain the precession correction, but not the nutation
- Including also the nutation correction we speak of True coordinates
- st So it is important to denote w.r.t. to which epoch origin the $(lpha,\delta)$ are given

Equatorial coordinate notations

• Example: The position of Sirius given in the 2 most recent epochs

B1950 lpha=06h 42.9m $\delta=-16^{\circ}39'$ (B stands for Besselian epoch)

J2000 lpha=06h 45.1m $\delta=-16^{\circ}43'$ (J stands for Julian epoch)

• The J2000 epoch is the standard for current astronomy

Sidereal Time

- ullet We have seen that $(lpha,\delta)$ provide rather constant coordinates
- As the Earth spins around its axis, different stars will cross a certain meridian
- * Sidereal Time $\equiv \alpha$ of the stars that cross the observer's meridian
- Since we can use the Mean and True coordinates we define

LMST: Local Mean Sidereal Time

LAST: Local Apparent Sidereal Time

GMST: Greenwich Mean Sidereal Time

GAST: Greenwich Apparent Sidereal Time

Hour Angle

- Hour Angle
 = The angular distance along the equator w.r.t. the meridian
- As before we define

LMHA: Local Mean Hour Angle

LAHA: Local Apparent Hour Angle

GMHA: Greenwich Mean Hour Angle

GAHA: Greenwich Apparent Hour Angle

- Since the Earth spins eastwards, stars in the east will cross the meridian later
 - → Hour Angle is indicated (East –, West +) w.r.t. the meridian
- ullet Example: Consider a star with lpha=1h 12m 45.3s as True right ascension At 23:00:00 LAST this star is located -2h 12m 45.3s (East) of our meridian

Galactic coordinates

- Sometimes it is instructive to locate objects w.r.t. the center of our Galaxy In these cases it is convenient to use Galactic coordinates
- For Galactic coordinates the Sun is defined as center

 No effect of Earth spin or rotation around the Sun
- Take the great circle containing the Galactic Plane (GP) as equator
 - → Defines the North Galactic Pole (NGP) and South Galactic Pole (SGP)
- Take the direction of the Galactic Center (GC) as zero longitude
- * Galactic latitude b: degrees w.r.t. Galactic equator (North +, South -)
- * Galactic longitude l: degrees "eastwards" (like Right Ascension) from l=0

The galactic coordinate system

- But there are some problems
 - 1. The Galactic Plane is not well defined (thickness of the disk)
 - 2. The position of the GC is not well known (extinction of light)
- Solution to 1 : Define the Galactic Plane by convention
- * **Definition of North Galactic Pole (NGP)** (based on observations):

```
lpha_{NGP} \equiv 12\mathsf{h}\,49\mathsf{m} \delta \equiv 27^{\circ}\,24' (B1950)
```

- ightarrow Celestial and Galactic equators are tilted by 62.6°
- ullet Intersections of the Celestial and Galactic equators o None point to GC
 - \rightarrow Define the Galactic long. of the North Celestial Pole (NCP) by convention Choose the convention such that the GC gets a gal. long. of about 0°
- * Galactic longitude of the North Celestial Pole (NCP) : $l_{NCP} \equiv 123^{\circ}$

The various celestial reference systems

Geocentric Ecliptic coordinates

- Convenient for locations w.r.t. the position of the Sun (e.g. planets, comets) Most planets move (more or less) in the ecliptic plane
- * Define the Earth as the center
- * Take the ecliptic as equator
- * Take the Vernal equinox as zero longitude
- Ecliptic latitude β : degrees w.r.t. the ecliptic (North +, South -)
- Ecliptic longitude λ : degrees eastwards from the Vernal equinox

The Geocentric ecliptic coordinate system

The International Celestial Reference System (ICRS)

- ullet Recently (1989-1995) many very distant objects (quasars, AGN) were observed These objects are very far away ullet Movement of Earth or Sun doesn't matter
- Use these objects to define a fixed, time independent reference system
- * Take the average Celestial equator as equator
- * Take the average position of the Vernal equinox for zero longitude ICRS latitude b: degrees w.r.t. the Celestial equator (North +, South -) ICRS longitude l: degrees eastwards from the Vernal equinox
- ICRS coordinates match within 20 mas with the mean ones of the J2000.0

Transformations between the various systems

- Determine the various orientations at a certain time
- Just perform transformations via rotation matrices
- * All this functionality is provided via NcAstrolab

Exercises

- Consider the Westerbork radio telescope at $52^{\circ}\,54'\,54.33''$ N $6^{\circ}\,36'\,12.74''$ E. At 06-sep-2011 21:10:34.7 UTC one wants to observe the Andromeda galaxy. Andromeda galaxy (M31) : $\alpha=0$ h 42.7m $\delta=41^{\circ}\,16'$ (J2000)
- * What are the horizontal coordinates to aim the telescope at ?
- Consider the IceCube experiment at the South Pole. The experiment uses the following righthanded local coordinate system : Z-axis points to Zenith, Y-axis points North, X-axis points East. At 15-aug-2009 06:23:16.2 UTC we observed a very energetic muon track. Track direction $\theta=12^\circ$ $\phi=138^\circ$
- * Provide the Equatorial and Galactic coordinates of the source.
- * Show the location of the source on an Equatorial and Galactic skymap.

Hint: Use NcAstrolab

Exercises

- Cosmic rays impinge on the Earth's atmosphere from all directions.

 The resulting angular distribution is isotropic.
- * Generate arrival directions for 1000 cosmic rays and use NcAstrolab to show that the observed angular distribution is indeed isotropic.
- Signals that were observed with IceCube have been provided in a standard format in order to make the data available to a larger scientific community.

These data are available at /ice3/data/IceCube-PS-3yr-events.fits or /ice3/data/IceCube-PS-event-data-*.root

- * Explain the shape of the energy spectrum
- * Investigate whether there is evidence for energetic neutrinos from sources within our own Galaxy.

Hints:

Use the NcFITSIO facility to access the FITS data

Use the ROOT TreeViewer facility to access the ROOT data