Table of Contents

Initialize the parameters Initialize value function matrix Plot graph Plot the value function Plot potential function of actions in terms of action at each state Plot action function	1 1 2 2 3
<pre>% Tianli Xia % Macro Homework 3 % Dynamic programming: value-iteration % Policy Function:</pre>	
$Q(s,k) = log(s^{\alpha} - (1-\delta)s - k) + \beta V(k)$	
% Value Function:	
$V(s) = \max_{k} Q(s, k)$	
Other important notations:	
• Transition: s=k	
• State variable: s	
• Action varible: k	
clear all	

Initialize the parameters

```
alpha=0.3; % the production rate: $f(k)=k^{\alpha}$
beta=0.6; % the intertemporary patience
delta=0.75; % capital deprecation rate
k=200; % number of grids
len= 0.001; % length of grid, it is good to start from big value and
then decrease.
% In pratice, I set length to be 0.01 at the beginning, at find that
the
% optimal value at steady state should be within (0, 0.2), hence I set
the
% length to a lower value to cover this interval.
start= len;
state= start:len:start+len*(k-1); % different states in grids:
action= start:len:start+len*(k-1);
```

Initialize value function matrix

```
V = ones(k,1); % V: state* action matrix
```

```
PI = ones(k,1); % PI: best policy matrix
threshold= 10^(-6); % Tolerance level in the loop
epsilon=1; % random initial value of the gao between two loops
count=0; % Count how many times the loop runs
while epsilon> threshold % loop until $\epsilon$ converges
   V_temp=-inf*ones(k); % Any infeasible capital brings -inf value
    for s=1:k % value function iteration: get current value
        a_max=state(s)^alpha+ (1-delta)*state(s); % Calculate feasible
 action sets: $0<=a<=state(s)^alpha+ (1-delta)*state(s)$</pre>
        for a=1:min(k, ceil( (a_max-start)/len) )
            V_temp(s,a) = log( state(s)^alpha+ (1-delta)*state(s) -
action(a)) + beta* V(a);
            % This directly comes from Bellman Optimality equation
        [V_new, PI] = max(V_temp, [], 2); % Calculate (1) New value
 function; (2) best action function.
    end
    epsilon= ( max( abs(V new -V))); % Calculate the current error
    V=V new;
    count=count+1; % Count times the loop ends
end
fprintf("The loop ends in %d runs, the gap within final two loops are
%f.", count, epsilon)
The loop ends in 29 runs, the gap within final two loops are 0.000001.
```

Plot graph

Plot the value function

```
% V(k)=\max_{k} log(s^{\alpha} - (1-\delta)s - k) + \beta V(k)$
plot(state, V)
grid on
axis on
xlabel("Current capital")
ylabel("Value")
title("Value Function on each state")
% print -djpeg -r600 hw3_value_2
```


Plot potential function of actions in terms of action at each state

```
Q(s,a) = \max_{k} log(s^{\alpha} - (1 - \delta)s - k) + \beta V(k)
for i=1:30:151
    plot(state, V_temp(i,:))
    hold on
end
xlabel("Next period capital decision")
ylabel("Optimality function q(s,a)")
lgd=
legend("0.001","0.031","0.061","0.091","0.121","0.151",'Location','southeast');
title(lgd, "Current State (Captial)")
axis on
grid on
hold off
% for i=1:5:26
      plot(state(PI(i)), V_temp(i,PI(i)), "r.")
% end
% hold off
%print -djpeg -r600 -hw3_control_2
```


Plot action function

```
%This plots show the optimal capital decision. At any point on the
 left side
%of steady state, we increase the capital and vice versa. At steady
%it is stable. Hence the steady state is the crosspoint of the policy
%function and the 45 degree line.
while i~=PI(i) % By definition, this is the optimal decision
    i=i+1;
end
fprintf("The optimal capital at the steady state is %f\n. The value at
 optimal capital is %f\n" ...
    , i*len, V(i) )
fprintf("If feasible, the planner will always choose steady state
 capital in the next period.")
    plot(state, action(PI))
    x=state;
    y=state;
    hold on
    plot(x,y)
    hold on
    plot(x(i),y(i),'r*')
```

```
grid on
axis on
xlabel("Current capital")
ylabel("Next period best action")
title("Policy Function on each state")
axis square
print -djpeg -r600 hw3_action_2
```

The optimal capital at the steady state is 0.109000

. The value at optimal capital is -2.095064

If feasible, the planner will always choose steady state capital in the next period.

Published with MATLAB® R2018a