

Name: Raviteja Gopavaram

Roll Number: A06

Reg Number: 11804302

Section: KM007

Project Name: Artificial Characters

Sample Data Set

Basic Libraries for the Data And Exploring the Data

	0	1	2	3	4	5	6	7
0	V1	V2	V3	V4	V5	V6	V7	Class
1	0	0	0	0	20	20	46.1	1
2	1	19	0	19	8	8	46.1	1
3	2	0	20	19	8	22.47	46.1	1
4	3	0	20	8	42	23.41	46.1	1

Understanding the Data

df.info()

C <class 'pandas.core.frame.DataFrame'>
RangeIndex: 10219 entries, 0 to 10218
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	0	10219 non-null	object
1	1	10219 non-null	object
2	2	10219 non-null	object
3	3	10219 non-null	object
4	4	10219 non-null	object
5	5	10219 non-null	object
6	6	10219 non-null	object
7	7	10219 non-null	object

dtypes: object(8)

memory usage: 638.8+ KB

```
[7] from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    for i in df:
        df[i]=le.fit_transform(df[i])
```

df.info()

RangeIndex: 10219 entries, 0 to 10218 Data columns (total 8 columns): Column Non-Null Count Dtype 10219 non-null int64 10219 non-null int64 1 10219 non-null int64 2 2 3 3 10219 non-null int64 4 4 10219 non-null int64 10219 non-null int64 10219 non-null int64 10219 non-null int64 dtypes: int64(8) memory usage: 638.8 KB

Importing LabelEncoder

Prepared Data

Data Visualization

df.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7f3389f2fa10>

V

Scaling Data

```
[15] from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test=train_test_split(data, target, test_size=0.3,random_state=42)
```

[16] from sklearn.preprocessing import StandardScaler
 sc=StandardScaler()
 x_train_sc=sc.fit_transform(x_train)
 x_test_sc=sc.fit_transform(x_test)

[17] x_train_sc=pd.DataFrame(x_train_sc)
 x_test_sc=pd.DataFrame(x_test_sc)

B

[18] x_train_sc.describe().round(2)

	0	1	2	3	4	5	6
count	7153.00	7153.00	7153.00	7153.00	7153.00	7153.00	7153.00
mean	-0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00
std	1.00	1.00	1.00	1.00	1.00	1.00	1.00
min	-1.29	-0.60	-0.88	-0.79	-1.37	-1.28	-1.77
25%	-0.71	-0.60	-0.88	-0.79	-0.77	-0.92	-0.83
50%	-0.13	-0.60	-0.36	-0.36	-0.23	-0.28	-0.07

Importing SVC and Predicting


```
[21] from sklearn.metrics import accuracy_score
    print(accuracy_score(pred_train, y_train))

0.3124563120369076

[22] pred_test=svc.predict(x_test)
    print(accuracy_score(pred_test, y_test))

0.2762557077625571

[23] from sklearn.naive_bayes import GaussianNB
    nb=GaussianNB()
    nb.fit(x_train, y_train)
    pred_train=nb.predict(x_train)
    pred_train=nb.predict(x_test)
    from sklearn.metrics import accuracy_score
    print(accuracy_score(pred_train, y_train))
    print(accuracy_score(pred_test, y_test))

0.21277785544526773
```

0.2146118721461187

Decision Tree Classifier

```
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier(criterion='entropy', max_depth=7)
dt.fit(x_train, y_train)
pred_train_dt=dt.predict(x_train)
pred_test_dt=dt.predict(x_test)
print(accuracy_score(pred_train_dt, y_train))
print(accuracy_score(pred_test_dt, y_test))
```

0.5362784845519363

0.5068493150684932

Z

Bagging Classifier

```
from sklearn.ensemble import BaggingClassifier
bag=BaggingClassifier(n_estimators=10)
bag.fit(x_train_sc, y_train)
print(accuracy_score(bag.predict(x_train_sc), y_train))
print(accuracy_score(bag.predict(x_test_sc), y_test))
```

0.986579057738012 0.8118069145466406

W

Random Forest Classifier

```
[26] from sklearn.ensemble import RandomForestClassifier
    rfc=RandomForestClassifier(n_estimators=10)
    rfc.fit(x_train_sc, y_train)
    print(accuracy_score(rfc.predict(x_train_sc), y_train))
    print(accuracy_score(rfc.predict(x_test_sc), y_test))
```

- 0.9893750873759262 0.8255055446836269
- from sklearn.ensemble import RandomForestClassifier
 rfc=RandomForestClassifier(n_estimators=10)
 rfc.fit(x_train_sc, y_train)
 print(accuracy_score(rfc.predict(x_train_sc), y_train))
 print(accuracy_score(rfc.predict(x_test_sc), y_test))
- 0.9886760799664477 0.8398564905414221