

Prof. Dr. Florian Künzner

Start. 8:01

CA 3 – Logical hardware

The lecture is based on the work and the documents of Prof. Dr. Theodor Tempelmeier

Computer Science

Goal

Goal

Summary

Computer Science

CA::Logical hardware

- Logical algebra
- Logical elements
- Combinatorial circuits
- Sequential circuits

Logical algebra

Notation:

Computer Science

Logical algebra

Notation:

Operators $\vee, +, OR$

$$\vee, +, OR$$

$$\wedge, \cdot, AND$$

$$\neg, \bar{x}, NOT$$

Computer Science

Logical algebra

Notation:

Operators
$$\vee, +, OR$$

Operand $\{0,1\}$

$$\{0,1\}$$

$$\wedge, \cdot, AND$$

$$\neg, \bar{x}, NOT$$

Logical algebra

Notation:

Operators $\vee, +, OR$

$$\vee, +, \cup$$

 \wedge, \cdot, AND

$$\neg, \bar{x}, NOT$$

Operand $\{0,1\}$

$$a + b = b + a$$

$$(a+b)+c=a+(b+c)$$
 $(a \cdot b) \cdot c=a \cdot (b \cdot c)$

$$(a+b)+c=a+(b+c)$$

$$a+(a\cdot b)=a$$

$$a + 0 = a$$

$$a\cdot (b+c)=(a\cdot b)+(a\cdot c)$$

$$a \cdot \neg a = 0$$

$$a \cdot b = b \cdot a$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$a \cdot (a+b) = a$$

$$a \cdot 1 = a$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) \ a + (b \cdot c) = (a+b) \cdot (a+c)$$

$$a + \neg a = 1$$

Logical algebra

Notation:

Operators $\vee, +, OR$

$$\vee, +, OR$$

$$\wedge, \cdot, AND$$

$$\neg, \bar{x}, NOT$$

Operand $\{0,1\}$

Axiom

$$a + b = b + a$$

$$(a+b)+c=a+(b+c)$$
 $(a \cdot b) \cdot c=a \cdot (b \cdot c)$

$$(a+b)+c=a+(b+c)$$

$$a+(a\cdot b)=a$$

$$a + 0 = a$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) \ a + (b \cdot c) = (a+b) \cdot (a+c)$$

$$a \cdot \neg a = 0$$

De Morgan
$$\neg(a \cdot b) = \neg a + \neg b$$

$$a \cdot b = b \cdot a$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$a \cdot (a+b) = a$$

$$a \cdot 1 = a$$

$$a + (b \cdot c) - (a + b) \cdot ($$

$$a + \neg a = 1$$

$$\neg(a+b) = \neg a \cdot \neg b$$

Logical elements

Type New DIN norm American norm

Logical elements

Type New DIN norm American norm
OR

Logical algebra Logical elements Sequential circuits Summary

CAMPUS Rosenheim

Computer Science

Logical elements

New DIN norm American norm **Type**

OR

XOR

Goal Logical algebra Logical elements Combinatorial circuits Sequential circuits Summary

CAMPUS Rosenheim Computer Science

Logical elements

Logical elements

Combinatorial circuits

A combination of logical elements into a circuit.

Combinatorial circuits

A combination of logical elements into a circuit.

- Switching function = logical combinations
- Representation by truth tables or boolean expressions

Combinatorial circuits

A combination of logical elements into a circuit.

- Switching function = logical combinations
- Representation by truth tables or boolean expressions

Computer Science

Sequential circuits

Definition

Sequential circuits = combinational circuit + clock pulse + internal states

- Through the clock pulse it is a clocked (getaktete) operation mode
- Internal states (e.g. through flip-flop registers)

Computer Science

Sequential circuits

Definition

Sequential circuits = combinational circuit + clock pulse + internal states

- Through the clock pulse it is a clocked (getaktete) operation mode.
- Internal states (e.g. through flip-flop registers)

Sequential circuits

Definition

Sequential circuits = combinational circuit + clock pulse + internal states

- Through the clock pulse it is a clocked (getaktete) operation mode
- Internal states (e.g. through flip-flop registers)

Computer Science

Summary

Sequential circuits

A combinational circuit with a clock pulse.

- lacksquare Flip-flop registers at input and output (I/O registers)
- Clock pulse for transfer data at a defined time

Summary

Sequential circuits

A combinational circuit with a clock pulse.

- Flip-flop registers at input and output (I/O registers)
- Clock pulse for transfer data at a defined time

Sequential circuits

A combinational circuit with a clock pulse.

- Flip-flop registers at input and output (I/O registers)
- Clock pulse for transfer data at a defined time

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Sequential circuits

Also called synchronous circuits:

- Theoretically divided into combinational circuit and memory elements (registers).
- It takes t_{max} time until all signals are through the network of logic elements.
- Signals are only transferred to memory elements (I/O registers) at defined clock times (clock pulse).

Condition

$$\frac{1}{\text{clock rate (frequency)}} > t_{max} \tag{1}$$

- Improvements in electrical engineering and solid state physics
- Redesign of circuit with less logic elements

Computer Science

Questions?

All right? \Rightarrow

Question? \Rightarrow

and use chat

speak after I ask you to

Summary and outlook

Summary

- Logical algebra
- Logical elements
- Combinatorial circuits
- Sequential circuits

Outlook

Technical realisation

Computer Science

Summary

- Logical algebra
- Logical elements
- Combinatorial circuits
- Sequential circuits

Outlook

Technical realisation

