

Presentación del equipo

Daniel Posada

Jaime Uribe

Simón Marín

Mauricio Toro

Completa esta diapositiva Para el segundo entregable

NO use el color rojo en las diapositivas

Imágenes de ganado enfermo

Imágenes del ganado sano

Tal vez no necesite para cambiar nada en esta diapositiva

NO use el color rojo en las diapositivas

Completa esta diapositiva Para el segundo entregable

Usa estos... Colores para Sus cifras

Diseño del algoritmo de compresión

Utilizar figuras vectorizadas para explicar el algoritmo que diseñaste, así que

No están pixelados como los míos

Incluir una imagen en HD relacionada con el problema de la salud animal en la ganadería de precisión

Algoritmo de compresión de imágenes para la clasificación automática de la salud animal (*En este semestre, uno podría ser LZS, Huffman, LZ77, LZ78...* por favor, elija).

NO use el color rojo en las diapositivas

Utilizar figuras vectorizadas para explicar el algoritmo que diseñaste, así que no están pixeladas como los mías

entregable

Usa estos... Colores para Sus cifras

Encode (i.e., compress) the string **ABBCBCABABCAAB** using the LZ78 algorithm.

Diseño del algoritmo de compresión

The compressed message is: (0,A)(0,B)(2,C)(3,A)(2,A)(4,A)(6,B)

Incluir una imagen en HD relacionada con el problema de la salud animal en la ganadería de precisión

Complejidad del algoritmo de compresión

NO use el color rojo en las diapositivas

Crear la tabla en Powerpoint. No copie las capturas de pantalla pixeladas del informe técnico, por favor.

	La complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	O(N2*M*2 ^M)	O(N*M*2 ^M)
Algoritmo de decompresión	O(N*M)	O(1)

La complejidad del tiempo y la memoria del algoritmo (En este semestre, uno podría ser LZS, LZ77, LZ78, Huffman... por favor, elija). Por favor, explique qué significan N y M en este problema. POR FAVOR HÁGALO!

Incluir una imagen en HD relacionada con el problema de la salud animal en la ganadería de precisión

Explica las tablas en tu propias palabras...

Completa esta diapositiva Para el tercer entregable

NO use el color rojo en las diapositivas

Crea las gráficas en Excel. No copie las capturas de pantalla pixeladas del informe técnico, por favor.

• • • •

Tasa de compresión promedio

NO use el color rojo en las diapositivas

Crear la tabla en Powerpoint. No copie las capturas de pantalla pixeladas del informe técnico, por favor.

	Tasa de compresión
Ganado sano	100 : 1
El ganado enfermo	98 : 1

Tasa de compresión promedio para el ganado sano y el ganado enfermo.

Explica las tablas en tu propias palabras...

Incluir una imagen en HD relacionada con el problema de la salud animal en la ganadería de precisión

diapositiva

Para el tercer entregable

Métricas de evaluación de la

NO use el color rojo en las diapositivas

relevant elements

Usar figuras vectorizadas para explicar el algoritmo las métricas de evaluación, para que no se pixelen como las mías

Conserva este título

How many relevant items are selected? How many selected items are relevant? Precision =-Recall =

> Si es posible, evitar las ecuaciones para conceptos simples que pueden ser explicados a través de diagramas

Usa estos... Colores para Sus cifras

Explica la precisión también...

Crear un gráfico usandola notación propuesta en esta diapositiva

Traducir todas estas gráficas a español, por favor

Métricas de evaluación de la clasificación

NO use el color rojo en las diapositivas

Crear la tabla en Powerpoint. No copie las capturas de pantalla pixeladas del informe técnico, por favor.

	Prueba del conjunto de datos (imágenes originales)	Prueba del conjunto de datos (imágenes comprimidas)
Exactitud	0.3	0.2
Precisión	0.25	0.21
Sensibilidad	0.12	0.11

Métricas de evaluación usando un conjunto de datos de validación de imágenes de ?? ganado sano y ?? ganado enfermo. Las imágenes comprimidas se obtuvieron con el algoritmo ??? (Por favor, complete con su algoritmo)

Incluir una imagen en HD relacionada con el problema de la salud animal en la ganadería de precisión

Completa esta diapositiva Para el tercer

NO use el color rojo en las diapositivas

Incluya la cita del informe en arXiv y link. Alternativamente, use OSF

C. Patiño-Forero, M. Agudelo-Toro y M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, noviembre de 2016. Disponible en: https://arxiv.org/abs/1611.04156

Incluya una captura de pantalla

arXiv.org > cs > arXiv:1611.04156

Computer Science > Data Structures and Algorithms

[Submitted on 13 Nov 2016]

Planning system for deliveries in Medellín

Catalina Patiño-Forero, Mateo Agudelo-Toro, Mauricio Toro

Here we present the implementation of an application capable of planning the shortest delivery route in the city of Medellín, Colombia. We discuss the different approaches to this problem which is similar to the famous Traveling Salesman Problem (TSP), but differs in the fact that, in our problem, we can visit each place (or vertex) more than once. Solving this problem is important since it would help people, especially stores with delivering services, to save time and money spent in fuel, because they can plan any route in an efficient way.

Comments: 5 pages, 9 figures

Subjects: Data Structures and Algorithms (cs.DS)

ACM classes: F.2.0; G.2.2

Cite as: arXiv:1611.04156 [cs.DS]

(or arXiv:1611.04156v1 [cs.DS] for this version)

NO use el color rojo en las diapositivas

Por favor, no olvide los reconocimientos a su beca (si tiene una)

GRACIAS!

Apoyado por

Los dos primeros autores son apoyados por una beca Sapiencia financiada por el municipio de Medellín. Todos los autores quieren agradecer a la Vicerrectoría de Descubrimiento y Creación, de la Universidad EAFIT, por su apoyo en esta investigación.