Ch2 Application Layer

- def:
 - run on end system
 - no need to write software for network core
 - network architecture vs. application architecture
 - network: fixed, 5-layer Internet architecture
 - application: designed by developer, dictates how the app is structured over the various end system.
 - cs & p2p
- network applications
 - architecture: CS or P2P
 - CS: Web or mail
 - Server:
 - always-on
 - permanent IP addr
 - data center
 - Client:
 - intermittently connected
 - dynamic IP addr
 - P2P: P2P file sharing
 - no always-on server
 - arbitrary end system directly communicate
 - self scalability
 - complex management
 - choose transport layer protocol: TCP or UDP
 - How do apps exchange msgs?
 - Processes: snd/recv msgs from network
 - same host: inter-process communication
 - different hosts: network
 - client process: initiate communication
 - server process: wait to be contacted
 - controlled by developer
 - Socket: processes snd/recv msgs to/from

- Def: Interface between Process and Computer Networks
- receive msgs: Socket must be identified by
 - host IP: 32 bits = 4 Bytes
 - server port
- How to choose **transport services**?
 - 4 broad classes
 - reliable data transfer
 - delivered correctly, completely, in proper order
 - file transfer, web transactions
 - Throughput
 - 带宽 sensitive: multimedia
 - mail
 - Timing
 - real time: internet phone, interactive games
 - Security
 - TCP
 - connection-oriented
 - reliable: without error
 - congestion control: 控制发送的速率
 - no timming
 - no minimum throughput guarantee
 - no security
 - TCP+SSL (app layer)
 - UDP
 - connectionless
 - unreliable: error, loss
 - no congestion control
 - no timing
 - no throughput guarantee
 - no security
- application protocol: HTTP for Web, SMTP for email
- Web & HTTP (Hypertext Transfer Protocol)
 - Web
 - consists of objects
 - base HTML + referenced objects addressed by URL(host name + path name)

- HTML: Hypertext markup language 超文本标记语言
- use HTTP as application layer protocol
- HTTP
 - overview
 - TCP
 - C: initiates TCP con(socket), dst port=80
 - S: accept TCP con
 - stateless
 - 不记忆过去request信息
 - persistent & non-persistent
 - non
 - 每一次发送请求都要确认一遍连接 2RTT + T_trans
 - persistent
 - 一次连接发多个object
 - request & response
 - request

For example, the entity body is used with the POST method (e.g., search words to a search engine).

- \r carriage return 回车: 光标回到当前行起始位置
- \n line-feed 换行:光标到下一行
- get: download file, visit Web
- post: register, preview
- head: get head info, check modify date, debugging
- put: upload file
- delete
- response

- 200 ok
- 301 moved permanently
- 400 bad request: not understood by server
- 404 not found on server
- 505: http version

cookies

- a server must handle thousands of TCP connection simultaneously
- 在4个地方
 - response header line
 - next request header line
 - store on user's host
 - back-end database at Web server
- state
- use for
 - authorization
 - shopping carts
 - recommendations
 - user session on top of stateless HTTP
- web caching: proxy server
 - 不用每次都请求origin server
 - 流程
 - browser 与Web cache建立TCP连接, send HTTP request
 - Web cache checks object 是否存在
 - 在: return
 - 不在: open TCP connection to origin server, request and get the object and send back to the browser within an HTTP response
 - copy

- ISP: Company, university
- both server and client
- benefit:
 - reduce response time
 - reduce traffic in access link and whole internet
 - reduce costs for upgrade bandwidth
- Conditional get: If-Modified-Since(request)+ date
 - 每次browser request
- 计算题
- mail
 - overview
 - 3 major components
 - user agents
 - for user to read mail
 - Outlook
 - mail servers
 - user mailbox
 - msg queue
 - SMTP(use TCP transmission control protocol)
 - between mail servers to send email msgs
 - both client and server sides of SMTP run on mail server
 - ??
 - SMTP: Simple Mail Transfer Protocol
 - using TCP, port = 25: 1.5 RTT to connection
 - HELLO, MAIL FROM, RCPT TO, DATA, QUIT
 - alice--> sender's server & sender's server --> receiver's server
 - 3 phases for transfer
 - handshaking: 1.5 RTT
 - transfer of msgs
 - closure
 - msgs
 - commands: text
 - response: status code & phrase
 - SMTP vs. HTTP
 - HTTP: pull, ASCII in header

- SMTP: push, ASCII in header and body, multiple objects sent in one msg
- !
 - 要有server: 用户关机就无法传输, 丢失
 - 有两个server: 压力不会太大, 重复发送直到成功
- Mail Message Format
 - header
 - to
 - from
 - subject
 - blank line
 - body
- Mail Access Protocol
 - the receiver obtain his msgs
 - POP3: Post Office Protocol 3
 - TCP, post=110, download and delete mode, stateless
 - authorization: user+pass, get +OK/-ERR
 - transaction: list, retr, dele, Quit
 - update: 自动delete
 - IMAP: Internet Mail Access Protocol
 - folder, state
 - HTTP
 - browser
- DNS: Domain name system
 - services
 - host name --> IP
 - alias host name --> canonical
 - mail server aliasing
 - load distribution
 - replicated Web servers
 - 流程
 - application invokes DNS ans specifying the host name
 - DNS sends a query into the network and get reply to port 53
 - pass the mapping to the application
 - UDP: faster and smaller data pkt
 - structure

- hierarchical & distributed
 - why not centralize DNS
 - single point failure
 - traffic
 - distance
 - maintenance: update freq
 - Root DNS: find IP addr of .com/.org/.edu TLD DNS servers
 - TLD: Top-level DNS: to get google.com authoritative DNS server
 - authoritative: to get IP address
 - Local DNS server:
 - does not belong to hierarchy
 - When a host connects to an ISP, the ISP provides the IP addresses of one or more of local DNS servers
- iterated and recursive
 - iterated query: 返回其他可以询问的服务器的name
 - recursive: 递归查询,直到找到结果
- cache, timeout after some time
- protocol
 - DNS record: distributed database storing resource records (RR)
 - A: name(host name), value(IP addr)
 - 一个host的权威服务器一定包含它的A record
 - 不是权威服务器可能会包含A record在cache中
 - NS: name(domain), value(host name of auth. server for this domain)
 - 非权威服务器会包含
 - **CNAME**: name(alias), value(canonical)
 - MX: name(alias), value(canonical of mailserver)
 - query and reply

← 2 bytes ← 2 bytes ←	
identification	flags
# questions	# answer RRs
# authority RRs	# additional RRs
questions (variable # of questions)	
answers (variable # of RRs)	
authority (variable # of RRs)	
additional info (variable # of RRs)	

insert record into DNS

```
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
```

P2P

- Def. no always on server, directly connect
 - file distribution(BitTorrent), streaming, VoIP
- P2P vs. CS: File distribution time 计算题
- BitTorrent
 - protocol for file distribution
 - torrent:参与分发的peers构成的集合,每个peer上传或者下载chunks 256kb,并且4可以随时加入或者离开
 - each torrent都有一个tracker: 管理peer是否存在, Obtain list of peers
 - 当一个peer加入torrent时会向tracker register,然后tracker send a subset of peers IP addr to the peer. TCP con and become neighboring peers
 - peer 会定期30s向它的 nbr 询问有什么chunks(TCP)
 - which chunk should she request first
 - ask for list, periodically
 - request missing chunks, rarest first
 - to which should she send request chunks?
 - **tit-for-tat**: 选择 sending her chunks at highest rate
 - every 30 s randomly select 1 additional peer and send chunks

- video streaming and context distribution network
 - different users have different capabilities
 - video streaming
 - video basics
 - sequence of images displayed at constant rate (FPS)
 - array of pixels: bits
 - Coding (Compression): use *redundancy within and between* images to decrease # bits used to encode image: spatial & temporal
 - CBR(constant bit rate)
 - VBR(variable bit rate)
 - http streaming
 - 所有client都会收到相同的encoding,用DASH解决
 - DASH: Dynamic Adaptive Streaming over HTTP
 - Server:
 - divide video into chunks
 - each chunk store, encode at diff rate
 - manifest file: list of URL for diff chunks encoded at diff rate
 - Client:
 - 定期测量SC位宽
 - consult manifest file, request 1 chunk
 - adaptive streaming over http
 - Content distribution networks (CDN)
 - 这么多视频同时发送这么多用户
 - 建立多个视频副本在多个地方
 - cluster selection strategy
 - geographically closest
 - Periodic **real-time measurements** of delay and loss performance
- UDP & TCP