Kryptologia laboratorium 6-7. Protokół Diffiego-Hellmana

Tomasz Gzella Instytut Matematyki Stosowanej

Jest to protokół uzgadniania kluczy szyfrujących z 1976 r. Pozwala ustalić wspólny **tajny klucz** przy użyciu publicznych środków komunikacji. Opiera się głównie na arytmetyce multiplikatywnych grup modulo p (p - liczba pierwsza).

Przyjrzyjmy się przykładom, by zrozumieć działanie tego protokołu. Dla ułatwienia informacje tajne będziemy oznaczać kolorem czerwonym.

Jest to protokół uzgadniania kluczy szyfrujących z 1976 r. Pozwala ustalić wspólny **tajny klucz** przy użyciu publicznych środków komunikacji. Opiera się głównie na arytmetyce multiplikatywnych grup modulo p (p - liczba pierwsza).

Przyjrzyjmy się przykładom, by zrozumieć działanie tego protokołu. Dla ułatwienia informacje tajne będziemy oznaczać kolorem czerwonym.

Na początek wybierzmy p=7 i przypomnijmy tabelę mnożenia w \mathbb{Z}_7^* :

Jest to protokół uzgadniania kluczy szyfrujących z 1976 r. Pozwala ustalić wspólny **tajny klucz** przy użyciu publicznych środków komunikacji. Opiera się głównie na arytmetyce multiplikatywnych grup modulo p (p - liczba pierwsza).

Przyjrzyjmy się przykładom, by zrozumieć działanie tego protokołu. Dla ułatwienia informacje tajne będziemy oznaczać kolorem czerwonym.

Na początek wybierzmy p=7 i przypomnijmy tabelę mnożenia w \mathbb{Z}_7^* :

٠7	1	2	3	4 1 5 2 6 3	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

$$5^{4}(mod7) = 625(mod7) = 2$$

 $6^{5}(mod7) = 7776(mod7) = 6$
 $6^{6}(mod7) = 46656(mod7) = 1$

$$5^{4}(mod7) = 625(mod7) = 2$$

 $6^{5}(mod7) = 7776(mod7) = 6$
 $6^{6}(mod7) = 46656(mod7) = 1$

$$6^{6\cdot 6}(mod7) = 10\ 314\ 424\ 798\ 490\ 535\ 546\ 171\ 949\ 056(mod7) = 1$$

$$5^{4}(mod7) = 625(mod7) = 2$$

 $6^{5}(mod7) = 7776(mod7) = 6$
 $6^{6}(mod7) = 46656(mod7) = 1$

$$6^{6\cdot 6}(mod7)=10\ 314\ 424\ 798\ 490\ 535\ 546\ 171\ 949\ 056(mod7)=1$$
 Lecz to tylko prosty przykład, a dla \mathbb{Z}_{23}^* mamy już

$$5^{4}(mod7) = 625(mod7) = 2$$

 $6^{5}(mod7) = 7776(mod7) = 6$
 $6^{6}(mod7) = 46656(mod7) = 1$

$$6^{6\cdot 6}(mod7) = 10\ 314\ 424\ 798\ 490\ 535\ 546\ 171\ 949\ 056(mod7) = 1$$

Lecz to tylko prosty przykład, a dla \mathbb{Z}_{23}^* mamy już $5^{6\cdot 15}=807793566946316088741610050849573099185363389551639556884765625(mod23)=2$

Z powyższych przykładów widać, że należy inaczej liczyć potęgi w pierścieniach modulo p.

Do użycia protokołu potrzebujemy liczb p, g oraz tajnych liczb, gdzie:

- p jest liczbą pierwszą,
- ullet g jest generatorem grupy \mathbb{Z}_p^* ,
- $a, b, ... \in \mathbb{Z}_p^*$ są tajnymi liczbami.

Do użycia protokołu potrzebujemy liczb p, g oraz tajnych liczb, gdzie:

- p jest liczbą pierwszą,
- ullet g jest generatorem grupy \mathbb{Z}_p^* ,
- $a,b,... \in \mathbb{Z}_p^*$ są tajnymi liczbami.

Przypomnijmy zatem kilka faktów z algebry:

Twierdzenie (Małe twierdzenie Fermata)

Jeżeli p jest liczbą pierwszą i p ∤ g, to

$$g^{p-1}=1\ (mod\ p).$$

Do użycia protokołu potrzebujemy liczb p, g oraz tajnych liczb, gdzie:

- p jest liczbą pierwszą,
- ullet g jest generatorem grupy \mathbb{Z}_p^* ,
- $a, b, ... \in \mathbb{Z}_p^*$ są tajnymi liczbami.

Przypomnijmy zatem kilka faktów z algebry:

Twierdzenie (Małe twierdzenie Fermata)

Jeżeli p jest liczbą pierwszą i p ∤ g, to

$$g^{p-1}=1 \ (mod \ p).$$

- jeśli p jest liczbą pierwszą, to \mathbb{Z}_p^* jest grupą cykliczną,
- ullet nie każdy element $g\in \mathbb{Z}_p^*$ jest generatorem tej grupy (rozważyć $1,3,10\in \mathbb{Z}_{11}^*$)

 $\begin{array}{l} \bullet \ \mathbb{Z}_{11}^* = \{1,2,3,4,5,6,7,8,9,10\} \\ \text{Generatory: } 2,6,7,8 \\ \end{array}$

• $\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ Generatory: 2, 6, 7, 8Nie są generatorami: $1^2 = 1...$

 $\mathbb{Z}_{11}^* = \{1,2,3,4,5,6,7,8,9,10\}$ Generatory: 2,6,7,8 Nie są generatorami: $1^2 = 1...$ $3^2 = 9, 3^3 = 9 \cdot 3 = 5, 3^4 = 5 \cdot 3 = 4, 3^5 = 4 \cdot 3 = 1$ $10^2 = 1$

- $\mathbb{Z}_{11}^* = \{1,2,3,4,5,6,7,8,9,10\}$ Generatory: 2,6,7,8Nie są generatorami: $1^2=1...$ $3^2=9,3^3=9\cdot 3=5,3^4=5\cdot 3=4,3^5=4\cdot 3=1$ $10^2=1$
- $\mathbb{Z}_{17}^* = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$ Generatory: 3,5,6,7,10,11,12,14 Nie są generatorami: $1^2=1...$ $2^2=4,2^3=8,2^4=16,2^5=15,2^6=13,2^7=9,2^8=1$ $16^2=1$

•
$$\mathbb{Z}_{11}^* = \{1,2,3,4,5,6,7,8,9,10\}$$

Generatory: $2,6,7,8$
Nie są generatorami: $1^2=1...$ $3^2=9,3^3=9\cdot 3=5,3^4=5\cdot 3=4,3^5=4\cdot 3=1$ $10^2=1$

• $\mathbb{Z}_{17}^* = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$ Generatory: 3,5,6,7,10,11,12,14 Nie są generatorami: $1^2=1...$ $2^2=4,2^3=8,2^4=16,2^5=15,2^6=13,2^7=9,2^8=1$ $16^2=1$

WNIOSKI: 1 oraz p-1 nie są generatorami \mathbb{Z}_p^* .

- Generatory $\mathbb{Z}_{19}^* = \mathbb{Z}_{19} \setminus \{0\}$: 2, 3, 10, 13, 14, 15
- Generatory $\mathbb{Z}_{23}^* = \mathbb{Z}_{23} \setminus \{0\}$: 5, 7, 10, 11, 14, 15, 17, 19, 20, 21
- Generatory $\mathbb{Z}_{37}^* = \mathbb{Z}_{37} \setminus \{0\}$: 2,5,13,15,17,18,19,20,22,24,32,35
- Generatory $\mathbb{Z}_{53}^* = \mathbb{Z}_{53} \setminus \{0\}$: 2,3,5,8,12,14,18,19,20,21,22,26,27, 31,32,33,34,35,39,41,45,48,50,51
- Generatory $\mathbb{Z}_{73}^* = \mathbb{Z}_{73} \setminus \{0\}$: 5,11,13,14,15,20,26,28,29,31,33,34,39,40,42,44,45,47,53,58,59,60,62,68
- Generatory $\mathbb{Z}_{97}^* = \mathbb{Z}_{97} \setminus \{0\}$: 5,7,10,13,14,15,17,21,23,26,29,37, 38,39,40,41,56,57,58,59,60,68,71, 74,76,80,82,83,84,87,90,92

Alicja i Bob uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, a Bob b.

Dane przekazane publicznie: p, g,

Alicja i Bob uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, a Bob b.

$$a, g^b$$
 $A \longrightarrow B$ b, g^a

Dane przekazane publicznie: p, g, g^a, g^b

Alicja i Bob uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, a Bob b.

$$a, g^b$$
 $A \xrightarrow{\longrightarrow} B$ b, g^a

Dane przekazane publicznie: p, g, g^a, g^b Alicja wylicza $(g^b)^a$, Bob wylicza $(g^a)^b$ Uzgodniony wspólnie tajny klucz: $g^{ab} = (g^a)^b = (g^b)^a$

Alicja, Bob i Charlie uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, Bob b, a Charlie c.

Dane przekazane publicznie: p, g,

Alicja, Bob i Charlie uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, Bob b, a Charlie c.

Dane przekazane publicznie: p, g, g^a, g^b, g^c ,

Alicja, Bob i Charlie uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, Bob b, a Charlie c.

Dane przekazane publicznie: $p, g, g^a, g^b, g^c, (g^c)^a, (g^a)^b, (g^b)^c$

Alicja, Bob i Charlie uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, Bob b, a Charlie c.

Dane przekazane publicznie: $p, g, g^a, g^b, g^c, (g^c)^a, (g^a)^b, (g^b)^c$ Alicja wylicza $((g^b)^c)^a$, Bob wylicza $((g^c)^a)^b$, a Charlie $((g^a)^b)^c$ Uzgodniony wspólnie tajny klucz:

$$g^{abc} = ((g^b)^c)^a = ((g^c)^a)^b = ((g^a)^b)^c$$

Alicja, Bob i Charlie uzgodnili liczbę pierwszą p oraz generator g w \mathbb{Z}_p^* . Każde z nich wybrało też swoją tajną liczbę: Alicja a, Bob b, a Charlie c.

Dane przekazane publicznie: $p, g, g^a, g^b, g^c, (g^c)^a, (g^a)^b, (g^b)^c$ Alicja wylicza $((g^b)^c)^a$, Bob wylicza $((g^c)^a)^b$, a Charlie $((g^a)^b)^c$ Uzgodniony wspólnie tajny klucz:

$$g^{abc} = ((g^b)^c)^a = ((g^c)^a)^b = ((g^a)^b)^c$$

Ćwiczenie: Używając protokołu D-H uzgodnić tajny klucz (praca w grupach 2— lub 3—osobowych, bez programowania).

Protokół Diffiego-Hellmana - ćwiczenie

Ćwiczenie: Używając protokołu D-H uzgodnić tajny klucz (praca w grupach 2– lub 3–osobowych, bez programowania).

Metody ataku na protokół Diffiego-Hellmana

- (atak brutalny) Ewa zna p oraz g, więc może wyliczyć wszystkie potęgi g w \mathbb{Z}_p^* i na podstawie przesyłanych informacji znaleźć a oraz b i ostatecznie g^{ab} ,
 - zamiast wyliczać po kolei, lepiej liczyć potęgi dla losowo wybranych wykładników z listy $\{1,...,p-1\}$,

Metody ataku na protokół Diffiego-Hellmana

- (atak brutalny) Ewa zna p oraz g, więc może wyliczyć wszystkie potęgi g w \mathbb{Z}_p^* i na podstawie przesyłanych informacji znaleźć a oraz b i ostatecznie g^{ab} ,
 - zamiast wyliczać po kolei, lepiej liczyć potęgi dla losowo wybranych wykładników z listy $\{1, ..., p-1\}$,
- (metoda Shanksa, czyli małych i dużych kroków) dane są elementy g, $h = g^a$ oraz p = |G|:
 - obliczamy $[\sqrt{p}] 1$,
 - tworzymy listę $\{1, g, g^2, ..., g^{\lceil \sqrt{p} \rceil 1}\}$,
 - obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście,
 - jeśli element jest na liście, to znamy i oraz j (indeks elementu z listy), zachodzi więc równość

$$hg^{-i[\sqrt{p}]} = g^j \quad \Rightarrow \quad h = g^{i[\sqrt{p}]+j}.$$

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

Dane są elementy g = 5, $h = g^5 = 14$ oraz $p = 17 = |\mathbb{Z}_{17}|$:

• obliczamy $[\sqrt{p}] - 1 = 4 - 1 = 3$,

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{\lceil \sqrt{p} \rceil 1}\}$:

$${5^0, 5^1, 5^2, 5^3} = {1, 5, 8, 6}.$$

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

$$\{5^0,5^1,5^2,5^3\}=\{1,5,8,6\}.$$

• obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście,

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

$$\{5^0,5^1,5^2,5^3\}=\{1,5,8,6\}.$$

• obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście, Zauważmy, że $5^{-1}=7$.

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

$$\{5^0,5^1,5^2,5^3\}=\{1,5,8,6\}.$$

• obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście,

Zauważmy, że $5^{-1} = 7$.

$$hg^{-1.4} = 14 \cdot 5^{-4} =$$

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

$${5^0, 5^1, 5^2, 5^3} = {1, 5, 8, 6}.$$

ullet obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście,

Zauważmy, że $5^{-1} = 7$.

$$hg^{-1.4} = 14 \cdot 5^{-4} = 14 \cdot 7^4 = 5 \text{ (STOP)}$$

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

$${5^0, 5^1, 5^2, 5^3} = {1, 5, 8, 6}.$$

• obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście, Zauważmy, że $5^{-1}=7$.

$$hg^{-1.4} = 14 \cdot 5^{-4} = 14 \cdot 7^4 = 5 \text{ (STOP)}$$

 $hg^{-2.4} = ..., hg^{-3.4} = ..., \text{ (tego już nie liczymy)}$

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

$${5^0, 5^1, 5^2, 5^3} = {1, 5, 8, 6}.$$

• obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście, Zauważmy, że $5^{-1}=7$.

$$hg^{-1.4} = 14 \cdot 5^{-4} = 14 \cdot 7^4 = 5 \text{ (STOP)}$$

 $hg^{-2.4} = ..., hg^{-3.4} = ..., \text{ (tego już nie liczymy)}$

• jeśli element jest na liście (a $5 = 5^1$ jest na liście),

Dane są elementy g=5, $h=g^5=14$ oraz $p=17=|\mathbb{Z}_{17}|$:

- obliczamy $[\sqrt{p}] 1 = 4 1 = 3$,
- tworzymy listę $\{1, g, g^2, ..., g^{[\sqrt{\rho}]-1}\}$:

$${5^0, 5^1, 5^2, 5^3} = {1, 5, 8, 6}.$$

• obliczamy $hg^{-i[\sqrt{p}]}$ dla kolejnych i=1,2,... i sprawdzamy, czy jest na liście, Zauważmy, że $5^{-1}=7$.

$$hg^{-1.4} = 14 \cdot 5^{-4} = 14 \cdot 7^4 = 5 \text{ (STOP)}$$

 $hg^{-2.4} = ..., hg^{-3.4} = ..., \text{ (tego już nie liczymy)}$

• jeśli element jest na liście (a $5 = 5^1$ jest na liście), to znamy i = 1 oraz j = 1, zachodzi więc równość

$$h = g^{i[\sqrt{p}]+j} = g^{4+1} = g^5.$$

17	1	0	

17	1	0	
5	0	1	

17	1	0	
5	0	1	(-3)

17	1	0	
5	0	1	(-3)
2	1	-3	

17	1	0	
5	0	1	(-3)
2	1	-3	(-2)

17	1	0	
5	0	1	(-3)
2	1	-3	(-2)
1	-2	7	STOP

Do obliczenia $5^{-1} = 7$ w \mathbb{Z}_{17} użyliśmy algorytmu Euklidesa:

17	1	0	
5	0	1	(-3)
2	1	-3	(-2)
1	-2	7	STOP

Stąd

$$1 = -2 \cdot 17 + 7 \cdot 5,$$

czyli

$$5 \cdot 7 = 1 \pmod{17}$$
,

zatem

$$5^{-1} = 7 \pmod{17}$$
.