班内序号

专业班级

西安邮电大学期末考试试题 (A卷)

(2022-2023 学年第一学期)

课程名称: 高等数学 A1

考试专业、年级: 通工、电子、计科、自动化等专业 2022 级

考核方式: 闭卷 可使用计算器: 否

题号	_	 =	四	五.	六	总分
得分						
评卷人						

得分 一、判断题:1~5 小题,每小题 2 分,共 10 分.请在括号内对正确陈述打"√" 对错误陈述打"×".

- 1. 收敛数列必有界. ()
- 2. 无穷小与任一函数的乘积一定是无穷小. ()
- 3. 如果函数 f(x) 在 x_0 处既是左连续的,又是右连续的,则 f(x) 在 x_0 处连续. ()
- 4. 设周期函数 f(x)处处可导,则 f(x)的导函数 f'(x) 仍为周期函数. ()
- 5. 如果函数 f(x) 在闭区间 [a, b] 上可微,则 f(x) 在 [a, b] 上可积. ()

得分 二、选择题: 6~10 小题,每小题 2 分,共 10 分. 下列每小题给出的四个选项 A、 B、C、D中,只有一个选项符合题目要求,请将所选项前面的字母填在题中的括号内.

- 6. x = 0 是函数 $y = \frac{\sin x}{x}$ 的 ()

- A. 跳跃间断点; B. 可去间断点; C. 无穷间断点;
- D. 振荡间断点.

7.
$$\lim_{x \to +\infty} \left(1 - \frac{1}{x}\right)^x = ($$
).

- A. 0; B. 1; C. e^{-1} ; D. e.

- A. 6:
- B. -3; C. -6; D. 3.

- 9. 设 $y = (x^2 x)\sin 3x$,则y'''(0) = ()

- A. 6; B. 12; C. 18; D. 0.
- 10. 设函数 f(x) 可导,则在下列等式中,正确的结果是 ()
- A. $\int f'(x)dx = f(x)$; B. $d\int f(x)dx = f(x)$; C. $\int df(x) = f(x)$; D. $\frac{d}{dx}\int f(x)dx = f(x)$.

得分______三、计算题: 11~15 小题,每小题 5 分,共 25 分. 计算应写出必要的文字说明及 演算步骤. 请将计算过程写在试题预留的空白处.

得分_____11. 计算 $\lim_{x \to +\infty} \left(\sqrt{x^2 + 4x - 1} - x \right)$.

得分_____12. 计算 $\lim_{x\to 0} \left(\frac{1}{r} - \frac{1}{\tan x}\right)$.

姓名

京省

专业班级

得分_____13. $\lim_{x\to 0} \frac{\int_0^{2x} \sin t^3 dt}{x^4}$.

得分____17. 求∫*x*e^x dx.

得分_____14. 设 $f(x) = \begin{cases} 1-2x, & x \le 0, \\ 3x^2, & x > 0 \end{cases}$, 求 $\int_0^1 f(2x-1) dx$.

得分_____18. 设 $y = (1+x^2)^x$, 求 y'.

得分_____15. 求由方程 $xe^y - 2y + 2 = 0$ 所确定的函数 y = y(x) 在 x = 0 处的微分 $dy|_{x=0}$.

得分_____19. 求解初值问题 $\begin{cases} y' = 2xy^2, \\ y(0) = 1. \end{cases}$

得分______四、计算题: 16~20 小题,每小题 5 分,共 25 分. 计算应写出必要的文字说明及演算步骤. 请将计算过程写在试题预留的空白处.

得分_____16. 设 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$, 求 $\frac{dy}{dx}$.

得分_____20. 判定反常积分 $\int_2^{+\infty} \frac{1}{x \ln^2 x} dx$ 敛散性,并在收敛的情况下求出其值.

得分_____五、解答题: $21\sim23$ 小题,每小题 8 分,共 24 分.解答应写出必要的文字说明及 | 得分_____23. 解微分方程 y''-3y'+2y=2x+1. 演算步骤. 请将解答过程写在试题预留的空白处.

得分_____21. 设 $f(x) = \frac{\ln x}{x}$, (1) 求函数 f(x) 的单调区间及极值; (2) 求曲线 y = f(x)

的凹凸区间及拐点.

得分_____22. 设 D 是由抛物线 $y = x - x^2$ 与 x 轴所围成的平面图形.

- (1) 求 *D* 的面积;
- (2) 求 D 绕 x 轴旋转一周所得旋转体的体积.

得分_____六、证明题:本题满分6分.证明应写出必要的证明过程.请将答案写在试题预留 的空白处.

24. 试证: 当0 < x < 1时, $\sqrt[3]{x} + \sqrt[3]{1-x} \le \sqrt[3]{4}$.

西安邮电大:

再纸
4
A 松 松
标准
题卷
学试

茶
1

西安邮电大学 2022----2023 学年第一学期期末试题(A)卷 标准答案

课程: 高等数学 A1 类型: A 卷 专业、年级: 通工、电子、计科、自动化等专业 2022 级

题号	_	_	Ш	四	五	六	总分
得分	10	10	25	25	24	6	100

- 一、判断题:1~5小题,每小题2分,共10分)
- 1. \checkmark ; 2. \times ; 3. \checkmark ; 4. \checkmark ; 5. \checkmark .
- 二、选择题:6~10小题,每小题2分,共10分
- 6. B; 7. C; 8. C; 9. C; 10. D.
- 三、计算题(11~15 小题,每小题 5 分,共 25 分)

12. **解** 原式 =
$$\lim_{x \to 0} \frac{\tan x - x}{x \tan x} = \lim_{x \to 0} \frac{\tan x - x}{x^2} = \lim_{x \to 0} \frac{\sec^2 x - 1}{2x}$$
 3 分
$$= \lim_{x \to 0} \frac{\tan^2 x}{2x} = \lim_{x \to 0} \frac{x^2}{2x} = 0$$
 5 分

将
$$x = 0$$
 , $y = 1$ 代入上式,解得 $dy = \frac{e}{2} dx$. •••••• 5 分

四、计算题(16~20 小题,每小题 5 分,共 25 分)

16. **解** 求导,得
$$x'(t) = 1 - \cos t$$
, $y'(t) = \sin t$. ••••••••••••••••••••••3 分

17. 解 由分部积分法得

$$\int xe^{x} dx = \int x de^{x} = xe^{x} - \int e^{x} dx = xe^{x} - e^{x} + C \qquad \cdots \qquad 5$$

18. **解** 取对数,得
$$\ln y = x \ln (1 + x^2)$$
. •••••• 1 分

两端分别积分,得
$$-\frac{1}{v}=x^2+C$$
. •••••••••••3 分

故所求解为
$$-\frac{1}{x}=x^2-1$$
,即 $y=\frac{1}{x^2-1}$ $(x\neq\pm 1)$. ••••••••••5 分

Ŧī.	解答题	(21~23小题,	每小题 8 分。	共24分)
ш,			サイル2011 1	<i>7</i> 7 44 <i>7</i> 1 /

解 (1)函数的定义域为 $(0, +\infty)$,且在 $(0, +\infty)$ 内

$$y' = \frac{1 - \ln x}{x^2}.$$

列表分析如下:

х	(0, e)	$(e, +\infty)$
<i>y'</i>	+	_

故函数在区间(0,e]上单调递增,在区间 $[e,+\infty)$ 上单调递减,在点x=e处取得极大值

$$y = \frac{1}{e}.$$

(2) 再求导,得

$$y'' = \frac{2 \ln x - 3}{x^3} (x > 0).$$

列表分析如下:

х	$(0, e^{3/2})$	$\left(e^{3/2}, +\infty\right)$		
<i>y</i> '	_	+		

故曲线 $y = \frac{\ln x}{x}$ 在区间 $\left(0, e^{3/2}\right]$ 上是凸的,在区间 $\left[e^{3/2}, +\infty\right)$ 上是凹的. ••••• 7 分

22. **解** (1) *D*的面积为 $A = \int_0^1 (x - x^2) dx = \left[\frac{1}{2} x^2 - \frac{1}{3} x^3 \right]_0^1 = \frac{1}{6}$. · · · · · · · · · · · · · · · · · 4 分

(2) 旋转体的体积为
$$V = \pi \int_0^1 (x - x^2)^2 dx = \pi \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 + \frac{1}{5} x^5 \right]_0^1 = \frac{\pi}{30}$$
. •••••• 8 分

23. **解** 方程 y'' - 3y' + 2y = 0 的特征方程为 $r^2 - 3r + 2 = 0$,

因为
$$\lambda = 0$$
不是特征根,所以方程 $y'' - 3y' + 2y = 2x + 1$ 的一个特解可设为

$$I - ux + v$$
.

将它代入所给方程,得
$$2ax-3a+2b=2x+1$$
. ••••••• 4 分比较两端 x 同次幂的系数,得

$$\begin{cases} 2a = 2, \\ -3a + 2b = 1. \end{cases}$$

故所求通解为
$$y = C_1 e^x + C_2 e^{2x} + x + 2$$
,其中 C_1, C_2 为任意常数. •••••• 8 分

六、证明题(本题满分6分)

24. 证 令
$$f(x) = \sqrt[3]{x} + \sqrt[3]{1-x}$$
 (0 ≤ x ≤ 1),则 $f(x)$ 在[0,1]上连续,在(0,1)内可导,且

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}} - \frac{1}{3}(1-x)^{-\frac{2}{3}}.$$

比较 f(0) = f(1) = 1, $f(1/2) = \sqrt[3]{4}$, 得 f(x) 在 [0,1] 上的最大值为 $f(1/2) = \sqrt[3]{4}$. • • 4 分 从而当 $0 \le x \le 1$ 时, $\sqrt[3]{x} + \sqrt[3]{1-x} \le \sqrt[3]{4}$,特别地,当0 < x < 1时, $\sqrt[3]{x} + \sqrt[3]{1-x} \le \sqrt[3]{4}$.