UPT, Anul I CTI 2015

Algebră liniară, Probleme relativ la dreaptă și plan

Pentru fiecare din problemele următoare desenați elementele geometrice implicate. Ajută la raționament!

1. Să se scrie ecuația planului ce conține punctul M(-1,1,5) și este perpendicular pe dreapta

$$d: \frac{x+3}{-2} = \frac{y-2}{0} = \frac{z+1}{5}$$

 ${\bf 2}.$ Să se scrie ecuațiile drepte
idce conține punctul P(0,-2,3) și este paralelă cu
 dreapta:

$$d': \begin{cases} 3x - y + 2z + 7 &= 0 \\ -x + 2y - 4z &= 0 \end{cases}$$

3. Să se determine planul π ce conține punctele A(2,1,4), B(-1,0,3) și direcția vectorului v=(3,4,-7).

4. Să se determine ecuațiile dreptei ce trece prin punctele M(0,1,-3), M(2,5,-1).

5. Deduceți ecuația planului ce conține dreptele:

$$d: \frac{x-4}{-1} = \frac{y-1}{-1} = \frac{z}{2}, \quad d': \frac{x+1}{-1} = \frac{y-2}{-1} = \frac{z+5}{2}$$

și apoi ecuația planului ce conține dreptele¹:

$$\ell_1: \frac{x+5}{-2} = \frac{y}{-1} = \frac{z+1}{0}, \quad \ell_2: \frac{x+5}{1} = \frac{y}{3} = \frac{z+1}{-3}$$

6. Determinați ecuația planului π ce trece prin M(1,-2,3) și este paralel cu dreptele²:

$$d_1: \begin{cases} 5x + y - 2z + 12 &= 0 \\ x - 3 &= 0 \end{cases} \quad d_2: \frac{x}{-1} = \frac{y+2}{-3} = \frac{z+1}{2}$$

 $^{^1{\}rm Observați}$ că primele două drepte sunt paralele, iar următoarele două sunt concurente.

²Planul fiind paralel cu dreptele, conține direcțiile celor două drepte.

7. Să se determine proiecția ortogonală a punctului A(1,-2,5) pe planul $\pi: x+2y+2z+1=0$ și apoi simetricul punctului A fața de plan.

Indicație: Dacă A' este proiecția ortogonală a lui A pe planul π și A'' simetricul (necunoscut), atunci A' este mijlocul segmentului [A, A''] deci $x_{A'} = \frac{x_A + x_{A''}}{2}$, iar $x_{A''} = 2x_{A'} - x_A$, etc.

- 8. Să se calculeze măsura unghiului dintre dreapta d: $\frac{x+2}{1} = \frac{y-1}{2} = \frac{z+1}{1}$ şi planul π : 2x y + 2z + 3 = 0.
- 9. Să se calculeze unghiul dintre planele π_1 : 4x-y-2z-11=0, π_2 ; x-2y+3z-8=0.
- 10. Dintre toate planele ce trec prin dreapta

$$D: \left\{ \begin{array}{rcl} x - 3y + z - 1 & = & 0 \\ x + 2y - 2 & = & 0 \end{array} \right.$$

să se determine planul π , perpendicular pe planul α : 3x - y + 5z + 7 = 0.

Indicație: Normala la planul π este ortogonală pe vectorul director al dreptei pe care o conține și pe normala planului α . Fiind perpendicular pe doi vectori, direcția lui N_{π} este . . .

- 11. Se dau trei puncte $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$, $M_3(x_3, y_3, z_3)$. Cum exprimați vectorial condiția de coliniaritate/necoliniaritate a celor 3 puncte? În cazul în care punctele sunt necoliniare, să se determine ecuația planului ce le conține.
- 12. Să se scrie ecuația planului determinat de punctele $M_1(2,0,0)$, $M_2(0,2,0)$, $M_3(0,0,2)$.
- 13. Să se determine distanța de la punctul P(3, 1, -2) la dreapta

$$d: \frac{x}{1} = \frac{y}{2} = \frac{z}{1}$$

14. Se dă dreapta d având ecuațiile parametrice:

$$\begin{array}{rcl}
x & = & -2 + 3t \\
y & = & 4 \\
z & = & 1 - 5t
\end{array}$$

Să se arate că direcția acestei drepte este ortogonală pe direcția dreptei de ecuații x = 0, z = 0.

15. Să se scrie ecuațiile canonice (adică sub formă de șir de rapoarte egale) ale dreptei

$$D: \begin{cases} x - 3y + z - 1 &= 0 \\ x + 2y - 2 &= 0 \end{cases}$$

16. Să se determine ecuația planului ce conține axa Ox și este paralel cu dreapta

$$\begin{array}{rcl} x&=&-1+3t\\ d:&y&=&7-t\\ z&=&-2+2t \end{array}$$

17. Să se aleagă două puncte distincte, P, Q, pe dreapta de ecuații:

$$\frac{x+2}{0} = \frac{y-1}{3} = \frac{z-7}{-2}$$

și apoi să se scrie ecuația planului ce trece prin mijlocul segmentului PQ și este perpendicular pe dreapta d.

18. Să se determine punctul de intersecție al dreptei

$$d: \quad \frac{x-2}{1} = \frac{y+3}{5} = \frac{z}{-2}$$

cu planul π de ecuație 2x+3y-z-10=0, prin metoda cea mai simplă, ce constă din rezolvarea unei ecuații cu o singură necunoscuta!!!.

19. Fie C(a,b,c) un punct fixat şi R>0 un număr pozitiv. Sfera cu centrul în C şi de rază R este mulțimea punctelor din spațiu ce au distanța la C egală cu R:

$$S = \{M(x, y, z) \mid \operatorname{dist}(M, C) = R \Leftrightarrow ||\overrightarrow{CM}|| = R \Leftrightarrow (x - a)^2 + (y - b)^2 + (z - c)^2 = R^2\}$$

Dacă $M_0(x_0, y_0, z_0)$ este un punct aparținând sferei, atunci planul ce conține punctul M_0 și are normala $\overrightarrow{N} = \overrightarrow{CM_0}$ se numește planul tangent în M la sferă.

Să se determine ecuația sferei cu centrul C(3,0,0) și rază R=2 și ecuația planului tangent în $M_0(4,1.5,\sqrt{0.75})$

20. Intersecția dintre o sferă de centru \mathbb{C} și rază R, $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$, și un plan $\pi : Ax + By + Cz + D = 0$ a cărui distantă de centrul sferei este mai mică decât R este un cerc.

Ecuațiile cercului sunt:

$$\begin{cases} (x-a)^2 + (y-b)^2 + (z-c)^2 &= R^2 \\ Ax + By + Cz + D &= 0 \end{cases}$$

CentrulOal cercului este proiecția ortogonală a centrului sferei pe plan, iar raza cercului este cateta OM din triunghiul dreptunghic \triangle COM.

21. Să se determine centrul și raza cercului de ecuații:

$$\begin{cases} x^2 + y^2 + z^2 - 4x - 2y + 2z - 19 & = & 0 \\ z & = & 2 \end{cases}$$

Indicație: Se formează pătrate perfecte în x, y și z pentru a depista centrul și raza sferei de ecuație $x^2 + y^2 + z^2 - 4x - 2y + 2z - 19 = 0$. Şi anume

$$x^2 + y^2 + z^2 - 4x - 2y + 2z - 19 = \underbrace{x^2 - 4x + 4}_{=(x-2)^2} - 4 + \underbrace{y^2 - 2y + 1}_{=(y-1)^2} - 1 + \underbrace{z^2 + 2z + 1}_{=(z+1)^2} - 1 - 19 = 0,$$

de unde rezultă: ecuația sferei în forma $(x-a)^2+(y-b)^2+(z-c)^2-R^2=0$.