- P3.1 Considere o circuito da figura 3.1 com: V_1 = 60 V, R_1 = 5 Ω , R_2 = 3 Ω , R_3 = 2 Ω , I_{R1} = 2 A e I_{R3} = 8 A.
 - a) Calcule V_{IN} e V_S.
 - b) Calcule a potência posta em jogo na fonte dependente $4I_X$.
 - c) Tendo em conta o resultado da alínea a): (i) calcule I_X usando o teorema da sobreposição; (ii) calcule I_X aplicando o método dos nós; e (iii) calcule I_X aplicando o método dos malhas.

Figura 3.1

- P3.2 Considere o circuito da figura 3.2 onde I_A = 4 mA, V_B = 1 V, R_1 = 1 k Ω e R_2 = 3 k Ω .
 - a) Utilizando o teorema da sobreposição, calcule as tensões V_1 e V_2 .
 - b) Calcule V_1 e V_2 com base no método das malhas.
 - c) Calcule V_1 e V_2 com base no método das nós.
 - d) Determine a potência em cada um dos elementos do circuito e indique quais os que fornecem energia e quais os que a recebem.

Figura 3.2

P3.3 - Dado o circuito da figura 3.3 determine R_L de modo a obter a máxima transferência de potência do circuito à esquerda dos terminais xy para a resistência R_L . Nessa condição qual é o valor da potência transferida quando V_F = 6V.

Figura 3.3

- P3.4 Considere o circuito da figura 3.4 onde os terminais *ab* estão em vazio. V_G = 20V, I = 20mA, R_0 = 125 Ω , R_1 = 1.5K Ω , R_2 = 500 Ω .
 - a) Mostre que a corrente I_0 através de R_0 é nula.
 - b) Calcule a tensão V_{ab} .
 - c) Calcule os parâmetros do circuito equivalente de Thévenin visto dos terminais ab.

d) Qual seria a intensidade da corrente através de um fio que estabelecesse um curtocircuito entre a e b, l_{ab} .

Figura 3.4

P3.5 – Considere o circuito da figura 3.5 onde V_G = 30V, R = 6K Ω e k = 1/2.

- a) Calcule a tensão de circuito aberto e a corrente de curto-circuito I_{ab} e V_{ab} .
- b) Apresente esquema eléctrico dos circuitos equivalentes de Thévenin e de Norton, vistos dos terminais ab.

Figura 3.5

P-3.6 - No circuito da figura 3.6, R_1 = 2 Ω , R_2 = 5 Ω , R_3 = R_4 = 2 Ω , R_5 = 10 Ω , I_0 = 1A e g_m = 2S.

- a) Escreva uma equação matricial correspondente à aplicação do método dos nós ao circuito da figura 3.6 (na forma literal simbólica e só depois substitua valores numéricos)
- b) Escreva uma equação matricial simbólica correspondente à aplicação do método das malhas ao circuito (considere as correntes de circulação nas malhas elementares no sentido horário).
- c) Calcule o valor da tensão aos terminais de R₅.
- d) Determine o circuito equivalente de Thévenin visto para a esquerda dos nós A e B,
- e) Obtenha o equivalente de Thevenin do subcircuito à direita dos pontos A e B. Desenhe o respectivo esquema equivalente não se esquecendo de indicar os nós relativos aos pontos A e B.
- f) Utilize os resultados das duas alíneas anteriores para calcular V_{AB} .

- P3.7 Pretende-se estudar o circuito da figura 3.7 usando o método dos nós. R_1 = 1 Ω , R_2 = 2 Ω , R_3 = 3 Ω , R_4 = 4 Ω , V_G = 6V, V_{DC} = 8V.
 - a) Calcule as tensões nodais V_1 a V_4 usando o método dos nós.
 - b) Calcule novamente as tensões nodais usando o teorema da sobreposição.
 - c) Calcule a potência na fonte V_G .

Figura 3.7

- P3.8 Considere o circuito da figura 3.8.
 - a) Usar o método dos nós para calcular V_1 = V_a . Depois calcular a potência na fonte I_1 .
 - b) Usar o teorema da sobreposição para calcular $V_1 = V_a$. Depois calcular a potência na fonte I_1 .
 - c) Simplificar o circuito fazendo a conversão entre fontes reais de tensão e de corrente (equivalentes de Thévenin/Norton). Calcular $V_1=V_a$ e depois calcular a potência na fonte I_1 .

Figura 3.8

P3.9 - Considere o circuito da figura 3.9

Figura 3.9

- a) Escreva uma equação matricial simbólica correspondente à aplicação do método das malhas ao circuito (considere as correntes de circulação nas malhas elementares no sentido horário).
- Escreva uma equação matricial simbólica correspondente à aplicação do método dos nós ao circuito (numere os nós no sentido horário e começando em cima à

esquerda),

- c) Com base nos resultados das alíneas anteriores determine se a fonte dependente fornece ou recebe energia.
- d) Determine o circuito equivalente de Norton visto pala fonte dependente.
- e) Determine o circuito equivalente de Thévenin visto pela fonte de tensão.
- f) Determine V_X usando o teorema da sobreposição.

Soluções

$$P3.2 - V1 = 2V$$
; $V2 = -6V$

Fornecem energia: Fonte de corrente I_A P = -12mW

Fonte de tensão dependente P = -6mW

Recebem energia: R_1 P = 4mW

 R_2 P = 12mW

Fonte de tensão V_B P = 2mW

$$P3.4-a)~I_0=0;~b)~V_{ab}=5~V;~c)~V_{Th}=5~V;~R_{Th}=1~k\Omega;~d)~I_{ab}=I_{CC}=5~mA$$

$$P3.5 - a) V_{ab} = -10 V; I_{ab} = 2.5 mA; b) R_{Th} = -4 k\Omega$$

P3.6 - a)

c) 200V; d) Rth=5
$$\Omega$$
, V_{Th} = 5V e) R_{th}=-4 Ω , V_{Th} = 0V

$$P3.8 - a$$
), b) e c)Va = -5.04; Vb = -6.24V; P = -2.268mW

P3.9 - c) -3.3 mW fornece energia;

Semana	1ª aula		2ª aula	
Semana 3 (11/10 - 15/10)	P3.1, E23, P3.4	E22, P3.3, E24	P3.7	Avaliação