

(19)대한민국특허청(KR) (12) 등록특허공보(B1)

(51) . Int. Cl. **A61K 31/426** (2006.01) **A61K 31/155** (2006.01) (45) 공고일자 (11) 등록번호

(24) 등록일자

2007년02월12일 10-0682199

2007년02월06일

(21) 출원번호 (22) 출원일자 10-2005-0060439 2005년07월05일

(65) 공개번호

10-2006-0049860

심사청구일자

2005년07월05일

(43) 공개일자

2006년05월19일

(30) 우선권주장

1020040052071

2004년07월05일 대한민국(KR)

(73) 특허권자

동화약품공업주식회사 서울 중구 순화동 5번지

(72) 발명자

이진수

경기도 용인시 풍덕천1동 693 삼성1차아파트 104동 801호

구세광

경기도 수원시 장안구 화서1동 220-4 영광아파트 1-1005

이상호

경기도 수워시 장안구 파장동 591-17

유제만

경기도 안양시 동안구 부흥동 1103번지 은하수아파트 207-101

(74) 대리인

손민 허은순

(56) 선행기술조사문헌

노문 *

KR1019977004674 A

KR1020030008654 A

* 심사관에 의하여 인용된 문헌

심사관: 김은희

전체 청구항 수 : 총 2 항

(54) 알러지성 염증 질환의 예방 및 치료용 조성물

(57) 요약

본 발명은 알러지성 염증 질환의 예방 및 치료용 조성물에 관한 것으로, 상세하게는 N-히드록시-4-{5-[4-(5-이소프로 필-2-메틸-1.3-티아졸-4-일)페녹시]풰톡시}-베즈아미단. 4-{5-[4-(5-이소프로필-2-메틸-1.3-티아졸-4-일)페녹 시]펜톡시}-벤즈아미딘 또는 이의 약제학적으로 허용 가능한 염을 포함하는 알러지성 염증 질환의 예방 및 치료용 조성물 에 관한 것이다.

본 발명의 조성물은 천식시 유발되는 폐기관지세정액 내 산호성 백혈구의 증가, 혈중 총백혈구 수 및 산호성 백혈구의 증가, 기관지 상피의 점액생산세포 증가에 의한 비후 또는 증생, 폐포벽의 비후에 의한 폐포 면적의 감소 및 염증세포의 침윤과 같은 전형적인 만성염증을 감소시킴으로써, 알러지성 염증 질환의 예방 및 치료에 유용하게 사용할 수 있다.

대표도

도 1

특허청구의 범위

청구항 1.

하기 화학식 1로 표시되는 벤즈아미딘 화합물 또는 이의 약제학적으로 허용가능한 염을 포함하는 천식 또는 알러지성 비염의 예방 및 치료용 조성물.

화학식 1

(상기 화학식 1에서, R은 수소 또는 히드록시기이다)

청구항 2.

제 1항에 있어서, 상기 염이 메탄설폰산염 또는 염산염인 조성물.

청구항 3.

삭제

청구항 4.

삭제

명세석

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종례기술

본 발명은 알러지성 염증 질환의 예방 및 치료용 조성물에 관한 것으로, 상세하게는 N-히드록시-4-{5-[4-(5-이소프로 필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}-벤즈아미딘, 4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}-벤즈아미딘 또는 이의 약제학적으로 허용되는 염을 포함하는 알러지성 염증 질환의 예방 및 치료용 조성물에 관한 것이다.

각종 공해로 인한 환경오염, 스트레스, 또는 변화된 의식주를 포함한 주거환경 등의 원인에 의해 알러지성 염증성 질환이 날로 증가하는 추세에 있다. 알러지성 염증 질환이란 코의 점막이나 기관지의 점막, 또는 피부가 외부로부터 원인 물질에 지나칠 정도로 과민하게 반응하는 매우 까다로운 만성적인 질환으로, 인체의 면역 체계에 이상이 생겨 나타나는 질환이다. 알러지를 일으키는 면역이상의 근본원인은 영양소의 불균형, 스트레스, 혈액이 탁해지는 어혈(瘀血)등에 의해서 발생되며, 이 중 특히 영양소의 불균형에 의해 가장 많이 발생된다.

알러지성 염증 질환으로는 외부로부터 들어온 항원에 의한 면역반응이 일어나는 부위에 따라 알러지성 비염, 천식, 아토피성 피부염 등이 있으며, 그 외에도 알러지성 결막염, 알러지성 피부염, 접촉성 피부염, 두드러기 등 다양하지만, 질병의 원인이 외부로부터 유입된 원인 물질에 대한 과민성에 기인한다는 점에서 공통적이기 때문에 과다한 면역 반응을 억제시켜줄 수 있는 약물이 공통적으로 사용될 수 있다.

알러지의 대표적 질환인 천식은 호흡기계, 특히 폐와 기관의 만성 염증성 질환으로, 약물, 오염된 공기, 찬 공기 또는 과도한 운동 시 호흡기계, 특히 상부 호흡기계의 반응성이 증가되는 질환이다. 이러한 과민반응은 주로 기도 내에서의 공기의 흐름이 방해되는 상태 즉, 기도 폐쇄 또는 협착과 관련되어 있으나, 기관지 확장제와 같은 약물을 투여함으로써 쉽게 정상으로 돌아간다. 일반적인 환경유래의 항원에 대한 과민반응 또는 호흡기도의 위축이 천식 시 가장 흔히 유발되는 증상이며, 이러한 현상은 비만세포와 호산구 유래의 IgE에 의해 매개되는 과민반응에 의한 것으로 알려져 있다(Beasley et al., Am. Rev. Respir. Dis., 129, 806-817, 1989).

천식의 치료를 위해 사용되는 약물로는 기도 평활근을 확장하고 비만세포로부터 과민반응 매개 물질의 분비를 효과적으로 억제하는 베타 2-아드레노(beta 2-adreno) 수용체 아고니스트, 면역 억제효과를 갖는 부신피질 호르몬제 및 천식의 조기 및 후기 반응을 모두 억제한다고 알려진 디소디움 크로모글리케이트(Disodium cromoglycate), 네도크로밀 소디움 (nedocromil sodium) 등이 있다. 그러나, 베타 2-아드레노 수용체 아고니스트들은 그 효과가 장기간 지속되지 못하며 쉽게 재발되고, 부신피질 호르몬제는 효과가 단편적이며 장기간 사용시 심각한 부작용이 수반되는 단점이 있다.

최근 염증성 및 과민반응 완화에 대한 접근법으로 아라키돈산 대사산물(프로스타글란딘 포함), 리폭시게나제 및 류코트리엔의 작용을 차단시키는 연구들이 소개되고 있는데, 이 중 류코트리엔 B_4 (Leukotriene B_4)는 5-리폭시게네이즈 경로에의해 형성되는 아라키도네이트의 대사 물질 중의 하나로서, 조직 침윤성 및 응집성 다형핵 백혈구가 분비하는 조직 분해효소 및 반응성 화학 물질의 작용에 관여한다.

그러나, 앞서 언급한 바와 같이 류코트리엔 B_4 이외에도 천식의 발병에 수많은 인자들이 관여하고, 특정 화합물이 류코트리엔 B_4 를 억제한다고 해도 류코트리엔 B_4 이외에 다수의 인자들에 관여하여 생체 내에서 다양한 반응을 일으킬 수 있기 때문에 류코트리엔 B_4 의 활성을 억제하는 특정 화합물이 천식 치료 효과가 있는지 여부는 용이하게 예측할 수 없다.

예를 들면, 미국의 릴리(Lilly)사에서 류코트리엔 B_4 수용체 길항제인 LY293111에 대해 천식을 적응증으로 임상(Clint D. W. Brooks et. al., J. Med. Chem. 1996 39(14), 2629-2649)을 수행한 결과에 따르면 류코트리엔 B_4 수용체 길항제인 LY293111가 알러지성 천식질환에 약효가 없음이 보고 되어 있으며(Evans DJ, Thorax. 1996 Dec;51(12):1178-84), 그

밖에 시스테이닐 류코트리엔 수용체 길항제인 자피르루카스트(Zafirlukast)와 류코트리엔 B_4 수용체 길항제 ONO-4057가 병용하면 기관지 천식에 효과가 있으나, 류코트리엔 B_4 수용체 길항제 ONO-4057 자체만으로는 효과가 없는 것으로 보고(Sakurada T. et, al., Eur J Pharmacol. 1999 Apr 9:370(2):153-9)되어 있다. 상기에서 볼 수 있듯이 류코트리엔 B_4 수용체 길항제들이 천식을 포함한 알러지성 염증 질환의 치료에 효과적이라고 할 수 없다.

한편, 류코트리엔 B_4 수용체 길항제는 천식을 포함한 알러지성 염증 질환 이외의 다양한 질환의 치료에 사용될 수 있는데, 일본국 특표평 6-502164호 공보에는 신규한 일환식 및 이환식 아릴 화합물이 선택적으로 류코트리엔 B_4 를 억제함으로써 류마티스성 관절염, 통풍, 건선 및 염증성 장 질환의 치료에 유용하다는 것이 기재되어 있으며, 일본국 특개평 4-244023호 공보에는 디호모 - 리놀렌산 등의 6계 불포화 지방산이 류코트리엔 B_4 의 생산을 억제함으로써 부정맥, 급성 심근 경색 중 등의 치료에 유용하다는 것이 기재되어 있다. 또한, 일본국 특개평 1-190656호 공보에는 신규의 류코트리엔 B_3 디메 틸아미드가 류코트리엔 B_4 에 대해 길항 작용을 갖고 있으며, 소염제, 항류마티스제 및 통풍치료제로서 유용하다고 개시되어 있다.

이에 본 발명자들은 알러지성 염증성 질환에 대한 효과적인 치료제를 개발하기 위하여 연구하던 중, 본 발명자들이 골다공증 치료제(대한민국특허 공개공보 제 10-2003-8654호)로 발명한 N-히드록시-4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}-벤즈아미딘 및 4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}-벤즈아미딘이 천식시 유발되는 폐기관지세정액 내 산호성 백혈구의 증가, 혈중 총백혈구 수 및 산호성 백혈구의 증가, 기관지 상피의 점액생산세포 증가에 의한 비후 또는 증생, 폐포벽의 비후에 의한 폐포 면적의 감소 및 염증세포의 침윤과 같은 전형적인 만성염증을 감소시켜 천식을 포함한 알러지성 염증성 질환 치료에 탁월한 효과가 있음을 확인하고 본 발명을 완성하였다.

발명이 이루고자 하는 기술적 과제

본 발명은 N-히드록시-4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}-벤즈아미딘, 4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}-벤즈아미딘 또는 이의 약제학적으로 허용 가능한 염을 포함하는 알러지성 염증 질환의 예방 및 치료용 조성물을 제공한다.

또한, 본 발명은 상기 조성물을 투여하여 알러지성 염증 질환을 치료 및 예방하는 방법을 제공한다.

발명의 구성

본 발명은 하기 화학식 1의 벤즈아미딘 화합물 또는 이의 약제학적으로허용 가능한 염을 포함하는 알러지성 염증 질환의 예방 및 치료용 조성물을 제공한다.

화학식 1

(상기 화학식 1에서, R은 수소 또는 히드록시기이다)

상기 화학식 1의 벤즈아미딘 화합물은 약제학적으로 허용 가능한 당 분야의 통상적인 염의 형태로 사용할 수 있으며, 약제학적으로 허용가능한 유리산(free acid)에 의해 형성된 산부가염이 바람직하다. 유리산으로는 무기산과 유기산을 사용할수 있으며, 무기산으로는 염산, 브롬산, 황산, 인산 등을 사용할수 있고, 유기산으로는 구연산, 초산, 젖산, 주석산, 푸마르산, 포름산, 프로피온산, 옥살산, 트리플루오로아세트산, 메탄설폰산, 벤젠설폰산, 말레인산, 벤조산, 글루콘산, 글리콜산, 숙신산, 4-모폴린에탄설폰산, 캠포설폰산, 4-니트로벤젠설폰산, 히드록시-〇-설폰산, 4-톨루엔설폰산, 칼룩투론산, 엠보산, 글루탐산, 또는 아스파트산 등을 사용할수 있다.

본 발명의 화학식 1의 벤즈아미딘 화합물은 공지된 방법에 따라 제조할 수 있다(이성은, Synthesis and Biological Activity of Natural Products and Designed New Hybrid Compounds for the Treatment of LTB₄ Related Disease, 부산대학교 대학원 이학박사 학위논문, 1999, 8).

본 발명에서 용어 "알러지성 염증 질환"은 다양한 알레르겐 유발 원인에 의해 초래되는 비특이성의 염증성 질환을 일컫으며, 알러지성 비염(allergic rhinitis), 천식(asthma), 알러지성 결막염, 알러지성 피부염, 아토피성 피부염(atopic dermatitis), 접촉성 피부염, 두드러기(urticaria)를 예시할 수 있다.

구체적 실시에서, 본 발명의 화학식 1의 벤즈아미딘 화합물은 폐기관지세정액 내 산호성 백혈구의 증가, 혈중 총백혈구 수 및 산호성 백혈구의 증가, 기관지 상피의 점액생산세포 증가에 의한 비후 또는 증생, 폐포벽의 비후에 의한 폐포 면적의 감소 및 염증세포의 침윤과 같은 전형적인 만성염증을 감소시켰다.

본 발명의 조성물은 상기 화학식 1의 벤즈아미딘 화합물 또는 이의 약제학적으로허용 가능한 염에 추가하여 동일 또는 유 사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다.

본 발명의 조성물은, 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 텍스트로즈 용액, 말토 텍스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(최근판), Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.

본 발명의 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 적용) 할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다. 일일 투여량은 화학식 1의 벤즈아미딘 화합물이 약 10 내지 1,000mg/kg 이고, 바람직하게는 50 내지 500mg/kg 이며, 하루 일회 내지 수회에 나누어 투여하는 것이 더욱 바람직하다.

본 발명의 조성물은 알러지성 염증성 질환의 예방 및 치료를 위하여 단독으로, 또는 수술, 호르몬 치료, 약물 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.

실시예 : 난백 단백질로 유발시킨 마우스 천식 모델에서 치료효과

화학식 1의 벤즈아미딘 화합물이 알러지성 염증에 미치는 영향을 알아보기 위하여, 난백 단백질로 유발시킨 마우스 천식모델에서 평가하였다. 상기 벤즈아미딘 화합물은 난백 단백질의 감작(immunization)시 투여를 시작하여 18일간 투여하였다. 실험동물은 감작 15일 후 다시 난백 단백질에 노출시킨 다음 3일 후 희생하여 폐의 중량, 말초혈액 및 폐기관지 세정액내 세포성분의 변화 및 폐의 조직학적 변화를 관찰하였다.

1. 실험동물 및 사양관리

총 20마리의 암컷 C57BL/6 마우스(6주령, BioGenomics, Korea)를 6일간 실험실 환경에 순화시킨 후 본 실험에 사용하였다. 실험동물은 5마리씩 마우스용 플라스틱 상자에 수용하여 온도(20 내지 25℃)와 습도(30 내지 35%)가 조절된 실험동물 사육실에서 사육하였다. 또한, 명암주기는 12시간 간격으로 조절하였으며, 사료와 수도수를 자유롭게 공급하였다. 실험동물 중 15마리는 난백 단백질로 천식을 유발하였으며, 5마리는 무처치 정상군으로 사용하였다.

2. 시료의 준비 및 투여

N-히드록시-4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}-벤즈아미딘 100mg 및 200mg을 무균 증류수 5ml에 완전히 녹여 용액상태의 시료를 투여하였다. 상기 벤즈아미딘 화합물은 난백 단백질 감작 일에서부터 매일 1회씩 각각 실험동물 체중 kg당 100mg 및 200mg씩 경구투여 하였다. 이때 대조군에서는 동일한 양의 무균 증류수만을 매일 동일한 방법으로 투여하였다.

3. 난백 단백질 감작 및 노출에 의한 천식 유발

난백 단백질(Ovalbumine Grade V; Sigma, St. Louis, MO, USA)을 수산화알루미늄(dried powder gel; Aldrich, Milwaukee, USA)과 생리식염수에 녹여(200 μ g OA/180 μ g Al(OH) $_3$ in 4π l saline, 4°C overnight) 실험동물에 투여(200 μ l, 복강주사)하여 감작시켰다. 이때 무처치 정상군은 수산화알루미늄만 생리식염수에 녹여 동일한 방법으로 투여하였다. 감작 15일 후 1.5%의 난백 단백질 용액을 분무기(nebulizer)를 사용하여 공기 중에 분무하여 10분간 실험동물에 노출시켜 천식을 유발시켰다. 이때 무처치 정상군에서는 생리식염수만을 동일한 방법으로 노출시켰다. 모든 실험동물은 노출 3일 후 희생하였다.

4. 체중 및 증체량의 변화

모든 실험동물의 체중을 투여 후 1, 7, 14, 16 및 17일에 각각 측정하였다. 사료섭취에 따른 개체별 차이를 줄이기 위하여 투여 시작일과 최종 부검일에 체중 측정 전 모든 실험동물을 18시간이상 절식시켰다. 또한, 실험동물의 개체 차이에 의한 체중변화를 최소화하기 위하여, 각각 감작 기간, 노출 후 천식 유발기 및 전체 실험기간 동안의 체중 증가량인 증체량을 계산하였다.

결과는 표 1에 나타내었다.

[H 1]

실험군		증제량의 변화			
		감작기	노출 후 천식 유발기	전체 실험기간	
정상군		3.08±0.71	0.52±0.33	2.34±0.63	
대조군		3.02±0.84	0.84±0.29	2.50±0.73	
화학식 1의	100mg/kg	3.50±0.51	0.34±0.34*	2.68±0.52	
벤스아미딘 화합물	200mg/kg	3.08±0.71	0.36±0.59	2.90±0.40	

*: 대조군과 비교하여 유의성 있음(p<0.05)

표 1에 나타난 바와 같이, 노출 후 천식 유발기를 제외한 모든 기간에서 유의성 있는 증체량의 변화는 관찰되지 않아 실험물질의 투여 또는 실험동물의 개체 차이에 의한 오류는 거의 없는 것을 알 수 있다. 또한, 노출 후 천식 유발기의 경우에도 대조군에서는 정상군에 비해 현저한 증체량의 증가가 관찰된 반면 화학식 1의 벤즈아미딘 화합물 투여군에서는 대조군에비해 현저히 감소된 증체량을 나타내었다.

5. 폐 중량의 측정

모든 실험동물은 최종 희생일에 폐를 주위 조직과 잘 분리하여 적출하고, 적출된 폐의 절대 중량치를 g 단위로 측정하였다. 또한, 동물 개체의 체중 차이에 의한 오차를 최소화하기 위하여 체중에 대한 폐의 비율인 상대 중량치를 하기 수학식 1을 이용하여 퍼센트로 계산하였다.

수학식 1 폐의 상대 중량치(%) = {(폐의 절대 중량치/최종 희생일의 체중)X100}

결과는 표 2에 나타내었다.

[XE2]

실헊군		폐 중랑의 변화		
		절대 중량치(g)	상대 중량치(%)	
정상군		0.112±0.004	0.634±0.021	
비조군		0.138±0.004*	0.750±0.015*	
화학식 1의 벤즈아미	100mg/kg	0.128±0.007*,##	0.697±0.030*,##	
딘 화합물	200mg/kg	0.125±0.008**,#	0.682±0.030**,##	

※ 정상군과 비교하여 유의성 있음(*:p<0.01, **:p<0.05),

대조군과 비교하이 유의성 있음(#:p<0.01, ##:p<0.05)

표 2에 나타난 바와 같이, 천식 유발에 따른 폐의 절대 및 상대 중량치는, 대조군에서는 정상군에 비해 유의성 있게 증가되었으며(p<0.01), 화학식 1의 벤즈아미딘 화합물 투여군에서는 대조군에 비해 유의성 있게 감소하였고 투여 용량 의존적으로 감소하였다(p<0.01 또는 p<0.05).

따라서, 화학식 1의 벤즈아미딘 화합물은 천식에 의한 폐 중량의 증가를 억제시킴을 알 수 있다.

6. 혈액 중 총 백혈구의 수 및 백혈구의 분별계산

최종 희생일에 모든 실험동물은 에틸 에테르로 마취한 다음 개복하여 복대정맥을 노출시켰다. 이후 노출된 복대 정맥에서 1㎡ 정도의 혈액을 채취하였다. 채취된 혈액 중 백혈구의 총 수를 백혈구용 혈구 계산판을 이용하여 X10³/1㎜³의 단위로 계산하였다. 채취한 혈액을 채혈 즉시 슬라이드 글라스(slide glass)에 도말한 다음 메탄올로 고정하고 Giemsa 염색을 실시하였다. 이후 도말 조직표본에 존재하는 총 200개의 백혈구 중 임파구, 산호성 백혈구, 중성호성 백혈구, 단핵구 및 혐기호성 백혈구가 차지하는 비율을 각각 퍼센트로 계산하였다.

결과는 표 3에 나타내었다.

[X 3]

원제 후 배원들이 미리	정상군	대조군	화학식 1의 벤즈아미딘 화합물	
혈액 중 백혈구의 변화			100mg/kg	200mg/kg
총 백혈구 수	8.24±0.97	14.04±0.91*	10.68±1.76**,##	10.44±1.81**,##
임파구의 비율	84.10±1.98	40.00±10.60*	41.70±12.90*	53.80±5.50*,#
산호성 백혈구의 비율	3.10±1.39	54.20±10.63*	49.60±15.79*	36.90±8.33*,#
중성호성 백혈구의 비율	9.20±2.00	3.80±1.10*	4.90±2.90**	5.20±2.00**
단핵구의 비율	3.20±0.30	2.00±1.20**	3.70±1.60	4.40±1.70##
염기호성 백혈구의 비율	0.30±0.40	0.00±0.00	0.10±0.20	().()±().()()

※ 정상군과 비교하여 유의성 있음(*:p<0.01, **:p<0.05),

대조군과 비교하여 유의성 있음(#:p<0.01, ##:p<0.05)

상기 표 3에 나타난 바와 같이, 천식 유발에 따른 혈액 중 총 백혈구의 수 및 산호성 백혈구의 비율은, 대조군에서는 정상군에 비해 유의성 있게 증가되었으며(p<0.01), 화학식 1의 벤즈아미딘 화합물 투여군에서는 대조군에 비해 유의성 있게 감소하였고(p<0.01 또는 p<0.05) 투여 용량 의존적으로 감소하였다.

따라서, 화학식 1의 벤즈아미딘 화합물은 천식에 의한 염증반응을 현저히 억제시킴을 알 수 있다.

7. 폐기관지 세정액 중 세포성분의 분별계산

최종 희생일에 기관지와 폐포내에 존재하는 분비물의 세포학적 구성을 관찰하기 위하여 에틸에테르로 마취시킨 다음, 경부와 흉부를 열어 경정맥에서 방혈한 후 기관에 삽관하고 2번에 걸쳐 인산 완충액(Phosphate buffered saline) 3㎡를 주입하여, 30초간 흉부를 마사지한 후 폐로부터 세포 부유액을 얻어냈다. 얻어진 세포 부유액을 3000rpm으로 30분간 원심분리한 후 DPBS(Gibco BRL, NY, USA)에 재 부유한 다음 세포를 슬라이드 글라스 위에 도말하고 Giemsa 염색한 후 도말조직 내에 존재하는 세포의 수 및 호중구, 호산구, 호염기구, 대식구 및 유상피세포 등에 대한 분별 카운팅(count)을 실시하고 백분율을 계산하였다.

결과는 표 4에 나타내었다.

[\ 4]

폐기관지 세정액	정상군	대조군	화학식 1의 벤즈아미딘 화합물	
중 백혈구의 변화			100mg/kg	200mg/kg
임파구의 비율	59.90±9.32	38.40±12.30*	56.90±15.04	56.80±22.52
산호성 백혈구의 비율	2.90±0.74	14.60±3.70*	4.30±1.44#	3.60±2.88#
중성호성 백혈구의 비율	8.80±0.91	16.20±4.72*	17.50±8.06**	13.90±9.85
단핵구의 비율	3.80±0.76	2.90±2.82	3.10±3.73	3.50±2.57
염기호성 백혈구의 비율	0.70±0.57	1.11±0.42	0.50±0.50	0.10±0.22#
유상피세포의 비율	22.40±8.94	26.10±16.91	21.00±14.77	15.50±9.74

※ 정상군과 비교하여 유의성 있음(*:p<().()1, **:p<().()5),

대조군과 비교하여 유의성 있음(#:p<0.01, ##:p<0.05)

표 4에 나타난 바와 같이, 천식 유발에 따른 기관지폐세정액 중 산호성 백혈구의 비율은, 대조군에서는 정상군에 비해 유의성 있게 증가하였으며(p<0.01), 화학식 1의 벤즈아미딘 화합물 투여군에서는 대조군에 비해 유의성 있게 감소하였고 (p<0.01) 투여 용량 의존적으로 감소하였다.

따라서, 화학식 1의 벤즈아미딘 화합물은 천식에 의한 염증반응을 현저히 억제시킴을 알 수 있다.

8. 조직처리 및 분석

천식을 유발한 후 적출한 폐를 10% 중성포르말린에 고정한 다음, 파라핀 포매를 실시하고 3 내지 4세에 조직절편을 제작하고 헤마토실린-에오신(Hematoxylin-eosin) 또는 마손스 트리크롬(Masson's trichrome) 염색을 실시하고 광학현미경을 이용하여 관찰하였다.

결과는 도 1에 나타내었다.

도 1에 나타난 바와 같이, 천식 유발에 따른 일차세기관지와 폐포 주위의 조직 및 기관지 상피 주위의 조직에서 염증세포는, 대조군에서는 정상군에 비해 증가하였으며, 화학식 1의 벤즈아미딘 화합물 투여군에서는 대조군에 비해 감소하였고투여 용량 의존적으로 감소하였다.

상기의 방법으로 제작된 폐 조직표본을 이용하여, 폐포 면적(폐조직에서 폐포의 내강이 차지하는 비율), 기관지 및 세기관 지내에 존재하는 점액생산세포의 수 및 벽의 두께를 자동영상분석장치(Analysis Image processing; SIS Germany)를 이용하여 측정하였다. 폐포 면적은 퍼센트 단위로, 기관지 및 세기관지내의 점액생산세포의 수는 1000 세포 중 점액생산세포의 수로, 기관지 및 세기관지 벽의 두께는 மா 단위로 측정하였다.

결과는 표 5에 나타내었다.

[3£.5]

조직 형상학적 변화	정상군	대조군	화학식 1의 벤스아미딘 화합물	
			100mg/kg	200mg/kg
폐포 면죄	76.18±4.68	26.80±2.79*	55.53±4.26*,#	61.62±6.93**,#
기관지역 두세	25.44±3.79	124.34±47.80»	60.92±8.53*,#	40,69±5,37*,#
세관지벽 두세	16.91±4.30	51.67±11.11*	27.73±4.68*,##	24.79±3.03*,#
기관지의 접력생산 세포의 수	139.00±23.46	617.00±87.01*	317.60±75.46*,#	256.80±71.58*,#
세기관지의 점액 생산세포의 수	17.60±4.88	94.40±26.89*	53.80±11.73*,##	42.80±10.69*,#

* 정상문과 비교하여 유의성 있음(*:p<0.01, **:p<0.05), 대조문과 비교하여 유의성 있음(#:p<0.01, ##:p<0.05)

표 5에 나타난 바와 같이, 천식 유발에 따른 폐 조직내 폐포 면적은, 대조군에서는 정상군에 비해 유의성 있게 감소하였으며(p<0.01), 화학식 1의 벤즈아미딘 화합물 투여군에서는 대조군에 비해 유의성 있게 증가하였고(p<0.01) 투여 용량 의존적으로 증가하였다.

또한, 천식 유발에 따른 폐 조직내 기관지벽 및 세기관지벽 두께, 기관지 및 세기관지 상피의 점액생산세포의 수는, 대조군에서는 정상군에 비해 유의성 있게 증가되었으며(p<0.01), 화학식 1의 벤즈아미딘 화합물 투여군에서는 대조군에 비해 유의성 있게 감소하였고(p<0.01 또는 p<0.05) 투여 용량 의존적으로 감소하였다.

따라서, 화학식 1의 벤즈아미딘 화합물은 천식에 의한 염증반응을 현저히 억제시킴을 알 수 있다.

9. 통계처리

모든 수치는 평균±표준편차로 표시하였으며, 정상군 또는 대조군과 비교하여 SPSS(Release 6.1.3., SPSS Inc., USA)를 이용하여 Mann-Whitney U-Wilcoxon Rank Sum 법으로 유의성을 검증하였다.

또한, 마찬가지로, N-히드록시-4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}벤즈아미딘의 메탄 술폰산염 및 염산염, 4-{5-[4-(5-이소프로필-2-메틸-1,3-티아졸-4-일)페녹시]펜톡시}벤즈아미딘 및 이의 메탄설폰 산염 및 염산염도 상기한 바와 유사한 치유 효과를 나타내었다.

발명의 효과

본 발명의 조성물은 천식시 유발되는 폐기관지세정액 내 산호성 백혈구의 증가, 혈중 총백혈구 수 및 산호성 백혈구의 증가, 기관지 상피의 점액생산세포 증가에 의한 비후 또는 증생, 폐포벽의 비후에 의한 폐포 면적의 감소 및 염증세포의 침윤과 같은 전형적인 만성염증을 감소시킴으로써 알러지성 염증 질환의 예방 및 치료에 유용하게 사용할 수 있다.

도면의 간단한 설명

도 1은 천식을 유발한 후 적출한 폐의 조직절편을 마손스 트리크롬(Masson's trichrome) 염색을 실시하여 광학현미경으로 관찰한 도이다.

医瞳

도면1

1. 일차세기관치와 폐포 주위의 조직

2. 기관지 상피 주위의 조직

- a: \$\$\$
- b: 网列 用图瓷
- e : 화학석 1의 화합물 무역군 (100mg/kg)
- a: 科特科 1의 森敦岩 무여군 (200mg/kg)