

Algorithmic enablers for compact Neural Network topology Hardware design: review and trends

William Guicquero, Arnaud Verdant Univ. Grenoble Alpes, CEA-Leti

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21,2020

Introduction

Al device enablers

Al-related applications are growing, **dedicated devices** also...

→ what are we actually talking about ?

Al @ nano-workstation

Model size: ~100Mb

Power consumption: ~10W

Al @ sensor node

Model size: ~10kb

Power consumption: ~10µW

Model size: ~1Mb

Power consumption: ~10mW

JSSC19

Introduction

Al algorithm enablers

Al-related applications are growing, dedicated algorithms also...

→ what are we actually talking about ?

Introduction

Main Motivation

Report the main State-Of-The-Art algorithmic enablers for **compact** Neural Network topology design and **categorize** it

Dimensionality Reduction

- → acts on: layers width
- Reduce the number of MACs
- Reduce numbers of computational nodes
- Limit model size memory

Quantization with Normalization

- → acts on: data dynamic range
- Simplify HW core components
- Reduce local memory needs
- Limit model size memory

Connectivity Pruning

- → acts on: coef. matrix sparsity
- Limit needless computations
- Robustify models against overfitting

Dynamical Selective Execution

- → acts on: topology activation
- Limit the activation of HW components
- Cap average power consumption

Dimensionality Reduction

| 6

Connectivity Pruning

Quantization & Normalization

Dynamical Selective Execution

Other topologies depending on event occurrence duty cycles and target applications

MNIST database classification problem:

Layer type	input	output	enabler
Flatenned sample	28×28	784	-
Dimensionality Reduction	784	rd	CS
Connected layer	rd	rd	CP, QN
ReLu	rd	rd	QN
Connected Layer	rd	32	CP, QN
SoftSign	32	32	-
Connected Layer	32	10	-
Softmax	10	10	-

Numerical experiments (DR)

Layer type	input	output	enabler
Flatenned sample	28×28	784	-
Dimensionality Reduction	784	rd	CS
Connected layer	rd	rd	CP, QN
ReLu	rd	rd	QN
Connected Layer	rd	32	CP, QN
SoftSign	32	32	-
Connected Layer	32	10	-
Softmax	10	10	-

Numerical experiments (CP)

Layer type	input	output	enabler
Flatenned sample	28×28	784	-
Dimensionality Reduction	784	784	CS
Connected layer	784	784	CP, QN
ReLu	784	784	QN
Connected Layer	784	32	CP, QN
SoftSign	32	32	-
Connected Layer	32	10	-
Softmax	10	10	-

Numerical experiments (QN)

Layer type	input	output	enabler
Flatenned sample	28×28	784	-
Dimensionality Reduction	784	784	CS
Connected layer	784	784	CP, QN
ReLu	784	784	QN
Connected Layer	784	32	CP, QN
SoftSign	32	32	-
Connected Layer	32	10	-
Softmax	10	10	-

Numerical experiments (CS+CP)

Layer type	input	output	enabler
Flatenned sample	28×28	784	-
Dimensionality Reduction	784	196	CS
Connected layer	196	196	CP, QN
ReLu	196	196	QN
Connected Layer	196	32	CP, QN
SoftSign	32	32	-
Connected Layer	32	10	-
Softmax	10	10	-

Numerical experiments (CS+QN)

Layer type	input	output	enabler
Flatenned sample	28×28	784	-
Dimensionality Reduction	784	196	CS
Connected layer	196	196	CP, QN
ReLu	196	196	QN
Connected Layer	196	32	CP, QN
SoftSign	32	32	-
Connected Layer	32	10	-
Softmax	10	10	-

Layer type	input	output	enabler
Flatenned sample	28×28	784	-
Dimensionality Reduction	784	196	CS
Connected layer	196	196	CP, QN
ReLu	196	196	QN
Connected Layer	196	32	CP, QN
SoftSign	32	32	-
Connected Layer	32	10	-
Softmax	10	10	-

Conclusion & perspectives

Generic categorization of algorithmic enablers for Neural Network model compression

- → Algorithmic enablers to lower HW constraints
- → Data-agnostic DR and CP dedicated HW
- → Quantized Network training algorithms pave the way to mixed-quantization
- → Complex Finite State Machine for Dynamical Selective Execution

Basic numerical experiments

→ Multiple enablers can be advantageously combined

Neural Architecture Search (NAS) under HW constraints

HW design levers

- → In-line processing vs. single-core iterative processing
- → Digital design: data-centric vs. memory-centric vs. hybrid approaches
- → Technological opportunities: Near or in-memory computing

Thanks for your attention!

Leti, technology research institute

Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

