Lending Club Loan Analysis

Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df = pd.read_csv('lending loan.csv')
```

In [3]:

df.head()

Out[3]:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	 hardship_payoff_balanc
0	68407277	NaN	3600.0	3600.0	3600.0	36 months	13.99	123.03	С	C4	
1	68355089	NaN	24700.0	24700.0	24700.0	36 months	11.99	820.28	С	C1	
2	68341763	NaN	20000.0	20000.0	20000.0	60 months	10.78	432.66	В	B4	
3	66310712	NaN	35000.0	35000.0	35000.0	60 months	14.85	829.90	С	C5	
4	68476807	NaN	10400.0	10400.0	10400.0	60 months	22.45	289.91	F	F1	

5 rows × 151 columns

creating the Metadata.csv file containing description of all the columns

In [4]:

```
var = list(df.columns)
var.sort()
desc = ['The number of accounts on which the borrower is now delinquent.',
         'Number of trades opened in past 24 months.'
        'The state provided by the borrower in the loan application',
        'Balance to credit limit on all trades',
        'The self-reported annual income provided by the borrower during registration',
        'The combined self-reported annual income provided by the co-borrowers during registration',
        'Indicates whether the loan is an individual application or a joint application with two co-borrowers',
        'Average current balance of all accounts', 'Total open to buy on revolving bankcards',
        'Ratio of total current balance to high credit/credit limit for all bankcard accounts',
        'Number of charge-offs within 12 months',
        'The collection fee incurred in loan recovery',
        'Number of collections in 12 months excluding medical collections',
        'Y if the borrower is working with debt-settlement company',
        'Most recent date when debt settlement flag is set',
        'Argeed-upon time, till which borrower does not have to pay the lender principal or interest on the loan',
        'The number of 30+ days past-due incidences of delinquency in the borrower\'s credit file for the past 2 years',
        'The past-due amount owed for the accounts on which the borrower is now delinquent',
        'Loan description provided by the borrower',
        'Cash or directpay method of disbursement',
        'A ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage an
        'A ratio calculated using the co-borrowers\' total monthly payments on the total debt obligations, excluding mortgages an
        'The date the borrower\'s earliest reported credit line was opened',
        'Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or mo
        'The job title supplied by the Borrower when applying for the loan (compulsory)',
        'The upper boundary range the borrower's FICO at loan origination belongs to',
        'The lower boundary range the borrower's FICO at loan origination belongs to',
        'The total amount committed to that loan at that point in time'
        'The total amount committed by investors to that loan at that point in time',
        'LC assigned loan grade',
        'The interest payment that the borrower has committed to make each month while they are on a hardship plan',
        'Account days past due as of the hardship plan start date',
        'The end date of the hardship plan period',
        'Flags whether or not the borrower is on a hardship plan'
        'The last payment amount as of the hardship plan start date',
        'The number of months the borrower will make smaller payments than normally obligated due to a hardship plan',
        'Loan Status as of the hardship plan start date',
        'The payoff balance amount as of the hardship plan start date',
        'Describes the reason the hardship plan was offered',
        'The start date of the hardship plan period',
        'Describes if the hardship plan is active, pending, canceled, completed, or broken',
        'Describes the hardship plan offering',
        'The home ownership status provided by the borrower during registration. Our values are: RENT, OWN, MORTGAGE, OTHER',
        'A unique LC assigned ID for the loan listing', 'Ratio of total current balance to high credit/credit limit on all install acct',
        'The initial listing status of the loan. Possible values are - W, F',
        'Number of personal finance inquiries',
        'Number of credit inquiries in past 12 months',
        'The number of inquiries in past 6 months (excluding auto and mortgage inquiries)',
        'The monthly payment owed by the borrower if the loan originates',
        'Interest Rate on the loan',
        'Loan issue date',
        'Date when last credit inquiry was made',
        'The upper boundary range the borrower's last FICO pulled belongs to',
        'The lower boundary range the borrower's last FICO pulled belongs to',
        'Last total payment amount received',
        'Last month payment was received',
        'The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the l
        'Current status of the loan',
        'Maximum current balance owed on all revolving accounts',
        'A unique LC assigned Id for the borrower member',
        'Months since oldest bank installment account opened',
        'Months since oldest revolving account opened',
        'Months since most recent revolving account opened',
        'Months since most recent account opened',
        'Number of mortgage accounts',
        'The number of months since the borrower's last delinquency',
        'Months since most recent 90-day or worse rating',
        'The number of months since the last public record'
        'Months since most recent installment accounts opened',
        'Months since most recent bankcard account opened',
        'Months since most recent bankcard delinquency',
        'Months since most recent inquiry',
        'Months since most recent revolving delinquency',
        'Next scheduled payment date',
        'Number of accounts ever 120 or more days past due',
        'Number of currently active bankcard accounts',
        'Number of currently active revolving trades',
        'Number of satisfactory bankcard accounts',
        'Number of bankcard accounts',
        'Number of installment accounts'
        'Number of open revolving accounts',
```

'Number of revolving accounts',

```
'Number of revolving trades with balance >0',
        'Number of satisfactory accounts',
        'Number of accounts currently 120 days past due (updated in past 2 months)',
        'Number of accounts currently 30 days past due (updated in past 2 months)',
        'Number of accounts 90 or more days past due in last 24 months',
        'Number of accounts opened in past 12 months',
        'The number of open credit lines in the borrower's credit file',
        'Number of open trades in last 6 months',
        'Number of currently active installment trades',
        'Number of installment accounts opened in past 12 months',
        'Number of installment accounts opened in past 24 months',
        'Number of revolving trades opened in past 12 months',
        'Number of revolving trades opened in past 24 months',
        'The original projected additional interest amount that will accrue for the given hardship payment plan as of the Hardshi
        'Remaining outstanding principal for total amount funded',
        'Remaining outstanding principal for portion of total amount funded by investors',
        'The day the first hardship plan payment is due',
        'Percent of trades never delinquent',
        'Percentage of all bankcard accounts > 75% of limit.',
        'publicly available policy_code=1',
        'Number of derogatory public records',
        'Number of public record bankruptcies'
        'A category provided by the borrower for the loan request.'
        'Indicates if a payment plan has been put in place for the loan',
        'post charge off gross recovery',
        'Total credit revolving balance',
        'Sum of revolving credit balance of the co-borrowers, net of duplicate balances',
        'Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credi
        'Number of charge-offs within last 12 months at time of application for the secondary applicant',
        'Number of collections within last 12 months excluding medical collections at time of application for the secondary appli
        'Earliest credit line at time of application for the secondary applicant',
        'FICO range (high) for the secondary applicant',
        'FICO range (low) for the secondary applicant',
        'Credit inquiries in the last 6 months at time of application for the secondary applicant',
        'Number of mortgage accounts at time of application for the secondary applicant',
        'Months since most recent 90-day or worse rating at time of application for the secondary applicant',
        'Number of revolving accounts at time of application for the secondary applicant',
        'Number of open trades at time of application for the secondary applicant',
        'Number of currently active installment trades at time of application for the secondary applicant',
        'Ratio of total current balance to high credit/credit limit for all revolving accounts',
        'The loan amount that the borrower has agreed to settle for',
        'The date that the borrower agrees to the settlement plan',
        'The settlement amount as a percentage of the payoff balance amount on the loan',
        'The status of the borrower's settlement plan. Possible values are: COMPLETE, ACTIVE, BROKEN',
        'The number of months that the borrower will be on the settlement plan',
        'LC assigned loan subgrade',
        'Number of tax liens',
        'The number of payments on the loan. Values are in months and can be either 36 or 60',
        'The loan title provided by the borrower',
        'Total collection amounts ever owed',
        'Total current balance of all accounts',
        'Total high credit/credit limit',
        'The total number of credit lines currently in the borrower's credit file',
        'Total credit balance excluding mortgage',
        'Total current balance of all installment accounts',
        'Total bankcard high credit/credit limit',
        'Number of finance trades',
        'Total installment high credit/credit limit',
        'Payments received to date for total amount funded',
        'Payments received to date for portion of total amount funded by investors',
        'Interest received to date', 
'Late fees received to date',
        'Principal received to date',
        'Total revolving high credit/credit limit',
        'URL for the LC page with listing data',
        'Indicates if income was verified by LC, not verified, or if the income source was verified',
        'Indicates if the co-borrowers' joint income was verified by LC, not verified, or if the income source was verified',
        'The first 3 numbers of the zip code provided by the borrower in the loan application',
data = {'Variables' : var,
        'Description' : desc}
md = pd.DataFrame(data)
md.to_csv('MetaData.csv')
md
```

Out[4]:

	Variables	Description
0	acc_now_delinq	The number of accounts on which the borrower i
1	acc_open_past_24mths	Number of trades opened in past 24 months.
2	addr_state	The state provided by the borrower in the loan
3	all_util	Balance to credit limit on all trades
4	annual_inc	The self-reported annual income provided by th
146	total_rev_hi_lim	Total revolving high credit/credit limit
147	url	URL for the LC page with listing data
148	verification_status	Indicates if income was verified by LC, not ve
149	verification_status_joint	Indicates if the co-borrowers' joint income wa
150	zip_code	The first 3 numbers of the zip code provided b

151 rows × 2 columns

Describing data

In [5]:

```
#observing properties of df
df.shape
df.info()
df.describe()
df.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2260701 entries, 0 to 2260700
Columns: 151 entries, id to settlement_term

dtypes: float64(113), object(38)

memory usage: 2.5+ GB

Out[5]:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	 hardship_payoff_balanc
0	68407277	NaN	3600.0	3600.0	3600.0	36 months	13.99	123.03	С	C4	
1	68355089	NaN	24700.0	24700.0	24700.0	36 months	11.99	820.28	С	C1	
2	68341763	NaN	20000.0	20000.0	20000.0	60 months	10.78	432.66	В	B4	
3	66310712	NaN	35000.0	35000.0	35000.0	60 months	14.85	829.90	С	C5	
4	68476807	NaN	10400.0	10400.0	10400.0	60 months	22.45	289.91	F	F1	
5 r	ows × 151	columns									
4											•

Considering loan_status

In [6]:

df.loan_status.value_counts()

Out[6]:

Fully Paid	1076751
Current	878317
Charged Off	268559
Late (31-120 days)	21467
In Grace Period	8436
Late (16-30 days)	4349
Does not meet the credit policy. Status: Fully Paid	1988
Does not meet the credit policy. Status:Charged Off	761
Default	40
Name: loan status dtyne: int64	

```
In [7]:
```

```
#considering loan status' columns that show whether it is paid or not
df=df.loc[df['loan_status'].isin(['Fully Paid', 'Charged Off'])]
```

In [8]:

```
#seeing the relative frequency using graph plotting
sns.set_palette("bright")
sns.countplot(x=df.loan_status,data=df)
```

Out[8]:

<AxesSubplot:xlabel='loan_status', ylabel='count'>

Handling Null Values

```
In [9]:
```

```
#dropping columns

# 0 -> removing columns with high count of NULL values
drop0=df.columns[df.isnull().mean()>0.9]
df=df.drop(drop0,axis=1)
df.shape
```

Out[9]:

(1345310, 112)

In [10]:

```
# 1 -> remove columns with only one unique value except nan among all rows
unique_cols=df.apply(pd.Series.nunique)
drop1=unique_cols[unique_cols == 1].index.tolist()
print(drop1)
df=df.drop(drop1,axis=1)
```

['pymnt_plan', 'out_prncp', 'out_prncp_inv', 'policy_code', 'hardship_flag']

In [11]:

```
# 2 -> remove columns in which all values are distinct
drop2=unique_cols[unique_cols==len(df)].index.tolist()
print(drop2)
df=df.drop(drop2,axis=1)
```

['id', 'url']

In [12]:

```
# 3 -> removing the columns filled with more than 50% nan values
nanfil = []
for i in df.columns:
    if df[i].isnull().sum()/len(df) > 0.5:
        nanfil.append(i)

df = df.drop(nanfil, axis = 1)
df.shape
```

Out[12]:

(1345310, 86)

In [13]:

Handling Messed up data

```
#dealing with emp_length by converting it from string to int
df['emp_length'].describe()
Out[13]:
            1266799
count
unique
                 11
          10+ years
top
             442199
frea
Name: emp_length, dtype: object
In [14]:
emp_length_to_int={'< 1 year':0.5,</pre>
                      '1 year':1,
                     '2 years':2,
                     '3 years':3,
                     '4 years':4,
                     '5 years':5,
                     '6 years':6,
                     '7 years':7,
                     '8 years':8,
                     '9 years':9,
                     '10+ years':10}
df['emp_length'] = df['emp_length'].map(emp_length_to_int)
mode_emp=df['emp_length'].mode()[0]
mode_emp
Out[14]:
10.0
In [15]:
df['emp_length'].fillna(mode_emp,inplace= True)
In [16]:
n=df.select_dtypes(include='0').columns
Out[16]:
'disbursement_method', 'debt_settlement_flag'],
      dtype='object')
Grade Count Plot
A higher LC assigned loan grade implies the more likely a borrower would repay the loan. The acceptance rate is more distributed to candidates with a grade of
A, B and C.
In [17]:
fig = plt.figure(figsize=(20, 4))
sns.countplot(y="grade", data=df)
Out[17]:
<AxesSubplot:xlabel='count', ylabel='grade'>
                50000
                             100000
                                          150000
                                                        200000
                                                                     250000
                                                                                   300000
                                                                                                350000
                                                                                                              400000
```

Loan Status vs Other Attributes

The below plots have 4 subplots where each certain significance

- Plot 1: Terms vs Loan Status Relation between how terms affected the loan status.
- Plot 2: Home Onwership vs Loan Status No significant differnece between this comparision
- · Plot 3: Verification Status vs Loan Status
- Plot 4: Debt vs Loan Status Loan charged off significantly for debt consolidation

In [18]:

```
plt.figure(figsize=(15, 20))
plt.subplot(4, 2, 1)
sns.countplot(x='term', data=df, hue='loan_status')

plt.subplot(4, 2, 2)
sns.countplot(x='home_ownership', data=df, hue='loan_status')

plt.subplot(4, 2, 3)
sns.countplot(x='verification_status', data=df, hue='loan_status')

plt.subplot(4, 2, 4)
g = sns.countplot(x='purpose', data=df, hue='loan_status')
g.set_xticklabels(g.get_xticklabels(), rotation=90);
```


Grade vs Loan Status

Key Observations:

- As grade goes higher the count of charged off increases. There is a higher risk in allocating loan to candidates with a higher grade.
- Grade C onwards has higher loan fully paid to charged off ratio.
- Looking at the sub grade, it follows a normal distribution of loan fully paid to charged off ratio.

In [19]:

```
plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
grade = sorted(df.grade.unique().tolist())
sns.countplot(x='grade', data=df, hue='loan_status', order=grade)

plt.subplot(2, 2, 2)
sub_grade = sorted(df.sub_grade.unique().tolist())
g = sns.countplot(x='sub_grade', data=df, hue='loan_status', order=sub_grade)
g.set_xticklabels(g.get_xticklabels(), rotation=90);
```


In [20]:

```
g = sns.countplot(x='emp_length', data=df, hue='loan_status')
g.set_xticklabels(g.get_xticklabels(), rotation=90);
```


Employee Title vs Loans Accepted

Maximum number of loans are accepted for professions with a more stable jobs (according to the society) like Teacher, Nurse, Owner and etc.

In [22]:

```
plt.figure(figsize=(8, 10))
plt.barh(df.emp_title.value_counts()[:30].index, df.emp_title.value_counts()[:30])
plt.title("The most 30 jobs title afforded a loan")
plt.tight_layout()
```


Application Type vs Loan Status

This plot focuses more on loan status in accordance with the application type

In [23]:

```
plt.figure(figsize=(8, 6))
sns.countplot(x="application_type", data=df, hue="loan_status")
```

Out[23]:

<AxesSubplot:xlabel='application_type', ylabel='count'>

In [24]:

```
sns.set(rc={'figure.figsize':(15,8)})
plt.xticks(rotation=90)
sns.countplot(df['purpose'])
```

Out[24]:

<AxesSubplot:xlabel='purpose', ylabel='count'>

Creating 0-1 category for continous variables

```
In [25]:
def pub_rec(number):
    if number == 0.0:
        return 0
    else:
        return 1
def mort_acc(number):
    if number == 0.0:
        return 0
    elif number >= 1.0:
        return 1
    else:
        return number
def pub_rec_bankruptcies(number):
    if number == 0.0:
       return 0
    elif number >= 1.0:
       return 1
        return number
```

```
In [26]:
```

```
df['pub_rec'] = df.pub_rec.apply(pub_rec)
df['mort_acc'] = df.mort_acc.apply(mort_acc)
df['pub_rec_bankruptcies'] = df.pub_rec_bankruptcies.apply(pub_rec_bankruptcies)
```

In [27]:

```
md[md['Variables']=='pub_rec_bankruptcies']['Description']
```

Out[27]:

```
104 Number of public record bankruptcies Name: Description, dtype: object
```

Loan Status vs Public Related Attributes

The below plots have 4 subplots where each certain significance

- Plot 1: pub_rec vs Loan Status Number of derogatory public records affecting the loan status.
- Plot 2: initial_list_status vs Loan Status status vs loan_status
- Plot 3: Application type vs Loan Status
- Plot 4: mortgage account vs Loan Status
- Plot 5: public record bankruptcies affecting loan status

In [28]:

```
plt.figure(figsize=(12, 30))
plt.subplot(6, 2, 1)
sns.countplot(x='pub_rec', data=df, hue='loan_status')
plt.subplot(6, 2, 2)
sns.countplot(x='initial_list_status', data=df, hue='loan_status')
plt.subplot(6, 2, 3)
sns.countplot(x='application_type', data=df, hue='loan_status')
plt.subplot(6, 2, 4)
sns.countplot(x='mort_acc', data=df, hue='loan_status')
plt.subplot(6, 2, 5)
sns.countplot(x='pub_rec_bankruptcies', data=df, hue='loan_status')
```

Out[28]:

<AxesSubplot:xlabel='pub_rec_bankruptcies', ylabel='count'>

In [29]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1345310 entries, 0 to 2260697

	4Index: 1345310 entries, 0 t columns (total 86 columns):	o 2260697	
#	Column	Non-Null Count	Dtype
0	loan_amnt	1345310 non-null	float64
1	funded_amnt	1345310 non-null	float64
2	<pre>funded_amnt_inv</pre>	1345310 non-null	float64
3	term	1345310 non-null	object
4	int_rate	1345310 non-null	float64
5	installment	1345310 non-null	float64
6 7	grade sub_grade	1345310 non-null 1345310 non-null	object object
8	emp title	1259525 non-null	object
9	emp_length	1345310 non-null	float64
10	home_ownership	1345310 non-null	object
11	annual inc	1345310 non-null	float64
12	verification_status	1345310 non-null	object
13	issue_d	1345310 non-null	object
14	loan_status	1345310 non-null	object
15	purpose	1345310 non-null	object
16	title	1328651 non-null	object
17 18	zip_code addr_state	1345309 non-null 1345310 non-null	object object
19	dti	1344936 non-null	float64
20	delinq_2yrs	1345310 non-null	float64
21	earliest_cr_line	1345310 non-null	object
22	fico_range_low	1345310 non-null	float64
23	fico_range_high	1345310 non-null	float64
24	<pre>inq_last_6mths</pre>	1345309 non-null	float64
25	open_acc	1345310 non-null	float64
26	pub_rec	1345310 non-null	int64
27	revol_bal	1345310 non-null	float64
28 29	revol_util	1344453 non-null	float64 float64
30	<pre>total_acc initial_list_status</pre>	1345310 non-null 1345310 non-null	object
31	total_pymnt	1345310 non-null	float64
32	total_pymnt_inv	1345310 non-null	float64
33	total_rec_prncp	1345310 non-null	float64
34	total_rec_int	1345310 non-null	float64
35	total_rec_late_fee	1345310 non-null	float64
36	recoveries	1345310 non-null	float64
37	collection_recovery_fee	1345310 non-null	float64
38	last_pymnt_d	1342997 non-null	object
39	last_pymnt_amnt	1345310 non-null	float64
40 41	<pre>last_credit_pull_d last_fico_range_high</pre>	1345255 non-null 1345310 non-null	object float64
42	last_fico_range_low	1345310 non-null	float64
43	collections_12_mths_ex_med	1345254 non-null	float64
44	application type	1345310 non-null	object
45	acc_now_delinq	1345310 non-null	float64
46	tot_coll_amt	1277783 non-null	float64
47	tot_cur_bal	1277783 non-null	float64
48	total_rev_hi_lim	1277783 non-null	float64
49 50	<pre>acc_open_past_24mths avg_cur_bal</pre>	1298029 non-null 1277761 non-null	float64
50 51	bc open to buy	1277761 non-null	float64 float64
52	bc_open_co_buy bc_util	1283398 non-null	float64
53	chargeoff_within_12_mths	1345254 non-null	float64
54	delinq_amnt	1345310 non-null	float64
55	mo_sin_old_il_acct	1239735 non-null	float64
56	<pre>mo_sin_old_rev_tl_op</pre>	1277782 non-null	float64
57	mo_sin_rcnt_rev_tl_op	1277782 non-null	float64
58	mo_sin_rcnt_tl	1277783 non-null	float64
59	mort_acc	1298029 non-null	float64
60 61	<pre>mths_since_recent_bc mths since recent inq</pre>	1285089 non-null	float64 float64
61 62	num accts ever 120 pd	1171239 non-null 1277783 non-null	float64
63	num_actv_bc_tl	1277783 non-null	float64
64	num_actv_rev_tl	1277783 non-null	float64
65	num_bc_sats	1289469 non-null	float64
66	num_bc_tl	1277783 non-null	float64
67	num_il_tl	1277783 non-null	float64
68	num_op_rev_tl	1277783 non-null	float64
69	num_rev_accts	1277782 non-null	float64
70	num_rev_tl_bal_gt_0	1277783 non-null	float64
71 72	num_sats	1289469 non-null	float64
72 73	num_tl_120dpd_2m num_tl_30dpd	1227909 non-null 1277783 non-null	float64 float64
73 74	num_t1_90g_dpd_24m	1277783 non-null	float64
75	num_tl_op_past_12m	1277783 non-null	float64
76	pct_tl_nvr_dlq	1277629 non-null	float64
77	percent_bc_gt_75	1283755 non-null	float64
78	pub_rec_bankruptcies	1344613 non-null	float64
79	tax_liens	1345271 non-null	float64
80	tot_hi_cred_lim	1277783 non-null	float64

```
81 total_bal_ex_mort 1298029 non-null float64
82 total_bc_limit 1298029 non-null float64
83 total_il_high_credit_limit 1277783 non-null float64
84 disbursement_method 1345310 non-null object
85 debt_settlement_flag 1345310 non-null object
dtypes: float64(66), int64(1), object(19)
memory usage: 893.0+ MB
```

Cleaning remaining small amount of messed data

```
In [30]:
df.isnull().sum()/len(df)*100
Out[30]:
loan_amnt
                               0.000000
funded_amnt
                                0.000000
                               0.000000
funded_amnt_inv
                               0.000000
term
int_rate
                               0.000000
total_bal_ex_mort
                                3.514506
                               3.514506
total_bc_limit
{\tt total\_il\_high\_credit\_limit}
                               5.019438
disbursement_method
                               0.000000
debt_settlement_flag
                               0.000000
Length: 86, dtype: float64
In [31]:
df=df.dropna().reset_index(drop = True)
In [32]:
df.shape
Out[32]:
(986399, 86)
In [33]:
df.isnull().any().sum()
Out[33]:
0
In [34]:
categorical = [feature for feature in df.columns if df[feature].dtype == "0"]
In [35]:
categorical
Out[35]:
['term', 'grade',
 'sub_grade',
 'emp_title',
 'home_ownership',
 'verification_status',
 'issue_d',
 'loan_status',
 'purpose',
 'title',
 'zip_code'
 'addr_state',
 'earliest_cr_line',
 'initial_list_status',
 'last_pymnt_d',
 'last_credit_pull_d',
 'application_type',
 'disbursement_method'
 'debt_settlement_flag']
```

```
In [36]:
```

```
for value in categorical:
    print(value)
    print(df[value].nunique())
term
2
grade
sub_grade
35
emp_title
291510
home_ownership
6
verification_status
3
issue_d
77
loan_status
purpose
14
title
31900
zip_code
938
addr_state
51
earliest_cr_line
717
initial_list_status
last_pymnt_d
79
last_credit_pull_d
81
application_type
disbursement_method
debt_settlement_flag
2
In [37]:
df.drop(['sub_grade', 'emp_title', 'title', 'zip_code'], axis = 1, inplace = True)
In [38]:
categorical = [feature for feature in df.columns if df[feature].dtype == "0"]
categorical
Out[38]:
['term',
'grade',
 'home_ownership',
 'verification_status',
 'issue_d',
 'loan_status',
 'purpose',
 'addr_state',
 'earliest_cr_line',
 'initial_list_status',
 'last_pymnt_d',
 'last_credit_pull_d',
 'application_type',
 'disbursement_method'
 'debt_settlement_flag']
```

```
In [39]:
```

```
for value in categorical:
   print(value)
    print(df[value].nunique())
term
2
grade
home_ownership
verification_status
issue_d
77
loan_status
purpose
14
addr_state
51
earliest_cr_line
717
initial_list_status
last_pymnt_d
last_credit_pull_d
81
application_type
disbursement_method
debt_settlement_flag
```

Feature Engineering for Dates

```
In [40]:
```

```
df[['issue_d', 'earliest_cr_line', 'last_pymnt_d', 'last_credit_pull_d']]
```

Out[40]:

	issue_d	earliest_cr_line	last_pymnt_d	last_credit_pull_d
0	Dec-2015	Aug-2003	Jan-2019	Mar-2019
1	Dec-2015	Dec-1999	Jun-2016	Mar-2019
2	Dec-2015	Jun-1998	Jul-2016	Mar-2018
3	Dec-2015	Jun-1990	Nov-2016	Mar-2019
4	Dec-2015	Feb-1999	Jan-2017	Mar-2019
986394	Oct-2016	Aug-1992	Oct-2018	Nov-2018
986395	Oct-2016	Mar-2002	Jul-2018	Jul-2018
986396	Oct-2016	Jun-2011	Mar-2017	Dec-2018
986397	Oct-2016	Aug-1997	Mar-2018	Mar-2019
986398	Oct-2016	Jul-1999	Oct-2017	Mar-2019

986399 rows × 4 columns

```
In [41]:
```

```
date_col = ['issue_d', 'earliest_cr_line', 'last_pymnt_d', 'last_credit_pull_d']
```

```
In [42]:
```

```
for value in date_col:
    df[value + '_month'] = df[value].apply(lambda x : x[0:3])
    df[value + '_year'] = df[value].apply(lambda x : x[-4: ])
```

```
In [43]:
df.head()
Out[43]:
   loan_amnt funded_amnt funded_amnt_inv
                                              term int_rate installment grade emp_length home_ownership annual_inc ... disbursement_
 0
       3600.0
                    3600.0
                                                     13.99
                                                                123.03
                                                                          С
                                                                                    10.0
                                                                                             MORTGAGE
                                                                                                            55000.0 ...
                                    3600.0
                                            months
                                               36
                                                                                                            65000.0 ...
      24700.0
                   24700.0
                                    24700.0
                                                      11.99
                                                                820.28
                                                                          С
                                                                                    10.0
                                                                                             MORTGAGE
                                            months
                                                60
      10400 0
                   10400 0
                                                     22 45
                                                               289 91
                                                                          F
                                                                                             MORTGAGE
                                                                                                           104433.0 ...
 2
                                    10400.0
                                                                                     3.0
                                            months
                                                36
      20000.0
                   20000.0
                                                               637.58
                                                                                             MORTGAGE
                                                                                                           180000.0 ...
                                    20000.0
                                                      9.17
                                                                          В
                                                                                    10.0
                                            months
                                               36
      20000.0
                   20000.0
                                                                                             MORTGAGE
                                   20000.0
                                                      8.49
                                                                631.26
                                                                          В
                                                                                    10.0
                                                                                                            85000.0 ...
5 rows × 90 columns
In [44]:
df.drop(date col, axis = 1, inplace = True)
In [45]:
month_order = df['issue_d_month'].unique()
In [46]:
month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
In [47]:
for column in date_col:
    df[column + '_month'] = df[column + '_month'].apply(lambda x : month_order.index(x))
In [48]:
df.head()
Out[48]:
   loan_amnt funded_amnt funded_amnt_inv
                                              term
                                                   int_rate installment grade
                                                                             emp_length
                                                                                        home_ownership annual_inc ...
                                                                                                                       disbursement_
 0
       3600.0
                    3600.0
                                    3600.0
                                                                123.03
                                                                          С
                                                                                             MORTGAGE
                                                     13.99
                                                                                    10.0
                                                                                                            55000.0 ...
                                            months
                                               36
      24700.0
                   24700.0
                                   24700.0
                                                     11.99
                                                               820.28
                                                                          С
                                                                                    10.0
                                                                                             MORTGAGE
                                                                                                            65000.0 ...
      10400.0
                   10400.0
                                                               289.91
                                                                                     3.0
                                                                                             MORTGAGE
                                                                                                           104433.0 ...
 2
                                    10400.0
                                                     22.45
                                            months
                                                36
 3
      20000.0
                   20000.0
                                    20000.0
                                                      9.17
                                                                637.58
                                                                          В
                                                                                    10.0
                                                                                             MORTGAGE
                                                                                                           180000.0 ...
                                            months
                                   20000.0 months
                                                                                             MORTGAGE
      20000.0
                   20000.0
                                                                631.26
                                                                          В
                                                                                    10.0
                                                                                                            85000.0 ...
                                                      8.49
5 rows × 86 columns
4
In [49]:
for column in df.columns:
         df[column] = df[column].astype(float)
     except:
         pass
```

```
In [50]:

c = [feature for feature in df.columns if df[feature].dtype == "0"]

c

Out[50]:
['term',
    'grade',
    'home_ownership',
    'verification_status',
    'loan_status',
    'purpose',
    'addr_state',
    'initial_list_status',
    'application_type',
    'disbursement_method',
    'debt_settlement_flag']
```

Encoding Categorical Columns

```
In [51]:
```

```
from sklearn.preprocessing import LabelEncoder
for value in df.columns:
   lbl = LabelEncoder()
   df[value] = lbl.fit_transform(df[[value]])
```

Reducing dimensionality of x variables

```
In [52]:
```

```
high_corr=df.corr()
high_corr[high_corr['loan_status']>0.5]
```

Out[52]:

	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	emp_length	home_ownership	ann
loan_status	-0.071101	-0.071101	-0.071433	-0.183379	-0.260754	-0.058526	-0.265373	0.017563	-0.075911	0
total_rec_prncp	0.465619	0.465619	0.469820	0.053957	-0.182888	0.489080	-0.180667	0.063038	-0.148102	0
last_fico_range_high	0.049923	0.049922	0.050070	-0.098111	-0.354386	0.038714	-0.351013	0.022911	-0.115737	0
last_fico_range_low	0.049923	0.049923	0.050070	-0.098114	-0.354392	0.038715	-0.351020	0.022912	-0.115739	0
4 rows x 86 columns										

4 rows × 86 columns

,

In [53]:

```
high_corr[high_corr['loan_status']<-0.5]
```

Out[53]:

	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	emp_length	home_ownership	an
recoveries	0.188562	0.188562	0.188838	0.213307	0.225416	0.171262	0.234290	0.004738	0.017772	(
collection_recovery_fee	0.173910	0.173910	0.174177	0.201464	0.215658	0.157322	0.227089	0.003270	0.021757	(
2 rows × 86 columns										
4										•

```
In [54]:
```

```
df.head()
```

Out[54]:

	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	emp_length	home_ownership	annual_inc	 disbursement_m
0	104	104	111	0	144	5573	2	10	1	16483	 _
1	948	948	983	0	107	60096	2	10	1	21901	
2	376	376	402	1	263	18642	5	3	1	37044	
3	760	760	795	0	60	47960	1	10	1	43765	
4	760	760	795	0	52	47481	1	10	1	30811	

5 rows × 86 columns

In [55]:

```
df.value_counts("loan_status").plot.pie(autopct = "%.1f")
df.value_counts("loan_status")
```

Out[55]:

loan_status 1 790917 0 195482 dtype: int64

In [56]:

```
# notdone = df[df["loan_status"] == 0]
# done = df[df["loan_status"] == 1]

# Resampling the original dataset with 1,95,482 datapoints for both classes
# notdone_resample = notdone.sample(n = 195482, random_state = 777)
# done_resample = done.sample(n = 195482, random_state = 777)
# df_eda=df.copy()
# # Creating new dataset consisting of equal class occurence
# df = pd.concat([notdone_resample, done_resample], axis = 0)
```

In [57]:

```
# df['grade'].value_counts()
```

In [58]:

```
y = df['loan_status']
X = df[['total_rec_prncp','last_fico_range_high','last_fico_range_low','recoveries','collection_recovery_fee']]
```

Balancing the target categories

```
In [59]:

from imblearn.over_sampling import SMOTE
rus = SMOTE(sampling_strategy='auto')
X_smote, y_smote = rus.fit_resample(X, y)
```

Scaling Independent Variables

```
In [60]:

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
scaler = StandardScaler()
# scaler = MinMaxScaler()
X = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_smote, y_smote, train_size=.2, random_state=777, shuffle=True)
```

Applying Algorithms to predict the target variable

```
In [61]:
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.ensemble import AdaBoostClassifier,GradientBoostingClassifier,RandomForestClassifier
from xgboost import XGBClassifier
gb=GradientBoostingClassifier()
reg=LogisticRegression()
knn=KNeighborsClassifier()
dt=DecisionTreeClassifier()
rf=RandomForestClassifier()
b=BernoulliNB()
xg=XGBClassifier()
ad=AdaBoostClassifier()
```

```
In [62]:
```

```
from sklearn.metrics import classification_report,confusion_matrix, roc_auc_score,accuracy_score
def my_model(model):
    model.fit(X_train,y_train)
    y_pred_train=model.predict(X_train)
    y_pred_test=model.predict(X_test)
    print('Train Data')
    print(classification_report(y_train,y_pred_train))
    print('-'*30)
    print('Test Data')
    print(classification_report(y_test,y_pred_test))
    print('-'*30)
    print('Roc_auc_score(y_test, y_pred_test))
    print('confusion matrix')
    print(confusion_matrix(y_test, y_pred_test))
    return model
```

In [63]:

```
for i in [reg,knn,dt,rf,b,ad,xg,gb]:
    print('when my model is:',i)
    my_model(i)
    print('*'*90)
```

```
when my model is: LogisticRegression()
Train Data
           precision recall f1-score
                                      support
         0
                0.97
                        0.78
                                0.87
                                       158003
                0.82
                       0.98
                               0.89
                                       158363
         1
   accuracy
                                0.88
                                       316366
                0.90
                        0.88
  macro avg
                                0.88
                                       316366
               0.90
                        0.88
                                0.88
                                       316366
weighted avg
_____
Test Data
           precision
                      recall f1-score
                                      support
                0.97
                      0.78
                                0.87
                                       632914
         a
                0.82
                       0.98
                                0.89
                                       632554
                                0.88
                                      1265468
   accuracy
                        0.88
                                      1265468
               0.90
                                0.88
  macro avg
                                      1265468
weighted avg
               0.90
                        0.88
                                0.88
Roc auc score
0.8800027127276848
Confusion matrix
[[494953 137961]
[ 13927 618627]]
when my model is: KNeighborsClassifier()
Train Data
                      recall f1-score
           precision
                                      support
         0
               0.99
                       0.99
                                0.99
                                       158003
               0.99
                       0.99
                                0.99
                                       158363
                                0.99
                                       316366
   accuracy
               0.99
                        0.99
  macro avg
                                0.99
                                       316366
               0.99
                        0.99
                                0.99
                                       316366
weighted avg
_____
Test Data
           precision
                     recall f1-score
         0
                0.99
                       0.99
                                0.99
                                       632914
               0.99
         1
                       0.99
                                0.99
                                       632554
   accuracy
                                0.99
                                      1265468
               0.99
                        0.99
  macro avg
                                0.99
                                      1265468
               0.99
                       0.99
                                0.99
                                      1265468
weighted avg
Roc_auc score
0.9889346555440371
           ______
Confusion matrix
[[623870 9044]
4960 627594]]
******
             when my model is: DecisionTreeClassifier()
Train Data
           precision recall f1-score
                                      support
         a
               1.00
                        1.00
                                1.00
                                       158003
               1.00
                       1.00
                                1.00
                                       158363
                                1.00
                                       316366
   accuracy
               1.00
                        1.00
                                       316366
                                1.00
  macro avg
weighted avg
               1.00
                        1.00
                                1.00
                                       316366
Test Data
           precision recall f1-score
                                      support
         0
                0.99
                        0.98
                                0.98
                                       632914
               0.98
                       0.99
                                0.98
                                       632554
         1
                                0.98
                                      1265468
   accuracy
  macro avg
               0.98
                        0.98
                                0.98
                                      1265468
weighted avg
               0.98
                      0.98
                                0.98 1265468
Roc_auc score
0.9845558381018498
```

localhost:8888/notebooks/Main ML Project/Lending Loan ML Project.ipynb

```
Confusion matrix
[[621544 11370]
113/0]
[ 8175 624379]]
*******
   when my model is: RandomForestClassifier()
Train Data
           precision recall f1-score
                                      support
         0
               1.00
                      1.00
                                1.00
                                       158003
               1.00
                       1.00
                               1.00
                                       158363
                                1.00
                                       316366
   accuracy
               1.00
                        1.00
  macro avg
                                1.00
                                       316366
               1.00
                        1.00
                                1.00
                                       316366
weighted avg
Test Data
           precision recall f1-score
                                      support
                0.98
                        0.97
                                0.97
                                       632914
                                       632554
                0.97
                        0.98
                                0.97
         1
                                 0.97
                                      1265468
   accuracy
                0.97
                        0.97
  macro avg
                                0.97
                                      1265468
weighted avg
               0.97
                       0.97
                                0.97
                                      1265468
Roc_auc score
0.9738227698008202
Confusion matrix
[[613616 19298]
[ 13830 618724]]
              **********************
when my model is: BernoulliNB()
Train Data
           precision
                     recall f1-score
                                      support
         0
               0.99
                       0.72
                                0.84
                                       158003
         1
               0.78
                        1.00
                                0.88
                                       158363
   accuracy
                                0.86
                                       316366
               0.89
                        0.86
  macro avg
                                0.86
                                       316366
weighted avg
               0.89
                        0.86
                                0.86
                                       316366
Test Data
           precision recall f1-score
                                      support
         0
                0.99
                       0.72
                                0.84
                                       632914
                0.78
                       1.00
                                0.88
                                       632554
   accuracy
                                0.86
                                      1265468
  macro avg
               0.89
                        0.86
                                0.86
                                      1265468
               0.89
                       0.86
                                0.86
                                      1265468
weighted avg
-----
Roc_auc score
0.8604783399153192
Confusion matrix
[[458807 174107]
[ 2502 630052]]
***********************************
when my model is: AdaBoostClassifier()
Train Data
           precision recall f1-score
                                      support
         0
                0.96
                        0.96
                                0.96
                                       158003
                                       158363
         1
               0.96
                        0.96
                                0.96
   accuracy
                                 0.96
                                       316366
                0.96
                        0.96
                                 0.96
                                       316366
  macro avg
               0.96
                       0.96
                                0.96
                                       316366
weighted avg
Test Data
           precision recall f1-score
                                      support
                       0.96
         a
               0.96
                                0.96
                                       632914
         1
               0.96
                        0.96
                                0.96
                                       632554
   accuracy
                                0.96
                                      1265468
               0.96
                        0.96
                                      1265468
  macro avg
                                0.96
weighted avg
               0.96
                        0.96
                                0.96
                                      1265468
```

```
Roc auc score
0.9589169559039146
______
Confusion matrix
[[605642 27272]
[ 24718 607836]]
  when my model is: XGBClassifier(base_score=None, booster=None, callbacks=None,
            colsample_bylevel=None, colsample_bynode=None,
            colsample_bytree=None, early_stopping_rounds=None,
            enable_categorical=False, eval_metric=None, feature_types=None,
            gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
            interaction_constraints=None, learning_rate=None, max_bin=None,
            max cat threshold=None, max cat to onehot=None,
            max_delta_step=None, max_depth=None, max_leaves=None,
            min_child_weight=None, missing=nan, monotone_constraints=None,
            n_estimators=100, n_jobs=None, num_parallel_tree=None,
            predictor=None, random_state=None, ...)
Train Data
            precision
                       recall f1-score
                                        support
         0
                0.98
                         0.99
                                  0.99
                                         158003
                0.99
                         0.98
                                  0.99
                                         158363
                                  0.99
                                         316366
   accuracy
  macro avg
                0.99
                         0.99
                                  0.99
                                         316366
                0.99
                         0.99
                                  0.99
                                         316366
weighted avg
Test Data
            precision
                       recall f1-score
                                        support
         0
                0.98
                         0.99
                                  0.98
                                         632914
         1
                0.99
                         0.98
                                 0.98
                                         632554
   accuracy
                                  0.98
                                        1265468
  macro avg
                0.98
                         0.98
                                  0.98
                                        1265468
                0.98
                                  0.98
                                        1265468
weighted avg
                         0.98
Roc_auc score
0.9840703022136663
_____
Confusion matrix
[[623751 9163]
*************************
when my model is: GradientBoostingClassifier()
Train Data
            precision
                       recall f1-score
                                        support
                         0.97
                0.96
         0
                                  0.96
                                         158003
                0.97
                         0.96
                                  0.96
                                         158363
                                  0.96
                                         316366
   accuracy
                0.96
                         0.96
                                  0.96
                                         316366
  macro avg
weighted avg
                0.96
                         0.96
                                  0.96
                                         316366
Test Data
            precision recall f1-score
                                        support
         0
                0.96
                         0.97
                                  0.96
                                         632914
                0.97
                         0.96
                                 0.96
                                         632554
         1
   accuracy
                                  0.96
                                        1265468
  macro avg
                0.96
                         0.96
                                  0.96
                                        1265468
weighted avg
                0.96
                        0.96
                                  0.96
                                        1265468
Roc_auc score
0.9639825634035533
-----
Confusion matrix [[611724 21190]
 [ 24388 608166]]
                 ***************************
```

```
In [64]:
```

```
# pgsvm={'C':[0.1,1,10,100,1000], 'gamma':[1,0.1,0.01], 'kernel':['rbf','linear']}
# pgrandomforest={
       'n_estimators':[100,200,300,400,500],
#
       'criterion':['gini','entropy'],
#
#
       'max_depth':np.arange(1,21),
       'min_samples_split':np.arange(5,41,5),
#
# }
# pgxgboost = {
       'n_estimators': [100, 200, 500],
#
       'learning_rate': [0.01,0.05,0.1],
#
       'booster': ['gbtree', 'gblinear'],
       'gamma': [0, 0.5, 1],
#
       'reg_alpha': [0, 0.5, 1],
'reg_lambda': [0.5, 1, 5],
#
#
       'base_score': [0.2, 0.5, 1]
# }
ad=AdaBoostClassifier(base_estimator=b)
pgadaboost = {'n_estimators': [100,200,300,400,500],
             'learning_rate': [0.01, 0.03, 0.1, 0.3, 1], 
'algorithm':['SAMME', 'SAMME.R'],
              }
```

In [65]:

```
from sklearn.model_selection import RandomizedSearchCV
# randomforest=RandomizedSearchCV(estimator = rf, param_distributions = pgrandomforest, scoring='accuracy', cv = 5, n_jobs = -1)
# # supportvector=RandomizedSearchCV(estimator = svc, param_distributions = pgsvm, scoring='accuracy', cv = 5, n_jobs = -1)
# xgboost=RandomizedSearchCV(estimator = xg, param_distributions = pgxgboost, scoring='accuracy', cv = 5, n_jobs = -1)
adaboost=RandomizedSearchCV(estimator = ad, param_distributions = pgadaboost, scoring='accuracy', cv = 5, n_jobs = -1)
```

In [66]:

```
for i in [adaboost]:
    print('when my model is:',i)
    my_model(i)
    print('*'*90)
```

```
when my model is: RandomizedSearchCV(cv=5,
                   estimator=AdaBoostClassifier(base_estimator=BernoulliNB()),
                   n jobs=-1,
                   param_distributions={'algorithm': ['SAMME', 'SAMME.R'],
                                        'learning_rate': [0.01, 0.03, 0.1, 0.3,
                                                          1],
                                        'n_estimators': [100, 200, 300, 400,
                                                         500]},
                   scoring='accuracy')
Train Data
              precision
                          recall f1-score
                                              support
                   0.99
                             0.72
                                               158003
           a
                                       0.84
           1
                   0.78
                            1.00
                                       0.88
                                               158363
    accuracy
                                       0.86
                                               316366
                   0.89
                            0.86
                                       0.86
                                               316366
   macro avg
weighted avg
                   0.89
                            0.86
                                       0.86
                                               316366
Test Data
                          recall f1-score
              precision
                                              support
           0
                   0.99
                             0.72
                                       0.84
                                               632914
                   0.78
                            1.00
                                       0.88
                                               632554
           1
                                              1265468
    accuracy
                                       0.86
   macro avg
                   0.89
                            0.86
                                       0.86
                                              1265468
                   0.89
                             0.86
                                       0.86
                                              1265468
weighted avg
-----
Roc_auc score
0.8604301501138611
Confusion matrix
[[458746 174168]
   2502 630052]]
```

```
In [69]:
```

```
a={
    'model':['Logistic Regression','KNeighbors Classifier','DecisionTree Classifier','RandomForest Classifier','BernoulliNB','Ada
    'object':['reg','knn','dt','rf','b','ad','xg','gb','adaboost'],
    'training accuracy score':[0.88,0.99,1.0,1.0,0.86,0.96,0.99,0.96,0.86],
    'testing accuracy score':[0.88,0.99,0.98,0.97,0.86,0.96,0.98,0.96,0.86]
}
```

In [70]:

```
scores=pd.DataFrame(a)
```

In [73]:

```
scores.to_excel('scores.xlsx')
```

In [74]:

scores

Out[74]:

	model	object	training accuracy score	testing accuracy score
0	Logistic Regression	reg	0.88	0.88
1	KNeighbors Classifier	knn	0.99	0.99
2	DecisionTree Classifier	dt	1.00	0.98
3	RandomForest Classifier	rf	1.00	0.97
4	BernoulliNB	b	0.86	0.86
5	AdaBoost Classifier	ad	0.96	0.96
6	XGBoost Classifier	xg	0.99	0.98
7	GradientBoosting Classifier	gb	0.96	0.96
8	Hyper-Parameter Tuned AdaBoost	adaboost	0.86	0.86

In []: