2D Course Correction System for Spin-Stabilized Projectiles Using a Spoiler Control Surface

P. WEY, B. MARTINEZ, R. CAYZAC1, E. CARETTE1, P. DENIS2, C. GRIGNON3

¹ NEXTER Munitions, Technical Direction, Bourges, FR • ² ONERA, Applied Aerodynamics Department, Meudon, FR ³ DGA Land Systems, French Ministry of Defense, Bourges, FR

spoiler

deployment

POC: pierre.wey@isl.eu

Abstract

Few course control mechanisms have been developed for spin-stabilized projectiles such as artillery shells. Two key challenges must be addressed: the roll angle control of the flow actuator and the pitch and yaw motion of the body caused by the gyroscopic effect. This paper introduces a novel concept of course correction system which consists

of a roll-decoupled spoiler surface located aft of the projectile center of mass. The effectiveness of this concept was investigated through an aerodynamic analysis and a seven-degrees-of-freedom trajectory simulation. The control of the spoiler roll angle with respect to a non-rolling frame combined with the control of the deployment time

enables a full 2D correction capability. Results show that the ballistic dispersion of 155-mm shells can be corrected for any muzzle velocity and quadrant elevation. In all cases, the spoiler deployment is only required in the last part of the trajectory.

Maneuver concept

- The spoiler control surface is located at the fuselage/ boattail junction.
- It can be deployed at any time during flight.
- The spoiler roll position is fixed with respect to a nonrolling (plane-fixed) frame:
 - the spoiler and body are connected by means of a free-rolling support \rightarrow 7-DoF system;
 - some internal mechanism controls the spoiler position at prescribed roll angle.

Course deviation resulting from four-quadrant trim positions

DOWN: Range decrease

LEFT: Cross range decrease RIGHT: Cross range increase

UP: Range increase

Aerodynamic analysis

ONERA's FLU3M code

- O 3D Navier-Stokes equations
- RANS and URANS resolution
- Cell-centered finite-volume code
- O Spalart-Allmaras turbulence model

Multi-block structured grids

- O Grids for subsonic-transonic and supersonic regimes
- O 30 to 50 cells in the boundary layer
- Stretching factor < 1.2
- O Largest grid: 6 x 10⁶ cells, 35 blocks

Conditions

- \bigcirc Mach number = 0.7–3.0
- \circ Angle of attack = 0-3°
- O Spoiler: height = 0.075 cal., angular sector = 18°-90°
- O No projectile spin

The small spoiler surface can induce large changes in the flow structure, which highlights the high trajectory correction capability of this kind of actuator.

Table of aerodynamic coefficients

(variation due to spoiler deployment)

Mach number	0.70	0.95	1.20	2.00	3.00
Trim angle [deg]	2.76	4.16	1.31	1.18	1.23
Axial force increase	30%	17%	19%	17%	13%
Normal force increase	233%	193%	126%	70%	57%

Spoiler normal to the fuselage, height = 0.075 cal. angular sector = 60° , location from nose = 5.06 cal.

Mach number isocontours

Flight dynamics analysis

BALCO 6/7-DOF Trajectory Model

Example of trajectory deflection

(Charge 6, Long range)

Height [km] vs. down range [km]

Deviation of impact point

(Charge 6, Long range)

and deployment time

capability

Conclusion and outlook

- The spoiler control surface appears to be a very promising actuator system for the course correction of spinstabilized artillery shells:
 - O 2D dispersion errors can be corrected for any muzzle velocity and quadrant elevation;
- O deployment is required only in the last part of the trajectory.
- > Further developments:
 - o refined aerodynamic and flight dynamics analyses, including spin and Magnus effects, based on CFD, wind-tunnel and free-flight tests;
- O design of the actuator system: spoiler/body connection, spoiler deployment mechanism, real-time roll angle measurement and control;
- O design of the closed-loop flight control algorithm.

This study was supported by the French Ministry of Defense within the framework