Inteligência Artificial

2024/2

Profa. Dra. Juliana Félix jufelix16@gmail.com

Housing price prediction.

$$y = \theta_0 + \theta_1 x$$

Parâmetros

Exemplo

Conjunto de dados (Dataset)

Um Dataset (conjunto de dados) combina amostras com

- Valores ou variáveis de entrada (features, características, recursos) e
- Valores de saída (outcome, labels) utilizados no aprendizado supervisionado.

Dataset

Exemplo:

Outcome

(saída)

Feature

(característica)

PUC GOIÁS

Notação

Podemos pensar no problema anterior como um problema que tem:

- Um total de m amostras/samples (m = 47)
- Cada amostra tem 1 única feature/característica (tamanho do imóvel)
 - Costumamos representar uma variável de entrada por x
- Para cada amostra, temos uma única saída (preço do imóvel).
 - o Costumamos representar uma variável de saída por y
- Cada amostra pode ser representada por um par, ou tupla (x,y)
 - o Uma tupla (x^i, y^i) representa a i-ésima amostra do problema, com $1 \le i \le m$

Notação

• No conjunto abaixo, o par (x^1, y^1) refere-se aos dados da primeira linha (2104, 399900).

Preço de lotes na 'Terra tão tão distante'			
Tamanho do lote (em m²) - X	Preço do lote (R\$) - Y 399.900		
2104			
1600	329.900		
2400	369.000		

Processo básico de Machine Learning

PUC GOIÁS

A base de qualquer processo de machine learning consiste em mapear um dado de entrada X em um dado de saída Y.

Desvio

Quando fazemos a predição de um valor, o **desvio** é a diferença entre o **valor esperado** (conhecido) e o **valor predito** pelo modelo construído.

$$desvio^i = Y^i - h(x^i)$$

$$desvio^{i} = \mathbf{Y}^{i} - \hat{\mathbf{Y}}^{i}$$

O *Mean Square Error* (MSE - Erro Médio Quadrático) é a **média** do **quadrado** dos **erros** obtidos pelo modelo.

$$MSE = \underbrace{\frac{1}{m} \sum_{i=1}^{m} \left(Y^i - h(x^i) \right)^2}_{}$$

O *Mean Square Error* (*MSE* - Erro Médio Quadrático) é a **média** do **quadrado** dos **erros** obtidos pelo modelo.

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} \left(Y^i - h(x^i) \right)^2$$
 para o cálculo do **gradi** método utilizado na region cancelará o termo 1/2.

Na prática, a média é dividida pela metade (1/2) como uma conveniência para o cálculo do *gradiente descendente*, método utilizado na regressão linear, que cancelará o termo 1/2

Em outras palavras, dividir por m ou 2m não traz diferenças significativas para o cálculo dos valores analisados.

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} (Y^{i} - h(x^{i}))^{2}$$

Considerando os seguintes valores preditos, podemos calcular o *MSE* do modelo.

Preço de lotes na 'Terra tão tão distante'						
desvio ²	desvio	h(x)	у	x		
		399.800	399.900	2104		
		339.900	329.900	1600		
		367.000	369.000	2400		
	Soma	,				
	MSE					

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} (Y^{i} - h(x^{i}))^{2}$$

Considerando os seguintes valores preditos, podemos calcular o *MSE* do modelo.

Preço de lotes na 'Terra tão tão distante'					
x	у	h(x)	desvio	desvio ²	
2104	399.900	399.800	100	10.000	
1600	329.900	339.900	-10.000	10.000.000	
2400	369.000	367.000	2.000	4.000.000	
Soma			14.010.000		
			MSE	2.335.000	

Exercício

Considerando os valores x e y fornecidos, tente encontrar, manualmente, uma reta que melhor se ajuste aos dados abaixo:

```
x = np.array([480, 510, 520, 850, 960, 1200, 1400, 1650, 1700, 1920, 2350])

y = np.array([98, 110, 200, 210, 280, 265, 300, 287, 325, 300, 290])
```

Faça isso utilizando:

- a) Apenas θ_0
- b) Apenas θ_1
- c) Atribuindo valores para θ_0 e θ_1

Para cada reta, calcule o respectivo MSE. Plote as retas e o MSE encontrado em todos os casos.

Função Custo

Função Custo

Queremos encontrar θ_0 e θ_1 para os quais os valores preditos serão os mais próximos possíveis dos valores y reais.

Treinamento do Modelo

Conceitos importantes

- Parâmetros As variáveis do modelo a serem ajustadas
- Dados de treinamento Grupo de dados utilizado para ajustar os parâmetros do modelo.
- Variáveis de treinamento variáveis utilizadas para controlar o algoritmo de treinamento.
 - Step/Passo tamanho do ajuste que será utilizado para ajustar um parâmetro do modelo.
 - Época O intervalo durante o qual o modelo é ajustado baseado no dado de treinamento.
 - Épocas O número de épocas pelo qual o algoritmo de treinamento funcionará.
- Parâmetros anteriores e atuais valores que representam o modelo antes e depois do ajuste.
- Custo anterior e atual valores que representam o erro do modelo antes e depois do ajuste.
- Parâmetros anteriores e atuais valores que representam o modelo antes e depois do ajuste.
- Fator de ajuste valor que ajuda a determinar o comportamento do algoritmo de treinamento.

Critérios de parada

PUC GOIÁS

- Número de épocas
 - O programa para ao atingir o número de épocas definido
- > Erro mínimo atingido
 - O programa para ao atingir um erro menor ou igual ao erro mínimo definido
- Sem alterações após n épocas
 - O programa para ao perceber que o erro não sofreu alterações após uma quantidade n de épocas estabelecidas

Função Custo

PUC COLÁS

Para um problema com apenas 1 característica em cada amostra, o problema consiste em encontrar os valores de θ_0 e θ_1 que minimizam o erro entre os valores preditos e os esperados.

parâmetros da reta

Objetivo

$$h(x) = heta_0 + heta_1 x$$

- A função custo é o resultado da soma do quadrado dos desvios (Mean Square Error).
- Os desvios s\(\tilde{a}\) obtidos pela diferen\(\tilde{a}\) entre Y\(^i\) e h(x\(^i\)).

$$\frac{\min}{\theta_0, \theta_1} J(\theta_0, \theta_1) = \left[\frac{1}{2m} \sum_{i=1}^m \left(Y^i - h(x^i) \right)^2 \right]$$

• Se simplificarmos o problema e considerarmos apenas θ_0 (ou seja, se quisermos encontrar apenas uma reta paralela ao eixo x, sem inclinação), o problema se resume a:

$$J(\theta_0) = \left[\frac{1}{2m} \sum_{i=1}^{m} (Y^i - h(x^i))^2\right]$$
$$(Y - h(x))^2$$

Equação do 2º grau, uma parábola!

$$Y^2 - 2 \cdot Y \cdot h(x) + h(x)^2$$

PUC

- Sabemos que $h(x) = \theta_1 x + \theta_0$
- Simplificando $h(x) = \theta_0$, teremos uma parábola:

```
Cost: 29741.954545454544
Theta_0: 10
Epoch: 1
```


$$J(\theta_0) = Y^2 - 2 \cdot Y \cdot h(x) + h(x)^2$$

Exercício

Considerando os valores x e y fornecidos, crie um algoritmo para encontrar, automaticamente, uma reta que melhor se ajuste aos dados abaixo:

```
x = np.array([480, 510, 520, 850, 960, 1200, 1400, 1650, 1700, 1920, 2350])
y = np.array([98, 110, 200, 210, 280, 265, 300, 287, 325, 300, 290])
```

Faça isso utilizando:

Minimiza o MSE

- Apenas θ_0
- Apenas θ_1

Para cada reta, calcule o respectivo *MSE*. Plote as retas e o *MSE* encontrado em todos os casos.

- Sabemos que $h(x) = \theta_1 x + \theta_0$
- Ao considerar θ_0 e θ_1 , o gráfico da função custo nos trará um espaço 3D.

Em certos modelos não lineares, mesmo tendo apenas θ_0 e θ_1 , podemos nos deparar com superfícies cada vez mais complexas...

Precisamos de uma maneira para encontrar o mínimo da função correspondente

PUC GOIÁS

- Algoritmo utilizado para encontrar os valores que minimizam a função custo.
- O algoritmo funciona iterativamente, ajustando os parâmetros em pequenos incrementos para minimizar a função de custo.
- O primeiro passo é calcular o gradiente da função de custo em relação a cada parâmetro.

$$new\theta_0 = \theta_0 - \alpha \cdot \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$new\theta_1 = \theta_1 - \alpha \cdot \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$J(\theta_0, \theta_1) = \left[\frac{1}{2m} \sum_{i=1}^m \left(Y^i - h(x^i) \right)^2 \right]$$

Calculando-se as derivadas parciais, temos...

$$h(x) = \theta_0 + \theta_1 x$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m [(Y^i - \theta_0 - \theta_1 x^i)]$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m [(Y^i - \theta_0 - \theta_1 x^i) x^i]$$

$$new\theta_0 = \theta_0 - \alpha \cdot \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$new\theta_o = \theta_0 - \alpha \cdot \left[\frac{1}{m} \sum_{i=1}^m [(Y^i - h(x^i))] \right]$$

Substituindo...

$$new\theta_1 = \theta_1 - \alpha \cdot \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$new\theta_1 = \theta_1 - \alpha \cdot \left[\frac{1}{m} \sum_{i=1}^m [(Y^i - h(x^i) \cdot x^i)] \right]$$

- Em seguida, os parâmetros são atualizados movendo-se na direção oposta ao gradiente.
- Esse processo é repetido várias vezes até que uma condição de parada seja atingida.

$$new\theta_o = \theta_0 - \alpha \cdot \left[\frac{1}{m} \sum_{i=1}^m [(Y^i - h(x^i))]\right]$$

$$new\theta_1 = \theta_1 - \bigcirc \left[\frac{1}{m} \sum_{i=1}^m [(Y^i - h(x^i) \cdot x^i)] \right]$$

Alfa (α) é a taxa de aprendizagem

Aula de hoje...

- Falamos sobre o funcionamento da regressão linear
 - o Entendemos o que é um **modelo** de RL
 - Como funciona o treinamento de um modelo de RL
 - Como o cálculo do erro é realizado
 - Como minimizar o erro (função custo)
 - Apresentamos o algoritmo do gradiente descendente para minimização da função custo.

Atividade 2

- A atividade pode ser feita em duplas.
- Sua solução deve ser entregue em um notebook python (.ipynb).
- Reinicie o ambiente de execução e rode todas as células antes de gerar o arquivo a ser entregue (garantindo a exibição de todos os gráficos, por ex.)
- A entrega deve ser realizada até 23h59 de segunda-feira, 16/09/2024.
- O ambiente de entrega ainda será definido (estou aguardando acesso aos sistemas da universidade) e a turma será avisada.

Leitura recomendada

Calculadora gráfica: <u>Desmos | Calculadora Gráfica</u>

Regressão linear: Explicação sobre o modelo de regressão linear