ENG EK 103: Computational Linear Algebra: Final exam

Name:				
BU ID number:				
Please circle your EK 103 section	n:			
• A1 (Belta)	• A4 (Belta)	• A7 (Fan)		
• A2 (Sabelhaus)	• A5 (Nishimura			
• A3 (Kaper)	• A6 (Sen)			
	· ,			
Here are some important ground	rules:			
• The exam is open notes, op	pen book, open computer, bu	ut not open internet		
Show all your work !! Ans	wers with no work to suppor	ort them will receive zero credit		
• Be sure you write your name and BU ID # in the given spaces above				
• Every page (except this one) has a space in the header to write your name. Please do so!				
• There are a lot of empty pages after each problem for your work. Please start each problem on the page of that problem!				
Some useful matlab commands f	or checking your work are:			
rref(A), rref([A b]), in	$\psi(A)$, $det(A)$, , roots	$ts(\), \qquad [\ V\ ,\ D\] = eig(A)$		
[U, SIGMA, V] = svd(A)				

Problem 1: (25 points): An $A \vec{x} = \vec{b}$ problem, with the 4 subspaces of matrix A

Consider the following matrix A and vector \vec{b} :

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \end{array} \right] \qquad and \qquad \vec{b} = \left[\begin{array}{c} 3 \\ 5 \end{array} \right]$$

- a) (8 points) Find the complete solutions to $A \vec{x} = \vec{b}$
- b) (3 points) What is the rank of A?
- c) (6 points) Find the bases for the following subspaces related to matrix A: The column space C(A), nullspace N(A), and the row space R(A)
- d) (3 points) What are the dimensions of C(A), N(A), and R(A)?
- f) (5 points) Which subspace is orthogonal to the nullspace N(A)? Demonstrate this orthogonality using a non-zero vector from each subspace.

Problem 2: (25 points): Projections and least squares.

In part (a), consider the measurements b at times t as specified in the table below. h is the **second** digit of your BU ID number, Ux**X**-xx-xxxx.

$$\begin{array}{c|cc} t & b \\ \hline -2 & 2 \\ -1 & 0 \\ 0 & 0 \\ 1 & 2 \\ 2 & h \end{array}$$

(a) (4 points) Suppose the data points in the table above can be fit by a quadratic function $c + dt + et^2 = b$, where c, d and e are scalars. Create the linear system of equations, and rewrite the system in the matrix form $A\mathbf{x} = \mathbf{b}$.

In parts (b)-(d), consider another set $B=\begin{bmatrix}1&0\\-1&0\\1&1\end{bmatrix}$ and $\mathbf{c}=\begin{bmatrix}1\\1\\1\end{bmatrix}$.

- (b) (4 points) Determine if the linear system Bx = c has a unique solution, infinitely many solutions, or no solution.
- (c) (5 points) Find the least squares solution(s) \hat{x} of the linear system Bx = c.
- (d) (4 points) Find the projected vector $\hat{c} = B\hat{x}$, where \hat{c} is the orthogonal projection of \hat{c} into the column space of B.

In parts (e)—(f), consider another set $C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 1 \end{bmatrix}$ and $\boldsymbol{d} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$. The orthogonal projection of \boldsymbol{d} into the column

space of
$$C$$
 is $\hat{\boldsymbol{d}} = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$.

- (e) (4 points) Find the error vector \mathbf{e} of the projection.
- (f) (4 points) Find the angle between e and the column space of C.

Problem 3: (25 points): Consider the following symmetric matrix:

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

- (a) (7 points) Find the eigenvalues of A.
- (b) (4 points) Determine if A is invertible.
- (c) (7 points) Find bases for the eigenspaces of A. Show that the bases are orthogonal to each other.
- (d) (7 points) Is A diagonalizable? If so, justify your answer and find a diagonal matrix D and an orthogonal matrix P such that $A = PDP^T$. Note that matrix P should contain orthonormal column vectors. If A is not diagonalizable, justify your answer in 2 or 3 sentences.

Problem 4: (25 points): A problem on SVD.

Given the following A matrix:

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & h \end{bmatrix}$$

Select the value for h for this problem based on the **first** digit of your BU ID number: UXx-xx-xxxx. Please circle this choice below.

First digit is 0, 1, 2, 3:	irst digit is 0, 1, 2, 3: First digit is 4, 5, 6:	
h = 2	h=4	h = 5

Please answer the following, showing or explaining how you solved the problem. IMPORTANT: Read these questions carefully, you may avoid performing unnecessary calculations.

! If you get square roots or fractions, you can leave them as-is, no need to rationalize square roots or denominators. Do not answer using decimals, so we know you're not using MATLAB.

Remember that a singular value decomposition is $A = U\Sigma V^{\top}$

- (a) (3 points) What are the sizes of the U, Σ , and V matrices for this A? Explain.
- (b) (5 points) Calculate the singular values σ of this A matrix. Insert them into Σ , arranging σ_1 and σ_2 from largest to smallest. Show all your steps.
- (c) (5 points) Find the matrix V. Show all your steps.
- (d) (5 points) Find the first column of the U matrix. Show all your steps. ! First column only!

Next, for parts (e) and (f): we're giving you an eigenvector corresponding to the second singular value, σ_2 , for this U matrix:

$$\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- (e) (5 points) Find the last column of the U matrix. Show all your steps.
 - ! There are multiple ways to solve this problem. If you use AA^{\top} , remember that the last column corresponds with the $\lambda=0$ eigenvalue.

11

(f) (2 points) Please write the full SVD as $A = U\Sigma V^{\top}$.