§1. Числовая последовательность. Классификация последовательностей

Определение 1.1. Если любому натуральному числу 1, 2, ..., n, ... поставлено в соответствие по определённому закону некоторое вещественное число x_n , то множество занумерованных чисел $x_1, x_2, ..., x_n, ...$ называется числовой последовательностью или просто последовательностью. Числа $x_1, x_2, ..., x_n, ...$ называются членами последовательности, x_n – n-ым членом последовательности или её общим членом.

Заметим, что x_n есть f(n) — функция номера члена последовательности. Последовательность обозначается символом $\{x_n\}$, иногда $\{x_n\}_{n=1}^{+\infty}$.

Из элементарной алгебры известны две последовательности – арифметическая и геометрическая

прогрессии, общие члены которых соответственно задаются равенствами: $x_n = a_1 + d(n-1)$ и

 $X_n = a_1 q^{n-1}$, при этом a_1 называется *первым членом*, d – *разностью* арифметической прогрессии, а q – *знаменателем* геометрической прогрессии.

Классификация числовых последовательностей

Определение 1.2. Последовательность $\{x_n\}$ называется возрастающей (убывающей), если неравенство $x_n \le x_{n+1} (x_n \ge x_{n+1})$ выполняется для $\forall n \in \mathbb{N}$. Возрастающие и убывающие последовательности называются монотонными последовательностями.

Определение 1.3. Последовательность $\{x_n\}$ называется *ограниченной*, если $\exists M > 0 \colon |x_n| \le M$ для $\forall n \in N$.

Замечание 1.1. Из определения 1.3 следует ограниченность последовательности $\{x_n\}$ в случае, если для $\forall n \in \mathbb{N}$ выполняется неравенство $M_1 < x_n < M_2$, где M_1, M_2 — некоторые действительные числа. В самом деле, в этом случае число M из определения 1.3 можно выбрать так: $M = \max\{|M_1|, |M_2|\}$. Так, последовательность $x_n = n/(n+1)$ ограничена, поскольку неравенство 0 < n/(n+1) < 1 выполняется для $\forall n \in \mathbb{N}$.

Пример 1.1. Показать, что последовательность $x_n = (3n-1)/(2n+3)$ является возрастающей и ограниченной.

lacktriangle Определим знак разности $\mathcal{X}_{n+1} - \mathcal{X}_n$. Имеем

$$x_{n+1} - x_n = \frac{3(n+1)-1}{2(n+1)+3} - \frac{3n-1}{2n+3} = \frac{3n+2}{2n+5} - \frac{3n-1}{2n+3} = \frac{11}{(2n+5)(2n+3)} > 0 \text{ для } \forall n \in \mathbb{N},$$

поэтому неравенство $\mathcal{X}_{n+1} \geq \mathcal{X}_n$ верно для $\forall n \in \mathbb{N}$ и, следовательно, данная последовательность

возрастающая (определение 1.2). Отсюда следует, что любой член последовательности не меньше

$$x_1: x_n \geq x_1 = 2/5$$
, $\forall n \in \mathbb{N}$. В то же время $x_n = \frac{3n-1}{2n+3} < \frac{3n}{2n+3} < \frac{3n}{2n} = \frac{3}{2}$ для $\forall n \in \mathbb{N}$. Итак,

неравенство $\frac{2}{5} \le x_n < \frac{3}{2}$ справедливо для $\forall n \in \mathbb{N}$, а это и означает, что данная последовательность

ограничена (замечание 1.1) ◀

Пример 1.2. Является ли последовательность $x_n = (-1)^{n-1} (n+1)/n$ монотонной? ограниченной?

▶ x_1 =2, x_2 = -3/2, x_3 =4/3, x_4 = -5/4,... Эта последовательность не монотонная, ибо ни одно из неравенств $x_n \le x_{n+1}$ и $x_n \ge x_{n+1}$ не выполняется для $\forall n \in \mathbb{N}$. Первое из них не выполняется для n=1, 3,..., т.е. для всех нечётных n, а второе — для всех чётных n. Данная последовательность ограниченная, так как $x_n = (-1)^{n-1}(1+1/n)$ и поэтому $|x_n| \le 2$ для $\forall n \in \mathbb{N}$. \blacktriangleleft

Пример 1.3. Найти наибольший член последовательности $x_n = 11 + 10n - n^2$.

▶ $x_n = 11 - (n^2 - 10n) = 11 - (n^2 - 10n + 25) + 25 = 36 - (n - 5)^2 \le 36$ для $\forall n \in \mathbb{N}$, причём равенство достигается только при n = 5, поэтому заключаем, что наибольшим членом последовательности является $x_5 = 36$. ◀