Intervals, Transformations, and Slope Solution (version 74)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8, -2) \cup (1, 3)$
Negative	$(-2,1) \cup (3,4)$
Increasing	$(-8, -4) \cup (0, 2)$
Decreasing	$(-4,0) \cup (2,4)$
Domain	(-8,4)
Range	(-4,4)

Intervals, Transformations, and Slope Solution (version 74)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=28$ and $x_2=77$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 28 & 60 \\ 60 & 77 \\ 77 & 81 \\ 81 & 28 \\ \hline \end{array}$$

$$\frac{g(77) - g(28)}{77 - 28} = \frac{81 - 60}{77 - 28} = \frac{21}{49}$$

The greatest common factor of 21 and 49 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{3}{7}$$

2