Projekat Arhitektura racunara

Maj, 2018

Sadrzaj

1 Problem 2

1 Problem

Uz pomoc logisim-a i komponenti koje su koristene na vjezbama konstruisati jednociklusni datapath sa kontrolom po principu rada MIPS procesora sa ogranicenim skupom instrukcija. Slijediti upute sa predavanja. Instrukcije koje procesor treba razumjeti su:

Jumps: J, JR, JAL

Memory Load/Store: LW, SW

Immediate arithmetic/logic: ADDIU, ANDI, ORI, XORI

Register arithmetic/logic: ADDU, SUBU, AND, OR, XOR, NOR

Shifts (constant only): SLL, SRL, SRA

Programski brojac (PC) realizovati pomocu registra (komponenta "Register"). Inkrementiranje PC-a realizovati pomocu komponente "Incrementer". Nova adresa instrukcije (PC) za jump tipove instrukcija se treba formirati u bloku NextPC. Uocite da se u ovoj zadaci ne zahtijevaju branch instrukcije, ali to moze biti dodatni zadatak za vjezbu te je prilozen fajl za testiranje i te verzije procesora. Za pristup memoriji koristiti komponentu "RAM".

Detaljne specifikacije komponenti pogledati na sljedecem linku. Operacije koje ALU moze izvrsavati i odgovarajuci ALU op kodovi koje treba koristiti su dati u sljedecoj tabeli:

Table 1: ALUop kodovi za koristenu ALU komponentu

ор	C operation	name
0000	C = B << sa	shift left logical
0010	C = A + B	add
0100	$C = B \gg sa$	shift right logical
0101	C = B >>> sa	shift right arithmetic
0110	C = A B	subtract
1000	C = A & B	and
1010	C = A j B	or
1100	$C = A \wedge B$	xor
1110	$C = \sim (A j B)$	nor

Za testiranje funkcionalnosti moze se koristiti program projekat.s, a za testiranje sa branch instrukcijama moze se koristiti program projekat branch.s.