

# Índice

| 1 | ALGORITMOS VORACES                                       | 2 |
|---|----------------------------------------------------------|---|
|   | 1.1 El problema de la mochila                            | 2 |
|   | 1.2 Caminos mínimos en grafos (Dijkstra)                 |   |
|   | 1.3 Árboles de recubrimiento de coste mínimo             |   |
|   | 1.4 Códigos de Huffman                                   |   |
|   | 1.5 El problema de la selección de actividades           |   |
|   | 1.6 El problema de la minimización del tiempo de espera  |   |
|   | 1.7 Fundamentos teóricos del esquema voraz               | 5 |
|   | 1.8 Un problema de planificaciónn de tareas a plazo fijo |   |
|   | 1.9 Heurísticas voraces                                  |   |
|   | 1.9.1 Coloreado de grados                                |   |
|   | 1.9.2 El problema del viajante de comercio               |   |
| 2 | DIVIDE Y VENCERÁS                                        | 4 |
| 3 | PROGRAMACIÓN DINÁMICA                                    | Ę |
| 4 | BÚSQUEDA CON RETROCESO                                   | • |
| 5 | RAMIFICACIÓN Y PODA                                      | 7 |
| 6 | PROGRAMACIÓN LINFAL Y REDUCCIONES                        | 5 |

#### ALGORITMOS VORACES

Los algoritmos voraces se utilizan para resolver problemas de optimización: de un **conjunto de elementos candidatos**, se quiere obtener un **subconjunto solución factible** que maximice/minimice una **función objetivo**.

- 1. Se inicia con un conjunto vacío de candidatos.
- 2. Se intenta añadir el mejor elemento no escogido siguiendo una función de selección.
- 3. Si añadiendo el elemento el problema aún es **completable** (se puede llegar a la solución añadiendo mas elementos) se añade, de lo contrario se rechaza y elimina como posible elemento.
- 4. Si no es solución, volver al paso 2

#### 1.1 El problema de la mochila

Se tiene una mochila con capacidad limitada (C), y una serie de objetos fraccionables (n) con un peso determinado $(p_i)$ . Meter una fracción de un objeto  $(x_i)$  da un beneficio  $(b_ix_i)$ . Se quiere llenar la mochila con el máximo beneficio sin superar el peso  $((x_1,...x_n)$  tal que  $max(\sum_{1\leq i\leq n}b_ix_i)$  y  $\sum_{1\leq i\leq n}p_ix_i\leq C$ ).

La estrategia mas óptima es tomar los objetos que proporcionen mayor beneficio por unidad de peso.

- 1.2 Caminos mínimos en grafos (Dijkstra)
- 1.3 Árboles de recubrimiento de coste mínimo
- 1.4 Códigos de Huffman
- 1.5 El problema de la selección de actividades
- 1.6 El problema de la minimización del tiempo de espera
- 1.7 Fundamentos teóricos del esquema voraz
- 1.8 Un problema de planificaciónn de tareas a plazo fijo
- 1.9 Heurísticas voraces
- 1.9.1 Coloreado de grados
- 1.9.2 El problema del viajante de comercio

# **DIVIDE Y VENCERÁS**

# PROGRAMACIÓN DINÁMICA

# **BÚSQUEDA CON RETROCESO**

# RAMIFICACIÓN Y PODA

# PROGRAMACIÓN LINEAL Y REDUCCIONES