<u> </u>	招 f(X)=0 自台f(x) 建性化 用好性方程的解 查达市线性方程的概
7.1. 解:	
	对二维方程进行豪节展开、可含牛顿性作法指广到二维.
	$x_{(K+1)} = x_{(K)} - E_1[x_{(K)}]_{-1} \cdot E[x_{(K)}]$ $E_1(x) = \begin{cases} \frac{3x_1}{3} & \frac{3x_2}{3} \\ \frac{3x_1}{3} & \frac{3x_2}{3} \end{cases}$
	$\begin{cases} 3_1 + 2x_2 - 3 = 0 \\ 2x_1^2 + x_2^2 - 5 = 0. \end{cases}$
	O用注证收据符. / 1 2 \ / 2½ -2 \
	の形主でいたで呼。 $F(X) = \begin{pmatrix} 1 & 2 \\ \mu_{X_1} & 2x_2 \end{pmatrix} \Rightarrow F(X)^{-1} = \frac{1}{2X_2 - 8X_1} \begin{pmatrix} 2X_2 & -2 \\ -4X_1 & 1 \end{pmatrix}$
	$\Rightarrow \chi^{(\kappa+1)} = \chi^{(1c)} - \frac{1}{2\chi_{2}^{(0c)} - 9\chi_{1}^{(1c)}} \begin{pmatrix} \frac{(1c)}{2\chi_{2}^{(1c)} - 2} \\ -\frac{1}{4\chi_{1}^{(1c)}} \end{pmatrix} \begin{pmatrix} \chi_{1}^{(\kappa)} + 2\chi_{2}^{(\kappa)} - 3 \\ -\frac{1}{4\chi_{1}^{(1c)}} \end{pmatrix}$
二, 用平:	(1) $2 B(x) = P_1(x) = x P_2(x) = x^2$ $\begin{vmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 4 & 2 \\ 7 \end{vmatrix} \Rightarrow \begin{cases} 1 & -\frac{147}{3310} \\ 1 & 0 & 142 \\ 1 & 0 & 142 \\ 1 & 0 & 142 \\ 1 & 0 & 142 \end{vmatrix}$
	(0 10 0 b = 42 =) { b= 0.42
	$Y = \frac{147}{230} \tilde{X} + 0.42 \tilde{X} + \frac{7}{25}$
三,解:	X ₀ =0 X₁=1 X ₂ =3 X ₃ =3
	Y0=1 Y1=3 Y2=9 Y3=25
	水 火 一种党的 二种党的 二种党的
	0 1
	I В 2
	3 25 16 5 1.
陕	$N_3(x) = 1 + 2x + 2x(x-1) + x(x-1)(x-2)$
	= 73-74-127+1
	$\Rightarrow N_3(05) = \frac{15}{8}$
四海。	
	$\begin{pmatrix} 2 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & \frac{13}{5} & -\frac{1}{5} & \frac{79}{5} \end{pmatrix}$

		$ \begin{pmatrix} 0 & \frac{13}{5} & -\frac{1}{5} & \frac{79}{5} \\ 0 & \frac{13}{5} & -\frac{1}{5} & \frac{79}{5} \end{pmatrix} $ $ \begin{pmatrix} 0 & \frac{13}{5} & -\frac{1}{5} & \frac{79}{5} \\ 0 & \frac{13}{5} & -\frac{1}{5} & \frac{79}{5} \end{pmatrix} $ $ \begin{pmatrix} 0 & \frac{13}{5} & -\frac{1}{5} & \frac{79}{5} \\ 0 & \frac{13}{5} & -\frac{1}{5} & \frac{79}{5} \end{pmatrix} $ $ \begin{pmatrix} 3 & \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & -\frac{1}{5} & \frac{79}{5} \end{pmatrix} $ $ \begin{pmatrix} 3 & \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & -\frac{1}{5} & \frac{79}{5} \end{pmatrix} $ $ \begin{pmatrix} 3 & \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & -\frac{1}{5} & \frac{79}{5} \end{pmatrix} $ $ \begin{pmatrix} 3 & \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \\ 3 & \frac{1}{5} & -\frac{1}{5} & \frac{1}{5} \end{pmatrix} $
五解		支叉 1. 3- 2 米角石的 枯立
	5	$\begin{cases} 1 = A + B \\ \frac{1}{2} = \frac{1}{2} B + C \end{cases} \Rightarrow \begin{cases} A_2 - \frac{1}{3} \\ B_3 = \frac{1}{3} \end{cases} \qquad \begin{cases} A_3 - \frac{1}{3} + (a_3) + \frac{1}{3} + (a_3) - \frac{1}{3} + (a_3$
		$\frac{1}{3} = \frac{1}{4}B + C$ $\frac{1}{2} + \frac{1}{6}$ $\frac{1}{3} = \frac{1}{4}B + C$ $\frac{1}{3} = \frac{1}{6}$ $\frac{1}{3} = \frac{1}{4}B + C$ $\frac{1}{3} = \frac{1}{6}$ $\frac{1}{3} = \frac{1}{4}B + C$ $\frac{1}{3} = \frac{1}{6}B + C$ $\frac{1}{3} =$
た,解	P: (v).	/ 1 2 2 1 1 1 2 2 1 1 2 2 1
	⇒).	/ 1
		$(221)(-1)(x_3)(3)(x_{3-1})$
	(2)	⇒ D= (1)
		$ A B^{2} = D_{-1}(T+D) = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -5 & 5 \\ 1 & 1 & -5 & -5 \end{pmatrix} R^{2} = D_{-1}(T+D) = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -5 & 5 \\ 1 & 1 & -5 & -5 \end{pmatrix} R^{2} = D_{-1}(T+D) = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -5 & 5 \\ 1 & 1 & -5 & -5 \end{pmatrix} R^{2} = D_{-1}(T+D) = \begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & -5 & -5 \end{pmatrix} R^{2} = D_{-1}(T+D) = \begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & -5 & -5 \end{pmatrix} R^{2} = D_{-1}(T+D) = \begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & -5 & -5 \end{pmatrix} R^{2} = D_{-1}(T+D) = \begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & -$
		マサ B. ト(B)=min {