Data Science UW Methods for Data Analysis

Apriori Rule Mining (Basket Analysis)
Extra Topics
Nick McClure

- > Given subgroups of items or experiments, we want to find the most likely group given an initial item(s).
 - If a customer buys car insurance for a minivan, (s)he is likely to buy car insurance for a second car.
 - If a patient has condition x and y, they are likely to have condition w and z.
 - If a customer buys bread and milk, they are very likely to buy eggs.
- > The last example is where the term "Basket Analysis" originates from.

Data Example

> We can put customer transactions into a matrix:

Transaction	Purchases		
1	Bread, milk, eggs, beer		
2	Beer, ping pong balls, cups		
3	Eggs, cups, bread		
4	Beer, ping pong balls, wine		

Transaction	Bread	Milk	Eggs	Beer	PingPongBalls	Cups	Wine
1	1	1	1	1	0	0	0
2	0	0	0	1	1	1	0
3	1	0	1	0	0	1	0
4	0	0	0	1	1	0	1

- / - / - / - / - / - / - / - / - / - /									
l	Transaction	Bread	Milk	Eggs	Beer	PingPongBalls	Cups	Wine	
	1	1	1	1	1	0	0	0	
	2	0	0	0	1	1	1	0	
	3	1	0	1	0	0	1	0	
	4	0	0	0	1	1	0	1	

- > Let S be the set of all possible purchases, and n be the number of transactions.
- > Each rule can be written:

$$(x_1, x_2, ..., x_j) \rightarrow (y_1, y_2, ..., y_k)$$

Where x and y are elements of S.

> Given a specific rule, we can write the 'Support' of the rule:

$$Supp((x_1, x_2, ..., x_j) \to (y_1, y_2, ..., y_k)) = \frac{\#trans(x_1, x_2, ..., x_j, y_1, y_2, ..., y_k)}{n}$$

$$Supp(bread \rightarrow milk) = \frac{1}{4}$$

Interpret as 'The proportion of transactions that contain all the items

/	Transaction	Bread	Milk	Eggs	Beer	PingPongBalls	Cups	Wine
	1	1	1	1	1	0	0	0
	2	0	0	0	1	1	1	0
	3	1	0	1	0	0	1	0
	4	0	0	0	1	1	0	1

Siven a specific rule, we can write the 'Confidence' of the rule:

$$Conf((x_1, x_2, ..., x_j) \to (y_1, y_2, ..., y_k)) = \frac{Supp(x_1, x_2, ..., x_j, y_1, y_2, ..., y_k)}{Supp(x_1, x_2, ..., x_j)}$$

$$Supp(bread \rightarrow milk) = \frac{1}{4}$$
 $Conf(bread \rightarrow milk) = \frac{0.25}{Supp(bread)}$

$$Conf(bread \rightarrow milk) = \frac{0.25}{0.5} = 0.5$$

This is interpreted as how good of a predictor the rule is.

- > To even start considering a rule, we impose that it must have a minimum support. I.e., the items must appear together a minimum # of times.
- > We also want strong rules, so we specify a minimum confidence as well.
- > Support and confidence does not mean that it will have a big impact. To look at impactful rules, we consider the 'lift':

$$Lift((x_1, x_2, ..., x_j) \to (y_1, y_2, ..., y_k)) = \frac{Supp(x_1, x_2, ..., x_j, y_1, y_2, ..., y_k)}{Supp(x_1, x_2, ..., x_j) \times Supp(y_1, y_2, ..., y_k)}$$

If the association of x and y happen by chance, we would expect this lift term to be around or less than 1. If lift > 1, then there is a positive correlation between the two groups.

- > Sometimes association rules are not helpful.
 - Customers who buy car warranties also buy cars.
- > Searching all combinations of rules is computationally intensive, so we use an algorithm called "A Priori".
 - We restrict our search to item sets that have a minimum support.
 - Also, we know:

$$Supp(x_1, x_2, ..., x_j, y_1) \le Supp(x_1, x_2, ..., x_j)$$

> R demo

