T055803K2vk16.nb

OAMK, Kaukovainion kampus, Tietotekniikka / Susanna Kujanpää

T055803 LAITETEKNIIKAN MATEMATIIKKA 1

KERTAUSTEHTÄVIÄ (2. välikoe)

1. a)
$$\int (2 + 3x^2 - \frac{1}{2}x^4) dx$$
 b) $\int x^{-3} dx$ c) $\int \frac{x-1}{x^3} dx$ d) $\int \frac{7}{\sqrt{x}} dx$ e) $\int t^2 \sqrt{t} dt$ f) $\int (2x-1)^3 dx$ g) $\int (x^2+1)^2 dx$ h) $\int x(2x^2+3)^3 dx$ i) $\int 3x \sqrt{1-2x^2} dx$ j) $\int \frac{1}{(1-x)^3} dx$ k) $\int e^{3x} dx$ l) $\int xe^{x^2} dx$ m) $\int \cos \frac{x}{2} dx$ n) $\int \sin x \cos x dx$ o) $\int (2\sin 3x - 3\cos x) dx$

2. Laske määrätty intergaali

a)
$$\int_{-1}^{2} (2 + 3x^{2} - x) dx$$
 b) $\int_{1}^{2} x^{-3} dx$ c) $\int_{1}^{4} \frac{1}{\sqrt{x}} dx$ d) $\int_{1}^{2} (2x - 1)^{2} dx$ e) $\int_{-4}^{0} \sqrt{1 - 2x} dx$ f) $\int_{0}^{1} e^{4x} dx$ g) $\int_{0}^{\pi} \sin \frac{x}{2} dx$ h) $\int_{-\pi}^{\pi/2} \cos 3x dx$ i) $\int_{1}^{3} \frac{5}{x^{2}} dx$

3. Laske paraabelin a) $y = 2x^2 - 9x + 4$ b) $y = -2x^2 + 7x - 3$

c)
$$y = x^2 + x - 2$$

ja x-akselin rajaaman alueen ala.

4. Laske käyrän $y = x^3 - 4x$ ja x-akselin rajoittaman alueen pinta-ala.

5. Määritä käyrien $y = x^2 - 2$ ja y = 7 määrittämän alueen ala.

6. Laske suoran y = x ja käyrän $y = 4x - x^2$ rajoittaman alueen ala.

7. Laske käyrien $y = x^3 - 6x^2 + 8x$ ja $y = x^2 - 2x$ rajoittaman kaksiosaisen alueen ala.

8. a) Laske suoran y = 2x + 1 paraabelista $y = x^2 - 2$ erottaman segmentin ala. b) Laske käyrien $y = x^3 - x^2$ ja y = 2x rajaaman kaksiosaisen alueen pinta-ala.

9. Käyrien $y = \sqrt{x}$, y = 0 ja x = 2 rajaama alue pyörähtää x-akselin ympäri. Laske syntyvän pyörähdyskappaleen tilavuus.

10. Käyrien $y = x^2 - 1$ ja y = 0 rajaama alue pyörähtää

a) x-akselin b) y - akselin ympäri. Laske pyörähdyskappaleen tilavuus kummassakin tapauksessa. T055803K2vk16.nb 2

11. Suora y = 2x + 1, $x \in [0, 2]$ pyörähtää a) x - akselin b) y - akselin ympäri. Laske pyörähdyskappaleen tilavuus kummassakin tapauksessa.

- **12.** Kappaleen nopeus (m/s) muuttuu yhtälön v(t) = $2 + \cos(\frac{\pi t}{4})$, $0 \le t \le 2$ mukaan, jossa t on aika sekunteina. Laske kappaleen kulkema matka mainitulla aikavälillä.
- **13.** Ratkaise a) y' + 5y = 0
 - b) 2y' 4y = 0 c) y' + 2xy = 0
- 14. a) Soluviljelmän kasvunopeus on suoraan verrannollinen solujen määrään m hetkellä t. Soluja oli alussa 100 ja kolme tuntia myöhemmin 420. Muodosta DY ja ratkaise se.
 - b) Radioaktiivisen aineen vähenemisnopeus on verrannollinen aktiivisuuteen A hetkellä t. Muodosta DY ja ratkaise se alkuehdolla $A(0) = A_0$. Radiohiilen aktiivisuus vähenee puoleen 5730 vuodessa. Näytteen alkuaktiivisuus oli A_0 = 2,92 Bq. Kuinka suuri on näytteen aktiivisuus 3600 vuoden kuluttua?
- **15.** Ratkaise differentiaaliyhtälöt
- a) $y' + 2y = e^{2x}$
- b) $y' 3y = \cos x$

c)
$$y' + y = 2x + 5$$

16. Ratkaise differentiaaliyhtälöt

a)
$$y'' + 2y' - y = 0$$

b)
$$2y$$
 " - y ' + $4y$ = 0

c)
$$y'' - 3y' = 0$$

- **17.** Laske
- a) y'' + 25y = 0

b)
$$y'' - 5y' + 4y = 0$$

c)
$$y'' + 12y' + 36y = 0$$

18. Laske

$$y'' - 2y' - 8y = 0$$
, $kun y(0) = 1$ ja $y'(0) = 0$

19. Jos heilahduskulma on pieni, toteuttaa heilurin kulma θ dy:n $\theta'' + \frac{g}{I}\theta = 0$, missä g = 10m/s^2 . Ratkaise yhtälö ajan funktiona, kun L = 0.5m, $\theta(0) = \frac{\pi}{6}$ $a \theta'(0) = 0.$

T055803K2vk16.nb

VASTAUKSIA

$$\frac{1}{1}$$
 a) $2x + x^3 - \frac{1}{10}x^5 + C$

b)
$$-\frac{1}{2}x^{-2} + C$$

b)
$$-\frac{1}{2}x^{-2} + C$$
 c) $-x^{-1} + \frac{1}{2}x^{-2} + C$

d)
$$14\sqrt{x} + 0$$

e)
$$\frac{2}{7}t^{7/2} + 6$$

f)
$$\frac{1}{8}(2x-1)^4 + C$$

d)
$$14\sqrt{x} + C$$
 e) $\frac{2}{7}t^{7/2} + C$ f) $\frac{1}{8}(2x - 1)^4 + C$ g) $\frac{1}{5}x^5 + \frac{2}{3}x^3 + x + C$ h) $\frac{1}{16}(2x^2 + 3)^4 + C$ i) $-\frac{1}{2}(1 - 2x^2)^{3/2} + C$ j) $-\frac{1}{2}(1 - x)^{-2} + C$ k) $\frac{1}{3}e^{3x} + C$ l) $\frac{1}{2}e^{x^2} + C$ m) $2\sin(\frac{x}{2}) + C$

h)
$$\frac{1}{16}(2x^2 + 3)^4 + C$$

i)
$$-\frac{1}{2}(1-2x^2)^{3/2}+C$$

$$j) - \frac{1}{2}(1 - x)^{-2} + C$$

k)
$$\frac{1}{3}e^{3x} + C$$

1)
$$\frac{1}{2}e^{x^2} + C$$

m)
$$2\sin(\frac{x}{2}) + C$$

n)
$$\frac{1}{2}\sin^2 x + C$$

o)
$$-2/3\cos 3x - 3\sin x + C$$

2. a)
$$\frac{27}{2}$$

2. a)
$$\frac{27}{2}$$
 b) $\frac{3}{8}$ c) 2 d) $\frac{13}{3}$ g) 2 h) $\frac{-1}{3}$ i) $\frac{10}{3}$

$$\frac{13}{3}$$
 e) $\frac{26}{3}$

h)
$$\frac{-1}{3}$$

i)
$$\frac{10}{3}$$

7.
$$\frac{253}{12}$$

8. a)
$$A = \frac{32}{3}$$
 b) $A = \frac{37}{12}$

b)
$$A = \frac{37}{12}$$

9.
$$V = 2 \pi$$

10. a)
$$V = \frac{16\pi}{15}$$
 b) $V = \frac{\pi}{2}$
11. a) $\frac{62\pi}{3}$ b) $\frac{16\pi}{3}$

11. a)
$$\frac{62\pi}{3}$$

b)
$$\frac{16\pi}{3}$$

13. a)
$$y = Ce^{-5x}$$
 b) $y = Ce^{2x}$ c) $y = Ce^{-x^2}$

b)
$$y = Ce^{2x}$$

c)
$$y = Ce^{-x^2}$$

14. a)
$$m = 100e^{0.48t}$$
 b) 1,89 Bq

15. a)
$$y = Ce^{-2x} + \frac{1}{4}e^{2x}$$

15. a)
$$y = Ce^{-2x} + \frac{1}{4}e^{2x}$$
 b) $y = Ce^{3x} - \frac{3}{10}\cos x + \frac{1}{10}\sin x$ c) $y = Ce^{-x} + \frac{1}{10}\cos x + \frac{1}{10}\sin x$

c)
$$y = Ce^{-x} +$$

$$2x + 3$$

16. a)
$$y = C_1 e^{-2.41 x} + C_2 e^{0.41 x}$$

b)
$$y = e^{1/4x} (C_1 \sin \frac{\sqrt{31}}{4} x + C_2 \cos \frac{\sqrt{31}}{4} x)$$

c)
$$y = C_1 + C_2 e^{3x}$$

17. a)
$$y = C_1 \cos 5x + C_2 \sin 5x$$
 b) $y = C_1 e^{4x} + C_2 e^x$ c) $y = C_1 e^{-6x} + C_2 x e^{-6x}$

18.
$$y = \frac{2}{3}e^{-2x} + \frac{1}{3}e^{4x}$$

19.
$$\theta = \frac{\pi}{6} \cos{(2\sqrt{5}t)}$$