FAULT DETECTION IN MULTI-INPUT ANALOG CIRCUITS USING POLYNOMIAL REGRESSION MODELLING

Presented by
Simran Gupta
Research Intern(25SR0031)
B. Tech (ECE)
NIT JAMSHEDPUR

Under the Guidance of

Dr. Rahul Bhattacharya

Dept. of Electronics

Engineering

IIT (ISM) Dhanbad

OBJECTIVE

To detect faults in multi-input analog circuits using polynomial regression models.

- Polynomial modelling for both linear and nonlinear circuits.
- Fault detection under DC sweep and sine wave inputs
- Analysis of single and multiple faults, noise robustness.

Literature Survey

	Citation	Literature	Purpose	Method Used	Research Gap	
	S. Sindia, V. D. Agrawal, and V. Singh [1]	29th VLSI Test Symposium, 2011	Non-linear analog circuit test using V-transform	Polynomial coefficients made monotonic using V- transform	Fails to handle multiple faults or noise-influenced variation	
	S. Sindia and V. D. Agrawal [2]	ITC Conference, 2013	High-sensitivity test signatures for analog circuits	Needs little circuit augmentation	Considers only one fault at a time	
1	Piotr Bilski [3]	Measurement, vol. 160, 2020	Ensemble regression for parametric identification	Uses regression ensembles to analyze faults	Not tested on heterogeneous architectures	
	Zhao & Yuzhu He [4]	J. of Electronic Testing, 2015	Test point selection method	Fault ambiguity minimized using optimization	Ignores circuits with undefined inputs	
	Alkis A. Hatzopoulos [5]	IMSTW 2017	Current spectrum-based analog test	Uses wavelet transforms and supply current	Intermittent faults remain undetected	
	H. Kobayashi et al. [6]	ICSICT 2020	Op-amp and ADC testing techniques	Combines DC-AC, null, and input generators	Not versatile for all circuit types	
	Riewruja & Rerkratn [7]	Int. J. of Electronics, 2011	Design of low-cost analog multiplier using op-amps	Uses quarter-square technique with class AB opamps	No regression-based testing or noise/fault sensitivity analysis provided	

POLYNOMIAL REGRESSION MODELLING

- Polynomial regression is a form of linear regression where the relationship between input variables and output is modeled as an nth-degree polynomial.
- o It approximates the output Vout of an Analog circuit as a Taylor series expansion around nominal input values Vin1=V1 and Vin2=V2.

$$V_{out} = f(V_{in1}, V_{in2}) = f(V_1, V_2) + (V_{in1} - V_1) \cdot f_1(V_1, V_2) + (V_{in1} - V_2) \cdot f_2(V_1, V_2) + \frac{1}{2!} \{ (V_{in1} - V_1)^2 \cdot f_{11}(V_1, V_2) + 2 \cdot (V_{in1} - V_1) \cdot (V_{in2} - V_2) \cdot f_{12}(V_1, V_2) + (V_{in2} - V_2)^2 \cdot f_{22}(V_1, V_2) \} + \frac{1}{3!} \{ (V_{in1} - V_1)^3 \cdot f_{111}(V_1, V_2) + 3 \cdot (V_{in1} - V_1)^2 \cdot (V_{in2} - V_2) \cdot f_{112}(V_1, V_2) + 3 \cdot (V_{in1} - V_1) \cdot (V_{in2} - V_2)^2 \cdot f_{122}(V_1, V_2) + (V_{in2} - V_2)^3 \cdot f_{222}(V_1, V_2) \} + \dots$$

$$(1)$$

where $f(V_{in1}, V_{in2})$ and all its partial derivatives $f_1 \equiv \frac{\partial f}{\partial V_{in1}}$, $f_2 \equiv \frac{\partial f}{\partial V_{in2}}$, $f_{11} \equiv \frac{\partial^2 f}{\partial V_{in1}^2}$, $f_{22} \equiv \frac{\partial^2 f}{\partial V_{in2}^2}$, $f_{12} \equiv \frac{\partial^2 f}{\partial V_{in1} \partial V_{in2}}$ and so on are continuous and exist at nominal values $V_{in1} = V_1$ and $V_{in2} = V_2$.

O Coefficients ai are estimated using **least squares fitting** (e.g., MATLAB's Polyfitn). Eqn. (1) can be further approximated as

The number of coefficients for an mth degree polynomial regression model which can estimate the output of a two-input CUT can be given as

$$N_{\text{coeff}} = \frac{(m+1)(m+2)}{2}$$

OPTIMAL ORDER

- Selecting the right polynomial degree (order) is crucial to avoid underfitting or overfitting in regression-based fault modeling.
- o AIC/BIC provides an automated, principled, and efficient method for selecting the best polynomial order in regression-based fault modeling without overfitting, thresholds, or guesswork.

AIC = $n \cdot ln(MSE) + 2 \cdot k$ BIC = $n \cdot ln(MSE) + k \cdot ln(n)$

Where:

n = Number of data points.

k = Number of parameters (Polynomial order).

MSE = Mean Squared Error.

- AIC/BIC minimizes overfitting by balancing model complexity and error.
- This ensures optimal polynomial order for reliable fault detection in analog circuits.

CIRCUITS UNDER STUDY

LINEAR CIRCUIT

- Lead-lag Circuit with sine input
- Lead-lag circuit with DC sweep input varied at rate of 50 Hz & 100Hz frequency
- PI Compensator of a Buck Converter

NON-LINEAR CIRCUIT

- Analog multiplier with sine input
- Analog Multiplier with DC sweep input varied at the rate of 50 Hz and 100Hz frequency

Case Study-1: Lead-lag Circuit

A 100 Hz sinusoidal signal at 200 mV amplitude is applied at the inverting input, while a 10 Hz sinusoidal signal at 400 mV amplitude is applied at the non-inverting input.

Fig. - Lead-lag circuit with two low-pass filters

• A DC sweep input at the rate of 100 Hz from 0V to 0.4V is applied at the inverting input, while a DC sweep input at the rate of 50 Hz from 0V to 0.5V is applied at the non-inverting input.

The nominal values of the circuit components of the lead-lag circuit shown in Fig. 3 are- R1=1k Ω , R2= 10k Ω , R3=10k Ω , C1=0.1595 μ F, C2=1.595 μ F

Illustration-1: Lead-lag Circuit with sine input

	IEADI	AG - in case of	AC INDUTY SI	VE WAVE	LEADLAG - in case of AC INPUT(SINE WAVE)											
			`	,	4=0/\ = /=00/		V			AG in the presence		viations (>5%)				
Various Detected	Faults in LEADLA	G in the presence	ce of faults with	deviations (5% –	· 15%) & (20%-47)	7%)	Injected	N_{MC}=500 , Avg_dif = 0.0420 Optimal Order – 18th		N _{MC} =1000, A	$vg_dif = 0.0420$	N _{MC} =2000, Av				
Injected Faults	<i>N</i> _{MC} =500, Avg	dif = 0.0420	N _{MC} =1000 A	vg_dif = 0.0420	N _{MC} =2000, Av	g dif =	Faults			Optimal Order – 18th		0.0420				
injected i date	Optimal Or			Order – 18th	0.0420	5_w.r		NY 6	E 1 E :	N. C. E. I.D.		Optimal Order – 18th				
	Орина Ок	1011	Орина	71dc1 — 10tii	Optimal Order	1 0+b		No. of Coefficients	Fault Detection Status	No. of Coefficients	Fault Detection Status	No. of Coefficients Out	Fault Detecti			
								Out of Bound	Status	Out of Bound	Status	of Bound	on			
	No. of	Fault Detection	No. of	Fault Detection	No. of Fault			out of Bound		out of Bound		or Bound	Status			
	Coefficients Out	Status	Coefficients	Status	Coefficients	Detecti	R1 3%↑	0	X	0	X	0	X			
	of Bound		Out of Bound		Out of Bound	on	R2 2% ↓	0	X	0	X	0	X			
						Status	R3 4% ↑	0	X	0	X	0	X			
R1 12%↑	44.0	2/	72	V	64		C1 2% ↓	0	X	0	X	0	X			
·	113	.1	73		64		C2 4% ↑	0	X	0	X	0	X			
R1 8% ↓	1	V	0	X	0	X	R1 1%↓	0	X	0	X	0	X			
R2 9% ↑	0	X	0	X	0	X	R2 1%↑	0	X	0	X	0	X			
R2 6%↓	0	X	0	X	0	X	R3 4% ↓ C1 3% ↑	0	X X	0	X X	0	X X			
R3 10% ↑	71	$\sqrt{}$	57	$\sqrt{}$	38	$\sqrt{}$, and the second		Ť				
R3 7%↓	0	X	0	X	0	X	C2 4% ↓	0	X	0	X	0	X			
C1 13%↑	0	X	0	X	0	X	LEADLAG - in case of AC INPUT(SINE WAVE)									
C1 15%↓	3		3	$\sqrt{}$	3	$\sqrt{}$	Injected Faults	Various Detected Faults in LEADLAG in the presence of MULTIPLE faults with devia llts N_{MC} =500, $Avg_dif = 0.0420$ N_{MC} =1000, $Avg_dif = 0.0420$ N_{MC} =20								
C2 11% ↑	0	X		X		X	Injected Faults		v g_a II = 0.0420 Order – 18th		vg_an = 0.0420 Order – 18th	N _{MC} =2000, Avg_o				
C2 1170 C2 14%↓	· · · · · · · · · · · · · · · · · · ·	Λ .l	0	1	0	Λ √						Spuniai Older – Ioth				
·	10	V	7	V	6			No. of	Fault Detection	No. of	Fault Detection	No. of	Fault			
R1 20%↑	163	V	156	V	153	√ ,		Coefficients Out of Bound	Status	Coefficients Out of Bound	Status	Coefficients Out of Bound	Detection Status			
R1 30% ↓ R2 32% ↑	183	V	183	V	183	√ √	R1 15%↑ R2 20%↓	162	\checkmark	155	$\sqrt{}$	151	√			
R2 40% ↓	34	2/	33	N 2	32	1	R2 8%↓		√		V		√			
R3 25% ↑	104	N al	93	N al	89	√ √	R3 12% ↑ R3 20% ↑	100	·	96	·	90				
R3 45%↓	174	2/	173	N N	172	1	C1 10% ↑	450	\checkmark	450	$\sqrt{}$	454	√			
C1 42%↑	185	N al	184	N N	183	√ √	C2 10% ↓ R1 18% ↓	158		152		151				
C1 42% C1 25% \	17	2/	14	N N	13	√ √	C1 10% ↑ C2 10% L	166	√	162	√	160	√			
C2 35% ↑	15	2/	14	2/	12	√ √	R2 9% ↑	166		102		100				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	V	33	V	31		R3 15% ↓ C1 12% ↑		\checkmark		$\sqrt{}$		\checkmark			
C2 4770 ↓	140	٧	135	V	132	√	C1 1276 C2 8% \	153		142		137				

Illustration-2: Lead-lag Circuit with DC sweep input

	LE	ADLAG- in cas	e of DC INPU	T(slow dc wit	h 100Hz & 50H	Iz frequency	LEADLAG- in case of DC INPUT(slow dc with 100Hz & 50Hz frequency)											
		ed Faults in LEA					%) & (20%-	Injected Faults		Faults in LEADL.		of faults with devia	ntions (>5%) N _{MC} =20	000				
		N 500 A	116 5 4004	47%)			116	injected rauns	Avg_dif =	–500, =5.1931e-04 Order – 14th	Avg_dif	= 1000, = 5.1978e-04 Order = 14th	Avg_dif = 5 Optimal Ord	.2020e-04				
8 -	Injected Faults	<i>N</i> _{MC} =500, Avg	_ aif = 5.1931e-						No. of	Fault Detection	No. of	Fault Detection	No. of Coefficien					
		Optimal Or	+ :der – 14th		/8e-04 Order – 14th	5.2020e-04 Optimal Order – 14th			Coefficients Out of Bound	Status	Coefficients Out of Bound	Status	Out of Bound	Detectio n Status				
		No. of	Fault	No. of	Fault	No. of	Fault	R1 3%↑	1	$\sqrt{}$	1	V	1	1				
		Coefficients	Detection	Coefficients	Detection	Coefficients	Detection	R2 2% ↓	1		1	$\sqrt{}$	0	X				
		Out of Bound	Status	Out of	Status	Out of	Status	R3 4%↑	0	X X	0	X	0	X				
		Out of Bound	Status	Bound	Status	Bound	Status	C1 2% ↓				X	· ·	X				
				Dound		Dound		C2 4% ↑ R1 1%↓	0	X X	0	X	0	X X				
-	R1 12%↑	0	X	0	X	0	X	R1 176↓ R2 1%↑	0	X	0	X	0	X				
	R1 8% ↓	0	X	0	X	0	X		0	A	0	X X	0					
1	R2 9% ↑	0	X	0	X	0	X	R3 4% ↓ C1 3% ↑	0	X	0		0	X X				
1	R2 6%↓	0	X	0	X	0	X		v	-1-		X	Ů					
Ī	R3 10% ↑	0	X	0	X	0	X	C2 4% ↓	0	X	0	X	0	X				
1	R3 7%↓	0	X	0	X	0	X	_			,	T(slow dc with 100Hz & 50Hz frequency) the presence of MULTIPLE faults with deviations						
		U		U		0		Injected Faults		aults in LEADLAG _ dif = 5.1931e-04		MULTIPLE faults g_dif = 5.1978e-04	va dif -					
	C1 13%↑	0	X	0	X	0	X	injected raults		order – 14th	1.10	3_uii = 3.1978e-04 Order = 14th	N_{MC} =2000, Avg_dif = 5.2020e-04					
	C1 15%↓	3	$\sqrt{}$	2	$\sqrt{}$	2	$\sqrt{}$		Optimia Order 1 till				Optimal Orde					
	C2 11%↑	0	X	0	X	0	X		No. of	Fault Detection	No. of	Fault Detection	No. of	Fault				
	C2 14%↓	1	$\sqrt{}$	1	V	1	$\sqrt{}$		Coefficients Out of Bound	Status	Coefficients Out of Bound	Status	Coefficients Out of Bound	Detection Status				
- 1 =	R1 20%↑	1	V	0	X	0	X	R1 15%↑		√		√						
-	R1 30% ↓	3	V	3	√	3	$\sqrt{}$	R2 20% ↓ R2 8% ↓	32		32		29					
	R2 32% ↑	1	V	1	V	1	V	R2 870 ↓ R3 12% ↑	30	\checkmark	30	√	29	$\sqrt{}$				
1	R2 40% ↓	1	V	1	√	1	√	R3 20% ↑										
-	R3 25% ↑	10	$\sqrt{}$	8	$\sqrt{}$	8	V	C1 10% ↑ C2 10% ↓	-0	$\sqrt{}$	_	$\sqrt{}$		V				
1	R3 45%↓	4	$\sqrt{}$	4	$\sqrt{}$	4	$\sqrt{}$	R1 18% ↓	28		27		25					
-	C1 42%↑	4	V	4	V	3	$\sqrt{}$	K1 18% ↓ C1 10% ↑		√		√		\checkmark				
	C1 25% \	2		2	$\sqrt{}$	2	$\sqrt{}$	C2 10% ↓ R2 9% ↑	34		34		32					
	□2 35% ↑	0	X	0	X	0	X	R3 15% ↓										
	C2 47%	35	V	30	V	26	V	C1 12% ↑ C2 8% ↓	32	V	32	V	29	V				

Case Study-2: Analog Multiplier Circuit

Key Features of the Proposed Analog Multiplier:

- Utilizes translinear characteristic of the class-AB output stage of op-amps.
- Employs op-amp supply current sensing technique to obtain:
 - Square of sum and Square of difference of two input signals.
 - $vo = (1/4) \times [(v1 + v2)^2 (v1 v2)^2] = v1 \times v2$
- Multiplication performed using quarter-square algebraic identity.
- Achieves low-voltage operation with general-purpose op-amps.
- Implements a four-quadrant analog multiplier using only op-amps (no extra active devices).

The nominal component values used in the simulation are: R11=R12 = $10 \text{ k}\Omega$,R21=R22= $1 \text{ k}\Omega$,R31 =R32= $250 \text{ k}\Omega$,R41 =R42= $500 \text{ k}\Omega$, R51 = R52= $250 \text{ k}\Omega$

Fig:- Four Quadrant Analog Multiplier using op-amp

Illustration-3: Analog Multiplier with sine input

	ANAL	OG MULTIPLIER-	in case of AC INPU	T(SINE WAVE)				ANALO	G MULTIPLIER-	in case of AC IN	PUT (SINE WAVE	Ξ)	
Variou	s Detected Faults in A	nalog Multiplier in th	ne presence of faults v	vith deviations (5% –	15%) & (20%-46%)		Various Detected Faults in Analog Multiplier in the presence of faults with deviations (>5%)						
Injected Faults	N _{MC} =500, A	vg_dif = 0.0098 Order – 18th	N _{MC} =1000, A	Avg_dif = 0.0097 Order – 18th	N _{MC} =2000, Avg_d Optimal Order		Injected Faults		N _{MC} =500, Avg_dif = 0.0098 Optimal Order – 18th		N_{MC} =1000, Avg_dif = 0.0097 Optimal Order – 18th		Avg_dif =
	No. of Coefficients Out of Bound	Fault Detection Status	No. of Coefficients Out of Bound	Fault Detection Status	No. of Coefficients Out of Bound	Fault Detection		No. of Coefficients Out	Fault Detection Status	No. of Coefficients Out	Fault Detection Status	No. of Coefficients Out	Fault
						Status		of Bound	Status	of Bound	Status	of Bound	on
R11 6%↑	19	$\sqrt{}$	16	$\sqrt{}$	23	$\sqrt{}$		or bound		or bound		or bound	Status
R11 6% ↓	12	$\sqrt{}$	7		12		R11 1%↓	0	X	0	X	1	V
R12 7% ↑	10	$\sqrt{}$	4	$\sqrt{}$	23		R11 3% ↑	5	√ V	5	√ V	0	X
R12 7% ↓	27	$\sqrt{}$	20		64		R12 2% ↑	1	V	0	X	0	X
R21 8% ↑	25	\checkmark	16	V	12	$\sqrt{}$	R12 1%↓	5	√	5	√	5	√
R21 8%↓	15	$\sqrt{}$	8	V	12	$\sqrt{}$	R21 3% ↑	0	X	1	√	0	X
R22 9%↑	20	V	15	V	32		R21 2.5%↓	0	X	0	X	0	X
R22 9% ↓	21	$\sqrt{}$	17	V	30	V	R22 2%↑	1	V	0	X	0	X
R31 10% ↑	15	V	12	V	11	V	R22 3% ↓	3	V	1	V	0	X
R31 10% ↓	30	√	30	V	27	V	R31 4% ↑	0	X	0	X	0	X
R32 11% ↑	22	V	15	V	30	V	R31 3.5% ↓	3	V	0	X	0	X
R32 11% \	36	V	30	V	32	V	R32 1% ↑	1	V	0	X	0	X
R41 12% ↑	38	V	35	V	13	V	R32 3% ↓	7	√ 	5	V	3	√
R41 12% J	17	V	15	, v	17	, V	R41 2%↑	0	X	0	X	0	X
R42 13% ↑	29	√ √	18	V	32	V	R41 1%	0	X	0	X	0	X
R42 13% ↓	21	1	0	V	18	V	R41 176↓ R42 3%↑	3	Λ √	1	Λ √	0	X
R51 14% ↑	3	2	5	N N	12	2	R42 1%↓	1	1	1	V	0	X
R51 14% ↓	16	2	16	7	35	2	R51 1.5% ↑	0	X	2	, v	1	<i>X</i> √
R52 15% ↑	41	2/	38	2	18	2	R51 1.8% ↓	2	√ V	0	X	0	X
R52 15% \	26	2	24	2	13	2	R52 2.3% ↑	0	X	0	X	0	X
R11 20% ↑	17	V	9	2	25	2	R52 2.9%↓	0	X	0	X	0	X
R11 20%		V		V al		2		ANALO	C MIII TIDI IED	in and of AC IN	PUT(SINE WAVE	7.\	
R12 25% ↑	58	N al	37	N al	39	N al	Vario	us Detected Faults					
R12 25% R12 25%	17	V	14	V	27	V	Injected Faults	N_{MC} =500, Avg		N_{MC} =1000, Av			
08	40	N	20	N	15	N	Injected Faults	Optimal O		Optimal Orde	-	N_{MC} =2000, $Avg_dif = 0.009$ ° Optimal Order – 22nd	
R21 30% ↑	33	V	28	V	39	V			Fault Detection				Fault
R21 30% ↓	4	V	3	V	9	V		Coefficients Out		Coefficients Out			Detection
R22 35% ↑	40	V	27	V	22	V		of Bound	Status	of Bound			Status
R22 35% ↓	20	V	20	V	14	V	R11 8%↑	Or Dound		or bound		or Bound	Status
R31 36% ↑	28	V	27	V	8	٧	R11 8% R12 10% ↑	15	\checkmark	12	$\sqrt{}$	17	$\sqrt{}$
R31 36% ↓	38	V	26	V	18	V	R12 10% R21 20% ↑	15		13		17	
R32 38% ↑	7	V	7	V	2	V	R21 20% R22 15% ↓		2/		V		$\sqrt{}$
R32 38% ↓	75	V	57	V	96	V	K 22 1576 ↓	25	V	21	V	38	V
R41 40% ↑	32	V	23	V	26	V	R31 20% ↓	23		۷1		50	
R41 40% ↓	18		10		30	$\sqrt{}$	R31 20% ↓ R32 20% ↑		V		V		V
R42 42% ↑	46	$\sqrt{}$	44	$\sqrt{}$	34	$\sqrt{}$	R32 20% R41 10% ↑	18	٧	17	V	16	٧
R42 42% ↓	3	$\sqrt{}$	4	$\sqrt{}$	4	$\sqrt{}$	R52 30%	10		1 /		10	
R51 44% ↑	30	\checkmark	26	$\sqrt{}$	19	$\sqrt{}$	R51 20% ↑	21		16	\checkmark	23	$\sqrt{}$
R51 44% ↓	68	$\sqrt{}$	58	$\sqrt{}$	53	$\sqrt{}$	R11 15% ↑	21		10		43	
R52 46% ↑	66	√	65	V	71	V	R12 20% ↓		$\sqrt{}$		V		V
R52 46% \	28	√	24	√	36	V	R42 18 % ↑	34	•	31	,	55	,
1070 1	20	٧	24	V	30	٧	10 70	54		JI		JJ	

Illustration-4: Analog Multiplier with DC sweep input

	ANALOG MULT	IPLIER - in case of I	OC INPUT(slow dc wi	th 100Hz & 50Hz freq	uency)		AN	ALOG MULTIPL	IER - in case of 1	DC INPUT(slow of	lc with 100Hz & 50	0Hz frequency)	
Var	Various Detected Faults in Analog Multiplier in the presence of faults with deviations (5% – 15%) & (20%-46%)									plier in the presen			
Injected Faults	N _{MC} =500, Av	g_dif = 0.0103 Order - 16th	N_{MC} =1000, Avg_dif = 0.0108 Optimal Order - 15th		N _{MC} =2000, Avg_d Optimal Order		Injected Faults	N _{MC} =500, Av	N_{MC} =500, Avg_dif = 0.0103 Optimal Order - 16th		N_{MC} =1000, Avg_dif = 0.0108 Optimal Order - 15th		vg_dif =
	No. of Coefficients Out of Bound	Fault Detection Status	No. of Coefficients Out of Bound	Fault Detection Status	No. of Coefficients Out of Bound	Fault Detection Status		No. of Coefficients Out	Fault Detection Status	No. of Coefficients Out	Fault Detection Status	Optimal Ord No. of Coefficients Ou	Fault
R11 6%↑	10	V	12		3	V		of Bound		of Bound		of Bound	on
R11 6% ↓	2	$\sqrt{}$	8	$\sqrt{}$	2	$\sqrt{}$							Status
R12 7% ↑	4	$\sqrt{}$	3	$\sqrt{}$	2		R11 1%↓	0	X	0	X	1	V
R12 7% ↓	6	V	9	v	5	√	R11 3% ↑	8	٧	8	\checkmark	2	V
R21 8% ↑	2	V	4	V	2	V	R12 2% ↑	1	√	0	X	1	√
R21 8%↓	12	V	13	V	2	V	R12 1% ↓	7	√	5	V	2	√
R22 9%↑	12	V	8	V	2	√ 	R21 3% ↑	0	X	1	V	3	V
R22 9% ↓	1	V	3	V	0	X	R21 2.5%↓	0	X	1	V	1	V
R31 10% ↑	8	V	7	V	2	√ 	R22 2%↑	1	V	2	V	3	V
R31 10% ↓	6	V	8	V	2	٧	R22 3% ↓	3	V	1	V	1	N
R32 11% ↑	2	V	7	V	3	V	R31 4% ↑	0	X	0	X	3	٧,
R32 11% ↓	10	V	6	V	3	√	R31 3.5% ↓	3	V	6	√ 	1	√
R41 12% ↑	5	V	7	V	2	V	R32 1% ↑	1	N	0	X	0	X
R41 12% ↓	5	V	13	V	2	V	R32 3% ↓	8	V	10	٧	3	٧
R42 13% ↑	10	N	8	V	4	V	R41 2%↑	0	X	0	X	0	X
R42 13% ↓ R51 14% ↑	1	N	4	N . l	3	ν 	R41 1%↓	0	X	0	X	0	V
R51 14% ↓	12	V	2	N al	0	X √	R42 3%↑	3	X	0	X √	1	\ \
R52 15% ↑	13 12	V	12 14	√ √	7	V	R42 1%1	1	V	1	V	1	Ž
R52 15% ↓	12	V	3	√ √	0	X	R51 1.5% ↑	0	X	2	Ž	1	į
R11 20% ↑	13	V	16	V	9	√ √	R51 1.8% J	3	√ ×	0	X	2	V
R11 20% ↓	1	, V	2	V	0	X	R52 2.3% ↑	0	X	0	X	1	√
R12 25% ↑	1	V	2	V	0	X	R52 2.9%↓	0	X	0	X	0	X
R12 25% ↓	28	V	43	$\sqrt{}$	28	$\sqrt{}$		Optimal O	rder - 16th	Optimal O	rder - 15th	Optimal Order - 15th	
R21 30% ↑	3	V	6		2	V		No. of	Fault Detection	No. of	Fault Detection	No. of	Fault
R21 30% ↓	15	$\sqrt{}$	25		10	$\sqrt{}$		Coefficients Out	Status	Coefficients Out	Status	Coefficients Out	Detection
R22 35% ↑	16	$\sqrt{}$	22	$\sqrt{}$	10	$\sqrt{}$		of Bound		of Bound		of Bound	Status
R22 35% ↓	5	V	4	$\sqrt{}$	5	$\sqrt{}$	R11 8%↑		V		√		ا
R31 36% ↑	9	V	11	V	7	√	R12 10% ↑	5	V	6	V	3	V
R31 36% ↓	3	V	2	$\sqrt{}$	1	V	R21 20% ↑						
R32 38% ↑	2	V	4	V	1	V	R22 15% ↓		\checkmark		\checkmark		
R32 38% ↓	22	V	46	V	35	V		6		5		2	
R41 40% ↑	3	V	5	V	1	√ ,	R31 20% ↓						
R41 40% \	13	V	12	V	9	V	R32 20% ↑		\checkmark		\checkmark		$\sqrt{}$
R42 42% ↑	19	V	23	V	13	√ ./	R41 10% ↑	23		13		5	
R42 42% ↓	2	N .1	3	. l	1	N	R52 30%↓		V		\checkmark		$\sqrt{}$
R51 44% ↑ R51 44% ↓	3	V	4	V	3	٧ ما	R51 20% ↑	5	Y	5	•	7	,
R51 44% ↓ R52 46% ↑	60	V	68	N N	57	√ √	R11 15% ↑				,		ı
R52 46% ↓	42	V	30	N N	30	V	R12 20% ↓ R42 18 % ↑	=0	$\sqrt{}$		\checkmark	25	V
	5	V	9	V	3	V	K42 18 %	78		57		37	

Case Study-3: PI Compensator of a Buck Converter

- ☐ It is the peak current-mode controlled DC-DC Buck converter using PWM control IC UC3843.
- A key functional block of this controller is the PI compensator (shown in Fig.), which is built using an error amplifier.
- ☐ The output voltage (Vout) is divided by the resistor dividetr network (Rf1 and Rf2) and then fed to the error amplifier

Fig.. PWM controller circuit of buck converter

Fig.. Schematic of a current programmed control buck converter

- ☐ The controller is crucial to maintain a constant output voltage.
- ☐ Therefore, the controller circuit must be properly designed and tested.
- ☐ In this study, we focus on parametric fault detection in the controller part of the Buck converter circuit.

The nominal values are:- R_{f1} =9.76 k Ω , R_{f2} =3.25 k Ω , R_{1} =1k Ω , C_{hf} =30pF, C_{comp} =2nF, R_{comp1} =10 M Ω , R_{comp} =80 k Ω

Illustration-5: PI Compensator of a Buck Converter

		PI CO	MPENSATOR	OF A BU	CK CONVERT	ER			1		PI C	OMPENSATO	R OF A BUC	CK CONVERT	ER		1	
Various Detec	ted Faults PI c		in the presence) & (20%-50%)		Various Det			in the prese	nce of faults wi				
Injected Faults		N _{MC}	=500			$N_{\rm MC}$ =	1000		Injected Faults		N_{MC}	=500			N _{MC}	=1000		
	Optimal Order – 6 th , Avg_dif =0.0162		Optimal Order – 7 th , Avg_dif =0.0161		Optimal Order – 6 th , Avg_dif =0.0164		Optimal Ore Avg_dif =]		Optimal Order – 6 th , Avg_dif =0.0162		Optimal Order – 7 th , Avg_dif =0.0161		Optimal Order – 6 th , Avg_dif =0.0164		rder – 7 th , =0.0162	
	No. of Coefficients Out of Bound	Fault Detecti on Status	No. of Coefficients Out of Bound	Fault Detecti on Status	No. of Coefficients Out of Bound	Fault Detectio n Status	No. of Coefficients Out of Bound	Fault Detecti on Status		No. of Coefficients Out of Bound	Fault Detectio n Status	No. of Coefficients Out of Bound	Fault Detectio n Status	No. of Coefficients Out of Bound	Fault Detectio n Status	No. of Coefficients Out of Bound	Fault Detectio n Status	
R1 6% ↑	0	Х	1	√	0	х	6	√	Rf1 2%↓	0	х	0	х	0	х	0	x	
R1 5.5% ↓	0	х	1	√	0	х	26	√	Rf2 1%↑	0	х	14	√	0	х	14	√	
R _{£2} 5.8% ↑	0	х	28	√	0	х	27	√	R1 3%↑	0	х	0	х	0	х	1	√	
R _{£2} 6% ↓	5	√	35	√	5	√	1	√	Chf 3%↓	0	х	12	√	0	х	14	√	
R _{fl} 7% ↑	0	х	3	√	0	х	1	√	Rcomp1		Х		√		Х		√	
R _{fl} 8.5% ↓	0	х	4	√	0	х	32	√	2.5% ↑	0	x	34	x	0	x	12	x	
Recourse 9% ↑	20	√	33	√	16	√	25	√	Rcomp 3.5% ↓	0	^	0	^	0	_ ^	0	_ ^	
R ₅₀₀₀₀ , 6.8% ↓	26	√	16	√	26	√	35	√	Ccomp2 <u>%</u> ↑	0	x	15	√	0	х		√	
R _{comp1} 7.5%↑	0	х	1	√	0	х	15	√	R1 2% ↓		х		х		х	11	х	
R _{compl} 5.6%↓	0	х	1	√	0	х	35	√	Rcomp1	0	х	0	x	0	x	0	√	
Cht_8% ↑	18	√	27	√	3	√	2	√	1.5% ↓	0		0		0		1		
Chf. 10 % ↓	0	Х	0	Х	0	х	35	√	Rcomp_2%↑	_	х		х		Х		х	
<u>Ccorpp</u> ,6%↑	1	√	2	√	1	√	7	√		0		0		0		0		
Ç _{сопур,} 6%↓	0	Х	1	√	0	√	25	√		PI COMPENSATOR OF A BUCK CONVERTER Various Detected Faults PI controller in the presence of MULTIPLE faults with deviations								
R <u>1 43% ↑</u>	1	√	2	√	1	√	5	√	Injected	various Detec		=500	tne presence	e of MCLTIPLI				
R1 28% ↓	1	√	2	√	1	√	35	√	Faults	Optimal Or			odon 7th	Ontimal On	N _{MC} =1000			
Rf2_35%_↑	22	√	7	√	18	√	35	√		Avg_dif =	=0.0162	rder – 6 th , Optimal Order – 7 th , =0.0162 Avg_dif =0.0161		Optimal Order – 6 th , Avg_dif =0.0164		Optimal Order – 7th Avg_dif =0.0162		
Rf2_40% ↓	18	√	1	√	0	Х	36	√		No. of Coefficients	Fault Detectio	No. of Coefficients	Fault Detectio	No. of Coefficients	Fault Detectio	No. of Coefficients	Fault Detectio	
Rf1 30% ↑ Rf1 25% ↓	26	√	33	√	26	√	35	√ √	-	Out of Bound	n Status	Out of Bound	n Status	Out of Bound	n Status	Out of Bound	n Status	
Rcomp 42%	27 0	X	33 24	√	27 0	X	35 18	√	Comp 10%↓ Chf 20%↑ R1 12%↓		1		√		, ,		1	
Rcomp 38%	0	х	1	√	0	х	35	√	R1 12%1	24		24	√	24	-J	36		
Rcomp1 37%↑	28	√	35	√	28	√	15	√	Rcomp1 - 22%↑ Rcomp=13 %↓								-	
Rcomp1 40%↓	27	√	36	√	27	√	13	√	Rcomp1 9%↓ Rcomp_ 13%↑	27	√	35	х	27	✓	35	√	
Chf 28% ↑	0	х	1	√	0	х	8	√	Rf1 18%↑									
Chf 35% ↓	0	х	1	√	0	х	35	√	Rf2 8% Ccomp 15%	4	√	0	√	1	-√	35	-√	
Ccomp 32%	27	√	35	√	27	√	35	√	Chf 11%↑ Rfl 9%↓									
Ccomp45%↓	28	√	36	√	28	√	34	√	Rf2 19%↑ R1 8%↑	3	✓	2	-√	2	-√	36	√	
COMMISSION									Rf1 12%↓ Rf2 14%↑	27		35		27		34		

NOISE ANALYSIS

- •Real-world circuits are affected by transient and steady-state noise.
- •Noise impacts behavior, performance, and fault detectability.
- •Simulating noise improves test robustness.

Noise Simulation Techniques

1. Random Noise Source

- •Add a voltage/current source with a defined DC value and noise amplitude.
- •Simulates real-time fluctuations at each time step.
- •Example: $1V \pm 0.2V$ generates a range from 0.9V to 1.1V.

2. RNDR Function (Transient/DC Analysis)

- •Injects a constant random value for the full simulation.
- •Example: (RNDR 0.5)/5 \rightarrow adds $\pm 0.1 \mathrm{V}$ random offset.

3. RNDC Function (Sweeps/Monte Carlo)

- •Generates different random values per sweep.
- •Useful for Monte Carlo, DC Sweep, Temperature Analysis.

COMPARISON

LEADLAG - in case of AC INPUT (SINE WAVE) with NOISE of 0.15mV

Various Detected Faults in LEADLAG in the presence of faults with deviations (5%-15%) & (20%-47%)

 N_{MC} =500, Avg_dif = 0.0420, Optimal Order – 18th

Injected Faults	WITHOUT	NOISE	WITH NOISE	
	No. of Coefficients Out of Bound	Fault Detection Status	No. of Coefficients Out of Bound	Fault Detection Status
R1 12%↑	113	√	151	√
R1 8% ↓	1	\checkmark	73	\checkmark
R2 9% ↑	0	X	63	\checkmark
R2 6%↓	0	X	64	√
R3 10% ↑	71	V	61	√
R3 7%↓	0	X	100	√
C1 13%↑	0	X	66	√
C1 15% ↓	3	√	63	√
C2 11% ↑	0	X	62	√
C2 14% ↓	10	√	71	√
R1 20%↑ R1 30%↓	163	√ ,	170	√
R2 32%	183	V	179	V
↑	34	√	73	√
R2 40% ↓	104	V	124	√
R3 25% ↑	174	√	161	√
R3 45% ↓	185	V	182	√
C1 42% ↑	17	$\sqrt{}$	77	√
C1 25% ↓	15	V	72	√
C2 35% ↑	38	V	72	V
C2 47% ↓	140	V	149	V

CONCLUSION

- ☐ Polynomial regression is effective for analog fault testing across both linear and non-linear circuits.
- ☐ Fault detection is accurate for:
 - Single faults: Detected reliably at deviations > ±5% (within expected design tolerances).
 - Multiple faults: Also successfully detected when two or more components deviate beyond tolerance.
- ☐ For deviations ≤ ±5%, faults are not flagged, as this lies within the allowable tolerance margin set during Monte Carlo construction.
- ☐ **Higher polynomial orders** improve detection capability but may introduce complexity or overfitting.
- ☐ Noise Robustness:
 - Verified using RNDR/RNDC noise sources in OrCAD PSpice.
 - Compared coefficients under noisy and clean conditions.

Future Work

Fault Diagnosis (Not Just Detection)

- Extend current approach to identify which component is faulty, not just detect that a fault exists.
- Use sensitivity ranking and component-wise coefficient deviation tracking.

Advanced Noise Modeling

- Simulate real-world noise sources including thermal drift, EMI, and fluctuating power supply noise.
- Analyze model stability under high-noise, low-SNR environments.

Integration with Machine Learning

 Combine polynomial features with ML classifiers (e.g. Decision Trees, SVMs) to detect and categorize multiple fault types

Toolchain Automation

Build a Python/MATLAB-based GUI or pipeline to automate tentire flow:
 Circuit → Simulation → Regression → Fault Report

References

- [1] S. Sindia, V. D. Agrawal and V. Singh, "Non-linear analog circuit test and diagnosis under process variation using V-Transform coefficients," 29th VLSI Test Symposium, Dana Point, CA, USA, 2011, pp. 64-69, doi: 10.1109/VTS.2011.5783756.
- [2] S. Sindia and V. D. Agrawal, "High sensitivity test signatures for unconventional analog circuit test paradigms," 2013 IEEE International Test Conference (ITC), Anaheim, CA, USA, 2013, pp. 1-10, doi: 10.1109/TEST.2013.6651884.
- [3] P. Bilski, "Analysis of the Ensemble of Regression Algorithms for the Analog Circuit Parametric Identification," Measurement, vol. 160, 2020, Art. no. 107829, doi: 10.1016/j.measurement.2020.107829.
- [4] Zhao, Dongsheng, and Yuzhu He. "A new test point selection method for analog circuit." Journal of Electronic Testing 31 (2015): 53-66.
- [5] A. A. Hatzopoulos, "Analog circuit testing," 2017 International Mixed Signals Testing Workshop (IMSTW), Thessaloniki, Greece, 2017, pp. 1-6, doi: 10.1109/IMS3TW.2017.7995206.
- [6] H. Kobayashi et al., "Analog/Mixed-Signal Circuit Testing Technologies in IoT Era," 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Kunming, China, 2020, pp. 1-4, doi: 10.1109/ICSICT49897.2020.9278194.
- [7] Sindia S, Agrawal VD, Singh V (2012) Parametric Fault Testing of Non-Linear Analog Circuits Based on Polynomial and V-Transform Coefficients. J Electron Test 28:757–771. https://doi.org/10.1007/s10836-012-5326-z
- [8] V. Riewruja and A. Rerkratn, "Four-quadrant analogue multiplier using operational amplifier," *International Journal of Electronics*, vol. 98, no. 4, pp. 459–474, 2011, doi: 10.1080/00207217.2010.520155.

MANUE