

Circuitos de Alta Frecuencia - Examen Parcial 2

Marzo 16, 2021

Nombre:______Exp.:____

1. La siguiente matriz de parámetros S fue medida a 10 GHz para una red de dos puertos tomando como referencia una impedancia característica de 50 Ω . a) ¿El circuito medido es recíproco?; b) ¿El circuito medido tiene pérdidas?; c) Si el puerto 2 se termina con un circuito abierto, ¿cuánto vale la pérdida de inserción (*insertion loss*) del puerto 1 al puerto 2?

$$S = \begin{bmatrix} 0.15^{\angle -155^{\circ}} & 0.85^{\angle 35^{\circ}} \\ 0.9^{\angle 35^{\circ}} & 0.15^{\angle -155^{\circ}} \end{bmatrix}$$

2. Se tiene un amplificador cuyo circuito equivalente es el mostrado en la figura, con $R_{\rm in}=10~{\rm K}\Omega$, $R_{\rm out}=25~\Omega$, y $A_{\nu}=-180$. Calcula sus 4 parámetros S suponiendo una impedancia de referencia $Z_0=50~\Omega$.

3. Se tienen dos líneas de transmisión conectadas en cascada, con diferente impedancia característica ($Z_1 = 25 \Omega$, $Z_2 = 75 \Omega$) y diferente longitud ($l_1 = 0.3\lambda$, $l_2 = 0.6\lambda$, a 1 GHz). Si $V_S = 10$ V a 1 GHz, $R_S = 50 \Omega$, y $R_L = 150 \Omega$, usando parámetros ABCD calcular el voltaje en la carga V_L .

- 4. El siguiente par de líneas microcinta está implementado con materiales convencionales, por lo que presenta algo de pérdidas. Sus parámetros S convencionales (no balanceados) están reportados en escala decimal (no en dB).
 - a) Si aumenta su longitud L,
 - $\xi |S_{21}|$ aumenta, disminuye, o se mantiene prácticamente igual?
 - $|S_{31}|$ aumenta, disminuye, o se mantiene prácticamente igual?
 - b) Si disminuye su separación S,
 - $|\zeta|S_{22}|$ aumenta, disminuye, o se mantiene prácticamente igual?
 - $|\zeta|S_{41}|$ aumenta, disminuye, o se mantiene prácticamente igual?

EVALUACION: 1: 25%; 2: 25%; 3: 30%; 4: 20%