Public-Key Encryption Based on LPN

Li Chen

lichen.xd at gmail.com

Xidian University

November 3, 2013

Outline

- 1 Basic LPN cryptosystem
- 2 Multi-bit LPN cryptosystem
- 3 Ring-LPN cryptosystem
- Discussion

References

[1] Ivan Damgård and Sunoo Park. Is public-key encryption based on lpn practical? In IACR Cryptology ePrint Archive, 2012.

Claim: Our slides are based on reference [1]

1 Basic LPN cryptosystem

Notations

- Ber $_{\tau}$ denotes the Bernoulli distribution with parameter τ .
- Ber $_{\tau}^{k}$ denotes the distribution of vectors in \mathbb{Z}_{2}^{k} , where each entry is drawn independently from Ber $_{\tau}$.
- Bin $_{n,\tau}$ denotes the binomial distribution with n trials, each with success probability τ .
- we use a bold lower case character z to denote a column vector, use a bold upper case character Z to denote a matrix.

Definition 1.1 Decisional LPN Problem Take parameters $n \in \mathbb{N}$ and $\tau \in \mathbb{R}$ with $0 < \tau < 0.5$ (the noise rate). A distinguisher D is said to (q,t,ε) -solve the decisional LPN $_{n,\tau}$ problem if

$$\Big|\Pr_{\mathbf{A}, mathbfs, \mathbf{e}}[\mathsf{D}(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}) = 1] - \Pr_{\mathbf{A}, \mathbf{r}}[\mathsf{D}(\mathbf{A}, \mathbf{r}) = 1]\Big| \geq \varepsilon$$

where $\mathbf{A} \overset{\$}{\leftarrow} \mathbb{Z}_2^{q \times n}$, $\mathbf{s} \overset{\$}{\leftarrow} \mathbb{Z}_2^n$, $\mathbf{e} \leftarrow \mathsf{Ber}_{\tau}^q$, $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_2^q$, and the distinguisher runs in time at most t.

Lemma 1.2 (Lemma 1 from []) If there exists a distinguisher D that (q,t,ε) -solve the decisional LPN_{n,\tau} problem, then there exists a distinguisher D' that (q',t',ε') -solve the search LPN_{n,\tau} problem.

Definition 1.3 (Decisional LPN Assumption, DLPN) For any probabilistic algorithm D that (q,t,ε) -solve the decisional LPN $_{n,\tau}$ problem for all large enough n, where τ is $\Theta(1/\sqrt{n})$, t is polynomial in n, and q is O(n), it holds that ε is negligible as a function of n.

Definition 1.4 (Basic LPN Cryptosystem) The basic LPN cryptosystem is a 3-tuple (BasicLPNKenGen, BasicLPNEnc, BasicLPNDec), with the parameters $n \in \mathbb{N}$, the length of the secret key, and $\tau \in \mathbb{R}$, the noise rate. All operations are performed over \mathbb{Z}_2 .

- BasicLPNKenGen(): Choose a secret key $sk = \mathbf{s} \in \mathbb{Z}_2^n$. The public key is $pk = (\mathbf{A}, \mathbf{b})$, where $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_2^{2n \times n}$, $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, $\mathbf{e} \leftarrow \mathsf{Ber}_{\tau}^{2n}$.
- BasicLPNEnc($pk = (\mathbf{A}, \mathbf{b}), v$): To encrypt a message bit $v \in \mathbb{Z}_2$, choose $\mathbf{f} \xleftarrow{\$} \mathsf{Ber}_{\tau}^{2n}$ and output cipertext (\mathbf{u}, c) , where $\mathbf{u} = \mathbf{A}^T \mathbf{f}$ and $c = < \mathbf{b}, \mathbf{f} > +v$.
- BasicLPNDec($sk = \mathbf{s}, (\mathbf{u}, v)$): The decryption is $d = c + < \mathbf{u}, \mathbf{s} >$.

Note:

$$d = \langle \mathbf{b}, \mathbf{f} \rangle + v + \langle \mathbf{u}, \mathbf{s} \rangle = \mathbf{b}^T \mathbf{f} + \mathbf{s}^T \mathbf{u} = (\mathbf{s}^T \mathbf{A}^T + \mathbf{e}^T) \mathbf{f} + \mathbf{s}^T \mathbf{A}^T \mathbf{f} + v = \mathbf{e}^T \mathbf{f} + v$$

Correctness: Only need to show $e^T f = 0$. To show this, we need some lemmas as follows.

Lemma 1.5 Let $\mathbf{X} \sim \mathsf{Bin}_{n,\tau}$, then the probability that \mathbf{X} is even is $\frac{1}{2} + \frac{(1-2\tau)^n}{2}$

Proof

•••

Lemma 1.6 For any k such that $\lim_{n\to\infty}\frac{n}{k}=\infty$, then it holds that $\lim_{n\to\infty}(1+\frac{k}{n})^n=e^k$.

Proof

...

Theorem 1.7 (Correctness) For any constant $\varepsilon > 0$, it holds that τ can be chosen with $\tau = \Theta(\frac{1}{\sqrt{n}})$ such that the probability of correct decryption by BasicLPNDec is at least $1 - \varepsilon$.

Proof

As we show above that $d=\mathbf{e}^T\mathbf{f}+v$. Let e_i and f_i denote the entries of \mathbf{e} and \mathbf{f} respectively. Define $C_i=e_if_i$ and $C=\sum_i C_i$, then $\mathbf{e}^T\mathbf{f}=0\iff C$ is even. Since each $C_i\sim \mathrm{Ber}_{\tau^2}$, independently and identically, so $C\sim \mathrm{Bin}_{2n,\tau^2}$. By Lemma 1.5, then $\Pr[\mathbf{e}^T\mathbf{f}=0]=\frac{1}{2}+\frac{(1-2\tau)^{2n}}{2}$. Take $0<\tau< O(\frac{1}{\sqrt{n}})$, then $\tau^2n=O(1)$, so $\lim_{n\to\infty}\frac{n}{\tau^2n}=\infty$. Applying Lemma 1.6 yields $\lim_{n\to\infty}(1-2\tau^2)^{2n}=e^{-2\tau^2(2n)}$. Hence, for large n, $\Pr[\mathbf{e}^T\mathbf{f}=0]\approx\frac{1+e^{-2\tau^2(2n)}}{2}$. If $\tau\leq\frac{c}{\sqrt{n}}$ for some constant c>0, then $\|-2\tau^2(2n)\|\leq 4c^2$, $\lim_{c\to 0}-2\tau^2(2n)=0$, so $\lim_{c\to 0}1+e^{-2\tau^2(2n)}=1$. It follows that take $\tau=\Theta(\frac{c}{\sqrt{n}})$, for any $\varepsilon>0$, the probability of correct decryption by BasicLPNDec is at least $1-\varepsilon$ provided by choosing c sufficiently close to 0.

2 Multi-bit LPN cryptosystem

Definition 2.1 (Multi-bit LPN Cryptosystem) The multi-bit LPN cryptosystem is a 3-tuple (MultiLPNKenGen, MultiLPNEnc, MultiLPNDec), with the parameters n and τ as in Definition 2.1, l=O(n), the length of plaintxt that can be encrypted in a single operation.

- MultiLPNKenGen(): Choose a secret key $sk = \mathbf{S} \in \mathbb{Z}_2^{n \times l}$. The public key is $pk = (\mathbf{A}, \mathbf{B})$, where $\mathbf{A} \xleftarrow{\$} \mathbb{Z}_2^{2n \times n}$, $\mathbf{B} = \mathbf{A}\mathbf{S} + \mathbf{E}$, $\mathbf{E} \leftarrow \mathsf{Ber}_{\tau}^{2n \times l}$.
- MultiLPNEnc($pk = (\mathbf{A}, \mathbf{B}), v$): To encrypt a message $\mathbf{v} \in \mathbb{Z}_2^l$, choose $\mathbf{f} \xleftarrow{\$} \mathsf{Ber}_{\tau}^{2n}$ and output cipertext (\mathbf{u}, \mathbf{c}) , where $\mathbf{u} = \mathbf{A}^T \mathbf{f}$ and $\mathbf{c} = \mathbf{B}^T \mathbf{f} + \mathbf{v}$.
- MultiLPNDec($sk = \mathbf{s}, (\mathbf{u}, \mathbf{v})$): The decryption is $\mathbf{d} = \mathbf{c} + \mathbf{S}^T \mathbf{u}$.

Note:

$$\mathbf{d} = \mathbf{B}^T \mathbf{f} + \mathbf{v} + \mathbf{S}^T \mathbf{u} = \mathbf{S}^T \mathbf{A}^T \mathbf{f} + \mathbf{E}^T \mathbf{f} + \mathbf{S}^T \mathbf{A}^T \mathbf{f} + \mathbf{v} = \mathbf{E}^T \mathbf{f} + \mathbf{v}$$

3 Ring-LPN cryptosystem

Notations: For a polynomial ring R = GF(2)[x]/(g(x)), the distribution $\operatorname{Ber}_{\tau}^R$ denotes the distribution over R, where each of the coefficients of the polynomial is drawn independently from $\operatorname{Ber}_{\tau}$. For a polynomial $r \in R$, let |r| denote the weight of r, i.e. the number of nonzero coefficients r has. Let r[i] denote the coefficient of x_i in r.

For matrix $A \in \mathbb{Z}_2^{m \times n}$, $B \in \mathbb{Z}_2^{m' \times n}$, let $A//B \in \mathbb{Z}_2^{(m+m') \times n}$ denote the vertical concatenation of A and B, i.e. A//B is the matrix whose rows are those of A followed by those of B.

For any polynomial $r \in R$ with degree n-1, let $\operatorname{vec}(r) \in \mathbb{Z}_2^n$ denote the column vector whose i^{th} entry is r[i], for all $0 \le i \le n$. And let $\operatorname{mat}(r) \in \mathbb{Z}_2^{n \times n}$ be the matrix such that for all $r' \in R$, $\operatorname{mat}(r)\operatorname{vec}(r') = \operatorname{vec}(r \cdot r')$. Note that the i^{th} column vector of the matrix $\operatorname{mat}(r)$ is exactly $\operatorname{vec}(rx^{i-1})$.

Definition 3.1 (Ring LPN Cryptosystem) The ring LPN cryptosystem is a 3-tuple (RingLPNKenGen, RingLPNEnc, RingLPNDec), with the parameters $n \in \mathbb{N}$, the length of the secret key, and $\tau \in \mathbb{R}$, the noise rate, and the ring R = GF(2)[x]/< g(x)>, with g(x) an irreducible polynomial of degree n.

- RingLPNKenGen(): Choose a secret key $sk = \mathbf{s} \leftarrow \mathbb{Z}_2^n$. The public key is $pk = (a_1, a_2, \mathbf{b})$, where $a_1, a_2 \leftarrow \mathbb{R}$, $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, for $\mathbf{A} = (\mathsf{mat}(a_1))^T / (\mathsf{mat}(a_2))^T$, $\mathbf{e} \leftarrow \mathsf{Ber}_{\tau}^{2n}$.
- RingLPNEnc($pk = (a_1, a_2, \mathbf{b}), v$): To encrypt a message bit $v \in \mathbb{Z}_2$, choose $f_1, f_2 \xleftarrow{\$} \operatorname{Ber}_{\tau}^{R,n}$, define $\mathbf{f} = \operatorname{vec}(f_1)//\operatorname{vec}(f_1)$, and output cipertext (\mathbf{u}, c) , where $\mathbf{u} = \mathbf{A}^T \mathbf{f}$ and $c = \langle \mathbf{b}, \mathbf{f} \rangle + v$.
- $\blacksquare \ \ \mathsf{RingLPNDec}(sk = \mathbf{s}, (\mathbf{u}, v)) \text{: The decryption is } d = c + <\mathbf{u}, \mathbf{s}>.$

Note:

(1)
$$\mathbf{d} = \mathbf{b}^T \mathbf{f} + v + \mathbf{s}^T \mathbf{u} = \mathbf{s}^T \mathbf{A}^T \mathbf{f} + \mathbf{e}^T \mathbf{f} + \mathbf{s}^T \mathbf{A}^T \mathbf{f} + \mathbf{v} = \mathbf{e}^T \mathbf{f} + v$$

$$(2) \mathbf{u} = \mathbf{A}^T \mathbf{f} = \mathsf{vec}(a_1 f_1 + a_2 f_2)$$

4 Discussion

To be continued:)

Thanks! & Questions?

