Assignment 5

Due: 8:30 am, 17 November 2022 (Thursday)

Course: Quantum Mechanics - 1

Tata Institute of Fundamental Research Hyderabad, India

Instructor: ramakrishnan@tifrh.res.in

Problem 1

a) Derive expressions for the Cartesian components of the angular momentum operator $(\hat{L}_x, \hat{L}_y, \hat{L}_z)$ in spherical polar coordinates (r, θ, ϕ) .

b) Show that $\hat{L}^2 = \hat{L}_{+}\hat{L}_{-} + \hat{L}_{z}^2 - \hat{L}_{z}$

c) Using results from a) express the raising and lowering operators, \hat{L}_{+} and \hat{L}_{-} , in spherical polar coordinates

d) Using results from a-c) show that

$$\hat{L}^{2}(\theta,\phi) = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial f}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2} f}{\partial \phi} \right]$$

Problem 2

Determine the eigenvalues and eigenfunctions of $\hat{L}^{2}\left(\theta,\phi\right)$ using the following steps.

Step-1: Start with

$$\hat{L}^{2}(\theta,\phi)\psi(\theta,\phi) = \lambda\psi(\theta,\phi)$$

Insert $\psi(\theta, \phi) = \Theta(\theta)\Phi(\phi)$ and simplify this equation to the form

$$f(\theta) = -g(\phi)$$

Step-2: From the above equation, we find that $f(\theta) = -g(\phi)$ for any value of ϕ . What this means is that $g(\phi)$ has to be a constant, k. Using this, we can write the above equation as two separate equations in θ and ϕ

$$f(\theta) = -k$$

$$g(\phi) = k$$

Solve the ϕ -equation using the boundary condition, $\Phi(0) = \Phi(2\pi)$. For solving $g(\phi) = k$ using this boundary condition, what are the allowed values of k?

Step-3: The associated Legendre differential equation is given by

$$\frac{d}{dz}\left[p(z)\frac{d}{dz}\right]y(z)+q(z)y(z)+\lambda r(z)y(z)=0,$$

where $p(z) = (1 - z^2)$, r(z) = 1, and $q(z) = -\frac{m^2}{1 - z^2}$. Note that according to the definition, $m^2 > 0$. Express the θ -equation, $f(\theta) = k$ in the form of the associated Legendre differential equation. What is the relation between k and m?

Step-4: The associated Legendre differential equation is solvable only when the eigenvalue, λ , satisfies the condition $\lambda = l(l+1)$, where l = 0, 1, ..., and when |m| < l. The eigenfunction of the differential equation, y(z), is a function of l and m. We denote the solutions as

$$P_l^{|m|}(z)$$

and call them the associated Legendre polynomials. Write $\Theta(\theta)$ as associated Legendre polynomials.

Step-5: The generalized orthonormal relation for the associated Legendre polynomials is given by

$$\int_{-1}^{+1} dz \, P_{l'}^{|m|}(z) P_{l}^{|m|}(z) = \frac{2}{2l+1} \frac{(l+|m|)!}{(l-|m|)!} \delta_{ll'}$$

where $\delta_{ll'}$ is the Kronecker delta. Using this information and the results from the previous steps, write the eigenfunctions of \hat{L}^2 in the normalized form. These eigenfunctions $\psi(\theta, \phi)$ are called as the spherical harmonics denoted by the symbol, $Y_{l,m}(\theta, \phi)$.

Step-5: Using results from the above steps, what are the eigenvalues of \hat{L}^2 ?