

R1.01 – TP5(B) Vecteurs en ArrayList – Parcours

L'objectif de ce TP est de confirmer votre pratique des vecteurs en ArrayList et des premiers algorithmes de parcours étudiés.

INTRODUCTION — À LIRE ATTENTIVEMENT !!!

Ce TP vous fait aller un peu plus loin sur les **ArrayList**: plutôt que de déclarer et manipuler des **ArrayList** de type **Integer**, **String** ou autre type classe enveloppe, vous allez définir un nouveau type Classe et déclarer et manipuler des **ArrayList** contenant des objets de ce nouveau type.

EXEMPLE: déclaration et manipulation d'un arraylist de **Point** (cf. cours 4 et TP4)

- Déclaration (2 formes) :
 - ✓ ArrayList<Point> vectPoint = new ArrayList<>();
 - ✓ ArrayList<Point> vectPoint = new ArrayList<>(Arrays.asList(unPoint, ...,
 ...));

où unPoint et les éléments sont des objets de type Point

- soit préalablement déclarés et initialisés
- soit créés au fil de leur insertion dans la liste avec : new Point(valeur_de_x, valeur_de_y), ou par saisie utilisateur
- Ajout <u>d'un élément</u> dans **vectPoint** (initialisation s'il est vide) :
 - 1. En fin du vecteur : vectPoint.add(cePoint);
 - À un indice k compris entre 0 et vectPoint.size(): vectPoint.add(k, cePoint);

où cePoint est un objet de type Point

- soit préalablement déclaré et initialisé
- soit créé lors de l'ajout avec : new Point(valeur_de_x, valeur_de_y), ou par saisie utilisateur
- Accès à l'élément d'indice k (objet de type Point stocké à l'indice k) : vectPoint.get(k)
- Accès à l'abscisse de l'élément d'indice k : vectPoint.get(k).get(x)

THÈME DU TP: BILAN SUR UN AN DE LA POLLUTION ATMOSPHÉRIQUE MENSUELLE EN DYOXIDE D'AZOTE DANS UN LIEU DONNÉ

Le dioxyde d'azote (NO₂) est majoritairement émis par le trafic routier.

Pour ce polluant, ont note chaque heure de la journée son maximum de concentration dans l'air (mesuré en $\mu g/m^3$), puis on fait la moyenne des maxima.

L'objectif de qualité recommandé en 2021^1 est de $10 \,\mu\text{g/m}^3$ en moyenne annuelle, la valeur limite de concentration à ne pas dépasser pour la protection de la santé humaine² étant de $40 \,\mu\text{g/m}^3$.

Un mois est considéré comme pollué (par le dioxyde d'azote) si la concentration relevée dépasse 40 µg/m³.

Dans ce TP, un relevé mensuel sera représenté par un objet instanciant une classe nommée **ReleveMensuel**Ses attributs seront le *mois* (*exemples* : *janvier*, *mars*) où il a été établi et la *concentration* moyenne calculée pour ce mois.

Avant de commencer

- Lisez entièrement les questions à tariter
- Ouvrez un terminal et placez-vous dans votre répertoire R1.01
- Lancez IJ avec la commande idea, puis créez un nouveau projet TP5_B

¹ https://apps.who.int/iris/bitstream/handle/10665/346555/9789240035423-fre.pdf?sequence=1&isAllowed=y

² https://www.ecologie.gouv.fr/sites/default/files/01_Tableau-Normes-Seuils%20r%C3%A9glementaires.pdf

1. Classe ReleveMensuel

- 1.1. Dans le projet TP5 B créez une classe ReleveMensuel
- 1.2. Dans la classe ReleveMensuel:
 - ✓ Déclarez les attributs : mois (type String) et concentration (type float)
 - ✓ Codez le constructeur :

```
public ReleveMensuel(String mois, float concentration) {
```

- ✓ Codez les getters:
- ✓ Ajoutez la fonction suivante (donnée) pour l'affichage d'un objet de type ReleveMensuel

```
public String toString() {
    return mois + " : " + concentration;
```

2. Classe Pollution (première approche d'un ArrayList de ReleveMensuel)

- 2.1. Dans le projet TP5_B créez une classe Pollution et inserez-y une procédure main
- 2.2. Dans la procédure main :
 - ✓ Déclarez un ArrayList de String, nommé lesMois et initialisé <u>par lot</u> avec la liste : ("janvier", "février", "mars", "avril", "mai", "juin", "juillet", "août", "septembre", "octobre", "novembre", "décembre")
 - ✓ Déclarez un ArrayList de ReleveMensuel, nommé testReleve
 - ✓ Ajoutez à testReleve : un relevé pour le mois de *janvier*, avec une concentration égale à 20,6, puis un relevé pour le mois de *mars*, avec une concentration égale à 40
 - ✓ Insérez en deuxième position dans testReleve un relevé pour le mois de février, de concentration égale à 45
 - ✓ Affichez testReleve
- 2.3. Exécutez et vérifiez que vous obtenez bien la trace d'exécution suivante :

```
[janvier : 20.6, février : 45.0, mars : 40.0]
```

3. Classe Utilitaire

- 3.1. Dans le projet TP5_B créez une classe Utilitaire
- 3.2. Ajoutez et codez dans cette classe les fonctions suivantes :
 - a) Saisie contrôlée d'un float positif ou nul

```
public static float saisieFloat() {
    //{ } => { résultat = un float saisi par l'utilisateur
    // dont la valeur est positive ou nulle }
```

b) Saisie d'un vecteur de relevés mensuels

```
public static ArrayList<ReleveMensuel>
saisieReleves(ArrayList<String> desMois) {
    // { desMois contient des chaînes représentant des mois de l'année }
    // => { résultat = un vecteur de ReleveMensuel
    // Pour chaque élément du vecteur résultat:
    // * mois est l'élément de même indice dans desMois
    // * concentration est un float >= 0 saisi par l'utilisateur }
```

c) Moyenne des concentrations

d) Concentration maximale

```
public static float maxConc(ArrayList<ReleveMensuel> desReleves) {
    //{ desReleves non vide } =>
    // {résultat = concentration la plus élevée dans desReleves}
```

e) Concentration minimale

```
public static float minConc(ArrayList<ReleveMensuel> desReleves) {
    //{ des RelevesNonVide } =>
    // {résultat = concentration la moins élevée dans desReleves}
```

f) Indicateur de pollution

```
public static boolean estPollue(ReleveMensuel unReleve, float seuil) {
    //{ } => {résultat = vrai si la concentration de unReleve
    // est supérieure à seuil }
```

g) Nombre de mois pollués

h) Nom du premier mois pollué

i) Niveau de pollution

```
public static String niveauPol(ReleveMensuel unReleve) {
    // { } =>
    // { résultat = * "bon" si concentration <= 10
    // * "moyen" si concentration dans ]10, 25]
    // * "dégradé" si concentration dans ]25, 40]
    // * "mauvais" si concentration dans ]40, 55]
    // * "très mauvais" si concentration dans ]55, 70]
    // * "extrêmement mauvais" si concentration > 70 }
```

4. Classe Pollution (saisie et analyse d'un bilan annuel de relevés)

- 4.1. Dans la procédure main de la classe Pollution
 - ✓ Mettez en commentaire les déclarations et instructions précédemment écrites à l'exception de la déclaration du vecteur lesMois
 - ✓ Déclarez :
 - une constante de type float nommée SEUIL_ALERTE et initialisée à 40.0f
 - un ArrayList de ReleveMensuel, nommé bilanAnnuel
 - ✓ Ajoutez les instructions suivantes :
 - Initialisation par saisie de bilanAnnuel avec en paramètre le vecteur lesMois
 - Affichage de bilanAnnuel
 - Affichage des différents indicateurs sur l'année : moyenne annuelle de la concentration en dioxyde d'azote, nombre de mois pollués (leur concentration doit être supérieure au seuil d'alerte), premier mois pollué (s'il y en a un), concentration maximum et concentration minimum
 - Pour chaque mois de l'année, affichage de son niveau de pollution

4.2. Exécutez et testez

5. Comparaison de bilans annuels sur deux années dans un même lieu

5.1. Dans la classe **Utilitaire** ajoutez la fonction suivante :

5.2. Dans la classe Pollution:

- Déclarez un nouvel ArrayList de ReleveMensuel, nommé bilanAnnuel2
- ✓ Initialisez-le par saisie
- ✓ Affichez-le, ainsi que sa moyenne annuelle et son nombre de mois pollués
- ✓ Affichez le résultat de la comparaison entre les vecteurs bilanAnnuel et bilanAnnuel2

NOTE: ce résultat sera affiché sous la forme d'un message

Exemple : Ce nouveau bilan montre une dégradation (resp. une amélioration ou la stabilité) de l'émission de dioxyde d'azote dans l'air, relativement au premier bilan