Assignment 6: Abstract Procedures

Ernesto Rodriguez

November 3, 2011

1 Problem 2

1.1 Part 1

Iteration Nr.	Call	Retrun Value
1	g(s(s(0)),0)	s(s(0))
2	g(0,s(0))	0
3	f(0)	0

1.2 Part 2

The recursion relation is as follows:

$$g = \{\langle 0, 1 \rangle, \langle n, n - 1 \rangle, \langle n, n \rangle\}$$

$$f = \{\langle n, n - 2 \rangle\}$$

1.3 Part 3

For f there is no infinite chain in the recursion relation so it terminates. For g the function terminates if both inputs are different. The reason is that (0,0) dosent terminate on g and since the function substracts one from every number on each iteration, the same numbers eventually get to (0,0);

1.4 Part 4

The 'readable' version of the function g would be:

$$g(x,y) = \begin{cases} ? & \text{if } x = y \\ 4 * y + (x - y)/2 + 1 & \text{if } x > y \\ 4 * x + (y - x)/ - 1 & \text{otherwise} \end{cases}$$

The function f simply halves it's argument.