Heritability

Nuno Carvalho

July 14, 2025

REML-based heritability estimation 1

These derivations are based on the Methods of [Yang et al., 2010].

1.1 Phenotype model

We can define a quantitative phenotype y as:

$$\mathbf{y} = \mathbf{X}_c \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Where:

- y: phenotypes. $N \times 1$ vector. Centered so that E[y] = 0.
 - -N: number of samples.
- \mathbf{X}_c : normalized genotypes for causal variants. $N \times M_c$ matrix.
 - M_c : number of causal variants.
 - Normalized according to $\mathbf{X}_{c,i} = \frac{\mathbf{X}'_{c,i} 2f_i}{\sqrt{2f_i(1-f_i)}}$.
 - \mathbf{X}'_c : allele dosages, taking on values of 0, 1, 2.
 - f_i : true population allele frequency for variant i.
 - Such that for each row (variant), $E[\mathbf{X}_{c,i}] = 0$ and $Var[\mathbf{X}_{c,i}] = 1$.
- β : per-normalized-genotype causal effects. $M_c \times 1$ vector.
 - Assume infinitesimal model.
 - Drawn from $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}\sigma_{\beta}^2)$.

 - I: $M_c \times M_c$ identity matrix. σ_{β}^2 : variance of causal effects.
- $-\epsilon$: residual effects (i.e. error or noise term). $N \times 1$ vector.
 - Drawn from $\epsilon \sim \mathcal{N}(0, \mathbf{I}\sigma_{\epsilon}^2)$.
 - I: $N \times N$ identity matrix.
 - $-\sigma_{\epsilon}^2$: residual variance.

We assume \mathbf{X}_c , $\boldsymbol{\beta}$, and $\boldsymbol{\epsilon}$ are all independent from each other.

1.2 Variance of the phenotype

By making use of the independence between terms, we can define the variance-covariance matrix of y as:

$$Var[\mathbf{y}] = Var[\mathbf{X}_{c}\boldsymbol{\beta} + \boldsymbol{\epsilon}]$$

$$= Var[\mathbf{X}_{c}\boldsymbol{\beta}] + Var[\boldsymbol{\epsilon}]$$

$$= Var[\mathbf{X}_{c}]Var[\boldsymbol{\beta}] + Var[\boldsymbol{\epsilon}]$$

$$= (\mathbf{X}_{c}\mathbf{X}_{c}^{\mathsf{T}})\sigma_{\beta}^{2} + \mathbf{I}\sigma_{\epsilon}^{2}$$

$$= \frac{\mathbf{X}_{c}\mathbf{X}_{c}^{\mathsf{T}}}{M_{c}}M_{c}\sigma_{\beta}^{2} + \mathbf{I}\sigma_{\epsilon}^{2}$$

$$= \mathbf{G}\sigma_{g}^{2} + \mathbf{I}\sigma_{\epsilon}^{2}$$

where we define $\mathbf{G} = \frac{\mathbf{X}_c \mathbf{X}_c^{\mathsf{T}}}{M_c}$ as the $N \times N$ genetic relationship matrix (GRM) between individuals. The G_{ii} element is the variance of individual i's normalized genotype vector, while the G_{ij} element is the covariance of individuals i and j's normalized genotype vectors.

We also define $\sigma_g^2 = M_c \sigma_\beta^2$ to be the variance of the total additive genetic effects on the phenotype. We can therefore think of individuals' phenotypes as being derived from the sum of a genetic random effect $\mathbf{g} = \mathbf{X}_c \boldsymbol{\beta}$ and a residual random effect $\boldsymbol{\epsilon}$. From the general rule of multivariable statistics that $\operatorname{Var}[\mathbf{A}\mathbf{v}] = \mathbf{A}\operatorname{Var}[\mathbf{v}]\mathbf{A}^{\mathsf{T}}$, we can write the genetic random effect as coming from a normal distribution:

$$\mathbf{g} \sim \mathcal{N}(\mathrm{E}[\mathbf{X}\boldsymbol{\beta}], \mathrm{Var}[\mathbf{X}\boldsymbol{\beta}])$$

Because $E[\boldsymbol{\beta}] = 0$, then $E[\mathbf{x}\boldsymbol{\beta}] = 0$. As for the variance, we can reuse the definitions from earlier, $Var[\mathbf{X}\boldsymbol{\beta}] = \mathbf{G}\sigma_q^2$. Therefore,

$$\mathbf{g} \sim \mathcal{N}(0, \mathbf{G}\sigma_g^2)$$

Narrow-sense heritability is defined as the proportion of phenotypic variance, σ_P^2 , explained by additive genetic effects:

$$h^2 = \frac{\sigma_g^2}{\sigma_P^2} = \frac{\sigma_g^2}{\sigma_q^2 + \sigma_\epsilon^2}$$

1.3 Estimating the GRM

In practice, we likely do not know the exact set of causal variants and instead must estimate the GRM using a set of genotyped SNPs:

$$\mathbf{A} = \frac{\mathbf{X}\mathbf{X}^{\mathsf{T}}}{M}$$

Where **A** is the estimated GRM, X is the normalized genotype matrix of our genotyped SNPs, and M is the number of genotyped SNPs. Note that because we are also working with a sample, X is normalized using sample allele frequencies, \mathbf{p} :

$$\mathbf{X}_i = \frac{\mathbf{X}_i' - 2p_i}{\sqrt{2p_i(1 - p_i)}}$$

However, this equation for **A** ignores the sampling error associated with each SNP. Let's consider the covariance computation between two individuals for SNP i, which is then summed across M SNPs to get the value for A_{jk} . When $j \neq k$:

$$A_{ijk} = x_{ij}x_{ik}$$

$$= \frac{x'_{ij} - 2p_i}{\sqrt{2p_i(1 - p_i)}} \frac{x'_{ik} - 2p_i}{\sqrt{2p_i(1 - p_i)}}$$

$$= \frac{(x'_{ij} - 2p_i)(x'_{ik} - 2p_i)}{2p_i(1 - p_i)}$$

Because x'_{ij} and x'_{ik} are independent from each other, the expected value of this is:

$$E[A_{ijk}] = E\left[\frac{(x'_{ij} - 2p_i)(x'_{ik} - 2p_i)}{2p_i(1 - p_i)}\right]$$

$$= \frac{(E[x'_{ij}] - 2p_i)(E[x'_{ik}] - 2p_i)}{2p_i(1 - p_i)}$$

$$= \frac{(2p_i - 2p_i)(2p_i - 2p_i)}{2p_i(1 - p_i)}$$

$$= 0$$

This makes sense if our sample is of unrelated individuals. If the raw genotypes of two individuals at a SNP are independent from each other, then the covariance of their adjusted genotypes should also be zero. Furthermore, the variance of A_{ijk} is given by:

$$Var[A_{ijk}] = Var\left[\frac{(x'_{ij} - 2p_i)(x'_{ik} - 2p_i)}{2p_i(1 - p_i)}\right]$$

$$= \frac{Var\left[(x'_{ij} - 2p_i)\right]Var\left[(x'_{ik} - 2p_i)\right]}{(2p_i(1 - p_i))^2}$$

$$= \frac{Var\left[(x'_{ij})\right]Var\left[(x'_{ik})\right]}{(2p_i(1 - p_i))^2}$$

$$= \frac{(2p_i(2 - p_i))(2p_i(2 - p_i))}{(2p_i(1 - p_i))^2}$$

$$= 1$$

So, the variance in A_{jk} is independent of allele frequency, which is a desirable property.

But do these properties hold up when j = k (i.e. variance of an indvidual's genotype)?

$$A_{ijj} = x_{ij}^{2}$$

$$= \left(\frac{x'_{ij} - 2p_{i}}{\sqrt{2p_{i}(1 - p_{i})}}\right)^{2}$$

$$= \frac{(x'_{ij} - 2p_{i})^{2}}{2p_{i}(1 - p_{i})}$$

For deriving $E[A_{ijj}]$, we make use of:

$$E[x'_{ij}^{2}] = \sum_{n=0}^{2} E[x'_{ij}^{2} | x'_{ij} = n] \Pr(x'_{ij} = n)$$

$$= (0)^{2} (1 - p_{i})^{2} + (1)^{2} 2p_{i} (1 - p_{i}) + (2)^{2} (p_{i})^{2}$$

$$= 2p_{i} - 2p_{i}^{2} + 4p_{i}^{2}$$

$$= 2p_{i}^{2} + 2p_{i}$$

Allowing us to calculate $E[A_{ijj}]$:

$$E[A_{ijj}] = E\left[\frac{(x'_{ij} - 2p_i)^2}{2p_i(1 - p_i)}\right]$$

$$= \frac{E[x'_{ij}^2 - 4p_ix'_{ij} + 4p_i^2]}{2p_i(1 - p_i)}$$

$$= \frac{E[x'_{ij}^2] - 4p_iE[x'_{ij}] + 4p_i^2}{2p_i(1 - p_i)}$$

$$= \frac{2p_i^2 + 2p_i - 4p_i(2p_i) + 4p_i^2}{2p_i(1 - p_i)}$$

$$= \frac{2p_i - 2p_i^2}{2p_i(1 - p_i)}$$

$$= \frac{2p_i(1 - p_i)}{2p_i(1 - p_i)}$$

So, the expected variance of an individual's normalized genotype is 1 and independent of the allele frequency, which is a desirable property. However, this frequency-independence does not hold for the variance. For simplicity, let's denote $P = 2p_i(1 - p_i)$ and make use

of $Var[Y] = E[Y^2] - E[Y]^2$:

$$Var[A_{ijj}] = Var[\frac{(x'_{ij} - 2p_i)^2}{P}]$$

$$= \frac{Var[(x'_{ij} - 2p_i)^2]}{(P)^2}$$

$$= \frac{E[((x'_{ij} - 2p_i)^2)^2] - E[(x'_{ij} - 2p_i)^2)]^2}{(P)^2}$$

$$= \frac{(P) - (P)^2}{(P)^2}$$

$$= \frac{(P)(1 - P)}{(P)^2}$$

$$= \frac{1 - P}{P}$$

$$= \frac{1 - 2p_i(1 - p_i)}{2p_i(1 - p_i)}$$

The full derivation for why $E[((x'_{ij}-2p_i)^2)^2] = E[(x'_{ij}-2p_i)^2] = 2p_i(1-p_i)$ is very lengthy algebraically, but can be shortcutted by using the formula for the higher moments of a binomially distributed variable, where n=2 and $p=p_i$. Importantly, the variance of A_{jj} therefore depends on the allele frequencies of the SNPs, even after normalization. A would be a better estimator of the GRM if for the same individual, its variance did not depend on the allele frequency, so we want to adjust A_{ijj} so that $E[A_{ijj}] = 1$ like before, but also that $Var[A_{ijj}] = 1$ like for unrelated individuals.

To be frank, I am not sure how the authors derived it, but this equation holds both properties:

$$A_{ijj} = 1 + \frac{x_{ij}^{2} - (1 + 2p_i)x_{ij} + 2p_i^{2}}{2p_i(1 - p_i)}$$

We now explicitly define **A** as follows:

$$A_{jk} = \frac{1}{N} \sum_{i=1}^{M} A_{ijk} = \begin{cases} \frac{1}{N} \sum_{i=1}^{M} \frac{(x'_{ij} - 2p_i)(x'_{ik} - 2p_i)}{2p_i(1 - p_i)}, & j \neq k \\ 1 + \frac{1}{N} \sum_{i=1}^{M} \frac{x'_{ij}^2 - (1 + 2p_i)x'_{ij} + 2p_i^2}{2p_i(1 - p_i)}, & j = k \end{cases}$$

1.4 Estimating the genetic variance component through REML

Notice that earlier, we were able to define the phenotype \mathbf{y} as a sum of random effects, treating \mathbf{A} as a good approximation of bG:

$$\mathbf{y} = \mathbf{g} + \boldsymbol{\epsilon}$$
 where $\mathbf{g} \sim \mathcal{N}(0, \mathbf{A}\sigma_q^2)$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}\sigma_\epsilon^2)$

The unknown parameters here, σ_g^2 and σ_ϵ^2 , can be estimated through REML (Restricted Maximum Likelihood; since this model doesn't include any fixed effects, simple Maximum Likelihood would also suffice). See the entry on "Maximum Likelihood" for a derivation of how variance component parameters are estimated through REML.