

Deep Researcher with Test-Time Diffusion

Rujun Han^{*1}, Yanfei Chen^{*1}, Zoey CuiZhu², Lesly Miculicich¹, Guan Sun², Yuanjun Bi², Weiming Wen², Hui Wan², Chunfeng Wen², Solène Maître², George Lee¹, Vishy Tirumalashetty², Emily Xue², Zizhao Zhang², Salem Haykal², Burak Gokturk¹, Tomas Pfister¹ and Chen-Yu Lee¹

¹Google Cloud AI Research, ²Google Cloud

未开源

本文提出TTD-DR(Test-Time Diffusion Deep Researcher),一种未开源的基于multi-agent的Deep Research方案,作者说是受到人"先写草稿再查资料修正得到最终版本"的写作方式启发,并且将查阅资料修正的过程类比为扩散模型的去噪过程。TTD-DR主要包含了两个核心机制: 1) 对各个单独的agent 模块(比如生成写作plan、生成查询query、生成answer、修正写作)执行self-evolution,比如生成plan的agent不断修改plan; 2)以当前版本草稿为核心,动态生成和query、plan相关的检索问题,然后调用搜索引擎获取answer,再根据(检索问题,answer)对草稿进行更新,这是一个迭代的过程。

背景

本文属于DeepResearch方向的工作,研究背景和意义就不多说了。

作者受到人写作的过程启发: 先写出草稿,再通过从外部查阅信息反复修订完善,最终得到终稿。然后将将这一写作过程类比为扩散模型中的采样/去噪过程,即从噪声的draft出发,结合外部信息逐步"去噪"生成最终报告,提出了Test-Time Diffusion Deep Researcher(TTD-DR)框架。

实验设置

- 评估数据集: 1) 生成报告类型的任务,LongForm Research和DeepConsult; 2) 复杂的QA任务,HLE 和GAIA
- multi-agent 框架:本文本质上是multi-agent system,用Google自家的Agent Development Kit (ADK)编程实现;用Gemini-1.5-pro as a judge

	LongForm Research Win Rate	DEEPCONSULT Win Rate	HLE-SEARCH Correctness	HLE-FULL Correctness	GAIA Correctness
OPENAI DEEP RESEARCH			29.1	26.6	67.4
LLM w/o agentic workflow					
GEMINI-2.5-FLASH	21.0	16.7	2.8	11.6	31.5
GEMINI-2.5-FLASH W/ SEARCH TOOL	27.8	17.6	14.6	14.6	57.6
GEMINI-2.5-PRO	31.0	17.6	8.6	20.9	57.0
GEMINI-2.5-PRO W/ SEARCH TOOL	35.0	19.6	20.0	21.6	61.8
Test-Time Diffusion Deep Researcher (ours	s)				
BACKBONE DR AGENT	39.4	24.5	26.8	28.6	61.8
+ Self-evolution	60.9	59.8	30.6	29.4	63.0
+ DIFFUSION WITH RETRIEVAL	69.1	74.5	33.9	34.3	69.1

TTD-DR

★标记的是支持self-evolve的agent子模块,由于未开源并且我认为写的也不算详细,所以感兴趣的朋友,只能自己思考如何实现了。

整体上来说,就是根据当前版本,集合搜索引擎生成(query, answer)获取外部知识来更新,得到新版本, 这是一个迭代的过程。

思考

首先,作者假设人在写作时是先写一份完整的初稿,再不断去修正得到终稿,但是以我自己的写作习惯来说,我是按section/段落来写,每个section都反复经历润色,最终得到终稿。当然不是说假设不合理,顶多算是不能覆盖所有场景。

其次,所谓的扩散模型,我感觉更多的是一种写作包装,从模型结果和技术实现上来看,和扩散模型没 关系。

