

### Outline

- 1. Introduction and Background
- 2. STAR and Neutral Triggers
- 3. Previous Measurements
- 4. Jet Reconstruction
- 5. Summary and Outlook



www.flickr.com/photos/brookhavenlab/

# Introduction and Background

### Why Jets?

- Jets are excellent probes of medium properties
  - » Produced early in collision by hardscattered partons
  - » Described perturbatively
- Jet-Quenching: suppression of high energy particles due to partonic energy loss
  - » Partons lose energy via radiative and collisional interactions with QGP
  - » Depends on  $E_0$ , L,  $C_A/C_F$ ,  $\hat{q}$ ,  $\alpha_S$ , etc...
  - » Can measure by comparing Au+Aucollisions to p+p-collisions



### **Direct Photons**

- Prompt photon ( $\gamma^{prompt}$ ): photon scattered from energetic partons
  - » Doesn't strongly interact with medium so (to leading order)

$$E_T^{\gamma} \approx E_T^{parton}(t_0)$$

- ∴ Provides a well-calibrated probe of partonic energy loss...
  - Wang et al.; PRL 77, 231 (1996)
- An admixture of prompt, thermal, and fragmentation photons is measured
  - » Collectively referred to as direct photons  $(y^{dir})$
  - » Thermal contribution is negligible (at sufficient energies)

#### Campbell; PRC 92, 014907 (2015)



### Neutral Triggered Jets

- Energetic  $\pi^0$ : produced as part of a jet
  - » Biased towards surface emission
  - » Mostly opposite gluon jets ( $C_A = 3$ )
    - De Florian et al.; PRD 75, 114010 (2007)
    - Albino et al.; Nucl. Phys. B 725, 93206 (2005)
- Energetic  $\gamma^{dir}$ : on the other hand...
  - » No surface bias
  - » Mostly opposite quark jets ( $C_F = 4/3$ )
- $\circ$  Comparison of jets opposite  $\gamma^{dir}$  to those opposite energetic  $\pi^0$ 
  - » might illuminate path length and color factor dependence...
  - $\because$  On average, jets opposite  $\gamma^{dir}$  expected to lose less energy than those opposite  $\pi^0$



T. Renk; arXiv:1212.0646

# STAR and Neutral Triggers

### STAR As a Jet Detector

- STAR is well-equipped for jet measurements:
  - a) Time Projection Chamber (TPC)
    - Charged particles
    - $p \in (0.1, 30) \text{ GeV}/c$
  - b) Barrel Electro-Magnetic Calorimeter (BEMC)
    - Neutral particles
    - $-\pi^0$ ,  $\gamma$  discrimination
    - $-\Delta \varphi \times \Delta \eta = 0.05 \times 0.05 \text{ sr}$
  - » Both cover  $\varphi=2\pi,\eta=\pm1$  in acceptance



STAR; PRD 86, 032006 (2012)

### The BSMD

- o A grid of readout wires situated at  $\sim 5.6 X_0$  in each BEMC tower
  - » Used to create spatial profile of EM shower in BEMC
  - » Very fine granularity:  $0.007 \times 0.007$  in  $\Delta \eta \times \Delta \varphi$
- $\circ$  Permits discrimination of  $\pi^0$  from isolated  $\gamma$ 
  - 1) Clusters of 1 2 towers are created from BEMC response
  - 2) Centroid of cluster determined by BSMD
  - 3) Then  $\pi^0$  and  $\gamma$  discriminated via shape analysis of EM shower.



### **TSP**

• Transverse Shower Profile (TSP): tuned to give biggest discrimination between  $\pi^0$  and isolated  $\gamma$  showers:

$$TSP \equiv \frac{E_{cluster}}{\sum_{i} E_{i}^{strip} r_{i}^{1.5}}$$

- »  $E_{cluster}$  is total energy of cluster
- »  $E_i^{strip}$  is energy of i<sup>th</sup> strip
- »  $r_i$  is distance from strip to center of cluster
- $\circ$  Split triggers into a sample of nearly pure  $\pi^0$  (~99%) and a sample with enhanced fraction of  $\gamma^{dir}$  ( $\gamma^{rich}$ )

$$N^{\gamma^{dir}}/N^{\gamma^{rich}} \sim 40\%$$
 (p+p)

- » Purity is  $\sim 70\%$  for Au+Au (due to jet quenching)
- » Viable for  $p_T^{trg} \in (8,20) \text{ GeV}/c$

#### Sahoo; arXiv:1512.08782



## Previous Measurements

## $\gamma$ , $\pi^0$ - $h^\pm$ Measurement at STAR

- $\circ \gamma^{dir}$ ,  $\pi^0$ -hadron correlation measured by STAR:
  - » Measure per-trigger yield of away-side charged hadrons opposite  $\gamma^{dir}$ ,  $\pi^0$
  - » Away-Side:  $|\Delta \varphi \pi| < 1.4$
- Nuclear Modification Factor: quantifies medium modification

$$I_{AA}(x) \equiv \frac{D^{AuAu}(x)}{D^{pp}(x)}$$

- » D''(x) is the (conditional) per-trigger yield
- » x can be  $p_T^{assoc}$ ,  $z_T$ , etc.

$$z_T \equiv \frac{p_T^{assoc}}{p_T^{trig}}$$

#### STAR; PLB 760, 689 (2016)



## $\gamma$ , $\pi^0$ - $h^\pm$ Measurement at STAR

- $\circ$  Suppression expected to differ between  $\gamma^{dir}$ -hadrons and  $\pi^0$ -hadrons
  - » **NOT** seen within uncertainties

o Qin: PRC 80, 054909 (2009)

o **ZOWW:** PRL 103, 032302 (2009)

#### STAR; PLB 760, 689 (2016)



## $\gamma$ , $\pi^0$ - $h^\pm$ Measurement at STAR

- $\circ$  However,  $\gamma^{dir}$ -hadrons suggest that...
  - » Lower  $p_T^{assoc}$  less suppressed than higher  $p_T^{assoc}$
  - » Consistent with previous STAR jet-hadron correlation
    - STAR; PRL 112, 122301 (2014)
    - Cf. N. Elsey's talk
- o Qin: PRC 80, 054909 (2009)
- o **ZOWW:** PRL 103, 032302 (2009)



## $\gamma$ - $h^{\pm}$ Measurement at PHENIX

- $\circ$  Lost energy reappearing at low  $p_T$  rather than low  $z_T$  corroborated by PHENIX measurements:
  - » Reported  $I_{AA}^{\gamma^{dir}} > 1$  for low  $z_T$ 
    - PHENIX; PRL 111, 032301 (2013)
  - » For fixed  $z_T$  ∈ (0.1, 0.4)
    - STAR:  $p_T^{trig} \in (12, 20) \Rightarrow p_T^{assoc} \in (1.2, 8)$
    - **PHENIX:**  $p_T^{trig} \in (5,9) \Rightarrow p_T^{assoc} \in (0.5, 3.6)$
  - » See also M. Connors' talk
- Now pursuing more precise techniques to better
  - » Probe suppression at lower  $p_T^{assoc}$
  - » Investigate non-observation of differences between  $\gamma^{dir}$  and  $\pi^0$  suppression



## Jet Reconstruction

### Semi-Inclusive Jets

- Jets are attractive observables...
  - » Sensitive to soft sector:
    - $-p_T^{cst} > 0.2 \text{ GeV/}c$
  - » Integrates over details of hadronization
  - » Allows for inter-jet correlations
- Jets are built from TPC tracks (charged constituents) and BEMC towers (neutral constituents)
  - » Charged Jets: built from only charged constituents
    - Easy to calibrate
    - But still sensitive to medium modifications
  - » Full jets: built from charged and neutral constituents
    - Not as easy to calibrate
    - But offer much more precise measurement of jet energy



### Semi-Inclusive Jets

- $\circ$  Recoil Jets: any jet satisfying  $\left|\Delta \varphi^{jet} \pi \right| < \pi/4$ 
  - »  $p_T^{jet} \in (0.2, 30) \text{ GeV}/c$
  - » Event-wise energy pedestal via:

$$p_T^{reco} = p_T^{jet} - \rho \cdot A^{jet}$$

#### O Semi-Inclusive Jet Measurement:

- 1) Select collisions with high energy  $\gamma^{dir}$  or  $\pi^0$
- 2) Cluster **charged (and neutral)** constituents into full jets using anti- $k_T$
- 3) Count all recoil jets
- 4) Compare yields in Au+Au to those in p+p



### **Jet Corrections**

- Numerous sources of background and distortion:
  - a) Jet reconstruction
  - b) Underlying event
  - c) Local fluctuations in the HI bkgd. (Au+Au)
  - d) Detector effects
- Similar measurement of semi-inclusive hadron-jet correlations by STAR utilizes these correction schemes:
  - a) Mixed event: correct background on statistical basis (Au+Au only)...
    - Underlying event
  - **b) Regularized unfolding:** correct for fluctuations in bkgd. and bin migration...
    - Detector effects
    - Local fluctuations in HI bkgd.
  - » STAR; PRC 96, 024905 (2017)

Particle level

**Underlying Event** 

Local HI Fluctuations

**Detector Effects** 

**Detector Level** 

Jet Reconstruction

### **Detector Effects**

Ounfolding: detector effects, pileup, etc. encoded in a Response Matrix  $R_{i,i}$  i.e.

$$M_j = R_{ij}T_i$$

» True spectrum can be obtained from measured spectrum via unfolding:

$$R_{ij}^{-1}M_j=T_i$$

- Unfolding approximates  $R_{ij}^{-1}$
- And mitigates influence of fluctuations
- Response matrix obtained via embedding procedure:
  - 1) Dijet (2-to-2 scattering) events are simulated using PYTHIA6 (Perugia 0)
  - 2) Dijet events are passed through Geant simulation of STAR
  - 3) Simulated detector response is mixed in with real zero-bias pp-data
  - » Matching particle jets to detector jets gives response matrix



## Summary and Outlook

- Jets opposite neutral triggers may provide a powerful probe of in-medium energy loss
  - » Comparison of jets opposite  $\gamma^{dir}$  to those opposite energetic  $\pi^0$  may shed light on path-length and color factor dependence
- o Gamma-Hadron Measurement: No difference in suppression observed within kinematic range between charged hadrons opposite  $\gamma^{dir}$  to those opposite energetic  $\pi^0$ 
  - » Now investigating with more precise techniques
  - » i.e. full jet reconstruction
- Gamma-Jet Analysis in p+p and Au+Au is well underway!

### Thank You!

# Backup

## Analysis Details

#### Data used:

- » Run 9, 200 GeV pp-collisions
- » L2-Gamma Stream
- » 42,508 triggered events
  - 18,426  $\pi^0$ -triggers
  - 24,082  $\gamma^{rich}$ -triggers
- »  $\pi^0$  and  $\gamma^{rich}$  identified using Transverse Shower Profile (TSP) cuts

#### o Trigger definition:

- »  $E_T^{trg} \in (9,20) \text{ GeV}, |\eta_{det}^{trg}| < 0.9$
- » TSP cuts:
  - TSP < 0.08 for  $\pi^0$
  - $TSP \in (0.2, 0.6)$  for  $\gamma^{rich}$
- » Additional QA cuts:
  - $-\sum p^{match} < 3 GeV/c$
  - $-e_{\eta}^{strip}, e_{\varphi}^{strip} \ge 0.5 \text{ GeV}$

#### Tower requirements:

- $E_{raw}^{twr} > 0.2 \ GeV$
- $E_{corr}^{twr} \in (0.2,20) \ GeV$ 
  - 'corr' indicates 100% hadronic correction
- $|\eta_{det}^{trg}| < 0.9$

#### o Track requirements:

- $p_T^{trk} \in (0.2,20) \ GeV/c$
- $|\eta^{trk}| < 1$
- » Additional QA cuts:
  - $-N_{fit} \ge 15, N_{fit}/N_{poss} \ge 0.52$
  - -dca < 1 cm (global)

#### O Jet details:

- » Clustered with FastJet 3.0.6
- » Anti- $k_T$  algorithm
- » R = 0.3 (and more)
- »  $|\eta^{jet}| < 1 R$
- $p_T^{jet} \in (0.2, 30) \ GeV/c$
- »  $A^{jet} > 0.2$  (for R = 0.3)
- » Recoil jets is any jet with  $\left|\Delta\varphi^{jet}-\pi\right|<\pi/4$

### Data Analyzed

#### o pp-data:

- » Recorded in 2009 (Run 9)
- $\sqrt{s} = 200 \text{ GeV}$

#### AuAu-data:

- » Recorded in 2014 (Run 14)
- »  $\sqrt{s_{NN}} = 200 \text{ GeV}$

#### Embedding Sample

- » Used to assess efficiencies, etc.
- » Simulated pp-collisions embedded into 2009 zero-bias pp-data (Run 9),  $\sqrt{s} = 200$  GeV

## Underlying Event

#### O Mixed Event:

- » Create pseudo-event from randomly selected tracks
  - Randomly select 1 track per real event
  - Add it to the Mixed Event
  - Use only events with same centrality, evt. plane, vtx. z-position
- » Very good description of combinatorial background (in AuAu)



### Au+Au charged hadron-triggered jet spectrum compared to mixed-event spectrum



STAR; PRC 96, 024905 (2017)

- Off-axis cone: one possible alternative to Mixed Events in pp...
  - » Select jets falling in these regions:

$$\Delta \varphi^{jet} \in (\pi/4, \pi/2)$$
  
 $\Delta \varphi^{jet} \in (3\pi/2, 7\pi/4)$ 

- » Possible way to extract large-angle correlations in AuAu...
  - By comparison to Mixed Events
- Off-axis yield normalized to:

$$\frac{\left\langle N_{OA}^{jet}\right\rangle - \left\langle N_{RE}^{jet}\right\rangle}{\left\langle N_{OA}^{jet}\right\rangle}$$

- »  $N_{OA}^{jet}$  is the no. of jets in off-axis region
- »  $N_{RE}^{jet}$  is the no. of recoil jets in acceptance

