

Figure 1. An illustration of the proposed graph pooling layer with k=2. \times and \odot denote matrix multiplication and element-wise product, respectively. We consider a graph with 4 nodes, and each node has 5 features. By processing this graph, we obtain the adjacency matrix $A^{\ell} \in \mathbb{R}^{4 \times 4}$ and the input feature matrix $X^{\ell} \in \mathbb{R}^{4 \times 5}$ of layer ℓ . In the projection stage, $\mathbf{p} \in \mathbb{R}^{5}$ is a trainable projection vector. By matrix

multiplication and $\operatorname{sigmoid}(\cdot)$, we obtain $\mathbf y$ that are scores estimating scalar projection values of each node to the projection vector. By using k=2, we select two nodes with the highest scores and record their indices in the top-k-node selection stage. We use the indices to extract the corresponding nodes to form a new graph, resulting in the pooled feature map \tilde{X}^ℓ and new corresponding adjacency matrix $A^{\ell+1}$. At the gate stage, we perform element-wise multiplication between \tilde{X}^ℓ and the selected node scores vector $\tilde{\mathbf y}$, resulting in $X^{\ell+1}$. This graph pooling layer outputs $A^{\ell+1}$ and $X^{\ell+1}$.