Interro 4.3 - Magnétostatique

1. Donner la relation entre courant et vecteur densité de courant volumique. Soit un fil parcouru par un courant de 1A et de section 10^{-6} m², calculer numériquement la densité de courant volumique. j = ...Donner la relation entre vecteur densité de courant volumique et vitesse des porteurs de charge. Il y a dans le fil un électron par atome donc $\rho=10^{21}~\mathrm{C.m^{-3}},$ calculer numériquement la vitesse des électrons dans le fil précédent, c'est très lent! v = ...2. Soit D une distribution de courant engendrant un champ \vec{B} Soit Π est un plan de symétrie de D, si $M \in \Pi$ alors \vec{B} ... Soit Π^* est un plan d'anti-symétrie de D, si M $\in \Pi^*$ alors \vec{B} ... Si D est invariant par translation selon $\vec{e}_z,$ alors B(x,y,z) ... Si D est invariant par rotation autour de (O, \vec{e}_z) , alors $B(r, \theta, z)$... 3. Donner la conservation du flux magnétique. $\dots = \dots$ Si les lignes de champs se resserrent alors ... 4. Donner (sans démonstration) la loi de Van't Hoff. $\dots = \dots$ Soit une réaction exothermique, si T augmente alors l'équilibre est déplacé dans le sens ...

Soit une réaction endothermique,

si T augmente alors l'équilibre est déplacé dans le sens \dots