

Start-Tech Academy

Divides P dimensional space into two parts

1. One Dimensional space

2. Two Dimensional space

3. Three Dimensional space Will be a 2 Dimensional plane

Hyperplane

Hyperplane

X1	X2	Category
60	82	Pass
20	42	Fail
		•••
91	72	Pass

- Two predictor variables ->2D predictor space
- We want to find 1D (Line) hyperplane which separates this space into 2 parts

Infinite hyper planes

If data is perfectly separable

Steps

- Calculate the perpendicular distance of observations from Hyperplane
- 2. Minimum value of distance is called margin
- 3. Choose the Hyperplane with maximum value of Margin

Support Vectors

- The observations which fall on margin are known as Support Vectors
- These classifiers depend on support vectors only
- That is why this technique is different from conventional ML techniques

