Série 1

David Wiedemann, Nino Courtecuisse, Matteo Mohammedi

11 mars 2022

1

On montre la double implication.

 \leftarrow

Pour montrer que p est une application quotient, il suffit de montrer que $F \subset B$ est fermé si et seulement si $p^{-1}(F)$ est fermé .

Puisque p est continue (c'est la composition de q avec l'inclusion $A \hookrightarrow X$), si F est fermé alors $p^{-1}(F)$ est fermé.

De plus, si $p^{-1}(F)$ est fermé, alors c'est un ensemble fermé saturé et par hypothèse il existe un fermé saturé $E \subset X$ tel que $E \cap A = p^{-1}(F)$ d'ou $q(E) \cap B = F$ et ainsi F est fermé.

On a alors bien que q(E) est un fermé puisque E etait un fermé saturé.

 \Longrightarrow

Supposons maintenant que p est un quotient, soit $F \subset A$ un fermé p-saturé. Ainsi, puisque p est un quotient, p(F) est un fermé de B.

On pose alors $E' = \operatorname{cl}_Y p(F)$, ie. l'intersection sur tous les fermés de Y contenant p(F) et on définit $E = q^{-1}(E')$.

Remarquons d'abord que

- E est q-saturé, car c'est une préimage d'un ensemble de $Y = X/\sim$, et ainsi une reunion de classes d'équivalence
- E est fermé, en effet, c'est la préimage d'un fermé.

On prétend que $F = E \cap A$.

En effet, l'inclusion $F \subset E \cap A$ suit du raisonnement suivant :

Soit $f \in F$, alors $p(f) \in p(F) \subset \operatorname{cl}_Y(p(F))$, et donc $f \in p^{-1}(\operatorname{cl}_Y(p(F))) \subset q^{-1}(\operatorname{cl}_Y(p(F)))E$ et de plus $f \in A$ puisque $F \subset A$, on en deduit que $f \in E \cap A$.

On montre donc l'inclusion $F \supset E \cap A$.

Puisque $F \subset A$ est un fermé saturé, $p(F) \subset B$ est fermé et donc il existe un fermé $K \subset Y$ tel que $K \cap B = p(F)$ (par définition de la topologie quotient) et donc $q^{-1}(K) \cap A = F$.

De plus $E' = \operatorname{cl}_Y(p(F)) \subset K$ et donc $q^{-1}(E') \cap A \subset q^{-1}(K) \cap A = F$. Ce qui montre la double inclusion des ensembles.

$\mathbf{2}$

Comme indiqué sur piazza, on supposera que l'application p est un quotient, sinon l'énoncé est faux en prenant le contre exemple $X=\mathbb{R}, A=[0,1)$ et $x\sim y\iff x-y\in\mathbb{Z}.$

Soit $A \subset X$ comme dans l'énoncé.

Soit \sim la relation d'équivalence sur X, on notera \sim' la relation d'équivalence induite sur A.

On notera $\iota:A\hookrightarrow X$ l'inclusion et $q_A:A\to A/_{\sim'},\ q_X:X\to X/_{\sim}$ les applications canoniques.

On montre le resultat en deux temps, on montrera que

- $q_X \circ \iota$ passe au quotient de q_A et induit une application $g: A/_{\sim} \to X/_{\sim}$
- L'application q_A passe au quotient de $q_X \circ \iota$ et on conclura.

$q_X \circ \iota$ passe au quotient de q_A

En effet, si $a \sim' b \in A$, on a que $q_X \circ \iota(a) = q_X(a) = q_X(b)$ car \sim' est la restriction de \sim , ainsi on a une application induite

$$\begin{array}{c}
A \xrightarrow{q_X \circ \iota} X/_{\sim} \\
\downarrow^{q_A} & & \exists !f \\
A/_{\sim'}
\end{array}$$

q_A passe au quotient de $q_X \circ \iota$

Remarquons que $q_X \circ \iota = p$ et est donc par hypothese une application quotient.

On a bien que si p(a) = p(b), alors $a \sim b \iff a \sim' b \iff q_A(a) = q_A(b)$ et on a une deuxieme application induite

$$\begin{array}{c|c}
A & \xrightarrow{q_X \circ \iota} & A \\
\downarrow^{q_A} & & & \\
X \downarrow^{\sim} & & \\
\end{array}$$

Finalement, on obtient les diagrammes suivants

Ainsi, on a que $g \circ f \circ p = p$ et par une derniere application de la propriete universelle, on trouve que $g \circ f = \operatorname{Id}_{A_{\nearrow }}$, le même raisonnement montre que $f \circ g = \operatorname{Id}_{X_{\nearrow }}$.

Ainsi f est un homeomorphisme ce qui conclut la preuve.

3

Soit \sim la relation d'équivalence sur $\mathbb R$ décrite dans l'énoncé et soit \sim' la relation restreinte a I.

On a clairement que \sim' identifie les points 0 et 1 et donc \sim' est la même relation d'équivalence que décrite dans l'énoncé.

On vérifie les deux hypotheses de la partie 2 de l'exercice

- $q|_A$ est bien surjectif, soit $x \in \mathbb{R}$, alors $x \lfloor x \rfloor \in I$ et $x \lfloor x \rfloor \sim x$.
- Montrons que c'est une application quotient en appliquant le critère de la partie 1, soit F un fermé saturé de I, on prétend que la saturation de F dans $\mathbb R$ par \sim reste un fermé.

En effet, puisque I est fermé dans \mathbb{R} , F est aussi un fermé dans \mathbb{R} . On distingue deux cas :

Si
$$0 \in F$$

On montre que le complément de la saturation de F est un ouvert de \mathbb{R} . Soit $b \in q^{-1}(q(F))^c = (F + \mathbb{Z})^c$, et soit $b \sim a$ avec $a \in I$, soit $U \ni a$ un ouvert dans I séparant a de F.

Alors la q-saturation de U est donnee par $\mathbb{Z} + U$ et contient donc b, de plus elle est clairement disjointe de $q^{-1}(q(F))$.

Si $0 \notin F$

Soit $b \in q^{-1}(q(F))$, si $b \notin \mathbb{Z}$, on considère le même ouvert U que ci-dessus et on le choisit disjoint de 0 et de 1 (ce qui est toujours

possible puisque $F \cup \{0,1\}$ reste un fermé).

Si $b \in \mathbb{Z}$, alors on choisit deux ouverts U et V de I disjoints de F tel que $0 \in U$ et $1 \in V$.

Il est alors clair que la saturation de $U \cup V$ dans $\mathbb R$ reste un ouvert qui sera disjoint de F.

Ainsi par la partie 1, on deduit que p est un quotient et ainsi on peut appliquer le critère établi en 2 et conclure que $\mathbb{R}/\sim = I/\sim = I/\{0,1\} = S^1$.