Name: DEBANJAN BHATTACHARJEE Email id: debanjanbhattacharya2015@gmail.c Om Data analytics Project: Operation Analytics and Investigating Metric Spike

Analysis done on the following points:-Case Study 1 : Job Data

- A. <u>Number of jobs reviewed</u>: Amount of jobs reviewed over time.

 <u>Our task: Calculate the number of jobs reviewed per hour per day for November 2020?</u>
- **B.** Throughput: It is the no. of events happening per second.

Our task: Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do we prefer daily metric or

7-day rolling and why?

<u>C. Percentage share of each language</u>: Share of each language for different contents.

Our task: Calculate the percentage share of each language in the last 30 days?

<u>D. Duplicate rows</u>: Rows that have the same value present in them. <u>Our task: Let's say you see some duplicate rows in the data. How will we display duplicates from the table?</u>

Case Study 2: Investigating metric spike

A. User Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service.

Our task: Calculate the weekly user engagement?

B. User Growth: Amount of users growing over time for a product.

Our task: Calculate the user growth for product?

C. Weekly Retention: Users getting retained weekly after signing-up for a product.

Our task: Calculate the weekly retention of users-sign up cohort?

<u>D. Weekly Engagement</u>: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.

Our task: Calculate the weekly engagement per device?

E. Email Engagement: Users engaging with the email service.

Our task: Calculate the email engagement metrics?

CASE STUDY: 1 (JOB DATA)

CREATE THE DATA BASE AND LOAD THE DATA

use jobdata clone ;

TO FULLFILL THIS
STEP WE HAVE TO
WRITE DOWN THE
FOLLOWING
QUERIES AND
EXECUTE THIS.


```
CREATE TABLE job data
    ds DATE,
    job id INT NOT NULL,
    actor id INT NOT NULL,
    event VARCHAR (15) NOT NULL,
    language VARCHAR (15) NOT NULL,
    time spent INT NOT NULL,
    org CHAR(2)
);
INSERT INTO job data (ds, job id, actor id, event, language,
time spent, org)
VALUES ('2020-11-30', 21, 1001, 'skip', 'English', 15, 'A'),
    ('2020-11-30', 22, 1006, 'transfer', 'Arabic', 25, 'B'),
    ('2020-11-29', 23, 1003, 'decision', 'Persian', 20, 'C'),
    ('2020-11-28', 23, 1005, 'transfer', 'Persian', 22, 'D'),
    ('2020-11-28', 25, 1002, 'decision', 'Hindi', 11, 'B'),
    ('2020-11-27', 11, 1007, 'decision', 'French', 104, 'D'),
    ('2020-11-26', 23, 1004, 'skip', 'Persian', 56, 'A'),
    ('2020-11-25', 20, 1003, 'transfer', 'Italian', 45, 'C');
```

As the database has created now, We have to execute the following tasks:

TASK 1:
Number of
jobs
reviewed

STEPS THAT HAVE TO FOLLOWED

To find the number of jobs reviewed per hour per day of November 2020:

- 1. We have to use the data from **job_id** columns of the **job_data** table.
- Then we have to divide the total count of job_id (distinct and non-distinct) by (30 days * 24 hours) for finding the number of jobs reviewed per day.

SELECT

count(job_id)/(30*24) AS
number_of_jobs_reviewed_per_day_n
on_distinct FROM job_data;

SO, the number of jobs reviewed per hour per day for November 2020 is 0.0111 for non_distinct_job_id.

SO, the number of jobs reviewed per hour per day for November 2020 is 0.0083 for Distinct_job_id.

TASK: 2 THROUGHPUT

It is the no. of events happening per second.

OUR TASK:

Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?

STEPS THAT HAVE TO FOLLOWED

- 2. Then by using the **ROW** function we will be considering the rows .
- 3. Then we will be taking the average of the jobs_reviewed .

Query (distinct_job_id)

SELECT ds AS date_of_review, jobs_reviewed, AVG(jobs_reviewed)

OVER(ORDER BY ds ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS throughput_7_rolling_average FROM (SELECT ds, COUNT(DISTINCT job_id) AS jobs_reviewed FROM job_data **GROUP BY** ds ORDER BY ds) a;

date_of_review	jobs_reviewed	throughput_7_rolling_average
25-11-2020	1	1
26-11-2020	1	1
27-11-2020	1	1
28-11-2020	2	1.25
29-11-2020	1	1.2
30-11-2020	2	1.3333

QUERIES non_distinct_job_id

```
SELECT ds as date_of_review, jobs_reviewed,
AVG(jobs_reviewed)
OVER(ORDER BY ds ROWS BETWEEN 6 PRECEDING AND CURRENT
ROW) AS
throughput_7_rolling_average_non_distinct_job_id
FROM
(
SELECT ds, count(job_id) AS jobs_reviewed
FROM job_data
GROUP BY ds ORDER BY ds
) a;
```


SO, IN THE ABOVE TWO TABLES IT SHOWS ABOUT THE THROUGHPUT IN THE BOTH DISTINCT_JOB_ID AND NON_DISTINCT_JOB_ID.

RESULTS

TASK: 3
Percentage
share of each
language

Share Percentage of each language for different contents.

STEPS THAT HAVE TO FOLLOWED

We have to find the percentage of each language.

To avail the values for both distinct and non-distinct,

- 1. We have to divide the total number of languages (distinct and non-distinct) by the total number of rows in the tables
- 2. Then we have to use GROUP BY function on the languages.

with a as (select max(ds) as m from job_data) select distinct language, (count(event) over(partition by language rows between unbounded preceding and unbounded following) /count(*) over(order by ds rows between unbounded preceding and unbounded following)) * 100 as percentage from (select * From job_data cross join a Where datediff(m,date(ds)) between 0 and 30)a1;

language	percentage
Italian	12.5
Persian	37.5
French	12.5
Hindi	12.5
Arabic	12.5
English	12.5

TASK - 4 Duplicate rows

Rows that have the same value present in them.

STEPS THAT HAVE TO FOLLOW

To view the duplicate rows having the same value we will:-

- 1. First decide in which we need to find the duplicate row values.
- 2. After deciding the column(parameter) we will use the ROW_NUMBER function to find the row numbers having the same value
- Then we will portion the ROW_NUMBER function over the column (parameter) that we decided i.e. job_id
- 4. Then using the WHERE function we will find the row_num having a value greater than 1 that is row_num > 1 based on the occurrence of the job_id in the table


```
SELECT *
FROM
SELECT *,
ROW_NUMBER()OVER(PARTITION
BY job_id) AS row_num
FROM job_data
WHERE row_num>1;
```


job_id	actor_id	event	language	time_spent	org	row_num
11	1007	decision	French	104	D	2
20	1003	transfer	Italian	45	С	2
21	1001	skip	English	15	Α	2
22	1006	transfer	Arabic	25	В	2
23	1005	transfer	Persian	22	D	2
23	1004	skip	Persian	56	Α	3
23	1003	decision	Persian	20	С	4
23	1005	transfer	Persian	22	D	5
23	1004	skip	Persian	56	Α	6
25	1002	decision	Hindi	11	В	2

CASE - 2

Investigating Metric Spike

(TASK - 1) <u>User Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service.</u>

My task: Calculate the weekly user engagement.

STEPS THAT I HAVE TO FOLLOW: 1. We will extract the week's data from the occurred_at column of the events table using the EXTRACT function and WEEK function

- 2. Then we will be counting the number of distinct user_id from the events table
- 3. Then we will use the GROUP BY function to group the output that means a week from occurred_at Program/Query.


```
SELECT
extract (week from occurred_at)
as week_number,
count(distinct user_id) as
number_of_users
FROM
tutorial.yammer_events
group by
week_number;
```


week_number	number_of_users
18	791
19	1244
20	1270
21	1341
22	1293
23	1366
24	1434
25	1462
26	1443
27	1477
28	1556
29	1556
30	1593
31	1685
32	1483
33	1438
34	1412
35	1442

(TASK: 2)User Growth: Amount of users growing over time for a product.

My task: Calculate the user growth for product. User Growth = Number of active users per week

STEPS THAT I HAVE TO FOLLOW:

- 1. First I have to extract the year and week for the occurred_at column of the users table using the extract, year and week functions.
- 2. Then I have to group the extracted week and year on the basis of year and week number.
- 3. Then I have to order the result on the basis of year and week numbers.
- 4. Then I have to find the cumm_active_users using the SUM, OVER and ROW function between unbounded preceding and current row.

```
QUERY
```

```
Select
year_num,
week_num,
num_active_users,
SUM(num_active_users)OVER(ORDER BY
year_num, week_num ROWS BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW) AS
cum active users
from
select
extract (year from a.activated_at) as year_num,
extract (week from a.activated_at) as
week_num,
count(distinct user_id) as num_active_users
from
tutorial.yammer_users a WHERE
state = 'active'
group by year_num, week_num
order by year_num, week_num
) a;
```


year_num	week_num	num_active_users	cum_active_users	year_num	week_num	num_active_users	cum_active_users
201			67	2013	45		
201				2013	40	5 94	
201	3	47	143	2013	4	7 82	2 2740
201	3 4	36	179	2013	41	103	3 284
201	3 5	30	209	2013	49	9 90	5 2939
201	3 6	48	257	2013	SI	117	7 3056
201	3 7	41	298	2013	5:	123	3 3179
201	3 8	39	337	2013	52	104	4 328
201	3 9	33	370	2014		1 9:	3374
201	3 10	43	413	2014		122	3490
201	3 11	33	446	2014		117	2 3600
201	3 12	32	478	2014		111	3 372:
201	3 13	33	511	2014		130	385:
201	3 14	40	551	2014		133	2 398
201	3 15	35	586	2014		7 135	5 411
201	3 16	42	628	2014	1	127	7 424
201	3 17	48	676	2014		127	7 437
201				2014	10	139	450
201				2014	1:	1 152	2 4659
201				2014	12	137	2 479:
201			865	2014	13	15:	1 494
201				2014	14	16:	1 510
201				2014	15	166	5 5269
201				2014	10	165	5 5434
201	3 25	46	1062	2014	17	7 176	5 5610
201				2014	18	177	578
201			1176	2014	19	160	594
201		52		2014	20	186	612
201	VI			2014	2:	177	7 6305
201				2014	22	186	649:
201				2014	2	197	7 6688
201				2014	24	1 198	688
201			1573	2014	25	222	7100
201				2014	20	5 210	731
201				2014	27	7 199	751
201				2014	28	3 22	3 774
201				2014	25	215	795
201			1943	2014	30	228	818
201			2035	2014	3:	234	841
201		1210	2116	2014	32	189	9 860
201				2014	3	3 250	8850
201				2014	34	259	911
201				2014	35	266	938:
201							

<u>TASK: 3 Weekly Retention: Users get retained weekly after signing up</u> <u>for a product.</u>

My task: Calculate the weekly retention of users-sign up cohort.

STEPS THAT I HAVE TO FOLLOW:

The weekly retention of the users-sign-up cohort can be calculated by two means that means either by specifying the week number (18 to 35) or for the entire column of occurred_at of the events table.

- 1. Firstly I have to extract the week from the occurred_at column using the extract, week functions.
- 2. Then, I have to select those rows in which event_type = 'signup_flow' and event_name = 'complete_signup'.
- 3. If finding for a specific week I have to specify the week number using the extract function.
- 4. Then using the left join I have to join the two tables on the basis of user_id where event_type = 'engagement'.
- 5. Then I have to use the Group By function to group the output table on the basis of user_id.
- 6. Lastly I have to use the Order By function to order the result table on the basis of user_id.


```
SELECT
distinct user_id,
COUNT(user_id),
SUM(CASE WHEN retention_week = 1 Then 1 Else 0 END) as
per_week_retention
FROM
SELECT
a.user_id,
a.signup_week,
b.engagement_week,
b.engagement_week - a.signup_week as retention_week FROM
(SELECT distinct user_id, extract(week from occurred_at) as
signup_week from tutorial.yammer_events
WHERE event_type = 'signup_flow'
and event_name = 'complete_signup'
and extract(week from occurred_at) = 18
LEFT JOIN
(SELECT distinct user_id, extract (week from occurred_at) as
engagement_week FROM tutorial.yammer_events where
event_type = 'engagement' )
on a.user_id = b.user_id
group by user_id
order by user_id;
```

RESULTS

user_id	count	per_week_retention	11828	3	1
11768	1	0	11829	3	1
11770	1	0	11832	4	1
11775	2	1	11833	14	1
11778	3	0	11834	2	1
11779	5	1	11838	2	1
11780	2	1	11839	1	0
11785	1	0	11840	2	1
11787	3	1	11841	6	1
11791	2	1	11842	6	1
11793	6	1	11843	3	1
11795	2	1	11844	6	1
11798	6	1	11849	3	1
11799	10	1	11850	3	0
11801	2	1	11852	5	1
11804	2	1	11854	3	- 1
11806	1	0	11858	6	1
11809	1	0	11859	4	1
11811	2	1	11863	6	1
11813	6	0	11864	2	1
11816	3	0	11865	3	-1
11818	2	1	11868	9	1
11820	4	1	11872	2	1
11823	3	1	11874	2	1
11824	7	1	11875	2	1
11825	3	1	11876	2	1
11826	2	1	11877	8	- 1

TASK: 4 Weekly Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.

My task: Calculate the weekly engagement per device?

STEPS THAT I HAVE TO FOLLOW:

To find the weekly user engagement per device:-

- 1. First, I have to extract the year_num and week_num from the occurred_at column of the events table using the extract, year and week function.
- 2. Then I have to select those rows where event_type = 'engagement' using the WHERE clause.
- 3. Lastly by using the Group By and Order By function I have to group and order the result on the basis of year_num, week_num and device.

SELECT

extract(year from occurred_at) as year_num, extract(week from occurred_at) as week_num, device,
COUNT(distinct user_id) as no_of_users
FROM
tutorial.yammer_events
where event_type = 'engagement'
GROUP by 1,2,3
order by 1,2,3;

TASK: 5 Email Engagement: Users engaging with the email service.

My task: Calculate the email engagement metrics.

STEPS THAT I HAVE TO FOLLOW:

To find the email engagement metrics of users:-

- 1. I have to first categorize the action on the basis of email_sent, email_opened and email_clicked using the CASE, WHEN, THEN functions.
- 2. Then I have to select the sum of the category of email_opened divide by the sum of the category of email_sent and multiply the result by 100.0 and name is email_opening_rate.
- 3. Then I have to select the sum of the category of email_clicked divide by the sum of the category of email_sent and multiply the result by 100.0 and name is as email_clicking_rate
- 4. email_sent = ('sent_weekly_digest', 'sent_reengagement_email')
- 5. email_opened = 'email_open'
- 6. email_clicked = 'email_clickthrough'.


```
SELECT
100.0*SUM(CASE when email_cat = 'email_opened'
then 1 else 0 end)/SUM(CASE when
email_cat = 'email_sent' then 1 else 0 end) as
email_opening_rate, 100.0*SUM(CASE when
email_cat = 'email_clicked' then 1 else 0
end)/SUM(CASE when email_cat = 'email_sent' then
1 else 0 end) as email_clicking_rate
FROM
SELECT
CASE
WHEN action in
('sent_weekly_digest', 'sent_reengagement_email')
then 'email_sent'
WHEN action in ('email_open')
then 'email_opened'
WHEN action in ('email_clickthrough')
then 'email_clicked'
end as email_cat
from tutorial.yammer_emails
) a;
```


email_opening_ra	te	email_clicking_rate
	3.58338805	

Software used: MySQL Workbench 8.0 CE

THANK YOU

THE PRESENTATION IS MADE BY

DEBANJAN BHATTACHARJEE