

100 DAYS OF SQL

Day 6 – SQL query for finding the nth highest value of a column in the table

Question: Consider a zoo's AnimalPopulation table, which records the population of various animal species. The table schema includes Animal_ID, Species, and Population columns. Given the sample data provided below, write SQL queries to:

- 1. Find the species with the second-highest population among all animal species.
- 2. Find the species with the fourth highest population among all animal species. Show Species and population in result

Animal_ID	Species	Population
1	Lion	10
2	Elephant	5
3	Giraffe	8
4	Tiger	12
5	Penguin	20
6	Gorilla	7
7	Zebra	15
8	Kangaroo	9
9	Crocodile	6
10	Polar Bear	4
11	Leopard	11
12	Hippopotamus	14
13	Koala	3
14	Rhino	16
15	Panda	13

Creation of table and Insertion of records

```
insert into AnimalPopulation(Animal_ID, Species, Population) values(1, "Lion", 10), (2, "Elephant", 5), (3, "Giraffe", 8),
(4, "Tiger", 12), (5, "Penguin", 20), (6, "Gorilla", 7), (7, "Zebra", 15), (8, "Kangaroo", 9), (9, "Croccodile", 6),
(10, "Polar Bear", 4), (11, "Leopard", 11), (12, "Hippopotamus", 14), (13, "Koala", 3), (14, "Rhino", 16),
(15, "Panda", 13);
```

1) Second highest (First way – Correlated Subquery)

1) Second highest (Second way – Using DENSE_RANK)

Output:

1) Fourth highest (First way – Correlated Subquery)

```
12 •
       SELECT
           Species, Population
13
       FROM
14
           AnimalPopulation AS a
15
16
       WHERE
           4 = (SELECT)
17
                   COUNT(DISTINCT Population)
18
19
               FROM
                    AnimalPopulation AS e
20
21
               WHERE
22
                    a.Population <= e.Population);</pre>
23
```

Output:

1) Fourth highest (Second way – Using DENSE_RANK)

Output:

For nth highest Queries can be written as follows:

1) SELECT Species, Population FROM
(SELECT *, dense_rank() OVER (ORDER BY Population DESC) rn
FROM AnimalPopulation) a WHERE rn = n;

2) SELECT Species, Population FROM AnimalPopulation a
WHERE n = (SELECT COUNT(DISTINCT Population) FROM AnimalPopulation e
WHERE a.Population <= e.Population);