Hypothesis Testing Cont'd

Sofia Olhede

October 26, 2020

Wilks Theorem

2 The infamous p-value

Interval Estimation

Likelihood ratio test

- Theorem (Wilks theorem for general s < p): Let Y_1, \ldots, Y_n be iid random variables with density (frequency) depending on $\theta \in \mathbb{R}^p$ and satisfying conditions (B1)-(B6), with $\mathcal{I}_1(\theta) = \mathscr{I}_1(\theta)$. If the MLE sequence $\widehat{\theta}_n$ is consistent for θ then the likelihood ratio statistic Λ_n for $H_0: \{\theta_j = \theta_{j,0}\}_{j=1}^s$ satisfies $2\log \Lambda_n \stackrel{d}{\to} V \sim \chi_s^2$ when H_0 is true.
- Note that it may potentially be that s < p, and this is accommodated by the theory,
- Hypotheses of the form H_0 : $\{g_j(\theta) = a_j\}_{j=1}^s$ for g_j differentiable real functions, can also be handled by Wilks' theorem:
- Define $(\phi_1, \ldots, \phi_p) = g(\theta) = (g_1(\theta), \ldots, g_p(\theta))$.
- g_{s+1}, \ldots, g_p defined so that $\theta \mapsto g(\theta)$ is 1-1.
- Apply theorem with parameter ϕ .

Likelihood ratio test

Many other tests possible. For example:

- Wald's test
 - * For a simple null, may compare the unrestricted MLE with the MLE under the null. Large deviations indicate evidence against null hypothesis. Distributions are approximated for large *n* via the asymptotic normality of MLEs.
- Score Test
 - * For a simple null, if the null hypothesis is false, then the loglikelihood gradient at the null should not be close to zero, at least when n reasonably large so measure its deviations form zero. Use asymptotics for distributions (under conditions we end up with a χ^2).

The infamous p-value

- ullet Fix a significance level lpha for the test;
- Consider rules δ respecting this significance level We choose one of those rules, δ^* , based on power considerations;
- We reject at level α if $\delta^*(\mathbf{y}) = 1$.
- Useful for attempting to determine optimal test statistics.
- What if we already have a given form of test statistic in mind? (e.g. LRT)
- A different perspective on testing (used more in practice) says:
- Rather then consider a family of test functions respecting level α . . . consider family of test functions indexed by α .
- Fix a family $\{\delta_{\alpha}\}_{\alpha\in(0,1)}$ of decision rules, with δ_{α} having level α .
- For a given y some of these rules reject the null, while others do not.
- Which is the smallest α for which H_0 is rejected given \mathbf{y} ?

The infamous *p*-value

ullet Let $\{\delta_{lpha}\}_{lpha}$ be a family of test functions satisfying

$$\alpha_1 < \alpha_2 \Rightarrow \{ \mathbf{y} \in \mathcal{Y}^n : \delta_{\alpha_1}(\mathbf{y}) = 1 \} \subset \{ \mathbf{y} \in \mathcal{Y}^n : \delta_{\alpha_2}(\mathbf{y}) = 1 \}.$$

ullet The p-value (or observed significance level) of the family $\{\delta_{lpha}\}$ is

$$p(\mathbf{y}) = \inf\{\alpha : \delta_{\alpha}(\mathbf{y}) = 1\}.$$

- The *p*-value is the smallest value of α for which the null would be rejected at level α , given $\mathbf{Y} = \mathbf{y}$.
- The most usual setup:
 - * Have a single test statistic T
 - * Construct family $\delta_{\alpha}(\mathbf{y}) = I\{T(\mathbf{y}) > k_{\alpha}\}.$
 - * If $\Pr_{H_0}\{T \leq t\} = G(t)$ then

$$p(\mathbf{y}) = \Pr_{H_0} \{ T(\mathbf{Y}) \geq T(\mathbf{y}) \} = 1 - G(T(\mathbf{y})).$$

The infamous p-value

- Notice: contrary to Neyman Pearson-framework did not make explicit decision!
- We simply report a *p*-value.
- The p-value is used as a measure of evidence against H_0 .
- Small p-value provides evidence against H_0 .
- Large p-value provides no evidence against H_0 .
- How small does "small" mean? (depends on the problem).
- Recall that extreme values of test statistics are those that are "inconsistent" with null (NP-framework);
- p-value is probability of observing a value of the test statistic as extreme as or more extreme than the one we observed, under the null;
- If this probability is small, then we have witnessed something quite unusual under the null hypothesis. Gives evidence against the null hypothesis.

Normal mean

- Example (Normal Mean).
- Let $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ where both μ and σ^2 are unknown. Consider:

$$H_0: \mu = 0 \text{ vs } H_1: \mu \neq 0.$$

- Likelihood ratio test: reject when T^2 large $T = \sqrt{nY}/S \stackrel{H_0}{\sim} t_{n-1}$.
- Since $T^2 \stackrel{H_0}{\sim} F_{1,n-1}$ *p*-value is

$$p(\mathbf{y}) = \Pr_{H_0} \{ T^2(\mathbf{Y} \ge T^2(\mathbf{y}) \} = 1 - G_{F_{1,n-2}}(T^2(\mathbf{y})).$$

Consider two samples (data sets)

$$\mathbf{y} = \begin{pmatrix} 0.66 & 0.28 & -0.99 & 0.007 & -0.29 & -1.88 & -1.24 & 0.94 & 0.53 & -1.2 \end{pmatrix}.$$

$$\mathbf{y} = \begin{pmatrix} 1.4 & 0.48 & 2.86 & 1.02 & -1.38 & 1.42 & 2.11 & 2.77 & 1.02 & 1.87 \end{pmatrix}.$$

• Obtain p(y) = 0.32 while p(y') = 0.006

Normal mean

- Reporting a p-value does not necessarily mean making a decision.
- A small *p*-value can simply reflect our "confidence" in rejecting a null.
- A Glance Back at Point Estimation.
- Let $Y_1, ..., Y_n$ be iid random variables with density (frequency) $f(\cdot; \theta)$.
- Problem with point estimation: $\Pr_{\theta}\{\widehat{\theta} = \theta\}$ typically small (if not zero).
- always attach an estimator of variability, e.g. standard error;
- interpretation?
- Hypothesis tests may provide way to interpret estimator's variability within the setup of a particular problem.
- ullet Simple underlying idea: Instead of estimating heta by a single value.
- Present a whole range of values for θ that are consistent with the data.

• Definition (Confidence interval): Let $\mathbf{Y} = \begin{pmatrix} Y_1 & \dots & Y_n \end{pmatrix}$ be random variables with joint distribution depending on $\theta \in \mathbb{R}$ and let $L(\mathbf{Y})$ and $U(\mathbf{Y})$ be two statistics with $L(\mathbf{Y}) < U(\mathbf{Y})$ a.s. Then, the random interval $[L(\mathbf{Y}), U(\mathbf{Y})]$ is called a $100(1-\alpha)\%$ confidence interval for θ if

$$\Pr_{\theta}\{L(\mathbf{Y}) \leq \theta \leq U(\mathbf{Y})\} \geq 1 - \alpha,$$

for all $\theta \in \Theta$ with equality for at least one value of θ .

- ullet 1-lpha is called the coverage probability or confidence level.
- Interpretation is more complex.
- Probability statement is NOT made about θ , which is constant.
- Statement is about interval: probability that the interval contains the true value is at least $1-\alpha$.
- Given any realization $\mathbf{Y} = \mathbf{y}$ the interval $(L(\mathbf{Y}), U(\mathbf{Y}))$ will either contain or not contain θ .
- Interpretation: if we construct intervals with this method, then we expect that $100(1-\alpha)\%$ of the time our intervals will contain θ .

Interval Estimation

- Example (The example that says all).
- Let $Y_1, \ldots, Y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$.
- ullet Then it follows that $\sqrt{n}(ar{Y}-\mu)\sim\mathcal{N}(0,1)$ so that

$$\Pr_{\mu}\{-1.96 \le \sqrt{n}(\bar{Y} - \mu) \le 1.96\} = 0.95.$$

Thus we can deduce

$$-1.96 \le \sqrt{n}(\bar{Y} - \mu) \le 1.96 \iff \bar{Y} - 1.96/\sqrt{n} \le \mu \le \bar{Y} + 1.96/\sqrt{n}.$$

It is clear

$$\Pr_{\mu}\{\bar{Y} - \frac{1.96}{\sqrt{n}} \le \mu \le \bar{Y} + \frac{1.96}{\sqrt{n}}\} = 0.95.$$

• Thus the random interval $[L(\mathbf{Y}), U(\mathbf{Y})] = [\bar{Y} - \frac{1.96}{\sqrt{n}}, \bar{Y} + \frac{1.96}{\sqrt{n}}]$ is a 95% random interval for μ .

- Central Limit Theorem: same argument can yield approximate 95% CI when Y_1, \ldots, Y_n are iid, $\mathbb{E} Y_i = \mu$ and \mathbb{V} ar $\{Y_i\} = 1$ regardless of their distribution.
- Notice that the interval is centred at \overline{Y} which is the MLE of μ . Letting the variance take an arbitrary value it is often written:

$$\bar{Y} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

- The length of the interval is $2z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}$ which depends on σ^2 , n and α .
- The parameter σ^2 is outside our control.
- We can however often control n and 1α . Increasing n the length of the interval decreases like $1/\sqrt{n}$
- Reducing α or increasing $1-\alpha$ increases the length of the interval, (the dependence is quite non-linear, and 5% is the sweet spot.

- What can we learn from the example we considered?
- Definition (Pivot): A random function $g(\mathbf{Y}, \theta)$ is said to be a <u>pivotal quantity</u> or just a <u>pivot</u> if it is a function both of \mathbf{Y} and $\mathbf{\theta}$ whose distribution does not depend on $\mathbf{\theta}$.
- For example $\sqrt{n}\{\bar{Y}-\mu\} \sim \mathcal{N}(0,1)$ is a pivot in previous example.
- Why is a pivot useful?
- $\forall \alpha \in (0,1)$ we can determine constants a < b independent of θ such that

$$\Pr_{\theta}\{a \leq g(\mathbf{Y}, \theta) \leq b\} = 1 - \alpha \quad \forall \theta \in \Theta.$$

• If we can manipulate $g(\mathbf{Y}, \theta)$ then the above equation yields a CI.

EPFL

Interval Estimation IV

• Let $Y_1, \ldots, Y_n \stackrel{iid}{\sim} \mathcal{U}(0, \theta)$. The MLE of θ is in this case $\widehat{\theta} = Y_{(n)}$. This has distribution

$$\Pr_{\theta} \left\{ Y_{(n)} \leq x \right\} = F_{Y_{(n)}}(x) = \Pr_{\theta} \left\{ \max_{i} Y_{i} \leq x \right\}$$
$$= \Pr_{\theta} \left\{ \text{all} \quad Y_{i} \leq x \right\}$$
$$= \Pr_{\theta} \left\{ Y_{i} \leq x \right\}^{n} = \left(\frac{x}{\theta} \right)^{n}. \tag{1}$$

This also implies that $T = Y_{(n)}/\theta$ is a pivot as

$$\Pr_{\theta}\{T \le t\} = \Pr_{\theta}\{Y_{(n)}/\theta \le t\} = \Pr_{\theta}\{Y_{(n)} \le t\theta\} = t^{n}. \quad (2)$$

We can now chose a and b such that

$$\Pr_{\theta}\left\{a \leq Y_{(n)}/\theta \leq b\right\} = 1 - \alpha.$$

• But there are infinitely many such choices. Idea: choose pair (a; b) that minimizes interval's length!

Interval Estimation V

• The solution to this problem is $a = \alpha^{1/n}$ and b = 1 which yields

$$\left[Y_{(n)},\frac{Y_{(n)}}{\alpha^{1/n}}\right].$$

• Pivotal quantities can also be used to construct CIs for θ_k when we have a multi-dimensional parameter θ

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_k, \dots, \theta_p) \in \mathbb{R}^p,$$

and the remaining coordinates are also unknown. A pivotal quantity should now be function $g(\mathbf{Y}, \theta_k)$ which

- Depends on \boldsymbol{Y} and θ_k but no other parameters;
- Has a distribution independent of any of the parameters (think about the Gaussian problem when the mean is of interest, but the variance is unknown!).

Interval Estimation VI

- Main challenges with pivotal method:
- Hard to find exact pivots in general problems;
- Exact distributions may be intractable.
- Resort to asymptotic approximations...
- In the classical example we would use $a_n\{\widehat{\theta}_n \theta\} \stackrel{\mathcal{L}}{\to} \mathcal{N}\{0, \sigma^2(\theta)\}.$

Interval Estimation VII

- What about higher dimensional parameters of interest?
- Definition: (Confidence Region). Let \mathbf{Y} be random variables with joint distribution depending on $\boldsymbol{\theta} \in \boldsymbol{\Theta} \subset \mathbb{R}^p$. A random subset $R(\mathbf{Y})$ of $\boldsymbol{\Theta}$ depending on \mathbf{Y} is called a $100(1-\alpha)\%$ confidence region for $\boldsymbol{\theta}$ if

$$\Pr_{\theta} \{ \boldsymbol{\theta} \in R(\boldsymbol{Y}) \} \ge 1 - \alpha, \forall \theta \in \Theta,$$

and equality for at least one value of θ .

- No restriction requiring *R* to be convex or connected.
- Nevertheless, many notions extend immediately to CR case.