QUÍMICA NIVEL MEDIO PRUEBA 1

Lunes 20 de mayo de 2002 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

222-167 12 páginas

ಹ
U
•=
7
Ò
Ē
G
\mathbf{q}
ಡ
_
ੰਕ

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 A1 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
·			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Número atómico	Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Número	Masa a		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

† 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140,12 140,91 144,24 146,92 150,35 151,96 157,25 158,92 162,50 164,93 167,26 168,93 173,04 174,97 † 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 232,04 231,04 238,03 (237) (242) (243) (247) (247) (251) (254) (257) (258) (259) (250)		<u> </u>
59 60 61 62 63 64 65 66 67 68 69 Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm 140,91 144,24 146,92 150,35 151,96 157,25 158,92 162,50 164,93 167,26 168,93 1 91 92 93 94 95 96 97 98 99 100 101 Pa Np Pu Am Cm Bk Cf Es Fm Md 231,04 238,03 (237) (243) (247) (251) (254) (257) (258)	71 Lu 174,97	103 Lr (260)
59 60 61 62 63 64 65 66 67 68 Pr Nd Pm Sm Eu Gd Tb Dy Ho Er 140,91 144,24 146,92 150,35 151,96 157,25 158,92 162,50 164,93 167,26 91 92 93 94 95 96 97 98 99 100 Pa U Np Pu Am Cm Bk Cf Es Fm 231,04 238,03 (237) (243) (247) (247) (251) (254) (257)	70 Yb 173,04	102 No (259)
59 60 61 62 63 64 65 66 67 Pr Nd Pm Sm Eu Gd Tb Dy Ho 140,91 144,24 146,92 150,35 151,96 157,25 158,92 162,50 164,93 1 91 92 93 94 95 96 97 98 99 Pa U Np Pu Am Cm Bk Cf Es 231,04 238,03 (242) (243) (247) (247) (251) (254)	69 Tm 168,93	101 Md (258)
59 60 61 62 63 64 65 66 66 Pr Nd Pm Sm Eu Gd Tb Dy 140,91 144,24 146,92 150,35 151,96 157,25 158,92 162,50 1 91 92 93 94 95 96 97 98 Pa U Np Pu Am Cm Bk Cf 231,04 238,03 (237) (242) (243) (247) (247) (251)	68 Er 167,26	100 Fm (257)
59 60 61 62 63 64 65 Pr Nd Pm Sm Eu Gd Tb 140,91 144,24 146,92 150,35 151,96 157,25 158,92 1 91 92 93 94 95 96 97 Pa U Np Pu Am Cm Bk 231,04 238,03 (242) (242) (247) (247) (247)	67 Ho 164,93	99 Es
59 60 61 62 63 64 Pr Nd Pm Sm Eu Gd 140,91 144,24 146,92 150,35 151,96 157,25 1 91 92 93 94 95 96 Pa U Np Pu Am Cm 231,04 238,03 (237) (242) (243) (247) (247)	66 Dy 162,50	98 Cf (251)
59 60 61 62 63 Pr Nd Pm Sm Eu 140,91 144,24 146,92 150,35 151,96 1 91 92 93 94 95 Pa U Np Pu Am 231,04 238,03 (237) (242) (243)	65 Tb 158,92	97 Bk (247)
59 60 61 62 Pr Nd Pm Sm 140,91 144,24 146,92 150,35 1 91 92 93 94 Pa U Np Pu 231,04 238,03 (237) (242)	64 Gd 157,25	96 Cm (247)
59 60 61 Pr Nd Pm 140,91 144,24 146,92 1 91 92 93 Pa U Np 231,04 238,03 (237)	63 Eu 151,96	95 Am (243)
59 60 Pr Nd 140,91 144,24 1 91 92 Pa U 231,04 238,03	62 Sm 150,35	94 Pu (242)
59 Pr 140,91 140,91 91 Pa 231,04	61 Pm 146,92	93 Np (237)
† 58 59 Ce Pr 140,12 140,91 Th Pa 232,04 231,04	60 Nd 144,24	92 U 238,03
† 58 Ce 140,12 # 90 Th	_	91 Pa 231,04
+- ++	58 Ce 140,12	90 Th 232,04
	+-	**

1. Un compuesto que contiene sólo carbono, hidrógeno y oxígeno tiene la siguiente composición porcentual en masa:

carbono 60 %, hidrógeno 8 %, oxígeno 32 %.

¿Cuál de las siguientes puede ser su posible fórmula molecular?

- A. $C_5H_8O_2$
- B. C₅H₄O
- C. C₆HO₃
- D. C₇HO₄
- 2. ¿Qué muestra contiene menor cantidad de oxígeno?
 - A. $0.3 \text{ mol } H_2SO_4$
 - B. $0.6 \text{ mol } O_3$
 - C. 0,7 mol HCOOH
 - D. $0.8 \text{ mol H}_2\text{O}$
- 3. ¿Cuál será el coeficiente del O_2 cuando la ecuación $C_4H_{10}+O_2\to CO_2+H_2O$ esté ajustada correctamente?
 - A. 9
 - B. 13
 - C. 18
 - D. 24

- **4.** Se añaden 6,4 g de alambre de cobre a 0,10 dm³ de solución acuosa de AgNO₃ de concentración 1,0 mol dm⁻³ para formar plata metálica y nitrato de cobre(II) acuoso. Cuando se completa la reacción,
 - A. se observará un exceso de alambre de cobre.
 - B. todo el alambre de cobre se habrá disuelto y en la solución quedarán algunos iones plata.
 - C. todo el alambre de cobre se habrá disuelto y en la solución no quedarán iones plata.
 - D. la masa de plata metálica formada será igual a la masa de alambre de cobre que ha reaccionado.
- 5. Se disuelven 2,02 g de KNO_3 ($M_r = 101$) en cantidad suficiente de agua para preparar 0,500 dm³ de solución. ¿Cuál es la concentración de esta solución expresada en mol dm⁻³?
 - A. 0,02
 - B. 0,04
 - C. 0,10
 - D. 0,20
- **6.** El cobre consta de los isótopos ⁶³Cu y ⁶⁵Cu y su masa atómica relativa es 63,55. ¿Cuál es la composición más probable?

	⁶³ Cu	⁶⁵ Cu
A.	30 %	70 %
B.	50 %	50 %
C.	55 %	45 %
D.	70 %	30 %

7.	¿Cuál es la distribución electrónica del ion ${}^{16}_{8}{\rm O}^{2-}$?					
	A.	2,6				
	B.	2,8				
	C.	2,8,6				
	D.	2,8,8				
8.	Un e	elemento pertenece al grupo 3 y periodo 2. ¿Cuántos electrones tiene en su nivel exterior?				
	A.	2				
	B.	3				
	C.	5				
	D.	6				
9.		é propiedad aumenta al incrementarse el número atómico tanto en los metales alcalinos como en los genos?				
	Α.	El radio atómico				

La electronegatividad

El punto de fusión

La energía de ionización

B.

C.

D.

222-167 Véase al dorso

10. ¿Cuál(es) de las siguientes reacciones es(son) espontánea(s)?

I.
$$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$$

II.
$$Br_2 + 2I^- \rightarrow I_2 + 2Br^-$$

- A. Sólo I
- B. Sólo II
- C. Ambas, I y II
- D. Ninguna

11. ¿Cuál será la fórmula de la combinación obtenida entre el elemento A (grupo 2) y el elemento B (grupo 7)?

- A. AB
- B. AB_2
- C. A_2B_7
- D. A_7B_2

12. ¿Cuántos pares de electrones enlazantes y pares solitarios hay en la estructura de Lewis del HCOOCH₃?

	Pares enlazantes	Pares solitarios
A.	8	4
B.	7	5
C.	7	4
D.	5	5

13.	El ángulo de enlace carbono-carbono en el CH ₃ CHCH ₂ es cercano a					
	A.	180°.				
	B.	120°.				
	C.	109°.				
	D.	90°.				
14.	Los	compuestos A, B y C tienen aproxir	madamente la misma masa molar.			
		A	В	C		
		$\mathrm{C_4H_{10}}$	CH ₃ CH ₂ CH ₂ OH	CH ₃ OCH ₂ CH ₃		
		ndo estos compuestos se ordenan d nero), el orden correcto es:	e forma creciente respecto de sus pur	ntos de ebullición (el menor		
	A.	A, C, B.				
	B.	A , B , C .				
	C.	B, C, A.				
	D.	C, B, A.				

15. ¿Qué ocurre durante la transformación de líquido a sólido a una temperatura fija?

- A. Las partículas se hacen más pequeñas y se libera calor.
- B. Las partículas se aproximan y se absorbe calor.
- C. Las partículas se ordenan más y se libera calor.
- D. Las fuerzas de atracción entre las partículas se hacen más fuertes y se absorbe calor.

Véase al dorso Véase al dorso

- 16. Cuando se mezclan los sólidos $Ba(OH)_2 \cdot 8H_2O$ y NH_4SCN , se obtiene una solución y la temperatura disminuye. ¿Qué afirmación sobre la reacción es correcta?
 - A. La reacción es exotérmica y ΔH es negativo.
 - B. La reacción es exotérmica y ΔH es positivo.
 - C. La reacción es endotérmica y ΔH es negativo.
 - D. La reacción es endotérmica y ΔH es positivo.
- 17. Utilizando la siguiente información:

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$
 $\Delta H = -187,6 \text{ kJ}$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$
 $\Delta H = -571,6 \text{ kJ}$

¿cuál es el valor de ΔH (expresado en kJ) para la siguiente reacción?

$$2H_2O_2(1) \rightarrow 2H_2O(1) + O_2(g)$$

- A. -196,4
- B. -384,0
- C. -759,2
- D. -946,8

18. ¿Cuál es el valor de ΔH (expresado en kJ mol⁻¹) para la siguiente reacción?

Energías de	Н—Н	С—С	C = C	С—Н
enlace / kJ mol ⁻¹	436	348	612	412

- A. 124
- B. 101
- C. -101
- D. -124

19.
$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

¿Qué cambio producirá un aumento de la velocidad de la reacción cuando se añaden 50 cm³ de solución de HCl de concentración 1,0 mol dm⁻³ a 1,0 g de CaCO₃?

- A. Un aumento de volumen de HCl
- B. Una disminución de la concentración de HCl
- C. Una disminución del tamaño de las partículas de CaCO₃ sólido
- D. Un aumento de la presión de CO₂
- **20.** ¿Qué enunciado(s) es(son) verdadero(s) cuando se refiere(n) a la siguiente reacción a 100 °C?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- I. Se espera que cada choque entre moléculas de N_2 y H_2 produzca NH_3
- II. Esta reacción debe implicar un choque entre una molécula de N_2 y tres de H_2 .
- A. Sólo I
- B. Sólo II
- C. Ambos, I y II
- D. Ninguno

21. Para una reacción gaseosa, la expresión de la constante de equilibrio es:

$$K_{\rm c} = \frac{[{\rm O}_2]^5 [{\rm NH}_3]^4}{[{\rm NO}]^4 [{\rm H}_2 {\rm O}]^6}.$$

¿Qué ecuación se corresponde con esta expresión de equilibrio?

- $4NH_3 + 5O_2 \rightleftharpoons 4NO + 6H_2O$ A.
- $4NO + 6H_2O \rightleftharpoons 4NH_3 + 5O_2$ B.
- $8NH_3 + 10O_2 \rightleftharpoons 8NO + 12H_2O$ C.
- $2NO + 3H_2O \rightleftharpoons 2NH_3 + \frac{5}{2}O_2$ D.
- 22. La reacción

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

es exotérmica. ¿Cuál(es) de los siguientes factores se puede(n) usar para desplazar el equilibrio hacia la derecha?

- I. Un aumento de presión
- II. Un aumento de temperatura
- A. Sólo I
- В Sólo II
- C. Ambos, I y II
- D. Ninguno
- Las soluciones P, Q, R y S tienen las siguientes propiedades: 23.

P:
$$pH = 8$$

$$\mathbf{Q}$$
: $[H^+] = 1 \times 10^{-3} \text{ mol dm}^{-3}$

R:
$$pH = 5$$

R: pH = 5 S:
$$[H^+] = 2 \times 10^{-7} \text{ mol dm}^{-3}$$

Cuando estas soluciones se ordenan de forma creciente respecto de su acidez (la menos ácida primero), el orden correcto es:

- A. **P**, **S**, **R**, **Q**.
- B. Q, R, S, P.
- C. S, R, P, Q.
- **R**, **P**, **Q**, **S**. D.

24. La ionización del ácido sulfúrico se representa por medio de las siguientes ecuaciones:

$$H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

 $HSO_4^-(aq) + H_2O(l) \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$

¿Cuál es la base conjugada del HSO₄(aq)?

- A. $H_2O(1)$
- B. $H_3O^+(aq)$
- C. $H_2SO_4(aq)$
- D. $SO_4^{2-}(aq)$

25. ¿Cuál de los siguientes cambios representa una reacción de reducción?

- A. $\operatorname{Mn}^{2+}(\operatorname{aq}) \to \operatorname{MnO}_{4}^{-}(\operatorname{aq})$
- B. $2CrO_4^{2-}(aq) \rightarrow Cr_2O_7^{2-}(aq)$
- C. $SO_4^{2-}(aq) \rightarrow SO_3^{2-}(aq)$
- D. $Zn(s) \rightarrow Zn^{2+}(aq)$

26. Durante la electrólisis de una sal fundida, el catión se desplaza hacia el ... I ... y sufre una ... II ...

I II

- A. electrodo negativo reducción
- B. electrodo negativo oxidación
- C. electrodo positivo oxidación
- D. electrodo positivo reducción

- 27. Cuando un mol de eteno reacciona con dos moles de oxígeno gaseoso,
 - A. ΔH es positivo.
 - B. el número de oxidación del carbono permanece invariable.
 - C. se forma un alcohol.
 - D. se produce monóxido de carbono.
- **28.** ¿Cuál es el nombre del compuesto CH₃CH₂CH₂COOCH₃?
 - A. Metanoato de butilo
 - B. Butanoato de metilo
 - C. Propanoato de metilo
 - D. Pentanona
- **29.** ¿Qué molécula tiene un centro quiral?
 - A. NH₂CH₂COOH
 - B. CH₃CH(NH₂)COOH
 - C. $CH_3C(NH_2)_2COOH$
 - D. $(CH_3)_2C(NH_2)COOH$
- **30.** ¿Cuál es el producto de la reacción entre el bromo y el eteno?
 - A. $CH_2 = CHBr$
 - B. CHBr = CHBr
 - C. CH₃CH₂Br
 - D. CH₂BrCH₂Br