Reinforcement learning Episode 6

Policy gradient methods

The next slide contains a question

Please respond as fast as you can!

left or right?

Right! Ready for next one?

What's **Q(s,right)** under gamma=0.99?

What's **Q(s,right)** under gamma=0.99?

Conclusion

 Often computing q-values is harder than picking optimal actions!

• We could avoid learning value functions by directly learning agent's policy $\pi_{\theta}(a|s)$

Trivia: what algorithm works that way? (of those we studied)

Conclusion

 Often computing q-values is harder than picking optimal actions!

• We could avoid learning value functions by directly learning agent's policy $\pi_{\theta}(a|s)$

Trivia: what algorithm works that way?

e.g. crossentropy method

NOT how humans survived

argmax[
Q(s,pet the tiger)
Q(s,run from tiger)
Q(s,provoke tiger)
Q(s,ignore tiger)
1

how humans survived

In general, two kinds

Deterministic policy

$$a = \pi_{\theta}(s)$$

Stochastic policy

$$a \sim \pi_{\theta}(a|s)$$

Trivia: Any reason why stochastic is better?

In general, two kinds

Deterministic policy

$$a = \pi_{\theta}(s)$$

Stochastic policy

$$a \sim \pi_{\theta}(a|s)$$

Trivia: Any reason why stochastic is better?

In general, two kinds

Deterministic policy

$$a = \pi_{\theta}(s)$$

Stochastic policy

$$a \sim \pi_{\theta}(a|s)$$

Trivia: Any reason why stochastic can be better?

In general, two kinds

Deterministic policy

Genetic algos (week 0)
Deterministic policy gradient

Stochastic policy

Crossentropy method Policy gradient

same action each time $a = \pi_{\Theta}(s)$

sampling takes care of exploration
$$a \sim \pi_{\theta}(a|s)$$

In general, two kinds

Deterministic policy

Genetic algos (week 0)

Deterministic policy gradient

same action each time

$$a = \pi_{\theta}(s)$$

Stochastic policy

Crossentropy method Policy gradient

sampling takes care of exploration
$$a \sim \pi_{\theta} \left(a | s \right)$$

Two approaches

Value based:

Learn value function

$$Q_{ heta}(s,a)$$
 or $V_{ heta}(s)$

Infer policy

$$\pi(a|s) = [a = \underset{a}{argmax} Q_{\theta}(s,a)]$$

Policy based:

Explicitly learn policy

$$\pi_{\theta}(a|s)$$
 or $\pi_{\theta}(s) \rightarrow a$

Implicitly maximize reward over policy

Recap: crossentropy method

• Initialize NN weights $\theta_0 \leftarrow random$

- Loop:
 - Sample N sessions
 - elite = take M best sessions and concatenate

$$\theta_{i+1} = \theta_i + \alpha \nabla \sum_i \log \pi_{\theta_i}(a_i|s_i) \cdot [s_i, a_i \in Elite]$$

Trivia: Can we adapt it for discounted rewards? (with γ)

17

Recap: crossentropy method

• Initialize NN weights $\theta_0 \leftarrow random$

- Loop:
 - Sample N sessions
 - elite = take M best sessions and concatenate

$$\theta_{i+1} = \theta_i + \alpha \nabla \sum_i \log \pi_{\theta_i}(a_i|s_i) \cdot [s_i, a_i \in Elite]$$

TD version: elite (s,a) that have highest R(s,a) (select elites independently from each state)

Policy gradient main idea

Why so complicated?
We'd rather simply maximize R over pi!

Expected reward:

$$J = \underset{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}}{E} R(s, a, s', a', ...)$$

Expected discounted reward:

$$J = \underset{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}}{E} Q(s,a)$$

Expected reward: R(z) setting

$$J = \underset{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}}{E} R(s, a, s', a', ...)$$

Expected discounted reward: R(s,a) = r + y*R(s',a')

$$J = E_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} Q(s,a)$$
"true" Q-function

$$J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} Q(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) Q(s,a) da ds$$

Trivia: how do we compute that?

$$J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} Q(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) Q(s,a) da ds$$

$$J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in \mathbf{Z}_i} Q(s,a)$$
 sample N sessions

$$J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} Q(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) Q(s,a) da ds$$

$$J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in Z_i} Q(s,a)$$
sample N sessions

Can we optimize policy now?

$$J = E_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} Q(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) Q(s,a) da ds$$

parameters "sit" here

$$J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in Z_i} Q(s,a)$$
Empirical action value a.k.a. R(s,a)

Optimization

Finite differences

- Change policy a little, evaluate

$$\nabla J \approx \frac{J_{\theta+\epsilon} - J_{\theta}}{\epsilon}$$

Stochastic optimization

- Good old crossentropy method
- Maximize probability of "elite" actions

Optimization

Finite differences

- Change policy a little, evaluate

$$\nabla J \approx \frac{J_{\theta+\epsilon} - J_{\theta}}{\epsilon}$$

Stochastic optimization

- Good old crossentropy method
- Maximize probability of "elite" actions

Trivia: any problems with those two?

Optimization

Finite differences

- Change policy a little, evaluate

$$\nabla J \approx \frac{J_{\theta+\epsilon} - J_{\theta}}{\epsilon}$$

VERY noizy, especially if both J are sampled

Stochastic optimization

- Good old crossentropy method
- Maximize probability of "elite" actions

"quantile convergence" problems with stochastic MDPs

$$J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} Q(s,a) = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) Q(s,a) da ds$$

Wish list:

- Analytical derivative
- Easy/stable approximations

Logderivative trick

Simple math

$$\nabla \log \pi(z) = ???$$

(try chain rule)

Logderivative trick

Simple math

$$\nabla \log \pi(z) = \frac{1}{\pi(z)} \cdot \nabla \pi(z)$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

Analytical inference

$$\nabla J = \int_{s} p(s) \int_{a} \nabla \pi_{\theta}(a|s) Q(s,a) da ds$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

Analytical inference

$$\nabla J = \int_{s} p(s) \int_{a} \nabla \pi_{\theta}(a|s) Q(s,a) da ds$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

$$\nabla J = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s) Q(s,a) da ds$$

Trivia: anything curious about that formula?

Analytical inference

$$\nabla J = \int_{s} p(s) \int_{a} \nabla \pi_{\theta}(a|s) Q(s,a) da ds$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

$$\nabla J = \int_{s} p(s) \int_{a} \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s) Q(s,a) da ds$$

that's expectation:)

Analytical inference

$$\nabla J = \int_{s} p(s) \int_{a} \nabla \pi_{\theta}(a|s) Q(s,a) da ds$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

$$\nabla J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} \nabla \log \pi_{\theta}(a|s) \cdot Q(s,a)$$

Policy gradient (REINFORCE)

Policy gradient

$$\nabla J = \mathop{E}_{\substack{s \sim p(s) \\ a \sim \pi_{\theta}(s|a)}} \nabla \log \pi_{\theta}(a|s) \cdot Q(s,a)$$

Approximate with sampling

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \log \pi_{\theta}(a|s) \cdot Q(s,a)$$

• Initialize NN weights $\theta_0 \leftarrow random$

- Loop:
 - Sample N sessions **z** under current $\pi_{\theta}(a|s)$
 - Evaluate policy gradient

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s, a \in z_i} \nabla \log \pi_{\theta}(a|s) \cdot Q(s, a)$$

- Ascend
$$\theta_{i+1} \leftarrow \theta_i + \alpha \cdot \nabla J$$

• Initialize NN weights $\theta_0 \leftarrow random$

Trivia: is it off- or on-policy?

- Loop:
 - Sample N sessions **z** under current $\pi_{\theta}(a|s)$
 - Evaluate policy gradient

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s, a \in z_i} \nabla \log \pi_{\theta}(a|s) \cdot Q(s, a)$$

- Ascend
$$\theta_{i+1} \leftarrow \theta_i + \alpha \cdot \nabla J$$

• Initialize NN weights $\theta_0 \leftarrow random$

Loop:

- actions under current policy = on-policy
- Sample N sessions **z** under current $\pi_{\theta}(a|s)$
- Evaluate policy gradient

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_{i}} \nabla \log \pi_{\theta}(a|s) \cdot Q(s,a)$$

- Ascend
$$\theta_{i+1} \leftarrow \theta_i + \alpha \cdot \nabla J$$

value-based Vs policy-based

Value-based

- Q-learning, SARSA, MCTS value-iteration
- Solves harder problem
- Artificial exploration
- Learns from partial experience (temporal difference)
- Evaluates strategy for free :)

Policy-based

• REINFORCE, CEM

- Solves easier problem
- Innate exploration
- Innate stochasticity
- Support continuous action space
- Learns from full session only

value-based Vs policy-based

Value-based

- Q-learning, SARSA, MCTS value-iteration
- Solves harder problem
- Artificial exploration
- Learns from partial experience (temporal difference)
- Evaluates strategy for free :)

Policy-based

REINFORCE, CEM

We'll learn much more soon!

- Solves easier problem
- Innate exploration
- Innate stochasticity
- Support continuous action space
- Learns from full session only

• Initialize NN weights $\theta_0 \leftarrow random$

- Loop:
 - Sample N sessions **z** under current $\pi_{\theta}(a|s)$
 - Evaluate policy gradient

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_{i}} \nabla \log \pi_{\theta}(a|s) \cdot Q(s,a)$$

What is better for learning: random action in good state

or

REINFORCE baseline

• Initialize NN weights $\theta_0 \leftarrow random$

- Loop:
 - Sample N sessions **z** under current $\pi_{\theta}(a|s)$
 - Evaluate policy gradient

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_{i}} \nabla \log \pi_{\theta}(a|s) \cdot Q(s,a)$$

$$Q(s,a) = V(s) + A(s,a)$$

REINFORCE baseline

• Initialize NN weights $\theta_0 \leftarrow random$

- Loop:
 - Sample N sessions **z** under current $\pi_{\theta}(a|s)$
 - Evaluate policy gradient

$$\nabla J \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \log \pi_{\theta}(a|s) \cdot (Q(s,a) - b(s))$$

Anything that doesn't depend on action ideally, b(s) = V(s)

Actor-critic

- Learn both V(s) and $\pi_{\theta}(a|s)$
- Hope for best of both worlds:)

Idea: learn both $\pi_{\theta}(a|s)$ and $V_{\theta}(s)$

Use $V_{\theta}(s)$ to learn $\pi_{\theta}(a|s)$ faster!

Non-trivia: how can we estimate A(s,a) from (s,a,r,s') and V-function?

Idea: learn both $\pi_{\theta}(a|s)$ and $V_{\theta}(s)$

Use $V_{\theta}(s)$ to learn $\pi_{\theta}(a|s)$ faster!

$$A(s,a)=Q(s,a)-V(s)$$

$$Q(s,a)=r+\gamma \cdot V(s')$$

$$A(s,a)=r+\gamma \cdot V(s')-V(s)$$

Idea: learn both $\pi_{\theta}(a|s)$ and $V_{\theta}(s)$

Use $V_{\theta}(s)$ to learn $\pi_{\theta}(a|s)$ faster!

$$A(s,a)=Q(s,a)-V(s)$$

$$Q(s,a)=r+\gamma \cdot V(s')$$

$$A(s,a)=r+\gamma \cdot V(s')-V(s)$$

Also: n-step version

Idea: learn both $\pi_{\theta}(a|s)$ and $V_{\theta}(s)$

Use $V_{\theta}(s)$ to learn $\pi_{\theta}(a|s)$ faster!

$$A(s,a)=r+\gamma \cdot V(s')-V(s)$$

$$\nabla J_{actor} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in Z_i} \nabla \log \pi_{\theta}(a|s) \cdot A(s,a)$$
consider

Trivia: how do we train V then?

Improve policy:

$$\nabla J_{actor} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} \nabla \log \pi_{\theta}(a|s) \cdot A(s,a)$$

Improve value:

$$L_{critic} \approx \frac{1}{N} \sum_{i=0}^{N} \sum_{s,a \in z_i} (V_{\theta}(s) - [r + \gamma \cdot V(s')])^2$$

Continuous action spaces

What if there's continuously many actions?

- Robot control: control motor voltage
 - Trading: assign money to equity

How does the algorithm change?

Continuous action spaces

What if there's continuously many actions?

- Robot control: control motor voltage
 - Trading: assign money to equity

How does the algorithm change?

it doesn't :)

Just plug in a different formula for pi(a|s), e.g. normal distribution

Duct tape zone

- V(s) errors less important than in Q-learning
 - actor still learns even if critic is random, just slower
- Regularize with entropy
 - to prevent premature convergence

- Learn on parallel sessions
 - Or super-small experience replay

Use logsoftmax for numerical stability

Let's code!