

AVDASI2 2023-24 Unit Planning

Team Meeting 29th June 2023

Intended Learning Outcomes & Assessment (Reminder)

Your learning on this unit

On successful completion of the unit the student will be able to:

- carry out the design, build and test of a functioning major UAV assembly as part of a team, using applicable interdisciplinary concepts and methods;
- work as a member of a team, employing appropriate project management and planning tools to create, monitor and deliver a project plan;
- utilise introspective and reflective methods to identify opportunities for enhanced individual and team performance in future projects;
- 4. discuss key health and safety responsibilities for engineers; and using recognised risk management tools create risk assessments to analyse a variety of project risks;
- communicate technical information via written documents and presentations; and utilise feedback given to establish improvements in successive presentations.

(Only specific skills listed are in the domain of Professional Practice)

How you will be assessed

[50%] – group technical report (ILO 1,2,4,5)

[20%] – group FDR presentation (ILO 2,3,4,5)

[30%] – individual reflective portfolio (ILO 2,3)

(No exam)

Summative assessment deliverables currently:

- Group Report wk22
- FDR wk22
- Reflection wk23

(Bump report / Reflection back by 1 week?)

Reminder – no exam this year.

Individual specialist roles in groups

	Essential		Specialism 1	Specialism 2	Optional
Role 1 'Aerodynamics'		2	Aero	dynamics	
Role 2 'Structures']	2	Str	uctures	
Role 3 'Avionics and Control']	2	Aero / Struct	Avionics & Control	Company
Role 4 'Project Management'	Manufacture/ Build/ Test	•	Aero / Struct	Project Management	Leadership & Administration
Role 5 'Design']	2	Aero / Struct	CAD/Drafting/BOM	Roles
Role 6 'Risk & Quality]		A a way / Chwyrat	Risk and Quality	
Management'			Aero / Struct	Management	

- Nominally groups of 6x
- <u>Everyone</u> engages with manufacturing and build
- Students will decide Division/Company leadership/admin roles
 - Removing initial design sprint will facilitate more time/focus for that

Specialisms vs group

- Much more Avionics content/focus compared to previous
- The specialism is a part of the individual's role, but there are still many core responsibilities

Division	Co. A	Co. B	Sub-assembly	Total	Aerodynamics		o Structures	Avionics & MAC	Design & Dynamics	Project Management	Risk and Quality Management
	1	11	P Wing & Airfoil	6	1.	5 1	1.5		1	1	1
Port Wing	2	12	P Flap (inc MAC/Avionics)	6	_1			2	1	1	1
	3 13 P Aileron (i		P Aileron (inc MAC/Avionics)	Avionics) 6				2	1	1	1
Starboard	4	14	S Wing & Airfoil	6	1.	5 1	1.5	0	1	1	1
Wing	5	15	S Flap (inc MAC/Avionics)	6	_1			2	1	1	1
vviiig	6	16	S Aileron (inc MAC/Avionics)	6	_1			2	1	1	1
UAV Avionics			UAV Avionics, Telemetry and Data Logging	6				3	1	1	1
	8	18	Pod	6			3		1	1	1
Fusolago	9	19	Empennage - VTP & Rudder	6	2			1	1	1	1
Fuselage	10	20	Empennage - HTP & Elevator	6	2			1	1	1	1
	11	21	Payload	6				3	1	1	1

11	6	16	11	11	11
22	12	32	22	22	22

Timetable

- Workshops are a mixture of active teaching and group work
- Wed PM lab sessions?
- 2 company days booked
- PDR/FDR booked
- VOX booked
- Wk18 lab as overspill, not intent?

Lecture map

- TB1 (pre RW) = 15 hrs
- TB1 (post RW) = 15 hrs
- TB2 (pre RW) = 10 hrs
- TB2 (pre Easter) = 3 hrs
- TB2 (post Easter) = Drop-ins only

43 hrs teaching time Might need to use 1.58/1.59 (during student design sessions) for specialist teaching.

	Mark Graham	Mark Graham	lan Farrow	Tom Rendall	Nick Zang	Fred Paulino	Brano Titurus	Matt Richardson	Mark?
	1	10	5	3	2	4	2	3	2
	Unit Intro	Team Development	Structures intro	Aero intro	Wind tunnels	Sensors	Dynamics 1	Labs intro	Design documentatio
		Down- selection	Loads	Wing	Data post- processing	ADC's	Dynamics 2	Prototype to product	Manufacturing ability
		Project Planning 1	Spars	Tailplane		Mechanisms		Tech Hub Intro?	
S_		Project Planning 2	Ribs			Actuators			
			Joints						
		VOX							
		Risk Mgt 1							
Г		Risk Mgt 2							
		Reflective							
H		Practive							
		DFMEA workshop							
		Working							
		across							

Lecture map

- TB1 (pre RW) = 15 hrs
- TB1 (post RW) = 15 hrs
- TB2 (pre RW) = 10 hrs
- TB2 (pre Easter) = 3 hrs
- TB2 (post Easter) = Drop-ins only

43 hrs teaching time
Might need to use
1.58/1.59 (during student design sessions)
for specialist teaching.

Location	G44 Frank	G12 Mott	Ivy Ga	te G.01		
wk1	Unit Intro	Structures intro	Team Development	- Ice Breaking - Team Chart - Goal setting		
wk2	Aero intro	Avionics & MAC Intro	Down- selection	- Choose Specialism - Meet mento		
wk3			Project Planning 1			
wk4			Project Planning 2			
wk5			VOX	(MVB)		
wk6	RW	RW	RW	RW		
wk7			Risk Mgt 1			
wk8			Risk Mgt 2			
wk9			DFMEA workshop			
wk10						
wk11						
wk12						
		XMAS				
wk13		><				
wk14		><				
wk15		$>\!\!<$				
wk16		$>\!\!<$				
wk17		\times	Reflective Practice			
wk18	RW	RW	RW	RW		
wk19	$>\!\!<$	><				
wk20	><	> <				
wk21	><	><				
	Easter					
wk22	> <	> <	Optional Drop-			
wk23	> <	> <	Optiona	l Drop-in		
wk24	> <	><		<<		

 Slides not presented (we ran out of time), but might useful for reference

Specialisms – Approach to teaching

- Within each teaching stream lectures are identified as core or specialist
- Attendance to core lectures is mandatory for all students
- Specialist attend specialist lectures. Others can attend also (space providing).
- Smaller group sizes permit flexibility on rooms (i.e. could use timetables 1.58/1.59 slots)
- Definitive Unit ILOs only relate to PP skills

Mentors

- 6x PG staff.. Experienced and trained to do the job.
- 3-4 groups each
- Meeting with group (in Wednesday sessions) every 2-weeks
- 10-15-min check-in per group.
- Mixture of informal observation and specific questions (at specific times in the unit)
- Student Work Breakdown can form part of the review structure (i.e. where are you now on the plan), what should you be doing

Graphite Goose

- Challenge: How can students will equitably contribute to the Graphite Goose?
 - The design is at company level, but only relates to a limited number of features of the UAV, some of which might be fixed to de-risk the design/build sprint
 - The 2022-23 down-selection sprint allowed students to contribute (theoretically), but added risk to the timing
- Can students be given a GG recipe, and focus on MFG trials, build and test at that point instead

Gates

- Set some key project gates
 - Group level
 - Company level
- Define basic Gate review requirements, but allow students to adapt (Brains-on thinking)
- Define Gate review timings to match deliverables

Aerobucks

- Every 2-weeks on the unit, the group members assign bonuses based on individual activities
- Bonuses result in normalised marks for the Group Report/FDR marks

As marketed as bonuses, then the optics are slightly different (the min weighting will be 1.0)

- Reality is that some students will be in deficit
- Group Mentors will have oversight
- Group tasklist (on teams) will provide a talking point
- Company tasklist will also improve visibility

Core Structures and Aero

- There is now no exam
- Removing the initial design sprint, and specialising groups removes the initial focus (for some) on detailed Structures and Aerodynamics
- Structures and Aero are still needed for the final report gap analysis
- What strengths in Structures/Aero are needed to prepare for Yr3
- How is individual capability ensured?
- FDR Viva questions to the non-experts (poor reliability, high randomness?)