讲义说明

由于时间仓促和编者水平有限,编写中难免出现错误或不当之处,希望家长及同学们能直言不讳地给我们提出宝贵的意见,以便今后修订升级.若有发现,非常期待家长和同学们将修改意见发送至顺为教育教研部邮箱(jiaoyan@shunweijiaoyu.com)!我们会定期评选出突出贡献者,并给予丰厚的奖励!

目录

第1讲 全等和相似综合(2)	1
第2讲二次函数的图像和性质	16
第3讲二次函数的解析式和图像变换	
第 4 讲 二次函数的区间最值	45
第 5 讲 二次方程根的分布问题	56
第6讲 二次函数和代数综合	67
第7讲 四点共圆(1)	79
第8讲 四点共圆(2)	95
第 9 讲 托勒密定理	109
第 10 讲 不等式(1)	125
第 11 讲 不等式(2)	143

第1讲 全等和相似综合(2)

模块一 旋转型相似

- 【例1】 在 $\triangle ABC$ 中, AB=4, BC=6 , $\angle ACB=30^\circ$,将 $\triangle ABC$ 绕点 B 按逆时针方向旋转,得到 $\triangle A_1BC_1$.
 - (1) 如图 1, 当点 C_1 在线段 CA 的延长线上时,求 $\angle CC_1A_1$ 的度数;
 - (2) 如图 2, 连接 AA_1 、 CC_1 . 若 $\triangle CBC_1$ 的面积为 3, 求 $\triangle ABA_1$ 的面积;

【解析】(1) 如图 1, 依题意得: $\triangle A_1C_1B \cong \triangle ACB$.

$$\therefore BC_1 = BC$$
, $\angle A_1C_1B = \angle C = 30^{\circ}$.

$$\therefore \angle BC_1C = \angle C = 30^{\circ}$$
. $\therefore \angle CC_1A_1 = 60^{\circ}$.

(2) 如图 2, 由 (1) 知: $\triangle A_1C_1B \cong \triangle ACB$.

$$A_1B = AB$$
, $BC_1 = BC$, $\angle A_1BC_1 = \angle ABC$.

$$\therefore \angle 1 = \angle 2$$
, $\frac{A_1B}{C_1B} = \frac{AB}{BC} = \frac{4}{6} = \frac{2}{3}$

$$\therefore \triangle A_1 BA \hookrightarrow \triangle C_1 BC , \quad \therefore \frac{S_{\triangle A_1 BA}}{S_{\triangle C, BC}} = \left(\frac{2}{3}\right)^2 = \frac{4}{9} .$$

$$\therefore S_{\triangle C_1BC} = 3 , \therefore S_{\triangle A_1BA} = \frac{4}{3} .$$

【教师备课提示】这道题主要总结,一大一小两个共端点相似的图形,一般会产生共端点旋转型的全等,反过来,如果在一个图形中,有共端点旋转型的全等,一定会产生一大一小两个共端点的相似图形.

【例2】

填空或解答:点 B、C、E在同一直线上,点 A、D在直线 CE的同侧,AB=AC,

EC = ED , $\angle BAC = \angle CED$, 直线 $AE \setminus BD$ 交于点 F.

- (1) 如图 1, 若 ∠BAC = 60°, 则 ∠AFB = _____; 如图 2, 若 ∠BAC = 90°, 则 ∠AFB = _____;
- (2) 如图 3,若 $\angle BAC = \alpha$,则 $\angle AFB =$ (用含 α 的式子表示);
- (3) 将图 3 中的 $\triangle ABC$ 绕点 C 旋转 (点 F 不与点 A 、 B 重合), 得图 4 或图 5.

在图 4 中, $\angle AFB$ 与 $\angle \alpha$ 的数量关系是_____;

在图 5 中, $\angle AFB$ 与 $\angle \alpha$ 的数量关系是______. 请你任选其中一个结论证明.

图 5

【解析】(1) $\angle AFB = 60^{\circ}$, $\angle AFB = 45^{\circ}$;

(2)
$$\angle AFB = 90^{\circ} - \frac{1}{2}\alpha$$
;

(3)
$$\boxtimes 4 \, \oplus : \ \angle AFB = 90^{\circ} - \frac{1}{2}\alpha$$
;

图 4

图 5中:
$$\angle AFB = 90^{\circ} + \frac{1}{2}\alpha$$
.

$$\angle AFB = 90^{\circ} - \frac{1}{2}\alpha$$
的证明如下:

如图 4,设 AC与 BD的交点为 Q

$$AB = AC$$
, $EC = ED$, $\angle BAC = \angle CED$.

 $\therefore \triangle ABC \hookrightarrow \triangle EDC$,

$$\therefore \angle ACB = \angle ECD \;, \quad \frac{BC}{DC} = \frac{AC}{EC} \;, \quad \angle BCD = \angle ACE$$

$$\therefore$$
 △BCD \backsim △ACE, \forall ∠CBD = ∠CAE

$$\therefore \angle AQF = \angle BQC$$

$$\therefore \angle AFB = \angle ACB = \frac{180^{\circ} - \angle BAC}{2} = 90^{\circ} - \frac{1}{2}\alpha.$$

【**教师备课提示**】这道题主要总结,一大一小两个共端点相似的图形,不一定会产生共端点旋转型的 全等,一般会产生共端点旋转型的相似.

【例3】

如图,四边形 ABCD 和 BEFG 均为正方形,求 AG:DF:CE = ______

【解析】连接 BD, BF

$$\therefore AB \perp BC, BG \perp BE \Rightarrow \angle ABG = \angle CBE$$

$$AB = BC, BG = BE : \triangle ABG \cong \triangle CBE$$

$$AG = CE$$
, $EF \perp BE$, $EF = BE$

$$\therefore \angle EBF = 45^{\circ}, BF = \sqrt{2}BE$$

$$\therefore BC \perp CD, BC = CD$$

$$\therefore \angle CBD = 45^{\circ}, BD = \sqrt{2}BC$$

$$\therefore \angle FBD = \angle CBE , \quad \frac{BD}{BC} = \frac{BF}{BE} = \sqrt{2}$$

$$\therefore \Delta FBD \hookrightarrow \Delta EBC \ , \ \ \therefore \frac{DF}{EC} = \frac{BD}{BF} = \sqrt{2}$$

$$\therefore AG: DF: CE = 1: \sqrt{2}: 1$$

【教师备课提示】这道题主要是让孩子们练习下,主要是去找旋转型的相似.

【例4】 如图, $\triangle ABC$ 中, $\angle BAC = 60^{\circ}$,AB = 2AC. 点 $P \pm \triangle ABC$ 内,且 $PA = \sqrt{3}$, PB = 5 , PC = 2 ,求 $\triangle ABC$ 的面积.

【解析】如图,作 $\triangle ABQ$,使得 $\angle QAB = \angle PAC$, $\angle ABQ = \angle ACP$,则 $\triangle ABQ \sim \triangle ACP$. 由于 AB = 2AC,所以相似比为 2.

于是
$$AQ = 2AP = 2\sqrt{3}$$
, $BQ = 2CP = 4$.

$$\angle QAP = \angle QAB + \angle BAP = \angle PAC + \angle BAP = \angle BAC = 60^{\circ}$$
.

由
$$AQ: AP = 2:1$$
知, $\angle APQ = 90^{\circ}$,于是 $PQ = \sqrt{3}AP = 3$.

所以
$$BP^2 = 25 = BQ^2 + PQ^2$$
, 从而 $\angle BQP = 90^\circ$.

于是
$$AB^2 = PQ^2 + (AP + BQ)^2 = 28 + 8\sqrt{3}$$
.

故
$$S_{\triangle ABC} = \frac{1}{2}AC \cdot BC = \frac{\sqrt{3}}{8}AB^2 = \frac{6+7\sqrt{3}}{2}$$
.

【教师备课提示】这道题主要考查旋转型相似的构造,相对较难.

模块二 从全等到相似

- 【例5】 如图, $\triangle ABC$ 中, $AG \perp BC$ 于点 G,以 A 为直角顶点,分别以 AB、AC 为直角边,向 $\triangle ABC$ 外 侧作 $Rt \triangle ABE$ 和 $Rt \triangle ACF$,过点 E、F 作射线 GA 的垂线,垂足分别为 P、Q.
 - (1) 若 $Rt \triangle ABE$ 和 $Rt \triangle ACF$ 都是等腰三角形,直接写出 EP 与 FQ 有怎样的数量关系;
 - (2) 若 $Rt\triangle ABE$ 和 $Rt\triangle ACF$ 中满足 AB=kAE, AC=kAF 时,(1)中的结论还成立吗?若成立,请证明;若不成立,请探究 EP 与 FQ 有怎样的数量关系?
 - (3) 若 Rt $\triangle ABE$ 和 Rt $\triangle ACF$ 中满足 AB = kAE, AC = mAF 时,连接 EF 交射线 GA 于点 D,试探究 ED 与 FD 有怎样的数量关系?

G

图 2

【解析】(1) EP=FQ.

(2) EP=FQ.

理由: ::四边形 ABME 是矩形, ::∠BAE=90°, ::∠BAG+∠EAP=90°.

 $AG \perp BC$, $ABG = \angle ABG = 90^{\circ}$, $ABG = \angle EAP$.

 $\therefore \angle AGB = \angle EPA = 90^{\circ}, \quad \therefore \triangle ABG \hookrightarrow \triangle EAP$

$$\therefore \frac{AG}{EP} = \frac{AB}{EA} . \quad \therefore AB = kAE , \quad \therefore \frac{AG}{EP} = k ,$$

同理 $\triangle ACG \hookrightarrow \triangle FAQ$,

$$\therefore \frac{AG}{FO} = \frac{AC}{FA} = k \; , \; \therefore \frac{AG}{EP} = \frac{AG}{FO} \; .$$

 $\therefore EP = FQ$.

(3) 结论:
$$\frac{ED}{FD} = \frac{m}{k}$$
.

由 (2) 可知:
$$\therefore \frac{AB}{EA} = k$$
, $\frac{AC}{FA} = m$

$$\therefore \frac{AG}{EP} = k , \quad \frac{AG}{FQ} = m . \quad \therefore \frac{EP}{FQ} = \frac{m}{k} , \quad \therefore EP \perp GA, \quad FQ \perp GA, \quad \therefore EP // FQ.$$

$$\therefore \frac{ED}{FD} = \frac{EP}{FO} = \frac{m}{k}$$

【**教师备课提示**】这道题主要想理解下,弦图的全等是三垂直的一种特殊关系,体会下全等和相似的 关系.

- 【例6】 如图 1,将一个直角三角板的直角顶点 P 放在正方形 ABCD 的对角线 BD 上滑动,并使其一条直角边始终经过点 A,另一条直角边与 BC 相交于点 E.
 - (1) 求证: PA=PE;
 - (2) 若将(1) 中的正方形变为矩形, 其余条件不变(如图 2), 且 AD=10, DC=8, 求 AP: PE;
 - (3) 在 (2) 的条件下, 当 P 滑动到 BD 的延长线上时 (如图 3), 请你直接写出 AP: PE 的比值.

- - ∵四边形 ABCD 是正方形, ∴ ∠ABD=45°,
 - ∴ ∠MPB=45 °= ∠ABD, ∴PM=BM,

同理 BP=BN,

- ∵四边形 ABCD 是正方形,
- \therefore $\angle ABC=90 \cong \angle BMP=\angle BNP$,
- ∴四边形 BMPN 是正方形,
- $\therefore PM=PN, \angle MPN=90^{\circ},$
- $\therefore \angle APE=90^{\circ}, \quad \therefore \angle APM=\angle NPE,$
- $\therefore PM \perp AB$, $PN \perp BC$, $\therefore \angle AMP = \angle PNE$,
- 在 $\triangle APM$ 和 $\triangle EPN$ 中

$$\begin{cases} \angle AMP = \angle ENP \\ PM = PN \\ \angle APM = \angle EPN \end{cases}$$

- $\therefore \triangle APM \cong \triangle EPN(ASA)$, $\therefore AP=PE$:
- (2) 解: ∵四边形 *ABCD* 是矩形, ∴ ∠*BAD*=∠*C*=90°,
- \therefore $\angle PMB = \varpi PNB = 90^{\circ}$, $\therefore PM//AD$, PN//CD,
- $\therefore \triangle BPM \hookrightarrow \triangle BDA$, $\triangle BNP \hookrightarrow \triangle BCD$,

$$\therefore \frac{PM}{AD} = \frac{BP}{BD} , \quad \frac{PN}{CD} = \frac{BP}{BD} , \quad \therefore \frac{PM}{AD} = \frac{PN}{CD}$$

$$\therefore \frac{PM}{PN} = \frac{AD}{CD} = \frac{10}{8} = \frac{5}{4} ,$$

- \therefore $\angle AMP = \angle ENP = 90^{\circ}, \quad \angle MPA = \angle EPN,$
- $\therefore \triangle APM \hookrightarrow \triangle EPN$,

$$\therefore \frac{AP}{PE} = \frac{PM}{PN} = \frac{5}{4}, \quad AP: PE = 5:4;$$

- (3) AP:PE=5:4.
- 【例7】 在矩形 ABCD 中,E 为 BC 的中点,点 F 在 BC 的延长线上,CM 平分 $\angle DCF$,连接 AE,作 $EM \perp AE$ 交 CM 于点 M.
 - (1) 如图 1, 当 AB=BC 时, 请判断 AE 与 EM 的数量关系并证明;
 - (2) 如图 2, 当 AB=nBC 时,请判断 AE 与 EM 的数量关系并证明;
 - (3) 如图 3, 当 $AB=n \cdot BC$, $BE=m \cdot EC$ 时, 请判断 AE 与 EM 的数量关系并证明.

- 【解析】(1) AE=EM, 理由如下: 如图 1, 取 AB 的中点 G, 连接 GE.
 - *∴* ∠*AEM*=90 °, *∴* ∠*MEC*+∠AEB=90 °,

 \mathbb{Z} : $\angle B=90^{\circ}$, $\therefore \angle EAG+\angle AEB=90^{\circ}$, $\therefore \angle EAG=\angle MEC$.

:点 E,G分别为正方形 ABCD 的边 BC 和 AB 的中点,

∴ AG=EC. 又可知 $\triangle BGE$ 是等腰直角三角形,

∴ ∠AGE=135°. 又∵CM 平分 ∠DCF, ∴ ∠ECM=135°.

在 $\triangle AEG$ 与 \triangle EMC 中,

$$\begin{cases} \angle EAG = \angle MEC \\ AG = EC \\ \angle AGE = \angle ECM \end{cases}$$

- $\therefore \triangle AEG \cong \triangle EMC(ASA), \therefore AE=EM;$
- (2) 当 AB=nBC 时, AE=(2n-1)EM, 理由如下:

如图 2, 在 AB 上截取 BG=BE, 连接 GE, 则 \triangle BGE 为等腰直角三角形,

 $\therefore \angle BGE = 45^{\circ}, \quad \therefore \angle AGE = \angle ECM = 135^{\circ}.$

∴ ∠*AEM*=90°, *∴* ∠*MEC*+∠*AEB*=90°,

 \mathbb{Z} : $\angle B=90^{\circ}$, $\therefore \angle EAG+\angle AEB=90^{\circ}$,

 $\therefore \angle EAG = \angle MEC$.

在 $\triangle AEG$ 与 $\triangle EMC$ 中, $\angle AGE = \angle ECM$, $\angle EAG = \angle MEC$,

 $\therefore \triangle AEG \hookrightarrow \triangle EMC, \quad \therefore AE:EM=AG:EC,$

AB=nBC, BC=2BE=2EC, BG=BE,

 $\therefore AG+BG=2nEC$, $\therefore AG=(2n-1)EC$,

 $\therefore AE:EM=AGLEC=(2n-1)$, $\therefore AE=(2n-1)EM$;

(3) 当 $AB=n \cdot BC$, $BE=m \cdot EC$ 时, AE=(mn+n-m)EM, 理由如下:

如图 3,在 AB 上截取 BG=BE,连接 GE,则 \triangle BGE 为等腰直角三角形,

∴ ∠BGE=45°, ∴ ∠AGE=∠ECM=135°.

∴ ∠*AEM*=90°, ∴ ∠*MEC*+∠*AEB*=90°,

 \mathbb{Z} : $\angle B=90^{\circ}$, $\therefore \angle EAG+\angle AEB=90^{\circ}$, $\therefore \angle EAG=\angle MEC$.

在 \wedge AEG 与 \wedge EMC 中,

 $\angle AGE = \angle ECM$, $\angle EAG = \angle MEC$, $\therefore \triangle AEG \hookrightarrow \triangle EMC$,

 \therefore AE:EM=AG:EC, \therefore BE=m•EC, \therefore BC=BE+EC=(m+1)EC,

 $AB=n \cdot BC$, BG=BE, AG+BG=n(m+1)EC,

 $\therefore AG+MEC=n(m+1)EC$, $\therefore AG=(mn+n-m)EC$,

 $\therefore AE:EM=AG:EC=(mn+n-m), \quad \therefore AE=(mn+n-m)EM.$

【教师备课提示】这两道题是由以前的两道经典的全等题目上的拓展,让同学们体会下实际上全等是相似的一种特殊情况,可以从特殊的全等上找相似的方法.

- 【例8】 在 $\triangle ABC$ 中,已知 AB > AC ,AD 平分 $\angle BAC$ 交 BC 于点 D ,点 E 在 DC 的延长线上,且 $\frac{DE}{BD} = k$,过 E 作 EF // AB 交 AC 的延长线于 F .
 - (1) 如图 1, 当 k = 1 时, 求证: AF + EF = AB;
 - (2) 如图 2, 当 k=2 时,直接写出线段 AF、EF、AB 之间满足的数量关系;
 - (3) 如图 3,当 $\frac{DE}{BD}$ = k 时,请猜想线段 AF、EF、AB 之间满足的数量关系(含 k),并证明你的结论.

【解析】(1) 证明:如图 1,延长 AD、EF 交于点 G,当 k=1 时,DE=BD $\therefore EF //AB$, $\therefore \angle BAD = \angle EGD$,

在
$$\triangle ABD$$
 与 $\triangle GED$ 中,
$$\begin{cases} \angle BAD = \angle EGD \\ \angle BDA = \angle EDC \end{cases}, \\ BD = ED$$

- $\therefore \triangle ABD \cong \triangle GED(AAS)$, $\therefore AB = GE$,
- 又::AD 平分 $\angle BAC$, $::\angle BAD = \angle DAC$, $::\angle FGD = \angle DAC$,
- $\therefore AF = GF, \quad \therefore AF + EF = AB;$
- (2) 解:如图 2,延长 AD、EF 交于点 G,当 k=2 时,
- $:: EF // AB, :: \angle BAD = \angle EGD, \ \ \exists : \angle BDA = \angle EDG,$
- $\therefore \triangle ABD \hookrightarrow \triangle GED$,
- $\therefore \frac{GE}{AB} = \frac{DE}{BD} = 2$,即 GE = 2AB,又:AD 平分 $\angle BAC$,
- $\therefore \angle BAD = \angle DAC$,
- $\therefore \angle FGD = \angle DAC, \therefore AF = GF,$
- $\therefore AF + EF = 2AB$;
- (3) 猜想: AF+EF=kAB.

证明: 如图 3, 延长 AD、EF 交于点 G, 当 $\frac{DE}{BD} = k$ 时,

- $:: EF//AB, :: \angle BAD = \angle EGD, :: \angle BDA = \angle EDG, :: \triangle ABD \hookrightarrow \triangle GED,$
- $\therefore \frac{GE}{AB} = \frac{DE}{BD} = k$,即 GE=kAB,又:AD 平分 $\angle BAC$, $\angle BAD = \angle DAC$,
- $\therefore \angle FGD = \angle DAC$, $\therefore AF = GF$, $\therefore AF + EF = kAB$.

笔记整理

课后作业

- 【演练1】如图 1, Rt $\triangle ABC$ 和 Rt $\triangle DBE$, AB=BC, DB=EB , D 在 AB 上,连接 AE 、 CD , 易证: AE=CD , $AE\perp CD$.
 - (1) 类比:将(1)中的 $Rt \triangle DBE$ 绕点逆时针旋转一个锐角,如图 2,问(1)中线段 AE 和 CD 间的数量关系和位置关系还成立吗?若成立,请给与证明,若不成立,请说明理由.
 - (2) 拓展:在图 2 中,将"AB = BC,DB = EB"改成"BC = kAB,DB = kEB,k > 1"其它条件均不变,如图 3 所示,问(1)中线段 AE,CD 间的数量关系和位置关系还成立吗?若成立,请给与证明:若不成立,请说明理由.

- 【解析】(1) AE = CD, $AE \perp CD$,
 - \therefore $\angle DBE = \angle ABC = 90^{\circ}$, \therefore $\angle ABE = \angle DBC$,

在 $\triangle AEB$ 和 $\triangle CDB$ 中,

$$\begin{cases} AB = BC \\ \angle ABE = \angle DBC \\ BE = BD \end{cases}$$

- $\therefore \triangle AEB \cong \triangle CDB$, $\therefore AE = CD$, $\angle EAB = \angle DCB$,
- \therefore $\angle DCB + \angle COB = 90^{\circ}, \ \angle AOK = \angle COB$,
- $\therefore \angle KOA + \angle AOK = 90^{\circ}, \quad \therefore \angle AKC = 90^{\circ}, \quad \therefore AE \perp CD;$
- (3) $AE \neq CD$, $AE \perp CD$,
- $\therefore BC = kAB, DB = kEB, \therefore \frac{BE}{AB} = \frac{BD}{BC},$
- \therefore $\angle DBE = \angle ABC = 90^{\circ}, \quad \therefore \angle ABE = \angle DBC$
- $\therefore \triangle AEB \hookrightarrow \triangle CDB$,
- $\therefore \frac{AE}{CD} = \frac{AB}{BC} , \quad \angle EAB = \angle DCB ,$
- $\therefore kAE = CD$, $\therefore k>1$, $\therefore AE \neq CD$,
- \therefore $\angle DCB + \angle COB = 90^{\circ}, \ \angle AOK = \angle COB$,
- $\therefore \angle KAO + \angle AOK = 90^{\circ}$,
- $\therefore \angle AKC = 90^{\circ}, \therefore AE \perp CD$.
- 【演练2】如图, $\triangle ABC$ 和 $\triangle DCE$ 中, BC=kAC, CE=kCD, $\angle ACB=\angle DCE=\alpha$,连接 AD、BE.

- (1) 如图 1, α =90°, k=1, 直接写出 AD 与 BE 的关系: ______;
- (2) 如图 2, $\alpha=90$ °, $k\neq1$ 时, 上述关系是否成立? 说明理由.
- (3) 如图 3, $\alpha > 90^{\circ}$, $k \neq 1$ 时, (1) 中关系是否成立? 如果成立,请加以证明;若不成立, AD = BE关系又怎样?请加以证明.

【解析】(1) ∵ ∠*ACB*= ∠*DCE*=90°,

- ∴ ∠*ACD*+∠*DCB*=90°, ∠*ECB*+∠*DCB*=90°,
- $\therefore \angle ACD = \angle BCE$,

在
$$\triangle ACD$$
 和 $\triangle BCE$ 中,
$$\begin{cases} AC = BC \\ \angle ACD = \angle BCE \\ CD = CE \end{cases}$$

- $\therefore \triangle ACD \cong \triangle BCE$, $\therefore AD = BE$;
- (2) $\therefore \angle ACB = \angle DCE = 90^{\circ}$,
- $\therefore \angle ACD + \angle DCB = 90^{\circ}, \ \angle ECB + \angle DCB = 90^{\circ},$
- $\therefore \angle ACD = \angle BCE$,
- $\therefore BC = kAC$, CE = kCD,

$$\therefore \frac{BC}{AC} = \frac{CE}{CD} ,$$

- $\therefore \triangle ACD \hookrightarrow \triangle BCE$,
- $\therefore \frac{BE}{AD} = k$, $\mathbb{P}BE = kAD$;
- (3) $:: \angle ACB = \angle DCE = \alpha$,
- \therefore $\angle ACD + \angle DCB = \alpha$, $\angle ECB + \angle DCB = \alpha$,
- $\therefore \angle ACD = \angle BCE$,
- :BC=kAC, CE=kCD,

$$\therefore \frac{BC}{AC} = \frac{CE}{CD} ,$$

- $\therefore \triangle ACD \hookrightarrow \triangle BCE$,
- $\therefore \frac{BE}{AD} = k$, $\mathbb{R}P = kAD$.

【演练3】如图,直线 MN 与线段 AB 相交于点 O,点 C 和点 D 在直线 MN 上,且 $\angle ACN = \angle BDN = 45^{\circ}$.

- (1)如图 1 所示,当点 C 与点 O 重合时,且 AO=OB,请写出 AC 与 BD 的数量关系和位置关系;
- (2) 将图 1 所示中的 MN 绕点 O 顺时针旋转到如图 2 所示的位置,AO=OB,(1) 中的 AC 与 BD 的数量关系和位置关系是否仍然成立?若成立,请证明;若不成立,请说明理由;
- (3) 将图 2 中的 OB 拉长为 AO 的 k 倍得到如图 3, 求 $\frac{AC}{BD}$.

【解析】(1) AC=BD, $BD \perp AC$

理由: ∵∠AON=∠DOB, 且∠ACN=∠BDN=45°

- $\therefore \angle BOD = \angle BDO = 45^{\circ}$. $\therefore BD = BC$. $\therefore AC = BC$, $\therefore AC = BD$.
- $\therefore \angle BOD + \angle BDO + \angle B = 180^{\circ}, \quad \therefore \angle B = 90^{\circ}, \quad \therefore BD \perp AC.$
- (2) AC=BD, $BD \perp AC$

理由:作 $AE \perp MN \mp E$, $BF \perp MN \mp F$, 延长 $AC \odot DB$ 的延长线于点G,

 $\therefore \angle AEC = \angle BFO = \angle BFD = 90^{\circ}. \quad \therefore \angle ACN = \angle GCM, \quad \exists \angle ACN = \angle BDN = 45^{\circ},$

$$\therefore$$
 $\angle GCM$ =45°, \therefore $\angle G$ =90°, \therefore $AC \perp DB$. 在 \triangle AOE 和 \triangle BOF 中 $\begin{cases} \angle AEO = \angle BFO \\ \angle AOE = \angle BOF \end{cases}$, \therefore \triangle AOE $AO = BO$

$$\cong$$
 △ BOF(AASI, ∴ $AE=BF$. 在 △ ACE 和 △ BDF 中
$$\begin{cases} \angle ACN = \angle BDN \\ \angle AEC = \angle BFD \end{cases}$$
, ∴ △ $ACE \cong \triangle AE = BF$

BDF(AAS), :: AC=BD;

(3) 作 $AE \perp MN \uparrow E$, $BF \perp MN \uparrow F$, $\therefore \angle AEC = \angle BFO = \angle BFD = 90$ °.

$$\therefore \angle AOE = \angle BOF, \quad \therefore \triangle AEO \hookrightarrow \triangle BFO, \quad \therefore \frac{AE}{BF} = \frac{AO}{BO} = \frac{1}{k}.$$

$$\therefore \angle ACN = \angle BDN, \ \angle AEC = \angle BFD, \ \therefore \triangle ACE \hookrightarrow \triangle BDF, \ \therefore \frac{AE}{BF} = \frac{AC}{BD} = \frac{1}{k} \ .$$

第2讲二次函数的图像和性质

知识集锦

模块一: 二次函数的定义

1. 定义: 一般地, 形如 $y = ax^2 + bx + c$ (a, b, c 是常数, $a \neq 0$) 的函数, 叫做二次函数. 其中 x 是自变量, a, b, c 分别是函数表达式的二次项系数、一次项系数和常数项.

注意:二次函数的二次项系数 $a \neq 0$, 而 b、c 可以为零.

模块二: 二次函数的图象和性质

- 1. 二次函数的图象为抛物线,图象注意以下几点:开口方向,对称轴,顶点.
- 2. 二次函数 $y = ax^2$ ($a \neq 0$) 的性质:
- (1) 函数 $y = ax^2$ 的图象与 a 的符号关系.
- ①当 a>0时 ⇔ 抛物线开口向上 ⇔ 顶点为其最低点;
- ②当 a<0 时 ⇔ 抛物线开口向下 ⇔ 顶点为其最高点;
- ③ |a|决定抛物线的开口大小: |a|越大, 抛物线开口越小; |a|越小, 抛物线开口越大.
- (2) 抛物线 $y = ax^2$ 的顶点是坐标原点(0,0), 对称轴是 x = 0 (y 轴).

a的 符号	开口 方向	顶点 坐标	对称轴	增减性
a > 0	向上	(0, 0)	y 轴	x>0时, y随 x 的增大而增大; $x<0$ 时, y随 x 的增大而减小; $x=0$ 时, y有最小值 0.
a < 0	向下	(0, 0)	y 轴	x>0时, y随 x 的增大而减小; $x<0$ 时, y随 x 的增大而增大; $x=0$ 时, y有最大值 0.

3. 二次函数 $y = ax^2 + c \ (a \neq 0)$ 的性质:

a的 符号	开口 方向	顶点 坐标	对称轴	増减性
a > 0	向上	(0, c)	y 轴	x>0时,y随 x 的增大而增大; $x<0$ 时,y随 x 的增大而减小; $x=0$ 时,y有最小值 c .
a < 0	向下	(0, c)	y轴	x>0时,y随 x 的增大而减小; $x<0$ 时,y随 x 的增大而增大; $x=0$ 时,y有最大值 c .

4. 二次函数 $y = a(x-h)^2 + k(a \neq 0)$ 的性质:

a的 符号	开口方向	顶点 坐标	对称轴	增减性
a > 0	向上	(h, k)	x=h	x > h时,y随 x 的增大而增大; $x < h$ 时,y 随 x 的增大而减小; $x = h$ 时,y 有最小值 k .
a < 0	向下	(h, k)	x=h	x > h时,y随 x 的增大而减小; $x < h$ 时,y 随 x 的增大而增大; $x = h$ 时,y 有最大值 k .

5. 二次函数 $y = ax^2 + bx + c$ $(a \neq 0)$ 的性质:

配方: 二次函数
$$y = ax^2 + bx + c = a(x + \frac{b}{2a})^2 + \frac{4ac - b^2}{4a}$$

				**
a的 符号	开口 方向	顶点坐标	对称轴	增减性
a > 0	向上	$(-\frac{b}{2a},$ $\frac{4ac-b^2}{4a})$	$x = -\frac{b}{2a}$	$x > -\frac{b}{2a}$ 时,y 随 x 的增大而增大; $x < -\frac{b}{2a}$ 时,y 随 x 的增大而减小; $x = -\frac{b}{2a}$ 时,y 有最小值 $\frac{4ac - b^2}{4a}$.
a < 0	向下	$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$	$x = -\frac{b}{2a}$	$x > -\frac{b}{2a}$ 时,y随 x 的增大而减小; $x < -\frac{b}{2a}$ 时,y随 x 的增大而增大; $x = -\frac{b}{2a}$ 时,y有最大值 $\frac{4ac - b^2}{4a}$.

注意: 二次函数 $y = ax^2 + bx + c$ 与坐标轴的交点: ①与 y 轴的交点: (0, c); ②与 x 轴的交点: 使方程 $ax^2 + bx + c = 0$ 成立的 x 值.

模块三: 二次函数的图像判断

- 1. 二次函数图象与系数的关系
- (1) a的正负性决定抛物线的开口方向

当 a>0时, 抛物线开口向上; 当 a<0时, 抛物线开口向下.

|a|决定抛物线的开口大小: |a|越大, 抛物线开口越小; |a|越小, 抛物线开口越大.

温馨提示: 几条抛物线的解析式中, 若|a|相等,则其形状相同,即若 a 相等,则开口及形状相同,若 a 互为相反数,则形状相同、开口相反.

(2) $a \rightarrow b$ 共同决定抛物线对称轴的位置(抛物线的对称轴: $x = -\frac{b}{2a}$)

当b=0时, 抛物线的对称轴为y轴;

当a、b同号时,对称轴在y轴的左侧;

当a、b异号时,对称轴在y的右侧.

(3) c 的正负性决定抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(0,c))

当 c=0时, 抛物线与 y轴的交点为原点;

当 c > 0 时,交点 y 轴的正半轴;

当 c<0时,交点在 y轴的负半轴.

- 2. 二次函数的图象信息
 - (1) 根据抛物线的开口方向判断 a 的正负性:上正下负.
 - (2) 根据抛物线的对称轴与 y轴的位置关系判断 b 的正负性: 左同右异, 重合为零.
 - (3) 根据抛物线与y轴的交点与原点的位置关系判断c的正负性:上正下负,重合为零.
 - (4) 根据抛物线与x轴的交点个数, 判断 b^2-4ac 的正负性.
- (5) 根据抛物线的顶点纵坐标,判断 $\frac{4ac-b^2}{4a}$ 的正负性.
- (6) 根据抛物线的对称轴可得 $-\frac{b}{2a}$ 与 ± 1 的大小关系,可得 $2a \pm b$ 的正负性.
- (7) 根据抛物线所经过的已知坐标的点, 可得到关于 a, b, c 的等式.

常见的点有: (1,a+b+c)、(-1,a-b+c)、(2,4a+2b+c)、(-2,4a-2b+c)、(3,9a+3b+c)、(-3,9a-3b+c)

模块一 二次函数的定义

【例1】

判断下列函数是不是二次函数.如果是,则指出二次函数的二次项系数、一次项系数和常数项.

(1) $y = \sqrt{3}x^2 + 2xz + 5$;

(2)
$$y = -5 + 8x - x^2$$
;

(3) $y = (3x+2)(4x-3)-12x^2$;

(4)
$$y = \sqrt{3}x^2 + \frac{1}{2}x + 1$$
;

(5) $y = x^2 + \frac{5}{x^2} + 6$;

(6)
$$y = mx^2 + x$$
 (m 是常数);

(7) $y = x^2 + kx + 20$ (k 为常数);

(8)
$$y=1-ax^2+\sqrt{3}x$$
 (a 是常数).

【解析】

- (1) 不是, 函数中有两个自变量 x, z;
- (2) 是, 系数分别为 -1, 8, -5;
- (3) 不是, 函数化简得 y=-x-6, 该函数是一次函数;
- (4) 是, 系数分别为 $\sqrt{3}$, $\frac{1}{2}$, 1; (5) 不是, 它不是关于自变量的整式;
- (6) 不是, m可能为 0; (7) 是, 系数分别为 1, k, 20; (8) 不是, a可能为 0.

【教师备课提示】这道题主要讲二次函数的定义,判断是否是二次函数满足以下三点:

- (1) 函数解析式在等号两边都是整式:
- (2) 含有一个自变量, 且自变量的最高次数时 2:
- (3) 二次项系数不等于零.

模块二 二次函数的图像和性质

【例2】

(1) 若二次函数 $y = ax^2 + bx + a^2 - 2$ (a, b 为常数)的图象如图,则 a 的值为_____.

(2) 如图,抛物线①②③④对应的解析式为 $y = a_1 x^2$, $y = a_2 x^2$, $y = a_3 x^2$, $y = a_4 x^2$,将 a_1 、 a_2 、 a_3 、 a_4 从小到大排列为______.

【解析】

- (1) $-\sqrt{2}$;
- (2) $a_4 < a_3 < a_2 < a_1$.

【教师备课提示】这道题主要考查二次函数中, a的作用:

- (1) a的正负性决定抛物线的开口方向; a>0, 开口向上; a<0, 开口向下.
- (2) |a|决定抛物线的开口大小: |a|越大, 开口越小; |a|越小, 开口越大.

【例3】

- (2) 若点 $A(2, y_1)$, $B(-3, y_2)$, $B(5, y_3)$ 三点在抛物线 $y = x^2 4x m$ 的图象上,则 y_1 、 y_2 、 y_3 的大小关系是()

A. $y_1 > y_2 > y_3$ B. $y_2 > y_1 > y_3$ C. $y_2 > y_3 > y_1$ D. $y_3 > y_2 > y_1$

(3)(2015 成都模拟)已知二次函数 $y=(x-3)^2+1$. 下列说法:①其图象的开口向下;②其图象的对称 轴为直线 x=3;③其图象顶点坐标为(3,-1);④当 x<3时,y 随 x 的增大而减小.则其中说法正确的有(

A. 1个 B. 2个 C. 3个 D. 4个

【解析】

(1) -1, 1或-3. (2) C (3) B

【教师备课提示】这道题主要考查二次函数的基础性质.

【例4】

(1) 已知 $y = 2x^2 + 9x + 34$, 当 x 取不同的值 x_1 , x_2 时函数值相等,则当 $x = x_1 + x_2$ 时的值 ()

A. 与 x=1 的函数相等.

B. 与 x=0 的函数相等.

C. 与 $x = \frac{1}{4}$ 的函数相等.

D. 与 $x = -\frac{9}{4}$ 的函数相等.

(2) 抛物线 $y = ax^2 + bx + c$ 经过点 A(-2,7) , B(6,7) , C(3,-8) ,则该抛物线上纵坐标为 -8 的另一个点 D 的坐标是____.

【解析】

(1) B: (2) (1,-8)

【**教师备课提示**】这道题主要考查二次函数的对称性,抛物线 $y = ax^2 + bx + c$ 是以直线 $x = -\frac{b}{2a}$ 为对称轴的轴对称图形,不难得到如下性质:

- (1) 抛物线上对称两点的纵坐标相等; 抛物线上纵坐标相同的两点是对称点.
- (2) 如果抛物线交 x 轴于两点, 那么这两点是对称点.
- (3) 若设抛物线上对称两点的横坐标分别为 x_1 、 x_2 ,则抛物线的对称轴为 $x = \frac{x_1 + x_2}{2}$.
- (4) 若已知抛物线与 x 轴相交的其中一个交点是 $A(x_1,0)$,且其对称轴是 x=m ,则另一个交点 B 的坐标可以用 x_1 ,m 表示出来.

【例5】

如图,已知函数 y = ax + b 和 $y = ax^2 + bx + c(a \neq 0)$,那么它们的图象可以是().

【解析】

选 C. 在 A 选项中,由图像得 y=ax+b 中 a>0,b>0,二次函数 $y=ax^2+bx+c(a\neq 0)$ 中, a>0,b<0, 矛盾;B 选项中,由图像得 y=ax+b 中 a<0,b>0,二次函数 $y=ax^2+bx+c(a\neq 0)$ 中, a>0,b<0,矛盾;D 选项中,由图像得 y=ax+b 中 a>0,b<0,二次函数 $y=ax^2+bx+c(a\neq 0)$ 中, a<0,b>0,矛盾;C 符合要求.

【教师备课提示】这道题主要考查一次函数和二次函数图像综合,考查二次函数的性质.

模块三 二次函数的图像判断

【例6】

已知二次函数 $y = ax^2 + bx + c$ 的图象如图所示,则点 P(a,bc) 在第_____象限.

【解析】

由图象可知, a<0, b<0, c>0. ∴ bc<0. ∴ P(a,bc)在第三象限.

【教师备课提示】这道题主要考查二次函数图像判断的第一重境界,根据图像判断 a、b、c 及相互乘积的正负性.

【例7】

二次函数 $y = ax^2 + bx + c$ 的图象如下右图所示,判断 a, b, c, $b^2 - 4ac$, 2a + b, a + b + c, a - b + c 的 符号.

【解析】

由图象可知, a>0, b<0, c<0.

同时
$$x = -\frac{b}{2a} < 1$$
,所以 $2a + b > 0$;

函数图象与 x 轴有两个不同的交点, 所以 $b^2 - 4ac > 0$;

x=1 所对应的函数小于 0, 所以 a+b+c<0;

x=-1 所对应的函数大于 0, 所以 a-b+c>0.

【教师备课提示】这道题主要考查二次函数图像判断的第二重境界,根据图像判断 $b^2 - 4ac$, $2a \pm b$ 及 $an^2 + bn + c$ 的正负性.

【例8】

- (1) (嘉祥月考)已知二次函数 $y=ax^2+bx+c(a\neq 0)$ 的图像如图所示,它与 x 轴两个交点分别为(-1,0),
- (3,0). 对于下列命题: ① b-2a=0; ② abc<0; ③ $-a-\frac{1}{2}b+c<0$; ④ 8a+c>0. 其中正确的有_____. (填写序号)

(2) (成外半期) 二次函数 $y = ax^2 + bx + c(a \neq 0)$ 的图象如图所示,有下列 5 个结论: ① abc < 0; ② b < a + c; ③ 4a + 2b + c > 0; ④ $b^2 - 4ac$; ⑤ a + b > m(am + b), ($m \neq 1$ 的实数),其中正确的结论的有______. (填写序号)

【解析】

- (1) 34;
- (2) 由图象可知, a < 0, b > 0, c > 0,
- ∴ abc < 0, 故①准确;

当 x = -1时, y = a - b + c < 0, 即 b > a + c, 故②错误;

由题意得,二次函数的对称轴为x=1,则x=0和x=2时的函数值一样的,

∴当 x=2 时, y=4a+2b+c=c>0, 故③准确;

由图象知,二次函数的图像和x轴有两个不同的交点,故 $b^2-4ac>0$,故④准确;

由题意对称轴为 x=1, 则 $x=-\frac{b}{2a}=1$, 得 b=-2a,

所以 a+b=-a, m(am+b)=m(m-2)a,

 $\therefore m(am+b)-(a+b)=(m-1)^2a<0$, 故⑤准确.

故(1)(3)(4)(5).

【教师备课提示】这道题主要考查二次函数图象判断的第三重境界,根据图像判断只含有a和b或者a和c的式子或者a、b、c式子的综合.

【例9】

己知抛物线 $y = ax^2 + bx + c$ 的一段图象如图所示.

(1) 确定 a 、 b 、 c 的符号;

(2) 求 a+b+c 的取值范围.

【解析】

(1) 由抛物线开口向上,所以 a>0. 又抛物线经过点 (0,-1),所以 c=-1<0. 因为抛物线的对称轴在 y

轴的右侧,从而 $-\frac{b}{2a}>0$,结合 a>0便可知 b<0.

所以a > 0, b < 0, c < 0.

(2) 设 $f(x) = ax^2 + bx + c$, 由图象及(1)可知

$$\begin{cases} f\left(-1\right) = a - b + c = 0 \,, \\ a > 0 \,, \\ b < 0 \,, \\ c = -1 \,, \end{cases} \quad \text{pr} \begin{cases} a - b = 1 \,, \\ b < a < 1 \,, \\ -1 < b < 0 \,, \\ c = -1 \,. \end{cases}$$

因为
$$a+b+c = (b+1)+b-1 = 2b$$
,

所以 -2 < a+b+c < 0.

笔记整理

课后作业

【演练1】

- (1) 下列函数关系中,可以看作二次函数 $y = ax^2 + bx + c$ ($a \neq 0$)模型的是 (
- A. 在一定距离内,汽车行驶的速度与行驶的时间的关系
- B. 我国人口的自然增长率为 1%,这样我国总人口数随年份变化的关系
- C. 矩形周长一定时,矩形面积和矩形边长之间的关系
- D. 圆的周长与半径之间的关系
- (2) 已知函数 $y = (m^2 + m)x^{m^2 m} + (m^2 + 3m + 2)x + m^2 + 2m$, 当 m 是什么数时, 函数是二次函数.

【解析】

- (1) C;
- (2) 由二次函数的定义可以知道: $m^2-m=2$, 且 $m^2+m\neq 0$

解 $m^2 - m = 2$ 得: m = 2 或 m = -1. 由 $m^2 + m \neq 0$ 知: $m \neq -1$ 且 $m \neq 0$.

所以, m=2. 此时函数为: $y=6x^2+12x+8$.

【演练2】

- (1) 已知二次函数 $y_1 = -3x^2$ 、 $y_2 = -\frac{1}{3}x^2$ 、 $y_3 = \frac{3}{2}x^2$,它们的图象开口由小到大的顺序是()
- A. y_1, y_2, y_3 B. y_3, y_2, y_1 C. y_1, y_3, y_2 D. y_2, y_3, y_1
- (2) 抛物线 $y = x^2 x 2$ 的对称轴是______, 顶点坐标为______, 当 x = _____时,y 有最______ 值是_____.
- (3) 已知点 $A(x_1,5)$, $B(x_2,5)$ 是函数 $y=x^2-2x+3$ 上两点,则当 $x=x_1+x_2$ 时,函数值 y=______.

【解析】

(1) C (2)
$$\left(\frac{1}{2}, -\frac{9}{4}\right)$$
, $\frac{1}{2}$, 4 , $-\frac{9}{4}$ (3) 3

【演练3】

在同一直角坐标系中,函数 y=mx+m 和函数 $y=-mx^2+2x+2$ (m 是常数,且 $m\neq 0$) 的图象可能是 ()

【解析】

考察函数图象与系数的关系. 由一次函数的图象判断出m的取值范围,再由m的取值范围判断二次函数的图象的位置. 选D.

【演练4】

二次函数 $y = ax^2 + bx + c$ 的图象如图所示,则一次函数 $y = ax - \frac{b}{c}$ 的图象不经过第_象限.

【解析】

由图象可知, a>0, b>0, c<0.

$$\therefore \frac{b}{c} < 0.$$

:.一次函数 $y = ax - \frac{b}{c}$ 的图象不经过第四象限.

【演练5】

 $y = ax^2 + bx + c$ 的图象如图,

判断 M = |a+b+c| - |a-b+c| + |2a+b| - |2a-b| 的正负性.

【解析】

由题意得 a>0, $0<-\frac{b}{2a}<1$, b<0, 2a+b>0, 2a-b>0,

又当 x=1 时, y=a+b+c<0, 当 x=-1 时, y=a-b+c>0,

【演练6】

已知二次函数 $y = ax^2 + bx + c$ ($a \neq 0$)的图象如图所示,判断 abc, 2a + b, a - b + c, a + c 的符号.

【解析】

由图象可知, a<0, b>0, c>0. $\therefore abc<0$.

又
$$x = -\frac{b}{2a} < 1$$
, $\therefore 2a + b < 0$ 当 $x = -1$ 时, $y = a - b + c > 0$,

当
$$x=1$$
 时, $y=a+b+c>0$, $a+c>0$

【演练7】

二次函数 $y = ax^2 + bx + c$ 的图象的一部分如图所示,求 a 的取值范围.

【解析】

根据二次函数图象可知 a < 0,

又此二次函数图象经过(1,0),(0,1)

则有 a+b+c=0, c=1, 得 b=-(1+a),

于是
$$y = ax^2 - (1+a)x + 1 = a(x - \frac{1+a}{2a})^2 + \frac{4a - (1-a)^2}{4a}$$

根据函数图象可知 $x = \frac{1+a}{2a} < 0$, $\frac{4a - (1-a)^2}{4a} > 1$

于是有 -1 < a < 0.

第3讲二次函数的解析式和图像变换

知识集锦

模块一: 二次函数的解析式

1. 一般式: $y = ax^2 + bx + c \ (a \neq 0)$

如果已知二次函数的图象上的三点坐标(或称函数的三对对应值) (x_1, y_1) 、 (x_2, y_2) 、 (x_3, y_3) ,那么 $[y_1 = ax_1^2 + bx_1 + c$

方程组 $\begin{cases} y_2 = ax_2^2 + bx_2 + c \text{ 就可以唯一确定 a、b、c, 从而求得函数解析式 } y = ax^2 + bx + c. \\ y_3 = ax_3^2 + bx_3 + c \end{cases}$

温馨提示: 已知任意 3 点坐标, 可用一般式求解二次函数解析式.

2. 顶点式: $y = a(x-h)^2 + k(a \neq 0)$

由于
$$y = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$
, 所以当已知二次函数图象的顶点坐标 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$

时,就可以设二次函数形如 $y=a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}$,从而利用其他条件,容易求得此函数的解析

式. 这里直线 $x = -\frac{b}{2a}$ 又称为二次函数图象的对称轴.

温馨提示: 已知顶点坐标或对称轴时, 可用顶点式求解二次函数解析式.

3. 交点式: $y = a(x - x_1)(x - x_2)(a \neq 0)$

我们知道, $y=ax^2+bx+c=a(x-x_1)(x-x_2)$,这里 x_1 , x_2 分别是方程 $ax^2+bx+c=0$ 的两根. 当已知二次函数的图象与 x 轴有交点(或者说方程 $ax^2+bx+c=0$ 有实根)时,就可以令函数解析式为 $y=a(x-x_1)(x-x_2)$,从而求得此函数的解析式.

温馨提示: 已知抛物线与 x 轴的两个交点坐标, 可用交点式求解二次函数解析式,

4. 对称式: $y = a(x - x_1)(x - x_2) + k(a \neq 0)$

温馨提示: 当抛物线经过点 (x_1,k) 、 (x_2,k) 时,可以用对称式来求二次函数的解析式.

注意: 任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即 $b^2-4ac \ge 0$ 时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.

模块二: 二次函数的图象变换

1. 二次函数图象的平移

$$y = ax^{2} + bx + c + m$$

$$\downarrow \uparrow \\ \downarrow b \\ m$$

$$y = a(x+m)^{2} + b(x+m) + c \xrightarrow{\cancel{\pm}8m} y = ax^{2} + bx + c \xrightarrow{\cancel{\pm}8m} y = a(x+m)^{2} + b(x+m) + c$$

$$\uparrow \downarrow b \\ m \downarrow b$$

$$y = ax^{2} + bx + c - m$$

平移规律: 在原有函数的基础上"左加右减", "上加下减".

2. 二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达.

(1) 关于 x 轴对称

 $y=ax^2+bx+c$ 关于 x 轴对称后,得到的解析式是 $y=-ax^2-bx-c$. $y=a(x-h)^2+k$ 关于 x 轴对称后,得到的解析式是 $y=-a(x-h)^2-k$.

(2) 关于 y 轴对称

 $y=ax^2+bx+c$ 关于 y 轴对称后,得到的解析式是 $y=ax^2-bx+c$. $y=a(x-h)^2+k$ 关于 y 轴对称后,得到的解析式是 $y=a(x+h)^2+k$.

(3) 关于原点对称

 $y=ax^2+bx+c$ 关于原点对称后,得到的解析式是 $y=-ax^2+bx-c$. $y=a(x-h)^2+k$ 关于原点对称后,得到的解析式是 $y=-a(x+h)^2-k$.

(4) 关于顶点对称

 $y=ax^2+bx+c$ 关于顶点对称后,得到的解析式是 $y=-ax^2-bx+c-\frac{b^2}{2a}$.

 $y = a(x-h)^2 + k$ 关于顶点对称后,得到的解析式是 $y = -a(x-h)^2 + k$

(5) 关于点(m,n)对称

 $y = a(x-h)^2 + k$ 关于点 (m, n) 对称后, 得到的解析式是 $y = -a(x+h-2m)^2 + 2n - k$

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 | a | 永远不变. 求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

3. 二次函数图象的翻折

(1) 关于 x 轴翻折 (下翻上)

函数 y=|f(x)| 的图象可以由函数 y=f(x) 通过关于 x 轴的翻折变换得到.

具体规则为函数 y = f(x) 图象在 x 轴上方的部分不变,在 x 轴下方的部分翻折到 x 轴上方.

(2) 关于 y 轴翻折 (消去左边, 右抄左)

函数 y = f(|x|) 的图象可以由函数 y = f(x) 通过关于 y 轴的翻折变换得到.

具体规则为先擦去函数 y=f(x) 的图象在 y 轴左边的部分,然后将该函数图象在 y 轴右边的部分翻折复制到左边.

模块一 二次函数的解析式

【例1】

- (1) 已知一个二次函数过(0,0)、(-1,11)、(1,9)三点,求二次函数的解析式.
- (2) 已知二次函数过点(0,-1),且顶点为(-1,2),求函数解析式.
- (3) 若抛物线 $y = ax^2 + bx + c$ 过 (-3,0), (1,0), 且与 y 轴交点为 (0,4), 求二次函数的解析式.

【解析】

- (1) 设二次函数的解析式为: $y = ax^2 + bx + c$,
- ∴函数图象经过(0,0),(-1,11),(1,9)三点,

$$\begin{cases} 0 = c, \\ 11 = a - b + c, 解此方程组, 得: \\ 9 = a + b + c. \end{cases} \begin{cases} a = 10, \\ b = -1, \\ c = 0. \end{cases}$$

- :.二次函数的解析式为: $y=10x^2-x$.
- (2) 设二次函数的解析式为: $y = a(x+1)^2 + 2$,
- ∵二次函数过点(0,-1),

$$\therefore -1 = a(0+1)^2 + 2$$
, $\exists p : -1 = a+2$. $\therefore a = -3$.

:.二次函数的解析式为 $y = -3(x+1)^2 + 2$,

化为一般式得:
$$v = -3x^2 - 6x - 1$$
.

(3) 设二次函数的解析式为: y = a(x+3)(x-1),

由题意得,
$$-3a=4$$
 , 解得 $a=-\frac{4}{3}$

:. 二次函数的解析式为
$$y = -\frac{4}{3}(x+3)(x-1)$$

化为一般式得:
$$y = -\frac{4}{3}x^2 - \frac{8}{3}x + 4$$

【教师备课提示】这道题主要讲解遇到一个给定条件求解析式的情况下,选用哪种方法求解析式最简单. 总结:(1)遇到三个没有特征的点,设为一般式比较简单.

- (2) 遇到顶点已知时,设为顶点式比较简单.
- (3) 遇到与 x 轴两个交点已知时,设为交点式比较简单.

【例2】

- (1) 已知二次函数图象经过点 A(1,3) 、 B(0,2) 、 C(5,3) 三点,求此二次函数解析式.
- (2) 已知二次函数 $y = ax^2 + bx + c$ 的对称轴为 x = 2,且经过点(1,4)、(5,0),求二次函数的解析式.

【解析】

- (1) 解法一: 设对称点式
- :: 抛物线经过 A(1,3) 、 C(5,3) ,
- ∴设抛物线的解析式为: y = a(x-1)(x-5)+3.
- 将 B(0,2)代入得: 5a+3=2, 解得 $a=-\frac{1}{5}$,
- ∴ 抛物线的解析式为 $y = -\frac{1}{5}(x-1)(x-5) + 3$, 化为一般式得 $y = -\frac{1}{5}x^2 + \frac{6}{5}x + 2$.

解法二:设顶点式

:: 抛物线经过 A(1,3) 、 C(5,3) , :: 抛物线的对称轴为 x=3 .

设抛物线的解析式为: $y = a(x-3)^2 + h$,

将
$$A(1,3)$$
 、 $B(0,2)$ 代入得:
$$\begin{cases} 4a+h=3\\ 9a+h=2 \end{cases}$$
 解得
$$\begin{cases} a=-\frac{1}{5}\\ h=\frac{19}{5} \end{cases}$$

∴ 抛物线的解析式为 $y = -\frac{1}{5}(x-3)^2 + \frac{19}{5}$, 化为一般式为: $y = -\frac{1}{5}x^2 + \frac{6}{5}x + 2$.

解法三: 设一般式

设此二次函数解析式为: $y = ax^2 + bx + c$,

由已知得:
$$\begin{cases} a+b+c=3\\ c=2\\ 25a+5b+c=3 \end{cases}$$
, 解得
$$\begin{cases} a=-\frac{1}{5}\\ b=\frac{6}{5}\\ c=2 \end{cases}$$

- :.此二次函数的解析式为 $y = -\frac{1}{5}x^2 + \frac{6}{5}x + 2$.
- (2) :二次函数的对称轴为 x=2 , 且经过点 (5,0) ,
- \therefore 二次函数与 x轴的另一个交点坐标是 (-1,0),
- 设二次函数的解析式为: y = a[x (-1)](x 5), 即: y = a(x + 1)(x 5),
- 又: 图象经过点(1,4),
- $\therefore 4 = a(1+1)(1-5), \quad \therefore a = -\frac{1}{2}.$
- :二次函数的解析式为 $y = -\frac{1}{2}(x+1)(x-5)$. 化为一般式得 $y = -\frac{1}{2}x^2 + 2x + \frac{5}{2}$.
- 【教师备课提示】这道题主要通过讲解遇到一个求二次函数解析式题目的时候,三种设法一般顺序是对称式(交点式),顶点式,一般式,然后练习下第(2)个小题.

【例3】

设二次函数 $y = ax^2 + bx + c$ 经过点 A(0,2) 、 B(1,-1) ,且其图象在 x 轴上所截得的线段长为 $2\sqrt{2}$. 求这个二次函数的解析式.

【解析】

由题意得,
$$\begin{cases} c=2, \\ a+b+c=-1, \end{cases} \quad \text{即} \begin{cases} c=2, \\ b=-(a+3), \end{cases} \quad \text{因此 } y=ax^2-(a+3)x+2.$$

设图象与x轴的交点坐标为 $(x_1,0)$, $(x_2,0)$, 则

 $x_1 + x_2 = 0$ 的两根,

由韦达定理,
$$x_1 + x_2 = \frac{a+3}{a}$$
, $x_1 x_2 = \frac{2}{a}$,

$$\therefore 2\sqrt{2} = |x_1 - x_2| = \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \sqrt{\left(\frac{a+3}{a}\right)^2 - 4 \times \frac{2}{a}},$$

整理得 $7a^2 + 2a - 9 = 0$,则 a = 1 或 $a = -\frac{9}{7}$.

∴
$$y = x^2 - 4x + 2$$
, $\dot{x} y = -\frac{9}{7}x^2 - \frac{12}{7}x + 2$.

【教师备课提示】这是求解析式的一个变形,较一般的求解析式要难点.

【例4】

如图,已知抛物线 $y=x^2+px+q$ 与 x 轴交于点 A 、 B ,交 y 轴负半轴于 C 点,点 B 在点 A 的右侧, $\angle ACB=90^\circ$, $\frac{1}{QA}-\frac{1}{QB}=\frac{2}{QC}$. 求抛物线的解析式.

【解析】

设点 $A(x_1,0)$, $B(x_2,0)$.

由于抛物线 $y=x^2+px+q$ 与 x 轴交于 A、 B 两点,点 B 在点 A 的右侧,且与 Y 轴负半轴交于点 C(0,q),

 $\therefore x_1 < 0, x_2 > 0, q < 0.$

由一元二次方程根系关系可得 $x_1 + x_2 = -p$, $x_1x_2 = q$.

- $AC \perp CB$, $OC \perp AB$, $CC^2 = OA \cdot OB$,
- $\therefore (-q)^2 = (-x_1) \cdot x_2 = -x_1 x_2 = -q \Rightarrow q_1 = 0, q_2 = -1$,但 q = 0 显然不合题意,故 q = -1.
- $\therefore \frac{1}{OA} \frac{1}{OB} = \frac{2}{OC}, \quad \therefore -\frac{1}{x_1} \frac{1}{x_2} = -\frac{2}{q} \Rightarrow \frac{x_1 + x_2}{x_1 x_2} = \frac{2}{q},$
- $\therefore \frac{-p}{q} = \frac{2}{q} \Rightarrow p = -2, \text{ 故该抛物线的解析式为 } y = x^2 2x 1.$

模块二 二次函数的图像变换

【例5】

- (1) (七中高新半期) 二次函数 $y = -2x^2 + 4x + 1$ 的图象如何移动就得到 $y = -2x^2$ 的图象 ().
- A. 向左移动1个单位,向上移动3个单位
- B. 向右移动1个单位,向上移动3个单位
- C. 向左移动1个单位,向下移动3个单位

- D. 向右移动1个单位,向下移动3个单位
- (2) 一抛物线向右平移 3 个单位,再向下平移 2 个单位后得抛物线 $y = -2x^2 + 4x$,则平移前抛物线的解析式为
- (3) 如果将抛物线 $y = -2x^2 + 8$ 向右平移 a 个单位后,恰好过点 (3,6),那么 a 的值为_____.

【解析】

要将二次函数 $y = -2(x-1)^2 + 3$ 的图象平移得到到 $y = -2x^2$, 应选 C.

- (2) 先将得到的函数转化为顶点式 $y=-2(x-1)^2+2$,则先向上平移 2 个单位,再向左平移 3 个单位得到 原抛物线解析式 $y=-2(x+2)^2+4$,即 $y=-2x^2-8x-4$.
- (3) 2或4

【教师备课提示】这道题主要讲解二次函数的平移,二次函数的平移转化为顶点式,二次函数的平移即为顶点的平移.

【例6】

(2) 如图,把抛物线 $y = \frac{1}{2}x^2$ 平移得到抛物线 m,抛物线 m 经过点 A(-6,0) 和原点 O(0,0) ,它的顶点为 P,它的对称轴与抛物线 $y = \frac{1}{2}x^2$ 交于点 Q,则图中阴影部分的面积为______.

【解析】

- (1) (1,-1), $y=x^2-(4n+2)x+4n^2+4n$.
- (2) 过点P作 $PM \perp y$ 轴于点M,
- : 抛物线平移后经过原点 O 和点 A(-6, 0),
- ∴平移后的抛物线对称轴为 x=-3,

得出二次函数解析式为: $y = \frac{1}{2}(x+3)^2 + h$,

将A(-6, 0)代入得: $\frac{9}{2} + h = 0$,

解得: $h = -\frac{9}{2}$, ∴点 P 的坐标是 $\left(-3, -\frac{9}{2}\right)$,

根据抛物线的对称性可知,阴影部分的面积等于矩形 NPMO 的面积, $\therefore S = \frac{27}{2}$

【教师备课提示】这道题主要讲解平移中两种比较常考的较难题型, 一个是找规律, 还有一个是求面积.

【例7】

已知二次函数 $y = x^2 - 2x - 1$, 求:

- (1) 与此二次函数关于 x 轴对称的二次函数解析式为_____;
- (2) 与此二次函数关于 y 轴对称的二次函数解析式为_____;
- (3) 与此二次函数关于原点对称的二次函数解析式为______

【解析】

- (1) $y = -x^2 + 2x + 1$;
- (2) $y = x^2 + 2x 1$;

(3)
$$y = -x^2 - 2x + 1$$
.

【教师备课提示】这道题主要讲解二次函数的对称,总结所有函数关于x轴,y轴对称规律为:关于谁对称谁不变,原点对称可以看做先关于x轴对称,再关于y轴对称.

【例8】

已知二次函数 $y = ax^2 + 4ax + 4a - 1$ 的图象是 C_1 .

- (1) 求 C_1 关于点R(1,0)中心对称的图象 C_2 的解析式;
- (2) 设曲线 C_1 、 C_2 与 y 轴的交点分别为 A, B, 当 |AB|=18 时, 求 a 的值.

【解析】

(1) 设 C_1 上任意一点为 (x_1, y_1) ,

 C_2 上关于 R(1,0) 中心对称的点为 (x_2, y_2) ,

则有
$$\begin{cases} \frac{x_1 + x_2}{2} = 1 \\ \frac{y_1 + y_2}{2} = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 2 - x_2 \\ y_1 = -y_2 \end{cases}$$

由点 (x_1, y_1) 在 $y = ax^2 + 4ax + 4a - 1$ 的图象上可知, $y_1 = ax_1^2 + 4ax_1 + 4a - 1$, 即

$$-y_2 = a(2-x_2)^2 + 4a(2-x_2) + 4a-1$$
. If $y_2 = -a(x_2-2)^2 + 4a(x_2-2) + 1-4a$.

故图象 C_2 的解析式为: $y = -a(x-2)^2 + 4a(x-2) + 1 - 4a = -ax^2 + 8ax + 1 - 16a$.

(2)
$$\Rightarrow y = ax^2 + 4ax + 4a - 1 \Rightarrow x = 0$$
, $\forall y = 4a - 1$, $\forall A(0, 4a - 1)$;

 $\Rightarrow y = -ax^2 + 8ax + 1 - 16a$ 中 x = 0 , 可得 y = 1 - 16a , 故 B(0, 1 - 16a) .

又
$$|AB|=18$$
, 故 $|20a-2|=18 \Rightarrow a=1$ 或 $a=-\frac{4}{5}$.

【教师备课提示】这道题主要讲解二次函数的对称,关于某点对称.

【例9】

当 a 在什么范围内取值时,对于方程 $|x^2-5x|=a$,①没有实根;②有两个实根;③有三个实根;④有四个实根:

【解析】

构造 $y_1 = |x^2 - 5x|$ 和 $y_2 = a$. 方程 $|x^2 - 5x| = a$ 的解也即函数 y_1 与 y_2 图象的交点.

函数 $y_2 = a$ 的图象是截距为 a,与 x 轴平行的直线;而函数 $y_1 = |x^2 - 5x|$ 的图象可以由抛物线 $y = x^2 - 5x$ 的图象经过关于 x 轴的翻折得到,如图:

由于函数 $y = x^2 - 5x$ 的顶点为 $A\left(\frac{5}{2}, -\frac{25}{4}\right)$,

因此 $A'\left(\frac{5}{2}, \frac{25}{4}\right)$. 于是根据图象有:

- ①当 a < 0 时, 原方程没有实根;
- ②当 a=0 时, 原方程有且只有两个实数根;
- ③当 $0 < a < \frac{25}{4}$ 时,原方程有4个不同实根;

【教师备课提示】该题型属于用函数的观点看方程,用数形结合的方法解方程,首先引导 $y_1 = y_2$ 的根就是两个函数 y_1 与 y_2 的交点,其次需要学生通过方程的形式灵活的构造函数.在课堂上用几何画板来解决该类问题更浅显易懂,是一个亮点.

【例10】

(成外周考)已知关于x的一元二次方程 $2x^2+4x+k-1=0$ 有实数根,k为正整数.

- (1) 求 k 的值;
- (2) 当此方程有两个非零的整数根时,将关于 x 的二次函数 $y = 2x^2 + 4x + k 1$ 的图象向下平移 8 个单位,求平移后的图象的解析式;
- (3) 在 (2) 的条件下,将平移后的二次函数的图象在 x 轴下方的部分沿 x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 请你结合这个新的图象回答: 当直线 $y = \frac{1}{2}x + b(b < k)$ 与此图象有两个公共点时,b 的取值范围.

【解析】

(1) 由题意得、 $\triangle = 16 - 8(k-1) \ge 0$.

∴ *k* ≤3. ∵ *k* 为正整数,

k = 1, 2, 3.

(2) 当 k=1 时, 方程 $2x^2+4x+k-1=0$ 有一根为零;

当 k=2 时, 方程 $2x^2+4x+k-1=0$ 无整数根;

当 k=3 时, 方程 $2x^2+4x+k-1=0$ 有两个非零的整数根.

综上所述, k=1和k=2不合题意, 舍去; k=3符合题意.

 $y = 2x^2 + 4x - 6.$

(3) 设二次函数 $y = 2x^2 + 4x - 6$ 的图象与 x 轴交于 A、B 两点,则 A(-3,0) , B(1,0) .

依题意翻折后的图象如图所示.

当直线
$$y = \frac{1}{2}x + b$$
 经过 A 点时, 可得 $b = \frac{3}{2}$;

当直线
$$y = \frac{1}{2}x + b$$
 经过 B 点时,可得 $b = -\frac{1}{2}$.

由图象可知,符合题意的b(b<3)的取值范围为 $-\frac{1}{2}< b<\frac{3}{2}$.

【教师备课提示】二次函数图像翻折变换解答题为月考、周考的压轴题. 分值在 10 分左右, 在分析过程中最需要关注的是变化过程中的临界位置, 从而结合一元二次方程根的判别式解决交点问题.

笔记整理

课后作业

【演练1】

- (1) 已知二次函数 $y = ax^2 + bx + c$ 的图像经过 A(-1, -1) 、 B(0, 2) 、 C(1, 3) ,求二次函数的解析式.
- (2) 已知二次函数 $y = ax^2 + bx + c$ 的对称轴是直线 x = 1,且图像过点 A(3,0) 和 B(-2,5),求此函数的解析式.

【解析】

(1)
$$y = -x^2 + 2x + 2$$
; (2) $y = x^2 - 2x - 3$

【演练2】

设二次函数 $y = ax^2 + bx + c$,当 x = 3时取得最大值为 10,并且它的图象在 x 轴上截得的线段长为 4. 求二次函数的解析式.

【解析】

因为对称轴为 x=3, 且在 x 轴上截得的线段长为 4,则图象可知,与 x 轴的交点的横坐标为 1、5,

可设
$$y = a(x-1)(x-5)$$
, \therefore $-4a = 10$ 解得 $a = -\frac{5}{2}$. $\therefore f(x) = -\frac{5}{2}x^2 + 15x - \frac{25}{2}$.

【演练3】

已知函数 $y=x^2-|x|-12$ 的图象与 x 轴交于相异两点 A 、 B ,另一抛物线 $y=ax^2+bx+c$ 过 A 、 B ,顶点为 P ,且 $\triangle APB$ 是等腰直角三角形,求 a 、b 、c .

【解析】

由已知得A(4,0)、B(-4,0), 故设另一抛物线为 $y=a(x-4)\cdot(x+4)$.

又 $\triangle APB$ 是等腰直角三角形,则 P 点坐标为(0,4)或(0,-4),

$$\therefore \begin{cases}
a = \frac{1}{4}, \\
b = 0, \\
c = -4,
\end{cases} \quad \stackrel{\checkmark}{\bowtie} \begin{cases}
a = -\frac{1}{4}, \\
b = 0, \\
c = 4.
\end{cases}$$

【演练4】

(1) (树德实验半期) 把抛物线 $y = -x^2$ 向左平移 1 个单位,然后向上平移 3 个单位,则平移后的抛物线的解析式为()

A.
$$y = -(x-1)^2 - 3$$
 B. $y = -(x+1)^2 - 3$

C.
$$y = -(x-1)^2 + 3$$

D.
$$y = -(x+1)^2 + 3$$

(2) 将函数 $y = x^2 + x$ 的图象向右平移 a(a > 0) 个单位,得到函数 $y = x^2 - 3x + 2$ 的图象,则 a 的值为()

- A. 1
- B. 2
- C. 3
- D. 4

(3) 在平面直角坐标系中,先将抛物线 $y=x^2+x-2$ 关于 x 轴作轴对称变换,再将所得的抛物线关于 y 轴 作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()

A.
$$y = -x^2 - x + 2$$

B
$$v = -x^2 + x -$$

A.
$$y = -x^2 - x + 2$$
 B. $y = -x^2 + x - 2$ C. $y = -x^2 + x + 2$ D. $y = x^2 + x + 2$

D.
$$y = x^2 + x + 2$$

【解析】

【演练5】

如图,在平面直角坐标 xOy 中,抛物线 C_1 的顶点为 A(-1,-4),且过点 B(-3,0)

- (1) 将抛物线 C_1 向右平移 2 个单位得抛物线 C_2 , 设 C_2 的解析式为 $y = ax^2 + bx + c$, 求 a , b , c 的值;
- (2) 写出阴影部分的面积 $S = __$

【解析】

(1)
$$a=1$$
, $b=-2$, $c=-3$ (2) 8

【演练6】

- (1) 若方程 $x^2 + 2a|x| + 4a^2 3 = 0$ 有且只有一个实数根,则实数 $a = ____.$
- (2) 已知关于 x 的方程 $x^2 2|x| + 2 = m$ 恰有三个实数根, 求 m 的值.

【解析】

- (1) 设函数 $y=x^2+2a|x|+4a^2-3$, 则显然 y 的图象关于 y 轴对称.
- ∵ y=0有且只有一个实数根, ∴这个实数根只有可能为 0

因此
$$f(0)=0$$
 , $4a^2-3=0$, 解得 $a=\pm \frac{\sqrt{3}}{2}$.

经检验当 $a=-\frac{\sqrt{3}}{2}$ 时,原方程有三个不同的实数根,舍去.

而当 $a = \frac{\sqrt{3}}{2}$ 时,原方程只有一个实数根,符合题意.

(2) 由图象可得, m=2.

第4讲 二次函数的区间最值

知识集锦

二次函数的区间最值问题可以分为以下四个类:

1. 定轴定区间

对于二次函数 $y=ax^2+bx+c$ (a>0) 在 $m\leq x\leq n$ 上的最值问题(其中 a、b、c、m 和 n 均为定值, y_{\max} 表示 y 的最大值, y_{\min} 表示 y 的最小值)

- (1) 若自变量x为全体实数,如图①,函数在 $x=-\frac{b}{2a}$ 时,取到最小值,无最大值.
- (2) 若 $n < -\frac{b}{2a}$, 如图②, 当x = m, $y = y_{\text{max}}$; 当x = n, $y = y_{\text{min}}$.
- (3) 若 $m > -\frac{b}{2a}$, 如图③, 当x = m, $y = y_{\min}$; 当x = n, $y = y_{\max}$.

2. 定轴动区间

对于二次函数 $y=ax^2+bx+c$ (a>0), 若 $x=-\frac{b}{2a}$ 为定值,在 $m\leq x\leq n$ (m,n 为参数)条件下,函数的最值需要分别讨论 m,n 与 $-\frac{b}{2a}$ 的大小.

3. 动轴定区间

对于二次函数 $y=ax^2+bx+c$ (a>0), 若 $x=-\frac{b}{2a}$ 为参数,在 $m\le x\le n$ (m,n) 为定值)条件下,函数的最值需要分别讨论 m,n 与 $-\frac{b}{2a}$ 的大小.

4. 动轴动区间

对于二次函数 $y=ax^2+bx+c$ (a>0), 若 $x=-\frac{b}{2a}$ 为参数,在 $m\leq x\leq n$ (m,n 为参数)条件下,函数的最值需要分别讨论 m,n 与 $-\frac{b}{2a}$ 的大小.

模块一 定轴定区间

【例1】

分别求出在下列条件下,函数 $y = -2x^2 + 3x + 1$ 的最值:

(1) x 取任意实数; (2) 当 $-2 \le x \le 0$ 时; (3) 当 $1 \le x \le 3$ 时; (4) 当 $-1 \le x \le 2$ 时.

【解析】

(1)
$$y = -2\left(x - \frac{3}{4}\right)^2 + \frac{17}{8}$$
, : $3x = \frac{3}{4}$ H, 函数的最大值为 $\frac{17}{8}$, 无最小值;

(2)
$$: x = \frac{3}{4}$$
在 $-2 \le x \le 0$ 右侧,

∴当 x=0时,函数取得最大值1;当 x=-2时,函数取得最小值 -13;

(3)
$$\because x = \frac{3}{4} \pm 1 \le x \le 3 \pm \emptyset$$
,

∴当 x=1时,函数取得最大值2;当 x=3时,函数取得最小值-8;

(4) :
$$-1 \le \frac{3}{4} \le 2$$
, $\mathbb{E} \left| -1 - \frac{3}{4} \right| > \left| \frac{3}{4} - 2 \right|$,

∴ $3x = \frac{3}{4}$ 时,函数取得最大值 $\frac{17}{8}$; 3x = -1 时,函数取得最小值 -4 .

【教师备课提示】这道题主要讲解定轴定区间最值的求法.

【例 2】试求 y = (x+1)(x+2)(x+3)(x+4) + 5 在 $-3 \le x \le 3$ 的最值.

【解析】

令
$$t = x^2 + 5x$$
, 则有 $y = (x^2 + 5x + 4)(x^2 + 5x + 6) + 5 = (t + 4)(t + 6) + 5 = t^2 + 10t + 29$

∵当
$$-3 \le x \le 3$$
 时, t 的取值范围是 $-\frac{25}{4} \le t \le 24$,

∴原题转化为当
$$-\frac{25}{4} \le t \le 24$$
 时,求 $y = t^2 + 10t + 29$ 的最大值和最小值.

$$y = (t+5)^2 + 4$$
, 故当 $t = -5$ 时, $y_{\min} = 4$. 而当 $-5 = x^2 + 5x$ 解得: $x_{1,2} = \frac{-5 \pm \sqrt{5}}{2}$,

$$\mathbb{X} : -3 \leq x \leq 3, \quad \therefore \stackrel{}{=} x = \frac{-5 + \sqrt{5}}{2} \text{ if }, \quad y_{\min} = 4.$$

当
$$t = -\frac{25}{4}$$
 时, $y = 5\frac{9}{16}$; 当 $t = 24$ 时, $y = 845$, 而 $845 > 5\frac{9}{16}$,

∴ $\pm t = 24$ 时, 即 x = 3 时, $y_{\text{max}} = 845$.

【教师备课提示】这道题主要是高次函数利用换元转化为二次函数区间最值.

模块二 定轴动区间

【例3】

已知函数 $y=x^2-2x+2$ 在 $t \le x \le t+1$ 范围内的最小值为 s ,写出函数 s 关于 t 的函数解析式,并求出 s 的取值范围.

【解析】

二次函数 $y=x^2-2x+2$ 的对称轴是 x=1,

- ①当 t > 1 时, 对称轴在 x = t 左边, $: s = t^2 2t + 2$;
- ②当 $t \le 1 \le t+1$, 即 $0 \le t \le 1$ 时, 最小值 s 在顶点处取得, :: s=1;
- ③当 t+1<1, 即 t<0时, 对称轴在 x=t+1右边, $: s=t^2+1$.

综上所述:
$$s = \begin{cases} t^2 + 1 & (t < 0) \\ 1 & (0 \le t \le 1) \\ t^2 - 2t + 2 & (t > 1) \end{cases}$$

∴ s 的取值范围为 $s \ge 1$.

【教师备课提示】这道题主要讲解定轴动区间最值的求法,分类讨论.

【例4】

若函数 $y = -\frac{1}{2}x^2 + \frac{13}{2}$ 在区间 $a \le x \le b$ (b > a)上的最小值为 2a,最大值为 2b.求 a、b 的值.

【解析】

函数的对称轴为 x=0, 下面分三种情况加以讨论:

(1) 若 $0 \le a < b$ 时,即函数在区间 $a \le x \le b$ 上单调递减,有

(2) 若 a < 0 < b 时,则由函数图象知,函数在 $a \le x \le 0$ 上单调递增,在 $0 \le x \le b$ 上单调递减,即区间过

了对称轴, 因此在 x=0处有最大值 2b, 即 $2b=\frac{13}{2}$, 得 $b=\frac{13}{4}$. 而函数的最小值在 x=a 或 x=b处取得,

又由于
$$a < 0$$
, 并且当 $x = b$ 时, $y = -\frac{1}{2} \left(\frac{13}{4}\right)^2 + \frac{13}{2} = \frac{39}{32} > 0$,

故函数的最小值在 x = a 处取得,则有 $2a = -\frac{1}{2}a^2 + \frac{13}{2}$,

解得
$$a = -2 - \sqrt{17}$$
 或 $a = -2 + \sqrt{17}$ (含去). 从而
$$\begin{cases} a = -2 - \sqrt{17} \\ b = \frac{13}{4} \end{cases}$$
.

(3) 当 $a < b \leq 0$ 时,即函数在区间 $a \leq x \leq b$ 上单调递增,有

$$\begin{cases} -\frac{1}{2}a^2 + \frac{13}{2} = 2a \\ -\frac{1}{2}b^2 + \frac{13}{2} = 2b \end{cases}$$

由于 a、 b 是方程 $-\frac{1}{2}x^2 + \frac{13}{2} = 2x$ 的两个根,又因为两根之积为负数,即两根异号,这与 $a < b \le 0$ 矛盾,故不存在.

综上所述,得
$$\begin{cases} a=1 \\ b=3 \end{cases}$$
 $\stackrel{\stackrel{\textstyle \circ}{\downarrow}}{=}$ $\begin{cases} a=-2-\sqrt{17} \\ b=\frac{13}{4} \end{cases}$.

模块三 动轴定区间

【例5】

已知函数 $y = -9x^2 - 6ax - a^2 + 2a$ 在区间 $-\frac{1}{3} \le x \le \frac{1}{3}$ 有最大值 -3 ,求实数 a 的值.

【解析】

因为
$$y = -9\left(x + \frac{a}{3}\right)^2 + 2a$$
, $-\frac{1}{3} \le x \le \frac{1}{3}$, 它的对称轴是直线 $x = -\frac{a}{3}$,

于是必须根据值 $x = -\frac{a}{3}$ 是否在 $-\frac{1}{3} \le x \le \frac{1}{3}$ 的范围内分三种情况讨论.

(1) 当
$$-\frac{a}{3} < -\frac{1}{3}$$
时, 即 $a > 1$ 时, y在区间 $-\frac{1}{3} \le x \le \frac{1}{3}$ 随着 x 的增加而减少,

这时, 当 $x = -\frac{1}{3}$ 时, 函数的最大值是 $-a^2 + 4a - 1$,

∴
$$-a^2 + 4a - 1 = -3$$
. $a = 2 \pm \sqrt{6}$. $a = 2 + \sqrt{6}$.

这时,当 $x = -\frac{a}{3}$ 时,函数的最大值是 2a , $\therefore 2a = -3$ 得 $a = -\frac{3}{2}$,这与 $-1 \le a \le 1$ 矛盾.

(3) 当
$$-\frac{a}{3} > \frac{1}{3}$$
, 即 $a < -1$ 时, y 在区间 $-\frac{1}{3} \le x \le \frac{1}{3}$ 随着 x 增加而增加,

这时, 当 $x = \frac{1}{3}$ 时, 函数的最大值是 $-a^2 - 1$,

∴
$$-a^2 - 1 = -3$$
, $a = \pm \sqrt{2}$. Bh $a < -1$, is $a = -\sqrt{2}$.

综上所述,满足题意的 a 为 $2+\sqrt{6}$ 或 $-\sqrt{2}$.

【教师备课提示】这道题主要讲解动轴定区间最值的求法,分类讨论,讨论对称轴在区间的左侧,右侧还是中间.

【例 6】

设 $y = x^2 + ax + 3 - a$, 当 $-2 \le x \le 2$ 时, y 的值恒为非负数, 求实数 a 的取值范围.

【解析】

 $y = \left(x + \frac{a}{2}\right)^2 + 3 - a - \frac{a^2}{4}$. 要使 $y \ge 0$ 在 $-2 \le x \le 2$ 时恒成立,就是要使当 $-2 \le x \le 2$ 时, y 的最小值为非负。

①当
$$-\frac{a}{2}$$
< -2 , 即 $a>4$ 时, 二次函数在 $x=-2$ 时取得最小值 $7-3a$.

由 $7-3a \ge 0$,得 $a \le \frac{7}{3}$,这与 a > 4矛盾,此时 a 不存在.

②当
$$-2 \le -\frac{a}{2} \le 2$$
,即 $-4 \le a \le 4$ 时,二次函数在 $x = -\frac{a}{2}$ 时取得最小值 $3 - a - \frac{a^2}{4}$.

由
$$3-a-\frac{a^2}{4} \ge 0 \Leftrightarrow a^2+4a-12 \le 0 \Leftrightarrow -6 \le a \le 2$$
,此时 $-4 \le a \le 2$.

③当
$$-\frac{a}{2} > 2$$
,即 $a < -4$ 时,二次函数在 $x = 2$ 时取得最小值 $7 + a$.

由 $7+a \ge 0$,得 $a \ge -7$,此时 $-7 \le a < -4$.

综上所述, a的取值范围是 $-7 \le a \le 2$.

【教师备课提示】这道题实际上是恒成立问题, 转化为二次函数最值问题.

【例 7】

函数 $y = ax^2 + (2a-1)x - 3$ $(a \ne 0)$ 在区间 $-\frac{3}{2} \le x \le 2$ 上的最大值为 1,求实数 a 的值.

【解析】

因为是求闭区间上的最值,则最大值可能产生在抛物线的端点或顶点上. 函数 y 的最大值只能在 $x_1 = -\frac{3}{2}$ 或 $x_2 = 2$ 或 $x_0 = \frac{1-2a}{2a}$ 处取得.

- ①当 $x = x_1 = -\frac{3}{2}$ 时,取得最大值,解得 $a = -\frac{10}{3}$. 此时 $x_0 = \frac{1-2a}{2a} = \frac{23}{20}$,故函数 y 的最大值不可能在 $x_1 = -\frac{3}{2}$ 处取得。
- ②当 $x = x_2 = 2$ 时, 取得最大值, 解得 $a = \frac{3}{4}$. 此时 $x_0 = \frac{1-2a}{2a} = -\frac{1}{3}$, 故当 $a = \frac{3}{4}$ 时取得最大值 1.
- ③当 $x = x_0 = \frac{1 2a}{2a}$ 时,取得最大值,解得 $a = \frac{-3 \pm 2\sqrt{2}}{2}$,要使函数 y 在 x_0 处取得最大值,

必须且只需 $\alpha < 0$ 且 $-\frac{3}{2} \le x_0 \le 2$, 经检验, 只有 $a = -\frac{3 + 2\sqrt{2}}{2}$.

综上所述,所求的 a 值为 $a = \frac{3}{4}$ 或 $a = -\frac{3+2\sqrt{2}}{2}$.

【例 8】设变量x满足 $x^2 + bx \le -x(b < -1)$,并且 $x^2 + bx$ 的最小值是 $-\frac{1}{2}$,求b的值.

【解析】

由 $x^2 + bx \le -x$ 得 $x[x+(b+1)] \le 0$, 而 b < -1 , 所以得到 $0 \le x \le -(b+1)$.

令 $y = x^2 + bx$, 则 $y = \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4}$. 下面来求函数在 $0 \le x \le -(b+1)$ 范围内的最小值.

① 若 $-(b+1) < -\frac{b}{2}$, 即 -2 < b < -1, 则函数 y 在 x = -(b+1) 时取得最小值,

$$y_{\min} = \left(\frac{b}{2} + 1\right)^2 - \frac{b^2}{4} = b + 1$$
. $\therefore b + 1 = -\frac{1}{2}$, $\mathbb{R}^p b = -\frac{3}{2}$.

②若
$$-\frac{b}{2} \le -(b+1)$$
, 即 $b \le -2$, 则函数 y 在 $x = -\frac{b}{2}$ 时取得最小值

$$y_{\min} = -\frac{b^2}{4}$$
, $\therefore -\frac{b^2}{4} = -\frac{1}{2}$, $p = \pm \sqrt{2}$.

但是 $b=\pm\sqrt{2}$ 不满足 $b\leq -2$,所以 $b=\pm\sqrt{2}$ 应当舍去.

综上所述,所求的b的值为 $-\frac{3}{2}$.

【教师备课提示】这道题主要讲解动轴动区间的最值问题求解,实际上方法一样是分类讨论.

笔记整理

课后作业

【演练1】

- (1) 求函数 $y = 2x^2 x + 1$ 的最小值:
- (2) 若1 $\leq x \leq 2$, 求 $y = 2x^2 x + 1$ 的最大值、最小值;
- (3) 若 $0 \le x \le 1$, 求 $y = 2x^2 x + 1$ 的最大值、最小值;
- (4) 若 $-2 \le x \le 0$, 求 $y = 2x^2 x + 1$ 的最大值、最小值.

【解析】

- (2) 由图像可知: 当 $1 \le x \le 2$ 时,函数 $y = 2x^2 x + 1$ 单调递增,当 x = 1 时, y 最小,且

 $y=2\times 1-1+1=2$, 当 x=2 时, y 最大, 且 $y=2\times 2^2-2+1=7$.

- (3) 由图像可知: 当 $0 \le x \le 1$ 时,函数 $y = 2x^2 x + 1$ 是先滅后增, ∴当 $x = \frac{1}{4}$, y 最小,且 $y = \frac{7}{8}$. ∵ 当 x = 0 时, $y = 2 \times 0 0 + 1 = 1$ 当 x = 1 时, $y = 2 \times 1 1 + 1 = 2 > 1$,∴当 x = 1 时, y 最大,且 y = 2 .
- (4) 由函数图像开口向上,且 $-2 \le x \le 0 < \frac{1}{4}$,

故当 x=-2 时, y 取最大值为 11,当 x=0 时, y 取最小值为 1.

【演练2】

已知函数 $y=x^2-4x+2$ 在 $t \le x \le t+1$ 范围内的最小值为 s ,写出函数 s 关于 t 的函数解析式.

【解析】

二次函数 $y=x^2-4x+2$ 的对称轴是 x=2,

- ①当t > 2时, 对称轴在x = t左边, $: s = t^2 4t + 2$;
- ②当 $t \le 2 \le t+1$, 即 $1 \le t \le 2$ 时, 最小值 s 在顶点处取得, $\therefore s = -2$;
- ③当t+1<2, 即t<1时, 对称轴在x=t+1右边, $:s=t^2-2t-1$.

综上所述:
$$s = \begin{cases} t^2 - 4t + 2(t > 2) \\ -2(1 \le t \le 2) \\ t^2 - 2t - 1(t < 1) \end{cases}$$

【演练3】

已知函数 $f(x) = -x^2 + 2ax + 1 - a$ 在 $0 \le x \le 1$ 上有最大值 2 ,求 a 的值.

【解析】

按对称轴进行讨论:

当对称轴 x=a<0时, 如左图所示.

当 x=0 时, y 有最大值, $y_{max}=1-a$,

 $\therefore 1-a=2$, 即 a=-1, 且满足 a<0 $\therefore a=-1$.

当对称轴 $0 \le x = a \le 1$ 时,如中图所示,

当 x = a 时, y 有最大值, $y_{\text{max}} = -a^2 + 2a^2 + 1 - a = a^2 - a + 1$.

$$\therefore a^2 - a + 1 = 2$$
. 解得 $a = \frac{1 \pm \sqrt{5}}{2}$ (: $0 \le a \le 1$, 舍去).

当对称轴 x=a>1时,如右图所示.

当 x=1 时, y 有最大值, $y_{\max}=2a-a=2$,且满足 a>1, $\therefore a=2$.

综上可知: a = -1 或 a = 2.

【演练4】

当 $0 \le x \le 1$ 时,求函数 $y = x^2 + ax + b$ 的最值.

【解析】

由题意得, $y = \left(x + \frac{a}{2}\right)^2 + b - \frac{a^2}{4}$,要使 $-\frac{a}{2}$ 在闭区间 $0 \le x \le 1$ 内,就必须 $0 \le -\frac{a}{2} \le 1$,即

 $-2 \le a \le 0$. 因此当 a > 0 和 a < -2 时, $-\frac{a}{2}$ 就不在闭区间 $0 \le x \le 1$ 内.现分别探讨其极值如下:

(1) 如果 a>0 , 则当 x=0时 , y=b ; 当 x=1时 , y=1+a+b . 由于 a>0 , 所以

1+a+b>b, 所以 $y_{max} = 1+a+b$, $y_{min} = b$.

(2) 如果
$$-2 \le a \le 0$$
, 则当 $x = -\frac{a}{2}$ 时, $y_{\min} = b - \frac{a^2}{4}$.

当
$$x=0$$
 时, $y=b$, 当 $x=1$ 时, $y=1+a+b$,

假如
$$a \ge -1$$
, 则 $1+a+b \ge 0$, 所以 $y_{\text{max}} = 1+a+b$.

假如 a < -1, 则 1+a+b < b, 所以 $y_{max} = b$.

(3)
$$a < -2$$
, 则当 $x = 0$ 时, $y = b$; 当 $x = 1$ 时, $y = 1 + a + b$.

由于 a < -2, 所以 1+a < 0, 故 1+a+b < b.

所以
$$y_{\text{max}} = b$$
 , $y_{\text{min}} = 1 + a + b$.

由此可得, 当
$$a > 0$$
 时, $y_{\text{max}} = 1 + a + b$, $y_{\text{min}} = b$;

当
$$-1 \le a \le 0$$
 时, $y_{\text{max}} = 1 + a + b$, $y_{\text{min}} = b - \frac{a^2}{4}$;

当
$$-2 \le a < -1$$
 时, $y_{\text{max}} = b$, $y_{\text{min}} = b - \frac{a^2}{4}$;

当
$$a < -2$$
 时, $y_{\text{max}} = b$, $y_{\text{min}} = 1 + a + b$.

第5讲二次方程根的分布问题

知识集锦

一元二次方程根的分布问题,即一元二次方程的实根在什么区间内的问题,实质就是其相应二次函数 的零点(图象与 x 轴的交点)问题,因此,借助于二次函数及其图象利用数形结合的方法来研究是非常有 益的.

模块一: 0分布和 k 分布

(1) 0 分布: 一元二次方程 $ax^2 + bx + c = 0$ (a > 0) 的两个实数根都大于 0 或两根都小于 0 或者一个实 数根大于 0, 一个实数根小于 0. (不妨设两实数根为 x_1 和 x_2 , 且 $x_1 < x_2$)

(2) k 分布: 一元二次方程 $ax^2 + bx + c = 0$ ($a \neq 0$) 的两个实数根都大于 k 或两根都小于 k 或者一个实 数根大于 k, 一个实数根小于 k. (不妨设两实数根为 x_1 和 x_2 , 且 $x_1 < x_2$)

 $x_1 < k < x_2$ $x_1 < x_2 < k$

模块二:区间分布

单区间: 一元二次方程 $ax^2 + bx + c = 0$ (a > 0)的两个实数根都大于 m, 小于 n.

双区间: 一元二次方程 $ax^2 + bx + c = 0$ (a > 0)的一个实数根大于 m 小于 n, 一个实数根大于 p 小于 q. (不妨设两实数根为 x_1 和 x_2 , 且 $x_1 < x_2$)

模块一 0分布和 k 分布

【例1】

已知关于x的方程 $x^2 + (m-5)x + m - 2 = 0$ 有实根,求实数m的取值范围,使方程的两根分别有以下情况:

- (1) 两根都大于0;
- (2) 两根都小于 0;
- (3) 一根大于 0, 一根小于 0.

【解析】

(1)
$$y = x^2 + (m-5)x + m - 2$$
,

因为方程 $x^2 + (m-5)x + m - 2 = 0$ 的两根都大于 0, 所以

$$\begin{cases} \Delta = (m-5)^2 - 4(m-2) \ge 0 \\ -\frac{m-5}{2} > 0 \\ m-2 > 0 \end{cases}$$
 解得
$$\begin{cases} m \le 3 \vec{\boxtimes} m \ge 11 \\ m < 5 \\ m > 2 \end{cases}$$

- $\therefore 2 < m \leq 3$
- (2) 同理可得, *m*≥11
- (3) 同理可得, m<2

【教师备课提示】这道题主要考查二次方程的0分布,主要是数形结合解决.

【例2】

已知方程 $x^2 - 11x + (30 + a) = 0$ 有两实根,且两根都大于 5,证明: $0 < a \le \frac{1}{4}$.

【解析】

设
$$y = x^2 - 11x + (30 + a)$$
, 对称轴 $x = \frac{11}{2} > 5$

因为方程 $x^2-11x+(30+a)=0$ 的两根都大于 5, 所以有

$$\begin{cases} \Delta = 121 - 4(30 + a) \ge 0 \\ 25 - 55 + (30 + a) > 0 \end{cases} \text{ pr} \begin{cases} 1 - 4a \ge 0 \\ a > 0 \end{cases},$$

解得 $0 < a \leq \frac{1}{4}$.

【教师备课提示】这道题主要考查 k 分布, 其实方法和 0 分布是一样的.

【例3】

已知方程 $ax^2 + (a+2)x + 9a = 0$ 的两个实根 x_1 和 x_2 ,且 $x_1 < 1 < x_2$,求实数 a 取值范围.

【解析】

设 $y = ax^2 + (a+2)x + 9a$, 由题意得, $a \neq 0$

- : 方程 $ax^2 + (a+2)x + 9a = 0$ 的两个实根 x_1 和 x_2 , 且 $x_1 < 1 < x_2$,
- ∴ (1) 当 a > 0 时, 由题意得, a+(a+2)+9a < 0

解得 $a < -\frac{2}{11}$, ∴此时, 无解;

(2) 当a < 0时, 由题意得, a + (a + 2) + 9a > 0

解得
$$a > -\frac{2}{11}$$
, $\therefore -\frac{2}{11} < a < 0$

【教师备课提示】这道题主要讲解 k 分布,但是这道题和上道题不同在于二次项系数 a 的值不确定符号,所以要分类讨论,由题意得, $a \neq 0$,这道题也可以令 $y = x^2 + \frac{(a+2)x}{a} + 9$,然后根据根的分布去求解,建议老师两种方法都讲下.

模块二 区间分布

【例4】

实数 a 在什么范围内取值时,关于 x 的方程 $x^2 - (2-a)x + 5 - a = 0$ 的一个根大于 0 而小于 2,另一个根大于 4 而小于 6?

【解析】

读
$$y = x^2 - (2-a)x + 5 - a$$
,

由题, 抛物线与x轴的两交点分别落在(0,2)和(4,6)内,

$$\begin{cases} 5-a>0, \\ a+5<0, \\ 3a+13<0, \\ 5a+29>0, \end{cases} \text{ pr} \begin{cases} a<5, \\ a<-5, \\ a<-\frac{13}{3}, \end{cases} \text{ pr} \begin{cases} a<5, \\ a<-5, \\ a<-\frac{13}{5}, \end{cases}$$

∴满足条件的 a 的取值范围是 $-\frac{29}{5}$ < a < -5 .

【教师备课提示】本题中,通过四个不等式即可将抛物线的"位置"确定,从而解不等式组求出 a 的范围. 一般地,在讨论一元二次方程根的情形时,要充分利用数形结合的思想,即先根据条件"定"出图象位置,由所给条件画出满足条件的图象,再由图象列出不等式(组),最后解不等式(组)求解.

【例 5】

已知方程 $7x^2-(p+13)x+p^2-p-2=0$ 的两根 α 、 β 满足 $0<\alpha<1<\beta<2$,求实数p的取值范围.

【解析】

设
$$y = 7x^2 - (p+13)x + p^2 - p - 2$$
,

由题, 方程 $7x^2 - (p+13)x + p^2 - p - 2 = 0$ 的两根 α 、 β 满足 $0 < \alpha < 1 < \beta < 2$,

$$\begin{cases} p^2 - p - 2 > 0 \\ p^2 - 2p - 8 < 0 & \text{解} ?, \\ p^2 - 3p > 0 \end{cases} \begin{cases} p < -1 \vec{\boxtimes} p > 2, \\ -2 3, \end{cases}$$

解得-2<p<-1或3<p<4.

∴满足条件的p的取值范围是-2 或<math>3 .

【教师备课提示】这道题主要考查二次方程的双区间分布,方法一样,主要是让学生们练习下,但是这个题的难点在于让学生们根据图象求解一元二次不等式.

【例 6】若方程 $ax^2 - 2x + 1 = 0$ 在区间 1 < x < 3 内有较大实根,另一根小于 1,求实数 a 的取值范围.

【解析】

由题意得,
$$a \neq 0$$
, 原方程可化为 $x^2 - \frac{2}{a}x + \frac{1}{a} = 0$, 令 $y = x^2 - \frac{2}{a}x + \frac{1}{a}$,

因为方程 f(x)=0 较大实根在 (1,3) 内, 且另一根小于 1,

所以有
$$\begin{cases} f(1) = 1 - \frac{2}{a} + \frac{1}{a} < 0 \\ f(3) = 9 - \frac{6}{a} + \frac{1}{a} > 0 \end{cases}$$

$$\begin{cases} 1 - \frac{1}{a} < 0 \\ 9 - \frac{5}{a} > 0 \end{cases}$$

故当 $\frac{5}{9}$ <a<1时,方程在(1,3)内仅有较大实数根,且另一根小于1.

【教师备课提示】这道题主要考查二次方程的双区间分布,但是这道题对于学生们比较难的是开口方向不确定,可以转化.当然这道题分类讨论,也是可以的. 建议老师们讲解的时候,两种方法都讲解下.

【例 7】若关于x的方程 $4x^2-2mx+n=0$ 的解都位于0< x<1的范围中,求正整数m,n的值.

【解析】

设 $y = 4x^2 - 2mx + n$,

因为方程 f(x)=0 的两个解都位于0 < x < 1中,所以m,n满足条件

$$\begin{cases} 4m^2 - 16n \ge 0 & \text{(1)} \\ 0 < \frac{m}{4} < 1 & \text{(2)} \\ n > 0 & \text{(3)} \\ 4 - 2m + n > 0 & \text{(4)} \end{cases}$$

由②得0 < m < 4. 符合条件的m值为1,2,3. 由③得n > 0.

把 m 各值代入④, 得 $n \ge -2$, n > 0, n > 2.

把 m 各值代入①,得 $n \le \frac{1}{4}$, $n \le 1$, $n \le \frac{9}{4}$.

符合条件的m, n的值是m=2, n=1.

【教师备课提示】这道题主要考查单区间的区间分布.

【例8】

已知关于 x 的方程 $mx^2 - (2m+1)x + 5m + 1 = 0$ 有实数解. 若此方程

- (1) 在区间 $\frac{3}{2} \le x \le 5$ 内有两个实根,求实数 m 的取值范围;
- (2) 在区间 $\frac{3}{2} \le x \le 5$ 内有且仅有一个实根,求实数 m 的取值范围;
- (3) 在区间 $\frac{3}{2} \le x \le 5$ 内有实根,求实数 m 的取值范围.

【解析】

当 m=0时, 原方程等价于 -x+1=0, 有一个实数解为 1, 不合题意;

当
$$m \neq 0$$
 时, $\triangle = (2m+1)^2 - 4m(5m+1) = -16m^2 + 1 \ge 0$, ∴ $m \le \frac{1}{4}$.

当
$$m \neq 0$$
 时, $mx^2 - (2m+1)x + 5m + 1 = 0 \Leftrightarrow x^2 - \left(2 + \frac{1}{m}\right)x + 5 + \frac{1}{m} = 0$,

于是设
$$y = x^2 - \left(2 + \frac{1}{m}\right)x + 5 + \frac{1}{m}$$
 , 则对称轴 $x = 1 + \frac{1}{2m}$;

当
$$x=3$$
时, $y=\frac{17}{4}-\frac{1}{2m}$; 当 $x=5$ 时, $y=20-\frac{4}{m}$;

(1) 由题意得,

$$\begin{cases} \frac{17}{4} - \frac{1}{2m} \ge 0 \\ \frac{3}{2} \le 1 + \frac{1}{2m} \le 5 , & \text{if } \frac{1}{5} \le m \le 1, \\ 20 - \frac{4}{m} \ge 0 \end{cases} \Rightarrow m \le \frac{1}{4}$$

(2) 同理可得,
$$\frac{2}{17} \le m < \frac{1}{5}$$
;

【教师备课提示】这道题实际上是单区间问题的一个拓展,有一定难度.

【例9】

已知方程 $ax^2+bx+c=0$ 有两个不同实根,求证: 方程 $ax^2+bx+c+k\left(x+\frac{b}{2a}\right)=0$ 至少有一个根,在前一个方程的两根之间.(此处 $k\neq 0$)

【解析】

设方程
$$ax^2 + bx + c = 0$$
 的两根为 x_1 , x_2 $(x_1 \neq x_2)$, 则有

$$ax_1^2 + bx_1 + c = 0$$
, $ax_2^2 + bx_2 + c = 0$, $x_1 + x_2 = -\frac{b}{a}$, $x_1x_2 = \frac{c}{a}$, $b^2 - 4ac > 0$.

$$\text{In } f(x_1) = ax_1^2 + bx_1 + c + k\left(x_1 + \frac{b}{2a}\right) = k\left(x_1 + \frac{b}{2a}\right),$$

$$f(x_2) = ax_2^2 + bx_2 + c + k\left(x_2 + \frac{b}{2a}\right) = k\left(x_2 + \frac{b}{2a}\right)$$

$$f(x_1)f(x_2) = k^2 \left(x_1 + \frac{b}{2a}\right) \left(x_2 + \frac{b}{2a}\right)$$

$$=k^{2}\left[x_{1}x_{2}+\frac{b}{2a}(x_{1}+x_{2})+\frac{b^{2}}{4a^{2}}\right]$$

$$=k^2\left[\frac{c}{a} + \frac{b}{2a}\left(-\frac{b}{a}\right) + \frac{b^2}{4a^2}\right]$$

$$=\frac{k^2\left(4ac-b^2\right)}{4a^2}<0.$$

所以抛物线 y = f(x) 上的两点 $(x_1, f(x_1))$, $(x_2, f(x_2))$ 在 x 轴的两侧,则方程 $ax^2 + bx + c + k\left(x + \frac{b}{2a}\right) = 0$ 至少有一根在前一方程两根之间。

笔记整理

课后作业

【演练1】

已知方程 $x^2 + 2px + 1 = 0$ 的两个实根一个小于1,一个大于1,求p的取值范围.

【解析】

设
$$y = x^2 + 2px + 1$$
,

因为方程 f(x)=0的两个实数根一个小于1,一个大于1,

所以有
$$\begin{cases} 4p^2 - 4 > 0\\ 1 + 2p + 1 < 0 \end{cases}$$

即
$$\begin{cases} p^2 > 1 \\ 2p+2 < 0 \end{cases}$$
,解得 $\begin{cases} p > 1$ 或 $p < -1 \\ p < -1 \end{cases}$

所以 p < -1.

【演练2】

已知方程 $x^2 - (k-1)x + k = 0$ 有两个大于 2 的实根, 求 k 的取值范围.

【解析】

因为 $x^2 - (k-1)x + k = 0$ 有两个大于 2 的实数根, 设 $y = x^2 - (k-1)x + k$,

则该二次函数与x轴的两个交点都位于x=2的右边,开口向上,

所以有
$$\begin{cases} (k-1)^2 - 4k \ge 0 \\ \frac{k-1}{2} > 2 \\ 4 - 2(k-1) + k > 0 \end{cases}$$

解得 $3+2\sqrt{2} \leq k < 6$.

【演练3】

已知方程 $x^2 + (a^2 - 1)x + a - 2 = 0$ 有一根比1大,另一根比-1小,求实数a的取值范围.

【解析】

设
$$y = x^2 + (a^2 - 1)x + a - 2$$
,

因为方程有一根比1大,另一根比-1小,所以有

$$\begin{cases} a^2 + a - 2 < 0 \\ a - a^2 < 0 \end{cases} \quad \text{pp} \begin{cases} a^2 + a - 2 < 0 \\ a^2 - a > 0 \end{cases}$$

解得
$$\begin{cases} -2 < a < 1 \\ a < 0 或 a > 1 \end{cases}$$
, 所以 $-2 < a < 0$,

故当-2<a<0时,原方程有一根比1大,另一根比-1小.

【演练4】

已知 m、n 均为正整数 , 若关于 x 的方程 $4x^2 - 2mx + n = 0$ 的两个实数根都大于 1 且小于 2 , 求 m、n 的值 .

【解析】

$$\diamondsuit y = 4x^2 - 2mx + n,$$

要使方程的两实数根都大于1且小于2,由函数的图象可知,要满足:

$$\begin{cases} \Delta \geqslant 0 \\ 1 < \frac{m}{4} < 2 \\ 4 - 2m + n > 0 \\ 16 - 4m + n > 0 \end{cases}, \quad \text{Fp} \begin{cases} m^2 \geqslant 4n \\ 4 < m < 8 \\ 4 + n > 2m \\ 16 + n > 4m \end{cases}.$$

已知m、n都为正整数,则由4 < m < 8知m = 5、6、7.

当
$$m=5$$
 时,由 $m^2 \geqslant 4n$ 得 $n \leqslant \frac{25}{4}$,故 $n \leqslant 6$,又由③得 $n > 6$,矛盾;

当 m=6时,由 $m^2 \ge 4n$ 得 $n \le 9$,又由 m, n的制约式得 n > 8,故 n=9;

当 m=7 时,由 $m^2 \geqslant 4n$ 得 $n \leqslant \frac{49}{4}$,即 $n \leqslant 12$,又由 m , n 的制约式得 n > 12 ,矛盾.

综合可得 m=6, n=9.

【演练5】

方程 $x^2 - 4x + 3a^2 - 2 = 0$ 在 $-1 \le x \le 1$ 上有实根,求实数 a 的取值范围.

【解析】

$$\Rightarrow f(x) = x^2 - 4x + 3a^2 - 2$$
.

(1) 原方程在 $-1 \le x \le 1$ 有一个实根,

当
$$x=1$$
 时, $y=3a^2-5$, 当 $x=-1$ 时, $y=3a^2+3$,

根据 f(x) 的图象可知

$$\begin{cases} 3a^2 - 5 > 0 \\ 3a^2 + 3 \le 0 \end{cases}, \quad \stackrel{3}{\cancel{\times}} \begin{cases} 3a^2 - 5 \le 0 \\ 3a^2 + 3 > 0 \end{cases}$$

$$\widetilde{\mathbf{R}} - \frac{\sqrt{15}}{3} \leqslant a \leqslant \frac{\sqrt{15}}{3}.$$

(2) 在 $-1 \le x \le 1$ 上有两个实根,因为函数的对称轴为 x=2 ,在 -1 与 1 的外面,所以根据函数图象,在 $-1 \le x \le 1$ 之间不可能有两个实根.

综合(1)、(2), 当
$$-\frac{\sqrt{15}}{3} \le a \le \frac{\sqrt{15}}{3}$$
 时, 方程在 $-1 \le x \le 1$ 之间有实根.

第6讲 二次函数和代数综合

知识集锦

模块一: 二次函数和方程(组)综合

总结: 二次函数 $y=a_2x^2+b_2x+c$ 和一次函数 $y=a_1x+b_1$ 的交点坐标即为方程组 $\begin{cases} y=a_1x+b_1\\ y=a_2x^2+b_2x+c \end{cases}$ 的解,不过形式不一样.

模块二: 二次函数和不等式(组)综合

总结:函数值比大小,图像比高低,谁高谁大.

模块一 二次函数和方程(组)综合

【例1】

- (1) 已知二次函数 $y = -x^2 + 2x + m$ 的部分图像如图所示,则关于 x 的一元二次方程 $-x^2 + 2x + m = 0$ 的解为______.
- (2) 抛物线 $y = x^2 + 5x + a^2$ 与一次函数 y = ax + 2a 1 有交点,则 a 的取值范围______.

【解析】

(1)
$$x_1 = -1$$
, $x_2 = 3$. (2) $-3 \le a \le \frac{7}{3}$, $\mathbb{L} \ a \ne 0$

【教师备课提示】这道题主要讲解二次函数和方程(组)的关系,一元二次方程的解即对应二次函数和 x 轴交点的横坐标,方程组的解即对应两个函数的交点坐标,形式不一样,函数有交点意味着方程组有解.

【例 2】

给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是这条抛物线的切线,有下列命题:

- ①直线 y = 0 是抛物线 $y = \frac{1}{4}x^2$ 的切线;
- ②直线 x = -2 与抛物线 $y = \frac{1}{4}x^2$ 相切于点 (-2,1);
- ③直线 y = x + b 与抛物线 $y = \frac{1}{4}x^2$ 相切,则相切于点(2,1);
- ④直线 y = kx 2 与抛物线 $y = \frac{1}{4}x^2$ 相切,则 $k = \pm \sqrt{2}$.

其中正确的命题是_____.

【解析】

134

【教师备课提示】这道题主要讲解直线和抛物线相切的情况,相切即对应二次函数和直线只有 1 个交点, 且直线和 x 轴不平行,这条直线成为二次函数的切线. 【例 3】若抛物线 $y = x^2 + ax + 2$ 与连接两点 M(0,1) 、 N(2,3) 的线段(包括 M 、N 两点)有两个相异的交点.求a 的取值范围.

【解析】

设过两点 M、N的直线为 y=kx+b,则

$$\begin{cases} 1=0\times k+b\\ 3=2\times k+b \end{cases},\quad \text{解得} \begin{cases} k=1\\ b=1 \end{cases},\quad \text{所以 } y=x+1.$$

要使抛物线 $y=x^2+ax+2$ 与线段 MN 有两个相异的交点,等价于方程 $x^2+ax+2=x+1$ 在 $0 \le x \le 2$ 上有

由函数图象可知,二次函数的图象与x轴的两个不同交点位于0与2之间,并且在x=0和x=2处函数值均大于或等于0、对称轴也在x=0与x=2之间,

$$\begin{cases} \Delta = (a-1)^2 - 4 > 0 \\ f(0) = 1 \ge 0 \\ f(2) = 4 + 2(a-1) + 1 \ge 0 \end{cases}$$
 $\not{\text{PAP}} - \frac{3}{2} \le a < -1.$

因此当 $-\frac{3}{2} \le a < -1$ 时,有两个相异的交点.

【**教师备课提示**】这道题主要讲解二次函数和直线相交的情况,相交指的是有交点,即方程组有解,对应得到的一元二次方程有解,则 $\Delta \geq 0$.

【例4】

已知二次函数 $y = x^2 - x + c$.

- (1) 若点 A(-1,n)、 B(2,2n-1) 在二次函数 $y=x^2-x+c$ 的图象上, 求此二次函数的最小值;
- (2) 若 $D(2, y_1)$ 、 $E(x_2, 2)$ 两点关于坐标原点成中心对称,试判断直线 DE 与抛物线 $y = x^2 x + c + \frac{3}{8}$ 的交点个数,并说明理由.

【解析】

(1) 由题意得
$$\begin{cases} n=2+c \\ 2n-1=2+c \end{cases}$$
 解得 $\begin{cases} n=1 \\ c=-1 \end{cases}$

(2) :点 D、 E 关于原点成中心对称, : D(2,-2)、 E(-2,2)

设直线 DE 为 y=kx+b ,则有 $\begin{cases} -2=2k+b\\ 2=-2k+b \end{cases}$,解得 $\begin{cases} k=-1\\ b=0 \end{cases}$ ∴直线 DE 为 y=-x .

① 当
$$-c - \frac{3}{8} = 0$$
 时, $\therefore c = -\frac{3}{8}$ 时, 方程 $x^2 = -c - \frac{3}{8}$ 有相同的实数根,

即当
$$c = -\frac{3}{8}$$
时, 直线 $y = -x$ 与抛物线 $y = x^2 - x + c + \frac{3}{8}$ 有唯一交点.

②当
$$-c - \frac{3}{8} > 0$$
 时, $\therefore c < -\frac{3}{8}$ 时, 方程 $x^2 = -c - \frac{3}{8}$ 有两个不同实数根,

即当
$$c < -\frac{3}{8}$$
时, 直线 $y = -x$ 与抛物线 $y = x^2 - x + c + \frac{3}{8}$ 有两个不同的交点.

③当
$$-c - \frac{3}{8} < 0$$
 时, $\therefore c > -\frac{3}{8}$ 时, 方程 $x^2 = -c - \frac{3}{8}$ 没有实数根,

即当
$$c > -\frac{3}{8}$$
时, 直线 $y = -x$ 与抛物线 $y = x^2 - x + c + \frac{3}{8}$ 没有交点.

【教师备课提示】这道题主要考查判断图像交点的情况.

【例 5】

已知二次函数 $y_1 = x^2 - 2x - 3$ 及一次函数 $y_2 = x + m$.

- (1) 求该二次函数图象的顶点坐标以及它与 x 轴的交点坐标;
- (2) 将该二次函数图象在 x 轴下方的部分沿 x 轴翻折到 x 轴上方,图象的其余部分不变,得到一个新图象,请你在图中画出这个新图象,并求出新图象与直线 $y_2 = x + m$ 有三个不同公共点时 m 的值:

【解析】

- (1) 二次函数图象的顶点坐标为(1,-4), 与x轴的交点坐标为A(-1,0), B(3,0)
- (2) ①当直线位于 l_1 时, 此时 l_1 过点 A(-1,0), $\therefore 0 = -1 + m$, 即 m = 1.
- ②当直线位于12时,此时12与函数

 $y = -x^2 + 2x + 3(-1 \le x \le 3)$ 的图象有一个公共点.

:. 方程
$$x+m=-x^2+2x+3$$
 有一根,

$$\Delta = 1 - 4(m - 3) = 0$$
, $\mathbb{R}^p m = \frac{13}{4}$

当 $m = \frac{13}{4}$ 时, $x = \frac{1}{2}$ 满足 $-1 \le x \le 3$,

由①②知, m=1或 $m=\frac{13}{4}$.

【教师备课提示】这道题是二次函数翻折后,和直线交点的情况.

模块二 二次函数与不等式(组)综合

【例 6】

已知二次函数 $y = x^2 + bx + c$ 的图象如图所示,它与 x 轴的一个交点的坐标为 (-1,0) ,与 y 轴的交点坐标为 (0,-3) .

- (1) 求二次函数的解析式;并求图象与x轴的另一个交点的坐标;
- (2) 根据图象回答: 当x取何值时, -3 < y < 0.

【解析】

- (1) $y = x^2 2x 3$, (3,0);
- (2) $-1 < x < 0 \le 2 < x < 3$.

【教师备课提示】这道题主要考查根据图像回答二次函数值在哪个区间时, 自变量 x 的取值范围.

【例 7】

如图,直线 y=x+m 和抛物线 $y=x^2+bx+c$ 都经过点 A(1,0), B(3,2).

- (1) 求 m 的值和抛物线的解析式;
- (2) 求不等式 $x^2 + bx + c > x + m$ 的解集. (直接写出答案)

【解析】

- (1) m = -1, $y = x^2 3x + 2$;
- (2) x < 1 或 x > 3.

【教师备课提示】这道题主要考查根据图像回答二次函数值大于一次函数值时, 自变量 x 的取值范围.

【例8】

(1) 如图,已知二次函数 $y_1 = \frac{2}{3}x^2 - \frac{4}{3}x$ 的图象与正比例函数 $y_2 = \frac{2}{3}x$ 的图象交于点 A(3,2) ,与 x 轴交于

B.
$$0 < x < 3$$

C.
$$2 < x < 3$$

(2) 给出下列命题及函数 y = x, $y = x^2$ 和 $y = \frac{1}{x}$ 的图象: 则 ()

①如果
$$\frac{1}{a} > a > a^2$$
, 那么 $0 < a < 1$;

②如果
$$a^2 > a > \frac{1}{a}$$
, 那么 $a > 1$;

③如果
$$\frac{1}{a} > a^2 > a$$
, 那么 $-1 < a < 0$;

A. 正确的命题是①④

C. 正确的命题是①②

B. 错误的命题是②③④

D. 错误的命题只有③

【解析】

(1) ::二次函数 $y_1 = \frac{2}{3}x^2 - \frac{4}{3}x$ 的图象与正比例函数 $y_2 = \frac{2}{3}x$ 的图象交于点 A(3,2) , 与 x 轴交于点 B(2,0) ,

:.由图象得: 若 $0 < y_1 < y_2$,则x的取值范围是: 2 < x < 3. 故选C.

(2) 易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),

根据对称性, y=x 和 $y=\frac{1}{x}$ 在第三象限的交点坐标为(-1,-1),

①如果
$$\frac{1}{a} > a > a^2$$
, 那么 $0 < a < 1$, 故①正确;

②如果
$$a^2 > a > \frac{1}{a}$$
, 那么 $a > 1$ 或 $-1 < a < 0$, 故②错误;

③如果
$$\frac{1}{a} > a^2 > a$$
, 那么 a 值不存在, 故③错误;

④如果
$$a^2 > \frac{1}{a} > a$$
时,那么 $a < -1$,故④正确.

综上所述, 正确的命题是①④, 错误的命题是②③. 故选: A.

【教师备课提示】这道题主要考查二次函数和不等式综合问题,根据图像求解.总结:函数值比大小,图像 比高低,谁高谁大.

笔记整理

课后作业

【演练1】

(1) 二次函数 $y = -x^2 + 2x + k$ 的部分图象如图所示,则关于 x 的一元二次方程 $-x^2 + 2x + k = 0$ 的一个解 $x_1 = 3$,另一个解 $x_2 = ($)

- A. 1
- B. -1
- C. -2
- D. 0

(2) 二次函数 $y = ax^2 + bx + c$ 的图象如图所示,那么关于 x 的方程 $ax^2 + bx + c + 3 = 0$ 的根的情况是 ()

A. 有两个相等的实数根

- B. 无实数根
- C. 有两个同号不相等实数根
- D. 有两个异号实数根

【解析】

(1) B; (2) D

【演练2】

若抛物线 $y = x^2 + ax + 2$ 与连接两点 M(0,1) 、 N(2,3) 的线段(包括 M 、 N 两点)只有一个交点.求 a 的取值范围.

【解析】

设过两点 M 、 N 的直线为 y=kx+b ,则

$$\begin{cases} 1 = 0 \times k + b \\ 3 = 2 \times k + b \end{cases}$$
,解得
$$\begin{cases} k = 1 \\ b = 1 \end{cases}$$
,所以 $y = x + 1$.

要使抛物线 $y=x^2+ax+2$ 与线段 MN 有两个相异的交点,等价于方程 $x^2+ax+2=x+1$ 在 $0 \le x \le 2$ 上有

- : f(0) = 1 > 0, 因此
- ①若 f(2)=2a+3<0,则符合条件,此时 $a<-\frac{3}{2}$;
- ②若 f(2)=2a+3=0,则 $a=-\frac{3}{2}$, $f(x)=x^2-\frac{5}{2}x+1$, f(x)=0在 [0,2]内有两个相异实根,不符合要

求;

③若
$$f(2)=2a+3>0$$
,则 $a>-\frac{3}{2}$,此时 $f(x)=0$ 在 $[0,2]$ 内有两个重根,

于是 $\Delta = (a-1)^2 - 4 = 0$, 解得 a = 3 (对称轴不在 [0, 2] 内舍去) 或 a = -1.

综上 a 的取值范围是 a=-1 或 $a<-\frac{3}{2}$.

【演练3】

已知函数 $y = mx^2 - 3x + 2$ (m 是常数),若一次函数 y = x + 1 的图象与该函数的图象恰好只有一个交点,求 m 的值及这个交点的坐标.

【解析】

①当m=0时,函数 $y=mx^2-3x+2$ 为一次函数y=-3x+2,

令:
$$-3x+2=x+1$$
, 解得 $x=\frac{1}{4}$, 之交点为 $\left(\frac{1}{4},\frac{5}{4}\right)$;

②当 $m \neq 0$ 时,函数 $y = mx^2 - 3x + 2$ 为二次函数.

若一次函数 y=x+1 的图象与函数 $y=mx^2-3x+2$ 的图象只有一个交点,

$$\Rightarrow mx^2 - 3x + 2 = x + 1$$
, $pmx^2 - 4x + 1 = 0$,

由
$$\Delta=0$$
, 得 $m=4$, 此时交点为 $\left(\frac{1}{2},\frac{3}{2}\right)$.

【演练4】

画出函数 $y = x^2 - 2x - 3$ 的图象,根据图象回答下列问题.

- (1) 图象与 x 轴、y 轴的交点坐标分别是什么?
- (2) x取什么值时,函数值 y大于 0? x取什么值时,函数值 y小于 0?

【解析】

- (1) 与x轴交点(-1,0),(3,0),与y轴交点(0,-3)
- (2) 当 x < -1 或 x > 3 时, y > 0 ; 当 -1 < x < 3 时, y < 0 . (图略)

【演练5】

 $y_1 = x^2 + (m+1)x + m - 4$ 与 x 轴交于 A, B 两点(点 A 在点 B 左侧),且对称轴为 x = -1 .

- (1) 求 m 的值;
- (2) 若直线 $y_2 = kx + b$ 过点 B 且与抛物线交于点 P(-2m, -3m),根据图象回答: 当 x 取何值时, $y_1 \ge y_2$.

【解析】

- (1) 由题意, $f \frac{m+1}{2} = -1$, 解得 m = 1.
- (2) 如图: $x \le -2$ 或 $x \ge 1$.

第7讲 四点共圆(1)

知识集锦

模块一 辅助圆思想

平面几何中有很多题目的背景中并没有出现圆,但是如果能够适当添加辅助圆,能让题目解起来变得十分简单,因此,辅助圆思想是学习四点共圆的基础.

几何条件: OA = OB = OC

辅助线:

以O为圆心、OA为半径作圆 $\odot O$

- $\therefore OA = OB = OC$
- ∴点B、C在⊙0上

A、B 是两个定点,C 为动点,试确定点 C 的位置,使得 $\angle ACB = \alpha$ (α 为锐角).

作 $\triangle OAB$,使得 OA = OB 、 $\angle AOB = 2\alpha$,以 O 为圆心、OA 为半径作 $\bigcirc O$,作 $\bigcirc O$ 关于直线 AB 的对称圆 $\bigcirc O'$,则优弧 AmB 、 Am'B 上的点 C (不包括端点 A 、 B)均能使得 $\angle ACB = \alpha$

模块二 四点共圆的基本判定方法

1. 到一点距离相等的四个点共圆(圆的定义)。

例:如图,直角三角形 ABC 与直角三角 BCD 共斜边,则 A、B、C、D 四点共圆;

2. 同底且同侧顶角相等的两个三角形的顶点共圆(张角相等,四点共圆)。

例:如图,若 $\angle C = \angle D$,则A、B、C、D四点共圆。

3. 对角互补的四边形(或有一个外角等于其内对角的四边形)的顶点共圆。

例:如左下图,若 $\angle A+\angle C=180^\circ$,则 A、B、C、D 四点共圆;如右下图,若 $\angle DAE=\angle C$,则 A、B、C、D 四点共圆。

4. 利用相交弦定理与割线定理的逆定理可判定四点共圆。

例:如左下图,四边形 ABCD 对角线交于点 P,若 $PA \cdot PC = PB \cdot PD$,则 $A \setminus B \setminus C \setminus D$ 四点共圆;如右下图,若 $PA \cdot PC = PB \cdot PD$,则 $A \setminus B \setminus C \setminus D$ 四点共圆。

模块一 辅助圆思想

【例1】 已知四边形 ABCD , AB // CD , 且 AB = AC = AD = a , BC = b , 且 2a > b . 求 BD 的值 .

【解析】以A为圆心,以a为半径作圆. 延长BA交 $\odot A$ 于E点,连接ED

$$\therefore$$
 AB // CD, \therefore \angle CAB = \angle DCA, \angle DAE = \angle CDA.

$$\therefore AC = AD$$
, $\therefore \angle DCA = \angle CDA$,

$$\therefore \angle DAE = \angle CAB$$
,

在 $\triangle ABC$ 和 $\triangle DAE$ 中,

$$\begin{cases} AD = AC, \\ \angle DAE = \angle CAB, \\ AE = AB. \end{cases}$$

- $\therefore \triangle CAB \cong \triangle DAE$,
- $\therefore ED = BC = b$
- ∵ BE 是直径,
- $\therefore \angle EDB = 90^{\circ}$

在Rt△EDB中,

ED = b, BE = 2a,

由勾股定理得

 $ED^2 + BD^2 = BE^2.$

:
$$BD = \sqrt{BE^2 - ED^2} = \sqrt{(2a)^2 - b^2} = \sqrt{4a^2 - b^2}$$
.

- 【例2】 如图, E, B, A, F 四点共线, 点 D 是正三角形 ABC 的边 AC 的中点, 点 P 是直线 AB 上异于 A, B 的一个动点, 且满足 $\angle CPD=30^\circ$, 则()
 - A. 点P一定在射线BE上
 - B. 点 P 一定在线段 AB 上
 - C. 点 P 可以在射线 AF 上,也可以在线段 AB 上
 - D. 点 P 可以在射线 BE 上,也可以在线段 AB 上

【解析】取BC中点O及点O关于AC的对称点O',分别以O、O'为圆心,OC、O'C长度为半径作圆,两圆与直线EF有两个交点(如图),一个是点B,另外一个是线段AB的中点,所以满足条件的P点一定在线段AB上,应选B.

【备选】如图,PA、PB分别切 $\odot O$ 于 A、B 两点,PC 满足 $AB \cdot PB - AC \cdot PC$ = $AB \cdot PC - AC \cdot PB$,且 $AP \perp PC$, $\angle PAB = 2 \angle BPC$,求 $\angle ACB$ 的度数.

- 【解析】∵PA、PB都是⊙O的切线,∴PA=PB
 - $AB \cdot PB AC \cdot PC = AB \cdot PC AC \cdot PB$,
 - $\therefore (AB + AC)(PB PC) = 0$
 - $\therefore PB = PC$, $\therefore A$, B、C三点都在以P为圆心, PA为半径的圆上.
 - 设 $\angle ACB = \alpha$,则 $\angle APB = 2\alpha$,
 - $\therefore \angle BPC = 90^{\circ} 2\alpha$
 - \therefore $\angle PAB = 2\angle BPC$, \therefore $\angle PAB = \angle PBA = 2(90^{\circ} 2\alpha) = 180^{\circ} 4\alpha$
 - 在 $\triangle PAB$ 中, $\angle APB + \angle PAB + \angle PBA = 180^{\circ}$,
 - $PP 2(180^{\circ} 4\alpha) + 2\alpha = 180^{\circ}$
 - $\therefore 6\alpha = 180^{\circ}$, $\therefore \alpha = 30^{\circ}$, $\exists \beta \angle ACB = 30^{\circ}$.

模块二 四点共圆的基本判定方法

【例3】 如图,AB 是 $\odot O$ 的直径,CD 是弦,且 $CD \perp AB$ 于 K . E 为劣弧 AC 上的一点,连接 AE 交 DC 延长线于 F . 求证: $E \setminus F \setminus B \setminus K$ 四点共圆.

【解析】连接 BE、BF,

: AB 是 ⊙O 的直径,

 $\therefore \angle AEB = \angle BEF = 90^{\circ}$,

 $\therefore CD \perp AB$, $\therefore \angle FKB = 90^{\circ}$,

∴ E、F、B、K 四点共圆.

【例4】 1. 如图,四边形 ABCD 内接于 $\bigcirc O$, P 、 Q 、 R 分别是 AB 、 BC 、 AD 的中点. 连接 PQ 与 DA 的延长线交 于 S ,连接 PR 与 CB 延长线交于 T . 求证: S 、 T 、 Q 、 R 四点共圆.

2. 如图, $\triangle ABC$ 中,以 AB 为直径作圆,交 BC 于 H ,交 $\angle BAC$ 的平分线于 D ,作 $CK \perp AD$ 于 K , M 为 BC 中点. 求证: D、 M 、 K 、 H 四点共圆.

【解析】1. 连接 AC、BD

: P、Q、R 都是中点, : PQ // AC, PR // BD,

 $\therefore \angle PQB = \angle ACB, \angle PRA = \angle ADB$

- \therefore $\angle ADB = \angle ACB$, \therefore $\angle PRA = \angle PQB$,
- ∴ S、T、Q、R四点共圆.
- 2. 延长 CK 交 AB 于 P, 连接 DH
- \therefore AD 平分 $\angle BAC$, $CK \perp AD$,
- $\therefore \triangle ACK \cong \triangle APK$, $\therefore PK = CK$,
- ∵ *M* 是 *BC* 的中点, ∴ *MK* // *AB* ,
- $\therefore \angle CMK = \angle B$,
- \therefore $\angle ADH = \angle ABC$, \therefore $\angle CMK = \angle ADH$,
- ∴ D、M、K、H四点共圆.

- 【例5】 1. 如图, $BC \perp AE$, $ED \perp AB$,且 $BC \setminus DE$ 相交于 G . H 为 AE 延长线上的一点, CH = AC . 求证: $B \setminus G \setminus E \setminus H$ 四点共圆.
 - 2. 如图,P为 $\triangle ABC$ 内一点,D、E、F分别在 BC、CA、AB边上,已知 P、D、C、E 四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F 也四点共圆.

- 【解析】1. $: BC \perp AE$, $ED \perp AB$, $: \angle BDE = \angle BCE = 90^{\circ}$,
 - $\therefore \angle DBC = \angle CED$,
 - AC = CH, AB = BH, $ABC = \angle HBC$,
 - ∴ ∠CED=∠HBC, ∴ B、G、E、H 四点共圆.
 - 2. 连接 PE、PF、PD,
 - ∵ A、E、P、F 四点共圆, ∴ ∠AFP=∠CEP,

- ∵ C、D、P、E 四点共圆, ∴ ∠BDP = ∠CEP,
- $\therefore \angle AFP = \angle BDP$,
- ∴ B、D、P、F四点共圆.
- 【例6】 1. C、D是以 AB 为直径的半圆上的两点, $\angle AOC = 40^{\circ}$, P 在直径 AB 上,且 $\angle OCP = \angle ODP = 10^{\circ}$,求 $\angle BOD$.
 - 2. 在五边形 ABCDE中, ∠ABC=∠ADE, ∠AEC=∠ADB. 求证: ∠BAC=∠DAE.
 - 3. 如图,锐角 $\triangle ABC$ 中, BD 、 CE 分别是边 AC 、 AB 上的高线, $DG \bot CE$ 于 G , $EF \bot BD$ 于 F . 求证: $FG /\!\!/ BC$.

【解析】1.连接 CD

- ∵ ∠OCP = ∠ODP , ∴ C、D、P、O四点共圆,
- \therefore $\angle CDP = \angle AOC = 40^{\circ}$, \therefore $\angle CDO = 30^{\circ}$,
- $\therefore OC = OD$, $\therefore \angle OCD = 30^{\circ}$,
- \therefore $\angle OCP = 10^{\circ}$, \therefore $\angle PCD = 20^{\circ}$,
- $\therefore \angle BOD = \angle PCD = 20^{\circ}$.

- 2.设BD、CE相交于O,连接AO
- ∵ ∠AEC=∠ADB, ∴ A、O、D、E 四点共圆, Be
- \therefore $\angle AOE = \angle ADE$, $\angle DOE = \angle DAE$,
- \therefore $\angle ABC = \angle ADE$, \therefore $\angle ABC = \angle AOE$,
- ∴ A、O、C、B四点共圆, ∴ ∠BAC = ∠BOC,
- \therefore $\angle BOC = \angle DOE$, \therefore $\angle BAC = \angle DAE$.
- 3. 连接 DE
- ∵ BD、CE 是高线, ∴ ∠BEC=∠BDC=90°,
- ∴ B、C、D、E 四点共圆, ∴ ∠CBD = ∠CED,
- $\therefore DG \perp CE$, $EF \perp BD$,
- \therefore $\angle EFD = \angle DGE = 90^{\circ}$,
- ∴ D、E、F、G四点共圆,
- $\therefore \angle DFG = \angle DEG$, $\therefore \angle DFG = \angle DBC$,
- \therefore FG // BC.

笔记整理

课后作业

【演练1】如图,在四边形 ABCD 中, AB = AC = AD , $\angle BCD = 150^{\circ}$,求 $\angle BAD$ 的度数.

- 【解析】以A为圆心,以AB为半径作圆,并在优弧上任取一点E,连接EB、ED.
 - $\therefore \angle BCD = 150^{\circ}, \quad \therefore \angle E = 30^{\circ},$
 - $\therefore \angle BAD = 2\angle E = 60^{\circ}$.
- 【演练2】如图, D 是等腰 $\triangle ABC$ 底边 BC 上一点,若 $AB=AC=\sqrt{3}$, AD=1 ,求 $BD\cdot CD$ 的值.

【解析】解法一:以A为圆心,AB长为半径作 $\odot A$,则C点一定在圆上,双向延长AD交 $\odot A$ 于E、F,

则由相交线定理得 BD·CD=ED·FD,

- $AB = AC = \sqrt{3}$,即OA的半径为 $\sqrt{3}$,
- : $ED \cdot FD = (\sqrt{3} + 1) \cdot (\sqrt{3} 1) = 2$,
- $\therefore BD \cdot CD = 2$.

解法二:作 $\triangle ABC$ 的外接圆,延长 AD 交圆于 E

 \therefore $\angle ABC = \angle ACB = \angle AEB$,

 $\therefore \triangle ABD \hookrightarrow \triangle AEB , \quad \therefore AB^2 = AD \cdot AE ,$

$$\therefore AE = \frac{AB^2}{AD} = 3 , \quad \therefore DE = AE - AD = 3 - 1 = 2 ,$$

$$\therefore BD \cdot CD = AD \cdot DE = 1 \times 2 = 2$$
.

【演练3】

如图, $\triangle ABC$ 中, AB=AC , D 为 BC 上一点, CD=DE ,证明: A 、 B 、 D 、 E 四点 共圆 .

【解析】: AB = AC, $\therefore \angle B = \angle C$,

$$\therefore$$
 $CD = DE$, \therefore $\angle C = \angle CED$,

$$\therefore \angle B = \angle CED$$
,

∴ A, B, D, E 四点共圆.

【演练4】

如图,在四边形 ABCD中, E、 F、 G、 H 分别是 AB、 BC、 CD、 DA 的中点, $AC \perp BD$. 求证: E、 F、 G、 H 四点共圆.

【解析】连接 EF、FG、GH、HE

∵ E、F、G、H分别是 AB、BC、CD、DA的中点,

 \therefore EF // AC // HG, EH // BD // FG,

又∵ AC ⊥BD, ∴四边形 EFGH 是矩形,

∴ E、F、G、H 四点共圆.

【演练5】

如图 (a), (b), 梯形 ABCD中, AB // CD,过 A、 B 两点作一圆,与 AD 、 BC (或它们的延长线)分别相交于 E 和 F,求证: CDEF 是圆内接四边形.

【解析】如图(a), ∵ A、B、F、E 四点共圆, ∴ ∠DEF = ∠B,

 $\therefore AB // CD$, $\therefore \angle B + \angle C = 180^{\circ}$, $\therefore \angle DEF + \angle C = 180^{\circ}$,

∴ C、D、E、F四点共圆,即CDEF是圆内接四边形.

如图(b), $: A \setminus B \setminus F \setminus E$ 四点共圆, $: \angle DEF + \angle B = 180^{\circ}$,

 $\therefore AB // CD$, $\therefore \angle B = \angle DCF$, $\therefore \angle DEF + \angle DCF = 180^{\circ}$,

∴ C、D、E、F四点共圆,即CDEF是圆内接四边形.

【演练6】如图,AB为 $\odot O$ 直径, $BF \perp AB$,E为BF上一点,AE和AF交 $\odot O$ 于C和D. 求证: C、D、F、E 四点共圆.

【解析】连接 CD,

 $\therefore BF \perp AB$, $\therefore \angle BAF + \angle F = 90^{\circ}$,

∵ AB 是直径, ∴ ∠ACD+∠BAD=90°,

 $\therefore \angle ACD = \angle F$,

∴ C、D、F、E 四点共圆.

【演练7】

如图, $\bigcirc O_1$ 与 $\bigcirc O_2$ 相交于P、Q两点,过P点作两圆的割线分别交 $\bigcirc O_1$ 、 $\bigcirc O_2$ 于A、B,过A、B分别作两圆的切线相交于T. 求证: T、A、Q、B四点共圆.

【解析】连接 PQ,

- : TA、TB是切线,
- \therefore $\angle TAB = \angle AQP$, $\angle TBA = \angle BQP$,
- \therefore $\angle TAB + \angle TBA + \angle T = 180^{\circ}$,
- $\therefore \angle AQP + \angle BQP + \angle T = 180^{\circ}$,
- $\mathbb{P} \angle AQB + \angle T = 180^{\circ}$.
- ∴ T、A、Q、B四点共圆.

【演练8】

过两圆交点 A 、 B 之一的点 A ,引两条直线 CAD 、 PAQ ,分别与两圆交于 C 、 D 、 P 、 Q ,设 CP 与 DQ 的交点为 R ,求证: B 、 C 、 R 、 D 四点共圆.

【解析】:'四边形 ABDQ 是圆内接四边形,

 $\therefore \angle PQR = \angle ABD$. (1)

又因P、C、A、B共圆,

 $\therefore \angle P = \angle ABC$. ②

由①、②,得 $\angle CBD = \angle P + \angle RQP$,

 \therefore $\angle CBD + \angle CRD = 180^{\circ}$.

因此四点 B 、 D 、 R 、 C 在同一圆周上.

【演练9】

在梯形 ABCD中, AB // DC , AB > CD , $K \setminus M$ 分别在 $AD \setminus BC$ 上, $\angle DAM = \angle CBK$. 求证: $\angle DMA = \angle CKB$.

【解析】连接 KM

- ∵ ∠DAM = ∠CBK, ∴ A、B、K、M 四点共圆,
- \therefore $\angle AKB = \angle AMB$, $\angle CMK = \angle BAD$,
- $\therefore AB // CD$, $\therefore \angle BAD + \angle ADC = 180^{\circ}$,
- $\therefore \angle CMK + \angle ADC = 180^{\circ}$,
- ∴ C、D、K、M 四点共圆.
- \therefore $\angle CKD = \angle CMD$, \therefore $\angle DMA = \angle CKB$.

【演练10】

如图,正方形 ABCD 的中心为 O,面积为 $1989 \mathrm{cm}^2$, P 为正方形内一点,且 $\angle OPB = 45^\circ$, PA: PB = 5:14 , 求 PB 的长.

【解析】连接 OA、OB,

∵ ABCD是正方形, ∴ ∠AOB=90°, ∠OAB=45°,

∵ ∠OPB=45°, ∴ A、B、O、P四点共圆,

 $\therefore \angle APB = 90^{\circ}$.

在 Rt $\triangle ABP$ 中, $\angle APB = 90^{\circ}$,

 $\therefore PA^2 + PB^2 = AB^2,$

设 PA = 5k, PB = 14k,

 $\mathbb{N} \ 25k^2 + 196k^2 = 1989 ,$

解得 $k^2 = 9$, : k = 3 ,

 $\therefore PB = 42 \text{ cm}$.

第8讲 四点共圆(2)

知识集锦

模块一 和圆幂定理有关的四点共圆

两条线段被一点分成(内分或外分)两段长的乘积相等,则这两条线段的四个端点共圆.

即: 四边形 ABCD 的对角线 AC、BD 交于 O, 若 $AO \cdot CO = BO \cdot DO$, 则 A、B、C、D 四点共圆;

或四边形 ABCD 的对边 BA、CD 的延长线交于 P,若 $PA \cdot PB = PD \cdot PC$,则 A、B、C、D 四点共圆.

模块二 和垂心相关的四点共圆

模块三 四点共圆与角度问题

模块四 四点共圆与线段问题

模块一 和圆幂定理有关的四点共圆

- 【例1】 1. 过相交两圆的公共弦上一点 P 作一个圆的弦 CD,另一圆的弦 EF,求证: $C \times D \times E \times F$ 四点共圆.
 - 2. 如图,AD为 $\triangle ABC$ 中 BC 边上的高线, $DE \perp AB$ 于点 E , $DF \perp AC$ 于点 F . 求证: B 、C 、F 、E 四点共圆 .

【解析】1. 在圆 O 中, $OP \cdot DP = AP \cdot BP$. 在圆 O' 中, $EP \cdot FP = AP \cdot BP$

所以 $CP \cdot DP = EP \cdot FP$

故C、D、E、F四点共圆.

- 2. 解法一: $AD \perp BC$, $DE \perp AB$, $DF \perp AC$,
- $AD^2 = AE \cdot AB$, $AD^2 = AF \cdot AC$,
- $\therefore AE \cdot AB = AF \cdot AC$,
- ∴ B、E、F、C四点共圆.

解法二:连接 EF,

- \therefore DE \perp AB, DF \perp AC, \therefore \angle AED = \angle AFD = 90°,
- ∴ A、E、D、F 四点共圆, ∴ ∠AEF = ∠ADF,
- $\therefore AD \perp BC$, $\therefore \angle ADF = \angle C$,
- $\therefore \angle AEF = \angle C$,
- ∴ B、E、F、C四点共圆.
- 【例2】 如图, $P \in OO$ 外一点,PA和 $PB \in OO$ 的切线,A、B为切点,PO与AB交于点M,过

M 任作 $\bigcirc O$ 的弦 CD. 求证: ∠CPO = ∠DPO.

【解析】连接 OC、OD

- \therefore PA、PB 是切线, \therefore OA \perp PA, AB \perp OP, AM = BM,
- $AM^2 = OM \cdot PM$, $AM \cdot BM = CM \cdot DM$,
- $\therefore OM \cdot PM = CM \cdot DM$.
- ∴ C、O、D、P四点共圆,
- COC = OD, $CCPO = \angle DPO$.

模块二 和垂心相关的四点共圆

- 【例3】 AD、BE、CF 是 $\triangle ABC$ 的三条高,相交于垂心 H,在 A 、 B 、 C 、 D 、 E 、 F 、 H 七 点中,有六组四点共圆,试逐一举出,并问各圆心在何处?
- 【解析】(1) A、E、H、F四点共圆,圆心是AH的中点;
 - (2) B、D、H、F四点共圆, 圆心是BH的中点;
 - (3) C、D、H、E四点共圆,圆心是CH的中点;
 - (4) A. B. D. E四点共圆, 圆心是 AB 的中点;
 - (5) B, C, E, F四点共圆, 圆心是BC的中点;
 - (6) A、C、D、F四点共圆,圆心是AC的中点。

模块三 四点共圆与角度问题

【例4】 如图,已知 $\triangle ABC$ 中, AH 是高, AT 是角平分线,且 $TD \perp AB$, $TE \perp AC$. 求证: (1) $\angle AHD = \angle AHE$; (2) $\frac{BH}{BD} = \frac{CH}{CE}$.

【解析】(1)

- $TD \perp AB$, $TE \perp AC$,
- $\therefore \angle ADT = \angle AET = 90^{\circ}$,
- ∴ A D T、E四点共圆, 且 AT 是直径,
- $\therefore AH \perp BC$, $\therefore \angle AHT = 90^{\circ}$,
- ∴ H 也在圆上, 即 A、D、T、H、E 五点共圆.
- \therefore AT 是角平分线, \therefore DT = ET, \therefore AD = AE, \therefore \angle AHD = \angle AHE.
- (2) 由 (1) 可知, $BT \cdot BH = BD \cdot BA$, $CH \cdot CT = CE \cdot CA$,

$$\therefore \frac{BH}{BD} = \frac{BA}{BT} , \quad \frac{CH}{CE} = \frac{CA}{CT} .$$

- : AT 是角平分线, $: \frac{AB}{BT} = \frac{AC}{CT}$,
- $\therefore \frac{BH}{BD} = \frac{CH}{CE} .$

【例5】 在四边形 ABCD中, $\angle BAC = 25^{\circ}$, $\angle BCA = 20^{\circ}$, $\angle BDC = 50^{\circ}$, $\angle BDA = 40^{\circ}$, 求 $\angle CPB$.

【解析】延长 BD 到 E 使得 DE = AD, 连接 $AE \setminus CE$

- \therefore $\angle ADB = 40^{\circ}$, AD = ED, \therefore $\angle DAE = \angle DEA = 20^{\circ}$,
- \therefore $\angle ACB = 20^{\circ}$, \therefore $\angle ACB = \angle AED$,
- ∴ A、B、C、E四点共圆,
- \therefore $\angle CEB = \angle CAB = 25^{\circ}$,
- $\therefore \angle BDC = 50^{\circ}$, $\therefore \angle DEC = \angle DCE = 25^{\circ}$,
- $\therefore CD = DE$, $\therefore D$ 是圆心,
- $\therefore \angle DAB = \angle DBA = 70^{\circ}$,
- \therefore $\angle CPB = \angle BAC + \angle ABD = 25^{\circ} + 70^{\circ} = 95^{\circ}$.

模块四 四点共圆与线段问题

【例6】 在 Rt $\triangle ABC$ 中, AD 为斜边 BC 上的高, P 是 AB 上的点,过 A 作 PC 的垂线交过 B 所作 AB 的垂线于 Q 点. 求证: $PD \bot QD$.

【解析】: $AE \perp PC$, $BQ \perp AB$, $AD \perp BC$,

 \therefore $\angle AEP = \angle ABQ = \angle ADC = 90^{\circ}$, $\angle CAD = \angle ABC$,

∴ B、 P、 E、 Q , A、 E、 D、 C 分别四点共圆,

 \therefore $\angle CED = \angle CAD$, \therefore $\angle CED = \angle ABC$,

∴ B、D、E、P四点共圆, ∴ B、P、E、D、Q五点共圆,

 $\therefore \angle PDQ = \angle PEQ = 90^{\circ}, \quad \therefore PD \perp QD$.

【点评】此题目用相似的方法解也不复杂.

【例7】 如图所示,在锐角 $\triangle ABC$ 中, BD 、 CE 分别是边 AC 、 AB 上的高,以 AB 为直径作圆交 CE 于点 M ,在 BD 上取点 N ,使得 AN = AM ,求证: $AN \perp CN$.

【解析】证法一: 连结 DM,

由 AB 为直径, $BD \perp AC$ 得 $A \setminus B \setminus M \setminus D$ 四点共圆.

 $\therefore \angle ABD = \angle AMD$.

 $\mathcal{X} \angle ACE = 90^{\circ} - \angle CAE = \angle ABD = \angle AMD$.

 $\therefore \triangle ADM \hookrightarrow \triangle AMC$,

 $AD \cdot AC = AM^2 = AN^2$,

∴ AN ⊥ CN . (射影定理的逆定理)

证法二:连结 BM 、 EN,

则由射影定理得 $AM^2 = AN^2 = AE \cdot AB$.

 $\therefore \triangle AEN \hookrightarrow \triangle ANB$, $\therefore \angle ANE = \angle ABN$,

又 B, C, D, E 四点共圆, ∴ ∠ABN = ∠ACE

- $\therefore \angle ANE = \angle ACE$,
- ∴ A, E, N, C 四点共圆.
- \therefore $\angle ANC = \angle AEC = 90^{\circ}$, $\mathbb{P} AN \perp CN$.
- 【例8】 1. (2009 年"数学周报杯"全国初中数学竞赛)如下左图,过 $\triangle ABC$ 的顶点 C 作这个三角形的外接圆的切线 l , AP 和 BQ 是 $\triangle ABC$ 的两条高, $QQ_1 \perp l$, $PP_1 \perp l$,求证: $QQ_1 = PP_1$.
 - 2. 如下右图,在 $\triangle ABC$ 的边 AB、AC 上分别取点 Q、P,使得 $\angle PBC = \angle QCB = \frac{1}{2} \angle A$. 求证: BQ = CP.

【解析】1. 连接 PQ

- ∵ AP、BQ 是 △ABC 的高, ∴ ∠APB=∠AQB=90°,
- ∴ A、B、P、Q四点共圆、∴ ∠CPQ=∠CAB、
- : l 是 ⊙O 的切线, $: \angle BCP_1 = \angle CAB$,
- $\therefore \angle CPQ = \angle BCP_1, \therefore PQ // l$.
- $\therefore PP_1 \perp l$, $QQ_1 \perp l$,
- $\therefore PP_1 // QQ_1$, $\therefore PP_1 = QQ_1$.

2.
$$\therefore \angle PBC = \angle QCB = \frac{1}{2} \angle A$$
,

$$\therefore \angle BQC + \angle BPC = \angle A + \angle ACQ + \angle A + \angle ABP$$

$$= \angle A + \angle ABP + \angle PBC + \angle ACQ + \angle BCQ$$

$$= \angle A + \angle ABC + \angle ACB = 180^{\circ}$$
.

作点 P 关于 BC 的对称点 M,

于是 $\angle BQC + \angle BMC = 180^{\circ}$, MC = PC,

$$\therefore$$
 $\angle MBC = \angle PBC = \angle BCQ$, $\therefore BQ = CM$, $\therefore BQ = CP$.

【例9】 如图,在 $\triangle ABC$ 中, $AD \bot BC$, $BE \bot AC$, AD 与 BE 交于点 H , P 为边 AB 的中点,过点 C 作 $CQ \bot PH$ 于 Q . 求证: $PE^2 = PH \cdot PQ$.

【解析】连接CH、EQ,

由已知可得 $\angle CQP = \angle CEB = 90^{\circ}$,

- ∴ C、Q、E、H 四点共圆,
- $\therefore \angle EQH = \angle ECH$,
- ∵ P是 AB的中点, ∴ PA=PE=PB,
- $\therefore \angle PEB = \angle PBE = \angle ECH$,
- $\therefore \angle PEH = \angle EQH$,
- $\therefore \triangle PEH \hookrightarrow \triangle PQE$,
- $\therefore PE^2 = PH \cdot PQ.$

另: 此题亦可证明 PE 是圆的切线, 然后用圆幂定理得到结论.

笔记整理

课后作业

【演练1】

如图,圆 O_1 、 O_2 相交于点A、B,P是BA延长线上一点,割线PCD交圆 O_1 于C、D,割线PEF交圆 O_2 于 E、F. 求证: C、D、F、E四点共圆.

【解析】由题意知A、B、D、C四点共圆, 则有 $PA \cdot PB = PC \cdot PD$.

又A、B、F、E四点共圆,

则有 $PA \cdot PB = PE \cdot PF$.

所以 $PC \cdot PD = PE \cdot PF$,

所以C、D、F、E四点共圆.

【演练2】

如图 , P是 $\odot O$ 外一点 , PA切 $\odot O$ 于点 A , PBC是 $\odot O$ 的割线 , $AD \perp PO$ 于 D . 求证: $\frac{PB}{BD} = \frac{PC}{CD}$.

【解析】连接 OA , OB , \therefore PA 是 切 线 , \therefore $OA \perp PA$, \therefore $AD \perp OP$, \therefore $PA^2 = PD \cdot PO$, 又 $PA^2 = PB \cdot PC$, \therefore $PD \cdot PO = PB \cdot PC$, \therefore PA , PA

$$\therefore \angle POB = \angle PCD \;, \quad \angle PDB = \angle PCO \;, \quad \therefore \triangle PBD \hookrightarrow \triangle POC \;, \quad \triangle POB \hookrightarrow \triangle PCD \;, \quad \therefore \frac{PB}{PO} = \frac{BD}{OC} \;,$$

$$\frac{PO}{PC} = \frac{BO}{CD}$$
, $\therefore \frac{PB}{BD} = \frac{PO}{OC} = \frac{PO}{BO} = \frac{PC}{CD}$.

【演练3】

如图,已知在五边形 ABCDE 中, $\angle BAE = 3\alpha$, BC = CD = DE ,且 $\angle BCD = \angle CDE = 180^{\circ} - 2\alpha$.求证: $\angle BAC = \angle CAD = \angle DAE$.

【解析】连接 BD、CE,

$$\therefore BC = CD$$
, $\angle BCD = 180^{\circ} - 2\alpha$,

$$\therefore \angle CBD = \angle CDB = \alpha$$
, $\therefore \angle BDE = 180^{\circ} - 3\alpha$,

∴ ∠BAE+∠BDE=180°, ∴ A、B、D、E四点共圆.

同理 A、B、C、E四点共圆,

∴ A B、C、D、E 五点共圆,

BC = CD = DE, $BAC = \angle CAD = \angle DAE$.

【演练4】

如图,点 P在平行四边形 ABCD内,且 $\angle ABP = \angle ADP$,求证: $\angle DAP = \angle DCP$.

【解析】过 P 点作 AD 的平行线, 过 D 点作 AP 的平行线, 二者交于点 E, 连接 CE,

则四边形 APED 是平行四边形, $\therefore PE = AD$,

- ∵ ABCD 是平行四边形, ∴ AD // BC, AD = BC,
- $\therefore PE // BC$, PE = BC,
- :.四边形 PBCE 是平行四边形,
- $\therefore CE // BP$, CE = BP,
- $\therefore \triangle ABP \cong \triangle DCE$,
- $\therefore \angle ABP = \angle DCE$,
- \therefore $\angle ABP = \angle ADP$, \therefore $\angle DPE = \angle DCE$,
- ∴ C、E、D、P四点共圆,
- $\therefore \angle PCD = \angle PED$,
- $\therefore \angle DAP = \angle DCP$.

【演练5】

四边形 ABCD 内部存在一点 P ,使得 ABPD 为平行四边形.若 $\angle CBP = \angle CDP$,则 $\angle ACD = \angle BCP$,反 之亦然.

【解析】过 D作 PC 的平行线,过 C作 DP 的平行线,二者交于点 E,连接 EA则四边形 CEDP 是平行四边形,∴ DE = PC, CE = PD,∵四边形 ABPD 是平行四边形,∴ AB // PD, AD // PB,∴ CE // AB,∴四边形 ABCE 也是平行四边形,∴ AE // BC,∴ △AED ≌ △BCP,∴ ∠AED = ∠BCP, ∠DAE = ∠CBP.

由题意, 若 ∠CDP=∠DCE, 则 ∠DAE=∠DCE.

A、D、E、C四点共圆, ∴ ∠ACD=∠AED=∠BCP, 反之,

若 ∠ACD=∠BCP=∠AED,则A、D、E、C 四点共圆,∴ ∠DAE=∠DCE,∴ ∠CBP=∠CDP.

【演练6】

设 AD 、 BC 是圆 O 的互相垂直的直径, E 和 F 分别在劣弧 AB 、 CA 上,若 AE 和 AF 相等,直线 DA 和直线 BE 的交点为 G ,直线 FA 和直线 DB 的交点为 H ,求证: $\angle HGA$ 是直角.

【解析】连接 AE, 因为 EADB 是圆内接四边形,

 $\therefore \angle HBG = \angle EAD$.

 \mathfrak{R} : DBE = DCF

 \therefore $\angle EAD = \angle FAD$

而且 $\angle FAD = \angle HAG$ (对顶角), 于是 $\angle HBG = \angle HAG$

所以 $B \setminus H \setminus G \setminus A$ 四点共圆. 故 $\angle HGA = \angle ABD = 90^{\circ}$.

【演练7】

如图所示, $\triangle ABC$ 的外接圆半径为 R , $AD \perp BC$,垂足为点 D ; $DE \perp AB$,垂足为点 E ; $DF \perp AC$, 垂足为点 F . 求证: $S_{\triangle ABC} = EF \cdot R$.

【解析】由"双垂直模型"可知 $\angle 1 = \angle 2$,

而由 A E D F四点共圆可知 $\angle 2 = \angle 3$, 从而 $\angle 1 = \angle 3$.

由
$$\triangle ABC \hookrightarrow \triangle AFE$$
 可知 $\frac{BC}{EF} = \frac{2R}{AD}$ (注意到 AD 是 A 、 E 、 D 、 F 的直径即可),

从而
$$\frac{1}{2}BC \cdot AD = EF \cdot R$$
.

【演练8】

如图,AB为 $\odot O$ 的直径,点 C在 $\odot O$ 上且 $OC \perp AB$,P为 BC上一点,CP的延长线与 AB的延长线交 于点 Q,过 Q作 AB的垂线交 AP 延长线于点 R.求证:BQ = QR.

【解析】连接 BP,

由题意可知 $\angle AOC = \angle APB = 90^{\circ}$, $\angle QPR = \angle APC = 45^{\circ}$,

- $\therefore \angle BPQ = 45^{\circ}$.
- $\therefore \angle BPR = \angle BQR = 90^{\circ}$,
- ∴ B、Q、R、P四点共圆,
- $\therefore BQ = QR$.

【演练9】

如图,四边形 ABCD 是正方形, M 是 BC 上一点, $ME \perp AM$ 交 $\angle BCD$ 的外角平分线于 E , 求证: AM = EM .

【解析】连接AC、AE

- ∵四边形 ABCD 是正方形, ∴∠ACD=45°, ∵CE 是外角平分线,
- ∴ ∠DCE=45°, ∴ ∠ACE=90°, ∵ ∠AME=90°, ∴ A、M、C、E 四点共圆,
- \therefore $\angle AEM = \angle ACB = 45^{\circ}$, \therefore $\angle EAM = 45^{\circ}$, \therefore AM = EM.

【演练10】

如图, $E \setminus F$ 分别是正方形 ABCD 的边 $CD \setminus AD$ 的中点, $BE \setminus CF$ 相交于 H, 求证: AH = AB.

【解析】连接 BF

- $:: E \setminus F \not\in CD \setminus AD$ 的中点, $:: \triangle BCE \cong \triangle CDF$,
- $\therefore \angle CBE = \angle DCF$,
- \therefore $\angle DCH + \angle BEC = \angle CBE + \angle BEC = 90^{\circ}$,

即 ∠BHF = 90°, ∴ A、B、H、F 四点共圆,

 \therefore $\angle AHB = \angle AFB$, $\angle CFD = \angle CFD$,

很明显 $\angle AFB = \angle CFD$, $\therefore \angle ABH = \angle AHB$, $\therefore AH = AB$.

【演练11】

如图,在等腰 $\triangle ABC$ 中, AB = AC = 6, $\angle BDC = \frac{1}{2} \angle BAC$. 若 CP = 1,求 $BP \cdot DP$.

- 【解析】以A为圆心,AB长为半径作 $\odot A$,则点C在 $\odot A$ 上,延长CA交 $\odot A$ 于E,
 - $\therefore \angle BDC = \frac{1}{2} \angle BAC$, ∴点 D 在 $\odot A$ 上,
 - $\therefore BP \cdot DP = CP \cdot EP ,$
 - AB = AC = 6, CP = 1, AE = 6, AP = 5,
 - $\therefore PE = 11, \quad \therefore BP \cdot DP = 11.$

第9讲 托勒密定理

模块一 托勒密定理初识

托勒密定理

圆内接四边形对边乘积之和等于对角线的乘积。

例:圆内接四边形 ABCD 中,则 AB CD+AD BC=AC BD

【例1】

证明托勒密定理:即圆内接四边形 ABCD中,求证 AB CD+AD BC=AC BD

【例2】

1. 如果 P 是正三角形 ABC 外接圆劣弧 BC 上的任一一点,求证: PA=PB+PC

- 2. 如图,P为正方形 ABCD 的外接圆上的一点,
- (1) 探究 PB, PA, PD 的数量关系。
- (2) 探究 PB, PA, PC 的数量关系。

【例3】

已知 AB 为 $\odot O$ 的直径,CD 为 $\odot O$ 的一条弦,顺次连接 AC、CB、BD、DA。

- (1) 当 $\angle ACD$ =30°(如图 a) 时,求证: $\sqrt{3}CA + CB = 2CD$;
- (2) 当 $\angle ACD$ =45°(如图 b) 时,线段 CA、CB、CD 间的数量关系为_____;

(3)在(2)的条件下,在 \odot *O* 上移动点 *C* (保持 *AB* 与 *CD* 相交),过 *A* 点作 *AE* \bot *CD* ,交射线 *CB* 于点 *E*,以 *B* 为顶点另作一个 \angle *DBF*,使得 \angle *DBF*= \angle *DBA*,设直线 *FB* 与直线 *AE* 交于点 *G*,若 \angle *CD*=6 $\sqrt{2}$, *AB*=4 $\sqrt{5}$,求 *EG* 的长

【例4】

已知 P 为正三角形外接圆 AB 上的一点,连结 PC 交 AB 于点 D,求证: $\frac{1}{PA} + \frac{1}{PB} = \frac{1}{PD}$

【例 5】

已知圆内接四边形 ABCD 中,CB=CD,求证: CA 2CB 2-AB AD

模块二 托勒密定理在四边形中的应用

【例 6】

如图,四边形 ABCD中, ∠ABC=∠ADC=90°, BD 平分∠ABC, ∠DCB=60°, AB+BC=8,则 AC 的长是___。

【例7】

已知:如图,在梯形 ABCD 中,AB//CD, $\angle D$ =90°,AD=CD=2,点 E 在边 AD 上(不与点 A、D 重合), $\angle CEB$ =45°,EB 与对角线 AC 相交于点 F,设 DE=x

- (1) 用含x的代数式表示线段CF的长;
- (2) 当AE:AB=3:5时,求AB的长

【例8】

如图,矩形 ABCD 中,AB=6,AD=8,P,E 分别是线段 AC、BC 上的点,且四边形 PEFD 为矩形,若 $AP=\sqrt{2}$,求 CF 的长

【例 9】

在 $\triangle ABC$ 中, $\angle BAC$ =90°,点 D、E分别为边 AB、AC上的点,且 DE//BC,将 $\triangle ADE$ 绕点 A 旋转,点 D、E 的对应点分别为 D'、E',若点 D 的对应点 D'恰好落在 BC上,连接 CE',请解决如下问题:

- (1) 如图 1, 若 ∠*B*=45°, 则 ∠*D'CE'*=_度, *AC*、*CD'*、*CE'*的数量关系为____。
- (2) 如图 2, 若 $\angle B$ =30°, 求 $\angle D'CE'$ 的度数和 AC, CD', CE'之间的数量关系,请你写出求解过程;
- (3)如图 3,在四边形 ABCD 中, $\angle BAD = \angle BCD = 90$ °,AB = 4,AD = 2, $AC = \sqrt{10}$,请你直接写出四边形 ABCD 的面积。

【例 10】

(1) 问题发现:

如图①,在等边三角形 ABC 中,点 M 为 BC 边上异于 B 、C 的一点,以 AM 为边作等边三角形 AMN,连接 CN,NC 与 AB 的位置关系为 _____;

(2) 深入探究:

如图②,在等腰三角形 ABC 中,BA=BC,点 M 为 BC 边上异于 B、C 的一点,以 AM 为边作等腰三角形 AMN,使 \angle ABC= \angle AMN,AM=MN,连接 CN,试探究 \angle ABC与 \angle ACN 的数量关系,并说明理由;(3)拓展延伸:

如图③,在正方形 ADBC 中,AD=AC,点 M 为 BC 边上异于 B、C 的一点,以 AM 为边作正方形 AMEF,点 N 为正方形 AMEF 的中点,连接 CN,若 BC=10, $CN=\sqrt{2}$,试求 EF 的长。

笔记整理

课后作业

【演练1】

- (1) 如图①,点 A、点 B 在线段 l 的同侧,请你在直线 l 上找一点 P,使得 AP+BP 的值最小(不需要说明理由)。
- (2) 如图②,菱形 ABCD 的边长为 6,对角线 $AC=6\sqrt{3}$,点 E,F 在 AC 上,且 EF=2,求 DE+BF 的最小值。
- (3)如图③,四边形 ABCD 中,AB=AD=6, $\angle BAD=60$ °, $\angle BCD=120$ °,四边形 ABCD 的周长是否存在最大值,若存在,请求出最大值,若不存在,请说明理由。

【答案】见解析

【解答】 (1) 如图①中,作点A关于直线l的对称点A',连接A'B交直线l于P,连接PA. 则点P即为所求的点.

(2) 如图②中,作 DM//AC,使得 DM=EF=2,连接 BM 交 AC 于 F,

∵DM=EF, DM // EF, ∴四边形 DEFM 是平行四边形,

∴DE=FM, ∴DE+BF=FM+FB=BM, 根据两点之间线段最短可知, 此时 DE+FB 最短,

: 四边形 ABCD 是菱形,: $AC \perp BD$, $AO=OC=3\sqrt{3}$,在 $Rt\triangle ADO$ 中, $OD=\sqrt{AD^2-OA^2}=3$,

:.BD=6, ::DM//AC, :. $\angle MDB = \angle BOC = 90^{\circ}$, :.BM= $\sqrt{BD^2 + DM^2} = \sqrt{6^2 + 2^2} = 2\sqrt{10}$.

∴DE+BF 的最小值为 $2\sqrt{10}$.

(3) 如图③中, 连接AC、BD, 在AC上取一点, 使得DM=DC.

∵∠DAB=60°, ∠*DCB=120°*, *∴∠DAB+∠DCB=180°*, *∴A、B、C、D* 四点共圆,

∵AD=AB, ∠DAB=60°, ∴△ADB 是等边三角形, ∴∠ABD=∠ADB=60°,

∴ ∠*ACD*=∠*ABD*=60 °

∵DM=DC, ∴△DMC 是等边三角形, ∴∠ADB=∠MDC=60°, CM=DC, ∴∠ADM=∠BDC,

 $\therefore AD=BD$, $\therefore \triangle ADM \cong \triangle BDC$, $\therefore AM=BC$, $\therefore AC=AM+MC=BC+CD$,

∵四边形 ABCD 的周长=AD+AB+CD+BC=AD+AB+AC, ∵AD=AB=6,

∴当AC最大时,四边形ABCD的周长最大,

- : 当 AC 为 $\triangle ABC$ 的外接圆的直径时,四边形 ABCD 的周长最大,易知 AC 的最大值= $4\sqrt{3}$,
- \therefore 四边形 ABCD 的周长最大值为 $12+4\sqrt{3}$.

【演练2】

凸四边形 ABCD 中, $\angle ABC$ =60°, $\angle BAD$ = $\angle BCD$ =90°,AB=2,CD=1,对角线 AC、BD 交于点 O,如图,则 $BD \times CA$ = _____。

【解答】
$$\frac{15+6\sqrt{3}}{26}$$

∴ ∠*BAD*=∠*BCD*=90 °,

∴A、B、C、D四点共圆;

延长 BA、CD 交于 P,

则 $\angle ADP = \angle ABC = 60$ °,

AD=x, 有 $AP=\sqrt{3}x$, DP=2x,

由割线定理, 得 $(2+\sqrt{3}x)$ $\sqrt{3}x=2x$ (1+2x),

解得 $AD=x=2\sqrt{3}-2$, $BC=\frac{1}{2}BP=4-\sqrt{3}$,

由托勒密定理有

 $BD \cdot CA = (4 - \sqrt{3}) (2\sqrt{3} - 2) + 2 \times 1 = 10\sqrt{3} - 12.$

【演练3】

如图 1, 在平行四边形 ABCD 中, $AE \perp BC$ 于点 E, E 恰为 BC 的中点, $\frac{AE}{BE} = 2$ 。

- (1) 求证: AD=AE;
- (2) 如图 2, 点 P 在线段 BE 上, 作 $EF \perp DP$ 于点 F, 连接 AF, 求证: $DF EF = \sqrt{2}AF$;
- (3)请你在图 3 中画图探究:当 P 为射线 EC 上任意一点(P 不与点 E 重合)时,作 EF 垂直直线 DP,垂足为点 F,连接 AF,线段 DF、EF 与 AF 之间有怎样的数量关系?直接写出你的结论。

【解答】 (1) 证明: ∵tanB=2, ∴AE=2BE; ∵E 是 BC 中点, ∴BC=2BE, 即 AE=BC;

又: 四边形 ABCD 是平行四边形,则 AD=BC=AE;

(2) 证明: 作 $AG \perp AF$, 交DP + G; (如图 2)

AD/BC, $ADG = \angle DPC$; $AEP = \angle EFP = 90^\circ$,

 \therefore $\angle PEF + \angle EPF = \angle PEF + \angle AEF = 90^{\circ}$, $\mathbb{P} \angle ADG = \angle AEF = \angle FPE$;

 \mathfrak{Z} : AE=AD, $\angle FAE=\angle GAD=90$ ° - $\angle EAG$, $\therefore \triangle AFE \cong \triangle AGD$,

∴AF=AG, 即△AFG是等腰直角三角形,且EF=DG;

∴ $FG = \sqrt{2} AF$, $\bot DF = DG + GF = EF + FG$,

故 $DF - EF = \sqrt{2} AF$;

- (3) 解: 如图 3,
- ①当 EP 在线段 BC 上时,有 DF EF= $\sqrt{2}$ AF
- ②当 $EP \leq 2BC$ 时, $DF + EF = \sqrt{2} AF$,解法同(2).
- ③当 EP > 2BC 时, $EF DF = \sqrt{2}AF$.

【演练4】

如图,在四边形 ABCD 中,已知 $\angle BAD$ =60°, $\angle ABC$ =90°, $\angle BCD$ =120°,对角线 AC,BD 交于点 S,且 DS=2SB。求证:AD=DC。

【解答】由已知得 $\angle ADC=90^\circ$,从而A,B,C,D四点共圆,AC为直径.

设P为AC的中点,则P为四边形ABCD的外接圆的圆心。

作 $PM \perp BD$ 于点 M, 则 M 为 BD 的中点,所以 $\angle BPM = \frac{1}{2} \angle BPD = \angle A = 60^\circ$,

从而 $\angle PBM$ =30°. 作 $SN \perp BP$ 于点N, 则 $SN = \frac{1}{2}SB$. 又DS = 2SB, $DM = MB = \frac{1}{2}BD$,

 $\therefore MS = DS - DM = 2SB - \frac{3}{2}SB = \frac{1}{2}SB = SN, \quad \therefore Rt \triangle PMS \cong Rt \triangle PNS,$

∴ $\angle MPS = \angle NPS = 30$ °, 又 PA = PB,所以 $\angle PAB = \frac{1}{2}$ $\angle NPS = 15$ °,

所以 $\angle DAC=45$ \cong $\angle DCA$, 所以AD=DC.

【演练5】

如图, AB//CD, ∠CBE=∠CAD=90°, AC=AD=6, DE=4, 则 BD 长为_____。

【解答】如图,在 $Rt\Delta ACD$ 中,AC=AD=6, $\therefore CD=6\sqrt{2}$, $\angle ACD=\angle ADC=45$ °,

∵AB // CD, ∴ ∠BAC=∠ACD=45°, 连接 CE, 在 Rt△ACE 中, AC=6, AE=AD - DE=2.

 $:: CE = \sqrt{AC^2 + CE^2} = 2\sqrt{10}$,取 CE 的中点 O,连接 OB, $:: \angle CBE = \angle CAE = 90$ °,

∴点 A, B, C, E 在以点 O 为圆心, CE 为直径的圆上, ∴ $\angle BOC=2\angle BAC=90$ °,

$$OB = OC = \frac{1}{2} CE = \sqrt{10}$$

: OB=OC, $: BC=\sqrt{2} \ OB=2\sqrt{5}$,过点 $E \ f \ EH \ LCD$, $: \angle ADC=45\,^\circ$, $: \triangle DEH$ 是等腰直角三角形,

$$\because DE=4$$
, $\therefore EH=DH=\frac{1}{\sqrt{2}}DE=2\sqrt{2}$, 过点A作AM $\perp CD$, $\therefore EH/\!\!/AM$, $\therefore \frac{EH}{AM}=\frac{DE}{AD}=\frac{4}{6}$,

$$\therefore AM = \frac{3}{2} EH = 3\sqrt{2}$$
,过点 B 作 $BG \perp CD$, \therefore 四边形 $ABGH$ 是矩形, $\therefore BG = AM = 3\sqrt{2}$,

在
$$Rt\triangle BCG$$
 中, $BC=2\sqrt{5}$, $BG=3\sqrt{2}$, $\therefore CG=\sqrt{BC^2-BG^2}=\sqrt{2}$,

$$\therefore DG = CD - CG = 6\sqrt{2} - \sqrt{2} = 5\sqrt{2} ,$$

在
$$Rt\triangle BDG$$
 中, $BG=3\sqrt{2}$, $DG=5\sqrt{2}$, $\therefore BD=\sqrt{BG^2+DG^2}=2\sqrt{17}$.

第10讲 不等式(1)

模块一 一元二次不等式

1.一元二次不等式

【定义】设a、b、c为实数,形如 $ax^2+bx+c>0$ (或<),其中 $a\neq 0$ 的不等式叫做一元二次不等式,满足不等式的x值构成的集合叫做一元二次不等式的解.

【解法】将原式化为 AB 的形式, 然后解出来就可以.

2. 高次不等式

【定义】形如 $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 > 0$;

【解法】将其分解为: $a_n(x-b_1)(x-b_2)...(x-b_n)>0$, 然后用"穿根法"求出取值范围.

【例1】

- (1) $x^2+4x-21 \ge 0$
- (2) $x^2-3x-1<0$
- (3) $x^3 9x^2 + 26x 24 < 0$
- (4) $6x^4 + 5x^3 + 3x^2 3x 2 \ge 0$

【例2】

解不等式: $x^2-5|x|+6>0$

【例3】

设 a 为实数,解关于 x 的不等式: $ax^2 - (a+1)x + 1 < 0$

【例4】

设实数 a、b、c 满足 $c \le b \le a$,且 a+b+c=10,abc-23a=40,求 $\left|a\right|+\left|b\right|+\left|c\right|$ 的最小值.

【例5】

已知 x 为实数, $t = \sqrt{2x^2 - 16x + 40} + x - 2$, 求 t 的最小值为多少? 并且求出此时 x 的值.

模块二 均值不等式

一. 重要的不等式关系

1.均值不等式

【定义】如果a,b是正实数,那么 $\frac{a+b}{2} \geqslant \sqrt{ab}$,当且仅当a=b时,有等号成立. 此结论称为均值定理,又称均值不等式或基本不等式. 对于任意两个实数a,b, $\frac{a+b}{2}$ 叫做a,b的算术平均值, $\sqrt{ab}(ab \geqslant 0)$ 叫做a,b的几何平均值. 均值定理可以表述为: 两个正实数的算术平均值大于或等于它的几何平均值.

2.两个著名的不等式

【概念】积定差大和大: $a+b \ge 2\sqrt{ab}$;

和定差小积大: $ab \le \left(\frac{a+b}{2}\right)^2$;

3.均值不等式的推广

【概念】
$$\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2 + b^2}{2}}$$

(调和平均数 ≤ 几何平均数 ≤ 算术平均数 ≤ 平方平均数)

类似的,这个不等式可以推广到n个数的情形:

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a}} \leq (a_1 a_2 \cdots a_n)^{\frac{1}{n}} \leq \frac{a_1 + a_2 + \dots + a_n}{n} \leq \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

【例6】

- (1) 已知 a > 0,则 $t = a + \frac{9}{a}$ 的最小值是_____.
- (2) 已知a < 0,则 $t = a + \frac{4}{a}$ 的最大值是______.
- (3) 设0 < x < 1, 求函数y = x(1-x)的最大值.
- (4) 若 $0 < x < \frac{1}{2}$, 求代数式 $x^2(1-2x)$ 的最大值.

【例7】

- (1) 若 x y 是正实数,且 $^{x+4}y=1$,则 $^{x\cdot y}$ 的最大值是______
- (2) 已知 $a \ge 0$, $b \ge 0$, 且a+b=2, 则 a^2+b^2 的最小值为多少?
- (3) 已知 $a \ge 0$, $b \ge 0$, 且a+b=8, 则 $\sqrt{a}+\sqrt{b}$ 的最大值为多少?

【例8】

1.已知a、b为非负实数,且a+b=1,又 x_i 、 y_i (i=12)为正实数,且 $y_1=ax_1+bx_2$, $y_2=bx_1+ax_2$,求证: $y_1y_2 \ge x_1x_2$.

2.在 $\triangle ABC$ 中有 $abc \ge (a+b-c)(b+c-a)(c+a-b)$.

【例9】

设 $\triangle ABC$ 内切圆半径为r,2p=a+b+c,求证: $\frac{1}{(p-a)^2} + \frac{1}{(p-b)^2} + \frac{1}{(p-c)^2} \ge \frac{1}{r^2}$.

【例10】

若 $x \neq 0$,求函数 $y = \frac{\sqrt{1 + x^2 + x^4} - \sqrt{1 + x^4}}{x}$ 的最大值.

笔记整理

课后作业

【演练1】

已知 $x > \frac{5}{4}$,则函数 $y = 4x + \frac{1}{4x - 5}$ 取最小值为_____.

【解析】: $x > \frac{5}{4}$, :.4x - 5>0.

则函数 $y=4x+\frac{1}{4x-5}=4x-5+\frac{1}{4x-5}+5\geq 2\sqrt{(4x-5)\cdot\frac{1}{4x-5}}+5=7$,当且仅当 $x=\frac{3}{2}$ 时取等号.

∴函数 $y=4x+\frac{1}{4x-5}$ 取最小值为 7.

【演练2】

不等式 (x+5) (x-1) (x-6) > 0 的解集是_____.

【解析】令(x+5)(x-1)(x-6)=0,解得:x=-5, 1, 6,

x < -5 时, x+5 < 0, x-1 < 0, x-6 < 0, (x+5) (x-1) (x-6) < 0, 不合题意,

-5 < x < 1 时, x+5 > 0, x-1 < 0, x-6 < 0, (x+5) (x-1) (x-6) > 0, 符合题意,

1<x<6时, x+5>0, x-1>0, x-6<0, 不合题意,

x > 6 时, x + 5 > 0, x - 1 > 0, x - 6 > 0, (x + 5) (x - 1) (x - 6) > 0, 符合题意,

故不等式的解集是: $\{x \mid -5 < x < 1 \to x > 6\}$,

故答案为: $\{x \mid -5 < x < 1 \to x > 6\}$.

【演练3】

已知实数 a, b, c 满足: a+b+c=-2, abc=-4. 则|a|+|b|+|c|的最小值为_____.

【解析】a+b+c=-2, abc=-4. 可得: 至少有一个小于 0.

不妨设 a, b, c<0; 或 a>0, b>0, c<0.

①a>0, b>0, c<0.

则 a+b=-2-c, $ab=-\frac{4}{c}$,

:.a, b是方程 t^2 + (2+c) $t-\frac{4}{c}$ =0的两个正实数根.

 $\Delta = (2+c)^{-2} + \frac{16}{c} \ge 0,$

化为: $c^3+4c^2+4c+16\leq 0$,

 \therefore (c+4) (c²+4) ≤ 0 ,

∴*c*≤-4.

 $|a|+|b|+|c|=a+b-c=-2-c-c=-2-2c\ge -2-2\times (-4)=6.$

②a, b, c<0时, 由已知可得: a+b=-2-c, $ab=-\frac{4}{c}$,

a, b是方程 t^2 + (2+c) $t-\frac{4}{c}=0$ 的两个负实数根.

 $\Delta = (2+c)^{-2} + \frac{16}{c} \ge 0,$

化为: $c^3+4c^2+4c+16\leq 0$,

: (c+4) $(c^2+4) \le 0$,

∴*c*≤ - 4.

∴a+b=-2-c>0, 与 a, b<0矛盾, 舍去.

综上可得: |a|+|b|+|c|的最小值为 6.

故答案为: 6.

【演练4】

已知正实数 x, y 满足 x+2y=4, 则 $\sqrt{2x(y+1)}$ 的最大值为_____.

【解析】::x+2y=4, ::x+2y+2=6

∴2x (y+1) =x (2y+2) ≤ $(\frac{x+2y+2}{2})^2$ =9, 当且仅当 x=2y+2 时, 即 x=3, $y=\frac{1}{2}$ 取等号,

$$\therefore$$
 √2 $x(y+1)$ ≤3, $\mathbb{P}\sqrt{2x(y+1)}$ 的最大值为3,

故答案为:3

【演练5】

解下列一元二次不等式:

(1) $x^2+2x-8<0$;

(2) $2x^2 - 9x + 10 \ge 0$.

【解析】(1) 不等式 $x^2+2x-8<0$ 可化为

(x+4) (x-2) < 0,

且该不等式对应方程的两个实数根为-4和2,

所以原不等式的解集为(-4,2);

(2) 不等式 $2x^2 - 9x + 10 > 0$ 可化为

(2x+1) $(x-5) \ge 0$,

且该不等式对应方程的两个实数根为 $-\frac{1}{2}$ 和5,

所以原不等式的解集为 $(-\infty, \frac{1}{2}] \cup [5, +\infty)$.

【演练6】

解关于 x 的不等式: $x^2 - 5|x| + 6 < 0$.

【解析】原不等式化为: $|x|^2 - 5|x| + 6 < 0$.

 $\mathbb{P}(|x|-2)$ (|x|-3) < 0,

 $\therefore 2 < |x| < 3$

∴原不等式的解为 - 3<x< - 2 或 2<x<3.

【演练7】

关于x的不等式 ax^2 - (a-1)x-1<0.

- (1) 当 a=2 时,求不等式的解集;
- (2) 当 $a \in \mathbf{R}$ 时,解不等式.

【解析】(1) a=2 时,不等式为 $2x^2-x-1<0$,

可化为(2x+1)(x-1)<0,

解得 $-\frac{1}{2} < x < 1$,

- **∴**不等式的解集为 $(-\frac{1}{2}, 1)$;
- (2) 当 a∈**R** 时, 若 a=0, 则不等式化为 x 1<0, 解得 x<1;

若 $a\neq 0$, 则不等式可化为 (ax+1) (x-1) < 0;

当 a>0 时,不等式化为 $(x+\frac{1}{a})$ (x-1)<0,且 $-\frac{1}{a}<1$,解不等式得 $-\frac{1}{a}< x<1$;

当 a < 0 时,不等式可化为 $(x + \frac{1}{a})$ (x - 1) > 0,

若-1<a<0,则 $-\frac{1}{a}$ >1,解不等式得x<1或x> $-\frac{1}{a}$;

当 a=-1 时,有 $-\frac{1}{a}=1$,解不等式得 x≠1;

当 a < -1 时,有 $-\frac{1}{a} < 1$,解不等式得 $x < -\frac{1}{a}$ 或 x > 1;

综上, a=0 时, 不等式的解集为 $\{x|x<1\}$;

a>0时,不等式的解集为 $\{x|-\frac{1}{a} < x < 1\}$;

-1 < a < 0 时,不等式的解集为 $\{x | x < 1$ 或 $x > -\frac{1}{a}\}$;

a=-1 时,不等式的解集为 $\{x|x\neq 1\}$;

a < -1 时,不等式的解集为 $\{x | x < -\frac{1}{a}$ 或 $x > 1\}$.

【演练8】

解不等式 ax^2 - $(a-1) x - 1 \le 0 (a \in \mathbf{R})$

【解析】原不等式可化为(x-1)(ax+1)<0

 1^0 当 a > 0 时, $\therefore -\frac{1}{a} < x < 1$, 其解集为 $(-\frac{1}{a}, 1)$,

 2^{0} 当 a = -1 时,即 $-\frac{1}{a} = 1$,其解集为 $x \neq 1$,

 3^0 当 -1 < a < 0,即 $-\frac{1}{a} > 1$, $\therefore x < 1$ 或 $x > -\frac{1}{a}$, 其解集为 $(-\infty, 1) \cup (-\frac{1}{a}, +\infty)$,

 4^0 当 a < -1 时,即 $-\frac{1}{a} < 1$, $\therefore x > 1$ 或 $x < -\frac{1}{a}$, 其解集为 $(-\infty, -\frac{1}{a}) \cup (1, +\infty)$,

 5^0 当 a=0 时,原不等式可化为 x-1<0,解得 x<1,其解集为 $(-\infty, 1)$.

【演练9】

己知 a>0, b>0, 且 a+b=2,

(1) 求证:
$$\sqrt{a+1} + \sqrt{b+1} \le 2\sqrt{2}$$
;

(2) 求
$$\frac{2}{a} + \frac{9}{2b}$$
的最小值.

【解析】(1) 先证正数
$$x$$
, y 满足 $x+y \le \sqrt{2(x^2+y^2)}$,

平方作差可得
$$(x+y)^2 - 2(x^2+y^2) = -(x-y)^2 \le 0$$
,

$$\therefore x+y \le \sqrt{2(x^2+y^2)}$$
, 当且仅当 $x=y$ 时取等号,

∴由
$$a>0$$
, $b>0$, 且 $a+b=2$ 可得 $\sqrt{a+1}+\sqrt{b+1} \le \sqrt{2[(a+1)+(b+1)]}=2\sqrt{2}$,

当且仅当
$$\sqrt{a+1} = \sqrt{b+1}$$
即 $a=b=1$ 时取等号;

(2)
$$\frac{2}{a} + \frac{9}{2b} = \frac{1}{2} \left(\frac{2}{a} + \frac{9}{2b} \right)$$
 $(a+b) = \frac{1}{2} \left(\frac{13}{2} + \frac{2b}{a} + \frac{9a}{2b} \right)$

$$\geq \frac{1}{2} \left(\frac{13}{2} + 2 \sqrt{\frac{2b}{a} \cdot \frac{9a}{2b}} \right) = \frac{25}{4}$$

当且仅当
$$\frac{2b}{a} = \frac{9a}{2b}$$
即 $a = \frac{4}{5}$ 且 $b = \frac{6}{5}$ 时取等号,

$$: \frac{2}{a} + \frac{9}{2b}$$
的最小值为 $\frac{25}{4}$

【演练10】

已知实数
$$x$$
, y 满足 $(x+\sqrt{x^2+1})$ $(y+\sqrt{y^2+1})=1$, 求 $x+y$ 的值.

【解析】令
$$x+\sqrt{x^2+1}=a, y+\sqrt{y^2+1}=b,$$
 易知 $a, b\neq 0$,

由己知
$$ab=1$$
, $a-x=\sqrt{x^2+1}$, $b-y=\sqrt{y^2+1}$,

$$(a-x)^2 = x^2 + 1$$
, $(b-y)^2 = y^2 + 1$.

:.
$$a^2 - 2ax + x^2 = x^2 + ab$$
, $b^2 - 2by + y^2 = y^2 + ab$,

$$\therefore a - 2x = b, b - 2y = a, \therefore x + y = 0$$

第11讲 不等式(2)

模块一 均值不等式的应用

【例1】

已知
$$a>0$$
, $b>0$, 并且 $a+b=1$, 证明: $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2 \ge \frac{25}{2}$

【例2】

已知 x、y、z 是正数 x+y+z=1,比较 $A = \frac{1}{x} + \frac{4}{y} + \frac{9}{z}$ 与 B = 36 的大小,并问 A 能否等于 B?

【例3】

若 a>0, 且 $a^2-2ab+c^2=0$, bc>a 3 试判定 a, b, c 的大小关系.

【例4】

试比较
$$A = \frac{567891234}{6789012345}$$
 与 $B = \frac{567891235}{6789012347}$ 的大小.

【例5】

已知 x 为实数, $t = \sqrt{2x^2 - 16x + 40} + x - 2$,求 t 的最小值为多少? 并且求出此时 x 的值.

【例6】

已知 x_1 、 x_2 、 x_3 为实数且 $x_1 + x_2 + x_3 = 6$, $x_1^2 + x_2^2 + x_3^2 \le 18$, 证明 : $0 \le x_i \le 4$ (i = 1, 2, 3)

已知
$$a$$
、 b 、 c 是正数,且 $abc=1$,证明: $(a-1+\frac{1}{b})(b-1+\frac{1}{c})(c-1+\frac{1}{a})\leq 1$

模块二 柯西不等式

柯西不等式的概念和推广

【定义】设
$$a_1, a_2, \cdots, a_n$$
及 b_1, b_2, \cdots, b_n 为任意实数,记 $A_n = a_1^2 + a_2^2 + \cdots + a_n^2$,
$$B_n = a_1b_1 + a_2b_2 + \cdots + a_nb_n \,, \quad C_n = b_1^2 + b_2^2 + \cdots + b_n^2 \,. \quad \text{则} \ B_n^2 \leqslant A_n \cdot C_n \,. \quad \text{当且仅当}$$

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \cdots = \frac{a_n}{b_n} \text{ 时等号成立}.$$

柯西不等式的常用形式:

$$a_1 + a_2 + \dots + a_n \ge \frac{\left(\sqrt{a_1b_1} + \sqrt{a_2b_2} + \dots + \sqrt{a_nb_n}\right)^2}{b_1 + b_2 + \dots + b_n}$$

$$a_1 + a_2 + \dots + a_n \le \sqrt{\left[\left(a_1b_1\right)^2 + \left(a_2b_2\right)^2 + \dots + \left(a_nb_n\right)^2\right] \cdot \left[\frac{1}{b_1^2} + \frac{1}{b_2^2} + \dots + \frac{1}{b_n^2}\right]}$$

【例8】

证明 $(ab+cd)^2 \le (a^2+c^2)(b^2+d^2)$.

【例9】

若实数 x, y, z满足 3x+4y+5z=1, 求 $3x^2+2y^2+5z^2$ 的最小值.

【例10】

已知
$$a$$
, b , c 都是正数.求证: $\left(\frac{b}{a} + \frac{c}{b} + \frac{a}{c}\right) \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right) \ge 9$

【例11】

P为 $\triangle ABC$ 内一点,点P到三边AB、BC、CA 的距离分别为x、y、z,求当 $\frac{a}{x} + \frac{b}{y} + \frac{c}{z}$ 取最小值时点P的位置.

笔记整理

课后作业

【演练1】

已知 x, y, z为正数, 求证: $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} \ge 3$.

【解析】证明: ∵x, y, z为正数,

$$\therefore \frac{x}{y} + \frac{y}{z} \ge 2\sqrt{\frac{x}{y} \cdot \frac{y}{z}} = 2\sqrt{\frac{x}{z}},$$

$$\therefore \frac{x}{y} + \frac{y}{z} + \frac{z}{x} \ge 2\sqrt{\frac{x}{z}} + \frac{z}{x}$$

$$= \sqrt{\frac{x}{z}} + \sqrt{\frac{x}{z}} + \frac{z}{x} \ge 3^{3} \sqrt{\frac{x}{z}} \cdot \sqrt{\frac{x}{z}} \cdot \frac{z}{x} = 3$$

当且即当 x=y=z=1 时取等号

:.原命题得证.

【演练2】

己知 a>0, b>0, 且 a+b=1, 求证: $(a+\frac{1}{a})$ $(b+\frac{1}{b}) \ge \frac{25}{4}$.

【解析】因为已知a+b=1, a>0, b>0,

- ∴根据基本不等式 $a+b \ge 2\sqrt{ab}$,
- $\therefore 0 < ab \leq \frac{1}{4}$

又
$$(a+\frac{1}{a})(b+\frac{1}{b}) = \frac{a^2+1}{a} \cdot \frac{b^2+1}{b} = \frac{a^2b^2-2ab+2}{ab} = \frac{(1-ab)^2+1}{ab} \ge \frac{25}{4}$$
 (取等号时 $a=b=\frac{1}{2}$)

$$\therefore (a + \frac{1}{a})(b + \frac{1}{b}) \ge \frac{25}{4}$$

即得 $(a + \frac{1}{a})(b + \frac{1}{b}) \ge \frac{25}{4}$.

【演练3】

(1) 己知
$$a > 0$$
, $b > 0$, 求证: $\sqrt{\frac{a^2 + b^2}{2}} \ge \frac{a + b}{2}$;

(2) 已知 a>1, b>1, 且 a>b, 试比较 $a+\frac{1}{a}=b+\frac{1}{b}$ 的大小.

【解析】 (1) $a^2+b^2 \ge 2ab \Rightarrow 2$ $(a^2+b^2) \ge a^2+2ab+b^2 \Rightarrow 2(a^2+b^2) \ge (a+b)^2 \Rightarrow \frac{a^2+b^2}{2} \ge (\frac{a+b}{2})^2$

由于
$$a > 0$$
, $b > 0 \Rightarrow a + b > 0$, 故 $\sqrt{\frac{a^2 + b^2}{2}} \ge \frac{a + b}{2}$

(2)
$$M: \text{ if } a + \frac{1}{a} - (b + \frac{1}{b}) = (a - b) + (\frac{1}{a} - \frac{1}{b})$$

$$=(a-b)+\frac{b-a}{ab}=(a-b)(1-\frac{1}{ab})=(a-b)\cdot\frac{ab-1}{ab},$$

因为 a > 1, $b > 1 \Rightarrow ab > 1 \Rightarrow ab - 1 > 0$ 且 ab > 0, 又 $a > b \Rightarrow a - b > 0$,

所以
$$(a-b)\cdot \frac{ab-1}{ab} > 0.$$

故
$$a + \frac{1}{a} > b + \frac{1}{b}$$

【演练4】

设正数x, y, z,

- (1) 满足 x+y+z=1, 求证: $\frac{1}{x}+\frac{4}{y}+\frac{9}{z} \ge 36$;
- (2) 若 x+y=1, 求 $(x+\frac{1}{x})(y+\frac{1}{y})$ 的最小值.

【解析】(1)证明: (利用柯西不等式)

$$\frac{1}{x} + \frac{4}{y} + \frac{9}{z} = (\frac{1}{x} + \frac{4}{y} + \frac{9}{z})(x + y + z) \ge (1 + 2 + 3)^2 = 36$$

(2)
$$\Re: (x + \frac{1}{x})(y + \frac{1}{y}) = xy + \frac{1}{xy} + \frac{y}{x} + \frac{x}{y} = xy + \frac{2}{xy} - 2$$

$$\therefore x + y = 1, \quad \therefore 0 < xy \le \frac{1}{4},$$

$$:t=xy+\frac{2}{xy}$$
在(0, $\frac{1}{4}$]上单调递减,

∴
$$(x+\frac{1}{x})(y+\frac{1}{y})$$
的最小值为 $\frac{1}{4}+8-2=\frac{25}{4}$.

【演练5】

已知实数 x, y, z满足 3x+2y+z=1, 求 $x^2+2y^2+3z^2$ 的最小值.

【解析】由柯西不等式,

$$[(x)^2 + (\sqrt{2}y)^2 + (\sqrt{3}z)^2] \cdot [3^2 + (\sqrt{2})^2 + (\frac{1}{\sqrt{2}})^2] \ge (3x + 2y + z)^2 = 1,$$

所以
$$x^2 + 2y^2 + 3z^2 \ge \frac{3}{34}$$

当且仅当
$$\frac{x}{3} = \frac{\sqrt{2}y}{\sqrt{2}} = \frac{\sqrt{3}z}{\frac{1}{25}}$$
, 即 $x = \frac{9}{34}$, $y = \frac{3}{34}$, $z = \frac{1}{34}$ 时, 等号成立,

所以 $x^2 + 2y^2 + 3z^2$ 的最小值为 $\frac{3}{34}$.

【演练6】

设 x, y, z 为正数,且 xyz=1,求证: $1 < \frac{x}{1+x} + \frac{y}{1+y} + \frac{z}{1+z} < 2$. (提示: 换元 $x = \frac{a}{b}$, $y = \frac{b}{c}$, $z = \frac{c}{a}$)

【解析】证明:由x,y,z为正数,且xyz=1,

可设
$$x = \frac{a}{b}$$
, $y = \frac{b}{c}$, $z = \frac{c}{a}$,

$$\lim_{x \to 0} \frac{x}{1+x} + \frac{y}{1+y} + \frac{z}{1+z} = \frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+a} > \frac{a}{a+b+c} + \frac{b}{a+b+c} + \frac{c}{a+b+c} = 1,$$

$$\mathcal{R}\frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+a} < \frac{a+c}{a+b+c} + \frac{a+b}{a+b+c} + \frac{b+c}{a+b+c} = 2,$$

即有
$$1 < \frac{x}{1+x} + \frac{y}{1+y} + \frac{z}{1+z} < 2$$
.