数据预处理

现实的数据往往是充满噪声的,而没有高质量的数据,就没有高质量的数据挖掘结果。所以,我们需要对数据进行预处理,以提高数据的质量。

数据的质量涉及许多因素,包括:

- 准确性
- 完整性
- 一致性
- 时效性
- 可信性
- 可解释性

数据预处理的主要步骤为:

- 数据清理:通过填写缺失值、光滑噪声数据、识别或删除离群点。并解决不一致性来"清理"数据
- 数据集成:将多个数据源、数据库集成在一个
- 数据规约:将得到的数据进行简化,去除冗余数据
- 数据变换: 讲数据进行规范化、数据离散化和数据分层,可以使得数据挖掘在多个抽象 层次上进行。

数据清洗

现实中的数据一般是不完整的、有噪声的和不一致的。**数据清洗**试图填充缺失值、光滑噪声并识别离群点和纠正数据中的不一致。

缺失值

有时候我们获取的数据存在缺失值,这个往往用NaN来表示。

	age	first_name	last_name	postTestScore	preTestScore	sex
0	42.0	Jason	Miller	25.0	4.0	m
1	NaN	NaN	NaN	NaN	NaN	NaN
2	36.0	Tina	Ali	NaN	NaN	f
3	24.0	Jake	Milner	62.0	2.0	m
4	73.0	Amy	Cooze	70.0	3.0	f

忽略缺失值

当缺失值较少的时候,我们可以丢弃缺失的元组,而缺失值较多的时候,我们需要采取别的方法

```
## 判断缺失值
df.isnull()
```

	age	first_name	last_name	postTestScore	preTestScore	se
0	False	False	False	False	False	Fals
1	True	True	True	True	True	True
2	False	False	False	True	True	Fals

3	False	False	False	False	False	Fals
4	False	False	False	False	False	Fals

```
## 删除缺失值所在的元组(行) df.dropna(axis=0)
```

	age	first_name	last_name	postTestScore	preTestScore	sex
0	42.0	Jason	Miller	25.0	4.0	m
3	24.0	Jake	Milner	62.0	2.0	m
4	73.0	Amy	Cooze	70.0	3.0	f

人工填写缺失值

该方法对少数缺失值有效,但费时,且当数据非常大时难以实现

```
## 将序号 1 的年龄填写为30
df_manual = df.copy()
df_manual.loc[1,'age'] = 30
df_manual
```

	age	first_name	last_name	postTestScore	preTestScore	sex
0	42.0	Jason	Miller	25.0	4.0	m
1	30.0	NaN	NaN	NaN	NaN	NaN
2	36.0	Tina	Ali	NaN	NaN	f
3	24.0	Jake	Milner	62.0	2.0	m
4	73.0	Amy	Cooze	70.0	3.0	f

使用一个全局常量填充缺失值

```
## 用999填充缺失值
df.fillna(value=999)
```

	age	first_name	last_name	postTestScore	preTestScore	sex
0	42.0	Jason	Miller	25.0	4.0	m
1	999.0	999	999	999.0	999.0	999

2	36.0	Tina	Ali	999.0	999.0	f
3	24.0	Jake	Milner	62.0	2.0	m
4	73.0	Amy	Cooze	70.0	3.0	f

使用属性中心度填充缺失值

给定元组均值 df.fillna(value=df.mean())

	age	first_name	last_name	postTestScore	preTestScore	sex
0	42.00	Jason	Miller	25.000000	4.0	m
1	43.75	NaN	NaN	52.333333	3.0	NaN
2	36.00	Tina	Ali	52.333333	3.0	f
3	24.00	Jake	Milner	62.000000	2.0	m
4	73.00	Amy	Cooze	70.000000	3.0	f

使用最可能的值填充缺失值

可使用是回归、贝叶斯等方法确定最可能的值。也可以使用插值法填充。

```
## 使用上一个值替代
df.fillna(method='ffill')
```

	age	first_name	last_name	postTestScore	preTestScore	sex
0	42.0	Jason	Miller	25.0	4.0	m
1	42.0	Jason	Miller	25.0	4.0	m
2	36.0	Tina	Ali	25.0	4.0	f
3	24.0	Jake	Milner	62.0	2.0	m
4	73.0	Amy	Cooze	70.0	3.0	f

##使用线性插值法填充df.interpolate()

	age	first_name	last_name	postTestScore	preTestScore	sex
0	42.0	Jason	Miller	25.000000	4.000000	m
1	39.0	NaN	NaN	37.333333	3.333333	NaN
2	36.0	Tina	Ali	49.666667	2.666667	f
3	24.0	Jake	Milner	62.000000	2.000000	m
4	73.0	Amy	Cooze	70.000000	3.000000	f

噪声数据

data_box

噪声(noise)是被测量的变量的随机误差或方差。

data_box = data_price.reshape([3,-1])

分箱 (binning)

分箱通过查考数据的"临近"即周围值来光滑有序数据值。由于分箱方法考察邻近值,因此它进行的是局部光滑。

将数据分为1个等频的箱中,可以用箱均值、箱中位数或箱边界光滑数据。

```
data_price = np.array([15,4,8,21,28,21,24,25,34])
data_price

array([15, 4, 8, 21, 28, 21, 24, 25, 34])

## 对数据进行排序
data_price.sort()
data_price

array([ 4, 8, 15, 21, 21, 24, 25, 28, 34])

## 将数据进行分箱, 分3个箱
```

```
## 用箱均值光滑
np.repeat(data_box.mean(axis=1), 3)
array([ 9.,
             9., 9., 22., 22.,
                                     22., 29., 29.,
                                                      29.])
## 用箱中位数光滑
np.repeat(np.median(data_box, axis=1), 3)
array([ 8., 8.,
                  8., 21., 21., 21., 28., 28.,
                                                      28.])
from scipy import stats
values = [1.0, 1.0, 2.0, 1.5, 3.0]
stats.binned_statistic([1, 1, 2, 5, 7], values, 'mean', bins=3)
BinnedStatisticResult(statistic=array([ 1.33333333,
                                                                2.25
                                                          nan,
<
## 用箱边界光滑
np.repeat(data_box.max(axis=1), 3)
array([15, 15, 15, 24, 24, 24, 34, 34, 34])
```

数据集成

数据挖掘经常需要合并来自多个数据存储的数据。而合并的数据往往容易产生冗余。

冗余和相关性分析

一个属性如果能有另一组属性"导出",则这个属性可能是冗余的。属性或维度命名不一致也可能导致数据集冗余。

有些冗余可以被相关分析检测到。

相关系数

```
np.corrcoef(data_corr)
```

```
array([[ 1. , 0.86744279],
       [ 0.86744279, 1. ]])
```

数据规范化

最大最小规范化(min-max scaled)

假设 min_A 和 max_A 分别是属性 A的最小值和最大值, 计算公式如下:

$$v_i' = \frac{v_i - \min_A}{\max_A - \min_A} (new_{maxA} - new_{minA}) + new_{minA} \tag{1}$$

这样就把 A 的值映射到区间 [newmax A, newmin A] 中的 v'_i 中。

Z-score 规范化 (零均值规范化)

$$v_i' = \frac{v_i - \bar{A}}{\sigma_A} \tag{2}$$

通过z-socre规范化,将数值的均值转换成0,方差转换成1

```
X_scaled = preprocessing.scale(X_train)
X_scaled
```

```
array([[ 0. , -1.22474487, 1.33630621],
        [ 1.22474487, 0. , -0.26726124],
        [-1.22474487, 1.22474487, -1.06904497]])
```

```
X_scaled.mean()
```

4.9343245538895844e-17

```
X_scaled.var()
```

1.0

小数定标

通过移动属性 4的小数点位置来进行规范化:

$$v_i' = \frac{v_i}{10^j} \tag{3}$$

其中 j是使得 $max(|v'_i|) < 1$ 的最小整数

```
X_train / 10

array([[ 0.1, -0.1,  0.2],
       [ 0.2,  0. ,  0. ],
       [ 0. ,  0.1, -0.1]])
```

习题

习题3.3

对数据

13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70 使用深度为 3 的箱,用箱均值光滑数据。

```
data = np.array([13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,35,35,35,35,35,35,36,40,45,46,52,70])
array([13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 3,35,35,35,35,35,35,35,36,40,45,46,52,70])
np.repeat(data.reshape([-1, 3]).mean(axis=1), 3)
```

习题3.7

根据习题 3.3 的数据

- 使用最小-最大规范化将 35 映射到 [0,1] 区间
- 使用z分数规范化变化 35
- 使用小数定标规范化变换 35

```
# min-max
(35 - data.min()) / (data.max() - data.min())
```

0.38596491228070173

```
## z-score
(35 - data.mean()) / data.std()
```

0.39661103485373522

```
## decimal
35 / 100
```

0.35