ЛІНІЙНА СКЛАДНІСТЬ

Лінійною складністю L(S) двійкової послідовності $S=s_0, s_1,...,s_{n-1}, s_j \in \{0,1\}$ називається найменша довжина зсувного регістру з лінійною функцією зворотного зв'язку (Linear Feedback Shift Register — LFSR), що здатний відтворити цю послідовність. Доведено, що якщо значення лінійної складності послідовності дорівнює половині її довжини, тобто якщо L(S)=n/2, то таку послідовність теоретично не можливо екстраполювати. Для визначення лінійної складності використовується ітераційний алгоритм Berlecamp-Massey.

Алгоритм дозволяє не тільки визначити значення лінійної складності послідовності, але й отримати поліном зворотного зв'язку LFSR, що відтворює задану послідовність.

Вхідними даними для роботи алгоритму Berlecamp-Massey є двійкова послідовність $s_0, s_1, ..., s_{n-1}$. В алгоритмі використовуються наступні компоненти: L - поточне значення лінійної складності, $C(D) = c_L \cdot D^L + c_{L-1} \cdot D^{L-1} + ... + c_1 \cdot D + 1$ - поліном лінійної функції зворотного зв'язку для L-розрядного зсувного регістру, B(D)-допоміжний поліном, N - номер поточного біту заданої двійкової послідовності. В наведеному нижче описі алгоритму операції додавання відповідають операціям додавання по модулю 2. Итераційний алгоритм Berlecamp-Massey полягає в виконанні наступної послідовності кроків:

- 1. Присвоєння початкових значень: C(D) = B(D) = 1, x=1, L=0, N=0.
- 2. Обчислення для поточного N–го біту s_N заданої послідовності біту d неузгодженості з поточним поліномом C(D) по L попереднім бітам послідовності:

$$d = s_N + \sum_{j=1}^{L} c_j \cdot s_{N-j} . {1}$$

- 3. Якщо d=0, то біт s_N правильно відтворюється LFSR з регістром довжиною L зі структурою зворотного зв'язку, що задається C(D), відповідно, виконується інкремент значення x=x+1 і перехід на п.6.
- 4. Якщо d=1 і при цьому $2\cdot L > N$, то біт s_N невірно відтворюється LFSR з регістром довжиною L зі структурою зворотного зв'язку, що задається C(D) і

правильне відтворення біту s_N може бути досягнуте корекцією поліному C(D) без збільшення довжини L зсувного регістру. Корекція поліному виконується у відповідності з формулою: $C(D) = C(D) + D^x \cdot B(D)$, x = x + 1.

- 5. Якщо d=1, але $2\cdot L \leq N$, то адекватне відтворення біту s_N може бути досягнуте збільшення довжини зсувного регістру L=N+1-L і корекцією поліному, що задає функцію зворотного зв'язку: $C(D)=C(D)+D^x\cdot B(D)$, при цьому в B(D) зберігається попереднє значення поліному C(D): B(D)=C(D), а значення x встановлюється в одиницю x=1.
- 6. Виконується перехід до обробки наступного символу послідовності: N = N+1. Якщо при цьому N=n, то кінець, інакше повернення на $\pi.2$ алгоритму.

Робота описаного алгоритму Berlecamp-Massey ілюструється наступним прикладом. Нехай задана двійкова послідовність:

- **N=0**. Так як L=0, то сума в формулі (1) не обчислюється і тому $d = x_0 = 1$ Оскільки $2 \cdot L = N$, то виконується п.5 алгоритму, а саме: $C(D) = C(D) + D^1 \cdot B(D) = 1 + D$, x = 1, B(D) = 1; L = 0 + 1 0 = 1.
- **N=1.** Так як $C(D)=1+D^1$, то $d=x_1+x_0\cdot 1=1$. Оскільки $2\cdot L>N$, корекція C(D) виконується по п.4 описаного вище алгоритму: $C(D)=C(D)+D^1\cdot B(D)=1+D+D=1$, x=2.
- **N=2** Оскільки в формулі для C(D) нема ні одного D, то $d = x_2 + 0 = 1 + 0 = 1$. Так як $2 \cdot L = N$, то корекція поліному C(D) виконується згідно п.5 алгоритму: $C(D) = C(D) + D^2 \cdot B(D) = 1 + D^2$. B(D) = 1, x = 1; L = 2 + 1 1 = 2; це означає, що при відтворенні наступного біту послідовності враховуються два попередніх. Оскільки в вираз для C(D) входить D^2 , то відтворення відбувається лише з урахуванням першого біта зазначеної пари попередніх бітів.
- **N=3** При відтворенні біту s_3 попередні біти s_1 $s_2 = 0$ 1, першому з яких відповідає компонента D^2 поліному C(D), а другому компонента D^1 , яка

відсутня в поточному значенні поліному C(D). Згідно п.2 обчислюється значення d: $d=s_3+s_1=0$. Оскільки d=0, то виконується п.3: x=x+1=2.

N=4 Для біту s_4 - попередні : s_2 s_3 =1 0. Згідно п.2 значення d обчислюється у вигляді: $d=s_4+s_2=0$. Оскільки d=0, то виконується п.3: x=x+1=3.

N=5 Для біту s_5 - попередні біти s_3 $s_4 = 0$ 1. Згідно п.2 значення d обчислюється як: $d=s_5+s_3=1$. Оскільки при d=1 виконується умова $2\cdot L < N$, то корекція поліному C(D) реалізується згідно п. 5 описаного алгоритму: $C(D)=C(D)+D^3\cdot B(D)=1+D^2+D^3$. $B(D)=1+D^2$, L=5+1-2=4. x=1.

N=6 Так як L=4 то відтворення біту s_6 виконується по чотирьом попереднім бітам: s_2 s_3 s_4 s_5 = 1 0 1 1. Оскільки C(D) містить тільки D^2 і D^3 (s_2 відповідає компоненті D^4 , s_3 відповідає D^3 , біт s_4 - компоненті D^2 , а s_5 - D), то відновлення значення біту s_6 згідно (1) виконується у наступному вигляді: $d=s_6+$ (s_3+s_4) = 0+(0+1)=1. Так як $2\cdot L=8>N$, то виконується п.4 алгоритму, за яким $C(D)=C(D)+D^1\cdot B(D)=1+D^2+D+D\cdot (1+D^2)=1+D+D^2$, x=x+1=2.

N=7. Обчислення біту s_7 знов виконується по чотирьом (L=4) попереднім бітам послідовності s_3 s_4 s_5 s_6 . За п.2 обчислюється d= s_7 + (s_5 + s_6) =1. В силу того, що $2 \cdot L$ =8 > N то корекція поліному виконується по п.4 алгоритму C(D) = $C(D) + D^2 \cdot B(D) = 1 + D + D^2 + D^2 \cdot (1 + D^2) = 1 + D + D^4$. x=x+1=3

N=8. Обчислення біту s_8 знов виконується по чотирьом (L=4) попереднім бітам послідовності s_4 s_5 s_6 s_7 . В виразі поліному C(D) лише дві ненульові компоненти D^4 и D^1 , які співвідносяться з парою крайніх бітів s_4 та s_7 . Відповідно, в п.2 обчислюється d= s_8 + (s_4 + s_7)=0. За п.3 x=x+1=4.

Легко перевірити, що в подальшому, для всіх наступних бітів послідовності s_9 , s_{10} , ..., s_{14} обчислене в п.2 значення d завжди дорівнюватиме нулю, тобто значення лінійної складності L=4 не зміниться. Таким чином, задана двійкова послідовність відтворюється 4-розрядним LFSR з функцією зворотного зв'язку, що описується поліномом C(D)= D^4 +D+1.