Appl. No.: 09/437,004 Filed: November 9, 1999

Page 2

Amendments to the Claims:

1. (currently amended) A data communication link comprising a data transmitter station coupled by an optical communication channel to a data receiver station,

wherein the data transmitter station includes a multi-power-level optical source connected to receive data words of n digital bits and arranged to encode different value the bits of each word into different power levels of a single signal having one of m optical power levels of a single wavelength optical signal, the multi-power-level output signal of the optical source being transmitted along the optical communications channel to the data receiver station, said data receiver station including a data-decoding receiver arranged to receive and decode said multi-power level single wavelength optical signal into n bit digital words,

and wherein said receiver station further comprises a received-signal condition monitor coupled by a control channel to a control device located in the data transmitter station, said condition monitor being arranged to sense the level of a predetermined characteristic of the signal received by the data-decoding receiver and consequently to transmit a control signal along the control channel to the control device,

said control device being adapted to control the power output of the optical source consistent with achieving a predetermined sensed level of said predetermined characteristic.

- 2. (original) A data communication link as claimed in claim 1, wherein the predetermined characteristic is the DC level or the average optical power level of the signal received by the receiver, the sensed level being compared against a control or reference level to establish a difference and the arrangement is such that the control signal attempts to null that difference or a least to keep the difference within narrow predetermined limits.
- 3. (original) A data communication link as claimed in claim 1, wherein the predetermined characteristic is the individual bit content of a multibit test word transmitted at preselected times the condition monitor being preprogrammed with the bits of the test word against which the individual bits of the transmitted test word are compared and in the event of a

()

Appl. No.: 09/437,004 Filed: November 9, 1999

Page 3

difference the control signal is arranged to increase or decrease the power output of the transmitter in order to reduce the error.

4. (original) A data communication link as claimed in claim 1, wherein the control channel is any of:

a serial binary digital optical channel;

a parallel binary digital optical channel;

a serial binary digital electrical channel;

a parallel binary digital electrical channel;

a serial multilevel digital electrical channel;

a parallel multilevel digital electrical channel;

or an analog electrical channel.

5. (original) A data communication link as claimed in claim 1, wherein the bandwidth of the optical channel is the same as or greater than that of the control channel.

6. (original) A data communication link as claimed in claim 1, wherein the optical source is a laser or an LED and the drive current supplied to the optical source is tailored to the characteristics of the source by individually adjusting the current drive levels such that each of the optical power levels is sufficiently separated from the levels above and below it for the receiver to quatise each level and maintain an adequate bit error rate, thus accommodating non linear source output power versus drive current characteristics.

Cas