Løsninger problemsett 1, grublegruppe MAT1100 høst 2009

1. Med enkle operasjoner på komplekse tall kan vi komme fram til at 1 = -1:

$$1 = \sqrt{1} = \sqrt{1 \cdot 1} = \sqrt{(-1) \cdot (-1)} = \sqrt{-1} \cdot \sqrt{-1} = i \cdot i = -1.$$

Hvor på veien går det galt?

Løsning: For positive reelle tall a og b stemmer det at $\sqrt{ab} = \sqrt{a}\sqrt{b}$, men dette gjelder ikke nødvendigvis om a og b er negative. Feilen som blir gjort ovenfor er altså å anta at $\sqrt{(-1)\cdot(-1)} = \sqrt{-1}\cdot\sqrt{-1}$.

2. La z og w være komplekse tall forskjellige fra 0. Vis at z og w står normalt på hverandre (dette skrives ofte $z \perp w$) hvis og bare hvis $\Re(z/w) = 0$.

Løsning: La $z=re^{i\theta}$ og $w=se^{i\phi}$ for $r,s\in\mathbb{R}^+$. Da står z og w normalt på hverandre hvis og bare hvis $|\theta-\phi|=\frac{\pi}{2}+k\pi$ for en heltallig k. Dessuten er

$$\frac{z}{w} = \frac{re^{i\theta}}{se^{i\phi}} = \frac{r}{s}e^{i(\theta-\phi)} = \frac{r}{s}(\cos(\theta-\phi) + i\sin(\theta-\phi))$$

reint imaginær hvis og bare hvis $\cos(\theta - \phi) = 0$ som også er ekvivalent til $|\theta - \phi| = \frac{\pi}{2} + k\pi$ for en heltallig k.

3. La \mathcal{C} være sirkelen i det komplekse planet med sentrum 0 og radius 1, og la P og Q være diametralt motsatte punkter på \mathcal{C} . Vis at for alle $X \in \mathcal{C} \setminus \{P,Q\}$ vil trekanten utspent av P, Q og X være rettvinkla.

Løsning: Ved å dreie på *enhetssirkelen i det komplekse planet* (sirkelen med sentrum 0 og radius 1, i denne oppgava kalt \mathcal{C}) kan vi uten tap av generalitet anta at P=1 og Q=-1. Et generelt punkt $X\in\mathcal{C}\setminus\{P,Q\}$ kan skrives på formen $X=e^{i\theta}$ for $\theta\in(0,\pi)\cup(\pi,2\pi)$. (Hvorfor kan vi ikke ha $\theta=0$ eller π ?)

Siden

$$\frac{X-P}{X-Q} = \frac{e^{i\theta}-1}{e^{i\theta}+1} = \frac{e^{i\theta/2}-e^{i\theta/2}}{e^{i\theta/2}+e^{-i\theta/2}} = \frac{2i\sin(\theta/2)}{2\cos(\theta/2)} = i\tan(\theta/2)$$

er et reint imaginært tall, står ved forrige oppgave X-P og X-Q normalt på hverandre, og trekanten utspent av P,Q og X er rettvinkla.

En annen vei gjør nytte av Pytagoras' læresetning etter litt regning:

$$\begin{split} |X-P|^2 + |X-Q|^2 &= |e^{i\theta} - 1|^2 + |e^{i\theta} + 1|^2 \\ &= (e^{i\theta} - 1)\overline{(e^{i\theta} - 1)} + (e^{i\theta} + 1)\overline{(e^{i\theta} + 1)} \\ &= (e^{i\theta} - 1)(e^{-i\theta} - 1) + (e^{i\theta} + 1)(e^{-i\theta} + 1) \\ &= (1 - e^{i\theta} - e^{-i\theta} + 1) + (1 + e^{i\theta} + e^{-i\theta} + 1) \\ &= 4 \\ &= |P - Q|^2. \end{split}$$

Dermed gir Pytagoras at trekanten utspent av P, Q og X er rettvinkla. Så lenge $X \neq P$, Q er trekanten heller ikke degenerert.

4. La a, b og c være 3 forskjellige komplekse tall. Vis at følgende 3 påstander er ekvivalente:

- I) Trekanten definert av a, b og c er likesida.
- II) $a+e^{2\pi i/3}\cdot b+e^{4\pi i/3}\cdot c=0$ eller $a+e^{2\pi i/3}\cdot c+e^{4\pi i/3}\cdot b=0$. (Det første gjelder hvis hjørnene i trekanten ligger i rekkefølgen a-b-c med klokka, det andre hvis mot klokka.)

III)
$$a^2 + b^2 + c^2 = bc + ca + ab$$
.

Løsningsskisse: Ved en translasjon av planet kan vi rolig anta at c=0. (Hvorfor?) Da reduserer de to siste påstandene til $a^2-ab+b^2=0$ og $(a+e^{2\pi i/3}\cdot b)(a+e^{4\pi i/3}\cdot b)=0$ som ved utregning av det siste uttrykket ses å være ekvivalente. Dessuten er $a^2-ab+b^2=\frac{a^3+b^3}{a+b}=0$ ekvivalent til $a^3+b^3=0$ og $a+b\neq 0$. Men at $a^3+b^3=0$, vil si at $b=\sqrt[3]{-1}\cdot a$ der $\sqrt[3]{-1}$ betegner $e^{\pm\pi i/3}$. (Hvorfor ikke -1?) Dette er ekvivalent til at trekanten utspent av a, b og 0 er likesida. (En tegning er til betydelig hjelp her.)

5. Vis ved hjelp av I) og II) i forrige oppgave Napoleons teorem: Dann utvendige likesida trekanter på sidene i en vilkårlig trekant. Da utspenner massesentrene til disse en likesida trekant.

Løsningsskisse: Med notasjonen på tegninga over (som jeg skamløst har rappa fra Wikipedia) kan vi igjen anta at C=0. Massesenteret til en likesida trekant med hjørner i U, V og W, er gitt ved $\frac{1}{3}(U+V+W)$, og noen utregninger gir at

$$X = \frac{1}{3}(B+0+(0-B)\cdot e^{\pi i/3}) = \frac{1}{3}(B\cdot e^{-\pi i/3}),$$

$$Y = \frac{1}{3}(0+A+(0-A)e^{\pi i/3}) = \frac{1}{3}(A\cdot e^{-\pi i/3}),$$

$$Z = = \frac{1}{3}(A+B+(A-B)\cdot e^{\pi i/3}).$$

Videre har vi

$$L = \frac{1}{3}(B + X + 0),$$

$$M = \frac{1}{3}(0 + Y + A),$$

$$N = \frac{1}{3}(A + Z + B).$$

Ved nå å griseberegne at $L+e^{2\pi i/3}\cdot M+e^{4\pi i/3}\cdot N=0$ (påstand II) fra forrige oppgave) får vi forhåpentlig det vi ønsker.