第3章 电子器件及其电路模型

(semiconductor elements) (circuit analysis)

- 3.0* 半导体基础知识
- 3.1 半导体二极管
- 3.2 晶体三极管
- 3.3 场效应管
- 3.4 集成运算放大器
- 3.5 数字逻辑电路基础

§ 3.3 场效应管

- 一、绝缘栅型场效应三极管
- 二、结型场效应管
- 三、场效应管参数
- 四、场效应管静态分析

场效应管(Field Effect Transistor简称FET)是 一种电压控制器件 $(u_{GS} \sim i_{D})$,工作时只有一种载流 子参与导电,因此它是单极型器件。

FET因其制造工艺简单,功耗小,温度特性好, 输入电阻极高等优点,得到了广泛应用。

场效应管用FET表示(Field Effect Transistor)。 具有输入电阻高、热稳定性好、工艺简单、易于集 成等优点。

- · 场效应管分类: Metal-Oxide-Semiconductor
 - 绝缘栅型IGFET(或MOS) (Insulted Gate Type)
 - 增强型MOS (Enhancement) N沟道 P沟道
 - 耗尽型MOS (Depletion) N沟道 P沟道
 - 结型JFET (Junction Type)
 - ■本质上是耗尽型,分为N沟道和P沟道。

典型场效应管特性及应用介绍

N沟道增强型绝缘栅场效应管

一、绝缘栅场效应三极管(IGFET)

绝缘栅型场效应管 (Metal Oxide_Semiconductor FET),

简称MOSFET。分为:

增强型 → N沟道、P沟道

耗尽型 → N沟道、P沟道

s: Source 源极

d: Drain 漏极

g: Gate 栅极

B: Base 衬底

1. N沟道增强型MOS管

(1) 结构

4个电极:漏极D,

源极S,栅极G和 衬底B。

MOS管的栅极与其它电极被SiO2绝缘层隔开了,所以称为绝缘栅,栅极输入电阻近似为 ∞ , $i_{G}\approx 0$ 。

衬底引线箭头由P指向N

(2) 工作原理

①栅源电压uGS的控制作用

二极管,在d、s之间无电流,管子截止。

当u_{GS}>0V时→纵向电场

→将靠近栅极下方的空穴向⁻ 排斥→耗尽层。

再增加ugs→纵向电场↑

→将P区少子电子聚集到

P区表面→形成导电沟道, 如果此时加有漏源电压, 就可以形成漏极电流*i*_d。

 $u_i(t)$

定义:

<u>开启电压(U_{T})</u>——刚刚产生沟道所需的栅源电压 U_{GS} 。

N沟道增强型MOS管的基本特性:

 $u_{\mathrm{GS}} < U_{\mathrm{T}}$,管子截止,

 $u_{\rm GS}>U_{\rm T}$,管子导通。

 u_{GS} 越大,沟道越宽,在相同的漏源电压 u_{DS} 作用下,漏极电流 I_{D} 越大。

②漏源电压ups对漏极电流id的控制作用

当 $u_{\text{GS}} > U_{\text{T}}$,且固定为某一值时,来分析漏源电压 u_{DS} 对漏极电流 i_{D} 的影响。(设 $U_{\text{T}} = 2V$, $u_{\text{GS}} = 4V$)

- (a) $u_{ds}=0$ 时, $i_{d}=0$ 。
- (b) $u_{ds} \uparrow \rightarrow i_{d} \uparrow$; 同时沟道靠漏区变窄。
- (c)当 u_{ds} 增加到使 $u_{gd}=U_{T}$ 时,沟道靠漏区夹断,称为预夹断
- (d) u_{ds} 再增加,预夹断区加长, u_{ds} 增加的部分基本降落在随之加长的夹断沟道上, i_{d} 基本不变。

(3) 特性曲线

- ① 输出特性曲线: $i_D = f(u_{DS}) \mid u_{GS} = const$
 - (a) 可变电阻区(预夹断前)。

$$0 < u_{\rm DS} < u_{\rm GS} - U_{\rm T}$$

(b) 恒流区也称饱和区(预夹断后)。

$$u_{\rm DS}>u_{\rm GS}$$
- ${\rm U_T}$

(c) 夹断区(截止区)。 $u_{GS} < U_{T}$

②转移特性曲线:

(电压控制电流源)

 $V_{
m DD}$

 V_{GG}

d

二氧化硅

$$i_{\mathrm{D}} = f(u_{\mathrm{GS}}) \mid u_{\mathrm{DS}=\mathrm{const}}$$

可根据输出特性曲线作出转移特性曲线。

例:作 $u_{DS}=10V$ 的一条转移特性曲线:

一个重要参数——跨导 $g_{\mathbf{m}}$ (恒流区)

(电压控制电流源控制系数)

$$g_{\rm m} = \Delta i_{\rm D} / \Delta u_{\rm GS} |_{u_{\rm DS} = {\rm const}}$$
 (单位mS)

 $g_{\rm m}$ 的大小反映了栅源电压对漏极电流的控制作用。 在转移特性曲线上, $g_{\rm m}$ 为曲线的斜率。 在输出特性曲线上也可求出 $g_{\rm m}$ 。

增强型NMOS一FET输出伏安特性

$$i_D = f(U_{GS})\Big|_{U_{DS} = const.}$$

$$i_D = I_{D0} \left(\frac{U_{GS}}{U_T} - 1 \right)^2 \quad (恒流区)$$

 I_{D0} 是 $U_{GS} = 2U_T$ 射的漏极电流

 U_{T} 开启电压

<u> 2.N沟道耗尽型MOSFET</u>

在栅极下方的SiO2层中掺入了大量的金属正离子。所以当 $u_{\rm cs}$ =0时,这些正离子已经感应出反型层,形成了沟道。

特点:

加入 $u_{\rm DS}$ 就有 $i_{\rm D}$ 。

当 $u_{\rm GS}>0$ 时,沟道增宽, in进一步增加。

当 $u_{\rm GS}$ <0时,沟道变窄, in减小。

定义:

<u>夹断电压(U_p)</u>——沟道刚刚消失所需的栅源电压 u_{GS} 。

N沟道耗尽型MOSFET的特性曲线

输出特性曲线

转移特性曲线

转移特性用电流方程:

$$i_D = I_{DSS} (1 - \frac{U_{GS}}{U_P})^2$$

 I_{DSS} 是 $U_{GS} = 0$ 时的漏极电流,称为饱和漏极电流

3、P沟道MOSFET

P沟道MOSFET的工作原理与N沟道MOSFET完全相同, 只不过导电的载流子不同,供电电压极性不同而已。

P沟道增强型MOSFET

 $-u_{\mathrm{DS}}$ (V)

注意各量的参考方向!

P沟道耗尽型MOSFET

P沟道增强型MOSFET实际电压设置

N沟道MOSFET P沟道MOSFET

二、结型场效应管

1. 结构与符号

N 沟道 JFET

P沟道 JFET

N 沟道 JFET

栅-源电压对导电沟道宽度的控制作用

 u_{GS} 可以控制导电沟道的宽度。为什么g-s必须加负电压?

漏-源电压对漏极电流的影响

场效应管工作在恒流区,因而 $u_{GS}>U_{GS\ (off)}$ 且 $u_{GD}< U_{GS\ (off)}$ 。

不同型号的管子 $U_{GS (off)}$ 、 I_{DSS} 将不同。

转移特性 $i_D = f(u_{GS})|_{U_{DS} = \sharp \equiv}$

$$g_{\rm m} = \frac{\Delta i_{\rm D}}{\Delta u_{\rm GS}} \Big|_{U_{\rm DS} = \text{R}} \equiv$$

各类场效应管的符号和特性曲线

种类		符号	转移特性曲线	输出特性曲线
结型 N 沟道	耗尽型	G S	$i_{\rm D}/{\rm mA}$ $I_{\rm DSS}$ $U_{\rm P} O$ $u_{\rm GS}$	$i_{\rm D}$ $U_{\rm GS} = 0$ $U_{\rm DS}$
结型 P 沟道	耗尽型	G S	I_{DSS} I_{DSS}	$+ \frac{O^{1}_{D}}{U_{DS}}$ $+ \frac{U_{GS} - 0V}{U_{DS}}$
绝缘 栅型 N 沟道	增强型	G B	$i_{ m D}$ O $U_{ m T}$ $u_{ m GS}$	$U_{GS} = U_{T}$ U_{DS}

三、场效应管参数

- (1) 开启电压 U_{T} (增强型) U_{GS} (on)
- (2) 夹断电压 $U_{\rm P}$ (耗尽型) $U_{\rm GS~(off)}$
- (3) 饱和漏极电流 Ipo (增强型)、Ipss (耗尽型、结型)
- (4) 跨导 $g_{\rm m}$: $g_{\rm m} = \Delta i_{\rm D}/\Delta u_{\rm GS}$ $u_{\rm DS} = {\rm const}$
- (5) 直流输入电阻 R_{CS} ——栅源间的等效电阻。

极限参数

- (1) 最大漏一源电压 V_{(BR) DS}
- (2) 最大栅一源电压 V_{(BR) GS}
- (3) 最大耗散功率 P_{DM}

判别MOS管型号

指明漏极电流的方向

外特性(1)

外特性(2)

四、场效应管静态分析

例1. 基本偏置电路

根据场效应管工作在恒流区的条件,在g-s、d-s间加极性合适的电源以获得静态工作点。

$$\begin{split} &U_{\rm GSQ} = V_{\rm GG} \\ &I_{\rm DQ} = I_{\rm DO} (\frac{V_{\rm GG}}{U_{\rm GS(th)}} - 1)^2 \\ &U_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ} R_{\rm d} \end{split}$$

例2. 自给偏压电路

哪种场效应管能够采用这种电路形式设置Q点?

3. 分压式偏置电路

即典型的Q点稳定电路

$$egin{aligned} U_{\mathrm{GQ}} &= U_{\mathrm{AQ}} = rac{R_{\mathrm{g1}}}{R_{\mathrm{g1}} + R_{\mathrm{g2}}} \cdot V_{\mathrm{DD}} \ U_{\mathrm{SQ}} &= I_{\mathrm{DQ}} R_{\mathrm{s}} \end{aligned}$$

$$I_{\mathrm{DQ}} = I_{\mathrm{DO}} \left(\frac{U_{\mathrm{GSQ}}}{U_{\mathrm{GS(th)}}} - 1\right)^{2}$$

$$U_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ} (R_{\rm d} + R_{\rm s})$$

为什么加 R_{g3} ?其数值应大些小些?

哪种场效应管能够采用这种电路形式设置Q点?

例,比较下述偏置电路

哪种场效应管能够采用这种电路形式设置Q点?

自给偏压:由正电源获得负偏压

$$U_{\mathrm{GQ}} = 0$$
, $U_{\mathrm{SQ}} = I_{\mathrm{DQ}} R_{\mathrm{s}}$
$$U_{\mathrm{GSQ}} = U_{\mathrm{GQ}} - U_{\mathrm{SQ}} = -I_{\mathrm{DQ}} R_{\mathrm{s}}$$

$$I_{\mathrm{DQ}} = I_{\mathrm{DSS}} (1 - \frac{U_{\mathrm{GSQ}}}{U_{\mathrm{GS(off)}}})^{2}$$

$$U_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ} (R_{\rm d} + R_{\rm s})$$

分压式偏置/**Q**点稳定电路

$$U_{\text{GQ}} = U_{\text{AQ}} = \frac{R_{\text{g1}}}{R_{\text{g1}} + R_{\text{g2}}} \cdot V_{\text{DD}}$$

$$U_{\text{SQ}} = I_{\text{DQ}} R_{\text{s}}$$

$$I_{\text{DQ}} = I_{\text{DO}} \left(\frac{U_{\text{GSQ}}}{U_{\text{GS(th)}}} - 1 \right)^{2}$$

$$U_{\text{DSQ}} = V_{\text{DD}} - I_{\text{DQ}} (R_{\text{d}} + R_{\text{s}})$$

为什么加 R_{g3} ? 其数值应大些 小些?

作业

- 3.1, 2, 5, 6 二极管
- 3.9, 10, 11 稳压管
- 3.12, 13, 14, 15, 16 三极管工作状态
- 3.17, 18, 19, 22, 23 场效应管
- 3.29, 30, 31, 32 运算放大器
- 3.36, 37, 39(6, 7) 数电基础