

FCC SAR Test Report

Report No. : SA180315C04

Applicant : FIBOCOM

Address : 5/F, Tower A, Technology Building II, 1057 Nanhai Avenue, Shenzhen, China

Product : LTE module

FCC ID : ZMOL850GL

Brand : Fibocom

Model No. : L850-GL

Standards : FCC 47 CFR PART 2 (2.1093), IEEE C95.1:1992, IEEE STD 1528:2013

KDB 865664 D01 v01r04, KDB 865664 D02 v01r02, KDB 248227 D01 v02r02, KDB 447498 D01 v06, KDB 616217 D04 v01r02, KDB 941225 D01 v03r01

KDB 941225 D05 v02r05, KDB 941225 D05A v01r02

Sample Received Date : Mar. 15, 2018

Date of Testing : Apr. 23, 2018 ~ May 06, 2018

Lab Address : No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.

Test Location : No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil, Kwei Shan Dist., Taoyuan City 33383, Taiwan (R.O.C)

CERTIFICATION: The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch – Lin Kou Laboratories**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies.

Prepared By:

Evonne Liu / Specialist

Approved By:

Eli Hsu / Senior Engineer

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report Format Version 5.0.0 Page No. : 1 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Table of Contents

Rel		Control Record	
1.	Sumn	nary of Maximum SAR Value	4
2.	Desci	ription of Equipment Under Test	5
3. SAR Measurement System			
	3.1	Definition of Specific Absorption Rate (SAR)	6
	3.2	SPEAG DASY52 System	6
		3.2.1 Robot	
		3.2.2 Probes	
		3.2.3 Data Acquisition Electronics (DAE)	
		3.2.4 Phantoms	
		3.2.5 Device Holder	
		3.2.6 System Validation Dipoles	
		3.2.7 Tissue Simulating Liquids	
	3.3	SAR System Verification	14
	3.4	SAR Measurement Procedure	15
		3.4.1 Area & Zoom Scan Procedure	15
		3.4.2 Volume Scan Procedure	
		3.4.3 Power Drift Monitoring	16
		3.4.4 Spatial Peak SAR Evaluation	
		3.4.5 SAR Averaged Methods	
4.	SAR I	Measurement Evaluation	17
	4.1	EUT Configuration and Setting	
	4.2	EUT Testing Position	34
		4.2.1 Body Exposure Conditions	
		4.2.2 SAR Test Exclusion Evaluations	36
	4.3	Tissue Verification	
	4.4	System Validation	39
	4.5	System Verification	
	4.6	Maximum Output Power	
		4.6.1 Maximum Target Conducted Power	
		Laptop	4
		Tablet	4
		Laptop	43
		Tablet	46
		4.6.2 Measured Conducted Power Result	48
		Laptop	48
		Tablet	
	4.7	SAR Testing Results	
		4.7.1 SAR Test Reduction Considerations	
		4.7.2 SAR Results for Body Exposure Condition	8
		Laptop PC Mode	8
		Tablet PC Mode	9
		4.7.3 SAR Measurement Variability	
5.	Calib	ration of Test Equipment	20
6.	Meas	urement Uncertainty	20
7.	Inforr	nation on the Testing Laboratories	208

Appendix A. SAR Plots of System Verification

Appendix B. SAR Plots of SAR Measurement

Appendix C. Calibration Certificate for Probe and Dipole

Appendix D. Photographs of EUT and Setup

Page No.

: 2 of 208

Release Control Record

Reason for Change	Date Issued
Initial release	May 25, 2018

 Report Format Version 5.0.0
 Page No. : 3 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

1. Summary of Maximum SAR Value

Equipment Class	Mode	Highest SAR-1g Body (W/kg)	
		Laptop PC	Tablet PC
	WCDMA II	0.46	1.16
	WCDMA IV	0.60	0.96
	WCDMA V	0.74	0.45
	LTE 2	0.42	1.18
	LTE 4	0.60	1.19
	LTE 5	0.88	0.63
	LTE 7	0.62	1.14
PCB	LTE 12	0.93	0.77
	LTE 13	1.01	0.69
	LTE 17	0.85	0.73
	LTE 26	0.90	0.63
	LTE 30	0.81	0.85
	LTE 38	0.76	1.17
	LTE 41	0.62	1.06
	LTE 66	0.58	0.95
DTS	2.4G WLAN	1.16	1.03
	5.3G WLAN	1.10	0.97
NII	5.6G WLAN	1.16	0.93
	5.8G WLAN	1.11	0.92
DSS	Bluetooth	0.03	0.37
Himboot O	multanaous Transmission CAD	Во	dy
Hignest Sil	multaneous Transmission SAR	1.58	1.56

Note:

1. The SAR criteria (Head & Body: SAR-1g 1.6 W/kg, and Extremity: SAR-10g 4.0 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.

Report Format Version 5.0.0 Page No. : 4 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

2. <u>Description of Equipment Under Test</u>

EUT Type	LTE module
IC	ZMOL850GL
Brand Name	Fibocom
Model Name	L850-GL
EUT Configurations	EUT 1 : CPU 1 + eMMc 1 + LCD 1 + Camera 1 EUT 2 : CPU 2 + eMMc 2 + LCD 2 + Camera 2 EUT 3 : CPU 3 + eMMc 3 + LCD 3 + Camera 3
Tx Frequency Bands (Unit: MHz)	WCDMA Band II: 1852.4 ~ 1907.6 WCDMA Band IV: 1712.4 ~ 1752.6 WCDMA Band V: 826.4 ~ 846.6 LTE Band 2: 1850.7 ~ 1909.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 4: 1710.7 ~ 1754.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 5: 824.7 ~ 848.3 (BW: 1.4M, 3M, 5M, 10M) LTE Band 7: 2502.5 ~ 2567.5 (BW: 5M, 10M, 15M, 20M) LTE Band 12: 699.7 ~ 715.3 (BW: 1.4M, 3M, 5M, 10M) LTE Band 13: 779.5 ~ 784.5 (BW: 5M, 10M) LTE Band 17: 706.5 ~ 713.5 (BW: 5M, 10M) LTE Band 26: 814.7 ~ 848.3 (BW: 1.4M, 3M, 5M, 10M, 15M) LTE Band 30: 2307.5 ~ 2312.5 (BW: 5M, 10M) LTE Band 38: 2572.5 ~ 2617.5 (BW: 5M, 10M) LTE Band 41: 2498.5 ~ 2687.5 (BW: 5M, 10M, 15M, 20M) LTE Band 66: 1710.7 ~ 1779.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 66: 710.7 ~ 1779.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) WLAN: 2412 ~ 2462, 5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5720, 5745 ~ 5825 Bluetooth: 2402 ~ 2480
Uplink Modulations	WCDMA: QPSK LTE: QPSK, 16QAM 802.11b: DSSS 802.11a/g/n/ac: OFDM Bluetooth: GFSK, π/4-DQPSK, 8-DPSK
Maximum Tune-up Conducted Power (Unit: dBm)	Please refer to section 4.6.1 of this report
Antenna Type	PIFA Antenna (Peak Antenna Gain : 1.6 dBi for 2.4GHz, 2.35 dBi for 5GHz)
EUT Stage	Identical Prototype

Note:

- 1. The EUT was installed in Notebook PC (Brand: ASUS, Model: TP401C, J401C, R406C).
- 2. It is co-located with a WLAN module under FCC ID: MSQ8265NG in the host.
- 3. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

List of Accessory:

Battery Model Name C211N1714	Dyna	Brand Name
Dattery Poting 7.7\/do 20\/\/\	C211N1714	Model Name
rower Rating 7.7 vdc, 39V/H	7.7Vdc, 39WH	Power Rating
Type Li-ion	Li-ion	Туре

Report Format Version 5.0.0 Page No. : 5 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

3. SAR Measurement System

3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SPEAG DASY52 System

DASY52 system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY52 software defined. The DASY52 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

Report Format Version 5.0.0 Page No. : 6 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Fig-3.1 SPEAG DASY52 System Setup

3.2.1 Robot

The DASY52 system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version of CS8c from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- · Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

Report Format Version 5.0.0 Page No. : 7 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

3.2.2 Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	/
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Model	ES3DV3	
Construction	Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	P
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB	M
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	A STATE OF THE STA
Dynamic Range	5 μW/g to 100 mW/g Linearity: ± 0.2 dB	AGF
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	

Model	ET3DV6	3.65
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 2.3 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.4 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	

Report Format Version 5.0.0 Page No. : 8 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

3.2.3 Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	P COLUMN
Input Offset Voltage	< 5μV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

3.2.4 Phantoms

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

Model	ELI	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	

 Report Format Version 5.0.0
 Page No.
 : 9 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

3.2.5 Device Holder

Model	Mounting Device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

3.2.6 System Validation Dipoles

Model	D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	

 Report Format Version 5.0.0
 Page No.
 : 10 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528 and IEC 62209-1. For the body tissue simulating liquids, the dielectric properties are defined in RSS-102 Annex D and IEC 62209-2. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

Report Format Version 5.0.0 Page No. : 11 of 208
Report No. : SA180315C04 Issued Date : May 25, 2018

Table-3.1 Targets of Tissue Simulating Liquid

				,
Frequency (MHz)	Target Permittivity	Range of ±5%	Target Conductivity	Range of ±5%
		For Head		
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53
		For Body	•	•
750	55.5	52.7 ~ 58.3	0.96	0.91 ~ 1.01
835	55.2	52.4 ~ 58.0	0.97	0.92 ~ 1.02
900	55.0	52.3 ~ 57.8	1.05	1.00 ~ 1.10
1450	54.0	51.3 ~ 56.7	1.30	1.24 ~ 1.37
1640	53.8	51.1 ~ 56.5	1.40	1.33 ~ 1.47
1750	53.4	50.7 ~ 56.1	1.49	1.42 ~ 1.56
1800	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
1900	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2000	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2300	52.9	50.3 ~ 55.5	1.81	1.72 ~ 1.90
2450	52.7	50.1 ~ 55.3	1.95	1.85 ~ 2.05
2600	52.5	49.9 ~ 55.1	2.16	2.05 ~ 2.27
3500	51.3	48.7 ~ 53.9	3.31	3.14 ~ 3.48
5200	49.0	46.6 ~ 51.5	5.30	5.04 ~ 5.57
5300	48.9	46.5 ~ 51.3	5.42	5.15 ~ 5.69
5500	48.6	46.2 ~ 51.0	5.65	5.37 ~ 5.93
5600	48.5	46.1 ~ 50.9	5.77	5.48 ~ 6.06
5800	48.2	45.8 ~ 50.6	6.00	5.70 ~ 6.30

 Report Format Version 5.0.0
 Page No.
 : 12 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

The following table gives the recipes for tissue simulating liquids.

Table-3.2 Recipes of Tissue Simulating Liquid

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0		0.2	-	20.0	71.8	-
H5G	-	-	-	1	-	17.2	65.5	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5		0.3	-	-	67.2	-
B1750	-	31.0	ı	0.2	-	-	68.8	-
B1800	-	29.5	ı	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0		0.2	-	-	69.8	-
B2300	-	31.0		0.1	-	-	68.9	-
B2450	-	31.4		0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

Report Format Version 5.0.0 Page No. : 13 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Report Format Version 5.0.0 Page No. : 14 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	<= 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan (Δx, Δy)	<= 15 mm	<= 12 mm	<= 12 mm	<= 10 mm	<= 10 mm
Zoom Scan (Δx, Δy)	<= 8 mm	<= 5 mm	<= 5 mm	<= 4 mm	<= 4 mm
Zoom Scan (Δz)	<= 5 mm	<= 5 mm	<= 4 mm	<= 3 mm	<= 2 mm
Zoom Scan Volume	>= 30 mm	>= 30 mm	>= 28 mm	>= 25 mm	>= 22 mm

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Report Format Version 5.0.0 Page No. : 15 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

3.4.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

Report Format Version 5.0.0 Page No. : 16 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

4. SAR Measurement Evaluation

4.1 EUT Configuration and Setting

<Considerations Related to Proximity Sensor>

The device supports WWAN, WLAN, and Bluetooth capabilities. It is designed with a proximity sensor which can trigger/not trigger power reduction for WCDMA and LTE on Rear Face and Top Side of EUT for SAR compliance. Others RF capability (WLAN and Bluetooth) have no power reduction. The power levels for all wireless technologies and the power reduction please refer to section 4.6 of this report.

Proximity Sensor Triggering Distances (KDB 616217 D04 §6.2)

The proximity sensor triggering distance was determined per KDB 616217 for rear face and applicable edge. Summary for power verification per distance was tabulated in the below table.

	Output	Power	Verifica	ation in	dBm fo	r EUT F	Rear Fac	e			
Distance (mm)	20	21	22	23	24	25	26	27	28	29	30
WCDMA II	11.4	11.5	11.6	11.6	11.6	11.7	23.5	23.1	23.5	23.5	23.1
WCDMA IV	13.4	13.5	13.2	13.1	13.1	13.2	23.2	23.4	23.0	23.3	23.3
WCDMA V	18.6	18.4	18.9	18.6	18.9	18.5	23.4	22.9	23.3	23.1	23.3
LTE 2	11.4	11.6	11.4	11.3	11.3	11.5	22.5	22.9	22.9	22.6	22.6
LTE 4	13.6	13.4	13.5	13.4	13.7	13.6	22.8	22.6	22.8	22.4	22.7
LTE 5	13.6	13.9	13.5	13.4	13.4	13.8	22.6	22.6	22.2	22.5	22.3
LTE 7	11.7	11.4	11.9	11.8	11.6	11.6	22.4	22.3	22.2	22.1	22.3
LTE 12	19.2	18.9	19.0	19.0	19.2	18.8	22.8	22.6	22.9	22.7	22.5
LTE 13	19.0	18.9	18.8	19.2	19.2	18.7	22.4	22.4	22.7	22.5	22.8
LTE 17	18.9	19.1	19.3	19.2	19.3	19.3	22.7	22.3	22.5	22.8	22.3
LTE 26	19.1	19.5	19.6	19.2	19.4	19.6	22.9	22.4	22.8	22.8	22.8
LTE 30	12.8	12.6	12.5	12.7	12.5	12.9	22.3	22.1	22.0	22.5	22.4
LTE 38	15.3	15.3	15.1	15.6	15.5	15.6	22.1	22.2	22.6	22.3	22.6
LTE 41	13.9	13.7	13.8	13.8	13.8	13.8	22.3	22.1	22.2	22.5	22.3
LTE 66	14.1	14.3	14.1	14.4	14.1	14.0	22.5	22.6	22.4	22.4	22.3

	Output	t Power	Verifica	ation in	dBm fo	or EUT 1	Top Edg	je			
Distance (mm)	19	20	21	22	23	24	25	26	27	28	29
WCDMA II	11.5	11.7	11.5	11.4	11.7	11.6	23.3	23.3	23.0	23.5	23.4
WCDMA IV	13.1	13.6	13.3	13.5	13.3	13.1	23.0	22.9	23.2	23.3	23.2
WCDMA V	18.9	18.8	18.5	18.5	18.8	18.9	23.0	23.2	23.3	23.0	23.3
LTE 2	11.6	11.4	11.7	11.7	11.6	11.7	22.5	22.8	23.0	22.6	23.0
LTE 4	13.4	13.4	13.5	13.5	13.5	13.9	22.3	22.8	22.4	22.8	22.6
LTE 5	13.8	13.6	13.8	13.7	13.7	13.6	22.6	22.6	22.2	22.4	22.4
LTE 7	11.5	11.9	11.5	11.8	11.8	11.9	22.6	22.4	22.2	22.1	22.2
LTE 12	19.0	18.8	18.8	19.3	19.3	19.1	22.8	22.9	22.9	22.8	22.6
LTE 13	19.2	19.1	18.7	18.9	18.9	19.2	22.9	22.8	22.8	22.7	22.7
LTE 17	19.4	18.9	19.4	19.2	19.1	19.2	22.3	22.6	22.5	22.6	22.7
LTE 26	19.6	19.1	19.6	19.4	19.6	19.6	22.8	22.8	22.9	22.8	22.8
LTE 30	12.7	12.7	12.5	12.6	12.5	12.6	22.4	22.0	22.4	22.1	22.4
LTE 38	15.3	15.5	15.6	15.6	15.2	15.5	22.2	22.4	22.5	22.2	22.6
LTE 41	13.9	14.1	13.8	14.0	14.0	14.1	22.3	22.0	22.5	22.5	22.1
LTE 66	14.0	14.3	14.3	14.0	14.4	14.3	22.3	22.7	22.5	22.6	22.7

Report Format Version 5.0.0 Page No. : 17 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Proximity Sensor Tilt Angle Influences (KDB 616217 D04 §6.4)

The proximity sensor tilt angle influence was determined per KDB 616217 for applicable edge. Summary for proximity sensor tilt angle influence is shown in below.

	Separation		Tilt Angle									
Orientation	Distance (mm)	-45°	-40°	-30°	-20°	-10°	0°	10°	20°	30°	40°	45°
Top Edge	24	On	On	On	On	On	On	On	On	On	On	On

Summary for Proximity Sensor Triggering Test

According to the procedures noticed in KDB 616217 D04, the proximity sensor triggering distance is 25 mm for EUT Rear Face, and 24 mm for Top Side. The separation distance of 24 mm determined by the smallest triggering distance on Top Side is used to access the tilt angle influence and the sensor does not release during ± 45 degree. Therefore, the smallest separation distance for tilt angle influence is 24 mm for the Top Side. The conservation triggering distances based on the separation distance for the sensor trigger / not triggered as EUT with power reduction at 0 mm, and EUT without power reduction at 20 mm for EUT Rear Face, and 20 mm for Top Side were used to test SAR.

The power reduction is depends on the proximity sensor input. For a steady SAR test, the power reduction was enabled or disabled manually by engineering software during SAR testing.

Report Format Version 5.0.0 Page No. : 18 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

<Connections between EUT and System Simulator>

For WWAN SAR testing, the EUT was linked and controlled by base station emulator. Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

<Considerations Related to WCDMA for Setup and Testing> Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices", for the highest reported SAR body-worn exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

Handsets with Release 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices", for the highest reported body-worn exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn measurements is tested for next to the ear head exposure.

Release 5 HSDPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH / HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Report Format Version 5.0.0 Page No. : 19 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

FCC SAR Test Report

Sub-test	βε	β _d	β _d (SF)	β₀/β _d	β _{HS} ⁽¹⁾⁽²⁾	CM ⁽³⁾ (dB)	MPR ⁽³⁾ (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	12/15 ⁽⁴⁾	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{HS} = 30/15$ * $\beta_{c.}$

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{HS} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{HS} = 24/15 * β_c .

Note 3: CM = 1 for β-/β_d = 12/15, β_{HS}/β_c = 24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_d/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

Release 6 HSUPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below.

Sub-test	βα	βd	β _d (SF)	β_c / β_d	β _{HS} ⁽¹⁾	βec	β _{ed} (4)(5)	β _{ed} (SF)	$\begin{array}{c} \beta_{\text{ed}} \\ \text{(Codes)} \end{array}$	CM ⁽²⁾ (dB)	MPR (2)(6) (dB)	AG ⁽⁵⁾ Index	E-TFCI
1	11/15 (3)	15/15 (3)	64	11/15 (3)	22/15	209/225	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{HS} = 30/15 * β_{c} . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 5/15 with β_{HS} = 5/15 * β_{c} .

Note 2: CM = 1 for β_c/β_d = 12/15, β_{HS}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: βed can not be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

DC-HSDPA SAR Guidance

The 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Otherwise, when SAR is required for Rel. 5 HSDPA, SAR is required for Rel. 8 DC-HSDPA. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

Report Format Version 5.0.0 Page No. : 20 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

<Considerations Related to LTE for Setup and Testing>

This device contains LTE transmitter which follows 3GPP standards, is category 3, supports both QPSK and 16QAM modulations, and supported LTE band and channel bandwidth is listed in below. The output power was tested per 3GPP TS 36.521-1 maximum transmit procedures for both QPSK and 16QAM modulation. The results please refer to section 4.6 of this report.

		EUT Supported I	LTE Band and Ch	annel Bandwidth		
LTE Band	BW 1.4 MHz	BW 3 MHz	BW 5 MHz	BW 10 MHz	BW 15 MHz	BW 20 MHz
2	V	V	V	V	V	V
4	V	V	V	V	V	V
5	V	V	V	V		
7			٧	V	V	V
12	V	V	V	V		
13			٧	V		
17			V	V		
26	V	V	V	V	V	
30			V	V		
38			V	V	V	V
41			V	V	V	V
66	V	V	V	V	V	V

Report Format Version 5.0.0 Page No. : 21 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

The LTE maximum power reduction (MPR) in accordance with 3GPP TS 36.101 is active all times during LTE operation. The allowed MPR for the maximum output power is specified in below.

		Channel Bandwidth / RB Configurations									
Modulation	BW 1.4 MHz	BW 3 MHz	BW 5 MHz	BW 20 MHz	Setting (dB)						
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	1				
16QAM	<= 5	<= 4	<= 8	<= 12	<= 16	<= 18	1				
16QAM	> 5	> 4	> 8	> 12	> 16	> 18	2				

Note: MPR is according to the standard and implemented in the circuit (mandatory).

In addition, the device is compliant with additional maximum power reduction (A-MPR) requirements defined in 3GPP TS 36.101 section 6.2.4 that was disabled for all FCC compliance testing.

During LTE SAR testing, the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB was set in base station simulator. When the EUT has registered and communicated to base station simulator, the simulator set to make EUT transmitting the maximum radiated power.

TDD-LTE Setup Configurations

According to KDB 941225 D05, SAR testing for TDD-LTE device must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP TDD-LTE configurations. The TDD-LTE of this device supports frame structure type 2 defined in 3GPP TS 36.211 section 4.2, and the frame structure configuration can be referred to below.

3GPP TS 36.211 Figure 4.2-1: Frame Structure Type 2

Report Format Version 5.0.0 Page No. : 22 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

	No	rmal Cyclic Prefix in	Downlink	Exte	nded Cyclic Prefix in	Downlink
Special Subframe		Upl	PTS		UpPTS	
Configuration	DwPTS	Normal Cyclic Prefix in Uplink			Normal Cyclic Prefix in Uplink	Extended Cyclic Prefix in Uplink
0	6592 • Ts			7680 • Ts		
1	19760 • Ts			20480 • Ts	2192 • Ts	2560 ∙ Ts
2	21952 • Ts	2192 • Ts	2560 • Ts	23040 • Ts		
3	24144 • Ts			25600 • Ts		
4	26336 • Ts			7680 • Ts		
5	6592 • Ts			20480 • Ts	4384 ∙ Ts	5120 • Ts
6	19760 • Ts			23040 • Ts	4304 * 13	3120 * 15
7	21952 • Ts	4384 • Ts	5120 • Ts	12800 • Ts		
8	24144 • Ts			-	-	-
9	13168 • Ts			-	-	-

3GPP TS 36.211 Table 4.2-1: Configuration of Special Subframe

Uplink-Downlink	Downlink-to-Uplink	Subframe Number									
Configuration	Switch-Point Periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

3GPP TS 36.211 Table 4.2-2: Uplink-Downlink Configurations

The variety of different TD-LTE uplink-downlink configurations allows a network operator to allocate the network's capacity between uplink and downlink traffic to meet the needs of the network. The uplink duty cycle of these seven configurations can readily be computed and shown in below.

UL-DL Configuration	0	1	2	3	4	5	6
Highest Duty-Cycle	63.33%	43.33%	23.33%	31.67%	21.67%	11.67%	53.33%

Considering the highest transmission duty cycle, TDD-LTE was tested using Uplink-Downlink Configuration 0 with 6 uplink subframe and 2 special subframe. The special subframe was set to special subframe configuration 7 using extended cyclic prefix uplink. Therefore, SAR testing for TDD-LTE was performed at the maximum output power with highest transmission duty cycle of 63.33%.

Report Format Version 5.0.0 Page No. : 23 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

LTE Downlink Carrier Aggregation (CA) Setup Configurations

LTE Carrier Aggregation (CA) was defined in 3GPP release 10 and higher. The LTE device in CA mode has one Primary Component Carrier (PCC) and one or more Secondary Component Carriers (SCC). PCC acts as the anchor carrier and can optionally cross-schedule data transmission on SCC. The RRC connection is only handled by one cell, the PCC for downlink and uplink communications. After making a data connection to the PCC, the LTE device adds the SCC on the downlink only. All uplink communications and acknowledgements remain identical to release 8 specifications on the PCC. The combinations of downlink carrier aggregation supported by this device are listed in below.

LTE CA Configurations and Bandwidth Combination Sets defined for Intra-Band Contiguous CA

	Componen	t carriers in order o	of increasing carrie	frequency	Maximum	Bandwidth	
Downlink CA Configuration	Channel bandwidths for carrier-1 [MHz]	Channel bandwidths for carrier-2 [MHz]	Channel bandwidths for carrier-3[MHz]	Channel bandwidths for carrier-4 [MHz]	Aggregated Bandwidth [MHz]	Combination	
	5	20					
CA 2C	10	15, 20			40	0	
CA_2C	15	10, 15, 20				U	
	20	5, 10, 15, 20					
CA_7B	15	5			20	0	
	15	15			40		
	20	20			40	0	
	10	20					
CA_7C	15	15, 20			40	1	
	20	10, 15, 20					
	15	10, 15			40	2	
	20	15, 20			40	2	

Report Format Version 5.0.0 Page No. : 24 of 208
Report No. : SA180315C04 Issued Date : May 25, 2018

FCC SAR Test Report

	Componer	t carriers in order o	of increasing carrier	frequency	Maximum	Bandwidth
Downlink CA Configuration	Channel bandwidths for carrier-1 [MHz]	Channel bandwidths for carrier-2 [MHz]	Channel bandwidths for carrier-3[MHz]	Channel bandwidths for carrier-4 [MHz]	Aggregated Bandwidth [MHz]	Combination Set
	10	20				
	15	15, 20			40	0
	20	10, 15, 20				
	5, 10	20				
	15	15, 20			40	1
CA_41C	20	5, 10, 15, 20				
	10	15, 20				
	15	10, 15, 20			40	2
	20	10, 15, 20				
	10	20			40	2
	20	20			40	3
	5	20	20			
	20	5	20			
	20	20	5			
	10	20	15			
04.000	15	20	10		00	0
CA_66D	10, 15, 20	15, 20	20		60	0
	15, 20	10	20			
	15	15, 20	15			
	20	15, 20	10, 15]	
	20	10	15			

 Report Format Version 5.0.0
 Page No.
 : 25 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

LTE CA Configurations and Bandwidth Combination Sets defined for Intra-Band Non-Contiguous CA

	Comp	onent Carriers in order of	Increasing Carrier Freq	uency	Maximum	Bandwidth	
Downlink CA Configuration	Channel Bandwidths for Carrier-1 [MHz]	Channel Bandwidths for Carrier-2 [MHz]	Channel Bandwidths for Carrier-3 [MHz]	Channel Bandwidths for Carrier-4 [MHz]	Aggregated Bandwidth [MHz]	Combination Set	
CA_2A-2A	5, 10, 15, 20	5, 10, 15, 20			40	0	
CA 4A 4A	5, 10, 15, 20	5, 10, 15, 20			40	0	
CA_4A-4A	5, 10	5, 10			20	1	
	5	15					
	10	10, 15			40	0	
	15	15, 20			40	U	
CA_7A-7A	20	20					
	5, 10, 15, 20	5, 10, 15, 20			40	1	
	5, 10, 15, 20	5, 10			30	2	
	10, 15, 20	10, 15, 20			40	3	
CA 44 A 44 A	10, 15, 20	10, 15, 20			40	0	
CA_41A-41A	5, 10, 15, 20	5, 10, 15, 20			40	1	

LTE CA Configurations and Bandwidth Combination Sets defined for Inter-Band CA (Two Bands)

Downlink CA Configuration	LTE Bands	Channel Bandwidths for Carrier [MHz]	Maximum Aggregated Bandwidth [MHz]	Bandwidth Combination Set	
	2	1.4, 3, 5, 10, 15, 20	40	0	
	4	5, 10, 15, 20	40	0	
CA 2A 4A	2	5, 10	20	4	
CA_2A-4A	4	5, 10	20	1	
	2	5, 10, 15, 20	40	2	
	4	5, 10, 15, 20	40		
	2	5, 10, 15, 20	00	0	
CA 2A 5A	5	5, 10	30	0	
CA_2A-5A	2	5, 10	00	4	
	5	5, 10	20	1	
04 04 04 54	2	Refer to CA_2A-2A (BCS0)	50	0	
CA_2A-2A-5A	5	5, 10	50	0	
04.00.54	2	Refer to CA_2C (BCS0)	50		
CA_2C-5A	5	5, 10	50	0	

Report Format Version 5.0.0 Page No. : 26 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

FCC SAR Test Report

Downlink CA Configuration	LTE Bands	Channel Bandwidths for Carrier [MHz]	Maximum Aggregated Bandwidth [MHz]	Bandwidth Combination Set	
	2	5, 10, 15, 20	20	0	
	12	5, 10	30	0	
04 04 404	2	5, 10, 15, 20	00	4	
CA_2A-12A	12	3, 5, 10	30	1	
	2	5, 10	00		
	12	5, 10	20	2	
	2	5, 10, 15, 20	00		
04.04.404	13	10	30	0	
CA_2A-13A	2	5, 10	00	1	
	13	10	20		
04.04.04.404	2	Refer to CA_2A-2A (BCS0)		0	
CA_2A-2A-13A	13	10	50		
04.04.474	2	5, 10			
CA_2A-17A	17	5, 10	20	0	
	2	5, 10			
	29	3, 5, 10	20	0	
04 04 004	2	5, 10	00		
CA_2A-29A	29	5, 10	20	1	
	2	5, 10, 15, 20	22		
	29	5, 10	30	2	
04.04.004	2	5, 10, 15, 20			
CA_2A-30A	30	5, 10	30	0	

 Report Format Version 5.0.0
 Page No.
 : 27 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Downlink CA Configuration	LTE Bands	Channel Bandwidths for Carrier [MHz]	Maximum Aggregated Bandwidth [MHz]	Bandwidth Combination Set
	2	1.4, 3, 5, 10, 15, 20	40	0
	66	5, 10, 15, 20	40	U
CA_2A-66A	2	5, 10	20	1
CA_2A-00A	66	5, 10	20	1
	2	5, 10, 15, 20	40	2
	66	5, 10, 15, 20	40	2
CA 2A CCD	2	5, 10, 15, 20	40	0
CA_2A-66B	66	Refer to CA_66B (BCS0)	40	0
CA 24 CCC	2	5, 10, 15, 20	00	0
CA_2A-66C	66	Refer to CA_66C (BCS0)	60	0
04 04 004 004	2	5, 10, 15, 20	00	
CA_2A-66A-66A	66	Refer to CA_66A-66A (BCS0)	60	0
	4	5, 10	00	0
00.40.50	5	5, 10	20	0
CA_4A-5A	4	5, 10, 15, 20	20	1
	5	5, 10	30	
00 40 40 50	4	Refer to CA_4A-4A (BCS0)	50	
CA_4A-4A-5A	5	5, 10	50	0
	4	1.4, 3, 5, 10	00	
	12	5, 10	20	0
	4	1.4, 3, 5, 10, 15, 20	20	_
	12	5, 10	30	1
	4	5, 10, 15, 20		
04.44.404	12	3, 5, 10	30	2
CA_4A-12A	4	5, 10		
	12	5, 10	20	3
	4	5, 10, 15, 20	22	
	12	5, 10	30	4
	4	5, 10, 15	22	_
	12	5	20	5

 Report Format Version 5.0.0
 Page No.
 : 28 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Downlink CA Configuration	LTE Bands	Channel Bandwidths for Carrier [MHz]	Maximum Aggregated Bandwidth [MHz]	Bandwidth Combination Set
	4	5, 10, 15, 20	20	0
CA 4A 42A	13	10	30	0
CA_4A-13A	4	5, 10	20	4
	13	10	20	1
00 40 40 400	4	Refer to CA_4A-4A (BCS0)	50	0
CA_4A-4A-13A	13	10	50	0
CA 4A 47A	4	5, 10	20	0
CA_4A-17A	17	5, 10	20	0
	4	5, 10	20	0
	29	3, 5, 10	20	0
CA 4A 20A	4	5, 10	20	4
CA_4A-29A	29	5, 10	20	1
	4	5, 10, 15, 20	20	2
	29	5, 10	30	2
CA_4A-30A	4	5, 10, 15, 20	30	0
CA_4A-30A	30	5, 10	30	0
	5	1.4, 3, 5, 10	20	0
CA 5A 7A	7	10, 15, 20	30	0
CA_5A-7A	5	5, 10	20	4
	7	10, 15, 20	30	1
CA 5A 30A	5	5, 10	20	0
CA_5A-30A	30	5, 10	20	0
CA	5	5, 10	20	0
CA_5A-66A	66	5, 10, 15, 20	30	0
CA	5	5, 10	F0	
CA_5A-66A-66A	66	Refer to CA_66A-66A (BCS0)	50	0
CA 54 66D	5	5, 10	20	0
CA_5A-66B	66	Refer to CA_66B (BCS0)	30	0
CA FA 000	5	5, 10		
CA_5A-66C	66	Refer to CA_66C (BCS0)	50	0

 Report Format Version 5.0.0
 Page No.
 : 29 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

Downlink CA Configuration	LTE Bands	Channel Bandwidths for Carrier [MHz]	Maximum Aggregated Bandwidth [MHz]	Bandwidth Combination Set	
CA 12A 20A	12	5, 10	20	0	
CA_12A-30A	30	5, 10	20		
CA 42A CCA	13	5, 10	20	0	
CA_13A-66A	66	5, 10, 15, 20	30	0	
04 404 004 004	13	5, 10		0	
CA_13A-66A-66A	66	Refer to CA_66A-66A (BCS0)	50		
	13	5, 10			
CA_13A-66B	66	Refer to CA_66B (BCS0)	30	0	
0.4.40.4.000	13	5, 10			
CA_13A-66C	66	Refer to CA_66C (BCS0)	- 50	0	
0	29	5, 10		_	
CA_29A-30A	30	5, 10	20	0	

LTE CA Configurations and Bandwidth Combination Sets defined for Inter-Band CA (Three Bands)

Downlink CA Configuration	LTE Bands	Channel Bandwidths for Carrier [MHz]	Maximum Aggregated Bandwidth [MHz]	Bandwidth Combination Set
	2	5, 10, 15,20		0
CA_2A-4A-5A	4	5, 10, 15,20	50	
	5	5, 10		
	2	5, 10, 15, 20		
CA_2A-4A-13A	4	5, 10, 15, 20	50	0
	13	10		
	2	Refer to CA_2C (BCS0)		0
CA_2C-5A-30A	5	5, 10	60	
	30	5, 10		
	2	5, 10, 15, 20		
CA_2A-5A-66A	5	5, 10	50	0
	66	5, 10, 15, 20		
	2	5, 10, 15, 20		
CA_2A-12A-30A	12	5, 10	40	0
	30	5, 10		

Report Format Version 5.0.0 Page No. : 30 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

FCC SAR Test Report

Downlink CA Configuration	LTE Bands	Channel Bandwidths for Carrier [MHz]	Maximum Aggregated Bandwidth [MHz]	Bandwidth Combination Set		
	2	5, 10, 15, 20				
CA_2A-13A-66A	13	5, 10	50	0		
	66	5, 10, 15, 20				
	2	5, 10, 15, 20				
CA_2A-29A-30A	29	5, 10	40	0		
	30	5, 10				
	4	5, 10, 15, 20				
CA_4A-5A-30A	5	5, 10	40	0		
	30	5, 10				
	4	5, 10, 15, 20		0		
CA_4A-12A-30A	12	5, 10	40			
	30	5, 10				
	4	5, 10, 15, 20				
CA_4A-29A-30A	29	5, 10	40	0		
	30	5, 10				

This device does not support full CA (Carrier Aggregation) features on 3GPP release 12. Its capability for LTE CA is for LTE band 41 only and supported configuration is shown in above. For network enhancement features, it does not support Wi-Fi Offloading, Enhanced SC-FDMA, Uplink MIMO, CoMP, HetNet, Relay, SON, Cross-Carrier Scheduling, elCIC, Enhanced Downlink MIMO, MBMS, M2M/D2D. All other uplink communications are identical to the LTE Release 8 specifications.

Report Format Version 5.0.0 Page No. : 31 of 208
Report No. : SA180315C04 Issued Date : May 25, 2018

<Considerations Related to WLAN for Setup and Testing>

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

Report Format Version 5.0.0 Page No. : 32 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following.

- 1) The channel closest to mid-band frequency is selected for SAR measurement.
- 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Test Reduction for U-NII-1 (5.2 GHz) and U-NII-2A (5.3 GHz) Bands

For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following.

- 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition).
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is $\leq 1.2 \text{ W/kg}$, SAR is not required for the band with lower maximum output power in that test configuration.

<Considerations Related to Bluetooth for Setup and Testing>

This device has installed Bluetooth engineering testing software which can provide continuous transmitting RF signal. During Bluetooth SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Report Format Version 5.0.0 Page No. : 33 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

4.2 EUT Testing Position

4.2.1 Body Exposure Conditions

For laptop PC with antennas built-in on display screen, according to RSS-102 Supplementary procedures (SPR-001), IC requires SAR measurements to be performed with the side/edge of the display screen containing the built-in antenna pointing towards the flat phantom, unless the side/edge of the laptop computer containing the built-in antenna was already tested against the flat phantom to account for the user requirements (e.g. antenna in the laptop base). The separation distance shall not exceed 25 mm between the device and the flat phantom to show compliance for bystanders. Additional configurations regarding SAR testing for laptop computer are not required if the separation distance of 25 mm for bystanders represents the worst-case configuration.

The bystander SAR measurement procedure is as following.

- 1. If the integrated antenna is located in the back side of the display screen, the back side shall be facing towards the flat phantom at a distance not exceeding 25 mm.
- 2. If the integrated antenna is installed along the edge of the display screen, the edge shall be facing towards the flat phantom at a distance not exceeding 25 mm.
- 3. If the integrated antenna is installed at the corner of the display, both edges, as well as back side shall be tested to ensure that the worst-case configuration is captured.

For laptop PC, according to KDB 616217 D04, SAR evaluation is required for the bottom surface of the keyboard. This EUT was tested in the base of EUT directly against the flat phantom. The required minimum test separation distance for incorporating transmitters and antennas into laptop computer display is determined with the display screen opened at an angle of 90° to the keyboard compartment.

Fig-4.1 Illustration for Laptop Setup

Report Format Version 5.0.0 Page No. : 34 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

For full-size tablet, according to KDB 616217 D04, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required.

Fig-4.2 Illustration for Tablet Setup

 Report Format Version 5.0.0
 Page No. : 35 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

4.2.2 SAR Test Exclusion Evaluations

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula.

1. For the test separation distance <= 50 mm

$$\frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \sqrt{f_{(GHz)}} \leq 3.0 \text{ for SAR-1g,} \leq 7.5 \text{ for SAR-10g}$$

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

2. For the test separation distance > 50 mm, and the frequency at 100 MHz to 1500 MHz

[(Threshold at 50 mm in Step 1) + (Test Separation Distance – 50 mm)
$$\times \left(\frac{f_{(MHz)}}{150}\right)$$
]_(mW)

3. For the test separation distance > 50 mm, and the frequency at > 1500 MHz to 6 GHz $[(Threshold at 50 mm in Step 1) + (Test Separation Distance - 50 mm) \times 10]_{(mW)}$

<For WWAN>

Mode	Max.	Max. Max. Tune-up Tune-up Power Power (dBm) (mW)	Rear Face			Left Side			Right Side			Top Side			Bottom Side		
	Power		Ant. to Surface (mm)	Power Threshold (mW)	Require SAR Testing?												
WCDMA II	23.5	224	5	61.88	Yes	2.2	61.88	Yes	228.5	1894 mW	No	2.2	61.88	Yes	193	1539 mW	No
WCDMA IV	23.5	224	5	59.31	Yes	2.2	59.31	Yes	228.5	1898 mW	No	2.2	59.31	Yes	193	1543 mW	No
WCDMA V	23.5	224	5	41.22	Yes	2.2	41.22	Yes	228.5	1170 mW	No	2.2	41.22	Yes	193	970 mW	No
LTE 2	23.5	224	5	61.91	Yes	2.2	61.91	Yes	228.5	1894 mW	No	2.2	61.91	Yes	193	1539 mW	No
LTE 4	23	200	5	52.99	Yes	2.2	52.99	Yes	228.5	1898 mW	No	2.2	52.99	Yes	193	1543 mW	No
LTE 5	23	200	5	36.86	Yes	2.2	36.86	Yes	228.5	1173 mW	No	2.2	36.86	Yes	193	972 mW	No
LTE 7	23	200	5	64.12	Yes	2.2	64.12	Yes	228.5	1879 mW	No	2.2	64.12	Yes	193	1524 mW	No
LTE 12	23	200	5	33.85	Yes	2.2	33.85	Yes	228.5	1029 mW	No	2.2	33.85	Yes	193	860 mW	No
LTE 13	23	200	5	35.49	Yes	2.2	35.49	Yes	228.5	1106 mW	No	2.2	35.49	Yes	193	919 mW	No
LTE 17	23	200	5	33.85	Yes	2.2	33.85	Yes	228.5	1029 mW	No	2.2	33.85	Yes	193	860 mW	No
LTE 26	23	200	5	36.86	Yes	2.2	36.86	Yes	228.5	1173 mW	No	2.2	36.86	Yes	193	972 mW	No
LTE 30	23	200	5	60.86	Yes	2.2	60.86	Yes	228.5	1884 mW	No	2.2	60.86	Yes	193	1529 mW	No
LTE 38	23	200	5	64.75	Yes	2.2	64.75	Yes	228.5	1878 mW	No	2.2	64.75	Yes	193	1523 mW	No
LTE 41	23	200	5	65.6	Yes	2.2	65.6	Yes	228.5	1876 mW	No	2.2	65.6	Yes	193	1521 mW	No
LTE 66	23	200	5	53.37	Yes	2.2	53.37	Yes	228.5	1897 mW	No	2.2	53.37	Yes	193	1542 mW	No

Report Format Version 5.0.0 Page No. : 36 of 208
Report No. : SA180315C04 Issued Date : May 25, 2018

<For WLAN Ant-0>

	Max.	Max.		Rear Face			Left Side			Right Side			Top Side			Bottom Side	
Mode	Tune-up Power (dBm)	Tune-up Power (mW)	Ant. to Surface (mm)	Power Threshold (mW)	Require SAR Testing?												
WLAN 2.4G	17	50	5	15.69	Yes	315	2746 mW	No	5.45	14.4	Yes	20	3.92	Yes	173	1326 mW	No
WLAN 5.2G	8.5	7	5	3.2	Yes	315	2716 mW	No	5.45	2.94	No	20	0.80	No	173	1296 mW	No
WLAN 5.3G	8.5	7	5	3.23	Yes	315	2715 mW	No	5.45	2.96	No	20	0.81	No	173	1295 mW	No
WLAN 5.6G	6	4	5	1.91	No	315	2713 mW	No	5.45	1.76	No	20	0.48	No	173	1293 mW	No
WLAN 5.8G	6	4	5	1.93	No	315	2712 mW	No	5.45	1.77	No	20	0.48	No	173	1292 mW	No

<For WLAN Ant-1>

	Max.	Max.		Rear Face			Left Side			Right Side			Top Side			Bottom Side	
Mode	Tune-up Power (dBm)	Tune-up Power (mW)	Ant. to Surface (mm)	Power Threshold (mW)	Require SAR Testing?												
WLAN 2.4G	13.5	22	5	6.9	Yes	71	306 mW	No	223	1826 mW	No	213	1726 mW	No	2	6.9	Yes
WLAN 5.2G	7.5	6	5	2.75	No	71	276 mW	No	223	1796 mW	No	213	1696 mW	No	2	2.75	No
WLAN 5.3G	7.5	6	5	2.77	No	71	275 mW	No	223	1795 mW	No	213	1695 mW	No	2	2.77	No
WLAN 5.6G	7.5	6	5	2.87	No	71	273 mW	No	223	1793 mW	No	213	1693 mW	No	2	2.87	No
WLAN 5.8G	8	6	5	2.9	No	71	272 mW	No	223	1792 mW	No	213	1692 mW	No	2	2.9	No
BT	13	20	5	6.3	Yes	71	305 mW	No	223	1825 mW	Yes	213	1725 mW	No	2	6.3	Yes

<For WLAN Ant-0 + Ant-1>

	Max.	Max.		Rear Face			Left Side			Right Side			Top Side			Bottom Side	
Mode	Tune-up Power (dBm)	Tune-up Power (mW)	Ant. to Surface (mm)	Power Threshold (mW)	Require SAR Testing?												
WLAN 2.4G	17	50	5	15.69	Yes	71	306 mW	No	5.45	14.4	Yes	20	3.92	Yes	2	15.69	Yes
WLAN 5.2G	11.5	14	5	6.41	Yes	71	276 mW	No	5.45	5.88	Yes	20	1.60	No	2	6.41	Yes
WLAN 5.3G	11.5	14	5	6.46	Yes	71	275 mW	No	5.45	5.92	Yes	20	1.61	No	2	6.46	Yes
WLAN 5.6G	11.5	14	5	6.7	Yes	71	273 mW	No	5.45	6.14	Yes	20	1.67	No	2	6.7	Yes
WLAN 5.8G	12	16	5	7.72	Yes	71	272 mW	No	5.45	7.09	Yes	20	1.93	No	2	7.72	Yes

Report Format Version 5.0.0 Page No. : 37 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ϵ_r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Apr. 24, 2018	Body	750	23.3	0.969	53.811	0.96	55.5	0.94	-3.04
Apr. 24, 2018	Body	835	23.2	1.007	54.216	0.97	55.2	3.81	-1.78
Apr. 24, 2018	Body	835	23.3	0.972	56.099	0.97	55.2	0.21	1.63
Apr. 23, 2018	Body	1750	23.6	1.441	51.719	1.49	53.4	-3.29	-3.15
Apr. 24, 2018	Body	1750	23.3	1.456	52.165	1.49	53.4	-2.28	-2.31
Apr. 23, 2018	Body	1900	23.6	1.555	51.48	1.52	53.3	2.30	-3.41
Apr. 24, 2018	Body	1900	23.3	1.584	51.781	1.52	53.3	4.21	-2.85
Apr. 23, 2018	Body	2300	23.5	1.836	51.736	1.81	52.9	1.44	-2.20
Apr. 25, 2018	Body	2300	23.4	1.875	52.498	1.81	52.9	3.59	-0.76
May. 06, 2018	Body	2300	23.4	1.872	52.242	1.81	52.9	3.43	-1.24
Apr. 23, 2018	Body	2450	23.5	1.997	51.382	1.95	52.7	2.41	-2.50
Apr. 25, 2018	Body	2450	23.3	2.047	52.052	1.95	52.7	4.97	-1.23
Apr. 26, 2018	Body	2450	23.5	2.032	52.19	1.95	52.7	4.21	-0.97
May. 04, 2018	Body	2450	23.3	2.022	51.416	1.95	52.7	3.69	-2.44
Apr. 23, 2018	Body	2600	23.5	2.169	50.963	2.16	52.5	0.42	-2.93
Apr. 25, 2018	Body	2600	23.3	2.238	51.648	2.16	52.5	3.61	-1.62
May. 03, 2018	Body	5250	23.4	5.262	49.557	5.36	48.9	-1.83	1.34
Apr. 25, 2018	Body	5600	23.3	5.755	48.281	5.77	48.5	-0.26	-0.45
Apr. 26, 2018	Body	5600	23.5	5.957	46.623	5.77	48.5	3.24	-3.87
May. 03, 2018	Body	5600	23.4	5.713	49.047	5.77	48.5	-0.99	1.13
Apr. 25, 2018	Body	5800	23.3	6.006	48.412	6	48.2	0.10	0.44
Apr. 26, 2018	Body	5800	23.5	6.246	46.271	6	48.2	4.10	-4.00
May. 03, 2018	Body	5800	23.4	5.991	48.749	6	48.2	-0.15	1.14

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within $\pm 2\%$.

Report Format Version 5.0.0 Page No. : 38 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

4.4 System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

Tool	Deelee			Measured	Measured	Va	lidation for C	w	Valida	tion for Modul	lation
Test Date	Probe S/N	Calibrati	on Point	Conductivity	Permittivity	Sensitivity	Probe	Probe	Modulation	Duty Factor	PAR
				(σ)	(ε _r)	Range	Linearity	Isotropy	Туре	Duty Fuoto:	.,
Apr. 24, 2018	3820	Body	750	0.969	53.811	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 24, 2018	3971	Body	835	1.007	54.216	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 24, 2018	3820	Body	835	0.972	56.099	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 23, 2018	3971	Body	1750	1.441	51.719	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 24, 2018	3820	Body	1750	1.456	52.165	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 23, 2018	3971	Body	1900	1.555	51.48	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 24, 2018	3820	Body	1900	1.584	51.781	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 23, 2018	3971	Body	2300	1.836	51.736	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 25, 2018	3820	Body	2300	1.875	52.498	Pass	Pass	Pass	N/A	N/A	N/A
May. 06, 2018	3971	Body	2300	1.872	52.242	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 23, 2018	3971	Body	2450	1.997	51.382	Pass	Pass	Pass	OFDM	N/A	Pass
Apr. 25, 2018	3820	Body	2450	2.047	52.052	Pass	Pass	Pass	OFDM	N/A	Pass
Apr. 26, 2018	3820	Body	2450	2.032	52.19	Pass	Pass	Pass	OFDM	N/A	Pass
May. 04, 2018	3820	Body	2450	2.022	51.416	Pass	Pass	Pass	OFDM	N/A	Pass
Apr. 23, 2018	3971	Body	2600	2.169	50.963	Pass	Pass	Pass	N/A	N/A	N/A
Apr. 25, 2018	3820	Body	2600	2.238	51.648	Pass	Pass	Pass	N/A	N/A	N/A
May. 03, 2018	3820	Body	5250	5.262	49.557	Pass	Pass	Pass	OFDM	N/A	Pass
Apr. 25, 2018	3820	Body	5600	5.755	48.281	Pass	Pass	Pass	OFDM	N/A	Pass
Apr. 26, 2018	3650	Body	5600	5.957	46.623	Pass	Pass	Pass	OFDM	N/A	Pass
May. 03, 2018	3820	Body	5600	5.713	49.047	Pass	Pass	Pass	OFDM	N/A	Pass
Apr. 25, 2018	3820	Body	5800	6.006	48.412	Pass	Pass	Pass	OFDM	N/A	Pass
Apr. 26, 2018	3650	Body	5800	6.246	46.271	Pass	Pass	Pass	OFDM	N/A	Pass
May. 03, 2018	3820	Body	5800	5.991	48.749	Pass	Pass	Pass	OFDM	N/A	Pass

Report Format Version 5.0.0 Page No. : 39 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

4.5 System Verification

The measuring result for system verification is tabulated as below.

Test Date	Mode	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Apr. 24, 2018	Body	750	8.72	2.19	8.76	0.46	1013	3820	917
Apr. 24, 2018	Body	835	9.61	2.48	9.92	3.23	4d121	3971	1431
Apr. 24, 2018	Body	835	9.61	2.23	8.92	-7.18	4d121	3820	917
Apr. 23, 2018	Body	1750	36.20	8.86	35.44	-2.10	1055	3971	1431
Apr. 24, 2018	Body	1750	36.20	9.26	37.04	2.32	1055	3820	917
Apr. 23, 2018	Body	1900	40.20	9.75	39.00	-2.99	5d036	3971	1431
Apr. 24, 2018	Body	1900	40.20	10.4	41.60	3.48	5d036	3820	917
Apr. 23, 2018	Body	2300	47.30	11	44.00	-6.98	1004	3971	1431
Apr. 25, 2018	Body	2300	47.30	12.2	48.80	3.17	1004	3820	917
May. 06, 2018	Body	2300	47.30	11.2	44.80	-5.29	1004	3971	1431
Apr. 23, 2018	Body	2450	49.70	12	48.00	-3.42	737	3971	1431
Apr. 25, 2018	Body	2450	49.70	13.1	52.40	5.43	737	3820	917
Apr. 26, 2018	Body	2450	49.70	12.6	50.40	1.41	737	3820	917
May. 04, 2018	Body	2450	49.70	12.5	50.00	0.60	737	3820	917
Apr. 23, 2018	Body	2600	54.30	14.20	56.80	4.60	1020	3971	1431
Apr. 25, 2018	Body	2600	54.30	14	56.00	3.13	1020	3820	917
May. 03, 2018	Body	5250	76.50	7.47	74.70	-2.35	1019	3820	917
Apr. 25, 2018	Body	5600	79.70	7.81	78.10	-2.01	1019	3820	917
Apr. 26, 2018	Body	5600	79.70	7.84	78.40	-1.63	1019	3650	861
May. 03, 2018	Body	5600	79.70	7.5	75.00	-5.90	1019	3820	917
Apr. 25, 2018	Body	5800	76.90	7.25	72.50	-5.72	1019	3820	917
Apr. 26, 2018	Body	5800	76.90	7.9	79.00	2.73	1019	3650	861
May. 03, 2018	Body	5800	76.90	7.56	75.60	-1.69	1019	3820	917

Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

 Report Format Version 5.0.0
 Page No.
 : 40 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

4.6 Maximum Output Power

4.6.1 Maximum Target Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Laptop

Mode	WCDMA Band II	WCDMA Band IV	WCDMA Band V
RMC 12.2K	12.0	14.0	19.0
HSDPA / HSUPA / DC-HSDPA	12.0	14.0	19.0

Mode	LTE 2	LTE 4	LTE 5	LTE 7
Maximum Target Power	12.0	14.0	19.5	12.0

Mode	LTE 12	LTE 13	LTE 17	LTE 26
Maximum Target Power	19.5	19.5	19.5	20.0

Mode	LTE 30	LTE 38	LTE 41	LTE 66
Maximum Target Power	13.0	16.0	14.5	14.5

Tablet

Mode	WCDMA Band II (without Power Reduction)	WCDMA Band II (with Power Reduction)	Power Reduction (dB)
RMC 12.2K	23.5	12.0	11.5
HSDPA / HSUPA / DC-HSDPA	23.5	12.0	11.5

Mode	WCDMA Band IV (without Power Reduction)	WCDMA Band IV (with Power Reduction)	Power Reduction (dB)
RMC 12.2K	23.5	14.0	9.5
HSDPA / HSUPA / DC-HSDPA	23.5	14.0	9.5

Mode	WCDMA Band V (without Power Reduction)	WCDMA Band V (with Power Reduction)	Power Reduction (dB)
RMC 12.2K	23.5	19.0	4.5
HSDPA / HSUPA / DC-HSDPA	23.5	19.0	4.5

Mode	LTE 2 (without Power Reduction)	LTE 2 (with Power Reduction)	Power Reduction (dB)
Maximum Target Power	23.5	12.0	11.5

Mode	LTE 4 (without Power Reduction)	LTE 4 (with Power Reduction)	Power Reduction (dB)
Maximum Target Power	23.0	14.0	9.0

Report Format Version 5.0.0 Page No. : 41 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Power Reduction

(dB)

8.5

LTE 66

(with Power Reduction)

14.5

FCC SAR Test Report

Mode

Maximum Target Power

Mode	LTE 5	LTE 5	Power Reduction
	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	19.5	3.5
Mada	LTE 7	LTE 7	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	12.0	11.0
	LTE 12	LTE 12	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	19.5	3.5
	LTE 13	LTE 13	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	19.5	3.5
	LTE 17	LTE 17	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	19.5	3.5
	LTE 26	LTE 26	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	20.0	3.0
	LTE 30	LTE 30	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	13.0	10.0
	LTE 38	LTE 38	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	16.0	7.0
•	LTE 41	LTE 41	Power Reduction
Mode	(without Power Reduction)	(with Power Reduction)	(dB)
Maximum Target Power	23.0	14.5	8.5

 Report Format Version 5.0.0
 Page No.
 : 42 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

LTE 66

(without Power Reduction)

23.0

Laptop

Mode	Tx Antenna	2.4G WLAN
	Ant-0	CH1-11:17.0 CH12:13.0 CH13:7.0
802.11b	Ant-1	CH1-11:16.0 CH12:14.0 CH13:7.0
	Ant-0	CH1:15.0 CH6:17.0 CH11:15.0 CH12:11.0 CH13:-4.0
802.11g	Ant-1	CH1:16.0 Ch6:17.0 Ch11:16.0 CH12:12.0 CH13:-4.0
802.11n HT20	Ant-0	CH1:15.0 CH6:17.0 CH11:15.0 CH12:11.0 CH13:-4.0
	Ant-1	CH1:16.0 Ch6:17.0 Ch11:16.0 CH12:12.0 CH13:-4.0
	Ant-0+Ant-1	CH1:14.0 CH6:17.0 CH11:14.0 CH12:7.0 CH13:-8.0
802.11n HT40	Ant-0	Ch3:12.0 Ch6:15.5 Ch9:14.0
	Ant-1	Ch3:15.0 Ch6:15.5 Ch9:14.0
	Ant-0+Ant-1	CH3:11.0 CH6:12.5 CH9:12.0

 Report Format Version 5.0.0
 Page No. : 43 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

Mode	Tx Antenna	5.2G WLAN
802.11a	Ant-0	Ch36:17.0 Ch40-48:19.0
	Ant-1	12.5
	Ant-0	Ch36:17.0 Ch40-48:19.0
802.11n HT20	Ant-1	12.5
802.11n H120	Ant-0+Ant-1	Ch36:15.0 Ch40-44:18.0 Ch48:17.0
	Ant-0	CH38:16.0 CH46:19.0
802.11n HT40	Ant-1	12.5
	Ant-0+Ant-1	CH38:11.0 CH46:18.0
	Ant-0	12.0
802.11ac VHT80	Ant-1	12.0
	Ant-0+Ant-1	9.0

Mode	Tx Antenna	5.3G WLAN
802.11a	Ant-0	Ch52-60:19.0 Ch64:16.0
	Ant-1	12.5
	Ant-0	Ch52-60:19.0 Ch64:16.0
802.11n HT20	Ant-1	12.5
	Ant-0+Ant-1	Ch52-60:18.0 Ch64:12.0
	Ant-0	CH54:19.0 CH62:12.0
802.11n HT40	Ant-1	12.5
	Ant-0+Ant-1	CH54:18.0 CH62:10.0
	Ant-0	10.0
802.11ac VHT80	Ant-1	11.0
	Ant-0+Ant-1	8.0

 Report Format Version 5.0.0
 Page No.
 : 44 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Mode	Tx Antenna	5.6G WLAN
802.11a	Ant-0	Ch100:17.0 Ch116-132:19.0 Ch140:16.0 Ch144:18.0
	Ant-1	12.0
	Ant-0	Ch100:17.0 Ch116-132:19.0 Ch140:16.0 Ch144:18.0
802.11n HT20	Ant-1	12.0
55211111112	Ant-0+Ant-1	Ch100:15.0 Ch116-132:18.0 Ch140:14.0 Ch144:17.0
	Ant-0	CH102:17.0 CH110-126:19.0 CH134:18.0 CH42:19.0
902 11n UT40	Ant-1	12.0
802.11n HT40	Ant-0+Ant-1	CH102:12.0 CH110:17.0 CH118-126:18.0 CH134:16.0 CH142:18.0
	Ant-0	Ch106:12.0 Ch122-138:18.0
802.11ac VHT80	Ant-1	12.0
002.11ac VIII00	Ant-0+Ant-1	Ch106:10.0 Ch122:16.0 Ch138:17.0

Mode	Tx Antenna	5.8G WLAN
000 44	Ant-0	19.0
802.11a	Ant-1	12.0
	Ant-0	19.0
802.11n HT20	Ant-1	12.0
	Ant-0+Ant-1	16.0
	Ant-0	19.0
802.11n HT40	Ant-1	12.0
	Ant-0+Ant-1	16.0
	Ant-0	17.0
802.11ac VHT80	Ant-1	12.0
	Ant-0+Ant-1	15.5

Mode	2.4G Bluetooth
Bluetooth DH	13.0
Bluetooth LE	12.0

 Report Format Version 5.0.0
 Page No. : 45 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

Tablet

Tablet		
Mode	Tx Antenna	2.4G WLAN
		CH1-11:17.0
	Ant-0	CH12:13.0
802.11b		
	Ant-1	
	Anti	CH13:7.0
	Ant-0	
802.11g		9111-1111
002.119		
	Ant-1	
	Ant-0	
000 44 11700	Ant-1	
802.11n HT20		
	A = 4 O . A = 4 4	
	Ant-0+Ant-1	CH11:14.0 CH12:7.0
		CH12.7.0 CH13:-6.5
	Ant-0	17.0
000 44 11740	Ant-1	13.5
802.11n HT40		CH3:11.0
	Ant-0+Ant-1	CH6:14.0
		CH9:12.0

Mode	Tx Antenna	5.2G WLAN
000.44	Ant-0	8.5
802.11a	Ant-1	7.5
	Ant-0	8.5
802.11n HT20	Ant-1	7.5
	Ant-0+Ant-1	11.5
	Ant-0	8.5
802.11n HT40	Ant-1	7.5
	Ant-0+Ant-1	11.5
	Ant-0	8.5
802.11ac VHT80	Ant-1	7.5
	Ant-0+Ant-1	11.5

 Report Format Version 5.0.0
 Page No.
 : 46 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Mode	Tx Antenna	5.3G WLAN
000.44.5	Ant-0	8.5
802.11a	Ant-1	7.5
	Ant-0	8.5
802.11n HT20	Ant-1	7.5
	Ant-0+Ant-1	11.5
	Ant-0	8.5
802.11n HT40	Ant-1	7.5
	Ant-0+Ant-1	11.5
	Ant-0	8.5
802.11ac VHT80	Ant-1	7.5
	Ant-0+Ant-1	11.5

Mode	Tx Antenna	5.6G WLAN
902.446	Ant-0	6.0
802.11a	Ant-1	7.5
	Ant-0	6.0
802.11n HT20	Ant-1	7.5
	Ant-0+Ant-1	11.5
	Ant-0	6.0
802.11n HT40	Ant-1	7.5
	Ant-0+Ant-1	11.5
	Ant-0	6.0
802.11ac VHT80	Ant-1	7.5
	Ant-0+Ant-1	11.5

Mode	Tx Antenna	5.8G WLAN
802.11a	Ant-0	6.0
602.11a	Ant-1	8.0
	Ant-0	6.0
802.11n HT20	Ant-1	8.0
	Ant-0+Ant-1	12.0
	Ant-0	6.0
802.11n HT40	Ant-1	8.0
	Ant-0+Ant-1	12.0
	Ant-0	6.0
802.11ac VHT80	Ant-1	8.0
	Ant-0+Ant-1	12.0

Mode	2.4G Bluetooth
Bluetooth DH	13.0
Bluetooth LE	12.0

 Report Format Version 5.0.0
 Page No. : 47 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

4.6.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) is shown as below.

Laptop

Band	WC	DMA Ban	d II	WC	DMA Ban	d IV	WC	DMA Ban	d V	3GPP
Channel	9262	9400	9538	1312	1413	1513	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6	(dB)
RMC 12.2K	11.87	11.83	11.90	13.51	13.54	13.62	18.78	18.93	18.84	-
HSDPA Subtest-1	11.83	11.79	11.84	13.48	13.51	13.59	18.63	18.78	18.69	0
HSDPA Subtest-2	11.82	11.78	11.83	13.46	13.49	13.57	18.61	18.76	18.67	0
HSDPA Subtest-3	11.83	11.79	11.84	13.45	13.48	13.56	18.65	18.80	18.71	0
HSDPA Subtest-4	11.86	11.82	11.87	13.44	13.47	13.55	18.67	18.82	18.73	0
DC-HSDPA Subtest-1	11.78	11.74	11.79	13.40	13.43	13.51	18.60	18.75	18.66	0
DC-HSDPA Subtest-2	11.79	11.75	11.81	13.38	13.41	13.49	18.56	18.71	18.62	0
DC-HSDPA Subtest-3	11.78	11.74	11.82	13.37	13.40	13.48	18.61	18.76	18.68	0
DC-HSDPA Subtest-4	11.80	11.77	11.85	13.36	13.39	13.47	18.64	18.80	18.71	0
HSUPA Subtest-1	11.88	11.84	11.87	13.45	13.48	13.56	18.57	18.72	18.63	0
HSUPA Subtest-2	11.89	11.85	11.88	13.43	13.46	13.54	18.61	18.76	18.67	0
HSUPA Subtest-3	11.79	11.75	11.80	13.40	13.43	13.51	18.56	18.71	18.62	0
HSUPA Subtest-4	11.70	11.66	11.71	13.42	13.45	13.53	18.60	18.75	18.66	0
HSUPA Subtest-5	11.80	11.76	11.81	13.41	13.44	13.52	18.58	18.73	18.64	0

 Report Format Version 5.0.0
 Page No.
 : 48 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

BW	et Low Mid High 18675 18900 19125 2) 1857.5 1880 1902.5 11.81 11.61 11.54 11.75 11.52 11.52 11.62 11.62 11.36 11.37 11.77 11.64 11.52 11.65 11.52 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.31 11.31	Mar Mar
BW Index	18675 18900 19125 1857.5 1880 1902.5 11.81 11.61 11.54 11.75 11.52 11.52 11.62 11.36 11.37 11.77 11.64 11.52 11.65 11.52 11.43 11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	Mar Mar
Proguency (MHz)	z) 1857.5 1880 1902.5 11.81 11.61 11.54 11.75 11.52 11.52 11.62 11.36 11.37 11.77 11.64 11.52 11.65 11.52 11.43 11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	7.5 1880 1902.5 131 11.61 11.54 15 11.52 11.52 12 11.36 11.37 17 11.64 11.52 35 11.52 11.43 17 11.43 11.27 16 11.55 11.49 13 11.48 11.43 17 11.43 11.41
A	11.81 11.61 11.54 11.75 11.52 11.52 11.62 11.36 11.37 11.77 11.64 11.52 11.65 11.52 11.43 11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	31 11.61 11.54 75 11.52 11.52 32 11.36 11.37 77 11.64 11.52 35 11.52 11.43 57 11.43 11.27 76 11.55 11.49 73 11.48 11.43 77 11.43 11.41
A	11.75 11.52 11.52 11.62 11.36 11.37 11.77 11.64 11.52 11.65 11.52 11.43 11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	75 11.52 11.52 62 11.36 11.37 77 11.64 11.52 65 11.52 11.43 67 11.43 11.27 76 11.55 11.49 73 11.48 11.43 77 11.43 11.41
20M	11.62 11.36 11.37 11.77 11.64 11.52 11.65 11.52 11.43 11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.50 11.32 11.31	32 11.36 11.37 77 11.64 11.52 35 11.52 11.43 37 11.43 11.27 76 11.55 11.49 73 11.48 11.43 77 11.43 11.41
QPSK	11.77 11.64 11.52 11.65 11.52 11.43 11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	77 11.64 11.52
20M 16QAM	11.65 11.52 11.43 11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.47 11.36 11.50 11.32 11.31	65 11.52 11.43 67 11.43 11.27 76 11.55 11.49 73 11.48 11.43 77 11.43 11.41
20M	11.57 11.43 11.27 11.76 11.55 11.49 11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	77 11.43 11.27 76 11.55 11.49 73 11.48 11.43 77 11.43 11.41
1	11.73 11.48 11.43 11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	73 11.48 11.43 77 11.43 11.41
1	11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	77 11.43 11.41
1 50 11.70 11.52 11.42 0 1 99 11.56 11.38 11.29 0 50 0 11.81 11.58 11.52 0 50 25 11.75 11.47 11.47 0 50 50 11.84 11.38 11.28 0 100 0 0 11.83 11.58 11.47 0 50 50 11.84 11.38 11.28 0 100 0 11.83 11.58 11.47 0 100 0 11.83 11.58 11.47 0 100 0 11.83 11.58 11.47 0 100 0 11.83 11.58 11.47 0 100 11.83 11.58 11.47 0 100 11.71 11.54 11.55 11.40 11.50 11.30 11.30 11.40 11.50 11.30 11.30 11.30 11.40 11.50 11.30 11.30 11.41 11.51 11.51 11.42 11.51 11.51 11.43 11.51 11.51 11.44 11.34 0 11.45 11.45 11.31 11.31 11.31 11.46 11.31 11.31 11.31 11.31 11.47 11.40 11.30 11.30 11.49 11.59 11.41 11.31 0 12.40 11.61 11.35 11.35 13.40 11.41 11.41 11.34 0 14.49 11.50 11.35 11.35 11.35 15.40 11.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35 15.40 11.50 11.35	11.77 11.43 11.41 11.59 11.40 11.26 11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	77 11.43 11.41
16QAM	11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	9 11.40 11.26
SO 25 11.75 11.47 11.47 0 36 19 11.66 11.47 36 39 11.50 11.32 11.00 11.83 11.28 0	11.70 11.56 11.45 11.66 11.47 11.36 11.50 11.32 11.31	
BW MCS Index Size Offset Low Mid High MCS Index In	11.50 11.32 11.31	70 11.56 11.45
BW MCS Index RB Size Offset Channel 18650 18900 19150 11.81 11.51 11	11.00	66 11.47 11.36
BW MCS Index Channel 18650 18900 19150 MPR (dB) BW MCS Index RB Offset Low Mid High MPR (dB) BW (dB) BW MCS RB Offset Low Mid High MPR (dB) BW (dB) BW MCS RB Offset Low Mid High MPR (dB) BW (dB) BW MCS RB Offset Low Mid High MPR BW MCS RB Offset Low Mid Mid High MPR BW MCS RB Offset Low Mid Mi	44.04 44.54 44.55	50 11.32 11.31
BW MCS Index Channel 18650 18900 19150 MPR (dB) BW MCS Index Channel 18625 18900 19150 MPR (dB)	11.81 11.51 11.37	31 11.51 11.37
BW MCS Index Channel 18650 18900 19150 MPR (dB) MPR MP		w Mid High 3G
Tequency (MHz)	et	,
10M 1		
1 24 11.60 11.36 11.34 0 1 49 11.59 11.42 11.33 0 25 0 11.71 11.50 11.39 0 25 12 11.71 11.44 11.34 0 25 25 25 11.51 11.31 11.33 0 50 0 11.64 11.58 11.47 0 1 0 11.67 11.56 11.31 0 1 1 24 11.60 11.47 11.40 0 1 1 49 11.53 11.32 11.26 0 1 1 6QAM 25 0 11.56 11.36 11.32 0 25 12 11.57 11.48 11.21 0 25 25 25 11.50 11.35 11.27 0 MCS Size RB RB CB Low Mid High SGPP BW MCS Index Channel 18607 13900		
10M 1		
10M 10M 25		
10M 25		
10M 10M 25 25 11.51 11.31 11.33 0 12 13 11.61 11.31 11.44 11.55 11.47 0 11.61 11.55 11.47 0 11.61 11.55 11.47 11.44 11.55 11.45 1 12 11.65 11.45 1 12 11.65 11.45 1 12 11.65 11.45 1 12 11.65 11.45 1 12 11.65 11.45 1 12 11.65 11.23 1 12 13 11.61 11.55 11.45 1 12 13 11.65 11.45 1 12 13 11.65 11.23 1 12 13 11.56 11.23 1 12 13 11.56 11.23 1 12 13 11.57 11.35 11.27 0 1 12 13 11.57 11.35 11.27 1 13 11.57 11.35 11.27 1 13 11.57 11.35 11.27 1 13 11.57 11.35		
10M		
1 0 11.67 11.56 11.31 0 1 1 0 11.61 11.55 11.45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1 24 11.60 11.47 11.40 0 1 1 49 11.53 11.32 11.26 0 1 1 24 11.56 11.23 11.26 1 1 24 11.56 11.23 11.26 1 1 24 11.56 11.23 11.25 1 1 24 11.56 11.23 1 1 24 11.56 11.23 1 1 25 1 1 24 11.56 11.23 1 1 25 1 1 1 25 1 1 1 25 1 1 1 25 1 1 1 1	11.61 11.55 11.33	61 11.55 11.33
16QAM 25 0 11.56 11.36 11.32 0 16QAM 12 0 11.71 11.50 125 12 11.57 11.48 11.21 0 12 6 11.62 11.46 12 13 11.57 11.32 15 0 11.62 11.54 11.45 0 17.71 11.35 11.27 11.35 11.27 11.35 11.27 11.35 11.27 11.35 11.27 11.35 11.27 11.35 11.		
25 12 11.57 11.48 11.21 0 12 6 11.62 11.46 12.25 25 25 11.50 11.35 11.27 0 12 13 11.57 11.32 13.25 11.57 11.35 11.45 0 12 13 11.57 11.35 11.35 11.45 0 12 13 11.57 11.35 11.35 11.45 0 13.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45 0 14.45 11.45	11.56 11.23 11.31	66 11.23 11.31
25 25 11.50 11.35 11.27 0 12 13 11.57 11.32 50 0 11.62 11.54 11.45 0 12 50 0 11.72 11.35 11.35	11.71 11.50 11.42	71 11.50 11.42
50 0 11.62 11.54 11.45 0 25 0 11.72 11.35 RB RB Low Mid High 3GPP BW MCS Size Changel 18615 18900 19185 MPR BW MCS Changel 18607 18900	11.62 11.46 11.22	52 11.46 11.22
RB	11.57 11.32 11.19	7 11.32 11.19
BW MCS Size Offset Low Mid High 3GPP MPR BW MCS Size Offset Low Mid Mid High MPR BW MCS Size Offset Low Mid Mid Mid MPR BW MCS Size Offset Low Mid Mid MPR BW MCS Size Offset Low Mid MPR BW MCS Size Offset Low Mid Mid MPR BW MCS Size Offset Low MID MPR BW MCS SIZE OFFSET SIZE SIZE SIZE SIZE SIZE SIZE SIZE SIZE		72 11.35 11.49
BW MCS Size Urriset MPR BW MCS Size Urriset BW MCS Size Urriset 18607 18900		w Mid High 3G
	et	7 18900 19193 M
Frequency (MHz) 1851.5 1880 1908.5 (dB) Frequency (MHz) 1850.7 1880		
1 0 11.69 11.41 11.38 0 1 0 11.63 11.58		
1 7 11.70 11.56 11.43 0 1 2 11.72 11.56		
1 14 11.52 11.34 11.18 0 1 5 11.42 11.39		
QPSK 8 0 11.71 11.62 11.54 0 QPSK 3 0 11.68 11.60		
8 3 11.53 11.35 11.30 0 3 1 11.57 11.39		
8 7 11.41 11.20 11.19 0 3 3 11.62 11.36		
15 0 11.80 11.49 11.51 0 6 0 11.77 11.54	11.62 11.36 11.29	77 11.54 11.41
3M		59 11.52 11.33
1 7 11.66 11.45 11.44 0 1 1 2 11.63 11.35	11.77 11.54 11.41	
1 14 11.44 11.20 11.21 0 1 5 11.41 11.26	11.77 11.54 11.41 11.59 11.52 11.33	
16QAM 8 0 11.55 11.41 11.28 0 16QAM 3 0 11.71 11.44	11.77 11.54 11.41 11.59 11.52 11.33 11.63 11.35 11.48	
8 3 11.63 11.42 11.38 0 3 1 11.56 11.45	11.77 11.54 11.41 11.59 11.52 11.33 11.63 11.35 11.48 11.41 11.26 11.17	
8 7 11.51 11.24 11.21 0 3 3 11.43 11.12	11.77 11.54 11.41 11.59 11.52 11.33 11.63 11.35 11.48 11.41 11.26 11.17 11.71 11.44 11.24	11.44 11.24
15 0 11.61 11.47 11.44 0 6 0 11.70 11.55	11.77 11.54 11.41 11.59 11.52 11.33 11.63 11.35 11.48 11.41 11.26 11.17 11.71 11.44 11.24 11.56 11.45 11.35	71 11.44 11.24 66 11.45 11.35

 Report Format Version 5.0.0
 Page No.
 : 49 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

20M	MCS Index	RB Size Cha	RB Offset	Low											
		Cha			Mid	High	3GPP			RB	RB	Low	Mid	High	3GPP
	index		nnol	20050	20175	20300	MPR	BW	MCS Index	Size	Offset nnel	20025	20175	20325	MPR
		Frequen	cy (MHz)	1720.0	1732.5	1745.0	(dB)		index		cy (MHz)	1717.5	1732.5	1747.5	(dB)
		1	0	13.92	13.84	13.99	0			1	0	13.92	13.82	13.89	0
		1	50	13.91	13.77	13.94	0			1	37	13.81	13.74	13.88	0
		1	99	13.78	13.64	13.81	0			1	74	13.69	13.54	13.71	0
20M	QPSK	50	0	13.97	13.83	13.98	0		QPSK	36	0	13.95	13.79	13.94	0
20M		50	25	13.89	13.75	13.92	0			36	19	13.85	13.73	13.90	0
20M	•	50	50	13.79	13.65	13.82	0			36	39	13.75	13.57	13.76	0
20IVI		100	0	13.90	13.76	13.93	0	1514		75	0	13.80	13.66	13.85	0
		1	0	13.89	13.77	13.98	0	15M		1	0	13.82	13.66	13.89	0
	•	1	50	13.86	13.76	13.85	0			1	37	13.77	13.65	13.86	0
		1	99	13.77	13.59	13.71	0	1		1	74	13.68	13.61	13.79	0
1	16QAM	50	0	13.90	13.73	13.88	0		16QAM	36	0	13.93	13.71	13.86	0
		50	25	13.86	13.69	13.89	0			36	19	13.76	13.63	13.81	0
		50	50	13.69	13.59	13.74	0			36	39	13.65	13.49	13.68	0
		100	0	13.87	13.67	13.89	0			75	0	13.79	13.61	13.84	0
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha Frequen	nnel	20000 1715.0	20175 1732.5	20350 1750.0	(dB)	DVV	Index	Cha Frequen	nnel	19975 1712.5	20175 1732.5	20375 1752.5	(dB)
		1	0	13.72	13.72	13.85	0			1	0	13.77	13.70	13.83	0
		1	24	13.72	13.72	13.71	0			1	12	13.77	13.75	13.66	0
		1	49	13.71	13.45	13.66	0			1	24	13.72	13.48	13.71	0
	QPSK	25	0	13.84	13.45	13.90	0		QPSK	12	0	13.80	13.73	13.71	0
	QI OIX	25	12	13.67	13.67	13.73	0		GI OIL	12	6	13.79	13.75	13.71	0
		25	25	13.75	13.45	13.60	0			12	13	13.64	13.53	13.58	0
		50	0	13.80	13.60	13.82	0			25	0	13.80	13.56	13.75	0
10M		1	0	13.75	13.65	13.77	0	5M		1	0	13.80	13.63	13.90	0
		1	24	13.81	13.61	13.71	0			1	12	13.82	13.61	13.89	0
		1	49	13.66	13.33	13.68	0			1	24	13.48	13.36	13.68	0
1	16QAM	25	0	13.68	13.60	13.84	0		16QAM	12	0	13.73	13.73	13.91	0
		25	12	13.77	13.48	13.75	0			12	6	13.78	13.56	13.80	0
	•	25	25	13.64	13.47	13.64	0			12	13	13.59	13.44	13.65	0
	•	50	0	13.68	13.58	13.74	0			25	0	13.75	13.60	13.81	0
		RB	RB	Low	Mid	High	3GPP			RB Size	RB	Low	Mid	High	3GPP
BW	MCS Index	Size	Offset nnel	19965	20175	20385	MPR	BW	MCS Index		Offset nnel	19957	20175	20393	MPR
		Frequen		1711.5	1732.5	1753.5	(dB)				cy (MHz)	1710.7	1732.5	1754.3	(dB)
		1	0	13.77	13.73	13.87	0			1	0	13.80	13.60	13.90	0
		1	7	13.82	13.70	13.81	0	1		1	2	13.71	13.58	13.92	0
		1	14	13.57	13.58	13.74	0	1		1	5	13.61	13.58	13.76	0
	QPSK	8	0	13.87	13.74	13.95	0	1	QPSK	3	0	13.85	13.65	13.88	0
		8	3	13.79	13.58	13.81	0	1		3	1	13.79	13.73	13.81	0
		8	7	13.60	13.57	13.67	0			3	3	13.71	13.58	13.75	0
3M		15	0	13.76	13.55	13.75	0	1.4M		6	0	13.73	13.52	13.69	0
JIVI		1	0	13.78	13.73	13.85	0	1. 41 1VI		1	0	13.78	13.67	13.78	0
		1	7	13.67	13.54	13.72	0			1	2	13.75	13.58	13.90	0
		1	14	13.65	13.48	13.56	0			1	5	13.56	13.56	13.65	0
1	16QAM	8	0	13.78	13.71	13.86	0		16QAM	3	0	13.89	13.67	13.77	0
		8	3	13.78	13.52	13.74	0			3	1	13.69	13.47	13.71	0
		8	7	13.60	13.46	13.62	0			3	3	13.57	13.41	13.54	0
		15	0	13.73	13.49	13.71	0			6	0	13.69	13.53	13.74	0

 Report Format Version 5.0.0
 Page No.
 : 50 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

BW		RB RB					LTE B	una o							
DVV	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
	Index	Chai		20450	20525	20600	(dB)	DVV	Index		nnel	20425	20525	20625	(dB)
		Frequen	cy (MHz)	829.0	836.5	844.0	(GD)			Frequen	cy (MHz)	826.5	836.5	846.5	(GD)
		1	0	19.32	19.28	19.20	0			1	0	19.10	19.12	19.02	0
		1	24	19.17	19.13	19.05	0			1	12	19.00	18.98	18.84	0
		1	49	19.13	19.09	19.01	0			1	24	19.00	18.91	18.84	0
	QPSK	25	0	19.21	19.17	19.09	0		QPSK	12	0	19.03	18.99	18.90	0
		25	12	19.10	19.06	18.98	0			12	6	19.04	18.92	18.85	0
		25	25	19.09	19.05	18.97	0			12	13	18.92	18.97	18.80	0
10M		50	0	19.09	19.05	18.97	0	5M		25	0	19.03	18.91	18.73	0
TOIVI		1	0	19.29	19.25	19.13	0	SIVI		1	0	19.08	19.26	19.13	0
	•	1	24	19.07	19.12	19.01	0			1	12	19.00	18.98	18.76	0
		1	49	19.13	19.07	18.99	0			1	24	18.91	18.95	18.77	0
	16QAM	25	0	19.14	19.16	19.09	0		16QAM	12	0	19.00	18.98	19.01	0
		25	12	19.10	18.98	18.93	0			12	6	18.96	18.85	18.72	0
	•	25	25	19.08	19.02	18.91	0			12	13	18.91	18.99	18.75	0
		50	0	19.08	19.02	18.96	0			25	0	19.08	18.87	18.71	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Chai		20415	20525	20635	MPR	BW	Index		nnel	20407	20525	20643	MPR
		Frequenc	cy (MHz)	825.5	836.5	847.5	(dB)				cy (MHz)	824.7	836.5	848.3	(dB)
		1	0	19.21	19.06	19.06	0			1	0	19.27	19.23	19.13	0
		1	7	19.03	18.96	18.86	0			1	2	18.95	18.99	19.00	0
	•	1	14	18.93	18.86	18.81	0			1	5	18.96	18.87	18.89	0
	QPSK	8	0	19.13	19.13	19.00	0		QPSK	3	0	19.14	19.11	19.04	0
		8	3	18.98	18.96	18.90	0			3	1	18.88	18.92	18.90	0
		8	7	18.93	18.97	18.83	0			3	3	18.91	18.89	18.83	0
		15	0	18.97	18.87	18.81	0			6	0	18.92	18.85	18.89	0
3M -		1	0	19.03	18.94	19.06	0	1.4M		1	0	19.13	19.24	18.97	0
	•	1	7	18.99	19.04	19.00	0			1	2	19.05	18.97	18.97	0
	•	1	14	19.08	18.89	18.76	0			1	5	19.10	19.06	18.90	0
	16QAM	8	0	18.93	18.97	18.97	0		16QAM	3	0	19.14	18.92	18.83	0
		8	3	18.96	18.86	18.81	0			3	1	18.96	18.86	18.88	0
	•	8	7	18.78	18.90	18.79	0			3	3	18.93	18.98	18.77	0
		15	0	18.82	18.91	18.76	0			6	0	18.98	18.89	18.81	0

 Report Format Version 5.0.0
 Page No.
 : 51 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 7							
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha		20850	21100	21350	(dB)	DVV	Index		nnel	20825	21100	21375	(dB)
		Frequen	cy (MHz)	2510.0	2535.0	2560.0	(4.2)		_	Frequen	cy (MHz)	2507.5	2535.0	2562.5	(42)
		1	0	11.90	11.92	11.99	0			1	0	11.89	11.85	11.97	0
		1	50	11.74	11.76	11.83	0			1	37	11.72	11.69	11.75	0
		1	99	11.89	11.91	11.98	0			1	74	11.81	11.91	11.93	0
	QPSK	50	0	11.89	11.91	11.98	0		QPSK	36	0	11.84	11.81	11.93	0
		50	25	11.87	11.89	11.96	0			36	19	11.80	11.79	11.93	0
		50	50	11.86	11.88	11.95	0			36	39	11.76	11.78	11.91	0
20M		100	0	11.88	11.90	11.97	0	15M		75	0	11.80	11.84	11.96	0
ZOIVI		1	0	11.85	11.86	11.95	0	I JIVI		1	0	11.87	11.76	11.89	0
		1	50	11.67	11.74	11.80	0			1	37	11.64	11.71	11.77	0
		1	99	11.88	11.87	11.93	0			1	74	11.79	11.80	11.86	0
	16QAM	50	0	11.79	11.86	11.96	0		16QAM	36	0	11.76	11.83	11.81	0
		50	25	11.84	11.81	11.95	0			36	19	11.77	11.80	11.92	0
		50	50	11.84	11.85	11.92	0			36	39	11.77	11.77	11.91	0
		100	0	11.85	11.81	11.89	0			75	0	11.77	11.75	11.85	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	20800	21100	21400	MPR (dB)	BW	Index	Size Offset Channel		20775	21100	21425	MPR (dB)
		Frequen	cy (MHz)	2505.0	2535.0	2565.0	(ub)			Frequen	cy (MHz)	2502.5	2535.0	2567.5	(ub)
		1	0	11.81	11.84	11.93	0			1	0	11.86	11.79	11.75	0
		1	24	11.58	11.60	11.75	0			1	12	11.59	11.63	11.53	0
		1	49	11.72	11.75	11.84	0			1	24	11.77	11.72	11.77	0
	QPSK	25	0	11.83	11.77	11.93	0		QPSK	12	0	11.73	11.83	11.65	0
		25	12	11.71	11.72	11.88	0			12	6	11.74	11.73	11.78	0
		25	25	11.81	11.85	11.82	0			12	13	11.72	11.84	11.79	0
10M		50	0	11.78	11.82	11.84	0	5M		25	0	11.75	11.78	11.78	0
TOW		1	0	11.80	11.80	11.81	0	SIVI		1	0	11.77	11.74	11.88	0
		1	24	11.52	11.59	11.72	0			1	12	11.60	11.68	11.72	0
		1	49	11.82	11.74	11.81	0			1	24	11.78	11.79	11.82	0
	400 444	25	0	11.64	11.59	11.74	0		16QAM	12	0	11.77	11.74	11.88	0
	16QAM						^	0	TOQAW	12	6	11.70	11.68	11.65	0
	16QAM	25	12	11.66	11.71	11.71	U			14		11.70	11.00	11.05	0
	TOQAM		12 25	11.66 11.78	11.71	11.71				12	13	11.79	11.56	11.75	0

 Report Format Version 5.0.0
 Page No.
 : 52 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 12							
B.W.	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	514	MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	23060	23095	23130	MPR (dB)	BW	Index	Cha	nnel	23035	23095	23155	MPR (dB)
		Frequen	cy (MHz)	704.0	707.5	711.0	(ub)			Frequen	cy (MHz)	701.5	707.5	713.5	(ub)
		1	0	19.33	19.29	19.30	0			1	0	19.18	19.11	19.09	0
		1	24	19.35	19.31	19.32	0			1	12	19.25	19.07	19.03	0
		1	49	19.30	19.26	19.27	0			1	24	19.09	19.11	19.14	0
	QPSK	25	0	19.29	19.25	19.26	0		QPSK	12	0	19.15	19.12	19.04	0
		25	12	19.34	19.30	19.31	0			12	6	19.20	19.15	19.16	0
		25	25	19.26	19.22	19.23	0			12	13	19.13	19.07	19.02	0
10M		50	0	19.28	19.24	19.25	0	5M		25	0	19.17	19.06	19.03	0
TOW		1	0	19.33	19.25	19.25	0	JIVI		1	0	19.24	19.15	19.22	0
		1	24	19.25	19.27	19.27	0			1	12	19.17	19.11	19.12	0
		1	49	19.25	19.25	19.19	0			1	24	19.01	19.05	19.18	0
	16QAM	25	0	19.26	19.25	19.25	0		16QAM	12	0	19.04	19.07	19.13	0
		25	12	19.30	19.24	19.30	0			12	6	19.19	18.99	19.15	0
		25	25	19.16	19.12	19.13	0			12	13	19.08	19.00	19.02	0
		50	0	19.22	19.21	19.20	0			25	0	19.09	19.05	19.16	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	23025	23095	23165	MPR (dB)	BW	Index	Cha	nnel	23017	23095	23173	MPR (dB)
		Frequen	cy (MHz)	700.5	707.5	714.5	(ub)			Frequen	cy (MHz)	699.7	707.5	715.3	(ub)
		1	0	19.14	19.21	19.19	0			1	0	19.26	19.15	19.19	0
		1	7	19.10	19.08	19.20	0			1	2	19.32	19.08	19.16	0
		1	14	19.17	19.04	19.10	0			1	5	19.18	19.09	19.14	0
	QPSK	8	0	19.20	19.17	19.12	0		QPSK	3	0	19.15	19.09	19.11	0
		8	3	19.19	19.15	19.17	0			3	1	19.25	19.22	19.31	0
		8	7	19.20	19.20	19.08	0			3	3	19.20	19.16	19.09	0
зМ		15	0	19.13	19.22	19.12	0	1.4M		6	0	19.22	19.09	19.10	0
SIVI		1	0	19.05	19.18	19.07	0	1.4101		1	0	19.17	19.15	19.22	0
		1	7	19.19	19.18	19.15	0			1	2	19.17	19.04	19.10	0
		1	14	19.29	19.14	19.10	0	1		1	5	19.06	19.10	19.10	0
	16QAM	8	0	19.09	19.06	19.08	0	1	16QAM	3	0	19.18	19.05	19.07	0
		8	3	19.24	19.14	19.18	0	1		3	1	19.15	19.13	19.03	0
		8	7	18.99	19.06	19.11	0			3	3	19.11	18.97	19.13	0
		15	0	18.98	19.06	19.15	0			6	0	19.08	19.00	19.03	0

							LTE B	and 13							
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
BW	Index	Cha	nnel		23230		(dB)	BW	Index	Cha	nnel	23205	23230	23225	(dB)
		Frequen	cy (MHz)		782.0		(ub)			Frequen	cy (MHz)	779.5	782.0	784.5	(ub)
		1	0		19.13		0			1	0	18.94	19.00	18.96	0
		1	24		19.01		0			1	12	18.83	18.89	18.85	0
		1	49		19.22		0			1	24	18.98	19.04	19.00	0
	QPSK	25	0		19.18		0	5M	QPSK	12	0	19.02	19.08	19.04	0
		25	12		19.04		0			12	6	18.81	18.87	18.83	0
		25	25		19.11		0			12	13	18.96	19.02	18.98	0
10M		50	0		19.19		0			25	0	18.99	19.05	19.01	0
TOW		1	0		19.07		0	SIVI		1	0	18.85	18.91	18.87	0
		1	24		18.91		0			1	12	18.83	18.89	18.85	0
		1	49		19.22		0			1	24	18.92	18.98	18.94	0
	16QAM	25	0		19.14		0		16QAM	12	0	18.96	19.02	18.98	0
		25	12		18.96		0			12	6	18.80	18.86	18.82	0
		25	25		19.08		0			12	13	18.80	18.86	18.82	0
		50	0		19.14		0			25	0	18.97	19.03	18.99	0

 Report Format Version 5.0.0
 Page No.
 : 53 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 17							
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	23780	23790	23800	MPR (dB)	BW	Index	Cha	nnel	23755	23790	23825	MPR (dB)
		Frequen	cy (MHz)	709.0	710.0	711.0	(ub)			Frequen	cy (MHz)	706.5	710.0	713.5	(ub)
		1	0	19.36	19.34	19.43	0			1	0	19.17	19.23	19.21	0
		1	24	19.26	19.24	19.33	0			1	12	19.12	19.23	19.08	0
		1	49	19.42	19.40	19.49	0			1	24	19.37	19.24	19.21	0
	QPSK	25	0	19.33	19.31	19.40	0	5M	QPSK	12	0	19.18	19.19	19.11	0
		25	12	19.29	19.27	19.36	0			12	6	19.11	19.16	19.15	0
		25	25	19.30	19.28	19.37	0			12	13	19.16	19.07	19.11	0
10M		50	0	19.32	19.30	19.39	0			25	0	19.19	19.14	19.23	0
TOW		1	0	19.33	19.25	19.40	0	SIVI		1	0	19.10	19.12	19.32	0
		1	24	19.18	19.14	19.31	0			1	12	19.15	19.07	19.14	0
		1	49	19.41	19.33	19.49	0			1	24	19.24	19.22	19.31	0
	16QAM	25	0	19.25	19.29	19.33	0		16QAM	12	0	19.24	19.22	19.19	0
		25	12	19.20	19.20	19.32	0			12	6	19.05	19.14	19.18	0
		25	25	19.26	19.18	19.35	0			12	13	19.26	19.14	19.08	0
		50	0	19.24	19.30	19.34	0			25	0	19.23	19.16	19.30	0

 Report Format Version 5.0.0
 Page No.
 : 54 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 26							
		RB	RB	Low	Mid	High	3GPP			RB	RB	Low	Mid	High	3GPP
BW	MCS	Size	Offset				MPR	BW	MCS	Size	Offset		-		MPR
	Index		nnel cy (MHz)	26765 821.5	26865 831.5	26965 841.5	(dB)		Index		nnel cy (MHz)	26740 819.0	26865 831.5	26990 844.0	(dB)
		1	0	19.21	19.30	19.36	0			1	0	19.12	19.20	19.18	0
		1	37	19.66	19.57	19.63	0			1	24	19.57	19.43	19.40	0
		1	74	19.49	19.40	19.46	0			1	49	19.39	19.35	19.35	0
	QPSK	36	0	19.54	19.45	19.51	0		QPSK	25	0	19.40	19.40	19.40	0
		36	19	19.51	19.42	19.48	0			25	12	19.39	19.23	19.30	0
		36	39	19.46	19.37	19.43	0			25	25	19.29	19.21	19.39	0
		75	0	19.56	19.47	19.53	0			50	0	19.43	19.35	19.46	0
15M		1	0	19.19	19.20	19.34	0	10M		1	0	19.12	19.22	19.22	0
		1	37	19.57	19.52	19.60	0			1	24	19.47	19.51	19.43	0
		1	74	19.46	19.37	19.45	0			1	49	19.37	19.16	19.36	0
	16QAM	36	0	19.54	19.36	19.45	0		16QAM	25	0	19.32	19.30	19.43	0
		36	19	19.41	19.32	19.43	0			25	12	19.35	19.39	19.27	0
		36	39	19.38	19.28	19.33	0			25	25	19.35	19.29	19.25	0
		75	0	19.48	19.43	19.45	0			50	0	19.48	19.29	19.41	0
		RB	RB							RB	RB				
BW	MCS	Size	Offset	Low	Mid	High	3GPP MPR	BW	MCS	Size	Offset	Low	Mid	High	3GPP MPR
DW	Index		nnel	26715	26865	27015	(dB)	DVV	Index		nnel	26705	26865	27025	(dB)
			cy (MHz)	816.5	831.5	846.5	, ,				cy (MHz)	815.5	831.5	847.5	
		1	0	19.00	19.23	19.16	0			1	0	19.00	19.22	19.12	0
		1	12	19.42	19.53	19.52	0			1	7	19.54	19.51	19.58	0
		1	24	19.39	19.33	19.35	0			1	14	19.41	19.22	19.34	0
	QPSK	12	0	19.48	19.34	19.31	0		QPSK	8	0	19.34	19.28	19.37	0
		12	6	19.33	19.35	19.16	0			8	3	19.45	19.24	19.39	0
		12	13	19.33	19.29	19.30	0			8	7	19.36	19.23	19.33	0
5M		25	0	19.51	19.37	19.35	0	ЗМ		15	0	19.42	19.46	19.30	0
• • • • • • • • • • • • • • • • • • • •		1	0	19.07	19.10	19.27	0			1	0	18.97	19.13	19.13	0
		1	12	19.46	19.43	19.50	0			1	7	19.49	19.40	19.40	0
		1	24	19.34	19.23	19.26	0			1	14	19.35	19.26	19.20	0
	16QAM	12	0	19.42	19.33	19.38	0		16QAM	8	0	19.36	19.22	19.30	0
		12	6	19.26	19.22	19.36	0			8	3	19.39	19.27	19.36	0
		12	13	19.19	19.15	19.23	0			8	7	19.37	19.20	19.17	0
		25	0	19.33	19.22	19.32	0			15	0	19.34	19.34	19.30	0
		RB	RB	Low	Mid	High	3GPP								
BW	MCS Index	Size	Offset nnel	26697	26865	27033	MPR								
	IIIdex		cy (MHz)	814.7	831.5	848.3	(dB)								
		1	0	19.10	19.18	19.26	0								
		1	2	19.53	19.37	19.47	0								
		1	5	19.31	19.27	19.47	0								
	QPSK	3	0	19.49	19.28	19.37	0								
	QI OIL	3	1	19.39	19.35	19.38	0								
		3	3	19.35	19.26	19.38	0								
		6	0	19.40	19.35	19.47	0								
1.4M		1	0	18.94	19.10	19.47	0								
		1	2	19.47	19.10	19.09	0								
		1	5	19.47	19.52	19.33	0								
	16QAM	3	0	19.30	19.14	19.34	0						`		
	IUQAW	3	1	19.33	19.19	19.33	0								
		3	3	19.33	19.30	19.22	0								
		6	0	19.47	19.18	19.42	0								
		J	U	13.41	13.23	13.42	U								

 Report Format Version 5.0.0
 Page No.
 : 55 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

					LTE B	and 30							
BW	MCS	RB Size	RB Offset	Mid	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	27710	(dB)	DVV	Index		nnel	27685	27710	27735	(dB)
		Frequen	cy (MHz)	2310.0	(GD)			Frequen	cy (MHz)	2307.5	2310.0	2312.5	(ub)
		1	0	12.99	0			1	0	12.95	12.93	12.94	0
		1	24	12.89	0			1	12	12.83	12.69	12.82	0
		1	49	12.84	0			1	24	12.84	12.77	12.83	0
	QPSK	25	0	12.88	0		QPSK	12	0	12.06	12.75	12.27	0
		25	12	12.91	0			12	6	12.11	12.87	12.21	0
		25	25	12.93	0			12	13	12.03	12.78	12.32	0
10M		50	0	12.96	0	5M		25	0	12.05	12.83	12.39	0
TOW		1	0	12.94	0	SIVI		1	0	11.78	12.75	12.40	0
		1	24	12.86	0			1	12	12.34	12.80	12.30	0
		1	49	12.77	0			1	24	12.10	12.72	12.25	0
	16QAM	25	0	12.79	0		16QAM	12	0	11.08	12.69	11.27	0
		25	12	12.83	0			12	6	11.03	12.74	11.28	0
		25	25	12.89	0			12	13	11.15	12.81	11.18	0
		50	0	12.86	0			25	0	11.01	12.76	11.25	0

							LTE B	and 38							
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	37850	38000	38150	MPR (dB)	BW	Index	Cha	nnel	37825	38000	38175	MPR (dB)
		Frequen	cy (MHz)	2580.0	2595.0	2610.0	(ub)			Frequen	cy (MHz)	2577.5	2595	2612.5	(ub)
		1	0	15.11	15.23	15.50	0			1	0	15.06	15.18	15.48	0
		1	50	15.16	15.28	15.55	0			1	37	15.08	15.25	15.45	0
		1	99	15.68	15.67	15.69	0			1	74	15.19	15.40	15.60	0
	QPSK	50	0	15.09	15.21	15.48	0		QPSK	36	0	15.00	15.21	15.43	0
		50	25	15.15	15.27	15.54	0			36	19	15.13	15.23	15.46	0
		50	50	15.19	15.31	15.58	0			36	39	15.15	15.26	15.49	0
20M		100	0	15.20	15.32	15.59	0	15M		75	0	15.11	15.27	15.58	0
ZUIVI		1	0	15.11	15.15	15.43	0	13101		1	0	14.93	15.18	15.38	0
		1	50	15.08	15.27	15.49	0			1	37	15.14	15.12	15.42	0
		1	99	15.19	15.38	15.58	0			1	74	15.14	15.30	15.56	0
	16QAM	50	0	14.99	15.19	15.47	0		16QAM	36	0	15.02	15.12	15.37	0
		50	25	15.06	15.23	15.48	0			36	19	15.03	15.20	15.41	0
		50	50	15.15	15.24	15.57	0			36	39	15.13	15.13	15.45	0
		100	0	15.17	15.31	15.55	0			75	0	15.08	15.23	15.51	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	37800	38000	38200	MPR (dB)	BW	Index	Cha	nnel	37775	38000	38225	MPR (dB)
		Frequen	cy (MHz)	2575.0	2595.0	2615.0	(ub)			Frequen	cy (MHz)	2572.5	2595.0	2617.5	(UD)
		1	0	14.90	15.21	15.41	0			1	0	15.02	15.17	15.34	0
		1	24	15.08	15.16	15.35	0			1	12	14.96	15.12	15.28	0
		1	49	15.22	15.26	15.53	0			1	24	15.07	15.38	15.64	0
	QPSK	0.5								40			45.00	15.21	0
	QPSK	25	0	14.97	15.03	15.37	0		QPSK	12	0	15.02	15.06	15.21	
	QPSK	25	12	15.06	15.22	15.45	0		QPSK	12	6	15.09	15.27	15.32	0
	QPSK	25 25	12 25	15.06 14.99	15.22 15.14	15.45 15.40	0		QPSK	12 12	6	15.09 15.10	15.27 15.17	15.32 15.43	0
10M	QPSK	25	12	15.06	15.22	15.45	0	5M	QPSK	12	6	15.09	15.27	15.32	_
10M	QPSK	25 25	12 25	15.06 14.99	15.22 15.14	15.45 15.40	0	5M	QPSK	12 12	6	15.09 15.10	15.27 15.17	15.32 15.43	0
10M	QPSK	25 25 50	12 25 0 0 24	15.06 14.99 15.02	15.22 15.14 15.18	15.45 15.40 15.55	0 0	5M	QPSK	12 12 25	6 13 0 0	15.09 15.10 15.14	15.27 15.17 15.26	15.32 15.43 15.45	0
10M	QPSK	25 25 50 1 1	12 25 0	15.06 14.99 15.02 14.91	15.22 15.14 15.18 15.13	15.45 15.40 15.55 15.29	0 0 0 0	5M	QPSK	12 12 25 1 1	6 13 0	15.09 15.10 15.14 14.87	15.27 15.17 15.26 15.13	15.32 15.43 15.45 15.38	0 0
10M	16QAM	25 25 50 1	12 25 0 0 24 49	15.06 14.99 15.02 14.91 15.01	15.22 15.14 15.18 15.13 15.16	15.45 15.40 15.55 15.29 15.35	0 0 0 0	5M	QPSK	12 12 25 1	6 13 0 0	15.09 15.10 15.14 14.87 14.97	15.27 15.17 15.26 15.13 15.03	15.32 15.43 15.45 15.38 15.26	0 0 0 0
10M		25 25 50 1 1 1 25 25	12 25 0 0 24 49 0	15.06 14.99 15.02 14.91 15.01 15.08	15.22 15.14 15.18 15.13 15.16 15.24	15.45 15.40 15.55 15.29 15.35 15.53	0 0 0 0 0	5M		12 12 25 1 1 1 1 12	6 13 0 0 12 24 0 6	15.09 15.10 15.14 14.87 14.97 15.17	15.27 15.17 15.26 15.13 15.03 15.22	15.32 15.43 15.45 15.38 15.26 15.55	0 0 0 0
10M		25 25 50 1 1 1 25	12 25 0 0 24 49	15.06 14.99 15.02 14.91 15.01 15.08 14.95	15.22 15.14 15.18 15.13 15.16 15.24 15.04	15.45 15.40 15.55 15.29 15.35 15.53 15.28	0 0 0 0 0 0	5M		12 12 25 1 1 1 1	6 13 0 0 12 24 0	15.09 15.10 15.14 14.87 14.97 15.17 15.00	15.27 15.17 15.26 15.13 15.03 15.22 15.02	15.32 15.43 15.45 15.38 15.26 15.55 15.36	0 0 0 0 0

 Report Format Version 5.0.0
 Page No.
 : 56 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

								l	TE B	and 41									
	MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP
BW	Index	Cha	nnel	39790	40185	40620	41055	41490	MPR	BW	Index	Cha	nnel	39765	40173	40620	41068	41515	MPR
		Frequen	cy (MHz)	2510	2549.5	2593.0	2636.5	2680.0	(dB)			Frequen	cy (MHz)	2507.5	2548.3	2593.0	2637.8	2682.5	(dB)
		1	0	14.24	14.20	14.12	14.26	14.07	0			1	0	14.18	14.13	14.10	14.17	14.01	0
		1	50	14.23	14.19	14.11	14.25	14.06	0			1	37	14.13	14.12	14.08	14.17	13.98	0
		1	99	14.17	14.13	14.05	14.19	14.00	0			1	74	14.10	14.10	13.99	14.12	13.91	0
	QPSK	50	0	14.21	14.17	14.09	14.23	14.04	0		QPSK	36	0	14.19	14.12	13.99	14.22	14.03	0
		50	25	14.18	14.14	14.06	14.20	14.01	0			36	19	14.12	14.08	14.06	14.20	13.98	0
		50	50	14.20	14.16	14.08	14.22	14.03	0			36	39	14.19	14.11	14.08	14.19	14.02	0
20M		100	0	14.19	14.15	14.07	14.21	14.02	0	15M		75	0	14.18	14.05	14.02	14.11	13.99	0
ZUIVI		1	0	14.23	14.12	14.02	14.19	14.00	0	I JIVI		1	0	14.19	14.18	14.10	14.16	14.00	0
		1	50	14.16	14.17	14.01	14.23	13.97	0			1	37	14.19	14.13	14.11	14.25	13.97	0
		1	99	14.09	14.07	13.95	14.18	13.92	0			1	74	14.14	14.10	14.03	14.18	13.96	0
	16QAM	50	0	14.17	14.09	14.08	14.20	13.97	0		16QAM	36	0	14.20	14.13	14.01	14.19	13.99	0
		50	25	14.14	14.13	14.02	14.14	13.98	0			36	19	14.13	14.11	14.00	14.13	13.98	0
		50	50	14.14	14.10	14.07	14.22	14.03	0			36	39	14.15	14.07	14.05	14.12	14.01	0
		100	0	14.14	14.14	14.06	14.13	13.92	0			75	0	14.17	14.10	14.00	14.18	13.92	0
		RB	RB	1	Mid	Mil	Ma: -1	Himb				RB	RB	Law	Mid	NA: -I	Ma: -1	Himb	
BW	MCS	Size	Offset	Low	MIG	Mid	Mid	High	3GPP MPR	BW	MCS	Size	Offset	Low	Mid	Mid	Mid	High	3GPP MPR
DVV	Index	Cha	nnel	39740	40160	40620	41080	41540	(dB)	DVV	Index	Cha	nnel	39715	40148	40620	41093	41565	(dB)
		Frequen	cy (MHz)	2505	2547.0	2593.0	2639.0	2685.0	(42)			Frequen	cy (MHz)	2502.5	2545.8	2593.0	2640.3	2687.5	(42)
		1	0	14.05	14.10	14.05	14.13	13.99	0			1	0	14.19	14.13	14.09	14.13	13.97	0
		1	24	14.14	14.16	14.05	14.19	13.99	0			1	12	14.15	14.09	14.05	14.15	13.91	0
		1	49	14.08	13.96	13.95	14.06	13.99	0			1	24	14.04	13.96	13.95	14.13	13.98	0
	QPSK	25	0	14.13	14.01	13.99	14.09	13.95	0		QPSK	12	0	14.08	14.14	14.00	14.17	13.92	0
		25	12	14.07	13.97	13.92	14.14	13.82	0			12	6	14.02	14.08	14.04	14.11	13.94	0
		25	25	14.06	14.02	13.92	14.08	13.93	0			12	13	14.17	14.02	13.98	14.12	14.02	0
10M		50	0	14.14	14.03	13.98	14.09	13.83	0	5M		25	0	14.11	13.99	14.02	14.20	13.98	0
TOIVI		1	0	14.07	14.14	14.06	14.17	13.94	0	JIVI		1	0	14.10	14.13	14.03	14.14	13.96	0
		1	24	14.13	14.08	13.96	14.16	14.01	0			1	12	14.17	14.15	13.96	14.25	13.96	0
		1	49	14.08	14.05	13.87	14.09	13.93	0			1	24	14.04	14.03	13.95	14.07	13.91	0
	16QAM	25	0	14.17	14.07	14.04	14.08	14.00	0		16QAM	12	0	14.16	14.06	13.99	14.14	14.00	0
		25	12	14.08	13.99	13.94	14.09	13.87	0			12	6	14.07	14.07	13.96	14.08	13.98	0
		25	25	14.09	13.99	13.93	14.11	13.89	0			12	13	14.15	14.09	14.00	14.02	14.02	0
		50	0	14.19	14.05	13.94	14.18	13.83	0			25	0	14.10	14.04	13.98	14.19	13.93	0

 Report Format Version 5.0.0
 Page No.
 : 57 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 66							
		RB	RB	Low	Mid	High	3GPP			RB	RB	Low	Mid	High	3GPP
BW	MCS Index	Size	Offset nnel	132072	132322	132572	MPR	BW	MCS Index	Size	Offset nnel	132047	132322	132597	MPR
	IIIUEX	Frequen		1720.0	1745.0	1770.0	(dB)		IIIUEX		cy (MHz)	1717.5	1745.0	1772.5	(dB)
		1	0	14.40	14.47	14.25	0			1	0	14.37	14.42	14.15	0
		1	50	14.08	14.15	13.93	0			1	37	14.05	14.08	13.83	0
		1	99	14.05	14.12	13.90	0			1	74	14.02	14.09	13.84	0
	QPSK	50	0	14.30	14.37	14.15	0		QPSK	36	0	14.26	14.29	14.07	0
		50	25	14.19	14.26	14.04	0			36	19	14.19	14.23	14.01	0
		50	50	14.17	14.24	14.02	0			36	39	14.14	14.14	13.97	0
20M		100	0	14.31	14.38	14.16	0	15M		75	0	14.29	14.34	14.06	0
20101		1	0	14.40	14.39	14.23	0	I JIVI		1	0	14.34	14.32	14.11	0
		1	50	14.08	14.15	13.89	0			1	37	14.00	14.13	13.90	0
		1	99	14.02	14.08	13.80	0			1	74	13.92	14.01	13.82	0
	16QAM	50	0	14.27	14.33	14.07	0		16QAM	36	0	14.25	14.32	14.08	0
		50	25	14.13	14.16	13.94	0			36	19	14.07	14.13	13.94	0
		50	50	14.10	14.19	14.02	0			36	39	14.11	14.05	13.92	0
		100	0	14.30	14.33	14.16	0			75	0	14.26	14.29	13.97	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index		nnel	132022	132322	132622	MPR (dB)	BW	Index		nnel	131997	132322	132647	MPR (dB)
		Frequen	-	1715.0	1745.0	1775.0	` ′			Frequen	cy (MHz)	1712.5	1745.0	1777.5	
		1	0	14.30	14.30	14.13	0			1	0	14.28	14.41	14.16	0
		1	24	13.97	13.98	13.82	0			1	12	14.00	13.96	13.78	0
	ODOK	1	49	13.99	14.08	13.75	0		0001/	1	24	13.85	13.91	13.75	0
	QPSK	25	0	14.25	14.29	13.98	0		QPSK	12 12	0	14.16	14.24	13.91	0
		25 25	12 25	14.05 14.12	14.08	13.99	0			12	6 13	14.06	14.11	13.68	0
		50	0	14.12	14.06 14.27	13.98 14.08	0			25	0	14.00 14.17	14.17 14.29	13.86 14.14	0
10M		1	0					5M		1	0				
		1	24	14.29 13.83	14.26 13.92	14.02 13.87	0			1	12	14.15 13.99	14.31 13.87	14.06 13.62	0
		1	49	13.75	14.01	13.86	0			1	24	13.99	13.87	13.62	0
	16QAM	25	0	14.10	14.18	13.98	0		16QAM	12	0	14.17	14.09	14.03	0
	100/1111	25	12	14.05	14.12	13.82	0		100/1111	12	6	13.97	14.15	13.88	0
		25	25	13.97	14.01	13.80	0			12	13	13.90	14.00	13.79	0
		50	0	14.19	14.28	14.06	0			25	0	14.08	14.07	13.88	0
		RB	RB							RB	RB				
вw	MCS	Size	Offset	Low	Mid	High	3GPP MPR	вw	MCS	Size	Offset	Low	Mid	High	3GPP MPR
	Index		nnel	131987	132322	132657	(dB)		Index		nnel	131979	132322	132665	(dB)
		Frequen 1	Cy (MHZ)	1711.5	1745.5	1778.5	0			1 1	cy (MHz)	1710.7	1745.0	1779.3	0
		1	7	14.32	14.26	14.08	0			1	2	14.19	14.34	14.18	0
		1	14	13.93 13.98	14.02 14.06	13.81 13.76	0			1	5	13.97 13.83	14.04 14.04	13.73 13.77	0
	QPSK	8	0	14.18	14.06	14.03	0	I	QPSK	3	0	13.83	14.04	14.07	0
	QF SN	8	3	14.18	14.18	13.97	0	I	QP3N	3	1	14.12	14.25	13.91	0
		8	7	14.03	14.09	13.97	0	I		3	3	14.18	14.12	13.89	0
		15	0	14.18	14.25	14.12	0	1		6	0	14.14	14.24	14.06	0
ЗМ		1	0	14.27	14.31	14.18	0	1.4M		1	0	14.19	14.39	14.04	0
		1	7	13.94	13.99	13.74	0	1		1	2	13.96	13.95	13.80	0
		1	14	13.74	13.99	13.74	0	I		1	5	13.90	14.02	13.63	0
	16QAM	8	0	14.17	14.27	14.03	0	1	16QAM	3	0	14.05	14.18	14.04	0
		8	3	14.01	14.23	13.90	0	1		3	1	14.00	14.10	13.98	0
		8	7	14.04	14.06	13.75	0	1		3	3	14.02	14.03	13.78	0
		15	0	14.10	14.21	14.08	0	1		6	0	14.15	14.15	14.02	0
		_					<u> </u>								

 Report Format Version 5.0.0
 Page No.
 : 58 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Tablet

Band	WC	DMA Ban	d II	WC	DMA Band	d IV	WC	DMA Ban	d V	3GPP
Channel	9262	9400	9538	1312	1413	1513	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6	(dB)
	Е	UT withoเ	ıt Power F	Reduction	(P-Senso	r NOT Tri	ggered)			
RMC 12.2K	23.40	23.47	23.50	23.21	23.32	23.48	23.44	23.49	23.38	-
HSDPA Subtest-1	23.46	23.44	23.47	23.14	23.26	23.45	23.39	23.43	23.43	0
HSDPA Subtest-2	22.42	22.51	22.47	22.19	22.29	22.51	22.42	22.97	22.40	0
HSDPA Subtest-3	21.98	22.03	21.97	21.69	21.84	22.00	21.94	22.49	21.89	0.5
HSDPA Subtest-4	21.75	21.79	21.73	21.46	21.57	21.75	21.66	22.25	21.67	0.5
DC-HSDPA Subtest-1	23.44	23.41	23.46	23.11	23.23	23.42	23.34	23.38	23.38	0
DC-HSDPA Subtest-2	22.41	22.50	22.46	22.14	22.24	22.46	22.39	22.94	22.38	0
DC-HSDPA Subtest-3	21.96	22.02	21.95	21.65	21.80	21.97	21.89	22.44	21.87	0.5
DC-HSDPA Subtest-4	21.71	21.83	21.79	21.43	21.55	21.73	21.60	22.20	21.65	0.5
HSUPA Subtest-1	22.50	22.55	22.48	22.24	22.27	22.49	22.54	22.93	22.44	0
HSUPA Subtest-2	20.20	20.25	20.21	19.96	20.09	20.24	20.29	20.76	20.25	2
HSUPA Subtest-3	20.97	21.02	20.89	20.70	20.77	21.00	21.05	21.50	20.96	1
HSUPA Subtest-4	20.49	20.53	20.46	20.24	20.30	20.53	20.58	21.12	20.54	2
HSUPA Subtest-5	22.50	22.50	22.60	22.20	22.30	22.50	22.50	23.10	22.50	0
		EUT wi	ith Power	Reduction	n (P-Sens	or Trigger	ed)			
RMC 12.2K	11.87	11.83	11.90	13.51	13.54	13.62	18.78	18.93	18.84	-
HSDPA Subtest-1	11.83	11.79	11.84	13.48	13.51	13.59	18.63	18.78	18.69	0
HSDPA Subtest-2	11.82	11.78	11.83	13.46	13.49	13.57	18.61	18.76	18.67	0
HSDPA Subtest-3	11.83	11.79	11.84	13.45	13.48	13.56	18.65	18.80	18.71	0
HSDPA Subtest-4	11.86	11.82	11.87	13.44	13.47	13.55	18.67	18.82	18.73	0
DC-HSDPA Subtest-1	11.78	11.74	11.79	13.40	13.43	13.51	18.60	18.75	18.66	0
DC-HSDPA Subtest-2	11.79	11.75	11.81	13.38	13.41	13.49	18.56	18.71	18.62	0
DC-HSDPA Subtest-3	11.78	11.74	11.82	13.37	13.40	13.48	18.61	18.76	18.68	0
DC-HSDPA Subtest-4	11.80	11.77	11.85	13.36	13.39	13.47	18.64	18.80	18.71	0
HSUPA Subtest-1	11.88	11.84	11.87	13.45	13.48	13.56	18.57	18.72	18.63	0
HSUPA Subtest-2	11.89	11.85	11.88	13.43	13.46	13.54	18.61	18.76	18.67	0
HSUPA Subtest-3	11.79	11.75	11.80	13.40	13.43	13.51	18.56	18.71	18.62	0
HSUPA Subtest-4	11.70	11.66	11.71	13.42	13.45	13.53	18.60	18.75	18.66	0
HSUPA Subtest-5	11.80	11.76	11.81	13.41	13.44	13.52	18.58	18.73	18.64	0

 Report Format Version 5.0.0
 Page No.
 : 59 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE E	Band 2							
				EU	T withou	t Power	Reduction	on (P-Se	ensor NO	Γ Trigger	ed)				
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel cy (MHz)	18700 1860	18900 1880	19100 1900	MPR (dB)	BW	Index		nnel cy (MHz)	18675 1857.5	18900 1880	19125 1902.5	MPR (dB)
		1					0			1					
		1	0 50	23.09 22.76	22.95 22.93	22.79 22.70	0			1	37	23.04	22.90 22.88	22.74 22.65	0
		1	99	22.76	22.93	22.70	0			1	74	22.71	22.74	22.68	0
	QPSK	50	0	21.91	21.90	21.81	1		QPSK	36	0	21.86	21.85	21.76	1
	QI OIX	50	25	21.75	21.84	21.65	1		QI OIX	36	19	21.70	21.79	21.60	1
		50	50	21.65	21.83	21.54	1			36	39	21.60	21.78	21.49	1
		100	0	21.95	21.90	21.94	1			75	0	21.90	21.85	21.89	1
20M		1	0	22.22	22.16	21.96	1	15M		1	0	22.19	22.13	21.93	1
		1	50	21.91	22.10	21.87	1			1	37	21.88	22.13	21.84	1
		1	99	21.98	21.96	21.93	1			1	74	21.95	21.93	21.90	1
	16QAM	50	0	20.91	20.93	20.56	2		16QAM	36	0	20.88	20.90	20.53	2
	1000/1111	50	25	20.79	20.93	20.68	2		1000/1111	36	19	20.76	20.90	20.65	2
		50	50	20.66	20.89	20.81	2			36	39	20.63	20.86	20.78	2
		100	0	20.85	20.99	20.90	2			75	0	20.82	20.96	20.87	2
		RB	RB	Low	Mid	High				RB	RB	Low	Mid	High	
BW	MCS	Size	Offset		-	_	3GPP MPR	BW	MCS	Size	Offset				3GPP MPR
	Index	Cha		18650	18900	19150	(dB)		Index		nnel	18625	18900	19175	(dB)
		Frequen		1855	1880	1905					cy (MHz)	1852.5	1880	1907.5	
		1	0 24	22.97	22.83	22.67	0			1	0 12	22.90	22.76	22.60	0
		1	49	22.64	22.81	22.58	0			1	24	22.57	22.74	22.51	0
	QPSK	25	0	22.74 21.79	22.67 21.78	22.61 21.69	1		QPSK	12	0	22.67 21.72	22.60 21.71	22.54	0
	QFSK	25	12	21.79	21.78	21.53	1		QFSN	12	6	21.72	21.71	21.62 21.46	1
		25	25	21.53	21.72	21.33	1			12	13	21.46	21.63	21.46	1
		50	0	21.83	21.78	21.82	1			25	0	21.76	21.71	21.75	1
10M		1	0	22.16	22.10	21.90	1	5M		1	0	22.14	22.08	21.88	1
		1	24	21.85	22.10	21.81	1			1	12	21.83	22.06	21.79	1
		1	49	21.92	21.90	21.87	1			1	24	21.90	21.88	21.85	1
	16QAM	25	0	20.85	20.87	20.50	2		16QAM	12	0	20.83	20.85	20.48	2
		25	12	20.73	20.87	20.62	2			12	6	20.71	20.85	20.60	2
		25	25	20.60	20.83	20.75	2			12	13	20.58	20.81	20.73	2
		50	0	20.79	20.93	20.84	2			25	0	20.77	20.91	20.82	2
		RB	RB	Low	Mid	High	3GPP			RB	RB	Low	Mid	High	3GPP
BW	MCS	Size	Offset	18615	18900	19185	MPR	BW	MCS	Size	Offset	18607	18900	19193	MPR
	Index	Cha Frequen		1851.5	1880	19185	(dB)		Index	Frequen	nnel	1850.7	1880	19193	(dB)
		1	0 (WIFIZ)	22.84	22.70	22.54	0			1	0 0	22.80	22.66	22.50	0
		1	7	22.54	22.70	22.54	0	ł		1	2	22.47	22.64	22.50	0
		1	14	22.61	22.54	22.43	0	ł		1	5	22.47	22.50	22.41	0
	QPSK	8	0	21.66	21.65	21.56	1	1	QPSK	3	0	22.62	22.61	22.52	0
	QI OIL	8	3	21.50	21.59	21.40	1	1	Qi Oit	3	1	22.46	22.55	22.36	0
		8	7	21.40	21.58	21.29	1	1		3	3	22.36	22.54	22.25	0
		15	0	21.70	21.65	21.69	1	1		6	0	21.66	21.61	21.65	1
ЗМ		1	0	22.06	22.00	21.80	1	1.4M		1	0	21.99	21.93	21.73	1
		1	7	21.75	21.98	21.71	1	1		1	2	21.68	21.93	21.73	1
		1	14	21.82	21.80	21.77	1	1		1	5	21.75	21.73	21.70	1
	16QAM	8	0	20.75	20.77	20.40	2	1	16QAM	3	0	21.68	21.70	21.33	1
		8	3	20.63	20.77	20.52	2	1		3	1	21.56	21.70	21.45	1
		8	7	20.50	20.73	20.65	2	1		3	3	21.43	21.66	21.58	1
		15	0	20.69	20.83	20.74	2	1		6	0	20.62	20.76	20.67	2
								-							

 Report Format Version 5.0.0
 Page No.
 : 60 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE E	Band 2							
					EUT wi	th Power	Reduct	ion (P-S	ensor Tri	ggered)					
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
BVV	Index		nnel	18700 1860	18900 1880	19100 1900	(dB)	DW	Index		nnel	18675 1857.5	18900 1880	19125 1902.5	(dB)
		Frequen					0				cy (MHz)				0
		1	0 50	11.82 11.80	11.62 11.60	11.54 11.52	0			1	0 37	11.81 11.75	11.61 11.52	11.54 11.52	0
		1	99	11.66	11.46	11.32	0			1	74	11.62	11.32	11.37	0
	QPSK	50	0	11.85	11.65	11.57	0		QPSK	36	0	11.77	11.64	11.52	0
	QI OIL	50	25	11.75	11.55	11.47	0		QI OIL	36	19	11.65	11.52	11.43	0
		50	50	11.65	11.45	11.37	0			36	39	11.57	11.43	11.27	0
0014		100	0	11.84	11.64	11.56	0	4514		75	0	11.76	11.55	11.49	0
20M		1	0	11.76	11.55	11.51	0	15M		1	0	11.73	11.48	11.43	0
		1	50	11.70	11.52	11.42	0			1	37	11.77	11.43	11.41	0
		1	99	11.56	11.38	11.29	0			1	74	11.59	11.40	11.26	0
	16QAM	50	0	11.81	11.58	11.52	0		16QAM	36	0	11.70	11.56	11.45	0
		50	25	11.75	11.47	11.47	0			36	19	11.66	11.47	11.36	0
		50	50	11.64	11.38	11.28	0			36	39	11.50	11.32	11.31	0
		100	0	11.83	11.58	11.47	0			75	0	11.81	11.51	11.37	0
		RB	RB	Low	Mid	High	3GPP			RB	RB	Low	Mid	High	3GPP
BW	MCS Index	Size Cha	Offset nnel	18650	18900	19150	MPR	BW	MCS Index	Size	Offset	18625	18900	19175	MPR
	IIIdex	Frequen		1855	1880	1905	(dB)		illucx		cy (MHz)	1852.5	1880	1907.5	(dB)
		1	0	11.72	11.39	11.46	0			1	0	11.78	11.58	11.28	0
		1	24	11.60	11.36	11.34	0			1	12	11.71	11.54	11.34	0
		1	49	11.59	11.42	11.33	0			1	24	11.54	11.30	11.08	0
	QPSK	25	0	11.71	11.50	11.39	0		QPSK	12	0	11.82	11.62	11.40	0
		25	12	11.71	11.44	11.34	0			12	6	11.70	11.35	11.25	0
		25	25	11.51	11.31	11.33	0			12	13	11.61	11.31	10.98	0
10M		50	0	11.64	11.58	11.47	0	5M		25	0	11.71	11.44	11.32	0
TOW		1	0	11.67	11.56	11.31	0	JIVI		1	0	11.61	11.55	11.33	0
		1	24	11.60	11.47	11.40	0			1	12	11.65	11.45	11.34	0
		1	49	11.53	11.32	11.26	0			1	24	11.56	11.23	11.31	0
	16QAM	25	0	11.56	11.36	11.32	0		16QAM	12	0	11.71	11.50	11.42	0
		25	12	11.57	11.48	11.21	0			12	6	11.62	11.46	11.22	0
		25	25	11.50	11.35	11.27	0			12	13	11.57	11.32	11.19	0
		50 RB	0 RB	11.62	11.54	11.45	0			25 RB	0 RB	11.72	11.35	11.49	0
D144	MCS	Size	Offset	Low	Mid	High	3GPP	D144	MCS	Size	Offset	Low	Mid	High	3GPP
BW	Index	Cha		18615	18900	19185	MPR (dB)	BW	Index		nnel	18607	18900	19193	MPR (dB)
		Frequen		1851.5	1880	1908.5	. ,				cy (MHz)	1850.7	1880	1909.3	, ,
		1	0	11.69	11.41	11.38	0			1	0	11.63	11.58	11.49	0
		1	7	11.70	11.56	11.43	0			1	2	11.72	11.56	11.38	0
	ODOK	1	14	11.52	11.34	11.18	0		ODOK	1	5	11.42	11.39	11.35	0
	QPSK	8	0	11.71	11.62	11.54	0		QPSK	3	0	11.68	11.60	11.49	0
		8	3 7	11.53	11.35	11.30	0			3	3	11.57	11.39	11.24	0
		8 15	0	11.41 11.80	11.20 11.49	11.19 11.51	0			6	0	11.62 11.77	11.36 11.54	11.29 11.41	0
3M								1.4M			0				
		1	7	11.55	11.42	11.34	0			1	2	11.59	11.52	11.33	0
		1	14	11.66 11.44	11.45 11.20	11.44 11.21	0			1	5	11.63	11.35 11.26	11.48 11.17	0
	16QAM	8	0	11.44	11.41	11.21	0		16QAM	3	0	11.41 11.71	11.44	11.17	0
	TOQAW	8	3	11.63	11.41	11.38	0		TOQAW	3	1	11.71	11.44	11.35	0
		8	7	11.53	11.42	11.21	0			3	3	11.43	11.43	11.17	0
		15	0	11.61	11.47	11.44	0			6	0	11.70	11.55	11.40	0
		···	Ū	11.01								11.75	11.00	11.10	Ü

 Report Format Version 5.0.0
 Page No.
 : 61 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE E	Band 4							
				EU	T withou	t Power			ensor NO	T Triager	ed)				
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha Frequen		20050 1720.0	20175 1732.5	20300 1745.0	MPR (dB)	BW	Index		nnel cy (MHz)	20025 1717.5	20175 1732.5	20325 1747.5	MPR (dB)
		1	0	22.78	22.83	22.88	0			1	0	22.70	22.75	22.80	0
		1	50	22.70	22.54	22.60	0			1	37	22.62	22.46	22.52	0
		1	99	22.67	22.50	22.55	0			1	74	22.59	22.42	22.47	0
	QPSK	50	0	21.82	21.75	21.90	1		QPSK	36	0	21.74	21.67	21.82	1
		50	25	21.79	21.56	21.64	1			36	19	21.71	21.48	21.56	1
		50	50	21.67	21.50	21.80	1			36	39	21.59	21.42	21.72	1
20M		100	0	21.78	21.61	21.82	1	15M		75	0	21.70	21.53	21.74	1
		1	0	21.87	21.99	21.78	1			1	0	21.85	21.97	21.76	1
		1	50	21.90	21.74	21.84	1			1	37	21.88	21.72	21.82	1
		1	99	21.87	21.71	21.84	1			1	74	21.85	21.69	21.82	1
	16QAM	50	0	20.90	20.76	20.61	2		16QAM	36	0	20.88	20.74	20.59	2
		50	25	20.81	20.58	20.70	2			36	19	20.79	20.56	20.68	2
		50	50 0	20.71	20.51	20.84	2			36 75	39 0	20.69	20.49	20.82	2
		100		20.83	20.63	20.77	2					20.81	20.61	20.75	2
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index		nnel	20000	20175	20350	MPR (dB)	BW	Index		nnel	19975	20175	20375	MPR (dB)
		Frequen	cy (MHz)	1715.0	1732.5	1750.0	(ub)			Frequen	cy (MHz)	1712.5	1732.5	1752.5	(ub)
		1	0	22.65	22.70	22.75	0			1	0	22.58	22.63	22.68	0
		1	24	22.57	22.41	22.47	0			1	12	22.50	22.34	22.40	0
		1	49	22.54	22.37	22.42	0			1	24	22.47	22.30	22.35	0
	QPSK	25	0	21.69	21.62	21.77	1		QPSK	12	0	21.62	21.55	21.70	1
		25	12	21.66	21.43	21.51	1			12	6	21.59	21.36	21.44	1
		25	25	21.54	21.37	21.67	1			12	13	21.47	21.30	21.60	1
10M		50	0	21.65	21.48	21.69	1	5M		25	0	21.58	21.41	21.62	1
		1	0	21.82	21.94	21.73	1			1	0	21.80	21.92	21.71	1
		1	24	21.85	21.69	21.79	1			1	12	21.83	21.67	21.77	1
	400 4 14	1	49	21.82	21.66	21.79	1	-	400414	1	24	21.80	21.64	21.77	1
	16QAM	25	0	20.85	20.71	20.56	2		16QAM	12	0	20.83	20.69	20.54	2
		25 25	12 25	20.76	20.53	20.65	2			12 12	6	20.74	20.51	20.63	2
		50	0	20.66	20.46	20.79	2	-		25	13 0	20.64	20.44	20.77	2
		RB	RB	20.78	20.58	20.72				RB	RB	20.76	20.56	20.70	
D)44	MCS	Size	Offset	Low	Mid	High	3GPP	D144	MCS	Size	Offset	Low	Mid	High	3GPP
BW	Index	Cha		19965	20175	20385	MPR (dB)	BW	Index		nnel	19957	20175	20393	MPR (dB)
		Frequen		1711.5	1732.5	1753.5	` '			Frequen		1710.7	1732.5	1754.3	` '
		1	0	22.52	22.57	22.62	0			1	0	22.48	22.53	22.58	0
		1	7	22.44	22.28	22.34	0	-		1	2	22.40	22.24	22.30	0
	ODCK	1	14	22.41	22.24	22.29	0	-	ODCK	1	5	22.37	22.20	22.25	0
	QPSK	8	3	21.56	21.49	21.64	1	ł	QPSK	3	0	22.52	22.45	22.60	0
		8	7	21.53	21.30	21.38	1	1		3	3	22.49	22.26	22.34	0
		15	0	21.41	21.24 21.35	21.54 21.56	1	ł		6	0	22.37 21.48	22.20 21.31	22.50 21.52	<u>0</u> 1
ЗМ		15	0					1.4M		1	0				
		1	7	21.72	21.84	21.63	1	1		1	2	21.65	21.77	21.56	1
		1	14	21.75 21.72	21.59 21.56	21.69 21.69	1	1		1	5	21.68 21.65	21.52 21.49	21.62 21.62	<u>1</u> 1
	16QAM	8	0	20.75	20.61	20.46	2	ł	16QAM	3	0	21.65	21.49	21.62	1
	TOQAW	8	3	20.75	20.61	20.46	2	1	TOQAW	3	1	21.59	21.34	21.39	1
		8	7	20.56	20.43	20.55	2	1		3	3	21.49	21.30	21.40	1
		15	0	20.68	20.48	20.62	2	1		6	0	20.61	20.41	20.55	2
		10	U	20.00	20.70	20.02		-		U	U	20.01	20.41	20.00	

 Report Format Version 5.0.0
 Page No.
 : 62 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 4							
					EUT wi	th Power	Reduct	ion (P-S	ensor Tri	ggered)					
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	20050	20175	20300	(dB)	DVV	Index		nnel	20025	20175	20325	(dB)
		Frequen		1720.0	1732.5	1745.0	` '			Frequen		1717.5	1732.5	1747.5	` ′
		1	0	13.92	13.84	13.99	0			1	0	13.92	13.82	13.89	0
		1	50	13.91	13.77	13.94	0			1	37 74	13.81	13.74	13.88	0
	QPSK	50	99	13.78	13.64	13.81	0		QPSK	1 36	0	13.69	13.54	13.71	0
	QPSK	50	25	13.97	13.83 13.75	13.98	0		QPSK	36	19	13.95	13.79	13.94 13.90	0
		50	50	13.89 13.79	13.75	13.92 13.82	0			36	39	13.85 13.75	13.73 13.57	13.76	0
		100	0	13.79	13.76	13.93	0			75	0	13.80	13.66	13.76	0
20M		1	0	13.89	13.77	13.98	0	15M		1	0	13.82	13.66	13.89	0
		1	50	13.86	13.77	13.85	0			1	37	13.77	13.65	13.86	0
		1	99	13.77	13.76	13.71	0			1	74	13.68	13.61	13.79	0
	16QAM	50	0	13.77	13.73	13.88	0		16QAM	36	0	13.93	13.71	13.79	0
	100/11	50	25	13.86	13.69	13.89	0		100/11/1	36	19	13.76	13.63	13.81	0
		50	50	13.69	13.59	13.74	0			36	39	13.65	13.49	13.68	0
		100	0	13.87	13.67	13.89	0			75	0	13.79	13.61	13.84	0
		RB	RB							RB	RB				
D14/	MCS	Size	Offset	Low	Mid	High	3GPP	DW	MCS	Size	Offset	Low	Mid	High	3GPP
BW	Index		nnel	20000	20175	20350	MPR (dB)	BW	Index		nnel	19975	20175	20375	MPR (dB)
		Frequen		1715.0	1732.5	1750.0	(uB)			Frequen	cy (MHz)	1712.5	1732.5	1752.5	` '
		1	0	13.72	13.72	13.85	0			1	0	13.77	13.70	13.83	0
		1	24	13.71	13.58	13.71	0			1	12	13.72	13.75	13.66	0
		1	49	13.56	13.45	13.66	0			1	24	13.67	13.48	13.71	0
	QPSK	25	0	13.84	13.65	13.90	0		QPSK	12	0	13.80	13.73	13.82	0
		25	12	13.67	13.67	13.73	0			12	6	13.79	13.75	13.71	0
		25	25	13.75	13.45	13.60	0			12 25	13 0	13.64	13.53	13.58	0
10M		50	0	13.80	13.60	13.82	0	5M			_	13.80	13.56	13.75	0
		1	0	13.75	13.65	13.77	0			1	0	13.80	13.63	13.90	0
		1	24 49	13.81	13.61	13.71	0			1	12 24	13.82	13.61	13.89	0
	16QAM	25	0	13.66 13.68	13.33 13.60	13.68 13.84	0		16QAM	12	0	13.48 13.73	13.36	13.68 13.91	0
	TOQAIVI	25	12	13.77	13.48	13.75	0		TOQAW	12	6	13.78	13.73 13.56	13.80	0
		25	25	13.64	13.47	13.75	0			12	13	13.76	13.44	13.65	0
		50	0	13.68	13.58	13.74	0			25	0	13.75	13.60	13.81	0
		RB	RB				-			RB	RB				-
вw	MCS	Size	Offset	Low	Mid	High	3GPP	BW	MCS	Size	Offset	Low	Mid	High	3GPP
DVV	Index		nnel	19965	20175	20385	MPR (dB)	DVV	Index		nnel	19957	20175	20393	MPR (dB)
		Frequen		1711.5	1732.5	1753.5	` '			Frequen		1710.7	1732.5	1754.3	` '
		1	0	13.77	13.73	13.87	0			1	0	13.80	13.60	13.90	0
		1	7	13.82	13.70	13.81	0			1	2	13.71	13.58	13.92	0
	ODOK	1	14	13.57	13.58	13.74	0		0001/	1	5	13.61	13.58	13.76	0
	QPSK	8	0	13.87	13.74	13.95	0		QPSK	3	0	13.85	13.65	13.88	0
		8	3 7	13.79	13.58	13.81	0			3	1	13.79	13.73	13.81	0
		8 15	0	13.60	13.57	13.67	0			6	3 0	13.71 13.73	13.58	13.75	0
3M				13.76	13.55	13.75		1.4M					13.52	13.69	0
		1	0	13.78	13.73	13.85	0			1	0	13.78	13.67	13.78	0
		1	7	13.67	13.54	13.72	0			1	2	13.75	13.58	13.90	0
	160414	1	14	13.65	13.48	13.56	0		160414	1	5 0	13.56	13.56	13.65	0
	16QAM	8	3	13.78	13.71	13.86	0		16QAM	3	1	13.89	13.67	13.77	0
		8	7	13.78 13.60	13.52 13.46	13.74 13.62	0			3	3	13.69 13.57	13.47 13.41	13.71 13.54	0
		15	0	13.73	13.49	13.71	0			6	0	13.69	13.53	13.74	0
			0	10.73	10.70	13.71	U				0	10.03	10.00	13.77	U

 Report Format Version 5.0.0
 Page No.
 : 63 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE E	Band 5							
				EU	T withou	ıt Power	Reduction	on (P-Se	ensor NO	Γ Trigger	ed)				
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	20450	20525	20600	(dB)	DVV	Index		ınnel	20425	20525	20625	(dB)
		Frequen	cy (MHz)	829.0	836.5	844.0	(ub)			Frequen	cy (MHz)	826.5	836.5	846.5	(ub)
		1	0	22.73	22.72	22.71	0			1	0	22.66	22.48	21.64	0
		1	24	22.61	22.55	22.53	0			1	12	22.54	22.65	22.46	0
		1	49	22.59	22.69	22.34	0			1	24	22.52	22.62	22.27	0
	QPSK	25	0	21.78	21.74	21.75	1		QPSK	12	0	21.71	21.67	21.68	1
		25	12	21.69	21.70	21.56	1			12	6	21.62	21.63	21.49	1
		25	25	21.67	21.67	21.47	1			12	13	21.60	21.60	21.40	1
10M		50	0	21.75	21.73	21.56	1	5M		25	0	21.68	21.66	21.49	1
TOW		1	0	21.96	21.83	21.91	1	SIVI		1	0	21.91	21.78	21.86	1
		1	24	21.85	21.82	21.79	1	1		1	12	21.80	21.77	21.74	1
		1	49	21.87	21.83	21.65	1			1	24	21.82	21.78	21.60	1
	16QAM	25	0	20.73	20.79	20.77	2		16QAM	12	0	20.68	20.74	20.72	2
		25	12	20.70	20.85	20.56	2			12	6	20.65	20.80	20.51	2
		25	25	20.71	20.82	20.52	2			12	13	20.66	20.77	20.47	2
		50	0	20.75	20.88	20.59	2			25	0	20.70	20.83	20.54	2
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	20415	20525	20635	MPR	BW	Index	Cha	nnel	20407	20525	20643	MPR
		Frequen	cy (MHz)	825.5	836.5	847.5	(dB)			Frequen	cy (MHz)	824.7	836.5	848.3	(dB)
		1	0	22.62	22.44	21.60	0			1	0	22.58	22.40	21.56	0
		1	7	22.50	22.61	22.42	0			1	2	22.46	22.57	22.38	0
		1	14	22.48	22.58	22.23	0	1		1	5	22.44	22.54	22.19	0
	QPSK	8	0	21.67	21.63	21.64	1		QPSK	3	0	22.63	22.59	22.60	0
		8	3	21.58	21.59	21.45	1	1		3	1	22.54	22.55	22.41	0
		8	7	21.56	21.56	21.36	1			3	3	22.52	22.52	22.32	0
014		15	0	21.64	21.62	21.45	1	4 414		6	0	21.60	21.58	21.41	1
ЗМ		1	0	21.83	21.70	21.78	1	1.4M		1	0	21.76	21.63	21.71	1
		1	7	21.72	21.69	21.66	1	1		1	2	21.65	21.62	21.59	1
		1	14	21.74	21.70	21.52	1	1		1	5	21.67	21.63	21.45	1
	16QAM	8	0	20.60	20.66	20.64	2	Ī	16QAM	3	0	21.53	21.59	21.57	1
		_	3	20.57	20.72	20.43	2	I		3	1	21.50	21.65	21.36	1
		8	3	20.51											
		8	7	20.58	20.69	20.39	2			3	3	21.51	21.62	21.32	1

 Report Format Version 5.0.0
 Page No.
 : 64 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE E	Band 5							
					EUT wi	th Power	Reduct	ion (P-S	ensor Tri	ggered)					
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha		20450	20525	20600	(dB)	DW	Index		nnel	20425	20525	20625	(dB)
		Frequen	cy (MHz)	829.0	836.5	844.0	(ub)			Frequen	cy (MHz)	826.5	836.5	846.5	(ub)
		1	0	19.32	19.28	19.20	0			1	0	19.10	19.12	19.02	0
		1	24	19.17	19.13	19.05	0			1	12	19.00	18.98	18.84	0
		1	49	19.13	19.09	19.01	0			1	24	19.00	18.91	18.84	0
	QPSK	25	0	19.21	19.17	19.09	0		QPSK	12	0	19.03	18.99	18.90	0
		25	12	19.10	19.06	18.98	0			12	6	19.04	18.92	18.85	0
		25	25	19.09	19.05	18.97	0			12	13	18.92	18.97	18.80	0
10M		50	0	19.09	19.05	18.97	0	5M		25	0	19.03	18.91	18.73	0
TOIVI		1	0	19.29	19.25	19.13	0	JIVI		1	0	19.08	19.26	19.13	0
		1	24	19.07	19.12	19.01	0			1	12	19.00	18.98	18.76	0
		1	49	19.13	19.07	18.99	0			1	24	18.91	18.95	18.77	0
	16QAM	25	0	19.14	19.16	19.09	0		16QAM	12	0	19.00	18.98	19.01	0
		25	12	19.10	18.98	18.93	0			12	6	18.96	18.85	18.72	0
		25	25	19.08	19.02	18.91	0			12	13	18.91	18.99	18.75	0
		50	0	19.08	19.02	18.96	0			25	0	19.08	18.87	18.71	0
DW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	DW.	MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	20415	20525	20635	MPR (dB)	BW	Index	Cha	nnel	20407	20525	20643	MPR (dB)
		Frequen	cy (MHz)	825.5	836.5	847.5	(ub)			Frequen	cy (MHz)	824.7	836.5	848.3	(ub)
		1	0	19.21	19.06	19.06	0			1	0	19.27	19.23	19.13	0
		1	7	19.03	18.96	18.86	0			1	2	18.95	18.99	19.00	0
		1	14	18.93	18.86	18.81	0			1	5	18.96	18.87	18.89	0
	QPSK	8	0	19.13	19.13	19.00	0		QPSK	3	0	19.14	19.11	19.04	0
		8	3	18.98	18.96	18.90	0			3	1	18.88	18.92	18.90	0
		8	7	18.93	18.97	18.83	0			3	3	18.91	18.89	18.83	0
3М		15	0	18.97	18.87	18.81	0	1.4M		6	0	18.92	18.85	18.89	0
SIVI		1	0	19.03	18.94	19.06	0	1.4101		1	0	19.13	19.24	18.97	0
		1	7	18.99	19.04	19.00	0			1	2	19.05	18.97	18.97	0
		1	14	19.08	18.89	18.76	0			1	5	19.10	19.06	18.90	0
	16QAM	8	0	18.93	18.97	18.97	0		16QAM	3	0	19.14	18.92	18.83	0
		8	3	18.96	18.86	18.81	0			3	1	18.96	18.86	18.88	0
		8	7	18.78	18.90	18.79	0			3	3	18.93	18.98	18.77	0
		15	0	18.82	18.91	18.76	0			6	0	18.98	18.89	18.81	0

 Report Format Version 5.0.0
 Page No.
 : 65 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

							LTE E	Band 7							
				EU	T withou	ıt Power	Reduction	on (P-Se	nsor NO	Γ Trigger	ed)				
DW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	DW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha Freguen		20850 2510.0	21100 2535.0	21350 2560.0	MPR (dB)	BW	Index		nnel cy (MHz)	20825 2507.5	21100 2535.0	21375 2562.5	MPR (dB)
		1	0	22.46	22.56	22.68	0			1	0	22.38	22.48	22.60	0
		1	50	22.30	22.45	22.55	0			1	37	22.22	22.37	22.47	0
		1	99	22.31	22.40	22.44	0			1	74	22.23	22.32	22.36	0
	QPSK	50	0	21.39	21.46	21.53	1		QPSK	36	0	21.31	21.38	21.45	1
		50	25	21.42	21.61	21.64	1			36	19	21.34	21.53	21.56	1
		50	50	21.48	21.69	21.70	1			36	39	21.40	21.61	21.62	1
20M		100	0	21.54	21.70	21.77	1	15M		75	0	21.46	21.62	21.69	1
20IVI		1	0	21.50	21.94	21.66	1	ISIVI		1	0	21.48	21.92	21.64	1
		1	50	21.57	21.83	21.73	1			1	37	21.55	21.81	21.71	1
		1	99	21.68	21.66	21.70	1			1	74	21.66	21.64	21.68	1
	16QAM	50	0	20.41	20.74	20.56	2		16QAM	36	0	20.39	20.72	20.54	2
		50	25	20.43	20.68	20.65	2			36	19	20.41	20.66	20.63	2
		50	50	20.47	20.52	20.72	2			36	39	20.45	20.50	20.70	2
		100	0	20.54	20.71	20.77	2			75	0	20.52	20.69	20.75	2
DW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	
BW	Index	Cha		20800	21100	21400	MPR (dB)	BW	Index		nnel	20775	21100	21425	MPR (dB)
		Frequen	cy (MHz)	2505.0	2535.0	2565.0	(ub)			Frequen	cy (MHz)	2502.5	2535.0	2567.5	(ub)
		1	0	22.31	22.41	22.53	0			1	0	22.28	22.38	22.50	0
		1	24	22.15	22.30	22.40	0			1	12	22.12	22.27	22.37	0
		1	49	22.16	22.25	22.29	0			1	24	22.13	22.22	22.26	0
	QPSK	25	0	21.24	21.31	21.38	1		QPSK	12	0	21.21	21.28	21.35	1
		25	12	21.27	21.46	21.49	1			12	6	21.24	21.43	21.46	1
		25	25	21.33	21.54	21.55	1			12	13	21.30	21.51	21.52	1
10M		50	0	21.39	21.55	21.62	1	5M		25	0	21.36	21.52	21.59	1
		1	0	21.46	21.90	21.62	1	0		1	0	21.39	21.83	21.55	1
		1	24	21.53	21.79	21.69	1			1	12	21.46	21.72	21.62	1
		1	49	21.64	21.62	21.66	1			1	24	21.57	21.55	21.59	1
	16QAM	25	0	20.37	20.70	20.52	2		16QAM	12	0	20.30	20.63	20.45	2
		25	12	20.39	20.64	20.61	2			12	6	20.32	20.57	20.54	2
		25 50	25	20.43	20.48	20.68	2			12	13	20.36	20.41	20.61	2
			0	20.50	20.67	20.73	2			25	0	20.43	20.60	20.66	2

 Report Format Version 5.0.0
 Page No.
 : 66 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

							LTE E	Band 7							
					EUT wi	th Powe	Reduct	ion (P-S	ensor Tri	ggered)					
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
BW	Index	Cha		20850	21100	21350	(dB)	BW	Index		nnel	20825	21100	21375	(dB)
		Frequen		2510.0	2535.0	2560.0	` ′			Frequen	cy (MHz)	2507.5	2535.0	2562.5	` '
		1	0	11.90	11.92	11.99	0			1	0	11.89	11.85	11.97	0
i I		1	50	11.74	11.76	11.83	0			1	37	11.72	11.69	11.75	0
i I		1	99	11.89	11.91	11.98	0			1	74	11.81	11.91	11.93	0
i I	QPSK	50	0	11.89	11.91	11.98	0		QPSK	36	0	11.84	11.81	11.93	0
i I		50	25	11.87	11.89	11.96	0			36	19	11.80	11.79	11.93	0
		50	50	11.86	11.88	11.95	0			36	39	11.76	11.78	11.91	0
20M		100	0	11.88	11.90	11.97	0	15M		75	0	11.80	11.84	11.96	0
20101		1	0	11.85	11.86	11.95	0	I JIVI		1	0	11.87	11.76	11.89	0
i I		1	50	11.67	11.74	11.80	0			1	37	11.64	11.71	11.77	0
		1	99	11.88	11.87	11.93	0			1	74	11.79	11.80	11.86	0
	16QAM	50	0	11.79	11.86	11.96	0		16QAM	36	0	11.76	11.83	11.81	0
i I		50	25	11.84	11.81	11.95	0			36	19	11.77	11.80	11.92	0
		50	50	11.84	11.85	11.92	0			36	39	11.77	11.77	11.91	0
		100	0	11.85	11.81	11.89	0			75	0	11.77	11.75	11.85	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha		20800	21100	21400	MPR	BW	Index		nnel	20775	21100	21425	MPR
		Frequency (MHz)		2505.0	2535.0	5.0 2565.0 (dB)				Frequen	cy (MHz)	2502.5	2535.0	2567.5	(dB)
		1	0	11.81	11.84	11.93	0			1	0	11.86	11.79	11.75	0
		1	24	11.58	11.60	11.75	0			1	12	11.59	11.63	11.53	0
i I		1	49	11.72	11.75	11.84	0			1	24	11.77	11.72	11.77	0
i I	QPSK	25	0	11.83	11.77	11.93	0	1	QPSK	12	0	11.73	11.83	11.65	0
		25	12	11.71	11.72	11.88	0			12	6	11.74	11.73	11.78	0
i I		25	25	11.81	11.85	11.82	0			12	13	11.72	11.84	11.79	0
4014		50	0	11.78	11.82	11.84	0			25	0	11.75	11.78	11.78	0
10M		1	0	11.80	11.80	11.81	0	5M		1	0	11.77	11.74	11.88	0
		1	24	11.52	11.59	11.72	0			1	12	11.60	11.68	11.72	0
i l		1	49	11.82	11.74	11.81	0	1		1	24	11.78	11.79	11.82	0
i l	16QAM	25	0	11.64	11.59	11.74	0	1	16QAM	12	0	11.77	11.74	11.88	0
i l		25	12	11.66	11.71	11.71	0	1		12	6	11.70	11.68	11.65	0
		25	25	11.78	11.77	11.64	0	1		12	13	11.79	11.56	11.75	0
l l								0							

 Report Format Version 5.0.0
 Page No.
 : 67 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 12							
				EU	T withou	t Power	Reduction	on (P-Se	ensor NO	Γ Trigger	ed)				
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	23060	23095	23130	(dB)	DVV	Index		nnel	23035	23095	23155	(dB)
			cy (MHz)	704.0	707.5	711.0	` '				cy (MHz)	701.5	707.5	713.5	` '
		1	0	22.96	22.83	22.89	0			1	0	22.91	22.78	22.84	0
		1	24	22.64	22.72	22.53	0			1	12	22.59	22.67	22.48	0
	ODOK	1	49	22.72	22.59	22.68	0		ODOK	1	24	22.67	22.54	22.63	0
	QPSK	25	0	21.95	21.88	21.88	1		QPSK	12	0	21.90	21.83	21.83	1
		25 25	12 25	21.94	21.79	21.61	1			12 12	6 13	21.89	21.74	21.56	1
				21.85	21.62	21.63	1			25		21.80	21.57	21.58	1
10M		50	0	21.94	21.72	21.78	1	5M			0	21.89	21.67	21.73	1
		1	0	21.97	21.83	21.86	1			1	0	21.90	21.76	21.79	1
		1	24	21.89	21.74	21.96	1			1	12	21.82	21.67	21.89	1
		1	49	21.88	21.90	21.94	1			1	24	21.81	21.83	21.87	1
	16QAM	25	0	20.93	20.82	20.67	2		16QAM	12	0	20.86	20.75	20.60	2
	_	25	12	20.86	20.85	20.64	2			12	6	20.79	20.78	20.57	2
		25	25	20.95	20.70	20.90	2			12	13	20.88	20.63	20.83	2
		50	0	20.78	20.85	20.79	2			25	0	20.71	20.78	20.72	2
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index			23025	23095	23165	MPR	BW	Index		nnel	23017	23095	23173	MPR
		Channel Frequency (MHz)		700.5	707.5	714.5	(dB)		ilidex _		cy (MHz)	699.7	707.5	715.3	(dB)
		1	0	22.86	22.73	22.79	0			1	0	22.82	22.69	22.75	0
		1	7	22.54	22.62	22.43	0			1	2	22.50	22.58	22.39	0
		1	14	22.62	22.49	22.58	0			1	5	22.58	22.45	22.54	0
	QPSK	8	0	21.85	21.78	21.78	1		QPSK	3	0	22.81	22.74	22.74	0
		8	3	21.84	21.69	21.51	1			3	1	22.80	22.65	22.47	0
		8	7	21.75	21.52	21.53	1			3	3	22.71	22.48	22.49	0
3М		15	0	21.84	21.62	21.68	1	1.4M		6	0	21.80	21.58	21.64	1
SIVI		1	0	21.82	21.68	21.71	1	1.4101		1	0	21.75	21.61	21.64	1
		1	7	21.74	21.59	21.81	1			1	2	21.67	21.52	21.74	1
		1	14	21.73	21.75	21.79	1			1	5	21.66	21.68	21.72	1
	16QAM	8	0	20.78	20.67	20.52	2		16QAM	3	0	21.71	21.60	21.45	1
		8	3	20.71	20.70	20.49	2			3	1	21.64	21.63	21.42	1
		8	7	20.80	20.55	20.75	2			3	3	21.73	21.48	21.68	1
		15	0	20.63	20.70	20.64	2			6	0	20.56	20.63	20.57	2

 Report Format Version 5.0.0
 Page No.
 : 68 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 12							
					EUT wi	th Power	r Reduct	ion (P-S	ensor Tri	ggered)					
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	23060	23095	23130	(dB)	DVV	Index		nnel	23035	23095	23155	(dB)
			cy (MHz)	704.0	707.5	711.0	` ′				cy (MHz)	701.5	707.5	713.5	` '
		11	0	19.33	19.29	19.30	0			1	0	19.18	19.11	19.09	0
		1	24	19.35	19.31	19.32	0			1	12	19.25	19.07	19.03	0
		11	49	19.30	19.26	19.27	0			1	24	19.09	19.11	19.14	0
	QPSK	25	0	19.29	19.25	19.26	0		QPSK	12	0	19.15	19.12	19.04	0
		25	12	19.34	19.30	19.31	0			12	6	19.20	19.15	19.16	0
		25	25	19.26	19.22	19.23	0			12	13	19.13	19.07	19.02	0
10M		50	0	19.28	19.24	19.25	0	5M		25	0	19.17	19.06	19.03	0
TOIVI		1	0	19.33	19.25	19.25	0	JIVI		1	0	19.24	19.15	19.22	0
		1	24	19.25	19.27	19.27	0			1	12	19.17	19.11	19.12	0
		1	49	19.25	19.25	19.19	0			1	24	19.01	19.05	19.18	0
	16QAM	25	0	19.26	19.25	19.25	0		16QAM	12	0	19.04	19.07	19.13	0
		25	12	19.30	19.24	19.30	0			12	6	19.19	18.99	19.15	0
		25	25	19.16	19.12	19.13	0			12	13	19.08	19.00	19.02	0
		50	0	19.22	19.21	19.20	0			25	0	19.09	19.05	19.16	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	GPP	MCS	RB RB Size Offset		Low	Mid	High	3GPP
BW	Index	Cha	nnel	23025	23095	23165	MPR (dB)	BW	Index	Cha	nnel	23017	23095	23173	MPR (dB)
		Channel Frequency (MHz)		700.5	707.5	714.5	(ab)			Frequen	cy (MHz)	699.7	707.5	715.3	(ab)
		1	0	19.14	19.21	19.19	0			1	0	19.26	19.15	19.19	0
		1	7	19.10	19.08	19.20	0			1	2	19.32	19.08	19.16	0
		1	14	19.17	19.04	19.10	0			1	5	19.18	19.09	19.14	0
	QPSK	8	0	19.20	19.17	19.12	0	1	QPSK	3	0	19.15	19.09	19.11	0
		8	3	19.19	19.15	19.17	0			3	1	19.25	19.22	19.31	0
		8	7	19.20	19.20	19.08	0			3	3	19.20	19.16	19.09	0
014		15	0	19.13	19.22	19.12	0	1.4M		6	0	19.22	19.09	19.10	0
3M		1	0	19.05	19.18	19.07	0	1.4101		1	0	19.17	19.15	19.22	0
		1	7	19.19	19.18	19.15	0			1	2	19.17	19.04	19.10	0
		1	14	19.29	19.14	19.10	0			1	5	19.06	19.10	19.10	0
	16QAM	8	0	19.09	19.06	19.08	0	1	16QAM	3	0	19.18	19.05	19.07	0
		8	3	19.24	19.14	19.18	0	1		3	1	19.15	19.13	19.03	0
		8	7	18.99	19.06	19.11	0	1		3	3	19.11	18.97	19.13	0
		15	0	18.98	19.06	19.15	0			6	0	19.08	19.00	19.03	0

 Report Format Version 5.0.0
 Page No.
 : 69 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

	LTE Band 13 EUT without Power Reduction (P-Sensor NOT Triggered)														
	EUT without Power Reduction (P-Sensor NOT Triggered) RB RB Low Mid High 3GPP RB Low Mid High 3GPP														
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha	nnel		23230		MPR	DVV	Index	Cha	nnel	23205	23230	23225	
		Frequen	cy (MHz)		782.0		(dB)			Frequen	cy (MHz)	779.5	782.0	784.5	(dB)
		1	0		22.67 0 22.55 0	1	0	22.87	22.91	22.89	0				
		1	24		22.55		0			1	12	22.73	22.87	22.90	0
		1	49		22.93		0	5M		1	24	22.88	22.74	22.85	0
	QPSK	25	0		21.74		1		QPSK	12	0	21.98	21.79	21.90	1
		25	12		21.50		1			12	6	21.68	21.84	21.92	1
		25	25		21.69		1			12	13	21.89	21.91	21.86	1
1014		50	0		21.61		1			25	0	21.95	21.84	21.96	1
10M		1	0		21.89		1	SIVI		1	0	21.90	21.92	21.94	1
		1	24		21.79		1			1	12	21.71	21.83	21.77	1
		1	49		21.75		1			1	24	21.99	21.79	21.86	1
	16QAM	25	0		20.80		2		16QAM	12	0	20.86	20.91	20.84	2
		25	12		20.58		2			12	6	20.79	20.78	20.94	2
		25	25		20.76		2			12	13	21.00	20.80	20.85	2
		50	0		20.65		2			25	0	20.81	20.83	20.84	2

							LTE B	and 13							
	EUT with Power Reduction (P-Sensor Triggered) RB RB Low Mid High 2CRB RB Low Mid High 2CRB														
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha	nnel		23230		(dB)	DVV	Index	Cha	nnel	23205	23230	23225	(dB)
		Frequen	cy (MHz)		782.0		(ub)			Frequen	cy (MHz)	779.5	782.0	784.5	(ub)
		1	0		19.13		0			1	0	18.94	19.00	18.96	0
		1	24		19.01		0			1	12	18.83	18.89	18.85	0
		1	49		19.22		0	5M		1	24	18.98	19.04	19.00	0
	QPSK	25	0		19.18		0		QPSK	12	0	19.02	19.08	19.04	0
		25	12		19.04		0			12	6	18.81	18.87	18.83	0
		25	25		19.11		0				13	18.96	19.02	18.98	0
10M		50	0		19.19		0			25	0	18.99	19.05	19.01	0
TOW		1	0		19.07		0	SIVI		1	0	18.85	18.91	18.87	0
		1	24		18.91		0			1	12	18.83	18.89	18.85	0
		1	49		19.22		0			1	24	18.92	18.98	18.94	0
	16QAM	25	0		19.14		0		16QAM	12	0	18.96	19.02	18.98	0
		25	12		18.96		0			12	6	18.80	18.86	18.82	0
		25	25		19.08		0			12	13	18.80	18.86	18.82	0
		50	0		19.14		0			25	0	18.97	19.03	18.99	0

 Report Format Version 5.0.0
 Page No.
 : 70 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

	LTE Band 17 EUT without Power Reduction (P-Sensor NOT Triggered)														
	EUT without Power Reduction (P-Sensor NOT Triggered) RB RB Low Mid High 2CRR RB Low Mid High 2CRR														
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha	nnel	23780	23790	23800	MPR	DVV	Index	Cha	nnel	23755	23790	23825	
		Frequen	cy (MHz)	709.0	710.0	711.0	(dB)			Frequen	cy (MHz)	706.5	710.0	713.5	(dB)
		1	0	22.73	22.79	22.65	0			1	0	22.64	22.70	22.56	0
		1	24	22.56	22.50	22.47	0		1	12	22.47	22.41	22.38	0	
		1	49	22.82	22.81	22.85	0			1	24	22.73	22.72	22.76	0
	QPSK	25	0	21.65	21.62	21.57	1		QPSK	12	0	21.56	21.53	21.48	1
		25	12	21.61	21.50	21.53	1			12	6	21.52	21.41	21.44	1
		25	25	21.75	21.65	21.79	1			12 12	13	21.66	21.56	21.70	1
10M		50	0	21.59	21.60	21.70	1			25	0	21.50	21.51	21.61	1
TOW		1	0	21.78	21.86	21.93	1	SIVI		1	0	21.75	21.83	21.90	1
		1	24	21.93	21.76	21.83	1			1	12	21.90	21.73	21.80	1
		1	49	21.71	21.76	21.83	1			1	24	21.68	21.73	21.80	1
	16QAM	25	0	20.87	20.75	20.65	2		16QAM	12	0	20.84	20.72	20.62	2
		25	12	20.70	20.56	20.61	2			12	6	20.67	20.53	20.58	2
		25	25	20.72	20.65	20.90	2			12	13	20.69	20.62	20.87	2
		50	0	20.68	20.68	20.80	2			25	0	20.65	20.65	20.77	2

	LTE Band 17 EUT with Power Reduction (P-Sensor Triggered)														
	RR RR RR														
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha	nnel	23780	23790 2	23800	(dB)	DVV	Index	Cha	nnel	23755	23790	23825	(dB)
		Frequen	cy (MHz)	709.0	710.0	711.0	(ub)			Frequen	cy (MHz)	706.5	710.0	713.5	(ub)
		1	0	19.36	19.34	19.43	0			1	0	19.17	19.23	19.21	0
		1	24	19.26	19.24	19.33	0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	12	19.12	19.23	19.08	0	
		1	49	19.42	19.40	19.49	0			1	24	19.37	19.24	19.21	0
	QPSK	25	0	19.33	19.31	19.40	0		QPSK	12	0	19.18	19.19	19.11	0
		25	12	19.29	19.27	19.36	0			12	6	19.11	19.16	19.15	0
		25	25	19.30	19.28	19.37	0			12	13	19.16	19.07	19.11	0
10M		50	0	19.32	19.30	19.39	0			25	0	19.19	19.14	19.23	0
I OIVI		1	0	19.33	19.25	19.40	0	SIVI		1	0	19.10	19.12	19.32	0
		1	24	19.18	19.14	19.31	0			1	12	19.15	19.07	19.14	0
		1	49	19.41	19.33	19.49	0			1	24	19.24	19.22	19.31	0
	16QAM	25	0	19.25	19.29	19.33	0		16QAM	12	0	19.24	19.22	19.19	0
		25	12	19.20	19.20	19.32	0	1		12	6	19.05	19.14	19.18	0
		25	25	19.26	19.18	19.35	0			12	13	19.26	19.14	19.08	0
		50	0	19.24	19.30	19.34	0			25	0	19.23	19.16	19.30	0

 Report Format Version 5.0.0
 Page No. : 71 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

							LTE B	and 26							
				EU	T withou	ıt Power	Reduction	on (P-Se	ensor NO	Trigger	ed)				
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	26765	26865	26965	(dB)	DVV	Index		nnel	26740	26865	26990	(dB)
		Frequen		821.5	831.5	841.5					cy (MHz)	819.0	831.5	844.0	
		1	0	22.48	22.55	22.67	0			1	0	22.44	22.51	22.63	0
		1	37 74	22.94	22.71	22.69	0			1	24	22.90	22.67	22.65	0
	QPSK	1 36	0	22.72 21.87	22.65 21.70	22.33 21.74	1		QPSK	1 25	49 0	22.68 21.83	22.61 21.66	22.29 21.70	0
	QFSK	36	19	21.98	21.76	21.74	1		QFSIX	25	12	21.03	21.72	21.70	1
		36	39	21.69	21.76	21.59	1			25	25	21.65	21.72	21.55	1
		75	0	21.95	21.81	21.82	1			50	0	21.91	21.77	21.78	1
15M		1	0	21.81	21.98	22.00	1	10M		1	0	21.74	21.91	21.93	1
		1	37	21.83	21.74	21.71	1			1	24	21.76	21.67	21.64	1
		1	74	21.96	21.87	21.64	1			1	49	21.89	21.80	21.57	1
	16QAM	36	0	20.88	20.70	20.87	2		16QAM	25	0	20.81	20.63	20.80	2
		36	19	20.80	20.69	20.80	2			25	12	20.73	20.62	20.73	2
		36	39	20.77	20.75	20.57	2			25	25	20.70	20.68	20.50	2
		75	0	20.76	20.87	20.86	2			50	0	20.69	20.80	20.79	2
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		Moo	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index		nnel	26715	26865	27015	MPR	BW	MCS Index		nnel	26705	26865	27025	MPR
	ucx	Frequen		816.5	831.5	846.5	(dB)		uux		cy (MHz)	815.5	831.5	847.5	(dB)
		1	0	22.38	22.45	22.57	0			1	0	22.34	22.41	22.53	0
		1	12	22.84	22.61	22.59	0			1	7	22.80	22.57	22.55	0
		1	24	22.62	22.55	22.23	0			1	14	22.58	22.51	22.19	0
	QPSK	12	0	21.77	21.60	21.64	1		QPSK	8	0	21.73	21.56	21.60	1
		12	6	21.88	21.66	21.74	1	3 M		8	3	21.84	21.62	21.70	1
		12	13	21.59	21.59	21.49	1		1	8	7	21.55	21.55	21.45	1
EN4		25	0	21.85	21.71	21.72	1			15	0	21.81	21.67	21.68	1
5M		1	0	21.71	21.88	21.90	1			1	0	21.63	21.80	21.82	1
		1	12	21.73	21.64	21.61	1			1	7	21.65	21.56	21.53	1
		1	24	21.86	21.77	21.54	1			1	14	21.78	21.69	21.46	1
	16QAM	12	0	20.78	20.60	20.77	2		16QAM	8	0	20.70	20.52	20.69	2
		12	6	20.70	20.59	20.70	2			8	3	20.62	20.51	20.62	2
		12	13	20.67	20.65	20.47	2			8	7	20.59	20.57	20.39	2
		25	0	20.66	20.77	20.76	2			15	0	20.58	20.69	20.68	2
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP								
DVV	Index		nnel	26697	26865	27033	MPR (dB)	`							
		Frequen		814.7	831.5	848.3	, ,								
		1	0	22.30	22.37	22.49	0								
		1	2	22.76	22.53	22.51	0								
	0.000	1	5	22.54	22.47	22.15	0								
	QPSK	3	0	22.69	22.52	22.56	0								
		3	1	22.80	22.58	22.66	0								
		3	3	22.51	22.51	22.41	0				`				
1.4M		6	0	21.77	21.63	21.64	1								
		1	0	21.56	21.73	21.75	1					•			
		1	2	21.58	21.49	21.46	1								
		1	5	21.71	21.62	21.39	1								
	16QAM	3	0	21.63	21.45	21.62	1								
		3	1	21.55	21.44	21.55	1								
		3	3	21.52	21.50	21.32	1								
		6	0	20.51	20.62	20.61	2								

Report Format Version 5.0.0 Page No. : 72 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

								and 26							
					EUT wi	th Power	Reduct	ion (P-S	ensor Tri	ggered)					
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	26765	26865	26965	(dB)	DVV	Index		nnel	26740	26865	26990	(dB)
		Frequen		821.5	831.5	841.5					cy (MHz)	819.0	831.5	844.0	
		1	0 37	19.21	19.30	19.36	0			1	0 24	19.12	19.20	19.18	0
		1	74	19.66 19.49	19.57 19.40	19.63 19.46	0			1	49	19.57 19.39	19.43 19.35	19.40	0
	QPSK	36	0	19.49	19.45	19.46	0		QPSK	25	0	19.39	19.35	19.35 19.40	0
	QI SIX	36	19	19.51	19.43	19.48	0		QI OIX	25	12	19.39	19.23	19.40	0
		36	39	19.46	19.37	19.43	0			25	25	19.29	19.21	19.39	0
		75	0	19.56	19.47	19.53	0			50	0	19.43	19.35	19.46	0
15M		1	0	19.19	19.20	19.34	0	10M		1	0	19.12	19.22	19.22	0
		1	37	19.57	19.52	19.60	0			1	24	19.47	19.51	19.43	0
		1	74	19.46	19.37	19.45	0			1	49	19.37	19.16	19.36	0
	16QAM	36	0	19.54	19.36	19.45	0		16QAM	25	0	19.32	19.30	19.43	0
		36	19	19.41	19.32	19.43	0			25	12	19.35	19.39	19.27	0
		36	39	19.38	19.28	19.33	0			25	25	19.35	19.29	19.25	0
		75	0	19.48	19.43	19.45	0			50	0	19.48	19.29	19.41	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index		nnel	26715	26865	27015	MPR (dB)	BW	Index		nnel	26705	26865	27025	MPR (dB)
		Frequen	cy (MHz)	816.5	831.5	846.5	(UD)			Frequen	cy (MHz)	815.5	831.5	847.5	(UD)
		1	0	19.00	19.23	19.16	0			1	0	19.00	19.22	19.12	0
		1	12	19.42	19.53	19.52	0			1	7	19.54	19.51	19.58	0
		1	24	19.39	19.33	19.35	0			1	14	19.41	19.22	19.34	0
	QPSK	12	0	19.48	19.34	19.31	0		QPSK	8	0	19.34	19.28	19.37	0
		12	6	19.33	19.35	19.16	0			8	3	19.45	19.24	19.39	0
		12	13	19.33	19.29	19.30	0			8	7	19.36	19.23	19.33	0
5M		25	0	19.51	19.37	19.35	0	ЗМ		15	0	19.42	19.46	19.30	0
		1	0	19.07	19.10	19.27	0			1	0	18.97	19.13	19.13	0
		1	12	19.46	19.43	19.50	0			1	7	19.49	19.40	19.40	0
	16QAM	1 12	24 0	19.34	19.23	19.26	0		16QAM	1	14 0	19.35	19.26	19.20	0
	TOQAM	12	6	19.42 19.26	19.33	19.38	0		TOQAM	8	3	19.36	19.22	19.30	0
		12	13	19.26	19.22 19.15	19.36 19.23	0			8	7	19.39 19.37	19.27 19.20	19.36 19.17	0
		25	0	19.19	19.13	19.23	0			15	0	19.34	19.20	19.17	0
		RB	RB							10	Ü	10.04	13.04	13.00	<u> </u>
вw	MCS	Size	Offset	Low	Mid	High	3GPP MPR								
DVV	Index		nnel	26697	26865	27033	(dB)	`							
		Frequen	-	814.7	831.5	848.3	` '								
		1	0	19.10	19.18	19.26	0								
		1	2	19.53	19.37	19.47	0								
	ODOK	1	5	19.31	19.27	19.24	0								
	QPSK	3	0	19.49	19.28	19.37	0								
		3	1	19.39	19.35	19.38	0								
		3	3	19.35	19.26	19.38	0								
1.4M		6		19.40	19.35	19.47	0								
		1	0	18.94	19.10	19.09	0								
		1	2	19.47	19.52	19.53	0								
	16QAM		5	19.37	19.14	19.34	0						`		
	TOQAM	3	1	19.30	19.19	19.33	0								
		3	3	19.33 19.27	19.30 19.18	19.27 19.22	0								
		6	0				0								
		O	U	19.47	19.29	19.42	U								

 Report Format Version 5.0.0
 Page No.
 : 73 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

						LTE B	and 30							
				EUT without	ut Power	Reduction	on (P-Se	ensor NO	Γ Trigger	red)				
BW	MCS	RB Size	RB Offset	Mid		3GPP	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha	nnel	27710		MPR (dB)	BW	Index	Cha	nnel	27685	27710	27735	MPR (dB)
		Frequen	cy (MHz)	2310.0		(ub)			Frequen	cy (MHz)	2307.5	2310.0	2312.5	(ub)
		1	0	22.55		0			1	0	22.49	22.25	22.43	0
		1	24	22.24		0			1	12	22.40	22.45	22.47	0
		1	49	22.51		0			1	24	22.54	22.51	22.43	0
	QPSK	25	0	21.38		1		QPSK	12	0	21.34	21.33	21.58	1
		25	12	21.50		1			12	6	21.39	21.48	21.52	1
		25	25	21.62		1			12	13	21.31	21.51	21.63	1
10M		50	0	21.69		1	5M		25	0	21.33	21.50	21.70	1
I OIVI		1	0	21.84		1	SIVI		1	0	21.06	21.51	21.71	1
		1	24	21.71		1			1	12	21.62	21.90	21.61	1
		1	49	21.79		1			1	24	21.38	21.47	21.56	1
	16QAM	25	0	20.40		2		16QAM	12	0	20.36	20.34	20.58	2
		25	12	20.59		2			12	6	20.31	20.50	20.59	2
		25	25	20.67		2			12	13	20.43	20.55	20.49	2
		50	0	20.81		2			25	0	20.29	20.43	20.56	2

						LTE B	and 30							
				EUT wi	th Power	Reducti	ion (P-S	ensor Trig	ggered)					
BW	MCS	RB Size	RB Offset	Mid		3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
DVV	Index	Cha	nnel	27710		(dB)	DVV	Index	Cha	nnel	27685	27710	27735	(dB)
		Frequen	cy (MHz)	2310.0		(ub)			Frequen	cy (MHz)	2307.5	2310.0	2312.5	(ub)
		1	0	12.99		0			1	0	12.95	12.93	12.94	0
		1	24	12.89		0			1	12	12.83	12.69	12.82	0
		1	49	12.84		0			1	24	12.84	12.77	12.83	0
	QPSK	25	0	12.88		0		QPSK	12	0	12.06	12.75	12.27	0
		25	12	12.91		0			12	6	12.11	12.87	12.21	0
		25	25	12.93		0			12	13	12.03	12.78	12.32	0
10M		50	0	12.96		0	5M		25	0	12.05	12.83	12.39	0
TOW		1	0	12.94		0	SIVI		1	0	11.78	12.75	12.40	0
		1	24	12.86		0			1	12	12.34	12.80	12.30	0
		1	49	12.77		0			1	24	12.10	12.72	12.25	0
	16QAM	25	0	12.79		0		16QAM	12	0	11.08	12.69	11.27	0
		25	12	12.83		0			12	6	11.03	12.74	11.28	0
		25	25	12.89		0			12	13	11.15	12.81	11.18	0
		50	0	12.86		0			25	0	11.01	12.76	11.25	0

 Report Format Version 5.0.0
 Page No.
 : 74 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

BW MCS Index Size Uniset Size Size Size Size Size Uniset Size Uniset Size Uniset Size Uniset Size Uniset Size Uniset Size Size Size Size Uniset Size U								LTE B	and 38							
BW MCS Index Channel 37850 38000 38150 38160					EU	T withou	t Power	Reduction	on (P-Se	ensor NO	Trigger	ed)				
Productive (MHz) 28800 28900 2	DW.	MCS			Low	Mid			DW.	MCS			Low	Mid	High	3GPP
Prequency (Mirz) 2595.0 2595.0 2691.0 Frequency (Mirz) 2575. 2595 2621.5 Program (Mirz) 2575. 2595. 2615.5 Progr	DVV	Index							DW	Index						(dB)
APSK			Frequen	cy (MHz)				(42)			Frequen					(42)
APSK															_	0
A CPSK								0				_				0
20M					22.49	22.62		0				74		22.57	22.63	0
20M 16QAM 16QAM 16		QPSK		-				1		QPSK		_				1
100 0 21.37 21.59 21.62 1 15M 15M 16QAM 16																1
1								1								1
1	2014		100	0	21.37	21.59	21.62	1	151/		75	0	21.32	21.54	21.57	1
16QAM 1 99 21.71 21.91 21.90 1 1 74 21.64 21.84 21.83 1 1 1 1 1 20 20.50 20.71 20.78 20.85 2 2 2 2 2 2 2 2 2	ZUIVI		1	0	21.61	21.84	21.90	1	TOW		1	0	21.54	21.77	21.83	1
Table Tabl			1	50	21.60	21.79	21.84	1			1	37	21.53	21.72	21.77	1
SO 25 20.58 20.79 20.84 2 36 19 20.51 20.72 20.77 2 20.77 2 20.77 2 30 30 30 30 30 30 30			1	99	21.71	21.91	21.90	1			1	74	21.64	21.84	21.83	1
BW MCS Index		16QAM	50	0	20.57	20.78	20.85	2	1	16QAM	36	0	20.50	20.71	20.78	2
BW MCS RB Size Offset Channel 37800 38000 38200 MPR (dB) BW MCS Index RB Channel 37800 38000 38200 MPR (dB) BW MCS Index RB Channel 37775 38000 38225 MPR (dB) MP			50	25	20.58	20.79	20.84	2			36	19	20.51	20.72	20.77	2
BW MCS Index Channel 37800 38000 38200 MPR (dB) BW MCS Index Channel 37775 38000 38225 MPR (dB) Channel 37800 2575.0 2595.0 2615.0 Channel 37775 38000 38225 MPR (dB) Channel Channe			50	50	20.61	20.83	20.86	2			36	39	20.54	20.76	20.79	2
BW MCS Index Size Offset Cow Mid High 3GP MPR (db) BW MCS Index Channel 37775 38000 38225 MPR (db) Requested Frequency (MHz) 2575.0 2595.0 2615.0 MPR (db) Requested Frequency (MHz) 2572.5 2595.0 2617.5 MPR Requested Requested Requested Frequency (MHz) 2572.5 2595.0 2615.0 2615.0 2617.5			100	0	20.47	20.66	20.71	2			75	0	20.40	20.59	20.64	2
No. Section		MCS			Low	Mid	High	3GPP		MCC			Low	Mid	High	3GPP
Trequency (MHz) 2575.0 2595.0 2615.0 (ds)	BW				37800	38000	38200		BW				37775	38000	38225	MPR
1 0 22.30 22.44 22.46 0 1 1 0 22.26 22.40 22.42 0 1 1 1 24 22.24 22.37 22.47 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 24 22.35 22.48 22.54 0 1 1 2 0 21.33 21.52 21.59 1 1 1 2 0 21.33 21.52 21.59 1 1 1 2 13 21.32 21.48 21.54 1 1 1 2 13 21.32 21.48 21.54 1 1 1 2 13 21.32 21.48 21.54 1 1 1 2 13 21.32 21.48 21.54 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1		IIIdox						(dB)		IIIUUX						(dB)
1 24 22.28 22.41 22.51 0 1 49 22.39 22.52 22.58 0 25 0 21.37 21.56 21.63 1 25 12 21.34 21.50 21.56 1 25 25 25 21.36 21.52 21.58 1 50 0 21.27 21.49 21.52 1 16QAM 25 0 20.47 20.68 20.75 2 25 12 20.48 20.69 20.74 2 25 25 25 20.51 20.73 20.76 2				-	22.30	22.44	22.46	0				_	22.26	22.40	22.42	0
1 49 22.39 22.52 22.58 0 25 0 21.37 21.56 21.63 1 25 12 21.34 21.50 21.56 1 25 25 25 21.36 21.52 21.58 1 50 0 21.27 21.49 21.52 1 16QAM 25 0 20.47 20.68 20.75 2 25 12 20.48 20.69 20.74 2 25 25 25 20.51 20.73 20.76 2			1	24				0			1	12				0
10M											1	24				0
10M 25		QPSK	25					1		QPSK	12	0				1
10M			25	12							12	6				1
10M			25	25	21.36			1			12	13			21.54	1
1 0 21.51 21.74 21.80 1 1 1 0 21.43 21.66 21.72 1 1 1 1 24 21.42 21.61 21.66 1 1 1 24 21.50 21.61 21.81 21.80 1 1 1 24 21.53 21.73 21.72 1 1 1 24 21.25 25 12 20.48 20.69 20.74 2 2 25 25 25 20.51 20.73 20.76 2			50	0				1			25	0				1
1 24 21.50 21.69 21.74 1 1 49 21.61 21.80 1 15QAM 25 0 20.47 20.68 20.75 2 25 12 20.48 20.69 20.74 2 25 25 25 20.51 20.73 20.76 2	10M		1	0	21.51	21.74	21.80	1	5M		1	0		21.66		1
1 49 21.61 21.81 21.80 1 16QAM 25 0 20.47 20.68 20.75 2 25 12 20.48 20.69 20.74 2 25 25 25 20.51 20.73 20.76 2 16QAM 12 0 20.39 20.60 20.67 2 12 6 20.40 20.61 20.66 2 12 13 20.43 20.65 20.68 2			1	24				1			1	12				1
16QAM 25 0 20.47 20.68 20.75 2 16QAM 12 0 20.39 20.60 20.67 2 2 25 12 20.48 20.69 20.74 2 12 6 20.40 20.61 20.66 2 2 25 25 20.51 20.73 20.76 2 12 13 20.43 20.65 20.68 2			1	49	21.61	21.81	21.80	1	1		1	24	21.53	21.73		1
25 12 20.48 20.69 20.74 2 12 6 20.40 20.61 20.66 2 25 25 20.51 20.73 20.76 2 12 13 20.43 20.65 20.68 2		16QAM	25	0	_			2	1	16QAM	12	0				2
25			25	12	_				1		12	6				2
			25	25			_		1		12	13				2
			50	0	20.37	20.56	20.61	2	1		25	0	20.29	20.48	20.53	2

 Report Format Version 5.0.0
 Page No.
 : 75 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 38							
					EUT wi	th Powe	Reduct	ion (P-S	ensor Tri	ggered)					
DW.	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha		37850	38000	38150	(dB)	BW	Index		nnel	37825	38000	38175	MPR (dB)
		Frequen		2580.0	2595.0	2610.0	` ′			Frequen	cy (MHz)	2577.5	2595	2612.5	, ,
		1	0	15.11	15.23	15.50	0			1	0	15.06	15.18	15.48	0
		1	50	15.16	15.28	15.55	0			1	37	15.08	15.25	15.45	0
	0.0014	1	99	15.68	15.67	15.69	0		0001	1	74	15.19	15.40	15.60	0
	QPSK	50	0	15.09	15.21	15.48	0		QPSK	36	0	15.00	15.21	15.43	0
		50	25	15.15	15.27	15.54	0			36	19	15.13	15.23	15.46	0
		50	50	15.19	15.31	15.58	0			36	39	15.15	15.26	15.49	0
20M		100	0	15.20	15.32	15.59	0	15M		75	0	15.11	15.27	15.58	0
		1	0	15.11	15.15	15.43	0			1	0	14.93	15.18	15.38	0
		1	50	15.08	15.27	15.49	0			1	37	15.14	15.12	15.42	0
		1	99	15.19	15.38	15.58	0			1	74	15.14	15.30	15.56	0
	16QAM	50	0	14.99	15.19	15.47	0		16QAM	36	0	15.02	15.12	15.37	0
		50	25	15.06	15.23	15.48	0			36	19	15.03	15.20	15.41	0
		50	50	15.15	15.24	15.57	0			36	39	15.13	15.13	15.45	0
		100	0	15.17	15.31	15.55	0			75	0	15.08	15.23	15.51	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha		37800	38000	38200	MPR (dB)	BW	Index		nnel	37775	38000	38225	MPR (dB)
		Frequen	cy (MHz)	2575.0	2595.0	2615.0	(ab)			Frequen	cy (MHz)	2572.5	2595.0	2617.5	(ab)
		1	0	14.90	15.21	15.41	0			1	0	15.02	15.17	15.34	0
		1	24	15.08	15.16	15.35	0			1	12	14.96	15.12	15.28	0
		1	49	15.22	15.26	15.53	0			1	24	15.07	15.38	15.64	0
	QPSK	25	0	14.97	15.03	15.37	0		QPSK	12	0	15.02	15.06	15.21	0
		25	12	15.06	15.22	15.45	0			12	6	15.09	15.27	15.32	0
		25	25	14.99	15.14	15.40	0			12	13	15.10	15.17	15.43	0
10M		50	0	15.02	15.18	15.55	0	5M		25	0	15.14	15.26	15.45	0
TOIVI		1	0	14.91	15.13	15.29	0	SIVI		1	0	14.87	15.13	15.38	0
		1	24	15.01	15.16	15.35	0	I		1	12	14.97	15.03	15.26	0
		1	49	15.08	15.24	15.53	0			1	24	15.17	15.22	15.55	0
	16QAM	25	0	14.95	15.04	15.28	0		16QAM	12	0	15.00	15.02	15.36	0
		25	12	15.03	15.05	15.32	0			12	6	14.95	14.94	15.38	0
		25	25	15.04	15.21	15.51	0	J		12	13	15.14	15.22	15.42	0
		50	0	15.00	15.09	15.41	0			25	0	15.08	15.19	15.42	0

 Report Format Version 5.0.0
 Page No.
 : 76 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

									TE B	and 41									
					EU	Γ with α	ut Pov				ensor NO	T Trigg	ered)						
BW	MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP	D14	MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP
BW	Index		nnel	39750	40185	40620	41055	41490	MPR (dB)	BW	Index		nnel	39725	40173	40620	41068	41515	MPR (dB)
		Frequen	cy (MHz)	2506	2549.5	2593.0	2636.5	2680.0	, ,			Frequen	cy (MHz)	2503.5	2548.3	2593.0	2637.8	2682.5	
		1	0	22.24	22.23	22.32	22.56	22.55	0			1	0 37	22.22	22.21	22.30	22.53	22.54	0
		1	50	22.20	22.22	22.29	22.47	22.42	0				74	22.18	22.20	22.27	22.45	22.40	0
	QPSK	50	99	22.15	22.18	22.31	22.51	22.27	0		QPSK	36		22.13	22.16	22.29	22.49	22.25	0
	QPSK	50	0 25	21.18	21.19	21.26	21.45	21.38	1		QPSK	36	0 19	21.16	21.17	21.24	21.43	21.36	1
		50	50	21.25	21.21	21.28	21.52	21.45	1			36	39	21.23	21.19	21.26	21.50	21.43	1
		100	0	21.11	21.18	21.23	21.49 21.54	21.32	1			75	0	21.09	21.16 21.26	21.21	21.47 21.52	21.30	1
20M			Ŭ				_			15M		_	Ŭ						+
		1	0	21.15	21.28	21.31	21.48	21.49	1			1	0	21.10	21.23	21.26	21.43	21.44	1
		1	50	21.24	21.27	21.34	21.54	21.37	1			1	37	21.19	21.22	21.29	21.49	21.32	1
	16QAM	1 50	99	21.29	21.27	21.37	21.48	21.25	1		400414	1	74	21.24	21.22	21.32	21.43	21.20	1
		50	0	20.33	20.28	20.38	20.53	20.55	2		16QAM	36	0	20.28	20.23	20.33	20.48	20.50	2
		50	25	20.31	20.30	20.37	20.60	20.46	2			36	19	20.25	20.25	20.32	20.55	20.41	2
		50	50	20.34	20.27	20.42	20.56	20.42	2			36 75	39 0	20.29	20.22	20.37	20.51	20.37	2
		100	0	20.28	20.30	20.37	20.58	20.44	2				ŭ	20.24	20.25	20.32	20.53	20.39	2
	MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP
BW	Index	Cha	nnel	39700	40160	40620	41080	41540	MPR	BW	Index	Cha	nnel	39675	40148	40620	41093	41565	MPR
		Frequen	cy (MHz)	2501	2547.0	2593.0	2639.0	2685.0	(dB)			Frequen	cy (MHz)	2498.5	2545.8	2593.0	2640.3	2687.5	(dB)
		1	0	22.18	22.17	22.26	22.49	22.50	0			1	0	22.14	22.13	22.22	22.45	22.46	0
		1	24	22.14	22.16	22.23	22.41	22.36	0			1	12	22.10	22.12	22.19	22.37	22.32	0
		1	49	22.09	22.12	22.25	22.45	22.21	0			1	24	22.05	22.08	22.21	22.41	22.17	0
	QPSK	25	0	21.12	21.13	21.20	21.39	21.32	1		QPSK	12	0	21.08	21.09	21.16	21.35	21.28	1
		25	12	21.19	21.15	21.22	21.46	21.39	1			12	6	21.15	21.11	21.18	21.42	21.35	1
		25	25	21.05	21.12	21.17	21.43	21.26	1			12	13	21.01	21.08	21.13	21.39	21.22	1
10M		50	0	21.24	21.22	21.21	21.48	21.37	1	5M		25	0	21.20	21.18	21.17	21.44	21.33	1
TUIVI		1	0	21.07	21.20	21.23	21.40	21.41	1	DIVI		1	0	20.99	21.12	21.15	21.32	21.33	1
		1	24	21.16	21.19	21.26	21.46	21.29	1			1	12	21.08	21.11	21.18	21.38	21.21	1
		1	49	21.21	21.19	21.29	21.40	21.17	1			1	24	21.13	21.11	21.21	21.32	21.09	1
	16QAM	25	0	20.25	20.20	20.30	20.45	20.47	2		16QAM	12	0	20.17	20.12	20.22	20.37	20.39	2
		25	12	20.21	20.22	20.29	20.52	20.38	2			12	6	20.13	20.14	20.21	20.44	20.30	2
		25	25	20.26	20.19	20.34	20.48	20.34	2			12	13	20.18	20.11	20.26	20.40	20.26	2
		50	0	20.18	20.22	20.29	20.50	20.36	2			25	0	20.14	20.14	20.21	20.42	20.28	2

									TE B	and 41									
						EUT v	vith Po	wer R	educti	on (P-S	ensor Tri	ggered)						
BW	MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP MPR
DVV	Index		nnel	39750	40185	40620	41055	41490	(dB)	DW	Index		nnel	39725	40173	40620	41068	41515	(dB)
		Frequen		2506	2549.5	2593.0	2636.5	2680.0				Frequen		2503.5	2548.3	2593.0	2637.8	2682.5	
		1	0	14.09	14.20	14.12	14.26	14.07	0			1	0	14.12	14.13	14.10	14.17	14.01	0
		1	50	14.08	14.19	14.11	14.25	14.06	0			1	37	14.11	14.12	14.08	14.17	13.98	0
	ODOK	1	99	14.05	14.13	14.05	14.19	14.00	0		ODOK	1	74	14.09	14.10	13.99	14.12	13.91	0
	QPSK	50	0	14.08	14.17	14.09	14.23	14.04	0		QPSK	36	0	14.11	14.12	13.99	14.22	14.03	0
		50	25	14.06	14.14	14.06	14.20	14.01	0			36	19	14.07	14.08	14.06	14.20	13.98	0
		50 100	50 0	14.03	14.16	14.08	14.22	14.03	0			36 75	39 0	14.10	14.11	14.08	14.19	14.02	0
20M			Ŭ	14.06	14.15	14.07	14.21	14.02	0	15M			Ū	14.04	14.05	14.02	14.11	13.99	_
		1	0	14.10	14.12	14.02	14.19	14.00	0			1	0	14.17	14.18	14.10	14.16	14.00	0
		1	50	14.15	14.17	14.01	14.23	13.97	0			1	37	14.12	14.13	14.11	14.25	13.97	0
	16QAM	1	99	14.05	14.07	13.95	14.18	13.92	0			1	74	14.09	14.10	14.03	14.18	13.96	0
		50	0	14.07	14.09	14.08	14.20	13.97	0		16QAM	36	0	14.12	14.13	14.01	14.19	13.99	0
		50	25	14.11	14.13	14.02	14.14	13.98	0			36	19	14.10	14.11	14.00	14.13	13.98	0
		50	50	14.08	14.10	14.07	14.22	14.03	0			36	39	14.06	14.07	14.05	14.12	14.01	0
		100	0	14.12	14.14	14.06	14.13	13.92	0			75	0	14.09	14.10	14.00	14.18	13.92	0
	MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	Mid	Mid	High	3GPP
BW	Index	Cha	nnel	39700	40160	40620	41080	41540	MPR	BW	Index	Cha	nnel	39675	40148	40620	41093	41565	MPR
		Frequen	cy (MHz)	2501	2547.0	2593.0	2639.0	2685.0	(dB)			Frequen	cy (MHz)	2498.5	2545.8	2593.0	2640.3	2687.5	(dB)
		1	0	14.08	14.10	14.05	14.13	13.99	0			1	0	14.10	14.13	14.09	14.13	13.97	0
		1	24	14.14	14.16	14.05	14.19	13.99	0			1	12	14.06	14.09	14.05	14.15	13.91	0
		1	49	13.94	13.96	13.95	14.06	13.99	0			1	24	13.93	13.96	13.95	14.13	13.98	0
	QPSK	25	0	13.99	14.01	13.99	14.09	13.95	0		QPSK	12	0	14.11	14.14	14.00	14.17	13.92	0
		25	12	13.95	13.97	13.92	14.14	13.82	0			12	6	14.05	14.08	14.04	14.11	13.94	0
		25	25	14.00	14.02	13.92	14.08	13.93	0			12	13	13.99	14.02	13.98	14.12	14.02	0
10M		50	0	14.01	14.03	13.98	14.09	13.83	0	5M		25	0	13.96	13.99	14.02	14.20	13.98	0
TOIVI		1	0	14.12	14.14	14.06	14.17	13.94	0	SIVI		1	0	14.10	14.13	14.03	14.14	13.96	0
		1	24	14.06	14.08	13.96	14.16	14.01	0			1	12	14.12	14.15	13.96	14.25	13.96	0
	16OAM	1	49	14.03	14.05	13.87	14.09	13.93	0			1	24	14.00	14.03	13.95	14.07	13.91	0
	16QAM	25	0	14.05	14.07	14.04	14.08	14.00	0		16QAM	12	0	14.03	14.06	13.99	14.14	14.00	0
		25	12	13.97	13.99	13.94	14.09	13.87	0			12	6	14.04	14.07	13.96	14.08	13.98	0
		25	25	13.97	13.99	13.93	14.11	13.89	0			12	13	14.06	14.09	14.00	14.02	14.02	0
		50	0	14.03	14.05	13.94	14.18	13.83	0			25	0	14.01	14.04	13.98	14.19	13.93	0

 Report Format Version 5.0.0
 Page No. : 77 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

							LTE B	and 66							
				EU	T withou	t Power	Reduction	on (P-Se	ensor NOT	Trigger	ed)				
BW	MCS Index	RB Size	RB Offset nnel	Low 132072	Mid 132322	High 132572	3GPP MPR	BW	MCS Index	RB Size	RB Offset	Low 132047	Mid 132322	High 132597	3GPP MPR
	IIIdox		cy (MHz)	1720.0	1745.0	1770.0	(dB)		IIIdex		cy (MHz)	1717.5	1745.0	1772.5	(dB)
		1	0	22.77	22.89	22.86	0			1	0	22.70	22.82	22.79	0
		1	50	22.72	22.58	22.43	0			1	37	22.65	22.51	22.36	0
		1	99	22.54	22.63	22.68	0			1	74	22.47	22.56	22.61	0
	QPSK	50	0	21.80	21.82	21.69	1		QPSK	36	0	21.73	21.75	21.62	1
		50	25	21.75	21.57	21.53	1			36	19	21.68	21.50	21.46	1
		50	50	21.61	21.45	21.54	1			36	39	21.54	21.38	21.47	1
2014		100	0	21.81	21.90	21.79	1	1511		75	0	21.74	21.83	21.72	1
20M		1	0	21.97	21.94	21.89	1	15M		1	0	21.95	21.92	21.87	1
		1	50	21.75	21.87	21.74	1			1	37	21.73	21.85	21.72	1
		1	99	21.83	21.78	21.71	1			1	74	21.81	21.76	21.69	1
	16QAM	50	0	20.76	20.46	20.61	2		16QAM	36	0	20.74	20.44	20.59	2
		50	25	20.69	20.57	20.43	2			36	19	20.67	20.55	20.41	2
		50	50	20.54	20.75	20.48	2			36	39	20.52	20.73	20.46	2
		100	0	20.81	20.75	20.78	2			75	0	20.79	20.73	20.76	2
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha		132022	132322	132622	MPR	BW	Index		nnel	131997	132322	132647	MPR
		Frequen		1715.0	1745.0	1775.0	(dB)				cy (MHz)	1712.5	1745.0	1777.5	(dB)
		1	0	22.65	22.77	22.74	0			1	0	22.61	22.73	22.70	0
		1	24	22.60	22.46	22.31	0			1	12	22.56	22.42	22.27	0
		1	49	22.42	22.51	22.56	0			1	24	22.38	22.47	22.52	0
	QPSK	25	0	21.68	21.70	21.57	1		QPSK	12	0	21.64	21.66	21.53	1
		25	12	21.63	21.45	21.41	1			12	6	21.59	21.41	21.37	1
		25	25	21.49	21.33	21.42	1			12	13	21.45	21.29	21.38	1
10M		50	0	21.69	21.78	21.67	1	5M		25	0	21.65	21.74	21.63	1
		1	0	21.92	21.89	21.84	1	0		1	0	21.84	21.81	21.76	1
		1	24	21.70	21.82	21.69	1			1	12	21.62	21.74	21.61	1
		1	49	21.78	21.73	21.66	1			1	24	21.70	21.65	21.58	1
	16QAM	25	0	20.71	20.41	20.56	2		16QAM	12	0	20.63	20.33	20.48	2
		25	12	20.64	20.52	20.38	2			12	6	20.56	20.44	20.30	2
		25 50	25 0	20.49	20.70	20.43	2			12 25	13	20.41	20.62	20.35	2
		RB	RB	20.76	20.70	20.73				RB	RB	20.68	20.62	20.65	
	MCS	Size	Offset	Low	Mid	High	3GPP		MCS	Size	Offset	Low	Mid	High	3GPP
BW	Index		nnel	131987	132322	132657	MPR (dB)	BW	Index		nnel	131979	132322	132665	MPR (dB)
			cy (MHz)	1711.5	1745.5	1778.5					cy (MHz)	1710.7	1745.0	1779.3	` '
		1	0	22.54	22.66	22.63	0			1	0	22.50	22.62	22.59	0
		1	7	22.49	22.35	22.20	0			1	2	22.45	22.31	22.16	0
	ODOK	1	14	22.31	22.40	22.45	0		ODOK	1	5	22.27	22.36	22.41	0
	QPSK	8	0	21.57	21.59	21.46	1		QPSK	3	0	22.53	22.55	22.42	0
		8	7	21.52	21.34	21.30	1			3	1	22.48	22.30	22.26	0
		15	0	21.38 21.58	21.22 21.67	21.31 21.56	1			6	0	22.34 21.54	22.18 21.63	22.27 21.52	<u>0</u>
3M								1.4M							
		1	7	21.82	21.79	21.74	1			1	2	21.75	21.72	21.67	1
		1	14	21.60	21.72	21.59	1			1	5	21.53	21.65	21.52	1
	16QAM	8	0	21.68	21.63 20.31	21.56 20.46	2		16QAM	3	0	21.61 21.54	21.56 21.24	21.49 21.39	<u>1</u> 1
	IUQAW	8	3	20.54	20.42	20.46	2		IUQAM	3	1	21.34	21.24	21.39	1
		8	7	20.34	20.42	20.28	2			3	3	21.47	21.53	21.21	1
		15	0	20.66	20.60	20.63	2			6	0	20.59	20.53	20.56	2
		.0	,	20.00	20.00	20.00				,	, J	20.00	20.00	20.00	

 Report Format Version 5.0.0
 Page No.
 : 78 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

							LTE B	and 66							
					EUT wi	th Power	Reducti	ion (P-S	ensor Tri	ggered)					
BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
	Index	Frequen	nnel	132072 1720.0	132322 1745.0	132572 1770.0	(dB)		Index		nnel cy (MHz)	132047 1717.5	132322 1745.0	132597 1772.5	(dB)
		1	0	14.40	14.47	14.25	0			1	0	14.37	14.42	14.15	0
		1	50	14.40	14.47	13.93	0			1	37	14.05	14.42	13.83	0
		. 1	99	14.05	14.12	13.90	0			1	74	14.02	14.09	13.84	0
	QPSK	50	0	14.30	14.37	14.15	0		QPSK	36	0	14.26	14.29	14.07	0
		50	25	14.19	14.26	14.04	0			36	19	14.19	14.23	14.01	0
		50	50	14.17	14.24	14.02	0			36	39	14.14	14.14	13.97	0
2014		100	0	14.31	14.38	14.16	0	4514		75	0	14.29	14.34	14.06	0
20M		1	0	14.40	14.39	14.23	0	15M		1	0	14.34	14.32	14.11	0
		1	50	14.08	14.15	13.89	0			1	37	14.00	14.13	13.90	0
		1	99	14.02	14.08	13.80	0			1	74	13.92	14.01	13.82	0
	16QAM	50	0	14.27	14.33	14.07	0		16QAM	36	0	14.25	14.32	14.08	0
		50	25	14.13	14.16	13.94	0			36	19	14.07	14.13	13.94	0
		50	50	14.10	14.19	14.02	0			36	39	14.11	14.05	13.92	0
		100	0	14.30	14.33	14.16	0			75	0	14.26	14.29	13.97	0
	MCS	RB Size	RB Offset	Low	Mid	High	3GPP		MCS	RB Size	RB Offset	Low	Mid	High	3GPP
BW	Index	Cha		132022	132322	132622	MPR	BW	Index		nnel	131997	132322	132647	MPR
		Frequen		1715.0	1745.0	1775.0	(dB)				cy (MHz)	1712.5	1745.0	1777.5	(dB)
		1	0	14.30	14.30	14.13	0			1	0	14.28	14.41	14.16	0
		1	24	13.97	13.98	13.82	0			1	12	14.00	13.96	13.78	0
		1	49	13.99	14.08	13.75	0			1	24	13.85	13.91	13.75	0
	QPSK	25	0	14.25	14.29	13.98	0		QPSK	12	0	14.16	14.24	13.91	0
		25	12	14.05	14.08	13.99	0			12	6	14.06	14.11	13.68	0
		25	25	14.12	14.06	13.98	0			12	13	14.00	14.17	13.86	0
10M		50	0	14.16	14.27	14.08	0	5M		25	0	14.17	14.29	14.14	0
		1	0	14.29	14.26	14.02	0	• • • • • • • • • • • • • • • • • • • •		1	0	14.15	14.31	14.06	0
		1	24	13.83	13.92	13.87	0			1	12	13.99	13.87	13.62	0
	400414	1	49	13.75	14.01	13.86	0		400 444	1	24 0	13.87	13.87	13.63	0
	16QAM	25 25	0 12	14.10	14.18	13.98	0		16QAM	12 12	6	14.17	14.09	14.03	0
		25	25	14.05 13.97	14.12 14.01	13.82 13.80	0			12	13	13.97 13.90	14.15 14.00	13.88 13.79	0
		50	0	14.19	14.01	14.06	0			25	0	14.08	14.00	13.79	0
		RB	RB							RB	RB				
вw	MCS	Size	Offset	Low	Mid	High	3GPP MPR	BW	MCS	Size	Offset	Low	Mid	High	3GPP MPR
DVV	Index		nnel	131987	132322	132657	(dB)	DW	Index		nnel	131979	132322	132665	(dB)
		Frequen		1711.5	1745.5	1778.5					cy (MHz)	1710.7	1745.0	1779.3	, ,
		1	0	14.32	14.26	14.08	0			1	0	14.19	14.34	14.18	0
		11	7	13.93	14.02	13.81	0			1	2	13.97	14.04	13.73	0
	QPSK	1 8	14	13.98	14.06	13.76	0		QPSK	3	5	13.83	14.04	13.77	0
	QPSK		0	14.18	14.18	14.03	0		QP5K		0	14.12	14.25	14.07	0
		8	3 7	14.05 14.08	14.09 14.04	13.97 13.93	0			3	3	14.18 14.08	14.12 14.08	13.91 13.89	0
		<u>o</u> 15	0	14.08	14.04	14.12	0			6	0	14.08	14.08	14.06	0
3M		13	0				0	1.4M		1	0				
		1	7	14.27 13.94	14.31 13.99	14.18 13.74	0			1	2	14.19 13.96	14.39 13.95	14.04 13.80	0
		1	14	13.74	13.99	13.74	0			1	5	13.96	14.02	13.63	0
	16QAM	8	0	14.17	14.27	14.03	0		16QAM	3	0	14.05	14.02	14.04	0
		8	3	14.01	14.23	13.90	0			3	1	14.00	14.10	13.98	0
		8	7	14.04	14.06	13.75	0			3	3	14.02	14.03	13.78	0
		15	0	14.10	14.21	14.08	0			6	0	14.15	14.15	14.02	0
								•	•						

 Report Format Version 5.0.0
 Page No.
 : 79 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Laptop PC Mode

<WLAN 2.4G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
	1	2412	16.05	15.48	-
	6	2437	16.82	15.76	-
802.11b	11	2462	16.49	15.63	-
	12	2467	12.98	13.90	-
	13	2472	6.85	6.94	-
	1	2412	-	-	13.97
	6	2437	-	•	16.93
802.11n (HT20)	11	2462	-	•	13.97
	12	2467	-	•	6.97
	13	2472	-	-	-8.02

<WLAN 5.3G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
802.11n (HT40)	54	5270	18.86	12.38	17.95
602.1111 (H140)	62	5310	11.96	12.16	9.96

<WLAN 5.6G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
	102	5510	16.93	=	11.97
	110	5550	18.97	•	16.96
802.11n (HT40)	118	5590	18.92	•	17.82
002.1111 (П140)	126	5630	18.82	•	17.95
	134	5670	17.95	•	15.88
	142	5710	18.88	-	17.93
	106	5530	-	11.48	-
802.11ac (VHT80)	122	5610	-	11.05	-
	138	5690	-	11.79	-

<WLAN 5.8G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
802.11n (HT40)	151	5755	18.91	-	15.97
602.1111 (H140)	159	5795	18.89	-	15.80
802.11ac (VHT80)	155	5775	-	11.58	-

<Bluetooth>

Mode	Channel	Frequency (MHz)	Average Power
	0	2402	12.7
Bluetooth EDR	39	2441	12.82
	78	2480	12.65
	0	2402	11.53
Bluetooth LE	19	2440	11.73
	39	2480	11.75

Report Format Version 5.0.0 Page No. : 80 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Tablet PC Mode

<WLAN 2.4G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
	1	2412	16.89	13.37	-
	6	2437	16.96	13.49	-
802.11b	11	2462	16.92	13.47	-
	12	2467	12.98	13.42	-
	13	2472	6.85	6.94	-
	1	2412	-	-	13.97
	6	2437	-	-	16.93
802.11n (HT20)	11	2462	-	-	13.97
	12	2467	-	-	6.97
	13	2472	•	•	-6.54

<WLAN 5.3G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
802.11ac (VHT80)	58	5290	8.43	7.47	11.39

<WLAN 5.6G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
	106	5530	5.92	7.34	11.45
802.11ac (VHT80)	122	5610	5.95	7.42	11.40
	138	5690	5.96	7.47	11.47

<WLAN 5.8G>

Mode	Channel	Frequency (MHz)	Average Power (Ant-0)	Average Power (Ant-1)	Average Power (Ant-0 + Ant-1)
802.11ac (VHT80)	155	5775	5.97	7.95	11.73

<Bluetooth>

Mode	Channel	Frequency (MHz)	Average Power
	0	2402	12.7
Bluetooth EDR	39	2441	12.82
	78	2480	12.65
	0	2402	11.53
Bluetooth LE	19	2440	11.73
	39	2480	11.75

Report Format Version 5.0.0 Page No. : 81 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

4.7 SAR Testing Results

4.7.1 SAR Test Reduction Considerations

<KDB 447498 D01, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

<KDB 941225 D01, 3G SAR Measurement Procedures>

The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

<KDB 941225 D05, SAR Evaluation Considerations for LTE Devices>

(1) QPSK with 1 RB and 50% RB allocation

Start with the largest channel bandwidth and measure SAR, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

(2) QPSK with 100% RB allocation

SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

(3) Higher order modulations

SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

(4) Other channel bandwidth

SAR is required when the highest maximum output power of the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Report Format Version 5.0.0 Page No. : 82 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

<Power Confirmation for SAR Test Exclusion for LTE Downlink CA>

According to KDB 941225 D05A, the uplink maximum output power below was measured with downlink CA active on the channel with highest measured maximum output power when downlink CA is inactive. The downlink SCC channel was paired with the uplink channel as normal operation. For intra-band contiguous CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing per section 5.4.1A of 3GPP TS36.521. For intra-band non-contiguous CA, the downlink channel spacing between the component carriers was set to maximum separation from PCC and remain fully within the downlink transmission band. For Inter-band CA, the SCC downlink channel was set to near the middle of its transmission band.

EUT without Power Reduction (P-Sensor NOT Triggered)

Power Measurements for Intra-Band Contiguous Downlink CA

				PC	CC					SC	C1			SC	C2		Po	wer
CA Combination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
7C	7	20M	21350	2560	1	0	3350	2680	7	20M	3152	2660.2	-	-	-	-	22.68	22.62
7B	7	15M	21375	2562.5	1	0	3375	2682.5	7	5M	3282	2673.2	-	-	-	-	22.60	22.47
41C	41	20M	41055	2636.5	1	0	41055	2636.5	41	20M	41253	2656.3	-	-	-	-	22.56	22.50
66D	66	20M	132072	1720	1	0	66536	2120	66	20M	66734	2139.8	66	20M	66932	2159.6	22.77	22.49

Power Measurements for Intra-Band Non-Contiguous Downlink CA

					PC	C					SC	C1			SC	C2		Pov	ver
	CA bination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
7.4	A-7A	7	20M	21350	2560	1	0	3350	2680	7	20M	2850	2630	-	-	-	-	22.68	22.39
41 <i>A</i>	A-41A	41	20M	41055	2636.5	1	0	41055	2636.5	41	20M	41490	2680	-	-	-	-	22.56	22.51

Power Measurements for Intra-Band Non-Contiguous Downlink CA(Two Band)

				PC	C					SC	C1			SC	C2		Po	wer
CA Combination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
2C-5A	2	20M	18700	1860	1	0	700	1940	2	20M	898	1959.8	5	10M	2525	881.5	23.09	22.97
2A-17A	2	10M	18650	1855	1	0	650	1935	17	10M	5790	740	-	-	1	-	22.97	22.81
2A-66B	2	20M	18700	1860	1	0	700	1940	66	15M	66786	2145	66	5M	66879	2154.3	23.09	22.62
2A-66C	2	20M	18700	1860	1	0	700	1940	66	20M	66786	2145	66	20M	66984	2164.8	23.09	22.94
4A-17A	4	10M	20350	1750	1	0	2350	2150	17	10M	5790	740	-		1		22.75	22.57
5A-7A	5	10M	20450	829	1	0	2450	874	7	20M	3100	2565	-	-	1	1	22.73	22.70
5A-66B	5	10M	20450	829	1	0	2450	874	66	15M	66786	2145	66	5M	66879	2154.3	22.73	22.70
5A-66C	5	10M	20450	829	1	0	2450	874	66	20M	66786	2145	66	20M	66984	2164.8	22.73	22.69
13A-66B	13	10M	23230	782	1	49	5230	751	66	15M	66786	2145	66	5M	66879	2154.3	22.93	22.85
13A-66C	13	10M	23230	782	1	49	5230	751	66	20M	66786	2145	66	20M	66984	2164.8	22.93	22.92

Report Format Version 5.0.0 Page No. : 83 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Power Measurements for Intra-Band Non-Contiguous Downlink CA(Three Band)

				PC	C					SC	C1			SC	C2		Po	wer
CA Combination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
2A-4A-5A	2	20M	18700	1860	1	0	700	1940	4	20M	2175	2132.5	5	10M	2525	881.5	23.09	23.07
2A-4A-13A	2	20M	18700	1860	1	0	700	1940	4	20M	2175	2132.5	13	10M	5230	751	23.09	22.98
2A-5A-30A	2	20M	18700	1860	1	0	700	1940	5	10M	2525	881.5	30	10M	9820	2355	23.09	23.04
2A-5A-66A	2	20M	18700	1860	1	0	700	1940	5	10M	2525	881.5	66	20M	66786	2145	23.09	22.90
2A-12A-30A	2	20M	18700	1860	1	0	700	1940	12	10M	5095	737.5	30	10M	9820	2355	23.09	22.85
2A-13A-66A	2	20M	18700	1860	1	0	700	1940	13	10M	5230	751	66	20M	66786	2145	23.09	22.67
2A-29A-30A	2	20M	18700	1860	1	0	700	1940	29	10M	9715	722.5	30	10M	9820	2355	23.09	22.74
4A-5A-30A	4	20M	20300	1745	1	0	2300	2145	5	10M	2525	881.5	30	10M	9820	2355	22.88	22.42
4A-12A-30A	4	20M	20300	1745	1	0	2300	2145	12	10M	5095	737.5	30	10M	9820	2355	22.88	22.47
4A-29A-30A	4	20M	20300	1745	1	0	2300	2145	29	10M	9715	722.5	30	10M	9820	2355	22.88	22.55

EUT with Power Reduction (P-Sensor Triggered)

Power Measurements for Intra-Band Contiguous Downlink CA

				PC	C					SC	C1			SC	C2		Po	wer
CA Combination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
7C	7	20M	21350	2560	1	0	3350	2680	7	20M	3152	2660.2	-		1	1	11.99	11.81
7B	7	15M	21375	2562.5	1	0	3375	2682.5	7	5M	3282	2673.2	-	-	-	-	11.97	11.92
41C	41	20M	41055	2636.5	1	0	41055	2636.5	41	20M	41253	2656.3	-	-	1	-	14.26	14.11
66D	66	20M	132072	1720	1	0	66536	2120	66	20M	66734	2139.8	66	20M	66932	2159.6	13.92	13.84

Power Measurements for Intra-Band Non-Contiguous Downlink CA

				PC	C					SC	C1			SC	C2		Po	wer
CA Combination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
7A-7A	7	20M	21350	2560	1	0	3350	2680	7	20M	2850	2630	-	-	-	-	11.99	11.86
41A-41A	41	20M	41055	2636.5	1	0	41055	2636.5	41	20M	41490	2680	-	-	-	-	14.26	14.01

 Report Format Version 5.0.0
 Page No.
 : 84 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Power Measurements for Intra-Band Non-Contiguous Downlink CA(Two Band)

				PC	C					SC	C1			SC	C2		Por	wer
CA Combination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
2C-5A	2	20M	18700	1860	50	0	700	1940	2	20M	898	1959.8	5	10M	2525	881.5	11.85	11.76
2A-17A	2	10M	18650	1855	1	0	650	1935	17	10M	5790	740	-	-	1	-	11.72	11.64
2A-66B	2	20M	18700	1860	50	0	700	1940	66	15M	66786	2145	66	5M	66879	2154.3	11.85	11.52
2A-66C	2	20M	18700	1860	50	0	700	1940	66	20M	66786	2145	66	20M	66984	2164.8	11.85	11.83
4A-17A	4	10M	20350	1750	25	0	2350	2150	17	10M	5790	740	1	1	1	1	13.90	13.85
5A-7A	5	10M	20450	829	1	0	2450	874	7	20M	3100	2565	1	1	1	1	19.32	19.24
5A-66B	5	10M	20450	829	1	0	2450	874	66	15M	66786	2145	66	5M	66879	2154.3	19.32	19.19
5A-66C	5	10M	20450	829	1	0	2450	874	66	20M	66786	2145	66	20M	66984	2164.8	19.32	19.30
13A-66B	13	10M	23230	782	1	49	5230	751	66	15M	66786	2145	66	5M	66879	2154.3	19.22	19.02
13A-66C	13	10M	23230	782	1	49	5230	751	66	20M	66786	2145	66	20M	66984	2164.8	19.22	19.18

Power Measurements for Intra-Band Non-Contiguous Downlink CA(Three Band)

				PC	CC					SC	C1			SC	C2		Po	wer
CA Combination	LTE Band	BW (MHz)	UL Ch	UL Freq. (MHz)	RB Size	RB Offset	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	LTE Band	BW (MHz)	DL Ch	DL Freq. (MHz)	Single Carrier Tx Power (dBm)	Tx Power with DL-CA Active (dBm)
2A-4A-5A	2	20M	18700	1860	50	0	700	1940	4	20M	2175	2132.5	5	10M	2525	881.5	11.85	11.72
2A-4A-13A	2	20M	18700	1860	50	0	700	1940	4	20M	2175	2132.5	13	10M	5230	751	11.85	11.77
2A-5A-30A	2	20M	18700	1860	50	0	700	1940	5	10M	2525	881.5	30	10M	9820	2355	11.85	11.75
2A-5A-66A	2	20M	18700	1860	50	0	700	1940	5	10M	2525	881.5	66	20M	66786	2145	11.85	11.80
2A-12A-30A	2	20M	18700	1860	50	0	700	1940	12	10M	5095	737.5	30	10M	9820	2355	11.85	11.77
2A-13A-66A	2	20M	18700	1860	50	0	700	1940	13	10M	5230	751	66	20M	66786	2145	11.85	11.75
2A-29A-30A	2	20M	18700	1860	50	0	700	1940	29	10M	9715	722.5	30	10M	9820	2355	11.85	11.76
4A-5A-30A	4	20M	20300	1745	1	0	2300	2145	5	10M	2525	881.5	30	10M	9820	2355	13.99	13.62
4A-12A-30A	4	20M	20300	1745	1	0	2300	2145	12	10M	5095	737.5	30	10M	9820	2355	13.99	13.82
4A-29A-30A	4	20M	20300	1745	1	0	2300	2145	29	10M	9715	722.5	30	10M	9820	2355	13.99	13.69

Summary for SAR Test Exclusion for LTE Downlink CA

Per power confirmation results in above, the uplink maximum output power with downlink CA active remains within the specified tune-up tolerance and not more than 0.25 dB higher than the maximum output power with downlink CA inactive. According to KDB 941225 D05A, the SAR test exclusion applies to LTE downlink CA operation.

 Report Format Version 5.0.0
 Page No.
 : 85 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.
- (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.
- (3) For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.
- (4) For WLAN MIMO mode, the power-based standalone SAR test exclusion or the sum of SAR provision in KDB 447498 to determine simultaneous transmission SAR test exclusion should be applied. Otherwise, SAR for MIMO mode will be measured with all applicable antennas transmitting simultaneously at the specified maximum output power of MIMO operation.

Report Format Version 5.0.0 Page No. : 86 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

4.7.2 SAR Results for Body Exposure Condition Laptop PC Mode

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Ch.	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
01	WCDMA II	RMC 12.2K	Bottom	0	9538	1	12.0	11.90	1.02	0.07	0.448	<mark>0.46</mark>
	WCDMA II	RMC 12.2K	Bottom	0	9262	1	12.0	11.87	1.03	-0.02	0.418	0.43
	WCDMA II	RMC 12.2K	Bottom	0	9400	1	12.0	11.83	1.04	0.06	0.405	0.42
	WCDMA II	RMC 12.2K	Bottom	0	9538	2	12.0	11.90	1.02	0.14	0.409	0.42
	WCDMA II	RMC 12.2K	Bottom	0	9538	3	12.0	11.90	1.02	0.09	0.401	0.41
	WCDMA IV	RMC 12.2K	Bottom	0	1513	1	14.0	13.62	1.09	0.03	0.456	0.50
02	WCDMA IV	RMC 12.2K	Bottom	0	1312	1	14.0	13.51	1.12	0.1	0.538	<mark>0.60</mark>
	WCDMA IV	RMC 12.2K	Bottom	0	1413	1	14.0	13.54	1.11	-0.05	0.479	0.53
	WCDMA IV	RMC 12.2K	Bottom	0	1312	2	14.0	13.51	1.12	0.09	0.509	0.57
	WCDMA IV	RMC 12.2K	Bottom	0	1312	3	14.0	13.51	1.12	0.13	0.501	0.56
	WCDMA V	RMC 12.2K	Bottom	0	4182	1	19.0	18.93	1.02	0.11	0.701	0.71
	WCDMA V	RMC 12.2K	Bottom	0	4132	1	19.0	18.78	1.05	0.07	0.693	0.73
03	WCDMA V	RMC 12.2K	Bottom	0	4233	1	19.0	18.84	1.04	-0.13	0.718	<mark>0.74</mark>
	WCDMA V	RMC 12.2K	Bottom	0	4233	2	19.0	18.84	1.04	0.14	0.701	0.73
	WCDMA V	RMC 12.2K	Bottom	0	4233	3	19.0	18.84	1.04	0.09	0.698	0.72

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Ch.	RB#	RB Offset	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
04	LTE 2	QPSK20M	Bottom	0	18700	1	0	1	12.0	11.82	1.04	0.10	0.400	0.42
	LTE 2	QPSK20M	Bottom	0	18700	50	0	1	12.0	11.85	1.04	-0.05	0.219	0.23
	LTE 2	QPSK20M	Bottom	0	18900	1	0	1	12.0	11.62	1.09	0.01	0.365	0.40
	LTE 2	QPSK20M	Bottom	0	19100	1	0	1	12.0	11.54	1.11	0.08	0.364	0.40
	LTE 2	QPSK20M	Bottom	0	18700	1	0	2	12.0	11.82	1.04	0.03	0.395	0.41
	LTE 2	QPSK20M	Bottom	0	18700	1	0	3	12.0	11.82	1.04	0.01	0.361	0.38
	LTE 4	QPSK20M	Bottom	0	20300	1	0	1	14.0	13.99	1.00	-0.03	0.501	0.50
	LTE 4	QPSK20M	Bottom	0	20300	50	0	1	14.0	13.98	1.00	0.09	0.491	0.49
05	LTE 4	QPSK20M	Bottom	0	20050	1	0	1	14.0	13.92	1.02	0.04	0.592	<mark>0.60</mark>
	LTE 4	QPSK20M	Bottom	0	20175	1	0	1	14.0	13.84	1.04	0.01	0.561	0.58
	LTE 4	QPSK20M	Bottom	0	20050	1	0	2	14.0	13.92	1.02	0.06	0.563	0.57
	LTE 4	QPSK20M	Bottom	0	20050	1	0	3	14.0	13.92	1.02	0.13	0.555	0.57
	LTE 5	QPSK10M	Bottom	0	20450	1	0	1	19.5	19.32	1.04	0.03	0.789	0.82
	LTE 5	QPSK10M	Bottom	0	20450	25	0	1	19.5	19.21	1.07	-0.07	0.724	0.77
06	LTE 5	QPSK10M	Bottom	0	20525	1	0	1	19.5	19.28	1.05	0.04	0.840	<mark>0.88</mark>
	LTE 5	QPSK10M	Bottom	0	20600	1	0	1	19.5	19.20	1.07	0.09	0.817	0.88
	LTE 5	QPSK10M	Bottom	0	20450	50	0	1	19.5	19.09	1.10	-0.03	0.795	0.87
	LTE 5	QPSK10M	Bottom	0	20525	1	0	2	19.5	19.28	1.05	0.06	0.751	0.79
	LTE 5	QPSK10M	Bottom	0	20525	1	0	3	19.5	19.28	1.05	0.01	0.749	0.79
	LTE 5	QPSK10M	Bottom	0	20525	1	0	1	19.5	19.28	1.05	0.04	0.82	0.86
07	LTE 7	QPSK20M	Bottom	0	21350	1	0	1	12.0	11.99	1.00	0.08	0.620	<mark>0.62</mark>
	LTE 7	QPSK20M	Bottom	0	21350	50	0	1	12.0	11.98	1.00	-0.03	0.586	0.59
	LTE 7	QPSK20M	Bottom	0	20850	1	0	1	12.0	11.90	1.02	-0.12	0.546	0.56
	LTE 7	QPSK20M	Bottom	0	21100	1	0	1	12.0	11.92	1.02	-0.03	0.566	0.58
	LTE 7	QPSK20M	Bottom	0	21350	1	0	2	12.0	11.99	1.00	0.05	0.595	0.60
	LTE 7	QPSK20M	Bottom	0	21350	1	0	3	12.0	11.99	1.00	0.13	0.569	0.57

 Report Format Version 5.0.0
 Page No.
 : 87 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Ch.	RB#	RB Offset	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	LTE 12	QPSK10M	Bottom	0	23060	1	24	1	19.5	19.35	1.04	0.08	0.881	0.91
	LTE 12	QPSK10M	Bottom	0	23060	25	12	1	19.5	19.34	1.04	0.04	0.867	0.90
08	LTE 12	QPSK10M	Bottom	0	23095	1	24	1	19.5	19.31	1.04	-0.10	0.886	<mark>0.93</mark>
	LTE 12	QPSK10M	Bottom	0	23130	1	24	1	19.5	19.32	1.04	0.03	0.868	0.90
	LTE 12	QPSK10M	Bottom	0	23095	25	12	1	19.5	19.30	1.05	-0.04	0.861	0.90
	LTE 12	QPSK10M	Bottom	0	23130	25	12	1	19.5	19.31	1.04	0.05	0.858	0.90
	LTE 12	QPSK10M	Bottom	0	23060	50	0	1	19.5	19.28	1.05	0.07	0.836	0.88
	LTE 12	QPSK10M	Bottom	0	23095	1	24	2	19.5	19.31	1.04	0.09	0.759	0.79
	LTE 12	QPSK10M	Bottom	0	23095	1	24	3	19.5	19.31	1.04	0.04	0.751	0.78
	LTE 12	QPSK10M	Bottom	0	23095	1	24	1	19.5	19.31	1.04	-0.05	0.878	0.92
	LTE 13	QPSK10M	Bottom	0	23230	1	49	1	19.5	19.22	1.07	0.08	0.925	0.99
09	LTE 13	QPSK10M	Bottom	0	23230	25	0	1	19.5	19.18	1.08	-0.09	0.934	1.01
	LTE 13	QPSK10M	Bottom	0	23230	50	0	1	19.5	19.19	1.07	0.1	0.928	1.00
	LTE 13	QPSK10M	Bottom	0	23230	25	0	2	19.5	19.18	1.08	0.06	0.921	0.99
	LTE 13	QPSK10M	Bottom	0	23230	25	0	3	19.5	19.18	1.08	0.09	0.917	0.99
	LTE 13	QPSK10M	Bottom	0	23230	25	0	1	19.5	19.18	1.08	0.05	0.931	1.00
10	LTE 17	QPSK10M	Bottom	0	23800	1	49	1	19.5	19.49	1.00	-0.06	0.847	<mark>0.85</mark>
	LTE 17	QPSK10M	Bottom	0	23800	25	0	1	19.5	19.40	1.02	0.03	0.82	0.84
	LTE 17	QPSK10M	Bottom	0	23780	1	49	1	19.5	19.42	1.02	0.07	0.811	0.83
	LTE 17	QPSK10M	Bottom	0	23790	1	49	1	19.5	19.40	1.02	-0.02	0.806	0.82
	LTE 17	QPSK10M	Bottom	0	23780	25	0	1	19.5	19.33	1.04	0.03	0.808	0.84
	LTE 17	QPSK10M	Bottom	0	23790	25	0	1	19.5	19.31	1.04	0.1	0.805	0.84
	LTE 17	QPSK10M	Bottom	0	23800	50	0	1	19.5	19.39	1.03	0.08	0.813	0.83
	LTE 17	QPSK10M	Bottom	0	23800	1	49	2	19.5	19.49	1.00	0.09	0.791	0.79
	LTE 17	QPSK10M	Bottom	0	23800	1	49	3	19.5	19.49	1.00	0.01	0.785	0.79
	LTE 17	QPSK10M	Bottom	0	23800	1	49	1	19.5	19.49	1.00	-0.04	0.843	0.84
	LTE 26	QPSK15M	Bottom	0	26765	1	37	1	20.0	19.66	1.08	0.1	0.788	0.85
	LTE 26	QPSK15M	Bottom	0	26765	36	0	1	20.0	19.54	1.11	0.07	0.779	0.87
11	LTE 26	QPSK15M	Bottom	0	26865	1	37	1	20.0	19.57	1.10	-0.16	0.819	<mark>0.90</mark>
	LTE 26	QPSK15M	Bottom	0	26965	1	37	1	20.0	19.63	1.09	0.12	0.782	0.85
	LTE 26	QPSK15M	Bottom	0	26865	36	0	1	20.0	19.45	1.14	0.03	0.792	0.90
	LTE 26	QPSK15M	Bottom	0	26965	36	0	1	20.0	19.51	1.12	-0.1	0.789	0.88
	LTE 26	QPSK15M	Bottom	0	26865	1	37	2	20.0	19.57	1.10	0.09	0.717	0.79
	LTE 26	QPSK15M	Bottom	0	26865	1	37	3	20.0	19.57	1.10	0.13	0.709	0.78
	LTE 26	QPSK15M	Bottom	0	26865	1	37	1	20.0	19.57	1.10	-0.16	0.813	0.90
12	LTE 30	QPSK10M	Bottom	0	27710	1	0	1	13.0	12.99	1.00	-0.17	0.807	0.81
	LTE 30	QPSK10M	Bottom	0	27710	25	25	1	13.0	12.93	1.02	0.03	0.785	0.80
	LTE 30	QPSK10M	Bottom	0	27710	50	0	1	13.0	12.96	1.01	0.1	0.795	0.80
	LTE 30		Bottom	0	27710	1	0	2	13.0	12.99	1.00	0.06	0.776	0.78
	LTE 30	QPSK10M	Bottom	0	27710	1	0	3	13.0	12.99	1.00	0.08	0.743	0.74
	LTE 30	QPSK10M	Bottom	0	27710	1	0	1	13.0	12.99	1.00	0.06	0.801	0.80
	LTE 38	QPSK20M	Bottom	0	38150	1	99	1	16.0	15.69	1.07	-0.06	0.616	0.66
	LTE 38	QPSK20M	Bottom	0	38150	50	50	1	16.0	15.58	1.10	-0.03	0.601	0.66
13	LTE 38	QPSK20M	Bottom	0	37850	1	99	1	16.0	15.68	1.08	0.17	0.705	<mark>0.76</mark>
	LTE 38	QPSK20M	Bottom	0	38000	1	99	1	16.0	15.67	1.08	0.02	0.671	0.72
	LTE 38	QPSK20M	Bottom	0	37850	1	99	2	16.0	15.68	1.08	0.05	0.661	0.71
	LTE 38	QPSK20M	Bottom	0	37850	1	99	3	16.0	15.68	1.08	0.13	0.651	0.70

 Report Format Version 5.0.0
 Page No.
 : 88 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Ch.	RB#	RB Offset	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	LTE 41	QPSK20M	Bottom	0	41055	1	0	1	14.5	14.26	1.06	-0.03	0.465	0.49
	LTE 41	QPSK20M	Bottom	0	41055	50	0	1	14.5	14.23	1.06	0.05	0.432	0.46
	LTE 41	QPSK20M	Bottom	0	39750	1	0	1	14.5	14.09	1.10	0.08	0.518	0.57
14	LTE 41	QPSK20M	Bottom	0	40185	1	0	1	14.5	14.20	1.07	0.11	0.578	<mark>0.62</mark>
	LTE 41	QPSK20M	Bottom	0	40620	1	0	1	14.5	14.12	1.09	0.05	0.545	0.59
	LTE 41	QPSK20M	Bottom	0	41490	1	0	1	14.5	14.07	1.10	-0.03	0.376	0.42
	LTE 41	QPSK20M	Bottom	0	40185	1	0	2	14.5	14.20	1.07	0.05	0.541	0.58
	LTE 41	QPSK20M	Bottom	0	40185	1	0	3	14.5	14.20	1.07	0.13	0.532	0.57
	LTE 66	QPSK20M	Bottom	0	132322	1	0	1	14.5	14.47	1.01	-0.09	0.478	0.48
	LTE 66	QPSK20M	Bottom	0	132322	50	0	1	14.5	14.37	1.03	0.04	0.467	0.48
15	LTE 66	QPSK20M	Bottom	0	132072	1	0	1	14.5	14.40	1.02	0.08	0.564	<mark>0.58</mark>
	LTE 66	QPSK20M	Bottom	0	132572	1	0	1	14.5	14.25	1.06	0.1	0.437	0.46
	LTE 66	QPSK20M	Bottom	0	132072	1	0	2	14.5	14.40	1.02	0.06	0.513	0.52
	LTE 66	QPSK20M	Bottom	0	132072	1	0	3	14.5	14.40	1.02	-0.13	0.503	0.51

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	EUT Config.	Tx Antenna	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
16	WLAN2.4G	802.11b	Bottom	0	6	1	Ant 0	17.0	16.82	1.04	0.06	1.11	<mark>1.16</mark>
	WLAN2.4G	802.11b	Bottom	0	6	1	Ant 1	16.0	15.76	1.06	-0.03	1.02	1.08
	WLAN2.4G	802.11n HT20	Bottom	0	6	1	Ant 0+1	17.0	16.93	1.02	-0.05	0.472	0.48
	WLAN2.4G	802.11b	Bottom	0	1	1	Ant 0	17.0	16.05	1.24	-0.09	0.902	1.12
	WLAN2.4G	802.11b	Bottom	0	11	1	Ant 0	17.0	16.49	1.12	0.02	1.02	1.15
	WLAN2.4G	802.11b	Bottom	0	12	1	Ant 0	13.0	12.98	1.00	0.04	0.335	0.34
	WLAN2.4G	802.11b	Bottom	0	13	1	Ant 0	7.0	6.85	1.04	-0.02	0.086	0.09
	WLAN2.4G	802.11b	Bottom	0	1	1	Ant 1	16.0	15.48	1.13	0.01	0.992	1.12
	WLAN2.4G	802.11b	Bottom	0	6	2	Ant 0	17.0	16.82	1.04	0.06	1.01	1.05
	WLAN2.4G	802.11b	Bottom	0	11	2	Ant 0	17.0	16.49	1.12	0.02	0.985	1.11
	WLAN2.4G	802.11b	Bottom	0	6	3	Ant 0	17.0	16.82	1.04	0.06	0.985	1.03
	WLAN2.4G	802.11b	Bottom	0	11	3	Ant 0	17.0	16.49	1.12	0.02	0.949	1.07
	WLAN2.4G	802.11b	Bottom	0	6	1	Ant 0	17.0	16.82	1.04	0.05	1.08	1.13

 Report Format Version 5.0.0
 Page No.
 : 89 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	EUT Config.	Tx Antenna	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	WLAN5G	802.11n HT40	Bottom	0	54	1	Ant 0	19.0	18.86	1.03	0.04	0.338	0.35
	WLAN5G	802.11n HT40	Bottom	0	54	1	Ant 1	12.5	12.38	1.03	0.09	0.997	1.02
17	WLAN5G	802.11n HT40	Bottom	0	54	1	Ant 0+1	18.0	17.95	1.01	-0.03	1.09	<mark>1.10</mark>
	WLAN5G	802.11n HT40	Bottom	0	62	1	Ant 1	12.5	12.16	1.08	0.06	0.826	0.89
	WLAN5G	802.11n HT40	Bottom	0	62	1	Ant 0+1	10.0	9.96	1.01	-0.08	0.202	0.20
	WLAN5G	802.11n HT40	Bottom	0	54	2	Ant 0+1	18.0	17.95	1.01	0.03	0.959	0.97
	WLAN5G	802.11n HT40	Bottom	0	62	2	Ant 0+1	10.0	9.96	1.01	0.09	0.195	0.20
	WLAN5G	802.11n HT40	Bottom	0	54	3	Ant 0+1	18.0	17.95	1.01	0.1	0.943	0.95
	WLAN5G	802.11n HT40	Bottom	0	62	3	Ant 0+1	10.0	9.96	1.01	0.08	0.191	0.19
	WLAN5G	802.11n HT40	Bottom	0	54	1	Ant 0+1	18.0	17.95	1.01	0.02	1.05	1.06
	WLAN5G	802.11n HT40	Bottom	0	110	1	Ant 0	19.0	18.97	1.01	0.06	0.589	0.59
	WLAN5G	802.11ac VHT80	Bottom	0	138	1	Ant 1	12.0	11.79	1.05	-0.11	1.09	1.14
18	WLAN5G	802.11n HT40	Bottom	0	126	1	Ant 0+1	18.0	17.95	1.01	-0.07	1.15	1.16
	WLAN5G	802.11ac VHT80	Bottom	0	106	1	Ant 1	12.0	11.48	1.13	0.05	0.989	1.11
	WLAN5G	802.11n HT40	Bottom	0	102	1	Ant 0+1	12.0	11.97	1.01	-0.08	0.246	0.25
	WLAN5G	802.11n HT40	Bottom	0	110	1	Ant 0+1	17.0	16.96	1.01	0.02	0.764	0.77
	WLAN5G	802.11n HT40	Bottom	0	118	1	Ant 0+1	18.0	17.82	1.04	-0.11	0.953	0.99
	WLAN5G	802.11n HT40	Bottom	0	134	1	Ant 0+1	16.0	15.88	1.03	0.05	0.701	0.72
	WLAN5G	802.11n HT40	Bottom	0	142	1	Ant 0+1	18.0	17.93	1.02	-0.06	1.13	1.15
	WLAN5G	802.11n HT40	Bottom	0	126	2	Ant 0+1	18.0	17.95	1.01	0.09	1.08	1.09
	WLAN5G	802.11n HT40	Bottom	0	142	2	Ant 0+1	18.0	17.93	1.02	0.01	1.01	1.03
	WLAN5G	802.11n HT40	Bottom	0	126	3	Ant 0+1	18.0	17.95	1.01	0.08	1.03	1.04
	WLAN5G	802.11n HT40	Bottom	0	142	3	Ant 0+1	18.0	17.93	1.02	0.08	0.99	1.01
	WLAN5G	802.11n HT40	Bottom	0	126	1	Ant 0+1	18.0	17.95	1.01	0.02	1.11	1.12
	WLAN5G	802.11n HT40	Bottom	0	151	1	Ant 0	19.0	18.91	1.02	0.03	0.752	0.77
19	WLAN5G	802.11ac VHT80	Bottom	0	155	1	Ant 1	12.0	11.58	1.10	0.16	1.01	1.11
	WLAN5G	802.11n HT40	Bottom	0	151	1	Ant 0+1	16.0	15.97	1.01	-0.03	1.07	1.08
	WLAN5G	802.11n HT40	Bottom	0	159	1	Ant 0+1	16.0	15.80	1.05	-0.02	1.05	1.10
	WLAN5G	802.11ac VHT80	Bottom	0	155	2	Ant 1	12.0	11.58	1.10	0.09	0.959	1.06
	WLAN5G	802.11ac VHT80	Bottom	0	155	3	Ant 1	12.0	11.58	1.10	0.13	0.943	1.04
	WLAN5G	802.11n HT40	Bottom	0	151	1	Ant 0+1	16.0	15.97	1.01	0.11	1.03	1.04

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	EUT Config.	Tx Antenna	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
20	BT	BR/EDR	Bottom	0	39	1	Ant 1	13.0	12.82	1.04	-0.10	0.025	<mark>0.03</mark>
	BT	BR/EDR	Bottom	0	0	1	Ant 1	13.0	12.70	1.07	-0.02	0.024	0.03
	BT	BR/EDR	Bottom	0	78	1	Ant 1	13.0	12.65	1.08	0.11	0.023	0.02
	BT	BR/EDR	Bottom	0	39	2	Ant 1	13.0	12.82	1.04	0.14	0.017	0.02
	BT	BR/EDR	Bottom	0	39	3	Ant 1	13.0	12.82	1.04	0.09	0.012	0.01

 Report Format Version 5.0.0
 Page No.
 : 90 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Tablet PC Mode

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	Power Reduction	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	WCDMA II	RMC 12.2K	Rear Face	20	9538	w/o	1	23.5	23.50	1.00	0.01	0.538	0.54
21	WCDMA II	RMC 12.2K	Rear Face	0	9538	w/	1	12.0	11.90	1.02	-0.02	1.13	<mark>1.16</mark>
	WCDMA II	RMC 12.2K	Left Side	0	9538	w/o	1	23.5	23.50	1.00	-0.05	0.196	0.20
	WCDMA II	RMC 12.2K	Right Side	0	9538	w/o	1	23.5	23.50	1.00	0.00	0.001	0.00
	WCDMA II	RMC 12.2K	Top Side	20	9538	w/o	1	23.5	23.50	1.00	0.04	0.091	0.09
	WCDMA II	RMC 12.2K	Top Side	0	9538	w/	1	12.0	11.90	1.02	-0.13	0.114	0.12
	WCDMA II	RMC 12.2K	Bottom Side	0	9538	w/o	1	23.5	23.50	1.00	0.00	0.001	0.00
	WCDMA II	RMC 12.2K	Rear Face	0	9262	w/	1	12.0	11.87	1.03	0.05	0.993	1.02
	WCDMA II	RMC 12.2K	Rear Face	0	9400	w/	1	12.0	11.83	1.04	-0.01	1.058	1.10
	WCDMA II	RMC 12.2K	Rear Face	0	9538	w/	2	12.0	11.90	1.02	0.06	1.11	1.14
	WCDMA II	RMC 12.2K	Rear Face	0	9262	w/	2	12.0	11.87	1.03	0.05	1.03	1.06
	WCDMA II	RMC 12.2K	Rear Face	0	9400	w/	2	12.0	11.83	1.04	0.01	0.995	1.03
	WCDMA II	RMC 12.2K	Rear Face	0	9538	w/	3	12.0	11.90	1.02	0.09	1.08	1.11
	WCDMA II	RMC 12.2K	Rear Face	0	9262	w/	3	12.0	11.87	1.03	-0.10	0.991	1.02
	WCDMA II	RMC 12.2K	Rear Face	0	9400	w/	3	12.0	11.83	1.04	0.06	0.988	1.03
	WCDMA II	RMC 12.2K	Rear Face	0	9538	w/	1	12.0	11.90	1.02	-0.02	1.11	1.14
	WCDMA IV	RMC 12.2K	Rear Face	20	1513	w/o	1	23.5	23.48	1.00	-0.03	0.323	0.32
	WCDMA IV	RMC 12.2K	Rear Face	0	1513	w/	1	14.0	13.62	1.09	0.01	0.839	0.92
	WCDMA IV	RMC 12.2K	Left Side	0	1513	w/o	1	23.5	23.48	1.00	0.13	0.126	0.13
	WCDMA IV	RMC 12.2K	Right Side	0	1513	w/o	1	23.5	23.48	1.00	0.00	0.001	0.00
	WCDMA IV	RMC 12.2K	Top Side	20	1513	w/o	1	23.5	23.48	1.00	0.05	0.069	0.07
	WCDMA IV	RMC 12.2K	Top Side	0	1513	w/	1	14.0	13.62	1.09	-0.05	0.087	0.09
	WCDMA IV	RMC 12.2K	Bottom Side	0	1513	w/o	1	23.5	23.48	1.00	0.00	0.001	0.00
22	WCDMA IV	RMC 12.2K	Rear Face	0	1312	w/	1	14.0	13.51	1.12	-0.16	0.857	<mark>0.96</mark>
	WCDMA IV	RMC 12.2K	Rear Face	0	1413	w/	1	14.0	13.54	1.11	0.02	0.843	0.94
	WCDMA IV	RMC 12.2K	Rear Face	0	1312	w/	2	14.0	13.51	1.12	0.05	0.832	0.93
	WCDMA IV	RMC 12.2K	Rear Face	0	1413	w/	2	14.0	13.54	1.11	0.13	0.821	0.91
	WCDMA IV	RMC 12.2K	Rear Face	0	1513	w/	2	14.0	13.62	1.09	0.06	0.813	0.89
	WCDMA IV	RMC 12.2K	Rear Face	0	1312	w/	3	14.0	13.51	1.12	0.09	0.828	0.93
	WCDMA IV	RMC 12.2K	Rear Face	0	1413	w/	3	14.0	13.54	1.11	0.11	0.82	0.91
	WCDMA IV	RMC 12.2K	Rear Face	0	1513	w/	3	14.0	13.62	1.09	0.05	0.814	0.89
	WCDMA IV	RMC 12.2K	Rear Face	0	1312	w/	1	14.0	13.51	1.12	-0.16	0.855	0.96
	WCDMA V	RMC 12.2K	Rear Face	20	4182	w/o	1	23.5	23.49	1.00	-0.01	0.164	0.16
	WCDMA V	RMC 12.2K	Rear Face	0	4182	w/	1	19.0	18.93	1.02	-0.01	0.423	0.43
	WCDMA V	RMC 12.2K	Left Side	0	4182	w/o	1	23.5	23.49	1.00	0.14	0.140	0.14
	WCDMA V	RMC 12.2K	Right Side	0	4182	w/o	1	23.5	23.49	1.00	0.00	0.001	0.00
	WCDMA V	RMC 12.2K	Top Side	20	4182	w/o	1	23.5	23.49	1.00	0.10	0.054	0.05
	WCDMA V	RMC 12.2K	Top Side	0	4182	w/	1	19.0	18.93	1.02	0.09	0.125	0.13
	WCDMA V	RMC 12.2K	Bottom Side	0	4182	w/o	1	23.5	23.49	1.00	0.00	0.001	0.00
	WCDMA V	RMC 12.2K	Rear Face	0	4132	w/	1	19.0	18.78	1.05	-0.05	0.422	0.44
23	WCDMA V	RMC 12.2K	Rear Face	0	4233	w/	1	19.0	18.84	1.04	0.03	0.432	<mark>0.45</mark>
	WCDMA V	RMC 12.2K	Rear Face	0	4233	w/	2	19.0	18.84	1.04	0.13	0.421	0.44
	WCDMA V	RMC 12.2K	Rear Face	0	4233	w/	3	19.0	18.84	1.04	0.06	0.408	0.42

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 91 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

				Separation						Max.	Measured		Power	Measured	Scaled
Plot	Band	Mode	Test	Distance	Ch.	RB#	RB	Power Reduction	EUT	Tune-up	Conducted	Scaling	Drift	SAR-1g	SAR-1g
No.			Position	(mm)			Offset	Reduction	Config.	Power (dBm)	Power (dBm)	Factor	(dB)	(W/kg)	(W/kg)
	LTE 2	QPSK20M	Rear Face	20	18700	1	0	w/o	1	23.5	23.09	1.10	-0.06	0.354	0.39
	LTE 2	QPSK20M	Rear Face	0	18700	1	0	w/	1	12.0	11.82	1.04	-0.09	1.05	1.09
	LTE 2	QPSK20M	Left Side	0	18700	1	0	w/o	1	23.5	23.09	1.10	0.11	0.294	0.32
	LTE 2	QPSK20M	Right Side	0	18700	1	0	w/o	1	23.5	23.09	1.10	0.00	0.001	0.00
	LTE 2	QPSK20M	Top Side	20	18700	1	0	w/o	1	23.5	23.09	1.10	0.12	0.074	0.08
	LTE 2	QPSK20M	Top Side	0	18700	1	0	w/	1	12.0	11.82	1.04	0.03	0.133	0.14
	LTE 2	QPSK20M	Bottom Side	0	18700	1	0	w/o	1	23.5	23.09	1.10	0.00	0.001	0.00
	LTE 2	QPSK20M	Rear Face	20	18700	50	0	w/o	1	22.5	21.91	1.15	0.14	0.288	0.33
	LTE 2	QPSK20M	Rear Face	0	18700	50	0	w/	1	12.0	11.85	1.04	-0.05	1.04	1.08
	LTE 2	QPSK20M	Left Side	0	18700	50	0	w/o	1	22.5	21.91	1.15	0.13	0.241	0.28
	LTE 2	QPSK20M	Right Side	0	18700	50	0	w/o	1	22.5	21.91	1.15	0.00	0.001	0.00
	LTE 2	QPSK20M	Top Side	20	18700	50	0	w/o	1	22.5	21.91	1.15	0.15	0.063	0.07
	LTE 2	QPSK20M	Top Side	0	18700	50	0	w/	1	12.0	11.85	1.04	0.02	0.083	0.09
	LTE 2	QPSK20M	Bottom Side	0	18700	50	0	w/o	1	22.5	21.91	1.15	0.00	0.001	0.00
	LTE 2	QPSK20M	Rear Face	0	18900	1	0	w/	1	12.0	11.62	1.09	0.01	1.03	1.12
	LTE 2	QPSK20M	Rear Face	0	19100	1	0	w/	1	12.0	11.54	1.11	0.00	1.04	1.16
	LTE 2	QPSK20M	Rear Face	0	18900	50	0	w/	1	12.0	11.65	1.08	-0.08	1.06	1.15
24	LTE 2	QPSK20M	Rear Face	0	19100	50	0	w/	1	12.0	11.57	1.10	-0.05	1.07	<mark>1.18</mark>
	LTE 2	QPSK20M	Rear Face	0	18700	100	0	w/	1	12.0	11.84	1.04	0.01	1.02	1.06
	LTE 2	QPSK20M	Rear Face	0	19100	50	0	w/	2	12.0	11.57	1.10	0.09	1.06	1.17
	LTE 2	QPSK20M	Rear Face	0	18700	50	0	w/	2	12.0	11.85	1.04	0.04	0.983	1.02
	LTE 2	QPSK20M	Rear Face	0	18900	50	0	w/	2	12.0	11.65	1.08	0.14	0.959	1.04
	LTE 2	QPSK20M	Rear Face	0	19100	50	0	w/	3	12.0	11.57	1.10	0.08	1.03	1.14
	LTE 2	QPSK20M	Rear Face	0	18700	50	0	w/	3	12.0	11.85	1.04	0.05	0.955	0.99
	LTE 2	QPSK20M	Rear Face	0	18900	50	0	w/	3	12.0	11.65	1.08	0.01	0.943	1.02
	LTE 2	QPSK20M	Rear Face	0	19100	50	0	w/	1	12.0	11.57	1.10	-0.05	1.05	1.16
	LTE 4	QPSK20M	Rear Face	20	20300	1	0	w/o	1	23.0	22.88	1.03	0.06	0.398	0.41
	LTE 4	QPSK20M	Rear Face	0	20300	1	0	w/	1	14.0	13.99	1.00	-0.08	1.11	1.11
	LTE 4	QPSK20M	Left Side	0	20300	1	0	w/o	1	23.0	22.88	1.03	-0.09	0.16	0.16
	LTE 4	QPSK20M	Right Side	0	20300	1	0	w/o	1	23.0	22.88	1.03	0.00	0.001	0.00
	LTE 4	QPSK20M	Top Side	20	20300	1	0	w/o	1	23.0	22.88	1.03	0.03	0.088	0.09
	LTE 4	QPSK20M	Top Side	0	20300	1	0	w/	1	14.0	13.99	1.00	0.03	0.113	0.11
	LTE 4	QPSK20M	Bottom Side	0	20300	1	0	w/o	1	23.0	22.88	1.03	0.00	0.001	0.00
	LTE 4	QPSK20M	Rear Face	20	20300	50	0	w/o	1	22.0	21.90	1.02	-0.02	0.319	0.33
25	LTE 4	QPSK20M	Rear Face	0	20300	50	0	w/	1	14.0	13.98	1.00	-0.04	1.18	<mark>1.19</mark>
	LTE 4	QPSK20M	Left Side	0	20300	50	0	w/o	1	22.0	21.90	1.02	0.01	0.085	0.09
	LTE 4	QPSK20M	Right Side	0	20300	50	0	w/o	1	22.0	21.90	1.02	0.00	0.001	0.00
	LTE 4	QPSK20M	Top Side	20	20300	50	0	w/o	1	22.0	21.90	1.02	0.07	0.09	0.09
	LTE 4	QPSK20M	Top Side	0	20300	50	0	w/	1	14.0	13.98	1.00	-0.07	0.091	0.09
	LTE 4	QPSK20M	Bottom Side	0	20300	50	0	w/o	1	22.0	21.90	1.02	0.00	0.001	0.00
	LTE 4	QPSK20M	Rear Face	0	20050	1	0	w/	1	14.0	13.92	1.02	0.08	1.03	1.05
	LTE 4	QPSK20M	Rear Face	0	20175	1	0	w/	1	14.0	13.84	1.04	-0.08	1.06	1.10
	LTE 4	QPSK20M	Rear Face	0	20050	50	0	w/	1	14.0	13.97	1.01	0.12	0.99	1.00
	LTE 4	QPSK20M	Rear Face	0	20175	50	0	w/	1	14.0	13.83	1.04	0.03	1.02	1.06
	LTE 4	QPSK20M	Rear Face	0	20300	100	0	w/	1	14.0	13.93	1.02	-0.05	0.921	0.94
	LTE 4	QPSK20M	Rear Face	0	20300	50	0	W/	2	14.0	13.98	1.00	0.09	1.09	1.10
	LTE 4 LTE 4	QPSK20M	Rear Face	0	20050	50	0	W/	2	14.0	13.97	1.01	0.06	1.06	1.07
		QPSK20M	Rear Face	0	20175	50	0	W/	2	14.0	13.83	1.04	0.01	1.03	1.07
	LTE 4	QPSK20M	Rear Face	0	20300	50	0	W/	3	14.0	13.98	1.00	0.08	1.05	1.05
	LTE 4 LTE 4	QPSK20M	Rear Face	0	20050 20175	50 50	0	W/	3	14.0 14.0	13.97 13.83	1.01	0.13	0.995 0.987	1.00
	LTE 4	QPSK20M	Rear Face					W/							
	LIE 4	QPSK20M	Rear Face	0	20300	50	0	w/	1	14.0	13.98	1.00	-0.04	1.13	1.14

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

 Report Format Version 5.0.0
 Page No.
 : 92 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Plot			Test	Separation			RB	Power	EUT	Max. Tune-up	Measured Conducted	Scaling	Power	Measured	Scaled
No.	Band	Mode	Position	Distance (mm)	Ch.	RB#	Offset	Reduction	Config.	Power (dBm)	Power (dBm)	Factor	Drift (dB)	SAR-1g (W/kg)	SAR-1g (W/kg)
	LTE 5	QPSK10M	Rear Face	20	20450	1	0	w/o	1	23.0	22.73	1.06	0.00	0.145	0.15
	LTE 5	QPSK10M	Rear Face	0	20450	1	0	w/	1	19.5	19.32	1.04	-0.09	0.552	0.58
	LTE 5	QPSK10M	Left Side	0	20450	1	0	w/o	1	23.0	22.73	1.06	-0.02	0.096	0.10
	LTE 5	QPSK10M	Right Side	0	20450	1	0	w/o	1	23.0	22.73	1.06	0.00	0.001	0.00
	LTE 5	QPSK10M	Top Side	20	20450	1	0	w/o	1	23.0	22.73	1.06	0.00	0.046	0.05
	LTE 5	QPSK10M	Top Side	0	20450	1	0	w/	1	19.5	19.32	1.04	0.03	0.12	0.13
	LTE 5	QPSK10M	Bottom Side	0	20450	1	0	w/o	1	23.0	22.73	1.06	0.00	0.001	0.00
	LTE 5	QPSK10M	Rear Face	20	20450	25	0	w/o	1	22.0	21.78	1.05	-0.01	0.113	0.12
26	LTE 5	QPSK10M	Rear Face	0	20450	25	0	w/	1	19.5	19.21	1.07	0.03	0.589	<mark>0.63</mark>
	LTE 5	QPSK10M	Left Side	0	20450	25	0	w/o	1	22.0	21.78	1.05	0.02	0.069	0.07
	LTE 5	QPSK10M	Right Side	0	20450	25	0	w/o	1	22.0	21.78	1.05	0.00	0.001	0.00
	LTE 5	QPSK10M	Top Side	20	20450	25	0	w/o	1	22.0	21.78	1.05	-0.18	0.064	0.07
	LTE 5	QPSK10M	Top Side	0	20450	25	0	w/	1	19.5	19.21	1.07	0.00	0.116	0.12
	LTE 5	QPSK10M	Bottom Side	0	20450	25	0	w/o	1	22.0	21.78	1.05	0.00	0.001	0.00
	LTE 5	QPSK10M	Rear Face	0	20525	1	0	w/	1	19.5	19.17	1.08	0.01	0.538	0.58
	LTE 5	QPSK10M	Rear Face	0	20600	1	0	w/	1	19.5	19.09	1.10	0.08	0.541	0.59
	LTE 5	QPSK10M	Rear Face	0	20450	25	0	w/	2	19.5	19.21	1.07	0.06	0.544	0.58
	LTE 5	QPSK10M	Rear Face	0	20450	25	0	w/	3	19.5	19.21	1.07	0.13	0.532	0.57
	LTE 7	QPSK20M	Rear Face	20	21350	1	0	w/o	1	23.0	22.68	1.08	0.05	0.385	0.41
	LTE 7	QPSK20M	Rear Face	0	21350	1	0	w/	1	12.0	11.99	1.00	-0.13	0.780	0.78
	LTE 7	QPSK20M	Left Side	0	21350	1	0	w/o	1	23.0	22.68	1.08	-0.06	0.107	0.12
	LTE 7	QPSK20M	Right Side	0	21350	1	0	w/o	1	23.0	22.68	1.08	0.00	0.001	0.00
	LTE 7	QPSK20M	Top Side	20	21350	1	0	w/o	1	23.0	22.68	1.08	-0.06	0.166	0.18
	LTE 7	QPSK20M	Top Side	0	21350	1	0	w/	1	12.0	11.99	1.00	0.04	0.202	0.20
	LTE 7	QPSK20M	Bottom Side	0	21350	1	0	w/o	1	23.0	22.68	1.08	0.00	0.001	0.00
	LTE 7	QPSK20M	Rear Face	20	21350	50	50	w/o	1	22.0	21.70	1.07	0.06	0.274	0.29
	LTE 7	QPSK20M	Rear Face	0	21350	50	0	w/	1	12.0	11.98	1.00	-0.14	1.10	1.11
	LTE 7	QPSK20M	Left Side	0	21350	50	50	w/o	1	22.0	21.70	1.07	-0.18	0.604	0.65
	LTE 7	QPSK20M	Right Side	0	21350	50	50	w/o	1	22.0	21.70	1.07	0.00	0.001	0.00
	LTE 7	QPSK20M	Top Side	20	21350	50	50	w/o	1	22.0	21.70	1.07	0.04	0.107	0.11
	LTE 7	QPSK20M	Top Side	0	21350	50	0	w/	1	12.0	11.98	1.00	0.09	0.175	0.18
	LTE 7	QPSK20M	Bottom Side	0	21350	50	50	w/o	1	22.0	21.70	1.07	0.00	0.001	0.00
27	LTE 7	QPSK20M	Rear Face	0	20850	50	0	w/	1	12.0	11.89	1.03	-0.02	1.11	1.14
	LTE 7	QPSK20M	Rear Face	0	21100	50	0	w/	1	12.0	11.91	1.02	-0.02	0.98	1.00
	LTE 7	QPSK20M	Rear Face	0	21350	100	0	w/	1	12.0	11.97	1.01	0.03	0.895	0.90
	LTE 7	QPSK20M	Rear Face	0	20850	50	0	w/	2	12.0	11.89	1.03	0.06	1.03	1.06
	LTE 7	QPSK20M	Rear Face	0	21100	50	0	w/	2	12.0	11.91	1.02	0.13	0.982	1.00
	LTE 7	QPSK20M	Rear Face	0	21350	50	0	w/	2	12.0	11.98	1.00	0.08	0.942	0.95
	LTE 7	QPSK20M	Rear Face	0	20850	50	0	w/	3	12.0	11.89	1.03	0.09	1.01	1.04
	LTE 7	QPSK20M	Rear Face	0	21100	50	0	w/	3	12.0	11.91	1.02	0.05	0.995	1.02
	LTE 7	QPSK20M	Rear Face	0	21350	50	0	w/	3	12.0	11.98	1.00	0.01	0.943	0.95
	LTE 7	QPSK20M	Rear Face	0	20850	50	0	w/	1	12.0	11.89	1.03	-0.02	1.05	1.08

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

 Report Format Version 5.0.0
 Page No. : 93 of 208

 Report No. : SA180315C04
 Issued Date : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	RB#	RB Offset	Power Reduction	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	LTE 12	QPSK10M	Rear Face	20	23060	1	0	w/o	1	23.0	22.96	1.01	0.01	0.123	0.12
28	LTE 12	QPSK10M	Rear Face	0	23060	1	24	w/	1	19.5	19.35	1.04	-0.06	0.745	<mark>0.77</mark>
	LTE 12	QPSK10M	Left Side	0	23060	1	0	w/o	1	23.0	22.96	1.01	-0.08	0.088	0.09
	LTE 12	QPSK10M	Right Side	0	23060	1	0	w/o	1	23.0	22.96	1.01	0.00	0.001	0.00
	LTE 12	QPSK10M	Top Side	20	23060	1	0	w/o	1	23.0	22.96	1.01	0.00	0.001	0.00
	LTE 12	QPSK10M	Top Side	0	23060	1	24	w/	1	19.5	19.35	1.04	-0.09	0.188	0.19
	LTE 12	QPSK10M	Bottom Side	0	23060	1	0	w/o	1	23.0	22.96	1.01	0.00	0.001	0.00
	LTE 12	QPSK10M	Rear Face	20	23060	25	0	w/o	1	22.0	21.95	1.01	0.02	0.087	0.09
	LTE 12	QPSK10M	Rear Face	0	23060	25	12	w/	1	19.5	19.34	1.04	0.03	0.652	0.68
	LTE 12	QPSK10M	Left Side	0	23060	25	0	w/o	1	22.0	21.95	1.01	-0.13	0.066	0.07
	LTE 12	QPSK10M	Right Side	0	23060	25	0	w/o	1	22.0	21.95	1.01	0.00	0.001	0.00
	LTE 12	QPSK10M	Top Side	20	23060	25	0	w/o	1	22.0	21.95	1.01	0.00	0.001	0.00
	LTE 12	QPSK10M	Top Side	0	23060	25	12	w/	1	19.5	19.34	1.04	-0.05	0.148	0.15
	LTE 12	QPSK10M	Bottom Side	0	23060	25	0	w/o	1	22.0	21.95	1.01	0.00	0.001	0.00
	LTE 12	QPSK10M	Rear Face	0	23095	1	24	w/	1	19.5	19.31	1.04	0.02	0.667	0.70
	LTE 12	QPSK10M	Rear Face	0	23130	1	24	w/	1	19.5	19.32	1.04	-0.11	0.648	0.68
	LTE 12	QPSK10M	Rear Face	0	23060	1	24	w/	2	19.5	19.35	1.04	0.06	0.712	0.74
	LTE 12	QPSK10M	Rear Face	0	23060	1	24	w/	3	19.5	19.35	1.04	0.13	0.711	0.74
	LTE 13	QPSK10M	Rear Face	20	23230	1	49	w/o	1	23.0	22.93	1.02	-0.01	0.153	0.16
	LTE 13	QPSK10M	Rear Face	0	23230	1	49	w/	1	19.5	19.22	1.07	0.01	0.617	0.66
	LTE 13	QPSK10M	Left Side	0	23230	1	49	w/o	1	23.0	22.93	1.02	0.08	0.075	0.08
	LTE 13	QPSK10M	Right Side	0	23230	1	49	w/o	1	23.0	22.93	1.02	0.00	0.001	0.00
	LTE 13	QPSK10M	Top Side	20	23230	1	49	w/o	1	23.0	22.93	1.02	0.00	0.001	0.00
	LTE 13	QPSK10M	Top Side	0	23230	1	49	w/	1	19.5	19.22	1.07	-0.03	0.187	0.20
	LTE 13	QPSK10M	Bottom Side	0	23230	1	49	w/o	1	23.0	22.93	1.02	0.00	0.001	0.00
	LTE 13	QPSK10M	Rear Face	20	23230	25	0	w/o	1	22.0	21.74	1.06	0.10	0.131	0.14
29	LTE 13	QPSK10M	Rear Face	0	23230	25	0	w/	1	19.5	19.18	1.08	-0.02	0.640	<mark>0.69</mark>
	LTE 13	QPSK10M	Left Side	0	23230	25	0	w/o	1	22.0	21.74	1.06	0.06	0.058	0.06
	LTE 13	QPSK10M	Right Side	0	23230	25	0	w/o	1	22.0	21.74	1.06	0.00	0.001	0.00
	LTE 13	QPSK10M	Top Side	20	23230	25	0	w/o	1	22.0	21.74	1.06	0.00	0.001	0.00
	LTE 13	QPSK10M	Top Side	0	23230	25	0	w/	1	19.5	19.18	1.08	0.07	0.196	0.21
	LTE 13	QPSK10M	Bottom Side	0	23230	25	0	w/o	1	22.0	21.74	1.06	0.00	0.001	0.00
	LTE 13	QPSK10M	Rear Face	0	23230	25	0	w/	2	19.5	19.18	1.08	0.06	0.599	0.64
	LTE 13	QPSK10M	Rear Face	0	23230	25	0	w/	3	19.5	19.18	1.08	0.13	0.587	0.63

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

 Report Format Version 5.0.0
 Page No.
 : 94 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	RB#	RB Offset	Power Reduction	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	LTE 17	QPSK10M	Rear Face	20	23800	1	49	w/o	1	23.0	22.85	1.04	-0.01	0.114	0.12
	LTE 17	QPSK10M	Rear Face	0	23800	1	49	w/	1	19.5	19.49	1.00	0.07	0.642	0.64
	LTE 17	QPSK10M	Left Side	0	23800	1	49	w/o	1	23.0	22.85	1.04	0.11	0.102	0.11
	LTE 17	QPSK10M	Right Side	0	23800	1	49	w/o	1	23.0	22.85	1.04	0.00	0.001	0.00
	LTE 17	QPSK10M	Top Side	20	23800	1	49	w/o	1	23.0	22.85	1.04	-0.05	0.05	0.05
	LTE 17	QPSK10M	Top Side	0	23800	1	49	w/	1	19.5	19.49	1.00	0.08	0.228	0.23
	LTE 17	QPSK10M	Bottom Side	0	23800	1	49	w/o	1	23.0	22.85	1.04	0.00	0.001	0.00
	LTE 17	QPSK10M	Rear Face	20	23800	25	25	w/o	1	22.0	21.79	1.05	0.04	0.095	0.10
	LTE 17	QPSK10M	Rear Face	0	23800	25	0	w/	1	19.5	19.40	1.02	-0.06	0.628	0.64
	LTE 17	QPSK10M	Left Side	0	23800	25	25	w/o	1	22.0	21.79	1.05	0.11	0.057	0.06
	LTE 17	QPSK10M	Right Side	0	23800	25	25	w/o	1	22.0	21.79	1.05	0.00	0.001	0.00
	LTE 17	QPSK10M	Top Side	20	23800	25	25	w/o	1	22.0	21.79	1.05	0.00	0.001	0.00
	LTE 17	QPSK10M	Top Side	0	23800	25	0	w/	1	19.5	19.40	1.02	-0.04	0.156	0.16
	LTE 17	QPSK10M	Bottom Side	0	23800	25	25	w/o	1	22.0	21.79	1.05	0.00	0.001	0.00
30	LTE 17	QPSK10M	Rear Face	0	23780	1	49	w/	1	19.5	19.42	1.02	-0.07	0.712	0.73
	LTE 17	QPSK10M	Rear Face	0	23790	1	49	w/	1	19.5	19.40	1.02	0.09	0.685	0.70
	LTE 17	QPSK10M	Rear Face	0	23780	1	49	w/	2	19.5	19.42	1.02	0.05	0.703	0.72
	LTE 17	QPSK10M	Rear Face	0	23780	1	49	w/	3	19.5	19.42	1.02	0.13	0.711	0.72
	LTE 26	QPSK15M	Rear Face	20	26765	1	37	w/o	1	23.0	22.94	1.01	0.01	0.13	0.13
31	LTE 26	QPSK15M	Rear Face	0	26765	1	37	w/	1	20.0	19.66	1.08	0.02	0.585	0.63
	LTE 26	QPSK15M	Left Side	0	26765	1	37	w/o	1	23.0	22.94	1.01	0.07	0.083	0.08
	LTE 26	QPSK15M	Right Side	0	26765	1	37	w/o	1	23.0	22.94	1.01	0.00	0.001	0.00
	LTE 26	QPSK15M	Top Side	20	26765	1	37	w/o	1	23.0	22.94	1.01	-0.05	0.062	0.06
	LTE 26	QPSK15M	Top Side	0	26765	1	37	w/	1	20.0	19.66	1.08	0.09	0.141	0.15
	LTE 26	QPSK15M	Bottom Side	0	26765	1	37	w/o	1	23.0	22.94	1.01	0.00	0.001	0.00
	LTE 26	QPSK15M	Rear Face	20	26765	36	19	w/o	1	22.0	21.98	1.00	0.04	0.106	0.11
	LTE 26	QPSK15M	Rear Face	0	26765	36	0	w/	1	20.0	19.54	1.11	0.10	0.566	0.63
	LTE 26	QPSK15M	Left Side	0	26765	36	19	w/o	1	22.0	21.98	1.00	-0.07	0.07	0.07
	LTE 26	QPSK15M	Right Side	0	26765	36	19	w/o	1	22.0	21.98	1.00	0.00	0.001	0.00
	LTE 26	QPSK15M	Top Side	20	26765	36	19	w/o	1	22.0	21.98	1.00	0.00	0.001	0.00
	LTE 26	QPSK15M	Top Side	0	26765	36	0	w/	1	20.0	19.54	1.11	0.02	0.137	0.15
	LTE 26	QPSK15M	Bottom Side	0	26765	36	19	w/o	1	22.0	21.98	1.00	0.00	0.001	0.00
	LTE 26	QPSK15M	Rear Face	0	26865	1	37	w/	1	20.0	19.57	1.10	0.08	0.566	0.62
	LTE 26	QPSK15M	Rear Face	0	26965	1	37	w/	1	20.0	19.63	1.09	-0.12	0.56	0.61
	LTE 26	QPSK15M	Rear Face	0	26765	1	37	w/	2	20.0	19.66	1.08	0.08	0.566	0.61
	LTE 26	QPSK15M	Rear Face	0	26765	1	37	w/	3	20.0	19.66	1.08	0.13	0.561	0.61

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

 Report Format Version 5.0.0
 Page No.
 : 95 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Plot			Test	Separation			RB	Power	EUT	Max. Tune-up	Measured Conducted	Scaling	Power	Measured	Scaled
No.	Band	Mode	Position	Distance (mm)	Ch.	RB#	Offset	Reduction	Config.	Power (dBm)	Power (dBm)	Factor	Drift (dB)	SAR-1g (W/kg)	SAR-1g (W/kg)
32	LTE 30	QPSK10M	Rear Face	20	27710	1	0	w/o	1	23.0	22.55	1.11	0.01	0.770	0.85
	LTE 30	QPSK10M	Rear Face	0	27710	1	0	w/	1	13.0	12.99	1.00	-0.01	0.684	0.69
	LTE 30	QPSK10M	Left Side	0	27710	1	0	w/o	1	23.0	22.55	1.11	0.13	0.197	0.22
	LTE 30	QPSK10M	Right Side	0	27710	1	0	w/o	1	23.0	22.55	1.11	0.00	0.001	0.00
	LTE 30	QPSK10M	Top Side	20	27710	1	0	w/o	1	23.0	22.55	1.11	0.05	0.245	0.27
	LTE 30	QPSK10M	Top Side	0	27710	1	0	w/	1	13.0	12.99	1.00	0.01	0.372	0.37
	LTE 30	QPSK10M	Bottom Side	0	27710	1	0	w/o	1	23.0	22.55	1.11	0.00	0.001	0.00
	LTE 30	QPSK10M	Rear Face	20	27710	25	25	w/o	1	22.0	21.62	1.09	0.06	0.719	0.78
	LTE 30	QPSK10M	Rear Face	0	27710	25	25	w/	1	13.0	12.93	1.02	-0.13	0.577	0.59
	LTE 30	QPSK10M	Left Side	0	27710	25	25	w/o	1	22.0	21.62	1.09	-0.05	0.173	0.19
	LTE 30	QPSK10M	Right Side	0	27710	25	25	w/o	1	22.0	21.62	1.09	0.00	0.001	0.00
	LTE 30	QPSK10M	Top Side	20	27710	25	25	w/o	1	22.0	21.62	1.09	-0.03	0.238	0.26
	LTE 30	QPSK10M	Top Side	0	27710	25	25	w/	1	13.0	12.93	1.02	0.09	0.313	0.32
	LTE 30	QPSK10M	Bottom Side	0	27710	25	25	w/o	1	22.0	21.62	1.09	0.00	0.001	0.00
	LTE 30	QPSK10M	Rear Face	0	27710	50	0	w/	1	22.0	21.69	1.07	-0.04	0.67	0.72
	LTE 30	QPSK10M	Rear Face	20	27710	1	0	w/o	2	23.0	22.55	1.11	0.05	0.708	0.79
	LTE 30	QPSK10M	Rear Face	20	27710	1	0	w/o	3	23.0	22.55	1.11	0.13	0.691	0.77
	LTE 38	QPSK20M	Rear Face	20	38150	1	99	w/o	1	23.0	22.68	1.08	0.03	0.170	0.18
	LTE 38	QPSK20M	Rear Face	0	38150	1	99	w/	1	16.0	15.69	1.07	0.04	1.04	1.12
	LTE 38	QPSK20M	Left Side	0	38150	1	99	w/o	1	23.0	22.68	1.08	-0.11	0.331	0.36
	LTE 38	QPSK20M	Right Side	0	38150	1	99	w/o	1	23.0	22.68	1.08	0.00	0.001	0.00
	LTE 38	QPSK20M	Top Side	20	38150	1	99	w/o	1	23.0	22.68	1.08	0.05	0.065	0.07
	LTE 38	QPSK20M	Top Side	0	38150	1	99	w/	1	16.0	15.69	1.07	-0.03	0.261	0.28
	LTE 38	QPSK20M	Bottom Side	0	38150	1	99	w/o	1	23.0	22.68	1.08	0.00	0.001	0.00
	LTE 38	QPSK20M	Rear Face	20	38150	50	0	w/o	1	22.0	21.73	1.06	0.05	0.157	0.17
	LTE 38	QPSK20M	Rear Face	0	38150	50	50	w/	1	16.0	15.58	1.10	-0.13	1.03	1.13
	LTE 38	QPSK20M	Left Side	0	38150	50	0	w/o	1	22.0	21.73	1.06	0.06	0.261	0.28
	LTE 38	QPSK20M	Right Side	0	38150	50	0	w/o	1	22.0	21.73	1.06	0.00	0.001	0.00
	LTE 38	QPSK20M	Top Side	20	38150	50	0	w/o	1	22.0	21.73	1.06	-0.03	0.060	0.06
	LTE 38	QPSK20M	Top Side	0	38150	50	50	w/	1	16.0	15.58	1.10	0.06	0.208	0.23
	LTE 38	QPSK20M	Bottom Side	0	38150	50	0	w/o	1	22.0	21.73	1.06	0.00	0.001	0.00
33	LTE 38	QPSK20M	Rear Face	0	37850	1	99	W/	1	16.0	15.68	1.08	0.03	1.09	1.17
	LTE 38	QPSK20M	Rear Face	0	38000	1 50	99 50	w/	1	16.0	15.67 15.19	1.08	-0.03 0.04	1.06	1.14
	LTE 38	QPSK20M QPSK20M	Rear Face	0	37850 38000	50	50	w/ w/	1	16.0 16.0	15.19	1.21	0.04	0.92	1.11
			Rear Face	0		100	0		1			1.17	0.10		1.09
	LTE 38	QPSK20M QPSK20M	Rear Face Rear Face	0	38150 37850		99	W/	2	16.0 16.0	15.59 15.68	1.10	0.13	0.955 1.01	1.05
	LTE 38	QPSK20M	Rear Face	0	38000	1	99	w/ w/	2	16.0	15.68	1.08	0.06	0.959	1.09
	LTE 38	QPSK20M		0	38150	1	99	w/	2	16.0	15.69	1.06	0.13	0.960	1.03
	LTE 38	QPSK20M	Rear Face Rear Face	0	37850	1	99	w/	3	16.0	15.68	1.07	0.06	0.960	1.03
	LTE 38	QPSK20M	Rear Face	0	38000	1	99	w/	3	16.0	15.67	1.08	0.00	0.995	1.07
	LTE 38	QPSK20M	Rear Face	0	38150	1	99	w/	3	16.0	15.67	1.08	0.09	0.941	1.02
	LTE 38			0	37850	1	99		1				-0.03		
	LIE 38	QPSK20M	Rear Face	U	3/850	T	99	w/		16.0	15.68	1.18	-0.03	1.03	1.11

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 96 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	RB#	RB Offset	Power Reduction	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	LTE 41	QPSK20M	Rear Face	20	41055	1	0	w/o	1	23.0	22.56	1.11	0.05	0.196	0.22
	LTE 41	QPSK20M	Rear Face	0	41055	1	0	w/	1	14.5	14.26	1.06	0.01	0.672	0.71
	LTE 41	QPSK20M	Left Side	0	41055	1	0	w/o	1	23.0	22.56	1.11	-0.11	0.296	0.33
	LTE 41	QPSK20M	Right Side	0	41055	1	0	w/o	1	23.0	22.56	1.11	0.00	0.001	0.00
	LTE 41	QPSK20M	Top Side	20	41055	1	0	w/o	1	23.0	22.56	1.11	0.06	0.042	0.05
	LTE 41	QPSK20M	Top Side	0	41055	1	0	w/	1	14.5	14.26	1.06	0.03	0.132	0.14
	LTE 41	QPSK20M	Bottom Side	0	41055	1	0	w/o	1	23.0	22.56	1.11	0.00	0.001	0.00
	LTE 41	QPSK20M	Rear Face	20	41055	50	25	w/o	1	22.0	21.52	1.12	0.14	0.156	0.17
	LTE 41	QPSK20M	Rear Face	0	41055	50	0	w/	1	14.5	14.23	1.06	0.11	0.667	0.71
	LTE 41	QPSK20M	Left Side	0	41055	50	25	w/o	1	22.0	21.52	1.12	0.12	0.255	0.28
	LTE 41	QPSK20M	Right Side	0	41055	50	25	w/o	1	22.0	21.52	1.12	0.00	0.001	0.00
	LTE 41	QPSK20M	Top Side	20	41055	50	25	w/o	1	22.0	21.52	1.12	0.00	0.001	0.00
	LTE 41	QPSK20M	Top Side	0	41055	50	0	w/	1	14.5	14.23	1.06	-0.12	0.112	0.12
	LTE 41	QPSK20M	Bottom Side	0	41055	50	25	w/o	1	22.0	21.52	1.12	0.00	0.001	0.00
	LTE 41	QPSK20M	Rear Face	0	39750	1	0	w/	1	14.5	14.09	1.10	0.11	0.966	1.06
34	LTE 41	QPSK20M	Rear Face	0	40185	1	0	w/	1	14.5	14.20	1.07	-0.01	0.993	1.06
	LTE 41	QPSK20M	Rear Face	0	40620	1	0	w/	1	14.5	14.12	1.09	0.16	0.720	0.79
	LTE 41	QPSK20M	Rear Face	0	41490	1	0	w/	1	14.5	14.07	1.10	-0.15	0.602	0.66
	LTE 41	QPSK20M	Rear Face	0	39750	50	0	w/	1	14.5	14.08	1.10	0.05	0.888	0.98
	LTE 41	QPSK20M	Rear Face	0	40185	50	0	w/	1	14.5	14.17	1.08	0.08	0.844	0.91
	LTE 41	QPSK20M	Rear Face	0	40620	50	0	w/	1	14.5	14.09	1.10	-0.15	0.731	0.80
	LTE 41	QPSK20M	Rear Face	0	41490	50	0	w/	1	14.5	14.04	1.11	-0.03	0.613	0.68
	LTE 41	QPSK20M	Rear Face	0	41055	100	0	w/	1	14.5	14.21	1.07	0.07	0.732	0.78
	LTE 41	QPSK20M	Rear Face	0	40185	1	0	w/	2	14.5	14.20	1.07	0.13	0.932	1.00
	LTE 41	QPSK20M	Rear Face	0	39750	1	0	w/	1	14.5	14.09	1.10	0.03	0.925	1.02
	LTE 41	QPSK20M	Rear Face	0	40620	1	0	w/	2	14.5	14.12	1.09	0.06	0.922	1.01
	LTE 41	QPSK20M	Rear Face	0	41055	1	0	w/	2	14.5	14.26	1.06	0.08	0.918	0.97
	LTE 41	QPSK20M	Rear Face	0	41490	1	0	w/	2	14.5	14.07	1.10	0.01	0.911	1.01
	LTE 41	QPSK20M	Rear Face	0	40185	1	0	w/	3	14.5	14.20	1.07	0.02	0.922	0.99
	LTE 41	QPSK20M	Rear Face	0	39750	1	0	w/	1	14.5	14.09	1.10	0.03	0.903	0.99
	LTE 41	QPSK20M	Rear Face	0	40620	1	0	w/	3	14.5	14.12	1.09	0.05	0.913	1.00
	LTE 41	QPSK20M	Rear Face	0	41055	1	0	w/	3	14.5	14.26	1.06	0.01	0.914	0.97
	LTE 41	QPSK20M	Rear Face	0	41490	1	0	w/	3	14.5	14.07	1.10	0.09	0.903	1.00
	LTE 41	QPSK20M	Rear Face	0	40185	1	0	w/	1	14.5	14.20	1.07	-0.01	0.98	1.05

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

 Report Format Version 5.0.0
 Page No.
 : 97 of 208

 Report No. : SA180315C04
 Issued Date
 : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	RB#	RB Offset	Power Reduction	EUT Config.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	LTE 66	QPSK20M	Rear Face	20	132322	1	0	w/o	1	23.0	22.89	1.03	-0.10	0.357	0.37
	LTE 66	QPSK20M	Rear Face	0	132322	1	0	w/	1	14.5	14.47	1.01	0.03	0.889	0.90
	LTE 66	QPSK20M	Left Side	0	132322	1	0	w/o	1	23.0	22.89	1.03	-0.11	0.166	0.17
	LTE 66	QPSK20M	Right Side	0	132322	1	0	w/o	1	23.0	22.89	1.03	0.00	0.001	0.00
	LTE 66	QPSK20M	Top Side	20	132322	1	0	w/o	1	23.0	22.89	1.03	0.02	0.062	0.06
	LTE 66	QPSK20M	Top Side	0	132322	1	0	w/	1	14.5	14.47	1.01	0.08	0.096	0.10
	LTE 66	QPSK20M	Bottom Side	0	132322	1	0	w/o	1	23.0	22.89	1.03	0.00	0.001	0.00
	LTE 66	QPSK20M	Rear Face	20	132322	50	0	w/o	1	22.0	21.82	1.04	0.05	0.277	0.29
	LTE 66	QPSK20M	Rear Face	0	132322	50	0	w/	1	14.5	14.37	1.03	-0.10	0.868	0.89
	LTE 66	QPSK20M	Left Side	0	132322	50	0	w/o	1	22.0	21.82	1.04	0.06	0.082	0.09
	LTE 66	QPSK20M	Right Side	0	132322	50	0	w/o	1	22.0	21.82	1.04	0.00	0.001	0.00
	LTE 66	QPSK20M	Top Side	20	132322	50	0	w/o	1	22.0	21.82	1.04	0.11	0.058	0.06
	LTE 66	QPSK20M	Top Side	0	132322	50	0	w/	1	14.5	14.47	1.01	-0.03	0.092	0.09
	LTE 66	QPSK20M	Bottom Side	0	132322	50	0	w/o	1	22.0	21.82	1.04	0.00	0.001	0.00
35	LTE 66	QPSK20M	Rear Face	0	132072	1	0	w/	1	14.5	14.40	1.02	0.16	0.933	<mark>0.95</mark>
	LTE 66	QPSK20M	Rear Face	0	132572	1	0	w/	1	14.5	14.25	1.06	0.08	0.868	0.92
	LTE 66	QPSK20M	Rear Face	0	132072	50	0	w/	1	14.5	14.30	1.05	-0.13	0.881	0.92
	LTE 66	QPSK20M	Rear Face	0	132572	50	0	w/	1	14.5	14.15	1.08	0.08	0.869	0.94
	LTE 66	QPSK20M	Rear Face	0	132322	100	0	w/	1	14.5	14.38	1.03	0.04	0.907	0.93
	LTE 66	QPSK20M	Rear Face	0	132072	1	0	w/	2	14.5	14.40	1.02	0.06	0.908	0.93
	LTE 66	QPSK20M	Rear Face	0	132322	1	0	w/	2	14.5	14.47	1.01	0.12	0.901	0.91
	LTE 66	QPSK20M	Rear Face	0	132572	1	0	w/	2	14.5	14.25	1.06	0.05	0.898	0.95
	LTE 66	QPSK20M	Rear Face	0	132072	1	0	w/	3	14.5	14.40	1.02	0.01	0.906	0.93
	LTE 66	QPSK20M	Rear Face	0	132322	1	0	w/	3	14.5	14.47	1.01	0.09	0.895	0.90
	LTE 66	QPSK20M	Rear Face	0	132572	1	0	w/	3	14.5	14.25	1.06	0.05	0.889	0.94
	LTE 66	QPSK20M	Rear Face	0	132072	1	0	w/	1	14.5	14.40	1.02	-0.10	0.929	0.95

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	EUT Config.	Tx Antenna	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	WLAN2.4G	802.11b	Rear Face	0	6	1	Ant 0	17.0	16.96	1.01	-0.11	0.953	0.96
	WLAN2.4G	802.11b	Left Side	0	6	1	Ant 0	17.0	16.96	1.01	0.00	0.001	0.00
	WLAN2.4G	802.11b	Right Side	0	6	1	Ant 0	17.0	16.96	1.01	0.05	0.625	0.63
	WLAN2.4G	802.11b	Top Side	0	6	1	Ant 0	17.0	16.96	1.01	0.11	0.093	0.09
	WLAN2.4G	802.11b	Bottom Side	0	6	1	Ant 0	17.0	16.96	1.01	0.00	0.001	0.00
	WLAN2.4G	802.11b	Rear Face	0	6	1	Ant 1	13.5	13.49	1.00	0.12	1.02	1.02
	WLAN2.4G	802.11b	Left Side	0	6	1	Ant 1	13.5	13.49	1.00	0.00	0.001	0.00
	WLAN2.4G	802.11b	Bottom Side	0	6	1	Ant 1	13.5	13.49	1.00	0.11	0.544	0.55
36	WLAN2.4G	802.11n HT20	Rear Face	0	6	1	Ant 0+1	17.0	16.93	1.02	0.11	1.01	1.03
	WLAN2.4G	802.11n HT20	Left Side	0	6	1	Ant 0+1	17.0	16.93	1.02	0.00	0.001	0.00
	WLAN2.4G	802.11n HT20	Right Side	0	6	1	Ant 0+1	17.0	16.93	1.02	0.12	0.314	0.32
	WLAN2.4G	802.11n HT20	Top Side	0	6	1	Ant 0+1	17.0	16.93	1.02	0.00	0.001	0.00
	WLAN2.4G	802.11n HT20	Bottom Side	0	6	1	Ant 0+1	17.0	16.93	1.02	0.11	0.562	0.57
	WLAN2.4G	802.11b	Rear Face	0	11	1	Ant 0	17.0	16.92	1.02	0.05	0.903	0.92
	WLAN2.4G	802.11b	Rear Face	0	11	1	Ant 1	13.5	13.47	1.01	0.02	0.995	1.00
	WLAN2.4G	802.11n HT20	Rear Face	0	1	1	Ant 0+1	14.0	13.97	1.01	0.12	0.613	0.62
	WLAN2.4G	802.11n HT20	Rear Face	0	11	1	Ant 0+1	14.0	13.97	1.01	0.05	0.596	0.60
	WLAN2.4G	802.11n HT20	Rear Face	0	12	1	Ant 0+1	7.0	6.97	1.01	0.11	0.106	0.11
	WLAN2.4G	802.11n HT20	Rear Face	0	13	1	Ant 0+1	-6.5	-6.54	1.01	0.00	0.001	0.00
	WLAN2.4G	802.11n HT20	Rear Face	0	6	2	Ant 0+1	17.0	16.93	1.02	0.05	0.913	0.93
	WLAN2.4G	802.11n HT20	Rear Face	0	1	2	Ant 0+1	14.0	13.97	1.01	0.01	0.654	0.66
	WLAN2.4G	802.11n HT20	Rear Face	0	11	2	Ant 0+1	14.0	13.97	1.01	0.09	0.565	0.57
	WLAN2.4G	802.11n HT20	Rear Face	0	6	3	Ant 0+1	17.0	16.93	1.02	-0.13	0.911	0.93
	WLAN2.4G	802.11n HT20	Rear Face	0	1	3	Ant 0+1	14.0	13.97	1.01	0.08	0.664	0.67
	WLAN2.4G	802.11n HT20	Rear Face	0	11	3	Ant 0+1	14.0	13.97	1.01	0.04	0.551	0.55
	WLAN2.4G	802.11b	Rear Face	0	6	1	Ant 1	13.5	13.49	1.00	0.02	0.998	1.00

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 98 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Diet			Tout	Separation		FUT	т.,	Max. Tune-up	Measured	Saalin n	Power	Measured	Scaled
Plot No.	Band	Mode	Test Position	Distance (mm)	Ch.	EUT Config.	Tx Antenna	Power	Conducted Power	Scaling Factor	Drift (dB)	SAR-1g (W/kg)	SAR-1g (W/kg)
				(mm)				(dBm)	(dBm)		(ab)	(vv/kg)	(vv/kg)
37	WLAN5G	802.11ac VHT80	Rear Face	0	58	1	Ant 0	8.5	8.43	1.02	-0.11	0.957	<mark>0.97</mark>
	WLAN5G	802.11ac VHT80	Left Side	0	58	1	Ant 0	8.5	8.43	1.02	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Right Side	0	58	1	Ant 0	8.5	8.43	1.02	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Top Side	0	58	1	Ant 0	8.5	8.43	1.02	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Bottom Side	0	58	1	Ant 0	8.5	8.43	1.02	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Rear Face	0	58	1	Ant 1	7.5	7.47	1.01	0.11	0.546	0.55
	WLAN5G	802.11ac VHT80	Bottom Side	0	58	1	Ant 1	7.5	7.47	1.01	0.11	0.347	0.35
	WLAN5G	802.11ac VHT80	Rear Face	0	58	1	Ant 0+1	11.5	11.39	1.03	0.11	0.88	0.90
	WLAN5G	802.11ac VHT80	Right Side	0	58	1	Ant 0+1	11.5	11.39	1.03	0.12	0.126	0.13
	WLAN5G	802.11ac VHT80	Top Side	0	58	1	Ant 0+1	11.5	11.39	1.03	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Bottom Side	0	58	1	Ant 0+1	11.5	11.39	1.03	0.05	0.459	0.47
	WLAN5G	802.11ac VHT80	Rear Face	0	58	2	Ant 0	8.5	8.43	1.02	0.08	0.911	0.93
	WLAN5G	802.11ac VHT80	Rear Face	0	58	3	Ant 0	8.5	8.43	1.02	0.13	0.909	0.92
	WLAN5G	802.11ac VHT80	Rear Face	0	58	1	Ant 0	8.5	8.43	1.02	0.02	0.897	0.91
	WLAN5G	802.11ac VHT80	Rear Face	0	138	1	Ant 0	6.0	5.96	1.01	-0.17	0.811	0.82
	WLAN5G	802.11ac VHT80	Left Side	0	138	1	Ant 0	6.0	5.96	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Right Side	0	138	1	Ant 0	6.0	5.96	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Top Side	0	138	1	Ant 0	6.0	5.96	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Bottom Side	0	138	1	Ant 0	6.0	5.96	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Rear Face	0	138	1	Ant 1	7.5	7.47	1.01	0.08	0.708	0.71
	WLAN5G	802.11ac VHT80	Bottom Side	0	138	1	Ant 1	7.5	7.47	1.01	0.11	0.214	0.22
	WLAN5G	802.11ac VHT80	Rear Face	0	138	1	Ant 0+1	11.5	11.47	1.01	0.11	0.88	0.89
	WLAN5G	802.11ac VHT80	Right Side	0	138	1	Ant 0+1	11.5	11.47	1.01	0.04	0.114	0.11
	WLAN5G	802.11ac VHT80	Top Side	0	138	1	Ant 0+1	11.5	11.47	1.01	0.11	0.001	0.00
	WLAN5G	802.11ac VHT80	Bottom Side	0	138	1	Ant 0+1	11.5	11.47	1.01	0.15	0.31	0.31
	WLAN5G	802.11ac VHT80	Rear Face	0	106	1	Ant 0	6.0	5.92	1.02	0.05	0.29	0.30
	WLAN5G	802.11ac VHT80	Rear Face	0	122	1	Ant 0	6.0	5.95	1.01	0.04	0.411	0.42
38	WLAN5G	802.11ac VHT80	Rear Face	0	106	1	Ant 0+1	11.5	11.45	1.01	0.11	0.915	<mark>0.93</mark>
	WLAN5G	802.11ac VHT80	Rear Face	0	122	1	Ant 0+1	11.5	11.40	1.02	0.12	0.91	0.93
	WLAN5G	802.11ac VHT80	Rear Face	0	106	2	Ant 0+1	11.5	11.45	1.01	0.14	0.783	0.79
	WLAN5G	802.11ac VHT80	Rear Face	0	106	3	Ant 0+1	11.5	11.45	1.01	0.14	0.779	0.79
	WLAN5G	802.11ac VHT80	Rear Face	0	106	1	Ant 0+1	11.5	11.45	1.01	0.05	0.911	0.92
	WLAN5G	802.11ac VHT80	Rear Face	0	155	1	Ant 0	6.0	5.97	1.01	-0.11	0.536	0.54
	WLAN5G	802.11ac VHT80	Left Side	0	155	1	Ant 0	6.0	5.97	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Right Side	0	155	1	Ant 0	6.0	5.97	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Top Side	0	155	1	Ant 0	6.0	5.97	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Bottom Side	0	155	1	Ant 0	6.0	5.97	1.01	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Rear Face	0	155	1	Ant 1	8.0	7.95	1.01	0.18	0.904	0.91
	WLAN5G	802.11ac VHT80	Bottom Side	0	155	1	Ant 1	8.0	7.95	1.01	0.11	0.326	0.33
39	WLAN5G	802.11ac VHT80	Rear Face	0	155	1	Ant 0+1	12.0	11.73	1.06	0.15	0.868	0.92
	WLAN5G	802.11ac VHT80	Right Side	0	155	1	Ant 0+1	12.0	11.73	1.06	0.14	0.107	0.11
	WLAN5G	802.11ac VHT80	Top Side	0	155	1	Ant 0+1	12.0	11.73	1.06	0.00	0.001	0.00
	WLAN5G	802.11ac VHT80	Bottom Side	0	155	1	Ant 0+1	12.0	11.73	1.06	0.14	0.273	0.29
	WLAN5G	802.11ac VHT80	Rear Face	0	155	2	Ant 0+1	12.0	11.73	1.06	0.19	0.832	0.89
	WLAN5G	802.11ac VHT80	Rear Face	0	155	3	Ant 0+1	12.0	11.73	1.06	0.12	0.811	0.86
	WLAN5G	802.11ac VHT80	Rear Face	0	155	1	Ant 0+1	12.0	11.73	1.06	0.11	0.865	0.92

 Report Format Version 5.0.0
 Page No.
 : 99 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

Plot No.	Band	Mode	Test Position	Separation Distance (mm)	Ch.	EUT Config.	Tx Antenna	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
40	BT	BR/EDR	Rear Face	0	39	1	Ant 1	13.0	12.82	1.04	0.02	0.351	0.37
	BT	BR/EDR	Left Side	0	39	1	Ant 1	13.0	12.82	1.04	0.00	0.001	0.00
	BT	BR/EDR	Right Side	0	39	1	Ant 1	13.0	12.82	1.04	0.00	0.001	0.00
	BT	BR/EDR	Top Side	0	39	1	Ant 1	13.0	12.82	1.04	0.00	0.001	0.00
	BT	BR/EDR	Bottom Side	0	39	1	Ant 1	13.0	12.82	1.04	-0.09	0.194	0.20
	BT	BR/EDR	Rear Face	0	0	1	Ant 1	13.0	12.70	1.07	0.01	0.331	0.35
	BT	BR/EDR	Rear Face	0	78	1	Ant 1	13.0	12.65	1.08	-0.03	0.321	0.35
	BT	BR/EDR	Rear Face	0	39	2	Ant 1	13.0	12.82	1.04	0.06	0.319	0.33
	BT	BR/EDR	Rear Face	0	39	3	Ant 1	13.0	12.82	1.04	0.01	0.311	0.32

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

4.7.3 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Report Format Version 5.0.0 Page No. : 100 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Band	Mode	Test Position	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
LTE 5	QPSK10M	Bottom	20525	0.84	0.82	1.02	N/A	N/A	N/A	N/A
LTE 12	QPSK10M	Bottom	23095	0.886	0.878	1.01	N/A	N/A	N/A	N/A
LTE 13	QPSK10M	Bottom	23230	0.934	0.931	1.00	N/A	N/A	N/A	N/A
LTE 17	QPSK10M	Bottom	23800	0.847	0.843	1.00	N/A	N/A	N/A	N/A
LTE 26	QPSK15M	Bottom	26865	0.819	0.813	1.01	N/A	N/A	N/A	N/A
LTE 30	QPSK10M	Bottom	27710	0.807	0.801	1.01	N/A	N/A	N/A	N/A
WLAN2.4G	802.11b	Bottom	6	1.11	1.08	1.03	N/A	N/A	N/A	N/A
WLAN5G	802.11n HT40	Bottom	54	1.09	1.05	1.04	N/A	N/A	N/A	N/A
WLAN5G	802.11n HT40	Bottom	126	1.15	1.11	1.04	N/A	N/A	N/A	N/A
WLAN5G	802.11n HT40	Bottom	151	1.07	1.03	1.04	N/A	N/A	N/A	N/A
WCDMA II	RMC 12.2K	Rear Face	9538	1.13	1.11	1.02	N/A	N/A	N/A	N/A
WCDMA IV	RMC 12.2K	Rear Face	1312	0.857	0.855	1.00	N/A	N/A	N/A	N/A
LTE 2	QPSK20M	Rear Face	19100	1.07	1.05	1.02	N/A	N/A	N/A	N/A
LTE 4	QPSK20M	Rear Face	20300	1.18	1.13	1.04	N/A	N/A	N/A	N/A
LTE 7	QPSK20M	Rear Face	20850	1.11	1.05	1.06	N/A	N/A	N/A	N/A
LTE 38	QPSK20M	Rear Face	37850	1.09	1.03	1.06	N/A	N/A	N/A	N/A
LTE 41	QPSK20M	Rear Face	40185	0.993	0.980	1.01	N/A	N/A	N/A	N/A
LTE 66	QPSK20M	Rear Face	132072	0.933	0.929	1.00	N/A	N/A	N/A	N/A
WLAN2.4G	802.11b	Rear Face	6	1.02	0.998	1.02	N/A	N/A	N/A	N/A
WLAN5G	802.11ac VHT80	Rear Face	58	0.957	0.897	1.07	N/A	N/A	N/A	N/A
WLAN5G	802.11ac VHT80	Rear Face	106	0.915	0.911	1.00	N/A	N/A	N/A	N/A
WLAN5G	802.11ac VHT80	Rear Face	155	0.868	0.865	1.00	N/A	N/A	N/A	N/A

4.7.4 Simultaneous Multi-band Transmission Evaluation

<Possibilities of Simultaneous Transmission>

The simultaneous transmission possibilities for this device are listed as below.

Simultaneous TX Combination	Capable Transmit Configurations	Body Exposure Condition
1	WCDMA + WLAN 2.4G	Yes
2	WCDMA + WLAN 5G	Yes
3	WCDMA + BT	Yes
4	LTE + WLAN 2.4G	Yes
5	LTE + WLAN 5G	Yes
6	LTE + BT	Yes
7	WiFi 2.4GHz Ant0 + BT Ant1	Yes
8	WiFi 5GHz Ant0 + BT Ant1	Yes
9	WWAN + WiFi2.4GHz Ant0+ BT Ant1	Yes
10	WWAN + WiFi5GHz Ant0 + BT Ant1	Yes

Note:

1. The WLAN 2.4G and WLAN 5G cannot transmit simultaneously.

Report Format Version 5.0.0 Page No. : 101 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

Laptop PC Mode

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
1	WCDMA II + WLAN (DTS)	Body	Bottom Side	0.46	1.16	-	1.62	Analyzed as below
2	WCDMA II + WLAN (NII)	Body	Bottom Side	0.46	1.16	-	1.62	Analyzed as below
3	WCDMA II + BT (DSS)	Body	Bottom Side	0.46	0.03	-	0.49	Σ SAR < 1.6, Not required
4	WCDMA II + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.46	1.16	0.03	1.65	Analyzed as below
5	WCDMA II + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.46	0.77	0.03	1.26	Σ SAR < 1.6, Not required

Report Format Version 5.0.0 Page No. : 102 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
6	WCDMA IV + WLAN (DTS)	Body	Bottom Side	0.60	1.16	-	1.76	Analyzed as below
7	WCDMA IV + WLAN (NII)	Body	Bottom Side	0.60	1.16	-	1.76	Analyzed as below
8	WCDMA IV + BT (DSS)	Body	Bottom Side	0.60	0.03	-	0.63	Σ SAR < 1.6, Not required
9	WCDMA IV + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.60	1.16	0.03	1.79	Analyzed as below
10	WCDMA IV + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.60	0.77	0.03	1.40	Σ SAR < 1.6, Not required

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
11	WCDMA V + WLAN (DTS)	Body	Bottom Side	0.74	1.16	-	1.90	Analyzed as below
12	WCDMA V + WLAN (NII)	Body	Bottom Side	0.74	1.16	-	1.90	Analyzed as below
13	WCDMA V + BT (DSS)	Body	Bottom Side	0.74	0.03	-	0.77	Σ SAR < 1.6, Not required
14	WCDMA V + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.74	1.16	0.03	1.93	Analyzed as below
15	WCDMA V + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.74	0.77	0.03	1.54	Σ SAR < 1.6, Not required

Report Format Version 5.0.0 Page No. : 103 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
16	LTE 2 + WLAN (DTS)	Body	Bottom Side	0.42	1.16	-	1.58	Σ SAR < 1.6, Not required
17	LTE 2 + WLAN (NII)	Body	Bottom Side	0.42	1.16	-	1.58	Σ SAR < 1.6, Not required
18	LTE 2 + BT (DSS)	Body	Bottom Side	0.42	0.03	-	0.45	Σ SAR < 1.6, Not required
19	LTE 2 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.42	1.16	0.03	1.61	Analyzed as below
20	LTE 2 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.42	0.77	0.03	1.22	Σ SAR < 1.6, Not required

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
21	LTE 4 + WLAN (DTS)	Body	Bottom Side	0.60	1.16	-	1.76	Analyzed as below
22	LTE 4 + WLAN (NII)	Body	Bottom Side	0.60	1.16	-	1.76	Analyzed as below
23	LTE 4 + BT (DSS)	Body	Bottom Side	0.60	0.03	-	0.63	Σ SAR < 1.6, Not required
24	LTE 4 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.60	1.16	0.03	1.79	Analyzed as below
25	LTE 4 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.60	0.77	0.03	1.40	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No.
 : 104 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
26	LTE 5 + WLAN (DTS)	Body	Bottom Side	0.88	1.16	-	2.04	Analyzed as below
27	LTE 5 + WLAN (NII)	Body	Bottom Side	0.88	1.16	-	2.04	Analyzed as below
28	LTE 5 + BT (DSS)	Body	Bottom Side	0.88	0.03	-	0.91	Σ SAR < 1.6, Not required
29	LTE 5 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.88	1.16	0.03	2.07	Analyzed as below
30	LTE 5 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.88	0.77	0.03	1.68	Analyzed as below

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
31	LTE 7 + WLAN (DTS)	Body	Bottom Side	0.62	1.16	-	1.78	Analyzed as below
32	LTE 7 + WLAN (NII)	Body	Bottom Side	0.62	1.16	-	1.78	Analyzed as below
33	LTE 7 + BT (DSS)	Body	Bottom Side	0.62	0.03	-	0.65	Σ SAR < 1.6, Not required
34	LTE 7 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.62	1.16	0.03	1.81	Analyzed as below
35	LTE 7 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.62	0.77	0.03	1.42	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No.
 : 105 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
36	LTE 12 + WLAN (DTS)	Body	Bottom Side	0.93	1.16	-	2.09	Analyzed as below
37	LTE 12 + WLAN (NII)	Body	Bottom Side	0.93	1.16	-	2.09	Analyzed as below
38	LTE 12 + BT (DSS)	Body	Bottom Side	0.93	0.03	-	0.96	Σ SAR < 1.6, Not required
39	LTE 12 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.93	1.16	0.03	2.12	Analyzed as below
40	LTE 12 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.93	0.77	0.03	1.73	Analyzed as below

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
41	LTE 13 + WLAN (DTS)	Body	Bottom Side	1.01	1.16	-	2.17	Analyzed as below
42	LTE 13 + WLAN (NII)	Body	Bottom Side	1.01	1.16	-	2.17	Analyzed as below
43	LTE 13 + BT (DSS)	Body	Bottom Side	1.01	0.03	-	1.04	Σ SAR < 1.6, Not required
44	LTE 13 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	1.01	1.16	0.03	2.20	Analyzed as below
45	LTE 13 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	1.01	0.77	0.03	1.81	Analyzed as below

Report Format Version 5.0.0 Page No. : 106 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
46	LTE 17 + WLAN (DTS)	Body	Bottom Side	0.85	1.16	-	2.01	Analyzed as below
47	LTE 17 + WLAN (NII)	Body	Bottom Side	0.85	1.16	-	2.01	Analyzed as below
48	LTE 17 + BT (DSS)	Body	Bottom Side	0.85	0.03	-	0.88	Σ SAR < 1.6, Not required
49	LTE 17 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.85	1.16	0.03	2.04	Analyzed as below
50	LTE 17 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.85	0.77	0.03	1.65	Analyzed as below

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
51	LTE 26 + WLAN (DTS)	Body	Bottom Side	0.90	1.16	-	2.06	Analyzed as below
52	LTE 26 + WLAN (NII)	Body	Bottom Side	0.90	1.16	-	2.06	Analyzed as below
53	LTE 26 + BT (DSS)	Body	Bottom Side	0.90	0.03	-	0.93	Σ SAR < 1.6, Not required
54	LTE 26 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.90	1.16	0.03	2.09	Analyzed as below
55	LTE 26 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.90	0.77	0.03	1.70	Analyzed as below

 Report Format Version 5.0.0
 Page No.
 : 107 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
56	LTE 30 + WLAN (DTS)	Body	Bottom Side	0.81	1.16	-	1.97	Analyzed as below
57	LTE 30 + WLAN (NII)	Body	Bottom Side	0.81	1.16	-	1.97	Analyzed as below
58	LTE 30 + BT (DSS)	Body	Bottom Side	0.81	0.03	-	0.84	Σ SAR < 1.6, Not required
59	LTE 30 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.81	1.16	0.03	2.00	Analyzed as below
60	LTE 30 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.81	0.77	0.03	1.61	Analyzed as below

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
61	LTE 38 + WLAN (DTS)	Body	Bottom Side	0.76	1.16	-	1.92	Analyzed as below
62	LTE 38 + WLAN (NII)	Body	Bottom Side	0.76	1.16	-	1.92	Analyzed as below
63	LTE 38 + BT (DSS)	Body	Bottom Side	0.76	0.03	-	0.79	Σ SAR < 1.6, Not required
64	LTE 38 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.76	1.16	0.03	1.95	Analyzed as below
65	LTE 38 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.76	0.77	0.03	1.56	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No.
 : 108 of 208

 Report No.: SA180315C04
 Issued Date
 : May 25, 2018

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
66	LTE 41 + WLAN (DTS)	Body	Bottom Side	0.62	1.16	-	1.78	Analyzed as below
67	LTE 41 + WLAN (NII)	Body	Bottom Side	0.62	1.16	-	1.78	Analyzed as below
68	LTE 41 + BT (DSS)	Body	Bottom Side	0.62	0.03	-	0.65	Σ SAR < 1.6, Not required
69	LTE 41 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.62	1.16	0.03	1.81	Analyzed as below
70	LTE 41 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.62	0.77	0.03	1.42	Σ SAR < 1.6, Not required

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
71	LTE 66 + WLAN (DTS)	Body	Bottom Side	0.58	1.16	-	1.74	Analyzed as below
72	LTE 66 + WLAN (NII)	Body	Bottom Side	0.58	1.16	-	1.74	Analyzed as below
73	LTE 66 + BT (DSS)	Body	Bottom Side	0.58	0.03	-	0.61	Σ SAR < 1.6, Not required
74	LTE 66 + WLAN (DTS) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.58	1.16	0.03	1.77	Analyzed as below
75	LTE 66 + WLAN (NII) Ant0 + BT (DSS) Ant1	Body	Bottom Side	0.58	0.77	0.03	1.38	Σ SAR < 1.6, Not required

Report Format Version 5.0.0 Page No. : 109 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018

Tablet PC Mode

No.	Conditions (SAR1+SAR2+SAR3)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	Max. SAR3	SAR Summation	SPLSR Analysis
1	WCDMA II + WLAN (DTS)	Body	Rear Face	1.16	1.03	-	2.19	Analyzed as below
			Left Side	0.20	0.00	-	0.20	Σ SAR < 1.6, Not required
			Right Side	0.00	0.63	-	0.63	Σ SAR < 1.6, Not required
			Top Side	0.12	0.09	-	0.21	Σ SAR < 1.6, Not required
			Bottom Side	0.00	0.57	-	0.57	Σ SAR < 1.6, Not required
2	WCDMA II + WLAN (NII)	Body	Rear Face	1.16	0.97	-	2.13	Analyzed as below
			Left Side	0.20	0.00	-	0.20	Σ SAR < 1.6, Not required
			Right Side	0.00	0.15	-	0.15	Σ SAR < 1.6, Not required
			Top Side	0.12	0.00	-	0.12	Σ SAR < 1.6, Not required
			Bottom Side	0.00	0.47	-	0.47	Σ SAR < 1.6, Not required
	WCDMA II + BT (DSS)	Body	Rear Face	1.16	0.37	-	1.53	Σ SAR < 1.6, Not required
3			Left Side	0.20	0.00	-	0.20	Σ SAR < 1.6, Not required
			Right Side	0.00	0.00	-	0.00	Σ SAR < 1.6, Not required
			Top Side	0.12	0.00	-	0.12	Σ SAR < 1.6, Not required
			Bottom Side	0.00	0.20	-	0.20	Σ SAR < 1.6, Not required
	WCDMA II + WLAN (DTS) Ant0 + BT (DSS)	Body	Rear Face	1.16	0.96	0.37	2.49	Analyzed as below
			Left Side	0.20	0.00	0.00	0.20	Σ SAR < 1.6, Not required
4			Right Side	0.00	0.63	0.00	0.63	Σ SAR < 1.6, Not required
			Top Side	0.12	0.09	0.00	0.21	Σ SAR < 1.6, Not required
	Ant1		Bottom Side	0.00	0.00	0.20	0.20	Σ SAR < 1.6, Not required
	WCDMA II + WLAN (NII) Ant0 Body + BT (DSS) Ant1		Rear Face	1.16	0.97	0.37	2.50	Analyzed as below
		Body	Left Side	0.20	0.00	0.00	0.20	Σ SAR < 1.6, Not required
5			Right Side	0.00	0.15	0.00	0.15	Σ SAR < 1.6, Not required
			Top Side	0.12	0.00	0.00	0.12	Σ SAR < 1.6, Not required
			Bottom Side	0.00	0.00	0.20	0.20	Σ SAR < 1.6, Not required

Report Format Version 5.0.0 Page No. : 110 of 208
Report No.: SA180315C04 Issued Date : May 25, 2018