Announcements

Homework 2 online due Friday

Last Time

- Shortest Paths in Graphs with Edge Lengths
- Priority Queues

Edge Lengths

The number of edges in a path is not always the right measure of distance. Sometimes, taking several shorter steps is preferable to taking a few longer ones.

We assign each edge (u,v) a non-negative <u>length</u> $\ell(u,v)$. The length of a path is the sum of the lengths of its edges.

Problem: Shortest Paths

Problem: Given a Graph G with vertices s and t and a length function ℓ , find the shortest path from s to t.

Algorithm

```
Distances (G, s, l)
  dist(s) \leftarrow 0
  While (not all distances found)
     Find minimum over (v, w) E E
       with v discovered w not
       of dist(v) + \ell (v, w)
     dist(w) \leftarrow dist(v) + \ell(v, w)
     prev(w) \leftarrow v
```

Still too Slow

- Repeatedly ask for smallest vertex
 - Even though not much is changing from round to round, the algorithm is computing the minimum from scratch every time
- Use a data structure!
 - Data structures help answer a bunch of similar questions faster than answering each question individually
- For this kind of question, want a priority queue.

Priority Queue

A <u>Priority Queue</u> is a datastructure that stores elements sorted by a <u>key</u> value.

Operations:

- Insert adds a new element to the PQ.
- DecreaseKey Changes the key of an element of the PQ to a specified smaller value.
- DeleteMin Finds the element with the smallest key and removes it from the PQ.

Today

- Priority Queues
- Dijkstra's Algorithm
- Negative Edge Weights

```
Distances(G, s, \ell)
  For v E V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
  dist(s) \leftarrow 0
  While (not all vertices done)
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w)
           dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G, s, \ell)
  Initialize Priority Queue Q
  For v E V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
  dist(s) \leftarrow 0
  While (not all vertices done)
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G, s, \ell)
  Initialize Priority Queue Q
  For v E V
     dist(v) \leftarrow \infty, done(v) \leftarrow false
     Q.Insert(v) //using dist(v) as key
  dist(s) \leftarrow 0
  While (not all vertices done)
     Find v not done with minimum dist(v)
     done(v) \leftarrow true
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G,s,\ell)
  Initialize Priority Queue Q
  For v E V
     dist(v) \leftarrow \infty, \frac{done(v)}{} \leftarrow false
     Q.Insert(v) //using dist(v) as key
  dist(s) \leftarrow 0
  While (Q not empty)
     v ← Q.DeleteMin()
     done (v) ← true
     For (v, w) \in E
        If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
```

```
Distances(G, s, \ell)
  Initialize Priority Queue Q
  For v E V
     dist(v) \leftarrow \infty, \frac{done(v)}{} \leftarrow false
     Q.Insert(v) //using dist(v) as key
  dist(s) \leftarrow 0
  While (Q not empty)
     v ← Q.DeleteMin()
     done(v) ← true
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
          Q.DecreaseKey(w)
```

```
Dijkstra(G,s,ℓ)
  Initialize Priority Queue Q
  For v E V
     dist(v) \leftarrow \infty, \frac{done(v)}{} \leftarrow false
     Q.Insert(v) //using dist(v) as key
  dist(s) \leftarrow 0
  While (Q not empty)
     v ← Q.DeleteMin()
    done (v) ← true
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          prev(w) \leftarrow v
          Q.DecreaseKey(w)
```

```
Dijkstra(G,s, l)
  Initialize Priority Queue Q
  For v E V
    dist(v) ← ∞
     Q.Insert(v)
  dist(s) \leftarrow 0
  While (Q not empty)
    v \leftarrow Q.DeleteMin()
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          Q.DecreaseKey(w)
```

```
Dijkstra(G,s, l)
  Initialize Priority Queue Q
  For v E V
    dist(v) ← ∞
                       O(|V|) times
     Q.Insert(v)
  dist(s) \leftarrow 0
  While (Q not empty)
    v \leftarrow Q.DeleteMin()
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          Q.DecreaseKey(w)
```

```
Dijkstra(G,s, l)
  Initialize Priority Queue Q
  For v E V
     dist(v) \leftarrow \infty
                       O(|V|) times
     Q.Insert(v)
  dist(s) \leftarrow 0
  While (Q not empty)
                               O(|V|) times
     v ← Q.DeleteMin()
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
          Q.DecreaseKey(w)
```

```
Dijkstra(G,s, l)
  Initialize Priority Queue Q
  For v E V
     dist(v) \leftarrow \infty
                        O(|V|) times
     Q.Insert(v)
  dist(s) \leftarrow 0
  While (Q not empty)
                               O(|V|) times
     v ← Q.DeleteMin()
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
                                               O(|E|) times
          Q.DecreaseKey(w)
```

```
Dijkstra(G,s, l)
                                           Runtime:
  Initialize Priority Queue Q
                                           O(|V|) Inserts +
  For v \in V
                                           O(|V|) DelMins +
     dist(v) ← ∞
                       O(|V|) times
                                           O(|E|) DecKeys
     Q.Insert(v)
  dist(s) \leftarrow 0
  While (Q not empty)
                               O(|V|) times
     v ← Q.DeleteMin()
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
                                              O(|E|) times
          Q.DecreaseKey(w)
```

What is the Runtime?

So what is the actual runtime then?

What is the Runtime?

So what is the actual runtime then?

This depends on which implementation you use for your priority queue.

What is the Runtime?

So what is the actual runtime then?

This depends on which implementation you use for your priority queue.

We will discuss a few.

Unsorted List

Store n elements in an unsorted list.

$$\frac{1}{2} \times O(|\mathcal{V}|)$$

$$\frac{1}{2} \times O(|\mathcal{V}|)$$

Unsorted List

Store n elements in an unsorted list.

Operations:

- Insert O(1)
- DecreaseKey O(1)
- DeleteMin O(n)

Unsorted List

Store n elements in an unsorted list.

Operations:

- Insert O(1)
- DecreaseKey O(1)
- DeleteMin O(n)
- Dijkstra O(|V|²+|E|)

Add key at bottom

- Add key at bottom
- Bubble up

- Add key at bottom
- Bubble up

- Add key at bottom
- Bubble up

- Add key at bottom
- Bubble upO(log(n)) time

Decrease Key

Change Key

Change Key

- Change Key
- Bubble up

- Change Key
- Bubble up

- Change Key
- Bubble upO(log(n)) time

1

Output:

- Remove & Return root node
- Move bottom to top

- Remove & Return root node
- Move bottom to top

- Remove & Return root node
- Move bottom to top
- Bubble down

- Remove & Return root node
- Move bottom to top
- Bubble down

- Remove & Return root node
- Move bottom to top
- Bubble down

- Remove & Return root node
- Move bottom to top
- Bubble downRuntime O(log(n))

Runtime:

- Insert O(log(n))
- DecreaseKey O(log(n))
- DeleteMin O(log(n))

Runtime:

- Insert O(log(n))
- DecreaseKey O(log(n))
- DeleteMin O(log(n))
- Dijkstra O(log|V|(|V|+|E|))

Runtime:

- Insert O(log(n))
- DecreaseKey O(log(n))
- DeleteMin O(log(n))
- Dijkstra O(log|V|(|V|+|E|))

Almost linear!

• Like binary heap, but each node has d children

• Like binary heap, but each node has d children

Only log(n)/log(d) levels.

Like binary heap, but each node has d children

- Only log(n)/log(d) levels.
- Bubble up faster!

Like binary heap, but each node has d children

- Only log(n)/log(d) levels.
- Bubble up faster!
- Bubble down slower need to compare to more children.

Runtime:

- Insert O(log(n)/log(d))
- DecreaseKey O(log(n)/log(d))
- DeleteMin O(dlog(n)/log(d))

Runtime:

- Insert O(log(n)/log(d))
- DecreaseKey O(log(n)/log(d))
- DeleteMin O(dlog(n)/log(d))
- Dijkstra O(log|V|(d|V|+|E|)/log(d))

Fibonacci Heap

- Advanced data structure.
- Uses amortization.

Fibonacci Heap

- Advanced data structure.
- Uses amortization.

Runtime:

- Insert O(1)
- DecreaseKey O(1)
- DeleteMin O(log(n))

Fibonacci Heap

- Advanced data structure.
- Uses amortization.

Runtime:

- Insert O(1)
- DecreaseKey O(1)
- DeleteMin O(log(n))
- Dijkstra O(|V|log|V|+|E|)

Summary of Priority Queues

	Insert/DecreaseKey	DeleteMin	Dijkstra
List	O(1)	O(n)	$O(V ^2 + E)$
Binary Heap	$O(\log(n))$	$O(\log(n))$	$O(\log V (V + E))$
d-ary Heap	$O\left(\frac{\log(n)}{\log(d)}\right)$	$O\left(\frac{d\log(n)}{\log(d)}\right)$	$O\left(\frac{\log V }{\log(d)}(d V + E)\right)$
Fibonacci Heap	$O(1)^*$	$O(\log(n))^*$	$O(V \log V + E)$

Negative Edge Weights

 So far we have talked about the case of nonnegative edge weights.

Negative Edge Weights

- So far we have talked about the case of nonnegative edge weights.
 - The usual case (distance & time usually cannot be negative).
 - However, if "lengths" represent other kinds of costs, sometimes they can be negative.

Negative Edge Weights

- So far we have talked about the case of nonnegative edge weights.
 - The usual case (distance & time usually cannot be negative).
 - However, if "lengths" represent other kinds of costs, sometimes they can be negative.
- Problem statement same. Find path with smallest sum of edge weights.

Does Dijkstra's algorithm work in graphs with negative edge weights?

- A) Yes
- B) No

Does Dijkstra's algorithm work in graphs with negative edge weights?

- A) Yes
- B) No

Does Dijkstra's algorithm work in graphs with negative edge weights?

A) Yes

B) No

Does Dijkstra's algorithm work in graphs with negative edge weights?

- A) Yes
- B) No

Does Dijkstra's algorithm work in graphs with negative edge weights?

- A) Yes
- B) No

Does Dijkstra's algorithm work in graphs with negative edge weights?

B) No

Correctly Assigned Distances

Correctly Assigned Distances

Correctly Assigned Distances

 $dist(v) + \ell(v,w) \leq dist(v') + \ell(v',w')$

Correctly Assigned Distances

 $dist(v) + \ell(v,w) \leq dist(v') + \ell(v',w')$

Correctly Assigned Distances

$$dist(v) + \ell(v,w) \leq dist(v') + \ell(v',w') + \ell(P)$$

Correctly Assigned Distances

dist(v) + ℓ (v,w) ≤ dist(v') + ℓ (v',w') + ℓ (P) Doesn't work if ℓ (P) is negative!

Negative Weight Cycles

<u>Definition:</u> A <u>negative weight cycle</u> is a cycle where the total weight of edges is negative.

Negative Weight Cycles

Definition: A <u>negative weight cycle</u> is a cycle where the total weight of edges is negative.

- If G has a negative weight cycle, then there are probably no shortest paths.
 - Go around the cycle over and over.

Negative Weight Cycles

Definition: A <u>negative weight cycle</u> is a cycle where the total weight of edges is negative.

- If G has a negative weight cycle, then there are probably no shortest paths.
 - Go around the cycle over and over.
- Note: For undirected G, a single negative weight edge gives a negative weight cycle by going back and forth on it.

For
$$w \neq s$$
,

$$\operatorname{dist}(w) = \min_{(v,w) \in E} \operatorname{dist}(v) + \ell(v,w).$$

For
$$w \neq s$$
,

$$\operatorname{dist}(w) = \min_{(v,w) \in E} \operatorname{dist}(v) + \ell(v,w).$$

For $w \neq s$, $\operatorname{dist}(w) = \min_{(v,w) \in E} \operatorname{dist}(v) + \ell(v,w).$

System of equations to solve for distances.

For
$$w \neq s$$
,

$$\operatorname{dist}(w) = \min_{(v,w) \in E} \operatorname{dist}(v) + \ell(v,w).$$

- System of equations to solve for distances.
- When $\ell \geq 0$, Dijsktra gives an order to solve in.

For
$$w \neq s$$
,

$$\operatorname{dist}(w) = \min_{(v,w) \in E} \operatorname{dist}(v) + \ell(v,w).$$

- System of equations to solve for distances.
- When $\ell \geq 0$, Dijsktra gives an order to solve in.
- With ℓ < 0, might be no solution.

Algorithm Idea

Instead of finding shortest paths (which may not exist), find shortest paths of length at most k.

Algorithm Idea

Instead of finding shortest paths (which may not exist), find shortest paths of length at most k.

For
$$w \neq s$$
,

$$\operatorname{dist}_k(w) = \min_{(v,w) \in E} \operatorname{dist}_{k-1}(v) + \ell(v,w).$$

Algorithm

```
Bellman-Ford(G, s, \ell)
   dist_{0}(v) \leftarrow \infty \text{ for all } v
      //cant reach
   dist_0(s) \leftarrow 0
   For k = 1 to n
      For w E V
         dist_k(w) \leftarrow min(dist_{k-1}(v) + \ell(v, w))
      dist_k(s) \leftarrow min(dist_k(s), 0)
         // s has the trivial path
```