Program Evaluation (b)- Matching

Chris Conlon

March 29, 2021

Applied Econometrics

Matching Solution to Fundamental Problem

We don't observe the counterfactual $Y_i(T_i)$.

- Find observations with similar X_i and opposite T_i and hope they can be used as counterfactuals.
- Idea: Conditional on X_i , T_i is as good as randomly assigned.

$Y_i = T_i$	$Y_i(1) +$	$(1-T_i)$	$\cdot Y_i(0)$

i	$Y_i(1)$	$Y_i(0)$	T_i	X_i
1	1	?	1	1
2	0	?	1	2
3	?	0	0	1
		:		
n	?	1	0	3

Matching

- Compare treated individuals to un-treated individuals with identical observable characteristics X_i .
- Key assumption: everything about $Y_i(1) Y_i(0)$ is captured in X_i ; or u_i is randomly assigned conditional on X_i .
- Basic idea: The treatment group and the control group don't have the same distribution of observed characteristics as one another.
- Re-weight the un-treated population so that it resembles the treated population.
- Once distribution of X_i is the same for both groups $X_i|T_i \sim X_i$ then we assume all other differences are irrelevant and can just compare means.
- Matching assumes all selection is on observables.

Matching

• Formally the key assumption is the Conditional Independence Assumption (CIA)

$$\{Y_i(1), Y_i(0)\} \perp T_i | X_i$$

- Once we know X_i allocation to treatment T_i is as if it is random.
- ullet The only difference between treatment and control is composition $f(X_i|T_i)$ of the sample.

Nonparametric k-NN Matching: Abadie and Imbens (2002)

For each observation T_i , we observe $Y_i(T_i)$ compute a counterfactual $\hat{Y}_i(1-T_i)$:

$$\widehat{Y}_{i}(0) = \begin{cases} Y_{i} & \text{if } T_{i} = 0\\ \frac{1}{\#\mathcal{J}_{M}(i)} \sum_{l \in \mathcal{J}_{M}(i)} Y_{l} & \text{if } T_{i} = 1\\ \frac{1}{\#\mathcal{J}_{M}(i)} \sum_{l \in \mathcal{J}_{M}(i)} Y_{l} & \text{if } T_{i} = 0\\ Y_{i} & \text{if } T_{i} = 1 \end{cases}$$

- $\#\mathcal{J}_M(i)$ is the number of matches for i of opposite treatment assignment $T_l=1-T_i$.
- ullet M is the "number of matches" within some distance of $|X_l X_i| < d_M(i)$.
- If there are ties $\#\mathcal{J}_M(i) > M$.
- This is just *k*-NN matching.

Nonparametric k-NN Matching: Abadie and Imbens (2002)

Each observation i gets a weight based on how often it is used as a match for other observations l:

$$K_M(i) = \sum_{l=1}^{N} 1\{i \in \mathcal{J}_M(l)\} \frac{1}{\#\mathcal{J}_M(l)}$$

Observations used in lots of matches get more weight. $\sum_{i=1}^{N} K_M(i) = N$. This is just a weighted average of Y_i values (aka a kernel!):

$$ATE_{M} = \frac{1}{N} \sum_{i=1}^{N} \left[\widehat{Y}_{i}(1) - \widehat{Y}_{i}(0) \right] = \frac{1}{N} \sum_{i=1}^{N} \underbrace{(2T_{i} - 1) \left[1 + K_{M}(i) \right]}_{w_{i,M}} Y_{i}$$

6

Nonparametric k-NN Matching: Alternatives

Different weighting schemes give different parameters:

$$K_M(i)^{ATE} = \frac{1}{N} \sum_{i=1}^{N} (2T_i - 1) [1 + K_M(i)] Y_i$$

$$K_M(i)^{ATT} = \sum_{i=1}^{N_1} [T_i - (1 - T_i) \cdot K_M(i)] Y_i$$

$$K_M(i)^{ATUT} = \sum_{i=1}^{N_0} [T_i \cdot K_M(i) - (1 - T_i)] Y_i$$

Nonparametric k-NN Matching: Bias Correction

We can use weighted least squares to adjust the predictions $\hat{Y}_i(T_i)$:

$$\left(\widehat{\beta}_{t,0},\widehat{\beta}_{t,1}\right) = \operatorname{argmin}_{\left\{\beta_{t,0},\beta_{t,1}\right\}} \sum_{i:T_i = t} K_M(i) \left(Y_i - \beta_{t,0} - \beta'_{t,1} X_i\right)^2$$

Where $\widehat{\mu}_1(X_i)$, $\widehat{\mu}_0(X_i)$ are the regression functions for treatment and control.

$$\tilde{Y}_{i}(0) = \begin{cases} Y_{i} & \text{if } T_{i} = 0\\ \frac{1}{\#\mathcal{J}_{M}(i)} \sum_{l \in \mathcal{J}_{M}(i)} \left\{ Y_{l} + \widehat{\mu}_{0}\left(X_{i}\right) - \widehat{\mu}_{0}\left(X_{l}\right) \right\} & \text{if } T_{i} = 1 \end{cases}$$

$$\tilde{Y}_{i}(1) = \begin{cases} \frac{1}{\#\mathcal{J}_{M}(i)} \sum_{l \in \mathcal{J}_{M}(i)} \left\{ Y_{l} + \widehat{\mu}_{1}\left(X_{i}\right) - \widehat{\mu}_{1}\left(X_{l}\right) \right\} & \text{if } T_{i} = 0\\ Y_{i} & \text{if } T_{i} = 1 \end{cases}$$

So that the ATE is given by: $ATE_M = \frac{1}{N} \sum_{i=1}^{N} \left\{ \tilde{Y}_i(1) - \tilde{Y}_i(0) \right\}$

What about higher dimensions?

- We know that nearest neighbor is cursed in high dimensions.
 - Usual caveats apply: may be doing extrapolation.
 - Even more reason to use regression/bias adjustment.
- Given two vectors x and y, how to choose d(x, y) the distance function?
- Papers mostly use Mahalanobis distance: $d(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \mathbf{y})S^{-1}(\mathbf{x} \mathbf{y})'$.
 - Quadratic distance with inverse covariance matrix as "weights".
 - Generalizes Euclidean distance (diagonal S).
- ullet Older papers use caliper matching anything within $\|\mathbf{x_s} \mathbf{x_t}\| < b$ is match
 - Now number of matches varies from observation to observation.
 - \bullet Variance can be unpredictable: some $(\mathbf{y_i}, \mathbf{x_i})$ have many of matches, others have none
 - Some obs may have nothing within $\|\mathbf{x_s} \mathbf{x_t}\| < b_w$? Drop these?
 - Probably avoid this unless you have a good reason...