Overview of Algorithms

Oscar Dalmau dalmau@cimat.mx

Centro de Investigación en Matemáticas CIMAT A.C. Mexico

Feb 2018

Outline

1 Algorithm overview

2 Convergence order

Example 1.1

$$\text{Minimize } f(x,y) = xe^{-x^2-y^2}$$

Example

Minimize
$$f(x,y) = xe^{-x^2-y^2}$$

Gradient:

$$\nabla f(x,y) = e^{-x^2 - y^2} \begin{bmatrix} 1 - 2x^2 \\ -2xy \end{bmatrix}$$

Stationary points:

$$\left[\begin{array}{c} x^* \\ y^* \end{array}\right] = \left[\begin{array}{c} \pm \frac{\sqrt{2}}{2} \\ 0 \end{array}\right]$$

Example

Minimize
$$f(x,y) = xe^{-x^2-y^2}$$

Hessian:

$$\nabla^2 f(x,y) = e^{-x^2 - y^2} \begin{bmatrix} 2x(2x^2 - 3) & 2y(2x^2 - 1) \\ 2y(2x^2 - 1) & 2x(2y^2 - 1) \end{bmatrix}$$

Example

Minimize
$$f(x,y) = xe^{-x^2-y^2}$$

Hessian at $[x^*, y^*]^T = [\frac{\sqrt{2}}{2}, 0]^T$

$$\nabla^2 f(x,y) = \sqrt{\frac{2}{e}} \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$$

then is al local maximum!

Example

Minimize
$$f(x,y) = xe^{-x^2-y^2}$$

Hessian at $[x^*,y^*]^T=[-\frac{\sqrt{2}}{2},0]^T$

$$\nabla^2 f(x,y) = \sqrt{\frac{2}{e}} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

then is al local minimum!

Example 1.2

$$Minimize f(x,y) = x^2 + y^2 + e^{x+y}$$

Example

$$Minimize f(x,y) = x^2 + y^2 + e^{x+y}$$

Gradient:

$$\nabla f(x,y) = \begin{bmatrix} 2x + e^{x+y} \\ 2y + e^{x+y} \end{bmatrix}$$

Stationary points: solve the following system of equation!!

$$\left[\begin{array}{c} 2x + e^{x+y} \\ 2y + e^{x+y} \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

It requieres a numerical method!

- Algorithms for unconstrained minimization are iterative methods that find an approximate solution.
- All algorithms for unconstrained minimization require the user to supply a starting point, which we usually denote by x_0 .
- The user with knowledge about the application and the data set may be in a good position to choose x_0 to be a reasonable estimate of the solution.
- Otherwise, the starting point must be chosen by the algorithm, either by a systematic approach or in some arbitrary manner.

- Starting at x_0 , optimization algorithms generate a sequence of iterates $\{x_k\}_{k=0}^{\infty}$ that terminate when either no more progress can be made or when it seems that a solution point has been approximated with sufficient accuracy.
- In deciding how to move from one iterate x_k to the next, the algorithms use information about the function f at x_k , and possibly also information from earlier iterates $x_0, x_1, ..., x_{k-1}$.
- They use this information to find a new iterate x_{k+1} with a lower function value than x_k .

- **1** Start at x_0 , k=0
- While not converge
 - Find x_{k+1} such that $f(x_{k+1}) < f(x_k)$
 - k = k + 1
- $oldsymbol{3}$ Return $oldsymbol{x}^* = oldsymbol{x}_k$

General Framework: Comment

• However, there exist non-monotone algorithms in which f does not decrease at every step, but f should decrease after some number m of iterations that is, $f(\boldsymbol{x}_{k+1}) < f(\boldsymbol{x}_{k-j})$ for some $j \in \mathcal{M} = \{0, 1, \cdots, M\}$ with M = m-1 if $k \geq m-1$ otherwise M = k.

$$f(x_k + \alpha d_k) < \max_{j \in \mathcal{M}} f(\boldsymbol{x}_{k-j}) + \gamma \alpha g(x_k)^T d_k$$

For example, select $x_{k+1} = x_k + \alpha d_k$, $d_k = -g(x_k)/\|g(x_k)\|$ if

Note: See details, in Grippo86NonMonotoneLineSearch.pdf, in internet download Grippo86.pdf

- **1** How to choose x_0 ?
- ② Find a convergence or stop criteria?
- **3** How to update x_{k+1} ?

Updating formula

The algorithm chooses a direction d_k and searches along this direction from the current iterate x_k for a new iterate with a lower function value (line search strategy).

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha \boldsymbol{d}_k$$

Descent direction

Definition 1.3

A descent direction is a vector $d \in \mathbb{R}^n$ such that f(x + td) < f(x), $t \in (0,T)$ i.e., allows to move a point x closer towards a local minimum x^* of the objective function $f : \mathbb{R}^n \to \mathbb{R}$.

There are several methods that compute descent directions, for example: use gradient descent, conjugate gradient method.

Descent direction

Descent direction

If $g(x)^T d < 0$ then d is a descent direction.

There exists \hat{t} such that $g(x+td)^Td < 0$ for all $t \in [0,\hat{t}]$ (sign preserving theorem).

Using Taylor, there exist $\tau \in (0,1)$ such that

$$f(\boldsymbol{x} + \hat{t}\boldsymbol{d}) = f(\boldsymbol{x}) + \hat{t}\boldsymbol{g}(\boldsymbol{x} + \tau\hat{t}\boldsymbol{d})^T\boldsymbol{d}$$

as $0 < t = \tau \hat{t} < \hat{t}$ then $\mathbf{g}(\mathbf{x} + \tau \hat{t}\mathbf{d})^T\mathbf{d} = \mathbf{g}(\mathbf{x} + t\mathbf{d})^T\mathbf{d} < 0$ and therefore $f(\mathbf{x} + \hat{t}\mathbf{d}) < f(\mathbf{x})$ then \mathbf{d} is a descent direction.

Line search methods

Line search methods

- First, the algorithm chooses a direction d_k
- Then, it searches along this direction from the current iterate x_k for a new iterate with a lower function value. The distance to move along d_k can be found by approximately solving the following one-dimensional minimization problem to find a step length α :

$$\alpha_k = \arg\min_{\alpha>0} f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$$

Search directions for line search method

The steepest descent direction

For example $oldsymbol{d}_k = -oldsymbol{g}(oldsymbol{x}_k)$ is the most obvious choice for search direction

- ullet The steepest descent method is a line search method that moves along $oldsymbol{d}_k = -oldsymbol{g}(oldsymbol{x}_k)$ at every step.
- Line search methods may use search directions other than the steepest descent direction.
- In general, any descent direction, one that makes an angle of strictly less than $\pi/2$ radians with $-g(x_k)$, is guaranteed to produce a decrease in f, i.e. if $g(x_k)^T d_k < 0$ then $|\angle (g(x_k), d_k)| > \pi/2$, i.e. $|\angle (-g(x_k), d_k)| < \pi/2$, due to $g(x_k)^T d_k = \|g(x_k)\| \|d_k\| \cos \angle (g(x_k), d_k)$.

Newton direction

- Another important search direction, perhaps the most important one of all, is the Newton direction.
- This direction is derived from the second-order Taylor series approximation to $f(\boldsymbol{x}_k + \boldsymbol{d})$

$$f(\boldsymbol{x}_k + \boldsymbol{d}) \approx f(\boldsymbol{x}_k) + g(\boldsymbol{x}_k)^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \mathbf{H}(\boldsymbol{x}_k) \boldsymbol{d} \stackrel{def}{=} m_k(\boldsymbol{d})$$

Newton direction

$$abla_{m d} m_k(m d) = 0$$
 then $m d_k^N = -\mathbf{H}(m x_k)^{-1} m g(m x_k)$ if there exists $\mathbf{H}(m x_k)^{-1}$

Newton direction

- The Newton direction can be used in a line search method when $\mathbf{H}(x_k)$ is positive definite.
- Most line search implementations of Newton's method use the unit step $\alpha=1\,$
- When $\mathbf{H}(x_k)$ is not positive definite, the Newton direction may not even be defined, since $\mathbf{H}(x_k)^{-1}$ may not exist.
- Even when it is defined, it may not satisfy the descent property $\boldsymbol{g}_k^T \boldsymbol{d}_k^N < 0$, in which case it is unsuitable as a search direction. In these situations, line search methods modify the definition of \boldsymbol{d}_k to make it satisfy the descent condition.

- Quasi-Newton methods are alternatives to Newton's methods which do not require computation of the Hessian.
- Instead of the true Hessian \mathbf{H}_k , they use an approximation \mathbf{B}_k , which is updated after each step.

$$m_k(\boldsymbol{d}) \stackrel{def}{=} f(\boldsymbol{x}_k) + \boldsymbol{g}(\boldsymbol{x}_k)^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \mathbf{B}_k \boldsymbol{d}$$

- The approximation \mathbf{B}_k to the Hessian is updated by using successive gradient vectors $\boldsymbol{g}_k, \boldsymbol{g}_{k+1}$ and positions $\boldsymbol{x}_k, \boldsymbol{x}_{k+1}$.
- Quasi-Newton methods are a generalization of the secant method to find the root of the first derivative for multidimensional problems.

 Recall: The secant method is defined by the recurrence relation

$$\begin{array}{lcl} x_{k+1} & = & x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \\ \\ x_{k+1} & = & x_k - \frac{f(x_k)}{f'(x_k)}, \text{ (Newton)} \\ \\ f'(x_k) & \approx & \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}, \text{ (Finite difference)} \end{array}$$

• Therefore, the *secant method* can be interpreted as a method in which the derivative is replaced by an approximation and then is a *Quasi-Newton method*.

Using Taylor Theorem, for the gradient function

$$\nabla f(\boldsymbol{x} + \boldsymbol{h}) = \nabla f(\boldsymbol{x}) + \nabla^2 f(\boldsymbol{x}) \boldsymbol{h} + o(\|\boldsymbol{h}\|)$$

defining $oldsymbol{x}_k = oldsymbol{x}$ and $oldsymbol{x}_{k+1} = oldsymbol{x}_k + oldsymbol{h}$ then $oldsymbol{h} = oldsymbol{x}_{k+1} - oldsymbol{x}_k$ and

$$abla f(\boldsymbol{x}_{k+1}) \approx
abla f(\boldsymbol{x}_k) +
abla^2 f(\boldsymbol{x}_k) (\boldsymbol{x}_{k+1} - \boldsymbol{x}_k)$$

• Te previous approximation yields the known secant equation that should satisty \mathbf{B}_k (approximation of \mathbf{H}_k)

$$egin{array}{lcl} \mathbf{B}_{k+1} oldsymbol{s}_k &=& oldsymbol{y}_k \ oldsymbol{s}_k &=& oldsymbol{x}_{k+1} - oldsymbol{x}_k \ oldsymbol{y}_k &=&
abla f(oldsymbol{x}_{k+1}) -
abla f(oldsymbol{x}_k) \end{array}$$

General descent direction

Descent direction

If ${f A}_k$ is any positive definite matrix and ${m g}({m x}_k)
eq {f 0}$ then ${m d}_k = -{f A}_k {m g}({m x}_k)$ is a descent direction

Convergence order

- Algorithms may differ significantly in their computational efficiency.
- A fast or efficient algorithm is one that requires only a small number of iterations to converge to a solution and the amount of computation is small.
- In general, in application one uses (or tries to use) the most efficient algorithm.
- How to measure *the rate of convergence* or the efficiency of the algorithms? .
- The most basic criterion is the *order of convergence* of a sequence.