Section 1: Regression review

Yotam Shem-Tov Fall 2015

Contact information

- Yotam Shem-Tov, PhD student in economics.
- E-mail: shemtov@berkeley.edu.
- Office: Evans hall room 650
- Office hours: To be announced any preferences or constraints? Feel free to e-mail me.

R resources - Prior knowledge in R is assumed

- In the link here is an excellent introduction to statistics in R.
- There is a free online course in coursera on programming in R. Here is a link to the course.
- An excellent book for implementing econometric models and method in R is Applied Econometrics with R. This is my favourite for starting to learn R for someone who has some background in statistic methods in the social science.
- ullet The book Regression Models for Data Science in R has a nice online version. It covers the implementation of regression models using ${f R}$.
- A great link to R resources and other cool programming and econometric tools is here.

Outline

There are two general approaches to regression

- Regression as a model: a data generating process (DGP)
- Regression as an algorithm (i.e., an estimator without assuming an underlying structural model).

Overview of this slides:

- The conditional expectation function a motivation for using OLS.
- OLS as the minimum mean squared error linear approximation (projections).
- Regression as a structural model (i.e., assuming the conditional expectation is linear).
- Applications, examples and additional topics.

This slides relay heavily on Mostly Harmless Econometrics, Hansen's book Econometrics and Pat Kline's lecture notes.

Notation and theoretical framework

- The researcher observes an *i.i.d* sample of *N* observations of (Y_i, X_i) , denoted by $S_N \equiv (Y_1, X_1), \dots (Y_N, X_N)$.
- $X'_i = (X_{1i}, X_{2i}, \dots, X_{pi})$ is a $1 \times p$ random vector, where p is the number of covariates. Y_i is a scalar random variable.
- (Y_i, X_i) are sampled i.i.d from the distribution function $F_{Y,X}(y,x)$.

The Conditional expectations function (CEF)

• The conditional expectation function is,

$$\mathbb{E}[Y_i|X_i=x] = \int tdF_{Y|X}(t|X_i=x) = \int tf_{Y|X}(t|X_i=x)dt$$

- For any two variables X_i and Y_i we can always compute the conditional expectation of one given the other.
- Additional assumptions are required to give anything other than a purely descriptive interpretation to the conditional expectation function.
- Descriptive tools are important and can be valuable.
- The law of iterated expectations (LIE) is,

$$\mathbb{E}[Y_i] = \mathbb{E}\left[\mathbb{E}\left[Y_i|X_i=x\right]\right]$$

- More in detail LIE is: $\mathbb{E}_{Y}[Y_{i}] = \mathbb{E}_{X}[\mathbb{E}_{Y|X=x}[Y_{i}|X_{i}=x]]$
- Another way of writing LIE is,

$$\mathbb{E}[Y_i|X_{1i}=x_1]=\mathbb{E}[\mathbb{E}[Y_i|X_{1i}=x_1,X_{2i}=x_2]|X_{1i}=x_1]$$

Properties of the CEF

The LIE has several useful implications,

$$\mathbb{E}\left[Y_i - \mathbb{E}\left[Y_i | X_i\right]\right] = 0$$

$$\mathbb{E}\left[\left(Y_i - \mathbb{E}\left[Y_i | X_i\right]\right) \cdot X_i\right] = 0$$

$$\mathbb{E}\left[\left(Y_i - \mathbb{E}\left[Y_i | X_i\right]\right) \cdot g(X_i)\right] = 0 \quad \forall \ g(\cdot)$$

• Therefore we can decompose any scalar random variable Y_i to two parts,

$$Y_i = \mathbb{E}[Y_i|X_i] + u_i, \quad \mathbb{E}[u_i|X_i] = 0.$$

- Question: Does $\mathbb{E}[u_i|X_i]=0$ implies $\mathbb{E}[u_i]=0$? Yes, the proof follows from the LIE. The statement $\mathbb{E}[u_i|X_i]=0$ is more general than the statement $\mathbb{E}\left[u_i\right]=0$.
- Question: Does $\mathbb{E}[u_i]=0$ imply $\mathbb{E}[u_i|X_i]=0$? No.

7 / 58

Properties of the CEF

The ANOVA theorem (variance decomposition)

$$\mathbb{V}\left[Y_{i}\right] = \mathbb{V}\left[\mathbb{E}\left[Y_{i}|X_{i}\right]\right] + \mathbb{E}\left[\mathbb{V}\left[Y_{i}|X_{i}\right]\right]$$

The CEF prediction property

Let $m(X_i)$ be any function of X_i . The CEF solves,

$$\mathbb{E}\left[Y_i|X_i\right] = \operatorname*{argmin}_{m(X_i)} \mathbb{E}\left[\left(Y_i - m(X_i)\right)^2\right]$$

• The CEF is the best predictor of Y_i using the loss function $L(Y_i, \hat{Y}_i) = \mathbb{E}\left[(Y_i - \hat{Y}_i)^2\right]$. The CEF is also refereed to as the minimum mean squares error (MMSE) estimator of Y_i .

Homoskedasticity and Heteroskedasticity

Homoskedasticity

The error is homoskedastic if $\mathbb{E}\left[u^2|X\right] = \sigma^2$, does not depend on X.

Hetroskedasticity

The error is hetroskedastic if $\mathbb{E}\left[u^2|X=x\right]=\sigma^2(x)$, depends on x.

- The concepts of homoskedasticity and heteroskedasticity concern the conditional variance, not the unconditional variance.
- By definition the unconditional variance σ^2 is constant and independent of the regressors.
- The unconditional variance is a number, not a random variable or a function of X. The conditional variance depends on X and if X is a random variable it is also a random variable.

Projections

• Denote the population linear projection of Y_i on X_i by,

$$\mathbb{E}^* [Y_i | X_i] = X_i' \beta = \beta_0 + \sum_{j=1}^p X_{ji} \beta_j$$

where β is defined as the *minimum mean squared error* linear projection,

$$\beta = \underset{b}{\operatorname{argmin}} \mathbb{E}\left[\left(Y_i - X_i'b\right)^2\right]$$

• The F.O.C of the minimization problem are,

$$\mathbb{E}\left[X_i\cdot\left(Y_i-X_i'\beta\right)\right]=0\Rightarrow\beta=\mathbb{E}\left[X_iX_i'\right]^{-1}\mathbb{E}\left[X_iY_i\right]$$

- Denote by e_i the projection residual, $e_i = Y_i \mathbb{E}^* [Y_i | X_i]$.
- It follows from the F.O.C that, $\mathbb{E}\left[X_i \cdot e_i\right] = 0$.
- The residual of projecting Y_i on X_i is not correlated with X_i .

Yotam Shem-Tov

Projections

Theorem (Projection is the MMSE linear approximation to the CEF)

$$\beta = \underset{b}{\operatorname{argmin}} \mathbb{E}\left[\left(\mathbb{E}\left[Y_{i}|X_{i}\right] - X_{i}'b\right)^{2}\right]$$

If the conditional expectation is linear, $\mathbb{E}[Y_i|X_i] = X_i'\beta$ then,

$$\mathbb{E}^* [Y_i | X_i] = \mathbb{E} [Y_i | X_i].$$
 Proof

 Projections and conditional expectations are related also without imposing any structural assumptions,

$$\mathbb{E}^* \left[Y_i | X_i \right] = \mathbb{E}^* \left[\mathbb{E} \left[Y_i | Z_i, X_i \right] | X_i \right]$$

Proof:

$$\mathbb{E}^* [Y_i | X_i] = X_i' \mathbb{E} [X_i X_i']^{-1} \mathbb{E} [X_i Y_i] = X_i' \mathbb{E} [X_i X_i']^{-1} \mathbb{E} [X_i \mathbb{E} [Y_i | X_i, Z_i]]$$

$$= \mathbb{E}^* [\mathbb{E} [Y_i | Z_i, X_i] | X_i]$$

where $X_i' \mathbb{E} [X_i X_i']^{-1} \mathbb{E} [X_i A] = \mathbb{E}^* [A | X_i]$ for all A, and in our case $A = \mathbb{E} [Y_i | Z_i, X_i]$.

Projections

• Projections also follow the law of iterated projections (LIP),

$$\mathbb{E}^* \left[Y_i | X_i \right] = \mathbb{E}^* \left[\mathbb{E}^* \left[Y_i | Z_i, X_i \right] | X_i \right]$$

• Consider the following special case, T_i is a binary variable (i.e., $T_i \in \{0,1\}$). Show that,

$$\mathbb{E}\left[Y_{i}|T_{i}\right] = \mathbb{E}\left[\mathbb{E}^{*}\left[Y_{i}|X_{i}, T_{i}\right]|T_{i}\right]$$

The proof is left as a homework assignment.

Regression as a structural model: The CEF is linear

- When $\mathbb{E}\left[Y_i|X_i\right]=X_i'\beta$, β has a *causal* interpretation. It is no longer a linear approximation based on correlations, but a structural parameter that describes a relationship between X_i and Y_i .
- The parameter β has two different possible interpretations:
- (i) Conditional mean interpretation: β indicates the effect of increasing X on the conditional mean $\mathbb{E}[Y|X]$ in the model $\mathbb{E}[Y|X] = X\beta$.
- (ii) Unconditional mean interpretation: By the LIE it follows that $\mathbb{E}[Y] = \mathbb{E}[X]\beta$. Hence, β can be interpreted as the effect of increasing the mean value of X on the (unconditional) mean value of Y (i.e., $\mathbb{E}[Y]$).

Regression as a prediction algorithm

- Denote by X the design matrix. This is the matrix on which we will project y.
- In other words we have an input matrix \mathbf{X} with dimensions $n \times p$ and an output vector \mathbf{y} with dimensions $n \times 1$.

$$\mathbf{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix}_{n \times p}$$

- The X_{ii} denotes the value of characteristic j for individual i.
- Example: If the researcher observes 2 covariates: education and age.
 A possible design matrix is,

$$\mathbf{X} = \left(egin{array}{cccc} 1 & \mathsf{education_1} & \mathsf{age_1} & \mathsf{age_p^2} \\ dots & dots & dots & dots \\ 1 & \mathsf{education}_n & \mathsf{age}_n & \mathsf{age_n^2} \end{array}
ight)_{n imes 4}$$

Regression as a prediction algorithm

• The linear regression algorithm has the following form:

$$\hat{y}_i = f(X_i) = \beta_0 + \sum_{j=1}^p X_{ji}\beta_j$$

• We can estimate the coefficients β in a variety of ways but OLS is by far the most common, which minimizes the **residual sum of squares** (RSS):

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{P} X_{ji}\beta_j)^2$$

• The estimation of β is according to a square loss function, i.e. $L(a, \hat{a}) = (a - \hat{a})^2$.

Visualization of OLS

The OLS estimator of β

Write the RSS as:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$

• Differentiate with respect to β :

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}'(\mathbf{y} - \mathbf{X}\beta) \tag{1}$$

• Assume that **X** is full rank (no perfect collinearity among any of the independent variables) and set first derivative to 0:

$$\mathbf{X}'(\mathbf{y} - \mathbf{X}\beta) = 0$$

• Solve for β :

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Rank condition for identifying β

- What happens if \mathbf{X} is not full rank? There is an infinite number of ways to invert the matrix $\mathbf{X}'\mathbf{X}$, and the algorithm does not have a unique solution. There are many values of β that satisfy the F.O.C
- Therefore if **X** is not full rank, then $\hat{\beta}$ is not well <u>defined!</u>
- Note, that not all prediction algorithms require that the input matrix
 X be of full rank. For example Regression trees or more advanced methods such as Bagging or Boosting do not require a full rank condition.

Regression as a prediction: Making a Prediction

• The hat matrix, or projection matrix is,

$$\mathbf{H} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$
 with $\mathbf{\tilde{H}} = \mathbf{I} - \mathbf{H}$

• We use the hat matrix to find the fitted values:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{eta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{H}\mathbf{y}$$

• The regression residuals are,

$$e = (I - H)y$$

- Hy yields the part of y that can be explained by a linear combination of X, and Hy is the part of y that is not explained using a linear combination of X, which is the regression residual.
- Denote by **M** the regression residuals, $\mathbf{M} \equiv (I \mathbf{H})\mathbf{y}$, hence $\mathbf{e} = \mathbf{M}\mathbf{y}$. What are the dimensions of **M** and **H** ? $n \times n$

Regression as a prediction: Making a Prediction

- Do we make any assumption on the distribution of y? No!
- Can the dependent variable (the response), \mathbf{y} , be a binary variable, i.e $y \in \{0,1\}$? Yes!
- Do we assume homoskedasticity, i.e that $Var(Y_i) = \sigma^2$, \forall_i ? No!
- Is the residuals, \mathbf{e} , correlated with \mathbf{y} ? Do we need to make any additional assumption in order for $corr(\mathbf{e}, \mathbf{X}) = 0$? No! The OLS algorithm will always yield residuals which are not correlated with the covariates, i.e., that are orthogonal to \mathbf{X} .
- The procedure we discussed so far is an algorithm, which solves an optimization problem (minimizing a square loss function). The algorithm requires an assumption of full rank in order to yield a unique solution, however it does not require any assumption on the distribution or the type of the response variable, **y**.

Regression as a structural model: From algorithm to model

- Now we make stronger assumptions, most importantly we assume a data generating process (hence DGP), i.e we assume a functional form for the relationship between y and X
- Do we now assume y is a linear function of the covariates? No, we assume it is a linear function of β . An example of a response variable that is non-linear in β is:

$$Y_i = \beta_0 + \beta_1 \cdot X_{1i} + \exp(\beta_3 \cdot X_{2i} + \beta_4 \cdot X_{3i})$$

• What are the classic assumptions of the regression model? What is the role of the classic assumptions, why are we assuming them?

21 / 58

The classic assumptions of the regression model

- **①** The dependent variable is linearly related to the coefficients of the model and the model is correctly specified, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$
- ② The independent variables, **X**, are fixed, i.e are not random variables (this **should** be relaxed to the no *endogeneity* assumption $\mathbb{E}\left[\epsilon|X\right]=0$, note that by LIE $\mathbb{E}\left[\epsilon|X\right]=0\Rightarrow\mathbb{E}\left[\epsilon X\right]=0$).
- **3** The conditional mean of the error term is zero, $\mathbb{E}(\epsilon|X)=0$
- **4** Homoscedasticity. The variance of the error term is independent of X, i.e $\mathbb{V}(\epsilon_i) = \sigma^2$ (This assumption can easily be relaxed).
- **1** The error terms are uncorrelated with each other, $\mathbb{E}\left[\epsilon_i \cdot \epsilon_j\right] = 0$.
- The design matrix, **X**, has full rank (this is necessary for the OLS algorithm and the for identifying parameters of a regression structural model).
- **②** The error term is normally distributed, $\epsilon \sim N(0, \sigma^2)$ (This assumption can easily be relaxed. This assumption makes the OLS estimator also a maximum likelihood estimator (MLE)).

Notes on the classic assumptions of the regression model

- The assumption that $\mathbb{E}(\epsilon|X)=0$ will always be satisfied when there is an intercept term in the model, i.e when the design matrix contains a constant term
- When $X \perp \epsilon$ it follows that $Cov(X, \epsilon) = 0$
- The normality assumption of ϵ_i is required for hypothesis testing on β in finite samples without asymptotic approximations.
 - The assumption can be relaxed for sufficiently large sample sizes, as by the CLT, $\hat{\beta}_{OLS}$ converges to the normal distribution when $N \to \infty$.

Properties of the OLS estimators: Unbiased?

The OLS estimator of β is,

$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$= (X'X)^{-1}X'(X\beta + \epsilon)$$

$$= (X'X)^{-1}X'X\beta + (X'X)^{-1}X'\epsilon$$

$$= \beta + (X'X)^{-1}X'\epsilon$$

An estimator is unbiased if $E(\hat{\beta}) = \beta$. There are 2 cases to consider:

(1) X is fixed. (2) X is random.

We begin with the case of fixed X:

$$E(\hat{\beta}|X) = E(\beta + (X'X)^{-1}X'\epsilon|X)$$

$$= E(\beta|X) + E((X'X)^{-1}X'\epsilon|X)$$

$$= \beta + (X'X)^{-1}E(\epsilon|X)$$
where $E(\epsilon|X) = E(\epsilon) = 0$

$$E(\hat{\beta}) = \beta$$

Note, fixed X implies that the expectations are conditional on $X \mathbb{E}[X'\epsilon|X]$.

Properties of the OLS estimators: Unbiased?

Next consider that case that X is a random variable,

$$\mathbb{E}\left[\beta + (X'X)^{-1}X'\epsilon\right] = \beta + \mathbb{E}\left[(X'X)^{-1}X'\epsilon\right]$$

$$\neq \beta + (\mathbb{E}\left[X'X\right])^{-1}\mathbb{E}\left[X'\epsilon\right] = \beta$$

OLS is, in finite samples, generally biased for the population linear projection since the expectations operator cannot pass through a ratio.

Note, the OLS estimator can also be written in terms of sums,

$$\hat{\beta} = \left(\sum_{i} X_{i} X_{i}'\right)^{-1} \left(\sum_{i} X_{i} Y_{i}\right)$$

Although the OLS can be biased in finite samples, it is an asymptotically unbiased estimator (consistent) for the population linear projection.

The variance of $\hat{\beta}_{OLS}$ under fixed X and homoskedasticity

Recall:

$$\hat{\beta} = (X'X)^{-1}X'Y
= (X'X)^{-1}X'(X\beta + \epsilon)
\Rightarrow \hat{\beta} - \beta = (X'X)^{-1}X'\epsilon$$

• Plugging this into the covariance equation:

$$\begin{array}{ll} cov(\hat{\beta}|X) &= E[(\hat{\beta}-\beta)(\hat{\beta}-\beta)'|X] \\ &= E\big[\big((X'X)^{-1}X'\epsilon\big)\big((X'X)^{-1}X'\epsilon)'|X\big] \\ &= E\big[(X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1}|X\big] \\ &= (X'X)^{-1}X'E(\epsilon\epsilon'|X)X(X'X)^{-1} \\ &\quad \text{where } E(\epsilon\epsilon'|X) = \sigma^2I_{p\times p} \\ &= (X'X)^{-1}X'\sigma^2I_{p\times p}X(X'X)^{-1} \\ &= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} \\ &= \sigma^2(X'X)^{-1} \end{array}$$

Estimating σ^2

We estimate σ^2 by dividing the residuals squared by the degrees of freedom because the e_i are generally smaller than the ϵ_i due to the fact that $\hat{\beta}$ was chosen to make the sum of square residuals as small as possible.

$$\hat{\sigma}_{OLS}^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2$$

Compare the above estimator to the classic variance estimator:

$$\hat{\sigma}_{classic}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Is one estimator always preferable over the other? If not when each estimator is preferable?

Consider the following DGP (data generating process):

```
n=200
x1 = rnorm(n,mean=10,1)
epsilon = rnorm(n,0,2)
y = 10+5*x1+epsilon

### mesurment error:
noise = rnorm(n,0,2)
x1_noise = x1+noise
```

The true model has x_1 , however we observe only x_1^{noise} . We will investigate the effect of the noise and the distribution of the noise on the OLS estimation of β_1 . The true value of the parameter of interest is, $\beta_1 = 5$

Measurement error: *noise* $\sim N(\mu = 0, \sigma = 2)$

Measurement error: *noise* $\sim N(\mu = 5, \sigma = 2)$

Measurement error: *noise* $\sim N(\mu =?, \sigma = 2)$

Measurement error: *noise* $\sim N(\mu = 5, \sigma =?)$

Measurement error: *noise* $\sim exp(\lambda = ?)$

Measurement error

- Could we reach the same conclusions as the simulations from analytical derivations? Yes
- As we saw before,

$$\mathbb{E}(\hat{\beta}_{OLS}) = \frac{Cov(y, x_1^{noise})}{\mathbb{V}(x_1^{noise})} = \frac{Cov(y, x_1 + noise)}{\mathbb{V}(x_1 + noise)}$$
$$= \frac{Cov(y, x_1)}{\mathbb{V}(x_1) + \mathbb{V}(noise)}$$

Therefore as $\mathbb{V}(noise) \to \infty$, the expectation of the OLS estimator of β will converge to zero,

$$\mathbb{V}(\textit{noise}) o \infty \Rightarrow \mathbb{E}(\hat{eta}_{\textit{OLS}}) = \frac{\textit{Cov}(y, x_1)}{\mathbb{V}(x_1) + \mathbb{V}(\textit{noise})} o 0$$

Measurement error in the dependent variable

- Consider the situation in which y_i is not observed, but y_i^{noise} is observed. There are no measurement error in x_1 .
- The model (DGP) is,

$$y_i = 10 + 5 * x_{1i} + \epsilon_i$$

 $y_i^{noise} = y_i + noise_i$

• Will the OLS estimator of β_1 be unbiased? Yes

$$\mathbb{E}(\hat{\beta}_{OLS}) = \frac{Cov(y^{noise}, x_1)}{\mathbb{V}(x_1)} = \frac{Cov(y + noise, x_1)}{\mathbb{V}(x_1)}$$
$$= \frac{Cov(y, x_1)}{\mathbb{V}(x_1)} = \beta_1$$

• This model is equivalent to the model, $y_i = 10 + 5 * x_{1i} + (\epsilon_i + noise_i)$, where y_i is observed.

Measurement error in the dependent variable

 Will the OLS estimator be unbiased if the measurement error was multiplicative instead of additive? Formally, if the DGP was:

$$y_i = 10 + 5 * x_{1i} + \epsilon_i$$

 $y_i^{noise} = y_i \cdot noise_i$

• Analytic derivations:

$$\mathbb{E}(\hat{\beta}_{OLS}) = \frac{Cov(y^{noise}, x_1)}{\mathbb{V}(x_1)} = \frac{Cov(y \cdot noise, x_1)}{\mathbb{V}(x_1)}$$

$$\begin{aligned} \textit{Cov}(y \cdot \textit{noise}, x_1) &= \mathbb{E}(y \cdot \textit{noise} \cdot x_1) - \mathbb{E}(y \cdot \textit{noise}) \cdot \mathbb{E}(x_1) \\ &= \frac{\mathbb{E}(\textit{noise}) \cdot \textit{Cov}(y, x_1)}{\mathbb{V}(x_1)} = \mathbb{E}(\textit{noise}) \cdot \beta_1 \end{aligned}$$

• When there is a multiplicative noise the bias of $\hat{\beta}$ is influenced by $\mathbb{E}(noise)$, not from $\mathbb{V}(noise)$.

Measurement error: Division bias

- Borjas (1980) introduced the problem of division bias in the context of labor supply estimation with respect to hourly wage.
- The problem arises when the researcher does not observe hourly wages, but observe:
 - ▶ Hours worked h measured with error. The true hours of work are h^* and the observed hours of work are $h = \eta \cdot h^*$.
 - ▶ Earnings measured without error. Earnings are defined as hourly wage times hours worked, $e = w^* \cdot h^*$.
 - ► The hourly wage is calculated as, $w = \frac{e}{h} = \frac{e}{\eta \cdot h^*}$. The true hourly wage is $w^* = \frac{e}{h^*}$.
 - If we observed h^* it would have been simple to extract w^* from e, $w^* = e/h^*$.
- By taking log() of w and h we can re-write the measurement error as,

$$\log(w) = \log(e) - \log(h^*) - \log(\eta) = \log(e/h^*) - \log(\eta) = \log(w^*) - \log(\eta)$$
$$\log(h) = \log(h^*) - \log(\eta)$$

Measurement error: Division bias

• The researcher is interested in estimating the following regression,

$$\log(h^*) = \alpha + \beta \cdot \log(w^*) + \epsilon_i \tag{2}$$

What is the bias as a result of estimating instead,

$$\log(h) = a + b \cdot \log(w) + e_i \tag{3}$$

• Borjas (1980) showed that,

$$\mathsf{plim} \ \hat{b} = \beta \cdot \frac{\sigma_{w^*}^2}{\sigma_{w^*}^2 + \sigma_{\eta}^2} - 1 \cdot \frac{\sigma_{\eta}^2}{\sigma_{w^*}^2 + \sigma_{\eta}^2}$$

- Does division bias always bias the OLS estimator downwards? No, if $\beta = -5$, the bias will be upwards.
- Division bias leads to an estimator that is biased towards -1, as \hat{b} is a weighted average between β and -1.
- Unlike standard measurement error division bias can change the sign of the estimated OLS coefficient.

Measurement error: Division bias

- Until now we considered the affect of division bias when estimating a log-log regression. What is the effect when estimating:
 - **1** log-linear: $\log(h^*) = \alpha + \beta \cdot w^* + \epsilon_i$
 - 2 linear-log: $h^* = \alpha + \beta \cdot \log(w^*) + \epsilon_i$
 - 3 linear-linear: $h^* = \alpha + \beta \cdot w^* + \epsilon_i$
- In all this cases it is difficult (i.e., there is analytical solution) for the bias of the OLS coefficient.
- Simulations show the bias is downwards, and might change the sign of the coefficient similar to the log-log case.

Division bias: simulation

```
rm(list = ls())
set.seed(12345)
n=10000
elasticity=5
w.vec = seq(20,50,length=1000)
w=sample(w.vec,size=n,replace=TRUE)
h=w^elasticity
e = w*h
sigma.vec = seq(0.1,1,length=20)
noise = rnorm(n,mean=0,sd=0.7)+1
hs = h * noise
ws = e/hs
if(min(hs.ws)<0){
  index = (hs<0 \mid ws<0)
  hs[which(index)]=NA
  ws[which(index)]=NA
  cat("Fraction of missing observations: ",sum(index)/n,"\n")
}
```

Why do we need the if() statement? When the noise is negative it will make the observed hours of work a negative number, and $\log(\cdot)$ is not undefined over negative numbers.

The regression results without division bias

		Dependent variable:		
	log(h)		h	
	(1)	(2)	(3)	
log(w)	5.000*** (0.000)			
W		0.149*** (0.0002)	9,163,099.000*** (36,657.090)	
Constant	-0.000 (0.000)	12.415*** (0.006)	-234,614,765.000*** (1,322,068.000)	
Observations R ²	10,000 1.000	10,000 0.986	10,000 0.862	
Note:	*p<0.1; **p<0.05; ***p<0.01			

The regression results with division bias

	Dependent variable:				
	log(hs)		hs		
	(1)	(2)	(3)		
log(ws)	-0.486*** (0.018)				
ws		$-0.0001^{***} \ (0.00001)$	-1,282.862** (525.461)		
Constant	19.267*** (0.067)	17.504*** (0.016)	96,180,729.000*** (1,239,380.000)		
Observations R ²	9,224 0.074	9,224 0.011	9,224 0.001		
Note:		*p<0.1; **p<0.05; ***p<0.01			

Gauss-Markov theorem: BLUE

- The regression estimator is a linear estimator, $\hat{\beta} = C\mathbf{y}$, where $C = (X'X)^{-1}X'$. A linear estimator is any $\hat{\beta}_j$ such that $\hat{\beta}_j = c_1y_1 + c_2y_2 + \cdots + c_py_p$.
- The Gauss-Markov theorem: If assumptions following assumptions hold,
 - ► **Homoskedasticity** (without this the MMSE is GLS, which is not a feasible estimator as we do not know the covariance matrix).
 - ▶ **X is full rank** (necessary for the OLS algorithm to have a unique solution).
 - ▶ $\mathbb{E}\left[\epsilon_i|X_i\right] = 0$ (necessary for the estimator to be unbiased).
 - Y_i is a linear function X_i (linear in the parameters β).
 - ▶ The Gauss-Markov theorem is for fixed regressors, i.e. $\mathbb{E}\left[\hat{\beta}|X\right]=0$.

The OLS estimator is the best linear unbiased estimator (BLUE), in terms of MSE (Mean Squared Error).

What will be the critic on the Gauss-Markov theorem from a machine learning computer scientist, that is interested in making prediction?

Frisch-Waugh-Lovell: Regression Anatomy

• In the simple bivariate case:

$$\beta_1 = \frac{\operatorname{Cov}(Y_i, X_i)}{\operatorname{Var}(X_i)}$$

• In the multivariate case, β_j is:

$$\beta_j = \frac{\operatorname{Cov}(Y_i, \tilde{X}_{ij})}{\operatorname{Var}(\tilde{X}_{ij})} = \frac{\operatorname{Cov}(\tilde{Y}_i, \tilde{X}_{ij})}{\operatorname{Var}(\tilde{X}_{ij})}$$

where \tilde{A}_{ij} (\tilde{Y}_i or \tilde{X}_j) are the residuals from the regression of A_{ij} on all other covariates.

- The multiple regression coefficient $\hat{\beta}_j$ represents the additional contribution of x_j on y, after x_j has been adjusted for $1, x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p$
- What happens when x_j is highly correlated with some of the other x_k 's?

44 / 58

Frisch-Waugh-Lovell: Regression Anatomy

- Claim: $\beta_j = \frac{\operatorname{Cov}(\tilde{Y}_i, \tilde{X}_{ij})}{\operatorname{Var}(\tilde{X}_{ij})}$, i.e $\operatorname{Cov}(Y_i, \tilde{X}_{ij}) = \operatorname{Cov}(\tilde{Y}_i, \tilde{X}_{ij})$
- Proof: Let \tilde{Y}_i be the residuals of a regression of all the covariates except X_{ji} on Y_i , i.e

$$X_{ji} = \beta_0 + \beta_1 X_{1i} + \beta_2 X_2 + \dots + \beta_P X_{Pi} + f_i$$

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \alpha_2 X_2 + \dots + \alpha_P X_{Pi} + e_i$$

Then, $\hat{e}_i = \tilde{Y}_i$, and $\hat{f}_i = \tilde{X}_{ji}$

• It follows from the OLS algorithm that $Cov(x_{ki}, \ddot{X}_{ji}) = 0$, $\forall_{k \neq j}$. As the residuals of a regression are not correlated with any of the covariates

$$Cov(\tilde{Y}_{i}, \tilde{X}_{ij}) = Cov(Y_{i} - \hat{\alpha}_{0} - \hat{\alpha}_{1}X_{1i} - \hat{\alpha}_{2}X_{2} - \dots + \hat{\alpha}_{P}X_{Pi}, \tilde{X}_{ij})$$

$$= Cov(Y_{i}, \tilde{X}_{ij})$$

Asymptotics of OLS

- Is the OLS estimator of β consistent? Yes
- Proof:
- Denote the observed characteristics of observation i by X_i . What is the dimensions of X_i ? $p \times 1$

•
$$X'_i = (x_{i1}, x_{i2}, \dots, x_{ip})$$
 and $X_i = \begin{pmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{ip} \end{pmatrix}$

$$\bullet \ X_{i}X_{i}' = \begin{pmatrix} X_{i1}^{2} & X_{i1}X_{i2} & \dots & X_{i1}X_{ip} \\ X_{i2}X_{i1} & X_{i2}^{2} & \dots & X_{i2}X_{ip} \\ \vdots & \vdots & \vdots & \vdots \\ X_{ip}X_{i1} & X_{ip}X_{i2} & \dots & X_{ip}^{2} \end{pmatrix}$$

Asymptotics of OLS

Verify at home that,

$$X'X = \begin{pmatrix} \sum_{i=1}^{n} X_{i1}^{2} & \sum_{i=1}^{n} X_{i1}X_{i2} & \dots & \sum_{i=1}^{n} X_{1i}X_{ip} \\ \sum_{i=1}^{n} X_{i2}X_{i1} & \sum_{i=1}^{n} X_{i2}^{2} & \dots & \sum_{i=1}^{n} X_{i2}X_{ip} \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} X_{ip}X_{i1} & \sum_{i=1}^{n} X_{ip}X_{i2} & \dots & \sum_{i=1}^{n} X_{ip}^{2} \end{pmatrix}_{(n \times p)}$$

- Hence, $X'X = \sum_{i=1}^n X_i'X_i$ or $X'X = \sum_{i=1}^n X_iX_i'$? $X'X = \sum_{i=1}^n X_iX_i'$
- Note (and verify at home),

$$X'y = \begin{pmatrix} \sum_{i=1}^{n} X_{i1} Y_{i} \\ \sum_{i=1}^{n} X_{i2} Y_{i} \\ \vdots \\ \sum_{i=1}^{n} X_{ip} Y_{i} \end{pmatrix} = \sum_{i=1}^{n} X_{i}' Y_{i}$$

Asymptotics of OLS

- The OLS estimator is, $\beta = (X'X)^{-1}X'y$
- Recall $(X \cdot k)^{-1} = k^{-1} \cdot (X)^{-1}$
- Multiplying and dividing by $\frac{1}{n}$ and $\frac{1}{\sqrt{n}}$ yields,

$$\beta = \left(\frac{1}{n}X'X\right)^{-1} \left(\frac{1}{\sqrt{n}}X'y\right) = \left(\frac{1}{n}\sum_{i=1}^{n}X'_{i}X_{i}\right)^{-1} \left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X'_{i}y_{i}\right)$$
$$\to \mathbb{E}\left(X'_{i}X_{i}\right)^{-1} \cdot \mathbb{E}\left(X_{i}Y_{i}\right) = \mathbb{E}\left(X_{i}X'_{i}\right)^{-1} \cdot \mathbb{E}\left(X_{i}\left(X'_{i}\beta + \epsilon_{i}\right)\right)$$

• The converges follows from the central limit theorem (CLT).

$$= \mathbb{E}\left(X_{i}X_{i}^{\prime}\right)^{-1} \cdot \mathbb{E}\left(X_{i}X_{i}^{\prime}\right)\beta + \mathbb{E}\left(X_{i}X_{i}^{\prime}\right)^{-1} \cdot \mathbb{E}\left(X_{i}\epsilon_{i}\right) = \beta$$

A random coefficient model

Assume the following DGP,

$$Y_i = \alpha + \beta \cdot T_i + \epsilon_i$$

where β_i is the treatment effect that can change between individuals and is a random variable. ϵ_i is an error term independent of β_i and T_i .

- Assume the treatment T_i is assigned at random.
- Claim: The following regression provides an asymptotically unbiased estimate of a meaningful parameter of interest,

$$Y_i = a + b \cdot T_i + e_i$$

is this claim correct?

- Asymptotically what is the OLS estimator (OLS algorithm) estimating? $b = \frac{Cov(Y_i, T_i)}{V[T_i]}$
- What is $b = \frac{Cov(Y_i, T_i)}{\mathbb{V}[T_i]} = ? b = \mathbb{E}[\beta].$

Regression in Causal Analysis

• Imagine we are analyzing a *randomized* experiment with a regression using the following model:

$$Y_i = \alpha + \beta_1 \cdot T_i + X_i' \cdot \beta_2 + \epsilon_i$$

where T_i is an indicator variable for treatment status and X_i is a vector of *pre-treatment characteristics*.

- Under this model, what is random? We need to decide whether to assume X_i is fixed or a random variable.
- Note: If we consider X_i as a random variable we are interested in the average treatment effect, if we consider X_i as fixed we are interested in the conditional average treatment effect (conditional of this X characteristics).
- How do we interpret the coefficient β_1 ? What is the OLS estimator of the coefficient β_1 ?

Revisiting the regression example from lecture

- Lets recall the example from class:
 - ▶ Let *Y* be a IID standard normal random variable, indexed by *t*.
 - ▶ Define $\Delta Y_t = Y_t Y_{t-1}$.
 - Lets estimate via OLS,

$$\Delta Y_t = \alpha + \beta_1 \Delta Y_{t-1} + \beta_2 \Delta Y_{t-2} + \beta_3 \Delta Y_{t-3}$$

- Question: What are the values of the betas as $n \to \infty$?
- Next we consider a simplified regression specification and analytically calculate β_1 when $n \to \infty$,

$$\Delta Y_t = \alpha + \beta_1 \Delta Y_{t-1} + \beta_2 \Delta Y_{t-2}$$

• Using which theorem or method can we calculate β_1 ?

Revisiting the regression example from lecture

- Using which theorem or method can we calculate β_1 ?
 - **1** We know that as $n \to \infty$ the OLS estimator converges to,

$$\beta = (\mathbb{E}[X'X])^{-1}\mathbb{E}[X'y]$$

we can calculate $\mathbb{E}[X'X]$ and $\mathbb{E}[X'y]$ and than invert $\mathbb{E}[X'X]$. This might be a bit algebraic as $\mathbb{E}[X'X]$ is of dimensions 3×3 .

- ② Another option is to use FWL theorem. What are the steps to calculate β_1 using FWL?
- Calculating β_1 using FWL, step-by-step:
 - **1** Regress ΔY_{t-1} on ΔY_{t-2} and an intercept. Denote the residuals as $\Delta \tilde{Y}_{t-1}$.
 - 2 Regress ΔY_t on $\Delta \tilde{Y}_{t-1}$ and an intercept.
- Calculating β_1 using FWL might take a few steps and algebra, but is a powerful tool for extracting a single coefficient from a multivariate regression.

Calculating β_1 using FWL

Step 1: Regress ΔY_{t-1} on ΔY_{t-2} and an intercept:

$$\begin{split} \Delta Y_{t-1} &= a + b \Delta Y_{t-2} + \Delta \tilde{Y}_{t-1} \\ \Rightarrow b &= \frac{Cov(\Delta Y_{t-1}, \Delta Y_{t-2})}{\mathbb{V}\left[\Delta Y_{t-2}\right]} = \frac{-\sigma_Y^2}{\sigma_Y^2 + \sigma_Y^2} = \frac{-1}{1+1} = -\frac{1}{2} \end{split}$$

we can calclulate a by using the fact that the regression line passes through the mean point,

$$\mathbb{E}\left[\Delta Y_{t-1}\right] = a + b\mathbb{E}\left[\Delta Y_{t-2}\right] \Rightarrow 0 = a + b \cdot 0 \Rightarrow a = 0$$

Hence, $\Delta \tilde{Y}_{t-1} = \Delta Y_{t-1} + \frac{1}{2} \Delta Y_{t-2}$ Step 2: Regress ΔY_t on $\Delta \tilde{Y}_{t-1}$ and an intercept:

$$\beta = \frac{Cov(\Delta Y_t, \Delta \tilde{Y}_{t-1})}{\mathbb{V}\left[\Delta \tilde{Y}_{t-1}\right]} = \dots = \frac{-\sigma_Y^2}{\sigma_Y^2 + \frac{1}{4}\sigma_Y^2 + \frac{1}{4}\sigma_Y^2} = -\frac{2}{3}$$

note that, $\sigma_Y^2 = 1$ as Y is distributed i.i.d standard normal.

Revisiting the regression example from lecture: Coding exercise

- Next we use **R** to test the claim that as the number of Δ lags increases and $n \to \infty$, the value of $\hat{\beta}_1$ converges.
- Write a simulation in R that:
 - ▶ Generates $\Delta Y_t, \Delta Y_{t-1}, \dots, \Delta Y_{t-p}$ variables, where p = 150.
 - ▶ Write a loop that calculates $\hat{\beta}_1$ for each for each number of lags between 1 and 130.
 - Plot your results in a figure.

Simulation results


```
rm(list=ls())
set.seed(12345)
n=5000
p = 150
Y = matrix(rnorm(n*p),ncol=p,nrow=n,byrow=TRUE)
for (l in c(1:(p-1))){
  Y[.1] = Y[.1] - Y[.1+1]
}
Y = Y[,-p]
data = data.frame(y=Y[,1],Y[,-1])
pp=130
num.lags = c(1:pp)
beta1 = rep(NA,pp)
for (k in c(1:pp)){
  beta1[k] = coef(lm(y^(.),data=data[,c(1:(num.lags[k]+1))]))[2]
}
```

```
par(cex=0.7,cex.lab=1.2)
plot(num.lags,beta1,
las=1,
frame=FALSE,
ylim=c(min(min(beta1,-1.05)),max(beta1)),
        xlab="Number of lags",
        ylab=expression(paste("Value of ",beta[1])))
lines(num.lags,beta1,lty=2)
abline(h=-1,col="red4")
```

Proof: $\mathbb{E}^* [Y_i | X_i] = \mathbb{E} [Y_i | X_i]$ if $\mathbb{E} [Y_i | X_i]$ is linear

$$\mathbb{E}^* [Y_i | X_i] = X_i' \mathbb{E} [X_i X_i']^{-1} \mathbb{E} [X_i Y_i] = X_i' \mathbb{E} [X_i X_i']^{-1} \mathbb{E} [X_i \mathbb{E} [Y_i | X_i]]$$

$$= X_i' \mathbb{E} [X_i X_i']^{-1} \mathbb{E} [X_i X_i' \beta] = X_i' \mathbb{E} [X_i X_i']^{-1} \mathbb{E} [X_i X_i'] \beta$$

$$= X_i' \beta \qquad \Box$$

Pack