Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 10. Oktober 2020

Gates

AND

NAND

AND aus NOR

OR

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR

OR aus NAND

NOT

Aus NOR

Aus NAND

Weitere Gates

NAND	NOR	XNOR	XOR
$C=\overline{A\wedge B}$	$D = \overline{A \vee B}$	$E = \overline{A \oplus B}$	$F = A \oplus B$
A & & o- C	A ¬ ≥1 o- D	A T =1 o- E	$\begin{bmatrix} A & \\ B & \end{bmatrix} = I $

	_	O NAND	NOR	E XNOR	XOR
A 0	B 0		D		F 0
0	1	1 1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1
1	0	1	0	0	1
1	1	0	0	1	0

CMOS

NMOS

Schalter

offen

0

G	Schalter	Y	G
0	offen	1	0
1	zu	0	1

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block begin-
 - $PMOS \rightarrow NMOS$
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block begin-
 - NMOS \rightarrow PMOS.

Funktionsgleichung

PMOS	$Parallel \rightarrow NAND$	$Serie \rightarrow NOR$
NMOS	$Parallel \to NOR$	$Serie \to NAND$

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = A \wedge (B \wedge C)$$
$$A \vee (B \vee C) = A \vee (B \vee C)$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$		
Null-Th.	$A\vee 0=A$	$A \wedge 0 = 0$	
Eins-Th.	$A\vee 1=1$	$A \wedge 1 = A$	
Idempotenz	$A \lor A = A$	$A \wedge A = A$	
V. Komp.	$A \vee \overline{A} = 1$	$A \wedge \overline{A} = 0$	
Adsorp.	$A \vee (\overline{A} \wedge B) = A \vee B$		
	$A \wedge (\overline{A} \vee B) = A \wedge B$		
Adsorp.	$A \lor (A \land B) = A$ $A \land (A \lor B) = A$ $(A \land B) \lor (\overline{A} \land B) = B$ $(A \lor B) \land (\overline{A} \lor B) = B$		
Nachbar.G.			

De Morgan

- 1. Regel $\overline{A \wedge B} = \overline{A} \vee \overline{B}$
- 2. Regel $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regeln gelten auch für n verknüpfte Terme.

Normalformen

Minterm	Maxterm
AND-Ausdruck	OR-Ausdruck
Output: 1	Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. Minterme.	n Schaltvar. $\rightarrow 2^n$ mögl. Maxterme.
nicht-invertierte Var: 1	nicht-invertierte Var: 0
invertierte Var: 0	invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit OR verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit OR verknüpfen

Α	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

DNF $Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$

KNF
$$Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$$
 1 Maxt. erf. \rightarrow 0