Imię i nazwisko: Kacper Kołodyński

Nr indeksu: 249018 Termin: Czwartek 9.15

## Projekt 2 – Grafy

### 1. Wprowadzenia

**Graf** - Jest to powszechnie stosowana struktura danych. Pozwala ona modelować wszelkiego rodzaju sieci oraz układy, w których występują skomplikowane zależności pomiędzy składnikami.

Do reprezentacji grafu wykorzystujemy tablicę n elementową  $\mathbf{A}$ , gdzie n oznacza liczbę wierzchołków. Każdy element tej tablicy jest listą. Lista reprezentuje wierzchołek startowy. Na liście są przechowywane numery wierzchołków końcowych, czyli sąsiadów wierzchołka startowego, z którymi jest on połączony krawędzią. Tablica ta nosi nazwę **list sąsiedztwa.** 

Graf reprezentujemy za pomocą macierzy kwadratowej  $\mathbf{A}$  o stopniu n, gdzie n oznacza liczbę wierzchołków w grafie. Macierz tą nazywamy **macierzą sąsiedztwa** ( ang. adjacency matrix ). Odwzorowuje ona połączenia wierzchołków krawędziami. Wiersze macierzy sąsiedztwa odwzorowują zawsze wierzchołki startowe krawędzi, a kolumny odwzorowują wierzchołki końcowe krawędzi. Komórka  $\mathbf{A}$  [ i, j ], która znajduje się w i-tym wierszu i j-tej kolumnie odwzorowuje krawędź łączącą wierzchołek startowy  $v_i$  z wierzchołkiem końcowym  $v_j$ . Jeśli  $\mathbf{A}$  [ i, j ] ma wartość 1, to dana krawędź istnieje. Jeśli  $\mathbf{A}$  [ i, j ] ma wartość 0, to wierzchołek v i nie łączy się krawędzią z wierzchołkiem  $v_i$ .

Projekt polegał na przetestowaniu działania jednego z algorytmów za pomocą , którego możemy wyznaczyć najkrótszą ścieżkę z danego wierzchołka grafu ważonego skierowanego, do każdego innego z wierzchołków.

Wybrany przeze mnie algorytm to algorytm Bellmana-Forda.

Grafy na których przetestujemy algorytm będą się różnić od siebie gęstością, ilością wierzchołków a co za tym również idzie krawędzi. Różne będą również reprezentacje grafów.

#### W testach wykorzystamy reprezentację grafu za pomocą:

- Macierz sąsiedztwa
- -Lista sąsiedztwa

#### **Gęstości przyjmowane przez graf:**

- 25%
- 50%
- 75%
- 100%

Ilość wierzchołków przyjmowanych przez graf:

- 10
- 50
- 100
- 500
- 1000

Liczbę krawędzi wyliczałem za pomocą wzory na gęstość:

$$D = \frac{|E|}{|V| \cdot (|V| - 1)}$$

Po przekształceniu:

$$E = D \cdot (|V| \cdot (|V| - 1))$$

Gdzie:

E – Ilość krawędzi

V – Ilość wierzchołków

D – Gęstość grafu

# 2. Pomiary

# Wykresy Typu 1Implementacja za pomocą listy sąsiedztwa



## - Implementacja za pomocą macierzy sąsiedztwa



Wykresy Typu 2Implementacja grafu o gęstości 25%

| 1 70 - 02     |              |                        |          |          |            |          |  |  |
|---------------|--------------|------------------------|----------|----------|------------|----------|--|--|
| Dla           | llość        | 10                     | 50       | 100      | 500        | 1000     |  |  |
| D = 25%       | wierzchołków |                        |          |          |            |          |  |  |
| Reprezentacja |              |                        |          |          |            |          |  |  |
| Lista         |              | $1.39 \cdot 10^{-6}$   | 0.000127 | 0.003271 | 0.18558279 | 1.860567 |  |  |
| Macierz       |              | 3.92· 10 <sup>-6</sup> | 0.00043  | 0.003231 | 0.392713   | 5.253524 |  |  |



## - Implementacja grafu o gęstości 50%

| Dla<br>D = 50% | llość<br>wierzchołków | 10                     | 50       | 100      | 500      | 1000     |
|----------------|-----------------------|------------------------|----------|----------|----------|----------|
| Reprezentacja  |                       |                        |          |          |          |          |
| Lista          |                       | 2.56· 10 <sup>-6</sup> | 0.000264 | 0.002824 | 0.436706 | 3.974153 |
| Macierz        |                       | 3.63· 10 <sup>-6</sup> | 0.000483 | 0.004766 | 0.478587 | 4.835468 |



# - Implementacja grafu o gęstości 75%

| Dla<br>D = 75% | llość<br>wierzchołków | 10                      | 50       | 100      | 500      | 1000     |
|----------------|-----------------------|-------------------------|----------|----------|----------|----------|
| Reprezentacja  |                       |                         |          |          |          |          |
| Lista          |                       | 3.17E⋅ 10 <sup>-6</sup> | 0.000411 | 0.0032   | 0.69242  | 5.952543 |
| Macierz        |                       | 3.98· 10 <sup>-6</sup>  | 0.000539 | 0.004062 | 0.594265 | 5.502254 |



- Implementacja grafu o gęstości 100%

| Dla           | llość        | 10                     | 50       | 100      | 500      | 1000     |
|---------------|--------------|------------------------|----------|----------|----------|----------|
| D = 100%      | wierzchołków |                        |          |          |          |          |
| Reprezentacja |              |                        |          |          |          |          |
| Lista         |              | 3.8· 10 <sup>-6</sup>  | 0.000552 | 0.004519 | 0.933667 | 8.565369 |
| Macierz       |              | 4.75· 10 <sup>-6</sup> | 0.000565 | 0.004395 | 0.624884 | 6.396212 |



#### 3. Wnioski

Z powyższych wykresów można wywnioskować ze lista radzi sobie najlepiej gdy gęstość grafu to 25% natomiast macierz osiąga najlepsze przy gęstości równej 50%. Przy porównaniu reprezentacji można zauważyć również, że macierz osiąga lepszy czas od listy przy gęstościach 75% oraz dla grafu pełnego natomiast lista przy 25% oraz 50%.

#### 4. Bibliografia

http://www.algorytm.org/klasyczne/grafy-i-ich-reprezentacje/grafy-1-c.html https://pl.wikipedia.org/wiki/Reprezentacja\_grafu

https://eduinf.waw.pl/inf/alg/001\_search/0124.php