

### Кейс Ковчег

Введение в статистику





# Способ получения простой случайной выборки



Для получения простой случайной выборки мы будем рассылать рекламные сообщения случайным 400 клиентам



### Результаты простой случайной выборки



Систематическое завышение или занижение не замечено



Simple random sample всегда будет выдавать погрешность, но в представленном виде погрешность будет очень небольшой, так как

- Каждая выборка содержит достаточно большое количество клиентов (400)
- Проводится большое число выборок(10 000)





## Способ получения стратифицированной случайной выборки



Для получения стратифицированной случайной выборки необходимо разбить генеральную совокупность на страты и сохранять доли этих страт в каждой выборке идентичные их долям генеральной совокупности

Распределение среднего 10 000 стратифицированных случайных выборок в 400 человек по половозрастным группам



#### Результаты стратифицированной случайной выборки



Я разбил выборку на половозрастные группы для стратифицированного семплинга



Систематическое завышение или занижение не замечено



Стратифицированная случайная выборка выдает погрешность, но она будет меньше чем в простой, так как стртифицированная дополнительно сохраняет отношение между стратами, идентичное с ген совокупностью, поэтому значение среднего в ней приближено сильнее к среднему в ген совокупности

#### Сравнение обычной и стратифицированной выборок

- Можно заметить что стратифицированная случайная выборка имеет меньшее стандартное отклонение(0.01859) чем простая(0.01853), она сильнее "прижата" к среднему ген совокупности.
- Так же можно заметить, что различие в графиках плотности не велико, на основе этого можно предположить: страты имеют примерно равные доли в ген совокупности.
- В общем случае стратифицированная выборка не хуже простой
- Нельзя понять какая выборка лучше по одной итерации, тк есть большая погрешность, потому что выборки рандомные, и их точность увеличивается при большом количестве итераций благодаря большому количеству наблюдений

