Capstone Project Report

Dynamic Pricing for Urban Parking Lots

Summer Analytics 2025 | Consulting & Analytics Club × Pathway

Submitted by: Roopakjeet Kaur

(Student at Thapar Institute of Engineering and Technology)

1. Project Objective

Urban parking resources are constrained and often mispriced due to static pricing schemes.

My project aims to build a dynamic, real-time pricing model for 14 parking lots using real-world features such as:

- Occupancy
- Queue length
- Traffic congestion
- Special event indicators
- Vehicle type
- Competitor prices

I developed and tested three progressively intelligent models that simulate a live pricing system using NumPy, Pandas, and Pathway for real-time data streaming and pricing.

2. Dataset Overview

The dataset captures 73 days of operational data for 14 parking spaces across time windows of 30 minutes (from 8:00 AM to 4:30 PM).

Each data record includes:

- Location: Latitude, Longitude
- Capacity Info: Capacity, Occupancy, Queue length
- Vehicle Info: Vehicle type (Car/Bike/Truck)
- Environmental Info: Traffic level, Special day indicator

3. Model Architecture

Model 1: Baseline Linear Model

A simple linear rule where price increases with occupancy:

 $P_{t+1} = P_t + \alpha \cdot (Occupancy / Capacity)$

Model 2: Demand-Based Pricing Function

Incorporates additional features to model demand dynamically:

Demand = $\alpha \cdot (Occupancy / Capacity) + \beta \cdot QueueLength - \gamma \cdot Traffic + \delta \cdot IsSpecialDay + \epsilon \cdot VehicleTypeWeight$

Price_t = BasePrice \cdot (1 + λ · NormalizedDemand)

Model 3: Competitive Pricing Model (Optional Advanced)

Uses spatial proximity and pricing of nearby lots:

- If a nearby lot is cheaper and closer → decrease price or suggest rerouting
- If competitors are costlier → increase price to optimize profit

4. Real-Time Simulation with Pathway

I implemented a real-time simulation pipeline using Pathway:

- Ingests CSV data with timestamps
- Processes data frame as a stream
- Applies pricing logic per model
- Emits and visualizes output using Bokeh

5. Visualizations

I used Bokeh to create the following:

- Real-time line plots for each parking space
- Comparison of pricing models over time
- Dynamic maps showing rerouting or price hotspots

6. Assumptions & Considerations

- Base price: Fixed at \$10 for all lots
- Vehicle weights: Trucks > Cars > Bikes for demand influence
- Traffic levels: Assumed ordinal values
- Smoothness: Used exponential moving average to prevent spikes
- Competition radius: 500m for model 3 comparisons

7. Key Learnings

- Dynamic pricing offers significant improvement over static models in utilization.
- Incorporating real-world signals (e.g., queue length, event days) improves price accuracy.
- Real-time simulation brings practical challenges like latency, feature lag, and state retention.

8. Future Scope

- Add user behavior feedback loop (if users reroute due to high prices)
- Integration with online payment platforms for closed-loop pricing
- Fine-tuning of weights using optimization or reinforcement learning

^{*}Note: Include screenshots or example Bokeh charts here.*