Advanced Algorithms II

Todd Davies

February 4, 2016

Overview

This course will explore certain classes of algorithms for modelling and analysing complex systems, as arising in nature and engineering. These examples include: flocking algorithms - e.g., how schools of fish or flocks of birds synchronised; optimisation algorithms; stability and accuracy in numerical algorithms.

Aims

By the end of the course, students should:

- Appreciate the role of using nature-inspired algorithms in computationally hard problems.
- Be able to apply what they learnt across different disciplines.

• Appreciate the emergence of complex behaviours in networks not present in the individual network elements.

Syllabus

Attribution

These notes are based off of both the course notes (found on Blackboard). Thanks to the course staff (¡names¿) for such a good course! If you find any errors, then I'd love to hear about them!

Contribution

Pull requests are very welcome: https://github.com/Todd-Dav:third-year-notes

Contents

1	Fini	ite precision computation
	1.1	Floating point numbers

1 Finite precision computation

Unfortunately, the world is not solely restricted to integers, and computers often need to work with real numbers \mathbb{R} . With integers, the main problem we have in computer terms is overflow, and since there is a finite distance from one to the next, they are easy to encode in a computer.

On the other hand, between any two real numbers, there are infinitely many more real numbers. Since computers are discrete, we need to sample the real numbers so that we can find a representation for them in the computer. However, this introduces errors, since we can't represent every value exactly and therefore most approximate.

1.1 Floating point numbers

One problem we have with computation is that we don't know what the error is with computations; how 'good' is the result of an algorithm or computation? We would like to know the error bounds of a solution, and have the output be reliable.

In the 70's, it was realised that different floating point implementations produced different results. This had significant concerns for reproducability, and as a result the ANSII IEEE standard for binary floating point arithmetic was created.

Each floating point number is represented as four integers; the base, the precision, the exponent and the mantissa.

$$x = \pm m \times b^{e-n}$$

We can represent different numbers in different ways, for example:

$$0.121e10^3 = 0.0121e10^4$$

In this case, we can normalise the way in which we represent numbers and at least all computers will get the same errors.

Floating point numbers are relatively spaced; even though they might not be the same distance apart, the ratio between them is the same. The unit round off (basically the last digit) is called the *relative machine precision*.

In the exam, assume explicit storage of leading bit of mantissa