ENSTA BRETAGNE

PROJET ROS 4.1

ROS : implémentation du suivi de ligne sur une voiture à l'échelle 1/10ème

Table des matières

1	Introd	uction
	1.1	Le cahier des charges
	1.2	Les pistes envisagées
2	Struct	ure du projet
	2.1	Lancement du programme
	2.2	Packages
3	Conclu	ısion

1 Introduction

1.1 Le cahier des charges

Fonction	Désignation	Critères	Niveau	Fléxibilité
FP1	Permettre que la voiture fasse un tour	Vitesse	10km/h	F3: ±5km/h
	de circuit en autonomie	Précision max par rapport au milieu de la ligne	5cm	F1: +1cm
FC1	Doit avoir un poids adapté	Poids	4kg	F3
FC2	Doit permettre la maîtrise de la vitesse	Commande PWM		FO
FC3	Ne doit pas consommer trop de batterie			F2
FC4	Doit gommer les aspérités du terrain	Souplesse de la structure et des composants		F2

FIGURE 1 – Cahier des charges

FIGURE 2 – Diagramme pieuvre

Architecture logicielle

FIGURE 3 – Architecture Logicielle Matérielle

1.2 Les pistes envisagées

Lorem ipsum dolor sit amet

2 Structure du projet

2.1 Lancement du programme

Lorem ipsum dolor sit amet

roslaunch waypoints_follow seeMeRollin.launch

2.2 Packages

Drivers

Les drivers sont implémentés en utilisant le plus possible les nodes distribuées avec ROS. Le driver du GPS est celui du package $nmea_navsat_driver$; la node utilisée est $nmea_serial_driver$. La node $navsat_transform_node$ du package $robot_localization$ transforme alors la donnée issue du driver en une projection dans le repère du robot.

Le package cv_camera nous permet de publier une image sur un topic ROS issue de la caméra de la Raspberry pi.

Pour l'envoi de signaux PWM vers l'ESC et le servo de direction, on a codé une node Python utilisant une bibliothèque pour contrôler la carte Maestro via la connexion série USB.

Traitement d'image

Lorem ipsum dolor sit amet

Contrôleur

```
Lorem ipsum dolor sit amet
Exemple latex langage c:
      \_\_kernel \ \mathbf{void} \ \mathrm{mandelbrot} \, (\, \_\_global \ float2 \ *q \,,
      __global ushort *output, ushort const maxiter)
           int gid = get_global_id(0);
           float nreal, \overline{real} = \overline{0};
           float imag = 0;
           output[gid] = 0;
           for(int curiter = 0; curiter < maxiter; curiter++) {</pre>
                nreal = real*real - imag*imag + q[gid].x;
                imag = 2* real*imag + q[gid].y;
                real = nreal;
                if (real*real + imag*imag > 4.0 f)
                     output [gid] = curiter;
           }
      }
```

3 Conclusion

Lorem ipsum dolor sit amet