量子 $\widetilde{W}(A_{m-1}^{(1)}) \times \widetilde{W}(A_{n-1}^{(1)})$ 双有理作用

黒木玄

2015年7月23日更新 Version 1.4 (2010年6月28日作成)

目次

0	はじ	めに	1
1	有理	函数体 $\mathbb{C}(\{x_{ij}\})$ の量子化	3
	1.1	$U_q(\widehat{\operatorname{gl}}_m)$ の Borel 部分代数の極小表現 \dots	3
	1.2	RLL=LLR 関係式	3
	1.3	ゲージ変換に関する不変部分代数 $\mathcal{A}_{m,n}$	4
	1.4	x_{ik} たちの q 交換関係の例 \ldots	5
	1.5	$\mathcal{A}_{m,n}$ の対称性 \dots いかい の対称性 \dots の対象性 \dots の过象性 \dots の过来 \dots の过	7
2	2 補整された Chevalley 生成元の構成		7
	2.1	Chevalley 生成元 F_i	7
		X-operators	
	2.3	補整された Chevalley 生成元 φ_i	9
3	梶原	・野海・山田の双有理作用の量子化	10
	3.1	Weyl 群のパラメーターへの作用	10
	3.2	$Q(\mathcal{A}_{m,n})$ への Weyl 群作用の構成	11
	3.3	$Q(\mathcal{A}_{m,n})$ への Weyl 群作用の具体形	11
	3.4	Weyl 群作用の Lax 表示	12
	3.5	量子 q 差分モノドロミー保存系	13
	3.6	(m,n)=(3,2) の場合の例	13

0 はじめに

任意の正の整数の組 m,n に対して、梶原・野海・山田 [KNY1, KNY2, NY] は A 型の拡大アフィン Weyl 群の直積 $\widetilde{W}(A_{m-1}^{(1)}) \times \widetilde{W}(A_{n-1}^{(1)})$ の x_{ij} ($1 \le i \le m, 1 \le j \le n$) で生成された有理函数体上への作用を構成した。このノートでは m,n が互いに素な場合に限ってその作用量子化を 構成する。筆者はその結果を講演 [K2] で発表した。

最初の問題は適切な $m \times n$ 行列全体の空間の量子化をどのように構成するかであった. 梶原・野海・山田による論文 [KNY1, KNY2, NY] では作用する先の有理函数体の Poisson 構造が与えられていない. 双有理作用のみが構成されているだけである. 0. はじめに

量子化のためには有理函数体を非可換化しなければいけない. 非可換性の古典極限が Poisson 構造なので古典の場合に Poisson 構造が知られていないことは量子化のためには 大きな困難になる. 筆者はこの問題は量子群を用いて解決した.

 x_{ij} $(1 \le i \le m, 1 \le j \le n)$ で生成される有理函数体 $\mathbb{C}(\{x_{ij}\})$ の適切な量子化は x_{ij} たちに yx = qxy 型の適切な q 交換関係を設定することによって得られると予想される. 問題は適切な q 交換関係をどのように入れるである. しかしこのような問題設定では q 交換関係をどのように入れると良いかはさっぱりわからない.

筆者のアイデアはよく知られている量子群の実現の簡約によって必要な非可換環を構成することである.

一般に量子群は R-matrix R を用いて RLL = LLR 型の関係式を仮定することによって構成可能である (FRT 構成). この意味での量子群の実現とは具体的な非可換環の生成元を成分に持つ L で RLL = LLR 型の関係式を満たすもののことである. このとき L の n 重の余積 $\Delta(L) = L^1L^2 \cdots L^n$ も量子群の実現になる. ただし $L^1 = L \otimes 1 \otimes \cdots \otimes 1$, $L^2 = 1 \otimes L \otimes \cdots \otimes 1$, ..., $L^n = 1 \otimes 1 \otimes \cdots \otimes L$ である. ここで 単位行列を 1 と書いた.

 L^1, L^2, \ldots, L^n の成分たちから生成される代数は量子群を実現するために用意した具体的な非可換環を n 個テンソル積したものになる. その代数に群 G が代数自己同型として作用しているとき G による普遍部分代数を取る操作を G による簡約と呼ぶことにする.

有理函数体 $\mathbb{C}(\{x_{ij}\})$ の適切な量子化はこのようにして構成された Ore 整域の商体になる. 詳しくは第 1 節を見よ.

次の問題は Weyl 群の作用をどのように構成するかである. 一般に Ore 整域の商体への Weyl 群作用は q-Serre 関係式を満たす φ_i たちの非整数べきの conjugation 作用によって 構成可能である ([K3]).

だから適切な φ_i を見つけることができれば Weyl 群作用も構成できる. 実はこの部分 が最も非自明な構成になる. 上記の簡約の考え方に基づいた自然な F_i を考えると F_i の非整数べきが作用して欲しい非可換体に作用しなくなってしまう. そこで自然な F_i をうまく補整して適切な φ_i を作ることを考えたい. 筆者は数式処理ソフト SINGULAR [DGPS] の助けを借りた膨大な計算によって正しい補整因子を見つけることができた. 詳しくは 第2節 を見て欲しい.

その結果得られた Weyl 群作用の具体的な形を見てみると、ちょうどそれは梶原・野海・山田 [KNY1, KNY2, NY] による $\widetilde{W}(A_{m-1}^{(1)}) \times \widetilde{W}(A_{n-1}^{(1)})$ 双有理作用の式とまったく同じ形をしていることがわかる。 すなわち量子化が構成されたことがわかる. 詳しくは 第 3 節を見て欲しい.

このノートには未完成のメモ [K1] の第2節に書く予定だったことが書かれている. 未完のメモも [K1] にはこのノートに書けなかった有益な情報があるので興味のある方は参照して欲しい.

記号法

以下このノートでは m,n は互いに素な 2 以上の整数であると仮定する. さらに n を法とした m の逆数を \tilde{m} と表わし, m を法とした n の逆数を \tilde{n} と表わすことにする:

$$\tilde{m}m \equiv 1 \pmod{n},$$
 $\tilde{m} = 1, 2, \dots, n-1,$
 $\tilde{n}n \equiv 1 \pmod{m},$ $\tilde{n} = 1, 2, \dots, m-1.$

基礎体 \mathbb{F} を $\mathbb{F} = \mathbb{C}(q^2, r, s)$ と定め, さらに r', s' を

$$r' = r^{1/(1-\tilde{m}m)}, \quad s' = s^{1/(1-\tilde{m}m)}.$$

と定め、 \mathbb{F} の拡大体 \mathbb{F}' を $\mathbb{F}' = \mathbb{C}(q, r', s')$ と定める.

1 有理函数体 $\mathbb{C}(\{x_{ij}\})$ の量子化

この節では x_{ij} $(i=1,\ldots,m,j=1,\ldots,n)$ で生成される有理函数体 $\mathbb{C}(\{x_{ij}\})$ の量子化を構成する.

$\mathbf{1.1}$ $U_q(\widehat{\mathrm{gl}}_m)$ の \mathbf{Borel} 部分代数の極小表現

 $\mathcal{B}_{m,n}$ は生成元 $a_{ik}^{\pm 1},\,b_{ik}^{\pm 1}$ $(i,k\in\mathbb{Z})$ と以下の基本関係式で定義される \mathbb{F}' 上の代数であるとする:

- 準周期性: $a_{i+m,k} = r'a_{ik}$, $a_{i,k+n} = s'a_{ik}$, $b_{i+m,k} = r'b_{ik}$, $b_{i,k+n} = s'b_{ik}$,
- $\dot{\mathcal{B}}$ $\vec{\pi}$: $a_{ik}^{-1}a_{ik} = a_{ik}a_{ik}^{-1} = 1$, $b_{ik}^{-1}b_{ik} = b_{ik}b_{ik}^{-1} = 1$,
- q 交換関係: $a_{ik}b_{ik} = q^{-1}b_{ik}a_{ik}$, $a_{ik}b_{i-1,k} = qb_{i-1,k}a_{ik}$, $a_{ik}b_{jl} = b_{jl}a_{ik}$ $(j \not\equiv i, i-1 \pmod{m}$ または $l \not\equiv k \pmod{n}$), $a_{ik}a_{jl} = a_{jl}a_{ik}$, $b_{ik}b_{jl} = b_{jl}b_{ik}$.

 $U_q(\mathfrak{b}_-)$ は $U_q(\widehat{\mathfrak{gl}}_m)$ の下 Borel 部分代数であるとする. すなわち $U_q(\mathfrak{b}_-)$ は生成元 t_i, f_i $(i \in \mathbb{Z})$ と以下の基本関係式で定義される代数であるとする:

- 準周期性: $t_{i+m} = r't_i$, $f_{i+m} = f_i$,
- Cartan 部分代数とその作用: $t_i t_j = t_j t_i$, $t_i f_i = q^{-1} f_i t_i$, $t_i f_{i-1} = q f_{i-1} t_i$,
- q-Serre 関係式: $f_i^2 f_{i\pm 1} (q+q^{-1}) f_i f_{i\pm 1} f_i + f_{i\pm 1} f_i^2 = 0$, $f_i f_j = f_j f_i \quad (j \not\equiv i \pm 1 \pmod{m})$.

このとき各kに対して代数準同型 $U_q(\mathfrak{b}_-) \to \mathcal{B}_{m,n}$ が

$$t_i \mapsto a_{ik}, \quad f_i \mapsto a_{ik}^{-1} b_{ik}$$

によって与えられる. これを $A_{m-1}^{(1)}$ 型の極小表現 (minimal representations) と呼ぶ.

1.2 RLL=LLR 関係式

 $A_{m-1}^{(1)}$ 型の R-matrix R(z) を次のように定める:

$$R(z) := \sum_{i=1}^{m} (q - z/q) E_{ii} \otimes E_{ii} + \sum_{i \neq j} (1 - z) E_{ii} \otimes E_{jj}$$

+
$$\sum_{i < j} ((q - q^{-1})E_{ij} \otimes E_{ji} + (q - q^{-1})zE_{ji} \otimes E_{ij})$$
.

さらに $A^{(1)}$ 型の極小表現の L-operators $L_k(z)$ を次のように定める:

$$L_k(z) := \begin{bmatrix} a_{1k} & b_{1k} \\ & a_{2k} & \ddots \\ & & \ddots & b_{m-1,k} \\ b_{mk} z & & a_{mk} \end{bmatrix}.$$

このとき次の RLL=LLR 関係式が成立する:

$$R(z/w)L_k(z)^1L_k(w)^2 = L_k(w)^2L_k(z)^1R(z/w),$$

$$L_k(z)^1L_l(w)^2 = L_l(w)^2L_k(z)^1 \quad (k \not\equiv l \pmod{n})$$

ここで $L_k(z)^1 = L_k(z) \otimes 1$, $L_k(w)^2 = 1 \otimes L_k(w)$ とおいた.

${f 1.3}$ ゲージ変換に関する不変部分代数 ${\cal A}_{m,n}$

ゲージ群 \mathcal{G} を乗法群の直積で $\mathcal{G}=(\mathbb{F}'^{\times})^{mn}$ と定める. \mathcal{G} の元 $g=(g_{ik})$ に対して g_{ik} の添え字を 条件 $g_{i+m,k}=g_{ik}, g_{i,k+n}=g_{ik}$ によって整数全体に拡張しておく. さらに $g=(g_{ik})\in\mathcal{G}$ に対して $g_k=\mathrm{diag}(g_{1k},g_{2k},\ldots,g_{mk})$ と定める. このとき $\mathcal{B}_{m,n}$ に代数自己 同型を次によって定めることができる:

$$a_{ik} \mapsto g_{ik} a_{ik} g_{i,k+1}^{-1}, \quad b_{ik} \mapsto g_{ik} b_{ik} g_{i+1,k+1}^{-1}.$$

この条件は次のように書き直される:

$$L_k(z) \mapsto g_k L_k(z) g_{k+1}^{-1}$$
.

これによってゲージ群 \mathcal{G} が代数 $\mathcal{B}_{m,n}$ に作用する. この作用をゲージ変換と呼ぶことにする.

ゲージ群 G によるゲージ変換で不変な元全体のなす $\mathcal{B}_{m,n}$ の部分代数 $\mathcal{B}_{m,n}^{G}$ は以下の元とその逆元から生成されることを示せる 1 :

$$x_{ik} = a_{ik}(b_{ik}b_{i+1,k+1}\cdots b_{i+\tilde{m}m-1,k+\tilde{m}m-1})^{-1}, \quad b_{\text{all}} = \prod_{i=1}^{m} \prod_{k=1}^{n} b_{ik}.$$

このとき b_{all} が $\mathcal{B}_{m,n}$ の中心元であることはすぐにわかる.

 x_{ik} たちの基本関係式を記述するために幾つか記号を準備しておこう. 集合 $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ の部分集合 B を次のように定める:

$$B = \{ (\mu \mod m, \ \mu \mod n) \in \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \mid \mu = 0, 1, \dots, \tilde{m}m - 1 \}$$

さらに $p_{\mu\nu},q_{\mu\nu}$ を次のように定める:

$$p_{\mu\nu} = \begin{cases} q & \text{if } (\mu \operatorname{mod} m, \ \nu \operatorname{mod} n) \in B, \\ 1 & \text{otherwise,} \end{cases} \qquad q_{\mu\nu} := (p_{\mu\nu}/p_{\mu-1,\nu})^2.$$

 $^{^{1}}$ ここで本質的に m,n が互いに素であることを使っている

このとき $q_{\mu\nu} \in \{1,q^{\pm 2}\}$ となる. さらに $r=r'^{1-\tilde{m}m},\, s=s'^{1-\tilde{n}n}$ と定義してあったことを思い出しておこう.

 x_{ik} たちの基本関係式は次の通り:

$$x_{i+m,k} = rx_{ik}, \quad x_{i,k+n} = sx_{ik}$$

 $x_{i+\mu,k+\nu}x_{ik} = q_{\mu\nu}x_{ik}x_{i+\mu,k+\nu} \quad (0 \le \mu < m, \ 0 \le \nu < n).$

 x_{ik} たちの基本関係式の中には q,r',s' は登場せずに q^2,r,s だけが登場する. そこで $x_{ik}^{\pm 1}$ たちだけから $\mathbb{F}=\mathbb{C}(q^2,r,s)$ 上生成される部分代数を $\mathcal{A}_{m,n}$ と表わす:

$$\mathcal{A}_{m,n} = \mathbb{F}[\{x_{ik}\}] = \mathbb{C}(q^2, r, s)[\{x_{ik}\}].$$

 x_{ik} たちの基本関係式が q 交換関係の形をしているので, $A_{m,n}$ は Ore 整域になることがわかる. そこで $A_{m,n}$ の商体を $Q(A_{m,n})$ と書くことにする.

この $Q(A_{m,n})$ が梶原・野海・山田 [KNY1, KNY2, NY] が構成した $\widetilde{W}(A_{m-1}^{(1)}) \times \widetilde{W}(A_{n-1}^{(1)})$ の有理函数体 $\mathbb{C}(\{x_{ik}\})$ 上への作用を量子化するために必要な有理函数体 $\mathbb{C}(\{x_{ik}\})$ の量子化である.

1.4 x_{ik} たちの q 交換関係の例

例 1.1 ((m,n)=(2,3)). (m,n)=(2,3) のとき $\tilde{m}=2$ であり、

$$[p_{\mu\nu}] = \begin{bmatrix} q & 1 & q \\ q & q & 1 \end{bmatrix}, \quad [q_{\mu\nu}] = \begin{bmatrix} 1 & q^{-2} & q^2 \\ 1 & q^2 & q^{-2} \end{bmatrix} \qquad \begin{pmatrix} \mu = 0, 1 \\ \nu = 0, 1, 2 \end{pmatrix}.$$

したがって

$$x_{11}x_{11} = x_{11}x_{11}, \quad x_{12}x_{11} = q^{-2}x_{11}x_{12}, \quad x_{13}x_{11} = q^{2}x_{11}x_{13},$$

 $x_{21}x_{11} = x_{11}x_{21}, \quad x_{22}x_{11} = q^{2}x_{11}x_{22}, \quad x_{23}x_{11} = q^{-2}x_{11}x_{23}.$

他の q 交換関係は x_{ik} の添え字を $x_{i+\mu,k+\nu}$ にずらすことによって得られる. 一般に x_{ik} どうしの q 交換関係を知るためには x_{11} とそれ以外の x_{ik} の q 交換関係を調べれば十分である.

例 1.2
$$((m,n)=(2,2g+1),(2g+1,2))$$
.

(1) (m,n) = (2,2g+1) のとき $\tilde{m} = g+1$ であり、

$$[q_{\mu\nu}] = \begin{bmatrix} 1 & q^{-2} & q^2 & \cdots & q^{-2} & q^2 \\ 1 & q^2 & q^{-2} & \cdots & q^2 & q^{-2} \end{bmatrix} \qquad \left(\begin{array}{c} \mu = 0, 1 \\ \nu = 0, 1, 2, \dots, 2g - 1, 2g \end{array} \right).$$

したがって $1 < k \le n$ ならば

$$x_{1k}x_{11} = q^{(-1)^{k-1}2}x_{11}x_{1k}, \quad x_{2k}x_{11} = q^{(-1)^k2}x_{11}x_{2k}.$$

(2)
$$(m,n) = (2g+1,2) \text{ Obs } \tilde{m} = 1 \text{ cas } 0$$
,

$$[p_{\mu\nu}] = \begin{bmatrix} q & 1 \\ 1 & q \\ q & 1 \\ \vdots & \vdots \\ 1 & q \\ q & 1 \end{bmatrix}, \quad [q_{\mu\nu}] = \begin{bmatrix} 1 & 1 \\ q^{-2} & q^2 \\ q^2 & q^{-2} \\ \vdots & \vdots \\ q^{-2} & q^2 \\ q^2 & q^{-2} \end{bmatrix} \qquad \begin{pmatrix} \mu = 0, 1, 2, \dots, 2g - 1, 2g \\ \nu = 0, 1 \end{pmatrix}.$$

この $[q_{\mu\nu}]$ は (m,n)=(2,2g+1) の場合の $[q_{\mu\nu}]$ の転置になっている. したがって $x_{ik}\leftrightarrow x_{ki},\quad q\leftrightarrow q,\quad r\leftrightarrow s,\quad s\leftrightarrow r$

によって環同型
$$\mathcal{A}_{2,2q+1}\cong\mathcal{A}_{2q+1,2}$$
 が得られる.

例 1.3 ((m,n)=(3,4),(4,3)).

(1) (m,n) = (3,4) のとき $\tilde{m} = 3$ であり、

$$[p_{\mu\nu}] = \begin{bmatrix} q & 1 & q & q \\ q & q & 1 & q \\ q & q & q & 1 \end{bmatrix}, \quad [q_{\mu\nu}] = \begin{bmatrix} 1 & q^{-2} & 1 & q^2 \\ 1 & q^2 & q^{-2} & 1 \\ 1 & 1 & q^2 & q^{-2} \end{bmatrix} \qquad \begin{pmatrix} \mu = 0, 1, 2 \\ \nu = 0, 1, 2, 3 \end{pmatrix}.$$

よって $x_{12}x_{11} = q^{-2}x_{11}x_{12}, x_{13}x_{11} = x_{11}x_{13}, x_{14}x_{11} = q^2x_{11}x_{14}, \dots$

(2) $(m,n) = (4,3) \ \mathcal{O} \ \mathcal{E} \ \tilde{m} = 1 \ \mathcal{C} \ \mathcal{B} \ \mathcal{V},$

$$[p_{\mu\nu}] = \begin{bmatrix} q & 1 & 1 \\ 1 & q & 1 \\ 1 & 1 & q \\ q & 1 & 1 \end{bmatrix}, \quad [q_{\mu\nu}] = \begin{bmatrix} 1 & 1 & 1 \\ q^{-2} & q^2 & 1 \\ 1 & q^{-2} & q^2 \\ q^2 & 1 & q^{-2} \end{bmatrix} \qquad \begin{pmatrix} \mu = 0, 1, 2, 3 \\ \nu = 0, 1, 2 \end{pmatrix}.$$

やはり $A_{3,4} \cong A_{4,3}$ が成立している.

例 1.4 ((m,n)=(3,5),(5,3)).

 $(1) (m,n) = (3,5) \mathcal{O} \succeq \tilde{m} = 2 \text{ } \tilde{m} = 0$

$$[p_{\mu\nu}] = \begin{bmatrix} q & 1 & 1 & q & 1 \\ 1 & q & 1 & 1 & q \\ q & 1 & q & 1 & 1 \end{bmatrix}, \quad [q_{\mu\nu}] = \begin{bmatrix} 1 & 1 & q^{-2} & q^2 & 1 \\ q^{-2} & q^2 & 1 & q^{-2} & q^2 \\ q^2 & q^{-2} & q^2 & 1 & q^{-2} \end{bmatrix}.$$

よって $x_{12}x_{11}=x_{11}x_{12}, x_{13}x_{11}=q^{-2}x_{11}x_{13}, x_{14}x_{11}=q^{2}x_{11}x_{14}, x_{15}x_{11}=x_{11}x_{15}, \dots$

(2) $(m,n) = (5,3) \text{ OLE } \tilde{m} = 2 \text{ CBU},$

$$[p_{\mu\nu}] = \begin{bmatrix} q & 1 & q \\ q & q & 1 \\ 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{bmatrix}, \quad [q_{\mu\nu}] = \begin{bmatrix} 1 & q^{-2} & q^2 \\ 1 & q^2 & q^{-2} \\ q^{-2} & 1 & q^2 \\ q^2 & q^{-2} & 1 \\ 1 & q^2 & q^{-2} \end{bmatrix}.$$

やはり $A_{3.5} \cong A_{5.3}$ が成立している.

これらの例をながめれば x_{ik} たちの適切な q 交換関係を量子群を使わずに発見することは相当に難しいことがわかる. 必要な q 交換関係はかなり複雑な形をしている.

1.5. $\mathcal{A}_{m,n}$ の対称性 7

1.5 $\mathcal{A}_{m,n}$ の対称性

前節の例から一般に x_{ik} の i と k を交換することによって環同型 $A_{m,n} \cong A_{n,m}$ が成立していると予想される. 実際その予想は正しい. さらに x_{ik} の i, k を同時に -1 倍したり, i, k をずらす対称性が存在する. まとめておこう.

定理 1.5 $(A_{m,n}$ の対称性). $\mathbb{F} = \mathbb{C}(q^2, r, s)$ 上の代数 $A_{m,n}$ は以下の対称性を持つ:

1. 双対性: 次によって $\mathbb{C}(q^2)$ 上の代数同型 $\mathcal{A}_{m,n}\cong\mathcal{A}_{n,m}$ が定まる:

$$x_{ik} \leftrightarrow x_{ki}, \quad q^2 \leftrightarrow q^2, \quad r \leftrightarrow s, \quad s \leftrightarrow r.$$

2. 反転: 次によって $A_{m,n}$ の $\mathbb C$ 上の代数自己同型が定まる:

$$x_{ik} \leftrightarrow x_{-i,-k}, \quad q^2 \leftrightarrow q^{-2}, \quad r \leftrightarrow s^{-1}, \quad s \leftrightarrow r^{-1}.$$

3. 並進: 次によって $A_{m,n}$ の \mathbb{F} 上の代数自己同型が定まる:

$$x_{ik} \mapsto x_{i+\mu,k+\nu}, \quad q^2 \mapsto q^2, \quad r \mapsto r, \quad s \mapsto s. \quad \square$$

2 補整された Chevalley 生成元の構成

2.1 Chevalley 生成元 F_i

モノドロミー行列 $\mathbb{L}(z)$ を

$$\mathbb{L}(z) = L_1(r'^{n-1}z)L_2(r'^{n-2}z)\cdots L_{n-1}(r'z)L_n(z).$$

と定める. このとき $\mathbb{L}(z)$ は次の形になる:

ここで

$$A_i = a_{i1}a_{i2}\cdots a_{in}, \quad B_i = \sum_{k=1}^n B_{i,k}, \quad B_{i,k} = a_{i1}\cdots a_{i,k-1}b_{ik}a_{i+1,k+1}\cdots a_{i+1,n}.$$

 F_i , $F_{i;k}$ を次のように定める:

$$F_i = A_i^{-1} B_i = \sum_{k=1}^n F_{ik}, \quad F_{i;k} = A_i^{-1} B_{ik}.$$

このとき

$$R(z/w)\mathbb{L}(z)^{1}\mathbb{L}(w)^{2} = \mathbb{L}(w)^{2}\mathbb{L}(z)^{1}R(z/w)$$

が成立することより (もしくは F_i が $U_q(\mathfrak{b}_-)$ の元 f_i の n 重の余積の像になっていることから), F_i たちが $A_{m-1}^{(1)}$ 型の q-Serre 関係式を満たしていることが導かれる.

したがって文献 [K3] より F_i の非整数べきの conjugation 作用を用いて Weyl 群の作用を構成できると予想される. 確かにその方法で $\mathbb{L}(z)$ の成分から生成される $\mathcal{B}_{m,n}$ の部分代数をパラメータ q^{λ} たちで拡大した代数の商体に Weyl 群を作用させることができる. しかし我々が欲しいのは $Q(\mathcal{A}_{m,n})$ への Weyl 群作用である. だから F_i そのものの非整数べきを使う方法は我々の目的には使えない.

2.2 X-operators

行列 $X_{ik}(z)$ を次のように定める:

$$X_{ik} = X_{ik}(z) := \begin{bmatrix} x_{ik} & 1 & & & \\ & x_{i+1,k} & \ddots & & \\ & & \ddots & 1 \\ r^{-k}z & & & x_{i+m-1,k} \end{bmatrix}.$$

z に r^{-k} がかけられていることに注意せよ. モノドロミー行列 $\mathbb{X}_{ik}(z)$ を

$$X_{ik}(z) = X_{ik}(z)X_{i,k+1}(z)\cdots X_{i,k+n-2}(z)X_{i,k+n-1}(z)$$

と定める. このときこのとき $\mathbb{X}_{ik}(z)$ は次の形になる:

$$\mathbb{X}_{ik}(z) = \begin{bmatrix} c_{ik} & P_{ik} & \cdots & \ddots \\ & c_{i+1,k} & \cdots & \ddots \\ & & \ddots & P_{i+m-2,k} \\ 0 & & & c_{i+m-1,k} \end{bmatrix} + r^{-(k+n-1)} z \begin{bmatrix} \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ P_{i+m-1,k} & \ddots & \ddots & \ddots \end{bmatrix} + \cdots$$

ここで

$$c_{ik} = x_{ik}x_{i,k+1}\cdots x_{i,k+n-1},$$

$$P_{ik} = \sum_{l=1}^{n} P_{ik;l}, \quad P_{ik;l} = \underbrace{x_{ik}x_{i,k+1} \cdots x_{i,k+l-2}}_{l-1} \underbrace{x_{i+1,k+l}x_{i+1,k+l+1} \cdots x_{i+1,k+n-1}}_{n-l}.$$

 c_{ik} たちは $A_{m,n}$ の中心元である. よって

$$c_{i,k+1} = x_{i,k}^{-1} c_{ik} x_{i,k+n} = x_{i,k}^{-1} x_{i,k+n} c_{ik} = s c_{ik}.$$

双対性 $A_{m,n} \cong A_{n,m}$ が成立しているので さらに以下のように d_{ik} , Q_{ik} を定義しておく:

$$d_{ik} = x_{i+m-1,k} \cdots x_{i+1,k} x_{ik},$$

$$Q_{ik} = \sum_{j=1}^{m} Q_{ik;j}, \quad Q_{ik;j} = \overbrace{x_{i+m-1,k+1} \cdots x_{i+j+1,k+1} x_{i+j,k+1}}^{m-j} \overbrace{x_{i+j-2,k} \cdots x_{i+1,k} x_{ik}}^{j-1}.$$

2.3 補整された Chevalley 生成元 φ_i

代数の元xとyが可逆な中心元倍を除いて等しいことを $x \sim y$ と書くことにする. v_{ik} を次のように定める:

$$v_{ik} := b_{ik}b_{i+1,k+1}\cdots b_{i+\tilde{n}n-1,k+\tilde{n}n-1}.$$

実は v_{i1} が F_i に対する必要な補整因子になる.

 v_{i1} は次を満たす元として発見された:

$$c_{i1}^{-1}P_{i1} \simeq v_{i1}^{-1}A_i^{-1}B_i = v_{i1}^{-1}F_i.$$

LL(z) における $F_i = A_i^{-1}B_i$ の \mathbb{X}_{11} における対応物は $c_{i1}^{-1}P_{i1}$ である. だから F_i と $c_{i1}^{-1}P_{i1}$ のあいだの関係がどうなっているかを知りたくなる. このような動機で v_{i1} が発見された (この段階は手計算だったと思う).

補整された Chevalley 生成元 φ_i と $\varphi_{i:k}$ を次のように定める:

$$\varphi_i = \sum_{k=1}^n \varphi_{i;k} = v_{i1} F_i = v_{i1} A_i^{-1} B_i \simeq v_{i1}^2 c_{i1}^{-1} P_{i1},$$

$$\varphi_{i;k} = v_{i1} F_{i;k} = v_{i1} A_i^{-1} B_{i;k} \simeq v_{i1}^2 c_{i1}^{-1} P_{i1;k}.$$

この φ_i は数式処理ソフト SINGULAR [DGPS] を使って計算しているときに $v_{i1}^{-1}F_i$ の性質を計算するつもりで誤って $v_{i1}F_i$ の性質を計算してしまったことから発見された. 意味がわかりやすい $v_{i1}^{-1}F_i$ ではなく, $v_{i1}F_i$ の方が特別に良い性質を持っていることに筆者は驚いた.

実はこの φ_i の非整数べきの conjugation 作用によって欲しい Weyl 群作用を構成することができる. 残念ながら現時点ではこれは極めて非自明な結果に見える.

 F_i たちが Verma 関係式 $F_i^{\lambda}F_{i+1}^{\lambda+\mu}F_i^{\mu}=F_{i+1}^{\mu}F_i^{\lambda+\mu}F_{i+1}^{\lambda}$ を満たしていることと $v_{i1}v_{j1}\simeq v_{i1}v_{i1},\,v_{i1}F_i\simeq F_iv_{i1}$ であることから、

$$\varphi_i^{\lambda} \varphi_{i+1}^{\lambda+\mu} \varphi_i^{\mu} \simeq \varphi_{i+1}^{\mu} \varphi_i^{\lambda+\mu} \varphi_{i+1}^{\lambda}$$

が導かれる. したがって論文 [K3] と同様の議論によって φ_i の非整数べきによる conjugation 作用が well-defined ならばその作用から Weyl 群作用を構成できる.

次の補題が非常に重要である.

補題 2.1 ($\varphi_{i:k}$ の基本性質).

- (1) $\varphi_{i;k}\varphi_{i;l} = q^2\varphi_{i;l}\varphi_{i;k} \quad (1 \le k < l \le n).$
- (2) $\varphi_{i;k}x_{ik} = q^2x_{ik}\varphi_{i;k}, \quad \varphi_{i;k}x_{i+1,k} = q^{-2}x_{i+1,k}\varphi_{i;k},$ $\varphi_{i;k}x_{jl} = x_{jl}\varphi_{i;k} \quad (j \not\equiv i, i+1 \pmod{m})$ または $l \not\equiv k \pmod{n}$).

 φ_i 自身は $A_{m,n}$ に含まれていないにもかかわらず、これらの q 交換関係に $1,q^{\pm 2}$ しか登場しないことに注意せよ.

 $\Psi_{i:k}, \Phi_{i:k}$ $\stackrel{\bullet}{\mathcal{E}}$

$$\Psi_{i;k} = \varphi_{i;1} + \dots + \varphi_{i;k}, \quad \Phi_{i;k} = \varphi_{i;k+1} + \dots + \varphi_{i;n}$$

と定めると、上の補題の(1)から

$$\Psi_{i:k}\Phi_{i:k} = q^2\Phi_{i:k}\Psi_{i:k}$$

となる. そして $\phi_i = \Phi_{i:k} + \Psi_{i:k}$ と q 二項定理からただちに次が導かれる:

$$\varphi_i^{\lambda} = \frac{(q^{2\lambda} \Phi_{i;k}^{-1} \Psi_{i;k})_{\infty}}{(\Phi_{i;k}^{-1} \Psi_{i;k})_{\infty}} \Phi_{i;k}^{\lambda}, \quad (x)_{\infty} = (1+x)(1+q^2x)(1+q^4x)\cdots.$$

よって上の補題の(2)を使って次が成立することを示せる: $1 \le k \le n$ であるとき,

$$\varphi_{i}^{\lambda} x_{ik} \varphi_{i}^{-\lambda} = (q^{2} q^{-2\lambda} \Psi_{i;k-1} + \Phi_{i;k-1}) x_{ik} (q^{2} q^{-2\lambda} \Psi_{i;k} + \Phi_{i;k})^{-1},$$

$$\varphi_{i}^{2} \lambda x_{i+1,k} \varphi_{i}^{-\lambda} = (q^{2} q^{-2\lambda} \Psi_{i;k} + \Phi_{i;k}) x_{i+1,k} (q^{2} q^{-2\lambda} \Psi_{i;k-1} + \Phi_{i;k-1})^{-1},$$

$$\varphi_{i}^{\lambda} x_{jl} \varphi_{i}^{-\lambda} = x_{jl} \quad (j \not\equiv i, i+1 \pmod{m}).$$

以上の公式中の λ は整数を意味するが、公式の右辺は λ が整数でなくても well-defined である。そこで λ が整数でないとき左辺を右辺で定義する.

要するに x_{ik} たちで生成される斜体は φ_i の非整数べきによる conjugation 作用で閉じていると考えられる.

3 梶原・野海・山田の双有理作用の量子化

3.1 Weyl 群のパラメーターへの作用

 $arepsilon_1^ee,\dots,arepsilon_m^ee$ で生成される自由 $\mathbb Z$ 加群を Y と書き, Y の群環 $\mathbb F[Y]$ を $\mathbb F[Y]=igoplus_{\lambda\in Y}\mathbb Fq^{-2\lambda}$ と表わす. $arepsilon_i^ee$ の添え字の動く範囲を $arepsilon_{i+m}^ee = arepsilon_i^ee$ という条件で整数全体に拡張しておく. $lpha_i^ee$ を次のように定める:

$$\alpha_i^\vee = \varepsilon_i^\vee - \varepsilon_{i+1}^\vee$$

生成元 $r_0,r_1,\ldots,r_{m-1},\omega$ と次の基本関係式で定義される群を $\widetilde{W}_m=\widetilde{W}(A_{m-1}^{(1)})$ と書き, $A_{m-1}^{(1)}$ 型の拡大 Weyl 群と呼ぶ:

$$r_i^2 = 1$$
, $r_i r_j = r_j r_i$ $(j \not\equiv i, i + 1 \pmod{m})$, $r_i r_{i+1} r_i = r_{i+1} r_i r_{i+1}$, $\omega r_i \omega^{-1} = r_{i+1}$ $(r_m = r_0)$.

 r_0,r_1,\ldots,r_{m-1} で生成される部分群を $W_m=W(A_{m-1}^{(1)})$ と書き, $A_{m-1}^{(1)}$ 型の Weyl 群と呼ぶ:

 $\widetilde{W}_n = \widetilde{W}(A_{n-1}^{(1)})$ の生成元を $r_0, r_1, \ldots, r_{n-1}, \omega$ の代わりに $s_0, s_1, \ldots, s_{n-1}, \varpi$ と書くことにする. さらに r_i, s_k の添え字の動く範囲を $r_{i+m} = r_i, s_{k+n} = s_k$ という条件で整数全体に拡張しておく.

 $W_m = \widetilde{W}(A_{m-1}^{(1)})$ は Y に次のように作用する:

$$r_i(\varepsilon_i^\vee) = \varepsilon_{i+1}^\vee, \quad r_i(\varepsilon_{i+1}^\vee) = \varepsilon_i^\vee \quad r_i(\varepsilon_j^\vee) = \varepsilon_j^\vee \quad (j \not\equiv i, i+1 \; (\operatorname{mod} m)).$$

形式的に $s \in \mathbb{F}$ を $s = q^{-2c}$ と表わしておく. $\mathbb{F}[Y]$ への \widetilde{W}_m の作用を次のように定める:

$$r_i(q^{-2\lambda}) = q^{-2r_i(\lambda)} \quad (\lambda \in Y), \quad \omega(q^{-2\varepsilon_i^{\vee}}) = q^{-2(\varepsilon_{i+1}^{\vee} - c)} = s^{-1}q^{-2\varepsilon_{i+1}^{\vee}}.$$

後者の定義は形式的に $\omega(\varepsilon_i^{\vee}) = \varepsilon_{i+1}^{\vee} - c$ を意味している.

 $\widetilde{A}_{m,n}=A_{m,n}\otimes\mathbb{F}[Y]$ とおき, $A_{m,n}$, $\mathbb{F}[Y]$ とそれらの $\widetilde{A}_{m,n}$ における像を同一視しておく. \widetilde{W}_m の $\mathbb{F}[Y]$ 上への作用を $A_{m,n}$ には自明に作用するという条件で $\widetilde{A}_{m,n}$ 上への作用に拡張できる. これを \widetilde{W}_m のパラメーターへの作用と呼ぶ. $w\in\widetilde{W}_m$ のパラメーターへの作用を \widetilde{w} と書くことにする:

$$\widetilde{w}(x) = x \quad (x \in \mathcal{A}_{m,n}), \qquad \widetilde{w}(q^{2\lambda}) = w(q^{2\lambda}) = q^{2w(\lambda)} \quad (\lambda \in Y).$$

パラメーターへの作用は $A_{m,n}$ の元を動かさない.

3.2 $Q(A_{m,n})$ への Weyl 群作用の構成

論文 [K3] の方法を使えば、 $Q(\widetilde{\mathcal{A}}_{m,n})$ への Weyl 群の代数自己同型作用を $r_i = \mathrm{Ad}(\varphi_i^{\alpha_i^\vee}) \circ \tilde{r}_i$ によって定めることができる. さらに ω の作用を

$$\omega(x_{ik}) = x_{i+1,k}, \quad \omega(q^{-2\varepsilon_i^{\vee}}) = \widetilde{\omega}(-q^{2\varepsilon_i^{\vee}}) = s^{-1}q^{-2\varepsilon_{i+1}^{\vee}}$$

と定めることによって, $Q(\widetilde{A}_{m,n})$ への拡大 Weyl 群 \widetilde{W}_m の代数自己同型作用が得られる. 補題 2.1 の (2) から次が得られる:

$$r_i(c_{ik}) = q^{2\alpha_i^{\vee}} c_{ik}, \quad r_i(c_{i+1,k}) = q^{-2\alpha_i^{\vee}} c_{i+1,k},$$

$$r_i(c_{jk}) = c_{jk} \quad (j \not\equiv i, i+1 \pmod{m}),$$

$$\omega(c_{jk}) = c_{j+1,k} = s^{-1} c_{j+1,k+1}.$$

よって

$$r_{i}(c_{ii} - q^{-2\varepsilon_{i}^{\vee}}) = q^{2\alpha_{i}^{\vee}} c_{ii} - q^{-2\varepsilon_{i+1}^{\vee}} = q^{2\alpha_{i}^{\vee}} (c_{ii} - q^{-2\varepsilon_{i}^{\vee}}),$$

$$r_{i}(c_{i+1,i+1} - q^{-2\varepsilon_{i+1}^{\vee}}) = q^{-2\alpha_{i}^{\vee}} c_{i+1,i+1} - q^{-2\varepsilon_{i}^{\vee}} = q^{-2\alpha_{i}^{\vee}} (c_{i+1,i+1} - q^{-2\varepsilon_{i+1}^{\vee}}),$$

$$r_{i}(c_{jj} - q^{-2\varepsilon_{j}^{\vee}}) = c_{jj} - q^{-2\varepsilon_{j}^{\vee}} \quad (j \not\equiv i, i+q \pmod{m}),$$

$$\omega(c_{jj} - q^{-2\varepsilon_{j}^{\vee}}) = s^{-1}(c_{j+1,j+1} - q^{-2\varepsilon_{j+1}^{\vee}})$$

実はこの最後の等式が成立するように ω の $q^{-2\varepsilon_i^\vee}$ への作用を定義してあった. したがって $c_{ii}-q^{-2\varepsilon_i^\vee}$ たちで生成される $\widetilde{A}_{m,n}$ の両側イデアル I は \widetilde{W}_m の作用で不変である. そして $\widetilde{A}_{m,n}/I$ と $A_{m,n}$ は自然に同一視される. したがって \widetilde{W}_m の $Q(\widetilde{A}_{m,n})$ 上への作用は $Q(A_{m,n})$ 上への作用を誘導する. これが求める作用である.

双対性 $\mathcal{A}_{m,n}\cong\mathcal{A}_{n,m}$ によって $Q(\mathcal{A}_{m,n})$ 上には \widetilde{W}_n の代数自己同型作用も定まる.

3.3 $Q(A_{mn})$ への Weyl 群作用の具体形

以上の構成のもとで以下の公式を導くことができる.

 $\widetilde{W}_m = \langle r_0, r_1, \dots, r_{m-1}, \omega \rangle$ は $Q(\mathcal{A}_{m,n})$ に以下のように作用している:

$$r_{i}(x_{il}) = x_{il} - s^{-1} \frac{c_{i,l+1} - c_{i+1,l+2}}{P_{i,l+1}} = sP_{il}x_{i+1,l}P_{i,l+1}^{-1},$$

$$r_{i}(x_{i+1,l}) = x_{i+1,l} + s^{-1} \frac{c_{il} - c_{i+1,l+1}}{P_{il}} = s^{-1}P_{il}^{-1}x_{il}P_{i,l+1},$$

$$r_{i}(x_{jl}) = x_{jl} \quad (j \neq i, i+1 \pmod{m}),$$

$$\omega(x_{jl}) = x_{j+1,l},$$

ただし c_{ik} , P_{ik} は以下のように定義されたのであった:

$$c_{ik} = x_{ik} x_{i,k+1} \cdots x_{i,k+n-1},$$

$$P_{ik} = \sum_{l=1}^{n} \underbrace{x_{ik} x_{i,k+1} \cdots x_{i,k+l-2}}_{l-1} \underbrace{x_{i+1,k+l} x_{i+1,k+l+1} \cdots x_{i+1,k+n-1}}_{n-l}.$$

同様に $\widetilde{W}_n = \langle s_0, s_1, \dots, s_{n-1}, \varpi \rangle$ は $Q(\mathcal{A}_{m,n})$ に以下のように作用している:

$$s_k(x_{jk}) = x_{jk} - r^{-1} \frac{d_{j+1,k} - d_{j+2,k+1}}{Q_{j+1,k}} = rQ_{j+1,k}^{-1} x_{j,k+1} Q_{jk},$$

$$s_k(x_{j,k+1}) = x_{j,k+1} + r^{-1} \frac{d_{jk} - d_{j+1,k+1}}{Q_{jk}} = r^{-1} Q_{j+1,k} x_{jk} Q_{jk}^{-1},$$

$$s_k(x_{jl}) = x_{jl} \quad (l \not\equiv k, k+1 \pmod{n}),$$

$$\varpi(x_{jl}) = x_{j,l+1},$$

ただし d_{ik} , Q_{ik} は以下のように定義されたのであった:

$$d_{ik} = x_{i+m-1,k} \cdots x_{i+1,k} x_{ik},$$

$$Q_{ik} = \sum_{j=1}^{m} \underbrace{x_{i+m-1,k+1} \cdots x_{i+j+1,k+1} x_{i+j,k+1}}_{j-1} \underbrace{x_{i+j-2,k} \cdots x_{i+1,k} x_{ik}}_{j-1}.$$

3.4 Weyl 群作用の Lax 表示

 r_i の $\{x_{1k}, \ldots, x_{mk}\}$ への作用は次の条件で一意に特徴付けられる:

$$r_i(X_{1k}) = G_k^{(i)} X_{1k} (G_{k+1}^{(i)})^{-1}.$$

ここで

$$G_k^{(i)} = 1 + s^{-1} \frac{c_{ik} - c_{i+1,k+1}}{P_{ik}} E_{i+1,i} \quad (i = 1, \dots, m-1),$$

$$G_k^{(0)} = 1 + r^{k-1} z^{-1} s^{-1} \frac{c_{mk} - c_{m+1,k+1}}{P_{mk}} E_{1m}.$$

 E_{ij} は $m \times m$ の行列単位を表わす.

 s_k の作用は次の条件で一意に特徴付けられる:

$$s_k(X_{ik}X_{i,k+1}) = X_{ik}X_{i,k+1},$$

 $s_k(X_{il}) = X_{il} \quad (l \not\equiv k, k+1 \pmod{n}),$
 $s_k : d_{ik} \leftrightarrow d_{i+1,k+1}.$

以上のような作用の特徴付けを Wevl 群作用の Lax 表示と呼ぶことにする.

Lax 表示を使って r_i , s_k たちの作用が Weyl 群の基本関係式を満たしていることを示せる. その議論は古典の場合とまったく同様である. Lax 表示から Weyl 群の基本関係式を出す議論は一般の斜体で成立する. つまり作用が Weyl 群の基本関係式を満たしていることの証明は全体の議論の中で難しくない部分にあたる. 難しいのは作用が $Q(A_{m,n})$ の代数自己同型になっていることの証明である.

さらに Lax 表示を使って \widetilde{W}_m の $Q(A_{m,n})$ 上への作用と \widetilde{W}_n の $Q(A_{m,n})$ 上への作用が互いに可換であることも示せる. これで拡大 Weyl 群の直積 $\widetilde{W}_m \times \widetilde{W}_n = \widetilde{W}(A_{m-1}^{(1)}) \times \widetilde{W}(A_{n-1}^{(1)})$ の $Q(A_{m,n})$ 上への代数自己同型作用が得られた.

3.5 量子 q 差分モノドロミー保存系

v(z) は z の m 次元列ベクトル値函数であるとする. v(z) に作用する q 差分作用素 $T_{z,s}$ を

$$T_{z,s}v(z) = \operatorname{diag}(s^{-1}, s^{-2}, \dots, s^{-m})v(s^m z)$$

と定め, q 差分方程式 $T_{z,s}v(z) = \mathbb{X}_{11}v(z)$ について考える. \widetilde{W}_n の作用の Lax 表示より,

$$s_k(\mathbb{X}_{11}) = \mathbb{X}_{11} \quad (k = 1, 2, \dots, n - 1),$$

$$\varpi(\mathbb{X}_{11}(z)) = X_{11}^{-1} \mathbb{X}_{11}(z) X_{1,n+1} = T_{z,s} X_{1,n+1}^{-1} T_{z,s}^{-1} \mathbb{X}_{11}(z) X_{1,n+1}.$$

 \widetilde{W}_n の元 U_k を

$$U_k = s_{k-1} \cdots s_2 s_1 \varpi s_{n-1} \cdots s_{k+1} s_k$$

と定める. 群の同型 $\langle U_1,U_2,\ldots,U_n\rangle\cong\mathbb{Z}^n$ が成立する. この格子の作用は n 個の離散時間変数を持つ q 差分モノドロミー保存系の量子化とみなせる. このとき \widehat{W}_m はその系の対称性とみなされる.

3.6 (m,n)=(3,2) の場合の例

(m,n) = (3,2) であるとする.

$$x_{i+3,k} = rx_{ik}, x_{i,k+2} = sx_{ik}.$$

$$x_{11}x_{11} = x_{11}x_{11}, \quad x_{21}x_{11} = q^{-2}x_{11}x_{21}, \quad x_{31}x_{11} = q^2x_{11}x_{31},$$

$$x_{12}x_{11} = x_{11}x_{12}, \quad x_{22}x_{11} = q^2x_{11}x_{22}, \quad x_{32}x_{11} = q^{-2}x_{11}x_{32}.$$

$$P_{ik} = x_{i+1,k+1} + x_{ik},$$

$$Q_{ik} = x_{i+2,k+1}x_{i+1,k+1} + x_{i+2,k+1}x_{ik} + x_{i+1,k}x_{ik}.$$

14 参考文献

```
\begin{split} r_1(x_{11}) &= s(x_{22} + x_{11})x_{21}(x_{13} + x_{12})^{-1}, \\ r_1(x_{21}) &= s^{-1}(x_{22} + x_{11})^{-1}x_{21}(x_{13} + x_{12}), \\ \omega(x_{ik}) &= x_{i+1,k}. \\ s_1(x_{11}) &= r(x_{42}x_{32} + x_{42}x_{21} + x_{31}x_{21})^{-1}x_{12}(x_{32}x_{22} + x_{32}x_{11} + x_{21}x_{11}), \\ s_1(x_{12}) &= r^{-1}(x_{42}x_{32} + x_{42}x_{21} + x_{31}x_{21})x_{11}(x_{32}x_{22} + x_{32}x_{11} + x_{21}x_{11})^{-1}, \\ \varpi(x_{ik}) &= x_{i,k+1}. \qquad (U_1 = \varpi s_1, U_2 = s_1\varpi) \\ U_1(x_{11}) &= r(x_{43}x_{33} + x_{43}x_{22} + x_{32}x_{22})^{-1}x_{13}(x_{33}x_{23} + x_{33}x_{12} + x_{22}x_{12}). \end{split}
```

 U_1 は量子 q 差分 Panlevé IV 方程式を生成し, \widetilde{W}_2 の作用は量子 q 差分 Panlevé IV 方程式の対称性になっている.

参考文献

[KNY1] Kajiwara, Kenji, Noumi, Masatoshi, and Yamada, Yasuhiko. Discrete dynamical systems with $W(A_{m-1}^{(1)} \times A_{n-1}^{(1)})$ symmetry. Lett. Math. Phys. 60 (2002), no. 3, 211–219.

http://arxiv.org/abs/nlin/0106029

- [KNY2] Kajiwara, Kenji, Noumi, Masatoshi, and Yamada, Yasuhiko. q-Painleve systems arising from q-KP hierarchy. Lett. Math. Phys. 62 (2002), no. 3, 259–268. http://arxiv.org/abs/nlin/0112045
- [K1] 黒木玄, Quantum gourps and quantum discrete dynamical systems with extended affine Weyl group symmetry of tye $A_{m-1}^{(1)} \times A_{n-1}^{(1)}$ に関するメモ, 書き掛けで未完成のメモ, 2007年2月23日. http://www.math.tohoku.ac.jp/~kuroki/LaTeX/quantum_mxn_models_j.pdf
- [K2] Kuroki, Gen. Quantum groups and quantizations of isomonodromic systems. Talk at Exploration of New Structures and Natural Constructions in Mathematical Physics, Graduate School of Mathematics (Room 509), Nagoya University, March 5–8, 2007. http://www.math.tohoku.ac.jp/~kuroki/LaTeX/200703QIMS.pdf
- [K3] Kuroki, Gen. Quantum groups and quantization of Weyl group symmetries of Painlevé systems. Preprint 2008, to appear in Advanced Studies in Pure Mathematics, Proceedings of "Exploration of New Structures and Natural Constructions in Mathematical Physics", Nagoya University, March 5–8, 2007. http://arxiv.org/abs/0808.2604
- [NY] Noumi, Masatoshi and Yamada, Yasuhiko. Tropical Robinson-Schensted-Knuth correspondence and birational Weyl group actions. Representation theory of algebraic groups and quantum groups, 371–442, Adv. Stud. Pure Math., 40, Math. Soc. Japan, Tokyo, 2004.

http://arxiv.org/abs/math-ph/0203030

参考文献 15

[DGPS] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. SINGULAR (3-1-1)

— A computer algebra system for polynomial computations. 2010.

http://www.singular.uni-kl.de/