Outline Introduction to EinStein Engine Algorithms Benchmarks Summary

Rock'n'Roll A Engine for the Board Game "EinStein Würfelt Nicht" "M

Andreas Schäfer

Institut für Informatik
Friedrich-Schiller-Universität Jena

June 13, 2006

- 1 Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- 4 Summary

- 1 Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- Summary

- Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- Summary

- Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- Summary

- Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- 4 Summary

Objective:

- reach goal or
- capture every of the opponent's stones

- players take turns
- dice determines which stone to move
- self capturing is legal

If the rolled number is missing then an adjacent stone has to be moved

Blue won by reaching his goal

- Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- 4 Summary

Heuristics

- heuristic = rule of thumb,
- computer needs to choose good moves,
- heuristic maps boards to the reals,
- good boards hopefully get higher ratings

Schwarz Tables

- estimate for each player, how many moves excepted to reach goal
- difference of the two estimates is the board rating
- capturing is ignored

Example: (one player only)

remaining moves = 4

Schwarz Tables (cont.)

Example 2:

(again just one player)

` `	, ,		
			6
		1	

remaining moves
$$= \frac{5}{6} \cdot 1 + \frac{1}{6} \cdot 2 = \frac{7}{6}$$

- Introduction to EinSteinThe Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- 4 Summary

Basic Minimax

- look some moves ahead
- cut at a given depth and assign ratings
- two players:
 - Max tries to maximize,
 - Min tries to minimize
- propagate values upwards

Basic Minimax (cont.)

Simplification:

- invert values before propagation
- only maximizing nodes necessary

Expect Minimax

- problem: EinStein is randomized
- standard solution: introduction of dicing layers
- problem: much redundant evaluations

Dicing Layer Reduction

Unified Operator avoids unnecessary evaluations:

- calculate for each stone *i* the best move r_i
- determine for each stone i probability p_i to be moved

• rating
$$R = \sum_{i=1}^{6} r_i p_i$$

- Introduction to EinStein
- The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- 4 Summary

The Monte Carlo Method

board evaluation:

- 2 simple players finish game (e.g. simple heuristic)
- many repeats (e.g. 200 times)
- hopefully: win/loose ratio is correlated to move quality
- improved long-term foresight
- worse short-term foresight

- 1 Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- 4 Summary

Monte Carlo vs. Minimax

	Player	1	2	3	4	5	6	7
1	Random(1)	_	11	9	10	7	7	7
2	Monte(1, 50, Schwarz(1))	88	_	45	55	44	41	40
3	Monte(1, 200, Schwarz(1))	91	55	_	62	49	46	45
4	Schwarz(1)	90	44	38	_	41	40	39
5	Schwarz(5)	93	55	51	59	_	47	46
6	Monte(3, 20, Farmer(1))	93	59	54	60	53	_	50
7	Monte(3, 40, Farmer(1))	93	60	55	61	54	50	_

- Schwarz(n) = Minimax with depth n and Schwarz Tables
- Monte(n, r, p) = Minimax with depth n and subsequent Monte Carlo (r repeats and p as simulation players)

- 1 Introduction to EinStein
 - The Rules
- 2 Engine Algorithms
 - Heuristics
 - Minimax
 - Monte Carlo Method
- Benchmarks
 - Best Parameter Sets
 - Optimal Starting Position
- 4 Summary

Optimal Starting Positions

56.056 %

56.021 %

Worst Starting Positions

42.175%

42.446%

Summary

- Unified Operator mitigates additional complexity introduced by dice
- a combination of Minimax and Monte Carlo yields strongest players
- strength limited by random component
- board setup important (1 and 6 behind other stones)

Outline Introduction to EinStein Engine Algorithms Benchmarks Summary

Thanks!

