Bevezetés az Arduino és az elektronika világába I.

Agócs Norbert és Nagy Dániel

 $2020.\ {\rm szeptember}\ 7.$

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- 4 Programozás alapok
- Feladatok I
- 6 Villogó LED
- Feladatok II

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- Programozás alapok
- Feladatok I
- 6 Villogó LED
- Feladatok II

Töltés

Töltés

Elektronnak (-) és a protonnak (+) van ilyene. Pozitív vagy negatív lehet.

Töltés

Elektronnak (-) és a protonnak (+) van ilyene. Pozitív vagy negatív lehet.

Áram

Töltés

Elektronnak (-) és a protonnak (+) van ilyene. Pozitív vagy negatív lehet.

Áram

Elektronok mozgása egy vezetőképes közegben, példaul egy fém vezetékben.

Töltés

Elektronnak (-) és a protonnak (+) van ilyene. Pozitív vagy negatív lehet.

Áram

Elektronok mozgása egy vezetőképes közegben, példaul egy fém vezetékben.

Feszültség

Töltés

Elektronnak (-) és a protonnak (+) van ilyene. Pozitív vagy negatív lehet.

Áram

Elektronok mozgása egy vezetőképes közegben, példaul egy fém vezetékben.

Feszültség

Valami ami hatására az elektronok mozogni kezdenek. Két pont között értelmezzük, minél nagyobb annál jobban át akarnak menni egyik helyről a másikra az elektronok.

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- Programozás alapok
- Feladatok 1
- 6 Villogó LED
- Feladatok II

Arduino PIN-ek

Arduino PIN-ek

Digitális PIN-ek

- 0-13 kimenetek
- Beállítás 0V vagy 5V-ra
- Olvasás hogy van-e áram

Analóg PIN-ek

- A0-A5 pinek
- Leolvasható hogy pontosan mekkora a feszültség 0V és 5V között

Arduino PIN-ek

POWER Pinek

- GND 0V, földelés
- $\bullet~5V$ mindig $5V\text{-}\mathrm{ot}$ ad ki
- \bullet 3.3V mindig 3.3V-ot ad ki
- Vin Bemeneti feszültség, ha 9V-os elem, akkor 9V lesz.
 Számítógép esetén 5V.

Breadboard

Próbapanel

A lyukak 5-ösével vannak összekötve (soronként). A piros és kék csík melletti lyukak is össze vannak kötve egymással.

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- 4 Programozás alapok
- Feladatok I
- 6 Villogó LED
- Feladatok II

Light Emitting Diode (LED)

Fényt kibocsátó dióda

- Ha áram folyik rajta keresztül akkor világít
- Hosszabbik láb Pozitív
- Rövidebbik láb Negatív
- Max 3.3V-ra szabad kötni

Csináljunk világító LED-et!

Ellenállás legyen 100Ω és 500Ω között.

Ha nem világít a LED akkor fordítva kötöttük be.

Megfelelő ellenállás választása

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- Programozás alapok
- Feladatok I
- 6 Villogó LED
- Feladatok II

Arduino IDE

Miután megnyitottuk a programot...

```
Fájl Szerkesztés Vázlat Eszközök Súgó
  sketch feb09a
 18 void setup() {
      // put your setup code here, to run once:
 4
 6⊟ void loop() {
      // put your main code here, to run repeatedly:
 9 1
A vázlat 444 bájt (1%)-ot használ a program tárhelyből. A maximum 32256 bájt.
A globális változók 9 bájt (0%)-ot használnak a dinamikus memóriából, 2039 bájtot hagyva a helyi változóknak. A maximum 2048
```

Arduino kiválasztása

Programozás

```
void setup()
{
    //ami ide kerül 1x fut le
}

void loop()
{
    //ami ide kerül végtelenségig fut
}
```

Hello World program

```
void setup()
{
    Serial.begin(9600);
}

void loop()
{
    Serial.print("Hello_world");
    delay(10000); //10000ms = 10s várakozás
}
```

- Serial.begin (9600); elindítja a kommunikációt az Arduino és a gép között
- Serial.print("valami"); kiiratja "valami"-t a Soros monitorra
- delay (1000); várakozik 1000 ms-t

Jegyezzük meg

```
void setup()
{
    Serial.begin(9600);
}

void loop()
{
    Serial.print("Hello_world");
    delay(10000); //10000ms = 10s várakozás
}
```

- Minden cikluson belüli dolog egy tabulátorral (Tab) beljebb van kezdve
- A // mögé írt szöveget nem veszi figyelembe az Arduino (Úgynevezett comment)

Matekozzunk!

```
void setup()
   Serial.begin (9600);
void loop()
   int a = 13;
   int b = 7;
   int c = a + b;
   Serial.print(c);
   delay(10000);
```

int egy típus egy **egész számot** tárol -32768 és 32767 között. a, b, c úgynevezett változók amiknek értékeket is adtunk.

Matekozzunk!

```
void setup()
   Serial.begin (9600);
void loop()
   float a,b,c;
   a = 0.5;
  b = 20.2;
   c = a * b;
   Serial.print(c); //c = 10.1
   delay(10000);
```

float egy típus egy tört számot tárol 8 jegy pontossággal. a, b, c szintén változók, azonban itt más a típusok. Most float.

Változó

Változó

Valamilyen adatot tárol. Ezt a tárolt adatot meg is tudjuk változtatni, vagy ki tudjuk iratni. Műveleteket tudunk végezni velük.

Változó

Valamilyen adatot tárol. Ezt a tárolt adatot meg is tudjuk változtatni, vagy ki tudjuk iratni. Műveleteket tudunk végezni velük.

Típus

Változó

Valamilyen adatot tárol. Ezt a tárolt adatot meg is tudjuk változtatni, vagy ki tudjuk iratni. Műveleteket tudunk végezni velük.

Típus

A változó tulajdonsága. Megadja hogy a változó mit tárol, ezt csak egyszer kell megadni minden változó esetén. Lehet egész számot tároló típus int vagy long. Illetve tört számot tároló float vagy double.

Változó

Valamilyen adatot tárol. Ezt a tárolt adatot meg is tudjuk változtatni, vagy ki tudjuk iratni. Műveleteket tudunk végezni velük.

Típus

A változó tulajdonsága. Megadja hogy a változó mit tárol, ezt csak egyszer kell megadni minden változó esetén. Lehet egész számot tároló típus int vagy long. Illetve tört számot tároló float vagy double.

Deklaráció

Változók létrehozása. Először megadjuk a típust, aztán nevet adunk a változónak, majd a változónak értéket adunk.

Példa

int alma = 123; //típus: int // név: alma //érték: 123

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- Programozás alapok
- 5 Feladatok I
- 6 Villogó LED
- Feladatok II

Feladat I

Mit ír ki a kód?

```
void setup()
   Serial.begin (9600);
void loop()
   int a = 25;
   int b = 5;
   int c = a / b;
   int d = c + b + a;
   Serial.print(d);
   delay(10000);
```

Feladat I

Mit ír ki a kód?

```
void setup()
   Serial.begin (9600);
void loop()
   int a = 25;
   int b = 5;
   int c = a / b;
   int d = c + b + a;
   Serial.print(d);
   delay(10000);
```

Megoldás: c = 5; d = 35;

Feladat II

Mit ír ki a kód?

```
void setup()
   Serial.begin (9600);
void loop()
{
   double alma, korte, eper, cseresznye;
   alma = 10.0;
   korte = 2.5;
   eper = alma/korte + alma;
   cseresznye = (eper - 4) * eper;
   Serial.print(cseresznye);
   delay(10000);
```

Feladat II

Mit ír ki a kód?

```
void setup()
   Serial.begin (9600);
void loop()
{
   double alma, korte, eper, cseresznye;
   alma = 10.0;
   korte = 2.5;
   eper = alma/korte + alma;
   cseresznye = (eper - 4) * eper;
   Serial.print(cseresznye);
   delay(10000);
```

Megoldás:

eper = 4 + 10 = 14; cseresznye = (14-4) * 14 = 140;

Feladat III

Mit ír ki a kód?

```
void setup()
   Serial.begin (9600);
void loop()
   int a = 2;
   float b = 1.5;
   float c = a*b + 2*2 - 4;
   Serial.print(c);
   delay(10000);
```

Feladat III

Mit ír ki a kód?

```
void setup()
   Serial.begin (9600);
void loop()
   int a = 2;
   float b = 1.5;
   float c = a*b + 2*2 - 4;
   Serial.print(c);
   delay(10000);
```

Megoldás:

$$c = 3;$$

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- Programozás alapok
- Feladatok I
- 6 Villogó LED
- Feladatok II

Csináljunk villogó LED-et!

Válasszunk 220 Ω -os ellenállást. Ez most nem fog még világítani!

Írjuk meg a kódot!

```
int LED = 2;

void setup()
{
    pinMode(LED,OUTPUT); //beállítja a LED pint (2-es) kimenetre
}

void loop()
{
    digitalWrite(LED,HIGH); //kiad 5V-ot a 2-es pinen
}
```

- pinMode (pin, OUTPUT/INPUT) beállítja a megadott számú pint kimenetre (OUTPUT) vagy bemenetre (INPUT)
- digitalWrite (pin, HIGH/LOW) beállítja a megadott számú pin-en hogy folyjon-e áram HIGH folyik áram, LOW nem folyik áram

És most villogjon is!

```
int LED = 2;
void setup()
   pinMode (LED, OUTPUT); //beállítja a LED pint (2-es) kimenetre
void loop()
   digitalWrite(LED, HIGH); //kiad 5V-ot a 2-es pinen
   delay(1000);
   digitalWrite(LED, LOW); //kikapcsolja a 2-es pinen az áramot
   delay(1000);
```

Tartalom

- 1 Áram
- 2 Ardunio alapok
- 3 LED
- Programozás alapok
- Feladatok l
- 6 Villogó LED
- Feladatok II

Feladatok

Kicsit fejlesszük tovább!

- Tároljátok el egy változóba a várakozási időt másodpercben.
- Állítsátok be, hogy LED nagyon gyorsan, vagy nagyon lassan villogjon.
- Írjátok ki a soros monitorra, hogy jelenleg a LED ki van kapcsolva, vagy be van kapcsolva. (Segítség:
 - Serial.println("szoveg") mindig új sorba ír)

Megoldás

Továbbfejlesztett verzió

```
int LED = 2;
float varakozas = 0.3; //0.3 másodpercet vár
int varakozas_ms = varakozas*1000; //0.3*1000 = 300 ms
void setup()
   Serial.begin (9600);
   pinMode (LED, OUTPUT); //beállítja a LED pint (2-es) kimenetre
void loop()
   Serial.println("BE");
   digitalWrite(LED, HIGH); //kiad 5V-ot a 2-es pinen
   delay(varakozas_ms);
   Serial.println("KI");
   digitalWrite(LED, LOW); //kikapcsolja a 2-es pinen az áramot
   delay(varakozas_ms);
```

Szavak I

e Ladung /-en s Elektron /-en s Proton /-en r Strom /e Ströme e Bewegung /-en s Medium / e Medien s Metall /-e e Leitung /-en e Spannung /-en r Ausgang /e Ausgänge r Eingang /e Eingänge e Erdung s Breadboard / s Steckbrett töltés elektron proton áram mozgás közeg fém vezeték feszültség kimenet bement GND avagy földelés próbapanel

Szavak II

vmit vmivel összekötni etw. mit +D verbinden e Leuchtdiode (LED) led leuchten világítani ellenállás r Widerstand / e Widerstände e Variable /-n változó r Typ típus r Programmcode programkód blinkend villogó

Szavak III