Last name	
First name	

LARSON—MATH 610—HOMEWORK h11 Gram-Schmidt Example

Given any basis v_1, \ldots, v_n of \mathbb{R}^n , we can *construct* an orthonormal basis u_1, \ldots, u_n of \mathbb{R}^n (this method applies to any finite-dimensional vector space, but our example will be in \mathbb{R}^3).

The method is the following:

1. Let
$$u_1 = \frac{1}{\|v_1\|} v_1$$
.

2. After
$$j-1$$
 iterations, let $u'_j = v_j - \langle v_j, u_1 \rangle u_1 - \ldots - \langle v_j, u_{j-1} \rangle u_{j-1}$.

3. Let
$$u_j = \frac{1}{||u_i'||} u_j$$
.

4. Repeat.

Problem

Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Check that v_1, v_2, v_3 is a basis for \mathbb{R}^3 .
- 2. Apply the Gram-Schmidt method to v_1, v_2, v_3 to produce an orthonormal basis u_1, u_2, u_3 for \mathbb{R}^3 . Use the dot product as your inner product for this method. Show all your steps.
- 3. Check that u_1, u_2, u_3 is an orthonormal basis for \mathbb{R}^3 . What are all the things you need to check?