Matematyka dysludna M, Lista 4, 30/10/2019

Zadanie I. Szybha metoda obliciania Lem (m,n) dla m,n EIN v loj.

gad $\{m_i n\}$:

if a mod b == 0:

return b:

else:

teturn gcd (b, a mod b)

lcm(min):

if (a < 1) or (b < 1):

return 0

return a/gcd(min)*b

Aby othymae hajmniejsig uspoling melolustrosi liert min EIN U Joy moreung je prus sietie pomnoigé homstajou ze ozom:

$$lcm(m_1n) = \frac{m'n}{\gcd(m_1n)},$$

jednah aby unihngi nyjstia liab pora rahus intér,
prehsztatany go do postaci lan(m,n) = m/gcd (m,n) (moreny
ber struty ogslnosti ratoryt, ie m>n, dugli cram me
musing sprahodnet litera liaba jest rightne i politica zostrat
podrielana).

Zadanie 2. Sujoha metoda diinania god ovar lom licho Majmz, Me EMMOJ.

galarr (arr[], k):

if k < 2: return error if k == 2: gcd (arr [0], arr [1])

result = arr [0]

for (i=1; i<k; i+)

result = gcd (arr[i], result)

return result.

kemar (arr[], k):

if k<2: return error

if k==2: return lem (arr[0], arr[1])

besult = arr[0]

for (i=1, i < k; i+1)

result = lem (arr[i], result)

return result

Te algorytmy obliciaj god/lon tablicy avi[] populi oblicieme god/lon pierwszych duoch elementor (avi[0], avi[1]), a następnie populi pontanami oblicie dla populargo rynim i następnie elemento i lablicy, ai do jej leusca.

Zadanie 4. Opis algorytum obliciajquego god (a,b) z zaleinosi:

· ged (a,b) = ged (a/2,b) : a panyste, b mepanyste

· gcd (a,b) = gcd (a-6,b) : a>6, a,b mepanyite

gcd (a_1b) :

gcd (0_10) :

gcd (0_10) :

gcd (a_10) :

gcd (a_1b) :

Zatoring, ie pojedynere pujstre pur algorytur (sprawlure pungstosi, driebent i odejmomanie) ughornje sig w crosse O(1), pomerosi algorytum ugnosi O(logza + logzb), pomerosi w hajgoranju propadha będrieny drietic a i b na zminy pun 2.

Zadanie 8. Udonodnij releinosci: (wskarsuka: an-bn=(a-b)(Zaibn-i-1)

(a) jesti $2^{n}-1$ jest lindy pieruszy, to n jest lindy pieruszy:

Zutożuny nie wprost, że $2^{n}-1$ jest lindy preruszy, ale n nie jest lindy pieruszy. Niech $n=a\cdot b$ dla $a,b\in\mathbb{N}$, a,b>1. Wtedy $2^{n}-1=2^{ab}-1=(2^{a})^{b}-1=(2^{a}-1)(2^{a(b-1)}+2^{a(b-2)}+...+2^{a\cdot 0}),$ zatem $2\leq 2^{a}-1\leq 2^{n}-1$, czyli $(2^{a}-1)$ jest dzednihrem $2^{n}-1$.

(b) jeśli $a^{n}-1$ jest lindy pieruszy, to $\alpha=2$:

 $a^{n}-1=(a-1)(a^{n-1}+a^{n-2}+...+a+1)\Rightarrow (a-1)=1$, otty $a^{n}-1$ by so living pieruszy, czyli a-1=1=2

(c) jeśli $2^n + 1$ jest liuby pierwszą, to n jest potjąg liuty 2 Założny nie wpost, że n nie jest potjąg 2. Veiny nije $n = 2^{20}b$, wholy $2^n + 1 = 2^{20}b + 1 = (2^{20})b + 1$. Niech $x = 2^{20}$, when $x = 2^{20}$, when $x = 2^{20}$, where $x = 2^{20}b + 1 = (x + 1)(x^{b-1} - x^{b-2} + ... - x + 1)$. Show $x^b + 1$ moieny syranic jako iloszyn, to $2^n - 1$ nie jest liaky pierwszą, gdy n nie jest potjąg 2.

Zadanie 9. Udohodnij, it jesti p jest linky pieruszy, to p dzieli ((p-1)!+1). Wykai najpieru, it $(p-2)! \equiv 1 \pmod{p}$.

 $(p-2)! \equiv 1 \pmod{p} \implies (p-1)! \equiv (p-1) \pmod{p} \implies (p-1)! + 1 \equiv p \pmod{p} \equiv 0$

ROZWIĄZANIE:

Jesti
$$x \in \{1, 2, ..., p-1\}$$
, to istnieje $x^{-1} \pmod{p}$. Rozhainy:
 $x \equiv x^{-1} \pmod{p} \xrightarrow{\cdot x} x^2 \equiv 1 \pmod{p} \xrightarrow{-1} x^2 - 1 \equiv 0 \pmod{p} \Rightarrow$
 $\Rightarrow (x-1)(x+1) \equiv 0 \pmod{p} \Rightarrow x = 1 \lor x = p-1$.

Moienny podritié porostate Lyvary $\{2,...,p-2\}$ w table pary $\{a_jb_j\}$, ie $ab \equiv 1 \pmod{p}$, a Lige:

$$p-1$$
 $i = 1 \cdot (p-1) \cdot \prod_{i=2}^{p-2} [p-1] \pmod{p}$
 $(p-1)!$

Zadanie 12. Znajdí najmnicjszy $x \in \mathbb{N}$ spełniający ulitad kongunyi $\begin{cases} x \equiv 11 \mod 27 \\ x \equiv 12 \mod 64 \end{cases} = \begin{cases} b_1 = 11, n_1 = 27 \\ b_2 = 12, n_2 = 64 \\ x \equiv 13 \mod 25 \end{cases}$

NND(27,64) = NND(27,25) = NND(64,25) = 1, Lige stosyjemy drihístre triendume o restach. Oblicamy Lige $N = n_1 n_2 n_3 = 43200$.

dane b:	Ni 64.25	×: 4	bi Ni Xi 70 400 89 100	$N_i = \frac{N}{n_i}$
11 12 13	64·25 27·25 27·64	4 11 17		$X = \sum_{i=1}^{3} b_i N_i x_i$

xi - odmotnost Ni

Obliczny X: i uzupetnijny tabelg:

$$64.25 \times_{1} \equiv 1 \mod 27$$
 $27.25 \times_{2} \equiv 1 \mod 64$ $27.64 \times_{3} \equiv 1 \mod 25$ $35 \times_{2} \equiv 1 \mod 64$ $3 \times_{3} \equiv 1 \mod 25$ $7 \times_{1} \equiv 1 \mod 27$ $35.11 \equiv 1 \mod 64$ $3.17 \equiv 1 \mod 25$ $3.17 \equiv 1 \mod 25$ $1.17 \times_{1} \equiv 1 \mod 27$ $1.17 \times_{2} \equiv 11$ $1.17 \times_{3} \equiv 17$

$$x = \sum_{i=1}^{3} x_i N_i b_i = 70 400 + 89 100 + 381 888 = 541 388$$

 $x = 541388 \mod N = 541388 \mod 43200 = 22988$

Zastanie 3. Poisienony algorytus Euklidesa dla my mu liab, mi elN v/b).

gcd (gcd (m1, m2, m4), mu) = y1 Mu + y2 gcd (m1, m2, ..., mu-1) =
= y1 mu + y2 (y1 mu-1 + y2 gcd (m1, ..., mu-2)) =
= y1 mu + y2 (y1 mu-1 + y2 y2 + ...

Zadamie 5. Modyfikaja algorytm binamego ged, aby xa+yb=ged (a,5)

1° gcd(0,b) = b, $cryli X_1 = 0$, $y_1 = 1$ 2° $gcd(a,b) = 2 \cdot gcd(\frac{a}{2}, \frac{b}{2})$, $X_{n+1} = 2x_n$, $y_{n+1} = 2y_n$ 3° $gcd(\frac{a}{2},b) \longrightarrow X_{n+1} = X_n/2$, $y_{n+1} = y_n$ 4° $gcd(a, \frac{b}{2}) \longrightarrow X_{n+1} = X_n$, $y_{n+1} = y_n/2$ 5° $gcd(a-b,b) \longrightarrow X_{n+1} = x_n$, $y_{n+1} = y_n/2$ ad.2° $2gcd(a/2, b/2) = 2(X_{i+1} \cdot a/2 + y_{i+1} \cdot b/2) = a_{i+1}$ ai+1 bi+1 ai+1

= Xi+1 ai + yi+1 bi

ad. 3° gcd $(a_{i1}b_{i1}) = gcd (a_{i1}/2, b_{i1}) = X_{i+1} (a_{i1}/2) + y_{i+1}b_{i1}$ ad. 5° gcd $(a_{i1}b_{i1}) = X_{i+1} (a_{i1}-b_{i1}) + y_{i+1}b_{i1} = X_{i+1}a_{i1} - X_{i+1}b_{i1} + y_{i+1}b_{i1}$

Zadanie 6. $(m_{11}m_{2},...)_{p}$, $(n_{11}n_{21}...)_{p}$ (a) k = gcd $(m_{1}n) \iff k_{1} = min d m_{11}, h_{1}$

 $\exists k_{j} \neq \min \{ m_{j}, n_{j} \}$ $1^{\circ} k_{j} \leq \min \{ m_{j}, n_{j} \} k^{\prime} = k \cdot p_{j}^{\min} \{ m_{j}, n_{j} \} - k_{j}$ $k^{\prime} \{ m_{j}, n_{j} \} k_{j} = k \cdot p_{j}^{\min} \{ m_{j}, n_{j} \} - k_{j}$ $k^{\prime} \{ m_{j}, n_{j} \} k_{j} = k \cdot p_{j}^{\min} \{ m_{j}, n_{j} \}$ $k^{\prime} \{ m_{j}, n_{j} \} m_{j}^{\prime} \geq n_{j}^{\prime} = n^{\prime} \frac{1}{p_{j}^{\prime} n_{j}^{\prime} - k_{j}^{\prime}}$

 Zadanie 7.

(a)
$$XZ \equiv yZ$$
 (mad mz) \Leftrightarrow $X \equiv y$ (mad m), $Z \neq 0$
 $MZ \mid XZ - yZ \Rightarrow MZ \mid Z(X - y) \Rightarrow M \mid (X - y) \Rightarrow X \equiv y \mod n$
(b) $XZ \equiv yZ$ (mad m) \iff $X \equiv y \pmod {\frac{m}{\gcd(m_1 z)}}$, $X_1y_1Z_1m \in \mathbb{Z}$
 \iff $X \equiv y \pmod {\frac{m}{\gcd(m_1 z)}} + r$ $XZ = M \cdot k_1 \frac{Z}{\gcd(m_1 z)} + rZ$
 $Y = k_2 \cdot \frac{M}{\gcd(m_1 z)} + r$ $YZ = M \cdot k_2 \cdot \frac{Z}{\gcd(m_1 z)} + rZ$
 $XZ \equiv YZ \pmod m$
 $XZ \equiv YZ \pmod m$

(c)
$$X \equiv y \pmod{mz} = y \times \equiv y \pmod{m}$$

 $X = (k_1 z) + r = y \times \equiv y \pmod{m}$
 $Y = (k_2 z) + r = y \times \equiv y \pmod{m}$

Dlacego
$$a^{n}-b^{n} = (a-b)(\sum_{i=0}^{n-1}a^{i}b^{n-i-1})^{2}$$
,
 $(a-b)(a^{n-1}b^{0} + a^{n-2}\cdot b^{1} + ... + a^{0}b^{n-1}) =$

$$= a^{n} - a^{n-1}b^{1} + a^{n-1}b^{1} - a^{n-2}b^{2} + a^{n-2}b^{2} - a^{n-3}b^{3} + a^{n-3}b^{3} + ... - a^{0}b^{n} =$$

$$= 0$$

$$= 0$$

$$= 0$$

Zadanie 10. Jaha jest linda vest modulo p^a spetniajgyd.

Wenane $x^2 \equiv 1 \pmod{p}^2$

1°
$$\alpha = 1$$
: $x = 1$, high 1 corrigania
2° $\alpha = 2$: $x = 2^2 - 1$, $x = 2^2 + 1 = 1 \mod 4$, high 2 corrigania
3° $\alpha \ge 3$: $2^{\alpha - 1} | (x - 1) = 2 | (x + 1) = 4 | (x + 1)$,
 $x = 2^{\alpha} \pm 1 + 2 = 2^{\alpha - 1} \pm 1$, wish $x = 2^{\alpha} \pm 1 + 2 = 2^{\alpha - 1} \pm 1$, wish $x = 2^{\alpha} \pm 1 + 2 = 2^{\alpha - 1} \pm 1$, wish $x = 2^{\alpha} \pm 1 + 2 = 2^{\alpha - 1} \pm 1$, wish $x = 2^{\alpha} \pm 1 + 2 =$

Zawlamie 11. Jah znajge workfad n myrnavyť hindy corrigem $x^2 \equiv 1 \text{ mod } n^2$. $(x-1)(x+1) \equiv 0 \text{ mod } n$, which which $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ $x^2 \equiv 1 \pmod{n}$ $x^2 \equiv 1 \pmod{n}$

2 adame do delorcrema (pandopodobre na 5. lisere) Zandanie 13. Najmurg'sze nEN tale, ie 2ⁿ = 1 mod 5.7.9.11.13.

$$\begin{cases}
2^{n} = 1 \mod 5 & n_{1} = 4 \\
2^{n} = 1 \mod 7 & n_{2} = 3 \\
2^{n} = 1 \mod 9 & n_{3} = 6 \\
2^{n} = 1 \mod 9 & n_{3} = 6 \\
2^{n} = 1 \mod 11 & n_{1} = 10 \\
2^{n} = 1 \mod 13 & n_{5} = 12
\end{cases}$$

$$\begin{cases}
2^{n} = 1 \mod 13 & n_{5} = 12
\end{cases}$$
A vige tinying (cm n; cyti; cm n; cyti; cm

Zadame 14. Polici le isturez nie shorierence niele lint prengul postui:

(a) 3k+2, hell

Zaísiny, it isturje shoriciona ilosé hich tality postur: P1, P21, -- 1 Ph. Lemut: $\forall p \exists q (3p+1)^n = 3q+1$ 3N+2 = W worktawhile isture p = 3k+2 x = 1 (mod 3) $x^n = 1^n \text{ (mod 3)}$ $x^n = 1^n \text{ (mod 3)}$

(b) 4h+3 - analogicanic p|4N+3 1 p|N => p|4N+3-4N => p|3
SPRZECZNOŚĆ 4

Zavlanie 15. d(k) - li aba dielnilse le. Pohai jie $\sum_{k=1}^{n} d(k) = n \ln n + O(n)$ $\sum_{k=1}^{n} d(k) = n + \lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{3} \rfloor + \lfloor \frac{n}{4} \rfloor + \lfloor \frac{n}{4} \rfloor \leq 1$ $\leq N + \left(\frac{N}{2} + 1\right) + \left(\frac{N}{3} + 1\right) + \dots + \left(\frac{N}{N} + 1\right) =$

$$= h \log n + O(n)$$