BÁO CÁO THỰC HÀNH

Họ tên	Phan Anh Lộc	Lớp: IT012.L12.KHCL.2
MSSV	19521766	STT:
Bài Thực Hành	Lab 1	
CBHD	Trương Văn Cương	

1 Yêu cầu thực hành

Về phần trình bày:

- Sinh viên trình bày đúng theo định dạng báo cáo mà CBHD đưa ra.
- Cần chú thích bảng, hình (nếu có).
- Sử dụng chức năng Insert Caption và Cross-reference cho chú thích Bảng, Hình
- Sử dụng tính năng Screenshot để chụp kết quả mô phỏng.
- Báo cáo thực hành được submit theo đúng thời gian trên https://courses.uit.edu.vn/ (định dạng PDF) và in ra bản cứng nộp vào buổi tiếp theo.

Quy trình thực hành:

- Sinh viên chuẩn bị bài ở nhà, và có mặt đúng giờ tại phòng LAB.
- Sinh viên thực hành theo hướng dẫn, và nộp bài đúng hạn.
- Hoàn thành bài tập về nhà (nếu có)
- Tất cả các bài báo cáo có hành vi sao chép của nhau sẽ bị điểm 0

Điểm buổi thực hành

Chuyên cần (20%)	
Trình bày (20%)	
Nội dung thực hành (60%)	
Câu 1:	
Câu 2:	
Tổng (100%)	

Bài tập thực hành:

- 1 Khảo sát hoạt động của cổng logic AND, OR, NOT, NAND, NOR, XOR, XNOR
- 2 Khảo sát hoạt động của D flipflop
- 3 Vẽ mạch từ biểu thức bool

2 Thực hành

2.1 Khảo sát hoạt động của cổng logic AND

Bảng 1: Kết quả khảo sát cổng logic AND

IN1	IN2	OUT
0	0	0
0	1	0
1	0	1
1	1	0

Hình 1: Kết quả mô phỏng cổng logic AND

Nhận xét: Hình 1 là kết quả chụp màn hình mô phỏng công logic AND, và Bảng 1 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic AND.

Lưu ý sinh viên:

- Cần chuẩn bị bài ở nhà trước
- Sinh viên đi trễ quá 10 phút sẽ không được vào lớp (điểm buổi thực hành bằng Không)

Câu 1:

2.1 Khảo sát cổng logic OR

- Bảng 1: Kết quả khảo sát cổng logic OR:

IN1	IN2	OUT
0	0	0
0	1	1
1	0	1
1	1	1

Nhận xét: Hình 1 là kết quả chụp màn hình mô phỏng công logic OR, và Bảng 1 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic OR.

2.2 Khảo sát cổng logic NAND

- Bảng 2: Kết quả khảo sát cổng logic NAND:

Nhận xét: Hình 2 là kết quả chụp màn hình mô phỏng công logic NAND, và Bảng 2 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic NAND.

2.3 Khảo sát cổng logic NOR

- Bảng 3: Kết quả khảo sát cổng logic NOR:

1	1	0

Nhận xét: Hình 3 là kết quả chụp màn hình mô phỏng công logic NOR, và Bảng 3 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic NOR.

2.4 Khảo sát cổng logic XOR

- Bảng 4: Kết quả khảo sát cổng logic XOR:

Nhận xét: Hình 4 là kết quả chụp màn hình mô phỏng công logic XOR, và Bảng 4 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic XOR.

2.5 Khảo sát cổng logic XNOR

- Bảng 5: Kết quả khảo sát cổng XNOR:

Nhận xét: Hình 5 là kết quả chụp màn hình mô phỏng công logic XNOR, và Bảng 5 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic XNOR.

2.6 Khảo sát cổng logic NOT

0

0

- Bảng 6: Kết quả khảo sát cổng logic NOT:

IN	OUT
0	1
1	0

0

1

0

Nhận xét: Hình 6 là kết quả chụp màn hình mô phỏng công logic NOT, và Bảng 6 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic NOT.

2.7 Khảo sát cổng logic AND

- Bảng 7: Kết quả khảo sát cổng logic AND:

IN1	IN2	OUT
0	0	0
0	1	0
1	0	0
1	1	1

Nhận xét: Hình 7 là kết quả chụp màn hình mô phỏng công logic AND, và Bảng 7 là bảng sự thật kết quả mô phỏng. Kết quả đúng với lý thuyết cổng logic AND.

Câu 3:

- Mạch số và bảng sự thật:

A	В	С	D	OUT
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Câu 2: **Cách hoạt động:** D flipflop hoạt động theo nguyên lý kích xung cạnh. Lúc cạnh xung thay đổi từ 0 -> 1 thì Q sẽ thay đổi theo giá trị được lưu trong ô D flipflop. Khi xung thay đổi từ 1->0 thì Q vẫn giữ nguyên giá trị hiện tại cho dù D có thay đổi hay không.

Hình 1: Mạch đang ở trạng thái ban đầu

Hình 2: D thay đổi từ 0->1, Q vẫn nguyên giá trị trong ô D flipflop là 0

Hình 3: Xung thay đổi từ 0->1, lúc này ô D flipflop sẽ cập nhật lại giá trị của D bằng 1 và xuất ra Q=1

Hình 4: Xung thay đổi từ 1->0, lúc này Q vẫn sẽ bằng 1 cho dù có thay đổi D như thế nào đi chẳng nữa