Lecture 16 – Degenerate Fermi gas I

PREVIOUSLY: Quantum density $n_Q(T) = \left(\frac{mk_BT}{2\pi\hbar^2}\right)^{3/2}$

 n_Q is the particle density at which the wavefunctions begin to overlap, and quantum effects become important. When $n \approx n_Q$, multiple occupancy of energy levels (orbitals) is possible and quantum statistics must be taken into account.

<u>Degenerate Fermi gases</u> are gases of fermions under the condition that $n \sim n_Q$ (Note: here, meaning of "degenerate" is different than usual meaning in QM where states have same energy)

Examples of degenerate Fermi gases:

- conduction e⁻ in metals outer e⁻ free from ions
- white dwarf atoms are ionized, e⁻ in gas
- neutron star gas of neutrons
- nuclear matter can be approximated as gas of protons & neutrons
- liquid ³He fermions too, though ideal gas is not a good approximation

TODAY: conduction e⁻ in metals

Define <u>degeneracy temperature</u> T_d as temperature when $n = n_Q(T_d)$: $T_d = \frac{2\pi\hbar^2}{mk_B}n^{2/3}$

$$\frac{T_d}{T} = \left(\frac{n}{n_Q}\right)^{2/3} \text{ when } \begin{cases} T < T_d, & n > n_Q \\ T > T_d, & n < n_Q \end{cases}$$

For typical metals, $n = 1 - 5 \times 10^{22}$ conduction e⁻ per cm³ (1 e⁻ in a volume of (3-4 Å)³) and $T_d \sim 50,000 - 100,000$ K, so $n \gg n_Q$ at room temperature, T = 300 K. Metals are strongly degenerate.

This will mean that even at room T, the behavior of a metal is close to that at T = 0

For example, the occupancy $f_{FD}(\varepsilon,T)$ is very close to a step function at T=0. We will make use of this fact to make approximations.

KEY CONCEPT: The Sommerfeld theory of metals

How do we treat conduction e⁻ in metals?

- We'll make the approximation that they are a gas of free electrons, subject to no forces.
- In reality, e⁻ feel attractive forces from nearby ions, though long-range electrostatic forces can be neglected because metal is electrically neutral.

Recall that the chemical potential μ must satisfy the constraint that

$$N = \langle N \rangle = \sum_{n} \langle N(\varepsilon_{n}, T) \rangle = \sum_{n} f_{FD}(\varepsilon_{n}, T) = \sum_{n} \frac{1}{e^{\beta(\varepsilon_{n} - \mu)} + 1}$$

Also, the average energy is given by

$$U(T) = \sum_{n} \left\langle N(\varepsilon_{n}, T) \right\rangle \varepsilon_{n} = \sum_{n} f_{FD}(\varepsilon, T) \varepsilon_{n} = \sum_{n} \frac{\varepsilon_{n}}{e^{\beta(\varepsilon_{n} - \mu)} + 1}$$

So, we can determine $\mu(T)$ from the first equation, then use it to evaluate U(T) in the second

The energy levels ε_n are determined using the same "particle in a box" approach as before:

$$\varepsilon_n = \frac{\hbar^2 k_n^2}{2m} \text{ with } k_n^2 = k_x^2 + k_y^2 + k_z^2 \text{ and}$$
$$k_x = \frac{n_x \pi}{L_x} \text{ with } n_x = 1, 2, 3 \cdots$$

same for y, z

Putting in some numbers: the spacing between energy levels for a 1 cm³ sample of metal is

$$\Delta \varepsilon \sim \frac{\hbar^2 \pi^2}{2m L^2} = \frac{\hbar^2 \pi^2}{2m V^{2/3}} \sim 10^{-15} \, \text{eV}$$
, i.e. $\Delta \varepsilon / k_B \sim 10^{-11} \, \text{K}$

So, for all reasonable temperatures we can consider the spectrum of energy levels (or orbitals) to be continuous, and we are justified in replacing the sums with integrals:

$$\sum_{n} \to \int_{0}^{\infty} d\varepsilon \, D(\varepsilon)$$

Question 1: Write down an expression for $D(\varepsilon)$ for the Fermi gas (in 3D)

of states with energy between
$$\varepsilon$$
 and $\varepsilon+d\varepsilon$ \approx # spins \times vol. of shell in k -space with radius $k=\sqrt{2m\varepsilon}/\hbar$ vol. in k -space per state

Accounts for 2 spin states of each e-

$$D(\varepsilon)d\varepsilon \approx 2\frac{4\pi k^2 dk/8}{\pi^3/V} = \frac{V}{\pi^2}k^2 dk = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \varepsilon^{1/2} d\varepsilon$$

In the last step we used $k = \sqrt{\frac{2m}{\hbar^2}} \varepsilon^{1/2}$, $dk = \sqrt{\frac{2m}{\hbar^2}} \frac{d\varepsilon}{2\varepsilon^{1/2}}$ to express D in terms of ε

(Note the difference in $D(\varepsilon)$ for the photon gas, where $\varepsilon = \hbar \omega = \hbar c k$)

So, we have

$$N = \langle N \rangle = \int_0^\infty d\varepsilon \, D(\varepsilon) f_{FD}(\varepsilon, T) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty d\varepsilon \, \frac{\varepsilon^{1/2}}{e^{\beta(\varepsilon - \mu)} + 1}$$

$$U = \int_0^\infty d\varepsilon \, \varepsilon D(\varepsilon) f_{FD}(\varepsilon, T) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty d\varepsilon \, \frac{\varepsilon^{3/2}}{e^{\beta(\varepsilon - \mu)} + 1}$$

In general, we cannot solve these integrals analytically.

However, at T = 0, $f_{FD}(\varepsilon, T = 0)$ is a step function, and integrals are trivial.

KEY CONCEPTS: Fermi energy and temperature First look at T = 0

$$f_{FD}(\varepsilon,0) = \begin{cases} 0 & \text{for } \varepsilon > \mu(0) \\ 1 & \text{for } \varepsilon < \mu(0) \end{cases}$$

It follows that

$$N = \int_0^\infty d\varepsilon \, D(\varepsilon) f_{FD}(\varepsilon, 0) = \int_0^{\mu(0)} d\varepsilon \, D(\varepsilon)$$
$$= \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^{\mu(0)} d\varepsilon \, \varepsilon^{1/2} = \frac{V}{3\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \, \mu(0)^{3/2}$$

Solving for the chemical potential at T = 0:

$$\varepsilon_{F} \equiv \mu(0) = \frac{\hbar^{2}}{2m} \left(3\pi^{2} \frac{N}{V} \right)^{2/3}$$

which we define as the Fermi energy

$$\mathcal{E}_F$$
 is the highest energy level occupied with e⁻ at $T = 0$

$$\gamma(0) = \mathcal{E}_{\mathbf{F}} - \frac{\frac{1}{1}}{\frac{1}{1}}$$

$$\frac{1}{1}$$

$$1$$

$$1 = 0$$

At T = 0, e⁻ fill up energy levels from ground state up (like orbitals in an atom). Occupancy goes to 0 as soon as the N e⁻ have been used up

Notice that $\mu(0) = \varepsilon_F$ depends on N, but also on V, because the size of the box affects the spacing between energy levels $\Delta \varepsilon \sim \hbar^2 \pi^2 / 2mV^{2/3}$.

 $\mathcal{E}_{\scriptscriptstyle F} \sim n^{2/3}$ is an <u>intensive</u> property of the metal

Next we calculate the energy at T = 0

Question 2: Write down an expression for U(T = 0) for the Fermi gas

Now for the average energy at T = 0:

$$U(0) = \int_0^\infty d\varepsilon \, \varepsilon D(\varepsilon) \langle n(\varepsilon, 0) \rangle_{FD} = \int_0^{\mu(0)} d\varepsilon \, \varepsilon D(\varepsilon)$$

$$= \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2} \right)^{3/2} \int_0^{\mu(0)} d\varepsilon \, \varepsilon^{3/2} = \frac{2}{5} \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2} \right)^{3/2} \varepsilon_F^{5/2} = \frac{3}{5} N \varepsilon_F$$

Makes sense. The highest possible energy for an e^- at T=0 is ε_F . On average, an electron will have $\sim \frac{1}{2}$ that energy (3/5 to be precise, because the density of states is not uniform).

Compare to classical ideal gas with MB statistics:

$$U_{MB} = \frac{3}{2}Nk_BT$$
 vs. $U_{FD} = \frac{3}{5}N\varepsilon_F$

Even at T = 0, $U_{FD} >> 0$ because the Pauli exclusion principle requires that e^- keep filling up energy levels

Define Fermi temperature $T_F = \varepsilon_F / k_B$

 T_F is almost the same as the degeneracy temperature T_d :

$$k_{\rm B}T_{\rm d} = \frac{2\pi\hbar^2}{m}n^{2/3} \approx (3\pi^2)^{2/3} \frac{\hbar^2}{2m}n^{2/3} = k_{\rm B}T_{\rm F}$$

 $T_F \sim 50,000 - 100,000$ K in metals. This is just a reference point for temperatures. Metals liquefy long before this temperature can be reached experimentally. Practically $k_B T \ll \varepsilon_F$.

Question 3: Write down an expression for the pressure p generated by the Fermi gas at T=0

Pressure is defined as
$$p(T) = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$$
. At $T = 0$, $F = U$ so $p(0) = -\left(\frac{\partial U}{\partial V}\right)_{T,N}$

$$U(0) = \frac{3}{5}N\varepsilon_F \text{ and } \varepsilon_F = \frac{\hbar^2}{2m}\left(3\pi^2\frac{N}{V}\right)^{2/3}, \text{ so}$$

$$U(0) = \frac{3}{5}N\frac{\hbar^2}{2m}\left(3\pi^2\frac{N}{V}\right)^{2/3} = \underbrace{\frac{3}{5}(3\pi^2)^{2/3}\frac{\hbar^2}{2m}\frac{N^{5/3}}{V^{2/3}}}_{\alpha}$$

It follows that

$$p(0) = -\frac{\partial}{\partial V} \frac{\alpha N^{5/3}}{V^{2/3}} = \frac{2}{3} \frac{\alpha N^{5/3}}{V^{5/3}} = \frac{2}{3} \frac{U(0)}{V}$$

Compare to a classical ideal gas – a Fermi gas exerts a pressure even at T = 0! Why?

e⁻ fill up energy levels due to the Pauli exclusion principle. The spacing between energy levels depends on $V^{-2/3}$, so if the metal is compressed, the energy level spacing increases, increasing the total energy.

This is called the <u>degeneracy pressure</u>. It's the reason why matter does not collapse under electrostatic forces pulling protons and electrons together.

This pressure is very large: $p \sim 10^9 \text{ N/m}^2$