Package 'metevalue'

May 26, 2023

Type Package

Title E-Value in the Omics Data Association Studies

Version 0.2.4 **Date** 2023-05-26

Maintainer Yifan Yang <yfyang.86@hotmail.com>

Description

In the omics data association studies, it is common to conduct the p-value corrections to control the false significance. Beyond the P-value corrections, E-value is recently studied to facilitate multiple testing correction based on V. Vovk and R. Wang (2021) <doi:10.1214/20-AOS2020>. This package provides E-value calculation for DNA methylation data and RNA-seq data. Currently, five data formats are supported: DNA methylation levels using DMR detection tools (BiSeq, DMRfinder, MethylKit, Metilene and other DNA methylation tools) and RNA-seq data. The relevant references are listed below: Katja Hebestreit and Hans-Ulrich Klein (2022) <doi:10.18129/B9.bioc.BiSeq>; Altuna Akalin et.al (2012) <doi:10.18129/B9.bioc.methylKit>.

License Apache License (>= 2)

RoxygenNote 7.2.1

Depends sqldf, psych, dplyr, R (>= 3.5.0)

Encoding UTF-8

Suggests rmarkdown, prettydoc, knitr, ggplot2, tidyr, testthat (>= 3.0.0)

VignetteBuilder knitr

LazyData true

Config/testthat/edition 3

NeedsCompilation no

Author Yifan Yang [aut, cre, cph], Xiaoqing Pan [aut], Haoyuan Liu [aut]

Repository CRAN

Date/Publication 2023-05-26 15:20:06 UTC

2 demo_biseq_DMR

R topics documented:

	demo_biseq_DMR	2
	demo_biseq_methyrate	3
	demo_desq_out	3
	demo_DMRfinder_DMRs	4
	demo_DMRfinder_rate_combine	5
	demo_methylkit_methyrate	5
	demo_methylkit_met_all	6
	demo_metilene_input	6
	demo_metilene_out	
	evalue_buildin_sql	
	evalue_buildin_var_fmt_nm	
	metevalue.biseq	8
	metevalue.biseq.chk	
	metevalue.DMRfinder	
	metevalue.DMRfinder.chk	13
	metevalue.methylKit	15
	metevalue.methylKit.chk	
	metevalue.metilene	
	metevalue.metilene.chk	
	metevalue.RNA_general	
	varevalue.metilene	
	varevalue.single_general	
Index		26

demo_biseq_DMR

BiSeq Output Demo Dataset

Description

The dummy output for BiSeq illustrating purpose. It is dummy.

Details

- seqnames: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- width
- strand: Strand
- median.p
- median.meth.group1
- median.meth.group2
- median.meth.diff

demo_biseq_methyrate 3

Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.

Description

The methyrate for BiSeq illustrating purpose. It is dummy.

Details

The data includes 12 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups, repeat 5 times. Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.

demo_desq_out

DESeq Output Dataset

Description

The output dummy data for "RNA" meythod illustrating purpose.

Details

The data includes 10 columns.

- treated1fb:
- treated2fb:
- treated3fb:
- untreated1fb:
- untreated2fb:
- untreated3fb:
- untreated4fb:

This data contains 8166 rows and 7 columns.

Please check the vignette "metevalue" for details.

Examples

```
# library("pasilla")
# pasCts <- system.file("extdata",</pre>
                          "pasilla_gene_counts.tsv",
                          package="pasilla", mustWork=TRUE)
#
# pasAnno <- system.file("extdata",</pre>
                           "pasilla_sample_annotation.csv",
                           package="pasilla", mustWork=TRUE)
# cts <- as.matrix(read.csv(pasCts,sep="\t",row.names="gene_id"))</pre>
# coldata <- read.csv(pasAnno, row.names=1)</pre>
# coldata <- coldata[,c("condition","type")]</pre>
# coldata$condition <- factor(coldata$condition)</pre>
# coldata$type <- factor(coldata$type)</pre>
# library("DESeq2")
# colnames(cts)=paste0(colnames(cts),'fb')
# cts = cts[,rownames(coldata)]
# dds <- DESeqDataSetFromMatrix(countData = cts,</pre>
                                   colData = coldata,
                                   design = ~ condition)
# dds <- DESeq(dds)</pre>
# dat <- t(t(cts)/(dds$sizeFactor))</pre>
# dat.out <- dat[rowSums(dat >5)>=0.8*ncol(dat),]
# demo_desq_out <- log(dat.out)</pre>
```

demo_DMRfinder_DMRs

DMRfinder Output Demo Dataset

Description

The output dummy dataset for DMR finder illustrating purpose.

Details

The data includes 6 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups, repeat 2 times. Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.

demo_DMRfinder_rate_combine

DMRfinder Methyrate Demo Dataset

Description

The methyrate for BiSeq illustrating purpose. It is dummy.

Details

The data includes 6 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups, repeat 2 times. Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.

demo_methylkit_methyrate

Methyrate Dataset

Description

The methyrate dataset samples "myCpG" data from the methylKit (a bioconductor package) for illustrating purpose.

Details

The data includes 6 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups (4 columns)

Please check the vignette "metevalue" for details.

References

Akalin, Altuna, et al. "methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles." Genome biology 13.10 (2012): 1-9. doi: 10.1186/gb20121310r87

6 demo_metilene_input

demo_methylkit_met_all

Methyrate output dataset from methylKit

Description

The methyrate dataset samples "myCpG" data from the methylKit (a bioconductor package) for illustrating purpose.

Details

The data includes 7 columns:

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- strand: Strand
- pvalue: The adjusted p-value based on BH method in MWU-test
- qvalue: cutoff for qvalue of differential methylation statistic
- methyl.diff: The difference between the group means of methylation level

Please check the vignette "metevalue" for details.

References

Akalin, Altuna, et al. "methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles." Genome biology 13.10 (2012): 1-9. doi: 10.1186/gb20121310r87

demo_metilene_input

Metilene Methyrate Demo Dataset

Description

The methyrate for metilene illustrating purpose. It is dummy.

Details

The data includes 18 columns.

- chr: string Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups.

Notice that there are "NaN" within the feature columns.

Please check the vignette "metevalue" for details.

demo_metilene_out 7

demo_metilene_out

Metilene Demo Output Dataset

Description

The output dummy data for "metilene" meythod illustrating purpose.

Details

The data includes 10 columns.

- V1: string Chromosome
- V2: The positions of the start sites of the corresponding region
- V3: The positions of the end sites of the corresponding region
- V4- V10: data value.

Please check the vignette "metevalue" for details.

evalue_buildin_sql

Build-in data process function

Description

Build-in data process function

Usage

```
evalue_buildin_sql(a, b, method = "metilene")
```

Arguments

a data frame of the methylation rate

b data frame of output data corresponding to the "method" option

method "metilene" or "biseq", "DMRfinder" or "methylKit"

Value

a data frame combines data frame a and b corresponding to the "method" option

8 metevalue.biseq

```
evalue_buildin_var_fmt_nm
```

Build-in check file format function Perform the format check and data clean for the "metilene" or "biseq", "DMRfinder" or "methylKit" method correspondingly.

Description

Build-in check file format function Perform the format check and data clean for the "metilene" or "biseq", "DMRfinder" or "methylKit" method correspondingly.

Usage

```
evalue_buildin_var_fmt_nm(a, b, method = "metilene")
```

Arguments

a data frame of the methylation rate

b data frame of output data corresponding to the "method" option

method "metilene" or "biseq", "DMRfinder" or "methylKit"

Value

list(a, b) which contains the cleaned data correspondingly

Examples

metevalue.biseq

Calculate E-value of the BiSeq data format

Description

Please check vignette "metevalue" for details.

9 metevalue.biseq

Usage

```
metevalue.biseq(
 methyrate,
 BiSeq.output,
 adjust.methods = "BH",
  sep = "\t",
 bheader = FALSE
)
```

Arguments

methyrate

is the methyrate file. For example:

```
chr1
```

The columns are (in order):

- chr: Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups

BiSeq.output

is the output file of BiSeq. The columns are (in order):

- segnames: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- width: The number of CpG sites within the corresponding region
- strand: Strand
- median.p: The median p-value among CpG sites within the corresponding region
- median.meth.group1: The median methylation rate in the first group among CpG sites within the corresponding region
- median.meth.group2: The median methylation rate in the second group among CpG sites within the corresponding region
- median.meth.diff: The median methylation difference between groups among CpG sites within the corresponding region

adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

sep

seperator, default is the TAB key.

bheader

a logical value indicating whether the BiSeq.output file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

- a dataframe, the columns are (in order):
- chr: Chromosome

10 metevalue.biseq.chk

- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

```
#\donttest{
#data("demo_biseq_methyrate")
#data("demo_biseq_DMR")
#example_tempfiles = tempfile(c("demo_biseq_methyrate", "demo_biseq_DMR"))
#tempdir()
#### write to temp file ####
#write.table(demo_biseq_methyrate, file=example_tempfiles[1],row.names=FALSE,
# col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_biseq_DMR, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#### compute e-value and its adjustment ####
#result = metevalue.biseq(example_tempfiles[1],
# example_tempfiles[2], bheader = TRUE)
#}
```

metevalue.biseq.chk Check the BiSeq data format

Description

Check the BiSeq data format

Usage

```
metevalue.biseq.chk(
   input_filename_a,
   input_filename_b,
   sep = "\t",
   bheader = FALSE
)
```

metevalue.biseq.chk 11

Arguments

```
input_filename_a
```

metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns: For exampe:

```
chr pos g1 ... g1 g2 ... g2
chr1 1 0.1 ... 0.1 0.2 ... 0.2
```

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):

- chr: Chromosome
- start: The position of the start site of the corresponding region
- end: The position of the end site of the corresponding region
- range: The range of the corresponding region
- strand: Strand
- median.p: The median of p-values in the corresponding region
- median.meth.group $\!1\!:$ The median of methylation level for the corresponding segment of group 1
- median.meth.group 2: The median of methylation level for the corresponding segment of group 2
- median.meth.diff: The median of the difference between the methylation level separator, default is the TAB key.

bheader

sep

a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

```
#data("demo_biseq_methyrate")
#data("demo_biseq_DMR")
#example_tempfiles = tempfile(c("demo_biseq_methyrate", "demo_biseq_DMR"))
#tempdir()
#write.table(demo_biseq_methyrate, file=example_tempfiles[1],row.names=FALSE,
# col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_biseq_DMR, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#### compute e-value and its adjustment ####
#result = metevalue.biseq.chk(example_tempfiles[1],
# example_tempfiles[2], bheader = TRUE)
```

12 metevalue.DMRfinder

metevalue.DMRfinder

Calculate E-value of the DMRfinder data format

Description

Calculate E-value of the DMR finder data format

Usage

```
metevalue.DMRfinder(
 methyrate,
 DMRfinder.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

methyrate

is the methyrate file. For example:

```
g1
                  g1
 chr
     pos
                        g2 ...
               ...
chr1
          0.1
              ... 0.1 0.2 ...
```

The columns are (in order):

- chr: Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups

DMRfinder.output

is the output file of DMR finder.

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- CpG: The number of CpG sites within the corresponding region
- Control.mu: The average methylation rate in control group
- Expt1.mu: The average methylation rate in experiment group
- Control.Expt1.diff: The methylation difference between control and experiment groups
- Control.Expt1.pval: P-value based on Wald-test.

adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

sep

seperator, default is the TAB key.

bheader

a logical value indicating whether the DMR finder output file contains the names of the variables as its first line. By default, bheader = FALSE.

metevalue.DMRfinder.chk 13

Value

```
a dataframe, the columns are (in order):
```

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

```
data(demo_DMRfinder_rate_combine)
data(demo_DMRfinder_DMRs)
#example_tempfiles = tempfile(c("rate_combine", "DMRfinder_out"))
#tempdir()
#write.table(demo_DMRfinder_rate_combine, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_DMRfinder_DMRs, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue._DMRfinder(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
#head(result)
```

metevalue.DMRfinder.chk

Check the DMRfinder data format

Description

Check the DMRfinder data format

Usage

```
metevalue.DMRfinder.chk(
  input_filename_a,
  input_filename_b,
  sep = "\t",
  bheader = FALSE
)
```

metevalue.DMRfinder.chk

Arguments

```
input_filename_a
```

the combined data of methylation rate file. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For exampe:

The columns are (in order):

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

the output file of DMRfinder. The columns are (in order):

- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- CpG: The number of CpG sites within the corresponding region
- 'Control:mu': The absolute mean methylation level for the corresponding segment of the control group
- 'Exptl:mu': The absolute mean methylation level for the corresponding segment of the experimental group
- 'Control->Exptl:diff': The difference between the group means of methylation level
- p: p-value

sep

separator, default is the TAB key.

bheader

a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

```
data(demo_DMRfinder_rate_combine)
data(demo_DMRfinder_DMRs)
#example_tempfiles = tempfile(c("rate_combine", "DMRfinder_out"))
#tempdir()
#write.table(demo_DMRfinder_rate_combine, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_DMRfinder_DMRs, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.DMRfinder.chk(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
```

15 metevalue.methylKit

metevalue.methylKit

Calculate E-value of the methylKit data format

Description

Calculate E-value of the methylKit data format

Usage

```
metevalue.methylKit(
  methyrate,
  methylKit.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

methyrate

is the data of methylation rates of each sites and group. For example:

```
g2 ...
          g1
 chr
                  g1
              ... 0.1 0.2 ... 0.2
          0.1
chr1
```

The columns are (in order):

- chr: Chromosome
- pos: int Position
- g1~g2: methylation rate data in groups

methylKit.output

is the output data with e-value of each region

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- strand: Strand
- pvalue: The adjusted p-value based on BH method in MWU-test
- qvalue: cutoff for qvalue of differential methylation statistic
- methyl.diff: The difference between the group means of methylation level

adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

sep

seperator, default is the TAB key.

bheader

a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

```
a dataframe, the columns are (in order):
```

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

```
data(demo_methylkit_methyrate)
data(demo_methylkit_met_all)
## example_tempfiles = tempfile(c("rate_combine", "methylKit_DMR_raw"))
## tempdir()
## write.table(demo_methylkit_methyrate, file=example_tempfiles[1],
## row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
## write.table(demo_methylkit_met_all, file=example_tempfiles[2],
## sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
## result = metevalue.methylKit(example_tempfiles[1], example_tempfiles[2],
## bheader = TRUE)
## str(result)
```

metevalue.methylKit.chk

Check the methylKit data format

Description

Check the methylKit data format

Usage

```
metevalue.methylKit.chk(
  input_filename_a,
  input_filename_b,
  sep = "\t",
  bheader = FALSE
)
```

Arguments

```
input_filename_a
```

the combined data of methylation rate file. This file is a sep (e.g. TAB) separated file with two key columns and several value columns: For exampe:

```
chr pos g1 ... g1 g2 ... g2
chr1 1 0.1 ... 0.1 0.2 ... 0.2
```

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

the output file of methylKit. a methylDiff or methylDiffDB object containing the differential methylated locations satisfying the criteria. The columns are (in order):

- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- strand: Strand
- p: p-value
- qvalue: The adjusted p-value based on BH method
- meth.diff: The difference between the group means of methylation level

sep

separator, default is the TAB key.

bheader

a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

```
data(demo_methylkit_methyrate)
data(demo_methylkit_met_all)
## example_tempfiles = tempfile(c("rate_combine", "methylKit_DMR_raw"))
## tempdir()
## write.table(demo_methylkit_methyrate, file=example_tempfiles[1],
## row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
## write.table(demo_methylkit_met_all, file=example_tempfiles[2],
## sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
## result = metevalue.methylKit.chk(example_tempfiles[1], example_tempfiles[2],
## bheader = TRUE)
```

18 metevalue.metilene

metevalue.metilene

Calculate E-value of the Metilene data format

Description

Calculate E-value of the Metilene data format

Usage

```
metevalue.metilene(
  methyrate,
  metilene.output,
  adjust.methods = "BH",
  sep = "\t",
  bheader = FALSE
)
```

Arguments

methyrate

metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For exampe:

The columns are (in order):

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

metilene.output

metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2

Ca

metevalue.metilene.chk 19

```
adjust.methods is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'

sep seperator, default is the TAB key.

bheader a logical value indicating whether the metilene.output file contains the names of the variables as its first line. By default, bheader = FALSE.
```

Value

```
a dataframe, the columns are (in order):
```

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

```
#### metilene example ####'
data(demo_metilene_input)
data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_metilene_out, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
#head(result)
```

metevalue.metilene.chk

Check the Metilene data format

Description

Check the Metilene data format

20 metevalue.metilene.chk

Usage

```
metevalue.metilene.chk(
  input_filename_a,
  input_filename_b,
  sep = "\t",
  bheader = FALSE
)
```

Arguments

```
input_filename_a
```

metilene input file path. This file is a sep (e.g. TAB) separated file with two key columns and several value columns. For exampe:

The columns are (in order):

- chr and pos are keys;
- g1~g2: methylation rate data in groups.

input_filename_b

metilene input file path. This file should stored as a sep(e.g. TAB) separated file with two key columns and several value columns: The columns are (in order):

- chr: Chromosome
- start: The position of the start sites of the corresponding region
- end: The position of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2

sep

separator, default is the TAB key.

bheader

a logical value indicating whether the input_filename_b file contains the names of the variables as its first line. By default, bheader = FALSE.

Value

list(file_a, file_b, file_a_b) returns a list with three pr-handled data.frames corresponding to the input_filename_a, input_filename_b file and a A JOIN B file.

Examples

```
#data(demo_metilene_input)
#data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table(demo_metilene_out, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
#result = metevalue.metilene.chk(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
```

metevalue.RNA_general A general method to calculate the e-value for RNA-seq data.

Description

A general method to calculate the e-value for RNA-seq data.

Usage

```
metevalue.RNA_general(rna, group1_name, group2_name)
```

Arguments

rna data.frame: A data.frame object of RNAseq data. For example:

TAG	treated1fb	treated2fb	untreated1fb	untreated2fb
TAG1	4.449648	4.750104	4.392285	4.497514
TAG2	8.241116	8.302852	8.318125	8.488796

Row names (TAG1 and TAG2 in the above example) is also suggested.

group1_name

charactor: The name (pattern) of the first group. For example, "treated" in the above example. For example 'treated_abc' and 'treated' will be considered as the same group if 'group1_name = "treated"'. Use this with care in practice.

group2_name

charactor: The name (pattern) of the second group. For example, "untreated" in the above example. For example 'untreated_abc' and 'untreated' will be considered as the same group if 'group2_name = "untreated"'. Use this with care in practice.

Value

evalue

22 varevalue.metilene

Examples

```
data("demo_desq_out")
evalue = metevalue.RNA_general(demo_desq_out, 'treated','untreated')
```

varevalue.metilene

Calculate E-value of the Metilene data

Description

The data file could be pre-handled by the evalue.metilene.chk function.

Usage

```
varevalue.metilene(
   a,
   b,
   a_b,
   group1_name = "g1",
   group2_name = "g2",
   adjust.methods = "BH"
)
```

Arguments

a A data.frame object:

```
chr pos g1 ... g1 g2 ... g2 chr1 1 0.1 ... 0.1 0.2 ... 0.2
```

i.e two key columns (chrom, pos) with several value columns in groups.

A data.frame object stores the data, the columns are (in order):

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2

b

a_b	A data.frame object of a join b with particular data clean processes. Check the function [evalue.methylKit.chk()] for more details.
group1_name	charactor: The name of the first group. For example, "g1" in the above example.
group2_name	charactor: The name of the second group. For example, "g2" in the above example.
adjust.methods	is the adjust methods of e-value. It can be 'bonferroni', 'hochberg', 'holm', 'hommel', 'BH', 'BY'. The default value is 'BH'.

Value

```
a dataframe, the columns are (in order):
```

- chr: Chromosome
- start: The positions of the start sites of the corresponding region
- end: The positions of the end sites of the corresponding region
- q-value: The adjusted p-value based on BH method in MWU-test
- methyl.diff: The difference between the group means of methylation level
- CpGs: The number of CpG sites within the corresponding region
- p : p-value based on MWU-test
- p2: p-value based on 2D KS-test
- m1: The absolute mean methylation level for the corresponding segment of group 1
- m2: The absolute mean methylation level for the corresponding segment of group 2
- e_value: The e-value of the corresponding region

Examples

varevalue.single_general

A general method to calculate the e-value for other DNA methylation tools not described above. The input data is the DNA methylation rates using the similar format with Metilene.

Description

The input data file is just the DNA methylation rates using the similar format above, with no need for another data file output by different tools. The Chromosome name, start and end sites shoule be specified in the function.

Usage

```
varevalue.single_general(
  methyrate,
  group1_name = "g1",
  group2_name = "g2",
  chr,
  start,
  end
)
```

Arguments

methyrate

data.frame: A data.frame object of methylation rates, the columns should be (name of groups can be self-defined)

```
chr pos g1 ... g1 g2 ... g2
chr1 1 0.1 ... 0.1 0.2 ... 0.2
```

group1_name charactor: The name (pattern) of the first group. For example, "g1" in the above

example. For example 'g1_abc' and 'g1' will be considered as the same group

if 'group1_name = "g1"'. Use this with care in practice.

group2_name charactor: The name (pattern) of the second group. For example, "g2" in the

above example. For example 'g2_abc' and 'g2' will be considered as the same

group if 'group2_name = "g2"'. Use this with care in practice.

chr charactor: The Chromosome name. Typically, it is a string like "chr21" and so

on.

start integer: The position of the start site of the corresponding region

end integer: The position of the end site of the corresponding region

Value

evalue

```
#data("demo_metilene_input")
#varevalue.single_general(demo_metilene_input, chr = "chr21", start = 9437432, end = 9437540)
# [1] 2.626126e+43

#### Compare to `metevalue.metilene` ####
data(demo_metilene_out)
#example_tempfiles = tempfile(c("metilene_input", "metilene_out"))
#tempdir()
#write.table(demo_metilene_input, file=example_tempfiles[1],
# row.names=FALSE, col.names=TRUE, quote=FALSE, sep='\t')
#write.table (demo_metilene_out, file=example_tempfiles[2],
# sep ="\t", row.names =FALSE, col.names =TRUE, quote =FALSE)
```

```
#result = metevalue.metilene(example_tempfiles[1], example_tempfiles[2],
# bheader = TRUE)
# result[with(result, chr == 'chr21' & start == '9437432' & end == '9437540'), ncol(result)]
# [1] 2.626126e+43
```

Index

```
* The
                                                metevalue.methylKit, 15
    demo_desq_out, 3
                                                metevalue.methylKit.chk, 16
                                                metevalue.metilene, 18
* a
    demo_desq_out, 3
                                                metevalue.metilene.chk, 19
                                                metevalue.RNA_general, 21
* data:
    demo_desq_out, 3
                                                varevalue.metilene, 22
* data
                                                varevalue.single_general, 23
    demo_desq_out, 3
* is
    demo_desq_out, 3
* metevalue
    demo_biseq_DMR, 2
    demo_biseq_methyrate, 3
    demo_desq_out, 3
    demo_DMRfinder_DMRs, 4
    demo_DMRfinder_rate_combine, 5
    demo_methylkit_met_all, 6
    demo_methylkit_methyrate, 5
    demo_metilene_input, 6
    demo_metilene_out, 7
* simulation
    demo_desq_out, 3
demo_biseq_DMR, 2
demo_biseq_methyrate, 3
demo_desq_out, 3
demo_DMRfinder_DMRs, 4
demo_DMRfinder_rate_combine, 5
demo_methylkit_met_all, 6
demo_methylkit_methyrate, 5
demo_metilene_input, 6
demo_metilene_out, 7
evalue_buildin_sql, 7
evalue_buildin_var_fmt_nm, 8
metevalue.biseq, 8
metevalue.biseq.chk, 10
metevalue.DMRfinder, 12
metevalue.DMRfinder.chk, 13
```