Национальный исследовательский университет "Высшая школа экономики"

Отчет по заданию N_06

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $1 \ / \ 3 \ / \ 2$

Выполнила: студентка 211 группы Рахимова К. М.

> Преподаватель: Дудина И. А.

Содержание

1. Постановка задачи	2
2. Математическое обоснование	3
3. Результаты экспериментов	5
4. Структура программы и спецификация функций	6
5. Сборка программы (Маке-файл)	7
6. Отладка программы, тестирование функций	8
7. Анализ допущенных ошибок	9
Список цитируемой литературы	10

1. Постановка задачи

Требуется реализовать численный метод, позволяющий вычислять площадь плоской фигуры, ограниченной тремя кривыми $f_1=2^x+1, f_2=x^5, f_3=\frac{1-x}{3}$ с заданной абсолютной точностью $\varepsilon=0.001$ с помощью квадратурной формулы трапеций. Абсциссы вершин фигуры необходимо искать методом касательных (Ньютона). Отрезок для применения метода нахождения корней должен быть вычислен аналитически.

2. Математическое обоснование

В данном разделе проведён анализ заданного набора кривых $f_1 = 2^x + 1$, $f_2 = x^5$, $f_3 = \frac{1-x}{3}$, обоснован выбор отрезков для поиска точек пересечения кривых, а также значений ε_1 и ε_2 . Приведены графики заданных функций.

Для поиска точек пересечения с помощью метода касательных на корректно определённом отрезке [a, b] для каждой пары функций f(x) и g(x) необходимо рассмотреть функцию F(x) = f(x) - g(x), имеющую ровно 1 корень на [a, b] (достаточно соблюдение следующих условий: F(x) имеет разные знаки на концах отрезка, а её первая и вторая производные не меняют знаки на отрезке [a, b]). Более подробную информацию о методе касательных можно узнать из книги [1].

Выбор отрезков для поиска точек пересечения кривых:

• функции f_1 и f_2 пересекаются в точке $\mathbf{x}=1.2793$ (выч. аналитически), выбираем отрезок [1.0, 2.0]

$$F_{12}(x)=f_1(x)-f_2(x)=2^x+1-x^5$$
 $F_{12}(1.0)=2.0>0,\ F_{12}(2.0)=-27.0<0$ $F_{12}'(x)=2^xln(2)-5x^4<0$ на отрезке [1.0, 2.0] $F_{12}''(x)=2^xln(2)^2-20x^3<0$ на отрезке [1.0, 2.0] Выбор отрезков корректен.

• функции f_1 и f_3 пересекаются в точке $\mathbf{x} = -2.5222$ (выч. аналитически), выбираем отрезок [-3.0, -1.0]

$$F_{13}(x) = f_1(x) - f_3(x) = 2^x + 1 - \frac{1-x}{3}$$

 $F_{13}(-3.0) = -0.2083 < 0, F_{13}(-1.0) = 0.83 > 0$
 $F_{13}'(x) = 2^x ln(2) + \frac{1}{3} > 0$ на отрезке [-3.0, -1.0]
 $F_{13}''(x) = 2^x ln(2)^2 > 0$ на отрезке [-3.0, -1.0]
Выбор отрезков корректен.

 \bullet функции f_2 и f_3 пересекаются в точке $\mathbf{x}=0.6505$ (выч. аналитически), выбираем отрезок $[0.65,\,1.0]$

$$F_{23}(x) = f_2(x) - f_3(x) = x^5 - \frac{1-x}{3}$$

 $F_{23}(0.65) = -0.0006 < 0$, $F_{23}(1.0) = 1.0 > 0$
 $F_{23}'(x) = 5x^4 + \frac{1}{3} > 0$ на отрезке $[0.65, 1.0]$
 $F_{23}''(x) = 20x^3 > 0$ на отрезке $[0.65, 1.0]$
Выбор отрезков корректен.

Величины ε_1 и ε_2 , являющиеся соответственно погрешностью вычисления абсциссы точек пересечения кривых и погрешностью вычисления интегралов, использующихся при вычислении площади плоской фигуры, необходимо подобрать вручную так, чтобы гарантировалось вычисление площади фигуры с точностью $\varepsilon=0.001$.

Выбор ε_1 и ε_2 :

Возьмём точки $x_i - \varepsilon_1$ и $x_i + \varepsilon_1$, где x_i - точки пересечения кривых f_1 и f_2 , f_1 и f_3 , f_2 и f_3 . Получается, приближённое значение корней лежит в промежутке $[x_i - \varepsilon_1, x_i + \varepsilon_1]$. Тогда максимальное значение каждой функции

при выбранных промежутках $y_i = max(f_i(x_i - \varepsilon_1), f_i(x_i + \varepsilon_1))$, для всех функций $Y = max(y_1, y_2, y_3)$. Пусть S - точное значение площади, а S_e - приближённое. Площадь фигуры вычисляется по значениям 3-ёх интегралов. Значит, $|S_e - S| >= 2*M*\varepsilon_1 + 3*\varepsilon_2$, где Y = 3.5 приблизительно. Итого: $\varepsilon >= 2*Y*\varepsilon_1 + 3*\varepsilon_2$. Возьмём $\varepsilon_1 = 0.0001$ и $\varepsilon_2 = 0.0001$, значения удовлетворяют условию 0.001 > 7*0.0001 + 3*0.0001.

Заданные функции изображены ниже:

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

3. Результаты экспериментов

Результаты проведенных вычислений приведены ниже.

Кривые	x	y
f_1 и f_2	1.27935	3.42729
f_2 и f_3	0.65051	0.11648
f_1 и f_3	-2.52222	1.17407

Таблица 1: Координаты точек пересечения

Результаты проиллюстрированы графиком.

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

4. Структура программы и спецификация функций

В данном разделе приведён полный список модулей и функций, описана их функциональность.

Модуль hw6.asm

Состоит из 3-ёх функций, возвращающих значения 3-ёх кривых, определяемых вариантом задания: $f_1=2^x+1,\ f_2=x^5,\ f_3=\frac{1-x}{3}$ и 3-ёх функций, возвращающих значения производных 3-ёх кривых, описанных выше: $f_1'=ln(2)2^x,\ f_2'=5x^4,\ f_3'=-\frac{1}{3}.$

- ullet double f1(double x) возвращает значение $f_1=2^x+1$
- ullet double f2(double x) возвращает значение $f_2=x^5$
- ullet double f3(double x) возвращает значение $f_3=rac{1-x}{3}$
- double f1_diff(double x) возвращает значение $f_1' = ln(2)2^x$
- ullet double f2_diff(double x) возвращает значение $f_2'=5x^4$
- ullet double f3_diff(double x) возвращает значение $f_3'=-rac{1}{3}$

Модуль integral.c

Состоит из 3-ёх функций: root, integral и главной main. Первые две являются скорее вспомогательными для проведения вычислений и нахождения нужных значений в последней.

- double root(afunc *f, afunc *g, double a, double b, double eps1, afunc *f_diff, afunc *g_diff) вычисляет с точностью ε_1 корень x уравнения f(x) = g(x) на отрезке [a,b], используя метод касательных (Ньютона), а также вычисляет количество необходимых для нахождения корня итераций
- double integral (afunc *f, double a, double b, double eps2)) вычисляет с точностью ε_2 величину определенного интеграла от функции f(x) на отрезке [a,b], используя метод трапеций
- int main(int argc, char* argv[]) вызывает необходимые функции, а также выполняет требуемые действия в зависимости от значения принимаемых ключей командной строки

Ниже изображено графическое разбиение программы на компоненты и связи между этими компонентами:

$$hw6.asm \longrightarrow integral.c$$

5. Сборка программы (Маке-файл)

Далее приведён текст Make-файла.

```
AS=nasm
ASMFLAGS+=-g -f elf32
CFLAGS ?= -02 -g
CFLAGS += -std=gnu99
CFLAGS += -Wall -Werror -Wformat-security -Wignored-qualifiers
        -Winit-self -Wswitch-default -Wpointer-arith -Wtype-limits
        -Wempty-body -Wstrict-prototypes -Wold-style-declaration
        -Wold-style-definition -Wmissing-parameter-type
        -Wmissing-field-initializers -Wnested-externs -Wstack-usage=4096
        -Wmissing-prototypes -Wfloat-equal -Wabsolute-value
CFLAGS += -fsanitize=undefined -fsanitize-undefined-trap-on-error
CC += -m32 -no-pie -fno-pie
.PHONY: all
all: integral
integral: integral.o hw6.o
        $(CC) $(CFLAGS) $^ -o $@
integral.o: integral.c
        $(CC) $(CFLAGS) $^ -c -o $@
hw6.o: hw6.asm
        $(AS) $(ASMFLAGS) $^ -o $@
clean:
        rm -rf *.o integral
test: integral
        ./integral -test-root 1:2:1.0:2.0:0.0001:1.279353
        ./integral -test-root 1:3:-3.0:-1.0:0.0001:-2.522223
        ./integral -test-root 2:3:0.65049:1.0:0.0001:0.650519
        ./integral -test-integral 1:-2.522223:1.279353:0.0001:7.05229
        ./integral -test-integral 2:0.650519:1.279353:0.0001:0.718157
        ./integral -test-integral 3:-2.522223:0.650519:0.0001:2.04732
```

Зависимости между модулями программы описаны диаграммой.

6. Отладка программы, тестирование функций

Тестирование и отладка численных методов производились на функциях $f_4=x^3+5x^2-6,\ f_5=\frac{7}{x-5}+1$ и $f_6=ln(x)$ с использованием их производных $f_4'=3x^2+10x,\ f_5'=-\frac{7}{(x-5)^2}$ и $f_6'=\frac{1}{x}$.

Тестирование функции root:

- функции f_4 и f_5 пересекаются в точке $\mathbf{x}=-1.2527$ (выч. аналитически) $F_{45}(x)=f_4(x)-f_5(x)=x^3+5x^2-6-\frac{7}{x-5}-1$ $F_{45}(-1.5)=1.9519>0,$ $F_{45}(-1)=-1.8333<0$ $F_{45}'(x)=3x^2+10x+\frac{7}{(x-5)^2}<0$ на отрезке [-1.5, -1] $F_{45}''(x)=6x+10-\frac{14}{(x-5)^3}>0$ на отрезке [-1.5, -1] $x_4=\text{root}(\mathbf{f4},\ \mathbf{f5},\ -1.5,\ -1,\ \mathbf{eps1},\ \mathbf{f4_diff},\ \mathbf{f5_diff})=-1.252701$ Функция работает корректно.
- функции f_5 и f_6 пересекаются в точке $\mathbf{x}=0.5615$ (выч. аналитически) $F_{56}(x)=f_5(x)-f_6(x)=\frac{7}{x-5}+1-ln(x)$ $F_{56}(0.3)=0.7146>0,\,F_{56}(1)=-0.75<0$ $F_{56}(x)=-\frac{7}{(x-5)^2}-\frac{1}{x}<0$ на отрезке $[0.3,\,1]$ $F_{56}''(x)=6x+10-\frac{14}{(x-5)^3}>0$ на отрезке $[0.3,\,1]$ $x_5=\mathrm{root}(\mathbf{f}\mathbf{5},\,\mathbf{f}\mathbf{6},\,0.3,\,1,\,\mathrm{eps1},\,\mathbf{f}\mathbf{5}_\mathrm{d}\mathrm{iff},\,\mathbf{f}\mathbf{6}_\mathrm{d}\mathrm{iff})=0.561516$ Функция работает корректно.
- функции f_4 и f_6 пересекаются в точке $\mathbf{x}=1.0$ (выч. аналитически) $F_{46}(x)=f_4(x)-f_6(x)=x^3+5x^2-6-ln(x)$ $F_{46}(0.5)=-3.9318<0,\,F_{46}(1.5)=8.2195>0$ $F_{46}'(x)=\frac{3x^3+10x^2-1}{x}>0$ на отрезке $[0.5,\,1.5]$ $F_{46}''(x)=6x+10+\frac{1}{x^2}>0$ на отрезке $[0.5,\,1.5]$ $x_6=\mathrm{root}(\mathbf{f4},\,\mathbf{f6},\,0.5,\,1.5,\,\mathrm{eps1},\,\mathbf{f4_diff},\,\mathbf{f6_diff})=1.000000$ Функция работает корректно.

Тестирование функции integral:

- $\int_{x_4}^{x_6} (f_4(x)) dx = \int_{-1.2527}^1 (x^3 + 5x^2 6) dx = -8.93883$ (выч. аналитически) $s_4 = \text{integral}(f4, x4, x6, eps2) = -8.938819$ Функция работает корректно.
- $\int_{x_4}^{x_5} (f_5(x)) dx = \int_{-1.2527}^{0.5615} (\frac{7}{x-5}+1) dx = -0.58467$ (выч. аналитически) $s_5 = \text{integral(f5, x4, x5, eps2)} = -0.584679$ Функция работает корректно.
- $\int_{x_5}^{x_6} (f_6(x)) dx = \int_{0.5615}^{1} (ln(x)) dx = -0.11443$ (выч. аналитически) $s_6 = \texttt{integral}(\texttt{f6}, \texttt{x5}, \texttt{x6}, \texttt{eps2}) = -0.114411$ Функция работает корректно.

7. Анализ допущенных ошибок

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.