Regression Models Housing Prices King County, USA

Tal Gottfeld and Daniel Rodin

,Project #3 Naya College, August '21

Content

- Goal and Objectives
- The Problem
- The Data
- The Features
- The Model
 - Conclusions

Goal and Objectives

This project is designed to enable an initial trial with building a robust and flexible regression pipeline.

The Problem

Designing a regression model to predict house prices in King County,
 USA

The Data

- Data source: Kaggle website https://www.kaggle.com/harlfoxem/housesalesprediction
- House price in King County (including Seattle), May 2014 to May 2015.

Method: Review every feature, analyze its behaviors, population, deviation and correlation

Features – What doesn't work

- 21 columns, 21613 rows
- After analysis and corr. review, we remained with only 7 features

Features – Our winning team

Method: Review every feature, analyze its behaviors, population, deviation and correlation

Method: Columns removal, Outliers, scale of Max AbsScaler for X, Log our Y

Models

Nur	n of Tweak	RMSE	RMSLE	Scaler	LR	
	<u>tures</u> Sqft above		0.25	Max AbsScaler		
2.	Bedrooms Yr_build	16%	0.25	Log for y	05 10 15 20 price	25 30 35 40 le6
			0.2	Log to y_train	Train	DT
2. 3.		18%	0.22	Log to y_test 165 165 165 165 165 165 165 165 165 165	Test	25 30 35 le6
1.			0.21	Log to y_tral 40 440 440 440 440 440 440 440 440 440		
2.	min and max leaf, Applied all metrics including User defined – best yet! – 2%	2%	0.22	Log to y_tes	05 10 15 20 price	25 30 35 40 le6

Conclusion - Key notes and challenges

- EDA was a significant milestone in understanding our features and building the models
- Scaling is impactful in designing and optimizing our models:
 - MaxScaler for our X
 - Log for our y
 - Appling RMSLE on the results (data with large variance impacting RMSE)

Thank You

:Further reading: Colabs notebook and dataset

https://drive.google.com/drive/folders/1_FIODD5tLLDWMKyF8hnOaT8m4ap14g9w?usp=sharing

Legend

The below are descriptions of all the columns of our dataset

ID –sold house each for unique id

date - Date of the home sale

price - Price of each home sold

bedrooms - Number of bedrooms

bathrooms - Number of bathrooms, where .5 accounts for a

room with a toilet but no shower

sqft_living - Square footage of the apartments interior living

space

sqft lot - Square footage of the land space

floors - Number of floors

waterfront - A dummy variable for whether the apartment was

overlooking the waterfront or not

view - An index from 0 to 4 of how good the view of the

property was

Condition - An index from 1 to 5 on the condition of the

apartment

grade - An index from 1 to 13, where 1-3 falls short of building construction and design,

sqft_above - The square footage of the interior housing space that

is above ground level

sqft_basement - The square footage of the interior housing space

that is below ground level

yr_built - The year the house was initially built

yr_renovated - The year of the house's last renovation

zipcode - What zipcode area the house is in

lat - Lattitude

long - Longitude

sqft_living15 - The square footage of interior housing living space

for the nearest 15 neighbors

sqft_lot15- The square footage of the land lots of the nearest 15

neighbors

Max AbsScaler

	price	bedrooms	bathrooms	sqft_living	grade	sqft_above	zip_value
0	221900.0	3	1.00	1180	7	1180	311225.161538
1	538000.0	3	2.25	2570	7	2170	470190.848039
2	180000.0	2	1.00	770	6	770	463304.432624
3	604000.0	4	3.00	1960	7	1050	552920.11832 <mark>1</mark>
4	510000.0	3	2.00	1680	8	1680	686357.152273

	bedrooms	bathrooms	sqft_living	grade	sqft_above	yr_built	zip_value
0	0.444444	0.454545	0.405483	0.692308	0.469115	0.991563	0.175352
1	0.444444	0.454545	0.389610	0.692308	0.450751	0.994541	0.324636
2	0.333333	0.545455	0.340548	0.538462	0.297162	0.984119	0.245948
3	0.444444	0.454545	0.476190	0.692308	0.287145	0.978164	0.345532
4	0.333333	0.272727	0.369408	0.615385	0.277129	0.956328	0.569492

