Árvore Binária de Busca

Definição

- Os nós pertencentes à sub-árvore esquerda possuem valores menores do que o valor associado ao nó-raiz r
- Os nós pertencentes à sub-árvore direita possuem valores maiores do que o valor associado ao nó-raiz r

Operações - Inserção

- Passos do algoritmo de inserção
 - Procure um "local" para inserir o novo nó, começando a procura a partir do nó-raiz
 - Para cada nó-raiz de uma sub-árvore, compare;
 - se o novo nó possui um valor menor do que o valor no nóraiz: vai para sub-árvore esquerda
 - se o valor é maior que o valor no nó-raiz: vai para subárvore direita
 - Se um ponteiro (filho esquerdo/direito de um nó-raiz) nulo é atingido, coloque o novo nó como sendo filho do nó-raiz

Operações - Inserção

• Exemplo:

- Inserção do conjunto de números, na sequência:
 - •17, 99, 13, 1, 3, 100

Operações - Busca

- Passos do algoritmo de inserção
 - Comece a busca a partir do nó-raiz
 - Para cada nó-raiz de uma sub-árvore compare:
 - •se o valor procurado é menor que o valor no nó-raiz: continua pela sub-árvore esquerda
 - se o valor é maior que o valor no nó-raiz: sub-árvore direita
 - Caso o nó contendo a chave pesquisada seja encontrado, retorne true e o nó pesquisado, caso contrário retorne false

- Casos a serem considerados no algoritmo de remoção de nós de uma ABB:
 - Caso 1: o nó é folha:
 - O nó pode ser retirado sem problema
 - Caso 2: o nó possui uma sub-árvore (esq/dir):
 - O nó-raiz da sub-árvore (esq/dir) "ocupa" o lugar do nó retirado
 - Caso 3: o nó possui duas sub-árvores:
 - O nó contendo o menor valor da sub-árvore direita pode
 "ocupar" o lugar
 - Ou o maior valor da sub-árvore esquerda pode "ocupar" o lugar

- Caso 1
 - Remoção do 15

- Caso 2
 - Remoção do 5

- Caso 3
 - Remoção do 11

