Anotações do livro: "Introdução á Física Nuclear, por K.C. Chung"

Iniciação Científica

Aluno: Amadeus Dal Vesco

Orientador: Alexandre Magno Silva Santos

11 de Setembro de 2024 Florianópolis - SC

Introdução

1 Capítulo 3 - Massas Nucleares

- 1.1 Espectrômetro de Massa
- 1.2 Cinemática das Reações Nucleares
- 1.3 Energia de Ligação Nuclear
- 1.4 Energia de Separação
- $1.5\,\,$ Fórmula Semi-empírica de Massa: Modelo da Gota Líquida

Capítulo 6 - Interação Nucleon-Nucleon

Até agora compreendemos como o átomo é consitituíido e como descobriram a existência dos nucleons, termo utilizado na Física Nuclear, os quais são comumente chamados de próton e neutron.

Apartir de agora queremos compreender como funciona a interação entre os nucleons de um átomo e como é possível existir estabilidade na estrutura atômica destes constituintes, que são cargas de mesma natureza. Para isso, revisitaremos as leis do eletromagnetismo, estudando as interações Coulombianas, as quais descrevem a interação entre partículas carregadas eletricamente.

Pergunta 1: Como descrever a interação entre nucleons dentro de núcleo de um átomo?

Por enquanto, ainda é desconhecido a existência de um conjunto de equações que descrevam completamente as interações nucleares entre os nucleons, e que sejam fechadas matematicamente, como as equações de Maxwell para o Eletromagnetismo.

Como ainda não desconhecemos formas mais gerais de tratar o problema, iremos particulariza-lo ao máximo para que possamos obter alguns resultados no momento.

1ª Aproximação: Supor que a interação entre os constituintes do núcleo possa ser descrito como uma superposição de interações.

Tal aproximação é falha muitas vezes exatamente por conta de um núcleo apresentar muitos corpos, tal que tal tipo de probema não tem solução exata, analítica, quando tratamos de um sistema de m-corpos, onde m>2.

Com tal análise, podemos nos fazer a seguinte pergunta:

Pergunta 2: Com descrever a interação entre dois nucleons?

Para isso, partiremos para descrever a interação deste problema que se trata da interação nuclear fundamental, no momento.

Enunciemos, agora, certas especificações para o sistema que queremos estudar e resolver.

$2^{\underline{a}}$ Aproximação: Sistema de dois nucleons. Isospin total T=0 ou T=1 (iso-singlete e isotripletes, respectivamente)

Com esta segunda aproximação, o nosso sistema de duas partículas/nucleons, que se trata mais especificamente do deuteron, será nossa escolha de estudo, pois se trata do sistema ligado mais simples que conhecemos.

Primeiramente, peguemos alguns dados experimentais acerca deste sistema.

Dados Experimentais (Deuteron):

(...)

Deuteron (Modelo Simples):

O deuteron é um sistema ligado de duas partículas. Para descrever sua dinâmica precisaremos da equação de Schroedinger para o movimento relativo:

$$\left(\frac{d^2}{dr^2} + k^2\right)u_l = 0,\tag{1.1}$$

tal que $u_l(r)$ é a parte radial da função de onda principal, R(r), com a seguinte equação:

$$u_l(r) = rR(r), (1.2)$$

e, temos que k^2 é:

$$k^{2} = \frac{2\mu}{\hbar^{2}} \left[E - V(r) - \frac{l(l+1)\hbar^{2}}{2\mu r^{2}} \right], \tag{1.3}$$

onde, μ representa a expressão para a massa reduzida de um sistema de duas partículas, com a seguinte equação:

$$\mu = \frac{m_p m_n}{m_p + m_n},\tag{1.4}$$

tal que m_p representa a massa do próton e m_n representa a massa do neutron, os constituintes do nosso sistema.

Na expressão (1.3), temos **E** representando a energia do sistema, isto é, a energia do centro de massa do sistema. Para este problema em específico, **E** será $\mathbf{E} = -E_0$, onde E_0 é a energia de ligação do deuteron.

Com a energia \mathbf{E} definida, o problema agora é escrever a equação para o potencial $\mathbf{V}(\mathbf{r})$ entre os nucleons do núcleo. Já conhecemos algumas expressões para $\mathbf{V}(\mathbf{r})$, que dependerão de serem esfericamente simétricos.

A partir disso, utilizaremos os dados empíricos obtidos anteriormente e conhecimentos que temos da física do problema:

- 1. Interação nuclear é atrativa e tem curto alcance, isto é, limitada;
- 2. A interação nuclear tem um caroço repulsivo, isto é, a mínima distância entre os nucleons é o limite dado pelo raio da partícula.

Com isso, podemos representar esquematicamente o problema da seguinte forma:

Figura 1.1: Esquema da interação dos nucleons

A 1.1 representa esquematicamente como trataremos o problema da interação do potencial nuclear para o nosso problema do deuteron.

O potencial terá os seguintes valores:

$$V(r) = \begin{cases} \infty, & 0 < r < c \\ -V_0, & c < r < c + b \\ 0, & c + b < r < \infty \end{cases}$$
 (1.5)

onde, c é o raio do caroço repulsivo, neste caso definimos o próton como referência, b e V_0 são a largura e a profundidade do poço, respectivamente, tal que tais valores valem quando tomarmos como condições de cortorno para um poço retangular.

Para simplificar um pouco as contas de (1.3), os cálculos admitirão o valor para o momento angular orbital igual a zero (l=0), onde suponhe-se o estado ligado de mais baixa energia para uma onda s. Ficamos, então, com:

$$k^{2} = \frac{2\mu}{\hbar^{2}} [E - V(r)]. \tag{1.6}$$

Substituindo a equação (1.6) em (1.1), ficamos com:

$$\left\{ \frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} [E - V(r)] \right\} u_0 = 0.$$
 (1.7)

Com a equação (1.5) que apresenta os possíveis valores para o potencial nuclear de interação dos nucleons, podemos representa-lo graficamente da seguinte forma:

Figura 1.2: Gráfico do potencial de interação

Do gráfico (1.2), podemos tirar algumas informações acerca das condicões de contorno deste problema, que se trata do poço retangular, acerca de possíveis soluções.

- Em r<c, a solução deve ter um comportamento que diverge, isto é, o valor de V(r) será indefinido;
- Em c<r<c+b, a solução deve ter um carater oscilatório, pois apresenta um bom comportamento para este tipo de solução;
- Em c+b<r, o potencial não terá mais efeito por conta da região máxima de alcance de V(r), portanto isto trará uma solução que se anula quando o r cresce.

Tal análise proporciona as seguintes soluções possíveis para u_0 :

$$u_0 \begin{cases} Be^{-\kappa r}, & r < c \\ A\sin k(r-c), & c < r < c+b \\ 0, & c+b < r \end{cases}$$
 (1.8)

tal que,

$$\kappa = \frac{1}{\hbar} \sqrt{2\mu(V_0 - E_0)},\tag{1.9}$$

е

$$k = \frac{1}{\hbar} \sqrt{2\mu E_0}.\tag{1.10}$$

Além disso, temos as constantes de normalização A e B,

$$A = \sqrt{\frac{2\kappa}{(1+b\kappa)}},\tag{1.11}$$

$$B = A\sin kbe^{-\kappa(b+c)},\tag{1.12}$$

e podemos também investigar a relação entre a largura e a profundidade do poço retangular. Efetivamente, temos que a função é contínua em c < r < c+b, e de sua derivada primeira contínua em r=c+b,

$$\cot kb = \frac{-\kappa}{k} \tag{1.13}$$

Da equação (1.13) obtemos uma relação entre V_0 e b, se E_0 for conhecida.

A partir daqui, iremos decobrir a origem das equações acima e como obtê-las.

Primeira coisa, iremos desenvolver a equação que descreve a dinâmica do sistema do deuteron, pois nela há todas as informações que precisamos.

1. Equação de Schroedinger para uma partícula independente do tempo:

$$\frac{-\hbar^2}{2m}\nabla^2\Psi(r) + V(r)\Psi(r) = E\Psi(r). \tag{1.14}$$

Utilizaremos então a equação de Schroedinger para obter os resultados que buscamos, aqui está envolvido algumas aproximações particulares, como a própria utilização da equação de Schroedinger, e não da equação de Dirac, por exemplo, pois estamos considerando um potencial nuclear radial sem a presença de certas dependências tensoriais do campo.

Porém, na equação (1.14) descreve apenas um sistema de uma partícula, precisamos então inserir a informação de duas partículas, além da presença do momento angular do sistema, informação crucial para a dinâmica deste sistema.

2. Equação de Schroedinger para duas partículas com simetria esférica:

$$\frac{-\hbar^2}{2\mu} \nabla^2 \Psi(r) + \left[V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2} \right] \Psi(r) = E\Psi(r), \tag{1.15}$$

Ajustando o termo ∇^2 com apenas dependencia radial da (1.15), ficamos com:

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2 \Psi}{dr^2} + \frac{2}{r} \frac{d\Psi}{dr} \right) + \left(V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2} \right) \Psi = E\Psi, \tag{1.16}$$

além disso, podemos ajustar a equação acima para o nosso problema, onde l=0,

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2 \Psi}{dr^2} + \frac{2}{r} \frac{d\Psi}{dr} \right) + V(r)\Psi = E\Psi, \tag{1.17}$$

onde $\Psi(r)$ se trata da função de onda, solução da equação (1.17), a qual será escrita da seguinte forma de acordo com [Men02],

$$\Psi(r) = \frac{u_l(r)}{r}. (1.18)$$

Vamos calcular as derivadas totais de Ψ com relação á componente r, onde $u_l(r)$ será $u_0(r)$, e colocaremos na equação (1.17),

$$\frac{d\Psi}{dr} = \frac{d}{dr} \left(\frac{u_0(r)}{r} \right) = \left(\frac{du}{dr} r - u \right) / r^2, \tag{1.19}$$

е

$$\frac{d^{2}\Psi}{dr^{2}} = \frac{d}{dr} \left[\left(\frac{du}{dr}r - u \right) / r^{2} \right] = \left(\frac{d^{2}u}{dr^{2}} r^{3} - 2 \frac{du}{dr} r^{2} + 2ur \right) / r^{4}.$$
 (1.20)

Portanto, a equação (1.17) fica,

$$-\frac{\hbar^2}{2\mu}\frac{d^2u_0}{dr^2} + V(r)u_0 = Eu_0, \tag{1.21}$$

ou, podemos rearranjar os termos da equação acima para que fique semelhante a equação (1.7), a qual queremos obter,

$$\left[\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} (E - V) \right] u_0 = 0. \tag{1.22}$$

Daqui finalmente podemos aplicar os valores possíveis para V(r), os quais estão citados na equação (1.5).

Comecemos com V(r) no intervalo (0<r<c). Ao colocarmos o valor de V(r) = ∞ direto na equação (1.22), obteremos uma indeterminação, como podemos ver no gráfico (1.2), então para resolver a equação a solução, u_0 , terá que ser nula para que a equação continue sendo válida.

$$\left[\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2} (E - \infty) \right] u_0 = 0 \implies u_0 = 0.$$
 (1.23)

Na próxima região possível para V(r), temos o seguinte intervalo: V(r) = $-V_0$ em (c<r<c+b). Aqui basta substituir o valor de V(r) direto na equação (1.22), além disso precisaremos do valor de E, onde nesta região de validade para o sistema ligado do deuteron, sua energia corresponde á energia de ligação E = $-E_0$. Com isso, ficamos com

$$\left[\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2}(V_0 - E_0)\right]u_0 = 0. \tag{1.24}$$

ou, denotando $k^2 = \frac{2\mu}{\hbar^2}(V_0 - E_0)$, ficamos com

$$\left(\frac{d^2}{dr^2} + k^2\right)u_0 = 0. ag{1.25}$$

A equação acima tem uma forma conhecida, se trata da equação diferencial que tem soluções do tipo,

$$u_0(r) = Ae^{ikr} + Be^{-ikr}, (1.26)$$

onde A e B são constantes arbitrárias, k é o valor conhecido acima. Aqui iremos especificar ainda mais a solução da equação acima com relação ao valor de r=c, poois queremos que a solução volte para seu valor naquele intervalo, que é $u_0 = 0$, portanto (1.27) fica

$$u_0(r) = Ae^{ik(r-c)} + Be^{-ik(r-c)}.$$
 (1.27)

Podemos representar a equação acima de uma outra forma, basta lembrar da fórmula de euler: $e^{i\theta} = \cos \theta + i \sin \theta$, que também pode ser uma outra possível solução da equação (1.27):

$$u_0 = A\cos k(r - c) + B\sin k(r - c),$$
 (1.28)

Para definir somente um possível valor para u_0 , precisaremos olhar novamente para as condições de contorno do sistema, que se trata de um potencial retangular. Como em r=c, $u_0 = 0$, ao substituirmos na equação (1.28), apenas o segundo termo irá zerar, definindo assim pra gente a solução que queremos no intervalo (c<r<c+b).

$$u_0 = B\sin k(r - c). \tag{1.29}$$

Por fim, queremos analisar agora o intervalo (c+b<r), onde V(r)=0, e a (1.22) fica da seguinte forma:

$$\left(\frac{d^2}{dr^2} - \frac{2\mu}{\hbar^2} E_0\right) = 0,\tag{1.30}$$

Como neste intervalo o potencial vai pra zero, a solução também tenderá para zero na medida que r cresce, ou também ao resolver a equação (1.30), obteremos as seguintes soluções:

$$u_0(r) = Ce^{\kappa r} + De^{-\kappa r}, \tag{1.31}$$

onde C e D são constantes arbitrárias e κ vale

$$\kappa = \sqrt{\frac{2\mu}{\hbar^2 E_0}}. (1.32)$$

Novamente queremos que as soluções de (1.31), quando estiver no intervalo (c+b < r), ou seja, quando r crescer a solução vá pra zero no mesmo passo que V(r). Com esta análise, podemos afirmar que a única solução que sobra é,

$$u_0(r) = De^{-\kappa r} \tag{1.33}$$

Finalmente, obtemos as seguintes soluções de acordo com os valores possível para V(r):

$$u_0(r) = \begin{cases} 0, & r < c \\ A\sin k(r - c), & c < r < c + b \\ Be^{-\kappa r}, & c + b < r \end{cases}$$
 (1.34)

já que as constantes A e D são arbitrárias, podemos redefinir $u_0(r)=De^{-\kappa r}$ como $u_0(r)=Be^{-\kappa r}$.

seção-3

(...)

seção-4

(...)

Bibliografia

[Men02] D. P. Menezes. Introdução á Física Nuclear e de Partículas Elementares. Editora da UFSC, 2002.