EXERCISE 11.2

- **(1)** Prove that a quadrilateral is a parallelogram if its
 - Opposite angles are congruent. (a)
 - **(b)** Diagonals bisect each other.

Given Given ABCD is a quadrilateral.

$$m\angle A = m\angle C$$
,

$$m\angle B = m\angle D$$

To prove

ABCD is a parallelogram.

Proof

prove that a quadrilateral is a parallelogram if its opposite sides are congruent. **(2)**

Given

In quadrilateral

ABCD,
$$\overline{AB} \cong \overline{DC}$$
,

Hence ABCD is a parallelogram.

$$\overrightarrow{AD} \cong \overrightarrow{BC}$$

Required

ABCD is all gm

AB || CD, AD || BC

Construction

Join point B to D and name the angles $\angle 1$. $\angle 2$. $\angle 3$ and $\angle 4$

	Statements		Reasons
ΔΑ	BD ↔ ∆CDB		
AD	E CB		Given
AB	≅ CD		Given
$\overline{\mathrm{BD}}$	≅ BD		Common
∴ ΔA	BD ≅ ∆CDB		S.S.S ≅ S.S.S
So ∠2	≅ ∠1	(i)	Corresponding angles of Congruent triangles
∠ 4	≅ ∠ 3	(ii)	Alternate angles
Hence \overline{AB}	ll CD	(iii)	∠2 and ∠1 are congruent
Similarly E	BCIIAD	(iv)	Alternate angles ∠3, ∠4 congruent
∴ AB	CD is a parallelog	gram.	From iii, iv

Theorem

The line segment, joining the mid-points of two sides of a triangle, is parallel to the third side and is equal to one half if its length.

Given In $\triangle ABC$, the midpoints of \overline{AB} and \overline{AC} are L and M respectively.

To Prové

$$\overline{LM} \parallel \overline{BC}$$
 and $\overline{mLM} = \frac{1}{2} \overline{mBC}$

Construction

Join M to L and produce \overline{ML} to N such that $\overline{ML} \cong \overline{LN}$. Join N to B. and in the figures name the angles $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$ as shown.

Proof

,	Statements	Reasons	
In	$\Delta BLN \leftrightarrow \Delta ALM$		
	$\overline{BL} \equiv \overline{AL}$,	Given	
	∠1 ≅ ∠2	Vertical angles	
	$\overline{NL} \cong \overline{ML}$	Construction	

	ΔBLN ≅ ΔALM	S.A.S. postulate
	$\angle A \cong \angle 3$ (i)	(corresponding angles of congruent triangles)
and	$\overline{NB} \cong \overline{AM}$ (ii)	
		(corresponding sides of congruent triangles)
But	NBII AM	From (i), alternate ∠s
Thus	NB MC(iii)	
	$\overline{MC} \cong \overline{AM}$ (iv)	(M is a point of AC)
	$\overline{NB} \cong \overline{MC}$ (v)	Given
<i>:</i> .	BCMN is a parallelogram	{from (ii) and (iv)}
<i>:</i> .	BC LM or BC NL	From (iii) and (v) (Opposite sides of a parallelogram
	$\overline{BC} \cong \overline{NM}$ (vi)	BCMN)
	$m\overline{LM} = \frac{1}{2} m\overline{NM}$ (vii)	(Opposite sides of parallelogram) Construction
Hence	$m\overline{LM} = \frac{1}{2} m\overline{BC}$	{from (vi) and (vii)}

Example

The line segments, joining the mid-points of the sides of a quadrilateral, taken in order, form a parallelogram. D R

Given

A quadrilateral ABCD, in which P is the mid-point of \overline{AB} , Q is the mid-point of \overline{BC} , R is the mid-point of \overline{CD} , S is the mid-point of \overline{DA} .

P is joined to Q, Q is joined to R. R is joined to S and S is joined to P.

To prove

PQRS is a parallelogram.

Construction

Join A to C.

	Statements	Reasons
In	ΔDAC,	
	$ \frac{\overline{SR} \parallel \overline{AC}}{m\overline{SR} = \frac{1}{2}m\overline{AC}} $	S is the mid-point of \overline{DA} R is the mid-point of \overline{CD}
In	$ \frac{\overline{PQ} \parallel \overline{AC}}{m\overline{PQ} = \frac{1}{2} m\overline{AC}} $	P is the mid-point of \overline{AB} Q is the mid-point of \overline{BC}
	$\overline{SR} \parallel \overline{PQ}$	Each AC
Thus	$m\overline{SR} = m\overline{PQ}$ PQRS is a parallelogram	Each = $\frac{1}{2}$ m \overline{AC} $\overline{SR} \parallel \overline{PQ}$, m \overline{SR} = m \overline{PQ} (proved)