Computational Linear Algebra, Module 8

Maya Shende

Due: April 11th, 2018

- 1. "fundamental theorem of a" yields the following completions:
 - (a) fundamental theorem of algebra
 - (b) fundamental theorem of arithmetic

"fundamental theorem of b" yields the following completions:

- (a) fundamental theorem of boolean algebra
- (b) fundamental theorem of biomedical informatics

"fundamental theorem of j" is the first search term that seems to fail.

2.

$$x_1 = -x_3 - x_4 - 2x_5$$

$$x_2 = -x_3 + x_4 + x_5$$

When
$$x_3 = 1$$
, $x_4 = 0$, $x_5 = 0$, $x_1 = -1$ and $x_2 = -1$.

When
$$x_3 = 0, x_4 = 0, x_5 = 1, x_1 = -2$$
 and $x_2 = 1$.

3. drawing:

- 4. We know that the dim(W) = r, and we also know that the dimension of n-D space is n. So, if W^{\perp} is the set of all vectors orthogonal to W, then it must have dimension n-r.
- 5. The nullspace of A is the set of all vectors that are orthogonal to A. Since z is the nullspace(A), Az = 0 by definition.
- 6. By multiplying A and the rowspace of A, you will only get the columns of A that have a pivot in them, therefore b is the columnspace of A.
- 7. Suppose A is an $m \times n$ matrix with rank r. By Theorem 8.3, we know $\dim(\operatorname{nullspace}(A)) = \operatorname{n-r}$. We also know that A^TA is an $n \times n$ matrix. By proposition 8.5, $\operatorname{nullspace}(A) = \operatorname{nullspace}(A^TA)$, and by Theorem 8.3, $\dim(\operatorname{nullspace}(A)) = \dim(\operatorname{nullspace}(A^TA)) = \operatorname{n-r}$. Now, since both A and A^TA have n columns, we can conclude that A^TA also has rank r. Thus, $\operatorname{rank}(A) = \operatorname{rank}(A^TA)$.
- 8. k = 1:

9. k = 3:

