- 1 Supplementary material for
- 2 Predicting macroinvertebrate average score per taxon (ASPT) at water quality
- 3 monitoring sites in Japanese rivers

4

5 Yuichi Iwasaki^{1,*}, Tomomi Suemori¹, Yuta Kobayashi²

6

- 7 Research Institute of Science for Safety and Sustainability, National Institute of
- 8 Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba,
- 9 Ibaraki 305-8569, Japan
- ² Field Science Center, Faculty of Agriculture, Tokyo University of Agriculture and
- 11 Technology, 3-5-8 Saiwai-tyo, Fuchu, Tokyo, Japan

- 13 *Corresponding author.
- E-mail: yuichiwsk@gmail.com or yuichi-iwasaki@aist.go.jp Tel: +81-29-861-4263

Table S1. Scores assigned to 71 macroinvertebrate taxa

Order	Taxon	Score
Ephemeroptera	Siphlonuridae	8
	Dipteromimidae	10
	Ameletidae	8
	Isonychiidae	8
	Heptageniidae	9
	Baetidae	6
	Leptophlebiidae	9
	Ephemerellidae	8
	Caenidae	7
	Potamanthidae	8
	Ephemeridae	8
	Polymitarcyidae	8
Odonata	Calopterygidae	6
	Epiophlebiidae	9
	Gomphidae	7
	Cordulegasteridae	3
Plecoptera	Nemouridae	6
	Perlodidae	9
	Perlidae	9
	Chloroperlidae	9
Hemiptera	Aphelocheiridae	7
Neuroptera	Corydalidae	9
Trichoptera	Stenopsychidae	9
	Philopotamidae	9
	Psychomyiidae	8
	Polycentropodidae	9
	Hydropsychidae	7
	Rhyacophilidae	9
	Hydrobiosidae	9
	Glossosomatidae	9

	Hydroptilidae	4
	Brachycentridae	10
	Limnephilidae	8
	Apataniidae	9
	Uenoidae	10
	Goeridae	7
	Lepidostomatidae	9
	Sericostomatidae	9
	Leptoceridae	8
Lepidoptera	Crambidae	7
Coleoptera	Dytiscidae	5
	Gyrinidae	8
	Hydrophilidae	4
	Psephenidae	8
	Dryopidae	8
	Elmidae	8
	Lampyridae	6
Diptera	Tipulidae/Limoniidae	8
	Blephariceridae	10
	Psychodidae	1
	Simuliidae	7
	Chironomidae (with abdominal gills)	2
	Chironomidae (without abdominal gills)	6
	Ceratopogonidae	7
	Tabanidae	6
	Athericidae	8
Tricladida	Dugesiidae	7
Caenogastropoda	Pleuroceridae	8
Panpulmonata	Lymnaeidae	3
	Physidae	1
	Planorbidae	2
	Ancylidae	2
Veneroida	Corbiculidae	3

Oligochaeta	Oligochaeta (Branchiura)	1
	Oligochaeta (others)	4
Hirudinea	Hirudinea	2
Amphipoda	Gammaridae	8
	Anisogammaridae	8
	Pontogeneiidae	8
Isopoda	Asellidae	2
Decapoda	Potamidae	8

¹⁶ These scores were initially developed by Yamasaki et al.¹⁾ and revised by the committee

launched by the Ministry of the Environment, Japan²⁾.

Table S2. Summary of macroinvertebrate data collected for model validation (see Figure S1 for locations).

Prefecture (City)	River basin	Survey years	Survey months	Macroinvertebrate survey	Number of sites	Number of replicates per site	Observed range of ASPT index	References
Tochigi	Multiple Rivers in the prefecture	2011– 2013	5	3-min kick sampling using a D-frame net (1-min kick sampling per location, 3 locations per site) ²⁾	58	1	3.0-8.2	3-5)
Kanagawa (Kawasaki City)	Tama River	2014– 2016	10–11	3-min kick sampling using a D-frame net (1-min kick sampling per location, 3 locations per site) ²⁾	3	1	3.4–6.5	6, 7)
Kanagawa	Sakawa and Sagami Rivers	2013, 2014	12	$25 \text{ cm} \times 25 \text{ cm}$ quadrat sampling using a Surber sampler following MLIT (2016). Three replicates (625 cm ² × 3) were pooled as a single sample	3	1	6.5–7.1	8)
Fukuoka	Naka and Tatara River	2013, 2019	3, 4	3-min kick sampling using a D-frame net (1-min kick sampling per location, 3 locations per site) ²⁾	2	1	6.2–7.3	9, 10)
Fukuoka (Ohmuta City)	Domen and Kuma Rivers	2012– 2013	12	3-min kick sampling using a D-frame net (1-min kick sampling per location, 3 locations per site) ²⁾	2	1	4.6–5.1	11, 12)
Miyazaki	Multiple Rivers in the prefecture	2015– 2018	11, 1, 3, 5	3-min kick sampling using a D-frame net (1-min kick sampling per location, 3 locations per site) ²⁾	7	1	7.4–8.4	13-17)

20

- 21 Figure S1. Map of study sites used for model validation.
- See the main text and Table S2 for information about original and reported
- 23 macroinvertebrate surveys.

24 Figure S2

Figure S2. Distributions of predictors in the best multiple linear regression model for 26 27 model development data ("Development"), validation data ("Validation"), and at 2925 water quality monitoring sites ("All sites"). 28 29 Bold horizontal lines show the median, boxes show the interquartile range, error bars 30 show 1.5 times the interquartile range, and filled circles show outliers. Additionally, violin plots (kernel density estimates) are included to better depict the actual 31 32 distributions. The ranges of several predictors such as %Paddy, minimum pH, BOD, and SS at the 2925 water quality monitoring sites (i.e., "All sites") were clearly larger 33 than those in the model development data. 34

Figure S3. Relationships between average score per taxon (ASPT) and mayfly richness (number of taxa per 625 cm²) and abundance (number of individuals per 625 cm²). Asterisks indicate p < 0.05. Macroinvertebrate metrics are averages of three 25×25 cm quadrat samples collected per site. Note that for the illustration on a \log_{10} -scale, we added 1 to each observed value (i.e., X + 1) to avoid any zero values.

References

- 1) Yamasaki, M., Nozaki T., Fujisawa A., Ogawa T., 1996. Researches on the
- 43 establishment of the standard method to evaluate lotic environments based on the
- biological condition of macrobenthic invertebrates in Japan -the results of the
- collaborative studies by the Environmental Biology Group of Environmental
- Laboratories Association-. Journal of Environmental Laboratories Association 21,
- 47 114–145. (in Japanese)
- https://tenbou.nies.go.jp/science/institute/region/journal/JELA_2103002_1996.pdf
- 49 2) MoE, 2017. Manual of Water Quality Assessment Method by Aquatic Organisms -
- Japanese Version of Average Scoring System-. Water and Atmospheric
- 51 Environment Bureau, Ministry of Environment. (in Japanese)
- 52 https://www.env.go.jp/water/mizukankyo/hyokahomanual.pdf
- 53 3) Tochigi Prefecture, 2014. Tochigi Prefecture Water Quality Annual Report (Fiscal
- Year 2013): Chapter 5. Survey of aquatic organisms.
- https://www.pref.tochigi.lg.jp/d03/eco/kankyou/hozen/suisitunenpyou25.html.
- 4) Tochigi Prefecture, 2013. Tochigi Prefecture Water Quality Annual Report (Fiscal
- Year 2012): Chapter 5. Survey of aquatic organisms.
- https://www.pref.tochigi.lg.jp/d03/eco/kankyou/hozen/suisitunenpyou24.html.
- 5) Tochigi Prefecture, 2012. Tochigi Prefecture Water Quality Annual Report (Fiscal
- Year 2011): Chapter 5. Survey of aquatic organisms.
- 61 https://www.pref.tochigi.lg.jp/d03/eco/kankyou/hozen/suisitunenpyou23.html.
- 62 6) Kobayashi, H., Furukawa K., Hara M., 2015. Result of survey for the aquatic
- organisms of rivers in Kawasaki City (2014). Annual report
- of Kawasaki Environment Research Institute 3, 63–73.

- 65 7) Saihara, K., Kobayashi H., Furukawa K., Sasada T., Kanai M., Inoue T., 2017.
- Result of survey for the aquatic organisms of rivers in Kawasaki City (2016).
- Annual report of Kawasaki Environment Research Institute 5, 85–92.
- 8) Kanagawa Environmental Research Center, River monitoring surveys.
- 69 https://www.pref.kanagawa.jp/docs/b4f/suigen/top.html.
- 9) Shimizu, T., Fujishiro T., Ohira R., 2014. Evaluation of river environment by bottom
- fauna in Fukuoka City (Tatara river, in 2013). Annual report of Fukuoka City
- Institute for Hygiene and Environment 39, 76–83.
- 73 10) Masuo, M., Yamasaki A., Kobayashi M., 2020. Evaluation of river environment by
- bottom fauna in Fukuoka City (Naka river, in 2019). Annual report of Fukuoka
- 75 City Institute for Hygiene and Environment 45, 108–116.
- 76 11) Environmental Protection Division of Omuta City, 2015. Report on aquatic
- organism survey in the Kuma river basin (Fiscal year 2013).
- https://www.city.omuta.lg.jp/kiji003865/5_865_38287_up_YYWOYQVB.pdf.
- 79 12) Environmental Protection Division of Omuta City, 2014. Report on aquatic
- organism survey in the Domen river basin (Fiscal year 2012).
- 81 https://www.city.omuta.lg.jp/kiji003865/5_865_2020_up_30TDA5GK.pdf.
- 82 13) Arikado, M., Hagihara M., Oshikawa S., Terasaki M., Nakamura K., Nakayama Y.,
- Akazaki I., Shimada R., 2019. Zoo-benthos and water analysis of the Isuzu River.
- Annual report of the Miyazaki Prefectural Institute for Public Health and
- 85 Environment 30, 112–117.
- 86 14) Arikado, M., Hagihara M., Oshikawa S., Terasaki M., Nakamura K., Nakayama Y.,
- Akazaki I., Shimada R., 2019. Zoo-benthos and water analysis of the Nanuki River.
- Annual report of the Miyazaki Prefectural Institute for Public Health and

- 89 Environment 30, 118–123.
- 90 15) Arikado, M., Hagihara M., Oshikawa S., Terasaki M., Nakamura K., Nakayama Y.,
- Akazaki I., Shimada R., Misumi T., 2018. Zoo-benthos and water analysis of the
- Fukushima and Ohira Rivers. Annual report of the Miyazaki Prefectural Institute
- for Public Health and Environment 29, 96–101.
- 94 16) Arikado, M., Hagihara M., Oshikawa S., Terasaki M., Nakamura K., Nakayama Y.,
- Akazaki I., Shimada R., Misumi T., 2018. Zoo-benthos and water analysis of the
- Kita River. Annual report of the Miyazaki Prefectural Institute for Public Health
- 97 and Environment 29, 102–107.
- 98 17) Hiroike, Y., Okada M., Misaka J., Shimada R., Akazaki I., Nakayama Y., Mizozoe
- 99 M., Sakamoto S., Nakamura K., Misumi T., 2016. Biological evaluation of water
- by zoo-benthos of the Hitotsuse River and its tributaries. Annual report of the
- Miyazaki Prefectural Institute for Public Health and Environment 27, 86–96.