Inferencing Issues: Generalization and Overfitting

國立政治大學 資訊管理學系 蔡瑞煌 特聘教授

2-Layer nets; SLFN

The algorithm without extra stopping criteria

Learning codes of SLFN

- PyTorch: cs231n 2020 Lecture 6-57
- PyTorch: cs231n 2020 Lecture 6-65
- TensorFlow 2.0+ vs. pre-2.0: cs231n 2020 Lecture 6-91
- TensorFlow: cs231n 2020 Lecture 6-101
- TensorFlow with optimizer: cs231n 2020 Lecture 6-102
- TensorFlow with optimizer & predefined loss: cs231n 2020 Lecture 6-103
- Keras: cs231n 2020 Lecture 6-104
- Keras: cs231n 2020 Lecture 6-106 (help handle the training loop)

PyTorch: nn

Higher-level wrapper for working with neural nets

```
Backward operation | No | i>= 100 | Yes
```

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

PyTorch: nn Define new Modules

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors


```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

TensorFlow: Neural Net


```
N, D, H = 64, 1000, 100
x = tf.convert to tensor(np.random.randn(N, D), np.float32)
y = tf.convert to tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H))) # weights
w2 = tf.Variable(tf.random.uniform((H, D))) # weights
learning rate = 1e-6
for t in range(50):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
   y pred = tf.matmul(h, w2)
   diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
  gradients = tape.gradient(loss, [w1, w2])
  w1.assign(w1 - learning rate * gradients[0])
  w2.assign(w2 - learning rate * gradients[1])
```

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 6 - 101

April 23, 2020

TensorFlow: Loss

Use predefined common losses

```
Backward operation | No | i >= 100 | Yes
```

```
N, D, H = 64, 1000, 100
x = tf.convert to tensor(np.random.randn(N, D), np.float32)
y = tf.convert to tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H))) # weights
w2 = tf.Variable(tf.random.uniform((H, D))) # weights
optimizer = tf.optimizers.SGD(1e-6)
for t in range(50):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.losses.MeanSquaredError()(y pred, y)
  gradients = tape.gradient(loss, [w1, w2])
  optimizer.apply gradients(zip(gradients, [w1, w2]))
```

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 6 - 103

April 23, 2020

Keras: High-Level Wrapper

Keras is a layer on top of TensorFlow, makes common things easy to do


```
N, D, H = 64, 1000, 100
x = tf.convert to tensor(np.random.randn(N, D), np.float32)
y = tf.convert to tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input shape=(D,),
                                activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(1e-1)
losses = []
for t in range(50):
  with tf.GradientTape() as tape:
    y pred = model(x)
    loss = tf.losses.MeanSquaredError()(y pred, y)
  gradients = tape.gradient(
      loss, model.trainable variables)
  optimizer.apply gradients(
      zip(gradients, model.trainable variables))
```

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 6 - 104

April 23, 2020

The algorithm with an extra stopping criterion that indicates either an undesired SLFN or a desired SLFN

The adaptable η arrangement in the backward operation module for guaranteeing the decrease of $E_N(\mathbf{w})$

The adaptable η arrangement in the backward operation module with GradientDescentOptimizer

Adaptable learning rate

Stopping criteria and the learning goals for the learning

The learning process should stop when

- 1. Hit the epoch constraint (e.g., i >= 100)
- $2. E_{N}(\mathbf{w}) = 0$
- 3. Obtain a tiny $E_N(\mathbf{w})$ value
- 4. $|f(\mathbf{x}^c, \mathbf{w}) y^c| < \varepsilon \ \forall \ c \ where \ \varepsilon \ is \ tiny$

The learning goal

Extra stopping criteria (but not learning goals) for the learning

- 1. The learning process should stop when $\|\nabla_{\mathbf{w}} E_{\mathbb{N}}(\mathbf{w})\| = 0$.
- 2. The learning process should stop when $\|\nabla_{\mathbf{w}} E_N(\mathbf{w})\|$ is tiny.
- 3. The learning process should stop when (adaptive) η (the learning rate) is tiny.

The undesired attractors:

- a) the local optimum/the saddle point/the plateau
- b) the global optimum of the defective network architecture

The algorithm with extra stopping criteria

the algorithm for SLFNs with extra stopping criteria that indicate whether the final result is either an undesired SLFN or a desired SLFN.

- ϵ and ϵ_1 are given tiny numbers
- $e^c = f(\mathbf{x}^c, \mathbf{w}) y^c$

the algorithm for SLFNs with extra stopping criteria that indicate whether the final result is either an undesired SLFN or a desired SLFN.

- ε and ε₁ are given tiny numbers
- $e^c = f(\mathbf{x}^c, \mathbf{w}) y^c$

In the backward operation module

The Adaptable Learning Rate Arrangement vs The Learning Rate Decay

Learning Rate Decay

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear:
$$\alpha_t = \alpha_0(1 - t/T)$$

Inverse sqrt:
$$\alpha_t = \alpha_0/\sqrt{t}$$

 $lpha_0$: Initial learning rate

 $lpha_t$: Learning rate at epoch t

T : Total number of epochs

Vaswani et al, "Attention is all you need", NIPS 2017

New algorithm & Coding

- Not merely double check the correctness of codes
- New AI algorithm → new learning process ← Double check the learning process (ALWAYS!!!)
- Simple checks: (1) whether the evolution of $E(\mathbf{w})$ values is reasonable? (2) whether the tuning of \mathbf{w} is reasonable? (3) whether the evolution of $f(\mathbf{x}^c, \mathbf{w})$ values all c is reasonable?
- Complicated checks: whether the learning process is reasonable?

Not the performance, which is related with the inferencing.

Performance of AI Applications

- How do AI professionals or high-rank managers evaluate the performance of the AI applications? ← effectiveness & efficiency
- However, there are learning dilemma and overfitting in front of the discussion of effectiveness & efficiency.

You need to deal with undesired attractors. Not only for the purposes of learning, but inferencing.

Recipe for Deep Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Inferencing Issues

Generalization

- Learned hypothesis may fit the training data very well, even noises (outliers in the training data), but fail to generalize to new examples (test data)
- In machine learning and statistical learning theory, generalization error (also known as the out-of-sample error) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data.

Learning curves

- Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.
- The performance of a learning algorithm is measured by plots of the generalization error values through the learning process, which are called learning curves.
- Generalization error can be minimized by avoiding overfitting in the learning process.

28

Learning curve and overfitting

overfitting

inadequate

good compromise

over-fitting

Overfitting

In statistics, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably."

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 3 - 42

April 14, 2020

Overfitting

An over-fitted model is a model that contains more parameters than can be justified by the data.

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 3 - 42

April 14, 2020

Overfitting due to big weights

- To penalize big weights, there is a regularization term in the loss function.
- The loss function:

decay term: tiny λ Regularization term: arbitrary λ

$$\underline{E_N}(\mathbf{w}) \equiv \frac{1}{N} \sum_{c=1}^N (f(\mathbf{x}^c, \mathbf{w}) - y^c)^2 + \lambda ||\mathbf{w}||^2$$

- The weight decay coefficient λ determines how dominant the regularization is during gradient computation
- Big weight decay coefficient \rightarrow big penalty for big weights
- The above is the L2 regularization term
- L1 regularization: λ|w|
- Elastic net: L1 + L2

Overfitting due to too many hidden nodes

https://www.neuraldesigner.com/images/learning/selection_error.svg

Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Occam's Razar: Among multiple competing hypotheses, the simplest is the best, William of Ockham 1285-1347

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Why regularize?

- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 3 - 46

April 14, 2020

The weighttuning module for learning

The regularizing module for reducing the weight magnitude

An acceptable SLFN that successfully accomplishes the learning goal

Homework #4

Write down the code of the regularizing module that implements minimizing $E_N(\mathbf{w})$ to reduce the magnitude of \mathbf{w} , while keeping the learning goal satisfied.