Détection de la coupe L3 par CNN et transfert learning

S. Belharbi, C. Chatelain, R. Hérault, S. Adam, R. Modzelewski, M. Chastan, S. Thureau

LITIS - Équipe Apprentissage - Centre Henry Becquerel de Rouen

soufiane.belharbi@insa-rouen.fr

21 octobre 2016

Plan

1	٠.			- 1					
۱r	าป	٠r	\sim	М	11	\sim	ы	O	n
ш	ш		v	u	יש		ч	v	ш

Problématique

Approche proposée

Résultats

Introduction

Problématique

Approche proposée

Résultats

Introduction

- Sur une base de 642 CT scans on a obtenu une erreur moyenne de localisation < 1.75 coupes (< 5 mm).

Introduction

Problématique

Approche proposée

Résultats

Détection de la coupe L3

Étant donné un scan d'une partie du corps, trouver la coupe correspondante à la coupe L3 parmi quelques centaines de coupes difficultés

- variabilité inter-patients
- ressemblances coupe L3 avec d'autres coupes
- nécessité d'utiliser le contexte pour décider de la L3
- ⇒ Machine Learning

Approches envisageables

Classification de coupes (prédire une valeur discrète)

Pour chaque coupe décider "L3"/"pas L3"

- ► Approche simple, ©
- ▶ Pas de contexte ☺

Étiquetage de séquences

Chercher à trouver toutes les vertèbres L1, L2, L3, ...

- ► Analyse globale : contexte, ©
- ► Travaux existants semblent prometteurs, ②
- ► Nécessite étiquetage de chaque coupe ③

Regression (prédire une valeur continue)

Étant donnée toute la séquence, estimer la hauteur de la coupe L3

- ► Analyse globale : contexte, ©
- Pas de travaux existants,
- ▶ Nécessite seulement la position de la L3 en étiquetage ©

Introduction

Problématique

Approche proposée

Résultats

Regression pour la détection de la coupe L3

Choix du modèle statistique pour la regression

- Deep learning, Convolutional Neural Network (CNN)
- Pas de caractéristiques à extraire
- State-of-the-art sur l'image
- Modèle statique : requiert un espace d'entrée de taille fixe

Parlons chiffres

- ► Espace d'entrée : 1 scan = $N \times 512 \times 512$, avec 400 < N < 1200
- Scans avec L3 annotée et vérifiée : 642 patients
- ▶ La hauteur des scans N est variable d'un scan à un autre

Solution au problème N°1

Problème N°1 : dimension espace d'entrée

- ▶ 131 M entrées par exemple : ça fait beaucoup même pour un CNN!
- ► → Maximum Intensity Projection (MIP) facial ou latéral
- ▶ On passe de $512 \times 512 \times N$ à $512 \times N$
- ▶ Information pertinente a priori conservée

Solution au problème N°2

Problème N°2 : Peu de données annotées (642 patients)

- On a essayé quand même! → résultats mitigés
- Solution : utilisation de modèles pré-appris sur des grandes quantités de données
- AlexNet, GoogleNet, VGG16, VGG19, etc.
- Modèles appris sur ImageNet : 14 millions d'images naturelles annotées [Fei-Fei and Russakovsky 2013]

Solution au problème N°2 (suite)

Idée générale : Transfer Learning

Bénéficier des filtres convolutionnels préappris sur des images naturelles (!!!), qu'on affine ensuite sur nos données.

FIGURE 1: Transfert des filtres

Solution au problème N°3

Problème N°3 : Espace d'entrée de taille variable

- Problème assez classique
- Utilisation d'une fenêtre glissante
- Post-traitement pour analyser la sortie du CNN aux différentes positions

Post-traitement

- Corrélation.

Système complet : Prédiction

FIGURE 2 : Système complet : Prédiction

Introduction

Problématique

Approche proposée

Résultats

Résultats quantitatifs

Erreur en cross validation : comparaison d'un CNN "maison" et des CNN pré-appris + transfer learning

	CNN4	Alexnet	VGG16	VGG19	Googlenet
fold 0	4.64 ± 14.66	2.24 ± 2.28	1.71 ± 1.59	1.83 ± 1.81	1.78 ± 1.70
fold 1	4.94 ± 16.29	2.43 ± 2.46	1.77 ± 2.14	1.96 ± 2.10	2.19 ± 2.13
fold 2	3.10 ± 3.22	2.42 ± 2.43	1.57 ± 1.62	1.75 ± 1.80	2.73 ± 2.48
fold 3	3.03 ± 2.45	2.46 ± 2.33	1.85 ± 1.60	1.80 ± 1.64	2.16 ± 1.85
fold 4	3.07 ± 8.97	2.69 ± 2.37	1.83 ± 2.08	1.83 ± 1.75	2.12 ± 2.25
Average	3.75 ± 9.19	2.45 ± 2.37	1.75 ± 1.80	1.83 ± 1.82	2.20 ± 2.08

TABLE 1 : L'erreur de test en cross validation (avec post-traitement) (coupes).

Temps d'évaluation

	Nombre de paramètres	Temps moyen de traitement (seconds/CT scan)
CNN4	55 K	04.46
Alexnet	2 M	06.37
VGG16	14 M	13.28
VGG19	20 M	16.02
Googlenet	6 M	17.75

TABLE 2 : Nombres de paramètres et temps d'évaluation d'un scan sur un GPU (K40).

Résultats Qualitatifs

Erreur: 0 coupes.

Résultats Qualitatifs

Erreur: 6 coupes.

CNN vs. radiologistes

- Nouvelle base : 43 CT scans annotés par le radiologiste de référence.
- Faire prononcer 3 autres radiologistes sur la base.

Erreurs (coupes) / operateur	CNN4	Alexnet	VGG16	VGG19	Googlenet	Radiologiste #1	Radiologiste #2	Radiologiste #3
Erreur	2.60 ± 2.88	3.51 ± 4.52	1.72 ± 1.55	2.19 ± 1.73	2.16 ± 2.20	0.81 ± 0.97	0.72 ± 1.51	0.51 ± 0.62

TABLE 3: Comparaison: CNN et radiologistes.

- 1.75 coupes ~ 5 mm.
- Nous avons perdu le combat avec les radiologistes mais avec les honneurs \odot .

Introduction

Problématique

Approche proposée

Résultats

Conclusion

Conclusion

- Résultats intéressants
- Pipeline adapté : prétraitement / CNN / post traitement
- Généricité : utilisation du transfer learning requiert assez peu de données et de temps d'apprentissage. → test sur d'autres problèmes?

Questions?

soufiane.belharbi@insa-rouen.fr