NOTES

```
Class Hello World {
    Public Static Void Main (String[] a){
        System.out.println("Hello World");
    }
}
```

----- Tidak semua class pake, hanya agar computer tau yang mana yang harus dirun dulu. Public Static Void = Agar bisa dirun (secara singkat).

- Selalu teliti Syntax sama Besar Kecil => Syntax error or Compiler error
 = Ada problem di syntaxnya atau di compiler
- Parser = Membaca kode dan urutan membacanya dari kiri ke kanan dan dari atas ke bawah
- Variabel = Jadi container untuk data yang biasanya berubah ubah
- Tipe data INTEGER obv GAK BISA masukin data STRING dan gak bisa diubah jadi STRING
- Fungsi Tipe Data =
 - Bisa ngasik tau computer berapa memori yang harus dialokasikan untuk data tersebut
 - Biar bisa ngasik tau harus ditaruh dimana (currently ini ditaruh di Stack)
 - Stack = Operational sehari sehari secara cepat, Isinya Primitive Data Type
 - Heap = For Non Primitive data type
 - o Ngasik tau data, apa aja hitungan yang bisa kamu lakukan
- Garbage Collection = Membersihkan alokasi memori yang tidak terpakai
- High Level Language (R, Java ,dkk) = Punya fungsionalitasnya banyak
- Astrix (*) = Kali
- / = Cuman mbagi bagian angka yang bulat, tapi kalo kamu kasik float ya hasilnya decimal juga
- Batas angka INT -> -2^{31} to 2^{31} 1 = Kapasitasnya 32 bit (semua bit dilist = pangkat untuk batas angka 1)
 - Knp kok gitu jadinya cuman 31 ?
 - Bit teratas = Kode plus minus (0 = Positif, 1 = Negatif)
 - Ada 1 nya karena ada perhitungan dimulai dari 0
- Double = More accurate than Float
- Koma = Pake titik JANGAN LUPA !!!
- Hexadecimal = Basisnya 16 (f = 15)

LIST PRIMITIVE DATA TYPE

DESCRIPTION	DEFAULT	SIZE	EXAMPLE LITERALS	RANGE OF VALUES
true or false	false	1 bit	true, false	true, false
twos complement integer	0	8 bits	(none)	-128 to 127
unicode character	\u0000	16 bits	'a', '\u0041', '\101', '\\', '\',\'n',' β'	character representation of ASCII values 0 to 255
twos complement integer	0	16 bits	(none)	-32,768 to 32,767
twos complement integer	0	32 bits	-2, -1, 0, 1, 2	-2,147,483,648 to 2,147,483,647
twos complement integer	0	64 bits	-2L, -1L, 0L, 1L, 2L	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
IEEE 754 floating point	0.0	32 bits	1.23e100f, -1.23e-100f, .3f, 3.14F	upto 7 decimal digits
IEEE 754 floating point	0.0	64 bits	1.23456e300d, -1.23456e-300d, 1e1d	upto 16 decimal digits
	twos complement integer unicode character twos complement integer twos complement integer twos complement integer	twos complement integer 0 unicode character \u00000 twos complement integer 0 twos complement integer 0 twos complement integer 0 IEEE 754 floating point 0.0	twos complement integer 0 8 bits unicode character \u00000 16 bits twos complement integer 0 16 bits twos complement integer 0 32 bits twos complement integer 0 64 bits IEEE 754 floating point 0.0 32 bits	twos complement integer 0 8 bits (none) unicode character \u00000 16 bits 'a', '\u0041', '\101', '\', '\', '\n', 'β' twos complement integer 0 16 bits (none) twos complement integer 0 32 bits -2, -1, 0, 1, 2 twos complement integer 0 64 bits -2L, -1L, 0L, 1L, 2L IEEE 754 floating point 0.0 32 bits 1.23e100f, -1.23e-100f, .3f, 3.14F

- How many Unicode di char ? 65,535 => hexadecimal
- Char vs Short = Mewakili hal yang berbeda dan batasnya beda (Char dikonversikan jadi huruf sedangkan Short jadi bilangan bulat biasa)

HOW TO READ BINARY (Mungkin berguna untuk memahami gambar ibuknya)

Resultant decimal number = 1+2+4+8 = 15

Alprog - Eugenia_Indrawan®

- How to declare String foo; int x; long aLongNumber; boolean isStudent;
- Camel Case: Huruf untuk kata berikutnya dibesarin, no _ (T^T TIDAKKK)[BERLAKU UNTUK SEGALA PENAMAAN, biasanya class diawali pake huruf besar]
- OPERATORS IN JAVA

OPERATOR	USAGE EXAMPLE	RETURNS "TRUE" VALUE IF	
>	a > b	a is greater than b	
>=	a >= b	a is greater than or equal to b	
<	a < b	a is less than b	
<=	a <= b	a is less than or equal to b	
==	a == b	a is equal to b	
!=	a != b	a isn't equal to b	
&&	a && b	a and b are true values, b is evaluated relatively (if a is false, b isn't evaluated)	
II	a b	a or b is true, b is evaluated relatively (if a is true, b isn't evaluated)	
!	!a	a is false	
&	a & b	a and b are true, b is evaluated in any case	
	a b	a or b is true, b is evaluated in any case	

```
( && dan ||, yang di depan dicek dulu, kalau false, gak lanjut ke
belakang, kalau true, baru dicek yang belakang )
```

```
( & dan |, langsung dicek dua - duanya )
```

- BILANGAN BULAT PASTI INT
- Kalo operator keduanya bulat, hasilnya bulat. Kalo salah satu decimal, nanti hasilnya decimal
- Kalau kamu declare secara eksplisit tipe datanya, Kalau kamu tulis Float a = 2 => 5 / 2 jawabannya 2
- Kalo ndak kamu declare dan kamu tulis angka decimal => Double (DEFAULT FOR ALL DECIMALS)
- Btw ndak ada pembulatan, jadi kayak 5/2 = 2, bukan 3 :D
- Kalau mau nulis package, tulisannya harus huruf kecil semua
- Kalau mau nulis comment, pake /* blab la blab la */
 System.out.println(5<<1); /* 5 geser 1 bit ke kiri */
 System.out.println(5>>1); /* 5 geser 1 bit ke kanan */
- Kalo masih bingung bisa dibayangin pake hitungan binary yang tadi
- Operan = angkanya, Operator = Ya + / *
- Khusus Operator Manipulasi Bit or Bitwise, Operan di depan adalah objek yang dikenai, operan belakang = berapa banyak

```
o Shift right 1 = Dibagi 2
```

- o Shift right 2 = Dibagi 4
- o Shift right 3 = Dibagi 4
- Shift right 4 = Dibagi 4
- Shift left 1 = Dibagi 2
- Shift left 2 = Dibagi 4
- Shift left 3 = Dibagi 8
- Shift left 4 = Dibagi 16
- Terkadang kalau hasil operasinya terlalu besar jadinya ngebug, kita pakai manipulasi bit ini agar gak ngebug dan lebih mudah ditranslate sama computer
- Assignment Operator
 - o Nilai yang di kanan dimasukkan ke kiri
 - Jadi kalau a = b => sama" 5, tapi kalau b = a => sama" 3
 - o (a = b) == (b = a) ?? False
 - o == itu operator logika dan jawabannya sebatas TRUE or FALSE
 - Kalau untuk masukin nilai ke variable, pake =
- Operator Precedence
 - Kayak aturan ngitung matematika !
 - o Tanda kurung dulu, trus kali bagi, baru + -
 - o Kalau ada yang sama, diitung dari kiri ke kanan
- Kalau tipe data string, trus kamu kasik operator +, nanti langsung kegabung tanpa spasi. Jadi kamu harus tambahin " " di antara kedua variable itu
- Kalau kamu String + Int, ya hasilnya StringInt

- Ah yea, itu kata + angka + angka, sama java masih dianggep string semua, bukan int. Jadi kamu perlu declare atau kamu hitung dulu dalam variable :D
- Bedakan variable dan value ya 😉

•

CODE OF THE DAY

```
public class operator {
    no usages

public static void main (String[] args){
    System.out.println(5/2);
    System.out.println(5.0/2.0);
    System.out.println(5.0/2);
    System.out.println(5.0/2);
    System.out.println(5/2.0);

float b = 2;
    System.out.println(true & false);
    System.out.println(true | false);
    System.out.println(true && false);
    System.out.println(true | | false);
    System.out.println(true | | false);

    System.out.println(2 == 2);
    System.out.println(1:false);

System.out.println(1:false);

System.out.println(5<<1); /* 5 geser 1 bit ke kiri */
    System.out.println(5>>1); /* 5 geser 1 bit ke kanan */

    /* cara buat comment pakek ini boss */
}
```

```
String c = "saya";
String d = "makan";

System.out.println(c + " " + d);
System.out.println(c + " " + 3);
```

Alprog - Eugenia_Indrawan®

```
int a = 3;
int b = 5;

a = b;
b = a;

System.out.println(a);
System.out.println(b);
```

```
int e = 3;
int f = 5;
System.out.println(c + " " + e + f);
System.out.println(c + " " + (e+f));
System.out.println(e + f + " " + c);
```

```
saya 35
saya 8
8 saya
```