	Hw 3	Lessica Jackson (1) Chris Noreikis 22 C: 188 HW3 Spring 2014
ĦI	Formalization in Fol	
	1) $R(x)$: x is a red thing $B(x)$: x is in the box	
	a) All red things are in the box.	
	b) Only red things are in the box	
	$\forall x (B(x) \rightarrow R(x))$ c) No animal is both c cat and a day	
	A(x): x is an animal	
	D(x): $x = 0$ and $a = 0$	
	tx (A(x) => 7(C(x) = O(x))	
	+x (A(x) → (¬C(x) v ¬ D(x))	
	d) Every prize was up by a boy. P(y): y is a prize	
	B(x): xis a bog	
		ion the lotting)
	$\forall y \left(P(y) \rightarrow \exists x \left(\mathcal{B}(x) \wedge \mathcal{U}(x, y) \right) \right)$	

d

Sessica Jackson 2 Chris Moreikis
22C: 188 HW3
#1 Formalization in FOL
The state of the s
1 a A barrens assiss
P(y): y is a prize
B(x): x is a boy $W(x,y)$: x won y
wing). A won of
$\exists x \forall y \ (B(x) \land P(y) \rightarrow \omega(x,y))$
1x 19 (5(x) x (9) x (2,9)
2) a) $\forall x \forall y (x = y)$ (where all quantifiers have the
same domain
· Every pair of elements consists of two
Equal elements.
b) Ix Iy (x + y) (where all quantitiers have
the same nonempty domain)
· There exists at least one pair of elements
such that the elements are not equal.
Total Control of the
c) Ix Iy (x \neq x \neq z \neq x \neq z = y) (where all
quantitiers have
the same nonempty domain
· ·
elements. Note: 2 = x 2= x 2= x x = y \ x = y \ \ \ = x \ Z= x \ = x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3 distinct elements (x,y=2,y=2) T T T T T T T T T T T T T T T T T T T
I distinct element (x=2, u=2) F T T
1 distinct element (x=2, y=2) F T T F 2 distinct elements (x=2, y=2) F F T T

Jesska Jackson (3) Chris Noreihis 220:188 HW3 Spring 2014

#1 Formalization in FOL

3) If there are any tax payers, then all politicians are tax payers. If there are any philanthropists, then all tax payers are philanthropists. Therefore, if there are any tax-paying philanthropists, then all politicians are philanthropists.

T(x): x is a tax payor P(x): x is a politician H(x): x is a philanthropist

 $\exists_{x} \left(T(x) \rightarrow \left(\forall_{x} \left(p(x) \rightarrow T(x) \right) \right),\right)$

 $\exists x (H(x)) \Rightarrow \forall x (T(x) \rightarrow H(x)),$

 $- \exists x (T(x) \land H(x)) \rightarrow \forall x (P(x) \rightarrow H(x))$

Jessica Jackson (4) Chris Noreikis 220:188 HW3 Spring 2014

#1 Formalizing in FOL

It is possible to specify a formula for models

with a specified concrete number of elements;

for example a model with exactly three distinct

elements or even at most three distinct elements.

When not specifying a concrete bound as in the

previous two examples, it is possible to specify

an upper bound with the "A" operator. Within this

operator, the upper bound is "k", where "k" is an

arbitrary natural number. A subset bounded by

K is a subset of infinitely many elements.

A subset of an infinite set is still an infinite set.

Therefore, there can be no formula in first
order logic that is true only for models with

finitely many distinct elements.

Jessica Jackson (5) Chris Woreikis 220:188 HW3 Spring 2014

2 Parse Trees, Variables and Substitutions Let the formula D be

= 1x (P(y,2) x (ty (- Q(y,x) v P(y,2)))

2) For each variable occurrence in I identify if it is free or bound.

(P(y, 2) x (Yy (-Q(y, x) y P(y, 2)))

f = free

bound = d

	3 Natural declusion in FOL	Jessica Jackson (7) Chris Moneikis 22c': 188 HW3 Spring 2014
	1) (y=0) x (y=x) + 0=x	
2 3 4	$(y=0)$ $\lambda(y=x)$ $\lambda = x$ premite $y=0$ $\lambda = 1$ y=y $= i0=y$ $= 2$	3
	y=x	8=4 0 L 9-12-1
	$z)t_1=t_2\vdash(t+t_2)=(t+t_1)$	
	$t_1 = t_2$ premise $(t+t_1) = (t+t_1)$	
3		where Ø is(t+x)=(t+t)

Sessica Jackson (8)
Chris Noreikis
220:188 HW3
Spring 2014

3 Natural Deduction in FGL

3) (4x P(x)) -> (4x Q(x)) + 4x((4x P(x)) -> Q(x))

100	(tx P(x)) -> (tx Q(x))	premise	1
	Xop		
3	Yx P(x)	assumption	
			-
{	Ax 0(x)	-)e 1.3	-
5	(Q(x0)	txe 4	-
9	(tx P(x) -> Q(x0)	→; 3-5	1
٦	tx((tx P(x))-> Q(x)	∀x : 2-6	

. . .

	3 Deductions in FOL	Spring 2014	9
	4) tx p(x,2) + ty p(y,2)		
3	$\forall_x P(x,z)$ premise $\forall_x P(x_0,z)$ $\forall_x e 1$ $\forall_y P(y,z)$ $\forall_y 2$		
		·	

Jessica Jackson Chris Noreikis 220:188 HW3 Spring 2014

NNatural deduction in FOL

-	5) Yx (P(x) ->	7Q(x))+7(1x(p(x)	((x) Q 1
l		1/11/1	

1	$\forall x (P(x) \rightarrow \neg Q(x))$	premise
1	= = = = = = = = = = = = = = = = = = =	assumption
3	100	
4	P(x) 1 Q(x)	assumption
5	p(xo)	re, 4
6	Q(x2)	rea 4
7	P(x) > - Q(x)	4xe 1
8	7Q(x0)	-> e 7,5
q		72 6,8
10		3xe 2, 3-9
11	(((x) P(x) N Q(x)))	

Jessta Jackson Chris Noreikis 59C.188 HW3 3 Natural Deduction in FOL Spring 2014 6) Fx ty P(x,y) - ty Fx P(x,y) Ix Hyp(x,y) premise xo ty P(xo, y) see example pg 116 lines 3-6 assumption P(xo,yo) My e 3 4 Exp(x,y) FixE Fx P(x,yo) 1xe 1,3-6 Yy Ix P(x,y) Yy 2-6

#4 Semantics of FOL

ナー・ナノナ

We won't g' to perform some operation on 2 elements such that g(x,y) represents some operation on unlike elements and g(y,y) represents some operation on like elements. Then the result of g(x,y) and g(y,y) provide "input" to QM. However, let it be noted that while g(y,y) obviously performs an operation on two like elements, g(x,y) may also perform the same operation on two elements, that is to say that it is not required that x & y but in fact it is allowable that x & y. Considering that the truth value of T is then determined by its only free variable, 2, l(2) and l'(2) this also determine the truth value of T.

Such that any number multiplied by zero is zero. Let the universe be m such that male & 0,1,23

Therefore, every product must equal &.

Spring 2014

#4 Semantics of FOL

ナ、一、少、六

We won't gt to perform some operation on 2 elements such that g(xy) represents some operation on while elements and g(y,y) represents some operation on like elements. Then the result of g(x,y) and g(y,y) provide "input" to Qt. However, let it be noted that while g(y,y) obviously performs an operation on two like elements, g(x,y) may also perform the same operation on two elements, that is to say that it is not required that x & y but in fact it is allowable that x = y. Considering that the truth value of \$\overline{L}\$ is then determined by its only free variable, 2, l(2) and l'(2) this also determine the truth value of \$\overline{L}\$.

Such that any number multiplied by zero is zero. Let the universe be m such that my det \$0,1,23

Therefore, every product must equal &.

#4 Semantics of FOL

2) I det for Fy Fz (P(x,y) \ P(z,y) \ P(x,z) \ P(x,z) \ P(z,x)).

Let the universe A be the set of natural numbers 1.

a) prodet { (m,n) | m<n}; satisfies E

Let's first look at it as $\forall x \exists y \exists z (x < y) \land (z < y) \land (x < z) \Rightarrow (z < x)$ where all 3 terms must evaluate to True for \overline{z} to be satisfied.

12/2	2 < x	(x L2) -> (z Lx)	AXEM and FIEM
W-T	T	T	invalid
T	F	F-	volid but false
·F	T	T	txEN, x<2 is true = invalid
F	F	T	T when x=ZEN

Jessien Jackson	(14)
Chris Norreiki	
EWH 481:65	
Spring 2014	
V	

#4 Semantics of FOL

2) b) pmolet & (m, 2m) | mEA]; satisfies I

The set of natural numbers, N, is the universe A, as given. Every notural number multiplied by 2 is still in the universe of natural numbers.

c) but dot {(m) | m < v+13}

Yx3y32(x4y+1) ~(24y+1) ~ (x42+1) → (24 ~4)))

x (24)	24×41	(242	41)->(2 (x+1)	txEN a	M3SE B
1	T	T	$(if \chi = z)$	Twhen	x=2 EN
7	F	F			
F	1	7	(if 2 < x)	but 24x	invalid trein
_	F	1-			invalid taEN
				s	

#4 Semantics

3) I det txty Iz (R(x,y) > R(y,z))

A) A det {a,b,c,d} and Rodet {b,c}, (b,b), (b,c)}

No. For example, let's look at the element (b,c). Then
an element (c,a) or (c,b) or even (c,d) should
belong to Roden no such element exists in Roden

b) A det { a, b, c} 7 malet { (b, o), (a, b), (c, b) }
Yes.

(b,d) -> (c,b) here x=2.0x

(a,b) -> (b,c) OK

(g,b) 3(b,c) here x=2 again. OK