Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

Sixth Semester B.E. Degree Examination

Machine Learning

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		,		N	Iodule –	1					
	(a)	What is Ma	achine Le	eaning? Ex	plain the	applica	tions of	Machine	Learning.		04N
Q.1	(b) Discuss the any four main challenges of machine learning								081		
	(c)	Consider the the hypothes			Eliminati				in Table 1., I	llustrate	081
		Origin	Manuf	facturer	Color	Decad	e Typ	De	Example Typ	e	
		Japan	Honda		Blue	1980	Eco	nomy	Positive		
		Japan	Toyota		Green	1970	Spo	orts	Negative		
		Japan	Toyota		Blue	1990	Eco	nomy	Positive		
		USA	Chrysle	er	Red	1980	Eco	nomy	Negative		
		Japan	Honda		White	1980	Eco	nomy	Positive		
	(a)	training insta				vorking	by takir	ng the er	njoy sport con	cept and	10
Q.2	(a)				2.	vorking	by takir Wind	water		cept and Enjoy Sport	10
Q.2	(a)	training insta	nces give	en in Table	2.				Forecast	Enjoy	10
Q.2	(a)	training insta	nnces give	en in Table AirTemp	Hum Noi	nidity	Wind	Water	Forecast Same	Enjoy Sport	10
Q.2	(a)	Example	Sky Sunny	AirTemp Warm	2. Hum	nidity rmal	Wind Strong	Water Warm	Forecast Same Same	Enjoy Sport Yes	10
Q.2	(a)	Example 1 2	Sky Sunny Sunny	AirTemp Warm Warm	2. Hum Nor	nidity rmal	Wind Strong Strong	Water Warm Warm	Forecast Same Same	Enjoy Sport Yes	10
Q.2	(a)	Example 1 2 3 4	Sky Sunny Sunny Rainy Sunny	AirTemp Warm Warm Cold Warm	Non Hi Hi Table 2.	nidity rmal igh igh	Wind Strong Strong Strong	Water Warm Warm Warm	Forecast Same Same Change	Enjoy Sport Yes Yes	10
Q.2	(a) (b)	Example 1 2 3 4 Discuss the	Sky Sunny Sunny Rainy Sunny	AirTemp Warm Warm Cold Warm of an unbia	Non Hi Hi Table 2. ased Lear	nidity rmal igh igh rner.	Wind Strong Strong Strong Strong	Water Warm Warm Cool	Forecast Same Same Change Change	Enjoy Sport Yes Yes No Yes	
Q.2		Example 1 2 3 4 Discuss the	Sky Sunny Sunny Rainy Sunny features	AirTemp Warm Cold Warm of an unbia	Non Hi Hi Hi Table 2. ased Lear	nidity rmal igh igh rner. t to Tasl	Wind Strong Strong Strong Strong	Water Warm Warm Cool	Forecast Same Same Change Change	Enjoy Sport Yes Yes No Yes	06
Q.2	(b)	Example 1 2 3 4 Discuss the	Sky Sunny Sunny Rainy Sunny features	AirTemp Warm Cold Warm of an unbia	Non Hi Hi Hi Table 2. ased Lear	nidity rmal igh igh rner. t to Tasl	Wind Strong Strong Strong Strong	Water Warm Warm Cool	Forecast Same Same Change Change	Enjoy Sport Yes Yes No Yes	06
Q.2 Q.3	(b) (c)	Example 1 2 3 4 Discuss the State the folial A Checker	Sky Sunny Sunny Rainy Sunny refeatures lowing prepare to	AirTemp Warm Warm Cold Warm of an unbia roblems wing problem Mathe data for	Non Hi Hi Table 2. ased Lear th respective ii) A Roll Indule — Machine	nidity rmal igh igh trner. t to Tasl obot driv 2 e Learni	Wind Strong Strong Strong Strong one of the strong learning learning algorians	Water Warm Warm Cool wrmance, ning prol	Forecast Same Same Change Change	Enjoy Sport Yes Yes No Yes	10 06 04

18AI61

			<u> </u>				
		OR	403.5				
	(a)	Using code snippets, outline the concepts involved in	10M				
		i) Measuring accuracy using Cross-Validation.					
0.4		ii) Confusion Matrix.					
Q.4		iii) Precision and Recall.	10M				
	(b)	With the code snippet explain how Multilabels classification different from multic Multioutput classification?					
		Module – 3					
Q.5	(a)	what is gradient descent algorithm and discuss its various types.	10M				
	(b)	In Regularized Linear Models illustrate the three different methods to constrain the weights.	10M				
		OR					
	(a)	With respect to Nonlinear SVM Classification, explain Polynomial Kernel Gaussian and RBF Kernel along with code snippet.	10M				
Q.6	(b)	Show that how SVMs make predictions using Quadratic Programming and Kernelized SVM.	10 M				
		Module – 4					
Q.7	(a)	With an example dataset examine how Decision Trees are used in making predictions.	10M 06M				
	(b)	Explain The CART Training Algorithm.					
	(c)	Identify the features of Regression and Instability w.r.t decision trees.	04M				
		OR					
	(a)	In context to Ensemble methods determine the concepts of	10M				
		i) Bagging and Pasting.					
Q.8		ii) Voting Classifiers.					
	(b)	Examine the following boosting methods along with code snippets.	10M				
	()	i) AdaBoost					
		ii) Gradient Boosting					
		Module – 5					
	(a)	Write Bayes theorem. Identify the relationship between Bayes theorem and the	10M				
		problem of concept learning?	407.7				
Q.9	(b)	Show that how Maximum Likelihood Hypothesis is helpful for predicting probabilities.	10M				
		OR					
	(a)	Construct Naïve Bayes Classifier with an Example.	10M				
Q.10	(b)	Derive the EM Algorithm in detail.	10M				

Ta	ble sl	nowing the Bloom's Tax	conomy L Outc		ome and Programme	
Question		Bloom's Taxonomy I attached	Level	Course Outcome	Programme Outcome	
Q.1	(a)	L1		CO1	PO1	
	(b)	L1		CO1	PO1	
	(c)	L2		CO1	PO1	
Q.2	(a)	L1		CO1	PO2	
	(b)	L2		CO1	PO2	
	(c)	L1		CO1	PO2	
Q.3	(a)	L2		CO1	PO3	
	(b)	L2		CO1	PO3	
Q.4	(a)	L2		CO1	PO3	
	(b)	L2		CO1	PO3	
Q.5	(a)	L2		CO2	PO3	
	(b)	L2		CO2	PO4	
Q.6	(a)	L1		CO2	PO5	
	(b)	L2		CO2	PO6	
Q.7	(a)	L4		CO2	PO9	
	(b)	L2	CO2		PO12	
	(c)	L3		CO2	PO5	
Q.8	(a)	L3		CO2	PO6	
	(b)	L4		CO2	PO9	
Q.9	(a)	L3		CO3	PO9	
	(b)	L3		CO3	PO4	
Q.10	(a)	L3		CO3	PO5	
	(b)	L3		CO3	PO12	
			Lower	order thinking skills		
Bloom's Taxonomy		Remembering(knowledge): <i>L</i> ₁		ension): L ₂	Applying (Application): L ₃	
Levels				order thinking skilled (Evaluation): L_5		
		Analyzing (Analysis): L_4	Creating (Synthesis): L_6			

