Package 'MetaLasso'

March 22, 2018

Type Package			
Title Integrative Generlized Linear Model for Group/Variable Selections over Multiple Studies			
Version 0.1.0			
Depends glmnet			
Author Quefeng Li Maintainer Quefeng Li <quefeng@email.unc.edu> Description A flexible variable selection tool that selects variables and groups of variables from multiple studies. It was bulit for a high-dimensional generalized linear model integrating data from multiple studies. An application of this tool is to select genes and pathways from multiple genomic data with various reponse types. For more details, see the reference below.</quefeng@email.unc.edu>			
			License GPL-2
			 Reference [1] Li, Q., Yu, M., and Wang, S. (2017). A Statistical Framework for Pathway and Gene Identification from Integrative Analysis. Journal of Multivariate Analysis, 156:1-17. [2] Li, Q., Wang, S., Huang, C., Yu, M., and Shao, J. (2014). Meta Analysis Based Variable Selection for Gene Expression Data. Biometrics, 70:872-880.
RoxygenNote 6.0.1			
R topics documented: grpmetalasso			
Index			
grpmetalasso Solve the group MetaLasso problem with a single tuning parameter			

Description

Jointly fit a generalized linear model with a group penalty over multiple datasets. It enables both group selections and within-group variable selections over multiple datasets. Fits linear, logistic and multinomial, poisson, and Cox regression models.

2 grpmetalasso

Usage

```
grpmetalasso(X.all, Y.all, obs, groups, lambda, family = c("gaussian",
  "binomial", "poisson", "multinomial", "cox", "mgaussian"), maxit = 100,
  tol = 0.001)
```

Arguments

X.all	a concatenated design matrix, of dimension $nobs*nvars$, where nobs is the total sample size over multiple datasets and nvars is the total number of variables.
Y.all	a concatenated response vector from all datasets
obs	a vector of sample sizes of multiple datasets
groups	a matrix, of dimension $ngrps*nvars$, indexing the group membership of variables. The (i,j) -th element of groups = 1, if the j -th variable belongs to the i -th group; = 0, otherwise. A variable is allowed to belong to multiple groups.
lambda	a tuning parameter of penalty
family	response type (see above)
maxit	maximal number of iterations allowed
tol	tolerance level of convergence

Details

The function minimizes -logLik + lambda * p(beta), where -logLik is the negative of the total log-Likelihood from all datasets, lambda is a single tuning parameter and p(beta) is a specific group penalty function enabling both group selections and within-group variable selections over multiple datasets. For more details of the penalty function, see the reference below.

Value

```
a list of following components
```

```
coe estimated coefficients in each dataset
grp.coe estimated group effects. For more details, see the reference below.
iteration number of iterations
converge TRUE if convergence is achieved
diff last step difference
```

References

Li, Q., Yu, M., and Wang, S. (2017). A Statistical Framework for Pathway and Gene Identification from Integrative Analysis. *Journal of Multivariate Analysis*, 156:1-17.

Examples

metalasso 3

```
<- p/5
                                             # number of pathways
nonzero <- 25
                                             # number of nonzero coefficients
means
         <- c(rep(8, 5), rep(8, 5),
               rep(-4, 5), rep(-4, 5), rep(-8, 5),
               rep(0, p - nonzero))
                                            # means of nonzero beta's
         <- c(rep(0.5, nonzero), rep(0, p - nonzero)) # sds of nonzero beta's
sig
groups <- matrix(rep(1, 5), nrow = 1) # group structure</pre>
for (i in 1:(K-1)) {
  groups <- dign(groups, matrix(rep(1, 5), nrow = 1))</pre>
## generate beta
beta <- NULL
for (i in 1:p){
 beta <- cbind(beta, rnorm(M, means[i], sig[i]))</pre>
## generate X.11 and Y.11
X.all <- NULL
Y.all <- NULL
for (m in 1:M){
  X.tmp <- matrix(scale(matrix(rnorm(n.m[m] * p), n.m[m], p)), n.m[m], p)</pre>
  X.all <- rbind(X.all, X.tmp)</pre>
  pb <- X.tmp %*% beta[m, ]</pre>
 pb \leftarrow exp(pb) / (1 + exp(pb))
 Y.tmp <- matrix(rbinom(n.m[m], 1, pb), ncol = 1)</pre>
  Y.all <- rbind(Y.all, Y.tmp)
}
Y.all <- as.vector(Y.all)
## range of tuning parameters
        <- 2^seq(-3, -1, len = 10)
BIC <- NULL
for (i in 1:length(lams)) {
 fit <- grpmetalasso(X.all, Y.all, obs = n.m, groups = groups, family = 'binomial', lambda = lams[i])</pre>
 BIC[i] <- bic(X.all, Y.all, n.m, fit$coe)</pre>
}
best.fit <- grpmetalasso(X.all, Y.all, obs = n.m, groups = groups, family = 'binomial',</pre>
                           lambda = which.min(BIC))
```

metalasso

Solve the MetaLasso problem with a single tuning parameter

Description

Jointly fit a generalized linear model with a penalty over multiple datasets. It enables heterogeneous variable selections in different datasets. Fits linear, logistic and multinomial, poisson, and Cox regression models.

Usage

```
metalasso(X.all, Y.all, obs, lambda, family = c("gaussian", "binomial",
   "poisson", "multinomial", "cox", "mgaussian"), maxit = 100, tol = 0.001)
```

4 metalasso

Arguments

X.all	a concatenated design matrix, of dimension $nobs*nvars$, where nobs is the total sample size over multiple datasets and nvars is the total number of variables.
Y.all	a concatenated response vector from all datasets
obs	a vector of sample sizes of multiple datasets
lambda	a tuning parameter of penalty
family	response type (see above)
maxit	maximal number of iterations allowed
tol	tolerance level of convergence

Details

The function minimizes -logLik + lambda * p(beta), where -logLik is the negative of the total log-Likelihood from all datasets, lambda is a single tuning parameter and p(beta) is a specific penalty function enabling heterogeneous selections of variables in different datasets. For more details of the penalty function, see the reference below.

Value

a list of the following components

coe estimated coefficients in each dataset

iteration number of iterations

converge TRUE if convergence is achieved

diff last step difference

References

Li, Q., Wang, S., Huang, C., Yu, M., and Shao, J. (2014). Meta Analysis Based Variable Selection for Gene Expression Data. *Biometrics*, 70:872-880.

Examples

```
n <- 50
p <- 100
  <- 5
obs <- rep(n, M)
X.all <- NULL
Y.all <- NULL
for (m in 1:M) {
    X.tmp <- matrix(scale(matrix(rnorm(obs[m] * p), obs[m], p)), obs[m], p)</pre>
    X.all <- rbind(X.all, X.tmp)</pre>
    beta <- c(1, -1, 2, -1, rep(0, p - 4))
        <- X.tmp %*% beta
    pb < - exp(pb) / (1 + exp(pb))
    Y.tmp <- matrix(rbinom(obs[m], 1, pb), ncol = 1)
    Y.all <- c(Y.all, Y.tmp)
}
lams <- seq(0.01, 0.08, len = 10)
```

metalasso 5

```
BIC <- NULL
for (j in 1:length(lams)) {
   fit <- metalasso(X.all, Y.all, obs, family = 'binomial', lambda = lams[j])
   BIC[j] <- bic(X.all, Y.all, obs, fit$coe)
}
best.fit <- metalasso(X.all, Y.all, obs, lambda = lams[which(BIC == min(BIC))], family = 'binomial')</pre>
```

Index

 ${\tt grpmetalasso}, 1$

metalasso, 3