1 Affine Varietäten

§1 Der Polynomring

Sei k ein Körper, $k[X_1, \ldots, X_n], n \geq 0$ der Polynomring über k in n Variablen.

Universelle Abbildungseigenschaft (UAE) des Polynomrings

Ist A eine k-Algebra und sind $a_1, \ldots, a_n \in A$, so gibt es genau einen k-Algebra-Homomorphismus $f: k[X_1, \ldots, X_n] \to A$ mit $f(X_i) = a_i$ für $i = 1, \ldots, n$.

Folgerung: Jede endlich erzeugte k-Algebra ist Faktorring eines Polynomrings.

$$n=1$$
, also $k[X]$

Euklidischer Algorithmus: Zu $f,g \in k[X], g \neq 0$ gibt es $q,r \in k[X]$ mit f = qg + r und deg(r) < deg(g) oder r = 0.

Folgerung: k[X] ist Hauptidealring.

Eindeutige Primfaktorzerlegung

 $k[X_1, \ldots, X_n]$ ist faktorieller Ring.

Folgerung: Jedes irreduzible Polynom erzeugt ein Primideal.

Hilbertscher Basissatz

 $k[X_1, \ldots, X_n]$ ist noethersch, d.h.

- Jedes Ideal ist endlich erzeugbar.
- Jede aufsteigende Kette von Idealen wird stationär.

§2 Die Zariski-Topologie

Sei k ein algebraisch abgeschlossener Körper.

Definition 1.2.1

Eine Teilmenge $V \subseteq k^n$ heißt **affine Varietät**, wenn es eine Menge von Polynomen $F \subseteq k[X_1, \ldots, X_n]$ gibt, so dass $V(F) = V = \{x = (x_1, \ldots, x_n) \in k^n : f(x) = 0 \text{ für alle } f \in F\}.$

Beispiele

- 1) n = 1: $V \subseteq k$ affine Varietät $\Leftrightarrow V$ endlich oder V = k
- 2) $f \in k[X_1, \ldots, X_n]$ linear (d.h. deg(f) = 1) $\Rightarrow V(f)$ ist affine Hyperebene.

 f_1, \ldots, f_r linear $\Rightarrow V(f_1, \ldots, f_r)$ ist affiner Unterraum. (Jeder affine Unterraum lässt sich so beschreiben.)

- 3) Quadriken sind affine Varietäten.
- 4) Lemniskate

$$C = \{P(x, y) \in \mathbb{R}^2 : d(P, P_1) = d(P, P_2) = c\}$$

für Punkte $P_1P_2 \in k^2, c > 0$.

Für $P_1(-1,0)$ und $P_2(1,0)$ ist C = V(f) mit $f = ((x+1)^2 + y^2)((x-1)^2 + y^2) - 1$. Dies ist aber keine affine Varietät, da das in \mathbb{C}^2 nicht klappt.

Bemerkung 1.2.2

- (i) Für $F_1 \subseteq F_2 \subseteq k[X_1, \dots, X_n]$ ist $V(F_1) \supseteq V(F_2)$.
- (ii) $V(f_1 \cdot f_2) = V(f_1) \cup V(f_2)$ und $V(f_1, f_2) = V(f_1) \cap V(f_2)$
- (iii) V(F) = V((F)) für das von F erzeugte Ideal $(F) \subset k[X_1, \dots, X_n]$
- (iv) $V(F) = V(\sqrt{F})$ für das von F erzeugte Radikalideal

$$\sqrt{(F)} = \{ g \in k[X_1, \dots, X_n] : \exists d > 0 \text{ mit } g^d \in (F) \}$$

(v) Zu jeder affinen Varietät $V \subseteq k^n$ gibt es endlich viele Polynome f_1, \ldots, f_r , so dass $V = V(f_1, \ldots, f_r)$, da jedes Ideal in $k[X_1, \ldots, X_n]$ endlich erzeugbar ist.

Beweis (iii) "
$$\subseteq$$
 " Sei $x \in V(F), g \in (F)$. Schreibe $g = a_1 f_1 + \cdots + a_r f_r$ mit $f_i \in F, a_i \in k[X_1, \ldots, X_n]$, dann ist $g(x) = a_1(x) f_1(x) + \cdots + a_r(x) f_r(x) = 0$.

Definition 1.2.3

- (i) Für eine Teilmenge $V \subseteq k^n$ heißt $I(V) := \{ f \in k[X_1, \dots, X_n] : f(x) = 0 \text{ für alle } x \in V \}$ das **Verschwindungsideal**.
- (ii) $A(V) := k[X_1, ..., X_n]/I(V)$ heißt **affiner Koordinatenring** von V. Für $f, g \in k[X_1, ..., X_n]$ gilt: $f|_V = g|_V \Leftrightarrow f - g \in I(V)$

Bemerkung 1.2.4

Für jede Teilmenge $V \subseteq k^n$ gilt:

- (i) I(V) ist Radikalideal,
- (ii) $V \subset V(I(V))$,
- (iii) V(I(V)) ist die kleinste Varietät, die V umfasst. Schreibweise: $V(I(V)) =: \overline{V}$.
- (iv) Sind V_1, V_2 affine Varietäten, so gilt:

$$V_1 \subseteq V_2 \Leftrightarrow I(V_1) \supseteq I(V_2)$$

Beweis (iii) Sei V' eine affine Varietät mit $V \subseteq V'$ und sei $I' \subseteq k[X_1, \ldots, X_n]$ ein Ideal mit V' = V(I'). Dann ist $I' \subseteq I(V) \Rightarrow V(I') \supseteq V(I(V))$.

(iv) "
$$\Leftarrow$$
" $I(V_1) \supseteq I(V_2) \Rightarrow V(I(V_1)) \subseteq V(I(V_2))$. Mit $V_1 = V(I(V_1))$ und $V_2 = V(I(V_2))$ folgt die Behauptung.

Bemerkung 1.2.5

Für jede Teilmenge $V \subseteq k^n$ gilt:

- (i) A(V) ist reduzierte k-Algebra, d.h. es gibt in A(V) keine nilpotenten Elemente (also $f^d \neq 0$ für alle $f \neq 0, d > 0$).
- (ii) Ist $V \subseteq V'$, so gibt es einen surjektiven k-Algebra-Homomorphismus $A(V') \longrightarrow A(V)$.

Beweis (i) Sei $g \in A(V), f \in k[X_1, ..., X_n]$ mit $\overline{f} = g$. Dann ist $(g^d = 0 \text{ (in } A(V)) \Leftrightarrow f^d \in I(V))$ und da I(V) Radikalideal ist, folgt $f \in I(V)$ und somit g = 0.

(ii) Es ist $I(V') \subseteq I(V)$, also

Definition + Satz 1.2.6

Die affinen Varietäten in k^n bilden die abgeschlossenen Mengen einer Topologie, der **Zariski-Topologie**.

Beweis • $k^n = V(0)$ und $\emptyset = V(1)$ sind affine Varietäten.

• Seien $V_1 = V(I_1)$ und $V_2 = V(I_2)$ affine Varietäten. Dann ist $V_1 \cup V_2 = V(I_1 \cdot I_2) = V(I_1 \cap I_2)$. Denn: " \subseteq " klar " \supseteq ": Sei $x \in V(I_1 \cdot I_2), x \notin V_1$. (Zu zeigen: $x \in V_2$)

Dann gibt es ein $f \in I_1$ mit $f(x) \neq 0$.

Da $x \in V(I_1 \cdot I_2)$ ist $f(x) \cdot g(x) = 0$ für alle $g \in I_2 \Rightarrow x \in V(I_2) = V_2$.

• Seien $V_i = V(I_i), i \in J$, affine Varietäten $\Rightarrow \bigcap_{i \in J} V_i = V(\sum_{i \in J} I_i)$.

Denn: " \supseteq " klar " \subseteq ": Sei $x \in \cap V_i$, $f \in \sum I_i$. Schreibe $f = a_1 f_1 + \cdots + a_r f_r$ mit $f_k \in I_{i_k}$, $a_k \in k[X_1, \ldots, X_n] \Rightarrow f(x) = a_1(x) \cdot 0 + \cdots + a_r(x) \cdot 0 = 0$

Bemerkung 1.2.7

- (i) Für $f \in k[X_1, \ldots, X_n] \setminus \{0\}$ ist $D(f) := k^n \setminus V(f)$ nichtleere offene Teilmenge von k^n .
- (ii) Die D(f) bilden eine Basis der Zariski-Topologie.

Beweis (ii) Zu zeigen: Jede offene Menge U ist Vereinigung von Mengen der Form D(f). Zeige dazu: Zu jedem $x \in U$ gibt es ein f mit $x \in D(f) \subseteq U$.

Sei $V = k^n \setminus U$, also V = V(I) für ein Ideal I. Da $x \notin V$, gibt es $f \in I$ mit $f(x) \neq 0 \Rightarrow x \in D(f)$. Weil $f \in I$, ist $V \cap D(f) = \emptyset \Rightarrow D(f) \subseteq U$

Bemerkung 1.2.8

Die Zariski-Topologie auf k^n ist nicht hausdorffsch.

Beweis Wegen 2.7 genügt es zu zeigen, dass $D(f) \cap D(g) \neq \emptyset$ für alle $f, g \in k[X_1, \dots, X_n] \setminus \{0\}$. Induktion über n:

 $\underline{n=1}$: V(f) und V(g) sind endlich $\Rightarrow D(f) \cap D(g) = k \setminus V(f \cdot g)$ ist unendlich.

 $\underline{n>1}$: Zerlege f und g in Primfaktoren (vgl. §1) und wähle $a\in k$, so dass (X_n-a) nicht Teiler von f oder g ist. Identifiziere $V(X_n-a)=\{(x_1,\ldots,x_n)\in k^n:x_n=a\}$ mit k^{n-1} .

Nach der Wahl von a sind $f|_{V(X_n-a)}$ und $g|_{V(X_n-a)}$ nicht identisch 0, also $f'=f(X_1,\ldots,X_{n-1},a)$ $\neq 0 \neq g(X_1,\ldots,X_{n-1},a) =: g'$ in $k[X_1,\ldots,X_n]$. Nach Induktionsvoraussetzung gibt es $x' \in k^{n-1}$ mit $f'(x') \neq 0 \neq g'(x') \Rightarrow$ Für $x=(x',a) \in k^n$ gilt $f(x)=f'(x') \neq 0 \neq g'(x') = g(x)$. \square

§3 Irreduzible Komponenten

Definition 1.3.1

- a) Ein topologischer Raum X heißt irreduzibel, wenn er nicht Vereinigung von zwei echten abgeschlossenen Teilmengen ist.
- b) Eine abgeschlossene Teilmenge von X heißt irreduzible Komponente, wenn sie irreduzibel ist (bzgl. der induzierten Topologie) und maximal (bzgl. Inklusion).

Proposition 1.3.2

Eine affine Varietät $V \subseteq k^n$ ist genau dann irreduzibel, wenn I(V) Primideal in $k[X_1, \ldots, X_n]$ ist. Das ist genau dann der Fall, wenn der affine Koordinatenring A(V) =: k[V] nullteilerfrei ist.

Beweis " \Rightarrow " Seien $f_1, f_2 \in k[X_1, \dots, X_n]$ mit $f_1 \cdot f_2 \in I(V)$. Sei $f_1 \notin I(V)$. Dann ist $V \not\subset V(f_1)$.

Nach Voraussetzung ist $V \subseteq V(f_1 \cdot f_2) = V(f_1) \cup V(f_2)$.

 $V \text{ irreduzibel} \Rightarrow V \subseteq V(f_2)$

 $\Rightarrow f_2(x) = 0$ für alle $x \in V$

 $\Rightarrow f_2 \in I(V)$.

"\(\subseteq "\) Sei $V = V_1 \cup V_2$ mit $V_i = V(I_i)$, i = 1, 2. Sei $V_1 \neq V$.

 $\Rightarrow V \not\subseteq V(I_1)$

 $\Rightarrow \exists x \in V \text{ und } f \in I_1 \text{ mit } f(x) \neq 0$

Also $f \notin I(V) \subseteq I(V_1)$

Andererseits ist $V = V(I_1) \cup V(I_2) = V(I_1 \cdot I_2) \Rightarrow I_1 \cdot I_2 \subseteq I(V)$

 $\Rightarrow f \cdot g(x) = 0$ für alle $g \in I_2$

I(V) prim und $f \notin I(V) \Rightarrow g \in I(V)$ für alle $g \in I_2$

 $\Rightarrow V_2 = V(I_2) \supseteq V(I(V)) = V$

Satz 1

Jede affine Varietät $V \in k^n$ hat eine Zerlegung in endlich viele irreduzible Komponenten. Diese Zerlegung ist eindeutig.

Beweis 1. Schritt V ist endliche Vereinigung von irreduziblen Untervarietäten.

Sei dazu \mathcal{B} die Menge der Varietäten in k^n , die nicht endliche Vereinigung von irreduziblen Untervarietäten sind. Sei weiter $\mathcal{J} := \{I(V) \mid V \in \mathcal{B}\}.$

Zu zeigen: $\mathcal{B} = \emptyset$

Annahme: $\mathcal{J} \neq \emptyset$. Dann enthält \mathcal{J} ein maximales Element $I_0 = I(V_0)$ für ein $V_0 \in \mathcal{B}$.

 $\Rightarrow V_0$ ist minimales Element in \mathcal{B} .

 $V_0 \in \mathcal{B} \Rightarrow V_0$ reduzibel

 $\Rightarrow V_0 = V_1 \cup V_2$ mit $V_1 \neq V_0 \neq V_2, V_i$ abgeschlossen

 $\Rightarrow V_i \notin \mathcal{B}, i = 1, 2 \text{ (da } V_0 \text{ minimales Element in } \mathcal{B})$

 $\Rightarrow V_i$ ist endliche Vereinigung von irreduziblen Untervarietäten

 $\Rightarrow V_0$ auch. Widerspruch!

2. Schritt "Irreduzible Komponenten"

Sei $V = V_1 \cup \cdots \cup V_n$ mit irreduziblen Varietäten V_1, \ldots, V_n .

Ohne Einschränkung sei $V_i \nsubseteq V_j$ für $i \neq j$.

Sei $W \subseteq V$ irreduzibel und $V_i \subseteq W$ für ein i.

Es ist $W = V \cap W = (V_1 \cup \cdots \cup V_n) \cap W = (V_1 \cap W) \cup \cdots \cup (V_n \cap W)$

 $W \text{ irreduzibel} \Rightarrow \exists i \text{ mit}$

$$V_j \cap W = W \Rightarrow V_i \subseteq W = W \cap V_j \subseteq V_j \Rightarrow i = j \text{ und } W = V_i$$

 $\Rightarrow V_1, \dots, V_n$ sind irreduzible Komponenten von V.

Genauso: $W \subseteq V$ irreduzible Komponente $\Rightarrow \exists j : W \subseteq V_j$,

 $da W maximal \Rightarrow Zerlegung eindeutig.$

Beispiele 1.3.3

$$f = y^2 - x(x-1)(x+1) \in \mathbb{R}[x,y]$$
 $E := V(f)$

§4 Der Hilbertsche Nullstellensatz

Satz 2 (Hilbertscher Nullstellensatz)

Sei k ein Körper, $n \geq 1, m \subseteq k[X_1, \ldots, X_n]$ maximales Ideal. Dann ist $L = k[X_1, \ldots, X_n]/m$ eine endlich erzeugte Körpererweiterung von k.

Beweis Siehe Algebra II, Theorem 4.

Folgerung 1.4.1

Ist k algebraisch abgeschlossen, so entsprechen die maximalen Ideale in $k[X_1, \ldots, X_n]$ bijektiv den Punkten in k^n .

Beweis

 $x = (x_1, \ldots, x_n) \mapsto (X_1 - x_1, \ldots, X_n - x_n)$ (maximal, da Faktorring Körper) ist eine injektive Zuordnung $\varphi : k^n \to m$ -Spec $(k[X_1, \ldots, X_n])$ (= Menge der Maximalideale). φ surjektiv:

Sei $m \in m$ -Spec $(k[X_1, \ldots, X_n]), \alpha : k[X_1, \ldots, X_n]/m \to k$ der Isomorphismus, den es nach Satz 2 gibt. (Das ist tatsächlich ein Isomorphismus, da k algebraisch abgeschlossen ist und somit jede endliche Erweiterung von k wieder k selbst ist.)

$$\Rightarrow X_i - \alpha(X_i) \in m, i = 1, \dots, n \text{ (da } \alpha \in \operatorname{Hom}_k \Rightarrow \alpha(X_i - \alpha(X_i)) = 0)$$

$$\Rightarrow (X_1 - \alpha(X_1), \dots, X_n - \alpha(X_n)) \subseteq m$$

Folgerung 1.4.2 (Schwacher Nullstellensatz)

Für jedes echte Ideal $I \subseteq k[X_1, \dots, X_n]$ ist $V(I) \neq \emptyset$.

Beweis
$$I \subseteq m$$
 für ein maximales Ideal $m \Rightarrow V(I) \supseteq V(m) \neq \emptyset$

Sei jetzt k algebraisch abgeschlossen, $n \geq 1$, und

$$\mathcal{V}_n := \{ V \subseteq k^n \mid V \text{ affine Variet"} at \}$$

$$\mathcal{I}_n := \{ I \subseteq k[X_1, \dots, X_n] \mid I \text{ Radikalideal} \}$$

Satz 3 (Hilbertscher Nullstellensatz)

Die Zuordnungen

$$V: \mathcal{I}_n \to \mathcal{V}_n, \quad I \mapsto V(I)$$

 $I: \mathcal{V}_n \to \mathcal{I}_n, \quad V \mapsto I(V)$

sind bijektiv und zueinander invers.

Beweis Zu zeigen: (1) V(I(V)) = V für jedes $V \in \mathcal{V}_n$

- (2) I(V(I)) = I für jedes $I \in \mathcal{I}_n$
- (1): Ist Bemerkung 2.4 (iii).
- (2): Zeige: $I(V(I)) = \sqrt{I}$ für jedes Ideal $I \subseteq k[X_1, \dots, X_n]$.

 $\underline{\underline{\text{"}\subseteq\text{"}}}$: Sei $g \in I(V(I))$, seien f_1, \ldots, f_m Erzeuger von I.

 $\overline{\text{Zu zeigen:}} \ \exists d: g^d = \sum_{i=1}^m a_i f_i \ \text{für gewisse} \ a_i \in k[X_1, \dots, X_n].$

Betrachte in $k[X_1, \ldots, X_n, Y]$ das von f_1, \ldots, f_m und gY - 1 erzeugte Ideal J.

Es ist $V(J) = \emptyset$

Schwacher Nullstellensatz $\Rightarrow J = k[X_1, \dots, X_n, Y]$

$$\Rightarrow \exists b_i, b \in k[X_1, \dots, X_n, Y] \text{ sodass } 1 = \sum_{i=1}^m b_i f_i + b(gY - 1)$$

In $R := k[X_1, ..., X_n, Y]/(gY - 1)$ gilt also

 $1 = \sum_{i=1}^m b_i f_i \ (b_i \in k[X_1, \dots, X_n, \frac{1}{g}]$ die Restklasse von b_i). Multipliziere mit Hauptnenner g^d . \square

Bemerkung 1.4.3

Sei k algebraisch abgeschlossen, $V \subseteq k^n$ eine affine Varietät. Dann entsprechen die Punkte in V bijektiv den maximalen Idealen in k[V] (= $k[X_1, \ldots, X_n]/I(V)$).

Beweis Die maximalen Ideale in k[V] entsprechen bijektiv denjenigen maximalen Idealen in $k[X_1, \ldots, X_n]$, die I(V) umfassen, also nach 4.1 den Punkten (x_1, \ldots, x_n) , für die $(X_1 - x_1, \ldots, X_n - x_n) \supseteq I(V)$ ist

$$\Leftrightarrow \underbrace{V(X_1 - x_1, \dots, X_n - x_n)}_{\{(x_1, \dots, x_n)\}} \subseteq V(I(V)) = V$$

§5 Morphismen

Definition + Bemerkung 1.5.1

- (a) Sei k algebraisch abgeschlossener Körper, $V \subseteq k^n$ und $W \subseteq k^m$ affine Varietäten. Eine Abbildung $f: V \to W$ heißt **Morphismus**, wenn es Polynome $f_1, \ldots, f_m \in k[X_1, \ldots, X_n]$ gibt, so dass $f(x) = (f_1(x), \ldots, f_m(x))$ für jedes $x \in V$.
- (b) Jeder Morphismus $V \to W$ ist Einschränkung eines Morphismus $k^n \to k^m$.
- (c) Die affinen Varietäten über k bilden zusammen mit den Morphismen aus (a) eine Kategorie Aff(k). Als Objekte von Aff(k) bezeichnen wir k^n mit $\mathbb{A}^n(k)$.

Beispiele 1.5.2

- (1) Projektionen und Einbettungen $\mathbb{A}^n(k) \to \mathbb{A}^m(k)$.
- (2) Jedes $f \in k[X_1, \dots, X_n]$ ist Morphismus $\mathbb{A}^n(k) \to \mathbb{A}^1(k)$.

(3)
$$V = \mathbb{A}^1(k), W = V(Y^2 - X^3) \subseteq \mathbb{A}^2(k)$$
 ("Neilsche Parabel")

 $f: V \to W, x \mapsto (x^2, x^3)$ ist Morphismus.

fist bijektiv: injektiv $\sqrt{}$

surjektiv: Sei $(x,y) \in W \setminus \{(0,0)\}$, d.h. $y^2 = x^3$

Dann ist
$$(x,y) = f(\frac{y}{x}) = ((\frac{y}{x})^2, (\frac{y}{x})^3) = (\frac{x^3}{x^2}, \frac{y^3}{y^2}), f(0) = (0,0)$$

Umkehrabbildung:

$$g(x,y) = \begin{cases} 0 & (x,y) = (0,0) \\ \frac{y}{x} & sonst \end{cases}$$
 ist kein Morphismus.

(4) Sei char $(k) = p > 0.f : \mathbb{A}^n(k) \to \mathbb{A}^n(k), (x_1, \dots, x_n) \mapsto (x_1^p, \dots, x_n^p)$, heißt Frobenius-Morphismus. f ist bijektiv, aber kein Isomorphismus. Die Fixpunkte von f sind die Elemente von $\mathbb{A}^n(\mathbb{F}_p)$.

Bemerkung 1.5.3

Morphismen sind stetig bezüglich der Zariski-Topologie.

Beweis Ohne Einschränkung sei $f: \mathbb{A}^n(k) \to \mathbb{A}^m(k)$. Sei $V \subseteq \mathbb{A}^m(k)$ abgeschlossen, V = V(I) für ein Radikalideal $I \subseteq k[X_1, \dots, X_n]$. Zu zeigen: $f^{-1}(V)$ abgeschlossen in $\mathbb{A}^n(k)$.

Genauer gilt:
$$f^{-1}(V) = V(J)$$
 mit $J = \{g \circ f \mid g \in I\}$

denn:
$$x \in f^{-1}(V) \Leftrightarrow f(x) \in V \Leftrightarrow g(f(x)) = 0$$
 für alle $g \in I \Leftrightarrow x \in V(J)$

Bemerkung 1.5.4

Jeder Morphismus $f: V \to W$ induziert einen k-Algebra-Homomorphismus $f^{\sharp}: k[W] \to k[V]$ (durch Hintereinanderschalten).

Genauer: Sei $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$

$$k[X_1, \dots, X_m] \xrightarrow{g \mapsto g \circ f} k[X_1, \dots, X_n]$$

$$\downarrow \qquad \qquad \downarrow$$

$$k[W] = k[X_1, \dots, X_m]/I(W) \xrightarrow{f^{\sharp}} k[X_1, \dots, X_n]/I(V) = k[V]$$

 f^{\sharp} existiert, weil für alle $g \in I(W)$ gilt: $g \circ f(x) = g(f(x)) = 0$ für alle $x \in V$

Proposition 1.5.5

Sei $f:V\to W$ ein Morphismus von affinen Varietäten, $\alpha:=f^{\sharp}:k[W]\to k[V]$ der induzierte k-Algebra-Homomorphismus. Seien $x\in V,\ y\in W$ und $m_x\subset k[V],\ m_y\subset k[W]$ die Verschwindungsideale zum jeweiligen Punkt. Dann gilt:

$$f(x) = y \Leftrightarrow \alpha^{-1}(m_x) = m_y$$

Beweis "
$$\Rightarrow$$
" $g \in m_y \Leftrightarrow g(y) = 0 \Rightarrow g \circ f(x) = 0 \Leftrightarrow \underbrace{g \circ f}_{=\alpha(g)} \in m_x \Leftrightarrow g \in \alpha^{-1}(m_x) \Leftrightarrow m_y \subseteq g \circ f(x) = 0$

 $\alpha^{-1}(m_x)$. Gleichheit folgt daraus, dass m_y maximales Ideal ist.

<u>"\("\)</u> Wäre $f(x) \neq y$, dann gäbe es ein $g \in k[W]$ mit g(f(x)) = 0 und g(y) = 1.

Andererseits:

$$\alpha(g)(x) = (g \circ f)(x) = g(f(x)) = 0 \Leftrightarrow \alpha(g) \in m_x \Leftrightarrow g \in \alpha^{-1}(m_x) = m_y \Leftrightarrow g(y) = 0$$

Satz 4

Sei k ein algebraisch abgeschlossener Körper. Dann ist

$$\Phi: \underline{Aff} \longrightarrow \underline{k} - \underline{Alg}^{\circ}$$

$$V \longmapsto k[V]$$

$$f \longmapsto f^{\sharp}$$

eine kontravariante Äquivalenz von Kategorien. Hierbei bezeichnet \underline{k} -Alg $^{\circ}$ die Kategorie der endlich erzeugten, reduzierten k-Algebren.

Beweis Φ ist ein Funktor: $\sqrt{}$

Definiere Umkehrfunktor Ψ :

(i) Sei $A \in k - Alg^{\circ}, a_1, \dots, a_n$ Erzeuger von A

 $\Rightarrow p_A: k[X_1,\ldots,X_n] \to A, X_i \mapsto a_i \text{ ist surjektiver } k\text{-Algebra-Homomorphismus.}$

Sei $I_A := \text{Kern}(p_A)$ (Radikalideal).

 $\Psi(A) := V(I_A) \subseteq k^n$ affine Varietät mit $k[V(I_A)] \cong A$.

(ii) Sei $\alpha: A \to B$ k-Algebra-Homomorphismus in $k - \text{Alg}^{\circ}$.

Definiere die Abbildung $f_{\alpha} := V(I_B) \to V(I_A)$ durch $f_{\alpha}(y) = x$, falls $m_x = \alpha^{-1}(m_y)$. Diese ist wohldefiniert aufgrund der folgenden

Proposition 1.5.6

Sei $\alpha:A\to B$ ein Homomorphismus von endlich erzeugten k-Algebren, $m\subset B$ ein maximales Ideal. Dann ist $\alpha^{-1}(m)\subset A$ ein maximales Ideal.

(Beispiel.: Für $\alpha : \mathbb{Z} \to \mathbb{Q}$ ist $\alpha^{-1}(\{0\})$ kein maximales Ideal.)

Beweis

$$A \xrightarrow{\alpha} B \downarrow \qquad \downarrow \downarrow$$

$$A/\alpha^{-1}(m) \xrightarrow{\overline{\alpha}} B/m$$

 α induziert einen injektiven k-Algebra-Homomorphismus $\overline{\alpha}$. Nach dem HNS ist B/m=k. k hat keine echte k-Unteralgebra $\Rightarrow A/\alpha^{-1}(m)=k$.

Ende des Beweises des Satzes Noch zu zeigen: $f_{\alpha}: V(I_B) \to V(I_A)$ ist ein Morphismus. Schreibe dazu $A \cong k[X_1, \dots, X_n]/I_A$, $B = k[Y_1, \dots, Y_m]/I_B$.

$$k[X_1, \dots, X_n] \xrightarrow{\tilde{\alpha}} k[Y_1, \dots, Y_m]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \xrightarrow{\alpha} B$$

Bastle Lift $\tilde{\alpha}$ von α :

 $\tilde{\alpha}(X_i) = f_i \text{ mit } \overline{f_i} = \alpha(\overline{X_i})$

Beh.: Für $y \in V(I_B)$ ist $f_{\alpha}(y) = (f_1(y), \dots, f_n(y))$.

<u>Denn</u>: Sei $y = (y_1, \ldots, y_m)$, dann ist m_y das Bild in B von $M_y = (Y_1 - y_1, \ldots, Y_m - y_m) \Rightarrow \alpha^{-1}(m_y)$ ist das Bild in A von $\tilde{\alpha}^{-1}(M_y) = (X_1 - f_1(y), \ldots, X_n - f_n(y))$.

Nachrechnen: $\Phi \circ \Psi \cong \mathrm{id}_{k-\mathrm{Alg}^{\circ}}, \quad \Psi \circ \Phi \cong \mathrm{id}_{\mathrm{Aff}(k)}$

§6 Reguläre Funktionen

Bemerkung 1.6.1

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät. Dann gilt für $h \in k[X_1, \dots, X_n]$: \overline{h} ist Einheit in $k[V] \Leftrightarrow V(h) \cap V = \emptyset$

Beweis
$$V(h) \cap V = \emptyset \Leftrightarrow (h) + I(V) = k[X_1, \dots, X_n]$$

 $\Leftrightarrow 1 = g \cdot h + f \text{ für } g \in k[X_1, \dots, X_n] \text{ und } f \in I(V)$
 $\Leftrightarrow 1 = \overline{g} \cdot \overline{h} \text{ in } k[V].$

Definition 1.6.2

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $U \subseteq V$ offen.

a) Eine Abbildung $f: U \to \mathbb{A}^1(k)$ heißt **reguläre Funktion** auf U, wenn es zu jedem $x \in U$ eine Umgebung $U(x) \subseteq U$ und $g_x, h_x \in k[V]$ gibt mit $h_x(y) \neq 0$ für alle $y \in U(x)$ und $f(x) = \frac{g_x(y)}{h_x(y)}$ für alle $y \in U(x)$.

b) Eine Abbildung $f: U \to U'$ mit $U' \subseteq \mathbb{A}^m(k)$ offen heißt **Morphismus**, wenn es reguläre Funktionen f_1, \ldots, f_m auf U gibt mit $f(x) = (f_1(x), \ldots, f_m(x))$.

Beispiele 1.6.3

 $\frac{1}{x}$ ist eine reguläre Funktion auf $k \setminus \{0\}$.

Dann ist $U \to \mathbb{A}^2(k)$, $x \mapsto (x, \frac{1}{x})$ ein Isomorphismus mit Bild V(XY-1).

Definition 1.6.4

a) Eine **Prägarbe** besteht aus einer k-Algebra $\mathcal{O}(U)$ für jede offene Menge $U\subseteq V$ zusammen mit k-Algebra-Homomorphismen

$$\rho_{UU'}: \mathcal{O}(U) \to \mathcal{O}(U') \quad \forall U' \subseteq U \text{ offen}$$

so dass $\rho_{UU''} = \rho_{U'U''} \circ \rho_{UU'}$ für $U'' \subseteq U' \subseteq U$ gilt.

b) Eine Prägarbe heißt *Garbe*, falls zusätzlich noch folgende Bedingungen gelten:

Sei $U \subseteq V$ offen und $(U_i)_{i \in I}$ eine offene Überdeckung von U.

- (i) Ist $f \in \mathcal{O}(U)$ und $\rho_{UU'}(f) =: f|_{U_i} = 0$ für alle $i \in I$, so ist f = 0.
- (ii) Ist für jedes $i \in I$ ein $f_i \in \mathcal{O}(U_i)$ gegeben, so dass für alle $i, j \in I$ gilt $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$, so gibt es $f \in \mathcal{O}(U)$ mit $f|_{U_i} = f_i$ für jedes $i \in I$.

Bemerkung 1.6.5

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät.

(a) Für jedes offene $U \subseteq V$ ist

$$\mathcal{O}(U) := \{ f : U \to k \mid f \text{ regulär} \}$$

eine k-Algebra.

- (b) $f \mapsto \frac{f}{1}$ ist ein k-Algebra-Homomorphismus $k[V] \to \mathcal{O}(U)$ für jedes offene $U \subseteq V$. Dieser ist injektiv, falls U dicht in V ist. Dies ist für alle $\emptyset \neq U$ der Fall, wenn V irreduzibel ist. (Gegenbsp.: $V(X \cdot Y)$, U = D(x), f = y)
- (c) Die Zuordnung $U \mapsto \mathcal{O}(U)$ ist eine Garbe $\mathcal{O} = \mathcal{O}_V$ von k-Algebren auf V.

Beweis Seien $f_1, f_2 \in \mathcal{O}(U)$. Ohne Einschränkung sei $U_1(x) = U_2(x) =: U(x)$ für alle $x \in U$. Sei $f_i = \frac{g_{i,x}}{h_{i,x}}$ auf U(x).

 $\Rightarrow h_{1,x}(y) \cdot h_{2,x}(y) \neq 0$ für alle $y \in U(x) \Rightarrow f_1 \pm f_2$ und $f_1 \cdot f_2$ sind reguläre Funktionen. Mit $h_x = 1$ und $g_x = f$ für alle x ist jedes $f \in k[V]$ reguläre Funktion auf jedem offenen U. \square

Proposition 1.6.6

Für jede affine Varietät $V \subseteq \mathbb{A}^n(k)$ gilt $\mathcal{O}(V) = k[V]$.

Beweis Nach Bem. 1.6.5(b) ist $k[V] \to \mathcal{O}(V)$ injektiv, also gilt ohne Einschränkung $k[V] \subseteq \mathcal{O}(V)$.

Sei zunächst V irreduzibel: Sei $f \in \mathcal{O}(V), x_i \in V, i = 1, 2, U_i \subseteq V$ offene Umgebungen von x_i , auf denen $f(y) = \frac{g_i(y)}{h_i(y)}$ gilt für geeignete $g_i, h_i \in k[V], h_i(y) \neq 0 \ \forall y \in U_i$.

Dann ist $U := U_1 \cap U_2$ offen <u>und dicht</u> in $V \Rightarrow g_1h_2 - g_2h_1 \in I(U)$ (weil $\frac{g_1(y)}{h_1(y)} = f(y) = \frac{g_2(y)}{h_2(y)}$ für alle $y \in U$).

Mit $V(I(U)) = \overline{U} = V$ folgt $g_1 h_2 = g_2 h_1$ in $k[V] \Rightarrow \frac{g_1}{h_1} = \frac{g_2}{h_2}$ auf $U_1 \cap U_2$, d.h. $\exists g, h \in k[V]$ mit $\frac{g_i}{h_i} = \frac{g}{h}, i = 1, 2$.

Ist V zusammenhängend, so sei $V = V_1 \cup \cdots \cup V_r$ die Zerlegung in irreduzible Komponenten. Die Argumentation ist die gleiche, allerdings für $x \in V_1 \cap V_i$ (V_i geeignet).

Ist $V = V_1 \stackrel{.}{\cup} V_2$ disjunkte Vereinigung von affinen Varietäten V_1, V_2 , so ist

 $\mathcal{O}(V) = \mathcal{O}(V_1) \oplus \mathcal{O}(V_2)$ (folgt aus der Definition von regulären Funktionen) und $k[V] = k[V_1] \oplus k[V_2]$ (Übung).

Proposition 1.6.7

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $f \in k[V]$. Dann ist $\mathcal{O}(D(f)) \cong k[V]_f$ (Lokalisierung von k[V] nach dem multiplikativen System $S = \{f^d : d \geq 0\}$, d.h.: $k[V]_f := \{\frac{g}{f^m} \mid g \in k[V], m \geq 0\}$). D(f) ist als offene Teilmenge von V zu interpretieren.

Beispiele 1.6.8

1)
$$V = \mathbb{A}^1(k), \quad f = x, \quad D(f) = k \setminus \{0\}$$

$$\mathcal{O}(D(f)) = \{\frac{g}{h} : g, h \in k[X] \text{ mit } h(x) \neq 0 \text{ für alle } x \neq 0\}$$

$$= \{\frac{g}{x^d} : g \in k[X], d \geq 0\}$$
2) $V = V(x \cdot y) \subseteq \mathbb{A}^2(k), f = x \in k[V] = k[X, Y]/(X \cdot Y)$

$$D(f) = V - V(x) = x\text{-Achse ohne die } 0$$

$$k[V]_x = \{\frac{g}{x^d} : g \in k[V], d \geq 0\}/ \sim \text{mit der Äquivalenzrelation } \frac{g}{x^d} \sim 0 \Leftrightarrow \exists d' \geq 0 \text{ mit } x^{d'} \cdot g = 0 \Leftrightarrow g = y \cdot g' \text{ für ein } g' \in k[V] \Rightarrow \text{Kern}(k[V] \to k[V]_x) = (y) \Rightarrow k[V]_x \cong k[X]_x.$$

Beweis Sei I = I(V), also $k[V] \cong k[X_1, \dots, X_n]/I$. Sei weiter $\tilde{f} \in k[X_1, \dots, X_n]$ Repräsentant von f.

Beh.:
$$D(f)$$
 ist isomorph zu einer affinen Varietät $W := V(\underbrace{I + (\tilde{f}X_{n+1} - 1)}) \subseteq \mathbb{A}^{n+1}(k)$

Beweis: Übung (Blatt 4, A.3).

Nach Prop. 6.4:
$$\mathcal{O}(D(f)) \cong \mathcal{O}(W) = k[W] = k[X_1, ..., X_{n+1}]/\tilde{I}$$

Sei
$$\alpha: k[X_1, \dots, X_{n+1}] \to k[V]_f$$
 der durch $x_i \mapsto \begin{cases} x_i : i = 1, \dots, n \\ \frac{1}{f} : i = n+1 \end{cases}$ erzeugte Homomorphismus.

Beh.: $\operatorname{Kern}(\alpha) = \tilde{I}$

"
\(\sigma^{\cup v} \) induziert einen Homomorphismus: \(\tilde{\alpha} : \bigver_{k[V][X_{n+1}]} \) / \(\tilde{I} \to k[V]_f \)

zu zeigen ist also: A k-Algebra, $f \in A$ $\alpha: A[X] \to A_f$, so ist $\operatorname{Kern}(\alpha) = (Xf - 1)$.

Nachtrag

Behauptung

Für $x \in V$ ist $f_{\alpha}(x) = (f_1(x), \dots, f_n(x)) =: y$. Noch zu zeigen: $\alpha^{-1}(m_x) = m_y$. Es ist $m_y = \overline{(Y_1 - f_1(x), \dots, Y_m - f_m(x))}$. Dann ist $\alpha(m_y)$ das von $\overline{\tilde{\alpha}(Y_i) - f_i(x)}$, $i = 1, \dots, n$ erzeugte Ideal. Also:

$$\Rightarrow \alpha(m_y) \subseteq m_x$$
$$\Rightarrow m_y \subseteq \alpha^{-1}(m_x)$$
$$\Rightarrow m_y = \alpha^{-1}(m_x)$$

Proposition 1.6.9

Seien $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$ affine Varietäten und $U_1 \subseteq V, U_2 \subseteq W$ offen. Dann gilt: Eine Abbildung $f: U_1 \longrightarrow U_2$ ist genau dann ein Morphismus, wenn f stetig ist und für jedes offene $U \subseteq U_2$ gilt:

$$g \circ f \in \mathcal{O}(f^{-1}(U))$$
 für jedes $g \in \mathcal{O}(U)$

Beweis " \Rightarrow " f ist stetig nach 1.5.3. Seien $g \in \mathcal{O}(U), x \in f^{-1}(U), U'$ Umgebung von f(x), sodass $g(y) = \frac{h_1(y)}{h_2(y)}$ für alle $y \in U'$, wobei $h_1, h_2 \in k[W], h_2(y) \neq 0$ für alle $y \in U'$. Daraus folgt für $z \in f^{-1}(U')$:

$$g \circ f(z) = \frac{h_1(f(z))}{h_2(f(z))} = (*)$$

weil f ein Morphismus ist, gilt $f(z) = \left(\frac{a_1(z)}{b_1(z)}, \dots, \frac{a_m(z)}{b_m(z)}\right)$ für geeignete $a_i, b_i \in k[V]$ und \times alle $z \in f^{-1}(U')$ und damit

$$(*) = \frac{h_1\left(\frac{a_1(z)}{b_1(z)}, \dots, \frac{a_m(z)}{b_m(z)}\right)}{h_2\left(\frac{a_1(z)}{b_1(z)}, \dots, \frac{a_m(z)}{b_m(z)}\right)} =: \frac{\tilde{h}_1}{\tilde{h}_2}(z), \text{ mit } \tilde{h}_i \in k[V].$$

"\(\infty\) Seien $x \in U_1$ und $U \subseteq W$ eine offene Umgebung von $f(x) \Rightarrow f^{-1}(U) \subseteq V$ ist offen. Sei $p_i: U \longrightarrow k$ die *i*-te Koordinatenfunktion, also $p_i(y_1, \ldots, y_m) = y_i, i = 1, \ldots, m$. Nach Voraussetzung ist $p_i \circ f \in \mathcal{O}(f^{-1}(U)), i = 1, \ldots, m$. Also gibt es $g_i, h_i \in k[V]$ mit $p_i \circ f(y) = \frac{g_i(y)}{h_i(y)}$ für alle y in einer geeigneten Umgebung von x.

$$\Rightarrow f(z) = \left(\frac{g_1(z)}{h_1(z)}, \dots, \frac{g_m(z)}{h_m(z)}\right) \Rightarrow f \text{ ist ein Morphismus.}$$

Definition 1.6.10

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät und irreduzibel. Dann heißt $k(V) := \operatorname{Quot}(k[V])$ Funktionenkörper von V.

Beispiele 1.6.11

(a)
$$V = \mathbb{A}^n(k) \Rightarrow k(V) = k(X_1, \dots, X_n)$$

(b)
$$V = V(Y^2 - X^2) \subseteq \mathbb{A}^2(k)$$

 $k[V] = k[X, Y]/(Y^2 - X^2) \cong k[T^2, T^3] \subseteq k[T]$
 $\Rightarrow k(V) \cong k(T)$

Proposition 1.6.12

Sei $f:V\longrightarrow W$ ein Morphismus von irreduziblen affinen Varietäten.

- (a) f induziert genau dann einen Körperhomomorphismus $\varphi_f: k(W) \longrightarrow k(V)$, der den k-Algebrenhomomorphismus $f^{\sharp}: k[W] \longrightarrow k[V]$ fortsetzt, wenn f^{\sharp} injektiv ist.
- (b) f^{\sharp} ist genau dann injektiv, wenn f(V) dicht in W ist (in diesem Fall heißt f **dominant**).

Beweis

- (a) $k(W) = \operatorname{Quot}(k[W])$. Für $x = \frac{a}{b} \in k(W)$ mit $a, b \in k[W], b \neq 0$ muss gelten $\varphi_f(x) = \frac{f^{\sharp}(a)}{f^{\sharp}(b)}$. Das ist wohldefiniert $\Leftrightarrow f^{\sharp}(b) \neq 0$ für alle $b \neq 0$.
- (b) Sei $\alpha:=f^{\sharp}:k[W]\longrightarrow k[V],\ Z\subseteq V,$ dann gilt $\alpha^{-1}(I(Z))=I(f(Z)),$ denn:

$$g \in \alpha^{-1}(I(Z))$$

$$\Leftrightarrow \forall z \in Z : \alpha(g)(z) = 0$$

$$\Leftrightarrow \forall z \in Z : (g \circ f)(z) = 0$$

$$\Leftrightarrow g \in I(f(Z))$$

Für
$$Z=V$$
 heißt das: $\operatorname{Kern}(\alpha)=\alpha^{-1}(0)=\alpha^{-1}(I(V))=I(f(V)).$ Also: $\operatorname{Kern}(\alpha)=0\Leftrightarrow I(f(V))=0\Leftrightarrow V(I(f(V)))=\overline{f(V)}=W$

§7 Rationale Abbildungen

Definition + Bemerkung 1.7.1

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät.

- (a) Eine **rationale Funktion** auf V ist eine Äquivalenzklasse von Paaren (U, f), wobei $U \subseteq V$ offen und dicht und $f \in \mathcal{O}(U)$ ist. Dabei sei $(U, f) \sim (U', f') :\Leftrightarrow f|_{U \cap U'} = f'|_{U \cap U'}$
- (b) In jeder Äquivalenzklasse [(U', f')] gibt es ein (bezüglich " \subseteq ") maximales Element (U, f), dessen U **Definitionsbereich** der rationalen Funktion heißt. $V \setminus U$ heißt Pol(stellen)menge.
- (c) Die rationalen Funktionen auf V bilden eine k-Algebra Rat(V).
- (d) Ist V irreduzibel, so ist $Rat(V) \cong k(V)$.

Beweis (a) \sim ist transitiv: Seien $(U, f) \sim (U', f'), (U', f') \sim (U'', f''),$ dann folgt: $f|_{U \cap U' \cap U''} = f''|_{|U \cap U'' \cap U''}$. Da $U \cap U' \cap U''$ dicht in V ist, ist dann auch $f|_{U \cap U''} = f''|_{|U \cap U''}$.

- (b) Ist $(U, f) \sim (U', f')$, so definiere auf $U \cup U'$ eine Funktion \tilde{f} durch $\tilde{f}(x) = \begin{cases} f(x) & x \in U \\ f'(x) & x \in U' \end{cases}$. Dann ist $\tilde{f} \in \mathcal{O}(U \cup U')$.
- (c) $f \pm g, f \cdot g$ sind reguläre Funktionen auf $U \cap U'$, wobei (U, f) und (U', g) Repräsentanten sind.
- (d) $\frac{g}{h} \in k(V)$ ist eine reguläre Funktion auf D(h). D(h) liegt dicht in V, weil V irreduzibel ist. Es folgt: $\frac{g}{h} \mapsto (D(h), \frac{g}{h})$ ist ein wohldefinierter k-Algebrenhomomorphismus $\alpha : k(V) \longrightarrow \operatorname{Rat}(V)$.

 α ist surjektiv, denn:

Sei (U, f) ein Repräsentant einer rationalen Funktion auf V. Dann gibt es offenes $U' \subseteq U$ und $g, h \in k[V]$ mit $f(x) = \frac{g(x)}{h(x)}$ für alle $x \in U'$. Da V irreduzibel ist, ist U' dicht in V. Also ist $\alpha(\frac{g}{h})$ gleich der Klasse $(U', \frac{g}{h})$, was gleich der Klasse von (U, f) ist. \square

Definition + Bemerkung 1.7.2

Seien $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$ affine Varietäten.

- (a) Eine **rationale Abbildung** $f: V \longrightarrow W$ ist eine Äquivalenzklasse von Paaren (U, f_U) , wobei $U \subseteq V$ offen und dicht ist und $f_U: U \longrightarrow W$ ein Morphismus ist; dabei sei $(U, f_U) \sim (U', f'_U) :\Leftrightarrow f_U|_{U \cap U'} = f_{U'}|_{|U \cap U'}$.
- (b) Rationale Funktionen sind rationale Abbildungen $V \longrightarrow \mathbb{A}^1(k)$.
- (c) Jede rationale Abbildung hat einen maximalen Definitionsbereich.
- (d) Die Komposition von dominanten rationalen Abbildungen ist wieder eine dominante rationale Abbildung wegen $\overline{f(U)} = \overline{f(\overline{U})}$.
- (e) Jede dominante rationale Abbildung $f: V \dashrightarrow W$ induziert einen k-Algebrenhomomorphismus $Rat(W) \longrightarrow Rat(V)$.
- (f) Eine dominante rationale Abbildung $f: V \dashrightarrow W$ heißt **birational**, wenn es eine rationale Abbildung $g: W \dashrightarrow V$ gibt mit $f \circ g \sim \mathrm{id}_W$ und $g \circ f \sim \mathrm{id}_V$.

Beispiele

- 1) $f: \mathbb{A}^1(k) \longrightarrow \mathbb{A}^2(k), x \mapsto (x, \frac{1}{x})$ ist eine rationale Abbildung.
- 2) $\sigma: \mathbb{A}^2(k) \dashrightarrow \mathbb{A}^2(k), (x,y) \mapsto (\frac{1}{x}, \frac{1}{y})$ ist eine birationale Abbildung. Es gilt $\sigma \circ \sigma = \mathrm{id}$ auf $\mathbb{A}^2(k) V(XY)$.

Proposition 1.7.3

Seien V, W irreduzible affine Varietäten. Dann gibt es zu jedem Körperhomomorphismus $\alpha: k(W) \longrightarrow k(V)$ eine rationale Abbildung $f: V \dashrightarrow W$ mit $\alpha = \alpha_f$.

Beweis Wähle Erzeuger g_1, \ldots, g_m von k(W) als k-Algebra. Für $\alpha(g_i) \in k(V) = \operatorname{Rat}(V)$ sei $U_i \subseteq V$ der Definitionsbereich. Sei $\tilde{U} := \bigcap_{i=1}^m U_i$, \tilde{U} ist offen und dicht in V. Sei $U \subseteq \tilde{U}$ affin (d.h. isomorph zu einer affinen Varietät) und dicht (sowas gibt es, da D(f) affine Teilmenge).

$$\overset{\text{1.6.6}}{\Rightarrow} \alpha(g_i) \in \mathcal{O}(U) = k[U], i = 1, \dots, m$$

$$\Rightarrow \alpha|_{k[W]} : k[W] \longrightarrow k[U] \text{ ist } k\text{-Algebrenhomomorphismus.}$$

$$\overset{\text{Satz 2}}{\Rightarrow} \text{Es gibt einen Morphismus } f : U \longrightarrow W \text{ mit } f^{\sharp} = \alpha.$$

 α_f ist der von f^{\sharp} induzierte Homomorphismus auf Quot(k[W]).

Proposition 1.7.4

Zu jeder endlich erzeugten Körpererweiterung K/k gibt es eine irreduzible affine k-Varietät V mit $K \cong k(V)$.

Beweis Seien $x_1, \ldots, x_n \in K$ Erzeuger der Körpererweiterung K/k. Sei weiter $A := k[x_1, \ldots, x_n]$ die von den x_i erzeugte k-Algebra. A ist nullteilerfrei, da $A \subseteq K$. Nach Satz 2 gibt es eine affine Varietät V mit $A \cong k[V]$. V ist irreduzibel, da A nullteilerfrei. $k(V) = \operatorname{Quot}(k[V]) \cong \operatorname{Quot}(A) = K$.

Korollar 1.7.5

Die Kategorie der endlich erzeugten Körpererweiterungen K/k (mit k-Algebrenhomomorphismen) ist äquivalent zur Kategorie der irreduziblen affinen Varietäten über k mit dominanten rationalen Abbildungen.