```
In [91]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [92]: data=pd.read_csv(r"C:\Users\user\Downloads\2015 - 2015.csv")
 data

Out[92]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Fre
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0
158 r	158 rows × 12 columns								

In [93]: df=data.head(100)
df

Out[93]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563
95	Bosnia and Herzegovina	Central and Eastern Europe	96	4.949	0.06913	0.83223	0.91916	0.79081
96	Lesotho	Sub-Saharan Africa	97	4.898	0.09438	0.37545	1.04103	0.07612
97	Dominican Republic	Latin America and Caribbean	98	4.885	0.07446	0.89537	1.17202	0.66825
98	Laos	Southeastern Asia	99	4.876	0.06698	0.59066	0.73803	0.54909
99	Mongolia	Eastern Asia	100	4.874	0.03313	0.82819	1.30060	0.60268
100	rows × 12 co	lumns						
4								•

```
2015-2015(Lasso) - Jupyter Notebook
In [94]: df.info()
           <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 100 entries, 0 to 99
          Data columns (total 12 columns):
           #
                Column
                                                   Non-Null Count
                                                                     Dtype
           0
                Country
                                                   100 non-null
                                                                     object
                                                   100 non-null
                                                                     object
           1
                Region
                Happiness Rank
                                                   100 non-null
                                                                     int64
           2
           3
                Happiness Score
                                                   100 non-null
                                                                     float64
                                                   100 non-null
           4
                Standard Error
                                                                     float64
           5
                Economy (GDP per Capita)
                                                   100 non-null
                                                                     float64
                                                                     float64
           6
                Family
                                                   100 non-null
           7
                Health (Life Expectancy)
                                                   100 non-null
                                                                     float64
           8
                                                   100 non-null
                                                                     float64
                Freedom
                                                   100 non-null
           9
                Trust (Government Corruption)
                                                                     float64
           10 Generosity
                                                   100 non-null
                                                                     float64
           11 Dystopia Residual
                                                   100 non-null
                                                                     float64
          dtypes: float64(9), int64(1), object(2)
          memory usage: 9.5+ KB
In [95]: df.describe()
Out[95]:
                                                    Economy
                  Happiness
                             Happiness
                                         Standard
                                                                          Health (Life
                                                     (GDP per
                                                                  Family
                                                                                       Freedom
                                                                                                (G
                                                                         Expectancy)
                       Rank
                                 Score
                                             Error
                                                      Capita)
                                                                                                  С
           count 100.000000
                              100.00000 100.000000 100.000000 100.000000
                                                                          100.000000
                                                                                     100.000000
                                                                                                  1
                               6.06081
                                                                            0.747963
           mean
                   50.490000
                                         0.047206
                                                     1.045210
                                                                1.119594
                                                                                       0.480267
             std
                   29.000347
                               0.79900
                                         0.017788
                                                     0.299610
                                                                0.175886
                                                                            0.175114
                                                                                       0.135930
                                                                0.414110
                    1.000000
                               4.87400
                                         0.018480
                                                     0.083080
                                                                            0.076120
                                                                                       0.092450
             min
            25%
                   25.750000
                               5.35300
                                         0.037135
                                                     0.875007
                                                                1.007810
                                                                            0.666432
                                                                                       0.401975
                                                                1.140595
            50%
                   50.500000
                               5.91900
                                         0.042650
                                                     1.073035
                                                                            0.755560
                                                                                       0.500285
            75%
                   75.250000
                               6.75900
                                         0.052268
                                                     1.272500
                                                                1.258182
                                                                            0.885710
                                                                                       0.596122
             max 100.000000
                               7.58700
                                         0.136930
                                                     1.690420
                                                                1.402230
                                                                            1.025250
                                                                                       0.669730
In [96]: df.columns
Out[96]: Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
```

```
'Standard Error', 'Economy (GDP per Capita)', 'Family',
       'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruptio
n)',
       'Generosity', 'Dystopia Residual'],
      dtype='object')
```

In [97]: sns.pairplot(df)

Out[97]: <seaborn.axisgrid.PairGrid at 0x1ed7255e430>

Out[98]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	(
0	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	0.41978	_
1	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	0.14145	
2	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	0.48357	
3	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	0.36503	
4	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	0.32957	
	•••							***	
95	96	4.949	0.06913	0.83223	0.91916	0.79081	0.09245	0.00227	
96	97	4.898	0.09438	0.37545	1.04103	0.07612	0.31767	0.12504	
97	98	4.885	0.07446	0.89537	1.17202	0.66825	0.57672	0.14234	
98	99	4.876	0.06698	0.59066	0.73803	0.54909	0.59591	0.24249	
99	100	4.874	0.03313	0.82819	1.30060	0.60268	0.43626	0.02666	

100 rows × 10 columns

```
In [99]: sns.heatmap(da.corr())
```

Out[99]: <AxesSubplot:>

print(lr.intercept_)

-0.0010925570149081243

In [103]:

```
In [104]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[104]:

	Co-efficient
Happiness Rank	0.000005
Happiness Score	1.001063
Standard Error	-0.001779
Economy (GDP per Capita)	- 1.000959
Family	-1.001119
Health (Life Expectancy)	- 1.000799
Trust (Government Corruption)	- 1.000809
Generosity	- 1.001252
Dystopia Residual	-1.000977

```
In [105]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[105]: <matplotlib.collections.PathCollection at 0x1ed77ff5670>


```
In [106]: print(lr.score(x_test,y_test))
```

0.9999917973958037

```
In [107]: print(lr.score(x_train,y_train))
```

0.9999972497920053

```
In [108]: from sklearn.linear_model import Ridge,Lasso
```

```
In [109]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[109]: Ridge(alpha=10)
In [110]: rr.score(x_test,y_test)
Out[110]: 0.42844003441559564
In [111]: la=Lasso(alpha=10)
    la.fit(x_train,y_train)
Out[111]: Lasso(alpha=10)
In [112]: la.score(x_test,y_test)
Out[112]: -0.035531476597402634
In []:
```