# Problem Set 1

#### Runwei Wang

#### Question 2

Question 2 considers data of flights originating in New York City, NY (NYC) in 2013 and 2014. Data of 2013 from package nycflights13, whose author is Hadley Wickham.

Here uses sourse() to execute R files.

```
source("ps1_q2.R")
```

a.

The chart below shows the airlines that takes up at least 1% of the flights departing any of the three NYC airports between January 1 and October 31.

knitr::kable(airlines\_more\_than\_onepercent)

| carrier                     | percent   |
|-----------------------------|-----------|
| Endeavor Air Inc.           | 0.0541345 |
| American Airlines Inc.      | 0.0975467 |
| JetBlue Airways             | 0.1620802 |
| Delta Air Lines Inc.        | 0.1427571 |
| ExpressJet Airlines Inc.    | 0.1613339 |
| AirTran Airways Corporation | 0.0101111 |
| Envoy Air                   | 0.0789059 |
| United Air Lines Inc.       | 0.1737196 |
| US Airways Inc.             | 0.0612425 |
| Virgin America              | 0.0150512 |
| Southwest Airlines Co.      | 0.0360482 |

b.

The chart below compares the number and percent of annual flights in the first 10 months of 2013 and the first 10 months of 2014.

knitr::kable(change)

| Carrier                     | Percent_13 | CI_13            | Percent_14 | CI_14            | Change     |
|-----------------------------|------------|------------------|------------|------------------|------------|
| Endeavor Air Inc.           | 0.0541345  | (NA, NA)         | NA         | (0.0533, 0.0550) | NA         |
| American Airlines Inc.      | 0.0975467  | (0.1026, 0.1050) | 0.1038308  | (0.0965, 0.0986) | 0.0062841  |
| JetBlue Airways             | 0.1620802  | (0.1741, 0.1771) | 0.1755870  | (0.1607, 0.1634) | 0.0135068  |
| Delta Air Lines Inc.        | 0.1427571  | (0.1631, 0.1660) | 0.1645494  | (0.1415, 0.1440) | 0.0217923  |
| ExpressJet Airlines Inc.    | 0.1613339  | (0.1558, 0.1586) | 0.1571910  | (0.1600, 0.1627) | -0.0041429 |
| AirTran Airways Corporation | 0.0101111  | (0.0047, 0.0052) | 0.0049385  | (0.0097, 0.0105) | -0.0051726 |
| Envoy Air                   | 0.0789059  | (0.0722, 0.0743) | 0.0732642  | (0.0779, 0.0799) | -0.0056417 |
| United Air Lines Inc.       | 0.1737196  | (0.1811, 0.1842) | 0.1826454  | (0.1723, 0.1751) | 0.0089258  |
| US Airways Inc.             | 0.0612425  | (0.0652, 0.0671) | 0.0661229  | (0.0604, 0.0621) | 0.0048804  |
| Virgin America              | 0.0150512  | (0.0184, 0.0195) | 0.0189368  | (0.0146, 0.0155) | 0.0038856  |
| Southwest Airlines Co.      | 0.0360482  | (0.0462, 0.0478) | 0.0469848  | (0.0354, 0.0367) | 0.0109366  |

Among which, Delta Air Lines Inc. has the lagerest positive change, which is 2.18%.

knitr::kable(which.max(change\$Change))

x 4

Besides, Envoy Air has the lagerest negative change, which is -0.565%.

knitr::kable(which.min(change\$Change))

x 7

c.

United Air Lines Inc. is the largest carrier in EWR.

knitr::kable(which.max(ewr))

 $\frac{x}{20}$ 

JetBlue Airways is the largest carrier in JFK.

knitr::kable(which.max(jfk))

x 8

Delta Air Lines Inc. is the largest carrier in LGA.

knitr::kable(which.max(lga))

 $\frac{x}{12}$ 

The chart shows the percent of flights each airline is responsible for among NYC airports.

knitr::kable(flight\_airport\_11)

| Carrier                | Origin      | Count | Percent   | CI               |
|------------------------|-------------|-------|-----------|------------------|
| Endeavor Air Inc.      | EWR         | 1268  | 0.0060893 | (0.0059, 0.0063) |
| Endeavor Air Inc.      | $_{ m JFK}$ | 14651 | 0.0760056 | (0.0753, 0.0767) |
| Endeavor Air Inc.      | LGA         | 2541  | 0.0134377 | (0.0131, 0.0137) |
| American Airlines Inc. | EWR         | 6136  | 0.0294667 | (0.0290, 0.0299) |
| American Airlines Inc. | $_{ m JFK}$ | 25706 | 0.1333562 | (0.1325, 0.1342) |
| American Airlines Inc. | LGA         | 27189 | 0.1437849 | (0.1429, 0.1447) |
| JetBlue Airways        | EWR         | 12030 | 0.0577713 | (0.0572, 0.0584) |

| Carrier                     | Origin      | Count | Percent   | CI               |
|-----------------------------|-------------|-------|-----------|------------------|
| JetBlue Airways             | JFK         | 76296 | 0.3958042 | (0.3946, 0.3971) |
| JetBlue Airways             | LGA         | 10788 | 0.0570507 | (0.0565, 0.0576) |
| Delta Air Lines Inc.        | EWR         | 8495  | 0.0407953 | (0.0403, 0.0413) |
| Delta Air Lines Inc.        | $_{ m JFK}$ | 39561 | 0.2052324 | (0.2042, 0.2063) |
| Delta Air Lines Inc.        | LGA         | 41737 | 0.2207197 | (0.2197, 0.2218) |
| ExpressJet Airlines Inc.    | EWR         | 72267 | 0.3470454 | (0.3458, 0.3483) |
| ExpressJet Airlines Inc.    | $_{ m JFK}$ | 2477  | 0.0128500 | (0.0126, 0.0131) |
| ExpressJet Airlines Inc.    | LGA         | 19248 | 0.1017901 | (0.1010, 0.1026) |
| AirTran Airways Corporation | LGA         | 4511  | 0.0238557 | (0.0235, 0.0242) |
| Envoy Air                   | EWR         | 2443  | 0.0117319 | (0.0115, 0.0120) |
| Envoy Air                   | $_{ m JFK}$ | 12637 | 0.0655575 | (0.0649, 0.0662) |
| Envoy Air                   | LGA         | 29876 | 0.1579947 | (0.1571, 0.1589) |
| United Air Lines Inc.       | EWR         | 82211 | 0.3947991 | (0.3936, 0.3960) |
| United Air Lines Inc.       | $_{ m JFK}$ | 8458  | 0.0438779 | (0.0434, 0.0444) |
| United Air Lines Inc.       | LGA         | 14263 | 0.0754277 | (0.0748, 0.0761) |
| US Airways Inc.             | EWR         | 7885  | 0.0378659 | (0.0374, 0.0384) |
| US Airways Inc.             | $_{ m JFK}$ | 5640  | 0.0292589 | (0.0288, 0.0297) |
| US Airways Inc.             | LGA         | 23761 | 0.1256564 | (0.1248, 0.1265) |
| Virgin America              | EWR         | 3210  | 0.0154153 | (0.0151, 0.0157) |
| Virgin America              | $_{ m JFK}$ | 6734  | 0.0349343 | (0.0345, 0.0354) |
| Virgin America              | LGA         | 15    | 0.0000793 | (0.0001, 0.0001) |
| Southwest Airlines Co.      | EWR         | 10995 | 0.0528009 | (0.0522, 0.0534) |
| Southwest Airlines Co.      | LGA         | 13182 | 0.0697110 | (0.0691, 0.0704) |

#### Question 3

Question 3 concerns about data from 2015 Residential Energy Consumption Survey, which can be found from U.S. Energy Information Adminstrition.

Here uses sourse() to execute R files.

```
source("ps1_q3.R")
```

a.

The chart shows the percent of homes have stucco construction as the major outside wall material within each division.

knitr::kable(stucco\_division[,-1])

| DIVISION           | sum        | percent |
|--------------------|------------|---------|
| New England        | 69040.30   | 0.0123  |
| Middle Atlantic    | 317021.99  | 0.0206  |
| East North Central | 118796.73  | 0.0066  |
| West North Central | 402740.72  | 0.0487  |
| South Atlantic     | 2492959.08 | 0.1062  |
| East South Central | 30444.77   | 0.0042  |
| West South Central | 411352.10  | 0.0299  |
| Mountain North     | 705216.82  | 0.1661  |
| Mountain South     | 2741373.16 | 0.6425  |
| Pacific            | 7969431.30 | 0.4459  |





 $\label{eq:b.total}$  The chart shows average total electricity usage in kilowatt hours in each division.

knitr::kable(kwh\_devision\_sum)

| DIVISION           | mean_kwh  |
|--------------------|-----------|
| New England        | 7514.561  |
| Middle Atlantic    | 8465.442  |
| East North Central | 9128.663  |
| West North Central | 10523.828 |
| South Atlantic     | 13446.621 |
| East South Central | 14535.969 |
| West South Central | 14324.259 |
| Mountain North     | 8384.471  |
| Mountain South     | 10442.017 |
| Pacific            | 8100.405  |

ggplot(kwh\_devision\_sum,aes(x = DIVISION, y = mean\_kwh)) + geom\_bar(stat = "identity") + ggtitle("History")

### Histogram of electricity usage in kilowatt hours in each division



knitr::kable(kwh\_type\_division\_sum\_new)

| DIVISION           | Urban Cluster | Rural     | Urban Area |
|--------------------|---------------|-----------|------------|
| New England        | 5182.408      | 9001.054  | 7626.553   |
| Middle Atlantic    | 10398.891     | 12223.389 | 7788.251   |
| East North Central | 9219.739      | 13500.024 | 7775.891   |
| West North Central | 9936.639      | 14173.932 | 9320.237   |
| South Atlantic     | 11898.968     | 15941.991 | 12825.487  |
| East South Central | 12590.762     | 16332.679 | 14168.218  |
| West South Central | 11889.259     | 16317.160 | 14061.286  |
| Mountain North     | 7782.808      | 9356.001  | 8143.720   |
| Mountain South     | 15905.674     | 8610.426  | 10670.228  |
| Pacific            | 11774.131     | 14114.760 | 7049.627   |
|                    |               |           |            |

ggplot(kwh\_type\_division\_sum\_new,aes(x = DIVISION, y = kwh\_type\_division\_sum\_new\$`Urban Cluster`)) + ge

### Histogram of electricity usage in kilowatt hours in each divisionif urban clu



ggplot(kwh\_type\_division\_sum\_new,aes(x = DIVISION, y = kwh\_type\_division\_sum\_new\$Rural)) + geom\_bar(sta

### electricity usage in kilowatt hours in rural status



ggplot(kwh\_type\_division\_sum\_new,aes(x = DIVISION, y = kwh\_type\_division\_sum\_new\$`Urban Area`)) + geom\_

#### Histogram of electricity usage in kilowatt hours in urban area



c.

The chart shows the division that has the largest disparity between urban and rural areas in terms of the proportion of homes with internet access.

knitr::kable(internet\_division\_sum\_new)

| DIVISION           | Urban Cluster | Rural     | Urban Area |
|--------------------|---------------|-----------|------------|
| New England        | 0.7943140     | 0.8579149 | 0.9059971  |
| Middle Atlantic    | 0.8495432     | 0.9128762 | 0.8969958  |
| East North Central | 0.8685601     | 0.8621029 | 0.8615229  |
| West North Central | 0.9111256     | 0.8032515 | 0.8703800  |
| South Atlantic     | 0.7025356     | 0.8204097 | 0.8713557  |
| East South Central | 0.7525202     | 0.6902596 | 0.7949211  |
| West South Central | 0.6972465     | 0.7650275 | 0.8456120  |
| Mountain North     | 0.8819129     | 0.8192627 | 0.8731440  |
| Mountain South     | 1.0000000     | 0.6674906 | 0.8505862  |
| Pacific            | 0.8368530     | 0.8527859 | 0.8905076  |

ggplot(internet\_division\_sum\_new,aes(x = DIVISION, y = internet\_division\_sum\_new\$`Urban Cluster`)) + ge





ggplot(internet\_division\_sum\_new,aes(x = DIVISION, y = internet\_division\_sum\_new\$Rural)) + geom\_bar(sta

## Histogram of homes with internet access in rural stutas



ggplot(internet\_division\_sum\_new,aes(x = DIVISION, y = internet\_division\_sum\_new\$`Urban Area`)) + geom\_

## Histogram of homes with internet access in urban area



11