1. Используя теорему Харитонова, исследовать робастную устойчивость системы управления с характеристическим полиномом

$$P(z) = z^4 + a_3 z^3 + a_2 z^2 + a_1 z + 4,$$
 $1 \le a_1 \le 2,$ $15 \le a_2 \le 16,$ $0.1 \le a_3 \le 0.5.$

2. Исследовать робастную устойчивость относительно внутренности единичного круга для системы управления с характеристическим полиномом

$$P(z) = z^4 + a_3 z^3 + a_2 z^2 + a_1 z + 4, \qquad 1 \le a_1 \le 2, \quad 15 \le a_2 \le 16, \quad 0.1 \le a_3 \le 0.5.$$

Указание. Воспользоваться дробно-линейным отображением и перевести внутренность единичного круга на левую полуплоскость комплексной плоскости, затем пересчитать коэффициенты многочлена и воспользоваться теоремой Харитонова.

3. Определить радиус робастной устойчивости δ_{\max} многочлена $P_4(z) = a_0 z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4$, если известно, что его реальные коэффициенты удовлетворяют следующим ограничениям

$$|a_0 - 1.0| \le \delta$$
, $|a_1 - 1.5| \le 0.5\delta$, $|a_2 - 0.5| \le 0.5\delta$, $|a_3 - 0.3| \le 0.2\delta$, $|a_4 - 4.0| \le \delta$.

4. Как измениться решение предыдущей задачи, если реальные коэффициенты многочлена принадлежат области

$$(a_0 - 1.0)^2 + 4(a_1 - 1.5)^2 + 4(a_2 - 0.5)^2 + 25(a_3 - 0.3)^2 + (a_4 - 4.0)^2 \le \delta.$$

5. Номинальный характеристический полином имеет вид

$$P(z) = 433.5z^{6} + 667.25z^{5} + 502.72z^{4} + 251.25z^{3} + 80.25z^{2} + 14z + 1.$$

Известно, что реальные коэффициенты этого многочлена удовлетворяют оценкам $|a_k - a_k^0| \leq \delta \alpha_k$, $k = 0, \dots, 6$, где

$$\alpha_0 = 43.35$$
, $\alpha_1 = 33.36$, $\alpha_2 = 25.137$, $\alpha_3 = 15.075$, $\alpha_4 = 5.6175$, $\alpha_5 = 1.4$, $\alpha_6 = 0.1$.

Определить радиус робастной устойчивости δ_{\max} .

6. Решить предыдущую задачу, считая, что коэффициенты многочлена принадлежат внутренности эллипсоида

$$\frac{(a_0 - a_0^0)^2}{\alpha_0^2} + \ldots + \frac{(a_6 - a_6^0)^2}{\alpha_6^2} \leqslant \delta^2$$

7. Используя критерий Цыпкина – По́ляка исследовать робастную устойчивость полинома $P_6(z)$, если

$$|a_0 - 24| \le 2.4\delta$$
, $|a_1 - 52| \le 5.2\delta$, $|a_2 - 62| \le 6.2\delta$, $|a_3 - 44| \le 4.4\delta$, $|a_4 - 21| \le 2.1\delta$, $|a_5 - 6| \le 0.6\delta$, $|a_6 - 1| \le 0.1\delta$.

Определить радиус робастной устойчивости δ_{\max} .

8. Вычислить вещественный и комплексный радиусы робастной устойчивости для следующих семейств:

(a)
$$A(\Delta) = \begin{bmatrix} -1 & -2 \\ 2 & -1 + \Delta \end{bmatrix}$$
; (6) $A(\Delta) = \begin{bmatrix} -1 & -2 \\ 2 + \Delta & -1 \end{bmatrix}$; (B) $A(\Delta) = \begin{bmatrix} -1 & \Delta \\ 2 & -2 \end{bmatrix}$.

Указание. Комплексным радиусом робастной устойчивости семейства $A(\Delta) = A + B\Delta C$, где $A \in \mathbb{C}^{n \times n}$, $B \in \mathbb{C}^{n \times m}$, $C \in \mathbb{C}^{m \times n}$, называется

$$\delta_c(A,B,C) := \inf \left\{ \delta : \max_k \operatorname{Re} \lambda(A+\Delta) < 0, \Delta \in \mathbb{C}^{m \times m}, \|\Delta\|_2 \leqslant \delta \right\}, \qquad \|\Delta\|_2 = \lambda_{\max}^{1/2} \left(A^*A\right).$$

Вещественным радиусом робастной устойчивости семейства $A(\Delta) = A + B\Delta C$, где $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times n}$, называется

$$\delta_r(A, B, C) := \inf \left\{ \delta : \max_k \operatorname{Re} \lambda(A + \Delta) < 0, \Delta \in \mathbb{R}^{m \times m}, \|\Delta\|_2 \leqslant \delta \right\}, \qquad \|\Delta\|_2 = \lambda_{\max}^{1/2} (A^\top A).$$

Интуитивно понятно, что радиусом робастной устойчивости будет «расстояние» до ближайшей матрицы, имеющей хотя бы одно собственное число на мнимой оси.

9. Вычислить вещественный и комплексный радиусы робастной устойчивости для следующих систем с параметрической неопределенностью:

(a)
$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -a \end{bmatrix} x;$$

(6)
$$\dot{x} = \begin{bmatrix} 0 & 1+a & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -a \end{bmatrix} x$$

(a)
$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -a \end{bmatrix} x;$$
 (6) $\dot{x} = \begin{bmatrix} 0 & 1+a & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -a \end{bmatrix} x;$ (B) $\dot{x} = \begin{bmatrix} 0 & 1+a & 0 \\ 1 & 0 & 1 \\ 0 & -1+a & -7 \end{bmatrix} x.$