- 1.Podaj określenie wartościowania w KRZ i jego rozszerzenia na dowolne formuły. Podaj przykład wartościowania formuły w KRZ
- 2. Podaj określenia następujących pojęć w KRZ: spełnialność formuły i zbioru formuł przez wartościowanie, formuła spełnialna, zbiór spełnialny.
- 3. Omów wynikanie logiczne w KRZ. Podaj określenie logicznej reguły wnioskowania w KRZ i reguły rezolucji zdaniowej. Wykaż, że reguła rezolucji zdaniowej jest logiczną regułą wnioskowania.
- 4. Podaj określenie derywacji klauzuli ze zbioru klauzul oraz refutacji zbioru klauzul w KRZ. Podaj przykład derywacji i refutacji.
- 5. Uzasadnij algorytm sprawdzania tautologiczności formuł KRZ za pomocą rezolucji zdaniowej.
- 6. Podaj określenie języka pierwszego rzędu oraz termów, formuł atomowych, formuł, zdań, termu bazowego i atomu bazowego.
- 7. Podaj określenia następujących pojęć w LPR: zdanie, domknięcie formuły, prawdziwość formuły w interpretacji.
- 8. Podaj definicję i własności podstawienia. Na czym polega złożenie podstawień? Podaj przykład złożenia podstawień.
- 9. Podaj określenie interpretacji języka pierwszego rzędu. Przykład
- 10. Podaj określenie wyrażenia prostego, przemianowania zmiennych, wariantu wyrażenia prostego. Każde pojęcie zilustruj przykładem.
- 11. Podaj określenie formuły preneksowej postaci normalniej. Jaki jest związek między formułą A i PNF(A)?
- 12. Podaj określenie formuły w postaci Skolema. Jaki jest związek między formułą A i SKOL(A)?
- 13. Co rozumiemy przez konkretyzację formuły(klauzuli) w LPR? Czym jest $gr(\Sigma)$ dla zbioru klauzul Σ ? Podaj twierdzenie dotyczące Σ i $gr(\Sigma)$.
- 14. Uzasadnij algorytm dowodzenia praw LPR za pomocą rezolucji zdaniowej.
- 15. Podaj określenie zbioru niezgodności dla zbioru wyrażeń prostych i zilustruj przykładem.
- 16. Podaj algorytm wyznaczania najbardziej ogólnego unifikatora zbioru wyrażeń oraz twierdzenie o unifikacji.
- 17. Podaj określenie klauzuli definitywnej, programu definitywnego, klauzuli celu, klauzuli Horna.
- 18. Omów strategię Prologu
- 19. Podaj regułę rezolucji liniowej i derywacji liniowej.
- 20. Podaj określenie refutacji liniowej dla programu P i celu G oraz odpowiedzi obliczonej.
- 21. Podaj określenie odpowiedzi obliczonej i poprawnej dla $P \cup \{G\}$, gdzie P jest programem definitywnym, a G celem. Sformułuj twierdzenie o poprawności rezolucji liniowej. Podaj silne twierdzenie o pełności rezolucji liniowej.
- 22. Podaj określenie SLD-drzewa dla **P** · {G} zgodnego z regułą selekcji R.
- 23. Podaj określenie reguły selekcji i sformułuj twierdzenie o nieistotności reguł selekcji.
- 24. Podaj podstawowe cechy prologu jako implementacji SLD rezolucji. Objaśnij użyte pojęcia.

- 25. Termy rachunku lambda
- 26. Alfa-konwersja. Definicja, przykłady
- 27.Beta-redukcja. Definicja, przykłady
- 28. Postać normalna termu w rachunku lambda
- 29. Własność Churcha-Rossera
- 30. Reprezentacja liczb naturalnych w rachunku lambda.

1.Podaj określenie wartościowania w KRZ i jego rozszerzenia na dowolne formuły. Podaj przykład wartościowania formuły w KRZ

- 1. Wartości logiczne: 1 (prawda), 0 (fałsz).
- 2. Wartościowaniem nazywamy funkcję: w : V→{0,1}.
- **3**. Funkcją logiczną nazywamy funkcję $f: \{0,1\}^n \rightarrow \{0,1\}$.

Określamy funkcje:

 $f_7:\{0,1\}->\{0,1\}$ następująco:

х	$f_{7}(x)$
0	1
1	0

 $f_{\wedge}, f_{\vee}, f_{-}, f_{<-}: \{0,1\}^2 -> \{0,1\}$ następująco:

	х	У	f _^ (x,y)	$F_{v}(x,y)$	$f_{->}(x,y)$	F _{<->} (x,y)
	1	1	1	1	1	1
	1	0	0	1	0	0
ŀ	0	1	0	1	1	0
(0	0	0	0	1	1

4. Każde wartościowanie w : V→{0,1} rozszerzamy do funkcji

 \hat{w} :FOR->{0,1}, (\hat{w} (A) – wartość logiczna formuły A przy wartościowaniu w) następująco:

$$\hat{\mathbf{w}}(p) = \mathbf{w}(p) \, dla \, p \in V$$

$$\hat{\mathbf{w}}(\sim A) = f_{\mathsf{T}}(\hat{\mathbf{w}}(A))$$

$$\hat{\mathbf{w}}(A^{\wedge}B) = f^{\wedge} \; (\hat{\mathbf{w}}(A), \; \hat{\mathbf{w}}(B))$$

$$\hat{\mathbf{w}}(AvB) = fv(\hat{\mathbf{w}}(A), \hat{\mathbf{w}}(B))$$

$$\hat{\mathbf{w}}(A_B) = f_{\top} (\hat{\mathbf{w}}(A), \hat{\mathbf{w}}(B))$$

$$\hat{w}(A \le B) = f \le (\hat{w}(A), \hat{w}(B))$$

Przykład wartościowania:

A:
$$p \rightarrow q \sqrt{r}$$

w:
$$w(p)=1$$
, $w(q)=0$, $w(r)=1$,

$$\hat{\mathbf{w}}(A) = \hat{\mathbf{w}}(p - p_{v}r) = f_{-v}(\hat{\mathbf{w}}(p), (\hat{\mathbf{w}}(q_{v}r)) = f_{-v}(\hat{\mathbf{w}}(q), f_{v}(\hat{\mathbf{w}}(q), \hat{\mathbf{w}}(r))) = f_{-v}(\hat{\mathbf{w}}(q), \hat{\mathbf{w}}(r)) = f_{-v}(\hat{\mathbf{w}}(r), \hat{\mathbf{w}}(r)) = f_{-v}($$

$$f_{->}(1,f_v(0,1)) = f_{->}(1,1)=1$$

2. Podaj określenia następujących pojęć w KRZ: spełnialność formuły i zbioru formuł przez wartościowanie, formuła spełnialna, zbiór spełnialny.

Spełnialność formuły i zbioru formuł przez wartościowanie:

1. Wartościowanie w spełnia formułę A (oznaczenie: $w \models A$), jeżeli $\hat{w}(A) = 1$.

2. Wartościowanie w spełnia zbiór Γ c FOR (oznaczenie $w \models \Gamma$) jeżeli $\hat{w}(A) = 1$ dla każdej formuły $A \in \Gamma$

Formułę A nazywamy spełnialną, jeżeli istnieje wartościowanie takie, że $w \models A$. **Zbiór formuł** Γ **c FOR nazywamy spełnialnym**, jeśli istnieje wartościowanie takie, że $w \models \Gamma$.

3. Omów wynikanie logiczne w KRZ. Podaj określenie logicznej reguły wnioskowania w KRZ i reguły rezolucji zdaniowej. Wykaż, że reguła rezolucji zdaniowej jest logiczną regułą wnioskowania.

Wynikanie logiczne:

- a) Formuła A wynika ze zbioru formuł Γ w KRZ
- b) Zbiór Γ υ (¬ A) nie jest spełnialny

(po staremu było: Formuła A wynika ze zbioru formuł Γ w KRZ, jeżeli dla każdego wartościowania w zachodzi warunek: Jeżeli w $|=\Gamma$, to w|=A.)

Logiczna reguła wnioskowania:

Jeżeli ze zbioru formuł {A1,...,An} które będziemy nazywać przesłankami, wynika formuła A, którą będziemy nazywać wnioskiem, to schemat:

A1 : : An ---

nazywamy logiczną regułą wnioskowania.

Literałem pozytywnym nazywamy dowolną zmienną zdaniową $\mathbf{p} \in \mathbf{V}$, a literałem negatywnym negację zmiennej zdaniowej $\mathbf{p} \in \mathbf{V}$. Literały oznaczamy L1,L2,...

Wtedy reguła rezolucji zdaniowej ma postać:

$$\begin{array}{c} \{L1,L2,...,Lm,p\} \\ \{L1',L2',...,Ln',\neg\ p\} \\ ------\\ \{L1,L2,...,Lm,L1',L2',...,Ln'\} \\ \text{dla n,m} \geq 0 \end{array}$$

Dowód, że reguła rezolucji zdaniowej jest logiczną regułą wnioskowania:

Trzeba pokazać że dla każdego wartościowania w zachodzi warunek:

Jeżeli $w \models \{L1, L2, ..., Lm, p\}$ i $w \models \{L1', L2', ..., Ln', \neg p\}$ to $w \models \{L1, L2, ..., Lm, L1', L2', ..., Ln'\}$ Zakładamy że:

Rozważamy osobno oba przypadki:

1)
$$w(p)=1$$
, wtedy $w(_{1}p)=0$, czyli $w \neq (_{1}p)$, wtedy zał 1) $w \neq Li'$ gdzie i $\in \{1,...,n\}$ Stąd $w \neq \{L1, L2,...,Lm, L1',L2',...,Ln'\}$

2) w(p)=0 wtedy w(
$$_{1}$$
p)=1, czyli w| \neq (p) wtedy zał 2) w \models Li gdzie i \in {1,...,m} Stąd w \models {L1 ,L2 ,...,Lm, L1 ',L2',...,Ln'}

Stara wersja:

```
Zakładamy, że istnieje wartościowanie w spełniające obie przesłanki: w|=\{L1,L2,...,Ln,p\}, w|=\{L1',L2',...,Ln',\neg p\}. Rozważmy dwa przypadki:
```

- 1. w(p)=1, wtedy $w(_{1}p)=0$, tzn. $w|_{\neq(_{1}p)}$, stąd w(Li')=1 dla pewnego $1 \le i \le n$. Zatem w spełnia wniosek $w|_{=}\{L1',L2',...,Ln',\}$.
- **2.** w(p)=0, wtedy istnieje $1 \le j \le n$ takie, że w(Lj)=1.

Zatem w spełnia wniosek $w = \{L1, L2, ..., Lm, \}$.

4. Podaj określenie derywacji klauzuli ze zbioru klauzul oraz refutacji zbioru klauzul w KRZ. Podaj przykład derywacji i refutacji.

Derywacją klauzuli A ze zbioru klauzul Σ nazywamy drzewo etykietowane (X, E, f) takie, że:

- **1.** E jest zbiorem klauzul Σ .
- **2.** dla każdego liścia x drzewa X, $f(x) \in \Sigma$.
- 3. $f(\Lambda) = A$.
- **4.** dla każdego wierzchołka x drzewa nie będącego liściem f(x) jest rezolwentą etykiet bezpośrednich potomków wierzchołka x.

Refutacja zbioru klauzul:

Derywację klauzuli pustej

ze zbioru klauzul Σ nazywamy refutacją zbioru Σ.

Derywacja:

$$\Sigma = \{ \{ p, q \}, \{ \neg p, q \} \}, \Sigma \vdash_{RZ} \{ q \} \}$$

Refutacja:

$$\Sigma = \{ \{p, q\}, \{ \gamma p, q \}, \{ p, \gamma q \}, \{ \gamma p, \gamma q \} \}, \Sigma \models_{RZ} \{ q \}$$

5. Uzasadnij algorytm sprawdzania tautologiczności formuł KRZ za pomocą rezolucji zdaniowej.

Algorytm:

Wejście: formuła A

Wyjście: odpowiedź tak, jeżeli formuła A jest tautologią KRZ, nie, w przeciwnym wypadku.

- (1) bierzemy formułę B identyczną z ¬A,
- (2)sprowadzamy formułę B do koniunkcyjnej postaci normalnej
- (3) KPN(B) przedstawiamy w postaci klauzulowej Σ (KPN(B)).
- (4) Szukamy derywacji klauzuli pustej □ ze zbioru Σ(KPN(B)).
- (5) Jeżeli klauzula pusta została otrzymana, to odpowiedź-T
- (6) Jeżeli algorytm zatrzymał się ze względu na brak możliwości stosowania reguły rezolucji, mamy odp. -NIE.

Uzasadnienie:

Formuła A jest tautologią KRZ.

 \updownarrow Formula A jest tautologia KRZ \leftrightarrow Formula KPN($_7$ A) nie jest spełnialna

Formuła KPN(¬A) nie jest spełnialna.

 $\updownarrow w \models A \longleftrightarrow w \models KPN(A) \longleftrightarrow w \models \Sigma(KPN(A))$

Formuła KPN(7A) nie jest spełnialna.

 $\updownarrow w \models A \leftrightarrow w \models KPN(A) \leftrightarrow w \models \Sigma(KPN(A))$

Zbiór $\Sigma(KPN(_{7}A))$ nie jest spełnialny.

 \updownarrow Zbiór Σ nie jest spełnialny $\leftrightarrow \Sigma \vdash_{RZ} \Box \leftrightarrow \Sigma(KPN(_{1}A)) \vdash_{RZ} \Box$

 $\Sigma(KPN(_1A))$ $\vdash_{RZ} \Box$

Jeżeli zbiór Σ jest skończony, to istnieje algorytm sprawdzania czy \downarrow_{RZ} \Box

Na podstawie powyższego faktu dla skończonego zbioru klauzul istnieje algorytm sprawdzania czy da się z tego zbioru wyprowadzić klauzule pustą przy pomocy rezolucji zdaniowej

6. Podaj określenie języka pierwszego rzędu oraz termów, formuł atomowych, formuł, zdań, termu bazowego i atomu bazowego.

Język pierwszego rzędu: Symbole:

- a) logiczne
 - zmienne przedmiotowe: x,y,z,...,x',y',z',x1,x2,...

VAR - zbiór wszystkich zmiennych przedmiotowych

- stałe logiczne: ¬**^,∨ →, ↔,∀**,∃
- symbole pomocnicze: (;);,;[;]
- b) pozalogiczne
 - symbole relacyjne (predykaty): P,Q,R,...
 - symbole funkcyjne: f,g,h,...
 - stałe przedmiotowe: a,b,c,...

Językiem pierwszego rzędu nazywamy układ:

L=(R1,...,Rn, f1,...,fm, a1,...,ak, p)

gdzie:

- R relacje
- f funkcje
- a stałe
- p funkcja, która dla każdego symbolu relacyjnego i funkcyjnego określa jego arność tzn. liczbę argumentów przy czym:
 p(Ri) > 0 dla i=1,...,n oraz p(fi)>0 dla i=1,...,m

Termami języka L nazywamy wyrażenia określone przez następujące warunki:

- każda zmienna i stała przedmiotowa jest termem;
- jeżeli f jest symbolem funkcyjnym, p(f) = n oraz t1,...,tn są termami, to f(t1,...,tn) jest termem.

Formułami atomowymi (atomami) języka L nazywamy wyrażenia postaci: R(t1,...,tn), gdzie R jest symbolem relacyjnym, p(R) = n, a t1,...,tn są termami.

Formułami języka L nazywamy wyrażenia określone przez następujące warunki:

- Każda formuła atomowa jest formułą.
- Jeżeli A i B są formułami,

to $(_{7}A)$, $(A_{\land}B)$, $(A_{\lor}B)$, $(A_{->}B)$, $(A_{<->}B)$, są formułami.

- Jeżeli A jest formułą i jest x zmienną przedmiotową, to wyrażenia (♣A), (♣A) są formułami.

Zdaniem (formułą domkniętą) nazywamy formułę bez zmiennych wolnych.

Termem bazowym nazywamy term nie zawierający zmiennych.

Atomem bazowym nazywamy formułę atomową nie zawierającą zmiennych.

7. Podaj określenia następujących pojęć w LPR: zdanie, domknięcie formuły, prawdziwość formuły w interpretacji.

Zdaniem (formułą domkniętą) nazywamy formułę bez zmiennych wolnych.

Niech A będzie formułą o zbiorze zmiennych wolnych V(A)={x1,...,xn}. Wtedy:

Domknięcie uniwersalne formuły A: VII_VII A.

Domkniecie egzystencjalne formuły A: 3 A.

Domkniecie uniwersalne i egzystencjalne formuły A jest zdaniem.

Formuła A jest prawdziwa w interpretacji M (M |= A), jeżeli jej domknięcie uniwersalne jest prawdziwe w M. 8. Podaj definicję i własności podstawienia. Na czym polega złożenie podstawień? Podaj przykład złożenia podstawień.

Podstawieniem nazywamy funkcję σ : VAR \rightarrow TER_L. Gdzie VAR - zbiór wszystkich zmiennych przedmiotowych, a TER_L zbiór wszystkich termów języka L. Stosujemy notację postfiksową: zamiast $\sigma(x)$ piszemy $x\sigma$.

Własności:

ε-podstawienie identycznościowe: xε=x dla wszystkich x εVAR

 $x(\sigma\eta) = (x\sigma)\eta$

 $\gamma(\sigma\eta) = (\gamma\sigma)\eta$

 $\varepsilon \sigma = \sigma \varepsilon = \sigma$

Złożenie podstawień:

Niech: $\eta = \{y1/s1, ..., ym/sm\}$, $\sigma = \{x1/t1, ..., xn/tn\}$. Podstawienie $\eta \sigma$ otrzymujemy ze zbioru $\{y1/s1\sigma, ..., ym/sm\sigma, x1/t1, ..., xn/tn\}$

przez usunięcie:

- elementów yi / si σ takich, że yi = si σ
- elementów xj / tj takich, że $xj \int \{y1,...,ym\}$

Przykład

a) Podstawianie:

A: P(x,y,f(a,y)), $\sigma = \{x | b, y | a \}$

 $A\sigma = P(x,y,f(a,y)) \sigma^{\wedge} = P(x\sigma,y\sigma,f(a,y)\sigma^{\wedge}) = P(x\sigma,y\sigma,f(a\sigma^{\wedge},y\sigma)) = P(b,a,f(a,b))$

b) Składanie podstawień:

 $\eta = \{ x/f(y), y/z, u/g(u) \}, \sigma = \{ x/a, y/b, z/y, u/c \}$

 $\eta \sigma = \{x/f(y), y/z, u/g(u); x/a, y/b, z/y, u/c\} = \{x/f(b), y/y, u/g(c); x/a, y/b, z/y, u/c\} = \{x/f(b), u/g(c); y/b, z/y\}$

c) $\eta \sigma \neq \sigma \eta$

 $\sigma = \{ x/f(y), y/z \}, \eta = \{ x/a, z/b \}$

 $\sigma \eta = \{ x/f(y), y/b; x/a, z/b \} = \{ x/f(y), y/b, z/b \}$

 $\eta \sigma = \{ x/a, z/b; x/f(y), y/z \} = \{ x/a, z/b, y/z \}$

9. Podaj określenie interpretacji języka pierwszego rzędu. Przykład

Interpretacją języka L nazywamy układ:

$$\mathsf{M}\text{=}(\,|\,\mathsf{M}\,|\,,\mathsf{R_{1}}^{\mathsf{M}},\!...,\,\mathsf{R_{n}}^{\mathsf{M}};\,\mathsf{f_{1}}^{\mathsf{M}},\!...,\,\mathsf{f_{m}}^{\mathsf{M}};\,\mathsf{a_{1}}^{\mathsf{M}},\!...,\,\mathsf{a_{k}}^{\mathsf{M}})$$

Gdzie:

- |M| -niepusty zbiór zwany dziedziną lub uniwersum interpretacji,
- R_n^M -n argumentowa relacja na zbiorze |M|, gdzie $n = \rho$ (R_i) tzn. $R_i^M \subset |M|^n = \{(u_1,...,u_n) : u_1,...,u_n \in |M|\}$,
- f_n^M n-argumentowe działanie na zbiorze |M|, $n = \rho(f_i)$, tzn. $f_i^M : |M|^n -> |M|$,
- a_n^M element zbioru |M|,

Dla każdego termu bazowego języka L, teTB_Ltzn. termu nie zawierającego zmiennych, określamy $t^M \in |M|$ następująco:

a) a_i^M jest dane przez interpretacje M,

```
b) (f_i(t_1,...,t_n))^M = f_i^M(t_1^M,...,t_n^M),
```

Przykład:

10. Podaj określenie wyrażenia prostego, przemianowania zmiennych, wariantu wyrażenia prostego. Każde pojęcie zilustruj przykładem.

Wyrażeniem prostym nazywamy termy i atomy (formuły atomowe).

Wprowadzamy oznaczenia:

E – wyrażenie proste

V(E) – zbiór zmiennych występujących w E

 $\sigma | V(E) -$ ograniczenie podstawienia σ do zbioru V(E);

jest to podstawienie η takie, że

 $x\eta = x\sigma dla x \int V(E)$

 $x\eta = x dla x \sim \int V(E)$

Przemianowaniem zmiennych nazywamy podstawienie σtakie, że

 $\sigma|V(E):V(E) \rightarrow (1-1) VAR$

 $x\eta = x dla x \sim \int V(E)$

Przykład przemianowania Wyrażenia:

E=P(f(x,y),g(z))

F=P(f(y,x),g(u))

są swoimi wariantami ponieważ

 $\eta = \{x/y, y/x, z/u\}$

η | V(E) jest 1-1 (różnowartościowe)

Εη=F

oraz dla

 $\sigma = \{y/x, x/y, u/z\}$

σ|V(E) jest 1-1 (różnowartościowe)

Fσ=Ε

Def. Wariant wyrażenia prostego

Jeżeli σ jest przemianowaniem zmiennych w wyrażeniu E, to wyrażenie Eσ nazywamy wariantem wyrażenia E.

Przykład stworzenia wariantu dla przemianowania

E=P(f(x),y,z)

 $V(E)=\{x,y,z\}$

Podstawienie $\sigma=\{x/y,y/x\}$ daje $E\sigma=P(f(y),x,z)$

11. Podaj określenie formuły preneksowej postaci normalniej. Jaki jest związek między formułą A i PNF(A)?

Def. Preneksowa postać normalna.

Formuła LPR znajduje się w preneksowej postaci normalnej (PNF), jeżeli jest postaci

Q1x1...Qkxk A // A – matryca Q... - prefix

gdzie Q1,Q2,...,Qk $\int \{/...,.../\}$, zaś formuła A nie zawiera kwantyfikatorów.

Tw. 2.1.

Dla każdej formuły A istnieje formuła \mathbf{B} w preneksowej postaci normalnej, która jest logicznie równoważna formule A, tzn każda interpretacja M spełnia formułę $A \leftrightarrow B$.

12. Podaj określenie formuły w postaci Skolema. Jaki jest związek między formułą A i SKOL(A)?

Def. Postać Skolema formuły LPR

Formuła A jest w postaci Skolema, gdy jest w preneksowej postaci normalnej, a jej prefiks nie zawiera kwantyfikatorów egzystencjalnych. Skolemowy odpowiednik formuły A będziemy oznaczać przez SKOL(A). Formuła A jest słabo równoważna formule SKOL(A), tzn. formuła A jest spełnialna wtw, gdy spełnialny jest jej odpowiednik Skolema, SKOL(A).

13. Co rozumiemy przez konkretyzację formuły(klauzuli) w LPR? Czym jest $gr(\Sigma)$ dla zbioru klauzul Σ ? Podaj twierdzenie dotyczące Σ i $gr(\Sigma)$.

Każde podstawienie formuły (klauzuli) nazywamy przykładem lub konkretyzacją tej formuły (klauzuli). Jeżeli podstawienie to jest podstawieniem bazowym, to i konkretyzację nazywamy bazową lub ustaloną.

 \sum - zbiór klauzul

 $gr(\Sigma)$ – zbiór wszystkich ustal. konkretyzacji klauzul ze zbioru Σ .

Dla każdego zbioru klauzul ∑ 2 warunki są równoważne

- a) Zbiór \sum jest spełnialny.
- b) Zbiór $gr(\Sigma)$ jest spełnialny.

14. Uzasadnij algorytm dowodzenia praw LPR za pomocą rezolucji zdaniowej.

Algorytm 2.3. Sprawdzanie tautologiczności formuł LPR z wykorzystaniem rezolucji zdaniowej

Dane: formuła A

Wynik: odpowiedź tak, jeżeli A jest tautologią oraz nie w przeciwnym przypadku

- (1) niech B bedzie formułą $PNF(\sim A)$
- (2) znajdujemy formułę SKOL(B)
- (3) w formule SKOL(B) opuszczamy kwantyfikatory i jeżeli nie jest w postaci KPN, to sprowadzamy ją do tej postaci otrzymując formulę C.
- (4) formułę C przedstawiamy w postaci klauzulowej $\Sigma(C)$
- (5) szukamy derywacji klauzuli pustej ze zbioru $gr(\Sigma(C))$
- (6) jeżeli klauzula pusta została otrzymana: odpowiedź tak
- (7) jeżeli algorytm zatrzymał się ze względu na brak możliwości stosowania reguły rezolucji, odpowiedź *nie*. **Uwaga!!** Algorytm 2.3
- daje odpowiedź tak wtedy i tylko wtedy, gdy formuła A jest tautologią LPR
- gdy formuła A nie jest tautologią LPR daje odpowiedź nie lub się zapętla.

Fakt 2.1 – patrz odp. 10

Tw. 2.1 – patrz odp. 14

Tw. 2.2 – patrz odp. 15

Def .Spełnialności – patrz odp. 2

Tw. 2.3 – patrz odp. 16

Tw. 2.4

Dla każdego zbioru zdań ustalonych Γ następujące warunki są równoważne:

- a) zbiór Γ jest spełnialny w sensie (zakresie) LPR (tzn. przez interpretację)
- b) zbiór Γ jest spełnialny w sensie rachunku zdań (tzn. przez wartościowanie)

Uzasadnienie

Formuła A jest tautologią LPR

↑ Fakt 2.1 -> ~A jest nie spełnialna

 \uparrow Tw. 2.1b -> PNF(\sim A) nie jest spełnialna

↑ Tw. 2.2 -> SKOL(PNF(~A)) nie jest spełnialna // oznacz. ją B

↑ def. Spełnialności -> C = matryca (B) nie jest spełnialna

 \updownarrow Zbiór klauzul $\Sigma(C)$ nie jest spełnialny

 \updownarrow Zbiór klauzul $gr(\Sigma(C))$ nie jest spełnialny

 \updownarrow Tw. 2.4 -> Istnieje refutacja zbioru $gr(\Sigma(C))$, tzn. istnieje wyprowadzenie klauzuli pustej ze zbioru $gr(\Sigma(C))$, za pomocą rezolucji zdaniowej.

15. Podaj określenie zbioru niezgodności dla zbioru wyrażeń prostych i zilustruj przykładem.

Def. Zbiór niezgodności

Niech S będzie skończonym zbiorem wyrażeń zawierających więcej niż jedno wyrażenie:

$$S = \{E1, ..., En\}, n \ge 2$$

Zbiór niezgodności D dla zboru S wyznaczamy następująco . Znajdujemy pierwszą od lewej pozycję, na której przynajmniej 2 wyrażenia zbioru S mają różne symbole. Na tej pozycji znajduje się stała, zmienna, symbol funkcyjny lub symbol relacyjny. Z każdego wyrażenia do zbioru D włączamy to podwyrażenie, które zaczyna się od znalezionej pozycji.

```
a) S = \{ P(x,f(y)), P(x,g(z)) \} D = \{ f(y), g(z) \}

b) S = \{ P(f(x),h(y),e), P(f(x),z,e), P(f(x),h(y),b) \} D = \{ h(y), z \}
```

16. Podaj algorytm wyznaczania najbardziej ogólnego unifikatora zbioru wyrażeń oraz twierdzenie o unifikacji.

Algor. 3.1 Algorytm unifikacji – procedura poszukiwania MGU

Wejście: skończony zbiór wyrażeń prostych S

Wyjście: MGU dla S, jeśli S jest zunifikowany, NIE w przeciwnym wypadku.

1) $k_i = 0$, $\sigma_0 = \epsilon$

2) Wyznaczamy zbiór Sok

Jeżeli $S\sigma_k$ jest jednoelementowy, to STOP;

Wyjście: σk . W przeciwnym wypadku wyznaczamy zbiór niezgodności D_k dla $S\sigma_k$

3) Wybieramy w zbiorze D_k parę x, t, taką, że x $\int VAR$, t $\int TER$ oraz x $\int V(t)$, przyjmijmy $\sigma k+1 = \sigma_k\{x/t\}$, wracamy do punku 2. Algorytm przy k=k+1, Jeżeli nie ma takiej pary, to STOP, wyjście nie.

Twierdzenie 3.1 O Unifikacji.

Jeżeli zbiór S jest unifikowany, to algorytm kończy pracę z wyjściem będącym MGU zbioru S. Jeżeli S nie jest unifikowany, to

algorytm kończy pracę z wyjściem nie.

17. Podaj określenie klauzuli definitywnej, programu definitywnego, klauzuli celu, klauzuli Horna.

Def. Klauzula definitywna

Klauzulą definitywną nazywamy klauzulę zawierającą dokładnie jeden literał pozytywny, co zapisujemy:

B1, ..., Bn \rightarrow A, gdzie B1, ..., Bn = B1 \otimes B2 \otimes ... \otimes Bn w szczególności:

n = 0

 \rightarrow A – klauzula jednostkowa – Fakt (1 \rightarrow A)

1 > C

B1, ..., Bn \rightarrow A – klauzula nie jednostkowa: regułą; regułę w praktyce zapisujemy jako:

 $A \leftarrow B1, ..., Bn, gdzie A to głowa, B1, ..., Bn, - body - ciało reguły.$

Def. Program definitywny

Programem definitywnym nazywamy dowolny skończony zbiór klauzul definitywnych, czyli zbiór formuł postaci:

 $\forall (B_1 \land ... \land B_n \rightarrow A).$

Def. Klauzula celu.

Celem nazywamy klauzulę nie zawierającą literałów pozytywnych (m=0)

 $\leftarrow B_1,...,B_n$

która jest równoważna formule

 $\forall (<-(B1 \otimes \otimes Bn))$ na podstawie tautologii KRZ: $(p \rightarrow 0) \rightarrow \neg p$

Def. Klauzula Horna.

Klauzulą Horna nazywamy klauzulę zawierającą co najwyżej jeden literał pozytywny, tzn klauzulę definitywną lub klauzulę celu.

18. Omów strategię Prologu

Fakt 2.2

2 następujące warunki są równoważne:

- formuła A wynika logicznie ze zbioru formuł Γ w LPR
- zbiór Γ u(¬A) nie jest spełnialny.

Strategia Prologu:

Niech P będzie programem definitywnym, a G-celem

Bierzemy pod uwagę zbiór P u {G}

Jeżeli wykażemy, że zbiór P u {G} nie jest spełnialny, to na podstawie FAKTU 2.2. otrzymamy, że formuła ¬G wynika logicznie ze zbioru formuł tworzących program P.

Cel G ma postać

$$/ \mathop{::} (\mathord{\sim} (B1 \otimes \otimes Bn)) \mathrel{<=>} \mathord{\sim} \mathop{::} / (B1 \otimes ... \otimes Bn)$$

zatem formuła

$$\therefore /x1 \dots \therefore /xk (B1 \otimes \dots \otimes Bn)$$

wynika logicznie z P, gdzie $x_1,...,x_k$ są wszystkimi zmiennymi występującymi w G. Tym samym znajdziemy obiekty $x_1,...,x_k$ spełniające cel G.

19. Podaj regułę rezolucji liniowej i derywacji liniowej.

Def. Reguła rezolucji liniowej

Reguła rezolucji liniowej ma postać

B←B1,...,Bk – wariant klauzuli C program P

$$\leftarrow (A_1,...,A_{m\text{-}1},B_1,...,B_k,A_{m\text{+}1},...,A_n)\sigma \text{ - nowy cel.}$$
 gdzie σ jest MGU zbioru $\{A_m,B\},$ tzn: $A_{m\sigma} = B_\sigma$

Def. Derywacja liniowa

Niech P będzie programem definitywnym, a G celem.

Derywacja liniowa dla P \cup {G} nazywamy skończony lub nieskończony ciąg którego wyrazami są: (G_n, C_n, σ_n) , 1<=n<=p lub 1<=n spełniający warunki:

- a) Dla każdego n, C_n jest wariantem klauzuli programu P nie zawierającym zmiennych występujących w $G_0,G_1,...,G_{n-1}$
- $\textbf{b)} \; \text{Dla każdego n, G}_n \; \text{jest rezolwentą liniową celu G}_{n\text{-}1} \; \text{oraz klauzuli C}_n \; \text{otrzymamy za pomocą podstawienia } \sigma_n \; \text{otrzymamy za pomocą } \sigma_n \; \text{otrzymamy za$

20. Podaj określenie refutacji liniowej dla programu P i celu G oraz odpowiedzi obliczonej.

Liniową refutacją dla **Pulia** nazywamy skończoną liniową derywację dla **Pulia**, której ostatni cel jest klauzulą pustą.

Niech $(G_{\bullet}C_{\bullet}\sigma_{\bullet})_{,}$ $1 \le n \le p_{,}$ będzie liniową refutacją dla $P \cup \{G\}$. Odpowiedzią obliczoną dla $P \cup \{G\}$ wyznaczoną przez tę refutację nazywamy podstawienie $\sigma_{\bullet}\sigma_{\bullet}$ ograniczone do zmiennych występujących w G. tzn. $(\sigma_{1}\sigma_{\bullet})|P(G)$.

21. Podaj określenie odpowiedzi obliczonej i poprawnej dla $P \cup \{G\}$, gdzie P jest programem definitywnym, a G – celem. Sformułuj twierdzenie o poprawności rezolucji liniowej. Podaj silne twierdzenie o pełności rezolucji liniowej.

Niech $(G_{\bullet}C_{\bullet}\sigma_{\bullet})_{,}$ $1 \le \pi \le P$, będzie liniową refutacją dla $P \cup \{G\}$. Odpowiedzią obliczoną dla $P \cup \{G\}$ wyznaczoną przez tę refutację nazywamy podstawienie $\sigma_{\bullet} - \sigma_{\bullet}$ ograniczone do zmiennych występujących w G. tzn. $(\sigma_{\bullet} - \sigma_{\bullet})|P(G)$.

Podstawienie σ nazywamy odpowiedzią poprawną dla $P \cup \{G\}$, gdzie $G: \leftarrow B1,...,Bn$, jeżeli formuła $(B \land \neg \land B \neg)\sigma$ wynika logicznie w LPR z programu P, co zapisujemy P $|=_{LPR} (B \land \neg \land B \neg)\sigma$. Przyjmujemy dodatkowo, że dziedzina podstawienia σ jest zawarta w $P(B \land \neg \land B \neg)$.

Tw. o poprawności rezolucji liniowej.

Każda odpowiedź obliczona dla $P \cup \{G\}$ jest odpowiedzią poprawną dla $P \cup \{G\}$, tzn. jeżeli $\sigma = (\sigma_1 \bot \sigma_2) | V(G)$ jest odpowiedzią obliczoną dla $P \cup \{G\}$, gdzie G: \leftarrow B1,...,Bn, to P $| =_{LPR} (B1 \land _ \land Bn)\sigma$.

Silne twierdzenie o pełności rezolucji liniowej.

Dla każdej odpowiedzi poprawnej θ dla $^{P \cup \{G\}}$ istnieje odpowiedź obliczona σ dla $^{P \cup \{G\}}$ oraz podstawienie γ takie, że θ = (σγ) | V(G).

22. Podaj określenie SLD-drzewa dla $P \cup \{G\}$ zgodnego z regułą selekcji R.

SLD-drzewo dla **Politi** zgodne z R jest drzewem skończonym lub nieskończonym, którego wierzchołki etykietowane są celami i spełniającym następujące warunki:

- a) korzeń drzewa jest etykietowany celem G,
- **b)** dla dowolnego wierzchołka etykietowanego celem G' następniki tego wierzchołka są etykietowane kolejnymi celami, które powstają z G' przez uzgodnienie wybranego zgodnie z R atomu z kolejnymi klauzulami programu,
- a) gałęzie pełnego SLD-drzewa dla **Politi** reprezentują wszystkie derywacje dla **Politi** zgodne z R, przy czym: gałęzie nieskończone reprezentują nieskończoną derywację (procedura się pętli), gałęzie skończone to: gałęzie udane (sukcesu), gałęzie chybione (porażki).

23. Podaj określenie reguły selekcji i sformułuj twierdzenie o nieistotności reguł selekcji.

Regułą selekcji nazywamy funkcję R, która każdej skończonej derywacji liniowej (Gn,Cn, σ n), $1 \le n \le p$ takiej, że $Gp = \Box$ przyporządkowuje liczbe naturalną $1 \le m \le k$, gdzie k jest długością celu Gk.

Tw. o nieistotności reguł selekcji.

Niezależnie od wyboru reguły selekcji otrzymamy te same odpowiedzi obliczone dla $^{P \cup \{G\}}$ z dokładnością do wariantu, tzn. jeżeli R1 i R2 są regułami selekcji i σ1 jest odpowiedzią obliczoną dla $^{P \cup \{G\}}$ zgodną z R1 i σ2 jest odpowiedzią obliczoną zgodną z R2, to Gσ1 i Gσ2 są swoimi wariantami.

24. Podaj podstawowe cechy prologu jako implementacji SLD rezolucji. Objaśnij użyte pojęcia.

W prologu stosujemy:

- SLD-rezolucję,
- regułę selekcji "left first",
- strategię przeszukiwania drzewa "depth first",
- niezmienny porządek klauzul w procedurach,

Prolog jako metoda dowodzenia twierdzeń nie jest pewny, tzn. nie spełnia twierdzenia o pełności. **Left first** – reguła selekcji, w której R() = 1, tzn. w danym celu wybierany jest zawsze podlec pierwszy z lewej. **Depth first** – strategia przeszukiwania drzewa – przeszukiwanie lewymi gałęziami; dla pewnych drzew strategia ta może nie doprowadzić do rozwiązania, ale jest łatwa w realizacji.

25. Termy rachunku lambda

Zbiór Λ – terów w rachunku lambda konstruuje się indukcyjnie jak zbiór słów nad alfabetem

Var u $\{(,), \lambda\}$ gdzie Var to przeliczalny zbiór zmiennych. Do zbioru Λ termów należą tylko wyrażenia skonstruowane w poniższy sposób

- Jeżeli x ∈ Var, to x ∈ Λ,
- Jeżeli M $\in \Lambda$, x \in Var, to $(\lambda \times M) \in \Lambda$. Ten sposób tworzenia termu nazywamy abstrakcją.
- Jeżeli M ∈ Λ i N ∈ Λ, to (MN) ∈ Λ Tę metodę tworzenia termów nazywamy metodą aplikacji

Termy rachunku λ to procedury, których parametry sprecyzowane są przez λ abstrakcje

$$\lambda \underbrace{x_1...x_n}_{\text{parametry cialo procedury}}$$

λ x1...xn. M przy czym { x1...xn} to parametry a M to ciało procedury

Nawiasy są często pomijane według zasady łączności lewostronnej: na przykład $MNPQ\equiv (((MN)P)Q)$ -Wieloargumentowe funkcje są reprezentowane przez funkcje jednoargumentowe, których argumentami są funkcje. Zatem to, co zwykle jest zapisywane w postaci F(N,M), w rachunku lambda zapisuje się $((FN)M)\equiv FNM$ -Powtórzenia symbolu λ pomijane są według zasady łączności prawostronnej, tzn. $\lambda xyz.M\equiv (\lambda x.(\lambda y.(\lambda z.M)))$.

Zbiór zmiennych wolnych termu M, oznaczany przez FV(M), zdefiniowany jest, w zależności od budowy termu M, w następujący sposób:

- Jeżeli Mjest postaci $\lambda x.M'$, to λx wiąże wszystkie wolne wystąpienia zmiennej x w termie M', a zatem $FV(M)=FV(M')-\{x\}$
- Jeżeli Mjest postaci PQ, to zmiennymi wolnymi termu Msą wszystkie zmienne wolne występujące w termach Pi Q, czyli $FV(M) = FV(P) \cup FV(Q)$.

Zmienna jest zmiennq wolnq termu M, jeżeli należy do zbioru $FV(M)_{2a}$ zmiennq zwiqzq w przeciwnym wypadku.

 $\operatorname{Term} M \operatorname{jest} \operatorname{domknięty} \operatorname{wtedy} \operatorname{i} \operatorname{tylko} \operatorname{wtedy}, \operatorname{gdy} FV(M) = \emptyset.$

Przykład

• W termie $M=y(\lambda x.x)_{\text{zmienna}}\,y_{\text{jest zmienną wolną, a xzmienną związaną.}}$ W termie $\lambda y.M_{\text{nie ma zmiennych wolnych, jest to więc term domknięty.}}$

 $\text{ W termie $M=x(\lambda x.x)$} \text{ tylko pierwsze wystąpienie zmiennej x jest wolne, chociaż } FV(M)=\{x\}_{\text{. Oczywiście term M nie jest termem domkniętym.}$

26. Alfa-konwersja. Definicja, przykłady

α konwersja – zamiana nazw zmiennych związanych

$$\lambda x.M \rightarrow {}^{\alpha} \lambda.y.M[x|y], gdzie y \notin FV(M),M[x|y]$$

wynik podstawienia zmiennej y za każde wolne wystąpienie zmiennej x w M Można napisać że $T_1 = {}_{\alpha} T_2$ aby powiedzieć że termy T_1 i T_2 są równe modulo α konwersja tzn że mogą być zredukowane do tego samego termu poprzez zastosowanie skończonej liczby α konwersji. PRZYKŁADY:

 $\lambda x.x = {}^{\alpha} \lambda y.y$ $\lambda x.z = {}^{\alpha} \lambda y.yz$ $\lambda x.xy \neq {}^{\alpha} \lambda x.xz$

27.Beta-redukcja. Definicja, przykłady

β redukcja – obliczenia wykonane przez procedurę symulowane są w rachunku lambda przez proces zwany β redukcją. Aplikujemy procedurę $λx.M \rightarrow {}^βM[xIN]$ w taki sposób aby każda zmienna wolna w N pozostała wolna po podstawieniu Ewentualnie w razie potrzeby stosujemy najpierw α konwersję.

Można napisać że $T_1 = {}_{\beta} T_2$ aby powiedzieć że termy T_1 i T_2 są równe modulo α konwersja tzn że mogą być zredukowane do tego samego termu poprzez zastosowanie skończonej liczby β redukcji.

Aplikację PQ nazywamy β -redeksem, jeżeli P jest w postaci λ abstrakcji. Term M jest wpostaci normalnej jeżeli nie zawiera β redeksów

PRZYKŁADY:

$$(\lambda xy.xy)y = \alpha (\lambda xz.xz)y = \beta \lambda z.yz$$

 $(\lambda xy.xy)y \neq \beta \lambda y.yy$

28. Postać normalna termu w rachunku lambda

Aplikację PQnazywamy β -redeksem, jeżeli term Pjest w postaci λ -abstrakcji. Term Mjest w postaci normalnej, jeżeli nie zawiera β -redeksów, tzn. żaden podterm termu Mnie jest β -redeksem.

Term Tjest normalizowalny, jeżeli można go zredukować do postaci normalnej, a jest silnie normalizowalny, jeżeli każda droga redukcji prowadzi do postaci normalnej. Beztypowy rachunek lambda nie ma żadnej z tych własności. Wprowadźmy oznaczenie: $\Delta = \lambda x.xx$. Najprostszym przykładem termu nie posiadającego postaci normalnej jest $\Delta\Delta$:

$$\Delta \Delta = (\lambda x. xx)\Delta =_{\beta} \Delta \Delta.$$

Przykładem termu, w którym nie każda droga redukcji prowadzi do postaci normalnej, jest:

$$\overbrace{(\lambda x.y)(\underline{\Delta \Delta})}^{(2)} =_{\beta} (\lambda x.y)(\Delta \Delta) =_{\beta} \dots | \text{redukując (1)}$$

$$=_{\beta} y | \text{redukując (2)}$$

Istnieją strategie redukcji, które zawsze doprowadzają do postaci normalnej, oczywiście gdy postać normalna istnieje. Taką strategią jest na przykład metoda redukowania zawsze najbardziej lewego redeksu.

29. Własność Churcha-Rossera

Jeżeli term M poprzez pewne ciągi β redukcji, redukuje się do termów N_1 i N_2 to istnieje term M tai że zarówno N₁ jak i N₂ można zredukować do M (poprzez ciąg β redukcji)

Z powyższej własności wynika że postać normalna (o ile istnieje jest unikalna z dokładnością do α konwersji

30. Reprezentacja liczb naturalnych w rachunku lambda.

Popatrzmy na liczbę naturalną njak na procedurę, która n-krotnie stosuje następnik do zera. Oczywiste jest, że taka procedura w sposób jednoznaczny określa liczbę, i na odwrót. Mając dany przepis wiemy, jaką liczbę naturalną liczy, a mając liczbę naturalną doskonale wiemy, który przepis zastosować.

• Term λsx . Ireprezentuje liczbę naturalną 0.

$$\lambda sx. \ \underline{s(s(...(s\ x)...))}$$

 $\lambda sx. \ \underbrace{s(s(...(s\ x)...))}_{ ext{n\ razy}}$ reprezentuje liczbę naturalną n.Term

Term λsx . Ito po prostu algorytm: "weź następnik s, weź zero xi zwróć zero"; natomiast term $\lambda sx. \ s(s(...(s\ x)...))$

to algorytm: "weź następnik S, weź zero I, zastosuj n-krotnie następnik do zera i zwróć wynik". Zatem liczba naturalna w naszym rozumieniu to procedura, która ma dwa parametry: S (następnik) oraz *I*(zero).

Oczywiście powyższe termy podane są z dokładnością do lpha-konwersji. Np. term $\lambda ty.t(ty)$ reprezentuje 2, $_{\text{gdv}} \lambda ty.t(ty) =_{\alpha} \lambda sx.s(sx)$

Mówimy, że $term\ E$ rachunku lambda reprezentuje funkcję na liczbach naturalnych $e:\mathbb{N}^k o \mathbb{N}$ wtedy i tylko wtedy, gdy $E\underline{n_1}...\underline{n_k} =_{\alpha\beta} \underline{e(n_1,...,n_k)}$, gdzie \underline{n} oznacza reprezentację liczby nw rachunku lambda.