Polar Coordinates: Tangent Lines, Arc Length, & Area

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 10.3 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Know how to compute the slope of the tangent line to a polar curve at a given point.
- Be able to find the arc length of a polar curve.
- Be able to Calculate the area enclosed by a polar curve or curves.

PRACTICE PROBLEMS:

For problems 1-3, find the slope of the tangent line to the polar curve for the given value of θ .

1.
$$r = \theta$$
; $\theta = \frac{\pi}{6}$

$$\frac{\sqrt{3}\pi + 6}{6\sqrt{3} - \pi}$$

2.
$$r = 3 + 2\sin\theta$$
; $\theta = \frac{\pi}{6}$

$$-5\sqrt{3}$$
; Detailed Solution: Here

3.
$$r = 1 - \sin 2\theta$$
; $\theta = \pi$

$$-\frac{1}{2}$$

4. Consider the circle $r = 3\cos\theta$. Find all values of θ in $0 \le \theta < \pi$ for which the curve has either a horizontal or vertical tangent line.

Vertical Tangent Lines when
$$\theta = 0$$
 and $\theta = \frac{\pi}{2}$;

Horizontal Tangent Lines when
$$\theta = \frac{\pi}{4}$$
 or $\theta = \frac{3\pi}{4}$.

For problems 5-7, fnd the arc length of the given curves

5. The entire circle $r = 4 \sin \theta$.

$$4\pi$$

6. The spiral $r = e^{-\theta}$ for $\theta \ge 0$.

 $\sqrt{2}$

7. The entire cardioid $r=1+\cos\theta$. (Hint: It may be useful to use symmetry and the identity $\cos^2\theta=\frac{1}{2}(1+\cos{(2\theta)})$

8; Detailed Solution: Here

For problems 8-16, find the area of each of the specified regions.

8. The region in the 1st quadrant within the circle $r = 3\cos\theta$

 $\frac{9\pi}{8}$

9. The region enclosed by the cardioid $r = 3 + 3\sin\theta$

 $\frac{27\pi}{2}$

10. The region inside the circle r=3 but outside the cardioid $r=1+\cos\theta$

 $\frac{15\pi}{2}$

11. The region inside the circle r=3 but outside the cardioid $r=2+2\cos\theta$

 $\frac{9\sqrt{3}}{2} + 2\pi$

12. The region outside the circle r=3 but inside the cardioid $r=2+2\cos\theta$

 $\frac{9\sqrt{3}}{2} - \pi$

13. The region in common between the two circles $r = 3\sin\theta$ and $r = 3\cos\theta$

 $-\frac{9}{4} + \frac{9\pi}{8}$

14. The region inside the circle r=2 and to the right of the line $r=\sec\theta$

 $\boxed{\frac{4\pi}{3} - \sqrt{3}}$

15. The region enclosed by the rose $r = 3\cos 2\theta$

 $\frac{9\pi}{2}$

- 16. The region enclosed by the rose $r=2\sin3\theta$
- 17. Find the area of the shaded region (shown below) which is enclosed between the circle $r=2\cos\theta$ and the cardioid $r=2+2\cos\theta$.

- $\frac{5\pi}{2}$; Detailed Solution: Here
- 18. Consider the limaçon $r = \sqrt{3} + 2\sqrt{3}\cos\theta$

(a) Compute the area enclosed by the inner loop of the limacon.

 $-\frac{9\sqrt{3}}{2} + 3\pi$; Detailed Solution: Here

(b) Compute the area enclosed between the outer and inner loops of the limacon.

 $9\sqrt{3} + 3\pi$; Detailed Solution: Here