DS 2 : un corrigé

Le barème comporte 59 points.

Problème 1 (sur 36 points)

1°) (1 point) $I_0 = \int_0^1 e^t dt = [e^t]_0^1 = e - 1.$ En effectuant une intégration par parties,

Une seconde intégration par parties donne alors
$$I_1 = \int_0^1 (t - t^2)e^t dt = \left[t(1 - t)e^t\right]_0^1 - \int_0^1 (1 - 2t)e^t dt = \int_0^1 (2t - 1)e^t dt.$$
 Une seconde intégration par parties donne alors

$$I_1 = \left[(2t-1)e^t \right]_0^1 - \int_0^1 2e^t \ dt = e+1-2[e^t]_0^1, \text{ donc } I_1 = e+1-2e+2 = 3-e.$$

En conclusion, $I_0 = e-1$ et $I_1 = 3-e$.

2°) (2 points) Pour tout $t \in [0, 1]$, notons $f(t) = t(1 - t) = t - t^2$.

f est un polynôme, donc elle est définie et dérivable sur [0,1].

Pour tout $t \in [0,1]$, f'(t) = 1 - 2t, donc $f(t) \ge 0 \iff t \le \frac{1}{2}$. On obtient alors le tableau de variations de f ainsi que son graphe :

 3°) (2 points)

D'après la question précédente, pour tout $t \in [0,1], 0 \le t(1-t) \le \frac{1}{4}$, donc par croissance

de l'intégrale, pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n!} \int_0^1 \frac{e^t}{4^n} dt = \frac{1}{n!4^n} [e^t]_0^1 = \frac{e-1}{4^n n!}$.

D'après le principe des gendarmes, $I_n \xrightarrow[n \to +\infty]{} 0$

4°)

 \diamond (3 points) Soit $n \in \mathbb{N}$ avec $n \geq 2$. f_n est un polynôme donc c'est une application deux fois dérivable sur \mathbb{R} .

$$f_n(t) = (t - t^2)^n$$
, donc $f'_n(t) = n(1 - 2t)(t - t^2)^{n-1}$, puis

$$f_n''(t) = n(-2)(t-t^2)^{n-1} + n(n-1)(1-2t)^2(t-t^2)^{n-2},$$

or
$$(1-2t)^2 = 4t^2 - 4t + 1 = -4(t-t^2) + 1$$
, donc $f_n''(t) = -2n(t-t^2)^{n-1} + n(n-1)(-4)(t-t^2)^{n-1} + n(n-1)(t-t^2)^{n-2} = f_{n-1}(t)(-2n+4n-4n^2) + f_{n-2}(t)n(n-1)$. En conclusion, $f_n''(t) = -2n(2n-1)f_{n-1}(t) + n(n-1)f_{n-2}(t)$. \diamond (2 points) Soit $n \geq 2$. Intégrons par parties : $n!I_n = \int_0^1 f_n(t)e^t \ dt = [f_n(t)e^t]_0^1 - \int_0^1 f_n'(t)e^t \ dt$, or $f_n(0) = f_n(1) = 0$, donc $n!I_n = -\int_0^1 f_n'(t)e^t \ dt$. Une nouvelle intégration par parties donne : $n!I_n = -[f_n'(t)e^t]_0^1 + \int_0^1 f_n''(t)e^t \ dt$, or on a vu que $f_n'(t) = n(1-2t)(t-t^2)^{n-1}$ et $n-1 \geq 1$, donc $f_n'(0) = 0 = f_n'(1)$. Ainsi, $n!I_n = \int_0^1 f_n''(t)e^t \ dt$. Mais $f_n''(t) = -2n(2n-1)f_{n-1}(t) + n(n-1)f_{n-2}(t)$, donc $n!I_n = -2n(2n-1) \times (n-1)!I_{n-1} + n(n-1) \times (n-2)!I_{n-2}$, puis $I_n = -2(2n-1)I_{n-1} + I_{n-2}$.

5°) (3 points) Soit $n \in \mathbb{N}$. Notons R(n) l'assertion : il existe α_n et β_n des entiers relatifs impairs tels que $I_n = \alpha_n e - \beta_n$.

Pour n = 0, $I_0 = e - 1$, donc $\alpha_0 = 1$ et $\beta_0 = 1$ conviennent.

Pour n = 1, $I_1 = -e + 3$, donc $\alpha_1 = -1$ et $\beta_1 = -3$ conviennent.

On suppose que $n \geq 2$ et que R(n-1) et R(n-2) sont vraies. Alors

$$I_{n} = -2(2n-1)\overline{I_{n-1}} + \overline{I_{n-2}}$$

$$= -2(2n-1)(\alpha_{n-1}e - \beta_{n-1}) + (\alpha_{n-2}e - \beta_{n-2})$$

$$= (\alpha_{n-2} - 2(2n-1)\alpha_{n-1})e - (\beta_{n-2} - 2(2n-1)\beta_{n-1}),$$

donc en posant $\alpha_n = \alpha_{n-2} - 2(2n-1)\alpha_{n-1}$ et $\beta_n = \beta_{n-2} - 2(2n-1)\beta_{n-1}$, on a bien $\alpha_n = \alpha_n e - \beta_n$. De plus α_n et β_n sont des entiers, de même parité que α_{n-2} et β_{n-2} , c'est-à-dire impairs. Ceci prouve R(n).

On a ainsi répondu à la question, d'après le principe de récurrence double.

- **6°)** (1 point) $\left| \frac{\beta_n}{\alpha_n} e \right| = \frac{|\beta_n e\alpha_n|}{|\alpha_n|} \le \frac{|I_n|}{1}$, car α_n est un entier relatif impair, donc $|\alpha_n| \ge 1$. Or $I_n \underset{n \to +\infty}{\longrightarrow} 0$ d'après la question 3, donc d'après le principe des gendarmes, $\frac{\beta_n}{\alpha_n} \underset{n \to +\infty}{\longrightarrow} e$.
- 7°) (4 points) Raisonnons par l'absurde en supposant que e est rationnel. Ainsi, il existe $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$ tel que $e = \frac{a}{b}$. Alors, pour tout $n \in \mathbb{N}$, $bI_n = \alpha_n a b\beta_n \in \mathbb{Z}$, or $bI_n \underset{n \to +\infty}{\longrightarrow} 0$, donc il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $|bI_n| \leq \frac{1}{2}$. On en déduit en particulier que $bI_N = 0$, donc $0 = I_N = \int_0^1 t^n (1-t)^n e^t \ dt$. De plus, l'application $t \longmapsto t^n (1-t)^n e^t$ est positive et continue sur [0,1], donc d'après un théorème du cours, cette application est identiquement nulle sur [0,1]. C'est manifestement faux, par exemple pour $t = \frac{1}{2}$, donc e est irrationnel.
- 8°) (2 points) D'après l'énoncé, (s-s')e=r'-r. Si $s-s'\neq 0$, alors $e=\frac{r'-r}{s-s'}$, mais il est clair qu'une différence de rationnels est un rationnel et qu'un quotient de rationnels est aussi un rationnel, donc $e\in\mathbb{Q}$, ce qui est faux d'après la question précédente, donc s-s'=0. Ainsi s=s', puis r'-r=(s-s')e=0, donc on a également r=r'.

 9°) (2 points) Notons $S(\ell)$ cette propriété et montrons-la par récurrence.

Pour
$$\ell = 0$$
, $\int_0^1 (1-t)^{\ell} e^t dt = I_0 = e - 1 = 0!e - \sum_{i=0}^0 \frac{\ell!}{j!}$, donc $S(0)$ est vraie.

Soit $\ell \in \mathbb{N}$. On suppose $S(\ell)$. En intégrant par parties,

$$\int_0^1 (1-t)^{\ell+1} e^t \ dt = \left[(1-t)^{\ell+1} e^t \right]_0^1 - \int_0^1 (\ell+1)(-1)(1-t)^{\ell} e^t \ dt, \text{ donc d'après } S(\ell),$$

$$\int_0^1 (1-t)^{\ell+1} e^t \ dt = -1 + (\ell+1) \left(\ell! e - \sum_{j=0}^{\ell} \frac{\ell!}{j!} \right) = (\ell+1)! e - \sum_{j=0}^{\ell} \frac{(\ell+1)!}{j!} - \frac{(\ell+1)!}{(\ell+1)!}, \text{ ce qui prouve } S(\ell+1).$$

10°) (3 points) Posons
$$K_{\ell} = \int_{0}^{1} (1-t)^{\ell} e^{-t} dt$$
.

Lorsque $\ell \in \mathbb{N}$, en intégrant par

$$K_{\ell+1} = \left[-(1-t)^{\ell+1} e^{-t} \right]_0^1 - (\ell+1) \int_0^1 (1-t)^{\ell} e^{-t} dt = 1 - (\ell+1) K_{\ell}.$$

En examinant les premières valeurs de la suite (K_{ℓ}) , on conjecture que, pour tout $\ell \in \mathbb{N}$,

$$K_{\ell} = (-1)^{\ell+1} \ell! \frac{1}{e} - \sum_{j=0}^{\ell} (-1)^{\ell+1+j} \frac{\ell!}{j!}.$$

On démontre cette propriété par récurrence sur ℓ , selon un calcul analogue à celui de la question précédente.

♦ (2 points) Par linéarité de l'intégrale, puis d'après la formule du binôme de Newton,

$$\frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \int_0^1 (1-t)^{n+k} e^t dt = \frac{1}{n!} \int_0^1 \left(\sum_{k=0}^n (-1)^k \binom{n}{k} (1-t)^k\right) (1-t)^n e^t dt
= \frac{1}{n!} \int_0^1 ((t-1)+1)^n (1-t)^n e^t dt
= I_n.$$

 $\diamond~$ (3 points) D'après la question 9, ceci permet d'écrire que

$$I_n = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \left((n+k)! e - \sum_{j=0}^{n+k} \frac{(n+k)!}{j!} \right),$$

donc
$$I_n = \frac{e}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n+k)! + r \text{ où } r \in \mathbb{Q}.$$

Ainsi, si l'on pose $s = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n+k)!$, on a $I_n = se + r$, avec $s, r \in \mathbb{Q}$.

D'autre part,
$$I_n = \alpha_n e - \beta_n^k$$
, avec $\alpha_n, \beta_n \in \mathbb{Q}$. Alors, d'après la question 8, $\alpha_n = s = \frac{1}{n!} \sum_{k=0}^n (-1)^k \binom{n}{k} (n+k)! = \sum_{k=0}^n (-1)^k \frac{(n+k)!}{k!(n-k)!}$.

12°)

 \diamond (1 point) Dans la définition de I_n , posons u = 1 - t.

On obtient
$$I_n = \frac{1}{n!} \int_1^0 (1-u)^n u^n e^{1-u} (-du)$$
, donc $I_n = \frac{e}{n!} \int_0^1 (1-u)^n u^n e^{-u} du$.

 \diamond (3 points) D'après les questions 11 et 6, il suffit de montrer que $\beta_n = \sum_{k=0}^n (-1)^n \frac{(n+k)!}{k!(n-k)!}$.

D'après le point précédent,

$$I_n = \frac{e}{n!} \int_0^1 (1-u)^n u^n e^{-u} du$$

$$= \frac{e}{n!} \int_0^1 (1-u)^n ((u-1)+1)^n e^{-u} du$$

$$= \frac{e}{n!} \int_0^1 (1-u)^n \sum_{k=0}^n \binom{n}{k} (u-1)^k e^{-u} du$$

$$= \frac{e}{n!} \sum_{k=0}^n \binom{n}{k} (-1)^k \int_0^1 (1-u)^{n+k} e^{-u} du.$$

Alors d'après la question 10,

$$I_n = \frac{e}{n!} \sum_{k=0}^n \binom{n}{k} (-1)^k \left((-1)^{n+k+1} (n+k)! \frac{1}{e} - \sum_{j=0}^{n+k} (-1)^{n+k+1+j} \frac{(n+k)!}{j!} \right)$$

$$= \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} (-1)^{n+1} (n+k)! + se,$$

où $s \in \mathbb{O}$. Alors, d'après la question 8.

$$\beta_n = -\frac{1}{n!} \sum_{k=0}^n \binom{n}{k} (-1)^{n+1} (n+k)! = \sum_{k=0}^n (-1)^n \frac{(n+k)!}{k!(n-k)!}, \text{ ce qui conclut.}$$

Problème 2 (sur 23 points)

$$\mathbf{1}^{\circ}) \quad (2 \text{ points}) \text{ Avec } n = 1, \bigcup_{i=1}^{1} (A_{i} \cap B_{i}) = A_{1} \cap B_{1}. \text{ De plus, } \mathcal{P}(\mathbb{N}_{1}) = \{\emptyset, \{1\}\}, \text{ donc } \bigcap_{X \in \mathcal{P}(\mathbb{N}_{n})} \left(\left(\bigcup_{i \in X} A_{i}\right) \bigcup_{i \in \mathbb{N}_{1} \setminus X} B_{i} \right) \right) = \left[\left(\bigcup_{i \in \emptyset} A_{i}\right) \bigcup_{i \in \{1\}} B_{i} \right) \right] \cap \left[\left(\bigcup_{i \in \{1\}} A_{i}\right) \bigcup_{i \in \emptyset} \left(\bigcup_{i \in \mathbb{N}_{1} \setminus X} B_{i} \right) \right],$$
 or
$$\bigcup_{i \in \emptyset} A_{i} = \emptyset = \bigcup_{i \in \emptyset} B_{i}, \text{ donc } \bigcap_{X \in \mathcal{P}(\mathbb{N}_{n})} \left(\left(\bigcup_{i \in X} A_{i}\right) \bigcup_{i \in \mathbb{N}_{1} \setminus X} B_{i} \right) \right) = B_{1} \cap A_{1},$$
 ce qui prouve (C_{1}) .

$$2^{\circ}$$
) (3 points)

 \diamond Soit $x \in E$.

Supposons que
$$x \in \left(\bigcap_{i \in I} F_i\right) \cup G$$
.

Si $x \in G$, alors pour tout $i \in I$, $x \in F_i \cup G$, donc $x \in \bigcap_{i \in I} (F_i \cup G)$.

Si $x \notin G$, alors $x \in \bigcap F_i$, donc pour tout $i \in I$, $x \in F_i$, puis $x \in F_i \cup G$ et on a encore

$$x \in \bigcap_{i \in I} (F_i \cup G)$$
. Ceci démontre que $\Big(\bigcap_{i \in I} F_i\Big) \cup G = \bigcap_{i \in I} (F_i \cup G)$. Réciproquement, supposons que $x \in \bigcap_{i \in I} (F_i \cup G)$.

Si
$$x \in G$$
, alors $x \in \left(\bigcap_{i \in I} F_i\right) \cup G$.

Supposons maintenant que $x \notin G$. Pour tout $i \in I$, $x \in F_i \cup G$, donc $x \in F_i$. Ainsi, $x \in \bigcap_{i \in I} F_i$, puis $x \in \left(\bigcap_{i \in I} F_i\right) \cup G$.

Ainsi, dans les deux cas, $x \in \left(\bigcap_{i \in I} F_i\right) \cup G$, ce qui montre la seconde inclusion.

Ceci prouve que $\left(\bigcup_{i\in I}F_i\right)\cap G=\bigcup_{i\in I}(F_i\cap G).$

$$\diamond \text{ Soit } x \in \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X \cup \{n+1\}} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right).$$

Ainsi, pour tout $X \in \mathcal{P}(\mathbb{N}_n)$, il existe $i \in X \cup \{n+1\}$ tel que $x \in A_i$, ou il existe $i \in \mathbb{N}_n \setminus X$ tel que $x \in B_i$.

Soit $Y \in Q$. Posons $X = Y \setminus \{n+1\}$, de sorte que $Y = X \sqcup \{n+1\}$. De plus $\mathbb{N}_n \setminus X = \mathbb{N}_{n+1} \setminus Y$, donc il existe $i \in Y$ tel que $x \in A_i$, ou il existe $i \in \mathbb{N}_{n+1} \setminus Y$ tel que $x \in B_i$. Ceci prouve que $x \in \left(\bigcup_{i \in Y} A_i\right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus Y} B_i\right)$, pour tout $Y \in Q$,

donc
$$x \in \bigcap_{Y \in Q} \left(\left(\bigcup_{i \in Y} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus Y} B_i \right) \right)$$
. Ceci prouve que

donc
$$x \in \bigcap_{Y \in Q} \left(\left(\bigcup_{i \in Y} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus Y} B_i \right) \right)$$
. Ceci prouve que
$$\bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X \cup \{n+1\}} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right) \subset \bigcap_{X \in Q} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right).$$

$$\Leftrightarrow \text{Réciproquement, soit } x \in \bigcap_{X \in Q} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right). \text{ Ainsi, pour tout}$$

$$\Leftrightarrow \text{ R\'eciproquement, soit } x \in \bigcap_{X \in Q} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right). \text{ Ainsi, pour tout}$$

 $Y \in Q$, il existe $i \in Y$ tel que $x \in A_i$ ou il existe $i \in \mathbb{N}_{n+1} \setminus Y$ tel que $x \in B_i$.

Soit $X \in \mathcal{P}(\mathbb{N}_n)$. Posons $Y = X \cup \{n+1\}$. $Y \in Q$ donc il existe $i \in Y = X \cup \{n+1\}$ tel que $x \in A_i$, ou il existe $i \in \mathbb{N}_{n+1} \setminus Y = \mathbb{N}_n \setminus X$ tel que $x \in B_i$. On en déduit que

$$x \in \left(\bigcup_{i \in X \cup \{n+1\}} A_i\right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i\right)$$
, pour tout $X \in \mathcal{P}(\mathbb{N}_n)$,

$$\operatorname{donc} x \in \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X \cup \{n+1\}} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right), \text{ ce qui prouve l'inclusion réciproque.}$$

4°) (4 points) L'initialisation de la récurrence provient de la question 1.

Soit $n \in \mathbb{N}^*$. Supposons que (C_n) est vraie.

Considérons deux nouvelles parties A_{n+1} et B_{n+1} de E et montrons (C_{n+1}) .

$$\bigcup_{i=1}^{n+1} (A_i \cap B_i) = \left[\bigcup_{i=1}^{n} (A_i \cap B_i)\right] \cup (A_{n+1} \cap B_{n+1}), \text{ donc en utilisant } (C_n),$$

$$\bigcup_{i=1}^{n+1} (A_i \cap B_i) = \left[\bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X} A_i\right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i\right)\right)\right] \cup (A_{n+1} \cap B_{n+1}).$$

Alors, d'après la question 2

$$\bigcup_{i=1}^{n+1} (A_i \cap B_i) = \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left[\left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right) \cup (A_{n+1} \cap B_{n+1}) \right].$$

Or d'après la question 2, si F, G et K sont des parties de E,

 $F \cup (G \cap K) = (F \cup G) \cap (F \cup K)$. Donc

$$\bigcup_{i=1}^{n+1} (A_i \cap B_i) = \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left[\left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \cup A_{n+1} \right) \right. \\
\left. \left. \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \cup B_{n+1} \right) \right].$$

D'après la commutativité de la réunion,

$$\bigcup_{i=1}^{n+1} (A_i \cap B_i) = \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left[\left(\left(\bigcup_{i \in X \cup \{n+1\}} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right) \right.$$

$$\left. \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in (\mathbb{N}_n \setminus X) \cup \{n+1\}} B_i \right) \right) \right].$$

D'après la question précédente,

$$\bigcup_{i=1}^{n+1} (A_i \cap B_i) = \left[\bigcap_{X \in Q} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right) \right]
\cap \left[\bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right) \right],
\text{or } \mathcal{P}(\mathbb{N}_{n+1}) = Q \sqcup \mathcal{P}(\mathbb{N}_n), \text{ car une partie de } \mathbb{N}_{n+1} \text{ contient } n+1 \text{ ou (exclusif) ne contient}$$

pas n+1. Ainsi, par commutativité de l'intersection,

$$\bigcup_{i=1}^{n+1} (A_i \cap B_i) = \bigcap_{X \in Q \sqcup \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right) \\
= \bigcap_{X \in \mathcal{P}(\mathbb{N}_{n+1})} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right),$$
so qui prouve C

ce qui prouve C_n

5°) (4 points) Soit
$$x \in \bigcup_{i=1}^{n} (A_i \cap B_i)$$
. Il existe alors $i_0 \in \mathbb{N}_n$ tel que $x \in A_{i_0} \cap B_{i_0}$.

Soit
$$X \in \mathcal{P}(\mathbb{N}_n)$$
. Si $i_0 \in X$, alors $x \in \bigcup_{i \in X} A_i$ et si $i_0 \notin X$, alors $x \in \bigcup_{i \in \mathbb{N}_n \setminus X} B_i$. Donc

dans tous les cas, $x \in \left(\bigcup_{i \in Y} A_i\right) \bigcup \left(\bigcup_{i \in Y \setminus Y} B_i\right)$. C'est vrai pour tout $X \in \mathcal{P}(\mathbb{N}_n)$, donc

$$x \in \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right).$$

Pour démontrer l'inclusion réciproque, on procède par contraposée : on suppose que $x \notin \bigcup_{i=1}^n (A_i \cap B_i)$. Ainsi, on a $\neg (\exists i \in \mathbb{N}_n, (x \in A_i) \land (x \in B_i))$,

donc pour tout $i \in \mathbb{N}_n$, $x \notin A_i$ ou $x \notin B_i$.

Posons $X = \{i \in \mathbb{N}_n / x \notin A_i\}.$

Alors pour tout $i \in X$, $x \notin A_i$ et, lorsque $i \in \mathbb{N}_n \setminus X$, $x \in A_i$ donc $x \notin B_i$. On a donc $(\forall i \in X, x \notin A_i) \land (\forall i \in \mathbb{N}_n \setminus X, x \notin B_i),$

c'est-à-dire $\neg[(\exists i \in X, x \in A_i) \lor (\exists i \in \mathbb{N}_n \backslash X, x \in B_i)]$. Ainsi, $x \notin \left(\bigcup_{i \in \mathbb{N}_n} A_i\right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \backslash X} B_i\right)$,

puis
$$x \notin \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right).$$

ce qu'il fallait démontrer.

 \diamond Appliquons la propriété que l'on vient de démontrer en remplaçant les parties $A_{i,j}$ par leurs complémentaires dans E, notées $\overline{A_{i,j}}:\bigcap_{i\in I}\bigcup_{j\in J}\overline{A_{i,j}}=\bigcup_{f\in\mathcal{F}(I,J)}\bigcap_{i\in I}\overline{A_{i,f(i)}}$, donc

d'après le cours,
$$\overline{\bigcup_{i\in I}\bigcap_{j\in J}A_{i,j}}=\overline{\bigcap_{f\in\mathcal{F}(I,J)}\bigcup_{i\in I}A_{i,f(i)}},$$
 puis $\bigcup_{i\in I}\bigcap_{j\in J}A_{i,j}=\bigcap_{f\in\mathcal{F}(I,J)}\bigcup_{i\in I}A_{i,f(i)}.$

7°) (3 points) D'après la question précédente, en posant $J=\{0,1\}$,

$$\bigcup_{i \in I} (A_{i,0} \cap A_{i,1}) = \bigcap_{f \in \mathcal{F}(I,\{0,1\})} \bigcup_{i \in I} A_{i,f(i)}.$$
Soit $x \in \bigcup_{i \in I} (A_{i,0} \cap A_{i,1})$. Soit $X \in \mathcal{P}(I)$.

Soit
$$x \in \bigcup_{i \in I} (A_{i,0} \cap A_{i,1})$$
. Soit $X \in \mathcal{P}(I)$.

Notons f l'application définie sur I par : pour tout $i \in I$, $f(i) = \begin{cases} 0 \text{ si } i \in X \\ 1 \text{ si } i \in I \setminus X \end{cases}$

Alors
$$x \in \bigcup_{i \in I} A_{i,f(i)} = \Big(\bigcup_{i \in X} A_{i,0}\Big) \bigcup \Big(\bigcup_{i \in I \setminus X} A_{i,1}\Big).$$

C'est vrai pour tout
$$X \in \mathcal{P}(I)$$
, donc $x \in \bigcap_{X \in \mathcal{P}(I)} \left(\left(\bigcup_{i \in X} A_{i,0} \right) \bigcup \left(\bigcup_{i \in I \setminus X} A_{i,1} \right) \right)$.
Réciproquement, soit $x \in \bigcap_{X \in \mathcal{P}(I)} \left(\left(\bigcup_{i \in X} A_{i,0} \right) \bigcup \left(\bigcup_{i \in I \setminus X} A_{i,1} \right) \right)$.
Soit $f \in \mathcal{F}(I, \{0, 1\})$. Notons $X = \{i \in I \mid f(i) = 0\}$.
Alors $x \in \left(\bigcup_{i \in X} A_{i,0} \right) \bigcup \left(\bigcup_{i \in I \setminus X} A_{i,1} \right) = \bigcup_{i \in I} A_{i,f(i)}$. C'est vrai pour tout $f \in \mathcal{F}(I, \{0, 1\})$, donc $x \in \bigcap_{f \in \mathcal{F}(I, \{0, 1\})} \bigcup_{i \in I} A_{i,f(i)}$.
En conclusion, on a montré par double inclusion que $\bigcup_{i \in I} (A_{i,0} \cap A_{i,1}) = \bigcap_{X \in \mathcal{P}(I)} \left(\left(\bigcup_{i \in X} A_{i,0} \right) \bigcup \left(\bigcup_{i \in I \setminus X} A_{i,1} \right) \right)$.
En particulier, lorsque $I = \mathbb{N}_n$, qui est bien non vide, on retrouve la propriété (C_n) , en

remplaçant $A_{i,0}$ par A_i et $A_{i,1}$ par B_i .