Prueba Suplementaria 2 - Probabilidad y Estadística

Jueves 13 de junio del 2013

la de identidad

La pregunta múltiple opción correcta vale 2 puntos. El desarrollo vale 3 puntos (uno por parte). Rellenar con claridad y en mayúscula la opción que considere correcta. Se permite el uso de cuadernos, textos, calculadora y lápices.

Problema

Consideremos la distribución

$$F(x) = \frac{\log(x) - a}{b - a} \ \forall x \in [\exp(a), \exp(b)], a < b$$
$$F(x) = 0 \ \forall x < \exp(a), \ F(x) = 1 \ \forall x > \exp(b)$$

(1) Si $U_1, ..., U_n$ iid con la distribución anterior hallar el EMV de a y el EMV de b.

(2) En el contexto de la parte anterior, estimar a y b usando el primer y tercer cuartiles, $q_{1/4}$ y $q_{3/4}$.

Múltiple Opción

La carga de tráfico de un enlace IP en Mb/s puede suponerse que se ajusta a un distrbución de Poisson de parámetro $\lambda=500$. Entonces la probabilidad de que dicha carga supere los 525 Mb/s es aproximadamente igual a

A): 0.03

B): 0,13

 \mathbf{C}): 0, 23

D): 0,33

E): 0,43

F): Ninguna de las opciones anteriores es correcta.

Solución

Problema

- (1) La función verosimilitud es $L(a,b) = \frac{1}{(b-a)^n} \prod_{i=1}^n \frac{1}{U_i}$, si $e^a \leq U_i \leq e^b$, y 0 en caso contrario. Luego, se debe tomar $e^{\hat{a}} = \min\{U_1,\ldots,U_n\}$ y $e^{\hat{b}} = \max\{U_1,\ldots,U_n\}$, o equivalentemente $\hat{a} = \log(\min\{U_1,\ldots,U_n\})$ y $\hat{b} = \log(\max\{U_1,\ldots,U_n\})$.

 (2) El primer cuartil $q_{1/4}$ verifica $F(q_{1/4}) = 1/4$, mientras que el tercero $F(q_{3/4}) = 3/4$.
- (2) El primer cuartil $q_{1/4}$ verifica $F(q_{1/4}) = 1/4$, mientras que el tercero $F(q_{3/4}) = 3/4$. Despejando se tiene que $\log(q_{1/4}) = \frac{3a+b}{4}$ y $\log(q_{3/4}) = \frac{3b+a}{4}$. Utilizando los cuartiles empíricos $(\overline{q_{1/4}} \text{ y } \overline{q_{3/4}})$ se consigue los estimadores $\overline{a} = \frac{3}{2}\log(\overline{q_{1/4}}) \frac{1}{2}\log(\overline{q_{3/4}})$ y $\overline{b} = \frac{3}{2}\log(\overline{q_{3/4}}) \frac{1}{2}\log(\overline{q_{1/4}})$

Múltiple Opción

Descomponemos $X \sim P(\lambda = 500)$ en suma de X_1, \ldots, X_{500} iid $\sim \mathcal{P}(\lambda = 1)$ y aplicamos el TCL. Entonces $P(X > 525) = P(\frac{X}{\sqrt{500}} - \sqrt{500}) > \frac{525}{\sqrt{500}} - \sqrt{500}) \approx P(Z > 1, 118) = 0.13$, donde $Z \sim N(0,1)$. **Por lo tanto la respuesta correcta es la B**.