Relatório de Análise de Algoritmos de Ordenação

Vinicius Bittencourt Chinoli

November 3, 2023

1 Introdução

Neste relatório, apresentamos uma análise de desempenho de três algoritmos de ordenação: Bubble Sort, Merge Sort e Quick Sort. Os algoritmos foram executados em vetores de inteiros preenchidos aleatoriamente com tamanhos de 50, 500, 1000, 5000 e 10000 elementos. Para cada tamanho de vetor, foram realizadas cinco rodadas de execução para calcular médias de tempo de execução, número de trocas e número de iterações.

2 Resultados para Bubble Sort

Tamanho do Vetor	Tempo Médio (ns)	Trocas Médias	Iterações Médias
50	49340	635	1187
500	982200	61449	124432
1000	1343700	251865	498233
5000	24343940	6241274	12493093
10000	108737660	24960255	49982752

Table 1: Resultados para Bubble Sort

3 Resultados para Merge Sort

Tamanho do Vetor	Tempo Médio (ns)	Trocas Médias	Iterações Médias
50	36980	0	220
500	84320	0	3860
1000	178000	0	8706
5000	688560	0	55242
10000	1342900	0	120449

Table 2: Resultados para Merge Sort

4 Resultados para Quick Sort

Tamanho do Vetor	Tempo Médio (ns)	Trocas Médias	Iterações Médias
50	13800	169	283
500	75460	3015	5140
1000	84800	5699	10710
5000	313580	37421	69172
10000	652820	81565	158084

Table 3: Resultados para Quick Sort

5 Análise dos Resultados

Os resultados da análise de desempenho dos algoritmos de ordenação indicam o seguinte:

- O algoritmo Bubble Sort demonstrou tempos de execução significativamente mais altos, um grande número de trocas e iterações à medida que o tamanho do vetor aumenta. Ele é ineficiente para vetores maiores.
- O algoritmo Merge Sort apresentou tempos de execução mais consistentes, com pouco ou nenhum número de trocas, independentemente do tamanho do vetor. As iterações aumentam, mas não na mesma proporção que o Bubble Sort.
- O algoritmo Quick Sort também mostrou tempos de execução mais baixos em comparação com o Bubble Sort, especialmente para tamanhos de vetor maiores. O número de trocas e iterações é maior do que o Merge Sort, mas ainda é mais eficiente do que o Bubble Sort.

Com base nos resultados, pode-se concluir que o Merge Sort é a escolha mais eficiente para ordenar vetores de tamanhos variados, enquanto o Quick Sort é uma alternativa razoável, especialmente para vetores maiores. O Bubble Sort é ineficiente para vetores de grande porte.