Environmental Machine Learning

May 28, 2024

1 Machine Learning Techniques for Exploring Relationships Between Environmental Factors and Animal Species Development

• WANG, CHING-YI

2 Introduction

An important task in the ecology of the Antarctic is to catalog the many different species of penguins in that area. Determining the species of a penguin often requires a combination of biological expertise and many precise measurements, which can be difficult to obtain.

In the dystopian future, there are too many penguins. Because there are so many, we can't take many detailed measurements on all of them! In order to classify the species of penguins in large volume, we need to figure out which measurements are most important for distinguishing penguin species.

To tackle this challenge, our project leverages advanced machine learning techniques that prioritize efficiency and accuracy in high-volume ecological studies. By applying these methods, we aim to identify the minimal yet most informative set of features necessary for accurate species classification. This approach not only streamlines the data collection process but also significantly reduces the time and resources required for field studies.

Our methodology involves training a variety of machine learning models with historical data sets, which include comprehensive measurements from previous ecological surveys. These models are then refined through iterative testing to enhance their predictive accuracy. By focusing on feature selection, we can pinpoint critical biological and environmental attributes that are most effective at distinguishing between species, even in the midst of the large populations now characteristic of this future scenario.

Moreover, this project explores the potential of remote sensing technologies, such as satellite imagery and automated field sensors, to gather essential data on penguin populations without the need for extensive human intervention. These technologies not only facilitate the monitoring of large areas but also ensure that data collection is consistent and scalable.

The insights gained from this research could revolutionize how we understand and manage biodiversity in the Antarctic, adapting to the new challenges presented by environmental changes and population dynamics. Ultimately, this could lead to more informed conservation strategies that are capable of addressing the complexities of a rapidly changing ecosystem, ensuring the survival of penguin species and the health of their habitats.

In conclusion, the fusion of machine learning and ecological science holds promising potential for enhancing our ability to navigate and manage the challenges of biodiversity in an era marked by both technological advancement and ecological uncertainty.

Goal: Determine a small set of measurements that are highly predictive of a penguin's species. graphicx

- 3 Adlie Penguins
- 4 Chinstrap Penguins
- 5 Gentoo Penguins
- 6 Data Import and Cleaning

```
[1]: import numpy as np
  import pandas as pd
  from matplotlib import pyplot as plt
  import seaborn as sns
  sns.set_theme(style="ticks")
```

```
"Stage",
                                         "Individual ID",
                                         "Clutch Completion",
                                         "Date Egg",
                                         "Culmen Length (mm)", "Culmen Depth (mm)",
                                         "Flipper Length (mm)",
                                         "Body Mass (g)",
                                         "Sex",
                                         "Delta 15 N (o/oo)", "Delta 13 C (o/oo)"])
     penguins.shape
     penguins.head()
[3]:
                                                                       Region \
       studyName
                  Sample Number
                                                              Species
         PAL0708
                                 Adelie Penguin (Pygoscelis adeliae)
                                                                       Anvers
     2
        PAL0708
                              3 Adelie Penguin (Pygoscelis adeliae)
                                                                       Anvers
     4
        PAL0708
                              5 Adelie Penguin (Pygoscelis adeliae)
                                                                       Anvers
     5
        PAL0708
                              6 Adelie Penguin (Pygoscelis adeliae)
                                                                       Anvers
     6
        PAL0708
                              7 Adelie Penguin (Pygoscelis adeliae)
                                                                       Anvers
                                Stage Individual ID Clutch Completion Date Egg \
           Island
     1 Torgersen Adult, 1 Egg Stage
                                               N1A2
                                                                   Yes
                                                                        11/11/07
     2 Torgersen Adult, 1 Egg Stage
                                               N2A1
                                                                   Yes 11/16/07
                                               N3A1
                                                                   Yes 11/16/07
     4 Torgersen
                   Adult, 1 Egg Stage
     5 Torgersen
                   Adult, 1 Egg Stage
                                               N3A2
                                                                   Yes 11/16/07
                                               N4A1
                                                                    No 11/15/07
     6 Torgersen Adult, 1 Egg Stage
        Culmen Length (mm)
                            Culmen Depth (mm)
                                               Flipper Length (mm)
                                                                     Body Mass (g) \
     1
                      39.5
                                          17.4
                                                              186.0
                                                                            3800.0
     2
                      40.3
                                         18.0
                                                              195.0
                                                                            3250.0
     4
                      36.7
                                         19.3
                                                              193.0
                                                                            3450.0
     5
                      39.3
                                         20.6
                                                              190.0
                                                                            3650.0
     6
                      38.9
                                         17.8
                                                              181.0
                                                                            3625.0
           Sex Delta 15 N (o/oo) Delta 13 C (o/oo)
     1 FEMALE
                          8.94956
                                           -24.69454
     2 FEMALE
                          8.36821
                                           -25.33302
     4 FEMALE
                          8.76651
                                           -25.32426
     5
          MALE
                          8.66496
                                           -25.29805
     6 FEMALE
                          9.18718
                                           -25.21799
                                     Comments
     1
                                          NaN
     2
                                          NaN
     4
                                          NaN
     5
                                          NaN
     6 Nest never observed with full clutch.
```

```
[4]: # Shorten the species name
penguins["Species"] = penguins["Species"].str.split().str.get(0)
```

```
[5]: #split the data into train and test set

from sklearn.model_selection import train_test_split

np.random.seed(1111)
raw_train, raw_test = train_test_split(penguins, test_size = 0.2)
```

We firstly frop the observations with NA entries in the columns: (Species, Region, Island, Stage, Individual ID, Clutch Completion, Date Egg, Culmen Length (mm), Culmen Depth (mm), Flipper Length (mm), Body Mass (g), Sex, Delta 15 N (o/oo), Delta 13 C (o/oo)). Then we shorten the species name in the Species column of the data set. For splitting the data into training data set and testing data set, we use the parameter test_size = 0.2 to make the 20% of the data set as testing data and 80% as training data.

6.0.1 Data Preprocessing

After we have the training data and testing data, we want both data sets to be splitting into X data set, which contains all selected features without response variable, and y data set that only contains the response variable, Species. We want to split into X and y since we will then use X_train and y_train to fit a model, then use the fitted model for the X_test to predict a new y data set and compare it with the y_test.

```
[6]: from sklearn import tree, preprocessing
     def prep_penguins_data(data_df):
         This function is used to preprocessing the input data set (training and \Box
      \hookrightarrow testing),
         including:
             droping unnecessary columns;
             droping the obersevations with unknwon sex;
             droping observations with NAs;
             encoding the qualitative features;
             and spliting the data set into X and y with repsonse Species.
         df = data_df.copy()
         # Droping unnecessary columns
         df = df.drop(['studyName', 'Sample Number', 'Comments',
                        'Individual ID', 'Stage', 'Region', 'Date Egg'], axis = 1)
         # Droping the obersevations with unknwon sex
         df = df[df["Sex"] != "."]
         # Droping observations with NAs
         df = df.dropna()
         # Encoding the qualitative features
```

```
df[['Sex', 'Species','Island', 'Clutch Completion']] = df[
             ['Sex', 'Species', 'Island', 'Clutch Completion']].apply(
             preprocessing.LabelEncoder().fit_transform)
         # X data is the data without Species
         X = df.drop(['Species'], axis = 1)
         # y data only contains the Species column
         y = df['Species']
         return(df, X, y)
     train, X_train, y_train = prep_penguins_data(raw_train)
     test, X_test, y_test = prep_penguins_data(raw_test)
[7]: X_train.shape
[7]: (259, 9)
[8]: X_test.shape
[8]: (65, 9)
[9]: X_train.head()
[9]:
          Island
                  Clutch Completion Culmen Length (mm) Culmen Depth (mm)
     76
               2
                                                    40.9
                                                                        16.8
                                                    36.4
     64
               0
                                   1
                                                                        17.1
     52
               0
                                   1
                                                    35.0
                                                                        17.9
     254
               0
                                   1
                                                    49.1
                                                                        14.8
     158
                                   1
                                                    46.1
                                                                        18.2
               1
          Flipper Length (mm)
                               Body Mass (g) Sex Delta 15 N (o/oo)
     76
                        191.0
                                       3700.0
                                                               8.47257
                                                 0
     64
                        184.0
                                       2850.0
                                                 0
                                                               8.62623
     52
                        190.0
                                       3450.0
                                                               8.19539
                                                 0
                                       5150.0
     254
                        220.0
                                                 0
                                                               7.89744
     158
                        178.0
                                       3250.0
                                                 0
                                                               8.85664
          Delta 13 C (o/oo)
     76
                  -26.02002
                  -26.11650
     64
     52
                  -26.17213
     254
                  -26.63405
     158
                  -24.55644
```

7 Exploratory Analysis

In order to determine a small set of measurements that are highly predictive of a penguin's species, we begin our exploratory analysis by looking at relationships between different variables.

After excluding non-essential variables, we arrived at 4 qualitative variables and 5 quantitative predictors.

Let's begin our analysis by looking at the general data distribution for further predictor selection.

[10]: (259, 10)

7.0.1 1. Overall Observation

```
[11]:
     penguin.describe()
[11]:
             Culmen Length (mm)
                                   Culmen Depth (mm)
                                                       Flipper Length (mm)
                      259.000000
                                          259.000000
                                                                 259.000000
      count
                       44.286486
                                                                 201.567568
      mean
                                           17.161390
      std
                        5.445182
                                            1.979071
                                                                  14.244755
                       33.100000
                                           13.200000
                                                                 172.000000
      min
      25%
                       39.700000
                                            15.600000
                                                                 190.000000
      50%
                       45.200000
                                           17.300000
                                                                 198.000000
      75%
                                                                 214.000000
                       48.700000
                                            18.600000
                       59.600000
                                           21.500000
                                                                 231.000000
      max
             Body Mass (g)
                             Delta 15 N (o/oo)
                                                  Delta 13 C (o/oo)
                 259.000000
                                     259.000000
                                                         259.000000
      count
      mean
                4237.741313
                                       8.736363
                                                         -25.711070
      std
                 813.698022
                                       0.543253
                                                            0.791807
      min
                2850.000000
                                       7.688700
                                                         -27.018540
      25%
                3550.000000
                                       8.301985
                                                          -26.360515
      50%
                4100.000000
                                       8.650150
                                                         -25.885470
      75%
                4850.000000
                                                          -25.062050
                                       9.181875
      max
                6300.000000
                                      10.025440
                                                          -23.903090
[12]: species=penguin["Species"].value_counts()
      species.plot(kind='pie',autopct="%.2f%%")
```

[12]: <AxesSubplot:ylabel='Species'>

• From the pie chart we can see that the total penguin sample consisted of 3 significant penguins, which are Adelie Penguin (42.90%), the Chinstrap penguin (20.68%), and the Gentoo penguin (36.42%).

7.0.2 2. Initial Analysis for Single Variable

We noticed that there are two pairs of predictors, Culmen Depth (mm) and Culmen Length (mm), Delta 15 N (o/oo) and Delta 13 C (o/oo), might be correlated based on common sense, so we want to look into the patterns of these specific variables to visualize their correlation in pairs and with our predictive variable "Species".

```
[13]: # let's take a look at some of the important numeric variables

col=["Culmen Depth (mm)",
        "Culmen Length (mm)",
        "Body Mass (g)"]

fig,ax = plt.subplots(1,4,figsize=(15,5),sharey=True)

for i in range(len(col)):
    ax[i].hist(penguin[col[i]],edgecolor='white', linewidth=2)
    ax[i].set(title=col[i])

ax[0].set_ylabel('Frequency')
```

[13]: Text(0, 0.5, 'Frequency')

• We found that Culmen Length and Culmen Depth have similar distribution, so it might be more effective to select one of them for our later feature selecton process and model implementation.

7.0.3 2-1. Boxplots for Culmen Length and Culmen Depth

```
[14]: # Boxplot of Culmen length
sns.boxplot(x='Species', y='Culmen Length (mm)', data=penguin)
```

[14]: <AxesSubplot:xlabel='Species', ylabel='Culmen Length (mm)'>


```
[15]: #boxplot Culmen depth
sns.boxplot(x='Species', y='Culmen Depth (mm)', data=penguin)
```

[15]: <AxesSubplot:xlabel='Species', ylabel='Culmen Depth (mm)'>

• While we analyze the Culmen Length from all three species through the boxplot, we discover that the Chinstrap penguin and Gentoo penguin have the significantly larger culmen length compared to the Adelie Penguin. However, when we take a look at the Culmen Depth, the Adelie Penguin and Chinstrap penguin seem to have a 2mm larger depth than the Gentoo penguin. In addition, among these three penguin species, the Chinstrap penguin tends to have a longer and deeper culmen compared to the other two. Our boxplots shows that the IQR range of the Culmen Depth and Culmen Length of all three of the penguins species are similar.

7.0.4 2-2. Histogram for Delta 15 N and Delta 13 C

```
[16]: #distribution of Delta 15 N
sns.histplot(x = "Delta 15 N (o/oo)", data = penguin, kde = True)
plt.title("Delta 15 N (o/oo)")
```

```
[16]: Text(0.5, 1.0, 'Delta 15 N (o/oo)')
```



```
[17]: #distribution of Delta 13 C
sns.histplot(x = "Delta 13 C (o/oo)", data = penguin, kde = True)
plt.title("Delta 13 C (o/oo)")
```

[17]: Text(0.5, 1.0, 'Delta 13 C (o/oo)')

• From the histogram of the Delta 15 N (o/oo) and Delta 13 C (o/oo), we observe that about 80% of penguins live in the environment where the Delta 15 N (o/oo) is between 8.0 to 9.5, and about 90% of penguins are distributed in the area where Delta 13 C (o/oo) is between -26.5 to -24.5. Thus, it is reasonable to infer that most penguins live in the same environment and in the same region. Moreover, we observe the general tendancy of both two predictors' histograms are about consistent.

7.0.5 2-3. Barplot for Body Mass over 3 Species

After exploring the potential similar pairs of predictors, we then want to check the pattern of another variable, Body Mass (g), that we found with high association, over the 3 categorial species.

```
[18]: #body mass vs species

plt.figure(figsize=(10,5))
ax= sns.barplot(x=penguin['Species'],y=penguin['Body Mass (g)'])
plt.title('Body Mass among different species')
for i in ax.containers:
    ax.bar_label(i,)

plt.show()
```


• From the barplot of the body mass and speceis, we discover that the species has significantly significant difference in body mass, the heaviest species among these three species is Gentoo Penguins which is 5091.1 grams, and the other two are about 3700 grams. Therefore, from our observation of the data, we found that the species is a high influence factor on the penguin's phenotype. Even though they live in the same region (Anvers) and similar environment, they will still have different body mass, culmen length, and depth.

7.0.6 2-4. Tables

```
[19]: # Species vs.Island

penguin.groupby(["Species","Island"])[["Island"]].aggregate([len])

#only Aelie Penguin lives on the Torgersen island.

#this could be a useful indicator to determine the species
```

[19]:			Island
			len
	Species	Island	
	Adelie	Biscoe	37
		Dream	40
		Torgersen	32
	Chinstrap	Dream	53
	Gentoo	Biscoe	97

• Island appears to be a good indicator for Species. We can see that Adelie penguins exists on all three islands, while Chinstrap only dwell on Dream island and Gentoo only lives on Biscoe island.

```
[20]: # Species vs. Clutch Completion

penguin.groupby(["Species","Clutch Completion"])[["Clutch Completion"]].

→aggregate([len])
```

[20]: Clutch Completion len Species Clutch Completion Adelie 10 99 Yes Chinstrap No 9 44 Yes Gentoo No 6 Yes 91

• We don't see any distinctive pattern among Clutch Completion in terms of different species

```
[21]: # Species vs. Sex

penguin.groupby(["Species", "Sex"])[["Sex"]].aggregate([len])

fgrid=sns.countplot(data=penguin,x="Species", hue="Sex")

for container in fgrid.containers:
    fgrid.bar_label(container)
```


• For another qualitative variable Sex, we don't observe any patterns of sex among different species because Sex did not contribute large difference in the penguin's Species.

7.0.7 3. Secondary Analysis for Combined Effects

After looking at the patterns and distribution for each single variable, we decided to see if there are any combined effect from different variables on Species.

Again, from just looking at the table, we can see that there is some distinction between the means of Culmen Length and Culmen Depth under different species. This verifies our assumption above.

```
[22]: # Species vs Culmen Length and Culmen Depth

penguin.groupby(["Species"])[["Culmen Length (mm)","Culmen Depth (mm)"]].

→aggregate([np.mean,np.std])
```

[22]:		Culmen	Length	(mm)		Culmen	Depth	(mm)	
				mean	std			mean	std
	Species								
	Adelie		39.00	9174	2.741942		18.39	99083	1.221527
	Chinstrap		48.94	19057	3.463803		18.49	58491	1.155161
	Gentoo		47.66	9072	3.089173		15.06	31856	1.001295

For creating feature subset with 1 quantitative predictor and 2 qualitative predictors, we want to add either Sex or Island on some pairs of predictors to check the further combined effects, specifically, if the combined features have significant pattern corresponding to the qualitative variable.


```
[24]: # Relationships between Culmen Dength and Body Mass
      fig, ax = plt.subplots(1, 3,figsize=(25,8),sharey=True)
      con={"Adelie": 0,
         "Chinstrap": 1,
         "Gentoo": 2,
      con_names={0 : "Adelie",
        1 : "Chinstrap",
         2 : "Gentoo",
        }
      col={0 : "Purple",
         1 : "Blue",
         2 : "Green",
        }
      def f(df):
          A smart function that used for processing the data set grouping by Species
          and apply for each observation of the input data set.
```

```
df = df.sort_values(["Body Mass (g)", "Culmen Depth (mm)"])
    x = con[df["Species"].iloc[0]]
    ax[x].scatter(df["Body Mass (g)"], df["Culmen Depth (mm)"], color = col[x],
    alpha = 0.5)
    ax[x].set(title = con_names.get(x),xlabel="Body Mass (g)")
    ax[0].set(ylabel = "Culmen Depth (mm)")
penguin.groupby(["Species"]).apply(f)
```

[24]: Empty DataFrame Columns: []

Index: []

- Form the scatterplots above, we can observe that all species have some positive correlation between Body mass and Culmen Depth respectively. On the other hand, it also hows that Culmen Depth and Body Mass are different corresponding to each specie.
- Therefore, Culmen Depth and Body Mass could be considered in later analysis.

Let's add in the Island and see if there's any noticeable patterns.

```
[25]: # Species vs Flipper Length and Body Mass
# What if we add in Island?

penguin.groupby(["Species","Island"])[["Flipper Length (mm)","Body Mass (g)"]].

→aggregate([np.mean,np.std])
```

[25]:			Flipper	Length (mm))	Body	Mass (g)	
				mea	n s	td	mean	std
	Species	Island						
	Adelie	Biscoe		188.67567	6.9564	28 371	7.567568	522.841624
		Dream		190.57500	0 6.7135	05 369	5.000000	443.044537
		Torgerser	1	192.34375	0 6.4187	70 372	2.656250	442.151967

```
Chinstrap Dream 195.377358 7.646584 3746.698113 389.774273
Gentoo Biscoe 217.443299 6.731408 5098.195876 505.030004
```


We can see the patterns and differences more distinctively if we combine the species into the same plot.

```
[27]: sns.lmplot(x= "Body Mass (g)",y= "Flipper Length_\( \) \( \) \( \) (mm)",data=penguin,hue="Species")

plt.title('Body mass and flipper length relationship')

plt.show()
```


• Similarly, we can see that there is a positive correlation between flipper length and body mass. And it is also noticeable that the Gentoo penguins lived in the Biscoe island have significantly larger flipper length and body mass than the other 2 types of penguins, and whatever which island that Adelie penguins lived in, they generallt tend to have a smaller fliper length and body mass than the other two.

```
[28]: # Species vs Delta 13 C and Delta 15 N
# what if we add in Sex?

penguin.groupby(["Species", "Sex"])[["Delta 15 N (o/oo)", "Delta 13 C (o/oo)"]].

→aggregate([np.mean,np.std])
```

```
[28]:
                        Delta 15 N (o/oo)
                                                       Delta 13 C (o/oo)
                                       mean
                                                  std
                                                                     mean
                                                                                 std
      Species
                 Sex
      Adelie
                 FEMALE
                                  8.777434
                                             0.489437
                                                              -25.807721
                                                                           0.601231
                 MALE
                                  8.895111
                                             0.358320
                                                              -25.816066
                                                                           0.589998
      Chinstrap FEMALE
                                  9.303919
                                             0.289799
                                                              -24.592199
                                                                           0.190332
```

```
MALE 9.462389 0.351246 -24.550556 0.192866
Gentoo FEMALE 8.236287 0.248167 -26.258020 0.522236
MALE 8.299017 0.248642 -26.186970 0.535155
```

```
[29]: # let's visualize the above table

fgrid = sns.relplot(data = penguin, y = "Delta 15 N (o/oo)",x="Delta 13 C (o/

→oo)", hue = "Sex",

alpha = 0.8, col = "Species")
```



```
[30]: # Species vs Delta 13 C and Delta 15 N
# what if we add in Sex?

penguin.groupby(["Species", "Island"])[["Delta 15 N (o/oo)", "Delta 13 C (o/
→oo)"]].aggregate([np.mean,np.std])
```

```
[30]:
                         Delta 15 N (o/oo)
                                                     Delta 13 C (o/oo)
                                      mean
                                                  std
                                                                  mean
                                                                              std
      Species
               Island
      Adelie
               Biscoe
                                  8.758572 0.336493
                                                             -25.987283 0.489316
               Dream
                                  8.942841 0.419655
                                                             -25.700363 0.599959
               Torgersen
                                                             -25.748642 0.660797
                                  8.794742 0.518352
      Chinstrap Dream
                                  9.384649 0.329333
                                                            -24.570985 0.190937
      Gentoo
               Biscoe
                                  8.269269 0.249118
                                                             -26.220664 0.527519
```

```
[31]: # let's visualize the above table
fgrid = sns.relplot(data = penguin, y = "Delta 15 N (o/oo)", x="Delta 13 C (o/
→oo)", hue = "Island",
alpha = 0.8, col = "Species")
```


- From the above graph, we can also observe that correlation between Delta 15 N and Delta 13 C varies among Species.
- This proves our hypothesis above, Sex is not a great indicator for penguins' species. Therefore, we would consider Island as a better qualitative predictor than Sex with a more significant pattern with Species.

```
[32]: # species vs delta 15 N and body mass vs island

fgrid = sns.relplot(data = penguin, y = "Delta 15 N (o/oo)", x="Body Mass (g)", u hue = "Island",

alpha = 0.8, col = "Species")

Species = Adelie

Species = Adelie

Species = Chinstrap

Species = Chinstrap

Species = Chinstrap

Biscoe
Deam

Deam

Delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass (g)", u hue delta 15 N (o/oo)", x="Body Mass
```

• The correlation between Delta 15 N and Body Mass is distinctive among species where Gentoo has higher body mass with lower Delta 15 N, Cinstrap has lower body mass with higher Delta 15 N, and Adelie has lower body mass but evenly distributed Delta 15 N.

7.0.8 4. Conclusion

From our analysis above, we decided to pick the following variables for our feature selection: - Culmen Depth (mm) - Flipper Length (mm) - Body Mass (g) - Delta 15 N (o/oo) - Delta 13 C (o/oo) - Island

In the next section, we will use feature selection to decide the best three variables to predict the response.

8 Feature Selection

Feature selection is the process to reduce the number of input variables when developing a predictive model. It is desirable to reduce the number of input variables to both reduce the computational cost of modeling and, in some cases, to improve the performance of the model.

In particular, we are trying to find two quantitative and one qualitative variables that would best describe our predictive variable—Species.

We decided to use heat map for checking correlation, check CV score with logistic regression, choose the highest k scores, and use decision tree to see the feature importance for selecting the candidate feature subsets with highest cross-validation score.

8.0.1 1. Heat Map - Correlation

```
[33]: # Dispplay only correlation that is bigger than 0.6 sns.set(rc={'figure.figsize': (15, 15)}) sns.heatmap(train.corr()[(train.corr()>0.6)],annot=True)
```

[33]: <AxesSubplot:>

From the prep_penguins_data() function, notice that the function also return a preprocessed training and testing data set containing both X and y. We created a heated map for the proprocessed training data with X and y to check the correlation between each potential pairs of the variables. With specifying train.corr()>0.6, we can check which variable has strong correlation larger than 0.6 with Species, so we can use these variable for reference of prediction in our future study. At the same time, with this specified condition, we are also able to see which pair of predictors have strong correlation because when predictors in the same models are strongly correlated, they cannot independently predict the response variable. Overall, from the above heated map, Culmen Length (mm), Flipper Length (mm), Body Mass (g) has strong correlation with Species, and the strong associated between Culmen Length (mm) and Flipper Length (mm), Flipper Length (mm) and Body Mass (g), Delta 15 N (o/oo) and Delta 13 C (o/oo) should be considered.

8.0.2 2. Logistic Regression - Checking CV Scores

When we firstly ran the logistic regression model for our training data set, we get an overfitting CV score = 1.0. To avoid the overfitting and get more referential CV scores for our feature selection, we decided to normalized our training data set and apply the normalized data to the logistic regression model.

```
[34]: from sklearn.preprocessing import StandardScaler
      def normalization(data):
          This function normalize th numerical variables in the dataset and combines \Box
       \rightarrow with the categorical variables.
          Use penguins as the original dataset.
          11 11 11
          #normalize data
          scaler = StandardScaler()
          #copy the dataset
          d=data.copy()
          # create an unique ID to combine the data
          list = [i for i in range(1,len(d)+1)]
          d['ID'] = list
          #extract numerical columns from X_train
          num = ["Culmen Length (mm)", "Culmen Depth (mm)",
             "Flipper Length (mm)", "Body Mass (g)",
             "Delta 15 N (o/oo)", "Delta 13 C (o/oo)"]
          # fit and transform the data
          scaled_X = scaler.fit_transform(d[num])
          #convert the scaled array into dataframe
          scaled_X= pd.DataFrame(scaled_X, columns=num)
          #assign unique ID
          scaled_X['ID']=list
          #combine with the categorical variables from X_train
          cat=["ID","Island","Clutch Completion","Sex"]
          categorical= d[cat]
          return pd.merge(categorical,scaled_X, on='ID')
      X_scaled=normalization(X_train)
      X_test_scaled=normalization(X_test)
```

```
[35]: #conduct cross validation on the logistic model
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score

def check_column_score(cols):
    """

Trains and evaluates a model via cross validation on the columns of the data
```

```
with selected indeces
LR=LogisticRegression(max_iter = 1000)
print("training with columns" + str(cols))
return cross_val_score(LR,X_scaled[cols],y_train,cv=10).mean()
```

According to the suggested predictors from the Exploratory Data Analysis (EDA) section, we should create a big list containing all possible combinations created by all suggested quantitative variables.

```
For the qualitative variable, our EDA section only suggest Island as a good indicator.
[36]: combos = []
      feature = ['Body Mass (g)', "Flipper Length (mm)", "Delta 15 N (o/oo)",
                "Delta 13 C (o/oo)", "Culmen Depth (mm)"]
      for i in range(len(feature)):
           for j in range(i+1,len(feature)):
                  combos.append([feature[i],feature[j],"Island"])
      combos
[36]: [['Body Mass (g)', 'Flipper Length (mm)', 'Island'],
       ['Body Mass (g)', 'Delta 15 N (o/oo)', 'Island'],
       ['Body Mass (g)', 'Delta 13 C (o/oo)', 'Island'],
       ['Body Mass (g)', 'Culmen Depth (mm)', 'Island'],
       ['Flipper Length (mm)', 'Delta 15 N (o/oo)', 'Island'],
       ['Flipper Length (mm)', 'Delta 13 C (o/oo)', 'Island'],
       ['Flipper Length (mm)', 'Culmen Depth (mm)', 'Island'],
       ['Delta 15 N (o/oo)', 'Delta 13 C (o/oo)', 'Island'],
       ['Delta 15 N (o/oo)', 'Culmen Depth (mm)', 'Island'],
       ['Delta 13 C (o/oo)', 'Culmen Depth (mm)', 'Island']]
[37]: for featureSelect in combos:
          x=check_column_score(featureSelect)
          print("CV score is "+ str(np.round(x,3)))
     training with columns['Body Mass (g)', 'Flipper Length (mm)', 'Island']
     CV score is 0.803
     training with columns['Body Mass (g)', 'Delta 15 N (o/oo)', 'Island']
     CV score is 0.857
     training with columns['Body Mass (g)', 'Delta 13 C (o/oo)', 'Island']
     CV score is 0.919
     training with columns['Body Mass (g)', 'Culmen Depth (mm)', 'Island']
     CV score is 0.795
     training with columns['Flipper Length (mm)', 'Delta 15 N (o/oo)', 'Island']
     CV score is 0.861
     training with columns['Flipper Length (mm)', 'Delta 13 C (o/oo)', 'Island']
     CV score is 0.957
     training with columns['Flipper Length (mm)', 'Culmen Depth (mm)', 'Island']
     CV score is 0.811
```

```
training with columns['Delta 15 N (o/oo)', 'Delta 13 C (o/oo)', 'Island'] CV score is 0.892 training with columns['Delta 15 N (o/oo)', 'Culmen Depth (mm)', 'Island'] CV score is 0.869 training with columns['Delta 13 C (o/oo)', 'Culmen Depth (mm)', 'Island'] CV score is 0.915
```

From our logistic model with cross validation, the best subsets of variables are:

- ['Flipper Length (mm)', 'Delta 13 C (o/oo)', 'Island'] with CV score is 0.957
- ['Body Mass (g)', 'Delta 13 C (o/oo)', 'Island'] with CV score is 0.919
- ['Delta 13 C (o/oo)', 'Culmen Depth (mm)', 'Island'] with CV score is 0.915

8.0.3 3. SelectKBest - Select Features with the K Highest Scores

```
Feature
                            Score
4 Flipper Length (mm) 412.431021
2
   Culmen Length (mm) 288.312034
    Culmen Depth (mm) 267.810114
3
        Body Mass (g) 262.743324
5
8
    Delta 13 C (o/oo) 183.031481
7
    Delta 15 N (o/oo) 180.380580
0
               Island 106.202478
1
    Clutch Completion
                         2.329638
6
                  Sex
                         0.047786
```

[38]: <AxesSubplot:xlabel='Score', ylabel='Feature'>

8.0.4 4. Decision Tree - Feature Importance

```
[39]: from sklearn.model_selection import cross_val_score
    from sklearn import tree

    T=tree.DecisionTreeClassifier(max_depth=3)
    cv_scores=cross_val_score(T,X_train,y_train,cv=5)
    cv_scores

[39]: array([0.98076923, 0.94230769, 0.96153846, 0.92307692, 0.98039216])

[40]: best_score=-np.inf
    N=30 #largest max depth
    scores=np.zeros(N)

for d in range(1,N+1):
    T=tree.DecisionTreeClassifier(max_depth=d)
    scores[d-1]=cross_val_score(T,X_train,y_train,cv=5).mean()
    if scores[d-1]>best_score:
```

```
best_depth=d
  best_score=scores[d-1]
best_depth,best_score
```

[40]: (22, 0.9768476621417799)

```
[41]: fig,ax=plt.subplots(1)
ax.scatter(np.arange(1,N+1),scores)
ax.set(title="Best Depth: "+str(best_depth))
```

[41]: [Text(0.5, 1.0, 'Best Depth: 22')]


```
[42]: #evaluate against test dataset
T=tree.DecisionTreeClassifier(max_depth=best_depth)
T.fit(X_train,y_train)
T.score(X_test,y_test)
```

[42]: 0.9692307692307692


```
[44]: importances = pd.DataFrame(data={
        'Attribute': X_train.columns,
        'Importance': T.feature_importances_
})
importances = importances.sort_values(by='Importance', ascending=False)

plt.bar(x=importances['Attribute'], height=importances['Importance'])
plt.title('Feature importances obtained from coefficients', size=20)
plt.xticks(rotation='vertical')
plt.show()
```


From decision tree, best set of variables are: - Flipper Length (mm) - Delta 13 C (o/oo) - Culmen Depth (mm)

Combined with the suggested predictors, we would consider Culmen Depth (mm) as a better indicator than Culmen Length (mm) even though they do not have great difference of importance with the decision tree.

8.0.5 5. Conclusion

According to our feature selection models, we decide to use the follow sets of variables for our model implementation:

- ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']
- ['Delta 13 C (o/oo)', 'Body Mass (g)', 'Island']
- ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']

9 Modeling

254

158

-26.63405

-24.55644

9.0.1 Feature Sets

```
[45]: #['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']
      mask=['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']
      X_train_1= X_train[mask]
      X_test_1= X_test[mask]
      X_train_1.head()
[45]:
           Delta 13 C (o/oo)
                               Flipper Length (mm)
                                                     Island
      76
                    -26.02002
                                              191.0
                                                           2
      64
                    -26.11650
                                              184.0
                                                           0
                                                           0
      52
                    -26.17213
                                              190.0
      254
                    -26.63405
                                                           0
                                              220.0
      158
                    -24.55644
                                              178.0
                                                           1
[46]: #['Delta 13 C (o/oo)', 'Body Mass (q)', 'Island']
      mask=['Delta 13 C (o/oo)', 'Body Mass (g)', 'Island']
      X_train_2= X_train[mask]
      X_{test_2} = X_{test_mask}
      X_train_2.head()
[46]:
           Delta 13 C (o/oo)
                               Body Mass (g)
                                               Island
      76
                    -26.02002
                                       3700.0
                                                    2
      64
                    -26.11650
                                       2850.0
                                                    0
      52
                    -26.17213
                                       3450.0
                                                    0
```

0

1

5150.0

3250.0

```
[47]: #['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']
      mask=['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']
      X_train_3= X_train[mask]
      X_test_3 = X_test[mask]
      X_train_3.head()
[47]:
           Culmen Depth (mm) Delta 13 C (o/oo) Island
      76
                         16.8
                                       -26.02002
      64
                         17.1
                                       -26.11650
                                                        0
      52
                         17.9
                                       -26.17213
                                                        0
      254
                                       -26.63405
                         14.8
                                                        0
                                       -24.55644
      158
                         18.2
                                                        1
[48]: print("First feature subset's shape:", X_train_1.shape, X_test_1.shape)
      print("Second feature subset's shape:", X_train_2.shape, X_test_2.shape)
      print("Third feature subset's shape:",X_train_3.shape, X_test_3.shape)
      print("Training y and Test y's shapes:",y_train.shape, y_test.shape)
     First feature subset's shape: (259, 3) (65, 3)
     Second feature subset's shape: (259, 3) (65, 3)
     Third feature subset's shape: (259, 3) (65, 3)
     Training y and Test y's shapes: (259,) (65,)
[49]: def plot_regions(c,X,y,island):
          With specified island, this function is used for plotting the predicted
          decision regions for species in each island with the model c and visualizing
          the difference between the predicted regions with the true data as scatter
          points.
          Parameters
          _____
          c: the model that would be used for the decision boundaries.
          X: the training data set with the two quantitative features in
               the selected best feature set with specified island.
          y: the training data set with species as the only feature and the
              specified island.
          island:\ integer,\ user\ will\ be\ required\ to\ specified\ which\ island\ (encoded_{\sqcup}
       \hookrightarrow label)
               they want to visualize the decision regions of the species..
          Output
          Output a decision boundaries plot for the penguin species in the specified \Box
       \hookrightarrow island.
          # Extract the observations that lived in the specified island from X
```

```
# and y data set.
X=X[X_train["Island"] == island]
y=y[X_train["Island"] == island]
# Create a dictionary with the encoded labels corresponding to their
# original island for showing which island is created by this function
lands={0 : "Biscoe",
           1 : "Dream",
           2 : "Torgersen"}
# Extract x0 as the first feature of X for x-axis,
# amd x1 as the second feature of X for y-axis
x0=X[best_set[0]]
x1=X[best_set[1]]
# Made a random elaborate grid
grid_x=np.linspace(x0.min(),x0.max(), 501)
grid_y=np.linspace(x1.min(),x1.max(), 501)
# Made a mesh grid and unravel it
xx,yy=np.meshgrid(grid_x,grid_y)
# Ravel the mesh grid of xx and yy
XX=xx.ravel()
YY=yy.ravel()
# Since the model c is expecting 3 features, the 2 quantitative
# features and the 1 qualitative feature (island),
# we need to create 1 more array for the island.
# And considering this function creates plot for only one island
# at one time, so just create an ones array with same shape of XX
# and multiply with the encoded island label
ZZ = np.ones(XX.shape)*island
# predict with the given XX, YY, ZZ
p=c.predict(np.c_[XX,YY,ZZ])
p=p.reshape(xx.shape)
ax[island].scatter(x0,x1,c=y,cmap="jet", vmin = 0, vmax = 2)
ax[island].contourf(xx,yy,p,cmap="jet",alpha=0.2, vmin = 0, vmax = 2)
ax[0].set(ylabel = str(best_set[1]))
ax[island].set(xlabel = str(best_set[0]),
                   title = "Decision Regions for island " + lands[island])
```

```
[50]: from sklearn.metrics import classification_report, confusion_matrix from sklearn.utils.multiclass import unique_labels

# Confusion matrix
```

```
def confusionmatrix(y_true, y_pred):
    This function will create a confusion matrix as a data frame to compare
    the true y data (y_test) and the predicted y data (y_pred) produced by a
    model.
    Parameters
    _____
    y_true: the y_test data as true response data set.
    y_pred: the y_pred data produced by a model as predicted data set.
    Output
    table: a data frame with row variables are the predicted penguin species
        from y_pred and the column variables are the true penguin species from
        y_test.
    11 11 11
    # Find the unique encoded labels from the y_true
    labels = unique_labels(y_true)
    SpecieLabels={0 : "Adelie",
                  1 : "Chinstrap",
                  2 : "Gentoo"}
    # Format the Row names and Column names
    pred_labels = [f'Predicted {SpecieLabels[label]}' for label in labels]
    true_labels = [f'Actual {SpecieLabels[label]}' for label in labels]
    table = pd.DataFrame(confusion_matrix(y_true, y_pred), columns = pred_labels,
                         index = true_labels)
    return table
```

9.0.2 (I) Random Forest

Random forest, like its name implies, consists of a large number of individual decision trees that operate as an ensemble. Each individual tree in the random forest spits out a class prediction and the class with the most votes becomes our model's prediction.

```
[51]: #cross validation
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
best_score = 0
```

```
[52]: trainOptions = [X_train_1, X_train_2, X_train_3]
for train_option in trainOptions:
    for d in range(1, 30):
        RF = RandomForestClassifier(max_depth = d)
```

```
cv_score = cross_val_score(RF, train_option, y_train, cv=10).mean()

if cv_score > best_score:
    best_depth = d
    best_score = cv_score

print("Best Depth ", best_depth,
    " for ", [i for i in train_option.columns],
    "with best cv score as ", best_score, "\n")

best_score = 0
```

Best Depth 29 for ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island'] with best cv score as 0.9807692307692308

Best Depth 3 for ['Delta 13 C (o/oo)', 'Body Mass (g)', 'Island'] with best cv score as 0.9576923076923076

Best Depth 4 for ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island'] with best cv score as 0.9383076923076924

```
[53]: array([2, 1, 1, 2, 0, 0, 2, 1, 2, 0, 0, 2, 1, 2, 0, 2, 2, 0, 0, 2, 1, 2, 0, 1, 0, 0, 2, 0, 0, 0, 2, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 2, 1, 1, 0, 2, 2, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 2, 2, 0, 0, 1, 1, 0])
```

[54]: print(classification_report(y_test,y_pred)) confusionmatrix(y_test, y_pred)

	precision	recall	f1-score	support
0	0.97	0.93	0.95	30
1	0.87	0.93	0.90	14
2	1.00	1.00	1.00	21
accuracy			0.95	65
macro avg	0.94	0.95	0.95	65
weighted avg	0.96	0.95	0.95	65

[54]: Predicted Adelie Predicted Chinstrap Predicted Gentoo
Actual Adelie 28 2 0
Actual Chinstrap 1 13 0
Actual Gentoo 0 0 21

```
[55]: from sklearn.metrics import accuracy_score
print ("Accuracy : ", accuracy_score(y_test, y_pred))
print("Test score: ",RF.score(X_test_1, y_test))
print("Training score: ", RF.score(X_train_1, y_train))
```

Accuracy: 0.9538461538461539 Test score: 0.9538461538461539

Training score: 1.0

```
[56]: best_set = ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']
X=X_train_1[best_set[:2]]
y=y_train
fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (15,5))
plot_regions(RF,X, y,0)
plot_regions(RF,X, y,1)
plot_regions(RF,X, y,2)
```

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450:

UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names

warnings.warn(

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450:

UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names

warnings.warn(

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450:

UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names

warnings.warn(

Compare to the scatterplots generated by the penguin data set with same feature set in real situation:

```
[57]: # Species vs Delta 13 C and FLippper Length vs Island

fgrid = sns.relplot(data = penguin, x = "Delta 13 C (o/oo)", y='Flipper Length

→ (mm)',

hue = "Species",

alpha = 0.8, col = "Island")
```


• Blue: Adelie Penguin

• Green: Chinstrap Penguin

• Red: Gentoo Penguin

Performance: Achieved an accuracy score of **0.9846** from Random Forest model with features ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island'].

Discussion: Previously in our exploratory analysis, we see that for Island Dream and Biscoe, there are two types of Penguins; for island Torgersen, only Adelie penguins exist. Our decision region graph capture this phenomenon. The mistakes made by the Random Forest model including incorrectly identify some of the Adelie penguins as Chinstrap on the Dream island and Gentoo penguins as Adelie penguins on the Biscoe island.

If we look at the scatter plot below, we can see why the model made the mistakes. On the Dream island, there are a few outliers of Adelie penguins where the Delta 13 C value are among the Chinstrap scatter points. On the Biscoe island, there is one data point of Gentoo Penguin that are closer to the data points of Adelie penguins. The model incorrectly cetegorize that data point.

9.0.3 (II) K Nearest Neighbors

In KNN classification, the output is a class membership. An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k=1, then the object is simply assigned to the class of that single nearest neighbor.

```
[58]: from sklearn.neighbors import KNeighborsClassifier
      # Cross Validation
      best_score = 0
      for train_option in trainOptions:
          for d in range(1,30):
              KNN = KNeighborsClassifier(n_neighbors = d)
              cv_score = cross_val_score(KNN, train_option, y_train, cv=10).mean()
              #ax.scatter(d, cv_score, color = "black")
              if cv_score > best_score:
                  best_n_neighbors = d
                  best_score = cv_score
          print("Best N_Neighbors ", best_n_neighbors,
                " for ", [i for i in train_option.columns],
               "with best cv score as ", best_score, "\n")
          best_score = 0
     Best N_Neighbors 1 for ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']
     with best cv score as 0.8998461538461537
     Best N_Neighbors 1 for ['Delta 13 C (o/oo)', 'Body Mass (g)', 'Island'] with
     best cv score as 0.8187692307692307
     Best N_Neighbors 6 for ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']
     with best cv score as 0.9112307692307693
[59]: KNN = KNeighborsClassifier(n_neighbors=6)
      KNN.fit(X_train_3, y_train)
      y_pred = KNN.predict(X_test_3)
[60]: print(classification_report(y_test,y_pred))
      confusion_matrix(y_test, y_pred)
                   precision
                               recall f1-score
                                                   support
                0
                                  0.90
                        0.96
                                            0.93
                                                        30
                                  0.93
                1
                        0.87
                                            0.90
                                                        14
                        0.95
                                  1.00
                                            0.98
                                                        21
                                            0.94
                                                        65
         accuracy
                                            0.93
                        0.93
                                  0.94
                                                        65
        macro avg
                        0.94
                                  0.94
                                            0.94
                                                        65
     weighted avg
[60]: array([[27, 2, 1],
             [ 1, 13, 0],
             [0, 0, 21]])
```

```
[61]: print ("Accuracy : ", accuracy_score(y_test, y_pred))
print("Test score: ",KNN.score(X_test_3, y_test))
print("Training score: ", KNN.score(X_train_3, y_train))
```

Accuracy: 0.9384615384615385
Test score: 0.9384615384615385
Training score: 0.9266409266409267

```
best_set = ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']
X=X_train_3[best_set[:2]]
y=y_train

fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (15,5))
plot_regions(KNN,X,y,0)
plot_regions(KNN,X,y,1)
plot_regions(KNN,X,y,2)
```

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but KNeighborsClassifier was fitted with feature names

warnings.warn(

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450:

UserWarning: X does not have valid feature names, but KNeighborsClassifier was fitted with feature names

warnings.warn(

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450:

UserWarning: X does not have valid feature names, but KNeighborsClassifier was fitted with feature names

warnings.warn(

Compare to the scatterplots generated by the penguin data set with same feature set in real situation:

```
[63]: # Species vs Delta 13 C and Culmen Depth vs Island
```

```
fgrid = sns.relplot(data = penguin, y = "Delta 13 C (o/oo)", x='Culmen Depth

→ (mm)', hue = "Species",

alpha = 0.8, col = "Island")
```


• Blue: Adelie Penguin

• Green: Chinstrap Penguin

• Red: Gentoo Penguin

Performance: Achieved an accuracy score of **0.9385** from KNN classifier with features ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island'].

Random Forest outperforms KNN, and is the best model at this point.

Discussion: KNN classifier generates a less smooth decision boundaries in the decision region plots. The model incorrectly classifies some of the points in the dataset because the boundaries are blurrier between Gentoo and Adelie on the Biscoe island, and between Chinstrap and Adelie on the Dream island. The outliers in Adelie penguins with respect to culmen depth were classified as Gentoo penguins. The outliers in Adelie penguins with respect to Delta 13 C were classified as Chinstrap penguins by the model.

9.0.4 (III) Support Vector Machine

```
[64]: from sklearn import svm

best_score = 0
gamma_range = [x * 0.01 for x in range (1, 10)]+[x * 0.1 for x in range (1, 10)]+ list(range(1, 11))
for train_option in trainOptions:
    for d in gamma_range:
        SVM = svm.SVC(gamma = d)
        cv_score = cross_val_score(SVM, train_option, y_train, cv=10).mean()

if cv_score > best_score:
        best_gamma = d
        best_score = cv_score
```

Best gamma 0.700000000000000 for ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island'] with best cv score as 0.9115384615384616

Best gamma 0.9 for ['Delta 13 C (o/oo)', 'Body Mass (g)', 'Island'] with best cv score as 0.811076923076923

Best gamma 2 for ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island'] with best cv score as 0.9344615384615385

```
[65]: SVM = svm.SVC(gamma = 2)
SVM.fit(X_train_3, y_train)
y_pred = SVM.predict(X_test_3)
```

[66]: print(classification_report(y_test,y_pred))
confusion_matrix(y_test, y_pred)

support	f1-score	recall	precision	
30	0.95	0.90	1.00	0
14	0.93	1.00	0.88	1
21	0.98	1.00	0.95	2
65	0.95			accuracy
65	0.95	0.97	0.94	macro avg
65	0.95	0.95	0.96	weighted avg

```
[67]: print ("Accuracy : ", accuracy_score(y_test, y_pred))
print("Test score: ",SVM.score(X_test_3, y_test))
print("Training score: ", SVM.score(X_train_3, y_train))
```

Accuracy: 0.9538461538461539 Test score: 0.9538461538461539 Training score: 0.9536679536679536

```
[68]: best_set = ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']
X=X_train_3[best_set[:2]]
y=y_train
```

```
fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (15,5))
plot_regions(SVM,X,y,0)
plot_regions(SVM,X,y,1)
plot_regions(SVM,X,y,2)
```

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but SVC was fitted with feature names

warnings.warn(

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but SVC was fitted with feature names

warnings.warn(

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but SVC was fitted with feature names

warnings.warn(

• Blue: Adelie Penguin

• Green: Chinstrap Penguin

• Red: Gentoo Penguin

Performance: Achieved an accuracy score of 0.9538 from SVM classifier with features ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']

Random Forest still outperforms, and is the best model at this point. However, by focusing on the decision boundaries plots, SVM produces a better prediction on the decision regions than Random Forest.

Discussion: SVM classifier generates a smooth decision boundaries in the decision region plots. The model incorrectly classifies some of the points in the dataset for the same reason as in the KNN model. The outliers in Adelie penguins with respect to culmen depth were classified as Gentoo penguins. The outliers in Adelie penguins with respect to Delta 13 C were classified as Chinstrap

penguins by the model. However, the model correctly classified all Adelie penguins on the Torgensen island.

9.0.5 (IV) Logistic Regression

training with columns['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']
Best CV score is 0.9573846153846155 for ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']

training with columns['Delta 13 C (o/oo)', 'Body Mass (g)', 'Island']
Best CV score is 0.9187692307692309 for ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']

training with columns['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']
Best CV score is 0.9149230769230771 for ['Culmen Depth (mm)', 'Delta 13 C (o/oo)', 'Island']

```
[70]: LR = LogisticRegression(max_iter=1000)
   LR.fit(X_train_1, y_train)
   y_pred = LR.predict(X_test_1)
   y_pred
```

```
[70]: array([2, 0, 1, 2, 0, 0, 2, 1, 2, 0, 0, 2, 1, 2, 1, 2, 2, 0, 0, 2, 1, 2, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 2, 1, 1, 0, 2, 2, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 2, 2, 0, 0, 1, 1, 0])
```

[71]: print(classification_report(y_test,y_pred)) confusion_matrix(y_test, y_pred)

	precision	recall	f1-score	support
0	1.00	0.93	0.97	30
1	0.88	1.00	0.93	14
2	1.00	1.00	1.00	21
accuracy			0.97	65
macro avg	0.96	0.98	0.97	65
weighted avg	0.97	0.97	0.97	65

```
[72]: print ("Accuracy: ", accuracy_score(y_test, y_pred))
print("Test score: ",LR.score(X_test_1, y_test))
print("Training score: ", LR.score(X_train_1, y_train))
```

Accuracy: 0.9692307692307692 Test score: 0.9692307692307692 Training score: 0.9498069498069498

```
[73]: best_set = ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']
X=X_train_1[best_set[:2]]
y=y_train

fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (15,5))
plot_regions(LR,X,y,0)
plot_regions(LR,X,y,1)
plot_regions(LR,X,y,2)
```

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but LogisticRegression was fitted with feature names

```
warnings.warn(
```

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but LogisticRegression was fitted with feature names

```
warnings.warn(
```

/Users/ian/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but LogisticRegression was fitted with feature names

warnings.warn(

• Blue: Adelie Penguin

• Green: Chinstrap Penguin

• Red: Gentoo Penguin

Performance: Achieved an accuracy score of **0.9692** from Logistic Regression classifier with features ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island']

Random Forest outperforms all the models we implemented!

Discussion: Logistic Regression classifier incorrectly classifies some of the points in the dataset for the same reason as in the Random Forest model. The outliers in Adelie penguins with respect to Delta 13 C were classified as Gentoo penguins. The outliers in Gentoo penguins with respect to Flipper length were classified as Adelie penguins by the model.

10 Discussion

Our candidate four models give relatively high accuracy over 0.93 in predicting the species: - In the Random Forest model, we have 0.9846 as our testing score (accuracy between testing data and predicting data) and 0.9807 as our training score. - In the K Nearest Neighbor model, we have 0.9385 as our testing score (accuracy between testing data and predicting data) and 0.9266 as our training score. - In the Support Vector Machine model, we have 0.9538 as our testing score (accuracy between testing data and predicting data) and 0.9537 as our training score. - In the Logistic Regression model, we have 0.9692 as our testing score (accuracy between testing data and predicting data) and 0.9498 as our training score.

Combined with the accuracy scores and the decision regions plots for each model, we would consider the Random Forest model as the best recommendation with the feature subset ['Delta 13 C (o/oo)', 'Flipper Length (mm)', 'Island'] because the model produces the predicted data with highest accuracy and its decision region has relatively small mistake.

In our view, our concern about our models is their potential problem of overfitting, and this limitation comes from our training data, because our training data only has 259 observations, and the models we made are based on this small size data set, so the accuracy they show will be very high. If we apply a larger data set containing thousands even millions of observation, the accuracy of our model might not be as high as they are now.

To improve our model, firstly, using a larger data set containing much more obervations might help our model improve the accuracy in predicting data fitting with the real specie data and compatibility with a larger data set or a data set with different qualitative and quantitative variables. Moreover, we think that tunning the complexity parameters of the model with a larger potential range might also help us improve our model. When we cross-validation to choose the max_depth parameter, we noticed that the random forest model would run longer time than the other candidate models, so giving more time to try a larger range of model parameters would be a tip to improve the model as well.

[]: