My first Neural Nets Lasagne: MNIST

Data Minings in Action: Trends

SOFTMAX

LOGITS'
$$S(y_i) = \frac{e^{y_i}}{\sum_{j=1}^{\infty} e^{y_j}} \rightarrow 0.2$$

$$SCORES \rightarrow PROBABILITIES$$

from lasagne.nonlinearities import softmax

CROSS - ENTROPY

LINEAR MODEL COMPLEXITY

from lasagne.layers import InputLayer, DenseLayer

l_in = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)

l_out = DenseLayer(l_in, num_units=10, nonlinearity=softmax)

from lasagne layers import InputLayer, DenseLayer

```
l_in = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
l_mid = DenseLayer(l_in, num_units=100, nonlinearity=rectyfy)
l_out = DenseLayer(l_mid, num_units=10, nonlinearity=softmax)
```


CONVOLUTIONAL

STRIDES, DEPTH & PADDING

STRIDES, DEPTH & PADDING

	28		OUTPUT			
.4	,	PADDING	STRIDE	WIDTH	H EIGHT	DEPTH
282	3	'SAME'	1	28	28	8
		'VALID	1	26	26	8
	YALID	O VALID	2	13	13	8
	1 ROW/CO1 'S	ame '				

CONVOLUTIONAL PYRATID

from lasagne layers import Conv2DLayer, DenseLayer
l_in = InputLayer(shape=(None, 3, 256, 2256), input_var=input_var)
l_mid = Conv2DLayer(l_in, num_units=16, nonlinearity=rectyfy)
l_mid = Conv2DLayer(l_in, num_units=64, nonlinearity=rectyfy)
l_mid = Conv2DLayer(l_in, num_units=256, nonlinearity=rectyfy)

