Introduction to Machine Learning CS182

Lu Sun

School of Information Science and Technology ShanghaiTech University

October 19, 2023

Today:

- Linear Methods for Classification I
 - Introduction
 - Linear regression of an indicator matrix
 - Linear discriminant analysis

Readings:

• The Elements of Statistical Learning (ESL), Chapters 4.1, 4.2 and 4.3

Linear Methods for Classification I

- Introduction
- Linear regression of an indicator matrix
- Linear discriminant analysis

Example

Handwritten digits recognition

Input variables

$$X = (X_0, X_1, X_2, ..., X_{256})^T$$

Categorical output variable *G* with values from

$$G = \{0,1,2...,9\}$$

Hy Mark Market

Non-binary (multi-class) classification

Example

Handwritten digits recognition

$$\min_{\mathbf{B}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|_F^2 \longrightarrow \widehat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

$$\widehat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

- 1. Any problems?
- Other methods?

Binary classification

• Linear regression

$$f(x) = \beta_0 + x^T \beta$$

• Least squares solution

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Decision boundary

$$\{x : x^T \hat{\beta} = threshold \}$$

$$threshold = 0, if y \in \{-1,1\}$$

 \Box threshold = 0.5, if $y \in \{0,1\}$

Multi-class classification

• Linear regressions for *K* classes

$$f_k(x) = \beta_{k0} + x^T \beta_k$$
, $k = 1, ..., K$ 有很多种情况。

• Decision boundary between classes k and ℓ :

$$\left\{\underline{x}:\hat{f}_k(x)=\hat{f}_\ell(x)\right\}$$

For *K* classes, there are
$$\binom{K}{2} = \frac{K(K-1)}{2}$$
 decision boundaries

• That is an affine set or hyperplane:

$$\{x: (\hat{\beta}_{k0} - \hat{\beta}_{\ell 0}) + x^T (\hat{\beta}_k - \hat{\beta}_{\ell}) = 0\}$$

Linear Methods for Classification I

- Introduction
- Linear regression of an indicator matrix
- Linear discriminant analysis

• Indicator response matrix

۲		I	<i>K</i>		
	Y_1	Y_2		Y ₁₀	
	1	0		0	
	0	1		0	Indicator response matrix $\mathbf{Y} \in \mathbb{R}^{N \times K}$
					$matrix \mathbf{Y} \in \mathbb{R}^{N \times K}$
	0	0		1	

• Our problem:

$$\widehat{\mathbf{B}} = \underset{\mathbf{B}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|_F^2 \qquad \mathbf{B} = (\beta_1, \beta_2, \dots, \beta_{10}) \in \mathbb{R}^{(p+1) \times K}$$

$$\mathbf{B} = (\beta_1, \beta_2, \dots, \beta_{10}) \in \mathbb{R}^{(p+1) \times K}$$

• The fitted values on X:

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\mathbf{B}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

A new observation x is classified by

• Compute the fitted output

is classified by output
$$\hat{f}(x) = \hat{\mathbf{B}}^T \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_1(x) \\ \hat{f}_2(x) \\ \vdots \\ \hat{f}_K(x) \end{pmatrix} \in \mathbb{R}^K$$
ing to
$$\hat{f}(x) = \hat{f}_1(x) + \hat{f}_2(x) + \hat{f}_3(x) = \hat{f}_3(x)$$
ing to
$$\hat{f}(x) = \hat{f}_3(x) + \hat{f}_3(x) + \hat{f}_3(x) = \hat{f}_3(x) + \hat{f}_3(x) = \hat{f}_3(x)$$

• Classify x according to

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \widehat{f}_{k}(x)$$

$$\widehat{f}_{k}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \widehat{f}_{k}(x)$$

$$\widehat{f}_{k}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \|\widehat{f}(x) - \widehat{t}_{k}\|_{2}^{2}$$

$$\widehat{f}_{k}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \|\widehat{f}(x) - \widehat{t}_{k}\|_{2}^{2}$$

where $t_k = (0, ..., 0, 1, 0, ..., 0)^T \in \mathbb{R}^K$ is a target with 1 being the k-th element

Categorical output variable G with values from $G = \{1, ..., K\}$.

• The zero-one loss function

$$L(k,\ell) = \begin{cases} 1, & k \neq \ell \\ 0, & k = \ell \end{cases}$$

• Expected prediction error (EPE) w.r.t. Pr(G, X)

$$EPE = E\left[L\left(G, \widehat{G}(X)\right)\right]$$

Pointwise minimization leads to

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \sum_{\ell=1}^{K} L(k, \ell) \Pr(G = \ell | X = x)$$

$$= \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x) \longrightarrow \text{posterior}$$

A new observation x is classified by

• Compute the fitted output

$$\hat{f}(x) = \hat{B}^T \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_1(x) \\ \hat{f}_2(x) \\ \vdots \\ \hat{f}_K(x) \end{pmatrix} \in \mathbb{R}^K$$

$$f_2 \uparrow \hat{f}_1(x) < \hat{f}_2(x) \qquad \hat{f}_1(x) = f_2(x)$$

• Classify *x* according to

$$\widehat{G}(x) = \operatorname*{argmax}_{k \in \mathcal{G}} \widehat{f}_k(x)$$

• Minimizing EPE w.r.t. the 0-1 loss gives rise to

$$\hat{G}(x) = \underset{k \in G}{\operatorname{argmax}} \Pr(G = k | X = x)$$

Our question:

Are the $\hat{f}_k(x)$ reasonable estimates of the posterior $\Pr(G = k | X = x)$?

ment

11

Linear classification:

$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \hat{f}_k(x)$$

Minimizing EPE:
$$\widehat{G}(x) = \underset{k \in G}{\operatorname{argmax}} \Pr(G = k | X = x)$$

Two defining properties of probability

- 1. $\sum P = 1$ 2. 0 < P < 1
- It can be verified that $\sum_{k \in \mathcal{G}} \hat{f}_k(x) = 1$

Suppose that $X \leftarrow (1_N, X)$ and

$$\widehat{\mathbf{Y}} = \widehat{f}(\mathbf{X}) = \mathbf{X}\widehat{\mathbf{B}} = (\widehat{f}_1(\mathbf{X}), \dots, \widehat{f}_K(\mathbf{X}))$$

We have the followings $\sum_{k=1}^{K} \hat{f}_{K}(\mathbf{X}) = \hat{\mathbf{Y}} \cdot \mathbf{1}_{K}$ Indicator matrix $= \mathbf{X}\hat{\mathbf{R}} \cdot \mathbf{1}_{K}$ 人标发形式. $= \mathbf{X}\widehat{\mathbf{B}} \cdot \mathbf{1}_K$

However, it is possible that
$$\hat{f}_k(x) < 0$$
 or $\hat{f}_k(x) > 1$

$$= \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} \cdot \mathbf{1}_N$$

$$= \mathbf{H} \cdot \mathbf{1}_N$$

 $\mathbf{H} \cdot \mathbf{1}_N$ is a projection of $\mathbf{1}_N$ onto the column space of **X**, thus $\mathbf{H} \cdot \mathbf{1}_N = \mathbf{1}_{N_{12}}$

Linear classification:

$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \hat{f}_k(x)$$

Minimizing EPE:
$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x)$$

Two defining properties of probability

- 1. $\sum P = 1$
- 2. 0 < P < 1
- It can be verified that $\sum_{k \in \mathcal{G}} \hat{f}_k(x) = 1$
- However, it is possible that $\hat{f}_k(x) < 0$ or $\hat{f}_k(x) > 1$

It possibly suffers from the problem of masking

• a class may be masked by others, i.e., there is no region in the feature space that is labeled as this class

The Phenomenon of Masking

- A class may be masked by others, i.e., there is no region in the feature space that is labeled as this class
- The linear regression model is too rigid

The Phenomenon of Masking

• 3-class classification

Linear Regression

Yellow: class 1 Blue: class 2

Green: class 3

The decision boundaries between 1 and 2 and between 2 and 3 are the same, so we would never predict class 2.

Linear Discriminant Analysis ← Ideal result

The Phenomenon of Masking

3-class classification Degree = 1; Error = 0.33

The indicator matrix

$$g = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \rightarrow \mathbf{Y} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Degree = 2; Error = 0.04

$$\widehat{\mathbf{B}} = \underset{\mathbf{B}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|_F^2$$
, where $\mathbf{X} = (\mathbf{1}_N, \mathbf{x})$

$$\hat{f}(x) = \widehat{\mathbf{B}}^T \begin{pmatrix} 1 \\ \chi \end{pmatrix} = \begin{pmatrix} \hat{f}_1(x) \\ \hat{f}_2(x) \\ \hat{f}_3(x) \end{pmatrix}$$

Quadratic regression
$$Y = \beta_0 + \beta_1 X + \beta_2 X^2$$

Linear Methods for Classification I

- Introduction
- Linear regression of an indicator matrix
- Linear discriminant analysis

• Recall our discussion on linear regression of an indicator matrix

• It is inappropriate to represent a posterior directly by a linear function.

The Bayes theorem
$$Pr(A|B) = \frac{Pr(B|A) Pr(A)}{Pr(B)}$$

- Idea: model the posterior Pr(G = k | X = x) based on the Bayes theorem
- Posterior $\Pr(G = k | X = x) = \frac{\Pr(X = x | G = k) \Pr(G = k)}{\Pr(X = x)} = \frac{\Pr(X = x | G = k) \Pr(G = k)}{\sum_{\ell=1}^{K} \Pr(X = x | G = \ell) \Pr(G = \ell)}$ Density of X in class G = k: $f_k(x) = \Pr(X = x | G = k)$ Class prior: $\pi_k = \Pr(G = k)$ It produces LDA, QDA (quadratic DA), MDA (mixture DA), kernel DA and naïve Bayes, inder various assumptions on $f_k(x)$

Class prior:
$$\pi_k = \Pr(G \neq k) \qquad \Pr(G = k | X = x) = \frac{f_k(x)}{\sum_{k=1}^{K} f_k(x)}$$

and naïve Bayes, under various assumptions on $f_k(x)$ $f_k(x) = \sum_{k=1}^{k} \frac{1}{k} \frac{1}{k}$

$$P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f(x)) = 0 \iff LDA : \beta^T X + \beta_0 = 0$$

$$P(f(x)) P(f(x)) P(f($$

- Assumptions in LDA
 - $f_k(x) = \frac{1}{(2\pi)^{p/2}|\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)\right)$
 - 2. Assume that classes share a common covariance $\Sigma_k = \Sigma$, $\forall k$
- 假设、优化,至水相如常. • Compare two classes k and ℓ

Logit:
$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = \ell | X = x)} = \log \frac{f_k(x)}{f_\ell(x)} + \log \frac{\pi_k}{\pi_\ell}$$
 Quadratic term vanished due to the common covariance

顶有二次顶,但因为有假区或炸得3

Linear Discriminant Analysis

• Parameter estimation

$$\hat{\pi}_k = N_k/N$$
, where N_k is the number of class- k observations; $\hat{\mu}_k = \sum_{g_i=k} x_i/N_k$;

$$\hat{\Sigma} = \sum_{k=1}^{K} \sum_{g_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T / (N - K).$$

Pooled covariance (合并方差)

$$\widehat{\Sigma} = \frac{(N_1 - 1)\widehat{\Sigma}_1 + (N_2 - 1)\widehat{\Sigma}_2 + \dots + (N_K - 1)\widehat{\Sigma}_K}{(N_1 - 1) + (N_2 - 1) + \dots + (N_K - 1)}, \text{ where } \widehat{\Sigma}_k = \frac{\sum_{g_i = k} (x_i - \widehat{\mu}_k)(x_i - \widehat{\mu}_k)^T}{N_k - 1}$$
Weighted average

Weighted average

• Class prior
$$\hat{\pi}_1 = \hat{\pi}_2 = \hat{\pi}_3 = \frac{1}{3} = \frac{1}{3}$$

Common covariance

• Class-specific sample mean
$$\hat{\mu}_{1} = \frac{1}{2}(x_{1} + x_{5}) = \frac{1}{2} \begin{pmatrix} 0.2 \\ 0.3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0.3 \\ 0.2 \end{pmatrix} = \begin{pmatrix} 0.25 \\ 0.25 \end{pmatrix}$$

$$\hat{\mu}_{2} = \frac{1}{2}(x_{3} + x_{4}) = \frac{1}{2} \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$\hat{\mu}_{3} = \frac{1}{2}(x_{2} + x_{6}) = \frac{1}{2} \begin{pmatrix} 0.8 \\ 0.7 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0.7 \\ 0.8 \end{pmatrix} = \begin{pmatrix} 0.75 \\ 0.75 \end{pmatrix}$$

Green: class 1
Blue: class 2
Yellow: class 3
$$x_{6} \circ_{0}$$

$$x_{2}$$

$$x_{3} \circ_{0}$$

$$x_{4}$$

$$x_{1} \circ_{0}$$

$$x_{5}$$

$$\widehat{\Sigma} = \frac{\sum_{k=1}^{K} \sum_{g_{i=k}} (x_i - \widehat{\mu}_i)(x_i - \widehat{\mu}_i)^T}{N - K} = \frac{\binom{0.005}{-0.005} -0.005}{6 - 3} + \binom{0.005}{-0.005} \frac{-0.002}{0.005} + \binom{0.005}{-0.005} \frac{-0.005}{0.005} = \binom{0.03}{-0.03} -0.03$$

- Decision boundary 1-2: $\{(x_1, x_2) | x_1 + x_2 = 0.75\}$
- Similarly, decision boundary 2-3: $\{(x_1, x_2) | x_1 + x_2 = 1.25\}$

Suppose that
$$\log \frac{\Pr(G=k|X=x)}{\Pr(G=\ell|X=x)} = \delta_k(x) - \delta_\ell(x)$$

- $\delta_k(x) > \delta_{\ell}(x)$, class k
- $\delta_{\nu}(x) < \delta_{\ell}(x)$, class ℓ
- $\delta_k(x) = \delta_{\ell}(x)$, decision boundary

• Linear discriminant functions
$$\delta_k(x) = \underline{x}^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

$$\delta_k(x) = \underbrace{x^T \Sigma^{-1} \mu_k} - \frac{1}{2} \underbrace{\mu_k^T \Sigma^{-1} \mu_k} + \log \underline{\pi_k}$$

Classify to class k that maximizes the discriminant function

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \, \delta_k(x) \qquad \text{Any difference?} \qquad \text{Linear classification:} \\ \widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \, \widehat{f}_k(x)$$

- Binary classification (K = 2)
 - Correspondence between LDA and linear classification
- Multi-class classification $(K \ge 3)$
 - □ LDA is different with linear classification
 - Avoid the masking problem

Class 2 is masked by classes 1 and 3²⁵

FIGURE 4.1. The left plot shows some data from three classes, with linear decision boundaries found by linear discriminant analysis. The right plot shows quadratic decision boundaries. These were obtained by finding linear boundaries in the five-dimensional space X_1, X_2, X_1, X_2 linear inequalities in this space are quadratic inequalities in the original space.

取明些二次成是一个超参数.

Linear Discriminant Analysis

FIGURE 4.5. The left panel shows three Gaussian distributions, with the same covariance and different means. Included are the contours of constant density enclosing 95% of the probability in each case. The Bayes decision boundaries between each pair of classes are shown (broken straight lines), and the Bayes decision boundaries separating all three classes are the thicker solid lines (a subset of the former). On the right we see a sample of 30 drawn from each Gaussian distribution, and the fitted LDA decision boundaries.

为特征表达更比但需要计算的更多.(相对LPA) · Assumptions in LDA

Quadratic Discriminant Analysis

- 1. Model each class density as multivariate Gaussian

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$

- 2. Assume that classes share a common covariance $\Sigma_k = \Sigma, \forall k$
- Assumption: Each class has a specific covariance Σ_k
- Quadratic discriminant functions

$$\delta_k(x) = -\frac{1}{2}\log|\Sigma_k| - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k) + \log \pi_k.$$

• The quadratic decision boundary between two classes k and ℓ

$$\{x: \delta_k(x) = \delta_\ell(x)\}$$

- Difference with LDA

 - Difference with LDA $\mu_k, k = 1, ..., K$ $\Sigma_k \text{ has to be estimated for each class}$ $LDA \text{ need to estimate } K \times p + p \times p \text{ parameters}$ $\Sigma_k, k = 1, ..., K$
 - \square QDA need to estimate $K \times p + K \times p \times p$ parameters

Quadratic Discriminant Analysis

FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA in the five-dimensional space $X_1, X_2, X_1X_2, X_1^2, X_2^2$). The right plot shows the quadratic decision boundaries found by QDA. The differences are small, as is usually the case.

Summary

- Linear regression of an indicator matrix
 - The indicator matrix
 - Prediction is conducted by $\hat{G}(x) = \operatorname{argmax}_k \hat{f}_k(x)$
 - Suffer from the masking problem
- Linear discriminant analysis
 - □ Logit transformation: logit(Pr(x)) = log $\left(\frac{Pr(x)}{1-Pr(x)}\right)$
 - \square Model the posterior Pr(G = k | X = x)
 - \Box Assumptions on Pr(X = x | G = k)
 - \Box Discriminant functions $\delta_k(x)$
- Quadratic discriminant analysis
 - Difference with LDA

Classification

Linear regression

$$G = \{1, 2, ..., K\}$$

Indicator matrix
$$\mathbf{Y} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Multi-output regression

Prediction
$$\hat{f}(x) = \hat{\mathbf{B}}^T \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_1(x) \\ \hat{f}_2(x) \\ \vdots \\ \hat{f}_K(x) \end{pmatrix}$$

$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \hat{f}_k(x)$$

Limitation

The masking problem $(K \ge 3)$

Theoretical

Regression function f(x) = E(Y|X = x)

Squared error loss

Linear Nonlinear

Least squares

Nearest neighbors

Regression

Zero-one loss

Bayes classifier
$$\widehat{G}(x) = \operatorname*{argmax}_{k \in \mathcal{G}} \Pr(G = k | X = x)$$

$$(0,1) \to (-\infty, +\infty)$$

Logit transformation $\log t(x) = \log \left(\frac{x}{1-x}\right)$

Pairwise odds = 1

Decision boundary $\log \frac{\Pr(G = k | X = x)}{\Pr(G = \ell | X = x)} = 0$

Bayes theorem

LDA, QDA, RDA Linear boundary

Logistic regression