Expresse [a. $\Gamma_{yu}^{-1} = \frac{\text{SSE} \{x_{s_1}, x_{s_1}, x_{u_1}\} - \text{SSE} \{x_{s_1}, x_{s_1}, x_{u_1}\}}{\text{SSE} \{x_{s_1}, x_{s_1}, x_{u_1}\}} = 0.79491$ = $\frac{1}{1^2} + (n - k - 1) = \frac{(-5.529)^2}{(-5.529)^2 \cdot 354} = 0.79491$ b. $VIF_1 = (n - 1) S_{x_1}^2 V_{u_1} = (359 - 1) = 0.7300493 (7.007232 \times 10^{-5}) = 1.0515$ c. $\hat{J}_1 = \hat{J}_1 = \hat{J}_2 = \hat{J}_1 = 1.0515$ Var $(\hat{J}_1) = \hat{J}_2 = \hat{J}_1 = 1.0515$ var $(\hat{J}_1) = \hat{J}_1 = 1.0515$ 1. $(n - 1) S_{x_1}^2 = 1.0515$ 2. $(n - 1) S_{x_1}^2 = 1.0515$ 3. $(n - 1) S_{x_1}^2 = 1.0515$ 4. $\hat{J}_2 = \hat{J}_1 = 1.0515$ 3. $\hat{J}_3 = \hat{J}_1 = 1.0515$ 4. $\hat{J}_3 = \hat{J}_1 = 1.0515$ 5. $\hat{J}_4 = \hat{J}_1 = 1.0515$ 6. $\hat{J}_5 = \hat{J}_1 = 1.0515$ 7. $\hat{J}_5 = 1.0515$ 8. $\hat{J}_5 = 1.0515$ 9. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 2. $\hat{J}_5 = 1.0515$ 3. $\hat{J}_5 = 1.0515$ 4. $\hat{J}_5 = 1.0515$ 5. $\hat{J}_5 = 1.0515$ 6. $\hat{J}_5 = 1.0515$ 7. $\hat{J}_5 = 1.0515$ 9. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 2. $\hat{J}_5 = 1.0515$ 3. $\hat{J}_5 = 1.0515$ 4. $\hat{J}_5 = 1.0515$ 5. $\hat{J}_5 = 1.0515$ 6. $\hat{J}_5 = 1.0515$ 7. $\hat{J}_5 = 1.0515$ 9. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 2. $\hat{J}_5 = 1.0515$ 3. $\hat{J}_5 = 1.0515$ 4. $\hat{J}_5 = 1.0515$ 5. $\hat{J}_5 = 1.0515$ 6. $\hat{J}_5 = 1.0515$ 7. $\hat{J}_5 = 1.0515$ 9. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 2. $\hat{J}_5 = 1.0515$ 3. $\hat{J}_5 = 1.0515$ 4. $\hat{J}_5 = 1.0515$ 5. $\hat{J}_5 = 1.0515$ 6. $\hat{J}_5 = 1.0515$ 7. $\hat{J}_5 = 1.0515$ 9. $\hat{J}_5 = 1.0515$ 1. $\hat{J}_5 = 1.0515$ 2. $\hat{J}_5 = 1.0515$ 2. $\hat{J}_5 = 1.0515$ 2. $\hat{J}_5 = 1.0515$ 2.	1. A T/N (/	(CO. 1															Blas		
$SSE(\chi_{z_1}\chi_{s_1}\chi_{4})$ $= \frac{1^2}{1^2 + (N-k-1)} = \frac{[-5.529]^2 \cdot 354}{[-5.529]^2 \cdot 354} = 0.79491$ b. VIF, = $(N-1) S_{x_1}^2 V_{11} = (359-1) (0.7390493)(7.007232 \times 10^{-2})$ $= 1.9515$ c. $\hat{S}_{i} = \hat{\beta}_{i}, \sqrt{2}(\chi_{i1} - \bar{\chi}_{i})^2$ $= (N-1) S_{x_1}^2 Var(\hat{\mathcal{C}}_{i})$ $= (N-1) S_{x_1}^2 Var(\hat{\mathcal{C}}_{i})$ $= (359-1) (0.7390493) (1.91298)^2$ $= 966.8161$ d. $\hat{X}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{\chi}_{1} + \hat{\beta}_{2} \bar{\chi}_{2} + + \hat{\beta}_{K} \bar{\chi}_{K}$ We cannot compute \hat{X}_{0} because while we are given $\hat{\beta}$ values no			c c E	lu .	, ,,	\ - 0	c ī 1.	, .,		y\					70	34C	1001		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	μ. ,	yxı -	226	(X ₂₁)	(3, 11	J 8	20 ()	, X1	L, X.5	Xuj									
b. VIF, = $(n-1) S_{x_1}^2 V_{x_1} = (359-1) (0.7380493) (7.007232 \times 10^{-3})$ = 1.0515 c. $\hat{S}_{i} = \hat{\beta}_{i} \sqrt{\Sigma (x_{i1} - \overline{X}_{i})^{2}}$ $Var (\hat{J}_{i}) = \hat{\Sigma} (x_{i1} - \overline{X}_{i})^{2} Var (\hat{\mathcal{E}}_{i})$ = $(n-1) S_{x_1}^2 Var (\hat{\mathcal{E}}_{i})$ = $(359-1) (0.73800493) (1.91288)^{2}$ = 906.8101 d. $\hat{V}_{i} = \hat{\beta}_{i} + \hat{\beta}_{i} + \hat{\gamma}_{i} + \hat{\gamma}_{i$					33	C (X,	L (X 3)	X4)											
b. VIF, = $(n-1) S_{x_1}^2 V_{x_1} = (359-1) (0.7380493) (7.007232 \times 10^{-3})$ = 1.9515 c. $\hat{J}_{x_1} = \hat{J}_{x_1} \times \hat{J}_{x_1} \times \hat{J}_{x_2} \times \hat{J}_{x_1} \times \hat{J}_{x_2} \times$. 2				. ب										
b. VIF, = $(n-1) S_{x_1}^2 V_{x_1} = (359-1) (0.7380493) (7.007232 \times 10^{-3})$ = 1.0515 c. $\hat{S}_{i} = \hat{\beta}_{i} \sqrt{\Sigma (x_{i1} - \overline{X}_{i})^{2}}$ $Var (\hat{J}_{i}) = \hat{\Sigma} (x_{i1} - \overline{X}_{i})^{2} Var (\hat{\mathcal{E}}_{i})$ = $(n-1) S_{x_1}^2 Var (\hat{\mathcal{E}}_{i})$ = $(359-1) (0.73800493) (1.91288)^{2}$ = 906.8101 d. $\hat{V}_{i} = \hat{\beta}_{i} + \hat{\beta}_{i} + \hat{\gamma}_{i} + \hat{\gamma}_{i$			-	.2	Τ,			(-	5.51	19)	=	0.1	940	۱۱					
c. $\hat{\xi}_{i} = \hat{\beta}_{i} \sqrt{2(x_{i1} - \bar{X}_{i})^{2}}$ Var $(\hat{\xi}_{i}) = \hat{Z}_{i} (x_{i1} - \bar{X}_{i})^{2}$ Var $(\hat{\mathcal{E}}_{i})$ = $(n-1) S_{x_{i}}^{2} Var (\hat{\mathcal{E}}_{i})$ = $(359-1) (0.7300493) (1.91290)^{2}$ = 906.8101 d. $\hat{\chi}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{\chi}_{1} + \hat{\beta}_{2} \bar{\chi}_{2} + + \hat{\beta}_{K} \bar{\chi}_{K}$ we cannot compute $\hat{\chi}_{0}$ because while we are given $\hat{\beta}_{i}$ values no				T .	- (N-1	K-1)		(-5.	529)²+ 354									
c. $\hat{\beta}_{i} = \hat{\beta}_{i} \sqrt{\Sigma (\chi_{i1} - \bar{\chi}_{i})^{2}}$ Var $(\hat{\beta}_{i}) = \hat{\Sigma} (\chi_{i1} - \bar{\chi}_{i})^{2}$ Var $(\hat{\beta}_{i}) = \hat{\Sigma} (\chi_{i1} - \bar{\chi}_{i})^{2}$ Var $(\hat{\theta}_{i})$ = $(n-1) S_{\chi_{i}}^{2} Var (\hat{\theta}_{i})$ = $(359-1) (0.7300493) (1.91299)^{2}$ = 906.8101 d. $\hat{\chi}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{\chi}_{1} + \hat{\beta}_{2} \bar{\chi}_{2} + + \hat{\beta}_{K} \bar{\chi}_{K}$ we cannot compute $\hat{\chi}_{0}$ because while we are given $\hat{\beta}$ values no						_													
c. $\hat{S}_{i} = \hat{\beta}_{i} \sqrt{2} (x_{i1} - \bar{X}_{i})^{2}$ Var $(\hat{J}_{i}) = 2 (x_{i1} - \bar{X}_{i})^{2}$ Var $(\hat{J}_{i}) = 2 (x_{i1} - \bar{X}_{i})^{2}$ Var $(\hat{U}_{i}) = (n-1) S_{x_{i}}^{2} Var (\hat{U}_{i})$ = $(359-1) (0.7300493) (1.91298)^{2}$ = 900.8101 d. $\hat{V}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2} + + \hat{\beta}_{K} \bar{X}_{K}$ We cannot compute \hat{V}_{0} because while we are given $\hat{\beta}$ values no	b.	VIF,	= (N-	1) Sx,	Λ" =	(35	9-1) (0	. ጉ3ዩ	0493	3)(7	.00	7 23	52 X	10-3)			
Var $(\hat{f}_{i}) = \hat{\Xi}_{i} (x_{i1} - \bar{x})^{2} \text{ var } (\hat{\theta}_{i})$ $= (n-1) S_{x_{i}}^{2} \text{ var } (\hat{\theta}_{i})$ $= (359-1) (0.7300493) (1.91298)^{2}$ $= 906.8101$ d. $\hat{\chi}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{\chi}_{1} + \hat{\beta}_{2} \bar{\chi}_{2} + + \hat{\beta}_{K} \bar{\chi}_{K}$ we cannot compute $\hat{\chi}_{0}$ because while we are given $\hat{\beta}_{i}$ values no					=	1.89	515												
Var $(\hat{f}_{i}) = \hat{Z}_{i} (x_{i1} - \bar{x})^{2} \text{ Var } (\hat{\theta}_{i})$ $= (n-1) S_{x_{i}}^{2} \text{ Var } (\hat{\theta}_{i})$ $= (359-1) (0.7300493) (1.91298)^{2}$ $= 906.8101$ d. $\hat{X}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{X}_{1} + \hat{\beta}_{2} \bar{X}_{2} + + \hat{\beta}_{K} \bar{X}_{K}$ we cannot compute \hat{X}_{0} because while we are given $\hat{\beta}$ values no																			
$ = (n-1) S_{x_1}^{2} VaV (\hat{\ell}_{1}) $ $ = (359-1) (0.7300493) (1.91298)^{2} $ $ = 906.8101 $ $ d. \hat{\chi}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{\chi}_{1} + \hat{\beta}_{2} \bar{\chi}_{2} + + \hat{\beta}_{K} \bar{\chi}_{K} $ $ we cannot compute \hat{\chi}_{0} because while we are given \hat{\beta} values no$	۲.	Ĵ, = Ŷ	5,√2(X11 - X.)2														
$ = (n-1) S_{x_1}^{2} VaV (\hat{\ell}_{1}) $ $ = (359-1) (0.7300493) (1.91290)^{2} $ $ = 906.8101 $ $ d. \hat{\chi}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{\chi}_{1} + \hat{\beta}_{2} \bar{\chi}_{2} + + \hat{\beta}_{K} \bar{\chi}_{K} $ $ we cannot compute \hat{\chi}_{0} because while we are given \hat{\beta} values no$																			
$= (359 - 1) (0.7300493) (1.91298)^{2}$ $= 966.8161$ d. $\hat{\chi}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} \bar{\chi}_{1} + \hat{\beta}_{2} \bar{\chi}_{2} + + \hat{\beta}_{K} \bar{\chi}_{K}$ we cannot compute $\hat{\chi}_{0}$ because while we are given $\hat{\beta}$ values no		var (ê,) =	幺(X11 - 5	ζ)² V	av (i	2 ₁)											
d. $\hat{\chi}_0 = \hat{\beta}_0 + \hat{\beta}_1 \bar{\chi}_1 + \hat{\beta}_2 \bar{\chi}_2 + + \hat{\beta}_k \bar{\chi}_k$ we cannot compute $\hat{\chi}_0$ because while we are given $\hat{\beta}$ values no			=	(n-	-1) 5	z, VM	r(ê,)											
d. $\hat{x}_0 = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \hat{\beta}_2 \bar{x}_2 + + \hat{\beta}_k \bar{x}_k$ we cannot compute \hat{x}_0 because while we are given $\hat{\beta}$ values no			5	(35	9-1)	(0.7	3004	93)	(ι.	91288) ²								
d. $\hat{x}_0 = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \hat{\beta}_2 \bar{x}_2 + + \hat{\beta}_K \bar{x}_K$ We cannot compute \hat{x}_0 because while we are given $\hat{\beta}$ values no																			
we cannot compute \hat{s} , because while we are given $\hat{\beta}$ values no																			
we cannot compute \hat{s} , because while we are given $\hat{\beta}$ values no	d.	χ̂. =	ên+ ê	5. X + 6	32 V.	+ 4	- Âv.	Χu											
									٠ , م	nnile	we	· au	· a	iven	â	Val	wes	ne	
													<i>,</i> 9		٢				
		000	,,,,,	givo		V 30.	, ripic		2001 (2		,,,,								

Exeruse 4

Suppose a nuw case
$$(Y_0, X_0)$$
 is added to the data (Y_1X) . Snow that the new entry sum of squares will increase by

$$\begin{array}{c}
e^2 \\
\hline
1! X_0'(X'X)^TX & \text{where } e = Y_0 - X_0' \hat{p}_{\text{add}} & \text{and } \hat{p}_{\text{ad}} = (X'X)^{-1}X'Y \\
\hline
\text{From handout $$^{\pm}46$}.
\\
SSE_{\text{num}} = (Y_0 - X_0^{\pm})^{\pm} + (Y_0 - X_0^{\pm})^{$$

$$= \underbrace{e^{i}e}_{} + e^{2} \left(1 - \frac{2(n+n^{2})}{(1+n^{2})} + \frac{n+n^{2}}{(1+n^{2})} \right) = \underbrace{e^{i}e}_{} + e^{2} \left(1 - \frac{n+n^{2}}{(1+n^{2})} \right)$$

$$= \underbrace{e^{1}e}_{} + e^{2} \left[\frac{(1+n)^{2} - h - h^{2}}{(1+h)^{2}} \right] = \underbrace{e^{1}e}_{} + \underbrace{e^{2}}_{} \left[\frac{1+2h + h^{2} - h - h^{2}}{(1+h)^{2}} \right]$$

$$= \underbrace{e^{1}e}_{} + e^{2} \left[\frac{1-h}{(1-h)^{2}} \right] = \underbrace{e^{1}e}_{} + \underbrace{e^{2}}_{} + \underbrace{e^{2}}_{} + \underbrace{h - X_{o}^{1}(X'X)^{-1}X_{o}} \right]$$

$$= > \underbrace{SSE_{nw}}_{} = \underbrace{SSE}_{} + \underbrace{e^{2}}_{} + \underbrace{h - X_{o}^{1}(X'X)^{-1}X_{o}}$$

$$= > \underbrace{SSE_{nw}}_{} = \underbrace{SSE}_{} + \underbrace{e^{2}}_{} + \underbrace{h - X_{o}^{1}(X'X)^{-1}X_{o}}$$

Exercise 5

B~ Geta
$$(\frac{1}{2} \alpha, \frac{1}{2} \beta)$$
 $F = \frac{\beta \beta}{\alpha(1-\beta)}$

$$F_{F}(t) = P(F \leq t) = P(\frac{\alpha(1-B)}{B} \leq t) = P(\frac{1-B}{B} \leq \frac{\beta}{\alpha t})$$

snow that F~ Fair

$$= P(B \leq \frac{\alpha F}{\beta} (1 - B)) = P(B \leq \frac{\alpha F}{\beta} - \frac{B\alpha F}{\beta})$$

$$= P(B + \frac{B\alpha F}{\beta} \leq \frac{\alpha F}{\beta}) = P(B(\frac{\beta + \alpha F}{\beta}) \leq \frac{\alpha F}{\beta})$$

$$= P(B + \frac{B \alpha F}{\beta} \leq \frac{\alpha F}{\beta}) = P(B(\frac{B + \alpha F}{\beta}) \leq \frac{\alpha F}{\beta})$$

$$= P(B \leq \frac{\alpha F}{\beta + \alpha F}) = P(F(F) = F_B(\frac{\alpha F}{\beta + \alpha F}) \leq \frac{\alpha F}{\beta})$$

$$F_{F}(F) = F_{B}\left(\frac{\alpha F}{\beta + \alpha F}\right) = \frac{\alpha F}{\beta + \alpha F} = \frac{\alpha F}{\beta + \alpha F}$$

$$F_{F}(F) = F_{B}\left(\frac{\alpha F}{\beta + \alpha F}\right) = \frac{\alpha (\beta + \alpha F) - \alpha (\alpha F)}{(\beta + \alpha F)^{2}} F_{B}\left(\frac{\alpha F}{\beta + \alpha F}\right)$$

$$F_{F}(F) = \frac{\alpha B}{(\beta + \alpha F)^{2}} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \left(\frac{\alpha F}{\beta + \alpha F}\right)^{\alpha - 1} \left(1 - \frac{\alpha F}{\beta + \alpha F}\right)^{\beta - 1}$$

$$=\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}\left(\frac{\alpha}{\beta}\right)^{\alpha/2}\left(\frac{\alpha F}{\beta + \alpha F}\right)^{\frac{\alpha}{2}-1}\left(1+\frac{\alpha}{\beta}\left(\frac{\alpha F}{\beta + \alpha F}\right)\right]^{-\frac{1}{2}}\left(\alpha + \beta\right)$$

Know the part of
$$X \sim F_{n_1, n_2}$$
 is:
$$F(X) = \frac{\Gamma\left(\frac{n_1+n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{n_1/2} X^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2} X\right)^{-1/2} (n_1 + n_2)$$

=> if
$$X = \frac{x F}{\beta + \alpha F}$$
, $N_1 = \alpha$, $N_2 = \beta$
thum $\frac{\beta \beta}{\alpha (1 - \beta)}$ if $F_{\alpha, \beta}$