Towards continuous representations of Thompson groups T_k

Xavier Poncini, PhD candidate

The University of Queensland

AustMS, 2022

Conformal nets

Question (Jones 2014)

Does each subfactor planar algebra give rise to a conformal field theory?

A **conformal net** consists of (i) a Hilbert space \mathcal{H} , (ii) a *von Neumann algebra* $\mathcal{A}(I)$ on \mathcal{H} for each open interval $I \subset S^1$, (iii) a continuous unitary representation U of $\mathrm{Diff}_+(S^1)$ on \mathcal{H} . Subject to:

Isotony:
$$A(I) \subseteq A(J)$$
 if $I \subseteq J$

Locality:
$$[A(I), A(J)] = 0$$
 if $I \cap J = \{\}$

Covariance:
$$U(\alpha)A(I)U(\alpha)^* = A(\alpha(I))$$
 $\alpha \in \text{Diff}_+(S^1)$

Positivity: Spec
$$(U(\rho)) \subset \mathbb{R}^+$$
 $\rho \in \text{Rot}(S^1)$

Planar algebras

Definition

An (unshaded) **planar algebra** P is a collection of vector spaces $(P_n)_{n \in \mathbb{N}_0}$, together with the action of planar tangles as multilinear maps e.g.

$$P_T: P_2 \times P_4 \times P_6 \to P_8$$

such that this action is compatible with the composition of tangles.

For example:

$$P_T(\mathcal{O}, \mathcal{O}, \mathcal{O}) = \mathcal{O} = \mathcal{O}$$

Subfactor planar algebras have an inner product on each $(P_n)_{n\in\mathbb{N}_0}$.

Semicontinuous models

Semicontinuous models are lattice regularisations of conformal nets

$$(\mathcal{H}, \mathcal{A}(I)) \rightarrow (P, P)$$
Planar algebra

$$\operatorname{Diff}_+(S^1) \to T_k$$
Thompson group

No-go?

The idea: semicontinuous models \rightarrow conformal nets

The issue: Covariance: $U(\alpha)\mathcal{A}(I)U(\alpha)^* = \mathcal{A}(\alpha(I))$ $\alpha \in \mathrm{Diff}_+(S^1)$ Reps. of T_k are projective and unitary, but not continuous!

The dream: Develop sufficient conditions that endow reps. of T_k

with the property of continuity

Outline

- 1 Thompson groups T_k
- 2 Representations of T_k
- Continuity conditions
- Outlook

Thompson groups T_k

$\mathrm{Diff}_+(S^1)$ and T_k

Elements of $Diff_+(S^1)$ can be conveniently expressed as functions:

Elements of T_k can be viewed as 'discretisations' of $Diff_+(S^1)$ elements:

with break-points at finitely many k-adic rational coordinates.

Theorem (Zhuang 2007)

For every $f \in \mathrm{Diff}_+(S^1)$ there exists $g \in T_k$, and $\epsilon > 0$ such that

$$\sup_{x \in S^1} |g(x) - f(x)| < \epsilon.$$

Tree diagrams

Proposition (Brown 1987)

Elements of T_k can be expressed as pairs of annular k-trees.

For k = 2 we present the example:

Corresponds to:

$$\Psi = \Psi$$

Tree diagrams

Proposition (Brown 1987)

Elements of T_k can be expressed as pairs of annular k-trees.

For k = 2 we present the example:

Corresponds to:

$$\sqrt{} = \sqrt{}$$

Tree diagrams

Proposition (Brown 1987)

Elements of T_k can be expressed as pairs of annular k-trees.

Many pairs of annular k-trees give rise to the same element of T_k :

Correspond to:

where the highlighted branches correspond to unnecessary divisions.

Forest categories

Denote by $A\mathfrak{F}_k$ the category of annular k-forests:

- $\mathrm{Obj}_{A\mathfrak{F}_{k}} = \mathbb{N}$
- $\operatorname{Mor}_{A\mathfrak{F}_k}(m,n)$ are annular k-forests with m roots and n leaves

Composition:

$$p =$$
, $a =$, $p \circ a =$

where $p \in \operatorname{Mor}_{A\mathfrak{F}_2}(7,9)$ and $a \in \operatorname{Mor}_{A\mathfrak{F}_2}(1,7)$. Define

$$\mathcal{D}:=igcup_{n\in\mathbb{N}}\mathrm{Mor}_{A\mathfrak{F}_k}(1,n)$$

as the set of all annular k-trees, and denote $\ell(f) := \operatorname{target}(f)$ for $f \in \mathcal{D}$.

Fraction notation

Define \sim on pairs of annular k-trees as $(a, y) \sim (b, z)$ if and only if there exist $r, s \in \operatorname{Mor}_{A\mathfrak{F}_k}$ such that $(r \circ a, r \circ y) = (s \circ b, s \circ z)$

Proposition (Brown 1987)

Two pairs of annular k-trees (a, y) and (b, z) correspond to the same element in T_k if and only if $(a, y) \sim (b, z)$.

Denote by $[(c,x)] \equiv \frac{c}{r}$ the equiv. class (c,x)

$$\frac{p \circ c}{p \circ x} = \frac{c}{x},$$

where we interpret $p \in \operatorname{Mor}_{\mathcal{A}\mathfrak{F}_k}$ as being 'cancelled' in the fraction. Taking the trees from a previous slide:

Composition via fractions

Any $a, b \in \mathcal{D}$ admit $p, q \in \operatorname{Mor}_{A_{\mathfrak{F}_k}}$ such that $p \circ a = q \circ b$, called a stabilisation:

$$p \circ a =$$
 $q \circ b =$

Composition of functions can be expressed as the product of fractions

$$G \circ H = rac{a}{b} rac{c}{d} = rac{q \circ a}{q \circ b} rac{p \circ c}{p \circ d} = rac{p \circ c}{q \circ b}, \qquad ext{where } q \circ a = p \circ d,$$

where $G \circ H$ has the domain of H and the range of G.

Representations of T_k

Preliminaries

For convenience we will use the cutting convention:

Denote by Hilb the category of Hilbert spaces:

- $\mathrm{Obj}_{\mathsf{Hilb}}$ are Hilbert spaces V_n for each $n \in \mathbb{N}$
- $Mor_{Hilb}(V_m, V_n)$ are linear maps

where the inner product on each V_n can be expressed diagrammatically as:

$$\langle x, y \rangle_n =$$
 y

Jones' action

Define the functor $\Phi: A\mathfrak{F}_k \to \mathsf{Hilb}$

- $\Phi_0(n) = V_n$ for all $n \in \mathbb{N}$
- $\Phi_1^R(p) \in \operatorname{Mor}_{\mathsf{Hilb}}(V_m, V_n)$ for all $p \in \operatorname{Mor}_{A_{0,k}^{\infty}}(m, n)$

Construct the set A_{Φ} such that:

Elements
$$\begin{array}{c|c} T_k & A_{\Phi} \\ \hline Elements & \frac{f}{g} = \frac{p \circ f}{p \circ g} & \frac{f}{\mathbf{x}} = \frac{p \circ f}{\Phi_1^R(p)(\mathbf{x})} \\ Action of \ T_k & \frac{f_1}{g_1} \frac{f_2}{g_2} = \frac{q \circ f_2}{p \circ g_1} & \frac{f_1}{\mathbf{x_1}} \frac{f_2}{g_2} = \frac{p \circ f_1}{\Phi_1^R(p)(\mathbf{x_1})} \frac{q \circ f_2}{q \circ g_2} = \frac{q \circ f_2}{\Phi_1^R(p)(\mathbf{x_1})} \end{array}$$

where $\mathbf{x} \in V_{\ell(f)}$, $\mathbf{x_1} \in V_{\ell(f_1)}$. Inducing Hilbert space \mathfrak{H} and a representation

$$\pi_R: T_k \to \operatorname{End}(A_{\Phi}).$$

Continuous representations

Definition

A representation π is *continuous* if each sequence $(f_n)_{n\in\mathbb{N}}\subset T_k$ satisfies

$$\lim_{n\to\infty}\|f_n-\mathrm{id}\|=0,\qquad \lim_{n\to\infty}\langle\xi,\pi(f_n)(\eta)\rangle=\langle\xi,\eta\rangle,\qquad \forall\xi,\eta\in\mathfrak{H}.$$

Denote by Rot_k the rotation subgroup of T_k , generated by:

$$\varrho_s: S^1 \to S^1$$
,

$$x \mapsto x + s \mod 1$$
,

where s is a k-adic rational. Matrix elements can be expressed as:

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^r}})(\frac{i}{y}) \right\rangle = 2222 = \left\langle x, \Omega_{k^r} y \right\rangle_{k^r}, \quad \Omega_n := 2222 = 2222$$

where $x, y \in V_{k^r}$.

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \left\langle x, \frac{T_{k^r}(\mathfrak{R}^s(v))y}{v} \right\rangle_{k^r}, \qquad v := -\psi_{-k^r}$$

where

$$T_n(a) = \underbrace{-a - a - a}_{n}$$
 $\mathfrak{R}(a) = -a - a - a$

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \left\langle x, T_{k^r}(\mathfrak{R}^s(v))y \right\rangle_{k^r}, \qquad v := -\psi$$

where

$$T_n(a) = \underbrace{-a - a - a}_{n}$$
 $\mathfrak{R}(a) = -a - a - a$

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \left\langle x, \frac{T_{k^r}(\mathfrak{R}^s(v))y}{v} \right\rangle_{k^r}, \qquad v := -\psi_{-k^r}$$

where

$$T_n(a) = \underbrace{-a - a - a}_{n}$$
 $\mathfrak{R}(a) = -a - a - a - a$

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \left\langle x, T_{k^r}(\mathfrak{R}^s(v))y \right\rangle_{k^r}, \qquad v := -$$

where

$$\mathcal{T}_n(a) = \underbrace{-a - a - a}_{n}$$
 $\mathfrak{R}(a) = -a - a - a$

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \left\langle x, T_{k^r}(\mathfrak{R}^s(v))y \right\rangle_{k^r}, \qquad v := -\psi_{-k^r}$$

where

$$T_n(a) = \underbrace{-a - a - a}_{n}$$
 $\mathfrak{R}(a) = -a - a - a$

$$\left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{3^3}})(\frac{i}{y}) \right\rangle = \left\langle x, T_3(\mathfrak{R}^2(v))y \right\rangle_3$$

Continuity conditions

Applying:

$$\lim_{s\to\infty} \left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \lim_{s\to\infty} \left\langle x, T_{k^r}(\mathfrak{R}^s(v))y \right\rangle_{k^r} \stackrel{(!)}{=} \left\langle x, y \right\rangle_{k^r}$$

Proposition

If there exists a $w \in P_4$ such that

$$\Re(v) = w, \qquad \Re(w) = w, \qquad \langle x, T_{k^r}(w)y \rangle_{k^r} = \langle x, y \rangle_{k^r} \qquad (\star)$$

for all $x, y \in V_{k'}$, then

$$\lim_{s\to\infty} \left\langle \frac{i}{x}, \pi_R(\varrho_{\frac{1}{k^{r+s}}})(\frac{i}{y}) \right\rangle = \left\langle x, y \right\rangle_{k^r}.$$

A concrete realisation of (\star) is given by:

Brauer algebra solution

The Brauer planar algebra $(B_n)_{n \in 2\mathbb{N}_0}$ is generated by the action of planar tangles on the space $B_4 = \operatorname{span}(\{ \cdot) (\cdot, \cdot), \cdot)$, subject to:

$$(X) = (X)$$

$$O = \delta$$

Specialising k=5 and $\delta=1$ we have the solution $\mathscr{W}=\mathscr{W}$

$$\mathbb{Y} = \mathbb{Y}$$

$$= \overline{\bigoplus_{R}} = \overline{\longrightarrow},$$

This solution can be generalised to k=2n+5 for all $n \in \mathbb{N}_0$

$$P_{2n}$$
.

Theorem

For $R \in P_{2n+5}$ above, π_R is a continuous unitary representation of Rot_{2n+5} .

Brauer algebra solution

The Brauer planar algebra $(B_n)_{n \in 2\mathbb{N}_0}$ is generated by the action of planar tangles on the space $B_4 = \operatorname{span}(\{ \cdot) (\cdot, \cdot), \cdot)$, subject to:

$$(X) = (X)$$

$$\bullet \mathcal{D} = \delta \bullet$$

Specialising k=5 and $\delta=1$ we have the solution $\mathscr{W}=\mathscr{W}$

$$\mathbb{Z}=\mathbb{Z}$$

17 / 18

$$R = \frac{R}{R}$$

This solution can be generalised to k = 2n + 5 for all $n \in \mathbb{N}_0$

$$P_{2n}$$
.

Theorem

For $R \in P_{2n+5}$ above, π_R is a continuous unitary representation of Rot_{2n+5} .

Outlook

Outlook

Summary:

- Semicontinuous models of conformal nets via planar algebras.
- Limited by the continuity of the representations of T_k .
- Developed sufficient conditions that imply continuity of representations of the rotation subgroup of T_k.

Future work:

- Solve the continuity conditions for other types of planar algebras.
- Construct sufficient conditions that implies the continuity of representation of all T_k
- Develop the limit that takes continuous representations of T_k to continuous representations of $Diff_+(S^1)$.

