Assignment 5: Dependency Theory

Hien Tu - tun1

November 19, 2021

D1 Reasoning with dependencies

- 1. Assume $AB \longrightarrow C, A \longrightarrow D$ and $CD \longrightarrow EF$
 - Apply Augmentation on $AB \longrightarrow C$ with A to derive $AB \longrightarrow CA$
 - Apply Augmentation on $A \longrightarrow D$ with C to derive $CA \longrightarrow CD$
 - \bullet Apply Transitivity on $AB\longrightarrow CA$ and $CA\longrightarrow CD$ to derive $AB\longrightarrow CD$
 - Apply Transitivity on $AB \longrightarrow CD$ and $CD \longrightarrow EF$ to derive $AB \longrightarrow EF$
 - Apply Reflection on $F \subseteq EF$ to derive $EF \longrightarrow F$
 - \bullet Apply Transitivity on $AB \longrightarrow EF$ and $EF \longrightarrow F$ to derive $AB \longrightarrow F$
 - Hence, $AB \longrightarrow F$
- 2. Assume we have rows $r_1, r_2 \in I$ of instance I such that $r_1[XW] = r_2[XW]$
 - By $r_1[XW] = r_2[XW]$, we have $r_1[X] = r_2[X]$ and $r_1[W] = r_2[W]$
 - Using $X \longrightarrow Y$ and $r_1[X] = r_2[X]$, we conclude that $r_1[Y] = r_2[Y]$
 - By $r_1[Y] = r_2[Y]$ and $r_1[W] = r_2[W]$, we have $r_1[YW] = r_2[YW]$
 - Using $YW \longrightarrow Z$ and $r_1[YW] = r_2[YW]$, we conclude that $r_1[Z] = r_2[Z]$

- Hence, $r_1[Z] = r_2[Z]$ holds.
- 3. Assume we have $r_1[X]$ for every instance I_1 of R and every row $r_1 \in I_1$
 - Using $R[X] \subseteq S[Y]$ and $r_1[X]$, there exists a row in instance I_2 of S with $r_1[X] = r_2[X]$
 - Using $S[Y] \subseteq T[Z]$ and $r_2[Y]$, there exists a row in instance I_3 of T with $r_2[Y] = r_3[Z]$
 - Thus, for every instance I_1 of R and every row $r_1 \in R$, there exists a row in instance I_3 of T such that $r_1[X] = r_3[Z]$
 - Hence, $R[X] \subseteq T[Z]$
- 4. Assume $X \to Y$ and $XY \longrightarrow Z$
 - Apply Complementation on X woheadrightarrow Y to derive X woheadrightarrow Z (with Z all attributes of $\mathbf R$ not in X and Y)
 - Apply Reflexivity on $Z \setminus (X \cup Y) \subseteq Z$ to derive $Z \longrightarrow Z \setminus (X \cup Y)$
 - Apply Transitivity on $XY \longrightarrow Z$ and $Z \longrightarrow Z \setminus (X \cup Y)$ to derive $XY \longrightarrow Z \setminus (X \cup Y)$
 - Since Z is all attributes of **R** not in X and Y, $Z \cap XY = \emptyset$
 - Apply Coalescence on $X \to Z$, $XY \longrightarrow Z \setminus (X \cup Y)$, $Z \cap XY = \emptyset$ and $Z \setminus (X \cup Y) \subseteq Z$, we conclude that $X \longrightarrow Z \setminus (X \cup Y)$
 - Hence, $X \longrightarrow Z \setminus (X \cup Y)$
- 5. Consider the following table of the schema

person(name, number, birthdate, age)

name	number	birthdate	age
Alice	1	2001-01-01	20
Alice	2	2005-09-05	16

Since <u>name</u>, <u>number</u> are the primary keys, they determine all attributes. Thus, "name, number \longrightarrow birthdate".

We know from the lecture that birthdate determines age since people who have the same birthdate would have the same age, and so "birthdate \longrightarrow age".

Since {birthdate} \subseteq {name, birthdate}, by applying Reflexivity, we get "name, birthdate \longrightarrow birthdate".

Applying Transitivity on "name, birthdate \longrightarrow birthdate" and "birthdate \longrightarrow age", we derive "name, birthdate \longrightarrow age"

Hence, we have "name, number \longrightarrow birthdate" and "name, birthdate \longrightarrow age".

However, from the table, we can see that "name \longrightarrow age" does not hold.

Let X = name, W = number, Y = birthdate, Z = age, we have shown that the inference rule from the question is not sound.

- 6. For the most trivial case where $Y \subseteq X$, we can just use Reflexivity to get $X \longrightarrow Y$. Otherwise,
 - Let $Y = \{y_1, y_2, \dots, y_n\}$ where each y_i is "atomic" attribute (i.e., not a set of attributes)
 - Let $X = \{x_1, x_2, \dots, x_m\}$ where each x_i is "atomic" attribute (i.e., not a set of attributes)
 - Since $\mathfrak{S} \models X \longrightarrow Y$, by Decomposition, we know $\mathfrak{S} \models X \longrightarrow y_i$ for all $y_i \in Y \ (1 \le i \le n)$
 - Furthermore, since closure is complete, we know $y_i \in X^+$ for all $y_i \in Y$. Thus, $Y \subseteq X^+$
 - So, we can write $X^+ = XYZ_1Z_2...Z_k$ where $Z_1Z_2...Z_k$ are sets of attributes different from each other and different from X and Y. They are added during the process of the closure algorithm.
 - Note that Z_i may contain attributes of X and/or Y. Z_i could also be strict subset or strict superset of X and/or Y.
 - Another way of writing X^+ is $X^+ = X \cup Y \cup Z_1 \cup Z_2 \cup \cdots \cup Z_k$
 - If there is no $Z_i \in X^+$, that is $X^+ = X \cup Y$, then it means that $X \longrightarrow Y \in \mathfrak{S}$. Thus, it is obvious that we can derive $X \longrightarrow Y$ from \mathfrak{S}

- If there is at least one $Z_i \in X^+$
 - If $X \longrightarrow Y \in \mathfrak{S}$, then it is trivial as shown before
 - If $X \longrightarrow Y \notin \mathfrak{S}$:

We will prove by induction on the last step taken to get $X \longrightarrow Y$. We will proceed by case analysis over all possible situations of the last step taken to get $X \longrightarrow Y$.

From the start of the closure algorithm for X^+ , we know that $X \longrightarrow Z_i \in \mathfrak{S}$ for some Z_i that is neither X nor Y.

Case 1:

If $Z_i \longrightarrow Y \in \mathfrak{S}$, then we can use Transitivity on $X \longrightarrow Z_i$ and $Z_i \longrightarrow Y$ to get $X \longrightarrow Y$.

Case 2:

If $Z_i \supset Y$ (Z_i is a strict superset of Y), then, by Decomposition rule, we could get $X \longrightarrow Y$ (and $X \longrightarrow Z_i \setminus Y$).

Case 3:

If $Z_i \subset Y$ and we also have $X \longrightarrow Z_j \in \mathfrak{S}$ where $Y = Z_i \cup Z_j$, then we can use Union rule to get $X \longrightarrow Y$.

Case 4:

If, from the start of the closure algorithm, instead of having $X \longrightarrow Z_i$, we have $X_k \longrightarrow Z_i$ where $X_k \subset X$.

- * If $X \setminus X_k \cup Z_i = Y$ (Y is made of Z_i and the part of X where X_k does not have), then we can use Augmentation, to get $X_i(X \setminus X_i) \longrightarrow Z_i(X \setminus X_i)$, which is equivalent to $X \longrightarrow Y$.
- * If $X \setminus X_k \cup Z_i \neq Y$, then we will fall into one of the above cases.
- Therefore, $X \longrightarrow Y$ can be dervied using the inference rules R1 R3.
- Thus, the Armstrong's Axiom is complete.
- 7. The attribute closure of set of attributes C:
 - Initially, $closure = \{C\}$
 - From $C \longrightarrow A$, since $C \subseteq closure$ and $A \not\subseteq closure$, $closure = \{C, A\}$

- From $AC \longrightarrow E$, since $AC \subseteq closure$ and $E \not\subseteq closure$, $closure = \{C, A, E\}$
- From $E \longrightarrow B$, since $E \subseteq closure$ and $B \not\subseteq closure$, $closure = \{C, A, E, B\}$
- From $AB \longrightarrow D$, since $AB \subseteq closure$ and $D \not\subseteq closure$, $closure = \{C, A, E, B, D\}$
- From $BC \longrightarrow D$, since $BC \subseteq closure$ and $D \subseteq closure$, we don't need to add D into closure more (as D is already in closure)
- From $D \longrightarrow A$, since $D \subseteq closure$ and $A \subseteq closure$, we don't need to add A into closure more (as A is already in closure)
- Therefore, $C^+ = \{A, B, C, D, E\}$

The attribute closure of set of attributes (EA):

- Initially, $closure = \{E, A\}$
- From $E \longrightarrow B$, since $E \subseteq closure$ and $B \not\subseteq closure$, $closure = \{E, A, B\}$
- From $AB \longrightarrow D$, since $AB \subseteq closure$ and $D \not\subseteq closure$, $closure = \{E, A, B, D\}$
- From $AC \longrightarrow E$, since $AC \not\subseteq closure$, we don't need to add E into closure
- From $BC \longrightarrow D$, since $BC \not\subseteq closure$, we don't need to add D into closure
- From $C \longrightarrow A$, since $C \nsubseteq closure$, we don't need to add A into closure
- From $D \longrightarrow A$, since $D \subseteq closure$ and $A \subseteq closure$, we don't need to add A into closure more (as A is already in closure)
- Therefore, $(EA)^+ = \{A, B, D, E\}$
- 8. Compute X^+ for every $X\subseteq \{A,B,C,D,E\}$
 - $\{\}^+ = \{\}$ since there is no $\{\} \longrightarrow \dots$ in \mathfrak{S}

- $A^+ = \{A\}$ since there is no dependency that would satisfy the closure algorithm So we have $A \longrightarrow A$
- $B^+ = \{B\}$ since there is no dependency that would satisfy the closure algorithm

So we have $B \longrightarrow B$

- $C^+ = \{A, B, C, D, E\}$ from question 7 So we have $C \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $D^+ = \{A, D\}$ since there is only $D \longrightarrow A$ that would satisfy the closure algorithm

So we have $D \longrightarrow X$ for all $X \subseteq \{A, D\}$

• $E^+ = \{B, E\}$ since there is only $E \longrightarrow B$ that would satisfy the closure algorithm

So we have $E \longrightarrow X$ for all $X \subseteq \{B, E\}$

• $(AB)^+ = \{A, B, D\}$ since there is only $AB \longrightarrow D$ that would satisfy the closure algorithm

So we have $AB \longrightarrow X$ for all $X \subseteq \{A, B, D\}$

• $(AC)^+ = \{A, B, C, D, E\}$ since AC includes C and we can reach others from only C

So we have $AC \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$

• $(AD)^+ = \{A, D\}$ since there is no dependency that would satisfy the closure algorithm

So we have $AD \longrightarrow X$ for all $X \subseteq \{A, D\}$

• $(AE)^+ = \{A, B, E\}$ since there is only $E \longrightarrow B$ that would satisfy the closure algorithm

So we have $AE \longrightarrow X$ for all $X \subseteq \{A, B, E\}$

• $(BC)^+ = \{A, B, C, D, E\}$ since BC includes C and we can reach others from only C

So we have $BC \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$

• $(BD)^+ = \{A, B, D\}$ since there is only $D \longrightarrow A$ that would satisfy the closure algorithm

So we have $BD \longrightarrow X$ for all $X \subseteq \{A, B, D\}$

• $(BE)^+ = \{B, E\}$ since there is no dependency that would satisfy the closure algorithm

So we have $BE \longrightarrow X$ for all $X \subseteq \{B, E\}$

- $(CD)^+ = \{A, B, C, D, E\}$ since CD includes C and we can reach others from only CSo we have $CD \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(CE)^+ = \{A, B, C, D, E\}$ since CE includes C and we can reach others from only CSo we have $CE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(DE)^+ = \{A, B, D, E\}$ there are $D \longrightarrow A$, $E \longrightarrow B$ satisfy the closure algorithm So we have $DE \longrightarrow X$ for all $X \subseteq \{A, B, D, E\}$
- $(ABC)^+ = \{A, B, C, D, E\}$ since ABC includes CSo we have $ABC \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(ABD)^+ = \{A, B, D\}$ since there is no dependency that would satisfy the closure algorithm So we have $ABD \longrightarrow X$ for all $X \subseteq \{A, B, D\}$
- $(ABE)^+ = \{A, B, D, E\}$ since there is only $AB \longrightarrow D$ that would satisfy the closure algorithm So we have $ABE \longrightarrow X$ for all $X \subseteq \{A, B, D, E\}$
- $(ACD)^+ = \{A, B, C, D, E\}$ since ACD includes CSo we have $ACD \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(ACE)^+ = \{A, B, C, D, E\}$ since ACE includes CSo we have $ACE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(ADE)^+ = \{A, B, D, E\}$ since there is only $E \longrightarrow B$ that would satisfy the closure algorithm So we have $ADE \longrightarrow X$ for all $X \subseteq \{A, B, D, E\}$
- $(BCD)^+ = \{A, B, C, D, E\}$ since BCD includes CSo we have $BCD \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(BCE)^+ = \{A, B, C, D, E\}$ since BCE includes CSo we have $BCE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(BDE)^+ = \{A, B, D, E\}$ since there is only $D \longrightarrow A$ that would satisfy the closure algorithm So we have $BDE \longrightarrow X$ for all $X \subseteq \{A, B, D, E\}$
- $(CDE)^+ = \{A, B, C, D, E\}$ since CDE includes CSo we have $CDE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$

- $(ABCD)^+ = \{A, B, C, D, E\}$ since ABCD includes CSo we have $ABCD \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(ABCE)^+ = \{A, B, C, D, E\}$ since ABCE includes CSo we have $ABCE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(ABDE)^+ = \{A, B, D, E\}$ since there is no dependency that would satisfy the closure algorithm So we have $ABDE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(ACDE)^+ = \{A, B, C, D, E\}$ since ACDE includes CSo we have $ACDE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(BCDE)^+ = \{A, B, C, D, E\}$ since BCDE includes CSo we have $BCDE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- $(ABCDE)^+ = \{A, B, C, D, E\}$ since ABCDE includes CSo we have $ABCDE \longrightarrow X$ for all $X \subseteq \{A, B, C, D, E\}$
- From the closure, we know that any combination that contains C is the superkey, more specifically, AC, BC, C, CD, CE, ABC, ACD, ACE, BCD, BCE, CDE, ABCD, ABCE, ACDE, BCDE, ABCDE are superkeys
- Notice that, from C, we can derive all attributes in \mathbf{r} C is already minimal, so C is the (candidate) key
- 9. Starting with $\{AB \longrightarrow D, AC \longrightarrow E, BC \longrightarrow D, C \longrightarrow A, D \longrightarrow A, E \longrightarrow B\}$
 - From $C \longrightarrow A$, we can use Augmentation with C to derive $C \longrightarrow AC$. We also have $AC \longrightarrow E$. Then, by Transitivity, we conclude $C \longrightarrow E$. Thus, we can add $C \longrightarrow E$ to our set. $\{AB \longrightarrow D, AC \longrightarrow E, BC \longrightarrow D, C \longrightarrow A, D \longrightarrow A, E \longrightarrow B, C \longrightarrow E\}$
 - From $C \longrightarrow E$, we can use Augmentation with A to derive $AC \longrightarrow AE$. Then, we can use Decomposition to get $AC \longrightarrow A$ and $AC \longrightarrow E$. $AC \longrightarrow A$ is trivial since $A \subseteq AC$. This means that, from $C \longrightarrow E$, we can get $AC \longrightarrow E$. So, we can get rid of $AC \longrightarrow E$.

$$\{AB \longrightarrow D, BC \longrightarrow D, C \longrightarrow A, D \longrightarrow A, E \longrightarrow B, C \longrightarrow E\}$$

- From $C \longrightarrow E$ and $E \longrightarrow B$, by Transitivity, we get $C \longrightarrow B$. Then, we get apply Augmentation on $C \longrightarrow B$ with C to derive $C \longrightarrow BC$. We also have $BC \longrightarrow D$. So, by Transitivity, we derive $C \longrightarrow D$. Thus, we can add $C \longrightarrow D$ to our set. $\{AB \longrightarrow D, BC \longrightarrow D, C \longrightarrow A, D \longrightarrow A, E \longrightarrow B, C \longrightarrow E, C \longrightarrow D\}$
- From $C \longrightarrow D$, we can apply Augmentation with B to get $BC \longrightarrow BD$. Then, we can use Decomposition to get $BC \longrightarrow B$ and $BC \longrightarrow D$. $BC \longrightarrow B$ is trivial since $B \subseteq BC$. This means that from $C \longrightarrow D$, we can get $BC \longrightarrow D$. So, we can get rid of $BC \longrightarrow D$. $\{AB \longrightarrow D, C \longrightarrow A, D \longrightarrow A, E \longrightarrow B, C \longrightarrow E, C \longrightarrow D\}$
- By Transitivity on $C \longrightarrow D$ and $D \longrightarrow A$, we can derive $C \longrightarrow A$. Thus, we can get rid of $C \longrightarrow A$. $\{AB \longrightarrow D, D \longrightarrow A, E \longrightarrow B, C \longrightarrow E, C \longrightarrow D\}$
- From here, we cannot "reduce" anymore. Thus, the minimal cover for \mathfrak{S} is $\{AB \longrightarrow D, D \longrightarrow A, E \longrightarrow B, C \longrightarrow E, C \longrightarrow D\}$