Rec'd PCT/PTO 2 8 FEB 2001

OFFICE (REV: 10-95) TRANSMITTAL LETTER TO THE UNITED STATES

DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371

GDATE

ATTORNEY'S DOCKET NUMBER

PRIORITY DATE CLAIMED 07 September 1998

CM1894M/MH

U.S. APPLICATION NO. (if known, see 37 CFR 1.5) 86

NTERNATIONAL APPLICATION NO.	INTERNATIONAL FILIN
PCT/US99/20503	07 September 1999

TITLE OF INVENTION

FORM PTO-1390

Super hydrophobic coated substrates

APPLICANT(S) FOR DO/EO/US

D'AGOSTINO, Riccardo et al.

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information.

- 1. [x] This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
- [] This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK

- This express request to begin national examination procedures (35 U.S.C. 371(f) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
- 4. [x] A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- 5. [x] A copy of the International Application was filed (35 U.S.C. 371(c)(2))
 - a. [] is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. [] has been transmitted by the International Bureau.
 - c. [x] is not required, as the application was filed in the United States Receiving Office (RO/US).
- A translation of the International Application into English (35 U.S.C. 371(c)(2)).
- 7. [x] Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - are transmitted herewith (required only if not transmitted by the International Bureau).
 - have been transmitted by the International Bureau.
 - have not been made; however, the time limit for making such amendments has NOT expired.
 - d. [x] have not been made and will not be made.
- A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
- A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern document(s) or information included:

- An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- 13. [x] A FIRST preliminary amendment.
 - A SECOND or SUBSEQUENT preliminary amendment.
- A substitute specification.
- 15. [x] A change of power of attorney and/or address letter.

Other items or information:

122845115

I hereby certify that this paper/fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1 10 on the date indicated above and is addressed to The Assistant Commissioner of Patents, Washington, D C 20231

Administrator Mailing Application.

U.S. APPLICATION NO.	(if known, see 37 CFR 1.5)	INTERNATIONAL AN	ONAL APPLICATION NO. ATTORNEY'S DOCKET NU		OCKET NUMBER	
09//	86075	PCT/US99/20503		CM1894M/MH		MH
				CAL	CULATIONS	PTO USE ONLY
EN	TER APPROPRI	ATE BASIC FEE	AMOUNT =	\$710		
Surcharge of \$130.00		ath or declaration la	ter than	\$0		
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE			
Total Claims	14-20 =	0	x \$18.00	\$0		
Independent Claims	1-3 =	0	x \$80.00	\$0		
MULTIPLE DEPENDI	ENT CLAIM(S) (if app	licable)	\$270.00	\$0		
	TOTAL O	F ABOVE CALCU	LATIONS =	\$710		
Processing fee of \$13 [] 20 [] 30 r (37 CFR 1.492(f)).	0.00 for furnishing to months from the earl	ŭ		\$0		
		TOTAL NATIO	NAL FEE =	\$710		
Fee for recording the assignment must be a 3.28,3.31). \$40.00 pe	accompanied by an a	1		\$0		
		TOTAL FEES EN	NCLOSED =	\$710		
				Amount refund		\$
			charge	ed	\$	
 a. [] A check in the amount of \$ to cover the above fees is enclosed. b. [x] Please charge my Deposit Account No16-2480_ in the amount of \$ _710_ to cover the above fees. A duplicate copy of this sheet is enclosed. c. [x] The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No16-2480 A duplicate copy of this sheet is enclosed. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status. 						
T X7 TO	1 - D 4 - A 4 - A		ı		$\overline{}$	
Patent Di The Proc Sharon W 11510 Re	nber, Patent Attovision – Room I ter & Gamble Co Voods Technical eed Hartman Hig ti, Ohio 45241	B1S12 – Box 122 ompany Center	Signatu T. Davi Name 32,931		ber .	

JC03 Rec'd PCT/PTO 28 FEB 2001 09/786075

Case CM1894M

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the matter of

U.S. National Phase Entry Under 35 USC 371 from the International Application of D'AGOSTINO, Riccardo et al Int'l Application No. PCT/US99/20503 Filed in the RO/US on 07 September 1999

Entitled:

Super Hydrophobic Coated Substrates

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Box PCT Washington, D.C. 20231

Dear Sir:

Before computing the fees for entering the captioned International Application into the U.S. National Phase, please enter the following amendments IN THE CLAIMS:

- In Claim 2 please delete the phrase ", preferably between 130° and 165°, most preferably between 155° and 165°".
- In Claim 3 please replace the phrase "claims 1 or 2" with -- Claim 1--.
- In Claim 4 please delete the phrase ", preferably between about 1.60 and about 1.95, most preferably substantially equal to 1.75".
- In each one of Claims 5, 6, 7 8 and 9 please replace the phrase "any of the preceding claims" with -- Claim 1--.
- In Claim 10 please replace the phrase "any of the claims 1 to 8" with -- Claim 8--.

Please add the following new claims:

- The substrate of Claim 2 wherein said treated surface has a static water contact angle 11. (WCA) between 130° and 165°.
- The substrate of Claim 11 wherein said treated surface has a static water contact 12. angle (WCA) between 155° and 165°.
- 13. The substrate of Claim 4 wherein said coating exhibits a fluorine/carbon ratio (F/C) of between 1.60 and 1.95.
- 14. The substrate of Claim13 wherein said coating exhibits a fluorine/carbon ratio (F/C) equal to 1.75.

PCT/US99/20503

Rec'd PCT/PTO 28 FEB 2001

Super hydrophobic coated substrates

1

10

15

5

Field of the invention

The present invention relates to super hydrophobic coated substrates having a static water contact angle of more then 120°.

Background of the invention

20

25

30

. <u>Ļ</u>

For instance, U.S. Pat. No. 3,498,527 teaches that paper board containers for liquids can be waterproofed by application of a waterproofing coating such as wax or polyethylene, and a similar method is shown in U.S. Pat. No. 2,708,645 for waterproofing paper drinking cups and in U.S. Pat. No. 3,212,697 for paper grocery sacks. In U.S. Pat. No. 3,597,313, temporary wet strength is imparted to paper by coating it with a polymeric alcohol-polymeric aldehyde reaction product.

Coating processes, by themselves, have been used to produce disposable articles of sanitary clothing. In U.S. Pat. No. 3,078,849, a disposable sanitary napkin is disclosed which consists of an adsorbent layer having a liquid-repellent backing of polyvinyl alcohol or similar material capable of initially repelling water but eventually solubilizing. The degree of water-repellency, therefore the lifetime of the napkin, is controlled by varying the thickness of the backing. Because the

15

20

25

30

necessary life of the napkin cannot be predicted by manufacturer or user, the backing must be sufficiently thick to take account of all normal contingencies. U.S. Pat. No. 3,542,028 is directed to a flushable sanitary napkin consisting of a cellulosic sheet treated with a fluoropolymer coating. U.S. Pat. No. 3,559,650 teaches the preparation of a sanitary napkin having two flush-disposable sides separated by a waterproof film too thin to support itself once both faces of the napkin have disintegrated upon disposal.

Analogous to the process of coating a surface with a waterproofing substance is the concept of reacting a surface with another material so as to form a reaction product on the surface which has water-repellent properties. For example, U.S. Pat. Nos. 2,130,212 and 3,137,540 teach that materials such as polymeric alcohols may be reacted with other materials to increase their water-repellent properties. The latter patent teaches treating polyvinyl alcohol articles with an aqueous emulsion of an aldehyde to impart water-repellency thereto. U.S. Pat. No. 3,626,943 teaches that disposable diapers can be made from polyvinyl alcohol and waterproofed on one side by reaction with formaldehyde. These reaction-type coating processes suffer from drawbacks. They are carried out in the aqueous phase which is complicated and requires relatively large quantities of reagents. Most of the processes which employ some form of in situ chemical reaction to produce a water-repellent surface are carried out in the liquid phase, some vapor phase treatments are taught by U.S. Pat. Nos. 2,306,222; 2,961,388; and 3,017,290.

A known method of water and oil repellent finishing of textiles, described in USSR Patent 1,158,634, includes plasma treatment in a glow discharge in an atmosphere of inorganic gases, followed by treatment with a fluorine containing acrylic monomer in gas phase. Another prior method of achieving film plasma polymerization, described in U.S. Pat. No. 4,188,426, includes treatment in a glow discharge of per-fluoro-cyclo-butane or hexafluoroethane to reduce the friction coefficient and to improve the surface hydrophobia of organic and

10

15

20

25

30

inorganic substrates (e.g. polyethylene films, metals). However these disclosures do not achieve a level of water repellency as the present invention.

Plasma-deposited fluorocarbon coatings are often cited in the literature as "teflon-like coatings" because their CFx (0 < x \leq 2) composition and surface energy can be made very close to that of polytetrafluoroethylene (PTFE,-(CF₂-CF₂-)_n), known on the market as Teflon®.

Plasma coating processes of metals, polymers, and other substrates, with fluorocarbon films are known in the art. As an example, it is known from USP 4 869 922 and from other sources, that deposition from continuous (i.e. non modulated) radiofrequency (RF) glow discharges fed with fluorocarbons provides films, layers, tapes, plates, and differently shaped articles made of plastics, metals or other materials, with a thin fluorocarbon coating, with no other material interposed between the coating itself and the substrate. Such coatings are claimed to have very good adherence to the items processed, to be void-free, to be uniform or not porous, and to show controlled wettability characteristics, which depend on their surface chemical composition. The non modulated, continuous plasma process of the above mentioned patent leads to coatings characterized by static water contact angle (WCA) values lower than 120°.

Glow discharges treatments are also considered in US-A-5 462 781 for improving the bondability of an implantable polymer medical device or for changing the wettability of a polymer fabric. Several of the references discussed in this patent confirm non modulated, continuous plasma treatments as a means for varying the inherent WCA of a surface.

US-A-5 034 265 discloses a non modulated, continuous plasma treatment for improving the biocompatibility of vascular grafts with a CF_{χ} fluorocarbon coating deposited at the inside wall of the grafts in a proper plasma reactor fed with tetrafluoroethylene (C_2F_4 , TFE) at 0.2 Torr. In the preferred embodiment of the

invention no other materials are interposed between the substrate and the coating.

U.S. Pat No 5,328,576 discloses a method for imparting water and oil repellent surface properties to fabrics or paper that includes pretreatment in a low pressure oxygen plasma in the presence of water vapor followed by plasma polymerization of methane in a high frequency glow discharge carried out in the same treatment chamber. This method doesn't deliver durable, permanent coatings with a WCA higher than about 120°.

10

15

20

5

U.S. Pat. No. 5,262,208 discloses an gas plasma treatment for archival preservation of paper manuscripts by a thin film protective polymer film. The treatment time is ranging from 30-3600 seconds. Other methods have been used to obtain thin coatings on the web materials with short treatment periods. Providing surface treatment is disclosed in US Patent No. 4,842,893 and 4,954,371 which describe a process for high speed coating of substrates with a complete and uniformly adhering layer and using electron beam radiation curing of the vapor deposited monomers for multilayer capacitators. U.S. Pat. No. 4,842,893 discloses high speed coating process including flash vaporization system and electron beam curing. Both of these electron beam disclosures are incorporated herein by reference. Other uses of electron beam coatings in the electronic industry field have been reported by Westinghouse science & technology center USA (Adv. Mat. Newsletter Volume 13, No 9, 1991 page 4).

Summary of the invention

25

30

Specifically, the present invention, having the features mentioned in the annexed claims, relates to substrates coated with a thin, well adherent, nonporous, fluorocarbon coating with super hydrophobic properties, i.e. characterized by static water contact angle (WCA) values, measured on a smooth and plane surface, higher than about 120°, preferably higher than 130°, more preferably higher than 150°. Substrates treated with this method have their hydrophobicity markedly

5

10

15

improved, e.g. can be made effectively waterproof while maintaining their previous characteristics such as permeability to gases and vapors. The increased hydrophobicity results also in additional benefits such as prevention of build-up of soiling (e.g. on hard surfaces such as glass, ceramics, metals and other surfaces exposed to dirt), prevention of lumping of powders or granules, aiding in complete emptying of containers which contain hydrophilic materials such as liquid detergent or shampoo bottles or beverage containers or liquid tanks or flowable particle tanks e.g. flour tanks, prevention of contamination and build-up on tooth-brushes and bristles. If the substrates are polymeric, they can be useful e.g. in making breathable products with improved resistance to leakage of body fluids.

The present invention deals with treated polymeric or non polymeric articles whose surface is made super hydrophobic, i.e. characterized by static water contact angle (WCA) values higher than about 120°, preferably higher than 130°, more preferably higher than 150°.

The substrates of interest for the present invention may include a wide range of materials in form of webs, tapes, films, powders, granules, particles, woven and non-woven layers; substrates can be porous or non-porous, molded or shaped, rigid or flexible, made of polymers, textiles, papers, cellulose derivatives, biodegradable materials, metals, ceramics, semiconductors, and other inorganic or organic materials. Preferably, the substrate is formed into a desired shape or configuration, depending on its intended use, before being subjected to the treatment object of this invention.

25

20

When organic synthetic resins are chosen, such substrate materials could be fabricated from polyethylene, polyacrylics, polypropylene, polyvinyl chloride, polyamides, polystyrene, polyurethanes, polyfluorocarbons, polyesters, silicone rubber, hydrocarbon rubbers, polycarbonates and other synthetic polymers.

30

The articles are preferably subjected to a modulated glow discharge plasma treatment performed with a fluorocarbon gas or vapor compound fed in a prop-

10

15

20

25

30

erly configured reactor vessel where the substrates are positioned. The plasma process deposits a continuous, fluorocarbon thin film with super hydrophobic surface characteristics, tightly bound to the substrate.

Alternatively a more conventional thin film coating process followed by high energy surface curing can be used. This is the method of using a high speed vacuum coating process for producing durable and thin water-repellent coatings on a substrate. It uses e.g. a movable support such as rotating drum in a vacuum chamber. The surface of the support is maintained at a temperature sufficient to permit condensation of a vaporized material deposited in the chamber. material is a curable monomer with a relatively low molecular weight. The monomer vapor is created using a flash vaporizer. The desired amount of curable monomer is metered to a heated flash vaporizer system where the material is vaporized. It is then transported e.g. by it's inherent pressure, to the substrate resting on the rotating drum and condensed on the surface of the substrate. According to the method the substrate is then transported to a curing means such as an energy source which emits an electron beam, UV-light radiation or exposure to an electro magnetic field. Alternative the curable monomer can also be transferred into radicals by passing through a plasma zone (zone of high voltage discharge). The curing of the monomer by the curing means then provides a coating on the substrate surface which has a static water contact angle of more than 95°.

The method for delivering the curable monomer to the substrate for minimizing the amount of monomers can use an ultrasonic atomizer producing micro droplets of curable monomer. They are released into a vaporization tube heated by band heaters. The atomized droplets impinge on the inner wall of the vaporization tube and are instantaneously vaporized, i.e., flash vaporized. This reduces the opportunity for polymerization prior to being deposited on the substrate.

10

15

20

25

30

In one aspect of the present invention, the substrate can be one side waterrepellent and capable of absorbing and storing fluids from the other side, or alternatively be repellent on both sides.

"Plasma," as used herein, is used in the sense of "low-temperature plasma" or "cold plasma" produced by igniting a glow discharge in a low pressure gas through a power supply. Glow discharges contain a variety of species chemically active and energetic enough to cause chemical reactions with surfaces exposed, i.e. covalent bonding to a suitable substrate material. Cold plasmas, or glow discharges, are generally produced with high frequency (from KHz to MHz and GHz) power supply (HF plasmas). Electrons, positive and negative ions, atoms, excited molecules, free radicals, and photons of various energies are formed in a cold plasma.

"Modulated plasma" means a non continuos plasma, HF plasma, i.e. a glow discharge whose driving power is pulsed between a maximum value and zero (ON/OFF pulse) or a fraction of it, at a certain frequency, with a proper pulse generator connected to the main power supply. In the case of ON/OFF pulsed systems, the time ON and time OFF values are among the experimental parameters of the process. Superimposing a triggering ON/OFF pulse to the main high frequency field which generally drives a glow discharge, alternates short continuous discharges with plasma OFF time intervals where active species still exists in the gas phase, but the effects of ions and electrons are strongly reduced. This alternating exposure to two different processes leads to unique surface modifications of substrates, which are very different from those of continuous plasma process, as it will be shown.

"Plasma deposition" or "plasma polymerization" is the plasma process that leads to the formation of thin (0.01 - 2 μ m), partly crosslinked, void-free, continuous coatings well adherent to substrates. The molecules of the gas phase are fragmented by energetic electrons, which are able to break chemical bonds; this process leads to radicals and other chemical species which are able to deposit at

10

15

20

25

30

surfaces inside the vacuum chamber and form a thin, uniform film. The action of the plasma may also affect the surface of a polymer substrate in the early deposition time; energetic species may break bonds in the substrate with possible evolution of gas products, such as hydrogen, and formation of free radical sites which contribute to form covalent bonds between the growing film and the substrate.

Substrate to be treated are subjected to modulated plasma gas discharge in the presence of at least one fluorocarbon gas or vapor. Specifically, fluorocarbon gases or vapors such as tetrafluoroethylene (TFE,C2F4), hexafluoropropene (HFP,C₃F₆), perfluoro-(2-trifluoromethyl-)pentene, perfluoro-(2-methylpent-2-ene) or its trimer may be used, TFE being the presently preferred choice. The plasma deposition process is preferably performed by positioning the substrate in a properly arranged plasma reactor, connecting the reactor to a source of a fluorocarbon gas or vapor, regulating flow and pressure of the gas inside the reactor, and sustaining a glow discharge in the reactor with a high frequency electric field in a pulsed (modulated) mode by means of a suitable pulsed power supply. The parameters which define the glow discharge treatment includes the feed gas or vapor, its flow rate, its pressure, the position of the substrate inside the reactor, the design of the reactor, the exciting frequency of the power supply, the input power, the time ON and the time OFF of the pulsing system. Substrates, as those listed in the abstract, may be positioned in the "glow" region of the discharge, i.e. directly exposed to the plasma, or in the "afterglow" region, i.e. downstream respect to the visible glow. The two positions generally result in coatings with different composition and properties; treating the substrates with modulated glow discharge results also in different coatings respect to continuous treatments.

It has been found that it is possible to deposit thin fluorocarbon films with super hydrophobic characteristics, i.e. showing a surprisingly high WCA value, even up to about 165°. The present invention thus provides substrates of the type mentioned above, with fluorocarbon films characterized by a WCA value higher than

5

10

15

20

30

120°, preferably higher than 130°, more preferably higher than 150°.

According to the present invention, fluorocarbon coatings with F/C ratio from about 1.50 to about 2.00 have been deposited, characterized by WCA values higher than about 120°, such as between about 155° and about 165°. The coatings have been deposited at the surface of different polymer and non polymer substrates such as polyethylene (PE), polypropylene (PP) polyethyleneterephtalate (PET), and paper in form of films and fabrics, glass and silicon, among many. It should be noted that the F/C ratio could be theoretically up to 3, if the coating would be formed only by a mono-molecular layer of CF_3 groups. But the formation of intermolecular cross-links and the formation of claims (containing CF_2 fragments) which are grafted onto the surface lowers the above theoretical value so that the obtained coatings, notwithstanding the fact that they contain many CF_3 groups, have a global F/C ratio in the range of about 1.50 to about 2.00.

The thickness of the coatings depends on the duration of the plasma process at different conditions, and can be kept between 0.01 and 2 μ m. It has been found that the nature of the substrate materials does not influence neither the chemical composition nor the thickness of the coatings. Coatings with WCA values up to about 165° (e.g. 165° \pm 5°)were obtained.

Brief description of the drawings

- In the following detailed description the invention will be described, purely by way of example, with reference to the enclosed figures of drawing, wherein:
 - Figure 1 compares a conventional "continuous" RF glow discharge with an ON/OFF "modulated" RF glow discharge;
 - Figure 2 portrays a typical scheme of a plasma reactor adapted for use within the context of the invention;
 - Figure 3 shows a C1s ESCA signal of an uncoated polyethylene substrate wherein the signal is due only to C-H, C-C bonds of the substrate;

10

15

20

25

30

- Figure 4 shows a C1s ESCA signal of a PE substrate coated with a fluorocarbon coating deposited as described in example 1 (glow position, continuous mode), with WCA of $100 \pm 5^{\circ}$; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination;

- Figure 5 shows a C1s ESCA signal of a PE substrate coated with a fluorocarbon coating deposited as described in example 1 (afterglow position, continuous mode), with WCA of $120 \pm 5^{\circ}$; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination; and

- Figure 6 shows a C1s ESCA signal of a PE substrate coated with a fluorocarbon coating deposited as described in example 1 (glow position, modulated mode), with WCA of $165 \pm 5^{\circ}$; the signal is composed by components due to CF3, CF2, CF and CCF bonds of the fluorocarbon coating, and to C-H, C-C bonds due to surface contamination.

Detailed description of the invention

Figure 1 compares a conventional "continuous" plasma (figure 1a) with the modulated process of the invention, (figure 1b) showing pulsed alternating plasma ON with plasma OFF (i.e. no plasma) times. The two processes are schematized by referring to their driving signals.

The reactor 1 schematically shown in figure 2 was utilized not exclusively for developing the deposition method object of the present invention. The reactor vacuum chamber 1 is made of Pyrex glass, is provided with an external RF powered electrode 2 and an internal grounded electrode 3. The external electrode is connected to a power supply 4 (typically a radiofrequency generator operating at e.g. 13.56 MHz) through a matching network and an ON/OFF pulse generator 5. The substrates can be treated in the "glow" region of the reactor, onto the grounded electrode 3, as well as in its "afterglow" position i.e. at an afterglow substrate holder 6. The gas/vapor is fed through a proper mass flowmeter through a

10

15

20

25

30

gas/vapor feeding manifold 7, and its pressure, measured at the pump out exit 8 of the reactor, kept at a certain constant value with a manual valve on the vacuum connection between the reactor and its pumping unit. Even though the arrangement shown in the drawing represents a presently preferred choice, those skilled in the art will immediately recognize that pulsed energization of the plasma reactor can be achieved by different means such as direct energization by means of pulsed RF generators commonly used in radar and telecommunication techniques.

Preferably, the deposition process is performed with an RF (13.56 MHz) generator. The RF power delivered to the external electrode of the reactor is kept in the 1-500 Watts range for a power density of 0.02-10 Watt/cm². The reactor is fed with a fluorocarbon compound at a 1-100 sccm flow rate and is kept at a constant pressure of 50-1000 mTorr during the process. Preferably, the glow discharges are modulated through the pulse generator, preferably at 1-500 ms time ON and 1-1000 ms time OFF values, with respective values of about 10 ms and about 190 ms being the most preferred choice at present. The deposition process may range from a few seconds to many hours; during this time a uniform fluorocarbon coating is deposited on the substrates positioned in the glow as well as on those in the afterglow region. The deposition rate, a typical one being in the 20 - 400 Å/min range, was measured by weighing (weight/time) the substrates before and after the discharge, or by measuring the thickness of the coatings (thickness/time) with an Alpha Step profilometer. The deposition rate and the chemical composition of the coating depend on the experimental conditions (pressure, power, substrate position time ON, time OFF, gas feed and flow rate) of the discharge.

The coatings obtained are uniform over the entire surface of the substrate; when deposited on flat (i.e. plane), smooth substrates, their hydrophobic character has been estimated through their static WCA value, as measured with a WCA goniometer. The measurement is done on a flat, i.e. plane, and smooth surface of a substrate after coating. The term smooth as used herein for water contact angle

measurements refers to a roughness of no more than 5 microns in accordance with standard roughness measurements on continuous surfaces. WCA values in the range about 120° to about 165°, corresponding to a critical surface tension lower than that of PTFE (18 dynes/cm) have been measured for fluorocarbon CFx coatings, when x ranges between about 1.50 and about 2.00. The chemical composition of coatings is preferably determined by Electron Spectroscopy for Chemical Analysis (ESCA) within the sampling depth of the technique (about 100 Å). The adherence of the coating to the substrate is very good.

The following examples are given for the purpose of still better illustrating the inventive concept of the present invention, and for highlighting the advantages of using modulated over continuous treatments.

EXAMPLE 1

15

20

25

30

5

Three sets of substrates of silicon, PE and PP, of areas in the range of 2-10 cm² per substrate, were positioned onto the grounded electrode 3 of the reactor schematized in Figure 2. A similar set of substrates was positioned in the afterglow position at 6. C_2F_4 was set to feed continuously the reactor at 6 sccm, and the pressure set at 300 mTorr. The RF generator was connected to the reactor and allowed to sustain the discharge with 50 Watt of input power for 90 min, then switched off.

Another glow discharge was subsequently run with a similar set of substrates positioned in the glow position and no substrates in the afterglow position, under the same conditions described above except for the fact that modulation was effected at 10 ms time ON and 190 ms time OFF through the pulse generator.

At the end of the two discharges the substrates were extracted from the reactor and their WCA measured. The WCA values shown in Table 1 were found, which are compared to the WCA values of the unprocessed substrates. A deposition rate of 30 ± 5 Å/min was measured for the coatings deposited in the modulated

mode.

Other substrates, treated in the two modes, were analysed with the ESCA technique. Their surface composition resulted to be entirely composed by carbon and fluoride (fluorine as element), according to the results shown in Tables 2a-c. No other elements were detected (e.g. Si for silicon substrates), which means that the coatings are continuous. The C1s spectrum of the uncoated PE substrate is shown in Figure 3, while the C1s spectra of PE samples coated as described above are shown in Figures 4, 5 and 6, respectively.

10

Table 1

SUBSTRATE	Si	PE	PP
WCA unprocessed	15°± 3°	95° ± 3°	85° ± 3°
WCA continuous discharge (glow position)	100° ± 5°	100° ± 5°	100° ± 5°
WCA continuous discharge (afterglow position)	120° ± 5°	120° ± 5°	120° ± 5°
WCA modulated discharge (glow position)	165° ± 5°	165° ± 5°	165° ± 5°

Table 2a

ESCA results for the continuous discharge (glow position) of Example 1

COATED SUBSTRATE	Si	PE	PP
carbon atomic %	43.3	42.4	42.9
fluorine atomic %	56.7	57.6	57.1
F/C ratio	1.31	1.36	1.33

Table 2b
ESCA results for the continuous discharge (afterglow position) of Example 1

10

15

20

COATED SUBSTRATE	Si	PE	PP
carbon atomic %	34.4	33.8	34.1
fluorine atomic %	65.6	66.2	65.9
F/C ratio	1.91	1.96	1.93

Table 2c
ESCA results for the modulated discharge (glow position) of Example 1

COATED SUBSTRATE	Si	PE	PP
carbon atomic %	36.4	36.2	36.7
fluorine atomic %	63.6	63.8	63.3
F/C ratio	1.75	1.76	1.72

EXAMPLE 2

Three sets of substrates of glass, silicon and PE, of areas in the range of 2-10 cm² per substrate, were positioned onto the grounded electrode 3 of the reactor schematized in Figure 2. A similar set of substrates was positioned in the afterglow position. C_3F_6 was set to feed continuously the reactor at 5 sccm, and the pressure set at 300 mTorr. The RF generator was connected to the reactor and allowed to sustain the discharge with 50 Watt of input power for 60 min, then switched off.

Another glow discharge was subsequently run with a similar set of substrates positioned in the glow position and no substrates in the afterglow, under the same conditions described above except for the fact that modulation was effected at 10 ms time ON and 90 ms time OFF through the pulse generator.

At the end of the two discharges the substrates were extracted from the reactor and their WCA measured. The WCA values shown in Table 3 were found, which

are compared to the WCA values of the unprocessed substrates. A deposition rate of 70 ± 5 Å/min was measured for the coatings deposited in the modulated mode.

Other substrates, treated in the two modes, were analysed with the ESCA technique; their surface composition resulted to be entirely composed by carbon and fluoride (fluorine as element), according to the results shown in Tables 4a-c. Also for this case, since no other elements were detected (e.g. Si for silicon and glass substrates), the coatings were assumed to be continuous.

10

Table 3

SUBSTRATE	glass	Si	PE
WCA unprocessed	35°± 3°	15°± 3°	95° ± 3°
WCA continuous discharge (glow position)	105° ± 5°	105° ± 5°	105° ± 5°
WCA continuous discharge (afterglow position)	120° ± 5°	120° ± 5°	120° ± 5°
WCA modulated discharge (glow position)	120° ± 5°	120° ± 5°	120° ± 5°

Table 4 a

ESCA results for the continuous discharge (glow position) of Example 2

COATED SUBSTRATE	glass	Si	PE
carbon atomic %	42.7	42.1	41.5
fluorine atomic %	57.3	57.9	58.5
F/C ratio	1.34	1.37	1.41

15

Table 4 b
ESCA results for the continuous discharge (afterglow position) of Example 2

COATED SUBSTRATE	glass	Si	PE

10

carbon atomic %	37.1	38.3	38.1
fluorine atomic %	62.9	61.7	61.9
F/C ratio	1.69	1.61	1.62

Table 4 c
ESCA results for the modulated discharge (glow position) of Example 2

COATED SUBSTRATE	glass	Si	PE
carbon atomic %	38.1	39.9	39.2
fluorine atomic %	61.9	60.1	60.8
F/C ratio	1.62	1.51	1.55

EXAMPLE 3

Three set of substrates of polished silicon, polyethyleneterephtalate (PET), and 3 mm thick FAM (Functional Absorbent Material), an hydrophilic absorbent material made according to the teachings of USP 5 260 345, of areas in the range of 2-10 cm² per substrate, were positioned onto the grounded electrode 3 of the reactor schematized in Figure 1. C_2F_4 was set to feed continuously the reactor at 5 sccm, and the pressure set at 400 mTorr. The RF generator was connected to the reactor and allowed to sustain the discharge for 20 min in the modulated mode (10 ms time ON; 190 ms time OFF) with 75 Watt of input power. At the end of the discharge the substrates were extracted from the reactor, and their WCA measured. The values shown in Table 5 were found, which are compared to the WCA values of the unprocessed substrates. A deposition rate of 300 \pm 10 Å/min was measured.

20

15

Other substrates were ESCA analysed; their surface composition resulted to be entirely composed by carbon and fluoride (fluorine as element), according to the results shown in Table 6. No other elements have been detected (e.g. Si for silicon substrates, and O for PET substrates), thus the coatings can be assumed to

be continuous.

The coated FAM substrate was cut along its thickness, and the freshly cut surface, which was not directly exposed to the discharge, analysed by WCA and ESCA measurements. The data shown in Table 7 demonstrate that the thick FAM sample was treated not only on the surface exposed to the glow, but also inside its bulk, which demonstrates that the plasma treatment is able to penetrate through porous substrates.

Table 5

5

SUBSTRATE	PET	Si	FAM
WCA unprocessed	75°± 3°	15°± 3°	WCA unmeasurable, the
			drop is adsorbed by the
			material
WCA modulated discharge	155° ± 5°	155° ± 5°	155° ± 10°
(glow position)			

1

Table 6
ESCA results for the modulated discharge (glow position) of Example 3

COATED SUBSTRATE	PET	Si	FAM
carbon atomic %	34.8	35.6	34.0
fluorine atomic %	65.2	64.4	66.0
F/C ratio	1.87	1.81	1.94

20

ESCA results for the treated FAM sample of Example 3 cut just after the treatment

_
`
J

SUBSTRATE	bulk FAM, cut after the treatment		
WCA(modulated discharge)	the drop of water is not absorbed		
	the material is evidently much more hydro- phobic respect to the untreated one		
	WCA is unmesurable due to surface roughness		
carbon atomic %	38.5		
fluorine atomic %	61.5		
F/C ratio	1.60		

As an alternative to provide the substrates of the present invention the method of thin film coating with a monomer followed by surface curing can be used.

The coating formed by the method of the present invention has a thickness of less than 5 microns, and preferably less than 2 microns and most preferably in the range of 0.001 to 1 microns. The coatings are formed by depositing a vapor of curable monomer, under vacuum, on a movable substrate which is mounted in thermal contact with a support, for continuos processing preferably a rotating drum, which is maintained at a temperature below the boiling point of the vaporized monomer under the environmental conditions in vacuum chamber. As a result of this temperature differential, the monomer vapor condenses on the surface of the substrate. The monomer materials utilized in the present invention are relatively low in molecular weight, between 150 and 1000 Atomic Mass Units (AMU), and preferably in the range 200 to 300 AMU. Polyfunctional flurocarbons and especially fluoroacrylates or mixtures of monofunctional fluoroacrylates and

10

15

20

25

polyfunctional fluoroacrylates are preferred. The monomers or monomer mixtures employed have an average of about two or more double bonds (i.e., a plurality of olefinic groups) and have a vapor pressure such that they condense on the substrate surface. Such vapor pressures are for example pressure between about 1.33 10⁻⁶ mbar and 1.33 10⁻¹ mbar, most preferably a vapor pressure of approximately 1.33 10⁻² mbar at standard temperature and pressure, (i.e., relatively low boiling materials) are selected.

These high-vapor-pressure monomers can be flash vaporized already at low temperatures and thus are not degraded (cracked) by the heating process. The absence or low amount of unreactive degradation products results in coatings with a reduced levels of volatile components in which substantially all of the deposited monomer is reactive and will cure to form an integral film when exposed to a source of radiation. These properties make it possible to provide a substantially continuous coating despite the fact that the deposited film is very thin. The cured films exhibit excellent adhesion and are resistant to chemical attack by organic solvents and inorganic salts.

The high speed vacuum coating process for producing water vapour permeable substrates with exceptional water repellent properties on either one side or both sides requires a curable monomer component. Desirably, the curable monomer for obtaining water-repellent coatings comprises fluoro-containing group.

In one emodiment, any suitable fluoromonomer may be used, including, but not limited to, fluoroacrylate monomers, fluoro olefin monomers, fluorostyrene monomers, fluoroalkylene oxide monomers (e.g., perfluoropropylene oxide, perfluorocyclohexene oxide), fluorinated vinyl alkyl ether monomers, and the copolymers thereof with suitable comonomers, wherein the comonomers are fluorinated or unfluorinated. Fluoromonomers which are polymerized by a free radical polymerization process are preferred.

30

In one embodiment, fluorostyrenes and fluorinated vinyl alkyl ether monomers which may be used in the method of the present invention include, but are not

limited to, α -fluorostyrene; β -fluorostyrene; α , β -difluorostyrene; β , β -difluorostyrene; α , β , β -trifluorostyrene; α -trifluoromethylstyrene; 2,4,6-Tris (trifluoromethyl)styrene; 2,3,4,5,6-pentafluorostyrene; 2,3,4,5,6-pentafluoro- α -methylstyrene; and 2,3,4,5,6-pentafluoro- β -methylstyrene.

5

In yet another embodiment, tetrafluoroethylene can also be used in the method of the present invention and include, but are not limited to, tetrafluoroethylene-hexafluoropropylene copolymers, tetrafluoroethylene-perfluorovinyl ether copolymers (e.g., copolymers of tetrafluoroethylene with perfluoropropyl vinyl ether), tetrafluoroethylene-ethylene copolymers, and perfluorinated ionomers (e.g., perfluorosulfonate ionomers; perfluorocarboxylate ionomers).

15

10

In still another embodiment, fluorocarbon elastomers (see, e.g., 7 Encyclopedia of Polymer Science & Engineering 257) are a group of fluoro olefin polymers which can also be used in the process of the present invention and include, but fluoride-co-hexafluoropropylene); poly(vinylidene limited not to, are fluoride-co-hexafluoropropylene-co-tetrafluoroethylene); poly(vinylidene poly[vinylidene fluoride-co-tetrafluoroethylene-co-perfluoro(methyl vinyl ether)]; ether)]; vinyl poly[tetrafluoroethylene-co-perfluoro(methyl fluoride-copoly(vinylidene poly(tetrafluoroethylene-co-propylene; and chlorotrifluoroethylene).

25

20

In the preferred emodiment, because of their reactivity, physical properties, and the properties of cured films formed from such components, fluoroacrylates are particularly useful monomeric materials. The term "fluoroacrylate monomer," as used herein, refers to esters of acrylic acid ($H_2C = CHCOOH$) or methacrylic acid ($H_2C = CCH_3 - COOH$), where the esterifying group is a fluorinated group such as perfluoroalkyl. A specific group of fluoroacrylate monomers useful in the method of the invention are compounds represented by formula (I): $H_2C = CR_1 - COO (CH_2)_n R_2$ (I) wherein: n is 1 or 2;

30

 R_1 is hydrogen or methyl; and R_2 is a perfluorinated aliphatic or perfluorinated aromatic group, such as a perfluorinated linear or branched, saturated or unsaturated C_1 to C_{10} alkyl, phenyl, or naphthyl.

- In a particular embodiment of the invention, R₂ is a C₁ to C₈ perfluoroalkyl or CH₂ NR₃ SO₂ R₄, wherein R₃ is C₁-C₂ alkyl and R₄ is C₁ to C₈ perfluoroalkyl. The term "perfluorinated," as used herein, means that all or essentially all hydrogen atoms on an organic group are replaced with fluorine. Monomers illustrative of Formula (I) above, and their abbreviations, include the following:
- 2-(N-ethylperfluorooctanesulfonamido) ethyl acrylate ("EtFOSEA");
 - 2-(N-ethylperflooctanesulfonamido) ethyl methacrylate ("EtFOSEMA");
 - 2-(N-methylperfluorooctanesulfonamido) ethyl acrylate ("MeFOSEA");
 - 2-(N-methylperflooctanesulfonamido) ethyl methacrylate ("MeFOSEMA");
 - 1,1-Dihydroperfluorooctyl acrylate ("FOA"); and
- 1,1-Dihydroperfluorooctyl methacrylate ("FOMA").

Alternatively, the curable monomer component can also include polyfunctional acrylates, which are set forth in U.S. Patent 4,842,893.

CLAIMS

5

10

15

20

- 1. A surface treated substrate having a fluorocarbon coating characterized in that said treated surface has a static water contact angle (WCA) higher than 120°.
- 2. The substrate of claim 1 characterized in that said treated surface has a static water contact angle (WCA) higher than 130°, preferably between 130° and 165°, most preferably between 155° and 165°.
- 3. The substrate of claims 1 or 2 characterized in that said coating is a fluorocarbon coating.
- 4. The substrate of claim 3 characterized in that said coating exhibits a fluorine/carbon ratio (F/C) of between about 1.50 and about 2.00, preferably between about 1.60 and about 1.95, most preferably substantially equal to 1.75.
- 5. The substrate of any preceding claims characterized in that said substrate is selected in the group consisting of polyethylene, polyacrylics, polypropylene, polyvinyl chloride, polyamides, polystyrene,polyurethanes, polyfluorocarbons, polyesters, silicon rubber, hydrocarbon rubbers, polycarbonates, cellulose and its derivatives, rubber, glass, semiconductors, metals, ceramics.
- 6. The substrate of any preceding claims characterized in that said substrate is made of a porous material, the porosity of the substrate being substantially unaffected by said coating, preferably said porous material is a perforated film or a fibrous woven or non woven material or an open cell foam material or a porous particulate material.
- 7. The substrate of any preceding claims characterized in that said substrate
 is a flexible substrate.

- 8. The substrate of any of the preceding claims characterized in that it is formed into a desired shape prior to being coated.
- 5 9. The substrate of any preceding claims obtainable by exposing the substrate to a modulated plasma glow discharge in the presence of a fluorocarbon gas or vapor.
- 10. The substrate of any of the claims 1 to 8, obtainable by coating the substrate with a film of curable monomer and then curing said film

1/6

continuous RF glow discharge

modulated RF glow discharge

Figure 1

Figure 2

PCT/US99/20503

3/6

Figure 3

Figure 4

5/6

Figure 5

Figure 6

DECLARATION COMBINED WITH POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

"Super hydrophobic coated substrates"

bearing the above listed Procter & Gamble Company Case number, the specification of which was filed as PCT/US99/20503, designating at least the United States of America, with the United States Receiving Office on 07 September 1999.

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37 Code of Federal Regulations §1.56.

I hereby claim foreign priority benefits under Title 35 United States Code §119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application for patent or Inventor's certificate having a filing date before that of the application on which priority is claimed:

PRIOR FOREIGN APPLICATION(S) TO WHICH WE CLAIM PRIORITY:

98116894.1 EP 07 September 1998

I hereby claim the benefit under Title 35 United States Code §120 of any United States application(s) or PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35 United States Code §112, I acknowledge the duty to disclose material information as defined in Title 37 Code of Federal Regulations §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Appln. Serial No.)	(Filing Date)	(Status)(patented, pending, abandoned)
(Appln. Serial No.)	(Filing Date)	(Status)(patented, pending, abandoned)

The state of the s

The support for these amendments is found in the claims as originally filed. These amendments are being entered to bring the claims into conformance with, *inter alia*, 37 CFR §1.75; no new matter is added.

Respectfully submitted for Applicants,

By:

T. David Reed Agent for Applicants Registration No. 32,931

23 February 2001 5299 Spring Grove Avenue Cincinnati, Ohio 45217-1087 Phone: (513) 627-7025 FAX: (513) 627-6333 I hereby appoint the following as my attorney(s) or agent(s) with full power of substitution to prosecute this application and transact all business in the Patent and Trademark office connected therewith:

			Associate Power	
_	Name	Registration No.	of Attorney Attached	
	Jacobus C. Rasser Donald E. Hasse T. David Reed Eileen L. Hughett Timothy B. Guffey Emelyn L. Hiland SEND CORRESPONDEN T. David Reed, c/o The Pre Name 5299 Spring Grove Avenue Street	octer Gamble Company	[] Yes [] No (513) 627-7025 Phone No. 45217-1087 Zip Code	
	statements made on information statements were made with are punishable by fine or instance. States Code and that states application or any patent is application or any patent in lower tor's signature. Residence: Citizenship: Via	mation and belief are belien th the knowledge that willfu mprisonment, or both, unde uch willful false statemen	Date	
	Residence: Citizenship: IT Post Office Address:	a Fontevecchia, 40 66100	Date Feb. 14, 2000 Chieti IT 0 - 66100 CHIETI - TALY	,
	Citizenship: US	636 Plumhill Lane Cincinn	Date 3-20-2000	49
つ	Inventor's signature Residence: Citizenship: Vi	a Orabona 4, 70126 Bari	IT Date Tests 2000	

Full name of fifth join Inventor's signature	t inventor, if any: FRANCE, Paul Amaat Raymond Gerard Date 3-15-00	
Residence: Citizenship: Post Office Address:	8375 Todd Creek Circle West Chester, OH 45069 US Belgium BEX	

I hereby appoint the following as my attorney(s) or agent(s) with full power of substitution to prosecute this application and transact all business in the Patent and Trademark office connected therewith:

Name	Registratio	n No.	Associate Power of Attorney Attached
			[] Yes [] No
Jacobus C. Rasser	37,043		
Donald E. Hasse	29,387		
T. David Reed	32,931		
Eileen L. Hughett	34,352		
Timothy B. Guffey	41,048		
Emelyn L. Hiland	41,501		
SEND CORRESPONDENCE	E TO:		
T. David Reed, c/o The Proc	ter Gamble C	company	(513) 627-7025
Name			Phone No.
5299 Spring Grove Avenue	Cincinnati	Ohio	45217-1087
Street	City	State	Zip Code

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

-4-1	
Full name of sole or sixt Inventor's signature	Recle Course (Q Date \06/03/0/
	Via Orabona, 4 70126 Bari IT L/X
Full name of seventh joint linventor's signature	int inventor, if any: PALUMBO, Gianfranco Date Date
-	Mühlstrasse 23, 65760 Eschborn DE DE
Full name of eighth join Inventor's signature	nt inventor, if any: RADOMYSELSKIY, Arseniy Valerevich Date
Residence: Citizenship: Post Office Address:	1031 Delta Avenue, Cincinnati, OH 45208 US US
Full name of ninth joint Inventor's signature	inventor, if any: Date
Residence: Citizenship: Post Office Address:	

hereby appoint the following as my attorney(s) or agent(s) with full power of substitution to prosecute this application and transact all business in the Patent and Trademark office connected therewith:

			Associate Power
Name	Registration	n No.	of Attorney Attached
	-		[] Yes [] No
Jacobus C. Rasser	37,043		
Donald E. Hasse	29,387		
T. David Reed	32,931		
Eileen L. Hughett	34,352		
Timothy B. Guffey	41,048		
Emelyn L. Hiland	41,501		
SEND CORRESPONDENCE	Ē TO:		
T. David Reed, c/o The Proc	ter Gamble C	Company	(513) 627-7025
Name		•	Phone No.
5299 Spring Grove Avenue	Cincinnati	Ohio	45217-1087
Street	City	State	Zip Code
I hereby declare that all stat	ements made	herein of m	ny own knowledge are true and that all

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or size	xth inventor: LAMENDOLA, Ritalba Date
Residence: Citizenship: Post Office Address:	Via Orabona, 4 70126 Bari IT
Full name of seventh judgmentor's signature	oint inventor, if any: PALUMBO, Gianfranco Date
Residence: Citizenship: Post Office Address:	Georgenfeld 7, D-61348 Bad Homburg DE DE
Full name of eighth joi Inventor's signature	nt inventor if any RADOMYSELSKI, Arseni Valerevich Date 10-9-0/
Residence: Citizenship: Post Office Address:	6493 Kristine Drive, <u>Hamilton</u> , OH 45011 US
Full name of ninth join Inventor's signature	t inventor, if any: Date
Residence: Citizenship: Post Office Address:	