## R exercises: week 2 Financial Econometrics 2024-2025

Paolo Gorgi



## **CHAPTER 4: Parameter estimation**

- 1. Inspect carefully the R file  ${\tt Estimate\_ML\_GARCH.R}$  and make the following changes:
  - Set the starting value of the parameter values for  $\alpha$  and  $\beta$  equal to  $(\alpha_1, \beta_1) = (0.3, 0.5)$ ;
  - Use the last 10 years of daily log-returns of NASDAQ as data sample.
- 2. Use the R file Estimate\_ML\_GARCH.R, with the changes of the previous question, to obtain:
  - The ML estimate from a GARCH(1,1) for the last 10 years of daily log-returns of NASDAQ;
  - An estimate of the covariance matrix of the ML estimator;
  - 95% confidence intervals for all the parameters of the GARCH(1,1), i.e.  $(\omega, \beta_1, \alpha_1)$ ;
- 3. Write an R function that calculates the average log-likelihood function for an ARCH(1) model<sup>1</sup>. Then do the following:
  - Use this function to estimate and ARCH(1) for the dataset stock\_returns.txt.
  - Obtain the covariance matrix of the ML estimator;
  - Obtain 95% confidence intervals for all the parameters of the ARCH(1), i.e.  $(\omega, \alpha_1)$ ;

<sup>&</sup>lt;sup>1</sup>Have a look at the R file llik\_fun\_GARCH.R, which provides the average log-likelihood for a GARC(1,1)

## CHAPTER 5: Econometric analysis with GARCH models

- 1. Inspect carefully the R file analysis\_GARCH.R. Then, estimate a GARCH(1,1) model for the last 15 years daily log-returns of Microsoft (MSFT). Obtain the residuals and test for normality. Are squared residuals normally distributed? Finally, check for residual autocorrelation in squared residuals. Is there residual autocorrelation?
- 2. For the model estimated in the previous question, obtain and plot the conditional VaR at level  $\alpha = 0.05$  and  $\alpha = 0.01$  for Microsoft (MSFT).
- 3. For the model estimated in Question 1, obtain out-of-sample forecasts of the variance of  $y_{T+h}$ ,  $\sigma_T^2(h)$ , with  $h = 1, \ldots, 30$ , for Microsoft (MSFT). Is the unconditional variance estimated from the model a good approximation for  $\sigma_T^2(2)$ ? And for  $\sigma_T^2(30)$ ?
- 4. Repeat questions 1, 2 and 3 but now using an ARCH(1) model instead of a GARCH(1,1). Comment on the results.
- 5. Use R to compare the fit of the following models using AIC and BIC on the data set stock\_returns.txt
  - ARCH(1)
  - GARCH(1,1)

Which model would you select?