KLASSZIUKS FIZIKA LABORATÓRIUM

Rugalmas állandók mérése jegyzőkönyv

Mérést végezte: Koroknai Botond Mérés időpontja: 2023.05.03

Neptun kód: AT5M0G Jegyzőkönyv leadásának időpontja: 2023.05.24

Tartalomjegyzék:

1	A mérés célja:	2
2	A mérőeszközök:	2
3	Fontos összefüggések	2
4	Mérési adatok kiértékelése - Young-modolusz:	3
5	Mérési adatok kiértékelése - Torziómodolusz:	6
6	Diezkusezió:	7

1 A mérés célja:

A mérés során különböző anyagok rugalmas tulajdonságait vizsgáltam két módszer keretein belül. Először a minták lehajlását mértem a terhelő függvényében, majd egy torziós inga periódusidejének mérésével egy torziós szál torziósmodoluszát határoztam meg.

2 A mérőeszközök:

- · A5 négyzetes hasáb
- V3 hengeres rúd
- Súlyok
- · Kétkarú emelő
- 8-as és 5 ös tárcsák
- Tolómérő
- Vonalzó
- Csavarmikrométer
- · Torziós inga
- · Analitikai mérleg

3 Fontos összefüggések

Lehajlás erőfüggése:

$$s = \frac{1}{48} \frac{l^3}{EI} F \tag{1}$$

ahol s a lehajlás nagysága, I a felfüggesztések távolsága, I a keresztmetszet másodrendű nyomatéka F a testre ható, deformáló erő, E pedig a keresett Youngmodulusz.

Másodrendű nyomatékok:

Téglalap keresztmetszet esetén:

$$I_{ab} = \frac{ab^3}{12} \tag{2}$$

ahol a a téglalap szélessége, és b a téglalap magassága.

Kör keresztmetszet esetén:

$$I_0 = \frac{\pi}{4}R^4 \tag{3}$$

ahol R a rúd sugara.

Torziós modolusz és az inga periódusidejének kapcsolata:

$$G = K \frac{\Theta}{T^2} \tag{4}$$

ahol ⊖ a rendszer tehetetlenségi nyomatéka és K a torziós szál jellemzésére használt mennyiség:

$$K = \frac{8\pi l}{r^4}$$

ahol l a torziós szál hossza, és r a sugara.

Tárcsák tehetetlenségi nyomatéka:Ha a tárcsák távolsága a forgástengelytől a, a lengő rendszer eredő tehetetlenségi nyomatéka:

$$\Theta = \Theta_e + \Theta_S + Ma^2 \tag{5}$$

ahol Θ_e az üres inga tehetetlenségi nyomatéke, Θ_S a két tárcsa tehetetlenségi nyomatékának összege, az Ma^2 -es tag pedig a Steiner-tétel értelmében kerül a kifejezésbe. Így a következő összefüggést kapjuk:

$$T^2 = \frac{K}{G}(\Theta_e + \Theta_S) + \frac{KM}{G}a^2 \tag{6}$$

Ez egy lineáris kapcsolatot teremt T^2 és a^2 között.

$$G = \frac{KM}{m} \tag{7}$$

A meredekségből meghatározhatjuk a torizós modoluszt, valamint a b tengelymetszet segítségével:

$$\Theta_e = \frac{Gb}{K} - \Theta_S \tag{8}$$

az inga tehetetlenségi nyomatékát is ki tudjuk számolni.

4 Mérési adatok kiértékelése - Young-modolusz:

Az A5 - ös téglatest alakú minta geometriai adatai:

a [mm]	b [mm]
11.93	8.05
11.95	8.04
11.92	8.04
11.94	8.03

Az a oldal paramétere így:

$$a = 11.935 \pm 0.004 \ mm$$

A b oldal paramétere:

$$b = 8.041 \pm 0.006 \ mm$$

A hibát az átlag empirikus szórásával számoltam:

$$s_{\bar{y}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n(n-1)}}$$
(9)

Másodrendű nyomatékok meghatározása:

$$I_a = \frac{ab^3}{12} = (5.1690 \pm 0.01331) \cdot 10^{-10} m^4$$
 (10)

$$I_b = \frac{ba^3}{12} = (11.3905 \pm 0.01995) \cdot 10^{-10} \ m^4$$
 (11)

A hiba:

$$\Delta I_a = I \cdot \left(\frac{\Delta A}{A} + 3 \cdot \frac{\Delta B}{B}\right) \tag{12}$$

A másik oldalon is hasonlóan tudunk hibát számolni, csak ott a $\frac{\Delta A}{A}$ -kap egy hármas szorzót. **Mérési adatok "a" oldalhoz:**

m [kg]	0.5	1	1.5	2	2.25	2.5	3	3.25	3.5	4
$F = m \cdot 9.81 [N]$	4.905	9.81	14.715	19.62	22.073	24.525	29.43	31.883	34.335	39.24
s_a [mm]	0.53	0.74	0.94	1.12	1.23	1.33	1.52	1.61	1.70	1.89

Mérési adatok "b" oldalhoz

m [kg]	0.5	2	3	4	4.5	5.5	6.25	7	8	8.75
$F = m \cdot 9.81 [N]$	4.905	19.62	29.43	39.24	44.145	53.955	61.312	68.67	78.48	85.838
s_b [mm]	0.5	0.75	0.92	1.11	1.20	1.37	1.53	1.62	1.78	1.90

Az illesztés paraméterei "a" oldal esetén:

	m_a	$\left[\frac{mm}{N}\right]$		$b_a [mm]$
érték	0.0	394	0.351	
hiba	0.0	003	0.007	

Az illesztés paraméterei "b" oldal esetén:

	m_b	$\left\lfloor \frac{mm}{N} \right\rfloor$		$b_b [mm]$
érték	0.0	167	0.449	
hiba	0.0	004	0.0245	

Young - modoluszok meghatározása: A számolás megkezdése előtt az előbbiekben meghatározott meredekségeket leosztottam 1000 - el, hogy összeegyeztessem a mértékegységeket. Továbbá I értékét mindkét esetben a $I = 0.4 \pm 0.001$ m - nek vettem.

$$E_a = \frac{1}{48} \frac{l^3}{I_a \cdot m_a} = (65.32 \pm 1.15) \ GPa \tag{13}$$

$$E_b = \frac{1}{48} \frac{l^3}{I_b \cdot m_b} = (70.06 \pm 2.32) \, GPa \tag{14}$$

A hiba:

$$\Delta E_i = E_i \cdot \left(3 \cdot \frac{\Delta l}{l} + \frac{\Delta I_i}{I_i} + \frac{\Delta m_i}{m_i} \right) \tag{15}$$

A meredekségek és másodrendű nyomatékok arányának vizsgálata:

Az elmélet alapján: $\frac{m_a}{m_b} = \frac{I_b}{I_a}$ arányok egyenlőek egymással, a mérésem során:

$$\frac{m_a}{m_b} = 2.3473$$

és

$$\frac{I_b}{I_a} = 2.2075$$

A két érték közti minimális eltérést a mérési pontatlanságok okozhatták.

V3 - as hengeres minta geometriai adatai:

d [mm]
10.15
10.09
10.25
10.31

A henger vastagsága így:

$$d = (10.20 \pm 0.05) \ mm \tag{16}$$

A sugara így:

$$r = (5.10 \pm 0.025) \ mm \tag{17}$$

A hiba itt is a (9) -es képlet alapján lett kiszámolva.

Másodrendű nyomaték: Hengeres testek esetén a másodrendű nyomaték:

$$I = \frac{r^4 \pi}{4} = (5.31 \pm 0.14) \ 10^{-10} \ m^4 \tag{18}$$

Ahol a hiba:

$$\Delta I = I \cdot 4 \cdot \frac{\Delta r}{r} \tag{19}$$

A hosszfüggés vizsgálata:

1 [m]	0.4	0.38	0.36	0.34	0.32	0.30	0.28	0.26	0.24	0.22
$l^{3} [m^{3}]$	0.064	0.0549	0.0467	0.0393	0.0328	0.027	0.022	0.0176	0.0138	0.0106
s_0 [mm]	0.92	0.85	0.81	0.78	0.73	0.68	0.62	0.58	0.56	0.53
s [mm]	1.95	1.78	1.58	1.45	1.31	1.15	0.97	0.86	0.78	0.68
Δs [m]	0.00103	0.00093	0.00077	0.00067	0.00058	0.00047	0.00035	0.00028	0.00022	0.00015

A henger terhelése:

$$m=5.5\;kg$$

$$F = 53.95 \ N$$

volt, és az illesztett egyenes meredeksége:

$$m_h = 1.6741 \cdot 10^{-2} \pm 4.4015 \cdot 10^{-4} \frac{1}{m^2}$$

Ezen adatok segítségével ismét meghatározhatjuk a Young - modoluszt:

$$E = \frac{1}{48} \frac{F}{mI} = (126.43 \pm 6.79) GPa \tag{20}$$

5 Mérési adatok kiértékelése - Torziómodolusz:

A korongok geometriai adatai:

Korong száma	5	8
m [g]	194.6209	196.2069
R [mm]	22.495	22.5

A korongok tehetetlenségi nyomatéka:

$$\Theta_5 = \frac{1}{2}m_5R_5^2 = (4.9241 \pm 0.110) \ kgm^2 \tag{21}$$

$$\Theta_8 = \frac{1}{2}m_8R_8^2 = (4.9665 \pm 0.111) \ kgm^2$$
 (22)

Torziós szál geometriai adatai:

A szál hossza:

$$l_t = 593 \pm 1 \ mm$$

Átmérő:

$d_t [mm]$
0.69
0.68
0.71
0.70

A szál szélessége így:

$$d_t = 0.695 \pm 0.01 \ mm$$

Sugara:

$$r_t = 0.347 \pm 0.005 \ mm$$

K állandó:

$$K = \frac{8\pi l}{r^4} = (10.2796 \pm 0.6098) \cdot 10^{14} \frac{1}{m^3}$$
 (23)

Lengésidők a tárcsa helyzetek függvéynében:

a [cm]	0	3	4	5	6	7	8	9	10
$a^2 [cm^2]$	0	9	16	25	36	49	64	81	100
T [s]	2.819	3.479	4.052	4.665	5.265	5.989	6.449	7.022	7.656
$T^2[s^2]$	7.946	12.105	16.421	21.758	27.721	35.862	41.597	49.304	58.612

Az illesztés paraméterei:

	m_{sz}	$\left[\frac{s^2}{m^2}\right]$		b_{sz} [s^2]
érték	5103	3.92	8.59	
hiba	118.	308	0.627	

Torziómodolusz meghatározása:

$$G = \frac{K \cdot (m_5 + m_8)}{m_{sz}} = (78.7 \pm 6.5) GPa$$
 (24)

A hiba:

$$\Delta G = G \cdot \left(\frac{\Delta K}{K} + \frac{\Delta m_{sz}}{m_{sz}} + \frac{\Delta m_8 + \Delta m_5}{m_8 + m_5}\right) \tag{25}$$

Üres inga tehetetlenségi nyomatéka:

$$\Theta_{inga} = \frac{Gb}{K} - \Theta_8 - \Theta_5 = (6.6019 \pm 0.1823) \cdot 10^{-4} kg \cdot m^2$$
 (26)

A hiba:

$$\Delta\Theta_{inga} = \Theta_{inga} \cdot \left(\frac{\Delta b}{b} + \frac{\Delta m_{sz}}{m_s z}\right) \tag{27}$$

Ismeretlen test tehetetlenségi nyomatékának meghatározása ingával:

Ha az ingára ismeretlen tehetetlenségi nyomatékú testet helyezünk, akkor:

$$\Theta = \frac{G}{K}T^2 - \Theta_{inga} \tag{28}$$

A mérés során egy hegert vizsgáltunk, olyan módón, hogy megnéztük a lengésidejét előszőr álló, majd fekvőhelyzetben:

$$T_{allo} = 2.7254 s$$
 (29)

$$T_{fekvo} = 2.7355 s$$
 (30)

Behelyettesítve őket a képletbe:

$$\Theta_{allo} = 2.6207 \, kg \cdot m^2 \tag{31}$$

$$\Theta_{fekvo} = 3.0586 \, kg \cdot m^2 \tag{32}$$

6 Diszkusszió:

A méréseket összeségében sikeresnek mondhatom, a legtöbb értéket kis hibahatárral tudtam meghatározni.