4. Funkcje harmoniczne i równanie Laplace'a

Przejdziemy teraz do kolejnego przykładu wspomnianego w pierwszym rozdziale, tzn. do równania Laplace'a. Wiąże się z nim przepiękna, czysto matematyczna teoria funkcji harmonicznych. Wyjątkowo zaczniemy od dwóch formalnych definicji.

W całym rozdziałe $\Omega\subset\mathbb{R}^n$ będzie ograniczonym zbiorem otwartym.

DEFINICJA 4.1. Mówimy, że $u \in C^2(\Omega)$ jest funkcją harmoniczną \Leftrightarrow laplasjan $\Delta u = 0$ w Ω .

DEFINICJA 4.2. Mówimy, że $u \in C^2(\Omega)$ jest funkcją subharmoniczną (odp. superharmoniczną) $\Leftrightarrow \Delta u \geq 0 \le \Omega$ (odp. $\Delta u \leq 0 \le \Omega$).

Podstawowym narzędziem badania funkcji harmonicznych jest twierdzenie Gaussa–Ostrogradskiego, zwane czasem twierdzeniem o dywergencji.

TWIERDZENIE 4.3. Jeśli Ω jest obszarem ograniczonym z brzegiem klasy C^1 ,

$$\boldsymbol{w} = (w_1, \dots, w_n) \in C^1(\overline{\Omega}, \mathbb{R}^n)$$

– polem wektorowym na $\overline{\Omega}$, a

$$\operatorname{div} \boldsymbol{w} := \sum_{i=1}^{n} \frac{\partial w_i}{\partial x_i},$$

to wówczas

$$\int_{\Omega} \operatorname{div} \boldsymbol{w} \, \mathrm{d}x = \int_{\partial \Omega} \langle \boldsymbol{w}, \boldsymbol{n} \rangle \, \mathrm{d}\sigma, \tag{4.1}$$

gdzie n oznacza wektor normalny zewnętrzny do $\partial\Omega$, d σ zaś – naturalną miarę powierzchniową na $\partial\Omega$.

Podstawiając za \pmb{w} gradient $\nabla u = \left(\frac{\partial u}{\partial x_i}\right)_{i=1,\dots,n}$ funkcji u, otrzymujemy równość

$$\int_{\Omega} \Delta u \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \boldsymbol{n}} \, d\sigma.$$

Wniosek 4.4. Jeśli u jest funkcją harmoniczną w obszarze Ω , to dla dowolnego obszaru G z gładkim brzegiem, takiego, że $\overline{G} \subseteq \Omega$, mamy

$$\int_{\partial G} \frac{\partial u}{\partial \boldsymbol{n}} \, \mathrm{d}\sigma = 0.$$

Z tego oczywistego wniosku łatwo wyprowadzimy kluczową własność funkcji harmonicznych: tzw. własność wartości średniej.

4.1. Własność wartości średniej i zasada maksimum

TWIERDZENIE 4.5. Załóżmy, że funkcja $u \in C^2(\Omega)$ jest harmoniczna. Wtedy, dla dowolnego punktu $y \in \Omega$ i dowolnego promienia $R < \text{dist}(y, \partial \Omega)$, zachodzą równości

$$u(y) = \frac{1}{n\omega_n R^{n-1}} \int_{\partial B(y,R)} u(x) d\sigma(x) = \frac{1}{\omega_n R^n} \int_{B(y,R)} u(x) dx, \quad (4.2)$$

gdzie $\omega_n = |B^n(0,1)|$ jest miarą Lebesgue'a kuli jednostkowej w \mathbb{R}^n .

Pierwsza całka we wzorze (4.2) jest wartością średnią u na sferze $\partial B(y,R)$, druga całka – wartością średnią u w kuli B(y,R). Twierdzenie orzeka, że każda z tych średnich jest równa wartości przyjmowanej przez u w punkcie y.

Dowód. Niech B_{ϱ} będzie kulą o środku y i promieniu $\varrho < \text{dist}(y, \partial \Omega)$. Połóżmy

$$\varphi(\varrho) := \varrho^{1-n} \int_{\partial B_{\varrho}} u(x) d\sigma(x).$$

Mamy

$$\lim_{\varrho \to 0} \varphi(\varrho) = n\omega_n u(y)$$

(to wynika natychmiast z ciągłości u i z faktu, że miara sfery ∂B_{ϱ} jest równa $n\omega_n\varrho^{n-1}$). Zatem, aby wykazać pierwszą z równości (4.2), wystarczy wykazać, że $\varphi(\varrho) \equiv \text{const.}$ Udowodnimy w tym celu, że $\varphi' \equiv 0$. Otóż,

$$\frac{\partial}{\partial \varrho} \left(\varrho^{1-n} \int_{\partial B_{\varrho}} u(x) \, d\sigma(x) \right) = \frac{\partial}{\partial \varrho} \int_{S^{n-1}(0,1)} u(y + \varrho \omega) \, d\sigma(\omega)$$

$$= \int_{S^{n-1}(0,1)} \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} (y + \varrho \omega) \cdot \omega_{i} \, d\sigma(\omega)$$

$$= 0$$

na mocy wniosku 4.4, gdyż na sferze jednostkowej wektor $\omega = (\omega_i)_{i=1,\dots,n}$ jest wektorem normalnym zewnętrznym.

Otrzymaliśmy więc pierwszą z równości (4.2). Oto przepis na uzyskanie drugiej: obie strony tożsamości

$$n\omega_n \varrho^{n-1} u(y) = \int_{\partial B_\varrho} u(x) d\sigma(x)$$

należy scałkować względem ϱ po przedziale (0,R) i zastosować po prawej stronie twierdzenie Fubiniego; prowadzi to do wyniku

$$\omega_n R^n u(y) = \int_{B_R} u(x) \, \mathrm{d}x.$$

Uwaga. Jeśli wiemy tylko, że $\Delta u \geq 0$ w obszarze Ω , to wtedy oczywiście

$$u(y) \le \frac{1}{n\omega_n R^{n-1}} \int_{\partial B(y,R)} u(x) d\sigma(x)$$
 oraz (4.3)

$$u(y) \le \frac{1}{\omega_n R^n} \int_{B(y,R)} u(x) dx$$
 dla $y \in \Omega, R < \text{dist}(y, \partial \Omega).$ (4.4)

Rzecz jasna, dla funkcji superharmonicznej (o niedodatnim laplasjanie) zachodzą nierówności przeciwne.

Załóżmy aż do odwołania, do końca rozdziału $\mathbf{4}$, że zbiór Ω jest nie tylko otwarty, ale także spójny i ograniczony.

TWIERDZENIE 4.6 (Zasada maksimum). Niech u będzie funkcją subharmoniczną w Ω i ciągłą na $\overline{\Omega}$. Załóżmy, że funkcja u osiąga swój kres górny w pewnym punkcie wewnętrznym obszaru Ω , tzn. istnieje $y \in \Omega$ taki, że $u(y) = \sup_{\Omega} u$. Wtedy $u \equiv \text{const.}$

Dowód. Niech $M := \sup_{\Omega} u$; połóżmy $\Omega_M := \{x \in \Omega : u(x) = M\}$.

- (1) Zbiór Ω_M jest niepusty, gdyż $y \in \Omega_M$.
- (2) Zbiór Ω_M jest domknięty w Ω , bo funkcja u jest ciągła.
- (3) Zbiór Ω_M jest otwarty. Aby się o tym przekonać, weźmy dowolny punkt $z \in \Omega_M$ i liczbę dodatnią $R < \operatorname{dist}(z, \partial \Omega)$. Z poprzedniego twierdzenia mamy

$$0 = u(z) - M \le \frac{1}{\omega_n R^n} \int_{B(z,R)} (u(x) - M) dx \le 0.$$

Jest to możliwe jedynie wtedy, gdy $u \equiv M$ w kuli B(z, R) (pamiętajmy: $M = \sup u$). Zatem, $B(z, R) \subseteq \Omega_M$, co dowodzi otwartości Ω_M .

Ponieważ Ω jest spójny, a $\Omega_M \neq \emptyset$, więc $\Omega_M = \Omega$, tzn. $u \equiv M$ na całym zbiorze Ω .

Zmieniając u na -u, otrzymujemy natychmiast odpowiednik ostatniego twierdzenia dla funkcji superharmonicznych.

Wniosek 4.7 (Zasada minimum). Niech u będzie funkcją superharmoniczną w Ω i ciągłą na $\overline{\Omega}$. Załóżmy, że funkcja u osiąga swój kres dolny w pewnym punkcie wewnętrznym obszaru Ω . Wtedy $u \equiv \mathrm{const.}$

Funkcje harmoniczne spełniają oczywiście zarówno zasadę maksimum, jak i zasadę minimum.

Wniosek 4.8. Załóżmy, że Ω jest spójny i ograniczony, a funkcja $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$.

(i) Jeśli u jest subharmoniczna w Ω , to

$$\sup_{\Omega} u = \sup_{\partial \Omega} u.$$

(ii) Jeśli u jest superharmoniczna w Ω , to

$$\inf_{\Omega} u = \inf_{\partial \Omega} u.$$

(iii) Jeśli u jest harmoniczna w Ω , to

$$\inf_{\partial \varOmega} u \leq u(x) \leq \sup_{\partial \varOmega} u \quad \text{ dla wszystkich } \ x \in \varOmega,$$

tzn. funkcja u swoje kresy w $\overline{\Omega}$ osiąga na brzegu $\partial \Omega$ obszaru Ω .

Uwaga. Punkt (iii) zachodzi dla wszystkich funkcji ciągłych u mających własność wartości średniej (w dowodzie zasady maksimum posługiwaliśmy się jedynie ciągłością i własnością wartości średniej – nie korzystaliśmy bezpośrednio z istnienia jakichkolwiek pochodnych u).

Ostatni wniosek mówi w istocie o jednoznaczności rozwiązań pewnego równania różniczkowego.

Wniosek 4.9. Załóżmy, że Ω jest spójny i ograniczony, a funkcje $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$.

- (i) Jeśli $\Delta u = \Delta v$ w obszarze Ω i u = v na $\partial \Omega$, to $u \equiv v$ w Ω .
- (ii) Zagadnienie brzegowe Dirichleta dla równania Laplace'a,

$$\begin{cases} \Delta u = 0 & \text{w obszarze } \Omega, \\ u\big|_{\partial\Omega} = \varphi, & \varphi \in C^0(\partial\Omega), \end{cases}$$

ma co najwyżej jedno rozwiązanie klasy $C^2(\Omega) \cap C^0(\overline{\Omega})$.

Oczywiście w punkcie (ii) można zastąpić równanie Laplace'a ogólniejszym równaniem Poissona $\Delta u = f$.

4.2. Nierówność Harnacka

Udowodnimy teraz niepozorne twierdzenie, które później pomoże nam badać ciągi funkcji harmonicznych.

TWIERDZENIE 4.10. Załóżmy, że u jest nieujemną funkcją harmoniczną w obszarze Ω . Wówczas dla dowolnego zbioru spójnego $\Omega' \subseteq \Omega$, takiego, że jego domknięcie $\overline{\Omega'}$ jest zwartym podzbiorem Ω , istnieje stała C, zależna **tylko** od n, Ω' i Ω , taka, że

$$\sup_{\Omega'} u \le C \inf_{\Omega'} u.$$

Dowód. Ustalmy $a \in \Omega$. Niech $B(a,4r) \subset \Omega$ i niech $x_1, x_2 \in B(a,r)$. Z twierdzenia 4.5 wynika, że

$$u(x_1) = \frac{1}{\omega_n r^n} \int_{B(x_1, r)} u(x) \, \mathrm{d}x \le \frac{1}{\omega_n r^n} \int_{B(a, 2r)} u(x) \, \mathrm{d}x;$$

$$u(x_2) = \frac{1}{\omega_n (3r)^n} \int_{B(x_2, 3r)} u(x) \, \mathrm{d}x \ge \frac{1}{\omega_n (3r)^n} \int_{B(a, 2r)} u(x) \, \mathrm{d}x.$$

Ponieważ u jest nieujemna, więc

$$u(x_1) \le 3^n u(x_2)$$
 dla $x_1, x_2 \in B(a, r)$ i $r < \frac{1}{4} \text{dist}(a, \partial \Omega)$. (4.5)

Ustalmy teraz $r=r_0\in(0,\frac{1}{4}\mathrm{dist}\,(\Omega',\partial\Omega))$ i pokryjmy $\overline{\Omega'}$ skończoną liczbą kul o środkach w $\overline{\Omega'}$ i jednakowych promieniach r_0 . Wybierzmy punkty $y_1,y_2\in\overline{\Omega'}$ takie, że

$$u(y_1) = \sup_{\overline{\Omega'}} u, \qquad u(y_2) = \inf_{\overline{\Omega'}} u.$$

Następnie, wybierzmy z utworzonego pokrycia (różne) kule B_1, B_2, \ldots, B_m tak, aby

$$y_1 \in B_1, \quad B_i \cap B_{i+1} \neq \emptyset \quad \text{dla } i = 1, 2, \dots, m - 1, \quad y_2 \in B_m.$$

(Liczba tych kul z pewnością nie jest większa od liczby wszystkich kul o promieniu r_0 pokrywających $\overline{\Omega'}$ i zależy jedynie od Ω' i Ω).

Niech, dla $i = 1, 2, \dots, m-1$, punkt $b_i \in B_i \cap B_{i+1}$. Korzystając m-krotnie z nierówności (4.5), otrzymujemy

$$\sup_{\overline{\Omega'}} u = u(y_1) \le 3^n u(b_1)$$

$$\le 3^{2n} u(b_2) \le \dots \le 3^{n(m-1)} u(b_{m-1})$$

$$\le 3^{nm} u(y_2) = 3^{nm} \inf_{\overline{\Omega'}} u.$$

Dowód nierówności Harnacka jest więc zakończony.

Czytelnicy z zacięciem do fizyki zechcą się zastanowić, jaką interpretację ma nierówność Harnacka, gdy przyjmiemy, że równanie Laplace'a opisuje stacjonarne stany temperatury.

4.3. Formula reprezentacyjna Greena

Zajmiemy się teraz pytaniem o to, w jaki sposób można odtworzyć funkcję, znając jej wartości na brzegu obszaru Ω i laplasjan wewnątrz tego obszaru. Otrzymany wzór pozwoli nam później rozwiązać zagadnienie Dirichleta dla równania Laplace'a: najpierw w kuli, potem w dość szerokiej klasie znacznie ogólniejszych obszarów.

Podstawowym narzędziem będzie dla nas tzw. **drugi wzór Greena**. Uzyskuje się go, podstawiając w twierdzeniu 4.3 (Gaussa–Ostrogradskiego):

$$\mathbf{w} = u\nabla v - v\nabla u$$
, tzn. $w_i = u\frac{\partial v}{\partial x_i} - v\frac{\partial u}{\partial x_i}$;

założymy, że

$$u, v \in C^2(\Omega) \cap C^1(\overline{\Omega})$$
 i $\Delta u, \Delta v$ są ograniczone na Ω .

Wtedy $\langle \boldsymbol{w}, \boldsymbol{n} \rangle = u \frac{\partial v}{\partial \boldsymbol{n}} - v \frac{\partial u}{\partial \boldsymbol{n}}$, gdzie \boldsymbol{n} , jak zwykle, oznacza zewnętrzny wektor normalny do $\partial \Omega$. Równość z tezy twierdzenia Gaussa–Ostrogradskiego przybiera postać

$$\int_{\Omega} (u\Delta v - v\Delta u) \, dx = \int_{\partial \Omega} \left(u \frac{\partial v}{\partial \boldsymbol{n}} - v \frac{\partial u}{\partial \boldsymbol{n}} \right) d\sigma. \tag{4.6}$$

Ustalmy teraz punkt $y \in \Omega$ i połóżmy

$$v(x) = \Gamma(x - y) = \begin{cases} \frac{1}{n(2 - n)\omega_n} |x - y|^{2 - n}, & n \ge 3, \\ \frac{1}{2\pi} \log|x - y|, & n = 2. \end{cases}$$

Bezpośrednim rachunkiem sprawdzamy, że dla $x \neq y$ zachodzą wzory

$$\frac{\partial \Gamma}{\partial x_i}(x-y) = \frac{1}{n\omega_n}(x_i - y_i)|x-y|^{-n},\tag{4.7}$$

$$\frac{\partial^2 \Gamma}{\partial x_i \partial x_j}(x - y) = \frac{1}{n\omega_n} \cdot \frac{\delta_{ij}|x - y|^2 - n(x_i - y_i)(x_j - y_j)}{|x - y|^{n+2}}, \quad (4.8)$$

$$\Delta_x \Gamma(x-y) = \frac{1}{n\omega_n} |x-y|^{-n} \sum_{i=1}^n 1$$
$$-\frac{1}{\omega_n} |x-y|^{-n-2} \sum_{i=1}^n (x_i - y_i)^2 = 0.$$
(4.9)

DEFINICJA 4.11. Funkcję $\Gamma(\cdot - y)$ nazywamy **rozwiązaniem** podstawowym laplasjanu.

Wstawmy $v = \Gamma(\cdot - y)$ do wzoru Greena (4.6), zmieniając obszar całkowania z Ω na $\Omega_{\varrho} := \Omega \setminus B(y, \varrho)$ (usuwamy z Ω małą kulę o środku y, aby uniknąć osobliwości x = y). Otrzymamy

$$-\int_{\Omega_{\varrho}} \Gamma(x-y)\Delta u(x) dx$$

$$= \int_{\partial\Omega} \left(u \frac{\partial \Gamma}{\partial \boldsymbol{n}} - \Gamma \frac{\partial u}{\partial \boldsymbol{n}} \right) d\sigma + \int_{\partial B_{\varrho}} \left(u \frac{\partial \Gamma}{\partial \boldsymbol{n}} - \Gamma \frac{\partial u}{\partial \boldsymbol{n}} \right) d\sigma, \quad (4.10)$$

gdyż laplasjan Γ znika dla $x \neq y$, a brzeg obszaru Ω_{ϱ} składa się z dwóch części: brzegu $\partial \Omega$ obszaru Ω i sfery $\partial B_{\varrho} = \partial B(y, \varrho)$.

Teraz wykonamy przejście graniczne $\varrho \to 0$. Po lewej stronie (4.10)

$$-\int\limits_{\Omega_\varrho} \Gamma(x-y)\Delta u(x)\,\mathrm{d}x \ \longrightarrow \ -\int\limits_{\Omega} \Gamma(x-y)\Delta u(x)\,\mathrm{d}x \qquad \mathrm{dla}\ \varrho \to 0.$$

bowiem Γ jest funkcją całkowalną na zwartych podzbiorach¹ \mathbb{R}^n . Po prawej stronie całka ze składnika zawierającego pochodną normalną funkcji u zbiega do zera:

$$\left| \int_{\partial B_{\varrho}} \Gamma \frac{\partial u}{\partial \boldsymbol{n}} \, \mathrm{d}\sigma \right| \leq \mathrm{const}_n \cdot \varrho \cdot \sup_{\partial B_{\varrho}} |\nabla u| \longrightarrow 0 \quad \mathrm{dla} \ \varrho \to 0.$$

Ze wzoru (4.7) wynika, że na sferze ∂B_{ϱ} pochodna normalna $\frac{\partial \Gamma}{\partial n}$ jest stała i wynosi

$$\begin{split} \frac{\partial \Gamma}{\partial \boldsymbol{n}}(x-y) &= \langle \nabla_x \Gamma(x-y), \boldsymbol{n} \rangle = -\frac{1}{n\omega_n} \cdot \frac{\langle x-y, x-y \rangle}{|x-y|^n |x-y|} \\ &= -\frac{1}{n\omega_n}. \end{split}$$

(Minus bierze się stąd, że wektor normalny zewnętrzny do $\partial \Omega_{\varrho}$ jest skierowany **do wewnątrz** sfery ∂B_{ϱ} .) Stąd

$$\int\limits_{\partial B_\varrho} u \frac{\partial \varGamma}{\partial \boldsymbol{n}} \,\mathrm{d}\sigma = -\frac{1}{n\omega_n \varrho^{n-1}} \int\limits_{\partial B_\varrho} u \,\mathrm{d}\sigma \ \longrightarrow \ -u(y) \qquad \mathrm{dla} \ \varrho \to 0.$$

Zatem, uzyskujemy następujący wynik.

TWIERDZENIE 4.12 (formuła reprezentacyjna Greena). Jeśli Ω jest obszarem ograniczonym w \mathbb{R}^n z brzegiem klasy C^1 , to dla dowolnego punktu $y \in \Omega$ i dla dowolnej funkcji $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ takiej, że Δu jest ograniczony na Ω , ma miejsce równość

$$u(y) = \int_{\Omega} \Gamma(x - y) \Delta u(x) dx + \int_{\partial \Omega} \left(u \frac{\partial \Gamma}{\partial \boldsymbol{n}} - \Gamma \frac{\partial u}{\partial \boldsymbol{n}} \right) d\sigma.$$
 (4.11)

 $^{^1 {\}rm W}$ istocie: całka $\int\limits_{|x| \le 1} |x|^{-s} \, {\rm d}x$ jest skończona dla wszystkich s < n.

Wzór (4.11) pozwala **nieomal** rozwiązać zagadnienie Dirichleta dla równania Laplace'a czy Poissona. Kłopot jest jeden: z wniosku 4.9 wynika, że do określenia funkcji u, której laplasjan jest znany, **wystarczy znać wartości** $u|_{\partial\Omega}$. Wartości pochodnej normalnej $\frac{\partial u}{\partial n}$ nie można zadać w dowolny sposób!

Spróbujmy zatem pozbyć się składnika $\int\limits_{\partial\Omega} \Gamma \frac{\partial u}{\partial n}$.

Jeśli funkcja $h \in C^1(\overline{\Omega})$ jest harmoniczna w obszarze Ω , to ze wzoru Greena uzyskujemy

$$0 = \int_{\Omega} h(x)\Delta u(x) dx + \int_{\partial \Omega} \left(u \frac{\partial h}{\partial \boldsymbol{n}} - h \frac{\partial u}{\partial \boldsymbol{n}} \right) d\sigma.$$

Zatem, dodając ostatnią równość do (4.11) i kładąc $G := \Gamma + h$, otrzymujemy

$$u(y) = \int_{\Omega} G\Delta u \, dx + \int_{\partial\Omega} \left(u \frac{\partial G}{\partial \boldsymbol{n}} - G \frac{\partial u}{\partial \boldsymbol{n}} \right) d\sigma. \tag{4.12}$$

Nasuwa się następujący pomysł: dla ustalonego $y\in \varOmega$ dobrać funkcję harmoniczną $h=h_y$ tak, aby

$$G(x,y) = \Gamma(x-y) + h_y(x) = 0$$
 dla wszystkich $x \in \partial \Omega$. (4.13)

Wtedy niepożądany składnik we wzorze (4.12) zniknie i otrzymamy gotowy "przepis" na rozwiązanie zagadnienia Dirichleta dla równania Poissona.

STWIERDZENIE 4.13. Niech Ω będzie obszarem ograniczonym w \mathbb{R}^n z brzegiem klasy C^1 . Jeśli $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ spełnia

$$\Delta u = f \quad \text{w } \Omega, \qquad u|_{\partial\Omega} = \varphi, \tag{4.14}$$

gdzie $f \in C^0(\Omega) \cap L^{\infty}(\Omega)$, to

$$u(y) = \int_{\Omega} fG \, \mathrm{d}x + \int_{\partial \Omega} \varphi \frac{\partial G}{\partial \mathbf{n}} \, \mathrm{d}\sigma,$$

gdzie $G(x,y) = \Gamma(x-y) + h_y(x)$, przy czym h_y jest, dla dowolnego $y \in \Omega$, funkcją harmoniczną w Ω , dobraną tak, aby G(x,y) = 0 dla $x \in \partial \Omega$ i $y \in \Omega$.

Opisaną w powyższym stwierdzeniu funkcję G nazywamy funkcją Greena zagadnienia Dirichleta dla obszaru Ω (krótko: funkcją Greena dla Ω).

Aby wykazać istnienie rozwiązań zagadnienia Dirichleta (4.14), zrealizujemy następujący plan:

- skonstruujemy funkcję Greena dla kuli B(0,R);
- następnie pokażemy, jak (umiejąc rozwiązywać zagadnienie Dirichleta w kuli) rozwiązać zagadnienie Dirichleta dla równania Laplace'a $\Delta u=0$ w szerokiej klasie obszarów Ω .

To już pozwoli określić "poprawkę harmoniczną" h_y i zbudować funkcję Greena G dla bardzo wielu obszarów Ω .

4.4. Zagadnienie Dirichleta w kuli: całka Poissona

Zrealizujemy teraz pierwszy punkt naszkicowanego wyżej planu. Dla $y \neq 0$ poszukamy funkcji $h = h_y$ postaci

$$h_y(x) = \frac{\alpha(y)}{n(2-n)\omega_n} |y^* - x|^{2-n}, \tag{4.15}$$

gdzie $y^* = R^2 y/|y|^2$ oznacza obraz punktu y w inwersji względem sfery $\partial B(0,R)$. Dla ustalonego punktu $y \in B(0,R)$ funkcja h_y jest gładka na $\mathbb{R}^n \setminus \{y^*\}$; ponadto, $\Delta_x h_y(x) = 0$ (obliczamy laplasjan tak samo, jak laplasjan rozwiązania podstawowego).

Pozostaje określić współczynnik $\alpha(y)$ tak, aby

$$G(x,y) = \Gamma(x-y) + h_v(x) = 0$$
 dla wszystkich $x \in \partial B(0,R)$.

Zauważmy (Czytelnik zechce wykonać rysunek), że dla takich x trójkąt o wierzchołkach 0, x, y jest podobny do trójkąta o wierzchołkach $0, y^*, x$. Oba trójkąty mają bowiem wspólny kąt, a z definicji inwersji

$$\frac{|y|}{|x|} = \frac{|x|}{|y^*|}.$$

Zatem,

$$\frac{|y^* - x|}{|y - x|} = \frac{R}{|y|},$$

tzn., należy wziąć

$$\alpha(y) = -\frac{n(2-n)\omega_n}{|y^* - x|^{2-n}} \Gamma(x - y) = -\left(\frac{|y - x|}{|y^* - x|}\right)^{2-n} = -\left(\frac{R}{|y|}\right)^{n-2}.$$
(4.16)

Dla y = 0 i $x \in \partial B(0, R)$ przyjmiemy

$$h_0(x) = \lim_{y \to 0} h_y(x) = \lim_{y \to 0} \frac{1}{n(n-2)\omega_n} \cdot \left(\frac{R}{|y| |y^* - x|}\right)^{n-2}$$
$$= \frac{R^{2-n}}{n(n-2)\omega_n};$$

nietrudno zauważyć, że wszystkie wymogi z definicji funkcji Greena będą spełnione, gdy weźmiemy $h_0(x) \equiv \text{const}$ dla wszystkich $x \in B(0,R)$.

Z podobieństwa trójkątów $0xy^*$ i $0yx^*$ wynika, że

$$h_y(x) = \frac{1}{n(n-2)\omega_n} \cdot \left(\frac{R}{|y||y^* - x|}\right)^{n-2} = h_x(y). \tag{4.17}$$

(sprawdzenie szczegółów to elementarne zadanie z geometrii).

Funkcją Greena dla kuli jest więc $G=\varGamma+h.$ Nietrudno się przekonać, że

$$\frac{\partial G}{\partial \mathbf{n}_x}(x,y) = \frac{R^2 - |y|^2}{n\omega_n R|x - y|^n} \quad \text{dla } x \in \partial B(0,R) \text{ i } y \in B(0,R).$$
(4.18)

(Dowód tego wzoru polega na bezpośrednim zróżniczkowaniu; nieco żmudne, lecz czysto mechaniczne sprawdzenie szczegółów pozostawiamy Czytelnikowi).

DEFINICJA 4.14. Funkcję

$$K_R(x,y) = \frac{R^2 - |y|^2}{n\omega_n R|x - y|^n}$$

nazywamy jądrem Poissona dla kuli.

TWIERDZENIE 4.15. Niech $B_R = B(0,R) = \{x \in \mathbb{R}^n : |x| < R\}$ i niech $\varphi \in C^0(\partial B_R)$; połóżmy

$$u(y) = \begin{cases} \int_{\partial B_R} K_R(x, y) \varphi(x) \, d\sigma(x), & y \in B_R; \\ \varphi(y), & y \in \partial B_R. \end{cases}$$
(4.19)

Wówczas $u\in C^0(\overline{B_R})$ i $\Delta u=0$ w B_R ; innymi słowy, funkcja u jest rozwiązaniem zagadnienia Dirichleta dla równania Laplace'a w kuli B_R .

Dowód. Po pierwsze, $K_R = \frac{\partial G}{\partial n}$, więc wstawiwszy w stwierdzeniu 4.13 $u \equiv 1$ otrzymamy wzór

$$1 = \int_{\partial B_R} K_R(x, y) \, d\sigma(x). \tag{4.20}$$

(Całkę można też obliczyć bezpośrednio, ale jest to niezbyt przyjemne zadanie).

Po drugie, z równości (4.17) wynika, że G(x,y) = G(y,x). Stąd

$$\Delta_y G(x, y) = \Delta_y G(y, x)$$

$$= \Delta_y (\Gamma(y - x) + h_x(y))$$

$$= 0 \quad \text{dla } y \in B_R, x \in \partial B_R.$$

Ponieważ zaś $K_R = \frac{\partial G}{\partial n}$, więc także $\Delta_y K_R(x,y) = 0$. Różniczkując we wzorze (4.19) pod znakiem całki, przekonujemy się, że u jest funkcją harmoniczną w B_R .

Pozostaje sprawdzić, że u jest ciągła w punktach należących do sfery ∂B_R . Ustalmy $y_0 \in \partial B_R$ i $\varepsilon > 0$. Dobierzmy $\delta > 0$ tak, aby mieć

$$|\varphi(x) - \varphi(y_0)| < \varepsilon$$
 dla $|x - y_0| < \delta$.

Z (4.20) otrzymujemy teraz

$$|u(y) - u(y_0)| = \left| \int_{\partial B_R} K_R(x, y) (\varphi(x) - \varphi(y_0)) \, d\sigma(x) \right|$$

$$\leq \int_{\substack{x \in \partial B_R \\ |x - y_0| < \delta}} K_R(x, y) |\varphi(x) - \varphi(y_0)| \, d\sigma(x)$$

$$+ \int_{\substack{x \in \partial B_R \\ |x - y_0| \ge \delta}} K_R(x, y) |\varphi(x) - \varphi(y_0)| \, d\sigma(x)$$

$$\leq \varepsilon + 2 \sup |\varphi| \int_{\substack{x \in \partial B_R \\ |x - y_0| > \delta}} K_R(x, y) \, d\sigma(x).$$

Ponieważ dla $|y-y_0| \le \delta/2$ oraz $|x-y_0| \ge \delta$ mamy $|y-x| \ge \delta/2$, więc dla $|y-y_0| \le \delta/2$ możemy napisać

$$\int_{\substack{x \in \partial B_R \\ |x-y_0| \ge \delta}} K_R(x,y) \, \mathrm{d}\sigma(x)$$

$$\leq \frac{R^2 - |y|^2}{n\omega_n R(\delta/2)^n} \left(\int_{\partial B_R} 1\right) = \frac{R^2 - |y|^2}{R^{2-n}(\delta/2)^n} \xrightarrow{|y| = R} 0.$$

Zatem,
$$\lim_{y \to y_0} u(y) = u(y_0)$$
.

Wniosek 4.16. Jeśli $u \in C^2(\Omega)$ jest funkcją harmoniczną, to u jest analityczna w sensie rzeczywistym w obszarze Ω (tzn. ma pochodne cząstkowe wszystkich rzędów i w każdym punkcie jest równa sumie swojego szeregu Taylora).

Dowód. Jądro Poissona $K_R(x,y)$ jest, dla $x \in \partial B_R$, analityczną funkcją zmiennej y, a w każdej kuli zawartej w obszarze Ω funkcja u-z dokładnością do przesunięcia zmiennych – dana jest wzorem (4.19).

Umowa: kreślona całka oznacza całkę podzieloną przez miarę zbioru, tzn.

$$\int\limits_A \, f \, \mathrm{d}\mu \stackrel{\mathrm{def}}{=} \, \frac{1}{\mu(A)} \int\limits_A f \, \mathrm{d}\mu.$$

Wniosek 4.17. Jeśli u jest funkcją ciągłą w obszarze Ω i ma własność wartości średniej, to znaczy

$$u(y) = \int_{B(y,r)} u(x) \, \mathrm{d}x$$

dla wszystkich $y \in \Omega$ i $r \in (0, \text{dist}(y, \partial \Omega)),$

to wówczas u jest klasy C^2 i $\Delta u = 0$ w Ω .

Dowód. Ustalmy kulę B, zawartą w Ω wraz z \overline{B} . Określmy wzorem Poissona funkcję $h \in C^2(B) \cap C^0(\overline{B})$ harmoniczną w kuli B i równą u na ∂B . Funkcja w = u - h ma własność wartości średniej, więc na mocy wniosku 4.8

$$\sup_{B} w = \sup_{\partial B} w = 0, \qquad \inf_{B} w = \inf_{\partial B} w = 0.$$

Zatem $w\equiv 0$, tzn. $u\equiv h$ w kuli B. Z dowolności $B\subset \Omega$ wynika teza wniosku.

Wniosek 4.18. Granica jednostajnie zbieżnego ciągu (u_j) funkcji harmonicznych jest funkcją harmoniczną.

Dowód. Każda z funkcji u_j ma własność wartości średniej (twierdzenie 4.5), więc $u := \lim u_j$ też ma własność wartości średniej (prze-

chodzimy do granicy po obu stronach równości $u_j(y) = \int_{B(u,r)} u_j(x) dx$.

Zatem, na mocy poprzedniego wniosku, u jest funkcją harmoniczną.

4.4.1. Oszacowania pochodnych i ciągi funkcji harmonicznych

Wykorzystamy teraz zdobytą wcześniej wiedzę, aby wykazać, że jeśli kontroluje się moduł funkcji harmonicznej na jakimś otwartym podzbiorze \mathbb{R}^n , to na nieco mniejszym podzbiorze można kontrolować moduły jej pochodnych cząstkowych dowolnego rzędu. (Ci Czytelnicy, którzy znają już teorię funkcji analitycznych zmiennej zespolonej, powinni zwrócić uwagę na bardzo silną analogię z oszacowaniami pochodnych $f^{(k)}$ na zwartych podzbiorach zbioru $\Omega \subset \mathbb{C}$ przez kres górny |f| na brzegu obszaru Ω . Takie oszacowania uzyskuje się ze wzoru całkowego Cauchy'ego.)

Jeśli $\Delta u=0$ w $\Omega,$ to u jest klasy $\overset{\circ}{C^{\infty}},$ więc dla dowolnego $i=1,2,\ldots,n$ mamy $\Delta\frac{\partial u}{\partial x_i}=\frac{\partial}{\partial x_i}(\Delta u)=0.$ Zatem wszystkie pochodne cząstkowe funkcji harmonicznej też są funkcjami harmonicznymi. Z własności wartości średniej i twierdzenia Gaussa–Ostrogradskiego otrzymujemy

$$\frac{\partial u}{\partial x_i}(y) = \int_{B(y,r)} \frac{\partial u}{\partial x_i}(z) dz = \frac{1}{\omega_n r^n} \int_{\partial B(y,r)} u(z) n_i(z) d\sigma(z),$$

gdzie n_i oznacza i-tą współrzędną wektora normalnego (stosujemy twierdzenie 4.3, biorąc $\boldsymbol{w}=(0,\ldots,0,u,0,\ldots,0)$). Zatem,

$$\nabla u(y) = \frac{1}{\omega_n r^n} \int_{\partial B(y,r)} u(z) \mathbf{n}(z) \, \mathrm{d}\sigma(z),$$

a stąd

$$|\nabla u(y)| \le \frac{n}{r} \sup_{z \in \Omega} |u(z)| \qquad \text{dla takich } y \in \Omega, \text{ że dist } (y, \partial \Omega) \ge r.$$

$$\tag{4.21}$$

Stosując ten wzór wielokrotnie, otrzymujemy następujący rezultat.

Wniosek 4.19. Załóżmy, że u jest funkcją harmoniczną w Ω i niech K będzie zwartym podzbiorem Ω . Niech, dla dowolnego $m \in \mathbb{N}$, $\nabla^m u(y)$ oznacza wektor wszystkich pochodnych cząstkowych rzędu m funkcji u. Istnieje stała C(n,m), zależna jedynie od n i m, taka, że

$$\sup_{y \in K} |\nabla^m u(y)| \le \frac{C(n,m)}{\operatorname{dist}(K,\partial\Omega)^m} \sup_{z \in \Omega} |u(z)|. \tag{4.22}$$

Stąd zaś i z twierdzenia Arzeli–Ascoliego (podającego kryterium zwartości podzbiorów przestrzeni C(K) funkcji ciągłych na zwartych podzbiorach \mathbb{R}^n) otrzymujemy kolejny wniosek.

Wniosek 4.20. Każdy ograniczony ciąg funkcji harmonicznych zawiera podciąg niemal jednostajnie zbieżny.

Szkic dowodu. Z poprzedniego wniosku wynika, że ograniczona rodzina \mathcal{F} funkcji harmonicznych w Ω jest równociągła na każdym zwartym podzbiorze K obszaru Ω (gdyż gradienty funkcji są wspólnie ograniczone, tzn. funkcje u spełniają warunek Lipschitza ze stałą, która nie zależy od $u \in \mathcal{F}$, a tylko od K). Spełnione są więc założenia twierdzenia Arzeli–Ascoliego: rodzina \mathcal{F} zawiera podciąg niemal jednostajnie zbieżny na Ω . Granica tego podciągu jest oczywiście funkcją harmoniczną (wniosek 4.17).

Wniosek 4.21 (Twierdzenie Harnacka). Jeśli $u_1 \leq u_2 \leq \ldots \leq u_m \leq \ldots$ są funkcjami harmonicznymi na $\Omega \subseteq \mathbb{R}^n$ i granica

$$\lim_{j\to\infty}u_j(y)$$

istnieje (i jest skończona) dla pewnego punktu $y \in \Omega$, to ciąg (u_j) jest zbieżny niemal jednostajnie na Ω (i jego granica jest funkcją harmoniczną).

Dowód. Ustalmy zwarty podzbiór K zbioru Ω . Załóżmy bez zmniejszenia ogólności, że $y \in K$. Z nierówności Harnacka i monotoniczności ciągu (u_j) wynika, że dla $m > \ell$ i dowolnego punktu $x \in K$ mamy

$$0 \le u_m(x) - u_{\ell}(x) \le \sup_{z \in K} (u_m(z) - u_{\ell}(z))$$

$$\le C(n, K, \Omega) \inf_{z \in K} (u_m(z) - u_{\ell}(z))$$

$$\le C(n, K, \Omega) (u_m(y) - u_{\ell}(y)) \longrightarrow 0 \quad \text{dla } m, \ell \to \infty.$$

Zatem, ciąg u_j spełnia na zbiorze K jednostajny warunek Cauchy'ego – czyli jest jednostajnie zbieżny. Harmoniczność granicy wynika z wcześniejszych twierdzeń.

4.5. Metoda Perrona

W tym podrozdziale omówimy ciekawą metodę konstruowania funkcji harmonicznych o zadanych wartościach brzegowych.

Będziemy potrzebowali nieco ogólniejszej definicji funkcji subharmonicznych i superharmonicznych. (Patrz jednak zadanie 46 w dodatku C).

Przypomnijmy: w rozdziale 4 litera Ω oznacza zawsze zbiór otwarty, spójny, ograniczony. Chwilowo nie będziemy nie zakładać o brzegu obszaru Ω .

DEFINICJA 4.22. Powiemy, że funkcja $u \in C^0(\Omega)$ jest subharmoniczna, jeśli dla każdej kuli $B \subset \overline{B} \subset \Omega$ i każdej funkcji harmonicznej $h : \overline{B} \to \mathbb{R}$ takiej, że $h \geq u$ na ∂B , nierówność $h \geq u$ zachodzi w całej kuli B.

Podobnie definiuje się funkcje superharmoniczne (trzeba odwrócić nierówności). Innymi słowy, v jest superharmoniczna wtedy i tylko wtedy, gdy -v jest subharmoniczna.

STWIERDZENIE 4.23.

- (i) Jeśli $u \in C(\overline{\Omega})$ jest subharmoniczna, to $\sup_{\Omega} u = \sup_{\partial \Omega} u$.
- (ii) Jeśli $u \in C(\overline{\Omega})$ jest subharmoniczna i istnieje punkt $y \in \Omega$ taki, że $u(y) = M = \sup_{\Omega} u$, to wówczas $u \equiv M \le \Omega$.
- (iii) Jeśli $u \in C(\overline{\Omega})$ jest subharmoniczna, a $v \in C(\overline{\Omega})$ superharmoniczna i $v \geq u$ na $\partial \Omega$, to albo $v \equiv u$ w Ω , albo v > u w Ω .
- (iv) Jeśli $u_i \in C(\overline{\Omega})$, i = 1, ..., m, są funkcjami subharmonicznymi, to funkcja $u = \max(u_1, ..., u_m)$ też jest subharmoniczna.

Dowód. (i) wynika z (ii).

Ad (ii). Weźmy kulę $B=B(\underline{y},r)$ zawartą w Ω wraz z domknięciem i funkcję harmoniczną $h:\overline{B}\to\mathbb{R}$ równą u na ∂B (określamy h, stosując twierdzenie 4.15). Wprost z definicji mamy $h(y)\geq M\geq h\big|_{\partial B}$. Ponieważ h jest harmoniczna, więc kresy osiąga na brzegu obszaru. Zatem, z zasady maksimum wynika, że $h\equiv M$, a więc i $u\equiv M$ w całym obszarze Ω , z dowolności B.

Własność (iv) jest oczywista.

Ad (iii). Przypuśćmy, że nie zachodzi warunek v>u w $\Omega.$ Wtedy istnieje punkt $x_0\in\Omega$ taki, że

$$u(x_0) - v(x_0) = \sup_{\Omega} (u - v) = : M \ge 0.$$

Rozpatrzymy zbiór $U_M = \{x \in \Omega : u(x) - v(x) = M\}$. Jest on niepusty i domknięty w Ω (druga własność wynika z ciągłości u i v).

Pokażemy, że U_M jest także otwarty; ponieważ Ω jest spójny, więc wyniknie stąd, że $U_M=\Omega$, tzn. $u-v\equiv M$, a ponadto M=0, gdyż w przeciwnym przypadku mielibyśmy sprzeczność z warunkiem $v\geq u$ na $\partial\Omega$.

Niech $y \in U_M$ i $B = B(y, r) \subset \Omega$. Określmy funkcje $\widetilde{u}, \widetilde{v} : \overline{B} \to \mathbb{R}$ tak, aby

$$\Delta \widetilde{u} = \Delta \widetilde{v} = 0$$
 w B . $\widetilde{u} = u$ i $\widetilde{v} = v$ na ∂B .

Wtedy

$$M \ge \sup_{\partial B} (\widetilde{u} - \widetilde{v}) \ge \widetilde{u}(y) - \widetilde{v}(y) \ge u(y) - v(y) = M$$

(druga nierówność wynika z zasady maksimum, a trzecia wprost z definicji funkcji subharmonicznej). Zatem $\widetilde{u}-\widetilde{v}\equiv M$ w kuli B, tzn. $\widetilde{u}-\widetilde{v}\equiv M$ także na ∂B , a więc $u-v\equiv M$ na ∂B . Z dowolności promienia r wynika, że $u-v\equiv M$ w pewnym otoczeniu punktu y.

LEMAT 4.24. Niech $u:\Omega\to\mathbb{R}$ będzie funkcją subharmoniczną. Wtedy dla dowolnej kuli $B\subset\overline{B}\subset\Omega$ funkcja

$$\overline{u}(x) = \begin{cases} u(x), & x \in \Omega \setminus B, \\ h(x), & x \in B \end{cases} [\text{gdzie } \Delta h = 0 \text{ w } B, h\big|_{\partial B} = u]$$
 (4.23)

jest subharmoniczna w Ω .

Funkcję \overline{u} będziemy nazywać **podniesieniem harmonicznym** u względem kuli B. Oczywiście $\overline{u} \ge u$ w całym obszarze Ω .

Dowód. Ustalmy kulę B' i funkcję φ harmoniczną w B', $\varphi \geq \overline{u}$ na $\partial B'$. Chcemy wykazać, że $\varphi \geq \overline{u}$ w całej kuli B'.

Krok 1. Mamy $u \leq \overline{u}$, więc na $\partial B'$ jest $u \leq \varphi$, czyli $u \leq \varphi$ na B', gdyż u jest subharmoniczna. Oznacza to, że $\overline{u} \leq \varphi$ na $B' \setminus B$, gdyż na tym zbiorze $\overline{u} \equiv u$.

Krok 2. Z pierwszej części dowodu – oraz z wyboru funkcji φ – wynika, że $\overline{u} \leq \varphi$ na zbiorze $\partial(B \cap B')$. Ale na iloczynie kul $B \cap B'$ obie funkcje \overline{u} i φ są harmoniczne, zatem $\overline{u} \leq \varphi$ na $B \cap B'$ wobec zasady maksimum.

Aby wykazać istnienie rozwiązań zagadnienia Dirichleta dla równania Laplace'a w szerokiej klasie obszarów Ω , zdefiniujemy dla

dowolnej funkcji ograniczonej $\varphi:\partial\Omega\to\mathbb{R}$ tzw. klasę funkcji dolnych

$$S_{\varphi} = \{ u \in C^0(\overline{\Omega}, \mathbb{R}) : u \big|_{\partial \Omega} \le \varphi \text{ i } u \text{ jest subharmoniczna w } \Omega \}, \tag{4.24}$$

oraz klasę funkcji górnych,

$$S^{\varphi} = \{ u \in C^0(\overline{\Omega}, \mathbb{R}) : u \big|_{\partial \Omega} \ge \varphi \text{ i } u \text{ jest superharmoniczna w } \Omega \}. \tag{4.25}$$

TWIERDZENIE 4.25. Funkcja

$$h(x) := \sup_{u \in S_{\varphi}} u(x)$$

jest harmoniczna w obszarze Ω .

Funkcję h nazwiemy **rozwiązaniem Perrona**.

Dowód. Jeśli $u \in S_{\varphi}$, to $u(x) \leq \sup \varphi$ dla wszystkich $x \in \Omega$, tzn. $h(x) \leq \sup \varphi$. Funkcja h jest więc poprawnie określona.

Ustalmy punkt $y \in \Omega$ i liczbę dodatnią $r < \text{dist}(y, \partial \Omega)$. Niech B oznacza kulę B(y, r). Dalej pracujemy w kuli B.

Wybierzmy ciąg funkcji subharmonicznych $(u_j) \subset S_{\varphi}$ taki, że $u_j(y) \to h(y)$ dla $j \to \infty$. Założymy bez zmniejszenia ogólności, że są to funkcje wspólnie ograniczone (zawsze przecież można wziąć $\max(u_j, \inf \varphi)$ zamiast u_j).

- Krok 1. Można założyć, że $(u_j|_B)$ jest rosnącym ciągiem funkcji harmonicznych. Jeśli tak nie jest, to najpierw zastępujemy u_j przez $u_j' = \max(u_1, \ldots, u_j)$, uzyskując rosnący ciąg funkcji subharmonicznych, a następnie zamiast funkcji u_j' $(j=1,2,\ldots)$ bierzemy jej podniesienie harmoniczne $u_j'' = \overline{u_j'}$ względem kuli B. Otrzymany ciąg jest rosnącym ciągiem funkcji subharmonicznych w Ω i harmonicznych w B; oczywiście wprost z definicji $h(y) \geq u_j''(y) \geq u_j(y) \rightarrow h(y)$.
- Krok 2. Z twierdzenia 4.21 (Harnacka) wynika, że ciąg u_j jest w kuli B zbieżny niemal jednostajnie do funkcji harmonicznej u (wiemy bowiem, że ciąg $(u_j(y))$ ma skończoną granicę). Bez zmniejszenia ogólności założymy, że zbieżność jest jednostajna (w razie potrzeby można przecież nieco zmniejszyć promień kuli B).
- Krok 3. Wykażemy, że $u \equiv h$ w całej kuli B. Jeśli tak nie jest, to istnieje punkt $z \in B$ taki, że u(z) < h(z), oraz funkcja $w \in S_{\varphi}$ taka, że $u(z) < w(z) \le h(z)$.

Połóżmy

$$w_k = \max(w, u_k)$$

i niech v_k będzie podniesieniem harmonicznym w_k względem kuli B. Ponieważ ciąg (u_k) był rosnącym ciągiem funkcji harmonicznych w B, więc (v_k) też jest rosnącym ciągiem funkcji harmonicznych w B. Oczywiście $u_k(y) \leq v_k(y) \leq h(y)$ oraz $u_k(y) \to h(y)$ dla $k \to \infty$, więc stosując ponownie twierdzenie Harnacka wnosimy, że v_k jest zbieżny na B niemal jednostajnie do funkcji harmonicznej v.

Mamy przy tym $v(y) = u(y), v(z) \ge w(z) > u(z)$, a ponadto $v \ge u$ w całej kuli B, gdyż $v_k \ge u_k$. Tak jednak być nie może: funkcja u - v jest harmoniczna, niedodatnia w kuli B i w punkcie $y \in B$ osiąga wartość 0, czyli swój kres górny – więc, na mocy zasady maksimum, powinna być stała, co przeczy ostrej nierówności v(z) > u(z).

Zadanie (dla dociekliwych). Wykazać, że w powyższym dowodzie zamiast twierdzenia Harnacka można wykorzystywać wniosek 4.20.

Oczywiście, zachodzi także dualny wariant twierdzenia 4.25.

TWIERDZENIE 4.26. Funkcja

$$g(x) := \inf_{u \in S^{\varphi}} u(x)$$

jest harmoniczna w obszarze Ω .

4.6. Bariery

Nasuwa się naturalne pytanie: powiedzmy, że funkcja $\varphi:\partial\Omega\to\mathbb{R}$ jest ciągła, a brzeg $\partial\Omega$ jest zbiorem "porządnym" (np. gładką podrozmaitością \mathbb{R}^n). Czy prawdą jest, że funkcja h określona w twierdzeniu 4.25 spełnia warunek

$$\lim_{\Omega\ni x\to\xi}h(x)=\varphi(\xi)\,?$$

Innymi słowy: czy metoda Perrona (przy jakichś w miarę ogólnych założeniach o $\partial\Omega$ i funkcji φ) daje nie tylko **pewną** funkcję harmoniczną, ale po prostu rozwiązanie zagadnienia Dirichleta z warunkiem brzegowym φ ?

Okazuje się, że odpowiedź jest twierdząca. Aby ją porządnie sformułować, wprowadzimy pojęcie bariery.

DEFINICJA 4.27. Powiemy, że funkcja $w \in C(\overline{\Omega})$ jest **barierą** w punkcie $\xi \in \partial \Omega \iff w > 0$ na zbiorze $\overline{\Omega} \setminus \{\xi\}$, w jest superharmoniczna i $w(\xi) = 0$.

LEMAT 4.28. Załóżmy, że funkcja φ jest ciągła w punkcie $\xi \in \partial \Omega$. Jeśli istnieje bariera v w punkcie ξ , to

$$\lim_{x \to \xi} h(x) = \varphi(\xi).$$

Dowód. Ustalmy $\varepsilon > 0$. Niech $M = \sup_{\partial\Omega} |\varphi|$. Istnieją liczby dodatnie δ i k takie, że

$$\begin{aligned} |\varphi(x) - \varphi(\xi)| &< \varepsilon & \text{dla } |x - \xi| &< \delta, \\ k \cdot v(x) &\geq 2M & \text{dla } |x - \xi| &\geq \delta. \end{aligned}$$

Funkcja

$$u(x) = \varphi(\xi) - \varepsilon - kv(x)$$

jest subharmoniczna (to oczywiste) i należy do klasy S_{φ} . Istotnie, dla punktów $x\in\partial\Omega$ takich, że $|x-\xi|<\delta$, mamy

$$u(x) \le \varphi(\xi) - \varepsilon \le \varphi(x)$$

(bariera v jest nieujemna!), natomiast gdy $x \in \partial \Omega$ i $|x - \xi| \ge \delta$, to

$$u(x) \le \sup |\varphi| - 2M = -M \le \inf \varphi \le \varphi(x).$$

Zatem $u(x) \leq h(x)$ dla $x \in \Omega$. Niech teraz

$$w(x) = \varphi(\xi) + \varepsilon + kv(x)$$

Podobnie jak przed chwilą dowodzimy, że $w \in S^{\varphi}$. Z zasady maksimum wynika, że $w(x) \geq h(x)$ dla wszystkich $x \in \Omega$. Mamy więc

$$\varphi(\xi) - \varepsilon - kv(x) \le h(x) \le \varphi(\xi) + \varepsilon + kv(x),$$

to znaczy

$$|h(x) - \varphi(\xi)| \le \varepsilon + kv(x),$$

stąd zaś, wobec własności $v(\xi) = 0$ i ciągłości v, otrzymujemy

$$\limsup_{x \to \varepsilon} |h(x) - \varphi(\xi)| \le \varepsilon.$$

Z dowolności $\varepsilon > 0$ wynika teza lematu.

Okazuje się, że pojęcie bariery jest czysto lokalne: to, czy w punkcie $\xi \in \partial \Omega$ istnieje bariera, zależy wyłącznie od kształtu brzegu w niewielkim otoczeniu punktu ξ .

DEFINICJA 4.29. Powiemy, że w jest **barierą lokalną** w punkcie $\xi \in \partial \Omega \Leftrightarrow$ dla pewnego r > 0 funkcja w jest barierą w punkcie $\xi \in \partial (\Omega \cap B(\xi, r))$ (dla tej składowej "nowego" obszaru $\Omega \cap B(\xi, r)$, której domknięcie zawiera punkt ξ).

Oczywiście bariera w punkcie ξ jest również barierą lokalną w tym punkcie.

Powiemy, że punkt $\xi \in \partial \Omega$ jest regularny, jeśli istnieje w nim bariera lokalna.

LEMAT 4.30. Jeśli w punkcie $\xi \in \partial \Omega$ istnieje bariera lokalna, to w tym punkcie istnieje bariera.

Dowód. Niech w będzie barierą lokalną, a r > 0 – liczbą z definicji 4.29. Ustalmy $r_1 \in (0, r)$ i niech $B_1 := B(\xi, r_1)$.

Połóżmy (proszę samodzielnie wykonać rysunek!)

$$m = \inf_{x \in (B \setminus B_1) \cap \Omega} w(x);$$

wtedy m>0. Wykażemy, że barierą (w sensie definicji 4.27) w punkcie ξ jest funkcja

$$v(x) = \begin{cases} \min(w(x), m) & \text{dla } x \in \overline{B}_1 \cap \overline{\Omega}, \\ m & \text{dla } x \in \overline{\Omega} \setminus \overline{B}_1. \end{cases}$$

Istotnie:

(1) Ciągłość v może się psuć tylko na brzegu kuli B_1 . Ustalmy $x_0 \in \partial B_1$; mamy

$$\lim_{\substack{x \to x_0 \\ x \notin \overline{B}_1}} v(x) = m, \qquad \lim_{\substack{x \to x_0 \\ x \in \overline{B}_1}} v(x) \le m.$$

Gdyby nierówność była ostra, to mielibyśmy $v(x_0) = w(x_0) < m$, a to jest sprzeczność z definicją m.

- (2) Jest oczywiste, że $v \ge 0$ i v znika jedynie w punkcie ξ .
- (3) Aby wykazać, że v jest funkcją superharmoniczną, musimy sprawdzić, że dla dowolnej kuli $B_2 \subset \overline{B}_2 \subset \Omega$ i dowolnej funkcji harmonicznej $\varphi \leq v$ na sferze ∂B_2 nierówność $\varphi \leq v$ zachodzi na całej kuli B_2 .

Mamy $m \geq v(x)$ dla wszystkich x, więc $m \geq v \geq \varphi$ na ∂B_2 , czyli $m \geq \varphi$ na B_2 , a stąd $v \geq \varphi$ na $B_2 \setminus B_1$.

Ponadto,

$$w \ge m \ge \varphi$$
 na $B_2 \cap \partial B_1$,

$$w \ge v \ge \varphi$$
 na $B_1 \cap \partial B_2$,

a zatem $w \geq \varphi$ na $\partial(B_1 \cap B_2)$, czyli na mocy stwierdzenia 4.23 (iii) $w \geq \varphi$ w iloczynie $B_1 \cap B_2$. Wiemy już jednak, że $m \geq \varphi$ w całej kuli B_2 , więc $v \geq \varphi$ w $B_1 \cap B_2$.

Przejdziemy teraz do przykładów.

A Obszary na płaszczyźnie

Niech $n=2,\ \Omega\subseteq\mathbb{R}^2\simeq\mathbb{C}$ i $\xi\in\partial\Omega$; połóżmy $z=r\exp(i\theta)+\xi$. Przypuśćmy, że punkt ξ ma otoczenie V o tej własności, że w $\Omega\cap V$ istnieje ciągła gałąź $\theta=\operatorname{Arg}(z-\xi)$. Wtedy funkcja

$$w(z) = -\operatorname{Re} \frac{1}{\log(z-\xi)} = \frac{-\log r}{\log^2 r + \theta^2}$$

jest (harmoniczną) barierą lokalną w ξ .

Podaną wyżej własność mają wszystkie punkty brzegu, które są końcami pewnego łuku zawartego w $\mathbb{C} \setminus \Omega$. Nie mają jej izolowane punkty brzegu (tzn. punkty "w całości otoczone" obszarem Ω).

B Obszary z brzegiem klasy C^2 w \mathbb{R}^n dla $n \geq 3$

Załóżmy, że dla pewnego $\xi \in \partial \Omega$ istnieją $y \in \mathbb{R}^n$ i r > 0 takie, że

$$\overline{B(y,r)} \cap \overline{\Omega} = \{\xi\}.$$

(Ten warunek jest spełniony np. wtedy, gdy brzeg $\partial\Omega$ obszaru Ω jest klasy C^2). Barierą w punkcie ξ jest wtedy $w(x) = r^{2-n} - |x-y|^{2-n}$. Istotnie, $\Delta w = 0$ w Ω . Jeśli |x-y| > r, to w(x) > 0, a ponadto $w(\xi) = r^{2-n} - r^{2-n} = 0$.

C Obszary z własnością stożka zewnętrznego

W 1908 r. Stanisław Zaremba wykazał, że jeśli istnieje stożek² $K \subset \mathbb{R}^n$ taki, że $K \cap \Omega = \{\xi\}$, gdzie $\xi \in \partial \Omega$ jest wierzchołkiem stożka K, to wtedy w punkcie ξ istnieje bariera. Dowód tego twierdzenia ambitny Czytelnik może potraktować jako niełatwe zadanie do samodzielnego rozwiązania.

$$K_0 = \{tx : |x - a| \le r, \ t \in [0, 1]\},\$$

gdzie a jest ustalonym punktem $\mathbb{R}^n\setminus\{0\}$, a r liczbą dodatnią mniejszą od |a|. Wierzchołkiem stożka K_0 jest oczywiście punkt 0.

²Termin stożek oznacza tu każdy zbiór, który jest izometrycznym obrazem zbioru

Ten warunek (tzw. warunek stożka zewnętrznego) jest spełniony np. wtedy, gdy brzeg obszaru jest klasy C^1 , a także dla bardzo wielu obszarów, których brzeg w ogóle nie jest gładki (np. dla każdego wielościanu, niekoniecznie wypukłego: jeśli stożek ma odpowiednio ostry szpic, to jego wierzchołkiem zdołamy "dotknąć od zewnątrz" każdego punktu na powierzchni wielościanu).

Wynika stąd następujący wniosek.

Wniosek 4.31. Jeśli $\Omega \subseteq \mathbb{R}^n$ jest obszarem ograniczonym z brzegiem klasy C^1 , to dla dowolnej funkcji ciągłej $\varphi: \partial \Omega \to \mathbb{R}$ zagadnienie Dirichleta

$$\Delta u = 0 \quad \text{w } \Omega, \qquad u\big|_{\partial\Omega} = \varphi$$

ma dokładnie jedno rozwiązanie $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$. Ponadto, wewnątrz Ω funkcja u jest analityczna w sensie rzeczywistym.

D Przykład Lebesgue'a

Opiszemy teraz przykład obszaru $\Omega \subseteq \mathbb{R}^3$, którego brzeg nie składa się wyłącznie z punktów regularnych. Domknięcie tego obszaru jest homeomorficzne z kulą $\{x: |x| \leq 1\}$, a nieregularnym punktem brzegu jest koniuszek $\xi = 0$ bardzo szpiczastego ostrza skierowanego "do wewnątrz" obszaru. Oto garść bliższych informacji.

Połóżmy

$$W(x_1, x_2, x_3) = \int_0^1 \frac{s \, \mathrm{d}s}{\sqrt{(x_1 - s)^2 + x_2^2 + x_3^2}}$$
(4.26)

i niech, dla r < 1,

$$\Omega = B(0,r) \setminus \{x \in \mathbb{R}^3 : W(x) \ge 2\}.$$

Sprawdza się, że funkcja W jest ograniczona i harmoniczna (funkcja podcałkowa jest harmoniczna!) w obszarze Ω , ale nie jest ciągła na $\overline{\Omega}$, gdyż nie jest ciągła w zerze. To wynika z jej zachowania na powierzchniach S_f opisanych równaniami³ $x_2^2 + x_3^2 = f(x_1)$. Można stąd wywnioskować, że w punkcie 0 nie istnieje bariera lokalna.

³ Ćwiczenie dla poważnie zainteresowanych: obliczyć całkę (4.26) i zbadać zachowanie W na S_f dla $f(x_1) = |x_1|^k$ i $f(x_1) = \exp(-\gamma/x_1)$, gdzie $\gamma > 0$.