VFIO

PCI device assignment breaks free of KVM

Alex Williamson <alex.williamson@redhat.com>

What is device assignment?

A typical NIC

And typical performance...

Let's get clever...

Getting better...

Network Latency - vhost_net
Guest Receive (Lower is better)

Virtio

—Host

—Vhost_net

But what if...

Even better!

Network Latency by guest interface method

Guest Receive (Lower is better)

Benefits

Impact of Tuning KVM for SPECvirt

- Performance
- Compatibility
- Utilization

At what cost?

- Guest pinned in host memory
 - No page sharing or swapping
- Guest tied to physical host device
 - Migration via bonding/multi-path + hotplug
- Exclusive device usage

PCI device assignment

- PCI Config Space
 - Pass-through/Emulated/Virtualized
- PCI BARs
 - Ideally mmap()'d MMIO
 - Trap & Forward otherwise
- Interrupt
 - Inject as close to guest a possible
 - Likely our biggest latency contributor

Current Implementation

- pci-stub
 - Bind device
- Qemu (qemu-kvm)
 - PCI config virtualization
 - Interrupt management
 - Resource setup
- KVM
 - PCI enablement (request region, enable)
 - IOMMU management, guest mapping
 - Interrupt handling and injection

VFIO

- High performance user-space driver
 - IOMMU based security
 - PCI & Non-PCI support
 - Eventfd based interrupts
- Original PCI implementation: Tom Lyon @Cisco
- A cleaner approach to VM device assignment
 - KVM not required (provides accelerators)
 - Enable non-x86, non-PCI device assignment

VFIO Implementation

• VFIO

- Bind device
- PCI enablement & config virtualization
- IOMMU management
- Interrupt handling

Qemu

- Resource setup
- Pass-through (config, resources)
- Interrupt management

KVM

Acceleration only

Platform problems, pt 1

- IOMMU features and granularity
 - Bridges and "partitionable endpoints"
 - IOVA windows vs fully mapped guest
 - "iommu_group" sysfs attribute
 - iommu_device_group()
 - per bus iommu_ops
 - TBD iommu feature description

Platform problems, pt 2

- Group vs Device vs IOMMU domain management
 - Manage group devices as an atomic set
 - Merging groups to share IOMMU domains
 - * Hot-plugs while groups are in use

Platform problems, pt 3

- Device description and access
 - Read() device info
 - Segment file offsets for MMIO/PIO
 - Common and device specific ioctl()s

Stay tuned for VFIO-NG... Questions/Comments?

Thank you!

Graphics & performance data:

Mark Wagner, Red Hat Summit 2011, "KVM Performance Improvements & Optimizations"

http://www.redhat.com/summit/2011/presentations/summit/decoding_the_code/wednesday/wagner_w_420_kvm_performance_improvements_and_optimizations.pdf