

DM-Quiz-2020-Q3

13 Questions

- 1. Logistic Regression Model is used to describe
- 5/9 A Relationship between one categorical dependent variable and one or more (any) explanatory variables
- 0/9 B Relationship between one numeric dependent variable and one or more (any) explanatory variables
- 2/9 C Relationship between one categorical dependent variable and one explanatory variable
- 2/9 **D** Relationship between one categorical dependent variable and one or more numeric explanatory variables
- 0/9 E I do not know
 - 2. Why Linear Regression cannot be used to predict the binary response variable?
- 3/10 A Some of the estimates might be outside the [0,1] interval
- 1/10 B Coefficients of linear regression models do not exist
- 3/10 C There will be the multicollinearity
- 3/10 D All of the variants
- 0/10 E I do not know
 - **3.** The most common approach to estimate coefficients of logistic regression is
- 5/9 A The Maximum Likelihood
- 3/9 B Ordinary Least Squares
- 0/9 C Generalized Method of Moments
- 1/9 D I do not know
 - **4.** The model of Logistic Regression is
- 1/9 A $\ln(\text{lambda}) = e^{(xb)}/(1 + e^{(xb)})$
- 4/9 **B** $\ln(y)=e^{(xb)}/(1+e^{(xb)})$
- 3/9 C $Pr(y=1)=e^{(xb)}/(1+e^{(xb)})$
- 1/9 D I do not know

1/9	A	lm()
5/9	В	glm()
0/9	C	flm()
3/9	D	logit()
0/9	E	I do not know
6.	Wł	nich one of these is the correct interpretation of the coefficient of Logistic Regression?
4/10	A	For a 1-unit increase in X, we expect a b1 unit increase in Y.
2/10	В	For a 1-unit increase in X, we expect b1 percentage increase in Y.
1/10	C	For a 1-percentage increase in X, we expect b1 percentage increase in Y.
0/10	D	Increasing X by one unit changes the log odds by b1
3/10	E	I do not know
7.	Lo	gistic Regression cannot be used to model the response variable which
0/9	A	has two categories
2/9	В	has more than two categories
0/9	C	is ordinal
5/9	D	is numeric

5. We can estimate Logistic Regression in R using the function

8	. Ac	curacy =
7/9	A	(TP+TN)/Total

1/9 **B** TP/(TP+FN)

2/9 E I do not know

0/9 c TN/(TN+FP)1/9 D I do not know

:

2/9 A (TP+TN)/Total

3/9 B TP/(TP+FN)

3/9 **c** TN/(TN+FP)

1/9 D I do not know

		Predicted	
		Negative (0)	Positive (1)
	Negative (0)	TN	FP
Actual	Positive (1)	FN	TP

		Predicted	
		Negative (0)	Positive (1)
	Negative (0)	TN	FP
Actual	Positive (1)	FN	TP

