GEOMETRIC OBJECTS AND TRANSFORMATION

Lecture 2

Comp3080 Computer Graphics

HKBU

GEOMETRIC OBJECTS

OBJECTIVES

- Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner

- Define basic primitives
 - Line segments
 - Polygons

BASIC ELEMENTS

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

COORDINATE-FREE GEOMETRY

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space p = (x, y, z)
 - ▶ We derived results by algebraic manipulations involving these coordinates
- ► This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - ► Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

VECTORS

- ▶ Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics

VECTOR OPERATIONS

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- ▶ There is a zero vector
 - Zero magnitude, undefined orientation
- ▶ The sum of any two vectors is a vector
 - Use head-to-tail axiom

LINEAR VECTOR SPACES

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication: $u = \alpha v$
 - \blacktriangleright Vector-vector addition: w = u + v
- Expressions such as

$$v = u + 2w - 3r$$

make sense in a vector space

VECTORS LACK POSITION

- ▶ These vectors are identical
 - Same length and magnitude

- Vectors spaces insufficient for geometry
 - Need points

POINTS

- ► Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector

$$v = P - Q$$

► Equivalent to point-vector addition

$$P = v + Q$$

AFFINE SPACES

- ► Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - ► Scalar-scalar operations

- ► For any point define
 - ightharpoonup 1
 ightharpoonup P = P
 - ightharpoonup 0
 ightharpoonup P = 0 (zero vector)

LINES

- Consider all points of the form
 - $P(\alpha) = P_0 + \alpha \mathbf{d}$
 - \triangleright Set of all points that pass through P_0 in the direction of the vector \mathbf{d}

PARAMETRIC FORM

- ▶ This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - **Explicit:** y = mx + h
 - ▶ Implicit: ax + by + c = 0
 - ► Parametric:

$$x(\alpha) = \alpha x_0 + (1 - \alpha)x_1$$

$$y(\alpha) = \alpha y_0 + (1 - \alpha)y_1$$

RAYS AND LINE SEGMENTS

- ▶ If $\alpha \ge 0$, then $P(\alpha)$ is the *ray* leaving P_0 in the direction **d**
- If we use two points to define v, then

$$P(\alpha) = Q + \alpha(R - Q) = Q + \alpha v$$
$$= \alpha R + (1 - \alpha)Q$$

▶ For $0 \le \alpha \le 1$ we get all the points on the *line segment* joining R and Q

CURVES AND SURFACES

- ► Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- ▶ Surfaces are formed from two-parameter functions $P(\alpha, \beta)$
 - Linear functions give planes and polygons

PLANES

► A plane can be defined by a point and two vectors or by three points

$$P(\alpha, \beta) = R + \alpha u + \beta v$$
 $P(\alpha, \beta) = R + \alpha(Q-R) + \beta(P-Q)$

TRIANGLES

$$T(\alpha, \beta) = R + \alpha(Q-R) + \beta(P-Q)$$

for $0 \le \alpha$, $\beta \le 1$, we get all points in triangle

CONVEXITY

An object is *convex* iff for any two points in the object, all points on the line segment between these points are also in the object

CONVEX HULL

- ► Smallest convex object containing P₁, P₂, ... P_n
- ► Formed by "shrink wrapping" points

AFFINE SUMS

Consider the "sum"

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

► Can show by induction that this sum makes sense iff

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

in which case we have the affine sum of the points P_1 , P_2 , ... P_n

▶ If, in addition, $\alpha_i \ge 0$, we have the convex hull of P_1 , P_2 , ... P_n

NORMALS

- \triangleright Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form $P(\alpha, \beta) = R + \alpha u + \beta v$, we know we can use the cross product to find $n = u \times v$.

REPRESENTATION

OBJECTIVES

- ► Introduce concepts such as dimension and basis
- Introduce coordinate systems for representing vectors spaces and frames for representing affine spaces
- Discuss change of frames and bases
- ► Introduce homogeneous coordinates

LINEAR INDEPENDENCE

 \blacktriangleright A set of vectors v_1 , v_2 , ..., v_n is linearly independent if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$
 iff $\alpha_1 = \alpha_2 = \dots = 0$

- ▶ If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, as least one can be written in terms of the others

DIMENSION

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the *dimension* of the space
- In an *n*-dimensional space, any set of n linearly independent vectors form a basis for the space
- ▶ Given a basis v_1 , v_2 , ..., v_n , any vector v can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where the $\{\alpha_i\}$ are unique.

REPRESENTATION

- ▶ Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

COORDINATE SYSTEMS

- ightharpoonup Consider a basis v_1 , v_2 , ..., v_n
- A vector is written $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$
- ► The list of scalars $\{\alpha_1, \alpha_2, ... \alpha_n\}$ is the *representation* of v with respect to the given basis

 We can write the representation as a row or column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

EXAMPLE

$$v = 2v_1 + 3v_2 - 4v_3$$

$$\mathbf{a} = [2 \ 3 \ -4]^{\mathrm{T}}$$

- Note that this representation is with respect to a particular basis.
- ► For example, in OpenGL we start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

COORDINATE SYSTEMS

Which is correct?

▶ Both are because vectors have no fixed location

FRAMES

- ► A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

REPRESENTATION IN A FRAME

- Frame determined by (P_0, v_1, v_2, v_3)
- ▶ Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$$

CONFUSING POINTS AND VECTORS

Consider the point and the vector

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$$

► They appear to have the similar representations

$$\mathbf{p} = [\beta_1 \ \beta_2 \ \beta_3]^{\mathrm{T}} \qquad \mathbf{v} = [\alpha_1 \ \alpha_2 \ \alpha_3]^{\mathrm{T}}$$

which confuses the point with the vector

A vector has no position

Vector can be placed anywhere

A SINGLE REPRESENTATION

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$$

► Thus we obtain the four-dimensional homogeneous coordinate representation

$$\mathbf{v} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ 0]^T$$

$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, \mathbf{1} \,]^T$$

HOMOGENEOUS COORDINATES AND COMPUTER GRAPHICS

- ► Homogeneous coordinates are key to all computer graphics systems
 - ► All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - ► Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - For perspective, we need a perspective division

CHANGE OF COORDINATE SYSTEMS

- Consider two representations of the same vector with respect to two different bases.
- ▶ The representations are

$$\mathbf{a} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

where

$$\mathbf{w} = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = \mathbf{a}^{\mathrm{T}} \mathbf{v} = [\alpha_1 \alpha_2 \alpha_3] [v_1 \ v_2 \ v_3]^{\mathrm{T}}$$

= $\beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = \mathbf{b}^{\mathrm{T}} \mathbf{u} = [\beta_1 \beta_2 \beta_3] [u_1 \ u_2 \ u_3]^{\mathrm{T}}$

REPRESENTING SECOND BASIS IN TERMS OF FIRST

Each of the basis vectors, u_1 , u_2 , u_3 , are vectors that can be represented in terms of the first basis

$$u_1 = \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3$$

$$u_2 = \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3$$

$$u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3$$

MATRIX FORM

▶ The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix} \quad \mathbf{u} = \mathbf{M}\mathbf{v}$$

$$\mathbf{w} = \mathbf{a}^{\mathrm{T}}\mathbf{v} = \mathbf{b}^{\mathrm{T}}\mathbf{u} = \mathbf{b}^{\mathrm{T}}\mathbf{M}\mathbf{v} = \mathbf{a}^{\mathrm{T}} = \mathbf{b}^{\mathrm{T}}\mathbf{M}$$

and hence the bases can be related by $\mathbf{a} = \mathbf{M}^{\mathrm{T}}\mathbf{b}$

CHANGE OF BASES

Suppose that we have a vector wwwhose representation in some basis is

$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

We can denote the three basis vectors as v_1 , v_2 and v_3 . Hence,

$$w = v_1 + 2v_2 + 3v_3$$

Now suppose that we want to make a new basis from the three vectors v_1 , v_2 and v_3 where

$$u_1 = v_1,$$

 $u_2 = v_1 + v_2$
 $u_3 = v_1 + v_2 + v_3$

► The matrix is

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

CHANGE OF BASES

$$\begin{aligned} \mathbf{a} &= \mathbf{M}^T \mathbf{b} \\ \mathbf{b} &= (\mathbf{M}^T)^{-1} \mathbf{a} \end{aligned}$$

$$(\mathbf{M}^{T})^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b} = (\mathbf{M}^{\mathrm{T}})^{-1}\mathbf{a}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix}$$

Thus,
$$w = -u_1 - u_2 + 3u_3$$

CHANGE OF FRAMES

We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:

$$(P_0, v_1, v_2, v_3)$$

 (Q_0, u_1, u_2, u_3)

- Any point or vector can be represented in either frame
- \blacktriangleright We can represent Q_0 , u_1 , u_2 , u_3 in terms of P_0 , v_1 , v_2 , v_3

REPRESENTING ONE FRAME IN TERMS OF THE OTHER

Extending what we did with change of bases

$$u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3}$$

$$u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3}$$

$$u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3}$$

$$Q_{0} = \gamma_{41}v_{1} + \gamma_{42}v_{2} + \gamma_{43}v_{3} + P_{0}$$

▶ Defining a 4 x 4 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

WORKING WITH REPRESENTATIONS

Within the two frames any point or vector has a representation of the same form

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]^T \qquad \text{in the first frame}$$

$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]^T \qquad \text{in the second frame}$$

where
$$\alpha_4 = \beta_4 = 1$$
 for points and $\alpha_4 = \beta_4 = 0$ for vectors

▶ The matrix M is 4×4 and specifies an affine transformation in homogeneous coordinates

$$a = M^Tb$$

CHANGE OF FRAMES

Suppose that we have a vector whose representation in some basis is

$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

We can denote the three basis vectors as v_1 , v_2 and v_3 . Hence,

$$\mathbf{w} = v_1 + 2v_2 + 3v_3$$

Now suppose that we want to make a new frame where

$$u_1 = v_1,$$

 $u_2 = v_1 + v_2$
 $u_3 = v_1 + v_2 + v_3$
 $Q_0 = P_0 + v_1 + 2v_2 + 3v_3$

▶ The matrix is

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 1 \end{bmatrix}$$

CHANGE OF FRAMES (VECTOR)

$$\mathbf{a} = \mathbf{M}^{\mathrm{T}} \mathbf{b}$$
$$\mathbf{b} = (\mathbf{M}^{\mathrm{T}})^{-1} \mathbf{a}$$

$$(\mathbf{M}^{\mathrm{T}})^{-1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b} = (\mathbf{M}^{\mathrm{T}})^{-1}\mathbf{a}$$

$$= \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$$

Thus, for vector we still have

$$w = -u_1 - u_2 + 3u_3$$

CHANGE OF FRAMES (POINT)

A point on the old frame

$$\mathbf{p} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$

$$\mathbf{p'} = (\mathbf{M}^{T})^{-1}\mathbf{p}$$

$$= \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Thus, point's representation has been changed.

AFFINE TRANSFORMATIONS

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
- ► However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4 x 4 linear transformations

19-SEP-11

THE WORLD AND CAMERA FRAMES

- When we work with representations, we work with n-tuples or arrays of scalars
- \triangleright Changes in frame are then defined by 4 x 4 matrices
- ▶ In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- lnitially these frames are the same (M = I)

MOVING THE CAMERA

 \blacktriangleright If objects are on both sides of z = 0, we must move camera frame

TRANSFORMATIONS

OBJECTIVES

- ► Introduce standard transformations
 - Rotation
 - ► Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

GENERAL TRANSFORMATIONS

► A transformation maps points to other points and/or vectors to other vectors

AFFINE TRANSFORMATIONS

- Line preserving
- Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- ► Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

PIPELINE IMPLEMENTATION

NOTATION

We will be working with both coordinate-free representations of transformations and representations within a particular frame

P, Q, R: points in an affine space

u, v, w: vectors in an affine space

 α , β , γ : scalars

p, q, r: representations of points-array of 4 scalars in

homogeneous coordinates

u, v, w: representations of points-array of 4 scalars in

homogeneous coordinates

TRANSLATION

▶ Move (translate, displace) a point to a new location

- Displacement determined by a vector d
 - ► Three degrees of freedom
 - P' = P + d

HOW MANY WAYS?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

object

translation: every point displaced by same vector

TRANSLATION USING REPRESENTATIONS

Using the homogeneous coordinate representation in some frame

$$\mathbf{p} = [\mathbf{x} \ \mathbf{y} \ \mathbf{z} \ \mathbf{1}]^{\mathrm{T}}$$
$$\mathbf{p}' = [\mathbf{x}' \ \mathbf{y}' \ \mathbf{z}' \ \mathbf{1}]^{\mathrm{T}}$$
$$\mathbf{d} = [\mathbf{d}_{\mathbf{x}} \ \mathbf{d}_{\mathbf{y}} \ \mathbf{d}_{\mathbf{z}} \ \mathbf{0}]^{\mathrm{T}}$$

Hence
$$\mathbf{p}' = \mathbf{p} + \mathbf{d}$$
 or $\mathbf{x}' = \mathbf{x} + \mathbf{d}_{\mathbf{x}}$ $\mathbf{y}' = \mathbf{y} + \mathbf{d}_{\mathbf{y}}$

$$z' = z + d_z$$

note that this expression is in four dimensions and expresses point = vector + point

TRANSLATION MATRIX

We can also express translation using a 4 x 4 matrix T (=M^T) in homogeneous coordinates p' = Tp where

$$\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

► This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

ROTATION (2D)

- ightharpoonup Consider rotation about the origin by θ degrees
 - ightharpoonup radius stays the same, angle increases by heta

ROTATION ABOUT THE Z AXIS

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$
 $z' = z$

or in homogeneous coordinates

$$p' = R_z(\theta)p$$

ROTATION MATRIX

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\boldsymbol{\theta}) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ROTATION ABOUT X AND Y AXES

- Same argument as for rotation about z axis
 - For rotation about *X* axis, *X* is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \end{vmatrix}$$

$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

SCALING

Expand or contract along each axis (fixed point of origin)

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x'}, \mathbf{s}_{y'}, \mathbf{s}_{z}) = \mathbf{x}' = \mathbf{s}_{x}\mathbf{x}$$
$$\mathbf{y}' = \mathbf{s}_{y}\mathbf{x}$$
$$\mathbf{z}' = \mathbf{s}_{z}\mathbf{x}$$

$$p' = Sp$$

REFLECTION

Corresponds to negative scale factors

INVERSES

- ► Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - ► Rotation: $R^{-1}(\theta) = R(-\theta)$
 - ► Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$ $R^{-1}(\theta) = R^{T}(\theta)$
 - ► Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

CONCATENATION

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- ▶ Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- ► The difficult part is how to form a desired transformation from the specifications in the application

19-SEP-11

ORDER OF TRANSFORMATIONS

- ▶ Note that matrix on the right is the first applied
- ► Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$

GENERAL ROTATION ABOUT THE ORIGIN

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\theta) = \mathbf{R}_{\mathbf{z}}(\theta_{\mathbf{z}}) \; \mathbf{R}_{\mathbf{y}}(\theta_{\mathbf{y}}) \; \mathbf{R}_{\mathbf{x}}(\theta_{\mathbf{x}})$$

 $\theta_x\,\theta_v\,\theta_z$ are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

ROTATION ABOUT A FIXED POINT OTHER THAN THE ORIGIN

- Move fixed point to origin
- Rotate
- Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{\mathbf{f}}) \mathbf{R}(\mathbf{\theta}) \mathbf{T}(-\mathbf{p}_{\mathbf{f}})$$

INSTANCING

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- ▶ We apply an *instance transformation* to its vertices to

Scale

Orient

Locate

SHEAR

- ▶ Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

SHEAR MATRIX

Consider simple shear along x axis

$$x' = x + y \cot \theta$$

 $y' = y$
 $z' = z$

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

