FREQUENCY DOMAIN INTERPRETATION OF MPE METHODS

Marco Campi
Universita' di Brescia
campi@ing.unibs.it

 $\widehat{\theta}_N$: estimated from N data, it is stochastic

 $\widehat{\theta}_N o heta^\star$, $heta^\star$ deterministic

 $\mathcal{M}(\theta^{\star})$: asymptotically estimated model

description of $\mathcal{M}(\theta^*)$ in the frequency domain

An Introductory Example

$$a^{\circ} = 0.5, b^{\circ} = 1$$

$$\widehat{y}(t|\theta) = \frac{bq^{-1}}{1 - aq^{-1}}u(t) \qquad (O.E.)$$

$$\hat{\theta}_N$$
 minimizes $\frac{1}{N}\sum_{t=1}^{N}\left(y(t)-\hat{y}(t|\theta)\right)^2$

⇒ iterative minimization

$$y(t) = a^{\circ}y(t-1) + b^{\circ}u(t-1) + \text{disturbance term}$$

$$\hat{y}(t|\theta) = ay(t-1) + bu(t-1) \qquad \text{(ARX)}$$

⇒ least squares

$$\widehat{y}(t|\theta) = \frac{bq^{-1}}{1 - aq^{-1}}u(t)$$

$$\widehat{y}(t|\theta) = ay(t-1) + bu(t-1)$$

MPE Methods

$$\mathcal{M}(\theta)$$
: $y(t) = G(\theta)u(t) + H(\theta)e(t)$

$$\hat{y}(t|\theta) = H^{-1}(\theta)G(\theta)u(t) + [1 - H^{-1}(\theta)]y(t)$$

$$\epsilon(t|\theta) := y(t) - \hat{y}(t|\theta)$$

$$\widehat{\theta}_N$$
 minimizes $\frac{1}{N} \sum_{t=1}^N \epsilon(t|\theta)^2$

$$\frac{1}{N} \sum_{t=1}^{N} \epsilon(t|\theta)^2 \xrightarrow{?} E\left[\epsilon(t|\theta)^2\right]$$

$$\frac{1}{N} \sum_{t=1}^{N} \epsilon(t|\theta)^2 \longrightarrow E\left[\epsilon(t|\theta)^2\right] \text{ uniformly in } \theta \text{ with probability 1}$$

$$\begin{vmatrix} \epsilon > 0, & N \ge N(\epsilon) \\ \frac{1}{N} \sum_{t=1}^{N} \epsilon(t|\theta)^2 - E\left[\epsilon(t|\theta)^2\right] \le \epsilon, \quad \forall \theta$$

 $\widehat{\theta}_N \to \theta^{\star}$ with probability 1

 $\widehat{\theta}_N$ asymptotically minimizes $E\left[\epsilon(t|\theta)^2\right]$

Computing $E\left[\epsilon(t|\theta)^2\right]$

$$S: y(t) = G^{\circ}u(t) + H^{\circ}e(t)$$

$$\epsilon(t|\theta) = y(t) - \hat{y}(t|\theta)
= y(t) - H^{-1}(\theta)G(\theta)u(t) - [1 - H^{-1}(\theta)]y(t)
= -H^{-1}(\theta)G(\theta)u(t) + H^{-1}(\theta)y(t)
= -H^{-1}(\theta)G(\theta)u(t) + H^{-1}(\theta)[G^{\circ}u(t) + H^{\circ}e(t)]
= +H^{-1}(\theta)[G^{\circ} - G(\theta)]u(t) + H^{-1}(\theta)H^{\circ}e(t)$$

Open-Loop

$$E\left[\epsilon(t|\theta)^{2}\right]$$

$$=E\left[\left(H^{-1}(\theta)[G^{\circ}-G(\theta)]u(t)\right)^{2}\right]+E\left[\left(H^{-1}(\theta)H^{\circ}e(t)\right)^{2}\right]$$

$$=\int_{-\pi}^{\pi}\left\{\left|\left[G^{\circ}(e^{i\omega})-G(e^{i\omega},\theta)\right]\right|^{2}\frac{1}{|H(e^{i\omega},\theta)|^{2}}\Phi_{u}(\omega)$$

$$+\frac{|H^{\circ}(e^{i\omega})|^{2}}{|H(e^{i\omega},\theta)|^{2}}\Phi_{e}(\omega)\right\}d\omega$$

$$\epsilon_L(t|\theta) := Ly(t) - L\widehat{y}(t|\theta)$$

$$E\left[\epsilon_{L}(t|\theta)^{2}\right] = \int_{-\pi}^{\pi} \left\{ |[G^{\circ} - G(\theta)]|^{2} \frac{|L|^{2}}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} |L|^{2} \Phi_{e} \right\} d\omega$$

... introductory example

$$\hat{y}(t|\theta) = ay(t-1) + bu(t-1)$$

$$\mathcal{M}(\theta): y(t) = ay(t-1) + bu(t-1) + e(t)$$

$$A(\theta) = 1 - aq^{-1} \qquad B(\theta) = bq^{-1}$$

$$A(\theta)y(t) = B(\theta)u(t) + e(t)$$

$$y(t) = \frac{B(\theta)}{A(\theta)}u(t) + \frac{1}{A(\theta)}e(t)$$

$$G(\theta) = \frac{B(\theta)}{A(\theta)} \qquad H(\theta) = \frac{1}{A(\theta)}$$

$$S: y(t) = \frac{B^{\circ}}{A^{\circ}}u(t) + e(t)$$

$$E\left[\epsilon(t|\theta)^{2}\right] =$$

$$= \int_{-\pi}^{\pi} \left\{ |[G^{\circ} - G(\theta)]|^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{e}(\omega) \right\} d\omega$$

$$= \int_{-\pi}^{\pi} \left\{ |[G^{\circ} - G(\theta)]|^{2} |A(\theta)|^{2} \Phi_{u} + |A(\theta)|^{2} \Phi_{e} \right\} d\omega$$

An interpretation in the time domain

$$S: y(t) = \frac{B^{\circ}}{A^{\circ}}u(t) + e(t)$$

$$y(t) = a^{\circ}y(t-1) + b^{\circ}u(t-1) + e(t) - a^{\circ}e(t-1)$$

$$\mathcal{M}(\theta) \Rightarrow H(\theta) \neq 1$$

 $\hat{y}(t|\theta)$ depends on the past y(t) 's:

$$\widehat{y}(t|\theta) = ay(t-1) + bu(t-1)$$

$$\mathcal{M}(\theta) \Rightarrow H(\theta) = 1$$

 $\widehat{y}(t|\theta)$ does not depend on the past y(t):

$$\hat{y}(t|\theta) = \frac{B(\theta)}{A(\theta)}u(t)$$

$$\mathcal{M}(\theta) : y(t) = \frac{B(\theta)}{A(\theta)} u(t) + e(t)$$
$$G(\theta) = \frac{B(\theta)}{A(\theta)} \qquad H(\theta) = 1$$

$$S: y(t) = \frac{B^{\circ}}{A^{\circ}}u(t) + e(t)$$

$$E\left[\epsilon(t|\theta)^{2}\right] =$$

$$= \int_{-\pi}^{\pi} \left\{ \left| \left[G^{\circ} - G(\theta)\right]\right|^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{e}(\omega) \right\} d\omega$$

$$= \int_{-\pi}^{\pi} \left\{ \left| \left[G^{\circ} - G(\theta)\right]\right|^{2} \Phi_{u} + \Phi_{e} \right\} d\omega$$

$$E\left[\epsilon(t|\theta)^{2}\right]$$

$$= \int_{-\pi}^{\pi} \left\{ \left[\left[G^{\circ} - G(\theta) \right] \right]^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{e} \right\} d\omega$$

CASE 1

$$G^{\circ} \in \{G(\theta)\}, \ H^{\circ} \in \{H(\theta)\}$$

With
$$G(\theta) = G^{\circ}$$
 and $H(\theta) = H^{\circ}$:

$$E\left[\epsilon(t|\theta)^2\right] = \int_{-\pi}^{\pi} \Phi_e d\omega = var[e(t)]$$

• When is the estimate consistent? u(t) sufficiently exciting

$$E\left[\epsilon(t|\theta)^{2}\right]$$

$$= \int_{-\pi}^{\pi} \left\{ \left| \left[G^{\circ} - G(\theta)\right]\right|^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{e} \right\} d\omega$$

CASE 2

$$G^{\circ} \in \{G(\theta)\}, \ H^{\circ} \notin \{H(\theta)\}$$

$$\bullet \quad H(\theta) = \bar{H}$$

$$\int_{-\pi}^{\pi} \left| \left[G^{\circ} - G(\theta) \right] \right|^{2} \frac{1}{|\bar{H}|^{2}} \Phi_{u} d\omega$$

• $H(\theta)$ not fixed

$$\int_{-\pi}^{\pi} \left\{ |[G^{\circ} - G(\theta)]|^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{e} \right\} d\omega$$

frequency weighting for ΔG : $\frac{\Phi_u}{|H(\widehat{\theta})|^2}$

$$E\left[\epsilon(t|\theta)^{2}\right]$$

$$= \int_{-\pi}^{\pi} \left\{ \left| \left[G^{\circ} - G(\theta)\right]\right|^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{e} \right\} d\omega$$

CASE 3

$$G^{\circ} \notin \{G(\theta)\}, H^{\circ} \notin \{H(\theta)\}$$

$$\int_{-\pi}^{\pi} \left\{ |[G^{\circ} - G(\theta)]|^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} + \frac{|H^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{e} \right\} d\omega$$

frequency weighting for ΔG : $\frac{\Phi_u}{|H(\widehat{\theta})|^2}$

if L is used:

frequency weighting for ΔG : $\frac{\Phi_u}{|H(\widehat{\theta})|^2}|L|^2$

Summary:

MPE features in open loop

 \bullet $G^{\circ} \in \{G(\theta)\}$ consistent estimate if $H(\theta) = \bar{H}$

lacktriangle in general: frequency weighting for ΔG :

$$\frac{\Phi_u}{|H(\widehat{\theta})|^2}|L|^2$$

Example

$$G^{\circ} = \frac{0.001q^{-1} \left(1 + 0.43q^{-1} + 0.056q^{-2} + 0.0023q^{-3}\right)}{1 - 3.1q^{-1} + 3.5801q^{-2} - 1.8248q^{-3} + 0.3462q^{-4}}$$

u(t) white

$$\widehat{y}(t|\theta) = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 - a_1 q^{-1} - a_2 q^{-2}} u(t)$$
 (OE)

$$\hat{y}(t|\theta) = a_1 y(t-1) + a_2 y(t-2)$$

 $b_1 u(t-1) + b_2 u(t-2)$ (ARX)

Which estimate can we rely on?

(OE)

$$\mathcal{M}(\theta): y(t) = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 - a_1 q^{-1} - a_2 q^{-2}} u(t) + e(t)$$

frequency weighting for $\Delta G: \frac{\Phi_u}{|H(\widehat{\theta})|^2} = 1$

$$E\left[\epsilon(t|\theta)^{2}\right] = \int_{-\pi}^{\pi} \left| \left[G^{\circ} - G(\theta)\right] \right|^{2} d\omega$$

(ARX)

$$\mathcal{M}(\theta): \quad y(t) = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 - a_1 q^{-1} - a_2 q^{-2}} u(t) + \frac{1}{1 - a_1 q^{-1} - a_2 q^{-2}} e(t)$$

frequency weighting for $\Delta G: \frac{\Phi_u}{|H(\widehat{\theta})|^2} = |A(\widehat{\theta})|^2$

OE

ARX

The use of L

L = butterworth filter (5 $^{\mbox{th}}$ order) $\bar{\omega}=0.1$

(ARX)

Closed-Loop

$$\epsilon(t|\theta) = H^{-1}(\theta)[G^{\circ} - G(\theta)]u(t) + H^{-1}(\theta)H^{\circ}e(t)$$

$$u(t) = CS^{\circ}r(t) - H^{\circ}CS^{\circ}e(t)$$
$$S^{\circ} = \frac{1}{1 + CG^{\circ}}$$

$$\epsilon(t|\theta) = H^{-1}(\theta)[G^{\circ} - G(\theta)]CS^{\circ}r(t)$$
$$+H^{-1}(\theta)H^{\circ}S^{-1}(\theta)S^{\circ}e(t)$$

$$S(\theta) = \frac{1}{1 + CG(\theta)}$$

$$E\left[\epsilon(t|\theta)^{2}\right]$$

$$= \int_{-\pi}^{\pi} \left\{ \left| \left[G^{\circ} - G(\theta)\right]\right|^{2} \frac{|CS^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{r} \right\}$$

$$+\frac{|H^{\circ}|^{2}|S^{\circ}|^{2}}{|H(\theta)|^{2}|S(\theta)|^{2}}\Phi_{e}\bigg\}d\omega$$

- $oldsymbol{G} G^{\circ} \in \{G(heta)\}$ even if $H(heta) = ar{H}$, the estimate is not consistent
- in general: frequency weighting for ΔG : $\frac{|CS^{\circ}|^2}{|H(\widehat{\theta})|^2}\Phi_r$ unknown even a-posteriori!

Two possible remedies

Estimate

find G° from the estimated $\frac{CG^\circ}{1+CG^\circ}$

Estimate

generate $u_{NF}(t)$:

Conclusions

ullet If N is large enough then $\widehat{ heta}_N$ minimizes $E\left[\epsilon(t| heta)^2
ight]$

open-loop:

$$E\left[\epsilon(t|\theta)^{2}\right]$$

$$= \int_{-\pi}^{\pi} \left\{ \left| \left[G^{\circ} - G(\theta)\right]\right|^{2} \frac{1}{|H(\theta)|^{2}} \Phi_{u} \right\}$$

$$+\frac{|H^{\circ}|^2}{|H(\theta)|^2}\Phi_e\bigg\}d\omega$$

closed-loop:

$$E\left[\epsilon(t|\theta)^{2}\right]$$

$$= \int_{-\pi}^{\pi} \left\{ \left| \left[G^{\circ} - G(\theta) \right] \right|^{2} \frac{|CS^{\circ}|^{2}}{|H(\theta)|^{2}} \Phi_{r} \right\}$$

$$+\frac{|H^{\circ}|^{2}|S^{\circ}|^{2}}{|H(\theta)|^{2}|S(\theta)|^{2}}\Phi_{e}\right\}d\omega$$

