T P C 3+1 0 3

BUILDING PLANNING & DRAWING

UNIT. I:

BUILDING BYELAWS AND REGULATIONS

Introduction- terminology- objectives of building byelaws- floor area ratiofloor space index- principles under laying building bye laws- classification of buildings- open space requirements – built up area limitations- height of buildings- wall thickness – lightening and ventilation requirements.

UNIT. II:

RESIDENTIAL BUILDINGS

Minimum standards for various parts of buildings- requirements of different rooms and their grouping- characteristics of various types residential buildings.

UNIT. III:

PUBLIC BUILDINGS

Planning of educational institutions, hospitals, dispensaries, office buildings, banks, industrial buildings, hotels & motels, buildings for recreation.

UNIT.IV:

SIGN CONVENTIONS AND BONDS

Brick, stone, plaster, sand filling, concrete, glass, steel, cast iron, copper alloys, aluminium alloys etc., lead, zinc, tin etc., earth, rock, timber and marbles.

English bond and Flemish bond- odd and even courses for one, one-half, two and two & half brick walls in thickness at the junction of a corner.

UNIT.V:

DOORS, WINDOWS, VENTILATORS AND ROOFS

Panelled door, panelled and glassed door, glassed windows, panelled windows, swing ventilators, fixed ventilators, coupled roof, collar roofs.

King Post truss, Queen Post truss

Sloped and flat roof buildings: drawing plans, Elevations and Cross Sections of given sloped roof buildings.

UNIT. VI:

PLANNING AND DESIGNING OF BUILDINGS

Draw the Plan, Elevation and sections of a Residential & Public buildings from the given line diagram.

TEXT BOOKS:

- 1. Planning and Design of buildings by Y.S. Sane
- Planning, designing and Scheduling by Gurucharan Singh and Jagadish Singh
- 3. Building planning and drawing by M. Chakravarthi.
- 4. 3. 'A' Series & 'B' Series of JNTU Engineering College, Anantapur,

REFERENCES:

1. Building drawing by Shah and Kale

INTERNAL EXAMINATION PATTERN:

The total internal marks (30) are distributed in three components as follows:

Descriptive (subjective type) examination : 25 marks
 Assignment : 05 marks

FINAL EXAMINATION PATTERN:

The end examination paper should consist of Part A and Part B. Part A consist of five questions in planning portion out of which three questions are to be answered. Part B should consist of two questions from drawing part out of which one is to be answered in drawing sheet. Weight age for Part – A is 60% and Part- B is 40%.

T P C 3+1 0 3

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Unit – I: (*The Learning objective of this Unit is to understand the concept and nature of Managerial Economic s and its relationship with other disciplines, Concept of Demand and Demand forecasting)

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics and Scope-Managerial Economics and its relation with other subjects-Concepts of Demand-Types-Determents-Law of Demand its Exception-Elasticity of Demand-Types and Measurement-Demand forecasting and its Methods.

(**The Learner is equipped with the knowledge of estimating the Demand for a product and the relationship between Price and Demand).

Unit – II: (*The Learning objective of this Unit is to understand the concept of Production function, Input Output relationship, different Cost Concepts and Concept of Cost-Volume-Profit Analysis)

Production and Cost Analyses:

Production function-Isoquants and Isocosts-Law of Variable proportions-Cobb-Douglas Production function-Economics of Sale-Cost Concepts-Opportunity Cost-Fixed vs Variable Costs-Explicit Costs vs Implicit Costs-Out of Pocket Costs vs Imputed Costs-Cost Volume Profit analysis-Determination of Break-Even Point (Simple Problem)

(**One should understand the Cost Concepts for decision making and to estimate the least cost combination of inputs).

Unit – III: (*The Learning Objective of this Unit is t understand the Nature of Competition, Characteristics of Pricing in the different market structure and significance of various pricing methods)

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly and Monopolistic and Oligopoly – Features – Price, Output Determination – Managerial Theories of firm: Maris and Williamson's models – Methods of Pricing: Limit Pricing, Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive, Transaction based pricing, Priority Pricing.

(** One has to understand the nature of different markets and Price Output determination under various market conditions).

Unit – IV: (*The Learning objective of this Unit is to know the different forms of Business organization and their Merits and Demerits both public & private Enterprises and the concepts of Business Cycles)

Types of Business Organization and Business Cycles:

Features and Evaluation of Sole Trader – Partnership – Joint Stock Company – State/Public Enterprises and their forms – Business Cycles – Meaning and Features – Phases of Business Cycle.

(**One should equipped with the knowledge of different Business Units)

Unit – V: (*The Learning objective of this Unit is to understand the different Accounting Systems preparation of Financial Statements and uses of different tools for performance evaluation)

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry Systems – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow cash flow statements (Simple Problems)

(**The Learner is able to prepare Financial Statements and the users of

(**The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis)

Unit – **VI:** (*The Learning objective of this Unit is to understand the concept of Capital, Capitalization, Capital Budgeting and to know the techniques used to evaluate Capital Budgeting proposals by using different methods).

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Need for Capital Budgeting-Techniques of Capital Budgeting-Traditional and Modern Methods.

(**The Learner is able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making).

Note: *Learning Objective

** Learning Assessment

TEXT BOOKS

- 1. Dr. N. Appa Rao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi 2011
- Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011
- 3. Prof. J.V.Prabhakara rao, Prof. P. Venkatarao. 'Managerial Economics and Financial Analysis', Ravindra Publication.

REFERENCES:

- 1. V. Maheswari: Managerial Economics, Sultan Chand.
- 2. Suma Damodaran: Managerial Economics, Oxford 2011.
- 3. Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House 2011.
- 4. Vanitha Agarwal: Managerial Economics, Pearson Publications 2011.
- 5. Sanjay Dhameja: Financial Accounting for Managers, Pearson.
- 6. Maheswari: Financial Accounting, Vikas Publications.
- 7. S. A. Siddiqui & A. S. Siddiqui : Managerial Economics and Financial Analysis, New Age International Publishers, 2012.

T P C 3+1 0 3

STRENGTH OF MATERIALS- II

Course Learning Objectives:

- 1. To give preliminary concepts of Principal stresses and strains developed in cross section of the beams analytically as well as graphically due to stresses acting on the cross section and stresses on any inclined plane. To impart concepts of failures in the material considering different theories.
- 2. To give concepts of torsion and governing torsion equation, and there by calculate the power transmitted by shafts and springs and design the cross section when subjected to loading using different theories of failures.
- To classify columns and calculation of load carrying capacity using different empirical formulas and to assess stresses due to axial and lateral loads for different edge conditions and to calculate combined effect of direct and bending stresses with different engineering structures.
- **4.** Introduce the concept of unsymmetrical bending in beams Location of neutral axis Deflection of beams under unsymmetrical bending.
- **5.** Impart concepts for determination of Forces in members of plane, pin-jointed, perfect trusses by different methods.

Course Outcomes:

Upon successful completion of this course

- 1. The student will be able to understand the basic concepts of Principal stresses developed when subjected to stresses along different axes and design the sections.
- 2. The student can asses stresses in different engineering applications like shafts, springs, columns and struts subjected to different loading conditions.
- 3. The student will be able to assess forces in different types of trusses used in construction.

Syllabus:

UNIT- I

PRINCIPAL STRESSES AND STRAINS AND THEORY OF FAILURES: Introduction – Stresses on an inclined section of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses

accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions.

THEORIES OF FAILURES: Introduction – Various Theories of failures like Maximum Principal stress theory – Maximum Principal strain theory – Maximum shear stress theory – Maximum strain energy theory – Maximum shear strain energy theory.

UNIT - II

TORSION OF CIRCULAR SHAFTS AND SPRINGS: Theory of pure torsion – Derivation of Torsion equations: $T/J = q/r = N\varphi/L$ – Assumptions made in the theory of pure torsion – Torsional moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust – Design of shafts according to theories of failure.

SPRINGS: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple – springs in series and parallel – Carriage or leaf springs.

UNIT - III

COLUMNS AND STRUTS: Introduction – Types of columns – Short, medium and long columns – Axially loaded compression members – Crushing load – Euler's theorem for long columns- assumptions- derivation of Euler's critical load formulae for various end conditions – Equivalent length of a column – slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula – Long columns subjected to eccentric loading – Secant formula – Empirical formulae – Straight line formula – Prof. Perry's formula.

Laterally loaded struts – subjected to uniformly distributed and concentrated loads – Maximum B.M. and stress due to transverse and lateral loading.

UNIT - IV

DIRECT AND BENDING STRESSES: Stresses under the combined action of direct loading and B.M. Core of a section – determination of stresses in the case of chimneys, retaining walls and dams – conditions for stability – stresses due to direct loading and B.M. about both axis.

UNIT - V

UNSYMETRICAL BENDING: Introduction – Centroidal principal axes of section – Graphical method for locating principal axes – Moments of inertia referred to any set of rectangular axes – Stresses in beams subjected to unsymmetrical bending – Principal axes – Resolution of bending moment into two rectangular axes through the centroid – Location of neutral axis Deflection of beams under unsymmetrical bending.

UNIT - VI

ANALYSIS OF PIN-JOINTED PLANE FRAMES: Determination of Forces in members of plane, pin-jointed, perfect trusses by (i) method of joints and (ii) method of sections. Analysis of various types of cantilever and simply supported trusses by method of joints, method of sections.

TEXT BOOKS:

- 1. Mechanics of Materials- by R. C. Hibbler
- 2. Strength of materials by S. S. Bhavakatti

REFERENCES:

- Fundamentals of Solid Mechanics M.L. Gambhir, PHI Learning Pvt. Ltd., New Delhi.
- 2. Introduction to text book of Strength of Material by U.C. Jindal, Galgotia publications.
- Strength of materials by R. Subramanian, Oxford university press, New Delhi.

T P C 3+1 0 3

HYDRAULICS AND HYDRAULIC MACHINERY

UNIT - I

OPEN CHANNEL FLOW: Types of flows - Type of channels - Velocity distribution - Energy and momentum correction factors - Chezy's, Manning's; and Bazin formulae for uniform flow - Most Economical sections.

Critical flow: Specific energy-critical depth – computation of critical depth – critical sub-critical and super critical flows.

UNIT II

OPEN CHANNEL FLOW II: Non uniform flow-Dynamic equation for G.V.F., Mild, Critical, Steep, horizontal and adverse slopes-surface profiles-direct step method- Rapidly varied flow, hydraulic jump, energy dissipation.

UNIT - III

HYDRAULIC SIMILITUDE: Dimensional analysis-Rayleigh's method and Buckingham's pi theorem-study of Hydraulic models – Geometric, kinematic and dynamic similarities-dimensionless numbers – model and prototype relations.

UNIT - IV

BASICS OF TURBO MACHINERY: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, jet striking centrally and at tip, velocity triangles at inlet and outlet, expressions for work done and efficiency-Angular momentum principle, Applications to radial flow turbines. Layout of a typical Hydropower installation – Heads and efficiencies - classification of turbines.

UNIT - V

HYDRAULIC TURBINES – **I:** Pelton wheel - Francis turbine - Kaplan turbine - working, working proportions, velocity diagram, work done and efficiency, hydraulic design, draft tube – theory and function efficiency.

HYDRAULIC TURBINES – II: Governing of turbines-surge tanks-unit and specific turbines-unit speed-unit quantity-unit power-specific speed performance characteristics-geometric similarity-cavitation.

UNIT - VI

CENTRAIFUGAL-PUMPS: Pump installation details-classification-work done- Manometric head-minimum starting speed-losses and efficiencies-specific speed, multistage pumps-pumps in parallel- performance of pumps-characteristic curves- NPSH- Cavitation.

RECIPROCATING PUMPS: Introduction, classification of reciprocating pumps, main components of reciprocating pumps, working of a reciprocating pumps, discharge through pumps, indicator diagram, work done by reciprocating pumps, slip of reciprocating pumps.

TEXT BOOKS:

- 1. Open Channel flow by K. Subramanya, Tata McGraw Hill Publishers
- 2. A text of Fluid mechanics and hydraulic machines by Dr. R.K. Bansal Laxmi Publications (P) Ltd., New Delhi.
- 3. Fluid Mechanics by Modi and Seth, TEXT BOOKS house.

REFERENCES:

- 1. Fluid mechanics and fluid machines by Rajput, S. Chand & Co.
- 2. Hydraulic Machines by Banga & Sharma Khanna Publishers.
- 3. Fluid Mechanics & Fluid Power Engineering by D.S. Kumar Kataria & Sons.

T P C 3+1 0 3

CONCRETE TECHNOLOGY

Course Learning Objectives:

- To learn the concepts of Concrete production and its behaviour in various environments.
- To learn the test procedures for the determination of properties of concrete.
- To understand durability properties of concrete in various environments.

Course Outcomes:

Upon successful completion of this course, student will be able to

- understand the basic concepts of concrete.
- realise the importance of quality of concrete.
- familiarise the basic ingredients of concrete and their role in the production of concrete and its behaviour in the field.
- test the fresh concrete properties and the hardened concrete properties.
- evaluate the ingredients of concrete through lab test results.
- design the concrete mix by BIS method.
- familiarise the basic concepts of special concrete and their production and applications.
- understand the behaviour of concrete in various environments.

Syllabus:

UNIT I: INGREDIENTS OF CONCRETE

CEMENTS & ADMIXTURES: Portland cement – Chemical composition – Hydration, Setting of cement, Fineness of cement, Structure of hydrate cement – Test for physical properties – Different grades of cements – Admixtures – Mineral and chemical admixtures – accelerators, retarders, air entrainers, plasticizers, super plasticizers, fly ash and silica fume.

AGGREGATES: Classification of aggregate – Particle shape & texture – Bond, strength & other mechanical properties of aggregates – Specific gravity, Bulk density, porosity, adsorption & moisture content of aggregate – Bulking of sand –Deleterious substance in aggregate – Soundness of aggregate – Alkali aggregate reaction – Thermal properties – Sieve analysis –

Fineness modulus – Grading curves – Grading of fine & coarse Aggregates – Gap graded and well graded aggregate as per relevant IS code – Maximum aggregate size.

Quality of mixing water

UNIT - II

FRESH CONCRETE: Steps inManufacture of Concrete–proportion, mixing, placing, compaction, finishing, curing – including various types in each stage. Properties of fresh concrete-Workability – Factors affecting workability – Measurement of workability by different tests, Setting times of concrete, Effect of time and temperature on workability – Segregation & bleeding – Mixing and vibration of concrete, Ready mixed concrete, Shotcrete.

UNIT - III

HARDENED CONCRETE: Water / Cement ratio – Abram's Law – Gelspaoe ratio – Nature of strength of concrete – Maturity concept – Strength in tension & compression – Factors affecting strength – Relation between compression & tensile strength – Curing, Testing of Hardened Concrete:Compression tests – Tension tests – Factors affecting strength – Flexure tests – Splitting tests – Non-destructive testing methods – codal provisions for NDT.

UNIT - IV

ELASTICITY, CREEP & SHRINKAGE – Modulus of elasticity – Dynamic modulus of elasticity – Poisson's ratio – Creep of concrete – Factors influencing creep – Relation between creep & time – Nature of creep – Effects of creep – Shrinkage – types of shrinkage.

UNIT - V

MIX DESIGN: Factors in the choice of mix proportions – Durability of concrete – Quality Control of concrete – Statistical methods – Acceptance criteria – Concepts Proportioning of concrete mixes by various methods – BIS method of mix design.

UNIT – VI

SPECIAL CONCRETES: Ready mixed concrete, Shotcrete -Light weight aggregate concrete – Cellular concrete – No-fines concrete, High density concrete, Fibre reinforced concrete – Different types of fibres – Factors affecting properties of F.R.C, Polymer concrete – Types of Polymer concrete – Properties of polymer concrete, High performance concrete – Self consolidating concrete, SIFCON, self healing concrete.

TEXT BOOKS:

- 1. Concrete Technology by M.S.Shetty. S.Chand & Co.; 2004.
- 2. Concrete Technology by M.L. Gambhir. Tata Mc. Graw Hill Publishers, New Delhi.

REFERENCES:

- 1. Properties of Concrete by A.M.Neville PEARSON 4th edition.
- Concrete Technology by A.R. Santha Kumar, Oxford University Press, New Delhi.

T P C 3+1 0 3

STRUCTURAL ANALYSIS - I

Course Learning Objectives:

- 1. To give preliminary concepts of assessment of bending moment and shear force in Propped cantilevers, fixed beams and continuous beams due to various loading conditions.
- 2. To impart concepts of Bending Moment and Shear force for beams with different boundary and loading conditions and to draw the diagrams of variation across the length.
- 3. The procedure for development of slope deflection equations and to solve application to continuous beams with and without settlement of supports.
- 4. The concepts of moving loads and influence lines are imparted for assessment of maximum SF and BM at a given section when loads of varying spans are passing over beams of different spans of Pratt and Warren trusses.

Course Outcomes:

Upon successful completion of this course,

- 1. The student will be able to estimate the bending moment and shear forces in beams of different fixity conditions.
- 2. The student can analyze the continuous beams using tan important method of slope deflection which impart basic concepts for other methods of analysis to be discussed in next level analysis course.
- 3. The student will be able to analyze the loads in Pratt and Warren trusses when loads of different types and spans ware passing over the truss. These concepts will be used in to understand the performance and to design of bridge structures in next level courses.

Syllabus:

UNIT – I

PROPPED CANTILEVERS: Analysis of propped cantilevers-shear force and Bending moment diagrams-Deflection of propped cantilevers.

UNIT – II

FIXED BEAMS – Introduction to statically indeterminate beams with U. D. load central point load, eccentric point load. Number of point loads, uniformly varying load, couple and combination of loads shear force and Bending moment diagrams-Deflection of fixed beams effect of sinking of support, effect of rotation of a support.

UNIT - III

CONTINUOUS BEAMS: Introduction-Clapeyron's theorem of three moments- Analysis of continuous beams with constant moment of inertia with one or both ends fixed-continuous beams with overhang, continuous beams with different moment of inertia for different spans-Effects of sinking of supports-shear force and Bending moment diagrams.

UNIT-IV

SLOPE-DEFLECTION METHOD: Introduction, derivation of slope deflection equation, application to continuous beams with and without settlement of supports.

UNIT - V

ENERGY THEOREMS: Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear forces - Castigliano's first theorem-Deflections of simple beams and pin jointed trusses.

UNIT - VI

MOVING LOADS and INFLUENCE LINES: Introduction maximum SF and BM at a given section and absolute maximum S.F. and B.M due to single concentrated load U. D load longer than the span, U. D load shorter than the span, two point loads with fixed distance between them and several point loads-Equivalent uniformly distributed load-Focal length.

INFLUENCE LINES: Definition of influence line for SF, Influence line for BM- load position for maximum SF at a section-Load position for maximum BM at a sections, ingle point load, U.D. load longer than the span, U.D. load shorter than the span- Influence lines for forces in members of Pratt and Warren trusses.

TEXT BOOKS:

- 1. Structural Analysis by V.D. Prasad Galgotia publications, 2nd Editions.
- 2. Analysis of Structures by T.S. Thandavamoorthy, Oxford University Press, New Delhi.

REFERENCES:

- Theory of Structures by Gupta, Pandit & Gupta; Tata McGraw Hill, New Delhi.
- 2. Theory of Structures by R.S. Khurmi, S. Chand Publishers.
- 3. Structural analysis by R.C. Hibbeler, Pearson, New Delhi.

T P C 0 3 2

FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

List of Experiments

- 1. Calibration of Venturimeter & Orifice meter
- Determination of Coefficient of discharge for a small orifice by a constant head method.
- 3. Determination of Coefficient of discharge for an external mouth piece by variable head method.
- 4. Calibration of contracted Rectangular Notch and /or Triangular Notch
- Determination of Coefficient of loss of head in a sudden contraction and friction factor.
- 6. Verification of Bernoulli's equation.
- 7. Impact of jet on vanes
- 8. Study of Hydraulic jump.
- 9. Performance test on Pelton wheel turbine
- 10. Performance test on Francis turbine.
- 11. Efficiency test on centrifugal pump.
- 12. Efficiency test on reciprocating pump.

List of Equipment:

- 1. Venturimeter setup.
- 2. Orifice meter setup.
- 3. Small orifice setup.
- 4. External mouthpiece setup.
- 5. Rectangular and Triangular notch setups.
- 6. Friction factor test setup.
- 7. Bernoulli's theorem setup.
- 8. Impact of jets.
- 9. Hydraulic jump test setup.
- 10. Pelton wheel and Francis turbines.
- 11. Centrifugal and Reciprocating pumps.

T P C 0 3 2

CONCRETE TECHNOLOGY LAB

Course Learning Objectives:

To test the basic properties ingredients of concrete, fresh and hardened concrete properties.

Course Outcomes:

Upon successful completion of this course, student will be able to

- Determine the consistency and fineness of cement.
- Determine the setting times of cement.
- Determine the specific gravity and soundness of cement.
- Determine the compressive strength of cement.
- Determine the workability of cement concrete by compaction factor, slump and Vee – Bee tests
- Determine the specific gravity of coarse aggregate and fine aggregate by Sieve analysis.
- Determine the flakiness and elongation index of aggregates.
- Determine the bulking of sand.
- Understand the non-destructive testing procedures on concrete.

List of Experiments:

At least 10 experiments must be conducted (at least one for each property)

- 1. Determination of normal Consistency and fineness of cement.
- 2. Determination of initial setting time and final setting time of cement.
- 3. Determination of specific gravity and soundness of cement.
- 4. Determination of compressive strength of cement.
- 5. Dtermination of grading and fineness modulus of Coarse aggregate by sieve analysis.
- 6. Determination of specific gravity of coarse aggregate
- 7. Determination of grading and fineness modulus of fine aggregate (sand) by sieve analysis.
- 8. Determination of bulking of sand.
- 9. Determination of workability of concrete by compaction factor method.

- 10. Determination of workability of concrete by slump test
- 11. Determination of workability of concrete by Vee-bee test.
- 12. Determination of compressive strength of cement concrete and its young's modulus.
- 13. Determination of split tensile strength of concrete.
- 14. Non-Destructive testing on concrete (for demonstration)

List of Equipment:

- 1. Standard set of sieves for coarse aggregate and fine aggregate
- 2. Vicat's apparatus
- 3. Specific gravity bottle.
- 4. Lechatlier's apparatus.
- 5. Slump Test Apparatus.
- 6. Compaction Factor Test Apparatus.
- 7. Vee- Bee test apparatus
- 8. Longitudinal compresso meter
- 9. Universal testing Machine (UTM)/Compression Testing Machine (CTM).
- 10. Rebound hammer, Ultrasonic pulse velocity machine, micro cover meter etc.

T P C 0 3 2

SURVEYING FIELD WORK- II

List of Experiments

- 1. Theodolite Survey: Determining the Horizontal and Vertical Angles by the method of repetition method.
- 2. Theodolite Survey: Finding the distance between two inaccessible points.
- 3. Theodolite Survey: Finding the height of far object.
- 4. Tacheomatric survey: Heights and distance problems using tacheomatric principles.
- 5. One Exercise on Curve setting.
- 6. One Exercise on contours.
- 7. <u>Total Station</u>: Introduction to total station and practicing setting up, levelling up and elimination of parallax error.
- 8. Total Station: Determination of area using total station.
- 9. Total Station: Traversing
- 10. Total Station: Contouring
- 11. Total Station : Determination of Remote height.
- 12. Total Station: distance between two inaccessible points.

Note: Any 10 field work assignments must be completed.