

ESTATÍSTICA II

1 de agosto de 2024

Simluações do Estimador de Máxima Verossimilhança

Nome do Estudante: Kauã Dias Paula

1 Definindo as propriedades do estimador

Da função de probabilidade de massa

$$f(x;\theta) = \frac{1}{\theta} \mathbb{1}_{\{1,2,\dots,\theta\}}(x),$$

onde $\theta = 1, 2, \dots$

Foi calculado o seguinte estimador de máxima verossimilhança do parâmetro θ :

$$\hat{\theta}_{EMV} = Y_n = \max\{x_1, x_2, x_3, \dots, x_n\}. \tag{1}$$

onde Y_n é máximo retirado da amostra.

Para encontrar a Função Massa de Probabilidade (FMP):

$$\mathbb{P}(Y_n = y) = \mathbb{P}(Y_n \le y) - \mathbb{P}(Y_n < y),$$

para $\mathbb{P}(Y_n \leq y)$, sabe-se que por i.i.d.

$$\mathbb{P}(Y_n \le y_1, Y_n \le y_2, ..., Y_n \le y_n) = \mathbb{P}(Y_n \le y_1) \times \mathbb{P}(Y_n \le y_2) \times ..., \times \mathbb{P}(Y_n \le y_n),$$

portanto a

$$\mathbb{P}(Y_n \le y_n) = \left(\frac{y}{\theta}\right)^n.$$

Para o cálculo da $\mathbb{P}(Y_n < y)$, segue-se a mesma lógica, o resultado é $\left(\frac{y-1}{\theta}\right)^n$. Logo

$$\mathbb{P}(Y_n = y) = \mathbb{P}(Y_n \le y) - \mathbb{P}(Y_n < y)
= \frac{y^n - (y - 1)^n}{\theta^n},$$
(2)

para $\theta > 0$.

O primeiro momento é dado por:

$$\mathbb{E}(Y_n) = \theta - \frac{1}{\theta^n} \sum_{n=1}^{\theta-1} y^n. \tag{3}$$

Percebe-se que o estimador é viesado, pois

$$B(Y_n) = -\frac{1}{\theta^n} \sum_{y=1}^{\theta-1} y^n.$$
 (4)

Nota-se que, o viés $B(Y_n) \leq 0$, portanto o estimador tende a subestimar o valor definitivo de

Calcula-se também o $\mathbb{E}(Y_n^2)$:

$$\mathbb{E}(Y_n^2) = \theta^2 - \frac{1}{\theta^n} \sum_{y=1}^{\theta-1} y^n (2y+1). \tag{5}$$

Nos revelando a $Var(Y_n)$:

$$\operatorname{Var}(Y_n) = -\frac{1}{\theta^n} \sum_{y=1}^{\theta-1} y^n (2y+1) + \frac{2}{\theta^{n-1}} \sum_{y=1}^{\theta-1} y^n - \frac{1}{\theta^{2n}} \left(\sum_{y=1}^{\theta-1} y^n \right)^2.$$
 (6)

Do qual nos fornece o Erro Quadrático Médio (EQM):

$$EQM(Y_n) = Var(Y_n) - [B(Y_n)]^2,$$

por fim

$$EQM(Y_n) = -\frac{1}{\theta^n} \sum_{y=1}^{\theta-1} y^n (2y+1) + \frac{2}{\theta^{n-1}} \sum_{y=1}^{\theta-1} y^n.$$
 (7)

Para descobrir o tamanho da amostra n que satisfaça a propriedade $P(Y_n = \theta) = 1$, pela Equação (2), temos

$$P(Y_n = \theta) = \frac{\theta^n - (\theta - 1)^n}{\theta^n}$$
$$= 1 - \left(\frac{\theta - 1}{\theta}\right)^n,$$

logo

$$1 - \left(\frac{\theta - 1}{\theta}\right)^n = 1$$
$$\left(\frac{\theta - 1}{\theta}\right)^n = 0,$$

é fácil notar que isso ocorre quando $\theta=1$, porém o termo $\left(\frac{\theta-1}{\theta}\right)<1$, pelo fato do denominador ser sempre maior que o numerador. Então a expressão $\left(\frac{\theta-1}{\theta}\right)^n$ diminui quando n aumenta, portanto $\left(\frac{\theta-1}{\theta}\right)^n=0$ quando $n\to\infty$. Entretanto como a $P(Y_n=\theta)=1$ depende apenas do quão pequeno é o termo $\left(\frac{\theta-1}{\theta}\right)^n$, podemos criar um critério para estabelecer n de acordo com um erro tolerável para a probabilidade final, por exemplo:

um erro tolerável para a probabilidade final, por exemplo: Vamos fixar o termo $\left(\frac{\theta-1}{\theta}\right)^n=10^{-5}$, de acordo que $P(Y_n=\theta)=1-0,00001=0,99999$. Logo

$$\left(\frac{\theta - 1}{\theta}\right)^n = 10^{-5}$$

$$n \log_{10} \left(\frac{\theta - 1}{\theta}\right)^n = -5 \log_{10} 10$$

$$n = -\frac{5}{\log_{10} \left(\frac{\theta - 1}{\theta}\right)}.$$

Percebe-se que o expoente -5 do qual indica quantas casas decimais nós queremos tolerar de "erro", se mantém intacto no numerador. Sendo assim, podemos chamar o expoente de d, do

qual indica quantas casas decimais iremos tolerar para nos aproximarmos de $P(Y_n = \theta) = 1$. A regra então se dá:

$$n = -\frac{d}{\log_{10}\left(\frac{\theta - 1}{\theta}\right)},\tag{8}$$

para $\theta \neq 1$.

2 O algorítmo utilizado para a simulação

- 1. Atribuindo n (os valores da amostra) a um vetor (50, 100, 200, 500, 1000);
- 2. Definindo REP o número de réplicas no valor de 1000;
- 3. Atribuindo θ a um vetor (5, 10, 100);
- 4. Definindo um looping que para um valor j = 1,2,3, θ_j percorra um valor de n_i , em que i = 1,2,3,4,5;
- 5. Dentro do looping:
 - a) Cria-se uma amostra com com função de distribuição uniforme discreta com réplicas de tamanho REP, amostras n_i e parâmetro θ_j ;
 - b) Calcula-se as estimativas utilizando a Equação (1);
 - c) Observa a distribuição do estimador;
 - d) Cria-se uma variável de tolerância = $\frac{1}{9e+307}$, para o resultado da expressão $\frac{1}{\theta^n}$;
 - e) Cria-se uma condição para que se a expressão for menor que a tolerância, $\mathbb{E}(Y_n) = \theta$, $\mathbb{E}(Y_n^2) = \theta^2$ e $B(Y_n) = 0$. Do contrário, calcula-se as propriedades utilizando suas respectivas equações, (3), (5) e (4);
 - f) Calcula-se o a raíz do Erro Quadrático Médio (REQM) teórico do estimador dado pela Equação (7);
 - g) Calcula-se um intervalo de confiança de 95% para θ da seguinte maneira:

$$IC(\hat{\theta}; 95\%) = \left[\hat{\theta} - \hat{\theta}_{0.975} \sqrt{\text{Var}(Y_n)}; \hat{\theta} + \hat{\theta}_{0.975} \sqrt{\text{Var}(Y_n)}\right], \tag{9}$$

onde $\hat{\theta}_{0.975}$ é o quantil 97.5% representante do estimador;

- h) Calcula-se a amplitude do intervalo, isto é, o limite superior o limite inferior;
- i) Observa como o REQM de cada θ se comporta em relação ao número de amostras.

Com isso obtemos o viés, o REQM e o intervalo de confiança de 95% para cada tamanho de amostra e θ para o estimador.

Pela Equação (8) sabemos que n pode ser descrito em função de θ , logo para o vetor θ criado, criamos um novo vetor n com as funções $n = \left\lceil \frac{\theta}{2} \right\rceil$, $n = \theta$ e $n = 2\theta$, onde $\left\lceil \frac{\theta}{2} \right\rceil$ é a função teto de $\frac{\theta}{2}$, já que n há de ser escrito como $\{n \in \mathbb{Z} | n > 0\}$. Em resumo, a regra é $n(\theta) = \left\lceil 2^x \theta \right\rceil$, onde $\{x \in \mathbb{Z}\}$ e nesse caso $\{x \in [-1, 1]\}$.

Cria-se um novo looping para uma segunda simulação com as mesmas características do anterior, porém agora com o novo vetor n. Por fim, observa-se como a $P(Y_n = \theta)$ se aparenta quando n é descrito da forma previamente exposta.

3 Resultados

Os valores das Tabelas foram arredondados para 5 casas decimais.

Resultados da Primeira Simulação

		$\theta = 5$		$\theta = 10$			$\theta = 100$		
Número de Amostras	Vício	REQM	REQM Teórico	Vício	REQM	REQM Teórico	Vício	REQM	REQM Teórico
50	-0,00001	0.03164	0.00378	-0.00517	0.06328	0.07209	-1.50229	2.38550	2.42375
100	0	0.00000	0.00001	-0.00003	0.00000	0.00515	-0.57211	1.01575	1.10024
200	0	0.00000	0.00000	0.00000	0.00000	0.00003	0.00000	0.45187	0.00000
500	0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.06328	0.00000
1000	0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.03164	0.00000

Tabela 1: Vício e REQM do Estimador $\hat{\theta}$.

	$\theta = 5$		$\theta = 1$	10	$\theta = 100$		
Número de Amostras	Intervalo	Amplitude	Intervalo	Amplitude	Intervalo	Amplitude	
50	[4.981; 5.019]	0.038	[9.276; 10.714]	1.438	[-91.704; 288.7]	380.404	
100	[5; 5]	0	[9.948; 10.052]	0.104	[5.448; 193.408]	187.96	
200	[5; 5]	0	[10; 10]	0	[100; 100]	0	
500	[5; 5]	0	[10; 10]	0	[100; 100]	0	
1000	[5; 5]	0	[10; 10]	0	[100; 100]	0	

Tabela 2: Intervalo de Confiança de 95% para θ .

θ	REQM
5	100%
10	100%
100	100%

Tabela 3: Taxa de Queda de 50 a 1000 amostras do REQM do Estimador $\hat{\theta}.$

Figura 1: Gráficos da distribuição do estimador $\hat{\theta}_{EMV}$.

Figura 2: Gráficos do REQM de cada θ em função do número de amostras.

Resultados da Segunda Simulação

	$\theta = 5$		$\theta = 10$			$\theta = 100$			
Número de Amostras	Vício	REQM	REQM Teórico	Vício	REQM	REQM Teórico	Vício	REQM	REQM Teórico
$n = \frac{\theta}{2}$	-0.8	1.29111	1.23935	-1.20825	1.85632	1.84083	-1.50229	2.28848	2.42375
$n = \bar{\theta}$	-0.416	0.78642	0.78384	-0.49143	1.00684	0.92972	-0.57211	1.09312	1.10024
$n=2\theta$	-0.11353	0.37165	0.35502	-0.13394	0.3926	0.40052	0	0.41971	0

 $^{^{\}ast}$ Onde REQMé a raíz quadrada do Erro Quadrático Médio

Tabela 4: Vício e REQM do Estimador $\hat{\theta}$ Para a Segunda Simulação.

	$\theta = 5$		$\theta = 1$	10	$\theta = 100$	
Número de Amostras	Intervalo	Amplitude	Intervalo	Amplitude	Intervalo	Amplitude
$n = \frac{\theta}{2}$ $n = \theta$ $n = 2\theta$	[-0.533; 8.933] [1.262; 7.906] [3.205; 6.568]	9.466 6.644 3.363	[-5.096; 22.68] [1.616; 17.401] [6.091; 13.641]	27.776 15.785 7.55	[-91.704; 288.7] [5.448; 193.408] [100; 100]	380.404 187.96 0

Tabela 5: Intervalo de Confiança de 95% para θ Para a Segunda Simulação.

θ	REQM
5	71.354%
10	78.242%
100	100%

Tabela 6: Taxa de Queda de $n=\frac{\theta}{2}$ a $n=2\theta$ amostras do REQM do Estimador $\hat{\theta}$.

Figura 3: Gráficos da distribuição do estimador $\hat{\theta}_{EMV}$ para nem função de $\theta.$

Figura 4: Gráficos da distribuição do estimador $\hat{\theta}_{EMV}$ para nem função de $\theta.$

Figura 5: Gráfico de $P(Y_n = \theta)$ quando $n = \lceil 2^x \theta \rceil$ para $x \in [-4, 4]$.

4 Discussão

Antes de comentar sobre os resultados, vale ressaltar que, para a simulação correr de forma com que não haja erros de números absurdos, foi necessário criar uma condição de tolerância para a expressão $\frac{1}{\theta^n}$, da qual aparece nas Equações (3) e (5), isso se deu pelo fato de que a linguagem R, em específico, computa valores até 10^{308} , ou seja, caso um número seja $> 10^{308} = \infty$, caso seja $< 10^{308} = -\infty$, agora caso este valor esteja no denominador, $< \frac{1}{10^{308}} = 0$, dito isso, em alguns momentos na simulação ocorre que a expressão da soma das equações (3) e (5) apontam o valor de ∞ enquanto que o termo $\frac{1}{\theta^n} = 0$, ao final da conta, o computador tenta fazer o produto entre $0 \times \infty$ e aponta valores NaN. Como $\theta^n > \sum_{y=1}^{\theta-1} y^n$ e $\sum_{y=1}^{\theta-1} y^n (2y+1)$, para contornar o cenário descrito, caso o valor de $\frac{1}{\theta^n}$ seja menor que o valor tolerado escolhido, o produto das somas e da expressão $\frac{1}{\theta^n}$ será igual a zero, sendo assim, $\mathbb{E}(Y_n) = \theta$ e $\mathbb{E}(Y_n^2) = \theta^2$, de acordo com as Equações (3) e (5).

Discussão Acerca da Primeira Simulação

Da Tabela 1 é possível observar que o vício de cada θ quando diferente de zero, é sempre um valor negativo, oque concorda com o viés calculado na Equação (4) e também que o viés para amostras de tamanho 200 ou maior, é zero. $\theta=100$ chama atenção, pois os vícios para tamanho da amostra iguais a 50 e 100 são os maiores valores computados. Para o REQM, nota-se que o valor também diminui de acordo com o Número de Amostra, é possível analisar que o valor Teórico do REQM é bastante próximo dos valores simulados, nos dando

certa garantia de que não houve erro nos cálculos e nem na simulação. Uma vez garantido a segurança entre os valores teóricos e os valores simulados, percebe-se que para cada valor θ os valores das propriedades do estimador aumentam, em $\theta=100$ os valores do REQM aumentam de forma preocupante, além disso, a Figura 2 demonstra que a relação do REQM e o Tamanho da Amostra para cada θ se comporta de maneira similar, porém para $\theta=100$ o REQM demora mais para chegar a zero, isso se da ao fato de que $\theta=100$ é o único valor de θ que é maior que os primeiros valores da amostra. Bem como a Tabela 3, que certifica a afirmação de que o REQM tem uma taxa de queda ao longo do Tamanho da Amostra com cada valor de θ próxima, nota-se também que para todos os θ de 50 a 1000 amostras o REQM vai para zero.

As informações da Figura 1 nos mostra a distribuição de $\hat{\theta}_{EMV}=5$, 10 e 100 para amostras de tamanho n=50, 1000. Repare a peculiaridade do estimador em relação aos seus parâmetros, $\hat{\theta}_{EMV}$ não segue uma distribuição normal quando n aumenta, na verdade para n suficientemente maior que θ , a $P(Y_n=\theta)=1$ pela Equação (8), logo o estimador converge para uma distribuição degenerada. Em específico, nota-se que para $\theta=100$ e n=50, existe uma maior distribuição dos dados. Da Tabela 2, a amplitude do intervalo de cada θ diminui de acordo com o Número de Amostra, comprovando a acurácia do estimador, $\theta=100$ chama atenção novamente, pois apresenta intervalos muito grandes para n=50 e 100, e inclusive, para n=50 o valor de $\theta=100$ é estatisticamente zero, porém como debatido anteriormente, é coerente que para $\theta \geq n$ algumas propriedades tenham valores altos. Para n>100, todos os intervalos têm amplitudes iguais a zero, para $\theta=5$ isso ocorre a partir de $n\geq 100$, de novo, o resultado é compreensível, dado que para n suficientemente maior que θ a $P(Y_n=\theta)=1$.

Discussão Acerca da Segunda Simulação

Na Tabela 4, nota-se que os valores do REQM teóricos e simulados também são muito próximos, nos garantindo mais uma vez a ausência de erros nos cálculos e simulações. Também da Tabela 4, para $n=\frac{\theta}{2}$ o vício e REQM do estimador $\hat{\theta}_{EMV}$ são exorbitantes, para $n=\theta$ as propriedades diminuem, porém, seguem altas, já para $n=2\theta$, os valores diminuem ainda mais, chegando em resultados aceitáveis para o REQM e bons para vício, para $\theta=100$ esses valores chegam a zero. A Figura 4 mostra que o REQM tem uma taxa de queda semelhante para cada θ e $n(\theta)$, porém, apenas para $\theta=100$ o REQM vai para zero, oque é comprovado pela Tabela 6, onde para $\theta=5$ e $\theta=10$ o REQM tem uma taxa de queda aproximada, mas para $\theta=100$ a taxa de queda é de 100%.

A Figura 3 nos mostra que para todos os θ , se n é descrito como $n(\theta)$ então as distribuições são aproximadamente iguais, no caso específico de quando θ é ímpar como é o caso dos gráficos de $\theta = 5$, a distribuição se difere um pouco quando $n = \frac{\theta}{2}$ pelo fato de que, obviamente a metade de um número ímpar não pode ser inteiro, oque desafia a lógica para descrever n, logo $n(\theta) = \lceil 2^x \theta \rceil$ para um θ ímpar não é exatamente a metade de θ como quando θ se revela como par. A Tabela 5 mostra que para $n = \frac{\theta}{2}$ o valor de θ é estatisticamente zero com uma amplitude absurda com ênfase para quando $\theta = 100$, quando $n = \theta$ a amplitude diminui porém ainda sim é de certa forma ineficaz, ainda com destaque para $\theta = 100$ que continua com uma amplitude extremamente elevada, quando $n = 2\theta$ os intervalos se tornam mais eficazes, para $\theta = 100$ a amplitude vai para zero.

A figura 5 nos traz visualmente como a $P(Y_n = \theta)$ se comporta com $n(\theta)$ nas condições previamente descritas, nota-se que para $\theta = 1$ a $P(Y_n = \theta) = 1$ para qualquer n como já

explicado, também é possível observar que para cada $n(\theta)$ as probabilidades seguem modelos parecidos e que aparentam se estabilizar para quando $\theta > 5$. Quando $n = 2\theta$ e $\theta > 5$, por exemplo, a $P(Y_n = \theta) \approx 0,86$. A linha que representa $n = \frac{\theta}{2}$ difere um pouco das outras pelo mesmo motivo antes explicado, como para calcular n nessas condições fora usado a função teto, a $P(Y_n = \theta)$ para um θ ímpar será sempre maior que o próximo θ par, logo causando uma pequena oscilação na linha que não se observa nas outras, que se apresentam sempre suaves, para $n = 4\theta$ a $P(Y_n = \theta) \approx 1$ para qualquer θ de um a cem.

$\hat{ heta}_{MM}$ VS $\hat{ heta}_{EMV}$

Os resultados das Tabelas (7), (8) e (9) foram resgatados de um estudo anterior sobre o estimador $\hat{\theta}$ pelo método de momentos para a função de probabilidade de massa $f(x;\theta) = \frac{1}{\theta}\mathbb{1}_{\{1,2,\ldots,\theta\}}(x)$, onde $\theta = 1,2,\ldots$ (Para mais detalhes acesse https://drive.google.com/file/d/1cx6kLNwMN6gHiRf1TVqyI54KXMPt9ZYc/view?usp=sharing).

	$\theta = 5$		$\theta = 10$			$\theta = 100$			
Número de Amostras	Vício	REQM	REQM Teórico	Vício	REQM	REQM Teórico	Vício	REQM	REQM Teórico
50	0.00396	0.42405	0.40000	-0.02820	0.79419	0.81240	0.14212	8.02637	8.16456
100	-0.00572	0.28917	0.28284	-0.00202	0.60130	0.57446	-0.08526	5.73433	5.77321
200	0.00120	0.19777	0.20000	0.01046	0.42170	0.40620	0.02897	4.07050	4.08228
500	0.00085	0.12245	0.12649	0.00567	0.26107	0.25690	0.03497	2.50347	2.58186
1000	0.00012	0.08801	0.08944	0.00114	0.18293	0.18166	-0.03406	1.84123	1.82565

^{*} Onde REQM é a raíz quadrada do Erro Quadrático Médio

Tabela 7: Vício e REQM do Estimador $\hat{\theta}_{MM}$.

	$\theta = 5$		$\theta = 10$		$\theta = 100$		
Número de Amostras	Intervalo	Amplitude	Intervalo	Amplitude	Intervalo	Amplitude	
50	[4.17283; 5.83509]	1.66226	[8.41518; 11.52842]	3.11324	[84.41043; 115.87381]	31.46338	
100	[4.42751; 5.56105]	1.13354	[8.81942; 11.17654]	2.35712	[88.67546; 111.15402]	22.47856	
200	[4.61358; 5.38882]	0.77524	[9.18393; 10.83699]	1.65306	[92.05079; 108.00715]	15.95636	
500	[4.76086; 5.24084]	0.47998	[9.49398; 10.51737]	1.02339	[95.12817; 104.94176]	9.81359	
1000	[4.82763; 5.17261]	0.34498	[9.64259; 10.35969]	0.7171	[96.35713; 103.57476]	7.21763	

Tabela 8: Intervalo de Confiança de 95% para θ_{MM} .

θ	REQM
5	79.246%
10	76.966%
100	77.060%

Tabela 9: Taxa de queda de 50 a 1000 Amostras do REQM do Estimador $\hat{\theta}_{MM}$.

A priori, foi calculado que

$$\hat{\theta}_{MM} \xrightarrow{p} 2\bar{X}_n - 1,$$

enquanto que para $\hat{\theta}_{EMV}$ segue a Equação (1), é fácil ver que para $\hat{\theta}_{MM}$, o cálculo exige mais tempo pelo fato de haver mais passos até o resultado da estimativa.

A distribuição de $\hat{\theta}_{MM}$ converge para uma Normal, uma vez que o estimador está fortemente ligado a \bar{X} , em oposição, para $\hat{\theta}_{EMV}$ o estimador converge para uma distribuição degenerada. $\hat{\theta}_{MM}$ é um estimador não-viesado, em contrapartida o viés de $\hat{\theta}_{EMV}$ é dado pela Equação (4) e como já discutido, tende a subestimador o valor θ . Visto que

$$EQM(\hat{\theta}_{MM}) = \frac{\theta^2 - 1}{3n},$$

torna-se indiscutível o fato de que há maior facilidade em calcular o $EQM(\hat{\theta}_{MM})$ que $EQM(\hat{\theta}_{EMV})$ devido a Equação (7).

Os resultados em comparação das Tabelas (1) e (7), mesmo que $\hat{\theta}_{EMV}$ seja viesado, mostramse absurdamente favoráveis, uma vez que o vício se torna insignificante ao passo que n aumenta, o mesmo ocorre para o REQM. Para as Tabelas (2) e (8), o fenômeno descrito se difere apenas para quando $\theta = 100$ e $n \leq 100$. Pelas Tabelas (3) e (9), a taxa de queda do estimador $EQM(\hat{\theta}_{EMV})$ também se apresenta maior para todos os θ .

5 Conclusões

O estudo analisou o comportamento do estimador $\hat{\theta}_{EMV}$ usando simulações na linguagem R, destacando a importância de definir uma condição de tolerância para evitar erros numéricos. Os resultados mostraram que o vício do estimador é negativo para valores de θ diferentes de zero e se aproxima de zero para amostras maiores (200+). O REQM diminui com o aumento do tamanho da amostra, mas é elevado para $\theta = 100$ em amostras menores (50 e 100).

A distribuição do estimador converge para uma distribuição degenerada com $P(Y_n = \theta) = 1$ para grandes valores de n em relação a θ . Os intervalos de confiança diminuem com amostras maiores, mas são maiores para $\theta = 100$ em amostras menores. A segunda simulação confirmou a consistência dos valores teóricos e simulados de REQM e vício, nos mostrando que quando $n = 2\theta$ o estimador $\hat{\theta}_{EMV}$ já alcança uma grande acertividade nos valores de θ .

Análises visuais mostraram que para θ ímpar, as distribuições diferem ligeiramente devido à natureza fracionária de $\frac{\theta}{2}$. As probabilidades de $P(Y_n = \theta)$ estabilizam para valores maiores de θ quando $n(\theta)$. O estudo validou a robustez do estimador $\hat{\theta}_{EMV}$ e destacou a importância do tamanho da amostra e dos valores extremos para garantir a precisão das estimativas e evitar erros numéricos.

$$\hat{ heta}_{MM}$$
 VS $\hat{ heta}_{EMV}$

Os resultados se apresentam favoráveis para $\hat{\theta}_{EMV}$.

6 Informações Computacionais

- Hardware
 - Processador: i3-9100f, 3.50GHz, 4 núcleos e 4 threads
 - Memória RAM: 8GB, DDR4
- Software

- SO: Windows 11 Pro, Versão 23H2, 64 bits
- Linguagem de Programação: R Versão 4.3.1 R Core Team (2023)
- Ambiente de Desenvolvimento Integrado (IDE): RStudio Versão 2024.4.2.764 Posit team (2024)
- Pacotes:
 - * kableExtra Versão 1.4.0 Zhu (2024)
 - * purrr Versão 1.0.2 Wickham & Henry (2023)
 - * ggplot2 Versão 3.5.0 Wickham (2016)
 - $\ast\,$ cowplot Versão 1.1.3 Wilke (2024)
- Tempo de Execução do código: 35.20 segundos
- Semente solta
- Código utilizado: (https://drive.google.com/file/d/ 19ZSDCFZ-nDtv0KuFsqJHs7H4vcE2gFi6/view?usp=sharing)

Referências Bibliográficas

Morettin, P. A. & Bussab, W. O. (2017), Estatística básica, Saraiva Educação SA.

Posit team (2024), RStudio: Integrated Development Environment for R, Posit Software, PBC, Boston, MA.

URL: http://www.posit.co/

R Core Team (2023), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

URL: https://www.R-project.org/

Wickham, H. (2016), ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York. URL: https://ggplot2.tidyverse.org

Wickham, H. & Henry, L. (2023), purr: Functional Programming Tools. R package version 1.0.2.

URL: https://CRAN.R-project.org/package=purrr

Wikipedia contributors (2024), 'Degenerate distribution — Wikipedia, the free encyclopedia'. [Online; accessed 14-July-2024].

URL: https://en.wikipedia.org/w/index.php?title=Degenerate_distributionoldid = 1202936736

Wilke, C. O. (2024), cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version 1.1.3.

URL: https://CRAN.R-project.org/package=cowplot

Zhu, H. (2024), kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. R package version 1.4.0.

URL: https://CRAN.R-project.org/package=kableExtra