

课程 □ Midterm Exam 1 □ Midterm Exam 1 □ Problem 3

Problem 3

Setup:

As on the previous page, let X_1,\ldots,X_n be i.i.d. with pdf

$$f_{ heta}\left(x
ight)= heta x^{ heta-1}\mathbf{1}\left(0\leq x\leq 1
ight)$$

where $\theta > 0$.

(a)

2/2 points (graded)

Assume we do not actually get to observe X_1, \ldots, X_n . Instead let Y_1, \ldots, Y_n be our observations where $Y_i = \mathbf{1} (X_i \leq 0.5)$. Our goal is to estimate θ based on this new data.

What distribution does $extit{\emph{Y}}_i$ follow?

First, choose the type of the distribution:

- Bernoulli
- Poisson
- Normal
- Exponential

Second, enter the parameter of this distribution in terms of θ . Denote this parameter by m_{θ} . (If the distribution is normal, enter only 1 parameter, the mean).

$$m_{ heta} = egin{bmatrix} 0.5^{ ext{heta}} & \Box & Answer: 1/(2^{ ext{theta}}) \end{bmatrix}$$

STANDARD NOTATION

Solution

Note that Y is distributed over only two values and therefore is a distributed as a Bernoulli random variable. The parameter of the Bernoulli is

$$\mathbf{P}\left[Y=1
ight]=\int_{0}^{1/2} heta x^{ heta-1}dx=rac{1}{2^{ heta}}$$

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(b)

1/1 point (graded)

Write down a statistical model associated to this experiment. Is the parameter $m{ heta}$ identifiable?

No

Solution:

Yes it is identifiable since $2^{-\theta}$, which is the parameter of the Bernoulli, is an injective function of θ .

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(c)

0.0/2.0 points (graded)

Compute the Fisher information $I(\theta)$.

(To answer this question correctly, your answer to part (a) needs to be correct.)

$$I(\theta) = \frac{1}{((1/2)^{\text{theta}}(1-(1/2)^{\text{theta}}))}$$

☐ **Answer:** (ln(2))^2/(2^theta-1)

STANDARD NOTATION

操这里我算错了

Solution:

The log likelihood of an observation $oldsymbol{Y}$ is

$$\ell\left(Y; heta
ight)=\mathbf{1}_{Y=0}\ln\left(1-2^{- heta}
ight)+\mathbf{1}_{Y=1}\ln\left(2^{- heta}
ight)$$

$$=\mathbf{1}_{Y=0}\ln\left(1-2^{-\theta}\right)-\theta\mathbf{1}_{Y=1}\ln\left(2\right).$$

Taking the second derivative one finds that

$$\ell''\left(Y; heta
ight)=\mathbf{1}_{Y=0}rac{2^{ heta}(\ln{(2)})^{2}}{\left(2^{ heta}-1
ight)^{2}}$$

and therefore the Fisher Information is

$$I\left(heta
ight)=\mathbb{E}\left[-\ell''\left(Y; heta
ight)
ight]=rac{\left(\ln\left(2
ight)
ight)^{2}}{2^{ heta}-1}.$$

(Note that by definition, the Fisher Information does not depend on n.)

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Ber (m₀), m₀ =
$$(\frac{1}{2})^{\theta} = 2^{-\theta}$$

Lum₀) = $m_{\theta}^{\times} \cdot ((-m_{\theta})^{1-x})$
 $L(\theta) = 2n \cdot L(m_{\theta}) = -\theta \cdot x \cdot 2n2 + (1-x) \cdot 2n(1-1-\theta)$
 $(1-x) \cdot 2n(1-1-\theta)$
 $E(x-1) = (\frac{1}{2})^{\theta} - 1 = \frac{1-2}{2\theta}$
 $-E(L(\theta)) = \frac{2n(0)}{2\theta-1}$

2.0/2.0 points (graded)

Compute the maximum likelihood estimator $\hat{\boldsymbol{\theta}}$ for $\boldsymbol{\theta}$ in terms of $\overline{Y_n}$.

(Enter $\operatorname{{f barY}}_n$ for $\overline{Y_n}$.)

$$\hat{\boldsymbol{\theta}} = \boxed{\ln(\text{barY}_n)/\ln(1/2)}$$

☐ **Answer:** -ln(barY_n)/ln(2)

STANDARD NOTATION

Solution:

Let n_0 and n_1 denote the number of 0's and 1's among Y_1,\ldots,Y_n . The log-likelihood of this observation is then

$$\ell\left(heta
ight) =n_{0}\ln\left(1-2^{- heta}
ight) -n_{1} heta\ln\left(2
ight) .$$

The MLE $\hat{m{ heta}}$ satisfies

$$\ell'\left(\hat{\theta}\right) = 0$$

which is equivalent to

$$\ell'\left(\hat{ heta}
ight) = rac{n_0 \ln\left(2
ight) 2^{- heta}}{1 - 2^{- heta}} - n_1 \ln\left(2
ight).$$

Rearranging and solving for $\hat{m{ heta}}$ it follows that

$$\hat{ heta}=rac{-\ln{(rac{n_1}{n_0+n_1})}}{\ln{(2)}}=rac{-\ln{ar{Y_n}}}{\ln{(2)}}.$$

Note that $\ell''\left(heta
ight)<0$ so this is the unique maximum.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(e)

2.0/2.0 points (graded)

Compute the method of moments estimator $\tilde{m{ heta}}$ for $m{ heta}$.

(Enter barY_n for $ar{Y_n}$.)

STANDARD NOTATION

Solution:

Note trivially that

$$\mathbb{E}\left[Y_i
ight] = 2^{- heta}$$

and therefore $2^{- ilde{ heta}}=\overline{Y_n}$. Thus

$$ilde{ heta} = rac{-\ln{(\overline{Y_n})}}{\ln{2}}.$$

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(f)

0/1 point (graded)

What is the asymptotic variance $V\left(ilde{ heta}
ight)$ of the method of moments estimator $ilde{ heta}$?

$$V(ilde{ heta}) =$$

(1/2)^theta*(1-(1/2)^theta)

Answer: (2^theta-1)/(ln(2))^2

STANDARD NOTATION

Solution:

Note the the method of moments estimator and the MLE estimator are the same! Thus we can use the Theorem on MLE to determine that the asymptotic variance is

$$I(heta)^{-1} = rac{2^{ heta}-1}{\left(\ln\left(2
ight)
ight)^2}.$$

提交

你已经尝试了1次(总共可以尝试3次)

□ Answers are displayed within the problem

(g)

1.5/3.0 points (graded)

Give a **formula** for the p-value for the test of

$$H_0: heta \leq 1 \quad ext{vs.} \quad H_1: heta > 1$$

based on the asymptotic distribution of $\hat{m{ heta}}$.

To avoid double jeopardy, you may use V for the asymptotic variance $V(\theta_0)$, I for the Fisher information $I(\theta_0)$, hattheta for $\hat{\theta}$, or enter your answer directy without using V or I or hattheta.

(Enter **barY_n** for \overline{Y}_n , **hattheta** for $\hat{\theta}$. If applicable, enter **Phi(z)** for the cdf $\Phi(z)$ of a normal variable Z, **q(alpha)** for the quantile q_{α} for any numerical value α . Recall the convention in this course that $\mathbf{P}(Z \leq q_{\alpha}) = 1 - \alpha$ for $Z \sim \mathcal{N}(0,1)$.)

p-value: sqrt(n/V)*(hattheta -1)

☐ **Answer:** 1-Phi(sqrt(n/V)*(hattheta-1))

Assume n=50, and $\overline{Y_n}=0.46.$ Will you reject the null hypothesis at level lpha=5%?

 \circ Yes, reject the null hypothesis at level lpha=5%.

 ullet No, cannot reject the null hypothesis at level lpha=5%. \Box

Correction Note: In an earlier version of this problem, the input instruction was: "To avoid double jeopardy, you may use V for the appropriate estimator of the asymptotic variance $V(\hat{\theta})$ of the MLE $\hat{\theta}$, I for the Fisher information $I(\hat{\theta})$ evaluated at $\hat{\theta}$, hattheta for $\hat{\theta}$, or enter your answer directy without using V or I or hattheta."

STANDARD NOTATION

Solution:

Define the test statistic for this one-sided test as

$$T_n \; = \; \sqrt{rac{n}{V}} \left(\hat{ heta} - 1
ight)$$

CLT: $P(\sqrt{n}\frac{\hat{\theta}-E(\theta)}{\sigma}=q_a)=a$ $|\hat{R}\lambda E\theta|: P(\sqrt{n}\frac{\hat{\theta}-1}{\sigma}=\sqrt{n}(\hat{\theta}-1)=q_a=T_n)=a$ $|\hat{R}\lambda E\theta|: P=1-\Phi(\sqrt{n}(\hat{\theta}-1))=q_a=T_n)=a$ $|\hat{R}\lambda E\theta|: P=1-\Phi(\sqrt{n}(\hat{\theta}-1))=q_a=T_n$ $|\hat{R}\lambda E\theta|: P=1-\Phi(\sqrt{n}(\hat{\theta}-1))=q_a=T_n$ $|\hat{R}\lambda E\theta|: P=1-\Phi(\sqrt{n}(\hat{\theta}-1))=q_a=T_n$ $|\hat{R}\lambda E\theta|: P=1-\Phi(\sqrt{n}(\hat{\theta}-1))=q_a=T_n$ $|\hat{R}\lambda E\theta|: P=1-\Phi(\hat{\theta}-1)=q_a=T_n$ $|\hat{R}\lambda E$

where $V=V\left(1\right)$ is the asymptotic variance evaluated at the boundary of the null hypothesis. Recall the p-value is the smallest level at which this test will reject H_0 . Hence

$$p=1-\Phi\left(\sqrt{rac{n}{V\left(1
ight)}}\left(\hat{ heta}-1
ight)
ight)$$

If $ar{Y_n}=.46$ the MLE is

$$\hat{ heta}=rac{-\ln{(.46)}}{\ln{(2)}}=1.12.$$

The asymptotic variance of $ar{ heta}$ given heta=1 is

$$V(1) \, = \, rac{2^{ heta} - 1}{\left(\ln{(2)}
ight)^2} = 2.08.$$

Therefore the desired p value is

$$p=\mathbf{P}\left(Z\geq\sqrt{n}(2.08)^{rac{-1}{2}}\left(ar{ heta}-1
ight)
ight)$$
 $=1-\mathbf{P}\left(Z\geq.59
ight)$ $=.2776$

where Z is distributed as an \mathcal{N} (0,1). Since p>0.05, we fail to reject the null hypothesis at level lpha=5%.

提交 你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Error and Bug Reports/Technical Issues

主题: Midterm Exam 1:Midterm Exam 1 / Problem 3

显示讨论