Tutorial 1 (with solution)

Sets

Question 1: Inclusion & Exclusion

■ What is the formula for $|A \cup B \cup C|$? page 1-12

a)
$$|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

b)
$$|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + 3|A \cap B \cap C|$$

c)
$$|A| + |B| + |C| - 2|A \cap B| - 2|A \cap C| - 2|B \cap C| + 3|A \cap B \cap C|$$

d)
$$|A| + |B| + |C| - 3|A \cap B| - 3|A \cap C| - 3|B \cap C| + 3|A \cap B \cap C|$$

Q.1 Solution

$$|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

Q.1 Extension

Inclusion–exclusion principle

For n finite sets $A_1, A_2, ..., A_n$, the cardinality of the union of n sets:

$$|A_1 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|$$

- i. Include the cardinalities of *n* sets.
- ii. Exclude the cardinalities of the pairwise intersections.
- iii. Include the cardinalities of the triple-wise intersections.
- iv. Exclude the cardinalities of the quadruple-wise intersections.
- v. Continue, until the cardinality of the n-tuple-wise intersection is included (if n is odd) or excluded (n even).

Question 2: Subset Relationship

```
Let A = \{n \in \mathbb{Z} \mid n = 5r \text{ for some integer } r\}
and B = \{m \in \mathbb{Z} \mid m = 20s \text{ for some integer } s\}.
```

i. Is $A \subseteq B$?

page 1-20

ii. Is $B \subseteq A$?

- a) Both are true.
- b) Both are false.
- c) (i) is true while (ii) is false
- d) (i) is false while (ii) is true

Q.2 Solution

- i. No.
 - This can be proved by a counter-example.
 - For example, $5 \in A$ (since 5 = 5r, where r = 1).
 - But 5 cannot be written as 20s, where s is an integer.
 - So, 5 is not an element of *B*.
 - \bigcirc Therefore, $A \nsubseteq B$.
- ii. Yes.
 - Let $n \in B$, so n = 20s, where s is an integer.
 - Since n = 20s = 5(4s), where 4s is an integer, $n \in A$.
 - \bigcirc Therefore, $B \subseteq A$.

Q.3 Cartesian Product

 \square Consider two nonempty sets A and B. page 1-14

 \square Is it true that $A \times B \neq B \times A$?

- a) Yes
- b) No
- c) Cannot be determined

Justify your answer.

Q.3 Solution

☐ It cannot be determined.

 \square If A = B, then $A \times B = B \times A$.

- \square If $A \neq B$, then $A \times B \neq B \times A$.
 - For example, $A = \{a\}$ and $B = \{1, 2\}$.
 - \circ $A \times B = \{(a, 1), (a, 2)\}.$
 - \circ $B \times A = \{(1, a), (2, a)\}.$

Question 4: Union and Intersection

Let
$$R_j = \left\{ x \in \mathbb{R} \mid 1 \le x \le 1 + \frac{1}{j} \right\} = \left[1, 1 + \frac{1}{j} \right].$$

- i. What is $\bigcup_{j=1}^4 R_j$?
- ii. What is $\bigcap_{j=1}^4 R_j$?
- iii. Are they mutually disjoint? page 1-11
- iv. What is $\bigcup_{j=1}^{\infty} R_j$?
- v. What is $\bigcap_{j=1}^{\infty} R_j$?

Q.4 Solution

```
i. [1, 2]
```

ii.
$$\left[1, 1 + \frac{1}{4}\right]$$

- iii. No, because 1 is in all the four sets.
- iv. [1, 2]
- v. {1}