La Web Semántica como plataforma para sistemas de recomendación

Guido Zuccarelli

6 de noviembre de 2014

Índice general

1.	Intr	oducción 3
	1.1.	Evaluaciones entrecruzadas
	1.2.	Sistemas de Recomendación
	1.3.	La web semántica
	1.4.	Reviews en la web semántica 6
	1.5.	Organización
2.	Cas	o de Estudio 9
3.	Enfo	oque General 10
	3.1.	Aplicaciones en la Web Semantica
	3.2.	Principios
		3.2.1. rdf
		3.2.2. rdfs
		3.2.3. sparql
		3.2.4. semantichtml
		3.2.5. extractores
	3.3.	Tecnologías
	3.4.	Estrategia propuesta
	3.5.	Selección de vocabularios
		3.5.1. lov
		3.5.2. vocabcc
	3.6.	Recolección
		3.6.1. Búsqueda
		3.6.2. Obtención
	3.7.	Extracción y almacenaje
		3.7.1. Extracción
		3.7.2. almacenje
	3.8.	Evaluación de Calidad de los Datos
	3.9.	Curado de los Datos
	3.10.	Integración de los datos
		Publicación del Dataset Curado
	3 19	Explotación del Dataset

4. Selección de Vocabularios	22
4.0.1. Review Ontology	22
4.0.2. hReview	23
4.0.3. dataVocabulary	25
4.0.4. Schema.org	25
5. Recolección de Datos	28
6. Extracción y Almacenamiento de los Datos	30
7. Evaluación de Calidad de los Datos	33
8. Curado de los Datos	34
9. Integración de los Datos	35
10.Publicación del Dataset Curado	36
11.Explotación del Dataset	37
12.Conclusiones y trabajo futuro	38
13.Bibliografía	39
A. Publicaciones	41

Introducción

1.1. Evaluaciones entrecruzadas

Llamaremos ítem, a un elemento del mundo real que es aprovechado por las personas, dicho ítem puede ser, un objeto, un servicio, una idea, un programa, etc. Además, debería poder ser abstraído a un modelo representado por una computadora, de manera tal, que esa representación describa con precisamente a qué se referie ante la interpretación del lector.

Para ello, el modelo del ítem contendrá un conjunto de atributos que lo describen. Algunos más importantes que otros.

Por ejemplo, imaginemos que se debe representar una bicicleta mediante un conjunto de pares atributo; valor, tendríamos algo como esto.

Tipo: Bicicleta Sexo: Unisex Talle: 51

Cuadro-Material: Aluminio

Cuadro-color: Rojo Cuadro-Tipo: Ruta

Horquilla-Material: Fibra de carbono

Horquilla-Color: Rojo Asiento-tipo: Adamo Asiento-Color: Blanco

La cantidad de atributos que pueden utilizarse para describir el ítem puede ampliarse prácticamente hasta el cansancio.

Se pueden optar también por una representación como ésta

Tipo: Bicicleta Talle: 51 Marca: Merida Modelo: Reacto 500

Puede aprovecharse el hecho de que es muy probable que ya existan definiciones del ítem que intentamos describir, por lo que si se utilizan sólo los atrib-

utos que lo identifican, será suficiente para que el lector tenga la interpretación correcta del mismo.

Cada ítem es de alguna manera utilizado por uno o más usuarios. Y cada usuario puede de la misma manera ser representado en la computadora mediante pares de atributo; valor. Y al igual que los ítems algunos atributos servirán para identificar al usuario.

Esta relación de uso entre usuario e ítem, contiene un grado de conformidad entre el primero y el segundo, si el ítem cumplió o no con las expectativas del usuario debería poder modelarse también para ser representado computacionalmente.

Definiremos a una reseña (de aquí en adelante review) representación mediante la computadora, de la medida de conformidad con respecto a dicha relación entre usuario e ítem.

El objetivo de un review, es que un usuario pueda reflejar el sentimiento que le generó utilizar el ítem e informarlo a otros usuarios.

También los reviews dispondrán de un conjunto de atributos de los cuales algunos serán indispensables y otros que enriquecerán no sólo su valor intrínseco, sino también su utilidad para el contexto que será planteado.

Imaginemos un usuario que realiza un review sobre la bicicleta, podría generar el siguiente review:

Puntuación: 4

Titulo: "Buena opción"

Texto: "Liviana y cómoda, pero un poco rígida para doblar."

Fecha: 15/10/2012

Al terminar de leer esta sección, el lector debe entender a que te referís con reviews (en términos generales), que muchas de ellas son publicadas en la web en redes sociales, en sitios de productos etc, y que sirven para ??. Podés agregar algunos ejemplos e incluso imágenes. No queda claro por que en el titulo de la sección dice "entrecruzadas", ¿es importante o fue solo una elección al azar?. Para que este se conecte con el que sigue, podés dejar picando algo como "muchos han intentado procesar automáticamente las opiniones de los usuarios para ... pero eso es muy difícil porque..."

1.2. Sistemas de Recomendación

Los sistemas de recomendación son herramientas de software que, en base a un conjunto de ítems (películas, libros, productos, hoteles, etc) e información sobre estos, y un conjunto de usuarios, intentan sugerir ítems apropiados a dichos usuarios. Los sistemas de recomendación se han vuelto una de las herramientas más poderosas para múltiples tipos de aplicaciones web, como comercio electrónico o páginas de noticias.

El desarrollo de estas herramientas, involucra conocimiento en múltiples áreas, como inteligencia artificial, minería de datos, estadística, etc.

Los sistemas de recomendación poseen dos enfoques, el de filtrado colaborativo, y el basado en contenido.

Los sistemas de recomendación basados en contenido utilizan un conjunto de informaciones y descripciones de los ítems previamente valorados por un usuario para poder construir un perfil del mismo de manera tal de poder determinar, cuales son sus intereses.

Una vez construido el perfil, pueden procesarse las características de distintos ítems que potencialmente pueden ser recomendados a dicho usuario para determinar si alguno de ellos va acorde al perfil.

Los sistemas de recomendación de filtrado colaborativo utilizan la información histórica de cada usuario para intentar encontrar y generar grupos de usuarios con gustos similares. Para lograrlo se compara cada usuario con otro observando qué ítems evaluaron y qué puntajes fueron otorgados.

De esta forma, si se requiere predecir el interés de un usuario en un ítem, se podrá buscar en dicho grupo de usuarios con gustos similares e inspeccionar aquellos usuarios que hayan realizado un review sobre el ítem.

Los sistemas de recomendación de filtrado colaborativo tienen una eficacia superior a los basados en contenido, pero cuentan con una gran desventaja, no permiten predecir intereses para aquellos ítems que aún no poseen evualuaciones, o también para aquellos usuarios que no han evualuado ningún ítem. A esto se lo llama "arranque en frío".

1.3. La web semántica

En sus comienzos en los 90, la web podía verse como un conjunto de sitios web que ofrecían una colección de documentos web interconectados mediante la hipermedia, con el objetivo de comunicar información a los usuarios. El contenido de esos documentos sólo era generado por el mismo creador y publicador del documento, y los usuarios se limitaban a consumirlo. Por otro lado, era a su vez estático, es decir, se publicaba en la misma forma que se almacenaba y no cambiaba.

Hacia fines de los 90 los sitios web comenzaron a implementar una serie de herramientas (que si bien ya se encontraban disponibles anteriormente no se utilizaban por un problema de performance) que permitieron a los usuarios finalmente participar de la producción del contenido web. Lo que produjo notorios

cambios en cuanto a la cantidad de información disponible y proveyó diferentes formas de uso de la web (blogs, redes sociales, canales rss, etc). Más adelante ante la apreciación del pasaje de web estática a una web dinámica, se acuño a esa actual web como web 2.0 y retrónimamente 1.0 a la anterior.

Ese cambio provocó un cambio en el tamaño de la web, que se volvió inmenzamente grande, y llevó a la necesidad de implementar tecnologías que ayuden al aprovechamiento de esa cantidad de información. Se comenzó entonces a utilizar una serie de frameworks y estándares que permitieron enriquecer (mediante metadatos semánticos y ontológicos dentor de los estándares de la W3C) los datos contenidos en los documentos de manera tal que éstos puedan ser consumidos, interpretados y utilizados directamente no sólo por las personas, sino también por las computadoras. Esto generó que los datos también puedan ser relacionados entre sí, de la misma manera que los documentos son interconectados formando una web de documentos, los datos interconectados forman una web de datos parelela. Todo este conjunto de actividades frameworks y herramientas forman la "Web semántica" que es el puntapié incial para una web mucho más interoperable, lo que permite facilidades para el uso de la web por parte de las aplicaciones y da lugar a otro paso en la evolución de la web, la web 3.0. La Web Semántica promete facilitar el desarrollo de la web social y la inteligencia colectiva, a través de mecanismos de clasificación, relación y descripción del contenido de la información publicada mejorando su interoperabilidad. Promete también mejorar la recolección, agregación e integración de datos específicos mediante el uso de agentes de búsqueda automáticos que aprovechan las ventajas.

Al terminar de leer esta sección, el lector debe entender que es la web semántica y a que apunta. Si dejaste picando el tema de automatización en el párrafo anterior, acá se va a imaginar porque hablás de ws. Habla muy bremente de tripletas y meciona RDF. También mencioná linked open data para darle una idea de que la web semantica es una web de datos interconectada. Podés tomar lo que ya escribiste en la propuesta. Ejemplifica con dbpedia o algo asi... En un capitulo mas adelante vas a entrar en detalle en web semantica, rdf, etc. Acá contás solo lo suficiente para que se entienda lo que vas a proponer en la próxima sección

1.4. Reviews en la web semántica

La web 2.0 dio la posibilidad a los usuarios consumidores de la web de generar y publicar contenido en la misma, lo cual cumple con los requerimientos de una plataforma para reviews. Proporciona un entorno para crearlos y publicarlos, lo cual en el caso es una tarea muy sensilla. Pero la dificultad de encontrarlos y explotarlos parece ser inversamente proporcional a generarlos. Dado que a mayor facilidad de publicar contenido en la web, mayor se vuelve la inmensidad de la misma y mayor se vuelve la dificultad de encontrar algo dentro de ella.

Veamos dos ejemplos que requieren encontrar reviews en la web:

Imagínense que son ingenieros de Mérida y lanzaron al mercado la bicicleta Reacto 500. Como buenos ingenieros necesitan conocer qué opinan sus clientes, por lo que buscarán reviews en algún motor de búsqueda y luego leerán uno por uno cada review con el objetivo de resumir las opiniones. Humanamente esta tarea demandará mucho tiempo y con un límite corto de cantidad de reviews. Ahora peor aún, imagínense que necesitan saber que opina la gente de determinada región (por ejemplo el norte de europa), la tarea de buscar los reviews necesarios se volvería aún más complicada. Con la posibilidad de contar con una web en la cual los datos son interpretados por las aplicaciones de software y estos a su vez están interconectados, podría crearse una aplicación que pueda automáticamente buscar, clasificar y procesar los reviews para generar automáticamente el resumen.

Ahora bien, si en lugar de requerir reviews de un ítem en particular, se necesitan reviews para una aplicación que recomiende ítems a usuarios, ya no sería una tarea realizable humanamente. Para ello haría falta una aplicación que haga crawling en la web y de alguna manera identifique reviews y a su vez identifique el ítem al cual el review hace referencia. Parece algo muy difícil de lograr, salvo que se trabaje sobre sitios conocidos con documentos estructuralmente dominados los cuales se pueda recorrer el DOM automáticamente y acceder a los reviews. De nuevo, la Web Semántica promote solucionar este problema, con el uso de metadatos que dan información sobre los datos, haciendo que una aplicación pueda fácilmente identificar reviews y navegar por la hipermedia de los datos para conseguir información sobre el ítem y usuario referenciados.

Acá es donde presentas el problema a resolver. Ya contaste que son los reviews y por que alguien querría integrarlos. Ya contaste que es la web semántica y linked open data. Ahora tenés que contar que ha habido iniciativas para darle semántica a los reviews y que existen datos; ahora hay una posibilidad de aprovechar esa información. Y ahí decís algo como lo que dijiste al final de la propuesta: El objetivo principal de esta tesis es evaluar la viabilidad, y entender los desafíos de la utilización de la información contenida en la web semántica en la construcción de sistemas de recomendación. Para eso, y con foco en el caso particular de opiniones de usuarios sobre distintos tipos de recursos se buscará: capturar, extraer, validar calidad, curar, integrar, publicar y explotar los datos disponibles.

1.5. Organización

ya saben lo que vas a contar; acá les das una idea de como te vas a organizar para contarlo - puede ser algo como lo que está a continuación. Para el caso de estudio podés tomar el texto que escribimos en el articulo

El capítulo 2 presenta una aplicación de ejemplo que muestra claramente el problema que se quiere resolver y que servirá como referencia a lo largo de esta tesis. El capítulo 3 introduce los conceptos de Web Semantica, sus principios y tecnologías y presenta la estrategia de solución en términos generales. Los capítulos 4 a 11 discuten en detalle cada uno de pasos de la estrategia elegida. Finalmente, el capítulo 12 presenta los resultados observados, saca conclusiones al respecto, y plantea trabajo futuro. El anexo 13 presenta una publicación que fue resultado del trabajo efectuado en este trabajo de tesis.

Caso de Estudio

Enfoque General

Lo que vamos a construir es un caso de aplicación de la web semantica....

3.1. Aplicaciones en la Web Semantica

3.2. Principios

Dar historia (muy breve), definiciones (RDF, tripletas, owl, inferencia, ..) Escribir a medida que lo necesitas-.

3.2.1. rdf

Resource Description Framework (RDF) Es una familia de especificaciones de WC3 diseñada para modelar datos intercambiables en la web. Consta de expresiones hechas por tripletas. Cada tripleta es considerada una sentencia para este lenguaje. Una tripleta es un conjunto de un valor de cada uno de los siguientes tipos:

Recurso (sujeto) - Todo aquello descripto por RDF se lo denomina recurso, este último podría ser por ejemplo una página web entera (por ejemplo un documento HTML "http://www.w3.org/Overview.html") o una parte de ella. Un recurso puede ser también un objeto que no se puede acceder directamente a través de la Web; por ejemplo un libro impreso. Los recursos son siempre nombrados por las URIs más identificadores de anclaje opcionales (ver [URI]). Cualquier cosa puede tener un URI; la extensibilidad de URIs permite la introducción de identificadores para cualquier entidad imaginable.

Propiedad (predicado) - Una propiedad es un aspecto específico, característica, atributo o relación se utiliza para describir un recurso. Cada propiedad tiene un significado específico, define sus valores permitidos, los tipos de recursos que se puede describir, y su relación con otras propiedades.

Objecto - puede ser otro recurso o puede ser un literal; es decir, un recurso (especificado por un URI) o una cadena simple o de otro tipo de datos primitivo

definido por XML. En términos RDF, un literal puede tener contenido que es el formato XML, pero no se evalúa aún más por el procesador de RDF.

Esta estructura forma una vinculación dirigida de un gráfico etiquetado, donde las aristas representan el enlace entre dos recursos (propiedad), representados por los nodos del grafo.

Su representación puede ser asociada tanto a un modelo entidad-relación como a un diagrama de clases de objetos. Las Propiedades RDF pueden ser considerados como atributos de los recursos y en este sentido corresponden a pares atributo-valor tradicionales. Las Propiedades RDF también representan las relaciones entre los recursos y un modelo RDF, por tanto, pueden parecerse a los de un diagrama entidad-relación. En la terminología de diseño orientado a objetos, los recursos corresponden a los objetos y propiedades corresponden a las variables de instancia.

3.2.2. rdfs

RDF Schema (RDFS)

Es una extensión semántica de RDF, que provee elementos básicos para la descripción de ontologías (también llamadas vocabularios RDF) con el objetivo de estructurar los recursos RDF. Proporciona la manera de definir udefinir las clases y las propiedades específicas de la aplicación en RDF. RDFS no proporciona las clases sino que proporciona el marco necesario para poder definirlas.

Clases en RDFS se parecen mucho a las clases en lenguajes orientados a objetos. Esto permite que los recursos se definan como instancias de clases y subclases de las clases.

Elementos de RDFS

Básicos

rdfs:Class permite declarar recursos como clases para otros recursos.

Atravez de la propiedad rdf:type, se puede asignar un tipo al recurso, un rucurso de tipo rdfs:Class puede entonces ser tipo de otro recurso. Por ejemplo, podemos definir el recurso Auto como un rdfs:Class, y a su vez podemos definir el recurso Volkswagen Gol con la propiedad rdf:type y siendo el objeto de esa propiedad el recurso Auto, entonces el tipo de Volkswagen Gol será auto.

La defición de rdfs:Class es recursiva: rdfs:Class es la rdfs:Class de cualquier rdfs:Class.

rdfs:Resource es la clase a la que pertenecen todos los recursos.

rdfs:Literal es la clase de todos los valores literales, cadenas y enteros.

rdfs:Datatype es la clase que abarca los tipos de datos definidos en el modelo RDF.

rdfs:Property es la clase que abarca las propiedades.

Definen relaciones

rdfs:subClassOf es una instancia de rdf:Property (osea una propiedad) que permite definir jerarquías. Relaciona una clase con sus superclases.

rdfs:subPropertyOf es una instancia de rdf:Property que permite definir jerarquías de propiedades.

Restricciones de Propiedades

rdfs:domain es una instancia de rdf:Property que especifica el dominio de una propiedad P. Esto es, la clase de los recursos que aparecen como sujetos en las tripletas donde P es predicado.

rdfs:range es una instancia de rdf:Property que especifica el rango de una propiedad P. Esto es, la clase de los recursos que aparecen como objetos en las tripletas donde P es predicado.

3.2.3. sparql

SPARQL

Se trata de un lenguaje estandarizado de consulta de grafos RDF. SPAR-QL se puede utilizar para expresar consultas que permiten interrogar diversas fuentes de datos (si es que los datos fueron almacenados de forma nativa como RDF o fueron definidos mediante vistas a RDF a travez de algún middleware). Tiene capacidades para la consulta de los patrones obligatorios y opciones de grafo, junto con sus conjunciones y disyunciones. SPARQL también soporta la ampliación o restricción del ámbito de las consultas indicando los grafos sobre los que opera (grafos con nombre). Los resultados de las consultas SPARQL pueden ser conjuntos de resultados o grafos RDF.

Términos de conjuntos de colecciones de datos semánticos

Model: Colección de sentencias.

DataSource: Colección de Modelos. Siendo uno de ellos el modelo por defecto y el resto modelos con nombre. El Datasource es de lectura y escritura, por lo que se pueden agregar tripletas.

Dataset: Lo mismo que el DataSource pero estático, por lo que es de solo lectura.

Graph: Colección de tripletas. Cualquier modelo puede ser transformado a un grafo, y así tener una representación más cercana de RDF.

DatasetGraph: Un contenedor de Grafos, similar al DataSource (También de lectura y escritura) que provee una estructura para un grafo por defecto y grafos con nombre.

3.2.4. semantichtml

HTML semántico

El uso y participación en la Web Semántica a travez de documentos RDF no es atractivo para la mayoría, porque no parece proveer un beneficio directo, ya que esto implica, aprender un lenguaje nuevo para generar documentos que sólo le será de utilidad a usuarios con un grado de conocimiento muy alto.

Para resolver este problema, existen etiquetas de marcado en HTML que le proporcionan información semántica al documento, que copmo se verá más adelante puede ser extraída para generar documentos RDF. Existen distintos tipos:

Microdatos: Son un grupo de pares nombre-valor anidados dentro del documento, en paralelo con el contenido existente. Dichos grupo son también llama-

dos ítems y cada par nombre-valor es la propiedad. Los atributos más utilizados son:

Para crear un ítem, se utiliza el atributo de HTML "itemscope".

Para crear una propiedad se utiliza el atributo "itemprop".

Luego para definir los valores, se utilizan según sea una URL o un String los siguientes atributos: "a" con "href", "src" o "img" para difinir un valor URL "value" para un String.

También se le puede establecer el tipo a un ítem mediante el atributo "itemtype"

Microformatos: Nacen con la intención acercar más personas al uso de la web semántica a travez de una forma sensilla de utilizar una serie de atributos de las etiquetas de XHTML:

class: especifica el nombre de la clase

rel: Se utiliza en los enlaces para indicar relaciones en los documentos.

rev: Igual al rev pero en sentido inverso.

Con el uso del atributo class se puede entonces especificar un microformato a utilizar. Existen muchos tipos como por ejemplo: hCard (para describir personas), hreview (para describir reviews), geo (para describir posiciones), etc. Cada uno de ellos con distintas propiedades.

RDF-a: Permite directamente embeber tripletas (sujeto-predicado-objeto) utilizando namespaces de XML. Modela la información en forma de grafo, a diferencia de microdatos y microformatos que lo hacen en forma de árbol, lo que hace que el mapeo a RDF sea claro, ya que en los otros casos puede ser problemático. También tiene la opción de darle tipo a los literales. Como contrapartida tiene la desventaja de ser mucho más complejo de utilizar.

3.2.5. extractores

Extratores

Son herramientas que permiten extraer tripletas de los lenguajes de metadatos semánticos embebidos en HTML vistos anteriormente. Utilizan estándares como GRDDL, parseando todo el documento HTML y buscan sentencias para traducir a RDF y generar un nuevo documento que contiene sólo las tripletas de información semántica. Muchas veces (sobre todo con microformatos) los extractores tienen que tomar decisiones sobre cómo traducir a RDF, por lo que un mismo documento HTML puede ser extraído de distintas maneras según el extractor. Esto no ocurre con RDFa, ya que la equivalencia a RDF es mucho más clara.

3.3. Tecnologías

 $\label{thm:constraints} \mbox{Triplestores, frameworks, extractores, crawlers, motores de busqueda semanticos...}$

3.4. Estrategia propuesta

Con el fin de crear una aplicación que satisfaga los requerimientos mensionados anteriormente, se debe encontrar un procedimiento que incluya desde obtener los datos relevantes de la web hasta llevarlos a un estado que permita una explotación satisfactoria.

El procedimiento debería incluir los siguientes pasos

Selección de vocabularios Tanto la recolección como la publicación de datos en la web semántica involucra la elección del o de los vocabulario/s que mejor modelen el dominio de problema, con la excepción que para su publicación existe la posibilidad de desarrollar uno propio que se ajuste correctamente en caso de que no se encuentre uno existente.

```
Recolección ....?

Extracción y almacenaje de los datos ??

Evaluación de Calidad de los Datos ???

Curado de los Datos ???

Integración de los datos ??

Publicación del Dataset Curado ??

Explotación del Dataset ??
```

acá sería bueno incluir un diagrama que muestre el pipeline. En la lista de arriba con un párrafo se explica cada paso. Luego, en las secciones que sigue se analiza mas cada paso, pero se lo plantea como un problema.. se analizan los retos; entonces los capítulos 4 a 9, explican como los resolviste. Alternativamente, se puede hablar menos acá, solo lo suficiente para que se entienda la estrategia general, y luego en los capítulos 4 a 9 se analiza el problema en detalle y se propone la solución. Con esta ultima forma, todo lo que se refiere a los vocabularios quedaría en el capitulo 4 y no acá. Puede ser mejor.

3.5. Selección de vocabularios

Seleccionar un vocabulario implica analizar varios aspectos del mismo, no sólo su definición e implementación, sino también el uso práctico dado por sus usuarios. En primer lugar se debe comprobar que los nombres de las propiedades que posee sean correctamente auto-explicativas. Supongamos por ejemplo que existe un ítem con un rating agregado modelado por una ontología que posee las siguientes propiedades:

- 1. minrating
- 2. ratingValue
- 3. countRating

Las dos últimas propiedades resultan fácilmente identificables, ratingValue se trata del promedio de puntaje, y ratingCount la cantidad de puntajes que le fueron otorgados, pero la propiedad minRating podría generar distintas formas de interpretación, alguien podría suponer que se trata del valor mínimo que fue adquirido por un usuario, o el valor mínimo que un usuario puede otorgar. Y muchas veces la documentación de la ontología (si es que existe) no es suficiente.

Explicar que en realidad uno no elige "un" vocabulario sino que la información podría expresarse combinando términos de varios vocabularios. Dejar claro que no es lo mismo elegir el/los vocabulario/s en el que uno va a publicar que decidir cuales son todos los vocabularios que uno va a considerar al buscar información publicada por otros - dar un ejemplo

Este párrafo que sigue no se entiende; aclarar que sería cubrir las necesidades mínimas de los casos de uso.

Luego se deberá analizar si existen las propiedades para cubrir las necesidades mínimas de los casos de uso.

Y por último se debería intentar buscar ejemplos reales que muestren el uso que le dieron los usuarios a la ontología, para determinar qué propiedades están incorrectamente interpretadas o también para los casos donde las propiedades que se encuentren en desuso.

Con estas precauciones en mente se puede emprender la búsqueda, que podría tener como comienzo búsquedas en search engines. Existen dos buscadores específicos para esta tarea:

3.5.1. lov

Linked Open Vocabulary (LOV)

Proporciona una plataforma técnica de búsqueda y evaluación de calidad sobre un dataset extraído de linked data cloud que contiene descripciones de vocabularios RDFS y ontologías OWL. Esas descripciones están en forma de metadatos y pueden ser generados tanto por los autores de los vocabularios como por curadores de LOV. Posee además de la búsqueda las funciones de estadística o sugerencia.

Actualmente el dataset está integrado por 475 namespaces distintos que contienen una media de 10 clases y 20 propiedades, siendo schema.org el más grande de ellos.

3.5.2. vocabcc

Vocab.cc

Vocabce es un proyecto opensource que permite a los desarolladores de RDF realizar búsquedas de vocabularios de Linked Data.

Para facilitar la decisión de seleccionar un vocabulario deseado, proporciona además información estadística de cada uno sobre el dataset Billon Triple Challenge (BTCD). Esta información incluye el número de apariciones globales de la URI dada en el BTCD, así como el número de documentos dentro de la BTCD, que contiene el URI dado. Estos números permiten una clasificación de propiedades y clases, respectivamente, con respecto a su uso. También se proporciona información acerca de la posición de una URI dada en estos rankings.

Los desarrolladores pueden buscar las URIs con queries arbitrarias o búsquedas de URIs específicos (prefijos comunes se resuelven automáticamente con datos de prefix.cc).

Para permitir una fácil integración de la funcionalidad vocab.cc, toda la información está disponible como RDF y se puede acceder como Servicio Vinculado.

Una vez definidos el/los vocabularios a utilizar, se debe proceder a recuperar información disponible en la web; a eso llamamos "Recolección"

3.6. Recolección

Como se mencionó antes, la web contiene grandes cantidades de documentos publicados con información semántica. Pero la tarea de encontrarlos, con el agregado de que sólo una pequeña porción de ellos será relevante para los requerimientos no es trivial en lo absoluto debido a la inmensidad del universo en el que se encuentran. La forma de llevar a cabo este objetivo está atada al hardware disponible, tanto para almacenar los datos, como para el tiempo que va a emplear la ejecución de esta tarea.

Dado que las bases de datos semánticas sólo almacenan información en forma de tripletas o cuadrupletas, los documentos encontrados deberán someterse a un proceso de extracción que seleccione las sentencias HTML y las convierta a alguno de los lenguajes que soportan tripletas o cuadrupletas. Para esto existen múltiples herramientas.

Una vez encontrados, descargados y transformados los documentos HTML a documentos semánticos puede construirse la base de datos semántica con la información recolectada.

Estos son los cuatro pasos necesarios para lograr tener el dataset semántico con el cual se puede empezar a trabajar. Cada uno de ellos posee distintas alternativas para su realización, algunas se describirán a continuación

3.6.1. Búsqueda

OJO: ESTO ESTABA EN EL ARCHIVO busqueda.tex no en el opciones-Busqueda

La forma de ejecución de esta tarea dependerá de algunos aspectos:

Recursos de hardware disponibles

Cantidad y calidad de la información requerida

El grado de atemporalidad mínima tolerable en los datos

El primer paso para realizar la recolección es intentar responder la siguiente pregunta: ¿Dónde encuentro la informanción?

Una vez seleccionados los vocabularios, se necesitará obtener fuentes de datos que contengan sus datos publicados en esos vocabularios.

Para lograrlo se podrá utilizar como punto de partida:

Sitios indexadores: Son algunos sitios que disponen de un dataset muy grande procesado con documentos indexados, que ofrecen consultar dicho dataset mediante servicios web. Generalmente proveen una API donde se pueden consultar los datos mediante distintos grados de flexibilidad.

Sindice, LOD cloud cache y UriBurner son algunos ejemplos de estos sitios. Se puede utilizar entocnes, los servicios web a fin de obtener una lista de URL que se cree que tendrán la información necesaria.

Sindice: Es una herramienta creada en conjunto por la Universidad de Deri, Fondazione Bruno Kessler y Openlink Software que propociona múltiples tipos de API ofreciendo acceso a su dataset de la web de datos. Este dataset contiene información recolectada de la web en múltiples formatos de la web semántica y puede ser accedido a travez de un search engine, una API restful o un SPARQL endpoint. En la actualidad posee indexados 708.26 millones de documentos.

Link Open Data Cloud Cache (LOD): Al igual que sindice proporciona acceso a un dataset recolectado de la web de datos pero de una manera mucho más acotada. Se dispone de un text search (funciona como un search engine) o de un SPARQL Endpoint bastante restringido. Sólo se puede acceder al dataset entero mediante federated queries, en caso de querer buscar sobre todo el dataset, el endpoint limita la consulta sólo a una parte del mismo. Tambien posee muchas restricciones respecto a los time outs, por lo que las consultas no pueden ser muy flexibles. Para poder disponer de la funcionalidad completa del endpoint y así poder aprovechar tanto el dataset como las consultas SPARQL deberá comrprarse una licencia.

Sitios autoritativos: Son sitios conocidos que generan información relevante y la publican en las ontologías y vocabularios seleccionados. Ejemplos aplicados al caso de estudio podrían ser IMDB (que publica reviews de películas bajo el vocabulario schema), o Rottentomatoes (que hace lo mismo pero no solo con películas). Se podrán utilizar entonces estos sitios como punto base para un posible crawling.

Catálogos de enpoints: Son catálogos provistos por algunos sitios que mantienen una lista actualizada de SPARQL endpoints junto con el estado de disponibilidad en el que se encuentran. Por ejemplo los sitios http://labs.mondeca.com/sparqlendpointsstatus/

y http://www.w3.org/wiki/SparqlEndpoints que este último además provee detalles sobre la información de los mismos.

Consultar estos sitios entonces generará una lista de endpoints SPARQL que se podrá utilizar para consultar la información necesaria.

Volcados de datos: Son datasets muy grandes que fueron el resultado de un web crawling, los cuales están disponibles para su descarga y se pueden utilizar para procesarlos y obtener los datos requeridos. El más importante es $\frac{1}{2014}$.

3.6.2. Obtención

Este paso está directamente relacionado con el anterior, dado que la estrategia de obtención fue planeada con anterioridad, según cuál sea la seleccionada, habrá sido la opción ejecutada en el paso anterior.

Para este paso se tienen las siguientes estrategias:

Web Crawling: Realizar un crawling partiendo de unas pocas URLs seleccionadas en el paso anteiror. Obtenidas de sitios autoritativos. Existen formas distintas de hacer web craling, dependiendo del nivel de profundidad en el cuál se recorrerá la web, podría también utilizarse los sitios indexadores, SPARQL queries, o motores de búsqueda para obtener una lista de URLs que contienen la información deseada, y luego realizar un crawling de profundidad uno sobre cada url. Hacer crawling con profundidades muy grandes requiere de una algoritmia mucho más compleja para evitar loops, y también de muchos más recursos de hardware, pero se podrá obtener mucha más información.

De-referenciamiento de URIs: Igual al web crawling, pero exclusivo de documentos semanticos NO embebidos, ya escritos en un formato nativo de la web semántica como RDF, turtle, n-Triples, etc. Luego la profundidad puede continuarse realizando lo que se llama un "follow your nose", que se realiza dereferenciando los documentos que son objeto de la propiedad owl:sameAs, o rdf:seeAlso.

Descarga de las respuestas de las APIs: Este es otro caso del uso de lso sitios indexadores, SPARQL queries, o motores de búsqueda. Pero en lugar de que la información utilizada sean simpelmente las URL de los documentos, se utilizará también la ifnromación cacheada de dichos documentos y evitarse un crawling. Como desventaja se puede tener información desactualizada, pero como ventaja se podrá obtener información que ya no esté disponible. Todo dependerá de lo que se busque obtener. La información obtenida de estas APIs ya debería encontrarse en un formato de la web semántica por l oque no requerirá tampoco una futura extracción.

Procesamiento de grandes volcados: Este paso requiere de la utilización de recursos minímos de hardware, ya que estos volcados suelen tener volúmenes de varios teras de información, y para procesarlos se requerirá de mucha RAM, memoria secundaria y microprocesador. La idea de este paso es inspeccionar el volcado o bienpara obtener la URL de los documentos con la información deseada, para luego realizar un crawling de profundidad 1, o directamente utilizar la información contenida en el volcado. Esta opción enrealidad es una suma de

un paso intermedio con las demás opciones de este paso ya que se estaría realizando el trabajo que hacen los indexadores, que es procesar grandes volúmenes de datos.

3.7. Extracción y almacenaje

Una vez que se logró encontrar la información requerida en la web y contener una copia local, se necesita darle un mínimo procesamiento a determinados datos. Específicamente a aquellos que estén en un formato de información semántica embebida, que requeriran un proceso de extracción para luego ser almacenados en un triplestore.

3.7.1. Extracción

Esto significa, parsear el documento HTML, que como mensionamos anteriormente puede contener información semántica en formato RDF-a, microformatos o microdatos, buscando la información semántica para luego generar un documento RDF (o de otro lenguaje de tripletas puro) que represente esa información semántica encontrada en tripletas que puedan ser almacenadas bajo un triplestore.

Si bien podría escribirse manualmente un algoritmo que realice esta tarea, existen muchas herramientas que lo hacen, por lo que es recomendable la utilización de alguna de ellas.

Los extractores más utilizados son los siguientes:

getSchema: Es una herramienta online que se utiliza a travez de una API Restful para extraer documentos con microdatos. Como respuesta se obtendrán documentos semánticos con la información extraída en formatos N-Triples, JSON, o N3. Es una herramienta rápida y eficaz pero sólo sirve para microdatos.

RDF Translator: Funciona también a travez de una API restful, y además de soportar también docuemntos con formato RDF-a, proveé la funcionalidad de transformar los documentos en sentido inverso, (de tripletas a información semántica embebida en HTML). También está la posibilidad de descargarse la librería y correr el algoritmo localmente.

Any23: Una herramienta muy potente y completa que cuenta con una comunidad que lo actualiza constantemente. Al igual que las anteriores se puede utilizar de forma online a travez de una API restful. Tiene como ventaja que soporta también microformatos. Es el extractor utilizado por Sindice. También está disponible en forma de librería para utilizar localmente.

Data Linter:Es una herramienta online que parsea documentos RDF-a, microdatos y JSON-LD. Muy útil para analizar documentos, ya que dispone de varias ventajas:

Presenta la información organizada en tablas anidadas que son mucho más amigables para un análisis humano.

Posee un mecanismo de inferencia que alerta cuando se viola la sintaxis de los vocabularios.

Como contrapartida, la información retornada por la herramienta es en texto plano. Por lo que no puede ser utilizado en un triplestore.

3.7.2. almacenje

Con la información recolectada de internet en forma de tripletas (o cuadrupletas) ya puede ser todo almacenado conjuntamente en un triplestore.

3.8. Evaluación de Calidad de los Datos

Como sabemos los reviews son creados por usuarios que en su mayoría no están familiarizados con el desarrollo de una aplicación, esto causa que una parte muy significativa del contenido publicado no esté de la forma adecuada para ser procesado. La falta de calidad en el contenido publicado puede deberse tanto a errores por parte del usuario como por parte del publicador.

El publicador deberá asegurarse que los datos respeten rigurosamente las ontologías en las cuales se publican.

El sitio web en el cual el usuario se encuentre realizando el review deberá guiarlo en todo lo posible para lograr que la evaluación quede en un formato adecuado.

Aunque también existen muchos problemas que no dependen del sitio web, generalmente errores semánticos de calidad, donde lo redactado esta hecho de forma inconsistente o insuficiente.

Este paso entonces tiene por objetivo encontrar todos los problemas de calidad que pueda haber en el dataset que acaba de ser descargado y extraído y que generen inconvenientes para una posterior integración/explotación.

Por lo general se utilizará la base de datos mediante consultas SPARQL estratégicamente generadas para lograr sacar estadísticas y detectar los problemas.

Existen frameworks para realizar estas operaciones.

3.9. Curado de los Datos

En el paso anterior se describieron los problemas en la calidad del dataset que tendrán un impacto en la aplicación resultante, o que, podrían limitar o imposibilitar la realización de la misma. Dichos problemas pueden ser muchos, y algunos muy difíciles de solucionar, será parte entonces del proceso, reconocer aquellos que su resolución sea viable y además encontrar la forma de implementarla.

Cabe destacar que el proceso de evaluar el dataset en búsqueda de problemas y implementar soluciones es iterativo, debido a que una mejora puede conllevar a la detección de nuevos problemas.

3.10. Integración de los datos

Esto va acá o es parte de Explotación?

Los datos recolectados fueron generados por distintos usuarios, en múltiples sitios y bajo distintas ontologías y estándares. Estos aún curados, necesitan un último paso para poder realizar una explotación, y es la integración.

Este gran y dificultoso proceso abarca cualquier operación que intente dar una visión más unificada de la información. Este proceso puede tener distintos niveles y aspectos a integrar, como podría ser por ejemplo, unificar las ontologías de los reviews, o bien en una nueva ontología de review, o bien en una ya existente, para lograr tener información semánticamente más parecida. Ya que este proceso puede ser muy dificultoso, habrá que ver en base a los requerimientos, qué aspectos de los datos se integrarán.

Una vez realizada la integración mínima necesaria para los requerimientos, el dataset ya estará listo para su explotación.

3.11. Publicación del Dataset Curado

???

3.12. Explotación del Dataset

Acá es donde efectivamente se discute que implica cubrir los requerimientos de la aplicación . Puede ser que acá tambien te refieras a como la forma en la que querés explotar los datos impacta en las fases anteriores. Incluso, habría que pensarlo, en este capitulo tal vez conviene primero hablar de explotación y luego de las otras fases - porque explotación determina mucho que es lo que vas a mirar en las fases anteriores, ¿no?

Selección de Vocabularios

En la actualidad existen cuatro vocabularios que cumplen los requerimientos mínimos para modelar el dominio de problema planteado.

4.0.1. Review Ontology

RDF Review Vocabulary

También conocido como Review Ontology, es una de las ontologías más antiguas de review, que fue pensada para uso del lenguaje

RDF y está definido bajo el namespace http://purl.org/stuff/rev#.

Fue utilizado para la construcción Revyu , y sirvió como guía para otras ontologías.

Consta de tres clases y trece propiedades.

Clases

Comment: Un comentario sobre el review. Feedback: Expresa la utilidad del review.

Review: El review mismo.

Propiedades

commenter: Especifica el usuario que realizó el comentario del review. Tiene dominio Feedback o Comment y rango foaf:Agent.

Actualmente se encuentra en desuso.

has Review: Enlaza el ítem evaluado con el review. Su dominio es rdfs: Resource (siendo ésta la clase del ítem evaluado) y su rango es Review. Es una de las propiedades principales.

hasComment: Idem anterior pero con el comentario en lugar del review.

Se encuentra actualmente en desuso.

hasFeedback: Idem anterior pero con feedback en lugar de comentario.

Se encuentra actualmente en desuso.

maxRating: Establece el puntaje máximo que es posible otorgar por un usuario a travez de la propiedad rating. Tiene como dominio Review y como rango Literal siendo este último un número positivo. Su ausencia en un review

asume su valor por defecto (5). Por lo que si bien no es indispensable que esté, se deberá respetar la convención ala hora de generar el rating.

minRating: De la misma forma que el anterior, sólo que establece el puntaje mínimo y su valor por defecto es (1).

positive Votes: Se refiere a la cantidad de votos positivos que tuvo el review, otorgados por usuarios que lo leyeron y lo encontraron útil. SU domino es Review y su rango Literal siendo este último un número positivo.

Se encuentra actualmente en desuso.

rating: Una de las propiedades principales, indica el valor numérico otorgado por el creador del review sobre el ítem evaluado. Su domino es Review y su rango es Literal siendo este último un número entre los valores de minRating y maxRating.

reviewer: Especifica el usuario que realizó el review. Tiene dominio Review y rango foaf:Person.

text: Otra de las propiedades principales, define el texto que describe el sentimento del usuario hacia el ítem. Tiene como domino Review y como rango Literal.

totalVotes: Exactamente igual a positiveVotes.

title: El título del review . Tiene dominio Review y rango Literal. Subclase de dc:title

No tiene demasiada utilidad para el caso de estudio y además se encuentra en desuso.

type: Enuncia el tipo de ítem que clasifica taxonómicamente al ítem evaluado. Su domino es rdfs:Resource (siendo ésta la clase del ítem evaluado) y su rango no se encuentra especificado.

Es una propiedad muy útil pero actualmente se encuentra en desuso.

date: Si bien no está definida dentro del vocabulario, es correcto utilizar http://purl.org/dc/terms/date, implica la fecha en la que se realizó el review.

4.0.2. hReview

Como se mencionó anteriormente, está establecido por convención, que los microformatos son una forma de publicar información en la web semántica, pero al no disponer de namespaces, no pueden ser representados por ninguna ontología o ningún otro lenguaje de la misma.

Al no poder utilizar ontologías que modelen reviews surgió la necesidad de crear un estándar específico para embeberlos dentro de HTML utilizando microformatos.

Dicho estándar se encuentra actualmente en la versión 0.4 y propone el uso de 10 propiedades, que se supone, deberían ser suficientes para cubrir todas las necesidades a la hora de generar un review.

summary (opcional): Puede ser el título o nombre del review, o es posible también hacer una pequeña sinopsis del mismo. Se encuentra en desuso.

type (opcional): Representa el tipo de ítem evaluado, pero se encuentra acotado a alguno de estos product — business — event — person — place — website — url .

También está en desuso.

item: Esta propiedad enuncia toda la información que se crea necesaria para identificar al ítem, mínimamente los atributos nombre, url y foto.

Para lograr bajo una propiedad cubrir todos los atributos, el rango de la misma debería ser un hCard, que luego contendrá las propiedades mínimas necesarias: fn, url, photo y cualquier otra que se quiera adicional.

reviewer (opcional): Al igual que ítem, indica todo lo necesario para identificar a la persona autora del review, para lo cual también deberá representarse con un hCard.

dtreviewed (opcional): Se refiere a la fecha en la que fue creado el review.

rating: El valor numérico con el cual el usuario expresa su satisfacción con el ítem, y está formado por un entero con un solo decimal de precisión, que se encuentra dentro del rango 1.0 a 5.0. Dicho rango puede ser alterado con la presencia de las propiedades worst y best que restringen el valor mínimo y máximo respectivamente.

descripción (opcional): Establece el valor textual con el cual el usuario expresa su satisfacción con el ítem, creando una sinopsis detallada del mismo.

tags (opcional): Una etiqueta intenta establecer una idea acerque de qué se trata el contenido en una sola palabra para una rápida identificación o para mejorar las búsquedas.

permalink (opcional): Genera una URI que identificará al review creándole una especie de ID, que será útil para los casos donde se podría repetir la publicación del mismo.

license (opcional): Expresa la licencia del review.

El indicador "(opcional)" se refiere a si es indispensable para conformar un hReview o no, de manera tal que si no se encuentra una propiedad que no está marcada como opcional no podrá ser considerado un hReview.

Cabe destacar que muchas de las propiedades opcionales, podrían ser necesarias para el caso de estudio.

El problema con este vocabulario surge a la hora de trabajar con la información obtenida, que no puede ser representada por ningún otro lenguaje de la web semántica, por lo que se vió la necesidad de mapear las propiedades de hReview, a otro vocabulario que sí pueda.

Esto llevó a que en la web donde definen hReview lo consideren compatible con RDF Review Vocabulary, por lo que en Noviembre de 2007 se creó una herramienta que transforma de uno al otro hreview2rdfxml.xsl, pero existe un problema con el rango de algunas propiedades, por ejemplo reviewer (propiedad homónima en ambos vocabularios, pero una con rango hCard y otra con rango foaf:Person).

En general si bien este vocabulario bien utilizado puede ser efectivo, resulta poco flexible y complciado de manejar por parte de quien quiera explotarlos, el motivo por el cual se ha vuelto muy popular es su facilidad para generarlos, dado que microformatos es un lenguaje muy sencillo y cualquier persona con un relativamente mínimo ocnocimiento de HTML puede generar sin problemas un hReview, teniendo además herramientas online como opción, que generan el código a travez de un formulario. Como es el caso de

http://microformats.org/code/hreview/creator.

4.0.3. dataVocabulary

RDF Data Vocabulary

En Mayo de 2009 Google anuncia la introdución de los llamados "Google Rich Snippets", estos fragmentos enriquecidos son una convención de etiquetas (con soporte para RDFa-lite y microdata) que permitían agregar información útil a los SERP del buscador de Google. De manera tal que los datos que contenían estos fragmentos, recibían un tratamento especial.

Sin embargo en el anuncio, Google revela que el soporte se limitó al uso de las clases y propiedades del vocabulario definido en una página notoriamente improvisada llamada http://rdf.datavocabulary.org/ .

En ella se establecían modelos de clases para varios tipos de ítems, tales como Persona, Organización o Producto y también para los Reviews.

La clase Review, quedó definida bajo el namespace http://data-vocabulary.org/Review e incluía las siguientes propiedades:

itemreviewed: Enlace al ítem que está siendo evaluado.

rating: El valor numérico con el cual el usuario expresa su satisfacción con el ítem, tiene como rango un valor numérico bajo la clase xsd:string o Rating, y los valores posibles se encuentran en escala de 1 a 5, pudiendo la misma ser alterada con la presencia de las propiedades worst y best que restringen el valor mínimo y máximo respectivamente.

reviewer: El autor del review, su rango es dvocab:Person o xsd:string.

dtreviewed: La fecha en la que se realizó el review, no contiene un rango específico pero aclara que debe respetar el formato ISO para las fechas.

description: El cuerpo del review que representa el valor textual de satisfacción del usuario con el ítem.

summary: Un resumen corto del review.

Se puede notar la excesiva similitud de este vocabulario con hReview, queda claro que no hubo una intención de innovar algo, sino de representar el hReview en microdatos, probablemente por el apuro en la que data vocabulary fue creado.

Vale aclarar que limitar las clases y propiedades posibles en RDFa es básicamente hacerle perder el sentido al lenguaje (la decentralización de los vocabularios sobre los términos) haciendo que el lenguaje se utilice como si fuese microformatos, pero perdiendo su valor más improtante (la simplicidad) de manera tal que tomó la inflexibilidad de microformatos y la complejidad de RDFa.

Más adelante los Google Rich Snippets incluyeron también soporte para microformatos (lo que incluía hReview).

4.0.4. Schema.org

Schema.org

Luego de los fragmentos enriquecidos y el improvisado vocabulario datavocabulary creado para soportar los fragmentos, Google en conjunto con Bing y Yahoo crearon en el 2011 Schema.org, con el objetivo de obtener un vocabulario más completo y organizado para la implementación de los snippets con RDFa y microdata.

Su lanzamiento provocó la inmediata obsoletización de data-vocabulary cuyas clases fueron todas reemplazadas por equivalentes dentro de la nueva ontología:

 $http://www.data-vocabulary.org/Address-\cite{thtp://schema.org/PostalAddress}$

http://www.data-vocabulary.org/Geo-j.http://schema.org/GeoCoordinates

http://www.data-vocabulary.org/Organization-i.http://schema.org/Organization

http://www.data-vocabulary.org/Person -¿http://schema.org/Person

http://www.data-vocabulary.org/Event -¿http://schema.org/Event

http://www.data-vocabulary.org/Product -¿http://schema.org/Product

http://www.data-vocabulary.org/Review -¿http://schema.org/Review

http://www.data-vocabulary.org/Offer -j.http://schema.org/Offer

Este nuevo vocabulario, recibe constantes actualizaciones, al punto que, al día de la fecha, la ontología cuenta con 946 clases.

En particular, la clase review, definida bajo el namespace http://schema.org/Review y es subclase de schema:CreativeWork que a su vez es subclase de schema:Thing

Propiedades de Review

item Reviewed El ítem que está siendo evaluado, tiene rango schema: Thing review
Body El valor textual del review de la evaluación, que tiene rango schema: Text

review Rating El valor numérico del review de la evaluación, que tiene rango schema: Rating

Propiedades de CreativeWork

about El tema del contenido. Rango schema: Thing.

aggregateRating El promedio de la acumulación de uno o más ratings dentro de un review. Tiene rango schema:AggregateRating

author El autor del contenido. Tiene rango schema:Person o schema:Organization comment Comentarios sobre el contenido. De rango schema:Comment o schema:UserComments.

 $\operatorname{comment}\operatorname{Count}$ Cantidad de $\operatorname{comentarios}$. Rango schema : Integer .

creator El autor del contenido. Tiene rango schema:Person o schema:Organization dateCreated Fecha en la que fue creado. Rango schema:Date .

dateModified Fecha en la que fue modificado por última vez. Rango schema:Date

.

date Published Fecha en de la primer publicación. Rango schema: Date . publisher El publicador. Tiene rango schema: Organization review El review sobre el contenido. Tiene rango schema: Review . text Contenido textual. Tiene rango schema: Text .

Properties de Thing

additional Type Tipos adicionales para el ítem que en general son utilizados para especificar tipos externos, como podría ser por ejemplo una película de clase http://schema.org/Movie con el tipo adicional http://dbpedia.org/ontology/ . Tiene rango schema: URL .

alternate Name Especifica un alias. Rango schema: Text
. description Una descripción corta del ítem. Rango schema: Text name Establece el nombre. Rango schema:Text .

same As Una referencia a una ur
l que desambiguadamente represente al ítem, como podría ser una URL de wikipedia, d
bpedia, freebase, etc . Rango schema: URL.

url URL del ítem. Rango schema:URL

Unas 60 propiedades de CreativeWork fueron omitidas por no iban al caso ya que sólo tienen razón de ser para otras clases que también heredan de CreativeWork. Lo importante aquí es remarcar un par de situaciones interesantes:

- =Las propiedades Review:reviewBody, CreativeWork:text y Thing:description podrían contener el valor textual de la evaluación del review semánticamente correcta por la definición de cada una.
- =Las propiedades Creative Work:
author y Creative Work:
creator son exactamente iguales.
- =Los valores CreativeWork:dateCreated CreativeWork:dateModified y CreativeWork:datePublished podrían generar confusión.
- =Sería sintácticamente correcto que un Review utilice la propiedad Review

Más adelante se mostrarán y enumerarán los problemas que estas cuestiones (causadas por el afán de hacer uso de la herencia lo más posible) generan.

Recolección de Datos

Objetivo

Como se indicó anteriormente la información semántica que va a ser necesaria para construir se encuentra en la web en forma de documentos HTML que tienen la particularidad de ser muy efímeros, de manera tal que un documento que poseía datos relevantes a la fecha, puede al día siguiente, o dejar de estar disponible on-line, o haber cambiado de forma tal que la información de éste ya no es relevante, o ya no la posee.

En [] sección 4.2 Challenges for the selection of data sources se generó una estadística de este caso, donde se estableció que en promedio $62\,\%$ de los documentos entoncontrados, continuaban on-line luego de un año, y de estos, sólo un $56\,\%$ aún poseían datos relevantes.

Si bien armar un dataset con sólo información extraída de los documentos sin descargar estos últimos es posible, la situación anterior genera la necesidad de mantenerlos en una copia local para evitar una posible pérdida de los mismos.

El objetivo entonces será armar un repositorio local con los documentos on-line descargados que se cree que tienen la información necesaria.

Estrategia

Se optó por la utilización de Sindice como fuente de datos. Dado que contiene indexados suficiente cantidad de documentos de las ontologías a utilizar para hacer una prueba del caso. La consulta arrojó: 10.216.632 documentos que contenían la clase purl:Review y 394.533 que contenían la clase schema:Review Luego en base a que a comienzos del año sindice limitó la paginación de sus consulas a 100. De manera que sólo se puede acceder a 5000 resultados se planificó la siguiente estrategia:

Primero se realizó una consulta de los documentos para cada ontología con los reusltados agrupados por dominio (el sitio dueño del documento) ordenada en orden descendiente por cantidad de docuemntos

Luego a mano se inspeccionaron y seleccionaron los cuarenta dominios con mayor cantidad de documentos para la ontología que aún conservaban intactos sus documentos

 ${\rm Y}$ luego se ejecutó una consulta para recuperar hasta 5000 URLs de documentos por cada uno de esos 40 dominios.

Esto generó una lista de URLs a la cuál se le realizó un crawling, para descargar el documento actual de la web por cada uno. Para realizar la descarga se utilizó la librería fluent.

Resultados

Se obtuvieron de las consultas a Sindice 254950 urls de documentos potencialmente contenedores de reviews.

De las 254950 existían 236697 accesibles.

De los 236697 51 documentos tenían una url de más de 255 caracteres por lo que no se pudo almacenar en el disco utilizando la url como nombre del archivo. Y 6 documentos malformados.

La estadística fue la siguiente:

La estadistica fue la signiente.			
Respuesta HTTP	Cantidad de documentos		
200	236697		
Error sin código	10026		
408	3519		
500	2963		
400	77		
403	25		
Connection reset	19		
Premature EOF	8		
Server redirected too many times	8		
504	7		
Total	254950		
•			

Extracción y Almacenamiento de los Datos

Objetivo

Convertir los documentos con información semántica embebida en documentos HTML en documentos RDF, que luego puedan ser almacenados en un triplestore y almacenarlos.

La necesidad de tener la información en un triplestore surge de varios puntos: Tener la información centralizada, así, por cada paso siguiente a realizar, resulte mucho más simple aplicar un mismo proceso a todos los datos.

Tener la información en un mismo lenguaje, por la misma razón que el punto anterior.

Poder realizar queries SPARQL tanto para generar estadísticas como para realizar un curado de la información.

Poder utilizar el motor de inferencias para detectar errores en los documentos.

Estrategia

El extractor utilizado fue any23 con su librería para java. El motivo es que es el único de los extractores que provee librería para java, y además soporta todos los lenguajes de RDF embebido en HTML. Los documentos se guardaron en formato n-Quads ya que son mucho más eficientemente procesables y además se puede conservar el grafo del cual provienen.

Como siguiente paso, con el objetivo de tener un backup ligero de los datos que pueda ser levantado a una base de datos fácilmente, se realizó un merge de todos los documentos extraídos en uno solo. Para ello utilizó la herramienta RIOT (disponible en la librería any23).

Y por último se determinó utilizar una base de datos TDB, por múltiples razones:

Es gratuita y opensource.

Es muy eficiente, ya que no trabaja sobre una base de datos MySQL.

Se encuentra incorporado a jena por lo que se dispone de su utilización en Java.

Para levantar la base de datos, a partir de ese documento nq se utilizó la operación bulkloader2 que la manera más rapida. Con lo que se obtuvo la base de datos TDB.

Resultados

Any23

	Extractor	Documentos	Porcentaje	
	html-head-title	233.743	98,77	
	html-rdfa11	156.096	65,96	
Extractores utilizados más importantes:	html-microdata	110.325	46,62	
Extractores utilizados mas importantes.	html-mf-hreview	109.096	46,10	
	html-hcard	73.197	30,93	
	html-hreview-aggregated	48.771	20,60	
	html-mf-adf	44.788	18,92	

Errores por documentos mal descargados:

null 4661

invalid property name "95

Error while retrieving mime type 1

\mathbf{D}	Ocumentos	obtonidos
	ocumentos	optenidos:

Documentos obtenidos.	
Documentos con review	187.088
Documentos sin review	49.552
Documentos sin tripletas	2.878
Tripletas totales	16.614.727
Tripletas promedio por documento	71.66
Tripletas promedio en documentos con tripletas	72.56
Tripletas promedio sobre documentos con review	84.02
Tripletas totales de documentos con review	15719392
Tripletas promedio sobre documentos sin review	20.01
Total Documentos	236640

Cabe destacar que, ese procentaje de documentos con review 79% implica que el 21% restante fueron documentos que sindice tiene indexados como contenedores de alguna de las clases de review mencionadas y ya no los tiene en la actualidad. Ya sea porque:

- El documento no existe más
- El documento cambió y no habla sobre reviews
- El documento dejó de utilizar la web semántica para publicar reviews

Pero ese porcentaje no refleja una estadística sobre un muestreo válido de sindice ya que, com ose mencionó anteriormente, los dominios fueron seleccionados dependiendo de si aún existen y además aún tenían publicados documentos de reviews en la web semántica.

Riot:

Múltiples errores detectados en el merge de los documentos extraídos. No queda claro si causados por any23 en la extracción, o el documento ya de origen mal confeccionado. Fueron errores no detectados por any23:

PORT_SHOULD_NOT_BE_WELL_KNOWN in PORT: Ports under 1024 should be accessed using the appropriate scheme name.

ILLEGAL_CHARACTER in FRAGMENT: The character violates the grammar rules for URIs/IRIs.

DEFAULT_PORT_SHOULD_BE_OMITTED in PORT: If the port is the default one for the scheme it should be omitted.

REQUIRED_COMPONENT_MISSING in HOST: A component that is required by the scheme is missing.

DOUBLE_WHITESPACE in QUERY: Either two or more consecutive whitespace characters, or leading or trailing whitespace. These match no grammar rules of URIs/IRIs. These characters are permitted in RDF URI References, XML system identifiers, but not XML Schema anyURIs.

WHITESPACE in PATH: A single whitespace character. These match no grammar rules of URIs/IRIs. These characters are permitted in RDF URI References, XML system identifiers, and XML Schema anyURIs.

ILLEGAL_PERCENT_ENCODING in QUERY: The host component a percent occurred without two following hexadecimal digits.

NOT_DNS_NAME in HOST: The host component did not meet the restrictions on DNS names.

 ${\tt DNS_LABEL_DASH_START_OR_END}$ in HOST: A DNS name had a - at the beginning or end.

PROHIBITED_COMPONENT_PRESENT in USER: A component that is prohibited by the scheme is present.

WHITESPACE in FRAGMENT: A single whitespace character. These match no grammar rules of URIs/IRIs. These characters are permitted in RDF URI References, XML system identifiers, and XML Schema anyURIs.

WHITESPACE in QUERY: A single whitespace character. These match no grammar rules of URIs/IRIs. These characters are permitted in RDF URI References, XML system identifiers, and XML Schema anyURIs.

TDB Bulk load

La base de datos resultante contiene:

Cantidad de grafos: 182153

Cantidad de grafos con schema/review: 50955

Cantidad de grafos con schema/aggregate rating: 52022

Cantidad de grafos con purl/review: 104316

Cantidad de grafos con purl/aggregate review: 43991

La búsqueda en sindice se realizó para schema/review y purl/review. Sin embargo, como se puede apreciar se obtuvieron muchos resultados con reviews agregados.

Evaluación de Calidad de los Datos

Curado de los Datos

Integración de los Datos

Publicación del Dataset Curado

Explotación del Dataset

Conclusiones y trabajo futuro

Bibliografía

Bibliografía

Apéndice A

Publicaciones