MECH 1905 Buildings for Contemporary Living Building Systems

Prof. Yi-Kuen Lee
Department of Mechanical and Aerospace Engineering
Hong Kong University of Science and Technology

Contents

- Structural Systems
 - Foundation
 - Building Envelope
 - Ceiling and Flooring
- Water System
- Heating, Ventilation and Cooling (HVAC)
- Electricity and Lighting
- Fire Protection
- Elevators

Structural Systems

Floor and Roof

Beams and Girders

Columns and Walls

Foundation

• Together – they make the frame

Loads on Buildings

Live loads are variable; dead loads are fixed.

Support Loads

- Dead Loads
 - Architectural Construction
 - Mechanical Equipments
 - Utilities
 - Sprinkler Systems
- Live Loads
 - People
 - Furnishings
 - Machinery
 - Moveable Walls
 - Rain, Snow, Ice
- Snow Loads

- Wind Loads
 - Pressure on windward side
 - Suction on leeward side
 - More as you get higher
- Seismic Loads
 - Earthquakes shaking
- Vibration Loads
 - Traffic, heavy trucks
 - Subway
 - Airports
- Shock Loads
 - Suddenly applied
 - 9/11

Stresses on Members (1)

Stresses on Members (2)

- Compressive stress compacts material, decreasing the volume.
 - More weight = more compression.
 - Ductile materials (metal, soil, plastic) yield.
 - Brittle materials rupture.
- Aspect ratio (ratio between width and length)
 - Ratios greater than 2:1 will buckle
 - Due to "elastic instability"

Fire Resistance

- Hourly ratings (1-4)
- Rating = amount of time the element, component or assembly can contain the fire
- Rated ceilings need clips

 Structural system and individual members will need to comply with code required ratings.

Floor Systems

Steel and Concrete Decks

- Cellular Steel
- Composite Steel
- Open Web Joist
- Concrete Slab
- Slab On-Grade
- Wood Floor
 - Deck on Joists
 - Solid Timber

Building Walls

- Exterior Walls
- Curtain Walls
- Interior Walls

Steel Frame System

- Load-bearing Wall Construction
 - Like a house
- Frame Construction
 - Most highrises
- Long Span Steel Structures
 - McCormick Place
 - Bridges
- Combination Steel and Concrete Framing

Advantages and Disadvantages of Steel

Advantages

- High Strength
- Uniformity
- Elasticity
- Permanence
- Ductility
- Additions to Existing Structures
- Other advantages
 - Prefabrication
 - Speed
 - Weldability
 - Toughness
 - Reuse
 - Recycle

Disadvantages

- Fireproofing
 - Encase in concrete or fireproofing
 - Enclose with fire rated materials
 - Intumescent paint
 - Chemically treated water
- Maintenance
 - Paint
 - Rust
 - Connections

https://youtu.be/VAkTbyENZ5s
Simulations of World Trade Center 7 Collapse

Concrete Frame Systems

- Reinforced Concrete
 - Add steel bars for tensile strength
 - Poured on-site
 - More flexibility
 - More tedious
 - Weathers well

- Precast Concrete
 - Mass production less expensive
 - Reduced construction time
 - Better quality control
 - Take weather out of the equation
 - Hard to transport
 - Connections more difficult
 - Caulking/maintenance costs
 - Heavier needs larger foundations
 - Reduced continuity between structural members

Wood Frame Systems

- Materials
 - Lumber
 - Plywood
 - Laminated Timber
- Disadvantages
 - Fungus
 - Termites
 - Burns easily
 - Moisture induced movement

- Systems
 - Balloon Framing
 - Platform Framing
 - Post-and-Beam Framing
 - Stressed Skin Construction

Foundation and Soil

- Foundation is what EVERYTHING sits on
 - Coarse-grained noncohesive soils
 - Fine-grained cohesive soils
 - Organic fibrous soils
- Anything in soil that is or once was alive needs to come out

Soil Concerns

- Moisture
- Frost
- Shifting
 - Settlement
 - Upheaval
 - Sliding
 - Liquefaction

Foundation Systems

- Deep Systems
 - Concrete Piles
 - On site
 - Precast
 - Augered-in-place
 - Tapered
 - Caissons
 - Steel Piles
 - Sheet piles
 - Wood Piles
 - Always wet (tree roots)
 - Always dry

- Shallow Systems
 - Spread footings
 - Mat and Raft systems
 - Trench footings
- Foundation Materials
 - Generally reinforced concrete

Structural Systems Maintenance

- Locate the deterioration
- Determine the cause
 - Neutralize
 - Eliminate
- Evaluate the existing strength
- Evaluate need for repair
- Select & implement repair
- Maintaining Foundations
 - Look for "tell"
 - Water is the enemy

- Maintaining Steel
 - Corrosion
 - Abrasion
 - Connections
 - Fatigue
 - Impact
- Maintaining Concrete
 - Cracking
 - Spalling
 - Disintegration
- Maintaining Wood
 - Water, yes water is still the enemy
 - Insects are the other enemy

Structural Considerations for Sustainability

- Maximum Solar Access
- Maximize Daylighting
- Reuse of Materials or Structures
- Salvaging Materials
- Recycling Content
- Use Certified Lumber

The Building Envelope

- What is blocked:
 - Rain, snow, hail, wind, humidity
 - Heat and cold
 - Dirt, soot, pollen, etc.
 - Bugs and coyotes
 - Noise
 - Fire
 - UV
 - Bad people

- What it let's in:
 - Sunlight
 - Views
 - Good people
 - Natural ventilation

Residential High-Rise Envelope Falure – Steel Stud Corrosion

Climate

- Types of Climates
 - Cold Climates
 - Temperate Climates
 - Hot/Dry/Arid Climates
 - Warm Humid Climates

- Basic Elements
 - Temperature
 - Humidity
 - Air Movement
 - Precipitation
 - Cloud Cover
 - Solar Radiation

Design Criteria

- Water Infiltration
- Air Infiltration
- Loads
- Thermal Expansion/ Contraction

- Heat Transfer
- Moisture Migration
- Sound Attenuation
- Building Maintenance
- Building Codes

Factors Contributing to Premature Building Decay

- 1. Design deficiencies
- Poor material selection
- 3. Improper construction
- Deferred maintenance
- 5. Applied forces
- 6. Weight
- 7. Vibrations
- 8. Pollution
- 9. Vandalism
- 10. Air (Oxygen)
- 11. Temperature extremes
- 12. Wind pressure
- 13. Water

WATER is the ENEMY

- Gravity
 - Sloped joints
- Kinetic Energy
 - Wind driven rain
- Surface Tension
 - Water moves horizontally

- Capillary Action
 - Tiny joints
- Air Currents
 - Most buildings suck in
- Pressure Drops
 - Mind your weeps

Six Causes of Water Intrusion and Damage

Air Infiltration

- Sash
 - "...tore open the shutter and threw up the sash."
- Weatherstripping
 - Gaskets
- Stack Effect
 - Warm air rises and rises
- Air Infiltration Tests
 - ASTM E-283
 - 0.06 cf/m or less

Loads

- Wind Loads
 - Positive pressure windward
 - Negative pressure leeward
 - Movement in taller buildings
- Seismic Loads
 - Shake Rattle and Roll
 - Connections and anchors

Heat

- Thermal Expansion and Contraction
 - Aluminum twice masonry
- Heat Transfer
 - U-value
 - Ability of a system to transmit heat
 - Inverse of R-value
 - Thermal breaks
 - Curtain connects to structure
 - · Panels connect to framing
 - Wall assemblies
 - Within panels themselves
 - If everything else is sealed

Solar Energy Transmission Through Glass

Moisture Migration

- To Prevent Condensation
 - Provide a vapor retarder on the interior of the wall to prevent humid air from entering the wall system
 - Insulate internal surfaces
 - Provide venting for water vapor
 - Weep system
- Condensation function of temperature and Relative Humidity

Ceilings and Flooring

Ceilings

- Generally the upper limit for a space.
- Area between ceiling and deck is the plenum.
- Ceiling panels.
- Ceiling maintenance.
 - Always follow manufacturer's recommendations.
 - Painting reduces acoustics.

Flooring

- Function and Cost
- Appearance and Style
- Durability and Noise
- Comfort and Safety
- Installation and Maintenance
- Weight and Measurement

— Major components —

- Meter
- Piping for water
 - Older systems may have used cast iron
 - Delivery
 - Copper
 - Soldered joints
 - Polyvinyl chloride (PVC)
- Hot water heater
 - Electric
 - Gas
 - Fuel oil
 - Equipped with safety valve

- Drain system
 - Removes black water from toilets
 - Removes gray water from showers, tubs, and washers
- Piping for drainage
 - Vent and drain system
 - Acrylonite butadiene styrene (ABS)
 - Polyvinyl chloride (PVC)
- Appliances

— Drainage —

- Drain system
 - "P" traps prevent methane or sewer gas from entering buildings
 - P trap water can evaporate
 - May be the explanation for some unknown odor calls
 - May be eliminated by running water into drain

P trap = a barrier to prevent sewer gas from rising up through drain and toilet into building

— Plumbing —

- Substantial water requirements in commercial structure
- Requires larger systems than residential
- High rise buildings require pumps above the 7th floor
- Paint schemes indicate what is in pipes
 - The hotter the contents, the brighter the color:
 - Steam—orange
 - Heat—yellow
 - Water—blue
 - Sewage—brown or black
 - Fire protection—red

Heating, Ventilation and Cooling (HVAC)

- Forced air and heat pumps are common in use today
 - Heated by either fuel oil or gas
 - Heat pumps use the unit's ability to remove moisture from the atmosphere and convert it to heated air
 - Same duct work used for air conditioning systems

- Air conditioners use refrigerant pumped into coils
- Air flows over coils
- Chilled air is blown by a fan
- Return air may come from a plenum space above a dropped ceiling

Heating, Ventilation and Cooling (HVAC) — Insulation

- Insulation enhances efficiency of HVAC systems
- Fiberglass is the most modern of insulation materials
- Installed in wall cavities
- Service people should repair HVAC systems to reduce fire department liability

Electricity and Lighting (1)

- Produced by central station
- Transmitted by wires to transformers and to the residential or commercial user
- Electricity enters a structure at the service point or drip line
 - It comes in 220 volts in Hong Kong and energizes the service box
 - The box is rated by the amperage available for use

- Volt is the unit that measures the potential difference in electrical force or "pressure" between two points on a circuit
- Ampere is the unit used to measure the amount of current
- Watt is the unit of power
 - volts x amperes = watts
- Watt-hour is the unit of energy

Electricity and Lighting (2)

- Lighting energy consumption
 - 20 45% in commercial buildings
 - 3 10% in industrial plants
- Significant energy savings can be realized with a minimal capital investment
 - Daylighting
 - Efficient lighting devices
 - Task lighting
 - Controls

Electricity Bill

- Electricity bills show how many units of electricity you used
- 1 unit = 1 kilowatt-hour, kWh (an amount of energy)
- 1 kWh = amount of electrical energy used by a 1 kW appliance left on for 1 hour

Note: 1 kW = 1,000 W; 1 hr = 3,600 secs

CLP General Service Tariff (2016)

- Based on bimonthly meter-readings.
- Aggregate of the following items:
 - a) Energy Charge

Total Bimonthly Consumption Block	Rate (Cents/Unit)
Each of the first 400 units (0 – 400)	82.2
Each of the next 600 units (401 – 1,000)	95.6
Each of the next 800 units (1,001 – 1,800)	111.4
Each of the next 800 units (1,801 – 2,600)	142.2
Each of the next 800 units (2,601 – 3,400)	165.1
Each of the next 800 units (3,401 – 42,00)	175.5
Each unit over 4,200	176.7

- b) Fuel Cost Adjustment is 24.3 cents per unit
- c) Energy Saving Rebate applicable to a bill with total bimonthly consumption of 400 units or less

Total Bimonthly Consumption Range	Rebate Rate (Cents/Unit)
1-200 units	17.2 cents per unit on total consumption
201- 300 units	16.2 cents per unit on total consumption
301- 400 units	15.2 cents per unit on total consumption

Electricity Bulk Tariff (2016)

- Customers whose present or expected monthly consumption is not less than 20,000 units may apply to the Company in writing for supply under Bulk Tariff.
- Demand Charge: Based on the monthly maximum demand in kilovoltamperes (kVA):
 - On-Peak Period:
 - Each of the first 650 kVA HK\$ 68.4
 - Each kVA above 650 kVA HK\$ 65.4
 - Off-Peak Period (9 pm to 9 am; Sundays and Public Holidays):
 - Each off-peak kVA up to the on-peak billing demand HK\$ 0.0
 - Each off-peak kVA in excess of the on-peak billing demand HK\$ 26.8
- Energy Charge
 - On-Peak Period:
 - Each of the first 200,000 units 70.5 cents
 - Each unit over 200,000 68.9 cents
 - Off-Peak Period (9 pm to 9 am; Sundays and Public Holidays):
 - Each unit 62.8 cents
- Fuel Clause Charge
 - 24.3 cents per unit

Fire Protection

- More than just sprinklers; it is also:
 - Pumps
 - Piping
 - Tanks
 - Valves
 - Hoses and tanks
 - Tanks may have gated discharge valves for fire department use

- For most buildings, external protection begins with standpipe or sprinkler connections
- Allows fire department to pump water into the system to augment building's fire protection systems
- May have multiple connections that may or may not be interconnected

Elevators/Lift (1)

- Powered in two main ways, traction or hydraulic
 - Car is essentially a cage of light metal supported on a structural frame
 - Cables are attached to the top member
 - Car is fixed to shaft by rail shoes

Elevators (2)

- Cables
 - Cables lift and lower the car in the hoistway
- Machine room
 - Elevator machine room is usually directly above the hoistway at the uppermost run of the elevator or bank of elevators
 - Contains the machine-generator set, which powers the elevator machine, the control board, and other control equipment
 - Firefighters should be cautious due to electrical hazards

Elevators (3)

- Hydraulic
 - For inexpensive elevator service, the use of hydraulics is employed

 Do not need cables, drums, motor generator sets, elaborate controllers, or penthouse

- Hydraulic elevators
 - Movement of the elevator is controlled by means of a movable rod (plunger) rigidly fixed to the bottom of the car
 - Hydraulic elevator uses a basement machine room
 - Requires a much larger motor and a tank for the reclaiming and storage of the fluid used to push the rod
 - Primarily for low-rise applications under 6 stories
 - Fire department should know how elevators behave during a fire or power failure

Smart Elevators: internet connected, predictive maintenance with wireless MEMS sensors https://tinyurl.com/tm6x8zb