Unexpected biases in the distribution of consecutive primes

Robert J. Lemke Oliver, Kannan Soundararajan Stanford University

Let
$$\pi(x; q, a) := \#\{p < x : p \equiv a(\text{mod } q)\}.$$

Let
$$\pi(x;q,a):=\#\{p< x:p\equiv a(\bmod\ q)\}.$$
 Under GRH, we have
$$\pi(x;q,a)=\frac{\mathrm{li}(x)}{\phi(q)}+O(x^{1/2+\epsilon})\quad\text{if }(a,q)=1.$$

Let $\pi(x;q,a):=\#\{p< x:p\equiv a(\bmod\ q)\}$. Under GRH, we have $\pi(x;q,a)=\frac{\mathrm{li}(x)}{\phi(q)}+O(x^{1/2+\epsilon})\quad\text{if }(a,q)=1.$

Observation (Chebyshev)

Quadratic residues seem slightly less frequent than non-residues.

Let $\pi(x;q,a):=\#\{p< x:p\equiv a({
m mod }q)\}.$ Under GRH, we have $\pi(x;q,a)=\frac{{
m li}(x)}{\phi(q)}+O(x^{1/2+\epsilon})\quad {
m if } (a,q)=1.$

Observation (Chebyshev)

Quadratic residues seem slightly less frequent than non-residues.

Theorem (Rubinstein-Sarnak)

Under GRH($+\epsilon$), $\pi(x; 3, 2) > \pi(x; 3, 1)$ for 99.9% of x,

Let
$$\pi(x;q,a):=\#\{p< x:p\equiv a(\bmod\ q)\}$$
. Under GRH, we have
$$\pi(x;q,a)=\frac{\mathrm{li}(x)}{\phi(q)}+O(x^{1/2+\epsilon})\quad\text{if }(a,q)=1.$$

Observation (Chebyshev)

Quadratic residues seem slightly less frequent than non-residues.

Theorem (Rubinstein-Sarnak)

Under $GRH(+\epsilon)$, $\pi(x;3,2) > \pi(x;3,1)$ for 99.9% of x, and analogous results hold for any q.

Let
$$r \geq 1$$
 and $\mathbf{a} = (a_1, \dots, a_r)$,

Let $r \geq 1$ and $\mathbf{a} = (a_1, \dots, a_r)$, and set

$$\pi(x; q, \mathbf{a}) := \#\{p_n < x : p_{n+i} \equiv a_{i+1} \pmod{q} \text{ for } 0 \le i < r\}.$$

Let $r \geq 1$ and $\mathbf{a} = (a_1, \dots, a_r)$, and set

$$\pi(x; q, \mathbf{a}) := \#\{p_n < x : p_{n+i} \equiv a_{i+1} \pmod{q} \text{ for } 0 \le i < r\}.$$

We expect that $\pi(x; q, \mathbf{a}) \sim \mathrm{li}(x)/\phi(q)^r$,

Let $r \geq 1$ and $\mathbf{a} = (a_1, \dots, a_r)$, and set

$$\pi(x; q, \mathbf{a}) := \#\{p_n < x : p_{n+i} \equiv a_{i+1} \pmod{q} \text{ for } 0 \le i < r\}.$$

We expect that $\pi(x; q, \mathbf{a}) \sim \text{li}(x)/\phi(q)^r$, but little is known:

Let $r \geq 1$ and $\mathbf{a} = (a_1, \dots, a_r)$, and set

$$\pi(x; q, \mathbf{a}) := \#\{p_n < x : p_{n+i} \equiv a_{i+1} (\text{mod } q) \text{ for } 0 \le i < r\}.$$

We expect that $\pi(x; q, \mathbf{a}) \sim \text{li}(x)/\phi(q)^r$, but little is known:

• If r=2 and $\phi(q)=2$, then each **a** occurs infinitely often

Let $r \geq 1$ and $\mathbf{a} = (a_1, \dots, a_r)$, and set

$$\pi(x; q, \mathbf{a}) := \#\{p_n < x : p_{n+i} \equiv a_{i+1} \pmod{q} \text{ for } 0 \le i < r\}.$$

We expect that $\pi(x; q, \mathbf{a}) \sim \text{li}(x)/\phi(q)^r$, but little is known:

- If r=2 and $\phi(q)=2$, then each **a** occurs infinitely often
- Shiu: The pattern (a, a, \ldots, a) occurs infinitely often

Let $r \geq 1$ and $\mathbf{a} = (a_1, \dots, a_r)$, and set

$$\pi(x; q, \mathbf{a}) := \#\{p_n < x : p_{n+i} \equiv a_{i+1} \pmod{q} \text{ for } 0 \le i < r\}.$$

We expect that $\pi(x; q, \mathbf{a}) \sim \operatorname{li}(x)/\phi(q)^r$, but little is known:

- If r=2 and $\phi(q)=2$, then each **a** occurs infinitely often
- Shiu: The pattern (a, a, ..., a) occurs infinitely often
- Maynard: $\pi(x; q, (a, a, \dots, a)) \gg \pi(x)$

Let $r \geq 1$ and $\mathbf{a} = (a_1, \dots, a_r)$, and set

$$\pi(x; q, \mathbf{a}) := \#\{p_n < x : p_{n+i} \equiv a_{i+1} \pmod{q} \text{ for } 0 \le i < r\}.$$

We expect that $\pi(x; q, \mathbf{a}) \sim \operatorname{li}(x)/\phi(q)^r$, but little is known:

- If r=2 and $\phi(q)=2$, then each **a** occurs infinitely often
- Shiu: The pattern (a, a, ..., a) occurs infinitely often
- Maynard: $\pi(x; q, (a, a, \dots, a)) \gg \pi(x)$

Question

Are there biases between the different patterns $a \pmod{q}$?

Let
$$\pi(x_0) = 10^7$$
.

<u>a</u>	$\frac{\pi(x_0; 10, a)}{2,499,755}$	a 7	$\frac{\pi(x_0; 10, a)}{2,500,283}$
3	2,500,209	9	2,499,751

а	Ь	$\pi(x_0; 10, (a, b))$	а	$\pi(x_0; 10, a)$
1	1	2,499,755	7	2,500,283
	3			
	7			
	9			
	3	2,500,209	9	2,499,751
		, ,		, ,

а	b	$\pi(x_0; 10, (a, b))$	а	$\pi(x_0; 10, a)$
1	1	446,808	7	2,500,283
	3	756,071		
	7	769,923		
	9	526,953		
	3	2,500,209	9	2,499,751
				1

a	b	$\pi(x_0; 10, (a, b))$	а	b	$\pi(x_0; 10, (a, b))$
1	1	446,808	7	1	639,384
	3	756,071		3	681,759
	7	769,923		7	422,289
	9	526,953		9	756,851
3	1	593,195	9	1	820,368
	3	422,302		3	640,076
	7 714,795			7	593,275
	9	769,915		9	446,032
		'			ı

	a	b	$\pi(x_1; 10, (a, b))$	а	b	$\pi(x_1; 10, (a, b))$
_	1	1	4,623,041	7	1	6,373,982
		3	7,429,438		3	6,755,195
		7	7,504,612		7	4,439,355
		9	5,442,344		9	7,431,870
	3	1	6,010,981	9	1	7,991,431
		3	4,442,561		3	6,372,940
		7	7,043,695		7	6,012,739
		9	7,502,896		9	4,622,916
		-	ı			1

Let
$$\pi(x_0) = 10^7$$
.

Let
$$\pi(x_0) = 10^7$$
. We have

$$\pi(x_0; 3, 1) = 4,999,505$$
 and $\pi(x_0; 3, 2) = 5,000,494$

Let $\pi(x_0) = 10^7$. We have

$$\pi(x_0; 3, 1) = 4,999,505$$
 and $\pi(x_0; 3, 2) = 5,000,494$

while for $r \geq 2$, we have

a	$\pi(x_0; 3, \mathbf{a})$
1,1	
1,2	
2,1	
2,2	

Let $\pi(x_0) = 10^7$. We have

$$\pi(x_0; 3, 1) = 4,999,505$$
 and $\pi(x_0; 3, 2) = 5,000,494$

while for $r \geq 2$, we have

a	$\pi(x_0; 3, \mathbf{a})$
1,1	2,203,294
1,2	2,796,209
2,1	2,796,210
2,2	2,204,284

Let $\pi(x_0) = 10^7$. We have

$$\pi(x_0; 3, 1) = 4,999,505$$
 and $\pi(x_0; 3, 2) = 5,000,494$

while for $r \geq 2$, we have

a	$\pi(x_0;3,\mathbf{a})$	and	a	$\pi(x_0; 3, \mathbf{a})$
1,1	2,203,294	•	1,1,1	928,276
1,2	2,796,209		1,1,2	1,275,018
2,1	2,796,210		1,2,1	1,521,062
2,2	2,204,284		1,2,2	1,275,147
	•		2,1,1	1,275,018
			2,1,2	1,521,191
			2,2,1	1,275,147
			2,2,2	929,137

Let $\pi(x_0) = 10^7$. We have

$$\pi(x_0; 3, 1) = 4,999,505$$
 and $\pi(x_0; 3, 2) = 5,000,494$

while for $r \geq 2$, we have

a	$\pi(x_0;3,\mathbf{a})$	and	a	$\pi(x_0; 3, \mathbf{a})$
1,1	2,203,294		1,1,1	928,276
1,2	2,796,209		1,1,2	1,275,018
2,1	2,796,210		1,2,1	1,521,062
2,2	2,204,284		1,2,2	1,275,147
	'		2,1,1	1,275,018
			2,1,2	1,521,191
			2,2,1	1,275,147
			2,2,2	929,137

Observation

The primes dislike to repeat themselves (mod q).

What's the deal?

We conjecture that:

• There are large secondary terms in the asymptotic for $\pi(x; q, \mathbf{a})$

What's the deal?

We conjecture that:

- There are large secondary terms in the asymptotic for $\pi(x; q, \mathbf{a})$
- The dominant factor is the number of $a_i \equiv a_{i+1} \pmod{q}$

What's the deal?

We conjecture that:

- There are large secondary terms in the asymptotic for $\pi(x; q, \mathbf{a})$
- The dominant factor is the number of $a_i \equiv a_{i+1} \pmod{q}$
- There are smaller, somewhat erratic factors that affect non-diagonal a

Conjecture (LO & S)
Let
$$\mathbf{a} = (a_1, \dots, a_r)$$
 with $r \ge 2$.

Conjecture (LO & S)

Let $\mathbf{a} = (a_1, \dots, a_r)$ with $r \geq 2$. Then

$$\pi(x; q, \mathbf{a}) = \frac{\operatorname{li}(x)}{\phi(q)^r} \left[1 + c_1(q; \mathbf{a}) \frac{\log \log x}{\log x} + \frac{c_2(q; \mathbf{a})}{\log x} + O\left(\log^{-7/4} x\right) \right],$$

Conjecture (LO & S)

Let $\mathbf{a} = (a_1, \dots, a_r)$ with $r \geq 2$. Then

$$\pi(x; q, \mathbf{a}) = \frac{\operatorname{li}(x)}{\phi(q)^r} \left[1 + c_1(q; \mathbf{a}) \frac{\log \log x}{\log x} + \frac{c_2(q; \mathbf{a})}{\log x} + O\left(\log^{-7/4} x\right) \right],$$

where

$$c_1(q; \mathbf{a}) = \frac{\phi(q)}{2} \left(\frac{r-1}{\phi(q)} - \#\{1 \le i < r : a_i \equiv a_{i+1}(mod \ q)\} \right),$$

Conjecture (LO & S)

Let $\mathbf{a} = (a_1, \dots, a_r)$ with $r \geq 2$. Then

$$\pi(x;q,\mathbf{a}) = \frac{\operatorname{li}(x)}{\phi(q)^r} \left[1 + c_1(q;\mathbf{a}) \frac{\log\log x}{\log x} + \frac{c_2(q;\mathbf{a})}{\log x} + O\left(\log^{-7/4}x\right) \right],$$

where

$$c_1(q; \mathbf{a}) = \frac{\phi(q)}{2} \left(\frac{r-1}{\phi(q)} - \#\{1 \leq i < r : a_i \equiv a_{i+1}(mod \ q)\} \right),$$

and $c_2(q; \mathbf{a})$ is complicated but explicit.

An example

Example Let q = 3 or 4.

An example

Example

Let q = 3 or 4. Then

$$\pi(x;q,(a,b)) = \frac{\operatorname{li}(x)}{4} \left[1 \pm \left(\frac{\log\log x}{2\log x} + \frac{\log 2\pi/q}{2\log x} \right) \right] + O\left(\frac{x}{\log^{11/4} x} \right).$$

An example

Example

Let q = 3 or 4. Then

$$\pi(x;q,(a,b)) = \frac{\operatorname{li}(x)}{4} \left[1 \pm \left(\frac{\log\log x}{2\log x} + \frac{\log 2\pi/q}{2\log x} \right) \right] + O\left(\frac{x}{\log^{11/4} x} \right).$$

Conjecture (LO & S)

Let q = 3 or 4. If $a \not\equiv b \pmod{q}$, then for all x > 5,

$$\pi(x; q, (a, b)) > \pi(x; q, (a, a)).$$

	X	$\pi(x; 3, (1, 1))$	$\pi(x; 3, (1, 2))$
Actual	10 ⁹	$1.132 \cdot 10^{7}$	$1.411 \cdot 10^{7}$
Conj.		$1.156 \cdot 10^{7}$	$1.387\cdot 10^7$

Actual Pred. Conj.

Х	$\pi(x; 3, (1,1))$	$\pi(x; 3, (1, 2))$
10^{9}	$1.132 \cdot 10^{7}$	$1.411 \cdot 10^{7}$
	$1.137\cdot 10^7$	$1.405 \cdot 10^{7}$
	$1.156 \cdot 10^{7}$	$1.387 \cdot 10^{7}$

Actual Pred. Conj.

X	$\pi(x; 3, (1, 1))$	$\pi(x; 3, (1,2))$
10 ⁹	$1.132 \cdot 10^{7}$	$1.411 \cdot 10^{7}$
	$1.137 \cdot 10^{7}$	$1.405 \cdot 10^{7}$
	$1.156 \cdot 10^{7}$	$1.387 \cdot 10^{7}$
10 ¹⁰	$1.024 \cdot 10^{8}$	$1.251 \cdot 10^{8}$
	$1.028 \cdot 10^{8}$	$1.247 \cdot 10^{8}$
	$1.042 \cdot 10^{8}$	$1.233 \cdot 10^{8}$
10 ¹¹	$9.347 \cdot 10^{8}$	$1.124 \cdot 10^9$
	$9.383 \cdot 10^{8}$	$1.121 \cdot 10^9$
	$9.488 \cdot 10^{8}$	$1.110\cdot 10^9$
10 ¹²	$8.600 \cdot 10^9$	$1.020 \cdot 10^{10}$
	$8.630 \cdot 10^9$	$1.017 \cdot 10^{10}$
	$8.712 \cdot 10^9$	$1.009 \cdot 10^{10}$

When q = 5,

When q = 5, we predict that

$$c_2(5;(a,a)) = \frac{-3\log(2\pi/5)}{2},$$

When q = 5, we predict that

$$c_2(5;(a,a)) = \frac{-3\log(2\pi/5)}{2},$$

and if $a \neq b$, then $c_2(5; (a, b)) =$

$$\frac{\log(2\pi/5)}{2} + \frac{5}{2}\Re\left(L(0,\chi)L(1,\chi)A_{5,\chi}\left[\bar{\chi}(b-a) + \frac{\bar{\chi}(b) - \bar{\chi}(a)}{4}\right]\right),$$

When q = 5, we predict that

$$c_2(5;(a,a))=\frac{-3\log(2\pi/5)}{2},$$

and if $a \neq b$, then $c_2(5; (a, b)) =$

$$\frac{\log(2\pi/5)}{2} + \frac{5}{2}\Re\left(L(0,\chi)L(1,\chi)A_{5,\chi}\left[\bar{\chi}(b-a) + \frac{\bar{\chi}(b) - \bar{\chi}(a)}{4}\right]\right),$$

$$A_{5,\chi} = \prod_{p \neq 5} \left(1 - \frac{(\chi(p) - 1)^2}{(p - 1)^2} \right) \approx 1.891 + 1.559i.$$

X	$\pi(x; 5, (1,1))$	$\pi(x; 5, (1,2))$	$\pi(x; 5, (1,3))$	$\pi(x; 5, (1,4))$
10 ⁹	$2.328 \cdot 10^{6}$	$3.842 \cdot 10^6$	$3.796 \cdot 10^6$	$2.745 \cdot 10^6$
	$2.354 \cdot 10^6$	$3.774 \cdot 10^6$	$3.835 \cdot 10^6$	$2.750 \cdot 10^6$

X	$\pi(x; 5, (1,1))$	$\pi(x; 5, (1,2))$	$\pi(x; 5, (1,3))$	$\pi(x; 5, (1, 4))$
10 ⁹	$2.328 \cdot 10^{6}$	$3.842 \cdot 10^6$	$3.796 \cdot 10^6$	$2.745 \cdot 10^6$
	$2.354 \cdot 10^6$	$3.774 \cdot 10^6$	$3.835 \cdot 10^6$	$2.750 \cdot 10^6$
10 ¹⁰	$2.142 \cdot 10^{7}$	$3.369 \cdot 10^{7}$	$3.348 \cdot 10^{7}$	$2.516 \cdot 10^{7}$
	$2.164 \cdot 10^7$	$3.324 \cdot 10^7$	$3.374 \cdot 10^7$	$2.515 \cdot 10^7$

X	$\pi(x; 5, (1,1))$	$\pi(x; 5, (1,2))$	$\pi(x; 5, (1,3))$	$\pi(x; 5, (1,4))$
10^{9}	$2.328 \cdot 10^6$	$3.842 \cdot 10^6$	$3.796 \cdot 10^6$	$2.745 \cdot 10^6$
	$2.354 \cdot 10^6$	$3.774 \cdot 10^6$	$3.835 \cdot 10^6$	$2.750 \cdot 10^6$
10 ¹⁰	$2.142 \cdot 10^{7}$	$3.369 \cdot 10^{7}$	$3.348 \cdot 10^{7}$	$2.516 \cdot 10^{7}$
	$2.164 \cdot 10^{7}$	$3.324 \cdot 10^{7}$	$3.374 \cdot 10^{7}$	$2.515 \cdot 10^7$
10 ¹¹	$1.984 \cdot 10^{8}$	$3.000 \cdot 10^{8}$	$2.993 \cdot 10^{8}$	$2.318 \cdot 10^8$
	$2.002 \cdot 10^8$	$2.969 \cdot 10^{8}$	$3.011 \cdot 10^{8}$	$2.314 \cdot 10^{8}$

X	$\pi(x; 5, (1,1))$	$\pi(x; 5, (1, 2))$	$\pi(x; 5, (1,3))$	$\pi(x; 5, (1, 4))$
10 ⁹	$2.328 \cdot 10^6$	$3.842 \cdot 10^6$	$3.796 \cdot 10^6$	$2.745 \cdot 10^6$
	$2.354 \cdot 10^6$	$3.774 \cdot 10^6$	$3.835 \cdot 10^6$	$2.750 \cdot 10^6$
10^{10}	$2.142 \cdot 10^{7}$	$3.369 \cdot 10^{7}$	$3.348 \cdot 10^{7}$	$2.516 \cdot 10^{7}$
	$2.164 \cdot 10^{7}$	$3.324 \cdot 10^{7}$	$3.374 \cdot 10^{7}$	$2.515 \cdot 10^{7}$
10 ¹¹	$1.984 \cdot 10^{8}$	$3.000 \cdot 10^{8}$	$2.993 \cdot 10^{8}$	$2.318 \cdot 10^{8}$
	$2.002 \cdot 10^{8}$	$2.969 \cdot 10^{8}$	$3.011 \cdot 10^{8}$	$2.314 \cdot 10^{8}$
10 ¹²	$1.848 \cdot 10^9$	$2.704 \cdot 10^9$	$2.706 \cdot 10^9$	$2.145 \cdot 10^9$
	$1.863 \cdot 10^9$	$2.682 \cdot 10^9$	$2.717 \cdot 10^9$	$2.141 \cdot 10^9$

More on the conjectures for r = 2

If a = b then

$$\begin{split} \pi(x;q,(a,a)) &\sim \frac{\operatorname{li}(x)}{\phi(q)^2} \Big(1 - \frac{\phi(q) - 1}{2} \frac{\log \log x}{\log x} \\ &+ \Big(\phi(q) \log \frac{q}{2\pi} + \log 2\pi - \phi(q) \sum_{p \mid q} \frac{\log p}{p-1} \Big) \frac{1}{2 \log x} \Big). \end{split}$$

More on the conjectures for r = 2

If a = b then

$$\pi(x; q, (a, a)) \sim \frac{\operatorname{li}(x)}{\phi(q)^2} \left(1 - \frac{\phi(q) - 1}{2} \frac{\log \log x}{\log x} + \left(\phi(q) \log \frac{q}{2\pi} + \log 2\pi - \phi(q) \sum_{p \mid q} \frac{\log p}{p - 1} \right) \frac{1}{2 \log x} \right).$$

If $a \neq b$ then

$$\pi(x; q, (a, b)) \sim \frac{\operatorname{li}(x)}{\phi(a)^2} \Big(1 + \frac{1}{2} \frac{\log \log x}{\log x} + \frac{c_2(q; (a, b))}{\log x} \Big).$$

More on the conjectures for r = 2

If a = b then

$$\pi(x; q, (a, a)) \sim \frac{\operatorname{li}(x)}{\phi(q)^2} \left(1 - \frac{\phi(q) - 1}{2} \frac{\log \log x}{\log x} + \left(\phi(q) \log \frac{q}{2\pi} + \log 2\pi - \phi(q) \sum_{p \mid q} \frac{\log p}{p - 1} \right) \frac{1}{2 \log x} \right).$$

If $a \neq b$ then

$$\pi(x; q, (a, b)) \sim \frac{\operatorname{li}(x)}{\phi(q)^2} \Big(1 + \frac{1}{2} \frac{\log \log x}{\log x} + \frac{c_2(q; (a, b))}{\log x} \Big).$$

Here c_2 is complicated, but

$$c_2(q;(a,b)) + c_2(q;(b,a)) = \log(2\pi) - \phi(q) \frac{\Lambda(q/(q,b-a))}{\phi(q/(q,b-a))}.$$

Other consequences

Conjecture

Let q be prime. For large x

$$\sum_{p_n \leq x} \left(\frac{p_n p_{n+1}}{q} \right) \sim -\frac{\operatorname{li}(x)}{2 \log x} \log \left(\frac{2\pi \log x}{q} \right).$$

Other consequences

Conjecture

Let q be prime. For large x

$$\sum_{p_n \leq x} \left(\frac{p_n p_{n+1}}{q} \right) \sim -\frac{\operatorname{li}(x)}{2 \log x} \log \left(\frac{2\pi \log x}{q} \right).$$

Conjecture

$$\#\{p_n \le x : p_n \equiv p_{n+2}(mod \ q)\}\$$

Other consequences

Conjecture

Let q be prime. For large x

$$\sum_{p_n \le x} \left(\frac{p_n p_{n+1}}{q} \right) \sim -\frac{\operatorname{li}(x)}{2 \log x} \log \left(\frac{2\pi \log x}{q} \right).$$

Conjecture

$$\#\{p_n \leq x : p_n \equiv p_{n+2} (mod \ q)\} \sim \frac{\operatorname{li}(x)}{\phi(q)} \Big(1 - \frac{\phi(q) - 1}{2} \frac{1}{\log x}\Big).$$

$$\pi(x; q, (a, b)) =$$

$$\pi(x; q, (a, b)) = \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n)$$

$$\pi(x; q, (a, b)) = \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{h > 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h)$$

$$\pi(x; q, (a, b)) = \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{h > 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h) \cdot \prod_{\substack{t < h: \\ (t+a,q)=1}}} \left(1 - \mathbf{1}_{\mathcal{P}}(n+t)\right)$$

$$\pi(x; q, (a, b)) \approx \sum_{\substack{n \leq x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{h \geq 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h) \cdot \prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \frac{1}{\log x}\right)$$

Please do not try this at home!

$$\pi(x; q, (a, b)) \approx \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{h > 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h) \cdot \prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \frac{q}{\phi(q)} \frac{1}{\log x}\right)$$

$$\pi(x; q, (a, b)) \approx \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{h > 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h) \cdot \prod_{\substack{k < h: \\ (t+a,q)=1}}} \left(1 - \frac{q}{\phi(q)} \frac{1}{\log x}\right)$$
$$\sim \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{k > 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h) e^{-h/\log x}$$

$$\pi(x; q, (a, b)) \approx \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{h > 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h) \cdot \\ \cdot \prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \frac{q}{\phi(q)} \frac{1}{\log x}\right) \\ \sim \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \sum_{\substack{h > 0: \\ h \equiv b - a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n+h) e^{-h/\log x} \\ = \sum_{\substack{h \equiv b - a \pmod{q}}} e^{-h/\log x} \sum_{\substack{n < x: \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h)$$

We need to understand

$$\sum_{h\equiv b-a (\text{mod } q)} e^{-h/\log x} \sum_{\substack{n< x\\ n\equiv a (\text{mod } q)}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h).$$

We need to understand

$$\sum_{h\equiv b-a (\text{mod } q)} e^{-h/\log x} \sum_{\substack{n < x \\ n\equiv a (\text{mod } q)}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h).$$

Conjecture (Hardy-Littlewood)

For any $h \neq 0$, we have

$$\sum_{n < x} \mathbf{1}_{\mathcal{P}}(n)\mathbf{1}_{\mathcal{P}}(n+h) \sim \mathfrak{S}(h)\frac{x}{\log^2 x},$$

We need to understand

$$\sum_{h\equiv b-a (\text{mod } q)} e^{-h/\log x} \sum_{\substack{n < x \\ n\equiv a (\text{mod } q)}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h).$$

Conjecture (Hardy-Littlewood)

For any $h \neq 0$, we have

$$\sum_{n \leq x} \mathbf{1}_{\mathcal{P}}(n)\mathbf{1}_{\mathcal{P}}(n+h) \sim \mathfrak{S}(h)\frac{x}{\log^2 x},$$

$$\mathfrak{S}(h) = \prod_{p} \left(1 - \frac{\#(\{0, h\} \operatorname{mod} p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-2}.$$

We need to understand

$$\sum_{h\equiv b-a (\text{mod } q)} e^{-h/\log x} \sum_{\substack{n < x \\ n\equiv a (\text{mod } q)}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h).$$

Conjecture (Hardy-Littlewood)

For any $h \neq 0$, we have

$$\sum_{\substack{n < x \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h) \sim \mathfrak{S}(h) \frac{x}{\log^2 x},$$

$$\mathfrak{S}(h) = \prod_{p} \left(1 - \frac{\#(\{0, h\} \operatorname{mod} p)}{p}\right) \left(1 - \frac{1}{p}\right)^{-2}.$$

We need to understand

$$\sum_{h\equiv b-a (\text{mod } q)} e^{-h/\log x} \sum_{\substack{n< x\\ n\equiv a (\text{mod } q)}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h).$$

Conjecture (Hardy-Littlewood)

For any $h \neq 0$ with (h + a, q) = 1, we have

$$\sum_{\substack{n < x \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathcal{P}}(n) \mathbf{1}_{\mathcal{P}}(n+h) \sim \frac{q}{\phi(q)^2} \mathfrak{S}_q(h) \frac{x}{\log^2 x},$$

$$\mathfrak{S}_{\mathbf{q}}(h) = \prod_{\substack{p \nmid q}} \left(1 - \frac{\#(\{0, h\} \mod p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-2}.$$

We now have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

We now have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Gallagher: $\mathfrak{S}_q(h) = 1$ on average

We now have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Gallagher: $\mathfrak{S}_q(h) = 1$ on average

Blindly plugging this in, we have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} e^{-h/\log x}$$

We now have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Gallagher: $\mathfrak{S}_q(h) = 1$ on average

Blindly plugging this in, we have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} e^{-h/\log x}$$
$$\sim \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \frac{\log x}{q}$$

The main term

We now have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Gallagher: $\mathfrak{S}_q(h) = 1$ on average

Blindly plugging this in, we have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} e^{-h/\log x}$$
$$\sim \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \frac{\log x}{q} = \frac{1}{\phi(q)^2} \frac{x}{\log x},$$

The main term

We now have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Gallagher: $\mathfrak{S}_q(h) = 1$ on average

Blindly plugging this in, we have

$$\pi(x; q, (a, b)) \approx \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \sum_{h \equiv b - a \pmod{q}} e^{-h/\log x}$$
$$\sim \frac{q}{\phi(q)^2} \frac{x}{\log^2 x} \frac{\log x}{q} = \frac{1}{\phi(q)^2} \frac{x}{\log x},$$

which is the main term.

Consider

$$\sum_{h\equiv b-a (\text{mod } q)} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Consider

$$\sum_{h\equiv b-a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Proposition

We have

$$\sum_{h\equiv 0 \pmod{q}} \mathfrak{S}_q(h) \mathrm{e}^{-h/\log x} = \frac{\log x}{q} - \frac{\phi(q)}{2q} \log\log x + O(1),$$

Consider

$$\sum_{h\equiv b-a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Proposition

We have

$$\sum_{h\equiv 0 \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x} = \frac{\log x}{q} - \frac{\phi(q)}{2q} \log\log x + O(1),$$

while for $v \not\equiv 0 \pmod{q}$,

$$\sum_{h \equiv v \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x} = \frac{\log x}{q} + O(1).$$

Consider

$$\sum_{h\equiv b-a \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x}.$$

Proposition

We have

$$\sum_{h\equiv 0 \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x} = \frac{\log x}{q} - \frac{\phi(q)}{2q} \log\log x + O(1),$$

while for $v \not\equiv 0 \pmod{q}$,

$$\sum_{h \equiv v \pmod{q}} \mathfrak{S}_q(h) e^{-h/\log x} = \frac{\log x}{q} + O(1).$$

Idea

Only the first Dirichlet series has a pole at s = 0.

To do this properly, we need to be more careful with

$$\prod_{\substack{t < h: \\ (t+a,q)=1}} (1 - \mathbf{1}_{\mathcal{P}}(n+t)) \approx \prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \frac{q}{\phi(q)\log x}\right).$$

To do this properly, we need to be more careful with

$$\prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \mathbf{1}_{\mathcal{P}}(n+t)\right) \approx \prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \frac{q}{\phi(q)\log x}\right).$$

Could expand out and invoke Hardy-Littlewood,

To do this properly, we need to be more careful with

$$\prod_{\substack{t < h: \\ (t+a,q)=1}} (1 - \mathbf{1}_{\mathcal{P}}(n+t)) \approx \prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \frac{q}{\phi(q)\log x}\right).$$

Could expand out and invoke Hardy-Littlewood, but this is ugly!

To do this properly, we need to be more careful with

$$\prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \mathbf{1}_{\mathcal{P}}(n+t)\right) \approx \prod_{\substack{t < h: \\ (t+a,q)=1}} \left(1 - \frac{q}{\phi(q)\log x}\right).$$

Could expand out and invoke Hardy-Littlewood, but this is ugly!

Better idea: Incorporate inclusion-exclusion directly into H-L.

Modified Hardy-Littlewood

Define
$$\widetilde{\mathbf{1}}_{\mathcal{P}}(n) = \mathbf{1}_{\mathcal{P}}(n) - \frac{q}{\phi(q)\log n}$$
.

Modified Hardy-Littlewood

Define
$$\widetilde{\mathbf{1}}_{\mathcal{P}}(n) = \mathbf{1}_{\mathcal{P}}(n) - \frac{q}{\phi(q)\log n}$$
.

Conjecture

If
$$|\mathcal{H}| = k$$
 with $(h + a, q) = 1$ for all $h \in \mathcal{H}$, then

$$\sum_{\substack{n \leq x \\ p \equiv a \pmod{q}}} \prod_{h \in \mathcal{H}} \widetilde{\mathbf{1}}_{\mathcal{P}}(n+h) \sim \frac{q^{k-1}}{\phi(q)^k} \mathfrak{S}_{q,0}(\mathcal{H}) \frac{x}{\log^k x},$$

Modified Hardy-Littlewood

Define
$$\widetilde{\mathbf{1}}_{\mathcal{P}}(n) = \mathbf{1}_{\mathcal{P}}(n) - \frac{q}{\phi(q)\log n}$$
.

Conjecture

If
$$|\mathcal{H}| = k$$
 with $(h + a, q) = 1$ for all $h \in \mathcal{H}$, then

$$\sum_{\substack{n \leq x \\ n \equiv a (mod \ q)}} \prod_{h \in \mathcal{H}} \widetilde{\mathbf{1}}_{\mathcal{P}}(n+h) \sim \frac{q^{k-1}}{\phi(q)^k} \mathfrak{S}_{q,0}(\mathcal{H}) \frac{x}{\log^k x},$$

where

$$\mathfrak{S}_{q,0}(\mathcal{H}) := \sum_{\mathcal{T} \subset \mathcal{H}} (-1)^{|\mathcal{H} \setminus \mathcal{T}|} \mathfrak{S}_q(\mathcal{T}).$$

Sums of modified singular series

Theorem (Montgomery, S)

$$\sum_{\substack{\mathcal{H}\subseteq[1,h]\\|\mathcal{H}|=k}}\mathfrak{S}_0(\mathcal{H})=\frac{\mu_k}{k!}(-h\log h+Ah)^{k/2}+O_k(h^{k/2-\delta}),$$

where $\mu_k = 0$ if k is odd.

Sums of modified singular series

Theorem (Montgomery, S)

$$\sum_{\substack{\mathcal{H}\subseteq [1,h]\\ |\mathcal{H}|=k}} \mathfrak{S}_0(\mathcal{H}) = \frac{\mu_k}{k!} (-h\log h + Ah)^{k/2} + O_k(h^{k/2-\delta}),$$

where $\mu_k = 0$ if k is odd.

Point

We can discard \mathcal{H} with $|\mathcal{H}| \geq 3$.

Three flavors of two-term \mathcal{H} :

Three flavors of two-term \mathcal{H} :

• $\mathcal{H} = \{0, h\}$: Contributes main-term, bias against diagonal

Three flavors of two-term \mathcal{H} :

- $\mathcal{H} = \{0, h\}$: Contributes main-term, bias against diagonal
- $\mathcal{H} = \{0,t\}$, $\{t,h\}$: (One interloper) Contributes to c_2

Three flavors of two-term \mathcal{H} :

- $\mathcal{H} = \{0, h\}$: Contributes main-term, bias against diagonal
- $\mathcal{H} = \{0, t\}$, $\{t, h\}$: (One interloper) Contributes to c_2
- $\mathcal{H} = \{t_1, t_2\}$: (Two interlopers) Unbiased

Three flavors of two-term \mathcal{H} :

- $\mathcal{H} = \{0, h\}$: Contributes main-term, bias against diagonal
- $\mathcal{H} = \{0, t\}$, $\{t, h\}$: (One interloper) Contributes to c_2
- $\mathcal{H} = \{t_1, t_2\}$: (Two interlopers) Unbiased

Remark

We expect \mathcal{H} with $|\mathcal{H}| \geq 3$ to contribute further lower-order terms.

The conjecture

Conjecture (LO & S)

Let $\mathbf{a} = (a_1, \dots, a_r)$ with $r \geq 2$. Then

$$\pi(x;q,\mathbf{a}) = \frac{\operatorname{li}(x)}{\phi(q)^r} \left[1 + c_1(q;\mathbf{a}) \frac{\log\log x}{\log x} + \frac{c_2(q;\mathbf{a})}{\log x} + O\left(\log^{-7/4}x\right) \right],$$

where

$$c_1(q; \mathbf{a}) = \frac{\phi(q)}{2} \left(\frac{r-1}{\phi(q)} - \#\{1 \leq i < r : a_i \equiv a_{i+1}(mod \ q)\} \right),$$

and $c_2(q; \mathbf{a})$ is complicated but explicit.