Practice Test: Analyzing a Healthcare Dataset Using SAS

Overview

The objective of this practice test is to analyze a healthcare dataset related to diabetes using SAS. The dataset, Healthcare-Diabetes.csv, contains information about patients, including various health metrics and an outcome variable indicating whether a patient has diabetes. The columns in the dataset are as follows:

- Pregnancies: Number of times pregnant
- Glucose: Plasma glucose concentration after a 2-hour oral glucose tolerance test
- BloodPressure: Diastolic blood pressure (mm Hg)
- SkinThickness: Triceps skinfold thickness (mm)
- Insulin: 2-hour serum insulin (mu U/ml)
- BMI: Body Mass Index (weight in kg/(height in m)²)
- DiabetesPedigreeFunction: Diabetes pedigree function
- Age: Age in years
- Outcome: Diabetes outcome (0 = No diabetes, 1 = Diabetes)

Instructions

Importing the Dataset

- Develop a SAS script to import the Healthcare-Diabetes.csv file into a new dataset named diabetes_data. Ensure the first row of the CSV file contains variable names.
- Display the first 10 records from the dataset to confirm successful import.

Summary Statistics

• Use PROC MEANS to calculate summary statistics (mean, standard deviation, minimum, and maximum) for Glucose, BloodPressure, BMI, and Age.

Frequency Analysis

• Perform a frequency analysis of the Outcome variable to observe the distribution of diabetic and non-diabetic patients.

Correlation Analysis

• Conduct a correlation analysis for the continuous variables: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, and Age.

Scatter Plot

• Generate a scatter plot to examine the relationship between Insulin and BMI, using distinct colors to indicate diabetic and non-diabetic patients.

Categorization

- Categorize the following variables:
 - **Age**: ≤ 20 , 21-30, 31-40, and > 40 years
 - Glucose: ≤ 100 (normal), 101-125 (pre-diabetes), and ≥ 126 (diabetes)
 - **BMI**: underweight (< 18.5), normal (18.5-24.9), overweight (25-29.9), and obese (≥ 30)

Summary Table

• Create a table with frequency, mean, median, and standard deviation for Glucose, Insulin, and BMI, grouped by the age categories.

Visualizations

- Generate the following plots:
 - Histograms for Glucose, BMI, and Insulin across age groups
 - Boxplot showing BMI distribution by age category
 - Scatter plot of Glucose versus Age, with a trend line

Interpretation

• Provide a brief interpretation for each analysis step and summarize key insights in a paragraph of 150-200 words.

Stratify the Dataset by BMI Categories

• Produce a summary table displaying Pregnancies, Age, Glucose, and BloodPressure for each BMI category.

Additional Visualizations

- Create the following visualizations:
 - Histograms comparing BloodPressure across BMI categories
 - Scatter plot of Insulin versus Glucose, highlighting clusters
 - Boxplot of Glucose levels for different outcome groups

Correlation Analysis

• Analyze correlations among Age, Glucose, BMI, and Insulin and discuss findings.

Report

• Write a report summarizing key findings, focusing on notable patterns, trends, or anomalies identified in the data.

Categorize Pregnancies

• Create categories: 0, 1-2, 3-4, and ≥ 5 .

Glucose Distribution Analysis

• Use a histogram to analyze glucose distribution across pregnancy categories.

Summary Table

• Summarize the mean and standard deviation for Age, BMI, and Glucose by pregnancy category.

Scatter Plot

• Create a scatter plot showing the relationship between Age and BMI, grouped by pregnancy category.

Correlation Matrix

• Generate a correlation matrix for Pregnancies, Glucose, Insulin, and BMI.

Summary

• Provide a summary interpreting the exploratory analysis, highlighting significant trends and group differences.