NANDAN SESHADRI

Mechanical engineer at University of California San Diego

HAPTIC BOXING GLOVE – UCSD

DESIGN OPTIMIZATION OF GAR PUMP HOUSING - REXROTH BOSCH

STATIC TEST PAD FOR ROCKET MOTOR - STAR

in linkedin.com/in/nandan20

(858) 250-9047

What?

- While working in a team of three, a boxing glove simulator was developed to offer haptic feedback while engaging with a virtual environment.
- Implemented algorithms to control the position of device in real-time.

How?

- Used SolidWorks to design the components of device and applied GD&T on all the drawings.
- Real-time control of the device's position was achieved through the implementation of algorithms using **Arduino IDE**.
- Processing Real-time control of the device's position was achieved through the implementation of algorithms.

Results

 the final product performed effectively, and we conducted testing on 12 individuals with diverse fist sizes using the rendered gloves.

What?

- Working with a team of four, we aimed to optimize the design of a gear pump to achieve cost-effectiveness and reduced weight.
- Minimize the yearly production cost associated with the gear pump.

How?

- Using PTC Creo, we designed and assembled three distinct pump housing prototypes, integrating different pump components.
- Applied FEA to analyze potential points of fracture within the pump.
- Carried out rigorous testing of the prototypes on a test bench for 100 hours to obtain the most optimal design.

Results

 Effectively reduced the annual production cost of parts by \$1.2 million using DFM principles, while meeting the customer's requirements.

What?

- Design a Static Test Pad for gathering data and analyzing the performance of high-powered rocket motors by working with a team of 5.
- Investigated how the load cell performs when subjected to various loads on the test pad.

How?

- Utilized SolidWorks to design the test pad.
- Utilized **FEA** on SolidWorks to determine the maximum load capacity of the test pad.

Results

- The test pad proved capable of accommodating loads of up to 150N, indicating a satisfactory strength-to-weight ratio.
- The design has ergonomic features, facilitating convenient transportability and reusability.

NANDAN SESHADRI

Mechanical engineer at University of California San Diego

VANE DESIGN OF A SPIRAL WATER TURBINE – VTU

in linkedin.com/in/nandan20

(858) 250-9047

What?

- Collaborating in a group of four, our task was to design the vanes for an affordable spiral water turbine intended for generating power for household applications.
- We performed simulations at various flow velocities to analyze the performance and behavior of the vanes.

How?

- Utilized **SolidWorks** to design the vanes.
- Employed ANSYS Fluent to simulate the behavior of the blades at different flow velocities.

Results

 The final design blade design was simulated at 15m/s, 20m/s, and 25m/s to visualize the flow.