Appendix - Python Code

Classification Algorithms on Iris Dataset

Importing required libraries

```
In [271]: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.tree import DecisionTreeClassifier
   from sklearn import metrics
   from sklearn import svm
   from sklearn.ensemble import RandomForestClassifier
```

Data Preprocessing

```
In [272]: data = pd.read_csv("Iris.csv")
In [273]: data.head()
```

Out[273]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
() 1	5.1	3.5	1.4	0.2	Iris-setosa
•	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
;	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [274]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 150 entries, 0 to 149
          Data columns (total 6 columns):
               Column
                             Non-Null Count Dtype
                             _____
                                             int64
           0
               Ιd
                             150 non-null
           1
               SepalLengthCm 150 non-null
                                             float64
           2
               SepalWidthCm
                             150 non-null
                                             float64
           3
               PetalLengthCm 150 non-null
                                            float64
           4
               PetalWidthCm
                             150 non-null
                                             float64
           5
               Species
                             150 non-null
                                             object
          dtypes: float64(4), int64(1), object(1)
          memory usage: 7.2+ KB
```

Dropping 'Id' column

```
In [275]: data = data.drop('Id', axis = 1)
```

Checking for NA values

Checking for duplicate values

```
In [277]: data[data.duplicated() == True]
```

Out[277]:

Species	PetalWidthCm	PetalLengthCm	SepalWidthCm	SepalLengthCm	
Iris-setosa	0.1	1.5	3.1	4.9	34
Iris-setosa	0.1	1.5	3.1	4.9	37
Iris-virginica	1.9	5.1	2.7	5.8	142

Descriptive statistics

In [278]: data.describe()

Out[278]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Data Exploration

Box plot grouped by species

```
In [279]: data.boxplot(by="Species", figsize=(8, 6))
Out[279]: array([[<Axes: title={'center': 'PetalLengthCm'}, xlabel='[Species]'>,
                  <Axes: title={'center': 'PetalWidthCm'}, xlabel='[Species]'>],
                 [<Axes: title={'center': 'SepalLengthCm'}, xlabel='[Species]'>,
                  <Axes: title={'center': 'SepalWidthCm'}, xlabel='[Species]'>]],
                dtype=object)
                                     Boxplot grouped by Species
                       PetalLengthCm
                                                               PetalWidthCm
           8
           6
           4
           2
                      SepalLengthCm
                                                               SepalWidthCm
           8
           6
           4
           2
           0
```

Iris-setosa

Iris-versicolor Iris-virginica

[Species]

Iris-versicolor Iris-virginica

[Species]

Violin Chart

Iris-setosa

```
In [280]: plt.figure(figsize=(8,6))
   plt.subplot(2,2,1)
   sns.violinplot(x='Species', y='PetalLengthCm', data=data)

plt.subplot(2,2,2)
   sns.violinplot(x='Species', y='PetalWidthCm', data=data)

plt.subplot(2,2,3)
   sns.violinplot(x='Species', y='SepalLengthCm', data=data)

plt.subplot(2,2,4)
   sns.violinplot(x='Species', y='SepalWidthCm', data=data)
```

Out[280]: <Axes: xlabel='Species', ylabel='SepalWidthCm'>

Pair plot

```
In [281]: sns.pairplot(data, hue='Species', height=2)
```

Out[281]: <seaborn.axisgrid.PairGrid at 0x1adf71853f0>

Classification Algorithms

70 - 30 Train test split

```
In [309]: #Splitting the data into test and train sets
          train, test = train_test_split(data, test_size = 0.3)
          print(train.shape)
          print(test.shape)
          #storing the training data attributes as x
          train_x = train[['SepalLengthCm','SepalWidthCm','PetalLengthCm', 'PetalWidthCn']
          #output of our training data
          train_y = train.Species
          #storing test data attributes
          test_x= test[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
          #output of our test data
          test_y =test.Species
          (105, 5)
          (45, 5)
In [283]: |y_test.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 45 entries, 114 to 10
          Data columns (total 1 columns):
           # Column Non-Null Count Dtype
           0
               Species 45 non-null object
          dtypes: object(1)
          memory usage: 720.0+ bytes
```

We will use following algorithms and compare the accuracy

- 1. Decision Tree
- 2. Support Vector Machine
- 3. Random Forests

1. Decision Tree

```
In [312]: # Decision tree classifier object
dtree = DecisionTreeClassifier()

# Training decision tree classifier
dtree = dtree.fit(train_x, train_y)

# Predicting the response for test data
dtree_pred = dtree.predict(test_x)
```

```
In [345]: # Evaluating the model
          # Creating confusion matrix
          dtree_cm = metrics.confusion_matrix(test_y, dtree_pred)
          # Converting confusion matrix into data frame for better plotting
          dtree cm df = pd.DataFrame(dtree cm,
                                   index = ['setosa', 'versicolor', 'virginica'],
                                   columns = ['setosa', 'versicolor', 'virginica'])
          # Plotting confusion matrix
          plt.figure(figsize=(4,4))
          sns.heatmap(dtree_cm_df, annot=True)
          plt.title('Decision Tree Classifier \nAccuracy Score:{0:.3f}'.format(metrics.a
          plt.ylabel('True label')
          plt.xlabel('Predicted label')
          plt.show()
          # Decision Tree Classification Report
          print(metrics.classification report(test y, dtree pred))
```


	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	17
Iris-versicolor	1.00	0.85	0.92	13
Iris-virginica	0.88	1.00	0.94	15
accuracy			0.96	45
macro avg	0.96	0.95	0.95	45
weighted avg	0.96	0.96	0.96	45

2. Support Vector Machine

```
In [317]: # Creating SVM Classifier
svm_clf = svm.SVC(kernel='linear')

# Training the classifier
svm_clf.fit(train_x, train_y.values.ravel())

# Predicting the response for test set
svm_pred = svm_clf.predict(test_x)
```

```
In [344]: # Evaluating the model
          # Creating confusion matrix
          svm_cm = metrics.confusion_matrix(test_y, svm_pred)
          # Converting confusion matrix into data frame for better plotting
          svm cm df = pd.DataFrame(svm cm,
                                   index = ['setosa', 'versicolor', 'virginica'],
                                   columns = ['setosa', 'versicolor', 'virginica'])
          # Plotting confusion matrix
          plt.figure(figsize=(4,4))
          sns.heatmap(svm_cm_df, annot=True)
          plt.title('Support Vector Machine \nAccuracy Score:{0:.3f}'.format(metrics.acc
          plt.ylabel('True label')
          plt.xlabel('Predicted label')
          plt.show()
          # Support Vector Machine Classification Report
          print(metrics.classification report(test y, svm pred))
```


3. Random Forest

```
In [334]: # Creating Random Forest Classifier Instance
    rf = RandomForestClassifier()

# Training the classifier
    rf.fit(train_x, train_y)

# Predicting the response for test set
    rf_pred = rf.predict(test_x)
```

```
In [336]: # Evaluating the model
          # Creating confusion matrix
          rf_cm = metrics.confusion_matrix(test_y, rf_pred)
          # Converting confusion matrix into data frame for better plotting
          rf cm df = pd.DataFrame(rf cm,
                                   index = ['setosa', 'versicolor', 'virginica'],
                                   columns = ['setosa', 'versicolor', 'virginica'])
          # Plotting confusion matrix
          plt.figure(figsize=(4,4))
          sns.heatmap(rf_cm_df, annot=True)
          plt.title('Random Forest Classifier \nAccuracy Score:{0:.3f}'.format(metrics.a
          plt.ylabel('True label')
          plt.xlabel('Predicted label')
          plt.show()
          # Random Forest Classification Report
          print(metrics.classification report(test y, rf pred))
```


	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	17
Iris-versicolor	1.00	0.85	0.92	13
Iris-virginica	0.88	1.00	0.94	15
accuracy			0.96	45
macro avg	0.96	0.95	0.95	45
weighted avg	0.96	0.96	0.96	45