Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 1 «Проверка статистических гипотез»

студента	<u>Баранова А</u>	<u> Александра</u>	группы_	<u>Б22-534</u> . ,	Дата сдач	и:_ <u>01.11.202</u>	<u>24</u>
Ведущий	преподава	гель: <u>Новик</u>	<u>ов М. А.</u>	оценка: _	по,	дпись:	

Вариант №2

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проверки статистических гипотез.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, <i>m</i> _i	Дисперсия, σ_i^2
X_1	R(2,6)	$a_1 = 2, b_1 = 6$	$m_1 = \frac{a_1 + b_1}{2} = 4$	$\sigma_1^2 = \frac{(b_1 - a_1)^2}{12} = \frac{4}{3}$
X_2	R(2,6)	$a_2 = 2, b_2 = 6$	$m_2 = \frac{a_2 + b_2}{2} = 4$	$\sigma_2^2 = \frac{(b_2 - a_2)^2}{12} = \frac{4}{3}$

Указание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	Объем выборки, n_i
X_1	4.00	1.34	1.16	50
X_2	3.85	1.70	1.31	50
Pooled	3.92	1.51	1.23	100

Указание: для расчета использовать функции mean, var, std (scipy.stats: describe)

2. Однопараметрические критерии

Для случайной величины X_1 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0.05$	Ошибка стат. решения
z-test	$m_1 = 4$ (σ известна)	-0.01	0.99	H_0 принимается	Нет
t-test	$m_1 = 4$ (σ неизвестна)	-0.01	0.99	H_0 принимается	Нет
χ²-test (m – изв)	$\sigma_1 = \sqrt{\frac{4}{3}}$ (m известно)	49.23	0.50	H_0 принимается	Нет
χ²-test (m – не изв)	$\sigma_1 = \sqrt{\frac{4}{3}}$ (m неизвестно)	49.23	0.46	H_0 принимается	Нет

Указание: для проверки гипотез использовать функции ztest, ttest, vartest (scipy.stats: ttest_1samp, chisquare)

3. Двухвыборочные критерии

Для случайных величин X_1, X_2 :

Тест	Стат. гипотеза, <i>H</i> ₀	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0.05$	Ошибка стат. решения
2-sample t-test	$m_1 = m_2$	0.62	0.54	H_0 принимается	Нет

Лабораторный практикум по курсу «Математическая статистика»

2-sample F-test (m – изв)	$\sigma_1 = \sigma_2$	0.78	0.81	H_0 принимается	Нет
2-sample F-test (m – не	$\sigma_1 = \sigma_2$	0.77	0.82	H_0 принимается	Нет

Указание: для проверки гипотез использовать функции ttest2, vartest2 (scipy.stats: ttest_ind, chisquare)

4. Исследование распределений статистик критерия

Статистическая гипотеза: H_0 : $m_1 = 4(\sigma_1$ - известна)

Формула расчёта статистики критерия Z:
$$Z = \frac{\overline{X} - m_0}{\frac{\sigma}{\sqrt{n}}}$$

Формула расчёта статистики *P-value*:

$$p = 2min(F_Z(z_{\text{Bbl}\bullet} \mid H_0), 1 - F_Z(z_{\text{Bbl}\bullet} \mid H_0))$$

Число серий экспериментов N = 1000

Теоретические характеристики:

СВ	Распределение в условиях <i>H</i> ₀	Параметры	Математическое ожидание	Дисперсия	С.к.о.
Z	N(0, 1)		0	1	1
P-value	R(0, 1)		$\frac{1}{2}$	$\frac{1}{12} \sim 0.083$	$\frac{1}{\sqrt{12}} \sim 0.288$

Выборочные характеристики:

	СВ	Среднее	Оценка дисперсии	Оценка с.к.о.
--	----	---------	------------------	---------------

Лабораторный практикум по курсу «Математическая статистика»

Z	-0.03	1.05	1.03
P-value	0.49	0.08	0.29

Указание: при расчете выборочных значений статистики критерия использовать функции norminv, tinv, chi2inf, finv (scipy.stats: norm.ppf, t.ppf, chi2.ppf, f.ppf)

Гистограмма частот статистики Z и теоретическая функция $f_Z(z\,|\,H_0)$:

Гистограмма частот статистики $P ext{-value}$ и теоретическая функция $f_p(p\,|\,H_0)$:

Указание: для построения гистограмм и теоретических функций плотности использовать функции hist, normpdf, tpdf, chi2pdf, fpdf (scipy.stats: norm.pdf, t.pdf, chi2.pdf, f.pdf, histogram; matplotlib.pyplot: hist)