

Narzędzia Sztucznej Inteligencji

Wykład 02

23.10.2021

Czapiewski Paweł

pczapiewski@pjwstk.edu.pl

Source: https://www.youtube.com/watch?v=cdWRo6gdOJ8

—— NAI

http://moonlander.seb.ly/

expert

[ek-spərt], n,

1. Anyone from out of town. 2. The person who predicts the job will take the longest and cost the most.

see also: delusional, pretender

To what degree is something true or false?

NAI

- •Flexible and easy to implement machine learning technique
- •Helps you to mimic the logic of human thought
- Logic may have two values which represent two possible solutions
- Highly suitable method for uncertain or approximate reasoning
- Fuzzy logic views inference as a process of propagating elastic constraints
- •Fuzzy logic allows you to build **nonlinear** functions of **arbitrary** complexity.
- •Fuzzy logic should be built with the complete guidance of experts

Source: https://www.guru99.com/what-is-fuzzy-logic.html#10

Precision and Significance in the Real World A 1500 kg mass LOOK OUT!! is approaching your head at 45.3 m/s Precision Significance

NAI

Fuzzy Logic Set

Classical Set

Speed = 0

Speed = 1

Fuzzy Set

Slowest

[0.0 - 0.25]

Slow

[0.25 - 0.50]

Fast

[0.50 - 0.75]

[0.75 - 1.00]

Fuzzy Logic Set

Source: https://www.guru99.com/what-is-fuzzy-logic.html#10

$$S(x,\alpha,\sigma,\beta) = \begin{cases} 0 & \text{for } x \leq \alpha \\ 2\left(\frac{x-\alpha}{\beta-\alpha}\right)^2 & \text{for } \alpha < x \leq \sigma \\ 1-2\left(\frac{x-\beta}{\beta-\alpha}\right)^2 & \text{for } \sigma < x \leq \beta \\ 1 & \text{for } x > \beta \end{cases}$$

Source:

$$\Gamma(x,\alpha,\beta) = \begin{cases} 0 & \text{for } x < \alpha \\ \left(\frac{x-\alpha}{\beta-\alpha}\right) & \text{for } \alpha \le x \le \beta \\ 1 & \text{for } x > \beta \end{cases}$$

Source:

$$L(x, lpha, eta) = egin{cases} 1 & & ext{for } x < lpha \ \left(rac{eta - x}{eta - lpha}
ight) & & ext{for } lpha \leq x \leq eta \ for & x > eta \end{cases}$$

Source:

$$A(x,\alpha,\sigma,\beta) = \begin{cases} 0 \\ \left(\frac{x-\alpha}{\sigma-\alpha}\right) \\ \left(\frac{\beta-x}{\beta-\sigma}\right) \end{cases}$$

for
$$x < \alpha$$

for $\alpha \le x \le \sigma$
for $\sigma < x \le \beta$
for $x > \beta$

Source:

Fuzzy Logic Operation

		ZADEH operator	Logic operation		
Intersection	A B B	μ _{Α∩Β} = MIN (μ _Α , μ _Β)	AND	μ _A μ _B	µ _{А∩В}
Union	A B	μ _{Α∪Β} = MAX (μ _Α , μ _Β)	OR	μ _A μ _B	μасв
Negation	Ā	μ _Δ = 1 - μ _Δ	NOT	μ _Α μ _χ	μχ


```
IF temperature IS very cold THEN fan_speed is stopped
```

- IF temperature IS cold THEN fan speed is slow
- IF temperature IS warm THEN fan_speed is moderate
- IF temperature IS hot THEN fan_speed is high

- NAI

Fuzzy Inference

The inputs are crisp (non-fuzzy) numbers limited to a specific range. All rules are evaluated in parallel using fuzzy reasoning. The results of the rules are combined and distilled (defuzzified). The result is a crisp (non-fuzzy) number.

Step 1: Fuzzify Input (Fuzzification)

Step 2: Apply Fuzzy Operator

Step 3: Apply Implication Method

Step 4: Aggregate All Outputs

- NAI

Fuzzy Inference

Defuzzification method

Source:

At Restaurants				
Wait staff	15% - 20% of the total bill before taxes (Note: some restaurants now suggest tipping after taxes because servers thenselves tip out on the after tax amount).			
Wine served with dinner	The safe recommendation is to tip 15-20% of the total bill, including alcohol, even for expensive bottles of wine. However, we've seen some restaurants say it's OK to tip around 10% for expensive wines.			
Bartenders	15% - 20% of the tab; or, \$1 for beer or wine, \$2 for mixed drinks. Ideally, pay your bar tab before leaving for your table.			
Order at front	If you order at the front and food is delivered to your table, it depends. If, once you've ordered, the seating and decor compare with a standard, sit-down restaurant, tip 5%-10%. If the food is delivered to your table only as a convenience, tipping is not necessary.			

At Cafes				
Tip jar	Optional. Leave 5%-10% for good service or complicated orders, especially if the staff is hired and is more dependent on tips.			

At Fine Dining				
Parking Attendant	Usually \$1-\$3			
Coatroom Attendant	Usually \$1 per coat			
Wait staff	15%-20% of the pre-tax bill (Note: some restaurants now suggest tipping after taxes becaus servers thenselves tip out on the after tax amount)			
Wine steward or sommelier	For personal service from the wine steward, you may tip 10% of the wine bill.			
Restroom Attendant	Usually .50-\$1			

Other (including delivery)				
	At least \$1, 15% for normal service, more during rain, snow or other poor weather.			

Source: http://www.itipping.com/tip-guide-restaurant.htm

Antecednets (Inputs)

□ Service

Universe (ie, crisp value range)How good was the service of the waitress, on a scale of 1 to 10?

Fuzzy set (ie, fuzzy value range): poor, acceptable, amazing

☐ Food quality

Universe: How tasty was the food, on a scale of 1 to 10?

Fuzzy set: bad, decent, great

Source: https://pythonhosted.org/scikit-fuzzy/userguide/fuzzy_control_primer.html

Consequents (Outputs)

tip

Universe: How much should we tip, on a scale of 0% to 25%

Fuzzy set: low, medium, high

□ Rules

IF the service was good or the food quality was good, THEN the tip will be high.

IF the service was average, THEN the tip will be medium.

IF the service was poor and the food quality was poor THEN the tip will be low.

Usage

If I tell this controller that I rated:

the service as 9.8,

and

the quality as 6.5,

it would recommend I leave:

a 20.2% tip.

Source: https://pythonhosted.org/scikit-fuzzy/userguide/fuzzy_control_primer.html

Air Conditioning System with Fuzzy Logic

Source: https://www.researchgate.net/publication/236157468 Air Conditioning System with Fuzzy Logic and Neuro-Fuzzy Algorithm

Air Conditioning System with Fuzzy Logic

Temperature membership functions

Humidity membership functions

Source: https://www.guru99.com/what-is-fuzzy-logic.html#10

Air Conditioning System with Fuzzy Logic

			v			
Rules	Input		Output			
	Temperature	Humidity	Compressor speed	Fin direction	Fan speed	Operation mode
1	Too cold	Dry	Off	Away	Off	AC
2	Too cold	Refreshing	Off	Away	Off	AC
3	Too cold	Comfortable	Off	Away	Off	AC
4	Too cold	Humid	Off	Away	Very low	AC
5	Too cold	Sticky	Very low	Towards	Low	Dehumidifier
6	Cold	Dry	Off	Away	Off	AC
7	Cold	Refreshing	Off	Away	Off	AC
8	Cold	Comfortable	Very low	Away	Very low	AC
9	Cold	Humid	Very low	Towards	Low	AC
10	Cold	Sticky	Low	Towards	Low	Dehumidifier
11	Warm	Dry	Very low	Away	Very low	AC
12	Warm	Refreshing	Very low	Away	Very low	AC
13	Warm	Comfortable	Low	Away	Low	AC
14	Warm	Humid	Medium	Towards	Medium	Dehumidifier
15	Warm	Sticky	Medium	Towards	Medium	Dehumidifier
16	Hot	Dry	Low	Away	Low	AC
17	Hot	Refreshing	Medium	Away	Medium	AC
18	Hot	Comfortable	Medium	Towards	Medium	AC
19	Hot	Humid	Fast	Towards	Fast	Dehumidifier
20	Hot	Sticky	Fast	Towards	Fast	Dehumidifier
21	Too hot	Dry	Medium	Away	Medium	AC
22	Too hot	Refreshing	Medium	Towards	Medium	AC
23	Too hot	Comfortable	Fast	Towards	Fast	Dehumidifier
24	Too hot	Humid	Fast	Towards	Fast	Dehumidifier
25	Too hot	Sticky	Fast	Towards	Fast	Dehumidifier

Source: https://www.guru99.com/what-is-fuzzy-logic.html#10

Road Noise Pollution Estimation

Rainfall prediction

Source: https://www.youtube.com/watch?v=h-PekWwPR-k

Fuzzy Logic Controller of 3D Pole Balancing

Source: http://www.fuzzylite.com/

Source: https://www.youtube.com/watch?v=zoWsFyhRnE8

Fuzzy Logic Demo

· NAI

Fuzzy Logic Example Library

Python

https://github.com/scikit-fuzzy/scikit-fuzzy

Java

http://jfuzzylogic.sourceforge.net/html/fcl.html

JavaScript:

https://github.com/sebs/node-fuzzylogic

C++

https://fuzzylite.com/cpp/

C#

http://www.aforgenet.com/framework/samples/fuzzy_sets.html

Advantages of Fuzzy Logic System

☐ The structure of Fuzzy Logic Systems is **easy** and **understandable** ☐ Fuzzy logic **is widely used** for commercial and practical purposes ☐ It helps you to **control machines** and consumer products ☐ It may not offer accurate reasoning, but the only acceptable reasoning ☐ It helps you to deal with the **uncertainty** in engineering ☐ Mostly robust as no precise inputs required ☐ It can be programmed to in the situation when **feedback sensor stops** working ☐ It can easily be **modified** to improve or **alter** system performance ☐ Inexpensive sensors can be used which helps you to keep the overall system cost and complexity low ☐ It provides a most effective solution to **complex issues**

Source: https://www.guru99.com/what-is-fuzzy-logic.html#10

Advantages of Fuzzy Logic System

- ☐ Fuzzy logic **is not always accurate**, so he results are perceived based on assumption, so it may not be widely accepted.
- ☐ Fuzzy systems don't have the capability of machine learning as-well-as neural network type pattern recognition
- ☐ Validation and verification of a fuzzy knowledge-based system needs extensive testing with hardware
- ☐ Setting exact, fuzzy rules and, membership functions is a **difficult task**
- ☐ Some fuzzy time logic is **confused with probability theory** and the terms

Source: https://www.guru99.com/what-is-fuzzy-logic.html#10

Reading materials

- https://web.archive.org/web/20061205114153/http://blog.peltarion.com/2006/10/25/fuzzy-math-part-1-the-theory
- https://www.researchgate.net/publication/278031775 The Basics of Fuzzy Logic A Tutorial Review
- https://www.researchgate.net/publication/236157468 Air C onditioning System with Fuzzy Logic and Neuro-Fuzzy Algorithm

— NAI