Partial exam 1 - Jeudi 30 mars 2017 - Duration: 60 min

No document, no phone, no computing machine.

Name:	F	First name :		Signature:
	Exercise 1 :	Exercise 2 :	Grade /20:	
Assume that r_1 , r_2	he Inverse-transfor	e 8 pts) les from a uniform o m technique to calc		
	$f_a(x) = \langle$	$\begin{cases} 0 & \text{if } x \le 0 \\ ax^{a-1} & \text{if } 0 < x < 0 \end{cases}$	or $x \ge 1$, < 1 ,	(1)
where $a > 0$ is a kr 1. Show that f	nown parameter. $f_a(x)$ is a probability	y density function.		
2. Calculate th	ne cumulative distr	ibution function F_a	(x) for all $x \in \mathbb{R}$.	

3. Calculate $F_a^{-1}(y)$ for $0 < y < 1$.
4. Describe the algorithm to calculate the samples $x_1, x_2,, x_n$ from $r_1, r_2,, r_n$.
4. Describe the algorithm to calculate the samples $x_1, x_2,, x_n$ from $r_1, r_2,, r_n$.
Exercise 2 (Estimation, \approx 12 pts)
Let us consider the random variable X following the geometric distribution
$Pr(X = x) = (1 - p)^{x - 1} p$
where $0 and x \in \mathbb{N}^* = \{1, 2, 3,\} is a strictly positive integer. Let us recall that \mathbf{E}[X] = 1$
and $\operatorname{Var}[X] = (1-p)/p^2$. Assume that x_1, \dots, x_n are n samples of X .
1. Let $t = 1/p$ such that $t > 1$. Express $Pr(X = x)$ as a function of t and, then, give the like
hood function $L(t; x_1,, x_n)$ of t .

2. Calculate the maximum lil	kennood estimate t of t .
0.01.11.1	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} .	
3. Calculate the bias of \hat{t} . 4. Calculate the variance of \hat{t}	•

UNS/LF 3/4 2016/2017

5. Calculate the Cramer-Rao bound of any unbiased estimate of t. Hints: if necessary, you can assume in this question that

$$\frac{\partial \ln L(t;x_1,\ldots,x_n)}{\partial t} = \frac{n(\bar{x}-t)}{t(t-1)} \text{ where } \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

6. Is the estimate \hat{t} efficient?