Ch3: Rigid-Body Motions – Part 2

Amin Fakhari, Spring 2022

Homogeneous Transformation Matrices

Rigid-body configuration can be represented by the pair (R, p) $(R \in SO(3), p \in \mathbb{R}^3)$. We can package (R, p) into a single 4×4 matrix as

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

(an implicit representation of the C-space)

Rigid-Body Motions

Twists

Special Euclidean Group SE(n)

The Special Euclidean Group SE(3), also known as the group of rigid-body motions or homogeneous transformation matrices in \mathbb{R}^3 , is the set of all 4×4 real matrices T of the form

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} T \in SE(3) \\ \mathbf{R} \in SO(3) \\ \mathbf{p} \in \mathbb{R}^3 \end{array}$$

The special Euclidean group SE(2) is the set of all 3×3 real matrices T of the form

$$T = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & p_1 \\ r_{21} & r_{22} & p_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & p_1 \\ \sin \theta & \cos \theta & p_2 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{l} \mathbf{T} \in SE(2) \\ \mathbf{R} \in SO(2) \\ \mathbf{p} \in \mathbb{R}^2 \\ \theta \in [0, 2\pi) \end{array}$$

SE(2) is a subgroup of SE(3): $SE(2) \subset SE(3)$

$$T = (R, p) \in SE(3)$$
 $SE(3) = \{(R, p) \mid R \in SO(3), p \in \mathbb{R}^3\}$

Example

Properties of Transformation Matrices

SE(3) (or SE(2)) is a matrix (Lie) group (and the group operation \bullet is matrix multiplication).

 $T_1T_2 \in SE(3)$ Closure:

Associative: $(T_1T_2)T_3 = T_1(T_2T_3)$ (but generally not commutative, $T_1T_2 \neq T_2T_1$)

 $\exists I \in SE(3)$ such that TI = IT = TIdentity:

 $\exists T^{-1} \in SE(3)$ such that $TT^{-1} = T^{-1}T = I$ Inverse:

$$T^{-1} = \begin{bmatrix} R & p \\ \mathbf{0} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ \mathbf{0} & 1 \end{bmatrix}$$

Note: **T** preserves both distances and angles.

Uses of Transformation Matrices (1)

(1) Representing configuration (position and orientation) of a rigid body.

Notation: T_{sb} is the configuration of $\{b\}$ relative to $\{s\}$.

$$\boldsymbol{T}_{sb} = \begin{bmatrix} \boldsymbol{R}_{sb} & \boldsymbol{p} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$T_{sb}T_{bs} = I$$
 or $T_{bs} = T_{sb}^{-1} = \begin{bmatrix} R_{sb}^T & -R_{sb}^T p \\ 0 & 1 \end{bmatrix}$

Uses of Transformation Matrices (2)

(2) Changing the reference frame of a <u>vector</u> or <u>frame</u>.

 T_{ab} can be viewed as a <u>mathematical operator</u> that changes the reference frame from $\{b\}$ to $\{a\}$.

Note: To calculate Tv, we append a "1" to v and it is called homogeneous coordinates representation of v. $v = [v_1 \ v_2 \ v_3 \ 1]^T$

Uses of Transformation Matrices (3)

(3) Displacing (rotating and translating) a vector or frame.

$$T = (R, p) = (\text{Rot}(\widehat{\omega}, \theta), p) = \text{Trans}(p)\text{Rot}(\widehat{\omega}, \theta)$$

Trans
$$(\mathbf{p}) = \begin{bmatrix} \mathbf{I} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix}$$
 Rot $(\widehat{\boldsymbol{\omega}}, \theta) = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}$

T can be viewed as a mathematical operator that rotates a frame or vector about a unit axis $\widehat{\boldsymbol{\omega}} = (\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3)$ by an amount θ + translating it by \boldsymbol{p} .

Uses of Transformation Matrices (3) (cont.)

• Rotation of vector v about a unit axis $\widehat{\omega}$ (expressed in the same frame) by an amount θ and translation of it by p (expressed in the same frame) is vector v' expressed in the same frame:

$$v' = Tv = \operatorname{Trans}(p)\operatorname{Rot}(\widehat{\omega}, \theta)v$$
Interpretation

Fixed-frame Transformation:

Twists

2. Translating it by
$$p = 1$$
. Rotating $\{b\}$ by $p = 0$ about $p = 0$ in $\{s\}$ to get $\{b'\}$ in $\{s\}$ (this moves $\{b\}$ origin)
$$T_{sb'} = TT_{sb} = Trans(p) Rot(\widehat{\omega}, \theta) T_{sb}$$
Interpretation

Example

Fixed-frame and body-frame transformations corresponding to $\widehat{\boldsymbol{\omega}}=(0,0,1)$, $\theta=90^\circ$, and p = (0,2,0).

Rigid-Body Motions

000000000

Twists

Example

A robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed to the ceiling. The robot must pick up an object with body frame $\{e\}$. What is the configuration of the object relative to the robot hand, T_{ce} , given T_{db} , T_{de} , T_{bc} , and T_{ad} ?

Twists

Rigid-Body Motions

Spatial Velocity or Twist

Finding both the linear and angular velocity of frame $\{b\}$ attached to a moving body.

$$T(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$
: T_{sb} at time t

Rigid-Body Motions

Twists

Body Twist

Similar to $\mathbf{R}^{-1}\dot{\mathbf{R}} = [\boldsymbol{\omega}_h]$, lets compute $\mathbf{T}^{-1}\dot{\mathbf{T}}$:

$$T^{-1}\dot{T} = \begin{bmatrix} R^{\mathrm{T}} & -R^{\mathrm{T}}\boldsymbol{p} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{\boldsymbol{p}} \\ \mathbf{0} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} R^{\mathrm{T}}\dot{R} & R^{\mathrm{T}}\dot{\boldsymbol{p}} \\ \mathbf{0} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{[\boldsymbol{\omega}_b] \in so(3)} \boldsymbol{v}_b = \begin{bmatrix} \boldsymbol{\omega}_b \\ \boldsymbol{v}_b \end{bmatrix} \in \mathbb{R}^6$$

$$\boldsymbol{\mathcal{V}}_b \text{ is defined as Body Twist}$$
(or spatial velocity in the body frame)

(or spatial velocity in the body frame)

$$T^{-1}\dot{T} = [\mathcal{V}_b] = \begin{bmatrix} [\boldsymbol{\omega}_b] & \boldsymbol{v}_b \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

The set of all 4×4 matrices of this form is called se(3) and comprises the 4×4 matrix representations of the **body twists** associated with the rigid-body configurations SE(3).

(se(3)) is called the Lie algebra of the Lie group SE(3)

Spatial Twist

Similar to $\dot{R}R^{-1} = [\omega_s]$, lets compute $\dot{T}T^{-1}$:

$$\dot{T}T^{-1} = \begin{bmatrix} \dot{R} & \dot{p} \\ \mathbf{0} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}^{\mathrm{T}} & -\mathbf{R}^{\mathrm{T}} \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} \\
= \begin{bmatrix} \dot{R}\mathbf{R}^{\mathrm{T}} & \dot{p} - \dot{R}\mathbf{R}^{\mathrm{T}} \mathbf{p} \\ \mathbf{0} & 0 \end{bmatrix} \\
= \begin{bmatrix} [\boldsymbol{\omega}_{S}] & \boldsymbol{v}_{S} \\ \mathbf{0} & 0 \end{bmatrix} \xrightarrow{[\boldsymbol{\omega}_{S}] \in so(3)} \qquad \boldsymbol{v}_{S} = \begin{bmatrix} \boldsymbol{\omega}_{S} \\ \boldsymbol{v}_{S} \end{bmatrix} \in \mathbb{R}^{6}$$

 \mathcal{V}_{s} is defined as **Spatial Twist** (or spatial velocity in the space frame)

$$\dot{T}T^{-1} = [\mathcal{V}_s] = \begin{bmatrix} [\boldsymbol{\omega}_s] & \boldsymbol{v}_s \\ \mathbf{0} & 0 \end{bmatrix} \in se(3)$$

The set of all 4×4 matrices of this form is called se(3) and comprises the 4×4 matrix representations of the **spatial twists** associated with the rigid-body configurations SE(3).

Adjoint Map

Rigid-Body Motions

$$[\mathcal{V}_b] = \mathbf{T}^{-1}\dot{\mathbf{T}} \qquad \qquad [\mathcal{V}_S] = \mathbf{T}[\mathcal{V}_b]\mathbf{T}^{-1} \qquad \longrightarrow$$

$$[\mathcal{V}_S] = \dot{\mathbf{T}}\mathbf{T}^{-1} \qquad \longrightarrow$$

$$[\mathcal{V}_{S}] = \begin{bmatrix} R[\boldsymbol{\omega}_{b}]R^{T} & -R[\boldsymbol{\omega}_{b}]R^{T}\boldsymbol{p} + R\boldsymbol{v}_{b} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \qquad \frac{R[\boldsymbol{\omega}]R^{T} = [R\boldsymbol{\omega}]}{[\boldsymbol{\omega}]\boldsymbol{p} = -[\boldsymbol{p}]\boldsymbol{\omega} \quad \boldsymbol{p}, \boldsymbol{\omega} \in \mathbb{R}^{3}}$$

$$R[\boldsymbol{\omega}]R^{\mathrm{T}} = [R\boldsymbol{\omega}]$$

$$[\boldsymbol{\omega}]\boldsymbol{p} = -[\boldsymbol{p}]\boldsymbol{\omega} \quad \boldsymbol{p}, \boldsymbol{\omega} \in \mathbb{R}^{3}$$

$$\mathbf{v}_{s} = \begin{bmatrix} \mathbf{\omega}_{s} \\ \mathbf{v}_{s} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{p} \mathbf{R} & \mathbf{R} \end{bmatrix} \begin{bmatrix} \mathbf{\omega}_{b} \\ \mathbf{v}_{b} \end{bmatrix} = \begin{bmatrix} \operatorname{Ad}_{\mathbf{T}_{sb}} \end{bmatrix} \mathbf{v}_{b}$$

$$[\mathrm{Ad}_{T}] = \begin{bmatrix} R & \mathbf{0} \\ [\mathbf{p}]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

 $[\mathrm{Ad}_T] = \begin{bmatrix} R & \mathbf{0} \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$ Adjoint Map associated with T or Adjoint Representation of T

$$\mathcal{V}_{\scriptscriptstyle S} = igl[\mathrm{Ad}_{T_{\scriptscriptstyle Sb}} igr] \mathcal{V}_{\scriptscriptstyle b} = \mathrm{Ad}_{T_{\scriptscriptstyle Sb}} (\mathcal{V}_{\scriptscriptstyle b})$$

Similarly, $\mathcal{V}_{\scriptscriptstyle b} = igl[\mathrm{Ad}_{T_{\scriptscriptstyle bS}} igr] \mathcal{V}_{\scriptscriptstyle S} = \mathrm{Ad}_{T_{\scriptscriptstyle bS}} (\mathcal{V}_{\scriptscriptstyle S})$

Adjoint Map Properties

• Let $T_1, T_2 \in SE(3)$ and $\mathcal{V} = (\boldsymbol{\omega}, \boldsymbol{v})$. Then,

$$\big[\mathrm{Ad}_{T_1}\big]\big[\mathrm{Ad}_{T_2}\big]\boldsymbol{\mathcal{V}} = \big[\mathrm{Ad}_{T_1T_2}\big]\boldsymbol{\mathcal{V}} \qquad \text{or} \qquad \mathrm{Ad}_{T_1}\big(\mathrm{Ad}_{T_2}(\boldsymbol{\mathcal{V}})\big) = \mathrm{Ad}_{T_1T_2}(\boldsymbol{\mathcal{V}})$$

• For any $T \in SE(3)$, $[Ad_T]^{-1} = [Ad_{T-1}]$

• For any two frames $\{c\}$ and $\{d\}$, a twist represented as \mathcal{V}_c in $\{c\}$ is related to its representation \mathcal{V}_d in $\{d\}$ by

$$\boldsymbol{\mathcal{V}}_c = [\mathrm{Ad}_{\boldsymbol{T}_{cd}}] \boldsymbol{\mathcal{V}}_d$$
 $\boldsymbol{\mathcal{V}}_d = [\mathrm{Ad}_{\boldsymbol{T}_{dc}}] \boldsymbol{\mathcal{V}}_c$

(changing the reference frame of a twist)

Example

Consider a three-wheeled car with a single steerable front wheel, driving on a plane. The angle of the front wheel of the car causes the car's motion to be a pure angular velocity 2 rad/s about an axis out of the page at the point r in the plane. Find \mathcal{V}_s and \mathcal{V}_b when

$$r_s = (2, -1, 0)$$

 $r_b = (2, -1.4, 0)$

Rigid-Body Motions

Example

Find \mathcal{V}_{s} and \mathcal{V}_{b} for the shown one degree of freedom manipulator.

Screw Interpretation of a Twist

Any rigid-body velocity or twist $oldsymbol{\mathcal{V}}$ is equivalent to the <u>instantaneous</u> velocity $\dot{ heta}$ about some screw axis \mathcal{S} (i.e., rotating about the axis while also translating along the axis).

A screw axis \mathcal{S} represented by a point $q \in \mathbb{R}^3$ on the axis, a unit vector $\hat{\mathbf{s}} \in S^2$ in the direction of the axis, and a pitch $h \in \mathbb{R}$ (linear velocity along the axis / angular velocity $\dot{\theta}$ about the axis) as $\{q, \hat{s}, h\}$.

Thus, twist \mathcal{V} can be represented as

$$\mathcal{V} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{s}}\dot{\boldsymbol{\theta}} \\ -\hat{\boldsymbol{s}}\dot{\boldsymbol{\theta}} \times \boldsymbol{q} + h\dot{\boldsymbol{\theta}}\hat{\boldsymbol{s}} \end{bmatrix}$$

Due to rotation about ${\mathcal S}$ (which is in the plane orthogonal to \hat{s})

Due to translation along \mathcal{S} (which is in the direction of \hat{s})

Screw Interpretation of a Twist

Instead of representing the screw axis S as $\{q, \hat{s}, h\}$ (with the non-uniqueness of q), we represent a "unit" screw axis as a vector as

$$m{S} = egin{bmatrix} m{S}_{\omega} \\ m{S}_{v} \end{bmatrix} \in \mathbb{R}^{6} \quad \text{where} \quad m{\gamma} = m{S}\dot{ heta} \in \mathbb{R}^{6} \qquad \qquad m{S}_{\omega}, m{S}_{v} \in \mathbb{R}^{3}$$

Finding S by having V:

(a) If $\|\boldsymbol{\omega}\| \neq 0$ (\equiv rotation with/without translation along $\hat{\boldsymbol{s}}$):

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \mathcal{V}/\|\boldsymbol{\omega}\| = \begin{bmatrix} \boldsymbol{\omega}/\|\boldsymbol{\omega}\| \\ \boldsymbol{v}/\|\boldsymbol{\omega}\| \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{s}} \\ -\hat{\mathbf{s}} \times \boldsymbol{q} + h\hat{\mathbf{s}} \end{bmatrix}$$

$$= \begin{bmatrix} \text{angular velocity when } \dot{\theta} = 1 \\ \text{linear velocity of origin when } \dot{\theta} = 1 \end{bmatrix}$$
Pitch h is finite, $h = \boldsymbol{\omega}^{T} \boldsymbol{v}/\|\boldsymbol{\omega}\|$

$$\hat{\mathbf{s}} = \boldsymbol{\omega}/\|\boldsymbol{\omega}\|, \quad \|\boldsymbol{S}_{\omega}\| = 1$$

$$\dot{\theta} = \|\boldsymbol{\omega}\| \text{ is interpreted as angular velocity about } \hat{\mathbf{s}}$$

Pitch h is finite, $h = \boldsymbol{\omega}^T \boldsymbol{v} / \|\boldsymbol{\omega}\|^2$

(b) If $\|\boldsymbol{\omega}\| = 0$ (\equiv pure translation along $\hat{\boldsymbol{s}}$):

$$S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = v / ||v|| = \begin{bmatrix} 0 \\ v / ||v|| \end{bmatrix} = \begin{bmatrix} 0 \\ \hat{s} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ \text{normalized linear velocity of origin} \end{bmatrix}$$

$$\hat{s} = v / ||v||, \qquad ||S_{v}|| = 1$$

$$\dot{\theta} = ||v|| \text{ is interpreted as linear velocity along } \hat{s}$$

Pitch h is infinite, $\|\mathbf{S}_{\omega}\| = 0$

Screw Interpretation of a Twist

 \diamond Since a screw axis **S** is just a normalized twist, the 4×4 matrix representation [S] of $S = (S_{\omega}, S_{\nu})$ is

$$[S] = \begin{bmatrix} [S_{\omega}] & S_{v} \\ \mathbf{0} & 0 \end{bmatrix} \in se(3) \qquad [V] = [S]\dot{\theta} \in se(3)$$

Relation between a screw axis represented as S_a in a frame $\{a\}$ and S_b in a frame $\{b\}$:

$$\mathbf{S}_a = [\mathrm{Ad}_{\mathbf{T}_{ab}}]\mathbf{S}_b$$
 $\mathbf{S}_b = [\mathrm{Ad}_{\mathbf{T}_{ba}}]\mathbf{S}_a$

(changing the reference frame of a screw axis)

Example

Kinova lightweight 4-dof arm:

What are the screw axis S_b and S_s for J4 and J2?

Exponential Coordinate Representation of Rigid-Body Motion

Screw Motion

Instead of viewing a displacement as a rotation followed by a translation, both rotation and translation can be performed <u>simultaneously</u>.

Planar example of a screw motion:

The displacement can be viewed as a rotation of $\beta = 90^{\circ}$ about a fixed point s.

 \equiv

Exponential Coordinates of Rigid-Body Motions

Chasles—Mozzi theorem states that every rigid-body displacement can be expressed as a finite rotation and translation about a fixed screw axis in space.

This theorem motivates a six-parameter representation of a configuration (or a homogeneous transformation $T \in SE(3)$ called the exponential coordinates as $S\theta \in \mathbb{R}^6$, where S is the screw axis and θ is the distance that must be traveled along the screw axis to take a frame from the origin I to T.

Note: **T** is equivalent to the displacement obtained by rotating a frame from *I* about *S*

• by an angle θ , or

Rigid-Body Motions

- at a speed $\dot{\theta} = 1$ rad/s for θ s, or
- at a speed $\dot{ heta}= heta$ for unit time , or
- by twist $\boldsymbol{\mathcal{V}}$ for unit time.

A rotation θ + a translation d about/along a fixed screw axis **S**.

$$m{S} = egin{bmatrix} m{S}_{\omega} \\ m{S}_{v} \end{bmatrix} = egin{bmatrix} \hat{\mathbf{S}} \\ -\hat{\mathbf{S}} imes m{q} + h\hat{\mathbf{S}} \end{bmatrix} & ext{(for rotation with/without translation along $\hat{\mathbf{S}}$)} \\ m{S} = egin{bmatrix} m{S}_{\omega} \\ m{S}_{\omega} \end{bmatrix} = egin{bmatrix} m{0} \\ \hat{\mathbf{S}} \end{bmatrix} & ext{(for pure translation along $\hat{\mathbf{S}}$)} \end{aligned}$$

Exponential Coordinates of Rigid-Body Motions

As with rotations, we can define a matrix exponential (exp) and matrix logarithm (log). For any transformation matrix $T \in SE(3)$, we can always find a screw axis $S = (S_{\omega}, S_{v}) \in \mathbb{R}^{6}$ $(\|\pmb{S}_{\omega}\|=1 \text{ or } \pmb{S}_{\omega}=\pmb{0}, \|\pmb{S}_{v}\|=1)$ and scalar $\theta\in\mathbb{R}$ such that $\pmb{T}=e^{[\pmb{S}]\theta}$.

> $[S]\theta \in se(3) \rightarrow T \in SE(3) : e^{[S]\theta} = T = (R, p)$ exp:

 $T \in SE(3) \rightarrow [S]\theta \in se(3) : \log(T) = [S]\theta$ log:

 $S\theta \in \mathbb{R}^6$: Exponential coordinates of $T \in SE(3)$

 $[S]\theta = [S\theta] \in se(3)$: Matrix logarithm of T (inverse of the matrix exponential)

For a given S: $(S_a = [Ad_{T_{ab}}]S_b)$ \boldsymbol{S} is expressed in $\{b\}$

> $T_{sh'} = T_{sh}e^{[S_b]\theta}$ Body-frame displacement:

 $T_{sb'} = e^{[S_s]\theta}T_{sb}$ Fixed-frame displacement: S is expressed in $\{s\}$

Matrix Exponential

exp:
$$[S]\theta \in se(3) \rightarrow T \in SE(3)$$
 : $e^{[S]\theta} = T = (R, p)$

- \clubsuit Finding T=(R,p) by having $S=(S_{\omega},S_{v})$ and θ :
- (a) If $||S_{\omega}|| = 1$:

Rigid-Body Motions

000000000

$$e^{[S]\theta} = \begin{bmatrix} e^{[S_{\omega}]\theta} & G(\theta)S_v \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$G(\theta) = I\theta + (1 - \cos \theta)[S_{\omega}] + (\theta - \sin \theta)[S_{\omega}]^2 \in \mathbb{R}^{3 \times 3}$$

(b) If
$$S_{\omega} = 0$$
 ($||S_{v}|| = 1$):

$$e^{[S]\theta} = \begin{bmatrix} I & S_v \theta \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} R & P \\ \mathbf{0} & 1 \end{bmatrix}$$

Matrix Logarithm

log:
$$T \in SE(3) \rightarrow [S]\theta \in se(3) : \log(T) = [S]\theta$$

- \clubsuit Finding $S = (S_{\omega}, S_{v})$ and $\theta \in [0, \pi]$ by having T = (R, p):
- (a) If R=I, then set $S_{\omega}=\mathbf{0}$, $S_{v}=p/\|p\|$, and $\theta=\|p\|$.
- **(b)** Otherwise, use the matrix logarithm $\log(\mathbf{R}) = [\mathbf{S}_{\omega}]\theta$ to determine \mathbf{S}_{ω} ($\widehat{\boldsymbol{\omega}}$ in the SO(3) algorithm) and $\theta \in [0,\pi]$. Then, \mathbf{S}_{v} is calculated as

$$\mathbf{S}_{v} = \mathbf{G}^{-1}(\theta)\mathbf{p}$$

$$\mathbf{G}^{-1}(\theta) = \frac{1}{\theta}\mathbf{I} - \frac{1}{2}[\mathbf{S}_{\omega}] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\mathbf{S}_{\omega}]^{2} \in \mathbb{R}^{3\times3}$$

Example

The initial frame $\{b\}$ and final frame $\{c\}$ are given. Find the screw motion that displaces the frame at T_{sb} to T_{sc} .

$$T_{sb} = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1\\ \sin 30^{\circ} & \cos 30^{\circ} & 0 & 2\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2\\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Wrenches

wrench

Consider a linear force \mathbf{f} acting on a rigid body at a point \mathbf{r} . Both $\mathbf{f}_b \in \mathbb{R}^3$ and $\mathbf{r}_b \in \mathbb{R}^3$ are represented in $\{b\}$. This force creates a torque or moment $\mathbf{m}_b \in \mathbb{R}^3$ in $\{b\}$ as

$$m_b = r_b \times f_b$$

We can package the moment and force together in a single six-dimensional vector called wrench (or spatial force) in $\{b\}$ as

$$m{\mathcal{F}}_b = egin{bmatrix} m{m}_b \\ m{f}_b \end{bmatrix} \in \mathbb{R}^6$$

$$\mathcal{F}_{S} = ?$$

wrench

The **power** is a coordinate-independent quantity, i.e., the power generated (or dissipated) by an $(\mathcal{F},\mathcal{V})$ pair (wrench and twist) must be the same regardless of the frame in which it is represented:

$$\begin{aligned} \boldsymbol{\mathcal{V}} \cdot \boldsymbol{\mathcal{F}} &= \operatorname{power}) & \boldsymbol{\mathcal{V}}_s^{\mathsf{T}} \boldsymbol{\mathcal{F}}_s &= \boldsymbol{\mathcal{V}}_b^{\mathsf{T}} \boldsymbol{\mathcal{F}}_b = \operatorname{power} \\ \boldsymbol{\mathcal{V}}_s^{\mathsf{T}} \boldsymbol{\mathcal{F}}_s &= \left(\left[\operatorname{Ad}_{T_{bs}} \right] \boldsymbol{\mathcal{V}}_s \right)^{\mathsf{T}} \boldsymbol{\mathcal{F}}_b \\ &= \boldsymbol{\mathcal{V}}_s^{\mathsf{T}} \left[\operatorname{Ad}_{T_{bs}} \right]^{\mathsf{T}} \boldsymbol{\mathcal{F}}_b \\ &= \left[\operatorname{Ad}_{T_{bs}} \right]^{\mathsf{T}} \boldsymbol{\mathcal{F}}_b \\ \boldsymbol{\mathcal{F}}_s &= \left[\operatorname{Ad}_{T_{bs}} \right]^{\mathsf{T}} \boldsymbol{\mathcal{F}}_b \\ \operatorname{spatial wrench} & \operatorname{body wrench} \end{aligned}$$

$$\boldsymbol{\mathcal{F}}_a = \left[\operatorname{Ad}_{\boldsymbol{T}_{ba}}\right]^T \boldsymbol{\mathcal{F}}_b$$
 $\boldsymbol{\mathcal{F}}_b = \left[\operatorname{Ad}_{\boldsymbol{T}_{ab}}\right]^T \boldsymbol{\mathcal{F}}_a$

(changing the reference frame of a twist)

000000000

Example

The robot hand shown is holding an apple with a mass of 0.1 kg in a gravitational field $g=10 \text{ m/s}^2$. The mass of the hand is 0.5 kg, $L_1=10 \text{ cm}$, and $L_2=15 \text{ cm}$. What is the force and torque measured by the six-axis force—torque sensor between the hand and the robot arm?

❖ If more than one wrench acts on a rigid body, the total wrench on the body is simply the vector sum of the individual wrenches, provided that the wrenches are expressed in the same frame.

Review

Rotations	Rigid-Body Motions
$R \in SO(3): 3 \times 3 \text{ matrices}$	$T \in SE(3)$: 4×4 matrices
$R^{\mathrm{T}}R = I, \det R = 1$	$T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right],$
	where $R \in SO(3), p \in \mathbb{R}^3$
$R^{-1} = R^{\mathrm{T}}$	$T^{-1} = \left[\begin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{array} \right]$
change of coordinate frame:	change of coordinate frame:
$R_{ab}R_{bc} = R_{ac}, R_{ab}p_b = p_a$	$T_{ab}T_{bc} = T_{ac}, T_{ab}p_b = p_a$

000000000

Review

rotating a frame {b}:

$$R = \mathrm{Rot}(\hat{\omega}, \theta)$$

$$R_{sb'} = RR_{sb}$$
:
rotate θ about $\hat{\omega}_s = \hat{\omega}$
 $R_{sb''} = R_{sb}R$:
rotate θ about $\hat{\omega}_b = \hat{\omega}$

displacing a frame {b}:

$$T = \begin{bmatrix} \operatorname{Rot}(\hat{\omega}, \theta) & p \\ 0 & 1 \end{bmatrix}$$

 $T_{sb'} = TT_{sb}$: rotate θ about $\hat{\omega}_s = \hat{\omega}$ (moves $\{b\}$ origin), translate p in $\{s\}$ $T_{sb''} = T_{sb}T$: translate p in {b}, rotate θ about $\hat{\omega}$ in new body frame

where $\|\hat{\omega}\| = 1$

unit rotation axis is
$$\hat{\omega} \in \mathbb{R}^3$$
, "unit" screw axis is $\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$, where $\|\hat{\omega}\| = 1$ where either (i) $\|\omega\| = 1$ or (ii) $\omega = 0$ and $\|v\| = 1$

for a screw axis $\{q, \hat{s}, h\}$ with finite h,

$$\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}$$

angular velocity is $\omega = \hat{\omega}\theta$

twist is $\mathcal{V} = \mathcal{S}\dot{\theta}$

000000000

Review

for any 3-vector, e.g.,
$$\omega \in \mathbb{R}^3$$
,

$$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3)$$

identities, $\omega, x \in \mathbb{R}^3, R \in SO(3)$: $[\omega] = -[\omega]^{\mathrm{T}}, [\omega]x = -[x]\omega,$

$$[\omega][x] = ([x][\omega])^{\mathrm{T}}, R[\omega]R^{\mathrm{T}} = [R\omega]$$

$$\dot{R}R^{-1} = [\omega_s], \ R^{-1}\dot{R} = [\omega_b]$$

for
$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$$
,

$$[\mathcal{V}] = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} \in se(3)$$

(the pair (ω, v) can be a twist \mathcal{V} or a "unit" screw axis S, depending on the context)

$$\dot{T}T^{-1} = [\mathcal{V}_s], \ T^{-1}\dot{T} = [\mathcal{V}_b]$$

$$[Ad_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$
identities:
$$[Ad_T]^{-1} = [Ad_{T^{-1}}],$$

$$[Ad_{T_1}][Ad_{T_2}] = [Ad_{T_1T_2}]$$

change of coordinate frame:

$$\hat{\omega}_a = R_{ab}\hat{\omega}_b, \ \omega_a = R_{ab}\omega_b$$

change of coordinate frame:

$$\mathcal{S}_a = [\stackrel{\circ}{\mathrm{Ad}}_{T_{ab}}] \mathcal{S}_b, \ \mathcal{V}_a = [\mathrm{Ad}_{T_{ab}}] \mathcal{V}_b$$

Review

exp coords for $R \in SO(3)$: $\hat{\omega}\theta \in \mathbb{R}^3$	exp coords for $T \in SE(3)$: $\mathcal{S}\theta \in \mathbb{R}^6$
$\exp: [\hat{\omega}] \theta \in so(3) \to R \in SO(3)$	$\exp: [S]\theta \in se(3) \to T \in SE(3)$
$R = \operatorname{Rot}(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} =$	$T = e^{[S]\theta} = \begin{bmatrix} e^{[\omega]\theta} & * \\ 0 & 1 \end{bmatrix}$
$I + \sin \theta [\hat{\omega}] + (1 - \cos \theta) [\hat{\omega}]^2$	where $* =$
	$(I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)v$
$\log: R \in SO(3) \to [\hat{\omega}]\theta \in so(3)$	$\log: T \in SE(3) \to [\mathcal{S}]\theta \in se(3)$
moment change of coord frame:	wrench change of coord frame:
$m_a = R_{ab} m_b$	$\mathcal{F}_a = (m_a, f_a) = [\mathrm{Ad}_{T_{ba}}]^{\mathrm{T}} \mathcal{F}_b$