1.

$$\vec{x}'' = (\vec{x}_0 + \sum_{j=1}^4 \vec{x}_j)''$$

$$= \vec{x}_0'' + \sum_{j=1}^4 \vec{x}_j''$$

$$= -K\vec{x}_0 + \sum_{j=1}^4 (-K\vec{x}_j + \vec{f}_j)$$

$$= -K(\vec{x}_0 + \sum_{j=1}^4 \vec{x}_j) + \sum_{j=1}^4 \vec{f}_j$$

$$= -K\vec{x} + \sum_{j=1}^4 \vec{f}_j$$

Therefore we have found a solution to the differential equation $\vec{x}'' = -K\vec{x} + \sum_{j=1}^{4} \vec{f_j}$.

2. The matrix $K = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$ has the characteristic polynomial $\lambda^2 - 9\lambda + 14$, thus K has eigenvalues $\mu_1 = 7, \mu_2 = 2$. These correspond with the normalized eigenvectors $\vec{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Let $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$, and $D = \begin{bmatrix} 7 & 0 \\ 0 & 2 \end{bmatrix}$.

Therefore $K = VDV^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix}$. Since we have shown that K diagonalizes, then we can show that $V^{-1}\vec{x}_0'' = -DV^{-1}\vec{x}_0$:

$$V^{-1}\vec{x}_0'' = -V^{-1}K\vec{x}_0 = -V^{-1}VDV^{-1}\vec{x}_0 = -DV^{-1}\vec{x}_0.$$

Since V^{-1} is a matrix then $V^{-1}\vec{x}_0(0) = V^{-1}(1,2), V^{-1}\vec{x}_0'(0) = V^{-1}(1,1)$ is just the definition of matrix multiplication.

Similarly for $V^{-1}\vec{x}_j'' = -\bar{D}V^{-1}\vec{x}_j + V^{-1}\vec{f}_j$,

$$V^{-1}\vec{x}_j'' = -V^{-1}K\vec{x}_j + V^{-1}\vec{f}_j = -V^{-1}VDV^{-1}\vec{x}_j + V^{-1}\vec{f}_j = -DV^{-1}\vec{x}_j + V^{-1}\vec{f}_j.$$

And once again since the initial conditions are vectors you may simply multiply them.

3.

$$y''(t) = (y(0)\cos(\sqrt{\kappa}t) + \frac{y'(0)}{\sqrt{\kappa}}\sin(\sqrt{\kappa}t) + \frac{1}{\sqrt{\kappa}}\int_0^t \sin(\sqrt{\kappa}(t-s))g(s)ds)''$$

$$= y(0)\cos(\sqrt{\kappa}t)'' + \frac{y'(0)}{\sqrt{\kappa}}\sin(\sqrt{\kappa}t)'' + \frac{1}{\sqrt{\kappa}}(\int_0^t \sin(\sqrt{\kappa}(t-s))g(s)ds)''$$

$$= -\kappa y(0)\cos(\sqrt{\kappa}t) - \sqrt{\kappa}y'(0)\sin(\sqrt{\kappa}t) + (\int_0^t \cos(\sqrt{\kappa}(t-s))g(s)ds)'$$

$$= -\kappa y(0)\cos(\sqrt{\kappa}t) - \sqrt{\kappa}y'(0)\sin(\sqrt{\kappa}t) + g(t) - \sqrt{\kappa}\int_0^t \sin(\sqrt{\kappa}(t-s))g(s)ds$$
(using the Leibniz integral rule)
$$= -\kappa (y(0)\cos(\sqrt{\kappa}t) + \frac{y'(0)}{\sqrt{\kappa}}\sin(\sqrt{\kappa}t) + \frac{1}{\sqrt{\kappa}}\int_0^t \sin(\sqrt{\kappa}(t-s))g(s)ds) + g(t)$$

$$= -\kappa y(t) + g(t)$$

4. To solve for \vec{x}_0 , since we know what the eigenvectors are and we have a formula for solving the equation the equation $w'_j = -\mu_j w_j$ where

$$w_{j}(t) = (\vec{x}_{0}(0) \cdot \vec{v}_{j}) \cos(\sqrt{\mu_{j}}t) + \frac{(\vec{x}'_{0}(0) \cdot \vec{v}_{j})}{\sqrt{\kappa_{j}}} \sin(\sqrt{\mu_{j}}t)$$
with $\vec{x}_{0} = \sum_{j=1}^{2} w_{j}\vec{u}_{j}$. Therefore $w_{1} = \frac{3\sin(\sqrt{7}t)}{\sqrt{35}} + \sqrt{5}\cos(\sqrt{7}t)$, $w_{2} = -\frac{\sin(\sqrt{2}t)}{\sqrt{10}}$. Thus
$$\vec{x}_{0}(t) = \left(\frac{1}{5}\sqrt{2}\sin(\sqrt{2}t) + \frac{3\sin(\sqrt{7}t)}{5\sqrt{7}} + \cos(\sqrt{7}t), -\frac{\sin(\sqrt{2}t)}{5\sqrt{7}} + \frac{6\sin(\sqrt{7}t)}{5\sqrt{7}} + 2\cos(\sqrt{7}t)\right)$$

To solve the general equation $\vec{x}_i = -K\vec{x}_i + \vec{f}_i$, since $\vec{f}_i = \cos(\phi_i + \omega_i t)\vec{u}_i$, then we have a solution for each component $w_{i,j} = (\vec{x}_i(0) \cdot \vec{v}_j)\cos(\sqrt{\mu_j}t) + \frac{(\vec{x}_i'(0) \cdot \vec{v}_j)}{\sqrt{\kappa_j}}\sin(\sqrt{\mu_j}t) + \frac{2(\vec{u}_i \cdot \vec{v}_j)}{\sqrt{\mu_j}}\left(\sin(\phi_i - \xi_{i,j}t)\frac{\sin(\eta_{i,j}t)}{\eta_{i,j}} + \sin(\phi_i + \eta_{i,j}t)\frac{\sin(\xi_{i,j}t)}{\xi_{i,j}}\right)$ where $\xi_{i,j} = \frac{\sqrt{\mu_j} + \omega_i}{2}$, $\eta_{i,j} = \frac{\sqrt{\mu_j} - \omega_i}{2}$. Since for all $i \in [4]$, $\vec{x}_i(0) = \vec{x}_i' = (0,0)$, then our solution \vec{x}_i for each $i \in [4]$ is:

$$\vec{x}_i = \sum_{j=1}^2 \frac{2(\vec{u}_i \cdot \vec{v}_j)}{\sqrt{\mu_j}} \left(\sin(\phi_i - \xi_{i,j}t) \frac{\sin(\eta_{i,j}t)}{\eta_{i,j}} + \sin(\phi_i + \eta_{i,j}t) \frac{\sin(\xi_{i,j}t)}{\xi_{i,j}} \right) \vec{v}_j.$$

5. $\vec{f_1} = \cos(\omega_1)(1,3)$, thus $\phi_1 = 0$, $\vec{u_1} = (1,3)$. Therefore by our formula: $\vec{x_1} = \left(\frac{4}{5}\omega_1\left(\frac{\sqrt{2}\left(\cos(\sqrt{2}t\right) - \cos(t\omega_1)\right)}{\omega_1^2 - 2} + \frac{\sqrt{7}\left(\cos(t\omega_1) - \cos(\sqrt{7}t\right)\right)}{\omega_1^2 - 7}\right), \frac{4}{5}\omega_1\left(\frac{\cos(t\omega_1) - \cos(\sqrt{2}t)}{\sqrt{2}(\omega_1^2 - 2)} + \frac{2\sqrt{7}\left(\cos(t\omega_1) - \cos(\sqrt{7}t\right)\right)}{\omega_1^2 - 7}\right)$

6.
$$\vec{f}_2 = \sin(\omega_2 t)(1, -1)$$
, thus $\phi_2 = -\frac{\pi}{2}$, $\vec{u}_2 = (1, -1)$. Therefore by our formula:
$$\vec{x}_2 = \left(\frac{2}{35} \left(\frac{98 \left(2 \sin(\sqrt{2} t) - \sqrt{2} \omega_2 \sin(t \omega_2)\right)}{\omega_2^2 - 2} + \frac{2 \left(7 \sin(\sqrt{7} t) - \sqrt{7} \omega_2 \sin(t \omega_2)\right)}{\omega_2^2 - 7}\right),$$
$$\frac{14 \left(\sqrt{2} \omega_2 \sin(t \omega_2) - 2 \sin(\sqrt{2} t)\right)}{5 \left(\omega_2^2 - 2\right)} + \frac{8 \left(7 \sin(\sqrt{7} t) - \sqrt{7} \omega_2 \sin(t \omega_2)\right)}{35 \left(\omega_2^2 - 7\right)}\right)$$

7.
$$\vec{f_3} = \sin(\omega_3 t)(3, -1)$$
, thus $\phi_3 = -\frac{\pi}{2}$, $\vec{u_3} = (3, -1)$ Therefore by our formula: $\vec{x_3} = \frac{4}{35} \left(\frac{21(2\sin(\sqrt{2}t) - \sqrt{2}\omega_3\sin(t\omega_3))}{\omega_3^2 - 2} + \frac{\sqrt{7}\omega_3\sin(t\omega_3) - 7\sin(\sqrt{7}t)}{\omega_3^2 - 7} \right)$, $\frac{6(\sqrt{2}\omega_3\sin(t\omega_3) - 2\sin(\sqrt{2}t))}{5(\omega_3^2 - 2)} + \frac{8(\sqrt{7}\omega_3\sin(t\omega_3) - 7\sin(\sqrt{7}t))}{35(\omega_3^2 - 7)}$

- 8. $\vec{f_4} = \cos(\omega_4)(1,0)$, thus $\phi_1 = 0$, $\vec{u_1} = (1,0)$. Therefore by our formula: $\vec{x_4} = \frac{4}{35}\omega_4 \left(\frac{14\sqrt{2}\left(\cos(t\omega_4) \cos(\sqrt{2}t)\right)}{\omega_4^2 2} + \frac{\sqrt{7}\left(\cos(t\omega_4) \cos(\sqrt{7}t)\right)}{\omega_4^2 7} \right)$, $\frac{4}{35}\omega_4 \left(\frac{7\sqrt{2}\left(\cos(\sqrt{2}t) \cos(t\omega_4)\right)}{\omega_4^2 2} + \frac{2\sqrt{7}\left(\cos(t\omega_4) \cos(\sqrt{7}t)\right)}{\omega_4^2 7} \right)$
- 9. \vec{x} will experience resonance when any of the forcing function frequencies are either $\pm\sqrt{2}$ or $\pm\sqrt{7}$. If one takes ω_3 to approach $\sqrt{2}$ then the limit evaluates to: $\lim_{t\to\sqrt{2}}\vec{x}_3(t) = (-\frac{2}{175}\left(\left(105 + 2\sqrt{14}\right)\sin\left(\sqrt{2}t\right) 14\sin\left(\sqrt{7}t\right) + 105\sqrt{2}t\cos\left(\sqrt{2}t\right)\right),$ $\frac{1}{175}\left(\left(105 8\sqrt{14}\right)\sin\left(\sqrt{2}t\right) + 56\sin\left(\sqrt{7}t\right) + 105\sqrt{2}t\cos\left(\sqrt{2}t\right)\right)\right)$
- 10. \vec{x}_0 First component

Second component

Second component

Second component

 \vec{x}_3 First component

Second component

Clearly \vec{x}_3 is the dominating term, as $2.65 \approx \sqrt{7}$, therefore it's behavior is approaching resonant.