Probability

Mean, Median and Mode

• Mean
$$(\overline{X}) = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

• Median =
$$\frac{x_{n/2} + (x_{n/2} + 1)}{2}$$
; n is even
= $x_{n+1/2}$; n is odd
= $L_{\text{med}} + \left(\frac{N/2 - F}{f}\right) \times W$

where L_{med} = lower limit of median class

 $N = \Sigma f_i$

F = Cumulative frequency upto the median class(cumulative frequency of the preceding class)

f =Frequency of the median class

Mode: Value of 'x' corresponding to maximum frequency.

$$L_{\text{mode}} + \frac{f_m - f_1}{(2f_m - f_1 - f_2)} \times h$$

where $L_{\text{mode}} = \text{lower limit of modal class}$

 f_m = frequency of modal class

 f_1 = preceding frequency of modal class

 f_2 = Following frequency of modal class

Note:

- Mode = 3 Median 2 Mean [for Asymmetric distribution]
- Mean = Mode = Median [for Symmetric distribution]

Axioms of Probability

Let A and B be two events. Then

1.
$$P(\overline{A}) = 1 - P(A)$$

2.
$$P(\phi) = 0$$
;

3.
$$P(A - B) = P(A) - P(A \cap B)$$

4.
$$P(A - B) = P(A \cap \overline{B})$$

5.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

6.
$$P(A \cup B) = P(A) + P(B)$$
; mutually exclusive events.

7.
$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

8.
$$P(A \cap B) = P(A) \cdot P(B)$$
; independent events.

9.
$$P(A \cap B) = \phi$$
; mutually exclusive events.

10.
$$P(S) = 1$$
; S is sample space.

11.
$$\max(0, P(A) + P(B) - 1) \le P(A \cap B) \le \min(P(A), P(B))$$

12.
$$\max(P(A), P(B)) \le P(A \cup B) \le \min(1, P(A) + P(B))$$

13.
$$\max(0, P(A_1) + P(A_2) \dots + P(A_n) - (n-1)) \le P(A_1 \cap A_2 \dots \cap A_n)$$

 $\le \min(P(A_1), P(A_2) \dots, P(A_n))$

14.
$$\max(P(A_1), P(A_2), \dots, P(A_n)) \le P(A_1 \cup A_2, \dots \cup A_n)$$

 $\le \min(1, P(A_1) + P(A_2), \dots + P(A_n))$

15.
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

16.
$$P(A|B) = P(A)$$
; independent events.

16.
$$P(A|B) = P(A)$$
; independent events.
17. $P(E_1 \cap E_2 \cap \dots \cap E_n) = P(E_1) \cdot P(E_2) \cdot \dots \cdot P(E_n)$; independent events.

18. Rule of total probability:
$$P(X) = \sum_{i=1}^{n} P(E_i) P(X|E_i)$$

19. Baye's Theorem:

$$P(E_1 | X) = \frac{P(E_1) \cdot P(X | E_1)}{P(E_1) \cdot P(X | E_1) + P(E_2) \cdot P(X | E_2) + P(E_3) \cdot P(X | E_3)}$$

In general,

$$P(E_i|X) = \frac{P(E_i) \cdot P(X|E_i)}{\sum_{j=1}^{n} P(E_j) \cdot P(X|E_j)}$$

M

Random Variable (Stochastic Variable)

Random variable assigns a real number to each possible outcomeLet X be a discrete random variable, then

1.
$$F(x) = P(X \le x)$$
 is called distribution function $\sum_{i=0}^{n} P(i)$ of X .

2. Mean or Expectation of
$$X = \mu = E(X) = \sum_{i=1}^{n} x_i P(x_i)$$

3. Variance of
$$X = \sigma^2 = E(X^2) - [E(X)]^2 = \sum_{i=1}^n (x_i - \mu)^2 P(x_i)$$

4. Standard deviation of
$$X = \sigma = \sqrt{\text{Variance}}$$

5.
$$\sum_{i=1}^{n} P(x_i) = 1$$

Types of Random Variables

- 1. Discrete Random Variable: "Finite set of values" or "Countably infinite".
- 2. Continous Random Variable (Non-discrete): "Infinite number of uncountable values".

Discrete Distributions

1. **Binomial Distribution:** The probability that the event will happen exactly r times in n trials i.e. r successes and n - r failures will occur.

$$P(X = r) = P(r) = \sum {}^{n}C_{r} p^{r}q^{n-r}$$
Mean = $E(x) = np$
Variance $(\sigma^{2}) = V(x) = npq = np(1-p)$
S.D $(\sigma) = \sqrt{npq} = \sqrt{np(1-p)}$
Where $r = 0, 1, ..., n$
 $q = 1-p$
 $n = \text{fixed number of trials}$
 $p = \text{probability of success}$

2. Poisson Distribution:

$$P(X = x) = \sum \frac{e^{-\lambda} \cdot \lambda^x}{x!}; x = 0, 1, 2, \dots, \infty$$

Where

X = Discrete random variable

 $\lambda = Parameter of distribution (positive constant)$

- Mean (μ) = Variance (σ^2) = λ
- $S.D = \sqrt{\lambda}$

Poisson distribution is a limiting case of binomial distribution as $n \to \infty$ and $p \to 0$.

X	X Counts	p(x)	Value of X	E(x)	V(x)
Discrete uniform	Outcomes that are equally likes (finite)	$\frac{1}{b-a+1}$	a ≤ <i>x</i> ≤ b	$\frac{b+a}{2}$	$\frac{(b-a+2)(b-a)}{12}$
Binomial	Number of successes in n fixed trials	$\binom{n}{x} p^x (1-p)^{n-x}$	x = 0, 1,,n	np	np(1 – p)
Poisson	Number of arrivals in a fixed time period	$\frac{\mathrm{e}^{-\lambda}\lambda^x}{x!}$	x = 0, 1, 2,	λ	λ
Geometric	Number of trials up through 1st success	(1 – p) ^{r – 1} p	x = 1, 2, 3,	<u>1</u> p	$\frac{1-p}{p^2}$
Negative Binomial	Number of trials up through kth success	$\binom{x-1}{k-1}(1-p)^{x-k}p^k$	x = k, k + 1,	<u>k</u> p	$\frac{k(1-p)}{p^2}$
Hyper- geometric	Number of marked individuals in sample taken without replacement	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$\max (0, M + n - N)$ $\leq x \leq \min (M, n)$	n * M/N	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$

Continuous Distribution

Let X be continous random variable. Then

(i) Density functions:

(a)
$$P(X \le a) = \int_{-\infty}^{a} f(x) \cdot dx$$
, (b) $P(a \le X \le b) = \int_{a}^{b} f(x) \cdot dx$

(ii) Mean =
$$E(x) = \int_{-\infty}^{\infty} x \cdot f(x) \cdot dx$$

(iii) Variance of
$$X = V(X) = \int_{-\infty}^{\infty} \left[x - E(x) \right]^2 \cdot f(x) dx = E(x^2) - (E(x))^2$$
$$= \int_{-\infty}^{\infty} x^2 f(x) dx - \left[\int_{-\infty}^{\infty} x f(x) dx \right]^2$$

(iv)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

M

1. Uniform Distribution (Rectangular Distribution)

(i) Density function:

$$f(x) = \frac{1}{b-a}; \quad a \le x \le b$$

= 0; otherwise

(ii) Cumulative function:

$$P(X \le x) = \int_{-\infty}^{x} f(x) \cdot dx = \begin{cases} 0 & ; & \text{if } x \le a \\ \frac{x - a}{b - a} & ; & \text{if } a \le x \le b \\ 1 & ; & \text{if } x > b \end{cases}$$

(iii) Mean (
$$\mu$$
) = (a + b)/2 = E(X)

(iv) Variance
$$(\sigma^2) = (b - a)^2/12$$

2. Normal Distribution

(i) Density function
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}; -\infty \le x \le \infty, \sigma > 0, -\infty < \mu < \infty$$

- (ii) Normal distribution is symmetrical
- (iii) Mean = μ ; Variance = σ^2
- (iv) $f(x) \ge 0$ for all x

$$(v) \quad \int_{-\infty}^{\infty} f(x) \cdot dx = 1$$

$$Z = \frac{x - np}{\sqrt{npq}}$$
 (when approximating binomial by normal)

Z = Standard normal variate

MADE EASY

3. Exponential Distribution

(i) Density function:

$$f(x) = \lambda \cdot e^{-\lambda x}$$
 ; $x > 0$
= 0 ; Otherwise

(ii) Mean (
$$\mu$$
) = $\frac{1}{\lambda}$ = S.D(σ)

(iii) Variance (
$$\sigma^2$$
) = $\frac{1}{\lambda^2}$

Х	X Measures	f(x)	Value of X	E(x)	V(x)
Continuous uniform	Outcomes with equal density (continuous)	<u>1</u> b−a	$a \le x \le b$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$
Exponential	Time between events time until an event	$\lambda e^{-\lambda x}$	<i>x</i> ≥ 0	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normal	Values with a bell-shaped distribution(continuous)	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(x-\mu\atop\sigma\right)^2}$	-∞ < <i>x</i> <∞	μ	σ
Standard normal (Z)	Standard scores	$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$	$Z = \frac{x - \mu}{\sigma}$	0	1
Binomial approximation	Number of successes in a fixed time period (large average)	Approx, normal if $np \ge 5$ and $n(1 - p) \ge 5$ by CLT	$Z = \frac{x - np}{\sqrt{np(1-p)}}$	np	np(1 – p)
Poisson approximation	Number of occurrences in a fixed time period (large average)	Approx normal if $\lambda > 30$	$Z = \frac{x - \lambda}{\sqrt{\lambda}}$	λ	λ