绝密 * 启用前

2019 年全国硕士研究生入学统一考试

森哥三套卷之数学(二)试卷 (模拟一)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

得分

评卷人 │ 一、选择题: 1~8 小题,每小题 4 分,共 32 分.在每小题给出的四个选项中,只有一个 符合要求, 把所选项前的字母填在题后的括号里.

- (1) 当 $x \to 0$ 时, $(1 + \sin x x)^x 1$ 与 x^n 是同阶无穷小,则 $n = (1 + \sin x x)^x 1$
- (C) 3 (D) 4
- (2) $\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{i=1}^{l} \frac{1}{(n+i+i)^2} = ($
 - (A) $\int_0^1 dx \int_0^x \frac{dy}{(1+x+y)^2}$ (B) $\int_0^1 dx \int_0^1 \frac{dy}{(1+x+y)^2}$

 - (C) $\int_0^1 dy \int_{1-y}^1 \frac{dx}{(1+x+y)^2}$ (D) $\int_0^1 dy \int_0^{1-y} \frac{dx}{(1+x+y)^2}$
- (3) $\[\[\forall I_1 = \int_{\frac{1}{2}}^1 \frac{\arcsin x}{x} dx \], \ I_2 = \int_{\frac{1}{2}}^1 \frac{x}{\arcsin x} dx \], \ I_3 = \int_{\frac{1}{2}}^1 \frac{\ln(1+x)}{x} dx \], \ I_4 = \int_{\frac{1}{2}}^1 \frac{x}{\ln(1+x)} dx \], \ \[\[\[\] \] \]$
 - (A) $I_1 < I_2 \coprod I_3 < I_4$ (B) $I_1 < I_2 \coprod I_3 > I_4$

 - (C) $I_1 > I_2 \coprod I_3 > I_4$ (D) $I_1 > I_2 \coprod I_3 < I_4$

- (5) 曲线 $y = \begin{cases} \frac{x^2 + x + 1}{\sqrt{x^2 1}}, & x < -1, \\ \frac{x}{x + 2} \arctan x^2, & x \ge -1 \end{cases}$ 的渐近线条数是().

- (A) 1 (B) 2 (C) 3 (D) 4
- (6) 将极坐标系下的二次积分 $I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\sin\theta} f\left(r\cos\theta, r\sin\theta\right) r dr$ 化为直角坐标系下的二次积分,则

I = ()

(A)
$$\int_0^1 dx \int_x^{\sqrt{1-x^2}} f(x, y) dy$$
.

(B)
$$\int_0^1 dx \int_{\sqrt{1-x^2}}^x f(x, y) dy$$
.

长注新浪微博:@文都考研数学一余丙森 数学二模拟一 答案关注一直播: 117035243
$$(C) \int_0^1 dy \int_0^y f(x,y) dx + \int_1^2 dy \int_0^{\sqrt{2y-y^2}} f(x,y) dx \, . \qquad (D) \int_0^1 dy \int_y^{\sqrt{2y-y^2}} f(x,y) dx \, .$$

(7) 已知 4 维列向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,若 $\alpha_i^T\beta_j$ =0, $\beta_j \neq 0, (i=1,2,3,j=1,2,3,4)$,则向量组

 $\beta_1, \beta_2, \beta_3, \beta_4$ 的秩 $r(\beta_1, \beta_2, \beta_3, \beta_4) = ()$.

- (B) 2 (C) 3

(8) 已知 A, B 均为 3 阶矩阵,|A| = 0,且满足 AB + 3B = O,若 r(B) = 2,则行列式|A + 2E| = ().

- (A) 1
- (B) 2
- (C)4

(D) 8

得分	评卷人
·	

、填空题:9~14 小题, 每小题 4分, 共24分. 把答案填在题中的横线上.

(9) 设
$$y = f(x)$$
 在 $x = 0$ 处连续,且 $\lim_{x \to 0} \frac{f(\sin x) - 1}{\sqrt{1 + x} - 1} = 1$,则曲线 $y = f(x)$ 在 $x = 0$ 处

的切线方程为

(10)
$$I = \int_{-1}^{1} x(1+x^{2019})(e^x - e^{-x})dx = \underline{\qquad}$$

- (11) 心形线 $r = 1 + \cos \theta$ 在 $(1, \frac{\pi}{2})$ 处的曲率半径 $R = \underline{\hspace{1cm}}$.
- (12) 已知可微函数 f(x) 满足 $\int_{1}^{x} \frac{f(t)dt}{f^{2}(t)+t} = f(x)+1$,则 f(x) =______

(13)
$$\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{1 - \sin \frac{\pi}{n}} + \sqrt{1 - \sin \frac{2\pi}{n}} + \dots + \sqrt{1 - \sin \frac{n\pi}{n}} \right) = \underline{\qquad}$$

(14)
$$\begin{aligned} & \uparpliage{0.8em} \uparp$$

三、解答题:15~23 小题, 共94分. 解答应写出文字说明、证明过程或演算步骤.

得分	评卷人	(1-) (DT)+ () (1
		(15)(本题满分 10

(15) (本题满分 10 分) 设
$$f(x) = \begin{cases} ax + x^b \cos \frac{1}{x}, & x > 0, \\ \lim_{n \to \infty} (\frac{n+x}{n-x})^n + c, & x \le 0, \end{cases}$$
 , 若 $f(x)$ 在 $(-\infty, +\infty)$ 内

可导, 试确定常数 a,b,c 的取值情况.

(16)(本题满分 10 分)设函数 f(u) 具有二阶连续导数,f(0)=1,f'(0)=-1,且当

 $x \neq 0$ 时 $z = f(x^2 - y^2)$ 满足等式

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} - \frac{2}{x} \frac{\partial z}{\partial x} = (y^2 - x^2)(z + \cos \frac{x^2 - y^2}{2}),$$

求函数 f(u) 的表达式.

得分	评卷人

(17) (本题满分 10 分) 计算二重积分 $I = \iint_D x(x+ye^{x^2})\operatorname{sgn}(y-|x|)d\sigma$, 其中

 $D:-1 \le x \le 1, 0 \le y \le 1$, sgn()是符号函数.

得分	评卷人

(18)(本题满分 10 分)已知函数 z = z(x, y)由方程

$$x^{2} - xy + 2y^{2} - x - 3y + ze^{z} = 2(e^{2} - 1)$$

确定,求z = z(x, y)的极值.

(19)(本题满分 10 分)设x>0,求使不等式 $x^a \le e^x$ 成立的正数a的最大值.

得分	评卷人

(20)(本题满分 11 分)设函数 f(x) 在[0,1]上二阶可导,f(0) = f(1) = 0,且 f(x)

在[0,1]上的最大值及最小值均在(0,1)内取到.证明:(I)在(0,1)内存在两个不同

的点 ξ_1, ξ_2 使得 $f'(\xi_k) = f(\xi_k), k = 1, 2$; (II) 存在 $\eta \in (0,1)$ 使得 $f''(\eta) + f'(\eta) = 2f(\eta)$.

得分	评卷人

(21)(**本题满分 11 分**)某容器的外表面是 $y = x^2 (0 \le y \le H)$ 绕y轴旋转所围成的 曲面,其容积为 450π m^3 ,其中盛满水,如果将水全部抽出,问至少需要做多少功?

(22)(本题满分 11 分)

(I) 设有向量组 (I)
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 2 \\ a \end{pmatrix}, \text{ (II) } \boldsymbol{\beta}_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix}.$$

(I) 问 a,b 为何值时,向量组 (II) 不能由向量组 (I) 线性表示?

(II) 设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & a \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 & 1 \\ 2 & 0 \\ 1 & b \end{pmatrix}, 问 a,b 为何值时矩阵方程 $\mathbf{A}\mathbf{X} = \mathbf{B}$ 有解,有解时求出其全部解.$$

(23)(本题满分 11 分)设三元二次型 $f(x_1,x_2,x_3)=x^TAx$ (A 为实对称矩阵)经正 交 变 换 x=Qy 化 为 标 准 形 $6y_3^2$, 且 AB=O , $B=(\alpha_1,\alpha_2)$, 其 中

 $\alpha_1 = (1,-1,-1)^T$, $\alpha_2 = (-2,1,0)^T$,(I) 求所用的正交变换 x = Qy 及二次型 $f(x_1,x_2,x_3) = x^TAx$ 的表达式; (II) 求 $(A-3E)^8$.