山东科技大学 2024-2025 学年第一学期 《线性代数》考试试卷 (体育 A 卷)

班级: ______ 姓名: _____ 学号: ______

题号	_	二	三	总得分	评卷人	审核人
得分						

一、填空题(每空3分,共30分)

己知矩阵

$$A = \begin{pmatrix} \blacksquare & 1 & 0 \\ 2 & \blacksquare & 3 \\ 0 & 4 & \blacksquare \end{pmatrix}$$

其中 ■ = 你的学号最后一位.

- 1. |A| =_____.
- 2. $M_{12} =$ ______, $A_{12} =$ ______.
- 3. $A^2 =$ _____.
- 4. $A^* = \underline{\hspace{1cm}}, A^{-1} = \underline{\hspace{1cm}}.$
- 5. $A^T = _{___}$.
- 6. trA =_____.
- 7. R(A) =_____.
- 8. *A* 的三个特征值是 ...

二、已知 ■ = **你的学号最后一位,计算下面两道小题**. (每小题 20 分, 共 40 分)

1. 已知行列式
$$D = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & \blacksquare \\ \blacksquare & 0 & -1 \end{vmatrix}$$
, 计算 $-A_{11} + \blacksquare A_{12}$.

2. 设
$$A = \begin{pmatrix} \blacksquare & 1 & 0 \\ 0 & \blacksquare & 1 \\ -2 & 0 & \blacksquare \end{pmatrix}$$
,求解矩阵方程 $AX = 5X + A$.

三、选择题 (每题 3 分, 共 30 分)

1. 下列行列式中,()是下三角行列式;()是循环行列式;()是爪形行列式;()是范德蒙 德行列式.

- 2. 已知 A, B 为 n 阶方阵. 则下面说法正确的是 ().
 - (B) $(A+B)^2 = A^2 + 2AB + B^2$ (A) AB = BA(C) $(A - E)(A + E) = A^2 - E$ (D) $(A - B)(A + B) = A^2 - B^2$
- 3. (多选) 下列矩阵中,() 是行阶梯形;() 是行最简形;() 是标准形;() 是行阶梯形但不

(多迭) 下列矩阵中,()是行阶梯形;()是行最简形;()是标准形;()是行阶梯形但不是行最简形。在矩阵
$$D-J$$
中,和矩阵 C 不等价的矩阵是 ().

(A) $\begin{pmatrix} 1 & 1 & -2 & 4 \\ 2 & -1 & -1 & 2 \\ 2 & -3 & 1 & -2 \end{pmatrix}$

(B) $\begin{pmatrix} 1 & 1 & -2 & 4 \\ 0 & -3 & 3 & -6 \\ 0 & -5 & 5 & -10 \end{pmatrix}$

(C) $\begin{pmatrix} 1 & 1 & -2 & 4 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

(E) $\begin{pmatrix} 1 & 1 & 0 & 4 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

(F) $\begin{pmatrix} 1 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$

(I) $\begin{pmatrix} 1 & 1 & 0 & 4 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

(I) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$