FMA-PG Notes

Shivam and Sharan September 2021

1 Softmax PPO Closed Form Update

- We will consider direct functional representation with tabular parameterization, i.e. $\pi \equiv p^{\pi}$ is essentially an S × A table satisfying the constraints
- $\sum_{a} p^{\pi}(a|s) = 1, \qquad \forall s \in \mathcal{S}$ $p^{\pi}(a|s) \geq 0, \qquad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}.$
- 6 Our goal is to find the closed form solution to the following optimization problem (from Eq. 6,
- ⁷ Sharan et al., 2021):

$$\pi_{t+1} = \arg\max_{\pi \in \Pi} \left[\sum_{s} d^{\pi_t}(s) \sum_{a} p^{\pi_t}(a|s) \left(A^{\pi_t}(s,a) + \frac{1}{\eta} \right) \log \frac{p^{\pi}(s,a)}{p^{\pi_t}(s,a)} \right], \tag{1}$$

subject to the above constraints on p^{π} . The above equation is obtained by setting the mirror map to the weighted exponential function.

We begin by formulating this problem using Lagrange multipliers λ_s , $\lambda_{s,a}$ for all states s and actions a (and with a slight abuse of the notation, i.e. we write λ_s for all the λ_s s, etc.):

$$\mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = \sum_{s} d^{\pi_{t}}(s) \sum_{a} p^{\pi_{t}}(a|s) \left(A^{\pi_{t}}(s, a) + \frac{1}{\eta} \right) \log \frac{p^{\pi}(a|s)}{p^{\pi_{t}}(a|s)} - \sum_{s} \lambda_{s,a} p^{\pi}(a|s) - \sum_{s} \lambda_{s} \left(\sum_{a} p^{\pi}(a|s) - 1 \right).$$
(2)

15 KKT conditions for this problem are:

$$\nabla_{p^{\pi}(x,b)} \mathcal{L}(p^{\pi}, \lambda_s, \lambda_{s,a}) = 0, \quad \forall x \in \mathcal{S}, \ \forall b \in \mathcal{A}$$
 (C1)

$$\sum_{a} p^{\pi}(a|s) = 1, \quad \forall s \in \mathcal{S}$$
 (C2)

$$p^{\pi}(a|s) \ge 0, \quad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}$$
 (C3)

19
$$\lambda_s \ge 0, \quad \forall s \in \mathcal{S}$$
 (C4)

$$\lambda_s \left(\sum_{a} p^{\pi}(a|s) - 1 \right) = 0 \qquad \forall s \in \mathcal{S}$$
 (C5)

$$\lambda_{s,a}p^{\pi}(a|s) = 0, \quad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}.$$
 (C6)

Let us now try to solve this system. Solving the first equation for arbitrary state-action pair (x,b), gives us:

$$\nabla_{p^{\pi}(b|x)} \mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) \left(A^{\pi_{t}}(x, b) + \frac{1}{\eta} \right) \frac{1}{p^{\pi}(b|x)} - \lambda_{x,b} - \lambda_{x} = 0$$

$$\Rightarrow \qquad p^{\pi}(b|x) = \frac{d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) (1 + \eta A^{\pi_{t}}(x, b))}{\eta(\lambda_{x} + \lambda_{x,b})}.$$
(3)

26 Let us set

34

38

52

$$\lambda_{s,a} = 0, \qquad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}. \tag{4}$$

²⁸ Combining Eq. 3 with the second KKT condition gives us

$$\lambda_s = \frac{1}{\eta} \sum_a d^{\pi_t}(s) p^{\pi_t}(a|s) (1 + \eta A^{\pi_t}(s,a)). \tag{5}$$

Therefore, with the additional assumption $d^{\pi_t}(s) > 0$, $p^{\pi}(a|s)$ becomes

$$p^{\pi}(a|s) = \frac{p^{\pi_t}(a|s)(1 + \eta A^{\pi_t}(s, a))}{\sum_b p^{\pi_t}(b|s)(1 + \eta A^{\pi_t}(s, b))}.$$
 (6)

Note that $d^{\pi_t}(s)$, $p^{\pi_t}(a|s) \ge 0$ for any state-action pair, since they are proper measures. All that remains is to ensure that

$$1 + \eta A^{\pi_t}(s, a) \ge 0$$

to satisfy the third and fourth KKT conditions. But how to do that? One straightforward way is to define $p^{\pi}(a|s) = 0$ whenever $1 + \eta A^{\pi_t}(s, a) \leq 0$, and accordingly re-define λ_s . This gives us the final solution to our original optimization problem (Eq. 1):

$$\pi_{t+1} = p^{\pi}(s, a) = \frac{p^{\pi_t}(a|s) \max(1 + \eta A^{\pi_t}(s, a), 0)}{\sum_b p^{\pi_t}(b|s) \max(1 + \eta A^{\pi_t}(s, b), 0)}.$$
 (7)

This leaves one last problem: Is it always true that given any state s, there exists at least one action a, such that $1 + \eta A^{\pi_t}(s, a) \ge 0$? Because otherwise, we would fail to satisfy the second KKT condition. We can possibly put another condition on η in order to fulfill this condition.

⁴² 2 MDPO Closed Form Update

The paper (Sharan et al., 2021) considers the direct representation along with tabular parameterization of the policy, albeit with a small change in notation as compared to the previous section: $\pi(a|s) \equiv p^{\pi}(a|s,\theta)$. However, since this notation is more cumbersome, we will stick to our old one: $\pi(a|s) \equiv p^{\pi}(a|s)$. The constraints on these parameters are the same as before: $\sum_a p^{\pi}(a|s) = 1, \ \forall s \in \mathcal{S}; \ \text{and} \ p^{\pi}(a|s) \geq 0, \ \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}.$ Our goal, this time, is to solve the following optimization problem (see Eq. 9, Sharan et al., 2021)

$$\pi_{t+1} = \arg\max_{\pi \in \Pi} \left[\sum_{s} d^{\pi_t}(s) \sum_{a} p^{\pi_t}(a|s) \left(Q^{\pi_t}(s, a) \frac{p^{\pi}(a|s)}{p^{\pi_t}(a|s)} - \frac{1}{\eta} D_{\phi}(p^{\pi}(\cdot|s), p^{\pi_t}(\cdot|s)) \right) \right], \quad (8)$$

with the mirror map as the negative entropy (Eq. 5.27, Beck and Teboulle, 2002). This particular choice results in

$$D_{\phi}(p^{\pi}(\cdot|s), p^{\pi_{t}}(\cdot|s)) = \text{KL}(p^{\pi}(\cdot|s)||p^{\pi_{t}}(\cdot|s)) := \sum_{a} p^{\pi}(a|s) \log \frac{p^{\pi}(a|s)}{p^{\pi_{t}}(a|s)}.$$
 (9)

53 The optimization problem then simplifies to

$$\pi_{t+1} = \arg\max_{\pi \in \Pi} \left[\sum_{s} d^{\pi_t}(s) \sum_{a} p^{\pi_t}(a|s) \left(Q^{\pi_t}(s, a) \frac{p^{\pi}(a|s)}{p^{\pi_t}(a|s)} - \frac{1}{\eta} \sum_{a'} p^{\pi}(a'|s) \log \frac{p^{\pi}(a'|s)}{p^{\pi_t}(a'|s)} \right) \right]. \tag{10}$$

Proceeding analogously to the previous section, we use Lagrange multipliers λ_s , $\lambda_{s,a}$ for all states s and actions a to obtain the function

$$\mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = \sum_{s} d^{\pi_{t}}(s) \sum_{a} p^{\pi_{t}}(a|s) Q^{\pi_{t}}(s, a) \frac{p^{\pi}(a|s)}{p^{\pi_{t}}(a|s)} - \frac{1}{\eta} \sum_{s} d^{\pi_{t}}(s) \sum_{a'} p^{\pi}(a'|s) \log \frac{p^{\pi}(a'|s)}{p^{\pi_{t}}(a'|s)} - \sum_{s,a} \lambda_{s,a} p^{\pi}(a|s) - \sum_{s} \lambda_{s} \left(\sum_{a} p^{\pi}(a|s) - 1 \right).$$

$$(11)$$

The KKT conditions are exactly the same as before (Eq. C1 to Eq. C6).

Again, we begin by solving the first KKT condition:

$$\nabla_{p^{\pi}(b|x)} \mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) \frac{Q^{\pi_{t}}(x, b)}{p^{\pi_{t}}(b|x)} - \frac{d^{\pi_{t}}(x)}{\eta} \left[\log \frac{p^{\pi}(b|x)}{p^{\pi_{t}}(b|x)} + 1 \right] - \lambda_{x,b} - \lambda_{x}$$

$$= \frac{d^{\pi_{t}}(x)}{\eta} \left[\eta Q^{\pi_{t}}(x, b) - \log \frac{p^{\pi}(b|x)}{p^{\pi_{t}}(b|x)} - 1 - \frac{\eta(\lambda_{x,b} + \lambda_{x})}{d^{\pi_{t}}(x)} \right]$$

$$= 0$$

$$\Rightarrow \qquad \log \frac{p^{\pi}(b|x)}{p^{\pi_{t}}(b|x)} = \eta Q^{\pi_{t}}(x, b) - \frac{\eta(\lambda_{x,b} + \lambda_{x})}{d^{\pi_{t}}(x)} - 1$$

$$\Rightarrow \qquad p^{\pi}(b|x) = p^{\pi_{t}}(b|x) \cdot \exp(\eta Q^{\pi_{t}}(x, b)) \cdot \exp\left(-\frac{\eta(\lambda_{x,b} + \lambda_{x})}{d^{\pi_{t}}(x)} - 1\right), \tag{12}$$

where in the fourth line, we made the assumption that $d^{\pi_t}(x) > 0$ for all states x. We again set

$$\lambda_{s,a} = 0, \quad \forall s \in \mathcal{S}, \ \forall a \in \mathcal{A}.$$
 (13)

Yet again, we put Eq. 12 in the second KKT condition to get

$$\exp\left(-\frac{\eta\lambda_x}{d^{\pi_t}(x)} - 1\right) = \left(\sum_b p^{\pi_t}(b|x) \cdot \exp(\eta Q^{\pi_t}(x,b))\right)^{-1}.$$
 (14)

70 Therefore, we obtain

$$p^{\pi}(a|s) = \frac{p^{\pi_t}(a|s) \cdot \exp(\eta Q^{\pi_t}(s,a))}{\sum_b p^{\pi_t}(b|s) \cdot \exp(\eta Q^{\pi_t}(s,b))}.$$
 (15)

Again, this leaves one last problem: Can we ensure that $\lambda_s \geq 0$ for all states s? If not, then the fourth KKT condition cannot be satisfied. Maybe, we can set the stepsize η in such a way, such that this constraint is always fulfilled.

$_{5}$ References

Beck, A., Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. *Operations Research Letters*, 31(3), 167-175.

Vaswani, S., Bachem, O., Totaro, S., Mueller, R., Geist, M., Machado, M. C., Castro P. S., Roux, N.
 L. (2021). A functional mirror ascent view of policy gradient methods with function approximation.
 arXiv preprint arXiv:2108.05828.