Assignment 8

Indian Institute of Science Education and Research

CHM202: Energetics and dynamics of chemical reactions

Instructor: Dr. Arijit K. De

Ques. 1 A reactant R undergoes three first-order parallel reactions to give three products P_1 , P_2 and P_3 write the expression for the rate equation of each species. Show that the products are formed in the ratio of the rate constants for respective reactions i.e. $[P_1]$: $[P_2]$: $[P_3] = k_1$: k_2 : k_3

Ques. 2 Consider the following two parallel irreversible first order reactions at temperature T,

Where k_1 and k_2 are rate constants and their values are 5×10^{-2} min⁻¹ and 15×10^{-2} min⁻¹ respectively, at temperature T. If the initial concentration of the reactant 'P' is 4 mol L⁻¹ then calculate the concentration of product 'R' after 10 minutes of reaction.

Ques. 3 The decomposition mechanism of ozone is:

$$0_3 \xrightarrow{k_1} 0_2 + 0$$

$$0_3 + 0 \xrightarrow{k_2} 20_2$$

If $k_{-1}[O_2] << k_2[O_3]$, What will be order of the reaction with respect to ozone.

Ques. 4 For a consecutive reaction in which first step is reversible and second step is irreversible.

$$L \xrightarrow{k_1} M \xrightarrow{k_2} N$$

Calculate the rate constant for formation of N. If k_1 is 10^5 L mol⁻¹ sec⁻¹, k_{-1} is 10^4 sec ⁻¹ and k_2 is 10 sec⁻¹.

Ques. 5 Consider two consecutive first order reactions: $A \xrightarrow{k_1 \cdot \cdot} B \xrightarrow{k_2 \cdot \cdot} C$

Assuming $k_1 \neq k_2$ and at time t = 0, only A is present and [B] = [C] = 0.

- a) Derive an expression for the t_{max} (i.e. the time when [B] is maximum) in terms of rate constants k_1 and k_2 .
- **b**) Derive an expression for $[B_{max}]$. (i.e. maximum concentration of B)
- c) Given $k_1 = \left(\frac{\ln 2}{4}\right)$ and $k_1 = \left(\frac{\ln 2}{4}\right)$, calculate time taken by B to reach the maximum concentration.