11

1

1

2

3

1

2

WHAT IS CLAIMED IS:

relative to each other.

1	1. A method for maintaining a consistent pressure between two chambers		
2	in a processing facility, wherein the two chambers have a slit valve there		
3	between, the method comprising the steps of:		
4	determining when the slit valve is open;		
5	measuring a pressure of the first chamber while the slit valve is open;		
6	measuring a pressure of the second chamber while the slit valve is open		
7	calibrating first and second pressure sensors, associated with the first		
8	and second chambers, respectively, relative to each other while the slit valve is		
9	open; and		
10	closing the slit valve when the pressure sensors have been calibrated		

- 2. The method of claim 1 wherein the slit valve is a vacuum-sealed door.
- 3. The method of claim 1 wherein the calibrating is performed by changing a reading value of the first pressure sensor to be in accordance with the second pressure sensor.
- 4. The method of claim 3 wherein the second chamber is a transfer chamber connecting the first chamber to a third chamber.
- The method of claim 3 further comprising:

 monitoring the change of the reading value of the first sensor; and
 determining if the change indicates a faulty system.

6.	A method for maintaining a consistent pressure in a processing facility
havin	g a transfer chamber used to transfer materials to and from a process
cham	ber, wherein the two chambers have a valve there between, the method
comp	rising the steps of:
	dot

determining when the valve is open;

measuring a pressure of the transfer chamber while the valve is open;

measuring a pressure of the processing chamber while the valve is open;

calibrating a pressure sensor on the processing chamber relative to a

pressure sensor on the transfer chamber while the valve is open; and

closing the valve when the pressure sensors on the processing chamber

and transfer chamber are relatively calibrated.

7. The method of claim 6 wherein the transfer chamber is also used to transfer materials to and from a loading chamber, the transfer chamber and loading chamber having a second valve there between, the method further comprising:

determining when the second valve is open;

measuring a pressure of the transfer chamber while the second valve is open;

measuring a pressure of the loading chamber while the second valve is open;

calibrating a pressure sensor on the loading chamber relative to the pressure sensor on the transfer chamber while the second valve is open; and closing the second valve when the pressure sensors on the loading chamber and transfer chamber are relatively calibrated.

1	8. An automated system for controlling processing of a product in a		
2	processing facility, said system compromising:		
3	first, second, and third chambers;		
4	first, second, and third pressure sensors associated with the first,		
5	second, and third chambers, respectively, for measuring a pressure inside each		
6	chamber;		
7	first, second, and third exhaust lines connected to the first, second, and		
8	third chamber, respectively;		
9	first, second, and third pressure restriction control valves connected to		
10	the first, second, and third exhaust lines, respectively;		
11	a first material transfer valve connecting the first chamber to the second		
12	chamber;		
13	a second material transfer valve connecting the second chamber to the		
14	third chamber		
15	a control module connected to the first and second material transfer		
16	valves, the first, second and third pressure sensors, the first, second and third		
17	variable restriction control valves, and the first, second and third chambers,		
18	the control module including processing capabilities for performing the steps		
19	of:		
20	measuring the pressure in the first and second chamber while the		
21	first material transfer valve is closed;		
22	adjusting the first and second variable restriction control valves		
23	until the first and second pressure sensors have similar readings while		
24	the first material transfer valve is closed; and		
25	calibrating the first pressure sensor to generate a reading similar		
26	to that of the second pressure sensor when the first material transfer		
27	valve is open.		

1	9.	The system described in claim 8 wherein the first and second material			
2	trans	sfer valves are vacuum-sealed doors.			
1	10.	The system described in claim 8 wherein the transfer chamber includes			
2	a rob	oot for handling of the materials being processed.			
1	11.	The system described in claim 8 wherein the control module also			
2	inclu	includes processing capabilities for:			
3		detecting a fault in the system by monitoring the adjustment of			
4		the first pressure sensor over a period of adjustments.			
1 .	12.	The system described in claim 8 wherein the control module also			
2	inclu	includes processing capabilities for:			
3		measuring the pressure in the second and third chambers while			
4		the second material transfer valve is closed;			
5		adjusting the second and third variable restriction control valves			
6		until the second and third pressure sensors have similar readings while			
7		the second material transfer valve is closed; and			
8		calibrating the third pressure sensor attached to the third			
9 .		chamber to generate a reading similar to that of the second pressure			
10		sensor when the second material transfer valve is open.			
1	13.	The system described in claim 12 wherein the control module also			
2	inclu	des processing capabilities for:			
3		detecting a fault in the system by monitoring the adjustment of			
4	•	the first, second, and third pressure sensors over a period of			
5		adjustments.			

1	14.	The system described in claim 13 wherein the control module also
2	inclu	des processing capabilities for:
3		determining that the fault is associated with the third chamber if
4		only the third sensor requires significant adjustment over the period of
5		adjustments.
1	15.	The system described in claim 13 wherein the control module also
2	inclu	les processing capabilities for:
3		determining that the fault is associated with the second chamber
4		if both the first and third sensors require significant adjustment over
5		the period of adjustments.