Axler 6.A exercise 9 April 27, 2021

1 | Axler 6.A exercise 9

Suppose $u,v\in V$ and $\|u\|\leq 1$ and $\|v\|\leq 1$. Prove that

$$\sqrt{1 - \|u\|^2} \sqrt{1 - \|u\|^2} \le 1 - |\langle u, v \rangle|$$

2 | **Proof**

We will prove this by showing that the left hand side is less than or equal to an intermediate term, which is less than or equal to the right hand side.

$$\begin{aligned} |\langle u, v \rangle| &\leq \|u\| \|v\| \\ \Longrightarrow 1 - |\langle u, v \rangle| &\geq 1 - \|u\| \|v\| \end{aligned}$$

This intermediate value is obtained using the Cauchy-Schwarz inequality.

Now, to show that the left hand side is less than or equal to the right hand side,

$$\begin{split} &\sqrt{1-\|u\|^2}\sqrt{1-\|v\|^2} \\ = &\sqrt{(1-\|u\|^2)(1-\|v\|^2)} \\ = &\sqrt{1-\|u\|^2-\|v\|^2)} \end{split}$$

Taproot · 2020-2021 Page 1 of 1