

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1950

Experimental investigation of detached shock waves on a 70 degree cone at various angles of attack.

Frick, Leo F.

California Institute of Technology

http://hdl.handle.net/10945/14185

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

412

GUGGENHEIM AERONAUTICAL LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

EXPERIMENTAL INVESTIGATION OF DETACHED SHOCK WAVES

ON A 70° CONE AT VARIOUS ANGLES OF ATTACK

Leo F. Frick, LCdr., U.S. Navy

U. S. Naval Postgraduate School Annapolis, Md.

C. A 70° COM AT VALUE A 74L BOWN ATTAK

Thosis by
Loo F. Frick, Midr., U.S. Navy

In Partial Fulfillment of the Requirements

For the Degree of

Aeronautical Ingineer

California institute of Technology Pasadora, california 1950

TILTUDON TOUSIL.

for his continued advice and helpful guidance in the presention of the manuscript.

This investigation was conducted jointly with Edr. Illian. Ton,

J 41700

an experimental investigation was made to determine the variation of shock shape and extent of subsenic region behind the sheet wave with angle of attack for a 70° cone at various lack numbers. The main interest was centered on those their numbers which produced detached shock waves or for which the possibility of detachment of angle of attack existed.

The tests were conducted in the GARRI 2.5" Supersonic it of 2 and at angles of attack of 0°, 8°, 6°, 9°, 12°, and 15° and each numbers of 1.458, 1.544, 1.584, 1.387, 1.380, and 5.01.

It was found that, with increasing angle of attack and constant Mach number, the subscnic region behind the shock wave increased in the appearance. With increasing medical the subscnic region decreased for all angles of attack. Interaction between the appearance for all angles of attack. Interaction between the appearance for the shock wave affects the subscnic region behind the wave, surpressing its appearance or the appearance, retarding its disappearance from the lower surface.

111

TOM OF OUT ME

Part	Title	et.,C
	Achowledgements	i
	Abstract	ii
	Table of Contents	iii
	list of Figures	iv
	List of Tablos	vi
I.	Introduction	1
II.	Equipment and Procedure	2
III.	Results and Discussion	5
IV.	Conclusions	10
	References	11
	Sample Calculations	12
	Tables	14
	Pd crawes	28

MOT COTTO

Figure No.	Subject	Pa. c
1	Pressure Orifice Location on Models	28
2	Symbols	29
3	Shock Wave Pattern, 1 = 1.433, Lower	30
4	Shock Wave Pattern, M 1.458, Upper	31
5	Shock Wave Pattern, 1 1.544, Lover	32
6	Shock Wave Pattern, 1 1.544, Upper	33
7	Shook Wave Pattern, " 1.534, Lower	34
8	Shook Wave Pattern, 1 1.504, Upper	35
Э	Shock Wave Pattern, " - 1.857, Lover	36
10	Shook Tave Pattern, 1.857, Upper	37
11	Shock Neve Fattern, M 1.986, Lower	38
12	Shook Mavo Pattern, 1.986, Unper	39
15	Shook Wave Pattorn, . S.Ol, Lover	40
14	Shock Wave Pattern, M - 5.01, Upper	41
15	Shook Wave Pattern, a 00, Upper and Lower	42
16	Shock Neve Pattern, a 50, Lower	43
17	Shook Wave Pattern, c = 3°, Jpper	44
18	Shock Nave Pattern, c 60, Lower	45
19	Shock Nave Pattorn, c. 60, Upper	46

MIST OF F. GUTES (continued)

Pictura		
Piguro No.	Subject	Page
20	Shock Tave Pattern, D: 90, Lower	47
21	Shock Wave Fattern, a 90, Upper	48
22	Shock Wave Fattern, a : 100, Lower	49
28	Shock Wave Pattern, a = 120, Upper	50
24	Shock Tave Pattern, a - 15°, Lower	51
25	Shock Weve Pattern, a - 15°, Upper	52
26	Maximum Flow Deflection (Taylor-Maccoll Theory)	53
27	Surface Pressure Distribution, N 1.534	54
28	Schlieren Picture, M 1.544, a - 0°	55
29	Schlieren Ploture, N = 1.514, a = 150	55
50	Schlieren Picture, N = 1.584, a = 0°	56
81	Schlieren Picture, M = 1.584, a = 150	56
52	Schlieren Picture, M = 1.657, a = 0°	57
55	Schlieren Picturo, N - 1.957, c = 150	57

III.T TO THE

Inhlo	Subject	C
I.	Tabulation of Mach Number Bouind Shook,	
	J = 1.438	14
II.	Tabulation of Mach Number Behind Shock,	
	14 - 1.544	17
211.	Tabulation of lack unber Bohind Shock,	
	M - 1.504	20
IV.	Tabulation of Mach Mamber Bohind Shock,	
	M = 1.857	23
٧.	Tabulation of Mach Employ Belaind Shock,	
	M - 1.936	25
VI.	Tabulation of Mach Murber Behind Shock,	
	M =- 3.01	26
VII.	Condition of Shock	27

I. THE CONCERN

angle of attack moving with a velocity greater than that of sound, has not advanced to a point where the behavior of the sheek wives can be predicted as the case angle of attack is varied. Is a matter of fact, only two cases have so far been found where the notion of a case at supersonic speed in three-dimensions can, without objectionable simplification be discussed mathematically: the radial owners flow produced by a uniformly expanding sphere; and the flow around a solid come at zero angle of attack.

Previous investigations, (Cf. Ref. 1 and 2), have covered detached shock shapes, pressure distribution on cone surface, and Mach numbers bolded the shock for corresponding cones and Mach numbers at sero angle of attack.

The intent of this investigation was to determine experimentally the shape of the shock were and associated characteristics caused by the presence of a finite cone at various angles of attack in supersonic flow. The detached shocks and those attached shocks, where there was a possibility of detacment occurring at angle of attack, were of primary concern. Also of prime interest was the subsonic flow region behind the shock. One set of pressure measurements at the surface of the cone was taken at a then number of 1.584 for angle of attack of zero and twelve degrees.

TI. PURENT AT STORE

The models used for this investigation were machined from breas, \$7/31 in diameter and had a cone angle of 700. Six cone models were used during the course of the investigation, each with a pressure orifice located on the content surface at varying distances from the nose. A sketch of the cone model with dimensions and location of orifices is shown in Fig. 1. All six cone models were identical except for the location of the pressure orifice.

The investigation was carried out in the CIRIT 1.5° Supersonic Find Turnel, (Cf. Ref. 5). The model was supported by a sting which could be varied in angle of attack from -5° to +15°, but could not be var i in yew. I flexible nesslo, (Cf. Ref. 1), was used for linear numbers of 1.438, 1.544, and 1.857. For linch numbers of 1.534, 1.386, and 5.01 fixed steel nessle blocks were used. In the case of the flexible nessle, the nessle shapes were determined by Puckett's Nethod, (Cf. Ref. 4).

Calibration of the test section Each number was accomplished by a static pressure survey along the negate centerline in connection with a reference static pressure taken at the test section wall. The centerline survey was made by means of a 0.065° outside diameter taking with a static orifice. The tubing was fixed with respect to herisontal and vertical necessar but was capable of axial movement. In order to

climinate the measurement of small charges in low pressure, taken along the centerline of the test section, against relatively high amospheric pressure, to test section centerline static pressure was measured against the reference static pressure. The reference pressure was also measured against atmospheric pressure; then, by subtracting the difference between reference and centerline pressures from the reference pressure, the centerline static pressure was obtained.

The model's zero angle of attack was determined in the following marner. Tith the model orifice on top, pressure readings were taken at several engles of attack. The model orifice was then switched to the bottom and pressure readings were taken at the same angles of attack. A plot was then made of pressure readings versus angle of attack. Toro angle of attack is given by the intersection of the curves for the orifice on top and the orifice on the bottom.

During all tests the relative humidity of the turnel was hold within .02 to .04 percent by a silica-gol dryer in the turnel circuit.

Pollowing the calibration of the test section linch number and model angle of attack the flow field around the model, at angles of attack from 0° to 15° in 5° increments, was photographed by neuro of soldieron apparatus.

of 1.384 for angles of attack of 0° and 12°. (Cf. Fig. 27).

The sheet wave entropy is discussed as for the collier of the following the rest of the following property of the soldier of t

net, percent, or laws occup-

The principal results are presented as dimensionless plots of the soci wave notterns plotted relative to the cone axis rather than to the flow direction. The first series of plots are at constant itell numbers with a relative to extend varying, (Cf. Figs. 5 to 14). The second series are at constant angle of attack with Each numbers verying, (Cf. Figs. 15 to 25). A tolard nothed of presenting the results is a familiation of the local Mach number directly belied the shock in the subsence region for each Mach number and angle of attack, (Cf. Tables I to VI).

From these tables, the position at which the Mach number behind the shock wave becomes senic and the position of the normal shock was obtained. This data was indicated on the shock wave plots, where these points were of interest.

A surface pressure survey was taken over both upper and lower come surfaces at a Mach number of 1.584 for angles of attack of 0° and 12°, (Cf. Fig. 1 and Fig. 27).

Fig. 2 defines the symbols used in the graphical and tabular presentation of the results.

The dimensionless form of the shock wave patterns was obtained by usin, the cone dismeter as the elementaristic dimension. Furticular attention was given in obtaining the shock wave pattern shape near the ness of the cone; since, in the case of varying angle of atmost and

The short wive patterns for constant tach number show the close to the most of the cone the shocks do not have a million show this count it of the cone the above the same of evertical distance from the most of the cone increases the same of extent the chock wave closed; show that with increasing uple of extent the chock wave notices a associated with the upper surface of the cone straighten and assure attached shock abundantesistics, i.e., no subscuite some behind a node; while these associated with the lower surface therease in curveture and assure detached characteristics, i.e., a subscuit so a bolish shock. This is more closely brought out by the fach number a way directly behind the shock.

The mriation of sheek single with fach number at constant englo of attack are a cross-plot of the previously discussed curves. It is clearly indicated that although the lower portion of the shock waves gradually change their characteristics from attached to detached, those shocks initially attached to the nose of the cone apparently remain attached and those initially detached remain detached.

The like number directly behind the shock wave at any point was determined from two-dimensional oblique shock theory by necessing the angle between the shock wave and the flow direction, (Cf. Tables I to VI).

It 0° angle of attack the subscribt some was symmetrical wiff respect to the contact. For increasing angle of attack, at constant such major, the subscribt region increased in the lower and decreased in the typer portion of the flow, the rate of decrease being fustor than the rate of increase. For constant angle of attack and verying lack number, the subscribt some decreases in both the lower and upper portions of the flow.

The Taylor-Recoll Theory for conions sheeks, (ff. Tef. 5), and be used here as a basis of comparison, if it is assumed:

- 1. That the upper and lower surfaces of the come may be considered separately.
- 2. That the angle between the flow direction and the come surface may be considered as the half-vertex angle of a fictitious come.

Maximum flow deflection for an initial Mach number, as predicted by the Taylor-Maccoll Theory, is plotted in Fig. 20. The condition of the upper and lower portions of the sheet wave for each Mail number is presented in Table VII.

Taking first the lower sheek wave pettern at zero angle of attack and increasing each numbers, the sheek wave has detached characteristics until a such number between 1.506 and 1.057 is reached. At some point between these two such numbers it assumes attached characteristics.

This agreed with the Taylor-Secoll Theory. The results also agree for

vertex angle of 41° the Taylor-Maccoll Theory (lives as the minimum like induction a factor of the Taylor-Maccoll Theory (lives as the minimum like induction a factor of the flow field behind the lower portion of the shoot. Any at 6° angle of attack for Mach numbers to 1.357.

The lower portion of the shoot wave at a Mach number of 1.366 does not have a subsconic region; thus, it assumes attached characteristics. A subsconic region, behind the lower portion of the shock wave, for a Mach number of 1.366 does not appear until an angle of attack of 9° is reached. The subsconic region behind the lower portion of the shock wave five-case with increasing angle of attack.

For a Mach number of 7.01 the conteal shock theory predicts that shock detacks in will occur at a half-vertex engle of emething loss than 50°, corresponding to an angle of attack of loss than 15°. However, at ar ar, lo or ettack of 15° the shock wave still indationed exerceteristics.

Considering the upper shock, for which this finitions half-vortex and to an econsidered as decreasing with angle of attack, experimental results indicate that the subscale regions, if initially present, did not disappear for the range of angles of attack investigated. From the conteal shock theory at an angle of thack of approximately 00 the chock would become attached for the last entropy under consideration.

as a reading of the interesting and lower portions of the state more at making of attack. The interaction of the the disappearance of the upper short rave to be delayed and in classically the disappearance of the supersample region belief the lawer short rave to be delayed and in classically the disappearance of the supersample region belief the lawer short more as the angle of attack is increased.

The pressure measurements for a detached cheek, at a last maker of 1.314, were reduced to the new-dimensional form p_0/p_0 ; p_0 the resource pressure holded the sheek wave at the norm of the cone. Pressure measurements were taken on both opper and lower sixtness at e^0 and 12^0 angles of attack.

The plots at constant Mach a wher and varying angle of diffee, for which the shock waves are detected, indicate that a subsumble some belief the shock wave is decreased with angle of attack.

Tr. Causan in

The following conclusions can be drawn from the results of this investi ation:

- 1. It angle of attack there is a definite interaction between the upper and lower portions of the shock wave.
- 2. The shock wave if initially attached to the cone remined attached even with the appearance of mixed flow behind the shock, for the range of angles of attack tested.

REPARE MOIL

- 1. Morse or, 7. W., and Atselmer, W., " a Treestly the of the ed the ed the laws.", fore. Fro. Presis, Colifornia Institute of Fort logy.
- 2. McKinton, W. A., and Mulrhood, V. T., "Flow Field inner a Painto Come With Shock", Acre. "hp. Thesis, Malifornia Institute of Technology, 1949.
- 5. Parisett, Allen E., and Schamberg, Pickard, "Thal Peport 0 1017 Parerecale Find Turnel Tests", Mirror of Aerocautics, California Institute of Technology, June, 1940.
- Mechanics, Docember, 1946.
- 5. Dailey, C. L., and Wood, F. C., "Comprintion Curves For Compression Fluid Problems", John Wiley and Cons, Inc., New York, Chapma and Fall, Limited, London.

S/ 191 6 4/ 17/ 17/ 17000

A. Determination of hel number in test section:

Po, The creservoir pressure

9, - reference well static orifice pressure

on the contraction of the contraction

Par mossle converience atohic orifice pressure.

Tempilar conversion factors:

1 cm. acetylene tetrahronide : .2188 cm. hg.

1 cm. silicono - .0005 cm. hc.

Crifice position 1.0°

Pog 103.0 cm. acetylene tetrabromide

95.5 cm. acetylene tetrabromide

Por - Da 9.7 cm. acetylene tetrabromide

.9183 (por - po) 2.12 cm. hg.

Boronoter 74.57 cm. hg.

Po 72.45 cm. hg.

Pa 25.15 cm. hg.

129.6 cm. hg.

Pa - P2 56.45 cm. hg.

p₂ 18.12 cm. hg.

p2/pa (at.)	. 24-37
The	69.6 cm. silicone
P	64.0 cm. silicone
no - px	-0.6 cm. silicone
.0695 (pg - pg)	339 cm. hg.
.0695 (pg - pg//pg	00537
Pr/P0	.2541
74	1.544

B. Poterninetion of ppp., N = 1.584

na - surface pressure on cone

not received pressure behind normal shock

po/po was found in the same way as in the deter invitor of the Mach number.

TOUT I

R = 1.438

C C C C C C C C C C C C C C C C C C C			C - So					
Joper and Lower		Up	ber,	Lon	Lower			
T/D	20	2/2	2.5	Z/D	Mg			
0	.750	0	.750	Ü	.786			
.2	.790	.2	.808	.03	.735			
.4	.005	.4	.865	.2	.769			
•6	.065	.6	.395	.4	.022			
.8	.905	.8	.962	.6	.865			
1.0	.942	1.0	.000	.8	.900			
1.2	.974	1.12	1.000	1.0	.937			
1.4	.999			1.2	.958			
1.41	1.000			3.4	.091			
				1.47	1.000			
STATE VALUE OF STREET	alle ann an	tiols divisionles		activities development and other	MANAGE TRANSPORT OF THE PARTY O			

Toll 1 (continued)

M = 1.438

	© arabidos	60			C.	00	
0	ppor	Lo	7CF	U	boz.	Ton	"OI"
x/n	TO SECOND	2/0	M2	2/	Mg	Y/0	M _C
0	.760	0	.748	0	.750	0	. :30
+2	. DOY	.04	.785	• 6	.885	.09	. 755
.6	.885	.2	.760	.4	.395	.2	.765
.6	.920	-6	.817	•G	.920	34	.795
. 13	.9(4)	.6	.860	.0	.955	. G	.315
1.0	.990	.8	.900	1.0	.990	.8	.080
3.00	1.000	1.0	. 954	1.02	1.000	1.0	.302
		1.2	.960			1.2	.000
		1.4	.985			1.6	· Mo
***************************************		1.58	1.000			1.59	1.000

M = 1.438

		Description to Salarity			State of Part of State			
	again league		-(= ·	200	A 20	~~~	المناس	
the present	The second second	3/3	42 so-m-so-25-	- common -	a xTI	2/ manufacture	All-Africal Maghini la nel	
	# / Fu	5	.770	5	.325	U	.022	
-2	. (7)	. 3.	. 700	· 6	الادو	.1.5	• 160	
a 5		e (C	.730	4 tu	.020	0 h.	5	
100	• = 0	, e la	.700	.3	.985	• (. 1 10	
.3	.001	w/s.	.737	.1.35	1.000	**	. 150	
5	1.60	.0.	.530			.0	وكالمان	
		1.0	الالالام				عال	
		2.4	.968			64. 10	. 357	
		1.4	.995			1.4	.975	
-		1.44	1.000		line syllam solitany konstitue sila	3.57	1.000	

a Ju II

1 1.564

	00		G = 80					
Topor o	und . over	Ü	bber.	Lo	Lower			
x/n	100	¥/o	Mg	Y/D	II ^S			
0	.895	0	.700	O	.700			
.2	.855	.2	.828	.02	.035			
.4	.007	.4	.860	.2	.770			
.6	. 305	.6	.920	. Q.	.882			
.8	.022	.8	.955	.6	.380			
1.0	.970	.93	1.000	.3	.920			
1.15	1.000			1.0	.958			
Strafe-State State		Gregorija i direktorija i		1.17	1.000			

TABLE (continued)

M = 1.544

	N. Carlo Maria				6 20. n. c	90	
	" cui	Lo	TEE	IJ	pper	°3	ror
Y/n	11,	Y/O	M2	¥/0	The state of the s	3/1.	TO C SOLLY CO.
0	.707	С	.707	C	.720	G	.720
٦.	.004	.02	.695	e7	.770	.93	. 95
	.903	.2	.775	.6	.775	.2	.745
.0	.950	.4	. CAS	.6	.946	.4	.820
.)	.993	.6	. 885	.8	.992	.0	.056
3.0	.993	.8	.910	.na	3.000	.8	.000
1.98	1.990	1.0	.960			1.0	.351
		1.12	1.000			1.18	1.000

TABLE II (continued)

M: 1.544

	G	120		C ISO			
UE	per	Lon	roe°	Upy	oor.	Los	TOF
1/0	Mg	Y/D	Mg	Y/D	Mg	1/0	N ₂
0	.730	0	.780	0	.760	0	.740
.2	.910	.075	.695	.2	.825	.1	.695
. 4	.955	.2	.750	.4	. 965	.2	.710
.6	.972	.4	.730	.47	1.000	.4:	.779
.68	1.000	.6	.835			•G	.827
		.0	.876			.8	. 382
		1.0	.925			1.0	.954
		1.2	1.000			1.2	. 990
						1.22	1.000

TIBIN III

11 1.534

1	.m O		G	22 O	
Poper and Lover		V	mor	Io	701
20/1	710	2/1	The consequent time as	2/0	112
-17	.035	ຄ	.090	0	.690
.*	.007	.2	.912	.02	.685
.4	.932	.4	. 953	. 2	.315
• 17	.325	*B	.960	.4	.389
.7)	. 949	.8	. 200	.6	.918
. 94	1.000	. 35	1.000	.8	.955
				1.0	.930
				1.06	1.000

TAND III (continued)

M = 1.534

	C	00			e - 9°			
Up	ber.	Los	768	Up	per.	Lo	ver	
1/2	M ₂	1/0	lie:	Y/D	E2	Y/D	W2	
0	.695	0	.695	0	.705	0	.705	
.2	. 940	.02	.603	63 e fo	.090	.08	.685	
.4	. 947	.2	.800	•4	.998	.2	.735	
.6	.309	.4	.850	.55	1.000	.4	.800	
.75	1.00	.6	.858			.6	. 346	
		.3	.935			.8	.900	
		1.0	.990			1.0	.968	
		1.055	1.000			1.17	1.000	

TABLE III (continued)

W: 2.584

	c	- 120					
U	Doz.	lo	TCE"	Up	bes	Lo	17/1009
Y/D	Ma	Z/D	15	I/D	M2	Z/D	The second second
0	.700	0	.715	0	. 750	0	.730
-7:	. 970	.07	.085	.2	.975	.03	.005
.5	1.000	.2	.732	.23	1.000	•2	.740
		.4	.790			.4	.730
		.6	.837			.0	. 800
		.8	.885			.8	.851
		1.0	.958			1.0	.920
erebelar-ayaya		1.16	1.000	(mile muserdan		2.24	1.000

2.BIT. IV

M - 1.857

a = 50

a = 00

Uppor and	Lowe	20	gbber	and Love	Es.
Superso	mie		Supe	rsonie	
C = C	0		C.	90	
Upper .	10	TFOR	Upper	Lo	ta ce ,
	Y/D	M2		Y/D	Ug
Supersonie	0	.755	Supersonie	0	.330
	•0	.890		.2	.850
	.4	.070		.4	.920
	.6	. 295		.6	.970
	.62	1.000		.67	1.000
-	-		guidena epiganteni propriati de dess		

TUBA IV (continued)

N = 1.857

8 - 12°			C =	150	
Japen	Lo	TTOE"	Upper	10	met.
	7/0	M	2	Y/D	Mo
aujorsonie	0	.70	Supersonie	0	.625
	.2	.78		•3	.760
	.6	.85		.4	.790
	.6	. 93		.6	.867
	.75	1.00		.8	.970
	D-Grand-Gradings,	COMPRISION OF THE SECOND		.83	1.000

TABLE V

M = 1.986

Upper and Lower

a = 00

Upper and Lewer

Supersonie			Supersonie					
a : 60			G = 90					
Upper and Lower			Upper	Lower				
Supersonie				Y/D	242			
			Supersonie	0	.960			
				.2	.960			
				.4	.960			
				.6	.972			
				. 84	1.000			
c - 12°			C.	c = 15°				
Upper	Lo	1702	Upper	Lor	Lower			
	T/D	142		Y/D	M2			
Supersonie	0	.830	Suporsonie	0	.790			
	· 60	.360		.2	.810			
	. 4	.895		.4	.845			
	.6	.970		.6	.866			
	.68	1.000		.775	1.000			

TABIR VI

M - 5.02

Flow was supersonic behind shock at all angles of attack investigated.

TABLE VII

CONDITION OF SHOCK

		00	30	60	90	120	15°
M = 1.458	Upper Lower	D D	D D	D D	D D	D D	D
и = 1.544	Upper	D D	D D	D	D	D D	D
H = 1.584	Upper	D D	D	D D	D D	D D	D
N = 1.857	Upper	A	A	A D	A D	A D	A D
N = 1.986	Upper	A	A A	A	A D	A D	A D
M = 3.01	Upper	A	A A	A A	A	A A	A A

Note: D of detached shock characteristics

A o attached shock characteristics

FIG. 2 SYMBOLS

FIG 19 Q+ 6° LPPER M-1986 MIF L. C 14 12 10 8 6 20 1.8 1.6

E19.27 SURFACE PRESSURE DISTRIBUTION M=1.584 1.0 CK- 20 LOWER DRIFICE Ps 7 0x= 00 X= 12 UPPER ORIFICE

Fig. 28 M = 1.544 a = 00

Fig. 29 M = 1.544 α = 15°

Fig. 30 M = 1.584 α = 0°

Fig. 31 M = 1.584 α = 15°

Fig. 32 M = 1.857 α = 0°

Fig. 33 M = 1.857 a = 150

thesF88
Experimental investigation of detached s

3 2768 001 90042 6
DUDLEY KNOX LIBRARY