

PARALLEL INTER-IMAGE K-MEANS

A Faster Satellite Imagery Algorithm

Search Q

Parallel and Distributed Computing Spring 2025

Why Analyze Satellite Images?

- Satellite imagery is vital for tracking land use, urban growth, and environmental change.
- But analyzing them consistently is computationally hard.
- Traditional clustering doesn't always result in consistent labelling

One Scene. One Clustering. No Memory.

- k-means clusters each scene independently, leads to label drift
- Same forest might be green in Scene 1, red in Scene 2
- There's no temporal consistency

General Workflow of kMC

IlkMC: Inter-Image k-Means Clustering

Clusters all scenes together, ensuring label consistency across time Proposed by Han & Lee (2024)

But: it's **computationally intense** → millions of pixels per scene!

ELEMENT SPACE

Our Goal

- Make IIkMC fast and scalable
- Handle >200M pixels total
- Run on RAM-limited platforms like Colab/Kaggle
- Compare sequential, CPU-parallel, and GPUparallel versions

Planets

Astronomy

Dataset & Tools

- 5 Landsat 8/9 scenes of Karachi (April 2025)
- 6 spectral bands (B2-B7)
- ~40M valid pixels per scene
- Platforms: Colab (T4 GPU) + Kaggle (P100 GPU)

Search Q

ELEMENT SPACE

Preprocessing Pipeline

Flattened: $(7000x7000x6) \rightarrow (N, 6)$

Normalized bands \rightarrow [0,1]

Implementation Overview

Sequential (numpy)

CPU-Parallel (Threaded Block Processing)

GPU-Parallel (CuPy + RawKernel)

Sequential Version

- NumPy-only version
- One pixel at a time, 2 iterations, **3.5 hours**

total

Used midpoint-based initialization,
standard convergence

CPU-Parallel (Threaded)

- Used ThreadPoolExecutor
- Scenes chunked into 1M-pixel blocks
- Per-block Euclidean distance without allocating full (N×k) matrix
- Took 25 minutes
- ~8.2× faster than baseline

CPU- Downsampling

- Reduced RAM usage, enabling safe runs on 12–30 GB systems.
- • Allowed more iterations (up to 100) for testing convergence behavior.
- • Made interactive visualizations and debugging feasible

CPU- Downsampling

Number of Threads	Total Runtime (seconds)
1	521.06
2	319.00
4	300.91

- In contrast to the full dataset version (which took approximately 25 minutes to converge), the downsampled version consistently completed within 2–6 minutes
 - Speedup = 12.5x

GPU-Parallel (CuPy + CUDA)

- RawKernel fused label assignment + flagging
- On-device one-hot encoding
- 47s runtime on 40M pixels
- 52× speedup vs baseline

CUDA Kernel in CuPy – Fast Pixelwise Clustering

- Wrote a custom CUDA C kernel (classify_and_flag) using CuPy's RawKernel
- Each GPU thread processes 1 pixel, computes distances to all clusters, and sets label + flag in one pass

Feature	Benefit
Fused label + flag	Single pass, avoids kernel overhead
Coalesced memory access	Faster pixel-center reads
Loop unrolling	Lower branch cost in inner loop
On-device buffers	No slow host-device transfer each step

Downsampling for Safety

- Applied 10-20% random sampling for dev/test
- Reduced crashes on Kaggle/Colab
- Final cluster maps → applied trained centers to full-res scenes

Cluster Maps (full-res)

Cluster Maps (CPU)

Cluster Maps (GPU)

Final Comparison

All benchmarks were performed on Kaggle's NVIDIA P100 GPU (12–16GB RAM) and 4vCPUs, using Landsat data with 20% downsampling (N ≈ 40.65M, B = 6, k = 8).

Version	Time	Speedup	Silhouette
Seq	2494s	1x	0.48
CPU	301s	8.2x	0.47
GPU	47s	52.8x	0.49

Final Comparison

the higher mean silhouette score (0.49) achieved by the GPU implementation in dicates slightly improved cluster cohesion compared to CPU-parallel (0.47) and sequential (0.48) runs, likely due to more consistent numerical precision in the fused kernel.

Conclusion

ELEMENT SPACE

- We successfully implemented a parallel version of the IlkMC algorithm using both CPU and GPU resources
- Compared to the baseline, our versions achieved 8.2× and 52.8× speedups respectively
- This enables practical deployment of temporally consistent unsupervised classification for remote sensing data.

ELEMENT SPACE

Planets

Astronomy

For Your Attention

Search Q