

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 1

по курсу «Случайные процессы»

Тема: Однородная цепь Маркова с тремя состояниями

Выполнил: Студент 4-го курса Гогинян Б.А.

Группа: КМБО-03-16

Лабораторная работа по случайным процессам № 1

«Однородная цепь Маркова с 3-мя состояниями»

Дана матрица переходных вероятностей однородной цепи Маркова

$$P = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix}$$

Построить граф состояний цепи Маркова.

Найти:

1. Матрицы переходных вероятностей за n шагов P^n ($n=2,...,n_{\min}$) и величины отклонений $\delta_n = \max(\mid p_{ij}(n) - p_{ij}(n-1) \mid ; i,j=1,2,3)$ (для $n=2,...,n_{\min}$), где n=1,2,30 (для n=1,2,31). Результаты представить в табличной форме:

n	P^n	δ_n
1	$\begin{pmatrix} p_{11}(1) & p_{12}(1) & p_{13}(1) \\ p_{21}(1) & p_{22}(1) & p_{23}(1) \\ p_{31}(1) & p_{32}(1) & p_{33}(1) \end{pmatrix}$	_
2	$\begin{pmatrix} p_{11}(2) & p_{12}(2) & p_{13}(2) \\ p_{21}(2) & p_{22}(2) & p_{23}(2) \\ p_{31}(2) & p_{32}(2) & p_{33}(2) \end{pmatrix}$	δ_2
3	$\begin{pmatrix} p_{11}(3) & p_{12}(3) & p_{13}(3) \\ p_{21}(3) & p_{22}(3) & p_{23}(3) \\ p_{31}(3) & p_{32}(3) & p_{33}(3) \end{pmatrix}$	$\delta_{_3}$
	•••	
k	$\begin{pmatrix} p_{11}(k) & p_{12}(k) & p_{13}(k) \\ p_{21}(k) & p_{22}(k) & p_{23}(k) \\ p_{31}(k) & p_{32}(k) & p_{33}(k) \end{pmatrix}$	$\delta_{_k}$

где $k = n_{\min}$.

2. Стационарное распределение вероятностей состояний (r_1, r_2, r_3) . Провести проверку стационарности найденного распределения.

3. Распределения вероятностей состояний через n шагов $(p_1(n), p_2(n), p_3(n))$ (для $n=1,...,m_{\min}$) и величины отклонений $\delta_n=\max(|p_i(n)-r_i|;i=1,2,3)$ (для $n=1,...,m_{\min}$), где $m_{\min}=\min(n|\delta_n<0,00001)$, для следующих начальных распределений: (1,0,0), (0,1,0) и (0,0,1). Результаты представить в табличной форме:

n	$(p_1(n), p_2(n), p_3(n))$	δ_n
0	(1,0,0)	$\delta_0 = \max((1-r_1), r_2, r_3)$
1		$\delta_{ m l}$
2		δ_2
		•••
k		$\delta_{_{k}}$

где $k = m_{\min}$. Аналогично для (0,1,0) и (0,0,1).

4. Для каждого состояния $i=1,\ 2,\ 3$, взятого в качестве начального $i=i_0$ провести в соответствии с матрицей переходных вероятностей генерацию последовательности номеров состояний $i_1,...,i_n$ через n шагов, определяя для каждого n значения

 $R(i,n) = |\{i_k = i; k = 1,...,n\}|$ (число возвратов в состояние i) и $v(i,n) = \frac{R(i,n)}{n}$ (число возвратов в состояние i). Генерацию проводить до шага $N_{\min}(i) = \min(n \mid \Delta_n(i) < 0,001)$, где $\Delta_n(i) = |v(i,n) - r_i|$.

В отчете привести значения $N_{\min}(i)$, i = 1, 2, 3.

5. По результатам пункта 4 для каждого начального состояния $i=1,\ 2,\ 3$ построить таблицы вида

n	R(i,n)	v(i,n)	$\Delta_n(i)$
1			
2			
10			
k-5			
k			

где $k = \max(16, N_{\min}(i))$.

Вычисления и вывод результатов проводить с точностью до 0,00001.

Краткие теоретические сведения

<u>Опр.</u> Последовательность случайных величин $\{X_n\}_{n=0}^{\infty}$ называется **цепью Маркова**, если для произвольного набора $i_1 < i_2 < ... < i_k \ (k=3,\ 4,...)$ и любых $E_{j_1},...,E_{j_k}$ справедливо

$$P(X_{i_k} = E_{j_k} | X_{i_1} = E_{j_1}, ..., X_{i_{k-1}} = E_{j_{k-1}}) = P(X_{i_k} = E_{j_k} | X_{i_{k-1}} = E_{j_{k-1}}) \,.$$

<u>Опр.</u> Цепь Маркова $\{X_n\}_{n=0}^{\infty}$ называется **однородной**, если для всех і и ј вероятности $p_{ij} = P(X_{n+1} = E_j | X_n = E_i)$ не зависят от n.

<u>Опр.</u> Если существует $\lim \overline{p}(n) = \overline{p}(\infty)$ при $n \to \infty$ и $\sum_i q_i = 1$.

Опр. Распределение $\overline{p^*}$ цепи Маркова называется стационарным, если оно остается неизменным на каждом шаге. Стационарное распределение в силу теоремы 1.2 ($\overline{p}(k+\overline{n}) = \overline{p}(k) \cdot P^n$) удовлетворяет соотношению $\overline{p^*} = \overline{p^*} \cdot P$

В однородной цепи Маркова вероятности p_{ij} называются переходными, а матрица $P = ||p_{ij}||$ - матрицей переходных вероятностей цепи Маркова. Матрица Р обладает следующими свойствами:

1)
$$p_{ij} \ge 0$$

2)
$$\sum_{i=1}^{N} p_{ij} = 1$$
 для всех $i = 1, 2, ..., N$.

Матрица, удовлетворяющая этим свойствам называется стохастической.

Средства языка программирования Python, которые использованы в программе расчета:

np.dot(A, B) - умножение матриц A и B np.max(A) - находит максимальный элемент в матрице

np.abs(A) - модуль $np.random.random_sample()$ - возвращает случайное число из nonyuntersama nonyuntersama nonyuntersama nonyuntersama nonyuntersama nonyuntersama nonyuntersama

Результаты расчетов

Исходные данные:

Матрица переходных вероятностей однородной цепи Маркова [0.437, 0.563, 0], [0.409, 0.591, 0],

[0.235, 0.22, 0.545]

Граф состояний цепи Маркова:

1. Матрицы переходных вероятностей за п шагов P^n и величины отклонений δ_n .

n	P^n	δ_n
1	[0.437 0.563 0.] [0.409 0.591 0.] [0.235 0.22 0.545]	
2	[0.421236 0.578764 0.] [0.420452 0.579548 0.] [0.32075 0.382225 0.297025]	0.13515
3	[0.42079461 0.57920539 0.] [0.42077266 0.57922734 0.] [0.36629865 0.47182272 0.16187863]	0.07365
4	[0.42078225	0.04014

5	[0.4207819 0.5792181 0.] [0.42078189 0.57921811 0.] [0.40459956 0.54731845 0.048082]	0.02188
6	[0.42078189 0.57921811 0.] [0.42078189 0.57921811 0.] [0.41196252 0.56183279 0.02620469]	0.01192
7	[0.42078189 0.57921811 0.] [0.42078189 0.57921811 0.] [0.41597533 0.56974311 0.01428156]	0.00650
8	[0.42078189 0.57921811 0.] [0.42078189 0.57921811 0.] [0.41816232 0.57405423 0.00778345]	0.00354
9	[0.42078189 0.57921811 0.] [0.42078189 0.57921811 0.] [0.41935423 0.5764038 0.00424198]	0.00193
10	[0.42078189 0.57921811 0.] [0.42078189 0.57921811 0.] [0.42000381 0.57768431 0.00231188]	0.00105
11	[0.42078189 0.57921811 0.] [0.42078189 0.57921811 0.] [0.42035784 0.57838219 0.00125997]	0.00057
12	[0.42078189 0.57921811 0.] [0.42078189 0.57921811 0.] [0.42055078 0.57876253 0.00068669]	0.00031
13	[0.420781893 0.579218107 0.] [0.420781893 0.579218107 0.] [0.420655939 0.578969818 0.00037424]	0.00017
14	[0.420781893 0.579218107 0.] [0.420781893 0.579218107 0.] [0.420713248 0.579082789 0.00020396]	0.00009
15	[0.420781893 0.579218107 0.] [0.420781893 0.579218107 0.] [0.420744481 0.579144359 0.00011116]	0.00005
16	[0.420781893 0.579218107 0.] [0.420781893 0.579218107 0.] [0.420761504 0.579177914 0.000060582]	0.00003
17	[0.420781893 0.579218107 0.] [0.420781893 0.579218107 0.] [0.420770781 0.579196202 0.0000330172]	0.00001

2. Найти стационарное распределение вероятностей состояний (r_1, r_2, r_3) . Провести проверку стационарности найденного распределения.

$$(r_1, r_2, r_3) = (409/972, 563/972, 0) = (0.42078189, 0.57921811, 0)$$

Проверка:

$$\overline{r} \cdot P = (0.42078189, 0.57921811, 0) \cdot P = (0.42078189, 0.57921811, 0) = \overline{r}$$

3. Распределения вероятностей состояний через n шагов $(p_1(n), p_2(n), p_3(n))$ и величины отклонений δ_n , для следующих начальных распределений: (1,0,0), (0,1,0) и (0,0,1).

n	$(p_1(n), p_2(n), p_3(n))$	δ_n
1	(1,0,0)	0.5792181
2	(0.437, 0.563, 0)	0.0162181
3	(0.42123, 0.57876, 0)	0.0004541
4	(0.42079, 0.57921, 0)	0.0000127

n	$(p_1(n), p_2(n), p_3(n))$	δ_n
1	(0,1,0)	0.420781893
2	(0.409, 0.591, 0)	0.011781893
3	(0.42045, 0.57955, 0)	0.000329893

n	$(p_1(n), p_2(n), p_3(n))$	δ_n
1	(0, 0, 1)	1.0
2	(0.235, 0.22, 0.545)	0.545
3	(0.32075, 0.382225, 0.297025)	0.29703
4	(0.36629865, 0.47182272, 0.16187863)	0.16189
5	(0.39108948, 0.52068667, 0.08822385)	0.08822
6	(0.40459956, 0.54731845, 0.048082)	0.04808
7	(0.41196252, 0.56183279, 0.02620469)	0.0262

8	(0.41597533, 0.56974311, 0.01428156)	0.01428
9	(0.41816232, 0.57405423, 0.00778345)	0.00778
10	(0.41935423, 0.5764038, 0.00424198)	0.00424
11	(0.42000381, 0.57768431, 0.00231188)	0.00231
12	(0.42035784, 0.57838219, 0.00125997)	0.00126
13	(0.42055078, 0.57876253, 0.00068669)	0.000687
14	(0.420656, 0.578969818, 0.000374244)	0.000374
15	(4.20713248e-01, 5.79082789e-01, 2.03962831e-04)	0.000204
16	(4.20744481e-01, 5.79144359e-01, 1.11159743e-04)	0.000112
17	(4.20761504e-01, 5.79177914e-01, 6.05820600e-05)	0.00006
18	(4.20770781e-01, 5.79196202e-01, 3.30172227e-05)	0.000033
19	(4.20775837e-01, 5.79206169e-01, 1.29943864e-05)	0.000014

4. $N_{min}(i)$ для каждого начального состояния i=1,2,3:

$$N_{min}(1) = 87$$

$$N_{min}(1) = 87$$

 $N_{min}(2) = 2824$
 $N_{min}(3) = 991$

$$N_{min}(3) = 991$$

Анализ результатов и выводы

(r_1, r_2, r_3)	P^k	$(p_1(n), p_2(n), p_3(n))$
(0.42078, 0.57922, 0)	[0.42078, 0.57921, 0] [0.42078, 0.57921, 0] [0.42077, 0.57919, 0.00001]	(0.42079, 0.57921, 0) (0.42045, 0.57955, 0) (0.42078, 0.57921, 0.00001)

Таблица №1 для нач. случая і=1

	1 40511114	а №1 для нач. случая 1—1	
n	R(i, n)	v(i, n)	$\Delta_n(i)$
1	0	1	0.57922
2	1	0.5	0.07922
3	2	0.66667	0.24588
4	3	0.75	0.32922
5	3	0.6	0.17922
6	3	0.5	0.07922
7	3	0.42857	0.00779
8	3	0.375	0.04578
9	3	0.33333	0.08745
10	4	0.4	0.02078
82	32	0.39024	0.03054
83	33	0.39759	0.02319
84	34	0.40476	0.01602
85	34	0.4	0.02078
86	35	0.40698	0.01381
87	36	0.41379	0.00699

Таблица №2 для нач. случая і=2

n	R(i, n)	v(i, n)	$\Delta_n(i)$
1	0	1	0.42078
2	2	1.0	0.42078
3	3	1.0	0.42078
4	4	1.0	0.42078

5	5	1.0	0.42078
6	5	0.83333	0.25412
7	6	0.85714	0.27792
8	7	0.875	0.29578
9	8	0.88889	0.30967
10	9	0.9	0.32078
2819	1637	0.5807	0.00148
2820	1637	0.5805	0.00128
2821	1637	0.58029	0.00107
2822	1638	0.58044	0.00122
2823	1639	0.58059	0.00137
2824	1639	0.58038	0.00116

Таблица №3 для нач. случая і=3

n	R(i, n)	v(i, n)	$\Delta_n(i)$
1	0	1	1.0
2	1	0.5	0.5
3	1	0.33333	0.33333
4	1	0.25	0.25
5	1	0.2	0.2
6	1	0.16667	0.16667
7	1	0.14286	0.14286
8	1	0.125	0.125
9	1	0.11111	0.11111
10	1	0.1	0.1
986	1	0.00101	0.00101
987	1	0.00101	0.00101
988	1	0.00101	0.00101
989	1	0.00101	0.00101
990	1	0.00101	0.00101
991	1	0.00101	0.00101

Литература по теории случайных процессов

- 1. Булинский А. В., А. Н. Ширяев А. Н. Теория случайных процессов: Учебник для вузов. М.: ФИЗМАТЛИТ, 2005.
- 2. Вентцель Е. С., Овчаров Л. А. Теория случайных процессов и ее инженерные приложения: Учеб. пособие для вузов. М.: Высшая школа, 2007.
- 3. Лобузов А.А., Гумляева С.Д., Норин Н.В. Задачи по теории случайных процессов. М.: МИРЭА, 1993.
- 4. Письменный Д. Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам М.: Айрис-пресс, 2007.
- 5. Прохоров А. В., Ушаков В. Г., Ушаков Н. Г. Задачи по теории вероятностей. Основные понятия, предельные теоремы, случайные процессы. М.: КДУ, 2009.
- 6. Сборник задач по теории вероятностей, математической статистике и теории случайных функций: Учеб. пособие для вузов / Б.Г. Володин, М.П.Ганин, И.Я. Динер и др.; Под ред. А. А. Свешникова. СПб.: Лань, 2008.
- 7. Кемени Д., Снелл Д. Конечные цепи Маркова. М.: Наука, 1970.
- 8. Кемени Д., Снелл Д., Кнепп А. Счетные цепи Маркова. М.: Наука, 1987.
- 9. Чжун Кай-Лай. Однородные цепи Маркова. М.: Мир, 1964.
- 10. Карлин С. Основы теории случайных процессов. М.: Мир, 1971.
- 11. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов: Учеб. пособие для вузов. — М.: Наука, 1975.
- 12. Ивченко Г. И., Каштанов В. А., Коваленко И. Н. Теория массового обслуживания: Учеб. пособие для вузов. М.: Либроком, 2012.

Приложение

```
import numpy as np
M = np.array([[0.437, 0.563, 0],
             [0.409, 0.591, 0],
              [0.235, 0.22, 0.545]])
arrayM = [M] # Array list P^n
def PrCheck (lastP, P, module = False):
  # PrCheck returns delta n
  if module == False:
   return np.max(np.abs(np.array(P) - np.array(lastP)))
  else:
   # print("vec[i] =", P)
   return np.abs(P - lastP)
# 1 exercise
lastM = M
currentM = np.dot(M, M)
num = 0
while PrCheck(lastM, currentM) >= 0.00001:
 arrayM.append(lastM)
  #print(lastM)
 num += 1
 lastM = currentM
 currentM = np.dot(lastM, M) # P^n
print("---- 1 задание
  -----")
# 2 exercise - сделать на бумажке
# решаем систему _{p} = _{p} * P1, где _{p} -  стационарное распределение
# 0.437*p1 + 0.563*p2 + 0*p3 = p1
# 0.409*p1 + 0.591*p2 + 0*p3 = p2
# 0.235*p1 + 0.22*p2 + 0.545*p3 = p3
# p1 + p2 + p3 = 1
# преобразуем и тк ранг системы 2, одно можно выкинуть
\# -0.563*p1 + 0.563*p2 + 0*p3 = 0
# 0.409*p1 - 0.409*p2 + 0*p3 = 0
# 0.235*p1 + 0.22*p2 - 0.455p*3 = 0
# p1 + p2 + p3 - 1 = 0
vec = np.array([409/972, 563/972, 0])
#print("vec =", vec)
#print("vec * M =", np.dot(vec, M))
#print()
initialState = np.identity(3, dtype=float)
```

```
#print(initialState[0])
arrayInitialState = []
lastInitialState = initialState
for i in range(3):
  #print("\nNew vector")
  while PrCheck(lastInitialState[i], vec) >= 0.00001 :
    arrayInitialState.append(lastInitialState)
    #print(lastInitialState[i], "\t", PrCheck(lastInitialState[i], vec), "\n")
    # print("Проверка выхода PeCheck:", PrCheck(lastInitialState[i], vec))
    lastInitialState[i] = np.dot(lastInitialState[i], M)
#print(lastInitialState)
# exercise 4
for i in range (1,4):
 print("----\ni = ", i)
  sequenceOfStates = [i]
  numberOfReturns = 0
  returnFrequency = 1
  n = 1
  while PrCheck(returnFrequency, vec[i-1], module = True) >= 0.001 :
    memberOfTheSequence = np.random.random_sample()
    # вывод для таблицы
    print(n, "\t", round(numberOfReturns, 5), "\t", round(returnFrequency, 5),
"\t", round(PrCheck(returnFrequency, vec[i-1], module = True), 5))
    lastState = sequenceOfStates[len(sequenceOfStates) - 1]
    if memberOfTheSequence < M[lastState-1][0] :</pre>
      sequenceOfStates.append(1)
    elif memberOfTheSequence < M[lastState-1][0] + M[lastState-1][1] :</pre>
      sequenceOfStates.append(2)
    else :
      sequenceOfStates.append(3)
    numberOfReturns = sequenceOfStates.count(i) # возвращает количество чисел i,
встречающихся в последовательности
    returnFrequency = numberOfReturns / len(sequenceOfStates)
  print("Длина массива для нач. сост. (N_min(i))" +str(i)+ " = ",
len(sequenceOfStates)) # выводим длину массива N
```