Noircissez sur la feuille-réponse toutes les bonnes réponses à chacune des questions.

1. Le déterminant de la matrice $A = [a_{ij}] \in \mathcal{M}_n(\mathbf{F})$ peut se calculer par la formule...

$$(1)\square \sum_{i=1}^{n} \operatorname{sg}(i) a_{i1} a_{i2} \cdots a_{in} \qquad (2)\square \sum_{i=1}^{n} \operatorname{sg}(i) a_{1i} a_{2i} \cdots a_{ni}$$

$$(3)\blacksquare \sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sg}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \qquad (4)\blacksquare \sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sg}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n}$$

 $(5)\square$ aucune des réponses précédentes n'est correcte.

2. Calculer le déterminant de la matrice

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & -2 & 3 \\ 0 & 0 & 7 \end{bmatrix}.$$

 $(1)\square$ 6 $(2)\square$ -2 $(3)\square$ -7 $(4)\square$ 0 $(5)\blacksquare$ cette question n'a pas de sens

3. Calculer le déterminant de la matrice

$$M = \begin{bmatrix} -1 & 17 & 1 & 1 \\ 5 & 6 & -8 & -9 \\ 0 & 0 & 0 & 0 \\ 1 & -1 & 9 & -9 \end{bmatrix}.$$

 $(1)\square$ 64 $(2)\square$ 664 $(3)\square$ 958 $(4)\blacksquare$ 0 $(5)\square$ cette question n'a pas de sens

4. Soient A et B deux matrices carrées de taille n.

A-t-on toujours $d\acute{e}t(AB) = d\acute{e}t(BA)$?

$$(1)$$
 oui (2) non

A-t-on toujours $d\acute{e}t(AB) = d\acute{e}t(A) \, d\acute{e}t(B)$?

$$(3)$$
 oui $(4)\square$ non

5. Calculer le déterminant suivant :

$$\begin{vmatrix} -1 & 2 & 1 & 0 \\ -1 & 0 & -1 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & -5 \end{vmatrix}$$

(1)
$$\blacksquare$$
 22 (2) \square 6 (3) \square 28 (4) \square -22

(5)□ aucune des réponses précédentes n'est correcte.

6. Soit t un paramètre réel, calculer le déterminant de la matrice A suivante

$$A = \begin{bmatrix} 1 & t & 1 \\ -1 & t & -1 \\ t & -9 & -3 \end{bmatrix}$$

$$(1) \Box \quad 18 - 6t - 2t^2 \qquad (2) \Box \quad -6t \qquad (3) \Box \quad 0 \qquad (4) \blacksquare \quad -2t(t+3)$$

(5)□ aucune des réponses précédentes n'est correcte.

7. La matrice représentant l'endomorphisme $\varphi(x,y) = (x-2y, 3x+2y)$ de \mathbf{R}^2 dans la base $\mathcal{B} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$):
$(1)\Box \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \qquad (2)\Box \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \qquad (3)\blacksquare \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix}$
$(4)\square \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} \qquad (5)\square \begin{bmatrix} 1 & 2 \\ -3 & 2 \end{bmatrix}$
8. Identifiez les formules correctes pour tout endomorphisme $\varphi: V \to V$, bases \mathcal{B} et \mathcal{C} de V , scalaire $\lambda \in \mathbf{F}$:

$$(1)\square \quad {}_{\mathcal{C}}[\varphi]_{\mathcal{B}} + I = \mathcal{P}_{\mathcal{C} \to \mathcal{B}} \cdot [\varphi + \operatorname{Id}]_{\mathcal{B}} \qquad (2) \blacksquare \quad [\varphi^2]_{\mathcal{B}} = [\varphi]_{\mathcal{B}} \cdot \mathcal{P}_{\mathcal{B} \to \mathcal{C}} \cdot [\varphi]_{\mathcal{C}} \cdot \mathcal{P}_{\mathcal{C} \to \mathcal{B}}$$

$$(3)\square \quad [\mathrm{Id}]_{\mathcal{C}} \cdot [\varphi]_{\mathcal{B}} = [\varphi]_{\mathcal{C}} \qquad (4) \blacksquare \quad [\varphi - \lambda \, \mathrm{Id}]_{\mathcal{C}} = [\varphi]_{\mathcal{C}} - \lambda \, I \qquad (5)\square \quad [\varphi]_{\mathcal{B}} = \mathcal{P}_{\mathcal{B} \to \mathcal{C}}^{-1} \cdot [\varphi]_{\mathcal{B}} \cdot \mathcal{P}_{\mathcal{B} \to \mathcal{C}}$$

- 9. L'endomorphisme φ du numéro 47 est . . .
 - (1) \square diagonalisable sur \mathbf{Q}
 - (2) \square diagonalisable sur **R**
 - (3) diagonalisable sur C
- 10. Même question pour $\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \in \mathcal{M}_2(\mathbf{Q})$:
 - (1) \square diagonalisable sur \mathbf{Q}
 - (2) diagonalisable sur \mathbf{R}
 - (3) diagonalisable sur C

On considère pour les prochaines questions la matrice suivante :

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

11. Multiplicité algébrique (ordre d'annulation du polynôme caractéristique) de 1 en tant que valeur propre de A:

$$(1)\Box \ 1 \qquad (2)\Box \ 2 \qquad (3)\Box \ 3 \qquad (4)\Box \ 4 \qquad (5)\blacksquare \ 5$$

12. Multiplicité géométrique (dimension de l'espace propre associé) de 1 en tant que valeur propre de A:

$$(1)\Box \ 1 \ (2)\Box \ 2 \ (3)\blacksquare \ 3 \ (4)\Box \ 4 \ (5)\Box \ 5$$

13. A est-elle diagonalisable?

$$(1)$$
□ oui (2) ■ non (3) □ ça dépend du corps des scalaires

- 14. Cochez toutes les affirmations vraies pour la matrice $A \in \mathcal{M}_5(\mathbf{C})$:
 - (1) \blacksquare Si $\chi_A(\lambda) = \lambda^5 2$, alors A est forcément diagonalisable.
 - (2) \blacksquare Si $\chi_A(\lambda) = \lambda^5 + 2\lambda + 1$, alors A est forcément inversible.
 - (3) \square Si $\chi_A(\lambda) = (\lambda 1)^5$, alors A est forcément diagonalisable.
 - (4) \square Si A est inversible alors A est diagonalisable.
 - (5) \square Si A est diagonalisable alors A est inversible.