CB N°4 - SÉRIES ENTIÈRES - SUJET 1

EXERCICE 1

Déterminer les rayons de convergence, notés R, des séries entières suivantes :

1. $\sum_{n>1} \frac{\ln n}{n} z^n$

On a : $\frac{\ln(n+1)}{n+1} \times \frac{n}{\ln n} \sim 1$. D'après le critère de d'Alembert, on a donc R=1.

 $2. \sum_{n=0}^{\infty} \sin\left(\frac{\pi}{2}n\right) z^n$

On a : $\forall n \in \mathbb{N}, \left| \sin \left(\frac{\pi}{2} n \right) \right| \le 1.$

Le rayon de convergence de la série $\sum z^n$ étant 1, par comparaison : $R \ge 1$.

De plus, la série $\sum_{n} \sin\left(\frac{\pi}{2}n\right)$ est grossièrement divergente, donc $R \leq 1$.

En conclusion, R=1

3. $\sum_{n>0} n^3 z^{3n}$

On a:
$$\forall n \geq 1, \forall z \in \mathbb{C}^*, \left| \frac{(n+1)^3 z^{3n+3}}{n^3 z^{3n}} \right| \underset{n \to +\infty}{\sim} |z^3|.$$

Le critère de d'Alembert (pour les séries numériques), donne $\sum n^3 z^{3n}$ absolument conver-

gente si $|z^3|<1$ (c'est-à-dire |z|<1, donc $R\geq 1$), et $\sum_{n\geq 0}n^3z^{3n}$ non absolument convergente si |z|<1

gente si $|z^3| > 1$ (c'est-à-dire |z| > 1, donc $R \le 1$). Finalement, R = 1.

 $4. \sum_{n=1}^{\infty} \left(e^{\sqrt{\frac{1}{n}}} - 1 \right) z^n$

On a : $e^{\sqrt{\frac{1}{n}}} - 1 \sim_{n \to +\infty} \frac{1}{\sqrt{n}}$; $\forall n \geq 1, \frac{\sqrt{n}}{\sqrt{n+1}} \sim_{n \to +\infty} 1$. Le critère de d'Alembert donne le

rayon de convergence de la série $\sum_{n\geq 1} \frac{1}{\sqrt{n}} z^n$ égal à 1. Par comparaison, R=1.

5. $\sum_{n>0} (2^n - 3^n) z^n$

On a : $|2^n - 3^n| \underset{n \to +\infty}{\sim} 3^n$. Le rayon de convergence de la série $\sum_{n \ge 0} 3^n z^n$ est $\frac{1}{3}$ (c'est une

série géométrique qui converge absolument si |3z|<1 et diverge si |3z|>1)

Par comparaison, $R = \frac{1}{3}$.

Spé PT B Page 1 sur 4

EXERCICE 2

Déterminer les rayons de convergence, notés R, et les sommes des séries entières suivantes :

1.
$$\sum_{n>0} 2^n z^n$$

Pour $z \in \mathbb{C}^*$, $\sum_{n \geq 0} 2^n z^n$ est une série géométrique, qui converge absolument si |2z| < 1, et

diverge si |2z| > 1. On a donc $R = \frac{1}{2}$.

Pour tout $z \in \mathbb{C}$, tel que $|z| < \frac{1}{2}$, on a : $\sum_{n=0}^{+\infty} 2^n z^n = \frac{1}{1-2z}$.

2.
$$\sum_{n>0} \frac{2n+1}{n!} z^n$$

On a : $\frac{2n+3}{(n+1)!} \times \frac{n!}{2n+1} \sim \frac{1}{n \to +\infty} \frac{1}{n}$. Le critère de d'Alembert donne donc $R = +\infty$.

Soit
$$p \in \mathbb{N}$$
. $\forall z \in \mathbb{C}$, $\sum_{n=0}^{p} \frac{2n+1}{n!} z^n = \sum_{n=1}^{p} \frac{2z^n}{(n-1)!} + \sum_{n=0}^{p} \frac{z^n}{n!} = 2z \sum_{n=0}^{p-1} \frac{z^n}{n!} + \sum_{n=0}^{p} \frac{z^n}{n!}$.

Sachant que pour tout $z \in \mathbb{C}$, $\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z$, on obtient, par passage à la limite :

$$(p \to +\infty) \ \forall z \in \mathbb{C}, \sum_{n=0}^{+\infty} \frac{2n+1}{n!} z^n = e^z (2z+1).$$

Spé PT B

CB n°4 - Séries entières - Sujet 2

EXERCICE 1

Déterminer les rayons de convergence des séries entières suivantes :

1.
$$\sum_{n \geq 2} \frac{n}{\ln n} z^n$$

On a : $\frac{n+1}{\ln(n+1)} \times \frac{\ln n}{n} \sim 1$. D'après le critère de d'Alembert, on a donc R=1.

2.
$$\sum_{n \ge 0} \cos\left(\frac{\pi}{2}n\right) z^n$$

On a :
$$\forall n \in \mathbb{N}, \left|\cos\left(\frac{\pi}{2}n\right)\right| \le 1.$$

Le rayon de convergence de la série $\sum z^n$ étant 1, par comparaison : $R \ge 1$.

De plus, la série $\sum_{n \ge 0} \cos\left(\frac{\pi}{2}n\right)$ est grossièrement divergente, donc $R \le 1$.

En conclusion, R = 1.

3.
$$\sum_{n>0} n^2 z^{2n}$$

On a :
$$\forall n \geq 1, \forall z \in \mathbb{C}^*, \left| \frac{(n+1)^2 z^{2n+2}}{n^2 z^{2n}} \right| \underset{n \to +\infty}{\sim} |z^2|.$$

Le critère de d'Alembert (pour les séries numériques), donne $\sum_{n\geq 0} n^2 z^{2n}$ absolument conver-

gente si $|z^2| < 1$ (c'est-à-dire |z| < 1, donc $R \ge 1$), et $\sum_{n \ge 0} n^2 z^{2n}$ non absolument conver-

gente si $|z^2| > 1$ (c'est-à-dire |z| > 1, donc $R \le 1$). Finalement, R = 1.

4.
$$\sum_{n>0} e^{\sqrt{n}} z^n$$

La série $\sum_{n\geq 0} e^{\sqrt{n}}$ est grossièrement divergente, donc $R\leq 1$.

Soit $r \in]0,1[$. $e^{\sqrt{n}}r^n = e^{n\left(\ln r + \frac{1}{\sqrt{n}}\right)} \xrightarrow[n \to +\infty]{} 0$ (car $\ln r < 0$). Donc la suite $\left(e^{\sqrt{n}}r^n\right)$ est bornée. On en déduit que $R \ge 1$.

En conclusion, R = 1.

5.
$$\sum_{n>2} \left((-1)^n + \frac{1}{2^n} \right) z^n$$

On a : $\left| (-1)^n + \frac{1}{2^n} \right| \underset{n \to +\infty}{\sim} 1$. Donc, par comparaison, R = 1.

Spé PT B Page 3 sur 4

EXERCICE 2

Déterminer les rayons de convergence et les sommes des séries entières suivantes :

1.
$$\sum_{n>0} 3^n z^n$$

Pour $z \in \mathbb{C}^*$, $\sum_{n \geq 0} 3^n z^n$ est une série géométrique, qui converge absolument si |3z| < 1, et

diverge si |3z| > 1. On a donc $R = \frac{1}{3}$.

Pour tout $z \in \mathbb{C}$, tel que $|z| < \frac{1}{3}$, on a : $\sum_{n=0}^{+\infty} 3^n z^n = \frac{1}{1-3z}$.

2.
$$\sum_{n>0} \frac{3n-1}{n!} z^n$$

On a : $\frac{3n+2}{(n+1)!} \times \frac{n!}{3n-1} \sim \frac{1}{n \to +\infty} \frac{1}{n}$. Le critère de d'Alembert donne donc $R = +\infty$.

Soit
$$p \in \mathbb{N}$$
. $\forall z \in \mathbb{C}$, $\sum_{n=0}^{p} \frac{3n-1}{n!} z^n = \sum_{n=1}^{p} \frac{3z^n}{(n-1)!} - \sum_{n=0}^{p} \frac{z^n}{n!} = 3z \sum_{n=0}^{p-1} \frac{z^n}{n!} - \sum_{n=0}^{p} \frac{z^n}{n!}$.

Sachant que pour tout $z \in \mathbb{C}$, $\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z$, on obtient, par passage à la limite :

$$(p \to +\infty) \ \forall z \in \mathbb{C}, \sum_{n=0}^{+\infty} \frac{3n-1}{n!} z^n = e^z (3z-1).$$

Spé PT B