

HCC/HCF4099B

8-BIT ADDRESSABLE LATCH

- SERIAL DATA INPUT ACTIVE PARALLEL OUTPUT
- STORAGE REGISTER CAPABILITY MASTER CLEAR
- CAN FUNCTION AS DEMULTIPLEXER
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4099B** (extended temperature range) and HCF4099B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF4099B 8-bit addressable latch is a serial-input, parallel-output storage register that can perform a variety of functions. Data are inputted to a particular bit in the latch when that bit is addressed (by means of inputs A0, A1, A2) and when WRITE DISABLE is at a low level. When WRITE DISABLE is high, data entry is inhibited; however, all 8 outputs can be continuously read independent of WRITE DISABLE and address inputs. A master RESET input is available, which resets all bits to a logic "0" level when RESET and WRITE DISABLE are at a high level. When RESET is at a high level, and WRITE DISABLE is at a low level, the latch acts as a 1-of-8 demultiplexer; the bit that is addressed has an active output which follows the data input, while all unaddressed bits are held to a logic "0" level.

September 1988 1/14

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
-1_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T _{op} = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

* All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	> >
Vı	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C ℃

LOGIC DIAGRAM

ALL INPUTS ARE PROTECTED BY COS! MOS PROTECTION NETWORK

Definition of WRITE DIABLE ON Time

	Mode Selection							
Types	WD R		Addressed Latch	Unaddressed Latch				
А	0	0	Follows Data	Holds Previous State				
В	0	1	Follows Data (active high demulti					
С	1	0	Holds Previous State					
D	1	1	Reset to "0"	Reset to "0"				

WD = WRITE DISABLE R = RESET

Master Timing Diagram

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	S	Value							
Symbol	Parame	ter	٧ı	٧o	I ₀	V_{DD}	ΤL	o w*		25°C		T _{Hi}	gh [*]	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		Types	0/15			15		80		0.04	80		600	
V _{OH}	Output Higl	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	ı	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	нсс	0/ 5	4.6		5	- 0.64 - 0.51 - 1 - 0.36	- 0.36]				
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		ША
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	1,7,000	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4		5	0.52		0.44	1		0.36		ША
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		.,,,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types		0/18	Anv In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μА
	Current	HCF Types	0/15	y 111	Any Input _			± 0.3		±10 ⁻⁵			± 1	F
C_{I}	Input Capa	citance		Any In	put					5	7.5			pF

^{*} T_{LOW} = - 55°C for HCC device : - 40°C for HCF device. * T_{HIGH} = + 125°C for HCC device : + 85°C for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5V min. with V_{DD} = 15V,

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall times = 20ns)

			Test Conditions					
Symbol	Par	ameter	(see master timing diagram)	V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH} , t _{PHL}	Propagation	Data to Output		5		200	400	
	Delay Time		(1)	10		75	150	
				15		50	100	
		Write Disable to		5		200	400	
		Output	(2)	10		80	160	
				15		60	120	ns
		Address to		5		225	450	113
		Output	(9)	10		100	200	
				15		75	150	
t _{PHL}	Propagation	Reset to Output	(3)	5		175	350	
	Delay Time			10		80	160	
				15		65	130	
t_{THL}, t_{TLH}	Transition Any Output Time	Any Output		5		100	200	
				10		50	100	ns
				15		40	80	
tw	Pulse Width	Data		5	200	100		
			(4)	10	100	50		
				15	80	40		
		Address		5	400	200		
			(8)	10	200	100		ns
				15	125	65		
		Reset		5	150	75		
			(5)	10	75	40		
				15	50	25		
t _{setup}	Setup Time	Data to Write		5	100	50		
	Disable	(6)	10	50	25		ns	
				15	35	20		
t _{hold}	Hold Time	Data to Write		5	150	75		ns
		Disable	(7)	10	75	40		
				15	50	25		

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Typical Propagation Delay Time (data to Qn) vs. Load Capacitance.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

Typical Dynamic power Dissipation vs. Address Cycle Time.

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L,	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch			
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.2	0.004		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S			8° (max.)			

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

