8. hét, 2020. április 6.

Analízis I. Előadás

Tartalom

a) Műveletek sorokkal

b) A valós számok p-adikus tört alakban való előállítása

c) Sorok zárójelezése

Műveletek sorokkal

Sorok összeadása és konstanssal való szorzása

Emlékeztető: a sorok speciálisan generált sorozatok.

Nem a definíció a kérdés, hanem a "sor terminológiában" a jelentése, értelmezése.

- a) Konstanssal való szorzás: Legyen $a:\mathbb{N}\to\mathbb{R}$ és $c\in\mathbb{R}$. Ekkor $\sum a=(s_n)$, ahol $s_n=\sum_{k=0}^n a_k$. Következésképpen $c\cdot\sum a=c\cdot(s_n)=(c\cdot s_n)$. Mivel $c\cdot s_n=\sum_{k=0}^n c\cdot a_k$, ezért $\sum (c\cdot a_k)=c\cdot\sum (a_k)$ és $\sum_{k=0}^\infty c\cdot a_k=c\cdot\sum_{k=0}^\infty a_k$ Azt kaptuk, hogy egy sor konstans szorosa a generáló sorozat konstanszoroza álta generált sor.
- b) Sorok összege: Legyen $a: \mathbb{N} \to \mathbb{R}$ és $b: \mathbb{N} \to \mathbb{R}$, továbbá $s_n = \sum_{k=0}^n a_k$ és $\sigma_n = \sum_{k=0}^n b_k$. Ekkor $\sum a + \sum b = (s_n) + (\sigma_n) = (s_n + \sigma_n)$. Mivel $s_n + \sigma_n = \sum_{k=0}^n (a_k + b + k)$, ezért $\sum a + \sum b = \sum (a + b)$ és $\sum_{k=0}^\infty (a_k + b_k) = \sum_{k=0}^\infty a_k + \sum_{k=0}^\infty b_k$. Sorok összege a generáló sorozatok összege által által generált sor.
- c) Szorzás: KÉSŐBB!!!

p-adikus törtek

Legyen $p \in \mathbb{N}, \ p \geq 2$. Egy $a: \mathbb{N} \to \{0, \dots, p-1\}$ sorozat esetén tekintsük az általa indukált $\sum \left(\frac{a_k}{p^{k+1}}\right)$ sort.

A sor konvergenciájának igazolásához vegyük először a $\sum \left(\frac{p-1}{p^{k+1}}\right)$ sort.

$$\text{Mivel } s_n = \sum_{k=0}^n \frac{p-1}{p^{k+1}} = \frac{p-1}{p} \cdot \sum_{k=0}^n \left(\frac{1}{p}\right)^k, \, \text{exert}$$

$$\sum_{k=0}^{\infty} \frac{p-1}{p^{k+1}} = \lim_{n \to \infty} s_n = \frac{p-1}{p} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{p}\right)^k = \frac{p-1}{p} \cdot \frac{1}{1-\frac{1}{p}} = \frac{p-1}{p} \cdot \frac{p}{p-1} = 1.$$

Innen $0 \le a_k \le p-1$ miatt a pozitív sorokra vonatkozó összehasonlító kritériumból következik, hogy a $\sum \left(\frac{a_k}{p^{k+1}}\right)$ sor konvergens, és $0 \le \sum_{k=0}^{\infty} \frac{a_k}{p^{k+1}} \le 1$.

Legyen $x=\sum_{k=0}^{\infty}\frac{a_k}{p^{k+1}}$. Ekkor a $\sum\left(\frac{a_k}{p^{k+1}}\right)$ sort az x szám p-adikus tört alakjának nevezzük.

Az x szám p-adikus tört előállításának szokásos jelölése

$$x = 0, a_0 a_1 a_2 \cdots =: \sum_{k=0}^{\infty} \frac{a_k}{p^{k+1}}$$

Az alábbi állítást igazoltuk

Állítás

Legyen $p \in \mathbb{N}$, $p \ge 2$. Ekkor minden

$$0, a_0 a_1 \dots (a_k \in \{0, \dots, p-1\}, k \in \mathbb{N})$$

p-adikus tört esetén esetén
$$\exists \sum_{k=0}^{\infty} \frac{a_k}{p^{k+1}} = x \in [0,1].$$

Példák

1)
$$p = 10$$
. $a_0 = 5$, $a_1 = 3$, $a_k = 0$ $(k \ge 2)$. $x = \frac{5}{10} + \frac{3}{10^2}$.

Tizedes tört alak:
$$\frac{53}{100} = 0,530...$$

2)
$$p = 10$$
. $a_k = 1$ $(k \ge 1)$.

$$x = \sum_{k=1}^{\infty} \frac{1}{10^{k+1}} = \frac{1}{10} \sum_{k=0}^{\infty} \frac{1}{10^k} = \frac{1}{10} \cdot \frac{1}{1 - \frac{1}{1}} = \frac{1}{9}.$$

Tizedes tört alak:
$$\frac{1}{9} = 0, 1 \dots$$

Példák, folytatás

3)
$$p = 2$$
. $a_0 = 0$, $a_k = 1$ $(k \ge 1)$.

$$x = \sum_{k=1}^{\infty} \frac{1}{2^{k+1}} = \frac{1}{4} \sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{4} \cdot \frac{1}{1 - \frac{1}{1}} = \frac{1}{2}.$$

2-edes tört alak, diadikus tört alak: $\frac{1}{2} = 0, 1 \dots$

4) Hasonlóan.
$$p = 10$$
. $a_0 = 0$, $a_k = 9$ $(k > 1)$.

$$x = \sum_{k=1}^{\infty} \frac{9}{10^{k+1}} = \frac{9}{100} \sum_{k=0}^{\infty} \frac{1}{10^k} = \frac{9}{100} \cdot \frac{1}{1 - \frac{1}{1}} = \frac{1}{10}.$$

Tizedes tört alak: $\frac{1}{10} = 0,09...$

Felmerülő kérdések

- i) Előllítható-e minden $x \in [0, 1]$ szám p-adikus tört alakban?
- ii) Ha egy $x \in [0,1]$ szám előállítható p-adikus tört alakban, akkor ez hányféleképpen tehető meg? Egyértelmű-e? Ez utóbbi nyilván nem igaz, mert pl.

$$0, 10... = \frac{1}{10} = 0, 09..., p = 10.$$

Tétel

Legyen $p\in\mathbb{N},\,p\geq 2$. Minden $x\in[0,1]$ szám előállítható p-adikus tört alakban, azaz

$$\exists \ a: \mathbb{N} \to \{0, ..., p-1\}, \text{ amelyre } x = \sum_{k=0}^{\infty} \frac{a_k}{p^{k+1}}.$$

Bizonyítás

Legyen $p \in \mathbb{N}$, $p \ge 2$, és $x \in [0,1)$. Ekkor

$$x \in [0,1) = \bigcup_{k=0}^{p-1} \left[\frac{k}{p}, \frac{k+1}{p} \right) \implies \exists | a_0 \in \{0,...,p-1\}, \ x \in \left[\frac{a_0}{p}, \frac{a_0+1}{p} \right),$$

azaz $\frac{a_0}{p} \le x < \frac{a_0 + 1}{p}$. Ezt folytatva

$$x \in \left[\frac{a_0}{p}, \frac{a_0 + 1}{p}\right) = \bigcup_{k=0}^{p-1} \left[\frac{a_0}{p} + \frac{k}{p^2}, \frac{a_0}{p} + \frac{k+1}{p^2}\right)$$

$$\exists | \ a_1 \in \{0, \ldots, p-1\}, \ x \in \left[\frac{a_0}{p} + \frac{a_1}{p^2}, \frac{a_0}{p} + \frac{a_1+1}{p^2}\right),$$

$$azaz \frac{a_0}{p} + \frac{a_1}{p^2} \le x < \frac{a_0}{p} + \frac{a_1 + 1}{p^2}.$$

Folytatás

Indukcióval: Ha valamely $k \in \mathbb{N}, \ k \ge 1$ -re $\sum_{j=0}^k \frac{a_j}{p^{j+1}} \le x < \sum_{j=0}^{k-1} \frac{a_j}{p^{k+1}} + \frac{a_k+1}{p^{k+1}}$ akkor

$$x \in \left[\sum_{j=0}^{k} \frac{a_{j}}{\rho^{j+1}}, \sum_{j=0}^{k-1} \frac{a_{j}}{\rho^{j+1}} + \frac{a_{k}+1}{\rho^{k+1}}\right] = \bigcup_{j=0}^{k-1} \left[\sum_{j=0}^{n} \frac{a_{j}}{\rho^{k+1}} + \frac{j}{\rho^{k+2}}, \sum_{j=0}^{n} \frac{a_{j}}{\rho^{j+1}} + \frac{j+1}{\rho^{k+2}}\right]$$

$$\exists | a_{k+1} \in \{0, ..., p-1\}, \ x \in \left[\sum_{i=0}^k \frac{a_j}{p^{i+1}} + \frac{a_{k+1}}{p^{k+2}}, \sum_{i=0}^k \frac{a_j}{p^{i+1}} + \frac{a_{k+1}+1}{p^{k+2}}\right),$$

azaz
$$\sum_{i=0}^{k+1} \frac{a_j}{p^{j+1}} \le x < \sum_{i=0}^{k+1} \frac{a_j}{p^{j+1}} + \frac{1}{p^{k+2}}$$
.

Ha az (a_k) sorozat tagjait így definiáljuk, akkor egy olyan sorozatot kapunk, amelyre

$$s_n = \sum_{k=0}^n \frac{a_k}{p^{k+1}} \le x < \sum_{k=0}^n \frac{a_k}{p^{k+1}} + \frac{1}{p^{n+1}},$$

Mivel $0 \le x - s_n < \frac{1}{p^{n+1}}$, és $\lim_{n \to \infty} \frac{1}{p^{n+1}} = \frac{1}{+\infty} = 0$, ezért $(x - s_n)$ nullsorozat,

azaz
$$x = \sum_{k=0}^{\infty} \frac{a_k}{p^{k+1}}$$
.

Ezzel igazoltuk, hogy $\forall x \in [0,1)$ szám felírható *p*-adikus tört alakban.

Egyértelműség

Láttuk, hogy vannak olyan számok amelyekne több különböző p-adikus tört előállításuk is van.

- a) Melyek ezek a számok?
- b) Hány különböző p-adikus tört alakjuk van?
- c) Mi a kapcsolat a különböző alakok között?

Tétel

Legyen $p \in \mathbb{N}$, $p \geq 2$. Két különböző $a : \mathbb{N} \to \{0, \dots, p-1\}$, $b : \mathbb{N} \to \{0, \dots, p-1\}$ sorozat esetén $\sum_{k=0}^{\infty} \frac{a_n}{p^{k+1}} = \sum_{k=0}^{\infty} \frac{b_n}{p^{k+1}}$ akkor és csak akkor, ha $\exists \ N \in \mathbb{N}$, amelyre

- i) $a_N \neq 0, a_n = 0 \ (n \in \mathbb{N}, n > N),$
- ii) $a_k = b_k \ (k < N), b_N = a_N 1, b_n = p 1 \ (n \in \mathbb{N}, n > N),$ vagy fordítva.

Más jelölésekkel

Két p-adikus összeg akkor és csak akkor egyenlő, ha

$$a = a_0, ..., a_{N-1}, a_N, 0, ..., b = a_0, ..., a_{N-1}, a_N - 1, p - 1, ...$$

alakú, vagy fordítva.

$$\frac{a_0}{\rho} + \ldots + \frac{a_{N-1}}{\rho^N} + \frac{a_N}{\rho^{N+1}} = \frac{a_0}{\rho} + \ldots + \frac{a_{N-1}}{\rho^N} + \frac{a_{N-1}}{\rho^{N+1}} + \frac{\rho-1}{\rho^{N+2}} + \frac{\rho-1}{\rho^{N+3}} + \frac{\rho-1}{\rho^{N+4}} + \ldots$$

Példák

- a) p = 10.0, 2654 = 0, 2653999...
- **b)** p = 10.0, 9 = 0,8999...
- c) p = 2.0,001011 = 0,001010111...

Megjegyzés

- a) Ha $x = \sum_{k=0}^{\infty} \frac{a_k}{p^{k+1}}$, akkor az (a_k) sorozat tagjait az x szám p-adikus számjegyeinek nevezzük.
- b) Azokat a számokat, amelyeknek van olyan p-adikus tört alakja, amiben a számjegyek sorozata egy index után csupa 0 számjegyből áll, p-adikusan racionális számoknak nevezzük.
- c) Megszámlálatóan végtelen sok p-adikusan racionális szám van.

Összefoglalás

- a) A p-adikusan irracionális számoknak egy és csak egy p-adikus tört alakjuk van.
- b) A megszámlálhatóan sok p-adikusan racionális számoknak pontosan két p-adikus tört alakjuk van. Az egyikben a számjegyek egy index után mind 0-val, a másikban pedig p – 1-gyel egyenlőek.

A tétel bizonyítása

Legyen $p \in \mathbb{N}$, $p \ge 2$, $a : \mathbb{N} \to \{0, \dots, p-1\}$, $b : \mathbb{N} \to \{0, \dots, p-1\}$, $a \ne b$. Jelölje $N \in \mathbb{N}$ azt a legkisebb indexet, amelyre $a_N \ne b_N$. Feltehetjük, hogy $a_N > b_N$. Ekkor

$$\sum_{k=0}^{\infty} \frac{a_k}{p^{k+1}} = \sum_{k=0}^{N-1} \frac{a_k}{p^{k+1}} + \frac{a_N}{p^{N+1}} + \sum_{k=N+1}^{\infty} \frac{a_k}{p^{k+1}} \ge \sum_{k=0}^{N-1} \frac{a_k}{p^{k+1}} + \frac{a_N}{p^{N+1}} \; .$$

Egyenlőség akkor és csak akkor van, $a_k = 0 \ (k > N)$.

$$\begin{split} \sum_{k=0}^{\infty} \frac{b_k}{p^{k+1}} &= \sum_{k=0}^{N-1} \frac{b_k}{p^{k+1}} + \frac{b_N}{p^{N+1}} + \sum_{k=N}^{\infty} \frac{b_k}{p^{k+1}} \le \sum_{k=0}^{N-1} \frac{a_k}{p^{k+1}} + \frac{a_N - 1}{p^{N+1}} + \sum_{k=N+1}^{\infty} \frac{p - 1}{p^{k+1}} \\ &= \sum_{k=0}^{N-1} \frac{a_k}{p^{k+1}} + \frac{a_N - 1}{p^{N+1}} + (p - 1) \frac{1}{p^{N+2}} \frac{1}{1 - \frac{1}{p}} \\ &= \sum_{k=0}^{N-1} \frac{a_k}{p^{k+1}} + \frac{a_N - 1}{p^{N+1}} + \frac{1}{p^{N+1}} = \sum_{k=0}^{N-1} \frac{a_k}{p^{k+1}} + \frac{a_N}{p^{N+1}} \; . \end{split}$$

Egyenlőség akkor és csak akkor van, ha $b_N = a_N - 1$ és $b_k = p - 1$ (k > N).

Azt kaptuk, hogy $a \ge \sum_{k=1}^{N-1} \frac{a_k}{p^{k+1}} + \frac{a_N}{p^{N+1}} \ge b$, és egyenlőség akkor csak akkor van, ha

$$a_k = 0 \quad (k > N), \qquad b_N = a_N - 1, \qquad b_k = p - 1 \quad (k > N). \quad \Box$$

Műveleti tulajdonságok: kommutativitás, asszociativitás Asszociativitás

Sorok zárójelezése

Az asszociativitás kérdése végtelen sorokra.

Átvihetők-e a véges összegekre ismert műveleti tulajdonságok végtelen összegekre?

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + \ldots + a_9 = (a_1 + a_2) + (a_3 + a_4 + a_5) + (a_6 + \ldots + a_9)$$

Sorok zárójelezése

Legyen $m: \mathbb{N} \to \mathbb{N} \uparrow$, valamint $a: \mathbb{R} \to \mathbb{N}$.

Képezzük az $\alpha:\mathbb{N}\to\mathbb{N}$ sorozatot a következőképpen

$$\alpha_0 = a_0 + \ldots + a_{m_0}, \quad \alpha_k = a_{m_{k-1}+1} + \ldots + a_{m_k} \quad (k \in \mathbb{N}, k \ge 1).$$

Ekkor a $\sum (\alpha_k)$ sort a $\sum (a_k)$ sor egy zárójelezésének nevezzük. Az (m_k) sorozatot a $\sum (\alpha_k)$ sor zárójel sorozatának nevezzük.

Tétel

Ha egy sor konvergens, akkor bármely zárójelezése is konvergens, és a zárójelezett sor összege megegyezik az eredeti sor összegével.

Bizonyítás

Legyen a $\sum (a_k)$ egy konvergens sor, $\sum (\alpha_k)$ sor egy zárójelezése, aminek a zárójel sorozata (m_k) .

A definíció alapján

$$\sigma_n = \sum_{k=0}^n \alpha_k$$

$$= (a_0 + \ldots + a_{m_0}) + (a_{m_0+1} + \ldots + a_{m_1}) + \ldots + (a_{m_{n-1}+1} + \ldots + a_{m_n})$$

$$= a_0 + \ldots + a_{m_n}$$

$$= s_{m_n}.$$

Ez azt jelenti, hogy a zárójelezett sor (σ_n) részletösszegsorozata az eredeti sor (s_n) sorozatának az (s_{m_n}) részsorozata.

Következésképpen $\exists \lim_{n\to\infty} \sigma_n = \lim_{n\to\infty} s_{m_n} = \lim_{n\to\infty} s_n$, azaz

$$\sum_{k=0}^{\infty} \alpha_{k} = \sum_{k=0}^{\infty} a_{k}.$$

lgaz-e az előző tétel megfordítása

Következik-e a zárójelezett sor konvergenciájából az eredeti sor konvergenciája?

Válasz: általában nem.

Példa:
$$a_k = (-1)^k$$
, $m_k = 2k$, $\alpha_0 = 1$, $\alpha_k = a_{2(k-1)+1} + a_{2k} = -1 + 1 = 0$ $(k \in \mathbb{N})$.

Ekkor
$$\sum ((-1)^k)$$
 divergens, de $\sum (\alpha_k)$ konvergens, $\sum_{k=0}^{\infty} \alpha_k = 1$.

Tétel

Legven $a: \mathbb{N} \to \mathbb{R}$. $m: \mathbb{N} \to \mathbb{N} \uparrow$.

Ha az m zárójelezéssel definiált zárojelezett sor konvergens, és

- i) $(m_{k+1} m_k)$ korlátos sorozat, valamint
- ii) $\exists \lim_{k\to\infty} a_k = 0$,

akkor a $\sum (a_k)$ sor konvergens.

Megjegyzés

sor összegével.

Az i) feltétel azt jelenti, hogy a zárójelek hossza közös korlát alatt marad.

Az ii) feltételről tudjuk, hogy az a sor konvergencájának szükséges feltétele. A fenti példa mutatja, hogy ezt a zárójelezett sor konvergencája önmagában nem garantálja. Az előző tételbő következík, hogy az eredeti sor összege megegyezik a zárójelezett

Bizonyítás

Jelölje $\sum (\alpha_k)$ a konvergens zárojelezett sort (Emlékeztető: $\alpha_0 = a_0 + \ldots + a_{m_0}$, $\alpha_k = a_{m_{n-1}+1} + \ldots + a_{m_n}$), A a sor összegét, σ_n pedig ez n-edik részletösszegét. Legyen $\epsilon > 0$.

- * Ekkor $\exists N \in \mathbb{N}_1$, hogy $\forall n > N_1$ esetén $|\sigma_n A| < \epsilon$.
- ** Az i) feltétel szerint van olyan $K \in \mathbb{N}$ szám, hogy $m_{k+1} m_k < K \ \forall \ k \in \mathbb{N}$.
- *** Másrészt az ii) feltétel szerint (a_k) nullsorozat, azaz $\exists N_2 \in \mathbb{N}$, hogy $\forall k > M | a_k | < \epsilon$.

Ezek után legyen $N:=\max\{m_{N_1},N_2\}$. Világos, hogy $\forall\in\mathbb{N}$ esetén van olyan $\ell\in\mathbb{N}$, hogy $m_{\ell-1}+1\leq n\leq m_\ell$.

Ha n>N, akkor az n-et tartalmazó $m_{\ell-1}+1\leq k\leq m_\ell$ intervallum jobb végpontjára is igaz, hogy $m_\ell>N$, amiből az N definíciója szerint következik, hogy $\ell>N_1$. Ekkor

$$|A - s_n| \leq |A - \sigma_\ell| + |\sigma_\ell - s_n|$$
.

Mivel $\ell > N_1$, ezért * szerint $|, |A - \sigma_\ell| < \epsilon$. Mivel $\ell > N_1$, ezért * szerint $||A - \sigma_\ell| < \epsilon$.

Mivel $n > N_2$, ezért ** és *** alapján

$$\begin{aligned} |\sigma_{\ell} - s_n| &= |a_{n+1} + \ldots + a_{m_{\ell}}| \le |a_{n+1}| + \ldots + |a_{m_{\ell}}| \\ &< (m_{\ell} - n + 1)\epsilon \le (m_{\ell} - m_{\ell-1})\epsilon \le K\epsilon \,. \end{aligned}$$

Összefoglalva: $|A - s_n| < (K + 1)\epsilon$. Ezzel az állítást bebizonyítottuk.