A function $f: A \rightarrow B$ is called **injective**, iff for any $x_1, x_2 \in A$ there holds

$$f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$$

The **injectivity** of a function depends on the mapping rule and on the domain of definition.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

A function $f: A \rightarrow B$ is called **surjective**, iff for any $y \in B$ there exists a $x \in A$ such that f(x) = y.

Equivalently, iff f(A) = B,

Surjectivity

f(A) being the range of values, B the target area.

S.-J. Kimmerle

Functions that are injective and surjective are called bijective.

Thus, for a bijective function

$$f: A \to B, \quad x \mapsto f(x)$$

there exists for any $y \in B$ exactly one $x \in A$ with f(x) = y.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Hence there exists a mapping

$$f^{-1}: B \to A, \quad y \mapsto f^{-1}(y)$$

with
$$f^{-1}(f(x)) = x$$
 for any $x \in A$ and with $f(f^{-1}(y)) = y$ for any $y \in B$.

 f^{-1} is called the **inverse mapping** or **inverse function** or **inverse** of f.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

For any subset A we may define the function

$$Id_A: A \rightarrow A, \quad x \mapsto x,$$

called the **identity on** A.

Two mappings

$$f: A \to B, \quad x \mapsto f(x),$$

$$g: C \to D, \quad z \mapsto g(z)$$

are called identical, iff

- \bullet A=C,
- \bullet B=D, and
- f(x) = g(x) for all $x \in A$.

Then we write f = g.

$$f \equiv$$

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

Let $f: A \to B, x \mapsto f(x)$.

By restricting the domain A to a subset $C \subseteq A$, we obtain the **restriction** of f to C:

$$f|_C: C \to B, \quad x \mapsto f(x).$$

Special (number) sets:

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

N

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$$

natural numbers incl. zero

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3 \ldots\}$$

integers (whole numbers?)

$$\mathbb{Q} = \left\{ \frac{p}{q} \, \middle| \, p, q \in \mathbb{Z}, q \neq 0 \right\}$$

rational numbers

real numbers

 $\mathbb{C} \approx \mathbb{R}^2$ with "special structure" complex numbers

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Number line

Analysis 1

S.-J. Kimmerle

Every point of the number line corresponds to a real number:

 $\pi \approx 3.14..., e = exp(1) \approx 2.74... \in \mathbb{R}$ $\pi \approx 3.14... \notin \emptyset$

Claim: TE & Q but TE & R

Proof: suppose $\sqrt{2} \in \mathbb{Q} = 7$ $\sqrt{2} = \frac{1}{9}$, $pq \in \mathbb{Z}$

w.l.o.g. p md q do not have a

common divisor (pand q are coprime)

$$\sqrt{2} = \frac{1}{9} = \frac{1}{2} = \frac{1}{2}$$

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Order of the real numbers

Analysis 1

S.-J. Kimmerle

The real numbers are ordered completely by the order relation ≥:

For all $x, y \in \mathbb{R}$ there holds:

$$x \ge y :\Leftrightarrow (x - y) \ge 0$$

Anonlogously:

Alternatively, for all $x, y \in \mathbb{R}$ there holds:

$$x > y :\Leftrightarrow (x - y) > 0$$

The comparability of real numbers is called the **order** of the real numbers.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Numbers - overview

Analysis 1

S.-J. Kimmerle

There holds:

 $\mathbb{N}\subset\mathbb{N}_0\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Field axioms 1

e.g. F= R

S.-J. Kimmerle

Analysis 1

Definition (Field)

=10;13

A non-empty set requipped with 2 operations that are closed (F0)

is called a field, supposed the following conditions (F1) – (F5) hold:

(F1) For all $a, b \in \mathbb{F}$ we have the **commutative laws** $a \oplus b = b \oplus a$, $a \otimes b = b \otimes a$.

(F2) For all $a, b, c \in \mathbb{F}$ we have the **associative laws** $(a \oplus b) \oplus c = a \oplus (b \oplus c), \quad (a \otimes b) \otimes c = a \otimes (b \otimes c).$

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

. . .

Definition (Field (continued))

(F3) For all $a \in \mathbb{F}$ there exists a **neutral element w.r.t.** \oplus , $e_{\oplus} \in \mathbb{F}$, such that $a \oplus e_{\oplus} = a$

and for all $a \in \mathbb{F} \setminus e_{\oplus}$ there exists a **neutral element** w.r.t. \otimes , $e_{\otimes} \in \mathbb{F}$, such that

$$a \otimes e_{\otimes} = a$$
.

(F4) For all $a \in \mathbb{F}$ there exists an **inverse element w.r.t.** \oplus , $a_{\oplus}^{-1} \in \mathbb{F}$, such that $a \oplus a_{\oplus}^{-1} = e_{\oplus}$

and for all $a \in \mathbb{F} \setminus e_{\oplus}$ there exists an **inverse element** w.r.t. \otimes , $a_{\otimes}^{-1} \in \mathbb{F}$, such that

$$a\otimes a_{\otimes}^{-1}=e_{\otimes}.$$

(F5) For all $a, b, c \in \mathbb{F}$ there holds the **distributive law** $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Definition (Ordered fields)

If \mathbb{F} is a field and if some elements of \mathbb{F} are designated as positive, then \mathbb{F} is called ordered if:

- (A1) For all $a \in \mathbb{F}$ there holds exactly one of the following relations
 - a is positive,
 - $a = e_{\oplus}$ (is neutral), or
 - a_{\oplus}^{-1} is positive.
- (A2) For all $a, b \in \mathbb{F}$ positive this implies $a \oplus b$ is positive.
- (A3) For all $a, b \in \mathbb{F}$ positive this implies $a \otimes b$ is positive.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Definition (Archimidean ordered fields)

Let \mathbb{F} be an ordered field.

F is called an Archimidean ordered field, if in addition holds:

(AR) For any 2 positive $a, b \in \mathbb{F}$ there exists an $n \in \mathbb{N}$ such that:

 $a \oplus a \oplus ... \oplus a \oplus b_{\oplus}^{-1}$ is positive.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

S.-J. Kimmerle

- Both neutral elements, e_{\oplus} and e_{\otimes} , are unique.
- In (F4) the neutral element w.r.t. ⊕ has to be excluded.

There exists no inverse element for e_{\oplus} w.r.t. \otimes .

• If we set $e_{\oplus} = e_{\otimes}$, then there would hold for all $a \in \mathbb{F}$

$$a\otimes e_{\scriptscriptstyle\oplus}=e_{\scriptscriptstyle\ominus}=e_{\scriptscriptstyle\otimes}=a\otimes e_{\scriptscriptstyle\otimes}=a,$$

i.e. $a = e_{\otimes}$ and thus $\mathbb{F} = \{e_{\otimes}\}.$

• Both inverse elements, a_{\oplus}^{-1} and a_{\otimes}^{-1} , are uniquely defined.

Introduction

Basics (sets, mappings, and numbers)

Sets

Mappings

Numbers

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

