随机变量及其分布

Didnelpsun

目录

1	分布	分 布概念													1							
	1.1	分布函	数存在性																			1
	1.2	分布函	数计算 .																			1
	1.3	概率密	度存在性																		•	2
	1.4	概率密	度计算.									-									•	2
2	一维	-维随机变量																2				
	2.1	1 一维随机变量分布															2					
		2.1.1	二项分布																			2
		2.1.2	泊松分布	·																		3
		2.1.3	几何分布														 •					3
		2.1.4	均匀分布														 •					4
		2.1.5	指数分布	·																		5
		2.1.6	正态分布																			5
	2.2	一维随	机变量函	数分布	. 订							•			•							6
3	二维	二维随机变量														6						
	3.1	5.1 二维离散型随机变量													6							
	3.2	二维连	续型随机	变量																		6
		3.2.1	联合概率																			6
			3.2.1.1	联合	既率	密	度															6
			3.2.1.2	联合	既率	区函	数															7
		3.2.2	边缘概率																		•	7
			3.2.2.1	边缘	既室	区区	数													_		7

		3.2.2.2	边缘概率密度	 	 					8
	3.2.3	二维均久	分布	 	 					8
	3.2.4	二维正态	分布	 	 					8
		3.2.4.1	正态分布性质	 	 					8
		3.2.4.2	标准正态化	 	 					9
3.3	二维随	机变量函	数分布	 	 					9
	3.3.1	离散型.		 	 					9
	3.3.2	连续型.		 	 					9
		3.3.2.1	和的分布	 	 					9
		3.3.2.2	差的分布	 	 					10
	3.3.3	混合型.		 	 					10

分布函数变量区域左闭右开, 概率密度则不要求。

1 分布概念

1.1 分布函数存在性

分布函数的充要条件是:

- 1. F(x) 单调不减。
- $2. \lim_{x \to -\infty} F(x) = 0.$
- $3. \lim_{x \to +\infty} F(x) = 1_{\circ}$
- 4. F(x) 右连续。

这也是下面的计算需要考虑的性质。

例题: 设随机变量 X 的分布函数 F(x),判断 F(ax)、 $F(x^2+1)$ 、 $F(x^3-1)$ 、F(|X|) 是否可以做出分布函数。

解: 逐个分析 F(g(x)) 中的 g(x) 走向。

 $\lim_{x \to +\infty} F(ax) = a \lim_{x \to +\infty} F(x) = a, \quad \text{ π 满足}.$

由于 x^2+1 在 $x\to -\infty$ 的趋向为 $+\infty$ 而不是 $-\infty$, $\lim_{x\to -\infty} F(x^2+1)=\lim_{x\to +\infty} F(x^2+1)=\lim_{x\to -\infty} F(x^2+1)=\lim_{x\to -$

 $F(x^3-1)$ 满足分布函数的四个条件, $g(x)=x^3-1$ 在两边趋向与原函数一致。

F(|x|) 的 g(x)=|x| 在 $x\to -\infty$ 的趋向为 $+\infty$ 而不是 $-\infty$,不满足 $\lim_{x\to -\infty}F(x)=0$,不满足。

1.2 分布函数计算

这里所说的分布函数都是不定式,需要利用分布函数性质来换算。

例题: 随机变量 X 的概率密度函数 f(x) 满足 f(1+x) = f(1-x),且 $\int_1^2 f(x) dx = 0.3$,则求分布函数 F(0) 的值。

解: 已知 f(1+x) = f(1-x),所以 f(x) 关于 x = 1 对称。所以 $\int_1^{+\infty} f(x) dx = \int_1^{-\infty} f(x) dx = \frac{1}{2}$ 。

所以
$$\int_{1}^{2} f(x) dx = \int_{0}^{1} f(x) dx = 0.3$$
。

$$F(0) = \int_{-\infty}^{0} f(x) \, \mathrm{d}x = 1 - \int_{0}^{+\infty} f(x) \, \mathrm{d}x = 1 - \int_{1}^{+\infty} f(x) \, \mathrm{d}x - \int_{0}^{1} f(x) \, \mathrm{d}x = 0.2 \, \mathrm{s}$$

1.3 概率密度存在性

分布函数的充要条件是:

- 1. $f(x) \ge 0$.
- $2. \int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1.$

例题: 随机变量 X 的概率密度函数 f(x),判断 f(2x)、f(2-x) 是否可以作出概率密度函数。

解:
$$\int_{-\infty}^{+\infty} f(2x) \, dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(2x) \, d(2x) = \frac{1}{2} \neq 1$$
, 不满足。
 $\int_{-\infty}^{+\infty} f(2-x) \, dx = -\int_{-\infty}^{+\infty} f(2-x) \, d(2-x)$, 令 $2-x=t$, 则 $x \to -\infty$ 时 $t \to +\infty$, $x \to +\infty$ 时 $t \to -\infty$, $= -\int_{+\infty}^{-\infty} f(t) \, dt = \int_{-\infty}^{+\infty} f(t) \, dt = 1$ 。

1.4 概率密度计算

例题:随机变量 X 的分布函数和概率密度函数为 F(x), f(x), 求 -X 的分布函数和概率密度。

解: 己知
$$F(x)=P\{X\leqslant x\}$$
,则 $F'(-x)=\{-X\leqslant x\}$,即 $F'(-x)=P\{X\geqslant -x\}=1-P\{X\leqslant -x\}=1-F(-x)$ 。

对
$$F'(-x)$$
 进行求导: $[1 - F(-x)]' = f(-x)$ 。

例题:随机变量 X 的概率密度为 f(x),求随机变量 2X + 3 的概率密度函数。

解: 设 Y = 2X + 3,所以 Y 的分布函数 $F_Y(y)$ 为 $F_Y(x) = P\{Y \leqslant x\} = P\{2X + 3 \leqslant x\} = P\left\{X \leqslant \frac{x - 3}{2}\right\} = \int_{-\infty}^{\frac{t - 3}{2}} f(x) \, \mathrm{d}x$ 。

所以其概率密度为
$$f_Y(x) = (\int_{-\infty}^{\frac{x-3}{2}} f(x) dx)' = \frac{1}{2} f\left(\frac{x-3}{2}\right)$$
。

2 一维随机变量

2.1 一维随机变量分布

2.1.1 二项分布

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k} \ (k = 0, 1, \dots, n, 0$$

解:已知对 X 进行独立重复试验,表示这个进行的是伯努利试验,从而 $Y \sim B(n,p)$ 。又是 3 次,所以 $Y \sim B(3,p)$ 。

只用求出这个
$$p$$
 即 $\left\{X \leqslant \frac{1}{2}\right\}$ 的概率就可以了。又已知 $f(x)$ 。

$$\therefore p = \left\{X \leqslant \frac{1}{2}\right\} = \int_0^{\frac{1}{2}} 2x \, \mathrm{d}x = \frac{1}{4} \cdot \therefore P\{Y = 2\} = B\left(3, \frac{1}{4}\right) = \frac{9}{64} \cdot$$

2.1.2 泊松分布

$$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda} \ (k = 0, 1, \dots, n, \ \lambda > 0), \ X \sim P(\lambda).$$

例题:设一本书的各页印刷错误的个数 X 服从泊松分布。已知只有一个和只有两个印刷错误的页数相同,则随机抽查的 4 页中无印刷错误的概率 p 为?

解:
$$:: P\{X=1\} = P\{X=2\}$$
, $:: \frac{\lambda^1}{1!}e^{-\lambda} = \frac{\lambda^2}{2!}e^{-\lambda}$, $\lambda = 2$ 。

由于随机抽四页类似于伯努利试验是相互独立的,所以随机抽 4 页都无错误的概率为 $[P\{X=0\}]^4=e^{-8}$ 。

2.1.3 几何分布

$$P\{X = k\} = (1-p)^{k-1}p \ (k = 0, 1, \dots, n, \ 0$$

例题: 袋中有 8 个球,其中 3 个白球 5 个黑球,现在任意从中取出 4 个球,若四个球中有 2 个黑球和 2 个白球则试验停止,否则将其放回袋中重新抽取直到满足条件,用 X 表示试验次数,则求 $P\{X=k\}$ 。

解:由题目的停止,则说明这个题目的概率是服从几何分布的,最重要的就是求出单次满足事件概率 p。

根据组合和乘法原理,
$$p = \frac{C_3^2 C_5^2}{C_8^4} = \frac{3}{7}$$
。
则 $P\{X = k\} = \left(\frac{4}{7}\right)^{k-1} \cdot \frac{3}{7}$ 。

例题:已知随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ 0, 其他 \end{cases}$,对 X 进行独立重复观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为观测次数,求 Y 的概率分布。

解:由题目直到就停止,知道 $Y \sim G(p)$ 。

$$X p = P\{X \ge 3\} = \int_3^{+\infty} 2^{-x} \ln 2 \, dx = \frac{1}{8}$$

这是对几何分布的变形,首先进行 k 次试验,第 k 次成功,所以要乘 p,而 因为是第 2 个成功, 所以前面的 k-1 次中有 k-2 次失败和一次成功, 所以一 共 $p^2(1-k)^{k-2}$ 。因为前面的成功的一次在 k-1 中任意一个地方就可以了,所

以一共有
$$k-1$$
 中可能性,要考虑到排列,所以还要乘 $(k-1)$ 。
 $\therefore P\{Y=k\} = (k-1) \left(\frac{1}{8}\right)^2 \cdot \left(\frac{7}{8}\right)^{k-2}$ 。

2.1.4 均匀分布

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{ 其他} \end{cases}, F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leqslant x < b \end{cases}, X \sim U(a,b).$$

例题: 已知随机变量 $X \sim U(a,b)$ (a>0) 且 $P\{0 < X < 3\} = \frac{1}{4}$, $P\{X > a\}$ $\{4\} = \frac{1}{2}$,求 X 的概率密度以及 $P\{1 < X < 5\}$ 。

$$\mathbf{R}$$
: $: P\{X > 4\} = \frac{1}{2}, \ 4$ 在其区间中点上, $\frac{a+b}{2} = 4$ 。

$$P\{0 < X < 3\} = \frac{1}{4}$$
, 3 若在 a 左边则概率为 0,所以必然在右边。

解得
$$a = 2$$
, $b = 6$, $X \sim U(2,6) = f(x) = \begin{cases} \frac{1}{4}, & 2 < x < 6 \\ 0, & 其他 \end{cases}$ 。

$$P\{1 < X < 5\} = \frac{5-2}{6-2} = \frac{3}{4}.$$

例题: 已知随机变量 X 在区间 [0,1] 上服从均匀分布, 在 X = x (0 < x < 1)的条件下随机变量 Y 在区间 [0, x] 上服从均匀分布。

(1)(X,Y) 的概率密度。

解:
$$X$$
 在区间 $[0,1]$ 上服从均匀分布,则 $X \sim f_X(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & 其他 \end{cases}$ 。

$$Y$$
 在 $X = x$ 下均匀分布,则 $f_{Y|X}(y|x) = \begin{cases} \frac{1}{x}, & 0 < y < x < 1 \\ 0, & 其他 \end{cases}$ 。

(X,Y) 联合概率 = 条件概率 × 边缘概

即
$$f(x,y) = f_{Y|X}(y|x)f_X(x) = \begin{cases} \frac{1}{x}, & 0 < y < x < 1 \\ 0, & 其他 \end{cases}$$
。

(2)Y 的概率密度。

解: 首先求 Y 的边缘概率密度,就需要积 X。然后求 y 的区间, XY 的联

合区间是横坐标 [0,1] 到纵坐标 [0,1] 的下三角形,则 $y \in [0,1]$ 。

然后求 Y 就在联合概率密度所规定的区间中画一条 $y = y_0$ 的线,从左先交到的是 y = x,所以下限就是 y,后交的是 x = 1,所以上限为 1。最后将 y 的联合分布函数放在中间,得到 $f_Y(y) = \begin{cases} \int_y^1 \frac{1}{x} \mathrm{d}x = -\ln y, & 0 < y < x < 1 \\ 0, & \text{其他} \end{cases}$

(3) 概率 $P\{X + Y > 1\}$

解: 求 $P\{X+Y>1\}$ 就是求一个区间的概率值,即 $P\{(X,Y)\in G\}=\iint_G f(x,y)\,\mathrm{d}x\mathrm{d}y$ 。

所以
$$P\{X + Y > 1\} = \iint_D \frac{1}{x} d\sigma$$
, $D = x + y > 1 \cap 0 < y < x < 1$.
$$\iint_D \frac{1}{x} d\sigma = \int_{\frac{1}{2}}^1 dx \int_{1-x}^x \frac{1}{x} dy = 1 - \ln 2$$
.

2.1.5 指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{ \#eta} \end{cases}, \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}, \quad X \sim E(\lambda).$$

例题: 已知随机变量 $X \sim E(1)$, a 为常数且大于 0, 求 $P\{X \leqslant a+1|X>a\}$ 。

$$\mathbf{M}: \ P\{X \leqslant a+1|X>a\} = \frac{P\{a < X \leqslant a+1\}}{P\{X>a\}} = \frac{\int_a^{a+1} e^{-x} \, \mathrm{d}x}{\int_a^{+\infty} e^{-x} \, \mathrm{d}x} = 1 - \frac{1}{e}.$$

也可以根据指数分布的无记忆性: $P\{X \leqslant a+1|X>a\}=1-P\{X>a+1|X>a\}=1-P\{X>1\}=P\{X\leqslant 1\}=F(1)=1-\frac{1}{s}$ 。

例题: 随机变量 X 服从参数为 1 的指数分布,求 $P\{3 > X > 2|X > 1\}$ 。

已知 $F(X < x) = 1 - e^{-\lambda x}$,则 $F(X > x) = e^{-\lambda x}$ 。且 $2 < X < 3 \cap 1 < X = 2 < X < 3$ 。

$$\mathbb{D} P\{3 > X > 2|X > 1\} = \frac{P\{3 > X > 2\}}{P\{X > 1\}} = \frac{P\{X > 2\} - P\{X > 3\}}{P\{X > 1\}} = \frac{e^{-2} - e^{-3}}{e^{-1}} = e^{-1} - e^{-2}.$$

2.1.6 正态分布

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ (-\infty < x < +\infty, \ -\infty < \mu < +\infty, \ \sigma > 0), \ X \sim N(\mu,\sigma^2)_\circ$$

例题: 已知随机变量 $X \sim N(0,1)$,对给定的 α (0 < α > 1),数 μ_{α} 满足 $P\{X > \mu_{\alpha}\} = \alpha$,若 $P\{|X| < x\} = \alpha$,求 x。

解: $P\{X > \mu_{\alpha}\} = \alpha$ 即表示 μ_{α} 为标准正态分布的上 α 分位点。

又 $P\{|X|< x\}=\alpha$,即 -x< X< x 的面积为 α ,所以两边的面积各为 $\frac{1-\alpha}{2}$, $P\{X< x\}=P\{X> x\}=\frac{1-\alpha}{2}$ 。

: 面积为 α 的下标为 α , : 面积为 $\frac{1-\alpha}{2}$ 的下标为 $\frac{1-\alpha}{2}$, $x=\mu_{\frac{1-\alpha}{2}}$.

2.2 一维随机变量函数分布

例题: 随机变量 X 服从 U(0,2),求随机变量 $Y = X^2$ 在 (0,4) 内的概率分布密度 $f_Y(y)$ 。

解: 求概率分布密度函数,可以求出其积分概率分布函数, $F_Y(y)=P\{Y\leqslant y\}=P\{X^2\leqslant y\}=P\{-\sqrt{y}\leqslant X\leqslant \sqrt{y}\}$,又 $X\sim U(0,2)$,所以 $f(x)=\frac{1}{2}$ 。

则概率分布函数就是概率密度的积分,此时已经将 Y 变为了关于 X 的积分, $=\int_{-\sqrt{y}}^{\sqrt{y}}f(x)\,\mathrm{d}x=2\int_{0}^{\sqrt{y}}\frac{1}{2}\,\mathrm{d}x=\frac{\sqrt{y}}{2}$ 。即 $F_{Y}(y)=\frac{\sqrt{y}}{2}$ 。 则 $f_{Y}(y)=F_{Y}'(y)=\frac{1}{4\sqrt{y}}$ 。

3 二维随机变量

使用定义法则直接用二重积分的分布函数来求,使用卷积公式则使用概率 密度。

3.1 二维离散型随机变量

3.2 二维连续型随机变量

有两种主要方法,一个是分布函数法,一个是卷积公式法。如果给出联合概率密度使用分布函数法,如果给出边缘概率密度使用卷积公式法。

3.2.1 联合概率

3.2.1.1 联合概率密度

利用联合概率函数来计算,有两种方式,一种是以概率形式,一种是以积分形式。

例题:已知二维随机变量 (X_1,X_2) 的概率密度函数 $f_1(x_1,x_2)$,求 $Y_1=2X_1$, $Y_2=\frac{1}{3}X_2$ 的联合概率密度 $f_2(y_1,y_2)$ 。

解: 概率形式: 设 $F_2(y_1, y_2) = P\{Y_1 \leqslant y_1, Y_2 \leqslant y_2\} = P\{2X_1 \leqslant y_1, \frac{1}{3}X_2 \leqslant y_2\} = P\{X_1 \leqslant \frac{y_1}{2}, X_2 \leqslant 3y_2\} = F_1(\frac{y_1}{2}, 3y_2)$ 。所以 $f_2(y_1, y_2) = \frac{3}{2}f_1(\frac{y_1}{2}, 3y_2)$ 。积分形式: 已知 $\int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} f(x_1, x_2) dx_2 = 1$,将 $x_1 = \frac{y_1}{2}$, $x_2 = 3y_2$ 代 入 $\int_{-\infty}^{+\infty} d(\frac{y_1}{2}) \int_{-\infty}^{+\infty} f(\frac{y_1}{2}, 3y_2) d(3y_2) = 1$, $\frac{3}{2} \int_{-\infty}^{+\infty} dy_1 \int_{-\infty}^{+\infty} f(\frac{y_1}{2}, 3y_2) dy_2 = 1$,所以 $f_2(y_1, y_2) = \frac{3}{2}f_1(\frac{y_1}{2}, 3y_2)$ 。

3.2.1.2 联合概率函数

已知联合概率密度,可以求概率函数,通过二重积分的方式,图像面积即是 概率。

例题: 已知概率密度为 $f(x,y) = \begin{cases} 6, & 0 < x^2 < y < x < 1 \\ 0, & 其他 \end{cases}$

$$P\left\{X > \frac{1}{2}\right\} = 6\int_{\frac{1}{2}}^{1} dx \int_{x^{2}}^{x} dy = 6\int_{\frac{1}{2}}^{1} (x - x^{2}) dx = 6\left(\frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)\Big|_{\frac{1}{2}}^{1} = \frac{1}{2}.$$

$$P\left\{Y < \frac{1}{2}\right\} = 6\int_{0}^{\frac{1}{2}} dy \int_{x}^{\sqrt{y}} dx = 6\int_{0}^{\frac{1}{2}} (\sqrt{y} - y) dy = \sqrt{2} - \frac{3}{4}.$$

3.2.2 边缘概率

3.2.2.1 边缘概率函数

往往是已知联合概率函数 F(x,y) 求边缘概率函数 $F_X(x)$ 、 $F_Y(y)$,需要将联合概率函数中的 $x/y \to +\infty$,然后求这个函数的极限值。

例题: 如果二维随机变量 (X,Y) 的分布函数为 F(x,y) =

$$\begin{cases} 1 - e^{-\lambda_1 x} - e^{-\lambda_2 y} + e^{-\lambda_1 x - \lambda_2 y - \lambda_{12} \max\{x,y\}}, & \lambda_1, \lambda_2, \lambda_{12} > 0, x > 0, y > 0 \\ 0, & \text{ 其他} \end{cases},$$

求 XY 各自的边缘分布函数。

解:
$$\lim_{x \to +\infty} \max\{x, y\} = x = +\infty$$
, $\lim_{y \to +\infty} \max\{x, y\} = y = +\infty$ 。
$$F_X(x) = F(x, +\infty) = 1 - e^{-\lambda_1 x} - 0 + 0 = 1 - e^{-\lambda_1 x}, \quad x > 0$$
, 当其他时 = 0。
$$F_Y(y) = F(+\infty, y) = 1 - 0 - e^{-\lambda_2 y} + 0 = 1 - e^{-\lambda_2 x}, \quad y > 0$$
, 当其他时 = 0。

3.2.2.2 边缘概率密度

往往是已知联合概率密度 f(x,y) 求边缘概率密度 $f_X(x)$ 、 $f_Y(y)$,需要将联合概率密度对另一个变量进行上下限无穷的一重积分,如果 xy 有上下限的定义域则需要画出图像取交集。

确定上下限时要注意,如果求x的边缘分布对y积分,表示x不动,求y的范围,求y的则反之。

例题: 求
$$f(x,y) = \begin{cases} \frac{5}{4}(x^2+y), & 0 < y < 1-x^2 \\ 0, 其他 \end{cases}$$
 的边缘概率密度。

如果求 x 的边缘概率密度,则 y 的取值范围为最底部的 0 到函数 $1-x^2$ 。如果求 y 的边缘密度,则发现 D 为对称函数,所以可以拆为左右两个部分,x 的范围是 0 到函数 $\sqrt{1-y}$ 。

$$f_X(x) = \frac{5}{4} \int_0^{1-x^2} x^2 + y \, dy = \frac{5}{4} \left(x^2 y + \frac{y^2}{2} \right) \Big|_0^{1-x^2} = -\frac{5}{8} x^4 + \frac{5}{8} \, dy$$

$$f_Y(y) = 2 \frac{5}{4} \int_0^{\sqrt{1-y}} x^2 + y \, dx = \frac{5}{2} \left(\frac{x^3}{3} + yx \right) \Big|_0^{\sqrt{1-y}} = \frac{5}{6} (1-y) \sqrt{1-y} + \frac{5}{2} y \sqrt{1-y} \, dy$$

3.2.3 二维均匀分布

3.2.4 二维正态分布

概率密度为:

$$\begin{split} f(x,y) &= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right\} \\ & \not \sqsubseteq \psi \ \mu_1, \mu_2 \in R, \ \sigma_1, \sigma_2 > 0, \ -1 < \rho < 1 \, \text{o} \end{split}$$

3.2.4.1 正态分布性质

例题: $(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;0)$,分布函数为 F(x,y),已知 $F(\mu_1,y) = \frac{1}{4}$,求 y。

解: 当
$$\rho = 0$$
 时, $F(X,Y) = \frac{1}{2\pi\sigma_1\sigma_2}e^{-\frac{1}{2}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]}$
 $= F_X(x)F_Y(y)$,即 XY 相互独立。
 $X \sim N(\mu_1, \sigma_1)$, $Y \sim N(\mu_2, \sigma_2)$, $F_X(\mu_1) = P\{X \leqslant \mu_1\} = \frac{1}{2}$ 。
 $F(\mu_1, y) = F_X(\mu_1)F_Y(y) = \frac{1}{2}F_Y(y) = \frac{1}{4}$,则 $F_Y(y) = \frac{1}{2}$,即根据性质 $y = \mu_2$ 。

3.2.4.2 标准正态化

$$F(x) = P\{X \leqslant x\} = P\left\{\frac{X - \mu}{\sigma} \leqslant \frac{x - \mu}{\sigma}\right\} = \Phi\left(\frac{x - \mu}{\sigma}\right).$$
 即将 XY 的相关系数消去。

例题:设随机变量 (X,Y) 的分布函数为 $\Phi(2x+1)\cdot\Phi(2y-1)$,其中 $\Phi(x)$ 为标准正态分布函数,求 (X,Y) 的分布函数。

解:由分布函数为 $\Phi(2x+1)\Phi(2y-1)$ 是 X 的分布函数和 Y 的分布函数的乘积,所以可知 XY 相互独立。

所以根据标准化公式:
$$\Phi(2x+1)\cdot\Phi(2y-1) = \Phi\left(\frac{x+\frac{1}{2}}{\frac{1}{2}}\right)\Phi\left(\frac{y-\frac{1}{2}}{\frac{1}{2}}\right)$$
。

$$\therefore (X,Y) \sim N\left(-\frac{1}{2},\frac{1}{2};\frac{1}{4},\frac{1}{4};0\right)$$
。

3.3 二维随机变量函数分布

3.3.1 离散型

3.3.2 连续型

可以使用卷积公式法和分布函数法两种。

3.3.2.1 和的分布

例题: 随机变量 (X,Y) 的概率密度函数 $f(x,y)=\left\{ egin{array}{ll} e^{-y}, & 0< x< y \\ 0, 其他 \end{array}
ight.$ 求 $P\{X+Y\leqslant 1\}$ 。

解:根据 $X+Y \le 1$ 和0 < x < y划分区域:

其中积分区域 D 如图所示, 所

$$\bigvee P\{X + Y \leqslant 1\} = \iint_D e^{-y} \, \mathrm{d}x \mathrm{d}y = \int_0^{\frac{1}{2}} \, \mathrm{d}x \int_x^{1-x} e^{-y} \, \mathrm{d}y = \int_0^{\frac{1}{2}} (e^{-x} - e^{x-1}) \mathrm{d}x = 1 + e^{-1} - 2e^{-\frac{1}{2}} \, .$$

3.3.2.2 差的分布

例题: 设 $X \sim N(\mu, \sigma_1^2)$, $Y \sim N(2\mu, \sigma_2^2)$, XY 相互独立, 已知 $P\{X - Y \geqslant 1\} = \frac{1}{2}$, 求 μ 。

 \mathbf{R} : 若 $X \sim N(\mu, \sigma_1^2)$, $Y \sim N(2\mu, \sigma_2^2)$, 则 $X - Y \sim (-\mu, \sigma_1^2 - \sigma_2^2)$ 。则 X - Y 的均值为 $-\mu$,即其图像的对称轴为 $-\mu$ 。

又 $P\{X-Y \ge 1\} = \frac{1}{2}$,则 X-Y 在 1 这里均分,则对称轴为 1,即 $\mu = -1$ 。

3.3.3 混合型

使用全概率公式根据离散变量进行概率拆分。

例题: 设随机变量 X_1 和 X_2 相互独立,已知 $X_1 \sim B\left(1, \frac{3}{4}\right)$, X_2 的分布函数 F(x),求 $Y = X_1 + X_2$ 的分布函数 $F_Y(y)$ 。

解: 已知 $X_1 \sim B\left(1, \frac{3}{4}\right)$, X_2 的分布函数为 F(x), 则 Y 为混合型。

$$\mathbb{M} P\{X_1 = 0\} = C_1^0 \frac{3}{4}^0 \frac{1}{4}^1 = \frac{1}{4}, P\{X_1 = 1\} = C_1^1 \frac{3}{4}^1 \frac{1}{4}^0 = \frac{3}{4}.$$

 $F_Y(y) = P\{X_1 + X_2 \leqslant y\} = P\{X_1 + X_2 \leqslant y | X_1 = 0\} P\{X_1 = 0\} + P\{X_1 + X_2 \leqslant y | X_1 = 1\} P\{X_1 = 1\} = P\{X_2 \leqslant y | X_1 = 0\} P\{X_1 = 0\} + P\{1 + X_2 \leqslant y | X_1 = 1\} P\{X_1 = 1\},$ 由相互独立性 = $\frac{1}{4} \cdot P\{X_2 \leqslant y\} + \frac{3}{4} \cdot P\{X_2 \leqslant y - 1\}$ 。

根据分布函数定义,则 $F_Y(y) = \frac{1}{4} \cdot F(y) + \frac{3}{4} \cdot F(y-1)$ 。