- Pop quiz (canvas, 5min)
- Lab 0 (this Wed/Friday)
- No office hours this week
- TA office hours:
 - Xiaofeng Zhou: Mondays 4-6pm
 - Miguel Rodriguez: Thursdays 3-5pm

- How to do data science
 - Data Wrangling
- Big picture: data sources, ETL, data warehouse, data analytics/BI tools
- Data Types
 - Tabular relational databases
 - Semi structured
 - Text, video, images
 - Graph data

- Big Picture
- Data Types and Sources
- Data Models
- Data Preparation

Structured Data

A <u>data model</u> is a collection of concepts for describing data.

A <u>schema</u> is a description of a particular collection of data, using a given data model.

The Relational Model*

- The Relational Model is Ubiquitous:
 - MySQL, PostgreSQL, Oracle, DB2, SQLServe
 - Foundational work done at
 - IBM System R
 - UC Berkeley Ingres

E. F., "Ted" Codd Turing Award 1981

- Object-oriented concepts have been merged in
 - Early work: POSTGRES research project at Berkeley
 - Informix, IBM DB2, Oracle 8i
- Also has support for XML (semi-structured data)
 - Adding support for full text search (unstructured data)

*Codd, E. F. (1970). "A relational model of data for large shared data banks". Communications of the ACM 13 (6): 37

Relational Database: Definitions

- Relational database: a set of relations
- Relation: made up of 2 parts:

Schema: specifies name of relation, plus name and type of each column

Students(sid: string, name: string, login: string, age: integer, gpa: real)

Instance: the actual data at a given time

- #rows = *cardinality*
- #fields = degree / arity
- Abstractly... A relation is a mathematical object (from set theory) which is true for certain arguments.
- An instance defines the set of arguments for which the relation is true.

Instance of Students Relation

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

- Cardinality = 3, arity = 5, all rows distinct
- The relation is true for these tuples and false for others (a.k.a, the closed world assumption)

- A language for Relational DBs*

- SQL = Structured Query Language
- Data Definition Language (DDL)
 - create, modify, delete relations
 - specify constraints
 - administer users, security, etc.
- Data Manipulation Language (DML)
 - Queries: Specify queries to find tuples that satisfy criteria (read) – relational operators?
 - Updates: add, modify, remove tuples (write) operators?
- The DBMS is responsible for efficient evaluation.
 - * Developed at <u>IBM</u> by <u>Donald D. Chamberlin</u> and <u>Raymond F. Boyce</u> in the 1970s. Used to be *SEQUEL* (*Structured English QUEry Language*)

Example Database Implementation of Tabular Data Model

SQLite

- Table: fixed number of named columns of specified type
- 5 storage classes for columns
 - NULL
 - INTEGER
 - REAL
 - TEXT
 - BLOB
- Data stored on disk in a single file in rowmajor order
- Operations performed via sqlite3 shell
- Other relational transaction databases?

OTHER "TABLE-LIKE" DATA MODELS

- **Series**: a named, ordered array/dictionary
 - Values can be any Numpy data type object
 - The keys of the dictionary are the indexes
 - Built on NumPy's ndarray
- **DataFrame**: a table with named columns
 - Represented as a map Dict (col_name -> series)
 - Each Series object represents a column

- map() functions
- filter (apply predicate to rows)
- sort/group by
- aggregate: sum, count, average, max, min
- Pivot or reshape
- Relational:
 - union, intersection, difference, cartesian product (CROSS JOIN)
 - select/filter, project
 - join: natural join (INNER JOIN), theta join, semi-join, etc.
 - Rename
- More in Lab 0-part 2 and Lab 1

Matrices vs Databases

 Tools like Pandas give up some of the important safety features of RDBMS (e.g. ACID), but can be much faster.

A	row	col	value
	1	1	5.7
	3	1	3.2
	2	2	_

3	row	col	value	
	2	1	12.0	
	3	3	5.1	

SELECT A.rów, B.col, SUM(A.value * B.value)

FROM A JOIN B

ON A.col = B.row

GROUP BY A.row, B.col

- What does this query do?
- → Matrix multiply in SQL (array/matrix extended data types)
- You probably never want to do this, but the *opposite*direction (relational aggregate query → matrix mult.) can be
 very useful.

What's Wrong with Tables?

QBMS tables – row based

Table:

	sid	name	login	ag e	gpa
	53831	Jone s	jones@cs	18	3.4
Represente	53831	Smit h	smith@e e	18	3.2
	53831	Jone s	jones@cs	18	3.4
	53831	Smit h	smith@e e	18	3.2

weet JSON Format

18 April 2010

rerequisites for "Schemaless" DBs

- Need external and internal representations for all data types that will be used.
- Internal: a dynamically-typed, object-oriented language (like Java)
- External: an extensible data description language: JSON or XML
- For Performance: Fast SerDe (Serialization and DeSerialization) so internal data structures can be efficiently pushed or extracted from disk or network.


```
{ "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
  "age": 25,
  "height_cm": 167.6,
  "address": {
     "streetAddress": "21 2nd Street",
     "city": "New York",
     "state": "NY",
     "postalCode": "10021-3100"
```

rerequisites for "Schemaless" DBs

- JSON includes named fields in a tree structure. Primitive types (e.g. string, number, boolean,...) are implicit.
- We can read JSON data (or XML) and automatically create internal representations for complex data.
- Using the field names and object structure, we can query these objects once loaded.

ther problems with (RDBMS) Tables?

- Indices: Typical RDBMS table storage is mostly indices
 - Can't afford this overhead for large datastores

Transactions:

Safe state changes require journals etc., and are slow

Relations:

Checking relations adds further overhead to updates

Sparse Data Support:

- RDBMS Tables are very wasteful when data is very sparse
- Very sparse data is common in modern data stores, ex?
- RDBMS tables might have dozens of columns, modern data stores might have many thousands.

QBMS tables – row based

Table:

	ID	name	login	loc	locid	LAT	LONG	ALT	Stat e
	52841	Jones	jones@cs	NULL	NUL L	NULL	NULL	NUL L	NUL L
	53831	Smith	smith@ee	NULL	NUL L	NULL	NULL	NUL L	NUL L
R	55541	Brown	brown@e e	NULL	NUL L	NULL	NULL	NUL L	NUL L
	52841	Jones	jones@cs	NULL	NUL L	NULL	NULL	NUL L	NUL L
	53831	Smith	smith@ee	NULL	NUL L	NULL	NULL	NUL L	NUL L
	55541	Brown	brown@e e	NULL	NUL L	NULL	NULL	NUL L	NUL L

olumn-based store

Table:

ID	name	login	loc	locid	LAT	LONG	ALT	State
52841	Jones	jones@cs	Alban y	2341	38.4	122.7	100	CA
53831	Smith	smith@ee	NULL	NUL L	NULL	NULL	NUL L	NUL L
55541	Brown	brown@e e	NULL	NUL L	NULL	NULL	NUL L	NUL L

ID	name
52841	Jones
53831	Smith
55541	Brown

ID	login
52841	jones@cs
53831	smith@ee
55541	brown@e
	e

ID	loc
5284	Alban
1	У
ID	LAT
52841	38.4

ID	locid
52841	2341

ID	LONG
52841	122.7

NoSQL Storage Systems

	Data Model
Cassandra	Columnfamily
CouchDB	Document
HBase	Columnfamily
MongoDB	Document
Neo4J	Graph
Redis	Collection
Riak	Document
Scalaris	Key/value
Tokyo Cabinet	Key/value
Voldemort	Key/value

- Big Picture
- Data Types and Sources
- Data Models
- Data Preparation

Data Preparation (I)

• ETL

- We need to extract data from the source(s)
- We need to load data into the sink
- We need to transform data at the source, sink, or in a staging area

- Sources: file, database, event log, web site, HDFS...
- Sinks: Python, R, SQLite, RDBMS, NoSQL store, files, HDFS...

Data Preparation (II)

- Process model
 - The construction of a new data preparation process is done in many phases
 - Data characterization
 - Data cleaning
 - Data integration
 - We must efficiently move data around in space and time
 - Data transfer
 - Data serialization and deserialization (for files or network)

Data Preparation (III)

Workflow

- The transformation **pipeline** or **workflow** often consists of many steps
 - For example: Unix pipes and filters
 - \$ cat data_science.txt | wc | mail -s "word count" myname@some.com
- Hands-on experience in Lab0-part1
- Parallel data preparation (e.g., Map-Reduce, Pig)
- If the workflow is to be used more than once, it can be scheduled
 - Scheduling can be time-based or event-based
 - Use publish-subscribe to register interest (e.g. Twitter feeds)
- Recording the execution of a workflow is known as capturing lineage or provenance

Schema-on-Read vs. Schema-on-Write

 Schema-on-Write: Traditional data systems require users to create a schema before loading any data into the system.

 Schema-on-Read: In Hadoop ecosystem, data can start flowing into the system in its original form, then the schema is parsed at read time (each user can apply their own "data-lens" to interpret the data).

Not "IF" But "WHEN"?

- "Schema on Write"
 - Traditional Approach
- "Schema on Read"
 - Data is simply copied to the file store, no transformation is needed.
 - A SerDe (Serializer/Deserlizer) is applied during read time to extract the required columns (late binding)
 - New data can start flowing anytime and will appear retroactively once the SerDe is updated to parse it.
 - Read is Fast
 - Standards/Governance

- · Load is Fast
- Flexibility/Agility

- Data Models, Tables, Structure, etc.
 - SQL
 - NoSQL
 - Schema on Read vs. Schema on Write

 Unix data preparation and Pandas data manipulation lab 0 this Wednesday & Friday