Probabilité et Statistiques

Contents

Chapitre 1 : Eléments de Probabilité
Définitions
Lois de probabilités
Probabilité conditionnellere
5.3 Probabilités des causes (Théorème de Bayes)
Evénements statistiquement indépendants
5.4 Evénements statistiquement indépendants
Chapitre 2: Variables Aléatoires
Introduction

Chapitre 1 : Eléments de Probabilité

Définitions

Expérience aléatoire : est une expérience où le hasard intervient.

Espace d'échantillonnage (Ω) : l'ensemble de toute les issues possibles d'une expérience aléatoire.

Evénement : tout sous ensemble de Ω .

Evénement Impossible (Φ) : évémenement qui ne se produira jamais.

Lois de probabilités

$$P(\phi) = 0$$

$$P(\Omega) = 1$$

$$B \subseteq A \to P(A/B) = P(A) - P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
: Relation de Boole

$$0 \le P(A) \le 1$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$A \backslash B = A \cap \overline{B}$$

$$0 \le Pr(A) \le 1$$

$$Pr(\overline{A}) = 1 - P(A)$$

Probabilité conditionnellere

Probabilité de A sachant que B est réalisé :

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A|B).P(B)$$

$$P(A \cap B) = P(B|A).P(A)$$

Nota-bene : Si dans un exercice, on utilise "Au moins un", c'est équivalent à dire que "tout sauf rien" $\to 1$ - Probabilité de ne rien avoir

5.3 Probabilités des causes (Théorème de Bayes)

Formule de Bayes:

$$Pr(B|A) = \frac{Pr(A|B).Pr(B)}{Pr(A)}$$

Une partition : Quand la somme des probabilités vaut 1 et que les probabilités sont mutuelement exclusives.

$$Pr(A) = \sum_{i=1}^{n} Pr(A|B_i).Pr(B_i)$$

Formule de Bayes "améliorée":

$$Pr(B_k|A) = \frac{Pr(A|B_k).Pr(B_k)}{Pr(A)} = \frac{Pr(A|B_k).Pr(B_k)}{\sum_{i=1}^{n} Pr(A|B_i).Pr(B_i)}$$

Evénements statistiquement indépendants

Les deux équations suivantes ne sont valables que si A et B sont statist que ment indépendants

$$Pr(A|B) = Pr(A)$$

$$Pr(A \cap B) = Pr(A).Pr(B)$$

5.4 Evénements statistiquement indépendants

Deux événements sont statstiquements indépendants ssi : P(A|B) = P(A)

Nota-bene : Une indépendance statistique n'est pas forcément vraie dans le monde réele. car la statistique est calculée sur un échantillon qui peut ne pas être représentatif

Chapitre 2: Variables Aléatoires

Introduction

Variable Aléatoir ($g\acute{e}n\acute{e}ralement\ not\'e~X$) : Une variable aléatoire est une quantité qui varie en fonction du hasard.