R Notebook

Alonso Melgar López

Ecuación de la recta

```
y = mx + b
```

Cargamos librerias

```
#install.packages("tidyverse")
library(tidyverse)
## -- Attaching packages ------
## v ggplot2 3.3.2 v purr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.0 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## Warning: package 'ggplot2' was built under R version 4.0.2
## Warning: package 'tibble' was built under R version 4.0.2
## Warning: package 'dplyr' was built under R version 4.0.2
## -- Conflicts ------
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
#library(dplyr)
# creamos una función que calcula los valores de y según ciertos valores
ecu_recta <- function(m, b, x) {</pre>
  y \leftarrow m * x + b
 return(data.frame( resultado_x = x, resultado_y = y ))
```

```
x <- 0:50
recta <- ecu_recta(m=.3, b=3, x=x)
recta</pre>
```

##	_	resultado_y
## 1	0	3.0
## 2	1	3.3
## 3	2	3.6
## 4	3	3.9
## 5	4	4.2
## 6	5	4.5
## 7	6	4.8
## 8	7	5.1
## 9	8	5.4
## 10	9	5.7
## 11	10	6.0
## 12	11	6.3
## 13	12	6.6
## 14 ## 15	13 14	6.9 7.2
## 15 ## 16	15	7.2 7.5
		7.8
	16 17	8.1
## 18 ## 19	18	8.4
## 20	19	8.7
## 20	20	9.0
## 21	21	9.3
## 23	22	9.6
## 24	23	9.9
## 25	24	10.2
## 26	25	10.5
## 27	26	10.8
## 28	27	11.1
## 29	28	11.4
## 30	29	11.7
## 31	30	12.0
## 32	31	12.3
## 33	32	12.6
## 34	33	12.9
## 35	34	13.2
## 36	35	13.5
## 37	36	13.8
## 38	37	14.1
## 39	38	14.4
## 40	39	14.7
## 41	40	15.0
## 42	41	15.3
## 43	42	15.6
## 44	43	15.9
## 45	44	16.2
## 46	45	16.5
## 47	46	16.8
## 48	47	17.1

```
## 49 48 17.4
## 50 49 17.7
## 51 50 18.0
```



```
# Agregamos distintas rectas
recta_2 <- ecu_recta(m=1, x=x, b=3)
recta_3 <- ecu_recta(m=2, x=x, b=3)
p +
   geom_line(data = recta_2, aes(x=resultado_x,y=resultado_y), color = "red") +
   geom_line(data = recta_3, aes(x=resultado_x,y=resultado_x), color = "blue")</pre>
```


Segundo grado

```
ax^2 + bx + c = 0
```

```
calcula_segundo_grado <- function(x, a, b, c) {
   y <- a * x^2 + b * x + c
   curva <- data.frame(resultado_x=x, resultado_y=y)
   return(curva)
}</pre>
```

```
x <- -6:5

curva_resultado <- calcula_segundo_grado(x=x, a=2, b=3, c=-2)
curva_resultado</pre>
```

```
##     resultado_x resultado_y
## 1     -6     52
## 2     -5     33
## 3     -4     18
## 4     -3     7
## 5     -2     0
```


Raices para ecuaciones de segundo grado

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

```
raices <- function(b, a, c) {
  raiz <- sqrt(b^2 - (4 * a * c))</pre>
```

```
primer_x \leftarrow (-b + raiz)/(2 * a)
  segunda_x \leftarrow (-b - raiz)/(2 * a)
 return(c(primer_x, segunda_x))
}
raices(a=2, b=3, c=-2)
## [1] 0.5 -2.0
# Unimos lo anterior en una sola función
calcula_segundo_grado <- function(x, a, b, c, raiz = FALSE) {</pre>
  if(raiz) {
    raices_resultado <- raices(b, a, c)</pre>
    return(raices_resultado)
  } else {
    y \leftarrow a * x^2 + b * x + c
    curva <- data.frame(resultado_x=x, resultado_y=y)</pre>
    return(curva)
  }
}
calcula_segundo_grado(x=x,a=1,b=1,c=-3, raiz = TRUE)
```

[1] 1.302776 -2.302776