Machine Learning - Mini Project 1 Solutions

PPHA 30545 - Professor Clapp

Winter 2023

```
In [61]: import pandas as pd
    import numpy as np
    from sklearn.linear_model import LinearRegression as lm
    import matplotlib.pyplot as plt
    import statsmodels.formula.api as smf
    from statsmodels.stats.anova import anova_lm
In [62]: acs_data = pd.read_csv('usa_00001.csv')
```

3. Preparing the data

3.1. Familiarizing with the data

```
Out[63]:
            YEAR SAMPLE SERIAL
                                    CBSERIAL HHWT
                                                        CLUSTER STRATA GQ PERNUM PERWT ... RACED HISPAN HISPAND EDUC EDUCD EMPSTAT EMPSTATD INCWAGE VETSTATD VETSTATD
          0 2021
                   202101
                            1902 2021010114983 5304.0 2021000019021
                                                                  160001
                                                                                     5304.0 ...
                                                                                                                                                 10
                                                                                                                                                       10000
                                                                                                                                                                           11
          1 2021
                   202101
                            2994 2021000021366 25116.0 2021000029941 270201
                                                                                  2 29172.0 ...
                                                                                                 200
                                                                                                                                                 10
                                                                                                                                                        1000
                                                                                                                                                                          11
                            3150 2021000032187 14664.0 2021000031501 100001 1
                                                                                  1 14664.0 ...
                                                                                                                              63
                                                                                                                                                 10
                                                                                                                                                       21000
                                                                                                                                                                          11
          2 2021
                   202101
                                                                                                 100
                                                                                                                        6
                                                                                                          0
                                                                                                                              40
                                                                                                                                                 10
                                                                                                                                                                          11
          3 2021
                  202101
                            3306 2021000042884 2964.0 2021000033061 250001 1
                                                                                  1 3120.0 ...
                                                                                                 200
                                                                                                                                                      24000
           4 2021
                   202101
                           3618 2021000063494 13260.0 2021000036181 130301 1
                                                                                  1 13104.0 ... 100
                                                                                                          Ω
                                                                                                                  0
                                                                                                                       11
                                                                                                                             114
                                                                                                                                                 10
                                                                                                                                                       85000
                                                                                                                                                                          11
```

Out[64]:

In [63]: acs_data.head()

In	[64]]:	acs_data.describe()	
	[]		dob_ddcd.dcboribc()	

5 rows × 26 columns

]:		YEAR	SAMPLE	SERIAL	CBSERIAL	HHWT	CLUSTER	STRATA	GQ	PERNUM	PERWT	RACED	HISPAN	HISPAND	EDUC	EDUCD	EMPSTAT	EMPSTATD	INCWAGE	VETSTAT	VETSTATD
	count	8556.0	8556.0	8.556000e+03	8.556000e+03	8556.000000	8.556000e+03	8.556000e+03	8556.000000	8556.000000	8556.000000	8556.000000	8556.000000	8556.000000	8556.000000	8556.000000	8556.0	8556.000000	8556.000000	8556.000000	8556.000000
	mean	2021.0	202101.0	7.208495e+05	2.021001e+12	16262.124825	2.021007e+12	4.677905e+05	1.063114	1.694016	16624.410940	261.667017	0.326905	34.298621	7.886746	81.183263	1.0	10.080295	60561.317204	1.041608	11.401823
	std	0.0	0.0	4.206382e+05	1.391498e+06	13530.554382	4.206382e+06	9.381907e+05	0.427287	0.953687	13964.445118	268.836697	0.913734	98.078562	2.352989	23.529964	0.0	0.491879	74458.147968	0.199704	1.803708
	min	2021.0	202101.0	1.902000e+03	2.021000e+12	312.000000	2.021000e+12	1.000100e+04	1.000000	1.000000	156.000000	100.000000	0.000000	0.000000	0.000000	2.000000	1.0	10.000000	0.000000	1.000000	11.000000
	25%	2021.0	202101.0	3.517320e+05	2.021000e+12	7956.000000	2.021004e+12	9.001700e+04	1.000000	1.000000	8112.000000	100.000000	0.000000	0.000000	6.000000	63.000000	1.0	10.000000	20000.000000	1.000000	11.000000
	50%	2021.0	202101.0	7.195800e+05	2.021001e+12	12480.000000	2.021007e+12	2.200270e+05	1.000000	1.000000	12792.000000	100.000000	0.000000	0.000000	7.000000	71.000000	1.0	10.000000	42000.000000	1.000000	11.000000
	75%	2021.0	202101.0	1.090470e+06	2.021001e+12	19968.000000	2.021011e+12	4.103360e+05	1.000000	2.000000	20280.000000	359.000000	0.000000	0.000000	10.000000	101.000000	1.0	10.000000	75000.000000	1.000000	11.000000
	max	2021.0	202101.0	1.440846e+06	2.021010e+12	175968.000000	2.021014e+12	5.930851e+06	4.000000	9.000000	175812.000000	990.000000	4.000000	498.000000	11.000000	116.000000	1.0	15.000000	682000.000000	2.000000	20.000000

8 rows × 26 columns

3.2. For our analysis, we'll need to use the codebook we saved to clean and create a few variables:

a) Education

```
In [65]: # Create a continuous education variable
    crosswalk = pd.read_csv('PPHA_30545_MPO1-Crosswalk')
    crosswalk = crosswalk.set_index('educd').T

acs_data['EDUCDC'] = acs_data['EDUCDC']
acs_data = acs_data.replace({'EDUCDC': crosswalk})
```

b) Dummy variables

```
In [66]: # i. High school diploma
acs_data['hsdip'] = ((acs_data['EDUCDC'] >= 12) & (acs_data['EDUCDC'] < 16)).astype(int)
# ii. College degree
acs_data['coldip'] = (acs_data['EDUCDC'] >= 16).astype(int)
# iii. white
acs_data['White'] = np.where(acs_data['RACE'] == 1, 1, 0)
# iv. black
acs_data['Black'] = np.where(acs_data['RACE'] == 2, 1, 0)
# v. hispanic
acs_data['hispanic'] = ((acs_data['HISPAN'] != 0) & (acs_data['HISPAN'] != 9)).astype(int)
# vi. married
acs_data['married'] = ((acs_data['MARST'] == 1) | (acs_data['MARST'] == 2)).astype(int)
# vii. female
acs_data['female'] = (acs_data['SEX'] == 2).astype(int)
# viii. veteran
acs_data['VET'] = np.where(acs_data['VETSTAT'] == 2, 1, 0)
```

c) Interaction terms

```
In [67]: for var in ['hsdip', 'coldip']:
    acs_data[var + '_inter_educdc'] = acs_data[var]*acs_data['EDUCDC']
```

d) Create the following

```
In [68]: # Drop observations with zero income wage
incwage_zero_index = acs_data[acs_data['INCWAGE'] == 0].index
acs_data.drop(incwage_zero_index, inplace=True)

In [69]: # i. Age squared
acs_data['AGE_SQ'] = np.power(acs_data['AGE'], 2)
# ii. log of income
acs_data['INCWAGE_log'] = np.log(acs_data['INCWAGE'])
```

4. Data Analysis

Out[70]:

1. Compute descriptive statistics

	YEAR	INCWAGE	INCWAGE_log	EDUCDC	female	AGE	AGE_SQ	White	Black	hispanic	married	NCHILD	VET	hsdip	coldip	
count	8143.0	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	8143.000000	
mean	2021.0	63632.890826	10.561771	14.231610	0.481027	41.526096	1898.076753	0.663269	0.081051	0.162348	0.533833	0.823898	0.041754	0.541815	0.406607	
std	0.0	75031.705812	1.133858	3.023473	0.499671	13.178825	1104.537492	0.472621	0.272931	0.368792	0.498885	1.151690	0.200038	0.498279	0.491230	
min	2021.0	30.000000	3.401197	0.000000	0.000000	18.000000	324.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	2021.0	24000.000000	10.085809	12.000000	0.000000	31.000000	961.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	2021.0	45000.000000	10.714418	14.000000	0.000000	42.000000	1764.000000	1.000000	0.000000	0.000000	1.000000	0.000000	0.000000	1.000000	0.000000	
75%	2021.0	76000.000000	11.238489	16.000000	1.000000	53.000000	2809.000000	1.000000	0.000000	0.000000	1.000000	2.000000	0.000000	1.000000	1.000000	
max	2021.0	682000.000000	13.432785	22.000000	1.000000	65.000000	4225.000000	1.000000	1.000000	1.000000	1.000000	9.000000	1.000000	1.000000	1.000000	

2. Scatter plot

```
In [71]: lm_simple = lm().fit(acs_data[['EDUCDC']], acs_data[['EDUCDC']])
    simple_y_pred = lm_simple.predict(acs_data[['EDUCDC']])
    plt.scatter(acs_data[['EDUCDC']], acs_data[['INCWAGE_log']], color="black")
    plt.plot(acs_data[['EDUCDC']], simple_y_pred, color="blue", linewidth=3)
    plt.xlabel('Years of education')
    plt.ylabel('Log(Income)')
plt.show()
```


3. Estimate the model

In [72]: result = smf.ols('INCWAGE_log ~ EDUCDC + female + AGE + AGE_SQ + White + Black + hispanic + married + NCHILD + VET', data = acs_data)
print(result.fit().summary())

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual: Df Model: Covariance!	F: tions: s:		OLS Adj. ares F-sta 2023 Prob 1:46 Log-I 8143 AIC: 8132 BIC:	ared: R-squared: tistic: (F-statistic .ikelihood:):	0.283 0.282 321.1 0.00 -11222. 2.247e+04 2.254e+04
	coef	std err	t	P> t	[0.025	0.975]
Intercept EDUCDC female AGE AGE SQ White Black hispanic married NCHILD	0.0604 -0.2162 -0.0073 0.1894 -0.0022 0.0687	0.126 0.004 0.022 0.006 7.28e-05 0.030 0.047 0.036 0.025 0.011	45.295 28.120 -18.563 26.028 -23.211 2.007 -4.610 -0.202 7.562 -0.206 1.267	0.000 0.000 0.000 0.000 0.045 0.000 0.840 0.000 0.837 0.205	5.452 0.097 -0.444 0.148 -0.002 0.001 -0.308 -0.078 0.140 -0.023 -0.038	5.946 0.112 -0.360 0.172 -0.002 0.119 -0.124 0.064 0.239 0.019 0.175
Omnibus: Prob(Omnibus Skew: Kurtosis:		2586 0 -1	.782 Durbi			1.864 11798.652 0.00 2.62e+04

OLS Regression Results

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, $2.62e \pm 04$. This might indicate that there are strong multicollinearity or other numerical problems.

(a) What fraction of the variation in log wages does the model explain?

Answer: The value of the R squared: 0.264

(b) Test the hypothesis that [...]:

Answer: This hypothesis is being tested in the default summary under the F-statistic and Prob(F-Statistic). In this case, the p-value is zero. Therefore, we can reject the null at the 90, 95 and 99% of confidence.

(c) What is the return to an additional year of education? Is this statistically significant? Is it practically significant? Briefly explain

Answer The coefficient of years of education is 0.0903. Since the dependent variable is in logs, an additional year of education is associated with an increase of about 9.45% (= e^{0.0903} –1) in income.

(d) At what age does the model predict an individual will achieve the highest wage?

Answer: Let's take the derivative of Age

```
d(ols)/d(AGE) = 0.1571 + 2 * - 0.0016 * AGE 
d(ols)/d(AGE) = 0.1571 - 0.0032 * AGE
```

Since we know that our function is concave, our max will be located whenever the derivative is equal to zero. In other words:

```
0 = 0.1571 - 0.0032 * AGE
0.0032 * AGE = 0.1571
AGE = 0.1571/0.0032 = 49.09
```

Another way is the brute-force way:

```
In [73]: highest_income = 0
    for current_age in range(100):
        # Current income for age = current_age
        current_income = 0.1571 - 0.0032*current_age
        if highest_income > current_income:
            print("Age with highest income:", current_age - 1)
            break
```

Age with highest income: 49

Doesn't work with decimals but it's not so bad

(e) Does the model predict that men or women will have higher wages, all else equal? Briefly explain why we might observe this pattern in the data

The female coefficient is negative. This suggests women earn about 30% less than men

All else in the model equal, women earn 70.5% of what men earn since 100(e^{-0.3496}-1) is roughly -29.5%. There are many factors left out of the model such as occupational choice, preference over leisure, and willingness to negotiate compensation. However, the model's result of women earning less than men with all other attributes of the model being equal is consistent with studies that control for much more and still find women earning less than men albeit to a lesser degree.

(f) Interpret the coefficients on the white and black, and its significance

First, it's important to establish the baseline group for comparison. The baseline group consists of people who either did not check any of the boxes or do not identify as white, black, or Hispanic. So compared to this baseline group, a person from a particular demographic J earns $100(e^{iU-1})$ of what a baseline group member earns. For a black person, it's 82.73% $100(e^{iU-1896}-1=-17.27\%)$.

Only the estimate for black is statistically significant, associated p-value is 0.00

4. Graph

```
In [74]: def get_reg_line(data, line_color, label):
    ...
    Cet scatter plot with fitted OLS regression line
    Input: data- data frame
    line color(str)- string for line color
    label(str)- line label name
    output: Plot
        y = data['INCNAGE_log']].values
        x = data['INCNAGE_log']].values
        y_pred = lm().fit(X, y).predict(X)
        return plt.plot(X, y_pred, color= line_color, linewidth=3, label = label)

plt.scatter(acs_data['EDUCDC']), acs_data["INCWAGE_log"]], color="black')
        get_reg_line(acs_data[as_data('hadip'] == 1], "blue', "High-school diploma')
        get_reg_line(acs_data[as_data('hadip'] == 1], "blue', "High-school diploma')
        get_reg_line(acs_data[as_data('coldip') == 1], "bruple", "College degree')
        plt.xlabel('Years of education')
        plt.title('Relationship between education and wage')
        plt.legend()
        plt.slabel('Yog(Income)')
        plt.show()
```


5.

Answer: There are many ways to modify the model. One such way is to allow (i) different intercepts for the three groups (no degree, high school degree, college degree) and (ii) different slopes for the three groups. That is,

 $ln(incwage) = \beta 0 + \gamma_1 hsdip + \gamma_2 coldip + \gamma_3 hsdip \cdot educdc + \gamma_4 coldip \cdot educdc + ...$

where hsdip and coldip are indicator functions for whether an individual is a high school graduate or a college graduate. In the ellipsis are controls from the original model as well as the error term

6. Estimate the model you proposed in the previous question and report your results.

OLS Regression Results

In [75]: result = smf.ols('INCWAGE_log ~ hsdip + coldip + EDUCDC + hsdip_inter_educdc + coldip_inter_educdc + female + AGE + AGE_SQ + White + Black + hispanic + married + NCHILD + VET', data = acs_data)

print(result.fit().summary())

						:
Dep. Variable:	INCWA	GE log	R-squared:		0.302	
Model:		OLS	Adj. R-squar	ed:	0.301	
Method:	Least S	quares	F-statistic:		250.9	
Date:	Fri, 17 Fe	b 2023	Prob (F-stat	istic):	0.00	
Time:	14	:11:46	Log-Likeliho	od:	-11115.	
No. Observations:		8143	AIC:		2.226e+04	
Df Residuals:		8128	BIC:		2.236e+04	
Df Model:		14				
Covariance Type:	non	robust				
		std e		1 - 1	[0.025	,
					6.493	
			16 -3.233		-1.119	
			18 -3.359			
EDUCDC	0.0128	0.0	1.180	0.238	-0.008	0.034
hsdip inter educdc			19 3.701		0.033	0.106
coldip inter educdc	0.0907	0.0	16 5.646	0.000	0.059	0.122
female	-0.4047	0.0	21 -18.881	0.000	-0.447	-0.363
AGE	0.1488	0.0	06 24.274	0.000	0.137	0.161
AGE_SQ	-0.0016	7.25e-	05 -21.524	0.000	-0.002	-0.001
White	0.0899	0.0	30 3.013	0.003	0.031	0.148
Black	-0.1604	0.0	46 -3.453	0.001	-0.252	-0.069
hispanic	-0.0091	0.0	36 -0.256	0.798	-0.079	0.061
married	0.1680	0.0	25 6.780	0.000	0.119	0.217
NCHILD	-0.0026	0.0		0.803	-0.023	0.018
VET	0.0996	0.0	54 1.858	0.063	-0.005	0.205
============						
Omnibus:			Durbin-Watso		1.880	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	13758.157	
Skew:			Prob(JB):		0.00	
Kurtosis:		8.511	Cond. No.		5.06e+04	

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.06e+04. This might indicate that there are
- strong multicollinearity or other numerical problems.

(a) What fraction of the variation in log wages does the model explain? How does this compare to the model you estimated in question 3?

The variation in the log of wages explained by the model is $R^2 = 0.286$, this is greater than the $R^2 = 0.264$ of the model estimated in question 3.

(b) Predict the wages of an 22 year old, female individual (who is neither white, black, nor Hispanic, is not married, has no children, and is not a veteran) with a high school diploma and an all else equal individual with a college diploma. Assume that it takes someone 12 years to graduate high school and 16 years to graduate college.

 $The \textit{predicted wages for an with individual with that characteristics and a HS \textit{degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 18,924.54, while the \textit{predicted wages for an individual with accollege degree are approximately } 18,924.54, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individual with accollege degree are approximately } 10,911.87, while the \textit{predicted wages for an individu$

```
In [76]: # High School degree
         dict_hs = {'female': [1], 'AGE' : [22], 'AGE_SQ' : [484], 'hsdip': [1], 'coldip':[0],
          'Black': [0], 'hispanic':[0], 'NCHILD': [0], 'married': [0], 'VET':[0], 'EDUCDC':[12],
           'hsdip_inter_educdc': [12], 'coldip_inter_educdc': [0], 'White': [0]}
         df pred = pd.DataFrame(data=dict hs)
         prediction1 = result.fit().get prediction(df pred)
         prediction1 = prediction1.summary frame(alpha=0.05)
         prediction1_wage = np.exp(prediction1['mean'].values[0])
         print(f'Wage with HS degree: {prediction1_wage}')
         # College degree
         dict_cd = {'female': [1], 'AGE' : [22] ,'AGE_SQ' : [484], 'hsdip': [0], 'coldip':[1],
          'Black': [0], 'hispanic':[0], 'NCHILD': [0], 'married': [0], 'VET':[0], 'EDUCDC':[16],
           'hsdip inter educdc': [0], 'coldip inter educdc': [16], 'White': [0]}
         df pred = pd.DataFrame(data=dict cd)
         prediction2 = result.fit().get_prediction(df_pred)
         prediction2 = prediction2.summary_frame(alpha=0.05)
         prediction2 wage = np.exp(prediction2['mean'].values[0])
         print(f'Wage with college degree: {prediction2_wage}')
         Wage with HS degree: 9772.042974449947
```

(c) The President is concerned that citizens will be harmed (and voters unhappy) if the predictions from your model turn out to be wrong. She wants to know how confident you are in your predictions. Briefly explain.

Open-ended question. Full credit if explanation is based on the strengths or weaknesses of the model or the estimation results.

Wage with college degree: 18411.02083136736

7. There are many ways that this model could be improved. How would you do things differently if you were asked to predict the returns to education given the data available (without any other stipulations)? Try fitting some different models and report the results of the model that best predicts log wages that you can come up with. Use adjusted R2 as your measure of the model that produces the best prediction.

```
In [77]: # Examining all columns
       acs_data.columns
Out[77]: Index(['YEAR', 'SAMPLE', 'SERIAL', 'CBSERIAL', 'HHWT', 'CLUSTER', 'STRATA',
             'GQ', 'PERNUM', 'PERWT', 'NCHILD', 'NCHLT5', 'SEX', 'AGE', 'MARST',
             'RACE', 'RACED', 'HISPAN', 'HISPAND', 'EDUC', 'EDUCD', 'EMPSTAT',
             'EMPSTATD', 'INCWAGE', 'VETSTAT', 'VETSTATD', 'EDUCDC', 'hsdip',
             'coldip', 'White', 'Black', 'hispanic', 'married', 'female', 'VET',
            'hsdip_inter_educdc', 'coldip_inter_educdc', 'AGE_SQ', 'INCWAGE_log'],
           dtype='object')
In [78]: # Model 1
       model1 = smf.ols('INCWAGE_log ~ hsdip + coldip', data=acs_data).fit()
       print("Adjusted R2 for model: ", model1.rsquared_adj)
       print(model1.summary())
       Adjusted R2 for model: 0.12647115702715728
                           OLS Regression Results
       _____
       Dep. Variable: INCWAGE_log R-squared:
                            OLS Adj. R-squared:
       Model:
                 OLS Adj. R-squared:

Least Squares F-statistic:
Fri, 17 Feb 2023 Prob (F-statistic):
                                                              0.126
       Method:
                                                              590.4
                                                           3.67e-240
       Time:
                         14:11:46 Log-Likelihood:
                                                            -12025.
       No. Observations:
                          8143 AIC:
8140 BIC:
                                                           2.406e+04
       Df Residuals:
                                                           2.408e+04
       Df Model:
       Covariance Type:
                          nonrobust.
       ______
                 coef std err t P>|t| [0.025 0.975]
       Intercept 10.0427 0.052 194.213 0.000 9.941 10.144 hsdip 0.2049 0.054 3.786 0.000 0.099 0.311
              1.0036 0.055 18.284 0.000 0.896
       coldip
       _____
                0.000 Jarque-Bera (JB):
-1.420 Prob(JB)
                2362.944 Durbin-Watson:
       Omnibus:
       Prob(Omnibus):
                                                            8706.325
                             -1.420 Prob(JB):
                                                           0.00
       Skew:
                             7.194 Cond. No.
       ______
       [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

```
In [79]: # Model 2
      model2 = smf.ols('INCWAGE_log ~ hsdip + coldip + female + White + Black', data=acs_data).fit()
      print("Adjusted R2 for model: ", model2.rsquared_adj)
      print(model2.summary())
      Adjusted R2 for model: 0.16554784386963584
                          OLS Regression Results
      _____
      Dep. Variable:
                        INCWAGE_log R-squared:
                               OLS
                                  Adj. R-squared:
                                                           0.166
      Model:
      Method:
                       Least Squares
                                   F-statistic:
                                                           324.1
      Date:
                     Fri, 17 Feb 2023
                                   Prob (F-statistic):
                                                        1.81e-317
                          14:11:46 Log-Likelihood:
                                                         -11838.
      No. Observations:
                              8143
                                  AIC:
                                                        2.369e+04
      Df Residuals:
                              8137 BIC:
                                                        2.373e+04
      Df Model:
                                5
                           nonrobust
      Covariance Type:
      ______
                                               [0.025
                   coef std err
                                   t P>|t|
      Intercept
                10.1527
                          0.053 193.196
                                          0.000
                                                  0.102
      hsdip
                 0.2074
                          0.054
                                  3.867
                                                           0.312
                                 18.488
                                          0.000
      coldip
                 1.0094
                          0.055
                                                  0.902
                                                           1.116
      female
                 -0.4041
                          0.023
                                -17.520
                                          0.000
                                                 -0.449
                                                           -0.359
      White
                 0.1409
                          0.027
                                          0.000
                                                  0.088
                                 5.194
                -0.1579
      Black
                          0.047
                                 -3.394
                                          0.001
                                                 -0.249
                                                           -0.067
      ______
                           2515.159 Durbin-Watson:
                            0.000 Jarque-Bera (JB):
                                                         10041.436
      Prob(Omnibus):
                             -1.487 Prob(JB):
                                                            0.00
      Skew:
      Kurtosis:
                            7.555 Cond. No.
                                                            11.5
      _____
      [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [80]: # Model 3
      model3 = smf.ols('INCWAGE_log ~ hsdip + coldip + female + White + Black + EDUCDC', data=acs_data).fit()
      print("Adjusted R2 for model: ", model3.rsquared_adj)
      print(model3.summary())
      Adjusted R2 for model: 0.1731113322827299
                          OLS Regression Results
      INCWAGE_log R-squared:
      Dep. Variable:
      Model:
                               OLS
                                   Adj. R-squared:
                      Least Squares
      Method:
                                  F-statistic:
                     Fri. 17 Feb 2023 Prob (F-statistic):
      Date:
                                                           0.00
                                                          -11800.
      Time:
                          14:11:46 Log-Likelihood:
      No. Observations:
                             8143 AIC:
                                                        2.361e+04
      Df Residuals:
                              8136 BIC:
                                                        2.366e+04
      Df Model:
                                6
      Covariance Type:
                           nonrobust
      ______
                  coef std err
                                   t P>|t|
      _____
      Intercept
                9.7228
                          0.072 135.004
                                          0.000
                                                 9.582
                                                 -0.354
      hsdip
                 -0.2130
                          0.072
                                 -2.956
                                                           -0.072
      coldip
                 0.3243
                          0.096
                                 3.385
                                          0.001
                                                  0.137
                                                           0.512
                                -17.883
                 -0.4108
                          0.023
                                          0.000
                                                  -0.456
                                                           -0.366
      female
                                 4.880
                                                  0.079
      White
                 0.1319
                          0.027
                                          0.000
                                                           0.185
      Black
                 -0.1635
                          0.046
                                 -3.529
                                          0.000
                                                  -0.254
                                                           -0.073
      EDUCDC
                 0.0665
                          0.008
                                 8.685
                                          0.000
                                                0.051
      ______
      Omnibus:
                           2559.933 Durbin-Watson:
                                                           1.853
      Prob(Omnibus):
                            0.000 Jarque-Bera (JB):
                                                         10387.529
      Skew:
                             -1.509
                                  Prob(JB):
                                                            0.00
      Kurtosis:
                             7.637 Cond. No.
      ______
      [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

```
In [81]: # Model 4
      model4 = smf.ols('INCWAGE_log ~ hsdip + coldip + female + White + Black + AGE_SQ ', data=acs_data).fit()
       print("Adjusted R2 for model: ", model4.rsquared_adj)
       print(model4.summary())
       Adjusted R2 for model: 0.2135158001352515
                          OLS Regression Results
       _____
       Dep. Variable:
                       INCWAGE_log R-squared:
                               OLS Adj. R-squared:
       Model:
       Method:
                      Least Squares F-statistic:
                                                           369.4
       Date:
                    Fri, 17 Feb 2023 Prob (F-statistic):
                                                            0.00
                        14:11:46 Log-Likelihood:
                                                          -11596.
       No. Observations:
                              8143 AIC:
                                                         2.321e+04
       Df Residuals:
                              8136 BIC:
                                                        2.326e+04
       Df Model:
                                6
                           nonrobust
       ______
                                   t P>|t| [0.025
                   coef std err
       ______
       Intercept
                          0.054 179.592
       hsdip
                 0.2497
                          0.052
                                  4.793
                                          0.000
                                                  0.148
                                                           0.352
                        0.053
                                                 0.932
                                                         1.140
                                 19.539
                                          0.000
       coldip
                 1.0359
       female
                 -0.4142
                        0.022 -18.495
                                          0.000
                                                -0.458
                                                           -0.370
       White
                 0.0743
                          0.027
                                 2.805
                                          0.005
                                                  0.022
                        0.045
                 -0.2064
       Black
                                 -4.565
                                          0.000
                                                  -0.295
                                                           -0.118
                 0.0002 1.02e-05
                                          0.000
                                                0.000
       AGE SQ
                                 22.300
                                                           0.000
       _____
       Omnibus:
                         2704.126 Durbin-Watson:
                            0.000 Jarque-Bera (JB):
                                                         12140.361
       Prob(Omnibus):
       Skew:
                             -1.564 Prob(JB):
                                                           0.00
       Kurtosis:
                             8.099 Cond. No.
                                                         1.72e+04
       _____
       Notes:
       [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
       [2] The condition number is large, 1.72e+04. This might indicate that there are
       strong multicollinearity or other numerical problems.
In [82]: # Model 5
      model5 = smf.ols('INCWAGE_log ~ hsdip + coldip + female + White + Black + AGE_SQ + married ', data=acs_data).fit()
       print("Adjusted R2 for model: ", model5.rsquared_adj)
       print(model5.summary())
       Adjusted R2 for model: 0.23245534613223184
                         OLS Regression Results
       Dep. Variable: INCWAGE_log R-squared:
       Model:
                          OLS Adj. R-squared:
                                                           0.232
       Method:
                      Least Squares F-statistic:
       Date:
                     Fri, 17 Feb 2023 Prob (F-statistic):
                                                            0.00
                           14:11:46 Log-Likelihood:
                                                          -11496.
      Time:
       No. Observations:
                              8143 AIC:
                                                         2.301e+04
       Df Residuals:
                              8135 BIC:
                                                        2.306e+04
       Df Model:
                                7
       Covariance Type:
                          nonrobust
       ______
                   coef std err
       ______
       Intercept 9.6635
                       0.054 179.386 0.000
                        0.051
                                                 0.153
       hsdip
                 0.2543
                                 4.941
                                          0.000
                                                           0.355
                 0.9966
                          0.052
                                 19.000
                                          0.000
                                                  0.894
       coldip
       female
                 -0.3933
                        0.022
                                -17.737
                                          0.000
                                                 -0.437
                                                           -0.350
                 0.0567
                         0.026
                                          0.030
                                                  0.005
       White
                                 2.165
                                                           0.108
       Black
                 -0.1431
                          0.045
                                 -3.187
                                          0.001
                                                  -0.231
                                                           -0.055
       AGE SO
                 0.0002 1.06e-05
                                 16.739
                                          0.000
                                                 0.000
                                                           0.000
       married
                 0.3394 0.024
                                 14.204
                                          0.000
       ______
       Omnibus:
                        2715.608 Durbin-Watson:
                                                           1.858
                            0.000 Jarque-Bera (JB):
                                                         12360.181
       Prob(Omnibus):
                            -1.566 Prob(JB):
       Skew:
                                                            0.00
                                                         1.72e+04
       Kurtosis:
                             8.159 Cond. No.
       [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
       [2] The condition number is large, 1.72e+04. This might indicate that there are
       strong multicollinearity or other numerical problems.
```

```
In [83]: # Model 6 with interaction terms
    acs_data['white_married'] = acs_data['White'] * acs_data['married']
    acs_data['black_married'] = acs_data['Black'] * acs_data['married']
    acs_data['hispanic_married'] = acs_data['hispanic'] * acs_data['married']

model6 = smf.ols('INCWAGE_log ~ hsdip + coldip + female + White + Black + white_married + black_married', data=acs_data).fit()
    print("Adjusted R2 for model: ", model6.rsquared_adj)
    print(model6.summary())
```

Adjusted R2 for mo			sion Results			
Dep. Variable:	IN	CWAGE log				.197
Model:		OLS	Adj. R-squa	red:	0.	.196
Method:	Leas	st Squares	F-statistic	:	24	19.8
Date:	Fri, 17	Feb 2023	Prob (F-sta	tistic):	(0.00
Time:		14:11:47	Log-Likelih	ood:	-116	82.
No. Observations:		8143	AIC:		2.3386	e+04
Df Residuals:		8134	BIC:		2.3456	e+04
Df Model:		8				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.0984	0.054	186.177	0.000	9.992	10.205
hsdip	0.2383	0.053	4.498	0.000	0.134	0.342
coldip	0.9970	0.054	18.423	0.000	0.891	1.103
female	-0.3845	0.023	-16.965	0.000	-0.429	-0.340
White	-0.1040	0.033	-3.168	0.002	-0.168	-0.040
Black	-0.2455	0.054	-4.567	0.000	-0.351	-0.140
white_married	0.4741	0.028	16.771	0.000	0.419	0.530
black_married	0.3707	0.086	4.299	0.000	0.202	0.540
hispanic_married		0.047	3.097	0.002	0.054	0.240
Omnibus:		2533.911				.866
Prob(Omnibus): 0.000 Jarque-Bera (JB): 10516.468						
Skew:		-1.484	Prob(JB):		(0.00
Kurtosis:		7.710	Cond. No.		1	12.7

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [84]: # Model 7 with interaction terms model7 = smf.ols('INCWAGE_log ~ hsdip + coldip + female + White + Black + white married + black_married + hispanic_married + AGE', data=acs_data).fit() print("Adjusted R2 for model: ", model7.rsquared_adj) print(model7.summary())

Adjusted R2 for model: 0.24176574026011655

OT C	Pogroc	cion	Result.

Dep. Variable:	INCWAGE_log	R-squared:	0.243							
Model:	OLS	Adj. R-squared:	0.242							
Method:	Least Squares	F-statistic:	289.5							
Date:	Fri, 17 Feb 2023	Prob (F-statistic):	0.00							
Time:	14:11:47	Log-Likelihood:	-11446.							
No. Observations:	8143	AIC:	2.291e+04							
Df Residuals:	8133	BIC:	2.298e+04							
Df Model:	9									

Covariance Type: nonrobust

		=======				========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.3428	0.063	148.678	0.000	9.220	9.466
hsdip	0.2704	0.051	5.253	0.000	0.170	0.371
coldip	1.0142	0.053	19.290	0.000	0.911	1.117
female	-0.4021	0.022	-18.253	0.000	-0.445	-0.359
White	-0.0840	0.032	-2.632	0.009	-0.147	-0.021
Black	-0.2551	0.052	-4.885	0.000	-0.357	-0.153
white married	0.3013	0.029	10.551	0.000	0.245	0.357
black married	0.1976	0.084	2.349	0.019	0.033	0.362
hispanic married	0.0641	0.046	1.386	0.166	-0.027	0.155
AGE	0.0194	0.001	22.067	0.000	0.018	0.021
============						====
Omnibus:		2750.393	Durbin-Wats	on:	1	.862
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	12808	.391
Skew:		-1.580	Prob(JB):			0.00

8.269 Cond. No. ______

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

363.

In [85]: # Model 8 with interaction terms
model8 = smf.ols('INCWAGE_log ~ hsdip + coldip + female + White + Black + white_married + AGE_SQ', data=acs_data).fit()
print("Adjusted R2 for model: ", model8.rsquared_adj)
print(model8.summary())

Adjusted R2 for model: 0.2271882053650799

OLS Regression Results

Dep. Variable:	INCWAGE_log	R-squared:	0.228							
Model:	OLS	Adj. R-squared:	0.227							
Method:	Least Squares	F-statistic:	342.9							
Date:	Fri, 17 Feb 2023	Prob (F-statistic):	0.00							
Time:	14:11:47	Log-Likelihood:	-11524.							
No. Observations:	8143	AIC:	2.306e+04							
Df Residuals:	8135	BIC:	2.312e+04							
Df Model:	7									

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept hsdip coldip female White Black white married	9.7983 0.2506 1.0089 -0.4014 -0.1151 -0.2043 0.3442	0.054 0.052 0.053 0.022 0.031 0.045 0.029	181.534 4.854 19.179 -18.062 -3.759 -4.557 12.039	0.000 0.000 0.000 0.000 0.000 0.000	9.693 0.149 0.906 -0.445 -0.175 -0.292 0.288	9.904 0.352 1.112 -0.358 -0.055 -0.116 0.400
AGE_SQ	0.0002	1.04e-05	18.755	0.000	0.000	0.000
Omnibus: Prob(Omnibus): Skew: Kurtosis:		2718.814 0.000 -1.568 8.162	Durbin-W Jarque-E Prob(JB) Cond. No	Bera (JB):		1.861 879.305 0.00 72e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.72e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Inferences:

- 1. In our trails, the maximum Adjusted R2 = '0.022621371990750205' is acheived for Model 5 regressing 'INCWAGE_log' with 'hsdip + coldip + female + White + Black + AGE_SQ + married'.
- 2. Education level, Gender, Race, Age and Marital status are key determinants for wage levels. Removing these terms in Model 9 resulted in decrease of Adjusted R2 to '0.002517230323518249'.
- 3. We can experiement with more models.

In []: