程序系统·易战战RGS编程辅导

Fall 2023 Homework 3

Figure 1: Vtrees over variables A, B, C.

1. [12 pts] Consider the function of the funct

- (6pt) What is the compressed (\mathbf{X}, \mathbf{Y}) -partition of function f, where $\mathbf{X} = \{A, B\}$ and $\mathbf{Y} = \{C\}$?
- (3pt) To construct an SDD justing the (X, Y) partition that you desired in the previous question, which of the vtrees in Figure 1 should be used?
- (3pt) Which vtrees in Figure 1 will lead to an SDD that corresponds to an OBDD?
- 2. [16 pts] Consider the following Authorian $Q = (A \land B) \lor (B \land C) \lor (C \land D)$.
 - (8pt) Construct the compressed (\mathbf{X}, \mathbf{Y}) -partitions for f and $\neg f$, where $\mathbf{X} = \{A, C\}$ and $\mathbf{Y} = \{B, D\}$.
 - (8pt) Derive a general present function of function of function f: (8pt) partition for any function f:

Figure 2: A vtree over variables A, B, C, D.

- 3. [14 pts] Construct an SDD for the function $f = (A \land \neg B) \lor (\neg B \land C) \lor (C \land D)$ based on the vtree in Figure 2.
- 4. [12 pts] Consider a structured space which corresponds to selecting k or more items from a set of n items, where $n \ge 1$ and $0 \le k \le n$. A Boolean formula Δ captures this space iff there is a one-to-one correspondence between the possible selections and the satisfying assignments of Δ . Suppose we use the Boolean variable A_i to indicate whether item i is selected.

- (4pt) Describe a DNF that captures this structured space. How many terms does the DNF have in terms of n and k.
- (4pt) Can you can be space more efficiently using an OBDD? If so, describe the OBDD of n and k.
- 5. [12 pts] Conside $\Delta = (\neg A \lor I)$ (8pt) List the pr
 - (4pt) List the pr

 $C) \wedge (A \vee \neg B \vee \neg C) \wedge (A \vee \neg B \vee C) \wedge (A \vee B \vee C).$

- 6. [14 pts] Consider a model that predicts a movie's box success based on four binary features, S (Original Screenplay), S (Great cinemategraphy), P (Famous Cast), and M (Marketing). The OBDD in Figure 3 describes the classification function, i.e. a feature configuration is evaluated to 1 iff the corresponding movie is predicted to be a success. Please answer the
 - (4pt) **Prime Implicant Explanation:** Consider a movie that is an original screenplay and has poor cinematography, a famous cast, and good marketing $\{S=1, G=0, F=1, M=1\}$. Identify a smallest set of features α that renders the remaining features β irrelevant to the decision on this instance. That is, if we fix features α to their current values, we can change the values of features β arbitrarily without changing the current decision.
 - (4pt) Complete Reason: The class formula for the positive class is

following explanation queries on the OBDD.

$$[G \wedge (\neg S \vee F)] \vee (F \wedge M) \vee [(\neg S \vee G) \wedge (F \vee M)].$$

Compute the complete reason for the decision on instance $I = \{S = 0, G = 1, F = 0, M = 1\}.$

(6pt) **Sufficient and Necessary Reasons:** Compute the sufficient reasons and necessary reasons for this decision. That is, compute the prime implicants and prime implicates of the complete reason.

- 7. [20 pts] Consider I and I are represented by I and I are I and I and I are I and I are
 - (5pt) Write the specific and a CNF.

Suppose the system input is $A=1,\,B=0$ and the system output is E=0. Answer the following questions under this system observation.

- (8pt) Construct the health condition for the system using directed resolution.
- (4pt) List the kernel diagnoses.
- (3pt) List the minary sidge it riverent. Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com