Contents

_	ART 27/	4.7.45	_
1		2分析	3
	1.1	极限	3
	1.2	导数	3
		积分	
	1.4	级数	7
	1.5	其他	R
	1.5	八世	U
0	米石	经分析 - 梅加强	. .
2			24
	2.1	NULL	24
	2.2	数列极限	24
		2.2.1 求极限的方法	
	2.3	连续函数	
		2.3.1 函数的极限	29
		2.3.2 函数极限的性质	30
		2.3.3 无穷小量与无穷大量的阶	
		2.3.4 连续函数	31
		2.3.5 闭区间上连续函数的性质	32
		2.3.6 一致连续性	
		2.3.7 连续函数的积分	
		2.3.8 作业	35
	2.4	微分及其逆运算	37
		2.4.1 可导与可微	
		2.4.2 高阶导数	
		2.4.3 不定积分	39
		2.4.4 积分的计算	40
		2.4.5 作业	
		2.4.6 简单的微分方程	
	2.5	微分中值定理和Taylor展开	41
		2.5.1 函数极值	41
		2.5.2 微分中值定理	
		2.5.3 单调函数	
		2.5.4 凸函数	43
		2.5.5 函数作图	45
		2.5.6 L'Hôpital法则	
		2.5.7 Taylor展开	
		2.5.8 Taylor公式和微分学的应用	49
		2.5.9 作业	50
	2.6	Riemann积分	
	2.0		
		2.6.1 Riemann可积	
		2.6.2 定积分的性质	55
		2.6.3 微积分基本公式	56
		2.6.4 定积分的近似计算	
		2.6.5 作业	
	2.7	定积分的应用和推广	60
		2.7.1 定积分的应用	60
		2.7.2 广义积分	
		2.7.3 广义积分的收敛判别法	กส

2 CONTENTS

	2.7.4	广义积分的例子6	55
	2.7.5	作业	57
2.8	数项组	数	38
	2.8.1	级数收敛与发散的概念	38
	2.8.2	正项级数收敛与发散的判别法6	39
	2.8.3	一般级数收敛与发散判别法	′3
	2.8.4	数项级数的进一步讨论	75

Chapter 1

数学分析

1.1 极限

问题 1.1.1

设函数 $\varphi(x)$ 可导,且满足 $\varphi(0) = 0$,又设 $\varphi'(x)$ 单调减少.

- 1. 证明: 对 $x \in (0,1)$, 有 $\varphi(1)x < \varphi(x) < \varphi'(0)x$.
- 2. 若 φ (1) \geq 0, φ' (0) \leq 1, 任取 $x_0 \in$ (0, 1), $\diamondsuit x_n = \varphi(x_{n-1})$, $(n = 1, 2, \cdots)$. 证明: $\lim_{n \to \infty} x_n$ 存在, 并求该极限值.

解. 对于任意的 $x \in [0,1]$,在[0,x]上用拉格朗日定理,

$$\varphi(x) - \varphi(0) = \varphi'(\xi_1)x < \varphi'(0)x$$

在[x,1]上用拉格朗日定理

$$\varphi(1) - \varphi(x) = \varphi'(\xi_2)(1 - x) < \varphi'(\xi_1)(1 - x) = \varphi'(\xi_1) - \varphi(x)$$

所以 $\varphi(1)x < \varphi'(\xi_1)x = \varphi(x)$.

问题 1.1.2: https://www.zhihu.com/question/636352059

已知实数列 $\{x_n\}$ 使得 $3x_n - x_{n-1}$ 收敛,证明 x_n 收敛.

解. 由问题1.5.10,设

$$\limsup x_n = \overline{X}, \quad \liminf x_n = \underline{X}.$$

则 $+\infty \ge \overline{X} \ge X \ge -\infty$. 如果设 $\lim(3x_n - x_{n-1}) = L$. 取上面的数列 (x_n, y_n) 对为原问题中的 $(3x_n, -x_{n-1})$ 代入上面的不等式, 得到

$$3\underline{X}-\overline{X}\leq L\leq 3\underline{X}-\underline{X}\leq L\leq 3\overline{X}-\underline{X},$$

这说明 $X = \frac{L}{2}$. 当取上面的数列 (x_n, y_n) 对为原问题中的 $(-x_{n-1}, 3x_n)$ 时,则得到

$$-\overline{X} + 3X \le L \le -\overline{X} + 3\overline{X} \le L \le -X + 3\overline{X},$$

这说明 $\overline{X} = \frac{L}{2}$. 所以问题中的数列 x_n 的上下极限相等且有限.

1.2 导数

问题 1.2.1

函数 $f(x) \in C[0,1]$, 在(0,1)上可微, 对于任意的 $x \in (0,1)$, $|xf'(x) - f(x) + f(x)| < Mx^2$, 问f'(0)的存在性.

解. 不妨设f(0) = 0, 定义 $h(x) = \frac{f(x)}{x}(0 < x < 1)$, 即证 $\lim_{x \to 0} h(x)$ 存在, 则 $\left| x^2 h'(x) \right| < Mx^2$, 所以 $\left| h'(x) \right| < M$, 所以若 $\left| x_n \right| \to 0$, 则有 $\left| h(x_m) - h(x_n) \right| = \left| h' \xi(x_m - x_n) \right| < M |x_m - x_n| < \varepsilon.$

所以 $\{h(x_n)\}$ 是Cauchy列, 从而 $\lim_{x\to 0} h(x)$ 存在.

问题 1.2.2

构造有界单调函数f(x)使得对于任意的 $x \in \mathbb{R}$, f'(x)存在, 且 $\lim_{x \to \pm \infty} f'(x) \neq 0$.

解. 取 $a_n = 1 - 2^{-n}$, $(n \in \mathbb{N})$, $f(n) = a_n$, $f\left(n + \frac{1}{2}\right) = \frac{1}{2}(a_n + a_{n+1})$, 且f'(n) = 0, $f'\left(n + \frac{1}{2}\right) = 1$, 将其它点处可微连接f(n)这些离散点,知 $\lim_{x \to \pm \infty} f'(x)$ 不存在,从而不为0.

1.3 积分

问题 1.3.1

$$\int_{-1}^{1} \frac{\sqrt{\frac{x+1}{1-x}} \log \left(\frac{2x^2+2x+1}{2x^2-2x+1} \right)}{x} dx$$

解. $4\pi \operatorname{arccot}(\sqrt{\phi})$.

问题 1.3.2

设函数f(x)在[a,b]上有连续的导数,且f(a) = 0,证明

$$\int_{a}^{b} f^{2}(x) \mathrm{d}x \le \frac{(b-a)^{2}}{2} \int_{a}^{b} [f'(x)]^{2} \mathrm{d}x.$$

解. $\diamondsuit F(b) = RHS - LHS$,证 $F'(b) \ge 0$ 即可.

问题 1.3.3

设函数f(x)在[0,1]上有二阶连续的导数,证明:

1. 对任意 $\xi \in (0, \frac{1}{4})$ 和 $\eta \in (\frac{3}{4}, 1)$ 有

$$|f'(x)| < 2|f(\xi) - f(\eta)| + \int_0^1 |f''(x)| dx \quad x \in [0, 1]$$

2. 当f(0) = f(1) = 0及 $f(x) \neq 0$, $(x \in (0,1))$ 时有

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| \mathrm{d}x \ge 4.$$

解. 用中值定理,

$$\begin{aligned} \left| f'(x) \right| - 2 \left| f(\xi) - f(\eta) \right| &= \left| f'(x) \right| - 2 \left| f'(\theta) \right| (-\xi + \eta) \\ &\leq \left| f'(x) \right| - \left| f'(\theta) \right| \\ &\leq \left| f'(x) - f'(\theta) \right| &= \left| \int_{\theta}^{x} f''(t) \mathrm{d}t \right| \\ &\leq \int_{0}^{1} \left| f''(t) \right| \mathrm{d}t \end{aligned}$$

最后取 $f(x_0) = \max_{x \in [0,1]} f(x)$,则

$$f(x_0) = f'(\xi_1)x_0 = f'(\xi_2)(x_0 - 1),$$

1.3.

所以

$$\int_{0}^{1} \left| \frac{f''}{f} \right| dx \ge \frac{1}{|f(x_{0})|} dx$$

$$\ge \frac{1}{|f(x_{0})|} \left| \int_{\xi_{1}}^{\xi_{2}} f'' dx \right|$$

$$= \frac{1}{|f(x_{0})|} \left| f'(\xi_{2}) - f'(\xi_{1}) \right|$$

$$= \frac{1}{x_{0}} + \frac{1}{1 - x_{0}} \ge 4.$$

问题 1.3.4

设函数f(x)在 $\left[-\frac{1}{a},a\right]$ 上连续(其中a>0),且 $f(x)\geq 0$, $\int_{-\frac{1}{a}}^{a}xf(x)\,\mathrm{d}x=0$,求证: $\int_{-\frac{1}{a}}^{a}x^{2}f(x)\,\mathrm{d}x\leq \int_{-\frac{1}{a}}^{a}f(x)\,\mathrm{d}x$.

解. 因 $(a-x)(x+\frac{1}{a}) \ge 0$, 对 $(a-x)(x+\frac{1}{a})f(x) \ge 0$ 两边同时积分.

问题 1.3.5

设函数f(x)在[0,1]上连续, $\int_0^1 f(x) dx = 0$, $\int_0^1 x f(x) dx = 1$. 求证:

- 1. 存在 ξ ∈ [0,1], 使得| $f(\xi)$ | ≥ 4;
- 2. 存在 $\eta \in [0,1]$, 使得 $|f(\eta)| = 4$.

解. 用反证法,

$$1 = \left| \int_0^1 \left(x - \frac{1}{2} \right) f(x) \, \mathrm{d}x \right| \le \int_0^1 \left| x - \frac{1}{2} \right| \cdot \left| f \right| \, \mathrm{d}x \le 1.$$

等号取不到,否则,

$$\int_0^1 (4 - |f|) \left| x - \frac{1}{2} \right| dx = 0.$$

问题 1.3.6

$$\widehat{\text{MF}}. \ \int_0^{2\pi} \frac{d\theta}{3-\sin 2\theta} = \int_0^{2\pi} \frac{d\theta}{2+2\sin^2(\theta-\frac{\pi}{A})} = \frac{1}{2} \int_0^{2\pi} \frac{d\theta}{1+\sin^2\theta} = 2 \int_0^{2\pi} \frac{d\theta}{1+\sin^2\theta} = 2 \int_0^{+\infty} \frac{dt}{1+2t^2} = \frac{\sqrt{2}}{2}\pi.$$

解.

$$\begin{split} \int_0^{2\pi} \frac{\mathrm{d}\theta}{3 - \sin 2\theta} &= \frac{1}{2} \int_0^{4\pi} \frac{\mathrm{d}t}{3 - \sin t} \\ &= \int_0^{2\pi} \frac{\mathrm{d}t}{3 - \sin t} \\ &= \int_0^{\pi} \frac{\mathrm{d}t}{3 - \sin t} + \int_0^{\pi} \frac{\mathrm{d}t}{3 + \sin t} \\ &= 2 \int_0^{\pi/2} \frac{\mathrm{d}x}{3 - \sin x} + 2 \int_0^{\pi/2} \frac{\mathrm{d}x}{3 + \sin x} \\ &= 12 \int_0^{\pi/2} \frac{\mathrm{d}x}{9 - \sin^2 x} \\ &= 12 \int_0^{\pi/2} \frac{\mathrm{d}\tan x}{8 \tan^2 x + 9} \\ &= \frac{12}{6\sqrt{2}} \arctan\left(\frac{2\sqrt{2}}{3} \tan x\right) \Big|_0^{\pi/2} = \frac{\sqrt{2}}{2} \pi. \end{split}$$

解.

$$\begin{split} \int_0^{2\pi} \frac{\mathrm{d}\theta}{3 - \sin 2\theta} &= \frac{1}{2} \int_0^{4\pi} \frac{\mathrm{d}\theta}{3 \sin \theta} \\ &= \int_0^{2\pi} \frac{\mathrm{d}\theta}{3 - \sin \theta} \\ &= \oint_{|z|=1} \frac{\mathrm{d}z}{\mathrm{i}z \left(3 - \frac{z - z^{-1}}{2i}\right)} \\ &= 2 \oint_{|z|=1} \frac{\mathrm{d}z}{z^2 + 6\mathrm{i}z - 1} \\ &= 2 \oint_{|z|=1} \frac{\mathrm{d}z}{(z - (-3 + 2\sqrt{2})\mathrm{i})(z - (-3 - 2\sqrt{2})\mathrm{i})} \\ &= 2 \cdot 2\pi \mathrm{i} \mathrm{Res}(f(z)) \big|_{z = (-3 + 2\sqrt{2})\mathrm{i}} = \frac{\sqrt{2}}{2}\pi. \end{split}$$

解.

$$\int_0^{2\pi} \frac{d\theta}{3 - \sin 2\theta} = \int_0^{2\pi} \frac{d \tan \theta}{3 \tan^2 \theta - 2 \tan \theta + 3}$$
$$= \int_0^{\pi/2} + \int_{\pi/2}^{\pi} + \int_{\pi}^{3\pi/2} + \int_{3\pi/2}^{2\pi} = \cdots$$

于是

$$\int_0^{\pi/2} = \int_0^\infty \frac{\mathrm{d}\theta}{3t^2 - 2t + 3} = \frac{1}{3} \int_0^{+\infty} \frac{\mathrm{d}\left(t - \frac{1}{3}\right)}{\left(t - \frac{1}{2}\right)^2 + \frac{8}{9}} = \frac{1}{3} \cdot \frac{3}{\sqrt{8}} \arctan\left(\frac{3\left(t - \frac{1}{3}\right)}{\sqrt{8}}\right) \Big|_0^{+\infty} = \frac{\sqrt{2}}{4} \left(\frac{\pi}{2} + \arctan\frac{\sqrt{2}}{4}\right).$$

其它三个同理. 所以 $\sum = \frac{\sqrt{2}}{4} \left(\frac{\pi}{2} \cdot 4 \right) = \frac{\sqrt{2}}{2} \pi$.

问题 1.3.7

求

$$\int_0^{\pi/4} \frac{(\cot x - 1)^{p-1}}{\sin^2 x} \ln \tan x \, \mathrm{d}x = -\frac{\pi}{p} \csc p\pi, \ (-1$$

1.4.

$$\int_0^{+\infty} u^{p-1} \ln(u+1) \, \mathrm{d}u = \frac{\pi}{p} \csc p\pi,$$

而

$$\int_0^\infty u^{p-1} \ln(u+1) \, \mathrm{d} u = \int_0^\infty u^{p-1} \int_1^{1+u} \frac{1}{y} \, \mathrm{d} y \, \mathrm{d} u$$

交换积分次序,用 Beta 函数.

问题 1.3.8

求反常积分

$$I = \int_0^\infty \frac{e^{-2x} \tanh \frac{x}{2}}{x \cosh x} dx.$$

解. 令 x = 2t,则

$$I = \int_0^\infty \frac{2e^{-2t} (e^{2t} - 1)^2}{t (e^{8t} - 1)} dt.$$

引入含参积分

$$F(a) = \int_0^\infty \frac{2e^{at} (e^{2t} - 1)^2}{t (e^{8t} - 1)} dt,$$

则有

$$\begin{split} F'(a) &= \int_0^\infty \frac{2\mathrm{e}^{(a-4)\,t} \left(1 - \mathrm{e}^{-2\,t}\right)^2}{1 - \mathrm{e}^{-8\,t}} \,\mathrm{d}\,t \\ &= \int_0^\infty 2\mathrm{e}^{(a-4)\,t} \left(1 - \mathrm{e}^{-2\,t}\right)^2 \cdot \sum_{n=0}^\infty \mathrm{e}^{-8nt} \,\mathrm{d}\,t \\ &= \frac{1}{4} \sum_{n=0}^\infty \left(\frac{1}{n + \frac{-a+4}{8}} - \frac{2}{n + \frac{-a+6}{8}} + \frac{1}{n + \frac{-a+8}{8}}\right) \\ &= \frac{1}{4} \left(2\psi \left(\frac{-a+6}{8}\right) - \psi \left(\frac{-a+4}{8}\right) - \psi \left(\frac{-a+8}{8}\right)\right), \end{split}$$

其中, $\psi(z) = \frac{d}{dz} \ln \Gamma(z)$ 为 digamma 函数. 因此

$$I = F(-2) = F(-2) - F(-\infty)$$

$$= \int_{-\infty}^{-2} F'(a) da = 2 \ln \left(\frac{\Gamma\left(\frac{-a+4}{8}\right) \Gamma\left(\frac{-a+8}{8}\right)}{\Gamma^2\left(\frac{-a+6}{8}\right)} \right) \Big|_{-\infty}^{-2}$$

$$= 2 \ln \left(\Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{5}{4}\right) \right) = 2 \ln \frac{\pi}{2\sqrt{2}}.$$

1.4 级数

问题 1.4.1

证明

$$1 + x + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} = 0$$

无实根.

解. 设
$$-y < 0$$
, 则 $y > 0$, 所以 $1 - y + \frac{y^2}{2!} - \frac{y^3}{3!} + \dots + \frac{y^{2n}}{(2n)!} > e^{-y} > 0$.

问题 1.4.2: EFAbi=Khuzam and A.B.Boghossian, Some recent geometric inequalities, AMM Vol 96(1989), No. 7:576-589

函数 $f(x) = \cot x - \frac{1}{x}$, 则 $f^{(k)}(x) < 0$, $0 < x < \pi$, $k \in \mathbb{N}$.

解.

$$\cot x = \frac{1}{x} + \sum_{k=1}^{\infty} \left(\frac{1}{k\pi + x} - \frac{1}{k\pi - x} \right), \quad x \in (0, \pi).$$

将真分式展开有

$$f(x) = -2x \sum_{k=0}^{\infty} c_k x^{2k}, \ x \in (0,\pi), \quad c_k = \sum_{n=1}^{\infty} \frac{1}{(n\pi)^{2k+2}}, \ (k \in \mathbb{N}).$$

问题 1.4.3

对 $n \in \mathbb{N}_+$,确定(0,1)的子集,使在此子集上 $\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n (\ln x \ln(1-x)) < 0$.

解.

$$f'(x) = (\ln x \ln(1-x))' = \sum_{m=1}^{\infty} \frac{(1-x)^{m-1} - x^{m-1}}{m},$$

当n是偶数时,所有项都是负的,当n是奇数时,仅当1-x < x即 $x > \frac{1}{2}$ 时, $f^{(n)}(x)$ 时负的.

问题 1.4.4

已知 $S_n = \frac{n+1}{2^{n+1}} \sum_{i=1}^n \frac{2^i}{i}$,证明 $\lim_{n\to\infty} S_n$ 存在并求其值.

解. 因 $S_{n+1} = \frac{n+2}{2(n+1)}(S_n+1)$,所以

$$S_{n+2} - S_{n+1} = \frac{(n+2)^2 (S_{n+1} - S_n) - S_{n+1} - 1}{2(n+1)(n+2)},$$

 $S_4-S_3=0$, 当 $n\geq 3$ 时, S_n 不增, 所以 $S=\lim_{n\to\infty}S_n$ 存在, 所以 $S=\lim_{n\to\infty}\frac{n+2}{2(n+1)}(S+1)$, 得 S=1.

1.5 其他

问题 1.5.1

证明:

$$\lim_{n\to\infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} \right) = 0.$$

解. 用
$$\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$$
.

问题 1.5.2

证明:

$$0 < e - \left(1 + \frac{1}{n}\right)^n < \frac{3}{n}.$$

1.5. 9

解. 先证: $x_n = \left(1 + \frac{1}{n}\right)^n$ 单调上升且有界. $(1 \cdot x_n \le \left(\frac{1 + n(1 + 1/n)}{n + 1}\right)^{n + 1} = x_{n + 1})$, 则

$$\begin{split} x_n &= \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = 1 + 1 + \binom{n}{2} \frac{1}{n^2} + \cdots \\ &= 2 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \cdots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{n-1}{n} \right) \\ &< 2 + \frac{1}{2 \cdot 1} + \frac{1}{3 \cdot 2} + \cdots + \frac{1}{n(n-1)} = 3. \end{split}$$

再证 $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$ 单调下降且有界. (用 $(1+x)^n > 1 + nx$, x > -1证单调性). 由 $e = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$, $x_n < e < y_n$, (这可以证得 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$). 世 $e - x_n < y_n - x_n = \frac{x_n}{n} < \frac{3}{n}$.

问题 1.5.3

证明不等式

$$\left(\frac{n}{e}\right)^n < n! < e\left(\frac{n}{2}\right)^n$$
.

解. 用 $2 < (1 + \frac{1}{n})^n < e$ 及归纳法.

问题 1.5.4

设 $a^{[n]} = a(a-h)\cdots[a-(n-1)h]$ 及 $a^{[0]} = 1$,证明:

$$(a+b)^{[n]} = \sum_{m=0}^{n} \binom{n}{m} a^{[n-m]} b^{[m]}.$$

并由此推出牛顿二项式公式.

问题 1.5.5

证明不等式

$$n! < \left(\frac{n+1}{2}\right)^n \quad (n > 1).$$

解. 用均值不等式.

解. 用伯努利不等式证 $\left(\frac{n+2}{n+1}\right)^{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} > 2$, $(n \in \mathbb{N}_+)$.

问题 1.5.6

设 $p_n(n\in\mathbb{N}_+)$ 为趋于正无穷的任意数列,而 $q_n(n\in\mathbb{N}_+)$ 为趋于负无穷的任意数列($p_n,q_n\notin[-1,0]$),求证:

$$\lim_{n\to\infty} \left(1 + \frac{1}{p_n}\right)^{p_n} = \lim_{n\to\infty} \left(1 + \frac{1}{q_n}\right)^{q_n} = e.$$

解. 注意 $[x] \le x < [x] + 1$.

问题 1.5.7

已知 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 求证:

$$\lim_{n \to \infty} \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right) = \mathbf{e}.$$

并推出

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \frac{\theta_n}{n!n}$$

其中 $0 < \theta_n < 1$.

问题 1.5.8

证明: e是无理数.

解. 用反证法及1.5.7有,对于任意的 $n, n!n \cdot e$ 不是整数.

问题 1.5.9

证明不等式:

- (a) $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$, $(n \in \mathbb{N}_+)$;
- (b) $1 + \alpha < e^{\alpha}$, $(\alpha \neq 0, \alpha \in \mathbb{R})$.

解.

- (a) 原式等价于 $\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$;
- (b) $\alpha > -1$ 时,用伯努利不等式, $e^{\alpha} > (1 + \frac{1}{n})^{\alpha n} > 1 + \alpha$.

问题 1.5.10

证明: (在以下各极限均存在的情况下)

- (a) $\liminf_{n\to\infty} x_n + \liminf_{n\to\infty} y_n \le \liminf_{n\to\infty} (x_n + y_n) \le \liminf_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$;
- (b) $\liminf_{n\to\infty} x_n + \limsup_{n\to\infty} y_n \le \limsup_{n\to\infty} (x_n + y_n) \le \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.
- 解. 用 $\liminf_{n\to\infty} x_n = -\limsup_{n\to\infty} (-x_n)$.

问题 1.5.11

证明: 若 $\lim_{n\to\infty} x_n$ 存在,则对于任何数列 $y_n(n\in\mathbb{N}_+)$, $\limsup_{n\to\infty} y_n$ 有限且有:

- (a) $\limsup_{n\to\infty} (x_n + y_n) = \lim_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$;
- (b) $\limsup_{n\to\infty} x_n y_n = \lim_{n\to\infty} x_n \cdot \limsup_{n\to\infty} y_n$, $(x_n \ge 0)$.

解. 用1.5.10.

П

问题 1.5.12

证明: 若对于某数列 $x_n(n \in \mathbb{N}_+)$, 无论数列 $y_n(n \in \mathbb{N}_+)$ 如何选取, 以下两个等式中都至少有一个成立:

- (a) $\limsup_{n\to\infty} (x_n + y_n) = \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.
- (b) $\limsup_{n\to\infty} (x_n y_n) = \limsup_{n\to\infty} x_n \cdot \limsup_{n\to\infty} y_n$, $(x_n \ge 0)$.

则数列 x_n 收敛或发散于正无穷.

问题 1.5.13

$$\limsup_{n\to\infty} x_n \cdot \limsup_{n\to\infty} \frac{1}{x_n} = 1.$$

则数列 x_n 是收敛的.

问题 1.5.14

证明: 若数列 $x_n(n \in \mathbb{N}_+)$ 有界,且

$$\lim_{n\to\infty}(x_{n+1}-x_n)=0.$$

则此数列的子列极限充满于下极限和上极限

$$l = \liminf_{n \to \infty} x_n \notilde{\pi} L = \limsup_{n \to \infty} x_n$$

之间.

问题 1.5.15

$$\lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \frac{x_{n+1}}{x_n}.$$

解. 用结论: 若 $\{x_n\} \to x$, $x_n > 0$, 则 $\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \cdots x_n} = \lim_{n \to \infty} x_n = x$.

问题 1.5.16

证明: $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$.

解. 用1.5.15.

问题 1.5.17:数 a和b的算术几何平均值

证明: 由下列各式

$$x_1 = a$$
, $y_1 = b$, $x_{n+1} = \sqrt{x_n y_n}$, $y_{n+1} = \frac{x_n + y_n}{2}$,

确定的数列 x_n 和 y_n ($n \in \mathbb{N}_+$)有共同的极限.

$$\mu(a,b) = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n.$$

解. 用幂平均不等式, $\sqrt{x_{n+1}+y_{n+1}}=\frac{\sqrt{x_n}+\sqrt{y_n}}{\sqrt{2}}\leq \sqrt{x_n+y_n}$. 即 $\{y_n\}$ 单调有界, 从而有极限, 从而 $x_n=2y_{n+1}-y_n$ 有相同的极限. \square

问题 1.5.18

设

$$f\left(x+\frac{1}{x}\right)=x^2+\frac{1}{x^2} \quad (|x| \ge 2),$$

求f(x).

解. $x^2 - 2$, $(|x| \ge \frac{5}{2})$.

问题 1.5.19

证明: 若

- (1) 函数f(x)定义于区域x > a;
- (2) f(x)在每一个有限区间a < x < b内是有界的;
- (3) 对于某一个整数n, 存在有限的或无穷的极限

$$\lim_{x\to +\infty}\frac{f(x+1)-f(x)}{x^n}=l,$$

则

$$\lim_{x\to +\infty}\frac{f(x)}{x^{n+1}}=\frac{l}{n+1}.$$

能否用Cauchy定理??证明它.

问题 1.5.20

利用定理

定理 1.5.1

设

$$\lim_{x \to 0} \frac{\phi(x)}{\psi(x)} = 1,$$

其中 $\psi(x)>0$, 再设当 $n\to\infty$ 时 $\alpha_{mn}\to 0$ ($m=1,2,\cdots,n$), 换言之, 对于任意 $\varepsilon>0$, 存在正整数 $N(\varepsilon)$, 当 $m=1,2,\cdots,n$ 且 $n>N(\varepsilon)$ 时, $0<|\alpha_{mn}|<\varepsilon$. 证明:

$$\lim_{n\to\infty} [\phi(\alpha_{1n}) + \phi(\alpha_{2n}) + \dots + \phi(\alpha_{mn})] = \lim_{n\to\infty} [\psi(\alpha_{1n}) + \psi(\alpha_{2n}) + \dots + \psi(\alpha_{mn})],$$

此处同时还要假设上式右端的极限存在.

求:

(1)
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(\sqrt[n]{1 + \frac{k}{n^2}} - 1 \right);$$

(2)
$$\lim_{n\to\infty} \sum_{k=1}^n \left(\sin\frac{ka}{n^2}\right)$$
;

(3)
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(a^{\frac{k}{n^2}} - 1 \right), (a > 0);$$

(4)
$$\lim_{n\to\infty} \prod_{k=1}^{n} \left(1 + \frac{k}{n^2}\right);$$

(5)
$$\lim_{n\to\infty} \prod_{k=1}^n \cos \frac{ka}{n\sqrt{n}}$$
.

问题 1.5.21

设函数f(x)在区间 $(x_0, +\infty)$ 上连续并有界. 证明: 对于任何数T, 可求得数列 $x_n \to +\infty$, 使

$$\lim_{n\to\infty} [f(x_n+T)-f(x_n)]=0.$$

问题 1.5.22

证明: 在有限区间(a,b)上有定义且连续的函数f(x),可用连续的方法延拓到闭区间[a,b]上,其充分必要条件是函 数f(x)在区间(a,b)上一致连续.

问题 1.5.23

 x_n 满足 $x_n^n + x_n - 1 = 0, 0 < x_n < 1, 求<math>\lim_{n \to \infty} x_n$.

解. $y = x^n + x - 1$ 则有y' > 0, $y|_{x=0} = -1 < 0$, $y|_{x=1} = 1 > 0$. x_n 是 $x^n + x - 1$ 的唯一零点. 由于

$$x_n^{n+1} + x_n - 1 = (x_n - 1)(1 - x_n) < 0$$

及y的单调性, 知 x_{n+1} 在 x_n 与1之间, 故 $\{x_n\}$ 单调有界. 反证 $\{x_n\}$ 的极限A=1, 否则 $0 \le A < 1$ 矛盾.

解. $y^x + y - 1 = 0$ 是隐函数,确定y = f(x), $x_n = f(n)$,求导

$$y' = -y^x \cdot \frac{\ln y}{\left(1 + \frac{x}{y} \cdot y^x\right)}$$

当x≥1时,y'>0,y单调增加,以下同上.

问题 1.5.24

若级数 $\sum_{n=1}^{\infty} a_n^2, \sum_{n=1}^{\infty} b_n^2$ 都收敛,则以下不成立的是?

A. $\sum_{n=1}^{\infty} (a_n + b_n)^2$ 收敛;

C. $\sum_{n=1}^{\infty} a_n b_n$ 收敛;

B. $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$ 收敛; D. $\sum_{n=1}^{\infty} a_n b_n$ 发散.

问题 1.5.25

设f(x,y)与 $\varphi(x,y)$ 均为可微函数,且 $\varphi'_{v}(x,y) \neq 0$. 已知 (x_{0},y_{0}) 是f(x,y)在约束条件 $\varphi(x,y) = 0$ 下的一个极值点,下列选项正 确的是(D)

问题 1.5.26

$$\frac{\int_0^1 \frac{1}{\sqrt{1-t^4}} \, \mathrm{d}t}{\int_0^1 \frac{1}{\sqrt{1+t^4}} \, \mathrm{d}t} = \sqrt{2}$$

解. 用Beta函数.

问题 1.5.27: 陕西省第七次大学生高等数学竞赛复赛

计算 $I = \int_{\pi/8}^{3\pi/8} \frac{\sin^2 x}{x(\pi - 2x)} \, \mathrm{d}x.$

问题 1.5.28: 陕西省第七次大学生高等数学竞赛复赛

设 $\varphi(x)$ 在($-\infty$,0]可导,且函数

$$f(x) = \begin{cases} \int_{x}^{0} \frac{\varphi(t)}{t} dt, & x < 0, \\ \lim_{n \to \infty} \sqrt[n]{(2x)^{n} + x^{2n}}, & x \ge 0. \end{cases}$$

在点x = 0可导, 求 $\varphi(0)$, $\varphi'(0^-)$, 并讨论f'(x)的存在性.

问题 1.5.29: 陕西省第七次大学生高等数学竞赛复赛

已知函数f(x)与g(x)满足f'(x) = g(x), $g'(x) = 2e^x - f(x)$, 且f(0) = 0, 求

$$\int_0^{\pi} \left(\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right) dx.$$

问题 1.5.30: 陕西省第七次大学生高等数学竞赛复赛

设 y_1 和 y_2 是方程 $y'' + p(x)y' + 2e^x y = 0$ 的两个线性无关解,而且 $y_2 = (y_1)^2$.若有p(0) > 0,求p(x)及此方程的通解.

问题 1.5.31: 陕西省第七次大学生高等数学竞赛复赛

设f(x)在 $\left[-\frac{1}{a}, a\right](a > 0)$ 上非负可积,且 $\int_{-1/a}^{a} x f(x) dx = 0$. 求证:

$$\int_{-1/a}^{a} x^{2} f(x) \, \mathrm{d}x \le \int_{-1/a}^{a} f(x) \, \mathrm{d}x.$$

解. $60 < a \le 1$ 和 a > 1 两种情况讨论.

问题 1.5.32: 陕西省第七次大学生高等数学竞赛复赛

设在点x = 0的某邻域U内, f(x)可展成泰勒级数, 且对任意正整数n, 皆有

$$f\left(\frac{1}{n}\right) = \frac{1}{n^2}$$
.

证明: 在U内, 恒有 $f(x) = x^2$.

问题 1.5.33: 陕西省第七次大学生高等数学竞赛复赛

设 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2+y^2}$,证明: $\lim_{x\to+\infty}y(x)$ 和 $\lim_{x\to-\infty}y(x)$ 都存在.

解. 用单调有界定理.

问题 1.5.34: 陕西省第七次大学生高等数学竞赛复赛

求幂级数 $\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) x^n$ 的收敛域与和函数.

问题 1.5.35: 陕西省第七次大学生高等数学竞赛复赛

求极限

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{1}{(n+i+1)^2} + \frac{1}{(n+i+2)^2} + \dots + \frac{1}{(n+i+i)^2} \right).$$

解. 用重积分得 $\ln \frac{2}{\sqrt{3}}$.

问题 1.5.36

设 $\{f_n(x)\}_{n=1}^{\infty} \subset C_{[a,b]}$, 且 $f_n(x)$ 在[a,b]上一致收敛于f(x), 则 $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

解. 因 $f_n(x) \Rightarrow f(x), x \in [a,b]$,所以 $f \in C_{[a,b]}$ 且 $\forall \varepsilon > 0$, $\exists N$, $\exists n > N$ 时, $\forall x \in [a,b]$ 均有 $|f_n(x) - f(x)| < \varepsilon$. f(x), $f_n(x)$ 连续必可积,有

$$\left| \int_{a}^{b} f_{n}(x) \, \mathrm{d}x - \int_{a}^{b} f(x) \, \mathrm{d}x \right| < (b - a)\varepsilon.$$

其实当 $a \le x \le b$ 时,有 $\left| \int_a^x f_n(t) dt - \int_a^x f(t) dt \right| < (b-a)\varepsilon$ 对x一致成立,所以 $\int_a^x f_n(x) dt \Rightarrow \int_a^x f(t) dt$.

问题 1.5.37

 $f_n(x)$ 在[a,b]上都有连续导数, 且 $f_n(x) \to f(x)$, $f'_n(x) \Rightarrow g(x)$, 则f'(x) = g(x), 即 $\frac{d}{dx} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \frac{d}{dx} f_n(x)$.

解. 因 $f'_n \Rightarrow g$,所以g连续,可积,由1.5.36, $\int_a^x g(t) dt = \lim_{n \to \infty} \int_a^x f'_n(t) dt = f(x) - f(a)$,所以f'(x) = g(x). 其实 $f_n(x) = f_n(a) + \int_a^x f'_n(t) dt + f(a) = f(a)$,在1.5.36和 $\sum_{k=1}^\infty u_k(x)$ 的前n项部分和,就有函数项级数的相应命题.

(1). 若[a,b]上 $\sum_{k=1}^{\infty} u_k(x)$ 中每项 u_k 均连续,且 $\sum_{k=1}^{\infty} u_k(x) \Rightarrow f(x)$,则 $f(x) \in C_{[a,b]}$ 且

$$\sum_{k=1}^{\infty} \int_{a}^{b} u_k(x) \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

(2). 若[a,b]上, $\sum_{k=1}^{\infty}u_k(x)$ 的每项都有连续导数 $u_k'(x)$ 且 $\sum_{k=1}^{\infty}u_k'(x)$ \Rightarrow g(x), 而 $\sum_{k=1}^{\infty}u_k(x)$ \rightarrow f(x). 则

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sum_{k=1}^\infty u_k(x)\right) = \sum_{k=1}^\infty u_k'(x).$$

问题 1.5.38

举反例:

- (1) 积分的极限不等于极限的积分的函数列.
- (2) 导数的极限不等于极限的导数的函数列.
- 解. (1). 在[0,1]上极限函数为[0,1]上面积为[0,1]上面积为[0,1]上面积为[0,1]
 - (2). $f_n(x) = \frac{x}{1+n^2x^2}, x \in [-1,1].$

问题 1.5.39: http://math.stackexchange.com/questions/2143014

证明: 对于任意的 $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, $\sum_{n=1}^{\infty} \ln \left| \frac{\alpha - n}{\alpha + n} \right|$ 发散.

问题 1.5.40: http://math.stackexchange.com/questions/472007

判断 $\sum_{n=10}^{\infty} \frac{\sin n}{n+10\sin n}$ 的敛散性.

解. 其实, 若f(n)是有界函数, 且级数 $\sum_{n=1}^n \frac{f(n)}{n}$ 收敛, a是使任意的n都有 $n+af(n)\neq 0$, 则 $\sum_{n=1}^\infty \frac{f(n)}{n+af(n)}$. 这是因为

$$\sum_{n=1}^{m} \frac{f(n)}{n+af(n)} = \sum_{n=1}^{m} \frac{f(n)}{n} + \sum_{n=1}^{m} \frac{-af^{2}(n)}{n(n+af(n))}$$

后一个和式用比较判别法.

П

问题 1.5.41: http://math.stackexchange.com/questions/273559

判断 $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n}$ 的敛散性.

解. 比较判别法, $[k\pi + \frac{\pi}{6}, (k+1)\pi - \frac{\pi}{6}]$ 中总有至少一个整数. 或用 $\sum \frac{\sin^2(n)}{n} = \sum \frac{1}{2n} - \sum \frac{\cos(2n)}{2n}$, 前者发散, 后者用Dirichlet判别法.

问题 1.5.42: http://math.stackexchange.com/questions/991652

证明 $\int_0^1 \left| \frac{1}{x} \sin \frac{1}{x} \right| dx$ 发散.

解. 变量替换, 积分化为 $\int_1^\infty \frac{|\sin x|}{x} dx$, 然后在子区间 $(k\pi,(k+1)\pi)$ 上求下界.

问题 1.5.43: http://math.stackexchange.com/questions/620449

证明: 求 $p \in \mathbb{R}$, 使积分 $\int_0^\infty \frac{x^p}{1+x^p} dx$ 发散.

 \mathfrak{P} . $p \geq -1$.

问题 1.5.44: http://math.stackexchange.com/questions/596511

计算

$$\int_0^\infty \frac{\mathrm{e}^{-x} - \mathrm{e}^{-2x}}{x} \, \mathrm{d}x$$

解. 用Frullani积分. 结果为log2. 或用重积分: $e^{-x} - e^{-2x} = x \int_1^2 e^{-xt} dt$. 这里给出Frullani积分证明过程的做法.

$$\int_{a}^{b} \frac{e^{-x} - e^{-2x}}{x} dx = \int_{a}^{b} \frac{e^{-x}}{x} dx - \int_{2a}^{2b} \frac{e^{-x}}{x} dx$$

$$= \left(\int_{a}^{b} - \int_{2a}^{2b} \right) \frac{e^{-x}}{x} dx$$

$$= \left(\int_{a}^{2a} - \int_{b}^{2b} \right) \frac{e^{-x}}{x} dx \to \log(2) - 0, \quad a \to 0, b \to \infty$$

上式最后一步用 $e^{-2c}\log(2) \le \int_c^{2c} \frac{e^{-x}}{x} dx \le e^{-c}\log(2)$.

问题 1.5.45: http://math.stackexchange.com/questions/590774

已知a > b > 0, 求 $\lim_{t\to 0^+} (a^{-t} - b^{-t})\Gamma(t)$.

解. 注意到 $\Gamma(t) = a^t \int_0^\infty \frac{e^{-as}}{s^{1-t}} ds$, 所以

$$\lim_{t \to 0^+} (a^{-t} - b^{-t})\Gamma(t) = \int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx$$

然后用Frullani积分算得log &.

问题 1.5.46: http://math.stackexchange.com/questions/590774

已知a > b > 0,求 $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx$.

解. 可以用Frullani积分. 这里用含参积分求导的方法, 定义 $I(t) = \int_0^\infty \frac{\mathrm{e}^{-x} - \mathrm{e}^{-tx}}{x} \, \mathrm{d}x$, 被积函数记为f(x,t), 由f(x,t)和 $f_t(x,t)$ 在定义域均连续, I(t)关于t收敛且 $\int_0^\infty f_t(x,t) \, \mathrm{d}x$ 关于t一致收敛, 则满足积分号下求导条件, 所以 $\frac{\mathrm{d}I}{\mathrm{d}t} = -\frac{1}{a}$, $I = -\log t$.

1.5. 17

解.

$$\int_{0}^{\infty} \frac{\exp(-ax) - \exp(-bx)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{\exp(-ax) - \exp(-bx)}{x} dx$$

$$= \lim_{\epsilon \to 0} \left[\int_{\epsilon}^{\infty} \frac{\exp(-ax)}{x} dx - \int_{\epsilon}^{\infty} \frac{\exp(-bx)}{x} dx \right]$$

$$= \lim_{\epsilon \to 0} \left[\int_{a\epsilon}^{\infty} \frac{\exp(-t)}{t} dt - \int_{b\epsilon}^{\infty} \frac{\exp(-t)}{t} dt \right]$$

$$= \lim_{\epsilon \to 0} \int_{a\epsilon}^{b\epsilon} \frac{\exp(-t)}{t} dt = \lim_{\epsilon \to 0} \int_{a}^{b} \frac{\exp(-\epsilon u)}{u} du$$

最后的被积函数一致收敛到量,

解. 用Laplace变换, $F(s) = \int_0^\infty f(x) e^{-sx} dx$, 则

$$F(s) = \int_0^\infty \frac{e^{-bx} - e^{-ax}}{x} e^{-sx} dx \implies F'(s) = -\int_0^\infty (e^{-bx} - e^{-ax}) e^{-sx} dx.$$

计算最后一个积分, 然后求积分并令 $s \to 0$, 其中积分出来的积分常数用极限 $\lim_{s \to \infty} F(s) = 0$ 计算.

问题 1.5.47: http://math.stackexchange.com/questions/164400

解. 让 $u = e^{-x}$,得

$$\int_0^1 \frac{u^{t-1}-1}{\log u} \, \mathrm{d}u = \int_0^1 \int_1^t u^{s-1} \, \mathrm{d}s \, \mathrm{d}u = \int_1^t \int_0^1 u^{s-1} \, \mathrm{d}u \, \mathrm{d}s = \log t.$$

解. 同1.5.46的解法一.

解. 用重积分求解, $I(t) = \int_0^\infty \frac{e^{-x} - e^{-xt}}{x} dx = \int_0^\infty \int_1^t e^{-xs} ds dx$. 这里验证积分次序可交换, 则

$$LHS = \int_1^t \int_0^\infty e^{-xs} dx ds = \ln t.$$

解. 用Laplace变换, $g(s) = L[f(x)] = L\left[\frac{e^{-ax}-e^{-bx}}{x}\right]$, 则 $-g'(s) = L[xf(x)] = \frac{1}{s+a} - \frac{1}{s+b}$. 所以 $g(s) = \log \frac{s+b}{s+a} + c$, 由于 $g(\infty) = 0$, 所以c = 0.

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} e^{-sx} dx = \log \frac{s+b}{s+a}.$$

解. 用Laplace变换, $L[1] = \int_0^\infty e^{-st} dt = \frac{1}{s}$, 则

$$LHS = \int_{0}^{\infty} \int_{0}^{\infty} (e^{-x} - e^{-xt})e^{-xs} ds dx = \int_{0}^{\infty} \left(\frac{1}{s+1} - \frac{1}{s+t}\right) = \ln \frac{s+1}{s+t} \Big|_{0}^{\infty} = \ln t$$

问题 1.5.48

求积分

$$I(a) = \int_0^{\frac{\pi}{2}} \ln\left|\sin^2 x - a\right| \, \mathrm{d}x.$$

解. 当 $a \leq 0$ 时,设a = -t,

$$I(a) = \int_0^{\pi/2} \ln(t + \sin^2 x) dx$$

$$= \int_0^{\pi/2} \left[\ln(\sin^2 x) + \int_0^t \frac{1}{s + \sin^2 x} ds \right] dx$$

$$= -\pi \ln 2 + \int_0^t \int_0^{\pi/2} \frac{1}{s + \sin^2 x} dx ds$$

$$= -\pi \ln 2 + \frac{\pi}{2} \int_0^t \frac{1}{\sqrt{s(1+s)}} ds$$

$$= -\pi \ln 2 + \pi \arctan \sqrt{\frac{-a}{1-a}}.$$

当 $a \ge 1$ 时,取a = t + 1,同上面的解法

$$I(a) = \int_0^{\pi/2} \ln\left(t + \cos^2 x\right) dx$$

$$= \int_0^{\pi/2} \left[\ln\cos^2 x + \int_0^t \frac{1}{s + \cos^2 x} ds\right] dx$$

$$= -\pi \ln 2 + \pi \cdot \operatorname{arctanh} \sqrt{\frac{t}{1+t}} = -\pi \ln 2 + \pi \cdot \operatorname{arctanh} \sqrt{\frac{a-1}{a}}.$$

当0 < a < 1时,

$$I(a) = \frac{1}{4} \int_0^{2\pi} \ln |a - \sin^2 x| \, dx = \frac{1}{4} \int_0^{2\pi} \ln \left| \frac{1 - 2a}{2} - \frac{\cos 2x}{2} \right| \, dx.$$

$$I(a) = \frac{1}{4} \int_0^{2\pi} \ln \left| \frac{\cos 2\alpha + \cos 2x}{2} \right| dx = \frac{1}{4} \int_0^{2\pi} \ln \left| \cos(x + \alpha) \cos(x - a) \right| dx = \frac{1}{2} \int_0^{2\pi} \ln \left| \cos x \right| dx = -\pi \ln 2.$$

问题 1.5.49: http://tieba.baidu.com/p/2686576086

设f(x)在实轴R上有二阶导数,且满足方程

$$2f(x) + f''(x) = -xf'(x)$$
.

求证f(x)和f'(x)都在R上有界.

解. 构造 $L = f^2 + \frac{1}{2}f'^2$,研究L'. 方程可改成 $f''(x) + \frac{x}{2}f'(x) + f(x) = 0$.

问题 1.5.50: http://tieba.baidu.com/p/3846349760

证明: $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

解. 由于 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$,且 $\left(1+\frac{1}{n}\right)^n$ 单调增加,则 $\left(1+\frac{1}{n}\right)^n < e$,于是 $\ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$,从而 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}>\ln 2+\ln\frac{3}{2}+\cdots+\ln\left(1+\frac{1}{n}\right) = \ln(n+1) > \ln n$,即得.

问题 1.5.51: http://tieba.baidu.com/p/4931607145

设f(x)在[a,b]上可导,f'(x)在[a,b]上可积. 令

$$A_n = \sum_{i=1}^n f\left(a + i \cdot \frac{b-a}{n}\right) - \int_a^b f(x) \, \mathrm{d}x.$$

试证

$$\lim_{n\to\infty} nA_n = \frac{b-a}{2} [f(b) - f(a)].$$

解. $\Leftrightarrow x_i = a + i \cdot \frac{b-a}{n}$,则

$$nA_n = n \left[\sum_{i=1}^n f(x_i) \cdot \frac{b-a}{n} - \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x) \, \mathrm{d}x \right]$$

= $n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} [f(x_i) - f(x)] \, \mathrm{d}x$
= $n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \frac{f(x_i) - f(x)}{x_i - x} (x_i - x) \, \mathrm{d}x.$

在 $[x_{i-1},x_i]$ 上, (x_i-x) 保号,而 $g(x)=\frac{f(x_i)-f(x)}{x_i-x}$ 连续(补充定义 $g(x_i)=f'(x_i)$). 由积分第一中值定理知,存在 $\eta_i\in(x_{i-1},x_i)$,使得

$$\int_{x_{i-1}}^{x_i} \frac{f(x_i) - f(x)}{x_i - x} (x_i - x) \, \mathrm{d}x = g(\eta_i) \int_{x_{i-1}}^{x_i} (x_i - x) \, \mathrm{d}x.$$

再由Lagrange中值定理, 以上 $g(\eta_i) = \frac{f(x_i) - f(\eta_i)}{\eta_i - x} = f'(\xi_i), (\xi_i \in (\eta_i, x_i) \subset (x_{i-1}, x_i)).$ 于是

$$nA_n = n \sum_{i=1}^n f'(\xi_i) \int_{x_{i-1}}^{x_i} (x_i - x) \, \mathrm{d}x = \frac{n}{2} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1})^2$$

$$= \frac{n}{2} \cdot \frac{b - a}{n} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1}) = \frac{b - a}{2} \sum_{i=1}^n f'(\xi_i) (x_i - x_{i-1})$$

$$\to \frac{b - a}{2} \int_a^b f'(x) \, \mathrm{d}x = \frac{b - a}{2} (f(b) - f(a)), \stackrel{\text{def}}{=} n \to \infty.$$

问题 1.5.52

$$\int_0^1 \frac{\sqrt[4]{x(1-x)^3}}{(1+x)^3} \, \mathrm{d}x = \frac{3}{64} \sqrt[4]{2} \pi.$$

问题 1.5.53

求证:

$$\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{3\pi}{8}$$

解. 让 $f(y) = \int_0^\infty \frac{\sin^3 yx}{x^3} dx$,判断积分号下可求导,有

$$f''(y) = \frac{3}{4} \int_0^\infty \frac{-\sin yx + 3\sin 3yx}{x} \, dx = \frac{3\pi}{4} \text{sign } y.$$

解. 用 $\sum_{k=1}^{\infty} \frac{\sin kx}{k} = \frac{\pi - x}{2}$,由

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \frac{\sin^3(kx)}{k^3} = \frac{9\sin(3kx) - 3\sin(kx)}{4k}.$$

则

$$\sum_{k=1}^{\infty} \frac{9\sin(3kx) - 3\sin(kx)}{4k} = \frac{3\pi}{4} - 3x.$$

积分后得:

$$\sum_{k=1}^{\infty} \frac{\sin^3(kx)}{k^3} = \frac{3\pi}{8} x^2 - \frac{1}{2} x^3.$$

取 $x = \frac{1}{n}$ 后两边同乘 n^2 得

$$\sum_{k=1}^{\infty} \frac{\sin^3 \frac{k}{n}}{(k/n)^3} \frac{1}{n} = \frac{3\pi}{8} - \frac{1}{2n}.$$

而广义 Riemann 和显示

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{\sin^3 \frac{k}{n}}{(k/n)^3} \frac{1}{n} = \int_0^{\infty} \frac{\sin^3 x}{x^3} \, \mathrm{d}x.$$

广义 Riemann 和成立的条件是 $\sum_{k=0}^{\infty}\sup_{x\in[k,k+1]}|f'(x)|<\infty$? 这不等式蕴含 $\int_0^{\infty}|f'|\mathrm{d}x<+\infty,f'\in L^1(0,\infty)$.

解. 用 Parseval 定理

$$\int_{-\infty}^{\infty} f(x)g(x) dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s)G(s) ds,$$

其中 $F(s) = \mathcal{F}[f], G(s) = \mathcal{F}[g], \mathcal{F}[f] = \int_{\mathbb{R}} f(x) e^{isx} dx$. 若 $f(x) = \frac{\sin x}{x}$, 则

$$F(s) = \begin{cases} \pi, & |s| \le 1\\ 0, & |s| > 1, \end{cases}$$

若 $g(x) = \frac{\sin^2 x}{x^2}$,则

$$G(s) = \begin{cases} \pi \left(1 - \frac{|s|}{2} \right), |s| \le 2\\ 0, |s| > 2, \end{cases}$$

所以 $\int_{\mathbb{R}} \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{1}{2\pi} \int_{-1}^1 \pi^2 \left(1 - \frac{|s|}{2}\right) \, \mathrm{d}s = \frac{3\pi}{4}$. 即 $\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{3\pi}{8}$.

解. 用 Laplace 变换 $F(s) = \mathcal{L}[f] = \int_0^\infty f(x) e^{-sx} dx$, 对于 $f(x) = \frac{\sin^3 x}{r^3}$ 有

$$F(s) = \frac{\pi s^2}{8} + \frac{3\pi}{8} - \frac{3(s^2 - 1)}{8} \arctan s + \frac{s^2 - 9}{8} \arctan \frac{s}{3} + \frac{3s}{8} \ln \frac{s^2 + 1}{s^2 + 9}$$

解. 用 Laplace 恒等式

$$\int_0^\infty F(u)g(u)\,\mathrm{d}u = \int_0^\infty f(u)G(u)\,\mathrm{d}u, F(s) = \mathcal{L}[f(t)], G(s) = \mathcal{L}[g(t)].$$

让 $G(u) = \frac{1}{u^3}$ 得 $g(u) = \frac{u^2}{2}$, 让 $f(u) = \sin^3 u$ 得 $F(u) = \frac{6}{(u^2+1)(u^2+9)}$, 则

$$\int_0^\infty \frac{\sin^3 x}{x^3} \, \mathrm{d}x = \frac{6}{2} \int_0^\infty \frac{u^2}{(u^2 + 1)(u^2 + 9)} \, \mathrm{d}u = \frac{3\pi}{8}.$$

解. 留数定理, 由 $\sin^3 x = \frac{3\sin x - \sin(3x)}{4}$ 得 $\int_{\mathbb{R}} \left(\frac{\sin x}{x}\right)^3 dx = \int_{\mathbb{R}} \frac{3\sin x - \sin(3x)}{4x^3} dx$. 围道 $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, $\gamma_1 = [r, R]$, γ_2 是以 (0,0) 为心 R 为径的上半圆, $\gamma_3 = [-R, -r]$, γ_4 为以 (0,0) 为心 r 为径的上半圆, γ 取逆时针方向为正方向. 取 $f(z) = \frac{3e^{iz} - e^{3iz}}{z^3}$, 则 f 在 γ 内解析, 由 Cauchy-Goursat 公式

$$\oint_{\gamma} f(z) = 0,\tag{1.1}$$

并用 Laurent 展开或留数定理得

$$\int_{\gamma_4} f(z) dz = -\frac{3\pi i}{4}, \lim_{R \to \infty} \int_{\gamma_2} f(z) dz = 0, \lim_{\substack{R \to 0 \\ R \to \infty}} \int_{\gamma_1 \cup \gamma_3} f(z) dz = 2i \int_0^{\infty} \left(\frac{\sin x}{x}\right)^3 dx.$$

代入1.1即得.

问题 1.5.54

设函数 $f:(a,b)\to\mathbb{R}$ 连续可微,又设对于任意的 $x,y\in(a,b)$,存在唯一的 $z\in(a,b)$ 使得 $\frac{f(y)-f(x)}{y-x}=f'(z)$.证明: f(x)严格凸或严格凹

解. 反证法,构造λ的函数

$$\Lambda(\lambda) = f(\lambda \alpha + (1 - \lambda)\beta) - \lambda f(\alpha) - (1 - \lambda)f(\beta), \quad \lambda \in (0, 1)$$

问题 1.5.55

设函数f(x)在 \mathbb{R} 上无限可微,且:

a) 存在L > 0, 使得对于任意的 $x \in \mathbb{R}$ 及 $n \in \mathbb{N}$ 有 $|f^{(n)}(x)| \leq L$.

b) $f(\frac{1}{n}) = 0$, 对所有 $n = 1, 2, 3 \cdots$.

求证: $f(x) \equiv 0$.

解. 由f在R上无限次可微,且由a)知f有在x = 0处的Taylor展开

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots$$

设N是使 $f^{(N)}(0) \neq 0$ 的最小者,取正整数M > 1使 $|f^{(N)}(0)| > \frac{L}{M-1}$. 则

$$\begin{split} 0 &= \left| f \left(\frac{1}{M} \right) \right| = \left| f^{(N)}(0) \frac{x^N}{N!} + f^{(N+1)}(0) \frac{x^{N+1}}{(N+1)!} + \cdots \right| \\ &\geq |f^{(N)}(0)| \frac{1}{N!M^N} - L \left(\frac{1}{(N+1)!M^{N+1}} + \frac{1}{(N+2)!M^{N+2}} + \cdots \right) \\ &\geq |f^{(N)}(0)| \frac{1}{N!M^N} - L \left(\frac{1}{N!M^{N+1}} + \frac{1}{N!M^{N+2}} + \cdots \right) \\ &= |f^{(N)}(0)| \frac{1}{N!M^N} - \frac{L}{N!} \frac{1}{M^{N+1}} \frac{1}{1 - \frac{1}{M}} \\ &= \left(|f^{(N)}(0)| - \frac{L}{M-1} \right) \frac{1}{N!M^N} > 0. \end{split}$$

这导致矛盾, 即所有 $f^{(n)}(0) = 0$, $f(x) \equiv 0$.

1.5.

Chapter 2

数学分析-梅加强

梅加强的大名在我上本科的时候就已经听说了,现在去读他写的书到第二章的时候突然感受到他被奉为巨佬的原因,不同于国内大多数数学分析教科书惯有的教学顺序,这本书先讲掉了定积分再引进的导数,不得不说国内这么干的,这是我见过的第一本(虽然我也没读过几本国内大学自行出版的教材,好在北大,中科大的等等都大概翻过).写这一小段文字只是突发感慨,因为在读此之前确实也见过别的教科书这么干,比如柯朗的《微积分和数学分析引论》也是先引入的积分再引入的导数,这种与原来按部就班的学习形成对比,微分和积分是实数完备性发展出来的两条支线,最后在微积分基本定理它们融合了.

2.1 NULL

2.2 数列极限

定义 2.2.1

给定序列 $\{a_n\}$, 实数 $A \in \mathbb{R}$, 如果

 $\forall \epsilon > 0, \exists N = N(\epsilon), s.t. \forall n > N, |a_n - A| < \epsilon,$

就称 $a_n \to A$, $n \to \infty$. 反面表述序列 $a_n \not\to A$:

 $\exists \epsilon > 0, s.t. \forall N = N(\epsilon), \exists n > N, |a_n - A| \ge \epsilon.$

如果

 $\forall A > 0, \exists N, s.t. \forall n > N, a_n > A,$

则称 $a_n \to +\infty$. 如果

 $\forall A < 0, \exists N, s.t. \forall n > N, a_n < A,$

则称 $a_n \to -\infty$. 如果

 $\forall A > 0, \exists N, s.t. \forall n > N, |a_n| > A,$

则称 $a_n \to \infty$.

性质(极限的性质) 1. 序列极限如果存在,必然唯一.

- 2. 序列极限收敛于有限实数,必然有界. (这个性质可以弱化,比如允许序列前几项中有∞出现,这时本条的序列极限性质可以表述为,从某项开始序列有界)
 - 3. 保序性, 当 $a_n \to A$, $b_n \to B$, $a_n \ge b_n$, 则 $A \ge B$. 不等式 $a_n \ge b_n$ 可以换成 $a_n > b_n$.

2.2.1 求极限的方法

求极限没有通用方法,不要有能学到通用方法的任何期待.我们所能做的只有从最简单的方法到最复杂的方法进行逐个尝试.

$\epsilon - N$ 法

也就是定义法,这个方法要求事先知道所求极限为何,然后套用这一框架.方法比较基本,不再举例.

夹逼原理

这也是一个求解框架, 找到满足 $a_n \le b_n \le c_n$, 且 $a_n \to A$, $c_n \to A$ 的上下界来求解 b_n 的极限.

单调有界原理

主要用于求解抽象型极限问题.

例**2.2.3** 设 $a_1 > 0$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right)$, $n \ge 1$, 求 a_n 的极限. 求解递推公式的极限问题常用不动点法先找到极限是什么. 也就是求解 $x = \frac{1}{2} \left(x + \frac{1}{x} \right)$, 得到 $x = \pm 1$. 注意到 $a_1 > 0$, 所以数列的每一项 $a_n > 0$. 并计算

$$a_{n+1} - 1 = \frac{1}{2a_n} (a_n - 1)^2 \ge 0 \Longrightarrow a_{n+1} \ge 1, \quad \forall n \ge 1.$$

这表明当 $n \ge 2$ 时, $\frac{1}{a_n} \le 1 \le a_n$, 所以

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) \le a_n.$$

序列 $\{a_n\}$ 从第二项起单调递减,有下界1. 递推方程的正不动点只有x=1,所以 $a_n\to 1$. 事实上,对于递推公式型极限问题也可以尝试求解它的通项公式,比如

$$\frac{a_{n+1}-1}{a_{n+1}+1} = \left(\frac{a_n-1}{a_n+1}\right)^2.$$

重要极限

e相关

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1} < e < \left(1+\frac{1}{n+1}\right)^{n+2} < \left(1+\frac{1}{n}\right)^{n+1}, \quad \forall n \geq 1.$$

$$\left(1+\frac{1}{n}\right)^n \cdot 1 \leq \left(\frac{n\left(1+\frac{1}{n}\right)+1}{n+1}\right)^{n+1} = \left(1+\frac{1}{n+1}\right)^{n+1},$$

$$\left(\frac{1+\frac{1}{n-1}}{1+\frac{1}{n}}\right)^n = \left(\frac{n^2}{n^2-1}\right)^n = \left(1+\frac{1}{n^2-1}\right)^n > 1+\frac{n}{n^2-1} > 1+\frac{1}{n} \Longrightarrow \left(1+\frac{1}{n-1}\right)^n > \left(1+\frac{1}{n}\right)^{n+1}.$$

Bernoulli不等式

$$x \ge -1 \Longrightarrow (1+x)^n \ge 1 + nx$$

等号当且仅当x=0取到. 推广形式

$$\prod_{k=1}^{n} (1+x_k) \geq 1 + \sum_{k=1}^{n} x_k,$$

其中 $x_k \ge 0$. 注意, 这里给出的两种Bernoulli不等式的前提条件不同, 后者不能是 $x_k \ge -1$, 因为 $(1-x)(1+x) = 1-x^2 \le 1$.

Euler常数

$$H_n = \ln n + \gamma + o(1)$$
.

例2.2.7 求

$$\lim_{n\to\infty}\left(\frac{1}{n+1}+\cdots+\frac{1}{2n}\right).$$

- 1. 单调上升有上界.
- 2. $H_{2n} H_n = \ln 2n \ln n + o(1)$.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} = \int_{0}^{1} \frac{1}{1 + x} dx.$$

4. Euler求和公式

$$\sum_{k=1}^{n} \frac{1}{n+k} = \ln \frac{2n}{n+1} + \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{2n} \right) - \int_{1}^{n} \frac{\langle x \rangle}{(n+x)^{2}} \, \mathrm{d}x.$$

26 CHAPTER 2. -

Stirling公式

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{\theta_n}{12n}}, \quad \theta_n \in (0,1).$$

上下极限

这种方法也常用于求解抽象型序列极限问题.

序列收敛的一个充要条件是,序列的上下极限相等. 定义

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \left(\sup_{k > n} a_k \right), \quad \liminf_{n \to \infty} a_n := \lim_{n \to \infty} \left(\inf_{k \ge n} a_k \right)$$

命题**2.2.4** 1. 存在 N_0 , 当 $n > N_0$ 时, $a_n \ge b_n$, 则

$$\liminf_{n\to\infty}a_n\geq \liminf_{n\to\infty}b_n,\quad \limsup_{n\to\infty}a_n\leq \limsup_{n\to\infty}b_n.$$

2.

$$\limsup_{n\to\infty} (a_n+b_n) \leq \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n.$$

例**2.2.12** 设序列 (a_n) , $a_n \ge 0$, 满足 $a_{m+n} \le a_m + a_n$, $\forall m, n \ge 1$. 证明 $\left(\frac{a_n}{n}\right)$ 收敛. 证明: 设n > m, 则n = mk + l, 其中 $0 \le l \le m - 1$.

对于任意固定的m,有

$$a_n = a_{mk+l} \le ka_m + a_l \Longrightarrow \frac{a_n}{n} \le \frac{ka_m}{km+l} + \frac{a_l}{n}$$
.

不等式两边同时取上极限

$$\limsup_{n\to\infty}\frac{a_n}{n}\leq \frac{a_m}{m}.$$

所以

$$\limsup_{n\to\infty} \frac{a_n}{n} \le \liminf_{m\to\infty} \frac{a_m}{m}.$$

Cauchy收敛准则

定义 序列(a_n), 如果 $\forall \epsilon > 0$, $\exists N = N(\epsilon)$, s.t. $\forall m, n > N$, $|a_m - a_n| < \epsilon$, 则称(a_n)为Cauchy列.

其它表述: $\forall \epsilon > 0$, $\exists N = N(\epsilon)$, s.t. $\forall n > N$, $\forall p > 0$, $\left| a_{n+p} - a_n \right| < \epsilon$.

反面描述: $\exists \epsilon_0 > 0$, s.t. $\forall N$, $\exists m_0, n_0 > N$, 使得 $\left| a_{m_0} - a_{n_0} \right| \ge \epsilon_0$.

Cauchy列均有解. (这里仍然可以允许序列的前几项可以取∞, 此时Cauchy除了开始的有限项外是有界序列). 序列 (a_n) 收敛当且仅当 (a_n) 是Cauchy列.

习题**2** 设序列 (a_n) 满足

$$\lim_{n\to\infty} \left| a_{n+p} - a_n \right| = 0, \quad \forall \, p \ge 1.$$

问(a_n)是否是Cauchy列? $a_n = H_n$ 就是反例.

Stolz公式

定理**2.4.2** 设序列 (x_n) , (y_n) , 其中 y_n 单调上升趋向 ∞ , 若

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=A,$$

则

$$\lim_{n\to\infty}\frac{x_n}{y_n}=A.$$

注: 和洛必达法则的情况一样,当

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}$$

不存在时,

$$\lim_{n\to\infty}\frac{x_n}{v_n}$$

仍可能存在.

定理**2.4.3** 设 (y_n) 单调下降趋向于 $0, (x_n) \rightarrow 0$, 若

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=A,$$

则

$$\lim_{n\to\infty}\frac{x_n}{y_n}=A.$$

注 条件 $(x_n) \rightarrow 0$ 是必要的, 比如 $x_n \equiv C$ 是一个矛盾.

例**2.1.15** 设 $\lim_{n\to\infty} a_n = A$, 证明

$$\lim_{n\to\infty}\frac{a_1+\cdots+a_n}{n}=A.$$

这个例子有多种证法,使用Stolz公式只需一步.

例**2.4.3** 设 $x_1 \in (0,1), x_{n+1} = x_n(1-x_n), \forall n \ge 1$. 证明 $nx_n \to 1, n \to \infty$.

证明: 单调收敛证明 $x_{n+1} < x_n$. 假设极限为x,则x = x(1-x),解的x = 0. 所以 $x_n \to 0$, $n \to \infty$. 从递推公式得到

$$\frac{1}{x_{n+1}} - \frac{1}{x_n} = \frac{1}{1 - x_n} \to 1, \quad n \to \infty.$$

由Stolz公式

$$\lim_{n \to \infty} n x_n = \lim_{n \to \infty} \frac{n}{x_n^{-1}} = \lim_{n \to \infty} \frac{n - (n - 1)}{x_n^{-1} - x_{n - 1}^{-1}} = \lim_{n \to \infty} \frac{1}{\frac{1}{1 - x_{n - 1}}} = 1.$$

不用**Stolz**公式的证法 和上面一样, x_n 单调收敛到0, 且有 $x_{n+1}^{-1} - x_n^{-1} = \frac{1}{1-x_n} \to 1$, $n \to \infty$. 则

$$\frac{1}{nx_n} = \frac{x_n^{-1}}{n} = \frac{\left(x_n^{-1} - x_{n-1}^{-1}\right) + \left(x_{n-1}^{-1} - x_{n-2}^{-1}\right) + \dots + \left(x_2^{-1} - x_1^{-1}\right) + x_1^{-1}}{n} \to \lim_{n \to \infty} \left(x_n^{-1} - x_{n-1}^{-1}\right) = 1.$$

上面最后一步用到了例2.1.15.

习题**2** 设 $\lim_{n\to\infty} n(a_n - A) = B, k$ 为正整数,则

$$\lim_{n \to \infty} n \left(\frac{a_1 + 2^k a_2 + \dots + n^k a_n}{n^{k+1}} - \frac{A}{k+1} \right) = \frac{B}{k} + \frac{A}{2}.$$

pf.

28 CHAPTER 2. -

 $\lim_{n \to \infty} \frac{(k+1)(a_1 + \dots + n^k a_n) - n^{k+1} A}{(k+1)n^k} = \lim_{n \to \infty} \frac{(k+1)\left((n+1)^k a_{n+1}\right) - \left((n+1)^{k+1} - n^{k+1}\right) A}{(k+1)\left((n+1)^k - n^k\right)}$ $= \lim_{n \to \infty} \frac{(k+1)\left[n^k + \binom{k}{1}n^{k-1} + o\left(n^{k-1}\right)\right] a_{n+1} - \left(\binom{k+1}{1}n^k + \binom{k+1}{2}n^{k-1} + o(n^{k-1})\right) A}{(k+1)\left(\binom{k}{1}n^{k-1} + o(n^{k-1})\right)}$ $= \lim_{n \to \infty} \frac{(k+1)\left[n + \binom{k}{1} + o(1)\right] a_{n+1} - \left(\binom{k+1}{1}n + \binom{k+1}{2} + o(1)\right) A}{(k+1)\left(\binom{k}{1} + o(1)\right)}$ $= \lim_{n \to \infty} \frac{(k+1)\left(n + k + o(1)\right) a_{n+1} - \left((k+1)n + \frac{k(k+1)}{2} + o(1)\right) A}{(k+1)(k+o(1))}$ $= \lim_{n \to \infty} \left(\frac{n\left(a_{n+1} - A\right)}{k + o(1)} - \frac{\frac{k(k+1)}{2}A}{(k+1)(k+o(1))} + \frac{k(k+1)a_{n+1} + o(1) \cdot (a_{n+1} - A)}{(k+1)(k+o(1))}\right)$ $= \frac{B}{k} - \frac{A}{2} + A$

其中

$$\lim_{n \to \infty} n(a_n - A) = B \Longrightarrow \lim_{n \to \infty} a_n = A + \lim_{n \to \infty} (a_n - A) = A + \lim_{n \to \infty} \frac{n(a_n - A)}{n} = A + \lim_{n \to \infty} \frac{B}{n} + \lim_{n \to \infty} \frac{n(a_n - A) - B}{n} = A + 0 + 0$$

习题**6** 设 $a_1 = 1$, $a_{n+1} = a_n + \frac{1}{2a_n}$, 证明 (1) $\lim_{n \to \infty} \frac{a_n}{\sqrt{n}} = 1$, (2) $\lim_{n \to \infty} \frac{a_n^2 - n}{\ln n} = \frac{1}{4}$. pf. (2) 由Stolz公式

$$\lim_{n \to \infty} \frac{a_n^2 - n}{\ln n} = \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2 - 1}{\ln(n+1) - \ln n}$$
$$= \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2 - 1}{\ln\left(1 + \frac{1}{n}\right)}$$

这启发我们去简化 $a_{n+1}^2 - a_n^2$ 项,由递推公式

$$a_{n+1} - a_n = \frac{1}{2a_n} \Longrightarrow a_{n+1}^2 - a_n^2 = \frac{a_{n+1} + a_n}{2a_n} = \frac{a_n + \frac{1}{2a_n} + a_n}{2a_n} = 1 + \frac{1}{4a_n^2} \Longrightarrow a_{n+1}^2 - a_n^2 - 1 = \frac{1}{4a_n^2}$$

$$\lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2 - 1}{\ln\left(1 + \frac{1}{n}\right)} = \lim_{n \to \infty} \frac{\frac{1}{4a_n^2}}{\frac{1}{n}} = \frac{1}{4} \lim_{n \to \infty} \frac{n}{a_n^2} = \frac{1}{4}.$$

习题**8** 设 $\lim_{n\to\infty} (a_{n+2}-a_n) = A$, 证明 (1) $\lim_{n\to\infty} \frac{a_n}{n} = \frac{A}{2}$, (2) $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{n} = 0$. pf. (1) 用stolz公式

$$\lim_{n \to \infty} \frac{a_n}{n} = \lim_{n \to \infty} \frac{a_{n+2} - a_n}{(n+2) - n} = \lim_{n \to \infty} \frac{a_{n+2} - a_n}{2} = \frac{A}{2}.$$

(2) 用stolz公式

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{n} = \lim_{n \to \infty} \frac{a_{n+3} - a_{n+1} - (a_{n+2} - a_n)}{(n+2) - n} = \lim_{n \to \infty} \left(\frac{a_{n+3} - a_{n+1}}{2} - \frac{a_{n+2} - a_n}{2} \right) = \frac{A}{2} - \frac{A}{2} = 0.$$

若 γ_n 单调上升趋于无穷,且

$$\lim_{n\to\infty}\frac{x_{n+k}-x_n}{y_{n+k}-y_n}=A,$$

则

$$\lim_{n\to\infty}\frac{x_n}{y_n}=A.$$

习题**9** 设 $\lim_{n\to\infty}(a_{n+1}-a_n)=A$,则

$$\lim_{n\to\infty}\frac{a_n}{n}=A.$$

Stolz公式不是万能的,比如

习题15 设

$$\lim_{n\to\infty}a_n=A,\quad \lim_{n\to\infty}b_n=B,$$

则

$$\frac{1}{n}(a_1b_n + a_2b_{n-1} + \dots + a_nb_1) = AB.$$

证明: 设 $a_n = A + \alpha_n$, $b_n = B + \beta_n$, 则问题不妨在A = B = 0时证明即可. 其实

$$\frac{1}{n} \sum_{k=1}^{n} a_k b_{n+1-k} = \frac{1}{n} \sum_{k=1}^{n} \left(AB + A\beta_{n+1-k} + B\alpha_k + \alpha_k \beta_{n+1-k} \right)
= AB + \frac{A}{n} \sum_{k=1}^{n} \beta_k + \frac{B}{n} \sum_{k=1}^{n} \alpha_k + \frac{1}{n} \sum_{k=1}^{n} \alpha_k \beta_{n+1-k}
= AB + A \cdot o(1) + B \cdot o(1) + M \cdot o(1) = AB + o(1).$$

上式最后用到收敛序列有界的结论.

2.3 连续函数

2.3.1 函数的极限

设 $x_0 \in \mathbb{R}, \delta > 0, (x_0 - \delta, x_0 + \delta)$ 称为 x_0 的开邻域. $(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$ 称为 x_0 的去心开邻域.

定义**3.1.1** 设f(x)定义在 x_0 的某个去心开邻域上, 若 $\exists A \in \mathbb{R}$, s.t. $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon, x_0) \in (0, \delta_0)$, $\exists 0 < |x - x_0| < \delta$ 时, 有

$$|f(x) - A| < \epsilon$$
.

则称f(x)在 x_0 处有极限A,记为

$$\lim_{x \to x_0} f(x) = A, \text{ or } f(x) \to A, \ x \to x_0.$$

注: 去心邻域说明f(x)在 $x = x_0$ 处可能没有定义. 可以类似的定义左右极限.

命题**3.1.1** f在 x_0 处有极限的充要条件是f在 x_0 的左右极限存在且相等.

命题**3.1.2** (夹逼原理) 设在 x_0 的一个空心领域内有

$$f_1(x) \le f(x) \le f_2(x).$$

若 f_1 , f_2 在 x_0 处的极限存在且等于A, 则f(x)在 x_0 处极限为A.

命题3.1.3 (极限唯一性) 函数极限存在必然唯一.

 ϵ – δ 语言是证明函数极限的最简单框架, 其难点仅在于对不等式的掌握情况, 比如重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

对应不等式

$$\cos x < \frac{\sin x}{x} < 1.$$

同样类似地给出涉及无穷大与无穷远时的函数极限的定义.

30 CHAPTER 2. -

习题**12** 设 f,g 为两个周期函数, 如果 $\lim_{x\to+\infty} [f(x)-g(x)]=0$, 则 f=g. 注: f,g的周期比可能是无理数, 所以f-g可能不是周期函数. pf. 设f的周期为T,g的周期为S. 则

$$f(x) - g(x) = f(x + nT) - g(x + nS)$$

$$= f(x + nT) - g(x + nT)$$

$$+ g(x + nT + nS) - f(x + nS + nT)$$

$$+ f(x + nS) - g(x + nS)$$

$$= \lim_{n \to \infty} f(x + nT) - g(x + nT)$$

$$+ \lim_{n \to \infty} g(x + nT + nS) - f(x + nS + nT)$$

$$+ \lim_{n \to \infty} f(x + nS) - g(x + nS)$$

$$= 0 + 0 + 0.$$

习题**13** 设 $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to 0} \frac{1}{x} [f(2x) - f(x)] = 0$, 证明 $\lim_{x\to 0} \frac{f(x)}{x} = 0$. pf. $\forall \epsilon > 0$, $\exists X > 0$, s.t. $\forall x > X$, $|f(x)| < \epsilon$, 且

 $|f(2x) - f(x)| \le \epsilon x.$

所以

$$\left| f(x) - f\left(\frac{x}{2^n}\right) \right| \le \epsilon x.$$

2.3.2 函数极限的性质

定理**3.1.5 (Heine,** 归结原则) 设f定义在 x_0 的某个去心领域上, f在 x_0 处极限为A的充要条件是 $\forall x_n \to x_0$, $(n \to \infty)$, 且 $x_n \neq x_0$, $(\forall n)$, 均有

$$\lim_{n\to\infty} f(x_n) = A.$$

证明: ⇒: 是容易的; ←: 用反证法,则

$$\exists \epsilon_0 > 0$$
, s.t. $\forall \delta > 0$, $\exists x_{\delta}$, s.t. $0 < |x_{\delta} - x_0| < \delta$,

但 $|f(x_{\delta}) - A| \ge \epsilon_0$. 取 $\delta = \frac{1}{n}$, 构造子列 $(x_n) \to x_0$, 但 $|f(x_n) - A| \ge \epsilon_0$. 矛盾. Heine定理可改述为: f(x)在 x_0 处有极限当且仅当, $\forall x_n \to x_0$, $(x_n \ne x_0)$, $\lim_{n \to \infty} f(x_n)$ 存在.

定理**3.1.6 (Cauchy**准则) 设f在 x_0 的空心领域上有定义,则f在 x_0 处有极限,iff, $\forall \epsilon > 0$, $\exists \delta > 0$,s.t. 当 $0 < |x' - x_0| < \delta$, $0 < |x'' - x_0| < \delta$ 时,有

$$|f(x') - f(x'')| < \epsilon.$$

注: 对于无穷远处极限有限时, Cauchy准则仍然成立. 给出Cauchy准则的否定表述.

定理**3.1.7**(单调有界原理) 设f定义在 $(x_0 - \delta, x_0)$ 上,若f单调上升有上界,或f单调下降有下界,则f在 x_0 有左极限.

定理**3.1.8** (1). (局部有界原理) 若f在 x_0 处有有限极限,则f在 x_0 的某空心领域内有界. (2). (保序性)

$$\begin{split} \lim_{x \to x_0} f(x) &= A, \ \lim_{x \to x_0} g(x) = B, \ f(x) \geq g(x), \Longrightarrow A \geq B. \\ \lim_{x \to x_0} f(x) &= A, \ \lim_{x \to x_0} g(x) = B, \ A > B, \Longrightarrow \exists U_{x_0}^{\circ} \ s.t. \ f(x) > g(x), \ \forall x \in U_{x_0}^{\circ}. \end{split}$$

(3). (四则运算)

定理**3.1.9** (复合函数极限) 设 $f(y) \to A$, $y \to y_0$; $g(x) \to y_0$, $x \to x_0$, 且 $\exists U_{x_0}^\circ$, s.t. $\forall x \in U_{x_0}^\circ$, $g(x) \neq y_0$, 则 $f(g(x)) \to A$, $x \to x_0$. 这个定理说明极限定义中去心领域的重要性, 定理中 $y_0 \notin g(U_{x_0}^\circ)$ 不可以弱化为: 存在收敛于 x_0 的序列 (x_n) , 使得 $g(x_n) \neq y_0$, $\forall n$. 比如

$$f(y) = \begin{cases} 1, & y \neq 0, \\ 0, & y = 0, \end{cases} \quad g(x) \equiv 0, \ y_0 = 0.$$

当 f 在 vo 处连续时, 这个去心领域的条件又可以去掉, 这说明研究连续函数是有价值的.

2.3.3 无穷小量与无穷大量的阶

定义**3.2.1** (无穷小量与无穷大量) 若函数f在 x_0 处的极限是0,则称f在 $x \to x_0$ 时为无穷小量,记为 $f(x) = o(1), (x \to x_0); 若x \to x_0$ 时, $|f| \to +\infty$,则称f在 $x \to x_0$ 时为无穷大量.

在无穷远处也可以定义无穷小量和无穷大量,数列也可以定义无穷小量和无穷大量.

定理**3.2.1** (等价代换) 设 $x \to x_0$ 时, $f \sim f_1$, $g \sim g_1$, 若 $\frac{f_1}{g_1}$ 在 x_0 处有极限, 则 $\frac{f}{g}$ 在 x_0 处有极限, 且极限相等. 几个常用的等价代换:

$$\tan x \sim \sin x \sim x \sim e^x - 1 \sim \ln(1+x).$$

无穷小量的性质: 习题4. 设 $f(x) = o(1), (x \to x_0)$, 证明, 当 $x \to x_0$ 时, 有

- (1) o(f(x)) + o(f(x)) = o(f(x)).
- (2) o(cf(x)) = o(f(x)), 其中c是常数.
- (3) $g(x) \cdot o(f(x)) = o(f(x)g(x))$, 其中g(x)是有界函数.
- (4) $[o(f(x))]^k = o(f^k(x)).$

2.3.4 连续函数

用来刻画连续变化的量

定义**3.3.1** (连续性) 若f在 x_0 的某领域上有定义,且f在 x_0 处的极限是 $f(x_0)$,则称f在点 x_0 处连续, x_0 称为f的连续点. 类似地可以定义左右连续. 在定义域上每一点都连续的函数称为连续函数.

f在 x_0 处下半连续: $\forall \epsilon > 0$, $\exists \delta > 0$, $\exists |x - x_0| < \delta$ 时, 总有 $f(x) > f(x_0) - \epsilon$. f在 x_0 处上半连续: $\forall \epsilon > 0$, $\exists \delta > 0$, $\exists |x - x_0| < \delta$ 时, 总有 $f(x) < f(x_0) + \epsilon$.

连续函数的基本性质: (1). 保持四则运算;

(2). 若f,g连续,则 $\max\{f,g\}$ 和 $\min\{f,g\}$ 均连续.

定理**3.3.2** (复合函数连续性) 设f在 y_0 处连续, $g(x) \rightarrow y_0, x \rightarrow x_0$, 则

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right) = f(y_0).$$

当g在 x_0 处连续时, f(g(x))在 x_0 处连续.

定义**3.3.2** 设 x_0 是f(x)的间断点,如果 $f(x_0-0)$, $f(x_0+0)$ 均存在且有限,则称 x_0 是第一类间断点,否则,称为第二类间断点.按照左右极限不相等和相等来区分跳跃间断点和可去间断点.

命题**3.3.3** 设f(x)在[a,b]上单调, $x_0 \in (a,b)$ 是f(x)的间断点, 则 x_0 是跳跃间断点.

命题**3.3.4** 设f(x)定义在区间I上的单调函数,则f(x)的间断点至多可数.

证明: 间断点x与开区间 $(f(x_0-0), f(x_0+0))$ ——对应且至多可数.

命题**3.3.5** 若f(x)定义在区间I上严格单调,则f(x)连续当且仅当f(I)也是区间.

证明: \Longrightarrow : 用介值定理. \Longleftrightarrow : 反证法,则有 x_0 使得 $(f(x_0-0),f(x_0+0))$ 不在区间f(I)内,矛盾.

CHAPTER 2. -

推论**3.3.6** 定义在区间I上的严格单调连续函数f(x)一定可逆,且其逆严格单调连续.

2.3.5 闭区间上连续函数的性质

依赖实数系的基本性质

定理**3.4.1** (有界性定理) 设 $f \in C[a,b]$,则f在[a,b]上有界.

证法一: 反证法, 取 $|f(x_n)| \ge n$, 由聚点定理 $\Rightarrow x_{n_k} \to x_0 \in [a,b]$, f连续使得 $f(x_{n_k}) \to f(x_0)$ 有界, 矛盾.

证法二: 连续点x处有领域 $U_x(\delta_x)$,使得其上 $|f-f(x)| \le 1$,这样的 (U_x) 形成[a,b]的覆盖,用有限覆盖定理.

定理**3.4.2** (最值定理) 设 $f(x) \in C[a,b]$,则f(x)在[a,b]上取到最值.

证法一: f有界, [a,b]闭, 所以逼近上确界的点列 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$, 再由f连续得到最值点.

证法二: 反证法,设 $f < M := \sup f$,构造 $F(y) = \frac{1}{M - f(y)} \in C[a,b]$,同样有界F(y) < K, K > 0,则 $\frac{1}{M - f(y)} < K$ 得出

$$\sup_{x} f(x) = M > f(y) + \frac{1}{K} \Longrightarrow \sup_{x} f(x) \ge \sup_{y} f(y) + \frac{1}{K} > \sup_{x} f(x).$$

一般区间上连续函数最值判别法:

命题**5.1.3** 设f ∈ $C(\mathbb{R})$, 且

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty \; (\text{Did} - \infty).$$

则 f在R上达到最小(大)值.

定理**3.4.3** (零点定理**, Bolzano**) 设 $f \in C[a,b]$, f(a)f(b) < 0, 则存在 $\xi \in (a,b)$, s.t. $f(\xi) = 0$.

证法一: 区间二分法+区间套定理.

证法二: 用连续函数的保号性,构造

$$A = \{x \in [a, b] : f(x) < 0\},\$$

取 $\xi = \sup A$,则有 $x_n \in A$, $x_n \to \xi$, $f(x_n) < 0$, 所以 $f(\xi) \le 0$. 反之, 在 (ξ, b) 上 $f \ge 0$, 取 $x_n \downarrow \xi$,则 $f(x_n) \ge 0 \Longrightarrow f(\xi) = 0$.

定理**3.4.4** (介值定理) 设 $f \in C[a,b], \mu^{m}$ 格介于f(a)与f(b)之间,则存在 $\xi \in (a,b)$, s.t. $f(\xi) = \mu$.

推论**3.4.5** 设f(x)是[a,b]上的连续函数,则f([a,b]) = [m,M],其中m,M是f在[a,b]上的最小值,最大值.

推论**3.4.6** 设区间I上, $f(x) \in C(I)$, 则f(I)是区间. (可以退化为单点集)

注: 区间I可以无界,可以是开集.

推论**3.4.7** 设f(x)是区间I上的连续函数,则f(x)可逆的充要条件是f(x)严格单调.

2.3.6 一致连续性

定义**3.4.1** (一致连续) 设f(x)定义在区间I上, 若 $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$, s.t. 当 $x_1, x_2 \in I$, $|x_1 - x_2| < \delta$ 时, 有 $|f(x_1) - f(x_2)| < \epsilon$, 则称f(x)在I中一致连续.

否定表述: f(x)在I中不一致连续: $\exists \epsilon_0 > 0$, 以及 (a_n) , $(b_n) \subseteq I$, 且 $a_n - b_n \to 0$, $(n \to \infty)$. 有 $|f(a_n) - f(b_n)| \ge \epsilon_0$.

定理3.4.9 (Cantor定理) 闭区间上, 连续函数一致连续.

证法一: (反证), $\exists \epsilon_0 > 0$, (a_n) , $(b_n) \subseteq [a,b]$, $a_n - b_n \to 0$, $n \to \infty$, $\exists |f(a_n) - f(b_n)| \ge \epsilon_0$. 用聚点定理取 (b_n) 的收敛子列 $b_{n_k} \to x_0 \in \mathbb{R}$ [a,b],则 $a_{n_k} \rightarrow x_0$,取极限.

证法二: 用连续性构造有限覆盖开集.

定义**3.4.2** (振幅, 连续性模) 设f(x)在 x_0 的开邻域内有定义, 称

$$\omega_f(x_0, r) = \sup\{|f(x') - f(x'')| : x', x'' \in B_{x_0}(r)\}, \quad r > 0.$$

为f在 $(x_0 - r, x_0 + r)$ 上的振幅, 显然, $\omega_f(x_0, r)$ 关于 $r \to 0$ +递减, 故

$$\omega_f(x_0) = \lim_{r \to 0+} \omega_f(x_0, r)$$

存在, (不一定有限). 称为f在点 x_0 处的振幅.

注: 定义提到的是两种振幅, 分别表征函数 f 在"区间"上和在"一点"上的振幅.

命题**3.4.10** f(x)在 x_0 处连续的充要条件是 $\omega_f(x_0) = 0$.

命题**3.4.11** f(x)在I中一致连续的充要条件是

$$\lim_{r\to 0+}\omega_f(r)=0,$$

其中

$$\omega_f(r) = \sup \{ |f(x') - f(x'')| : \forall x', x'' \in I, |x' - x''| \le r \}.$$

连续函数的积分

积分定义: 设 $f \in C[a,b]$, 直线x = a, x = b, y = 0与曲线f(x)的图像在平面上所围成图形的面积用 $\int_a^b f(x) dx$ 来表示, 称 为f在[a,b]上的积分.

命题**3.5.1** 设 $f \in C[a,b]$, $f_n(x)$ 是分段线性函数, 是将[a,b]进行n等分, 分点 $x_i = a + \frac{i}{n}(b-a)$, 在 $x \in [x_{i-1},x_i]$ 时

$$f_n(x) = l_i(x) = f(x_{i-1}) + \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} (x - x_{i-1}).$$

则 $\forall \epsilon > 0$, $\exists N = N(\epsilon)$, $\exists n > N$ 时,

$$|f(x) - f_n(x)| < \epsilon, \quad \forall x \in [a, b].$$

即 $f_n(x) \Rightarrow f(x)$. 进而

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} \left[f(x_{i-1}) + f(x_{i}) \right] \cdot \frac{b-a}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x_{i}.$$

积分的基本性质 约定 $\int_a^a f(x) dx = 0$, $\int_b^a f(x) dx = -\int_a^b f(x) dx$. (1) (线性性) $f,g \in C[a,b]$, $\alpha,\beta \in \mathbb{R}$, 则

$$\int_{a}^{b} \left(\alpha f(x) + \beta g(x) \right) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

(2) 若 $|f(x)| \le M$, $\forall x \in [a,b]$, 则

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le M(b - a).$$

(3) (保序性) 若 $f \ge g$, $f,g \in C[a,b]$, 则 $\int_a^b f \ge \int_a^b g$. 特别地,

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} \left| f(x) \right| \, \mathrm{d}x.$$

(4) (区间可加性) 设 $f \in C(I)$, $a, b, c \in I$, 则

$$\int_a^c f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x + \int_b^c f(x) \, \mathrm{d}x.$$

(5) 若 $f(x) \in C[a, b]$, 非负,则 $\int_{a}^{b} f(x) \ge 0$, 等号仅当f = 0时取到.

例**3.5.4** 设 $f \in C[a,b]$, $c \in [a,b]$, 定义 $F(x) = \int_{c}^{x} f(t) dt$, $x \in [a,b]$, 则F是Lipschitz函数.

证明:

$$|F(x_2) - F(x_1)| \le M \int_{x_1}^{x_2} dt.$$

命题**3.5.2** (积分中值定理) 设 $f,g \in C[a,b]$, 若g不变号, 则 $\exists \xi \in [a,b]$, s.t.

$$\int_{a}^{b} f(x)g(x) dx = f(\xi) \int_{a}^{b} g(x) dx.$$

证明: 用连续函数介值定理.

例**3.5.10** 设 $f \in C[0,a]$, 定义

$$f_0(x) = f(x), \quad f_n(x) = \int_0^x f_{n-1}(t) dt, \quad n = 1, 2, \cdots.$$

证明: 存在 $\xi = \xi_{n,x} \in [0,x]$, s.t. $f_n(x) = f(\xi) \frac{x^n}{n!}$.

证明:

$$m\frac{x^n}{n!} \le \int_0^x f_{n-1}(t) \, \mathrm{d}t \le M\frac{x^n}{n!},$$

用介值定理.

例3.5.12 求连续函数f满足

$$f(x + y) = f(x) + f(y), \quad \forall x, y \in \mathbb{R}.$$

证明: 此题的条件可以弱化为 f是可积函数. 取积分

$$\int_0^y f(x+t) dt = \int_x^{x+y} f(t) dt = \int_0^y f(x) dt + \int_0^y f(t) dt,$$

所以

$$\int_0^{x+y} f(t) dt = y f(x) + \int_0^x f(t) dt + \int_0^y f(t) dt.$$

交换x, y的位置即得yf(x) = xf(y), 再取y = 1.

例3.5.15 设 $f \in C[a,b]$, g是周期为T的连续函数,则

$$\lim_{n \to \infty} \int_a^b f(x)g(nx) \, \mathrm{d}x = \frac{1}{T} \int_a^b f(x) \, \mathrm{d}x \int_0^T g(x) \, \mathrm{d}x.$$

2.3.8 作业

16. 设 0 < a < b, $a_1 = a$, $b_1 = b$.

(1) 如果 $a_{n+1} = \sqrt{a_n b_n}$, $b_{n+1} = \frac{1}{2} (a_n + b_n)$, 则 $\{a_n\}$ 和 $\{b_n\}$ 收敛于同一极限.

(2) 如果 $a_{n+1} = \frac{1}{2} (a_n + b_n), b_{n+1} = \frac{2a_nb_n}{a_n+b_n}$,则 $\{a_n\}$ 和 $\{b_n\}$ 收敛于同一极限.

pf. (1). 因为 $a_1, b_1 > 0$, 由 $a_n, b_n > 0$ 可以得到,

$$a_{n+1} = \sqrt{a_n b_n} > 0, \ b_{n+1} = \frac{a_n + b_n}{2} > 0.$$

即由归纳法, $\{a_n\}$, $\{b_n\}$ 均是正数数列.

由均值不等式,

$$a_{n+1} = \sqrt{a_n b_n} \le \frac{a_n + b_n}{2} = b_{n+1}, \quad n \ge 1.$$

又由 $a_1 = a < b = b_1$,故对于任意的 $n \in \mathbb{N}$,有 $a_n \leq b_n$.于是

$$b_{n+1} = \frac{a_n + b_n}{2} \le \frac{b_n + b_n}{2} = b_n,$$

知 $\{b_n\}$ 单调递减; 同理, 由

$$a_{n+1} = \sqrt{a_n b_n} \ge \sqrt{a_n a_n} = a_n,$$

知 $\{a_n\}$ 单调上升. 于是

$$a_1 \le a_2 \le \cdots \le a_n \le b_n \le b_{n-1} \le \cdots \le b_1$$
.

这说明 $\{a_n\}$ 是单调上升的有界序列,上界是 b_1 ; $\{b_n\}$ 是单调下降的有界序列,下界是 a_1 .

由于单调有界序列必然收敛, 可设 $a_n \to a$, $b_n \to b$, $(n \to \infty)$. 对 $b_{n+1} = \frac{a_n + b_n}{2}$ 两边同时取极限 $\lim_{n \to \infty}$ 得到

$$b = \frac{a+b}{2} \iff a = b.$$

即 $\{a_n\}$ 和 $\{b_n\}$ 收敛于同一极限.

13. 设 f(x) 是 (a,b) 中定义的无第二类间断点的函数, 如果对任意的两点 $x, y \in (a,b)$, 均有

$$f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}[f(x) + f(y)],$$

则 f 为 (a,b) 中的连续函数.

pf. 用反证法, 若f(x)在(a,b)上不连续, 则存在 $x_0 \in (a,b)$, 使得f在 x_0 处为第一类间断点(因为f没有第二类间断点).

若f在 x_0 处为跳跃间断点,则 $f(x_0-0)$ 和 $f(x_0+0)$ 均存在且不相等,不妨设 $f(x_0-0) < f(x_0+0)$,取 $\epsilon < \frac{f(x_0+0)-f(x_0-0)}{4}$,则存在 $\delta > 0$,使得对于任何 $x \in (x_0-\delta,x_0)$,

$$f(x_0 - 0) - \epsilon < f(x) < f(x_0 - 0) + \epsilon$$
;

且对于任何 $y \in (x_0, x_0 + \delta)$,

$$f(x_0+0)+\epsilon > f(y) > f(x_0+0)-\epsilon.$$

特别的

$$f\left(x_0 + \frac{\delta}{8}\right) = f\left(\frac{x_0 - \frac{\delta}{4} + x_0 + \frac{\delta}{2}}{2}\right) > f(x_0 + 0) - \epsilon > \frac{3f(x_0 + 0) + f(x_0 - 0)}{4}.$$

而

$$\frac{1}{2}\left(f\left(x_0-\frac{\delta}{4}\right)+f\left(x_0+\frac{\delta}{2}\right)\right)<\frac{1}{2}\left(f(x_0-0)+\epsilon+f(x_0+0)+\epsilon\right)\leq \frac{3f(x_0+0)+f(x_0-0)}{4},$$

这与

$$f\left(\frac{x_0 - \frac{\delta}{4} + x_0 + \frac{\delta}{2}}{2}\right) \le \frac{1}{2}\left(f\left(x_0 - \frac{\delta}{4}\right) + f\left(x_0 + \frac{\delta}{2}\right)\right)$$

矛盾.

若f在 x_0 处是跳跃间断点,则 $f(x_0\pm 0)$ 均存在且不等于 $f(x_0)$. 取 $x=x_0-t$, $y=x_0+t$, 并令 $t\to 0$,则

$$f\left(\frac{x+y}{2}\right) = f(x_0) \le \frac{f(x_0+t) + f(x_0-t)}{2} \to \lim_{x \to x_0} f(x), \quad t \to 0$$

即 $f(x_0) < \lim_{x \to x_0} f(x)$. 取 $x = x_0, y = x_0 + t$, 并令 $t \to 0+$, 则

$$f\left(\frac{t}{2}+x_0\right)=f\left(\frac{x+y}{2}\right)\leq \frac{f(x_0)+f(x_0+t)}{2}\Longrightarrow \lim_{x\to x_0}f(x)\leq \frac{f(x_0)+\lim_{x\to x_0}f(x)}{2}\Longrightarrow \lim_{x\to x_0}f(x)\leq f(x_0).$$

又矛盾.

15. 设 f 为 \mathbb{R} 上的连续函数, 如果对任意的 $x,y \in \mathbb{R}$ 均有 f(x+y) = f(x)f(y), 则要么 f 恒为零, 要么存在常数 a > 0, 使得 $f(x) = a^x$, $\forall x \in \mathbb{R}$.

pf. 若f不恒为零,则由于f连续,f在 \mathbb{R} 上保持符号.不然则由连续函数的介值定理,存在 x_0 使得 $f(x_0)=0$,则对于任意的 $x\in\mathbb{R}$,

$$f(x) = f(x_0) f(x - x_0) \equiv 0.$$

与 f 不恒为零矛盾.

f不能恒为负值,不然 $f(2x) = f(x)^2 \Longrightarrow f(2x) > 0$ 导致f在R上不再保持符号,与上述推导矛盾.所以f在R恒为正.取 $g(x) = \ln f(x)$,由于f的连续性,g(x)也是R上的连续函数.并有

$$g(x + y) = \ln f(x + y) = \ln (f(x)f(y)) = \ln f(x) + \ln f(y) = g(x) + g(y).$$

由于g连续, 所以g(x) = g(1)x. 令c = g(1), a = f(1) > 0, 即有 $\ln f(x) = cx = x \ln f(1) = \ln a^x$, $f(x) = a^x$. (14题的结论是经典结论, 任何时候都可以直接拿来用)

1. 设 f 在 $[a, +\infty)$ 中连续, 且 $\lim_{x\to +\infty} f(x) = A$, 则 f 在 $[a, +\infty)$ 中有界, 且最大值和最小值中的一个必定能被 f 达到. pf1. 考虑函数

$$g(t) \coloneqq \sup_{x \ge t} f(x),$$

则g(t)是 $[a,+\infty)$ 上连续的递减函数. 且

$$\lim_{t\to\infty}g(t)=\limsup_{x\to\infty}f(x)=\alpha.$$

所以 $g(t) \ge \alpha$.

如果存在t使得 $g(t) > \alpha$, 也即 $\sup_{x>t} f(x) > \alpha$, 取 $\epsilon < \sup_{x>t} f(x) - \alpha$, 则有X > t, s.t. $\forall x > X$,

$$\left| f(x) - \alpha \right| < \epsilon \Longrightarrow f(x) < \alpha + \epsilon \Longrightarrow \sup_{x > X} f(x) \le \alpha + \epsilon < \sup_{x \ge t} f(x),$$

这说明f(x)在 $[t,\infty)$ 上的上确界不可能在 $[X,\infty)$ 上取到,即

$$\sup_{x \ge t} f(x) = \sup_{t \le x \le X} f(x) \Longrightarrow \sup_{x \ge a} f(x) = \sup_{a \le x \le X} f(x)$$

即 f(x)在[a,X]上存在最大值, 也即 f(x)在[a,∞)上存在最大值.

若对于任何t, $g(t) = \alpha$. 也即

$$\sup_{x > t} f(x) = \alpha, \quad \forall t \ge a.$$

当 f(x)不为常数时,则必然有 $f(x_0) < \alpha$. 取 $\epsilon < \alpha - f(x_0)$,则有 $X > x_0$, s.t. $\forall x > X$

$$|f(x) - \alpha| < \epsilon \Longrightarrow f(x) > \alpha - \epsilon > f(x_0).$$

所以f(x)必然在[a,X]中取到最小值.

pf2. f(x)在[a,∞)不恒为常数.

因为 $f(x) \to \alpha, x \to \infty$,则有点列 $\{x_n\}$,使得 $f(x_n) \to \alpha, f(x_1) \neq \alpha$ (因为f不恒为常数).

因为 $f(x_1) \neq \alpha$,则取 $\epsilon < |f(x_1) - \alpha|$,有 $X > x_1$, s.t. $\forall x > X$,

$$|f(x) - \alpha| < \epsilon < |f(x_1) - \alpha|,$$

这意味着在[a,X]内存在点x₁的函数值 $f(x_1)$ 远离($\alpha - \epsilon, \alpha + \epsilon$).

当 $f(x_1)>\alpha$ 时, f(x)在[a,X]上存在最大值 $M \geq f(x_1)$, 而在 (X,∞) , $f(x) \leq \alpha + \epsilon < f(x_1) \leq M$. 最大值存在性得证.

当 $f(x_1) < \alpha$ 时, f(x)在[a,X]上存在最小值 $m \le f(x_1)$, 而在(X,∞), $f(x) \ge \alpha - \epsilon > f(x_1) \ge m$. 最小值存在性得证.

3. 设 $b, \alpha > 0$, 求积分 $\int_0^b x^\alpha dx$, 利用积分计算极限

$$\lim_{n\to\infty}\frac{1^{\alpha}+2^{\alpha}+\cdots+n^{\alpha}}{n^{\alpha+1}}.$$

8. 设 $f \in C[a,b]$, 如果对于任意的 $g \in \{g \in C[a,b]: g(a) = g(b) = 0\}$, 均有 $\int_a^b f(x)g(x) \, \mathrm{d}x = 0$, 则 $f \equiv 0$. 此题类比变分基本定理.

9. 设 $f \in C[a,b]$, 如果对于任意的 $g \in \{g \in C[a,b]: \int_a^b g(x) dx = 0\}$, 均有 $\int_a^b f(x)g(x) dx = 0$, 则f = C为常函数. 提示: 设f的平均值为C, 考虑g = f - C和 g^2 的积分.

12. 设f ∈ C[a,b], 则

$$\lim_{n \to +\infty} \left(\int_a^b \left| f(x) \right|^n \mathrm{d}x \right)^{1/n} = \max_{x \in [a,b]} \left| f(x) \right|.$$

14. 设 $f,g \in C[a,b]$, 且f,g > 0, 证明

$$\lim_{n\to\infty} \frac{\int_a^b f^{n+1}(x)g(x) \, \mathrm{d}x}{\int_a^b f^n(x)g(x) \, \mathrm{d}x} = \max_{x\in[a,b]} f(x).$$

17. 设f(x) ∈ $C[0,+\infty)$ 严格单调递增,则

$$F(x) = \begin{cases} \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t, & x > 0, \\ f(0), & x = 0 \end{cases}$$

也是严格单调递增连续函数.

18. 设 $f(x) \in C[a,b], f > 0$,则

$$\lim_{r\to 0+} \left(\frac{1}{b-a} \int_a^b f^r(x) \, \mathrm{d}x\right)^{1/r} = \exp\left(\frac{1}{b-a} \int_a^b \ln f(x) \, \mathrm{d}x\right),$$

并用Hölder不等式说明上式左端关于r单调递增.

2.4 微分及其逆运算

2.4.1 可导与可微

研究函数的局部性质

定义**4.1.1** (导数) 设f在 x_0 附近有定义,如果极限

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

存在且有限,则称f在 x_0 处可导,极限称为f在 x_0 处的导数,记为 $f'(x_0)$, $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$. 用 $\epsilon-\delta$ 语言表述.

命题**4.1.1** 设f在 x_0 处可导,则f在 x_0 处连续.

命题**4.1.2** (导数的运算法则) 设f,g在x处可导,则fg也在x处可导;对于任意的常数 α , β , αf + βg 也在x处可导.且

- (1). $(\alpha f + \beta g)' = \alpha f' + \beta g'$, (线性性);
- (2). (fg)' = f'g + fg'. (导性).

推论**4.1.3** 设f,g在 x_0 处可导, $g(x_0) \neq 0$,则 $\frac{f}{g}$ 在 x_0 处也可导,且

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

可以用导数表述曲线在一点处的切线和法线,事实上仅仅是用导数给出了切线和法线的定义,属于先有导数的概念才有的切线和法线的概念.

定义**4.1.2** (微分) 设f在点 x_0 附近有定义,如果存在常数A,使得

$$f(x) = f(x_0) + A(x - x_0) + o(x - x_0),$$

则称f在 x_0 处可微,线性映射 $x \mapsto Ax$ 称为f在 x_0 处的微分,记为 $df(x_0)$.

命题**4.1.4** 设f在 x_0 附近有定义,则f在 x_0 处可导当且仅当f在 x_0 处可微,且微分的斜率就是导数 $f'(x_0)$.

可导对应函数在一点差商存在极限,可微对应函数的局部线性化,产生线性变换的主项. f在x处的微分是一个斜率为f'(x)的 线性映射, 当x变化时, 线性映射也变化, 即 $x \mapsto df(x)$ 是一个新的映射, 记为df, 称为f的外微分或全微分.

x的全微分dx把任意点x映为x处的恒等映射.

因为df(x)和dx都是线性变换, 所以有df = f'(x)dx.

把形如fdx的表达式(f为函数)称为1次微分形式.

可以把微分运算看做升维运算, 把x和dx看做两个独立的变量, dx就是 Δx , 它与x的选取无关. df把单变量函数f映射为二元 函数df(x) = f'(x)dx.

命题**4.1.5** (链式法则) 设g在 x_0 处可导, f在 $g(x_0)$ 处可导, 则复合函数 $f \circ g = f(g)$ 在 x_0 处可导, 且

$$(f(g))'(x_0) = f'(g(x_0))g'(x_0).$$

证明依赖于下式

$$f(g(x)) = f(g(x_0)) + f'(g(x_0))(g(x) - g(x_0)) + o(g(x) - g(x_0))$$

= $f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + f'(g(x_0))o(x - x_0) + o(x - x_0)$
= $f(g(x_0)) + f'(g(x_0))g'(x_0)(x - x_0) + o(x - x_0)$

命题**4.1.6** (反函数求导法则) 设f在 x_0 附近有定义,且反函数为g. 若f在 x_0 处可导,且导数非零,则g在 $y_0 = f(x_0)$ 处可导,且

$$g'(y_0) = \frac{1}{f'(x_0)}.$$

这个定理并没有要求f在 x_0 附近每点上都连续. 导数 $f'(x_0) \neq 0$ 的条件不能省掉, 否则考虑 $f(x) = x^3$.

命题**4.1.8** 设f,g可微,则

- (1) $d(\alpha f + \beta g) = \alpha df + \beta dg$, 其中 α , β 为常数;
- (2) d(fg) = gdf + fdg; (3) $d(f/g) = \frac{gdf fdg}{g^2}$, $\sharp \vdash g \neq 0$.

命题**4.1.9** 设f,g均可微,且复合函数f(g)有定义,则

$$d(f(g)) = f'(g)dg.$$

2.4.2 高阶导数

本节没有太多复杂的知识点,仅做一些结论的罗列.

定义**4.2.1** (高阶导数) 设f在 x_0 附近可导,如果导数f'在 x_0 处仍可导,则称f在 x_0 处2阶可导.记为

$$f''(x_0) = (f')'(x_0),$$

并称为f在 x_0 处的2阶导数.

一般地, 如果f在 x_0 附近n ($n \ge 1$) 阶可导, 且n阶导函数 $f^{(n)}$ 在 x_0 处可导, 则称f在 x_0 处n+1阶可导, 记为

$$f^{(n+1)}(x_0) = (f^{(n)})'(x_0),$$

称为f的n+1阶导数.

注: f的2阶导数要求 f'在 x_0 附近有定义, 也就是对于 x_0 附近的x能够计算 f'(x)的值. 另有一种用差分方法定义的二阶导数, 比如

$$\lim_{h\to 0}\frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

它避免了计算f'(x),而且允许一阶导数不存在,而仅存在二阶导数.一般用于推广导数的概念.

定义**4.2.2** 若f在区间I上的每点都n阶可导,则称f在I中n阶可导;如果f可导,且导函数f'连续,则称f(1阶)连续可导,记为f ϵ $C^1(I)$; 一般n阶连续可导记为 $f \in C^n(I)$. 如果f有任意阶导数, 则称f是光滑的, 记为 $f \in C^{\infty}(I)$.

例4.2.3 可微函数的导函数不一定连续.

尽管导函数连续性丧失,但仍有介值定理成立,也就是Darboux介值定理.

例**4.2.4** 设 $k = 1, 2, \dots$,则函数

$$f(x) = \begin{cases} x^{2k+1} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

有 $f \in C^k \setminus C^{k+1}$.

例4.2.5 证明函数

$$f(x) = \begin{cases} 0, & x \le 0 \\ e^{-\frac{1}{x}}, & x > 0 \end{cases}$$

是光滑函数.

命题**4.2.1** 设f,g均为n阶可导函数,则

- $(1)\;(\alpha f+\beta g)^{(n)}=\alpha f^{(n)}+\beta g^{(n)},\,\forall\alpha,\beta\in\mathbb{R};$
- (2) (Leibniz)

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n-k)} g^{(k)}.$$

2.4.3 不定积分

命题**4.3.1** 设f为区间I上的可微函数,则f'=0当且仅当f=C.

此定理使用中值定理证明最为简洁,书中使用的方法可以归为极端原理.

定义**4.3.1** (原函数) 方程F'(x) = f(x)的一个可微解F称为函数f的一个原函数.

定义**4.3.2** (不定积分) 设函数 f在区间I上有原函数,用记号 $\int f(x) dx$ 表示 f的原函数的一般表达式,则

$$\int f(x)dx = F(x) + C, \quad x \in I,$$

其中C为常数.

定理**4.3.2** (Newton-Leibniz) 区间I中的连续函数都有原函数. 设f连续, $a \in I$, 则

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in I$$

是f的一个原函数.

需要注意Darboux介值定理,将来会遇到有间断点的可积函数,其变限积分在间断点处不可微,所以不能形成一般非连续函数的原函数。

此定理称为微积分基本定理,它有其它形式:

设 $f \in C(I)$, $F \mapsto f$ 的任一原函数, 则存在常数C, 使得, $F(x) = \int_a^x f(t)dt + C$, 所以

$$\int_a^b f(x)dx = F(b) - F(a) = F|_a^b.$$

另有一种表述是当G连续可微时,

$$\int_{a}^{b} G'(x) dx = G(b) - G(a) = G \Big|_{a}^{b}.$$

上式对于 C^1 函数总是对的, 但需要注意Volterra函数, 它在定义的区间上处处可导, 且导函数有界, 但导函数不可定积分.

命题**4.3.3** (不定积分的线性性质) 设f,g在区间I上均有原函数,则

$$\int [\alpha f(x) + \beta g(x)] dx = \alpha \int f(x) dx + \beta \int g(x) dx,$$

其中 α , β 为常数.

命题**4.3.4** 设f的原函数为F, 若f可逆, 且 $g = f^{-1}$, 则

$$\int g(x)dx = xg(x) - F(g(x)) + C.$$

2.4.4 积分的计算

命题**4.4.1** (换元积分法**,** 变量替换法**)** 设f(u)是区间J上有定义的函数, $u = \phi(x)$ 是区间I中的可微函数, 且 $\phi(I) \subset J$. (1) 设f在J上的原函数是F, 则 $F(\phi)$ 是 $f(\phi)\phi'$ 在区间I上的原函数, 即

$$\int f(\phi(x))\phi'(x)dx = \int f(u)du + C = F(\phi(x)) + C;$$

(2) 设 ϕ 可逆, 且其逆可微, $\phi(I) = J$. 如果 $f(\phi(x))\phi'(x)$ 有原函数G, 则f有原函数 $G(\phi^{-1}(u))$, 即

$$\int f(u)du = G(\phi^{-1}(u)) + C.$$

命题**4.4.2** (分部积分法) 设u(x), v(x)在区间I中可微, 若u'(x)v(x)有原函数, 则u(x)v'(x)也有原函数, 且

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx.$$

例**4.4.10** 设 $a \neq 0$, 求不定积分 $I = \int e^{ax} \cos bx dx$ 和 $J = \int e^{ax} \sin bx dx$.

例4.4.18 求不定积分

$$\int \frac{1 - r^2}{1 - 2r\cos x + r^2} dx, \qquad 0 < r < 1.$$

不能用初等函数表述的不定积分:

$$e^{\pm x^2}$$
, $\sin(x^2)$, $\cos(x^2)$, $\frac{\sin x}{x}$, $\frac{\cos x}{x}$, $\sqrt{1 - k^2 \sin^2 x}$, $\frac{1}{\sqrt{1 - k^2 \sin^2 x}}$, $(0 < k < 1)$.

2.4.5 作业

- 19. 设 $a_{ij}(x)$ 均为可导函数, 求行列式函数 $\det(a_{ij}(x))_{n\times n}$ 的导数.
 - 20. Riemann函数R(x)处处不可导.
 - 11. 通过对 (1-x)" 求导并利用二项式定理证明等式

$$\sum_{k=0}^{n} (-1)^{k} C_{n}^{k} k^{m} = \begin{cases} 0, & m = 0, 1, \dots, n-1, \\ (-1)^{n} n!, & m = n. \end{cases}$$

10. 求不定积分的递推公式 ($a \neq 0$):

$$I_n = \int \frac{dx}{(ax^2 + bx + c)^n}.$$

11. 设a,b>0, 求不定积分的递推公式:

$$I_{mn} = \int \frac{dx}{(x+a)^m (x+b)^n}.$$

7. 设f在 $(0,+\infty)$ 上可导,且

$$2f(x) = f(x^2), \quad \forall x > 0.$$

证明 $f(x) = c \ln x$.

2.5. TAYLOR 41

hint: 设 $g(x) = f(e^x)$. 题目条件可以弱化为f仅在x = 1处可导.

$$g(x) = \frac{g\left(\frac{x}{2^n}\right)}{x/2^n} x = g'(0)x$$

可导性不能省去,否则考虑 $\max\{0,c\ln x\}$ 作为函数的另一个解.

2.4.6 简单的微分方程

例4.5.4 微分方程能够解出通解的表达式通常和朗斯基行列式有关.

2.5 微分中值定理和Taylor展开

2.5.1 函数极值

定义**5.1.1** (极值点) 设f定义在I上, $x_0 \in I$, 若存在 $\delta > 0$, s.t.

$$f(x) \ge f(x_0), \quad \forall x \in (x_0 - \delta, x_0 + \delta) \cap I,$$

则称 x_0 是f在I上的极小值点, $f(x_0)$ 称为极小值.

若 $x_0 \in I$, 且 $\forall x \in I$, $f(x) \ge f(x_0)$, 则称 x_0 是f在区间I上的最小值点, $f(x_0)$ 称为函数f在区间I上的最小值.

定理**5.1.1** (**Fermat**定理) 设 x_0 是f在I上的极值点,且 x_0 是内点,若f在 x_0 处可导,则 $f'(x_0) = 0$.

注: 由于极值点定义是在 $(x_0 - \delta, x_0 + \delta) \cap I$ 上给出的, 所以以上定理要加上 x_0 是内点.

证明: 使用极限的保号性,判断

$$f'(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

的符号.

满足 $f'(x_0) = 0$ 的点称为f的驻点, 临界点.

若 $f'(x_0) \ge 0$,则 $\exists \delta > 0$, s.t. $\forall x \in (x_0 - \delta, x_0 + \delta)$,有 $(x - x_0)(f(x) - f(x_0)) \ge 0$,但f在 x_0 附近不单调.

定理**5.1.2 (Darboux)** 设f为[a,b]上的可导函数,则f'可以取到 $f'_+(a)$ 和 $f'_-(b)$ 之间的任意值.

证明: 设k介于 $f'_{+}(a)$ 与 $f'_{-}(b)$ 之间, 定义g(x) = f(x) - kx, 则

$$g'_{+}(a)g'_{-}(b) = (f'_{+}(a) - k)(f'_{-}(b) - k) \le 0.$$

若上式等于零, 命题显然. 若上式小于零, 不妨设 $g'_+(a) > 0$, 此时x = a不是最大值点; 并有 $g'_-(b) < 0$, 此时x = b不是最大值点. 从而g(x)只能在[a,b]内取到最大值, 由Fermat定理, 存在 $\xi \in (a,b)$, s.t. $g'(\xi) = 0$.

注: 导函数有介值定理, 但导函数可以不连续, 比如 $x^2 \sin \frac{1}{r}$, $x \in [-\pi, \pi]$.

Darboux定理说明, 若g'在任何点处不为零, 则g'不变号.

Darboux定理的使用条件必须是区间内每点处可导.

例**5.3.4** 设f(x)在 \mathbb{R} 上二阶可导, 若f有界, 证明: $\exists \xi \in \mathbb{R}$, s.t. $f''(\xi) = 0$.

证明: (反证法), $\forall x \in \mathbb{R}$, $f''(x) \neq 0$, 由Darboux定理, f''不变号, 从而f'单调. 不妨设f'单调上升, 取 $x_0 \in \mathbb{R}$, $f'(x_0) \neq 0$. 因为

$$f'(x_0) > 0 \Longrightarrow f(x) - f(x_0) = \int_{x_0}^x f'(t) dt \ge f'(x_0)(x - x_0) \to +\infty, \quad x \to +\infty,$$

与f有界矛盾;而且

$$f'(x_0) < 0 \Longrightarrow f(x_0) - f(x) = \int_x^{x_0} f'(t) dt \le f'(x_0)(x_0 - x) \to -\infty, \quad x \to -\infty,$$

也与f有界矛盾.

2.5.2 微分中值定理

定理**5.2.1 (Rolle)** 设 $f \in C[a,b]$, 在(a,b)上可微, 且f(a) = f(b), 则存在 $\xi \in (a,b)$, s.t. $f'(\xi) = 0$.

定理**5.2.2 (Lagrange)** 设 $f \in C[a,b]$, 在(a,b)上可微,则存在 $\xi \in (a,b)$, s.t.

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

证明是构造性的,对

$$F(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right]$$

使用Rolle定理.

定理**5.2.3 (Cauchy)** 设 $f,g \in C[a,b]$, 在(a,b)上可微, 且 $\forall x \in (a,b)$, $g'(x) \neq 0$, 则

$$\exists \xi \in (a,b), \ s.t. \ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

证明: $(g(a) \neq g(b))$, 对

$$F(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)) \right]$$

用Rolle定理.

几何意义: 定义参数曲线 $\vec{r}(t) = (g(t), f(t)), A = \vec{r}(a), B = \vec{r}(b).$ 则 $\frac{f(b)-f(a)}{g(b)-g(a)}$ 表示直线 ℓ_{AB} 的斜率. Cauchy定理指出, 马(使得 $\vec{r}(\xi)$)处的切线方向 $\vec{r}'(\xi) \parallel \ell_{AB}$, 而 $\vec{r}'(\xi) = (g'(\xi), f'(\xi))$, 有

$$k_{AB} = \frac{f'(\xi)}{g'(\xi)}.$$

注: 由于 $\forall x \in (a,b), g'(x) \neq 0$, 由Darboux介值定理g'(x)不变号, g(x)其实是单调可逆的, 这可以给出另一种证法: 取A = g(a), B = g(b), 不妨设A < B, 则 $f(g^{-1}(y)) \in C[A, B]$, 由复合函数求导与反函数求导法则

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f(g^{-1}(B))-f(g^{-1}(A))}{B-A} = \frac{\mathrm{d}}{\mathrm{d}x} f(g^{-1}(x)) \mid_{x=\zeta} = f'(g^{-1}(\zeta)) \cdot \frac{1}{g'(g^{-1}(\zeta))} = \frac{f'(\xi)}{g'(\xi)},$$

其中 $g(\xi) = \zeta \in [A, B]$.

例**5.2.4** 设 $f(x) \in C[a,b]$, 在(a,b)二阶可导, 若f(a) = f(b) = 0, 则对于任意的 $c \in [a,b]$, 存在 $\xi \in (a,b)$, s.t.

$$f(c) = \frac{f''(\xi)}{2}(c - a)(c - b).$$

证: (**K**值法) 设 K满足 f(c) = K(c-a)(c-b). 则 f(x) - K(x-a)(x-b)有三个零点 a,b,c. 故存在 $\xi \in (a,b)$, s.t. $f''(\xi) - 2K = 0$.

证法二: 构造

$$F(x) = f(x) - \frac{f(c)}{(c-a)(c-b)}(x-a)(x-b)$$

也有三个零点a,b,c.

注: Lagrange插值公式 经过 $(x_i, f(x_i))_{i=1}^n$ 的n-1次多项式有如下形式

$$p_{n-1}(x) = \sum_{i=1}^{n} \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)} f(x_i).$$

用K值法证明:

$$f(x) - p_{n-1}(x) = \frac{1}{n!} f^{(n)}(\xi) \prod_{i=1}^{n} (x - x_i), \quad \xi \in (a, b).$$

2.5. TAYLOR 43

例**5.2.5** 证明Legendre (勒让德)多项式 $\frac{d^n}{dx^n} (x^2 - 1)^n$ 在(-1,1)上有n个不同实根, 其中 $n \ge 1$.

证明: 多项式 $(x^2-1)^n$ 的直到n-1次导数总有 ± 1 作为其零点,用Rolle定理,在每次求导时会多出现一个零点.

2.5.3 单调函数

命题**5.3.2** 设 $f \in C[a,b]$, 在(a,b)上可微,则 f单调当且仅当 f'不变号.

证明: ⇒:用极限的保号性; ←:用Lagrange中值定理.

命题**5.3.3** (反函数定理) 设f为区间I上的可微函数, 若 $f' \neq 0$, $\forall x \in I$. 则f可逆且反函数可微.

证明: 用反证法+Lagrange定理, f是单射, 从而可逆, 由f连续得到f单调. 并且

$$\left(f^{-1}(y)\right)' = \frac{1}{f'(x)}.$$

命题**5.3.4** 设 δ > 0, f ∈ $C(x_0 - \delta, x_0 + \delta)$, 在 $(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$ 上可微, 若

$$f'(x) \le 0, \ x \in (x_0 - \delta, x_0); \quad f'(x) \ge 0, \ x \in (x_0, x_0 + \delta).$$

则 x_0 为f的极小值点. 反之为极大值点.

命题**5.3.5** 设f在内点 x_0 处二阶可导,且 $f'(x_0) = 0$,则若 $f''(x_0) > 0$,则 x_0 为f的(严格)极小值点.

证明: 有高阶导数的定义要求 f'(x) 在 x_0 附近可计算, 再由极限保号性, $\exists \delta$ 使得

$$x ∈ (x_0 - δ, x_0)$$
 $\exists f, f'(x) < 0,$

$$x ∈ (x_0, x_0 + δ)$$
 財, $f'(x) > 0$.

例**5.3.4** 设f(x)在 \mathbb{R} 上二阶可导, 若f有界, 证明: $\exists \xi \in \mathbb{R}$, s.t. $f''(\xi) = 0$.

证明: (反证法) 对于任意的 $x \in \mathbb{R}$, $f''(x) \neq 0$. 由Darboux定理, 有f''不变号, 所以f'单调, 不妨设f'单调上升, 取 $x_0 \in \mathbb{R}$, $f'(x_0) \neq 0$. 当 $f'(x_0) > 0$ 时, $f(x) - f(x_0) = \int_{x_0}^x f'(t) \, dt \geq f'(x_0)(x - x_0) \to +\infty$, $x \to +\infty$. 与f有界矛盾. 当 $f'(x_0) < 0$ 时, $f(x_0) - f(x) = \int_x^{x_0} f'(t) \, dt \leq f'(x_0)(x_0 - x) \to -\infty$. 与f有界矛盾.

2.5.4 凸函数

定义**5.4.1** (凸函数) 设f在I上有定义, 若 $\forall a, b \in I$, a < b, 有

$$f(x) \le l(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a), \quad \forall x \in [a, b].$$

则称f为I中的凸函数;相应的给出凹函数的定义.若上式取严格不等号,则对应严格凸函数. 定义中的不等式可以等价地写成

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b), \quad \forall t \in (0,1).$$

例5.4.1 用凸函数证明Young不等式.

证明: e^x 是凸函数, p > 1, 且 $\frac{1}{p} + \frac{1}{q} = 1$, 则

$$ab = e^{\ln ab} = e^{\frac{1}{p}\ln a^p + \frac{1}{q}\ln b^q} \le \frac{1}{p}e^{\ln a^p} + \frac{1}{q}e^{\ln b^q} = \frac{a^p}{p} + \frac{b^q}{q}.$$

定理**5.4.1** (Jensen不等式) 设f是定义在I上的函数,则f凸当且仅当 $\forall x_i \in I, \lambda_i \geq 0$, ($i = 1, 2, \dots, n$), 且 $\sum_{i=1}^n \lambda_i = 1$, 有

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \le \sum_{i=1}^n \lambda_i f(x_i).$$

对比习题3.3的13题.

13: 若f没有第二类间断点, 且 $\forall x, y \in (a,b)$ 均有

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2},$$

则 $f \in C(a,b)$, 由此可证 f在(a,b)上是凸的.

这要依赖f的连续性和实数的完备性,比如考虑证明 $f(\frac{x+y+z}{3}) \leq \frac{f(x)+f(y)+f(z)}{3}$. 但下面的证明更精巧.

命题**5.4.3** 设 $f \in C(I)$,则f凸当且仅当 $\forall x_1 < x_2 \in I$,有 $f(\frac{x_1+x_2}{2}) \le \frac{f(x_1)+f(x_2)}{2}$.

证明: 取 $a,b \in I$, 证明f(x)在(a,b)上位于 $l(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$ 之下即可.

$$g(x) := f(x) - l(x)$$
 $x \in [a, b] \Longrightarrow g(x) \in C[a, b].$

取 $M = \max_{x \in [a,b]} g(x) = g(x_0)$,则当 x_0 靠近a时, $x_0 \le \frac{a+b}{2}$, $2x_0 - a \in [a,b]$. 所以

$$M = g(x_0) = g\left(\frac{a + (2x_0 - a)}{2}\right) \le \frac{g(a) + g(2x_0 - a)}{2} \le M,$$

等号成立, 故M = g(a) = 0.

推论**5.4.4** 设f在I上凸,若f在I内达到最大值,则f为常数.

证明: 设f在 x_0 达到最大值,则 $\forall a,b \in I,\exists t \in (0,1), s.t.$

$$x_0 = ta + (1 - t)b \Longrightarrow f(x_0) = \max f \le tf(a) + (1 - t)f(b) \le \max f.$$

等号成立. $f(x_0) = f(a) = f(b)$.

命题 **5.4.2** (连续性) 设f在I中凸, 若[a,b] ⊆ I, a,b ∈ I°, 则f ∈ Lip[a,b], 从而连续.

证明: 取[a,b] \subseteq [a',b'] \subseteq $I,a',b' \in I^{\circ}$. 注意使用

$$\left(\frac{f(a)-f(a')}{a-a'}\leq\right)\frac{f(y)-f(x)}{y-x}\leq\frac{f(b)-f(y)}{b-y}\leq\frac{f(b')-f(b)}{b'-b}.$$

命题**5.4.5** (导数性质) 设f在I中凸,x为I的内点,则f在x处左右导数存在,且

$$f'_{-}(x) \le f'_{+}(x)$$
.

证明: 使用单调有界函数的极限存在. 设 $x_0 < x_1 < x_2$, 证明: $k_{01} \le k_{02} \le k_{12}$.

命题**3.3.4** 设f(x)是定义在区间I上的单调函数,则f的间断点至多可数. 由上面的命题, 凸函数的不可微点至多可数.

命题**5.4.6** 设 f 在 I 上 可微,则

- (1) f凸当且仅当f′单调上升.
- (2) f凸当且仅当, $\forall x_0, x \in I$, 有 $f(x) \ge f'(x_0)(x x_0) + f(x_0)$.

2.5. TAYLOR 45

证明: (1) ⇒: 同前; ←: 用中值定理.

$$a < x < b \Longrightarrow \frac{f(x) - f(a)}{x - a} = f'(\xi_1) \le f'(\xi_2) = \frac{f(b) - f(x)}{b - x} \Longrightarrow f \stackrel{\sqcap}{\Box}.$$

 $(2) \Longrightarrow$:

$$x > x_0 \Longrightarrow f'(x_0) \le \frac{f(x) - f(x_0)}{x - x_0};$$

$$x < x_0 \Longrightarrow f'(x_0) \ge \frac{f(x_0) - f(x)}{x_0 - x};$$

⇐:

$$a < x < b \Longrightarrow \frac{f(x) - f(a)}{x - a} \le f'(x) \le \frac{f(b) - f(x)}{b - x} \Longrightarrow f(x) \le \lambda f(a) + (1 - \lambda) f(b)$$

 $\perp \!\!\! \perp x = \lambda a + (1 - \lambda)b.$

命题**5.4.7** 设 $f \in C(I)$, 若f'存在且单调上升,则f是凸函数.

证明: 设 $x_0 \in I$, 记 $L(x) = f'_-(x_0)(x - x_0) + f(x_0)$, g(x) = f(x) - L(x). 则 $g'_-(x) = f'_-(x) - f'_-(x_0)$.

$$\Rightarrow \begin{cases} x \le x_0 \Longrightarrow g'_-(x) \le 0 \Longrightarrow g(x) \ge g(x_0), \ x \to x_0^- \Longrightarrow g(x) \setminus, \ x \to x_0^-. \\ x \ge x_0 \Longrightarrow g'_-(x) \ge 0 \Longrightarrow g(x) \nearrow, \ x \to x_0^+. \end{cases}$$

所以min $g = g(x_0) = 0$. 所以 $f(x) \ge L(x) = f'_{-}(x_0)(x - x_0) + f(x_0), x \in I$. 设 $x_i \in I$, $\lambda_i \ge 0$, $\sum_{i=1}^n \lambda_i = 1$, 记 $x_0 \in \sum_{i=1}^n \lambda_i x_i$, 所以

$$\sum_{i=1}^{n} \lambda_{i} f(x_{i}) \geq f'_{-}(x_{0}) \sum_{i=1}^{n} \lambda_{i}(x_{i} - x_{0}) + f(x_{0}) \sum_{i=1}^{n} \lambda_{i} = f(x_{0}).$$

命题**5.4.8** 若f在I中二阶可导,则f凸当且仅当 $f'' \ge 0$.

2.5.5 函数作图

若 $\lim_{x\to x_0^+} f(x) = \infty$ 或 $\lim_{x\to x_0^-} f(x) = \infty$,则称 $x = x_0$ 为f的垂直渐近线. 若

$$\lim_{x\to+\infty} [f(x)-(ax+b)] = 0 \stackrel{\text{def}}{\otimes} \lim_{x\to-\infty} [f(x)-(ax+b)] = 0,$$

则称y = ax + b为f在无穷远处的渐近线.

2.5.6 L'Hôpital法则

定理**5.6.1 (L'Hôpital**法则) 设f,g在(a,b)中可导,且g'(x) \neq 0, $\forall x \in (a,b)$,又设

$$\lim_{x \to a+} f(x) = 0 = \lim_{x \to a+} g(x),$$

若极限

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} \, 存在(或为\infty).$$

则

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

定理**5.6.2 (L'Hôpital**法则) 设f,g在(a,b)中可导, 且 $g'(x) \neq 0$, $\forall x \in (a,b)$, 又设

$$\lim_{x \to a+} g(x) = \infty,$$

若极限

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)} = l$$

存在, (或为∞), 则

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)} = l.$$

证明: 只证明 $l < \infty$ 的情况, $\forall \epsilon > 0$, $\exists \eta > 0$, s.t.

$$l - \frac{\epsilon}{2} < \frac{f'(x)}{g'(x)} < l + \frac{\epsilon}{2}, \qquad \forall x \in (a, a + \eta).$$

取 $c = a + \eta$, 由Cauchy中值定理, $\exists \xi \in (x, c)$, s.t.

$$\frac{f(x)-f(c)}{g(x)-g(c)} = \frac{f'(\xi)}{g'(\xi)} \Longrightarrow \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)} + \frac{f(c)}{g(x)} - \frac{f'(\xi)}{g'(\xi)} \cdot \frac{g(c)}{g(x)}, \quad \xi \in (x,c) \subseteq (a,a+\eta).$$

由 $\lim_{x\to a+} g(x) = \infty$,故存在 $\delta < \eta$, s.t.

$$\left| \frac{f(x)}{g(x)} - l \right| < \epsilon, \quad \forall x \in (a, a + \delta).$$

注: 当 $\lim_{x\to a^+} \frac{f'(x)}{g'(x)}$ 不存在时, $\lim_{x\to a^+} \frac{f(x)}{g(x)}$ 仍然可能存在. 比如求

$$\lim_{x \to 0+} \int_0^x \cos \frac{1}{t} \, \mathrm{d}t.$$

用L'Hôpital法则有如下过程:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+} \frac{\int_0^x \cos \frac{1}{t} dt}{x} = \lim_{x \to 0+} \cos \frac{1}{x}$$

不存在, 但是做变量替换 $s = \frac{1}{t}$, $y = \frac{1}{x}$ 之后,

$$\lim_{x \to 0+} \frac{\int_0^x \cos \frac{1}{t} \, \mathrm{d}t}{x} = \lim_{y \to +\infty} y \int_y^\infty \frac{\cos s}{s^2} \, \mathrm{d}s = y \cdot \left(\frac{1}{2} \int_y^{y+\pi} \frac{\cos s}{s^2} \, \mathrm{d}s + \frac{1}{2} \int_{y+\pi}^\infty \frac{\cos s}{s^2} \, \mathrm{d}s + \frac{1}{2} \int_y^\infty \frac{\cos s}{s^2} \, \mathrm{d}s \right).$$

显然, $\int_{y}^{y+\pi} \frac{\cos s}{s^2} ds = O\left(\frac{1}{y^2}\right)$. 而

$$\int_{\gamma+\pi}^{\infty} \frac{\cos s}{s^2} \, \mathrm{d}s + \int_{\gamma}^{\infty} \frac{\cos s}{s^2} \, \mathrm{d}s = \int_{\gamma}^{\infty} \cos s \left(\frac{1}{s^2} - \frac{1}{(s+\pi)^2} \right) \, \mathrm{d}s = \int_{\gamma}^{\infty} \cos s \left(\frac{2s\pi + \pi^2}{s^2(s+\pi)^2} \right) \, \mathrm{d}s = O\left(\frac{1}{y^2}\right).$$

所以应当有

$$\lim_{y \to +\infty} y \int_{y}^{\infty} \frac{\cos s}{s^{2}} \, \mathrm{d}s = 0.$$

或者对上式用分部积分

$$\int_{v}^{\infty} \frac{\cos s}{s^{2}} \, \mathrm{d}s = \frac{\sin s}{s^{2}} \, \big|_{y}^{\infty} + \int_{v}^{\infty} \frac{2 \sin s}{s^{3}} \, \mathrm{d}s = -\frac{\sin y}{v^{2}} + O\left(\int_{v}^{\infty} \frac{2}{s^{3}} \, \mathrm{d}s\right) = O\left(\frac{1}{v^{2}}\right).$$

再或者用Riemann-Lebesgue引理

$$\lim_{y \to +\infty} y \int_{y}^{\infty} \frac{\cos s}{s^{2}} ds = \lim_{y \to +\infty} \int_{1}^{\infty} \frac{\cos yt}{t^{2}} dt = 0.$$

再或者在计算导数前按以下过程分部积分将积分改写为

$$\begin{split} \int_{\varepsilon}^{x} \cos\left(t^{-1}\right) dt &= -\int_{\varepsilon}^{x} t^{2} d\sin\left(t^{-1}\right) \\ &= -x^{2} \sin\left(x^{-1}\right) + \varepsilon^{2} \sin\left(\varepsilon^{-1}\right) + 2 \int_{\varepsilon}^{x} t \sin\left(t^{-1}\right) dt \\ &\xrightarrow{\varepsilon \to 0} -x^{2} \sin\left(x^{-1}\right) + 2 \int_{0}^{x} t \sin\left(t^{-1}\right) dt. \end{split}$$

例**5.6.4** 设f在(a, + ∞)上可微.

- (1). 若 $\lim_{x\to+\infty} x \cdot f'(x) = 1$, 则 $\lim_{x\to+\infty} f(x) = +\infty$.
- (2). 若存在 $\alpha > 0$, s.t.

$$\lim_{x \to +\infty} \left(\alpha \cdot f(x) + x \cdot f'(x) \right) = \beta,$$

则

$$\lim_{x \to +\infty} f(x) = \frac{\beta}{\alpha}.$$

证明: (1). 当 $x \to +\infty$, $\ln x \to +\infty$, 则

$$\lim_{x\to+\infty}\frac{f(x)}{\ln x}=\lim_{x\to+\infty}\frac{f'(x)}{\frac{1}{x}}=1\Longrightarrow f(x)\to+\infty,\ (x\to+\infty).$$

(2). 当 $\alpha > 0$ 时, $x^{\alpha} \to +\infty$, $(x \to +\infty)$, 则

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^{\alpha} f(x)}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\alpha x^{\alpha - 1} f(x) + x^{\alpha} f'(x)}{\alpha x^{\alpha - 1}} = \frac{\beta}{\alpha}.$$

2.5.7 Taylor展开

(1). 若f(x)在 x_0 处连续,则

$$f(x) - f(x_0) = o(1).$$

(2). 若f(x)在 x_0 处可微,则

$$f(x) - [f(x_0) + f'(x_0)(x - x_0)] = o(x - x_0), (x \to x_0).$$

注意,这里f在 x_0 处可微,但没说在 x_0 附近可微,不能用LHôpital法则.

(3). 若f(x)在 x_0 处二阶可微,则

$$f(x) - \left[f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 \right] = o\left((x - x_0)^2 \right), \quad (x \to x_0).$$

定理**5.7.1** (带**Peano**余项的**Taylor**公式) 设f在 x_0 处n阶可导,则

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + o((x - x_0)^n), \quad (x \to x_0).$$

证明: (归纳法+中值定理)记

$$R_n(x) = f(x) - \left[f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right],$$

则

$$\frac{R_{k+1}(x)}{(x-x_0)^{k+1}} \to \frac{R_{k+1}'(x)}{(k+1)(x-x_0)^k} = \frac{o((x-x_0)^k)}{(k+1)(x-x_0)^k} = o(1).$$

定理**5.7.2 (Taylor)** 设f在(a,b)上n+1阶可导, $x_0,x\in(a,b)$. 则存在 $\xi,\zeta\in(x,x_0)$ 或 (x_0,x) , s.t. Taylor展开的余项

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

称为Lagrange余项,以及

$$R_n(x) = \frac{1}{n!} f^{(n+1)}(\zeta) (x - \zeta)^n (x - x_0),$$

称为Cauchy余项.

证明: 取

$$F(t) = f(t) + \sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!} (x - t)^{k}, \quad t \in (a, b).$$

对t求导,得到

$$F'(t) = \frac{1}{n!} f^{(n+1)}(t) (x-t)^n.$$

所以

$$F(x) - F(x_0) = R_n(x).$$

Cauchy余项: 用Lagrange中值定理, $\exists \zeta = x_0 + \theta(x - x_0)$, $(0 < \theta < 1)$, s.t.

$$R_n(x) = F'(\zeta)(x - x_0).$$

Lagrange余项: 用Cauchy微分中值定理, $\exists \xi = x_0 + \eta(x - x_0)$, $(0 < \eta < 1)$, s.t.

$$\frac{R_n(x)}{(x-x_0)^{n+1}} = \frac{F(x) - F(x_0)}{G(x) - G(x_0)} = \frac{F'(\xi)}{G'(\xi)}.$$

上面的证明给出Taylor展开的积分余项公式

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^n dt.$$

应用 证明:

$$\int_0^1 (1-t^2)^n \, \mathrm{d}t = \frac{(2n)!!}{(2n+1)!!}.$$

证明: 设 $f(x) = (1+x)^{2n+1}$, f(x)在x = 0处Taylor展开:

$$(1+x)^{2n+1} = \sum_{k=0}^{n} {2n+1 \choose k} x^k + \frac{1}{n!} \int_0^x \frac{(2n+1)!}{n!} (1+t)^n (x-t)^n dt,$$

令x=1, 所以

$$\int_0^1 (1-t^2)^n dt = \frac{(2n)!!}{(2n+1)!!}.$$

这个积分可以换元法求解:

$$\int_0^1 (1 - t^2)^n \, \mathrm{d}t = \int_0^{\pi/2} \cos^{2n+1} x \, \mathrm{d}x = \frac{1}{2} B\left(\frac{1}{2}, \frac{2n+2}{2}\right).$$

定理**5.7.4** (Taylor系数的唯一性) 设f在 x_0 处n阶可导,且

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n) \quad (x \to x_0),$$

则

$$a_k = \frac{1}{k!} f^{(k)}(x_0), \quad k = 0, 1, \dots, n.$$

证明: 给出Taylor展开的Peano余项表示,两者作差比阶.

命题**5.7.5** 设 f(x)在 x=0处的Taylor展开为 $\sum_{n=0}^{\infty}a_nx^n$,则 (1). f(-x)的Taylor展开为 $\sum_{n=0}^{\infty}(-1)^na_nx^n$; (2). $f(x^k)$ 的Taylor展开为 $\sum_{n=0}^{\infty}a_nx^{kn}$,其中 $k\in\mathbb{N}_+$;

- (3). $x^k f(x)$ 的Taylor展开为 $\sum_{n=0}^{\infty} a_n x^{k+n}$, 其中 $k \in \mathbb{N}_+$; (4). f'(x)的Taylor展开为 $\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$; (5). $\int_0^x f(t) dt$ 的Taylor展开为 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$; (6). 如果g(x)在x = 0处的Taylor展开为 $\sum_{n=0}^{\infty} b_n x^n$, 则 $\lambda f(x) + \mu g(x)$ 的Taylor展开为 $\sum_{n=0}^{\infty} (\lambda a_n + \mu b_n) x^n$, 其中 $\lambda, \mu \in \mathbb{R}$.

$$\ln(1-x) = -\left(x + \frac{x^2}{2} + \dots + \frac{x^n}{n}\right) - \int_0^x \frac{t^n}{1-t} \, \mathrm{d}t.$$

$$\arctan x = \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1}\right) + (-1)^n \int_0^x \frac{t^{2n}}{1+t^2} \, \mathrm{d}t = \frac{\mathrm{i}}{2} \ln \frac{1-\mathrm{i}x}{1+\mathrm{i}x}.$$

例5.7.5 Taylor展开收敛,但不收敛到函数本身的例子.

定义

$$\phi(x) = \begin{cases} 0, & x \le 0; \\ e^{-\frac{1}{x}}, & x > 0. \end{cases}$$

在x = 0处展开的Taylor级数恒为0.

Taylor公式和微分学的应用

Thm. 5.8.1 (函数极值的判断) 设f在 x_0 处n阶可导,且

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \quad f^{(n)}(x_0) \neq 0,$$

∭

- (1). n为偶数, 若 $f^{(n)}(x_0) < 0$, 则 x_0 为极大值点; 若 $f^{(n)}(x_0) > 0$, 则 x_0 为极小值点.
- (2). n为奇数时, x_0 不是极值点.

设 $f \in C[a,b]$, 在(a,b)上二阶可导. 当 $x_i \in [a,b]$, $(1 \le i \le n)$ 时, $\exists \xi \in (a,b)$, s.t. Thm. 5.8.2 (Jensen不等式的余项)

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) - \sum_{i=1}^{n} \lambda_i f(x_i) = -\frac{1}{2} f''(\xi) \sum_{i < j} \lambda_i \lambda_j (x_i - x_j)^2,$$

其中 $\lambda_i \ge 0$, $\sum_{i=1}^n \lambda_i = 1$.

证明: 记

$$\overline{x} = \sum_{i=1}^{n} \lambda_i x_i \in [a, b].$$

∭

$$f(x_i) = f(\overline{x}) + f'(x)(x_i - \overline{x}) + \frac{1}{2}f''(\xi_i)(x_i - \overline{x})^2, \quad \xi_i \in (a, b).$$

所以

$$\sum_{i=1}^n \lambda_i f(x_i) = f(\overline{x}) + \frac{1}{2} \sum_{i=1}^n f''(\xi_i) \lambda_i (x_i - \overline{x})^2.$$

而

$$\sum_{i=1}^{n} \lambda_i (x_i - \overline{x})^2 = \frac{1}{2} \sum_{i=1}^{n} \lambda_i \lambda_j (x_i - x_j)^2.$$

所以

$$\frac{m}{4} \sum_{i,j=1}^{n} \lambda_i \lambda_j (x_i - x_j)^2 \le \sum_{i=1}^{n} \lambda_i f(x_i) - f(\overline{x}) \le \frac{M}{4} \sum_{i,j=1}^{n} \lambda_i \lambda_j (x_i - x_j)^2.$$

用Darboux定理. 用于求极限

例5.8.1 求

$$\lim_{x \to \infty} \left[x - x^2 \ln \left(1 + \frac{1}{x} \right) \right].$$

解:

$$\ln\left(1+\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right) \quad (x \to \infty),$$

所以

$$x - x^2 \ln\left(1 + \frac{1}{x}\right) = \frac{1}{2} + o(1) \to \frac{1}{2}(x \to \infty).$$

设f在0附近二阶可导,且 $|f''| \le M$, f(0) = 0,则

$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) = \frac{1}{2} f'(0).$$

解:

$$f\left(\frac{k}{n^2}\right) = f(0) + f'(0)\frac{k}{n^2} + R_{k,n},$$

其中

$$\left|R_{k,n}\right| = \frac{1}{2} \left|f''\left(\xi_{k,n}\right)\right| \left(\frac{k}{n^2}\right)^2 \le \frac{1}{2} M \frac{k^2}{n^4},$$

所以

$$\begin{split} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) &= f'(0) \frac{1}{n^2} \sum_{k=1}^{n} k + \sum_{k=1}^{n} R_{k,n} \\ &= f'(0) \frac{n+1}{2n} + o(1) \quad (n \to \infty), \end{split}$$

Stirling公式

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{\theta_n}{12n}}, \quad 0 < \theta_n < 1.$$

2.5.9 作业

8. 设f(x)在 \mathbb{R} 上可微, 且 $\lim_{x\to-\infty} f'(x) = A$, $\lim_{x\to+\infty} f'(x) = B$. 证明, 如果 $A \neq B$, 则任给 $\theta \in (0,1)$, 都有 $\xi \in \mathbb{R}$, 使得

$$f'(\xi) = \theta A + (1 - \theta)B.$$

9. 设f(x)在区间I中n阶可微, x_1, x_2, \cdots, x_k 为I中的点. 证明存在 $\xi \in I$, s.t.

$$\frac{1}{k} \left(f^{(n)}(x_1) + f^{(n)}(x_2) + \dots + f^{(n)}(x_k) \right) = f^{(n)}(\xi).$$

- 10. 设f(x)在区间I中可微, $x_0 \in I$. 如果 $\lim_{x \to x_0} f'(x)$ 存在, 则f'(x)在 x_0 处连续.
- 11. 设f(x)在(a,b)中可微, 如果f'(x)为单调函数, 则f'(x)在(a,b)中连续. 3. 设f(x)在[a,b]上二阶可导, 且f(a) = f(b) = 0, $f'_+(a) f'_-(b) > 0$. 证明: 存在 $\xi \in (a,b)$, s.t. $f''(\xi) = 0$.
- 6. 设f(x)为[a,b]上的三阶可导函数,且f(a) = f'(a) = f(b) = 0,证明,对于任意的 $c \in [a,b]$,存在 $\xi \in (a,b)$, s.t.

$$f(c) = \frac{f'''(\xi)}{6}(c-a)^2(c-b).$$

8. 设f(x)在区间[a,b]上可导,且存在M > 0,使得

$$|f'(x)| \le M, \quad \forall x \in [a, b].$$

证明:

$$\left|f(x) - \frac{f(a) + f(b)}{2}\right| \le \frac{M}{2}(b - a), \quad \forall x \in [a, b].$$

10. 设f在(a,b)上可微, 且 $a < x_i \le y_i < b$, $i = 1,2,\dots,n$. 证明: 存在 $\xi \in (a,b)$, s.t.

$$\sum_{i=1}^{n} [f(y_i) - f(x_i)] = f'(\xi) \sum_{i=1}^{n} (y_i - x_i).$$

11. 设f在[a,+∞)上可微,且

$$f(a) = 0$$
, $|f'(x)| \le |f(x)|$, $\forall x \in [a, +\infty)$.

证明: $f \equiv 0$.

提示考虑 $A = \{x \in [a, +\infty) : f(x) = 0\}$ 和 $\sup A$.

11. 设f(x)在R上二阶可导, 若

$$\lim_{x \to \infty} \frac{f(x)}{|x|} = 0,$$

则存在 $\xi \in \mathbb{R}$, 使得 $f''(\xi) = 0$.

用Darboux定理

- 12. 设f(0) = 0, f'(x)严格单调递增, 则 $\frac{f(x)}{x}$ 在 $(0, +\infty)$ 上也严格单调递增.
- 11. 证明, 定义在ℝ上的有界凸函数是常数函数.
- 12. 设 $f(x) \in C(I)$, 若 $\forall x_0 \in I$, $\exists \delta > 0$, s.t. f(x)在 $(x_0 \delta, x_0 + \delta)$ 上凸, 则 f(x)在I中凸.
- 13. 设f为区间I上的凸函数, x_0 为I的内点. 若 $f'_{-}(x_0) \le k \le f'_{+}(x_0)$, 则

$$f(x) \ge k(x - x_0) + f(x_0), \quad \forall x \in I.$$

并证明Jensen不等式.

15. 设 $f \in C[a,b]$ 凸, 证明Hadamard不等式

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \le \frac{f(a)+f(b)}{2}.$$

16. (Schwarz symmetric derivative, Riemann derivative) 设 $f \in C(\mathbb{R})$, 若 $\forall x \in \mathbb{R}$, 均有

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = 0,$$

证明f(x)为线性函数.

连续性是必要的, 否则考虑符号函数. 这个极限不能被改善成

$$\lim_{h \to 0} \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} = 0,$$

这只需要改变符号函数在0点处的值为1,使其在0点处右连续.

提示: 证明 $\forall \epsilon > 0$, $f(x) + \epsilon x^2$ 是凸的, $f(x) - \epsilon x^2$ 是凹的, f(x)在[a,b]上位于直线[$f(a) + \epsilon a^2$, $f(b) + \epsilon b^2$]与直线[$f(a) - \epsilon a^2$, $f(b) - \epsilon b^2$]之间.

6. 是否存在ℝ上的凸函数, 使得f(0) < 0, 且

$$\lim_{|x|\to+\infty} (f(x)-|x|)=0?$$

5. 设f在点 x_0 处2阶可导, 且 $f''(x_0) \neq 0$. 由微分中值定理, 当h充分小时, 存在 $\theta = \theta(h)$, $(0 < \theta < 1)$, s.t.

$$f(x_0 + h) - f(x_0) = f'(x_0 + \theta h)h$$
,

证明:

$$\lim_{h\to 0}\theta=\frac{1}{2}.$$

7. 设f(x)在 $(a,+\infty)$ 中可微,且

$$\lim_{x \to +\infty} \left[f(x) + f'(x) \right] = l,$$

证明:

$$\lim_{x \to +\infty} f(x) = l.$$

9. 设 $f''(x_0)$ 存在, $f'(x_0) \neq 0$, 求极限

$$\lim_{x \to x_0} \left[\frac{1}{f(x) - f(x_0)} - \frac{1}{f'(x_0)(x - x_0)} \right].$$

10. 设 $a_1 \in (0,\pi)$, $a_{n+1} = \sin a_n$, $(n \ge 1)$. 证明:

$$\lim_{n\to\infty}\sqrt{n}a_n=\sqrt{3}.$$

2. 设 f(x) 是 x 的 n 次多项式,则 f(x) 在 $x = x_0$ 处的Taylor展开的 Peano 余项 $R_n(x)$ 恒为零. (提示: 考虑其它余项公式.) 10. 设 f(x), g(x) 在 (-1,1) 中无限次可微,且

$$|f^{(n)}(x) - g^{(n)}(x)| \le n!|x|, \quad \forall x \in (-1,1), n = 0,1,2,\dots$$

证明 f(x) = g(x).

12. 设f在 x_0 附近可以表示为

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n) \quad (x \to x_0),$$

则 f(x) 是否在 x_0 处 n 阶可导?

13. 设 f(x) 在 [a,b] 上二阶可导, 且 f'(a) = f'(b) = 0. 证明, 存在 $\xi \in (a,b)$, 使得

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

4. 设 f(x) 在 x_0 的一个开邻域内 n+1 次连续可微, 且 $f^{(n+1)}(x_0) \neq 0$, 其 Taylor 公式为

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \dots + \frac{1}{n!}f^{(n)}(x_0 + \theta h)h^n$$

其中 $0 < \theta < 1$. 证明 $\lim_{h\to 0} \theta = \frac{1}{n+1}$.

8. 设 $a_1 \in \mathbb{R}$, $a_{n+1} = \arctan a_n (n \ge 1)$. 求极限 $\lim_{n \to \infty} n a_n^2$.

10. 设 ƒ 在 ℝ 上二阶可导, 且

$$M_0 = \sup_{x \in \mathbb{R}} |f(x)| < \infty, \quad M_2 = \sup_{x \in \mathbb{R}} |f''(x)| < \infty.$$

证明 $M_1 = \sup_{x \in \mathbb{R}} |f'(x)| < \infty$, 且 $M_1^2 \le 2M_0 \cdot M_2$. (提示: 考虑 $f(x \pm h)$ 的 Taylor 展开.)

2.6 Riemann积分

2.6.1 Riemann可积

设定义在[a,b]区间上的函数f(x),将[a,b]分割为

$$\pi : a = x_0 < x_1 < \cdots < x_n = b$$

近似第i个小梯形的面积为 $f(\xi_i)\Delta x_i$, 其中 $\xi_i \in [x_{i-1},x_i]$, $\Delta x_i = x_i - x_{i-1}$. 用 $\sum_{i=1}^n f(\xi_i)\Delta x_i$ 表示曲边梯形ABCD的面积的近似值, 称为f在[a,b]上的Riemann和. 若

$$\lim_{\|\pi\| \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

存在, 其中 $\|\pi\| = \max_{1 \le i \le n} \{\Delta x_i\}$ 为分割的模. 则记为 $\int_a^b f(x) dx$.

定义**6.1.1 (Riemann**积分) 设f定义在[a,b]上, 若存在 $I \in \mathbb{R}$, s.t. $\forall \epsilon > 0$, 对任何分割 π , 只要 $\|\pi\| < \delta$, 就有

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - I \right| < \epsilon, \quad \forall \xi_i \in [x_{i-1}, x_i], \ i = 1, 2, \dots, n,$$

则称 f在[a,b]上Riemann可积或可积, I为 f在[a,b]上的(定)积分, 记为

$$I = \int_a^b f(x) dx = \lim_{\|\pi\| \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i.$$

其中f称为被积函数, [a,b]称为积分区间, a,b分别称为积分下限与积分上限.

定理**6.1.1** (可积的必要条件) 若f在[a,b]上可积,则f在[a,b]上有界,反之不然.

有界函数未必可积: Dirichlet函数D(x), 对于任意的分割 $\xi_i \in [x_{i-1},x_i] \setminus \mathbb{Q}$, 积分和为0; 当 $\xi_i \in [x_{i-1},x_i] \cap \mathbb{Q}$ 时, 积分和为1. 所以D(x)的积分和没有极限.

对于分割

$$\pi : a = x_0 < x_1 < \cdots < x_n = b$$

记

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x), \quad m_i = \inf_{x \in [x_{i-1}, x_i]} f(x),$$

\$

$$S = \sum_{i=1}^{n} M_i \cdot \Delta x_i, \quad s = \sum_{i=1}^{n} m_i \cdot \Delta x_i,$$

称S是f关于 π 的Darboux上和, 简称上和, 记为 $S(\pi)$ 或 $S(\pi,f)$. s称为Darboux下和, 简称下和, 记为 $s(\pi)$ 或 $s(\pi,f)$. 称

$$\omega_i = M_i - m_i = \sup_{x \in [x_{i-1}, x_i]} f(x) - \inf_{x \in [x_{i-1}, x_i]} f(x)$$

为f在[x_{i-1},x_i]上的振幅.则

$$S - s = \sum_{i=1}^{n} \omega_i \cdot \Delta x_i.$$

引理6.1.2 设分割 π' 是从 π 添加k个分点得到的,则

$$S(\pi) \geqslant S(\pi') \geqslant S(\pi) - (M - m)k \|\pi\|,$$

$$S(\pi) \leqslant S(\pi') \leqslant S(\pi) + (M - m)k \|\pi\|.$$

即,对于给定的分割,增加分点时下和不减,上和不增.

证明: 只需要对k=1进行即可.

推论**6.1.3** 对于任何两个分割 π_1 和 π_2 ,有

$$s(\pi_1) \leq S(\pi_2)$$
.

定理**6.1.4 (Darboux)**

$$\lim_{\|\pi\|\to 0} S(\pi) = \inf_{\pi} S(\pi), \quad \lim_{\|\pi\|\to 0} s(\pi) = \sup_{\pi} s(\pi).$$

 $\operatorname{winf}_{\pi} S(\pi)$ 为f在[a,b]上的上积分, $\sup_{\pi} s(\pi)$ 为f在[a,b]上的下积分.

定理**6.1.5** (可积的充要条件) 设f在[a,b]上有界,则以下命题等价:

- (1) f在[a,b]上Riemann可积.
- (2) f在[a,b]上的上积分和下积分相等.
- (3)

$$\lim_{\|\pi\|\to 0} \sum_{i=1}^n \omega_i \cdot \Delta x_i = 0.$$

(4) $\forall \epsilon > 0$, 存在[a,b]的分割 π , s.t.

$$S(\pi) - s(\pi) = \sum_{i=1}^{n} \omega_i \cdot \Delta x_i < \epsilon.$$

推论**6.1.6** (1) 设[α , β] \subseteq [a, b], 如果f在[a, b]上可积,则f在[α , β]上也可积.

(2) 设 $c \in (a, b)$, 若f在[a, c]及[c, b]上都可积,则f在[a, b]上可积.

例**6.1.1** 设f,g在[a,b]上均可积,则fg在[a,b]上也可积. 注意,

$$\begin{split} \omega_{i}(fg) &= \sup_{x',x'' \in [x_{i-1},x_{i}]} \left| f(x') g(x') - f(x'') g(x'') \right| \\ &= \sup_{x',x'' \in [x_{i-1},x_{i}]} \left| f(x') g(x') - f(x') g(x'') + f(x') g(x'') - f(x'') g(x'') \right| \\ &\leq \sup_{x',x'' \in [x_{i-1},x_{i}]} \left[\left| f(x') \right| \left| g(x') - g(x'') \right| + \left| g(x'') \right| \left| f(x') - f(x'') \right| \right] \\ &\leq K\left(\omega_{i}(g) + \omega_{i}(f)\right), \end{split}$$

并用前面的定理6.1.5 (3).

定理**6.1.7** (可积函数类) (1) 若 $f \in C[a,b]$,则f在[a,b]上可积;

- (2) 若有界函数f只在[a,b]上有限个点处不连续,则f可积;
- (3) 若f在[a,b]上单调,则f可积.

证明: (2) 主要依赖以下不等式

$$\begin{split} S(\pi) - s(\pi) &\leq \frac{\varepsilon}{2(b-a)}(b-a) + 2M \sum_{i=1}^{N} 2\rho \\ &\leq \frac{\varepsilon}{2} + 2M \cdot 2N\rho < \varepsilon. \end{split}$$

(3) 主要依赖以下不等式

$$\begin{split} \sum_{i=1}^{n} \omega_{i} \cdot \Delta x_{i} &= \sum_{i=1}^{n} \left(f\left(x_{i}\right) - f\left(x_{i-1}\right) \right) \cdot \Delta x_{i} \\ &\leq \sum_{i=1}^{n} \left(f\left(x_{i}\right) - f\left(x_{i-1}\right) \right) \cdot \|\pi\| \\ &= \left(f\left(x_{n}\right) - f\left(x_{0}\right) \right) \|\pi\| \\ &= \left(f(b) - f(a) \right) \|\pi\| < \varepsilon. \end{split}$$

设f为[a,b]上定义的函数, 若存在[a,b]上的分割

$$\pi : a = x_0 < x_1 < x_2 < \cdots < x_n = b$$

使得f在每个小区间(x_{i-1},x_i)上均为常数,则称f为阶梯函数.

推论6.1.8 阶梯函数均为可积函数.

定理**6.1.9 (Riemann)** 设f在[a,b]上有界,则f可积的充要条件是 $\forall \epsilon, \eta > 0$,存在[a,b]的分割 π , s.t.

$$\sum_{\omega_i \ge \eta} \Delta x_i < \epsilon.$$

例**6.1.3** 设 $f \in C[a,b]$, ϕ 在 $[\alpha,\beta]$ 上可积, $\phi([\alpha,\beta]) \subseteq [a,b]$. 则 $f \circ \phi$ 在 $[\alpha,\beta]$ 上仍可积.

证明: f 在 [a,b] 上一致连续. $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists x,y \in [a,b]$, $|x-y| < \delta$ 时, $|f(x)-f(y)| < \frac{\varepsilon}{2(\beta-\alpha)}$. 因为 ϕ 在 $[\alpha,\beta]$ 上可积, 则存在 $[\alpha,\beta]$ 的分割 $\pi:\alpha=t_0 < t_1 < \cdots < t_m=\beta$, 使得

$$\sum_{\omega_i(\phi) \geq \delta} \Delta t_i < \frac{\varepsilon}{4K+1},$$

其中 $K = \max_{x \in [a,b]} |f(x)|$. 于是

$$\begin{split} \sum_{i=1}^{m} \omega_{i}(f \circ \varphi) \cdot \Delta t_{i} &= \sum_{\omega_{i}(\phi) \geq \delta} \omega_{i}(f \circ \varphi) \cdot \Delta t_{i} + \sum_{\omega_{i}(\phi) < \delta} \omega_{i}(f \circ \varphi) \cdot \Delta t_{i} \\ &\leq 2K \cdot \sum_{\omega_{i}(\phi) \geq \delta} \Delta t_{i} + \frac{\varepsilon}{2(\beta - \alpha)} \cdot \sum_{\omega_{i}(\phi) < \delta} \Delta t_{i} \\ &\leq 2K \cdot \frac{\varepsilon}{4K + 1} + \frac{\varepsilon}{2(\beta - \alpha)} \cdot (\beta - \alpha) < \varepsilon. \end{split}$$

2.6. RIEMANN 55

两个可积函数的复合不可积的例子:

$$f(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0. \end{cases} \quad g(x) = R(x) \Longrightarrow f \circ g(x) = D(x).$$

可积函数复合连续函数不可积的例子:

$$f(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1, & x = 1. \end{cases}$$

设A为[0,1]上有正测度的类Cantor集, (a_i,b_i) , $(i \in \mathbb{N}_+)$ 为A的邻接区间

$$g(x) = \begin{cases} 1, & x \in A, \\ 1 - \frac{1}{2}(b_i - c_i) + \left| x - \frac{1}{2}(a_i + b_i) \right|, & x \in (a_i, b_i), \ i \in \mathbb{N}_+. \end{cases}$$

则

$$f \circ g(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in [0, 1] \setminus A. \end{cases}$$

定理**6.1.10 (Lebsegue)** 有界函数f在[a,b]上Riemann可积的充要条件是它的不连续点集 D_f 为零测集. 其中 $D_f = \bigcup_{n=1}^{\infty} D_{\frac{1}{n}}$,而

$$D_{\delta} = \left\{ x \in [a, b] : \omega(f, x) \ge \delta \right\}, \quad \omega(f, x) = \lim_{r \to 0^+} \sup \left\{ \left| f(x_1) - f(x_2) \right| : x_1, x_2 \in (x - r, x + r) \cap [a, b] \right\}.$$

2.6.2 定积分的性质

线性性质,积分区间可加性,保号性,绝对值不等式.

定理**6.2.3** (积分第一中值定理) 设 f, g 在 [a,b] 上可积, 且 g(x) 不变号, 则存在 μ , $\inf_{x \in [a,b]} f(x) \leq \mu \leq \sup_{x \in [a,b]} f(x)$, 使得

$$\int_{a}^{b} f(x)g(x)dx = \mu \cdot \int_{a}^{b} g(x)dx.$$

引理 **6.2.4.** 如果 f(x) 在 [a,b] 上可积,令

$$F(x) = \int_{a}^{x} f(t)dt, \quad x \in [a, b],$$

则 F 是 [a,b] 上的连续函数.

注: 尽管这个变限积分常被用来和Newton-Leibnitz公式混用来求定积分, 但是这并不表示F是f的原函数. 根据导函数的介值定理, 如果F是f的原函数, 则f不能有间断点, 这对于可积函数f是条件不足的.

定理 **6.2.5** (积分第二中值定理). 设 f 在 [a,b] 上可积.

(1) 如果 g 在 [a,b] 上单调递减, 且 $g(x) \ge 0$, $\forall x \in [a,b]$, 则存在 $\xi \in [a,b]$ 使得

$$\int_{a}^{b} f(x)g(x)dx = g(a) \cdot \int_{a}^{\xi} f(x)dx.$$

(2) 如果 g 在 [a,b] 上单调递增, 且 $g(x) \ge 0$, $\forall x \in [a,b]$, 则存在 $\eta \in [a,b]$ 使得

$$\int_{a}^{b} f(x)g(x)dx = g(b) \cdot \int_{\eta}^{b} f(x)dx.$$

(3) 一般地, 如果 g 为 [a,b] 上的单调函数, 则存在 $\zeta \in [a,b]$, 使得

$$\int_a^b f(x)g(x)dx = g(a) \cdot \int_a^\zeta f(x)dx + g(b) \cdot \int_\zeta^b f(x)dx.$$

例 6.2.2.

设 β ≥ 0,b > a > 0, 证明

$$\left| \int_{a}^{b} e^{-\beta x} \frac{\sin x}{x} dx \right| \le \frac{2}{a}.$$

证明. 对 $g(x) = \frac{e^{-\beta x}}{x}$, $f(x) = \sin x$ 用积分第二中值公式, 存在 $\xi \in [a,b]$, 使得

$$\int_{a}^{b} e^{-\beta x} \frac{\sin x}{x} dx = \frac{e^{-\beta a}}{a} \cdot \int_{a}^{\xi} \sin x dx = \frac{e^{-\beta a}}{a} (\cos a - \cos \xi)$$

这说明

56

$$\left| \int_{a}^{b} e^{-\beta x} \frac{\sin x}{x} dx \right| \le 2 \frac{e^{-\beta a}}{a} \le \frac{2}{a}.$$

例 **6.2.3.** 证明 $\lim_{A\to\infty}\int_0^A \frac{\sin x}{x} dx$ 存在.

证明. 在上例中取 $\beta = 0$,则当 B > A > 0 时,有

$$\left| \int_0^B \frac{\sin x}{x} dx - \int_0^A \frac{\sin x}{x} dx \right| = \left| \int_A^B \frac{\sin x}{x} dx \right| \le \frac{2}{A} \to 0 \quad (A \to \infty),$$

例3.5.15 设 $f \in C[a,b]$, g是周期为T的连续函数,则

$$\lim_{n \to \infty} \int_a^b f(x)g(nx) \, \mathrm{d}x = \frac{1}{T} \int_a^b f(x) \, \mathrm{d}x \int_0^T g(x) \, \mathrm{d}x.$$

例 **6.2.6 (Riemann-Lebesgue)** 设 f(x) 为 [a,b] 上的可积函数,则

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \sin \lambda x dx = 0, \quad \lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \cos \lambda x dx = 0.$$

证明. 以第一个极限为例. 因为 f 可积, 故任给 $\varepsilon > 0$, 存在 [a,b] 的分割

$$\pi : a = x_0 < x_1 < x_2 < \cdots < x_n = b,$$

使得

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \frac{1}{2} \varepsilon.$$

又因为 f 有界, 故存在 K, 使得 $|f(x)| \le K$, $\forall x \in [a,b]$. 于是当 $\lambda > \frac{4nK}{c}$ 时, 有

$$\left| \int_{a}^{b} f(x) \sin \lambda x dx \right| = \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) \sin \lambda x dx \right|$$

$$= \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left[f(x) - f(x_{i-1}) \right] \sin \lambda x dx + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x_{i-1}) \sin \lambda x dx \right|$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left| f(x) - f(x_{i-1}) \right| dx + \sum_{i=1}^{n} \left| f(x_{i-1}) \right| \left| \int_{x_{i-1}}^{x_{i}} \sin \lambda x dx \right|$$

$$\leq \sum_{i=1}^{n} \omega_{i}(f) \Delta x_{i} + \sum_{i=1}^{n} K \frac{1}{\lambda} \left| \cos \lambda x_{i-1} - \cos \lambda x_{i} \right|$$

$$< \frac{1}{2} \varepsilon + \frac{2nK}{\lambda} < \varepsilon.$$

2.6.3 微积分基本公式

定理 **6.3.1** (微积分基本定理). 设 f 在 [a,b] 上可积, 且在 $x_0 \in [a,b]$ 处连续, 则 $F(x) = \int_a^x f(t) dt$ 在 x_0 处可导, 且

$$F'(x_0) = f(x_0)$$
.

这个定理说明变限积分是函数f的原函数的条件是f在[a,b]上连续,而不能有第一类间断点.但第二类间断点是可以有的.

定理 **6.3.3** (Newton-Leibniz 公式). 设 F 在 [a,b] 上可微, 且 F' = f 在 [a,b] 上 Riemann 可积, 则

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

(此式又写为 $\int_a^b F'(x) dx = F(b) - F(a) = F(x)|_a^b$) 注: 可微函数的导函数不一定是可积的, 如函数

$$F(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

在[0,1]上可微. 进一步还可以构造导函数有界但不可积的例子.

例 **6.3.2.** 设 f 在 [a,b] 上连续可微, f(a) = 0, 则

$$\int_a^b f^2(x) dx \leq \frac{(b-a)^2}{2} \int_a^b \left[f'(x)\right]^2 dx.$$

证明:

$$f^{2}(x) = (f(x) - f(a))^{2} = \left[\int_{a}^{x} f'(t) dt \right]^{2}$$

$$\leq \int_{a}^{x} \left[f'(t) \right]^{2} dt \int_{a}^{x} 1^{2} dt \quad \text{(Cauchy - Schwarz)}$$

$$\leq (x - a) \int_{a}^{b} \left[f'(t) \right]^{2} dt.$$

2.6.4 定积分的近似计算

不等式1 设f可微,且 $|f'(x)| \le M$,则

$$\left| \int_a^b f(x) \, \mathrm{d}x - f\left(\frac{a+b}{2}\right) (b-a) \right| \le \frac{M}{4} (b-a)^2.$$

证明:

$$\begin{split} \left| \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) (b-a) \right| &= \left| \int_a^b \left(f(x) - f\left(\frac{a+b}{2}\right)\right) dx \right| = \left| \int_a^b f'(\xi) \left(x - \frac{a+b}{2}\right) dx \right| \\ &\leq \int_a^b \left| f'(\xi) \right| \left| x - \frac{a+b}{2} \right| dx \leq M \int_a^b \left| x - \frac{a+b}{2} \right| dx \\ &= \frac{M}{4} (b-a)^2. \end{split}$$

不等式**2** 设f二阶可微,且 $|f''(x)| \le M$, $\forall x \in [a,b]$.则

$$\left| \int_a^b f(x) \, \mathrm{d}x - f\left(\frac{a+b}{2}\right) (b-a) \right| \le \frac{1}{24} M (b-a)^3.$$

证明: 用Taylor展开

$$f(x) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(x - \frac{a+b}{2}\right) + \frac{1}{2}f''(\xi)\left(x - \frac{a+b}{2}\right)^2,$$

两边积分,得

$$\int_{a}^{b} f(x) dx = f\left(\frac{a+b}{2}\right) (b-a) + \frac{1}{2} \int_{a}^{b} f''(\xi) \left(x - \frac{a+b}{2}\right)^{2} dx,$$

所以

$$\left| \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) (b-a) \right| \le \frac{1}{2} M \int_a^b \left(x - \frac{a+b}{2}\right)^2 dx = \frac{1}{24} M (b-a)^3.$$

注: 使用带积分型余项的Taylor公式

$$f(x) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(x - \frac{a+b}{2}\right) + \int_{\frac{a+b}{2}}^{x} \frac{f''(t)}{1!}\left(t - \frac{a+b}{2}\right) dt.$$

两边同时积分得到

$$\int_{a}^{b} f(x) dx = f\left(\frac{a+b}{2}\right)(b-a) + \int_{a}^{b} \int_{\frac{a+b}{2}}^{x} f''(t)\left(t - \frac{a+b}{2}\right) dt dx,$$

后者可以通过交换积分次序化简为

$$\begin{split} \int_{a}^{b} \int_{\frac{a+b}{2}}^{x} f''(t) \left(t - \frac{a+b}{2} \right) \mathrm{d}t \, \mathrm{d}x &= \int_{a}^{b} f''(t) \left(t - \frac{a+b}{2} \right) \min\{t - a, b - t\} \, \mathrm{d}t \\ &= - \int_{a}^{\frac{a+b}{2}} (t - a) \cdot f''(t) \left(t - \frac{a+b}{2} \right) \mathrm{d}t + \int_{\frac{a+b}{2}}^{b} (b - t) \cdot f''(t) \left(t - \frac{a+b}{2} \right) \mathrm{d}t \\ &= - \int_{a}^{\frac{a+b}{2}} (t - a) \left(t - \frac{a+b}{2} \right) (f''(t) + f''(a+b-t)) \, \mathrm{d}t. \end{split}$$

所以有下面的恒等式

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f\left(\frac{a+b}{2}\right) (b-a) - \int_{a}^{\frac{a+b}{2}} (t-a) \left(t - \frac{a+b}{2}\right) (f''(t) + f''(a+b-t)) \, \mathrm{d}t.$$

而

$$\left| \int_{a}^{\frac{a+b}{2}} (t-a) \left(t - \frac{a+b}{2} \right) (f''(t) + f''(a+b-t)) \, \mathrm{d}t \right| \le 2M \left| \int_{a}^{\frac{a+b}{2}} (t-a) \left(t - \frac{a+b}{2} \right) \, \mathrm{d}t \right| = \frac{M}{24} (b-a)^3.$$

不等式**3** 设 $f \in C[a,b]$, 若f二阶可微, 且 $|f''(x)| \le M$, $\forall x \in [a,b]$, 则

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - \frac{f(a) + f(b)}{2} (b - a) \right| \le \frac{M}{12} (b - a)^{3}.$$

证明:

$$\int_{a}^{b} f(x) dx = (x - a) f(x) \Big|_{a}^{b} - \int_{a}^{b} (x - a) f'(x) d(x - b)$$

$$= (b - a) f(b) + \int_{a}^{b} (x - b) \left(f'(x) + (x - a) f''(x) \right)$$

$$= (b - a) f(b) + (x - b) f(x) \Big|_{a}^{b} - \int_{a}^{b} f(x) dx + \int_{a}^{b} (x - a) (x - b) f''(x) dx$$

$$= (b - a) (f(b) + f(a)) - \int_{a}^{b} f(x) dx + \int_{a}^{b} (x - a) (x - b) f''(x) dx,$$

所以

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - \frac{f(a) + f(b)}{2} (b - a) \right| = \frac{1}{2} \left| \int_{a}^{b} (x - a)(x - b) f''(x) \, \mathrm{d}x \right| \le \frac{M}{12} (b - a)^{3}.$$

$$\int_{n}^{n+1} f(t) dt = \frac{f(n) + f(n+1)}{2} - \frac{1}{2} \int_{0}^{1} x(1-x) f''(x+n) dx.$$

对n做累和,

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(t) dt + \frac{f(1) + f(n)}{2} + \frac{1}{2} \int_{0}^{1} x(1-x) \sum_{k=1}^{n-1} f''(x+n) dx.$$

2.6. RIEMANN

59

当取 $f(x) = \frac{1}{r}$ 时,得到

$$H_n = \ln n + \frac{n+1}{2n} + \frac{1}{2} \int_0^1 x(1-x) \sum_{k=1}^{n-1} \frac{2}{(x+n)^3} \, \mathrm{d}x = \ln n + O(1).$$

当取 $f(x) = \ln x$ 时,得到

$$\ln n! = \ln \left(\sqrt{n} \left(\frac{n}{e} \right)^n \right) + 1 - \frac{1}{2} \int_0^1 x(1-x) \sum_{k=1}^{n-1} \frac{1}{(x+n)^2} \, \mathrm{d}x = \ln \left(\sqrt{n} \left(\frac{n}{e} \right)^n \right) + O(1),$$

所以极限

$$\lim_{n\to\infty}\frac{n!}{\sqrt{n}\left(\frac{n}{e}\right)^n}=C.$$

$$\int_{a}^{b} f(x)dx - \frac{f(a) + f(b)}{2}(b - a) = \frac{1}{24} \int_{a}^{b} f^{(4)}(x)(x - a)^{2}(x - b)^{2}dx - \frac{1}{12}(b - a)^{2} \left[f'(b) - f'(a) \right].$$

关于习题**3** 是否存在常数 C, 使得对于满足条件 $|f'''(x)| \leq M$ 的任意函数 f 有如下估计:

$$\left| \int_a^b f(x) dx - \frac{f(a) + f(b)}{2} (b - a) \right| \le CM(b - a)^4.$$

条件存在. 不等式相当于

$$\frac{1}{2} \left| \int_a^b (x-a)(x-b) f''(x) \, \mathrm{d}x \right| \le CM(b-a)^4.$$

由于 $|f'''| \le M$, 所以 $-M(x-a) \le f''(x) - f''(a) \le M(x-a)$. 所以

$$\int_{a}^{b} (x-a)(x-b)f''(x) \, \mathrm{d}x \le \int_{a}^{b} (x-a)(x-b)(f''(a) - M(x-a)) \, \mathrm{d}x = \frac{M}{12}(b-a)^4 - \frac{f''(a)}{6}(b-a)^3,$$

$$\int_{a}^{b} (x-a)(x-b)f''(x) \, \mathrm{d}x \ge \int_{a}^{b} (x-a)(x-b)(f''(a)+M(x-a)) \, \mathrm{d}x = -\frac{M}{12}(b-a)^{4} - \frac{f''(a)}{6}(b-a)^{3}.$$

当f''(a) = 0时,上面的C存在,而一般情况的f,上面的C是不存在的.

当问题加上对于任意的 $a,b \in D_f$ 时,常数C也是不存在的.这相当于对于任意的a,b,

$$\frac{1}{2} \left| \int_a^b (x-a)(x-b) f''(x) \, \mathrm{d}x \right| \le CM(b-a)^4.$$

由介值定理, 存在 $\xi \in (a,b)$, s.t.

$$|f''(\xi)|(b-a)^3 \le CM(b-a)^4.$$

令 $b \rightarrow a^+$,得到 $f''(a) \equiv 0$,也与f的任意性矛盾.

2.6.5 作业

- 6. 设 f(x) 为 [0,1] 上的非负可积函数, 且 $\int_0^1 f(x) dx = 0$. 证明, 任给 $\varepsilon > 0$, 均存在子区间 $[\alpha,\beta]$, 使得 $f(x) < \varepsilon$, $\forall x \in [\alpha,\beta]$. 8. 设 f(x) 在 [a,b] 上可积, 且存在常数 C > 0, 使得 $|f(x)| \ge C(a \le x \le b)$. 证 明 $\frac{1}{f}$ 在 [a,b] 上也是可积的.

 - 11. 设 f(x) > 0 为 [a,b] 上的可积函数, 证明 $\int_a^b f(x) dx > 0$. 2. 设 f(x) 是 [a,b] 上定义的函数. 如果 $f^2(x)$ 可积, 则 |f(x)| 也可积.
 - 6. 设 $f(x) \ge 0$ 在 [a,b] 上可积, $\lambda \in \mathbb{R}$, 则

$$\left(\int_{a}^{b} f(x) \cos \lambda x dx\right)^{2} + \left(\int_{a}^{b} f(x) \sin \lambda x dx\right)^{2} \le \left[\int_{a}^{b} f(x) dx\right]^{2}.$$

(提示: $f = \sqrt{f} \cdot \sqrt{f}$, 用Cauchy-Schwarz不等式.)

9. 设 f(x) 为 [0,1] 上的连续函数,则 $\lim_{n\to+\infty} n \int_0^1 x^n f(x) dx = f(1)$. (提示: nx^n 在 [0,1] 上积分趋于 1,在 $[0,\delta]$ 上很小,如果 $0 < \delta < 1.$)

11. 设 f(x) 为 [a,b] 上的可积函数,则任给 $\varepsilon > 0$,存在连续函数 g(x),使得 $\inf f \leq g(x) \leq \sup f$,且

$$\int_{a}^{b} |f(x) - g(x)| dx < \varepsilon.$$

12. 设 f(x) 在 [c,d] 上可积, 设 [a,b] ⊂ (c,d), 则

$$\lim_{h \to 0} \int_{a}^{b} |f(x+h) - f(x)| dx = 0.$$

2.7 定积分的应用和推广

2.7.1 定积分的应用

曲线的长度 设 $I = [\alpha, \beta]$, 映射 $\sigma: I \to \mathbb{R}^2$, $t \mapsto (x(t), y(t))$, $t \in I$. 如果x(t), y(t)为连续函数, 则称 σ 为 \mathbb{R}^2 上的连续曲线. 如果x(t), $y(t) \in C^1$, 则称 σ 为 C^1 曲线. 定义 σ 的长度为

$$L(\sigma) = \int_{\alpha}^{\beta} \left[\left(x'(t) \right)^2 + \left(y'(t) \right)^2 \right]^{1/2} dt.$$

例7.1.1. 求摆线

$$(x(t), y(t)) = (a(t - \sin t), a(1 - \cos t)), \quad a > 0.$$

一拱的长度.

$$l = \int_0^{2\pi} \left[(x'(t))^2 + (y'(t))^2 \right]^{\frac{1}{2}} dt$$

$$= \int_0^{2\pi} a \left[(1 - \cos t)^2 + \sin^2 t \right]^{\frac{1}{2}} dt$$

$$= 2a \int_0^{2\pi} \sin \frac{t}{2} dt = 8a.$$

简单图形的面积

$$S = \int_{a}^{b} f(x) dx.$$

当f变号时,上式称为代数面积和.

设平面曲线 σ 的极坐标方程为 $r = r(\theta), r(\theta) \in C[\alpha, \beta],$

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) d\theta.$$

设曲线 σ 上的点满足 $\sigma(t) = (x(t), y(t)), t \in [\alpha, \beta].$ 则 $\sigma, x = a, x = b$ 和y = 0围成的曲边梯形的面积为

$$S = \int_{\alpha}^{\beta} y(t)x'(t)dt.$$

面积公式也可以改写成

$$S = \frac{1}{2} \left| \int_{\alpha}^{\beta} \left[y(t)x'(t) - y'(t)x(t) \right] \right| dt.$$

旋转曲面的面积 设 σ 为平面曲线 $\sigma(t) = (x(t), y(t)), t \in [\alpha, \beta], y(t) \ge 0.$ σ 绕x轴旋转所得曲面的面积为

$$S = \int_{\alpha}^{\beta} 2\pi y(t) \left[\left(x'(t) \right)^{2} + \left(y'(t) \right)^{2} \right]^{\frac{1}{2}} dt.$$

简单立体的体积 (1) 平行截面之间的立体体积

设 Ω 是 \mathbb{R}^3 中的一块立体区域, 夹在平面x=a和x=b, (a< b) 之间. 记S(x)为 $x\in [a,b]$ 处垂直于x轴的平面截 Ω 的截面面积函数. 如果 $S(x) \in C[a,b]$,则 Ω 的体积为

$$V = \int_{a}^{b} S(x) \, \mathrm{d}x.$$

(2) 旋转体体积 设 $f \in C[a,b]$,

$$\Omega = \left\{ (x,y,z) \mid x \in [a,b], y \in [-\left| f(x) \right|, \left| f(x) \right|], |z| \leq \sqrt{x^2 + y^2} \right\}.$$

∭

$$V(\Omega) = \int_{a}^{b} \pi f^{2}(x) \, \mathrm{d}x.$$

2.7.2 广义积分

设 $a \in \mathbb{R}$, 定义在 $[a, +\infty)$ 中的函数 f 如果在任何有限区间 [a, A] 上都是 Riemann 可积的, 且极限 定义 7.2.1 (无穷积分).

$$\lim_{A \to +\infty} \int_{a}^{A} f(x) dx$$

存在 (且有限), 则称无穷积分 $\int_a^{+\infty} f(x) dx$ 存在或收敛, 记为

$$\int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx$$

否则就称无穷积分 $\int_a^{+\infty} f(x) dx$ 不存在或发散. 类似的,我们可以定义无穷积分 $\int_{-\infty}^a f(x) dx$ 和 $\int_{-\infty}^{\infty} f(x) dx$. 如果极限

$$\lim_{A \to +\infty} \int_{-A}^{A} f(x) \, \mathrm{d}x$$

存在,它和上面定义的无穷积分是不等价的,称为Cauchy主值积分,记为

$$(V.P.) \int_{-\infty}^{\infty} f(x) dx := \lim_{A \to +\infty} \int_{-A}^{A} f(x) dx.$$

无穷积分的**Cauchy**准则 f(x)在[a, + ∞)上的积分收敛,当且仅当,对于任意的 $\epsilon > 0$,存在 $M = M(\epsilon)$,使得对于任何B > A > M时,

$$\left| \int_{A}^{B} f(x) \, \mathrm{d}x \right| < \epsilon.$$

例**7.2.1** 无穷积分 $\int_{1}^{+\infty} \frac{1}{r^{p}} dx$, $(p \in \mathbb{R})$ 仅在p > 1时收敛.

例**7.2.2** $\int_{-\infty}^{\infty} \frac{1}{1+v^2} dx = \arctan x \Big|_{-\infty}^{\infty} = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi.$

定义**7.2.2**(瑕积分) 设函数 f在任何区间 [a',b], (a < a' < b) 上均Riemann可积, 如果极限

$$\lim_{a'\to a+} \int_{a'}^{b} f(x) \, \mathrm{d}x$$

存在且有限,则称瑕积分 $\int_a^b f(x) dx$ 存在或收敛,记为

$$\int_{a}^{b} f(x) \, dx = \lim_{a' \to a+} \int_{a'}^{b} f(x) \, dx,$$

否则称瑕积分

$$\int_{a}^{b} f(x) dx = \lim_{a' \to a+} \int_{a'}^{b} f(x) dx,$$

否则称瑕积分 $\int_a^b f(x) dx$ 不存在或发散. 如果f在a附近无界,则f在[a,b]上不是Riemann可积的,称a为f的瑕点.

无穷积分和瑕积分统称为广义积分,也称为反常积分.

例**7.2.3** 瑕积分 $\int_0^1 \frac{1}{x^p} dx$ 仅在p < 1时收敛. 运算法则: 分部积分, 变量替换, 积分区间可加性, 线性性质.

例7.2.5 $\int_0^1 \ln x \, \mathrm{d}x = \lim_{\epsilon \to 0+} \int_{\epsilon}^1 \ln x \, \mathrm{d}x = \lim_{\epsilon \to 0+} (x \ln x - x) \mid_{\epsilon}^1 = -1.$

例**7.2.6** 求Fresnel积分 $\int_0^{+\infty} \cos(x^2) dx$.

$$\int_{1}^{+\infty} \cos\left(x^{2}\right) dx = \frac{1}{2} \int_{1}^{+\infty} \frac{\cos t}{\sqrt{t}} dt.$$

$$\left| \int_{A}^{B} \frac{\cos t}{\sqrt{t}} dt \right| = \left| \frac{\sin t}{\sqrt{t}} \right|_{A}^{B} + \frac{1}{2} \int_{A}^{B} \frac{\sin t}{t^{\frac{3}{2}}} dt \, |$$

$$\leq \frac{1}{\sqrt{A}} + \frac{1}{\sqrt{B}} + \frac{1}{2} \int_{A}^{B} t^{-\frac{3}{2}} dt = \frac{2}{\sqrt{A}} \to 0 \quad (B > A \to +\infty).$$

$$\begin{split} \int_0^{+\infty} \cos(x^2) \, \mathrm{d}x &= \frac{1}{2} \int_0^{+\infty} \frac{\cos t}{\sqrt{t}} \, \mathrm{d}t \\ &= \frac{1}{2} \int_0^{+\infty} \cos t \left(\frac{2}{\sqrt{\pi}} \int_0^{+\infty} \mathrm{e}^{-tx^2} \, \mathrm{d}x \right) \, \mathrm{d}t \\ &= \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \int_0^{+\infty} \mathrm{e}^{-tx^2} \cos t \, \mathrm{d}t \, \mathrm{d}x \\ &= \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \frac{x^2}{1+x^4} \, \mathrm{d}x = \frac{1}{2\sqrt{\pi}} \int_0^{\pi/2} \tan^{1/2} t \, \mathrm{d}t \\ &= \frac{1}{2\sqrt{\pi}} \cdot \frac{1}{2} B \left(\frac{3/2}{2}, \frac{1/2}{2} \right) = \frac{1}{4\sqrt{\pi}} \cdot \frac{\Gamma(1/4)\Gamma(3/4)}{\Gamma(1)} \\ &= \frac{1}{4\sqrt{\pi}} \cdot \frac{\pi}{\sin \frac{\pi}{4}} = \frac{\sqrt{2\pi}}{4} \, . \end{split}$$

其中

$$\int e^{-tx^2} \cos t \, dt = \frac{e^{-tx^2} \left(-\cos t \cdot x^2 + \sin t \right)}{1 + x^4},$$

所以

$$\int_0^{+\infty} e^{-tx^2} dx = \frac{1}{\sqrt{t}} \int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2\sqrt{t}}.$$

综上,并类似的证明

$$\int_{\mathbb{R}} \cos(x^2) \, \mathrm{d}x = \sqrt{\frac{\pi}{2}}, \qquad \int_{\mathbb{R}} \sin(x^2) \, \mathrm{d}x = \sqrt{\frac{\pi}{2}}.$$

作业

7. 设 f(x) > 0, 如果 f(x) 在 $[a, +\infty)$ 上广义可积,则 $\int_a^{+\infty} f(x) dx > 0$. 在 [a, A]上, f(x)的不连续点集是零测集, 存在不连续点集的至多可数个开区间 $\{I_i\}$, 使得

$$\sum |I_i| \le \epsilon.$$

因 $A-a>\epsilon$, 所以存在连续点, 设为 x_0 , 则存在 $\delta>0$, 使得任何 $|x-x_0|<\delta$, f(x)>0, 与 $\int_a^A f(x)\,\mathrm{d}x=0$ 矛盾. 8. 设 f(x) 在 $[a,+\infty)$ 上广义可积, 如果 f(x) 在 $[a,+\infty)$ 中一致连续, 则

$$\lim_{x \to +\infty} f(x) = 0.$$

(提示: 先用 Cauchy 准则和中值定理找收敛子列.) 对于任何 $\epsilon > 0$, 存在 $\delta > 0$, 只要 $|x-y| < \delta$, 就有 $|f(x) - f(y)| < \epsilon$. 又对于这样小 的 ϵ , 存在M > 0, s.t. 对于任何A > M,

$$\left| \int_{A}^{A+\delta} f(x) \, \mathrm{d}x \right| < \epsilon.$$

则存在 $\xi \in (A, A + \delta)$, 使得

 $|f(\xi)| < \epsilon$.

所以对于任何 $x \in (A, A + \delta)$,有

$$|f(x)| \le |f(\xi)| + |f(x) - f(\xi)| \le \epsilon + \epsilon$$

9. 设 f(x) 在 $[a, +\infty)$ 上广义可积, 如果 f(x) 在 $[a, +\infty)$ 中可导, 且导函数 f'(x) 有界, 则 $\lim_{x\to +\infty} f(x) = 0$. (提示: 用上一题.) 11. 举例说明, 当无穷积分 $\int_a^{+\infty} f(x) dx$ 收敛, 且 f(x) 为正连续函数时, 无穷积分 $\int_a^{+\infty} f^2(x) dx$ 不一定收敛. 磨光函数

$$\sum_{k=1}^{n} n \chi_{[n,n+1/n^3]}(x)$$

12. 举例说明, 当无穷积分 $\int_a^{+\infty} f(x) dx$ 收敛, 且 f(x) 为正连续函数时, 不一定有

$$\lim_{x \to +\infty} f(x) = 0.$$

比如图形类似于下式的函数

$$\sum_{k=1}^{\infty} n \chi_{[n,n+1/n]}$$

2.7.3 广义积分的收敛判别法

Thm 7.3.1. 设 $f \ge 0$, 则无穷积分 $\int_a^{+\infty} f(x) dx$ 收敛当且仅当

$$F(A) = \int_{a}^{A} f(x) dx$$

是 $A \in [a, +\infty)$ 的有界函数; 对瑕积分有完全类似的结果.

定理 **7.3.2.** (比较判别法) 设 $0 \le f \le Mg$, M > 0 为常数, 则当无穷积分 $\int_a^{+\infty} g(x) dx$ 收敛时, 无穷积分 $\int_a^{+\infty} f(x) dx$ 也收敛; 当无穷积分 $\int_a^{+\infty} f(x) dx$ 发散时, 无穷积分 $\int_a^{+\infty} g(x) dx$ 也发散; 瑕积分有完全类似的结果.

M的求法 求 $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = l$.

 $0 < l < \infty$ 时, $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 与 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 同收敛.

l=0时, $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 收敛可以推出 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛. 注: $0 \le f \le Mg$ 不可省,否则取 $f(x) = \left|\frac{\sin x}{x \ln x}\right|$, $g(x) = \frac{\sin x}{x}$.

 $l = +\infty$ 时, $\int_a^{+\infty} g(x) dx$ 发散, 则 $\int_a^{+\infty} f(x) dx$ 发散.

Cauchy判别法 将f与 x^{-p} 比较, (无穷积分) (瑕积分有类似结论)

- 2. 若 $p \le 1$, 且存在c > 0, s.t. $f(x) \ge \frac{c}{x^p}$, $(\forall x \ge x_0)$, 则 $\int_a^{+\infty} f(x) dx$ 发散.

设 $\lim_{x\to\infty} x^p f(x) = l$.

- 3. 若p > 1, $0 \le l < +\infty$, 则 $\int_a^{+\infty} f(x) dx$ 收敛. 4. 若 $p \le 1$, $0 < l \le +\infty$, 则 $\int_a^{+\infty} f(x) dx$ 发散.

例**7.3.3** 判断 $\int_1^{+\infty} \frac{1}{x(1+\ln x)} dx$ 的敛散性.

对于一般函数f, 定义

$$f^+(x) = \max\{0, f(x)\}, \quad f^-(x) = \max\{0, -f(x)\}.$$

若f[±]收敛,则f收敛.(绝对收敛) 若 $\int f$ 收敛, 但 $\int |f|$ 发散. (条件收敛)

例**7.3.5** 判断 $\int_{1}^{+\infty} \cos x^{p} dx$, (p > 1), 的敛散性.

$$\int_{1}^{\infty} \cos t \cdot t^{\frac{1}{p} - 1} \, \mathrm{d}t,$$

取 $B > A \gg 1$,则

$$\left|\int_A^B \frac{\cos t}{t^{1-\frac{1}{p}}} \,\mathrm{d}t\right| = \left|\frac{1}{A^{1-1/p}} \int_A^\xi \cos t \,\mathrm{d}t + \frac{1}{B^{1-1/p}} \int_\xi^B \cos t \,\mathrm{d}t\right| \le \frac{4}{A^{1-1/p}} \to 0, \quad A \to +\infty.$$

但

$$\left|\cos x^{p}\right| \ge \cos^{2} x^{p} = \frac{1}{2} \left(1 + \cos 2x^{p}\right),$$

反证 $\int |\cos x^p|$ 不收敛.

设 $F(A)=\int_a^A f(x)dx$ 在 $[a,+\infty)$ 中有界, 函数 g(x) 在 $[a,+\infty)$ 中单调, 且 $\lim_{x\to+\infty}g(x)=0$, 则积分 定理 7.3.3 (Dirichlet). $\int_{a}^{+\infty} f(x)g(x)dx$ 收敛.

 $pf. |F(A)| \le C, \forall A \ge a.$ 所以

$$\left| \int_{A}^{B} f(x) \, \mathrm{d}x \right| \le 2C, \quad \forall A, B \ge a.$$

 $g(x) = o(1), x \to +\infty$. $\text{fi} \ \forall \forall \epsilon > 0, \exists M > 0, \text{ s.t. } \forall x > M, \ \left| g(x) \right| \leq \frac{\epsilon}{4C}$.

$$\left| \int_{A}^{B} f(x)g(x) \, dx \right| = \left| g(A) \int_{A}^{\xi} f(x) \, dx + g(B) \int_{\xi}^{B} f(x) \, dx \right|$$
$$\leq \frac{\epsilon}{4C} \cdot 2C \cdot 2 = \epsilon.$$

例**7.3.6.** 判断积分 $\int_0^{+\infty} \frac{\sin x}{xP} dx$, (0 的敛散性.

pf. $\frac{\sin x}{x^p} \sim \frac{1}{x^{p-1}}, (x \to 0+)$. 所以 $\int_0^1 \frac{\sin x}{x^p} dx = \int_0^1 x^{1-p} dx$ 同敛散, (p < 2).

 $\int_1^A \sin x \, dx$ 有界, $\frac{1}{x^p} \setminus 0$, 由Dirichlet判别法, $\int_1^\infty \frac{\sin x}{x^p} \, dx$ 收敛.

 $0 时, <math>\int_1^\infty \left| \frac{\sin x}{x^p} \right| dx$ 发散.

 $1 时, <math>\int_1^\infty \left| \frac{\sin x}{x^p} \right| dx$ 收敛.

定理 **7.3.4** (Abel). 如果广义积分 $\int_a^{+\infty} f(x) dx$ 收敛, 函数 g(x) 在 $[a, +\infty)$ 中单调有界, 则积分 $\int_a^{+\infty} f(x) g(x) dx$ 也收敛. pf. g有界, 所以 $|g(x)| \le c$, $\forall x \in [a, +\infty)$.

 $\int f$ 收敛, 所以 $\forall \epsilon > 0$, $\exists M > 0$, s.t. $\forall B > A > M$, $\left| \int_A^B f(x) dx \right| \leq \frac{\epsilon}{2c}$.

$$\left| \int_{A}^{B} f(x)g(x)dx \right| = \left| g(A) \int_{A}^{\xi} f(x)dx + g(B) \int_{\xi}^{B} f(x)dx \right|$$

$$\leq c \left| \int_{A}^{\xi} f(x)dx \right| + c \left| \int_{\xi}^{B} f(x)dx \right|$$

$$\leq c \frac{\epsilon}{2c} + c \frac{\epsilon}{2c} = \epsilon.$$

例**7.3.7** 设 $a \ge 0$, 研究积分 $\int_0^{+\infty} e^{-ax} \frac{\sin x}{x} dx$ 的敛散性. pf. $e^{-ax} \setminus 0$, $\int_0^A \frac{\sin x}{x}$ 有界, 由Dirichlet判别法, $\int_0^\infty e^{-ax} \frac{\sin x}{x}$ 收敛. $e^{-ax} \setminus$ 有界, $\int_0^\infty \frac{\sin x}{x}$ 收敛, 由Abel判别法, $\int_0^\infty e^{-ax} \frac{\sin x}{x}$ 收敛.

作业

- 5. 设 f(x) 在 $[1,+\infty)$ 中连续, 如果 $\int_1^{+\infty} f^2(x) dx$ 收敛, 则 $\int_1^{+\infty} \frac{f(x)}{x} dx$ 绝对收敛. (提示: 用Cauchy不等式.)

 - 6. 设 f(x) 在 $[a,A](A<\infty)$ 上均可积. 如果 $\int_a^{+\infty}|f(x)|dx$ 收敛, 且 $\lim_{x\to+\infty}f(x)=L$, 证明 L=0, 且 $\int_a^{+\infty}f^2(x)dx$ 也收敛. 7. 设 f(x) 在 $[a,+\infty)$ 中单调递减, 且 $\int_a^{+\infty}f(x)dx$ 收敛, 证明 $\lim_{x\to+\infty}xf(x)=0$. (提示: 在区间 [A/2,A] 上估计积分.) 8. 设 f(x) 在 $[a,+\infty)$ 中单调递减趋于零, 且 $\int_a^{+\infty}\sqrt{f(x)/x}dx$ 收敛, 则 $\int_a^{+\infty}f(x)dx$ 也收敛. (提示: 利用上题, 比较被积函数.)

pf. 取 $\epsilon = 1/2$,则存在X > a, s.t. $\forall x > X$,

$$\frac{x}{2} \cdot \sqrt{\frac{f(x)}{x}} < \int_{x/2}^{x} \sqrt{\frac{f(t)}{t}} dt < \epsilon = \frac{1}{2},$$

即 $\sqrt{xf(x)}$ < 1. 所以f(x) < $\sqrt{\frac{f(x)}{x}}$, $\forall x > X$. 9. 设 $\int_a^{+\infty} f(x) dx$ 收敛, 如果 $x \to +\infty$ 时 xf(x) 单调递减趋于零,则

$$\lim_{x \to +\infty} x f(x) \ln x = 0.$$

pf. 对于任意的 $\epsilon > 0$, 因为 $\int_a^{+\infty} f(x) dx$ 收敛,则存在 $M > \max(0, a)$, s.t. 对于任意的x > M, 有

$$xf(x)\int_{\sqrt{x}}^{x}\frac{1}{t}dt \leq \int_{\sqrt{x}}^{x}tf(t)\cdot\frac{1}{t}dt = \int_{\sqrt{x}}^{x}f(t)dt < \frac{\epsilon}{2}.$$

 $\mathbb{P} x f(x) \ln x < \epsilon$.

10. 设 f(x) > 0 在 $[0, +\infty)$ 中连续, 且 $\int_0^{+\infty} \frac{dx}{f(x)}$ 收敛, 证明

$$\lim_{\lambda \to +\infty} \frac{1}{\lambda} \int_0^{\lambda} f(x) dx = +\infty.$$

pf. Cauchy不等式:

$$\int_0^\infty \frac{dx}{f(x)} \int_0^\lambda f(x) dx \ge \left(\int_0^\lambda dx \right)^2 = \lambda^2.$$

11. 研究广义积分

$$\int_{2}^{+\infty} \frac{dx}{x^{p} \ln^{q} x} dx \quad (p, q \in \mathbb{R})$$

的敛散性.

pf. p > 1收敛, p < 1发散.

p = 1, q > 1时收敛; $p = 1, q \le 1$ 时发散.

2.7.4 广义积分的例子

例7.4.1 求

$$I = \int_0^{+\infty} e^{-ax} \sin bx dx, \qquad (a > 0).$$

pf. 原函数可求

$$F(x) = -\frac{a\sin bx + b\cos bx}{a^2 + b^2}e^{-ax},$$

$$I = F(\infty) - F(0) = \frac{b}{a^2 + b^2}.$$

 $\diamondsuit b = n, a = 1,$

$$\int_0^\infty e^{-x} \sin nx dx = \frac{n}{n^2 + 1},$$

所以

$$\int_0^\infty e^{-x} \frac{\sin nx}{n} dx = \frac{1}{n^2 + 1},$$

所以

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{n^2 + 1} &= \int_0^{\infty} e^{-x} \left\langle \frac{\pi - x}{2} \right\rangle dx \\ &= \sum_{k=0}^{\infty} \int_{2k\pi}^{2(k+1)\pi} e^{-x} \frac{\pi - (x - 2k\pi)}{2} dx \\ &= \sum_{k=0}^{\infty} \int_0^{2\pi} e^{-(x + 2k\pi)} \frac{\pi - x}{2} dx \\ &= \int_0^{2\pi} \frac{e^{\pi}}{e^{\pi} - e^{-\pi}} e^{-x} \frac{\pi - x}{2} dx \\ &= \frac{1}{2} \frac{e^{\pi}}{e^{\pi} - e^{-\pi}} \cdot \left((\pi - 1) + e^{-2\pi} (\pi + 1) \right) = \frac{\pi \coth \pi - 1}{2}. \end{split}$$

例7.4.2 求

$$I = \int_{-\pi}^{+\pi} \frac{1 - r^2}{1 - 2r\cos x + r^2} dx, \qquad (0 < r < 1).$$

pf. $\Leftrightarrow t = \tan \frac{x}{2}$, 则

$$I = \int_{\mathbb{R}} \frac{2(1-r^2)}{(1-r)^2 + (1+r)^2 t^2} dt = 2 \arctan\left(\frac{1+r}{1-r}t\right) \Big|_{-\infty}^{\infty} = 2\pi.$$

另外注意

$$\sum_{n\in\mathbb{Z}}r^{|n|}e^{inx}=\frac{1-r^2}{1-2r\cos x+r^2}.$$

例7.4.3 求

$$I = \int_0^\infty \frac{1}{1 + x^4} dx.$$

pf. $\alpha > 1$. 取 $x^{\alpha/2} = \tan t$, 则 $x = (\tan t)^{2/\alpha}$.

$$I = \int_0^\infty \frac{1}{1+x^{\alpha}} dx = \int_0^{\pi/2} \frac{2}{\alpha} (\tan t)^{2/\alpha - 1} dt = \frac{2}{\alpha} \cdot \frac{1}{2} B\left(\frac{1}{\alpha}, 1 - \frac{1}{\alpha}\right) = \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \Gamma\left(1 - \frac{1}{\alpha}\right) = \frac{\pi}{\alpha \sin \frac{\pi}{\alpha}}.$$

例7.4.5 求

$$I = \int_0^{+\infty} \frac{1}{\left(1+x^2\right)^n} dx \qquad (n \geq 1).$$

pf. $\Leftrightarrow x = \tan t$,

$$\int_0^\infty \frac{1}{(1+x^2)^{\alpha}} dx = \int_0^{\pi/2} \cos^{2\alpha-2} t dt = \frac{1}{2} B\left(\frac{1}{2}, \frac{2\alpha-1}{2}\right).$$

 $\stackrel{\text{u}}{=} \alpha = n \stackrel{\text{v}}{=} 1, I = \frac{\pi}{2} \cdot \frac{(2n-3)!!}{(2n-2)!!}$

例7.4.8 求

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx.$$

pf. 注意 $\sin^2 nx - \sin^2 (n-1)x = \sin x \cdot \sin [(2n-1)x]$, 则

$$\frac{\sin^2 nx}{\sin^2 x} = \sum_{k=1}^n \frac{\sin(2k-1)x}{\sin x}.$$

又注意

 $\sin(2n-1)x - \sin(2n-3)x = 2\sin x \cos[2(n-1)x],$

$$\sin(2n-1)x = 2\sin x \left(\frac{1}{2} + \sum_{k=1}^{n-1}\cos 2kx\right),$$

所以

$$\int_0^{\pi/2} \frac{\sin^2 nx}{\sin^2 x} = \sum_{k=1}^n \int_0^{\pi/2} \frac{\sin(2k-1)x}{\sin x} dx = \sum_{k=1}^n \int_0^{\pi/2} 1 + 2 \sum_{j=1}^{k-1} \cos 2jx dx = n \cdot \frac{\pi}{2}.$$

最后由Riemann Lebesgue引理

$$\int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} dx = \lim_{n \to \infty} \int_{0}^{\frac{n\pi}{2}} \frac{\sin^{2} x}{x^{2}} dx$$

$$= \lim_{n \to \infty} \int_{0}^{\pi/2} \frac{\sin^{2} nx}{nx^{2}} dx$$

$$= \lim_{n \to \infty} \left(\int_{0}^{\pi/2} \frac{\sin^{2} nx}{n \sin^{2} x} dx + \int_{0}^{\pi/2} \frac{\sin^{2} nx}{n} \left(\frac{1}{x^{2}} - \frac{1}{\sin^{2} x} \right) dx \right)$$

$$= \frac{\pi}{2} + O\left(\frac{1}{n}\right).$$

也可以不用Riemann Lebesgue引理, 需要用夹逼原理, 使用不等式

$$x - \frac{x^3}{3!} \le \sin x \le x, \quad \forall x \in \left[0, \frac{\pi}{2}\right].$$

则

$$\begin{split} \frac{1}{n} \int_0^{\pi/2} \frac{\sin^2 nx}{x^2} dx &\leq \frac{1}{n} \int_0^{\pi/2} \frac{\sin^2 nx}{\sin^2 x} dx = \frac{\pi}{2} \leq \frac{1}{n} \int_0^{\pi/2} \frac{\sin^2 nx}{\left(x - \frac{x^3}{3!}\right)^2} dx \\ &\leq \frac{1}{n} \int_0^{\delta} \frac{\sin^2 nx}{x^2} \left(1 - \frac{\delta^2}{6}\right)^{-2} dx + \frac{1}{n} \int_{\delta}^{\pi/2} \frac{1}{x^2} \left(1 - \frac{(\pi/2)^2}{6}\right)^{-2} dx \quad \forall \delta > 0. \end{split}$$

由于

$$\frac{\pi}{2} \ge \frac{1}{n} \int_0^{\pi/2} \frac{\sin^2 nx}{x^2} dx \ge \left(1 - \frac{\delta^2}{6}\right)^2 \left[\frac{\pi}{2} - \frac{1}{n} \int_{\delta}^{\pi/2} \frac{1}{x^2} \left(1 - \frac{\pi^2}{24}\right)^{-2} dx\right], \qquad \forall \delta > 0.$$

所以

$$\frac{\pi}{2} \ge I \ge \left(1 - \frac{\delta^2}{6}\right)^{-2} \frac{\pi}{2}, \quad \forall \delta > 0.$$

同上面类似的过程有Dirichlet积分

$$\begin{split} \int_0^\infty \frac{\sin x}{x} dx &= \lim_{n \to \infty} \int_0^{\frac{(2n-1)\pi}{2}} \frac{\sin x}{x} dx \\ &= \lim_{n \to \infty} \int_0^{\pi/2} \frac{\sin(2n-1)x}{x} dx \\ &= \lim_{n \to \infty} \left[\int_0^{\pi/2} \frac{\sin(2n-1)x}{\sin x} dx + \int_0^{\pi/2} \sin(2n-1)x \cdot \left(\frac{1}{x} - \frac{1}{\sin x}\right) dx \right] = \frac{\pi}{2}. \end{split}$$

例**7.4.9.** 求Euler积分

$$I = \int_0^{\pi/2} \ln \sin x dx.$$

pf.

$$I \xrightarrow{\frac{x=2t}{2}} 2 \int_0^{\pi/4} \ln \sin 2t dt = 2 \int_0^{\pi/4} \ln 2 + \ln \sin t + \ln \cos t dt$$
$$= 2 \ln 2 \cdot \frac{\pi}{4} + 2 \int_0^{\pi/4} \ln \sin t dt + 2 \int_0^{\pi/4} \ln \cos t dt$$
$$= \frac{\pi}{2} \ln 2 + 2I.$$

所以 $I = -\frac{\pi}{2} \ln 2$.

2.7.5 作业

8. (Frullani积分)设 f(x) 在 $[0,+\infty)$ 上连续, 且对任意 c>0, 积分 $\int_c^{+\infty} \frac{f(x)}{x}$ 收敛, 则

$$\int_0^{+\infty} \frac{f(\alpha x) - f(\beta x)}{x} dx = f(0) \ln \frac{\beta}{\alpha}, \quad (\alpha, \beta > 0).$$

9. (Frullani积分) 设 f(x) 是定义在 $(0,+\infty)$ 上的函数, 如果对于任意 b>a>0, 积分 $\int_a^b \frac{f(x)}{x} dx$ 收敛, 且

$$\lim_{x \to 0^+} f(x) = L, \quad \lim_{x \to +\infty} f(x) = M,$$

则

$$\int_0^{+\infty} \frac{f(\alpha x) - f(\beta x)}{x} dx = (L - M) \ln \frac{\beta}{\alpha}, \quad (\alpha, \beta > 0).$$

pf.

 $\int_{\epsilon}^{M} \frac{f(\alpha x) - f(\beta x)}{x} dx = \int_{\alpha \epsilon}^{\alpha M} \frac{f(x)}{x} dx - \int_{\beta \epsilon}^{\beta M} \frac{f(x)}{x} dx$ $= \int_{\alpha \epsilon}^{\beta \epsilon} \frac{f(x)}{x} dx - \int_{\alpha M}^{\beta M} \frac{f(x)}{x} dx \qquad (\alpha < \beta)$ $= \int_{\alpha\epsilon}^{\beta\epsilon} \frac{f(0) + o(1)}{x} dx - \int_{\alpha M}^{\beta M} \frac{f(\infty) + o(1)}{x} dx$ $= L \ln \frac{\beta}{\alpha} - M \ln \frac{\beta}{\alpha}$.

9.5 如果f在(0,+ ∞)上连续, $\lim_{x\to+\infty} f(x) = f(+\infty)$ 存在, 且 $\int_0^1 \frac{f(x)}{x} dx$ 收敛, 则有

$$\int_0^{+\infty} \frac{f(\alpha x) - f(\beta x)}{x} \, \mathrm{d}x = -f(+\infty) \ln \frac{\beta}{\alpha}.$$

10. 计算下列积分 (a,b>0):
(1) $\int_0^{+\infty} \left(\frac{x}{e^x-e^{-x}}-\frac{1}{2}\right) \frac{dx}{x^2}$;
(2) $\int_0^{+\infty} \frac{b\sin ax-a\sin bx}{x^2} dx$. pf. (1) 注意到

$$\frac{1}{x^2} \left(\frac{x}{e^x - e^{-x}} - \frac{1}{2} \right) = \frac{1}{x} \left(\frac{e^x + 1 - 1}{e^{2x} - 1} - \frac{1}{2x} \right) = \frac{1}{x} \left(\frac{1}{e^x - 1} - \frac{1}{e^{2x} - 1} - \frac{1}{x} + \frac{1}{2x} \right).$$

如令 $f(x) = \frac{1}{e^x - 1} - \frac{1}{x}$,则由Frullani积分,

$$\int_0^{+\infty} \left(\frac{x}{e^x - e^{-x}} - \frac{1}{2} \right) \frac{dx}{x^2} = f(0+) \ln 2 = -\frac{1}{2} \ln 2.$$

数项级数 2.8

级数收敛与发散的概念

无穷级数

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

其中

$$S_n = \sum_{k=1}^n a_k = a_1 + \dots + a_n$$

称为级数的第n个部分和.

级数收敛的必要条件: 如果 $\sum_{n=1}^{\infty} a_n$ 收敛,则通项 $a_n \to 0$, $(n \to \infty)$. (否定表述)

级数收敛的**Cauchy**准则: $\sum_{n=1}^{\infty} a_n$ 收敛 \iff 任给 $\varepsilon > 0$, 存在 $N = N(\varepsilon)$, 当 n > N 时

$$|a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \varepsilon, \quad \forall p \ge 1.$$

(否定表述)

例 8.1.2. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的敛散性.

判断级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 的敛散性 (调和级数). 例 8.1.3.

例 **8.1.4.** 判断级数 $\sum_{n=1}^{\infty} \sin n$ 的敛散性. pf.

$$\sin(n+1) = \sin n \cdot \cos 1 + \cos n \cdot \sin 1 \Longrightarrow \cos n \to 0, n \to \infty$$

这与

$$\sin^2 n + \cos^2 n = 1$$

矛盾.

设 q > 0, 则当 q < 1 时, $\sum_{n=1}^{\infty} q^n$ 收敛; $q \ge 1$ 时, $\sum_{n=1}^{\infty} q^n$ 发散(几何级数).

Thm8.1.1 (1) 如果 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 均收敛,则 $\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n)$ 也收敛,且 $\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n$, $(\lambda, \mu \in \mathbb{R})$

- (2) 级数的敛散性与其有限项的值无关.
- 3. 设级数 $\sum_{n=1}^{\infty} a_n$ 的部分和为 S_n . 如果 $S_{2n} \to S$, 且 $a_n \to 0$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛.
- 条件 $a_n \to 0$ 不能舍去, 比如 $1-1+1-1+1-1+\cdots$.

- 4. 设级数 $\sum_{n=1}^{\infty} |a_{n+1} a_n|$ 收敛, 则数列 $\{a_n\}$ 收敛. (提示: 用 Cauchy 准则.) 5. 设数列 na_n 收敛, 且级数 $\sum_{n=2}^{\infty} n(a_n a_{n-1})$ 收敛, 证明级数 $\sum_{n=1}^{\infty} a_n$ 也是收敛的. 6. 证明, 如果级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛, 则 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 也收敛. (提示: 用平均值不等式.) 8. 设 $\sum_{n=1}^{\infty} a_n$ 为发散级数, 则 $\sum_{n=1}^{\infty} \min\{a_n,1\}$ 也发散. hint: 反证法, 比Cauchy收敛准则的否定表述更好写证明过程.

2.8.2 正项级数收敛与发散的判别法

基本判别法 $\sum_{n=1}^{\infty} a_n$ 收敛 \iff $\{S_n\}$ 收敛 \iff $\{S_n\}$ 有上界.

设 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 为正项级数, 如果存在常数 M > 0, 使得 定理 8.2.1 (比较判别法).

$$a_n \leq Mb_n$$
, $\forall n \geq 1$.

则 (1) $\sum_{n=1}^{\infty}b_n$ 收敛时 $\sum_{n=1}^{\infty}a_n$ 也收敛; (2) $\sum_{n=1}^{\infty}a_n$ 发散时 $\sum_{n=1}^{\infty}b_n$ 也发散.

例 **8.2.3.** 判别 $\sum_{n=1}^{\infty} \left[\frac{1}{n} - \ln(1 + \frac{1}{n}) \right]$ 的敛散性. 解. 根据 Taylor 展开,

$$0 < \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) = \frac{1}{2}\frac{1}{n^2} + o\left(\frac{1}{n^2}\right).$$

因此

$$\lim_{n\to\infty} \left[\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \right] / \frac{1}{n^2} = \frac{1}{2},$$

而 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, 故原级数收敛.

Cauchy判别法或根值判别法 如果n充分大时, $\sqrt[n]{a_n} \le q < 1$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

例 **8.2.4.** 设 $p \in \mathbb{R}$, 判别级数 $\sum_{n=1}^{\infty} (1 - \frac{p}{n})^{n^2}$ 的敛散性. 解. 因为

$$\sqrt[n]{a_n} = \left(1 - \frac{p}{n}\right)^n \to e^{-p},$$

故 p>0 时原级数收敛; p<0 时级数发散. 显然, p=0 时级数也发散.

d'Alembert判别法或比值判别法 如果n充分大时, $\frac{a_{n+1}}{a_n} \le q < 1$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

例 **8.2.5.** 设 x > 0, 判别级数 $\sum_{n=1}^{\infty} n! \left(\frac{x}{n}\right)^n$ 的敛散性. 解. 因为

$$\frac{a_{n+1}}{a_n} = \frac{x}{\left(1 + \frac{1}{n}\right)^n} \to \frac{x}{e},$$

故 0 < x < e 时级数收敛; x > e 时级数发散. x = e 时,

$$\frac{a_{n+1}}{a_n} = e/\left(1 + \frac{1}{n}\right)^n \geqslant 1,$$

故此时级数也发散.

定理 **8.2.2** (积分判别法**).** 设 f(x) 是定义在 $[1,+\infty)$ 上的非负单调递减函数, 记 $a_n=f(n)$, $(n\geq 1)$. 则级数 $\sum_{n=1}^\infty a_n$ 的敛散性与广义积分 $\int_1^{+\infty} f(x) dx$ 的敛散性相同. 证明. 令

$$F(x) = \int_{1}^{x} f(t) dt, \quad \forall x \ge 1.$$

因为 f 为单调递减函数, 故当 $n \le x \le n+1$ 时

$$a_{n+1} = f(n+1) \le f(x) \le f(n) = a_n$$

这说明

$$a_{n+1} \leq \int_n^{n+1} f(t) dt \leq a_n,$$

从而有

$$S_n \leq a_1 + F(n), \quad F(n) \leq S_{n-1}.$$

其中 $S_n = \sum_{k=1}^n a_k$ 为级数的部分和. 因为 S_n 及 F(n) 关于 n 都是单调递增的, 二者同时有界或无界, 即 $\sum_{n=1}^\infty a_n$ 与 $\int_1^{+\infty} f(x) dx$ 同

设 $s \in \mathbb{R}$, 判断级数 $\sum_{n=1}^{\infty} \frac{1}{n^s}$ 的敛散性. 例 8.2.6.

定理 **8.2.3 (Kummer).** 设 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 为正项级数, 如果 n 充分大时 (1) $\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \ge \lambda > 0$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛; (2) $\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \le 0$ 且 $\sum_{n=1}^{\infty} b_n$ 发散, 则 $\sum_{n=1}^{\infty} a_n$ 发散. pf. (1) 条件可改写为

$$a_{n+1} \le \frac{1}{\lambda} \left(\frac{a_n}{b_n} - \frac{a_{n+1}}{b_{n+1}} \right), \quad \forall n \ge N.$$

这说明当 $n \ge N$ 时

$$S_{n+1} = S_N + \sum_{k=N}^n a_{k+1}$$

$$\leq S_N + \frac{1}{\lambda} \sum_{k=N}^n \left(\frac{a_k}{b_k} - \frac{a_{k+1}}{b_{k+1}} \right)$$

$$= S_N + \frac{1}{\lambda} \left(\frac{a_N}{b_N} - \frac{a_{n+1}}{b_{n+1}} \right)$$

$$\leq S_N + \frac{1}{\lambda} \frac{a_N}{b_N}$$

即 $\{S_n\}$ 有上界, 从而 $\sum_{n=1}^{\infty} a_n$ 收敛.

(2) 由

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \le 0$$

可知

$$\frac{a_n}{b_n} \le \frac{a_{n+1}}{b_{n+1}},$$

即 $\left\{\frac{a_n}{b_n}\right\}$ 关于 n 单调递增,从而 $a_n \ge \frac{a_1}{b_1}b_n$,因此由 $\sum_{n=1}^{\infty}b_n$ 发散知 $\sum_{n=1}^{\infty}a_n$ 也发散.

Kummer判别法推**d**'Alembert判别法 取 $b_n = 1$,则当n充分大,有 $\frac{a_{n+1}}{a_n} \le q < 1$ 时,有

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \ge \frac{1}{q} - 1 > 0,$$

所以由Kummer判别法有 $\sum a_n$ 收敛. 当n充分大满足 $\frac{a_{n+1}}{a_n} \ge 1$ 时,有

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \le 1 - 1 = 0,$$

再由Kummer判别法和 Σ 1发散,知 Σ a_n 发散.

Kummer判别法证明**Raabe**判别法 取 $b_n = \frac{1}{n}$, 当n充分大时, 如果有 $n\left(\frac{a_n}{a_{n+1}} - 1\right) \ge \mu > 1$, 则

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \ge n \left(1 + \frac{\mu}{n} \right) - (n+1) = \mu - 1 > 0,$$

由Kummer判别法, $\sum a_n$ 收敛. 当n充分大时, 如果有 $n\left(\frac{a_n}{a_{n+1}}-1\right) \le 1$, 则

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \le n \left(1 + \frac{1}{n} \right) - (n+1) = 0,$$

由Kummer判别法以及 \sum_{n} 是发散的,所以 $\sum a_n$ 也发散.

Kummer判别法推出**Gauss**判别法 取 $b_n = \frac{1}{n \ln n}$, 当n > N充分大时, 如果有 $\theta > 1$ 使得

$$\frac{a_n}{a_{n+1}} = 1 + \frac{\theta}{n} + o\left(\frac{1}{n\ln n}\right).$$

则

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} = n \ln n \left(1 + \frac{\theta}{n} + o \left(\frac{1}{n \ln n} \right) \right) - (n+1) \ln (n+1)$$

$$= (n+1) \ln n + (\theta - 1) \ln n + o(1) - n \ln (n+1) - \ln (n+1)$$

$$= (\theta - 1) \ln n + o(1) - (n+1) \left(\frac{1}{n} + o \left(\frac{1}{n} \right) \right)$$

$$\ge (\theta - 1) \ln n > 0$$

所以 $\sum a_n$ 收敛; 当n > N充分大时, 如果有 $\theta \leq 1$ 使得

$$\frac{a_n}{a_{n+1}} = 1 + \frac{\theta}{n} + o\left(\frac{1}{n \ln n}\right).$$

则

$$\begin{split} \frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} &= n \ln n \left(1 + \frac{\theta}{n} + o \left(\frac{1}{n \ln n} \right) \right) - (n+1) \ln (n+1) \\ &= (n+1) \ln n + (\theta - 1) \ln n + o(1) - n \ln (n+1) - \ln (n+1) \\ &= (\theta - 1) \ln n + o(1) - (n+1) \left(\frac{1}{n} + o \left(\frac{1}{n} \right) \right) \\ &\leq 0 \end{split}$$

由Kummer判别法以及 $\sum \frac{1}{n \ln n}$ 发散,所以 $\sum a_n$ 也发散.

- 例 **8.2.8.** 判别下列级数的敛散性: $(1) \sum_{n=1}^{\infty} \frac{n!}{(\alpha+1)(\alpha+2)\cdots(\alpha+n)}, (\alpha>0);$ $(2) \sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!}\right)^{s} \cdot \frac{1}{2n+1}.$

例 **8.2.9 (Cauchy** 凝聚判别法**).** 设 a_n 单调递减趋于零. 则 $\sum_{n=1}^{\infty} a_n$ 收敛当且仅当 $\sum_{k=0}^{\infty} 2^k a_{2^k}$ 收敛.

- 6. 设 $a_n > 0$, $S_n = a_1 + a_2 + \cdots + a_n$, 证明 (1) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}$ 总是收敛的; (2) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{S_n}}$ 收敛当且仅当 $\sum_{n=1}^{\infty} a_n$ 收敛.

$$\sum \frac{S_n - S_{n-1}}{S_n^2} \le \sum \frac{S_n - S_{n-1}}{S_n S_{n-1}};$$
$$\sum \frac{a_n}{\sqrt{S_n}} \le \frac{1}{\sqrt{a_1}} \sum a_n;$$

$$\sum \frac{a_n}{\sqrt{S_n}} = \sum \left(\sqrt{S_n} - \frac{S_{n-1}}{\sqrt{S_n}} \right) \ge \sum \left(\sqrt{S_n} - \sqrt{S_{n-1}} \right)$$

7. 设正项级数 $\sum_{n=1}^{\infty}a_n$ 发散,试用积分判别法证明 $\sum_{n=1}^{\infty}\frac{a_{n+1}}{S_n}$ 也发散,其中 S_n 为 $\sum_{n=1}^{\infty}a_n$ 的部分和. hint1: 取 $\epsilon = \frac{1}{2}$, 则对于任何n, 存在m > n, s.t. $S_{m+1} > 2S_n$. 则

$$\sum_{k=n}^{m} \frac{a_{k+1}}{S_k} \ge \sum_{k=n}^{m} \frac{a_{k+1}}{S_{k+1}} \ge \frac{\sum_{k=n}^{m} a_{k+1}}{S_{m+1}} = \frac{S_{m+1} - S_n}{S_{m+1}} \ge \frac{1}{2} = \epsilon,$$

由Cauchy收敛判别法即得.

hint2:

$$\frac{a_{n+1}}{S_n} = \frac{S_{n+1} - S_n}{S_n} \ge \int_{S_n}^{S_{n+1}} \frac{dx}{x}.$$

- 8. 判断下列级数的敛散性:

- 8. $\neq \text{IM} \mid \gamma \text{ISASCHIJEANLE}$.

 (1) $\sum_{n=1}^{\infty} \frac{n!e^n}{n^n+p}$;

 (2) $\sum_{n=1}^{\infty} \frac{p(p+1)\cdots(p+n-1)}{n!} \cdot \frac{1}{n^q} \quad (p>0, q>0)$;

 (3) $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!}$;

 (4) $\sum_{n=1}^{\infty} \frac{\sqrt{n!}}{(a+\sqrt{1})(a+\sqrt{2})\cdots(a+\sqrt{n})} (a>0)$.
- 9. 设 $a_n > 0, S_n = a_1 + a_2 + \dots + a_n$, 证明 (1) 当 $\alpha > 1$ 时, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^n}$ 总是收敛的;
- (2) 当 $\alpha \leq 1$ 时, 级数 $\sum_{n=1}^{\infty} \frac{a_n''}{S_n^{\alpha}}$ 收敛当且仅当 $\sum_{n=1}^{\infty} a_n$ 收敛.
- (1) hint: $\frac{a_n}{S_n^{\alpha}} = \frac{S_n S_{n-1}}{S_n^{\alpha}} \le \int_{S_{n-1}}^{S_n} \frac{dx}{x^{\alpha}}, (\alpha > 1).$
- (2) hint: 如果 $\sum_{n=1}^{\infty} a_n$ 发散, 类似第7题的证明.
- 10. 设 $a_n > 0$ 关于 n 单调递增. 证明级数 $\sum_{n=1}^{\infty} \left(1 \frac{a_n}{a_{n+1}}\right)$ 收敛当且仅当级数 $\sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} 1\right)$ 收敛.

$$\sum_{n=1}^{\infty} \left(1 - \frac{a_n}{a_{n+1}}\right) \leq \sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} - 1\right);$$

Sapagof 判别法: 设正数数列 $\{a_n\}_{n=1}^{\infty}$ 单调递减,则 $\lim_{n\to\infty}a_n=0$ 的充要条件是 $\sum_{n=1}^{\infty}\left(1-\frac{a_{n+1}}{a_n}\right)$ 发散。

上述断言等价于: 单调递增数列 $\{a_n\}_{n=1}^{\infty}$ 与级数 $\sum_{n=1}^{\infty} \left(1 - \frac{a_n}{a_{n+1}}\right)$ 同敛散.

由此可以得到: 设正项级数 $\sum_{n=1}^{\infty} a_n$ 的前 n 项部分和为 S_n , 那么级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 同敛散.

设 p > 1, 正项级数 $\sum_{n=1}^{\infty} a_n$ 的前 n 项部分和为 S_n , 那么级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^p}$ 始终是收敛的.

11. 设 $\sum_{n=1}^{\infty} a_n$ 为正项级数, 且

$$\frac{a_n}{a_{n+1}} = 1 + \frac{1}{n} + \frac{\alpha_n}{n \ln n}.$$

如果 n 充分大时 $\alpha_n \ge \mu > 1$, 则 $\sum_{n=1}^{\infty} a_n$ 收玫; 如果 n 充分大时 $\alpha_n \le 1$, 则 $\sum_{n=1}^{\infty} a_n$ 发散. 这个结果称为 Bertrand 判别法. hint: 取 $b_n = \frac{1}{n \ln n}$, 则

$$\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} = \alpha_n - 1 + o(1).$$

然后用Kummer判别法.

17. 设 $a_n > 0$, $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛. 证明级数 $\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n}$ 也收敛.

hint: 将 a_n 递增重排.

以上收敛判别法列表也可以参考:

https://en.wikipedia.org/wiki/Convergence_tests

至今,这些收敛判别法全部失效的正项级数是存在的,比如Flint Hills级数

$$\sum_{k=1}^{\infty} \frac{1}{n^3 \sin^2 n}$$

它的收敛性涉及到π的无理测度的大小,见

https://math.stackexchange.com/questions/162573

2.8.3 一般级数收敛与发散判别法

级数是正负交替出现的称为交错级数

定理 **8.3.1 (Leibniz).** 设 a_n 单调递减趋于 0 , 则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛. pf. 使用Cauchy收敛准则.

$$S_{n+p} - S_n = (-1)^n \cdot a_{n+1} + (-1)^{n+1} a_{n+2} + \dots + (-1)^{n+p-1} a_{n+p}$$

= $(-1)^n \left[a_{n+1} - a_{n+2} + a_{n+3} - a_{n+4} + \dots + (-1)^{p-1} a_{n+p} \right].$

因此当 p = 2k - 1 时,

$$(-1)^{n} (S_{n+p} - S_n) = a_{n+1} - (a_{n+2} - a_{n+3}) - (a_{n+4} - a_{n+5}) - \dots \le a_{n+1},$$

$$(-1)^{n} (S_{n+p} - S_n) = (a_{n+1} - a_{n+2}) + (a_{n+3} - a_{n+4}) + \dots + a_{n+2k-1}$$

$$\ge 0$$

这说明

$$|S_{n+p} - S_n| \le a_{n+1} \to 0$$
, $(n \to \infty)$.

当 p=2k 时, 类似地可证上式仍成立. 因此原级数收敛.

例 **8.3.1.** 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 收敛.

引理 **8.3.2** (分部求和). 设 $\{a_k\}$, $\{b_k\}$ 为数列,则

$$\sum_{k=m}^{n-1} a_{k+1} (b_{k+1} - b_k) + \sum_{k=m}^{n-1} b_k (a_{k+1} - a_k) = a_n b_n - a_m b_m.$$

推论 **8.3.3** (Abel 变换). 设 $a_i, b_i (i \ge 1)$ 为两组实数, 如果约定 $b_0 = 0$, 记

$$B_0 = 0, B_k = b_1 + b_2 + \dots + b_k \quad (k \ge 1),$$

则有

$$\sum_{i=m+1}^{n} a_i b_i = \sum_{i=m+1}^{n-1} (a_i - a_{i+1}) B_i + a_n B_n - a_{m+1} B_m, \quad \forall m \ge 0.$$

推论 **8.3.4 (Abel** 引理**).** 设 a_1, a_2, \dots, a_n 为单调数列, 且 $|B_i| \leq M$, $(i \geq 1)$, 则

$$\left| \sum_{i=m+1}^{n} a_i b_i \right| \leq 2M \left(|a_n| + |a_{m+1}| \right), \quad \forall m \geq 0.$$

定理 **8.3.5** (**Dirichlet**). 设数列 $\{a_n\}$ 单调趋于 0,级数 $\sum_{n=1}^{\infty} b_n$ 的部分和有界,则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

证明. 由假设,存在M>0使得

$$\left|\sum_{i=1}^{n} b_i\right| \le M, \quad \forall n \ge 1.$$

由 Abel 变换及其推论,

$$\left|\sum_{i=n+1}^{n+p}a_ib_i\right| \leq 2M\left(|a_{n+1}|+\left|a_{n+p}\right|\right) \leq 4M|a_{n+1}| \to 0.$$

由 Cauchy 准则知级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

定理 **8.3.6 (Abel).** 如果 $\{a_n\}$ 为单调有界数列, $\sum_{n=1}^{\infty} b_n$ 收敛, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

 $\{a_n\}$ 单调有界意味着极限 $\lim_{n\to\infty}a_n=a$ 存在. 于是 $\{a_n-a\}$ 单调趋于 0. 由 Dirichlet 判别法, $\sum_{n=1}^{\infty}(a_n-a)b_n$ 收敛. 从而 级数

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} (a_n - a) b_n + \sum_{n=1}^{\infty} a \cdot b_n$$

也收敛.

判断级数 $\sum_{n=1}^{\infty} \frac{1}{n} \sin nx$ 的敛散性.

解. $a_n = \frac{1}{n}$ 单调递减趋于 $0, b_n = \sin nx$. 利用公式

$$2\sin\frac{x}{2}\cdot\sin kx = \cos\left(k - \frac{1}{2}\right)x - \cos\left(k + \frac{1}{2}\right)x$$

得

$$\sum_{k=1}^{n} b_n = \begin{cases} 0, & x = 2k\pi, \\ \frac{\cos \frac{x}{2} - \cos(n + \frac{1}{2})x}{2\sin \frac{x}{2}}, & x \neq 2k\pi. \end{cases}$$

即 b_n 的部分和总是有界的. 故由 Dirichlet 判别法知, 原级数收敛

定义 8.3.1 (绝对收敛). 如果 $\sum_{n=1}^{\infty} |a_n|$ 收敛, 则称 $\sum_{n=1}^{\infty} a_n$ 绝对收敛 (此时, 由于

$$|a_{n+1} + \dots + a_{n+p}| \le |a_{n+1}| + \dots + |a_{n+p}| \to 0,$$

故 $\sum_{n=1}^\infty a_n$ 的确为收敛级数). 如果 $\sum_{n=1}^\infty a_n$ 收敛而 $\sum_{n=1}^\infty |a_n|$ 发散, 则称 $\sum_{n=1}^\infty a_n$ 条件收敛.

判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$, $(x \in \mathbb{R})$, 的敛散性.

令 $a_n = \frac{|x|^n}{n}$, 则 $\sqrt[n]{a_n} \to |x|$. 故 |x| < 1 时原级数绝对收敛; 而 |x| > 1 时显然发散. x = 1 时级数条件收敛; x = -1 时级数发散.

作业

- 6. 设 $\sum_{n=1}^{\infty} a_n$ 绝对收敛, $\{b_n\}$ 为有界数列, 则 $\sum_{n=1}^{\infty} a_n b_n$ 也是绝对收敛的. 6'. 证明或否定: 设 $\sum_{n=1}^{\infty} a_n$ 收敛, $\{b_n\}$ 为有界数列, 则 $\sum_{n=1}^{\infty} a_n b_n$ 也是收敛的. 7. 如果 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\sum_{n=1}^{\infty} a_n^3$ 是否也收敛? 证明你的结论.

$$a_n = \frac{\cos\frac{n\pi}{3}}{\sqrt[3]{n}}.$$

- 8. 设级数 $\sum_{n=1}^{\infty}|a_{n+1}-a_n|$ 收敛且 a_n 极限为零,级数 $\sum_{n=1}^{\infty}b_n$ 的部分和有界,则级数 $\sum_{n=1}^{\infty}a_nb_n$ 收敛. (提示: Abel 求和.) 9. 设级数 $\sum_{n=1}^{\infty}|a_{n+1}-a_n|$ 收敛,级数 $\sum_{n=1}^{\infty}b_n$ 收敛,则级数 $\sum_{n=1}^{\infty}a_nb_n$ 也收敛. (用Abel求和) 10. 设 $\{a_n\}$ 单调递减趋于零. 证明下面的级数是收敛的:

$$\sum_{n=1}^{\infty} (-1)^n \frac{a_1 + a_2 + \dots + a_n}{n}.$$

11. 设 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明

$$\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n}=0.$$

考虑把 a_n 用部分和 S_n 表示的问题. 或者使用 $\epsilon - N$ 法+Abel变换.

本题不能使用Stolz公式,因为有反例如下:

$$a_n = \begin{cases} \frac{1}{m^2}, & n = m^2; \\ \frac{1}{n^3}, & n \neq m^2. \end{cases}$$

12. 设 $a_n > 0$, na_n 单调趋于 $0, \sum_{n=1}^{\infty} a_n$ 收敛. 证明 $n \ln n \cdot a_n \to 0$. 类比下题:

9. 设 $\int_a^{+\infty} f(x) dx$ 收敛, 如果 $x \to +\infty$ 时 x f(x) 单调递减趋于零, 则

$$\lim_{x \to +\infty} x f(x) \ln x = 0.$$

pf. 对于任意的 $\epsilon > 0$,因为 $\int_a^{+\infty} f(x) dx$ 收敛,则存在 $M > \max(0,a)$,s.t. 对于任意的x > M,有

$$xf(x)\int_{\sqrt{x}}^{x}\frac{1}{t}dt \leq \int_{\sqrt{x}}^{x}tf(t)\cdot\frac{1}{t}dt = \int_{\sqrt{x}}^{x}f(t)dt < \frac{\epsilon}{2}.$$

 $\mathbb{H} x f(x) \ln x < \epsilon$.

2.8.4 数项级数的进一步讨论

级数求和与求极限的可交换性

一列收敛级数 $\sum_{j=1}^{\infty} a_{ij} = A_i$ 关于 i 一致收敛是指, 任给 $\varepsilon > 0$, 存在 N, 当 n > N 时, 定义8.4.1 (级数的一致收敛).

$$\left| \sum_{j=1}^{n} a_{ij} - A_i \right| < \varepsilon, \quad \forall i \ge 1.$$

当且仅当有Cauchy准则: $\forall \epsilon > 0$, $\exists N$, $\exists m, n > N$ 时,

$$\left|\sum_{j=n}^{m} a_{ij}\right| < \varepsilon, \quad \forall i \ge 1.$$

给出级数一致收敛的否定表述.

设一列级数 $\sum_{j=1}^{\infty}a_{ij}=A_{i}$ 关于 i 一致收敛, 如果 $\lim_{i\to\infty}a_{ij}=a_{j}$ $(j\geq 1)$, 则极限 $\lim_{i\to\infty}A_{i}$ 存在, 级数 $\sum_{j=1}^{\infty}a_{j}$ 收敛,

$$\lim_{i \to \infty} A_i = \sum_{i=1}^{\infty} a_i$$

或改写为

$$\lim_{i\to\infty}\sum_{j=1}^\infty a_{ij}=\sum_{j=1}^\infty\lim_{i\to\infty}a_{ij}.$$

pf: 1. $\sum_{j\geq 1}a_j$ 收敛证明. 由一致收敛的定义, 任给 $\varepsilon>0$, 存在 N_0 , 当 $n\geqslant N_0$ 时,

$$\left| \sum_{j=1}^{n} a_{ij} - A_i \right| < \frac{1}{4} \varepsilon, \quad \forall i \ge 1.$$

因此, 当 $m > n \ge N_0$ 时

$$\left|\sum_{j=n+1}^m a_{ij}\right| \leq \left|\sum_{j=1}^m a_{ij} - A_i\right| + \left|\sum_{j=1}^n a_{ij} - A_i\right| < \frac{1}{2}\varepsilon, \quad \forall i \geq 1.$$

在上式中令 $i \to \infty$, 得

$$\left|\sum_{j=n+1}^m a_j\right| \leq \frac{1}{2}\varepsilon,$$

由 Cauchy 准则即知级数 $\sum_{j=1}^{\infty} a_j$ 收敛, 且在上式中令 $m \to \infty$ 可得

$$\left| \sum_{j=n+1}^{\infty} a_j \right| \le \frac{1}{2} \varepsilon, \quad \forall n \ge N_0$$

2. $\operatorname{\mathbb{I}Iim}_{i\to\infty} A_i = \sum_{j\geq 1} a_j$.

对于 $j = 1, 2, \dots, N_0$, 因为 $a_{ij} \rightarrow a_j$, 故存在 N, 当 i > N 时,

$$|a_{ij}-a_j|<\frac{\varepsilon}{4N_0}, \quad j=1,2,\cdots,N_0.$$

因此, 当 i > N 时, 有

$$\left| A_i - \sum_{i=1}^{\infty} a_j \right| \le \left| A_i - \sum_{j=1}^{N_0} a_{ij} \right| + \left| \sum_{j=1}^{N_0} a_{ij} - \sum_{j=1}^{N_0} a_j \right| + \left| \sum_{j=N_0+1}^{\infty} a_j \right|$$

$$< \frac{1}{4}\varepsilon + N_0 \frac{\varepsilon}{4N_0} + \frac{1}{2}\varepsilon = \varepsilon$$

这说明 $\{A_i\}$ 的极限存在且极限为 $\sum_{i=1}^{\infty} a_i$.

推论 **8.4.2.** (控制收敛定理) 设 $\lim_{i\to\infty}a_{ij}=a_j(j\ge 1), \left|a_{ij}\right|\le b_j(i\ge 1),$ 且 $\sum_{j=1}^\infty b_j$ 收敛(控制级数),则级数 $\sum_{j=1}^\infty a_j$ 收敛,且

$$\sum_{j=1}^{\infty} a_j = \sum_{j=1}^{\infty} \lim_{i \to \infty} a_{ij} = \lim_{i \to \infty} \sum_{j=1}^{\infty} a_{ij}.$$

证明. 由 $a_{ij} \rightarrow a_j$, 且 $|a_{ij}| \le b_j$ 知 $|a_j| \le b_j$, $j = 1, 2, \cdots$. 因为级数 $\sum_{j=1}^{\infty} b_j$ 收敛, 故级数 $\sum_{j=1}^{\infty} a_j$ 绝对收敛. 任给 $\varepsilon > 0$, 存在 N, 当 n > N 时,

$$0 \le \sum_{j=n+1}^{\infty} b_j < \varepsilon.$$

此时,对任意 $i \ge 1$,有

$$\left|\sum_{j=1}^n a_{ij} - \sum_{j=1}^\infty a_{ij}\right| = \left|\sum_{j=n+1}^\infty a_{ij}\right| \le \sum_{j=n+1}^\infty b_j < \varepsilon,$$

从而级数 $\sum_{i=1}^{\infty} a_{ij}$ 关于 i 是一致收敛的. 由上一定理知本推论结论成立.

推论 **8.4.3. (Fubini)** 设 $\sum_{i=1}^{\infty} \left| a_{ij} \right| \le A_j(j \ge 1)$, 且 $\sum_{j=1}^{\infty} A_j$ 收敛, 则对任意 $i \ge 1$, 级数 $\sum_{j=1}^{\infty} a_{ij}$ 收敛, 且

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

证明. 1. 首先, 由题设知, $\left|a_{ij}\right| \leq A_j, j=1,2,\cdots$. 这说明, 对任意 $i \geq 1$, 级数 $\sum_{j=1}^{\infty} a_{ij}$ 是绝对收敛的.

2. 因为

$$\left|\sum_{i=1}^k a_{ij}\right| \leq \sum_{i=1}^k \left|a_{ij}\right| \leq A_j, \quad j \geq 1.$$

故 $(\sum_{i=1}^k a_{ij})_{ki}$ 满足上一推论,有

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \lim_{k \to \infty} \sum_{i=1}^{k} \sum_{j=1}^{\infty} a_{ij}$$

$$= \lim_{k \to \infty} \sum_{j=1}^{\infty} \sum_{i=1}^{k} a_{ij}$$

$$= \sum_{j=1}^{\infty} \lim_{k \to \infty} \sum_{i=1}^{k} a_{ij}$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}.$$

这就证明了本推论.

上述推论的条件中 $\sum_{i\geq 1} |a_{ij}|$ 的绝对值不能省去,比如设

$$a_{ij} = \begin{cases} \frac{1}{2^{j-i}}, & j > i; \\ -1, & i = j; \\ 0, & j < i. \end{cases}$$

也即

$$(a_{ij}) = \begin{pmatrix} -1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \cdots \\ 0 & -1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \cdots \\ 0 & 0 & -1 & \frac{1}{2} & \frac{1}{4} & \cdots \\ 0 & 0 & 0 & -1 & \frac{1}{2} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

则

$$\sum_{i\geq 1}a_{ij}=-\frac{1}{2^{j-1}},\qquad \sum_{j\geq 1}a_{ij}\equiv 0 \implies 0=\sum_{i\geq 1}\sum_{j\geq 1}a_{ij}\neq \sum_{j\geq 1}\sum_{i\geq 1}a_{ij}=-2.$$

例 **8.4.1.** 设 $\sum_{n=2}^{\infty} |a_n|$ 收敛, 记 $f(x) = \sum_{n=2}^{\infty} a_n x^n$, $x \in [-1,1]$. 则

$$\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right) = \sum_{n=2}^{\infty} a_n \zeta(n),$$

其中 $\zeta(s)$ 是 Riemann-Zeta 函数.

证明.

$$\sum_{n=2}^{\infty}\frac{|a_n|}{m^n}\leq \frac{1}{m^2}\sum_{n=2}^{\infty}|a_n|\Longrightarrow \sum_{m=1}^{\infty}\sum_{n=2}^{\infty}\frac{|a_n|}{m^n}\leq \sum_{m=1}^{\infty}\left(\frac{1}{m^2}\sum_{n=2}^{\infty}|a_n|\right)<+\infty.$$

由Fubini定理, $\sum_{n=2}^{\infty} \sum_{m=1}^{\infty} \frac{a_n}{m^n}$ 收敛, 且

$$\begin{split} \sum_{n=2}^{\infty} \sum_{m=1}^{\infty} \frac{a_n}{m^n} &= \sum_{m=1}^{\infty} \sum_{n=2}^{\infty} \frac{a_n}{m^n} = \sum_{m=1}^{\infty} f\left(\frac{1}{m}\right) \\ &= \sum_{n=2}^{\infty} a_n \zeta(n). \end{split}$$

所以

$$\begin{split} \sum_{n=2}^{\infty} \frac{1}{2^n} \zeta(n) &= \sum_{n=2}^{\infty} \sum_{m=1}^{\infty} \frac{1}{2^n} \cdot \frac{1}{m^n} = \sum_{m=1}^{\infty} \sum_{n=2}^{\infty} \frac{1}{m^n} \cdot \frac{1}{2^n} = \sum_{m=1}^{\infty} \frac{1}{2^2 m^2} \cdot \frac{1}{1 - \frac{1}{2m}} \\ &= \sum_{m=1}^{\infty} \left(\frac{1}{2m - 1} - \frac{1}{2m} \right) = \ln 2. \end{split}$$

级数的乘积

设 $\sum_{n=0}^{\infty} a_n$ 和 $\sum_{n=0}^{\infty} b_n$ 之积为 $\sum_{n=0}^{\infty} c_n$,称为Cauchy乘积

$$c_n = \sum_{i+j=n} a_i b_j, \qquad n \ge 0.$$

定理 **8.4.4 (Cauchy).** 如果 $\sum_{n=0}^{\infty} a_n$ 和 $\sum_{n=0}^{\infty} b_n$ 绝对收敛,则它们的乘积级数也绝对收敛,且

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$$

定理 **8.4.5 (Mertens).** 如果 $\sum_{n=0}^{\infty} a_n$ 和 $\sum_{n=0}^{\infty} b_n$ 收敛, 且至少其中一个级数绝对收敛, 则它们的乘积级数也收敛, 且

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$$

证明. 不妨设 $\sum_{n=0}^{\infty} a_n$ 绝对收敛. 分别记

$$A_n = \sum_{k=0}^n a_k$$
, $B_n = \sum_{k=0}^n b_k$, $C_n = \sum_{k=0}^n c_k$.

则 $A_n \rightarrow A$, $B_n \rightarrow B$, 面

$$C_n = \sum_{i+j \le n} a_i b_j = a_0 B_n + a_1 B_{n-1} + \dots + a_n B_0 = A_n B + \delta_n,$$

其中

$$\delta_n = a_0 (B_n - B) + a_1 (B_{n-1} - B) + \dots + a_n (B_0 - B).$$

我们只要证明 $\delta_n \to 0$ 即可. 因为 $B_n \to B$, 故 $\{B_n\}$ 关于 n 有界, 从而存在 K, 使得

$$|B_n - B| \le K$$
, $\forall n \ge 0$.

由于 $\sum_{n=0}^{\infty} a_n$ 绝对收敛, 故任给 $\varepsilon > 0$, 存在 N_0 , 当 $n > N_0$ 时

$$|a_{N_0+1}| + \cdots + |a_n| < \frac{\varepsilon}{2K+1}.$$

记 $L = |a_0| + |a_1| + \cdots + |a_{N_0}|$. 由于 $B_n - B \to 0$, 故存在 N_1 , 当 $n > N_1$ 时

$$|B_n - B| < \frac{\varepsilon}{2L + 1}.$$

从而当 $n > N_0 + N_1$ 时,有

$$\begin{split} |\delta_n| & \leq \sum_{k=0}^{N_0} |a_k| \, |B_{n-k} - B| + \left(\left| a_{N_0+1} \right| + \dots + |a_n| \right) K \\ & \leq \frac{\varepsilon}{2L+1} \left(|a_0| + |a_1| + \dots + \left| a_{N_0} \right| \right) + \frac{\varepsilon}{2K+1} K \\ & = \frac{\varepsilon}{2L+1} L + \frac{\varepsilon}{2K+1} K \\ & < \varepsilon \end{split}$$

这说明 $\delta_n \rightarrow 0$, 因而 $C_n = A_n B + \delta_n \rightarrow AB$.

注. 定理中的绝对收敛的条件不能去掉, 反例就是将 a_n 和 b_n 均取为交错级数 $(-1)^{n-1} \frac{1}{\sqrt{n}}$, 此时所得乘积级数是发散的. 但是, 如果乘积级数仍然收敛, 则其和等于两个级数和的乘积. 为了说明这一点, 需要下面的引理.

引理 **8.4.6 (Abel).** 设级数 $\sum_{n=0}^{\infty} c_n = C$ 收敛, 令

$$f(x) = \sum_{n=0}^{\infty} c_n x^n, \quad x \in [0,1),$$

 $\iiint \lim_{x\to 1^-} f(x) = C.$

证明. 级数收敛表明 $\{c_n\}$ 有界,因此当 $x \in [0,1)$ 时, $\sum_{n=0}^{\infty} c_n x^n$ 绝对收敛. 记

$$C_{-1} = 0$$
, $C_n = \sum_{k=0}^{n} c_k$, $n \ge 0$.

则有

$$\begin{split} \sum_{k=0}^{n} c_k x^k &= \sum_{k=0}^{n} \left(C_k - C_{k-1} \right) x^k \\ &= \sum_{k=0}^{n} C_k x^k - x \sum_{k=0}^{n-1} C_k x^k \\ &= C_n x^n + (1-x) \sum_{k=0}^{n-1} C_k x^k \\ &= C_n x^n + C \left(1 - x^n \right) + (1-x) \sum_{k=0}^{n-1} \left(C_k - C \right) x^k. \end{split}$$

在上式中令 $n \to \infty$ 就得到

$$f(x) = C + (1 - x) \sum_{k=0}^{\infty} (C_k - C) x^k.$$

因为 $C_k - C \rightarrow 0$, 故任给 $\varepsilon > 0$, 存在 N, 当 k > N 时

$$|C_k - C| < \frac{1}{2}\varepsilon.$$

 $\diamondsuit M = \sum_{k=0}^{N} |C_k - C|$,则有估计

$$|f(x)-C| \leq M(1-x) + (1-x) \sum_{k=N+1} \frac{1}{2} \varepsilon x^k \leq M(1-x) + \frac{1}{2} \varepsilon.$$

因此, 当 $0 < 1 - x < \frac{\varepsilon}{2M+1}$ 时,

$$|f(x)-C| \leq M\frac{\varepsilon}{2M+1} + \frac{1}{2}\varepsilon < \varepsilon.$$

这说明 $\lim_{x\to 1^-} f(x) = C$.

设级数 $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ 以及它们的乘积 $\sum_{n=0}^{\infty} c_n$ 均收敛, 则 定理 8.4.7 (Abel).

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$$

证明. 当 $x \in [0,1)$ 时, 级数 $\sum_{n=0}^{\infty} a_n x^n$ 和 $\sum_{n=0}^{\infty} b_n x^n$ 绝对收敛, 它们的乘积级数为 $\sum_{n=0}^{\infty} c_n x^n$. 根据 Cauchy 定理, 有

$$\sum_{n=0}^{\infty} c_n x^n = \left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right).$$

令 $x \rightarrow 1^-$, 由上述 Abel 引理即得欲证结论.

乘积级数

将 $\prod_{n=1}^{\infty} p_n$ 称为无穷乘积, 记部分乘积 $P_n = \prod_{k=1}^n p_k$, $(n \ge 1)$. 当 $\lim_{n \to \infty} P_n$ 有限且非零时, 称无穷乘积收敛, 否则称它发散.

命题 **8.4.8.** 设 $p_n > 0$, $\forall n \ge 1$. 则

(1) 无穷乘积 $\prod_{n=1}^{\infty} p_n$ 收敛当且仅当级数 $\sum_{n=1}^{\infty} \ln p_n$ 收敛,且

$$\prod_{n=1}^{\infty} p_n = e^{\sum_{n=1}^{\infty} \ln p_n};$$

- (2) 记 $p_n=1+a_n$. 如果 n 充分大时 $a_n>0$ (或 $a_n<0$), 则无穷乘积 $\prod_{n=1}^{\infty}p_n$ 收敛当且仅当级数 $\sum_{n=1}^{\infty}a_n$ 收敛; (3) 如果级数 $\sum_{n=1}^{\infty}a_n$ 和 $\sum_{n=1}^{\infty}a_n^2$ 均收敛, 则无穷乘积 $\prod_{n=1}^{\infty}(1+a_n)$ 也收敛.

证明. (1) 是显然的. (2) 只要利用

$$\lim_{n\to\infty} \frac{\ln(1+a_n)}{a_n} = 1$$

以及数项级数的比较判别法即可.

(3) 则是利用 $(a_n$ 不为零时)

$$\lim_{n \to \infty} \frac{[a_n - \ln{(1 + a_n)}]}{a_n^2} = \frac{1}{2}$$

以及(1).

级数重排

如果 $\sum_{n=1}^{\infty} a_n$ 为条件收敛的级数,则可以将它重排为一个收敛级数,使得重排后的级数和为任意指定 定理 8.4.9 (Riemann). 的实数.

例。 求证:

$$\left(1+\frac{1}{3}-\frac{1}{2}\right)+\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{4n-3}+\frac{1}{4n-1}-\frac{1}{2n}\right)+\cdots=\ln\left(2\sqrt{2}\right).$$

这说明

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots - \frac{1}{2n} + \frac{1}{2n+1} - \dots + \frac{1}{4n-3} - \frac{1}{4n-2} + \frac{1}{4n-1} - \dots$$

$$\times \left(1 + \frac{1}{3} - \frac{1}{2}\right) + \left(\frac{1}{5} + \frac{1}{7} - \frac{1}{4}\right) + \dots + \left(\frac{1}{4n-3} + \frac{1}{4n-1} - \frac{1}{2n}\right) + \dots$$

$$= \ln\left(2\sqrt{2}\right).$$

Bibliography

- [PH] The Man Who Loved Only Numbers, The Story of Paul Erdos and The Search for Mathematical Truth; Paul Hoffman; 1999.
- [YN] 数域的上同调; 尤尔根·诺伊基希, 亚历山大[德], 哈尔滨工业大学.
- [TH] Holder不等式及其应用; 田景峰, 哈明虎, 清华大学.
- [HKZ2013on] Hu, W., Kukavica, I., Ziane, M.: On the regularity for the Boussinesq equations in a bounded domain, J. Math. Phys. 54(8), 081507, 10 (2013)
- [T1997Inf] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences Vol. 68 (Springer, 1997).
- [MJQ] 梅加强. 数学分析[M]. 高等教育出版社, 2011.