

SREEKAR REDDY SAJJALA

- Aachen, Germany. 52064
- □ +49-1764 7085664
- sreekar2858@gmail.com
- https://sreekar2858.github.io/cv/

Tittps.//sieekai2000.gitiiub.io/ev/	
Skills *	_
С	90
C++	70
Python	85
MATLAB	70
Siemens NX	95
ANSA	70
Ansys	85
ABAQUS	75
Optistruct	80
Star-CCM+	85
OpenFOAM	75
Languages	_
German	A2

C1

English

A process-driven, and articulate Master's student in Computer-Aided Mechanical Engineering with expertise in theoretical and computational aspects of Mechanics.

Work Experience

Internship

10/2023 - Present

Siemens Energy - Mülheim, Germany

Topic: CFD Analysis of **H2 Combustion Gas Turbines** and building **Generative Design Toolchain** using **Invertible Neural Networks**.

- Acquire in-depth proficiency in using Siemens Energy's advanced toolchain, gaining insights into its functionalities and capabilities.
- Explore generative design methodologies and workflows, implementing various design possibilities and optimizing engineering solutions.
- Integrate self-learning algorithms, specifically Invertible Neural Networks, into the design toolchain, enhancing its efficiency and adaptability.
- Apply the developed toolchain to the practical scenario of H2 combustion system development, refining it based on real-time feedback and challenges faced.
- Summarize and extend the gained knowledge, synthesizing experiences and understanding theoretical foundations for future research endeavors.

Internship [Voluntary]

02/2023 - 08/2023

Volocopter HQ - Bruchsal, Germany

- Performed mechanical/ thermal benchmark simulations for **CFRP** parts and battery pack using **Optistruct and StarCCM**+.
- Performed modal simulations on the battery pack to analyze and improve the eigenfrequencies.
- Performed explicit dynamics simulations using **Radioss** on the individual cell under compression and bending loads.
- Conducted mechanical simulations on battery pack under crash loads to examine stresses and strains using Optistruct.
- Investigated thermal and thermo-mechanical strains and stresses in case of **thermal runaway (TR)** for various configurations.
- Realized fatigue and lifetime evaluations of CFRP and thermosetting plastics.
- Familiarized with ASTM D3039/D3039M, DO-160G and UN38.3.4

Wissenschaftliche Hilfskraft

02/2023 - Present

Digital Additive Production DAP - RWTH Aachen

- Understood the theoretical implementation of adjoint-based topology optimization methods.
- Investigated existing topology optimization techniques using continuous and discrete adjoint methods in open-source software.
- Created a workflow to perform passively coupled topology optimization for Conjugate Heat Transfer (CHT) cases using DAFoam.
- Automated the geometry preparation, meshing, running design iterations, and coupling in a cycle using Python.

Mini Thesis

05/2022 - 01/2023

Digital Additive Production DAP - RWTH Aachen

- Developed simulation-based NN model for evaluating cooling channel designs in **Additively Manufactured (AM)** components.
- Ran CHT/ CFD simulations of cooling channels (Additive Manufacturing) using OpenFOAM.
- Evaluated vital parameters for several input configurations; heat transfer, head loss, structural integrity, etc.
- Created a **Graph Neural Networks (GNN)** regression model to fit the simulation data.
- Optimized the cooling channel design for the desired configuration.
- Reduced development time by eliminating tedious case setups and long simulation run times, benefiting industries reliant on heat conduction and convection.

Addl. Skills

TensorFlow 2.0	75
PyTorch	85
Deal.ii	50
Tosca	50
nTopology	60
Salome	85
Code Aster	50
Julia	50
Lammps	50
COMSOL	90
Siemens Heeds	70

Wissenschaftliche Hilfskraft

Chair of Continuum Mechanics - RWTH Aachen

- Optimized/ cleaned-up MATLAB code to generate Aerogel geometry.
- Generated partial C++ code for better performance.
- Created input scripts for ABAQUS for FEM simulation of Aerogel.

Wissenschaftliche Hilfskraft

02/2022 - 01/2023

Chair of Thermodynamics of Mobile Energy Conversion Systems - RWTH Aachen

- Optimized/ debug Visual Basic (VBA) code for examination software.
- Created a Python GUI software using PyQt5.

CAE Engineer

03/2019 - 08/2020

Upwork

- Successfully completed 18 research projects focused on Computer-Aided Design (CAD), Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and Fluid-Structure Interaction (FSI).
- Utilized various software tools including Siemens NX, Ansys, ABAQUS, COM-SOL, and MATLAB for designing and conducting simulations.
- Applied expertise in CAD software to develop precise and efficient designs, ensuring accuracy and functionality. Employed advanced simulation techniques to achieve optimized performance and reliability.

Research Scholar

01/2019 - 06/2019

IIT Madras - Chennai, India

- Developed a custom C++ solver in OpenFOAM-v1712.
- Investigated thermal, momentum, and phase-fraction evolution at different casting speeds to identify optimum parameters for best casting quality.
- Employed Ansys Mechanical APDL to study creep during casting process.

Education

Master of Science: Computer Aided Mechanical Engineering

2020 - Present

Engineering

RWTH Aachen University - Germany

Mini-Thesis: Development of an intelligent and simulation-based model for design evaluation of cooling channels for L-PBF.

Courses: Nonlinear Structural Mechanics, Advanced Finite Element Methods, Advanced Software Engineering, Artificial Neural Networks in Structural Mechanics, Practical Introduction to FEM, Computational Fluid Dynamics, Parallel Computing for Computational Mechanics.

Bachelor of Technology: Mechanical Engineering

2015 - 2019

BML Munjal University - India

Bachelor's Thesis: Computational simulation of convectional and ultrasonic techniques in Direct-chill casting of Aluminum alloys.

Mini-project: Study of flow and alloy segregation during solidification of Aluminum alloys.

Courses: Computer programming in C, Computational Fluid Dynamics, Machine Design, Manufacturing Process, Mechanical Vibrations, Robotics, Bio-Mechanics, Micro Machining, Nanoscience: From synthesis to few applications.

Publications

- Nazym S. Sagandykova, et al., (2021) Patient-specific CFD simulation of aerodynamics for nasal pathology: a combined computational and experimental study, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9:5, 470-479, https://doi.org/10.1080/21681163.2020.1858968
- LeeWei Loon, et al., (2019) CFD simulation of direct chill casting process of magnesium alloy billets, Journal of Manufacturing process, Volume 45, 447-454, https://doi.org/10.1016/j.jmapro.2019.07.033

^{1* -} Skill evaluation methodology