i) $x \le x$ para todo $x \in S$

ley reflexiva

ii) Si $x \le y$ y $y \le x$, entonces x = y

ley antisimétrica

iii) Si $x \le y$ y $y \le z$, entonces $x \le z$

ley transitiva

Puede ocurrir que existan elementos x y y en S tales que no se cumplan $x \le y$ ni $y \le x$. Sin embargo, si para cada x, $y \in S$, $x \le y$ o $y \le x$, se dice que el orden es un **orden total**. Si $x \le y$ o $y \le x$, entonces se dice que x y y son **comparables**.

EJEMPLO 5.8.1 Un orden parcial en \mathbb{R}

Los números reales están parcialmente ordenados por \leq , donde \leq quiere decir "menor o igual que". El orden en este caso es un orden total.

EJEMPLO 5.8.2 Un orden parcial en un conjunto de subconjuntos

Sea S un conjunto y suponga que P(S), denominado el **conjunto potencia** de S, denota el conjunto de todos los subconjuntos de S.

Se dice que $A \leq B$ si $A \subseteq B$. La relación de inclusión es un orden parcial sobre P(S). Es sencillo probar esto. Se tiene

- i) $A \subseteq A$ para todo conjunto A.
- ii) $A \subseteq B$ y $B \subseteq A$ si y sólo si A = B.
- iii) Suponga que $A \subseteq B$ y $B \subseteq C$. Si $x \in A$, entonces $x \in B$, de manera que $x \in C$. Esto significa que $A \subseteq C$.

A excepción de circunstancias especiales (por ejemplo, si *S* contiene sólo un elemento), el orden no será un orden total. Esto se ilustra en la figura 5.13.

Figura 5.13Tres posibilidades para la inclusión de conjuntos.

Definición 5.8.2

Cadena, cota superior y elemento maximal

Sea S un conjunto parcialmente ordenado por \leq .

- i) Un subconjunto T de S se llama cadena si es totalmente ordenado; es decir, si x y y son elementos distintos de T, entonces $x \le y$ o $y \le x$.
- ii) Sea C un subconjunto de S. Un elemento $u \in S$ es una cota superior para C si $c \le u$ para todo elemento $c \in C$.