Publication date: September 28, 2022 Due date: October 5, 2022

We start with some revision exercises on Analysis 2 topics

Exercise 1.1 (20 pts) Assume that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := f(x+2y) + f(7y-3x)$$
,

for all $x, y \in \mathbb{R}$. Is F differentiable? In that case, compute ∇F .

Exercise 1.2 (20 pts) Define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting $F(x,y) := \sqrt{|xy|}$. Is F differentiable in (0,0)? Justify your answer.

Recall: Let (X, d) be a non-empty complete metric space and $F: X \to X$. We say that F is a *contraction* if there exists a constant $C \in [0, 1)$ such that

$$d(F(z_1), F(z_2)) \le Cd(z_1, z_2)$$

for all $z_1, z_2 \in X$. We say that z^* is a fixed point for F if $F(z^*) = z^*$. The Banach fixed point theorem states that if F is a contraction, then F admits a unique fixed point. Recall that \mathbb{R}^n is a complete metric space with the Euclidean distance.

Exercise 1.3 (20 pts) Let (X, d) be a non-empty complete metric space. Prove the Banach fixed point theorem stated above.

Exercise 1.4 (20 pts) Define $F: \mathbb{R}^2 \to \mathbb{R}^2$ by setting

$$F(x,y) := (x + y/2, x/2 + y + 1).$$

Define the map G(x,y)=(x,y)-F(x,y). Using the Banach fixed point theorem on G, prove that F admits a unique zero, i.e., there exists a unique $(x^*,y^*) \in \mathbb{R}^2$ such that $F(x^*,y^*)=(0,0)$.

Exercise 1.5 (20 pts) Define $F: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$F(x, y, z) := (x + y + z, xy + yz + zx, xyz).$$

Determine all the points in \mathbb{R}^3 in which F is locally invertible.

Publication date: October 5, 2022 Due date: October 12, 2022

Recall: Let $A \subset \mathbb{R}^n$ be an open set. Suppose $f: A \to \mathbb{R}$ is differentiable at $z^* \in \mathbb{R}^n$. We say that z^* is a critical point of f if $\nabla f(z^*) = 0$. Recall that a local minimizer or maximinizer of f is always a critical point. Suppose now n = 2 and that f is C^2 . The Hessian of f is defined by

$$Hf(x,y) := \det \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = f_{xx}f_{yy} - (f_{xy})^2.$$

Suppose (x^*, y^*) is a critical point of f. If

$$Hf(x^*, y^*) > 0, \quad f_{xx}(x^*, y^*) > 0,$$

then (x^*, y^*) is a local mimizer for f. If

$$Hf(x^*, y^*) > 0$$
, $f_{xx}(x^*, y^*) < 0$,

then (x^*, y^*) is a local maximizer for f. If

$$Hf(x^*, y^*) < 0$$
,

then (x^*, y^*) is a saddle point for f.

Exercise 2.1 (25 pts) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$f(x,y) := \frac{xy}{1 + x^2 + y^2} \,.$$

Find all the critical points of f and classify them into local maximizers, local minimizers and saddle points.

Exercise 2.2 (25 pts) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$f(x,y) := 2(x^4 + y^4 + 1) - (x+y)^2.$$

Find all the critical points of f and classify them into local maximizers, local minimizers and saddle points.

Hint: if at some critical point (x^*, y^*) one has $Hf(x^*, y^*) = 0$, then nothing can be concluded about the nature of (x^*, y^*) . In such case, one has to proceed manually, for example by considering the restriction of f to the line through the origin $\{y = mx\}$ for $m \in \mathbb{R}$, and analyze the resulting function of one variable.

Exercise 2.3 (25 pts) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = xy^2$ and consider the set

$$A = \{(x, y) \in \mathbb{R}^2 : y > 0, y < 1 + x, y < 1 - x\}.$$

Find the global maximizers and minimizers of f restricted to the set A.

Hint: Draw A and consider the separate cases of internal points and boundary points.

Exercise 2.4 (25 pts)

- (a) Suppose $f: A \subset \mathbb{R}^n \to \mathbb{R}$ is differentiable at $x^* \in \mathring{A}$, with \mathring{A} denoting the interior of A. Show that if x^* is a local minimizer or maximizer for f, then $\nabla f(x^*) = 0$.
- (b) (Rolle's Theorem in \mathbb{R}^n) Suppose that $A \subset \mathbb{R}^n$ is compact with $\mathring{A} \neq \emptyset$. Let $f: A \to \mathbb{R}$ be continuous in A, differentiable in \mathring{A} , and constant on ∂A . Prove that there exists $x^* \in \mathring{A}$ such that $\nabla f(x^*) = 0$.

Hint: Use Weierstrass' Theorem.

Publication date: October 12, 2022 Due date: October 19, 2022

Remark: The following exercise addresses a question that a few of you asked in the previous class. Enjoy!

Exercise 3.1 (25 pts)

- (a) Suppose that z = 0 is a local minimizer for a given function $F: \mathbb{R}^n \to \mathbb{R}$. Let $v \in \mathbb{R}^n \setminus \{0\}$ and consider the restriction of F along the line of direction v, that is, the function $g_v(t) := F(tv)$ for $t \in \mathbb{R}$. Prove that t = 0 is a local minimizer for g_v .
- (b) We now show that the converse of point (a) does not hold, even if F is smooth. To this end, consider the function $F: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(x,y) := (y - x^2)(y - 2x^2)$$
.

Prove the following statements:

- (i) (0,0) is the only critical point of F.
- (ii) The Hessian of F vanishes in (0,0).
- (iii) Consider the restriction of F along the lines through the origin:

$$g_m(x) := \begin{cases} F(x, mx) & \text{if } m \in \mathbb{R}, \\ F(0, x) & \text{if } m = \infty. \end{cases}$$

Show that for all $m \in \mathbb{R} \cup \{\infty\}$ the point x = 0 is a local minimizer for g_m .

(iv) Show that (0,0) is a saddle point for F.

Hint: To understand what is happening, it might be helpful to draw the sets in \mathbb{R}^2 where F is positive, negative and zero.

Implicit Function: Let $A \subset \mathbb{R}^2$ be open, and $F: A \to \mathbb{R}$. Define the set

$$Z := \{(x, y) \in A : F(x, y) = 0\}.$$

Assume $(x_0, y_0) \in Z$, i.e., $F(x_0, y_0) = 0$. We say that the equation F = 0 defines an implicit function y = f(x) at the point (x_0, y_0) if the set Z coincides with the graph of f around (x_0, y_0) , that is, if there exist $\varepsilon, \delta > 0$ and $f: I_{\varepsilon}(x_0) \to I_{\delta}(y_0)$, with $I_{\varepsilon}(x_0) := [x_0 - \varepsilon, x_0 + \varepsilon], I_{\delta}(y_0) := [y_0 - \delta, y_0 + \delta]$ such that

$$\{(x,y) \in I_{\varepsilon}(x_0) \times I_{\delta}(y_0) : F(x,y) = 0\} = \{(x,f(x)) : x \in I_{\varepsilon}(x_0)\}.$$

Clearly, we say that F = 0 defines an implicit function x = f(y) at the point (x_0, y_0) if the set Z coincides with the graph of f around (x_0, y_0)

Implicit Function Theorem: Let $A \subset \mathbb{R}^2$ be open, and $F: A \to \mathbb{R}$ with $F \in C^1(A)$. Assume there exists a point $(x_0, y_0) \in A$ such that

$$F(x_0, y_0) = 0$$
, $F_y(x_0, y_0) \neq 0$.

Then there exist $\varepsilon, \delta > 0$ and a unique implicit function $f: I_{\varepsilon}(x_0) \to I_{\delta}(y_0)$, i.e., f satisfies $f(x_0) = y_0$ and

$$F(x, f(x)) = 0$$
, for all $x \in I_{\varepsilon}(x_0)$.

Moreover $f \in C^1(I_{\varepsilon}(x_0), I_{\delta}(y_0))$ and

$$f'(x) = -\frac{F_x(x, f(x))}{F_y(x, f(x))}$$
.

Clearly, the analogous statement holds if

$$F(x_0, y_0) = 0$$
, $F_x(x_0, y_0) \neq 0$,

and in this case F = 0 defines an implicit function x = f(y).

Tangent line to a set: Let $A \subset \mathbb{R}^2$ be open, and $F: A \to \mathbb{R}$ with $F \in C^1(A)$. Define the set

$$Z := \{(x, y) \in A : F(x, y) = 0\}.$$

Suppose that the point $(x_0, y_0) \in Z$ is such that either $F_x(x_0, y_0) \neq 0$ or $F_y(x_0, y_0) \neq 0$. Then the equation of the tangent line to Z at (x_0, y_0) is given by

$$F_x(x_0, y_0)(x - x_0) + F_y(x_0, y_0)(y - y_0) = 0.$$

Exercise 3.2 (25 pts) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$F(x,y) = x^3 + y^3 - 3xy$$
.

Find the points $(x_0, y_0) \in \mathbb{R}^2$ such that F = 0 defines implicitly a map y = f(x).

Exercise 3.3 (25 pts) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$F(x,y) = 2y^3 + 4x^2y - 3x^4 + x + 6y.$$

Prove that the equation F = 0 defines an implicit function y = f(x) for all $(x_0, y_0) \in \mathbb{R}^2$.

Exercise 3.4 (25 pts) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$F(x,y) = x^3 + y^3 - 4x^2y + 2$$
.

- (a) Show that the equation F = 0 defines an implicit function y = f(x) around the point (1,1).
- (b) Compute f'(1).
- (c) Compute the equation of the line tangent to the set

$$Z = \{(x, y) \in \mathbb{R}^2 : F(x, y) = 0\}$$

at the point (1,1).

Publication date: October 23, 2022 Due date: November 9, 2022

Consider the following statement you saw in class.

Theorem 1. Let $A \subset \mathbb{R}^n$ be open and $F: A \to \mathbb{R}$. Suppose that there exist $z_0 \in A$ and a neighbourhood $U \subset A$ of z_0 such that ∇F exists and is continuous in U. Then F is differentiable in z_0 .

The converse of Theorem 1 does not hold, as shown in the next exercise.

Exercise 4.1 (25 pts) Define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} 0 & \text{if } y = 0, \\ y^2 \cos\left(\frac{1}{y}\right) & \text{if } y \neq 0. \end{cases}$$

- (a) Compute F_x and F_y . Prove that F_y is not continuous in (x,0) for all $x \in \mathbb{R}$.
- (b) Prove that F is differentiable in (x,0) for all $x \in \mathbb{R}$.

In class you saw the following theorem.

Theorem 2. Let $A \subset \mathbb{R}^n$ be open and $F: A \to \mathbb{R}$. Suppose that there exist $z_0 \in A$ and a neighbourhood $U \subset A$ of z_0 such that $\nabla^2 F$ exists and is continuous in U. Then $F_{x_i x_j}(z_0) = F_{x_j x_i}(z_0)$ for all i, j in $\{1, \ldots, n\}$.

The aim of the next exercise is to prove that the assumption of $\nabla^2 F$ being continuous cannot be removed.

Exercise 4.2 (25 pts) Define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} 0 & \text{if } (x,y) = (0,0), \\ \frac{x^3 y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

- (a) Prove that F is continuous in \mathbb{R}^2 .
- (b) Compute $\nabla F = (F_x, F_y)$ and prove that F is differentiable in \mathbb{R}^2 .
- (c) Prove that F_{xy} and F_{yx} exist in \mathbb{R}^2 and that

$$F_{xy}(0,0) \neq F_{yx}(0,0)$$
.

(d) Check that F_{xy} and F_{yx} are not continuous in (0,0).

For the next exercise it will be useful to recall the following Taylor formula in one dimension.

Theorem 3. Let $a, b \in \mathbb{R}$ and $g \in C^2(I)$ with $I = [a, b] \subset \mathbb{R}$. Let $t \in I$ and s > 0 be such that $t + s \in I$. Then there exists $\xi \in (0, 1)$ such that

$$g(t+s) = g(t) + g'(t)s + \frac{1}{2}g''(t+\xi s)s^{2}$$
.

Exercise 4.3 (25 pts) Let $A \subset \mathbb{R}^2$ be open and $F \in C^2(A)$.

(a) Let $(x, y), (h, k) \in \mathbb{R}^2$ be such that $P_t := (x + th, y + tk) \in A$ for all $t \in [0, 1]$. Using Theorem 3, show that there exists $\xi \in (0, 1)$ such that

$$F(x+h,y+k) = F(x,y) + F_x(x,y)h + F_y(x,y)k + \frac{1}{2} \left\{ F_{xx}(P_\xi)h^2 + 2F_{xy}(P_\xi)hk + F_{yy}(P_\xi)k^2 \right\}.$$

(b) The second order Taylor polynomial of F in (0,0) is defined by

$$P_2(x,y) := F(0,0) + F_x(0,0)x + F_y(0,0)y + \frac{1}{2} \left\{ F_{xx}(0,0)x^2 + 2F_{xy}(0,0)xy + F_{yy}(0,0)y^2 \right\}.$$

Compute P_2 for $F: \mathbb{R}^2 \to \mathbb{R}$ defined by $F(x,y) := (2x+y)e^{x^2-y^2}$.

Defintion. Define $\mathbb{S}^n := \{v \in \mathbb{R}^{n+1} : ||v|| = 1\}$. Let $A \subset \mathbb{R}^{n+1}$ be open, $F : A \to \mathbb{R}$, and $v \in \mathbb{S}^n$. The directional derivative of F at $z_0 \in A$ in direction v is defined by

$$F_v(z_0) := \lim_{t \to 0} \frac{F(z_0 + tv) - F(z_0)}{t},$$

whenever the limit exists.

Theorem 4. Let $A \subset \mathbb{R}^{n+1}$ be open, $F: A \to \mathbb{R}$. If F is differentiable in $z_0 \in A$, then F admits all the directional derivatives in z_0 and

$$F_v(z_0) = \nabla F(z_0) \cdot v = \sum_{i=1}^{n+1} F_{x_i}(z_0) v_i$$
, for all $v \in \mathbb{S}^n$.

The next exercise shows that the converse of Theorem 4 does not hold, i.e., there exists F which admits all the directional derivatives at some point z_0 , but is not differentiable at z_0 .

Exercise 4.4 (25 pts) Define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} 0 & \text{if } (x,y) = (0,0), \\ \frac{x^3 y}{x^4 + y^2} + y & \text{if } (x,y) \neq (0,0). \end{cases}$$

- (a) Prove that $F_v(0,0)$ exists for all $v \in \mathbb{S}^1$ and compute it.
- (b) Prove that F is not differentiable in (0,0).
- (c) Prove that for all $v \in \mathbb{S}^1$ it holds

$$F_{v}(0,0) = \nabla F(0,0) \cdot v$$
.

Publication date: November 9, 2022 Due date: November 16, 2022

Exercise 5.1 (25 pts) Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable in t = 0. Moreover suppose g is bounded, that is, there exists $M \geq 0$ such that $|g(t)| \leq M$ for all $t \in \mathbb{R}$. Define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} x^2 g\left(\frac{y}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that $F_{xy}(0,0) = F_{yx}(0,0)$ if and only if g'(0) = 0.

Define $\mathbb{S}^{n-1} := \{ v \in \mathbb{R}^n : ||v|| = 1 \}.$

Theorem 1. Let $A \subset \mathbb{R}^n$ be open, $F: A \to \mathbb{R}$. If F is differentiable in $z_0 \in A$, then F admits all the directional derivatives in z_0 and

$$F_v(z_0) = \nabla F(z_0) \cdot v = \sum_{i=1}^n F_{x_i}(z_0) v_i, \quad \text{for all } v \in \mathbb{S}^{n-1}.$$
 (1)

The next exercise shows that, in general, formula (1) does not hold if F is not differentiable.

Exercise 5.2 (25 pts) Define $F: \mathbb{R}^2 \to \mathbb{R}$ by setting

$$F(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Prove that $F_v(0,0)$ exists for all $v \in \mathbb{S}^1$ and compute it.
- (b) Prove that (1) does not hold, i.e., that there exists some $v \in \mathbb{S}^1$ such that

$$F_v(0,0) \neq \nabla F(0,0) \cdot v$$
.

(c) Can F be differentiable in (0,0)?

Definition. Consider a vector valued function $F = (F^1, \dots, F^n)$: $A \subset \mathbb{R}^n \to \mathbb{R}^n$. The Jacobian of F at $z \in A$ is defined as the $n \times n$ matrix of partial derivatives

$$J_F(z) := \left(F_{x_j}^i(z)\right)_{ij}.$$

Inverse Function Theorem. Let $A \subset \mathbb{R}^n$ be open. Let $F: A \to \mathbb{R}^n$ be a C^1 function and suppose that

$$\det J_F(z_0) \neq 0$$

for some $z_0 \in A$. Then F is locally invertible around z_0 , that is, there exist $U \subset A$ neighbourhood of z_0 , V neighbourhood of $F(z_0)$ and a C^1 function $G: V \to U$ such that $(F \circ G)(w) = w$ for all $w \in V$ and $(G \circ F)(z) = z$ for all $z \in U$. We denote $F^{-1} := G$. In particular for all $w \in V$ it holds

$$J_{F^{-1}}(w) = [J_F(F^{-1}(w))]^{-1}$$
.

Exercise 5.3 (25 pts)

(a) Consider the map $F: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$F(x, y, z) = (xz, 2xy, 3yz).$$

For which points of \mathbb{R}^3 is the map F locally invertible?

(b) Consider the map $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$F(x,y) = (e^x \cos y, e^x \sin y).$$

Show that F is locally invertible for every point in \mathbb{R}^2 . Is F globally invertible?

Exercise 5.4 (25 pts) Suppose $F \in C^2(\mathbb{R}^2)$ and that there exists $(x_0, y_0) \in \mathbb{R}^2$ such that

$$F(x_0, y_0) = F_x(x_0, y_0) = F_y(x_0, y_0) = 0.$$

Moreover assume that

$$F_{xx}(x_0, y_0)F_{yy}(x_0, y_0) > F_{xy}^2(x_0, y_0).$$

Use the Inverse Function Theorem and the Minimality/Maximality Criterion from Exercise Sheet 2 to prove the existence of a neighbourhood U of (x_0, y_0) such that

$$F(x,y) \neq 0$$
 for all $(x,y) \in U \setminus \{(x_0,y_0)\}$.

Publication date: November 16, 2022 Due date: November 23, 2022

Exercise 6.1 (20 pts) Define $F: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$F(x,y) := \left(\sin(xy) + x\cos y, e^{x+y} - \frac{1}{1+x^2+y^2}.\right)$$

- (a) Show that F is locally invertible in (0,0).
- (b) Denote by $G = (G^1, G^2)$ the local inverse of F around (0,0). Compute the first order Taylor approximation of G^i around (0,0), that is,

$$G^{i}(x,y) = G^{i}(0,0) + G_{x}^{i}(0,0)x + G_{y}^{i}(0,0)y + o(\sqrt{x^{2} + y^{2}}),$$

for i = 1, 2.

In the following we assume familiarity with the concepts of topology, induced topology, continuity for maps between topological spaces, and homeomorphism of topological spaces.

Definition. A topological space X is called *connected* if the only subsets that are both open and closed are \emptyset and X. A non-connected topological space is called *disconnected*.

Exercise 6.2 (20 pts) Let X be a topological space. Prove that the following statements are equivalent:

- (a) X is disconnected.
- (b) $X = A_1 \cup A_2$ with A_1, A_2 open, disjoint and proper, i.e., $A_i \neq \emptyset$, $A_i \neq X$.
- (c) $X = C_1 \cup C_2$ with C_1, C_2 closed, disjoint and proper, i.e., $C_i \neq \emptyset$, $C_i \neq X$.

Definition. The euclidean topology on \mathbb{R}^n is defined as the collection of sets

$$\tau := \{ A \subset \mathbb{R}^n : \forall x \in A, \exists \varepsilon > 0 \text{ such that } B_{\varepsilon}(x) \subset A \},$$

where $B_{\varepsilon}(x) := \{ y \in \mathbb{R}^n : ||y - x|| < \varepsilon \}$ and $|| \cdot ||$ is the euclidean norm.

Note. In the following \mathbb{R}^n is always equipped with the euclidean topology. Any subset $A \subset \mathbb{R}^n$ is itself a topological space with the topology induced by the euclidean one.

Definition. A topological space X is called *path-connected* if for every pair $x, y \in X$ there exists a continuous map $\alpha : [0,1] \to X$ such that $\alpha(0) = x$ and $\alpha(1) = y$. The map α is a *path* between x and y.

Note. In the following you can assume this fact: $I \subset \mathbb{R}$ is connected if and only if it is an interval.

Exercise 6.3 (20 pts) Let X and Y be topological spaces.

- (a) Assume that $f: X \to Y$ is continuous. Show that if X is connected then f(X) is connected.
- (b) Show that if X is path-connected then it is connected.
- (c) Suppose that $A, B \subset X$ are path-connected and such that $A \cap B \neq \emptyset$. Show that $A \cup B$ is path-connected.
- (d) Assume that $f: X \to Y$ is continuous. Show that if X is path-connected then f(X) is path-connected.

Exercise 6.4 (20 pts)

- (a) Define $X:=\{x\in\mathbb{R}:\ x\neq 0\}.$ Prove that X is disconnected.
- (b) Let $a, b \in \mathbb{R}^n$ and define the line segment

$$[a,b] := \{ta + (1-t)b, t \in [0,1]\}.$$

Prove that [a, b] is path-connected.

(c) Let $C \subset \mathbb{R}^n$ be convex. Show that C is path-connected.

Exercise 6.5 (20 pts)

- (a) Let $\mathbb{S}^n := \{x \in \mathbb{R}^{n+1}: \ \|x\| = 1\}$. Show that \mathbb{S}^n is path-connected.
- (b) Show that \mathbb{S}^1 is not homeomorphic to (0,1).
- (c) Prove that the intervals (0,1) and (0,1] are not homeomorphic.

Publication date: November 23, 2022 Due date: November 30, 2022

Note. We assume the definitions given in Exercise Sheet 6. Also, all the statements in Exercise Sheet 6 can be used to solve the problems below.

Exercise 7.1 (20 pts)

(a) Suppose that $f: [0,1] \to [0,\infty)$ is continuous and such that f(1) = 0. Show that there exists $\hat{x} \in [0,1]$ such that $f(\hat{x}) = \hat{x}$.

Hint: $A \subset \mathbb{R}$ is connected if and only if A is an interval.

(b) Let $n \geq 1$. Suppose that $f: \mathbb{S}^n \to \mathbb{R}$ is continuous. Show that there exists $\hat{x} \in \mathbb{S}^n$ such that $f(\hat{x}) = f(-\hat{x})$.

Hint: Recall that \mathbb{S}^n is connected for all $n \geq 1$. Also it might be useful to consider g(x) := f(x) - f(-x).

Definition. Consider the points (z_1, \ldots, z_m) with $z_i \in \mathbb{R}^n$. Denote by S_k the line segment connecting z_k to z_{k+1} , that is, $S_k := [z_k, z_{k+1}]$. The set $P = \bigcup_{i=1}^{m-1} S_i$ is called *polygonal path* through (z_1, \ldots, z_m) . We also say that P connects z_1 to z_m .

Definition. A subset $A \subset \mathbb{R}^n$ is called *polygonally path-connected* if for every $x, y \in A$ there exists a polygonal path $P \subset A$ connecting x to y.

Exercise 7.2 (20 pts) Fix some integer $n \geq 2$ and let $A \subset \mathbb{R}^n$ be countable. Prove that $\mathbb{R}^n \setminus A$ is polygonally path-connected.

Exercise 7.3 (20 pts) Fix some integer $n \ge 2$ and Let $A \subset \mathbb{R}^n$ be convex and bounded. Prove that $\mathbb{R}^n \setminus A$ is path-connected.

Exercise 7.4 (20 pts) Let $A \subset \mathbb{R}^n$ be open. Prove that A is connected if and only if it is polygonally path-connected.

Let $\gamma: [a,b] \subset \mathbb{R} \to \mathbb{R}^n$ with $\gamma = (\gamma_1, \dots, \gamma_n)$ be a curve.

Definition. We say that γ is regular if $\gamma_i \in C^1([a,b])$ for all $i=1,\ldots,n$ and

$$\|\gamma'(t)\| = \sqrt{(\gamma_1'(t))^2 + \dots + (\gamma_n'(t))^2} > 0$$

for all $t \in (a, b)$. We say that γ is *piecewise regular* if there exist $a_1 = a < a_2 < \ldots < a_k = b$ such that γ is regular in each $[a_i, a_{i+1}]$.

Theorem. Let $\gamma \colon [a,b] \subset \mathbb{R} \to \mathbb{R}^n$ be piecewise regular. Then the length of γ is given by

$$\ell(\gamma) = \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} \sqrt{(\gamma_1')^2 + \dots + (\gamma_n')^2} dt.$$

Definition. Let $\gamma \colon [a,b] \subset \mathbb{R} \to \mathbb{R}^n$ be piecewise regular and $F \colon \gamma([a,b]) \subset \mathbb{R}^n \to \mathbb{R}$ continuous. The integral of F along γ is defined by

$$\int_{\gamma} F \, ds := \sum_{i=1}^{k-1} \int_{a_i}^{a_{i+1}} F(\gamma(t)) \sqrt{(\gamma_1')^2 + \dots + (\gamma_n')^2} \, dt \, .$$

Exercise 7.5 (20 pts) Let $\gamma: [0, \pi] \to \mathbb{R}^2$ defined by

$$\gamma(t) := (\cos^3 t, \sin^3 t).$$

- (a) Prove that γ is piecewise regular.
- (b) Compute $\ell(\gamma)$.
- (c) Compute $\int_{\mathcal{R}} F \, ds$ where $F : \mathbb{R}^2 \to \mathbb{R}$ is defined by $F(x,y) := \sqrt[3]{|xy|}$.

Publication date: November 30, 2022 Due date: Dezember 7, 2022

Exercise 8.1 (20 pts) Consider the set of unitary matrices $O(n) = \{A \in \mathbb{R}^{n \times n} \mid A^{-1} = A^T\} \subset \mathbb{R}^n \times n$.

- Show that O(n) is connected.
- Show that the tangent space of O(n) at the identity matrix is the set of skew-symmetric matrices.

Exercise 8.2 (20 pts) Show that a topological space with a connected, dense subset is connected.

Exercise 8.3 (20 pts) Let A, B be subsapces of a topological space such that $A \cup B$ and $A \cap B$ are connected. Prove that if A, B are both closed or both open, A and B are connected.

Exercise 8.4 (20 pts) Determine the tangent space of the surface defined by $x^2 + y^2 - z^2 = 25$ in all points where z = 0.

Exercise 8.5 (20 pts) Where does the mapping $\mathbb{R}^2 \to \mathbb{R}^3$, $(u, v) \mapsto (x, y, z)$ via

$$x = u \cos(v), \quad y = u \sin(v), \quad z = u^2 + v^2$$

locally define a regular 2 dimensional hyperplane? Compute the tangent space in $(1,0,1) \in \mathbb{R}^3$.

Publication date: Dezember 7, 2022 Due date: Dezember 14, 2022

Exercise 9.1 (20 pts) Sei $f: U \to V$ stetig differenzierbar mit $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ beide offen. Sei $x_0 \in U$ und $Df(x_0)$ habe vollen Rang.

- a) Sei n < m. Zeige, dass f lokal injektiv ist, d.h., es gibt U' offen in \mathbb{R}^n mit $x_0 \in U'$, sodass $f: U' \to V$ injektiv ist.
- b) Sei n > m. Zeige, dass f lokal surjektiv ist, d.h., es gibt V' offen in \mathbb{R}^m mit $f(x_0) \in V'$, sodass $V' \subset f(U)$.

Exercise 9.2 (20 pts) Sei X ein endlich-dimensionaler Vektorraum und $f: X \to X$ ein Diffeomorphismus. Weiters sei $g: X \to X$ eine C^1 Abbildung, die außerhalb einer kompakten Teilmenge von X verschwindet. Zeige, dass es ein $\epsilon > 0$ derart gibt, dass for alle $|\lambda| < \epsilon$ die Abbildung $f + \lambda g: X \to X$ ein Diffeomorphismus ist.

Exercise 9.3 (20 pts) Sei $SL(n) = \{A \in \mathbb{R}^{n \times n} \mid \det(A) = 1\}$. Finde eine Darstellung von $T_I SL(N)$, dem Tangentialraum zu SL(n) in der Einheitsmatrix I. Zeige weiters, dass für $A \in \mathbb{R}^{n \times n}$ mit tr(A) = 0 (tr(A) bezeichnet die Spur von A) gilt, dass $\gamma(t) = \exp(tA)$ eine Kurve in SL(n) mit $\dot{\gamma}(0) = A$.

Exercise 9.4 (20 pts) Sei $M = f^{-1}(0)$ eine erklpf im \mathbb{R}^2 mit der Dimension 1, wobei $f : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ eine stetig differenzierbare Funktion mit 0 als regulärem Wert ist (d.h., Df(x) hat vollen rang für alle x mit f(x) = 0) und $(0,0) \notin M$. Zeige, dass

$$R = \{(x, y, z) \in \mathbb{R}^3 \mid f(\sqrt{x^2 + y^2}, z) = 0\}$$

eine 2-dimensionale erklpf des \mathbb{R}^3 ist. Veranschauliche dieses Resultat am Beispiel eines Torus.

Exercise 9.5 (20 pts) Sind die folgenden Mengen erklpf? Begründen Sie Ihre Antworten.

- a) Die Ebene als Teilmenge des \mathbb{R}^3 .
- b) Die Sphäre S^n als Teilmenge des \mathbb{R}^n .
- c) Die Sphäre S^n als Teilmenge des \mathbb{R}^m für m > n.
- d) Die linke Menge in Figure 1 im \mathbb{R}^2 .
- e) Die rechte Menge in Figure 1 im \mathbb{R}^2 .

Figure 1: Erklpf?

Publication date: Dezember 14, 2022 Due date: January 11, 2022

Wie besprochen, die zwei letzten Beispiele vom 8. Übungszettel noch mal.

Exercise 10.1 (20 pts) Sei $M = f^{-1}(0)$ eine erklpf im \mathbb{R}^2 mit der Dimension 1, wobei $f : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ eine stetig differenzierbare Funktion mit 0 als regulärem Wert ist (d.h., Df(x) hat vollen rang für alle x mit f(x) = 0) und $(0,0) \notin M$. Zeige, dass

$$R = \{(x, y, z) \in \mathbb{R}^3 \mid f(\sqrt{x^2 + y^2}, z) = 0\}$$

eine 2-dimensionale erklpf des \mathbb{R}^3 ist. Veranschauliche dieses Resultat am Beispiel eines Torus.

Exercise 10.2 (20 pts) Sind die folgenden Mengen erklpf? Begründen Sie Ihre Antworten.

- a) Die Ebene als Teilmenge des \mathbb{R}^3 .
- b) Die Sphäre S^n als Teilmenge des \mathbb{R}^{n+1} .
- c) Die n-dimensionale Sphäre als Teilmenge des \mathbb{R}^m für m > n+1, das heißt, $S = \{x \in \mathbb{R}^m \mid (x_1, \dots, x_{n+1}) \in S^n\}$.
- d) Die linke Menge in Figure 1 im \mathbb{R}^2 .
- e) Die rechte Menge in Figure 1 im \mathbb{R}^2 .

Figure 1: Erklpf?

Exercise 10.3 (20 pts) Sei $N = (0, ..., 0, 1) \in \mathbb{R}^{n+1}$ und definiere

$$\iota_N : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}, \quad \iota_N(x) = N + \frac{2}{\|x - N\|_2^2} (x - N)$$

und die stereographische Projektion

$$\sigma_N : \mathbb{R}^n \to S^n \setminus \{N\}, \quad \sigma_N(x) = \iota_N(x,0)$$

mit der n-dimensionalen Einheitssphäre $S^n \subset \mathbb{R}^{n+1}$. Zeigen Sie, dass σ_N eine Parametrisierung von $S^n \setminus \{N\}$ ist. Fertigen Sie Skizzen für n=1,2 an. Das heißt:

- a) Zeigen Sie, dass σ_N surjektiv ist. Fertigen Sie eine Skizze an, um zu sehen, wie sie für $y \in S^n$ das passende x finden, sodass $\sigma_N(x) = y$.
- **b)** Zeigen Sie, dass σ_N injektiv ist.
- c) Zeigen Sie, dass die Jacobimatrix von σ_N injektiv ist. Die Jacobimatrix kann recht schön vereinfacht werden.

Dr. Silvio Fanzon silvio.fanzon@uni-graz.at

Exercise 10.4 (20 pts) Bestimmen Sie die Tangentialräume von $S^n \setminus \{N\}$ mithilfe der Parametrisierung aus 10.3.

Exercise 10.5 (20 pts) Sei die Hyperfläche $S \subset \mathbb{R}^3$ der Graph einer Funktion $g: \mathbb{R}^2 \to \mathbb{R}$. Erstellen Sie eine Gleichung für die Punkte (x,y,z) der Tangentialebene in $(x0,y0,z0) \in S$ mittels der partiellen Ableitungen von g.

Publication date: January 11, 2023 Due date: January 18, 2023

Wie besprochen, die zwei letzten Beispiele vom 10. Übungszettel noch mal.

Exercise 11.1 (20 pts) Bestimmen Sie die Tangentialräume von $S^n \setminus \{N\}$ mithilfe der Parametrisierung aus 10.3. Zeigen Sie, dass der Tangentialraum $T_x S^n = \{x\}^{\perp}$, also dass orthogonale Komplement zum Vektor x ist. Zeigen sie gleiches auch über die implizite Darstellung der Sphäre als die Menge aller x für die gilt $||x||_2^2 = 1$.

Exercise 11.2 (20 pts) Sei die Hyperfläche $S \subset \mathbb{R}^3$ der Graph einer Funktion $g : \mathbb{R}^2 \to \mathbb{R}$. Erstellen Sie eine Gleichung für die Punkte (x, y, z) der Tangentialebene in $(x_0, y_0, z_0) \in S$ mittels der partiellen Ableitungen von g.

Exercise 11.3 (20 pts) In diesem Beispiel widmen wir uns Funktionen zwischen Flächen. Seien $M \subset \mathbb{R}^d$ und $N \subset \mathbb{R}^d$ zwei erklpf der Dimensionen m und n. Sei $F: M \to N, p \in M$ und $q = F(p) \in N$ und $f: U \to M$ eine lokale Parametrisierungen um p. Wir nennen F differenzierbar in p, falls $F \circ f$ differenzierbar in $x = f^{-1}(p)$ ist.

- a) Warmup: Wozu ist diese umständliche Definition der Differenzierbarkeit überhaupt nötig? Warum betrachten wir die Differenzierbarkeit von F nicht einfach "direkt"?
- b) Zeige, dass Differenzierbarkeit unabhängig von den konkreten Parametrisierung f ist. D.h., zeige, dass Differenzierbarkeit bezüglich der Parametrisierung f auch impliziert, dass F bezüglich einer beliebigen anderen Parametrisierung g differenzierbar ist.

Exercise 11.4 (20 pts) Sei $T \subset \mathbb{R}^3$ ein Torus mit beliebigen Radien r, R. Zeige, dass $F: T \to N$, $F(p) = \frac{1}{\|p\|}$ differenzierbar ist.

Exercise 11.5 (20 pts) Eine Abbildung $f: M \to N$ zwischen zei erklpf heißt Diffeomorphismus, wenn f bijektiv ist und f und f^{-1} stetig differenzierbar sind. Wir nennen M und N diffeomorph, falls ein Diffeomorphismus zwischen m und N existiert. Zeigen Sie, dass das Ellipsoid

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 1\}$$

für a, b, c > 0 diffeomorph zur Sphäre S^2 ist.

Publication date: January 18, 2023 Due date: January 25, 2023

Exercise 12.1 (20 pts) Seien M,N eingebettete, reguläre, lokal parametrisierte Flächen und $F:M\to N$ differenzierbar. Wir betrachten die Ableitung von F als lineare Abbildung analog zur Ableitung im \mathbb{R}^d . Die Ableitung $DF(p):T_pM\to T_qN$ für $p\in M,\ q=F(p)$ sei wie folgt definiert: Sei $w\in T_pM$ und γ Kurve in U mit $\gamma(0)=x$, sodass $w=\frac{d}{dt}f\circ\gamma(t)|_{t=0}$. Definiere $DF(p)(w)\coloneqq\frac{d}{dt}F\circ f\circ\gamma(t)|_{t=0}$. Beweise, dass DF(x) wohldefiniert, insbesondere auch unabhängig von der Parametrisierung f und der Kurve γ , und linear ist.

Exercise 12.2 (20 pts) Beweisen Sie die Kettenregel für zwei hintereinander ausgeführte Abbildungen zwischen erklpf.

Exercise 12.3 (20 pts) Sei $F: M \to N$ eine Abbildung zwischen zwei erklpf.

- Sei F die Einschränkung einer linearen Abbildung $\bar{F}: \mathbb{R}^d \to \mathbb{R}^d$, $\bar{F}(x) = Ax$, $A \in \mathbb{R}^{d \times d}$. Berechnen Sie DF(p)w für beliebieges $p \in M$ und $w \in T_pM$.
- F^{-1} existiere und sei differenzierbar. Stelle $D(F^{-1})$ in geeigneter Weise durch F, DF dar.

Exercise 12.4 (20 pts) Seien $0 < r_1, r_2 < R$ und S_1, S_2 die Tori gegeben durch

$$f_i(\phi, \psi) = \begin{pmatrix} (R + r_i \cos(\phi)) \cos \psi \\ (R + r_i \cos(\phi)) \sin \psi \\ r_i \sin(\phi) \end{pmatrix}, \quad (\phi, \psi) \in [0, 2\pi)^2, \quad i = 1, 2.$$

Definiere $F: S_1 \to S_2$ über $f_1(\phi, \psi) \mapsto f_2(\phi, \psi)$. Bestimmen Sie für ein $x = f_1(\phi, \psi), (\phi, \psi) \in (0, 2\pi)^2$ die Matrixdarstellung von DF bzgl. der Parametrisierungen f_i .

Exercise 12.5 (20 pts) Sei M das Ellipsoid

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 1\}$$

für a,b,c>0. Wir wissen vom letzten Übungszettel, dass $F:M\to S^2,\ F(x,y,z)=(\frac{x}{\sqrt{a}},\frac{y}{\sqrt{b}},\frac{z}{\sqrt{c}})$ ein Diffeomorphismus ist. Berechne die Ableitung von F.

Publication date: January 25, 2023 Due date: February 1, 2023

Theoretical preliminaries: Let $G \subset \mathbb{R}^d$ a bounded, open set and $F : \tilde{G} \to \mathbb{R}^d$, $f : \tilde{G} \to \mathbb{R}$ continuously differentiable with \tilde{G} open and $\overline{G} \subset \tilde{G}$. We denote

$$\operatorname{div} F = \sum_{i=1}^{d} \partial_{x_i} F_i,$$

$$\Delta f = \sum_{i=1}^{d} \partial_{x_i}^2 f.$$

Further $\nu(x)$ denotes the unit normal vector on ∂G in $x \in \partial G$ which points outside of G. We denote the surface measure for integration on the boundary of G as σ .

Gauss' theorem It holds true that

$$\int_{G} \operatorname{div}(F) \ d(x, y) = \int_{\partial G} \langle F, \nu \rangle \ d\sigma.$$

Exercise 12.1 (20 pts) Show that

$$\int\limits_{\mathbb{R}} e^{-z^2} \ dz = \sqrt{\pi}$$

by computing

$$\int_{\mathbb{R}^2} e^{-(x^2 + y^2)} \ d(x, y).$$

Hint: Polar coordinates.

Exercise 12.2 (20 pts) Compute the surface volume of a general torus with 0 < r < R by integrating the function $f \equiv 1$ over the surface.

Exercise 12.3 (20 pts) Let $G \subset \mathbb{R}^d$ a bounded, open set and $F : \tilde{G} \to \mathbb{R}^d$, $f, g : \tilde{G} \to \mathbb{R}$, f twice and F, g once continuously differentiable with \tilde{G} open and $\overline{G} \subset \tilde{G}$. Use Gauss' theorem to prove that

a)

$$\int_G \langle \nabla f, F \rangle \ dx = \int_{\partial G} \langle f F, \nu \rangle \ d\sigma - \int_G f \mathrm{div} F \ dx.$$

b)

$$\int_G -\Delta f g = \int_G \langle \nabla f, \nabla g \rangle - \int_{\partial G} g \langle \nabla f, \nu \rangle \ \sigma.$$

We prove a version of Gauss' theorem Obviously, do not use Gauss' theorem in the following. Let a < 0, b > 1 and $f : (a,b) \to (0,\infty)$ be a strictly increasing diffeomorphism. Denote the set $G = \{(x,y) \mid x \in (0,1), \ 0 < y < f(x)\}$. Let $F = (F_1,F_2)$ be a continuously differentiable vector field defined in a neighborhood of \overline{G} . We will show together that

$$\int_{G} \operatorname{div}(F) \ d(x,y) = \int_{\partial G} \langle F, n \rangle \ ds.$$

Exercise 12.4 (20 pts) Denoting $\alpha = f(0)$, $\beta = f(1)$, use the fundamental theorem of calculus to show that

$$\int_{G} \operatorname{div} F \ d(x,y) = \int_{0}^{1} -F_{2}(x,0) \ dx + \int_{0}^{1} F_{2}(x,f(x)) \ dx + \int_{0}^{\beta} F_{1}(1,y) \ dy + \int_{0}^{\alpha} -F_{1}(0,y) \ dy + \int_{0}^{1} -F_{1}(x,f(x))f'(x) \ dx \tag{1}$$

Exercise 12.5 (20 pts) Compute the line integral $\int_{\partial G} \langle \nabla F, n \rangle ds$ by dividing it into 4 segments $\{(x,y) \in \delta G \mid x=0, \ y \in (0,\alpha)\}$, $\{(x,y) \in \delta G \mid x=1, \ y \in (0,\beta)\}$, $\{(x,y) \in \delta G \mid x \in (0,1), \ y=0\}$, $\{(x,y) \in \delta G \mid x \in (0,1), \ y=0\}$, $\{(x,y) \in \delta G \mid x \in (0,1), \ y=0\}$, to show that it agrees with the above from 12.4. Why can we neglect the corners (x,y)=(0,0), (x,y)=(1,0), etc.