Experimental General Physics for Engineers II										
Laboratory Report PHYS 194 summer 2022										
	Section:L0	1								
Experiment name: High pass filters										
Student Name:	Talha Abdullah Punjabi	Student ID	201903446							
			1							
Date submitted:	6/21/2022									
	Table of results (1.25 pt)									
	Graph (1.25 pt)									
	Data analysis (2 pts)									
	Discussion (0.5 pt)									
	References									
	Others									

Report Grade (5 pts)

1. Table of results (fill in the table below and Put correct units in the table)

f	u(f)	Vin	$u(V_{in})$	V _{out}	$u(V_{out})$	G	u(G)	Δφ	υ(Δφ)
(Hz)	(Hz)	(volt	(volt)	(volt	(volt)				
))					
100	±10	4	±0.45	0.32	±0.043	0.080	±0.014	1.507	±0.302
1000	±10	2.4	±0.23	1.4	±0.122	0.583	±0.076	1.005	±0.256
3000	±10	1.9	±0.14	1.5	±0.125	0.790	±0.087	0.377	±0.189
6000	±10	1.8	±0.13	1.55	±0.126	0.861	±0.095	0.226	±0.076
10000	±10	1.8	±0.13	1.55	±0.126	0.861	±0.095	0.126	±0.063
15000	±10	1.8	±0.13	1.55	±0.126	0.861	±0.095	0.009	±0.009

2. Graphs

2.1. Graph of G vs. f

Plot G vs f in Excel with error bars.

2.2. Graph of $\Delta \phi$ vs. f

Plot $\Delta \phi$ vs f in Excel with error bars

3. Data analysis

3.1. Uncertainties on Vin and Vout

Show how you calculate $u(V_{in})$ and $u(V_{out})$

S=Vertical scale D=Value on the Oscilloscope

$$U(Vin) = sqrt((S*U(D))^2 + (D*U(S))^2)$$

= sqrt ((2*0.05*2)
2
+(2*0.2) 2) = \pm 0.447 volt

$$U(Vout) = sqrt ((S*U(D)^2+(D*U(S))^2)$$

= sqrt
$$((1.6*0.05*0.2)^2+(0.2*0.2)^2) = \pm 0.043$$
 volt

3.2. Gain and phase difference

Show how you calculate G and $\Delta \phi$

$$\Delta \phi = 2\pi \Delta t^* f$$

= 2 *3.14*100*0.0024 =1.507

3.3. Uncertainties on gain and on phase difference

Show how you calculate u(G) and $u(\Delta \phi)$

$$U(f) = \pm 10 Hz$$

$$U(G) = \operatorname{sqrt}((\operatorname{d}(\operatorname{Vout}/\operatorname{Vin})/\operatorname{d}(\operatorname{Vout})) ^2 + (\operatorname{d}(\operatorname{Vout}/\operatorname{Vin})/\operatorname{d}(\operatorname{Vin}) ^2)$$

$$=$$
 sqrt (0.043/4) ^2+(4*0.32^-2*0.447) ^2) = \pm 0.014

$$U(\Delta \phi) = \operatorname{sqrt} (d(2*pi*f*d(t))/d(f)*u(f))^2 + (d(2*pi*f*d(t))/d(d(t)*u(d(t))^2)$$

```
=sqrt ((2*pi*0.0024*10) ^2+(2*pi*100*0.0004) ^2)) = \pm 0.3026
```

4. Discussion of the results

Discuss if $\Delta \phi \;$ and G have the expected behavior for a high pass filter.

The results were as expected and is satisfying the theory part. As noticeable the gains are below 1 and is as expected with low error percentages. Also from the table, we notice that G value increases and then after some time becomes consistent, thus satisfying the condition for the High pass filter.

Overall, the experiment was successful with overall low percentages of error and agrees with the expected behavior for a high pass filter.

5. References