Midterm 3

Section 5.3: Diagonalization

Definitions

- Diagonal matrix
 - o A matrix where the only **non-zero entries** are on the **main diagonal**
 - o Everywhere else is 0's
- Similar matrices
 - o A matrix A is **similar** to a matrix D if: A = PDP⁻¹
 - P is an invertible matrix
 - A & D have the same eigenvalues and determinant
 - O IMPORTANT NOTE:
 - If two matrices are similar (same characteristic polynomial), then they have the **same eigenvalues**
 - CONVERSE IS NOT TRUE:
 - If two matrices have the same eigenvalues, that does not necessarily mean they are similar to each other
- Diagonalization
 - o Splitting up a matrix A into a **diagonal** matrix D and an invertible matrix P
 - Useful to compute **A**^k for **large k**
- Algebraic multiplicity
 - The number of **repeats** for an eigenvalue
 - o $a_i = 2$: eigenvalue appears **twice**
- Geometric multiplicity
 - The number of **eigenvectors** for a given eigenvalue
 - O Dimension of Nul (A λl) for a specific λ
- Singular = Not Invertible
 - o Free variables
 - Linearly dependent columns
- Nonsingular = Invertible

- Diagonalization Formula
 - $\circ \quad \mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$
 - P: the set of all linearly independent eigenvectors
 - D: the corresponding **eigenvalues** (in order)

$$A = (ec{v}_1 \; ec{v_2} \; \ldots \; ec{v_n}) \left(egin{bmatrix} \lambda_1 & & & \ & \lambda_2 & & \ & & \ddots & \ & & & \lambda_n \end{bmatrix}
ight) (ec{v}_1 \; ec{v_2} \; \ldots \; ec{v_n})^{-1}$$

- Allows us to solve A^k for large k
 - $A^2 = PD(P^{-1}P)DP^{-1} => PD^2P^{-1}$
 - $A^k = PD^kP^{-1}$
- The Diagonalization Theorem (Theorem 5)
 - An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors
 - Dimension of A = Dimension of P
 - \circ A is diagonalizable if and only if there are **enough eigenvectors** to form a **basis of R**ⁿ
 - Eigenvector basis
- Steps to Diagonalize a Matrix
 - Step 1: find the eigenvalues
 - \blacksquare det(A λ I) = 0
 - Step 2: find linearly independent eigenvectors of A
 - $(A \lambda I)v = 0$
 - Solve the **null space**
 - Parametric vector form
 - If # of total eigenvectors ≠ # of columns in A, then A is not diagonalizable (Theorem 5)
 - Step 3: construct P from vectors in Step 2
 - $P = \{v_1 \ v_2 \ ... \ v_n\}$
 - Step 4: construct D from corresponding eigenvalues
- Theorem 6
 - \circ An $n \times n$ matrix with n distinct eigenvalues is diagonalizable
 - o Note:
 - It is <u>not</u> necessary for an $n \times n$ matrix to have n distinct eigenvalues in order to be diagonalizable

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- lacksquare $\begin{bmatrix} 0 & 1 \end{bmatrix}$: only 1 distinct eigenvalue but still has 2 eigenvectors
- Theorem 7: Matrices whose Eigenvalues are Not Distinct
 - \circ Geometric multiplicity of λ must be **less than or equal to** the algebraic multiplicity of λ
 - $\mathbf{g}_{i}(\lambda) \leq \mathbf{a}_{i}(\lambda)$
 - A matrix is diagonalizable if and only if the **sum** of the dimensions of the eigenspaces equals n (the number of columns)
 - Total geometric multiplicity == number of columns in matrix A
 - Characteristic polynomial of A **factors completely** into linear factors
 - Geometric multiplicity for each eigenvalue = algebraic multiplicity for each eigenvalue

- Diagonalizability and Invertibility have NO CORRELATION with each other
 - NEVER associate the word linearly independent, column space, null space, free variables, etc. with diagonalizable

Section 5.5: Complex Eigenvalues

Definitions

- Complex number: *a* + *bi*
 - \circ Any number of the form: a + bi
 - \circ $i = \sqrt{-1}$
- Complex eigenvalue: λ
 - \circ An eigenvalue that is a complex number: a + bi
 - Note: if b = 0, then λ is a **real eigenvalue**
- Complex eigenvector: x
 - An eigenvector subsisting of a complex eigenvalue
- Complex number space: Cⁿ
 - The space of all complex numbers
- C²
- A complex number space with **2 entries**
- At least one entry is a complex number
- Conjugate of a complex number
 - \circ The conjugate for (a + bi) is (a bi)
- Complex conjugate of a vector **x**
 - \circ \overline{x}
- Re x
 - The real parts of a complex vector x
 - o An entry **can** be 0
- Im x
 - The **imaginary** parts of a complex vector **x**
 - An entry **can** be 0
- Argument of $\lambda = a + bi$
 - The **angle** ϕ produced by a and b on their respective Re x and Im x axis

Remarks

- Finding complex eigenvalues and complex eigenvectors
 - Step 1: $det(A \lambda) = 0$
 - lacksquare Getting the eigenvalues: λ
 - If the **characteristic equation** produces **complex roots**, then those roots are the complex eigenvalues
 - Step 2: Solve $(A \lambda I)x = 0$ for x
 - Getting the eigenvectors: x
 - Will get something with the form:

$$\begin{bmatrix} -.3 + 6i & -.6 \\ .75 & .3 + .6i \end{bmatrix} \rightarrow \begin{bmatrix} .75 & .3 + .6i \\ 0 & 0 \end{bmatrix}$$

■ X:

$$egin{bmatrix} -2-4i \ 5 \end{bmatrix}$$

- Step 3: Find the other eigenvector
 - Find the **conjugate** of the other eigenvector:

$$\begin{bmatrix} -2+4i \ 5 \end{bmatrix}$$

- Re x & Im x
 - \circ \overline{x} : vector whose entries are the **complex conjugates** of the entries in x

$$\begin{bmatrix} 3-i\\i\\2 \end{bmatrix} \implies \begin{bmatrix} 3\\0\\2 \end{bmatrix} + i \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

$$Re \, x = \begin{bmatrix} 3\\0\\2 \end{bmatrix} \quad Im \, x = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

$$\bar{x} = \begin{bmatrix} 3+i\\-i\\2 \end{bmatrix}$$

- Properties of Complex Conjugate Matrices
 - Where
 - r: scalar
 - x: vector
 - B: matrix

$$\overline{rx} = \overline{r}\,\overline{x}$$

$$\overline{Bx} = \overline{B}\overline{x}$$

$$\overline{BC} = \overline{B}\overline{C}$$

- \circ $\overline{rB} = \overline{r} \, \overline{B}$
 - Basically, you can **find the conjugates first**, then multiply them together
- Complex Eigenvalues and Complex Eigenvectors Come in Pairs

$$v_1 = egin{bmatrix} -2-4i \ 5 \end{bmatrix} \quad v_2 = egin{bmatrix} -2+4i \ 5 \end{bmatrix} \ \circ \quad v_1 = \overline{v_2}$$

- - A transformation matrix that **rotates then scales**

FIGURE 3 A rotation followed by a scaling.

- Theorem 9
 - For A = real 2 x 2 matrix with ($\lambda = a bi$, where $b \neq 0$) and associated eigenvector \mathbf{v} in \mathbb{C}^2 :
 - $\blacksquare \quad A = PCP^{-1}$

•
$$P = \begin{bmatrix} Re \ v & Im \ v \end{bmatrix}$$

• $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} r\cos \theta & -r\sin \theta \\ r\sin \theta & r\cos \theta \end{bmatrix}$

- Why does this work?
 - A is 2 x 2 and has **two eigenvalues** (complex eigenvalues come in **pairs**)
 - C must be a 2 x 2 matrix as a result

Section 10.2: Google PageRank

Definitions

- Stochastic matrix
 - o A matrix whose individual columns have an **entry sum of 1**
 - o Always has at least one steady state
- Steady-state vectors
 - A probability vector **q** such that **Pq = q**
- Regular stochastic matrix
 - A stochastic matrix where for some power k, P^k contains entries all > 0
 - o Always has a unique steady state
- Dangling nodes
 - Any column that represents a web page that is a **dead end**
 - Usually is the form of an **elementary column**: $\{e_1, e_2, ..., e_n\}$

• If $\bf P$ is a stochastic matrix, then a steady-state vector for $\bf P$ is a probability vector $\bf q$ such that

$$Pq = q$$

- Notes about stochastic matrices
 - Every stochastic matrix **P** has a steady-state vector **q**
 - o 1 must be an **eigenvalue** of any stochastic matrix
 - A steady-state vector is a probability vector which is also an eigenvector of P associated with the eigenvalue 1
 - o Non-regular stochastic matrices can have multiple steady state vectors

Theorem 1

- If **P** is a **regular** $m \times m$ stochastic matrix with $m \ge 2$, then the following statements are true:
 - a. There is a stochastic matrix Π such that $\lim_{n \to \infty} P^n = \Pi$
 - b. Each column of Π is the same probability vector \mathbf{q}
 - i. Would look something like this:

$$\Pi = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

- c. For **any** initial probability vector x_0 , $\lim_{n\to\infty} P^n x_0 = q$
- d. The vector **q** is the **unique** probability vector which is an **eigenvector** of **P** associated with the eigenvalue 1
- e. The eigenvalues of **P** satisfy $|\lambda| \le 1$
- PageRank
 - Adjustment 1:

$$egin{bmatrix} 1/n \ 1/n \ & \cdots \end{bmatrix}$$

- Replace all **dangling node** columns with $\lfloor 1/n \rfloor$ where n is the number of columns/rows
- $P_* = P$ but with all dangling nodes replaced with the adjustment
- Adjustment 2:

$$\mathbf{K} = \begin{bmatrix} 1/n \\ 1/n \\ \dots \\ 1/n \end{bmatrix}$$

Google Matrix Formula:

$$G = 0.85P_* + 0.15K$$

Section 6.1: Inner Product, Length, and Orthogonality

Definitions

- Inner product (dot product)
 - If u and v are vectors in \mathbb{R}^n , then the **inner (dot) product** of u and v is:
 - \blacksquare $u^{\mathsf{T}}v$ or:
 - $\blacksquare u \cdot v$

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

• Vector length: ||v||

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

- Unit vector
 - o A vector whose length is 1
- Vector normalization
 - o Dividing a nonzero vector by its length to make it a unit vector
- Distance between two vectors
 - $\circ \quad dist(u,v) = ||u-v||$
- Orthogonal vectors
 - Two vectors are orthogonal if their **dot product equals 0**
- Orthogonal complements
 - o A set of vectors that are all orthogonal to a subspace W
 - Representation as a line or plane depends on the null space of W
- What does it mean for a subspace to be in Rⁿ?
 - Subspace (contains zero vector and is closed under addition and multiplication) has **n entries** for each vector in it (dimension n)
 - Note: R¹ means that the vectors have one entry
 - Span of just [1]

- Dot Product and Cross Product are Different
 - $\circ \quad \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u} \quad {}^{T}\boldsymbol{v}$
 - o Dot product gives you a **number**
 - o Cross product gives you a vector
- Theorem 1: Dot Product Properties
 - Where
 - \blacksquare u, v, and w are vectors in \mathbb{R}^n
 - c is a scalar in *R*
 - a. $u \cdot v = v \cdot u$
 - i. Symmetry

- b. $(u + v) \cdot w = u \cdot w + v \cdot w$
 - i. Linearity
- c. $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$
 - i. Scalars
 - ii. Easy method: just find the dot product of the two vectors first, then multiply by the scalar
- d. $u \cdot u \ge 0$
 - i. Positivity
 - ii. $u \cdot u = 0$ if and only if u = 0

• Vector Length Properties

- Vector length is always positive
- $\circ ||cv|| = |c|||v||$
- $||cv||^2 = c^2 ||v||^2$

• Normalizing a Vector

- $\circ \quad v(\frac{1}{||v||}) = u$
- o u: a unit vector
- \circ u is in the same direction as v, but u has different magnitude than v

• Finding the Distance between Two Vectors

- Step 1: subtract the two vectors
 - **■** *u v*
- Step 2: find the **length** of the resultant vector
 - ||u-v||

• Rudimentary Notes about Orthogonality

- Two vectors are orthogonal = two vectors are **perpendicular to each other**
- ||u-v|| = ||u-(-v)||
- $\circ \quad u \cdot v = 0$
- \circ Zero vector is orthogonal to **every vector** in \mathbb{R}^n

• Theorem 2: The Pythagorean Theorem

• Two vectors are orthogonal if and only if $||u + v||^2 = ||u||^2 + ||v||^2$

• Rudimentary Notes about Orthogonal Complements

• What is an orthogonal complement?

■ It is a **set of vectors** where each vector is orthogonal to a **subspace W**

Orthogonal Complement of W = W¹

- A vector \mathbf{x} is in \mathbf{W}^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that **spans** \mathbf{W}
 - Must calculate **every single dot product pair** to prove orthogonality
- W^{\perp} is a subspace of $\mathbb{R}^n \leftrightarrow W$ is also a subspace of \mathbb{R}^n
 - Both subspaces have **n entries**
 - They do not necessarily have the same dimension
 - $\circ \quad \dim(\text{Row } \mathbf{W}^{\perp}) = \mathbf{n} \dim(\text{Col } \mathbf{W})$
 - \circ Could be 2,2 or 1,3 where n = 4
- Theorem 3
 - Let A be an $m \times n$ matrix:
 - $(Row A)^{\perp} = Nul A$
 - The row space of the orthogonal complement of A is the **null space** of A
 - $(Col A)^{\perp} = Nul A^{T}$
 - The column space of the orthogonal complement of A is the **null space** of A **transpose**

Proof

$$egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \ \overline{x} = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} is orthogonal to matrix A \end{bmatrix}$$

- What is null space?
 - $\bullet \quad \mathbf{A}\mathbf{v} = \mathbf{0}$
 - Essentially taking the dot product of every row of A with the vector v and seeing that v is orthogonal to A
- Rank Theorem
 - o Row A
 - The space spanned by the rows of matrix A
 - Given by the **pivot rows of A**

- \blacksquare dim(Row A) = dim(Col A)
 - # of pivot columns = # of pivot rows
- \blacksquare Row A^T = Col A
- N = # of columns in a matrix
 - \blacksquare N = dim(Col A) + dim(Nul A)
 - \blacksquare N = dim(Row A) + dim(Nul A)

Section 6.2: Orthogonal Sets

Definitions

- Orthogonal set
 - A set of vectors $\{u_1, ..., u_p\}$ in \mathbb{R}^n where each pair of distinct vectors from the set is orthogonal
 - $\circ \quad u_i \cdot u_j = 0, u \neq j$
- Orthogonal basis
 - A basis for a subspace **W** that is also an orthogonal set
- Orthogonal projection
 - Essentially projecting a vector onto a line/plane to get its **orthogonal** complement
 - $\hat{y} = proj_L \ y = (\frac{y \cdot u}{u \cdot u})u$ L: subspace spanned by u
- Orthonormal set
 - o An orthogonal set where every vector is a unit vector
- Orthonormal basis
 - A basis for a subspace **W** that is also an orthonormal set
- Orthogonal matrix
 - A square matrix whose columns form an orthonormal set

- Theorem 4: Orthogonal Sets and Linear Independence
 - o If $S = \{u_1, ..., u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is **linearly independent** and is a basis for the subspace spanned by S
- All orthogonal sets are linearly independent sets
 - However, not all linearly independent sets are orthogonal
 - Remember to **omit the zero vector** for an orthogonal set
- Theorem 5: Finding the Weights for a Linear Combination of an Orthogonal Basis
 - Let $\{u_1, ..., u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n : For every y in W, the weights in the linear combination

$$y = c_1 u_1 + \ldots + c_n u_n$$

are given by:

$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j}$$
 (j = 1, ..., p)

- This method is better for finding the scalars than row reduction
 - **However**, this method is only applicable for **orthogonal bases**
- How to find an Orthogonal Projection

$$\hat{\mathbf{y}} = \operatorname{proj}_{L} \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$
$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

- **z**: the component of **y** orthogonal to **u**
- Geometric Representations of an Orthogonal Projection

 Orthogonal Projections can be written as a Linear Combination of a Vector's Components

- All orthonormal sets are orthogonal
 - o However, not all orthogonal sets are orthonormal
- Theorem 6: Transpose of a Matrix with Orthonormal Columns
 - o An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$

- The transpose of a matrix with orthonormal columns multiplied by the original matrix always results in the identity matrix
 - Does it need to be square? **NO!**
- Proof

$$U^T U = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \mathbf{u}_3^T \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{u}_1 & \mathbf{u}_1^T \mathbf{u}_2 & \mathbf{u}_1^T \mathbf{u}_3 \\ \mathbf{u}_2^T \mathbf{u}_1 & \mathbf{u}_2^T \mathbf{u}_2 & \mathbf{u}_2^T \mathbf{u}_3 \\ \mathbf{u}_3^T \mathbf{u}_1 & \mathbf{u}_3^T \mathbf{u}_2 & \mathbf{u}_3^T \mathbf{u}_3 \end{bmatrix}$$

- Main diagonal: all 1's
 - Remember, an orthonormal vector times itself is the square root of its length, which equals 1!!!
- Everywhere else: all **0's**
 - Remember, an orthonormal vector is also orthogonal, so two different vectors that are orthogonal to each other will have a product of 0
- A^TA where A is a matrix with orthogonal columns (DIFFERENT)
 - Produces a diagonal matrix with all entries equal to each vector's length squared
- Theorem 7: Properties of a Matrix with Orthonormal Columns
 - Let U be an $m \times n$ matrix with orthonormal columns, and let **x** and **y** be in \mathbb{R}^n :
 - ||Ux|| = ||x||
 - Linear mapping $x \to Ux$ preserves length
 - $\qquad (Ux) \cdot (Uy) = x \cdot y$
 - $(Ux) \cdot (Uy) = 0$ if and only if x and y are **orthogonal** to each other
 - Linear mapping $x \to Ux$ preserves orthogonality
- Difference between Orthogonal Matrix and a Matrix with Orthonormal Columns
 - Orthogonal matrix must be square!!!
- $U^{-1} = U^{T}$
 - The inverse of orthogonal matrices is its transpose
 - o Orthogonal matrices have **linearly independent** columns
- Determinant of an Orthogonal Matrix
 - o If A is an orthogonal matrix, then detA is equal to 1 or -1
 - o Converse is NOT TRUE
 - If the determinant of a square matrix = 1, then the matrix must be orthogonal. => **False**
 - $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Section 6.3: Orthogonal Projections

Definitions

- **ŷ**: orthogonal **projection** of **y** onto **W**
 - \circ $\hat{\mathbf{y}} = \text{proj}_{\mathbf{W}}\mathbf{y}$
- **z**: orthogonal **component** of **y** onto **W**

$$\circ$$
 $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$

- Best approximation
 - $\circ \quad ||y-\hat{y}|| < ||y-v||$
 - The vertical distance going straight up and down between a vector and its projection's space
 - Any distance between a vector and a subspace that is not perpendicular to the space is automatically not the shortest distance

Remarks

• Properties of an orthogonal projection onto **R**ⁿ

- 0
- Given a vector \mathbf{y} and a subspace \mathbf{W} in \mathbb{R}^n , there is a vector $\hat{\mathbf{y}}$ in \mathbf{W} such that:
 - $\hat{\mathbf{y}}$ is the **unique** vector in **W** for which $y \hat{y}$ is **orthogonal** to **W**
 - \bullet \hat{y} is the unique vector in **W** closest to y
- Key to finding **least-squares solutions** (6.5)
- Theorem 8: The Orthogonal Decomposition Theorem
 - Let **W** be a subspace of \mathbb{R}^n . Then each **y** in \mathbb{R}^n can be uniquely in the form

$$y = \widehat{y} + z$$

where

 $\hat{\mathbf{v}}$ is in \mathbf{W}

z is in W[⊥]

o If $\{u_1, ..., u_p\}$ is any **orthogonal basis** of **W**, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$

- We assume **W** is not the **zero subspace**
 - Otherwise, $\mathbf{W}^{\perp} = \mathbb{R}^n$
 - - Everything projected onto the zero subspace is just the zero vector
- Properties of Orthogonal Projections
 - o If y is in W = Span $\{u_1, ..., u_p\}$, then proj_wy = y
 - If y is already in the subspace, then projecting it onto the same subspace does not do anything
- Theorem 9: The Best Approximation Theorem
 - Let **W** be a subspace of \mathbb{R}^n , let **y** be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of **y** onto **W**. Then $\hat{\mathbf{y}}$ is the **closest point** in **W** to **y**.
 - $||y \hat{y}|| < ||y v||$ for all **v** in **W** distinct from $\hat{\mathbf{y}}$

FIGURE 4 The orthogonal projection of y onto W is the closest point in W to y.

- Theorem 10
 - o If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an **orthonormal basis** for a subspace **W** in \mathbb{R}^n , then $proj_W y = (y \cdot u_1)u_1 + (y \cdot u_2)u_2 + \dots + (y \cdot u_p)u_p$
 - o If $\mathbf{U} = [u_1 \ u_2 \ ... \ u_p]$, then $proj_W y = UU^T y$ for all \mathbf{y} in \mathbf{R}^n
 - Remember, if u_1 is **a unit vector**, then $u_1 \cdot u_1 = 1$
- Theorem 10 using Matrix with Orthonormal Columns vs. Orthogonal Matrix
 - If **U** is an $n \times p$ matrix with orthonormal columns and **W** is the column space of **U**,

 - $UU^Ty = proj_wy$ for all y in \mathbb{R}^n
 - If U is an n x n matrix with orthonormal columns, then U is an orthogonal matrix

- $UU^Ty = Iy = y$ for all y in \mathbb{R}^n
- See end of 6.2

Section 6.4: The Gram-Schmidt Process

Definitions

- Gram-Schmidt process
 - Algorithm for producing an **orthogonal/orthonormal** basis for any nonzero subspace of \$\mathbb{R}^n\$

Remarks

• Theorem 11: The Gram-Schmidt Process

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W. In addition

$$\operatorname{Span}\left\{\mathbf{v}_{1}, \dots, \mathbf{v}_{k}\right\} = \operatorname{Span}\left\{\mathbf{x}_{1}, \dots, \mathbf{x}_{k}\right\} \quad \text{for } 1 \leq k \leq p \tag{1}$$

- Remember: a basis is a set of linearly independent vectors that span a subspace W
 - # of vectors in a basis = # of pivot columns/rows
 - Gram-Schmidt requires a linearly independent basis (invertible/nonsingular)
- Any nonzero subspace **W** of \mathbb{R}^n has an orthogonal basis because an ordinary basis $\{x_1, ..., x_p\}$ is **always available**
- Orthonormal Bases

0

- Simply **normalize** all vectors in an orthogonal basis $\{v_1, \dots, v_p\}$
- Theorem 12: The QR Factorization
 - If A is an $m \times n$ matrix with **linearly independent columns**, then A can be factored as A = QR

 ${f Q}$: an $m \times n$ matrix whose columns form an **orthonormal basis** for Col A

 ${\bf R}$: an $n \times n$ upper triangular matrix with positive entries on its diagonal

- Process
 - 1. Use **Gram-Schmidt** to find **Q**
 - 2. If needed, **normalize** the orthogonal basis given by **Q**
 - 3. Solve $\mathbf{A} = \mathbf{Q}\mathbf{R}$ for \mathbf{R}

a.
$$R = Q^{T}A$$

o If the columns of A were linearly dependent, then R would not be invertible

Section 6.5: Least-Squares Problems

Definitions

- General least-squares problem
 - Find x that makes ||b Ax|| as small as possible
- Normal equations
 - $\circ \quad A^T A x = A^T b$
- Difference between \mathbf{x} and $\hat{\mathbf{x}}$
 - o x just refers to some general solution
 - \circ \hat{x} is the solution that solves the least-squares problem/normal equations
- Least-squares error
 - Distance from **b** to $A\hat{x}$ where \hat{x} is the least-squares solution to **b**
 - $\circ ||b A\hat{x}||$

Remarks

- What is the motivation for solving least-squares problems?
 - Finding a **close enough** solution to **Ax = b** when it is an **inconsistent system**
- If A is $m \times n$ and **b** is in \mathbb{R}^m , a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is an \hat{x} in \mathbb{R}^n such that

$$||b - A\hat{x}|| \le ||b - Ax||$$

for all x in \mathbb{R}^n

- If A is **already consistent**, then $||b A\hat{x}|| = 0$
- Solution of the General Least-Squares Problem
 - Use the Normal Equations!!!

Derivation

$$(Col\,A)^{\perp} = \left(Nul\,A
ight)^{T} \ (b-A\hat{x}) \in \left(Nul\,A
ight)^{T}$$

$$\implies A^T(b-A\hat{x})=0$$

$$lacksquare A^T A \hat{x} = A^T ec{b}$$

- Theorem 13
 - The set of least-squares solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A x = A^T b$
 - Possible to have more than one least-squares solution
 - Existence of a free variable ⇔ columns of A are linearly dependent
- Theorem 14
 - Let A be an $m \times n$ matrix. The following statements are **logically equivalent**
 - a. The equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a **unique** least-squares solution for each \mathbf{b} in \mathbb{R}^m
 - b. The columns of A are linearly independent
 - c. The matrix $A^{T}A$ is invertible
 - When these statements are true, the least-squares solution \hat{x} is given by:

$$\hat{x} = (A^T A)^{-1} A^T b$$

- Calculating the Least-Squares Error
 - $\circ ||b A\hat{x}||$
- Theorem 15: Finding the Least-Squares Solution using QR Factorization
 - Given an m x n matrix A with linearly independent columns, let A = QR be a QR factorization of A. Then, for each b in R^m, the equation Ax = b has a unique least-squares solution, given by

$$\hat{\mathbf{x}} = R^{-1}Q^Tb$$
$$R\hat{\mathbf{x}} = Q^Tb$$

- What if **b** is **orthogonal** to the columns of **A**? What can we say about the least-squares solution of Ax = b?
 - o If **b** is orthogonal to **A**, then the projection of **b** onto **A** is **0**

• A least-squares solution, \hat{x} , of $\mathbf{A}\mathbf{x} = \mathbf{b}$ satisfies $A\hat{x} = 0$

Section 6.6: Applications to Linear Models

Definitions

- Least-Squares Lines
 - $\circ \quad y = \beta_0 + \beta_1 x$
- Residual
 - o Difference between the actual y-value and the predicted y-value

Remarks

- What is a Least-Squares Line?
 - It is basically a line of best-fit for a set of data
 - Least-squares lines **minimize**:

the $sum\ of\ the\ squares$ of the residuals \Leftrightarrow the $least-squares\ solution$

- Objective:
 - Find β_0 and β_1 (coefficients) that create the least-squares line
 - o Procedure using Normal Equations:

$$X\boldsymbol{\beta} = \mathbf{y}$$
, where $X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$, $\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

■ Use the **normal equations** to solve

$$X^T X \boldsymbol{\beta} = X^T \mathbf{y}$$

- o Procedure using Mean-Deviation Form:
 - Find the **average** of all the **x-values**: \underline{x}
 - Calculate $x^* = x \underline{x}$ for each \boldsymbol{x}

$$X\boldsymbol{\beta} = \mathbf{y}$$
, where $X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$, $\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

- Do this but with the new \mathbf{x}^* values
- The General Linear Model
 - $\circ \quad y = X\beta + \epsilon$
 - Solve the **normal equations**:
 - $\blacksquare X^T X \beta = X^T y$
 - Example:

ex: Secund Order Polynomial

$$y = C_1 \times_2 + C_2 \times^2 +$$

• Multiple Regression

- o Occurs when there are **2 or more independent variables**
- Example:

