Exercise 4a

Question 1.

Find the principal value of:

(i)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(ii)
$$\sin^{-1}\left(\frac{1}{2}\right)$$

(iii)
$$\cos^{-1}\left(\frac{1}{2}\right)$$

(v)
$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

(vi)
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(vii)
$$\csc^{-1}(\sqrt{2})$$

Answer:

NOTE:

Trigonometric Table

	0°(0)	30° $\left(\frac{e}{\pi}\right)$	45° (π/4)	$60^{\circ}\left(\frac{\pi}{3}\right)$	$90^{\circ}\left(\frac{\pi}{2}\right)$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	undefined
cosec	undefined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Undefined
cot	undefined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

(i) Let
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = x$$

 $\Rightarrow \frac{\sqrt{3}}{2} = \sin x$ [We know which value of x when placed in sin gives us this answer]

$$x = \frac{\pi}{3}$$

(ii) Let
$$\sin^{-1}\left(\frac{1}{2}\right) = x$$

 $\Rightarrow \frac{1}{2} = \sin x$ [We know which value of x when put in this expression will give us this result]

$$\Rightarrow X = \frac{\pi}{6}$$

(iii) Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$

 $\Rightarrow \frac{1}{2} = \cos x$ [We know which value of x when put in this expression will give us this result]

$$\therefore X = \frac{\pi}{3}$$

(iv) Let
$$tan^{-1}(1) = x$$

 \Rightarrow 1 = tan x [We know which value of x when put in this expression will give us this result]

$$\therefore X = \frac{\pi}{4}$$

(v) Let
$$tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = x$$

 $\Rightarrow \frac{1}{\sqrt{3}} = \tan x$ [We know which value of x when put in this expression will give us this result]

$$x = \frac{\pi}{6}$$

(vi) Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = x$$

 $\Rightarrow \frac{2}{\sqrt{3}} = \sec x$ [We know which value of x when put in this expression will give us this result]

$$\therefore X = \frac{\pi}{6}$$

(vii) Let
$$cosec^{-1}(\sqrt{2}) = x$$

$$\Rightarrow \sqrt{2} = \csc x$$

[We know which value of x when put in this expression will give us this result]

$$x = \frac{\pi}{4}$$

Question 2.

Find the principal value of:

(i)
$$\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$

(ii)
$$\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$$

(iii)
$$\tan^{-1}\left(-\sqrt{3}\right)$$

(iv)
$$\sec^{-1}(-2)$$

(v)
$$\csc^{-1}\left(-\sqrt{2}\right)$$

(vi)
$$\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$$

Answer:

$$\underline{(i)}$$
 Let $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = x$

$$\Rightarrow -\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = x \left[\text{Formula: } \sin^{-1}(-x) = -\sin^{-1}x\right]$$

 $\Rightarrow \frac{1}{\sqrt{2}} = -\sin x$ [We know which value of x when put in this expression will give us this result]

$$\therefore x = -\ \frac{\pi}{4}$$

$$(ii)\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = \pi - \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 [Formula: $\cos^{-1}(-x) = \pi - \cos^{-1}x$]

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = x$$

 $\Rightarrow \left(\frac{\sqrt{3}}{2}\right) = \cos x$ [We know which value of x when put in this expression will give us this result]

$$x = \frac{\pi}{6}$$

Putting this value back in the equation

$$\pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

(iii) Let
$$tan^{-1}(-\sqrt{3}) = x$$

$$\Rightarrow$$
 $-\tan^{-1}(\sqrt{3}) = x$ [Formula: $\tan^{-1}(-x) = -\tan^{-1}(x)$]

 $\Rightarrow \sqrt{3} = -\tan x$ [We know which value of x when put in this expression will give us this result]

$$x = \frac{-\pi}{3}$$

$$\underline{\text{(iv)}} \sec^{-1}(-2) = \pi - \sec^{-1}(2) \dots \text{(i)}$$
 [Formula: $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$]

Let
$$\sec^{-1}(2) = x$$

 \Rightarrow 2 = sec x [We know which value of x when put in this expression will give us this result]

$$\therefore X = \frac{\pi}{3}$$

Putting the value in (i)

$$\pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

$$(\underline{v})$$
 Let $\operatorname{cosec}^{-1}(-\sqrt{2}) = x$

$$\Rightarrow$$
 - cosec⁻¹($\sqrt{2}$) = x [Formula: cosec⁻¹(-x) = -cosec⁻¹(x)]

$$\Rightarrow \sqrt{2} = -\csc x$$

$$x = -\frac{\pi}{4}$$

$$\underline{(vi)}\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right) = \pi - \cot^{-1}\left(\frac{1}{\sqrt{3}}\right)...(i)$$

Let
$$\cot^{-1}\left(\frac{1}{\sqrt{3}}\right) = x$$

 $\Rightarrow \frac{1}{\sqrt{3}} = \cot^{-1} x$ [We know which value of x when put in this expression will give us this result]

$$\Rightarrow X = \frac{\pi}{3}$$

Putting in (i)

$$\pi - \frac{\pi}{3}$$

$$=\frac{2\pi}{3}$$

Question 3.

Evaluate
$$\cos \left\{ \cos^{-1} \left(\frac{-\sqrt{3}}{2} \right) + \frac{\pi}{6} \right\}$$
.

Answer:

$$\cos\{\pi - \frac{\pi}{6} + \frac{\pi}{6}\}$$
 [Refer to question 2(ii)]

$$= \cos \{ \pi \}$$

$$=\cos\left(\frac{\pi}{2}+\frac{\pi}{2}\right)$$

Question 4.

Evaluate
$$\sin \left\{ \frac{\pi}{2} - \left(\frac{-\pi}{3} \right) \right\}$$

Answer:
$$\sin\left(\frac{\pi}{2} + \frac{\pi}{3}\right)$$

$$=\sin\left(\frac{5\pi}{6}\right)$$

$$=\sin\left(\pi-\frac{\pi}{6}\right)$$

$$=\sin\frac{\pi}{6}$$

$$=\frac{1}{2}$$