Symmetry 9

Abstract

Symmetry 9

1 Rhombi

Rhombus	Name	θ_1	θ_2	Area
$R_3(\frac{1}{2},1)$	a	$\alpha/2$	$2\alpha/2$	$\sin(\alpha) \approx 0.866$
$R_5(\frac{1}{2},2)$	b	$\beta/2$	$4\beta/2$	$\sin(2\beta) \approx 0.587$
$R_5(1,\frac{3}{2})$	c	$2\beta/2$	$3\beta/2$	$\sin(\beta) \approx 0.951$
$R_7(\frac{1}{2},3)$	d	$\gamma/2$	$6\gamma/2$	$\sin(3\gamma) \approx 0.433$
$R_7(1,\frac{5}{2})$	e	$2\gamma/2$	$5\gamma/2$	$\sin(\gamma) \approx 0.781$
$R_7(\frac{3}{2},2)$	f	$3\gamma/2$	$4\gamma/2$	$\sin(2\gamma) \approx 0.974$
$R_9(\frac{1}{2},4)$	g	$\delta/2$	$8\delta/2$	$\sin(4\delta) \approx 0.342$
$R_9(1, \frac{7}{2})$	h	$2\delta/2$	$7\delta/2$	$\sin(\delta) \approx 0.642$
$R_9(\frac{3}{2},3)$	a	$3\delta/2$	$6\delta/2$	$\sin(3\delta) \approx 0.866$
$R_9(2, \frac{5}{2})$	$oldsymbol{i}$	$4\delta/2$	$5\delta/2$	$\sin(2\delta) \approx 0.984$

Table 1: Rhombi for symmetries $\{3,5,7,9\}$ internal angles $\theta_1 < \theta_2$ $(\theta_1 + \theta_2 = \pi)$ and areas. $\alpha = 2\pi/3$, $\beta = 2\pi/5$, $\gamma = 2\pi/7$ and $\delta = 2\pi/9$ $(3\delta = \alpha)$.

Star	Name	Area	Polygon
$S_3(\frac{1}{2},1)$	-	6 a	6/2 hexagram
$S_3(1,1)$	\mathcal{A}	3a	Regular hexagon
$S_5(\frac{1}{2},4)$	-	5 b	10/4 decagram
$S_5(1,3)$	\mathcal{B}	5c	$ (5/2)_{\alpha} $ decagram
$S_5(2,2)$	\mathcal{C}	5(c + b)	Regular decagon
$S_7(\frac{1}{2},6)$	-	7 d	14/6 14-gram
$S_7(1,5)$	\mathcal{D}	7e	$ (7/4)_{\alpha} $ 14-gram
$S_7(2,4)$	\mathcal{E}	7(e+f)	$ (7/2)_{\alpha} $ 14-gram
$S_7(3,3)$	${\mathcal F}$	$7(\mathbf{e} + \mathbf{f} + \mathbf{d})$	Regular 14-gon
$S_9(\frac{1}{2},7)$	-	9 g	18/8 18-gram
$S_9(1,6)$	\mathcal{G}	9h	$ (9/6)_{\alpha} 18$ -gram
$S_9(2,5)$	\mathcal{H}	$9(\boldsymbol{h}+\boldsymbol{i})$	$ (9/4)_{\alpha} $ 18-gram
$S_9(3,4)$	\mathcal{I}	$9(\boldsymbol{h}+\boldsymbol{i}+\boldsymbol{a})$	$ (9/2)_{\alpha} $ 18-gram
$S_9(4,4)$	\mathcal{J}	$9(\boldsymbol{h} + \boldsymbol{i} + \boldsymbol{a} + \boldsymbol{g})$	Regular 18-gon

Table 2: Stars $\{A, B, ... J\}$ for symmetries $\{3, 5, 7, 9\}$.

1.1 Stars from rhombi

Figure 1: The symmetry 9 four rhombi $\{h, i, a, g\}$ produce the four stars $\{\mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}\}$ with areas 9h, 9(h+i), 9(h+i+a) and 9(h+i+a+g) respectively.

Figure 1 show nine copies of symmetry-9 rhombi $\{h, i, a, g\}$ to form four stars.

2 Hexagons

2.1 Hexagons from stars

Figure 2: Symmetry 9 stars $\{\mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}\}$ dissected to get the six hexagons $\{G, H, I, J, K, A\}$.

Figure 2 show the disposition of the symmetry 9 four stars. We denote the 18 vertices of stars $\{\mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}\}$ as $\{G_0, G_1, ..., G_{17}\}$, $\{H_0, H_1, ..., H_{17}\}$, $\{I_0, I_1, ..., I_{17}\}$ and $\{I_0, G_1, ..., I_{17}\}$ respectively. For simplification only some vertices are labeled in the figure. First we make coincident at vertice O all the vertices G_0, H_0, I_0, J_0 . With the center at O we rotate all stars to make coincidents G_{17} , H_{17} , I_{17} and J_{17} . The rotations also joined another different vertices.

First we add three new edges (in red) joining the stars \mathcal{J} and \mathcal{I} vertices: $\overline{J_3I_2}$, $\overline{J_5I_4}$ and $\overline{J_7I_6}$ dissecting the red region into four hexagons, two of them essentially different. The three consective angles of the two hexagons are shown: I (1,4,4) and K (3,4,2).

Then we add three new edges (in orange) joining the stars \mathcal{I} and \mathcal{H} vertices: $\overline{I_3H_2}$, $\overline{I_5H_4}$ and $\overline{I_7H_6}$ dissecting the orange region into four hexagons, two of them new. The three consective angles of the the two hexagons are show: **H** (1,5,3) and **A** (3,3,3).

Finally we add three more edges (in green) joining the stars \mathcal{H} and \mathcal{G} vertices: $\overline{H_3G_2}$, $\overline{H_5G_4}$ and $\overline{H_7G_6}$ dissecting the green region into four hexagons, two of them new. The three consective angles of the the two hexagons are show: **G** (1,6,2) and **J** (2,5,2).

2.2 Hexagons from rhombi

Figure 3: .

2.3 Hexagons angles

The three consecutive angles of the hexagons are of the form (a, b, c) where a + b + c = 9. Table 3

Hexagon	Name	$(\mathbf{a}, \mathbf{b}, \mathbf{c})$	Polygon
$H_3(1,1)$	A	(1, 1, 1)	Regular hexagon
$H_5(1,1)$	B	(1, 1, 3)	Sormeh Dan Girih tile
$H_5(1,2)$	C	(1, 2, 2)	Shesh Band Girih tite
$H_7(1,1)$	-	(1, 1, 5)	self-intersecting
$H_7(1,2)$	D	(1, 2, 4)	
$H_7(1,3)$	$oldsymbol{E}$	(1, 3, 3)	
$H_7(2,2)$	$oldsymbol{F}$	(2, 2, 3)	
$H_9(1,1)$	-	(1, 1, 7)	self-intersecting
$H_9(1,2)$	$oldsymbol{G}$	(1, 2, 6)	
$H_9(1,3)$	H	(1, 3, 5)	
$H_9(1,4)$	I	(1, 4, 4)	
$H_9(2,2)$	J	(2, 2, 5)	
$H_9(2,3)$	K	(2, 3, 4)	
$H_9(3,3)$	$m{A}$	(3, 3, 3)	symmetry 3 hexagon

Table 3: Hexagons of symmetries $\{3,5,7,9\}$ with angles factors $\mathbf{a} \leq \mathbf{b} \leq \mathbf{c}$.