Lab1 Report

Ye Feiyang

Yuan Xiaojie

July 17, 2012

Part1.

Part2. Time Domain Analysis and Fault Location Test

Procedure

PartA: Fault location measurement

- 1. Carry out one port calibration.
- 2. Change the VNA to time domain.
- 3. Set Velocity Factore to 0.85.
- 4. Add a tested cable to calibrated system. Connect Load to the cable, and observe the peak value in time domain by adding a marker.
- 5. Change the Load to Short, record the peak value.

PartB: Two Fault in transmission line

- 1. Attach an N-type coaxial cable to channel 1 of the VNA. Attach a "Tee" to the end of the cable. Attach a coaxial cable to each of the arms of the "Tee". Leave the ends of the coaxial cables unterminated.
- 2. Record the number of faults and the position of each fault.
- 3. Attach the arms of a second "Tee" between the ends of the two coaxial cables. Attach the other coaxial cable to the third arm od the second "Tee".

Measured Data

Number of faults

Network #1 = 2

Network #2 = 3

Network #3 = 3

Network #4-matched = ∞

Network #4-short = ∞

Fault location

Network	Fault #1	Fault #2	Fault #3	Fault #4	Fault #5	Fault #6	Fault #7	Fault 7
#1	0	1.15992 m	/	/	/	/	/	/
#2	0	$1.25022\mathrm{m}$	2.54823	/	/	/	/	/

Comparisons & Comments on the Results

What I Learned from This Lab