

Introdução à Circuitos Hidráulicos e Pneumáticos

Circuitos Hidráulicos e Pneumáticos (CHP)

Departamento de Engenharia de Controle e Automação Instituto de Ciência e Tecnologia – UNESP – Campus Sorocaba

Prof. Dr. Dhiego Fernandes Carvalho

dhiego.fernandes@unesp.br

Objetivos

- Compreender os princípios e leis físicas aplicadas à hidráulica e à pneumática.
- Compreender os princípios básicos de circuitos hidráulicos e pneumáticos.
- Ensinar quais são os componentes dos circuitos hidráulicos e pneumáticos.
- Demonstrar quais são os setores industriais que usam circuito hidraúlicos e peumáticos.
- Identificar os pontos fracos e fortes dos circuitos pneumáticos e hidraúlicos.
- Demonstrar como atua a hidráulica e pneumática no contexto da Quarta Revolução Industrial.

Índice

- Princípios e Leis Físicas
- Princípios Básicos dos Circuitos Pneumáticos
- Circuitos Pneumáticos na Indústria
- Princípios básicos dos Circuitos Hidráulicos
- Circuitos Hidráulicos na Indústria
- Circuitos Pneumáticos x Circuitos Hidráulicos
- CHP na Indústria 4.0
- Conclusões

Princípios e Leis Físicas

- Princípio de Pascal: Este princípio diz que uma mudança na pressão em um fluido incompressível é transmitida igualmente em todas as direções.
- Uma pequena força aplicada a um pistão pequeno pode ser convertida em uma força maior em um pistão maior.

$$\mathsf{P} = \frac{F}{A} \qquad \qquad \frac{F_1}{V_1} = \frac{F_2}{V_2}$$

Aplicações do Princípio de Pascal

Princípio de Bernoulli

 Descreve o comportamento de um fluido em movimento e relaciona a pressão, a velocidade e a altura de um fluido incompressível e em regime de escoamento estável.

$$P + \frac{1}{2\rho v^2} + \rho gh = constante$$

Onde:

- P é a pressão do fluido.
- ρ é a densidade do fluido.
- v é a velocidade do fluido.
- g é a aceleração devida à gravidade.
- h é a altura do fluido acima de um ponto de referência.

Aplicações do Princípio de Bernoulli

Lei de Newton da Viscosidade

 Descreve como os fluidos se comportam quando uma força é aplicada a eles. O óleo é comumente usado como fluido em sistemas hidraúlicos e a sua viscosidade tem um grande impacto no desempenho do sistema.

$$\tau = \mu * (d_u/d_y)$$

Onde:

- τ é a tensão de cisalhamento no fluido (a força que está fazendo o fluido fluir),
- μ é a viscosidade do fluido (uma medida da resistência do fluido ao fluxo),
- du/dy é o gradiente de velocidade do fluido (a taxa na qual a velocidade do fluido está mudando à medida que você se move através do fluido).

Lei de Boyle

 Ela diz que o produto da pressão e do volume de um gás mantido a uma temperatura constante é constante. Em outras palavras, se o volume de um gás aumenta, sua pressão diminui e vice-versa.

$$P_1 * V_1 = P_2 * V_2$$

Aplicações da Lei de Boyle

Lei de Charles

• Afirma que o volume de um gás aumenta com o aumento da temperatura se a pressão for mantida constante, e vice-versa.

$$\frac{V_i}{T_i} = \frac{V_f}{T_f}$$

Aplicações da Lei de Charles

A Lei de Gay-Lussac

 É uma das leis dos gases que descreve como a pressão de um gás ideal varia diretamente com a temperatura, se o volume permanecer constante.

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

onde:

- P1 é a pressão inicial do gás
- T1 é a temperatura inicial (em Kelvin)
- P2 é a pressão final do gás
- T2 é a temperatura final (em Kelvin)

Aplicações da Lei de Gay-Lussac

Príncipios e Leis Físicas

Resumindo as Leis de Boyle, Charles e Gay-Lussac

	Tipo de transformação	
LEI DE BOYLE	T ₀ = T Isotérmica, pressão e volume são inversamente proporcionais.	$P_1.V_1 = P_2.V_2$
LEI DE CHARLES	V ₀ = V Isovolumétrica, temperatura e pressão são diretamente proporcionais.	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$
LEI DE GAY-LUSSAC	P ₀ = P Isobárica, temperatura e volume são diretamente proporcionais.	$\frac{\mathrm{V_1}}{\mathrm{T_1}} = \frac{\mathrm{V_2}}{\mathrm{T_2}}$

$$\frac{P_1.V_1}{T_1} = \frac{P_2.V_2}{T_2} \rightarrow \frac{V_1}{T_1} = \frac{V_2}{T_2}, \text{ se P \'e constante.}$$

$$\frac{P_1.V_1}{T_1} = \frac{V_2}{T_2}, \text{ se P \'e constante.}$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}, \text{ se V \'e constante.}$$

Princípios e Leis Físicas

- No Sistema Internacional (SI) as unidades seriam as seguintes:
- Pressão (P): Pascal (Pa). A pressão também é frequentemente medida em atmosferas (atm), bar ou milímetros de mercúrio (mmHg).
- Volume (V): Metro cúbico (m³). O volume também é frequentemente medido em litros (L) em contextos não científicos.
- Temperatura (T): Kelvin (K). A temperatura também é frequentemente medida em graus Celsius (°C) ou graus Fahrenheit (°F).
- Força (F): Newton (N).
- Área (A): Metro quadrado (m²).
- P Densidade (ρ): Kilograma por metro cúbico (kg/m³).
- Velocidade (v): Metro por segundo (m/s).
- Aceleração devida à gravidade (g): Metro por segundo ao quadrado (m/s²).
- Altura (h): Metro (m).
- Tensão de cisalhamento (τ): A tensão de cisalhamento é uma medida de força por unidade de área.
- μ Viscosidade (μ): Pascal-segundo (Pa·s).

 Geração e Tratamento de Ar Comprimido: A primeira etapa em qualquer circuito pneumático é feito por meio de um compressor, que aspira o ar atmosférico, comprime e o armazena em um reservatório pressurizado.

 Distribuição do Ar Comprimido: Uma vez que o ar comprimido é gerado e tratado, ele é distribuído por todo o sistema.

 Controle de Fluxo e Pressão: válvulas direcionais controlam o caminho do fluxo de ar, válvulas de controle de fluxo ajustam a velocidade do ar e válvulas de pressão regulam a pressão do sistema.

 Conversão de Energia Pneumática em Mecânica: Isso é feito por meio de atuadores, que podem ser ou motores .Quando o ar comprimido é liberado dentro de um atuador, ele se expande e empurra um pistão, criando movimento.

Cilindros pneumáticos

Motores pneumáticos

Exaustão de Ar: Depois que o ar comprimido realizou seu trabalho, ele é liberado para a atmosfera. A liberação do ar usada é essencial para permitir o movimento inverso do pistão em um cilindro ou para parar um motor pneumático.

 Interpretação e Controle de Sinais: os controladores lógicos programáveis (CLPs) podem ser usados para interpretar sinais de sensores e comandar as válvulas para controlar precisamente o funcionamento do circuito.

Circuitos Pneumáticos na Indústria

- Os sistemas pneumáticos são relativamente simples em termos de design e instalação.
- Os componentes pneumáticos, como cilindros e válvulas, são geralmente mais acessíveis e fáceis de manter.
- Os sistemas pneumáticos são considerados seguros para uso em aplicações industriais.
- No geral, a pneumática é usada na indústria devido à sua simplicidade, confiabilidade, segurança e custobenefício.

Circuitos Pneumáticos na Indústria

• **Indústria automotiva:** Os circuitos pneumáticos desempenham um papel fundamental na indústria automotiva em várias aplicações.

Circuitos Pneumáticos na Indústria

• Indústria de embalagens: Na indústria de embalagens, os circuitos pneumáticos são amplamente utilizados em máquinas de embalagem para executar diversas funções.

Circuitos Pneumáticos na Indústria

 Indústria metalúrgica: A pneumática é utilizada na indústria metalúrgica para operação de máquinas, como prensas, dobradeiras e máquinas de corte de pequeno porte. Os circuitos pneumáticos são aplicados para acionar os cilindros que fornecem força e controle de movimento nessas máquinas.

Princípios básicos dos Circuitos Hidráulicos

- Os circuitos hidráulicos são sistemas que utilizam um fluido incompressível, geralmente óleo, para transmitir força e realizar trabalho.
- Os princípios básicos de um Circuito Hidráulico são parecidos com um Circuito Pneumático:
 - Geração e Armazenamento de fluído pressurizado
 - Distribuição do fluído pressurizado
 - Controle de fluxo e pressão
 - Conversão da Energia Hidráulica em Mecânica
 - Retorno do Fluído
 - Interpretação e controle de sinais (CLPs)

Princípios básicos dos Circuitos Hidráulicos

- Diferentemente dos sistemas pneumáticos, em um sistema hidráulico o fluido é retornado ao reservatório após ter realizado o trabalho.
- Devido ao fato de que o fluido é reutilizado, é importante manter sua qualidade. Isso é feito através de filtros.

Circuitos Hidráulicos na Indústria

 Indústria de Construção: Maquinário pesado usado na construção, como escavadeiras, pás carregadeiras e guindastes, geralmente usam sistemas hidráulicos para mover e controlar suas partes. A potência da hidráulica permite a essas máquinas mover materiais pesados e realizar tarefas de construção de grande escala.

Circuitos Hidráulicos na Indústria

 Indústria Aeroespacial: A hidráulica é usada na indústria aeroespacial para controlar os movimentos das aeronaves. Os sistemas hidráulicos são usados para operar os flaps, trens de pouso e outros sistemas de controle em aeronaves.

Circuitos Hidráulicos na Indústria Metalurgia e siderurgia: Os circuitos hidráulicos são amplamente utilizados na indústria de metalurgia e siderurgia, onde máquinas como prensas, laminadoras e forjas hidráulicas de grande porte

Circuitos Pneumáticos x Circuitos Hidráulicos

	Circuitos Hidráulicos	Circuitos Pneumáticos
Potência	Alta força e torque	Força e torque moderados
Velocidade	Varia, pode ser mais lenta	Geralmente mais rápido
Controle	Alta precisão e resposta	Precisão moderada, resposta mais lenta
Custo Inicial	Alto	Geralmente mais baixo
Manutenção	Normalmente mais frequente e cara	Geralmente menos frequente e mais barata
Segurança	Risco de vazamento de fluido, precisa de contenção	Ar comprimido pode causar sobrepressurização
Eficiência Energética	Menos eficiente do que pneumáticos	Mais eficiente do que hidráulicos
Resistência Ambiental	Susceptível à variação de temperatura	Resistente a variações de temperatura
Tamanho	Geralmente maior devido à necessidade de componentes robustos	Geralmente menor e mais leve

CHP na Indústria 4.0

 A Indústria 4.0 refere-se à quarta revolução industrial, que é caracterizada pelo uso avançado de tecnologias digitais, dados e automação, tem revolucionado muitos aspectos do design, operação e manutenção de circuitos hidráulicos e pneumáticos.

CHP na Indústria 4.0

- Internet das Coisas (IoT): permite a comunicação de dispositivos hidráulicos e pneumáticos. Por meio de sensores inteligentes e um sistema de comunicação, dados sobre pressão, fluxo, temperatura e podem ser coletados em tempo real.
- Inteligência Artificial (IA) e Machine Learning (ML): Os dados coletados dos sensores podem ser analisados usando algoritmos de IA e ML para identificar padrões, prever falhas e otimizar o desempenho do sistema.

CHP na Indústria 4.0

- Simulações e Modelagem Computacional: permite que os engenheiros testem diferentes configurações e identifiquem problemas potenciais antes de implementar o sistema na vida real, economizando tempo e recursos.
- Realidade Aumentada (RA) e Realidade Virtual (RV): Estas tecnologias estão sendo usadas para treinamento e manutenção. Por exemplo, um técnico pode usar um dispositivo de RA para visualizar instruções sobre como reparar ou manter um componente específico de um sistema hidráulico ou pneumático.

CHP na Indústria 4.0

- Automação e Robótica: A Indústria 4.0 trouxe níveis sem precedentes de automação e uso de robótica. Em muitos casos, os sistemas hidráulicos e pneumáticos são usados para alimentar atuadores em robôs e outras máquinas automatizadas.
- Integração de Sistemas: Na Indústria 4.0, circuitos hidráulicos e pneumáticos não operam isoladamente, mas são parte de um sistema integrado que pode incluir controle de automação, interfaces homem-máquina (IHMs) e outras tecnologias de automação.

Conclusões

- Foi ensinado os princípios e leis físicas aplicadas à hidráulica e à pneumática.
- Foi demonstrado os princípios básicos de circuitos hidráulicos e pneumáticos, assim como os seus componentes.
- Demonstrando-se quais são os setores industriais que mais usam CHP, apontando os pontos fortes e fracos de cada tecnologia.
- Foi explicado a atuação da hidráulica e pneumática no contexto da Quarta Revolução Industrial.

Exercícios

- Baixe o <u>Github</u> no seu computador, em seguida clone a <u>pasta do curso de CHP no Github</u> no seu computador.
- Baixe o software <u>Fluidsim</u>. Assista <u>este video no Youtube</u> de como fazer a sua instalação.
- Faça pequenas simulações pneumáticas usando o Fluidsim para se ambientar a ele.

DÚVIDAS?