Math 136 Homework 1

Alexandre Lipson

April 1, 2024

- 1. Write down a basis for the space of
 - (a) 3×3 symmetric matrices;
 - (b) $n \times n$ symmetric matrices;
 - (c) $n \times n$ antisymmetric matrices $A^T = -A$ matrices;
 - a) We note that a symmetric matrix is given by $A^T = A$. So, each entry a_{ij} must be equal to a_{ji} for $i, j \leq 3$.

Thus, we can construct a basis of six matrices that are symmetric about the diagonal,

$$\left\{\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}, \right\}.$$

b) Let M_{ij} be the matrix of all zeros with a 1 in position i, j.

Then, the basis for the space of $n \times n$ symmetric matrices is given by the set

$$\{M_{ij} + M_{ii}, i \geq j\}$$
.

We restrict the indices to $i \geq j$ such that we will not create any linearly dependent duplicates.

c) Using the same definition of M_{ij} as above, we consider that the middle diagonal the any antisymmetric matrix must be zero because, for zero only, 0 = -0. Thus, our basis can be defined as follows,

$$\{M_{ij} - M_{ji}, i > j\}$$
.

This time, we do not include the cases where i=j because our middle row must be zero.¹

2. Prove that trace(AB) = trace(BA).

First, we will consider how the diagonals of the matrix AB, $(AB)_{ii}$ are created.

With $A_{m \times n}$ and $B_{n \times m}$, the product AB will be a $m \times m$ square matrix. We will fix some i as the index of m and note that we take the dot product of the ith row of A and the ith column of B. We will iterate over n with the index j.

¹The trace of an antisymmetric matrix must be zero.

This gives,

$$\sum_{j=1}^{n} a_{ij}b_{ji} = (AB)_{ii}.$$

In order to obtain the trace of AB, we need to sum over the index i from 1 to n.

Thus,

trace(AB) =
$$\sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}b_{ji}$$
.

We then notice that BA produces an $n \times n$ matrix. We then see that,

trace(BA) =
$$\sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{m} b_{ij} a_{ji}$$
.

We can use the fact that we can rearrange sums (linearity of addition) and that multiplication is commutative to see that this is the same as

$$\sum_{j=1}^{m} \sum_{i=1}^{n} b_{ij} a_{ji}.$$

We can swap labels where i = j and j = i to make this the same as above.

So, the statement holds.