

In Last Lecture

❖Numpy 중요성

In Last Lecture

Day **04**

Pandas

CONTENTS

- A. What is Pandas?
- **B.** Pandas Data Structure
- C. Data processing in Pandas
- D. Data preprocessing

- ❖ An open-source library that is built on top of NumPy library
- ❖ One of the most popular Python libraries for data science
 - Data read, data cleaning, data transforming, and data analysis

❖ Pandas features

❖ Why Pandas?

❖ Pandas Application areas

- ❖ Jupyter Notebook을 실행
- ❖ 명령 프롬프트(CMD)를 실행하고 다음 명령어를 입력
 - pip install pandas
- ❖ 다른 라이브러리 또한 설치해야 함
 - Numpy
- ❖ pandas 라이브러리 버전 확인

```
import pandas #Importing pandas library print(pandas.__version__) #Printing pandas library version
```


- ❖ Pandas의 두 가지 주요 구성 요소는 Series와 DataFrame이다
- Series
 - A column
- ❖ Data frame
 - Series 컬렉션으로 구성된 다차원 테이블

Series			Series			DataFrame		
	apples			oranges			apples	oranges
0	3		0	0		0	3	0
1	2	+	1	3	=	1	2	3
2	0		2	7		2	0	7
3	1		3	2		3	1	2

Series

- 레이블이 지정된 일차원 배열
- Syntax
 - pandas.Series(data, index, dtype, copy)
 - data
 - Input data in the form of ndarray, list, dict or scalar value
 - index
 - Index of the column
 - dtype
 - Data type
 - copy
 - Copy data

Series

■ Numpy를 이용한 Series 만드는 방법

```
import pandas as pd
import numpy as np

data = np.array(['a','b','c','d'])
series = pd.Series(data, index=[100,101,102,103])

print(series)
```

```
100 a
101 b
102 c
103 d
dtype: object
```

Series

■ dict를 이용한 Series 만드는 방법

```
import pandas as pd
import numpy as np
data = {100 : 'a', 101 : 'b', 102 : 'c', 103 : 'd'}
series = pd.Series(data)
print(series)
```

```
100 a
101 b
102 c
103 d
dtype: object
```

Series

■ Task: Create a series for the following column

indet	Oata
1	'A'
2	'B'
3	'C'
4	'D'
5	'E'

Series

■ Task: Create a series for the following column

```
import pandas as pd
import numpy as np

data = np.array(['A','B','C','D', 'E'])
series = pd.Series(data, index=[1,2,3,4, 5])

print(series)
```

```
1 A
2 B
3 C
4 D
5 E
dtype: object
```

❖ Data frame

■ 행과 열로 구성된 다차원 테이블

❖ Data frame

- Syntax
 - pandas.DataFrame(data, index, columns, dtype, copy)
 - data
 - Input data in the form of series, ndarray, list, dict or scalar value
 - index
 - Index of the data frame
 - columns
 - Name/label of columns
 - dtype
 - Data type
 - copy
 - Copy data

❖ Data frame

■ List를 이용한 data frame 만드는 방법

```
import pandas as pd

data = [['Tim',35],['Sonya',30],['Sunny',34]]

df = pd.DataFrame(data,columns=['Name','Age'],dtype=float)

print(df)
```

Name Age 0 Tim 35.0 1 Sonya 30.0 2 Sunny 34.0

❖ Data frame

■ Dict of series를 이용한 data frame 만드는 방법

```
one two
a 1.0 1
b 2.0 2
c 3.0 3
d NaN 4
```

❖ Data frame

■ Dict of series를 사용하여 다음 테이블에 대한 data frame 만들어보기

	Artist	Genre	Listeners	Plays
0	Billie Holiday	Jazz	1,300,000	27,000,000
1	Jimi Hendrix	Rock	2,700,000	70,000,000
2	Miles Davis	Jazz	1,500,000	48,000,000
3	SIA	Pop	2,000,000	74,000,000

❖ Data frame

■ dict of series를 사용하여 다음 테이블에 대한 data frame 만들어보기

실습

❖ 앞선 예제의 코드를 실행해보고 이해해보자

- ❖ Pandas의 read_csv 함수를 이용하여 데이터 볼러오기
 - Save IMDB-Movie-Data.csv file in your local storage
 - index_col 속성
 - CSVs don't have indexes like our Data Frames, so all we need to do is just designate the index_col when reading
 - In our case, we select "Title" column as index

❖ head() 함수

- Print out a first five rows of your data frame
 - movies_df.head()
- We could also pass a number to head()
 - movies_df.head(10)

❖ tail() 함수

- Print out the last five rows
 - movies_df.tail()
- If you want to see the last two records, then pass a number
 - movies_df.tail(2)

info()

- Provides essential details about your dataset
- Features
 - Number of rows
 - Number of columns
 - Number of non-null values
 - Type of data in each column
 - How much memory the data frame is using

info()

movies_df.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 1000 entries, Guardians of the Galaxy to Nine Lives
Data columns (total 11 columns):
    Column
                        Non-Null Count Dtype
#
 0
    Rank
                        1000 non-null int64
    Genre
                        1000 non-null
                                      object
 1
    Description
                        1000 non-null
                                      object
    Director
                                      object
                        1000 non-null
                                      object
    Actors
                       1000 non-null
    Year
                        1000 non-null
                                        int64
    Runtime (Minutes) 1000 non-null
                                      int64
    Rating
                        1000 non-null
                                      float64
 8
    Votes
                        1000 non-null
                                       int64
    Revenue (Millions) 872 non-null
                                        float64
    Metascore
                        936 non-null
                                       float64
dtypes: float64(3), int64(4), object(4)
memory usage: 93.8+ KB
```

shape

- 행과 열의 크기
 - movies_df.shape
 - (1000, 11)
- Used frequently when cleaning and transforming data
 - 예를 들어 일부 기준에 따라 일부 행을 필터링한 다음 제거된 행 수를 빨리 알고 싶을 경우

describe()

- Returns descriptive and summary statistics about dataframe
 - describe function for continuous variables
 - movies_df.describe()

	Rank	Year	Runtime (Minutes)	Rating	Votes	Revenue (Millions)	Metascore
count	1000.000000	1000.000000	1000.000000	1000.000000	1.000000e+03	872.000000	936.000000
mean	500.500000	2012.783000	113.172000	6.723200	1.698083e+05	82.956376	58.985043
std	288.819436	3.205962	18.810908	0.945429	1.887626e+05	103.253540	17.194757
min	1.000000	2006.000000	66.000000	1.900000	6.100000e+01	0.000000	11.000000
25%	250.750000	2010.000000	100.000000	6.200000	3.630900e+04	13.270000	47.000000
50%	500.500000	2014.000000	111.000000	6.800000	1.107990e+05	47.985000	59.500000
75%	750.250000	2016.000000	123.000000	7.400000	2.399098e+05	113.715000	72.000000
max	1000.000000	2016.000000	191.000000	9.000000	1.791916e+06	936.630000	100.000000

1.count : 개수 2.mean : 평균 3.std : 표준편차

4.min, max : 최솟값, 최댓값

5.25%, 50%, 75% -> 4분위수 (25% -> 25%의 데이터들이 해당 값보다 낮다)

describe()

- We can also use describe() function for categorical variables
 - movies_df['Genre'].describe()

count 1000 unique 207

top Action, Adventure, Sci-Fi

freq 50

Name: Genre, dtype: object

- Features
 - count of rows
 - unique count of categories
 - top category
 - freq of top category

columns

- 데이터 셋의 열 이름을 반환
 - movies_df.columns

```
Index(['Rank', 'Genre', 'Description', 'Director', 'Actors', 'Year',
'Runtime (Minutes)', 'Rating', 'Votes', 'Revenue (Millions)',
'Metascore'],
dtype='object')c
```

■ columns를 통해 열 이름을 변경 할 수 있음

index

- 데이터 세트의 인덱스를 출력
 - movies_df.index

- rename()
 - dict을 통해 특정 또는 모든 열의 이름을 변경 할 수 있음

```
Index(['Rank', 'Genre', 'Description', 'Director', 'Actors', 'Year', 'Runtime', 'Rating', 'Votes', 'Revenue (Millions)', 'Metascore'], dtype='object')
```

- Task
 - Change Revenue (Millions) -> 'Revenue_millions'

- **❖** Data frame manipulation
 - Output the following table
 - Note: Title is index variable

	Genre	Rating
Title		
Guardians of the Galaxy	Action,Adventure,Sci-Fi	8.1
Prometheus	Adventure, Mystery, Sci-Fi	7.0
Split	Horror, Thriller	7.3
Sing	Animation,Comedy,Family	7.2
Suicide Squad	Action,Adventure,Fantasy	6.2

Source code

subset = movies_df[['Genre', 'Rating']]
subset.head()

- Output movies taken in 2012
 - movies_df[movies_df['Year'] == 2012].head(5)

	Rank	Genre	Description	Director	Actors	Year	Runtime	Rating	Votes	Revenue_millions	Metascore
Title											
Prometheus	2	Adventure,Mystery,Sci- Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2012	124	7.0	485820	126.46	65.0
The Avengers	77	Action, Sci-Fi	Earth's mightiest heroes must come together an	Joss Whedon	Robert Downey Jr., Chris Evans, Scarlett Johan	2012	143	8.1	1045588	623.28	69.0
The Dark Knight Rises	125	Action, Thriller	Eight years after the Joker's reign of anarchy	Christopher Nolan	Christian Bale, Tom Hardy, Anne Hathaway,Gary	2012	164	8.5	1222645	448.13	78.0
The Place Beyond the Pines	136	Crime, Drama, Thriller	A motorcycle stunt rider turns to robbing bank	Derek Cianfrance	Ryan Gosling, Bradley Cooper, Eva Mendes,Craig	2012	140	7.3	200090	21.38	68.0
Django Unchained	145	Drama,Western	With the help of a German bounty hunter , a fr	Quentin Tarantino	Jamie Foxx, Christoph Waltz, Leonardo DiCaprio	2012	165	8.4	1039115	162.80	81.0

- Output the movies that have a rating of 8.6
 - movies_df[movies_df['Rating'] >= 8.6].head(5)

	Rank	Genre	Description	Director	Actors	Year	Runtime	Rating	Votes	Revenue_millions	Metascore
Title											
Interstellar	37	Adventure,Drama,Sci-Fi	A team of explorers travel through a wormhole	Christopher Nolan	Matthew McConaughey, Anne Hathaway, Jessica Ch	2014	169	8.6	1047747	187.99	74.0
The Dark Knight	55	Action,Crime,Drama	When the menace known as the Joker wreaks havo	Christopher Nolan	Christian Bale, Heath Ledger, Aaron Eckhart,Mi	2008	152	9.0	1791916	533.32	82.0
Inception	81	Action,Adventure,Sci-Fi	A thief, who steals corporate secrets through	Christopher Nolan	Leonardo DiCaprio, Joseph Gordon- Levitt, Ellen	2010	148	8.8	1583625	292.57	74.0
Kimi no na wa	97	Animation,Drama,Fantasy	Two strangers find themselves linked in a biza	Makoto Shinkai	Ryûnosuke Kamiki, Mone Kamishiraishi, Ryô Nari	2016	106	8.6	34110	4.68	79.0
Dangal	118	Action,Biography,Drama	Former wrestler Mahavir Singh Phogat and his t	Nitesh Tiwari	Aamir Khan, Sakshi Tanwar, Fatima Sana Shaikh,	2016	161	8.8	48969	11.15	NaN

- Output movies, which was directed by Christopher Nolan OR Ridley Sco tt
 - Hint we can use OR (¦) operator

	Rank	Genre	Description	Director	Actors	Year	Runtime	Rating	Votes	Revenue_millions	Metascore
Title											
Prometheus	2	Adventure, Mystery, Sci- Fi	Following clues to the origin of mankind, a te	Ridley Scott	Noomi Rapace, Logan Marshall- Green, Michael Fa	2012	124	7.0	485820	126.46	65.0
Interstellar	37	Adventure,Drama,Sci- Fi	A team of explorers travel through a wormhole	Christopher Nolan	Matthew McConaughey, Anne Hathaway, Jessica Ch	2014	169	8.6	1047747	187.99	74.0
The Dark Knight	55	Action,Crime,Drama	When the menace known as the Joker wreaks havo	Christopher Nolan	Christian Bale, Heath Ledger, Aaron Eckhart,Mi	2008	152	9.0	1791916	533.32	82.0
The Prestige	65	Drama,Mystery,Sci-Fi	Two stage magicians engage in competitive one	Christopher Nolan	Christian Bale, Hugh Jackman, Scarlett Johanss	2006	130	8.5	913152	53.08	66.0
Inception	81	Action,Adventure,Sci- Fi	A thief, who steals corporate secrets through	Christopher Nolan	Leonardo DiCaprio, Joseph Gordon- Levitt, Ellen	2010	148	8.8	1583625	292.57	74.0

- sort_value() function for sorting by values
 - "by" argument that indicates the column name of data frame to be sorted
- Example of sort_value()
 - movies_df.sort_values(by='Year', ascending=False).head(5)

	Rank	Genre	Description	Director	Actors	Year	Runtime	Rating	Votes	Revenue_millions	Metascore
Title											
Nine Lives	1000	Comedy,Family,Fantasy	A stuffy businessman finds himself trapped ins	Barry Sonnenfeld	Kevin Spacey, Jennifer Garner, Robbie Amell,Ch	2016	87	5.3	12435	19.64	11.0
Free Fire	162	Action,Comedy,Crime	Set in Boston in 1978, a meeting in a deserted	Ben Wheatley	Sharlto Copley, Brie Larson, Armie Hammer, Cil	2016	90	7.0	6946	1.80	63.0
Tall Men	648	Fantasy, Horror, Thriller	A challenged man is stalked by tall phantoms i	Jonathan Holbrook	Dan Crisafulli, Kay Whitney, Richard Garcia, P	2016	133	3.2	173	NaN	57.0
The Huntsman: Winter's War	235	Action,Adventure,Drama	Eric and fellow warrior Sara, raised as member	Cedric Nicolas- Troyan	Chris Hemsworth, Jessica Chastain, Charlize Th	2016	114	6.1	66766	47.95	35.0
Popstar: Never Stop Never Stopping	654	Comedy, Music	When it becomes clear that his solo album is a	Akiva Schaffer	Andy Samberg, Jorna Taccone,Akiva Schaffer, Sa	2016	87	6.7	30875	9.39	68.0

실습

❖ 앞선 예제의 코드를 실행해보고 이해해보자

- **❖** Data frame manipulation
 - loc[] is used to select rows and columns by Names/Labels
 locate

• iloc[] is used to select rows and columns by Integer Index/Position.
zero based index position.

- ❖ loc[] and iloc[] examples
 - Let's create the following DataFrame

```
# Pandas.DataFrame.iloc[] usage
import pandas as pd
technologies = {
  'Courses':["Spark","PySpark","Hadoop","Python","pandas"],
  'Fee':[20000,25000,26000,22000,24000],
  'Duration':['30day','40days','35days','40days','60days'],
  'Discount':[1000,2300,1200,2500,2000]
index labels=['r1','r2','r3','r4','r5']
df = pd.DataFrame(technologies,index=index labels)
print(df)
```

- loc[] and iloc[] examples
 - Let's create the following DataFrame

```
# Outputs:

# r1 Spark 20000 30day 1000

# r2 PySpark 25000 40days 2300

# r3 Hadoop 26000 35days 1200

# r4 Python 22000 40days 2500

# r5 pandas 24000 60days 2000
```

- ❖ loc[] and iloc[] examples
 - Select Single Value Using loc[] vs iloc[]

```
# Select Single Row by Index Label
print(df.loc['r2']) 지정한 하나의 행 출력 (r2)

# Select Single Row by Index
print(df.iloc[1]) 지정한 하나의 행 출력 (1번째 인덱스)
```

```
# Outputs:
# Courses PySpark
# Fee 25000
# Duration 40days
# Discount 2300
# Name: r2, dtype: object
```

- loc[] and iloc[] examples
 - In order to select column by label and Index use below

```
# Select Single Column by label print(df.loc[:, "Courses"]) Courses 열의 전체 행 출력 (인덱스와 함께)
# Select Single Column by Index print(df.iloc[:, 0]) 이번째 열의 전체 행 출력 (인덱스와 함께)
```

```
# Outputs:
# Courses
# r1 Spark
# r2 PySpark
# r3 Hadoop
# r4 Python
# r5 pandas
```

❖ loc[] and iloc[] examples

■ To select multiple rows and columns, use the labels or integer index as a list to loc[] and iloc[] attributes

```
# Select Multiple Rows by Label print(df.loc[['r2','r3']]) 지정한 행 출력 (r2, r3)

# Select Multiple Rows by Index print(df.iloc[[1,2]]) 지정한 행 출력 (1, 2번째 인덱스)
```

```
# Outputs:
# Courses Fee Duration Discount
# r2 PySpark 25000 40days 2300
# r3 Hadoop 26000 35days 1200
```

- ❖ loc[] and iloc[] examples
 - Similarly to select multiple columns from pandas DataFrame

```
# Select Multiple Columns by labels
print(df.loc[:, ["Courses", "Fee", "Discount"]])
Courses, Fee, Discount 열의 전체 행 출력 (인덱스와 함께)
# Select Multiple Columns by Index
print(df.iloc[:, [0,1,3]]) 0, 1, 3번째 열의 전체 행 출력 (인덱스와 함께)
```

```
# Outputs:
# Courses Fee Discount
# r1 Spark 20000 1000
# r2 PySpark 25000 2300
# r3 Hadoop 26000 1200
# r4 Python 22000 2500
# r5 pandas 24000 2000
```

❖ loc[] and iloc[] examples

• By using loc[] and iloc[], you can also select rows and columns by r ange

```
# Select Rows Between two Index Labels
# Includes both r1 and r4 rows
print(df.loc['r1':'r4']) 지정한 행 출력 (r1부터 r4)

# Select Rows Between two Indexs
# Includes Index 0 & Execludes 4
print(df.iloc[0:4]) 지정한 행 출력 (0번째 인덱스부터 세번째 인덱스 까지)
```

```
# Outputs:
# Courses Fee Duration Discount
# r1 Spark 20000 30day 1000
# r2 PySpark 25000 40days 2300
# r3 Hadoop 26000 35days 1200
# r4 Python 22000 40days 2500
```

- ❖ loc[] and iloc[] examples
 - Selects all columns between Fee and Discount column labels

```
# Select Columns between two Labels
# Includes both 'Fee' and 'Discount' columns
print(df.loc[:,'Fee':'Discount']) Fee 열부터 Discount 열까지 전체 행 출력 (인덱스와 함께)
# Select Columns between two Indexes
# Includes Index 1 & Execludes 4
print(df.iloc[:,1:4]) 1번째 열부터 3번째 열까지 전체 행 출력 (인덱스와 함께)
```

```
# Outputs:
# Fee Duration Discount
# r1 20000 30day 1000
# r2 25000 40days 2300
# r3 26000 35days 1200
# r4 22000 40days 2500
# r5 24000 60days 2000
```

- loc[] and iloc[] examples
 - Selects rows or columns by steps

```
# Select Alternate rows By indeces
print(df.loc['r1':'r4':2]) 지정한 행 출력 (r1부터 r4, step : 2)

# Select Alternate rows By Index
print(df.iloc[0:4:2]) 지정한 행 출력 (0번째 인덱스부터 세번째 인덱스 까지, step : 2)
```

```
# Outputs:
# Courses Fee Duration Discount
# r1 Spark 20000 30day 1000
# r3 Hadoop 26000 35days 1200
```

- ❖ loc[] and iloc[] examples
 - Selects rows or columns by steps

```
# Select Alternate Columns between two Labels print(df.loc[:,'Fee':'Discount':2]) Fee 열부터 Discount 열까지 전체 행 출력 (인덱스와 함께, step: 2) # Select Alternate Columns between two Indexes print(df.iloc[:,1:4:2]) 1번째 열부터 3번째 열까지 전체 행 출력 (인덱스와 함께, step: 2)
```

```
# Output:
# Fee Discount
#r1 20000 1000
#r2 25000 2300
#r3 26000 1200
#r4 22000 2500
#r5 24000 2000
```

실습

❖ 앞선 예제의 코드를 실행해보고 이해해보자

Homework for Lecture 4

❖ Task 1

- Read usedcars.csv
- 2. Show summary using head(), tale(), info() and describe()
- 3. Change name of columns
- 4. Perform at least three loc and iloc data manipulation
- 5. Perform at least three conditional data manipulation
- Challenging task: Create a new column and add it to your dataframe

감사합니다