

Relatório de trabalho prático

Gestão de Auditorias

Yuri Serediuk Lemos № 19256 João Pedro Marques Figueiredo № 19337

Trabalho realizado sob a orientação de: Luís Ferreira

Linguagens de Programação II

Licenciatura em Engenharia de Sistemas Informáticos

Barcelos, 25 de Abril de 2020

Índice

Relatório de trabalho prático	1
Gestão de Auditorias	1
1. Introdução	5
1.1. Contextualização	5
1.2. Motivações e objetivos	6
2. Estado da arte	7
3. Implementação	8
3.1. Descrição	8
3.2. Solução	9
3.2.1. Diagrama	9
3.2.2. Criação de Classes	10
3.2.2.1. Classe Pessoa	10
3.2.2.2. Classe Funcionário	11
3.2.2.3. Classe Funcionários	12
3.2.2.4. Classe Equipamento	13
3.2.2.5. Classe Equipamentos	14
3.2.2.6. Classe Vulnerabilidade	15
3.2.2.7. Classe Vulnerabilidades	16
3.2.2.8. Classe Ocorrência	17
3.2.2.9. Classe Interface IMetodosGenericos	18
3.2.2.10. Classe Program	19
4. Conclusão	20
4.1. Lições aprendidas	20
4.2. Apreciação Final	20

Índice de Imagens

Figura 1 Diagrama de classes	9
Figura 2 Classe Pessoa	
Figura 3 Classe Funcionário	11
Figura 4 Classe Funcionários	12
Figura 5 Classe Equipamento	13
Figura 6 Classe Equipamentos	14
Figura 7 Classe Vulnerabilidade	15
Figura 8 Classe Vulnerabilidades	16
Figura 9 Classe Ocorrência	17
Figura 10 Classe Interface IMetodosGenericos	18
FIGURA 11 CLASSE PROGRAM	19

1. Introdução

Este projeto foi realizado tendo como objetivo a avaliação da compreensão dos alunos para a linguagem de programação orientada a objetos (POO). Nesta primeira parte do projeto desenvolvido mostra a capacidade de compreensão dos alunos dos termos básicos do paradigma desta linguagem.

1.1. Contextualização

O advento da tecnologia fez com que fossem necessários novos arranjos para a sociedade e para o poder público. Não raro, a lei não consegue acompanhar as mudanças velozes do mundo conectado, mas há anos que a demanda por leis mais protetivas aos dados pessoais do cidadão ganha espaço entre especialistas e entusiastas da tecnologia. Isto porque, o cidadão comum, por vezes, não é capaz de reconhecer os riscos e oportunidades criadas para a exploração de seus dados pessoais. Assim, muitas vezes abrem mão de informações pessoais importantes em troca de simples acesso a sites e aplicativos de telemóveis. Não apenas isto, mas toda a troca de dados realizada em estabelecimentos comerciais físicos e em registos quaisquer transações do tipo também deveriam constar no escopo de uma lei geral de proteção de dados. A União Europeia há alguns anos já gozava de tal proteção com a Diretiva 95/46 CE, a qual buscava regular a coleta, uso e tratamento de dados no território europeu. Porém, acompanhando as tendências de uso global, transferência e necessidade de apagamento ou prestação de contas sobre dados pessoais, um novo Regulamento foi elaborado a fim de expandir a proteção ao indivíduo. Sendo assim, após um período de dois anos, entrou em vigor o Regulamento Geral de Proteção de Dados europeu — GDPR. Com texto extenso e uma preocupação notável em abranger as mais diversas possibilidades de transação envolvendo dados, o GDPR sagrou-se um marco na proteção de dados e da proteção à privacidade do utilizador. Instituiu princípios sólidos e claros, a fim de não abrir margem para interpretações diversas. Assim, o documento cria no indivíduo a possibilidade de domínio sobre os próprios dados, reclamando a propriedade destes como algo pessoal e não comercial, pertencente às empresas ou amplamente explorado pelo Poder Público.

1.2. Motivações e objetivos

O propósito do trabalho foi montar de forma criativa, consoante ao RGPD um programa de fácil acessibilidade utilizando a linguagem C#, com isso pode-se então ter uma melhor perceção das falhas ao RGPD numa determinada empresa.

2. Estado da arte

O Regulamento Geral sobre a Proteção de Dados (RGPD), aprovado no Parlamento Europeu em abril de 2016, visa regular a proteção das pessoas singulares no que diz respeito ao tratamento de dados pessoais e à livre circulação desses dados, revogando assim a Diretiva 95/46/CE. Este Regulamento introduziu alterações significativas às regras mantidas em matérias de proteção de dados, impondo novas e rigorosas obrigações e severas coimas como punição ao seu no seu não cumprimento.

O RGPD proporcionou um período de transição de 2 anos para que as organizações implementassem um plano de transformação que proporcione o cumprimento de todos os requisitos necessários à aplicabilidade do RGPD, em 25 de maio de 2018. Em Portugal, a 8 de agosto de 2019, foi publicada a nova Lei nº 58/2019 que assegura a execução, na ordem jurídica nacional, do RGPD, e que revoga a anterior Lei nº 67/98.

O mundo virtual está em crescimento todos os dias, e a proteção dos dados é essencial para que a confidencialidade de uma companhia não seja comprometida. E para que os dados sejam resguardados de forma segura judicialmente, surgiu o *Data Protection Officer* (DPO) ou, em português, diretor de Proteção de Dados.

De acordo com a lei LGPD (Lei Geral de Proteção de Dados – 13.709/2018), a profissão entrará em vigor em agosto de 2020. O especialista será responsável pelo aconselhamento sobre as normas vigentes relativas à proteção de dados pessoais, o monitoramento do cumprimento do GDPR (*General Data Protection Regulation*) pela entidade a que está vinculado e a cooperação com as autoridades públicas supervisoras da norma.

3. Implementação

3.1. Descrição

As auditorias internas podem ser efetuadas por vários colaboradores. Cada auditoria deve ter em conta um código (ano/numero), quem foi o colaborador responsável, a data, quantidade de vulnerabilidade identificadas. Depois de inseridos os dados acerca das auditorias, quando terminar, a aplicação deverá mostrar:

- Uma relação das auditorias efetuadas, indicando o código e o colaborador responsável.
- Qual a auditoria onde foram detetadas mais e menos vulnerabilidades, indicando o seu código, data e quantidade de vulnerabilidades.

A aplicação deverá ter também uma estrutura de colaboradores, equipamentos, vulnerabilidades e um registo de ocorrência

3.2. Solução

3.2.1. Diagrama

Figura 1 Diagrama de classes

3.2.2. Criação de Classes

3.2.2.1. Classe Pessoa

Esta classe representa uma Pessoa, nesta classe contém:

- Nome
- Bilhete de identidade
- Contacto
- Morada
- Número Contribuinte

Figura 2 Classe Pessoa

3.2.2.2. Classe Funcionário

Esta classe representa um Funcionário, ela é uma classe abstrata e por isso não poderá ser criada instâncias a partir desta classe. Nesta classe contém os seguintes atributos:

- Cargo
- Data Admissão
- Estado
- Identificação do funcionário

```
| Copyright file="Program.cs" company="IPCA">
| Copyright (c) IPCA. All rights reserved.</copyright>
| Copyright (c) IPCA. All rights reserved.</copyright>
| Cauthor Yuri Lemosc/author>
| Cauthor Yuri Lemosc/author>
| Cauthor Job Enguertedoc/author>
| Cauthor Job Enguertedoc/au
```

Figura 3 Classe Funcionário

3.2.2.3. Classe Funcionários

Esta classe representa vários funcionários, nesta classe contém:

- Lista de funcionários
- Quantidade de funcionários

```
| Copyright file="Program.cs" company="IPCA">
| Copyright (c) IPCA. All rights reserved.c/copyright>
| Copyright (c) IPCA. All rights reserved.c/copyright>
| Cauthor>Yuri Lemosc/author>
| Cauthor>Jobo Figueiredoc/author>
| Cauthor>Jobo Figueiredoc/author>
| Cauthor>Jobo Figueiredoc/author>
| Catter A | A | 2020 c/Date>
| Cotton=Companies of CMc/desc>
| Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cotton=Cott
```

Figura 4 Classe Funcionários

3.2.2.4. Classe Equipamento

Esta classe representa um equipamento, nesta classe contém:

- Código
- Marca
- Modelo
- Data aquisição
- Estado
- Tipo de equipamento

```
// ccopyright file="Program.cs" company="TPCA">
// copyright (c) IPCA. All rights reserved./copyright>
// cauthor>loāo Figueiredoc/author>
using System;

Bnamespace Aparelhos
// // summary>
/// Esta Classe representa uma instancia de Equipamento
/// // summary>
prefereces
public class Equipamento
figueiredocido figue
```

Figura 5 Classe Equipamento

3.2.2.5. Classe Equipamentos

Esta classe representa vários equipamentos, nesta classe contém:

- Lista de equipamentos
- Quantidade de Equipamentos

Figura 6 Classe Equipamentos

3.2.2.6. Classe Vulnerabilidade

Esta classe representa uma vulnerabilidade, nesta classe contém:

- Código
- Descrição
- Nível de impacto

Figura 7 Classe Vulnerabilidade

3.2.2.7. Classe Vulnerabilidades

Esta classe representa uma lista de vulnerabilidades, nesta classe contém:

- Lista de vulnerabilidades
- Quantidade de vulnerabilidades

```
# // ccopyright file="Program.cs" company="IPCA">
// copyright (c) IPCA. All rights reserved.</copyright>
// cauthor>Yuri Lemos</author>
// cauthor>Yuri Lemos</author>
// cauthor>Obabo FigueIredox/author>
// cauthor>Obabo FigueI
```

Figura 8 Classe Vulnerabilidades

3.2.2.8. Classe Ocorrência

Esta classe representa uma ocorrência, nesta classe contém:

- Código da auditoria
- Código do equipamento
- Código da vulnerabilidade
- Estado

```
| Copyright file="Program.cs" company="TPCA">
| Copyright (c) IPCA. All rights reserved.c/copyright>
| CauthoryNurl Lemos </author>
| CauthoryNob Figueiredoc/author>
| CauthoryNob Figueiredoc/authory|
| CauthoryNob Figueiredoc/authoryNob Fi
```

Figura 9 Classe Ocorrência

3.2.2.9. Classe Interface IMetodosGenericos

Esta classe é uma interface contendo vários métodos abstratos, estes métodos são:

- Editar
- Procura
- Remove

Estes métodos podem ser utilizados por qualquer classe desde que esta interface seja chamada e que todos seus métodos inseridos na classe que está a implementá-lo.

Figura 10 Classe Interface IMetodosGenericos

3.2.2.10. Classe Program

Esta classe é onde executa o método principal para inicialização do programa, aqui podem ser criados as instâncias das classes e executar os métodos das mesmas.

```
// copyright (ile-"Program.cs" company="IPCA"s|
// Copyright (c) IPCA. All rights reserved.c/copyright>
// cauthoryOurl Lemosc/authory
// cauthoryOurld
// cauthoryO
```

Figura 11 Classe Program

4. Conclusão

4.1. Lições aprendidas

Os conhecimentos mais técnicos e teóricos sobre RGPD como algumas normas, legislações e como deve ser implementado ajudou muito a compreender e adquirir mais conhecimento sobre esta área que é a privacidade e proteção de dados pessoais. Isso ajudou muito a ter um olhar mais voltado ao mercado e á área de tecnologia com suas revoluções. Na esfera da prática, as habilidades e conhecimentos ao desenvolver o programa, revisando e implementando novos cálculos foram aperfeiçoadas.

4.2. Apreciação Final

A experiência propiciou a real prática das teorias vivenciadas em sala de aula, atribuindo mais gosto pelas disciplinas além de evoluir o raciocínio para adaptar propostas ao desenvolvimento.