Проект 12 «Разработка рекомендательной системы, основанной на анализе клиентских данных»

Наставник - Наталия Титова

Выполнила - Зыкова Мария

Постановка задачи

Набор данных взят с Kaggle соревнования и содержит около 3х миллионов заказов продуктов от более чем 200 000 пользователей магазина Instacart.

Цели проекта:

- Проанализировать данные о покупках и потребностях покупателей
- Выяснить скрытую связь между продуктами для улучшения перекрестных и дополнительных продаж.
- Выполнить сегментацию клиентов для целевого маркетинга
- Создать модель машинного обучения, чтобы предсказать повторные заказы для покупателей

Общий анализ данных

Общая информация

- 3'421'083 всего заказов
- 49'688 различных продуктов
- 206'209 уникальных клиентов

Три набора:

- prior заказы всех 206'209 уник. клиентов
- train 131'209 клиентов
- test остальные 75'000

Общая таблица

	order_id	product_id	add_to_cart_order	reordered	product_name	aisle_id	department_id	aisle	department	user_id	eval_set	order_number	order_dow	order_hour_of_day	days_since_prior_order
0	2	33120	1	1	Organic Egg Whites	86	16	eggs	dairy eggs	202279	prior	3	5	9	8.0
1	2	28985	2	1	Michigan Organic Kale	83	4	fresh vegetables	produce	202279	prior	3	5	9	8.0
2	2	9327	3	0	Garlic Powder	104	13	spices seasonings	pantry	202279	prior	3	5	9	8.0
3	2	45918	4	1	Coconut Butter	19	13	oils vinegars	pantry	202279	prior	3	5	9	8.0
4	2	30035	5	0	Natural Sweetener	17	13	baking ingredients	pantry	202279	prior	3	5	9	8.0

order_id	id заказа	user_id	id клиента	department	название отдела
product_id	id товара	eval_set	набор данных	order_number	порядковый номер заказа для этого пользователя
add_to_cart_order	порядок добавления товара	aisle_id	id продуктового прохода	order_dow	день недели, когда был размещен заказ
reordered	был ли перезаказан товар ранее	department _id	id отдела	order_hour_of_day	час дня, когда был размещен заказ
product_name	название продукта	aisle	название прохода	days_since_prior_order	количество дней с момента последнего заказа

Перейдем к рассмотрению данных более детально

на каждого покупателя приходится минимум 4 заказа, максимум 100. Большая часть клиентов заказывала 4 - 15 раз. Есть 1374 клиентов, сделавшие 100 заказов.

больше часть заказов была перезаказана клиентами. Можно сделать вывод, что пользователи больше склонны покупать те товары, что уже покупали

Рассмотрим информацию о времени заказов.

больше всего заказывают в день 0 и 1 - которые скорее всего являются субботой и воскресеньем. Но больше всего покупателей приходится на воскресенье

чаще всего люди заказывают с 8 до 18 и склонны заказывать чаще через неделю после предыдущего заказа(подтверждается пиками в 7, 14, 21 и 30 на графике справа)

оценим процентное соотношение с помощью графика ящика с усами

days_since_prior_order

Из приведенного выше графика мы видим, что 25% заказов осуществляют самое большее через 4 дня после их предыдущего заказа. Кроме того, 50% заказов размещаются в период от 4 до 15 дней после их предыдущего заказа.

Рассмотрим связь дня недели и часа дня.

Посмотрим сколько обычно товаров в корзине покупателей.

Чаще всего встречаются заказы в которых от 3 до 8 товаров

Рассмотрим информацию о продуктах

Какой товар люди кладут в корзину в первую очередь?

product_name	pct	count
Экстренная контрацепция	0.792453	42
Rehab Energy Холодный чай с апельсином	0.787879	52
Калифорнийское шампанское	0.777778	14
Ароматизированная водка, Персик	0.708333	 51
Каберне Совиньон, Коллекция НЗ, Horse Heaven Hills	0.7	14
Органический малиновый черный чай	0.692308	27

Назальный противозастойный ингалятор лекарственный	 0.688889	31
Детская смесь из соевого порошка	0.685714	24
Разливное саке	0.675	27
Детская лекарственная смесь	0.666667	14

А какова доля органических и неорганических товаров?

Доля органических продуктов мала, но их перезаказывают гораздо чаще

Рассмотрим график заказа на добавление в корзину и средний процент повторного заказа

Чем ниже заказ на добавление в корзину, тем выше процент повторного заказа. Это имеет смысл, поскольку мы обычно сначала покупаем то, что нам необходимо в повседневной жизни.

Какие проходы имеют самую большую долю повторных заказов среди всех

график показывает наполнение обычных и повторных заказов среди самых популярных проходов

Это фрукты и овощи, молоко, газированная вода,яйца и так далее

Вот 20 проходов с самым высоким коэффициентом повторного заказа в порядке убывания

а также и проходы с самым низким уровнем повторных заказов

это товары и продукты, в которых нет ежедневной потребности(например, свечи, декор для выпечки, маринад для мяса и тд) и те которые можно купить один раз на длительный срок(витамины, чистящие средства, средства ухода и тд)

Ассоциативные правила для анализа покупательской корзины

Анализ правил ассоциации используется, когда мы хотим найти связь между различными продуктами, чтобы эту информацию можно было использовать для принятия решения, какие продукты следует продавать или продвигать вместе.

Для этой цели я использовала **априорный алгоритм.** Он предполагает, что любое подмножество часто встречающегося набора элементов должно быть частым.

В результате были обнаружены 56 правил ассоциации среди 100 наиболее частых продуктов.

Все правила показали высокий уровень подъема(lift), которая показывает насколько вероятность покупки товара В увеличивается, когда покупают товар А. Мера Lift указывает на сильную связь между товарами.

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
35	(Limes)	(Large Lemon)	0.059984	0.065764	0.011860	0.197723	3.006544	0.007915	1.164480	0.709980
34	(Large Lemon)	(Limes)	0.065764	0.059984	0.011860	0.180345	3.006544	0.007915	1.146843	0.714372
52	(Organic Strawberries)	(Organic Raspberries)	0.112711	0.058325	0.014533	0.128940	2.210731	0.007959	1.081069	0.617230
53	(Organic Raspberries)	(Organic Strawberries)	0.058325	0.112711	0.014533	0.249174	2.210731	0.007959	1.181751	0.581582
37	(Organic Avocado)	(Large Lemon)	0.075348	0.065764	0.010538	0.139862	2.126728	0.005583	1.086147	0.572966
36	(Large Lemon)	(Organic Avocado)	0.065764	0.075348	0.010538	0.160244	2.126728	0.005583	1.101097	0.567088
47	(Organic Blueberries)	(Organic Strawberries)	0.042956	0.112711	0.010235	0.238274	2.114024	0.005394	1.164840	0.550621
46	(Organic Strawberries)	(Organic Blueberries)	0.112711	0.042956	0.010235	0.090809	2.114024	0.005394	1.052633	0.593909
49	(Organic Raspberries)	(Organic Hass Avocado)	0.058325	0.090339	0.010966	0.188018	2.081257	0.005697	1.120298	0.551699
48	(Organic Hass Avocado)	(Organic Raspberries)	0.090339	0.058325	0.010966	0.121389	2.081257	0.005697	1.071777	0.571115

Также ниже показаны 10 пар продуктов с наибольшим значением уверенности, которое означает вероятность что будут куплены оба товара.

Например, примерно в 40% случаев яблоко и банан покупались вместе чаще.

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
24	(Organic Fuji Apple)	(Banana)	0.037992	0.200938	0.014378	0.378441	1.883367	0.006744	1.285576	0.487559
15	(Honeycrisp Apple)	(Banana)	0.034078	0.200938	0.012122	0.355725	1.770317	0.005275	1.240249	0.450481
12	(Cucumber Kirby)	(Banana)	0.040789	0.200938	0.013432	0.329296	1.638788	0.005236	1.191377	0.406368
20	(Organic Avocado)	(Banana)	0.075348	0.200938	0.022745	0.301866	1.502282	0.007605	1.144568	0.361591
30	(Seedless Red Grapes)	(Banana)	0.035480	0.200938	0.010534	0.296906	1.477596	0.003405	1.136493	0.335115
5	(Organic Raspberries)	(Bag of Organic Bananas)	0.058325	0.161527	0.017294	0.296508	1.835662	0.007873	1.191874	0.483433
3	(Organic Hass Avocado)	(Bag of Organic Bananas)	0.090339	0.161527	0.026487	0.293199	1.815175	0.011895	1.186294	0.493688
32	(Strawberries)	(Banana)	0.061123	0.200938	0.017661	0.288936	1.437931	0.005379	1.123754	0.324384
16	(Large Lemon)	(Banana)	0.065764	0.200938	0.017603	0.267663	1.332062	0.004388	1.091111	0.266832
53	(Organic Raspberries)	(Organic Strawberries)	0.058325	0.112711	0.014533	0.249174	2.210731	0.007959	1.181751	0.581582

Сегментация клиентов

Сегментация клиентов — это процесс разделения клиентов на группы на основе общих характеристик, чтобы эффективно и адекватно продавать нужные товары каждой группе.

Выполнить сегментацию можно, используя данные о том, какие продукты покупают пользователи.

Поскольку существуют тысячи продуктов и тысячи покупателей, я использовала проходы, которые представляют собой категории продуктов, которых всего 134 шт. Это позволит сделать меньше нагрузку на вычисления и повысить качество результата.

Данные были нормализованы и представлены в нужном формате. Затем я применила анализ главных компонентов, чтобы уменьшить размерности, поскольку алгоритмы кластеризации не дают хороших результатов в более высоких измерениях.

Использован для разделения был метод KMeans.

Выбор оптимального К-кластеров при любом количестве основных компонент и кластеров был несколько неоднозначным, но остановилась я на 3х основных компонент.

для поиска кол-ва кластеров использованы были два метода - метод локтя и метод Калински

примерно от 4 до 6 кластеров можно посчитать подходящим

4 сегмента для такого количества клиентов скорее маловато, а 6 можно посчитать хорошим выбором.

1 кластер:

aisle	
yogurt	445994
fresh fruits	418122
chips pretzels	298425
packaged vegetables fruits	288741
packaged cheese	286403
fresh vegetables	264553
water seltzer sparkling water	263155
milk	260262
ice cream ice	208432
soft drinks	207250
dtype: int64	

2 кластер

aisle	
fresh fruits	1247037
fresh vegetables	500405
packaged vegetables fruits	464950
yogurt	419016
milk	249632
packaged cheese	227707
water seltzer sparkling water	164967
chips pretzels	157944
soy lactosefree	157199
bread	144071
dtype: int64	

3 кластер

aisle	
fresh vegetables	1455261
fresh fruits	1047416
packaged vegetables fruits	633380
yogurt	426568
packaged cheese	349453
milk	263492
soy lactosefree	216724
water seltzer sparkling water	203181
chips pretzels	201641
bread	196180
dtype: int64	

4 кластер

aisle water seltzer sparkling water fresh fruits soft drinks	126939 22149 19792	
chips pretzels	9872	
energy granola bars	9713	
packaged produce	9451	
yogurt	9242	
packaged vegetables fruits	8968	
tea	7897	
milk	7818	
dtype: int64		

5 кластер

aisle	
fresh fruits	266398
packaged produce	57714
packaged vegetables fruits	51234
fresh vegetables	40127
yogurt	26503
milk	23186
water seltzer sparkling water	15918
soy lactosefree	13724
packaged cheese	11799
frozen produce	10767
dtype: int64	

6 кластер

aisle	
fresh vegetables	1150365
fresh fruits	641066
packaged vegetables fruits	318040
yogurt	125020
fresh herbs	122802
packaged cheese	98579
soy lactosefree	87939
milk	86625
frozen produce	78345
water seltzer sparkling water	67373
dtvpe: int64	

Модель машинного обучения для прогнозирования повторных заказов продуктов

Для обучения я решила рассмотреть три распространенные модели машинного обучения - Logistic Regression, Random Forest и XGBoost.

Решается задача классификации, т.е. будет ли перезаказан товар ранее заказаный клиентом.

Чтобы построить модель, данные были подготовлены и извлечены дополнительные признаки такие как:

```
статус повторных заказов последней покупки каждого пользователя
количество каждого продукта
количество повторных заказов со стороны клиента
```

Набор для обучения был составлен из двух множеств данных представленных в датасете - prior и train.

prior содержит информацию о всех клиентах, train крайние покупки 131'209 клиентов. Объединив эти наборы я составила датасет для обучения, содержащий около 8 миллионов данных, который был затем разделен на обучающую и валидационную выборки. На валидационной выборке был подсчитан ассигасу, а уже после предсказание сделано на тестовом наборе.

	Logistic Regression	Random Forest	XGBoost
accuracy	0.9019	0.90547	0.9065
f1-score	0	0.17	0.22
AUC	0.5	0.548	0.563

Лучше всего показала себя модель XGBoost

Classificati	on report :			
	precision	recall	f1-score	support
0.0	0.91	0.99	0.95	2522522
1.0	0.60	0.14	0.22	274117
accuracy			0.91	2796639
macro avg	0.76	0.56	0.59	2796639
weighted avg	0.88	0.91	0.88	2796639

Итог:

	order_id	user_id	order_dow	order_hour_of_day	days_since_prior_order	product_id	reordered_count	reordered_sum	reordered_latest	aisle_id	department_id
3052321	2634088	11335	3	18	8.0	6873	1	0	0.0	83	4
5273294	3379345	104957	2	9	30.0	15923	1	0	0.0	67	20
6564246	1344587	174152	0	7	30.0	45692	1	0	0.0	107	19
7705447	2206969	196469	1	9	20.0	31205	1	0	0.0	26	7
6947171	1103780	57331	1	20	15.0	28599	1	0	0.0	130	14
1965286	1099888	79357	5	12	4.0	8277	9	8	0.0	24	4
4473121	256984	62140	0	20	8.0	42959	1	0	0.0	74	17
8158334	355337	70111	3	6	30.0	24341	1	0	0.0	31	7
6278263	1455864	170500	6	14	29.0	11097	1	0	0.0	30	6
4360443	692804	192171	0	11	7.0	47788	5	4	0.0	24	4

1000 rows × 11 columns