

Гамильтоновы циклы - цикл (замкнутый путь), который проходит через каждую вершину данного графа ровно по одному разу то есть простой цикл, в который входят все вершины графа.

Матрица смежности

	А	В	C	О
Α	0	7	0	7
В	0	O	7	0
С	1	0	0	1
D	1	7	O	0

$$P_{n+1}^{\prime} = BP_n$$

$$P_1 = A$$

$$P_n = \Phi(P_n')$$

$$P_{n+1}' = BP_n$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} = P_2' = P_2'$$

$$P_{n+1}' = BP_{n}$$

$$\begin{bmatrix} 0 & 0 & 0 & D \\ 0 & 0 & C & 0 \\ A & 0 & 0 & D \\ A & B & 0 & 0 \end{bmatrix} \begin{bmatrix} D & D & B & 0 \\ C & 0 & 0 & C \\ D & A + D & 0 & A \\ 0 & A & B & A \end{bmatrix} = \begin{bmatrix} 0 & AD & DB & BC + AD \\ CD & 0 & O & CA \\ AD & AD + DA & 0 & AD \\ AD + BC & AD & AB & 0 \end{bmatrix} = P_3^t$$

$$P_{3}^{'} = \begin{bmatrix} 0 & AD & DB & BC+AD \\ CD & 0 & 0 & CA \\ AD & AD+DA & 0 & AD \\ AD+BC & AD & AB & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & DB & BC \\ CD & 0 & 0 & CA \\ 0 & AD+DA & 0 & 0 \\ BC & 0 & AB & 0 \end{bmatrix} = P_{3}$$

	A	В	С	D
Α	0	0	DB	BC
В	CD	0	0	CA
С	0	AD+DA	O	0
D	ВС	0	AB	0