NOTE ON DUISTERMAAT-HECKMAN MEASURES OF NON-ARCHIMEDEAN METRICS

MINGCHEN XIA

This is an informal note. Please contact me at mingchen@imj-prg.fr for comments.

Contents

1.	Introduction]
2.	Preliminaries	1
3.	Okounkov test curves	2
4.	The Duistermaat–Heckman measure of a non-Archimedean metric	3
References		5

1. Introduction

In this note, we define the Duistermaat–Heckman measure of a non-Archimedean metric using the theory of partial Okounkov bodies developed in [Xia21; DX24]. The main result Theorem 4.3 states that the Duistermaat–Heckman measure is canonical in two important cases.

Please let me know if you can prove Theorem 4.3 unconditionally.

2. Preliminaries

sec:pre

In this section, we recall the theory of Hausdorff metrics on the set of convex bodies following [Sch14, Section 1.8]. Fix $n \in \mathbb{N}$. Recall that a convex body in \mathbb{R}^n is a non-empty compact convex subset of \mathbb{R}^n , which may have empty interior. Let \mathcal{K}_n denote the set of convex bodies in \mathbb{R}^n . We will fix the Lebesgue measure $d\lambda$ on \mathbb{R}^n , normalized so that the unit cube has volume 1.

Recall the definition of the Hausdorff metric between $K_1, K_2 \in \mathcal{K}_n$:

$$d_n(K_1, K_2) := \max \left\{ \sup_{x_1 \in K_1} \inf_{x_2 \in K_2} |x_1 - x_2|, \sup_{x_2 \in K_2} \inf_{x_1 \in K_1} |x_1 - x_2| \right\}.$$

We extend d_n to an extended metric on $\mathcal{K}_n \cup \{\emptyset\}$ by setting

$$d_n(K,\emptyset) = \infty$$

for all $K \in \mathcal{K}_n$.

Theorem 2.1. The metric space (\mathcal{K}_n, d_n) is complete.

thm:Bst

Theorem 2.2 (Blaschke selection theorem). Every bounded sequence in K_n has a convergent subsequence.

thm:contvol

Theorem 2.3. The Lebesgue volume vol : $\mathcal{K}_n \to \mathbb{R}_{\geq 0}$ is continuous.

isconvcond

Theorem 2.4. Let $K_i, K \in \mathcal{K}_n$ $(i \in \mathbb{N})$. Then $K_i \xrightarrow{d_n} K$ if and only if the following conditions hold (1) Each point $x \in K$ is the limit of a sequence $x_i \in K_i$.

Date: February 12, 2024.

(2) The limit of any convergent sequence $(x_{i_j})_{j\in\mathbb{N}}$ with $x_{i_j}\in K_{i_j}$ lies in K, where i_j is a subsequence of $1, 2, \ldots$

The proofs of all these results can be found in [Sch14, Section 1.8].

volcbimpeq

Lemma 2.5. Let $K_0, K_1 \in \mathcal{K}_n$. Assume that $K_0 \subseteq K_1$ and

$$\operatorname{vol} K_0 = \operatorname{vol} K_1 > 0.$$

Then $K_0 = K_1$.

Proof. In fact, if $K_1 \neq K_0$, then $K_1 \setminus K_0$ is a non-empty open subset of K_1 . As $\operatorname{vol} K_1 > 0$, $(K_1 \setminus K_0) \cap \operatorname{Int} K_1 \neq \emptyset$. Thus, $\operatorname{vol} K_1 > \operatorname{vol} K_0$, which is a contradiction.

3. Okounkov test curves

Let $\Delta \in \mathcal{K}^n$. Assume that $V = n! \operatorname{vol} \Delta > 0$.

def:Otc

Definition 3.1. An Okounkov test curve relative to Δ is an assignment $(\Delta_{\tau})_{\tau < \tau^{+}}$ $(\tau^{+} \in \mathbb{R})$ such that

- (1) Δ_{τ} is a decreasing assignment of convex bodies in \mathbb{R}^n for $\tau < \tau^+$;
- (2) Δ_{τ} converges to Δ as $\tau \to -\infty$ with respect to the Hausdorff metric;
- (3) Δ_{τ} is concave in the τ variable.

The energy of the Okounkov test curve is defined as

$$\mathbf{E}(\Delta_{\bullet}) := \tau^{+}V + V \int_{-\infty}^{\tau^{+}} \left(\frac{n!}{V} \operatorname{vol} \Delta_{\tau} - 1\right) d\tau \in [-\infty, \infty).$$

rop:Otccont

Proposition 3.2. Any Okounkov test curve $(\Delta_{\tau})_{\tau \leq \tau^+}$ relative to Δ is continuous for $\tau < \tau^+$.

This is proved in [Xia21] for finite energy curves, but the proof works in general as well.

def:tf

Definition 3.3. A test function on Δ is a function $F: \Delta \to [-\infty, \infty)$ such that

- (1) F is concave;
- (2) F is finite on Int Δ ;
- (3) F is usc.

The energy of the test function is defined by

(3.1)
$$\mathbf{E}(F) := n! \int_{\Delta} F \, \mathrm{d}\lambda \in [-\infty, \infty).$$

Let $\tau^+ = \sup_{\Delta} F$, then

EFlevelset}

(3.2)
$$\mathbf{E}(F) = \tau^+ V + V \int_{-\infty}^{\tau^+} \left(\frac{n!}{V} \operatorname{vol}\{F \ge \tau\} - 1 \right) d\tau.$$

Let Δ_{\bullet} be an Okounkov test curve relative to Δ . We define the *Legendre transform* of Δ_{\bullet} as

$$G[\Delta_{\bullet}]: \Delta \to [-\infty, \infty), \quad a \mapsto \sup \{\tau < \tau^+ : a \in \Delta_{\tau} \}.$$

Conversely, a test function F on Δ , set $\tau^+ = \sup_{\Delta} F$. We define the *inverse Legendre transform* of F as

$$\Delta[F]: (-\infty, \tau^+] \to \mathcal{K}_n, \quad \Delta[F]_{\tau} = \{F \ge \tau\}.$$

otestcurve

Theorem 3.4. The Legendre transform and inverse Legendre transform are inverse to each other, defining a bijection between the set of Okounkov test curves relative to Δ and test functions on Δ . Given any Okounkov test curve Δ_{\bullet} , we have

$$\mathbf{E}(\Delta_{\bullet}) = \mathbf{E}(G[\Delta_{\bullet}]).$$

The proof is essentially contained in [Xia21].

Definition 3.5. Let Δ_{\bullet} be an Okounkov test curve relative to Δ . We define the *Duistermaat*-Heckman measure $DH(\Delta_{\bullet})$ as

$$\mathrm{DH}(\Delta_{\bullet}) \coloneqq G[\Delta_{\bullet}]_*(\mathrm{d}\lambda).$$

It is a Radon measure on \mathbb{R} .

In other words, $\mathrm{DH}(\Delta_{\bullet})$ is the probability distribution of the random variable $G[\Delta_{\bullet}]$ on the measure space $(\Delta, d\lambda)$.

Lemma 3.6. Suppose that Δ^k is a decreasing sequence of finite energy Okounkov test curves relative to Δ with the same τ^+ . Assume that the pointwise Hausdorff limit Δ_{\bullet} is still a Okounkov test curve relative to Δ and has finite energy. Then $\mathrm{DH}(\Delta^k_{\bullet}) \rightharpoonup \mathrm{DH}(\Delta_{\bullet})$ as $k \to \infty$.

Proof. Observe that

$$G[\Delta^k_{ullet}] o G[\Delta_{ullet}]$$

pointwisely as $k \to \infty$. It follows from the dominated convergence theorem that $DH(\Delta^k_{\bullet}) \rightharpoonup DH(\Delta_{\bullet})$ as $k \to \infty$.

Observe that

{eq:massDH}

(3.3)
$$\int_{\mathbb{R}} \mathrm{DH}(\Delta_{\bullet}) = \mathrm{vol}\,\Delta.$$

More generally, we compute the characteristic function of $G[\Delta_{\bullet}]$ as follows: for any $t \in \mathbb{C}$,

{eq:char}

(3.4)
$$\int_{\Delta} e^{itG[\Delta_{\bullet}]} d\lambda = e^{it\tau^{+}} \operatorname{vol} \Delta - it \int_{-\infty}^{\tau^{+}} (\operatorname{vol} \Delta - \operatorname{vol} \Delta_{\tau}) e^{it\tau} d\tau.$$

In particular, the moments are given by

$$\int_{\mathbb{R}} x^m \mathrm{DH}(\Delta_{\bullet})(x) = \int_{\Delta} G[\Delta_{\bullet}]^m \, \mathrm{d}\lambda = (\tau^+)^m \, \mathrm{vol} \, \Delta - \int_{-\infty}^{\tau^+} m \tau^{m-1} (\mathrm{vol} \, \Delta - \mathrm{vol} \, \Delta_{\tau}) \, \mathrm{d}\tau.$$

4. The Duistermaat-Heckman measure of a non-Archimedean metric

Let X be an connected compact Kähler manifold of dimension n and θ be a closed real smooth (1,1)-form on X such that $PSH(X,\theta) \neq \emptyset$. We will define the Duistermaat-Heckman measure of elements in $PSH^{NA}(X,\theta)$ as studied in [DXZ23; X1a23]. We will follow the notations in [X1a0A].

4.1. Non-Archimedean metrics. Consider an element $\Gamma \in \mathrm{PSH}^{\mathrm{NA}}(X,\theta)$, recall that by definition, Γ is an inverse system $(\Gamma^{\theta+\omega})_{\omega}$ indexed by the directed set of Kähler forms on X ordered by reverse of the usual comparison. For each ω ,

$$\Gamma^{\theta+\omega} \colon (-\infty, \Gamma_{\max}) \to \mathrm{PSH}(X, \theta + \omega)$$

is a decreasing concave curve of \mathcal{I} -model potentials. The number $\Gamma_{max} \in \mathbb{R}$ is independent of the choice of ω . The transition map from the index ω to $\omega + \omega'$ sends $\Gamma^{\theta+\omega}$ to the following map

$$(-\infty, \Gamma_{\max}) \to \mathrm{PSH}(X, \theta + \omega + \omega'), \quad \tau \mapsto P_{\theta + \omega + \omega'} \left[\Gamma_{\tau}^{\theta + \omega}\right]_{\mathcal{I}}.$$

The volume of Γ is defined as the limit

$$\lim_{\omega} \left(\theta + \omega + dd^{c} \Gamma_{-\infty}^{\theta + \omega} \right)^{n}.$$

Here
$$\Gamma_{-\infty}^{\theta+\omega} = \sup_{\tau \leq \Gamma_{\max}}^* \Gamma_{\tau}^{\theta+\omega}$$
.

Here $\Gamma_{-\infty}^{\theta+\omega} = \sup_{\tau < \Gamma_{\text{max}}} \Gamma_{\tau}^{\theta+\omega}$. The subset $\text{PSH}^{\text{NA}}(X, \theta)_{>0}$ of $\text{PSH}^{\text{NA}}(X, \theta)$ consisting of elements with positive volume can be identified with the set of concave curves of \mathcal{I} -model potentials $(\Gamma_{\tau})_{\tau<\Gamma_{\max}}$ in $PSH(X,\theta)$ for some $\Gamma_{\max} \in \mathbb{R}$ such that the volume $\int_X (\theta + \mathrm{dd}^c \Gamma_{-\infty})^n > 0$.

4.2. The Duistermaat–Heckman measure. We fix a smooth flag Y_{\bullet} on X.

Now suppose that $\Gamma \in \mathrm{PSH^{NA}}(X,\theta)_{>0}$. We define the Okounkov test curve $(\Delta_{Y_{\bullet}}(\Gamma)_{\tau})_{\tau < \Gamma_{\max}}$ associated with Γ as follows: given $\tau < \Gamma_{\max}$, we set

$$\Delta_{Y_{\bullet}}(\Gamma)_{\tau} := \Delta_{Y_{\bullet}}(\theta + dd^{c}\Gamma_{\tau}).$$

The right-hand side is the partial Okounkov body studied in [DX24].

Proposition 4.1. Given $\Gamma \in \mathrm{PSH^{NA}}(X, \theta)_{>0}$, the curve $(\Delta_{Y_{\bullet}}(\Gamma)_{\tau})_{\tau < \Gamma_{\max}}$ is an Okounkov test curve relative to $\Delta_{Y_{\bullet}}(\theta + \mathrm{dd^c}\Gamma_{-\infty})$.

Proof. This is a simple consequence of the properties proved in [Xia23].

Definition 4.2. The *Duistermaat–Heckman measure* $DH(\Gamma)$ of $\Gamma \in PSH^{NA}(X, \theta)_{>0}$ is defined as the Duistermaat–Heckman measure of the Okounkov test curve $\Delta_{Y_{\bullet}}(\Gamma)$.

The energy of $\Gamma \in \mathrm{PSH^{NA}}(X, \theta)_{>0}$ is defined as in [DXZ23]:

$$\mathbf{E}(\Gamma) := \tau^+ V + \int_{-\infty}^{\tau^+} \left(\int_X \theta_{\Gamma_{\tau}}^n - V \right) d\tau \in [-\infty, \infty),$$

where V denotes the volume of the cohomology class $\{\theta\}$. From the volume formula of partial Okounkov bodies established in [DX24], we find that

$$\mathbf{E}(\Gamma) = \mathbf{E}\left(\Delta_{Y_{\bullet}}(\Gamma)\right).$$

Theorem 4.3. The Duistermaat–Heckman measure $DH(\Gamma)$ of $\Gamma \in PSH^{NA}(X, \theta)_{>0}$ is independent of the choice of the flag Y_{\bullet} in the following two cases:

- (1) Γ has finite energy;
- (2) X is projective and the cohomology class of θ is the first Chern class of a big line bundle.

Can one prove the same result in general?

Proof. Case 2 is proved using the same Boucksom-Chen type argument as in [Xia21].

In Case 1, assume further more that Γ is bounded ($\Gamma_{\tau} = V_{\theta}$ for small enough τ), we observe that the characteristic function of the random variable $G[\Delta_{Y_{\bullet}}(\Gamma)]$ as computed in (3.4) is independent of the choice of the flag and is entire. It is a classical result that in this case, the corresponding probability distribution is determined by the moments.

In general, Γ is the decreasing limit of the sequence $\Gamma \vee \Gamma^k$ as $k \to \infty$, where $\Gamma^k : (-\infty, \frac{k}{K \ln 23}) \to PSH(X, \theta)$ takes the constant value V_{θ} . It follows from the general continuity result proved in [DX24] that $\Delta_{Y_{\bullet}}(\Gamma)_{\tau}$ is the decreasing limit of $\Delta_{Y_{\bullet}}(\Gamma \vee \Gamma^k)_{\tau}$ for any $\tau < \Gamma_{\max}$. So $DH(\Gamma \vee \Gamma^k) \to DH(\Gamma)$ by Lemma 3.6. It follows that $DH(\Gamma)$ is independent of the choice of the flag.

thm:DHindep

REFERENCES 5

References

Tamás Darvas and Mingchen Xia. The trace operator of quasi-plurisubharmonic functions

		on compact Kähler manifolds (to appear). 2024.
DXZ23	[DXZ23]	Tamás Darvs, Mingchen Xia, and Kewei Zhang. A transcendental approach to non-
		Archimedean metrics of pseudoeffective classes. 2023. arXiv: 2302.02541 [math.AG].
Sch14	[Sch14]	R. Schneider. Convex bodies: the Brunn–Minkowski theory. 151. Cambridge university
		press, 2014.
Xia21	[Xia21]	M. Xia. Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean
		metrics. 2021. arXiv: 2112.04290 [math.AG].
XiaNA	[Xia23]	Mingchen Xia. Operations on transcendental non-Archimedean metrics. 2023. eprint:
		https://mingchenxia.github.io/home/Notes/OTNA.pdf.

Mingchen Xia, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Paris $Email\ address$, mingchen@imj-prg.fr

Homepage, http://mingchenxia.github.io/home/.

Xia23

[DX24]