PRESENTING,

MY PROFESSIONAL JOURNEY

SUMMARY OF CONTENTS

OUR MAIN
TOPICS TODAY

- Portfolio History 2020 –
- Portfolio History 2014 2019
- Academic Credentials
- Work Experience
- Passion To Teach
- Research Statistics
- Research Projects Delivered
- Portfolio Conclusion

PORTFOLIO HISTORY 2020 -

DR. DONG QIAN

@UTD: Associate Head, Department of Mechanical Engineering

My Role: PhD Student, Research Assistant 2020 -

DR. WEI LI

@UTD: Assistant Professor, Department of Mechanical Engineering

My Role: PhD Student, Teaching Assistant 2020 -

KISHORE M N

PhD Student & Research Associate

The University of Texas at Dallas

Department of Mechanical Engineering

Research Objective 1: Multi-Physics Modeling of Powder Bed Fusion (PBF) / Selective Laser Melting (SLM) Process

Milestones Overview

- 1. The idea is to develop a multi-physics model to capture powder bed fusion process.
 - 2. It involves multi-track and multi-layer printing process.
- 3. Coupling DEM-CFD model and FEM model to predict the residual stresses at each layer as printed.
- 4. To develop a closed loop microstructure model to predict the surface morphology of the 3d printed layers.

Problem Statement: SLM Process

- Powder Consolidation
- Powder Settling
- Powder Spreading
- Powder Layering
- Melting
- Solidification
- Cooling

Figure 1: SLM Process

Reference: https://scanandmake.com/additive-manufacturing

Case Study: SLM Single Track

Figure 2: Powder Consolidation and Settling

Manuscript Submitted:

Wei Li, Kishore Mysore Nagaraja, Xinchang Zhang, Dong Qian, Hongbing Lu, "Multi-physics Modeling of Powder Bed Fusion and Thermal Stress", 2020.

Manuscript To-be-submitted:

Kishore Mysore Nagaraja, Wei Li, Dong Qian, Hongbing Lu, "Multi-Physics Modeling Study of Multi-Layer Powder Bed Fusion and Thermal Stress", 2021.

Experimental Reference:

I. Yadroitsava, J. Els, G. Booysen, I. Yadroitsev, South African Journal of Industrial Engineering 26(3) (2015) 86-95.

Research Objective 2: Hybrid Manufacturing Model for Direct Energy Deposition (DED) Process

Milestones Overview

- 1. The idea is to develop a multi-physics model to capture Direct Energy Deposition (DED) process.
- 2. First stage involves FEM model.
- 3. Second stage involves CFD model.
- 4. Prediction of the Residual Stress.
- 5. Explicit/Implicit modeling Ultrasonic Nanocrystal Surface Modification (UNSM) technique.
- Ø 6. Develop a hybrid manufacturing model for DED-UNSM technique.
- 7. To develop a closed loop microstructure model to predict the surface morphology of the 3d printed layers.

Problem Statement: DED and UNSM Process

DED Process:

- Nozzle powder feeding system.
- Melting, Solidification, Cooling

UNSM Process:

- Static Load Process
- Ultrasonic Vibration + Translation

Figure 1: DED Process

Reference: https://www.3dnatives.com/en/directed-energy-deposition-ded-3d-printing-guide-100920194/

Figure 2: AM Hybrid Manufacturing Technique

Case Study: Single-Track Multi-layer Abaqus Model

Figure 3: Case Study

• Material: Stainless Steel 316L

A	В	n	m	C
253 MPa	685 MPa	0.31	2.04	0.097

Figure 5: Johnson Cook Plasticity Properties

Figure 4: Methodology

FEA Modeling Approach

Results: Single-Track Multi-layer Abaqus Model

Case Study: Single-Track Single-layer CFD Model

Results and Conclusion: DED-UNSM Hybrid Model

Process Representation

Before and After UNSM over AM Layer

- Static Load of 50N
- Tungsten Carbide Tool, 20kHz Frequency
- 40 mm/sec UNSM scanning speed
- Frictional Coefficient 0.2.

Number of Manuscripts To-be-submitted: 02

Experimental Reference: Mattias Miedzinski, "Materials for Additive Manufacturing by Direct Energy Deposition", Master's Thesis in Materials Engineering, Chalmers University of Technology, Sweden 2017.

PORTFOLIO HISTORY 2014-2019

DR. SURESH NAGESH

@PES: Chair Professor,Computational Mechanics

Earlier: Headed Voith Aerospace, Mercedes R&D, Daimler Chrysler, Ford Teams, GE Teams and GM Teams.

My Role: Research Associate 2015-2016; 2018-2019

DR. CS RAMESH

@PES: Chair Professor,
Material Science

Currently: Research Dean - Presidency University

My Role: Research Assistant 2014-2015

KISHORE M N

Bachelor Student (2012-2016) & Research Associate

PES UNIVERSITY

Bachelor's in Mechanical Engineering

ACADEMIC CREDENTIALS

UP TO 2010

Kindergarten
Primary
High School

•UP TO 2013

Diploma in Mechanical
Engineering
Grade: Distinction
(Top 1% of the Class)

•UP TO 2016

Engineering
Grade: 8.13/10 or 3.44/4
(Top 10% of the Class)

•FROM 2020

Graduate Student : PhD
Student - Mechanical
Engineering - University of
Texas at Dallas

-WORK EXPERIENCE

• A BRIEF TIMELINE

DEC 2013 - MAY 2014

Research Assistant

Guidance: Dr. C S Ramesh Place: PES University

Responsibilities

Basic Material Property Testing; Salt Corrosion

Testing; Wear Testing; HVOF Coating.

Organize

National Tribology Conference 2014 JUNE 2014 - FEB 2017

Research Assistant

Guidance: Dr. Suresh Nagesh Place: PES University

Responsibilities

Design UAV Composite
Structure; New Composite
Manufacturing Techniques;
Rotordynamics

3 Conferences and2 Competetions

ASME IDSC; IEEE GHTC; IEEE Sustech; ASME COMS @ USA

MARCH 2017 - SEP 2018

Junior Design Engineer

Company: Siemens Technology and Services Private Limited.

Responsibilities

FMEA; Composite Fatigue Model; Digital Twin Technology for Composites; Gas Turbine Software Development

Patent Disclosure

New Composite Manufacturing Technology Upgradation

OCTOBER 2018 - DEC 2019

Research Associate

Guidance: Dr. Suresh Nagesh Place: PES University

Responsibilities

Design 16 seats vehicle structure; Virtual Blast Certification for a VIP Bus; Virtual Digital Twin; Additive Manufacturing

1 Conference

8th Beta CAE Systems @ Germany

FROM 2014 • TEACHING EXPERIENCE TILL 2019

25+ STUDENTS

Offline Training on,
CAD: Solidworks, Nx CAD, Catia, and Autodesk
Inventor

40+ STUDENTS

Offline Training on,
CAE: Hypermesh, Nx Nastran, and
Ansys

20+ STUDENTS

Online Training on,
CAE: Hypermesh, Nx Nastran, and
Ansys

INSTITUTIONS

04 Training Institutions on Software Training;

02 Engineering Institutes on Project Skills Training;

• GUIDED 30+ STUDENTS ON THEIR BACHELOR'S THESIS.

RESEARCH PROJECTS DELIVERED

Major Challenges

- Design and computationally certify a Running Chassis for a 16 seats LCV.
- Computationally certify the blast proof bus.
- Computationally predict the wear between Cam and Follower.
- Design and verify the seamless transmission system for E-Vehicle.

- Design of a Running Chassis.
- Stiffness Simulations
- Durability Simulations
- Impact Simulations
- Additive Manufacturing for joints design.
- Integration and Packaging.
- 3D Printed Scaled Modeling.

- Composite Wall
- Scaled Model of the Bus.
- Explicit Dynamic Analysis models.
- Bottom Blast with 2 Kilograms of TNT.
- Side Blast with 5
 Kilograms of TNT.

RESEARCH PROJECTS DELIVERED

MAJOR MILESTONES

- Design and develop a composite structured dual propulsion Unmanned Aerial Vehicle.
- Design a 3D Printed Nose Landing Gear and Main Landing Gear which can accommodate 4g Loads which incorporates damper mechanism.
- Topology Optimization of the shape of the unmanned aerial vehicle including its 3D printed components.

AEROSPACE

·MEDICAL

CHALLENGE 1

Study the behavior of the tooth for different inclinations for endodontic failure.

CHALLENGE 2

Study the behavior of tooth for composite material filling treatment.

CHALLENGE 3

Failure Mode Effective Analysis for Chromium Oxide production equipment such as Stirrer, Autoclave, Spray Dryer, Retort Furnace, and Sand Mill.

RESEARCH PROJECTS DELIVERED

ENERGY

- Parametric modeling for a Fir Tree of the Gas Turbine Blade.
- Dynamic Analysis of Bearings.
- Friction Stir Welding of Aluminium and Copper Plates.
- Structural Simulations of Turbine Casings.

RESEARCH PROJECTS DELIVERED

Materials

•COMPOSITE MANUFACTURING

Upgrading composite manufacturing technology using inserts.

•LIFE ESTIMATION OF COMPOSITES

Life Prediction Model based on degradation of properties of the material.

COMPOSITE TABLE TOP VARIABLE LOAD TESTING EQUIPMENT

Digital Twin table top machine to test the data and store it in the cloud.

•PORTFOLIO 2014-2019 CONCLUSION

THANK YOU