Name:	 Subject Code:	SEHH2238
Student ID:	Lecture Group:	

SEHH2238 Computer Networking Mid-term Test – Answer Sheet

Suggested Solution

Instruction to Students:

_

- 1. Answer ALL questions.
- 2. Fill your personal particulars in the header of this answer sheet.
- 3. Insert your answer into the space provided in this answer sheet.
- 4. Show your work clearly and neatly. Marks will be deducted for untidy work.
- 5. Upon completion, save a copy of this file into **PDF file format**.
- 6. <u>Upload the PDF file</u> to the submission link on Moodle within the **15-minute** submission grace period.

Important:

Ensure the originality of your work. Any form of plagiarism is subject to disciplinary actions such as mark deduction, disqualification or even expulsion by the College.

(*Please refer to the relevant section(s) on plagiarism of the Student Handbook.*)

For Markers Only				
Question	Mark			
1				
2				
3				
4				
Total				

Name:	 Subject Code:	SEHH2238
Student ID:	Lecture Group:	

Answer for Question 1

/25

(a) Max. frequency $(f_{max}) = 4000 \text{ Hz}$ Min. sampling rate $= 2 \text{ x } f_{max}$ = 2 x 4000 Hz

If the sampling rate is not enough, undersampling happens. The signal reproduced using the samples will be different and have a lower frequency.

(b) Assume n = 5Number of samples = $8000 \times 5 \times 60 = 2,400,000$ samples Number of bits per sample = $\log_2 256 = 8$ bits / sample File size = $2,400,000 \times 8 = 19,200,000$ bits = 19.2 Mb

= 8000 samples / s

3 rd digit (n)	10	1	2	3	4	5	6	7	8	9
File size (Mb)	38.4	3.84	7.68	11.52	15.36	19.2	23.04	26.88	30.72	34.56

(c) Level = $(25 / 60) \times 255$ = 106.25 ≈ 106

Bits = 01101010 (8 bits)

Name: Subject Code: SEHH2238

Student ID: Lecture Group:

Answer for Question 2

/25

- (a) Flow control: Receiver sends ACK to let sender know it is ready. Error control: If error, no ACK. Sender retransmits after timeout.
- (b) Transmission delay = 1500 bits / 500 kbps = 3 msPropagation delay = $1000 \text{ km} / 2 \times 10^8 \text{ m/s} = 5 \text{ ms}$
- (c) $(4^{th}$ digit is odd)

file size = 5000 bits

Number of packets = $5000 / (1500 - 24) = 3.3875 \approx 4$

First 3 data packets are max size 1500 bits

Size of last data packet = $5000 - 3 \times (1500 - 24) + 24 = 596$ bits

Tx of last data packet = 596 bits /500 kbps = 1.192 ms

All ACKs are piggybacked with data packet, except the last ACK. Tx of last ACK = 24 bits / 500 kbps = 0.048 ms

Total delay = delay of max size packets + delay of last packets + delay of last ACK

$$= (3 + 5) \times 6 + (1.192 + 5) \times 2 + (0.048 + 5) \text{ ms}$$

$$=48 + 12.384 + 5.048 \text{ ms}$$

$$= 65.432 \text{ ms}$$

delay of last AC

10⁶ M 10³ k 10 s 10⁻³ m

10⁻⁶ μ 10⁻⁹ n

(4th digit is even)

file size = 6000 bits

Number of packets = $6000 / (1500 - 24) = 4.0650 \approx 5$

First 4 data packets are max size 1500 bits

Size of last data packet = $6000 - 4 \times (1500 - 24) + 24 = 120$ bits

Tx of last data packet = 120 bits / 500 kbps = 0.24 ms

All ACKs are piggybacked with data packet, except the last ACK.

Tx of last ACK = 24 bits / 500 kbps = 0.048 ms

Total delay = delay of max size packets + delay of last packets + delay of last ACK

$$= (3+5) \times 8 + (0.24+5) \times 2 + (0.048+5) \text{ ms}$$

$$=48 + 10.48 + 5.048$$
 ms

= 63.528 ms

Name: Subject Code: SEHH2238

Student ID: Lecture Group:

Answer for Question 3

/25

(a) Any one of below, 5 hops:

$$A->B->C->D->G->K$$
, $A->B->C->F->G->K$, $A->B->C->F->I->K$, $A->B->E->F->G->K$, $A->B->E->F->J->K$

(b) Delay for circuit switching = setup + transmission + propagation + teardown

(5th digit is odd) =
$$10 + 40 + 0.5 \times 5 + 0$$

= 52.5 s

(5th digit is even) =
$$10 + 80 + 0.2 \times 5 + 0$$

= 91 s

(c) $(5^{th}$ digit is odd)

No. of packets = 40 / 4 = 10

Delay of packet 1 (5 hops) = (transmission + propagation)
$$x$$
 5 + processing x 4 = $(4 + 0.5) x$ 5 + $1 x$ 4 = $26.5 s$

Delay of each packet 2-10 (last hop) =
$$4 + 0.5 + 1$$

= 5.5 s

Total delay = $26.5 + 5.5 \times 9 = 76 \text{ s}$

(5th digit is even)

No. of packets = 80 / 4 = 20

Delay of packet 1 (5 hops) = (transmission + propagation) x 5 + processing x 4
=
$$(4 + 0.2)$$
 x 5 + 1 x 4
= 25 s

Delay of each packet 2-19 (last hop) =
$$4 + 0.2 + 1$$

= 5.2 s

Total delay = $25 + 5.2 \times 19 = 123.8 \text{ s}$

Name:	Subject Code:	SEHH2238
Student ID:	Lecture Group:	

Answer for Question 4

/25

(a) IP address: 192.168.172.134 (192.168.10101100.10000110)

х	n	Mask (binary)	(decimal)
0	20	11111111.11111111.11110000.00000000	255.255.240.0
1	21	11111111.11111111.11111000.00000000	255.255.248.0
2	22	11111111.11111111.11111100.00000000	255.255.252.0
3	23	11111111.11111111.11111110.00000000	255.255.254.0
4	24	11111111.11111111.11111111.00000000	255.255.255.0
5	25	11111111.11111111.11111111.10000000	255.255.255.128
6	26	11111111.11111111.11111111.11000000	255.255.255.192
7	27	11111111.11111111.11111111.11100000	255.255.255.224
8	28	11111111.11111111.11111111.11110000	255.255.255.240
9	29	11111111.11111111.11111111.11111000	255.255.255.248

х	n	network address	broadcast address	Number of addresses
0	20	192.168.160.0	192.168.175.255	$2^{32-20} = 4096$
1	21	192.168.168.0	192.168.175.255	$2^{32-21} = 2048$
2	22	192.168.172.0	192.168.175.255	$2^{32-22} = 1024$
3	23	192.168.172.0	192.168.173.255	$2^{32-23} = 512$
4	24	192.168.172.0	192.168.172.255	$2^{32-24} = 256$
5	25	192.168.172.128	192.168.172.255	$2^{32-25} = 128$
6	26	192.168.172.128	192.168.172.191	$2^{32-26} = 64$
7	27	192.168.172.128	192.168.172.159	$2^{32-27} = 32$
8	28	192.168.172.128	192.168.172.143	2 ³²⁻²⁸ = 16
9	29	192.168.172.128	192.168.172.135	$2^{32-29} = 8$

(b) A1: 3:06 B2: 3:34 C3: 3:42 A4: 3:27

