

TUNISIAN REPUBLIC

UNIVERSITY OF KAIROUAN

HIGHER INSTITUTE OF APPLIED SCIENCE AND **TECHNOLOGY IN KASSERINE**

MEMORY

Presented for graduation from:

Research Master

Specialty:

Nanomaterial and Embedded Electronics

Option:

Embedded electronics

By:

MEHER BOULAABI

Subject:

Dashboard for Systems Fault Prediction and Classification

Presented to the jury on 07/03/2024, consisting of:

Dr.	Saidi BOUZIDI (Associate Professor at ISSAT-KASSERINE)	President
Dr.	Wajdi SAADAOUI (Assistant Professor at ISSAT-GAFSA)	Reporter
Dr.	Mansour HAJJI (Assistant Professor at ISSAT-Kasserine)	Supervisor
Dr.	Vicenç PUIG (Full Professor at UPC-Barcelona)	Co-Supervisor
Dr.	Majdi MANSOURI (Associate Research Scientist at Texas A&M University at TAMU-QATAR)	Co-Supervisor

DEDICATIONS

To my dear parents: Noureddine BOULAABI and Anes NASRI

For all your sacrifices, unwavering love, boundless tenderness, steadfast support, and heartfelt prayers that have guided me through my educational journey.

To my dear brothers: Mourad BOULAABI and Anis BOULAABI

For your constant encouragement and unwavering moral support, helping me overcome challenges and reach for the stars.

To my dear friends: Houssem MNASSRI, Ghada RHIMI and Hasna MASSAOUDI

For your enduring friendship, support, and motivation that have been my pillars of strength, inspiring me to push my boundaries and achieve my goals.

To all my family,

For standing by my side, offering endless support, and believing in my dreams throughout my university career. Your collective presence has been my greatest source of strength and inspiration.

ACKNOWLEDGMENTS

I would like to take this opportunity to thank **Dr. Sayed MISSAOUI** (Associate Professor at ISSAT-KASSERINE), serving as the President of the project, and **Dr. Wajdi SAADAOUI** (Assistant Professor at ISSAT-GAFSA), acting as the reporter of the project, for their invaluable contributions and support throughout this endeavor.

I am also indebted to **Dr. Vicenç PUIG** (Full Professor at UPC–Barcelona), my co-supervisor based in Barcelona, for his valuable input and collaboration throughout the research process. His international perspective and technical guidance enriched the scope of my work, and I am grateful for the opportunity to benefit from his mentorship.

Special thanks are extended to **Dr. Majdi MANSOURI** (Associate Research Scientist at Texas A&M University at TAMU-QATAR), for his unwavering support during the stage in Spain. His practical advice, moral encouragement, and assistance during challenging times were invaluable. His mentorship played a crucial role in shaping my understanding and approach to the project.

I would like to express my sincere gratitude to my primary supervisor, **Dr. Mansour HAJJI** (Assistant Professor at ISSAT-Kasserine), whose guidance, support, and expertise played a pivotal role in the successful completion of this report. His dedication to fostering a conducive research environment and his insightful feedback significantly contributed to the quality of this work.

I would like to express my gratitude to the **University of Kairouan** for providing me with the opportunity to undertake this internship. Additionally, I extend my heartfelt thanks to the members there for their assistance during the preparation of the documents.

Your support has been invaluable throughout my academic journey, and I am deeply thankful for the enriching experiences and lessons learned.

ABSTRACT

This study investigates grid-connected photovoltaic systems and fault diagnosis using the Random Forest Classifier. The project initially classified signals in the dataset to detect faults, demonstrating the classifier's effectiveness. To enhance efficiency, a novel approach focused solely on the transitory regime for each fault class, resulting in a remarkable computation time of 0.008 seconds and 100% accuracy. This targeted analysis improves real-time fault detection, emphasizing the importance of optimized tools like the Random Forest Classifier. The findings contribute to advancing fault diagnosis techniques, enhancing the safety and efficiency of the photovoltaic industry by preventing potential damage and interruptions.

Keywords: Photovoltaic systems, Fault diagnosis, Random Forest Classifier, Transitory regime, GCPV

RÉSUMÉ

Cette étude explore les systèmes photovoltaïques connectés au réseau et le diagnostic de panne en utilisant le classificateur Random Forest. Le projet a initialement classifié les signaux dans l'ensemble de données pour détecter les défauts. Une approche novatrice s'est concentrée uniquement sur le régime transitoire de chaque classe de défaut, aboutissant à un temps de calcul remarquable de 0,008 secondes et une précision de 100%. Cette analyse ciblée améliore la détection en temps réel des défauts. La résultat contribuent à faire progresser les techniques de diagnostic de panne en améliorant la sécurité et l'efficacité de l'industrie photovoltaïque en évitant les dommages potentiels et les interruptions.

Mots clés :Systèmes photovoltaïques, Diagnostic de panne, Classificateur Random Forest, Régime transitoire, GCPV

CONTENTS

De	edicati	ions	i
A	cknow	ledgments	ii
Al	ostrac	t	iii
Li	st of T	ables	viii
Li	st of F	ligures	X
Li	st of A	Abbreviations	xi
G	eneral	Introduction	1
1	APP	LICATION FOR GRID-CONNECTED PHOTOVOLTAIC	3
	1.1	INTRODUCTION	3
	1.2	SYSTEM CONFIGURATION	3
	1.3	GCPV SYSTEM COMMON FAULTS	5
	1.4	FAULT DIAGNOSIS TECHNIQUES ADOPTED IN LITERATURE	6
	1.5	FAULT DIAGNOSIS TECHNIQUES USED FOR GCPV SYSTEM	6
		1.5.1 MODEL-BASED FAULT DIAGNOSIS APPROACHES	7
		1.5.2 DATA-DRIVEN FAULT DIAGNOSIS APPROACHES	11
	1.6	SYSTEM DESCRIPTION	13
	1.7	PHASOR MEASUREMENT UNIT (PMU)	14
	1.8	INPUT DATA DESCRIPTION	14
	1.9	HISTORTY-BASED FAULT DIAGNOSIS	16
		1.9.1 THE DIFFERENT STEPS OF DIAGNOSIS	17
	1.10	TRANSITORY REGIME	17
	1.11	CONCLUSION	19

2	PYI	THON I	FOR AL& RANDOM FOREST CLASSIFICATION	20
	2.1	INTRO	DDUCTION	20
	2.2	INTRO	DDUCTION TO PYTHON	21
		2.2.1	PYTHON'S POPULARITY IN THE AI COMMUNITY	21
	2.3	LIBRA	ARIES USED IN THE PROJECT	22
		2.3.1	OVERVIEW OF RELEVANT PYTHON LIBRARIES FOR AI	22
		2.3.2	EXPLANATION AND FUNCTIONALITY OF EACH LIBRARY IN OUR	
			APPLICATION	23
	2.4	DATA	PREPARATION	25
		2.4.1	DESCRIPTION OF THE DATASET USED IN THE PROJECT	25
		2.4.2	PREPROCESSING STEPS FOR DATA CLEANING AND FORMATTING .	25
		2.4.3	BENEFITS OF USING RANDOM FOREST WITHOUT FEATURE EX-	
			TRACTION TECHNIQUES	25
	2.5	RANE	OOM FOREST ALGORITHM	27
		2.5.1	ENSEMBLE LEARNING TECHNIQUE	27
		2.5.2	RANDOM FOREST ALGORITHM	28
		2.5.3	RANDOM FOREST AS A CLASSIFICATION ALGORITHM	29
		2.5.4	DIFFERENCE BETWEEN DECISION TREE AND RANDOM FOREST .	29
		2.5.5	EXPLANATION OF THE RANDOM FOREST TECHNIQUE AND PRO-	
			CESS	31
		2.5.6	IMPORTANT HYPERPARAMETERS	32
	2.6	MODI	EL INTERPRETATION AND FEATURE IMPORTANCE	33
		2.6.1	EXPLAINING THE IMPORTANCE OF FEATURE IMPORTANCE IN RAN-	
			DOM FOREST	33
		2.6.2	TECHNIQUES FOR INTERPRETING RANDOM FOREST MODEL RE-	
			SULTS	33
		2.6.3	ANALYSIS OF FEATURE IMPORTANCE IN THE SIGNAL CLASSIFI-	
			CATION TASK	34
		2.6.4	ADVANTAGES AND DISADVANTAGES OF THE RANDOM FOREST	35
	2.7	CONC	CLUSION	36
3	EVA	LUATI	ING TWO RANDOM FOREST SCENARIOS	37
	3 1	INTRO	ODUCTION	37

	3.2	SCEN	ARIO 1: COMPREHENSIVE FAULT DETECTION WITH LARGE DATASETS	5
		• •		38
		3.2.1	PREPROCESSING THE DATA	38
		3.2.2	MODEL TRAINING AND EVALUATION	40
		3.2.3	RESULTS AND DISCUSSION	42
	3.3	SCEN	ARIO 2: FOCUS ON TRANSITORY REGIME AND COMPUTATIONAL	
		EFFIC	CIENCY	44
		3.3.1	RESULTS AND DISCUSSION	47
	3.4	DISCU	USSION OF THE DIFFERENCES METRICS	53
	3.5	CONC	CLUSION	55
4	BUI	LDING	THE dashboard	57
	4.1	INTRO	ODUCTION	57
	4.2	Dashb	oard designs	58
	4.3	DESC	RIPTION OF PAGES	58
		4.3.1	HOME PAGE	59
		4.3.2	TEST ONE SIGNAL	59
		4.3.3	TEST MORE SIGNAL	61
		4.3.4	COMPUTATION TIME	64
	4.4	CREA	TING THE DEVELOPMENT ENVIRONMENT	64
		4.4.1	SETTING UP WITH ANACONDA	64
		4.4.2	SETTING UP WITH CMDER	65
		4.4.3	ATOM AS AN IDE	65
	4.5	LOAD	DING THE SAVED MODEL	66
		4.5.1	OVERVIEW OF THE MODEL SAVED	66
		4.5.2	ENSURING COMPATIBILITY AND DEPENDENCIES WITH THE SAVED	
			MODEL	67
		4.5.3	A COMPREHENSIVE STEP-BY-STEP INSTRUCTIONAL REPORT	67
	4.6	CONC	CLUSION	77
C	onclus	sion and	d perspectives	78
Bi	bliog	raphy		83
		I -		

LIST OF TABLES

1.1	The labeling and description of the measured and monitored system data variables	15
1.2	Description and characteristic of the different labeled faults injected	16
2.1	Python in the AI community	21
2.2	Comparison of Decision Trees and Random Forest	30
2.3	Random Forest Parameters	32
3.1	Distribution of Instances Across Classes	39
3.2	Properties and characteristics of the dataset	40
3.3	Statistics for each numerical column	40
3.4	Performance Metrics of the RF model in Scenario 01	42
3.5	Classification Report	43
3.6	Data Reduction	47
3.7	Balanced Data	47
3.8	Classification Report of scenario 02	51
3.9	Differences metrics in our application	54
4.1	Features of Atom Code Editor	66

LIST OF FIGURES

1.1	Synoptic of the GCPV system under study	4
1.2	Grid-Connect Solar Power System	4
1.3	Different fault types for GCPV system Diagram	5
1.4	Classification of Fault Diagnosis Methods	8
1.5	General Block diagram circuit of the Grid-Connected Photovoltaic system	13
1.6	Block diagram circuit of the PMU data generator implemented inside the DSpace 1104.	15
1.7	The different steps of a diagnosis system	18
2.1	Preprocessing steps	26
2.2	Bagging vs Boosting	28
2.3	Random Forest overview	28
2.4	Decision tree vs Random Forest	30
2.5	Random Forest process steps	32
2.6	Feature Importance of RF	34
3.1	Confusion Matrix	42
3.2	Extraction of the transitory regime of X1	45
3.3	Extraction of the transitory regime of X2	46
3.4	Extraction of the transitory regime of X3	46
3.5	First decision tree from the forest	49
3.6	Confusion Matrix	50
3.7	Check the Outliers	52
4.1	Home Page	59
4.2	Upload Button	60
4.3	Table Visualization	60
4.4	Majority Class Prediction	60
4.5	Specific Part Prediction	61

4.6	Adjusting Random Factor	61
4.7	Visualization and Plotting of one variable	62
4.8	Visualization and Plotting of multiple variables	62
4.9	Multiple File Uploads	63
4.10	Summary Table: Class Results and Computation Time for Each Signal	63
4.11	Filter by Class Name	64
4.12	Home Page	68
4.13	Test one signal page	69
4.14	Read the data of the new signal	70
4.15	Final Predicted Class	71
4.16	Probability of each class	72
4.17	Plot one single variable	73
4.18	Plot multiple variable	74
4.19	Adjust random factor	75
4 20	The class of each signal	76

LIST OF ABBREVIATIONS

FD Fault Detection

FDD Fault Detection and Diagnosis

FC Fault Classification

ML Machine Learning

DL Deep Learning

PV PhotoVoltaic

GCPV Grid- Connected PV

AI Artificial Iintelligence

CNN Convolutional Neural Network

AC Alternating Current

DC Direct Current

RF Random Forest

SGD Signed Directed Graph

ODEs Ordinary Differential Equations

MPPT Maximum Power Point Tracking

SVPWM Space Vector Pulse Width Modulation

LSTM Long- Short Term Memory

PMU Phasor Measurement Unit