

Generative Semi-supervised Graph Anomaly Detection

Hezhe Qiao, Qingsong Wen, Xiaoli Li, Ee-Peng Lim, Guansong Pang

Motivation

Unsupervised

anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal, contrasting to the extensively explored unsupervised setting with a fully unlabeled graph.

Supervised

Overwhelming normal samples

Randomly sample some nodes from the graph as the normal nodes, without any human manual labeling (the same labeling cost as Partial Normal Labeled unsupervised GAD).

Incorporating the Asymmetric Local Affinity Prior **Local Node Affinity Calculation**

 \mathcal{V}_{a} and \mathcal{V}_{A} are the sets of abnormal nodes and normal nodes

Embedding

Enforcing the Structural Affinity Prior

The Framework of GGAD

Ego Network of V_i / V_j

$$\ell_{\text{ala}} = \max \{0, \alpha - (\tau(V_l) - \tau(V_o))\}$$
 Margin loss function

Normal — Abnormal-

Asymmetric Local Affinity

Incorporating the Egocentric Closeness Prior

and its corresponding generated outliers

Binary cross-entropy loss function

 $\ell_{\text{total}} = \ell_{\text{bce}} + \beta \ell_{\text{ala}} + \lambda \ell_{ec}$

The inverse prediction of the one-class classifier is

 $score(v_j) = 1 - \eta(\mathbf{h}_j; \Theta^*)$

where Θ^{*} is the learned parameters of GGAD

Training and Inference

Solely using this local affinity prior may distribute far away from the normal nodes in the representation space.

$$\ell_{ec} = \frac{1}{|\mathcal{V}_o|} \sum_{v_i \in \mathcal{V}_o} \left\| \hat{\mathbf{h}}_i - (\mathbf{h}_i + \varepsilon) \right\|_2^2$$

affinity \mathbf{h}_i and \mathbf{h}_i are the representations of the normal node v_i

 \mathcal{E} is a noise perturbation generated from a Gaussian distribution to guarantee separability

 $\sum y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$

Asymmetric local

affinity

Asymmetric local

'Trivial

outliers^{*}

Egocentric

closeness

(d) Using ℓ_{ala} Only (e) Using ℓ_{ec} Only (f) Using GGAD

'Effective

outliers'

Egocentric

closeness

Ablation Study

By unifying both priors through the two losses, the generated outlier nodes can be thought as hard anomalies that lie at the fringe of normal nodes in the feature representation space

- * Random
- **❖** Nonlearnable Outliers (NLO)
- Gaussian Perturbation
- **❖** Noise and GaussianP
- VAE and GAN

Ablation study on our two priors

GGAD vs. alternative outlier generators

Michie	Michiga	Amazon	T-Finance	Reddit	Elliptic	Photo	DGraph
	Random	0.7263	0.4613	0.5227	0.6856	0.5678	0.5712
	NLO	0.8613	0.6179	0.5638	0.6787	0.5307	0.5538
AUROC	Noise	0.8508	0.8204	0.5285	0.6786	0.5940	0.5779
	GaussianP	0.2279	0.6659	0.5235	0.6715	0.5925	0.5862
	VAE	0.8984	0.6674	0.6175	0.7055	0.6222	0.5801
	GAN	0.8288	0.5487	0.5378	0.6256	0.6032	0.5101
	GGAD (Ours)	0.9324	0.8228	0.6354	0.7290	0.6476	0.5943
	Random	0.1755	0.0402	0.0394	0.1981	0.1063	0.0061
	NLO	0.4696	0.1364	0.0495	0.1750	0.1092	0.0065
AUPRC	Noise	0.5384	0.1762	0.0381	0.1924	0.1200	0.0076
	GaussianP	0.0397	0.0677	0.0376	0.1682	0.1194	0.0078
	VAE	0.6111	0.0652	0.0528	0.2344	0.1272	0.0063
	GAN	0.3715	0.0461	0.0433	0.1263	0.1143	0.0051
	GGAD (Ours)	0.7843	0.1924	0.0610	0.2425	0.1442	0.0087

Performance w.r.t. Training Size and Anomaly Contamination

■ With increasing training samples of normal nodes, the performance of all methods generally gets improved

AUPRC results w.r.t. different number of

GGAD consistently maintains the best performance under different contamination rates, showing good robustness w.r.t. the contamination

AUPRC w.r.t. different anomaly contamination

GGAD enabled Unsupervised Methods

We incorporate the outlier generation into existing unsupervised method demonstrating the generation in GGAD can also benefit the existing unsupervised methods GGAD enabled unsupervised methods

	Metric	Method	Dataset					
	Metric	Wiethou	Amazon	T-Finance	Elliptic			
	#A	nomalies/#Top-K Nodes	387/500	351/1000	1448/2000			
		DOMINATE	0.7025	0.6087	0.2960			
		GGAD-enabled DOMINATE	0.8186	0.6275	0.2986			
	AUROC	OCGNN	0.7165	0.4732	0.2581			
	AUROC	GGAD-enabled OCGNN	0.8692	0.5931	0.2638			
		AEGIS	0.6059	0.6496	0.4553			
		GGAD-enabled AEGIS	0.8395	0.7024	0.5036			
		GGAD	0.9431	0.8108	0.7225			
		DOMINATE	0.1315	0.0536	0.0454			
		GGAD-enabled DOMINATE	0.3462	0.0585	0.0613			
5	AUPRC	OCGNN	0.1352	0.0392	0.0616			
	AUPRC	GGAD-enabled OCGNN	0.3950	0.0480	0.0607			
		AEGIS	0.1200	0.0622	0.0827			
		GGAD-enabled AEGIS	0.3833	0.0784	0.0910			
	=	GGAD	0.7769	0.1734	0.2484			

The distribution of the generated outliers have much smaller MMD

Analysis of the generated outliers using MMD distance

Metric	Dataset									
Metric	Amazon	T-Finance	Elliptic	Photo	Reddit					
with Abnormal Node	0.1980	0.0784	0.1094	0.3703	0.3409					
with Normal Node	0.2318	0.1040	0.1304	0.3880	0.3605					

Computational Efficiency Analysis

Runtimes (in seconds) on the six datasets on CPU

GGAD is generally more efficient than existing unsupervised GAD methods

distance

DOMINANT **GAAN GGAD** (Ours)

This work considers a practical semi-supervised graph

Two Important Priors about Anomalies

Outlier

☐ Asymmetric local affinity

The affinity between normal nodes is typically significantly stronger than that between normal and abnormal nodes.

☐ Egocentric closeness

The outliers should be closed to the normal nodes that share similar local structure due to subtle abnormality or adversarial camouflage.

Key idea

The key idea is to generate pseudo anomaly nodes, referred to as 'outlier nodes', for providing effective negative node samples in training a discriminative one-class classifier.

Graph Neural Network for Node Representation

Neighborhood-aware outlier initialization

(a) Outlier Node Initialization

We sample a set of normal nodes from normal set and respectively generate an outlier node for each of them based on its ego network.

 Ψ is a mapping function determined by parameters Θ_g and $\widetilde{\mathbf{W}} \in \mathbb{R}^{d \times d}$ are the learnable parameter

Main Comparison Result

used as the anomaly score

Setting		Dataset											
	Method	AUROC					AUPRC						
		Amazon	T-Finance	Reddit	Elliptic	Photo	D Graph	Amazon	T-Finance	Reddit	Elliptic	Photo	DGraph
	DOMINANT	0.7025	0.6087	0.5105	0.2960	0.5136	0.5738	0.1315	0.0536	0.0380	0.0454	0.1039	0.0075
	AnomalyDAE	0.7783	0.5809	0.5091	0.4963	0.5069	0.5763	0.1429	0.0491	0.0319	0.0872	0.0987	0.0070
Uncuparticad	OCGNN	0.7165	0.4732	0.5246	0.2581	0.5307	1	0.1352	0.0392	0.0375	0.0616	0.0965	/
Unsupervised	AEGIS	0.6059	0.6496	0.5349	0.4553	0.5516	0.4509	0.1200	0.0622	0.0413	0.0827	0.0972	0.0053
	GAAN	0.6513	0.3091	0.5216	0.2590	0.4296	1	0.0852	0.0283	0.0348	0.0436	0.0767	1
	TAM	0.8303	0.6175	0.6062	0.4039	0.5675	1	0.4024	0.0547	0.0437	0.0502	0.1013	/
	DOMINANT	0.8867	0.6167	0.5194	0.3256	0.5314	0.5851	0.7289	0.0542	0.0414	0.0652	0.1283	0.0076
Semi-supervised	AnomalyDAE	0.9171	0.6027	0.5280	0.5409	0.5272	0.5866	0.7748	0.0538	0.0362	0.0949	0.1177	0.0071
	OCGNN	0.8810	0.5742	0.5622	0.2881	0.6461	1	0.7538	0.0492	0.0400	0.0640	0.1501	1
	AEGIS	0.7593	0.6728	0.5605	0.5132	0.5936	0.4450	0.2616	0.0685	0.0441	0.0912	0.1110	0.0058
	GAAN	0.6531	0.3636	0.5349	0.2724	0.4355	1	0.0856	0.0324	0.0362	0.0611	0.0768	1
	TAM	0.8405	0.5923	0.5829	0.4150	0.6013	1	0.5183	0.0551	0.0446	0.0552	0.1087	1
	GGAD (Ours)	0.9443	0.8228	0.6354	0.7290	0.6476	0.5943	0.7922	0.1825	0.0610	0.2425	0.1442	0.0082