

Exercise 11.1

(a) Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and \angle ABC = 60° .

(b) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.

(c) Locate 4 points B_1 , B_2 , B_3 and B_4 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.

(d) Join B_4C and draw a line through the point B_3 , draw a line parallel to B_4C intersecting BC at the point C'.

(e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.

Justification:

 $\therefore B_4C \parallel B_3C$ [By construction]

$$\therefore \frac{BB_3}{BB_4} = \frac{BC'}{BC}$$

[By Basic Proportionality Theorem]

But
$$\frac{BB_3}{BB_4} = \frac{3}{4}$$
 [By construction]

Therefore,
$$\frac{BC'}{BC} = \frac{3}{4}$$
(i)

∵ CA || C'A' [By construction]

$$\triangle$$
 BC'A' $\sim \Delta$ BCA [AA similarity]

$$\therefore \frac{AB'}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{3}{4} \text{ [From eq. (i)]}$$

Q6. Draw a triangle ABC with side BC = 7 cm, \angle B = 45°, \angle A = 105°. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of \triangle ABC.

Ans: To construct: To construct a triangle ABC with side BC = 7 cm, $\angle B = 45^{\circ}$ and $\angle C = 105^{\circ}$ and then a triangle similar to it whose sides are

 $\frac{4}{3}$ of the corresponding sides of the first triangle ABC.

Steps of construction:

- (a) Draw a triangle ABC with side BC = 7 cm, \angle B = 45° and \angle C = 105°.
- (b) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (c) Locate 4 points B_1 , B_2 , B_3 and B_4 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.
- (d) Join B_3C and draw a line through the point B_4 , draw a line parallel to B_3C intersecting BC at the point C'.
- (e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.

Justification:

 $\therefore B_4C^\circ \parallel B_3C$ [By construction]

 $\triangle BB_4C^* \sim \Delta BB_3C$ [AA similarity]

$$\therefore \frac{BB_4}{BB_3} = \frac{BC'}{BC}$$

[By Basic Proportionality Theorem]

But
$$\frac{BB_4}{BB_3} = \frac{4}{3}$$
 [By construction]

Therefore,
$$\frac{BC'}{BC} = \frac{4}{3}$$
(i)

∵ CA C'A' [By construction]

 \triangle BC'A' \sim \triangle BCA [AA similarity]

$$\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{4}{3}$$
 [From eq. (i)]

Q7. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and

3 cm. Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Ans: To construct: To construct a right triangle in which sides (other than hypotenuse) are of lengths 4 cm and 3 cm and then a triangle similar to it whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle ABC. Steps of construction:

(a) Draw a right triangle in which sides (other than hypotenuse) are of lengths 4 cm and 3 cm.

- (b) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (c) Locate 5 points B_1 , B_2 , B_3 , B_4 and B_5 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$.
- (d) Join B_3C and draw a line through the point B_5 , draw a line parallel to B_3C intersecting BC at the point C'.
- (e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.

Justification:

- $\therefore B_5C \parallel B_3C$ [By construction]
- $\triangle BB_5C^{\circ} \sim \Delta BB_3C$ [AA similarity]

$$\therefore \frac{BB_5}{BB_3} = \frac{BC'}{BC}$$

[By Basic Proportionality Theorem]

But
$$\frac{BB_5}{BB_3} = \frac{5}{3}$$
 [By construction]

Therefore,
$$\frac{BC'}{BC} = \frac{5}{3}$$
(i)

- ∵ CA || C'A' [By construction]
- \triangle BC'A' \sim \triangle BCA [AA similarity]

$$\therefore \frac{AB}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{5}{3} \text{ [From eq. (i)]}$$

******* END *******