Examples on Mathematical Induction: divisibility 7

Created by Mr. Francis Hung

Last updated: September 1, 2021

1. Prove by mathematical induction $9^n - 2^n$ is divisible by 7 for all non-negative integer n.

Let $P(n) \equiv "9^n - 2^n$ is divisible by 7 for all non-negative integer n."

$$n = 0, 9^0 - 2^0 = 0 \times 7$$
, which is divisible by 7

P(1) is true

Suppose P(k) is true some some non-negative integer k

i.e.
$$9^k - 2^k = 7m$$
, where m is an integer \cdots (*)

When
$$n = k + 1$$
,

$$9^{k+1} - 2^{k+1} = 9(9^k) - 2(2^k)$$

$$= 9(9^k - 2^k + 2^k) - 2(2^k)$$

$$= 9(7m) + 9(2^k) - 2(2^k)$$

$$= 9(7m) + 7(2^k)$$

$$= 7(9m + 2^k)$$

 $\therefore 9m + 2^k$ is an integer

$$\therefore$$
 9^{k+1} – 2^{k+1} is divisible by 7

If P(k) is true, then P(k + 1) is also true

By the principle of mathematical induction, P(n) is true for all positive integer n.

2. Prove by mathematical induction $8^n + 2 \cdot 7^n - 1$ is divisible by 7 for all positive integer n.

Let $P(n) = "8^n + 2 \cdot 7^n - 1$ is divisible by 7 for all positive integer n."

$$n = 1, 8 + 2.7 - 1 = 21 = 3 \times 7$$
, which is divisible by 7, $P(1)$ is true.

Suppose P(k) is true. i.e. $8^k + 2 \cdot 7^k - 1 = 7m$, where m is an integer.

When
$$n = k + 1$$
, $8^{k+1} + 2 \cdot 7^{k+1} - 1 = 8 \cdot 8^k + 2 \cdot 7 \cdot 7^k - 1$
= $8(7m - 2 \cdot 7^k + 1) + 2 \cdot 7 \cdot 7^k - 1$, by induction assumption.
= $56m - 16 \cdot 7^k + 8 + 2 \cdot 7 \cdot 7^k - 1$
= $56m - 14 \cdot 7^k - 7$
= $7(8m - 2 \cdot 7^k - 1)$, which is divisible by 7.

If P(k) is true then P(k+1) is also true.

By the principle of mathematical induction, P(n) is true for all positive integer n.

3. 1995 Paper 2 Q6

Prove, by mathematical induction, that $(8^n - 1)$ is divisible by 7 for all positive integers n.

Let $P(n) \equiv (8^n - 1)$ is divisible by 7 for all positive integers n."

$$n = 1, 8^1 - 1 = 7$$
, which is divisible by 7

P(1) is true

Suppose P(k) is true for some positive integer k

i.e.
$$8^k - 1 = 7m$$
, where m is an integer \cdots (*)

When
$$n = k + 1$$
,
 $8^{k+1} - 1 = 8(8^k) - 1$
 $= 8(8^k - 1 + 1) - 1$
 $= 8(7m) + 8 - 1$ by (*)
 $= 7(8m + 1)$

 \therefore 8m + 1 is an integer

 $\therefore 8^{k+1}$ is divisible by 7

If P(k) is true, then P(k + 1) is also true

By the principle of mathematical induction, P(n) is true for all positive integer n.