DE LA MÉCA ET UN PEU DE CHIMIE

Jeudi 20 Mars 2025 - Durée 4h

- * La calculatrice est <u>autorisée</u>.
- \star Le téléphone portable <u>est interdit</u>.
- \star Il sera tenu le plus grand compte du soin, de la présentation, et de la rédaction.
- * Chaque réponse doit être justifiée.
- * Par ailleurs, même lorsque ce n'est pas explicitement demandé, toute application numérique doit être précédée d'une expression littérale <u>en fonction des données de l'énoncé</u>.

I. Ions chlorure et méthode de Mohr

Le titrage des ions chlorure se fait par précipitation avec les ions argent (I) en présence d'ions chromate CrO_4^{2-} . L'équivalence est repérée par l'apparition d'un précipité rouge brique de chromate d'argent.

Manipulation: on dispose de $V_0 = 100$ mL d'eau de mer (solution S_0) de concentration C_0 en ions chlorure. Compte tenu de la forte teneur en ions chlorure dans l'eau de mer, cette solution est diluée dix fois, on obtient la solution S_1 . On appellera C_1 la concentration en ions chlorure dans cette solution. On prélève $V_1 = 5,0$ mL de la solution S_1 , on les place dans un bécher et on y ajoute V = 0,50 mL de solution de chromate de potassium $(2 \, K^+, CrO_4^{2-})$ de concentration C = 0,050 mol. L^{-1} . On appelle S_2 la solution ainsi obtenue de volume V_2 et on note C_2 la concentration en ions chlorure de cette solution.

1. Exprimer C_1 en fonction de C_0 , puis C_2 en fonction notamment de C_1 .

On ajoute, à la burette, une solution de nitrate d'argent de concentration $C_{Ag} = 0,025 \text{ mol.L}^{-1}$. Le précipité rouge de chromate d'argent apparaît pour un volume versé $V_{AgE} = 11,0 \text{ mL}$ de nitrate d'argent.

- 2. Faire un schéma détaillé du dispositif expérimental réalisé pour ce titrage.
- 3. a) Écrire l'équation de la réaction de précipitation des ions argent avec les ions chlorure. Déterminer puis calculer la constante K_1^0 de cet équilibre.
 - b) Écrire l'équation de la réaction de précipitation des ions argent avec les ions chromates (le coefficient stœchiométrique de $Ag_{(aq)}^+$ sera pris égal à 1). Déterminer puis calculer la constante K_2^0 de cet équilibre.
 - c) Justifier l'ordre dans lequel ont lieu les réactions. Ce résultat est-il en accord avec l'affirmation présente en introduction : « L'équivalence est repérée par l'apparition d'un précipité rouge brique de chromate d'argent. »
- 4. a) Déterminer littéralement puis numériquement la concentration C_1 des ions chlorure dans la solution S_1 .
 - b) En déduire la concentration C_0 des ions chlorure dans la solution S_0 .
- 5. Montrer que le précipité de chlorure d'argent apparaît dès l'ajout de la première goutte de la solution de nitrate d'argent dans le bécher.
- 6. Tracer un diagramme d'existence, en pAg = $-\log\left([Ag_{(aq)}^+]/c^0\right)$, pour les précipités de chlorure d'argent et de chromate d'argent dans le volume V_2 de solution S_2 , dans le cas où il n'y aurait pas de variation de volume de la solution quand on ajoute la solution d'ions argent.
- 7. Déterminer la concentration en ions argent (I) dans le bécher lorsque le précipité rouge brique apparaît; en déduire celle des ions chlorure à cet instant. Le dosage est-il quantitatif?

Données à 298 K:

- \star produits de solubilité : AgCl_(s) : pK_{s1} = 9,8 et Ag₂CrO_{4(s)} : pK_{s2} = 12,0
- \star avec la verrerie utilisée ici, $V_{goutte} = 5, 0.10^{-2} \text{ mL}$

II. Mouvement dans un tube d'oscilloscope

La figure ci-dessous à gauche montre le tube d'un ancien oscilloscope 1 , de petite dimension, dans lequel des électrons émis par la cathode sont accélérés et déviés vers un écran luminescent. La déviation est assurée par le passage des électrons entre les plaques de deux condensateurs plans : un pour la déviation horizontale, l'autre pour la déviation verticale. L'étude qui suit ne concernera que le condensateur responsable de la déviation verticale.

Petit tube d'oscilloscope, de longueur d'environ 20 cm

Schéma de la zone de déviation

On modélise la trajectoire d'un électron de la façon suivante (figure à droite ci-avant, où la zone de déviation est grisée) :

- * on négligera l'effet de la pesanteur;
- * l'électron est émis à vitesse nulle par effet thermo-électronique au niveau de la cathode portée au potentiel nul, il est accéléré à l'aide d'une tension $V_0 > 0$ afin d'acquérir à l'entrée de la zone de déviation une vitesse \overrightarrow{v}_0 ;
- * pendant son trajet dans la zone de déviation, il est soumis à un champ électrique \overrightarrow{E} lié aux potentiels $\pm V_p$ (avec $V_p > 0$) des plaques du condensateur, de longueur ℓ et séparées par une distance d. Dans cette zone, le potentiel V varie de façon linéaire et ne dépend que de y;
- \star poursuivant son mouvement, il arrive sur la surface de l'écran à une distance y_s de l'axe Ox, l'écran étant situé à la distance D du centre du condensateur.
- 1. En raisonnant de façon énergétique, déterminer la vitesse \overrightarrow{v}_0 de l'électron à l'entrée de la zone de déviation. Faire l'application numérique.
- 2. On modélise les plaques de déviation comme un condensateur sans effets de bord : le champ électrique est donc considéré comme nul si $|x| > \ell/2$ et uniforme si $|x| \leqslant \ell/2$, \overrightarrow{E} étant parallèle à l'axe Oy. Déterminer le champ \overrightarrow{E} entre les plaques en fonction de V_p et d.
- 3. On suppose que la vitesse d'entrée de l'électron dans la zone de déviation est $\overrightarrow{v}_0 = v_0 \overrightarrow{u}_x$. En appliquant les lois de la mécanique, établir l'équation de la trajectoire y(x) de l'électron entre les plaques (pour $|x| \leq \ell/2$). y(x) sera exprimée en fonction de e, V_p , ℓ , m, d, v_0 et x.
- 4. a) Déterminer l'équation de la trajectoire pour $x > \ell/2$. y(x) sera exprimée en fonction des mêmes grandeurs que précédemment.
 - b) En déduire l'ordonnée du spot sur l'écran y_s en fonction de V_p , V_0 , ℓ , D et d.
 - c) Faire l'application numérique pour y_s .

Données :

- * masse d'un électron $m = 9, 11 \times 10^{-31} \text{ kg}$;
- * charge élémentaire $e = 1,60 \times 10^{-19} \text{ C}$;
- * $V_0 = 950 \text{ V}, V_p = 180 \text{ V}, D = 7,00 \text{ cm}, d = 2,00 \text{ cm et } l = 4,00 \text{ cm};$
- * en coordonnées cartésiennes : $\overrightarrow{\text{grad}}(V) = \frac{\partial V}{\partial x}\overrightarrow{u_x} + \frac{\partial V}{\partial y}\overrightarrow{u_y} + \frac{\partial V}{\partial z}\overrightarrow{u_z}$

^{1.} Les oscilloscopes actuels sont numériques et fonctionnent avec des écrans LCD.

III. Autour d'ITER

Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 28 juin 2005, les pays engagés dans le projet ITER, c'est-à-dire les 25 pays de l'Union Européenne, le Japon, la Russie, les États-Unis, la Chine et la Corée du Sud, ont décidé officiellement de construire le réacteur expérimental ITER en France, à Cadarache (Bouches-du-Rhône). L'Inde a rejoint le projet en décembre 2005. La Suisse et le Brésil pourraient faire de même dans l'avenir. La durée de la construction du réacteur sera de 10 ans. L'exploitation du réacteur proprement dit devrait s'étaler sur environ 20 ans. Le coût total du projet a été estimé à 10 milliards d'euros.

Le but du problème dont est tiré cette partie était d'examiner, de manière très simplifiée, certains aspects de la fusion thermonucléaire contrôlée. Dans ce sujet, nous n'avons extrait que les parties sur la fusion et le confinement du plasma.

III.1 Autour de la fusion thermonucléaire

L'une des difficultés que l'on rencontre pour obtenir une réaction de fusion est due à la répulsion électrostatique entre les deux noyaux positifs de deutérium et de tritium. Pour fusionner, les deux noyaux doivent s'approcher suffisamment près l'un de l'autre, à des distances de l'ordre de $r_0 = 10^{-15}$ m.

- 1. Considérons une charge ponctuelle, de charge e, immobile en un point O de l'espace et une deuxième charge e en un point M de l'espace situé à la distance $\mathrm{OM}=r$.
 - Déterminer l'énergie potentielle $E_p(r)$ liée à l'interaction électrostatique. On prendra $E_p=0$ à l'infini.
- 2. On considère toujours une charge ponctuelle e immobile en O. Une autre charge ponctuelle, portant la même charge e, se trouve au point M. Son vecteur vitesse initial est : $\overrightarrow{v}_{\mathrm{M}}(t=0) = \overrightarrow{v}_{0} = -v_{0}\overrightarrow{u_{r}}$ où $v_{0} > 0$ et $\overrightarrow{u_{r}}$ est le vecteur unitaire $\overrightarrow{u_{r}} = \overrightarrow{\mathrm{OM}}/r$. En d'autres termes, sa vitesse initiale est dirigée vers le point O. Cette particule a une masse m. On néglige toute force gravitationnelle. Exprimer l'énergie mécanique de cette particule au point M en fonction de m, r, v_{0} et de constantes fondamentales.
- 3. On suppose que la distance r est initialement très grande (« infinie »). Quelle doit être l'énergie cinétique initiale minimale E_{c0min} de la particule en M pour pouvoir se rapprocher de O à une distance inférieure à r_0 ?
- 4. On admet qu'on peut définir la température T à partir de l'énergie cinétique initiale E_{c0min} à partir de la relation $kT = E_{c0min}$ où k est la constante de Boltzmann.
 - Déterminer puis calculer la température minimale qui permet la réaction de fusion.

En réalité, pour diverses raisons qui sortent du cadre de la physique classique, on peut obtenir la réaction de fusion nucléaire pour des températures nettement moins élevées que l'estimation précédente, de l'ordre de 2.10⁸ K. À une telle température, la matière est à l'état de plasma, c'est-à-dire de gaz ionisé; le milieu est donc un mélange de noyaux et d'électrons libres. Pour réaliser la fusion dite thermonucléaire contrôlée, le principe retenu par ITER est celle d'un confinement magnétique du plasma.

III.2 Mouvement dans un champ magnétique

Les particules constituant le plasma étant chargées, elles subissent l'action d'un champ magnétique. On commence par étudier le mouvement d'une particule chargée dans un champ magnétique uniforme.

Le référentiel d'étude, supposé galiléen, est muni d'un repère $(O, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$. Le champ magnétique \overrightarrow{B} est uniforme, stationnaire et dirigé selon $Oz: \overrightarrow{B} = B\overrightarrow{u_z}$ où B > 0. La particule étudiée, de masse m, porte une charge q > 0.

- 5. La particule étudiée se trouve initialement en O avec une vitesse initiale colinéaire à \overrightarrow{B} : $\overrightarrow{v}_0 = v_0 \overrightarrow{u}_z$ avec $v_0 > 0$. Déterminer le mouvement de la particule (trajectoire et position).
- 6. La particule étudiée a maintenant la vitesse initiale : $\overrightarrow{v}_0 = v_0 \overrightarrow{u_y}$ avec $v_0 > 0$. Les composantes de la vitesse \overrightarrow{v} de la particule selon Ox, Oy et Oz sont notées respectivement v_x, v_y et v_z .

En appliquant la relation fondamentale de la dynamique, et en introduisant ω_0 telle que $\omega_0 = -\frac{qB}{m}$, déterminer les expressions de $\dot{v_x}$, $\dot{v_y}$ et $\dot{v_z}$ en fonction de v_x, v_y et ω_0 .

On pourra désormais considérer ω_0 comme donnée de l'énoncé.

- 7. En déduire les équations différentielles découplées vérifiées par v_x et v_y .
- 8. Résoudre complètement ces équations et trouver les expressions de v_x et v_y en fonction du temps.
- 9. Intégrer les expressions précédentes et déterminer les coordonnées x, y et z de la particule en fonction du temps. On donne la position initiale de la particule :

$$\begin{cases} x_0 = \frac{v_0}{\omega_0} \\ y_0 = 0 \\ z_0 = 0 \end{cases}$$

- 10. Déterminer la trajectoire de la particule.
- 11. Faire un schéma de la trajectoire dans le plan Oxy montrant clairement le sens du mouvement de la particule.
- 12. On considère maintenant une particule dont la vitesse initiale est :

$$\overrightarrow{v}_0 = \begin{vmatrix} v_x = 0 \\ v_y = v_\perp \\ v_z = v_\# \end{vmatrix}$$

où v_{\perp} et v_{\parallel} sont des grandeurs positives.

Justifier que la trajectoire de la particule est une hélice dont on exprimera le pas h en fonction de $v_{\mathbb{Z}}$ et ω_0 .

Données:

- * Dans tout le problème, on néglige le poids de la particule;
- * Déplacement élémentaire en coordonnées sphériques : $\overrightarrow{\mathrm{dOM}} = \overrightarrow{\mathrm{d}r}\overrightarrow{u_r} + r \, \overrightarrow{\mathrm{d}\theta}\overrightarrow{u_\theta} + r \sin(\theta) \, \overrightarrow{\mathrm{d}\varphi}\overrightarrow{e_\varphi}$;
- $\star k = 1,38.10^{-23} \text{ J.K}^{-1};$ $\star r_0 = 10^{-15} \text{ m};$
- * Constante des gaz parfaits : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$;
- \star Constante d'Avogadro : $N_A = 6,02 \times 10^{23} \text{ mol}^{-1}$;
- * Charge élémentaire : $e = 1, 6 \times 10^{-19} \text{ C}$;
- * Permittivité du vide : $\varepsilon_0 = 8,85 \times 10^{-12} \text{ F.m}^{-1}$.

IV. Mesure de l'intensité du champ de pesanteur terrestre en un point

Un expérimentateur désire mesurer l'intensité du champ de pesanteur te Un pendule est composé par un solide de masse m, de centre d'inertie G, mobile autour d'un axe horizontal (Oz) et de moment d'inertie J par rapport à l'axe (Oz).

Il peut effectuer des mouvements de rotation dans le plan vertical (Oxy), autour de l'axe horizontal (Oz). La position du pendule est repérée par l'angle θ entre la droite (OG) et la verticale descendante. On notera a la distance OG.

L'étude sera menée dans le référentiel terrestre considéré comme galiléen. Les frottements au niveau de l'axe de rotation et les frottements de l'air seront négligés.

Le pendule ainsi décrit se trouve dans le champ de pesanteur terrestre caractérisé par le vecteur \overrightarrow{g} tel que $\overrightarrow{g}=g\overrightarrow{e_x}$.

- 1. Quel est le nom de la liaison permettant de faire tourner le solide autour de l'axe de rotation?
- 2. Donner la définition du moment d'inertie d'un système de points.

On considère trois objets représentés ci-contre de moment d'inertie J_1, J_2, J_3 par rapport à leur axe de rotation respectif (O_1z) , (O_2z) et (O_3z) . Les masses des objets sont les mêmes et les objets ne sont faits que d'un seul matériau (densité uniforme). Lequel des trois moments d'inertie est le plus faible? Lequel est le plus élevé? Justifier brièvement.

- 3. Déterminer l'équation différentielle vérifiée par l'angle θ au cours du temps.
- 4. En déduire la période T des petites oscillations du pendule autour de sa position d'équilibre, repérée par $\theta = 0$. On exprimera T en fonction de J, m, a et g.
- 5. On souhaite étudier l'influence d'une variation d'intensité Δg du champ de pesanteur sur la période du pendule. Pour cela, on définit la sensibilité s du pendule comme le rapport $s=\frac{\Delta T}{T}$ où ΔT représente une variation infiniment petite de la période du pendule engendrée par une variation infiniment petite Δg du champ de pesanteur.
 - a) On note T_1 la période obtenue lorsque l'intensité du champ de pesanteur est g et T_2 lorsqu'elle est $g + \Delta g$. À l'aide d'un développement limité à l'ordre 1, exprimer T_2 en fonction de T_1 et de $\frac{\Delta g}{g}$. On rappelle que $(1+\varepsilon)^{\alpha} \simeq 1 + \alpha \varepsilon$ où ε est une grandeur sans dimension telle que $|\varepsilon| \ll 1$.
 - b) En déduire s en fonction de $\frac{\Delta g}{g}$.