長庚大學109學年度第一學期 作業系統 第四次小考

系級: 姓名: 學號

1. (40%) Banker's Algorithm is a deadlock avoidance algorithm. Assume that there are 5 processes {P₀, P₁, P₂, P₃, P₄} and three types of shared resources {A, B, C} in the system, and the details are in the following table. By Banker's Algorithm, is the system in a safe state? If your answer is yes, please provide a safe sequence. If your answer is no, please provide the reason.

	Allocation			Max			Need			Available		
	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P0	0	1	2	7	2	5	7	1	3	2	1	2
P1	2	0	0	4	1	4	2	1	4			
P2	3	0	2	7	1	4	4	1	2			
P3	2	1	1	2	3	8	0	2	7			
P4	0	0	2	2	1	4	2	1	2			

Answer:

Yes.

```
The safe sequence is: P4( need(2,1,2) \le available(2,1,2) ) \Rightarrow P1( need(2,1,4) \le available(2,1,4) ) \Rightarrow P2( need(4,1,2) \le available(4,1,4) ) \Rightarrow P0( need(7,1,3) \le available(7,1,6) ) \Rightarrow P3( need(0,2,7) \le available(7,2,8) )
```

2. (30%) For the situation in question 1, P₄ further has a request (1, 1, 0) to use 1 more instance of A and 1 more instance of B. Should the request be granted? Again, provide the reason to support your answer.

Answer:

Yes

- (1) request(1, 1, 0) \leq P4 need(2, 1, 2)
- (2) request $(1, 1, 0) \le$ system available(2, 1, 2)
- (3) Try to grant the request: P4 need(2,1,2) \rightarrow need(1,0,2), P4 allocation(0,0,2) \rightarrow allocation(1,1,2), available(2,1,2) \rightarrow available(1,0,2).

```
The safe sequence is: P4( need(1,0,2) \leq available(1,0,2) ) \Rightarrow P1( need(2,1,4) \leq available(2,1,4) ) \Rightarrow P2( need(4,1,2) \leq available(4,1,4) ) \Rightarrow P0( need(7,1,3) \leq available(7,1,6) ) \Rightarrow P3( need(0,2,7) \leq available(7,2,8) )
```

3. (30%) For another system state in the following table, by Banker's Algorithm, is the system in a safe state? If your answer is yes, please provide a safe sequence. If your answer is no, please provide the reason.

	Allocation			Max			Need			Available		
	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P0	0	1	0	7	5	3	7	4	3	3	3	2
P1	1	0	1	2	4	3	1	4	2			
P2	3	0	2	9	0	2	6	0	0			
P3	0	1	1	0	2	2	0	1	1			
P4	2	1	1	6	4	2	4	3	1			

Answer:

Yes

```
The safe sequence is: P3( \operatorname{need}(0,1,1) \le \operatorname{available}(3,3,2) ) \rightarrow P1( \operatorname{need}(1,4,2) \le \operatorname{available}(3,4,3) ) \rightarrow P4( \operatorname{need}(4,3,1) \le \operatorname{available}(4,4,4) ) \rightarrow P2( \operatorname{need}(6,0,0) \le \operatorname{available}(6,5,5) ) \rightarrow P0( \operatorname{need}(7,4,3) \le \operatorname{available}(9,5,7) )
```