## 代数学方法(第一卷)勘误表 跨度: 2019—2022

## 李文威

## 2022-06-21

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误已在修订版改正 (2022 年 4 月网络发布, 纸本待出).

- ◇ 第 12 页, 倒数第 8 行 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- $\diamond$  **第 16 页**, 定义 1.2.8 **原文** 若传递集  $\alpha$  对于  $\in$  构成良序集 **更正** 若传递集  $\alpha$  对于  $x < y \overset{\text{EV}}{\Leftrightarrow} x \in y$  成为良序集 感谢王东瀚指正.
- **◇ 第 16 页, 倒数第 5 行 原文** 于是有  $\gamma \in \gamma$ , 这同偏序的反称性矛盾. **更正** 于是 有  $\gamma \in \gamma$ , 亦即在偏序集  $(\alpha, \leq)$  中  $\gamma < \gamma$ , 这同 < 的涵义 (≤ 但  $\neq$ ) 矛盾. 感谢王东 瀚指正.
- **◇ 第 18 页, 倒数第 10 行 原文** 而性质... 是容易的. **更正** 而且使性质... 成立, 这是容易的.
- $\diamond$  第 19 页, 倒数第 5 行
   原文
    $a_{\alpha} \notin C_{\alpha}$  更正
    $a_{\alpha} \notin \{a_{\beta}\}_{\beta < \alpha}$  感谢胡旻杰指正
- ◆ 第 23 页, 第 5 行
   原文
   由于 α 无穷...
   更正
   由于 Ν<sub>α</sub> 无穷...
   感谢王东瀚指正.
- $\diamond$  **第 26 页, 第一章习题 5** 将题目中的三个  $\mathbb{Z}_{\geq 1}$  全改成  $\mathbb{Z}_{\geq 0}$ .
- **◇ 第 38 页, 第 12 行 (命题 2.2.10 证明)** 将两个箭头的方向调换. 感谢尹梓僮指正.
- ◇ 第 38 页, 第 14 行 原文 由此导出对象和自然变换的同构概念, 其逆若存在则唯一. 更正 其逆若存在则唯一, 依此定义何谓对象间或函子间的同构. 感谢王 猷指正.

- ◆ 第 42 页, 倒数第 2 行 原文 … 同构. Z(…) ≃… 更正 … 同构 Z(…) ≃… 感谢
   王东瀚指正.
- $\diamond$  第 49 页, 倒数第 9 行
   原文
   由此得到伴随对  $(D^{op}, D, \varphi)$ .
   更正
   由此得到伴随

   对  $(D^{op}, D, \varphi^{-1})$ .
   感谢王东瀚指正.

感谢蒋之骏指正

◇第54页最后 更正 图表微调成



兴许更易懂.

感谢熊锐提供意见.

- ◇ 第 56 页, 倒数第 13 行原文 $\epsilon'(FG\epsilon')(F\eta G)$ 更正 $\epsilon'(FG\epsilon'')(F\eta G)$ (严格来说, 这行里的所有  $\epsilon$  都应该改作  $\epsilon$ .)感谢张好风指正
- $\diamond$  第 61 页, 第 2-3 行
   原文
    $\varprojlim(\alpha(S)), \varprojlim(\beta(S))$  更正
    $\varprojlim(\alpha(S)), \varprojlim(\beta(S))$  息

   谢巩峻成指正
- $\diamond$  第 65 页, 定理 2.8.3 陈述
   原文
   所有子集  $J \subset Ob(I)$  (出现两次)
   更正
   所有子

   集  $J \subset Mor(I)$  感谢卢泓澄和指正
- ◇第66页,第1行 余完备当且仅当它有所有"余"等化子和小余积. 感谢巩峻成指正
- $\diamond$  第 67 页, 第 7 行原文f(x)h(y)更正f(x)g(y)感谢巩峻成指正
- $\diamond$  **第 77 页**, (3.8) 和 (3.9) 将交换图表中的  $\lambda_2^{-1}$  和  $\rho_2^{-1}$  分别改成  $\lambda_2$  和  $\rho_2$ , 相应地将箭头反转.
- $\diamond$  第 77 页, 倒数第 8 和倒数第 6 行 将  $\xi_F:F(\cdot) imes F(\cdot)$  改成  $\xi_F:F(\cdot)\otimes F(\cdot)$ . 将  $\eta_F:F(\cdot\otimes\cdot) o F(\cdot)$  改成  $\eta_F:F(\cdot\otimes\cdot) o F(\cdot)$ . 感谢巩峻成指正
- **第78页,第1行** 原文
   使得下图...
   更正
   使得  $\theta_{1_1}$  为同构,而且使下图...

   图表之后接一句 "作为练习,可以证明对标准的  $\varphi_F$  和  $\varphi_G$  必然有  $\varphi_G = \theta_{1_1}\varphi_F$ ."

   后续另起一段.

◇ 第84 页, 第2 行 原文 定义结合约束 更正 定义交换约束 感谢王东瀚指正

**◇ 第 91 页, 倒数第 6 行** "对于 2-范畴"后加上逗号.

感谢巩峻成指正

◇ 第 94 页, 习题 5 倒数第 2 行 原文 Yang-Baxter 方程. 更正 杨-Baxter 方程.

◇第102页,第6行 原文 它们仅与... 更正 前者仅与... 感谢巩峻成指正

◇ 第 109 页, 引理 4.3.4 第 4 行 **原文** → **更正** →

感谢雷嘉乐指正

◇ 第 111 页, 第 8—9 行原文Aut(G) ... Ad(s(h))| $_G$ 更正Aut(N) ... Ad(s(h))| $_N$ 感谢雷嘉乐指正

**⋄第113页倒数第3行,第115页引理4.4.12 原文** 这相当于要求对所有...

更正 这相当于要求 X 非空, 并且对所有...

原文 设X为G-集 更正 设X为非空G-集

感谢郑维喆指正

◇ 第 114 页, 倒数第 1 行原文 $Aut(G_1) \times Aut(G_2)^{op}$ 更正 $Aut(G_1)^{op} \times Aut(G_2)$ 感谢巩峻成指正

 $\diamond$  第 116 页, 第 5 行
 原文
  $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$  更正
  $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$ 

 $\diamond$  第 126 页, 第 6 行
 原文
  $(\cdots)_{i=0}^n$  更正
  $(\cdots)_{i=0}^{n-1}$ 

 $\diamond$  第 130 页, 引理 4.8.6 证明第二行原文 $\varphi_i(x) \in M_i$ 更正 $x \in M_i$  的像感谢点泓澄指正

感谢卢泓澄指正

◇ 第 131 页, 引理 4.8.7 的陈述之后第一行 原文 当A 是群时引理条件... 更正 当每个  $f_i$  都是群之间的单同态时, 引理条件... 感谢卢泓澄指正

感谢巩峻成指正

**◇ 第 132 页, 第 1 — 3 行** 原文 … 仿前段方法定义 (a',x') 使得  $xf_i(a) = f_i(a')x'$ . 置

$$\alpha_i(\xi,\sigma) := \begin{cases} [a''a'; x'x_1, \dots, x_n], & i_1 = i, \\ [a''a'; x', x_1, \dots, x_n], & i_1 \neq i. \end{cases}$$

更正 … 仿前段方法定义下式涉及的  $(a', x') \in A \times H_i$ : 置

$$\alpha_i(\xi,\sigma) := \begin{cases} [a''a';x',x_2,\dots,x_n], & \text{$\sharp$ $\stackrel{}{\to}$ $} xf_i(a)x_1 = f_i(a')x', & i_1 = i, \\ [a''a';x',x_1,\dots,x_n], & \text{$\sharp$ $\stackrel{}{\to}$ $} xf_i(a) = f_i(a')x', & i_1 \neq i. \end{cases}$$

感谢卢泓澄指正

- **\$\phi\$\$ 第 132 页, 倒数第 2, 3** 行 **原文** 假设 A 和每个  $M_i = G_i$  都是群. **更正** 假设 A 和每个  $M_i = G_i$  都是群, 而且  $f_i$  单.
- $\diamond$  第 137 页, 倒数第 12 行原文 $sgn(\sigma) = \pm 1$ 更正 $sgn(\sigma) \in \{\pm 1\}$ 感谢巩峻成指正

- ◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.
- ◇ **第 156 页**, **第 4** 行 **原文** *Ir = rI = I* **更正** *IR = I = RI* 感谢巩峻成指正

- **◇ 第 187 页, 定理 5.7.9 证明 原文**  $\mathbb{Z}[-1]$  (多处) **更正**  $\mathbb{Z}[\sqrt{-1}]$
- $\diamond$  第 188 页,倒数第 5 行  $\overline{\mathbb{R}}$   $\in R[X]$  更正  $\in K[X]$  感谢巩峻成指正
- $\diamondsuit$  第 189 页, 第 17 行原文 $g \in R \cap K[X]^{\times}$ 更正 $g \in R[X] \cap K[X]^{\times}$ 感谢巩峻成指
- **⋄ 第 190 页, 倒数第 2 行的公式** 改成:

 $\bar{b}_k X^k +$  高次项,  $\bar{b}_k \neq 0$ ,

感谢巩峻成指正

- **\$ \$ 191 页, 第 12** 行 将  $(b_1, ..., b_m)$  改成  $(b_1, ..., b_n)$ , 并且将之后的 "留意到..." 一句删除. 感谢巩峻成指正
- **※第 191 页, 第 15 和 16 行** 原文
    $m_{\lambda_1,...,\lambda_n}$  更正
    $m_{\lambda_1,...,\lambda_r}$  

   原文
    $(\lambda_1,...,\lambda_r)$  的所有不同排列.
   更正
    $(\lambda_1,...,\lambda_r,0,...,0)$  的所有不同排列.

   排列 (n 个分量).
   感谢巩峻成指正

- $\diamond$  **第 192 页, 第 1 段最后 1 行 原文** 使  $m_{\lambda}$  落在  $\Lambda_n$  中的充要条件是  $\lambda_1$  (即 Young 图的宽度) 不超过 n. **更正** 如果分拆的长度 r (即 Young 图的高度) 超过给定的 n, 相应的  $m_{\lambda} \in \Lambda_n$  规定为 0.
- $\diamond$  第 192 页, 定义 5.8.1 第二项
   原文
    $\mu_i = \mu_k$  更正
    $\mu_i = \lambda_i$  感谢巩峻成指正
- **第 193 页, 第 2 行和第 5 行** 原文
    $X_{i_1} \cdots X_{i_n}$ .
   更正
    $X_{i_1} \cdots X_{i_k}$ .

   原文
    $\prod_{i=1}^{n} (Y X_i)$ ,
   更正
    $\prod_{i=1}^{n} (Y + X_i)$  感谢巩峻成指正

- **◇第205页,第7行 原文** *M* 作为 *R*/ann(*M*)-模自动是无挠的. **更正** *M* 作为 *R*/ann(*M*)-模的零化子自动是 {0}. **感谢戴懿**韡指正.
- ◇ 第 218 页, 第 13 行原文B(rx,ys) = rB(x,y)s,  $r \in R$ ,  $s \in S$ .更正B(qx,ys) = qB(x,y)s,  $q \in Q$ ,  $s \in S$ .感谢冯敏立指正.
- **◇第220页** 本页出现的 Bil(•ו;•) 都应该改成 Bil(•,•;•), 以和 216 页的符号保持一致.

- ◇ 第 228 页, 倒数第 12 行 原文 粘合为  $y' \to B$  更正 粘合为  $y' \to M$  感谢巩 峻成指正
- ◇第230页,第13行 原文 萃取处 更正 萃取
- **第 235 页底部** 图表中的垂直箭头  $f_i, f_{i-1}$  应改为  $\phi_i, \phi_{i-1}$ .
- $\diamond$  第 236 页, 第 6 行 原文 直和  $\prod_i$  更正 直和  $\bigoplus_i$  感谢巩峻成指正
- $\diamond$  第 237 页, 第 2 行原文存在  $r: M' \to M$ 更正存在  $r: M \to M'$ 感谢雷嘉乐指

- ◇ 第 237 页, 命题 6.8.5 证明第二行 原文 由于 f 满 更正 由于 f 单 感谢巩峻成指正
- $\diamond$  第 237 页, 命题 6.8.5 证明最后两行原文故  $(v) \Rightarrow (i);$  更正故  $(iv) \Rightarrow (i);$
- ◆ 第 240 页, 定义 6.9.3 第二条 原文 … 正合, 则称 I 是内射模. 更正 … 正合, 亦即它保持短正合列, 则称 I 是内射模.
- ◆ **第 244 页, 倒数第 10 行 原文** 下面的引理 6.10.4 **更正** 引理 5.7.4 感谢郑维喆 指正
- **⋄ 第 246 页, 第 2 行和定理 6.10.6, 6.10.7** "交换 Noether 模"应改为 "交换 Noether 环". 两个定理的陈述中应该要求 *R* 是交换 Noether 环. 感谢郑维喆指正

感谢陆睿远指正.

感谢颜硕俣指正

- **◇第247頁,第6—7行 原文** 其长度记为 n + 1. **更正** 其长度定为 n.
- ◇ 第 251 页, 第 6 行原文 $\operatorname{im}(u^{\infty}) = \ker(u^n)$ 更正 $\operatorname{im}(u^{\infty}) = \operatorname{im}(u^n)$ 感谢巩峻成指正
- ◇ **第 251 页起, 第 6.12 节** 术语 "不可分模"似作 "不可分解模"更佳,以免歧义. (第 4 页倒数第 3 行和索引里的条目也应当同步修改) 感谢郑维喆指正
- ◆ 第 252 頁, 第 2 行
   原文
   1 ≤ 1 ≤ n.
   更正
   1 ≤ i ≤ n.
   感谢傅煌指正.
- ◇ **第 255 页, 推论 6.12.9 的证明** 在证明最后补上一句"以上的 ℓ表示模的长度." 感 谢苑之宇指正.
- ⋄ 第 255 页, 第 1 题 原文

$$N = \left\langle \alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j \right\rangle$$

更正

$$N = \left\langle \alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right\rangle$$

感谢郑维喆指正

 $\diamond$  **第 260 页, 倒数第 5 行** 将  $\phi$  : R → A 改为  $\sigma$  : R → A.

感谢雷嘉乐指正

- **◇ 第 270 页, 注记 7.3.6 原文** 秩为 *A*, *B* 的秩之和 更正 秩为 *A*, *B* 的秩之积 感谢汤─鸣指正
- $\diamond$  第 270 页, (7.6) 式 前两项改为  $M_n(A)\otimes M_m(B)\simeq A\otimes M_n(R)\otimes M_m(R)\otimes B$ , 后续不变. 感谢巩峻成指正
- **⋄ 第 274 页, 倒数第 2 行** 将两处  $A^k(M)$  改成  $A^k(X)$ .
- ◇ 第 279 页, 第 12 行
  原文
  T<sup>i</sup>(M)
  更正
  T<sup>n</sup>(M)
  感谢巩峻成指正
- ◆ **第 279 页, 定理 7.5.2 陈述 原文** 唯一的 *R*-模同态... **更正** 唯一的 *R*-代数同态... 感谢巩峻成指正
- **◇ 第 284 頁, 定理 7.6.6** 将定理陈述中的 U 由 "忘却函子" 改成 "映 A 为  $A_1$  的函子", 其余不变. 相应地, 证明第二行的  $\varphi: M \to A$  应改成  $\varphi: M \to A_1$ . 感谢郑维喆指正
- ◇ 第 285 頁, 倒数第 5 行 $T^n_\chi(M) := \{x \in T^n(M) : \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指正
- $\diamond$  **第 286 頁, 定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的  $e_1:$  和  $e_{\rm sgn}:$  皆删去. 感谢郑维喆指正

- **⋄ 第 293 页第 8, 10, 13 行** 将 *M* 都改成 *E*, 共三处.

感谢巩峻成指正

感谢巩峻成指正

- **◇第311页, 命题 8.3.2 证明第4行** 更正 分别取...... 和  $\overline{F}'$  | E' .
- ◆ 第 313 頁, 命题 8.3.9 (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 *I* 非空".感谢郑维喆指正
- $\diamond$  第 315 頁, 定理 8.4.3 (iv)
   原文
   更正
    $\sum_{k=0}^{n}$  感谢郑维喆指正
- ◇ 第 315 页, 倒数第 2 行原文deg  $f(X^p) = pf(X)$ 更正deg  $f(X^p) = p \deg f(X)$ 感谢杨历指正.

- ◇ 第 317 页, 倒数第 13 行 (出现两次)  $\boxed{\text{原文}}$   $\prod_{i=1}^{n}$  …  $\boxed{\text{更正}}$   $\prod_{m=1}^{n}$  …
- ◇ 第 326 页第 4 行 原文 既然纯不可分扩张是特出的 更正 既然纯不可分扩张 对复合封闭 感谢巩峻成指正
- ◇ 第 340 页最后一行
   原文
   于是 Gal(E|K) 确实是拓扑群
   更正
   于是 Gal(E|F) 确

   实是拓扑群
   感谢巩峻成指正
- **◇ 第 343 页, 倒数第 6,7 行** 倒数第 6 行的  $Gal(K|L \cap M) \subset \cdots$  改成  $Gal(L|K) \subset \cdots$ , 另外 倒数第 7 行最后的 "故"字删去. 感谢张好风指正
- $\diamond$  第 348 页, 命题 9.3.6 陈述和证明原文 $\lim_{m \to \infty} \mathbb{Z}/n\mathbb{Z}$ 更正 $\lim_{m \to \infty} \mathbb{Z}/m\mathbb{Z}$ 原文 $\lim_{m \to \infty} \mathbb{Z}/n!\mathbb{Z}$ 更正 $\lim_{m \to \infty} \mathbb{Z}/n!\mathbb{Z}$ 感谢郑维喆和巩峻成指正
- $\diamond$  第 350 页, 第 8 行  $\boxed{\text{原文}}$   $\iff$   $d \mid n$   $\boxed{\text{更正}}$   $\iff$   $n \mid d$

感谢巩峻成指正

◇第352页,第7行
原文
p | n 更正
p ∤ n

感谢郑维喆指正

⋄ **第 355 页**, **第 6** 行  $\bigcirc$  原文 设 $_T$  不可逆  $\bigcirc$  更正  $\bigcirc$  设 $_T$  不可逆

感谢雷嘉乐指正

**⋄第357页,第4行** 删除"= Gal(E|F)".

感谢巩峻成指正

 感谢张好风指正

感谢杨历指正

- ◇ **第 360 页, 定理 9.6.8 陈述** 在 (9.10) 之后补上一句 (不缩进): "证明部分将解释如何 定义 Hom 的拓扑." 感谢张好风指正
- $\diamond$  第 360 页, 定理 9.6.8 证明将证明第三行等号下方的  $\bar{\Gamma} = \Gamma_F/\Gamma$  和上方的文字删除,等号改成  $\stackrel{\text{1:1}}{\longleftrightarrow}$ .感谢杨历和巩峻成指正
- $\diamond$  第 363 页, 倒数第 4 行  $\overline{\mathbb{R}}$   $\eta_{[E:F]}$  更正  $\eta_{[L:F]}$

感谢郑维喆指正

感谢柴昊指正

感谢郑维喆指正

**◇第 368 页, 定理 9.8.2 的表述第一句 原文** 给定子集  $\{0,1\}$   $\subset$   $\mathscr{S}$   $\subset$   $\mathbb{C}$ , 生成的... **更正 )** 给定子集  $\{0,1\}$   $\subset$   $\mathscr{S}$   $\subset$   $\mathbb{C}$ , 基于上述讨论不妨假定  $\mathscr{S}$  对复共轭封闭, 它生成的... **感谢郑维**喆指正

- **今第370页, 习题2**将本题的所有 q 代换成 p, 将"仿照..." 改为"参照", 开头加上"设 p是素数, ..."感谢郑维喆指正
- **\$\phi\$ 372 页, 第 20 题** 条件 (b) 部分的  $P \in F[X]$  改成  $Q \in F[X]$ , 以免符号冲突. 相应地, 提示第一段的 P 都改成 Q. 感谢郑维喆指正
- **◇第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置  $f_k = \sum_{h\geq 0} c_{k,h} t^h$ . 注意到  $\lim_{k\to\infty} \|f_k\| = 0$ , 这确保  $c_h := \sum_{k\geq 0} c_{k,h}$  存在. 我们断言  $f := \sum_{h\geq 0} c_h t^h \in K \langle t \rangle$  并给出  $\sum_{k=0}^{\infty} f_k$ .

对任意  $\epsilon > 0$ , 取 M 充分大使得  $k \ge M \implies \|f_k\| < \epsilon$ , 再取 N 使得当  $0 \le k < M$  而  $h \ge N$  时  $|c_{k,h}| < \epsilon$ . 于是

$$h \ge N \implies (\forall k \ge 0, |c_{k,h}| \le \epsilon) \implies |c_h| \le \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K(t)$ . 其次, 在K(t)中有等式

$$f - \sum_{k=0}^M f_k = \sum_{h \geq 0} \left( c_h - \sum_{k=0}^M c_{k,h} \right) t^h = \sum_{h \geq 0} \underbrace{\left( \sum_{k > M} c_{k,h} \right)}_{|\cdot| < \epsilon} t^h,$$

从而 $f = \sum_{k=0}^{\infty} f_k$ .

感谢高煦指正.

- ◇第397页,条目 V 下第6行
  原文
  w<sub>x,-</sub>
  更正
  w<sub>x,-</sub>
- ◇ 第 398 页, 倒数第 12 行 原文 , 而  $v: K^{\times} \to \Gamma$  是商同态. 更正 . 取  $v: K^{\times} \to \Gamma$  为商同态.
- **◇ 第 400 页, 倒数第 5–6 行** 改为:  $e(w \mid u) = e(w \mid v)e(v \mid u), f(w \mid u) = f(w \mid v)f(v \mid u)$ . 感谢巩峻成指正

- **\$\psi\$\$ 416 页, 定理 10.9.7** 将陈述的第一段修改为: "在所有 W(R) 上存在唯一的一族交换环结构, 使得  $w:W(R)\to\prod_{n\geq 0}R$  为环同态, (0,0,...) 为零元, (1,0,...) 为幺元, 而且: "(换行, 开始表列)

对于表列第二项 ("存在唯一确定的多项式族... 所确定"), 最后补上 "... 所确定, 这些多项式与 *R* 无关."

证明第一段的"群运算"改为"环运算".

◇ 第 417 页, 最后一行 它被刻画为对...