

Dash - arithmetic_sequences arithmetic_sequences

Summary: this document is the subject for the dash @ 42Tokyo.

Contents

Ι	Foreword	2
II	Objective	é
III	Instructions	4
IV	Exercice 00: arithmetic_sequences	5

Chapter I Foreword

Try your hand at some dynamic programming!

Chapter II Objective $Create \ the \ fastest \ {\tt arithmetic_sequences.c.}$ All functions allowed! 3

Chapter III Instructions

- If your program doesn't compile, it's a 0.
- Evaluation will be done on 42 Tokyo's Mac.
- This dash is a solo project.
- Turn in your code inside the turn-in repository.

Chapter IV

Exercice 00: arithmetic_sequences

	Exercise 00	
/	$arithmetic_sequences$	
Turn-in directory : $ex00/$		
Files to turn in : arithme		
Allowed functions: *		

- Given N integers X1, X2, XN, determine how many ways you can choose three numbers such that they are three consecutive terms of an arithmetic sequence.
- In other words how many triplets (i, j, k) are there such that $1 \le i < j < k \le N$ and Xj Xi = Xk Xj.
- (1, 4, 7), (9, 7, 5), (8, 8, 8) are valid triplets as they contain three consecutive terms of an arithmetic sequence. (10, 9, 2), (3, 4, 9) are not.
- Your function should accept 2 variables as input:
 - $\circ\,$ N Length of the integer array arr. (3 $\leq N \leq 100000)$
 - o arr An array of integers X1, X2, ..., XN. $(1 \le Xi \le 30000)$
- Your function should return the number of ways to choose a triplet such that they are three consecutive terms of an arithmetic sequence.

- Example:
 - \circ Input -> N = 10, arr = 3, 5, 3, 6, 3, 4, 10, 4, 5, 2
 - \circ Output -> 9
- Explanation: within arr there are 9 total triplets that can be considered arithmetic sequences.
 - 1: (i, j, k) = (1, 3, 5), (Xi, Xj, Xk) = (3, 3, 3)
 - 2: (i, j, k) = (1, 6, 9), (Xi, Xj, Xk) = (3, 4, 5)
 - 3: (i, j, k) = (1, 8, 9), (Xi, Xj, Xk) = (3, 4, 5)
 - 4: (i, j, k) = (3, 6, 9), (Xi, Xj, Xk) = (3, 4, 5)
 - 5: (i, j, k) = (3, 8, 9), (Xi, Xj, Xk) = (3, 4, 5)
 - 6:(i, j, k) = (4, 6, 10), (Xi, Xj, Xk) = (6, 4, 2)
 - 7: (i, j, k) = (4, 8, 10), (Xi, Xj, Xk) = (6, 4, 2)
 - 8: (i, j, k) = (5, 6, 9), (Xi, Xj, Xk) = (3, 4, 5)
 - 9: (i, j, k) = (5, 8, 9), (Xi, Xj, Xk) = (3, 4, 5)
- Your function must be declared as follows:

size_t ft_smallest_convert_base(size_t N, int *arr);