Министерство образования Республики Беларусь Учреждение образования "БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ"

Факультет компьютерных систем и сетей Кафедра информатики Дисциплина: Методы численного анализа

ОТЧЁТ

к лабораторной работе 9 на тему

Методы Эйлера и Рунге-Кутта

Выполнил: студент группы 053502 Герчик Артём Вадимович

Проверил: Анисимов Владимир Яковлевич

Оглавление

Цели выполнения задания	3
Краткие теоретические сведения	4
Программная реализация	9
Полученные результаты	12
Выводы	20

Цели выполнения задания

1) Изучить решение задачи Коши для обыкновенных дифференциальных уравнений методом Эйлера и методом Рунге-Кутта.

Краткие теоретические сведения

Рассмотрим дифференциальное уравнение y' = f(x,y) с начальным условием $y(x_0) = y_0$. Будем предполагать, что f(x,y) непрерывная и непрерывно дифференцируемая по y функция в окрестности замкнутой области

$$D = \{(x, y) \mid a \le x \le b, c \le y \le d\},\$$

содержащей внутри себя точку (x_0, y_0) .

Требуется решить задачу Коши: найти непрерывно дифференцируемую функцию y=y(x), такую что y'(x)=f(x,y(x)) при всех $x\in [a,b]$ и $y(x_0)=y_0$.

Разобьем отрезок [a, b] с помощью точек разбиения $a = x_0, x_1, ..., x_n = b$ с шагом h = (b-a)/n. Тогда узлы разбиения имеют вид $x_k = x_0 + kh$, $k = \overline{0,n}$. Пусть $y(x_0), y(x_1), ..., y(x_n)$ - значения функции в точках разбиения.

1) Метод Эйлера

Построим рекуррентную последовательность:

$$y_{k+1} = y_k + hf(x_k, y_k),$$
 $k = 0,1...$ (9.1)

$$y_0=y(x_0),$$

которую называют последовательностью Эйлера. Соединяя ломаными все точки (x_k, y_k) , полученные из рекуррентной последовательности Эйлера, получим ломаную линию, приближающую график решения y = y(x). Функция, график которой совпадает с ломаной Эйлера, принимается за приближенное решение задачи Коши.

Точность метода Эйлера на всем отрезке [a, b] будет O(h).

Для повышения точности вычислений иногда используется модифицированный метод Эйлера, в котором рекуррентная последовательность Эйлера вычисляется по формулам

$$y_{k+1} = y_k + hf(x_k + \frac{h}{2}, y_k + \frac{h}{2}f(x_k, y_k)),$$
 $k = 0, 1, ..., n-1.$ (9.2)

Модифицированный метод Эйлера обычно дает более точное приближение решения.

Пример. Пусть требуется решить задачу Коши:

$$\begin{cases} y' = -y, & x \in [0,1] \\ y(0) = 1. \end{cases}$$

Полагая h = 0,2 и используя метод Эйлера, получим, как легко убедиться, из формулы Эйлера (9.1)

$$y_{k+1} = y_k + 0.2 \cdot (-y_k) = 0.8 \cdot y_k$$
.

С другой стороны, используя модифицированный метод Эйлера, получим в силу формулы (2) рекуррентную последовательность $y_{k+1} = y_k + 0.2 \cdot (-y_k) = 0.82 \cdot y_k \ .$

Поскольку точным решением задачи Коши, как легко проверить, является функция $y = e^{-x}$, можно сравнить точность обоих методов.

	0	1	2	3	4	5	
X _k	0	0.2	0.4	0.6	0.8	1	
y_k	1	0.8	0.64	0.64 0.572		0.3277	
$y_k^{{\scriptscriptstyle Mo\partial u} \phi}$	1	0.82	0.6724	0.5514	0.4521	0.3708	
e^{-x}	1	0.8187	0.6703	0.5488	0.4493	0.3679	

Общепризнанным недостатком метода Эйлера является его не достаточно высокая точность. Несомненным достоинством метода Эйлера является его простота.

2) Метод Рунге-Кутта четвертого порядка.

На каждом шаге производится вычисление коэффициентов K_1, K_2, K_3, K_4 :

$$K_1 = hf(x_k, y_k);$$

$$K_2 = hf(x_k + \frac{h}{2}, y_k + \frac{K_1}{2});$$

$$K_3 = hf(x_k + \frac{h}{2}, y_k + \frac{K_2}{2});$$

$$K_4 = hf(x_k + h, y_k + K_3)$$
.

Затем вычисляем

$$y_{k+1} = y_k + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4).$$

Данный метод имеет точность $O(h^4)$ на [a,b].

Рассмотрим пример, который мы использовали для иллюстрации точности метода Эйлера.

Пример. Требуется решить задачу Коши: $\begin{cases} y' = -y \\ y(0) = 1 \end{cases}$ на отрезке [0, 1].

Выберем шаг h = 0,2. Результат вычислений поместим в таблицу.

	0	1	2	3	4	5
x_k	0	0.2	0.4	0.6	0.8	1
y_k	1	0.8187	0.6703	0.5487	0.4493	0.3678
e^{-x}	1	0.8187	0.6703	0.5488	0.4493	0.3679

Таким образом, метод Рунге-Кутта 4-го порядка отличается очень высокой точностью. К определенным его недостаткам относится большая сложность и трудоемкость (на каждом шаге необходимо четырежды вычислять значения функции *f* вместо одного раза в методе Эйлера).

Отметим, что на практике выбирают начальную длину шага h таким образом, чтобы $h^4 < \varepsilon$, где ε - заданная точность вычисления решения. Затем шаг выбирают вдвое меньшим и останавливают вычисления, если разность полученных значений y_k со значениями, полученными при начальном выборе шага меньше ε . В противном случае шаг еще раз уменьшают вдвое и т.д.

Программная реализация

```
# # EXAMPLE 1 #
# def function(x, y):
# return x
# # EXAMPLE 1 #
# # EXAMPLE 2 #
# def function(x, y):
# return x + y
# # EXAMPLE 2 #
# # MAIN TASK #
def function(x, y):
    return (0.7 * (1 - y ** 2)) / ((1 + 1.0) * x ** 2 + y
** 2 + 1)
# # MAIN TASK #
def euler method(func, n, h, x, y):
    for i in range(n):
        y += h * func(x, y)
        x += h
    return x, y
def runge kutta_method(func, n, h, x, y):
    yn = 0
    for i in range(n):
        k1 = h * (func(x, y))
        k2 = h * (func((x + h / 2), (y + k1 / 2)))
        k3 = h * (func((x + h / 2), (y + k2 / 2)))
```

```
k4 = h * (func((x + h), (y + k3)))
       k = (k1 + 2 * k2 + 2 * k3 + k4) / 6
       yn = y + k
       y = yn
       x = x + h
   return x, yn
print("Метод Эйлера и Рунге-Кутта(4-го порядка)\n")
n = 10
h = 0.1
x = 0
y = 0
for i in range(7):
   print()
   print(f'h = {h:.10f}')
   print()
   point, answer = euler method(function, n, h, x, y)
   print('Метод Эйлера')
   print(f'B точке {round(point)} Значение = ', "%.6f" %
answer)
   print()
   print('Метод Рунге-Кутта(4-го порядка)')
   point, answer = runge kutta method(function, n, h, x,
у)
   print(f'B Точке {round(point)} Значение = ', "%.6f" %
answer)
   n *= 10
```

Полученные результаты

Тестовый пример 1

+++++++++++++++++++++++++++++++++++++++
h = 0.0001000000
Метод Эйлера В точке 1 Значение = 0.499950
Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.500000
+++++++++++++++++++++++++++++++++++++++
h = 0.0000100000
Метод Эйлера В точке 1 Значение = 0.499995
Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.500000
+++++++++++++++++++++++++++++++++++++++
h = 0.0000010000
Метод Эйлера В точке 1 Значение = 0.499999
Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.500000
+++++++++++++++++++++++++++++++++++++++
h = 0.0000001000
Метод Эйлера В точке 1 Значение = 0.500000
Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.500000
+++++++++++++++++++++++++++++++++++++++

Исходя из тестов видно, что требуемая точность достигается при h=0.0000001 для метода Эйлера и h=0.1 для метода Рунге-Кутта. Это демонстрирует значительно большую точность метода Рунге-Кутта при решении задачи Коши.

Тестовый пример 2

Метод Эйлера В точке 1 Значение = 0.718146 Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.718282 h = 0.0000100000Метод Эйлера В точке 1 Значение = 0.718268 Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.718282 h = 0.0000010000Метод Эйлера В точке 1 Значение = 0.718280 Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.718282 h = 0.000001000Метод Эйлера В точке 1 Значение = 0.718282 Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.718282

Исходя из тестов видно, что требуемая точность достигается при h = 0.0001 для метода Эйлера и h = 0.1 для метода Рунге-Кутта. Это демонстрирует значительно большую точность метода Рунге-Кутта при решении задачи Коши.

ЗАДАНИЕ

Вариант 7

ЗАДАНИЕ. С помощью метода Эйлера, а затем метода Рунге-Кутта найти с точностью до 0.001 решения следующих уравнений на отрезке [0; 1].

$$y' = \frac{a(1-y^2)}{(1+m)x^2+y^2+1}, y(0) = 0,$$

где значения параметров a и m принимают следующие значения для вариантов k.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14
m	1.0	1.5	2.0	1.0	1.5	2.0	1.0	1.5	2.0	1.0	1.5	2.0	1.0	2.0
а	0.5	0.7	0.9	1.1	1.3	0.5	0.7	0.9	1.1	1.3	0.5	0.7	0.9	1.0

$$y' = \frac{a(1-y^2)}{(1+m)x^2+y^2+1}, \ y(0) = 0, \qquad \varepsilon \partial e \quad m = 1.0, \ a = 0.7$$

Ответ:

Метод Эйлера и Рунге-Кутта(4-го порядка)

h = 0.1000000000

Метод Эйлера

В точке 1 Значение = 0.448969

Метод Рунге-Кутта(4-го порядка)

В Точке 1 Значение = 0.426957

h = 0.0100000000

Метод Эйлера В точке 1 Значение = 0.429154 Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.426957 h = 0.0010000000Метод Эйлера В точке 1 Значение = 0.427177 Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.426957 h = 0.0001000000Метод Эйлера В точке 1 Значение = 0.426979 Метод Рунге-Кутта(4-го порядка) В Точке 1 Значение = 0.426957 h = 0.0000100000Метод Эйлера В точке 1 Значение = 0.426959

Метод Рунге-Кутта(4-го порядка)

Исходя из тестов видно, что требуемая точность достигается при h=0.0001 для метода Эйлера и h=0.1 для метода Рунге-Кутта. Это демонстрирует значительно большую точность метода Рунге-Кутта при решении задачи Коши.

Выводы

Таким образом, в ходе выполнения лабораторной работы были освоены метод Эйлера, метод Рунге-Кутта четвёртого порядка для решения задачи Коши для обыкновенных дифференциальных уравнений. Составлена компьютерная программа, на тестовых примерах проверена правильность её работы, по количеству необходимых для этого отрезков сравнена трудоёмкость методов.