Math 327 Homework 1

Sathvik Chinta

October 7th, 2022

1. For each of the following two sets, find the maximum, minimum, infimum, and supremum if they are defined. Justify your conclusions.

a. $\{1/n \mid n \text{ in } \mathbb{N}\}$

maximum:

The set $\{1/n \mid n \text{ in } \mathbb{N}\}$ consists of values

$$\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \frac{1}{n}\}$$

Notice that $1 > \frac{1}{2} > \frac{1}{3} > \frac{1}{4}, ..., \frac{1}{n}$. Thus, this set is strictly decreasing. Therefore, the maximum of this set is 1.

minimum:

There is no minimum for this set. This is because for any 1/n, 1/(n+1) is also in the set and smaller in value.

infimum:

For any $\frac{1}{n} \in \mathbb{N}$, $0 < \frac{1}{n}$. If there is an $\epsilon > 0$, we can find an $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$ by the Archimedean principle. Thus, the infimum of this set is 0.

supremum:

The defintion of the supremum of a set is the least upper bound of the set. In other words, if there is an upper bound b for the set, $b \ge x$ for all x in the set. Since the maximum of this set is 1, the supremum of this set is also 1. Any value less than 1 is not an upper bound for the set since 1 is in the set, while any value greater than 1 is not the least upper bound for the set since 1 is a smaller upper bound.

b. $\{x \text{ in } \mathbb{R} \mid x^2 < 2\}$

maximum

The set $\{x \text{ in } \mathbb{R} \mid x^2 < 2\}$ contains an infinite number of values. Thus, there is no maximum for this set since for any potential maximum x in the set, there exists some real number $q < \sqrt{2}$ such that x < q.

minimum:

The set $\{x \text{ in } \mathbb{R} \mid x^2 < 2\}$ contains an infinite number of values. Thus, there is no minimum for this set since for any potential minimum x in the set, there exists some real number $q > -\sqrt{2}$ such that x > q.

infimum

The infimum of this set is $-\sqrt{2}$. This is because $-\sqrt{2} \le x$ for all x in the set. Any value greater than $-\sqrt{2}$ (which we denote as x) is not a lower bound for the set because there must exist some real number q in the set such that $-\sqrt{2} < q < x$ for all x.

supremum

The supremum of this set is $\sqrt{2}$. This is because $\sqrt{2} \ge x$ for all x in the set. Any value less than $\sqrt{2}$ (which we denote as x) is not an upper bound for the set because there must exist some real number q in the set such that $x < q < \sqrt{2}$ for all x.

2. a. Prove that if n is a natural number, then $2^n > n$.

We prove by induction. The base case is n = 1. Then $2^1 = 2 > 1$. Thus, the base case is true. Now, assume that $2^k > k$ for some $k \in \mathbb{N} < n$. We must show that $2^{k+1} > k+1$.

$$2^k > k$$

multiply both sides by 2

$$2 * 2^k > 2 * k$$

 $2^{k+1} > 2 * k$

Now, we prove that 2 * k > k + 1. We prove by induction. The base case is k = 1. Then 2 * 1 = 2 > 1 + 1. Thus, the base case is true.

Now, assume that 2*g > g+1 for all $g \in \mathbb{N} < k$. We must show that 2*(g+1) > (g+1)+1. This is equivalent to showing that 2g+2 > g+2.

$$2*g > g+1$$

add 2 to both sides

$$2*g+2>g+3$$

Since g+3>g+2 for all $g\in\mathbb{N},$ we have that 2g+2>g+2 for all $g\in\mathbb{N}.$

Thus, 2*k > k+1. Since 2*k > k+1 for all $k \in \mathbb{N}$, we have that $2^{k+1} > 2*(k+1)$ for all $k \in \mathbb{N}$.

Thus, $2^n > n$ for all $n \in \mathbb{N}$.

b. Prove that n is a natural number, then

$$n = 2^{k_0} l_0$$

for some odd natural number l_0 and some nonnegative integer k_0 . (Hint: if n is odd, let k=0 and l=n; if n is even, let $A=\{k \text{ in } \mathbb{N} \mid n=2^k l \text{ for some l in } \mathbb{N}.\}$ By (a), $A\subseteq\{1,2,...,n\}$. Choose k_0 to be the maximum of A.)

We prove by induction. The base case is n = 1. Then $1 = 2^{0}1$. Thus, the base case is true.

We assume that this is true for some g in $\mathbb{N} < n$. Thus, $g = 2^{k_0} l_0$ for some odd natural number l_0 and some nonnegative integer k_0 . We must show that this is true for g + 1 as well.

If g + 1 is odd, then

$$g + 1 = 2^0(g+1)$$

Since 0 is a nonnegative integer and g + 1 is odd.

If g+1 is even, then $\frac{g+1}{2}$ is some integer as well. By our hypothesis, $\frac{g+1}{2}=2^{k_0}l_0$ for some odd natural number l_0 and some nonnegative integer k_0 . Thus,

$$\frac{g+1}{2} = 2^{k_0} l_0$$
$$g+1 = 2^{k_0+1} l_0$$

Since $k_0 + 1$ is a nonnegative integer and l_0 is an odd natural number, the statement is true for g + 1 as well.

Thus, $n=2^{k_0}l_0$ for some odd natural number l_0 and some nonnegative integer k_0 for all $n \in \mathbb{N}$.

3. A real number of the form $m/2^n$ where m and n are integers, is called a dyadic rational. Prove that the set of dyadic rationals is dense in \mathbb{R} .