Marcus Deans (md374)

BaseMarkov Benchmark.java Results:

time	source	#chars			
0.170	487614	2000			
0.269	487614	4000			
0.631	487614	8000			
1.260	487614	16000			
2.486	487614	32000			
0.324	487614	4096			
0.645	975228	4096			
0.967	1462842	4096			
1.284	1950456	4096			
1.608	2438070	4096			
1.917	2925684	4096			
2.274	3413298	4096			
2.581	3900912	4096			
2.905	4388526	4096			
3.230	4876140	4096			

These timings support the O(NT) analysis very well. As can be observed with tests in which the training text N remained constant at size 487614, while the number of characters T was doubled for each test, the time approximately doubled in each test, with this relation being more pronounced and precise as T increased in magnitude. The relationship similarly held true for the second set of tests in which the number of characters T remained constant at 4096, while the size of the training text N constantly increased in size such that $N_x = 487614x \mid x \in Z^+$ where x represents the test number. The finite differences between the times indicated a product relationship as opposed to addition, with the proportionate time increasing beyond actual difference in magnitude of N_x and N_{x-1} . Therefore, the data showed that the O(NT) analysis was accurate for BaseMarkov.

EfficientMarkov Benchmark.java Results:

time	source	#chars
0.080	487614	2000
0.106	487614	4000
0.092	487614	8000
0.086	487614	16000
0.086	487614	32000
0.075	487614	4096
0.187	975228	4096
0.240	1462842	4096
0.323	1950456	4096

0.405	2438070	4096
0.544	2925684	4096
0.864	3413298	4096
1.012	3900912	4096
1.047	4388526	4096
1.435	4876140	4096

These timings similarly support the O(N+T) Analysis for EfficientMarkov. As with BaseMarkov, the same N and T values were held constant and increased at certain rates in the manner as outlined above. The miniscule differences in time in the first set of tests (Constant N) despite T doubling indicates that the difference in T was of insufficient magnitude to significantly affect the time to compute, thus supporting the addition argument. With the large magnitude of N added to an increasing but still small magnitude value of T, N predominated which lead the timing remaining relatively constant. This supports the O(N+T) analysis which is the situation in which this predomination could actually occur. The findings for the second set of test (Constant T) had similar results, with much smaller differences in the time to compute compared to that of BaseMarkov. The results indicated that addition was being performed as opposed to multiplication, thus supporting the analysis of O(N+T) for Efficient Markov.