

Máster en Programación avanzada en Python para Big Data, Hacking y Machine Learning

Programación Python para Big Data



## ÍNDICE

- ✓ Introducción
- Objetivos
- ✓ PyCaret te automatiza muchas cosas en una sola línea
- ✓ PyCaret te aporta mucha información
- ✓ Kaggle: Nueva predicción para el Titanic DataSet

# **INTRODUCCIÓN**

En esta lección haremos una breve introducción a PyCaret y al AutoML

### **OBJETIVOS**

Al finalizar esta lección serás capaz de:

- 1 Trabajar con PyCaret para Clasificación binaria
- 2 Conocer más algoritmos de Clasificación
- 3 Entender de la importancia del AutoML en Data Science

#### PyCaret te automatiza muchas cosas en una sola línea

#### step 4 - compare\_models()

In [7]: # k-Fold cross validation
# este concepto mejor esperar a Machine Learning por la explicación técnica
compare\_models()

|          | Model                           | Accuracy | AUC    | Recall | Prec.  | F1     | Kappa  | MCC    | TT (Sec) |
|----------|---------------------------------|----------|--------|--------|--------|--------|--------|--------|----------|
| gbc      | Gradient Boosting Classifier    | 0.8412   | 0.8831 | 0.6966 | 0.8460 | 0.7601 | 0.6436 | 0.6534 | 0.2680   |
| lightgbm | Light Gradient Boosting Machine | 0.8332   | 0.8810 | 0.7190 | 0.8140 | 0.7560 | 0.6310 | 0.6396 | 0.3110   |
| rf       | Random Forest Classifier        | 0.8315   | 0.8830 | 0.7666 | 0.7804 | 0.7674 | 0.6358 | 0.6416 | 0.4280   |
| Ir       | Logistic Regression             | 0.8250   | 0.8723 | 0.7271 | 0.7876 | 0.7510 | 0.6169 | 0.6225 | 1.8440   |
| et       | Extra Trees Classifier          | 0.8186   | 0.8622 | 0.7318 | 0.7769 | 0.7480 | 0.6070 | 0.6132 | 0.3830   |
| ridge    | Ridge Classifier                | 0.8106   | 0.0000 | 0.7134 | 0.7622 | 0.7330 | 0.5867 | 0.5910 | 0.0230   |
| lda      | Linear Discriminant Analysis    | 0.8074   | 0.8598 | 0.6962 | 0.7686 | 0.7249 | 0.5776 | 0.5843 | 0.0580   |
| ada      | Ada Boost Classifier            | 0.8042   | 0.8524 | 0.7186 | 0.7467 | 0.7263 | 0.5746 | 0.5802 | 0.2020   |
| dt       | Decision Tree Classifier        | 0.7946   | 0.7744 | 0.7184 | 0.7191 | 0.7155 | 0.5553 | 0.5580 | 0.0310   |
| knn      | K Neighbors Classifier          | 0.7047   | 0.7318 | 0.5059 | 0.6075 | 0.5488 | 0.3339 | 0.3381 | 0.0750   |
| svm      | SVM - Linear Kernel             | 0.6875   | 0.0000 | 0.7180 | 0.6163 | 0.6238 | 0.3768 | 0.4152 | 0.0310   |
| nb       | Naive Bayes                     | 0.6629   | 0.7913 | 0.1152 | 0.7583 | 0.1977 | 0.1128 | 0.1940 | 0.0270   |
| qda      | Quadratic Discriminant Analysis | 0.6339   | 0.5963 | 0.4561 | 0.5398 | 0.4522 | 0.1996 | 0.2010 | 0.0470   |

Out[7]: GradientBoostingClassifier(ccp\_alpha=0.0, criterion='friedman\_mse', init=None, learning\_rate=0.1, loss='deviance', max\_depth=3, max\_features=None, max\_leaf\_nodes=None, min\_impurity\_decrease=0.0, min\_impurity\_split=None,

### PyCaret te aporta mucha información

#### step 6 - evaluate\_model() para el mejor

In [21]: evaluate\_model(tune\_lightgbm\_acc)

| Plot Type: | Hyperparameters               | AUC              | Confusion Matrix  | Threshold          | Precision Recall   |  |
|------------|-------------------------------|------------------|-------------------|--------------------|--------------------|--|
|            | Prediction Error Class Report |                  | Feature Selection | Learning Curve     | Manifold Learning  |  |
|            | Calibration Curve             | Validation Curve | Dimensions        | Feature Importance | Feature Importance |  |
|            | Decision Boundary             | Lift Chart       | Gain Chart        | Decision Tree      |                    |  |



#### Kaggle: Nueva predicción para el Titanic DataSet



#### MUCHAS GRACIAS POR SU ATENCIÓN











