日本国特許庁 JAPAN PATENT OFFICE

26. 1. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 2月 3日

出 願 番 号 Application Number:

特願2004-026478

[ST. 10/C]:

[JP2004-026478]

出 顯 人 Applicant(s):

ナトコ株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月 4日

i) (")

【書類名】 特許願 【整理番号】 2003NA0011 【提出日】 平成16年 2月 3日 【あて先】 特許庁長官殿 【国際特許分類】 B41M 5/40 【発明者】 【住所又は居所】 愛知県名古屋市瑞穂区二野町8番3号 ナトコ株式会社内 【氏名】 寺西 茂和 【発明者】 【住所又は居所】 愛知県名古屋市瑞穂区二野町8番3号 ナトコ株式会社内 【氏名】 横山 法緒 【特許出願人】 【識別番号】 392007566 【氏名又は名称】 ナトコ株式会社 【代理人】 【識別番号】 100104167 【弁理士】 【氏名又は名称】 奥田 誠 【連絡先】 052 - 218 - 7161【選任した代理人】 【識別番号】 100097009 【弁理士】 【氏名又は名称】 富澤 孝 【選任した代理人】 【識別番号】 100098431 【弁理士】 【氏名又は名称】 山中 郁生 【選任した代理人】 【識別番号】 100105751 【弁理士】 【氏名又は名称】 岡戸 昭佳 【手数料の表示】 【予納台帳番号】 052098 【納付金額】 21,000円

特許請求の範囲 1

明細書 1

要約書 1

図面 1

【提出物件の目録】 【物件名】

【物件名】

【物件名】

【物件名】

【書類名】特許請求の範囲

【請求項1】

ポリジメチルシロキサン系共重合体を有する耐熱滑性コーティング剤であって、

上記ポリジメチルシロキサン系共重合体は、炭素数が12以上の長鎖アルキル基を有してなる

耐熱滑性コーティング剤。

【請求項2】

請求項1に記載の耐熱滑性コーティング剤であって、

前記ポリジメチルシロキサン系共重合体のうち、前記炭素数が12以上の長鎖アルキル 基が占める重量割合を、10wt%以上42wt%以下としてなる

耐熱滑性コーティング剤。

【請求項3】

請求項1に記載の耐熱滑性コーティング剤であって、

前記ポリジメチルシロキサン系共重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が12以上の長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下としてなる

耐熱滑性コーティング剤。

【請求項4】

請求項1~請求項3のいずれか一項に記載の耐熱滑性コーティング剤であって、

樹脂からなるバインダを含んでなる

耐熱滑性コーティング剤。

【請求項5】

請求項1~請求項4のいずれか一項に記載の耐熱滑性コーティング剤であって、

前記ポリジメチルシロキサン系共重合体は、

少なくとも、炭素数が12以上の長鎖アルキル基含有ビニル単量体と、片末端に重合性ビニル基を含むポリジメチルシロキサン化合物とを共重合させてなるポリジメチルシロキサン系グラフト共重合体である

耐熱滑性コーティング剤。

【請求項6】

請求項1~請求項4のいずれか一項に記載の耐熱滑性コーティング剤であって、

前記ポリジメチルシロキサン系共重合体は、

アゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、上記ア ゾ基含有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキル基含有ビニ ル単量体とを共重合させてなるポリジメチルシロキサン系ブロック共重合体である 耐熱滑性コーティング剤。

【請求項7】

請求項1~請求項6のいずれか一項に記載の耐熱滑性コーティング剤であって、

シリコン成分を、前記ポリジメチルシロキサン系共重合体の分子中にのみ含有してなる 耐熱滑性コーティング剤。

【請求項8】

表面と裏面とを有する基材フィルムと、

上記基材フィルムの上記表面上に形成されたインキ層と、

上記基材フィルムの上記裏面上に形成された耐熱滑性保護層と、

を備える熱転写記録媒体であって、

上記耐熱滑性保護層は、炭素数が12以上の長鎖アルキル基を含有するポリジメチルシロキサン系共重合体を有してなる

熱転写記録媒体。

【請求項9】

請求項8に記載の熱転写記録媒体であって、

前記ポリジメチルシロキサン系共重合体のうち、前記炭素数が12以上の長鎖アルキル

出証特2005-3018178

【請求項10】

請求項8に記載の熱転写記録媒体であって、

前記耐熱滑性保護層は、

前記ポリジメチルシロキサン系共重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が12以上の長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下として製造した上記ポリジメチルシロキサン系共重合体を有する耐熱滑性コーティング剤を塗工してなる

熱転写記録媒体。

【請求項11】

請求項8~請求項10のいずれか一項に記載の熱転写記録媒体であって、

前記耐熱滑性保護層は、樹脂からなるバインダを含んでなる

熱転写記録媒体。

【請求項12】 請求項8~請求項11のいずれか一項に記載の熱転写記録媒体であって、

前記ポリジメチルシロキサン系共重合体は、

少なくとも、炭素数が12以上の長鎖アルキル基含有ビニル単量体と、片末端に重合性ビニル基を含むポリジメチルシロキサン化合物とを共重合させてなるポリジメチルシロキサン系グラフト共重合体である

熱転写記録媒体。

【請求項13】

請求項8~請求項11のいずれか一項に記載の熱転写記録媒体であって、

前記ポリジメチルシロキサン系共重合体は、

アゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、上記ア ゾ基含有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキル基含有ビニ ル単量体とを共重合させてなるポリジメチルシロキサン系ブロック共重合体である 熱転写記録媒体。

【請求項14】

請求項8~請求項13のいずれか一項に記載の熱転写記録媒体であって、

前記耐熱滑性保護層は、シリコン成分を、前記ポリジメチルシロキサン系共重合体の分子中にのみ含有してなる

熱転写記録媒体。

【書類名】明細書

【発明の名称】耐熱滑性コーティング剤、及び熱転写記録媒体

【技術分野】

[0001]

本発明は、基材の表面に耐熱滑性保護層を形成できる耐熱滑性コーティング剤、及び基材フィルムの表面に上記耐熱滑性コーティング剤を塗布することにより形成した耐熱滑性保護層を有し、裏面に感熱性インキ層を有する熱転写記録媒体に関する。

【背景技術】

[0002]

従来より、熱転写記録媒体として、基材フィルムの表面に耐熱滑性保護層を形成し、裏面に感熱性インキ層を形成したものが提案されている。これらの熱転写記録媒体では、サーマルヘッドと接触する基材フィルムの表面に耐熱滑性保護層を形成することにより、スティッキングの防止を図っている。ここで、スティッキングとは、サーマルヘッドの熱により基材フィルムが部分的に溶融し、その溶融物がサーマルヘッドに固着したり、基材フィルムに皴が生じたりすることにより、熱転写記録媒体の搬送不良が発生してしまう現象をいう。(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照)。

[0003]

【特許文献1】特公平05-39796号公報

【特許文献2】特公平06-33006号公報

【特許文献3】特開平02-274596号公報

【特許文献4】特開平10-297123号公報

[0004]

特許文献1では、炭素数12以上の高級アルコールのアクリル酸エステルあるいはメタクリル酸エステルを1モル%ないし100モル%含有する重合体を含む塗工剤を硬化させて、耐熱滑性保護層を形成している。

特許文献2では、炭素数12以上の高級アルコールのアクリル酸エステルあるいはメタクリル酸エステルと、熱硬化性官能基を有するアクリル酸エステルあるいはメタクリル酸エステル誘導体よりなる単量体を含む共重合体を、熱またはラジカル重合で硬化させることにより、耐熱滑性保護層を形成している。

[0005]

しかしながら、特許文献1及び特許文献2の熱転写記録媒体では、十分な滑性を得ることが困難であり、十分にスティッキングを防止できなかった。これに対し、滑性を良好とするべく、炭素数12以上の高級アルコールのアクリル酸エステルあるいはメタクリル酸エステル成分の割合を多くすると、炭素数12以上の高級アルコールのアクリル酸エステルあるいはメタクリル酸エステルあるいはメタクリル酸エステルの未反応成分が、耐熱滑性保護層に多く含まれてしまうこととなる。このため、スティッキングが発生し易くなり、また、ガラス転移点が低下することによりブロッキング(例えば、熱転写記録媒体を巻き取り、耐熱滑性保護層とインク層とが密着したとき、耐熱滑性保護層に含まれている成分がインク層の表面に移行して付着してしまう現象をいう、以下同じ)が発生してしまう虞があった。

【発明の開示】

【発明が解決しようとする課題】

[0006]

これに対し、特許文献3では、ポリジメチルシロキサン系グラフト共重合体を含むスティッキング防止剤を塗工して耐熱滑性保護層を形成しており、特許文献4では、ポリジメチルシロキサン系プロック共重合体を含むスティッキング防止剤を塗工して耐熱滑性保護層を形成している。このように、特許文献3及び特許文献4では、シリコン成分を含有する共重合体を用いることで、特許文献1及び特許文献2に比して、滑性を良好としている

ところが、特許文献3及び特許文献4の熱転写記録媒体では、シリコン成分を含有させることにより耐熱滑性保護層の強度が低下するので、サーマルヘッドとの摩擦、熱軟化に

より、耐熱滑性保護層が削られてカスが発生し、さらには、このカスがサーマルヘッドに 付着、融着してしまう虞があった。これにより、印字にスジが入ったり、印字が不鮮明に なるなどの印刷不良が生じる虞があった。

[0007]

本発明は、かかる現状に鑑みてなされたものであって、耐熱性及び滑性が良好で、且つ 、サーマルヘッドによる削りカスの発生及びサーマルヘッドへの削りカスの付着・融着が 発生する虞の小さい耐熱滑性保護層を形成できる耐熱滑性コーティング剤、及び上記耐熱 滑性保護層を有する熱転写記録媒体を提供することを目的とする。

【課題を解決するための手段】

[0008]

その解決手段は、ポリジメチルシロキサン系共重合体を有する耐熱滑性コーティング剤 であって、上記ポリジメチルシロキサン系共重合体は、炭素数が12以上の長鎖アルキル 基を有してなる耐熱滑性コーティング剤である。

[0009]

本発明の耐熱滑性コーティング剤は、ポリジメチルシロキサン系共重合体を有する耐熱 滑性コーティング剤であり、このポリジメチルシロキサン系共重合体が、炭素数が12以 上の長鎖アルキル基を有している。このような耐熱滑性コーティング剤を用いることによ り、耐熱性及び滑性が良好で、且つ、サーマルヘッドによる削りカスの発生及びサーマル ヘッドへの削りカスの付着・融着が発生(以下、ヘッドカスの発生ともいう)し難い耐熱 滑性保護層を形成することが可能となる。すなわち、本発明の耐熱滑性コーティング剤を 用いることで、耐熱性及び滑性が良好で、且つ、ヘッドカスが発生し難い熱転写記録媒体 を得ることができる。

[0010]

なお、本発明の耐熱滑性コーティング剤に含まれる共重合体は、グラフト共重合体、プ ロック共重合体等、いずれの構造の共重合体でも良く、さらに、2種以上の異なる構造の 共重合体が混在していても良い。

また、本発明の耐熱滑性コーティング剤は、上記のポリジメチルシロキサン系共重合体 の他、バインダ樹脂、溶剤等を含有していても良い。

[0011]

さらに、上記の耐熱滑性コーティング剤であって、前記ポリジメチルシロキサン系共重 合体のうち、前記炭素数が12以上の長鎖アルキル基が占める重量割合を、10wt%以 上42wt%以下としてなる耐熱滑性コーティング剤とすると良い。

$[0\ 0\ 1\ 2]$

本発明の耐熱滑性コーティング剤は、炭素数が12以上の長鎖アルキル基の重量割合を 10wt%以上42wt%以下としたポリジメチルシロキサン系共重合体を有している。 このような耐熱滑性コーティング剤は、耐熱性及び滑性が良好で、且つ、サーマルヘッド による削りカスの発生及びサーマルヘッドへの削りカスの付着・融着が発生する虞の小さ い耐熱滑性保護層を、好適に形成することができる。

[0013]

あるいは、前記の耐熱滑性コーティング剤であって、前記ポリジメチルシロキサン系共 重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が12以上の 長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下と してなる耐熱滑性コーティング剤とすると良い。

[0014]

本発明の耐熱滑性コーティング剤は、共重合反応に用いる単量体のうち、炭素数が12 以上の長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt% 以下として製造したポリジメチルシロキサン系共重合体を有している。このようなポリジ メチルシロキサン系共重合体を有する耐熱滑性コーティング剤は、耐熱性及び滑性が良好 で、且つ、ヘッドカスが発生する虞の小さい耐熱滑性保護層を、好適に形成することがで きる。詳細には、炭素数が12以上の長鎖アルキル基含有ビニル単量体が占める重量割合 を 1 5 w t %以上とすることで、ヘッドカスの発生を効果的に抑制することができる。また、上記長鎖アルキル基含有ビニル単量体が占める割合を 5 5 w t %以下とすることで、未反応単量体を抑制し、ブロッキングの発生を効果的に抑制することができる。

なお、炭素数が12以上の長鎖アルキル基含有ビニル単量体としては、例えば、ラウリルメタクリレート(炭素数12)、ステアリルメタクリレート(炭素数18)、ベヘニルメタクリレート(炭素数22)などが挙げられる。これらは、1種に限らず、2種以上含まれていても良い。

[0015]

あるいは、前記の耐熱滑性コーティング剤であって、前記ポリジメチルシロキサン系共 重合体は、炭素数が16以上20以下の長鎖アルキル基を有してなる耐熱滑性コーティン グ剤とするのが好ましい。

[0016]

このような耐熱滑性コーティング剤は、耐熱性及び滑性に優れ、スティッキング、裏移り、ブロッキングが発生する虞が極めて小さく、且つ、ヘッドカスが発生する虞が小さい耐熱滑性保護層を形成することが可能となる。特に、ポリジメチルシロキサン系共重合体に炭素数が18の長鎖アルキル基を含有させることにより、スティッキング、裏移り、ブロッキング、及びヘッドカスの発生を最も有効に抑制することができる。なお、裏移りとは、熱転写記録媒体を製造する過程において、耐熱滑性保護層を形成した後、熱転写記録媒体を巻き取ると、耐熱滑性保護層に含まれている未反応成分が、後にインク層を形成する基材フィルムの表面に移行して付着してしまう現象をいう。

[0017]

さらに、上記の耐熱滑性コーティング剤であって、前記ポリジメチルシロキサン系共重合体のうち、前記炭素数が16以上20以下の長鎖アルキル基が占める重量割合を、10wt%以上42wt%以下としてなる耐熱滑性コーティング剤とするとより好ましい。

[0018]

このような耐熱滑性コーティング剤は、耐熱性及び滑性に優れ、スティッキング、裏移り、ブロッキングが発生する虞が極めて小さく、且つ、ヘッドカスが発生する虞が小さい耐熱滑性保護層を、好適に形成することができる。特に、ポリジメチルシロキサン系共重合体に、炭素数が18の長鎖アルキル基を10wt%以上42wt%以下含有させることにより、スティッキング、裏移り、ブロッキング、及びヘッドカスの発生を最も有効に抑制することができる。

[0019]

あるいは、前記の耐熱滑性コーティング剤であって、前記ポリジメチルシロキサン系共重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が16以上20以下の長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下としてなる耐熱滑性コーティング剤とするとより好ましい。

[0020]

このようなポリジメチルシロキサン系共重合体を有する耐熱滑性コーティング剤は、耐熱性及び滑性に優れ、スティッキング、裏移り、ブロッキングが発生する虞が極めて小さく、且つ、ヘッドカスが発生する虞が小さい耐熱滑性保護層を、好適に形成することができる。詳細には、炭素数が16以上20以下の長鎖アルキル基含有ビニル単量体が占める重量割合を15wt%以上とすることで、ヘッドカスの発生を効果的に抑制することができる。また、上記長鎖アルキル基含有ビニル単量体が占める割合を55wt%以下とすることで、未反応単量体を抑制し、ブロッキングの発生を効果的に抑制することができる。

特に、共重合反応に用いる単量体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下とすることにより、スティッキング、裏移り、プロッキング、及びヘッドカスの発生を最も有効に抑制することができる

[0021]

さらに、上記いずれかの耐熱滑性コーティング剤であって、樹脂からなるバインダを含

んでなる耐熱滑性コーティング剤とすると良い。

[0022]

本発明の耐熱滑性コーティング剤は、樹脂からなるバインダを含んでいる。このような 耐熱滑性コーティング剤を用いることにより、耐熱滑性保護層の強度を向上させることが でき、サーマルヘッドによる削りカスの発生及びサーマルヘッドへの削りカスの付着・融 着が発生する虞を、より一層小さくできる。

[0023]

さらに、上記いずれかに記載の耐熱滑性コーティング剤であって、前記ポリジメチルシ ロキサン系共重合体は、少なくとも、炭素数が12以上の長鎖アルキル基含有ビニル単量 体と、片末端に重合性ビニル基を含むポリジメチルシロキサン化合物とを共重合させてな るポリジメチルシロキサン系グラフト共重合体である耐熱滑性コーティング剤とすると良 V10

なお、片末端に重合性ビニル基を含むポリジメチルシロキサン化合物は、次のような構 造式によって表される。

【化1】

$$CH_{2} = \begin{matrix} CH_{3} & CH_{3} \\ I & I \\ CCOC_{3}H_{6}Si - O \\ II & I \\ O & CH_{3} \end{matrix} \begin{pmatrix} CH_{3} \\ I \\ SiO \\ CH_{3} \\ CH_{3} \end{pmatrix}_{n} SiCH_{3}$$

nは0~64の整数

[0024]

ポリジメチルシロキサン系共重合体を製造するに当たり、単量体同士の反応性が悪い場 合には、耐熱滑性コーティング剤に未反応成分(ポリジメチルシロキサン、ビニル単量体 など)が多く含まれることとなる。このため、このような耐熱滑性コーティング剤を用い て耐熱滑性保護層を形成した場合には、多くの未反応成分が耐熱滑性保護層に含まれてし まう。従って、熱転写記録媒体を製造する過程において、耐熱滑性保護層を形成した後、 熱転写記録媒体を巻き取ると、耐熱滑性保護層に含まれている未反応成分が、後にインク 層を形成する基材フィルムの表面に移行して付着してしまう(以下、この現象を裏移りと もいう)虞があった。このため、その後、基材フィルムの表面に感熱性インキを塗布した 場合に、未反応成分が付着している部分で、インキがはじかれてしまう虞があった。

さらに、熱転写記録媒体を巻き取り、耐熱滑性保護層とインク層とが密着すると、耐熱 滑性保護層に含まれている未反応成分がインク層の表面に移行して付着してしまい(ブロ ッキングが発生し)、その影響で転写不良が生じる虞があった。

[0025]

これに対し、本発明の耐熱滑性コーティング剤に含まれるポリジメチルシロキサン系共 重合体は、少なくとも、炭素数が12以上の長鎖アルキル基含有ビニル単量体と、片末端 に重合性ビニル基を含むポリジメチルシロキサン化合物とを共重合させたグラフト共重合 体である。ポリジメチルシロキサン系グラフト共重合体を製造するに当たり、上記の手法 を用いることにより、単量体同士の反応性が良好となり、未反応成分(ポリジメチルシロ キサン化合物、ビニル単量体)を低減することができる。従って、本発明の耐熱滑性コー ティング剤を用いることにより、耐熱滑性保護層に未反応成分が含まれるのを抑制できる ので、裏移り、プロッキングの発生を抑制することができる。

[0026]

なお、炭素数が12以上の長鎖アルキル基含有ビニル単量体としては、例えば、ラウリ

ルメタクリレート(炭素数12)、ステアリルメタクリレート(炭素数18)、ベヘニルメタクリレート(炭素数22)などを用いることができる。これらは、1種に限らず、2種以上共重合させるようにしても良い。

また、ポリジメチルシロキサン系グラフト共重合体を製造するに当たり、片末端に重合性ビニル基を含むポリジメチルシロキサン化合物、及び炭素数が12以上の長鎖アルキル基含有ビニル単量体に加え、次のようなビニル単量体を併せて共重合させるようにしても良い。

[0027]

共重合可能なビニル単量体としては、例えば、メチルアクリレート、エチルアクリレー ト、n-プロピルアクリレート、iso-プロピルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシルアクリレート、シクロヘ キシルアクリレート、テトラヒドロフルフリルアクリレート、ステアリルアクリレート、 ラウリルアクリレート、メチルメタクリレート、エチルメタクリレート、n-プロピルメタ クリレート、iso-プロピルメタクリレート、n-ブチルメタクリレート、iso-ブチルメタク リレート、2-エチルヘキシルメタクリレート、シクロヘキシルメタクリレート、テトラヒ ドロフルフリルメタクリレート等の脂肪族または環式アクリレートおよび/またはメタク リレート、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、 n-ブチルビニルエーテル、iso-ブチルビニルエーテル等のビニルエーテル類、スチレン、 α-メチルスチレン等のスチレン類、、アクリロニトリル、メタクリロニトリル等のニト リル系単量体、酢酸ビニル、プロピオン酸ビニル等の脂肪酸ビニル、塩化ビニル、塩化ビ ニリデン、弗化ビニル、弗化ビニリデン等のハロゲン含有単量体、エチレン、プロピレン 、イソプレン等のオレフィン類、クロロプレン、ブタジエン等のジエン類、アクリル酸、 メタクリル酸、イタコン酸、マレイン酸、無水マレイン酸、クロトン酸、アトロパ酸、シ トラコン酸等の α , β 一不飽和カルボン酸、アクリルアミド、メタクリルアミド、N , Nーメチロールアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルア ミド、メチルアクリルアミドグリコレートメチルエーテル等のアミド類、N.N-ジメチ ルアミノエチルメタクリレート、N, N-ジエチルアミノエチルメタクリレート、N, N ージメチルアミノプロピルメタクリレート、N, N-ジメチルアミノエチルアクリレート 、N,N-ジエチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリ レート等のアミノ基含有単量体、グリシジルアクリレート、グリシジルメタクリレート、 グリシジルアリルエーテル等のエポキシ基含有単量体、2-ヒドロキシエチルメタクリレー ト、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロ キシプロピルアクリレート、4-ヒドロキシブチルアクリレート、アリルアルコール、カー ジュラEとアクリル酸、メタクリル酸、イタコン酸、マレイン酸、クロトン酸等との反応 物、その他ビニルピロリドン、ビニルピリジン、ビニルカルバゾール等があり、更に加水 分解性シリル基を有するビニル単量体としては、γ-メタクリロキシプロピルトリメトキ シシラン、γーメタクリロキシプロピルトリエトキシシラン、γーメタクリロキシプロピ ルメチルジメトキシシラン、γーメタクリロキシプロピルメチルジエトキシシラン、γー メタクリロキシプロピルメトキシエトキシシラン、ビニルトリメトキシシラン、ビニルト リエトキシシラン等のシランカップリング剤などが挙げられる。なお、上記ビニル単量体 は、一種に限らず、二種以上共重合させるようにしても良い。

[0028]

あるいは、前記いずれかの耐熱滑性コーティング剤であって、前記ポリジメチルシロキサン系共重合体は、アゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、上記アゾ基含有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキル基含有ビニル単量体とを共重合させてなるポリジメチルシロキサン系プロック共重合体である耐熱滑性コーティング剤とすると良い。

なお、アゾ基含有ポリジメチルシロキサンアミドは、次のような構造式によって表される。

【化2】

$$+O = \begin{pmatrix} CH_3 & CH_3 & CH_3 & CH_3 \\ CO(CH_2)_2C - N = N - C(CH_2)_2CONH(CH_2)_3Si(OSi)_x(CH_2)_3NH \\ CN & CN & CH_3 & CH_3 \end{pmatrix}_n$$

xは10~300の整数 nは1~50の整数

[0029]

本発明の耐熱滑性コーティング剤に含まれるポリジメチルシロキサン系共重合体は、ア ゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、このアゾ基含 有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキル基含有ビニル単量 体とを共重合させたブロック共重合体である。ポリジメチルシロキサン系ブロック共重合 体を製造するに当たり、シリコン成分であるアゾ基含有ポリジメチルシロキサンアミドを 開始剤として用いることにより、シリコンが未反応成分として残存することがない。従っ て、本発明の耐熱滑性コーティング剤を用いることにより、耐熱滑性保護層に未反応シリコン成分が含まれることがないので、前述したポリジメチルシロキサン系グラフト共重合 体を含む耐熱滑性コーティング剤よりも、さらに、裏移り、ブロッキングの発生を抑制することができる。

[0030]

なお、炭素数が12以上の長鎖アルキル基含有ビニル単量体としては、前述したグラフト共重合体と同様に、例えば、ラウリルメタクリレート(炭素数12)、ステアリルメタクリレート(炭素数18)、ベヘニルメタクリレート(炭素数22)などを用いることができる。これらは、1種に限らず、2種以上共重合させるようにしても良い。

また、ポリジメチルシロキサン系ブロック共重合体を製造するに当たり、アゾ基含有ポリジメチルシロキサンアミド、及び炭素数が12以上の長鎖アルキル基含有ビニル単量体に加え、前述したグラフト共重合体と同様のビニル単量体を併せて共重合させるようにしても良い。

[0031]

さらに、上記いずれかの耐熱滑性コーティング剤であって、シリコン成分を、前記ポリジメチルシロキサン系共重合体の分子中にのみ含有してなる耐熱滑性コーティング剤とすると良い。

[0032]

本発明の耐熱滑性コーティング剤には、シリコン成分(ポリジメチルシロキサン)が単独で存在(遊離)していない。このため、本発明の耐熱滑性コーティング剤を用いて耐熱滑性保護層を形成することにより、前述したポリジメチルシロキサン系グラフト共重合体を含む耐熱滑性コーティング剤よりも、さらに、裏移り、プロッキングの発生を抑制することができる。

[0033]

このような耐熱滑性コーティング剤は、例えば、トルエン、メチルエチルケトンなどの溶剤中において、アゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、このアゾ基含有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキ

ル基含有ビニル単量体とを共重合させてポリジメチルシロキサン系ブロック共重合体を製造し、さらに、このポリジメチルシロキサン系ブロック共重合体を含む樹脂液にメチルエチルケトンなどの溶剤を加えることによって製造することができる。

[0034]

他の解決手段は、表面と裏面とを有する基材フィルムと、上記基材フィルムの上記表面上に形成されたインキ層と、上記基材フィルムの上記裏面上に形成された耐熱滑性保護層と、を備える熱転写記録媒体であって、上記耐熱滑性保護層は、炭素数が12以上の長鎖アルキル基を含有するポリジメチルシロキサン系共重合体を有してなる熱転写記録媒体である。

[0035]

本発明の熱転写記録媒体は、炭素数が12以上の長鎖アルキル基を含有するポリジメチルシロキサン系共重合体を有する耐熱滑性保護層を設けている。このような耐熱滑性保護層を設けることにより、耐熱性及び滑性を良好とし、且つ、サーマルヘッドによる削りカスの発生及びサーマルヘッドへの削りカスの付着・融着が発生する虞を小さくすることが可能となる。

[0036]

なお、本発明の耐熱滑性保護層は、上記ポリジメチルシロキサン系共重合体の他、バインダ樹脂等を含有していても良い。また、上記ポリジメチルシロキサン系共重合体は、グラフト共重合体、ブロック共重合体等、いずれの構造の共重合体でも良く、さらに、2種以上の異なる構造の共重合体が混在していても良い。

また、耐熱滑性保護層は、上記ポリジメチルシロキサン系共重合体を含む耐熱滑性コーティング剤を、基材フィルムの裏面上に塗工することによって形成できる。なお、この耐熱滑性コーティング剤は、上記の共重合体の他、バインダ樹脂、溶剤等を含有していても良い。

[0037]

また、基材フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド等のエンジニアリングプラスチックのフィルム、セロファン等のプラスチックフィルム、あるいは繊維素誘導体のフィルムなどを用いることができる。

[0038]

さらに、上記の熱転写記録媒体であって、前記ポリジメチルシロキサン系共重合体のうち、前記炭素数が12以上の長鎖アルキル基が占める重量割合を、10wt%以上42wt%以下としてなる熱転写記録媒体とすると良い。

[0039]

本発明の熱転写記録媒体は、炭素数が12以上の長鎖アルキル基の重量割合を10wt%以上42wt%以下としたポリジメチルシロキサン系共重合体を有する耐熱滑性保護層を設けている。このような耐熱滑性保護層を設けることにより、耐熱性及び滑性を良好とし、且つ、ヘッドカスが発生する虞を小さくすることができる。

[0040]

あるいは、前記の熱転写記録媒体であって、前記耐熱滑性保護層は、前記ポリジメチルシロキサン系共重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が12以上の長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下として製造した上記ポリジメチルシロキサン系共重合体を有する耐熱滑性コーティング剤を塗工してなる熱転写記録媒体とすると良い。

[0041]

本発明の熱転写記録媒体では、共重合反応に用いる単量体のうち、炭素数が12以上の 長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下と して製造したポリジメチルシロキサン系共重合体を有する耐熱滑性コーティング剤を塗工 することによって、耐熱滑性保護層を形成している。このようにして形成した耐熱滑性保

[0042]

あるいは、前記の熱転写記録媒体であって、前記ポリジメチルシロキサン系共重合体は、炭素数が16以上20以下の長鎖アルキル基を有してなる熱転写記録媒体とするのが好ましい。

[0043]

この熱転写記録媒体は、炭素数が16以上20以下の長鎖アルキル基を含有するポリジメチルシロキサン系共重合体を有する耐熱滑性保護層を設けている。このような耐熱滑性保護層を設けることにより、耐熱性及び滑性を良好とし、スティッキング、裏移り、プロッキングが発生する旗を小さくし、且つ、ヘッドカスが発生する虞を小さくすることが可能となる。特に、ポリジメチルシロキサン系共重合体に炭素数が18の長鎖アルキル基を含有させることにより、スティッキング、裏移り、ブロッキング、及びヘッドカスの発生を最も有効に抑制することができる。

[0044]

さらに、上記の熱転写記録媒体であって、前記ポリジメチルシロキサン系共重合体のうち、前記炭素数が16以上20以下の長鎖アルキル基が占める重量割合を、10wt%以上42wt%以下としてなる熱転写記録媒体とするとより好ましい。

[0045]

この熱転写記録媒体は、炭素数が16以上20以下の長鎖アルキル基の重量割合を10 w t %以上42w t %以下としたポリジメチルシロキサン系共重合体を有する耐熱滑性保護層を設けている。このような耐熱滑性保護層を設けることにより、耐熱性及び滑性を良好とし、スティッキング、裏移り、ブロッキングが発生する虞を小さくし、且つ、ヘッドカスが発生する虞を極めて小さくすることができる。特に、ポリジメチルシロキサン系共重合体に、炭素数が18の長鎖アルキル基を10w t %以上42w t %以下含有させることにより、スティッキング、裏移り、ブロッキング、及びヘッドカスの発生を最も有効に抑制することができる。

[0046]

あるいは、前記の熱転写記録媒体であって、前記耐熱滑性保護層は、前記ポリジメチルシロキサン系共重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が16以上20以下の長鎖アルキル基含有ビニル単量体が占める重量割合を、15wt%以上55wt%以下として製造した上記ポリジメチルシロキサン系共重合体を有する耐熱滑性コーティング剤を塗工してなる熱転写記録媒体とするとより好ましい。

[0047]

このような耐熱滑性保護層を設けることにより、耐熱性及び滑性を良好とし、スティッキング、裏移り、ブロッキングが発生する虞を小さくし、且つ、ヘッドカスが発生する虞を極めて小さくすることができる。

[0048]

さらに、上記いずれかの熱転写記録媒体であって、前記耐熱滑性保護層は、樹脂からなるバインダを含んでなる熱転写記録媒体とすると良い。

[0049]

本発明の熱転写記録媒体では、バインダ樹脂を含有した耐熱滑性保護層を設けている。 バインダ樹脂を含有させることにより耐熱滑性保護層の強度が向上するので、サーマルヘッドによる削りカスの発生及びサーマルヘッドへの削りカスの付着・融着が発生する虞を 、より一層小さくできる。

[0050]

さらに、上記いずれかの熱転写記録媒体であって、前記ポリジメチルシロキサン系共重合体は、少なくとも、炭素数が12以上の長鎖アルキル基含有ビニル単量体と、片末端に重合性ビニル基を含むポリジメチルシロキサン化合物とを共重合させてなるポリジメチルシロキサン系グラフト共重合体である熱転写記録媒体とすると良い。

[0051]

本発明の熱転写記録媒体の耐熱滑性保護層に含まれるポリジメチルシロキサン系共重合体は、少なくとも、炭素数が12以上の長鎖アルキル基含有ビニル単量体と、片末端に重合性ビニル基を含むポリジメチルシロキサン化合物とを共重合させたグラフト共重合体である。ポリジメチルシロキサン系グラフト共重合体を製造するに当たり、上記の手法を用いることにより、単量体同士の反応性が良好となり、未反応成分(ポリジメチルシロキサン化合物、ビニル単量体)を低減することができる。従って、本発明の熱転写記録媒体では、耐熱滑性保護層に未反応成分が含まれるのを抑制できるので、裏移り、ブロッキングの発生を抑制することができる。

[0052]

あるいは、前記いずれかの熱転写記録媒体であって、前記ポリジメチルシロキサン系共 重合体は、アゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、 上記アゾ基含有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキル基含 有ビニル単量体とを共重合させてなるポリジメチルシロキサン系ブロック共重合体である 熱転写記録媒体とすると良い。

[0053]

本発明の熱転写記録媒体の耐熱滑性保護層に含まれるポリジメチルシロキサン系共重合体は、アゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、このアゾ基含有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキル基含有ビニル単量体とを共重合させたポリジメチルシロキサン系ブロック共重合体である。ポリジメチルシロキサン系ブロック共重合体を製造するに当たり、シリコン成分であるアゾ基含有ポリジメチルシロキサンアミドを開始剤として用いることにより、シリコンが未反応成分として残存することがない。従って、本発明の熱転写記録媒体では、耐熱滑性保護層に未反応シリコン成分(ポリジメチルシロキサン化合物)が含まれることがないので、前述したポリジメチルシロキサン系グラフト共重合体を含む耐熱滑性保護層を設けた熱転写記録媒体よりも、さらに、裏移り、ブロッキングの発生を抑制することができる。

[0054]

さらに、上記いずれかの熱転写記録媒体であって、前記耐熱滑性保護層は、シリコン成分を、前記ポリジメチルシロキサン系共重合体の分子中にのみ含有してなる熱転写記録媒体とすると良い。

[0055]

本発明の熱転写記録媒体は、耐熱滑性保護層にシリコン成分(ポリジメチルシロキサン)が単独で存在していない。このため、前述したポリジメチルシロキサン系グラフト共重合体を含む耐熱滑性保護層を設けた熱転写記録媒体よりも、さらに、裏移り、ブロッキングの発生を抑制することができる。

[0056]

このような耐熱滑性保護層は、例えば、アゾ基含有ポリジメチルシロキサンアミドを重合開始剤として、少なくとも、このアゾ基含有ポリジメチルシロキサンアミドと、炭素数が12以上の長鎖アルキル基含有ビニル単量体とを共重合させたポリジメチルシロキサン系プロック共重合体を含む耐熱滑性コーティング剤を、基材フィルムの裏面に塗工することによって形成できる。

【発明を実施するための最良の形態】

[0057]

次に、本発明の実施例1~20を、比較例1~6と比較しつつ説明する。

本実施例では、9種類のポリジメチルシロキサン系グラフト共重合体(グラフト共重合体1~9)を用いて、10種類の耐熱滑性コーティング剤(実施例1~10)を製造し、さらに、9種類のポリジメチルシロキサン系ブロック共重合体(ブロック共重合体1~9)を用いて、10種類の耐熱滑性コーティング剤(実施例11~20)を製造した(図1~図4参照)。さらに、比較例として、2種類のポリジメチルシロキサン系グラフト共重合体(グラフト共重合体10,11)を用いて、3種類の耐熱滑性コーティング剤(比較

[0058]

まず、図1に示すように、11種類のポリジメチルシロキサン系グラフト共重合体 (グラフト共重合体 $1\sim1$ 1)を製造した。

(グラフト共重合体1の製造)

まず、攪拌機、温度計、コンデンサ、窒素導入管、モノマー滴下層を備えた500mlのフラスコ内に、トルエン90重量部(以下、単に部とする)、メチルエチルケトン90部、FM-0721(チッソ株式会社製、商品名:片末端メタクリル基含有ポリジメチルシロキサン、シリコン鎖長5000)10部を仕込み、80℃まで昇温させた。その後、ステアリルメタクリレート30部、メチルメタクリレート35部、ヒドロキシエチルメタクリレート12.5部、メタクリル酸12.5部、ABN-E(日本ヒドラジン工業株式会社製、商品名:2、2ーアゾビス(2ーメチルプチロニトリル))1.0部を約2時間かけて滴下し、滴下終了後2時間重合させた。その後、さらに、ABN-E0.5部、トルエン10部、メチルエチルケトン10部を滴下して、3時間重合させた。このようにして、グラフト共重合体1を含有する樹脂液1(固形分33.3%)を得た。

[0059]

(グラフト共重合体2の製造)

メチルメタクリレートを55部、ステアリルメタクリレートを10部に変更した以外は、上記グラフト共重合体1の製造方法と同様にして、グラフト共重合体2を含有する樹脂液2(固形分33.3%)を得た。

[0060]

(グラフト共重合体3の製造)

メチルメタクリレートを50部、ステアリルメタクリレートを15部に変更した以外は、上記グラフト共重合体1の製造方法と同様にして、グラフト共重合体3を含有する樹脂液3(固形分33.3%)を得た。

[0061]

(グラフト共重合体4の製造)

メチルメタクリレートを10部、ステアリルメタクリレートを55部に変更した以外は、上記グラフト共重合体1の製造方法と同様にして、グラフト共重合体4を含有する樹脂液4(固形分33.3%)を得た。

[0062]

(グラフト共重合体5の製造)

メチルメタクリレートを5部、ステアリルメタクリレートを60部に変更した以外は、 上記グラフト共重合体1の製造方法と同様にして、グラフト共重合体5を含有する樹脂液 5(固形分33.3%)を得た。

[0063]

(グラフト共重合体6の製造)

ステアリルメタクリレート30部に代えてラウリルメタクリレート30部を滴下した以外は、上記グラフト共重合体1の製造方法と同様にして、グラフト共重合体6を含有する 樹脂液6(固形分33.3%)を得た。

[0064]

(グラフト共重合体 7 の製造)

FM-0721を20部、メチルメタクリレートを30部、ヒドロキシエチルメタクリレートを10部、メタクリル酸を10部に変更し、ステアリルメタクリレート30部に代えてラウリルメタクリレート30部を滴下した以外は、上記グラフト共重合体1の製造方法と同様にして、グラフト共重合体6を含有する樹脂液6(固形分33.3%)を得た。

[0065]

(グラフト共重合体8の製造)

ステアリルメタクリレート30部に代えてベヘニルメタクリレート30部を滴下した以外は、上記グラフト共重合体1の製造方法と同様にして、グラフト共重合体8を含有する 樹脂液8(固形分33.3%)を得た。

[0066]

(グラフト共重合体9の製造)

上記グラフト共重合体 1 の製造方法と同様の装置を用いて、トルエン 4 5 部、メチルエチルケトン 1 3 5 部、FM - 0 7 2 1 を 3 0 部仕込み、 8 0 $\mathbb C$ まで昇温させた。その後、ベヘニルメタクリレート 3 0 部、メチルメタクリレート 2 0 部、ヒドロキシエチルメタクリレート 1 0 部、メタクリル酸 1 0 部、ABN - E(日本ヒドラジン工業株式会社製、商品名:2,2 - アゾビス(2 - メチルブチロニトリル)) 1.0 部を約 2 時間かけて滴下し、滴下終了後 2 時間重合させた。その後、さらに、ABN - E 0.5 部、トルエン 5 部、メチルエチルケトン 1 5 部を滴下して、 3 時間重合させた。このようにして、グラフト共重合体 9 を含有する樹脂液 9(固形分 3 3 3 %)を得た。

[0067]

(グラフト共重合体10の製造)

メチルメタクリレートを65部に変更し、メチルエチルケトン90部及びステアリルメタクリレートを加えないようにした以外は、グラフト共重合体1の製造方法と同様に重合を行い、グラフト共重合体10を含有する樹脂液10(固形分33.3%)を得た。

[0068]

(グラフト共重合体11の製造)

メチルメタクリレートを15部、ステアリルメタクリレートを60部に変更し、FM-0721を加えない以外は、グラフト共重合体1の製造方法と同様に重合を行い、グラフト共重合体11を含有する樹脂液11(固形分33.3%)を製造した。

[0069]

次に、図3に示すように、11種類のポリジメチルシロキサン系ブロック共重合体(ブロック共重合体1~11)を製造した。

(ブロック共重合体1の製造)

上記グラフト共重合体 1 の製造方法と同様の装置を用いて、トルエン 1 0 0 部、メチルエチルケトン 1 0 0 部、ステアリルメタクリレート 3 0 部、メチルメタクリレート 3 5 部、ヒドロキシエチルメタクリレート 1 2. 5 部、メタクリル酸 1 2. 5 部、VPS 1 0 0 1 (和光純薬株式会社製、商品名:アゾ基含有ポリジメチルシロキサンアミド、シリコン鎖長 1 0 0 0 0) 1 0 部を仕込み、均一になるまで攪拌した後、8 0 $\mathbb C$ まで昇温させ、5 時間重合させた。その後、さらに、ABN-E(日本ヒドラジン工業株式会社製、商品名: 2 2 - アゾビス(2 - メチルブチロニトリル)) 0 . 5 部を滴下して、2 時間重合させた。このようにして、ブロック共重合体 1 を含有する樹脂液 1 2 (固形分 3 3 . 3%)を得た。

[0070]

(ブロック共重合体2の製造)

メチルメタクリレートを55部、ステアリルメタクリレートを10部に変更した以外は、上記プロック共重合体1の製造方法と同様にして、ブロック共重合体2を含有する樹脂液13(固形分33.3%)を得た。

[0071]

(ブロック共重合体3の製造)

メチルメタクリレートを50部、ステアリルメタクリレートを15部に変更した以外は、上記プロック共重合体1の製造方法と同様にして、ブロック共重合体3を含有する樹脂液14(固形分33.3%)を得た。

[0072]

(プロック共重合体4の製造)

メチルメタクリレートを10部、ステアリルメタクリレートを55部に変更した以外は 、上記プロック共重合体1の製造方法と同様にして、プロック共重合体4を含有する樹脂

出証特2005-3018178

液15 (固形分33.3%)を得た。

[0073]

(ブロック共重合体5の製造)

メチルメタクリレートを5部、ステアリルメタクリレートを60部に変更した以外は、 上記ブロック共重合体1の製造方法と同様にして、ブロック共重合体5を含有する樹脂液 16(固形分33.3%)を得た。

[0074]

(ブロック共重合体6の製造)

ステアリルメタクリレートを30部に代えて、ラウリルメタクリレート30部を滴下した以外は、上記ブロック共重合体1の製造方法と同様にして、ブロック共重合体6を含有する樹脂液17(固形分33.3%)を得た。

[0075]

(ブロック共重合体7の製造)

メチルメタクリレートを30部、ヒドロキシエチルメタクリレートを10部、メタクリル酸を10部、VPS1001を20部に変更し、ステアリルメタクリレート30部に代えてラウリルメタクリレート30部を滴下した以外は、上記ブロック共重合体1の製造方法と同様にして重合させ、ブロック共重合体7を含有する樹脂液18(固形分33.3%)を得た。

[0076]

(ブロック共重合体8の製造)

ステアリルメタクリレートを30部に代えて、ベヘニルメタクリレート30部を滴下した以外は、上記プロック共重合体1の製造方法と同様にして、ブロック共重合体8を含有する樹脂液19(固形分33.3%)を得た。

[0077]

(ブロック共重合体9の製造)

トルエンを50部、メチルエチルケトンを150部、メチルメタクリレートを20部、ヒドロキシエチルメタクリレートを10部、メタクリル酸を10部、VPS1001を30部に変更し、ステアリルメタクリレート30部に代えてベヘニルメタクリレート30部を滴下した以外は、上記プロック共重合体1の製造方法と同様にして重合させ、プロック共重合体9を含有する樹脂液20(固形分33.3%)を得た。

[0078]

(ブロック共重合体10の製造)

メチルエチルケトンを200部、メチルメタクリレートを65部に変更し、トルエン100部及びステアリルメタクリレートを加えないようにした以外は、ブロック共重合体1の製造方法と同様に重合を行い、ブロック共重合体10を含有する樹脂液21(固形分3.3%)を得た。

[0079]

(ブロック共重合体11の製造)

メチルメタクリレートを15部、ステアリルメタクリレートを60部に変更し、VPS1001を加えないようにした以外は、ブロック共重合体1の製造方法と同様に重合を行い、ブロック共重合体11を含有する樹脂液22(固形分33.3%)を得た。

【実施例1】

[0080]

図2に示すように、樹脂液1 (グラフト共重合体1を含有) 100部に対し、さらに、メチルエチルケトン380部とシクロヘキサノン20部とからなる混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるグラフト共重合体1を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、30wt%(30部/100部)としている(図1参照)。このようにして製造した耐熱滑性コーティング剤

[0081]

次いで、この耐熱滑性コーティング剤を、厚さ4. 5μ mのPETフィルムの裏面に塗布し、100で1分間加熱乾燥し、厚さ0. 3μ mの耐熱滑性保護層(グラフト共重合体1)を形成した。さらに、このPETフィルムの表面に、パラフィンワックス8部、カルナバワックス10部、及びカーボンブラック6部からなる感熱性インキを塗布することにより、厚さ 4.0μ mのインキ層を形成して、熱転写記録媒体を製造した。

【実施例2】

[0082]

図2に示すように、樹脂液2(グラフト共重合体2を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、この耐熱滑性コーティング剤に含まれるグラフト共重合体2を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、10wt%(10部/100部)としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれるグラフト共重合体2には、炭素数が18の長鎖アルキル基が約7.5wt%含有されている。

[0083]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(グラフト共重合体 2)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。

【実施例3】

[0084]

図2に示すように、樹脂液3(グラフト共重合体3を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、この耐熱滑性コーティング剤に含まれるグラフト共重合体3を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、15wt%(15部/100部)としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれるグラフト共重合体3には、炭素数が18の長鎖アルキル基が約11.2wt%含有されている。

[0085]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(グラフト共重合体 3)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。

【実施例4】

[0086]

図2に示すように、樹脂液4(グラフト共重合体4を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、この耐熱滑性コーティング剤に含まれるグラフト共重合体4を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、55wt%(55部/100部)としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれるグラフト共重合体4には、炭素数が18の長鎖アルキル基が約41.1wt%含有されている。

[0087]

次いで、この耐熱滑性コーティング剤を用いて、実施例1と同様にして、PETフィル

ムの裏面上に、厚さ0.3μmの耐熱滑性保護層(グラフト共重合体4)を形成すると共 に、PETフィルムの表面上に厚さ4.0μmのインキ層を形成して、熱転写記録媒体を 製造した。

【実施例5】

[0088]

図2に示すように、樹脂液5(グラフト共重合体5を含有)100部に対し、実施例1 と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、こ の耐熱滑性コーティング剤に含まれるグラフト共重合体 5 を製造するに当たり、共重合反 応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的 には、ステアリルメタクリレート)が占める重量割合を、60wt%(60部/100部) としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれる グラフト共重合体 5 には、炭素数が 1 8 の長鎖アルキル基が約 4 4. 9 w t %含有されて いる。

[0089]

次いで、この耐熱滑性コーティング剤を用いて、実施例1と同様にして、PETフィル ムの裏面上に、厚さ0.3μmの耐熱滑性保護層(グラフト共重合体5)を形成すると共 に、PETフィルムの表面上に厚さ4. 0 μ mのインキ層を形成して、熱転写記録媒体を 製造した。

【実施例6】

[0090]

図2に示すように、樹脂液6(グラフト共重合体6を含有)100部に対し、実施例1 と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、こ の耐熱滑性コーティング剤に含まれるグラフト共重合体6を製造するに当たり、共重合反 応に用いる単量体全体のうち、炭素数が12の長鎖アルキル基含有ビニル単量体(具体的 には、ラウリルメタクリレート)が占める重量割合を、30wt%(30部/100部) としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれるグ ラフト共重合体 6 には、炭素数が 1 2 の長鎖アルキル基が約 2 1. 1 w t %含有されてい る。

[0091]

次いで、この耐熱滑性コーティング剤を用いて、実施例1と同様にして、PETフィル ムの裏面上に、厚さ 0. 3 μ mの耐熱滑性保護層(グラフト共重合体 6)を形成すると共 に、 $PETフィルムの表面上に厚さ4.0 \mu mのインキ層を形成して、熱転写記録媒体を$ 製造した。

【実施例7】

[0092]

図2に示すように、樹脂液7(グラフト共重合体7を含有)100部に対し、実施例1 と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、こ の耐熱滑性コーティング剤に含まれるグラフト共重合体7を製造するに当たり、共重合反 応に用いる単量体全体のうち、炭素数が12の長鎖アルキル基含有ビニル単量体(具体的 には、ラウリルメタクリレート)が占める重量割合を、30wt%(30部/100部) としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれるグ ラフト共重合体 7 には、炭素数が 1 2 の長鎖アルキル基が約 2 1. 1 w t %含有されてい

[0093]

次いで、この耐熱滑性コーティング剤を用いて、実施例1と同様にして、PETフィル ムの裏面上に、厚さ 0. 3 μ mの耐熱滑性保護層(グラフト共重合体 7)を形成すると共 に、PETフィルムの表面上に厚さ4. 0 μ mのインキ層を形成して、熱転写記録媒体を 製造した。

【実施例8】

[0094]

図2に示すように、樹脂液8(グラフト共重合体8を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、この耐熱滑性コーティング剤に含まれるグラフト共重合体8を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が22の長鎖アルキル基含有ビニル単量体(具体的には、ベヘニルメタクリレート)が占める重量割合を、30wt%(30部/100部)としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれるグラフト共重合体8には、炭素数が22の長鎖アルキル基が約23.5wt%含有されている。

[0095]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、 P E T フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(グラフト共重合体 8)を形成すると共に、 P E T フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。

【実施例9】

[0096]

図2に示すように、樹脂液9 (グラフト共重合体9を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、この耐熱滑性コーティング剤に含まれるグラフト共重合体9を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が22の長鎖アルキル基含有ビニル単量体(具体的には、ベヘニルメタクリレート)が占める重量割合を、30wt%(30部/100部)としている(図1参照)。このようにして製造した耐熱滑性コーティング剤に含まれるグラフト共重合体9には、炭素数が22の長鎖アルキル基が約23.5wt%含有されている。

[0097]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、P E T フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(グラフト共重合体 9)を形成すると共に、P E T フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。

【実施例10】

[0098]

図2に示すように、樹脂液1 (グラフト共重合体1を含有) 75部に対し、20%ポリビニルアセタールメチルエチルケトン溶液25部を加え、さらに、実施例1と同様の混合溶剤を加え、固形分5%まで希釈した希釈溶液を得た。

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、 P E T フィルムの裏面上に、厚さ 0 . 3 μ μ mの耐熱滑性保護層(グラフト共重合体 1 +バインダー樹脂)を形成すると共に、 P E T フィルムの表面上に厚さ 4 . 0 μ μ mのインキ層を形成して、熱転写記録媒体を製造した。

【実施例11】

[0099]

図4に示すように、樹脂液12(プロック共重合体1を含有)100部に対し、実施例 1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるブロック共重合体1を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、30wt%(30部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体1には、炭素数が18の長鎖アルキル基が約22.4wt%含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、プロック共重合体1の分子中にのみ含有されている。

[0100]

次いで、この耐熱滑性コーティング剤を用いて、実施例1と同様にして、PETフィルムの裏面上に、厚さ0.3 μ mの耐熱滑性保護層(ブロック共重合体1)を形成すると共に、PETフィルムの表面上に厚さ4.0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例11の耐熱滑性保護層では、シリコン成分が、ブロック共重合体1の分子中にのみ含有されている。.

【実施例12】

[0101]

図4に示すように、樹脂液13(ブロック共重合体2を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるブロック共重合体2を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、10wt%(10部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体2には、炭素数が18の長鎖アルキル基が約7.5wt%含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体2の分子中にのみ含有されている。

[0102]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 2)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 1 2 の耐熱滑性保護層では、シリコン成分が、ブロック共重合体 2 の分子中にのみ含有されている。

【実施例13】

[0103]

図4に示すように、樹脂液14(ブロック共重合体3を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるブロック共重合体3を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、15wt%(15部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体3には、炭素数が18の長鎖アルキル基が約11.2wt%含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体3の分子中にのみ含有されている。

[0104]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(プロック共重合体 3)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 1 3 の耐熱滑性保護層では、シリコン成分が、プロック共重合体 3 の分子中にのみ含有されている。

【実施例14】

[0105]

図4に示すように、樹脂液15(ブロック共重合体4を含有)100部に対し、実施例 1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるプロック共重合体4を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を、55wt%(55部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるプロック共重合体4には、炭素数が18の長鎖アルキル基が約41.1wt%

含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体4の分子中にのみ含有されている。

[0106]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 4)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 1 4 の耐熱滑性保護層では、シリコン成分が、ブロック共重合体 4 の分子中にのみ含有されている。

【実施例15】

[0107]

図4に示すように、樹脂液16 (ブロック共重合体5を含有)100部に対し、実施例 1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるブロック共重合体 5 を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が 1 8 の長鎖アルキル基含有ビニル単量体 (具体的には、ステアリルメタクリレート)が占める重量割合を、60 w t % (60 部 / 100 部)としている(図 3 参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体 5 には、炭素数が 1 8 の長鎖アルキル基が約 4 4 . 9 w t % 含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体5の分子中にのみ含有されている。

[0108]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 5)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 1 5 の耐熱滑性保護層では、シリコン成分が、ブロック共重合体 5 の分子中にのみ含有されている。

【実施例16】

[0109]

図4に示すように、樹脂液17(ブロック共重合体6を含有)100部に対し、実施例 1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるブロック共重合体6を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が12の長鎖アルキル基含有ビニル単量体(具体的には、ラウリルメタクリレート)が占める重量割合を、30wt%(30部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体6には、炭素数が12の長鎖アルキル基が約21.1wt%含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体 6 の分子中にのみ含有されている。

[0110]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 6)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 1 6 の耐熱滑性保護層では、シリコン成分が、ブロック共重合体 6 の分子中にのみ含有されている。

【実施例17】

[0111]

図4に示すように、樹脂液18(プロック共重合体7を含有)100部に対し、実施例 1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるプロック共重合体 7 を製造するに当たり

、共重合反応に用いる単量体全体のうち、炭素数が12の長鎖アルキル基含有ビニル単量体(具体的には、ラウリルメタクリレート)が占める重量割合を、30wt%(30部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体7には、炭素数が12の長鎖アルキル基が約21.1wt%含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体7の分子中にのみ含有されている。

[0112]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 7)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 1 7 の耐熱滑性保護層では、シリコン成分が、ブロック共重合体 7 の分子中にのみ含有されている。

【実施例18】

[0113]

図4に示すように、樹脂液19(ブロック共重合体8を含有)100部に対し、実施例 1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるブロック共重合体 8 を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が 2 2 の長鎖アルキル基含有ビニル単量体(具体的には、ベヘニルメタクリレート)が占める重量割合を、30 w t % (30部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体 8 には、炭素数が 2 2 の長鎖アルキル基が約 2 3 . 5 w t %含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体8の分子中にのみ含有されている。

[0114]

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、P E T フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 8)を形成すると共に、P E T フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 1 8 の耐熱滑性保護層では、シリコン成分が、ブロック共重合体 8 の分子中にのみ含有されている。

【実施例19】

[0115]

図4に示すように、樹脂液20(ブロック共重合体9を含有)100部に対し、実施例 1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

なお、この耐熱滑性コーティング剤に含まれるブロック共重合体 9 を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が 2 2 の長鎖アルキル基含有ビニル単量体 (具体的には、ベヘニルメタクリレート)が占める重量割合を、30 w t % (30部/100部)としている(図3参照)。このようにして製造した耐熱滑性コーティング剤に含まれるブロック共重合体 9 には、炭素数が 2 2 の長鎖アルキル基が約 2 3.5 w t %含有されている。

また、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体9の分子中にのみ含有されている。

[0116]

次いで、この耐熱滑性コーティング剤を用いて、実施例1と同様にして、PETフィルムの裏面上に、厚さ0.3 μ mの耐熱滑性保護層(ブロック共重合体9)を形成すると共に、PETフィルムの表面上に厚さ4.0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例19の耐熱滑性保護層では、シリコン成分が、プロック共重合体9の分子中にのみ含有されている。

【実施例20】

[0117]

図4に示すように、樹脂液12(プロック共重合体1を含有)75部に対し、20%ポリビニルアセタールメチルエチルケトン溶液25部を加え、さらに、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。なお、この耐熱滑性コーティング剤には、シリコン成分が、ブロック共重合体1の分子中にのみ含有されている。

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 1 + バインダー樹脂)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。なお、本実施例 2 0 の耐熱滑性保護層では、実施例 1 1 と同様に、シリコン成分が、ブロック共重合体 1 の分子中にのみ含有されている。

(比較例1)

[0118]

図2に示すように、樹脂液10(グラフト共重合体10を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(グラフト共重合体 1 0)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。

(比較例2)

[0119]

図2に示すように、樹脂液11 (グラフト共重合体11を含有) 100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PETフィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(グラフト共重合体 1 1)を形成すると共に、PETフィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。

(比較例3)

[0120]

図2に示すように、樹脂液10(グラフト共重合体10を含有)50部と樹脂液11(グラフト共重合体11を含有)50部とを混合し、さらに、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

(比較例4)

[0121]

図4に示すように、樹脂液21(ブロック共重合体10を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

次いで、この耐熱滑性コーティング剤を用いて、実施例 1 と同様にして、PET フィルムの裏面上に、厚さ 0 . 3 μ mの耐熱滑性保護層(ブロック共重合体 1 0)を形成すると共に、PET フィルムの表面上に厚さ 4 . 0 μ mのインキ層を形成して、熱転写記録媒体を製造した。

(比較例5)

[0122]

図4に示すように、樹脂液22(プロック共重合体11を含有)100部に対し、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

次いで、この耐熱滑性コーティング剤を用いて、実施例1と同様にして、 $PETフィルムの裏面上に、厚さ<math>0.3\mu$ mの耐熱滑性保護層(プロック共重合体11)を形成すると

(比較例 6)

[0123]

図4に示すように、樹脂液21 (プロック共重合体10を含有)50部と樹脂液22 (ブロック共重合体11を含有)50部とを混合し、さらに、実施例1と同様の混合溶剤を加え、耐熱滑性コーティング剤(固形分5%)を製造した。

[0124]

以上のようにして製造した、実施例 $1 \sim 20$ 及び比較例 $1 \sim 6$ の熱転写記録媒体について、それぞれ評価を行った。その結果を図 5 、図 6 、図 7 に示す。

(樹脂液の外観)

まず、実施例 $1 \sim 20$ 及び比較例 $1 \sim 6$ の熱転写記録媒体に用いた樹脂液の外観について評価を行った。図 5、図 6、図 7 に示すように、実施例 $1 \sim 20$ 及び比較例 1, 4 で用いた樹脂液、すなわち、樹脂液 $1 \sim 10$, $12 \sim 21$ は、乳白色透明であった。また、比較例 2, 5 で用いた樹脂液、すなわち、樹脂液 11, 22 は、無色透明であった。

これに対し、比較例3,6で用いた樹脂液、すなわち、樹脂液10と樹脂液11とを混合させたもの、及び樹脂液21と樹脂液22とを混合させたものは、白濁していた。これより、樹脂液10と樹脂液11との相溶性、及び樹脂液21と樹脂液22とは、相溶性が良くないといえる。

[0125]

(耐熱滑性コーティング剤の外観)

次いで、実施例1~20及び比較例1~6の熱転写記録媒体に用いた耐熱滑性コーティング剤の外観について評価を行った。図5、図6、図7に示すように、実施例7で用いた耐熱滑性コーティング剤には濁りがあったが、それ以外の耐熱滑性コーティング剤は、いずれも無色透明であった。

[0126]

(耐熱滑性保護層の外観)

次に、実施例 $1\sim 20$ 及び比較例 $1\sim 6$ の耐熱滑性保護層の外観について評価を行った。図 5、図 6、図 7 に示すように、実施例 $1\sim 7$, $10\sim 17$ 、20 及び比較例 1, 2, 4, 5 では、濁りがなかった。また、実施例 8, 9, 18, 19 では、濁りがあったものの、その濁りは僅かであった。

これに対し、比較例3,6では、耐熱滑性保護層が濁っていた。これは、比較例3,6 に含まれる樹脂液10と樹脂液11との相溶性、及び樹脂液21と樹脂液22との相溶性 が良くなかったために、耐熱滑性保護層が不均一になったと考えられる。

[0127]

(スティッキング)

次に、実施例 $1 \sim 20$ 及び比較例 $1 \sim 6$ について、スティッキング防止性の評価を行った。具体的には、実施例 $1 \sim 20$ 及び比較例 $1 \sim 6$ の熱転写記録媒体をそれぞれ、プリンタ装置MR 420 S V (株式会社サトー製、商品名)に装着し、印字濃度をレベル 4、印字スピードを 8 インチ、印字パターンを C O D E 3 9 タテバーコードに設定して、ロール紙ラベルに印字を行った。印字終了後、実施例 $1 \sim 20$ 及び比較例 $1 \sim 6$ の熱転写記録媒体について、それぞれシワの程度を評価した。

[0128]

図 5、図 6、図 7 に示すように、実施例 $1 \sim 2$ 0 及び比較例 1, 4 では、シワが発生することなく、良好なスティッキング防止性を得ることができた。

これに対し、比較例2,5では、大きなシワが発生し、熱転写記録媒体が走行不能な状

[0129]

(ヘッドカス)

次に、実施例 $1 \sim 20$ 及び比較例 $1 \sim 6$ について、ヘッドカスの評価を行った。具体的には、印字スピードを 4 インチに変更した以外は、全て上述のスティッキング防止性を評価したときと同一の条件で印字を行い(ただし、ヘッドクリーニングなし、リボン $1 \approx 30$ の連続印刷)、印字終了後、実施例 $1 \sim 20$ 及び比較例 $1 \sim 6$ の熱転写記録媒体について、それぞれヘッドカスの程度を評価した。

まず、サーマルヘッド上の融着物について調査したところ、図7に示すように、比較例3,6では、融着物がサーマルヘッドに焼き付いて、印字不良が発生してしまった。この融着物は、アルコールを用いても除去することができなかった。これは、前述のように、耐熱滑性保護層を適切に形成することができなかった(成膜不良)ためと考えられる。

[0130]

また、図5、図6に示すように、実施例1~9,11~19及び比較例1,2,4,5 では、印字には影響が無かったものの、僅かに融着物が発生していた。これに対し、実施例10,20では、融着物が全く発生しなかった。これは、図2及び図4に示すように、実施例10,20では、耐熱滑性コーティング剤に20%ポリビニルアセタールメチルエチルケトン溶液を加えているためと考えられる。すなわち、実施例10,20では、耐熱滑性保護層にバインダ樹脂を含有させたことにより、耐熱滑性保護層の強度を向上させることができ、サーマルヘッドとの摩擦によるカスの発生を抑制できたためと考えられる。

[0131]

次いで、サーマルヘッドの後方部に堆積した脱落カス(白粉)について調査したところ、図7に示すように、比較例1,4では、多量の脱落カス(白粉)が堆積しており、印字不良も発生してしまった。これは、比較例1,4で用いた耐熱滑性コーティング剤に含まれるグラフト共重合体10及びブロック共重合体10に、炭素数が12以上の長鎖アルキル基が含有されていないために、耐熱滑性保護層の強度が不足していたためと考えられる

[0132]

また、図5、図6に示すように、実施例2,12では、炭素数が12以上の長鎖アルキル基を含有しているにも拘わらず、脱落カス(白粉)が堆積してしまった。これは、実施例2,12で用いた耐熱滑性コーティング剤に含まれるグラフト共重合体2及びブロック共重合体2を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が12以上の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート)が占める重量割合を10wt%と低い割合としたためと考えられる。すなわち、グラフト共重合体2及びブロック共重合体2に、炭素数が12以上の長鎖アルキル基が7.5wt%しか含有されていないために、耐熱滑性保護層の強度が不足していたためと考えられる。しかしながら、堆積した脱落カス(白粉)は、容易にアルコールで除去することができる程度であり、実用上問題となるものではなかった。

[0133]

これに対し、図5、図6に示すように、実施例3,13では、僅かに脱落カス(白粉)が堆積したものの、印字に影響がなく、この脱落カス(白粉)はアルコールで容易に除去することができた。さらに、実施例1,4~9,11,14~19では、僅かに脱落カス(白粉)が発生したものの、印字には全く影響がなかった。これは、図1,図3に示すように、実施例1,3~9,11,13~19で用いた耐熱滑性コーティング剤に含まれるグラフト共重合体1,3~9、プロック共重合体1,3~9を製造するに当たり、共重合

反応に用いる単量体全体のうち、炭素数が12以上の長鎖アルキル基含有ビニル単量体(具体的には、炭素数が18のSMA、炭素数が12のLMA、または炭素数が22のべへニルメタクリレート)が占める重量割合を15wt%以上としたためと考えられる。すなわち、グラフト共重合体1, $3\sim 9$ 及びブロック共重合体1, $3\sim 9$ に、炭素数が12以上の長鎖アルキル基を10wt%以上含有させたため、実施例2, 12に比して、耐熱滑性保護層の強度が向上したと考えられる。

[0134]

さらに、実施例10,20では、脱落カス(白粉)が全く発生しなかった。これは、実施例1,11と同様のグラフト共重合体1、ブロック共重合体1を用いているものの、これに加えて、上述のように、耐熱滑性保護層にバインダ樹脂を含有させたことにより、耐熱滑性保護層の強度をより一層向上させることができ、サーマルヘッドとの摩擦によるカスの発生を抑制できたためと考えられる。

[0135]

(裏移り)

次に、実施例 $1\sim 20$ 及び比較例 $1\sim 6$ について、裏移り防止性の評価を行った。具体的には、熱転写記録媒体の耐熱滑性保護層とPETフィルムとを接触するように重ね、これらを 2 枚のガラス板で挟んで、2 k g/c m²の荷重をかけつつ、50 ℃で 2 4 時間加熱した。その後、PETフィルムのうち耐熱滑性保護層との接触面について、水との接触角を測定し、試験前後にかかる水との接触角の変化を調査した。さらに、この接触面について、マジックインキのハジキ、及び感熱性インキ(パラフィンワックス 8 部、カルナバワックス 10 部、及びカーボンブラック 6 部からなる)を塗布した際のハジキの程度を評価した。この結果を図 5、図 6、図 7 に示す。

[0136]

まず、グラフト共重合体の耐熱滑性保護層を有する実施例 $1\sim10$ (図 5 参照)及び比較例 $1\sim3$ (図 7 参照)の結果を比較する。実施例 $1\sim7$, 10 及び比較例 1, 2 では、試験前後における水との接触角の変化が 5 。未満と小さく、さらに、マジックインキ及び感熱性インキのハジキは無く、裏移り防止性が良好であった。

[0.137]

これに対し、実施例 8,9では、試験前後における水との接触角の変化が 5°以上 15°未満となり、マジックインキのハジキがあった。これは、実施例 8,9の耐熱滑性保護層をなすグラフト共重合体 8,9の製造において、FM-0721(片末端メタクリル基含有ポリジメチルシロキサン)とベヘニルメタクリレートとの反応性が良くないために、未反応のポリジメチルシロキサン及びベヘニルメタクリレートが実施例 8,9の耐熱滑性保護層に多く含まれてしまい、この未反応成分が、PETフィルムの表面に移行してしまったためと考えられる。さらに、比較例 3 では、試験前後における水との接触角の変化が 15°以上と大きくなり、マジックインキ及び感熱性インキのハジキがあった。これは、比較例 3 で用いた耐熱滑性コーティング剤をなす樹脂液 10と樹脂液 11との相溶性が良くないために、耐熱滑性保護層を適切に形成することができず(成膜不良)、耐熱滑性保護層の一部が PETフィルムの表面に移行してしまったためと考えられる。

[0138]

次いで、ブロック共重合体の耐熱滑性保護層を有する実施例11~20 (図6参照)及び比較例4~6 (図7参照)の結果を比較する。実施例11~14,16,17,20及び比較例4では、試験前後における水との接触角の変化がほとんど無く、マジックインキ及び感熱性インキのハジキも無く、裏移り防止性が極めて良好であった。また、実施例15,18,19及び比較例5では、試験前後における水との接触角の変化が5°未満と小さく、さらに、マジックインキ及び感熱性インキのハジキは無く、裏移り防止性が良好であった。

[0139]

これに対し、比較例6では、試験前後における水との接触角の変化が15°以上と大きくなり、マジックインキ及び感熱性インキのハジキがあった。これは、比較例3と同様に

[0140]

ところで、一般に、ポリジメチルシロキサン系グラフト共重合体を製造する場合、共重 合反応が十分に進まず、未反応の単量体が多く残存してしまう傾向にある。このため、ポ リジメチルシロキサン系グラフト共重合体を含む耐熱滑性保護層を有する熱転写記録媒体 では、裏移りが発生し易い傾向にあった。

これに対し、ポリジメチルシロキサン系グラフト共重合体の耐熱滑性保護層を有する実 施例1~10では、図5に示すように、ある程度、裏移りの発生を抑制することができた 。これは、グラフト共重合体1~9を製造するに当たり、片末端に重合性ビニル基(具体 的には、メタクリル基)を含むポリジメチルシロキサン化合物とビニル単量体とを共重合 させることにより、重合反応性が良好となり、未反応成分(ポリジメチルシロキサン化合 物、ビニル単量体)を低減することができたためと考えられる。

[0141]

さらに、ここで、グラフト共重合体の耐熱滑性保護層を有する実施例1~10と、ブロ ック共重合体の耐熱滑性保護層を有する実施例11~20とについて、耐熱滑性保護層を なす共重合体中に、同一の炭素数が12以上の長鎖アルキル基を含む熱転写記録媒体同士 を比較する(図1,図2と図3,図4とを比較参照)。すなわち、実施例1~5と実施例 11~15、実施例6,7と実施例16,17実施例8,9と実施例18,19、実施例 10と実施例20とをそれぞれ比較すると、いずれもブロック共重合体の耐熱滑性保護層 を有する熱転写記録媒体のほうが、裏移りの発生を抑制することができた。

[0142]

これは、実施例1~10では、ブロック共重合体1~9を製造するに当たり、シリコン 成分であるアゾ基含有ポリジメチルシロキサンアミドを開始剤として用いることにより、 シリコンが未反応成分として残存することがなかったためと考えられる。これに対し、実 施例11~20では、グラフト共重合体1~9を製造した際、前述のように、未反応成分 (ポリジメチルシロキサン化合物、ビニル単量体)を低減することができたものの、ポリ ジメチルシロキサン化合物、ビニル単量体が未反応成分として残存していたためと考えら れる。

[0143]

(ブロッキング)

次に、実施例1~20及び比較例1~6について、ブロッキング防止性の評価を行った 。具体的には、各実施例及び比較例にかかる熱転写記録媒体をそれぞれ5枚用意し、この 5枚の熱転写記録媒体について、インキ層と耐熱滑性保護層とが互いに接するように重ね 合わせる。そして、これらを2枚のガラス板で挟んで、2kg/cm²の荷重をかけつつ 、50℃、湿度85%で48時間加熱した後、ブロッキングの程度を目視にて評価した。 この結果を図5、図6に示す。

[0144]

まず、比較例2,5では、ブロッキングが発生し、印字不良までも発生してしまった。 これは、比較例2,5の耐熱滑性保護層には、シリコン成分(ポリジメチルシロキサン) が含まれていないために、十分な滑性を得ることができなかったためと考えられる。

[0145]

次に、耐熱滑性保護層に、炭素数が18の長鎖アルキル基(具体的には、ステアリルメ タクリレート)を含有するグラフト共重合体を含む実施例1~5について比較する。これ らは、グラフト共重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭 素数が18の長鎖アルキル基含有ビニル単量体(具体的には、ステアリルメタクリレート) が占める重量割合のみが異なる関係にある。すなわち、グラフト共重合体中に含まれる 炭素数が18の長鎖アルキル基の含有率のみが異なっている。

[0146]

まず、実施例 $1 \sim 3$ では、プロッキングが発生しなかった。実施例 $1 \sim 3$ は、それぞれ、共重合反応に用いる単量体のうちステアリルメタクリレートの重量割合を30wt%、10wt%、15wt%としたものである(図1参照)。また、ステアリルメタクリレートの重量割合を55wt%とした実施例4では、僅かに点状のプロッキングが発生したものの、印字には影響がなかった。

これに対し、ステアリルメタクリレートの重量割合を60w t %とした実施例 5 では、点状のブロッキングが多数発生してしまった。これらの結果より、グラフト共重合体を製造するに当たり、共重合反応に用いる単量体のうちステアリルメタクリレートの重量割合を55w t %以下とすることで、ブロッキングの発生を効果的に抑制できるといえる。これは、炭素数が12以上の長鎖アルキル基含有ビニル単量体の重量割合を55w t %以下とすることで、このビニル単量体が未反応成分として残存するのを抑制できるためと考えられる。

[0147]

次に、実施例1,6,8の結果について比較する。これらは、共に、耐熱滑性保護層に 炭素数が12以上の長鎖アルキル基含有グラフト共重合体を含むものであるが、グラフト 共重合体を製造する共重合反応に用いた、炭素数が12以上の長鎖アルキル基含有ビニル 単量体の炭素数のみが異なる関係にある(なお、上記長鎖アルキル基含有ビニル単量体の 重量割合は、いずれも30wt%である)。すなわち、グラフト共重合体に含まれる長鎖 アルキル基の炭素数のみが異なっている。これらを比較すると、図5に示すように、実施 例6においてのみ、印字に影響が無かったものの、僅かに点状のブロッキングが発生して しまった。これは、図1に示すように、実施例6のグラフト共重合体2に含まれる長鎖ア ルキル基の炭素数が、最小の12となっているためと考えられる。すなわち、実施例6の 耐熱滑性保護層は、実施例1,8に比して、ガラス転移点が低く、耐熱性が若干劣るため に、耐熱滑性保護層の成分がインキ層に移行して、僅かに点状のブロッキングが発生して しまったと考えられる。

[0148]

この現象は、ブロック共重合体を含む実施例 $11 \sim 19$ についても同様である(図 6 参照)。具体的には、実施例 $11 \sim 15$ の結果より、ブロック共重合体を製造するに当たり、共重合反応に用いる単量体のうちステアリルメタクリレートの重量割合を 55 w t %以下とすることで、ブロッキングの発生を効果的に抑制することができたといえる。これは、炭素数が 12 以上の長鎖アルキル基含有ビニル単量体の重量割合を 55 w t %以下とすることで、このビニル単量体が未反応成分として残存するのを抑制できるためと考えられる。また、実施例 11, 16, 18 の結果より、炭素数が 12 の長鎖アルキル基を含有する実施例 16 は、炭素数が 18、22 の長鎖アルキル基を含有する実施例 11, 18 に比して、耐熱滑性保護層のガラス転移点が低く、耐熱性が若干劣るために、僅かに点状のブロッキングが発生してしまったと考えられる。

[0149]

以上において、本発明を実施例1~20に即して説明したが、本発明は上記実施例に限 定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはい うまでもない。

例えば、実施例 $1 \sim 2$ 0 では、グラフト共重合体 $1 \sim 9$ 及びプロック共重合体 $1 \sim 9$ を製造するに当たり、炭素数が 1 2 以上の長鎖アルキル基含有ビニル単量体を、それぞれ、 1 種類だけ加えて重合させた。すなわち、グラフト共重合体 $1 \sim 9$ では、炭素数が 1 2 以上の長鎖アルキル基を 1 種類だけ含有させた。

[0150]

しかし、ポリジメチルシロキサン系共重合体に含まれる炭素数が12以上の長鎖アルキル基は、1種類に限らず、2種類以上含有させるようにしても良い。例えば、ポリジメチルシロキサン系グラフト共重合体を製造するに当たり、ステアリルメタクリレート及びラウリルメタクリレートを加えて、共重合させるようにしても良い。

但し、このような場合にも、耐熱性及び滑性を良好とし、且つ、ヘッドカスの発生を抑

制するには、ポリジメチルシロキサン系共重合体のうち、炭素数が12以上の長鎖アルキル基が占める重量割合を、10wt%以上42wt%以下とするのが好ましい。すなわち、ポリジメチルシロキサン系共重合体を製造するに当たり、共重合反応に用いる単量体全体のうち、炭素数が12以上の長鎖アルキル基含有ビニル単量体(例えば、ステアリルメタクリレート及びラウリルメタクリレート)が占める重量割合を、15wt%以上55wt%以下とするのが好ましい。

【図面の簡単な説明】

[0151]

【図1】グラフト共重合体1~11の製造に用いた成分(樹脂液1~11の成分)を 示す表である。

- 【図2】実施例1~10及び比較例1~3の製造に用いた成分を示す表である。
- 【図3】ブロック共重合体1~11の製造に用いた成分(樹脂液12~22の成分)を示す表である。
- 【図4】実施例11~20及び比較例4~6の製造に用いた成分を示す表である。
- 【図5】実施例1~10の試験結果を示す表である。
- 【図6】実施例11~20の試験結果を示す表である。
- 【図7】比較例1~6の試験結果を示す表である。

	137 58 77	<u> </u>	7,	17年四年	B3355	9於盟華	恒液7		樹脂液9	樹脂液10	樹脂液11
	面	日後に上	包留次のよりに	なる個女子	# 4 A A	ξŢ		#	グラント 共	グラ가 共	イン
	クレイボ	カレント状態を存む	ンレンド大市の存在を	10人で大	一人人 公 単 の 体 2 と	重合体6	合体	_	重合体9	重合体10	重合体11
	里口评!	£	ב ב			3	3	S	45	Ob	06
	00	O	06	06	06	90	28	200	2	3	
トルナノ		3	6	Co	G	06	06	06	135		90
メチルエチルケトン	90	S	200		2	Ş	20	10	30	10	
FM-0721	10	10	2	2	2	2 2	22	36	20	65	15
AAAA	35	55	20	10	2	35	000	200	23		6
Civilyi	8	۲	15	25	9						3
SMA(C18)	30	2	2	3		90	30				
1 MA(C12)						26	3	į	8		
								30	30		- 1
へくニルメタクリレート(C22)				1	1		9	12 5	10	12. 5	12.5
A 4 4-11 -	2. 2.	70.00	12.5	12.5	7. 5	12.3	2				1
HEIMA	3 1		.1	10 K	12.5	12.5	2	12, 55	10	12.5	2.3
MAA	12.5	12. 3	12.3	١,	٠ľ	٦,	7	0	1.0	-0	1.0
L I NOV	<u>-</u>	-	1.0	0) -	-	>		L	5	٦
		Ç	10	10	10	9	0	01	S	2	2
トルエン	2	2	2		Ç	5	9	10	15	10	10
メチルエチルケトン	9	10	2	~1		1	"	L C	0	0.5	0.5
A DM — F	0 5	0.5	<u>်</u>	<u>်</u>	0. 5	O. D		- 1	. 1	•	
AGNIE	;										

※各成分の数値は、全て重量部で表示している FM-0721:チッソ株式会社製、商品名(片末端メタクリル基含有ポリジメチルシロキサン、シリコン鎖長5000)

MMA:メチルメタクリレート

SMA:ステアリルメタクリレート

LMA: ラウリルメタクリレート いEMA: レビロキシェモリンタクリ

HEMA:ヒドロキシエチルメタクリレート MAA:メタクリル酸

ABN-E: 日本ヒドラジン工業株式会社製、商品名(2, 2ーアゾピス(2ーメチルブチロニトリル))

実施例3 実施例4 実施例5 実施例6 実施例7 実施例8 実施例9 実施例10 比較例1 比較例2 比較例3										20	C L	3		000	2000	20
比較例2											100	3		000	3000	20
比較例1										100				8	282	20
実施例10	75												20	3	380	20
実施例9									100					3	380	20
実施例8								100							380	20
実施例7							5								380	20
実施例6						100									380	20
実施例5					9										380	20
実施例4				100											380	20
実施例3			100					_							380	20
実施例11実施例2		100													380	20
実施例1	1 8						_								380	20
	樹脂溶1(グラフト共軍合体1)	樹脂液2(グラフト共宜合体2)	樹脂液3(グラフト共重合体3)	樹脂液4(グラフト共重合体4)	樹脂液5(グラフト共算合体5)	松脂液6(グラフト共軍合体6)	樹脂溶フ(グラフト共電合体7)	お明治の(ゲーント井田今休8)	はになって イン・イン・ はまり はいかい はいかい はいかい はいかい はいかい はいかい はいかい はいか	歯間後9(ソフト大里口を9)	樹脂液10(クラント共型台体10)	樹脂液11(グラフト共重合体11)	20%ポリビニルアセタール	メチルエチルケトン溶液	メチニ. ナキニ.ケトン	シクロヘキサイン

※各成分の数値は、全て重量部で表示している

	松門流10	班胎洗13	光型	配法	新語	脂液	脂液	脂液	樹脂液20	樹脂液21	脂液
	ブロック共 重合体1	プロック共 重合体2	ブロック共 重合体3	プロック共 重合体4	ブロック共 雇合体5	ブロック共重合体6	ブロック共 重合体7	ブロック共 重合体8	ブロック共 重合体9	ブロック共 重合体10	ブロック共 重合体11
1	5	_	100	100	100	9	100	100	50		100
トルエン	3	3	207	20,	100	100	100	100	150	200	100
メチルエチルケトン	3	3	3	3	3		2	Ç	200	Ç	
VPS1001	9	10	10	10	10	10	22	2	200	2	
N ANA N	35	55	50	10	ល	32	30	35	20	65	15
Ciologia	6	9	25	r.	09						90
SMA(C18)	2	2	2			66	ç				
LMA(C12)						S	200	3	18		
ベヘールメタクリレート(C22)								30	9	- 1	ı
,	10 5	10 5	12.5	12.5	12. 5	12.5	01	12. 5	10	12. 5	12. 5
YNU L	1			. 1	ı	12.5	10	12. 5	10	12.5	12. 5
MAA	1Z. 3	12. 3	.l	.l	ı	:ľ	1	ı,		0	2
T-NBA	0.5	0.2	0.	o ව	0. 5	0. 5	0. 5	ე. ე	0.0	o Ö	. 1

※各成分の数値は、全て重量部で表示している

MMA:メチルメタクリレー

SMA:ステアリルメタクリレート LMA:ラウリルメタクリレート HEMA:ヒドロキシエチルメタクリレート MAA:メタクリル酸 VPS1001:和光純薬株式会社製、商品名(アゾ基合有ポリジメチルシロキサンアミド、シリコン鎖長10000) ABNーE:日本ヒドラジン工業株式会社製、商品名(2,2-アゾピス(2-メチルブチロニドリル))

【図4】

数/数/06			T							50	20			380	20
2較例5比	-	+	1		+	1	1				100			380	20
比較例4 出			1							100				380	20
施例20L	75											1	25	380	20
施例19案									100					380	20
2 実施例13 実施例14 実施例15 実施例16 実施例17 実施例18 実施例19 実施例20 比較例4 比較例5 比較例6								100						380	20
施例17案							100							380	20
施例16実						100						-		380	20
面例15寒					100									380	20
拖例14案 J				100										380	20
6例13案排			100						_					380	20
		001					-	_		-				380	20
実施例11]実施例1	100						-	_		_				380	20
実施		<u></u>	<u>~</u>			(i)		<u> </u>		6	-				
	樹脂液12(ブロック共重合体1)	樹脂液13(ブロック共重合体2)	樹脂液14(ブロック共宜合体3)	樹脂液15(ブロック共覧合体4)	樹脂液16(ブロック共量合体5)	樹脂液17(ブロック共重合体6)	樹脂液18(ブロック共重合体7)	樹脂液19(プロック共配合体8)	樹脂液20(プロック共宜合体9)	松間液~1(ブロック井間合体10)	樹脂液22(ブロック共散合体11)	20%ポリビニルアセタール	メチルエチルケトン溶液	メチルエチルケトン	シクロヘキサノン

※各成分の数値は、全て重量部で表示している

樹脂液の外観 別自色透明 別 耐熱滑性に変層の外観 にごりなし に スティッキング	白色透明		+四回米	米局をひ	米阁256	一	来版例8	一 附插包9	
テイング剤の外観 無色透明 層の外観 にごりなし	ij	乳白色透明	乳白色透明等	乳白色透明	乳白色透明	孔白色	ΦL	型白色	ň
層の外観にごりなし	無色感形	無色透明	5透明	色透明	租选明	無色透明	ごりあ	にごりあ	色透明
スティンキング		にごりなし	にごりなし	にごりなし	にごりなし	にこりなし	憧かなにごり	12	15.
	0	0	0	0	0	0	0		0
ヘッドカス(ヘッド発熱体上) 〇	0	0	0	0	0	0	0	0	0
ヘッドカス(脱落カス)	Δ		0	0	0	0	0	0	0
裏移り 〇	0	0	0	0	0	0	⊲	٥	0
ブロッキング	0	0		Δ		0	0	0	0

△: 点状のブロッキング多数あり 口: 僅かに白粉堆積(印字に影響なし 〇:接触角の変化が5。 未満、インキのハジキなし ×: 白粉堆撥(印字不良) 口:僅かに点状のブロッキングあり(印字に影響なし) 〇:僅かに融着物あり(印字に影響なし) ×:大きなシワ発生し ◎: 白粉なし ○: 僅かに自粉あり(印字に影響なし) △:白粉堆積(僅かに印字に影響あり、容易にアルコールで除去できる) 〈要移り〉 ◎:接触角の変化がほとんど無し、インキのハジキなし △:シワ発生し、印字に影響あり 角の変化が5。以上15。未満、僅かにマジックインキのハジキあり ◎:融着物なし <くっぱカス(くっぱ粥繁体上)> くへッドカス(脱絡カス)> **<ストイッキング>** ×:岡状にブロッキ) 〈ブロッキング〉

×:大きなシワ発生し、走行不能

△:シワ発生し、印字に影響あり

0:シワなし

ヘスナイシキング>

【図6】

	実施例11	実施例12	実施例13	実施例14	実施例15	実施例16	実施例17	実施例18	実施例19	実施例20
樹脂液の外観	乳白色透明	乳白色透	乳白色透明	5色透明	白色透明	乳白色透明	乳白色透明	乳白色透明	乳白色透明	乳白色透明
耐勢治体コーナインが強の外観	無色透明	無色逆		無色透明	無色透明	無色透明	無色透明	無色透明	無色透明	無色透明
呆蹲層の外	匚	ば	1,1,1	ŀΩ	1,12	l٦ı	にごりなし	120	僅かなにごり	にごりなし
スティッキング	0	1~	0	0	0	0	0	0	0	0
ヘッドカス(ヘッド発験体上)	0	0	0	0	0	0	0	0	0	0
ヘッドカス(脱落カス)	0	◁		0	0	0	0	0	0	0
褒称り	0	0	0	0	0	0	0	0	0	0
ブロシキング	0	0	0		Δ		0	0	0	0

〇:接触角の変化が6。 未満、インキのハジキなし 4:接角×:接触角の変化が12。 以上、マジックインキ及び感熱性イ △: 点状のブロッキング多数あり 口:僅かに白粉堆積(印字に影響なし ×:磨箱物あり(印字不良) ×:白粉堆積(印字不良) 口: 僅かに点状のプロッキングあり(印字に影響なし) 〇:僅かに融着物あり(印字に影響なし) 〇:僅かに白粉あり(印字に影響なし) △:白粉堆積(僅かに印字に影響あり、容易にアルコールで除去できる) 〈裏移り〉 ◎:接触角の変化がほとんど無し、インキのハジキなし角の変化が5。以上15。未満、僅かにマジックインキのハジキあり ◎:融着物なし へへッドカス(既落カス)> ◎: 由粉なつ <ブロッキング> O:ブロッキングなし ×・面状にブロッキング発生(印字不良) くくシドセス(ヘッド・発験存下)>

【図7】

	比較例1	比較例2	比較例3	上較例4	比較例5	比較例6
樹脂液の外観	乳白色透明	色透	奥山	乳白色透明	無色透明	更知
耐熱滑性コーティング剤の外観	無色透明	無色透明	無色透明	無色透明	無色透明	無色透明
耐熱滑性保護層の外観	にごりなし	-17	にごりあり	กา	にごりなし	にごりあり
スティッキング	0	×	7	0	×	۷
ヘッドカス(ヘッド発熱体上)	0	0	×	0	0	×
ヘッドカス(脱落カス)	×	0	0	×	0	0
裏移り	0	0	×	0	0	×
ブロッキング	0	×		0	×	

<ヘッドカス(脱落カス)> くへッドカス(ヘッ <要移り> ◎: 角の変化が5。

【書類名】要約書

【要約】

【課題】 耐熱性及び滑性が良好で、且つ、サーマルヘッドによる削りカスの発生及びサーマルヘッドへの削りカスの付着・融着が発生する虞の小さい耐熱滑性保護層を形成できる耐熱滑性コーティング剤、及び上記耐熱滑性保護層を有する熱転写記録媒体を提供する

【解決手段】 本発明の耐熱滑性コーティング剤は、ポリジメチルシロキサン系共重合体を有し、このポリジメチルシロキサン系共重合体は、炭素数が12以上の長鎖アルキル基を有している。

出願人履歴情報

識別番号

[392007566]

1. 変更年月日

1999年 1月 6日

[変更理由]

名称変更 住所変更

住 所

愛知県西加茂郡三好町大字打越字生賀山18番地

氏 名 ナトコ株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000837

International filing date: 24 January 2005 (24.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-026478

Filing date: 03 February 2004 (03.02.2004)

Date of receipt at the International Bureau: 17 March 2005 (17.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

