- - -

Partie I : La trigonométrie circulaire

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

Pour tout x réel,							
$\cos(-x)$	=	$\cos x$	$\sin(-x)$	=	$-\sin x$		
$\cos(\pi - x)$	=	$-\cos x$	$\sin(\pi-x)$	=	$\sin x$		
$\cos(\pi + x)$	=	$-\cos x$	$\sin(\pi + x)$	=	$-\sin x$		
$\cos(\frac{\pi}{2} + x)$	=	$-\sin x$	$\sin(\frac{\pi}{2} + x)$	=	$\cos x$		

Pour tous x, a, b, p, q réels,					
Théorème de Pythagore	$\cos^2 x + \sin^2 x = 1$				
Formules d'addition	$\cos(a+b) = \cos a \cos b - \sin a \sin b$				
	$\cos(a-b) = \cos a \cos b + \sin a \sin b$				
	$\sin(a+b) = \sin a \cos b + \sin b \cos a$				
	$\sin(a-b) = \sin a \cos b - \sin b \cos a$				
	$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$				
Formules de duplication	$\cos 2a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$				
	$\sin 2a = 2\sin a\cos a$				
Formules de factorisation	$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$				
	$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$				
	$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$				
	$\sin p - \sin q = 2\cos\frac{p+q}{2}\sin\frac{p-q}{2}$				
Passage à l' angle moitié $t = \tan \frac{x}{2}$	$\cos x = \frac{1 - t^2}{1 + t^2}$				
	$\sin x = \frac{2t}{1+t^2}$				
	$\tan x = \frac{2t}{1 - t^2}$				
Formules d'Euler	$\cos x = \frac{e^{ix} + e^{-ix}}{2}$				
	$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$				

 ${\rm Fich}\, e$ $_{\mathrm{PSI}}$

Partie	II	:	Les	calculs	de	primitives
--------	----	---	-----	---------	----	------------

Fonction	Primitive	Intervalle de validité
$x^{\alpha}, \alpha \neq -1$	$\frac{x^{\alpha+1}}{\alpha+1}$	$\mathbb{R} \text{ si } \alpha \in \mathbb{N}, \mathbb{R}_{+}^{*} \text{ ou } \mathbb{R}_{-}^{*} \text{ si } \alpha \in \mathbb{Z}_{-} \setminus \{-1\}, \mathbb{R}_{+}^{*} \text{ si } \alpha \in \mathbb{R} \setminus \mathbb{Z}$
$\frac{1}{x}$	$\ln x $	\mathbb{R}_{-}^{*} ou \mathbb{R}_{+}^{*}
$\ln x $	$x \ln x - x$	\mathbb{R}_+^{\star} ou \mathbb{R}^{\star}
$a^x, a > 0, a \neq 1$	$\frac{a^x}{\ln a}$	\mathbb{R}
$\sin x$	$-\cos x$	$\mathbb R$
$\cos x$	$\sin x$	\mathbb{R}
$\tan x$	$-\ln \cos x $	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,k\in\mathbb{Z}$
$\sinh x$	$\cosh x$	\mathbb{R}
$\cosh x$	$\sinh x$	\mathbb{R}
$\tanh x$	$\ln \cosh x$	\mathbb{R}
$\frac{1}{\cosh^2 x}$	$\tanh x$	\mathbb{R}
$\frac{1}{\cos^2 x}$	$\tan x$	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,k\in\mathbb{Z}$
$\frac{1}{\sin x}$	$\ln \tan \frac{x}{2} $	$]k\pi,\pi+k\pi[,k\in\mathbb{Z}$
$\frac{1}{\cos x}$	$\ln \tan(\frac{x}{2}+\frac{\pi}{4}) $	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,k\in\mathbb{Z}$
$\frac{1}{x^2+1}$	$\arctan x$	\mathbb{R}
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$]-1,1[

Partie III: Formules combinatoires

Soient $n\in\mathbb{N},\,(a,b)\in\mathbb{K}^2$ ou $(a,b)\in\mathscr{M}_n(\mathbb{K})^2$ telles que ab=ba. Binôme de Newton. Formule de BERNOULLI.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

$$a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}.$$

Partie IV : La formule de TAYLOR avec reste intégral

Soit $f \in \mathcal{C}^{n+1}(I)$ et $a \in I$. Alors, pour tout $x \in I$,

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Partie V: La formule de STIRLING

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

Partie VI: Le déterminant de VANDERMONDE

Soient $n \ge 2$ et $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$. Alors,

$$V(\lambda_1, \dots, \lambda_n) = \begin{vmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & \vdots & \vdots \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{vmatrix} = \prod_{1 \leqslant i < j \leqslant n} (\lambda_j - \lambda_i).$$

Fiche PSI

Partie VII : Les relations de comparaison en 0

Les équivalents classiques sont obtenus en prenant le premier terme non nul des développements limités. Les relations de comparaison sont écrites pour $x \to 0$. Soient $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}$.

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{p} \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{p} \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+2})$$

$$\tan x = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \frac{17x^{7}}{315} + o(x^{8})$$

$$\cosh x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

$$\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+2})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^{n} + o(x^{n})$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

$$\frac{1}{1+x} = 1 - x + x^{2} + \dots + (-1)^{n} x^{n} + o(x^{n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n})$$

Partie VIII: Les séries entières

Les séries entières sont présentées avec leur rayon de convergence ρ . Lorsque le paramètre est x, on se limite aux paramètres réels.

Soient $z \in \mathbb{C}$ et $\alpha \in \mathbb{R}$.

$$\begin{array}{lll} \mathrm{e}^{z} & = \sum\limits_{n=0}^{+\infty} \frac{z^{n}}{n!} & , \ \rho = +\infty \\ \sin(x) & = \sum\limits_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} & , \ \rho = +\infty \\ \cos(x) & = \sum\limits_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} & , \ \rho = +\infty \\ \sinh(x) & = \sum\limits_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} & , \ \rho = +\infty \\ \cosh(x) & = \sum\limits_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} & , \ \rho = +\infty \\ \frac{1}{1-z} & = \sum\limits_{n=0}^{+\infty} z^{n} & , \ \rho = 1 \\ \ln(1+x) & = \sum\limits_{n=1}^{+\infty} (-1)^{n+1} \frac{x^{n}}{n} & , \ \rho = 1 \\ (1+x)^{\alpha} & = 1 + \sum\limits_{n=1}^{+\infty} \frac{\alpha \cdots (\alpha - n + 1)}{n!} x^{n} & , \ \rho = 1 \\ \arctan(x) & = \sum\limits_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} & , \ \rho = 1 \\ \arcsin(x) & = \sum\limits_{n=0}^{+\infty} \frac{(2n)!}{2^{2n} (n!)^{2} (2n + 1)} x^{2n+1} & , \ \rho = 1. \end{array}$$

Fiche PSI

Partie IX : Les lois de probabilités classiques

En notant q = 1 - p.

Nom	Paramètres	$X(\Omega)$		$\mathbb{E}\left[X\right]$	$\mathbb{V}\left(X ight)$	G_X	ρ
Constante	c	$\{c\}$	1	c	0	$t^c \ (c \in \mathbb{N})$	$+\infty$
Uniforme	a < b entiers	$\llbracket a,b rbracket$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{t^a - t^{b+1}}{(b-a+1)(1-t)}$	$+\infty$
Bernoulli	$p \in]0,1[$	{0,1}	p (k = 1)	p	p q	q + p t	$+\infty$
Binomiale	$(n,p)\in \mathbb{N}\times \left]0,1\right[$	$[\![0,n]\!]$	$\binom{n}{k} p^k q^{n-k}$	n p	n p q	$(q+pt)^n$	$+\infty$
Géométrique	$p \in]0,1[$	N*	$p q^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pt}{1-qt}$	$\frac{1}{q}$
Poisson	$\lambda \in \mathbb{R}_+^{\star}$	N	$\frac{\mathrm{e}^{-\lambda} \lambda^k}{k!}$	λ	λ	$e^{\lambda(t-1)}$	$+\infty$

Partie X : Notes personnelles

