Exercices: définitions de suites

Première Spécialité Mathématiques

11 Février 2025

Modes de génération d'une suite

- Soit (u_n) la suite définie pour tout entier naturel n par $u_n = 2n^2 1$.
 - Calculer u₀, u₁, u₂ et u₁₀
- Soit (u_n) la suite définie pour tout entier naturel $n \ge 1$ $par u_n = \frac{n+1}{n}$.
 - Calculer u₁, u₂, u₃ et u₁₀
- Soit (v_p) la suite définie par $v_0 = 3$ et pour tout entier naturel $n, v_{n+1} = 3v_n - 4$.
 - Calculer v₁, v₂ et v₃.
- Soit (w,) la suite définie par son premier terme w, = 1 et les autres termes sont obtenus en ajoutant 1 au double du carré du terme précédent.

 - 1. Calculer w_1 , w_2 et w_3 . 2. Donner la relation entre w_{n+1} et w_n
- On considère la suite de triangles rectangles isocèles suivante : le premier triangle a ses côtés de longueur 1, 1 et √2 cm. On effectue un agrandissement de rapport 3 pour obtenir le triangle suivant.
 - Construire les trois premiers triangles.
 - Calculer les périmètres p₁, p₂ et p₃ des trois premiers triangles.

- Donner la relation entre p_{n+1} et p_n . 3. Calculer les aires a_1 , a_2 et a_3 des trois premiers triangles. Donner la relation entre a_{n+1} et a_n .
- Donner la valeur exacte des cinq premiers termes de chacune des suites proposées.
 - La suite (a_n) est définie comme la suite des décimales de √3.
 - 2. La suite (b_n) est définie pour tout entier naturel n $par b_n = (-2)^n$
 - La suite (c_n) est telle que, pour tout entier naturel n non nul, c_n est l'inverse du nombre n.
- Pour chacune des suites ci-dessous, indiquer si elle est définie par une formule explicite ou par une relation de récurrence.
 - a. $u_n = 3n^2$ pour tout entier naturel n.
 - b. $v_n = n 1$ pour tout entier naturel n.

 - $w_0 = -2$ $w_{n+1} = w_n - 5$ pour tout entier naturel n.
 - d. $x_n = 4$ pour tout entier naturel n.
 - $\int t_1 = 1$
 - $t_n = \frac{1}{2}t_{n-1}$ pour tout entier naturel n > 1.

 - f. $\begin{cases} k_0 = 5 \\ k_{n+1} = 2n + k_n \text{ pour tout entier naturel } n. \end{cases}$
 - Pour chacune des suites précédentes, déterminer les trois premiers termes puis le cinquième terme.

- Calculer les quatre premiers termes des suites définies ci-dessous par une formule explicite.
 - 1. Pour tout entier naturel n, $u_n = -3n^2 n + 2$.
 - 2. Pour tout entier naturel $n \ge 1$, $v_n = \frac{2n+3}{n}$.
 - 3. Pour tout entier naturel $n \ge 2$, $w_n = \sqrt{n-2}$.

Les algorithmes ci-dessous permettent de calculer le terme de rang n de trois suites.

Pour k allant de 1 à n faire $u \leftarrow u + 5$

 $v \leftarrow 300$

Pour k allant de 1 à n faire $v \leftarrow 2 \times v$

 $w \leftarrow 0$

Pour k allant de 1 à n faire $w \leftarrow k + 3 \times w$

 Indiguer le premier terme et la relation de récurrence définissant chacune de ces suites.

On considère la suite définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = 3u_n - 4$.

- 1. Cette suite est-elle définie par une formule explicite ou par une relation de récurrence ?
- 2. Compléter l'algorithme ci-dessous de sorte qu'il calcule le terme de rang n de la suite (u_n) .

Pour & allant de ... à ... faire $u \leftarrow \dots$

- Calculer les quatre premiers termes des suites définies ci-dessous par une relation de récurrence.
- a. $u_0 = 2$, et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_{n-3}$.

- b. $v_0 = 1$, et pour tout $n \in \mathbb{N}$, $v_{n+1} = -v_n(3 v_n)$. c. $w_0 = 0$,5, et pour tout $n \in \mathbb{N}$, $w_{n+1} = w_n^2 + w_n 1$. 2. Pour chacune des suites précédentes, écrire un algorithme qui calcule le terme de rang n.

CALCULATRICE

On considère la suite (a,) définie par :

$$\begin{cases} a_0 = 1 \\ a_{n+1} = \frac{10a_n}{a_n + 3} \text{ pour tout entier naturel } n. \end{cases}$$

 Avec la calculatrice, donner une valeur approchée de a_n à 10^{-3} près.