

A Platform For Adaptive Processing In Machine Tool Vibration Monitoring

**Mike Dillon
The Modal Shop, Inc.
June 18, 2002**

The 20th Transducer Workshop

Motivation

- Deployable signal conditioning
- Deployable signal processing
- Local data bandwidth reduction
- Process vibration data to usable information
- Interface dynamic sensors to infrastructure
- Reduce cost of sensor deployment

Motivation

- Add Dynamic Measurements To Industrial Capabilities
- Remove Traditional Barriers
 - Cost
 - Physical Packaging
 - Network Bandwidth
- Ultimately Empower:
 - Machine Health
 - Tool Wear
 - Part and Process Quality

Traditional Architecture

- Transplant FFT Analyzers
 - Technological Overkill
- PC Board DAQ
 - Significant Engineering Up Front
 - Deployment Issues For Multi-channel

Distributed Architecture

- Integral ICP® signal conditioning
- High resolution 24 bit delta-sigma ADC
 - 96 kHz Bandwidth
- IEEE P1451.4 TEDS sensor support
- Isolated digital inputs & outputs
- Network support
- Programmable DSP
- Local non-volatile program and data storage
- Real-time and time of day clocks

Distributed Architecture

- Sealed NEMA 4 Enclosure
- No Ventilation Required
- < 4 Watts @ 24VDC
- Memory: 32 MB DRAM (5 Minutes of Time History @ 5 kHz)
- Bolt On
- Tamper Proof

Adaptive Processing Application

- Single Spindle Transfer Lines
- Detect Significant Change In Process
 - Tool Faults (loose, broken, or missing)
 - Bearing Failures
- Minimal Configuration Effort

Application Development

- Prove application using traditional tools
 - FFT analyzer
 - PC based data acquisition
 - Record Actual Plant Data
- Develop Algorithms in Lab Environment
 - Write “C” code
 - Matlab® / Simulink® / Stateflow®

DSPdeveloper + LanSharc

Use Simulink® to program custom applications by drawing block diagrams.

DO THIS!

***NOT
THIS!***

```
/* include "pump_mon.h"  
 * include "pump_mon.prm"  
  
/* user code (top of source file) */  
int cp_valtPong(cp_valtPong;  
segment "DMA_Buffer") volatile int T_PingOAR [2*(int)256:0];  
segment "DMA_Buffer") volatile int T_PongOAR [2*(int)256:0];  
  
/* * chaining pointers for ping/pong buffering  
 */  
segment "DMA_Buffer" _tcb rx0a tcb2[2]={  
{0, 0, 256*2, 1, 0}, /* Ch 1 & 2 transmit tcb */  
{1, 0, 256*2, 1, 0}; /* Ch 1 & 2 transmit tcb - set GP reg */  
  
/* model step function */  
void pump_mon_step(int_T tid)  
{  
/* local block i/o variables */  
real_T tb_mon_Alarm_Level[100];  
real_T tb_root_Binary_Comparison;  
real_T tb_s4_Multichannel_IIR_Fi[256];  
real_T tb_temp[256];  
  
/* update absolute time */  
if (ssIsSampleHit(pump_mon_rtO, 0, tid)) {  
ssUpdateRealAbsoluteTime(pump_mon_rtO);  
}  
if (ssIsSpecialSampleHit(pump_mon_rtO, 1, 0, tid)) {  
ssUpdateSubrateTaskTime(pump_mon_rtO, 1);  
}  
  
if (ssIsSampleHit(garbage2_rtO, 1, tid)) /* Sample time: [2.5666666666666669E+000,  
0.0] */  
/* Constant Block: <Root>/Alarm_Level */  
{  
int_T i1;  
real_T *y0=&tb_root_Alarm_Level[0];  
const real_T *p_root_Alarm_Level_Value = &garbage2_P.root_Alarm_Level_Value[0];  
for(i1=0;i1<100;i1++) {  
y0[i1]=p_root_Alarm_Level_Value[i1];  
}
```


Simulink Block Diagram to Application

- SDL's DSPdeveloper enables nonprogrammers to develop custom "smart" applications.
- Develop, simulate and debug in Simulink.
- Compile, link and download bootable, stand-alone applications to flash memory with a single mouse click using DSPdeveloper.

Application Development

- Port Algorithms To LAN Sharc
 - Prove Hardware By Processing Canned Data
- Deploy Pilot Project

Application Development

- Laboratory Algorithm Development
 - Cycle Detection

Application Development

- Laboratory Algorithm Development
 - Apply Operation Specific Criteria

Adaptive Processing

- Alarm Criteria Based On Normalized Distributions
 - Algorithm is 'Seeded' With 20 Machining Cycles of Known 'Good' Quality
 - Statistical Distributions Are Then Found In 'Learn' Mode
 - Finally, 'Test Mode' Applies The Established Criteria

Test Mode

- Evaluate Both On-Cycle and Off-Cycle Parameters

Problems Detected

- Sources of 'Off-Cycle' data Alarms
 - Spindle Bearings
 - Tool Balance
 - Impacts occurring during idle
 - Spindle Preload

Problems Detected

- Sources of 'On-Cycle' data Alarms
 - Broken or Worn Inserts
 - Workpiece Material Problem
 - Workpiece Clamping Problems

Off-Cycle Alarm - Spindle Preload

No. of Cycles (parts)

On-Cycle - Loose Arbor (Sawing Op)

On-Cycle Detection - Soft Workpiece

