

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

14

Claims

We claim the following:

1) (Canceled)

2) (Currently Amended) A process for ~~using a~~ the compound of the Formula 1 in a process,
5 (cation)(R'SO₄)
Formula 1

comprising the step of: employing the compound as a solvent, or solvent additive in a chemical process; employing the compound as an extraction solvent for a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit,

10 wherein:

R' is selected from the group consisting of a linear or branched, saturated or unsaturated, aliphatic or alicyclic, functionalized or non-functionalized alkyl radical with 3-36 carbon atoms, wherein R' is optionally functionalized with one or more X groups; X is selected from the group consisting of an -OH, -OR'', -COOH, -COOR'', -NH₂, -SO₄, -F, -Cl, -Br, -I or -CN; and R'' is selected from the group consisting of a branched or linear hydrocarbon chain with 1 - 12 carbon atoms;

the compound has a melting point of less than 100° C; and

the cation is a nitrogen-containing cation selected from the group consisting of a quaternary ammonium cation, an imidazolium cation, a pyridinium cation, a pyrazolium cation, a phosphonium and a triazolium cation.

20 3) (Currently Amended) The ~~method~~ process of claim 2, wherein the cation is selected from the group consisting of:

a) quaternary ammonium cation with the general formula (NR₁R₂R₃R)⁺;

b) phosphonium cation with the general formula (PR₁R₂R₃R)⁺;

25 c) imidazolium cation with the general formula

in which the imidazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group;

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

15

- d) pyridinium cation with the general formula

in which the pyridine core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group;

- 5 e) pyrazolium cation with the general formula

in which the pyrazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group; and

- 10 f) triazolium cation with the general formula

in which the triazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group; wherein

- 15 g) the radicals R¹, R², R³ are selected independently at each occurrence from the group consisting of:

- i) hydrogen;
ii) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1
20 to 20 carbon atoms;
iii) heteroaryl groups, heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the
heteroaryl radical and at least one heteroatom selected from N, O and S which is
optionally substituted with at least one group selected from C₁-C₆ alkyl groups and/or

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

16

halogen atoms;

- iv) aryl, aryl-C₁-C₆ alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is optionally substituted with at least one C₁-C₆ alkyl group and/or a halogen atom; and
- h) the radical R is selected from the group consisting of:
- 5 i) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1 to 20 carbon atoms;
- ii) heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the aryl radical and at least one heteroatom selected from N, O and S, which is optionally substituted with at least one C₁-C₆ alkyl group and/or halogen atom; and
- 10 iii) aryl-C₁-C₆ alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is optionally substituted with at least one C₁-C₆ alkyl group and/or halogen atom.
- 4) (Currently Amended) The method process of claim 2, wherein the anion has an empirical formula selected from the group consisting of C₄H₉SO₄, C₈H₁₇SO₄ or C₁₂H₂₅SO₄.
- 5) (Currently Amended) The method process of claim 2, wherein the compound of the Formula 15 1 has a melting point of less than 75° C.
- 6) (Currently Amended) The method process of claim 2, wherein the compound of the Formula 1 has a melting point of less than 50° C.
- 7) (Currently Amended) The method process of claim 2, wherein (R'SO₄) is an alkyl sulfate 20 ester, wherein the alkyl moiety is selected from the group consisting of butyl, octyl, 2-ethylhexyl, and dodecyl; and the method process comprises the step of: employing the compound as a solvent, solvent additive, ~~or in a chemical process; employing the compound as an extraction solvent in a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit; or employing the compound as a phase transfer catalyst.~~
- 25 8) (Currently Amended) The method process of claim 7, wherein the cation is a nitrogen containing cation selected from the group consisting of 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium butyl, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3-methylimidazolium, 1-butyl-pyridinium, trimethyldecylammonium, trioctylmethylammonium, trimethyldecylammonium, and trihexyltetradecylphosphonium.
- 30 9) (Currently Amended) The method process of claim 2, wherein the cation is a nitrogen

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

17

containing cation selected from the group consisting of 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium butyl, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3-methylimidazolium, 1-butyl-pyridinium, trimethyldecylammonium, trioctylmethylammonium, trimethyldecylammonium, and trihexyltetradecylphosphonium; and the method process

comprises the step of: employing the compound as a solvent or, solvent additive, or in a chemical process; employing the compound as an extraction solvent for a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit; or employing the compound as a phase transfer catalyst.

- 5 10) (Currently Amended) The method process of claim 2, wherein the compound of the Formula 1 is used in process is a reaction catalyzed by a transition metal; and the method process further comprises the step of: employing the compound as a solvent or, solvent additive, or in a chemical process; employing the compound as an extraction solvent for a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit; or employing the compound as a phase transfer catalyst.
- 15 11) (Currently Amended) The method process of claim 10, wherein the compound of the Formula 1 is used in the chemical process is selected from the group consisting of a hydroformylation reaction, a hydrogenation reaction, oligomerization reaction, esterification reaction, isomerization reaction or and amide bond-forming reaction.
- 20 12) (Currently Amended) The method process of claim 2, wherein the compound of the Formula 1 is used in chemical process is a reaction catalyzed by an enzyme or biocatalyst; and the method process further comprises the step of: employing the compound as a solvent, or solvent additive or in a chemical process; or employing the compound as an extraction solvent for a material separation; employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit; or employing the compound as a phase transfer catalyst.
- 25 13) (Currently Amended) The method process of claim 12, wherein the compound of the Formula 1 is used in chemical process is an oligomerization reaction, C-C bond-forming reaction, esterification reaction, isomerization reaction, or amide bond-forming reaction.
- 14) (Currently Amended) The method process of claim 2, wherein the compound of the Formula 30 1 is substantially hydrolytically stable in neutral aqueous solution (pH = 7) up to 80° C.
- 15) (Currently Amended) The method process of claim 2, wherein the compound of the Formula

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

18

1 has a melting point of less than 25° C.

16) (Currently Amended) The ~~method~~ process of claim 2, wherein the compound is selected from the group consisting of:

- a) 1-ethyl-3-methylimidazolium butyl sulfate;
- b) 1-ethyl-3-methylimidazolium octyl sulfate;
- c) 1-ethyl-3-methylimidazolium 2-ethylhexyl sulfate;
- d) 1-ethyl-3-methylimidazolium dodecyl sulfate;
- e) 1-butyl-3-methylimidazolium butyl sulfate;
- f) 1-butyl-3-methylimidazolium octyl sulfate;
- 10 g) 1-butyl-3-methylimidazolium 2-ethylhexyl sulfate;
- h) 1-butyl-3-methylimidazolium dodecyl sulfate;
- i) 1-hexyl-3-methylimidazolium butyl sulfate;
- j) 1-hexyl-3-methylimidazolium octyl sulfate;
- k) 1-hexyl-3-methylimidazolium 2-ethylhexyl sulfate;
- 15 l) 1-hexyl-3-methylimidazolium dodecyl sulfate;
- m) 1-octyl-3-methylimidazolium butyl sulfate;
- n) 1-octyl-3-methylimidazolium octyl sulfate;
- o) 1-octyl-3-methylimidazolium 2-ethylhexyl sulfate;
- p) 1-octyl-3-methylimidazolium dodecyl sulfate;
- 20 q) 1-decyl-3-methylimidazolium butyl sulfate;
- r) 1-decyl-3-methylimidazolium octyl sulfate;
- s) 1-decyl-3-methylimidazolium 2-ethylhexyl sulfate;
- t) 1-decyl-3-methylimidazolium dodecyl sulfate;
- u) 1-dodecyl-3-methylimidazolium butyl sulfate;
- 25 v) 1-dodecyl-3-methylimidazolium octyl sulfate;
- w) 1-dodecyl-3-methylimidazolium 2-ethylhexyl sulfate;
- x) 1-dodecyl-3-methylimidazolium dodecyl sulfate;
- y) 1-butyl-pyridinium butyl sulfate;
- z) 1-butyl-pyridinium octyl sulfate;
- 30 aa) 1-butyl-pyridinium 2-ethylhexyl sulfate;
- bb) 1-butyl-pyridinium dodecyl sulfate;

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

19

- cc) trimethyldecylammonium butyl sulfate;
- dd) trimethyldecylammonium 2-ethylhexyl sulfate;
- ee) trioctylmethylammonium butyl sulfate;
- ff) trioctylmethylammonium octyl sulfate;
- 5 gg) trioctylmethylammonium 2-ethylhexyl sulfate;
- hh) trioctylmethylammonium dodecyl sulfate;
- ii) trimethyldecylammonium butyl sulfate;
- jj) trimethyldecylammonium octyl sulfate;
- kk) trihexyltetradecylphosphonium butyl sulfate;
- 10 ll) trihexyltetradecylphosphonium octyl sulfate;
- mm) trihexyltetradecylphosphonium 2-ethylhexyl sulfate;
- nn) trihexyltetradecylphosphonium dodecyl sulfate; and the method process comprises the step of: employing the compound as a solvent or, solvent additive, or in a chemical process; employing the compound as an extraction solvent for a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit; or employing the compound as a phase transfer catalyst.

17) (Currently Amended) A method process for the of using a compound of the Formula 1 in a process

(cation)(R'SO₄)

20 Formula 1

comprising the step of: employing the compound as a solvent, or solvent additive in a chemical process; employing the compound as an extraction solvent for a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit, wherein:

25 R' is selected from the group consisting of a linear or branched, saturated or unsaturated, aliphatic or alicyclic, functionalized or non-functionalized alkyl radical with 3-36 carbon atoms, wherein R' is optionally functionalized with one or more X groups; X is selected from the group consisting of an -OH, -OR'', -COOH, -COOR'', -NH₂, -SO₄, -F, -Cl, -Br, -I or -CN; and R'' is selected from the group consisting of a branched or linear hydrocarbon chain with 1 - 12 carbon atoms;

30 the compound has a melting point of less than 100° C;

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

20

the cation is a nitrogen-containing cation selected from the group consisting of a quaternary ammonium cation, an imidazolium cation, a pyridinium cation, a pyrazolium cation, a phosphonium and a triazolium cation;

the compound of the Formula 1 is substantially hydrolytically stable in neutral aqueous
5 solution (pH = 7) up to 80° C.

18) (Currently Amended) The method process of claim 17, wherein (R'SO₄) has an empirical formula selected from the group consisting of C₄H₉SO₄, C₈H₁₇SO₄ or C₁₂H₂₅SO₄, and; the method process comprises the step of: employing the compound as a solvent, solvent additive
10 or in a chemical process; employing the compound as an extraction solvent for a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit; or employing the compound as a phase transfer catalyst.

19) (Currently Amended) A method process for the effusing a compound of the Formula 1 in a process

(cation)(R'SO₄)
15 Formula 1

comprising the step of: employing the compound as a solvent, or solvent additive in a chemical process; employing the compound as an extraction solvent for a material separation; or employing the compound as a heat carrier, or heat carrier additive in a heat exchange unit, wherein:

- 20 a) (R'SO₄) is an alkyl sulfate ester, wherein the alkyl moiety is selected from the group consisting of butyl, octyl, 2-ethylhexyl, and dodecyl;
- b) the cation is a nitrogen containing cation selected from the group consisting of 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium butyl, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3-methylimidazolium, 1-butyl-pyridinium, trimethyldecylammonium, trioctylmethylammonium, trimethyldecylammonium, and trihexyltetradecylphosphonium;
- c) the compound has a melting point of less than 100° C; and
- d) the compound of the Formula 1 is substantially hydrolytically stable in neutral aqueous
25 solution (pH = 7) up to 80° C.

30 20) (Currently Amended) The method process of claim 19, wherein the process is a reaction

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

21

catalyzed by a transition metal, and the reaction is a hydroformylation reaction, oligomerization reaction, esterification reaction, isomerization reaction or amide bond-forming reaction.

- 21) (Currently Amended) The ~~method~~ process of claim 19, wherein the process is a reaction
5 catalyzed by an enzyme or biocatalyst, and the reaction is an oligomerization reaction, C-C bond-forming reaction, esterification reaction, isomerization reaction, or amide bond-forming reaction.
- 22) (Currently Amended) The ~~method~~ process of claim 18, wherein the cation is selected from the group consisting of:
- 10 a) quaternary ammonium cation with the general formula $(NR_1R_2R_3R)^+$;
b) phosphonium cation with the general formula $(PR_1R_2R_3R)^+$;
c) imidazolium cation with the general formula

in which the imidazole core is optionally substituted with at least one group selected from
15 C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group;

d) pyridinium cation with the general formula

in which the pyridine core is optionally substituted with at least one group selected from
20 C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group;

e) pyrazolium cation with the general formula

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

22

in which the pyrazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group; and

- 5 f) triazolium cation with the general formula

in which the triazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group; wherein

- 10 g) the radicals R¹, R², R³ are selected independently at each occurrence from the group consisting of:

- i) hydrogen;
- ii) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1 to 20 carbon atoms;

- 15 iii) heteroaryl groups, heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the heteroaryl radical and at least one heteroatom selected from N, O and S which is optionally substituted with at least one group selected from C₁-C₆ alkyl groups and/or halogen atoms;

- iv) aryl, aryl-C₁-C₆ alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is optionally substituted with at least one C₁-C₆ alkyl group and/or a halogen atom; and

- 20 h) the radical R is selected from the group consisting of:

- i) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1 to 20 carbon atoms;
- ii) heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the aryl radical and at least one heteroatom selected from N, O and S, which is optionally substituted with at least

Applicant: Wasserscheid et al.
Filing Date: March 11, 2004

Amendments to the Claims

Docket No. VSKW-1

23

one C₁-C₆ alkyl group and/or halogen atom; and
iii) aryl-C₁-C₆ alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is
optionally substituted with at least one C₁-C₆ alkyl group and/or halogen atom.

BEST AVAILABLE COPY

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.