เอกสารรายงานประกอบนวัตกรรมทางการงานอาชีพและต่อยอดเชิงพาณิชย์

ระบบตรวจสอบข้อบกพร่องในการพิมพ์ผ้าดิจิทัลด้วย Al

จัดทำโดย

1.นายเสฎฐพันธ์ เหล่าอารีย์
 2.นายธนกฤต กุลรัตนรักษ์
 3.นางสาวชลนา เครือวุฒิกุล

อาจารย์ที่ปรึกษา

อาจารย์ณัฏฐาทิพ จันทร์ผล

โรงเรียนสาธิตมหาวิทยาลัยศรีนครินทรวิโรฒ ประสานมิตร (ฝ่ายมัธยม)

สารบัญ

หัวข้อเรื่อง	หน้าที่
ที่มาและวัตถุประสงค์ของนวัตกรรม ข้อมูลเบื้องต้นเกี่ยวกับนวัตกรรม	1
หน้าที่ - วิธีการทำงานของนวัตกรรม จุดเด่นของนวัตกรรม ประโยชน์ของนวัตกรรม	2
หลักการและข้อมูลที่เกี่ยวข้องกับนวัตกรรม	3
หลักการและข้อมูลที่เกี่ยวข้องกับนวัตกรรม (ต่อ)	4
กระบวนการสร้าง Model และ กระบวนการทำงาน	5
กระบวนการพัฒนานวัตกรรมตามกระบวนการคิดขั้นสูงเชิงระบบ GPAS 5 Steps	6
วิธีการทดลอง ผลการทดลองและการวิเคราะห์ข้อมูลที่ได้จากการทดลอง	7
การพัฒนาต่อยอดนวัตกรรม บรรณานุกรม รูปภาพนวัตกรรม	8

ที่มาและวัตถุประสงค์ของนวัตกรรม

นวัตกรรมนี้ได้มีที่มาเริ่มมาจากปัญหาในธุรกิจของครอบครัวของเพื่อนสมาชิกคนหนึ่ง ด้วยความที่ว่าทาง บ้านของเพื่อนทำธุรกิจเกี่ยวกับการพิมพ์ผ้าดิจิทัล (Digital textile printing) และได้ทราบถึงปัญหาในขั้นตอน กระบวนการการพิมพ์ที่ถ้าเกิดว่าหัวพิมพ์มีปัญหาแล้วไม่เข้าไปแก้ไขในทันที ตัวเครื่องพิมพ์ก็จะพิมพ์เช่นนั้น (พิมพ์ ผิดพลาด) ต่อไปเรื่อยๆจนกว่ากระดาษ / ผ้าจะหมด และกระดาษ / ผ้าส่วนนั้นจะเกิดร่องรอยที่พิมพ์ลายบกพร่อง และเสียไปทั้งหมด จึงมักจะใช้แรงงานคนมานั่งตรวจสอบขณะกำลังพิมพ์ผ้า ซึ่งใช้เวลานานและต้องการความ ละเอียดสูง ดังนั้นวัตถุประสงค์ของนวัตกรรมนี้ คือ เพื่อที่จะลดปัญหาการพิมพ์ผ้าดิจิทัลผิดพลาด สามารถ ตรวจสอบข้อบกพร่องในกระบวนการพิมพ์และแก้ไขได้ทันท่วงที ลดการสูญเสียทรัพยากรทั้งต้นทุน ผ้าและมนุษย์ ไปโดยสูญเปล่า จึงได้เกิดเป็นแนวคิดที่จะนำ AI มาแก้ไขปัญหาในส่วนนี้ และได้เกิดเป็นนวัตกรรมนี้ขึ้นมา

ภาพเครื่องพิมพ์ผ้าดิจิทัลของที่บ้าน

ภาพตัวอย่างผ้าที่เสีย / มีข้อบกพร่อง

ข้อมูลเบื้องต้นเกี่ยวกับนวัตกรรม

นวัตกรรมชิ้นนี้ เป็น AI ประเภทการจำแนกรูปภาพ (Image Classification) ที่ถูกพัฒนาโดยเทคนิค
Deep Learning ผ่าน CNN (Convolutional Neural Network) เพื่อนำมาตรวจสอบระหว่างรูปภาพของงานผ้า
พิมพ์ดิจิทัลที่มีข้อบกพร่อง/เสียหายกับงานพิมพ์ผ้าที่ปกติ เพื่อช่วยในกระบวนการพิมพ์ผ้าดิจิทัล (Digital textile printing) ในการช่วยตรวจสอบว่าผ้าที่พิมพ์นั้นมีข้อบกพร่องในส่วนไหนหรือไม่ จากนั้นก็จะแสดงผลการคำนวณ / ทำนาย (Prediction) ว่าผ้าที่พิมพ์นั้นปกติ / มีข้อบกพร่องหรือไม่ และแสดงเปอร์เซ็นต์ความน่าจะเป็นว่าปกติ / มีข้อบกพร่องอยู่ที่เท่าไร เพื่อให้ผู้ใช้นำข้อมูลไปแก้ไขในกระบวนการพิมพ์ผ้าดิจิทัลต่อไป

หน้าที่ / ฟังก์ชัน / วิธีการทำงานของนวัตกรรม

นวัตกรรมชิ้นนี้เป็น AI ประเภทการจำแนกรูปภาพ (Image Classification) มีฟังก์ชันการทำงานคือการรับรูปภาพ ผ้าที่ผ่านกระบวนการพิมพ์มาแล้วจากผู้ใช้ นำมาประมวลผลด้วย AI ว่าผ้าที่พิมพ์นั้นปกติ / มีข้อบกพร่องหรือไม่ แล้วแสดงผลการคำนวณและเปอร์เซ็นต์ความน่าจะเป็นออกมา หรือก็คือ นวัตกรรมนี้มีหน้าที่ในการจำแนกว่าผ้า พิมพ์นั้นปกติหรือมีข้อบกพร่อง หากมีก็จะแจ้งเตือนเพื่อให้ผู้ใช้ไปดำเนินการแก้ไขเครื่องพิมพ์-หัวพิมพ์ต่อไป

จุดเด่นและความแปลกใหม่ของนวัตกรรม

- เป็นบุคคลกลุ่มแรกๆที่นำ AI มาแก้ไขปัญหานี้ในกระบวนการพิมพ์ผ้าดิจิทัล
- มีความแม่นยำในการจำแนกข้อบกพร่องในผ้าพิมพ์สูงกว่า 89%
- ตรวจสอบข้อบกพร่องในผ้าพิมพ์ได้สะดวกรวดเร็วและมีประสิทธิภาพกว่ามนุษย์
- มีต้นทุนที่ต่ำ เนื่องจากนวัตกรรมนี้เกิดจากการใช้คอมพิวเตอร์เพียง 1 เครื่องมาทดสอบและคำนวณหาค่า Model ที่สมบูรณ์และมีประสิทธิภาพ
- สามารถนำนวัตกรรมนี้ไปต่อยอดเพิ่มได้ง่าย เนื่องจากในการเผยแพร่และนำเสนอ ได้เผยแพร่เป็นรูปแบบ
 ที่สามารถใช้ได้ในหลาย ๆ สถานการณ์และประยุกต์ต่อเพิ่มเติมได้สะดวก ดังนั้นผู้ที่สนใจนำนวัตกรรมนี้ไป
 ต่อยอดจึงสามารถทำได้โดยง่าย

ประโยชน์ของนวัตกรรม

- เพื่อลดข้อบกพร่องในกระบวนการพิมพ์ผ้าดิจิทัล และเมื่อมีข้อบกพร่องก็จะแจ้งเตือนผู้ใช้ ทำให้สามารถ ไปดำเนินการแก้ไขข้อบกพร่องในกระบวนการพิมพ์ผ้าดิจิทัลได้สะดวกรวดเร็วขึ้น
- เพื่ออำนวยความสะดวกในการตรวจสอบข้อบกพร่องของผ้าพิมพ์ จากที่มนุษย์เป็นคนตรวจสอบ ซึ่งใช้ เวลานาน ต้องการความละเอียดสูง และอาจตกหล่น / ผิดพลาดได้ เมื่อนำนวัตกรรมนี้มาใช้แทน ก็จะ ตรวจสอบได้อย่างมีประสิทธิภาพขึ้น และ ลดการใช้แรงงานมนุษย์ไปโดยไม่จำเป็นได้
- เพื่อลดการสูญเสียทรัพยากร (ต้นทุน, กระดาษ/ผ้า, และ มนุษย์) โดยไม่จำเป็น
- เพื่อเป็นการนำเทคโนโลยี AI มาประยุกต์ใช้แก้ไขปัญหาที่พบได้จริงในธุรกิจผ้าพิมพ์ดิจิทัลของทางบ้าน

ภาพแสดงวิธีทำงานของนวัตกรรมโดยง่าย

หลักการและข้อมูลที่เกี่ยวข้องกับนวัตกรรม

ตัว Model นี้เกิดมาจากการ Transfer Learning มาจาก ResNet-50 เพื่อให้เราสามารถสอน AI ในแบบ ของเราได้แม้จะมีชุดข้อมูลไม่มาก และเพื่อให้ได้ AI ที่เข้าใจถึงปัญหาที่ต้องการแก้ไข จึงดำเนินการเก็บชุดข้อมูลผ้า พิมพ์ที่โรงงานที่ทำการผลิตผ้าพิมพ์ดิจิทัลจริง ๆ ซึ่งตัว Model มีการใช้ชุดข้อมูลและหลักการในการทำดังนี้

ชุดข้อมูลรูปภาพของผ้าพิมพ์ดิจิทัลกว่า 273 รูป

เป็นชุดข้อมูลที่นำมาสอน Model ในการจำแนกผ้าพิมพ์ที่ปกติและที่มีข้อบกพร่อง โดยข้อบกพร่องนั้นแยกได้จาก ขั้นตอนที่นำสิ่งพิมพ์ (กระดาษ) ไปรีดลงผ้าแล้วเกิดเป็นรอย-จุดบกพร่องที่เห็นได้ชัดเจน ซึ่งในชุดข้อมูลแบ่งเป็น

ภาพผ้าพิมพ์ดิจิทัลที่ปกติ (ดี / ไม่มีข้อบกพร่อง / Non-Defect) 150 รูป

ตัวอย่างผ้าพิมพ์ดิจิทัลที่ปกติ ไม่มีข้อบกพร่อง

• ภาพผ้าพิมพ์ดิจิทัลที่มีข้อบกพร่อง (เสีย / Defect) 123 รูป

ตัวอย่างผ้าพิมพ์ดิจิทัลที่มีข้อบกพร่อง (มีเส้นสีขาว, มีคลื่นรบกวนสีขาว, มีรอยขูดจากเครื่องพิมพ์ ตามลำดับ)

Transfer Learning

เป็นวิธีการในการทำ AI อย่างหนึ่งที่อาศัยการนำ Model ที่มีอยู่แล้วมาเรียนรู้ต่อในชุดข้อมูลใหม่เพื่อให้ได้ผลลัพธ์ การคำนวณที่ต้องการ โดยยังรักษาประสิทธิภาพและคุณภาพของ Model เดิมไว้ได้อยู่ด้วย

ResNet-50

เป็น CNN (Convolutional Neural Network) ที่โด่งดังในด้านการประมวลผลรูปภาพ (Image Processing) เพราะถูกสอนด้วยชุดข้อมูลกว่า 14 ล้านรูป ทำให้เป็น Base Model ที่มีความเสถียรสูงเหมาะแก่การนำมาพัฒนา ต่อในงานจำแนกประเภทรูปภาพ อย่างเช่นงานนวัตกรรมชิ้นนี้ที่ต้องจำแนกระหว่างผ้าพิมพ์ที่เสียและปกติ

Neural Network

หรือระบบโครงข่ายประสาท เป็นระบบเครือข่ายคอมพิวเตอร์ที่ถูกสร้างมาภายใต้แนวคิดการเลียนแบบสมองของ มนุษย์ ด้วยค่าต่าง ๆ ที่ทำหน้าที่คล้ายกับเซลล์ประสาทในร่างกายของมนุษย์

Deep Learning

คือวิธีการเรียนรู้แบบอัตโนมัติด้วยการเลียนแบบการทำงานของโครงข่ายประสาทของมนุษย์ (Neurons) โดยนำ ระบบโครงข่ายประสาท (Neural Network) มาซ้อนกันหลายชั้น (Layer) และทำการเรียนรู้ชุดข้อมูลที่กำหนดไว้ ซึ่งนำไปสู่การที่ Model สามารถจำแนกข้อมูลตามจุดประสงค์ที่ต้องการได้

กระบวนการสร้าง Model และ กระบวนการทำงาน

ในขั้นตอนการสร้าง Model ได้แบ่งเป็นหลายขั้นตอน ดังนี้

0.การเก็บข้อมูล

ในการที่จะมีชุดข้อมูลที่ตรงกับความต้องการทั้งหมด จึงได้ดำเนินการไปถ่ายรูปผ้าพิมพ์ที่ปกติและมีข้อบกพร่องมา จัดทำเป็นชุดข้อมูลด้วยตัวเอง และได้ไปถ่ายภาพที่โรงงานที่ทำการพิมพ์ผ้าดิจิทัลจริง ๆ เพื่อให้ตรงกับจุดประสงค์ ที่ต้องการแก้ปัญหาในธุรกิจของทางบ้านมากที่สุด

1.การจัดเตรียมข้อมูล

นอกจากการเตรียมรูปภาพผ้าพิมพ์ทั้งแบบที่ปกติและมีข้อบกพร่องแล้ว เราจำเป็นต้องเตรียมข้อมูลภาพให้มาอยู่ใน รูปแบบที่โปรแกรมสามารถเข้าใจได้และต้องแบ่งเป็นชุดข้อมูลที่ไว้สอน (Training sets) และชุดข้อมูลไว้ทดสอบ (Test sets) เพื่อป้องกันไม่ให้ Model จดจำคำตอบจนค่าความแม่นยำผิดเพี้ยนไป

2.การสอน Model (Training)

ให้ Model ทำการ Deep Learning ด้วยตัวเองจากชุดข้อมูลรูปภาพที่จัดไว้สำหรับสอน เพื่อให้ Model สามารถ จดจำ เข้าใจ และแยกแยะถึงลักษณะของผ้าพิมพ์ที่ปกติและผ้าพิมพ์ที่มีข้อบกพร่องได้

3.การทดสอบ Model (Testing)

จากขั้นตอนแรกที่ได้ทำการแบ่งชุดข้อมูลออกเป็นชุดข้อมูลที่ไว้สอน และชุดข้อมูลที่ไว้สอบ ในขั้นตอนนี้จะนำชุด ข้อมูลที่ไว้สอบมาใช้ เพื่อให้เป็นข้อมูลที่ Model ไม่เคยเห็นมาก่อนสำหรับการทดสอบโดยเฉพาะ โดยนำมา ทดสอบ Model สำหรับการตรวจสอบผลลัพธ์ / ความแม่นยำของ Model และนำไปทำการปรับปรุงแก้ไข

4.การส่งออก Model (Exporting)

หลังจากที่ Model นั้นเสร็จสมบูรณ์ตรงตามความต้องการ มีประสิทธิภาพและความแม่นยำที่มากพอแล้ว ก็ต้องทำ การนำมาใช้ต่อผ่านรูปแบบ Model ที่เป็นสากลอย่าง ONNX เพื่อให้สามารถใช้งานต่อได้ในหลากหลายรูปแบบ และสถานการณ์

5.การนำ Model ไปใช้งานจริง (Deployment)

หลังจากที่ส่งออก Model มาเรียบร้อยแล้ว ต่อไปก็นำ Library อย่าง Streamlit มาช่วยในขั้นตอนการนำไปใช้ งานจริงและได้ Deploy ลง Hugging Face space เพื่อให้ผู้ใช้สามารถนำรูปภาพผ้าพิมพ์จริง ๆ มาตรวจสอบหา ข้อบกพร่องด้วย Model ของนวัตกรรมนี้ได้ (สามารถทดลองใช้ได้ที่ลิงก์ Hugging Face space ของนวัตกรรม https://huggingface.co/spaces/sh0kul/DTPDC-Deploy)

กระบวนการพัฒนานวัตกรรมตามกระบวนการคิดขั้นสูงเชิงระบบ GPAS 5 Steps

1.ขั้นสังเกต เลือก และรวบรวมข้อมูล (Gathering)

ในขั้นนี้ เป็นการสำรวจและสังเกตถึงปัญหาในกระบวนการพิมพ์ผ้าดิจิทัล ว่ามีปัญหาอย่างไรบ้างและสามารถแก้ไข ได้อย่างไร ในที่นี้คือ พบปัญหาในการตรวจสอบข้อบกพร่องในผ้าพิมพ์ ว่าใช้มนุษย์คอยตรวจสอบ ซึ่งก็สามารถมี ข้อผิดพลาดหรือตกหล่นได้ เพราะในการตรวจสอบต้องใช้เวลาและความละเอียดอย่างมาก จึงจะแก้ไขด้วยการใช้ AI มาทำหน้าที่ในส่วนนี้ จึงเข้าสู่ขั้นตอนการรวบรวมชุดข้อมูลภาพผ้าพิมพ์จะนำมา Train ใน AI

2.ขั้นคิดวิเคราะห์และจัดกระทำข้อมูล (Processing)

จากชุดข้อมูลภาพผ้าพิมพ์ที่ได้ทำการจัดเก็บมา ได้นำมาจัดประเภทว่าเป็นภาพผ้าพิมพ์ที่ปกติหรือมีข้อบกพร่อง และได้นำมาวิเคราะห์ว่าจะนำไปทำเป็น AI ด้วยเทคนิค / วิธีการไหน เพื่อให้มีประสิทธิภาพและตรงจุดประสงค์ ที่สุด ซึ่งก็ได้ว่าในการทำ AI จะใช้วิธีการ Transfer Learning มาจาก ResNet-50

3.ขั้นปฏิบัติและสรุปความรู้หลังการปฏิบัติ (Applying and Constructing the Knowledge)

ในขั้นนี้ได้ทำการ Train ตัว AI ด้วย Train sets ขึ้นมา แล้วนำไปทดสอบการจำแนกต่อด้วย Test sets และนำค่า ความแม่นยำที่ได้ไปเปรียบเทียบกับค่าความแม่นยำของมนุษย์ที่จำแนกภาพ Test sets ชุดเดียวกัน ออกมาเป็นผล การทดลอง และนำผลการทดลองนี้ไปสรุปและวิเคราะห์ต่อเพิ่มเติม

4.ขั้นสื่อสารและนำเสนอ (Applying the Communication Skill)

จากการที่ได้ AI ที่มีประสิทธิภาพและสามารถทำงานได้ตรงตามจุดประสงค์ (จำแนกผ้าพิมพ์ที่ดีและเสียได้) แล้ว ในการนำเสนอสู่ผู้คน ก็ต้องทำให้ผู้คนสามารถเข้ามาทดลองใช้ตัว AI นี้ได้ และเพื่อเป็นการนำเสนอหลักการทำงาน และประสิทธิภาพของ AI ไปในตัวด้วย ซึ่งในขั้นตอนนี้ก็ได้ทำการ Deploy ตัว AI ที่สมบูรณ์แล้วไว้ที่ Hugging Face space (https://huggingface.co/spaces/sh0kul/DTPDC-Deploy) ซึ่งไม่ว่าใครก็สามารถเข้ามาลองใช้ การจำแนกข้อบกพร่องในผ้าพิมพ์ดิจิทัลได้

5.ขั้นประเมินเพื่อเพิ่มคุณค่า ต่อยอดประโยชน์สู่สังคม (Self-regulating)

จากขั้นตอนทั้ง 4 ขั้นตอนก่อนหน้านี้ ทำให้ได้รับชิ้นนวัตกรรมที่เสร็จสมบูรณ์ตามวัตถุประสงค์แล้ว แต่ในการจะ นำไปใช้ประโยชน์และแก้ปัญหาจริงให้ได้ประสิทธิภาพ ยังต้องผ่านการต่อยอดเพิ่มเติมอยู่ คือ การทำให้ตัว Al สามารถจำแนกประเภทข้อบกพร่องของผ้าพิมพ์ลงไปได้ละเอียดขึ้นว่าบกพร่องในลักษณะไหน และการนำ นวัตกรรมไปติดตั้งกับเครื่องพิมพ์ผ้าดิจิทัลในกระบวนการผลิตจริง เพื่อให้สามารถใช้แก้ปัญหาที่เกิดในธุรกิจได้จริง

วิธีการทดลอง ผลการทดลองและการวิเคราะห์ข้อมูลที่ได้จากการทดลอง

ในการทดสอบประสิทธิภาพในการจำแนกผ้าพิมพ์ที่ปกติและเสียของ Model นี้ ทางเราได้จัดทำเกณฑ์ เทียบกับประสิทธิภาพในการจำแนกของมนุษย์ เนื่องจากเดิมทีแล้ว การจำแนกผ้าพิมพ์นี้เป็นหน้าที่ของมนุษย์ โดย ได้จัดทำเป็นแบบสอบถามผ่าน Google Forms ที่เป็นการนำ Test sets ไปให้มนุษย์ ซึ่งแบ่งเป็น ผู้เชี่ยวชาญ (Expert) 1 คน, คนทั่วไป (Non-Expert) 20 คน มาทดลองจำแนกผ้าพิมพ์ว่าดีหรือเสีย ซึ่ง Test sets ที่ว่าก็นำไป ทดสอบกับ Model มาแล้วเช่นกัน และได้ค่าความแม่นยำ / ถูกต้องของ Model และมนุษย์ (Expert, Non-Expert) เปรียบเทียบกันได้ดังนี้

ผลการทดลอง

นวัตกรรมชิ้นนี้สามารถจำแนกผ้าพิมพ์ที่ปกติและมีข้อบกพร่องได้แม่นยำ ถูกต้อง และมีประสิทธิภาพกว่ามนุษย์ โดยมีสัดส่วนอยู่ที่ 89% : 75% : 65% (นวัตกรรม : ผู้เชี่ยวชาญ (Expert) : คนทั่วไป (Non-Expert)) ซึ่งถือว่า นวัตกรรมนี้ได้ประสบความสำเร็จและบรรลุวัตถุประสงค์ไปส่วนหนึ่งเรียบร้อยแล้ว

Grayscale VS RGB

นอกจากนี้ยังมีการข้อสังเกตว่า ข้อบกพร่องบนผ้าพิมพ์นั้นส่วนใหญ่เป็นแค่ลายเส้น ๆ เรื่องสีของภาพในชุดข้อมูล เลยอาจจะไม่ใช่ปัจจัยที่สำคัญ จึงได้มีการทดสอบระหว่างการ Train Model ด้วยชุดภาพแบบขาวดำและภาพสี ได้ผลการทดสอบดังภาพด้านล่าง ซึ่งสามารถสรุปได้ว่า Model ที่ Train ด้วยชุดภาพสีที่ได้ผลการทดสอบที่มีความ ถูกต้องและแม่นยำสูงถึง 89% ซึ่งมากกว่าและเอาชนะ Model ที่ Train ด้วยภาพขาวดำในทุกการทดสอบ

การพัฒนาต่อยอดนวัตกรรม

ในงานนี้เรายังสามารถพัฒนาต่อยอดได้โดยการนำกล้องไปติดตั้งกับเครื่องพิมพ์ผ้าจริง ๆ และเพื่อนำ ข้อมูลภาพทำการตรวจสอบข้อผิดพลาดในการพิมพ์แบบ Real-Time ขณะกำลังพิมพ์อยู่ ซึ่งจะช่วยให้แก้ไข ข้อบกพร่องได้ทันท่วงที่ตามจุดประสงค์มากขึ้น และสามารถนำไปปรับปรุงเพิ่มเติมให้สามารถแยกประเภทของ ข้อบกพร่องได้ละเอียดขึ้น เช่น แบ่งเป็น "Double printing", "Pattern bending", "Misfits" ฯลฯ

บรรณานุกรม

- He, K., Zhang, X., Ren, S., & Sun, J. (2558). *Deep Residual Learning for Image Recognition.*สืบค้นเมื่อ 24 พฤษภาคม 2566, จาก https://arxiv.org/abs/1512.03385
- Mazharul Islam Kiron. (2565). *Common Printing Defects in Fabric: Causes and Remedies.* สืบค้นเมื่อ 24 พฤษภาคม 2566,
 - จาก https://textilelearner.net/common-printing-defects-in-fabric/
- Divya Sheel. (2563). *Deep Learning คืออะไร?*. สืบค้นเมื่อ 31 กรกฎาคม 2566, จาก https://new.abb.com/news/detail/58004/deep-learning

รูปภาพนวัตกรรม

