

ABES Engineering College, Ghaziabad

Department of Electrical & Electronics Engineering

Session: 2023-24 Semester: I/II Section:

Course Code: BEE101/201 Course Name: Fundamentals of Electrical Engineering

Tutorial Sheet-

Topic: Steady State Analysis of Single Phase AC Circuits

Q.	KL	CO	Question	Ans.
Q-1	К3	CO2	An alternating voltage is given by V =141.4 sin 314 t. Find: (a) Frequency (b) R.M.S value (c) Average value (d) The instantaneous value of voltage when 't' is 3 m sec. (e) The time taken for the voltage to reach 100 v for the first time after passing through zero value	114.4V, 2.5 m sec
Q-2	K3		 (a) A resistor in series (b) Capacitor in series (c) A coil in series having resistance of 10 Ω. Find Circuit parameters in each case and which method is most 	P _{CKT} =200W, PF =1 Case b) C =12.8µF, P _{CKT} = 100 W, PF = 0.5 lead Case c) L = 0.775H P _{CKT} = 107W, PF= 0.535 lagging, Case b
Q-3	K3	CO2	A 20 Ω resistance is connected in series with a inductive coil and a capacitor, across 25 Volts, variable frequency, single phase AC supply. When the supply frequency is 400 Hz the circuit current is at its maximum value of 0.5 A and voltage drop across capacitor is 150 Volts. Determine resistance and inductance of the coil.	$R = 30 \Omega, L =$
Q-4	К3	CO2	. A coil of resistance 20 Ω and inductance 100 mH is connected in series with a capacitance of 40 μ F across 100 v, 50 Hz ac supply. Calculate (i) magnitude of current (ii) power factor (iii) phase angle (iv) voltage across each element	1.92 A, 0.3835
Q-5	К3	CO2	A resistance R, capacitance C and inductance L of value $0.\overline{0.01}$ H are connected in series. When a voltage V = 400 cos(3000t-10°) V is applied to the series combination. the current flowing is given by I= $10\sqrt{2}\cos(3000t-55^\circ)$ A. Find the value of R and C	

Q-6	К3	A series combination of R and C is in parallel with 20 Ω resistance across 50 Hz supply. If the total current is 7A, Current through 20 Ω resistor is 5A and current in R-C branch is 3A. Find values of R & C	R =16.67 Ω C = 110.322 μF
Q-7	К3	To	0 ∠45 A, 10 ∠ 4 5 and 10 ∠105 A, otal 20∠45 A 1000 W, 500 W, 00 W and 2000 W
Q-8	К3	If in fig shown below given values are in ohms and the voltmeter reads 60 V find the reading of ammeter	I = 22.47 A
Q-9	К3	An inductive coil of impedance $Z = 6+8j\ \Omega$ is connected to 100V, 50HZ ac supply. It is desired to improve power factor of supply current to 0.8 lagging by connecting a capacitor (i) in series with coil and (ii) in parallel of coil. Find the value of capacitor for the each case.	909.45 μF and 111.4 μF c=254
Q a-10	К3		23.64 A, PF = 0.853 agg and 13.974 KW

line current=21.40A Power factor=0.77(lag) Active power=11.416Kw