Supporting Information

Appendix A: Simulation of winding survey bias

Straight line survey routes were infeasible due to impassible terrain and off-road restrictions; thus surveys were designed to maximize coverage of the Talek region and Mara Triangle (Figure 1).

Figure 1. Map of survey routes in the Talek and Mara Triangle management regions within the Masai Mara National Reserve, Kenya. Transect vehicle surveys were conducted at 4 to 6-week intervals from July 2012 to March 2014.

The curvatures of winding surveys do not violate the assumption of distance sampling or pose a serious issue to estimating detection probabilities (Hiby & Krishna 2001). However, winding surveys may violate the assumption of random placement, which ensures a representative sample of distances to observations for estimation of detection probability (Buckland et al. 1993). We conducted a simulation study to examine any biases created by winding surveys and to compare performance to straight surveys with random placement. We checked for biases in the scale parameter, σ , for detection probability, the number of groups within (i.e., Groups within) the sampling boundary (i.e., transect width of 1300 m), the abundance (derived from mean number of groups and mean group size) within the sampling boundary (i.e., Abundance within), the number of groups within the entire study region (i.e., Groups), and the abundance within the entire study region (i.e., Abundance).

To do this, we generate count data for a single species across the study region by simulating the location of groups assuming a uniform distribution for the intensity of groups. We then simulate group sizes for each group following the model in the main text. We sample from the simulated data using distance sampling with both winding and staight survey designs. We then compare the relative biases of the estimated parameters and the true parameters between winding and straight survey designs using a hierarchical distance sampling model (i.e., does not include a multi-species component).

We generated 100 datasets for simulating the locations of groups and group sizes and resampled each sampling design 10 times for a total of 1000 simulations for each sampling design. For each dataset, observations

(groups not individuals) were distributed uniformly across the sampling area. Group sizes were then simulated for each group. Then each dataset of uniformly distributed observations was resampled 10 times.

The results of the simulation study show that the winding survey is slightly more biased (8.87 % more biased) for the number of groups within the sampling boundary (i.e., Groups within) when compared to the straight survey (Table 1).

Table 1. The mean relative biases (percent) for our 5 parameters of interest for the winding survey design and the straigh survey design when compared to the true values.

	Winding	Straight
Groups In	17.43	8.36
Abundance In	11.22	12.95
Groups	14.09	7.65
Abundance	10.54	9.35
Sigma	5.29	14.33

This also holds true (winding surveys were 6.44% more biased) for the number of groups within the enitre study region (i.e., Groups). However, abundance within the sampling boundary (i.e., Abundance within) and for the entire study region (i.e., Abundance) were similar between the two survey methods, and there was no increase in bias for the scale parameter, σ , which influenced detection. We concluded that the winding survey design did not have a significant enough increase in bias to impact our results. Additionally, we assume that any potential biases caused by winding transects would have a similar influence in both management regions and would only affect absolute, but not relative, abundance estimates (summary of results, including the remaining tables and figures, are presented after the annotated code).

Below is the annotated code for the simulation study for a single simulation. To see complete code for the simulation study, please go to GitHub.

Annotated code

Set seed

```
set.seed(1985)
```

Set working directory

```
setwd("C:/Users/farrm/Documents/GitHub/HMSDS/Simulations")
```

Load R packages

```
## Warning: package 'rgdal' was built under R version 3.4.4
## Warning: package 'sp' was built under R version 3.4.4
```

```
library(sp)
library(dplyr)
```

```
## Warning: package 'dplyr' was built under R version 3.4.3
```

```
library(tidyr)

## Warning: package 'tidyr' was built under R version 3.4.4

library(jagsUI)
```

Warning: package 'jagsUI' was built under R version 3.4.4

Create study region UTM boundaries where individuals will be simulated

```
#Easting UTM
xlim <- c(715304, 752393)

#Northing UTM
ylim <- c(9831970, 9857296)
```

Simulate true latent values

```
#Number of groups
N <- 1000
#Simulate UTM coordinates of groups
u1 <- runif(N, xlim[1], xlim[2])
u2 <- runif(N, ylim[1], ylim[2])</pre>
#Group size
lambda.group <- 2</pre>
cs <- rpois(N, lambda.group) + 1</pre>
#Abundance
Ntotal <- sum(cs)
#Half normal scale parameter
sigma <- 300
#Mid point of each distance class
midpt <- seq(12.5, 650, 25)
#Index for distance class
nG <- length(midpt)</pre>
#Width of distance class
v <- 25
\#Transect\ half\ width
B <- 650
```

Create winding sampling design

```
#Directory for sampling design shapefiles
d.dir <- "C:/Users/farrm/Documents/GitHub/HMSDS/Simulations/Transects"</pre>
#Import transect shapefiles
Site1 <- readOGR(dsn = d.dir, layer = "Site1")
Site2 <- readOGR(dsn = d.dir, layer = "Site2")
Site3 <- readOGR(dsn = d.dir, layer = "Site3")
Site4 <- readOGR(dsn = d.dir, layer = "Site4")
Site5 <- readOGR(dsn = d.dir, layer = "Site5")
Site6 <- readOGR(dsn = d.dir, layer = "Site6")
Site7 <- readOGR(dsn = d.dir, layer = "Site7")</pre>
Site8 <- readOGR(dsn = d.dir, layer = "Site8")</pre>
Site9 <- readOGR(dsn = d.dir, layer = "Site9")</pre>
Site10 <- readOGR(dsn = d.dir, layer = "Site10")
Site11 <- readOGR(dsn = d.dir, layer = "Site11")
Site12 <- readOGR(dsn = d.dir, layer = "Site12")
Site13 <- readOGR(dsn = d.dir, layer = "Site13")
Site14 <- readOGR(dsn = d.dir, layer = "Site14")
Site15 <- readOGR(dsn = d.dir, layer = "Site15")
Site16 <- readOGR(dsn = d.dir, layer = "Site16")
Site17 <- readOGR(dsn = d.dir, layer = "Site17")
```


Figure 2. Imported transect shapefiles for the winding survey. Each of the 17 transects is represented by a different color.

Sample coordinates from transect. Used to calculate distances of observed groups.

```
s1p <- spsample(Site1, 30, type = "regular")</pre>
s2p <- spsample(Site2, 30, type = "regular")</pre>
s3p <- spsample(Site3, 30, type = "regular")
s4p <- spsample(Site4, 30, type = "regular")
s5p <- spsample(Site5, 30, type = "regular")</pre>
s6p <- spsample(Site6, 30, type = "regular")</pre>
s7p <- spsample(Site7, 30, type = "regular")</pre>
s8p <- spsample(Site8, 30, type = "regular")
s9p <- spsample(Site9, 30, type = "regular")</pre>
s10p <- spsample(Site10, 30, type = "regular")</pre>
s11p <- spsample(Site11, 30, type = "regular")</pre>
s12p <- spsample(Site12, 30, type = "regular")</pre>
s13p <- spsample(Site13, 30, type = "regular")</pre>
s14p <- spsample(Site14, 30, type = "regular")</pre>
s15p <- spsample(Site15, 30, type = "regular")</pre>
s16p <- spsample(Site16, 30, type = "regular")</pre>
s17p <- spsample(Site17, 30, type = "regular")</pre>
```

Combine site coordinates

Figure 3. Breaking continous winding survey into discrete points for calculation of distance from observation to transect.

Initialize values

```
#Index for sites
nsites <- 17

#Index for transect points
J <- length(X)

#ID for sites
si <- seq(0, J, (J/nsites))

#ID for distance class
di <- seq(0,650,25)

#Minimum distance value
dst <- rep(NA, N)

#ID for nearest site
q <- rep(NA, N)

#Site
site <- rep(NA, N)</pre>

#Distance value to each transect point
```

```
d <- array(NA, dim = c(N, J))
#ID for groups less than 650 meters
y <- rep(NA, N)
#Index recorder
index <- rep(NA, N)</pre>
```

Simulate distances and site of groups

```
for(i in 1:N){
  for(j in 1:J){
    #Distance from each group to each point on the transect
    d[i,j] \leftarrow sqrt((u1[i] - X[j])^2 + (u2[i] - Y[j])^2)
  #Distance to nearest point on the transect
  dst[i] <- min(d[i,])</pre>
  #Index of which point in 1:J is the nearest
  q[i] <- which.min(d[i,])
  for(j in 1:nsites){
    #Determine the site for each group
    if(si[j] < q[i] && q[i] <= si[j+1])</pre>
      site[i] <- j</pre>
  }
  #Index of which observation are within 650 meters of transect
  if(dst[i] < 650)</pre>
    y[i] <-1
  index[i] <- i</pre>
```

Harvest simulated data

```
#Dataframe that includes information on all groups
Dtot <- cbind(y, index, u1, u2, site, cs)

#Dataframe containing only groups within 650 meters to transect
Din <- Dtot[complete.cases(Dtot),]

#Number of groups within 650 meters
Nin <- length(Din[,1])

#Abundance within 650 meters
Nintotal <- sum(Din[,6])</pre>
```

Initialize data

```
#Remove groups not within 650 meters
index <- index[y==1]
index <- index[!is.na(index)]

#Detection Probability
p <- NULL

#Number of captured ("detected") groups
ncap <- rep(NA, Nin)

#Distance Class
dclass <- rep(NA, Nin)</pre>
```

Simulate detection of groups less than 650 meters

Harvest simulated data

```
#Add distance class, detection probability, and detection index to dataframe
Din <- cbind(Din[,2:6],dclass, p, ncap)</pre>
#Undetected groups as NAs
for(i in 1:Nin){
  if(Din[i,8] == 0)
    Din[i,8] <- NA</pre>
}
\#Data frame\ of\ detected\ inidividuals
Dcap <- Din[complete.cases(Din),]</pre>
#Create observed number of groups per site
y.new <- table(Dcap[,4])</pre>
y.new <- as.data.frame(y.new)</pre>
colnames(y.new) <- c("site", "freq")</pre>
y.new$site <- as.integer(y.new$site)</pre>
y.new <- tbl_df(y.new)</pre>
#Add in sites with no detections
```

```
miss <- y.new %>% expand(site = 1:nsites)
miss$freq <- rep(0, length(miss))

#Add missing sites into observed groups per site
yobs <- full_join(y.new, miss, by = "site")
yobs <- yobs %>% arrange(site)
yobs <- as.numeric(yobs$freq.x)
yobs[is.na(yobs)] <- 0

#Site index for observed number of groups
site <- Dcap[,4]

#Distance class index for observed number of groups
dclass <- Dcap[,6]

#Number of observations
nobs <- sum(yobs)

#Group size
gs <- Dcap[,5]</pre>
```

Create offset for sites with longer transects and sampling area

```
#Search area (meters squared) of each site

A.site <- as.vector(c(11.6542, 11.9619, 12.4702, 12.5182, 10.7843, 10.2384, 10.7495, 12.0545, 9.0114, 11.2589, 10.4075, 9.7834, 11.8226, 10.5295, 11.5376, 14.8511, 14.0352))
```

BUGS Model

```
cat("
    model{
    ##Priors

    for(j in 1:nsites){

    #Abundance prior
    alpha[j] ~ dnorm(0, 0.01)

    #Detection prior
    sigma[j] ~ dunif(0, 500)

}#End j loop

#OVerdispersion prior
    r.N ~ dunif(0,100)
    r.G ~ dunif(0,100)

#Group size prior
    beta ~ dunif(0, 50)

##Likelihood
```

```
#Multinomial detection component
for(i in 1:nobs){
dclass[i] ~ dcat(fc[1:nG, site[i]])
}#End i loop
for(j in 1:nsites){
#Construct cell probabilities for nG cells
for(k in 1:nG){
#Half normal detection function at midpt (length of rectangle)
p[k,j] \leftarrow exp(-midpt[k] * midpt[k] / (2 * sigma[j] * sigma[j]))
#Probability of x in each interval (width of rectangle)
pi[k,j] <- v/B
#Detection probability for each interval (area of each rectangle)
f[k,j] \leftarrow p[k,j] * pi[k,j]
#Conditional detection probability (scale to 1)
fc[k,j] \leftarrow f[k,j] / pcap[j]
}#End k loop
#Detection probability at each site (sum of rectangles)
pcap[j] <- sum(f[1:nG,j])</pre>
#Observation process
y[j] ~ dbin(pcap[j], N[j])
#Description of latent number of groups (negative binomial)
N[j] ~ dpois(lambda.star[j])
#Expected Number of Groups
lambda.star[j] <- rho[j] * lambda[j]</pre>
#Overdispersion parameter for Expected Number of Groups
rho[j] ~ dgamma(r.N, r.N)
#Linear model for number of groups
lambda[j] <- exp(alpha[j] + log(offset[j]))</pre>
#Expected Group Size
gs.lam.star[j] <- gs.lam[j] * gs.rho[j]</pre>
#Overdispersion parameter for Expected Group Size
gs.rho[j] ~ dgamma(r.G, r.G)
#Group size
gs.lam[j] <- exp(beta)</pre>
```

```
}#End j loop
for(i in 1:nobs){
gs[i] ~ dpois(gs.lam.star[site[i]]) T(1,)
}#End i loop
##Derived quantities
#Number of groups within sampling boundary
Nin <- sum(N[1:nsites])</pre>
for(j in 1:nsites){
#Abundance at each transect
Ntotal[j] <- lambda.star[j] * gs.lam.star[j]</pre>
} #End j loop
#Abundance within sampling boundary
Nintotal <- sum(Ntotal[])</pre>
#Proportion of study region covered by sampling design
D <- (939.316/164.4837)
#Number of groups in entire study region
Nwinding <- Nin * D
#Abundance in entire study region
Nwindingtotal <- Nintotal * D
}",fill=TRUE, file="ssds.txt")
```

Compile BUGS data

```
## List of 11
         : int 26
## $ nG
## $ v
          : num 25
## $ site : num [1:97] 2 6 3 4 1 14 14 4 9 7 ...
## $ y
          : num [1:17] 5 5 6 9 1 3 4 7 6 4 ...
## $ B
          : num 650
## $ midpt : num [1:26] 12.5 37.5 62.5 87.5 112.5 ...
## $ nobs : num 97
## $ dclass: num [1:97] 9 9 11 22 13 7 11 18 6 2 ...
## $ nsites: num 17
## $ gs
         : num [1:97] 2 1 2 2 2 3 2 2 2 4 ...
## $ offset: num [1:17] 11.7 12 12.5 12.5 10.8 ...
```

```
#Initial values
N.in <- yobs + 1

inits <- function(){list(N = N.in, sigma = runif(17, 50, 350))}

#Parameters to monitor
params<-c('sigma', 'Nin', 'Nintotal', 'Nwinding', 'Nwindingtotal')

#MCMC settings

nc <- 3
ni <- 12000
nb <- 2000
nt <- 4</pre>
```

Run model

```
##
## Processing function input.....
## Done.
##
## Compiling model graph
##
      Resolving undeclared variables
      Allocating nodes
##
## Graph information:
      Observed stochastic nodes: 211
##
##
      Unobserved stochastic nodes: 88
##
      Total graph size: 3500
##
## Initializing model
##
## Adaptive phase.....
## Adaptive phase complete
##
##
##
   Burn-in phase, 2000 iterations x 3 chains
##
##
## Sampling from joint posterior, 10000 iterations x 3 chains
##
## Calculating statistics......
##
## Done.
```

Save and remove data for next sampling

```
windingVals <- list(cbind(Din[,2], Din[,3]), cbind(Dcap[,2], Dcap[,3]), Nin, Nintotal)

rm(X, Y, nsites, J, si, di, dclass, dst, q,
    site, d, y, index, Dtot, Din, Nin, Nintotal,
    p, ncap, Dcap, y.new, miss, yobs, nobs, gs,
    N.in, inits)</pre>
```

Create straight sampling design. There are 10 transects that run north to south.

```
#Sampling area middle UTM coordinate

mdE <- 733848.5

mdN <- 9844633

#Sampling area left corner UTM coordinate

Et <- mdE - (13000/2)

Nt <- mdN + (12650/2)

#Sample points from straight transects

Ep <- seq((Et + 650), (Et + (13000 - 650)), 1300)

Np <- seq(Nt, (Nt - 12650), -253)

X <- rep(Ep, rep(length(Np), length(Ep)))

Y <- rep(Np, length(Ep))
```


Figure 4. Transects for straight survey design that have been discretized into points for distance sampling calculations.

Initialize values

```
#Index for sites
nsites <- 10
#Index for transect points
J <- length(X)
#ID for sites
si <- seq(0, J, (J/nsites))
#ID for distance class
di <- seq(0,650,25)
\#Minimum\ distance\ value
dst <- rep(NA, N)
#ID for nearest site
q \leftarrow rep(NA, N)
#Site
site <- rep(NA, N)
#Distance value to each transect point
d \leftarrow array(NA, dim = c(N, J))
#ID for groups less than 650 meters
y \leftarrow rep(NA, N)
#Index recorder
index <- rep(NA, N)
```

Simulate data for distances and site for groups

```
for(i in 1:N){
  for(j in 1:J){

    #Distance from each group to each point on the transect
    d[i,j] <- sqrt((u1[i] - X[j])^2 + (u2[i] - Y[j])^2)
}

#Distance to nearest point on the transect
dst[i] <- min(d[i,])

#Index of which point in 1:J is the nearest
q[i] <- which.min(d[i,])

for(j in 1:nsites){

    #Determine the site for each group
    if(si[j] < q[i] && q[i] <= si[j+1])
        site[i] <- j
}

#Index of which observation are within 650 meters of transect</pre>
```

```
if(dst[i] < 650)
   y[i] <- 1
  index[i] <- i
}</pre>
```

Harvest simulated data

```
#Dataframe that includes information on all groups
Dtot <- cbind(y, index, u1, u2, site, cs)

#Dataframe containing only groups within 650 meters to transect
Din <- Dtot[complete.cases(Dtot),]

#Number of groups within 650 meters
Nin <- length(Din[,1])

#Abundance within 650 meters
Nintotal <- sum(Din[,6])</pre>
```

Initialize data

```
#Remove groups not within 650 meters
index <- index[y==1]
index <- index[!is.na(index)]

#Detection Probability
p <- NULL

#Number of captured ("detected") groups
ncap <- rep(NA, Nin)

#Distance Class
dclass <- rep(NA, Nin)</pre>
```

Simulate detection of groups less than 650 meters

```
for(i in 1:Nin){

#Detection probability using half-normal distance function
  p[i] <- exp(-dst[index[i]] * dst[index[i]] / (2 * sigma * sigma))

#Simulate number of groups detected
  ncap[i] <- rbinom(1, 1, p[i])

for(k in 1:nG){

    #Determine distance class for each group
    if(di[k] < dst[index[i]] && dst[index[i]] <= di[k+1])
        dclass[i] <- k
    }
}</pre>
```

Harvest simulated data

```
#Add distance class, detection probability, and detection index to dataframe
Din <- cbind(Din[,2:6],dclass, p, ncap)</pre>
\#Undetected\ groups\ as\ NAs
for(i in 1:Nin){
  if(Din[i,8] == 0)
    Din[i,8] <- NA</pre>
}
#Dataframe of detected inidividuals
Dcap <- Din[complete.cases(Din),]</pre>
#Create observed number of groups per site
y.new <- table(Dcap[,4])</pre>
y.new <- as.data.frame(y.new)</pre>
colnames(y.new) <- c("site", "freq")</pre>
y.new$site <- as.integer(y.new$site)</pre>
y.new <- tbl_df(y.new)</pre>
#Add in sites with no detections
miss <- y.new %>% expand(site = 1:nsites)
miss$freq <- rep(0, length(miss))</pre>
#Add missing sites into observed groups per site
yobs <- full_join(y.new, miss, by = "site")</pre>
yobs <- yobs %>% arrange(site)
yobs <- as.numeric(yobs$freq.x)</pre>
yobs[is.na(yobs)] <- 0</pre>
#Site index for observed number of groups
site <- Dcap[,4]</pre>
#Distance class index for observed number of groups
dclass <- Dcap[,6]</pre>
#Number of observations
nobs <- sum(yobs)</pre>
#Group size
gs <- Dcap[,5]
```

Compile BUGS data. Reuse BUGS model, parameters to save, and MCMC settings.

```
## List of 11
## $ nG : int 26
## $ v : num 25
## $ site : num [1:94] 10 2 8 10 1 2 8 2 3 7 ...
## $ y : num [1:10] 14 14 11 8 4 6 5 12 8 12
```

```
## $ B
         : num 650
## $ midpt : num [1:26] 12.5 37.5 62.5 87.5 112.5 ...
## $ nobs : num 94
## $ dclass: num [1:94] 10 5 1 7 19 7 21 1 11 13 ...
## $ nsites: num 10
## $ gs
           : num [1:94] 1 4 3 2 2 1 4 3 8 2 ...
## $ offset: num [1:10] 1 1 1 1 1 1 1 1 1 1
#Initial values
N.in \leftarrow yobs + 1
inits <- function(){list(N = N.in, sigma = runif(10, 50, 350))}</pre>
Run BUGS model
altM <- jags(data = altD, model.file = "ssds.txt",</pre>
             inits = inits, parameters.to.save = params,
             n.chains = nc, n.iter = ni, n.burnin = nb, n.thin = nt)
##
## Processing function input......
## Done.
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 198
##
##
      Unobserved stochastic nodes: 53
##
      Total graph size: 2240
##
## Initializing model
##
## Adaptive phase.....
## Adaptive phase complete
##
##
## Burn-in phase, 2000 iterations x 3 chains
##
##
## Sampling from joint posterior, 10000 iterations x 3 chains
##
##
## Calculating statistics.....
## Done.
Save and remove data
altVals <- list(cbind(Din[,2], Din[,3]), cbind(Dcap[,2], Dcap[,3]), Nin, Nintotal,
                cbind(X, Y))
```

```
rm(X, Y, nsites, J, si, di, dclass, dst, q,
    site, d, y, index, Dtot, Din, Nin, Nintotal,
    p, ncap, Dcap, y.new, miss, yobs, nobs, gs,
    N.in, inits)
```

Absoulte relative bias estimates

```
bias <- t(matrix(data = c(</pre>
#Number of groups in search area
#Winding True
windingVals[[3]],
#Winding Estimate
windingM$mean$Nin,
#Winding Bias
(abs(mean((windingM\sims.list\sim - windingVals[[3]])/windingVals[[3]])) * 100),
#Straight True
altVals[[3]],
#Straight Estimate
altM$mean$Nin,
#Straight Bias
(abs(mean((altM$sims.list$Nin - altVals[[3]])/altVals[[3]])) * 100),
#Abundance in search area
#Winding True
windingVals[[4]],
#Winding Estimate
windingM$mean$Nintotal,
#Winding Bias
(abs(mean((windingM$sims.list$Nintotal - windingVals[[4]])/windingVals[[4]])) * 100),
#Straight True
altVals[[4]],
#Straight Estimate
altM$mean$Nintotal,
#Straight Bias
(abs(mean((altM\sims.list\nintotal - altVals[[4]])/altVals[[4]])) * 100),
#Number of groups in survey boundary
#Winding True
```

```
#Winding Estimate
windingM$mean$Nwinding,
#Winding Bias
(abs(mean((windingM$sims.list$Nwinding - N)/N)) * 100),
#Straight True
N,
#Straight Estimate
altM$mean$Nwinding,
#Straight Bias
(abs(mean((altM$sims.list$Nwinding - N)/N)) * 100),
#Abundance in survey boundary
#Winding True
Ntotal,
#Winding Estimate
windingM$mean$Nwindingtotal,
#Winding Bias
(abs(mean((windingM$sims.list$Nwindingtotal - Ntotal)/Ntotal)) * 100),
#Straight True
Ntotal,
#Straight Estimate
altM$mean$Nwindingtotal,
#Straight Bias
(abs(mean((altM$sims.list$Nwindingtotal - Ntotal)/Ntotal)) * 100),
#Scale parameter
#Winding True
sigma,
#Winding Estimate
mean(windingM$mean$sigma),
#Winding Bias
(abs(mean((rowMeans(windingM$sims.list$sigma) - sigma)/sigma)) * 100),
#Straight True
sigma,
#Straight Estimate
mean(altM$mean$sigma),
#Straight Bias
```

Results

Table 2. Estimates from winding survey model.

	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat
sigma[1]	360.4399	82.776667	204.92012	294.6021	364.7849	429.8758	492.2539	1.0002838
sigma[2]	347.1600	85.277311	192.11105	279.3505	346.5408	417.9912	491.6940	1.0005473
sigma[3]	331.1203	88.348317	180.82272	259.4977	325.7865	402.3242	489.3304	1.0019559
sigma[4]	381.5932	71.751181	243.16952	327.1226	385.1343	441.5889	494.6052	1.0012270
sigma[5]	288.2566	115.536209	97.35758	191.3059	283.4080	385.7022	486.2207	1.0018696
sigma[6]	299.2259	100.382350	136.30333	217.0189	289.7524	377.7462	486.5371	1.0009998
sigma[7]	271.9074	99.496748	129.17308	191.8638	251.4211	340.4647	481.7316	1.0016122
sigma[8]	326.6522	87.103645	179.78389	257.1762	317.4694	394.1272	488.5888	1.0002529
sigma[9]	367.4214	79.178622	214.98238	305.6117	371.2907	434.1744	492.8593	1.0016722
sigma[10]	277.9822	98.504340	132.89965	197.8140	260.9599	350.2197	480.3911	1.0021766
sigma[11]	239.9133	125.930623	59.70849	131.0620	218.6614	339.3745	482.7247	0.9998709
sigma[12]	241.6039	81.359897	134.44714	182.0219	221.0871	281.6510	451.5640	1.0040925
sigma[13]	267.2581	78.414120	158.28212	208.0868	249.7337	311.6529	459.1376	1.0005191
sigma[14]	384.3922	75.476138	231.66710	328.6737	393.0153	447.4427	495.0709	1.0002063
sigma[15]	289.6600	86.111764	161.04759	222.1314	273.4589	345.6448	477.3331	1.0001312
sigma[16]	273.4192	100.610593	127.51921	191.1596	252.6877	346.5337	482.9532	0.9999659
sigma[17]	265.9716	75.021804	164.49994	211.0153	248.8358	305.3666	458.5560	1.0000244
Nin	190.8712	19.877628	156.00000	177.0000	190.0000	204.0000	233.0000	1.0022511
Nintotal	490.1688	71.362719	364.44553	440.1314	485.9491	534.6338	642.9943	1.0010350
Nwinding	1090.0069	113.515041	890.86819	1010.7928	1085.0318	1164.9815	1330.5916	1.0022511
Nwindingtotal	2799.2037	407.530619	2081.23672	2513.4557	2775.1065	3053.1297	3671.9434	1.0010350
deviance	967.2059	6.892891	955.24615	962.3354	966.6933	971.4248	982.0972	1.0011113

Figure 5. Visualization of winding survey. Black circles indicate simulated observations not within sampling boundary. Green circles with no fill indicate observations within sampling boundary that were not detected. Green circles with red fill indicate observations within sampling boundary that were detected.

Table 3. Estimates from straight survey model.

	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat
sigma[1]	358.9581	75.577249	226.24228	298.9486	357.5383	420.1229	490.8095	1.0004406
sigma[2]	389.6711	67.972838	258.07010	338.5064	393.9912	447.5336	494.8387	1.0008764
sigma[3]	414.3526	58.718652	286.33950	373.9490	422.3998	463.0281	496.4192	1.0014861
sigma[4]	246.9415	81.407316	138.84581	187.3292	227.2792	287.7167	453.6572	1.0003389
sigma[5]	206.2246	95.508337	90.07235	135.9026	178.3655	251.3199	454.9527	1.0024200
sigma[6]	295.5293	91.736640	156.45572	221.8232	280.5075	363.0945	481.1763	1.0017143
sigma[7]	356.8540	84.711756	198.33001	290.5133	360.3346	428.4300	492.8696	1.0000399
sigma[8]	369.2408	74.735040	230.53855	310.5402	369.3324	431.8324	492.9093	0.9999370
sigma[9]	360.1121	78.368162	216.52792	298.8437	360.6193	424.0884	491.7418	1.0004889
sigma[10]	229.7604	66.943180	143.54002	183.1329	214.1340	258.6060	415.5326	1.0008395
Nin	172.2429	18.299706	141.00000	159.0000	171.0000	184.0000	212.0000	1.0008750
Nintotal	478.0368	71.093259	354.37479	427.3733	472.8803	523.0958	633.0113	1.0002558
Nwinding	983.6266	104.504012	805.20779	908.0003	976.5286	1050.7676	1210.6670	1.0008750
Nwindingtotal	2729.9214	405.991812	2023.72581	2440.5979	2700.4744	2987.2396	3614.9337	1.0002558
deviance	934.0236	6.260187	923.13988	929.5893	933.4853	938.0233	947.6326	0.9999195

Figure 6. Visualization of straight survey. Black circles indicate simulated observations not within sampling boundary. Green circles with no fill indicate observations within sampling boundary that were not detected. Green circles with red fill indicate observations within sampling boundary that were detected.

Table 4. Estimated and true values with associated relative bias for winding and straight surveys for a single dataset.

	Winding True	Winding Est	Winding Bias	Straight 7	Γrue	Straight Est	Straight Bias
Groups Within	168	190.8712	13.613810		185	172.2429	6.895712
Abundance Within	477	490.1688	2.760752		535	478.0368	10.647336
Groups	1000	1090.0069	9.000693	1	1000	983.6266	1.637340
Abundance	2960	2799.2037	5.432307	2	2960	2729.9214	7.772926
Sigma	300	306.7046	2.234854		300	322.7645	7.588152

Literature Cited

Buckland, S.T., Anderson, D.R., Burnham, K.P. & Laake, J.L. (1993) Distance Sampling: Estimating Abundance of Biological Populations. Oxford University Press, Oxford.

Hiby, L. & Krishna, M.B. (2001) Line transect sampling from a curving path. Biometrics, 57, 727-731.

Appendix B: Multi-species distance sampling JAGS code

```
model{
#----#
#-PRIORS-#
#----#
#Gamma0
mu_s ~ dunif(0, 8)
                              #Mean
tau_s <- 1/(sig_s * sig_s)
                              #Precision
sig_s ~ dunif(0, 8)
                              #Variance
#Sigma
gamma1 ~ dnorm(0, 0.01)
                              #Effect of body size
gamma2 ~ dnorm(0, 0.01)
                              #Effect of region
#Alpha0
mu_a0 ~ dnorm(0, 0.01)
                              #Mean
tau_a0 ~ dgamma(0.1, 0.1)
                              #Precision
sig_a0 <- 1/sqrt(tau_a0)</pre>
                              #Variance
#Alpha1
mu_a1 ~ dnorm(0, 0.01)
                              #Mean
tau_a1 ~ dgamma(0.1, 0.1)
                              #Precision
sig_a1 <- 1/sqrt(tau_a1)
                              #Variance
#Beta1
mu_b1 ~ dnorm(0, 0.01)
                              #Mean
tau_b1 ~ dgamma(0.1, 0.1)
                              #Precision
sig_b1 <- 1/sqrt(tau_b1)</pre>
                              #Variance
#Overdispersion
r.N ~ dunif(0,100)
                              #Number of groups
r.G ~ dunif(0,100)
                              #Group size
for(s in social){
#Expected Group Size
beta0[s] ~ dunif(0,50)
                                 #Intercept parameter
beta1[s] ~ dnorm(mu_b1, tau_b1) #Effect parameter
} #end s loop
for(s in 1:nspec){
#Psi
tau_p[s] ~ dgamma(0.1, 0.1) #Precision
sig_p[s] <- 1/sqrt(tau_p[s]) #Variance</pre>
#Sigma
gamma0[s] ~ dnorm(mu_s, tau_s) #Intercept parameter
#Expected Number of Groups
```

```
alpha0[s] ~ dnorm(mu_a0, tau_a0)
                                     #Intercept parameter
alpha1[s] ~ dnorm(mu_a1, tau_a1)
                                     #Effect parameter
for(j in 1:nsites){
psi[j,s] ~ dnorm(0, tau_p[s]) #Transect effect parameter
#Scale parameter
sigma[j,s] <- exp(gamma0[s] + gamma1 * size[s] + gamma2 * region[j])</pre>
#----#
#-LIKELIHOOD-#
#----#
for(t in 1:nreps[j]){
#Construct cell probabilities for nG cells using numerical integration
#Sum of the area (rectangles) under the detection function
for(k in 1:nD){
#Half normal detection function at midpt (length of rectangle)
g[k,t,j,s] \leftarrow \exp(-mdpt[k]*mdpt[k]/(2*sigma[j,s]*sigma[j,s]))
#Proportion of each interval (width of rectangle) for both sides of the transect
pi[k,t,j,s] \leftarrow v/B
#Detection probability for each distance class k (area of each rectangle)
f[k,t,j,s] \leftarrow g[k,t,j,s] * pi[k,t,j,s]
#Conditional detection probability (scale to 1)
fc[k,t,j,s] \leftarrow f[k,t,j,s]/pcap[t,j,s]
}#end k loop
#Detection probability at each transect (sum of rectangles)
pcap[t,j,s] \leftarrow sum(f[1:nD,t,j,s])
#Observed population @ each t,j,s (N-mixture)
y[t,j,s] ~ dbin(pcap[t,j,s], N[t,j,s])
#Latent Number of Groups @ each t,j,s (negative binomial)
N[t,j,s] ~ dpois(lambda.star[t,j,s])
#Expected Number of Groups
lambda.star[t,j,s] <- rho[t,j,s] * lambda[t,j,s]</pre>
#Overdispersion parameter for Expected Number of Groups
rho[t,j,s] ~ dgamma(r.N, r.N)
#Linear predictor for Expected Number of Groups
lambda[t,j,s] <- exp(alpha0[s] + alpha1[s] * region[j] + psi[j,s] + log(offset[j]))</pre>
}#end t loop
```

```
#Mean detection probability @ each j,s
psite[j,s] <- mean(pcap[1:nreps[j], j, s])</pre>
}#end j loop
#Mean detection probability for each species
Dprop[s] <- mean(psite[1:nsites, s])</pre>
}#end s loop
#Mean detection probability for all t,j,s
TotalDprop <- mean(Dprop[])</pre>
for(s in social){
for(j in 1:nsites){
for(t in 1:nreps[j]){
#Expected Group Size
gs.lam.star[t,j,s] \leftarrow gs.lam[t,j,s] * gs.rho[t,j,s]
#Overdispersion parameter for Expected Group Size
gs.rho[t,j,s] ~ dgamma(r.G, r.G)
#Linear predictor for Expected Group Size
gs.lam[t,j,s] <- exp(beta0[s] + beta1[s] * region[j] + log(offset[j]))</pre>
}#end t loop
}#end j loop
}#end s loop
for(i in 1:nobs){
#Observed distance classes
dclass[i] ~ dcat(fc[1:nD, rep[i], site[i], spec[i]])
}#end i loop
for(i in 1:nsoc){
#Observed Group Size (zero truncated negative binomial)
gs[i] ~ dpois(gs.lam.star[s.rep[i], s.site[i], s.spec[i]]) T(1,)
}#end i loop
for(s in social){
for(j in 1:nsites){
for(t in 1:nreps[j]){
```

```
#Abundance per transect
GSrep[t,j,s] <- lambda.star[t,j,s] * gs.lam.star[t,j,s]
}#end t loop

#Abundance per transect averaged over surveys
GSsite[j,s] <- mean(GSrep[1:nreps[j], j, s])
}#end j loop

#Mean abundance per transect
GS[s] <- mean(GSsite[1:nsites, s])

#Abundance per transect for each region
RegGS[s,1] <- mean(GSsite[1:13, s])  #Mara Triangle
RegGS[s,2] <- mean(GSsite[14:17, s])  #Talek region
}#end s loop
}#end model</pre>
```

Appendix C: Model Results

Summary (mean, standard deviation, 95% credible interval [CI]) of parameter estimates from hierarchical multi-species distance sampling model. μ_{σ} : mean of $\gamma 0_s$; τ_{σ}^2 : variance of $\gamma 0_s$; $\mu_{\alpha 0}$: mean of $\alpha 0_s$; $\tau_{\alpha 0}^2$: variance of $\alpha 0_s$; $\mu_{\alpha 1}$: mean of $\alpha 0_s$; $\mu_{\alpha 1}$: mean of $\alpha 0_s$; $\mu_{\alpha 1}$: variance of $\alpha 0_s$; $\mu_{\alpha 1}$: species-specific intercepts of $\alpha 0_s$: species-specific effects of management regime on $\alpha 0_s$; $\alpha 0_s$: species-specific intercepts of $\alpha 0_s$; $\alpha 0_s$: species-specific effects of management regime on $\alpha 0_s$; $\alpha 0_s$: species-specific intercepts of $\alpha 0_s$; $\alpha 0_s$: species-specific effects of management regime on $\alpha 0_s$; $\alpha 0_s$: species-specific density in the Talek region; $\alpha 0_s$: species-specific density in Mara Triangle; $\alpha 0_s$: species-specific density in the Talek region; AL: African lion; BM: banded mongoose; BEF: bat-eared fox; BBJ: black-backed jackal; CAR: caracal; CHE: cheetah; LEO: leopard; SER: serval; SSJ: side-striped jackal; SM: slender mongoose; SH: spotted hyena.

Parameter	Mean	SD	2.5% CI	97.5% CI
μ_{σ}	4.13	0.22	3.66	4.53
$ au_{\sigma}^2$	0.6	0.25	0.27	1.2
$\mu_{lpha 0}$	-1.33	0.59	-2.55	-0.2
$ au_{lpha 0}^2$	1.71	0.52	0.97	2.97
$\mu_{\alpha 1}$	-0.24	0.45	-1.21	0.58
$ au_{\alpha 1}^2$	0.95	0.42	0.35	1.98
	-0.65	0.37	-1.48	-0.03
$rac{\mu_{eta 1}}{ au_{eta 1}^2}$	0.65	0.36	0.24	1.59
$\gamma 0_{AL}$	3.98	0.59	2.82	5.18
$\gamma 0_{BM}$	4.28	0.17	3.95	4.61
$\gamma 0_{BEF}$	3.88	0.17	3.55	4.21
$\gamma 0_{BBJ}$	4.62	0.14	4.34	4.9
$\gamma 0_{CAR}$	3.77	0.56	2.61	4.79
$\gamma 0_{CHE}$	4.67	0.27	4.22	5.26
$\gamma 0_{LEO}$	3.6	0.53	2.49	4.57
$\gamma 0_{SER}$	4.03	0.25	3.56	4.56
$\gamma 0_{SSJ}$	4.4	0.32	3.84	5.09
$\gamma 0_{SM}$	3.56	0.38	2.8	4.25
$\gamma 0_{SH}$	4.59	0.1	4.41	4.79
$\alpha 0_{AL}$	-0.59	0.26	-1.14	-0.13
$\alpha 0_{BM}$	0.54	0.35	-0.21	1.13
$\alpha 0_{BEF}$	-1.87	1.08	-4.2	0.04
$\alpha 0_{BBJ}$	0.03	0.35	-0.74	0.63
$\alpha 0_{CAR}$	-3.05	1.12	-5.57	-1.04
$\alpha 0_{CHE}$	-2.73	0.62	-4.09	-1.67
$\alpha 0_{LEO}$	-2.71	0.99	-4.81	-0.89
$\alpha 0_{SER}$	-1.36	0.54	-2.56	-0.42
$\alpha 0_{SSJ}$	-2.91	0.79	-4.64	-1.57
$\alpha 0_{SM}$	-1.06	0.71	-2.5	0.33
$\alpha 0_{SH}$	0.99	0.21	0.55	1.38
$\alpha 1_{AL}$	-1.2	0.58	-2.38	-0.1
$\alpha 1_{BM}$	-0.19	0.53	-1.24	0.89
$\alpha 1_{BEF}$	-0.48	0.97	-2.57	1.33
$\alpha 1_{BBJ}$	0.63	0.53	-0.4	1.71
$\alpha 1_{CAR}$	-0.61	1.04	-3.05	1.12
$\alpha 1_{CHE}$	0.02	0.7	-1.39	1.39
$\alpha 1_{LEO}$	-0.73	1.02	-3.18	0.93
$\alpha 1_{SER}$	-0.68	0.79	-2.45	0.68
$\alpha 1_{SSJ}$	0.18	0.8	-1.38	1.81
$\alpha 1_{SM}$	-0.27	0.72	-1.81	1.07

Parameter	Mean	SD	2.5% CI	97.5% CI
$\alpha 1_{SH}$	0.65	0.39	-0.13	1.43
$\beta 0_{AL}$	1.23	0.14	0.95	1.51
$\beta 0_{BM}$	2.43	0.12	2.2	2.66
$\beta 0_{BEF}$	0.92	0.17	0.58	1.27
$\beta 0_{BBJ}$	0.26	0.15	0.02	0.59
$\beta 0_{CHE}$	0.33	0.28	0.01	1.02
$\beta 0_{SM}$	0.37	0.29	0.01	1.07
$\beta 0_{SH}$	0.11	0.08	0	0.31
$\beta 1_{AL}$	-0.93	0.52	-2.07	-0.03
$\beta 1_{BM}$	-0.4	0.22	-0.82	0.04
$\beta 1_{BEF}$	-0.99	0.63	-2.45	0.03
$\beta 1_{BBJ}$	-0.7	0.28	-1.27	-0.18
$\beta 1_{CHE}$	-0.6	0.55	-1.78	0.4
$\beta 1_{SM}$	-0.97	0.77	-2.84	0.19
$\beta 1_{SH}$	0.03	0.17	-0.31	0.36
$\gamma 1$	0.52	0.07	0.39	0.65
$\gamma 2$	0.43	0.22	-0.01	0.87
$Density_{AL,MT}$	2.23	0.5	1.41	3.36
$Density_{BM,MT}$	28.21	5.21	19.17	39.65
$Density_{BEF,MT}$	7.73	1.77	4.75	11.63
$Density_{BBJ,MT}$	1.86	0.42	1.18	2.81
$Density_{SH,MT}$	3.49	0.45	2.71	4.46
$Density_{AL,TR}$	0.35	0.24	0.07	0.95
$Density_{BM,TR}$	24.37	6.4	14.06	39.1
$Density_{BEF,TR}$	0.66	0.57	0.07	2.15
$Density_{BBJ,TR}$	2.4	0.69	1.29	3.95
$Density_{SH,TR}$	10.63	1.53	7.92	13.86