ice40 architecture

www.clifford.at/icestorm/

Pat Hanrahan

CS448H: Agile Hardware Design Winter 2017

Deep Dive on ice40

Learn more about FPGA architecture

■ Interconnection network

How to improve FPGAs?

	IO (1 17)	IO (2 17)	IO (3 17)	IO (4 17)	IO (5 17)	IO (6 17)	IO (7 17)	IO (8 17)	IO (9 17)	IO (10 17)	IO (11 17)	IO (12 17)	
IO (0 16)	LOGIC (1 16)	LOGIC (2 16)	RAMT (3 16)	LOGIC (4 16)	LOGIC (5 16)	LOGIC (6 16)	LOGIC (7 16)	LOGIC (8 16)	LOGIC (9 16)	RAMT (10 16)	LOGIC (11 16)	LOGIC (12 16)	IO (13 16)
IO (0 15)	LOGIC (1 15)	LOGIC (2 15)	RAMB (3 15)	LOGIC (4 15)	LOGIC (5 15)	LOGIC (6 15)	LOGIC (7 15)	LOGIC (8 15)	LOGIC (9 15)	RAMB (10 15)	LOGIC (11 15)	LOGIC (12 15)	IO (13 15)
IO (0 14)	LOGIC (1 14)	LOGIC (2 14)	RAMT (3 14)	LOGIC (4 14)	LOGIC (5 14)	LOGIC (6 14)	LOGIC (7 14)	LOGIC (8 14)	LOGIC (9 14)	RAMT (10 14)	LOGIC (11 14)	LOGIC (12 14)	IO (13 14)
IO (0 13)	LOGIC (1 13)	LOGIC (2 13)	RAMB (3 13)	LOGIC (4 13)	LOGIC (5 13)	LOGIC (6 13)	LOGIC (7 13)	LOGIC (8 13)	LOGIC (9 13)	RAMB (10 13)	LOGIC (11 13)	LOGIC (12 13)	IO (13 13)
IO (0 12)	LOGIC (1 12)	LOGIC (2 12)	RAMT (3 12)	LOGIC (4 12)	LOGIC (5 12)	LOGIC (6 12)	LOGIC (7 12)	LOGIC (8 12)	LOGIC (9 12)	RAMT (10 12)	LOGIC (11 12)	LOGIC (12 12)	IO (13 12)
IO (0 11)	LOGIC (1 11)	LOGIC (2 11)	RAMB (3 11)	LOGIC (4 11)	LOGIC (5 11)	LOGIC (6 11)	LOGIC (7 11)	LOGIC (8 11)	LOGIC (9 11)	RAMB (10 11)	LOGIC (11 11)	LOGIC (12 11)	IO (13 11)
IO (0 10)	LOGIC (1 10)	LOGIC (2 10)	RAMT (3 10)	LOGIC (4 10)	LOGIC (5 10)	LOGIC (6 10)	LOGIC (7 10)	LOGIC (8 10)	LOGIC (9 10)	RAMT (10 10)	LOGIC (11 10)	LOGIC (12 10)	IO (13 10)
IO (0 9)	LOGIC (1 9)	LOGIC (2 9)	RAMB (3 9)	LOGIC (4 9)	LOGIC (5 9)	LOGIC (6 9)	LOGIC (7 9)	LOGIC (8 9)	LOGIC (9 9)	RAMB (10 9)	LOGIC (11 9)	LOGIC (12 9)	IO (13 9)
IO (0 8)	LOGIC (18)	LOGIC (2 8)	RAMT (3 8)	LOGIC (48)	LOGIC (5 8)	LOGIC (6 8)	LOGIC (7 8)	LOGIC (8 8)	LOGIC (9 8)	RAMT (10 8)	LOGIC (11 8)	LOGIC (12 8)	IO (13 8)
IO (0 7)	LOGIC (17)	LOGIC (2 7)	RAMB (3 7)	LOGIC (47)	LOGIC (5 7)	LOGIC (67)	LOGIC (7 7)	LOGIC (8 7)	LOGIC (97)	RAMB (10 7)	LOGIC (11 7)	LOGIC (12 7)	IO (13 7)
IO (0 6)	LOGIC (1 6)	LOGIC (2 6)	RAMT (3 6)	LOGIC (4 6)	LOGIC (5 6)	LOGIC (6 6)	LOGIC (7 6)	LOGIC (8 6)	LOGIC (9 6)	RAMT (10 6)	LOGIC (11 6)	LOGIC (12 6)	IO (13 6)
IO (0 5)	LOGIC (1 5)	LOGIC (2 5)	RAMB (3 5)	LOGIC (4 5)	LOGIC (5 5)	LOGIC (6 5)	LOGIC (7 5)	LOGIC (8 5)	LOGIC (9 5)	RAMB (10 5)	LOGIC (11 5)	LOGIC (12 5)	IO (13 5)
IO (0 4)	LOGIC (1 4)	LOGIC (2 4)	RAMT (3 4)	LOGIC (4 4)	LOGIC (5 4)	LOGIC (6 4)	LOGIC (7 4)	LOGIC (8 4)	LOGIC (9 4)	RAMT (10 4)	LOGIC (11 4)	LOGIC (12 4)	IO (13 4)
IO (0 3)	LOGIC (1 3)	LOGIC (2 3)	RAMB (3 3)	LOGIC (43)	LOGIC (5 3)	LOGIC (63)	LOGIC (7 3)	LOGIC (8 3)	LOGIC (9 3)	RAMB (10 3)	LOGIC (11 3)	LOGIC (12 3)	IO (13 3)
IO (0 2)	LOGIC (1 2)	LOGIC (2 2)	RAMT (3 2)	LOGIC (4 2)	LOGIC (5 2)	LOGIC (6 2)	LOGIC (7 2)	LOGIC (8 2)	LOGIC (9 2)	RAMT (10 2)	LOGIC (11 2)	LOGIC (12 2)	IO (13 2)
IO (0 1)	LOGIC (1 1)	LOGIC (2 1)	RAMB (3 1)	LOGIC (41)	LOGIC (5 1)	LOGIC (6 1)	LOGIC (7 1)	LOGIC (8 1)	LOGIC (9 1)	RAMB (10 1)	LOGIC (11 1)	LOGIC (12 1)	IO (13 1)
	IO (1 0)	IO (2 0)	IO (3 0)	IO (4 0)	IO (5 0)	IO (6 0)	IO (7 0)	IO (8 0)	IO (9 0)	IO (10 0)	IO (11 0)	IO (12 0)	

% cd demo; make; cat and.txt
.logic_tile 1 11

```
% make explain
.logic_tile 1 11
LC_5 00010000000000000 0000
buffer local_g0_0 lutff_5/in_1
buffer local_g3_0 lutff_5/in_0
buffer neigh_op_lft_0 local_g0_0
buffer sp4 h r 24 local g3 0
```

Shared Block-Level Controls


```
// From yosys/techlibs/ice40/cells sim.v
module ICESTORM LC (
    input IO, I1, I2, I3, CIN, CLK, CEN, SR,
   output LO, O, COUT
);
    parameter [15:0] LUT_INIT = 0;
    parameter [0:0] NEG CLK = 0;
    parameter [0:0] CARRY_ENABLE = 0;
    parameter [0:0] DFF ENABLE = 0;
   parameter [0:0] SET NORESET = 0;
    parameter [0:0] SET ASYNC = 0;
    parameter [0:0] ASYNC SR = 0;
endmodule
```

```
// From yosys/techlibs/ice40/cells sim.v
module ICESTORM LC (
    input I0, I1, I2, I3, CIN, CLK, CEN, SR,
   output LO, O, COUT
);
   wire COUT = CARRY_ENABLE ? (I1 && I2) || ((I1 || I2) && CIN) : 1'bx;
   wire [7:0] lut s3 = I3 ? LUT INIT[15:8] : LUT INIT[7:0];
   wire [3:0] lut_s2 = I2 ? lut_s3[ 7:4] : lut_s3[3:0];
   wire [1:0] lut_s1 = I1 ? lut_s2[ 3:2] : lut_s2[1:0];
   wire lut_o = I0 ? lut_s1[ 1] : lut_s1[ 0];
   assign LO = lut o;
   wire polarized clk;
    assign polarized_clk = CLK ^ NEG_CLK;
    reg o reg;
    always @(posedge polarized_clk)
        if (CEN)
           o reg <= SR ? SET NORESET : lut o;
    reg o reg async;
    always @(posedge polarized clk, posedge SR)
        if (SR)
           o reg <= SET NORESET;</pre>
        else if (CEN)
           o reg <= lut o;
   assign 0 = DFF ENABLE ? ASYNC SR ? o reg async : o reg : lut o;
endmodule
```

Interconnect

Local Tracks

There 32 local wires

They are organized into 4 groups of 8 wires

Each local track is drive by a single LUT output (LUT[i], g)

The local tracks are connected to the LUT inputs (more on this later)


```
l i 00001111222233334444555566667777
l g 0123012301230123012301230123
00 x x x x x x x x x x x x x x x
01 x xx x x xx x x xx x x xx x
10 x xx x x xx x x xx x x xx x
1 2 x xx x x xx x x xx x x xx x
   30 x xx x x xx x x xx x x xx x
3 1 x x x x x x x x x x x x x x x x
32 x xx x x xx x x xx x x xx x
   \mathsf{X} \mathsf{X}
4 0 x x x x x x x x x x x x x x x x
4 1 x xx x x xx x x xx x x xx x
50 x xx x x xx x x xx x x xx x
5 1 x x x x x x x x x x x x x x x x
5 2 x xx x x xx x x xx x x xx x
   \mathbf{x} \mathbf{x}
6 1 x xx x x xx x x xx x x xx x
70 x xx x x xx x x xx x x xx x
7 2 x xx x x xx x x xx x x xx x
7 3
```

Nearest Neighbors

Figure 13: PLB Connections to Eight Nearest Neighbors

PLB = Programmable Logic Block

Spans

Figure 14: Span4 Connection Resources 48 Span4 Lines per Column Span4 line spans across four PLBs Swithbox: Span4 lines are switched every four intersections per Row 12 12 **PLB PLB PLB** RAM4K **PLB PLB PLB PLB = Programmable Logic Block** Each PLB receives inputs from and sends outputs to Span4 Horizontal lines and from the left and right Span4 Vertical lines.

sp4_I_47	sp4_r_47	
 sp4_I_46	sp4_r_46	
sp4_I_45	sp4_r_45	
sp4_I_44	sp4_r_44	
sp4_I_43	sp4_r_43	
sp4_I_42	sp4_r_42	
sp4_I_41	sp4_r_41	
sp4_I_40	sp4_r_40	
sp4_I_39	sp4_r_39	
sp4_I_38	sp4_r_38	
sp4_I_37	sp4_r_37	
sp4_I_36	sp4_r_36	
sp4_I_35	/////////////////sp4_r_35	
 sp4_l_34	sp4_r_34	
sp4_I_33	sp4_r_33	
sp4_I_32	sp4_r_32	
 sp4_I_31	sp4_r_31	
 sp4_I_30	sp4_r_30	
sp4_l_29	sp4_r_29	
sp4_I_28	sp4_r_28	
 sp4_I_27	sp4_r_27	
sp4_I_26	sp4_r_26	
sp4_l_25	sp4_r_25	
sp4_l_24	sp4_r_24	
sp4_I_23	sp4_r_23	
 sp4_l_22	sp4_r_22	
 sp4_l_21	sp4_r_21	
 sp4_I_20	sp4_r_20	
sp4_I_19	sp4_r_19	
sp4_I_18	sp4_r_18	
sp4_I_17	sp4_r_17	
sp4_I_16	sp4_r_16	
sp4_I_15	sp4_r_15	
sp4_l_14	sp4_r_14	
sp4_l_13	sp4_r_13	
sp4_l_12	///////_Xsp4_r_12	
sp4_I_11	/////////////////sp4_r_11	
 sp4_I_10	sp4_r_10	
sp4_I_9	sp4_r_9	
sp4_I_8	sp4_r_8	
sp4_I_7	sp4_r_7	
sp4_I_6	sp4_r_6	
sp4_I_5	sp4_r_5	
sp4_I_4	sp4_r_4	
sp4_l_3	sp4_r_3	
sp4_l_2	sp4_r_2	
sp4_l_1	sp4_r_1	
sp4_I_0	sp4_r_0	

Horizontal Span4

Interconnect Wires

span4 wires

- 4x12 sp4_(h) connected to the left
- 4x12 sp4_v (v) connected above
- 4x12 sp4_r_v (r) connected to the right

span12 wires

- 12x2 sp12_h (H) connected to the left
- 12x2 sp12_v (V) connected to the right

global wires

■ 8 global (G)

Total: 192+8=200 wires

Connection Matrix

There is a 16:1 Mux connecting spans to the local tracks

g=0, lut=0

B0[14]	B1[14]	B1[15]	B1[16]	B1[17]	Function	Source-Net	Destination-Net
0	0	0	0	1	buffer	sp4_r_v_b_24	local_g0_0
0	0	0	1	1	buffer	sp12_h_r_8	local_g0_0
0	0	1	0	1	buffer	neigh_op_bot_0	local_g0_0
0	0	1	1	1	buffer	sp4_v_b_16	local_g0_0
0	1	0	0	1	buffer	sp4_r_v_b_35	local_g0_0
0	1	0	1	1	buffer	sp12_h_r_16	local_g0_0
0	1	1	0	1	buffer	neigh_op_top_0	local_g0_0
0	1	1	1	1	buffer	sp4_h_r_0	local_g0_0
1	0	0	0	1	buffer	lutff_0/out	local_g0_0
1	0	0	1	1	buffer	sp4_v_b_0	local_g0_0
1	0	1	0	1	buffer	neigh_op_lft_0	local_g0_0
1	0	1	1	1	buffer	sp4_h_r_8	local_g0_0
1	1	0	0	1	buffer	neigh_op_bnr_0	local_g0_0
1	1	0	1	1	buffer	sp4_v_b_8	local_g0_0
1	1	1	0	1	buffer	sp12_h_r_0	local_g0_0
1	1	1	1	1	buffer	sp4_h_r_16	local_g0_0

1 connection to LUT output4 connections to nearest neighbors1 1 connections to spansThe CM is different for each local track

LUT Outputs to Interconnect

```
sp4_h_r[i]=lut[j]
sp4_v_b[i]=lut[j]
sp4_r_v_b[i]=lut[j]
```


NB even wires, connect to right and bottom Connections can be set independently

0	X	X	X	
1	X	X	X	
2	X	X	>	<
3	X	X		X
4	X	X		X
5	X		X	X
6		x	X	X
7		X	X	X

NB odd wires, right and bottom Connections can be set independently Must be careful about driving wires twice!

Switch box

Figure 14: Span4 Connection Resources 48 Span4 Lines per Column Span4 line spans across four PLBs Swithbox: Span4 lines are switched every four intersections per Row 12 12 **PLB PLB PLB** RAM4K **PLB PLB PLB PLB = Programmable Logic Block** Each PLB receives inputs from and sends outputs to Span4 Horizontal lines and from the left and right Span4 Vertical lines.

Table 11: Span4 Switchbox Connections

Table 11: Span4 Switchbox Connections													
OUTPUT	←		INPUT CONNECTION										
Right	←	To	p		Left	Bottom							
Тор	+	Le	ft		Bottom		Right						
Left	←	Bott	tom		Right		Тор						
Bottom	+	Rig	ht		Тор	Left							
0	←	7	7 0		0	4	0	6					
1	+	8	1	10	1	5	1	7					
2	+	9	2	11	2	6	2	8					
3	+	10	3	0	3	7	3	9					
4	+	11	4	1	4	8	4	10					
5	+	0	5	2	5	9	5	11					
6	+	1	6	3	6	10	6	0					
7	+	2	7	4	7	11	7	1					
8	+	3	8	5	8	0	8	2					
9	+	4 9		6	9	1	9	3					
10	+	5	10	7	10	2	10	4					
11	+	6	11	8	11	3	11	5					

span12

Figure 17: Span12 Switchbox Connections

Table 12: Span12 Switchbox Connections

OUTPUT	←		INPUT CONNECTION								
Right	←	Тор	Left	Bottom							
Тор	←	Left	Bottom	Right							
Left	←	Bottom	Right	Тор							
Bottom	←	Right	Тор	Left							
0	←	0	0	0							
1	+	1	1	1							

	IO (1 17)	IO (2 17)	IO (3 17)	IO (4 17)	IO (5 17)	IO (6 17)	IO (7 17)	IO (8 17)	IO (9 17)	IO (10 17)	IO (11 17)	IO (12 17)	
IO (0 16)	LOGIC (1 16)	LOGIC (2 16)	RAMT (3 16)	LOGIC (4 16)	LOGIC (5 16)	LOGIC (6 16)	LOGIC (7 16)	LOGIC (8 16)	LOGIC (9 16)	RAMT (10 16)	LOGIC (11 16)	LOGIC (12 16)	IO (13 16)
IO (0 15)	LOGIC (1 15)	LOGIC (2 15)	RAMB (3 15)	LOGIC (4 15)	LOGIC (5 15)	LOGIC (6 15)	LOGIC (7 15)	LOGIC (8 15)	LOGIC (9 15)	RAMB (10 15)	LOGIC (11 15)	LOGIC (12 15)	IO (13 15)
IO (0 14)	LOGIC (1 14)	LOGIC (2 14)	RAMT (3 14)	LOGIC (4 14)	LOGIC (5 14)	LOGIC (6 14)	LOGIC (7 14)	LOGIC (8 14)	LOGIC (9 14)	RAMT (10 14)	LOGIC (11 14)	LOGIC (12 14)	IO (13 14)
IO (0 13)	LOGIC (1 13)	LOGIC (2 13)	RAMB (3 13)	LOGIC (4 13)	LOGIC (5 13)	LOGIC (6 13)	LOGIC (7 13)	LOGIC (8 13)	LOGIC (9 13)	RAMB (10 13)	LOGIC (11 13)	LOGIC (12 13)	IO (13 13)
IO (0 12)	LOGIC (1 12)	LOGIC (2 12)	RAMT (3 12)	LOGIC (4 12)	LOGIC (5 12)	LOGIC (6 12)	LOGIC (7 12)	LOGIC (8 12)	LOGIC (9 12)	RAMT (10 12)	LOGIC (11 12)	LOGIC (12 12)	IO (13 12)
IO (0 11)	LOGIC (1 11)	LOGIC (2 11)	RAMB (3 11)	LOGIC (4 11)	LOGIC (5 11)	LOGIC (6 11)	LOGIC (7 11)	LOGIC (8 11)	LOGIC (9 11)	RAMB (10 11)	LOGIC (11 11)	LOGIC (12 11)	IO (13 11)
IO (0 10)	LOGIC (1 10)	LOGIC (2 10)	RAMT (3 10)	LOGIC (4 10)	LOGIC (5 10)	LOGIC (6 10)	LOGIC (7 10)	LOGIC (8 10)	LOGIC (9 10)	RAMT (10 10)	LOGIC (11 10)	LOGIC (12 10)	IO (13 10)
IO (0 9)	LOGIC (1 9)	LOGIC (2 9)	RAMB (3 9)	LOGIC (4 9)	LOGIC (5 9)	LOGIC (6 9)	LOGIC (7 9)	LOGIC (8 9)	LOGIC (9 9)	RAMB (10 9)	LOGIC (11 9)	LOGIC (12 9)	IO (13 9)
IO (0 8)	LOGIC (18)	LOGIC (2 8)	RAMT (3 8)	LOGIC (48)	LOGIC (5 8)	LOGIC (6 8)	LOGIC (7 8)	LOGIC (8 8)	LOGIC (9 8)	RAMT (10 8)	LOGIC (11 8)	LOGIC (12 8)	IO (13 8)
IO (0 7)	LOGIC (17)	LOGIC (2 7)	RAMB (3 7)	LOGIC (47)	LOGIC (5 7)	LOGIC (67)	LOGIC (7 7)	LOGIC (8 7)	LOGIC (97)	RAMB (10 7)	LOGIC (11 7)	LOGIC (12 7)	IO (13 7)
IO (0 6)	LOGIC (1 6)	LOGIC (2 6)	RAMT (3 6)	LOGIC (4 6)	LOGIC (5 6)	LOGIC (6 6)	LOGIC (7 6)	LOGIC (8 6)	LOGIC (9 6)	RAMT (10 6)	LOGIC (11 6)	LOGIC (12 6)	IO (13 6)
IO (0 5)	LOGIC (1 5)	LOGIC (2 5)	RAMB (3 5)	LOGIC (4 5)	LOGIC (5 5)	LOGIC (6 5)	LOGIC (7 5)	LOGIC (8 5)	LOGIC (9 5)	RAMB (10 5)	LOGIC (11 5)	LOGIC (12 5)	IO (13 5)
IO (0 4)	LOGIC (1 4)	LOGIC (2 4)	RAMT (3 4)	LOGIC (4 4)	LOGIC (5 4)	LOGIC (6 4)	LOGIC (7 4)	LOGIC (8 4)	LOGIC (9 4)	RAMT (10 4)	LOGIC (11 4)	LOGIC (12 4)	IO (13 4)
IO (0 3)	LOGIC (1 3)	LOGIC (2 3)	RAMB (3 3)	LOGIC (43)	LOGIC (5 3)	LOGIC (63)	LOGIC (7 3)	LOGIC (8 3)	LOGIC (9 3)	RAMB (10 3)	LOGIC (11 3)	LOGIC (12 3)	IO (13 3)
IO (0 2)	LOGIC (1 2)	LOGIC (2 2)	RAMT (3 2)	LOGIC (4 2)	LOGIC (5 2)	LOGIC (6 2)	LOGIC (7 2)	LOGIC (8 2)	LOGIC (9 2)	RAMT (10 2)	LOGIC (11 2)	LOGIC (12 2)	IO (13 2)
IO (0 1)	LOGIC (1 1)	LOGIC (2 1)	RAMB (3 1)	LOGIC (41)	LOGIC (5 1)	LOGIC (6 1)	LOGIC (7 1)	LOGIC (8 1)	LOGIC (9 1)	RAMB (10 1)	LOGIC (11 1)	LOGIC (12 1)	IO (13 1)
	IO (1 0)	IO (2 0)	IO (3 0)	IO (4 0)	IO (5 0)	IO (6 0)	IO (7 0)	IO (8 0)	IO (9 0)	IO (10 0)	IO (11 0)	IO (12 0)	

demo/and.v

Interleaving

Why is this good?

Sparsity

Details?

- **■** Cross-overs in spans
- Permutation to LUTs within a PLB
- Connection matrix interleave (spans to local)
- **■** Switch box connections

FPGA Interconnects

Problem

- Mapping circuits to a planar graph is difficult
- For example, laying out a binary tree is hard
- Rent's Law: $T = g^{P}$ (0.5<p<0.8)

Solution

■ Provide lots of connectivity

Consequences

- Interconnect consumes most of the chip area and power
- Long wires increase long delays

Better FPGAs?

Power efficiency

- ASIC = 10*FPGA = 10*GPU = 10*CPU
- What if ASIC = 2*FPGA?

More efficient

- Coarse-grained PLB (e.g. ALUs)
- Simpler, wider networks
- **Pipeline networking**