Predicting Subreddits: ASD vs. OCD

GA DSI Project 3 Julia Kelman

Identifying Potential Customers

Problem Statement

We created a **product** meant to help individuals with **Autism Spectrum Disorder** (**ASD**) and want to **market it online**. We need to **identify potential customers** based on their online content.

Other disorders like **Obsessive Compulsive Disorder (OCD)** share many symptoms with autism. As a result, online resources are often **geared towards both of ASD and OCD**.

We need to be able to differentiate between people with ASD and OCD based on what they post on online platforms.

We plan to solve this problem by using submissions on an Autism reddit page and an OCD reddit page to build a classification model able to classify a user as having either ASD or OCD based on their post with the highest level of accuracy possible.

Data: The origin

From: Reddit

Posts submitted by individuals between Nov. 2019 and March 2020

1653 ASD Submissions2209 OCD Submissions8 Variables

Workflow

20 Most Frequent Words Overall

- Most words in both subreddits
- Need for custom stopwords
- Subreddit specific words emerge

Modeling

X: Cleaned Text (Title + Self Text)

Y: Subreddit (ASD or OCD)

9 Models:

- Baseline
- Logistic Regression + Cvec
- Logistic Regression + TFIDF
- kNN + Cvec
- kNN + TFIDF
- Multinomial Naive Bayes + Cvec
- Gaussian Naive Bayes + TFIDF
- SVM + Cvec
- SVM + TFIDF

Model Selection

Based on Accuracy

	Baseline	Logistic Regression + Cvec		Logistic Regression + TFIDF		Knn + Cvec		kNN + TFIDF
Accuracy	Train: 0.5718 Test: 0.5725	Train: 0.9917 Test: 0.9213		Train: 0.9889 Test: 0.9337		Train: 0.7935 Test: 0.7298		Train: 0.6057 Test: 0.5818
	Multinomial Naive Bayes + Cvec		Gaussian Naive Bayes+ TFIDF		SVM + Cvec		SVM + TFIDF	
Accuracy	Train: 0.9437 Test: 0.9141		Train: 0.9579 Test: 0.9037		Train: 0.9772 Test: 0.8913			Train: 0.9945 Test: 0.8996

Predicting with 93% Accuracy

Model Selection

Based on Accuracy

	Baseline	Logistic Regression + Cvec		Logistic Regression + TFIDF		Knn + Cvec		kNN + TFIDF
Accuracy	Train: 0.5718 Test: 0.5725	Train: 0.9917 Test: 0.9213		Train: 0.9889 Test: 0.9337		Train: 0.7935 Test: 0.7298		Train: 0.6057 Test: 0.5818
	Multinomial Naive Bayes + Cvec		Gaussian Naive Bayes+ TFIDF		SVM + Cvec		SVM + TFIDF	
Accuracy	Train: 0.9437 Test: 0.9141		Train: 0.9579 Test: 0.9037		Train: 0.9772 Test: 0.8913			Train: 0.9945 Test: 0.8996

Model Evaluation: Confusion Matrix

	Predicted OCD	Predicted ASD
Actually OCD	516	37
Actually ASD	27	386

Correctly classifying:

- 516 / 553 OCD posts True Negative Rate: 93%
- 386 / 413 ASD posts
 True Positive Rate: 93%

Marketing:

- 3.8% of cases: spending advertising money on wrong users
- **2.8**% of cases: missing out on potential customers

Model Evaluation: Understanding Misclassification

"Anyone buy Sheryl Paul's books? Have they helped?"

Predicted: **ASD**

Actually: **OCD**

Model Evaluation: The Words

- 1 unit increase in use of the word
 "Autism" -> 11,938 times as likely
 to be posted in the ASD subreddit
- 1 unit increase in use of the word "OCD" -> 99.9% less likely to be posted in the ASD subreddit

Conclusion

References

- 1. https://www.reddit.com/r/autism/
- 2. https://www.reddit.com/r/OCD/
- 3. https://www.webmd.com/brain/autism/autism-similar-conditions

Logistic Regression model with TFIDF Vectorizer and custom stopwords gives us the highest predictive power with 93% accuracy.

In 3.8% of cases we're spending advertising money on wrong users. In 2.8% of cases we're missing out on potential customers

