國立鳳新高中 112 年資訊學科競賽校內賽

注意事項

- 1.本次競賽總共有6題,使用cms自動評分,請上傳原始程式碼(*.cpp/*.c)。
- 2.考試時間共150分鐘,競賽結束後將無法再上傳程式碼,比賽期間請勿交談討論。
- 3.請勿在程式中加入 system("pause")等指令。
- 4.每次上傳之間必須間隔60秒,每題以最後一次評分結果計分。

各題概況

題目名稱	時間限制	記憶體限制	評分方式
美味布丁	0.1s	64MBytes	Tolerant (寬鬆比對)
電梯巨星	1s	64MBytes	Tolerant (寬鬆比對)
資料驗證	1s	64MBytes	Strictly (嚴格比對)
市集採買	0.5s	64MBytes	Tolerant (寬鬆比對)
滿頭問號	1s	64MBytes	Special (自訂比對)
草莓大盜	1s~ <mark>2s</mark>	64MBytes	Tolerant (寬鬆比對)

A. 美味布丁

日頭赤炎炎,在山頭奔波的烏骨雞倍感炎熱,感覺都快中暑了!「好想吃一口沁涼的布丁!」烏骨雞說。因此,在山腳的巨星廚師雞決定做一道簡單的布丁來滿足烏骨雞。廚師雞找到的布丁食譜如下:

Γ

鮮奶280克

雞蛋液120克

鮮奶油30克

砂糖30克

焦糖5克

-1

雖然廚師雞做的布丁超級完美,但牠還是持續更新食譜比例,追求極致美味的布丁。礙於食材有限,廚師雞想盡可能用現有的食材,做多一點布丁,但牠做的新食譜太多,沒辦法一個一個算,因此想用程式來算出牠最多可以做出多少克的布丁。

以牠找到的食譜為例, 化為最簡整數比的食譜比例為鮮奶:雞蛋液:鮮奶油:砂糖:焦糖=56:24:6:6:1, 假設牠今天有鮮奶336克、雞蛋液144克、鮮奶油36克、砂糖36克、焦糖5克, 那牠最多能做出465克的布丁。

今天廚師雞依序給你5個食材的比例,還有5個食材現在有的克數,其中因為食材一定是最新鮮的,所以食材現有的克數一定是食材比例的正整數倍,請你幫牠寫一個程式,算出牠最多可以做出多少克的布丁。

輸入格式

第一行有五個正整數,分別代表鮮奶、雞蛋液、鮮奶油、砂糖、焦糖的比例,第 二行有五個正整數,分別代表鮮奶、雞蛋液、鮮奶油、砂糖、焦糖的現有克數。其中 每個數值都不超過**10**⁵,且食材現有的克數一定是食材比例的正整數倍。

輸出格式

輸出只有一個整數,代表最多能做出的布丁克數。

測試資料

輸入範例1 56 24 6 6 1 336 144 36 36 5	輸出範例1 465
輸入範例2	輸出範例2
23 10 1 5 6	90
46 50 3 80 30	

測試資料說明

範例測資1:在這個範例中,只有焦糖為食材比例的5倍,其餘食材皆為食材比例的6倍,因此焦糖是最快耗盡的,故整體比例為鮮奶:雞蛋液:鮮奶油:砂糖:焦糖=280:120:30:30:5。最多做出465克的布丁。

範例測資2:在這個範例中,鮮奶為最快耗盡的,整體比例為鮮奶:雞蛋液:鮮奶油:砂糖:焦糖=46:20:2:10:12。最多做出90克的布丁。

記憶體限制	64MBytes	評分方式	Tolerant (寬鬆比對)
編號	配分	時間限制	敘述
#0~#3	4%	0.1s	所有食材都會剛好用完
#4~#99	96%	0.1s	無特別限制

B. 電梯巨星

終端雞大樓是個非常高聳的大樓,因為實在是太高了,因此大樓裡有一座電梯, 能夠從1樓直達100000樓。有一天,巨星廚師雞在終端機電梯裡亂按按鈕,造成電梯 不停上上下下,這時終端雞大樓的雞住戶都知道是廚師雞來了,許多雞都迫不及待地 等在電梯前,祈禱電梯會停靠在自己所在的樓層。慶幸的是,電梯在上升或下降的過 程中,經過的每個樓層都會停靠,因此大大增加了粉絲進入電梯的機會。

廚師雞為了提前準備足夠的布丁給粉絲們,於是透過偵查雞調查哪些樓層有雞在電梯門前等候,以此確定有多少雞能夠進入電梯拜訪牠。請你幫忙寫一個程式,計算有多少雞能夠進入電梯拜訪牠。

輸入格式

輸入共有三行,第一行有兩個整數 $n(1 \le n \le 100)$, $m(1 \le m \le 10^5)$,n代表電梯停靠的樓層數量,m代表雞的數量。第三行有n個整數 $n_i(1 \le n_i \le 10^5)$,代表電梯依序抵達的樓層。第三行有m個整數 $m_i(1 \le m_i \le 10^5)$,代表第i隻雞所在的樓層。

輸出格式

輸出只有一行,包含一個整數n,代表總共有n隻雞可以進入電梯。

輸入範例1 25 110 2591317	輸出範例1
輸入範例2 25 101 2591317	輸出範例2
輸入範例3 5 5 10 1 15 12 16 2 5 9 13 17	輸出範例3
輸入範例4 55 67564 1831015	輸出範例4 O

測試資料說明

範例測資1中,電梯會從1樓上升到10樓,所以在1~10樓的雞都能夠進入電梯,因此總共有3隻雞,分別是在2、5、9樓的雞。

範例測資2中·電梯從10樓下降到1樓·同樣是在1~10樓的雞能夠進入電梯·因此答案與範例測資1相同。

範例測資3中·電梯從10樓下降到1樓時·2、5、9樓的雞能夠進入電梯;電梯從 1樓上升到15樓時·13樓的雞能夠進入電梯·因此總共有4隻雞能夠進入電梯·分別是 2、5、9、13樓的雞。

範例測資4中,沒有雞可以進入電梯,因此輸出0。

記憶體限制	64MBytes	評分方式	Tolerant (寬鬆比對)
編號	配分	時間限制	敘述
#0~#4	10%	1s	n=2且m≤100·且電梯只會上樓
#5~#9	10%	1s	n=2
#10~#29	80%	1s	無特別限制

C. 資料驗證

放山雞在進行資料傳輸或是提取資料時,為了確保資料的正確性,因此會進行資料驗證。其中一種資料驗證方式,是同位位元。同位位元驗證資料的方式分為兩種, 奇核對位元以及偶核對位元。

以奇核對位元為例,給定一組資料中,若資料中1的個數為奇數,則補一個0,反 之若資料中1的個數為偶數,則補一個1。以偶核對位元為例,給定一組資料中,若資 料中1的個數為奇數,則補一個1,若資料中1的個數為偶數,則補一個0。

舉例來說,以1組7位元的資料組為例,對於「1000101」,補上奇核對位元為「10001010」,補上偶核對位元則為「10001011」,若驗證時的資料組,無法符合以上規則,我們就稱資料毀損。

今天給定n組m位元加1位同位位元資料,在k=1時採用奇核對位元,k=0時採用 偶核對位元,請對驗證正確的資料組輸出0,資料毀損的資料組輸出1,其中不含任何 空白以及換行。

請依據以上規則,幫放山雞作出一套能驗證資料的程式。

輸入格式

第一行有三個正整數n,m,k·其中n為資料組組數且1≤n≤5000·m為一組資料組的位元數(不包含同位位元)且1≤m≤10000·k必為1或0·k=1時採用奇核對位元·k=0時採用偶核對位元·第二行有n×(m+1)個數字·而其中的數字必為0或1。

輸出格式

輸出只有一行,共有n個數字,且每一個數字必為0或1,其中不得包含任何空白以及換行。

輸入範例1 171 10001010	輸出範例1 O
輸入範例2 170 10001010	輸出範例2 1
輸入範例3 5 3 1 10101011101010111010	輸出範例3 10101
輸入範例4 360 100101011011111110	輸出範例4 110

測試資料說明

範例測資1、2請見題目敘述。

範例測資3中,「1010」的資料組為資料毀損的資料,輸出1,「1011」的資料組為驗證正確的資料,輸出0。

範例測資4中,「1001010」及「1101101」的資料組為資料毀損的資料,輸出 1,「1111110」的資料組為驗證正確的資料,輸出0。

記憶體限制	64MBytes	評分方式	Strictly (嚴格比對)
編號	配分	時間限制	敘述
#0~#1	6%	1s	n=1,1≤m≤100
#2~#4	9%	1s	1≤n≤100,1≤m≤100
#5~#9	33%	1s	1≤n≤1000
#10~#19	52%	1s	無特別限制

D. 市集採買

終端雞市集,是一個以二元樹為原型,打造出的市集,強大的設計理念,吸引許多攤販進駐。所有攤販都被安排在除了葉節點以外的節點,而葉節點只會有「已經到盡頭」的告示牌,入口則安排在根結點。攤販們被規定只能在攤位上賣一件物品,並且需要標明這件物品的大小,以便大家放心採買。

烏骨雞和放山雞放學後,決定去終端雞市集採買,烏骨雞想要盡可能在不超過背 包容量下,買到最多物品,但放山雞太懶惰,不想逛完整個市集,最後,兩雞達成協 議,只會逛市集的其中一條路線,然後原路折返。

即便如此,烏骨雞還是想盡可能買到最多物品,因此地想設計一個程式,輸入背包容量後,再以前序輸入市集攤販所賣物品之大小,就能獲得一條能買最多物品的路線。但因為可能同時存在多條路線,烏骨雞又有選擇困難,因此輸出永遠只會輸出最右邊那條。

以終端雞市集為例,假設烏骨雞背包容量為10,以前序輸入市集攤販所賣物品之大小為「17101003030086700600120100」,其中0為「已經到盡頭」的告示牌。而樹的圖如下圖所示,圓形內數字代表攤販所賣物品之大小,最底下的矩形內數字代表該條路在不超過背包容量下,所能買到最多物品數量,而輸出要選擇最多物品又最右邊的路線,所以輸出為「17110」。

由於烏骨雞能力不足,因此請你依所給條件,幫烏骨雞寫一個程式來達成目的。

輸入格式

第一行有一個不超過 10^6 的正整數,代表烏骨雞的背包容量,第二行有 2^n 個攤販 所賣物品之大小,n不超過20,每個攤販所賣物品之大小為一個不超過 10^5 的正整數。

輸出格式

輸出只有一行,為一條能買最多物品且最右邊的路線。

特別測資限制

1. 二元樹深度不超過20層。

測試資料

輸入範例1	輸出範例1
7	3 4 0
3400500	
輸入範例2	輸出範例2
10	17110
17101003030086700600120100	

測試資料說明

範例測資1中·總共有四條路徑·由左到右分別為「340」「350」「350」「350」,前兩條路徑能買到最多物品數量為2·後兩條為1·又選擇最右邊的路徑·故輸出「340」。

範例測資2請見題目敘述以及圖片。

記憶體限制	64MBytes	評分方式	Tolerant (寬鬆比對)
編號	配分	時間限制	敘述
#0~#10	11%	0.5s	二元樹深度不超過5層
#11~#29	19%	0.5s	二元樹深度不超過10層
#30~#52	23%	0.5s	二元樹深度不超過15層
#53~#99	47%	0.5s	無特別限制

E. 滿頭問號

烏骨雞使用通訊軟體與放山雞聊天時,總是會傳一些意義不明的訊息,讓放山雞滿頭問號。於是,放山雞決定在頭上的問號消失之前,將問號們打在聊天室傳給烏骨雞,藉此讓烏骨雞認知到自己的訊息有多麼令人不解。

放山雞的鍵盤上有四個功能鍵,分別是:

Γ

- A 輸入一個問號
- D 刪除一個問號
- C複製
- Ⅴ貼上

J

其中C指的是複製當前所有的問號。

請你寫一個程式,幫助放山雞找出最少步驟打出特定問號數量的方法。

輸入格式

輸入只有一行,含有一個整數n(1≤n≤10⁶),代表放山雞要在聊天室中打出的問號 數量。

輸出格式

請輸出使用最少步驟打出n個問號的方法,請勿輸出空白或其他與題目無關之文字。注意,答案可能不只有一種,輸出其中一種答案即可。

輸入範例1	輸出範例1
1	A
輸入範例2	輸出範例2
9	AAACVV
輸入範例3	輸出範例3
10	AAACVVA
輸入範例4	輸出範例4
179	AAACVVVCVCVCVD

測試資料說明

此說明僅說明範例輸出的結果。

範例測資1:題目要求打出1個問號,因此只需按下A鍵即可。

範例測資2: 先用A鍵打出3個問號,再用C鍵複製,然後用V鍵貼上2次。

範例測資3:先以範例測資2的方法打出9個問號,再用A鍵補1個問號。

範例測資4:用A鍵打出3個問號,用C鍵複製,V鍵貼上4次,得到15個問號,C鍵複製,V鍵貼上2次,得到45個問號,C鍵複製,V鍵貼上1次,得到90個問號,C鍵複製,V鍵貼上1次,得到180個問號,最後用D鍵刪掉一個問號。

記憶體限制	64MBytes	評分方式	Special (自訂比對)
編號	配分	時間限制	敘述
#0~#4	5%	1s	n≤10
#5~#19	15%	1s	n≤100
#20~#49	30%	1s	n≤10000
#50~#99	50%	1s	無特別限制

F. 草莓大盜

怪盜雞德是終端雞大樓附近著名的怪盜,牠的行為謹慎,導致每次東西已經被他偷走了,都還不一定會發現。至於會什麼會發現嘛......,因為牠每次行動前都會發出預告函。

今天巨星廚師雞無預警收到一封預告函,內容如下:

在廚師雞驚嚇的同時,怪盜雞德也在規劃怎麼偷到最多的草莓。廚師雞的草莓園是一座線性草莓園,從入口直接進去,可就太顯眼了。因此,怪盜雞德選定了不同的垂直降落定點,打算透過這些垂直降落定點偷到最多草莓,但是每顆草莓的豐碩程度不同,要是偷到太多乾扁的草莓可就吃虧了。此外,為了避免被發現,怪盜雞德為每個垂直降落定點規定最多行走步數,只要步數一到,就直接飛走,前往下個垂直降落定點(不一定是順序上的下一個)。最厲害的是,怪盜雞德不管是垂直降落那一步(不計入行走步數)、要飛走的那一步或是行走中的任一一步,都可以瞬間偷取草莓。

怪盜雞德相當聰明,懂得利用程式來達到最高收穫,牠的程式只要輸入垂直降落 定點數量和草莓數量,再依序輸入垂直降落定點位置、最多行走步數和草莓位置、草 莓豐碩程度,就可以得出牠這次行動最多可以偷到的草莓總豐碩程度。(怪盜雞德的程 式中,預設一單位是牠走的一步,所有位置都是以此單位標記。)

請你寫一個功能和怪盜雞德程式一樣的程式,來證明你和牠一樣聰明。

輸入格式

第一行有兩個正整數n,m.其中n為垂直降落定點數量且 $1 \le n \le 10^6$.m為草莓數量且 $1 \le m \le 10^6$.接下來有n行.每行分別有垂直降落定點位置 n_i 、最多行走步數 n_j . ($0 \le n_i \le 10^7$, $1 \le n_j \le 10^4$).接下來有m行.每行分別有草莓位置 m_i 、草莓豐碩程度 m_j . ($0 \le m_i \le 10^7$, $1 \le m_j \le 10^9$)。

輸出格式

輸出只有一行,為最多可以偷到的草莓總豐碩程度。

特別測資限制

- 1. 垂直降落定點位置ni不重複。
- 2. 草莓位置m_i不重複。

輸入範例1	輸出範例1
13	7
4 5	
25	
5 2	
6 3	
輸入範例2	輸出範例2
3 6	25
12 3	
3 3	
6 4	
03	
22	
10 3	
15 7	
5 10	
9 5	

測試資料說明

範例測資1:從4的位置向左走兩步,取得在位置2豐碩程度為5的草莓,再向右走三步,取得在位置5豐碩程度為2的草莓,到此已經5步,最大豐碩程度為7。亦可先向右1步再向左4步,但若取得在位置6豐碩程度為3的草莓,則會降低整體豐碩程度。

範例測資2:從3的位置,向右2步,取得1個草莓,豐碩度共計10。從6的位置,向右3步,再向右1步,取得2顆草莓,豐碩度共計8。從12的位置,向右3步,取得1個草莓,豐碩度共計7。總豐碩度為25。雖然有部分步數沒走完,但以達成最高總豐碩程度為目標。

記憶體限制	64MBytes	評分方式	Tolerant (寬鬆比對)
編號	配分	時間限制	敘述
#0~#5	30%	1s	n=1
#6~#7	8%	1s	n=2
#8~#10	12%	1s	1≤n≤100
#11~#19	50%	2s	無特別限制