

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE19CS203 – STATISTICS FOR DATA SCIENCE

Unit-3 – Probability Distributions

Question Bank - SOLVED

Small Sample Confidence Intervals for Population Mean

Exercises for Section 5.3

- 1. Find the level of a two-sided confidence interval that is based on the given value of tn-1, $\alpha/2$ and the given sample size.
 - a) t = 2.776, sample size 5.
 - b) t = 2.718, sample size 12.
 - c) t = 5.841, sample size 4.
 - d) t = 1.325, sample size 21.
 - e) t = 1.746, sample size 17.

[Text Book Exercise – Section 5.3 – Q. No. 3 – Pg. No. 352] <u>Solution:</u>

```
a) t = 2.776, sample size 5.
```

df=4

In t table row_heading = 4 and look for corresponding col_heading

where row value = 2.776

$$=>$$
 col_heading = 0.025 = alpha/2=> alpha = 0.050

=> confidence level = 95%

b) t = 2.718, sample size 12.

df=11

In t table row_heading = 11 and look for corresponding col_heading

where row value = 2.718

$$=>$$
 col_heading = 0.01 = alpha/2=> alpha = 0.02

=> confidence level = 98%

c)
$$t = 5.841$$
, sample size 4. df=3

In t table row_heading = 3 and look for corresponding col_heading

where row value = 5.841

$$=>$$
 col_heading = 0.005 = alpha/2=> alpha = 0.01

=> confidence level = 99%

d)
$$t = 1.325$$
, sample size 21. df=20

In t table row_heading = 20 and look for corresponding col_heading

where row value = 1.325

$$=>$$
 col_heading $= 0.10 = alpha/2 => alpha = 0.20$

=> confidence level = 80%

e)
$$t = 1.746$$
, sample size 17. df=16

In t table row_heading = 16 and look for corresponding col_heading

where row value = 1.746

$$=>$$
 col_heading = 0.05 = alpha/2=> alpha = 0.10

=> confidence level = 90%

2. The article "An Automatic Visual System for Marble Tile Classification" (L. Carrino, W. Polini, and S. Turchetta, *Journal of Engineering Manufacture*, 2002:1095–1108) describes a measure for the shade of marble tile in which the amount of light reflected by the tile is measured on a scale of 0–255. A perfectly black tile would reflect no light and measure 0, and a perfectly white tile would measure 255. A sample of nine Mezza Perla tiles were measured, with the following results:

204.999	206.149	202.102	207.048	203.496	206.343
203.496	206.676	205.831			

Is it appropriate to use the Student's t statistic to construct a 95% confidence interval for the mean shade of Mezza Perla tile? If so, construct the confidence interval. If not, explain why not.

[Text Book Exercise – Section 5.3 – Q. No. 7 – Pg. No. 353]

Solution:

Yes it is appropriate, since there are no outliers.

By taking an average of given 9 samples, we will get

$$X = 205.1267$$
,

$$s = 1.7174$$
, $n = 9$, $t9-1=8$

$$0.025 = 2.306$$
.

The confidence interval is $205.1267\pm2.306(1.7174/\sqrt{9})$, or (203.81, 206.45).

3. The following MINITAB output presents a confidence interval for a population mean, but some of the numbers got smudged and are now illegible. Fill in the missing numbers for (a), (b), and (c).

One-Sample T: X

Variable	N	Mean	StDev	SE Mean	95% CI
X	20	2.39374	(a)	0.52640	(b,c)

[Text Book Exercise – Section 5.3 – Q. No. 15 – Pg. No. 354] Solution:

- (a) SE Mean is StDev/ \sqrt{N} , so $0.52640 = \text{StDev}/\sqrt{20}$, so StDev = 2.3541.
- (b) X = 2.39374, s = 2.3541, n = 20, t20-1,.005 = 2.861. The lower limit of the 99% confidence interval is $2.39374-2.861(2.3541/\sqrt{20}) = 0.888$.

Alternatively, one may compute 2.39374–2.861(0.52640).

(c) X = 2.39374, s = 2.3541, n = 20, t20-1,.005 = 2.861. The upper limit of the 99% confidence interval is $2.39374+2.861(2.3541/\sqrt{20}) = 3.900$.

Alternatively, one may compute 2.39374+2.861(0.52640).