

Discrete event traffic simulation Part 2

Rui Filipe Martins Barbosa up201605740

Durante as simulações foram usados os seguintes valores:

 $\lambda = 200 \text{ pacotes/ms}$

 $dm = 0.008 \, ms$

 $N_{EVENTOS}=10000$, salvo em alguns casos que usei 100000 para maior "fidelidade"

Para todas as situações foi usado o programa generalizado, alínea c, pela sua praticidade.

a) **Erlang-B**, cujo tamanho do buffer, L, é 0, portanto todas as chamadas que chegam aquando nenhum servidor está disponível, serão perdidas.

```
total de canais/servidores (N) || Tamanho do buffer/queue (L)
                                                                       Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
Número eventos de chegada :7223
                                                                       Número eventos de chegada :5990
Número eventos de partida :2777
                                                                       Número eventos de partida :4010
Número de chamadas bloqueadas :
                                                                       Número de chamadas bloqueadas :
Número de chamadas perdidas : 4446
                                                                       Número de chamadas perdidas : 1979
Probabilidade de perda (B) : 61.553371%
                                                                       Probabilidade de perda (B) : 33.038399%
Probabilidade de atraso (Pa) : 0.000000%
                                                                       Probabilidade de atraso (Pa) : 0.000000%
Média de atraso das chamadas (Am) : -nan
                                                                       Média de atraso das chamadas (Am) : inf
A exportar para data.csv
                                                                       A exportar para data.csv
       FIM
```

```
Numero total de canais/servidores (N) || Tamanho do buffer/queue (L) 3 0

Número eventos de chegada :5401
Número eventos de partida :4599
Número de chamadas bloqueadas : 0
Número de chamadas perdidas : 803
Probabilidade de perda (B) : 14.867618%
Probabilidade de atraso (Pa) : 0.000000%
Média de atraso das chamadas (Am) : inf

A exportar para data.csv
FIM
```

```
Numero total de canais/servidores (N) || Tamanho do buffer/queue (L) 4 0

Número eventos de chegada :5146

Número eventos de partida :4854

Número de chamadas bloqueadas : 0

Número de chamadas perdidas : 290

Probabilidade de perda (B) : 5.635445%

Probabilidade de atraso (Pa) : 0.000000%

Média de atraso das chamadas (Am) : -nan

A exportar para data.csv

FIM
```

Numero total de canais/servidores (N) Tamanho do buffer/queue (L) 5 0
Número eventos de chegada :5044 Número eventos de partida :4956 Número de chamadas bloqueadas : 0 Número de chamadas perdidas : 88 Probabilidade de perda (B) : 1.744647% Probabilidade de atraso (Pa) : 0.000000% Média de atraso das chamadas (Am) : -nan
A exportar para data.csv FIM

Servers	Blocking Probability (%)	
1	61.54	
2	32.99	
3	14.96	
4	5.65	
5	1.77	

b) **Erlang-C**, em que o tamanho do buffer é infinito, o que se traduz no simulador online usado de um valor de L=-1 <=> L=100000, portanto nunca será perdida uma chamada pois terá sempre espaço no buffer para ser atrasada até que haja servidor disponível.

```
Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
2 100000
     nero total de canais/servidores (N) || Tamanho do buffer/queue (L)
                                                                                                                                                                                                                                    introduzir 0 para ignorar
                                                                                                                                          valor do atraso (ax) para o calculo da P( A > ax ) ||
                                                                                              introduzir 0 para ignorar
                                                                                                                                           Número eventos de chegada :5000
Número eventos de chegada :6124
Número eventos de partida :3876
                                                                                                                                          Número eventos de partida :5000
Número de chamadas bloqueadas : 3564
Número de chamadas bloqueadas : 6118
Número de chamadas perdidas : 0
                                                                                                                                          Numero de chamadas broqueadas : 0
Probabilidade de perda (B) : 0.000000%
Probabilidade de atraso (Pa) : 71.279999%
Probabilidade de chamada ter atraso > ax = 0.006000 : 76.936028%
Média de atraso das chamadas (Am) : 0.010462
Probabilidade de perda (B) : 0.000000%

Probabilidade de atraso (Pa) : 99.902023%

Probabilidade de chamada ter atraso > ax = 0.006000 : 63.190586%

Média de atraso das chamadas (Am) : 2.247583
A exportar para data.csv
FIM
 Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
                                                                                                                                            mero total de canais/servidores (N) || Tamanho do buffer/queue (L)
 valor do atraso (ax) para o calculo da P( A > ax ) || introduzir 0 para ignorar
                                                                                                                                         valor do atraso (ax) para o calculo da P( A > ax ) || introduzir 0 para ignorar
                                                                                                                                         Número eventos de chegada :5001
 Número eventos de chegada :5000
                                                                                                                                         Número eventos de partida :4999
Número de chamadas bloqueadas : 472
Número eventos de partida :5000
Número de chamadas bloqueadas : 1376
 Número de chamadas perdidas : 0
Probabilidade de perda (B) : 0.000000%
                                                                                                                                         Número de chamadas perdidas : 0
Probabilidade de perda (B) : 0.000000º
 Probabilidade de atraso (Pa) : 27.520000%
Probabilidade de chamada ter atraso > ax = 0.006000 : 35.174416%
Média de atraso das chamadas (Am) : 0.002721
                                                                                                                                         Probabilidade de atraso (Pa) : 9.438112%
Probabilidade de chamada ter atraso > ax = 0.006000 : 19.279661%
Média de atraso das chamadas (Am) : 0.002030
                                                                                                                                         A exportar para data.csv
FIM
```

5 100000
valor do atraso (ax) para o calculo da P(A > ax) introduzir θ para ignorar θ.006
Número eventos de chegada :5000 Número eventos de partida :5000 Número de chamadas bloqueadas : 128 Número de chamadas perdidas : 0 Probabilidade de perda (B) : 0.000000% Probabilidade de atraso (Pa) : 2.560000% Probabilidade de chamada ter atraso > ax = 0.006000 : 2.343750% Média de atraso das chamadas (Am) : 0.001253
A exportar para data.csv

Servers	Service Level (%)	Delay (%)	Avg Wait (second)
1	0.00	100.00	NaN
2	100.00	71.11	0.01
3	100.00	27.38	0.00
4	100.00	9.07	0.00
5	100.00	2.59	0.00

c) Caso geral

Nesta alínea decidi usar um L = 25 Para testar o código. Continuou na mesma a se observar valores bastante próximos dos teóricos.

```
Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
2 25

valor do atraso (ax) para o calculo da P( A > ax) || introduzir 0 para ignorar
0

Número eventos de chegada :5000
Número eventos de partida :5000
Número eventos de partida :5000
Número de chamadas bloqueadas : 3567
Número de chamadas perdidas : 0
Probabilidade de perda (B) : 0.000000%
Probabilidade de atraso (Pa) : 71.340004%
Média de atraso das chamadas (Am) : 0.020917

A exportar para data.csv
FIM

Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
3 25

Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
3 25

Numero de chamaso (ax) para o calculo da P( A > ax) || introduzir 0 para ignorar 0

Número eventos de chegada :5000
Número eventos de partida :5000
Número de chamadas bloqueadas : 1345
Número de chamadas perdidas : 0
Probabilidade de perda (B) : 0.000000%
Probabilidade de atraso (Pa) : 26.900000%
Média de atraso das chamadas (Am) : 0.002662

A exportar para data.csv
FIM
```

```
Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
4 25

valor do atraso (ax) para o calculo da P( A > ax) || introduzir 0 para ignorar
0

Número eventos de chegada :5001
Número eventos de partida :4999
Número de chamadas bloqueadas : 448
Número de chamadas perdidas : 0
Probabilidade de perda (B) : 0.000000%
Probabilidade de atraso (Pa) : 8.958208%
Média de atraso das chamadas (Am) : 0.001810

A exportar para data.csv
```

Servers	Service Level (%)	Delay (%)	Avg Wait (minute)
1	0.00	100.00	NaN
2	100.00	71.05	0.00
3	100.00	27.38	0.00
4	100.00	9.07	0.00
5	100.00	2.59	0.00

Para obter uma probabilidade de perda de 1% fui testando valores para N e L até obter dois casos diferentes para o valor pretendido.

```
Numero total de canais/servidores (N) || Tamanho do buffer/queue (L) 3 4

valor do atraso (ax) para o calculo da P( A > ax) || introduzir 0 para ignorar 0

Número eventos de chegada :5028
Número eventos de partida :4972
Número de chamadas bloqueadas : 1238
Número de chamadas perdidas : 53
Probabilidade de perda (B) : 1.054097%
Probabilidade de atraso (Pa) : 24.622116%
Média de atraso das chamadas (Am) : 0.002672

A exportar para data.csv
FIM
```

```
Numero total de canais/servidores (N) || Tamanho do buffer/queue (L)
4 2

valor do atraso (ax) para o calculo da P( A > ax) || introduzir 0 para ignorar
0

Número eventos de chegada :5027
Número eventos de partida :4973
Número de chamadas bloqueadas : 390
Número de chamadas perdidas : 51
Probabilidade de perda (B) : 1.014522%
Probabilidade de atraso (Pa) : 7.758106%
Média de atraso das chamadas (Am) : 0.001629

A exportar para data.csv
FIM
```