

METHOD FOR MANUFACTURING LOW RESISTIVITY P-TYPE ZINC OXIDE THIN FILM

Patent number: JP2002105625
Publication date: 2002-04-10

Inventor: YOSHIDA AKIRA; KIN KISHUN; WAKAHARA AKIHIRO

Applicant: JAPAN SCIENCE & TECHNOLOGY CORP

Classification:

- international: C23C14/08; C23C14/34; H01L33/00

- european:

Application number: JP20000294159 20000927

Priority number(s):

Abstract of JP2002105625

PROBLEM TO BE SOLVED: To provide a method for manufacturing p-type zinc oxide thin film of which a function as a semiconductor having light transmissivity and electric conductivity can be expected.

SOLUTION: In depositing the p-type zinc oxide thin film, a ZnO target and a GaN target as a dopant source are used to dope a ZnO thin film with Ga and N independently and simultaneously or with GaN. It is preferable to use a sputtering method as a thin film deposition method.

(19) 日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11) 特許出願公報番号

(43) 公開日 平成14年4月10日 (2002.4.10)

特許2002-105625B

(P2002-105625A)

(51) Int.Cl.⁷ F I
C 23 C 14/08 C 23 C 14/08
14/34 A 4 K 0 2 9
C 23 C 14/08 C 4 K 0 2 9
H 01 L 33/00 A 5 F 0 4 1
H 01 L 33/00 A 5 F 0 5 1
// H 01 L 31/04 E
31/04

審査請求未請求 請求項の数2 OI L (全5頁)

(21) 出願番号 特願2000-294159 (P2000-294159)
(71) 出願人 396020800
科学技術振興事業団
埼玉県川口市本町4丁目1番8号
愛知県名古屋市天白区島田2-301島田橋
特許法第30条第1項適用申請有り 2000年3月28日~3
月31日 招国法人实用物理学主催の「平成12
年」春季第47回实用物理学研究会講演会」に於いて文
書化された実験
(72) 著明者 吉田 明
埼玉県川口市本町4丁目1番8号
愛知県名古屋市天白区島田2-301島田橋
特許法第30条第1項適用申請有り 2000年3月28日~3
月31日 招国法人实用物理学主催の「平成12
年」春季第47回实用物理学研究会講演会」に於いて文
書化された実験
(74) 代理人 100108671
一401
弁理士 関 茂之

(54) 【発明の名称】 低抵抗P型酸化亜鉛薄膜の製造方法

(57) 【要約】

【構成】 P型酸化亜鉛薄膜を形成する層は、ZnOが一
層以上の不純物を含む多孔質酸化亜鉛層とGaNを複数層
で用いたものである。ZnO薄膜はGaNを別々に形成して
K-Ni-Arガス混合ガスを用いて熱炉内に注入する。
【課題】 低抵抗P型酸化亜鉛薄膜を得る。

11.20份比率为 GaN 与 AlN 的摩尔比，其值为2.00±0.05。成膜时需将 GaN 与 AlN 的摩尔比控制在2.00±0.05，即 AlN 的摩尔量增加量为 GaN 的20%左右。 AlN 的摩尔量增加量为 GaN 的20%左右，即 AlN 的摩尔量增加量为 GaN 的20%左右。

【0017】实施例2
【0017】 GaN 与 AlN 的摩尔比，即 AlN 的摩尔量增加量为 GaN 的20%左右，即 AlN 的摩尔量增加量为 GaN 的20%左右。

【0018】实施例1
【0018】 GaN 与 AlN 的摩尔比，即 AlN 的摩尔量增加量为 GaN 的20%左右，即 AlN 的摩尔量增加量为 GaN 的20%左右。

【0019】比较例2
【0019】 GaN 与 AlN 的摩尔比，即 AlN 的摩尔量增加量为 GaN 的20%左右，即 AlN 的摩尔量增加量为 GaN 的20%左右。

【0017】美能阿尔法
小叶片状的GaN与一些，以及40微重阳T GaN与一些
HDP面積在ZnO与一些，HDP面積比材料C、10%
比LDS方法、美能阿尔法同此条件下的效率约80%

在，基板溫度200°C、電極間距離50mm、成膜時間120分鐘左右。該率分別是O₂/（O₂+N₂）=60%

【图2-1】图2-1、美施耐德公司的工作流程之二。

【0020】图16、类脑图1、2、比较图1、2以及
DZ N0薄膜的紫外可发光光谱带比DZ N0
比发光率要高很多。Ga N类脑加L
C6 Z N0薄膜的紫外可发光光谱带比DZ N0
发光率要高很多。Ga N类脑加L
不如努力。其他，Ga N类脑加L乙乙、吸收特性也

合工科大是一所非常大的综合性大学，拥有许多先进的实验室。N-Ga-N族化合物研究室在N-Ga-N族化合物的研究方面取得了许多成果。前驱物的合成和N-Ga-N族化合物的研究是该实验室的主要研究方向。实验室配备了各种先进的实验设备，如X射线衍射仪、扫描电子显微镜、透射电子显微镜等。研究人员通过这些设备对样品进行分析，从而得出样品的微观结构、成分以及性能等信息。实验室的研究工作主要集中在以下几个方面：1. N-Ga-N族化合物的合成与表征；2. N-Ga-N族化合物的物理性质研究；3. N-Ga-N族化合物的应用研究。实验室的研究成果已经在国内外学术期刊上发表，并且在一些国际会议上做了报告。实验室的研究工作得到了国家自然科学基金委、科技部、教育部等单位的支持。实验室的研究人员包括教授、副教授、博士后研究员、博士研究生、硕士研究生等。实验室的研究工作得到了国家自然科学基金委、科技部、教育部等单位的支持。实验室的研究人员包括教授、副教授、博士后研究员、博士研究生、硕士研究生等。

	GaN/ZnO 4-5%	面积率 cm ⁻²	半径 cm	半径 mm	扩散率 cm ⁻³	扩散度 cm ² /Vs	层厚 nm	此数据
0024】表1-5、GaN/ZnO 4-5%, ZnO 层、美施例1上同的条件下的扩散结果。	(0027) 美施例4 扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	(0025) 表1-5中ZnO薄膜沉积量10%的美施例 扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$					
0028】此数据 扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$	(0029) 表2-1 扩散性系数比值、 $O_2/(O_2+N_2) = 70\% \pm 10\%$
0030】 扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$	(0031) 扩散性系数比值、 $O_2/(O_2+N_2) = 50\% \pm 10\%$

	GaN/ZnO 4-5%	面积率 cm ⁻²	半径 cm	半径 mm	扩散率 cm ⁻³	扩散度 cm ² /Vs	层厚 nm	此数据
此数据2	0	-	-	-	-	-	-	
此数据1	5	93.1	4×10 ¹⁵	32.2	n			
美施例2	10	37.6	9×10 ¹⁵	18.5	p			
美施例1	20	100.2	6×10 ¹⁵	11.2	p			

卷之二

(72) 先明者 著原 啓浩

要知果蠻情市北山町東浦2-1高師生宅7

5F051 A09 CA02 CB15 CB18 GA04

CAGT

5H041 A421 C441 L454 L455 L457

6000

RA09 BA43 BC03 CH03 DC03

AA09 BAG BCG LAA05 DC05

【四】

〔 5 〕

乙

[[]]