

Exam1

Big Data

Five steps

Making Useful Strings

Introduction to Database Systems: CS312 SQLite and Python Primer

Oliver Bonham-Carter

20 Feb 2019

Exam1: Friday 22^{nd} during lab (2:30pm)

By Honor code: you must be in Alden hall to take the exam

Exam1

Big Data

Five steps

Making Useful Strings

Some of what to know

- Quiz 1 material
- Queries and code
- Given an output and table, determine the query code
- Given a table and a query, determine the output
- Code to perform types of updates
- Python's sqlite3 library
 - Querying a database using Python: Concepts
 - Why are automated queries necessary?
 - (and similar conceptual questions)

Big Data

Exam1

Big Data

Five steps

Multiples of bytes VTTE							
Decimal			Binary				
Value		Metric	Value		IEC		JEDEC
1000	kΒ	kilobyte	1024	KiB	kibibyte	ΚB	kilobyte
1000 ²	МВ	megabyte	1024 ²	MiB	mebibyte	МВ	megabyte
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte
1000 ⁴	тв	terabyte	10244	ΤiΒ	tebibyte		-
1000 ⁵	РВ	petabyte	10245	PiB	pebibyte		-
1000 ⁶	EB	exabyte	1024 ⁶	EiB	exbibyte		-
10007	ΖB	zettabyte	1024 ⁷	ZiB	zebibyte		_
1000 ⁸	ΥB	yottabyte	1024 ⁸	YiB	yobibyte		-
Orders of magnitude of data							

- Upwards of 2.7 Zetabytes of data exist in the digital universe
- YouTube users upload 48 hours of new video every minute
- Increase in unstructured data
- https://www.waterfordtechnologies.com/ big-data-interesting-facts/

Facebook's Daily Data Use

Exam1

Big Data

Five steps

- Facebook processes:
 - 2.5 billion pieces of content
 - upwards of 500 terabytes of data each day from status and location details
 - Processing in 2.7 billion Like actions
 - 300 million photos per day,
 - Scans roughly 105 terabytes of data each half hour
 - 100 petebytes of data are stored in a single Hadoop disk cluster (a distributed system for data management)

How are we to manage all this data?

Exam1

Big Data

Five steps

Standardized Database Access with Python

Exam1

Big Data

Five steps

Making Useful Strings

PEP 0249

- Python Database API Specification v2.0
- https://www.python.org/dev/peps/pep-0249/
- Specifies a standard API that Python modules that are used to access databases should implement
- Does not provide a library nor a module, just specifications on how to make them
- Third party modules may adhere to these specifications

Steps to run a command in SQL using Python

Exam1

Big Data

Five steps

Basic Concatenat

Making Useful Strings Five basic steps to using a database according to the Python Database API Specification v2.0

- Step 0: Build automation framework in Python3
- Step 1: Defining the query
- Step 2: Connecting to the database
- Step 3: Execute the query
- Step 4i, (SELECT): Analyze the result
- Step 4ii, or (UPDATE): Commit the change
- Step 5: Cleaning up; close the database connection

Nice tutorial: http://sebastianraschka.com/Articles/ 2014_sqlite_in_python_tutorial.html

Over all: Using Python2

Exam1

Big Data

Five steps

Basic Concatenation

Making Useful Strings

KEEP CALM **AND** LET'S CODE

Making Useful Strings Python3

Exam1

Big Data

Five steps

Making Useful Strings

- Creating queries as strings
- Write a correct SQL statement, stored as a Python string, include no semicolon
- ex: sqlCommand = "SELECT attrib1 FROM table"

Making Strings

```
quoteMark = "'"
myString = "this " + quote + "is" + quote + " cool"
print(myString)
```

Query Strings: Note the added spaces and quotes

```
quoteMark = "'"
myQuery = "SELECT * FROM Instructor
WHERE name ==" + quoteMark + "Miller" + quoteMark
print(myQuery)
```

Making Useful Strings

A concatenated string with substituted values and added quotes

Exam1 Big Data

Five steps Making

Useful Strings

Queries From
Strings

```
PersonID = "10101"
name = "Miller"
student = "S1"
deptName = "CompSci"
salary = 95000.00
myInsert1 = "INSERT INTO " +myTable+ " VALUES("
+quote + PersonID + quote +','
+ quote + name + quote +','
+ quote + student + quote +','
+ quote + deptName + quote +','
+ str(salary)
+")"
print(myInsert1) #gives
INSERT INTO Instructor VALUES
('10101', 'Milder', 'S1', 'CompSci', 95000.0)
```

Making Useful Strings Make a less-complicated INSERT string

Exam1 Big Data

Five steps

Strings

```
A string with formatted substitutions
```

```
PersonID = "10101"
name = "Milder"
student = "S1"
deptName = "CompSci"
salary = 95000.00
#all on one line
myInsert2 = "INSERT INTO instructor VALUES
(\"{A}\",\"{B}\",\"{C}\",\"{D}\",{E})"
.format(A = PersonID, B = name,
C = student, D = deptName, E = salary)
print(myInsert2)
```


Python to manage database

Exam1

Big Data

Five steps

Making Useful Strings

Queries From Strings

Let's Try It Out!

- Locate the sandbox database builder file sandbox/campusDB_build.txt and make your DB.
- Test-out writing Python code to perform Sqlite functions

