Measures of Similarity

Joshua Bernhard

Why Do We Care?

Why do we care about measures of similarity?

- In order to personalize recommendations, many methods require you to find either similar users or items.

- Not every measure of similarity will return the same users or items as most similar

Measures of Similarity

- Pearson's Correlation Coefficient & Cosine Similarity
- Spearman's Correlation Coefficient
- Jaccard Similarity

- Pearson Correlation Coefficient measures the <u>strength</u> and <u>direction</u> of the <u>linear</u> relationship between two users or two items

 Does not work well if items or users don't have a lot of ratings/views

- Closer to -1 the stronger a negative relationship

- Closer to 1 the stronger a positive relationship

 Cosine Similarity and Pearson Correlation Coefficient are equal when the scores are standardized (subtract mean and divide by standard deviation)

- This works well when you do not have binary events, but rather, user-item ratings (and lots of them).

- Given two vectors (could be all ratings for two movies, or all ratings for two individuals)

user1 ratings	user2 ratings	
5	5	5
4	ļ.	5
3	3	5
1		2
5	5	4
2	2	3
3	3	2
4	ļ	5

Pearson correlation of 0.7

- Given two vectors (could be all ratings for two movies, or all ratings for two individuals)

user1 ratings	user2 ratings
2	5
4	2
1	5
1	4
2	2 4
2	
5	5 2
1	5

Pearson correlation of -0.86

Pearson's Correlation

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

Cosine Similarity

$$cos(\theta) = \frac{A \cdot B}{\|A \| B\|} = \frac{\sum_{i} A_{i} B_{i}}{\sqrt{\sum_{i} A_{i}^{2}} \sqrt{\sum_{i} B_{i}^{2}}}$$

Spearman's Correlation Coefficient

Spearman's Correlation Coefficient

- Spearman's correlation is a non-parametric measure of similarity that does not look for a linear relationship.

- Therefore, if two users (or items) have ratings that are high for the same items and low for the same items, but not with the exact same values, Spearman's coefficient will do a better job of picking up this trend.

- Spearman's coefficient is also between 1 and -1.

Spearman's Correlation Coefficient

- For the first plot, Spearman and Pearson's coefficients will be similar at ~0.9

- In the second plot, the relationship does not fit on a line well, so Spearman will do a better job of capturing these are related with corr ~0.9, while Pearson ~0.8.

Spearman's Correlation Coefficient

$$\rho = \frac{S_{xy}}{S_x S_y} = \frac{\frac{1}{n} \sum_{i=1}^{n} \left(R(x_i) - \overline{R(x)} \right) \cdot \left(R(y_i) - \overline{R(y)} \right)}{\sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} \left(R(x_i) - \overline{R(x)} \right)^2 \right) \cdot \left(\frac{1}{n} \sum_{i=1}^{n} \left(R(y_i) - \overline{R(y)} \right)^2 \right)}}$$

Jaccard Similarity

Jaccard Similarity

- Jaccard Similarity is one of the most popular methods to use when comparing two vectors with only binary outcomes.

- Bound between 0 (not similar) and 1 (very similar)

Jaccard Similarity

$$J(A,B) = \frac{|A\cap B|}{|A\cup B|} = \frac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

Jaccard = 1

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6	movie 7
user 1	1	0	1	1	1	1	0
user 2	1	0	1	1	1	1	0

Jaccard = 0

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6	movie 7
user 1	1	0	1	1	0	0	0
user 2	0	1	0	0	0	1	1

Recap

- Measuring item-item or user-user similarity requires knowledge of different similarity metrics, and when to use them.
- There are a number of popular techniques, but the most popular are Pearson/Cosine Similarity (continuous data) and Jaccard Similarity (binary data). However, there are A LOT of techniques we did not look at here.

Additional Note:

Often these methods don't scale very well, so you may have to be creative in implementing for large scale problems.