The Essence of Calculus Understanding the Mathematics of Change

Prepared by Gangeshwar Lohar

August 4, 2025

What is Calculus?

The Study of Continuous Change

Calculus is built on two foundational ideas that are inverses of each other:

1. Differential Calculus

Slices a problem into infinitely small pieces to find the **instantaneous** rate of change (the slope of a curve).

2. Integral Calculus

Sums up these infinitely small pieces to find the **total accumulated quantity** (the area under a curve).

Core Concept: Limits

Definition: Limit

A limit describes the value that a function f(x) "approaches" as its input x "approaches" some value c. We write this as:

$$\lim_{x\to c} f(x) = L$$

Example (An Illustrative Example)

The function $f(x) = \frac{x^2-1}{x-1}$ is undefined at x = 1. But the limit as x approaches 1 is 2.

$$\lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1} (x+1) = 2$$

Core Concept: Derivatives

Definition: Derivative

The derivative of a function f(x), denoted f'(x) or $\frac{dy}{dx}$, measures the **instantaneous rate of change** of the function. It is the slope of the line tangent to the function at a given point, formally defined by a limit:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example

If $f(x) = x^2$, its derivative is f'(x) = 2x. This new function tells you the slope of the original function at any point.

Core Concept: Integrals

Definition: Integral

An integral is the continuous analogue of a sum, often interpreted as the area under the curve of a function.

Definite Integral

Indefinite Integral

Calculates area between a and b:

$$\int_{a}^{b} f(x) dx$$

Finds the antiderivative:

$$\int f(x)\,dx=F(x)+C$$

Key Theorem: The Fundamental Theorem of Calculus

Part 1: The Derivative of an Integral

The derivative of an area function gives you back the original function.

If
$$F(x) = \int_a^x f(t) dt$$
, then $F'(x) = f(x)$

Theorem (Part 2: The Integral of a Derivative)

To find the area under f(x), find its antiderivative F(x) and compute the change in F.

$$\int_a^b f(x) dx = F(b) - F(a)$$

Core Concept: Multivariate Gradients

Partial Derivatives and the Gradient

For a function with multiple inputs, like f(x,y), the **partial derivative** $\frac{\partial f}{\partial x}$ is the derivative with respect to one variable, holding others constant. The

gradient, ∇f , is the vector of all partial derivatives:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Intuition

The gradient vector points in the direction of the **steepest ascent** on a surface. This is key for optimization algorithms.

Application: Numerical Methods with NumPy

Numerical Integration (Area of $y = x^2$)

```
import numpy as np
x = np.linspace(0, 1, 1001)
y = x**2
area = np.trapz(y, x)
# area is approx 0.333...
```

Numerical Differentiation (Slope of $y = x^2$)

```
# Using the same x and y from above
grad = np.gradient(y, x)
# grad at x=1 will be approx 2.0
```

Worked Problem: Finding an Integral

Problem

Calculate the definite integral of $f(x) = 3x^2 + 4x + 2$ from x = 0 to x = 2.

1 Find the Antiderivative F(x):

$$F(x) = \int (3x^2 + 4x + 2) dx$$

$$= 3\left(\frac{x^3}{3}\right) + 4\left(\frac{x^2}{2}\right) + 2x$$

$$= x^3 + 2x^2 + 2x$$

2 Evaluate F(b) - F(a):

$$F(2) = (2)^3 + 2(2)^2 + 2(2) = 8 + 8 + 4 = 20$$

$$F(0) = 0$$

$$\int_0^2 f(x) \, dx = F(2) - F(0) = 20$$