Coursework III

CID number: Oh, no. This number series seeems to lost to some space!

MATH40002: Analysis I

Imperial College London

 $July\ 30,\ 2023$

Problem 1

Let A and B be non-empty subsets of $\mathbb R$ such that $a \leq b$ for all $a \in A$ and $b \in B$. Show that $\sup A \leq \inf B$ and that the equality holds if and only if for all $\varepsilon > 0$, there are $a \in A$ and $b \in B$ such that $b - a < \varepsilon$.

Solution.

Proof. For the first part, "sup $A \leq \inf B$ ", we will prove this by contradiction. Let's assume that

$$\sup A > \inf B \tag{1}$$

Therefore, we can always find a number c > 0, such that $\sup A = \inf B + c$, which is equivalent to $\inf B = \sup A - c$. By the definition of *supreme* and the proposition we learnt in the autumn term of Analysis I, we have

$$\exists \ a_0 \in A, \ \text{such that} \ a_0 > \inf B. \eqno(2)$$

Now, by the definition given of the subsets A and B, we have

$$\forall a \in A, \ \forall b \in B \Longrightarrow a < b.$$

Therefore, for every $a \in A$, a is a lower bound of B. Hence, by the definition of infimum, we have

$$\forall a \in A, \ a \leq \inf B.$$

which is a contradiction of (2). Therefore, by the axiom of Trichotomy, we have

$$\sup A \leq \inf B$$
.

For the second part, "sup $A = \inf B \iff \forall \varepsilon > 0$, $\exists a \in A, \exists b \in B$, such that $b - a < \varepsilon$ ", we first prove the " \Longrightarrow " direction.

We suppose that $\sup A = \inf B$ and let $\varepsilon > 0$ be arbitrary. Then, we can choose a $a \in A$, such that

$$\sup A - \frac{\varepsilon}{2} < a \le \sup A \tag{3}$$

and $b \in B$, such that

$$\inf B \le b < \inf B + \frac{\varepsilon}{2} \tag{4}$$

This is possible since $\sup A$ and $\inf B$ are the least upper bound and the greatest lower bound of A and B, respectively. Then, we combine (3) and (4), by the property of inequalities,

$$b-a<\inf B+\frac{\varepsilon}{2}-(\sup A-\frac{\varepsilon}{2})=\inf B-\sup A+\varepsilon=\varepsilon \tag{5}$$

since $\sup A = \inf B$, and we have proved the " \Longrightarrow " direction.

"⇐":

For this, we will prove this by contradiction. We suppose that $\forall \varepsilon > 0, \exists a \in A, \exists b \in B$, such that $b - a < \varepsilon$. We have already proved that $\sup A \leq \inf B$, so we can only assume that $\sup A < \inf B$. Then, we set

$$\varepsilon = \inf B - \sup A > 0$$

By the assumption, we can find $a \in A$ and $b \in B$, such that $b - a < \inf B - \sup A$. But this implies that

$$b < \inf B + a - \sup A. \tag{6}$$

By the definition of *supreme* and *infimum*, we have

$$a \le \sup A \iff a - \sup A \le 0 \tag{7}$$

$$b \ge \inf B \Longleftrightarrow b - \inf B \ge 0 \tag{8}$$

We combine (6) and (7) by the property of inequlities, we have

$$b<\inf B+a-\sup A\leq\inf B+0=\inf B$$

$$\label{eq:b} \emptyset$$

$$b<\inf B$$

But this contradicts to (8). Therefore, $\inf B$ could not be greater than $\sup A$, and we have proved the " \Leftarrow " direction.

Problem 2

Using lower and upper sums, show that the function $t \mapsto t^2$ is integrable on [0, x] for all x > 0 and that $\int_0^x t^2 dt = \frac{x^3}{3}$.

Solution.

Proof. To show that the function $t \mapsto t^2$ is integrable on [0, x] for all x > 0, we need to show that for any $\varepsilon > 0$, there exists a partition P of [0, x] such that the upper sum U(f, P) and the lower sum L(f, P) satisfy

$$U(t^2, P) - L(t^2, P) < \varepsilon$$

This is equivalent to showing that

$$\lim_{n\to\infty}U(t^2,P_n)=\lim_{n\to\infty}L(t^2,P_n)$$

where (P_n) is a sequence of partitions, i.e $P_n = \{t_0, t_1, \dots, t_n\}$. To find the upper and lower sums, we need to find the maximum and minimum values of t^2 on each subinterval in [0, x]. Since $\frac{d(t^2)}{dt} = 2t > 0$ for $\forall t \in [0, x]$, t^2 is an increasing function on [0, x]. Hence, the maximum

value on each subinterval is attained at the right endpoint. So if we divide [0, x] into n equal subintervals of length $\Delta t = x/n$, then for each i = 1, 2, ..., n, we have

$$M_i = \sup\{t^2 : t \in [t_{i-1}, t_i]\} = (t_i)^2 = \left(\frac{ix}{n}\right)^2 \tag{9}$$

The minimum value on each subinterval is attained at the left endpoint. So for each $i=1,2,\ldots,n$, we have

$$m_i = \inf\{t^2 : t \in [t_{i-1}, t_i]\}t^2 = (t_{i-1})^2 = \left(\frac{(i-1)x}{n}\right)^2 \tag{10}$$

Now, using (9) and (10), we can compute the upper and lower sums as follows. For the upper sum, we have

$$U(t^2, P_n) = \sum_{i=1}^n M_i(t_i - t_{i-1}) = \sum_{i=1}^n \left(\frac{ix}{n}\right)^2 \frac{x}{n} = \frac{x^3}{n^3} \sum_{i=1}^n i^2$$
 (11)

and for the lower sum, we have

$$L(t^2,P_n) = \sum_{i=1}^n m_i (t_i - t_{i-1}) = \sum_{i=1}^n \left(\frac{(i-1)x}{n}\right)^2 \frac{x}{n} = \frac{x^3}{n^3} \sum_{i=1}^n (i-1)^2 \tag{12}$$

Using some formulas for sums of squares, we can simplify (11) and (12) as:

$$U(t^2,P_n) = \frac{x^3}{n^3} \sum_{i=1}^n i^2 = \frac{x^3}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right) = \frac{x^3}{6} \left(2 + \frac{3}{n} + \frac{1}{n^2} \right) \tag{13}$$

$$L(t^2,P_n) = \frac{x^3}{n^3} \sum_{i=1}^n (i-1)^2 = \frac{x^3}{n^3} \left(\frac{n(n-1)(2n-1)}{6} \right) = \frac{x^3}{6} \left(2 - \frac{3}{n} + \frac{1}{n^2} \right) \tag{14}$$

Now we can see that as n increases, both upper and lower sums converge to the same limit:

$$\lim_{n\to\infty} U(t^2,P_n) = \lim_{n\to\infty} L(t^2,P_n) = \frac{x^3}{3}$$

Therefore, the function $t \mapsto t^2$ is integrable on [0,x] for all x > 0. Since the value of the limits of the upper and lower sums are the same as $\frac{x^3}{3}$, we can conclude that the definite integral of t^2 on [0,x] is

 $\int_0^x t^2 dt = \frac{x^3}{3}$