Military Vehicle Identification and Classification Using Pre-Trained Models

Group No. 12 DEC LCA

This project explores the use of machine learning for automating the identification of military vehicles. The goal is to leverage advanced algorithms to accurately recognize diverse military vehicle types, overcoming challenges posed by varying environmental conditions and the absence of predefined classes in existing datasets.

S ARRAS S ARRAS S ARRAS S ARRAS S ARRAS S

Block Diagram

Object Detection

Input Image

Preprocessing (annotation)

Convolutional Layers

Neural Networks

Normalisation

Result Analysis

Standard Values for Pretrained models

Pre-trained models	Accuracy with DLR(%)	Accuracy without DLR(%)	Error Rate (%)	ROC (%)	Training loss	Validation loss
R-CNN	92	90	7.8	95.3	0.254	0.1548
SSD	94	92	6.4	96.6	0.2243	0.1768
YOLO V5	98	96	8.4	98.3	0.1253	0.1925
Dense Net-201	88.8	95.9	11.4	96.5	0.3325	0.2549
Alex NeT	78.6	90.1	21.3	89.6	0.4999	0.5174

Pre Trained models	Precision	Recall	F1-Score
R-CNN	0.88	0.85	0.86
SSD	0.92	0.89	0.84
YOLO V5	0.94	0.92	0.93
Dense Net-201	0.9	0.87	0.88
Alex Net	0.65	0.89	0.75

Detection acc

Precision of identifying detected objects.

F1 (Friendly)

Measure of vehicle classification performance.

Classification acc

Correctly classified objects percentage.

F1 (Non Friendly)

Measure of nonfriendly vehicle classification.

1st Iteration Results of YOLOv5 AI Generated Image - 49%

2nd Iteration Results of YOLOv5 using Actual Image - 62%

3rd Iteration Results of YOLOv8 using Actual Image - 61%

4th Iteration Results (SSD OpenCV)

Despite our best efforts, we encountered challenges in identifying military vehicles due to the absence of a predefined class in our dataset. The inability to retrain, evaluate, and adjust the algorithm posed significant obstacles for our project.

5th Iteration Results of CNN - 40%

```
Code + Text
correct_predictions = 0
 for i in range(len(X_test)):
    sample image = np.expand dims(X test[i], axis=0)
    predicted box = model.predict(sample image)[0]
     true box = y test[i]
    iou = calculate_iou(predicted_box, true_box)
    if iou >= iou_threshold:
        correct predictions += 1
 accuracy = correct predictions / len(X test)
 print("Accuracy:", accuracy)
 print("Precision:", precision)
 print("Recall:", recall)
 print("F1 Score:", f1_score)
 1/1 [======= ] - 0s 80ms/step
                                 - 0s 73ms/step
      :============]
                                 - 0s 102ms/step
                                 - 0s 95ms/step
                                 - 0s 78ms/step
      - 0s 95ms/step
 1/1 [========]
                                - 0s 48ms/step
 1/1 [========]
                                - 0s 49ms/step
 Accuracy: 0.405
 Precision: 0.42
 Recall: 0.39
 F1 Score: 0.40
```


Problem Faced

Addressing these challenges requires concerted efforts in data collection, model development, hardware optimization, ethical considerations, and collaboration among defense stakeholders to ensure effective and responsible deployment of military vehicle identification systems.

Limited Dataset Diversity

Adaptation to Environmental Variations

Model Bias and Generalization

Future Scope

while pre-trained models offer a strong foundation for military vehicle identification, continual research and development efforts

Customization and 01 **Optimization** 02 Real-Time Deployment 03 Multi-Modal Fusion

Collaborative Framework

04

Conclusion

Pre-trained models offer high accuracy and adaptability for military vehicle identification, demonstrating efficiency and rapid deployment capabilities. They reduce data requirements and are versatile across varying environmental conditions. Advancements in model customization, real-time deployment, sensor integration, continual learning, collaborative development, and ethical considerations are key areas for further development in military vehicle identification systems.

Lavanya Shrivastav - PB44

Aditya Bhagat - PB53

Dhruva Sandu - PB55

Icons

presentation

