Extremal Cayley Graphs

Jordan Blocher, Christopher Linden, Samantha Hampton

REU - Texas State

28 June 2012

▶ Cay(\mathbb{Z}_{25} , {±1,±4,±6,±8})

Introduction to Cayley Graphs

- ▶ Definition: Let Γ be a finite group with a subset A. The *Cayley digraph*, denoted Cay(Γ,A), is a digraph with vertex set $\overline{\Gamma}$, such that (x,y) is a directed edge if and only if $yx^{-1} \in A$
- Cayley digraphs are vertex transitive.

Introduction to Cayley Graphs

► The bicycle wheel

Introduction to Cayley Graphs

► The Petersen Graph

► This is not a Cayley digraph.

N-Cubes

- ▶ Definition: The Cayley digraph Cay(\mathbb{Z}_2^n , { e_1 , e_2 , ..., e_n })
- Common choice for interconnection network designs
- The diameter of a network represents the maximum communication delay between two nodes in the network.
- ► For a fixed diameter and vertex degree, there are circulant graphs that contain more vertices than the corresponding n-cube.
- ► Hence, circulant graphs give better communication networks than cubes

N-Cubes

► The 3-Cube

For positive integers d and k, we define:

$$m(d, A) = \max\{m|diam(Cay(\mathbb{Z}_m, A)) \leq d\},$$

 $m(d, k) = \max_{A:|A|=k}\{m(d, A)\}.$

► Current known values include:

$$m(1,k)=k+1,$$
 $m(d,1)=d+1,$ and $m(d,2)=\left\lfloor \frac{d(d+4)}{3} \right\rfloor +1$ for all $d\geq 2.$

The following theorem can be used to construct large efficient generating sets A so that m(d,A) is large by using small efficient generating sets.

Theorem

Let
$$d_1 \geq 2$$
, $d_2 \geq 2$, $k_1 \geq 1$, and $k_2 \geq 1$ be integers. Then
$$m(d_1+d_2,k_1+k_2) \geq m(d_1,k_1)m(d_2,k_2).$$

Proof

Let $A_s = \{0 < a_{s1} < a_{s2} < \cdots < a_{sk_s}\}$ be a set of integers with

$$m(d_s, A_s) = m(d_s, k_s) = m_s$$
 for $s = 1, 2$.

We may assume, without loss of generality, that $a_{sk_s} < m_s$ for s = 1, 2. Define

$$A = A_1 \cup \{m_1 a_{2j} \mid j = 1, 2, \dots, k_2\}.$$

Since $|A| = k_1 + k_2$, we only need to prove that A is a $(d_1 + d_2)$ -basis for $\mathbb{Z}_{m_1 m_2}$.

Let n be any nonnegative integer. Since A_1 is an d_1 -basis for \mathbb{Z}_{m_1} , we see that

$$n \equiv \sum_{i=1}^{k_1} x_i a_{1i} \pmod{m_1},$$

where x_i 's are nonnegative integers with $\sum_{i=1}^{r_1} x_i \leq d_1$. Assume

$$n = \sum_{i=1}^{k_1} x_i a_{1i} + q m_1$$

for some integer q.

It follows from the fact that A_2 is a d_2 -basis for \mathbb{Z}_{m_2} that

$$q = \sum_{j=1}^{k_2} y_j a_{2j} + p m_2,$$

where y_j 's are nonnegative integers with $\sum_{j=1}^{k_2} y_j \leq d_2$, and p is an integer.

Therefore,

$$n \equiv \sum_{i=1}^{k_1} x_i a_{1i} + \sum_{j=1}^{k_2} y_j m_1 a_{2j} \pmod{m_1 m_2},$$

where

$$\sum_{i=1}^{k_1} x_i + \sum_{j=1}^{k_2} y_j \le d_1 + d_2.$$

This implies that $n \in (d_1 + d_2)A_0$, where $A_0 = A \cup \{0\}$. Hence, A is a $(d_1 + d_2)$ -basis for $\mathbb{Z}_{m_1m_2}$. Therefore,

$$m(d_1, k_1)m(d_2, k_2) = m_1m_2 \leq m(d_1 + d_2, k_1 + k_2).$$

The proof is complete.

The General Case

▶ By repeated application of this inequality, and using lower bounds for small values of k we can construct a bound for general k

Computability of m(d,k)

Let d be the diameter for $\operatorname{Cay}(m,k)$. Given d define fixed d_1 to be $\frac{d}{\lambda}$, also define $a_1=\frac{a}{\lambda}$, $b_1=\frac{b}{\lambda}$, and $c_1=\frac{c}{\lambda b}$, etc.., so λ is a large number determined by d. The parameter λ will not appear in the code, but it enables us to compute a lower bound as a function of d.

Computability of m(d,k) for small fixed k

Our lower bound on m(d,k) will be defined as $m=\alpha\lambda a_1+\beta\lambda b_1+\gamma\lambda c_1+...$ $\psi\lambda z_1$. To determine the validity of the lower bound, we compute every point in dA as a polynomial in terms of λ .

Computability of m(d,k) for small fixed k

Take $(x_1, x_2, ..., x_n)$ such that $x_1 \leq b_1, x_2 \leq c_1, ..., x_n \leq \psi$ and $\sum_i x_i \leq d$

For all polynomials $x_1a + x_2b + ... + x_nk$, we reduce to a unique minimal representation by comparing the coefficients $(x_1, x_2, x_3, ..., x_n)$ and $(\alpha, \beta, \gamma, ..., \psi)$ and removing dependent linear combinations.

Computability of m(d,k) for small fixed k

 $\forall x=(x_1,x_2,..,x_k)\in dA$ if $x\notin\mathbb{Z}_m$, we can identify x with point $x'=(x_1',x_2',..,x_k')\in\mathbb{Z}_m$ congruent to x (mod m). Then if every point $n\in\mathbb{Z}_m$ is either equal to some x or x', $dA=\mathbb{Z}_m$. To construct a lower bound, we systematically check combinations of generators A and coefficients, and record the largest m (and corresponding generators) such that a covering by dA is achieved.