# Ferienkurs Experimentalphysik 2

# Übungsblatt 4

Tutoren: Elena Kaiser und Matthias Golibrzuch

# 6 Elektromagnetische Wellen

# 6.1 Kugelwelle

Zeigen sie dass die Kugelwelle  $\xi = \frac{A}{r} \exp(i(kr - \omega t))$  die Wellengleichung

$$\Delta \xi = \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2} \tag{1}$$

löst. Wie groß ist die Ausbreitungsgeschwindigkeit der Welle?

Hinweis: Der Laplacoperator in Kugelkoordinaten ist gegeben durch

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left( \sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2}{\partial \phi^2}$$
 (2)

#### 6.2 EM-Welle 1

Eine linear polarisierte elektromagnetische Welle pflanzt sich, wie in der Abbildung gezeigt, in positive z-Richtung fort. Der Vektor des elektrischen Feldes schwingt wie angegeben entlang der y-Achse. Die Maximalamplitude beträgt  $E_0 = 1000 \frac{\rm V}{\rm m}$ , die Welle hat eine Frequenz von 1 MHz.



a) Was ist die maximale magnetische Feldstärke  $B_0$ ?

- b) Geben Sie Betrag und Richtung des Vektors des magnetischen Feldes an einem Ort an, an dem  $\vec{E} = (0; 250 \,\text{V/m}; 0)$  ist.
- c) Was ist die kleinste Entfernung zwischen dem zuvor betrachteten Ort und dem nächsten Durchlaufen des maximalen magnetischen Feldes?

#### 6.3 EM-Welle 2

Eine ebene, harmonische, monochromatische ( $\lambda = 500\,\mathrm{nm}$ ) elektromagnetische Welle breite sich im Vakuum entlang der x-Achse aus. Die Amplitude des elektrischen Felds betrage  $E_0 = 100\,\mathrm{V/m}$  und sei in z-Richtung polarisiert. Weiterhin sei  $\vec{E}(\vec{r}=0,t=0) = E_0\vec{e}_z$  vorgegeben.

- a) Geben sie die Kreisfrequenz  $\omega$  und den Wellenvektor  $\vec{k}$  an.
- b) Geben sie  $\vec{E}(\vec{r},t)$  an und berechnen sie das dazugehörige  $\vec{B}(\vec{r},t)$ .
- c) Bestimmen sie die Energiedichte, die Intensität sowie die Richtung des Energieflusses.

## 7 Relativitätstheorie

### 7.1 Lorentztransformation

S' bewegt sich in positive x-Richtung mit der Geschwindigkeit v=0, 25c zum S-System, so dass die Ursprünge der Koordinatensysteme zur Zeit t=t'=0 in Deckung sind. Im S'-System blitzen die Lampe 1 am Ort  $x_1'=2\cdot 10^6$  km zur Zeit  $t_1'=40$  s und die Lampe 2 am Ort  $x_2'=-4\cdot 10^6$  km zur Zeit  $t_2'=45$  s auf. Berechnen Sie die Orte  $x_1$  und  $x_2$  sowie die Zeiten  $t_1$  und  $t_2$  für diese Ereignisse im S-System.

#### 7.2 Raumschiffe

Zwei Raumschiffe  $R_1$  und  $R_2$  starten zur Erdzeit t=0 für eine Forschungsmission in Richtung des Sternbildes Cygnus (Schwan). Mit der Erdstation sei das System S(t,x), mit dem Raumschiff  $R_1$  das System S'=(t',x') und mit dem Raumschiff  $R_2$  das System S''=(t'',x'') fest verbunden. Bezogen auf die Erdstation hat das Raumschiff  $R_1$  die Geschwindigkeit  $v_1=0,6c$  und das Raumschiff  $R_2$  die Geschwindigkeit  $v_2=0,8c$ . Die Borduhren sowie die Missionsuhr auf der Erdstation wurden beim Start synchronisiert und die Systeme S, S' und S'' seien gleich orientiert.

- a) Zeichnen Sie ein Minkowski-Diagramm für das S-System und tragen sie Weltlinien der Raumschiffe  $R_1$  und  $R_2$  ein.
- b) Bestimmen Sie die Geschwindigkeit des Raumschiffs  $R_2$  im System des Raumschiffs  $R_1$ .

Zum Zeitpunkt  $t_1 = 1$ h wird zur Kontrolle der Raumschiffe ein Lichtspruch an sie versandt. Der Lichtspruch wird von Raumschiff  $R_2$  zum Zeitpunkt  $t_2''$  (Ereignis P) sofort beantwortet und zur Erdstation zurückgesandt und trifft dort zum Zeitpunkt  $t_3$  ein.

c) Tragen sie das Ereignis P in das Minkowski-Diagramm ein und berechnen sie die Zeit  $t_3$ 

Nach  $t_P' = 10\,\mathrm{h}$  Flugzeit registriert das Raumschiff  $R_1$  (Ereignis Q) gleichzeitig zwei Sternenexplosionen  $E_1(t_Q',x_{E1})$  und  $E_2(t_Q',x_{E2})$ . Der räumliche Abstand  $|x_{E2}-x_{E1}|$  wird zu  $\frac{8}{5}$  Lichtstunden bestimmt. Die Ereignisse  $E_1$  und  $E_2$  liegen symmetrisch zur halben bis  $t_Q'$  von  $R_1$  zurückgelegten Flugstrecke. Das Raumschiff meldet das Ereignis Q sofort per Lichtspruch an das Raumschiff  $R_2$  und die Erdstation. Auf der Erde trift die Nachricht zum Zeitpunkt  $t_4$  und auf  $R_2$  zum Zeitpunkt  $t_4''$  ein.

- d) Tragen Sie das Ereignis Q in das Minkowski-Diagramm ein. Berechnen sie die Zeitpunkte  $t_4$  und  $t_4''$ . Verwenden sie ihre Ergebnisse aus Teilaufgaben 1b) und c).
- e) Berechnen sie die räumlichen Koordinaten  $x_{E1}$  und  $x_{E2}$  der Ereigniss  $E_1$  und  $E_2$  im System S. Tragen sie dann die beiden Ereignisse in das Minkowski-Diagramm ein. Welche Bedeutung hat die Linie, auf der Die Ereignisse Q,  $E_1$  und  $E_2$  liegen?

## 7.3 Einstein-Zug

Der Einstein-Zug S' bewegt sich in positive x-Richtung mit der Geschwindigkeit v=0,6c zum Bahnhof S, so dass die Ursprünge der Koordinatensysteme am Zugende (x'=0) bzw. der hinteren Bahnsteigkante (x=0) zur Zeit t=t'=0 in Deckung sind. S' gibt zur Zeit t'=0 einen Schuss in positive x'-Richtung auf die Lokomotive ab. Er stellt fest, dass das Geschoss eine Geschwindigkeit von u'=0,8c hat und in die Lokomotive einschlägt. Anschließend bestimmt er die Länge des Zuges zu s'=3 Lichtsekunden.

- a) Welche Zuglänge s misst S?
- b) Welche Laufzeit  $\Delta t$  misst S für das Geschoss?
- c) Welche Geschwindigkeit u misst S für das Geschoss?