M22 Vstupy a výstupy MCU

#technicke_vybaveni_pocitacu

• o signálech více M04

Vstupně výstupní pin

- univerzální kontakt na obvodu sloužící jak pro vstup, tak pro výstup signálu (čte i odesílá el. signál)
- digitální piny pracují s diskrétními hodnotami reprezentovanými jako log. 0 a log. 1; hodnoty jsou definovány konkrétním napěťovým rozsahem
- analogové piny mohou nabývat spojitého rozsahu hodnot napětí v určitém intervalu; měření fyzikálních veličin

Charakteristika

- impedance
 - vstupní určuje jaký proud poteče do pinu při připojení určitého napětí; vysoká impedance → pin odebere velmi malý proud
 - výstupní jak se výstupní napětí změní při připojení zátěže; nízká impedance → výstupní napětí se příliš nezmění
- napěťový rozsah
 - logické úrovně každý pin má definovaný rozsah napětí odpovídající log. 0 a 1
 - max a min napětí pin má také maximální a minimální napětí
- maximální proud každý pin má omezený max proud, který může protékat
- doba přechodu čas, který pin potřebuje k přechodu z jednoho stavu do druhého

Druhy

- sériové pro sériovou komunikaci; data jsou přenášena po jednom bitu po jediném vodiči
- paralelní přenos většího množství dat současně po více vodičích
- TTL používají napěťové úrovně kompatibilní s tranzistor-tranzistorovou logikou
- CMOS používají napěťové úrovně kompatibilní s komplementárními metal-oxid-polovodičovými obvody
- open-collector/open-drain výstup pinu je spojen se zemí přes tranzistor; používá se pro připojení více výstupů k jedné zátěži
- třístavový výstup může být ve třech stavech: high, low nebo high-impedance (odpojeno)
- s pull-up/pull-down rezistorem mají vnitřní rezistor, který udržuje pin v log. 0/1, pokud není připojen žádný externí signál
- interrupt piny vyvolávají přerušení procesoru při změně stavu

Konfigurace pinů

- liší se v závislosti na použitém mikrokontroléru a programovacím jazyku
- přímým zápisem do speciálních registrů mikrokontroléru; často v nízkoúrovňovém programování
- konfigurace pomocí funkcí a tříd poskytovaných knihovnami
- obecné kroky
 - 1. výběr pinu
 - 2. nastavení směru
 - 3. další parametry
 - hodnota vnitřního pull-up rezistoru
 - přerušení
 - ...
- konfigurace v ATmega16 (v Reset obsluze)

```
clr ZeroReg ;vycisteni nuloveho registru
ldi TmpReg, 0xFF ;nastaveni hodnoty 255 do pracovniho registru
out DDRA, TmpReg ;nastaveni smeru portu A
out PortA, ZeroReg ;nastaveni prazdne hodnoty vystupu portu A
```

Připojení na periférii

- napěťové úrovně na pinech musí odpovídat napěťovým úrovním periférie; je potřeba použít úrovňové převodníky
- je třeba hlídat maximální proudy
- zjistit zda periférie pracuje s pozitivní nebo negativní logikou
- všechny zapojené součástky musí mít společný referenční bod (zem)
- senzory
 - digitální (tlačítka, spínače, optické senzory) na digitální pin
 - analogové (potenciometry, teplotní čidla) na analogový pin
- aktuátory (opak senzoru)
 - LED diody přes předřadný odpor k digitálnímu pinu
 - motory přes tranzistory nebo motorové ovladače k digitálním pinům
 - relé přes tranzistory nebo k digitálním pinům
- LCD displeje přes řadič displeje k několika digitálním pinům
- před připojením jakékoliv periférie si pečlivě prostudovat její datasheet

Techniky přizpůsobení vstupního a výstupního signálu

- MCU často vyžaduje přizpůsobení signálu aby odpovídal požadavkům
- děliče napětí
 - ke snížení napětí přicházejícího na pin MCU
 - dva odpory spojené v sérii
- filtry
 - odfiltrují nežádoucí frekvenční složky ze signálu
 - odfiltrování šumu, stabilizace signálu
 - typy
 - RC filtr kombinuje rezistor a kondenzátor pro vytvoření jednoduchého filtru
 - LC filtr kombinuje cívku a kondenzátor pro vytvoření filtru s vyšší kvalitou
 - aktivní používají operační zesilovače pro realizaci složitějších filtrů
- zesilovače
 - zvýší amplitudu slabého signálu
 - zesílení signálů z nízkoohmových senzorů
 - typy
 - operační univerzální zesilovače pro různé aplikace
 - speciální
- úrovňové převodníky
 - převádějí logické úrovně mezi různými napěťovými standardy (např. 3.3V a 5V)
 - připojení zařízení s různými napájecími napětími
- ochranné obvody
 - chrání pin MCU před přetížením, přepětím a elektrostatickým výbojem
 - diody, tranzistory, varistory
- ADC
- DAC

Druhy vstupního a výstupního signálu

- podle typu
 - analogové spojitá hodnota v určitém rozsahu; nejčastěji reprezentuje fyzikální veličiny
 - digitální diskrétní hodnoty
- podle frekvence
 - nízkofrekvenční pod několika kHz
 - středofrekvenční několik kHz až MHz
 - vysokofrekvenční nad několik MHz
- podle tvaru
 - sinusový
 - obdelníkový
 - pilový
 - pulzní
 - šum
- podle amplitudy
 - malé pro citlivé zařízení
 - velké pro ovládání výkonových zařízení
- fáze časový posun mezi signály o stejné frekvenci
- šířka pásma rozsah frekvencí obsažených v signálu

Typické externí periférie

- senzory
- AD/DA převodníky
- Aktuátory
 - motory
 - LED
 - relé
- zobrazovací prvky
 - LCD displeje
 - LED displeje
- zvukové prvky
 - reproduktory
 - bzučáky
- komunikační prvky
 - UART jednoduchá sériová komunikace
 - I2C sériová sběrnice pro připojení více zařízení
 - SPI sériová sběrnice pro vysokorychlostní komunikaci
 - Ethernet
 - Wi-Fi
 - Bluetooth přijímač a vysílač
- paměti
 - EEPROM
 - FLASH
- časovače
- přerušovače