▼ Problem Statement

Create a Recommender System to show personalized movie recommendations based on ratings given by a user and other users similar to them in order to improve user experience.

Importing libraries

```
# Import Libraries
import numpy as np
import pandas as pd
from datetime import datetime
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
# Formatting the data files to bring them into a workable format
users_data = "/content/drive/MyDrive/Scaler Case studies/Zee RS/zee-users.dat"
users = pd.read_csv(users_data,sep='\::')
users.shape
     (6040, 5)
ratings_data = "/content/drive/MyDrive/Scaler Case studies/Zee RS/zee-ratings.dat"
ratings = pd.read_csv(ratings_data,sep='\::')
ratings.shape
     (1000209, 4)
movies_data = "/content/drive/MyDrive/Scaler Case studies/Zee RS/zee-movies.dat"
movies = pd.read_csv(movies_data,encoding="ISO-8859-1",sep='\::')
movies.shape
     (3883, 3)
```

Data Pre-processing

Understanding users and performing necessary data type conversions as suggested

users.head()

```
UserID Gender Age Occupation Zip-code
                                                 H
     0
             1
                    F
                                   10
                        1
                                         48067
                                                 ıl.
     1
            2
                       56
                                   16
                                         70072
                   M
     2
            3
                   M
                      25
                                   15
                                         55117
     3
            4
                      45
                                   7
                   M
                                         02460
            5
                      25
                                  20
     4
                   M
                                         55455
users1 = users.copy()
users.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6040 entries, 0 to 6039
    Data columns (total 5 columns):
     # Column
                   Non-Null Count Dtype
     ---
                    -----
                   6040 non-null int64
     0 UserID
                   6040 non-null object
     1
        Gender
     2
                    6040 non-null int64
        Age
     3
        Occupation 6040 non-null int64
         Zip-code 6040 non-null object
    dtypes: int64(3), object(2)
    memory usage: 236.1+ KB
users['Gender'].value counts()
    Μ
         4331
         1709
    Name: Gender, dtype: int64
users['Age'] = users['Age'].astype(str)
users.replace({"Age" : {'1': "Under 18",
                     '18': "18-24",
                     '25': "25-34",
                     '35': "35-44"
                     '45': "45-49",
                     '50': "50-55",
                     '56': "56+"}} , inplace = True)
```

users.head()

```
扁
                             Age Occupation Zip-code
        UserID Gender
      0
              1
                      F Under 18
                                          10
                                                 48067
                                                          ıl.
                             56+
                                          16
                                                  70072
users['Occupation'] = users['Occupation'].astype(str)
users.replace({"Occupation" : {'0': "other",
                                '1': "academic/educator",
                                '2': "artist",
                                '3': "clerical/admin",
                                '4': "college/grad student",
                                '5': "customer service",
                                '6': "doctor/health care",
                                '7': "executive/managerial",
                                '8': "farmer",
                                '9': "homemaker",
                                '10': "K-12 student",
                                '11': "lawyer",
                                '12': "programmer",
                                '13': "retired",
                                '14': "sales/marketing",
                                '15': "scientist",
                                '16': "self-employed",
                                '17': "technician/engineer",
                                '18': "tradesman/craftsman",
                                '19': "unemployed",
                                '20': "writer"}} , inplace = True)
```

users.head()

	UserID	Gender	Age	Occupation	Zip-code	\blacksquare
0	1	F	Under 18	K-12 student	48067	11.
1	2	М	56+	self-employed	70072	
2	3	М	25-34	scientist	55117	
3	4	М	45-49	executive/managerial	02460	
4	5	М	25-34	writer	55455	

```
users.shape
```

(6040, 5)

users.duplicated().sum()

0

users.isnull().sum()

UserID 0
Gender 0
Age 0
Occupation 0

```
11/5/23, 11:01 PM
```

```
Zip-code 0
dtype: int64
```

users.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6040 entries, 0 to 6039
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- 0 UserID 6040 non-null int64
```

0 UserID 6040 non-null int64
1 Gender 6040 non-null object
2 Age 6040 non-null object
3 Occupation 6040 non-null object
4 Zip-code 6040 non-null object

dtypes: int64(1), object(4)
memory usage: 236.1+ KB

Understanding movies and performing necessary data type conversions as suggested

```
movies.shape
          (3883, 3)
movies.duplicated().sum()
          0
```

movies.info()

1 Title 3883 non-null object 2 Genres 3883 non-null object

dtypes: int64(1), object(2)
memory usage: 91.1+ KB

movies.isnull().sum()

Movie ID 0 Title 0 Genres 0 dtype: int64

Understanding ratings and performing necessary data type conversions as suggested

ratings.shape
 (1000209, 4)
ratings.duplicated().sum()

a

```
ratings.isnull().sum()
    UserID
    MovieID
    Rating
    Timestamp
    dtype: int64
ratings.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000209 entries, 0 to 1000208
    Data columns (total 4 columns):
     # Column Non-Null Count
                                    Dtype
                  -----
     0 UserID
                 1000209 non-null int64
     1 MovieID 1000209 non-null int64
                 1000209 non-null int64
         Rating
        Timestamp 1000209 non-null int64
    dtypes: int64(4)
    memory usage: 30.5 MB
ratings['Rating'].value_counts()
    4
         348971
    3
         261197
    5
         226310
    2
        107557
    1
         56174
    Name: Rating, dtype: int64
ratings['Rating'] = ratings['Rating'].astype(str)
ratings.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000209 entries, 0 to 1000208
    Data columns (total 4 columns):
     # Column Non-Null Count
                                    Dtype
    ---
                  -----
                                   ____
     0 UserID 1000209 non-null int64
     1 MovieID 1000209 non-null int64
         Rating
                 1000209 non-null object
     2
        Timestamp 1000209 non-null int64
    dtypes: int64(3), object(1)
    memory usage: 30.5+ MB
```

▼ Feature Engineering

```
movies["Release_year"] = movies["Title"].str.findall('\((\d{4})\)').str.get(0)
movies["Release_Decade"] = (((movies["Release_year"].astype("int64") % 100)//10)*10).astype("objec
```

movies.head()

		Movie ID	Title	Genres	Release_year	Release_Decade						
	0	1	Toy Story (1995)	Animation Children's Comedy	1995	90	ıl.					
	1	2	Jumanji (1995)	Adventure Children's Fantasy	1995	90						
		3	Grumpier Old Men (1995)	Comedy Romance	1995	90						
	3	4	Waiting to Exhale (1995)	Comedy Drama	1995	90						
movie	s.co	lumns										
	<pre>Index(['Movie ID', 'Title', 'Genres', 'Release_year', 'Release_Decade'], dtype='obje</pre>											

users.columns

```
Index(['UserID', 'Gender', 'Age', 'Occupation', 'Zip-code'], dtype='object')
```

movies.rename(columns = {'Movie ID': 'MovieID'}, inplace=True)

Merging Dataframe

```
df = ratings.merge(movies , on = "MovieID").merge(users , on = "UserID")
len(df)
    1000209
df.duplicated(subset = ["UserID" , "MovieID"]).sum()
    0
df.isnull().sum()
    UserID
                      0
    MovieID
                     0
    Rating
    Timestamp
                    0
    Title
    Genres
    Release_year
    Release_Decade
    Gender
    Age
    Occupation
                    0
    Zip-code
    dtype: int64
```

```
11/5/23, 11:01 PM
   df.shape
       (1000209, 12)
   df.dtypes
                       int64
       UserID
       MovieID
                        int64
                      object
       Rating
       Timestamp
                       int64
       Title
                       object
       Genres
                       object
       Release_year object
       Release_Decade object
       Gender
                        object
       Age
                        object
       Occupation
                      object
                        object
       Zip-code
       dtype: object
```

df['Zip-code'].value_counts()

```
94110
       3802
60640
      3430
98103 3204
95616 3079
02138 3019
       20
20
33547
46556
46350
         20
21015
         20
48146
         20
```

Name: Zip-code, Length: 3439, dtype: int64

```
#Categorical variables and numerical variables
numeric_df = df.select_dtypes(include=[np.number])
categorical_df = df.select_dtypes(exclude=[np.number])
```

▼ EDA

Univariate analysis

```
from matplotlib import rcParams
rcParams['figure.figsize'] = 10, 10
import seaborn as sns
import matplotlib.pyplot as plt
```

▼ For categorical variable(s): countplot, piechart, barplot

```
# categorical variales
categorical_df.columns
```

▼ Barplot with counts

sns.catplot(y='Release_year', kind='count', height=3, aspect=1.5, order = categorical_df['Release_

<seaborn.axisgrid.FacetGrid at 0x79203d663010>

sns.catplot(y='Release_Decade', kind='count', height=3, aspect=1.5, order = categorical_df['Releas

sns.catplot(y='Occupation', kind='count', height=3, aspect=1.5, order = categorical_df['Occupation

<seaborn.axisgrid.FacetGrid at 0x792036d4a530>

 $sns.catplot(y='Age', kind='count', height=3, aspect=1.5, order = categorical_df['Age'].value_count', height=3, aspect=1.5, a$

<seaborn.axisgrid.FacetGrid at 0x7920370f83a0>

sns.catplot(y='Title', kind='count', height=3, aspect=1.5, order = categorical_df['Title'].value_c

<seaborn.axisgrid.FacetGrid at 0x792036d677c0>

Name: Title, Length: 3706, dtype: int64

```
American Beauty (1999)
                    Star Wars: Episode IV - A New Hope (1977)
         Star Wars: Episode V - The Empire Strikes Back (1980)
               Star Wars: Episode VI - Return of the Jedi (1983)
      <u>e</u>
                                          Jurassic Park (1993)
categorical_df['Title'].value_counts()
     American Beauty (1999)
                                                                 3428
     Star Wars: Episode IV - A New Hope (1977)
                                                                 2991
     Star Wars: Episode V - The Empire Strikes Back (1980)
                                                                  2990
     Star Wars: Episode VI - Return of the Jedi (1983)
                                                                  2883
     Jurassic Park (1993)
                                                                  2672
     Waiting Game, The (2000)
                                                                     1
     Shadows (Cienie) (1988)
                                                                     1
                                                                     1
     Juno and Paycock (1930)
     Resurrection Man (1998)
                                                                     1
     Windows (1980)
                                                                     1
```


sns.catplot(y='Rating', kind='count', height=3, aspect=1.5, order = categorical df['Rating'].value

<seaborn.axisgrid.FacetGrid at 0x79203684bca0>

▼ Bivariate analysis

Categorical variables relationship with respect to Gender and Age

```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Rating" , hue = "Gender" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Age" , hue = "Gender" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Occupation" , hue = "Gender" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Release_Decade" , hue = "Gender" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Release_year" , hue = "Gender" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Rating" , hue = "Age" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Title" , hue = "Rating" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Release_Decade" , hue = "Age" )
plt.xticks(rotation = "vertical")
plt.show()
```

```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Occupation" , hue = "Age" )
plt.xticks(rotation = "vertical")
plt.show()
```



```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Release_year" , hue = "Age" )
plt.xticks(rotation = "vertical")
plt.show()
```


▼ Heatmap - Correlation analysis

```
df["Timestamp"] = pd.to_datetime(df['Timestamp'], unit='s')
df["Release_year"] = df["Release_year"].astype("int64")
df["Rating"] = df["Rating"].astype("int64")
df["Release_Decade"] = df["Release_Decade"].astype("int64")
df.dtypes
```

```
UserID
                             int64
MovieID
                             int64
Rating
                             int64
Timestamp
                   datetime64[ns]
Title
                           object
Genres
                           object
                             int64
Release_year
Release Decade
                             int64
Gender
                           object
                           object
Age
Occupation
                           object
Zip-code
                           object
dtype: object
```

```
plt.figure(figsize = (18,5))
sns.heatmap(data = df.corr() , annot=True)
plt.show()
```


Genres Preprocessing

movies.Genres.value_counts()

```
843
Drama
                                           521
Comedy
Horror
                                           178
Comedy | Drama
                                           162
Comedy | Romance
                                           142
Action|Comedy|Crime|Horror|Thriller
                                             1
Action|Drama|Thriller|War
                                             1
Action | Adventure | Children's
                                             1
Action | Adventure | Children's | Fantasy
                                             1
Adventure | Crime | Sci-Fi | Thriller
Name: Genres, Length: 301, dtype: int64
```

```
i[j] = "Children's"
elif i[j] == 'Fantas' or i[j] == 'Fant':
    i[j] = 'Fantasy'
elif i[j] == 'Dr' \text{ or } i[j] == 'Dram':
   i[j] = 'Drama'
elif i[j] == 'Documenta'or i[j] == 'Docu' or i[j] == 'Document' or i[j] == 'Documen':
   i[j] = 'Documentary'
elif i[j] == 'Wester'or i[j] == 'We':
    i[j] = 'Western'
elif i[j] == 'Animati':
   i[j] = 'Animation'
elif i[j] == 'Come'or i[j] == 'Comed' or i[j] == 'Com':
   i[j] = 'Comedy'
elif i[j] == 'Sci-F'or i[j] == 'S' or i[j] == 'Sci-' or i[j] == 'Sci':
    i[j] = 'Sci-Fi'
elif i[j] == 'Adv'or i[j] == 'Adventu' or i[j] == 'Adventu' or i[j] == 'Advent':
   i[j] = 'Adventure'
elif i[j] == 'Horro'or i[j] == 'Horr':
   i[j] = 'Horror'
elif i[j] == 'Th'or i[j] == 'Thri' or i[j] == 'Thrille':
   i[j] = 'Thriller'
elif i[j] == 'Acti':
   i[j] = 'Action'
elif i[j] == 'Wa':
   i[j] = 'War'
elif i[j] == 'Music':
   i[j] = 'Musical'
```

dfmov.head()

	MovieID	Title	Genres	Release_year	Release_Decade	\blacksquare
0	1	Toy Story (1995)	[Animation, Children's, Comedy]	1995	90	11.
1	2	Jumanji (1995)	[Adventure, Children's, Fantasy]	1995	90	
2	3	Grumpier Old Men (1995)	[Comedy, Romance]	1995	90	
3	4	Waiting to Exhale (1995)	[Comedy, Drama]	1995	90	
А	E	Father of the Bride	[Comodul	1005	00	

movies.head()

	MovieID	Title	Genres	Release_year	Release_Decade	
	0 1	Toy Story (1995)	Animation Children's Comedy	1995	90	11.
	1 2	Jumanji (1995)	Adventure Children's Fantasy	1995	90	
;	2 3	Grumpier Old Men (1995)	Comedy Romance	1995	90	
		Waiting to				

genres_df = pd.get_dummies(dfmov['Genres'].apply(pd.Series).stack()).sum(level=0)
genres_df.head()

	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary	Drama	Fanta:
0	0	0	1	1	1	0	0	0	
1	0	1	0	1	0	0	0	0	
2	0	0	0	0	1	0	0	0	
3	0	0	0	0	1	0	0	1	
4	0	0	0	0	1	0	0	0	

```
test = genres_df.iloc[:,0:].sum()
test=test.iloc[1:]
print(test)
```

```
Adventure
               283
Animation
               105
Children's
                251
Comedy
               1200
Crime
               211
Documentary
               127
               1603
Drama
               68
Fantasy
Film-Noir
                44
Horror
                343
               114
Musical
                106
Mystery
Romance
                471
Sci-Fi
                276
Thriller
               492
War
                143
Western
                 68
dtype: int64
```

len(test)

17

68])

106, 471, 276, 492, 143,

```
movies.isnull().sum()
```

```
MovieID 0
Title 0
Genres 0
Release_year 0
Release_Decade 0
dtype: int64
```

```
df_new = ratings.merge(movies , on = "MovieID").merge(users , on = "UserID")

df = ratings.merge(movies , on = "MovieID").merge(users , on = "UserID")
```

Build a Recommender System based on Pearson Correlation

▼ User-Interaction Matrix

```
matrix = pd.pivot_table(df, index='UserID', columns='Title', values='Rating', aggfunc='mean')
matrix.fillna(0, inplace=True) # Imputing 'NaN' values with Zero rating
print(matrix.shape)
matrix.head(10)
    (6040, 3706)
```

10

Title	\$1,000,000 Duck (1971)	'Night Mother (1986)	Was T		And Justice for All (1979)	1-900 (1994)	Things I Hate About You (1999)	101 Dalmatians (1961)	Dalı
UserID									
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
10	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	

10 rows × 3706 columns

```
n_users = df['UserID'].nunique()
n_movies = df['MovieID'].nunique()
sparsity = round(1.0 - df.shape[0] / float( n_users * n_movies), 3)
print('The sparsity level of dataset is ' + str(sparsity * 100) + '%')
The sparsity level of dataset is 95.5%
```

Pearson Correlation

▼ Item based approach

```
df[df['Title']=='Jumanji (1995)']
```

		UserID	MovieID	Rating	Timestamp	Title	Genres	Releas
7	58	18	2	2	978152541	Jumanji (1995)	Adventure Children's Fantasy	
21	97	44	2	4	1004410663	Jumanji (1995)	Adventure Children's Fantasy	
25	67	48	2	3	978064964	Jumanji (1995)	Adventure Children's Fantasy	
32	81	53	2	5	977981548	Jumanji (1995)	Adventure Children's Fantasy	
45	71	62	2	4	977904756	Jumanji (1995)	Adventure Children's Fantasy	
986	720	4242	2	4	965312117	Jumanji (1995)	Adventure Children's Fantasy	
987	439	2152	2	3	974620151	Jumanji (1995)	Adventure Children's Fantasy	
991	246	4020	2	3	965524602	Jumanji (1995)	Adventure Children's Fantasy	
995	173	6019	2	4	956761170	Jumanji (1995)	Adventure Children's Fantasy	
995	895	1529	2	3	974744877	Jumanji (1995)	Adventure Children's Fantasy	

701 rows × 12 columns

```
movies_name = 'Jumanji (1995)'
movie_rating = matrix[movies_name]
print(movie_rating)

UserID
    1    0.0
```

0.0

```
3
        0.0
4
        0.0
5
        0.0
6036
        0.0
6037
        0.0
6038
        0.0
6039
       0.0
6040
        0.0
```

Name: Jumanji (1995), Length: 6040, dtype: float64

sim_movies = matrix.corrwith(movie_rating)

sim_df = pd.DataFrame(sim_movies, columns=['Cor-relation'])
sim_df.sort_values('Cor-relation', ascending=False, inplace=True)
sim_df.iloc[1: , :].head(10)

Cor-relation

Title	11.
Hook (1991)	0.520853
Dragonheart (1996)	0.446999
Indian in the Cupboard, The (1995)	0.439029
Santa Clause, The (1994)	0.416383
NeverEnding Story, The (1984)	0.414332
Honey, I Shrunk the Kids (1989)	0.402690
Space Jam (1996)	0.396840
Teenage Mutant Ninja Turtles (1990)	0.392595
Willow (1988)	0.389206
Mask, The (1994)	0.388248

▼ Cosine Similarity

```
from sklearn.metrics.pairwise import cosine_similarity
```

```
item_similarity = cosine_similarity(matrix.T)
item_similarity
```

```
array([[1.
                , 0.07235746, 0.03701053, ..., 0. , 0.12024178,
       0.02700277],
      [0.07235746, 1.
                          , 0.11528952, ..., 0.
       0.07780705],
      [0.03701053, 0.11528952, 1.
                                 , ..., 0.
                                                     , 0.04752635,
       0.0632837 ],
              , 0.
      [0.
                         , 0. , ..., 1.
                                                     , 0.
       0.04564448],
                          , 0.04752635, ..., 0.
      [0.12024178, 0.
                                                     , 1.
       0.04433508],
```

```
[0.02700277, 0.07780705, 0.0632837 , ..., 0.04564448, 0.04433508, 1. ]])
```

item_similarity.shape

(3706, 3706)

▼ Item-based similarity

item_similarity_matrix = pd.DataFrame(item_similarity, index=matrix.columns, columns=matrix.column
item_similarity_matrix.head()

Title	\$1,000,000 Duck (1971)	'Night Mother (1986)	'Til There Was You (1997)	'burbs, The (1989)	And Justice for All (1979)	1-900 (1994)	10 Things I Hate About You (1999)	Dalmat (1
Title								
\$1,000,000 Duck (1971)	1.000000	0.072357	0.037011	0.079291	0.060838	0.00000	0.058619	0.18
'Night Mother (1986)	0.072357	1.000000	0.115290	0.115545	0.159526	0.00000	0.076798	0.14
'Til There Was You (1997)	0.037011	0.115290	1.000000	0.098756	0.066301	0.08025	0.127895	0.11
'burbs, The (1989)	0.079291	0.115545	0.098756	1.000000	0.143620	0.00000	0.192191	0.24
And Justice for All (1979)	0.060838	0.159526	0.066301	0.143620	1.000000	0.00000	0.075093	0.19

5 rows × 3706 columns

▼ User-based similarity

```
0.09930008],

[0.17460369, 0.0664575 , 0.09467506, ..., 0.16171426, 1. , 0.22833237],

[0.13359025, 0.21827563, 0.13314404, ..., 0.09930008, 0.22833237, 1. ]])
```

user_similarity_matrix = pd.DataFrame(user_similarity, index=matrix.index, columns=matrix.index)
user_similarity_matrix.head()

UserID	1	2	3	4	5	6	7	8	
UserID									
1	1.000000	0.096382	0.120610	0.132455	0.090158	0.179222	0.059678	0.138241	C
2	0.096382	1.000000	0.151479	0.171176	0.114394	0.100865	0.305787	0.203337	C
3	0.120610	0.151479	1.000000	0.151227	0.062907	0.074603	0.138332	0.077656	C
4	0.132455	0.171176	0.151227	1.000000	0.045094	0.013529	0.130339	0.100856	C
5	0.090158	0.114394	0.062907	0.045094	1.000000	0.047449	0.126257	0.220817	(

5 rows × 6040 columns

▼ Matrix Factorization

```
df = ratings.merge(movies , on = "MovieID").merge(users , on = "UserID")
df.head()
```

	UserID	MovieID	Rating	Timestamp	Title	Genres	Release_y
0	1	1193	5	978300760	One Flew Over the Cuckoo's Nest (1975)	Drama	1:
1	1	661	3	978302109	James and the Giant Peach (1996)	Animation Children's Musical	1!
2	1	914	3	978301968	My Fair Lady (1964)	Musical Romance	1!
3	1	3408	4	978300275	Erin Brockovich (2000)	Drama	2
4	1	2355	5	978824291	Bug's Life, A (1998)	Animation Children's Comedy	1!

rating_movie = df.pivot(index = 'UserID', columns ='MovieID', values = 'Rating').fillna(0) rating movie.head()

MovieID	1	2	3	4	5	6	7	8	9	10	• • •	3943	3944	3945	3946	3947	3948	3949	
UserID																			
1	5	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
5	0	0	0	0	0	2	0	0	0	0		0	0	0	0	0	0	0	

5 rows × 3706 columns

```
rating movie = rating movie.astype(int)
```

rating_movie.dtypes

```
MovieID
1
        int64
2
        int64
3
        int64
4
        int64
5
        int64
        . . .
3948
        int64
3949
       int64
3950
       int64
3951
       int64
3952
        int64
Length: 3706, dtype: object
```

CMFREC library

```
!pip install cmfrec
    Collecting cmfrec
      Downloading cmfrec-3.5.1.post6.tar.gz (268 kB)
                                                 268.4/268.4 kB 3.7 MB/s eta 0:00:00
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
      Preparing metadata (pyproject.toml) ... done
    Requirement already satisfied: cython in /usr/local/lib/python3.10/dist-packages (from cmfre
    Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from
    Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from cmfrec
    Requirement already satisfied: pandas>=0.25.0 in /usr/local/lib/python3.10/dist-packages (from
    Collecting findblas (from cmfrec)
      Using cached findblas-0.1.21-py3-none-any.whl
    Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-pack
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from pyt
    Building wheels for collected packages: cmfrec
      Building wheel for cmfrec (pyproject.toml) ... done
```

Created wheel for cmfrec: filename=cmfrec-3.5.1.post6-cp310-cp310-linux x86 64.whl size=58

Stored in directory: /root/.cache/pip/wheels/7d/ef/82/425eeca860fd20527d2a9159fc5920b59114

```
Successfully built cmfrec
     Installing collected packages: findblas, cmfrec
     Successfully installed cmfrec-3.5.1.post6 findblas-0.1.21
from cmfrec import CMF
user_item = df_new[['UserID', 'MovieID', 'Rating']].copy()
user_item.head(2)
        UserID MovieID Rating
      0
                    1193
              1
                               5
                                   th
              1
                    661
                               3
user_item.columns = ['UserId', 'ItemId', 'Rating']
print(user_item.shape)
print("No.of Users:",len(user_item['UserId'].unique()))
print("No.of Items:",len(user_item['ItemId'].unique()))
     (1000209, 3)
     No.of Users: 6040
     No.of Items: 3706
model = CMF(method="als", k=4, lambda_=0.1, user_bias=False, item_bias=False, verbose=False)
model.fit(user_item)
     Collective matrix factorization model
     (explicit-feedback variant)
model.A_.shape
     (6040, 4)
model.B_.shape
     (3706, 4)
user_item['Rating'].mean()
     inf
model.glob_mean_
     3.581564426422119
rm_ = np.dot(model.A_, model.B_.T) + model.glob_mean_
rm_
```

```
array([[4.070904 , 3.98917 , 4.2135158, ..., 3.5903254, 3.6889405, 3.6445234],
[4.19682 , 2.9005492, 4.716052 , ..., 3.222189 , 3.2738314, 4.4364557],
[4.396451 , 2.7396243, 3.0979629, ..., 3.5120726, 3.4605935, 2.6689832],
...,
[4.612237 , 3.8701787, 3.9580421, ..., 3.5483565, 3.192472 , 4.444893 ],
[3.8280816, 2.8445845, 3.2666838, ..., 3.4400403, 3.2254841, 3.79869 ],
[3.715859 , 2.4141521, 3.4052198, ..., 3.3756154, 3.5127134, 2.9444382]], dtype=float32)
```

top_items = model.topN(user=100, n=10) # According to matrix factorization recommendation user no.
movies.loc[movies.MovieID.isin(top_items)]

	MovieID	Title	Genres	Release_year	Release_Decade	
52	53	Lamerica (1994)	Drama	1994	90	ılı
820	831	Stonewall (1995)	Drama	1995	90	
1649	1696	Bent (1997)	Drama War	1997	90	
2128	2197	Firelight (1997)	Drama	1997	90	
2691	2760	Gambler, The (A Játékos) (1997)	Drama	1997	90	
3167	3236	Zachariah (1971)	Western	1971	70	
3176	3245	I Am Cuba (Soy Cuba/Ya Kuba) (1964)	Drama	1964	60	
3237	3306	Circus, The (1928)	Comedy	1928	20	
3241	3310	Kid, The (1921)	Action	1921	20	

```
from sklearn.metrics import mean_absolute_error as mae
from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import mean_absolute_percentage_error as mape
from sklearn.metrics import r2_score

rmse = mse(rating_movie.values[rating_movie > 0], rm_[rating_movie > 0], squared=False)
print('Root Mean Squared Error: {:.3f}'.format(rmse))

    Root Mean Squared Error: 1.468

mape_ = mape(rating_movie.values[rating_movie > 0], rm_[rating_movie > 0])
print('Mean Absolute Percentage Error: {:.3f}'.format(mape_))

Mean Absolute Percentage Error: 0.418
```

▼ Embeddings - User-User similarity

```
user = cosine_similarity(model.A_)
```

user_similarity_matrix = pd.DataFrame(user, index=matrix.index, columns=matrix.index)
user_similarity_matrix.head()

UserID	1	2	3	4	5	6	7	
UserID								
1	1.000000	-0.131566	-0.087433	-0.372021	0.688001	0.385648	-0.015955	0.25975
2	-0.131566	1.000000	0.174572	0.792994	0.049807	0.623963	0.457949	0.38960
3	-0.087433	0.174572	1.000000	0.651531	0.172597	0.252347	0.949201	0.21447
4	-0.372021	0.792994	0.651531	1.000000	-0.184389	0.331698	0.802272	0.13207
5	0.688001	0.049807	0.172597	-0.184389	1.000000	0.804996	0.232143	0.85203

5 rows × 6040 columns

item = cosine_similarity(model.B_)

item_similarity_matrix = pd.DataFrame(item, index=user_item['ItemId'].unique(), columns=user_item[
item_similarity_matrix.head()

	1193	661	914	3408	2355	1197	1287	2804	
1193	1.000000	0.347248	0.649961	0.453908	0.761645	0.950435	0.810734	0.969964	0.6
661	0.347248	1.000000	0.490303	0.327722	0.516373	0.251613	0.208057	0.312304	0.6
914	0.649961	0.490303	1.000000	0.906059	0.879536	0.739796	0.760508	0.713627	0.9
3408	0.453908	0.327722	0.906059	1.000000	0.884974	0.658708	0.805612	0.611715	0.8
2355	0.761645	0.516373	0.879536	0.884974	1.000000	0.877524	0.934120	0.868945	0.8

5 rows × 3706 columns

item_similarity_matrix[594]

1193 0.607032 661 0.658896 914 0.977164 3408 0.873714 2355 0.877063 3280 -0.859901 3647 -0.372651 402 -0.342810 -0.082815 872 684 0.737391

Name: 594, Length: 3706, dtype: float32

item_similarity_matrix

	1193	661	914	3408	2355	1197	1287	2804
1193	1.000000	0.347248	0.649961	0.453908	0.761645	0.950435	0.810734	0.969964
661	0.347248	1.000000	0.490303	0.327722	0.516373	0.251613	0.208057	0.312304
914	0.649961	0.490303	1.000000	0.906059	0.879536	0.739796	0.760508	0.713627
3408	0.453908	0.327722	0.906059	1.000000	0.884974	0.658708	0.805612	0.611715
2355	0.761645	0.516373	0.879536	0.884974	1.000000	0.877524	0.934120	0.868945
3280	-0.206711	-0.469756	-0.851340	-0.752857	-0.544189	-0.282161	-0.329258	-0.247486
3647	0.152397	0.319503	-0.487988	-0.644975	-0.238129	-0.083366	-0.260667	0.010277
402	-0.227801	0.465608	-0.524140	-0.547634	-0.289542	-0.388621	-0.435592	-0.301848
872	-0.494833	0.304455	-0.223537	0.071396	0.009163	-0.373649	-0.146024	-0.35753§

movie_name=594
movie_rating = item_similarity_matrix[movie_name]
print(movie_rating)

Name: 594, Length: 3706, dtype: float32

```
similar_movies = item_similarity_matrix.corrwith(movie_rating)
```

similar_df = pd.DataFrame(similar_movies, columns=['Correlation'])
similar_df.sort_values('Correlation', ascending=False, inplace=True)

similar_df.iloc[1: , :].head()

	Correlation	\blacksquare
3668	0.999137	ılı
2137	0.997830	
596	0.996587	
897	0.995555	
915	0.995191	

```
item_movie = df[['MovieID', 'Title']].copy()
item_movie.drop_duplicates(inplace=True)
item_movie.reset_index(drop=True,inplace=True)
```

```
similar_df1= similar_df.copy()
similar_df1.reset_index(inplace=True)
similar_df1.rename(columns = {'index':'MovieID'}, inplace = True)
similar_mov = pd.merge(similar_df1,item_movie,on='MovieID',how='inner')
similar_mov.head(6)
```

	Title	Correlation	MovieID	
ılı	Snow White and the Seven Dwarfs (1937)	1.000000	594	0
	Romeo and Juliet (1968)	0.999137	3668	1
	Charlotte's Web (1973)	0.997830	2137	2
	Pinocchio (1940)	0.996587	596	3
	For Whom the Bell Tolls (1943)	0.995555	897	4
	Sabrina (1954)	0.995191	915	5

model1 = CMF(method="als", k=2, lambda_=0.1, user_bias=False, item_bias=False, verbose=False)
model1.fit(user_item)

Collective matrix factorization model (explicit-feedback variant)

plt.scatter(model1.A_[:, 0], model1.A_[:, 1], cmap = 'hot')

<matplotlib.collections.PathCollection at 0x792030bc7490>

plt.scatter(model1.B_[:, 0], model1.B_[:, 1], cmap='hot')

<matplotlib.collections.PathCollection at 0x792033dd40a0>

▼ Model Building using Regression

from sklearn.preprocessing import StandardScaler

Release_Decade	Release_year	Genres	Title	MovieID	
90	1995	Animation Children's Comedy	Toy Story (1995)	1	0
90	1995	Adventure Children's Fantasy	Jumanji (1995)	2	1
90	1995	Comedy Romance	Grumpier Old Men (1995)	3	2
			Waiting to		

u = users.copy()
u.head()

	Zip-code	Occupation	Age	Gender	UserID	
11.	48067	K-12 student	Under 18	F	1	0
	70072	self-employed	56+	М	2	1
	55117	scientist	25-34	М	3	2
	02460	executive/managerial	45-49	М	4	3
	55455	writer	25-34	М	5	4

r = ratings.copy()
r.head()

	UserID	MovieID	Rating	Timestamp	
0	1	1193	5	978300760	ılı
1	1	661	3	978302109	
2	1	914	3	978301968	
3	1	3408	4	978300275	
4	1	2355	5	978824291	

m = pd.concat([movies['MovieID'],genres_df.iloc[:,1:]],axis=1)
m.head()

MovieID Adventure Animation Children's Comedy Crime Documentary Drama Fanta

r['Timestamp']=r['Timestamp'].astype('int32')
r['Rating']=r['Rating'].astype('int32')
r['hour'] = r['Timestamp'].apply(lambda x: datetime.fromtimestamp(x).hour)
r.head()

	UserID	MovieID	Rating	Timestamp	hour	
0	1	1193	5	978300760	22	ılı
1	1	661	3	978302109	22	
2	1	914	3	978301968	22	
3	1	3408	4	978300275	22	
4	1	2355	5	978824291	23	

u_new = u.merge(r.groupby('UserID')["Rating"].mean().reset_index(), on='UserID')
u_new = u_new.merge(r.groupby('UserID').hour.mean().reset_index(), on='UserID')
u_new.head()

	UserID	Gender	Age	Occupation	Zip-code	Rating	hour	
0	1	F	Under 18	K-12 student	48067	4.188679	22.245283	ıl.
1	2	М	56+	self-employed	70072	3.713178	21.155039	
2	3	М	25-34	scientist	55117	3.901961	21.000000	
3	4	М	45-49	executive/managerial	02460	4.190476	20.000000	
4	5	М	25-34	writer	55455	3.146465	6.015152	

```
u_df = u_new[['UserID', 'Rating', 'hour']].copy()
u_df = u_df.set_index('UserID')
u_df.columns = ['User_avg_rating', 'hour']
```

scaler = StandardScaler()
u_df = pd.DataFrame(scaler.fit_transform(u_df), columns=u_df.columns, index=u_df.index)
u_df.head()

	User_avg_rating	hour	
UserID			ıl.
1	1.131261	1.414540	
2	0.024380	1.261846	
3	0.463832	1.240132	
4	1.135444	1.100078	
5	-1.294827	-0.858566	

```
df_cat = u_new[['Gender','Occupation']]
df_cat['Gender'] = pd.get_dummies(df_cat['Gender'], columns=['Gender'], drop_first=True)
df_cat = pd.concat([users['UserID'],df_cat],axis=1)
df_cat.head()
```

\blacksquare	Occupation	Gender	UserID	
ılı	K-12 student	0	1	0
	self-employed	1	2	1
	scientist	1	3	2
	executive/managerial	1	4	3
	writer	1	5	4

```
X = ratings[['MovieID', 'UserID', 'Rating']].copy()
```

X.dropna(inplace=True)

X.reset_index(inplace=True,drop=True)

X1=X.copy()

X.head()

	MovieID	UserID	Rating	index_x	Gender_x	Age	Occupation_x	Zip- code	index_y	Αc
0	1	1.0	5	0.0	F	Under 18	K-12 student	48067	0	
1	48	1.0	5	0.0	F	Under 18	K-12 student	48067	47	
2	150	1.0	5	0.0	F	Under 18	K-12 student	48067	148	
3	260	1.0	4	0.0	F	Under 18	K-12 student	48067	257	
4	527	1.0	5	0.0	F	Under 18	K-12 student	48067	523	

5 rows × 28 columns

```
X = X.drop(columns = ['MovieID', 'UserID'])
```

y = X.pop('Rating')

Χ

X = X.merge(u.reset_index(), on='UserID', how='right')

X = X.merge(m.reset_index(), on='MovieID', how='right')

X = X.merge(df_cat, on='UserID', how='right')

.011101	Zee_leconnellersystem_casestudy.pyrib - Colaboratory							
	index_x	Gender_x	Age	Occupation_x	Zip- code	index_y	Adventure	Animation
0	0.0	F	Under 18	K-12 student	48067	0	0	1
1	0.0	F	Under 18	K-12 student	48067	47	0	1
2	0.0	F	Under 18	K-12 student	48067	148	0	0
3	0.0	F	Under 18	K-12 student	48067	257	1	0
4	0.0	F	Under 18	K-12 student	48067	523	0	0
1000204	6039.0	М	25-34	doctor/health care	11106	3614	0	0
1000205	6039.0	М	25-34	doctor/health care	11106	3634	0	0
1000206	6039.0	М	25-34	doctor/health care	11106	3666	0	0
				doctor/health				
0 1 2	5 5 5							

У

Name: Rating, Length: 1000209, dtype: object

X = X.drop(columns = ['Gender_x', 'Age', 'Occupation_x', 'Zip-code', 'Occupation_y'])

X_train.dtypes

index_x float64 Gender_x object Age object Occupation_x object Zip-code object index_y int64 Adventure uint8 Animation uint8 Children's uint8 Comedy uint8 Crime uint8 Documentary uint8 Drama uint8 Fantasy uint8 Film-Noir uint8

```
Horror
               uint8
Musical
               uint8
Mystery
              uint8
Romance
              uint8
Sci-Fi
              uint8
Thriller
              uint8
War
               uint8
              uint8
Western
Gender_y
              uint8
Occupation_y
             object
dtype: object
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=10)
from sklearn.ensemble import GradientBoostingRegressor

model = GradientBoostingRegressor()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

rmse = mse(y_test, y_pred, squared=False)
print('Root Mean Squared Error: {:.3f}'.format(rmse))

Root Mean Squared Error: 1.060

mape_ = mape(y_test, y_pred) #calculating mape value
print('Mean Absolute Percentage Error: {:.3f}'.format(mape_))
```

▼ Questionnaire

1. Users of which age group have watched and rated the most number of movies?

```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Age" , hue = "Rating")
plt.show()
```

Mean Absolute Percentage Error: 0.354

Answer: (25-34) age group have watched and rated the most number of movies

2. Users belonging to which profession have watched and rated the most movies?

```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Occupation" , hue = "Rating")
plt.xticks(rotation = 90)
plt.show()
```



```
df["Occupation"].value_counts().head()
```

college/grad student	131032
other	130499
executive/managerial	105425
academic/educator	85351
technician/engineer	72816
Name: Occupation, dtype:	int64

Answer: "college/grad student" have watched and rated the most movies

3. Most of the users in our dataset who've rated the movies are Male. (T/F)

```
plt.figure(figsize = (18,5))
sns.countplot(data = df , x = "Gender" , hue = "Rating")
plt.show()
```



```
df["Gender"].value_counts()
```

M 753769 F 246440

Name: Gender, dtype: int64

Answer: True

- 4. Most of the movies present in our dataset were released in which decade?
- a. 70s b. 90s c. 50s d.80s

df["Release_Decade"].value_counts()

Name: Release_Decade, dtype: int64

Answer: (b) i.e Most of the movies present in our dataset were released in 90s decade

5. The movie with maximum no. of ratings is ____.

```
df['Title'].value_counts()
```

```
American Beauty (1999)

Star Wars: Episode IV - A New Hope (1977)

Star Wars: Episode V - The Empire Strikes Back (1980)

Star Wars: Episode VI - Return of the Jedi (1983)

Jurassic Park (1993)

3428

2990

2990

2072
```

Waiting Game, The (2000) 1
Shadows (Cienie) (1988) 1
Juno and Paycock (1930) 1
Resurrection Man (1998) 1
Windows (1980) 1
Name: Title, Length: 3706, dtype: int64

Answer: American Beauty

6. Name the top 3 movies similar to 'Liar Liar' on the item-based approach.

Answer:

- 1) Ace Ventura: Pet,
- 2) Mrs. Doubtfire,
- 3) Detective Dumb & Dumber
 - 7. On the basis of approach, Collaborative Filtering methods can be classified into **_-based and _-** based.

Answer: On the basis of approach, Collaborative Filtering methods can be classified into Memory-based and Model-based.

8. Pearson Correlation ranges between **_ to _** whereas, Cosine Similarity belongs to the interval between **_ to _**.

Answer: Pearson Correlation ranges between -1 to 1 whereas, Cosine Similarity belongs to the interval between -1 to 1.

9. Mention the RMSE and MAPE that you got while evaluating the Matrix Factorization model.

Answer:

The RMSE is 1.05

The MAPE is 0.33

10. Give the sparse 'row' matrix representation for the following dense matrix -

[[1 0] [3 7]]

▼ Insights & Recommendations:-

- Based on the analysis, the target audience for *ZEE* entertainment is the occupation of category college/grade students followed by executives/managers, and others.
- Male gives more rating compared to female which shows zee get maximum data from male gender. This idea is applicable to build a robust recommendation model for new all users.
- As the female audience is less, to increase female audience ZEE can provide some offers like 30 day free trial in order to boost female ratings and views.
- Most ZEE audience age limit is from 25-34. So advertising can be done based on their interests and preferences to retain them.