

Outline

- Overview
- The Apriori Algorithm
- Summary

Example of Association Rules

Items already in basket + Available items
→ Item likely to be added

The General Problem

Set of Transactions

- item1,item2,item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4,item7
- item2,item3,item4,item8
- item2,item4,item5
- item2,item3,item4
- item4,item5
- ...

Association Rule Mining

Association Rules

- item2 → item3
- item2 → item4
- item2,item3 → item4
- ...

Rules describe "interesting relationships"

The Formal Problem

- Items
 - $I = \{i_1, i_2, ..., i_m\}$
- Transactions
 - $T = \{t_1, \dots, t_n\}$ with $t_i \subseteq I$
- Rules
 - $X \Rightarrow Y$ such that $X, Y \subseteq I$ and $X \cap Y = \emptyset$
 - X is also called antecedent or left-hand-side
 - Y is also called consequent or right-hand-side

How do you get good rules?

Defining "Interesting Relationships"

Set of Transactions

- item1 item2.item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4 item7
- item2,item3,item4 item8
- item2,item4 item5
- item2,item3,item4
- item4,item5
- ..

item2, item3, item4 occur often together

Interesting == often together

Outline

- Overview
- The Apriori Algorithm
- Summary

Support and Frequent Item Sets

- Support
 - Percentage of occurances of an itemset
 - $support(i) = \frac{|\{t \in T : i \subseteq t\}|}{|T|}$
- Frequent item set
 - Itemsets that appear together "often enough"
 - · Defined using a threshold
 - $i \in I$ is frequent if support(i) > minsupp
- Rules can be generated by splitting itemsets
 - $i = X \cup Y$

Example for Generating Rules

minsupp = 0.3

• support($\{item2, item3, item4\}$) = $\frac{3}{10} \ge 0.3$

Set of Transactions

- item1,item2,item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4 item7
- item2,item3,item4 item8
- item2,item4,item5
- item2,item3,item4
- item4,item5
- item6,item7

• Eight possible rules:

- $\emptyset \Rightarrow \{item2, item3, item4\}$
- $\{item2\} \Rightarrow \{item3, item4\}$
- $\{item3\} \Rightarrow \{item2, item4\}$
- $\{item4\} \Rightarrow \{item2, item3\}$
- $\{item2, item3\} \Rightarrow \{item4\}$
- $\{item2, item4\} \Rightarrow \{item3\}$
- $\{item3, item4\} \Rightarrow \{item2\}$
- $\{item2, item3, item4\} \Rightarrow \emptyset$

Are all rules interesting?

Confidence, Lift, and Leverage

Confidence

- Percentage of transactions that contain the antecedent, which also contain consequent
- $confidence(X \Rightarrow Y) = \frac{support(X \cup Y)}{support(X)} = \frac{|\{t \in T: X \cup Y \subseteq T\}|}{|\{t \in T: X \subseteq T\}|}$

• Lift

- Ratio of the probability of X and Y together and independently
- $lift(X \Rightarrow Y) = \frac{support(X \cup Y)}{support(X) \cdot support(Y)}$

Leverage

- Difference in the probability of X and Y together and independently
- $leverage(X \Rightarrow Y) = support(X \cup Y) support(X) \cdot support(Y)$

Usually, lift favors itemsets with lower support, leverage with higher support

Confidence for the Example Rules

Set of Transactions

- item1,item2,item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4,item7
- item2,item3,item4,item8
- item2,item4,item5
- item2,item3,item4
- item4,item5
- item6,item7

- $confidence(\emptyset \Rightarrow \{item2, item3, item4\}) = \frac{0.3}{1} = 0.3$
- confidence($\{item2\} \Rightarrow \{item3, item4\}$) = $\frac{0.3}{0.6} = 0.5$
- confidence($\{item3\} \Rightarrow \{item2, item4\}$) = $\frac{0.3}{0.4} = 0.75$
- $confidence(\{item4\} \Rightarrow \{item2, item3\}) = \frac{0.3}{0.6} = 0.5$
- $confidence(\{item2, item3\} \Rightarrow \{item4\}) = \frac{0.3}{0.4} = 0.75$
- $confidence(\{item2, item4\} \Rightarrow \{item3\}) = \frac{0.3}{0.5} = 0.6$
- $confidence(\{item3, item4\} \Rightarrow \{item2\}) = \frac{0.3}{0.3} = 1$
- confidence($\{item2, item3, item4\} \Rightarrow \emptyset$) = $\frac{0.3}{0.3}$ = 1

Lift for the Example Rules

Set of Transactions

- item1,item2,item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4,item7
- item2,item3,item4,item8
- item2,item4,item5
- item2,item3,item4
- item4,item5
- item6,item7

- $lift(\emptyset \Rightarrow \{item2, item3, item4\}) = \frac{0.3}{1.0.3} = 1$
- $lift(\{item2\} \Rightarrow \{item3, item4\}) = \frac{0.3}{0.6 \cdot 0.3} = 1.66$
- $lift(\{item3\} \Rightarrow \{item2, item4\}) = \frac{0.3}{0.4 \cdot 0.5} = 1.5$
- $lift(\{item4\} \Rightarrow \{item2, item3\}) = \frac{0.3}{0.6 \cdot 0.4} = 1.25$
- $lift(\{item2, item3\} \Rightarrow \{item4\}) = \frac{0.3}{0.4 \cdot 0.6} = 1.25$
- $lift(\{item2, item4\} \Rightarrow \{item3\}) = \frac{0.3}{0.5 \cdot 0.4} = 1.5$
- $lift(\{item3, item4\} \Rightarrow \{item2\}) = \frac{0.3}{0.3 \cdot 0.6} = 1.66$
- $lift(\{item2, item3, item4\} \Rightarrow \emptyset) = \frac{0.3}{0.3 \cdot 1} = 1$

Overview of Scores for Example

Rule	Confidence	Lift	Leverage
$\emptyset \Rightarrow \{item2, item3, item4\}$	0.30	1.00	0.00
$\{item2\} \Rightarrow \{item3, item4\}$	0.50	1.66	0.12
$\{item3\} \Rightarrow \{item2, item4\}$	0.75	1.50	0.10
$\{item4\} \Rightarrow \{item2, item3\}$	0.50	1.25	0.06
$\{item2, item3\} \Rightarrow \{item4\}$	0.75	1.25	0.06
$\{item2, item4\} \Rightarrow \{item3\}$	0.60	1.50	0.10
$\{item3, item4\} \Rightarrow \{item2\}$	1.00	1.66	0.12
$\{item2, item3, item4\} \Rightarrow \emptyset$	1.00	1.00	0.00

Perfect confidence, but no gain over randomness

Perfect confidence, and 1.66 times more likely than randomness

Itemsets and Rules = Exponential

- Number of itemset is exponential
 - All possible itemsets are the powerset \mathcal{P} of I
 - $|\mathcal{P}(I)| = 2^{|I|}$
 - Still exponential if we restrict the size
 - |I| itemsets with k = 1 items
 - $\frac{|I|\cdot(|I|-1)}{2}$ itemsets with k=2 items
 - $\binom{|I|}{k} = \frac{|I|!}{(|I|-k)!k!}$ itemsets with k items
- Number of rules per itemset is exponential
 - Possible antecedents of itemset i are the powerset \mathcal{P} of i
 - $|\mathcal{P}(i)| = 2^{|i|}$
- Example: |I| = 100, k = 3
 - 161,700 possible itemsets
 - 1,293,600 possible rules

How do we restrict the search space?

Pruning the Search Space

- Apriori Property
 - All subsets of a frequent itemset are also frequent
 - $support(i') \ge support(i)$ for all $i' \subseteq i, i \in I$
- "Grow" itemsets and prune search space by applying Apriori property
 - Start with itemsets of size k = 1
 - Drop all itemsets that do not have minimal support
 - Build all combinations of size k + 1
 - Repeat until
 - No itemsets with minimal support are found
 - A threshold for k is reached
- Still has exponential complexity, but better bounded

Example for Growing Itemsets (k=1)

minsupp = 0.3

Set of Transactions

- item1,item2,item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4,item7
- item2,item3,item4,item8
- item2,item4,item5
- item2,item3,item4
- item4,item5
- item6,item7

	Support	Rule
Drop	0.2	{item1}
	0.6	{item2}
	0.4	{item3}
	0.5	{item4}
	0.3	{item5}
← Drop	0.2	{item6}
	0.3	{item7}
← Drop	0.1	{item8}

Example for Growing Itemsets (k=2)

minsupp = 0.3

Set of Transactions

- item1,item2,item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4,item7
- item2,item3,item4,item8
- item2,item4,item5
- item2,item3,item4
- item4,item5
- item6,item7

Support	
0.4	
0.5	
0.1	← Drop
0.1	← Drop
0.3	
0.0	← Drop
0.1	← Drop
•••	← Drop
	0.4 0.5 0.1 0.1 0.3 0.0 0.1

Example for Growing Itemsets (k=3)

minsupp = 0.3

Set of Transactions

- item1,item2,item3
- item2,item4
- item1,item5
- item6,item7
- item2,item3,item4,item7
- item2,item3,item4,item8
- item2,item4,item5
- item2,item3,item4
- item4,item5
- item6,item7

Rule	Support
{item2, item3, item4}	0.3

Only itemset remaining, growing terminates.

- Found the following frequent itemsets with at least two items:
 - {item2, item3}, {item2, item4}, {item3, item4}
 - {*item*2, *item*3, *item*4}

Candidates for Rules

- Usually, not all possible rules are considered
- Two common restrictions:
 - No empty antecedents and consequents
 - $X \neq \emptyset$ and $Y \neq \emptyset$
 - Only one item as consequent
 - |Y| = 1
- Example:

Evaluating Association Rules

- Use different criteria, not just support and confidence
 - Lift and leverage can tell you if rules are coincidental
- Validate if rules hold on test data
 - Check if the rules would also be found on the test data
- For basket prediction, use incomplete itemsets on test data
 - Example: remove item4 from all itemsets and see if the rules would correctly predict where it is associated
- Manually inspect rules
 - Do they make sense?
 - Ask domain experts

Outline

- Overview
- The Apriori Algorithm
- Summary

Summary

- Associations are interesting relationships between items
- Interesting usually means appear together and not coincidental
- Number of possible itemsets/rules exponential
 - Apriori property for bounding itemsets
 - Restrictions on rule structures
- Test data and manual inspections for validation