Statistique et Informatique (LU3IN005)

2020-2021

Nicolas Baskiotis

Sorbonne Université équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) http://3i005.lip6.fr

Cours 3:

Probabilités conditionnelles Variables aléatoires Fonctions de répartition

Rappel des cours précédents

Notions fondamentales

- Univers, Événement, Mesure de probabilité, Espace probabilisé
- Incompatibilité, Indépendance, Conditionnement

Rappel des cours précédents

Notions fondamentales

- On tire une série au hasard :
 - événement élémentaire?
 - événements incompatibles?
 - événements indépendants?

Rappel des cours précédents

Notions fondamentales

- On tire une série au hasard :
 - événement élémentaire? une série
 - événements incompatibles? Comédie et Crime
 - événements indépendants? Score= 2 (S2) et Sci-Fi

Plan

- Probabilités conditionnelles
- 2 Probabilités conditionnelles : exemples et paradoxes
- Variable aléatoire
- 4 Fonction de répartition
- 5 Caractéristiques d'une variable aléatoire

Probabilités conditionnelles et indépendance : exemple

Roulette russe

Deux balles sont insérées côte à côte dans un pistolet dont le barillet peut contenir 6 balles. Le barillet est positionné ensuite au hasard.

- Quel est le risque que le premier coup soit fatal?
- Le premier coup n'était pas fatal. Est-il plus risqué de tirer directement ou de positionner le barillet au hasard puis de tirer?

Probabilités conditionnelles et indépendance : exemple

Roulette russe

Deux balles sont insérées côte à côte dans un pistolet dont le barillet peut contenir 6 balles. Le barillet est positionné ensuite au hasard.

- Quel est le risque que le premier coup soit fatal?
- Le premier coup n'était pas fatal. Est-il plus risqué de tirer directement ou de positionner le barillet au hasard puis de tirer?

Solution

Lors du premier coup, il y a 6 cases possibles, donc la probabilité de tirer une des 2 balles est de $\frac{2}{6}=\frac{1}{3}$.

Si on mélange avant de tirer le deuxième coup, même situation qu'au premier, les deux expériences sont indépendantes.

Si on ne mélange pas, on sait qu'au premier coup on n'est pas tombé sur une balle, il n'y a donc que 4 positions possibles. Une seule de ces positions est fatale (celle qui précède la première balle), ce qui fait donc que la probabilité est de $\frac{1}{4}$.

Probabilités Conditionnelles

Considérons deux événements E et F, Supposons qu'on ne s'intéresse à la réalisation de E, étant donnée la réalisation de F. Cela revient à estimer la réalisation de $E \cap F$ par rapport à F

Définition

Soit Ω un ensemble dénombrable et P une mesure de probabilisé sur Ω . Soit F un événement de probabilité non nulle. On appelle probabilité conditionnelle sachant F l'application :

$$P(. \mid F) : \mathcal{P}(\Omega) \rightarrow [0, 1]$$

définie par

$$\forall E \in \mathcal{P}(\Omega), P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

Cette application est une mesure de probabilité sur Ω .

Note : $P(E \mid F)$ se lit "probabilité de E sachant F".

Formule de Bayes, théorème des probabilités totales

Formule de Bayes

Soient E et F deux événements de probabilité non nulle. Alors : $P(E \cap F) = P(F \mid E) \times P(E) = P(E \mid F) \times P(F), \text{ soit}$

$$P(E \mid F) = \frac{P(F \mid E)P(E)}{P(F)}.$$

Théorème des probabilités totales

Soit $(F_i)_i$ une partition de Ω (aussi appelé ensemble complet d'événements) :

- si $i \neq j$ alors $F_i \cap F_j = \emptyset$ (F_i et F_j sont incompatibles),
- $\bigcup_i F_i = \Omega$.

Alors
$$\forall E \subset \Omega, P(E) = \sum_{i} P(E \cap F_i) = \sum_{i} P(E|F_i)P(F_i).$$

De plus, pour tout i, $P(F_i|E) = \frac{P(E \mid F_i) \times P(F_i)}{\sum_{j=1}^{N} P(E \mid F_j) \times P(F_j)}$.

Formule de Bayès : exemple

Conditionnement, indépendance

- $P(S_2|\mathsf{Com\'edie}) = P(S_2 \cap \mathsf{Com\'edie}) / P(\mathsf{Com\'edie}) = \frac{3}{4}$
- $P(S_2 \cap \mathsf{Com\'edie}) = P(S_2 | \mathsf{Com\'edie}) \times P(\mathsf{Com\'edie}) = P(\mathsf{Com\'edie} | S_2) \times P(S_2)$
- $\Rightarrow P(S_2|\mathsf{Com\'edie}) = P(\mathsf{Com\'edie}|S_2) \times P(S_2)/P(\mathsf{Com\'edie})$ (formule de Bayes)

Probabilités totales : exemple

Décomposition de la probabilité de score = 2

$$\begin{split} P(S_2) &= P(S_2 \cap \mathsf{Com\'edie}) + P(S_2 \cap \mathsf{SciFi}) + P(S_2 \cap \mathsf{Crime}) \\ &= P(S_2 | \mathsf{Com\'edie}) P(\mathsf{Com\'edie}) + P(S_2 | \mathsf{SciFi}) P(\mathsf{SciFi}) + P(S_2 | \mathsf{Crime}) P(\mathsf{Crime}) \end{split}$$

Probabilités Conditionnelles en chaîne

Application en chaîne de la formule des probabilités conditionnelles

- Par définition, si $P(F) \neq 0$, on a $P(E \cap F) = P(E|F)P(F)$
- Plus généralement, si $E_1, ..., E_n$ sont n événements, on a :

$$P(E_1 \cap E_2 \cap ... \cap E_n) = P(E_1) \prod_{i=2}^{n} P(E_i \mid E_1 \cap ... \cap E_{i-1})$$

Exemple

Quelle est la probabilité de tirer trois boules de la même couleur dans une urne contenant 7 boules rouges et 5 boules bleues, en tirant les trois boules l'une après l'autre et sans remise?

Probabilités Conditionnelles en chaîne

Application en chaîne de la formule des probabilités conditionnelles

- Par définition, si $P(F) \neq 0$, on a $P(E \cap F) = P(E|F)P(F)$
- Plus généralement, si $E_1, ..., E_n$ sont n événements, on a :

$$P(E_1 \cap E_2 \cap ... \cap E_n) = P(E_1) \prod_{i=2}^n P(E_i \mid E_1 \cap ... \cap E_{i-1})$$

Exemple

Quelle est la probabilité de tirer trois boules de la même couleur dans une urne contenant 7 boules rouges et 5 boules bleues, en tirant les trois boules l'une après l'autre et sans remise?

Posons

- R_i =La i^{eme} boule tirée est rouge, $i \in \{1, 2, 3\}$
- B_i =La i^{eme} boule tirée est bleue, $i \in \{1,2,3\}$

On a alors
$$P(R_1 \cap R_2 \cap R_3) = P(R_1)P(R_2|R_1)P(R_3|R_2 \cap R_1) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10}$$
.

De même,
$$P(B_1 \cap B_2 \cap B_3) = \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$$

Plan

- 2 Probabilités conditionnelles : exemples et paradoxes

Probabilités conditionnelles : exemples

Exemple

On tire successivement et sans remise 4 lettres du mot "ATTACHANT" Quelle est la probabilité d'obtenir "CHAT" ?

Rat de laboratoire

Une expérience est conduite pour étudier la mémoire des rats. Un rat est mis devant trois couloirs. Au bout de l'un d'eux se trouve de la nourriture qu'il aime, au bout des deux autres, il reçoit une décharge électrique. Cette expérience élémentaire est répétée jusqu'à ce que le rat trouve le bon couloir. Sous chacune des hypothèses suivantes, avec quelle probabilité la première tentative réussie est-elle la k-ème?

- le rat n'a aucun souvenir des expériences précédentes,
- le rat se souvient uniquement de l'expérience précédente,
- le rat se souvient des deux expériences précédentes.

Probabilités conditionnelles : exemples

Exemple

On tire successivement et sans remise 4 lettres du mot "ATTACHANT" Quelle est la probabilité d'obtenir "CHAT" ?

Solution

On veut estimer $P(\mathit{CHAT})$, on utilise le thérorème de Bayès de manière itérative comme si on faisait la séquence d'expérience (on tire la première lettre, puis a deuxième sachant la première etc) :

$$P(CHAT) = P(C)P(HAT|C) = P(C)P(H|C)P(AT|CH) = P(C)P(H|C)P(A|CH)P(T|CHA) = \frac{1*1*3*3}{9*8*7*6}$$

Probabilités conditionnelles : exemples

Rat de laboratoire

- le rat n'a aucun souvenir des expériences précédentes,
- le rat se souvient uniquement de l'expérience précédente,
- le rat se souvient des deux expériences précédentes.

Solution

Soit R_i l'événement : "le rat réussit la i-ème tentative" et r_i l'événement "la i-ème tentative est la première réussie". Dans le cas sans mémoire, $P(R_1) = \frac{1}{3}$, $P(R_2) = P(R_2|R_1)P(R_1) + P(R_2|\overline{R_1})P(\overline{R_1})$. Or $P(R_2|R_1) = P(R_2|\overline{R_1}) = \frac{1}{3}$ car il n'a aucune mémoire. Donc $P(R_2) = \frac{1}{3}$. En généralisant, $P(R_i) = \frac{1}{3}$. On a donc $P(r_i) = P(R_i\overline{R_{i-1}}R_{i-2}\dots\overline{R_1}) = P(\overline{R_1})P(\overline{R_2}|\overline{R_1})P(\overline{R_3}|\overline{R_2}R_1)\dots P(R_i|\overline{R_{i-1}}R_{i-2}\dots\overline{R_1}) = \frac{1*2^{i-1}}{3^i}$. Dans le 2ème cas, $P(R_2|R_1) = 1$ et $P(R_2|\overline{R_1}) = P(\overline{R_2}|\overline{R_1}) = \frac{1}{2}$ et $P(R_3|R_2R_1) = P(R_3|R_2)$. Donc $P(r_i) = \frac{2}{3}\left(\frac{1}{3}\right)^{i-1}$ pour $i \geq 2$

Formule de Bayes : exemple

Exemple

On enlève aléatoirement une carte d'un jeu de 52 cartes, et on ignore laquelle. On tire ensuite au hasard une carte dans ce jeu incomplet et c'est un cœur. Quelle est la probabilité pour que la carte manquante soit un cœur?

Formule de Bayes : exemple

Exemple

On enlève aléatoirement une carte d'un jeu de 52 cartes, et on ignore laquelle. On tire ensuite au hasard une carte dans ce jeu incomplet et c'est un cœur. Quelle est la probabilité pour que la carte manquante soit un cœur?

On considère les événements suivants :

- CP : La carte perdue est un cœur
- TC : Tirer un cœur du jeu incomplet

Nous avons alors
$$P(\mathit{CP}) = \frac{1}{4}$$
 et $P(\mathit{TC} \mid \mathit{CP}) = \frac{12}{51}$

TC peut s'écrire comme : $TC = (TC \cap CP) \cup (TC \cap \bar{CP})$ et

$$P(CP \mid TC) = \frac{P(TC \mid CP) \times P(CP)}{P(TC \mid CP) \times P(CP) + P(TC \mid \bar{CP}) \times P(\bar{CP})} = \frac{\frac{12}{51} \times \frac{1}{4}}{\frac{12}{51} \times \frac{1}{4} + \frac{13}{51} \times \frac{3}{4}} = \frac{12}{51}$$

Paradoxe des deux enfants (M. Gardner, 1959)

- M. Jones a deux enfants. Le plus vieux est une fille. Quelle est la probabilité que les deux enfants soient des filles ?
- **②** M. Smith a deux enfants. Au moins un des deux est un garçon. Quelle est la probabilité que les deux enfants soient des garçons?

Paradoxe des deux enfants : problème 1

- M. Jones a deux enfants. Le plus vieux est une fille. Quelle est la probabilité que les deux enfants soient des filles?
 - Problème insoluble en général!

 Quelle est la mesure de probabilité considérée?
 - Considérons l'hypothèse suivante
 - la probabilité d'avoir un garçon est égale à la probabilité d'avoir une fille
 - 2 le sexe du premier enfant est indépendant du sexe du second
 - On a alors (F = "fille", G = "garçon")

•
$$\Omega = \{(\underbrace{F}, \underbrace{F}), (F, G), (G, F), (G, G)\}$$

• $A_i =$ "le *i*ème enfant est une fille" ($P(A_1 \cap A_2)$

$$P(A_1) \times P(A_2) = \frac{1}{4}$$

писрепиансе

• Donc $P(A_2 \cap A_1 | A_1) = \frac{P((A_2 \cap A_1) \cap A_1)}{P(A_1)} = \frac{P(A_2 \cap A_1)}{P(A_1)} = 1/2.$

Paradoxe des deux enfants : problème 1

- M. Jones a deux enfants. Le plus vieux est une fille. Quelle est la probabilité que les deux enfants soient des filles ?
 - Problème insoluble en général!

 Quelle est la mesure de probabilité considérée?
 - Considérons l'hypothèse suivante :
 - 1 la probabilité d'avoir un garçon est égale à la probabilité d'avoir une fille,
 - le sexe du premier enfant est indépendant du sexe du second.
 - On a alors (F = "fille", G = "garçon"):

 $\Omega = \{(\underbrace{F}, \underbrace{F}), (F, G), (G, F), (G, G)\}$ $A_i =$ "le ième enfant est une fille" ($P(A_1 \cap A_2) = P(A_1) \times P(A_2) = \frac{1}{4}$)
 - Donc $P(A_2 \cap A_1 | A_1) = \frac{P((A_2 \cap A_1) \cap A_1)}{P(A_1)} = \frac{P(A_2 \cap A_1)}{P(A_1)} = 1/2.$

Paradoxe des deux enfants : problème 1

M. Jones a deux enfants. Le plus vieux est une fille. Quelle est la probabilité que les deux enfants soient des filles?

- Problème insoluble en général!

 Quelle est la mesure de probabilité considérée?
- Considérons l'hypothèse suivante :
 - 1 la probabilité d'avoir un garçon est égale à la probabilité d'avoir une fille,
 - le sexe du premier enfant est indépendant du sexe du second.
- On a alors (F = "fille", G = "garçon"):

1er enfant 2ème enfant

• A_i = "le *i*ème enfant est une fille" ($P(A_1 \cap A_2)$ = $P(A_1) \times P(A_2) = \frac{1}{4}$).

indépendance

• Donc $P(A_2 \cap A_1|A_1) = \frac{P((A_2 \cap A_1) \cap A_1)}{P(A_1)} = \frac{P(A_2 \cap A_1)}{P(A_1)} = 1/2$

Paradoxe des deux enfants : problème 1

M. Jones a deux enfants. Le plus vieux est une fille. Quelle est la probabilité que les deux enfants soient des filles?

- Problème insoluble en général!

 Quelle est la mesure de probabilité considérée?
- Considérons l'hypothèse suivante :
 - 1 la probabilité d'avoir un garçon est égale à la probabilité d'avoir une fille,
 - le sexe du premier enfant est indépendant du sexe du second.
- On a alors (F = "fille", G = "garçon"):

1er enfant 2ème enfant

• A_i = "le ième enfant est une fille" ($P(A_1 \cap A_2)$ $\stackrel{=}{\underset{\text{indépendance}}{=}} P(A_1) \times P(A_2) = \frac{1}{4}$).

• Donc
$$P(A_2 \cap A_1 | A_1) = \frac{P((A_2 \cap A_1) \cap A_1)}{P(A_1)} = \frac{P(A_2 \cap A_1)}{P(A_1)} = 1/2.$$

Paradoxe des deux enfants : problème 2

- M. Smith a deux enfants. Au moins un des deux est un garçon. Quelle est la probabilité que les deux enfants soient des garçons ?
- Considérons la même mesure de probabilité qu'avant,

• on note :
$$A = \{(G, G)\}, B = \{(G, G), (G, F), (F, G)\}.$$

• Alors :
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{3}$$

Paradoxe des deux enfants : problème 2

M. Smith a deux enfants. Au moins un des deux est un garçon. Quelle est la probabilité que les deux enfants soient des garçons ?

- Considérons la même mesure de probabilité qu'avant,
- on note : $A = \{(G, G)\}, B = \{(G, G), (G, F), (F, G)\}.$

• Alors :
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{3}$$

Paradoxe des deux enfants : problème 2

M. Smith a deux enfants. Au moins un des deux est un garçon. Quelle est la probabilité que les deux enfants soient des garçons?

- Considérons la même mesure de probabilité qu'avant,
- on note : $A = \{(G, G)\}, B = \{(G, G), (G, F), (F, G)\}.$
- Alors : $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{3}$.

Exemple de Monty Hall - paradoxe des années 70

Let's make a deal

Supposons que vous êtes dans un jeu télévisé; vous avez le choix entre 3 portes. Derrière une des portes il y a une voiture, derrière les deux autres portes une chèvre. Vous choisissez une des portes, et l'animateur - qui connaît la répartition des lots - ouvre une des deux portes restantes où il sait qu'il y a une chèvre. Il vous demande si vous voulez conserver votre choix. Quelle stratégie est à votre avantage? Changer ou garder la même porte?

Calcul des probabilités

- B_i : la voiture est derrière la porte i, E: l'animateur a choisi, parmi les portes 1 et 3, d'ouvrir la porte 3
 - $\forall i \in \{1, 2, 3\}, P(B_i) = \frac{1}{3}$
 - $P(E|B_1) = 1, P(E \mid B_2) = \frac{1}{2}, P(E \mid B_3) = 0$
 - $P(E) = P(E|B_1) \times P(B_1) + P(E|B_2) \times P(B_2) + P(E|B_3) \times P(B_3)$ = $1 \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3} + 0 \times \frac{1}{3} = \frac{1}{2}$
 - $P(B_1 \mid E) = \frac{P(E|B_1) \times P(B_1)}{P(E)} = \frac{2}{3}$, $P(B_2 \mid E) = \frac{P(E|B_2) \times P(B_2)}{P(E)} = \frac{1}{3}$

Exemple de Monty Hall - paradoxe des années 70

Let's make a deal

Supposons que vous êtes dans un jeu télévisé; vous avez le choix entre 3 portes. Derrière une des portes il y a une voiture, derrière les deux autres portes une chèvre. Vous choisissez une des portes, et l'animateur - qui connaît la répartition des lots - ouvre une des deux portes restantes où il sait qu'il y a une chèvre. Il vous demande si vous voulez conserver votre choix. Quelle stratégie est à votre avantage? Changer ou garder la même porte?

Calcul des probabilités

 B_i : la voiture est derrière la porte i, E: l'animateur a choisi, parmi les portes 1 et 3, d'ouvrir la porte 3

- $\forall i \in \{1, 2, 3\}, P(B_i) = \frac{1}{3}$
- $P(E|B_1) = 1, P(E \mid B_2) = \frac{1}{2}, P(E \mid B_3) = 0$
- $P(E) = P(E|B_1) \times P(B_1) + P(E|B_2) \times P(B_2) + P(E|B_3) \times P(B_3)$ $=1 \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3} + 0 \times \frac{1}{3} = \frac{1}{3}$
- $P(B_1 \mid E) = \frac{P(E \mid B_1) \times P(B_1)}{P(E)} = \frac{2}{3}$, $P(B_2 \mid E) = \frac{P(E \mid B_2) \times P(B_2)}{P(E)} = \frac{1}{3}$

Plan

- 3 Variable aléatoire

Variable aléatoire discrète

Intuition

Lorsqu'on est face à une expérience aléatoire, on s'intéresse plus souvent à une valeur attribuée au résultat qu'au résultat lui-même.

- problème du dénombrement : trop long à énumerer, peu informatif.
- solution : "traduire" l'univers en évènements "compréhensibles" et ordonnés (avec une valeur pouvant faire sens).
- ⇒ variable aléatoire discrète : application de l'univers vers un espace discret .
- intérêt : enfin pouvoir "calculer" autre chose que des probabilités.

Exemples

- Lors d'un jeu, on s'intéresse plus au gain que l'on peut obtenir qu'au résultat exact du jeu.
- Lorsqu'on joue au blackjack, on s'intéresse plus à la probabilité de faire un 21 que des configurations élémentaires donnant 21.

Exemple

Exemple du lancer de dé

On lance un dé après avoir misé 1€. Si le résultat est un 5 ou un 6 on double la mise, sinon perd la mise. Dans ce cas :

- $\Omega = \{D1, D2, D3, D4, D5, D6\}$
- Card $\Omega=6$, Card $\mathcal{P}(\Omega)=2^6$, et $\forall e\in\Omega, P(e)=\frac{1}{6}$
- Comment calculer la probabilité de gagner 1€?

Exemple

Exemple du lancer de dé

On lance un dé après avoir misé $1 \in$. Si le résultat est un 5 ou un 6 on double la mise, sinon perd la mise. Dans ce cas :

- $\Omega = \{D1, D2, D3, D4, D5, D6\}$
- Card $\Omega=6$, Card $\mathcal{P}(\Omega)=2^6$, et $\forall e\in\Omega, P(e)=\frac{1}{6}$
- Comment calculer la probabilité de gagner 1€?
- Soit X la v.a. qui associe à tout résultat du dé un gain :

$$X(D1) = X(D2) = X(D3) = X(D4) = -1$$

$$X(D5) = X(D6) = (2-1) = 1$$

X est à valeur dans l'ensemble noté $\mathcal{X} = \{-1,1\} \subset \mathbb{R}$

$$X:\Omega \to \mathcal{X}$$

- ullet $X^{-1}(1)$: l'ensemble des évènements élémentaires correspondant au gain d'1 \in
- $P(X^{-1}(\{1\})) = P(Le \ résultat \ du \ dé \ est \ 5 \ ou \ 6)$.
- \Rightarrow Définir une probabilité sur \mathcal{X} , notée \mathbb{P} , en retournant dans l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$ $\mathbb{P}(\{1\}) = P(X^{-1}(\{1\})) = P(Le \ résultat \ du \ dé \ est \ 5 \ ou \ 6)$.

Exemple

Exemple du lancer de dé

On lance un dé après avoir misé 1€. Si le résultat est un 5 ou un 6 on double la mise, sinon perd la mise. Dans ce cas :

- $\Omega = \{D1, D2, D3, D4, D5, D6\}$
- Card $\Omega = 6$, Card $\mathcal{P}(\Omega) = 2^6$, et $\forall e \in \Omega, P(e) = \frac{1}{6}$
- Comment calculer la probabilité de gagner 1€?

Variable aléatoire à valeurs discrètes

Définition

Soit Ω un ensemble dénombrable, et P une mesure de probabilité sur Ω . Soit Ω' , un ensemble discret.

Une variable aléatoire est une fonction X de Ω muni de la mesure P vers Ω' .

Exemples

• Lancer d'un dé :

Soit $\Omega = \{1, ..., 6\}$ muni de la probabilité uniforme P.

$$X: i \mapsto \left\{ \begin{array}{l} 1 \text{ si } i \text{ est pair} \\ 0 \text{ sinon} \end{array} \right.$$

est une variable aléatoire de (Ω, P) vers $\Omega' = \{0, 1\}$.

• Lancer de deux dés :

Soit $\Omega = \{1, ..., 6\}^2$ muni de la probabilité uniforme P.

$$X:(i,j)\mapsto i+j$$

est une variable aléatoire de (Ω, P) vers $\Omega' = \{2, ..., 12\}$

Loi de probabilité

Définitions

Soit (Ω, P) un espace probabilisé où Ω est dénombrable.

Soit Ω' un ensemble discret, et X une v.a. de (Ω, P) vers Ω' .

• X définit une mesure de probabilité sur Ω' , notée P_X , par : pour tout sous-ensemble E' de Ω' :

$$P_X(E') = P(X^{-1}(E'))$$

avec
$$X^{-1}(E') = \{\omega \in \Omega | X(\omega) \in E'\}$$

• L'ensemble des valeurs $P_X(\{\omega'\})$ pour $\omega' \in \Omega'$ s'appelle la loi de probabilité de X.

Notations

- L'événement $X \in]-\infty$, a] sera noté par X < a
- L'événement $X \in]a, b]$ sera noté par a < X < b
- L'événement $X \in \{a\}$ sera noté par X = a
- On a donc $P_X(B) = P(X^{-1}(B)) = P(X \in B)$

Loi d'une variable aléatoire

Propriété

Une variable aléatoire est totalement définie par sa loi de probabilité, caractérisé par :

- son domaine de définition : l'ensemble des valeur qu'elle peut prendre,
- les probabilités attribuées à chacune de ses valeurs P(X = x).

Questions:

soit Ω un ensemble de cardinal n,

- ullet quel est le plus grand cardinal de l'ensemble des valeurs d'une application de Ω ?
- combien d'applications de Ω vers $\{1,...,n\}$ différentes existe-t-il ?

Jeux de hasard

- On lance un dé après avoir misé 3 euros. Si le résultat est 1,2,3 ou 4, on perd la mise. Sinon, on triple la mise.
 Quelle est la probabilité de gagner 6 euros? de perdre sa mise?
- Le joueur décide de jouer deux fois de suite. Quelle est la loi de probabilité du gain sur l'ensemble des deux lancers?

Jeux de hasard

 On lance un dé après avoir misé 3 euros. Si le résultat est 1,2,3 ou 4, on perd la mise. Sinon, on triple la mise.
 Quelle est la probabilité de gagner 6 euros? de perdre sa mise?

 $\Omega=\{1,...,6\}$ muni de la probabilité uniforme. On note X la v.a. qui représente le gain : $P(X=6)=P\big(\{5,6\}\big)=\frac{1}{3}$

 $P(X=-3)=\frac{2}{3}$

• Le joueur décide de jouer deux fois de suite. Quelle est la loi de probabilité du gain sur l'ensemble des deux lancers?

Jeux de hasard

 On lance un dé après avoir misé 3 euros. Si le résultat est 1,2,3 ou 4, on perd la mise. Sinon, on triple la mise.

Quelle est la probabilité de gagner 6 euros? de perdre sa mise?

 $\Omega=\{1,...,6\}$ muni de la probabilité uniforme. On note X la v.a. qui représente le gain : $P(X=6)=P\big(\{5,6\}\big)=\frac{1}{3}$

$$P(X=-3)=\frac{2}{3}$$

 Le joueur décide de jouer deux fois de suite. Quelle est la loi de probabilité du gain sur l'ensemble des deux lancers?

L'univers est $\{1,...,6\}^2$, muni de la loi de probabilité uniforme. Le gain total G suit la loi :

$$P(G = -6) = P(\{1, ..., 4\}^2) = \frac{16}{36}, P(G = 3) = ?, P(G = 12) = ?$$

Plan

- 4 Fonction de répartition

Fonction de répartition

Définition

Soit X une v.a. on appelle **fonction de répartition** de X, notée F la fonction :

$$F: \mathbb{R} \rightarrow [0, 1]$$

 $x \mapsto F(x) = P(X \le x)$

Propriétés

- $P(a < X \le b) = F(b) F(a)$
- F est croissante bornée :
 - $\bullet \ F(-\infty) = \lim_{x \to -\infty} F(x) = 0$
 - $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$

Fonction de répartition (suite)

Exemple : Lancer de dé

Avec l'exemple du lancer de dé précédent nous avons $\Omega = \{1, 2, 3, 4, 5, 6\}$, et $X:\Omega\to\mathbb{R}$ définie par :

$$X(e) = -1 \text{ si } e \in \{1, 2, 3, 4\}, \text{ et } X(e) = +1 \text{ si } e \in \{5, 6\}$$

L'ensemble des valeurs possibles est $\mathcal{X} = \{-1, 1\}$. On peut alors caractériser la loi de X par sa fonction de répartition $F: F(x) = P(X \le x)$

- si $x < -1, \mathcal{X} \cap (]-\infty, x]) = \emptyset \Rightarrow F(x) = 0$
- si $x \in [-1, 1[, \mathcal{X} \cap (] \infty, x]) = \{-1\} \Rightarrow F(x) = \frac{2}{3}$
- si $x \in [1, \infty[, \mathcal{X} \cap (] \infty, x]) = \{-1, 1\} \Rightarrow F(x) = \frac{2}{3} + \frac{1}{3} = 1$

Variables aléatoires indépendantes

Définitions

Soit (Ω, P) un espace probabilisé.

• Soient X et X' deux v.a. de Ω vers Ω' . Les variables X et X' sont indépendantes si :

$$\forall A \subset \Omega', \forall B \subset \Omega', P(X \in A \cap X' \in B) = P(X \in A)P(X' \in B)$$

• Soient $X_1, ..., X_n, n$ v.a. de Ω vers Ω' . $X_1, ..., X_n$ sont mutuellement indépendantes si, pour tous sous-ensembles $E_1, ..., E_n$ de Ω' , on a :

$$P\left(\bigcap_{i\in\{1,\cdots,n\}}X_i\in E_i\right)=\prod_{i\in I}P(X_i\in E_i)$$

Retour à l'exemple précédent

Si on lance deux fois un dé, avec à chaque fois un gain si le résultat est 5 ou 6, les gains obtenus à chacun des lancers sont indépendants.

Résultats de *n* répétitions indépendantes d'une expérience aléatoire

Soit (Ω, P) un espace probabilisé, X une v.a. sur Ω vers Ω' .

On note $\Omega_n = \Omega^n$, et P_n la mesure produit sur Ω_n :

$$\forall \omega = (\omega_1, ..., \omega_n) \in \Omega_n, P_n(\{\omega\}) = \prod_{i=1}^n P(\omega_i)$$

On note $X_i : \omega \in \Omega_n \mapsto X(\omega_i)$.

Les v.a. X_i sont mutuellement indépendantes et suivent la même loi que X:

$$\forall i, \forall E' \subset \Omega', P_n(X_i \in E') = P(X \in E')$$

Retour à l'exemple précédent (2)

Si on lance n fois un dé, avec à chaque fois un gain si le résultat est 5 ou 6.

 Ω_n est l'ensemble des réalisations possibles des *n* lancers.

Pour un événement élémentaire $\omega = (\omega_1, ..., \omega_n)$:

- ω_i est le résultat du i-ième lancer.
- X_i représente le gain obtenu au *i*-ième lancer.

Loi conjointe

Definition

Soit (Ω, P) un espace de probabilité, et soient X et Y deux v.a. sur cet espace, à valeur resp. dans F et G. (X, Y) est une v.a., appelée loi conjointe de X et Y; les valeurs de (X, Y) sont dans $F \times G$.

Propriétés

- la connaissance uniquement de X et de Y ne suffit pas à connaître la loi jointe, sauf si X est indépendant de Y.
- $\forall x \in F, P(X = x) = \sum_{y \in G} P(X = x, Y = y)$
- \Rightarrow la connaisance de la loi jointe permet de déduire la loi de X, appelée dans ce cas loi marginale.

Exemple

Soit (X,Y) un couple de v.a. de loi telle que P((X,Y)=(i,j))=1/9 ssi $0 \le i \le 2$ et $-i \le j \le i$.

- Quelle est la représentation graphique de la loi?
- Quelles sont les lois marginales de X et de Y?

Loi conjointe

Exemple

Soit (X, Y) un couple de v.a. de loi telle que P((X, Y) = (i, j)) = 1/9 ssi $0 \le i \le 2$ et $-i \le j \le i$.

- Quelle est la représentation graphique de la loi?
- Quelles sont les lois marginales de X et de Y?

$$\begin{array}{l} P(X=i) = \sum_{j=-i}^{i} P(X=i,Y=j) \; \text{donc} \; P(X=0) = P(X=0,Y=0) = 1/9, \\ P(X=1) = P(X=1,Y=-1) + P(X=1,Y=0) + P(X=1,Y=1) = 3/9 \; \text{et} \\ P(X=2) = 5/9. \\ P(Y=j) = \sum_{i=0}^{2} P(X=i,Y=j) \; \text{donc} \\ P(Y=0) = P(X=0,Y=0) + P(X=1,Y=0) + P(X=2,Y=0) = 3/9, \\ P(Y=\pm 1) = P(X=1,Y=1) + P(X=2,Y=1) = 2/9 \; \text{et} \; P(Y=\pm 2) = 1/9. \end{array}$$

Deux lois de probabilités discrètes importantes

Loi de Bernoulli

La loi de Bernoulli est la loi d'une v.a. X à valeur dans $\{0,1\}$. X = 1 représente le "succès" de l'expérience, et X = 0 l'"échec".

$$\forall x \in \{0, 1\}, P(X = x) = p^{x}(1 - p)^{1 - x}$$

La probabilité de succès p = P(X = 1) est le paramètre de la loi.

Loi binomiale

Soit X, le nombre de succès d'une épreuve de Bernoulli de paramètre p, répétée n fois indépendamment. La loi de X est appelée la loi binomiale de paramètres n et p:

$$\forall k \in \{0, ..., n\}, P(X = k) = C_n^k p^k (1 - p)^{n - k}$$