Trench™ HiperFET™ **Power MOSFET**

IXFA130N10T IXFP130N10T

N-Channel Enhancement Mode Avalanche Rated Fast Intrisic Diode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 175°C	100	V	
V _{DGR}	$T_J = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	100	V	
V_{gss}	Continuous	± 20	V	
V _{GSM}	Transient	± 30	V	
I _{D25}	T _c = 25°C	130	Α	
ILRMS	Lead Current Limit, RMS	120	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	350	Α	
I _A	T _c = 25°C	65	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	750	mJ	
P_{D}	T _c = 25°C	360	W	
T _J		-55 +175	°C	
T _{JM}		175	°C	
T _{stg}		-55 +175	°C	
T,	Maximum Lead Temperature for Soldering	g 300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
	Mounting Force (TO-263)	1065 / 2.214.6	N/lb	
F _c M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in	
Weight	TO-263	2.5	g	
	TO-220	3.0	g	

Symbol (T _J = 25°C U	Test Conditions nless Otherwise Specified)	Chara Min.	cteristic Typ.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			10	μΑ
	$T_J = 150$ °C			500	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 25A, Notes 1, 2$			9.1	mΩ

100V 130A D25 $9.1 \text{m}\Omega$ $\boldsymbol{R}_{\text{DS(on)}}$

TO-263 (IXFA)

G = Gate	D	= Drai	n
S = Source	Tab	= Drai	n

Features

- Ultra-Low On Resistance
- Avalanche Rated
- Low Package Inductance
- Easy to Drive and to Protect
- 175°C Operating Temperature
- Fast Intrinsic Diode

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Automotive
 - Motor Drives
 - 42V Power Bus
 - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Current Switching **Applications**
- High Voltage Synchronous Recifier

Symbol	Symbol Test Conditions Ch		acteristic	: Values
$(T_{J} = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.
g_{fs}	V_{DS} = 10V, I_{D} = 60A, Note 1	55	93	s
C _{iss}			5080	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		630	pF
C _{rss}			95	pF
t _{d(on)}	Resistive Switching Times		30	ns
t,	•		47	ns
t _{d(off)}	$V_{gS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		44	ns
t,	$R_{\rm G} = 5\Omega$ (External)		28	ns
$Q_{g(on)}$			104	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 25A$		30	nC
Q_{gd}			29	nC
R _{thJC}				0.42 °C/W
R _{thCH}	TO-220		0.50	°C/W

Source-Drain Diode

Symbol Test Conditions Cha		Chara	aracteristic Values			
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.		
Is	$V_{GS} = 0V$			130	Α	
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			350	Α	
V _{SD}	$I_F = 25A$, $V_{GS} = 0V$, Note 1			1.0	V	
t _{rr}	$I_{\rm F} = 65A$, -di/dt = 100A/ μ s		67		ns	
I _{RM}	,		4.7		Α	
Q _{rr}	$V_{R} = 0.5 \bullet V_{DSS}, V_{GS} = 0V$		160		nC	

Notes: 1. Pulse test, $t \le 300 \ \mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5 mm or less from the package body.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

SYM	INCH	HES	MILLIMETER			
SIM	MIN	MAX	MIN	MAX		
Α	.170	.185	4.30	4.70		
A1	.000	.008	0.00	0.20		
A2	.091	.098	2.30	2.50		
Ь	.028	.035	0.70	0.90		
b2	.046	.060	1.18	1.52		
С	.018	.024	0.45	0.60		
C2	.049	.060	1.25	1.52		
D	.340	.370	8.63	9.40		
D1	.300	.327	7.62	8.30		
E	.380	.410	9.65	10.41		
E1	.270	.330	6.86	8.38		
е	.100	BSC	2.54	2.54 BSC		
H	.580	.620	14.73	15.75		
L	.075	.105	1.91	2.67		
L1	.039	.060	1.00	1.52		
L2	_	.070	_	1.77		
L3	.010	BSC	0.254 BSC			

MYZ	INC	HES	MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.169	.185	4.30	4.70	
A1	.047	.055	1.20	1.40	
A2	.079	.106	2.00	2.70	
Ь	.024	.039	0.60	1.00	
b2	.045	.057	1.15	1.45	
С	.014	.026	0.35	0.65	
D	.587	.626	14.90	15.90	
D1	.335	.370	8.50	9.40	
(D2)	.500	.531	12.70	13.50	
Ε	.382	.406	9.70	10.30	
(E1)	.283	.323	7.20	8.20	
е	.100	BSC	2.54 BSC		
e1	.200	BSC	5.08 BSC		
H1	.244	.268	6.20	6.80	
L	.492	.547	12.50	13.90	
L1	.110	.154	2.80	3.90	
ØΡ	.134	.150	3.40	3.80	
Q	.106	.126	2.70	3.20	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 65A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 65A Value vs.

Fig. 6. Drain Current vs. Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

