Security and Privacy

Crypto for e-voting protocols

28.05.2019

Outline

- Multiplicative Groups
- ElGamal encryption
- Homomorphism
- Key sharing
- Zero knowledge proofs (ZKP)
- Mixnets

- What for: Group of numbers that represent votes, encrypted votes and can be used in proofs
- What: $\mathcal{G} = (G, \times, ^{-1}, 1)$
 - ▶ *G*: set of numbers
 - x: multiplication operator
 - ▶ ⁻¹: inverse of multiplication
 - ▶ 1: neutral element $\in G$
 - ▶ the multiplication of two elements of the group is always an element of the group (closure)

- **Example:** \mathbb{Z}_p^* (integers modulo prime number p, * means without 0)
 - $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$
 - ▶ We don't want 0 because it has no inverse
 - ▶ We want p prime to avoid $a \times b = 0 \mod p$
 - ▶ $2 \times 5 \equiv 3 \pmod{7}$ we just write $2 \times 5 = 3$
 - $2 \times 4 = 1, \ 2 \times 5 = 3, \ 3 \times 4 = 5$
 - $2^{-1} = 4, 4^{-1} = 2$
- **generator**: g is a generator if $\{g^1,...,g^{p-1}\}=G$
 - ▶ 3 is a generator of \mathbb{Z}_7^* : $\{3^1, 3^2, 3^3, 3^4, 3^5, 3^6\} = \{3, 2, 6, 4, 5, 1\}$

Subgroups

- $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$ has order 6 (6 elements)
- $\blacktriangleright \ \mathbb{G}_3 = \{1,2,4\}$ is a subgroup of order 3 of \mathbb{Z}_p^*
- $1 \times 2 = 2$, $2 \times 2 = 4$, $2 \times 4 = 1$, $4 \times 4 = 2$
- ▶ the order of a subgroup divides the order of the group
- ▶ there is another subgroup, of order 2, can you see it?
- ▶ if the group is of prime order, it has no subgroups !
 - → any element of the group, except 1, is a generator
- ▶ $\{1,2,4\}$ are the quadratic residues of \mathbb{Z}_7^*
- $ightharpoonup 1^2 = 1$, $2^2 = 4$, $3^2 = 2$, $4^2 = 2$, $5^2 = 4$, $6^2 = 1$

- For ElGamal encryption we need a prime order subgroup
- We start with p prime, but because we remove 0, the order of \mathbb{Z}_p^* is pair. (since p is odd)
 - \blacktriangleright So p-1 at least has a factor 2. We want this to be the only one
- We choose p = 2q + 1, where p and q are both primes.
 - lacktriangle (p is called a 'safe prime' and q a 'Sophie-Germain prime')
 - ▶ p-1 thus only has two factors: 2 and q
 - \blacktriangleright we have one subgroup or prime order q (and one of order 2)
- \blacksquare We work in a group \mathbb{G}_q defined by p,q and the generator $g\in\mathbb{G}_q\backslash\{1\}$
- lacksquare We can write any element of \mathbb{G}_q as $g^{x \bmod q} \bmod p$
- lacksquare We often omit to write $\operatorname{mod} q$ and $\operatorname{mod} p$

Some drawings

Generators and subgroups in \mathbb{Z}_7^*

Generators and subgroups in \mathbb{Z}_{11}^*

Generators and subgroups in \mathbb{Z}_{13}^*

- 12 11 10 9
- \blacksquare \mathbb{Z}_{13}^* is of order 12, subgroup of order 6 has subgroups of 2,3
 - ▶ 13 is not a safe prime

Generators and subgroups in \mathbb{Z}_{23}^*

 \mathbb{Z}_{23}^* is of order 22, subroup of order 11 is of prime order

ElGamal Encryption

ElGamal Encryption

 What for: Encrypt the votes in a way that we can use key shares for decrypting and homomorphism to make them anonymous

How:

- ightharpoonup private key $sk \in \mathbb{Z}_q$
- ightharpoonup public key $pk=g^{sar{k}}\in\mathbb{G}_q$
- **Encryption** of message m with key pk and randomness r:
 - choose random r, multiply m with public key to the power of r
 - calculate g to the power of r $\operatorname{Enc}_{pk}(m,r) = (m \cdot pk^r, g^r) = (a,b)$
- Decryption:
 - divide a by b to the power of the secret key $\mathrm{Dec}_{sk}(a,b)=a/b^{sk}=m$

$$\checkmark \operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(m,r)) = m \cdot g^{sk^r}/g^{r^{sk}} = m$$

ElGamal Encryption

Homomorphism

- We can multiply encrypted values to get the encryption of the product:
 - $$\begin{split} & \quad \mathsf{Enc}_{pk}(m_1, r_1) \cdot \mathsf{Enc}_{pk}(m_2, r_2) \\ & = (a_1 \cdot a_2, b_1 \cdot b_2) = (m_1 \cdot m_2 \cdot pk^{r_1 + r_2}, g^{r_1 + r_2}) \end{split}$$

$$= \mathtt{Enc}_{pk}(m_1 \cdot m_2, r_1 + r_2)$$

Re-encryption: we can multiply by an encryption of one to keep the same value but change a and b:

$$\mathtt{Enc}_{nk}(m,r)\cdot\mathtt{Enc}_{nk}(1,r')=\mathtt{Enc}_{nk}(m,r+r')$$

Using key shares

Using key shares

- What for
 - reduce the trust need to have in single parts of the system
- How
- Use a private key made of shares
- Each share of the private key is held by a different entity
- To decrypt a message, all entities must collaborate
- As long as just one entity succeeds in protecting its share of the key, nothing bad can happen
 - ▶ We only need to trust that one out of *n* entities is honest.

El Gamal key shares

- lacksquare s parties can create a key pair each $pk_j=g^{sk_j}$
- The public part can be multiplied to a single pulbic key: $pk = \prod_{j=1}^s pk_j \text{ which is equal to } g^{\sum_{j=1}^s sk_j}$
 - ▶ The private key is thus $\sum_{i=1}^{s} sk_{i}$
- lacktriangleq pk can be used as is for encryption
- for decryption, each party calculates b^{sk_j} $\mathrm{Dec}_{sk}(a,b) = a/b^{\sum_{j=1}^s sk_j} = a \cdot / \prod_{j=1}^s b^{sk_j} = m$
- Note: the message can be decrypted without anybody knowing the complete private key!

El Gamal key shares

For e-voting:

- ▶ the voter uses the single public key to encrypt the vote,
- the four CC calculate b^{sk_j}
- lacktriangleright the server multiplies the parts from the CC with a and recovers the vote.

Zero Knowledge Proofs

Zero Knowledge Proofs (ZKPs)

What for: prove we know the content of an encrypted vote without revealing it, that we use the correct key for decryption, without revealing it, ...

How:

- Ask the prover to commit to a value.
- ▶ Give him a challenge to solve using the committed value
- solution is only possible if the prover knows a secret
- solution does not reveal secret

Zero Knowledge Proofs

Example

- $y = g^x$
- Prover P publishes y and pretends to know x
- lacksquare P commits to ω and publishes $t=g^\omega$
- Verifier gives challenge c
- ▶ P publishes $s = cx + \omega$
- Verifier can verify that $g^s = ty^c$ $g^s = g^{cx}g^{\omega} = g^{\omega}g^{xc}$
- lacktriangle without knowing x, the prover could not calculate s
- ightharpoonup if he knew c before committing to t, he could chose random s and calculate corresponding t.

Non-Interactive ZKPs (NIZKPs)

- We don't want to send a challenge c to P. We let P generate it himself with a given hash function.
 - $y = q^x$
 - ightharpoonup P publishes y and pretends to know x
 - lacksquare P commits to ω and publishes $t=g^\omega$
 - ▶ P publishes challenge c = H(y, t)
 - ▶ P publishes $s = cx + \omega$
 - ▶ Verifier checks that c = H(y, t)
 - Verifier checks that $g^s = ty^c$
 - \triangleright P has to commit to t before he can calculate the challenge
 - we write $\pi = NIZKP[(x): y = g^x] = \{t, c, s\}$ proof of knowledge of logarithm

NIZKP composition

- lacksquare We can prove that a value is the same in two expressions g_1^x and g_2^x
- \blacksquare use two commitments of ω with g_1 and g_2
 - P commits to $(t_1, t_2) = (g_1^{\omega}, g_2^{\omega})$
 - ▶ P publishes a single challenge $c = H(y_1, t_1, y_2, t_2)$
 - P publishes $s = cx + \omega$
 - lacksquare Verifier checks that $c=H(y_1,t_1,y_2,t_2)$
 - lacktriangledown Verifier checks that $g_1^s=t_1y^c$, $g_2^s=t_2y^c$
 - \blacktriangleright we write : $\pi=NIZKP[(x):y_1=g_1{}^x\wedge y_2=g_2{}^x]=\{t_1,t_2,c,s\}$ proof of equality of logarithm

NIZKP+text = Schnorr Signature

- What for: we can add some text to a NIZKP. Typically, we can add the voting card ID into the proofs generated by the voter.
 - the voter signs his vote with his voting card number
- How: We just add the text into the hash function that creates the challenge from the commitment: c = H(y, t, 'sometext')
 - ▶ The NIZKP becomes a signature of the text.
 - $S = NIZKP[(x) : y = g^x, 'text'] = \{t, c, s\}$

NIZKP: Summary

- Proof of knowledge of logarithm $NIZKP[(x):y=g^x]$
 - ▶ When generating a keypair, a CC can prove it knows the private key
 - ▶ When doing ElGamal encryption, a voter can prove that he knows r in g^r or $m \cdot pk^r$. The voter can include his voting card ID into the proof
- Proof of equality of logarithm $NIZKP[(x):y_1={g_1}^x \wedge y_2={g_2}^x]$
 - ► CCs can prove that the key used to decrypt a vote is the same as the private key corresponding to the public encryption key
 - ▶ A voter can prove that the encrypted ballot submitted to the ballot box contains the same votes as the ones for which verification codes are requested

Mixnets

Mixnets

What for: We mix the ballots before they are decrypted in order to prevent that a decrypted vote can be traced back a vote submitted by a voter.

How:

- ▶ A mathematical operation is applied to the ballots to change their representation without changing their content
- ► The ballots are reordered randomly (shuffled)
- ► Each CC applies one mix operation. If at least one CC is honest, the mix can not be inversed.

Mixnets

To make votes anonymous, each mixer multiplies the encrypted ballot with an encrypted neutral element.

$$\mathrm{Enc}_{pk}(m,r)\cdot\mathrm{Enc}_{pk}(1,r')=\mathrm{Enc}_{pk}(m,r+r')$$

- The mixnet must generate NIZKPs to prove
 - ▶ that the operation on the ballots did not change their content
 - that all ballots from the input are contained in the output
- It is challenge to create an efficient provable mixnet
 - chVote uses Wikström's mixnet & proofs
 - sVote uses Bayer and Groth
- The proofs are complicated in both cases...

Conclusions

Conclusions

- Homomorphic crypto systems are useful for e-voting
 - we can work on votes without decrypting them
 - e.g. we can anonymize them by multiplying by an encrypted 1
- With NIZKP we can prove
 - knowledge of a logarithm, equality of two logarithms
 - that a vote was cast with a given card id
 - that we correctly do the multiplication by one
 - that we correctly decrypt
- Mixnets combine both to provide vote secrecy while preserving correctness
- Splitting keys into shares allows reduce the required trust
 - we only need to trust 1 in n elements

References

■ The specification of chvote (the protocol of GE) has a good introduction to this crypto eprint.iacr.org/325.pdf

