

CS 20: Tensorflow for Deep Learning Research

(index.html)

Schedule and Syllabus

Unless otherwise specified the course lectures and meeting times are:

Wednesday, Friday 3:30-4:20

Location: Gates B12

This syllabus is subject to change according to the pace of the class. Please post on Piazza or email the course staff if you have any question.

Event	Date	Description	Course Materials
	Jan 10 Week 1	No class	Set up Tensorflow (https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/setup) Suggested Readings: Nothing in particular, but you're welcome to read anything you want.
Lecture	Jan 12	Overview of Tensorflow Why Tensorflow? Graphs and Sessions	Slides (https://docs.google.com/presentation/d/1dizKPtp9hkuTwVDzoGZdYQb_61ULSsSUvaFfDFuhlceusp=sharing) Lecture note (https://docs.google.com/document/d/1gWm3uBnbU6wxZAm0VAiSV_8odzfaE7yENO34fl/edit?usp=sharing)
To do	Jan 12	Check out TensorBoard	
Lecture	Jan 17 Week 2	Operations Basic operations, constants, variables Control dependencies Data pipeline TensorBoard	Slides (https://docs.google.com/presentation/d/1iO_bBL_5REuDQ7RJ2F35vH2BxAiGMocLC6t_6eXaE/edit?usp=sharing) Lecture note (https://docs.google.com/document/d/1FSPNZFQsnaUVeTo0OQ2RrEZ0f4el9blGl5sQALbG_F0/usp=sharing)
Workshop	Jan 19	Linear and Logistic Regression Tensorflow's Optimizers tf.data Example: Birth rate - life expectancy, MNIST dataset	Slides (https://docs.google.com/presentation/d/1lmcQVNAmJrL8x3lq0VB1mVaka1r6pOlb-TMVTX5Rufc/edit?usp=sharing) Lecture note (https://docs.google.com/document/d/1kMGs68rIHWHifBiqIU3j_2ZkrNj9RquGTe8tJ7eR1sE/edit/usp=sharing)
A1 released	Jan 19	Assignment #1 released	Assignment 1 (https://docs.google.com/document/d/1CpBvivgmo_4sMmnlWqjFAXTXKa_bl9dJVSQLPZlu7Vg/usp=sharing)
Lecture	Jan 24 Week 3	Eager execution Guest lecture by Akshay Agrawal (https://www.akshayagrawal.com/) (TensorFlow team) Example: word2vec, linear regression	Slides (https://docs.google.com/presentation/d/1e1gE2JJXipWm1UJgor_y8pHcM8L8oMaCVtvQvZUBlusp=sharing) Lecture note (https://docs.google.com/document/d/1tLThJGHyMlCyXwSlxyZ4D4cZ1hJ1luk8WFxe7gBBKa4/eusp=sharing)
Lecture	Jan 26	Variable sharing and managing experiments Interfaces Name scope, variable scope Saver object, checkpoints Autodiff Example: word2vec	Slides (https://docs.google.com/presentation/d/1SJMsa4BdOFVRCPD9uwaAqDBYYfgbQcbOm7HaxRusp=sharing) Lecture note (https://docs.google.com/document/d/1wqp8 H06oE4zB9CHDwzTx5BfAOMM_6nnNJMSfkazkU/edit?usp=sharing)
A1 Due	Jan 31	Assignment #1 due	
Lecture	Jan 31 Week	Introduction to ConvNet	Slides (https://docs.google.com/presentation/d/15E7NlyMkG8dAMa70i2OluprBDoz3UPyAk5ZpOiCkEdusp=sharing)

Lecture note (http://cs231n.github.io/convolutional-networks/)

We will be using CS231N's wonderful note

Lecture	Feb 2	No class	
A2 released	Feb 7	Assignment #2 released	Assignment 2 (https://docs.google.com/document/d/1FpueD-3mScnD0SJQDtwmOb1FrSwo1NGowkXzMwPoLH4/edit?usp=sharing)
Lecture	Feb 7	Convnet in TensorFlow Example: image classification	Slides (https://docs.google.com/presentation/d/17VTArfQVtapBqfYecyvp3Kp9HKy8Pw2WI12acYME2nI_usp=sharing) Lecture note (https://docs.google.com/document/d/1ph43FB5fZ_iarPTjIXhdtDvHJOpk4ncI2vDyxnOWcqM/ediusp=sharing)
Lecture	Feb 9 Week 5	Convolutional Neural Networks Discussion of Assignment #2 Example: Style Transfer	Slides (https://docs.google.com/presentation/d/1ftgals7pXNOoNoWe0E9PO27miOpXbHrQIXyBm0YOiyusp=sharing)
	Feb 14 Week 6	GANs Guest lecture by Alec Radford (Research Scientist at OpenAl)	Per Alec's request, slides + code are only available to students in the class
Lecture	Feb 16	Variational Auto-Encoders Guest lecture by Danijar Hafner (https://danijar.com) (Google Brain, UCL)	Slides (https://docs.google.com/presentation/d/1VSNlkGcR-b39tMcuREjzZdhYOPvoZudpcbuNlf5hOIM/edit?usp=sharing)
A2 Due	Feb 20	Assignment #2 due	
Lecture	Feb 21 Week 7	Recurrent Neural Networks Example: Character-level Language Modeling	Slides (https://docs.google.com/presentation/d/1QydMhsGFeUzDYZr7dV0tt9WJryleOoKUyJth4ftRDbA/usp=sharing) Lecture note (https://docs.google.com/document/d/1_ZqzBqFMV8YmdC2PmaTXOB9O1BZ14yLNTQd2_Bkff9usp=sharing)
Lecture	Feb 23	Seq2seq with Attention Example: Neural machine translation	Slides (https://docs.google.com/presentation/d/10FcTewIQuHK4u94IPif6kqSbntLT7I038R32uIOGusp=sharing)
Lecture	Feb 28 Week 8	Beyond RNNs: Transformer, Tensor2Tensor Guest lecture by Lukasz Kaiser	Slides (https://docs.google.com/presentation/d/117v3GcyHNGW7G3b6c4uTFxTRhpcowYVCOWspnCCusp=sharing) Code (https://github.com/tensorflow/tensor2tensor)
A3 released	Mar 2	Assignment #3 released	Assignment 3 (https://docs.google.com/document/d/1GJfn2B6EI8JueDiBwzTAdD34d6pC99BSt6vIdOmUCPQ/usp=sharing)
	Mar 2	Dialogue agents	Slides (https://docs.google.com/presentation/d/1bJhLv_sV81uR3tW90VAqIWvZHCQokHspGHnFaB5Qvusp=sharing)
Lecture	Mar 7 Week 9	Reinforcement Learning in Tensorflow Guest lecture by Frederik Ebert (https://febert.github.io/)	Slides (lectures/CS20_intro_to_RL.pdf)
Lecture	Mar 9	Keras Guest lecture by François Chollet (Deep learning researcher at Google, author of Keras)	Slides (lectures/march9guestlecture.pdf)
A3 Due	Mar 15	Assignment #3 due	
Demo	Mar 16	Demo	