

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 365 037 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 26.11.2003 Bulletin 2003/48
- (21) Application number: 02710418.1
- (22) Date of filing: 31.01.2002

- (51) Int Cl.7: C22C 38/00, C21D 9/46
- (86) International application number: PCT/JP02/00744
- (87) International publication number: WO 02/061161 (08.08.2002 Gazette 2002/32)

- (84) Designated Contracting States: FR GB
- (30) Priority: 31.01.2001 JP 2001002340
 31.01.2001 JP 2001002340
 09.02.2001 JP 2001003433
 09.02.2001 JP 2001003433
 28.02.2001 JP 2001005563
 28.02.2001 JP 2001005564
 28.02.2001 JP 2001005564
 31.08.2001 JP 2001005564
 31.08.2001 JP 2001003005
 28.09.2001 JP 2001003005
 28.09.2001 JP 2001003005
 28.09.2001 JP 2001003005
 28.09.2001 JP 2001003005
- (71) Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO Kobe-shi, Hyogo 651-8585 (JP)
- (72) Inventors:
 - KASHIMA, Takahiro Kakogawa Works K.K.K SEIKO SHO Kakogawa-shi, Hyogo 675-0137 (JP)

- Hashimoto, Shunichi Kako.Works in K.K.K Seiko Sho Kakogawa-shi, Hyogo 675-0137 (JP)
- IKEDA, Shushi
 K.C. Res.Lab. K.K.K.Kobe seiko sho
 Kobe-shi, Hyogo 675-0137 (JP)
- AKAMIZU, Hiroshi
 K.C.R. Lab. k.K.K Kobe Seiko Sho
 Kobe-shi (JP)
- SUGIMOTO, Koh-ichi Ueda-shi, Nagano 386-0015 (JP)
- NAGASAKA, Akihiko Nagano-shi, Nagano 381-0082 (JP)
- KANDA, Akinobu Nagano-shi, Nagano 380-0911 (JP)
- KIKUCHI, Ryo Nagano-shi, Nagano 380-0928 (JP)
- (74) Representative: Gillard, Richard Edward Elkington and Fife Prospect House 8 Pembroke Road Sevenoaks Kent TN13 1XR (GB)

(54) HIGH STRENGTH STEEL SHEET HAVING EXCELLENT FORMABILITY AND METHOD FOR PRODUCTION THEREOF

(57) A high strength steel sheet having (2-1) a base phase structure, the base phase structure being tempered martensite or tempered bainite and accounting for 50% or more in terms of a space factor relative to the whole structure, or the base phase structure comprising tempered martensite or tempered bainite which accounts for 15% or more in terms of a space factor relative to the whole structure and further comprising ferrite, the tempered martensite or the tempered bainite having a hardness which satisfies the relation of Vickers hard-

ness (Hv)≥500[C]+30[Si]+3[Mn]+50 where [] represents the content (mass %) of each element, and (2-2) a second phase structure comprising retained austenite which accounts for 3 to 30% in terms of a space factor relative to the whole structure and optionally further comprising bainite and/or martensite, the retained austenite having a C concentration (CγR) of 0.8% or more.

Description

TECHNICAL FIELD

[0001] The present invention relates to a high strength steel sheet having excellent formability (stretch flange formability and total elongation). More particularly, the present invention is concerned with a high strength steel sheet having both high strength of the order of 500 to 1400 MPa and excellent formability in an ultra-high strength region, further, a high strength steel sheet also superior in fatigue characteristic, and further a high strength steel sheet also superior in bake hardening property [hardening property after baking finish, may be referred to hereinafter also as "BH (Bake Hardening)" property] which can ensure a high strength by baking finish.

BACKGROUND ART

[0002] Steel sheets used after pressing in automobiles and industrial machines are required to possess both high strength and high ductility, which requirement has been becoming more and more strong in recent years.

[0003] Heretofore, as a steel sheet having both high strength and high ductility there has been known a composite ferrite-martensite steel sheet [dual phase (DP) steel sheet] comprising ferrite as a base and a low temperature transformation structure contained therein which structure is constituted mainly by marternsite (see, for example, JPA No. 122820/1980). This steel sheet is not only superior in ductility but also characteristic in that yield elongation does not appear due to a large quantity of free dislocation introduced into a martensite producing region, and yield stress becomes lower, and that therefore a shape freezing characteristic in working is satisfactory. By making control to the aforesaid structure there is obtained a steel sheet high in tensile strength (TS) and superior in elongation (EI) characteristic, but inferior in stretch flange formability [hole expanding property (local ductility)].

[0004] On the other hand, as a steel sheet superior in stretch flange formability there is known a two-phase steel sheet of ferrite and bainite (see, for example, JP-A No. 145965/1982). This steel sheet, in comparison with the above DP steel sheet, is superior not only in stretch flange formability but also in resistance-weldability (especially there is no softening of a heat affected zone) and in fatigue characteristic. However, there is a problem that the steel sheet in question is inferior in elongation characteristic.

[0005] Further, there is known a retained austenite steel sheet wherein retained austenite (γ_R) is produced within the structure and undergoes induced transformation (strain induced transformation: TRIP) during deformation in working to improve ductility. For example, JP-A No. 43425/1985 discloses a steel sheet which is high in strength and extremely superior in ductility and which is produced by controlling the structure of a composite phase steel sheet into a structure having 10% or more of ferrite and 10% or more of γ_R in terms of volume fraction, with the balance being bainite or martensite or a mixture thereof. It is described in the above unexamined publication that with such a structure, not only the strain induced transformation effect of γ_R but also high ductility is exhibited by soft ferrite, resulting in ductility being ensured by ferrite and γ_R and strength ensured by bainite and martensite. However, also in the case of this steel sheet, like the foregoing DP steel, there has been a problem of stretch flange formability being unsatisfactory. [0006] In view of the above-mentioned problems, studies have been made for providing a steel sheet superior in such formability as stretch flange formability (hole expanding property) while ensuring good strength-ductility balance based on y_R. JP-A No. 104947/1997 discloses a steel sheet having a three-phase microstructure of ferrite, bainite and $\gamma_{\rm R}$ and with a ferrite occupancy rate/ferrite grain size ratio and $\gamma_{\rm R}$ occupancy rate being controlled to predetermined ranges. This is based on the following knowledge: "An increase of γ_R brings about improvement of strength-ductility balance and of total elongation and the effect thereof is enhanced by microstructurization; further, as γ_R becomes finer, formability such as stretch flange formability is also improved." However, the improvement in stretch flange formability is low and it is keenly desired to provide a high strength steel sheet further superior in stretch flange formability.

[0007] Further, for the application of a high strength steel sheet to automobile components, especially such structural members as automobile body members and frames or suspension members such as suspensions and wheels, it is required for the steel sheet to be superior not only in the foregoing elongation and stretch flange formability but also in fatigue characteristic [fatigue endurance ratio (fatigue strength/yield strength)]. Generally, low alloy TRIP steels involve the problem that their fatigue characteristics are deteriorated by martensite of a second phase structure (martensite resulting from transformation of retained austenite).

[0008] Further, in applying a high strength steel sheet to suspension members of an automobile as referred to above, it is required for the steel sheet to be superior in bake hardening property (BH property). As to this BH property, it is presumed that, by baking finish after working, C (solid solution C) dissolved supersaturatedly in ferrite is fixed to dislocation in the ferrite which has been introduced during working, with consequent increase in yield strength of the steel sheet, thus leading to improvement of BH property.

[0009] However, since there is a limit to the amount of the solid solution C capable of being present supersaturatedly in ferrite, it is difficult to attain a predetermined or higher BH property. For example, there is a problem such that a large

deformation results in marked deterioration of BH property, not affording a sufficient strength. For example, also in JP-A No. 297350/2000 there is disclosed a high tensile strength hot-rolled steel sheet, but the present inventors have found out that BH (10%) is about zero although BH (2%) is high.

5 DISCLOSURE OF THE INVENTION

[0010] The present invention has been accomplished in view of the above-mentioned circumstances and it is a first object of the invention to provide a high strength steel sheet superior in formability (stretch flange formability and total elongation) and a method which can produce such a steel sheet efficiently. It is a second object of the present invention to provide a high strength steel sheet superior not only in the aforesaid formability but also in fatigue characteristic, i. e., a high strength steel sheet having well-balanced stretch flange formability, total elongation and fatigue characteristic, and a method which can produce such a steel sheet efficiently. It is a third object of the present invention to provide a high strength steel sheet superior not only in the aforesaid formability but also in bake hardening property, and a method which can produce such a steel sheet efficiently.

[0011] A first high strength steel sheet according to the present invention which could achieve the above first object of the invention:

(1) contains the following chemical components in mass %:

C: 0.06 to 0.25% Si+Al: 0.5 to 3% Mn: 0.5 to 3%

20

25

30

35

45

50

55

P: 0.15% or less (not including 0%) S: 0.02% or less (not including 0%), and

(2) has a structure comprising:

(2-1) a base phase structure, the base phase structure being tempered martensite or tempered bainite and accounting for 50% or more in terms of a space factor relative to the whole structure, or the base phase structure comprising tempered martensite or tempered bainite which accounts for 15% or more in terms of a space factor relative to the whole structure and further comprising ferrite, the tempered martensite or the tempered bainite having a hardness which satisfies the relation of Vickers hardness (Hv)≥500[C]+30 [Si]+3 [Mn]+50

where [] represents the content (mass %) of each element, and (2-2) a second phase structure comprising retained austenite which accounts for 3 to 30% in terms of a space factor relative to the whole structure and optionally further comprising bainite and/or martensite, the retained austenite having a C concentration ($C\gamma_R$) of 0.8% or more.

- 40 [0012] A second high strength steel sheet which could achieve the foregoing second object of the present invention:
 - (1) contains the following chemical components in mass %:

C: 0.06 to 0.25% Si+Al: 0.5 to 3% Mn: 0.5 to 3%

P: 0.15% or less (not including 0%) S: 0.02% or less (not including 0%), and

(2) has a structure satisfying the structure of the first high strength steel sheet described above, wherein the second phase structure satisfies the following expression (1) to enhance a fatigue characteristic:

$$(S1/S) \times 100 \le 20$$
 (1)

where S stands for a total area of the second phase structure, and S1 stands for a total area of coarse second phase crystal grains (Sb) contained in the second phase structure, the Sb corresponding to three times or more as large as an average crystal grain area (Sm) of the second phase structure.

[0013] A third high strength steel sheet according to the present invention which could achieve the foregoing third object of the present invention:

(1) contains the following chemical components in mass %:

C: 0.06 to 0.25% Si+Al: 0.5 to 3% Mn: 0.5 to 3%

10

15

20

25

30

35

40

45

50

55

P: 0.15% or less (not including 0%) S: 0.02% or less (not including 0%),

(2) has a structure satisfying the structure of the first high strength steel sheet described above, and

(3) has a hardening property (BH) after baking finish which property satisfies:

BH (2%) ≥ 70MPa and

BH (10%) \geq BH (2%)/2.

[0014] A method for producing the first high strength steel sheet described above involves the following methods according to the following structures (A) and (B):

- (A) Steel sheet with a base phase structure being tempered martensite or tempered bainite. In this case there may be adopted the following method (1) or (2):
 - (1) A method of producing the above steel sheet through a hot rolling process and a continuous annealing process or a plating process:

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than $(A_{r3}-50)^{\circ}C$ and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point (in case of a base phase structure being tempered martensite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure being tempered bainite) at an average cooling rate of not lower than 20°C/s and winding up the steel sheet,

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(2) A method of producing the above steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, and a second continuous annealing process or a plating process:

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point (in case of a base phase structure being tempered martensite) or a temperature of not lower than Ms point and not higher than Bs point (in case Of a base phase structure being tempered bainite) at an average cooling rate of not lower than 20°C/s,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A1 point and not higher than A3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(B) Steel sheet with a base phase structure comprising tempered martensite and ferrite or comprising tempered bainite and ferrite

In this case there may be adopted the following method (3) or (4):

(3) A method of producing the above steel sheet through a hot rolling process and a continuous annealing process or a plating process:

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C, cooling a resulting steel sheet to a temperature of not higher than Ms point (in the case of a base phase structure comprising tempered martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in the case of a base phase structure comprising tempered bainite and ferrite) at an average cooling rate of not lower than 10°C/s and winding up the steel sheet,

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(4) A method of producing the above steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, and a second continuous annealing process or a plating process:

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point (in the case of a base phase structure comprising tempered martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in the case of a base phase structure comprising tempered bainite and ferrite) at an average cooling rate of not lower than 10°C/s.

the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

A method for producing the foregoing second high strength steel sheet involves the following methods according to the following structures (A) and (B):

(A) Steel sheet with a base phase structure being tempered martensite or tempered bainite. In this case there may be adopted the following method (5) or (6):

10

15

20

25

30

35

40

45

50

55

(5) A method of producing the above steel sheet through a hot rolling process, a tempering process, and a continuous annealing process or a plating process,

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than $(A_{r3}$ -50)°C and a step of cooling a resulting steel sheet to a temperature of not higher than Ms (in case of a base phase structure being tempered martensite) or a temperature of not lower than Ms and not higher than Bs (in case of a base phase structure being tempered bainite) at an average cooling rate of not lower than 20°C/s and winding up the steel sheet,

the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400°C and not higher than A_{c1} point for a period of time of not less than 10 minutes and less than 2 hours, the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_{1} point and not higher than A_{3} point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(6) A method of producing the above steep sheet through a hot rolling process, a cooling process, a first continuous annealing process, a tempering process, and a second continuous annealing process or a plating process,

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point (in case of a base phase structure being tempered martensite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure being tempered

bainite) at an average cooling rate of not lower than 20°C/s,

the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400°C and not higher than A_{c1} point for a period of time of not less than 10 minutes and less than 2 hours, the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_{1} point and not higher than A_{3} point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s , and a step of holding the steel sheet in the said temperature range for 1 second or more.

(B) Steel sheet with a base phase structure comprising tempered martensite and ferrite or comprising tempered bainite and ferrite

In this case there may be adopted the following method (7) or (8):

10

15

20

25

30

35

40

45

50

55

(7) A method of producing the above steel sheet through a hot rolling process, a tempering process, and a continuous annealing process or a plating process,

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than $(A_{r3}$ -50)°C and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point (in the case of a base phase structure comprising tempered martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in the case of a base phase structure comprising tempered bainite and ferrite) at an average cooling rate of not lower than 10° C/s and winding up the steel sheet, the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400° C and not higher than A_{c1} point for a period of time of not less than 10 minutes and less than 2 hours, the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 30° C and not higher than 480° C at an average cooling rate of not lower than 3° C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(8) A method of producing the above steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, a tempering process, and a second continuous annealing process or a plating process.

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point and a step of cooling the slab to a temperature of not higher than Ms point (in the case of a base phase structure comprising tempered martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in the case of a base phase structure comprising tempered bainite and ferrite) at an average cooling rate of not lower than 10° C/s,

the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400° C and not higher than A_{c1} point for a period of time of not less than 10 minutes and less than 2 hours, the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300° C and not higher than 480° C, and a step of holding the steel sheet in the said temperature range for 1 second or more.

[0015] A method for producing the foregoing third high strength steel involves the following methods according to the following structures (A) and (B):

- (A) Steel sheet with a base phase structure being tempered martensite or tempered bainite In this case there may be adopted the following method (9) or (10):
 - (9) A method of producing the above steel sheet through a hot rolling process and a continuous annealing process or a plating process,

the hot rolling process comprising a step of controlling a heating temperature before hot rolling to a temperature of 950° to 1000°C, a step of terminating finish rolling at a temperature of not lower than $(A_{r3}$ -50) °C, and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point or a temperature of

ature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20°C/s and winding up the steel sheet,

the continuous annealing process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(10) A method of producing the above steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, and a second continuous annealing process or a plating process,

the hot rolling process comprising a step of controlling a heating temperature before hot rolling to a temperature of 950° to 1100°C,

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20°C/s,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(B) Steel sheet with a base phase structure comprising tempered martensite and ferrite or comprising tempered bainite and ferrite

In this case there may be adopted the following method (11) or (12):

(11) A method of producing the above steel sheet through a hot rolling process and a continuous annealing process or a plating process,

the hot rolling process comprising a step of controlling a heating temperature before hot rolling to a temperature of 950° to 1100°C, a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50) °C, and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10°C/s.

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more.

(12) A method of producing the above steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, and a second continuous annealing process or a plating process,

the hot rolling process comprising a step of controlling a heating temperature before hot rolling to a temperature of 950° to 1100°C,

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10° C/s,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C, and a step of holding the steel sheet in the said temperature range for 1 second or more.

7

5

15

10

20

30

25

35

40

45

50

BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

10

15

25

35

- Fig. 1 is a graph comparing between the hardness of tempered martensite and that of polygonal ferrite in the same component system;
 - Fig. 2 is a graph showing the influence of the amount of C on the hardness of tempered martensite and that of polygonal ferrite;
 - Fig. 3 schematically illustrates characteristics of retained austenite (γ_R) in the present invention;
 - Fig. 4 is an EBSP photograph (×1000) of a steel sheet (No. 3 in Table 2) according to the present invention;
 - Fig. 5 is an EBSP photograph (×1000) of a conventional retained austenite steel sheet (No. 16 in Table 3);
 - Fig. 6 illustrates the hot rolling process in the method (1), (3), (5), (7), (9), or (11) in the case where a base phase structure is tempered martensite or comprises tempered martensite and ferrite;
 - Fig. 7 illustrates the hot rolling process in the method (1), (3), (5), (7), (9), or (11) in the case where a base phase structure is tempered bainite or comprises tempered bainite and ferrite;
 - Fig. 8 illustrates the continuous annealing process or the plating process in the method (1), (3), (5), (7), (9), or (11); Fig. 9 illustrates the first continuous annealing process in the method (2), (6), or (10) in the case where a base
 - phase structure is tempered martensite;
 Fig. 10 illustrates the first continuous annealing process in the method (2), (6), or (10) in the case where a base phase structure is tempered bainite;
 - Fig. 11 illustrates the first continuous annealing process in the method (4), (8), or (12) in the case where a base phase structure comprises tempered martensite and ferrite;
 - Fig. 12 illustrates the first continuous annealing process in the method (4), (8), or (12) in the case where a base phase structure comprises tempered bainite and ferrite;
 - Fig. 13 is a TEM photograph of No. 3 in Example 1;
 - Fig. 14 is a TEM photograph of No. 3 in Example 2;
 - Fig. 15 is a TEM photograph of No. 3 in Example 3;
 - Fig. 16 is a TEM photograph of No. 3 in Example 4;
 - Fig. 17 is an optical microphotograph of No. 3 in Example 5;
 - Fig. 18 is an optical microphotograph of No. 3 in Example 6;
 - Fig. 19 is an optical microphotograph of No. 3 in Example 7;
 - Fig. 20 is an optical microphotograph of No. 3 in Example 8;
 - Fig. 21 is an SEM photograph (x4000) of No. 13 in Table 32; and Fig. 22 is an SEM photograph (×4000) of No. 12 in Table 32.

BEST MODE FOR CARRYING OUT THE INVENTION

[0017] First, the following description is provided about the first high strength steel sheet according to the present invention.

[0018] Having made earnest studies for providing a low alloy TRIP steel sheet having a high stretch flange formability and a high total elongation, the present inventors found out that the desired object could be achieved by using as a base phase structure ① tempered martensite or ② tempered bainite, which is a soft lath structure low in dislocation density, or ③ a mixed structure of the tempered martensite and ferrite, or ④ a mixed structure of the tempered bainite and ferrite, and by making control to, as a second phase structure, a structure having γ_R phase with a C concentration (Cγ_R) in retained austenite (γ_R) of not lower than 0.8%. On the basis of this finding we have accomplished the present invention.

[0019] A description will be given below about the base phase structure and the second phase structure which are the greatest feature of the first high strength steel sheet. These structures are not only present in the first steel sheet but also present in common to the second and the third steel sheet which will be described later.

- (1) Base Phase Structure
- ① A mode using a tempered martensite structure as a base phase structure
- [0020] A conventional retained austenite steel sheet has a demerit such that with progress of deformation of a soft phase (base phase) around a hard phase, voids are apt to occur in the interface with the soft phase, resulting in stretch flange formability being deteriorated. But by using not ferrite in the prior art but tempered martensite (or tempered bainite, or a mixed structure of tempered martensite and ferrite,

which will be described later) as a base phase, the formation of voids has been suppressed and stretch flange formability improved. Further, by controlling the form of lath γ_R so as to give a predetermined axial ratio, it has become possible to improve elongation and stretch flange formability as compared with the conventional γ_R .

[0021] "Tempered martensite" used in the present invention has the following features.

[0022] Firstly, "tempered martensite" in the present invention means a soft and lath structure low in dislocation density. On the other hand, martensite is a hard structure high in dislocation density and is different in this point from the tempered martensite. Both can be distinguished from each other, for example, by observation under a transmission electron microscope (TEM). A conventional γ_R steel sheet has a soft block-like ferrite structure low in dislocation density and is also different in this point from the steel sheet of the present invention which uses the tempered martensite as a base phase structure.

[0023] Secondly, the tempered martensite has a tendency that its Vickers hardness (Hv) is generally high as compared with polygonal ferrite in the same component system (a system common in point of basic components of C, Si, and Mn). Fig. 1 is a graph comparing between the hardness of tempered martensite (axis of ordinate) and that of polygonal ferrite (axis of abscissa) in steels of the same components (C: 0.1 to 0.3%, Mn: 1.0 to 2.0%, Si: 1.0 to 2.0%). As to Vickers hardness, there was made observation through an optical microscope for Lepera etching and Vickers hardness (Hv) of a base phase (gray) portion was measured (load: 1g). For reference, a straight line y=x is shown with a dotted line in the same figure, from which it is seen that the hardness of tempered martensite is higher than that of polygonal ferrite and that such a tendency becomes more outstanding as the hardness becomes higher.

[0024] In Fig. 2, the data of Fig. 1 are arranged for each of the cases of C being 0.1%, 0.2%, and 0.3%, showing the influence of the amount of C on the hardness of tempered martensite and that of polygonal ferrite. From Fig. 2 it is seen that, in the same amount of C, the hardness of tempered martensite tends to be higher than that of polygonal ferrite and that this tendency becomes outstanding as the amount of C becomes higher.

[0025] If the hardness of tempered martensite and that of polygonal ferrite are expressed in terms of relations to the basic components of C, Mn, and Si on the basis of the above results, the following relations are obtained:

Hardness (Hv) of tempered martensite

≥500[C]+30[Si]+3[Mn]+50

Hardness (Hv) of polygonal ferrite

≒200[C]+30[Si]+3[Mn]+50

where, [] represents the content (mass %) of each element.

25

30

35

[0026] We have confirmed that the hardness values (calculated values) obtained from the above relations reflect measured values.

[0027] We have also confirmed that the hardness values obtained from the above relations reflect measured values not only in case of the amount of C being 0.1 to 0.3% but also in case of the amount of C being 0.3 to 0.6%, further, 0.06 to 0.1%.

[0028] An upper limit in hardness of tempered martensite can vary depending on a component composition for example, but it is recommended that the said upper limit be approximately 500[C]+30[Si]+3[Mn]+200, preferably 500[C]+30[Si]+3[Mn]+150.

[0029] As will be described later, tempered martensite having such a characteristic is obtained by providing martensite which has been quenched from a temperature of not lower than A_3 point (γ region) and annealing the martensite at a temperature of not lower than A_1 point (about 700°C or higher) and not higher than A_3 point.

[0030] For allowing the effect of improving the stretch flange formability by the tempered martensite to be exhibited effectively, it is necessary that the tempered martensite be present not less than 50% (preferably not less than 60%) in terms of a space factor relative to the whole structure. The amount of the tempered martensite is determined in consideration of its balance with γ_R . It is recommended for control to be made appropriately so that a desired characteristic can be exhibited.

② A mode using a mixed structure of tempered martensite and ferrite as a base phase structure

[0031] In this mode, the details of tempered martensite is as described above in ①. In this mixed base phase structure, in order for the tempered martensite to function effectively, it is necessary that the tempered martensite be present not less than 15% (preferably not less than 20%) in terms of a space factor relative to the whole structure. The amount

of the tempered martensite is determined, taking into account the balance of ferrite and γ_R which will be described later. It is recommended for control to be made appropriately so that a desired characteristic can be exhibited.

[0032] The term "ferrite" as referred to herein means polygonal ferrite, i.e., ferrite low in dislocation density. The ferrite is superior in elongation characteristic but is inferior in stretch flange formability. On the other hand, a steel sheet according to the present invention having the foregoing mixed structure of ferrite and tempered martensite is improved in stretch flange formability while retaining an excellent elongation characteristic. Thus, in both structural construction and resulting characteristics the steel sheet of the present invention is different from the conventional TRIP steel sheet. [0033] In order for the action based on the present invention to be exhibited effectively it is recommended that ferrite be present not less than 5% (preferably not less than 10%) in terms of a space factor relative to the whole structure. However, if the content of ferrite exceeds 60%, it will become difficult to ensure a required strength; besides, like the conventional TRIP steel sheet, there will occur many voids from the interface between ferrite and a second phase, with consequent deterioration of the stretch flange formability. It is therefore recommended that the upper limit of ferrite content be set at 60%. Controlling the upper limit to less than 30% is very preferable because the ferrite-second phase (γ_R, martensite) interface will diminish to suppress the formation of voids, thus leading to improvement of the stretch flange formability.

3 A mode using tempered bainite as a base phase structure

15

20

35

45

50

[0034] "Tempered bainite" used in the present invention has the following features.

[0035] Firstly, "tempered bainite" in the present invention means a soft and lath structure low in dislocation density. On the other hand, bainite is a hard structure high in dislocation density and is different in this point from the tempered bainite. Both can be distinguished from each other, for example, by observation under a transmission electron microscope (TEM). A conventional γ_R steel sheet has a soft block-like soft structure low in dislocation density and is also different in this point from the steel sheet of the present invention which uses the tempered bainite as a base phase structure.

[0036] Secondly, the tempered bainite has a tendency that its Vickers hardness (Hv) is generally high as compared with polygonal ferrite in the same component system (a system common in point of basic components of C, Si, and Mn). Fig. 1 is a graph comparing the hardness of tempered bainite and that of tempered martensite (axis of ordinate) with the hardness of polygonal ferrite (axis of abscissa) in steels of the same components (C: 0.1 to 0.3%, Mn: 1.0 to 2.0%, Si: 1.0 to 2.0%). As to Vickers hardness, there was made observation through an optical microscope for Lepera etching and Vickers hardness of a base phase (gray) portion was measured (load: 1g). For reference, a straight line y=x is shown with a dotted line in the same figure, from which it is seen that the hardness of tempered martensite is higher than that of polygonal ferrite and that such a tendency becomes more outstanding as the hardness becomes higher

[0037] In Fig. 2, the data of Fig. 1 are arranged for each of the cases of C being 0.1%, 0.2%, and 0.3%, showing the influence of the amount of C on the hardness of tempered bainite, tempered martensite, and polygonal ferrite. From Fig. 2 it is seen that, in the same amount of C, the hardness of tempered bainite tends to be higher than that of polygonal ferrite and that this tendency becomes more outstanding as the amount of C increases.

[0038] On the basis of these results, if the hardness of tempered bainite and that of polygonal ferrite are expressed in terms of relations to the basic components of C, Mn, and Si, there are obtained the following relations:

Hardness (Hv) of tempered bainite

≥500[C]+30[Si]+3[Mn]+50

Hardness (Hv) of polygonal ferrite

≒299[C]+30[Si]+3[Mn]+50

where, [] represents the content (mass %) of each element.

[0039] We have confirmed that the hardness values (calculated values) obtained from the above relations reflect measured values.

[0040] We have also confirmed that the hardness values obtained from the above relations reflect measured values not only in case of the amount of C being 0.1 to 0.3% but also in case of the amount of C being 0.3 to 0.6%, further, 0.06 to 0.1%.

[0041] An upper limit in hardness of tempered bainite can vary depending on a component composition for example,

but it is recommended that the said upper limit be approximately 500[C]+30[Si]+3[Mn]+200, preferably 500[C]+30[Si]+3[Mn]+150.

[0042] As will be described later, tempered bainite having such a characteristic is obtained by providing bainite which has been quenched from a temperature of not lower than A3 point (γ region) to a temperature of not lower than Ms point and not higher than Bs point and by annealing the bainite at a temperature of not lower than A₁ point (about 700°C or higher) and not higher than A₃ point.

[0043] For allowing the effect of improving the stretch flange formability by the tempered bainite to be exhibited effectively, it is recommended that the tempered bainite be present not less than 50% (preferably not less than 60%) in terms of a space factor relative to the whole structure. The amount of the tempered bainite is determined in consideration of its balance with γ_R which will be described later. It is recommended for control to be made appropriately so that a desired characteristic can be exhibited.

(4) A mode using a mixed structure of tempered bainite and ferrite as a base phase structure

[0044] The details of the structures (tempered bainite and ferrite) in this mode are as described in the above ③ and ②.

[0045] In this mixed based phase structure, in order for the tempered bainite to function effectively, it is necessary that the tempered bainite be present not less than 15% (preferably not less than 20%) in terms of a space factor relative to the whole structure. The amount of the tempered bainite is determined, taking into account the balance of ferrite and γ_R which will be described later. It is recommended for control to be made appropriately so that a desired characteristic can be exhibited.

(2) Second Phase Structure

15

35

[0046] A description will be given below of the second phase structure in each of the above modes ① to ④ . Retained Austenite (γ_R)

[0047] γ_R is effective in improving the fatigue characteristic and in order for this function to be exhibited effectively it is necessary that γ_R be present 3% (preferably 5% or more) in terms of a space factor relative to the whole structure. Particularly, in the case where a base phase structure is a mixed structure of tempered martensite and ferrite, it is preferable that γ_R be present 5% or more (more preferably 7% or more). If γ_R is present in a large amount, the stretch flange formability will be deteriorated. Therefore, we have determined an upper limit of the γ_R content to be 30%. Especially when a base phase structure is a single phase structure of tempered martensite or tempered bainite, it is recommended that the upper limit be controlled to 20% (more preferably 15%). On the other hand, if a base phase structure is a mixed structure of tempered martensite and ferrite, it is recommended to set the upper limit at 25%.

[0048] Further, it is necessary that the concentration of C ($C\gamma_R$) in the γ_R be not less than 0.8%. The $C\gamma_R$ exerts a great influence on the characteristic of TRIP (transformation induced plasticity), and controlling the $C\gamma_R$ to 0.8% or more will be effective particularly in improving elongation, etc. Preferably, the $C\gamma_R$ is not less than 1%, more preferably not less than 1.2%. Although the higher the $C\gamma_R$, the more preferable, an adjustable upper limit in practical operation is considered to be approximately 1.6%

[0049] In a conventional TRIP steel sheet, γ_R of random orientation is present in a pre-austenite grain boundary, while, in the present invention, γ_R having the same orientation along for example a block boundary within the same packet is apt to be present. A feature of the γ_R in the present invention is illustrated schematically in Fig. 3. In the same figure, the numeral 1 denotes a pre-austenite grain boundary, numeral 2 denotes a packet grain boundary, numeral 3 denotes a block grain boundary, and numeral 4 denotes martensite lath.

[0050] For the purpose of making this point clearer, Figs. 4 and 5 illustrate results obtained using EBSP photographs (color maps: magnification 1000 times) of sections in sheet thickness direction of a steel sheet according to the present invention (No. 3 in Table 2 to be described later) and aconventional γ_R steel sheet (No. 16 in Table 3 to be described later). The EBSP stands for Electron Back Scatter Diffraction Pattern, and as an EBSP analyzer there was used an analyzer manufactured by TexSEM Laboratories.

[0051] With the photographs, γ_R in the sheet thickness direction of different crystal orientations can be identified on the basis of a color tone difference. That is, if γ_R is checked by a crystal orientation observing method using EBSP different from the ordinary structure observation, a large number of γ_R of random orientations are found to be present in a pre-austenite grain boundary in the conventional steel sheet (Fig. 5), while in the steel sheet according to the present invention (Fig. 4) it can be seen that a large number of γ_R having the same orientation are present within a certain region, though both of the steel sheet have almost the same structure in appearance. It is presumed that, in the steel sheet of the present invention, γ_R having the same orientation is produced along a block boundary for example. In this point the γ_R in the steel of the present invention has a different form from the that in the conventional steel sheet.

[0052] It is preferable that the γ_R in the present invention be in lath form. By "lath form" is meant an average axial ratio (major axis/minor axis) of 2 or more (preferably 4 or more, a preferred upper limit being 30 or less). The γ_R in lath form not only affords the same TRIP effect as in the prior art but also affords improved elongation and a more outstanding improvement in stretch flange formability.

Others: Bainite and/or Martensite (including 0%)

[0053] In addition to the above retained austenite, the second phase structure may further contain bainite and/or martensite as other structures insofar as the operation of the present invention is not impaired. These structures may remain inevitably in the manufacturing process of the present invention, but the smaller their content, the better. In the second high strength steel sheet according to the present invention, which will be described later, mention may be made mainly of martensite as another structure.

[0054] Next, reference will be made to basic components which constitute the steel sheet of the present invention. In the following description, the amounts of chemical components are all in mass %.

[0055] C is an element essential for ensuring a high strength and for ensuring γ_R . More specifically, C is an important element for providing a sufficient content of C in γ phase and for allowing a desired γ phase to remain even at room temperature. C is useful in improving the balance of strength and stretch flange formability. Particularly, if C is added in an amount of 0.25% or more, the amount of γ_R increases and C concentration to γ_R becomes higher, so that there can be obtained an extremely high strength-elongation balance.

[0056] However, if the amount of C added exceeds 0.6%, not only the effect thereof will become saturated, but also there will occur a defect caused by, for example, center segregation into casting. Moreover, if C is added in an amount of 0.25% or more, a deterioration of weldability will result.

[0057] Thus, if weldability is mainly taken into account, it is preferable to control the amount of C to 0.06 to 0.25% (more preferably 0.2% or less, still more preferably 0.15% or less). On the other hand, in the case where high elongation is required without the need of spot welding, it is recommended to control the amount of C to 0.25 to 0.6% (more preferably 0.3% or more). Si+Al: 0.5 to 3%

[0058] Si and Al are elements which effectively prevent the formation of carbide by decomposition of γ_R . Especially, Si is useful also as a solid solution hardening element. For allowing such a function to be exhibited effectively it is necessary that Si and Al be added a total of 0.5% or more, preferably 0.7% or more, more preferably 1% or more. But even if both elements are added in an amount exceeding 3% in total, the aforesaid effect will become saturated, which is wasteful from the economic standpoint; besides, the addition thereof in a large amount will cause hot shortness. For this reason, an upper limit thereof is set at 3%, preferably 2.5% or less, more preferably 2% or less.

[0059] Mn is an element necessary for stabilizing γ and for obtaining a desired γ_R . For allowing such a function to be exhibited effectively it is necessary to add Mn in an amount of 0.5% or more, preferably 0.7% or more, more preferably 1% or more. However, if Mn is added in an amount exceeding 3%, there will arise a bad influence such as cast piece cracking. Preferably, Mn is added in an amount of not larger than 2.5%, more preferably not larger than 2%. P: 0.15% or less (not including 0%)

[0060] P is an element effective for ensuring a desired γ_R . For allowing such a function to be exhibited effectively it is recommended to add P in an amount of 0.03% or more (more preferably 0.05% or more). However, if the amount of P added exceeds 0.1%, secondary formability will be deteriorated. More preferably, P is added in an amount of not larger than 0.1%. S: 0.02% or less (including 0%)

[0061] S is an element which forms a sulfide inclusion such as MnS and acts as an origin of cracking, with consequent deterioration of formability. The content of S is preferably not more than 0.02%, more preferably not more than 0.015%.

[0062] The steel of the present invention basically contains the above components, with the balance being substantially iron and impurities, but the following components may be added insofar as they do not impair the operation of the present invention: At least one of Mo: 1% or less (not including 0%), Ni: 0.5% or less (not including 0%), Cr: 1% or less (not including 0%)

[0063] These elements are not only useful as steel strengthening elements but also effective in stabilizing γ_R and ensuring a predetermined amount thereof. For allowing such functions to be exhibited effectively, it is recommended that these elements be added in such amounts as Mo: 0.05% or more (more preferably 0.1% or more), Ni: 0.05% or more (more preferably 0.1% or more), Cu: 0.05% or more (more preferably 0.1% or more), and Cr: 0.05% or more (more preferably 0.1% or more). However, even if Mo and Cr are added in an amount exceeding 1% and Ni and Cu are added in an amount exceeding 0.5%, the above effects will become saturated, which is wasteful from the economic standpoint. More preferably, these elements are added in such amounts as Mo: 0.8% or less, Ni: 0.4% or less, Cu: 0.4% or less, and Cr: 0.8% or less.

At least one of Ti: 0.1% or less (not including 0%), Nb: 0.1% or less (not including 0%), V: 0.1% or less (not including 0%) [0064] These elements have a precipitation strengthening and microstructurization effect and are useful for the attainment of a high strength. For allowing these functions to be exhibited effectively it is recommended that these ele-

ments be added in such amounts as Ti: 0.01% or more (preferably 0.02% or more), Nb: 0.01% or more (more preferably 0.02% or more), and V: 0.01% or more (more preferably 0.02% or more). However, with respect to all of these elements, an amount exceeding 0.1% will result in saturation of the above effects, which is wasteful from the economic standpoint. More preferably, these elements are added in such amounts as Ti: 0.08% or less, Nb: 0.08% or less, and V: 0.08% or less.

Ca: 0.003% or less and/or REM: 0.003% or less (not including 0%)

[0065] Ca and REM (rare earth elements) function to control the form of sulfide in steel and are effective in improving formability. As examples of rare earth elements employable in the present invention are mentioned Sc, Y, and lanthanoid. For allowing the above effect to be exhibited effectively it is recommended that these elements be each added in an amount of 0.0003% or more (more preferably 0.0005% or more). However, even an amount thereof exceeding 0.003% would result in saturation of the above effect, which is wasteful from the economic standpoint. It is more preferable that they each be added in an amount of 0.0025% or less.

[0066] Next, how to produce the foregoing first steel sheet will be described below structure by structure.

(A) Steel sheet with a base phase structure being tempered martensite or tempered bainite

[0067] The following methods (1) and (2) are mentioned as typical methods for producing this steel sheet.

(1) [Hot Rolling Process] → [Continuous Annealing Process Plating Process]

[0068] This method produces a desired steel sheet through ① a hot rolling process or ② a continuous annealing process or a plating process. The hot rolling process ① is illustrated in Fig. 6 (in case of a base phase structure being tempered martensite) and Fig. 7 (in case of a base phase structure being quenched bainite), and the continuous annealing process or plating process ② is illustrated in Fig. 8.

1 Hot Rolling Process

20

[0069] The hot rolling process comprises a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C and a step of cooling the rolled steel sheet to a temperature of not higher than Ms point (in case of a base phase structure being tempered martensite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure being tempered bainite) at an average cooling rate of not lower than 20°C /s and winding up the steel sheet. The hot rolling conditions have been established for obtaining a desired base phase structure (quenched martensite or quenched bainite).

[0070] No matter which base phase structure may be adopted, it is recommended that a hot rolling finish temperature (FDT) be set at a temperature of not lower than $(A_{r3}$ -50)°C, preferably not lower than A_{r3} point. This is for obtaining a desired quenched martensite or quenched bainite in cooperation with the "cooling to not higher than Ms point" or "cooling to not lower than Ms point and not higher than Bs point" which follows the hot rolling process.

[0071] It is recommended that the cooling, which follows the hot rolling process, be carried out to a temperature of not higher than Ms point at an average cooling rate of not lower than 20° C/s while avoiding ferrite transformation and pearlite transformation. This enables a desired quenched martensite or quenched bainite to be obtained without formation of polygonal ferrite, etc. The average cooling rate after the hot rolling also exerts an influence on the final form of γ_R . If the average cooling rate is high, there will be obtained a lath form. An upper limit of the average cooling rate is not specially limited, and the higher, the better. But in relation to the actual operation level it is recommended to make control appropriately.

[0072] In the case where quenched martensite is to be obtained, it is necessary that the winding temperature (CT) be set at a temperature of not higher than Ms point [calculating expression: Ms = 561-474×[C]-33×[Mn]-17×[Ni]-17× [Cr]-21×[Mo], where [] represents mass % of each element. This is because, if the winding temperature exceeds Ms point, it is impossible to obtain a desired quenched martensite and there are produced bainite, etc.

[0073] On the other hand, when quenched bainite is to be obtained, it is necessary that the winding temperature (CT) should be not lower than Ms point and not higher than Bs point [calculating expression: the expression of Ms is the same as above; Bs = $830-270\times[C]-90\times[Mn]-37\times[Ni]-70\times[Cr]-80\times[Mo]$, where represents mass % of each element]. This is because, if the winding temperature exceeds Bs point, a desired quenched bainite is not obtained, while if it is lower than Ms point, there is produced tempered martensite.

[0074] In the hot rolling process it is recommended that each of the foregoing steps be controlled appropriately in order to obtain a desired quenched martensite or quenched bainite. But as to other conditions, including the heating temperature, there may be selected conventional conditions (e.g., about 1000 to 1300°C) suitably.

② Continuous Annealing Process or Plating Process

35

[0075] The above hot rolling process ① is followed by continuous annealing or plating. However, if the shape after the hot rolling is not satisfactory, then for the purpose of correcting the shape there may be applied a cooling process after the hot rolling ① and before the continuous annealing or plating ②. In this case, it is recommended that the cold rolling rate be set at 1 to 30%. This is because, if cold rolling is carried out at a cold rolling rate exceeding 30%, the rolling load will increase and it will become difficult to effect cold rolling.

[0076] The continuous annealing or plating process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more. These conditions have been established for tempering the base phase structure (quenched martensite or quenched bainite) produced in the hot rolling process to afford not only a desired tempered martensite but also a fine second phase.

[0077] First, by soaking at a temperature of not lower than A_1 point and not higher than A_3 point (T3 in Fig. 8) for 10 to 600 .seconds (t3 in Fig. 8) there is produced a desired structure (tempered martensite and γ_R , or tempered bainite and γ_R) (annealing in two phase region). This is because, if the soaking temperature exceeds the above temperature range, the resulting product will all be γ_R , while if it is lower than the above temperature range, it will be impossible to obtain the desired γ_R . Further, controlling the above heating holding time (t3) is particularly important for obtaining the desired structure. This is because, if the holding time is shorter than 10 seconds, tempering will be insufficient and there will not be obtained the desired base phase structure (tempered martensite or tempered bainite). Preferably, the holding time is not shorter than 20 seconds, more preferably not shorter than 30 seconds. If the holding time exceeds 600 seconds, it will become impossible to maintain the lath structure which is a feature of tempered martensite or tempered bainite, with consequent deterioration of mechanical characteristics. Preferably, the holding time is not longer than 500 seconds, more preferably not longer than 400 seconds.

[0078] Next, cooling is made to a temperature (bainite transformation: T4 in Fig. 8) of not lower than 300°C (preferably not lower than 350°C) and not higher than 480°C (preferably not higher than 450°C) while controlling an average cooling rate (CR) to a temperature of not lower than 3°C/s (preferably not lower than 5°C/s) and while avoiding pearlite transformation, and the steel sheet is held in this temperature range for 1 second or more (preferably 5 seconds or more: t4 in Fig. 8), whereby the concentration of C to γ_R can be attained in a large quantity and in an extremely short time. [0079] If the average cooling speed is lower than the above range, the desired structure will not be obtained, with formation of pearlite. An upper limit of the average cooling rate is not specially limited and the higher, the better. However, in relation to the actual operation level it is recommended that control be made appropriately.

[0080] For allowing a desired amount of C γ to be produced efficiently during cooling it is recommended to adopt a two-step cooling method comprising ① a step of cooling the steel sheet to a temperature (Tq) of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s and ② a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s.

[0081] If cooling is performed to the above temperature range ① at an average cooling rate of not higher than 15°C/s (preferably not higher than 10°C/s), C is concentrated to γ in a larger amount. Next, if cooling is performed to the above temperature range ② at an average cooling rate of not lower than 20°C/s (preferably not lower than 30°C/s, more preferably not lower than 40°C/s), the transformation of γ into pearlite is suppressed and γ remains behind even at a low temperature. As a result, there is obtained a desired γ structure. An upper limit of the average cooling rate is not specially limited. The higher, the more desirable. However, in relation to the actual operation level, it is recommended to control the upper limit appropriately.

[0082] The above cooling is followed by austempering. The austempering temperature (T4) is important for ensuring a desired structure and allowing the present invention to fulfill its operation. If the austempering temperature is controlled to a temperature in the foregoing range, there will be obtained γ_R stably in a large quantity, whereby TRIP effect based on γ_R is exhibited. In contrast therewith, if the austempering temperature is lower than 300°C, martensite phase will exist, while if it exceeds 480°C, the amount of bainite phase will increase to a great extent.

[0083] An upper limit of the holding time (t4) is not specially limited, but if the time taken for transformation of austenite into bainite is taken into account, it is recommended to control the upper limit to a time of not longer than 3000 seconds, preferably not longer than 2000 seconds.

[0084] In the above process, bainite structure may be produced insofar as it does not impair the operation of the present invention, in addition to the desired base phase structure (tempered martensite or tempered bainite) and martensite. Further, plating and alloying may be performed insofar as the desired structure is not decomposed markedly nor does the application of plating and alloying impair the operation of the present invention.

[0085] For producing an alloyed, hot dip galvanized steel sheet it is recommended to carry out a predetermined Fe pre-plating prior to the above plating. This for the following reason. This causes an Fe plated layer not affected by surface concentration of Si to be formed on the steel sheet surface and the number of coarse Zn-Fe alloy crystal grains

present on the alloyed, hot dip galvanized layer surface is decreased to a remarkable extent. Thus, even at a low temperature, alloying is carried out quickly by diffusion of the steel sheet and the Zn plated layer, whereby not only γ_R , which is effective in obtaining a high elongation characteristic stable, is obtained efficiently, but also it is possible to prevent the occurrence of disadvantages caused by the addition of a large amount of Si [e.g., deterioration of powdering resistance caused by Si oxide, failure to effect plating, deterioration in sliding property (slip characteristic) of the plated surface].

[0086] The coarse Zn-Fe alloy crystal grains present on the alloyed, hot dip galvanized layer surface mean Zn-Fe alloy crystal grains each having a major side twice as long as a minor side, or less, and having an average grain diameter of 4 μ m or more. By Fe pre-plating it is possible to decrease the number of such coarse crystal grains to five or less (preferably three or less)/70 μ m \times 50 μ m. The average grain diameter of the Zn-Fe alloy crystal grains is determined by observing the alloyed layer surface through an SEM (scanning electron microscope) (1500×) and calculating an average length between a length measured in a largest length direction of the crystal grains present in a visual field of 70 μ m \times 50 μ m and a length in a direction orthogonal thereto.

[0087] More specifically, the above (a) Fe pre-plating is carried out before the steel sheet passes a continuous plating line [a series of such line as CGL: annealing \rightarrow (b) hot dip galvanizing (same as the above ②) \rightarrow alloying].

[0088] The steps (a) to (c) will be described below.

(a) Fe Pre-plating

25

55

[0089] The pre-plating step (a) is carried out under conditions which satisfy the following relation (1):

where W stands for the amount of hot dip Zn plating deposited (g/m²) and X stands for the amount of Fe pre-plating deposited (g/m²).

[0090] First, the amount (X) of Fe pre-plating is controlled to a value of not smaller than 0.06W in relation to the amount (W) of hot dip Zn plating deposited. This is because, if X is less than 0.06W, Si concentrates on the steel sheet surface as alloying proceeds, causing the formation of coarse Zn-Fe alloy crystal grains which exert a bad influence on the sliding property of the plated surface. Preferably, X is 0.08W or more, more preferably 0.10W or more. An upper limit of W is not specially limited from the standpoint of improving the sliding property of the plated surface, but if X is too much, an increase of cost and deterioration of productivity will result. Therefore, it is recommended to control the upper limit to 0.30W, preferably 0.28W or less, more preferably 0.25W or less.

[0091] For effecting Fe pre-plating under conditions which satisfy the foregoing relation (1), it is recommended to carry out the conventional plating while paying attention to electrolysis time. To be more specific, it is recommended to set a plating bath composition to FeSO₄·7H₂O: 300 to 450 g/L), a plating bath pH to 1.7 to 2.6, a plating liquid temperature to 40 to 70°C, a current density to 10 to 250A/dm², and control the electrolysis time appropriately in accordance with a desired amount of plating to be deposited.

[0092] Since the Fe pre-plating is followed by hot dip galvanizing and subsequent alloying, the Fe pre-plating vanishes in the plated surface layer portion, but at the interface between the steel sheet and the alloyed, hot dip galvanized layer there may remain the Fe pre-plating layer insofar as it does not impair the operation of the present invention.

(b) HoL Dip Galvanizing

[0093] The Fe plating is followed by annealing and subsequent hot dip galvanizing referred to in the above ②. The detailed thereof are as described in the above ②.

[0094] In the hot dip galvanizing step it is recommended that an effective Al concentration in the plating bath be controlled to a value in the range of 0.08 to 0.12 mass % and the plating bath temperature to a temperature in the range of 445° to 500 °C. This is because alloying is accelerated and powdering resistance is improved remarkably thereby.

[0095] First, it is preferable that an effective Al concentration in the plating bath be controlled to 0.08 to 0.12%. The "effective Al concentration in the plating bath" means the concentration free Al contained in the plating bath and in more detail it is represented by the following expression:

[Effective Al concentration] = [Total Al concentration] - [Fe concentration (%) in the plating bath]

[0096] Generally, in the hot dip galvanizing step the effective Al concentration in the plating bath is controlled to a

value in the range of about 0.08 to 0.14%. However, in the above series of methods (a) to (c) the alloying temperature is set low for the purpose of obtaining a desired γ_R , which will be described later. Therefore, alloying no longer takes place as the AI concentration becomes higher. In the present invention, therefore, the upper limit of AI concentration is controlled preferably to 0.12% (more preferably 0.11%). However, if the AI concentration is lower than 0.08%, a lowering of powdering resistance will result. More preferably, the AI concentration is not lower than 0.09%.

[0097] It is preferable that the plating bath temperature be controlled to a temperature in the range of 445° to 500°C. A general plating bath temperature is 430° to 500°C, but in the present invention, since Si which suppresses alloying is added in a large amount, the plating bath temperature range is set to the above range for the purpose of accelerating alloying and enhancing the powdering resistance. If the plating bath temperature is lower than 445°C, there will remain an η layer (pure zinc). More preferably, the plating bath temperature is not lower than 450°C. On the other hand, a plating bath temperature exceeding. 500°C will result in a lowering of powdering resistance. More preferably, the plating bath temperature is not higher than 490°C.

(c) Alloying

10

15

20

30

35

50

[0098] It is recommended that alloying be carried out at a temperature of 400° to 470°C for 5 to 100 seconds. If the alloying temperature is lower, the alloying will slow down, with consequent deterioration of productivity. On the other hand, if the alloying temperature is higher, γ_R once produced will vanish. If the alloying time is shorter, alloying does not take place and there will remain an η layer (pure zinc) on the surface. Conversely, a longer alloying time will lead to a lowering of productivity.

[0099] Although reference has been made above to preferred modes which go through Fe pre-plating in the production of an alloyed, hot dip galvanized steel sheet, the Fe pre-plating is applicable not only to the production of an alloyed hot dip galvanized steel sheet but also to the production of a ht dip galvanized steel sheet. More specifically, in producing a hot dip galvanized steel sheet, if the foregoing (a) Fe pre-plating and (b) hot dip galvanizing are performed, an Fe plated layer not affected by surface concentration of Si is formed on the steel sheet surface, so that not only there is efficiently obtained γ_R which is effective in obtaining a high elongation characteristic, but also the occurrence of disadvantages caused by the addition of a large amount of Si can be prevented. Thus, the application of the plating steps in question is extremely useful.

(2) [Hot rolling process] → [Cold rolling process] → [First continuous annealing process] → [Second continuous annealing process or Plating process]

[0100] This method produces a desired steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, and a second annealing process or a plating process. Of these processes, the first continuous annealing process which features this method is illustrated in Fig. 9 (in case of a base phase structure being quenched martensite) and Fig. 10 (in case of a base phase structure being quenched bainite).

[0101] First, the hot rolling process and the cooling process are carried out. Conditions for these processes are not specially limited, but there may be selected suitable working conditions. This is because in this method (2) it is not that a desired structure is ensured through the hot rolling process and the cooling process, but this method is characteristic in that the desired structure is obtained by controlling the subsequent first continuous annealing process and second continuous annealing process or plating process.

[0102] To be more specific, in the hot rolling process there may be adopted for example conditions such that after the end of hot rolling at a temperature of not lower than Ar₃ point, cooling is performed at an average cooling rate of about 30°C/s, followed by winding at a temperature of about 500° to 600°C. In the cooling process it is recommended that cold rolling be carried out at a cooling rate of about 30% to 70%. Of course, no limitation is made thereto.

[0103] Next, a description will be given below about the first continuous annealing process ③ and the second continuous annealing process or plating process ④ as processes which feature the method (2).

③ First Continuous Annealing Process (First Continuous Annealing Process)

[0104] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of 10°C/s. These conditions have been set for obtaining a desired base phase structure (quenched martensite or quenched bainite).

[0105] First, after soaking to a temperature of not lower than A₃ point (T1 in Figs. 9 and 10) (preferably 1300°C or lower), cooling is performed to a temperature of not higher than Ms point (T2 in Fig. 9) or a temperature of not lower than Ms point and not higher than Bs point (T2 in Fig. 10) while controlling an average cooling rate (CR) to a 20°C/s or higher (preferably 30°C/s or higher), whereby a desired quenched martensite or quenched bainite is obtained while

avoiding ferrite transformation or pearlite transformation.

[0106] If the average cooling rate (CR) is lower than the above cooling rate, there will be produced ferrite and pearlite and the desired structure will not be obtained. An upper limit of the average cooling rate is not specially limited. The higher, the better. However, it is recommended to control the upper limit appropriately in relation to the. actual operation level

- Second Continuous Annealing Process (Subsequent Continuous Annealing Process) or Plating Process
- [0107] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range from 1 second or more.
 - [0108] This process is the same as the continuous annealing process or plating process② described in the foregoing method (1). This process has been established for tempering the base phase structure (quenched martensite or quenched bainite) produced in the first continuous annealing process③ to obtain not only a desired tempered martensite but also a fine, second phase structure.
 - **[0109]** For producing an alloyed, hot dip galvanized steel sheet it is recommended to adopt the foregoing series of methods (a) to (c). This is because the number of "coarse crystal grains" present on the surface of the alloyed, hot dip galvanized layer is decreased, so that there is obtained a steel sheet superior also in the sliding property of the plated surface while ensuring the ductility improving effect based on γ_R . The details thereof will become apparent by reference to the above methods.
 - (B) Steel sheet with a base phase structure being a mixed structure of (tempered martensite and ferrite) or (tempered bainite and ferrite)
 - [0110] The following methods (3) and (4) are mentioned as typical methods for producing this steel sheet.
 - (3) [Hot rolling process] → [Continuous annealing process or Plating process]
- [0111] This method produces a desired steel sheet through ① a hot rolling process and ② a continuous annealing process or a plating process. The hot rolling process ① is illustrated in Fig. 6 in case of a base phase structure comprising quenched martensite and ferrite and in Fig. 7 in case of a base phase structure comprising quenched bainite and ferrite. The continuous annealing process or plating process ② is illustrated in Fig. 8.
- 35 1 Hot Rolling Process

20

25

- [0112] The hot rolling process comprises a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C and a step of cooling the rolled steel sheet to a temperature of not higher than Ms point (in case of a base phase structure comprising quenched martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure comprising quenched bainite and ferrite) at an average cooling rate of not lower than 10°C/s and winding up the steel sheet These hot rolling conditions have been established for obtaining a desired base phase structure (a mixed structure of quenched martensite and ferrite or of quenched bainite and ferrite), of which the hot rolling finish condition is as described in the hot rolling process ① in connection with the foregoing method (1).
- [0113] The hot rolling finish is followed by cooling. In the method according to the present invention, by controlling the cooling rate (CR), ferrite is partially produced during cooling to provide a two phase region (α + γ), followed by cooling to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point, whereby it is possible to obtain a desired mixed structure.
 - [0114] The following methods (a) and (b), preferably (b), are mentioned as methods for the above cooling.
 - (a) A one-step cooling method in which, at an average cooling rate of not lower than 10°C/s (preferably not lower than 20°C/s), cooling is made to a temperature of not higher than M_s point or a temperature of not lower than Ms point and not higher than Bs point while avoiding pearlite transformation. At this time, by controlling the average cooling rate appropriately, there can be obtained a desired mixed structure (quenched martensite and ferrite, or quenched bainite and ferrite). In the present invention it is recommended that the content of ferrite be controlled to a value of not lower than 5% and lower than 30% in terms of a space factor relative to the whole structure. In this case, it is preferred that the average cooling rate be controlled to 30°C/s or higher.
 - **[0115]** The average cooling rate after hot rolling exerts an influence on not only the formation of ferrite but also the final form of γ_R . If the average cooling rate is high (preferably 50°C/s or higher), there will be obtained a lath form. An

upper limit of the average cooling rate is not specially limited. The higher, the better. However, in relation to the actual operation level it is recommended to control the upper limit appropriately.

[0116] Further, for allowing a desired mixed structure to be produced more efficiently during cooling, it is recommended to adopt (b) a two-step cooling method which comprises ① a step of cooling the steel sheet to a temperature in the range of 700±100°C (preferably 700±50°C) at an average cooling rate (CR1) of not lower than 30°C/s, ② a step of cooling the steel sheet with air in the said temperature range for 1 to 30 seconds, and ③ a subsequent step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate (CR2) of not lower than 30°C/s and winding up the steel sheet. By such stepwise cooling, polygonal ferrite low in dislocation density can be produced in a more positive manner.

[0117] In both temperature ranges ① and ③ it is recommended that cooling be done at an average cooling rate of not lower than 30°C/s, preferably not lower than 40°C/s. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0118] In the above temperature range ② it is preferable that air cooling be done for 1 second or more, more preferably 3 seconds or more, whereby a predetermined amount of ferrite can be obtained efficiently. However, if the air cooling time exceeds 30 seconds, ferrite will be produced in an amount exceeding a preferred quantitative range thereof, resulting in that not only it is impossible to obtain a desired strength, but also the stretch flange formability is deteriorated. Preferably, the air cooling time is not longer than 20 seconds.

[0119] The winding temperature (CT) is as described in the foregoing (1)-①.

[0120] In the hot rolling process it is recommended that the constituent steps be controlled appropriately in order to obtain a desired base phase structure. But as to other conditions, including heating temperature, there may be adopted conventional conditions (e.g., about 1000 to 1300°C) as necessary.

② Continuous Annealing Process or Plating Process

[0121] After the hot rolling process ① there is performed continuous annealing or plating. But if the shape after hot rolling is unsatisfactory, then for the purpose of correcting the shape there may be performed cooling after the hot rolling ① and before the continuous annealing or plating ② . It is recommended that the cooling rate be set in the range of 1% to 30%.

[0122] This continuous annealing or plating process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more. These conditions have been established for tempering the base phase structure produced in the hot rolling process to afford not only a desired mixed structure (tempered martensite and ferrite, or tempered bainite and ferrite) but also a desired second phase structure. The details thereof are as described above in the continuous annealing process or plating process ② in connection with the foregoing method (1).

[0123] The above cooling is followed by austempering, the details of which are as described above in the continuous annealing process or plating process ② in connection with the foregoing method (1).

[0124] For producing an alloyed, hot dip galvanized steel sheet it is recommended to adopt the series of methods (a) to (c) described above. This is because by adopting those methods the number of "coarse grain particles" present on the surface of the alloyed, hot dip galvanized layer is decreased, so that there is obtained a steel sheet superior also in the sliding property of the plated surface while ensuring the ductility improving effect based on γ_R . The details thereof will become apparent by reference to the foregoing method.

(4) [Hot rolling process] → [Cold rolling process] → [First continuous annealing process] → [Second continuous annealing process or plating process]

[0125] This method (4) produces a desired steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, and a second continuous annealing process or a plating process. Of these processes, the first continuous annealing process which features the method (4) is illustrated in Fig. 11 in case of a base phase structure comprising quenched marternsite and ferrite and in Fig. 12 in case of a base phase structure comprising quenched bainite and ferrite.

[0126] First, hot rolling and cooling are carried out. These processes are not specially limited. Usually, suitable working conditions may be selected and adopted, the details of which are as described in connection with the foregoing method (2).

[0127] Next, a description will be given below about ③ the first continuous annealing process and ④ the second continuous annealing process or the plating process as processes which feature the method (4).

③ First Continuous Annealing Process (initial continuous annealing process)

[0128] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point (in case of a base phase structure comprising quenched martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure comprising quenched bainite and ferrite) at an average cooling rate of not lower than 10°C/s. These conditions have been established for obtaining a desired base phase structure.

[0129] First, soaking is performed to a temperature of not lower than A_1 point and not higher than A_3 point (T1 in Figs. 11 and 12) (preferably 1300° or lower). Ferrite is produced partially during soaking if the soaking temperature is in the range of A_1 to A_3 or during cooling if the soaking temperature is not lower than A_3 point to provide two phases of [ferrite $(\alpha) + \gamma$], followed by cooling to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point to obtain desired (α + quenched martensite) or (α + quenched bainite).

[0130] After the above soaking, an average cooling rate (CR) is controlled to 10°C/s or higher (preferably 20°C/s or higher) and cooling is allowed to proceed to a temperature of not higher than Ms point (T2 in Fig.11) or a temperature of not lower than Ms point and not higher than Bs point (T2 in Fig. 12) to obtain a desired mixed structure (quenched martensite and ferrite, or quenched bainite and ferrite) while avoiding pearlite transformation. In the present invention it is recommended that the content of ferrite be controlled to a value of not less than 5% and less than 30%. In this case, it is preferable that the average cooling rate be controlled to 30°C/s or higher.

[0131] The average cooling rate exerts an influence not only on the formation of ferrite but also on the final form of γ_R , and a high average cooling rate (preferably 50°C/s or higher) will result in a lath form. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

Second Continuous Annealing Process (subsequent continuous annealing process)

[0132] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more. This process is the same as the second continuous annealing process or plating process 4 in the foregoing method (2) and has been established for tempering the base phase structure produced in the first continuous annealing process 3 to afford not only a desired structure but also a desired second phase structure.

[0133] For producing an alloyed, hot dip galvanized steel sheet it is recommended to adopt the foregoing series of methods (a) to (c). With those methods, the number of "coarse crystal grains" present on the surface of the alloyed, hot dip galvanized layer is decreased, so that there is obtained a steel sheet superior also in sliding property of the plated surface while ensuring the ductility improving effect based on γ_R . The details thereof will become apparent by reference to the foregoing methods.

[0134] Next, the following description is provided about the second high strength steel sheet according to the present invention.

[0135] Having made studies earnestly for producing a low alloyed TRIP steel sheet having high stretch flange formability and elongation and yet superior in fatigue characteristic, we found out that the expected object could be achieved by making control to predetermined base phase structure and second phase structure described in connection with the above first high strength steel sheet and by suppressing the formation of a coarse second phase structure, and accomplished the present invention on the basis of that finding. More particularly, a most important point of the present invention resides in the finding that the foregoing phase structure containing tempered martensite or tempered bainite is extremely useful in improving the stretch flange formability and total elongation and that suppressing the formation of coarse crystal grains in the second phase structure which contains retained austenite is effective in improving the stretch flange formability and fatigue characteristic. With this finding, we were the first to provide a low alloyed TRIP steel sheet having both a remarkably improved stretch flange formability and a satisfactory fatigue characteristic while ensuring such a good strength-ductility balance as in the conventional retained austenite steel sheet.

[0136] A detailed reason why such excellent characteristics are obtained is not clear, but it is presumed that if there is used as the base phase structure a soft lath structure containing tempered martensite or tempered bainite, martensite is produced between the laths in the course of formation of the structure, thus affording a very fine structure, with consequent improvement of stretch flange formability and further improvement of elongation, and that since the method according to the present invention includes a step for precipitating a carbide (cementite) between the laths of quenched martensite or quenched bainite, the formation of a coarse second phase structure is suppressed, resulting in not only the stretch flange formability but also fatigue characteristic being improved.

[0137] Reference will first be made below to the second phase structure which features the second steel sheet to the greatest extent. The base phase structure in the second steel sheet is the same as that in the first steel sheet described above.

[0138] It is necessary for the second phase structure to satisfy the structure of the first steel sheet described above and further satisfy the following expression (1):

$$(S1/S) \times 100 \le 20 \tag{1}$$

where S stands for a total area of the second phase structure and S1 stands for a total area of coarse second phase structure crystal grains (Sb) present in the second phase structure, the Sb occupying three times or more of an average crystal grain area (Sm) of the second phase structure.

[0139] The above expression (1) means that the ratio of coarse crystal grains [those three times or more as large as an average crystal grain area (Sm) of the second phase structure] to the whole of the second phase structure which contains retained austenite is to be suppressed to 20% or less in terms of an area ratio. With this expression, it is intended to improve fatigue characteristic. According to the results of our studies it has turned out that the lowering in fatigue characteristic of the TRIP steel sheet is attributable to the formation of coarse γ_R and the fatigue characteristic is improved if the coarse γ_R is diminished and that, for example, such a tempering process as will be described later [allowing a carbide (cementite) to be precipitated between laths of the base phase structure] is effective for that purpose. [0140] A specific calculating method in connection with the foregoing expression (1) is as follows.

[0141] First, a steel sheet is subjected to Lepera etching and is then observed through an optical microscope (\times 1000) to provide two pictures of steel sheet structure. Then, an area of 50 μ m \times 50 μ m is selected and cut out arbitrarily from each of the photographs. With respect to the two pictures thus cut out there are determined a total area of the second phase structure (γ_R , martensite as necessary) relative to the total area of the two pictures (50 μ m \times 50 μ m \times 2), as well as an average crystal grain area (Sm) of the second phase structure.

[0142] Next, there is calculated a total area of coarse second phase crystal grains (Sb) present in the second phase structure. To be more specific, crystal grains having an average area three times as large as the average crystal grain area (Sm) of the second phase structure determined by the above method are defined to be "coarse second phase crystal grains (Sb)," then the coarse second phase crystal grains (Sb) are totaled and the result is assumed to be a total area (S1) of Sb.

[0143] If (S1/S) \times 100 is 20 or less, the steel sheet concerned is superior in fatigue characteristic [fatigue endurance ratio (fatigue strength σ_w /yield strength YP)]. As to the said ratio, the smaller, the better, and it is recommended to control it to 15 or less, more preferably 10 or less.

[0144] Next, a description will be given below of basic components which constitute the second steel sheet. All of the following chemical components are in mass %.

[0145] C is an element essential for ensuring a high strength and for ensuring γ_R . More particularly, C is an element important for ensuring a sufficient amount of C in γ phase and for allowing a desired γ phase to remain even at room temperature. However, if C is added in an amount exceeding 0.25%, the weldability will be deteriorated and cementite will become coarse in a tempering process which will be described later, leading finally to coarsening of the second phase structure.

[0146] As to the other components than C, they are the same as in the first steel sheet described previously.

[0147] How to produce the second steel sheet will be described below structure by structure.

(A) Steel sheet with a base phase structure being tempered martensite or tempered bainite

[0148] The following methods (5) and (6) are mentioned as typical methods for producing the second steel sheet. These methods are substantially the same as the method (1) and (2) described previously in connection with the first steel sheet. A difference resides in that in the following methods (5) and (6) there is provided a predetermined tempering process between the hot rolling process and the continuous annealing process or the plating process or between the first continuous annealing process and the second continuous annealing process or the plating process.

[0149] The methods (5) and (6) will be described below in detail.

55

(5) [Hot rolling process] → [Tempering process] → [Continuous annealing process or Plating process]

[0150] This method produces a desired steel sheet through ① hot rolling process, ② tempering process, and ③ continuous annealing process or plating process. Of these processes, the annealing process ① is illustrated in Fig. 6 (in case of a base phase structure being quenched martensite) and Fig. 7 (in case of a base structure being quenched

bainite), and the continuous annealing or plating process ③ is illustrated in Fig. 8.

1 Hot Rolling Process

[0151] The hot rolling process comprises a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C and a step of cooling the rolled steel sheet to a temperature of not higher than Ms point (in case of a base phase structure being tempered martensite) or a temperature of not lower than Ms point and not higher than Bs point (in case of the base phase structure being tempered bainite) at an average cooling rate of not lower than 20°C/s and winding up the steel sheet. These hot rolling conditions are established for obtaining a desired base phase structure (quenched martensite or quenched bainite).

[0152] No matter which base phase structure is to be obtained, it is recommended that a hot rolling finish temperature (FDT) be set at a temperature of not lower than $(A_{73}$ -50)°C, preferably not lower than A_{r3} point. This is for obtaining a desired quenched martensite or quenched bainite in cooperation with subsequent "cooling to a temperature of not higher than Ms point" or "cooling to a temperature of not lower than Ms point and not higher than Bs point."

[0153] The hot rolling described above is followed by cooling. As to cooling conditions (CR), it is recommended that cooling be performed to a temperature of not higher than Ms point while avoiding ferrite transformation and pearlite transformation at an average cooling rate of not lower than 20° C/s (preferably not lower than 30° C/s). This permits to obtain a desired quenched martensite or quenched bainite without formation of polygonal ferrite. The average cooling rate after the hot rolling also exerts an influence on the final form of γ_R , and if the average cooling rate is high, a lath form will result. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0154] For obtaining quenched martensite it is necessary to set the winding temperature (CT) at a temperature of not higher than Ms point [calculating expression: Ms = 561-474×[C]-33×[Mn]-17×[Ni]-17×[Cr]-21×[Mo] where [] represents mass % of each element. This is because, if the winding temperature exceeds Ms point, a desired tempered martensite will not be obtained and bainite will be formed.

[0155] On the other hand, for obtaining quenched bainite it is necessary to set the winding temperature (CT) at a temperature of not lower than Ms point and not higher than Bs point [calculating expression: Ms is the same as in the above expression; Bs = 830-270×[C]-90×[Mn]-37×[Ni]-70×[Cr]-80×[Mo] where [] represents mass % of each element. This is because, if the winding temperature exceeds Bs point, a desired quenched bainite will not be obtained, while if the winding temperature is lower than Ms point, tempered martensite will be produced.

[0156] In the hot rolling process, it is recommended to control the above constituent steps appropriately in order to obtain a desired quenched martensite or quenched bainite. But as to other conditions, including heating temperature, there may be adopted conventional conditions (e.g., about 1000 to 1300°C) suitably.

② Tempering Process

35

[0157] The above hot rolling process ① is followed by a tempering process. However, if the shape after the hot rolling is unsatisfactory, then for the purpose of correcting the shape, cooling may be performed after the hot rolling ① and before the tempering ②. In this case, it is recommended to set the cooling rate at 1 to 30%. This is because, if cold rolling is performed at a cooling rate exceeding 30%, the rolling load will increase, making it difficult to carry out cold rolling.

[0158] The annealing process comprises carrying out tempering at a temperature of not lower than 400°C and not higher than A_{c1} point for a period of time of not shorter than 10 minutes and shorter than 2 hours. This tempering process has been established for obtaining a desired γ_R (fine γ_R) which is effective in improving the fatigue characteristic. By going through this tempering process, cementite is precipitated in the lath boundary of the base phase structure (quenched martensite or quenched bainite), and in the subsequent continuous annealing process or plating process 2 there is formed a fine γ_R with the cementite as nucleus, so that it becomes possible to diminish coarse γ_R produced in the pre-austenite grain boundary and block boundary. Further, there accrues an advantage that, since the strength of the steel sheet having been subjected to the above tempering process decreases, a sheet passing load for passage of the sheet to the subsequent continuous annealing process 3 decreases.

[0159] More specifically, tempering is carried out at a temperature of not lower than 400°C and not higher than A_{c1} point (about 700°C) for a period of time of not shorter than 10 minutes and shorter than 2 hours. This is because if the tempering temperature exceeds this temperature, there will occur an inverse transformation, preventing sufficient precipitation of cementite. Preferably, the tempering temperature is not higher than 650°C. On the other hand, the lower limit of the tempering temperature has been determined so as to permit cementite to be precipitate as short a time as possible, taking productivity into account. Preferably, the lower limit is 450°C. The tempering time is also important for obtaining a desired structure, and if it is shorter than 10 minutes, the precipitation of cementite will be insufficient. Preferably, the tempering time is 15 minutes or longer. On the other hand, if the tempering time is 2 hours or longer,

cementite will become coarse to a remarkable extent, not affording the effect of microstructurization of γ_R . Preferably, the tempering time is not longer than 1 hour.

[0160] In case of obtaining a base phase structure of quenched bainite and if, in the above hot rolling process ①, cooling is made to a temperature of not lower than 400°C and not higher than A_{c1} point at an average cooling rate of not lower than 20°C/s, the tempering process ② is not needed. This is because the foregoing hot rolling process is the same as this tempering process ②. In this case, therefore, the hot rolling process may be immediately followed by continuous annealing or plating ③ which will be described below.

③ Continuous Annealing Process or Plating Process

10

50

[0161] The above tempering process ② is followed by continuous annealing or plating. This continuous annealing or plating process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s; and a step of holding the steel sheet in this temperature range for 1 second or more. These conditions have been established for tempering the base phase structure (quenched martensite or quenched bainite) produced in the hot rolling process to obtain not only a desired tempered martensite but also a fine, second phase.

[0162] First, soaking is performed at a temperature of not lower than A_1 point and not higher than A_3 point (T3 in Fig. 8) for 10 to 600 seconds (t3 in Fig. 8) to produce a desired structure (tempered martensite and γ_R) (annealing in two phase region). This is because if the soaking temperature exceeds the above temperature, the resulting structure will all become γ , while the soaking temperature is lower than the above temperature, a desired γ will not be obtained. Further, controlling the heating holding time (t3) is particularly important for obtaining a desired structure. This is because if the holding time is shorter than 10 seconds, tempering will be insufficient and a desired base phase structure (tempered martensite or tempered bainite) will not be obtained. Preferably, the holding time is not less than 20 seconds, more preferably not less than 30 seconds. If the holding time exceeds 600 seconds, it becomes impossible to retain the lath structure which is a feature of tempered martensite or tempered bainite, with consequent deterioration of mechanical characteristics. Preferably, the holding time is not more than 500 seconds, more preferably not more than 400 seconds.

[0163] Next, an average cooling rate (CR) is controlled to a rate of not lower than 3°C/s (preferably not lower than 5°C/s) and cooling is made to a temperature of not lower than 300°C (preferably not lower than 350°C) while avoiding pearlite transformation, followed by holding in this temperature range for 1 second or more (preferably 5 seconds or more: t4 in Fig. 8) (austempering), whereby the concentration of C to γ_R can be done in a large quantity and in an extremely short time.

[0164] If the average cooling rate is lower than the above range, there will not be obtained a desired structure and pearlite will be produced. No special limitation is placed on its upper limit. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0165] Of the above conditions, particularly the austempering temperature (T4) is important for ensuring the desired structure and allowing the operation of the present invention to be exhibited. If the austempering temperature is controlled to the above temperature range, γ_R will be obtained stably in a large quantity, whereby there is exhibited TRIP effect based on γ_R . An austempering temperature of lower than 300°C will lead to the presence of martensite phase, while an austempering temperature exceeding 480°C will result in a largely increased amount of bainite phase.

[0166] An upper limit of the holding time (t4) is not specially limited, but when the time taken for transformation of austenite into bainite is considered, it is recommended to control the holding time to a time of not longer than 3000 seconds, preferably not longer than 2000 seconds.

[0167] In the above process, in addition to the desired base phase structure (tempered martensite or tempered bainite) and martensite, there may be produced bainite structure insofar as it does not impair the operation of the present invention. Further, plating and alloying may be conducted insofar as the desired structure is not decomposed remarkably nor does the application of plating and alloying impair the operation of the present invention.

(6) [Hot rolling process] → [Cold rolling process] → [First continuous annealing process] → [Tempering process] →

[0168] [Second continuous annealing process or Plating process]

[0169] This method produces a desired steel sheet through a hot rolling process, a cold rolling process, a first continuous annealing process, a tempering process, arid a second annealing process or a plating process. Of these processes, the first annealing process which features this method is illustrated in Fig. 9 (in case of a base phase structure being quenched martensite) and Fig. 10 (in case of a base phase structure being quenched bainite).

[0170] First, the hot rolling process and the cooling process are carried out. These processes are not specially limited; but conventional conditions may be selected and adopted suitably. This is because in this method (6) the hot rolling

process and the cooling process are not for ensuring a desired structure, but a feature of this method resides in controlling the subsequent first continuous annealing process, tempering process, and second continuous annealing process or plating process to obtain a desired structure.

[0171] More specifically, as conditions for the hot rolling process there may be adopted such conditions as cooling at an average cooling rate of about 30°C/s after the end of hot rolling conducted at a temperature of not lower than A_{r3} point and winding at a temperature of about 500° to 600°C. In the cooling process it is recommended to perform cold rolling at a cooling rate of about 30% to 70%. It goes without saying that no limitation is made thereto.

[0172] Next, the following description is now provided about the first continuous annealing process (a), the tempering process (b), and the second continuous annealing process or plating process (b), all of which feature this method (6).

4 First Continuous Annealing Process (initial continuous annealing process)

[0173] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10°C/s. These conditions have been established for obtaining a desired base phase structure (quenched martensite or quenched bainite).

[0174] First, soaking is performed at a temperature of not lower than A_3 point (T1 in Figs. 9 and 10) (preferably not higher than 1300°C), then an average cooling rate (CR) is controlled to a temperature of not lower than 20°C/s (preferably not lower than 30°C/s) and cooling is made to a temperature of not higher than Ms point (T2 in Fig. 9) or a temperature of not lower than Ms point and not higher than Bs point (T2 in Fig. 10), whereby a desired quenched martensite or quenched bainite is obtained while avoiding ferrite transformation and pearlite transformation.

[0175] If the average cooling rate (CR) is lower than the above range, there will be produced ferrite and pearlite and it will be impossible to obtain the desired structure. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

⑤ Tempering Process

10

[0176] This process is the same as the tempering process ② in the foregoing method (5) and has been established for forming a desired fine γ_R .

[0177] In the case where a base phase structure of quenched bainite is to be obtained and if, in the first continuous annealing process (a), cooling is performed to a temperature of not lower than 400°C and not higher than A_{c1} point at an average cooling rate of not lower than 10°C/s, followed by holding at this temperature for not shorter than 10 minutes and shorter than 2 hours, this tempering process (5) becomes unnecessary. This is because the above continuous annealing process is the same as the tempering process (5). In this case, the foregoing continuous annealing process may be immediately followed by the second continuous annealing or plating (6) which will be described below.

- 6 Second Continuous Annealing Process (subsequent continuous annealing process) or Plating Process
- [0178] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in this temperature range for 1 second or more.
 - [0179] This process is the same as the continuous annealing process or plating process ③ in the foregoing method ⑤ and has been established for tempering the base phase structure (quenched martensite or quenched bainite) produced in the first continuous annealing process ④ to obtain not only a desired tempered martensite but also a desired fine, second phase structure.
- (B) Steel sheet with a base phase structure being a mixed structure of (tempered martensite and ferrite) or (tempered bainite and ferrite)

[0180] The following methods (7) and (8) are mentioned as typical methods for producing the second steel sheet according to the present invention. These methods are substantially the same as the foregoing methods (3) and (4) described in connection with the first steel sheet. A difference resides in that in these methods a predetermined tempering process is provided between the hot rolling process and the continuous annealing process or the plating process or between the first continuous annealing process and the second continuous annealing process or the plating process in the methods (3) and (4).

(7) [Hot rolling process] → [Tempering process] → [Continuous annealing process or Plating process]

[0181] This method produces a desired steel sheet through ① a hot rolling process, ② a tempering process, and ③ a continuous annealing process or a plating process. Of these processes, the hot rolling process ① is illustrated in Fig. 6 in case of a base phase structure comprising quenched martensite and ferrite and in Fig. 7 in case of a base phase structure comprising quenched bainite and ferrite, and the continuous annealing or plating process ③ is illustrated in Fig. 8.

1 Hot Rolling Process

10

[0182] The hot rolling process comprises a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C and a step of cooling the rolled steel sheet to a temperature of not higher than Ms point (in case of a base phase structure comprising quenched martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure comprising quenched bainite and ferrite) at an average cooling rate of not lower than 10°C/s and winding up the steel sheet. These hot rolling conditions have been established for obtaining a desired base phase structure (a mixed structure of quenched martensite and ferrite or quenched bainite and ferrite). Of these conditions, the hot rolling finish condition is as described in the hot rolling process ① in connection with the foregoing method (5).

[0183] Cooling is performed after the above hot rolling finish. According to the present invention, by controlling the cooling rate (CR), ferrite is partially produced during cooling to provide a two phase region of ($\alpha + \gamma$), and by cooling to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point there can be obtained a desired mixed structure.

[0184] The following methods (a) and (b) are mentioned as methods for the aforesaid cooling.

(a) One-step cooling

[0185] At an average cooling rate of not lower than 10°C/s (preferably not lower than 20°C/s) there is made cooling to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point while avoiding pearlite transformation. At this time, by controlling the average cooling rate appropriately it is possible to obtain a desired mixed structure (quenched martensite + ferrite, or quenched bainite + ferrite). In the present invention it is recommended to control the ferrite content to not less than 5% and less than 30% in terms of a space factor relative to the whole structure. In this case, it is recommended to control the average cooling rate to 30°C/s or higher.

[0186] The average cooling rate after hot rolling exerts an influence not only on the formation of ferrite but also on the final form of γ_R , and if the average cooling rate is high (preferably 50°C/s or higher), a lath form will result. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0187] Further, for producing the desired mixed structure more efficiently during cooling, it is recommended to adopt (b) a two-step cooling method which comprises ① a step of cooling the steel sheet to a temperature in the range of 700±100°C (preferably 700±50°C) at an average cooling rate (CR1) of not lower than 30°C/s, ② a step of conducting air cooling in the said temperature range for 1 to 30 seconds, and ③ a step of subsequently cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate (CR2) of not lower than 30°C/s and winding up the steel sheet. By thus cooling stepwise, polygonal ferrite low in dislocation density can be produced more positively.

[0188] In the temperature ranges ① and ③ it is recommended that cooling be done at an average cooling rate of not lower than 30°C/s, preferably not lower than 40°C/s. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0189] In the temperature range ② it is preferable that air cooling be done for 1 second or more, more preferably 3 seconds or more, whereby a predetermined ferrite quantity is attained efficiently. However, if the air cooling time exceeds 30 seconds, ferrite will be produced in an amount exceeding the preferred range, with the result that a desired strength is not attained and the stretch flange formability is deteriorated. Preferably, the air cooling time is not longer than 20 seconds.

[0190] The winding temperature (CT) is as described in the hot rolling process ① in connection with the foregoing method (5).

[0191] In the hot rolling process it is recommended to control each of the constituent steps appropriately in order to obtain a desired base phase structure. As to other conditions, including heating temperature, conventional conditions (e.g., about 1000 to 1300°C) may be selected suitably.

② Tempering Process

[0192] The hot rolling ① described above is followed by tempering. However, if the shape after the hot rolling is unsatisfactory, then for the purpose of correcting the shape there may be performed cooling after the hot rolling ① and before the tempering ②. In this case, it is recommended to set the cold rolling rate at 1 to 30%.

[0193] The tempering process has been established for obtaining a desired fine γ_R and the details thereof are as described in the tempering process ② in connection with the foregoing method (5).

[0194] In the case where a mixed base phase structure of quenched bainite and ferrite is to be obtained and if, in the hot rolling process ①, cooling is made to a temperature of not lower than 400°C and not higher than A_{c1} point at a predetermined average cooling rate and is followed by holding at this temperature for a period of time of not shorter than 10 minutes and shorter than 2 hours, the tempering process② becomes unnecessary. This is because the above hot rolling process is the same as this tempering process②. In this case, the above hot rolling process may be immediately followed by③ continuous annealing or plating which will be described later.

③ Continuous Annealing Process or Plating Process

[0195] The above tempering process ② is followed by continuous annealing or plating. The continuous annealing or plating process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in this temperature range for 1 second or more. These conditions have been established for tempering the base phase structure produced in the hot rolling process to obtain not only a desired mixed structure (tempered martensite + ferrite, or tempered bainite + ferrite) but also a fine, second phase structure. The details thereof are as described in the continuous annealing process or plating process ③ in connection with the foregoing method (5).

[0196] For producing a desired amount of C γ more efficiently during cooling it is recommended to adopt, for the above cooling step, a two-step cooling method comprising ① a step of cooling the steel sheet to a temperature (Tq) of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s and ② a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s. [0197] If cooling is made to the above temperature range ① at an average cooling rate of not higher than 15°C/s (preferably not higher than 10°C/s), ferrite is the first to be produced and C contained in the ferrite is concentrated to γ . If cooling is subsequently performed to the above temperature range ② at an average cooling rate of not lower than 20°C/s (preferably not lower than 30°C/s, more preferably not lower than 40°C/s), the transformation of γ into pearlite is suppressed and γ remains even at a low temperature, thus affording the desired γ _R structure.

An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0198] The above cooling process is followed by austempering, the details of which are as described in the continuous annealing or plating process ③ in connection with the foregoing method (5).

(8) [Hot rolling process] → [Cold rolling process] → [First continuous annealing process] → [Tempering process] →

[0199] [Second continuous annealing process or plating process]

[0200] This method (8) produces a desired steel sheet through a hot rolling process, a cooling process, a first continuous annealing process, a tempering process, and a second continuous annealing process or a plating process. Of these processes, the first continuous annealing process which features the method (8) is illustrated in Fig. 11 in case of a base phase structure comprising quenchedmartensite and ferrite and in Fig. 12 in case of a base phase structure comprising quenched bainite and ferrite.

[0201] First, the hot rolling process and the cooling process are executed. These processes are not specially limited. Usually, suitable working conditions may be selected and adopted, the details of which are as described in the foregoing method (6).

[0202] A description will be given below about ④ the first continuous annealing process, ⑤ the tempering process, and ⑥ the second continuous annealing process, all of which feature the above method (8).

4 First Continuous Annealing Process (initial continuous annealing process)

[0203] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point (in case of a base phase structure comprising quenched martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure comprising quenched bainite and ferrite) at an

average cooling rate of not lower than 10°C/s. These conditions have been established for obtaining a desired base phase structure.

[0204] First, soaking is performed at a temperature of not lower than A_1 point and not higher than A_3 point (T1 in Figs. 11 and 12) (preferably 1300°C or higher). If soaking is conducted at a temperature of A1 to A3, ferrite is partially produced during soaking, while if soaking is conducted at a temperature of not lower than A_3 point, ferrite is partially produced during cooling, to provide two phases of [ferrite (α) + γ], followed by cooling to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point to obtain desired (α + quenched martensite) or (α + quenched bainite).

[0205] After the above soaking step, an average cooling rate (CR) is controlled to a rate of not lower than 10°C/s (preferably not lower than 20°C/s) and cooling is performed to a temperature of not higher than Ms point (T2 in Fig. 11) or a temperature of not lower than Ms point and not higher than Bs point (T2 in Fig. 12) to afford a desired mixed structure (quenched martensite + ferrite, or quenched bainite + ferrite) while avoiding pearlite transformation. In the present invention it is recommended to control the ferrite content to a value of not less than 5% and less than 30%. In this case, it is preferable that the average cooling rate be controlled to 30°C/s or higher.

[0206] The average cooling rate exerts not only on the formation of ferrite but also on the final form of γ_R , and if the average cooling rate is high (preferably 50°C/s or higher), a lath form will result. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

⑤ Tempering Process

30

35

50

55

[0207] This process has been established for obtaining a desired fine γ_R and the details of tempering conditions are as described in the tempering process (5) in connection with the foregoing method (6).

[0208] In the case where a mixed base phase structure of quenched bainite and ferrite is to be obtained and if, in the above continuous annealing process (a), cooling is performed to a temperature of not lower than 400°C and not higher than A_{c1} point at an average cooling rate of not lower than 10°C/s, followed by holding at this temperature for not shorter than 10 minutes and shorter than 2 hours, the tempering process (b) becomes unnecessary. This is because the foregoing first continuous annealing process is the same as the tempering process (b). In this case, the first continuous annealing process may be immediately followed by the second continuous annealing or plating process (b) which will be described below.

6 Second Continuous Annealing Process (subsequent continuous annealing process) or Plating Process

[0209] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in this temperature range for 1 second or more. This process is the same as the second continuous annealing or plating process (a) in the foregoing method (b) and has been established for tempering the base phase structure produced in the foregoing first continuous annealing process (a) to obtain not only a desired structure but also a fine, second phase structure.

[0210] Lastly, reference will be made below to the foregoing third high strength steel sheet.

[0211] We have made earnest studies for providing a low alloy TRIP steel sheet having high stretch flange formability and elongation and superior in bake hardening (BH) property, especially a TRIP steel sheet capable of exhibiting an excellent bake hardening property even in a very large strain-loaded area such as an area where suspension members are mounted. As a result we found out the following points and accomplished the present invention.

(1) If control is made so that ① a tempered martensite structure, ② a mixed structure of tempered martensite and ferrite, ③ a tempered bainite structure, and ④ a mixed structure of tempered bainite and ferrite, as soft lath structures low in dislocation density, are each produced as a base phase structure and a structure having a retained austenite (γ_R) phase is produced as a second phase structure, there is obtained a high strength steel sheet which satisfies the condition of BH(2%)≥70MPa due to an excellent bake hardening property which each of those structures possesses.

(2) In addition to the above structure control, if retained austenite as a second phase structure is dispersed uniformly and finely (shortening the diffusion distance up to dislocation) in pre-austenite grain boundaries, as well as block and packet boundaries, in the (quenched martensite or quenched bainite) structure prior to tempering, there is obtained a high strength steel sheet which further satisfies the following condition:

BH(10%)≥BH(2%)/2

and a very excellent bake hardening property can be ensured even in a very large strain area.

- (3) Such a finely dispersed, retained austenite as referred to above can be obtained by controlling the heating temperature (SRT) within a low range before hot rolling to a rather low temperature, allowing rolling to proceed in the austenite region.
- [0212] In the present invention, a detailed reason why BH property is improved, especially why excellent BH property is obtained even in a large strain area, by more finely dispersing the retained austenite as the second phase, is not clear, but is presumed to be as follows. As noted previously, BH property is obtained by an interaction (fixing of dislocation by C) between dislocation and solid solution C, but particularly in a large strain area there occurs a phenomenon that solid solution C is insufficient, although sufficient dislocation is obtained. However, when the retained austenite as the second phase, which is a supply source of solid solution C, is finely dispersed, the diffusion distance up to dislocation becomes shorter, so that a decrease of BH quantity due to the lack of solid solution C can be prevented. This is presumed to be the reason why an extremely excellent BH property is exhibited.
- [0213] In connection with the mechanism of "BH property" it is presumed that dislocation which has been introduced into the base phase by working is fixed to C (solid solution C) in steel by heat treatment after working, giving rise to hardening, resulting in an increase of tensile yield stress.
- [0214] Description is now directed to "BH (2%) quantity" as referred to herein. When a tensile test piece (usually a JIS No.5 test piece) is pulled up to 2% in terms of a nominal strain, a deformation stress σ1 is measured, then after the removal of load, the test piece is held at 170°C for 20 minutes, then tensile test is again conducted and an upper yield stress σ2 (a stress corresponding to 0.2% proof stress in the case where a yield point does not appear) is measured. The BH (2%) quantity in question is represented by the difference between σ1 and σ2. (In the working Examples to be described later it will be referred to as BH2.)
 - [0215] "BH (10%) quantity" as referred to herein is measured in the same way as is the case with the above BH (2%) quantity except that in the above measurement of BH (2%) quantity a tensile test piece (usually a JIS No.5 test piece) is pulled up to 10% in terms of a nominal strain and the resulting deformation stress is measured. In the working Examples to be described later it will be referred to as BH10.
- [0216] Thus, the BH (2%) quantity defines BH property in an ordinary strain region, while the BH (10%) defines BH property in a large strain region.
 - [0217] The steel sheet according to the present invention satisfies the condition that the BH (2%) quantity should be not less than 70 MPa (preferably not less than 80 MPa, more preferably not less than 90 MPa) and that the BH (10%) quantity should be not less than half of the BH (2%) quantity, (not less than 35 MPa), preferably not less than 40 MPa, more preferably not less than 45 MPa.
 - [0218] As to the base phase structure and the second phase structure both featuring the above steel sheet, they are as described above in connection with the first steep sheet.
 - [0219] A description will be given below about basic components which constitute the above third steel sheet. All of the following chemical components are in mass %.
- © C: 0.06 to 0.25%

5

10

- **[0220]** C is an element for ensuring a high strength and for ensuring γ_R . More particularly, C is an element important for providing a sufficient content of C in γ phase and for allowing a desired γ phase to remain even at room temperature. However, if C is added in an amount exceeding 0.25%, the weldability will be deteriorated.
- [0221] Other components than the above C are as described above in connection with the first steel sheet.
- [0222] How to produce the third steel sheet will be described below structure by structure.
 - (A) Steel sheet with a base phase structure being tempered martensite or tempered bainite
 - [0223] The following methods (9) and (10) are mentioned as typical methods for producing the third steel sheet. These methods are the same as the methods (1) and (2) which have been described above in connection with the first steel sheet except that in these methods the heating temperature (SRT) prior to hot rolling in the methods (3) and (4) is controlled to a temperature of 950 to 1100°C.
 - [0224] A detailed description will be given below about each of the methods.
- (9) [Hot rolling process] → [Continuous annealing process or Plating process]
 - [0225] This method produces a desired steel sheet through ① a hot rolling process and ② a continuous annealing process or a plating process. The hot rolling process ① is illustrated in Fig. 6 (in case of a base phase structure being

quenched martensite) and in Fig. 7 (in case of a base phase structure being quenched bainite) and the continuous annealing process or plating process ② is illustrated in Fig. 8.

1 Hot Rolling Process

[0226] This process comprises a step of controlling a heating temperature (SRT) before hot rolling to a temperature of 950° to 1100°C and terminating finish rolling at a temperature of not lower than $(A_{73}$ -50)°C and a step of cooling the resulting steel sheet to a temperature of not higher than Ms point (in case of a base phase structure being tempered martensite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure being tempered bainite) at an average cooling rate of not lower than 20°C/s and winding up the steel sheet. These hot rolling conditions (especially SRT condition) have been established for obtaining a desired base phase structure (quenched martensite or quenched bainite before tempering), also for making the pre-austenite grain diameter fine in (during) hot rolling, and for reducing the block and packet size as a more specific structure size relative to the pre-austenite grain diameter in the (quenched martensite or quenched bainite) structure, to thereby disperse γ_R of the second phase structure finely and uniformly in the pre-austenite grain region and block and packet boundaries.

[0227] First, the heating temperature (SRT) before hot rolling is controlled to a temperature of 950° to 1100°C and a hot rolling finish temperature (FDT) is set at a temperature of not lower than $(A_{r3}-50)$ °C.

[0228] The control of the heating temperature (SRT) before hot rolling is extremely important for obtaining a desired second phase structure (finely dispersed γ_R) and it is not until controlling the heating temperature to a temperature in the range of 950° to 1100°C that the above structure can be obtained. A heating temperature lower than 950°C substantially overlaps the hot rolling finish temperature (FDT) which will be described later. On the other hand, if the heating temperature exceeds 1100°C, it will become impossible to obtain the desired BH property [especially BH (10%)]. Preferably, the heating temperature is not lower than 975°C and not higher than 1075°C.

[0229] In the present invention the SRT is controlled lower than that in the conventional TRIP steel sheet. In the conventional steel sheet the SRT is controlled generally to the range of 1100°C exclusive to 1300°C inclusive. However, we have confirmed experimentally that in this temperature range the desired finely dispersed, retained austenite phase is not obtained and an excellent bake hardening property cannot be ensured particularly in a large strain region (see the working Examples to be described later).

[0230] Controlling the hot rolling finish temperature (FDT) is important for obtaining a desired quenched martensite or quenched bainite in cooperation with "cooling to a temperature of not higher than Ms point" or "cooling to a temperature of not lower than Ms point and not higher than Bs point" which follows the finish rolling. It is recommended to control the FDT to a temperature of not lower than $(A_{r3}-50)^{\circ}$ C, preferably not lower than A_{r3} point. Like the foregoing SRT, the FDT plays an important role also for obtaining a desired second structure, so in addition to the foregoing control of SRT, if FDT is controlled to a temperature of not lower than $(A_{r3}-50)^{\circ}$ C and not higher than A_{r3} point, a desired second phase can be obtained more efficiently. That is, by controlling both SRT and FDT to lower values than those for the conventional steel sheet it is possible to ensure an extremely superior BH property.

[0231] The above hot rolling process is followed by cooling. It is recommended that cooling be performed at an average cooling rate (CR) of not lower than 20° C/s (preferably not lower than 30° C/s) to a temperature of not higher than Ms point while avoiding ferrite transformation and pearlite transformation. With this cooling, a desired quenched martensite or quenched bainite can be obtained. The average cooling rate after hot rolling exerts an influence also on the final form of γ_R , and if the average cooling rate is high, a lath form will result. An upper limit of the average cooling rate is not specially limited, and the higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0232] For obtaining quenched martensite it is necessary that the winding temperature (CT) be not higher than Ms point [calculating expression: Ms = $561-474\times[C]-33\times[Mn]-17\times[Ni]-17\times[Cr]-21\times[Mo]$ where [] represents mass % of each element]. This is because if the winding temperature exceeds Ms point, a desired quenched martensite is not obtained and there are formed bainite, etc.

[0233] On the other hand, for obtaining quenched bainite it is necessary to set the winding temperature (CT) at a temperature of not lower than Ms point and not higher than Bs point [calculating expression: Ms is the same as the above expression; Bs = $830-270\times[C]-90\times[Mn]-37\times[Ni]-70\times[Cr]-80\times[Mo]$ where [] represents mass % of each element]. This is because if the winding temperature exceeds Bs point, a desired quenched bainite is not obtained, while if it is lower than Ms point, quenched martensite is produced.

[0234] In the hot rolling process it is recommended to control each of the above constituent steps appropriately in order to obtain desired quenched martensite or quenched bainite. But as to other conditions, including heating temperature, conventional conditions (e.g. about 1000 to 1300°C) may be selected suitably.

② Continuous Annealing Process or Plating Process

[0235] The above hot rolling process ① is followed by continuous annealing or plating. However, if the shape after hot rolling is unsatisfactory, then for the purpose of correcting the shape, cooling may be done after the hot rolling ① and before the continuous annealing or plating. In this case it is recommended to set the cold rolling rate at 1 to 30%. This is because if cold rolling is carried out at a cooling rate exceeding 30%, the rolling load will increase, making it difficult to effect cold rolling.

[0236] The continuous annealing process or plating process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s and a step of holding the steel sheet in the temperature range for 1 second or more. These conditions have been established for tempering the base phase structure (quenched martensite or quenched bainite) produced in the hot rolling process to afford not only a desired tempered martensite but also a fine, second phase (γ_R).

[0237] First, soaking is performed at a temperature of not lower than A₁ point and not higher than A₃ point (T3 in Fig. 8) for 10 to 600 seconds (t3 in Fig. 8) to produce a desired structure (tempered martensite and γ_R, or tempered bainite and γ_R) (annealing in two phase region). This is because if the soaking temperature exceeds the above temperature, the resulting structure will also become γ , while if it is lower than the above temperature, the desired γ_R will not be obtained. Further, controlling the heating holding time (t3) is particularly important for obtaining the desired structure. This is because if the holding time is shorter than 10 seconds, tempering will be insufficient, not affording the desired base phase structure (tempered martensite or tempered bainite). Preferably the holding time is 20 seconds or longer, more preferably 30 seconds or longer. If the holding time exceeds 600 seconds, it becomes impossible to retain the lath structure which is a feature of tempered martensite or tempered bainite, and mechanical properties are deteriorated. Preferably the holding time is not longer than 500 seconds, more preferably not longer than 400 seconds. [0238] Next, the average cooling rate (CR) is controlled to a rate of not lower than 3°C/s (preferably not lower than 5°C/s) and cooling is performed to a temperature (bainite transformation: T4 in Fig. 4) of not lower than 300°C (preferably not lower than 350°C) and not higher than 480°C (preferably not higher than 450°C) while avoiding pearlite transformation, followed by holding in this temperature range for 1 second or more (preferably 5 seconds or more: t4 in Fig. 8) (austempering), whereby the concentration of C to γ_R can be obtained in a large quantity and in an extremely short time.

[0239] If the average cooling rate is lower than the above range, the desired structure will not be obtained, with formation of pearlite, etc. An upper limit of the average cooling rate is not specially limited, and the higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0240] For producing a desired amount of Cγ more efficiently during cooling, it is recommended that the above cooling step be carried out by a two-step cooling method which comprises ① a step of cooling the steel sheet up to a temperature (Tq) of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s and ② a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s.

[0241] If cooling is performed to the above temperature range ① at an average cooling rate of not higher than 15°C/s (preferably not higher than 10°C/s), C will be concentrated in a larger quantity to γ . If cooling is subsequently performed to the above temperature range ② at an average cooling rate of not lower than 20°C/s (preferably not lower than 30°C/s, more preferably not lower than 40°C/s), the transformation of γ into pearlite is suppressed and there remains γ even at a low temperature, resulting in that the desired γ_R structure is obtained. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0242] The cooling described above is followed by austempering. The austempering temperature (T4) is important for ensuring the desired structure and allowing the operation of the present invention to be exhibited. If control is made to the foregoing temperature range, a stable and large amount of γ_R will be obtained, whereby TRIP effect based on γ_R is exhibited. If the austempering temperature is lower than 300°C, martensite phase will exist, while if it exceeds 480°C, bainite phase will increase in a large amount.

[0243] An upper limit of the holding time (t4) is not specially limited, but when the time taken for transformation of austenite into bainite is considered, it is recommended to control the holding time to a time of not longer than 3000 seconds, preferably not longer than 2000 seconds.

[0244] In the above process, in addition to the desired base phase structure (tempered martensite or tempered bainite) and martensite there also may be produced bainite structure insofar as the operation of the present invention is not impaired. Further, plating and alloying may be performed insofar as the desired structure is not decomposed markedly nor is impaired the operation of the present invention.

(10) [Hot rolling process] → [Cold rolling process] → [First continuous annealing process] → [Second continuous annealing process or Plating process]

[0245] This method (10) produces a desired steel sheet through a hot rolling process, a cold rolling process, a first continuous annealing process, and a second continuous annealing process or plating process. Of these processes, the first continuous annealing process which features this method is illustrated in Fig. 9 (in case of a base phase structure being quenched martensite) and in Fig. 10 (in case of a base phase structure being quenched bainite).

[0246] First, the hot rolling process and the cold rolling process are carried out. As noted earlier, controlling the heating temperature (SRT) before hot rolling is extremely important for obtaining a desired second phase structure (finely dispersed γ_R). It is not until controlling the heating temperature to a temperature in the range of 950° to 1100°C that the desired structure can be obtained. If the heating temperature is lower than 950°C, it substantially overlaps a hot rolling finish temperature (FDT) which will be described later, while if it exceeds 1100°C, a desired BH property [especially BH (10%)] is not attained. Preferably the heating temperature in question is not lower than 975°C and not higher than 1075°C.

[0247] In the present invention, the SRT is controlled to a lower temperature than in the conventional TRIP sheet. In the conventional steel sheet, the SRT is controlled generally to a temperature in the range of 1100°C exclusive to 1300°C inclusive. However, we have confirmed experimentally that with such a temperature range, a desired, finely dispersed, retained austenite phase is not obtained and that it is impossible to ensure an excellent bake hardening property particularly in a large strain region (see the working Examples to be described later).

[0248] Other hot rolling and cold rolling conditions are not specially limited, but there may be adopted conventional conditions. To be more specific, for the above hot rolling process there may be adopted such conditions as, after the end of hot rolling at a temperature of not lower than A_{r3} point, cooling the steel sheet at an average cooling rate of about 30°C/s and winding up the steel sheet at a temperature of about 500° to 600°C. In the cold rolling process it is recommended to carry out cold rolling at a cold rolling rate of about 30% to 70%. Of course, no limitation is made thereto. [0249] Next, reference will be made below to ③ the first continuous annealing process and ④ the second continuous annealing process or plating process, both featuring the method (10).

3 First Continuous Annealing Process (initial continuous annealing process)

10

15

- [0250] This process comprises a step of holding the steel sheet at a temperature of not lower than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10°C/s. These conditions have been established for obtaining a desired structure (quenched martensite or quenched bainite).
- [0251] First, soaking is performed at a temperature of not lower than A₃ point (T1 in Figs. 9 and 10) (preferably not higher than 1300°C), then an average cooling rate (CR) is controlled to a rate of not lower than 20°C/s (preferably not lower than 30°C/s) and cooling is performed to a temperature of not higher than Ms point (T2 in Fig. 9) or a temperature of not lower than Ms point and not higher than Bs point (T2 in Fig. 10), whereby desired quenched martensite or quenched bainite is obtained while avoiding ferrite transformation and pearlite transformation.
- [0252] If the average cooling rate (CR) is lower than the above range, ferrite and pearlite will be produced and the desired structure will not be obtained. An upper limit of the average cooling rate (CR) is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.
- Second Continuous Annealing Process (subsequent continuous annealing process) or Plating process
- [0253] This process comprises a step of holding the steel sheet at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C, and a step of holding the steel sheet in this temperature range for 1 second or more.
 [0254] This process is the same as the continuous annealing process or plating process (3) in the foregoing method (9) and has been established for tempering the base phase structure (quenched martensite or quenched bainite) produced in the first continuous annealing process (4) to obtain not only a desired tempered martensite but also a fine, second phase structure.
 - (B) Steel sheet with a base phase structure being a mixed structure of (tempered martensite and ferrite) or (tempered bainite and ferrite)

[0255] The following methods (11) and (12) are mentioned as typical methods for producing this steel sheet. These methods are the same as the methods (3) and (4) which have been described above in connection with the first steel sheet except that in these methods the heating temperature (SRT) before hot rolling in the methods (3) and (4) is

controlled to a temperature of 950° to 1100°C.

- (11) [Hot rolling process] → [Continuous annealing process or Plating process]
- [0256] This method produces a desired steel sheet through ① a hot rolling process and ② a continuous annealing process or a plating process. The hot rolling process ① is illustrated in Fig. 6 in case of a base phase structure comprising quenched martensite and ferrite and in Fig. 7 in case of a base phase structure being quenched bainite and ferrite. The continuous annealing process or plating process ② is illustrated in Fig. 8.
- 10 ① Hot Rolling Process

[0257] The hot rolling process comprises a step of controlling the heating temperature (SRT) before hot rolling to a temperature in the range of 950° to 1100°C, a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C, and a step of cooling the sheet to a temperature of not higher than Ms point (in case of a base phase structure comprising quenched martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure comprising quenched bainite and ferrite) at an average cooling rate of not lower than 10°C/s and winding up the steel sheet. These hot rolling conditions have been established for obtaining a desired base phase structure (quenched martensite and ferrite, or quenched bainite and ferrite) and a second phase structure. Of these conditions, hot rolling start and finish conditions are as described in the hot rolling process (1) in the foregoing method (9).

[0258] The hot rolling finish step is followed by cooling. According to this method, by controlling the cooling rate (CR), ferrite is partially produced during cooling to provide a two-phase region $(\alpha + \gamma)$, and by cooling to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point it is possible to obtain a desired mixed structure.

[0259] For effecting the above cooling step there may be adopted the following method (a) or (b), preferably (b). (a) A one-step cooling method involving cooling the steel sheet at an average cooling rate of not lower than 10°C/s (preferably not lower than 20°C/s) to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point while avoiding pearlite transformation. At this time, by controlling the average cooling rate appropriately it is possible to obtain a desired mixed structure (quenched martensite + ferrite, or quenched bainite + ferrite). In the present invention it is recommended to control the ferrite content to not less than 5% and less than 30% in terms of a space factor relative to the whole structure. In this case it is preferable to control the average cooling rate to a rate of not lower than 30°C/s.

[0260] The average cooling rate after hot rolling exerts an influence not only on the formation of ferrite but also on the final form of γ_R , and if the average cooling rate is high (preferably 50°C/s or higher), a lath form will result. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0261] Further, for producing the desired mixed structure more efficiently during cooling, it is recommended to adopt (b) a two-step cooling method which comprises ① a step of cooling the steel sheet to a temperature in the range of 700±100°C (preferably 700±50°C) at an average cooling rate (CR1) of not lower than 30°C/s, ② a step of cooling the steel sheet with air in the said temperature range for 1 to 30 seconds, and ③ a step of subsequently cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate (CR2) of not lower than 30°C/s and winding up the steel sheet. By such stepwise cooling, polygonal ferrite low in dislocation density can be produced more positively.

[0262] In both the temperature ranges in the above steps ① and ③ it is recommended to conduct cooling at an average cooling rate of not lower than 30°C/s, preferably not lower than 40°C/s. An upper limit of the average cooling rate is not specially limited, and the higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0263] In the temperature range in the above step ② it is preferable that air cooling be done for 1 second or more, preferably 3 seconds or more, whereby a predetermined ferrite quantity is obtained efficiently. However, if the air cooling time exceeds 30 seconds, the ferrite quantity will exceed a preferred range, making it impossible to attain a desired strength and leading to deterioration of the stretch flange formability. Preferably, the air cooling time is not longer than 20 seconds.

[0264] The winding temperature (CT) is as described in the rolling process (1) in the foregoing method (9).

[0265] In the hot rolling process it is recommended to control each of the above constituent steps appropriately in order to obtain a desired base phase structure. But as to other conditions, including heating temperature, conventional conditions (e.g., about 1000 to 1300°C) may be selected suitably.

② Continuous Annealing Process or Plating Process

[0266] The above hot rolling process ① is followed by continuous annealing or plating. But if the shape after hot rolling is unsatisfactory, then for the purpose of correcting the shape, cooling may be performed after the hot rolling ① and before the continuous annealing or plating ②. In this case, it is recommended that the cooling be done at a cold rolling rate of 1 to 30%.

[0267] The continuous annealing or plating process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in the said temperature range for 1 second or more. These conditions have been established for tempering the base phase structure produced in the hot rolling process to afford not only a desired mixed structure (tempered martensite + ferrite, or tempered bainite + ferrite) but also a fine, second phase structure. The details thereof are as described in the continuous annealing process or plating process ③ in connection with the foregoing method (1).

[0268] For producing a desired amount of Cγ more efficiently during cooling it is recommended that the above cooling step be carried out by a two-step cooling method which comprises ① a step of cooling the steel sheet to a temperature (Tq) of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s and ② a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s.

[0269] If cooling is made to the temperature range in the above step ① at an average cooling rate of not higher than 15°C/s (preferable not higher than 10°C/s), first ferrite is produced and C contained in the ferrite is concentrated into γ. Subsequently, if cooling is conducted to the temperature range in the above step ② at an average cooling rate of not lower than 20°C/s (preferably not lower than 30°C/s, more preferably not lower than 40°C/s), the transformation of γ into pearlite is suppressed and γ remains even at a low temperature, resulting in that the desired γ_R structure is obtained. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0270] The above cooling step is followed by austempering, the details of which are as described in the continuous annealing or plating process ② in connection with the foregoing method (9).

(12) [Hot rolling process] → [Cold rolling process] → [First continuous annealing process] → [Tempering process] →

[0271] [Second annealing process or Plating process]

[0272] This method (12) produces a desired steel sheet through a hot rolling process, a cold rolling process, a first continuous annealing process, a tempering process, and a second annealing process or a plating process. Of these processes, the first continuous annealing process, which features this method (12) is illustrated in Fig. 11 in case of a base phase structure comprising quenched martensite and ferrite and in Fig. 12 in case of a base phase structure comprising quenched bainite and ferrite.

[0273] First, the hot rolling process and the cold rolling process are carried out. The details of these processes are as described in the foregoing method (10).

[0274] A description will be given below about the first continuous annealing process ③ and the second continuous annealing process or plating process ④, both featuring the method (12).

③ First Continuous Annealing Process (initial continuous annealing process)

[0275] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point and a step of cooling the steel sheet to a temperature of not higher than Ms point (in case of abase phase structure comprising quenched martensite and ferrite) or a temperature of not lower than Ms point and not higher than Bs point (in case of a base phase structure comprising quenched bainite and ferrite) at an average cooling rate of not lower than 10°C/s. These conditions have been established for obtaining a desired base phase structure.

[0276] First, soaking is performed at a temperature of not lower than A_1 point and not higher than A_3 point (T1 in Figs. 11 and 12) (preferably 1300°C or lower). Ferrite is partially produced during soaking when soaking is done at a temperature of A_1 to A_3 or during cooling when soaking is done at a temperature of not lower than A_3 point, to provide two phases of [ferrite $(\alpha) + \gamma$], followed by cooling to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point, whereby there is obtained desired (α + quenched martensite) or (α + quenched bainite).

[0277] After the above soaking step, an average cooling rate (CR) is controlled to a rate of not lower than 10°C/s (preferably not lower than 20°C/s) and cooling is performed to a temperature of not higher than Ms point (T2 in Fig.

- 11) or a temperature of not lower than Ms point and not higher than Bs point (T2 in Fig. 12), whereby a desired mixed structure (quenched martensite + ferrite, or quenched bainite + ferrite) while avoiding pearlite transformation. In the present invention it is recommended to control the ferrite content to a value of not less than 5% and less than 30%. In this case, it is preferable to control the average cooling rate to 30°C/s or higher.
- [0278] The average cooling rate exerts an influence not only on the formation of ferrite but also on the final form of γ_R , and if the average cooling rate is high (preferably 50°C/s or higher), a lath form will result. An upper limit of the average cooling rate is not specially limited. The higher, the better. But it is recommended to control the upper limit appropriately in relation to the actual operation level.

[0279] This process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in this temperature range for 1 second or more. This process is the same as the second continuous annealing process or plating process 6 in the foregoing method (2) and has been established for tempering the base phase structure produced in the first continuous annealing process 3 to afford not only a desired structure but also a fine, second phase structure.

[0280] The present invention will be described in detail below by way of working Examples thereof. It is to be understood that the following Examples do not restrict the present invention and that changes and execution thereof within a scope not departing from the above and later-described gists of the invention are all included in the technical scope of the invention.

[Examples]

25

Example 1: A study (part 1) of components compositions in the first high strength steel sheet (base phase structure: tempered martensite)

[0281] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to low C steels having a C content of not higher than 0.25% [steels high in strength (TS) × stretch flange formability (λ) and taking weldability into account]. More specifically, steel samples components' compositions described intable1 (unit in the table is mass %) were vacuum-melted into slabs for experiment and thereafter hot-rolled steel sheets having a thickness of 2.0 mm were produced in accordance with the foregoing method (1) (hot rolling → continuous annealing).

[0282] More particularly, each of the slabs was heated at 1150°C for 30 minutes, then the finish temperature (FDT) was set at 900°C and cooling was performed to room temperature at an average cooling rate of 50°C/s (hot rolling process), followed by annealing in two phase region for 120 seconds, subsequent cooling to 400°C at an average cooling rate of 30°C/s, and holding at this temperature for 30 seconds (austempering). These conditions were used as basic conditions.

[0283] Steel sheets thus produced were then measured for tensile strength (TS), elongation [total elongation (EI)], yield strength (YP), and stretch flange formability (hole expanding property: λ), in the following manner.

[0284] In a tensile test, using a JIS No.5 test piece, there were measured tensile strength (TS), elongation (EI), and yield strength (YP). A strain rate in the tensile test was set at 1 mm/sec.

[0285] In a stretch flange formability test there was used a disc-like test piece having a diameter of 100 mm and a thickness of 2.0mm. More specifically, a hole 10 mm in diameter was formed by punching and was subjected to a hole expanding work on burr with a 60° conical punch, then a hole expanding rate (λ) upon crack penetration was measured (Japan Steel Federation JFST 1001).

[0286] As to an area fraction of structure in each of the above steel sheets, each steel sheet was subjected to Lepera etching, then the structure thereof was identified by observation under a transmission electron microscope (TEM; magnification15000X), and thereafter a space factor of the structure was measured by observation through an optical microscope (magnification 1000X). The space factor of γ_R and the concentration of C in γ_R were measured by an X-ray diffraction method after chemical polishing, following grinding the steel sheet to a quarter thickness thereof (ISIJ Int. Vol.33.(1933), No.7, P.776).

[0287] The results obtained are shown in Table 2.

[see Tables 1, 2]

[0288] The following can be seen from the results thus obtained (all of the following No. mean Run No. in Table 2).

[0289] First, No. 2 to 5 and 7 to 15, which satisfy the components specified in the present invention, afforded steel sheets of satisfactory characteristics.

[0290] For reference, a TEM photograph (magnification: 15000X) of a steel sheet (No. 3) according to the present invention is shown in Fig. 13. From this photograph it is seen that the steel sheet according to the present invention has tempered martensite of a clear lath structure.

[0291] In contrast therewith, the following steel sheets not satisfying any of the components specified in the present invention have the following disadvantages.

[0292] First, No.1, which is an example of a small amount of C, is low in both TS and El because desired tempered martensite and $\gamma_{\rm B}$ are not obtained.

[0293] No. 6, which is an example of a small total amount of (Si+Al) and a small amount of Mn, is as low as 20% in El because a desired γ_R is not obtained.

[0294] For reference, results of characteristic evaluation on conventional TRIP steel sheets are shown in Table 3. Of these steel sheets, No. 1 is a DP steel sheet of ferrite and martensite using No. 2 steel sample shown in Table 1, No. 2 is a TRIP steel sheet using No. 3 steel sample in Table 1 and with polygonal ferrite as a base phase, and No. 3 is a two phase steel sheet of ferrite and bainite, using No. 2 steel sample shown in Table 1.

[see Tables 3]

[0295] Reference to Table 3 shows that No. 1 is deteriorated in both elongation and stretch flange formability, No. 2 is deteriorated in stretch flange formability, and No. 3 is deteriorated in elongation.

Example 2: A study (part 2) of components' compositions in the first high strength steel sheet (base phase structure: tempered martensite)

[0296] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to high C steels having a C content of 0.25 to 0.6% [steels high in strength (TS) × stretch flange formability (λ) and also high in TS × elongation (EI)]. More specifically, steel samples comprising components' compositions shown in Table 4 (unit in the table is mass %) were vacuum-melted, then hot rolled steel sheets were produced in the same way as in Example 1 and were evaluated for characteristics.

[0297] The results obtained are shown in Table 5.

[see Tables 4, 5]

30

50

[0298] The following can be seen from these results (all of the following No. mean Run No. in Table 5).

[0299] First, all of No. 3 to 6, 8 to 15 and 17, which satisfy the composition of a high C steel specified in the present invention, afforded steel sheets of satisfactory characteristics.

[0300] For reference, a TEM photograph (magnification: 15000X) of a steel sheet (No. 3) according to the present invention is shown in Fig. 14. From this photograph it is seen that the steel sheet according to the present invention has tempered martensite of a clear lath structure.

[0301] On the other hand, No. 1 and 2 are low in El because their C contents, which are 0.15% and 0.20%, are smaller than in the other examples (all being not less than 0.4% in the amount of C).

[0302] No. 7, which is an example of a small amount of Mn and a small total amount of (Si+Al), is as low as 20% in El because a desired γ_R is not obtained.

[0303] No. 16 is an example of having produced a large amount of pearlite structure as a second phase structure due to adoption of a somewhat low cooling rate, in which both El and λ are low.

[0304] For reference, Table 6 shows the results of having evaluated characteristics of a conventional TRIP steel sheet using No. 3 steel sample shown in Table 1 and with polygonal ferrite as a base phase.

[see Table 6]

[0305] From Table 6 it is seen that the conventional steel sheet is high in EI but low in λ .

Example 3: A study of manufacturing conditions for the first high strength steel sheet (base phase structure: tempered martensite)

[0306] In this Example, various manufacturing conditions shown in Tables 7 and 8 were adopted using No. 3 and No. 4 slabs for experiment shown in Tables 1 and 4, respectively. The thickness of each hot rolled steel sheet was set at 2.0 mm and with this as a base there were conducted experiments.

[0307] Next, the structure of each of the steel sheets was checked in the same way as in Example 1. The results obtained are also shown in Tables 7 and 8. The steels used in this Example are different in only the amount of C (C of No. 3 in Table 1 is 0.15% and that of No. 4 in Table 4 is 0.48%) but are substantially the same in the contents of other components, so that all of the structures obtained were the same.

[see Tables 7, 8]

[0308] No. 1 to 24 in Table 7 were produced by the foregoing method (1). More specifically, No. 1 to 23 were subjected to hot rolling \rightarrow continuous annealing and No. 24 was subjected to hot rolling \rightarrow plating (further, alloying).

[0309] In Table 7, No. 1, 3, 6, 9 to 11, 13, 14, 16, 18, 19, and 22 to 24 are examples of production carried out using conditions specified in the present invention, in which desired structures were obtained.

[0310] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 24 in Table 7 was used and heat-treated under the conditions shown in the same table with the proviso that pre-plating was applied thereto, to afford an alloyed, hot dip galvanized steel sheet. More specifically, after hot rolling had been conducted under the conditions shown in Table 7, Fe pre-plating was conducted under the following conditions (amount of Fe pre-plating deposited: 4.0 g/m², amount of hot dip Zn plating: 52 g/m²), followed by plating [plating bath: Zn-010%Al (effective Al concentration), bath temperature: 460°C] and subsequent alloying (alloying temperature: 450°C, alloying time: 45 seconds).

[Fe Pre-plating Conditions]

[0311]

25

30

50

Plating bath: FeSO₄ · 7H₂O (400 g/L)

Liquid pH: 2.0

Liquid temp.: 60°C

Current density: 50A/dm²

[0312] As is the case with the omission of pre-plating, the alloyed, hot dip galvanized steel sheet thus Fe pre-plated afforded a satisfactory structure and was extremely superior in plating characteristics (not shown in the table) such as excellent sliding property and powdering resistance of the plated surface without the lack of plating.

[0313] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0314] No. 2 is an example of a low hot rolling finish temperature (FDT), in which a desired structure was not obtained, but ferrite structure was produced.

[0315] No. 4 is an example of a low average cooling rate (CR) in hot rolling, in which ferrite and pearlite were produced.

[0316] No. 5 is an example of a high winding temperature (CT) in hot rolling, in which bainite was produced in a large quantity.

[0317] No. 7 is an example of using a conventional TRIP steel (with a base phase being polygonal ferrite), in which a desired structure was not obtained.

[0318] No. 8 is an example of a high two phase region temperature (T3) in continuous annealing, in which a desired structure was not obtained, but bainite structure was obtained as abase phase structure.

[0319] No. 12 is an example of a low T3, in which γ_R structure was not obtained.

[0320] No. 15 is an example of a short holding time (t3) at a two phase region temperature in continuous annealing, in which tempering was insufficient and a desired tempered martensite was not obtained.

[0321] No. 17 is an example of a low average cooling rate (CR) in continuous annealing, in which pearlite was produced.

[0322] No. 20 and 21 are examples low in austempering temperature (T4) (i.e., austempering is not performed), in which a desired structure was not obtained, but martensite was produced.

[0323] Next, No. 25 to 27 in Table 7 are examples in which cold rolling was performed in the foregoing method (1). More specifically, No. 25 and 26 are examples of having gone through hot rolling \rightarrow cold rolling \rightarrow continuous annealing and No. 27 is an example having gone through hot rolling \rightarrow cold rolling \rightarrow plating (further, alloying).

[0324] In No. 25 and 27, conditions specified in the present invention were adopted to afford desired structures.

[0325] On the other hand, in No. 26 there was adopted a high cooling rate and a desired tempered martensite was not obtained, with formation of polygonal ferrite.

[0326] Lastly, No. 28 to 52 in Table 8 followed the foregoing method (2). More specifically, No. 28 to 51 have gone through hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow second continuous annealing, while No. 52 has gone through hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow plating (further, alloying).

[0327] In No. 28, 31,32, 34, 36 to 38, 41 to 42, 44, 46 to 47, and 50 to 52 in Table 8 there were adopted conditions specified in the present invention to afford desired structures.

[0328] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 52 in Table 8 was subjected to Fe pre-plating and alloying under the same conditions as No. 24. The thus Fe pre-plated, alloyed, hot dip galvanized steel sheet proved to have a good structure equal to that obtained without going through pre-plating, and also proved to have extremely superior plating characteristics (not shown in the table) such as superior sliding property and powdering resistance of the plated surface without the lack of plating.

[0329] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0330] No. 29 and 30 are examples of low γ region temperatures (T1) in the first continuous annealing process, in which ferrite was produced.

[0331] No. 33 is an example of a low average cooling rate (CR) in the first continuous annealing process, in which polygonal ferrite and pearlite were produced.

[0332] No. 35 is an example of a high two phase region temperature (T3) in the second continuous annealing process, in which bainite structure was obtained as a base phase structure.

[0333] No. 39 is an example of a low T3, in which a desired γR structure was not obtained.

[0334] No. 40 is an example of a long holding time (t3) in a two phase temperature region in the second continuous annealing process, in which ferrite structure was obtained as a base phase structure.

[0335] No. 43 is an example of a short t3, in which tempering was insufficient and a desired tempered martensite was not obtained.

[0336] No. 45 is an example of a low average cooling rate (CR) in the second continuous annealing process, in which pearlite was produced.

[0337] No. 48 and 49 are examples low in austempering temperature (T4) (i.e., austempering is not performed), in which martensite was produced and a desired structure was not obtained.

Example 4: A study (part 1) of components' compositions in the first high strength steel (base phase structure: tempered bainite)

[0338] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to low C steels having a C content of 0.25% or less [steels high in strength (TS) x stretch flange formability (λ) and taking weldability into account]. More specifically, steel samples comprising components' compositions shown in Table 1 (unit in the table is mass %) were vacuum-melted into slabs for experiment, followed by the same procedure as in Example 1 in accordance with the foregoing method (1) (hot rolling \rightarrow continuous annealing) to afford hot rolled steel sheets each having a thickness of 2.0 mm.

[0339] Then, in the same way as in Example 1 the steel sheets thus obtained were measured for tensile strength (TS), elongation [total elongation (EI)], yield strength (YP), and stretch flange formability (hole expanding property: λ), and in each of the steel sheets there were measured an area fraction of structure, a space factor of γ_R , and the concentration of C in γ_R .

[0340] The results obtained are shown in Table 9.

Isee Table 91

30

[0341] The following can be seen from these results (all of the following No. mean Run NO. in Table 9).

[0342] First, all of No. 2 to 5 and 7 to 15, which satisfy the components specified in the present invention, afforded steel sheets of good characteristics.

[0343] For reference, a TEM photograph (magnification: 15000×) of a steel sheet (No. 3) according to the present invention is shown in Fig. 15. From this picture it is seen that the steel, sheet according to the present invention has tempered bainite of a clear lath structure.

[0344] In contrast therewith, the following examples lacking in any of the components specified in the present invention have the following disadvantages.

[0345] First, No. 1 is an example of a small amount of C, in which TS and EI are low because desired tempered bainite and γ_R are not obtained.

[0346] No. 6 is an example of a small total amount of (Si+Al) and a small amount of Mn, in which El is as low as 10% because a desired γ_R is not obtained.

Example 5: A study (part 2) of components' compositions in the first high strength steel (base phase structure: tempered bainite)

[0347] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to high C steels having a C content of 0.25 to 0.6% [steels high in strength (TS) \times stretch flange formability (λ) and also high in TS \times elongation (EI)]. More specifically, steel samples comprising components' compositions shown in Table 4 (unit in the table is mass %) were vacuum-melted and hot rolled steel sheets were produced in the same way as in Example 1 and then evaluated for various characteristics.

[0348] The results obtained are shown in Table 10.

[see Table 10]

10

[0349] The following can be seen from these results (all of the following No. mean Run No. in Table 10).

[0350] First, all of No. 3 to 6, 8 to 15, and 17, which satisfy the composition of a high C steel specified in the present invention, afforded steel sheets of good characteristics.

[0351] For reference, a TEM photograph (magnification: 15000X) of a steel sheet (No. 3) according to the present invention is shown in Fig. 16. From this photograph it is seen that the steel sheet according to the present invention has tempered bainite of a clear lath structure.

[0352] On the other hand, No. 1 and 2 are low in El because their C quantities are smaller than in the other examples (all being not less than 0.4% in the amount of C).

[0353] No. 7 is an example of a small amount of Mn and a small total amount of (Si+Al), in which El is as low as 12% because a desired γ_R is not obtained.

[0354] No. 16 is an example of having produced a large amount of pearlite structure as a second phase structure due to adoption of a somewhat low cooling rate, in which both El and λ are low.

[0355] For reference, Table 11 shows the results of having evaluated characteristics of a conventional TRIP steel sheet using No. 3 steel sample shown in Table 1 and with polygonal ferrite as a base phase.

[see Table 11]

30 [0356] From Table 11 it is seen that the conventional steel sheet is high in El but low in λ .

Example 6: A study of manufacturing conditions for the first high strength steel sheet (base phase structure: tempered bainite)

[0357] In this Example, various manufacturing conditions shown in Tables 12 and 13 were adopted using No. 3 and No. 4 slabs for experiment shown in Tables 1 and 4, respectively (thickness of each hot rolled steel sheet was set at 2.0 mm).

[0358] Next, the structure of each of the steel sheets was checked in the same way as in Example 1. The results obtained are as shown in Tables 12 and 13. The steels used in this Example are different in only the amount of C (C of No. 3 in Table 1 is 0.15% and that of No. 3 in Table 4 is 0.41%) but are substantially the same in the contents of other components, so that all of the structures obtained were the same.

[see Tables 12, 13]

[0359] First, No. 1 to 23 were produced by the foregoing method (1). More specifically, No. 1 to 22 were subjected to hot rolling → continuous annealing and No. 23 was subjected to hot rolling → plating (further, alloying).

[0360] No. 1, 3, 8 to 10, 12, 13, 15, 17, 18, and 21 to 23 are examples of production carried out using conditions specified in the present invention, in which desired structures were obtained.

[0361] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 23 in Table 12 was used and heat-treated under the conditions shown in Table 12 with the proviso that pre-plating was applied thereto; to afford an alloyed, hot dip galvanized steel sheet. The details of the pre-plating are as described in Example 3.

[0362] As is the case with the omission of pre-plating, the alloyed, hot dip galvanized steel sheet thus Fe pre-plated afforded a satisfactory structure and was extremely superior in plating characteristics (not shown in the table) such as excellent sliding property and powdering resistance of the plated surface without the lack of plating.

[0363] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0364] No. 2 is an example of a low hot rolling finish temperature (FDT), in which a desired structure was not obtained, but ferrite structure was produced.

- [0365] No. 4 is an example of a low average cooling rate (CR) in hot rolling, in which ferrite and pearlite were produced.
- [0366] No. 5 is an example of a low winding temperature (CT) in hot rolling, in which tempered martensite was produced.
- [0367] No. 6 is an example of a high CT, in which a desired structure was not obtained, but there was obtained the same structure as that of a conventional TRIP steel (with a base phase being polygonal ferrite).
- [0368] No. 7 is an example of a high two phase region temperature (T3) in continuous annealing, in which a desired structure was not obtained, but bainite structure was obtained as a base phase structure.
- [0369] No. 11 is an example of a low T3, in which a retained austenite (γ_R) structure was not obtained.
- [0370] No. 14 is an example of a short holding time (t3) at a two phase region temperature in continuous annealing, in which tempering was insufficient and a desired tempered bainite was not obtained.
- [0371] No. 16 is an example of a low average cooling rate (CR) in continuous annealing, in which pearlite was produced.
- [0372] No. 19 and 20 are examples low in austempering temperature (T4) (i.e., austempering is not performed), in which a desired structure was not obtained, but martensite was produced.
- [0373] Next, No. 24 to 26 in Table 12 are examples in which cold rolling was performed in the foregoing method (1). More specifically, No. 24 and 25 are examples of having gone through hot rolling → cold rolling → continuous annealing and No. 26 is an example having gone through hot rolling → cold rolling → plating (further, alloying).
 - [0374] In No. 24 and 26, conditions specified in the present invention were adopted to afford desired structures.
 - [0375] On the other hand, in No. 25 there was adopted a high cold rolling rate and a desired tempered bainite was not obtained, with formation of polygonal ferrite.
 - **[0376]** Lastly, No. 27 to 51 in Table 13 followed the foregoing method (2). More specifically, No. 27 to 50 have gone through hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow second continuous annealing, and No. 51 have gone through hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow plating (further, alloying).
 - [0377] In No. 27, 30, 31, 33, 35 to 37, 40 to 41, 43, 45 to 46, and 49 to 51 there were adopted conditions specified in the present invention to afford desired structures.
 - [0378] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 51 in Table 13 was subjected to Fe pre-plating and alloying under the same conditions as No. 23 in Table 7. The thus Fe pre-plated, alloyed, hot dip galvanized steel sheet proved to have a good structure equal to that obtained without going through pre-plating, and also proved to have extremely superior plating characteristics (not shown in the table) such as superior sliding property and powdering resistance of the plated surface without the lack of plating.
 - [0379] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.
 - [0380] No. 28 and 29 are examples of low γ region temperatures (T1) in the first continuous annealing process, in which ferrite was produced.
- [0381] No. 32 is an example of a low average cooling rate (CR) in the first continuous annealing process, in which polygonal ferrite and pearlite were produced.
 - [0382] No. 34 is an example of a high two phase region temperature (T3) in the second continuous annealing process, in which all of the structure obtained was not a tempered bainite structure, but was an ordinary bainite structure.
 - [0383] No. 38 is an example of a low T3, in which a desired γ_R was not obtained.

- [0384] No. 39 is an example of a long holding time t3) in a two phase temperature region in the second continuous annealing process, in which ferrite structure was obtained as a base phase structure.
 - [0385] No. 42 is an example of a short t3, in which tempering was insufficient and a desired tempered bainite was not obtained.
 - [0386] No. 44 is an example of a low average cooling rate (CR) in the second continuous annealing process, in which pearlite was produced.
 - [0387] No. 47 and 48 are examples low in austempering temperature (T4) (i.e., austempering is not performed), in which martensite was produced and a desired structure was not obtained.
 - Example 7: A study (part 1) of components' compositions in the first high strength steel sheet (base phase structure: a mixed structure of tempered martensite and ferrite)
 - [0388] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to low C steels having a C content of 0.25% or less [steels high in strength (TS) x stretch flange formability (λ) and taking weldability into account]. More specifically, steel samples comprising components' compositions shown in Table 1 (unit in the table is mass %) were vacuum-melted into slabs for experiment and thereafter the procedure of Example 1 was repeated in accordance with the foregoing method (3) (hot rolling \rightarrow continuous annealing) to afford hot rolled steel sheets having a thickness of 2.0 mm.
 - [0389] Then in the same manner as in Example 1 the steel sheets thus obtained were measured for tensile strength

(TS), elongation [total elongation (EI)], yield strength (YP), and stretch flange formability (hole expanding property: λ), and also there were measured an area fraction of structure in each of the steel sheets, a space factor of γ_R , and the concentration of C in γ_R .

[0390] The results obtained are shown in Table 14.

[see Table 14]

[0391] The following can be seen from these results (all of the following No. mean Run No. in Table 14).

[0392] First, all of No. 3 to 6, 8 to 18, and 20, which satisfy the conditions specified in the present invention, afforded steel sheets of good characteristics.

[0393] For reference, an optical microphotograph (magnification: 1000X) of a steel sheet (No. 3) according to the present invention is shown in Fig. 17. From this photograph it is seen that the steel sheet according to the present invention has tempered martensite of a lath structure.

[0394] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0395] First, No. 1 is an example of a small amount of C, in which γ_R was not obtained and it was impossible to ensure a desired El.

[0396] No. 2 is an example of a C_{γ_R} content of less than 0.8%, in which it was impossible to ensure a desired EI.

[0397] No. 7 is an example of a small amount of Mn and a small total amount of (Si+AI), in which a desired γ_R was not obtained and hence E1 was low.

[0398] No. 19 is an example of having adopted a somewhat low cooling rate and a consequent large proportion of pearlite structure, in which a predetermined tempered martensite was not obtained and both EI and λ were deteriorated.

Example 8: A study (part 2) of components' compositions in the first high strength steel sheet (base phase structure: a mixed structure of tempered martensite and ferrite)

[0399] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to high C steels having a C content of 0.25 to 0.6% [steels high in strength (TS) \times stretch flange formability (λ) and also high in TS \times elongation (EI)]. More specifically, steel samples comprising components' compositions described in Table 15 (unit in the table is mass %) were vacuum-melted, then hot rolled steel sheets were produced in the same way as in Example 1 and were evaluated for characteristics.

[0400] The results obtained are shown in Table 16.

[see Tables 15, 16]

35

[0401] The following can be seen from these results (all of the following No. mean Run No. in Table 16).

[0402] First, all of No. 4 to 7, 9 to 19, and 21, which satisfy the conditions specified in the present invention, afforded steel sheets of good characteristics.

[0403] For reference, an optical microphotograph (magnification: 1000X) of a steel sheet (No. 3) according to the present invention is shown in Fig. 18. From this photograph it is seen that the steel sheet according to the present invention has tempered martensite of a lath structure.

[0404] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0405] First, No. 1 is smaller in the amount of C, which is 0.15%, than in the other examples (C: 0.4% or more) and is low in El.

[0406] No. 2 is also small in the amount of C, which is 0.15%, and is less than 0.8% in the amount of $C_{\gamma R}$, low in El.

[0407] No. 3 is less than 0.8% in the amount of $C\gamma_R$ and it was impossible to ensure a desired EI.

[0408] No. 8 is an example of a small amount of Mn and a small total amount of (Si+Al), in which EI is low because a desired γ_R is not obtained.

[0409] No. 20 is an example of a large proportion of pearlite structure because of adoption of a somewhat low cooling rate, in which a predetermined tempered martensite was not obtained and both El and λ were deteriorated.

[0410] For reference, the results of having evaluated characteristics of conventional TRIP steel sheets are shown in Table 17. In the same table, No. 22 is a DP steel plate of ferrite and martensite using the steel sample of No. 3 in Table 1, No. 23 is a conventional TRIP steel sheet using the steel sample of No. 3 in Table 1 and with a base phase being polygonal ferrite, and No. 24 is a conventional two phase steel sheet of ferrite and bainite using the steel sample of No. 3 in Table 1.

[see Table 17]

[0411] From Table 17 it is seen that No. 22 is deteriorated in elongation and stretch flange formability, No. 23 is deteriorated in stretch flange formability, and No.24 is deteriorated in elongation.

Example 9: A study of manufacturing conditions for the first high strength steel sheet (base phase structure: a mixed structure of tempered martensite and ferrite)

[0412] In this Example, various manufacturing conditions shown in Tables 18 and 19 were adopted using No. 4 slabs for experiment shown in Tables 1 and 15, respectively, (the thickness of each hot rolled steel sheet was set at 2.0 mm). [0413] Next, the structure of each of the steel sheets was checked in the same manner as in Example 1. The results obtained are also shown in Tables 18 and 19. The steels used in this Example are different in only the amount of C (C of No. 4 in Table 1 is 0.20% and that of No. 4 in Table 15 is 0.48%) but are substantially the same in the contents of other components, so that all of the structural constructions (types of second phase) obtained were the same.

[see Tables 18, 19]

15

[0414] No. 1 to 25 in Table 18 were produced by the foregoing method (3). More specifically, No. 1 to 23 were subjected to hot rolling \rightarrow continuous annealing. In No. 5 to 7 and No. 25 there was conducted one-step cooling in the hot rolling process, while in the other runs there was conducted two-step cooling in the same process. No. 24 and 25 were subjected to hot rolling \rightarrow plating (further, alloying), of which No. 24 is an example of having conducted two-step cooling in the hot rolling process and No.25 is an example of having conducted one-step cooling in the same process. [0415] No. 1, 3 to 4, 7, 9 to 11, 13 to 14, 16, 18 to 19, and 22 to 25 are example of production carried out using conditions specified in the present invention, in which desired structures were obtained.

[0416] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 24 in Table 18 was used and heat-treated under the conditions shown in the same table with the proviso that pre-plating was applied thereto, to afford an alloyed, hot dip galvanized steel sheet. The details of the pre-plating are as described in Example 3. [0417] Thus, the alloyed, hot dip galvanized steel sheet having been subjected to Fe pre-plating proved to have a good structure equal to that obtained without going through pre-plating, and also proved to have extremely superior plating characteristics (not shown in the table) such as superior sliding property and powdering resistance of the plated surface without the lack of plating.

[0418] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0419] No. 2 is an example of a high winding temperature (CT) in hot rolling, in which ferrite and tempered bainite were produced.

[0420] No. 5 is an example of a high CT, in which the same structure as in a conventional TRIP steel (TRIP steel with a base phase being polygonal ferrite) was obtained, but a desired structure was not obtained.

[0421] No. 6 is an example of a low average cooling rate (CR1) in hot rolling, in which, due to the absence of tempered martensite in the as-hot-rolled structure, a desired structure was not obtained and a conventional TRIP steel structure was produced.

[0422] No. 8 is an example of a high two phase region temperature (T3) in continuous annealing, in which a desired texture was not obtained and a conventional TRIP steel structure was produced.

[0423] No. 12 is an example of a low T3, in which desired $\gamma_{\mbox{\scriptsize R}}$ was not obtained.

[0424] No. 15 is an example of a short holding time (t3) at a two phase region temperature in continuous annealing, in which tempering was insufficient and desired tempered martensite was not obtained.

[0425] No. 17 is an example of a low average cooling rate (CR) in continuous annealing, in which pearlite was produced.

[0426] No. 20 and 21 are examples of a low austempering temperature (T4) (i.e., austempering was not performed), in which desired structure was not obtained and martensite was produced.

[0427] Next, No. 26 to 30 in Table 19 are example of having performed cold rolling in the foregoing method (3). More specifically, No. 26 to 28 are example of having gone through hot rolling → cold rolling → continuous annealing and No. 29 to 30 are examples of having gone through hot rolling → cold rolling → plating (further, alloying), of which No. 28 and 30 are examples in which one-step cooling was performed in the hot rolling process, and the other examples adopted two-step cooling.

[0428] No. 26 and 28 to 30 are examples using conditions specified in the present invention, in which desired structures were obtained.

[0429] On the other hand, No. 27 is an example of a high cold rolling rate, in which pre-structure was destroyed by cold rolling and a desired tempered martensite was not obtained.

[0430] Lastly, No. 31 to 57 in Table 19 followed the foregoing method (4). More specifically, No. 31 to 56 have gone through hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow second continuous annealing, while No. 57 has undergone hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow plating (further, alloying).

[0431] No. 31 to 34, 36, 37, 39, 41 to 43, 46 to 47, 49, 51 to 52, and 55 to 57 adopted conditions specified in the present invention, in which desired structures were obtained.

[0432] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 57 in Table 19 was used and was subjected to Fe pre-plating and alloying under the same conditions as in No. 24 in Table 7 described previously. As a result, as is the case with the omission of pre-plating, the alloyed, hot dip galvanized steel sheet thus Fe pre-plated afforded a satisfactory structure and was extremely superior in plating characteristic (not shown in the table) such as excellent sliding property and powdering resistance of the plated surface without the lack of plating.

[0433] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0434] No. 35 is an example of a low T1, in which a desired γ_R was not obtained.

[0435] No. 38 is an example of a low average cooling rate (CR) in the first continuous annealing process, in which polygonal ferrite and pearlite were produced.

[0436] No. 40 is an example of a high two phase region temperature (T3) in the second continuous annealing process, in which a conventional TRIP steel structure was obtained.

[0437] No. 44 is an example of a low T3, in which a desired γ_R was not obtained.

[0438] No. 45 is an example of a long holding time (t3) in two phase region in the second continuous annealing process, in which ferrite structure was produced as a base phase and tempered martensite vanished.

[0439] No. 48 is an example of a short t3, in which tempering was insufficient and desired tempered martensite was not obtained.

[0440] No. 50 is an example of a low average cooling rate (CR) in the second continuous annealing process, in which pearlite was produced.

[0441] No. 53 and 54 are examples low in austempering temperature (T4) (i.e., austempering is not performed), in which martensite was produced and a desired structure was not obtained.

Example 10: A study (part 1) of components' compositions in the first high strength steel plate (base phase structure: a mixed structure of tempered bainite and ferrite)

[0442] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to low C steels having a C content of 0.25% or less [steels high in strength (TS) \times stretch flange formability (λ) and taking weldability into account]. More specifically, steel samples comprising components' compositions shown in Table 1 (unit in the table is mass %) were vacuum-melted into slabs for experiment and thereafter the procedure of Example 1 was repeated in accordance with the foregoing method (3) (hot rolling \rightarrow continuous annealing) to afford hot rolled steel sheets having a thickness of 2.0 mm.

[0443] Then in the same manner as in Example 1 the steel sheets thus obtained were measured for tensile strength (TS), elongation [total elongation (EI)], yield strength (YP), and stretch flange formability (hole expanding property: λ), and also there were measured an area fraction of structure in each of the steel sheets, a space factor of γ_R , and the concentration of C in γ_R .

[0444] The results obtained are shown in Table 20.

[see Table 20]

30

[0445] The following can be seen from these results (all of the following No. mean Run No. in Table 20).

[0446] First, all of No. 3 to 6, 8 to 18, and 20, which satisfy the conditions specified in the present invention, afforded steel sheets of good characteristics.

[0447] For reference, an optical microphotograph (magnification: 1000X) of a steel sheet (No. 3) according to the present invention is shown in Fig. 19. From this photograph it is seen that the steel sheet according to the present invention has tempered bainite of a lath structure and ferrite.

[0448] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0449] First, No. 1 is an example of small amount C, in which it was impossible to attain a desired El.

[0450] No. 2 is an example of a CYR quantity of less than 0.8%, in which it was impossible to attain a desired El.

[0451] No. 7 is an example of a small amount of Mn and a small total amount of (Si+AI), in which a desired γ_R was not obtained and therefore EI was low.

[0452] No. 19 is an example of having adopted a low cooling rate and a consequent large proportion of pearlite structure, in which a predetermined tempered bainite was not obtained and both El and λ were deteriorated.

Example 11: A study (part 2) of components' compositions in the first high strength steel sheet (base phase structure: a mixed structure of tempered bainite and ferrite)

[0453] In this Example a check was made about the influence of varying components' compositions on mechanical properties mainly with respect to high C steels having a C content of 0.25 to 0.6% [steels high in strength (TS) \times stretch flange formability (λ) and also high in TS \times elongation (EI)]. More specifically, steel samples comprising components' compositions shown in Table 15 (unit in the table is mass %) were vacuum-melted, then hot rolled steel sheets were produced in the same way as in Example 1 and were evaluated for characteristics.

[0454] The results obtained are shown in Table 21.

[see Table 21]

10

[0455] The following can be seen from these results (all of the following No. mean Run No. in Table 21).

[0456] First, all of No. 3 to 6, 8 to 18, and 20, which satisfy the conditions specified in the present invention, afforded steel sheets of good characteristics.

[0457] For reference, an optical microphotograph (magnification: 1000X) of a steel sheet (No. 3) according to the present invention is shown in Fig. 20. From this photograph it is seen that the steel sheet according to the present invention has tempered bainite of a lath structure and ferrite.

[0458] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0459] First, No. 1 is smaller in the amount of C, which is 0.15%, than the other examples (C: 0.4% or more) and is therefore low in El.

[0460] No. 2 is also as low as 0.20% in the amount of C and has a $C\gamma_R$ content of less than 0.8%, in which El is low. [0461] No. 7 is an example of a small amount of Mn and a small total amount of (Si+Al), in which a desired γ_R was

not obtained and hence EI was low. **[0462]** No. 19 is an example of having adopted a somewhat low cooling rate and a consequent large proportion of pearlite structure, in which a predetermined tempered bainite was not obtained and both EI and λ were deteriorated.

[0463] For reference, two types of steel sheets .(a conventional TRIP steel sheet using polygonal ferrite as a base phase and a conventional two phase steel sheet of ferrite and bainite) were produced by using steel samples No. 2 and No. 3 shown in Table 1 and by suitably adjusting heat treatment conditions and were then evaluated for various characteristics, the results of which are set out in table 22.

[see Table 22]

40

50

[0464] Reference to Table 22 shows that the conventional TRIP steel sheet using No. 3 in Table 1 is high in El but low in λ and that the conventional ferrite-bainite two phase steel sheet using No. 2 in Table 1 is low in E1.

Example 12: A study of manufacturing conditions for the first high strength steel sheet (base phase structure: a mixed structure of tempered bainite and ferrite)

[0465] In this Example, various manufacturing conditions shown in Tables 23 and 24 were adopted using No. 4 slabs for experiment shown in Tables 1 and 15, respectively, (the thickness of each hot rolled steel sheet is assumed to be 2.0 mm).

[0466] Next, the structure of each of the steel sheets was checked in the same way as in Example 1. The results obtained are also set out in Tables 23 and 24. The steels used in this Example are different in only the amount of C (C of No. 3 in Table 1 is 0.20% and that of No. 4 in Table 15 is 0.48%) but are substantially the same in the contents of other components, so that all of the structures obtained were the same.

[see Tables 23, 24]

[0467] First, No. 1 to 25 in Table 23 were produced by the foregoing method (3). More specifically, No. 1 to 23 were subjected to hot rolling \rightarrow continuous annealing, of which No. 5 to 7 and No. 25 adopted one-step cooling in the hot rolling process and the others adopted two-step cooling. Further, No. 24 and 25 are examples of having been subjected to hot rolling \rightarrow plating (further, alloying), of which No. 24 is an example of having adopted two-step cooling in the hot rolling process and No. 25 is an example of having adopted one-step cooling.

[0468] No. 1 to 3, 7, 9 to 11, 13, 14, 16, 18, 19, and 22 to 25 are examples of production carried out using conditions specified in the present invention, in which desired structures were obtained.

[0469] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 24 in Table 23 was

used and heat-treated under the conditions set out in Table 23 with the proviso that pre-plating was applied thereto, to afford an alloyed, hot dip galvanized steel sheet. The details of the pre-plating are as described in Example 3.

[0470] The alloyed, hot dip galvanized steel sheet thus Fe pre-plated afforded a satisfactory structure and was extremely superior in plating characteristics (not shown in the table) such as excellent sliding property and powdering resistance of the plated surface without the lack of plating.

[0471] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0472] No. 4 is an example of a low winding temperature (CT) in hot rolling, in which ferrite and tempered martensite were produced.

[0473] No. 5 is an example of a high CT, in which there was obtained the same structure as that of a conventional TRIP steel (with a base phase being polygonal ferrite) and a desired structure was not obtained.

[0474] No. 6 is an example of a low average cooling rate (CR) in hot rolling, in which a desired structure was not obtained because of absence of tempered bainite in the as-hot-rolled structure, and a conventional TRIP steel structure was produced.

[0475] No. 8 is an example of a high two phase region temperature (T3) in continuous annealing, in which a desired structure was not obtained, but a conventional TRIP steel structure was produced.

[0476] No. 12 is an example of a low T3, in which γ_R structure was not obtained.

[0477] No. 15 is an example of a short holding time (t3) at a two phase region temperature in continuous annealing, in which tempering was insufficient and desired tempered bainite was not obtained.

[0478] No. 17 is an example of a low average cooling rate (CR) in continuous annealing, in which pearlite was produced.

[0479] No. 20 and 21 are examples low in austempering temperature (T4) (i.e., austempering is not performed), in which a desired structure was not obtained, but martensite was produced.

[0480] Next, No. 26 to 30 in Table 23 are examples in which cold rolling was performed in the foregoing method (3). More specifically, No. 26 to 28 are examples which were subjected to hot rolling \rightarrow cold rolling \rightarrow continuous annealing and No. 29 and 30 are examples which were subjected to hot rolling \rightarrow cold rolling \rightarrow plating (further, alloying). In No. 28 and 30 there was adopted one-step cooling in the hot rolling process, while in the other examples there was adopted two-step cooling.

[0481] In No. 26 and 28 to 30 there were adopted conditions specified in the present invention to afford desired structures.

[0482] On the other hand, No. 27 is an example of a high cold rolling rate, in which a desired tempered bainite was not obtained.

[0483] Lastly, No. 31 to 57 in Table 24 followed the foregoing method (4). More specifically, No. 31 to 56 have gone through hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow second continuous annealing, while No. 57 has gone through hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow plating (further, alloying).

[0484] No. 32 to 34, 36, 37, 39, 41 to 43, 46 to 47, 49, 51 to 52, and 55 to 57 are examples of production carried out under conditions specified in the present invention, in which desired structures were obtained.

[0485] For making sure the effect of improvement in plating characteristics by Fe pre-plating, No. 57 in Table 24 was a subjected to Fe pre-plating and alloying under the same conditions as No. 24. The thus Fe pre-plated, alloyed, hot dip galvanized steel sheet proved to have a good structure equal to that obtained without going through pre-plating, and also proved to have extremely superior plating characteristics (not shown in the table) such as superior sliding property and powdering resistance of the plated surface without the lack of plating.

[0486] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0487] No. 31 is an example of a high γ region temperature (T1) in the continuous annealing process, in which not tempered bainite but ferrite and tempered martensite were produced.

[0488] No. 35 is an example of a low T1, in which a desired γ_R structure was not obtained.

[0489] No. 38 is an example of a low average cooling rate (CR) in the first continuous annealing process, in which polygonal ferrite and pearlite were produced.

[0490] No. 40 is an example of a high two phase region temperature (T3) in the second continuous annealing process, in which a conventional TRIP steel structure was obtained.

[0491] No. 44 is an example of a low T3, in which a desired γ_R was not obtained.

[0492] No. 45 is an example of a long holding time (t3) in a two phase temperature region in the second continuous annealing process, in which ferrite structure was obtained as a base phase structure, and tempered bainite vanished.

[0493] No. 48 is an example of a short t3, in which tempering was insufficient and a desired tempered bainite was not obtained.

[0494] No. 50 is an example of a low average cooling rate (CR) in the second continuous annealing process, in which pearlite was produced.

[0495] No. 53 and 54 are examples low in austempering temperature (T4) (i.e., austempering is not performed), in which martensite was produced and a desired structure was not obtained.

[0496] From the results of the above Examples 1 to 12 it is seen that in a high strength and ultra-high strength region of the order of about 500 to 1400 MPa the first high strength steel sheet according to the present invention exhibits both excellent stretch flange formability and excellent total elongation.

Example 13: A study of components' compositions in the second high strength steel sheet

[0497] In this Example, steel samples comprising components' compositions described in Table 25 (unit in the table is mass %) were vacuum-melted into slabs for experiment, from which there were obtained cold rolled steel sheets having a thickness of 1.0 mm in accordance with the method described in Table 26 [the foregoing method (8) (hot rolling → cold rolling → first continuous annealing → tempering → second continuous annealing)].

[0498] Then, in the same way as in Example 1 the steel sheets thus obtained were measured for tensile strength (TS), elongation [total elongation (EI)], yield strength (YP), and stretch flange formability (hole expanding property: λ). As to the fatigue characteristic [fatigue endurance ratio (fatigue strength/yield strength), a fatigue limit was determined by an endurance limit test under reverse stress and repeated bending, then a fatigue endurance ratio [fatigue strength σ_w (MPa)/yield strength YP (MPa)] was calculated using the fatigue limit to evaluate the fatigue characteristic.

[0499] Further, in accordance with the foregoing method, a space factor of the structure in each of the steel sheets was measured and an area ratio [(S1/S) \times 100] of a coarse second phase structure was calculated. The amount of γ_R and the concentration of C in γ_R were measured by X-ray diffractometry after grinding to a quarter depth of each steel sheet and after subsequent chemical polishing (ISIJ Int. Vol.33 (1933), No.7, P.776).

[0500] The results obtained are shown in Table 27.

[0501] In Table 27 and in the column of the ratio of a coarse second phase structure [(S1/S) \times 100], "-" means that γ_R which constitutes the second phase structure is not present or the amount thereof is very small, with no martensite produced, and that therefore it was impossible to measure S1.

[see Tables 25, 26, 27]

10

25

[0502] The following can be seen from these results. All of the following No. mean Run No. in Table 27. The examples described in Table 27, which satisfy the condition of $[S1/S] \times 100 \le 20$, are for showing differences in other conditions (components and whether tempering is performed or not).

[0503] First, all of No. 3 to 5 and 7 to 14 satisfy the conditions specified in the present invention and are therefore 10% or more higher in stretch flange formability (λ) and fatigue characteristic (σ_w /YP) than in case of steel of the same components having been heat-treated without going through a predetermined tempering treatment (note: even when a tempering treatment is not performed, if a predetermined heat treatment capable of being regarded as equal to the tempering treatment is applied, it is regarded that tempering has been conducted) .

[0504] On the other hand, No. 1 is an example of a low content of C, in which it was impossible to ensure a desired EI, provided its fatigue characteristic is satisfactory because the second phase structure (γ_R /martensite) defined in the present invention was not produced.

[0505] No. 2 is an example of omission of a predetermined tempering treatment, in which it was impossible to ensure a desired EI and the fatigue characteristic was deteriorated.

[0506] No. 6 is an example of a small total amount of (Si+Al), in which a desired El was not obtained.

[0507] No. 15 is an example of a low cooling rate and consequent production of a large amount of pearlite structure, in which EI and λ were deteriorated.

[0508] For reference, evaluation results of various characteristics of conventional steel sheets are shown in Table 28. In the same table, No. 20 is a DP steel sheet of ferrite and martensite using No. 2 steel sample in Table 1, No. 21 is a conventional TRIP steel sheet using No. 2 steel sample in Table 1 and with polygonal ferrite as a base phase, and No. 22 is a conventional two phase steel sheet of ferrite and bainite using No. 2 steel sample in Table 1.

[see Table 28]

50

[0509] From Table 28 it is seen that No. 20 (conventional DP steel sheet) is inferior in all of elongation, stretch flange formability, and fatigue characteristic.

[0510] No. 21 (conventional TRIP steel sheet) contains a large proportion of a coarse second phase structure and is inferior in both stretch flange formability and fatigue characteristic.

[0511] No. 22 (conventional two phase steel sheet) is superior in fatigue characteristic but inferior in elongation because of absence of the second phase structure defined in the present invention.

Example 14: A study (part 1) of manufacturing conditions for the second high strength steel sheet

[0512] In this Example a study was made about the foregoing manufacturing method (5) or (7), i.e., the method comprising hot rolling → tempering → continuous annealing. More specifically, No. 3 steel sample in Table 25 was vacuum-melted into a slab for experiment, from which there were produced hot rolled steel sheets 2.0 mm thick under the conditions set out in Table 29. The steel sheets were then checked for structure and characteristics in the same manner as in Example 13. In Table 29, No. 1, 2, and 5 are examples in which one-step cooling was conducted in the hot rolling process, while in the other examples there was conducted two-step cooling (after cooling to 700°C at an average cooling rate of 40°C/s, air-cooling was performed in this temperature range for 10 seconds, followed by cooling to 200°C or 450°C at an average cooling rate of 40°C/s). The results obtained are shown in Table 30.

[see Tables 29, 30]

10

20

35

45

[0513] In Table 30, No. 2 is an example according to the present invention in which a desired base phase structure of tempered martensite was obtained through predetermined steps of hot rolling \rightarrow tempering \rightarrow continuous annealing, No. 4 is an example according to the present invention in which a desired mixed base phase structure of (tempered martensite + ferrite) was obtained through predetermined hot rolling \rightarrow tempering \rightarrow continuous annealing, No. 5 is an example according to the present invention in which a desired base phase structure of tempered bainite was obtained through predetermined steps of hot rolling (tempering can be omitted because a winding process is performed at a CT of 450°C for 1 hour) \rightarrow continuous annealing, and No. 6 is an example according to the present invention in which a desired mixed base phase structure of (tempered bainite + martensite) was obtained through predetermined steps of hot rolling (tempering can be omitted because a winding process is performed at a CT of 450°C for 1 hour) \rightarrow continuous annealing. All of these examples, due to formation of fine second phase structures, are 10% or more higher in stretch flange formability (λ) and fatigue characteristic (σ_w/YP) than in case of steel of the same components having been heat-treated without going through a predetermined tempering treatment (note: even when a tempering treatment is not performed, if a predetermined heat treatment capable of being regarded as equal to the tempering treatment is applied, it is regarded that tempering has been conducted).

[0514] On the other hand, No. 1 and 3 in Table 30 are examples of production carried out without going through tempering, which are low in fatigue characteristic or in both fatigue characteristic and stretch flange formability due to a large proportion of a coarse second phase structure.

Example 15: A study (part 2) of manufacturing conditions for the second high strength steel sheet

[0515] In this Example a study was made about the foregoing method (6) or (8), i.e., hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow tempering \rightarrow second continuous annealing. More specifically, various steels shown in Tables 31 and 33 (the steel Nos. described in Tables 31 and 33 mean the steel Nos. in Table 25) were vacuum-melted into slabs for experiment. Using these slabs, cold rolled steel sheets 1.0 mm thick were produced under the heat treatment conditions shown in Tables 31 and 33 and were then checked for structure and, characteristics in the same manner as in Example 13. No. 1 to 34 in Table 31 were subjected to hot rolling \rightarrow cold rolling \rightarrow first continuous annealing, while No. 1 to 6 were subjected to hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow (tempering) \rightarrow plating (further, alloying). The results obtained in Table 31 is shown in Table 32 and the results obtained in Table 33 are shown in Table 34.

[0516] In Table 32 and in the column of the proportion of a coarse second phase structure [(S1/S) \times 100], "-" means that γ_R which constitutes the second phase structure is not present or the amount thereof is very small, with no martensite produced, and that therefore it was impossible to measure S1.

[see Tables 31, 32, 33, 34]

[0517] First, No. 4, 7 to 9, 13, 16, 20, 22, 24, 26, 28, 30, 32, and 34 in Table 32 are examples of production carried out under conditions defined in the present invention, which are 10% or more higher in stretch flange formability (λ) and fatigue characteristic (σ_w /YP) than in case of steel of the same components having been heat-treated without going through a predetermined tempering treatment (note: even when a tempering treatment is not performed, if a predetermined heat treatment capable of being regarded as equal to the tempering treatment is applied, it is regarded that tempering has been conducted) .

[0518] In contrast therewith, the following examples lacking in any of the conditions specified in the present invention have the following disadvantages.

[0519] No. 1 and 2 in Table 32 are examples of production using steel 1 (low C steel) shown in Table 1, in which a predetermined base phase structure was obtained, but due to a small amount of C there was not obtained a desired

 γ_{R} and TS×EI were low.

.10

20

25

35

[0520] No. 3, 5, 11 to 12, 14 to 15, 19, 21, 23, 25, 27, 29, 31, and 33, in Table 32, as well as No. 1, 3 to 4, and 6 in Table 34, are all examples of production performed without going through tempering, in which fatigue characteristic or both fatigue characteristic and stretch flange formability were deteriorated due to a large proportion of a coarse second phase structure.

[0521] No. 6 in Table 32 is an example of a low tempering temperature, in which stretch flange formability and fatigue characteristic were deteriorated.

[0522] No. 10 in Table 32 is an example of a long-time treatment conducted at a high tempering temperature, in which stretch flange formability and fatigue characteristic were deteriorated.

[0523] No. 17 and 18 in Table 32 are examples of production using steel 5 [steel having a small total amount of (Si+Al)] in Table 25, in which a desired γ_R was not produced and elongation was deteriorated.

[0524] For reference, a photograph (magnification: 4000X) taken through an SEM (scanning electron microscope) of a steel sheet according to the present invention (No. 13 in Table 32) and that of a comparative steel sheet (No. 12 in Table 32) are shown in Figs. 21 and 22, respectively. From these photographs it is seen that the steel sheet according to the present invention afforded a desired structure [a base phase structure (tempered martensite) of a lath form and a fine second phase structure] because it was treated under conditions specified in the present invention, but that the comparative steel sheet of Fig. 22 cannot afford a desired structure (a coarse second phase structure was formed) due to omission of a predetermined tempering treatment.

[0525] From the above results obtained in Examples 13.to 15 it is seen that the second high strength steel sheet according to the present invention is superior in the balance of stretch flange formability, total elongation, and fatigue characteristic in a high strength and ultra-high strength region of the order of about 500 to 1400 MPa.

Example 16: A study of components' compositions and heating temperature (SRT) before hot rolling in the third high strength steel sheet

[0526] In this Example, steel samples comprising components' compositions shown in Table 35 (unit in the table is mass %) were vacuum-melted into slabs for experiment. Thereafter, using the slabs, cold rolled steel sheets having a thickness of 1.0 mm were produced in accordance with the method described in Table 36 [the foregoing method (12) (hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow second continuous annealing)].

[0527] Then, in the same manner as in Example 1, the the steel sheets thus produced were measured for tensile strength (TS), elongation [total elongation (EI)], and stretch flange formability (hole expanding property: λ).

[0528] The results obtained are shown in Table 37.

[see Tables 35, 36, 37]

[0529] The following can be seen from these results. All of the following No. mean Run No. in Table 37.

[0530] First, it is seen that all of No. 2 to 4, 6 to 13, and 15 to 20, which satisfy the conditions specified in the present invention, are superior in strength (TS), elongation (EI), and stretch flange formability, and that they have a very excellent bake hardening property because they satisfy the conditions specified in the present invention also with respect to BH (2%) and BH (10%).

[0531] On the other hand, No. 1 is an example of a small amount of C, in which it was impossible to obtain desired BH characteristics.

[0532] No. 5 is an example of a small total amount of (Si+Al), in which a desired El is not obtained and BH characteristics are also deteriorated markedly.

[0533] No. 14 is an example of a low cooling rate and a consequent formation of a large amount of pearlite structure as a second phase structure, in which EI and λ are low and BH characteristics are also inferior.

[0534] Next, for the purpose of checking the influence of the heating temperature (SRT) before hot rolling on BH characteristics [especially BH (101%)], steel samples shown in Table 35 were used and cold rolled steel sheets having a thickness of 1.0 mm were produced in accordance with the method described in Table 38. The steel sheets thus obtained were then checked for predetermined mechanical characteristics in the same manner as above, the results of which are given in Table 39.

[see Tables 38, 39]

[0535] From these results it is seen that if steel sheets are produced at an SRT deviated from the range (950 to 1100°C) defined in the present invention, BH (2%) is substantially the same or a little lower, but BH (10%) is markedly deteriorated, not affording a steel sheet meeting the conditions defined in the present invention, in comparison with the case of Table 37 in which SRT was controlled to the range defined in the present invention.

[0536] For reference, various characteristics of conventional steel sheets were evaluated, the results of which are shown in Table 40. In the same table, No. 1 is a DP steel sheet of ferrite and martensite produced using No. 2 steel sample in Table 35, No. 2 is a conventional steel sheet using No. 3 steel sample in Table 35 and with polygonal ferrite as a base phase, and No. 3 is a conventional two phase steel sheet of ferrite and bainite produced using No. 2 steel sample in Table 35.

[see Table 40]

15

[0537] A look at Table 40 shows that No. 1 (conventional DP steel sheet) is low in all of elongation, stretch flange formability, and BH characteristics, that No. 2 (conventional TRIP steel sheet) is low in both stretch flange formability and BH characteristics, and that No. 3 (conventional two phase steel sheet) is low in both elongation and BH characteristics

Example 17: A study (part 1) of manufacturing conditions in the third high strength steel sheet

[0538] In this Example a study was made about the foregoing manufacturing method (9) or (11), i.e., hot rolling → continuous annealing. More specifically, steel No. 3 in Table 35 was vacuum-melted into a slab for experiment. Thereafter, using the slab, 2.0 mm thick hot rolled steel sheets were produced under the conditions shown in Table 41 and were checked for structures and characteristics in the same manner as in Example 16. In Table 41, No. 1, 3, 5, and 7 are examples in which one-step cooling was adopted in the hot rolling process, while No. 2, 4, 6, and 8 are examples in which two-step cooling (cooling to 700°C at an average cooling rate of 40°C/s is followed by air cooling in this temperature range for 10 seconds and subsequent cooling to 200°C or 450°C at an average cooling rate of 40°C/s) was adopted. The results obtained are shown in Table 42.

[see Tables 41, 42]

[0539] In Table 42, No. 1 is an example of the present invention in which a desired base phase structure of tempered martensite was obtained through predetermined steps of hot rolling → continuous annealing, No. 2 is an example of the present invention in which a desired mixed base phase structure of (tempered martensite + ferrite) was obtained through predetermined steps of hot rolling → continuous annealing, No. 3 is an example of the present invention in which a desired base phase structure of tempered bainite was obtained through predetermined steps of hot rolling (winding at a CT of 450°C for 1 hour) → continuous annealing, and No. 4 is an example of the present invention in which a desired mixed base phase structure of (tempered bainite + ferrite) was obtained through predetermined steps of hot rolling (winding at a CT of 450°C for 1 hour). All of them are superior in stretch flange formability; besides, in all of them, a desired fine second phase structure is dispersed uniformly in pre-austenite grain boundaries and block and packet boundaries, and thus their BH characteristics also meet the conditions defined in the present invention.

[0540] On the other hand, No. 5 to 8 in Table 42 are examples of production carried out at a heating temperature (SRT) (before hot rolling) exceeding the range defined in the present invention, in which a desired fine second phase

structure is not obtained and therefore BH (10%) does not satisfy the condition defined in the present invention although

Example 18: A study (part 2) of manufacturing conditions in the third high strength steel sheet

[0541] In this Example a study was made about the foregoing manufacturing method (10) or (12), i.e., hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow second continuous annealing or plating. More specifically, various steels described in Tables 43 and 45 (all of steel Nos. described in these tables mean the steel Nos. described in Table 35) were vacuum-melted into slabs for experiment. Thereafter, using the slabs, cold rolled steel sheets having a thickness of 1.0 mm were produced under the heat treatment conditions shown in Tables 43 and 45 and were then checked for structures and characteristics in the same manner as in Example 1. No. 1 to 16 in Table 43 are examples of having studied hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow second continuous annealing, while No. 1 to 4 in Table 45 are examples of having, studied hot rolling \rightarrow cold rolling \rightarrow first continuous annealing \rightarrow plating (further, alloying). The results obtained in Tables 43 and 45 are shown in Tables 44 and 46, respectively.

[see Tables 43, 44, 45]

BH (2%) is satisfactory.

[0542] No. 2 to 7 and 9 to 20 in Table 44 and No. 1 to 4 in Table 46 are examples of production carried out under the conditions defined in the present invention, which are superior not only in tensile strength (TS), elongation (EL), and stretch flange formability (λ), but also in both BH (2%) and BH (10%).

[0543] On the other hand, No. 1 in Table 44 is an example of production using steel 1 (low C steel) shown in Table 35, in which desired BH characteristics were not obtained because of a small amount of C although a predetermined base phase structure was produced.

[0544] No. 8 in Table 44 is an example of production using steel 5 (steel having a small total amount of (Si+Al)) shown in Table 35, in which desired BH characteristics were not obtained.

[0545] Next, in this embodiment, for the purpose of checking the influence of the heat treatment temperature (SRT) before hot rolling on BH characteristics [especially BH (10%)], as shown in Table 47, steel sheets were produced under the conditions given in Table 43 except that SRT was raised from 1050°C to 1150°C (exceeding the range defined in the present invention), and were then checked for various mechanical characteristics in the same manner as in Example 1, the results of which are set out in Table 48.

[see Tables 47, 48]

10

30

35

40

50

[0546] From a comparison in mechanical properties between Tables 44 and 48 it is seen that if SRT is set higher than in the present invention as in Table 48, BH (2%) is approximately the same, but BH (10%) is deteriorated markedly beyond the point of satisfaction for the condition defined in the present invention, and such characteristics as TS, EI, and λ are also deteriorated to some extent.

[0547] Likewise, for the purpose of checking the influence of SRT, as shown in Table 49, steel sheets were produced under the conditions shown in Table 45 except that SRT was raised from 1050°C to 1150°C (exceeding the range defined in the present invention) and were measured for various mechanical properties in the same way as in Example 1, the results of which are shown in Table 50.

[see Tables 49, 50]

[0548] A comparison in mechanical properties between Tables 45 and 50 shows that if SRT is set higher than in the present invention, BH (2%) is approximately the same, but BH (10%) is deteriorated markedly beyond the point of satisfaction for the condition defined in the present invention, and such characteristics as TS, EI, and λ are also somewhat deteriorated.

[0549] Thus, from the results obtained in the above Examples 16 to 18 it is seen that the third high strength steel according to the present invention is superior in the balance of stretch flange formability, total elongation, and bake hardening property in a high strength and ultra-high strength region of the order of about 500 to 1400 MPa and that above all, in a large strain region, it exhibits an excellent bake hardening property.

INDUSTRIAL APPLICABILITY

[0550] According to the present invention it is possible to provide a high strength steel sheet superior in formability (stretch flange formability and total elongation), a high strength steel sheet also having an excellent fatigue characteristic, further, a high strength steel sheet further having a satisfactory bake hardening property, as well as a method which can produce those steel sheets efficiently. Thus, the present invention is extremely useful.

No.	С	Si	Mn	Р	S	Al	Others
1	0.03	1.5	1.5	0.02	0.005	0.03	
2	0.09	1.5	1.5	0.01	0.005	0.03	
3	0.15	1.5	1.5	0.03	0.006	0.03	
4	0.20	1.5	1.5	0.03	0.004	0.03	
5	0.15	0.5	1.5	0.03	0.004	1.0	
6	0.15	0.3	0.3	0.02	0.004	0.03	
7	0.15	1.5	1.5	0.01	0.005	0.03	Mo:0.2
8	0.15	1.5	1.5	0.02	0.006	0.03	Ni:0.2
9	0.15	1.5	1.5	0.02	0.006	0.03	Cu:0.2
10	0.15	1.5	1.5	0.02	0.005	0.03	Cr:0.2
11	0.15	1.5	1.5	0.01	0.006	0.03	Ti:0.03
12	0.15	1.5	1.5	0.02	0.005	0.03	Nb:0.03

Table 1 (continued)

	No.	С	Si	Mn	Р	S	Al	Others
	13	0.15	1.5	1.5	0.03	0.006	0.03	V:0.03
Ì	14	0.15	1.5	1.5	0.01	0.005	0.03	Ca:10ppm

Table 2

					Table 2					
No.	Steel No.	TM (%)	B (%)	γ _R (%)	Others (%)	C _{γR} (%)	TS (Mpa)	EI (%)	λ	YR (%
									(%)	
1	1	45	5	0	50(F)	-	469	32	74	78
2	2	79	8 -	8	5(F)	1.4	590	38	66	70
3	3	84	6	10	0	1.4	801	39	68	73
4	4	80	7	13	0	1.5	880	39	69	73
5	5	85	5	10	0	1.4	730	38	78	78
6	6	83	5	1	0	1.5	808	20	75	96
7	7	89	3	8	0	1.4	800	37	66	74
8	8	88	3	9	0	1.5	810	36	63	70
9	9	89	4	7	0	1.5	803	38	65	71
10	10	87	3	10	0	1.4	793	39	67	72
11	11	87	3	10	0	1.4	799	39	69	73
12	12	87	4	9	0	1.4	810	38	62	75
13	13	87	3	10	0	1.4	802	39	66	73
14	14	88	3	9	0	1.5	803	38	65	74
15	4	80	0	13	7(M)	1.3	881	39	63	65
N	otes: F: ferri	te, M: mar	tensite, E	: bainite,	TM: tempered	martensite,	γ _R : retained	austenite		

Table 3

	No.	Steel No.	M (%)	B (%)	γ _R (%)	F (%)	C _{YR} (%)	TS (Mpa)	EI (%)	λ (%)	YR (%)
	1	2	23	3	0	74	-	850	22	43	52
1	2	3	0	4	12	84	1.4	788	37	41	67
1	3	2	0	83	0	17	-	830	15	59	93
Ī	N	lote: M: mart	ensite, B	bainite,	γ _R : retaine	d austen	ite				

No.	С	Si	Mn	Р	S	Al	Others
1	0.15	1.5	1.5	0.02	0.005	0.03	
2	0.20	1.5	1.5	0.03	0.005	0.03	
3	0.41	1.5	1.5	0.02	0.005	0.03	
4	0.48	1.5	1.5	0.02	0.006	0.03	
5	0.57	1.5	1.5	0.01	0.004	0.03	
6	0.50	0.5	1.5	0.03	0.004	1.0	
7	0.42	0.3	0.3	0.01	0.004	0.03	
8	0.43	1.5	1.5	0.02	0.005	0.03	Mo:0.2
9	0.42	1.5	1.5	0.01	0.006	0.03	Ni:0.2
10	0.40	1.5	1.5	0.02	0.006	.0.03	Cu:0.2
11	0.41	1.5	1.5	0.03	0.005	0:03	Cr:0.2

Table 4 (continued)

					-		
No.	С	Si	Mn	Р	S	Al	Others
12	0.42	1.5	1.5	0.01	0.006	0.03	Ti:0.03
13	0.41	1.5	1.5	0.02	0.005	0.03	Nb:0.03
14	0.42	1.5	1.5	0.02	0.006	0.03	V:0.03
15	0.41	1.5	1.5	0.02	0.005	0.03	Ca:10ppm

Table 5

					iubio o		_			
No.	Steel	TM	В	Ϋ́R	Others	C _{γR}	TS	ΕI	λ	YR
	No.	(%)	(%)	(%)	(%)	(%)	(Mpa)	(%)	(%)	(%)
1	1	84	6	10	0	1.2	801	39	48	73
2	2	82	7	11	0	1.3	830	39	49	73
. 3	3	73	7	20	0	1.4	860	51	50	75
4	4	67	9	24	0	1.6	910	55	51	74
5	5	67	5	28	0	1.5	940	49	49	73
6	6	65	10	25	0	1.6	850	45	48	75
7	7	79	20	1	0	0.2	890	20	50	95
8	8	75	4	21	0	1.6	870	51	49	76
9	9	74	5	21	0	1.7	870	50	53	74
10	10	75	5	20	0	1.8	860	52	51	75
11	11	75	5	20	0	1.7	860	49	52	75
12	12	74	5	21	0	1,8	850	50	49	73
13	13	74	. 6	20	0	1.7	860	51	51	74
14	14	75	5	20	0,	1.8	858	50	50	73
15	15	73	7	20	0	1.7	850	49	49	74
16	3	34	5	20	41(P)	0.6	780	21	33	83
17	4	68	0	27	5(M)	1.5	910	54	50	65
NIO	too: D.	ac ordito	M. mor	topoito	TM: tompo	rod mor	tonoito D	hainita		stained

Notes: P: pearlite M: martensite, TM: tempered martensite, B: bainite, γ_R : retained austenite

Table 6

No.	М (%)	B (%)	γ _R (%)	F (%)	C _{γR} (%)	TS (Mpa)	EI (%)	λ(%)	YR (%)
3	0	4	12	84	1.4	788	37	41	67
N	ote: M:	martensi	te, B:bai	nite, F:	ferrite, γ _R :	retained aus	stenite		

	Details of structure			u_		<u> </u>	8		Conventional TRIP	8				Hess			Insufficient tempering		<u>a</u>			Austempering not performed, M obtained	Austempering not performed, M obtained					F (tempered M not obtained)	
Desired			0	×	0	×	×	<u>.</u>	×	×	0	0	0	×	0	0	×	0	×	Ö	0	×	×	0	0	Ö	0	×	Ò
	Zn→GA	ပ္	•	•	1	.1	,	J	•	ŀ	1	1	•	1	1	1	ı	ı	1	.	1	1	ι	•	١	909	1	,	600
riplating	Æ	. Sec	₽.	2	, 2	2	₽.	무	£	2	2	9	e		\$	2	2	₽	9	≘	읃	₽.	٠١	<u>\$</u>	-	9	÷	유	:0.
Continuous annealing or plating	7	ပ္	\$	충	8	충	\$	\$	400	\$	8	흫	\$	拿	\$	\$.	\$	춯	.400	S	8	ଛା	2	\$. 69	\$	\$	\$	400
nous and	్ర జ	SC 18	2	2	è	2	9	₽	2	9	9	5	₽.	9	ė	2	2	Ġ	<u>-</u> ,	우.	2	2	2	2	1 0	÷	5	5	₽:
Contin	ā	Sec	8	8	8	8	8	8.	8	8	8	8	8	8	乭	ස	ഗി	8	ë	8	8	8	8	8	9	ස	8	8	.09
	52	ပ္	88	8	දූ	쭗	දි	8	8	읾	820	250	8	8	8	8	8	8	8	8	8	8	8	8	8	908 800	8	8	800
100	12	ာ့	,	ī	,	,	,	,	,	-	ı	1	ı	•	1	ı	ı	1	1	١,	. 1	ı	1	,	,	-	-	,	•
Continuous	. &	స్త	١.	,	,		•	,	,	,	•		ſ	•	•	ı	•	•	Ċ	•	•	,1	ı	1	٠	ı	1	•	1
3 8	=	ပ္	١,				ŧ	,	ı		ł	ı	•	ı	ı			ı	•	ł	ı	•	1	,	,			-	,
Cold rolling	Cold rolling rate	*	1	1	i	,	,	· ·	•		ı	ı	•	•	ı	,	,	•	1	1;	1	•	,	•	•		10	40	10
	5	ပ္	200	8	200	200	8	7	SS	S	200	200	3 00	9 9	8	8	8	දි	200	8	23	8	8	8	200	209	200	200	Soo.
Hot rolling	8	స్ట	જ	ß	8	15	ଜ	8	8	ଝ	22	S	ନ	S	S	22	S	S	S	20	ß	S	S	23	20	20	20	20	50
훈	F 0	ပ္	8	750	8	900	006	906	900	g	900	8	8	900	8	900	9	900	900	96	906	8	8	8	900	900	006	900	006
	SRT	ပ္	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150
	ġ		-	7	n	4	2	9	~	8	6	2	=	12	5	7	15	9	4	#	5	8	77	22	ຂ	24	52	92	12
			Hot rolling	Continuous annealing																				-		Hot rolling → Plating	Hot railing → Cold rolling	→Continuous annealing	Hot rolling → Cold rolling → Plating

F: famile, P: pearlile, B: bainite, M: martensite

Table 7

· 10

EP 1 365 037 A1

			·		ı	•)		i		•	, ,		;	
Table 8										•		•		. :	. •		
			Hot rolling	ling		Cold ralling	5 5	Continuous			Continuo	Continuous annealing or plating	ing or pk	ating		Desired	
	ġ	SRI	FDT	క	5	Cold rolling	=		- 2	5	Ω	5	. 4	4 2	S TS S	structure	Details of structure
		ပ္	ပ္	s/J.	ပ္	*	ပ္	S/C/s	_	ည). Jes	.cls	Ç S	sec	ပ္		
Hot rolling → Cold	78	1150	900	ଞ	550	8	S		_	9 008	8	5	\$	9		0	
rolling → First	83	1150	8	ନ୍ତ (8	8	잃	2:	E (8	4	용 :	₽:	,	×	LL I
continuous anneating	8 2	130	S 8	S 6	S 5	8 8	8			9 0	8 8	2 5	\$ \$	2		×C	ů.
annealing .	2 8	5 E	3 8	8 8		3 8	8 8		- 62 - 52		3 8	3	\$ \$	2.≎	. ,	00	
	g	150	8	S	250	8	006	voi					400	9	,	×	Q.
	ਲੋ	150	8	ଛ	550	8	용	- 1		1			8	₽	<u>, </u>		
	88	1150	8	ନ୍ତ :	8	8	8						\$	و چ	٠.	×	<u> </u>
	ဗ္ဗ	150	8	ය :	3	8 :	දු ද						§	₽ :	1	Ó.	
	33	를 당 당	දූ ද	ය ස	8	8 9	8					₽ :		و ج		00	
	88 8	2 2 2 3 3 3	S 8	8 8	3 3	8 8	S 8					•	§ §	₽\$,))	
	3 8	25.50	3 8	S 58	8 8	8 8	3 6				2 2			<u> </u>	, ,	< ×	Tess.
	41	150	8	ଜ	32	8	S			•	ສ		8	: P	,	0	
	42	1150	8	S	S\$0	8	8				8		8	9		0	
	£	1150	8	ଟ	8	8	8				voi:	호 -	\$	은	•	×	Insufficient tempering
	3	# 25	8	S .	3	8	8				S	5	200	은	1	0	
	£ 6	150	8	ନ୍ଦ ଓ	F 5	8 8	8 8				8 9	-15	\$ £	2.9	,	×(a .
	₽ ₹	£ 59	3 6	8 6	8 8	8 8	3 8	3 8			-		g <u>g</u>	⊋ ⊊) C	
	89	150	8	ය	550	8	8			8		2	•	: ₽	,	×	Austempering not performed. M obtained
	\$	1150	8	ଝ	220	8	8				•		占	r,	•	×	Austempering not performed, M obtained
	જ	1150	86	ଚ୍ଚ	220	8	8		_					乭	,	0	
	સ	<u>5</u>	96.	ន	220	8	윩		4				8	_	•	0	
Hot rolling → Cald	3	£ 220 220	8	S	220	G G	900			9			2	10	89	Ο.	-
Continue and show													٠.,				
→ Plating					-									٠.			
									ł								

Notes: F: fertle, P: pearlile, M: martensile, B: bainile

Table 9

Run	Steel	ТВ	В	Ϋ́R	Others	C _{YR}	TS	EI	λ	YR
No.	No.	(%)	(%)	(%).	(%)	(%)	(Mpa)	(%)	(%)	(%)
1	1	47	3	0	50(F)	-	458	38	68	83
2	2	82	5	8	5(F)	1.2	572	39	60	77
3	3	86	4	10	0	1.1	790	39	55	76
4	4	81	6	13	0	1.3	875	40	55	77
5	5	87	4	9	0	1.3	780	41	60	73
6	6	95	4	1	0	0.4	790	10	71 ,	103
7	7	87	5	8	0	1.3	799	38	55	79
8	8	86	5	9	0	1.3	809	37	50	75
9	9	87	6	7	0	1.4	800	39	54	76
10	10	85	5	10	0	1.3	799	38	58	77
11	11	84	6	10	0	1.3	789	39	61	76
12	12	88	3	9	0	1.4	807	37	66	82
13	13	86	4	10	0	1.3	800	39	54	75
14	14	88	3	9	0	1.4	800	37	58	76
15	4	80	0	14	6(M)	1.3	881	39	54	70
ite No	tes: F:fe	errite, N	/I: marte	nsite, E	3: bainite,	ΓB: tempe	ered bainite	∋, γ _R ∶r∈	etained a	usten-

Table 10

					Table 10					
No.	Steel	ТВ	В	γ_{R}	Others	C _{γR}	TS	EI	λ	YR
	No.	(%)	(%)	(%)	(%)	(%)	(Mpa)	(%)	(%)	(%)
1	1	86	4	10	0	1.2	790	39	55	76
2	2	81	6	13	0	1.3	875	40	55	77
3	3	76	4	20	0	1.5	895	51	60	76
4	4	71	6	23	0	1.6	900	50	59	75
5	5	75	4	25	0	1.7	910	49	58	73
6	6	72	5	23	0	1.8	870	48	59	72
7	7	84	15	1	0	0.5	880	12	58	72
8	8	81	5	21	0	1.7	890	53	61	74
9	9	81	6	20	0	1.8	900	51	62	76
10	10	83	5	20	0	1.6	905	50	60	77
11	11	81	6	20	0	1.7	895	49	59	71
12 -	12	86	3	21	0	16	890	53	57	70
13	13	82	5	20	0	1.7	860	51	58	69
14	14	82	6	20	0	1.8	880	50	61	73
15	15	82	4	21	0	1.7	890	48	60	70
16	3	32	12	20	45(P)	0.7	695	21	43	75
17	4	70	0	25	5(M)	1.6	900	50	50	65
No ite	otes: B:b	ainite,	P: pearli	te M:m	artensite,	TB: tempe	ered bainite	e, γ _R :r	etained a	usten-

Table 11

No.	M (%)	B (%)	γ _R (%)	F (%)	C _{γR} (%)	TS (Mpa)	EI (%)	λ (%)	YR (%)
3	0	4	12	84	1.4	788	37	41	67
	lote: B:	bainite,	M: marten	site γ _R :	retained at	ıstenite			

	١																
			Hot rolling	lling		Cald rolling	ਫ਼ੋਂ ਨੂੰ	Continuous annealing			Continuc	Continuous annealing or plating	fing or p	dating		Desired	
	ટું	SRT	F07	೪	5	Cold rolling rate	F	8	12	5		8	. ⊉	. 7 25.	Zh-tGA	structure	Details of structure
		ပ္	ပ္	Ş	J.	%	ပ္	. s/ɔ.	·c	္	360	·C/s	ပ္	sec	ပ္		
Hot rolling →	-	1150	006	2	480		1	,	-	88		.0	Ş	9:	1	0	
Continuous annealing	7	1150	別	ಜ	480	,	,		_	8	8	₽	\$	₽.	,	×	ш.
	60	1150	86	9	489	•	,		<u> </u>	800		-	ş	2	,	0	
	4	1150	88	51	200	,	ı		•	٠		` ₽.	흫	₽.	,	×	G.
	'n	1150	900	ଜ	M	,	,	,	<u> </u>				\$	\$	1	×	Tempered martensite
	9	1150	900	S	750	•	•	1	-	800			90	5		×	Conventional TRIP
	7	1150	906	ક્ક	380	•	,			ł			흫	5		×	8
	80	1150	006	æ	380	•	ı		-	820			흫	읃		0	
	6	150	900	ß	380		,	1	,		8	₽ -	÷.	후	,	0	
	9	1150	900	22	380	,	1	ŀ	_	8	8		음	.	ı	ġ ·	
	=	1150	8	ଝ	8	,	,		_	93	8	e	400	ę	,	×	Hess
	12	1150	906	B	380	ı	,	,	1		≅	•	8	2	ı	Ö	
	t	1150	8	ଜ	38	1	,	,			8	-	\$	₽.	ı	o	
	7	1150	86	ଜ	8	,	,	,	-		rc)	5	§	ę	1	×	Insufficient tempering
	5	1150	90	S	380	1	1		-	800	9	w.	400	₽.	,	0	
	9	1150	906	S	380	,	1	,	,	800	ද		욯	6	۱,	×	· .a.
	4	1150	906	B	88	,	,	,	,	900	90	`. ₽	₹	₽.	,	0	-
	₽	1150	906	8	380		,		•	80	8		<u>ල</u>	₽	,	Ó	
	₽	150	900	S S	e e	1	,	,	,	800	8		읭	우	,	×	Austempering not performed
	8	150	96	ଛ	380	,	,		-	80	è		닯	,		×	Austempering not performed
	7	150	8	ଜ	380		,	ı	•	800	: 8	\$	8	\$,	Ö	
	Z	1150	006	S	380	,	,		,	800	90		§	-	,	0	
Hot rolling → Plating	ន	1150	900	જ	380	1	,	,		800	99	9	400	9	009	0	
Hot rolling → Cold rolling	24	1150	006	S	380	19	,	,	,	900	8	9	응	₽	•	0	
→Continuous annealing	23	1150	900	ည	380	40	•	1	-	800	99		4 9	₽.	1	×	F (tempered M not obtained)
Hot rolling → Cold rolling → Plating	36	1150	906	95	380	5		,	-	900	99	į.	. 6 :	9	0 6	Ο.	

es: F. femile, P. peadile, B. bainile, M. martensile

Table

	•	r				-						_	1			_	_				<u>-</u>	_			_			_	_	T-		
5				ucture																						. pau	ned					
10				Details of structure			u.				or.						Hess				Insufficient tempering		a			Austempering not performed	Austempering not performed					
15			Desired	structure		0	_	·×	0	0		0	┢	0	0	0	_		0	0		0	_	0	0		_		0	0		:
				Zı→GA	ပ္		1	,	1	+	,	,		•	•	•	,	1	•	,	ı	1	•	. •	•	ı	,	1	•	8		
20			plating	Z	28	2	2	우	2	2	우	2	유	2	2	2	2	2	2	2	6	₽	은	2	₽.	2	1	<u>ş</u>	عنو	2		
	:	: -	ealing or	=	ပ	홍	충	<u>\$</u>	흫	\$	\$	8	ş	충	\$	흫	\$.	\$	\$.	ş	\$	\$	흫	2 5	SS	S	덛	ŝ	. 욯	\$	٠.	
			Continuous annealing or plating	ප	sı s	9	2	5	읃	5	2	2	5	2	2	유	2	2	2	우	;	4S	rral	2	2	2	2	9.	2	2		
25		.	Confin	23	Sec	8	8.	8	8	8	8	8	æ	8	8	8	8	黚	器	8	ıcı	8	ස	8	8	8	8	ß	.8	8	:	
				12	ပ္	8	8	8	8	8	8	800	S	器	85	8	題	8	8	8	8	දු	훓	훓	윮	8	8	욻	8	<u>ଛ</u>	:	
30		-	2 ~	12	ပ္	89	喜	흏	<u>총</u>	\$	홍	g	89	8	총	<u>홍</u>	홍	<u>홍</u>	욯	8	鲁	8	88	율	8	8	8	8	용	8		\dashv
		Succession	annealing	ಕ	.C/s	92	8	8	28	2	ري.	ຂ	æ	8	8	8	8	8	8	8	8	ຂ	8	8	8	8	8	2	8	ଛ		
		. L		F	ပ္	80	얾	8	8	8	8	8	8	8	읈	8	8	8	8	8	8	8	8	윯	8	8	8	8	8	906		
35			Cold ralling	Cold rolling rate	*	09	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	90		
				ರ	ပ	22	22	220	23	8	220	550	550	83	8	22 0	SS	220	220	85 85	88	99	SS	SS	2	88	22	55	250	220		
40			Ē	ຮ	Ş	\$	\$	₽	\$	웋	Q	40	육	\$	\$	\$	\$	\$	\$	\$	\$	숭	\$	\$	\$	3	숙	\$	40	8		ł
			Hot rolling	FDT	ပ္	82	翠	<u>8</u>	8	දු	£	850	<u>8</u>	820	83	820	82	සි	දී	82	820	සි	නු	සි	83	820	83	820	820	820		
45				SRT	ပ္	1150	1150	150	1150	1150	1150	1150	1150	1150	1150	1150	1150	150	1150	1150	1150	150	150	150	1150	55	1150	1150	1150	1150		
		-		<u>.</u>	-		8	ଯ	ജ	3	32	33	봈	بر	99	33	88	ස	육	4	42	€	4	5	9	4	8	64	20	_		ㅓ
50	Table 13		-			Hot ralling → Cald	rolling → First	continuous annealing	→ Second continuous	annealing																		•		Hot rolling → Cold	continuous annealing	→ Plating

Notes: F: ferrite, P: pearlite, B: bainite

Table 14

No.	Steel	ТМ	В	γR	F	Others	C _{γR}	TS	EI	λ	YR
	No.	(%)	(%)	(%)	(%)	(%)	(%)	(Mpa)	(%)	(%)	(%)
1	1	20	5	0	75	0	-	770	25	50	73
2	2	30	5	15	50	0	0.6	701	31	46	67
3	2	33	8	5	54	0	1.4	760	38	56	65
4	3	30	6	10	54	0	1.5	820	39	58	68
5	4	33	7	13	47	0	1.5	810	39	59	68
6	5	42	6	12	40	0	1.4	790	38	60	67
7	6	39	5	1	55	0	1.2	800	14	65	91
8	7	33	38	8	56	0	1.4	790	37	56	69
9	8	32	2	9	57	0	1.4	785	36	53	65
10	9	36	3	7	54	0	1.5	770	38	55	66
11	10	32	4	9	55	0	1.4	780	39	57	67
12	11	26	5	8	61	0	1.5	805	39	59	68
13	12	30	3	9	58	0	1.4	815	38	52	70
14	13	30	2	8	60	0	1.5	810	38	59	64
15	14	26	6	9	59	0	1.5	790	39	58	68
16	2	72	5	8	15	0	1.3	750	40	66	70
17	3	69	4	9	18	0	1.5	740	41	65	69
18	4	66	4	10	20	0	1.5	800	42	65	71
19	3	24	4	10	44	18(P)	1.3	770	29	43	78
20	4	33	0	13	49	5(M)	1.5	810	38	57	61
No austen		pearlite	• М: п	nartensit	e, B:	bainite, TI	VI: temp	ered mai	tensite,	γ _R : re	tained

					_		
No.	С	Si	Mn	Р	S	Al	Others
1	0.15	1.5	1.5	0.02	0.005	0.03	
2	0.20	1.5	1.5	0.03	0.005	0.03	
3	0.41	1.5	1.5	0.02	0.006	0.03	
4	0.48	1.5	1.5	0.02	0.004	0.03	
5	0.57	1.5	1.5	0.01	0.004	0.03	
6	0.50	0.5	1.5	0.03	0.004	1.0	
7	0.41	0.3	0.3	0.01	0.004	0.03	
8	0.42	1.5	1.5	0.02	0.005	0.03	Mo:0.2
9	0.40	1.5	1.5	0.01	0.006	0.03	Ni:0.2
10	0.41	1.5	1.5	0.02	0.006	0.03	Cu:0.2
11	0.40	1.5	1.5	0.03	0.005	0.03	Cr:0.2
12	0.41	1.5	1.5	0.01	0.006	0.03	Ti:0.03
13	0.40	1.5	1.5	0.02	0.005	0.03	Nb:0.03
14	0.41	1.5	1.5	0.02	0.006	0.03	V:0.03
15	0.40	1.5	1.5	0.02	0.005	0.03	Ca:10ppm

Table 16

No.	Steel	ТМ	В	Ϋ́R	F	Others	C _{γR}	TS	EI	λ	YR
	No.	(%)	(%)	(%)	(%)	(%)	(%)	(Mpa)	(%)	(%)	(%
1	1	56	5	0	41	0	-	710	27	59	66
2	2	41	8	8	43	0	0.7	810	53	54	65
3	3	32	6	18	44	0	0.6	720	25	41	6
4	3	39	6	17	45	0	1.5	850	56	55	64
5	4	32	7	21	48	0	1.7	910	55	55	6
6	5	25	4	22	49	0	1.9	900	48	-56	6
7	6	31	6	18	45	0	1.8	890	49	59	6
8	7	36	5	5	58	0	8.0	830	25	53	9
9	8	44	3	18	45	0	1.7	813	57	54	6
10	9	46	2	18	43	0	1.7	810	56	52	6
11	10	45	3	15	45	. 0	1.6	820	53	55	6
12	11	43	4	17	44	0	1.7	823	52	54	6
13	12	41	5	16	46	0	1.7	818	51	53	6
14	13	45	3	17	43	0	1.6	820	50	56	6:
15	14	45	2	15	45	0	1.5	825	51	53	6
16	15	42	6	17	43	0	1.6	822	52	54	6
17	3	56	4	20	20	0	1.5	800	55	61	62
18	4	54	5	18	23	0	1.6	820	54	64	63
19	5	53	5	20	22	0	1.4	815	54	63	62
20	4	22	5	10	40	23(P)	0.6	770	28	32	60
21	4	35	0	20	40	5(M)	1.5	840	55	50	60
No te	otes: P:	pearlite	M: mar	tensite,	F: ferri	te, TM: ter	mpered n	nartensite,	γ _R : re	tained a	uste

No.	Steel No.	M (%)	B (%)	γ _R (%)	F (%)	C _{γR} (%)	TS (Mpa)	EI (%)	λ (%)	YR (%)
22	2	23	3	0	74	•	850	22	43	52
23	3	0	4	12	84	1.4	788	37	41	67
24	2	0	83	0	17	-	830	15	59	93
	lote: M: ma	rtensite,	B: bainit	e, F:lerri	te, γ _R : r	etained aus	tenite			

10			Details of structure			.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conventional TRIP	Conventional TRIP	Rolling In two phase region	Conventional TRIP				r-less .		Intrifficient tomorpho	Browner District	•			Austampaing not parformed	Austamparing not performed			Rolling in two phase region		Tempered M not obtained			
]	Souther		0	× (0,0) ×	×	0	×	0	0	0	×,	00	> ×	0	×	0	0	×	×	00		0	0	×	0	00	
			5	٠,	-			•	,	-		,	•	,	1:								,		\$	8			7	8 8	3
15		٠	3	. 598	9	£ :	2 \$	2 9	2 2	2	2	2	2	ė	2	2 9	2 \$. 2	2	₽.	٤'	2	•:	<u>8</u> -	₽	_=	. 01	2	밁	2 9	2
		or plating	=	Ş.	8	8	\$ \$	9	3	8	\$	\$	\$	\$	8	§ §	3 8	\$	\$	8	R	Ħ	Ħ	8	ş	400	907	8	ş	§ §	3
20		Continuous annealing or ptaling	S	Ş	23 :	1 23	R K	3 %	1 13	×	×	×	ĸ	×	23	13 s	9 X	2	67 4	13	ĸ;	ಜ	 13	ងន	2	£	25	33	×	K F	3
		onfinuous	٢	ပ္	80	8	<u> </u>	8	8	901	ğ	8	2	ş	8	8 8	3 8	ş	2	ş	ş	8	8	8 8	Ş	20	200	ğ	8	8 8	₹
		٥.	9	280	8	8 :	8 8	8 8	. 8	8	8	8	3	8	8	3 5	3 v	8	ន	8	8.	8	8	8.8	8	8	8	8	8	8 8	8
25			p	ပ္	93	8	8 8	8 8	8	8	ş	S	S	8	8	§ §	3 5	8	죓	8	8	දි	8	8 8	8	800	8	8	සූ	8 8	3
		2 -	2	ပ္	,	•	, ,	•	1	,	•	,	,	•	,		, ,	,	•	•	1	•	•		•	•	•	,	-	•	-
30		Confinances	3	Ş	•	•.	' .'	•	1	•	١.	٠	1	•	•	•	•	•	,	•	•	•	•	, ,	١.	•	٠	•	1	1	1
	}		F	٠	٠	_	' '				Ŀ	_	<u>.</u>	<u>'</u>	<u>'</u>	<u>'</u>			<u>'</u>	•	_	_	<u>.</u>		ŀ	•	٠	•	-	_	1
•		Cold rolling	Cold rolling	*					'		·	,		'	١	•	, ,	•	,	,	1		,	• •	ŀ	•	2	3	8	\$ 9	3
35			ಕ	ပ္	88	3	2 5	5	3 8	8	S	ន្ត	8	8	8	8 8	3 8	2	8	S	8	2	8	2 2	8	Ą	8	R	8	8	3
		•	Average CR	នុ	2	R :	8 8	9	:	· \$	æ	2	8	R	2	R 8	3 8	8	R	R	8	8	R :	88	R	97	20	23	3	ę ,	-
40		2	8	Ş	\$:	\$:	\$ \$	2 .	ŧ		ŝ	\$	4	\$	\$	\$ \$	3 3	\$	\$	\$	ş	\$	Q :	3 3	8		9	\$	·	\$. J
		Hot rolling	-	ပ္	8	8	8 8	ξ,			S	8	2	ş	8	8 8	3 8	2	8	2	8	8	8	8 8	ş		2 2	8		8	,
			ર્ક	ភូ	Q :	\$:	3 5	9	d ro	4	\$	\$	육	\$	\$	\$ 4	3 2	\$	\$	4	\$	\$	9 1	å å	ş	9	9	\$	9	w .	-
45			5	ပ္	8	£ :	3 5	9		8	8	93	8	8	2	2 5	8 8	8	8	8	8	2	8	3 3	3	750	95	8	8	8	3
			28	ပ္	1150	<u> </u>	S 5	3 5	3 5	35	<u>₹</u>	55	150	1150	₹	<u> </u>	3 5	<u> </u>	150	2	1150	. 150	150	S S	85	1150	1150	55	ङ	프 :	3
			<u>ģ</u>		1	7	2		۰ ب	~		ø	2	=	2	= :	: 12	2	2	=	2	8	≂ :	2 2	72	22	8	17	2	20 5	<u> </u>
50	Table 18				Hot rolling →	Confinuous annealing																			Hot rolling -+ Plating		Hot rolling → Cold	raffing - Continuous	anneating	Hat ralling - Cold	Runa: Alumo

Note: F. femile, P. peanile: 8: baini

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 19

55

				-	Hot rolling			Cost ralling	8 %	Continuous			8	Confinuous ennealing or pleting	Bulgeau	r plating				-
	ģ	SRI	E E	ž	8	2 Average CR	ь	Cold relling	F	8	E	22	9	<u>,</u>	8	7	7		Desired	Details of shucture
				. sz.	, C.	\$C.	ပ္	×	ပူ	ភ្	ပ္	ပ္	8	ပ္	•ន	ပ္	8	ပ္		
Hot rolling → Coto	31	1150	98	\$		3	850	33	8	ន	돧	8	8	ş	×	ŝ	2		0	
rolling First	8		8	- 07	•	3	ន	8	22	8	듄	8	8	5	ĸ	9	₽	•	0	
continuous annealing	8	351	&	- 6	•	3	8	8	8	ສ	₹	9	8	92	ន	\$.9	,	0	
→ Second continuous	7	150	820	÷		\$	95	3	220	2	E	98	3	8	×	8	2	,	0	
anneating	×	55	S	\$	•	8	83	8	2	8	E	9	8	8	13	8	2		×	3 T
	吳	8	2	\$,	\$	33	8	8	S	¥	9	8	8	Ħ	84	9	,	0	
	Ħ	55	8	3		3	8	9	욢	2	듄	8	8	92	23	8	\$	•	0	
	8		2	8		\$	550	8	8	Leys)	₹	8	.8	2	ĸ	§	5	•	×	4.6
	8		SS	40	•	97	280	9	8	ສ	â	900	8	92	×	ş	2	,	0	
	\$			\$		\$	83	8	98	R	i i	8	28	200	123	흏	5		×	Conventional TRIP
	=		8 8	\$	•	\$	윮	8	8	2	Ħ	28	28	5	Ю	8	: 2	,	0	
	42		8	† \$		\$	88	3	8	2	듇	£	8	8	×	\$	2		0	
	3		S	\$	•	8	83	8	8	R	Æ	ş	8	8	ĸ	8	5	ı	0	
	3		ş	\$ '	•	\$	8	8	욻	8	Æ	8	8	8	×	\$	5	•	×	is I
	\$	85	8	\$	•	3	88	8	8	ឧ	뮫	8	엺	ş	ĸ	9	2	,	×	Tempered M not obtained
	\$		8	\$;	•	\$	쯂	8	8	8	둗	8	≅	2	ĸ	99	2	٠,	0	
	4		2	3		\$	8	8	윮	a	E	8	R	2	123	8	2	•	0	
	\$		2	•		\$	83	8	8	R	E	8	•0i	8	ĸ	8	9	,	×	Insufficient lamoertna
	\$		S	\$	•	\$	33	8	8	R	둗	8	8	5	R	90	2	. ,	0	
	ន		3	\$	•	3	S	8	8	8	E	8	8	8	rai	8	5	,	×	•
	2		ş	ê '	•	3	8	8	8	8	¥	008	8	2	ജ	65	2	•	0	
	S		88	9		3	SS	8	8	R	돧	8	8	8	X 3	350	2	•	0	
	ន	55	83	9		3	88	8	8	8	E	8	8	<u>3</u>	,83	8	5	. 1	×	Austernoetho not cerformed
	35		5 2	\$ '	•	\$	S	8	윮	8	₩	8	8	8	×	E	,	•	×	Austernoering not performed
	×		ş	9	•	\$	88	8	8	ន	듄	8	8	8	×S	ŝ	ē	•	0	
	æ	550	3	9	1	\$	98	8	8	8	2	2	2	8	123	\$,	0	
Hot rolling - Cold	53		95	- 09	•	9	98	05	88	2	E	8	28	ă	×	8	2	8	0	
rolling -+ First	_										_									
continuous annealing	_													:						
→ Plating	1		1								-		-	. !	:					

plos: C. famin D. anglis At material

Table 20

No.	Steel	ТВ	В	Ϋ́R	F	Others	C _{YR}	TS	EI	λ	YR.
	No.	(%)	(%)	(%)	(%)	(%)	(%)	(Mpa)	(%)	(%)	(%)
1	1	47	5	0	48	0	-	760	18	60	71
2	2	42	5	9	44	· 0	0.5	770	15	49	71
3	2	37	8	8	47	0	1.2	790	38	57	65
4	3	29	6	10	55	0	1.1	800	36	57	67
5	4	32	7	13	48	0	1.3	805	38	54	63
6	5	35	6	12	47	0	1.3	780	40	56	66
7	6	40	5	1	54	0	0.4	790	25	61	71
8	7	31	3	8	58	0	1.2	790	37	55	66
9	8	41	2	9	48	0	1.4	795	36	52	68
10	9	50	3	7	40	0	1.4	800	36	54	65
11	10	38	4	9	49	0	1.3	810	38	53	66
12	11	37	5	8	50	0	1.4	805	37	55	68
13	12	28	3	9	60	0	1.3	790	39	49	65
14	13	39	2	8	51	0	1.2	795	38	51	67
15	14	40	6	9	45	0	1.2	800	39	53	68
16	2	64	8	8	20	0	1.3	800	40	61	65
17	3	64	6	10	20	0	1.4	810	39	60	67
18	4	59	7	13	21	0	1.5	820	41	62	63
19	3	41	4	10	28	17(P)	-	770	29	43	68
20	4	32	0	13	50	5(M)	1.3	790	38	55	60
N	otes: P:	pearli	e M:	martens	site, Ti	3: temper	ed bain	ite, B: b	ainite,	γR: re	tained

Notes: P: pearlite M: martensite, TB: tempered bainite, B: bainite, γR: retained austenite

						2010 2 1					
No.	Steel	ТВ	В	Ϋ́R	F	Others	C _{γR}	TS	EI	λ	YR
	No.	(%)	(%)	(%)	(%)	(%)	(%)	(Mpa)	(%)	(%)	(%)
1	1	53	4	0	43	0	-	680	27	54	65
2	2	43	5	8	44	0	0.5	690	23	45	65
3	3	43	5	13	39	0	1.5	805	56	57	67
4	4	41	6	12	41	0	1.4	880	57	54	66
5	5	40	5	12	44	0	1.5	880	56	53	65
6	6	42	4	13	41	0	1.5	800	58	55	65
7	7	37	4	1	58	0	1.5	830	25	60	90
8	8	45	4	11	40	0	1.5	790	58	56	66
9	9	45	5	12	38	0	1.6	800	55	[.] 57	65
10	10	45	3	13	39	0 .	1.5	810	56	55	64
11	11	44	4	12	40	0	1.6	790	54	54	65
12	12	40	5	14	41	0	1.5	805	56	56	67
13	13	41	4	13	42	0	1.4	800	55	56	65
14	14	38	7	12	43	0	1.4	806	54	55	64
15	15	39	5	14	44	0	1.4	803	54	60	65
16	3	63	7	10	20	0	1.5	780	55	60	65

Table 21 (continued)

No.	Steel	ТВ	В	Ϋ́R	F	Others	C _{YR}	TS	EI	λ	YR
17	4	60	5	13	22	0	1.5	810	56	63	66
18	6	59	6	12	23	. 0	1.4	870	57	60	65
19	4	23	6	10	40	21(P)	1.5	780	25	43	73
20	4	40	0	13	40	7(M)	1.5	880	56	52	50
No ite	tes: P:p	earlite,	M: marte	nsite, I	B: bainite	, F: ferrite,	TB: tem	pered baini	ite, γ _R : r	etained a	usten-

No.	Steel No.	M (%)	B (%)	γ _R (%)	F (%)	C _{vR} (%)	TS (Mpa)	EI (%)	λ	YR (%)
}						•			(%)	
21	3	0	4	12	84	1.4	788	37	41	67
22	2	0	83	· 0	17	-	830	15	59	93
N	lotes: M: m	artensite,	B: bain	ite, F: fer	rite γ _R :	retained au	stenite			

Table 23

Details of structure Desired 600×××0|×000×00××0×00×0000×0|00

ole: F:femile. M:martensile. P:pearlile

Table 24

					Hot rolling	9			Cold rolling	ខ្ទ	Continuous annealing			8	Continuous annealing or plating	nmaaling	or plating			1	
	Ę	SRT	19	ĕ	-	283	Average CR	5	Cold rolling	=	ទ	12	Ľ	2	5 .:	3	7	*	3	Chesinad	Details of structure
	_	្	ر پ	Ş	ပ္	Ş	స	ပ္	*	ပ္	ఫ	ပ္	ç	200	ပ္	ភ្	ပ္	ž	ပ္		
Hot rolling → Cold	-	150	320	40	ı		\$	55	8	S	ន	55	88	3	202	ĸ	90	2	-	×	F-tempered M
rolling - First	2	35 B	2	9			\$	8	8	2	ຂ	3	8	8	ş	ĸ	3	2	,	0	
continuous anneating	8	_	25	ę	ı		\$	25	8	8	æ	5	8	3	ş	ខ	\$	2		0	
- Second continuous	_	_	25	8			\$	93	8	ß	8	55	8	8	8	ĸ	9	2	,	0	
annealing		150	22	\$			\$	8	8	8	ន	3	8	8	8	ĸ	8	2	•	×	1-less
	<u></u>	150	25	\$			\$	88	8	8	8	\$	90	8	8	ĸ	9	9	,	0	
	_	_	25	4	,		\$	8	8	8	2	ŝ	8	2	92	Ю	8	5	,	0	
	8	150	2	\$	1		\$	8	8	8	478	83	98	8	9 <u>5</u>	ĸ	8	2	,	×	9.
	8	25	22	4			\$	53	8	8	8	8	99	8	92	S	400	5	-	0	
	_	_	2	\$			\$	8	8	2	R	2	됢	8	5	53	400	5		×	Conventional TRIP
	_	350	2	9	,	,	\$	8	8	8	R	<u>ફ</u>	2	8	ş	ង	\$	5	,	0	
	_	_	25	\$		ı	\$	55	8	8	a	2	20	8	욷	×	99	2	,	0	
	3	1150	\$	8			3	8	8	8	8	3	8	8	8	æ	9	2	,	0	
	_	_	2	鲁		,	\$	8	8	8	ឧ	\$	8	8	ş	ĸ	8	5	•	×	Hess
		_	25	\$,	,	3	ş	8	8	a	8	90	9	돧	ង	\$	2	,	×	Tempered 9 not obtained
	2	25 25	짫	4	,		\$	8	8	3	8	8	8	\$	8	n	ş	2		0	
	=	_	2	\$,		\$	88	8	8	R	8	8	я	퉏	×	\$	\$,	0	
	2	-	2	\$			\$	58	8	8	ន	3	8	vo)	ş	ដ	3	2	,	×	Insufficient tempering
	Q		33	\$			4	5	8	물	8	2	8	2	8	R	8	2	,	0	
	8		8	鲁		,	3	8	8	렱	R	<u>8</u>	ĝ	8	8	~+	\$	2		×	<u>a</u>
	_		8	8			\$	53	8	8	8	2	8	3	, §	×3	9	5	,	0	
	8		3	\$			3	53	8	2	8	9	8	3	8	×	380	3	•	0	
	_	9 051	3	4			3	8	8	8	ន	8	8	3	Ę	×	8	2	,	×	Austempering not performed
	_	_	5	\$			3	55	8	욣	R	2	98	8	8	z	占	•	,	×	Austumpering not performed
	_		2	\$,		\$	8	8	율	R	8	9	8	욷	,×3	8	8	<u>-</u>	0	
	_		<u>ş</u>	9			9	8	8	8	R	8	8	3	Ę	22	60	-		0	
Hot rolling → Cold	65	150	2	\$,	,	9	83	8	8	8	95	908	3	189	22	8	5	8	0	
rolling -+ First	_											_									
continuous annealing							-					_			:						
→ Mating	_																				

ing Colombia Orangila Orangila Managamila

Table 25

No.	С	Si	Mn	Р	S	Al	Others
1	0.03	1.5	1.5	0.08	0.005	0.035	
2	0.09	1.5	1.5	0.09	0.005	0.035	
3	0.15	1.5	1.5	0.07	0.006	0.035	
4	0.20	1.5	1.5	0.06	0.004	0.035	
5	0.15	0.3	0.3	0.07	0.004	0.035	
. 6	0.15	1.5	1.5	0.08	0.005	0.035	Mo:0.2
7	0.15	1.5	1.5	0.07	0.006	0.035	Ni:0.2
8	0.15	1.5	1.5	0.06	0.006	0.035	Cu:0.2
9	0.15	1.5	1.5	0.07	0.005	0.035	Cr:0.2
10	0.15	1.5	1.5	0.07	0.006	0.035	Ti:0.03
11	0.15	1.5	1.5	0.06	0.005	0.035	Nb:0.03
12	0,15	1.5	1.5	0.07	0.006	0.035	V:0.03
13	0.15	1.5	1.5	0.06	0.005	0.035	Ca:10ppm

5				Zn-tGA	ပ္စ		,	4	•	•	.,	,	.1	,	,		•	,	,	,
		-		Z	SBC	5	8	ŝ	8	8	\$	Š	ŝ	ş	9	5	8	90	ŝ	Ę
10			Continuous annealing or plating	, 1	ပ္န	ş	\$	9	\$	\$	8	\$	40	\$	\$	400	윻	8	6	69
			samealir	ජ .	°C/s	9	5	우	5	5	9	5	2	2	2	2	2	2	₽	-
15			Continuou	٥	ပ္စ	ş	8	5	ş	8	8	8	8	8	8	8	8	92	90	202
			-	2	88	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
20				.p:	ပွ	8	8	8	8	8	.00	80	28	900	8	8	88	8	28	800
25			Tempering	Time	280	,	•	9	<u>6</u>	\$	5 0	100	<u>§</u>	1000	5 00	6	100	1000	100	<u>\$</u>
			l	<u>'æ</u>	ပွ	,	•	8	\$	450	420	420	450	420	4	420	450	450	450	450
30			Continuous annealing	22	ပူ	F.	₩	₻	X	Æ	₩.	¥	¥	₽	æ	₻	Æ	¥		E
			nuons ann	ន	°C/s	20	8	8	ຂ	ଛ	8	8	ຂ	8	8	8	8	8	8	ឧ
35			Safe	=	ာ့	058	8	<u>S</u>	- -	8	2	8	8	8	25	8	8	. 029	<u>8</u>	820
40		,	Cold rolling	Cold rolling	, ale	95	જ	S	S	S	S	8	9	S	ය -	ន	S	ନ	8	S
40				5	ړ	920	220	220	SS	920	220	220	220	220	550	220	220	220	220	જ્ઞ
45			Hot rolling	క	°C/s	40	4	\$	\$	₽	\$	\$	\$	\$	\$	\$	\$	\$	\$:	Q
			Hota	5	၃	820	820	820	820	8	820	820	S	820	820	820	820	88	දී	92 22
50				SRI	ပွ	1150	1150	150	1150	150	150	150	±	1150	150	1150	150	150	. 450	150
	•	8		Steel	į	-	7	~	m	4	S	ဖ	7	~	6	2	=	~	₩.	·
	•	(1)	Г					_		_		_								

io. OT mon transcontus

Table 27

	_	_				_	_					_		_			
σw/YP	(%)	08'0	19.0	. 0.83	0.87	0.77	0.89	0.72	0.80	0.79	0.80	0.80	0.83	0.81	0.82	0.67	
γ.	: (%)	96 ·	ঠ	. 72	69	7	62	29	89	71	99	. 73	\$	29	22	. 43	
	(%)	33	. 92	38	. 40	. ES	22	23	32	32	æ	30	33	8	32	.28	
. \$1	(Mpa)	460	610	230	750	305	089	980	795	900	810	805	130	795	800	730	
(S1/S)x100		ı	17.5	8.4	10.2	11.0	,	13.1	7.2	3.8	9.9	13.1	689	10.8	3.6 :	17.8	
£	(%)	,	4.4	1.4	1 .3	€.	0.5	5.	1.3	4.	6.	4.	1.4	€.	1.3	1.3	
Offiers	(%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17(P)	
, ж	(%)	0	G)	æ	10	. 12	-	æ	¥	o	12	4	13	12	=	æ	
Ф	(%)	S.	ζ.	æ	9	9	S.	e	2	ю	S	v.	က	4	ю	9	
TM	(%)	47	42	37	53	35	4	33	41	S	3	37	31	\$	47	39	
ıL	(%)	84	44	47	55	47	54	20	46	38	33	44	53	4	33	30	
Steel	Š.	-	2	2	₆	4	s	9	7		о	2	=	12	£	3	i
ġ		-	7	က	4	2	9	~	~	6	2	=	12	5	7	13	

Notes: TM: tempered martensile, F: ferrite, B: bainie, YR: retained austenile, P: paarlie

ģ	Steel	Σ	æ	×.	u.	క్ర	(S1/S)x100	TS	Œ.	~	¥	OW/
	No.	(%)	(%)	(%)	(%)	(%)		(Mpa)	(%)	(%)	(%)	(%)
20	2	23	E	0	74	_	18.6	850	22	43	25	0.61
21	3	0	4	12	84	1.4	22.3	788	37	41	29	0.65
22	2	0	83	0	41	1	1	830	15	59	93	0.88
1		P. P. L. S.	1	Market and Control of the Control of	4							

					Hot rolling	g			Tempered	para		2	Continuous annealing or plating	aling or pla	ting	
	Š	SRT	F01	S.	-	83	Average CR	5	Temp.	Time	5	æ	ቫ	ន	7	3
		ာ့	ပ္	°C/s	ပ္စ	°C/s	°C/s	ပ္စ	၁	sec	ပူ	Sec	၃	°C/s	ပွ	၁၉၀
Hot rolling →	-	1150	820	40	t		40	200	,	,	009	99	700	ç	400	후
Continuous	~	1150	820	\$	ı	•	4	902	3	00	6 8	8	700	\$	§	호
6	m	1150	820	Q	8	\$	8	a	1	+	9	8	700	우	400	5
	4	1150	820	₽	200	4	8	8	450	1000	<u>0</u>	8	700	5	9	5
	ß	1150	820	40	1 -		40	450	. 1	. 800	. 800	8.	700	₽	₫	5
	9	1150	820	\$	200	\$	8	450	,		8	8	92	2	9	5

·

Table 30

	Base phase	Second phase structure	13	ធ	~	FL S	
No.	structure	(S1/S)x100	(MPa)	(%)	(%)		
-	TM	33.1	750	40	\$.0.72	
2	¥.	7.5	750		.	0.86	
е	F+TM	27.8	750	9	. 54	0.73	•
4	F+TM	. 11.3	750	9	83	0.89	•
\$	2	1.8	750	9	69	0.87	
9	F+TB	6.2	750	40	35	0.83	

Note: TM: tempered martensite, TB: tempered baintie, F: ferrite

		7
5	5 p	
	* # 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
10	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
15	Confinuous annealing or plating T q CR 14 CR 74 T Q CR 16 T Q CR 10 T Q	
15	Confinence To 10 10 10 10 10 10 10 10 10 10 10 10 10	
20	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	20	
25	Fempered	
	Temp.	
30	12	
	Confinuous anneading 11 CR 12 Confinuous anneading 11 CR 12	
35		
	Cold rolling Cold rolling So S	
40	C C C C C C C C C C C C C C C C C C C	
	Hot miling FDT CR B856 40 B856 40 B866 40 B	
45		
	SRT 1150 1150 1150 1150 1150 1150 1150 115	and ent
50	No. See 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RT: Room temperatun
	9	P. Room
ss Table 31	Hot rolling → Cold rolling → First continuous annealing → Second continuous annealing	Note: R7

Table 32

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	F+TM F+TM F+TM F+TM	Second phase structure (S1/S)x100	TS (MPa) 460	(%)	λ (%)	FL/YI
1 2 3 4 5 6 7 8 9 10 11 12 13 14	F+TM	- .	<u> </u>	<u> </u>	(70)	
2 3 4 5 6 7 8 9 10 11 12 13	F+TM	· .	I Anii		- 00	0.00
3 4 5 6 7 8 9 10 11 12 13		1		33	96	0.80
4 5 6 7 8 9 10 11 12 13		-	460	33	98	0.8
5 6 7 8 9 10 11 12 13		30.3	590	38	57	0.72
6 7 8 9 10 11 12 13	F+TM	8.4	590	38	72	0.83
7 8 9 10 11 12 13 14	F+TM	28.5	750	40	45	0.78
8 9 10 11 12 13	F+TM	23.3	750	40	42	0.74
9 10 11 12 13 14	F+TM	10.2	750	40	59	0.8
10 11 12 13 14	F+TM	7.8	750	40	63	0.8
11 12 13 14	F+TM	8.5	750	40	66	0.80
12 13 14	F+TM	25.7	750	40	46	0.76
13 14	. F+TB	33.1	750	40	61	0.8
14	TM	30.3	750	40	43	0.74
	ТМ	8.4	750	40	64	0.8
15	ТВ	27.8	750	40	59	0.8
	F+TM	25.3	805	33	54	0.6
16	F+TM	11.0	805	33	71	0.7
17	F+TM	-	680	25	61	0.8
18	F+TM	-	680	25	62	0.8
19	F+TM	35.8	960	25	55	0.6
20	F+TM	13.1	960	25	67	0.7
21	F+TM	27.4	795	32	52	0.7
22	F+TM	7.2	795	32	68	0.8
23	F+TM	28.0	800	32	54	0.69
24	F+TM	3.8	800	32	71	0.79
25	F+TM	25.4	810	33	53	0.7
26	F+TM	6.6	810	33	66	0.80
27	F+TM	27.1	805	30	55	0.7
28	F+TM	13.1	805 .	30	73	0.8
29	F+TM	. 33.1	790	33	49	0.7
30	F+TM	8.5	790	33	64	0.83
31	F+TM	24.8	795	34	51	0.72
32	F+TM	10.8	795	34	67	0.8
33	F	28.7	800	32	53	0.74
34	F+TM	20.7		-	JJ	
No	F+TM F+TM	3.6	800	32	73	0.82

Ŭ

AE

•	7
•	١
	¢
•	ć
	c

Γ			·		_	ι .		Γ-
	Zn-tGA	ပ္		•			•	•
	Ŧ	98	휻	호	ş	ã	5	.
or plating	7	ပူ	ş	604	6	ŝ	\$	혛
Continuous annealing or plating	5	s,	2	5	9	\$	9	₽
Conffino	卢	ပ္စ	200	200	700	700	700	700
	23	. sec	99	8	.60	8	3	38
	12	ပ္စ	008	.800	800	. 008	800	800
Sared	Time .	380	-	1000	-	•	1000	ı
Tempered	Temp.	ပွ	,	450	•	ı	420	•
us anneating	22	ပွ	R	R	450	늄	RT	450
	g	స్ట	2	2	90	8	8	07
Confin	F	ပ္စ	650	88	850	8	90	8
Cold rolling	Cold rolling rate	×	8	So	90	S	50	S
Γ	5	ပ္စ	જુ	550	550	55	550	550
g g	ຮ	္မ်ိဳ	\$	\$	8	9	9	\$
Hot rolling	FOT	ပ	85	820	850	650	820	820
	SRT	ပ္စ	1150	1150	1150	1150	1150	1150
Steel	Ö.		m	~		6	3	3
Ş			-	2	3	4	2	9
			Hot colling	Cold rolling +	First continuous	Second	continuous	•

Table 34

	Base phase	Second phase structure	ZI.	E	~	FLYYP
S _o	structure	(\$1/\$)	. (MPa)	(%)	(%)	
-	F+TM	23.6	750	40	4	0.73
2	F+TM	3.5	750	9	99	0.81
3	F+TB	28.0	750	64	62	0.80
*	TIM	30.3	750	04	48	0.74
S	AT.	7.2	750	40	62	0.84
9	178	27.5	750	. 40	29	0.85

Note: TM: tempered martensite, TB: tempered bainite, F: femite

No.	ပ	:S	Mn	Ь	S	A	Others
-	. 0.03	1.5	1.5	0.08	0.005	0.035	
7	60:0	1.5	1.5	0.09	0.005	0.035	
65	0.15	5.	1.5	0.07	90:0	0.035	
4	0.20	1.5	1.5	90:0	0.004	0.035	,
S	0.15	0.3	0.3	0.07	0.004	0.035	
9	0.15	1.5	1.5	90:0	0.005	0.035	Mo:0.2
^	0.15	1.5	1.5	0.0	9000	0.035	Ni:0.2
œ	0.15	1.5	1.5	90.0	0.006	0.035	Cu:0.2
6	0.15	1.5	1.5	0.07	0.005	0.035	Cr.0.2
9	0.15	1.5	1.5	0.07	90.0	0.035	Ti:0.03
=	0.15	1.5	1.5	90.0	0.005	0.035	Nb:0.03
12	0.15	1.5	1.5	0.07	9000	0.035	V:0.03
13	0.15	1.5	1.5	90.0	0.005	0.035	Са:10ррm

Table 36

ģ	Steel		Holm	Eug.		Cold rolling	ľ	Continuous annealing	B			Confinuou	annealin	Continuous annealing or plating		
	ģ	SRT	FOT	, 5	5	Cold	•	క	22	12	ធ	₽	క	7.	Ŧ	Z-157
						rolling rate					•	•				
		ပ္	ပွ	ఫ్ట	ပွ	>°	ပူ	స్ట	ပ္စ	ပ္စ	ઝુ	ပ္စ	స్థ	ပ္	န္တ	ပ္စ
-	1	1050	88	\$	220	ន	820	2	を	800	8	002	2	400	\$	•
2	7	1050	820	\$	220	چ	820	8	듄	900	8	200	₽.	400	8	ı
က	m	1050	920	\$	220	ಜ	820	8	¥	800	8	700	₽	4 00	8	•
4	4	1050	820	9	220	8	820	ឧ	눈	800	8	700	9	9	홍	•
S	2	1050	820	\$	920	ଛ	920	8	돲	800	8	200	우	904	8	٠
9	6	1050	820	\$	550	જ	950	8	7	98	8	700	2	400	Ş	i
^	_	1050	820	\$	220	S	820	8	¥	800	8	902	2	400	9	ı
ω	80	920	820	4	220	8	820	8	Æ	800	8	92	9	400	ş	1
ė,	6	1050	820	4	220	20	920	8	₩.	800	8	92	2	400	훉	i
2	9	1050	820	4	920	99	980	8	Æ	800	8	92	2	400	ş	1
=	=	1050	820	9	220	95	820	8	75	900	8	92	9	400	Ş	ı
12	12	1050	820	9	220	S	820	8	₽	900	8	200	2	400	ğ	t
5	5	1050	820	\$	220	ଛ	820	8	₩.	800	8	8	우	400	호	ı
7	က	1050	820	\$	220	8	820	8	Æ	800		. 7007	. .	400	\$	•
5	6	920	820	용	220	S S	820	8	듄	800	8	200		400	휻	•
16	က	975	82	\$	220	8	920	20	₩ ₩	800	8	700	÷	400	홍	١.
1	m	99	83	\$	220	20	820	'R	8	906	.· 8	700	;	69.	8	ı
€	ຕ	1025	850	9	220	83	820	8	녿	800	8	9 <u>2</u>	-	\$.	8	ı
19	6	1075	8	\$	220	SS.	820	8	눝	800	8	96	÷.	8	葛	1
ଛ	3	1100	820	40	550	20	850	70	R	800	89	200	-	400	100	ı

Note: RT: Room temperature

35 ·

Table 37

BH10	(MPa)	0	45	S	S	0	20	45	8	55	S	45	45	45	0	. 60	8	55	55	45	5
SH2	(MPa)	ç	88	8	8	15	88	88	8	8	6	8	8	&	15	9	χ.	56·	8	88	8
<	(%)	96	\$	52	11	: 29	<i>L</i> 9	89	7	99	. 52	25	29	23	43	37	9	23	65	8	83
ᇤ	(%)	34	92	41	æ	*	. 26	32	33	33	31	33	32	32	27	40	33	9	40	33	\$
TS	(MPa)	465	610	760	810	989	960	900	800	810	805	795	795	800	735	770	765	765	760	755	290
C _R	(%)	1	1.4	1.3	1,3	0.5	1.3	1.3	1.4	1.3	4.4	1.4	1,3	1.3	1.3	1.3	1.3	1.4	1.3	1.3	£,1
Others	(%)	0	0	0		0	0	0	0	0	0	0	0	0	17(P)	0	0	0	0	0	0
ы,	(%)	0	5	2	12	1	æ	=	6	12	*	13	12	=	**	12	=	5	=	9	Ξ
æ	(%)	2	ഹ	9	9	S	ო	2	ო	S	S	ო	4	m	ဖ	4	2	7	က	4	ۍ
M	(%)	47	45	83	35	4	89	4	ટ્ટ	\$	37	31	\$	41	89	ਲ	31	27	ន	ಜ	32
Œ	(%)	48	44	55	47	54	S	46	38	33	44	53	44	39	30	20	53	99	53	53	52
Steel	No.	-	7	က	4	2	9	7	~	6	2	=	12	t	63	က	<u>س</u>	es	65	m	
ģ		-	7	က	4	22	9	^	80	6	2	=	12	55	7	5	9	7	e	\$	23

Notes: TM: tempered madensite, F: ferrilla, B: bainita, YR: retained austanita, P: paarille

ου

Table 38

ė	Steel	L	Hot rolling	offing		Cold rolling	Continu	Continuous annealing	6			Continua	is annealin	Continuous anneating or plating		
	ģ	SRT	£	క	៦	Cold rolling rate	1	뚱	2	ᄄ	Ø	Þ	ප _ු	2	玄	Z-4GA
		ပွ	ပွ	°C/s	ပ္စ	%	ပ္စ	°C/8	ပွ	ပ္	Sec	ပ္စ	· °C/s	ပ္စ	sec	့
-	-	150	820	3	220	S	650	8	R	8	8	92	10	400	\$	•
7	2	150	820	4	250	જ	820	8	2	8	8	902	2	400	5	
က	က	150	820	8	220	S	850	8	Æ	8	8	90	<u>.</u>	\$	õ	,
4	4	1150	820	9.	936	S	920	8	F	8	8	19	₽	400	3	,
2	2	150	820	9	220	જ	920	8	┺	8	8	<u>\$</u>	5	6	5	,
9	9	1150	920	4	220	જ	920	8	Æ	98	99	92	₽	9	õ	ļ
7	~	150	820	各	920	જ	920	23	₩.	8	8	902	₽	÷	õ	ı
60	80	1150	820	\$	220	95	. 058	8	Æ	90	99	902	₽	\$	<u>\$</u>	ı
o	6	55	820	8	550	S	950	8	₽	8	3	92	5	400	葛	,
2	2	1150	920	6	220	ક્ક	98	8	돲	8	8	8	5	\$	8	.'
F	=	1150	820	\$	220	જ	820	8	듄	99	8	8	è	\$	ŝ	'
12	12	1150	820	\$	220	S	820	92	Æ	8	8	92	5	\$	õ	,
5	13	1150	820	8	220	. 98	820	8	Æ	900	.8	82	2	8	5	,
\$	e	1150	820	\$	220	8	650	8	R	8	8	8	_·	\$	3	,
15	m	925	820	\$	290	8	820	8	Æ	8	8	2	. —	40	Ş	ı
9	ب	1125	820	\$	220	S	820	20	늄	8	9	8	. -	\$	乭	•
11	е	1175	820	\$	220	ន	820	8	늄	80	8	6 .	- :	\$.	횽	1
20	6	1200	820	\$	550	20	850	20	RT	800		200	_	9	急	•

Note: RT: Room temperature

Table 39

BH10	(MPa)	0	ŧ	25	4	0	8	15	5	8	8	8	15	52	0	2	33	33	8
BH2	(MPa)	3	22		8	8	8	8	8	æ	86	8	25	æ	£.	8	8	κ.	2
~	(%)	96	ক্ত	29	7	62	29	89	71	99	52	\$	29	22	ඩ	89	24	8	62
ѿ	(%)	33	92	41	33	. 25	52	32	32	33	99	ಜ	ਲ	35	78	ਝ	8	ස	14
75	(MPa)	460	610	760	805	089	096	795	800	810	902	790	795	800	730	730	755	750	740
క్ర	(%)	١	1.4	1,3	1.3	0.5	1.3	1.3	1,4	1.3	1.4	1.3	1.3	1.3	1.3	1.3	1.4	1.3	1.4
Others	(%)	0	0	0	0	0	0	0	0	0	0	0	0	0	17(P)	0	0	0	ò
¥	(%)	0	6	2.	12	-	ဆ	=	60	12	14	13	12	=	8	3	9	=	9
80	(%)	S	လ	9	9	က	၉	2	က	ç	S	6	4	က	9	S	S	4	5
M	(%)	47	42	31	35	40	39	4	20	44	37	3	6	47	88	2	#	8	31
u.	(%)	48	44	S	47	25	8	9	38	39	44	53	44	39	30	8	54	25	55
Steel	No.	-	2	ю	4	'n	9	~	~	6	9	=	12	13	60	က	<u>ო</u>	د	3
ò		-	7	က	4	2	9	7	8	6	9	F	12	13	7	15	16	11	18

Notes: TN: tempered martensite, F: ferrite, B: bahite, YR: retained austenlia

ģ	Steel	×	ക	œ.	u_	£	5	Φ.	~	2H2	9H10
	Š	(%)	(%)	(%)	(%)	(%)	(Mpa)	(%)	(%)	(MPa)	(MPa)
-	2	23	က	0	74	1	820	z	£3	40	9
7	ო	0	4	12	8	1.4	788	37	4	જ	₹5
m	2	0	8	0	11	•	830	5	ŝ	9	0

Table 41

					Hot rolling					3	utinuous ann	Continuous annealing or plating	gug	
	Š	SRT	FOT	<u>R</u>	-	CR2	Average CR	5	t	ಐ	ř.	క్ర	71	3
		ပ္စ	၁	°C/s	္စ	SC/s	°C/s	ပ္	၁	sec	၁	°C/s	ပွ	sec
Hat rolling →	-	1050	850	40	J		40	900	. 800	. 60	700	10	400	100
Continuous	7	1050	820	9	700	8	8	8	008	99	200	\$	400	9
annealing	က	1050	850	4	1	•	. 40	₹	800	99	200	9	60	9
	4	1050	820	40	700	9	20	420	800	9	700	9	400	100
Hot rolling →	5	1150	850	. 40	ı	1	.	200	900	09	700	10	400	100
Continuous	9	1150	820	4	700	\$	8	200	800	99	700	2	400	100
annealing	_	1150	820	4	1	ı	40	420	900	99	902	9	400	6
	-	1150	82	9	92	\$	70	450	80	8	902	2	400	9

No. Base phase lase phase lase phase structure 1S E1 A BH2 BH10 1 structure (MPa) (MPa) (MPa) (MPa) 2 F+TM 755 40 45 85 45 3 TB 755 40 69 80 45 4 F+TB 755 40 64 80 45 5 TM 750 40 44 95 30 6 F+TM 750 40 45 80 25 7 TB 750 40 69 80 25 8 F+TB 750 40 69 80 25 8 F+TB 750 40 69 80 20 8 F+TB 750 40 69 80 20									
Base phase TS E1 λ structure (MPa) (%) TM 755 40 44 F+TM 755 40 45 F+TB 755 40 69 F+TB 755 40 64 F+TM 750 40 44 F+TM 750 40 45 F+TB 750 40 69 F+TB 750 40 66	BH10 (MPa)	. 92	45	. 54	45	30	22	8	5
Base phase 15 E1 Siructure (MPa) TM 755 40 TB 755 40 F+TB 755 40 TM 750 40 F+TM 750 40 TB 750 40 F+TB 750 40 F+TB 750 40	BH2. (MPa)	100	æ	8	8	ક્ક	8	8	75
Hase phase 15 structure (MPa) TM 755 F+TM 755 F+TB 755 TM 750 F+TM 750 TB 750	ر (%)	#	\$	66	2	\$	\$	69	64
F+TM TM F+TM TB F+TB TM F+TB TM F+TM F+TM F+TM F+TP	<u>ም</u>	40	8	\$	9	40	40	40	9
	TS (MPa)	755	755	755	755	750	750	750	750
0	Base phase structure	ΤM	F+TM	18	F+TB	ME.	F+TM	B	14日
	ö N	-	2	e	4	S	9	7	8

Noles: TM: tempered martensile, TB: tempered bainite, F: fertile

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

55

_			_				_	_	_	_								
	Z-1Z-	ပ္စ		ı	•	.	1	,		,	ı	1	1	ı	1	•	t	,
 	Ŧ	Sec	ē	9	9	5	5	ŝ	5	5	8	5	8	9	8	100	9	5
Continuous annealing or plating	7	ပူ	8	400	400	400	400	604	400	400	8	60	9	9	400	9	9	400
us anneal	క	స్ట	2	2	2	2	₽	2	2	5	5	\$	9	5	2	9	9	8
Continuo	բ	ပ္	92	902	8	902	92	8	S	90,	200	8	200	8	200	92	. 002	92
	53	sec	8	9	8	8	8	8	8	9	8	8	9	9	8	9	9	-58
	ជ	ပ္စ	88	800	800	800	800	990	99	800	98	900	800	. 008	800	800	800	900
gujig	2	ပ္	₽.	Æ	RT	450	RT	450	R	늄	듄	Æ	₩.	늄	늄	₩.	R	¥
Continuous annealing	8	S,	æ	8	20	20	92	æ	ສ	8	8	8	8	8	8	8	8	Ŕ
Sg	F	ပ္	950	820	850	850	006	900	058	. 058	820	82	820	820	820	820	820	820
Cold rolling	Cold rolling rate	%	20	22	22	50	50	50	20	S	S	95	20	90	S	ଞ	S	SS
	5	ပ္စ	920	. 220	550	88	220	550	250	88	55	220	220	88	જ્ઞ	SS .	220	220
Hot rolling	ჯ	స్ట	\$	\$	육	\$	\$	승	\$	\$	\$	\$	\$	\$	\$	3	\$	\$
Hotr	5	ပွ	82	8	ଞ୍ଚ	82	සි	සි	සී	සි	8	820	820	820	820	820	820	820
	SRI	ပ္စ	1050	1050	<u>5</u>	₹ 9	<u>5</u>	55	1050	<u>გ</u>	5	1050	1050	5 5 5	1050	1050	1050	1050
Chool	3 2	<u>i</u>	-	7	3	3	က	3	₩	S	9	_	œ	ტ	2	=	12	13
	Ę.		-	~	F.	4	2	٥	~	80	6	2	Ξ	12	55	=	5	16
								Hol milion	rolling 1 con	continuous annealing	1 Second continuing	annealino	0					

OT. Dans famoushing

Table 44

ģ	Base phase	TS		. ~	8H2	BH10
	structure	(MPa)	(%)	(%)	(MPa)	(MPa)
-	F+TM	465	32	. 96	10	o
7	F+TM	230	33	. 29	75	5
က	F+TM	755	40	. 21	82	20
4	F+TB	750	41	61	85	55
5	MT	750	40	48	80	45
9	18	755	41	29	85	.22
_	F+TM	805	33	23	100	92
œ	F+TM	989	92	· 98	70	22
6	F+TM	365	92	88	80	45
9	F+TM	795	32	25	80	45
=	F+TM	800	33	83	88	જ
12	F+TM	815	೫	æ	75	5
13	F+TM	805	33	જ	88	S.
7	F+TM	795	34	49	82	. 45
15	F+TM	795	SS	99	æ	22
9	F+TM	805	32	82	æ	45

Notes: TM: tempered martensite, TB: tempered bainite, F: fantte

Ŝ	
4	
_₩	
മ	
10	
•	

		Chool		Hot rolling	ling		Cold rolling	Conti	Continuous annealing	aling			Continuo	us anneal	Continuous annealing or plating	2	
	ė		SRT	5	ន		Cold rolling rate		F	13	2	33	բ	క	7	*	Zh→GA
		į	ပ္စ	ပ္စ	s/Ç		%		SC/s	ပ္စ	ပ္စ	8	ပူ	స్ట	ပ္စ	286	ပူ
Hot rolling → Cold	-	က	1050	820	40	550	95	820	æ	RT	800	8	8	₽	400	ŝ	99
rolling - First	2	3	1050	820	8	-	90		20	450	800	9	200	9	8	5	009
Second continuous	6	6	1050	920	\$		S		8	R	900	8	92	\$	400	ş	99
annealing	4	3	1050	820	8		20		8	450	800	8	200	9	400	훙	9
Note: RT: Room temperature	ature																

Table 46

BH10	(MPa)	20.	.45	. 09	45
BH2	(MPa)	85	75	\$	75
~	(%)	4	. 29	84	29
2	(%)	. 04	40	. 40	6
TS.	(MPa)	755	755	755	755
Base phase	structure	F+TM	F+TB	MT	118
Š.		-	2	е	4

Notes: TM: tempered martensite, TB: tempered bainite, F: fenite

10
15
20
25
30
35
40
45
50

55

Table 47

		100		Hot rolling	ling		Cold rolling	Contin	Continuous annealing	ading			Cantinuo	us anneali.	Continuous annealing or plating			_
	Š.	2 2	SRT	Ē	ຮ	ರ	Cold rolling rate	=	ક	12	ದ	23	٥	ક	7	호	¥9+5×	
		<u>i</u>	ပ္စ	ပူ	స్థ	ပ္	%	ပူ	S,C	ပ္စ	၁	Sec	ပ္စ	s Ç	ပွ	283	ပ္	
	-	-	1150	820	\$	55	90	820	20	R	900	8	700	9	\$	횽		Т
	2	2	1150	S	육	52	S	830	8	¥	800	8	902	9	400	5	1	
	3	9	1150	8	\$	550	90	820	92	RT	800	8	92	9	400	100	1	
	4	6	1150	8	\$	550	90	850	20	450	800	8	700	9	40	횽	,	_
	5	3	1150	82	Q	550	20	006	70	ᅜ	900	ន	200	2	6 0	50	1	_
Llad	9	3	1150	820	6	220	20	900	02	450	900	8	902	9	400	ē	,	_
rolling → Cold	7	4	1150	25	\$	550	20	820	8	돲	800	8	700	9	400	Ş		_
configurate appealing	80	S	1150	8	\$	22	S	820	8	R	80	8	200	우	400	\$,	
Second continuous	ø	9	1150	8	\$	220	S	සි	8	₽	800	8	92	9	400	\$		
annealing	÷.	7	1150	8 20	\$	220	S	88	8	귷	800	8	200	5	400	\$	1	
	=	8	1150	8 8	\$	220	25	850	8	¥	800	8	902	9	400	\$	•	
	12	6	1150	88	\$	22	20	820	8	₽	80	8	92	9	604	9	•	
	13	9	1150	3	\$	SS	22	820	8	₩	800	8	92	우	6	5	1	
	*	=	1150	8	\$	220	S	820	8	₽.	800	8	82	9	\$	홍	•	
	15	12	1150	93	\$	25	S	820	8	¥	800	8	002	0	904	葛	1	
	16	5	1150	820	4	550	8	850	8	2	8	8	200	9	400	5	ı	_

te: OT Occurrents

Table 48

						F					_						
BH3	(MPa)	0	8	25	. 52	52	25	35	8	52	83	8	52	8	30	53	30
BH2	(MPa)	10	2	82	80	8	75	95	8	80	72	82	2	75	8	88	75
~	(%)	98	25	46	61	43	59	35	19	ક્ક	29	ক্ষ	æ	55	49	51	53
ũ	(%)	33	88	40	40	40	40	33	52	x	32	32	æ	8	ജ	স্ক	32.
ম	(MPa)	460	230	750	750	750	750	808	089 989	960	795	800	810	802	790	795	800
Base phase	structure	F+TM	F+TM	F+TM	F+TB	MT.	TB	F+TM	F+TM	F+TM	F+TM	F+TM	F+TM	F+TM	F+TM	F+TM	F+TM
ò		-	2	3	4	5	9	2	80	6	9	Ξ	12	13	4	5	9

Notes: TM: tempered martensite, TB: tempered batrite, F: territe

Table 49

		- 00		Hot rolling	gug.		Cold rolling	Cantir	Continuous annealing	aling			Continuo	us anneali	Continuous annealing or plating	9	
	ટું	200	SRT	5	క	5	Cold rolling rate	Ξ	క	12	12	æ	۶	ಜ	7	Z	Z-CA
		į	ပ္	ပ္စ	သို့	ပွ	%	၁	°C/s	ာ့	ပ္	Sec	ပ္	Ş	ပ္စ	Sec	ပ္
Hot rolling → Cold	-	е	1150	820	\$	250	જ	820	70	RT	800	8	92	₽	9	ş	999
rolling → First	7	0	1150	820	各	550	20	820	70	450	800	3	700	2	9	5	9
→ Second continuous	6	m	1150	650	\$	220	09	006	20	RT	800	99	200	5	604	5	909
annealing	4	3	1150	820	\$	220	20	006	20	450	800	8	200	5	400	5	009

Note: RT: Room temperature

Table 50

BH10	(MPa)	52	÷	જ	20
BH2	(MPa)	88	2	95	. 02
γ.	(%)	4	62	48	29
핃	(%)	\$	40	40	40
TS	(MPa)	750	750	750	750
Base phase	structure	F+TM	F+T8	MT	18
So.	_	-	2	က	4

Notes: TM: tempered martensite, TB: tempered baintle, F: ferrite

Claims

5

10

15

20

30

35

40

50

55

- 1. A high strength steel sheet superior in formability,
 - (1) containing the following chemical components in mass %:

C: 0.06 to 0.6% Si+Al: 0.5 to 3% Mn: 0.5 to 3%

P: 0.15% or less (not including 0%) S: 0.02% or less (not including 0%), and

(2) having a structure comprising:

(2-1) a base phase structure, the base phase structure being tempered martensite or tempered bainite and accounting for 50% or more in terms of a space factor relative to the whole structure, or the base structure comprising tempered martensite or tempered bainite which accounts for 15% or more in terms of a space factor relative to the whole structure and further comprising ferrite,

the tempered martensite or the tempered bainite having a hardness which satisfies the relation of: Vickers hardness (Hv)≥500[C]+30[Si]+3[Mn]+50 where [] represents the content (mass %) of each element; and (2-2) a second phase structure comprising retained austenite which accounts for 3 to 30% in terms of a space factor relative to the whole structure and optionally further comprising bainite and/or martensite, the retained austenite having a C concentration (Cγ_R) of 0.8% or more.

- 25 2. A high strength steel sheet according to claim 1,
 - (1) containing the following chemical components in mass %:

C: 0.06 to 0.25% Si+AI: 0.5 to 3% Mn: 0.5 to 3%

P: 0.15% or less (not including 0%) S: 0.02% or less (not including 0%), and

(2) wherein the second phase structure satisfies the following expression (1) to enhance the fatigue characteristic:

$$(S1/S) \times 100 \le 20$$
 (1)

where S stands for a total area of the second phase structure, and S1 stands for a total area of coarse second phase crystal grains (Sb) contained in the second phase structure, the Sb corresponding to three times or more as large as an average crystal grain area (Sm) of the second phase structure.

- 45 3. A high strength steel sheet according to claim 1,
 - (1) containing the following chemical components in mass %:

C: 0.06 to 0.25% Si+Al: 0.5 to 3% Mn: 0.5 to 3%

P: 0.15% or less (not including 0%) S: 0.02% or less (not including 0%), and

(2) having such bake hardening (BH) characteristics after baking finish as satisfy the following expressions:

BH (2%) ≥ 70 MPa, and

BH (10%) \geq BH (2%) /2.

4. A high strength steel sheet according to claim 1, wherein the retained austenite is in a lath form.

5. A high strength steel sheet according to claim 1, wherein the content of the ferrite is 5 to 60% in terms of a space factor relative to the whole structure.

- 6. A high strength steel sheet according to claim 5, wherein the content of the ferrite is 5 to 30% in terms of a space factor relative to the whole structure.
 - 7. A high strength steel sheet according to claim 1, further containing at least one of the following components in mass %:

Mo: 1% or less (not including 0%) Ni: 0.5% or less (not including 0%) Cu: 0.5% or less (not including 0%)

5

15

25

30

35

40

45

50

55

Cr: 1% or less (not including 0%).

8. A high strength steel sheet according to claim 1, further containing at least one of the following components in mass %:

Ti: 0.1% or less (not including 0%)

Nb: 0.1% or less (not including 0%)

V: 0.1% or less (not including 0%).

9. A high strength steel sheet according to claim 1, further containing the following component(s) in mass %:

Ca: 0.003% or less (not including 0%), and/or

REM: 0.003% or less (not including 0%).

10. A method of producing the high strength steel sheet described in claim 1 wherein the base phase structure is tempered martensite or tempered bainite, the method comprising a hot rolling process and a continuous annealing process or a plating process,

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50) °C and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20°C/s and winding up the steel sheet.

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

11. A method of producing the high strength steel described in claim 1 wherein the base phase structure is tempered martensite or tempered bainite, the method comprising a hot rolling process, a cold rolling process, a first continuous annealing process, and a second continuous annealing process or a plating process,

the continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A_3 point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20° C/s,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

12. A method of producing the high strength steel sheet described in claim 1 wherein the base phase structure com-

prises tempered martensite and ferrite or comprises tempered bainite and ferrite, the method comprising a hot rolling process and a continuous annealing process or a plating process,

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10°C/s and winding up the steel sheet,

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steep sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

13. The method of claim 12, wherein the hot rolling process comprises a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C, a step of cooling the steel sheet to a temperature in the range of 700±100°C at an average cooling rate of not lower than 30°C/s, a step of cooling the steel sheet with air in said temperature range for 1 to 30 seconds, and a step of subsequently cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 30°C/s and winding up the steel sheet.

10

15

20

25

30

35

40

45

50

55

- 14. The method of claim 12, wherein the continuous annealing process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of (A₁ point to 60°C) at an average cooling rate of not higher than 15°C/s, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.
 - 15. A method of producing the high strength steel described in claim 1 wherein the base phase structure comprises tempered martensite and ferrite or comprises tempered bainite and ferrite, the method comprising a hot rolling process, a cold rolling process, a first continuous annealing process, a tempering process, and a second continuous annealing process or a plating process,

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10° C/s,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

- 16. The method of claim 15, wherein the second continuous annealing process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of (A₁ point to 600°C) at an average cooling rate of not lower than 20°C/s, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.
- 17. A method of producing the high strength steel described in claim 2 wherein the base phase structure is tempered martensite or tempered bainite, the method comprising a hot rolling process, a tempering process, and a continuous annealing process or a plating process,

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20°C/s,

the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400° C and not higher than A_{c1} point for a period of time of not shorter than 10 minutes and shorter than 2 hours,

the continuous annealing process or the plating process comprising a step of holding the steel sheet at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not

lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

5

10

15

.20

25

30

35

40

45

50

18. A method of producing the high strength steel sheet described in claim 2 wherein the base phase structure is tempered martensite or tempered bainite, the method comprising a hot rolling process, a cold rolling process, a first continuous annealing process, a tempering process, and a second continuous annealing process or a plating process,

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A_3 point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20°C/s,

the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400° C and not higher than A_{c1} point for a period of time of not shorter than 10 minutes and shorter than 2 hours,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more

19. A method of producing the high strength steel sheet described in claim 2 wherein the base phase structure comprises tempered martensite and ferrite or comprises tempered bainite and ferrite, the method comprising a hot rolling process, a tempering process, and a continuous annealing process or a plating process,

the hot rolling process comprising a step of terminating finish rolling at a temperature of not lower than $(A_{r3}$ -50) °C and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower tan 10°C/s and winding up the steel sheet,

the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400°C and not higher than Acl point for a period of time of not shorter than 10 minutes and shorter than 2 hours,

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

- 20. The method of claim 19, wherein the hot rolling process comprises a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C, a step of cooling the steel sheet to a temperature in the range of 700±100°C at an average cooling rate of not lower than 30°C/s, a step of cooling the steel sheet with air in said temperate range for 1 to 30 seconds, and a step of subsequently cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 30°C/s and winding up the steel sheet.
- 21. The method of claim 19, wherein the continuous annealing process comprises a step of holding the steel sheet at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.
- 22. A method of producing the high strength steel described in claim 2 wherein the base phase structure comprises tempered martensite and ferrite or comprises tempered bainite and ferrite, the method comprising a hot rolling process, a cold rolling process, a first continuous annealing process, a tempering process, and a second continuous annealing process or a plating process,

the first continuous annealing process comprising a step of holding a resulting steel sheet at a temperature of not lower than A_1 point and not higher than A_3 point and a step of cooling the steep sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10° C/s,

the tempering process comprising a step of tempering the steel sheet at a temperature of not lower than 400°C and not higher than ACT point for a period of time of not shorter than 10 minutes and shorter than 2 hours,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling

the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

- 23. The method of claim 22, wherein the second continuous annealing process comprises a step of holding the steel sheet at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.
- 24. A method of producing the high strength steel sheet described in claim 3 wherein the base phase structure is tempered martensite or tempered bainite, the method comprising a hot rolling process and a continuous annealing process or a plating process,

10

15

20

25

30

35

40

45

50

55

the hot rolling process comprising a step of controlling a heat treatment temperature before hot rolling to a temperature in the range of 950° to 1100°C, a step of terminating finish rolling at a temperature of not lower than $(A_{r3}$ -50)°C, and a step of cooling a resulting steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20°C/s and winding up the steel sheet,

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

25. A method of producing the high strength steel sheet described in claim 3 wherein the base phase structure is tempered martensite or tempered bainite, the method comprising a hot rolling process, a cold rolling process, a first annealing process, and a second annealing process or a plating process,

the hot rolling process comprising a step of controlling a heat treatment temperature before hot rolling to a temperature in the range of 950° to 1100°C,

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A_3 point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 20° C/s,

the second continuous annealing step or the plating step comprising a step of holding the steel sheet at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

26. A method of producing the high strength steel sheet described in claim 3 wherein the base phase structure comprises tempered martensite and ferrite or comprises tempered bainite and ferrite, the method comprising a hot rolling process and a continuous annealing process or a plating process,

the hot rolling process comprising a step of controlling a heat treatment temperature before hot rolling to a temperature in the range of 950° to 1100°C, a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C, and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10°C/s and winding up the steel sheet,

the continuous annealing process or the plating process comprising a step of holding the steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

27. The method of claim 26, wherein the hot rolling process comprises a step of controlling a heat treatment temperature before hot rolling to a temperature in the range of 950° to 1100°C, a step of terminating finish rolling at a temperature of not lower than (A_{r3}-50)°C, a step of cooling the steel sheet to a temperature in the range of 700±100°C at an average cooling rate of 30°C/s, a step of cooling the steel sheet with air in said temperature range for 1 to 30 seconds, and a step of subsequently cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of

not lower than 30°C/s and winding up the steel sheet.

5

15

20

25

30

35

40

50

- 28. The method of claim 26, wherein the continuous annealing process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 1.0 to 600 seconds, a step of cooling the steel sheet to a temperature of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.
- 29. A method of producing the high strength sheet described in claim 3 wherein the base phase structure comprises tempered martensite and ferrite or comprises tempered bainite and ferrite, the method comprising a hot rolling process, a cold rolling process, a first continuous annealing process, and a second continuous annealing process or a plating process,

the hot rolling process comprising a step of controlling a heat treatment temperature before hot rolling to a temperature in the range of 950° to 1100°C,

the first continuous annealing process comprising a step of holding a resulting steel sheet in a heated state at a temperature of not lower than A_1 point and not higher than A_3 point and a step of cooling the steel sheet to a temperature of not higher than Ms point or a temperature of not lower than Ms point and not higher than Bs point at an average cooling rate of not lower than 10° C/s,

the second continuous annealing process or the plating process comprising a step of holding the steel sheet at a temperature of not lower than A_1 point and not higher than A_3 point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 3°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

30. The method of claim 29, wherein the second continuous annealing process comprises a step of holding the steel sheet in a heated state at a temperature of not lower than A₁ point and not higher than A₃ point for 10 to 600 seconds, a step of cooling the steel sheet to a temperature of (A₁ point to 600°C) at an average cooling rate of not higher than 15°C/s, a step of cooling the steel sheet to a temperature of not lower than 300°C and not higher than 480°C at an average cooling rate of not lower than 20°C/s, and a step of holding the steel sheet in said temperature range for 1 second or more.

FIG. 2

FIG. 3

FIG. 4

GRAY SCALE MAP TYPE: < NONE >

COLOR CODED MAP TYPE: INVERSE POLE FIGURE [001]

fcc_generic 1111 001 101

BOUNDARIES: < NONE >

FIG. 6

HOT ROLLING CONDITIONS

FIG. 7

HOT ROLLING CONDITIONS

FIG. 9

CONTINUOUS ANNEALING CONDITIONS

FIG. 10

CONTINUOUS ANNEALING CONDITIONS

FIG. 11

CONTINUOUS ANNEALING CONDITIONS

FIG. 12

CONTINUOUS ANNEALING CONDITIONS

FIG. 17

FIG. 18

FIG. 19

 $10\mu \text{m}$

FIG. 20

10 µ m

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/00744

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 C22C38/00, C21D9/46 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl7 C22C38/00-38/60, C21D9/46-9/48 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2002 1971-2002 Jitsuyo Shinan Toroku Koho Kokai Jitsuyo Shinan Koho 1996-2002 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP, 2000-144311, A (Sumitomo Metal Industries, 1-30 Ltd.), 26 May, 2000 (26.05.00), Claims (Family: none) 1-30 A JP, 7-252592, A (Nippon Steel Corp.), 03 October, 1995 (03.10.95), Claims (Family: none) 1-30 A JP, 11-350064, A (Kobe Steel, Ltd.), 21 December, 1999 (21.12.99), Claims (Family: none) Α 1-30 JP, 2001-3150, A (Kawasaki Steel Corp.), 09 January, 2001 (09.01.01),

	Further documents are listed in the continuation of Box C.		See patent family annex.
•	Special categories of cited documents:	"T"	later document published after the international filing date or
"A"	document defining the general state of the art which is not		priority date and not in conflict with the application but cited to
	considered to be of particular relevance		understand the principle or theory underlying the invention
"B"	earlier document but published on or after the international filing	"X"	
1 ~	date		considered novel or cannot be considered to involve an inventive
"L"	document which may throw doubts on priority claim(s) or which is		step when the document is taken alone
~	cited to establish the publication date of another citation or other	"Y"	document of particular relevance; the claimed invention cannot be
	special reason (as specified)	•	considered to involve an inventive step when the document is
"0"	document referring to an oral disclosure, use, exhibition or other		combined with one or more other such documents, such
~	means		combination being obvious to a person skilled in the art
#PD	document published prior to the international filing date but later	"&"	
	than the priority date claimed	OC.	document member of the same baten raminy
<u></u>		· .	
	of the actual completion of the international search	Date	of mailing of the international search report
	08 April, 2002 (08.04.02)	ĺ	16 April, 2002 (16.04.02)
	,	ł	
		}	
N/a=		A	porized officer
	e and mailing address of the ISA/	Aun	ionzea onicer
i	Japanese Patent Office	Į.	
1		١.	
Facei	imile No.	Tele	phone No.
I raco	line 140.	1 2010	phone 110.

Claims