Trans-resistance Feedback Circuits

V. L. Narasimha Reddy *

For the feedback transresistance amplifier in 1.1), use small-signal analysis to find the open-loop gain 'G', Feedback factor 'H' and Closed-loop gain 'T'. Let $R_F >> R_L$ and $r_o >> R_L$. Find the value of T for $R_L = 10K\Omega$, $R_F = 100K\Omega$ and the transistor current gain $\beta = 100$.

1. Draw the equivalent control system for the feedback Transresistance amplifier shown in 1.1

Solution: see Fig. 1.2

2. For the feedback Transresistance amplifier shown in 1.1, Draw its small signal model. Early effect in Transistor is neglected.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

1

Solution: see Fig. 2

While drawing a Small-Signal Model, we ground all constant voltage sources and open all constant current sources. All Small-Signal paramters are obtained from DC-Analysis of the circuit. Neglecting Early effect, in SmallSignal Analysis a npn-Transistor is modelled as a Current Source with value of current equal to $g_m V_{be}$ flowing from Collextor to Emitter. Whereas a pnp-Transistor is modelled as a Current Source with value of current equal to $g_m V_{be}$ flowing from Emitter to Collector.

Fig. 2: Small Signal Model

3. Find small signal parameters g_m and v_{be} using DC analysis

Solution: small signal parameters of bjt are given in (3.1) and (3.2)

$$g_m = \frac{I_C}{V_T} \tag{3.1}$$

$$r_{\pi} = \frac{V_T}{I_B} \tag{3.2}$$

The Large signal model of circuit becomes as shown in figure 3

Fig. 3: Large signal model

Where $V_T = 25m$ volts

$$V_{BE} = 0.7 volts \implies V_B = 0.7 volts$$
 (3.3)

$$I_E = I_B + I_C \tag{3.4}$$

$$I_C = \beta I_B \tag{3.5}$$

From applying KVL and KCL on Fig.

$$V_{cc} - I_E R_L - I_B R_F - 0.7 = 0$$

$$(3.6)$$

$$\implies V_{cc} - (\beta + 1) I_B R_I - I_B R_F - 0.7 = 0$$

$$\Rightarrow V_{cc} - (\beta + 1) I_B R_L - I_B R_F - 0.7 = 0$$
(3.7)

$$I_B = \frac{V_{cc} - 0.7}{(\beta + 1)R_L + R_F}$$
 (3.8)

$$I_C = \beta \frac{V_{cc} - 0.7}{(\beta + 1)R_L + R_E}$$
 (3.9)

from (3.1), (3.2), I_B and I_C

$$g_m = \frac{\beta}{V_T} \frac{V_{cc} - 0.7}{(\beta + 1) R_L + R_F}$$
 (3.10)

$$r_{\pi} = V_T \frac{(\beta + 1)R_L + R_F}{V_{cc} - 0.7}$$
 (3.11)

4. Write all node/loop equations of Small-Signal model using KCL/KVL. Given that $R_F >> R_L$ Solution:

$$v_{be} = I_i r_{\pi} \tag{4.1}$$

$$v_{be} - I_F R_F = V_o \tag{4.2}$$

$$V_o = (I_F - g_m v_{be}) R_L (4.3)$$

5. Find the expression for feedback factor H. **Solution:**

$$H = \frac{I_F}{V_o} \tag{5.1}$$

substituting (4.2) in (4.3)

$$V_o = (I_F - g_m V_o - g_m I_F R_F) R_L$$
 (5.2)

$$\implies (1 + g_m R_L) V_o = I_F (R_L - g_m R_F R_L)$$
 (5.3)

$$H = \frac{I_F}{V_o} = \frac{1 + g_m R_L}{R_L (1 - g_m R_F)}$$
 (5.4)

$$\implies H \approx -\frac{1}{R_F} \tag{5.5}$$

6. Find the expression for Open loop Gain G.

Solution:

$$G = \frac{V_o}{I_c} \tag{6.1}$$

Substituting (4.1) in (4.2) and substituting I_F from (5.4)

$$I_{i}r_{\pi} - \left(\frac{1 + g_{m}R_{L}}{R_{L}(1 - 1 + g_{m}R_{F})}\right)R_{F}V_{o} = V_{o} \quad (6.2)$$

$$\implies G = \frac{V_o}{I_i} = \frac{r_{\pi}R_L(1 - g_mR_F)}{R_F + R_L}$$
 (6.3)

Upon approximating since $R_F >> R_L$

$$G = -g_m r_\pi R_L \tag{6.4}$$

7. Find the expression for Closed Loop Gain $T = \frac{V_o}{I_c}$ We know that Closed Loop Gain

$$T = \frac{G}{1 + GH} \tag{7.1}$$

Substituting expressions from (5.5) and (6.3)

$$T = -\frac{g_m r_\pi R_L}{1 + \left(\frac{g_m r_\pi R_L}{R_F}\right)} \tag{7.2}$$

8. For the parameters given in table 8 . Find G,H and T. **Solution:** Substituting the parameters in

Parameters	Value
V_{cc}	5V
I_s	1μ
R_F	$100K\Omega$
R_L	10 <i>K</i> Ω
β	100

TABLE 8

(3.10) and (3.11) gives,

$$r_{\pi} = 6.6667 \times 10^{3} \Omega \tag{8.1}$$

$$g_m = 0.015S$$
 (8.2)

Substituting g_m , r_π obtained in (5.5)

$$H = -10^{-5} \tag{8.3}$$

Substituting g_m , r_{π} obtained in (6.4)

$$G = -10^6 (8.4)$$

Substituting g_m , r_π obtained in (7.2)

$$T = -90909.09 \tag{8.5}$$

9. Draw the block diagram and circuit diagram

for H.

Solution: see figs 9.5 and 9.6

Fig. 9.5: Feedback block diagram

Fig. 9.6: Feedback circuit

From KVl on 9.6 we can see that

$$H = \frac{I_F}{V_o} = -\frac{1}{R_F}$$
 (9.1)

10. Find the input and output resistances of the feedback network.

Solution: From the feedback amplifier circuit fig.9.6 To find the input resistance R_{11} short the output node V_o to ground.

$$R_{11} = R_F \tag{10.1}$$

To find the output resistance R_{22} rempve the current source and short input terminals.

$$R_{22} = R_F (10.2)$$

11. Draw the block diagram and circuit diagram for G.

Solution: see figs 11.7 and 11.8

12. Find G

Solution: From fig.11.8,

$$V_{be} = I_i r_{\pi} \tag{12.1}$$

From KCL at node V_a ,

$$I_o = -g_m I_i r_\pi \tag{12.2}$$

Fig. 11.7: Open loop block diagram

Fig. 11.8: Open loop block circuit diagram

$$V_o = -g_m I_i r_\pi R_L \tag{12.3}$$

Therefore,

$$G = \frac{V_o}{I_i} = -g_m r_\pi R_L \tag{12.4}$$

13. Simulate the circuit using ngspice

Solution: The following file gives instructions on how to simulate the circuit.

The following netlist simulates the feedback amplifier using parameters in table 8.

The Output Voltage obtained from spice is plotted in fig.13.9

Fig. 13.9: Output Voltage

codes/ee18btech11046/spice/ee18btech11046.

We can observe that V_o is sum of sine wave amplified by a factor of 89500 for small signal input and large signal output V_C which is close to the calculated values.