Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительн	юй техники
Кафедра электронных вычислительн	ых машин
Основы работы в Matlab	
Отчет по лабораторной работе №3 ди «Теория принятия решений»	
Выполнил студент группы ИВТ-41	/Крючков И. С./ _/Ростовцев В. С./

1. Задание

Получить выборку в инструментальной оболочке ANIES и проверить её результаты с помощью нейронной сети в среде MatLab.

Выполнить прогнозирование выбора цветка при заданных значениях 7 параметров (входов), используя инструментальную систему ANIES и составить обучающую таблицу для работы в среде MatLab.

С помощью пакета Neural network toolbox создать несколько нейронных сетей и спрогнозировать результаты по полученной в ANIES выборке

2. Выполнение лабораторной работы

ГИПОТЕЗЫ:

Страна {Россия, США, Китай, Индия, Австралия, Норвегия, Гаити, Афганистан}

ПАРАМЕТРЫ:

Численность_населения {низкая, средняя, высокая} Площадь {малая, средняя, большая} Климат {тропический, умеренный, смешанный} Инфраструктура {хорошо_развита, слабо_развита} Море {да, нет} Горы {да, нет} Качество образования {низкое, среднее, высокое}

Обучающие таблицы

Входы:

	-0.4500	0.4500	-0.6000	1	0.6000	-0.4500	0.4500	0.3500	-0.3500	-0.3500	-1			-0.7500	-0.7500	0,7500		
1			0.6000	-1			0.4500	0.2000	-0.2000			-1	0.0500		-0.7500	0.7500	0.2000	-0,2000
2	-0.9500	0.9500		-0.2500	-0.6000	-0.9500			-0.2000	-0.2000	-0.2500	-0.2500	0.2500	-0.1500				
3	-0.2500	0.2500	-0.1500	-0.7500	-0.1500	-0.2500	0.2500	-1	1	-1	-0.7500	-0.7500	0.7500	0.6500	-0.6500	-0.6500	0.9000	-0.9000
4	-0.6000	0.6000	0.2000	-0.2500	-0.2000	-0.6000	0.6000	-0.6500	0.6500	-0.6500	-0.2500	-0.2500	0.2500	-0.7500	-0.7500	0.7500	0.8500	-0.8500
5	-0.5000	0.5000	-0.7000	-0.6500	-0.7000	-0.5000	0.5000	-0.4500	0.4500	-0.4500	0.6500	-0.6500	-0.6500	1	-1	-1	0.4500	-0.4500
6	-0.5500	0.5500	0.2500	-0.7500	-0.2500	-0.5500	0.5500	-0.6000	0.6000	-0.6000	0.7500	-0.7500	-0.7500	0.1000	-0.1000	-0.1000	-0.5000	0.5000
7	0.2500	-0.2500	-0.9000	-0.8000	0.9000	0.2500	-0.2500	0.4500	-0.4500	-0.4500	0.8000	-0.8000	-0.8000	0.9500	-0.9500	-0.9500	-0.1500	0.1500
8	0.2500	-0.2500	0.7000	-0.9000	-0.7000	0.2500	-0.2500	0.5000	-0.5000	-0.5000	0.9000	-0.9000	-0.9000	-0.4500	0.4500	-0.4500	-0.6000	0.6000
9	0.7500	-0.7500	-0.3000	-0.1500	0.3000	0.7500	-0.7500	0.8000	-0.8000	-0.8000	0.1500	-0.1500	-0.1500	0.1000	-0.1000	-0.1000	-0.4500	0.4500
10	-0.1500	0.1500	-0.2500	0.1500	-0.2500	-0.1500	0.1500	-0.1500	-0.1500	0.1500	-0.1500	0.1500	-0.1500	0.7000	-0.7000	-0.7000	0.5500	-0.5500
11	-0.6500	0.6500	-0.1500	-0.1000	0.1500	-0.6500	0.6500	-0.1000	0.1000	-0.1000	0.1000	-0.1000	-0.1000	-0.9000	0.9000	-0.9000	-0.7500	0.7500
12	0.6000	-0.6000	0.6000	-0.8000	-0.6000	0.6000	-0.6000	-0.6500	-0.6500	0.6500	-0.8000	-0.8000	0.8000	-0.4500	0.4500	-0.4500	-0.3000	0.3000
13	-1	1	-0.1000	0.8500	-0.1000	-1	1	-0.5000	0.5000	-0.5000	-0.8500	0.8500	-0.8500	-0.5500	0.5500	-0.5500	0.6000	-0.6000
14	0.5000	-0.5000	-0.8500	-0.5500	0.8500	0.5000	-0.5000	-0.6000	0.6000	-0.6000	-0.5500	-0.5500	0.5500	-0.8000	0.8000	-0.8000	-0.5500	0.5500
15	-0.5500	0.5500	-0.2500	-0.6000	0.2500	-0.5500	0.5500	-0.3000	0.3000	-0.3000	-0.6000	-0.6000	0.6000	0.8500	-0.8500	-0.8500	0.8500	-0.8500
16	-1	1	0.8000	-0.9500	-0.8000	-1	1	-0.7500	-0.7500	0.7500	0.9500	-0.9500	-0.9500	0.6500	-0.6500	-0.6500	0.9000	-0.9000
17	0.2500	-0.2500	0.9500	-0.2000	-0.9500	0.2500	-0.2500	-0.6000	-0.6000	0.6000	-0.2000	-0.2000	0.2000	-0.5000	0.5000	-0.5000	-0.7000	0.7000
18	-1	1	0.3500	-0.7500	-0.3500	-1	1	-0.6000	0.6000	-0.6000	0.7500	-0.7500	-0.7500	0.5000	-0.5000	-0.5000	0.3000	-0.3000
19	-0.9500	0.9500	-0.9000	-0.7500	0.9000	-0.9500	0.9500	0.8500	-0.8500	-0.8500	0.7500	-0.7500	-0.7500	-1	1	-1	-0.7000	0.7000
20	-0.5500	0.5500	-0.8000	-0.9500	0.8000	-0.5500	0.5500	-1	1	-1	0.9500	-0.9500	-0.9500	-0.2500	0.2500	-0.2500	0.2500	-0.2500
21	0.6500	-0.6500	0.8500	-0.6000	-0.8500	0.6500	-0.6500	-0.1500	-0.1500	0.1500	-0.6000	-0.6000	0.6000	0.8500	-0.8500	-0.8500	-0.7000	0.7000
22	-0.3000	0.3000	-0.2000	-0.2000	-0.2000	-0.3000	0.3000	-0.8500	0.8500	-0.8500	-0.2000	-0.2000	0.2000	-0.9000	0.9000	-0.9000	-0.8500	0.8500
23	-0.8000	0.8000	-0.5000	0.1500	0.5000	-0.8000	0.8000	0.7500	-0.7500	-0.7500	-0.1500	0.1500	-0.1500	0.6000	-0.6000	-0.6000	-1	1
24	-1	1	0.2500	-0.8000	-0.2500	-1	1	1	-1	-1	0.8000	-0.8000	-0.8000	-0.6000	-0.6000	0.6000	0.8000	-0.8000
25	-0.9000	0.9000	-0.3500	-0.1500	0.3500	-0.9000	0.9000	-0.1500	-0.1500	0.1500	0.1500	-0.1500	-0.1500	0.2500	-0.2500	-0.2500	0.2500	-0.2500

Рисунок 1 – Значения входов нейронной сети

Выходы:

1	-0.3640	0.9337	-0.3660	-0.8450	-0.5457	-0.2732	-0.7274	-0.6366
2	0.0703	-0.1587	0.3626	-0.7154	-0.2380	0.1908	-0.2666	-0.2920
3	0.1755	-0.4352	-0.5732	-0.6521	-0.6429	0.0977	-0.7533	-0.7771
4	0.4969	-0.8122	-0.3964	-0.6956	-0.5142	0.4310	-0.5676	-0.6741
5	-0.3810	-0.4389	-0.7582	0.3984	-0.5553	-0.6146	-0.4229	-0.5999
6	-0.5655	0.7370	0.2808	-0.7418	-0.5896	-0.3334	-0.6635	-0.6326
7	0.4416	-0.6706	0.0088	-0.8884	-0.1961	0.1842	-0.4237	-0.3460
8	-0.5857	0.2959	0.6149	-0.8523	-0.5734	0.0163	-0.5444	-0.5325
9	0.2668	-0.7478	-0.2651	-0.5712	-0.2267	0.2231	-0.2668	-0.0845
10	-0.1751	0.3060	-0.3373	-0.0720	-0.2973	-0.3159	-0.2424	-0.2495
11	-0.4111	0.7512	-0.2291	-0.5347	-0.5003	-0.3405	-0.3120	-0.3609
12	0.4865	-0.9509	-0.8183	-0.9260	-0.7285	0.5906	-0.7811	-0.4016
13	-0.3343	0.8601	-0.5176	-0.6075	-0.6986	-0.5636	-0.7788	-0.7337
14	-0.4297	0.7955	-0.4361	-0.8511	-0.4083	-0.3893	-0.5435	-0.5234
15	-0.2429	0.7738	-0.3226	-0.6259	-0.4171	-0.2860	-0.5418	-0.4944
16	-0.6655	0.7299	0.4864	-0.9615	-0.8216	0.3373	-0.8887	-0.8401
17	-0.1559	0.5109	-0.4061	-0.9175	-0.4964	0.3140	-0.5132	-0.2427
18	-0.4814	0.7735	0.1777	-0.7644	-0.5824	-0.2071	-0.6675	-0.6481
19	0.0353	-0.7600	0.5063	-0.9441	-0.6625	0.3381	-0.6006	-0.6912
20	0.4282	-0.4930	-0.5042	-0.8936	-0.4809	0.3839	-0.7026	-0.7135
21	-0.2732	0.6506	0.0375	-0.9005	-0.4766	-0.0563	-0.6220	-0.5682
22	-0.5378	0.6630	-0.5019	-0.3922	-0.7893	-0.5782	-0.7402	-0.7292
23	0.5814	-0.7583	-0.4030	-0.6617	-0.2104	0.3731	-0.2654	-0.4271
24	-0.5005	0.5123	0.5194	-0.7216	-0.5653	-0.1561	-0.6812	-0.6233
25	0.7096	-0.9403	-0.4866	-0.6242	-0.2922	0.5499	-0.2741	-0.5419

Рисунок 2 – Значения выходов нейронной сети

Результаты обучения нейронных сетей:

Обучение с помощью Levenberg-Marquardt

Рисунок 3 – Окно обучения сети

Рисунок 4 – Диаграмма Regression

Средняя погрешность сети: 0,1445

Прогноз сети

No	OUT1		OUT1 OUT2		OUT3		OUT/	OUT4		OUT5		OUT6		OUT7		OUT8	
JN⊡	0011		0012		0013		0014		0013		0010		0017		0018		
	Ani	NP	Ani	NP	Ani	NP	Ani	NP	Ani	NP	Anie	NP	Ani	NP	Ani	NP	
	es		es		es		es		es		S		es		es		
1	-	-	0.93	0.93	-	-	-	-	-	-	-	-	-	-	-	-	
	0.36	0.36	37	36	0.36	0.36	0.84	0.84	0.54	0.54	0.27	0.27	0.72	0.72	0.63	0.63	
	40	46			60	62	50	59	57	58	32	34	74	76	66	69	
2	0.49	0.49	-	_	-	-	-	-	-	-	0.43	0.43	-	-	-	_	
	69	70	0.81	0.81	0.39	0.39	0.69	0.69	0.51	0.51	10	10	0.56	0.56	0.67	0.67	
			22	27	64	64	56	48	42	44			76	78	41	39	
3	-	-	0.30	0.30	-	-	-	-	-	-	-	-	-	-	-	_	
	0.17	0.17	60	58	0.33	0.33	0.07	0.07	0.29	0.29	0.31	0.31	0.24	0.24	0.24	0.24	
	51	51			73	73	20	19	73	73	59	57	24	24	95	95	
4	0.48	0.35	-	-	-	-	-	-	-	-	0.59	0.42	-	-	-	-	
	65	03	0.95	0.57	0.81	0.68	0.92	1.10	0.72	0.72	06	25	0.78	0.63	0.40	0.66	
			09	59	83	70	60	58	85	22			11	34	16	61	
5	0.58	0.16	-	-	-	-	-	-	-	-	0.37	0.17	-	-	0.42	0.26	
	14	73	0.75	0.74	0.40	0.33	0.66	0.46	0.21	0.19	361	82	0.26	0.25	71	15	
			83	82	30	84	17	74	04	64			54	60			
d	d 0.1102		0.217	1	0.07718		0.075	0.07518		0.00412		0.07278		0.03158		0.0861	

Обучение с помощью Scaled Conjugate Gradient

Рисунок 5 – Окно обучения сети

Рисунок 6 – Диаграмма Regression

Средняя погрешность сети: 0,0798

Прогноз сети

№	OUT1 OU		OUT2	OUT2		OUT3		OUT4		OUT5		OUT6		OUT7		OUT8	
	Ani	NP	Ani	NP	Ani	NP	Ani	NP	Ani	NP	Anie	NP	Ani	NP	Ani	NP	
	es		es		es		es		es		S		es		es		
1	1	-	0.93	0.24	-	-	-	-	-	-	-	-	-	-	-	-	
	0.36	0.21	37	06	0.36	0.38	0.84	1.10	0.54	0.31	0.27	0.21	0.72	0.45	0.63	0.41	
	40	07			60	86	50	89	57	33	32	13	74	56	66	40	
2	0.49	0.39	-	-	-	-	-	-	-	-	0.43	0.17	-	-	-	-	
	69	07	0.81	0.68	0.39	0.10	0.69	1.25	0.51	0.62	10	77	0.56	0.20	0.67	0.34	
			22	78	64	38	56	49	42	91			76	29	41	15	
3	-	-	0.30	0.31	-	-	-	-	-	-	-	-	-	-	-	-	
	0.17	0.57	60	38	0.33	0.76	0.07	0.26	0.29	0.61	0.31	0.25	0.24	0.70	0.24	0.20	
	51	45			73	13	20	06	73	33	59	24	24	39	95	46	
4	0.48	0.36	-	-	-	-	-	-	-	-	0.59	0.49	-	-	-	-	
	65	26	0.95	0.84	0.81	0.22	0.92	0.78	0.72	0.44	06	03	0.78	0.39	0.40	0.29	
			09	54	83	34	60	10	85	72			11	92	16	44	
5	0.58	0.32	-	-	-	-	-	-	-	-	0.37	0.43	-	-	0.42	0.56	
	14	35	0.75	0.84	0.40	0.47	0.66	0.46	0.21	0.09	361	87	0.26	0.35	71	41	
			83	53	30	82	17	25	04	73			54	83			
d	d 0.20814		0.2033	56	0.28186		0.2712		0.21154		0.108818		0.3146		0.16886		

Обучение с помощью Bayesian Regularization

Рисунок 7 – Окно обучения сети

Рисунок 8 – Диаграмма Regression

Средняя погрешность сети: 0,0729

Прогноз сети

No	OUT1		OUT2		OUT3		OUT4		OUT5		OUT6		OUT7		OUT8	
	Ani	NP	Ani	NP	Ani	NP	Ani	NP	Ani	NP	Anie	NP	Ani	NP	Ani	NP
	es		es		es		es		es		S		es		es	
1	-	-	0.93	0.91	-	_	-	-	-	-	-	-	_	-	-	-
	0.36	0.38	37	84	0.36	0.37	0.84	0.85	0.54	0.53	0.27	0.26	0.72	0.69	0.63	0.62
	40	17			60	17	50	53	57	60	32	76	74	99	66	97
2	0.49	0.50	-	-	-	-	-	-	-	-	0.43	0.43	-	-	-	-
	69	84	0.81	0.80	0.39	0.38	0.69	0.68	0.51	0.51	10	22	0.56	0.58	0.67	0.66
			22	13	64	77	56	30	42	88			76	08	41	68
3	-	-	0.30	0.28	-	_	-	-	-	-	-	-	_	-	-	-
	0.17	0.20	60	92	0.33	0.35	0.07	0.09	0.29	0.25	0.31	0.33	0.24	0.23	0.24	0.26
	51	03			73	99	20	69	73	71	59	04	24	71	95	98
4	0.48	0.47	-	-	-	-	-	-	-	-	0.59	0.59	-	-	-	-
	65	16	0.95	0.94	0.81	0.81	0.92	0.93	0.72	0.71	06	29	0.78	0.76	0.40	0.42
			09	91	83	59	60	24	85	02			11	45	16	34
5	0.58	0.58	-	-	-	-	-	-	-	-	0.37	0.36	-	-	0.42	0.40
	14	90	0.75	0.75	0.40	0.39	0.66	0.65	0.21	0.22	361	87	0.26	0.26	71	62
			83	29	30	71	17	66	04	12			54	12		
d	d 0.01538		0.010	04	0.00906		0.01186		0.01672		0.005702		0.01336		0.01544	

Вывод

Самой оптимальной сетью среди протестированных является Bayesian Regularization с 15 нейронами, так как она имеет наименьшую погрешность на тестовых данных.