SUPER **vsv** NOVA

인공위성 레이저를 이용한 우주쓰레기 제거

Space Debris Removal using Satellite Laser

지도 멘토 이동우 김규빈 | 김가온 | 박문수 | 은제연 | 윤지섭

CONTENTS

- 01 연구 동기
- 02연구목표
- 03 문제 정의
- 0 4 해결 방안
- 05 추후 연구

"기하급수적으로 증가하는 우주 쓰레기!"

- 인공위성 및 큐브 위성 기하급수적으로 증가
- 상당수의 위성들이 수명 종료 이후에 우주쓰레기로 분류되며 지구 저궤도 중심으로 발생
- 우주쓰레기 2010년 12,000개 남짓 → 2024년 기준 40,000개 초과
- 위성 운용 및 로켓 발사에 문제를 일으킬 수 있어 이를 제거하기 위한 연구가 다수 진행중

지구 궤도 상 인공물체 종류 및 숫자[1]

큐브 위성 발사 현황[3]

"새로운 우주 쓰레기로 여겨지는 큐브 위성!"

- 2010년을 기준으로 궤도 상의 위성 개수는 발사체의 발전으로 인해 지수적으로 증가
- Space X starlink 위성 군 (6400개), 큐브~나노 위성(4000개)가 주요한 영향을 끼침
- 큐브 위성은 마이크로 위성과 다르게 NASA 통계에 따른 큐브 위성의 임무 성공율은 약 60% 이며, 상업 위성과 달리 de-orbit 기술이 작은 크기로 의무화되기 어려움
- 또한, 큐브 위성은 공유 발사 시스템으로 인해 상업 군집 위성과 동일 궤도에서 우주쓰레기로 작용할 수 있음

Rideshare 발사로 배치되는 큐브 / 나노 위성

우주쓰레기 제거 방식

타겟 파손 및 조준 실패 위험 작 단순한 구조 고정밀 조준시스템 소요 신속한 제거 임무 가능 임무 횟수 제한 (소모성) 살 접 촉 식 추가적인 우주쓰레기 발생 위험 로 봇 팔 • 복잡한 구조 정밀 제어를 통한 높은 포획 가능성 포획 이후 동역학적 불확실성 발생 다양한 임무로의 확장성 타겟 크기 및 형태에 따른 임무 제한 • 포획 ())후 동역학적 불확실성 발생 \Box 타켓 형상에 따른 제약 낮음 임무 횟수 제한 (소모성) Ш 물 • 포획 성공 가능성의 신뢰도가 낮음 접 촉 식 타겟 형상에 따른 제약 낮음 높은 전력 및 냉각 소요 안전하고 신속한 제거 임무 가능 고정밀 조준시스템 소요 • 수명 주기 내 지속 임무수행 가능 타겟 파손 위험

레이저 우주쓰레기 기술이 지속가능한 해결책이 될 가능성이 존재!

"많은 큐브 위성을 지속적으로 제거할 수 있는 기술은?"

기존 지상 레이저기반의 우주쓰레기 제거 방법의 한계

- 대기로 인한 레이저 감쇠가 발생하여 고강도의 레이저 요구
- 높은 전력 및 냉각 시스템 필요
- 500km 이상 거리가 있는 지상에서 운용되어 고정밀의 제어 시스템 요구

지상레이저 vs 인공위성레이저

Laser	(Hz)	τ (s)	F _{opt} (J/cm ²)	L (km)	M^2	D (m) E _{opt} (J)
Space	10 ³	10 ⁻¹²	1	100	≈ 1	1.3 77
Ground	10	10 ⁻⁹	5	800	2	20.4 393

지상 레이저 기반 우주쓰레기 제거

인공위성 레이저 기반 우주쓰레기 제거

이를 해결하기 위해, 우리는 인공위성 레이저를 활용하는 우주쓰레기 기술을 제안

연구 목표

인공위성 레이저 기반

기술을 통해 우주쓰레기의 궤도 이탈을 유도하여 복수의 LEO 궤도의 존재하는 큐브 위성을 지속적으로 제거할 수 있다.

02 문제정의

문제 정의

"레이저를 이용해 우주쓰레기를 제거할 때, 어떤 문제들이 있을까?"

Q1. 우주쓰레기에 적합한 레이저 설계

Q2. 레이저를 위한 에너지 시스템 설계

Q3. 레이저 시스템이 고려된 인공위성 설계

문제 정의

"레이저를 이용해 우주쓰레기를 제거할 때, 어떤 문제들이 있을까?"

Q1. 우주쓰레기에 적합한 레이저 설계

광학 시스템/레이저 세기 설계

Q2. 레이저를 위한 에너지 시스템 설계

폐열 발전 / 태양광 발전

Q3. 레이저 시스템이 고려된 인공위성 설계

부피 효율 / 시스템 공학

03 해결 방안

해결방안 : 1-1: 레이저 빔 지름 설계

- 레이저의 빔은 실제 타겟의 크기를 고려하여 적절한 값으로 설계가 되어야 함
- 타겟은 KAIST 큐브 위성인 **랑데뷰 위성으로 선정**
- 레이저는 특정 단일 물질에 조사되어야 하므로 실제 타겟의 구조를 고려하여 위치 선정이 요구됨
- 이를 고려하여, 아래의 식을 통해 레이저 빔의 지름에 대한 파라미터 스터디를 진행

$$d_S = a' \frac{N\lambda z}{D_b} \qquad \qquad \blacktriangleright \qquad D_b = a' \frac{N\lambda z}{d_S}$$

이때, d_s 점의크기, D_b 거울의 크기, a' 가우시안 빔 상수, N 회절 한계, λ 레이저 파장, z 최대 운용 고도

해결방안: 1-1: 레이저 빔 지름 설계

- 큐브 위성의 알루미늄 면에 조사하기 위해서는 최대 10cm 이내의 빔 지름이 요구됨
- 레이저가 일정하게 빛 분포를 가정 \rightarrow a´= 2.44, N = $\sqrt{2}$, λ = 1.064 μ m, z = 5km
- 1cm 부터 10cm까지 거울의 지름을 계산하고 적절한 광학 시스템 선정 d_s = 5cm 로 결정

타겟시스템 레이저조사 예시

광학시스템설계결과

$d_{\scriptscriptstyle S}$	1cm	2cm	5cm	10cm
D_b	1.828 m	0.914 m	0.365 m	0.183m

레이저 포인트 지름 (d_s) : 5 cm

해결방안: 1-2 레이저 시스템 선정

- 레이저를 타겟에 조사하여 플라즈마를 생성하여 방출된 입자의 반대 방향으로 추진력 발생 (Ablation)
- 레이저는 효율이 상대적으로 낮지만 신뢰도가 있는 고체 매질레이저를 활용
- 참고문헌[4]을 통해 네오[[뮴(Nd) 기반의 고체 레이저 매질을 적용 [파장-1064nm]
- 고체 방식은 다른 매질 레이저보다 효율이 떨어져 폐열이 많이 발생하게 되며 대략 30% 효율을 가짐

네오디뮴 기반의 고체 레이저 구조

레이저를 통한 플라즈마 제트

 C_m : 레이저가 대상에 운동량을 얼마나 효과적으로 전달하는지 측정하는 계수

$$C_{\rm m} = \frac{p\tau}{\Phi} = \frac{p}{I} [N/W]$$
 (Eq.1)

p: 레이저 융삭 압력 레이저 강도

τ : 지속시간

레이저 강도 I 가 높을수록 C_m 이 증가하지만 일정 값에 도달하면 에너지가 재 복사, 이온화 등에 더 소모되면서 오히려 C_m 이 감소하기 시작한다. 따라서, 실제 C_m 은 다음과 같은 함수 형태로 정의된다.

$$C_m = \frac{C_{mo}}{(I\lambda\sqrt{\tau})^{1/4}} \quad \text{(Eq.2)}$$

 C_{mo} : 타켓 소재에 따라 정해지는 상수 (알루미늄 기준 504 [N/MW])

 $(I\lambda\sqrt{\tau})^{1/4}$: 레이저 강도, 파장 펄스 지속 시간이 운동량이 미치는 영향

금속 물질의 C_m 그래프

임의의 금속 물질에 대한 최적의 플루언스는 실험을 통해^[5] 다음과 같은 관계식을 가진다.

$$\Phi_{\text{OD}\dagger} \approx 8.5E8 \sqrt{\tau} \left[J/m^2 \right]$$
 (Eq.3)

 Φ_{ODT} : 금속 물질에서 피크 C_m 을 가질 때의 값

펄스에 따른 최적의 플루언스 실험 그래프 [5]

예를 들어, pulse가 8ns 인 경우에 $\Phi_{\rm opt}$ 는 $8.5 \times 10^8 \times \sqrt{8 \times 10^{-9}} = 75 \; {\rm kJ/m^2}$ 가 된다.

또한, 앞서 정의된 식1,2,3을 이용하면 다음과 같이 최적의 플루언스를 정의할 수 있다.

$$C_{m,opt} = \frac{C_{m,0}}{(8.5E8 \ \lambda)^{1/4}}$$
 (Eq.4)

1. 레이저 파장 선정

2. 레이저 빔 지름 및 재질 선정

3. 레이저 펄스 선정

레이저 전력 계산

속도 변화량 (Δv) 계산

따라서, 레이저는 다음과 같이 설계된다.

레이저의 파장 → 고체 레이저 [$\lambda = 1.064 \mu m$]

레이저의 펄스 \rightarrow 최적의 플루언스 기반 100 ps 이하로 작게 설계 [$\tau = 100 ps$]

타켓의 재질 → 인공위성 프레임 알루미늄 [$C_{\mathrm{m,0}} = 504 \,\mathrm{N/MW}$]

조사된 레이저 지름 $\rightarrow d_s = 5 \text{ cm}$

최적의 레이저의 $C_{\text{m.opt}} \rightarrow 96 \text{ N/MW}$

최적의 레이저의 Φ_{opt} → 8500 J/m²

해결방안: 1-2 레이저 시스템 선정

- 레이저를 임계 값 이상 조사받은 물체는 플라즈마가 되고, 너무 짧게 조사하는 경우 플라즈마가 발생하지 않고 너무 길게 조사하는 경우 녹거나 부서져 추가적인 우주쓰레기가 발생
- η_c 은 조사되는 각도에 따라 결정되는 상수, 본 상황에서는 랑데부 기동을 통해 앞에서 조사하는 상황을 가정
- 앞서 설계된 \mathbb{H} 라미터를 기반으로 Δv 가 결정 ($\mu=10~\mathrm{kg}/m^2$)

$$\Delta v = \eta_c C_{m,\mathit{opt}} \Phi_{\text{OD}\uparrow} / \mu \ [m/s] = \textbf{14.06 cm/s}$$

 (η_c) : push efficiency, μ : 질량 대비 표면적 밀도 (kg/m^2)

$$P_{laser} = \bar{P} f \eta_h = 16.67 J \times 200 \times 1.2 = 4 kw$$

 $(\bar{P} = \Phi_{ODT} A: 평균 펄스 에너지, f: pulse frequency (Hz)$

ካሉ: 레이저 대기 운용 전력 factor

해결방안: 2-1:폐열 시스템 설계

- 인공위성의 전력 생산은 주로 대양전지판을 활용
- 레이저는 운용에 많은 에너지가 요구되어 우주쓰레기 제거를 위해서는 안정적인 에너지 공급이 요구
- 요구되는 태양전지판의 면적을 줄이고자 레이저의 폐열을 재활용 하는 방안을 제시
- 타겟과 조우하는 perigee를 제외하고는 레이저를 사용하지 않으므로 이를 고려하여 필요 전력을 계산

해결방안: 2-1:폐열 시스템 설계

- 폐열 발전은 크게 열전소자 및 유기 랭킨 사이클(ORC)이 존재
- 레이저 특성상 고온의 열을 지속적으로 배출하기 위해서 라디에이터가 필수적
- 여러 유기 유체(암모니아, 벤젠, R11)을 이용하여 발전을 하며, 약 21의 효율을 가짐
- ISS, ESA, NASA 등에서도 능동 열 제어 시스템으로 활용된 사례가 있음
- 따라서, 유기 랭킨 사이클 방식의 폐열 시스템 적용 결정

해결방안: 2-1:폐열 시스템 설계

1) 폐열 계산 흐름도

고출력 레이저 전력: 4 kw

고출력 레이저 평균 효율: 30%

4 kw 레이저를 1시간에 3분 사용

→ 1일 총 4.8 kwh 사용

4.8 kwh x (1-0.3) = 3.36 kwh = 폐열에 활용 가능한 에너지 3.36 kwh x 0.21 = 0.705 kwh = 폐열 발전으로 생성된 에너지

해결방안: 2-2:태양 전지판 설계

1) 총 필요 면적 계산 흐름도

총 필요한 레이저 에너지 4.8 kwh 4.8 kwh - 0.705 kwh = 4.005 kwh = 1일 총 태양 전지판 요구 발전량

4.005 kwh / 18 h = 약 0.2222 kw = 태양 전지판 생산량

222.5 w / 200 w/m^2 = 약 1.112 m^2 총 필요한 태양 전지판 면적 = 1.112 m^2

문제 3. 레이저 시스템이 고려된 인공위성 설계

2) 상단 CAM-내부 설계도

문제 3. 레이저 시스템이 고려된 인공위성 설계

2) 상단 CAM-내부 설계도

- 전력계: 태양전지판, 배터리, 태양 전력 조절기, 전력 변환기, 전력 분배기 +폐열 활용 시스템
- 통신계: S대역 송수신기(위성의 상태에 대한 정보), X대역 송신기(탑재체에서 얻은 대용량 데이터)
- 자세제어계: 자이로스코프, 태양 센서, 항성 센서, 지자기센서
- 구동계: 반작용 휠, 마그네틱 토커, 제어 모멘트 자이로, 추력기(Pulsed Plasma Thruster)(궤도 조정용)
- 레이저 설비: 광학 조준경(+카메라), 레이저, 반사경, 레이저 발사 및 제어 총괄 컴퓨터
- 명령 및 데이터 처리계: 텔레메트리 텔레커맨드 유닛, 비행 소프트웨어 탑재 소프트웨어 유닛···ect

시뮬레이션

1) 시뮬레이션 환경

- Target: LEO (~700 km)에서 약 3.23 kg, 3U (10x10x10 (cm)) 크기의 **랑데부 큐브 위성**으로 선정
- Chaser: 레이저 시스템을 탑재한 제안된 시스템으로 250m LEO 인근에서 타겟에 레이저 수 회 조사
- 동역학모델: 만유인력을 고려한 two-body 동역학 모델로 구성

랑데부큐브위성궤도정보

궤도이심률(e)	0.000842
장반경(a)	6878 [<i>km</i>]
궤도경사각(i)	98.1368 [<i>deg</i>]
승교점 경도 (Ω)	56.9345 [<i>deg</i>]
근일점편각(ω)	166.3710 [<i>deg</i>]
평균근점이각(M)	193.7720 [<i>deg</i>]

랑데부큐브위성예시

Two-body동역학모델에시

시뮬레이션

2) 목표 decay 고도 선정

- 한번의 레이저 조사로 자동적으로 de-orbit이 발생하는 목표 궤도에 도달하기에는 어려움
- 속도가 감소하더라도 perigee에서는 궤도가 유지 되므로, 지속적으로 perigee에서 랑데부 기동을 통해 레이저를 적용
- The Australian space weather agency의 decay 계산기를
 통해 고도 분석 진행
- 각 궤도의 고도에 따라 필요한 시간을 고려하여 타겟 decay 고도를 300km로 가정 (약 0.38년 소요)
 - √ 400 km 투입 시 1,965일 내 재진입
 - ✓ 350 km 투입 시 545일 내 재진입
 - √ 300 km 투입 시 139일 내 재진입
 - ✓ 250 km 투입 시 30일 내 재진입
 - ✓ 200 km 투입 시 4일 내 재진입

川뮬레이션 3) 운용 시나리오

- Perigee에서 타겟의 앞 쪽에서 이동 방향의 반대로 레이저를 조사하여 속도를 감소
- 속도가 감소되면서 지속적으로 원지점의 고도가 낮아지게 됨
- 타겟 decay 고도 300km까지 지속적으로 레이저를 조사 후, 새로운 타겟으로 이동

시뮬레이션

4) 수치 시나리오

타겟 궤도 변화

타겟 궤도 고도 변화

- 총 10 번 재회 (총 delta-v = 140 m/s), 약 38일 만에 임무 완수
- 제안된 시스템을 활용 시 1년 동안 약 9대의 3U 큐브 위성 우주쓰레기 제거 가능성 확인

05 연구 결론

연구 결론

본 연구에서 우리는 인공위성 레이저 우주쓰레기 제거 기술을 제안하였다.

3U 큐브 위성을 제거를 위한 필요한 2kw 레이저 설계를 진행하였다.

또한, 이를 고려한 **폐열 발전 시스템과 태양 전지판의 넓이를 계산**하였다.

효율적인 부피를 위한 인공위성 설계를 수행하였고,

38일 동안 목표고도 300 km에 도달하였고, 이후 139일에 대기권에 진입하였다.

최종적으로 제안된 시스템을 통해 1년 동안 총 9대의 3U 큐브 위성 제거가 가능함을 확인하였다.

추후 연구

추후 연구에서 우리는 저궤도에 존재하는 모든 우주쓰레기를 제거하기 위해 총 몇 개의 레이저 시스템이 필요하고 시간이 소요되는지 계산해보고자 한다.

추가적으로 최적화된 미션 궤도를 설계하여 다수의 큐브 위성을 병렬적으로 레이저를 조사하여 제거 시간을 단축시키고자 한다.

참고 문헌

- [1] Opiela J, "Orbital Debris Charts"
- [2] Phipps, Claude R. "A laser-optical system to re-enter or lower low Earth orbit space debris." Acta Astronautica 93 (2014): 418-429.
- [3] Shen, Shuangyan, Xing Jin, and Chang Hao. "Cleaning space debris with a space-based laser system." Chinese Journal of Aeronautics 27.4 (2014): 805-811.
- [4] Phipps, Claude R. "L' ADROIT—A spaceborne ultraviolet laser system for space debris clearing." Acta Astronautica 104.1 (2014): 243-255.
- [5] https://ntrs.nasa.gov/api/citations/20190002705/downloads/20190002705.pdf
- [6] Phipps, Claude R., et al. "Removing orbital debris with lasers." Advances in Space Research 49.9 (2012): 1283-1300.90-
- [7] C. R. Phipps, Jr., et al., "Impulse Coupling to Targets in Vacuum by KrF, HF and CO2 Lasers", J. Appl. Phys., 1988, 64, 1083.
- [8] Phipps, C., et al. "Laser impulse coupling at 130 fs." Applied Surface Science 252.13 (2006): 4838-4844.

SUPER VSVNOVA

감사합니다

지도 멘토 이동우 김규빈 | 김가온 | 박문수 | 은제연 | 윤지섭

*우*주의 조약돌 ^{4팀}

앞서 정의된 식1,2를 이용하면 다음과 같은 관계를 얻을 수 있다.

$$\frac{p\tau}{\Phi} = \frac{p}{I} \to I\tau = \Phi$$
 (Eq.4)

양변에 λ 를 곱하면 아래와 같이 정리된다.

$$I\tau\lambda = \Phi\lambda$$
 (Eq.5)

양변에 $\sqrt{\tau}$ 를 나누고 식 3을 적용하면 최적의 $(I\sqrt{\tau}\lambda)_{opt}$ 는 아래와 같이 정리된다.

$$(I\sqrt{\tau}\lambda)_{opt} = \frac{\Phi\lambda}{\sqrt{\tau}} = 8.5E8 \ \lambda \quad \text{(Eq.6)}$$