Change of base point Let & bo a path Xo, x, E X 100: Xo 8(1): X1 [d] [d#d+8] $\pi_1(x) = \begin{cases} (x) \\ (x) \end{cases}$

 $\int_{\mathbb{R}} \pi_{i}(\chi, x_{\circ}) \longrightarrow \pi_{i}(\chi, x_{i})$ is a group isomos, hism Ex Show that of only depends on the konotory Fundametal groupoid park homotopy class (end pts) for all $\gamma: I \rightarrow \chi$ of the defined of $\delta_1(1) = \delta_2(0)$ we call it composable $(\delta_2 \cdot J \cdot L \delta_1) = (\delta_1 + \delta_2)$ if composable

 $\forall x \in X$ $e_{x_0} : I \rightarrow x_0 \rightarrow X$ T. (X) is not a group (u. less X = 3.3) but a "groupoid" A groupoid is a category where all morphism ave in Vertizle Define category & Functor! A space X is called simply connected of 1) Xis path conn. 2) TI. (X, xo) = 1 for some xo ex properties of TT,

1) The as a functor Top: Contegory of top spaces with base pts (X, x0) -f (Y, 70) Conthuous map s.t f(x.)= y. Grp: Category of groups TI, is a functor Top + - Grp (X.x.) ~ 77, (X.x.) $f \mid f_{\pi} \quad \left(\begin{array}{c} \Omega \\ \vdots \\ \vdots \\ \end{array} \right)$ $(\gamma, \gamma_0) \longmapsto \pi_1(\gamma, \gamma_0)$ $\text{Define } \{\pi[\delta] = [f_0\gamma]$ for: (0,1) - x - x

Check

(a)
$$f_{*}$$
 is a group homomorphism

(b) $(id_{x})_{*} = id_{T_{i}}(X,x_{0})$ $(g_{0}f)_{*}(x_{0})$

(c) $\chi f_{i} y f_{i} Z$ $= [g_{0}f_{0}x_{0}]$

(c) $\chi f_{i} f_{i} Y f_{i} Z$ $= [g_{0}f_{0}x_{0}]$

(d) $\chi f_{i} f_{i} Y f_{i} Z$ $= [g_{0}f_{0}x_{0}]$

(e) $\chi f_{i} f_{i} Y f_{i} Z$ $= [g_{0}f_{0}x_{0}]$

(fox) $= g_{i} f_{i} f_{i} Z$ $= [g_{0}f_{0}x_{0}]$

(i.e. $\chi f_{i} f_{i} f_{i} Z$ $= [g_{0}f_{0}x_{0}]$ $= [g_{0}f_{0}x_{0}]$

(i.e. $\chi f_{i} f_{i} Z$ $= [g_{0}f_{0}x_{0}]$ $= [g$

3)
$$\Pi_{i}$$
 is a homotopy invariant

Cire. of $f:(X,x_{0}) \rightarrow (Y,y_{0})$

i's a homotopy equivalence

then f_{x} is a group is morphism.

Leans X UF Y $F(x_{i},0) = f$
 $X = \{x_{0}, x_{0}\} = \{x_{0}, x_{0$

 $(1) = \begin{cases} \gamma(1) & s = 0 \\ F(\alpha s), 1 \end{cases}$ $\begin{cases} \gamma(1) & s = 0 \\ \gamma(1) & s = 1 \end{cases}$

Fundamental gp of circle Fundamental g_{P} of CiscleThen $\pi, (S') = (Z, +)$ X.= 1 $\pi: \mathbb{R} \longrightarrow S^1$ $\chi \longmapsto e^{2\pi i \times}$ $\alpha: \quad Coill \longrightarrow \quad S^1$ $\alpha(t): \quad C^{2\pi i}t$ 161 ~e2mint \$: 7 -- Tr. (52, x0) is a 3 nup $n \longrightarrow (\alpha^{1})$ homomorphia Need to ohech i) \$ is inj. (.e. \alpha^2 ~ e_x. (=) n=0 e) øis sarj, . e. + 8:10.13-21 1. + . 810)=8(1)= 1] new Tra?