How Inductive Bias in Machine Learning Aligns with Optimality in Economic Dynamics

Mahdi Ebrahimi Kahou 1 James Yu 2 Jesse Perla 2 Geoff Pleiss 3,4 July 4, 2024

¹Bowdoin College, Econ Dept

²University of British Columbia, Vancouver School of Economics

³University of British Columbia, Stats Dept

⁴Vector Institute

Motivation

In the long run, we are all dead—J.M. Keynes, A Tract on Monetary Reform (1923)

- Numerical solutions to dynamical systems are central to many quantitative fields in economics.
- Dynamical systems in economics are **boundary value** problems:
 - 1. The boundary is at **infinity**.
 - 2. The values at the boundary are potentially unknown. condition.
- Resulting from **forward looking** behavior of agents.
- Examples include the transversality and the no-bubble condition.
- Without them, the problems are ill-posed and have infinitely many solutions:
 - These forward-looking boundary conditions are a key limitation on increasing dimensionality.

1

Contribution

1. Inductive bias alignment:

• The minimum-norm implicit bias of modern ML models automatically satisfies economic boundary conditions at infinity.

2. Learning the right set of steady-states:

 Deep neural networks and kernel machines learn the boundary values, thereby extrapolating very accurately.

3. Robustness and speed:

• Competitive in speed and more stable than traditional methods.

4. Consistency of ML estimates.

Intuition

Minimum-norm implicit bias:

- Over-parameterized models (e.g., large neural networks) have more parameters than data points and potentially interpolate the data.
- They are biased towards interpolating functions with smallest norm.

Violation of economic boundary conditions:

- Sub-optimal solutions diverge (explode) over time.
- They have large or explosive norms.
- This is due to the saddle-path nature of econ problems.

The Problem

The class of problems

 $\mathbf{x} \in \mathbb{R}^{N_x}$: state variables, $\mathbf{y} \in \mathbb{R}^{N_y}$: jump variables. Initial value $\mathbf{x}(0) = \mathbf{x}_0$ and boundary conditions (at infinity)

$$\dot{\mathsf{x}}(t) = \mathsf{F}(\mathsf{x}(t),\mathsf{y}(t))$$

$$\dot{\mathbf{y}}(t) = \mathbf{G}(\mathbf{x}(t), \mathbf{y}(t))$$

$$\mathbf{0} = \mathbf{H}(\mathbf{x}(t), \mathbf{y}(t))$$

$$\mathbf{0} = \lim_{t \to \infty} \mathbf{B}(t, \mathbf{x}(t), \mathbf{y}(t))$$

A differential-algebraic system of equations, coming from an economic optimization problem:

(4)

Goal: finding an approximation for $\mathbf{x}(t)$ and $\mathbf{v}(t)$.

What is the problem?

- \mathbf{y}_0 is unknown.
- The optimal solutions is a **saddle-path**: unstable nature

(1)

(2)

(3)

Method

Method

- Pick a set of points $\mathcal{D} \equiv \{t_1, \cdots, t_N\}$ for some fixed interval [0, T]
- Large machine learning models to learn $\hat{\mathbf{x}}(t)$ and $\hat{\mathbf{y}}(t)$

$$\begin{split} \min_{\hat{\mathbf{x}},\hat{\mathbf{y}}} \sum_{t_i \in \mathcal{D}} \left[\eta_1 \left\| \hat{\hat{\mathbf{x}}}(t_i) - \mathbf{F}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)(t_i)) \right\|_2^2 + \eta_2 \left\| \hat{\hat{\mathbf{y}}}(t_i) - \mathbf{G}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2 \right. \\ \left. + \eta_3 \left\| \mathbf{H}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2 + \eta_4 \left\| \hat{\mathbf{x}}(0) - \hat{\mathbf{x}}_0 \right\|_2^2 \right], \end{split}$$

- This optimization **ignores** the boundary conditions.
- The implicit bias automatically satisfy the boundary conditions.
- Recent works suggest the implicit bias is toward smallest Sobolev semi-norms.

Ridgeless kernel regression

$$\hat{\mathbf{x}}(t) = \mathbf{x}_0 + \int_0^t \hat{\mathbf{x}}(\tau)d\tau, \quad \hat{\mathbf{y}}(t) = \hat{\mathbf{y}}_0 + \int_0^t \hat{\mathbf{y}}(\tau)d\tau$$

$$\hat{\mathbf{x}}(t) = \sum_{j=1}^N \alpha_j^{\mathsf{x}} K(t, t_j), \quad \hat{\mathbf{y}}(t) = \sum_{j=1}^N \alpha_j^{\mathsf{y}} K(t, t_j)$$

• $K(\cdot,\cdot)$: Matérn Kernel, with smoothness parameter ν and length scale ℓ . We also solve the ridgeless kernel regression

$$\lim_{\lambda \to 0} \min_{\hat{\mathbf{x}}, \hat{\mathbf{y}}} \sum_{t_i \in \mathcal{D}} \left[\eta_1 \left\| \hat{\hat{\mathbf{x}}}(t_i) - \mathbf{F}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)(t_i)) \right\|_2^2 + \eta_2 \left\| \hat{\hat{\mathbf{y}}}(t_i) - \mathbf{G}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2 \right] \\ + \eta_3 \left\| \mathbf{H}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2 + \eta_4 \left\| \hat{\mathbf{x}}(0) - \hat{\mathbf{x}}_0 \right\|_2^2 + \lambda \left[\sum_{m=1}^{N_x} \| \hat{\hat{\mathbf{x}}}^{(m)} \|_{\mathcal{H}}^2 + \sum_{m=1}^{N_y} \| \hat{\hat{\mathbf{y}}}^{(m)} \|_{\mathcal{H}}^2 \right]$$

• Targeting Sobolev semi-norm.

Applications

Linear asset pricing

$$\dot{\mathbf{x}}(t) = c + g\mathbf{x}(t) \tag{5}$$

$$\dot{\mathbf{y}}(t) = r\mathbf{y}(t) - \mathbf{x}(t) \tag{6}$$

$$0 = \lim_{t \to \infty} e^{-rt} \mathbf{y}(t) \tag{7}$$

- $\mathbf{x}(t) \in \mathbb{R}$: dividends, $\mathbf{y}(t) \in \mathbb{R}$: prices, and \mathbf{x}_0 given.
- Equation (5): how the dividends evolve in time.
- Equation (6): how the prices evolve in time.
- Equation (7): "no-bubble" condition, the boundary condition at infinity.

Why do we need the boundary condition?

$$\dot{\mathbf{x}}(t) = c + g\mathbf{x}(t)$$

 $\dot{\mathbf{y}}(t) = r\mathbf{y}(t) - \mathbf{x}(t)$

• The solutions:

$$\mathbf{y}(t) = \mathbf{y}_f(t) + \zeta e^{rt}$$

- $\mathbf{y}_f(t) = \int_0^\infty e^{-r\tau} \mathbf{x}(t+s) ds$: price based on the fundamentals.
- ζe^{rt} : explosive bubble terms, it has to be **ruled out** by the boundary condition.
- Triangle inequality: $\|\mathbf{y}_f\|_{\mathcal{H}} < \|\mathbf{y}\|_{\mathcal{H}}$.
- The price based on the fundamentals has the lowest norm.

Results

- The explosive solutions are ruled out without directly imposing the boundary condition.
- Very accurate approximations, both in the short- and medium-run.
- Learns the steady-state.

9

Neoclassical growth model: the agent's problem

 $\max_{\mathbf{y}(t)} \int_{0}^{\infty} e^{-rt} \ln(\mathbf{y}(t)) dt$ s.t. $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t)) - \mathbf{v}(t) - \delta \mathbf{x}(t)$

for a given \mathbf{x}_0 .

Constructing the Hamiltonian ...

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t)) - \mathbf{y}(t) - \delta \mathbf{x}(t)$$

$$\dot{\mathbf{y}}(t) = \mathbf{y}(t) [f'(\mathbf{x}(t)) - \delta - r]$$

$$0 = \lim \epsilon$$

$$0 = \lim_{t \to \infty} e^{-rt} \frac{\mathbf{x}(t)}{\mathbf{y}(t)}$$

•
$$\mathbf{x}(t) \in \mathbb{R}$$
: capital, $\mathbf{y}(t) \in \mathbb{R}$: consumption, and a concave production function $f(x) = x^a$.

• Equation (10): transversality condition (TVC)

10

(8)

(9)

(10)

Why do we need the boundary condition?

Ignoring the transversality condition:

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t)) - \mathbf{y}(t) - \delta \mathbf{x}(t)$$
$$\dot{\mathbf{y}}(t) = \mathbf{y}(t) [f'(\mathbf{x}(t)) - \delta - r]$$

Results

- The explosive solutions are ruled out without directly imposing the boundary condition.
- Very accurate approximations, both in the short- and medium-run.
- Learns the right steady-state. Prelative errors

Short-run planning: "In the long run, we are all dead"

- The explosive solutions are ruled out without directly imposing the boundary condition.
- Provides a very accurate approximation in the short-run.

Extensions

Neoclassical Growth Model: Concave-Convex Production Function

- So far we have had a unique saddle-path converging to a unique saddle steady state.
- What if we have two saddle steady states, very close to each other (equilibrium multiplicity)?
- Neoclassical Growth Model with a concave-convex production function:

$$f(x) = A \max\{x^a, b_1 x^a - b_2\}$$

Concave-convex production function: vector field

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t)) - \mathbf{y}(t) - \delta \mathbf{x}(t)$$
$$\dot{\mathbf{y}}(t) = \mathbf{y}(t) [f'(\mathbf{x}(t)) - \delta - r]$$

Results

- The approximate solutions approach the right steady states.
- The transversality conditions are satisfied without being directly imposed.
- The steady states are learned.

Conclusion

- The minimum-norm implicit bias of large ML models aligns with optimality in economic dynamic models.
- Long-run (global) conditions can be replaced with local conditions (regularization) to achieve the optimal solution.
- Both kernel and neural network approximations accurately learn the right steady state(s).

Appendix

Neoclassical growth: relative errors

