

Critical Values of Student's t-Distribution

The entries in this table, $t(df, \alpha)$, are the critical values for Student's t-distribution for which the area under the curve in the right-hand tail is α . Critical values for the left-hand tail are found by symmetry.

			4			*
	Amount of $lpha$ in One Tail					
	0.25	0.10	0.05	0.025	.0.01	0.005
	Amount of $lpha$ in Two Tails					
df	0.50	0.20	0.10	0.05	0.02	0.01
3	0.765	1.64	2.35	3.18	4.54	5.84
4	0.741	1.53	2.13	2.78	3.75	4.60
5	0.729	1.48	2.02	2.57	3.37	4.03
6	0.718	1.44	1.94	2.45	3.14	3.71
7	0.711	1.42	1.89	2.36	3.00	3.50
8	0.706	1.40	1.86	2.31	2.90	3.36
9	0.703	1.38	1.83	2.26	2.82	3.25
10	0.700	1.37	1.81	2.23	2.76	3.17
11	0.697	1.36	1.80	2.20	2.72	3.11
12	0.696	1.36	1.78	2.18	2.68	3.05
13	0.694	1.35	1.77	2.16	2.65	3.01
14	0.692	1.35	1.76	2.14	2.62	2.98
15	0.691	1.34	1.75	2.13	2.60	2.95
16	0.690	1.34	1.75	2.12	2.58	2.92
17	0.689	1.33	1.74	2.11	2.57	2.90
18	0.688	1.33	1.73	2.10	2.55	2.88
19	0.688	1.33	1.73	2.09	2.54	2.86
20	0.687	1.33	1.72	2.09	2.53	2.85
21	0.686	1.32	1.72	2.08	2.52	2.83
22	0.686	1.32	1.72	2.07	2.51	2.82
23	0.685	1.32	1.71	2.07	2.50	2.81
24	0.685	1.32	1.71	2.06	2.49	2.80
25	0.684	1.32	1.71	2.06	2.49	2.79
26	0.684	1.32	1.71	2.06	2.48	2.78
27	0.684	1.31	1.70	2.05	2.47	2.77
28	0.683	1.31	1.70	2.05	2.47	2.76
29	0.683	1.31	1.70	2.05	2.46	2.76
30	0.683	1.31	1.70	2.04	2.46	2.75
35	0.682	1.31	1.69	2.03	2.44	2.73
40	0.681	1.30	1.68	2.02	2.42	2.70
50	0.679	1.30	1.68	2.01	2.40	2.68
70	0.678	1.29	1.67	1.99	2.38	2.65
100	0.677	1.29	1.66	1.98	2.36	2.63
df > 100	0.675	1.28	1.65	1.96	2.33	2.58
			· · · · · · · · · · · · · · · · · · ·			

For specific details about using this table to find: confidence coefficients, see pages 477-480; p-values, pages 483, 486; critical values, pages 477-478.

p-value

p-value 0.0013

0.0011 0.0010 0.0008 0.0007

0.0006 0.0005 0.0004 0.0003

0.0003

0.0002 0.0002 0.0001

0.0001

0.0001

0.0001 0+

0+