Unlocking Insights from SpaceX Launch Data

Presented by: BenSaad Amine

© IBM Corporation. All rights reserved.

OUTLINE

- Executive Summary
- Introduction
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion

EXECUTIVE SUMMARY

- **Objective:** Predict the success of SpaceX's Falcon 9 first stage landings
- Data Collection: Aggregated data from SpaceX API and web scraping
- **Data Processing:** Performed data wrangling to handle missing values and engineered features relevant to landing success.
- Exploratory Data Analysis (EDA): Identified key factors influencing landing success, such as launch sites and payload masses, using visual analytics
- **Predictive Modeling:** Developed and evaluated multiple classification models

INTRODUCTION

- **Background:** SpaceX aims to reduce space travel costs by reusing rocket components, notably the Falcon 9 first stage. Predicting landing success is crucial for operational efficiency and cost reduction.
- Problem Statement: Accurately forecasting the landing outcome of Falcon 9's first stage to inform decision-making and improve reusability rates.
- Project Scope: Collect and preprocess relevant data, conduct exploratory data analysis, build predictive models, and identify the most accurate model for predicting landing success.
- **Significance:** Enhancing prediction accuracy supports SpaceX's goal of sustainable and cost-effective space missions through improved reusability strategies.

Data Collection and Data Wrangling

1. Data Source:

- SpaceX API: https://api.spacexdata.com/v4/launches/past
- Retrieved past launch data in JSON format

2. Data Extraction Process:

- Used .json() to decode the response
- Converted JSON data into a Pandas DataFrame using .json_normalize().
- Found that many columns contained only IDs (e.g., rocket, payloads, launchpad, cores).

3. Additional API Requests:

- Extracted detailed launch information using IDs.
- Mapped key features:
 - Rocket → Booster version
 - Payloads → Payload mass, Orbit.
 - Launchpad → Launch site name, Longitude, Latitude.
 - Cores → Landing outcome, Landing type, Flights, GridFins, Reused status, Legs, Landing pad, Block, Reused count, Serial.

4. Data Wrangling:

- Created a structured dataset using extracted data.
- Combined selected columns into a new DataFrame.
- Filtered data to include only Falcon 9 launches.
- Handled missing values.

5. Web scraping:

 perfor web scraping to collect Falcon 9 historical launch records from a Wikipedia

[hide] light No.	Date and time (UTC)	Version, Booster ^[b]	Launch site	Payload ^[c]	Payload mass	Orbit	Customer	Launch outcome	Booster landing
78	7 January 2020, 02:19:21 ^[492]	F9 B5 △ B1049.4	CCAFS, SLC-40	Starlink 2 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Success (drone ship)
	Third large batch and s	second operational flight	of Starlink constell	ation. One of the 60 satellites included a tes	t coating to make the satellite less reflective	e, and thus less likely to in	terfere with ground-based astronom	cal observations.[493]	
	19 January 2020, 15:30 ^[494]	F9 B5 △ B1046.4	KSC, LC-39A	Crew Dragon in-flight abort test ^[495] (Dragon C205.1)	12,050 kg (26,570 lb)	Sub-orbital ^[496]	NASA (CTS)[497]	Success	No attempt
79	site. The test was previ	iously slated to be accor	mplished with the C	ne capsule fired its SuperDraco engines, rea Frew Dragon Demo-1 capsule; ^[498] but that te odynamic forces after the capsule aborted. ^{[5}	est article exploded during a ground test of	SuperDraco engines on 2	0 April 2019. ^[419] The abort test used	the capsule originally i	
80	29 January 2020, 14:07 ^[501]	F9 B5 △ B1051.3	CCAFS, SLC-40	Starlink 3 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Success (drone ship)
	Third operational and for	ourth large batch of Star	rlink satellites, depl	oyed in a circular 290 km (180 mi) orbit. One	of the fairing halves was caught, while the	other was fished out of th	e ocean. ^[502]		
0.4	17 February 2020, 15:05 ^[503]	F9 B5 △ B1056.4	CCAFS, SLC-40	Starlink 4 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Failure (drone ship)
81				a new flight profile which deployed into a 21 data. [505] This was the first time a flight provi		orbit instead of launching	into a circular orbit and firing the sec	ond stage engine twice	. The first stage
	7 March 2020, 04:50 ^[506]	F9 B5 △ B1059.2	CCAFS, SLC-40	SpaceX CRS-20 (Dragon C112.3 △)	1,977 kg (4,359 lb) ^[507]	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
82				an ESA platform for hosting external payload lity part. ^[509] It was SpaceX's 50th successfu			B : [[[[[[[[[[[[[[[[[[e failure. Space
	18 March 2020, 12:16 ^[510]	F9 B5 △ B1048.5	KSC, LC-39A	Starlink 5 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Failure (drone ship)
83	shut down of an engine		variant and first si	first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage booster flew for a fifth time and the first stage flew for a fifth time and the first stage flew flew for a fifth time and the first stage flew flew flew flew flew flew flew fle					
84	22 April 2020, 19:30 ^[514]	F9 B5 △ B1051.4	KSC, LC-39A	Starlink 6 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Success (drone ship)

	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.07B0003.18	Failure	4 June 2010	18:45
1	2	CCAFS	Dragon	0	LEO	NASA	Success	F9 v1.07B0004.18	Failure	8 December 2010	15:43
2	3	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.07B0005.18	No attempt\n	22 May 2012	07:44
3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	F9 v1.07B0006.18	No attempt	8 October 2012	00:35
4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA	Success\n	F9 v1.07B0007.18	No attempt\n	1 March 2013	15:10
222	117	CCSFS	Starlink	15,600 kg	LEO	SpaceX	Success\n	F9 B5B1051.10657	Success	9 May 2021	06:42
223	118	KSC	Starlink	~14,000 kg	LEO	SpaceX	Success\n	F9 B5B1058.8660	Success	15 May 2021	22:56
224	119	CCSFS	Starlink	15,600 kg	LEO	NASA	Success\n	F9 B5B1063.2665	Success	26 May 2021	18:59
225	120	KSC	SpaceX CRS-22	3,328 kg	LEO	Sirius XM	Success\n	F9 B5B1067.1668	Success	3 June 2021	17:29
226	121	CCSFS	SXM-8	7,000 kg	GTO	NaN	NaN	F9 B5	NaN	6 June 2021	04:26

227 rows × 11 columns

	FlightNumber	Date	BoosterVersion	PavloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Leas	LandingPad	Block	ReusedCount	Serial	Longitu
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False		False	NaN	1.0	0		-80.577
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577
3	4	2013- 09-29	Falcon 9	500.000000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577
5	6	2014- 01-06	Falcon 9	3325.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1005	-80.577
6	7	2014- 04-18	Falcon 9	2296.000000	ISS	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1006	-80.577
7	8	2014- 07-14	Falcon 9	1316.000000	LEO	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1007	-80.577
8	9	2014- 08-05	Falcon 9	4535.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1008	-80.577
9	10	2014- 09-07	Falcon 9	4428.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1011	-80.577

Exploring and Preparing Data

In this section we tried seeing how diffrent features would affect the launch outcome:

From this graph we could interpret that ccafs followed by ksc lc have the most number of launches as they have a heighr concentration and they have nearly continuous spread indicating that launches have been conducted **regularly** over time.

From those two graphes we can interpret that ES-L1,GEO,HEO,SSO are the orbits with heighest sucess rate but we can observe that in the LEO orbit, success seems to be related to the number of flights. Conversely, in the GTO orbit, there appears to be no relationship between flight number and success.

Also we can observe that the sucess rate since 2013 kept increasing till 2020 explained by :

- **Technological Improvements**: Continuous advancements in rocket design, landing technology, and reusable boosters.
- Increased Experience: More launches allowed SpaceX to refine and optimize landing techniques.
- More Stringent Testing: SpaceX likely improved pre-launch testing and quality control measures to minimize failures.
- Enhanced Data Utilization: Improved machine learning models and simulations helped predict and mitigate failures.

SQL results slides

the names of the unique launch sites in the space mission

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

the count of landing outcomes (Failure or Success)between the date 2010 and 2017

Landing_Outcome	outcome_count
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

the total payload mass carried by boosters launched by NASA (CRS)

sum(PAYLOAD_MASS__KG_)

45596

average payload mass carried by booster version F9 v1.1

avg(PAYLOAD_MASS__KG_)

2928.4

the date when the first succesful landing outcome in ground pad was acheived

min(Date)

2010-06-04

Interactive Visual Analytics with Folium

Plotly Dash dashboard results

Payload Mass (kg)

predictive analysis

Based on our analysis, the Decision Tree Classifier demonstrated the highest accuracy among the models evaluated, achieving approximately 94.4% on the test data. This suggests that the Decision Tree model is well-suited for our classification task, likely due to its ability to handle both numerical and categorical data, its interpretability, and its robustness against co-linearity. Therefore, we recommend utilizing the Decision Tree Classifier for predicting the successful landing of the Falcon 9 first stage.

GitHub link

https://github.com/bensaadamine/Capstone-Project.git

CONCLUSION

In this project, we developed and evaluated several classification models to predict the successful landing of SpaceX's Falcon 9 first stage. Among the models tested—Logistic Regression, Support Vector Machine (SVM), Decision Tree, and K-Nearest Neighbors (KŃN) the Decision Tree classifier demonstrated the highest accuracy on the test set, achieving a score of 94.44%. This superior performance suggests that the Decision Tree model effectively captures the underlying patterns in the data related to successful landings. Therefore, we recommend utilizing the Decision Tree classifier for predicting Falcon 9 first stage landing outcomes.