## Capítulo 1

# Especificação

Nesse capítulo será abordado as especificações do programa a ser modelado e desenvolvido para o projeto de engenharia de softwatre. Será definido as carcterísticas gerais do programa para que ele seja realizado. As necessidades que devem ser obedecidas e quais os serviços ofereciso e restrições do software.

### 1.1 Nome do sistema/produto

| Nome                   | Simular o declínio de produtividade devido   |
|------------------------|----------------------------------------------|
|                        | a migração de finos no reservatório, através |
|                        | do cálculo da quantidade de párticulas       |
|                        | depositadas.                                 |
| Componentes principais | Sistema de equações, e de equações           |
|                        | integrais númericas para cálculo dos perfis  |
|                        | de párticulas depositadas dados os tempos    |
|                        | dos perfis e as posições espaciais para      |
|                        | amostragem.                                  |
| Missão                 | Determinar a quantidade de partículas        |
|                        | retidas por exclusão por tamanhao , afim de  |
|                        | simular o declínio da produtividade dos      |
|                        | poços, devido o declínio da permeabilidade   |
|                        | causada pelas partículas retidas no meio     |
|                        | poroso.                                      |

## 1.2 Especificação

Apresenta-se a seguir a especificação do software.

• O software que será desenvolvido, tem por objetivo simular a migração de nos ocasionada pela injeção de água de baixa salinidade afimm de determinar o declínio

de produtividade do poço. Esse programa irá determinar a quantidade de partículas depositadas/retidas, que são as responsáveis pela diminuição da permeabilidade. Essa análise é feita atráves do cálculo da Impendância/queda de pressão.

- A modelagem matemática do problema foi desenvolvida através das equações de balanço de massa de partículas, do balanço de massa de íons, da cinética de captura, da cinética de liberação e da lei de Darcy. A solução semi-analítica do problema será implementada no programa. As variáveis porosidade, velocidade, coeciente de filtração por exclusão pelo tamanho, coeficiente de filtração por formação de pontes e coeciente de dano à formação são conhecidas pelo usuário de acordo com os dados obtidos através de testes laboratoriais e através de dados da literatura, sendo de escolha do usuário qual valores de referência utilizar. A condição de contorno e a condição inicial também são conhecidas, e serão inseridas pelo usuário. Enquanto que a entrada dos valores das variáveis do fluido e da rocha/partícula para execução do software serão por meio da entrada de dados em um arquivo txt.
- O tempo será calculado por meio dos dados inseridos. Será implementado uma estrutura de seleção tendo como condição o tempo e n, para determinar qual método será executado para cálculo das concentrações . Determinado o métódo, os valores dos parâmetros será recebido e o software irá realizar o cálculo da concentração de partículas retidas por adesão e a concentração suspensa. Será implementado um método numérico para determinar a solução de integrais numéricas, e assim determinar a concentração de partículas retidas por exclusão por tamanho/formação de pontes. E assim, determinar os perfis de partículas depositadas de acordo com o tempo e a posição espacial.
- O presente código apresentará licença de software livre. O software apresentara interface em modo texto, visando simplicar a entrada e a saída de dados. O programa será realizado através da linguagem de programação orientada a objeto C++.

#### 1.2.1 Requisitos funcionais

Apresenta-se a seguir os requisitos funcionais.

| RF-01 | O usuário deverá ter liberdade para selecionar com quais dados     |  |
|-------|--------------------------------------------------------------------|--|
|       | (experimentais ou da literatura) , e qual material (tipo de rocha) |  |
|       | deseja trabalhar.                                                  |  |
|       |                                                                    |  |
| RF-02 | O usuário terá disponível os resultados obtidos em um arquivo      |  |
|       | de texto e gráfico.                                                |  |
|       |                                                                    |  |
| RF-03 | O usuário poderá plotar seus resultados em um gráfico. O gráfico   |  |
|       | poderá ser salvo como imagem ou ter seus dados exportados          |  |
|       | como texto.                                                        |  |

| RF-07 | Nos casos em que o software for plotar gráficos o software ex- |
|-------|----------------------------------------------------------------|
|       | terno gnuplot http://www.gnuplot.org deverá estar instalado    |
|       | no sistema.                                                    |

#### 1.2.2 Requisitos não funcionais

| RNF-01 | Os programa deverá ser multi-plataforma, podendo ser exe- |  |
|--------|-----------------------------------------------------------|--|
|        | cutado em $Windows$ , $GNU/Linux$ ou $Mac$ .              |  |

#### 1.3 Casos de uso

O caso de uso, descreve os cenários de uso do software, como ocorre a interação do usuário com as mesmas. Além disso, por meio do caso de uso é representado a sequência das tarefas que devem ser executadas, que são as etapas. E também, os cenários alternativos, que é representado pelas exceções, caso onde o usuário insere um dado errado, ou comete um erro.

|                        | Tabela 1.1: Caso de uso                                                                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nome do caso de uso:   | Cálculo da quantidade de partículas retidas no meio po-                                                                                                    |
|                        | roso.                                                                                                                                                      |
| Resumo/descrição:      | Cálculo da quantidade de partículas, por meio da solu-                                                                                                     |
|                        | ção semi-analítica do problema e de parâmetros deter-                                                                                                      |
|                        | minados experimentalmente ou de valores da literatura                                                                                                      |
| Etapas:                | 1. Entrada/Leitura dos dados do fluído (velocidade e viscosidade).                                                                                         |
|                        | 2. Entrada/Leitura dados do reservatório (porosidade),                                                                                                     |
|                        | do coeciente de filltração por exclusão pelo tamanho, da                                                                                                   |
|                        | formação de pontes e do dano à formação.                                                                                                                   |
|                        | 3. Entrada/Leitura constantes da equação constantes C                                                                                                      |
|                        | e n.                                                                                                                                                       |
|                        | 4. Definir o tempo e criação de uma malha(grid) onde                                                                                                       |
|                        | será armazenada os valores das concentraçãoes de                                                                                                           |
|                        | acordo com o tempo e espaço.                                                                                                                               |
|                        | 5. Analisar se o parâmetro tempo obedece a condição.                                                                                                       |
|                        | 6. Determinar qual cálculo/equação realizar de acordo                                                                                                      |
|                        | com os valores do tempo e do n.                                                                                                                            |
|                        | 7. Cálculo da concentração de partículas retidas e concentração de partículas suspensas.                                                                   |
|                        | 8. Cálculo da integral numérica de concentração de par-<br>tículas por exclusão pelo tamanho/formação de pontes,<br>através do método numérico de Simpson. |
|                        | 9. Determinar os perfis de partículas depositadas de acordo com os tempos dos perfis e as posições espaci-                                                 |
|                        | ais.                                                                                                                                                       |
|                        | 10. Calcular a Impendância/queda de pressão para esti-                                                                                                     |
|                        | mar a redução da permeabilidiade.                                                                                                                          |
|                        | 11. Exportar resultados para disco                                                                                                                         |
|                        | 11. Gerar gráfico com os resultados obtidos.                                                                                                               |
| Cenários alternativos: | Entrada errada de dados pelo usuário, como entrada de                                                                                                      |
|                        | dados negativos quando são aceitos apenas valores posi-                                                                                                    |
|                        | tivos.                                                                                                                                                     |

### 1.3.1 Diagrama de caso de uso geral

O diagrama de caso representa visualmente o caso de uso. Ele é utilizado para demonstrar as etapas do sistema pelo usário, para que tenham uma visão geral do sistema. Pode ser utilizado antes e após a etapa de especicação. Assim, os diagramas mostram as interações do usuário com o programa.

No diagrama de caso de uso geral, o usuário está interagindo com o software para dar inicio ao programa a fim de obter os resultados das concentrações via arquivo .txt.



Figura 1.1: Diagrama de caso de uso – Caso de uso geral

#### 1.3.2 Diagrama de caso de uso específico

No diagrama de caso de uso específico, o usuário criará os objetos referente as concentrações, um objeto para sua integração. Em seguida, os resultados obtidos serão armazenados em arquivos .txt na pasta "resultados malha". E por fim, gerará gráficos com os resultados obtidos utilizando um sistema externo, o software gnuplot. Este diagrama de caso de uso ilustra as etapas a serem executadas pelo usuário ou sistema, a iteração do usuário com o sistema.

#### Nota:

Não perca de vista a visão do todo; do projeto de engenharia como um todo. Cada capítulo, cada seção, cada parágrafo deve se encaixar. Este é um diferencial fundamental do engenheiro em relação ao técnico, a capacidade de desenvolver projetos, de ver o todo e suas diferentes partes, de modelar processos/sistemas/produtos de engenharia.



Figura 1.2: Diagrama de caso de uso específico – Título