Telecommunications

Lab #1

Manijeh Khataie

1a)

Signal in Time Domain

t(S)

$$f(t) = 5\sin(2\pi(1*10^3)t)$$

$$F = \frac{1}{T} \dots 1kHz = \frac{1}{T} \dots T = 1mS$$

1b)

Signal in Time Domain

t(S)

$$f(t) = 2\sin(2\pi(5*10^6)t)$$

$$F = \frac{1}{T} \dots 5MHz = \frac{1}{T} \dots T = 200nS$$

1c)

Signal in Time Domain

t(S)

Calculations & Equation:

 $f(t) = 8\sin\left(\pi(250)t\right)$

$$F = \frac{1}{T} \dots 125Hz = \frac{1}{T} \dots \frac{T}{T} = 8mS$$

Signal in Frequency Domain

1d)

t(S)

$$f(t) = 8 + 12\sin(\pi(100)t) + 5\sin(\pi(600)t)$$

$$F_1 = \frac{100}{2} = \frac{50Hz}{2}$$

$$F_2 = \frac{600}{2} = \frac{300Hz}{2}$$

$$D.C. = 8V$$

2a)

Signal in Time Domain

t(mS)

$$F = \frac{1}{T} \dots 250 Hz = \frac{1}{T} \dots \frac{T}{T} = 4mS$$

$$v(t) = \frac{4(2.5)}{\pi} \left[\sin(2\pi 250t) + \frac{1}{3}\sin(6\pi 250t) + \frac{1}{5}\sin(10\pi 250t) + \frac{1}{7}\sin(14\pi 250t) \dots \right]$$

$$V_{250} = \frac{4(2.5)}{\pi} = \frac{3.18V}{\pi} (0V \text{ on graph because frequency not odd})$$

$$V_{251} = \frac{4(2.5)}{3\pi} = \frac{1.06V}{3\pi}$$

$$V_{253} = \frac{4(2.5)}{5\pi} = 0.63V$$

$$V_{255} = \frac{4(2.5)}{7\pi} = 0.45V$$

2b)

Signal in Time Domain

t(uS)

$$V_{AVG} = \frac{2}{\pi} * V_P \dots 5V = \frac{2}{\pi} * V_P \dots 8V = V_P \dots \frac{16V = V_{PP}}{16V = V_{PP}}$$

$$F = \frac{1}{T} \dots 1MHz = \frac{1}{T} \dots \frac{1uS = T}{16V}$$

$$v(t) = \frac{4(8)}{\pi} \left[\sin(2\pi(1*10^6)t) + \frac{1}{3}\sin(6\pi(1*10^6)t) + \frac{1}{5}\sin(10\pi(1*10^6)t) + \frac{1}{7}\sin(14\pi(1*10^6)t) \dots \right]$$

$$V_1 = \frac{4(8)}{\pi} = \frac{10.18V}{3\pi}$$

$$V_3 = \frac{4(8)}{3\pi} = \frac{3.39V}{5\pi}$$

$$V_5 = \frac{4(8)}{5\pi} = \frac{2.03V}{7\pi}$$

$$V_7 = \frac{4(8)}{7\pi} = \frac{1.45V}{3}$$

2c)

Signal in Time Domain

t (ms)

Calculations:

$$F = \frac{1}{T} \dots F = \frac{1}{1mS} \dots F = 1kHz$$

Signal in Frequency Domain

$$v(t) = \frac{4(1)}{\pi} \left[\sin(2\pi(1*10^3)t) + \frac{1}{3}\sin(6\pi(1*10^3)t) + \frac{1}{5}\sin(10\pi(1*10^3)t) + \frac{1}{7}\sin(14\pi(1*10^3)t) \dots \right]$$

$$V_1 = \frac{4(1)}{\pi} = 1.27V$$

$$V_3 = \frac{4(1)}{3\pi} = 0.42V$$

$$V_5 = \frac{4(1)}{5\pi} = 0.25V$$

$$V_7 = \frac{4(1)}{7\pi} = 0.18V$$

3a)

Signal in Time Domain

Equation:

$$y = A * \tau * \frac{\sin(x)}{x}$$

where $A * \tau = 1 * 2 ...$

... and $x = \pi * 2 * 1$

3bi)

Signal in Time Domain

$$T = \frac{1}{F} \dots T = \frac{1}{1kHz} \dots T = 1mS$$

$$D. C. = \frac{P.W.}{T} \dots 0.1 = \frac{P.W.}{1mS} \dots P.W. = 100uS$$

Equation:

		$\pi 0.0001$		$2\pi 0.0001$		$3\pi 0.0001$. 1
5(0.0001)	2(5)(0.0001)	$\sin \frac{10.0001}{0.001}$	$2\pi 0.0001$	$sin \frac{0.001}{0.001}$	$4\pi 0.0001$	$sin \frac{0.001}{0.001}$	$6\pi 0.0001$
$f(t) = \frac{1}{0.001}$	+	$\pi 0.0001$	$\frac{\cos \frac{1}{0.001}}{1}$	$2\pi 0.0001$	$\frac{-\cos \frac{1}{0.001}}{1}$	$3\pi 0.0001$	$\frac{-\cos \frac{1}{0.001} + \cdots}{0.001}$
		0.001		0.001		0.001	

3bii)

Signal in Time Domain

t(mS)

$$T = \frac{1}{F} \dots T = \frac{1}{1kHz} \dots T = 1mS$$

$$D. C. = \frac{P.W.}{T} \dots 0.2 = \frac{P.W.}{1mS} \dots P.W. = 200uS$$

Equation:

$\int_{0.0002} \pi 0.0002$			$2\pi 0.0002$		$3\pi 0.0002$		
	5(t) = 5(0.0002) + 2(5)(0.0002)	$sin \frac{0.001}{0.001}$	$2\pi 0.0002$	$sin \frac{0.001}{0.001}$	$4\pi 0.0002$	$sin \frac{0.001}{0.001}$	$6\pi 0.0002$
	$(t) = \frac{0.001}{0.001} + \frac{0.001}{0.001}$	$\frac{\pi 0.0002}{\pi 0.0002}$	$\frac{0.001}{0.001}$	$2\pi 0.0002$	$\frac{\cos \frac{1}{0.001} + \cos \frac{1}{0.001}}{\cos \frac{1}{0.001}}$	$3\pi 0.0002$	$\frac{cos}{0.001}$ +
		0.001		0.001		0.001	J

3biii)

Signal in Time Domain

t(mS)

$$T = \frac{1}{F} \dots T = \frac{1}{1kHz} \dots T = 1mS$$

$$D. C. = \frac{P.W.}{T} \dots 0.5 = \frac{P.W.}{1mS} \dots P.W. = 500uS$$

Equation:

T (0.000E)	$\int_{cin} \pi 0.0005$		$2\pi 0.0005$		$3\pi 0.0005$		1
$f(t) = \frac{5(0.0005)}{1000000000000000000000000000000000000$	$\frac{3111}{0.001}$	$2\pi 0.0005$	$\frac{311}{0.001}$	$4\pi 0.0005$	$\frac{3in}{0.001}$	$6\pi 0.0005$	Л
0.001 0.001	$\pi 0.0005$	0.001	$2\pi 0.0005$	0.001	$3\pi 0.0005$	0.001	4
	0.001		0.001		0.001		J

4)

Signal in Time Domain

Calculations:

$$F = \frac{1}{T} \dots F = \frac{1}{1mS} \dots F = 1kHz$$

$$v(t) = \frac{5}{2} - \left(\frac{5}{\pi}\right) \left[\sin(2\pi(1*10^3)t) + \frac{1}{2}\sin(4\pi(1*10^3)t) + \frac{1}{3}\sin(6\pi(1*10^3)t) + \frac{1}{4}\sin(8\pi(1*10^3)t) \dots \right]$$

$$V_1 = \frac{5}{\pi} = 1.5V$$

$$V_2 = \frac{5}{2\pi} = 0.80V$$

$$V_3 = \frac{5}{3\pi} = 0.53V$$

$$V_4 = \frac{5}{4\pi} = 0.39V$$