

PRIMER PARCIAL DE FISICA 1 (40%)

31 de Mayo de 2004

	L1/	1	01	EXAMEN TIPO A			
NOMBRE:	Poberto	A	Colma	2.	CARNET:_	- Indian co	mul
FIRMA:							

INSTRUCCIONES:

- Cuando lo necesite utilice como valor numérico de la aceleración de gravedad: $g = 10 \, m/s^2$.
- Convención respecto a los vectores unitarios cartesianos: $i=\hat{i}=\hat{x};\;j=\hat{j}=\hat{y};\;k=\hat{k}=\hat{z}$.
- Esta permitido el uso de calculadora.

Problema 1. El bloque de la figura 1.a. tiene una masa M y desliza sin fricción sobre un piso horizontal, y es empujado por una fuerza $\vec{F}(t)$. La fuerza $\vec{F}(t)$ esta representada en la Figura 1.b. **Determine:**

- a) Velocidad y posición en t = T y t = 2T (5 ptos)
- b) Velocidad y posición en t = 3T (5 ptos)

Figura 1.a

Figura 1.b t=T $M=F_{0,-}t$ t=T $M=\frac{1}{2}$ t=T $M=\frac{1}{2}$ t=T t=T

a)
$$F(t) = Ma(t)$$
 $F(t) = Ma(t)$
 $F(t) = Ma(t)$
 $F(t) = F(t)$
 $F(t) = F(t)$

$$x(t) = \int v(t) dt = x(t) = \int \frac{F_0 T}{2M} dt = \int x(t) = \frac{F_0 T^2}{2M}$$

$$b) v(t) = \int \int F_0 dt = \int v(t) = \frac{F_0 T}{M} = \int x(t) = \frac{F_0 T^2}{M}$$

computed to per una tocara frit. La faction fritz and account access fall and a faction of the f

-

roblema 2. Un avión vuela a $360 \, km/h$ a 1km de altura, en la misma dirección se desplaza un automóvil con una rapidez de $72 \, km/h$. El avión suelta una bomba e impacta al automóvil.

1 Km

a) ¿ Cuánto vale el segmento AB para que esto ocurra? (5 ptos);

b) Hallar el vector velocidad de la bomba cuando impacta al auto, visto desde el sistema de referencia del automóvil. (5 ptos).

roblema 3. Dos bloques de masas M_1 y M_2 (donde $M_1 = 2kg$ y $M_2 = 3kg$) deslizan juntos sobre un plano norizontal que no presenta fricción, y están sometidos a dos fuerzas, $\vec{F_1}$ y $\vec{F_2}$ (donde $|\vec{F_1}| = 20N$ y $|\vec{F_2}| = 15N$) como se muestra en la figura. Determinar **la aceleración del sistema** y **la fuerza de contacto** entre M_1 y M_2 en los casos en qué: a) $\alpha = 60^{\circ}$ (5 ptos); y b) $\alpha = 0^{\circ}$ (5 ptos).

x=9 =1 fc = 15 + 3.35 = 16 = 120 N $= 60^{\circ}$ $= 60^{\circ}$ = 15 + 3.25 = 16 = 90 N

rivi

Problema 4

El carro de masa (m) descansa sobre el de masa (M). Sobre (m) actúa la fuerza (F), lo cual hace que (m) deslice sobre (M) y que éste último deslice sobre el piso horizontal sin fricción. El coeficiente de fricción dinámica entre los dos carros es (μ).

a) Dibujar el diagrama de cuerpo libre de cada uno de los carros.

b) Escribir las ecuaciones de Newton (proyectadas horizontal y verticalmente) del movimiento de cada carro.

c) Calcular y dibujar la fuerza de contacto con (M) que actúa sobre (m) (componentes horizontal y vertical).

d) Calcular y dibujar el vector aceleración de (m) relativo a un sistema de coordenadas solidario con (M).

EXPRESAR RESULTADOS EN FUNCION UNICAMENTE DE LOS DATOS: (m,M,F,μ,g)

$$F \longrightarrow \begin{array}{c} a_{m} \\ m \\ M \end{array}$$

$$a_{m,M} \longrightarrow \begin{array}{c} a_{m,M} \\ b \end{array}$$

$$b) \Sigma F_{i} = ma$$

$$c) f_{c} = ?$$

$$a_{m} \longrightarrow \begin{array}{c} a_{m,M} \\ b \end{array}$$

$$a_{m,M} \longrightarrow \begin{array}{c} a_{m,M} \\ c \longrightarrow \\ c \longrightarrow$$

Sol:

a)
$$DCL(m)_{y}$$
 $fr \qquad f^{m/M} \neq x$
 $\downarrow mg$

F-fr=mam=1 am=F-M(m+M)9 fr = Man = MN => an= MN/M 21 an= (m+M)/9 1N+fc-M9=0 = N=(m+M)9 am, m = am - ay =1 any = F- Mintellig - (m+M)Me =1 am, M = F - Milm+M19

PM

HAND - AT

= PM - M- M1