Math2001 Answer to Homework 5

Exercise 2.52

- 1. one-to-one.
- 2. neither.
- 3. onto and one-to-one.
- 4. onto and one-to-one.
- 5. one-to-one.
- 6. one-to-one.
- 7. onto and one-to-one.
- 8. onto.
- 9. one-to-one.
- 10. neither.
- 11. neither.

Exercise 2.56

Suppose $f: X \to Y$ and $g: Y \to Z$, then $g \circ f: X \to Z$.

For any element $z \in Z$, there exists $x \in X$ such that $q(f(x)) = (q \circ f)(x) = z$ since $q \circ f$ is onto. Hence we have $f(x) \in Y$ such that g(f(x)) = z. Thus $g: Y \to Z$ is onto.

For any $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$ there is $g(f(x_1)) = g(f(x_2))$. Since $g \circ f$ is one-to-one, by definition there is $x_1 = x_2$ in X. Thus f is one-to-one.

Exercise 2.57

Suppose $f: X \to Y$ and $g: Y \to Z$, then $g \circ f: X \to Z$.

For any $z \in Z$, surjectivity of g implies that there exists $y \in Y$ such that g(y) = z. Furtherly, surjectivity of f implies that there exists $x \in X$ such that f(x) = y. Thus g(f(x)) = z, $g \circ f$ is onto.

For any $x_1, x_2 \in X$ such that $g(f(x_1)) = g(f(x_2))$, injectivity of g implies that $f(x_1) =$ $f(x_2)$. Furtherly, injectivity of f implies that $x_1 = x_2$. Thus $g \circ f$ is one-to-one.

Exercise 2.60

- 1. $f(u,v) = (\frac{2}{7}u + \frac{1}{7}v + \frac{1}{7}, -\frac{3}{7}u + \frac{2}{7}v \frac{5}{7}) : \mathbb{R}^2 \to \mathbb{R}^2.$ 2. $f(u,v,w) = (u,v-u,w-v) : \mathbb{R}^3 \to \mathbb{R}^3.$ 3. $f(u,v) = (\frac{u-1}{2}, \frac{1}{4}u^2 + u \frac{5}{4} v) : \mathbb{R}^2 \to \mathbb{R}^2.$

- 4. $f(u) = -\sqrt{\sqrt{u} 2} : [4, \infty) \to (-\infty, 0].$

Exercise 2.62

$$(x,y) \mapsto \begin{cases} (\sqrt{x^2 + y^2}, \arccos(\frac{x}{\sqrt{x^2 + y^2}})) & \text{if } y \geqslant 0 \text{ and } x^2 + y^2 \neq 0 \\ (\sqrt{x^2 + y^2}, 2\pi - \arccos(\frac{x}{\sqrt{x^2 + y^2}})) & \text{if } y < 0 \text{ and } x^2 + y^2 \neq 0 \\ (0,0) & \text{if } x^2 + y^2 = 0 \end{cases}$$

Exercise 2.63

Suppose $f:X\to Y$ and $g:Y\to Z$, then $g\circ f:X\to Z$, and their inverses are $\xi: Y \to X, \zeta: Z \to Y, \eta: Z \to X$ resp. if exists.

If f, g are invertible, then $(\xi \circ \zeta) \circ (g \circ f) = \xi \circ (\zeta \circ g) \circ f = \xi \circ f = \mathrm{Id}_X$. Besides, $(g \circ f) \circ (\xi \circ \zeta) = g \circ (f \circ \xi) \circ \zeta = g \circ \zeta = \operatorname{Id}_Z$. Thus $g \circ f$ is invertible with $(g \circ f)^{-1} = \xi \circ \zeta = f^{-1} \circ g^{-1}$.

If $f, g \circ f$ are invertible, then let $\zeta = f \circ \eta$. $\zeta \circ g = f \circ \eta \circ g = f \circ \eta \circ g \circ (f \circ \xi) = f \circ (\eta \circ (g \circ f)) \circ \xi = f \circ \xi = \mathrm{Id}_Y$. Besides, $g \circ \zeta = g \circ f \circ \eta = \mathrm{Id}_Z$. Thus g is invertible with its inverse being $g^{-1} = f \circ \eta$.

If $g, g \circ f$ are invertible, then let $\xi = \eta \circ g$. $\xi \circ f = \eta \circ g \circ f = \operatorname{Id}_X$. Besides, $f \circ \xi = f \circ \eta \circ g = (\zeta \circ g) \circ f \circ \eta \circ g = \zeta \circ (g \circ f \circ \eta) \circ g = \zeta \circ g = \operatorname{Id}_Y$. Thus f is invertible with its inverse being $f^{-1} = \eta \circ g$.

Exercise 2.66

- 1. NO.
- 2. NO.
- 3. NO.
- 4. YES.
- 5. NO.
- 6. NO.
- 7. YES.
- 8. NO.
- 9. NO.
- 10. NO.
- 11. YES.
- 12. NO.
- 13. NO.

Exercise 2.70

- 4. The equivalence classes are parametrized by $\lambda \in \mathbb{R}$ as $C_{\lambda} = \{(x,y)|x^2 + y = \lambda\}$.
- 7. The equivalence classes are parametrized by $\alpha \ge 0$ as $C_{\alpha} = \{(x,y) | (x-1)^2 + (y-1)^2 = \alpha\}$.
- 11. There is only one equivalence class which is $X = \mathbb{Q} \{0\}$.

Exercise 2.69

Reflexivity: Since $x \sim_X x$ and $y \sim_Y y$, there is $(x, y) \sim (x, y)$.

Symmetry: Given $(x_1, y_1) \sim (x_2, y_2)$, there are $x_1 \sim_X x_2$ and $y_1 \sim_Y y_2$. Since \sim_X and \sim_Y are equivalence relations, we have $x_2 \sim_X x_1$ and $y_2 \sim_Y y_1$. By definition, $(x_2, y_2) \sim (x_1, y_1)$.

Transitivity: Given $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$, there are $x_1 \sim_X x_2$ and $y_1 \sim_Y y_2, x_2 \sim_X x_3$ and $y_2 \sim_Y y_3$, thus $x_1 \sim_X x_3$ and $y_1 \sim_Y y_3$. By definition, $(x_1, y_1) \sim (x_3, y_3)$. Therefore, \sim is an equivalence relation on $X \times Y$.

If the relation is defined by $x_1 \sim_X x_2$ or $y_1 \sim_Y y_2$, it would fail to have transitivity thus not an equivalence relation.

COUNTEREXAMPLE: Take $X = Y = \mathbb{R}$, $x \sim_X x'$ be x = x' and $y \sim_Y y'$ be y = y'. Define $(x_1, y_1) \simeq (x_2, y_2)$ to be $x_1 \sim_X x_2$ or $y_1 \sim_Y y_2$. Then $(0, 0) \simeq (0, 1)$, $(0, 1) \simeq (1, 1)$, but $(0, 0) \not\simeq (1, 1)$.

Exercise 2.71

Suppose equivalence classes in X and Y are $\{C_{\lambda}\}_{\lambda}$ and $\{C'_{\mu}\}_{\mu}$ resp. Then the equivalence classes under \sim on $X \times Y$ are $\{C_{\lambda} \times C'_{\mu}\}_{\lambda,\mu}$.

Exercise 2.73

The partition is

$$\mathbb{R}^2 = \{0\} \sqcup \bigsqcup_{\theta \in [0, 2\pi)} L_{\theta},$$

where $L_{\theta} = \{(r\cos\theta, r\sin\theta)|r>0\}.$ The quotient is $S^1 \sqcup \{0\}.$

Exercise 2.78

$$X/_{\sim_1} \rightarrow X/_{\sim_2} = (X/_{\sim_1})/_{\sim_2}.$$