Méthode 0.1

$$\frac{1}{\rho(S)} = \limsup |a_n|^{1/n} = \lim \frac{|a_{n+1}|}{|a_n|}$$

DÉFINITION 0.1 – Fonction analytique. Soient Ω un ouvert de $\mathbb C$ et $f:\Omega\to\mathbb C$.

- Soit $z_0 \in \Omega$, la fonction f est développable en série entière en z_0 s'il existe une série entière S telle que $\rho(S) > 0$ et $f(z) = S(z z_0)$.
- La fonction f est analytique dans Ω si elle est développable en série entière autour de tout $z \in \Omega$.

L'analyticité entraîne la continuité et la dérivabilité.

DÉFINITION 0.2 – Connexité. Un ouvert Ω de $\mathbb C$ est dit connexe si les propriétés équivalentes suivantes sont vérifiées :

- (i) Si z_0 et z_1 sont deux points de Ω , il existe une application continue $\gamma:[0,1]\subset\mathbb{R}\to\Omega$ telle que $\gamma(0)=z_0$ et $\gamma(1)=z_1$.
- (ii) Si A et B sont deux ouverts de $\mathbb C$ tels que $A \cup B = \Omega$ et $A \cap B = \emptyset$, alors l'un des deux ouverts A ou B est vide.

Remarque 0.1 Attention au calcul des zéros d'une fonction. Par exemple, prenons la fonction $f: z \mapsto \sin(1/z)$. A priori, les zéros de f ne sont pas uniquement les zéros de la fonction analogue définie sur $\mathbb R$. Il se trouve que c'est le cas mais pour s'en convaincre, il faut repasser par l'écriture du sinus complexe et de z sous sa forme algébrique.

Théorème 0.1 – Zéros isolés. Soient Ω connexe et f une fonction analytique dans Ω . Si Z(f) a un point d'accumulation $z^* \in \Omega$, alors $f \equiv 0$ dans Ω .

MÉTHODE 0.2 Pour montrer qu'une fonction est constante sur un domaine, il est judicieux d'utiliser le théorème de zéros isolés (ou le théorème de Liouville).

Théorème 0.2 – Prolongement analytique. Soit \mathcal{O} et Ω deux ouverts de \mathbb{C} , tels que $\mathcal{O} \subset \Omega$ et Ω est connexe, et soit f une fonction analytique dans \mathcal{O} . Alors il existe au plus une fonction g analytique dans Ω telle que f=g dans \mathcal{O} . Dans ce cas, la fonction g est appelée le prolongement analytique de f à l'ouvert Ω .

Théorème 0.3 – CNS de \mathbb{C} -dérivabilité. La fonction f est dérivable en z_0 si et seulement si \tilde{f} est différentiable en (x_0, y_0) et vérifie les relations de Cauchy-Riemann :

$$\frac{\partial \tilde{f}}{\partial x} + i \frac{\partial \tilde{f}}{\partial y} = 0.$$

Dans ce cas, $f'(z_0)=\frac{\partial \tilde{f}}{\partial x}$. On pose $\tilde{f}(x,y)=P(x,y)+\mathrm{i}Q(x,y)$ avec P et Q à valeurs réelles. Les conditions de Cauchy-Riemann s'écrivent

$$\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} = 0 \text{ et } \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} = 0.$$

DÉFINITION 0.3 - Fonction holomorphe.

f holomorphe dans $\Omega \Longleftrightarrow f$ dérivable en tout $z \in \Omega.$

Théorème 0.4 – Conservation de l'holomorphie par dérivation.

$$f \in H(\Omega) \Longrightarrow f^{(n)} \in H(\Omega) \ \forall n \geqslant 1.$$

- $f'(z) = \frac{1}{2} \left(\partial_x \widetilde{f}(x, y) i \partial_y \widetilde{f}(x, y) \right)$
- Si $\nabla f \equiv 0$ sur un ouvert Ω connexe, alors $f \equiv 0$ sur Ω .
- La fonction $z \mapsto \text{Re}(z)$ n'est dérivable nulle part.

PROPOSITION 0.1 – . Soient Ω un ouvert **connexe** de $\mathbb C$ et $f:\Omega\to\mathbb C$ une fonction holomorphe. Les conditions suivantes sont équivalentes : $f=\mathrm{cste},\mathrm{Re}(f)=\mathrm{cste},\mathrm{Im}(f)=\mathrm{cste},f(\overline{z})=f(z).$

Ме́тноре 0.3 Paramétrage d'une ellipse dans \mathbb{C} : $g(t) = a\cos(t) + \mathrm{i}b\sin(t)$.

Lemme 0.1 d'estimation

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \leqslant \log(\gamma) \sup_{z \in \mathrm{Im}(\gamma)} \left| f(z) \right|$$

THÉORÈME 0.5 – CAUCHY. Soient Ω un ouvert borné de $\mathbb C$ et $\gamma = \gamma_1 \cup \cdots \cup \gamma_N$ le bord orienté du compact $\overline{\Omega}$. Alors,

$$f \in H(\Omega) \cap \mathscr{C}^0(\overline{\Omega}) \Longrightarrow \int_{\gamma} f(z) dz = 0 \Longrightarrow \sum_{i=1}^N \int_{\gamma_i} f(z) dz = 0.$$

Proposition 0.2 – Formule de Cauchy. Soient $\Omega \subset \mathbb{C}$ borné, γ multi-lacet bord orienté de $\overline{\Omega}$ et $f \in H(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$. Alors,

$$\forall a \in \Omega, f(a) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z - a} dz.$$

1

MÉTHODE 0.4 Calcul de

$$\int_0^{2\pi} \frac{\mathrm{d}t}{a^2 \cos^2 t + b^2 \sin^2 t}$$

Identifier les parties imaginaires avec $\int_{\infty} \frac{dz}{z}$.

Théorème 0.6 – Liouville. Soit f une fonction entière telle qu'il existe C>0 et $p\in\mathbb{N}$ tels que $|f(z)|\leqslant C(1+|z|^p)$ pour tout $z\in\mathbb{C}$. Alors f est un polynôme de degré $\leqslant p$.

Remarque 0.2 En particulier, si f est bornée, alors f est constante.

Théorème 0.7 – . Si $\rho(S^+)\rho(S^-) > 1$ alors la série de Laurent

$$S(z) = S^{+}(z) + S^{-}\left(\frac{1}{z}\right)$$

converge dans la couronne

$$C = \left\{ z \in \mathbb{C}, \frac{1}{\rho(S^-)} < |z| < \rho(S^+) \right\}$$

vers une fonction holomorphe : $S \in H(\mathcal{C})$.

Théorème 0.8 – . Soient r_1, r_2 tels que $0 < r_1 < r_2 < +\infty$ et $\mathcal{C} := \{z \in \mathbb{C}, r_1 < |z| < r_2\}$. Si $f \in H(\mathcal{C})$, alors f est développable en série de LAURENT :

$$f(z) = S^{+}(z) + S^{-}\left(\frac{1}{z}\right) \quad \forall z \in \mathcal{C}$$

avec $\rho(R^+) \geqslant r_2$ et $\rho(S^-) \geqslant \frac{1}{r_1}$.

Lemme 0.2 Soit $f \in H(\dot{D}(z_0,r))$. On suppose que $(z-z_0)f(z) \xrightarrow[z \to z_0]{} \ell \in \mathbb{C}$.

- si $\ell = 0$: z_0 est une singularité fictive,
- si $\ell \neq 0$: z_0 est un pôle d'ordre 1 (simple).

Par exemple, si la fonction f a un pôle simple en 0, elle s'écrit sous la forme $f(z)=\frac{a-1}{z}+h(z)$ avec h analytique.

Théorème 0.9 – des résidus. Soient Ω ouvert borné de classe \mathscr{C}^1 par morceaux, de bord orienté γ . On pose $\mathcal{P} = \{z_1, \dots, z_p\} \subset \Omega$ et soit $f \in H(\Omega \setminus \mathcal{P}) \cap \mathscr{C}^0(\overline{\Omega} \setminus \mathcal{P})$. Alors,

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{j=1}^{p} \operatorname{Res}(f, z_{j}).$$

Méтноре 0.5 Calcul de l'ordre d'un résidu

Soit z_0 un pôle de f. Son ordre p est tel que

$$(z-z_0)^p f(z) \xrightarrow[z \to z_0]{} \ell \neq 0$$

ou bien tel que

$$\lim_{z \to z_0} f^{(p)}(z) = \ell \neq 0.$$

Si quel que soit l'entier p, la fonction $(z-z_0)^p f(z)$ n'est pas bornée dans le disque pointé $\dot{D}(z_0,r)$, alors f admet une **singularité** essentielle en z_0 .

MÉTHODE 0.6 Calcul de résidus

- $(z z_0)f(z) \xrightarrow{z \to z_0} \ell \neq 0 \iff z_0$ pôle simple et $\operatorname{Res}(f, z_0) = \ell$.
- Si f a un pôle double :

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{\mathrm{d}}{\mathrm{d}z} ((z - z_0)^2 f(z)).$$

• Si f a un pôle d'ordre p,

Res
$$(f, z_0)$$
 = $\lim_{z \to z_0} \frac{1}{(p-1)!} ((z-z_0)^p f(z))^{(p-1)}$.

Méthode 0.7

$$Res(f, i) = \overline{Res(f, -i)}$$

1 est une singularité essentielle de $z\mapsto\sin\frac{1}{1-z}$. z_0 pôle simple. $f=\frac{u}{z}$.

$$\operatorname{Res}(f, z_0) = \frac{u(z_0)}{v'(z_0)}.$$

LEMME 0.3 JORDAN

Soit f telle que (z-a)f(z) tende vers 0 lorsque z tend vers a. L'intégrale

$$\int_C f(z) \, \mathrm{d}z$$

prise le long d'un cercle de rayon infiniment pet it décrit autour de a tend vers $\mathbf{0}.$

L'intégrale d'une dérivée sur un lacet est nulle. On en déduit par exemple que la fonction $z\mapsto \frac{1}{z}$ n'admet pas de dérivée dans \mathbb{C}^* .

DÉFINITION 0.4 – Primitive d'une fonction holomorphe. Soit $\Omega \subset \mathbb{C}$, ouvert et soit $f \in H(\Omega)$. On appelle primitive F de f une fonction telle que F' = f. Si Ω est connexe, la fonction F est unique à une constante additive près.

Définition 0.5 – Ouvert étoilé. On dit que Ω est un ouvert étoilé s'il existe $a \in \Omega$ tel que pour tout $z \in \Omega$, $[a, z] \subset \Omega$.

LEMME 0.4 Soit $\Omega \subset \mathbb{C}$ un **ouvert étoilé** et soit $f \in H(\Omega)$. Alors il existe $F \in H(\Omega)$ telle que F'(z) = f(z) pour tout $z \in \Omega$.

Soient Ω un ouvert étoilé et f une fonction différentiable de Ω dans $\mathbb C$ telle que son gradient est nul dans Ω . Alors f est constante dans Ω .

DÉFINITION 0.6 – Détermination principale du log. On a défini une fonction $z \mapsto \log z$ telle que

- $\log z \in H(\mathbb{C} \setminus \mathbb{R}_-)$,
- $(\log z)' = \frac{1}{z}$,
- $\log z = \log x \text{ si } x > 0$,
- $\log z = \log \rho + i\theta$ si $z = \rho e^{i\theta}$ avec $-\pi < \theta < \pi$.

Soient $x \in \mathbb{R}_-$ et $\varepsilon > 0$: $\log(x + i\varepsilon) \xrightarrow{\varepsilon \to 0} \log|x| + i\pi$ et $\log(x - i\varepsilon) \xrightarrow{\varepsilon \to 0} \log|x| - i\pi$

Le saut du log à travers sa coupure est donc égal à $2i\pi$.

La fonction $z\mapsto \log z$ peut être prolongée par continuité sur \mathbb{R}_{-}^{\star} à partir de $\log(x+\mathrm{i}\varepsilon)\to \log|x|+\mathrm{i}\pi$.

DÉFINITION 0.7 – Détermination principale de \sqrt{z} . On pose $z = \rho e^{i\theta}$ avec $-\pi < \theta < \pi$. On définit la fonction $z \mapsto \sqrt{z}$ par

$$\sqrt{z} = \exp\left(\frac{1}{2}(\log \rho + \mathrm{i}\theta)\right) = \sqrt{\rho}\mathrm{e}^{\mathrm{i}\frac{\theta}{2}}.$$

Proposition 0.3 - ...

- $z \mapsto \sqrt{z} \in H(\mathbb{C} \setminus \mathbb{R}_{-}),$
- $\sqrt{z} = \sqrt{x}$ pour z = x > 0,
- $(\sqrt{z})' = \frac{1}{2\sqrt{z}}$,
- $\operatorname{Re}\sqrt{z} \geqslant 0$.

Son saut à travers la coupure est égal à $2i\sqrt{\rho}$.

LEMME 0.5 Soient $f \in H(\Omega)$ et $z_0 \in \Omega$. Si $f'(z_0) \neq 0$, alors f est localement inversible et f^{-1} est holomorphe.

Théorème 0.10 – . Soient $\Omega \in \mathbb{C}$ un ouvert connexe et $f \in H(\Omega)$ non constante.

- (i) f est une application ouverte, i.e. que l'image d'un ouvert est un ouvert. En paticulier, $f(\Omega) = \widetilde{\Omega}$ est un ouvert.
- (ii) Si f est injective sur Ω , alors f' ne s'annule jamais dans Ω , donc il existe un inverse global $f^{-1} \in H(\widetilde{\Omega})$.

$$\forall z \in \Omega \quad f^{-1}(f(z)) = z, (f^{-1})'(f(z)) = \frac{1}{f'(z)}.$$

Proposition 0.4 – . La TC conserve les angles et l'orientation.

PROPOSITION 0.5 – . La TC transforme une fonction harmonique en une fonction harmonique.

DÉFINITION 0.8 – Fonction homographique. Soient $(a, b, c, d) \in \mathbb{C}^4$ tels que $ad - bc \neq 0$. Une fonction homographique f est de la forme

$$f(z) = \frac{az+b}{cz+d}.$$

PROPOSITION 0.6 – . Une fonction homographique f réalise une bijection de $\mathbb{C} \setminus \left\{-\frac{d}{c}\right\}$ dans $\mathbb{C} \setminus \left\{\frac{a}{c}\right\}$ dont la réciproque est la fonction homographique

$$f^{-1}(z) = -\frac{dz - b}{cz - a}.$$

Une fonction homographique est une composition des transformations élémentaires translation, rotation, homothétie, inversion.

PROPOSITION 0.7 – . Soit $\mathcal F$ l'ensemble des droites et des cercles de $\mathbb C$. Une homographie transforme un élément de $\mathcal F$ (privé de z^*) en un autre élément de $\mathcal F$ (privé de $\tilde z^*$).

DÉFINITION 0.9 – Simple connexité. Un ouvert $\Omega \subset \mathbb{C}$ connexe est *simplement connexe* si pour tout lacet $\gamma \subset \Omega$, l'intérieur du lacet γ est dans Ω .

Théorème 0.11 – Riemann. Si Ω est simplement connexe et si $\Omega \neq \mathbb{C}$ alors, il existe une TC qui transforme Ω en le disque unité

- Attention aux erreurs de signe dans le parcourt des chemin.
- •

$$\frac{1}{|Re^{i\theta} + 1|} \leqslant \frac{1}{|R - 1|}$$