Vírgula Flutuante

Trabalho para Casa: TPC2

Baseado no guião de Alberto José Proença & Luís Paulo Santos

Metodologia

Leia as folhas do enunciado, e responda <u>obrigatoriamente</u> às questões colocadas na folha fornecida para o efeito (última folha deste guião). A resolução deve ser manuscrita e entregue **no início** da aula PL.

O objetivo dos TPC's é **fomentar o estudo** individual e contínuo, complementado por trabalho em grupo, sendo <u>contabilizado o esforço para se tentar chegar ao resultado</u> (que deverá ser defendido na aula) em detrimento da correção do mesmo.

O trabalho de grupo é aceite desde que as resoluções possam depois ser integralmente defendidas por quem as submeter. Quando tal acontecer será considerado fraude e conduz a uma avaliação negativa.

Máquinas de calcular não deverão ser usadas, para uma melhor assimilação dos resultados (nota: nos testes/exame não será permitida a sua utilização).

Introdução

A lista de exercícios que se apresenta segue diretamente o material apresentado na aula teórica sobre representação de números em vírgula flutuante (ver slides e sugestão de leitura), podendo requerer conceitos básicos adquiridos anteriormente.

Parte I - Representação de valores em vírgula flutuante precisão simples - IEEE 754

 Represente os seguintes valores em vírgula flutuante precisão simples (IEEE 754). Apresente o resultado em hexadecimal.

Decimal	IEEE 754 precisão simples
16.375	
-1024	
515.625*10 ⁻³	
-2.25 * 2 ⁻¹²⁸	

2. Converta para decimal os seguintes valores representados em vírgula flutuante precisão simples (IEEE 754).

IEEE 754 precisão simples	Decimal
0x436a0000	
0xc4000000	
0x00700000	
0xff800000	

Parte II - Representação de valores em vírgula flutuante: formatos PEQUENO1 e PEQUENO2

Considere 2 novos formatos de vírgula flutuante, representados com 8-bits, baseados na norma IEEE:

- formato PEQUENO1:
 - → o bit mais significativo contém o bit do sinal
 - → os 4 bits seguintes formam o expoente (em excesso de 7)
 - → os últimos 3 bits representam a mantissa
- formato PEQUENO2:
 - → o bit mais significativo contém o bit do sinal
 - → os 3 bits seguintes formam o expoente (em excesso de 3)
 - → os últimos 4 bits representam a mantissa

Para todos os restantes casos, as regras são as mesmas que as da norma IEEE (valor normalizado, subnormal/desnormalizado, representação do 0, ± infinito, NaN).

- Complete a expressão que, a partir dos campos em binário, permite calcular o valor em decimal para cada um dos formatos normalizados: V= (-1)^s * 1.F * 2^{??}
- 4. Para ambos os formatos, apresente os seguintes valores em decimal:
 - a) O maior número finito positivo
 - b) O número negativo normalizado mais próximo de zero
 - c) O maior número positivo subnormal/desnormalizado
 - d) O número positivo subnormal/desnormalizado mais próximo de zero
 - e) O maior número inteiro positivo múltiplo de 4
- **5.** Calcule os valores (número real, ± infinito, NaN) correspondentes aos seguintes padrões de bits no formato PEQUENO1:
 - a) 0xBB
 - **b)** 0x7C
 - **c)** 0x92
 - **d)** 0x05
 - **e)** 0x41
- 6. Codifique os seguintes valores como números de vírgula flutuante no formato PEQUENO1:
 - **a)** -110.01₃
 - b) 1/16 Ki (por exemplo, para representar a dimensão de um ficheiro em bytes)
 - c) -0x28C
 - **d)** 101.01₁₀
 - e) 0.006₈
- 7. Converta os seguintes números PEQUENO1 em números PEQUENO2. Overflow deve ser representado por ± infinito, underflow por ±0 e arredondamentos deverão ser para o valor par mais próximo.
 - **a)** 0xB5
 - b) 0xEA
 - **c)** 0x14
 - d) 0xCF
 - **e)** 0x02

8. Considere o desenvolvimento de código científico em C para execução num *notebook* atual, cuja especificação impõe que os números reais sejam representados com pelo menos 8 algarismos significativos. **Indique**, **justificando**, se consegue representar essas variáveis como float ou se tem de as representar como double.

- 9. Um valor do tipo real (*float*) vem representado na norma IEEE 754 por V= (-1)^S * 1.F * 2^(Exp-127), se estiver normalizado. Indique, explicitando os cálculos, qual o maior inteiro ímpar que é possível representar exatamente, neste formato.
- 10. O formato RGBE é usado para representar de forma compacta pixéis com elevada gama dinâmica (em inglês High Dynamic Range HDR). Cada pixel de uma imagem HDR é representado usando 3 valores reais positivos. São 3 valores porque são usadas 3 cores primárias: Red, Green and Blue (RGB). Os valores dos pixéis são sempre >= 0.

Se fossem usados valores em vírgula flutuante precisão simples seriam necessários 12 bytes para cada pixel; o formato RGBE permite usar 4 bytes para cada pixel. A ideia é que o expoente é partilhado pelos 3 canais (R,G e B) e representado no 4º byte. A parte fraccionária da mantissa de cada canal usa 8 bits; a parte inteira da mantissa não é representada e é igual a 0. O algoritmo para codificar um pixel é o seguinte:

- identificar o canal (R, G ou B) com valor máximo: chamemos-lhe $V_{max} = max(V_R, V_G, V_B)$;
- calcular uma constante de normalização que seja uma potência de 2, $N=2^E$, tal que $\frac{v_{max}}{2^E} \in [0.5 \cdots 1[$;
- normalizar os valores dos 3 canais: $(V_{nR}, V_{nG}, V_{nB}) * 2^E = (\frac{V_R}{2^E}, \frac{V_G}{2^E}, \frac{V_B}{2^E}) * 2^E = (V_R, V_G, V_B);$
- codificar a parte fraccionária de V_{nR} , V_{nG} e V_{nB} em 8 bits cada e codificar o expoente E em 8 bits usando excesso de 128 (nota: o sinal não é codificado explicitamente porque os valores são sempre >= 0).

Codifique o pixel com o valor (24, 20, 6) em RGBE apresentando a respectiva sequência de bits em hexadecimal.

Nº	Nome:	Turma:
----	-------	--------

Resolução dos exercícios

(**Nota**: Apresente sempre os cálculos que efectuar no verso da folha; <u>o não cumprimento desta regra equivale</u> <u>à não entrega do trabalho</u>.)

1. Represente os seguintes valores em vírgula flutuante precisão simples (IEEE 754). Apresente o resultado em hexadecimal.

Decimal	IEEE 754 precisão simples
16,375	
515,625*10 ⁻³	

2. Converta para decimal os seguintes valores representados em vírgula flutuante precisão simples (IEEE 754).

IEEE 754 precisão simples	Decimal
0x436a0000	
0xc4000000	

3.	PEQUENO1:	V=	$(-1)^{s}$	*	1.F	*	2	PEQUENO2:	V=	$(-1)^{s}$	*	1.F	*	2

4. Para <u>ambos</u> os formatos, apresente os seguintes valores em decimal:

a)	O maior finito positivo:	PEQUENO1	PEQUENO2
b)	O negativo normalizado +próx. 0	PEQUENO1	PEQUENO2
c)	O > nº positivo subnormal	PEQUENO1	PEQUENO2
d)	O positivo subnormal +próx. 0	PEQUENO1	PEQUENO2
e)	O > inteiro positivo múltiplo de 4	PEQUENO1	PEQUENO2

5. Calcule os valores correspondentes ao formato PEQUENO1 (modelo de resposta em a)):

b) 0x7C **Res.**:

6. Codifique os seguintes valores como números em vírgula flutuante no formato PEQUENO1

Pratique com o seguinte ex.: 0x72.A = 0111 0010.1010₂ = (-1)⁰ * 1.1100 1010 1₂ * 2⁶ = = (-1)⁰ * 1.1100 1010 1₂ * 2¹³⁻⁷ =>
a) -110.01₃
b) 1/16 Ki

7. Converta os seguintes números PEQUENO1 em números PEQUENO2:

a)	PEQUENO1:	0xB5	PEQUENO2
b)	PEQUENO1:	0xEA	PEQUENO2
e)	PEOUENO1:	0x02	PEOUENO2