EP 501: Homework #1 Table of Contents

```
.....
                         Problem
                       2
                         Problem
                             3.a-c
                       4
                         Problem
                             3.d
.....
                         Problem
                              4
                          Problem
                              5
......7
% EP 501 Homework 1 Main
% Julio Guardado
clear;
clc; close
all;
```

Problem 1.a + 1.b

```
%load test problem
load testproblem.mat
%used simple elimination function
Amod = forward elim(A,b);
%test function with built in matlab functions and provided backsub.m
test ans = A\b; answer = backsub(Amod);
%display solution
             fprintf('\tMATLAB:\t
forward elim.m:\n')
disp(cat(2, test ans, answer))
응응응응응응응응응응응
Problem 1 Part a+b:
MATLAB: forward elim.m:
  1.0000
        1.0000
  2.0000
         2.0000
         3.0000
  3.0000
  4.0000
        4.0000
        5.0000
  5.0000
  6.0000
        6.0000
  7.0000
        7.0000
  8.0000
         8.0000
```

Problem 1.c

```
%load test problem load
lowertriang testproblem.mat
%solve using matlab built in func
test ans = L\bL;
%solve using forwardsub func answer
= forwardsub lt(L,bL);
%display
       solution
               %display
                       solution
fprintf('\tMATLAB:\t forward sub.lt.m:\n')
disp(cat(2,test ans,answer))
응응응응응응응응응응응응
Problem 1 Part c+d:
MATLAB: forward sub.lt.m:
  1.0000 1.0000
  3.0000
        3.0000
  5.0000
        5.0000
  7.0000 7.0000
  9.0000 9.0000
  11.0000 11.0000
  13.0000 13.0000
  15.0000 15.0000
```

Problem 2

-0.4480	0.3835	0.0281	-0.0881	-0.5795	1.0474	-0.5356
-0.0540	-0.1948	-0.2456	-0.6264	0.1978	-0.2692	0.2222
0.2062	-0.1064	-0.3766	-1.1154	-0.0220	0.5605	0.2837
-0.3250	0.4251	0.0724	-0.1670	-0.3128	0.8816	0.4305
-0.0697	-0.5582	-0.4000	-1.3059	0.0704	0.6537	0.8908
0.3565	0.3345	0.1079	-0.1491	0.2014	0.0363	-0.2920
-0.1222	0.1436	0.0008	0.7677	-0.2421	-0.0132	-0.1231
0.1043	-0.2818	-0.2839	-0.2878	0.4281	-0.1212	0.1503

Column 8

- 0.2581
- 0.2324
- 0.3873
- 0.2608
- 0.6467
- -0.6463
- -0.7433
- 0.0735

Solution from GJ_elim.m:

Columns 1 through 7

-0.4480	0.3835	0.0281	-0.0881	-0.5795	1.0474	-0.5356
-0.0540	-0.1948	-0.2456	-0.6264	0.1978	-0.2692	0.2222
0.2062	-0.1064	-0.3766	-1.1154	-0.0220	0.5605	0.2837
-0.3250	0.4251	0.0724	-0.1670	-0.3128	0.8816	0.4305
-0.0697	-0.5582	-0.4000	-1.3059	0.0704	0.6537	0.8908
0.3565	0.3345	0.1079	-0.1491	0.2014	0.0363	-0.2920
-0.1222	0.1436	0.0008	0.7677	-0.2421	-0.0132	-0.1231
0.1043	-0.2818	-0.2839	-0.2878	0.4281	-0.1212	0.1503

Column 8

- 0.2581
- 0.2324
- 0.3873
- 0.2608
- 0.6467
- -0.6463
- -0.7433
- 0.0735

Problem 3.a-c

```
%load test problem
load testproblem.mat
%perform Doolittle LU factorization
[L, U, X] = DLU fact(A, cat(2,b,b2,b3));
%display solution of first b matrix
disp('Solution of test problem from L and U:')
disp(X(:,1))
%display solution of multiple right hand sides
disp('Solution of multiple right hand sides from L and U:')
disp(X)
응응응응응응응응응응응
Problem 3.a-c:
Solution of test problem from L and U:
   1.0000
   2.0000
   3.0000
   4.0000
   5.0000
   6.0000
   7.0000
   8.0000
Solution of multiple right hand sides from L and U:
   1.0000
          2.0000
                10.0000
   2.0000
          4.0000
                 20.0000
   3.0000
         6.0000 30.0000
   4.0000
          8.0000 40.0000
   5.0000 10.0000 50.0000
   6.0000 12.0000 60.0000
   7.0000 14.0000 70.0000
   8.0000 16.0000 80.0000
```

Problem 3.d

```
%solve using matlab built in func
test ans = inv(A);
%solve using LU Factorization [~,~,X]
= DLU fact(A, eye(size(A,1)));
disp('Solution from built in MATLAB function:')
disp(test ans) disp('Solution from Doolittle LU
factorization:') disp(X)
88888888888888
Problem 3.d:
Solution from built in MATLAB function:
 Columns 1 through 7
  -0.4480
          0.3835
                   0.0281
                          -0.0881
                                  -0.5795
                                          1.0474
                                                 -0.5356
  -0.0540
          -0.1948 -0.2456
                         -0.6264
                                          -0.2692
                                                 0.2222
                                  0.1978
   0.2062
          -0.1064
                 -0.3766
                         -1.1154
                                 -0.0220
                                          0.5605
                                                 0.2837
  -0.3250
          0.4251
                  0.0724
                         -0.1670 -0.3128
                                          0.8816 0.4305
                 -0.4000
                         -1.3059
  -0.0697
         -0.5582
                                  0.0704
                                          0.6537
                                                  0.8908
   0.3565
          0.3345 0.1079
                         -0.1491
                                  0.2014
                                          0.0363 -0.2920
  -0.1222
          0.1436 0.0008
                         0.7677 -0.2421
                                          -0.0132 -0.1231
   0.1043 -0.2818 -0.2839
                         -0.2878
                                  0.4281
                                          -0.1212
                                                  0.1503
 Column 8
   0.2581
   0.2324
   0.3873
   0.2608
   0.6467
  -0.6463
  -0.7433
   0.0735
Solution from Doolittle LU factorization:
 Columns 1 through 7
          0.3835 0.0281
                         -0.0881
  -0.4480
                                  -0.5795
                                          1.0474 -0.5356
  -0.0540
          -0.1948 -0.2456
                         -0.6264
                                  0.1978
                                         -0.2692
                                                 0.2222
                 -0.3766
   0.2062
          -0.1064
                         -1.1154
                                  -0.0220
                                          0.5605
                                                  0.2837
  -0.3250
          0.4251
                  0.0724
                         -0.1670 -0.3128
                                          0.8816 0.4305
                                                 0.8908
  -0.0697 -0.5582
                 -0.4000
                         -1.3059
                                  0.0704
                                          0.6537
          0.3345
   0.3565
                 0.1079
                         -0.1491
                                  0.2014
                                          0.0363
                                                 -0.2920
  -0.1222
          0.1436
                  0.0008
                          0.7677 -0.2421
                                          -0.0132
                                                 -0.1231
   0.1043
          -0.2818
                  -0.2839
                         -0.2878
                                  0.4281
                                          -0.1212
                                                  0.1503
```

```
Column 8

0.2581
0.2324
0.3873
0.2608
0.6467
-0.6463
-0.7433
0.0735
```

Problem 4

```
%load test problem load
iterative testproblem.mat
%set up nit =
size(Ait,1);
x0=randn(nit,1);
tol=1e-9; omega =
1;
%solve using matlab built in func
test ans = Ait\bit;
%solve using Successive over relaxation
[xit,nit] = SOR(x0,Ait,bit,tol,omega);
%display
                 solution
fprintf('\tMATLAB:\t SOR.m:\n')
disp(cat(2,test ans,xit))
응응응응응응응응응응응
Problem 4:
MATLAB: SOR.m:
  0.0329 0.0329
  0.1316
         0.1316
  0.2400
         0.2400
  0.3375
         0.3375
  0.4142
         0.4142
  0.4642
         0.4642
  0.4839
         0.4839
  0.4720
         0.4720
  0.4293
         0.4293
  0.3584
         0.3584
  0.2641
         0.2641
```

0.1526 0.0310 -0.0926 -0.2101 -0.3138 -0.3971 -0.4544 -0.4819 -0.4780 -0.4780 -0.3785 -0.2896 -0.1817 -0.0619 0.0619 0.1817 0.2896 0.3785 0.4427 0.4780	0.1526 0.0310 -0.0926 -0.2101 -0.3138 -0.3971 -0.4544 -0.4819 -0.4780 -0.4785 -0.2896 -0.1817 -0.0619 0.0619 0.1817 0.2896 0.3785 0.2896 0.3785 0.4427 0.4780
0.4780	0.4780
0.4544	0.4544
0.3971	0.3971
0.3138	0.3138
0.2101	0.2101
0.0926	0.0926 -0.0310
-0.0310 -0.1526	-0.0310 -0.1526
-0.2641	-0.2641
-0.3584	-0.3584
-0.4293	-0.4293
-0.4720	-0.4720
-0.4839	-0.4839
-0.4642	-0.4642
-0.4142	-0.4142
-0.3375	-0.3375
-0.2400 -0.1316	-0.2400 -0.1316
-0.1316	-0.1316

Problem 5

```
%load test problem
load testproblem.mat
%solve using matlab built in func
test ans = det(A);
%solve using determintant.m
[~, determ] = Gauss elim det(A,b);
%display solution fprintf('Determinant calculated by MATLAB:\t\t\t
f^n', test ans) fprintf('Determinant calculated by
Gauss_elim_det.m,: %f\n',determ)
응응응응응응응응응응응
Problem 5:
Determinant calculated by MATLAB:
                          -39.424745
Determinant calculated by Gauss elim det.m,: -39.424745
```

Published with MATLAB® R2018b