VISUALIZATION

Visual Encoding

Data

Item: individual entity, discrete

e.g., Patient, Car, Stock, City

Attribute: measured, observed, logged property

e.g., Patient: height, blood pressure; Car: horsepower, make

Item: Person Attributes

ID	Name	Age	Shirt Size	Favorite Fruit
1	Amy	8	S	Apple
2	Basil	7	S	Pear
3	Clara	9	Cell M	Durian
	Desmond	13	L	Elderberry
4 5	Ernest	12	L	Peach
6	Fanny	10	S	Lychee
7	George	9	М	Orange
8	Hector	8	L	Loquat
9	Ida	10	М	Pear
10	Amy	12	М	Orange

- Links/Relations
 - Express relationship between two items
 - Friendship on Facebook, Interaction between proteins

Visual Language is a Sign System

- Image perceived as a set of signs
- Sender encodes information in signs
- Receiver decodes information from signs

Semiology of Graphics [J. Bertin, 83]

Marks & Channels

- Marks: represent items or links
- Channels: change appearance based on attribute
- Channel = Visual Variable

Marks for Items

Basic geometric elements

3D mark: Volume, but rarely used

Marks for Links

→ Containment

Connection

Containment can be nested

Channels (aka Visual Variables)

Control appearance proportional to or based on attributes

Bertin's Visual Variables

Marks: Points Lines Areas

Position Size (Grey)Value

Texture
Color
Orientation
Shape

Using Marks and Channels

Mark: Line

Channel: Length/Position Channel: Position

1 quantitative attribute

1 categorical attribute

Mark: Point

2 quantitative attr.

Adding Hue

+1 categorical attr.

Adding Size

+1 quantitative attr.

Attribute Types (Summary)

Stolte / Hanrahan

property	marks	ordinal/nominal mapping	quantitative mapping	
shape	glyph	O □ + △ S U		
size	rectangle, circle, glyph, text			
orientation	rectangle, line, text	-///	//////	
color	rectangle, circle, line, glyph, y-bar, x-bar, text, gantt bar		min max	

Types of Channels

Magnitude Channels

How much?

Position

Length

Saturation ...

Identity Channels

What? Where?

Shape

Color (hue)

Spatial region ...

Ordinal & Quantitative Data

Categorical Data

Channels: Expressiveness Types and Effectiveness Ranks

Characteristics of Channels

Selective

Is a mark distinct from other marks?

Can we make out the difference between two marks?

Associative

Does it support grouping?

Quantitative (Magnitude vs Identity Channels)

Can we quantify the difference between two marks?

Characteristics of Channels

Order (Magnitude vs Identity)

Can we see a change in order?

Length

How many unique marks can we make?

Position

Strongest visual variable Suitable for all data types Problems:

Sometimes not available (spatial data)

Cluttering

Selective: yes

Associative: yes

Quantitative: yes

Order: yes

Length: fairly big

Example: Scatterplot

Position in 3D?

[Spotfire]

Length & Size

Good for 1D, OK for 2D, Bad for 3D

Easy to see whether one is bigger

Aligned bars use position redundantly

For 1D length:

Selective: yes

Associative: yes

Quantitative: yes

Order: yes

Length: high

Example 2D Size: Bubbles

Four Ways to Slice Obama's 2013 Budget Proposal

Explore every nook and cranny of President Obama's federal budget proposal.

Information in Color

(Grey)Value is perceived as ordered (O)

Can encode quantitative values (Q) [not as well]

Hue is normally perceived as unordered (N)

Color HSV

- Based on polar coordinates, not Cartesian coordinates.
- HSV is a non-linearly transformed (skewed) version of RGB cube
 - Hue: quantity that distinguishes color family, say red from yellow, green from blue
 - Saturation (Chroma): color intensity (strong to weak). Intensity of distinctive hue, or degree of colour sensation from that of white or grey
 - Value (luminance): light color or dark color

Value/Luminance/Saturation

OK for quantitative data when length & size are used. Not very many shades recognizable

Selective: yes

Associative: yes

Quantitative: somewhat (with problems)

Order: yes

Length: limited

Example: Diverging Value-Scale

Color Hue

- Good for qualitative data (identity channel)
- Limited number of classes/length (~7-10!)
- Does not work for quantitative data!
 - Selective: yes
 - Associative: yes
 - Quantitative: no
 - Order: no
 - Length: limited

Color: Bad Example

FIGURE 13. Estimated Mean Annual Ratio of Actual Evapotranspiration (ET) to Precipitation (P) for the Conterminous U.S. for the Period 1971-2000. Estimates are based on the regression equation in Table 1 that includes land cover. Calculations of ET/P were made first at the 800-m resolution of the PRISM climate data. The mean values for the counties (shown) were then calculated by averaging the 800-m values within each county. Areas with fractions >1 are agricultural counties that either import surface water or mine deep groundwater.

Shape

- Great to recognize many classes.
 - No grouping, ordering.
 - Selective: yes
 - Associative: limited
 - Quantitative: no
 - Order: no
 - Length: vast

Chernoff Faces

Idea: use facial parameters to map quantitative data

Does it work? Not really!

Critique: https://eagereyes.org/criticism/chernoff-faces

Mapping to Data Types

	Nominal	Ordinal	Quantitative
Position	~	~	~
Size	~	~	~
(Grey)Value	~	~	~
Texture	~	~	×
Color	~	×	×
Orientation	~	×	×
Shape	~	×	×

✓ = Good

~ = OK

★ = Bad

Separability of Attributes

Can we combine multiple visual variables?

Redundant encoding

Length, Position and Value

Gestalt Law of Pattern Perception

- Gestalt Principles are principles/laws of human perception that describe how humans group similar elements, recognize patterns and simplify complex images when we perceive objects.
- Designers should use the principles to organize content on websites and other interfaces so it is aesthetically pleasing and easy to understand.

Gestalt Law of Pattern Perception (1/2)

- Proximity
 - Things close together are perceptually grouped together
- Similarity
 - Similar elements get grouped together
- Connectedness
 - Connecting different objects by lines unifies them
- Continuity
 - More likely to construct visual entities out of smooth, continuous visual elements

Gestalt Law of Pattern Perception (2/2)

- Symmetry
 - Symmetrical patterns are perceived more as a whole
- Closure
 - A closed contour is seen as an object
- Relative Size
 - Smaller components of a pattern as perceived as objects
- Figure & Ground
 - Figure is foreground, ground is behind

Exercise

- Select any visualization
- Determine the data that is represented
 - Semantics
 - Data Item
 - Data Attributes (including type)
 - Dimension
 - Dataset Type
- Determine Visual Encoding of the data
- Any criticism of the visualization?

Number of Covid Deaths per 100,000 Americans

Most Valuable Sports Franchises

