Stock Market Prediction with LSTM

JOSTEIN BARRY-STRAUME

NOVEMBER 27, 2020

What is the problem?

What is the problem?

Train a LSTM neural network to predict if a stock will move up or down


```
# Add the label class based on whether stock goes up or down
def add_label(df):
    idx = len(df.columns)
    new_col = np.where(df['Close'] >= df['Close'].shift(1), 1, 0)
    df.insert(loc=idx, column='Label', value=new_col)
    df = df.fillna(0)
```


What is the problem?

Task:

Supervised learning

Performance Measure: Validation Accuracy

Learning Component: Technical Indicators

kaggle

df_etfs.head()												
	Date	Open	High	Low	Close	Volume	OpenInt	Name				
0	2014-03-27	14.705	14.795	14.698	14.729	698621	0	fpl				
1	2014-03-28	14.890	14.890	14.729	14.729	164979	0	fpl				
2	2014-03-31	14.839	14.948	14.729	14.876	86108	0	fpl				
3	2014-04-01	14.948	14.948	14.729	14.729	169637	0	fpl				
4	2014-04-02	14.737	14.755	14.713	14.747	110332	0	fpl				

Data Background

NASDAQ stocks and ETFs

Historical data up until 04/01/2020

Data Size: 3GB

Why is it an important problem?

Motivation

- Lab research
- Career
- Personal interest

Related work

Financial time series forecasting model based on CEEMDAN and LSTM

Jia

Rece Rece

EMD CEE

Available online at www.sciencedirect.com

Sciend

Procedia Computer S

International Conference on Comp

NSE Stock Market Pre

Hiransha M^a, Gopalakrishna

Centre for Computational Engineering and Networking, Amr

Abstract

The neural network, one of the intelligent data mining vears. Prediction and analysis of stock market data ha for forecasting can be categorized into linear (AR, Network). In this paper, we are using four types of dee Networks (RNN), Long Short-Term Memory (LSTM of a company based on the historical prices available. National Stock Exchange (NSE) of India and New Yo of a single company from NSE and predicted for five that CNN is outperforming the other models. The net data. This was possible because both the stock mark pared with ARIMA model and it has been observed that

Apress[®]

Literature Review

- Many articles cover implementing hybrid ML models. Not the most helpful for a limited scope class project
- Books, API documentation, and Keras tutorial examples so far have been the most helpful for both understanding and implementing concepts

Techniques chosen and why

Techniques to tackle problem

- Feature creation
- Data imputation
- Data normalization
- Automated hyper-parameter tuning

```
df_ti = df_ti.fillna(df_ti.median())

def normalized_df(df):
    normalized_df=(df-df.mean())/df.std()
    return normalized_df
```



```
p = {'lr': (0.0001, 0.001, 0.005, 0.05, 0.01),}
     'first neuron': [8, 16, 32, 64],
     'epochs': [5, 10, 15, 20, 30, 40, 50],
     'optimizer': ['Adam', 'SGD', 'RMSprop'],
     'losses': ['binary crossentropy']}
def build_lstm(X_train, y_train, X_test, y_test, params):
  inputs = keras.layers.Input(shape=(X train.shape[1], X train.shape[2]))
  lstm out = keras.layers.LSTM(params['first neuron'])(inputs)
  outputs = keras.layers.Dense(1)(lstm out)
  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(optimizer=params['optimizer'],
                loss=params['losses'],
                metrics=['accuracy'])
  history = model.fit(x=X train, y=y train, epochs=params['epochs'], validation data=(X test, y test))
  return history, model
%time
scan object = ta.Scan(x=X train,
            y=y train,
            model=build lstm,
            params=p,
            seed=777,
            experiment name='exp run 1',
            x val=X test,
            y_val=y_test
```

Talos API

- Set parameters to test
- Build model to specs
- "Scan" all parameter permutations
- "Report" each model's performance

Empirical evaluation

Visualizing Relationships

Validation Accuracy has strong, positive correlations with:

- Number of neurons
- Epochs

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

- Duration of training
- Round of epoch training

Validation Accuracy Distribution of Optimizers

- Overall distribution trend is logarithmic
- As epochs increase (x-axis), val acc increases
- Adam has largest variance
- RMSprop has smallest variance

4 Dimensional Bar Grid

Breaks down validation accuracy for each neuron density by epochs per each optimizer

- RMSprop performs consistently better in each neuron density
- SGD seems to struggle at highest neural density; perhaps overfitting?

Conclusion


```
# returns the highest value for validation accuracy
analyze_object.high('val_accuracy')

0.9913793206214905

# returns the number of rounds it took to find best model
analyze_object.rounds2high('val_accuracy')

56
```

Best Model

- 84 different models trained
- Best model:
- Found at round 56 of 84
- Validation accuracy: 99.14%

Round	Val Acc	LR	Epochs	Optimizer	Neural Density
56	99.14%	0.0001	50	RMSprop	32

Questions?

VIRGINIA TECH_{TM}

