Задача ??. Пусть $Y_t = \beta t + \varepsilon_t$, t = 1, ..., 6, $\mathbb{E}[\varepsilon_t] = 0$, $\mathrm{D}(\varepsilon_t) = \sigma^2$, $\mathrm{cov}(\varepsilon_s, \varepsilon_t) = 0$, $s \neq t$.

- (a) Является ли оценка $\hat{\beta} = \frac{1 \cdot Y_1 + 2 \cdot Y_2 + 3 \cdot Y_3}{1^2 + 2^2 + 3^2}$ линейной по вектору $Y = (Y_1, ..., Y_6)^T$ и несмещенной оценкой неизвестного параметра β ?
- (b) Является ли оценка $\breve{\beta} = \frac{4 \cdot Y_4 + 5 \cdot Y_5 + 6 \cdot Y_6}{4^2 + 5^2 + 6^2}$ линейной по вектору $Y = (Y_1, ..., Y_6)^T$ и несмещенной оценкой неизвестного параметра β ?
- (c) Является ли оценка $\tilde{\beta} = \frac{1}{2}\hat{\beta} + \frac{1}{2}\tilde{\beta}$ линейной по вектору $Y = (Y_1, ..., Y_6)^T$ и несмещенной оценкой неизвестного параметра β ?
- (d) Сравните по степени эффективности оценки \hat{eta} , $reve{eta}$ и $ilde{eta}$.

Приведите формулу наиболее эффективной оценки для неизвестного параметра β в классе линейных по вектору $Y = (Y_1, ..., Y_6)^T$ и несмещенных оценок параметра β .