Claims

•	A 4.		
1.	A coating	composition	COMPLISING
٠.	, t oouting	Composition	CONTIDENSING

- 5 at least one cerium(IV) compound, either
 - at least one compound A having at least one isocyanate-reactive group and at least one free-radically polymerizable unsaturated group and
 - at least one isocyanato-functional compound B,

10 or

- at least one compound C having at least one isocyanate group and at least one free-radically polymerizable unsaturated group and
- at least one compound D having at least one isocyanate-reactive group, and additionally
- if appropriate at least one photoinitiator,
 - if appropriate at least one solvent.
 - if appropriate at least one free-radically polymerizable monomer,
 - if appropriate at least one polyfunctional polymerizable compound, and
 - if appropriate further, typical coatings additives.

20

25

- 2. The coating composition of claim 1, wherein the cerium(IV) compound is selected from the group consisting of ammonium hexanitratocerate(IV) (cerium(IV) ammonium nitrate, (NH₄)₂[Ce(NO₃)₆]), sodium hexanitratocerate(IV) (Na₂[Ce(NO₃)₆]), potassium hexanitratocerate(IV) (K₂[Ce(NO₃)₆]), cerium(IV) ammonium sulfate (Ce(NH₄)₂(NO₃)₆)), cerium(IV) hydroxide, cerium(IV) isopropoxide/isopropanol complex, cerium(IV) oxide (CeO₂), and cerium(IV) sulfate (Ce(SO₄)₂).
- The coating composition of claim 1, wherein the cerium(IV) compound in the
 coating composition is obtained by oxidizing cerium compounds in a lower oxidation state.
 - 4. The coating composition of claim 3, wherein cerium(III) compounds are used as cerium compounds in a lower oxidation state.

35

- 5. The coating composition of any one of the preceding claims, wherein the at least one compound A having at least one isocyanate-reactive group and at least one free-radically polymerizable unsaturated group is selected from the group consisting of 2-hydroxyethyl (meth)acrylate, 2- or 3-hydroxypropyl (meth)acrylate, 14-butanedial mana(meth)acrylate, pagentyl glycol mana(meth)acrylate.
- 40 1,4-butanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, glycerol mono- and di(meth)acrylate, trimethylolpropane mono- and di(meth)acrylate, pentaerythritol mono-, di-, and tri(meth)acrylate, and 4-

15

hydroxybutyl vinyl ether, 2-aminoethyl (meth)acrylate, 2-aminopropyl (meth)acrylate, 3-aminopropyl (meth)acrylate, 4-aminobutyl (meth)acrylate, 6-aminohexyl (meth)acrylate, 2-thioethyl (meth)acrylate, 2-aminoethyl(meth)acrylamide, 2-aminopropyl(meth)acrylamide, 3-aminopropyl(meth)acrylamide, 2-hydroxyethyl(meth)acrylamide, 2-hydroxypropyl(meth)acrylamide, and the reaction products of (meth)acrylic acid with bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether or pentaerythritol tetraglycidyl ether.

- 6. The coating composition of any one of the preceding claims, wherein said at least one isocyanoto-functional compound B is a diisocyanate having 4 to 20 carbon atoms.
- 7 The coating composition of claim 6, wherein said diisocyanate is an aliphatic or cycloaliphatic diisocyanate.
- 8. A method of coating substrates, which comprises coating a substrate with a coating composition of any one of the preceding claims.
 - 9. A substrate coated with a coating composition of any one of claims 1 to 7.
 - 10. The use of cerium(IV) compounds in dual-cure curing.