P1 Chapter 14: Logarithms

Exponential Functions

Contrasting exponential graphs

On the same axes sketch $y = 3^x$, $y = 2^x$, $y = 1.5^x$

?

On the same axes sketch
$$y = 2^x$$
 and $y = \left(\frac{1}{2}\right)^x$

?

Contrasting exponential graphs

On the same axes sketch $y = 3^x$, $y = 2^x$, $y = 1.5^x$

On the same axes sketch $y = 2^x$ and $y = \left(\frac{1}{2}\right)^x$

Three important notes:

- $y=2^x$ is said to be "exponential growing" whereas $y=\left(\frac{1}{2}\right)^x$ is said to be "exponentially decaying", because it's getting smaller (halving) each time x increases by 1.
- $y = \left(\frac{1}{2}\right)^x$ is a reflection of $y = 2^x$ in the line x = 0. Proof:

If
$$f(x) = 2^x$$
, $f(-x) = 2^{-x} = \frac{1}{2^x} = \left(\frac{1}{2}\right)^x$

 $\left(\frac{1}{2}\right)^x$ would usually be written 2^{-x} . You should therefore in general be able to recognise and sketch the graph $y=a^{-x}$.

Graph Transformations

Graph Transformations

Sketch
$$y = 2^{x+3}$$

The 'change' to 2^x is 'inside the function' (i.e. input x is replaced with x + 3). So a translation to the left by 3.

Ensure you work out the new *y*-intercept.

Exercise 14.1

Pearson Pure Mathematics Year 1/AS Page 113

Homework Exercise

- 1 a Draw an accurate graph of $y = (1.7)^x$, for $-4 \le x \le 4$.
 - **b** Use your graph to solve the equation $(1.7)^x = 4$.
- 2 a Draw an accurate graph of $y = (0.6)^x$, for $-4 \le x \le 4$.
 - **b** Use your graph to solve the equation $(0.6)^x = 2$.
- 3 Sketch the graph of $y = 1^x$.
- 4 For each of these statements, decide whether it is true or false, justifying your answer or offering a counter-example.
 - **a** The graph of $y = a^x$ passes through (0, 1) for all positive real numbers a.
 - **b** The function $f(x) = a^x$ is always an increasing function for a > 0.
 - c The graph of $y = a^x$, where a is a positive real number, never crosses the x-axis.
- 5 The function f(x) is defined as $f(x) = 3^x$, $x \in \mathbb{R}$. On the same axes, sketch the graphs of:

$$\mathbf{a} \quad v = \mathbf{f}(x)$$

$$\mathbf{b} \quad y = 2\mathbf{f}(x)$$

b
$$y = 2f(x)$$
 c $y = f(x) - 4$ **d** $y = f(\frac{1}{2}x)$

$$\mathbf{d} \quad y = \mathbf{f}(\frac{1}{2}x)$$

Write down the coordinates of the point where each graph crosses the y-axis, and give the equations of any asymptotes.

Homework Exercise

6 The graph of $y = ka^x$ passes through the points (1, 6) and (4, 48). Find the values of the constants k and a.

Problem-solving

Substitute the coordinates into $y = ka^x$ to create two simultaneous equations. Use division to eliminate one of the two unknowns.

- 7 The graph of $y = pq^x$ passes through the points (-3, 150) and (2, 0.048).
 - **a** By drawing a sketch or otherwise, explain why 0 < q < 1.
 - **b** Find the values of the constants p and q.

Challenge

Sketch the graph of $y = 2^{x-2} + 5$. Give the coordinates of the point where the graph crosses the y-axis.

Homework Answers

1 a

b $x \approx 2.6$

2 :

b $x \approx -1.4$

3

4 a True, because $a^0 = 1$ whenever a is positive

b False, for example when $a = \frac{1}{2}$

c True, because when a is positive, $a^x > 0$ for all values of x

5

6 k = 3, a = 2

7 a As x increases, y decreases

b p = 1.2, q = 0.2

Challenge

