Math 171 Homework 7 (due May 20)

Problem 45.2.

- (a) Give an example or a subset of \mathbb{R} which is connected but not compact.
- (b) Give an example of a subset of \mathbb{R} which is compact but not connected.
- (c) Characterize the compact connected subsets of \mathbb{R} .

Solution:

- (a) \mathbb{R} is connected by Theorem 45.7 and not compact by Theorem 43.9.
- (b) $\{0,1\}$ is not connected because the point $\{0\}$ is open and closed in $\{0,1\}$ and compact because it is finite.

(c)

Claim 1. The compact connected subsets of \mathbb{R} are

- the empty set,
- singleton sets $\{x\}$, $x \in \mathbb{R}$ and
- closed intervals [a, b], $a, b \in \mathbb{R}$, a < b.

Proof. By Corollary 45.4, the connected subsets of \mathbb{R} are the empty set, the singleton sets, bounded intervals (open, closed and half-open), rays ($[a, \infty)$ and ($-\infty, a$]) and \mathbb{R} itself. By Theorem 43.9 the compact subsets of \mathbb{R} are the closed bounded sets. Open intervals are not closed. Rays and \mathbb{R} are not bounded. Hence, we get the list in the claim.

Problem 45.5. Let X be a connected subset of a metric space M. Prove that \overline{X} is connected. Is \mathring{X} necessarily connected?

Solution: Assume that \overline{X} is not connected. We will show that X is also not connected. Write $\overline{X} = U \cup V$ where U and V are disjoint non-empty open subsets of \overline{X} . Then $X = (X \cap U) \cup (X \cap V)$ with $X \cap U$ and $X \cap V$ disjoint open in X. To show that X is not connected it suffices to show that $X \cap U$ and $X \cap V$ are non-empty. Assume that $X \cap U$ is empty. Then $X = X \cap V$, so $X \subset V$. We show that this implies that $\overline{X} = V$ contradicting our assumptions that U in nonempty. Indeed, let X be a limit point of X and let X be a sequence of elements of X converging to X. Then each X is contained in X. Since X is closed in X, and X is a limit point of X.

Next we give an example when X is connected and \mathring{X} is not connected. Let

$$X = ([-2,0] \times [-2,0]) \cup ([0,2] \times [0,2]).$$

We show that \mathring{X} is not connected. Because for every $\varepsilon > 0$, the point $(-\varepsilon/2, \varepsilon/2)$ is an element of $B_{\varepsilon}((0,0))$ and not of X, $(0,0) \notin \mathring{X}$.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(x,y) = x + y. Since $(0,0) \notin \mathring{X}$, $f(x,y) \neq 0$ for every $(x,y) \in \mathring{X}$.

Since f is continuous, the set $U := f^{-1}((0, \infty))$ is open in \mathbb{R}^2 . Therefore, $U \cap \mathring{X}$ is open in \mathring{X} . The set $U \cap \mathring{X}$ is nonempty because it contains the point (1,1). The set $U \cap \mathring{X}$ is not all of \mathring{X} because it does not contain the point $(-1,-1) \in \mathring{X}$. Finally, $U \cap \mathring{X}$ is closed in \mathring{X} because $U \cap \mathring{X} = f^{-1}([0,\infty)) \cap \mathring{X}$. Thus, \mathring{X} is not connected.

Problem 45.7.

- (a) Show, by example, that unions and intersections of connected sets are not necessarily connected.
- (b) Prove that if X and Y are connected subsets of \mathbb{R} , then $X \cap Y$ is connected.

Solution:

- (a) Consider connected singleton sets {0} and {1}. Their union {0,1} is not connected.
- (b) By Theorem 45.3, it suffices to show that whenever $a, b \in X \cap Y$ with a < b then $[a, b] \subset X$. Assume that $a, b \in X \cap Y$. Since $a, b \in X$ and X is connected, by Theorem 45.3, $[a, b] \subset X$. Similarly, $[a, b] \subset Y$. Thus, $[a, b] \subset X \cap Y$, as desired.

Problem 46.2. Give an example of a complete metric space that is not compact. **Solution:**

 $\mathbb{R}.$

Problem 46.3. Given an example of a connected metric space that is not complete.

Solution: (0,1) is connected by Corollary 45.4, but not complete because the Cauchy sequence $\{1/n\}_{n>1}$ does not converge in (0,1).

Problem 46.5. Let M be a metric space.

- (a) Prove that if C is a complete subset of M, then C is closed.
- (b) Prove that if M is complete, then every closed subset of M is complete.

Solution:

- (a) Let x be limit point of C in M. Let $\{x_n\}$ be a sequence of elements of C converging to an element x of M. By Theorem 46.2, $\{x_n\}$ is a Cauchy sequence in M. Since each x_n is an element of C, $\{x_n\}$ is a Cauchy sequence in C. Since C is complete, $\{x_n\}$ converges to some $y \in C$ as a sequence in C. Thus, $\{x_n\}$ converges to both x and y as a sequence in M, so $x = y \in C$. Thus, C is contains all of its limit points.
- (b) Assume M is complete and let C be a closed subset of M. Let $\{x_n\}$ be a Cauchy sequence in C. Since M is complete, $\{x_n\}$ converges to some $x \in M$. Since C is closed $x \in C$. Thus, every Cauchy sequence in C converges to an element of C.

Problem 1. Let X be any two element set, for instance $\{1,2\}$, endowed with the discrete metric. Prove that a metric space M is connected if and only if continuous functions $f: M \to X$ are constant.

Solution:

Assume that there exists an non-constant function $f: M \to X$. Since the singleton sets $\{1\}$ and $\{2\}$ are open in the discrete metric and f is continuous it follows that $f^{-1}(\{1\})$ and $f^{-1}(\{2\})$ are open subsets of M. Since $X = \{1\} \cup \{2\}$ it follows that

$$M = f^{-1}(\{1\}) \cup f^{-1}(\{2\}).$$

Since f is non-constant, both $f^{-1}(\{1\})$ and $f^{-1}(\{2\})$ and are non-empty. Thus, M can be written as a union of two disjoint nonempty open sets $f^{-1}(\{1\})$ and $f^{-1}(\{2\})$, so M is not connected.

Assume M is not connected. Say $M = U \cup V$ with U and V disjoint nonempty open subsets of M. Define $f: M \to X$ by

$$f(x) \left\{ \begin{array}{ll} 1 & \text{if } x \in U, \\ 2 & \text{if } x \in V. \end{array} \right.$$

Then f is continuous because the preimage of every open subset of X is open in M. Indeed, X has 4 subsets: \emptyset , $\{1\}$, $\{2\}$, X, each of them open in X. The preimage of each of the 4 subsets of X is open in M: $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(\{1\}) = U$, $f^{-1}(\{2\}) = V$, $f^{-1}(X) = M$.