VIRTUALISATION

La virtualisation consiste à créer une version virtuelle d'un élément physique (serveur, stockage, réseau) en utilisant un logiciel pour simuler le matériel.

Avantages principaux

• **Économies** : Moins de serveurs physiques nécessaires

• Flexibilité : Déploiement rapide de nouvelles machines

• **Isolation** : Chaque VM fonctionne indépendamment

• **Optimisation**: Meilleure utilisation des ressources

HYPERVISEURS

Un hyperviseur est un logiciel qui crée, exécute et gère des machines virtuelles.

Type 1 (Bare Metal)

- Fonctionne directement sur le matériel (ex: VMware ESXi, Hyper-V, Citrix XenServer).
- o Performances élevées, utilisé en production.

Type 2 (Hosted)

- S'exécute sur un OS hôte (ex: VirtualBox, VMware Workstation).
- Utilisé pour le test et le développement.

MACHINES VIRTUELLES (VM)

Un environnement simulé qui fonctionne comme un ordinateur physique. Chaque VM a son propre système d'exploitation et ses applications, et elle est isolée des autres VM sur le même hôte.

Composants

• **CPU virtuel**: Partage du processeur physique

• RAM virtuelle : Allocation de mémoire

Stockage virtuel : Disques virtuels (VMDK, VHD)
Réseau virtuel : Interfaces réseau virtuelles

Avantages

- Isolation complète entre VM
- Snapshots pour sauvegardes instantanées
- Facilité de déploiement et migration

MIGRATION

La migration est le processus de déplacement d'une machine virtuelle d'un hôte physique à un autre sans interruption de service. La migration à chaud (comme VMotion de VMware) permet de déplacer des VM en cours d'exécution

P2V (Physical to Virtual)

But: Convertir une machine physique (PC ou serveur) en machine virtuelle.

- On convertit la machine physique en une image disque virtuelle (format ISO ou VMDK). puis on l'importe dans un hyperviseur type 1 comme ESXi.
- Outil utilisé : VMware vCenter Converter.
- **Utilité** : Réduire les coûts matériels, consolider les serveurs physiques, facilité de gestion.

V2V (Virtual to Virtual)

But: Migrer une machine virtuelle d'un hyperviseur à un autre.

- On convertit le disque virtuel (VMDK, ↔ VHD, etc.) d'une VM existante vers un autre format
- Outil utilisé : StarWind V2V Converter.
- **Utilité**: Changer de plateforme (ex: VMware → Hyper-V), homogénéiser l'infrastructure, mettre à jour les environnements.

Migration à chaud (vMotion)

Déplacement d'une VM sans l'éteindre. migration en temps réel.

TYPES DE VIRTUALISATION

- Machine : création de VM complètes (OS, apps).
- **Serveurs**: Partitionnement d'un serveur physique en plusieurs serveurs virtuels.
- **Réseau** : Création de réseaux virtuels indépendants du matériel physique.
 - **Routeur virtuel**: permet la communication entre réseaux virtuels (ex. : entre deux VLAN).
 - o **VLAN** (Virtual LAN) isoler le trafic entre groupes de VM.
 - Switch virtuel: interconnecte les VM entre elles, comme un switch physique, avec gestion du trafic et des
- **Stockage** Les solutions de stockage en virtualisation incluent:
 - o **DAS**: Stockage directement attaché à un serveur via cable
 - o **NAS**: Stockage accessible via un réseau
 - o **SAN**: stockage bloc haut débit (Fibre Channel, iSCSI

TYPES DE SERVEURS VIRTUALISABLES

DNS: Gère la résolution de noms de domaine. Redondance facile avec plusieurs VM

DHCP: Attribue automatiquement des adresses IP.

Web: Héberge des sites web et des applications web.

CLOUD COMPUTING

Le cloud computing est un modèle qui permet l'accès à un pool partagé de ressources informatiques (comme des serveurs, du stockage, des applications) via Internet

Modèles de service

• IaaS: Infrastructure (VM, stockage, réseau)

• **PaaS** : Plateforme de développement

• **SaaS**: Applications complètes

Modèles de déploiement

• **Public** : Ressources partagées (AWS, Azure)

• **Privé** : Infrastructure dédiée

• **Hybride**: Combinaison public/privé

CONTAINERISATION

Exécution d'applications dans des environnements isolés sans hyperviseur. Plus légère que les VM. (Ex: Docker.)

Comparaison Virtualisation vs Cloud vs Containerisation

• **Virtualisation**: Infrastructure locale, contrôle total

• **Cloud** : Infrastructure externalisée, paiement à l'usage

• **Containerisation**: Applications portables, microservices

Aspect	Virtualisation VM	Cloud	Containerisation
Isolation complète	Oui	Dépend du modèle	Partielle (niveau OS)
Poids	Lourd (OS complet)	Variable	Léger
Vitesse	Moyenne	Élevée (cloud natif)	Très rapide

GRAPPES DE SERVEURS (CLUSTERS)

⇒ Groupes de serveurs travaillant ensemble pour fournir une haute disponibilité et un équilibrage de charge.

Calcul distribué

• **Principe** : Répartition des tâches sur plusieurs serveurs

• **Objectif**: Augmenter la puissance de calcul

• **Technologies**: Hadoop, Spark

Load Balancing (LB)

Le load balancing distribue la charge de travail entre plusieurs serveurs pour améliorer les performances et la fiabilité.

HAUTE DISPONIBILITÉ (HA)

Conception de systèmes pour minimiser les temps d'arrêt, souvent via des solutions matérielles et logicielles redondantes.

Solutions matérielles

• **Redondance**: Composants dupliqués (alimentation, réseau)

- **Clustering**: Serveurs en grappe avec basculement automatique
- **RAID**: Protection contre les pannes de disques

Solutions logicielles

- Failover automatique : Basculement transparent
- **Réplication** : Synchronisation des données
- Monitoring : Surveillance continue des services

Métriques

- **RTO** (Recovery Time Objective): Temps maximal d'arrêt acceptable
- **RPO** (Recovery Point Objective): Perte de données maximale acceptable

TOLÉRANCE AUX PANNES

Capacité d'un système à continuer de fonctionner en cas de défaillance d'un composant.

Niveaux RAID

- **RAID 0** : Performance (pas de securité)
- **RAID 1**: Miroir (protection complète)
- **RAID 5** : Parité distribuée (économique)
- RAID 10 : Très rapide + haute tolérance (cout élevé)

Stratégies

- **N+1**: Un composant de secours
- 2N: Doublement complet de l'infrastructure
- Hot standby : Basculement immédiat

PLANS DE CONTINUITÉ

PCA (Plan de Continuité d'Activité)

- **Objectif** : Maintenir l'activité en continu
- Mécanismes :
 - Clustering HA
 - o Réplication synchrone
 - o RAID pour stockage
 - Load balancing

PRA (Plan de Reprise d'Activité)

- Objectif: Reprendre l'activité après incident majeur
- Outils VMware:
 - o **Snapshots** : État figé de la VM
 - o **Réplication** : Copies des VM sur site distant
 - o **vSphere Replication**: Réplication au niveau hyperviseur
 - o **Site Recovery Manager** : Orchestration automatisée

- **Bridge** : VM visible directement sur le réseau physique.
- **Host-only**: VM communique uniquement avec l'hôte

DATA CENTERS

Un lieu sécurisé qui regroupe des équipements informatiques (serveurs, stockage, réseau) pour héberger, traiter et stocker des données et des services numériques, avec une haute disponibilité et une alimentation continue

1. Alimentation électrique

- Onduleurs (UPS): Maintien immédiat en cas de coupure (quelques minutes).
- **Groupe électrogène** : Relais autonome en cas de panne prolongée.
- **Double alimentation** : Redondance pour éviter l'arrêt en cas de défaut

2. Refroidissement

- Climatisation de précision (CRAC) : Maintient la température idéale des serveurs.
- **Allées chaudes / froides**: Disposition alternée des baies pour séparer l'air froid (aspiration) de l'air chaud (rejet), afin d'optimiser le refroidissement et éviter les surchauffes.

3. Réseau & Connectivité

- **Switchs / Routeurs / Firewalls**: Communication, sécurité, segmentation.
- Accès fibre Très Haut Débit (THD) : Pour assurer la connectivité externe.
- Points d'échange GIX / NAP : Interconnexion avec de multiples opérateurs.

4. Équipements informatiques

- **Serveurs (rack ou lame)** : Hébergent les services (VM, base de données...).
- **Hyperviseurs (ex.: VMware ESXi)**: Gestion de machines virtuelles.
- **Baies / racks** : Organisation et sécurisation physique des équipements.

5. Stockage

- **DAS**: Stockage local, simple.
- NAS : Partage de fichiers via le réseau.
- SAN: Stockage hautes performances pour VM et bases de données.

6. Sécurité & Surveillance

- Contrôle d'accès (badge, biométrie) : Limite l'accès physique.
- **Caméras (CCTV)**: Surveillance 24/7.
- **Détection incendie, humidité, fuites** : Protection contre sinistres.

7. Supervision & Monitoring

• Outils comme Zabbix, Nagios, vRealize : Surveillance en temps réel.

• Rapports de maintenance : Prévention des pannes, optimisation.

8. Besoins Stratégiques

- Haute disponibilité (HA) : Redondance matérielle, load balancing.
- Continuité (PCA) & Reprise (PRA) : Sauvegarde, duplication, réplication.
- Efficacité énergétique (PUE) : Optimisation de la consommation.