

Postanschrift: FernUniversität ·58084 Hagen (Name, Vorname) (Straße, Nr.) (PLZ, Wohnort)				Bitte hier unbedingt l trikelnummer und Ad se eintragen, sonst ke Bearbeitung möglich.
(Straße, Nr.)	Postanschrift: Fe	rnUniversität ⋅58	3084 Hagen	
(Straße, Nr.)				
	(Name, Vornam))		
(PLZ, Wohnort)	(Straße, Nr.)			
(PLZ, Wohnort)				
	(PLZ, Wohnort)			

FernUniversität in Hagen FAKULTÄT für Mathematik und Informatik

Klausur WS 2007/08

Klausur: 01141 Mathematische Grundlagen

DATUM: 9.2.2008

UHRZEIT: 10.00 - 12.00 Uhr

KLAUSURORT:

Bearbeitungshinweise

(Bitte vor Arbeitsbeginn durchlesen!)

- 1. Schreiben Sie Ihre Klausur bitte nicht mit Bleistift.
- 2. Füllen Sie bitte die grau hinterlegten Felder leserlich und vollständig aus, und schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedes Lösungsblatt, das Sie abgeben.
- 3. Die Reihenfolge, in der Sie die Aufgaben/Teilaufgaben lösen, ist Ihnen freigestellt. Kreuzen Sie in der Tabelle (s.u.) an, welche Aufgaben Sie bearbeitet haben.
- 4. Bei jeder Aufgabe ist die erreichbare Höchstpunktzahl vermerkt. Sie haben die Klausur bestanden, wenn Sie **40** Punkte erreichen.
- 5. Erlaubtes Hilfsmittel ist ein beidseitig beschriebenes, handschriftliches DIN-A4 Blatt mit eigenen Aufzeichnungen.
- 6. Weitere Hilfsmittel wie Studienbriefe, Glossare, Bücher, Aufzeichnungen, Taschenrechner, etc. dürfen während der Klausur nicht benutzt werden. Ihre Benutzung sowie andere Täuschungsversuche führen dazu, dass Ihre Klausur mit 5 bewertet wird.
- 7. Die Finanzamtsbescheinigung wird Ihnen zugeschickt.

Aufsicht:	Aufsicht:			Bemerkungen:						
Datum, Unterschrift:										
Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Bearbeitet										
max. Punktezahl	8	16	4	10	8	8	10	8	8	80
erreichte Punktezahl										
Korrektur										
Datum/Note										

1. Prüferin: Prof. Dr. L. Unger	2. Prüferin: Dr. S. Hartlieb
Datum, Unterschrift	Datum, Unterschrift

Klausur am 09.02.2008:

Aufgabenstellungen

Die Lösungen der folgenden Aufgaben müssen Sie begründen.

Aufgabe 1

Bestimmen Sie die Lösungsmenge \mathcal{L} des folgenden linearen Gleichungssystems über \mathbb{R} .

$$\begin{pmatrix} 0 & 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

[8 Punkte]

Aufgabe 2

Sei
$$V=\mathrm{M}_{22}(\mathbb{R}),$$
 und sei $f:V\to V$ definiert durch $f\begin{pmatrix}a&b\\c&d\end{pmatrix}=\begin{pmatrix}2a&b+c\\b+c&2d\end{pmatrix}$ für alle $\begin{pmatrix}a&b\\c&d\end{pmatrix}\in V.$

- 1. Beweisen Sie, dass f linear ist.
- 2. Bestimmen Sie eine Basis von Bild(f) und von Kern(f).

$$[4 + 12 = 16 \ Punkte]$$

Aufgabe 3

Beweisen Sie, dass
$$V = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$
 ein Unterraum von $M_{22}(\mathbb{R})$ ist.

[4 Punkte]

Klausuraufgaben MG KL/2

Aufgabe 4

Beweisen Sie folgende Formel mit vollständiger Induktion.

Für alle
$$n \in \mathbb{N}$$
 gilt $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$.

[10 Punkte]

Aufgabe 5

Beweisen Sie, dass die Folge (a_n) mit $a_n = \sqrt{n^2 + n} - n$ für alle $n \in \mathbb{N}$ konvergent ist, und bestimmen Sie ihren Grenzwert.

Hinweis: Mit der dritten binomischen Formel gilt $(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n) = n$.

[8 Punkte]

Aufgabe 6

Beweisen Sie, dass die Reihe $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ konvergent ist.

[8 Punkte]

Aufgabe 7

Sei I ein Intervall in \mathbb{R} , und seien $f: I \to \mathbb{R}$ und $g: I \to \mathbb{R}$ stetige Funktionen. Für alle $x \in I \cap \mathbb{Q}$ sei f(x) = g(x).

Beweisen Sie, dass f(x) = g(x) für alle $x \in I$ gilt.

[10 Punkte]

Aufgabe 8

Sei $x \in \mathbb{R}$ so, dass $f(x) = \sqrt{\sin(\frac{\cos(x)}{x})}$ definiert ist. Berechnen Sie f'(x).

Klausuraufgaben MG KL/3

Aufgabe 9

1. Konstruieren Sie eine Interpretation, sodass die Formel $\forall x (P(x) \lor Q(x))$ wahr ist.

2. Konstruieren Sie eine Interpretation, sodass die Formel $\forall x (P(x) \lor Q(x))$ falsch ist.

$$[4 + 4 = 8 \ Punkte]$$

Funktion	Definitionsbereich	Stammfunktion
$x \mapsto x^n, n \in \mathbb{N}_0$	R	$x \mapsto \frac{1}{n+1}x^{n+1}$
$x\mapsto x^{-n}, n\in\mathbb{N}, n\geq 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$
$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto \arctan(x)$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)}a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto \frac{1}{\cos^2(x)}$	$((k - \frac{1}{2})\pi, (k + \frac{1}{2})\pi), k \in \mathbb{Z}$	$x \mapsto \tan(x)$
$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi,(k+1)\pi),k\in\mathbb{Z}$	$x \mapsto -\cot(x)$