

MATH F113 Probability and Statistics

BITS Pilani
Pilani Campus

Dr. Shivi Agarwal Department of Mathematics

Chapter 8 Inferences on the mean and variance of a distribution

Estimation of variance

ieve lead

Recall : S^2 is an unbiased estimator for σ^2 .

Theorem 8.1.1: Let $X_1, ..., X_n$ be the random sample of size n from a normal population with mean μ and s.d. σ . Then $(n-1) S^2 / \sigma^2 = \sum_{i=1}^{n} (X_i - \overline{X})^2 / \sigma^2$

has chi-squared distribution with (n-1) degrees of freedom.

Recall: Chi-squared dist with (n-1) degrees of freedom is Gamma dist with $\alpha = (n-1)/2$, $\beta = 2$.

Chi Squared (χ²) Distribution

Shape indexed by one parameter called the degrees of freedom (df).

Theorem 8.1.2: Let $X_1, ..., X_n$ be the random sample of size n from a normal population with mean μ and s.d. σ . Using the above theorem, the $100(1-\alpha)\%$ confidence interval for σ^2 is given

by

$$\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}} \leq \sigma^{2} \leq \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}}.$$

has a Chi Squared Distribution, then a $100(1-\alpha)\%$ Cl can be computed by finding the upper and lower $\alpha/2$ critical values from this distribution.

Chi-Squared distribution

$$P(\chi_{df,1-\alpha/2}^{2} < \frac{(n-1)s^{2}}{\sigma^{2}} \le \chi_{df,\alpha/2}^{2}) = 1-\alpha$$

$$\frac{(n-1)s^{2}}{\chi_{df,\alpha/2}^{2}} < \sigma^{2} < \frac{(n-1)s^{2}}{\chi_{df,1-\alpha/2}^{2}}$$

Q 7. Recent research indicates that heating and cooling commercial buildings with ground water source heat pumps economically sound. The crucial random variable being studied is the water temperature which is normally distributed. A sample of 15 wells in the state of California yields a sample standard deviation of 7.5° F. Find a 95% confidence interval on the standard deviation in temperature of wells in California.

	df	0.005	0.010	0.025	0.050	0.100	0.250	<i>P</i> 0.500	0.750	0.900	0.950	0.975	0.990	0.995	0.999
Ì	1	0.000	0.000	0.001	0.004	0.016	0.102	0.455	1.323	2.706	3.841	5.024	6.635	7.879	10.83
	2	0.010	0.020	0.051	0.103	0.211	0.575	1.386	2.773	4.605	5.991	7.378	9.210	10.60	13.82
	3	0.072	0.115	0.216	0.352	0.584	1.213	2.366	4.108	6.251	7.815	9.348	11.34	12.84	16.27
	4	0.207	0.297	0.484	0.711	1.064	1.923	3.357	5.385	7.779	9.488	11.14	13.28	14.86	18.47
	5	0.412	0.554	0.831	1.145	1.610	2.675	4.351	6.626	9.236	11.07	12.83	15.09	16.75	20.51
	6	0.676	0.872	1.237	1.635	2.204	3.455	5.348	7.841	10.64	12.59	14.45	16.81	18.55	22.46
	7	0.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.02	14.07	16.01	18.48	20.28	24.32
	8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.22	13.36	15.51	17.53	20.09	21.95	26.12
	9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.39	14.68	16.92	19.02	21.67	23.59	27.88
	10	2.156	2.558	3.247	3.940	4.865	6.737	9.342	12.55	15.99	18.31	20.48	23.21	25.19	29.59
	11	2.603	3.053	3.816	4.575	5.578	7.584	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
	12	3.074	3.571	4.404	5.226	6.304	8.438	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
	13	3.565	4.107	5,009	5.892	7.041	9.299	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
→	14	4.075	4.660	5.629	6.571	7.790	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
	15	4.601	5.229	6.262	7.261	8.547	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
	16	5.142	5.812	6.908	7.962	9.312	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
	17	5.697	6.408	7.564	8.672	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
	18	6.265	7.015	8.231	9.390	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
	19	6.844	7.633	8.907	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
	20	7.434	8.260	9.591	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.31

Q 4. Since variance is a measure of consistency, it is usually hoped that σ² will be small.

One sided confidence interval on $\sigma^2=[0,L]$

where
$$L = \frac{(n-1)S^2}{\chi_{1-\alpha}^2}$$

Example: X is actual length of 63mm nails,
 Use the given data to find a 95% one side confidence interval on the variance in length

63.0 63.1 63.0 63.0 62.9 63.0 63.0

63.1 62.8 63.1 63.1 63.0 62.9 63.2

The manufacturer wants to check to be sure that the population variance of the length of nails being produced does not exceed 0.03. Assume that the length is normally distributed. Does this sample indicate that this is in the case? Explain.

df	0.005	0.010	0.025	0.050	0.100	0.250	<i>P</i> 0.500	0.750	0.900	0.950	0.975	0.990	0.995	0.999
1	0.000	0.000	0.001	0.004	0.016	0.102	0.455	1.323	2.706	3.841	5.024	6.635	7.879	10.83
2	0.010	0.020	0.051	0.103	0.211	0.575	1.386	2.773	4.605	5.991	7.378	9.210	10.60	13.82
3	0.072	0.115	0.216	0.352	0.584	1.213	2.366	4.108	6.251	7.815	9.348	11.34	12.84	16.27
4	0.207	0.297	0.484	0.711	1.064	1.923	3.357	5.385	7.779	9.488	11.14	13.28	14.86	18.47
5	0.412	0.554	0.831	1.145	1.610	2.675	4.351	6.626	9.236	11.07	12.83	15.09	16.75	20.51
6	0.676	0.872	1.237	1.635	2.204	3.455	5.348	7.841	10.64	12.59	14.45	16.81	18.55	22.46
7	0.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.02	14.07	16.01	18.48	20.28	24.32
8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.22	13.36	15.51	17.53	20.09	21.95	26.12
9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	2.156	2.558	3.247	3.940	4.865	6.737	9.342	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	2.603	3.053	3.816	4.575	5.578	7.584	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	3.074	3.571	4.404	5.226	6.304	8.438	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	3.565	4.107	5.009	5.892	7.041	9.299	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	4.075	4.660	5.629	6.5/1	7.790	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	1	5.229	6.262	7.261	8.547	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	5.142	5.812	6.908	7.962	9.312	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	5.697	6.408	7.564	8.672	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	I .	7.015	8.231	9.390	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	1	7.633	8.907	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	7.434	8.260	9.591	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.31

Confidence interval of meanvariance unknown.

- •If sample size is large and variance known, then using central limit theorem, we have given confidence interval involving σ^2 .
- •If sample size is large and variance unknown, then we can replace σ^2 by its estimate s^2 in this formula.
- •What if sample is small?

T-distribution

What is the distribution of

$$\frac{X-\mu}{S/\sqrt{n}}$$
?

Need assumption of normality on population X to find it.

Let Z be a standard normal r.v and X_{γ}^2 be an independent chi-squared r.v. with γ degrees of freedom. Then distribution of T is called T distribution with γ degrees of freedom where

$$T = \frac{Z}{\sqrt{X_{\gamma}^2/\gamma}}$$

Theorem 8.2.1

Let $X_1,...,X_n$ be the random sample of size n from a normal r.v X mean μ (unknown) and variance σ^2 (unknown). Then

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim T_{n-1}$$

More about T dist.

•T random variable with γ degrees of freedom (called parameter) is a continuous r.v. with density

$$f(t) = \frac{\Gamma(\gamma + 1)/2}{\Gamma(\gamma / 2)\sqrt{\pi \gamma}} \left(1 + \frac{t^2}{\gamma}\right)^{-(\gamma + 1)/2}; -\infty < t < \infty.$$

- •Graph of the density is bell shaped sym about 0.
- •Variance of T decreases as γ increases. In fact T approximately is standard normal for large γ .

T- distribution

T- distribution

c.d.f. of T dist.

- •Cdf is given by tables (Table VI, p.699).
- As for chi-square table, γ is the label of rows, F(t) is label of columns, at their intersection is value (t) for γ degrees of freedom.
- By t_r we denote the value of the t-variable such that area under its density to its right is r. (The degrees of freedom must be mentioned separately).

					P					
ďf	0.600	0.750	0.800	0.900	0.950	0.975	0.990	0.995	0.9990	0.9995
1	0.325	1.000	1.376	3.078	6.314	12.71	31.82	63.66	318.3	636.6
2	0.289	0.816	1.061	1.886	2.920	4.303	6.965	9.925	22.33	31.60
3	0.277	0.765	0.978	1.638	2.353	3.182	4.541	5.841	10.21	12.92
4	0.271	0.741	0.941	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.727	0.920	1.476	2.015	2.571	3.365	4.032	5.894	6.869
6	0.265	0.718	0.906	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.711	0.896	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.706	0.889	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.261	0.703	0.883	1.393	1.833	2.262	2.821	3.250	4.297	4.781
10	0.260	0.700	0.879	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.260	0.697	0.876	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.259	0.695	0.873	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.259	0.694	0.870	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.258	0.692	0.868	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.258	0.691	0.866	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.258	0.690	0.865	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.257	0.689	0.863	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.257	0.688	0.862	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.257	0.688	0.861	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.257	0.687	0.860	1.325	1.725	2.086	2.528	2.845	3.552	3.850

$$t_{0.10} (\gamma = 10) = 1.372$$

						P						-
	df	0.600	0.750	0.800	0.900	0.950	0.975	0.990	0.995	0.9990	0.9995	
	1	0.325	1.000	1.376	3.078	6.314	12.71	31.82	63.66	318.3	636.6	
	2	0.289	0.816	1.061	1.886	2.920	4.303	6.965	9.925	22.33	31.60	
	3	0.277	0.765	0.978	1.638	2.353	3.182	4.541	5.841	10.21	12.92	
	4	0.271	0.741	0.941	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
	5	0.267	0.727	0.920	1.476	2.015	2.571	3.365	4.032	5.894	6.869	
	6	0.265	0.718	0.906	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
	7	0.263	0.711	0.896	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
_	→ 8	0.262	0.706	0.889	1.397	1.860	2.306	2.896	3.355	4.501	5.041	
	9	0.261	0.703	0.883	1.383	1.833	2.262	2.821	3.250	4.297	4.781	
	10	0.260	0.700	0.879	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
	11	0.260	0.697	0.876	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
	12	0.259	0.695	0.873	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
	13	0.259	0.694	0.870	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
	14	0.258	0.692	0.868	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
	15	0.258	0.691	0.866	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
	16	0.258	0.690	0.865	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
	17	0.257	0.689	0.863	1.333	1.740	2.110	2.567	2.898	3.646	3.965	
	18	0.257	0.688	0.862	1.330	1.734	2.101	2.552	2.878	3.610	3.922	
	19	0.257	0.688	0.861	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
	20	0.257	0.687	0.860	1.325	1.725	2.086	2.528	2.845	3.552	3.850	

$$t_{0.05} (\gamma = 8) = ?$$

					Р	1				
df	0.600	0.750	0.800	0.900	0.950	0.975	0.990	0.995	0.9990	0.9995
1	0.325	1.000	1.376	3.078	6.314	12.71	31.82	63.66	318.3	636.6
2	0.289	0.816	1.061	1.886	2.920	4.303	6.965	9.925	22.33	31.60
3	0.277	0.765	0.978	1.638	2.353	3.182	4.541	5.841	10.21	12.92
4	0.271	0.741	0.941	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.267	0.727	0.920	1.476	2.015	2.571	3.365	4.032	5.894	6.869
6	0.265	0.718	0.906	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.263	0.711	0.896	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.262	0.706	0.889	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.261	0.703	0.883	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.260	0.700	0.879	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.260	0.697	0.876	1.363	1.796	2.201	2.718	3.106	4.025	4.437
> 12	0.259	0.695	0.873	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.259	0.694	0.870	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.258	0.692	0.868	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.258	0.691	0.866	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.258	0.690	0.865	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.257	0.689	0.863	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.257	0.688	0.862	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.257	0.688	0.861	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.257	0.687	0.860	1.325	1.725	2.086	2.528	2.845	3.552	3.850

$$t_{0.975}(\gamma = 12) = ?$$

innovate achieve lead

$$t_{0.05}(\gamma = 150) = ?$$

ďf	0.600	0.750	0.800	0.900	<i>P</i> 0.950	0 975	0 990	0 995	n qqqn	0.9995
										3.5/4
									3.319	3.566
39	0.255	0.681	0.851	1.304	1.685	2.023	2.426	2.708	3.313	3.558
40	0.255	0.681	0.851	1.303	1.684	2.021	2.423	2.704	3.307	3.551
50	0.255	0.679	0.849	1.299	1.676	2.009	2.403	2.678	3.261	3.496
60	0.254	0.679	0.848	1.296	1.671	2.000	2.390	2.660	3.232	3.460
70	0.254	0.678	0.847	1.294	1.667	1.994	2.381	2.648	3.211	3.435
80	0.254	0.678	0.846	1.292	1.664	1.990	2.374	2.639	3.195	3.416
90	0.254	0.677	0.846	1.291	1.662	1.987	2.368	2.632	3.183	3.402
100	0.254	0.677	0.845	1.290	1.660	1.984	2.364	2.626	3.174	3.390
00	0.253	0.674	0.842	1.282	1.645	1.960	2.326	2.576	3.090	3.290
	50 60 70 80 90 100	3/ 0.255 38 0.255 39 0.255 40 0.255 50 0.255 60 0.254 70 0.254 80 0.254 90 0.254 100 0.254	3/ 0.255 0.681 38 0.255 0.681 39 0.255 0.681 40 0.255 0.681 50 0.255 0.679 60 0.254 0.679 70 0.254 0.678 80 0.254 0.678 90 0.254 0.677 100 0.254 0.677	3/ 0.255 0.681 0.851 38 0.255 0.681 0.851 39 0.255 0.681 0.851 40 0.255 0.681 0.851 50 0.255 0.679 0.849 60 0.254 0.679 0.848 70 0.254 0.678 0.847 80 0.254 0.678 0.846 90 0.254 0.677 0.846 100 0.254 0.677 0.845	37 0.255 0.681 0.851 1.305 38 0.255 0.681 0.851 1.304 39 0.255 0.681 0.851 1.304 40 0.255 0.681 0.851 1.303 50 0.255 0.679 0.849 1.299 60 0.254 0.679 0.848 1.296 70 0.254 0.678 0.847 1.294 80 0.254 0.678 0.846 1.292 90 0.254 0.677 0.846 1.291 100 0.254 0.677 0.845 1.290	df 0.600 0.750 0.800 0.900 0.950 3/ 0.255 0.681 0.851 1.305 1.68/ 38 0.255 0.681 0.851 1.304 1.686 39 0.255 0.681 0.851 1.304 1.685 40 0.255 0.681 0.851 1.303 1.684 50 0.255 0.679 0.849 1.299 1.676 60 0.254 0.679 0.848 1.296 1.671 70 0.254 0.678 0.847 1.294 1.667 80 0.254 0.678 0.846 1.292 1.664 90 0.254 0.677 0.846 1.291 1.662 100 0.254 0.677 0.845 1.290 1.660	df 0.600 0.750 0.800 0.900 0.950 0.975 3/ 0.255 0.681 0.851 1.305 1.68/ 2.026 38 0.255 0.681 0.851 1.304 1.686 2.024 39 0.255 0.681 0.851 1.304 1.685 2.023 40 0.255 0.681 0.851 1.303 1.684 2.021 50 0.255 0.679 0.849 1.299 1.676 2.009 60 0.254 0.679 0.848 1.296 1.671 2.000 70 0.254 0.678 0.847 1.294 1.667 1.994 80 0.254 0.678 0.846 1.292 1.664 1.990 90 0.254 0.677 0.846 1.291 1.662 1.987 100 0.254 0.677 0.845 1.290 1.660 1.984	df 0.600 0.750 0.800 0.900 0.950 0.975 0.990 3/ 0.255 0.681 0.851 1.305 1.68/ 2.026 2.431 38 0.255 0.681 0.851 1.304 1.686 2.024 2.429 39 0.255 0.681 0.851 1.304 1.685 2.023 2.426 40 0.255 0.681 0.851 1.303 1.684 2.021 2.423 50 0.255 0.679 0.849 1.299 1.676 2.009 2.403 60 0.254 0.679 0.848 1.296 1.671 2.000 2.390 70 0.254 0.678 0.847 1.294 1.667 1.994 2.381 80 0.254 0.678 0.846 1.292 1.664 1.990 2.374 90 0.254 0.677 0.846 1.291 1.662 1.987 2.368 100 0.	df 0.600 0.750 0.800 0.900 0.950 0.975 0.990 0.995 3/ 0.255 0.681 0.851 1.305 1.68/ 2.026 2.431 2./15 38 0.255 0.681 0.851 1.304 1.686 2.024 2.429 2.712 39 0.255 0.681 0.851 1.304 1.685 2.023 2.426 2.708 40 0.255 0.681 0.851 1.303 1.684 2.021 2.423 2.704 50 0.255 0.679 0.849 1.299 1.676 2.009 2.403 2.678 60 0.254 0.679 0.848 1.296 1.671 2.000 2.390 2.660 70 0.254 0.678 0.847 1.294 1.667 1.994 2.381 2.648 80 0.254 0.678 0.846 1.292 1.664 1.990 2.374 2.639 90	df 0.600 0.750 0.800 0.900 0.950 0.975 0.990 0.995 0.9990 3/ 0.255 0.681 0.851 1.304 1.686 2.024 2.429 2.712 3.319 39 0.255 0.681 0.851 1.304 1.685 2.023 2.426 2.708 3.313 40 0.255 0.681 0.851 1.303 1.684 2.021 2.423 2.704 3.307 50 0.255 0.679 0.849 1.299 1.676 2.009 2.403 2.678 3.261 60 0.254 0.679 0.848 1.296 1.671 2.000 2.390 2.660 3.232 70 0.254 0.678 0.847 1.294 1.667 1.994 2.381 2.648 3.211 80 0.254 0.678 0.846 1.292 1.664 1.990 2.374 2.639 3.195 90 0.254 0.677

Ex. 9

- (g) Using T-table find t such that P[-t \leq T₂₅ \leq t] =0.90. By symmetry, need to find t_{0.05} for 25 degrees of freedom. Equivalently, F(t_{0.05})=0.95 for 25 degrees of freedom.
 - Look in T-table in row corresponding to and column corresponding to 0.95.

This gives t = 1.708.

(k) $P[T_{16} \le -t] = 0.05$ implies $P[T_{16} \ge t] = 0.05$, i.e. $P[T_{16} \le t] = 0.95$, from table, t = 1.746.

$$P[-t \le T_{25} \le t] = 0.90$$

					þ					
ďf	0.600	0.750	0.800	0.900	0.950	0.975	0.990	0.995	0.9990	0.9995
21	0.257	0.686	0.859	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.256	0.686	0.858	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.256	0.685	0.858	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.256	0.685	0.857	1.318	1.711	2.064	2.492	2.797	3.467	3.745
> 25	0.256	0.684	0.856	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.256	0.684	0.856	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.256	0.684	0.855	1.314	1.703	2.052	2.473	2.771	3.421	3.689
28	0.256	0.683	0.855	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.256	0.683	0.854	1.311	1.699	2.045	2.462	2.756	3.396	3.660
30	0.256	0.683	0.854	1.310	1.697	2.042	2.457	2.750	3.385	3.646

						V					
	ďf	0.600	0.750	0.800	0.900	0.950	0.975	0.990	0.995	0.9990	0.9995
	1	0.325	1.000	1.376	3.078	6.314	12.71	31.82	63.66	318.3	636.6
	2	0.289	0.816	1.061	1.886	2.920	4.303	6.965	9.925	22.33	31.60
	3	0.277	0.765	0.978	1.638	2.353	3.182	4.541	5.841	10.21	12.92
	4	0.271	0.741	0.941	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.267	0.727	0.920	1.476	2.015	2.571	3.365	4.032	5.894	6.869
	6	0.265	0.718	0.906	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.263	0.711	0.896	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	8	0.262	0.706	0.889	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	0.261	0.703	0.883	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	10	0.260	0.700	0.879	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	0.260	0.697	0.876	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.259	0.695	0.873	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.259	0.694	0.870	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.258	0.692	0.868	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.258	0.691	0.866	1.341	1 753	2.131	2.602	2.947	3.733	4.073
-	16	0.258	0.690	0.865	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.257	0.689	0.863	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.257	0.688	0.862	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.257	0.688	0.861	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.257	0.687	0.860	1.325	1.725	2.086	2.528	2.845	3.552	3.850

$$P[T_{16} \le -t] = 0.05; t = ?$$

C.I. for meanvariance unknown

Theorem 8.2.1: Let $X_1,...,X_n$ be the random sample of size n from a normal r.v X. Then

$$\frac{\bar{X} - \mu}{S / \sqrt{n}}$$

has T distribution with (n - 1) degrees of freedom.

This gives $100(1-\alpha)\%$ confidence interval for the mean from *normal* population of unknown variance as

$$\left[\overline{X} - t_{\alpha/2} S / \sqrt{n}, \overline{X} + t_{\alpha/2} S / \sqrt{n} \right]$$
 where T dist. has (n-1) degrees of freedom.

Q 10. The "supergopher" is a device invented to drill through arctic pack ice. It is a cone shaped apparatus 5 feet high, 4 feet wide, and wound with a copper coil. Water heated to 180°F is pumped through the coil. This allows the gopher to melt a vertical round shaft through the ice. Let X denote the distance or depth that the gopher can per hour which is normally distributed. These data are obtained on 10 test holes (depth is in feet):

- 2.0 1.7 2.6 1.5 1.4
- 2.1 3.0 2.5 1.8 1.4
- (a) Use these data to find \overline{x} , s^2 , and s.
- (b) Find a 90% confidence interval on the average distance that can be drilled in an hour.

						V					
	df	0.600	0.750	0.800	0.900	0.950	0.975	0.990	0.995	0.9990	0.9995
	1	0.325	1.000	1.376	3.078	6.314	12.71	31.82	63.66	318.3	636.6
	2	0.289	0.816	1.061	1.886	2.920	4.303	6.965	9.925	22.33	31.60
-	3	0.277	0.765	0.978	1.638	2.353	3.182	4.541	5.841	10.21	12.92
	4	0.271	0.741	0.941	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.267	0.727	0.920	1.476	2.015	2.571	3.365	4.032	5.894	6.869
	6	0.265	0.718	0.906	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.263	0.711	0.896	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	8	0.262	0.706	0.889	1.397	1.860	2.306	2.896	3.355	4.501	5.041
7	9	0.261	0.703	0.883	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	10	0.260	0.700	0.879	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	0.260	0.697	0.876	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.259	0.695	0.873	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.259	0.694	0.870	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.258	0.692	0.868	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.258	0.691	0.866	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.258	0.690	0.865	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.257	0.689	0.863	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.257	0.688	0.862	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.257	0.688	0.861	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.257	0.687	0.860	1.325	1.725	2.086	2.528	2.845	3.552	3.850

$$t_{0.05}(\gamma = 9) = ?$$

of copper recovered per ton of ore mine, a sample of 150 tons of ores is monitored. A sample mean of 11 pounds with a sample s.d. of 3 pounds was obtained. Construct a 95% confidence interval on the mean number of pounds of copper recovered per ton of ore mined. Assume normality of the population.

 $T_{0.025} = 1.96$ for 149 $\sim \infty$ degrees of freedom (See in row for ∞ and col. 0.975 in T-table.) And substitute this and \overline{x} =11, ,s=3, n=150 in C.I. formula.

Q 17. One sided confidence interval can be used to approximate the maximum and minimum value of the population mean.

An interval $(-\infty, L_1]$ such that $P(\mu \le L_1) = 1-\alpha$ allows us to place bounds on the maximum value of population mean

where
$$L_1 = \overline{X} + t_{\alpha} S / \sqrt{n}$$

An interval $[L_2, \infty)$ such that $P(\mu \ge L_2) = 1-\alpha$ allows us to place bounds on the minimum value of population mean

where
$$L_2 = \overline{X} - t_{\alpha} S / \sqrt{n}$$

Use the following data on X, the time that a commercial airliner stays at the gate during a through flight, to find a 95% one sided confidence interval that puts a bound on the minimum time in minutes for μ :

25 29 32 37 40 27 30 35 38 41

42 45 45 47 49 50 55 53 60

						P						
	ďf	0.600	0.750	0.800	0.900	0.950	0.975	0.990	0.995	0.9990	0.9995	
	1	0.325	1.000	1.376	3.078	6.314	12.71	31.82	63.66	318.3	636.6	
	2	0.289	0.816	1.061	1.886	2.920	4.303	6.965	9.925	22.33	31.60	
-	3	0.277	0.765	0.978	1.638	2.353	3.182	4.541	5.841	10.21	12.92	
	4	0.271	0.741	0.941	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
	5	0.267	0.727	0.920	1.476	2.015	2.571	3.365	4.032	5.894	6.869	
	6	0.265	0.718	0.906	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
	7	0.263	0.711	0.896	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
	8	0.262	0.706	0.889	1.397	1.860	2.306	2.896	3.355	4.501	5.041	
	9	0.261	0.703	0.883	1.383	1.833	2.262	2.821	3.250	4.297	4.781	
	10	0.260	0.700	0.879	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
	11	0.260	0.697	0.876	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
	12	0.259	0.695	0.873	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
	13	0.259	0.694	0.870	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
	14	0.258	0.692	0.868	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
	15	0.258	0.691	0.866	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
	16	0.258	0.690	0.865	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
	17	0.257	0.689	0.863	1.333	1740	2.110	2.567	2.898	3.646	3.965	
7	18	0.257	0.688	0.862	1.330	1.734	2.101	2.552	2.878	3.610	3.922	
	19	0.257	0.688	0.861	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
	20	0.257	0.687	0.860	1.325	1.725	2.086	2.528	2.845	3.552	3.850	

$$t_{0.05}(\gamma = 18) = ?$$

Sample size required to estimate µ with specified error

Q 19. (A consequence of central limit theorem) We can assert with $100(1-\alpha)$ % confidence that sample mean from a sample of size n differs from population mean by at most d if the sample size n ≥ $(z_{\alpha/2})^2 \sigma^2/d^2$, i.e., using the sample mean of any sample of such size, we can estimate the population mean within d units with $100(1-\alpha)\%$ confidence.

- Q 19. (b) A preliminary pilot study is run, and an estimated standard deviation of 500 units is obtained. How large a sample is needed to estimate μ to within 50 units with 95% confidence?
- (c) If rough estimate of σ is 0.75. How large a sample is needed to estimate μ to within 0.1 with 90% confidence?