Homework #2 Key

1.7

Assume we want to multiply the n-bit number x by the m-bit number y. The algorithm must terminate after m recursive calls, because at each call y is halved (the number of digits is decreased by one). Each recursive call requires a division by 2, a check for even-odd, a multiplication by 2 (all of those take constant time) and a possible addition of x to the current result (which takes O(n) time). Thus, the total is $O(m \cdot n)$ time.

1.25

Since 127 is prime, by Fermat's Little Theorem, $2^{126} \equiv 1 \pmod{127}$. Then $2 \cdot 2^{125} \equiv 1 \pmod{127}$ and we are looking for a number that, when multiplied by two, is congruent to (or has a remainder of) $1 \pmod{127}$. Since $2 \cdot 64 \equiv 1 \pmod{127}$ and $2 \cdot 2^{125} \equiv 1 \pmod{127}$, then $2^{125} \equiv 64 \pmod{127}$. So the answer is 64.

Alternatively, $2^{125} \equiv 2^{119} \cdot 2^6 \equiv (2^7)^{17} \cdot 2^6 \equiv 1^{17} \cdot 2^6 \equiv 2^6 \equiv 64 \pmod{127}$.

Modexp algorithm for $2^{21} (mod 18)$

modexp (x, y, N) if y = 0: return 1

z = modexp(x, floor(y/2), N)

if y is even: return $z^2 \mod N$

else: return $x \cdot z^2 \mod N$

x	y	$y_{ m binary}$	power of x	Z	return value
2	21	1	x^1	16	$512 \mod 18 = 8$
2	10	0	x^2	14	$196 \mod 18 = 16$
2	5	1	x^4	4	$32 \mod 18 = 14$
2	2	0	x^8	2	4
2	1	1	x^{16}	1	2
2	21		x^{21}		