

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:	E CONTRACTOR			
Brandon	Hosken	-	, , , , , , ,	

UB Person Number:

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
								,

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix} 1 & -1 & 1 & | & -2 \\ 0 & 1 & 2 & | & 2 \\ 2 & 3 & 0 & | & 6 \end{bmatrix} \xrightarrow{2} \xrightarrow{2}$$

[0-1-2 | 1-2 | 5 | 5+6

4=0

- 4) The only value of b that allows w to bein Spon (v, v2, v3) is 0 6 beauty if it isn't zero there is no solution to the augmented mutax after row reduction.
- b) The Set EVIJV2, V33 is not linearly independent become x3 is a from V voriable meaning of has infinitely many solutions.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & | 100 & | \\ 0 & 2 & -1 & | 001 & | \\ 0 & 1 & -1 & | 410 & | \end{bmatrix}$$

$$\begin{bmatrix} -1 & 2 & | 100 \\ 0 & 2 & -1 & | 000 \\ 0 & 0 & | 010 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & | 100 \\ 0 & 0 & | 010 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & | 100 \\ 0 & 0 & | 010 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & | 1 & -1 & | \\ 0 & 0 & | & 010 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & | & -1 & | \\ 0 & 0 & | & 010 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2 & 13 & -1 \\ 1 & -1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

 $\beta V_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -2 + 6 + -3 \\ 9 + 15 + -8 \\ 6 + 6 + -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix
$$C$$
 such that $A^TC = B$ (where A^T is the transpose of A).

$$A^T = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 2 & 1 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 2 & 1 \end{bmatrix} \quad C = \begin{bmatrix} A^T \\ A^T \end{bmatrix} \quad B$$

Simpler:
$$(A^T)^{-1} = (A^{-1})^T$$

Thou use problem 2.

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of \mathcal{T} .
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$A=[T(Q_1) \uparrow (Q_2)]$$
 $Q_1=[0]$ $Q_2=[0]$

$$T(Q_1) = T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 & 2(0) \\ 1 & 3(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$T(Q_1) = T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0 & 2(0) \\ 1 & 3(0) \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$T(\ell_2):T(\begin{bmatrix}0\\1\end{bmatrix})=\begin{bmatrix}0-20\\0-30\end{bmatrix}=\begin{bmatrix}-2\\1\\-3\end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 12 \end{bmatrix}$$

V1 2 V2

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True, because why is some linear combination of a that regults in the spon, the new vector being in the spon, for that is occur by the definition of a linear combination we must also bein the spon(i, v).

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

The Type, because the now voductor of the vedors the augmented which require nx n to be linearly independent in un augmented with respondent to the only 1 solution,

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent

then u, v also must be linearly dependent.

They because Auts just a linear trong briefly of horny

So it will still robin the properties of horny

Inhaltely wany solutions to the value,

b) If $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation and $u,v,w\in\mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True, because the you are applying the some estrons for notion to thather all 3 vectors so the span will s by the some us before meany T(u) is in Span (LTW), T(w))