Required Problems

1. Let
$$A = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}$$
.

- (a) Find the eigenvalues and eigenvectors of A by hand.
- (b) Find A^{-1} and find the eigenvalues and eigenvectors of A^{-1} by hand.
- (c) What do you notice about the eigenvectors of A and A^{-1} ?
- (d) What do you notice about the eigenvalues of A and A^{-1} ?
- (e) Let A be an invertible square matrix. Show that if \mathbf{x} is an eigenvector for A with eigenvalue λ , then it is also an eigenvector for A^{-1} . [Hint: Start with the equation $A\mathbf{x} = \lambda \mathbf{x}$, multiply both sides by A^{-1} , and find an expression for $A^{-1}\mathbf{x}$.] What is the corresponding eigenvalue?
- 2. Suppose an $n \times n$ matrix A has eigenvalues $\lambda_1, \ldots, \lambda_n$. We will prove that the determinant of A equals the product $\lambda_1 \lambda_2 \cdots \lambda_n$ in two ways.
 - (a) Prove that the determinant of A equals the product $\lambda_1 \lambda_2 \cdots \lambda_n$ by starting with the polynomial $\det(A \lambda I)$ separated into its n factors, i.e.

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda).$$

[If p is a polynomial of degree $n \ge 1$ in the variable λ , and a is a root of p (i.e. p(a) = 0) then $p = (a - \lambda)p'$ where p' is a polynomial of degree n - 1. The equality above holds since, using the cofactor formula, we can argue that the leading term in $\det(A - \lambda I)$ is always $(-\lambda)^n$.]

Then set $\lambda = 0$.

- (b) Prove that if A is diagonalizable, the determinant of A equals the product $\lambda_1 \lambda_2 \cdots \lambda_n$ using the fact that determinant is multiplicative.
- (c) Verify that determinant of A equals the product $\lambda_1\lambda_2$ for the matrix A in Problem 1.
- 3. (a) Prove that if Λ_1 and Λ_2 are $n \times n$ diagonal matrices, then $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$
 - (b) Suppose A and B are $n \times n$ matrices, and have the same set of n independent eigenvectors $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$. Use diagonalization to prove that AB = BA.

4. Let
$$A = \begin{pmatrix} .6 & .9 \\ .4 & .1 \end{pmatrix}$$
.

- (a) Find Λ and X to diagonalize A.
- (b) What is the limit of Λ^k as $k \to \infty$? I.e. for large values of k, what matrix does Λ^k approach?

- (c) What is the limit of $X\Lambda^kX^{-1}$?
- (d) What vector is in the columns of the limiting matrix for $X\Lambda^kX^{-1}$?
- 5. This problem gives an example of a Markov matrix which is not a positive Markov matrix, and how such matrices may not have attracting steady states if there are multiple eigenvalues with magnitude 1. Consider the permutation matrix

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

- (a) Find the characteristic polynomial for P. [Hint: You can do this using the permutation formula for determinant by finding all ways to choose a nonzero entry from each row and column of $P \lambda I$. Alternatively you could use the Row 4 cofactor formula on $P \lambda I$ and then use the fact that the determinant of a triangular matrix is the product of the entries on the diagonal.]
- (b) Find the steady state vector \mathbf{v} corresponding to the eigenvalue $\lambda = 1$. I.e. find the vector \mathbf{v} where $P\mathbf{v} = \mathbf{v}$.
- (c) Let $\mathbf{u}_0 = (1, 0, 0, 0)$. If $\mathbf{u}_{k+1} = P\mathbf{u}_k$, what are \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , and \mathbf{u}_4 ? Does the sequence $\{\mathbf{u}_k\}$ converge to \mathbf{v} ? Why or why not?
- (d) What are the four eigenvalues for P?
- 6. This problem illustrates how to use a Markov matrix to analyze a random walk on a graph. Suppose a person walks from node to node on a graph, at each time step choosing randomly to move to a neighboring node, each with equal probability. For each of the graphs below, what Markov matrix describes the transition probabilities for the random walk? [For grading purposes, please let row i and column i correspond to node i, as labeled.] What proportion of the time would we expect to find the random walker at each node?

(a)

(b)

Optional: For each vertex, look at how many neighbors it has, and the long run probability of a walker being there. Can you prove there is a relationship? What is it?

Optional Problems

- 7. Let A be a matrix, and \mathbf{x} and \mathbf{y} be eigenvectors for A. Prove or disprove each of the following statements.
 - (a) For all scalars $c \neq 0$, the vector $c\mathbf{x}$ is an eigenvector for A.
 - (b) For all integers $k \geq 1$, **x** is an eigenvector for A^k .
 - (c) The vector $\mathbf{x} + \mathbf{y}$ is always an eigenvector for A.
- 8. (Strang 6.1.12) Find three eigenvectors for this matrix P (Projection matrices have $\lambda = 1$ and 0.):

Projection matrix
$$P = \begin{pmatrix} .2 & .4 & 0 \\ .4 & .8 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

If two eigenvectors share the same λ , so do all of their linear combinations. Find an eigenvector of P with no zero components.

- 9. (Strang 6.1.25) Suppose A and B have the same eigenvalues $\lambda_1, \ldots, \lambda_n$ with the same independent eigenvectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$. Then A = B. Reason: Any vector \mathbf{x} is a linear combination $c_1\mathbf{x}_1 + \cdots + c_n\mathbf{x}_n$. What is $A\mathbf{x}$? What is $B\mathbf{x}$?
- 10. Prove that if A_1 is similar to A_2 and A_2 is similar to A_3 , then A_1 is similar to A_3 .
- 11. Prove or disprove:
 - (a) If \mathbf{x} is an eigenvector for A and B, then \mathbf{x} is an eigenvector for AB and BA.
 - (b) If λ is an eigenvalue for A and B, then λ^2 is an eigenvalue for AB and BA.
- 12. List all matrices that are similar to the identity matrix.
- 13. Prove that the eigenvalues of a triangular matrix are the entries on the diagonal.

- 14. The trace of a matrix is the sum of the diagonal entries. Prove that the sum of the eigenvalues is equal to the trace.
- 15. Suppose \mathbf{x}_1 and \mathbf{x}_2 are eigenvectors for A with eigenvalues λ_1 and λ_2 . Under what conditions on λ_1 and λ_2 is $\mathbf{x}_1 + \mathbf{x}_2$ an eigenvector for A?
- 16. We have seen how it is possible to find eigenvalues and eigenvectors of a matrix by finding roots of its characteristic polynomial. In this problem you will show how to do the reverse: You can find the roots of a polynomial by finding the eigenvectors of its "companion matrix." Let p be the degree n polynomial $p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + z^n$.

Note that the coefficient of z^n is 1.

Define the companion matrix for p to be the $n \times n$ matrix

$$C = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 & 1 \\ -c_0 & -c_1 & \dots & -c_{n-2} & -c_{n-1} \end{pmatrix}.$$

- (a) Show that $\det(C \lambda I) = p(\lambda)$.
- (b) Prove that z is a root of p if and only if it is an eigenvalue of C with eigenvector $(1, z, z^2, \ldots, z^{n-1})$.
- (c) Explain how to determine the roots of any degree n polynomial (even if its leading coefficient is not 1) if you know how to find eigenvectors for a matrix. [This is actually how some polynomial solvers proceed: Rather than solving the polynomial they instead find the eigenvectors of its companion matrix.]