Universidad de la Frontera

Facultad de Ingeniería, Ciencias y Admistración

Departamento de Matemática

Guía de trabajo dirigido: Reales

1. Resolver:

a)
$$3\left(\frac{11x}{6}-x\right)=2x-3\left(1-\frac{x}{6}\right)$$

b) $\frac{(2x^2+3)(2x^2-3)}{2}-\frac{(2x-3)^2}{3}=4x-\frac{41}{6}$. Resp. $x=\pm 1$
c) $\sqrt{2x-3}-\sqrt{x+7}=4$, Resp $x=114$
d) $\frac{x-2}{x-1}-\frac{x^2}{x^2-3x+2}=\frac{x-1}{x-2}$, Resp $x=-3$
e) $\frac{3x^2+1}{6x+1}=\frac{6x-1}{3x^2-1}$, Resp $x=0$; $x=\pm 2$
f) $(x+2)^3-(x-2)^3=98$
g) $\sqrt[3]{x}+6=x$

- 2. ¿Verdadero o falso? Razonar la respuesta:
- a) Todo número real es racional.
- b) Todo número natural es entero.
- c) Todo número entero es racional.
- d) Siempre que multiplicamos dos números racionales obtenemos otro racional
- e) Siempre que multiplicamos dos números irracionales obtenemos otro irracional.
- f) Entre dos números reales existe siempre un racional.
- g) Entre dos números reales existe siempre un irracional.
- 3. Representar los siguientes intervalos e indicar su unión e intersección:

a) $[-2,5)$ y $[3,\infty)$	c) $(-5, -1]$ y $[-1, 4]$
b) $(0,3)$ y $[\frac{9}{2},\infty)$	<i>d</i>) $(-1,3)$ y $[3,\infty)$
4. Indicar para qué valores de x se c	cumplen las siguientes

4. Indicar para qué valores de x se cumplen las siguientes relaciones; en el caso de las desigualdades, indicar la solución mediante intervalos:

a) $ x = 5$	h) $ x = 0$
b) $ x \le 5$	<i>i</i>) $ x < 2$
c) $ x > 5$	$j) x \ge 2$
d) $ x-4 =2$, Resp $x_1=2, x_2=6$	$k) x+1 = 3$, Resp $x_1 = -4, x_2 = 2$
<i>e</i>) $ x-4 \le 2$, Resp $x \in [2, 6]$	I) $ x-2 \le 3$, Resp $x \in [-1, 5]$
f) $ x-4 > 2$, Resp $x \in (-\infty, 2) \cup$	<i>m</i>) $ 2x < 8$, Resp $x \in (-4, 4)$
$(6,\infty)$	<i>n</i>) $ x+4 > 5$, Resp $x \in (-\infty, -9) \cup$
g) x = -2	$(1, \infty)$

5. Resolver las siguientes inecuaciones de 2º grado:

a) $x^2 - 6x + 8 \ge 0$,	$Resp\; x \in (-\infty, 2] \cup [4, \infty)$
b) $x^2 - 2x - 3 < 0$,	$Resp\; x \in (-1,3)$
c) $x^2 - 5x + 6 > 0$,	$Resp\; x \in (-\infty,2) \cup (3,\infty)$
d) $x^2 - 3x - 10 \le 0$,	$Resp\; x \in [-2, 5]$
e) $3x^2 - 10x + 7 \ge 0$,	$Resp\; x \in (-\infty,1] \cup [\tfrac{7}{3},\infty)$
$f) 2x^2 - 16x + 24 < 0,$	$Resp\; x \in (2,6)$
$g) x^2 - 4x + 21 \ge 0,$	$Resp\; x \in \mathbb{R}$
h) $x^2 - 3x > 0$,	$Resp\; x \in (-\infty,0) \cup (3,\infty)$
<i>i</i>) $x^2 - 4 \ge 0$,	$Resp\; x \in (-\infty, -2] \cup [2, \infty)$
$j) x^2 - 4x + 4 > 0,$	$Resp\ x \in \mathbb{R} - \{2\}$

6. Decidir si el conjunto dado tiene una cota superior. En caso afirmativo hallar el supremo.

a)
$$A = \{x \in \mathbb{R}/2 < x^2 < 3\}$$

b) $B = \{x \in \mathbb{R}/2 + x \le x^2 \le 6 + x\}$
c) $C = \{x \in \mathbb{R}/x = \frac{n+1}{n+2}\}$

7. Hallar el conjunto solución de las inecuaciones dadas y encontrar supremo ínfimo, máximo y mínimo.

a) $3(x+8) < 60 - 4(x-5)$	$Resp\;(-\infty,8)$
b) $(6x+5)(x-1) \le (2x-3)(3x+5)$	Resp. $[5,\infty)$
c) $(x-1)^2 - (x-2)^2 > -2$	$Resp\ (\frac{1}{2}, \infty)$
d) $(x-2)^2 > (x+2) \cdot (x-2) + 8$	Resp. $(-\infty,0)$
e) $(x-1)^2 < x \cdot (x-4) + 8$	Resp. $(-\infty, \frac{7}{2})$
$f) 3 - (x - 6) \le 4x - 5$	Resp. $[\frac{14}{5}, \infty)$
$g)\frac{3x-5}{4} - \frac{x-6}{12} < 1$	Resp. $(-\infty, \frac{21}{8})$
$h) \frac{1-x}{9} - 5 < 9 + x$	Resp. $(-\frac{67}{10}, \infty)$
i) $\frac{x+6}{3} - x + 6 \le \frac{x}{15}$	Resp. $[\frac{120}{11}, \infty)$
$j) x^2 \ge 16$	Resp. $\mathbb{R}-(-4,4)$
$k) 9x^2 < 25$	Resp. $(-\frac{5}{3}, \frac{5}{3})$
$I) 36 > (x-1)^2$	Resp. $(-5,7)$

$m) (x+5)^2 \le (x+4)^2 + (x-3)^2$	Resp. $\mathbb{R}-(0,8)$
n) x(x-2) < 2(x+6)	Resp. $(-2, 6)$
\tilde{n}) $x^2 - 3x > 3x - 9$	Resp. $\mathbb{R}-\{3\}$
o) $4(x-1) > x^2 + 9$	Resp. Ø
$p) 2x^2 + 25 \le x(x+10)$	Resp. {5}
q) $1 - 2x \le (x+5)^2 - 2(x+1)$	Resp. $\mathbb R$
r) 3 > x(2x+1)	$Resp\;(-\frac{3}{2},1)$
s) $x(x+1) \ge 15(1-x^2)$	Resp. $\mathbb{R}-(-1,rac{15}{16})$
$t) (x-2)^2 \ge 0$	Resp. \mathbb{R}
u) $(x-2)^2 < 0$	Resp. Ø
$(x-2)^2 \le 0$	Resp. {2}
Resolver les designaldedes que se indicen	Hallar supremo ínfimo mávimo

8. Resolver las desigualdades que se indican. Hallar supremo, ínfimo, máximo y mínimo.

a)
$$\frac{4-x}{x+1} \le \frac{x-2}{3-x}$$
 Resp. $(-\infty, -1) \cup (\frac{7}{3}, 3)$ b) $\frac{x^2+2x+2}{x^2-4} \le 0$ Resp. $(-2, 2)$ c) $\frac{3x^2+22x-56}{x^2-4} \le 2(x+4)$

d)
$$\frac{2x^2 + x + 3}{x^3 - x} > 0$$
 Resp. $(-1, 0) \cup (1, \infty)$

Pe)
$$1 + \frac{3}{x^2 + 3x + 2} \ge \frac{3}{x + 2}$$

Resp. $\mathbb{R} - (-2, -1)$

Physical Resp. $(-2, 0) \cup (1, \infty)$

$$x^{2} + 1$$

$$x^{3} = x$$

$$\operatorname{Resp.}(-\infty, 0) \cup (1, \infty)$$

h)
$$\frac{x^2 - 3x + 2}{x^2 + 2x + 6} < 3$$

i)
$$\frac{x+4}{x^3+x} \ge \frac{x}{x^2+1}$$
 Resp. $(0,\infty)$

$$f(x) = \frac{1}{1 - x}$$
Resp. $f(-\infty, 0) \cup f(1, \infty)$
 $f(x) = \frac{x}{1 - x}$
Resp. $f(-\infty, 0) \cup f(1, \infty)$
 $f(x) = \frac{x}{1 - x}$
Resp. $f(-\infty, 0) \cup f(1, \infty)$

$$|x+2| |x^2-4| | |x+2|$$
/) $|\frac{9-x}{|}| \ge x-1$ Resp. $(-\infty,0) \cup (0,9)$

m)
$$\frac{|x-5|+|2x+1|}{x-3} < 0$$
 Resp. $(-\infty, 3)$

n)
$$\left| \frac{x^2 - 5x + 6}{x^2 + 5x + 6} \right| \le 1$$
 Resp $[0, 2) \cup (2, 3) \cup (3, \infty)$

$$\tilde{\textit{n}}) \, \frac{|x| - 4}{|x| + 4} < \frac{|x| - 5}{|x| + 5}$$
 Resp $(-\infty, 0)$

P)
$$\left| 1 + \frac{1}{x} \right| \le \left| \frac{1}{x} \right| + \frac{1}{2}$$
 Resp. $[-4, 0)$

9. Demostrar usando inducción:

a)
$$3 + 2 \cdot 3^{1} + \dots + 2 \cdot 3^{n} = 3^{n+1}, \ \forall n \in \mathbb{N}$$

b) $1 + 1 \cdot 1! + 2 \cdot 2! + \dots + (n-1) \cdot (n-1)! = n!, \ \forall n > 1$
c) $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}, \ \forall n \in \mathbb{N}$
d) $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \dots + \frac{1}{(2n-1) \cdot (2n+1)} = \frac{n}{2n+1}, \ \forall n \in \mathbb{N}$
e) $x^{2n-1} + y^{2n-1}$ es divisible por $x + y$ para todo $n \in \mathbb{N}$
f) $2^{2n} + 15n - 1$ es múltiplo de 9, $\forall n \in \mathbb{N}$.
g) $n! > 2n, \ \forall n > 4$.

- 10. Escribe el término de grado 8 en el desarrollo de $(3x^2 + \frac{1}{x})^7$, Resp k = 3
- 11. Escribe, sin desarrollar, el cuarto término del desarrollo de $(x+y)^9$ y el quinto del desarrollo de $(2x-y)^8$.
- 12. Escribe y simplifica el tercer término del desarrollo de $(x^3 \frac{2}{x})^7$
- 13. Escribe y simplifica el término central del desarrollo de $(\frac{x^2}{9} + \frac{1}{r^3})^4$
- 14. Halla el grado del término central del desarrollo de $(3x^2 5x^4)^{12}$
- 15. El tercer término del desarrollo de $(x^2 + \frac{3}{x})^5$ coincide con el cuarto del desarrollo de $(x^3 \frac{1}{x})^5$. Calcula x.
- 16. Averigua qué valor deber darse a x para que el tercer término del desarrollo de $(\frac{3}{r}-x)^5$ sea igual a 90.
- 17. El tercer término del desarrollo de $(x^2 + \frac{3}{x})^n$ es de segundo grado. Calcula n y desarrolla la potencia del binomio.
- 18. El segundo término del desarrollo de $(x^{-\frac{1}{x}})^n$ es de grado 11. Escribe los términos restantes.
- 19. Averigua si hay algún término del desarrollo de $(2x^2 + \frac{5}{x})^6$ que sea de grado 3. Si lo hay, escríbelo.
- 20. Averigua el lugar que ocupa el término de grado 13 en el desarrollo de la potencia $(3x-x^2)^8$.

- 21. Halla El quinto término, el término que contiene a x^5 , y el término independiente de x en $(\frac{3x^2}{2} \frac{1}{3x})^9$. Resp. T_5 , no existe, T_7
- 22. Encuentra el término central en $(x+\frac{1}{x})^{12}$. Resp. $T_7=\binom{12}{6}$
- 23. Calcular 11^5 por medio de la fórmula de Newton y comprueba el resultado con la calculadora.
- **24.** Resuelve las ecuaciones $\binom{x}{2} = 21$; $\binom{x}{2} x = 9$; $\binom{8}{x-2} = \binom{8}{6}$
- 25. Encuentre el valor de n si $\binom{n}{n-2} = 10$. Resp n = 5

Problemas

1. La suma de n números enteros positivos, a partir del numero 1 puede encontrarse mediante la fórmula

$$S = \frac{n(n+1)}{2}$$

Encuentre cuantos numeros enteros positivos deben sumarse a partir del 1 para que la suma sea 6670. Resp: 115 numeros.

- 2. El producto de dos números pares consecutivos es 624. Encuentrelos. Resp: 24 y 26
- 3. Determine el número que sumado a su inverso de por resultado $\frac{82}{9}$. Resp: $\frac{1}{9}$
- 4. Encuentre, si existe, el número tal que si se lo multiplica por 8 da el mismo número que se obtiene si a su cuadrado se le resta 65. Resp: 13 y -5
- 5. La superficie de un triángulo rectángulo es 170 cm² y la suma de sus catetos es 37 cm. Halle las longitudes de los catetos.
- 6. El largo de una piscina rectangular tiene 3 metros más que el doble del ancho. Si la superficie de la piscina es de 152 m^2 , determine sus dimensiones. Resp: ancho: 8 m, largo: 19 m.
- 7. Encuentre dos números tales que su suma sea -56 y su diferencia 106. Resp: 25 y -81
- 8. Dos números son tales que su suma es 140, el cociente y el resto de la división entre los mismos son, respectivamente, 1 y 38. ¿Cuáles son esos números? Resp: 89 y 51
- 9. Un equipo de básquetbol anotó 108 puntos en un partido. Anotaron 2 veces y media más canastas que tiros libres. ¿Cuántas canastas y cuántos tiros libres hicieron? ¿Cuántos puntos anotaron de cada uno? (Las canastas valen 2 puntos, los tiros libres 1 punto y no hubo canastas de tres puntos) Resp: 45 canastas y 18 tiros libres. 90 puntos por canastas y 18 por tiros libres.
- 10. En un teatro cobran \$20 la entrada de los adultos y \$12 la de los niños. Un día, abonaron su entrada 774 personas y se recaudaron \$ 11256. ¿Cuántas entradas vendieron para adultos y para niños? Resp: 528 niños y 246 adultos.
- 11. Encuentre dos números tales que su suma sea 106 y su diferencia 56. Resp: 81 y 25
- 12. Dos números son tales que su suma es 140, el cociente y el resto de la división entre los mismos son, respectivamente, 1 y 38. ¿Cuáles son esos números? Resp: 89 y 51
- 13. En un corral hay un cierto número de conejos y patos. En total hay 194 patas y 61 animales. ¿Cuántos conejos y patos hay? Resp: 25 patos y 36 conejos
- 14. Un productor agropecuario vendió soja a 27 dólares el quintal y maíz a 13 dólares el quintal. En total vendió 200 quintales y recibió 4.196 dólares.
 ¿Cuántos quintales de soja y de maíz vendió? Resp: 114 quintales de soja y 86 quintales de maíz
- 15. Se compraron dos productos de diferente costo por un total de \$ 510. El costo del mayor menos cuatro veces el costo del menor es de \$ 10. ¿ Cuál es el costo de cada producto? Resp: mayor: \$ 410 ; menor: \$ 100
- 16. Una placa radiográfica rectangular tiene un perímetro de 156 cm. y su largo es 6 cm. más que su ancho. ¿Cuáles son las dimensiones de la placa? Resp: largo: 42 cm.; ancho 36 cm.
- 17. La suma de tres números impares consecutivos es 81. ¿Cuáles son esos números? Resp: 25, 27, 29
- 18. Encuentre cuatro números consecutivos, tales que el primero más el cuádruplo del tercero, menos el doble del cuarto, sea igual a 95. Resp: 31, 32, 33, 34
- 19. Si a un número se lo multiplica por y se le suma , se obtiene el mismo resultado que si a ese número se le resta. ¿Cuál es el número? Resp: $\frac{3}{2}$
- 20. Encuentre el número por el cual se debe dividir 282 para que el cociente sea 13 y el resto 9. Resp: 21
- 21. El perímetro de un rectángulo es de 318 cm. El largo supera al ancho en 11 cm. Calcule las dimensiones del rectángulo. Resp: 85 m largo; ancho 74 cm
- 22. El perímetro de un triángulo isósceles es de 2,57 m. Los lados iguales superan a la base en 28 cm. Calcule el valor de cada lado. Resp: base 67 cm; lados 95 cm

- 23. Se reparten \$ 22.500 entre tres personas. La segunda recibe el doble de la primera y la tercera un cuarto de lo que reciben las otras dos juntas. ¿Cuánto recibe cada una? Resp: \$ 6.000, \$ 12.000 y \$ 4.500 respectivamente.
- 1. Resolver los siguientes problemas de polinomios:
 - a) Halle el polinomio que dividido por $5x^2-1$ da el cociente $2x^2+x-2$ y el resto x-2. Resp $10x^4+5x^3-12x^2$
 - b) Encuentre a, b, c y d para que $a + (a b)x + (b c)x^2 + dx^3 = 8 + 12x + 5x^2 10x^3$. Resp a = 8, b = -4, c = -9, d = -10
- 2. Halle el cociente y el resto
- a) $(2x^3 + 3x^2 + 4x + 5) \div (x 3)$. Resp. $2x^2 + 9x + 31$ y 98
- b) $(x^5 + x^4 + x^3 + x^2 + x + 1) \div (x + 1)$ Resp. $x^4 + x^2 + 1$ y 0
- c) $(x^4 \frac{x^3}{2} + \frac{x^2}{3} \frac{x}{4}) + \frac{1}{5} \div (x 1)$ Resp. $x^3 + \frac{x^2}{2} + \frac{5x}{6} + \frac{7}{12}$ y $\frac{47}{60}$
- d) $(x^3 27) \div (x 3)$ Resp. $x^2 + 3x + 9 \text{ y } 0$
- e) $(x^3 + 27) \div (x + 3)$ Resp. $x^2 3x + 9 \text{ y } 0$
- f) $(x^4 + 16) \div (x + 2)$ Resp.
- g) $(x^4 16) \div (x 2)$ Resp.
- h) $(x^4 16) \div (x + 2)$ Resp.
- i) $(x^4 + 16) \div (x 2)$ Resp.
- 3. Factorizar las siguientes expresiones:

a)
$$3x^5 - 6x^4 + 3x^3$$

b) $x^5 - 4x^4 + 2x^3 - x^8$
c) $10(x+1)^3(1-x)^2 + 5(x+1)^2(1-x)^2$
d) $25(x-3) - 100$
e) $8(x+1)^3(x-2)^2 + 6(x+1)^2(x-2)^3$
f) $x^{\frac{1}{2}} + 4x^{\frac{1}{2}}(2x+1)$
g) $\frac{2}{3}x^{-\frac{1}{3}}(x+1) + x^{\frac{2}{3}}(x+1)$
h) $4x^{\frac{3}{4}}(2x+5) + x^{-\frac{1}{4}}$

4. Factorizar cada una de las siguientes expresiones:

a) $x^2 - 2x - 3$	f) $3x^2 - x - 14$	k) $16x^2 - 25$
b) $x^2 + 3x - 10$	g) $x^2 - 7x + 12$	$1) 2x^2 - 32$
c) $x^2 - 2x + 1$	<i>h</i>) $x^2 + 6x + 9$	$m) x^4 - 5x^2 + 4$
d) $2x^2 + x - 10$	<i>i</i>) $2x^2 + 3x + 1$	<i>n</i>) $3x^2 + 5x - 2$
e) $4x^2 + 12x + 9$	<i>j</i>) $x^2 + x - 2$	\tilde{n}) $x^2 - 5x + 6$

5. Escribe en forma de fracción las expresiones decimales siguientes:

 a) 0,75 c) $0,\overline{24}$ e) $2,2\overline{3}$ g) $2,0\overline{5}$ i) $8,\overline{423}$

 b) 1,36 d) $1,\overline{3}$ f) $0,00\overline{52}$ h) $1,6\overline{3}$ j) $1,3\overline{45}$

6. En cada una de las siguientes expresiones, calcule el valor de la letra para que la igualdad sea verdadera.

- a) $\log_x 1 = 0$
b) $\log_x (x^2 + x) = 2$
c) $\log_2 (-x + 1) = 3$
d) $\log_4 2 = x + 1$ e) $\log_{x+1} 4 = 2$
f) $\log_x (2x^2 x) = 2$
g) $\log_2 \frac{1}{4} = x$ h) $\log_8 N = -\frac{1}{2}$
i) $\log_{6x-17} (x^2 9) = 1$
j) $\log_2 (x^2 + 2^x) = x$
- 7. Resuelva las siguientes ecuaciones:

a)
$$3^{-2x+5} = 1$$
. Resp $x = \frac{5}{2}$ b) $\ln[(x+3)(x+5)] = \ln 15$. Resp $x = -8$, $x = 0$

8. Resuelva para \boldsymbol{x} cada una de las siguientes ecuaciones.

a)
$$3 = 2e^{x}$$

b) $7 = e^{-6x}$
c) $11 = \frac{2^{x}}{3}$
d) $\sqrt{5} = \frac{r^{x}}{\sqrt{5}}$
e) $e^{x} = 81$
f) $3^{-x} = 27$
g) $9^{2x} = 3 \cdot 27^{x}$
h) $3^{x+1} = 729$
i) $4 \cdot 16^{x} = 64^{x-1}$
j) $5^{4x^{2}-4x-3} = 1$
k) $8^{x-1} \cdot 2^{x} \cdot \frac{1}{4^{x-2}} = \frac{1}{16}$
l) $\sqrt{125^{x}} \cdot \frac{1}{25^{x-1}} = \sqrt{5^{x}}$

- 9. Resolver las siguientes ecuaciones:
- a) Resolver $\log(x-3) + \log(x+2) = \log(5x-14)$. Resp x = 4
- b) Resolver $2 \log(1 2x) = \log(-x + 1)$. Resp x = 0
- c) Resolver $\ln(x-10) \ln(x-7) = \ln 2 \operatorname{Resp} \emptyset$
- *d*) Resuelva $9 \cdot 3^{2x} 15 \cdot 3x 6 = 0$. Resp $x = \log_3 2$
- e) Resuelva $\sqrt{\log_2 x} = \log_2 \sqrt{x}$. Resp x = 1 y x = 16
- 10. Resuelva para x, cada una de las siguientes ecuaciones:

a)
$$3^{2x+2} - 5 \cdot 3^{x+1} - 6 = 0$$

b) $9^{x-2} + 3^{x-1} - 2 = 0$
c) $27^{x+3} = \frac{(\sqrt{3})^x}{9^{x-2}}$
d) $3^{1-2x} = 2^{x+5}$
e) $10^{7-2x} = 3^{5-3x}$
f) $5^{x+2} = 4^{x-1}$
g) $-\log(x-1) = 2$
h) $-\log_2(x-2) = 1$
i) $\log \sqrt{x} = \sqrt{\ln x}$
f) $\frac{2\log(1+x)}{\log(x+2)} = 0$
k) $-1 + \log x = \frac{-1 - \log x}{\log x + 1}$
l) $\log(x^8) = (\ln x)^4$
m) $\log x^3 = (\log x)^3$
n) $\log x^4 = \log^4 x$
n) $2\log_5(x-2) - \log_5(x+4) = \log_5 3$
o) $\log(2x+7) - \log(x-1) = \log 5$
p) $-\log_2\frac{1}{x-2} = 2 + \log_2(x-2)$
q) $e^{\ln 4} = e^{(x+\sqrt{x^2-4})}$
r) $x^{\sqrt{\log x}} = 10^8$