Ayudantía 9 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

16 de mayo de 2023

Definición (módulo noetheriano). Sea A un anillo. Decimos que un A-módulo M es noetheriano si para toda cadena creciente de submódulos

$$M_1 \subset M_2 \subset M_3 \subset \cdots$$

existe $n \in \mathbb{N}^{\geq 1}$ tal que $M_n = M_{n+k}$ para todo $k \in \mathbb{N}^{\geq 1}$.

Observación. Note que el concepto de anillo noetheriano cabe dentro de la definición anterior, pues si tomamos M = A (el cual es naturalmente un A-módulo) entonces sus A-submódulos corresponden a los ideales y por lo tanto se recupera esta definición.

A continuación se enuncia un resultado referente a A-módulos noetherianos(y que asumiremos como verdaderas pues su demostración no difiere tanto de resultados vistos en cátedra).

Teorema. Sea A un anillo, M un A-módulo y $N \subseteq M$ un A-submódulo.

- 1. M es noetheriano si y solo si todo A-submódulo de M es finitamente generado.
- 2. M es noetheriano si y solo si N y M/N son noetherianos (ver Tarea 2).
- 3. Si A es un anillo noetheriano entonces todo A-módulo finitamente generado es noetheriano.

Problema 1. El objetivo de este problema es demostrar que la propiedad de noetherianidad de un anillo se puede medir únicamente mirando sus ideales primos. Sea A un anillo. Suponga que todo ideal primo de A es finitamente generado y concluya por contradicción que A es noetheriano realizando los siguientes pasos:

- (a) Demuestre que si la colección de ideales de A que no son finitamente generados es no vacía, entonces contiene un elemento maximal I, y que A/I es un anillo noetheriano.

 Indicación: Para lo pultimo pruebe que todo ideal de A/I es finitamente generado.
- (b) Pruebe que existen ideales J_1 y J_2 finitamente generados que contienen I con $J_1J_2 \subseteq I$ y que J_1J_2 es finitamente generado. Indicacion: Note que I no es primo y elija elementos adecuados. Extienda I usando dichos elementos.
- (c) Muestre que I/J_1J_2 es un A/I-submódulo finitamente generado de J_1/J_1J_2 . Indicación: Utilice la parte 3. del Teorema.
- (d) Demuestre que I es finitamente generado sobre A y concluya que A es noetheriano.

Problema 2. Sea A anillo (conmutativo con unidad), M un A-módulo. Demuestre que $\operatorname{Hom}_A(A,M) \cong M$.

Problema 3. Sea M un A-módulo noetheriano y $\varphi: M \to M$ un endomorfismo de M. Demuestre que si φ es sobreyectiva, entonces φ es un isomorfismo.