Triggered star formation by Pop III supernovae

Collaborators:

John Wise, Corey Brummel-Smith (Georgia Tech)
Stefania Marassi, Raffaella Schneider (Sapienza University)
Marco Limongi (INAF/OAR), Alessandro Chieffi (INFN)

The First Stars, October 23, 2020

Research Interest: Transition from Population III to II stars

Safranek-Schrader et al. (2014, 2016); Ritter et al. (2012, 2015, 2016); Sluder et al. (2015); Chen et al. (2014, 2017) Smith et al. (2015); Hicks et al. (2020)

Past researches: Single enrichment event

- Gen Chiaki & John Wise (2019, MNRAS, 482, 3933)
- Gen Chiaki, John Wise, et al. (2020, MNRAS, 497, 3149)

Cosmological sim. Enzo Box size: 300 comoving kpc Top grid: 64³ DM mass: 53 M_O Jeans factor: 64 33 AMR levels Grackle 48 chemical species 100 chemical reactions

 $M_{\text{PopIII}} = 80 \text{ M}_{\odot}$

Press release on The Control of the

Gen Chiaki, John Wise, et al. (2020, MNRAS, 497, 3149)

GALACTIC ARCHAEOLOGY

Supercomputers dig into first star fossils

Published on October 22, 2020 by Jorge Salazar

Facebook

Twitter

In LinkedIn

Email

NEWS CATEGORIES

User	News		
Press	Releases		
Featu	ire Stories		
Podc	asts		
Munin	media		
TACC	In The Ne	ews	

STORY HIGHLIGHTS

Computational astrophysics study modeled for faint supernovae of metal-free first stars, yieldi

https://www.tacc.utexas.edu/-/galactic-archaeology

Past researches: Single enrichment event

- Gen Chiaki & John Wise (2019, MNRAS, 482, 3933)
- Gen Chiaki, John Wise, et al. (2020, MNRAS, 497, 3149)

Elemental abundances in the enriched clouds vs

observed extremely metal-poor (EMP) stars

Normal 13 M_☉ (Paper I)

Faint 13 M $_{\odot}$ (This work) Dots: observed EMP stars Faint 50 M_☉ (This work) Faint 80 M_O (This work) C-enhanced stars Multi-enrichment is Keller star required to explain $\stackrel{\bigcirc }{\stackrel{\frown}{=}} 6^{-1}$ $10^{[C/H]-2.30} + 10^{[Fe/H]} = 10^{-5.07}$ the formation of 50 M_☉ $13 M_{\odot}$ C-enhanced stars. $80 M_{\odot}$ Faint **Faint** normal $13~{\rm M}_{\odot}$ **C-normal stars** Faint -8-10-6[Fe/H]

Result of semi-analytic calculations

e.g., Ritter et al. (2016); Hartwig et al. (2018); Skinner & Wise (2020)

Carbon normal

Carbon enhanced

Larger-box simulation

- → Multi-enrichment events
- → Larger samples of EMP stars

Cosmological sim.

Enzo

Box size: $1 h^{-1}$ Mpc

Top grid: 64³

DM mass: $6 \times 10^3 \text{ M}_{\odot}$

Jeans factor: 4

Grackle

48 chemical species 100 chemical reactions

Note: Low-resolution test simulation

Enrichment from Pop III stars

Pair-Instability SN ($> 140 M_{\odot}$)

Progenitor mass (M_{\odot})

Marassi, GC et al. (2014)

Umeda & Nomoto (2002)

Metals from Pop III SNe with various masses

Pop II stars form in multi-enriched region!

Metallicity within 5 pc

$M_{ extsf{PopIII}}$ (M $_{\odot}$)	$Z_{ m met}$ (${ m Z}_{\odot}$)	A(C)	[Mg/C]	[Fe/H]
10.4	4.61×10^{-6}	3.49	-3.03	-9.55
33.3 + 64.6	8.51×10^{-4}	5.59	-2.52	-7.41
Total	8.56×10^{-4}	5.59	-2.52	-7.41

Discussion

- Similar abundances to Keller star (Keller et al. 2014)!
- Plotted in the mono-enriched region (Hartwig et al. 2018)?

Summary

- Large volume cosmological simulation
- Pop II star formation in multi-enriched system
 - ✓ Its elemental abundance is similar to the one of Keller star
 - ✓ Plotted in the "mono-enriched" region of Hartwig et al. (2018)

Next step

- Higher-resolution simulation
 - \checkmark Top grid 512³
 - ✓ Jeans criterion 64
- Statistical samples of Pop II stars

Thank you!

Metals from Pop III SNe with various masses

Ejected metal mass

Metal mass / mass yield of each SN

Time (code unit)