Билет 46

Производная функции. Непрерывность и дифференцируемость функции.

Определение производной функции

f определена на (a;b) и $x_0 \in (a;b)$

Если $\exists \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной f в x_0 и обозначается $f'(x_0)$

Замечание:

Не любая непрерывная функция имеет производную

Определение приращения

$$\Delta f(x) = f(x+h) - f(x)$$
 — приращение (первая разность) $f(x)$ в x_0 при приращении h аргумента x

Определение дифференцируемости

Если приращение функции y = f(x) в точке x_0 представимо в виде $\Delta y = A\Delta x + o(\Delta x)$, то она дифференцируема в этой точке.

 $A\Delta x, dy$ — дифференциал f в x_0 .

$$f(x) = x \Rightarrow dy = \Delta x \Rightarrow dx = \Delta x$$

Теорема

$$f$$
 — дифференцируема в $x_0 \Leftrightarrow \exists f'(x_0) \land dy = f'(x_0)dx$

Необходимость

f — дифференцируема, значит $\Delta y = A \Delta x + o(\Delta x)$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{A\Delta x + o(\Delta x)}{\Delta x} = A \Rightarrow \exists f'(x_0) = A \Rightarrow$$
$$\Rightarrow \Delta y = f'(x_0)\Delta x + o(\Delta x) \Rightarrow dy = f'(x_0)dx \square.$$

Достаточность

$$\exists f'(x_0) \Rightarrow \exists \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \Rightarrow \frac{\Delta y}{\Delta x} = f'(x_0) + \varepsilon(\Delta x),$$
 где $\lim_{\Delta x \to 0} \varepsilon(\Delta x) = 0 \Rightarrow$
 $\Rightarrow \Delta y = f'(x_0)\Delta x + \varepsilon(\Delta x)\Delta x = f'(x_0)\Delta x + o(\Delta x) \Rightarrow f$ — дифференцируема \square .

Следствие

Операцию взятия производной можно обозначать так: $f'(x) = \frac{df(x)}{dx} = \frac{d}{dx}f(x)$

Определение односторонних производных

Если $\exists \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$, то он называется правосторонней производной f в x_0 и обозначается $f'_+(x_0)$

Если $\exists \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}$, то он называется левосторонней производной f в x_0 и обозначается $f'_-(x_0)$

Замечание:

Даже такие производные непрерывная функция может не иметь

Замечание:

Когда мы говорим, что f дифференцируема на [a;b], это означает, что функция дифференцируема в $\forall x_0 \in (a;b)$ и имеет односторонние производные на концах промежутка

Теорема

Если f дифференцируема в x_0 , то она непрерывна в x_0

Доказательство

В x_0 функция имеет производную, значит

$$\lim_{h \to 0} f(x_0 + h) - f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} h = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \lim_{h \to 0} h = f'(x_0) \cdot 0 = 0$$

Тогда f непрерывна в $x_0 \square$.