Data Modeling: ER Modeling

How to Organize Data: ER Model

- Conceptual Design
 - * Determine the *entities* and *relationships*
 - What attributes should be kept for them
 - Constraints on these
 - * Create a schema, say an ER diagram
 - * Map it into a relational schema

Entities (Entity Set)

- * Entity a distinguishable object
 - * may have attributes
- * Entity Set each member of the set is distinct
 - * a "key" is a minimum set of attributes that uniquely identify a member of the entity set
 - * each attribute has a domain (usually a type)

University Database - Entities

- * Students
 - * student id, last name, first name, matriculation date
 - standing, major(s)
- * Faculty
 - * last name, first name, department
- * Courses
 - department, number, cross listing, description
- * Classrooms
 - building, room number, capacity

Relationships (Relationship Set)

- * How different entities (2 or more) relate to another
 - students taking courses
 - * teachers teaching course: (Prof Shatdal, CS564)
 - * course's schedule and location:
 - * (CS564, 3:30-4:45PM, Edu Sci 204, Monday)
 - * (CS564, 3:30-4:45PM, Edu Sci 204, Wednesday)
- * Relationship Set a set of relationships like above
- * Same entities can participate in many relationships

Kinds of Relationships

- * 1 to 1 (1:1): ssn-student_id
- * 1 to many (1:n): (1) department (n) faculty members
 - each department has many faculty members
 - * but faculty member belongs to only 1 department
- * many to 1 (n:1) equivalent to (1:n)
- * many to many (n:m): students courses
 - * a student can take many courses
 - a course has many students

Key Constraint

- * In a 1:N relationship the "N" part uniquely determines the relationship entry
 - * e.g. each faculty member has only one entry in the relationship set "faculty-department"
- * So the faculty member entity is a "key" for the relationship
- * in some ER diagrams, it is pictured with an arrow (pointed from "key" entity to the relationship)

Participation Constraint

* Essentially says that all entities participate in the relationship, e.g. every faculty member has a department

Weak Entities

- * Entities that can't (uniquely) stand on their own ...
- Uniquely identifiable only through a 1:N relationship
- * (Think: dependents before we had SSN for every newborn A dependent "name" could only by uniquely identified with a parent name association)

Is-A Hierarchy

- Many relationships between entities are hierarchical in nature, so instead of inventing new terms we simply call them "ISA"
 - * Dept Chair ISA Faculty Member ISA Employee
 - * The subclasses may have additional attributes

Design with ER Model

- Identify entities, attributes, relationships
 - * e.g.: attributes vs. relationship with another entity with attributes
- Kind of relationships
- Identify domains and constraints (the more the better)

Simple E-R model

Simple E-R model using a new entity

