Índice (II)

- 4. Algoritmos de enrutamiento
 - Enrutamiento por estado del enlace
- Enrutamiento por vector de distancias
 - 5. Enrutamiento en Internet
 - OSPF
 - BGP

4.3 Enrutamiento por vector de distancias

- Cálculo de la distancia a un destino
 - Coste de la ruta mínima de x a y (ecuación de Bellman-Ford):

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

mín se calcula para todos los vecinos de x

- Con las distancias desde cada vecino se construye la tabla de distancias
- Y a partir de la tabla de distancias la de reenvío

- Información disponible en el nodo B:
 - Vecinos: C y D
 - Distancia a los vecinos: $d_B(C) = 1$, $d_B(D) = 1$

Distancia del nodo B al nodo destino A

$$d_B(A) = min \{c(B,C) + d_C(A), c(B,D) + d_D(A)\} = min \{1 + 3, 1 + 1\} = 2$$

Vectores de distancias de los nodos C y D

С		
A	3	
В	1	
D	2	
Ш	1	

$$d_{B}(C) = 1$$

$$d_B(D) = 1$$

- Información disponible en el nodo B:
 - Vecinos: C y D
 - Distancia a los vecinos: d_B(C) = 1 , d_B(D) = 1
- Distancia del nodo B al nodo destino A

$$d_B(A) = min \{c(B,C) + d_C(A), c(B,D) + d_D(A)\} = min \{1 + 3, 1 + 1\} = 2$$

Vectores de distancias de los nodos C y D

С		
Α	3	
В	1	
D	2	
Е	1	

 $d_{R}(C) = 1$

Tabla de distancias del nodo B

- Información disponible en el nodo B:
 - Vecinos: C y D
 - Distancia a los vecinos: d_B(C) = 1 , d_B(D) = 1
- Distancia del nodo B al nodo destino A

$$d_B(A) = min \{c(B,C) + d_C(A), c(B,D) + d_A(A)\} = min \{1 + 3, 1 + 1\} = 2$$

Vectores de distancias de los nodos C y D

Tabla de distancias del nodo B

Tabla de reenvío

Destino	Siguiente salto
Α	D
С	С
D	D
Е	С

Otro ejemplo de una tabla de reenvío

Coste al destino vía

D	_{>} ()	Α	В	E
	Α	1	3	3
Destino	В	3	1	3
Des	С	4	2	2
	Ε	3	3	(1)

Destino	Siguiente
Α	Α
В	В
С	В
Е	Е

Tabla de distancias → Tabla de reenvío

El nodo vecino que proporciona el camino mínimo es el siguiente salto en la tabla de reenvío

Algoritmo de vector de distancias (I)

- D_x(y) = coste mínimo estimado desde x hasta y
 - El nodo x mantiene el vector de distancias $D_x = [D_x(y); y \in N]$

Nodo x:

- Conoce el coste a cada vecino v: c(x,v)
- Mantiene los vectores de distancia de sus vecinos. Para cada vecino v, x almacena D_v=[D_v(y); y∈N]
- Si no conoce la distancia a un destino D_x(y) =∞

Algoritmo de vector de distancias (II)

Idea básica:

- Cada nodo envía periódicamente su vector de distancias (VD) a sus vecinos
- Cuando x recibe el VD de un vecino, actualiza, su propio VD (si procede) mediante la ecuación de B-F:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$$
 para cada nodo $y \in N$

- En condiciones normales, la estimación D_x(y) converge al coste real mínimo d_x(y)
- Si el vector de distancias cambia, x envía su nuevo vector a sus vecinos, y ellos a su vez pueden actualizar sus vectores de distancia

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

Tabla nodo x

Tabla nodo z

tiempo

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$

Tabla nodo x

2 y 1 7 7

Vector de distancias: cambios en el coste de un enlace (I)

 Los cambios en los costes a veces se resuelven rápidamente

Vector de distancias: cambios en el coste de un enlace (II)

En ocasiones la red puede tener problemas para estabilizarse

tino V	
. I I I I () V	
	ľ
	stino v

D	_D ()	Α	В	E
Destino	Α	∞	3	3
	В	∞	1	3
	С	∞	2	2
	Е	∞	3	(1)

¡La ruta que tiene B utiliza el enlace DA!

- Aparecen bucles en el encaminamiento
- Problema de la cuenta al infinito
 - Soluciones:
 - Limitación del diámetro de la red
 - División horizontal (Horizonte dividido) con inversa envenenada

Vector de distancia: problema cuenta hasta infinito

Los valores representan la alcanzabilidad (en "hops") al

nodo A

En 4 intercambios TODOS saben que pueden alcanzar al nodo A

Malas noticias, el nodo A cae El vecino C comunica a B una alternativa de alcance a A que es dependiente de B Problema de la cuenta a infinito

A-	_B_	<u> </u>	_D_	E
	Inf	Inf	Inf	Inf Inicialmente
	1	Inf	Inf	Inf Tras 1 intercambio
	1	2	Inf	Inf Tras 2 intercambios
	1	2	3	Inf Tras 3 intercambios
	1	2	3	4 Tras 4 intercambios

Vector de distancia: problema cuenta hasta infinito

- Horizonte dividido con Inversa envenenada:

Si C sabe que para alcanzar a A lo hace por B \rightarrow No manda a B esa info. (o manda [A, ∞])

- ¿Resuelve esto completamente el problema de la "cuenta hasta el infinito"?
 - Los bucles que implican a tres o más nodos (en lugar de a dos nodos vecinos) no serán detectados por esta técnica.

Vector de distancias: cambios en el coste de un enlace (III)

Solución con inversa envenenada

Pero C ofrecerá a B una ruta a A a través de E

Más iteraciones hasta que C detecte que ni B ni E tienen ruta a A