4.1 Homogeneous Equations with Constant Coefficients

Consider the nth order linear homogeneous differential equation

$$L[y] = a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

$$L[e^{rt}] = e^{rt}(a_0r^n + a_1r^{n-1} + \dots + a_{n-1}r + a_n) = e^{rt}Z(r)$$

for all r, where

$$Z(r) = a_0 r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n$$

For those values of r for which Z(r) = 0, it follows that $L[e^{rt}] = 0$ and $y = e^{rt}$ is a solution. The polynomial Z(r) is called the **characteristic polynomial**, and the equation Z(r) = 0 is the **characteristic equation** of the differential equation. By factoring, we get

$$Z(r) = a_0(r - r_1)(r - r_2) \dots (r - r_n)$$

where r_1, r_2, \ldots, r_n are the zeroes, some of which may be equal.

Real and Unreal Roots. If the roots of the characteristic equation are real and no two are equation, then we have n distinct solutions $e^{r_1t}, e^{r_2t}, \ldots, e^{r_nt}$. If these functions are linearly independent, then the general solution is

$$y = \sum_{i=0}^{n} c_i e^{r_i t}$$

If the Wronskian determinant is non zero, then they are linearly independent. **Complex Roots.** If the characteristic equation has complex roots, they must occur in conjugate pairs, $\lambda \pm i\mu$, since the coefficient a_0, a_1, \ldots, a_n are real numbers. The general solution is still of the same form, but we can replace $e^{(\lambda+i\mu)t}$ and $e^{(\lambda-i\mu)t}$ by

$$e^{\lambda t}\cos\mu t$$
, $e^{\lambda t}\sin\mu t$

Repeated Roots. If the roots of the characteristic equation are not distinct, then the solution is not as clear. If a root of Z(r) = 0, say $r = r_1$ has a multiplicity s (occurs s times), then

$$e^{r_1t}$$
, te^{r_1t} , $t^2e^{r_1t}$, ..., $t^{s-1}e^{r_1t}$

are corresponding solutions. For a complex root, every time $\lambda+i\mu$ is repeated, $\lambda-i\mu$ must also repeat.