

PLCPrint: Attack Fingerprinting

- PLC memory fingerprinting approach aims to detect and classify different types of attack
- Vendor-independent PLC fingerprinting algorithm that uses corelations in PLC memory registers
- Low overheads and generalisable

Fig 4. PLCPrint Architecture

Attack Classification

- General threat model proposes 2 attack vectors
 - Application code injection (static attacks)
 - Command injection (dynamic attacks)
- Expectation: Behaviour of PLC registers will differ between attack types and techniques

Attack Type	MITRE Technique	Observed In
	Program Download (T0843)	Stuxnet, IN- CONTROLLER (Pipedream)
Static	Modify Program	PLCBlaster,
Static	(T0889) (StaticMP)	Stuxnet
	Modify Controller Tasking (StaticMCT) (T0821)	Triton
	I/O Image (DynamicIO) (T0877)	Oldsmar Treatment Plant Intrusion
Dynamic	Brute Force I/O (DynamicBF) (T0806)	Industroyer, Industroyer2

Table 1. PLC Memory Attacks and techniques

PLC Operation States

- Model PLC behaviour through set of finite states
 - State = Physical and Logical manifestations
- Represented by unique register combination
 - 5 register areas: Inputs (I), Outputs (Q), Holding bits (H), Timers (P), and Counters (C)
 - Number of registers per area is predefined
 - Registers are discrete (either 0 or 1 at point in time)

PLC Memory Register Mapping (PMRM)

- PLC application code user-defined logic
- PLC registers provided with memory statuses PMRM process
 - Dynamic Status register active or inactive
 - Static Status logically instantiated within application code function block (static instance)
- Mapping Conditions (MCs) determined by combination of static and dynamic status (table 3)

МС	Dynamic	Static
MC1	0	0
MC2	0	1
MC3	1	0
MC4	1	1

Table 2. PMRM Mapping Conditions (MCs)

Fig 5. PLC Memory Register Mapping (PMRM) Approach

Evaluation and Results

- Some mapping condition (MC) correlations demonstrate better differentiation of attack types (Fig. 7)
- Combination of MC2 and MC3 present clearer separation of clustering
- Attack techniques provide denser clusters (Fig. 8)
 - Greater similarities between techniques from same attack type

Fig 7. MC distribution of attack types

Fig 8. MC distribution of attack techniques

Fig 9. Statistical inference of attack types

Evaluation and Results

- **High accuracy** for detecting (95%) and correctly classifying (98%) attacks optimal MC feature usage
- Generalisable performance:
 - Different PLC models
 - Multiple machine learning algorithms (e.g., K-Nearest Neighbour, Logistic Regression)
- Low overheads
 - Attack detection in < 500ms
 - Attack classification in < 1s (most cases)

Fig 10. Attack classification

Fig 11. Computational performance – time taken to perform attack classification

Cook, Marco M., Angelos K. Marnerides, and Dimitrios Pezaros. "PLCPrint: Fingerprinting Memory Attacks in Programmable Logic Controllers." *IEEE Transactions on Information Forensics and Security* (2023). (doi:10.1109/TIFS.2023.3277688)