Теория Меры 6: Мера Хаара

6.1. Топологические группы

Определение 6.1. Пусть G – хаусдорфово топологическое пространство, снабженное структурой группы. G называется **топологической группой**, если отображение $G \xrightarrow{g \mapsto g^{-1}} G$ непрерывно, и отображение $G \times G \xrightarrow{f,g \mapsto fg} G$ тоже непрерывно.

Задача 6.1. В этой ситуации, докажите, что отображение $G \xrightarrow{g \mapsto g^{-1}} G$ это гомеоморфизм. Докажите, что отображение $G \times G \xrightarrow{f,g \mapsto f,fg} G \times G$ это гомеоморфизм.

Задача 6.2. Пусть G – топологическое пространство, снабженное структурой группы, таким образом, что $G \times G \xrightarrow{f,g \mapsto f,fg} G \times G$ это гомеоморфизм. Докажите, что G - топологическая группа.

Задача 6.3. Докажите, что $(\mathbb{Z}_p, +)$, $(1 + \mathbb{Z}_p, *)$ компактные топологические группы (\mathbb{Z}_p) обозначает p-адические числа)

Задача 6.4. Рассмотрим группу обратимых матриц $GL(n,\mathbb{R})$, группу ортогональных матриц O(n), группу SL(n) матриц с детерминантом 1, с топологией, индуцированной из вложение в пространство матриц. Докажите, что это локально компактные топологические группы.

Задача 6.5. Рассмотрим группу $GL(n, \mathbb{Q}_p)$ с топологией, индуцированной из вложения

$$GL(n, \mathbb{Q}_p) \hookrightarrow \operatorname{Mat}_n(\mathbb{Q}_p) \cong \mathbb{Q}_p^{n^2}.$$

Докажите, что это локально компактная топологическая группа.

Задача 6.6 (*). Пусть $G_1 \subset G_2$ замкнутая нормальная подгруппа локально компактной топологической группы. Введем на факторгруппе G_1/G_2 топологию таким образом, что $U \subset G_1/G_2$ открыто тогда и только тогда, когда его прообраз в G_1 открыт. Докажите, что G_1/G_2 - локально компактная топологическая группа.

Задача 6.7. Постройте нетривиальный непрерывный гомоморфизм $\mathbb{Z}_p \longrightarrow S^1$, либо докажите, что такого не существует.

6.2. Mepa Xaapa

Определение 6.2. Пусть $(M,\mu),(N,\nu)$ - пространства с мерой. **Морфизмом** пространств с мерой называется измеримое отображение $\phi: M \longrightarrow N$ такое, что $\phi_*\mu = \nu$. **Изоморфизмом** пространств с мерой называется такой морфизм $\phi: M \longrightarrow N$, что существует морфизм $\psi: N \longrightarrow M$, причем $\psi \circ \phi$ и $\phi \circ \psi$ тождественные.

Задача 6.8. Докажите, что композиция изоморфизмов - опять изоморфизм.

Задача 6.9 (*). Постройте изоморфизм отрезка с мерой Лебега и квадрата.

Задача 6.10 (*). Пусть на \mathbb{R}^n задана мера $\nu = f\mu$, где f гладкая функция, принимающая значения в $[\varepsilon, \infty[$, $\varepsilon > 0$, а μ - мера Лебега. Постройте изоморфизм (\mathbb{R}^n, ν) и (\mathbb{R}^n, μ).

Задача 6.11. Решите приведенную выше задачу в случае n=1.

Определение 6.3. Пусть группа G действует на пространстве (M,μ) с мерой. Мы говорим, что μ G-инвариантна, если для любого $g \in G$, отображение $m \longrightarrow g(m)$ задает изоморфизм из (M,μ) в себя.

Определение 6.4. Мера μ называется **локально конечной**, если у каждой точки есть окрестность U, которая удовлетворяет $\mu(U) < \infty$.

Пусть G это группа. Левое действие группы на себе задается формулой $g, x \longrightarrow gx$, правое действие - $g, x \longrightarrow xg$. (Левая) мера Хаара это ненулевая, локально конечная мера Бореля на G, инвариантная относительно левого действия группы, и положительная на каждом непустом открытом множестве. Правая мера Хаара — мера, инвариантная относительно правого действия.

Задача 6.12. Пусть G – компактная топологическая группа, а μ – мера Хаара. Докажите, что $\mu(G)$ конечно.

Задача 6.13 (!). Пусть G топологическая группа, а μ , ν меры Хаара, такие, что $\mu(G) < \infty$, $\nu(G) < \infty$.

- а. Докажите, что $\nu \ll \mu + \nu$.
- б. Воспользовавшись теоремой Радона-Никодима, докажите, что $\nu = f(\mu + \nu)$, для какой-то измеримой функции $f: G \longrightarrow \mathbb{R}^{\geqslant 0}$.
- в. Докажите, что f постоянна вне $\mu + \nu$ -пренебрежимого множества.
- г. Выведите из этого, что $\nu = c\mu$, для какой-то константы c.

Определение 6.5. Напомним, что подмножество $V \subset M$ хаусдорфова топологического пространства называется **ограниченным**, или **предкомпактным**, если V содержится в компактном множестве.

Задача 6.14. Докажите, что $V\subset M$ предкомпактно тогда и только тогда, когда замыкание V компактно.

Определение 6.6. Топологическое пространство M называется пространством со счетной базой, если есть счетный набор открытых множеств $\{U_i\}$ такой, что любое открытое множество представляется в виде объединения U_i .

Задача 6.15. а. Докажите, что в \mathbb{R}^n есть счетная база.

- б. Докажите, что у компактного многообразия есть счетная база.
- в. Пусть \mathbb{Z}_p кольцо p-адических чисел, с обычной топологией. Докажите, что у \mathbb{Z}_p есть счетная база.

Задача 6.16 (*). Пусть E - борелевское множество в локально компактной, хаусдорфовой группе G, со счетной базой, а μ - мера Хаара на G. Обозначим за E^{-1} множество элементов вида g^{-1} , $g \in E$. Докажите, что E имеет меру нуль тогда и только тогда, когда E^{-1} имеет меру нуль.

Задача 6.17 (!). Пусть G - локально компактная топологическая группа со счетной базой, μ , ν меры Хаара, а U предкомпактная окрестность единицы.

- а. Докажите, что существует измеримая функция $f: U \longrightarrow \mathbb{R}^{\geqslant 0}$ такая, что $\nu = f(\mu + \nu)$.
- б. Докажите, что вне $\mu + \nu$ -пренебрежимого подмножества U, f равна константе: f = c.
- в. Выведите из этого, что

$$\nu\big|_{U} = c\mu\big|_{U},\tag{6.1}$$

для какой-то константы $c \in \mathbb{R}$, и для любой предкомпактной окрестности единицы в G.

г. Воспользовавшись наличием счетной базы, выведите из (6.1) равенство $\nu(A) = c\mu(A)$ для любого борелевского A.

Указание. (к последнему пункту): воспользовавшись наличием счетной базы, докажите, что каждое борелевское подмножество G есть объединение счетного числа компактов.

Замечание. Мы доказали, что на локально компактной топологической группе со счетной базой (левая) мера Хаара единственна, с точностью до константы.

Задача 6.18 (!). Пусть $r(g): G \longrightarrow G$ – действие группы (с счетной базой) справа на себя. Докажите, что для левой меры Хаара, $r(g)_*\mu$ тоже левоинвариантная мера Хаара, пропорциональная исходной, $r(g)_*\mu = \lambda_g(\mu)$. Докажите, что $g \longrightarrow \lambda_g$ есть гомоморфизм группы в \mathbb{R}^* .

Задача 6.19 (*). Постройте группу, для которой этот гомоморфизм нетривиален.

Задача 6.20 (!). Докажите, что для компактной группы, мера Хаара инвариантна слева и справа.

6.3. Построение меры Хаара

Замечание. Как следует из результатов листка 5, чтобы сконструировать меру Хаара на локально компактной топологической группе G, достаточно сконструировать левоинвариантный объем $\lambda: \mathbf{C} \longrightarrow \mathbb{R}^{\geqslant 0}$ на компактных подмножествах G.

Определение 6.7. Пусть $E \subset G$ предкомпактное подмножество, $F \subset G$ подмножество с непустой внутренностью. F-сеть на E это такой конечный набор точек $\{x_i\} \subset G$ (называемых узлами F-сети), что $\bigcup x_i F$ покрывает E. Минимальное число узлов в F-сети обозначается E: F.

Задача 6.21. Докажите, что в этих условиях F-сеть всегда существует.

Задача 6.22. Пусть A предкомпактное и с непустой внутренностью. Докажите, что $(E:A)(A:F)\geqslant E:F.$

Задача 6.23. Зафиксируем предкомпактное подмножество $A\subset G$ с непустой внутренностью. Для заданного открытого подмножества $U\subset G$, определим функцию $\lambda_U: \mathbf{C}\longrightarrow \mathbb{R}$ на множестве всех компактов $C\subset G,\ \lambda_U(C):=\frac{C:U}{A:U}$. Докажите, что эта функция счетно-полуаддитивна, левоинвариантна, и для любых $C,\ D,\$ таких, что $CU^{-1}\cap DU^{-1}=\emptyset,$ верно

$$\lambda_U(C \cup D) = \lambda_U(C) + \lambda_U(D)$$

Указание. Воспользуйтесь тем, что для каждого x такого, что C пересекает xU, D не пересекает xU.

Задача 6.24 (*). В условиях предыдущей задачи, рассмотрим произведение $\mathcal{K} := \prod_{C \in \mathbf{C}} I_C$ отрезков $I_C := [0,C:A]$, проиндексированное всеми компактными множествами $C \in \mathbf{C}$, с топологией тихоновского произведения. Можно рассматривать \mathcal{K} как пространство функций $f:\mathbf{C} \longrightarrow \mathbb{R}$, принимающих значения в [0,C:A], с топологией поточечной сходимости. Это пространство компактно, по теореме Тихонова.

Обозначим за Δ_U множество всех $\lambda_V \in \mathcal{K}$ таких, что $V \subset U$.

- а. Докажите, что $\bigcap \Delta_{U_i} = \Delta_{\cap U_i}$, где пересечение берется по конечному набору окрестностей единицы $U_i \subset G$. Докажите, что это множество непусто.
- б. Обозначим за $\overline{\Delta_U}$ замыкание Δ_U в \mathcal{C} . Это множество компактно, по теореме Тихонова. Докажите, что $\bigcap_U \overline{\Delta_U}$ непусто, где пересечение берется по всем открытым окрестностям единицы в G.
- в. Пусть $\lambda: {\bf C} \longrightarrow {\mathbb R}$ лежит в $\bigcap_U \overline{\Delta_U}$. Докажите, что λ ненулевой, левоинвариантный, регулярный объем на ${\bf C}$

Указание. Проверьте, что левоинвариантность, монотонность и полуаддитивность это замкнутые условия в \mathcal{K} . Выведите из этого, что им удовлетворяют все $f \in \overline{\Delta_U}$. Чтобы доказать, что λ это объем, надо проверить аддитивность. Из локальной компактности выведите, что для любых непересекающихся компактов C и D существует окрестность U единицы в G такая, что CU^{-1} не пересекается с DU^{-1} . Условие $f(C\coprod D)=f(C)+f(D)$ замкнутое, и ему в силу задачи 6.23 удовлетворяют все $f\in\Delta_U$. Выведите из этого, что λ тоже удовлетворяет этому условию.

Задача 6.25. Пусть μ - мера Хаара на локально компактной топологической группе G. Докажите, что $\mu(e) \neq 0$ тогда и только тогда, когда G дискретна.

Задача 6.26. Рассмотрим мультипликативную группу $\mathbb{R}^{>0}$ как локально компактную топологическую группу. Докажите, что мера Хаара λ абсолютно непрерывна относительно меры Лебега μ на $\mathbb{R}^{>0}$. Выведите из этого соотношение $\lambda = f\mu$ и найдите функцию f.

Задача 6.27. Решите такую же задачу для мультипликативной группы \mathbb{C}^* ненулевых комплексных чисел.

Задача 6.28 (*). Рассмотрим группу $GL(n,\mathbb{R}) \subset \mathrm{Mat}(n,\mathbb{R})$ с топологией и мерой Лебега μ , индуцированной из $\mathrm{Mat}(n,\mathbb{R})$. Докажите, что мера Хаара λ абсолютно непрерывна относительно меры Лебега на $GL(n,\mathbb{R})$. Выведите из этого соотношение $\lambda = f\mu$ и найдите функцию f.

Задача 6.29 (*). То же самое для $GL(n,\mathbb{C}) \subset \operatorname{Mat}(n,\mathbb{C})$.