Graph Convolution Network (GCN)

https://youtu.be/Gb5aVZOYmv0

Contents

Graph

Convolution Neural Network

Graph Convolution Network

advanced ..

Graph

❖edge로 연결된 node의 집합

- node == vertice → 꼭지점
- edge → 모서리
- ❖edge간의 **방향**이 있는 경우, 없는 경우 모두 표현 가능
- ❖edge의 중요도(값, vertice간의 거리) 또한 표현 가능
 - weight, distance → weighted graph
- ❖그래프는 유연한 데이터 구조를 가짐
- ❖node, edge는 풀고자 하는 문제에 대한 지식이나 직관 등에 의해 구성
- ❖컴퓨터에서는 보통 matrix로 표현

Graph

Social Graph

node: 사람들의 정보
 (이름, 나이 등의 특징 가짐)

• edge : 친밀도, 관계 등

Molecular Structure

• node: 원자

(종류 등의 특성)

• edge : 원자 간 결합

(공유 결합, 이온 결합 등)

Graph Neural Network

❖Neural Network (NN)

• 데이터의 특징, 의미 등을 추출하는 역할

❖다뤄야 할 데이터에 맞는 NN 구조 필요

image data : CNN

sequential data : RNN, LSTM

graph : GNN (Graph Neural Network)

*graph 구조에 대해 학습하는 신경망

node 간의 관계성, node의 정보를 학습

→ graph의 feature를 추출하여 학습

Convolutional Neural Network

- ❖ convolution layer : feature 추출
- ❖ maxpooling layer : feature 강화
- **❖지역적 특징** 학습
 - filter 영역씩 연산을 수행 → translation invariance
- ❖ weight sharing
 - 동일한 가중치를 공유 == 동일한 필터가 입력 이미지를 순회
 - → 동일한 가중치를 적용하여 convolution 연산 수행
 - → 학습할 파라미터가 적어 효율적이며 과적합 감소
- ❖output tensor의 depth → filter 수
 - 각 filter 마다 convolution 연산 수행

연산 후의 상태 (activation map) 필터가 여러 개면 depth가 늘어남

❖ 이러한 CNN의 장점을 GNN에도 적용 → Graph Convolution Network

Graph Convolution Network (GCN)

- ❖각 레이어를 통과하며 그래프의 상태나 정보를 학습
 - graph의 상태, 정보를 결정하는 요소 node에 담긴 정보 (특징, 값)
 - 즉, 각 레이어를 거칠 때마다 그래프의 정보 (노드의 값)이 갱신되며 학습
 → hidden state update

∜idea

- weight sharing
 동일한 가중치를 적용하여 학습
- 2. local value (학습할 노드의 근처 노드들의 정보) 1개의 뉴런이 local한 정보들만을 받아 학습

Matrix in GON

Node Feature Matrix

GCN에서의 graph 표현

			<i>n</i>			
node 0	1	1	1	0	0	
node 1	1	1	1	0	0	
node 2	1	1	1	1	0	-n
node 3	0	0	1	1	1	
node 4	0	0	0	1	1	
node 0 ~ node4						

Adjacency Matrix

node에 담긴 정보(feature)를 나타내는 행렬

- node의 수 (n), feature의 수 $(f) \rightarrow n \times f$ 행렬
- $X_{ij} \rightarrow i \, \text{UW node} \, j \, \text{UW feature}$

node간의 연결을 나타내는 행렬

- node의 \uparrow $(n) \rightarrow n \times n$ 행렬
- $A_{ij} \rightarrow i$ 번째 node와 j 번째 node의 연결 관계

graph:: input data

graph :: input data

- ❖ hidden state
 - 각 layer를 거친 후의 node feature matrix
 - H_1^l : l번째 layer를 거친 후의 1번 노드의 node feature matrix
- ❖ 각 노드의 정보를 업데이트 == node feature matrix를 업데이트
- ❖ 하나의 노드와 연결된 노드만 반영하여 업데이트 (local)
 - 해당 노드와 관련있는 정보만을 지역적으로 학습

$$H_1^{l+1} = \sigma \left(H_0^l W^l + H_1^l W^l + H_2^l W^l + b^l \right)$$

• 각 layer의 hidden state 위해 연결 관계를 각 레이어마다 파악해야하는가?

255	0	17	\rightarrow H_0
8	144	76	
127	32	241	
56	11	23	
216	98	102	H_4

node feature matrix

5개의 노드에 대해 각 3개씩의 feature

1	1	1	0	0
1	1	1	0	0
1	1	1	1	0
0	0	1	1	1
0	0	0	1	1

adjacency matrix

연결관계를 담고있는 행렬

node1,2,3만 관련있으므로 H_0, H_4 는 사용 x

$$H_{1}^{l+1} = \sigma (H_{1}^{l} W^{l} + H_{2}^{l} W^{l} + H_{3}^{l} W^{l} + b^{l})$$

$$\downarrow \qquad \qquad H^{lW^{l}} + b^{l}$$

$$H^{l+1} = \sigma (AH^{l}W^{l} + b^{l})$$

H의 전체 행을 모두 사용 시, 관련없는 노드의 정보도 학습

→ 관련 노드의 정보만 반영하기 위해 A행렬을 곱함 (연결x인 node의 정보는 0이 곱해져서 반영x)

251	25	177	
10	72	1	
82	181	164	=
17	6	26	
21	9	112	

각기 다른 필터를 곱해 나온

고차원적인 정보

1	1	1	0	0
1	1	1	0	0
1	1	1	1	0
0	0	1	1	1
0	0	0	1	1

2550178144761273224156112321698102

 W_0 W_1 W_{64} W_0 W_1 W_{64} W_0 W_1 W_{64}

adjacency matrix

node feature matrix

weight (filter)

동일한 filter는 동일한 weight 적용

- 노드 수 : 레이어마다 동일
- node feature matrix의 열 : 이전 레이어의 filter 수에 따라 결정
- weight 행렬의 행 : node feature의 feature 수
- weight 행렬의 열 : 해당 레이어의 filter 수

layers

```
X, edge_index = data,x, data,edge_index
H = self,conv1(X, edge_index)
H = F,relu(H)
Y = self,conv2(H, edge_index)
Y = F,log_softmax(Y, dim=1)
```

self.conv1 = GCNConv(dataset.num_node_features, 16);

self.conv2 = GCNConv(16, dataset.num_classes)

2개의 input

- X: node feature matrix (노드 정보)
- edge_index : adjacency matrix (연결 정보)
- H: hidden state
- Y : output

read out

❖노드 순서(배치)만 변경되는 경우, 동일 그래프지만 matrix는 변함

1	1	0	0	1
1	1	0	0	1
1	1	1	0	1
1	0	1	1	0
0	0	1	1	0

노드가 바뀌어서 변경되는 모든 행렬들 → permutation set
permutation에 상관없게(permutation invariance) 학습되도록 하기 위한 layer
*1차원 벡터 형태로 변환 후 활성화 함수 → linear layer

prediction

❖output

- node, graph
- 2개의 input (matrix)로부터 1개의 output 생성
- ❖loss에 따라 회귀, 분류 문제 모두 가능
 - 회귀 : Mean Squared Error
 - 분류 : Cross Entropy Error

prediction

prediction

- 노드간의 관계 학습 후 예측 ex) 추천 시스템, 행동 예측, 분자구조로 향기 예측
- sgraph classification
 - 그래프 자체를 분류 ex) 분자 구조 분류, 악성 댓글 분류, 논문 주제 분류
- node classification
 - 그래프를 구성하는 노드 레벨의 분류

image generation from graph

- 탐지된 물체들을 graph로 만들어 탐지뿐만 아니라 이미지에서의 관계까지 파악 가능
- 반대로 graph를 사용하여 이미지 생성 또한 가능

summary

❖input data

graph (node feature matrix, adjacency matrix)

training

- graph convolution : 여러 개 거쳐 고도화된 정보 학습
- read out : 1차원 벡터형태로 변형 → 노드의 배치에 상관 없도록 함

predict

- fully connected layer → 회귀, 분류 가능 (node level, graph level)
- ❖layer마다 node feature matrix, weight가 갱신되며 훈련

inception

- inception module
 - 다양한 크기의 필터를 사용하고, concatenate하여 다음 레이어로 입력
 - 필터가 많을수록 더 큰 범위의 값을 학습 가능 > 거리가 얼마인 노드까지 포함할 것인지
- graph convolution 횟수 == 거리
 - 1번 > 거리가 1인 노드들
 - 2번 → 거리가 2인 노드들의 정보까지 반영

attention

- 하나의 노드의 갱신할 때 관련 노드들은 모두 같은 비율로 반영 → Graph Attention Networks(GAT)
- 적절한 비율을 정하여 노드마다 다르게 적용
 - 해당 비율은 행렬(α) 형태로 곱함 (행렬 α x)
 - $\alpha_{ij} \rightarrow i$ 번째, j번째 노드 간의 상관관계의 중요도

node0	1				
node1					
:			•••		
node4					0.7
	node()	•••	1	node4

Q&A

