

Klaus Mayer

Who we are...

c/o Richard Bartz, wikimedia

Outline(1)

- Short introduction into data generation and analysis concepts for complex triticeae genomes: the barley genome:
 - Barley "genome zipper"
 - Barley genome sequencing, physical+genetic map integration
 - Gene prediction and annotation in barley
 - Comparative genomics in triticeae genomes

Outline(2)

- Analysing the 17 Gb genome sequence of bread wheat using NGS sequencing
- Optional: Access to the Barley physical and genetic maps – a tutorial intro (based on slides from Nils Stein, IPK)

Outline(3)

Barley&Wheat genome database resources:

- MIPS PlantsDB tutorial: how to access and analyse barley&wheat genome data within a comparative database framework interactive exercises
- Homework exercises: a "real-world" use case accessing the barley genome databases – solutions provided

Bio*Green*formatics: From Models to Crops, from Pets to Beasts

Arabidopsis thaliana (Nature, 2000) Medicago (Nature, 2011) Tomato (Nature, 2012)

Sorghum (Nature, 2009) Brachypodium (Nature, 2010) Maize (Genome Research, 2006, Plant Phys. 2008, PNAS 2008)

Barley (Plant Phys. 2009, Plant Cell 2011, Nature 2012) Arabidopsis lyrata (Nature Genetics 2011)

Physcomitrella patens (Science 2008) Aegilops tauschii (Nature, under revision)

Oryza (Genome Research 2001; in prep) Wheat (Plant Cell 2011;Plant Journal 2012,Nature 2012)

Rye (PNAS 2012; in prep.)

Lolium (submitted) Festuca (submitted) Spirodella (in prep.) Micromonas (science 2009)
While NGS democratized sequencing the analytical bottleneck gets more pronounced.
Cardamine mrsuta

The Challenge

Reduction of complexity by chromosome sorting

Barley WGS sequencing

Barley reference sequence - Illumina

Morex 50x WGS assembly 3, repeat masked

 \square 2,670,738 contigs

Bowman

- □ 1,868,648,155 bp sequence (min 200bp, max 36 kbp, mean 700bp, N50 1,425 bp)
- □ 936,664,164 bp (50.13%) masked sequence
- chromosome arm sorting available
 (CarmA)
- □ add. varieties available: Barke,

Barley vs Brachypodium, Sorghum and rice -Synteny on a per gene resolution-

Syntenic Integration generates a "GenomeZipper"

GenomeZipper...what is it? For what?

- Is an approach developed to create an ordered virtual gene map for a chromosome
- It smartly combines chromosome sorting, next generation sequencing, genetic maps, flcDNAs and systematic exploitation of conserved synteny with model grasses
- It provides a valuable surrogate for the gene space of the analyzed chromosome/genome
- Requirements:
 - Masked 454 reads/contigs
 - Orthologs from syntenic regions

GZipper Input

marker scaffold rice Virtual Gene Map: sorghum reads/contigs **Syntenic** Integration Os10 B

Marker directed synteny projection

Chromosome sorted shotgun sequences

High resolution integrated gene map of barley chromosome 1

contig

GenomeZipper pipeline

GenomeZipper: Barley Chromosomes

Data Sets	1H mobe	2H	3H	4H	5H	6Н	7H	All
# nonredundant anchored gene loci	3,331	3,616	3,394	2,709	3,208	2,304	3,204	21,766
% markers with associated gene from ref. genome(s)	63.25	61.1	66.29	69.1	60.77	58.75	53.9	61.72
# matched barley fl-cDNAs	1,676	1,619	1,628	1,255	1,474	1,058	1,395	10,105
# nonredundant sequence reads & array hybridization probes	52,70 4	31,29 4	32,07 8	22,64 4	27,19 7	20,94	24,42	211,28
# nonredundant ESTs	3,543	3,678	3,392	2,605	3,354	2,387	3,120	22,079
# Brachypodium genes	2,141	2,379	2,363	1,876	2,159	1,588	1,915	14,421
# rice genes	1,845	2,073	2,016	1,614	1,576	1,348	1,621	12,093
# sorghum genes Mayer et al. (2011): Uni	1,833	1,946	2,039	1,284	1,695	1,369	1,721	11,887

Mayer et al. (2011): Unlocking the Barley Genome by Chromosomal and Comparative Genomics; The Plant Cell; DOI: 10.1105/tpc.110.082537

Barley - a high resolution genome scaffold

Chr./ Chrarm	expected Lander Waterman of high quality	observed marker detection rate (sensitivity) of high quality	specificity
1H (MoBe)	sequences 86.46%	sequences 98,19	88%
2HS	64,65%	82,35	97,9
2HL	79,20%	86,24	97,1
3HS	75,34%	80,58	98
3HL	83,14%	85,95	96,5
4HS	74,08%	80,55	97,9
4HL	78,56%	83,01	93,6
5HS	83,63%	90,29	97.9
5HL	75,83%	83,03	97,6
6HS	82,09%	86,29	97,8
6HL	80,60%	86,38	97,8
7HS	73,29%	80,97	97
7HL	71,35%	84,89	98

Barley Genome Zipper summary

- 22k barley genes sequence tagged positionally ordered and in part associated with flcDNA & EST
- Additional 6k genes with chromosome arm assignment
- Resolution of appr. 0,05 (0,1) cM; 20 loci (9,3 fl-cDNAs) per cM
- >3000 (14%) genes are located in low/non-recombining regions
- All but 9 ordered and assigned to short and long arm respectively

Shortcomings:

- Can't resolve small local rearrangements
- Can't position genes that are out of syntenic context
- Pseudogenes, tandem duplicates, ...

A powerful shortcut towards an ordered gene map of the huge Triticeae genomes

Genome stratification in barley

Combined genetic and physical map build scaffold

+ Sequence enriched via 80x WholeGenomeShotgun 6,200 BACs, 570,000 BacEndSeqs 500,000 genetic markers 250 Gb RNA Seq

- =>3,9Gb (76%) anchored
- + 650 Mb (13%) chr. arm associated

Different hierarchies of feature connection and different layers to start the navigation

Genome stratification in barley cont.

The Barley **Gene-ome**:
A **physical**, **genetic** and **functional** sequence assembly

More on barley physical and genetic map (integration) in seperate presentation!

Gene prediction in barley

Barley RNA-seq data from SCRI

Platform	Read Length [bp]	Paired End	Material	Genotype	Reads [#]	Sequence [bp]
Illumina GA2 SE	76	no	4 days germination embryo	Morex	23,250,889	1,767,067,564
Illumina GA2 SE	76	no	4 days germination embryo	Quench	26,946,706	2,047,949,656
Illumina GA2 SE	76	no	4 days germination embryo	Optic	23,252,182	1,767,165,832
Illumina GA2 SE	76	no	4 days germination embryo	Barke	25,663,186	1,950,402,136
Illumina GA2 SE	76	no	4 days germination embryo	Tocada	23,868,881	1,814,034,956
Illumina GA2 SE	76	no	4 days germination embryo	Betzes	22,204,022	1,687,505,672
Illumina GA2 SE	76	no	4 days germination embryo	Sergeant	24,480,462	1,860,515,112

Σ 169,666,328

Σ 12,894,640,928

=> Barley reference assembly sequence from IPK

Gene prediction in barley

Sequence-fragmented RNA

Fragments aligned to genome

Assemble alignments

Genomic loci

adapted from Garber et al 2011

Bowtie/Tophat

Alignment of reads to reference genome and identification of splice junctions

Cufflinks

Identification of genes and transcripts based on the location of the alignments of spliced reads

=> 86,330 barley CuffLink

Gene prediction in barley - pipeline

Gene prediction in barley - results

Total # transcripts clustered for barley (+filtered): **26,159**

"High-confidence" barley genes

Total # barley Singletons: **53,220**

"Low-confidence"
barley genes
(likely to contain many pseudogenes & nTARs – novel transcriptional active regions)

Gene prediction in barley - summary

acknowledgements

MIPS

Thomas Nussbaumer Stefan Taudien Matthias Pfeifer Klaus Mayer Mihaela Martis Sapna Sharma Tsuyoshi Tanaka Heidrun Gundlach Stephan Roessner Michael Seidel Georg Haberer

IPK

Nils Stein Andreas Graner B Steuernagel **Uwe Scholz**

FLI Jena

Marius Felder Andreas Petzold Matthias Platzer

IEB Olomouc

Hana Simkova Pavla Suchankova Jaroslav Dolezel

WZW/ Technical **University Munich**

Eva Bauer Grit Haseneyer Chris Schön

The IWGSC

SCRI

Pete Hedley Hui Liu Robbie Waugh

NIAS/Okayama

Takashi Matsumoto Tsuyoshi Tanaka Takeshi Itoh Kaz Sato et al.

The UK Wheat Consortium

Mike Bevan Neil Hall Anthony Hall Keith Edwards Rachel Brenchley

The IBSC

CSHL

Dick McCombie

UC Davis & USDA Albany

Jan Dvorak Mincheng Luo Olin Anderson

Kansas State University Bikram Gill

Sunish Segal

EBI

Paul Kersey Dan Bolser

