CONSTRAINT SATISFACTION PROBLEMS – PART IV

Chapter 6

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search
- Backjumping
- No-good
- Forward checking
- Constraint propagation
- Local search for CSPs

Chronological backtracking

Chronological backtracking

- Backtrack to the <u>previous variable</u> and try another value
- □ Example: Assume a fixed variable ordering Q, NSW, V, T, SA, WA, NT
 - Suppose the **partial assignment** $\{Q = red, NSW = green, V = blue, T = red\}$
 - The next variable is SA, but every value violates a constraint
 - We back up to T and try a new color for Tasmania. This is <u>not useful!</u> recoloring Tasmania <u>cannot</u> possibly <u>resolve</u> the problem with SA

Assume variable ordering Q, NSW, V, T, SA, WA, NT

Backjumping

- Backtrack to a variable that might fix the problem
- The set of these variables is called the conflict set
 - **Example:** The conflict set for **SA** is **{Q, NSW, V}**
- □ Backjumping: Backtrack to the most recent variable in the conflict set
 - Example: We jump over T and try a new value for V

No-good

- □ To avoid redundant work
 - To avoid running into the same problem again
 - Constraint learning: finding a minimum set of variables from the conflict set that cause the problem. This <u>set of variables</u> with their <u>corresponding values</u> is called <u>no-good</u>
 - Record the no-good by adding a new constraint to the CSP

No-good

Example

- \square Consider the state {WA = red, NT = green, Q = blue}
- This state is a no-good, because there is no valid assignment to <u>SA</u>
- □ If the search tree starts by assigning values for WA, NT, Q → recording this no-good would not help because once we prune this branch from the search tree, we will never encounter this combination again
- □ If the search tree starts by assigning values for V, T → Useful to record {WA = red, NT = green, Q = blue} as a no-good because we will run into the same problem again for each possible set of assignments to V and T

Early detection of failure

Forward checking

- Keep track of remaining legal values for <u>unassigned</u> variables
- Terminate search when any variable has no legal values

Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

Constraint propagation repeatedly enforces constraints locally

CONSTRAINT SATISFACTION PROBLEMS – PART V

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search
- Forward checking
- Constraint propagation
- Local search for CSPs
- Structure of the problem

Constraint propagation

- □ Constraint propagation
 - □ Using constraints to reduce the number of legal values for a variable → this can reduce the legal values for another variable ...
 - May be interleaved with search
 - May be done as a preprocessing step, before search starts
 - Sometimes it can solve the whole problem, so no search is required
 - The key idea is local consistency
 - By enforcing local consistency in each part of the constraint graph → inconsistent values are eliminated in graph
 - There are <u>different types</u> of <u>local consistency</u>

Node consistency

- A variable (corresponding to a node in the CSP network) is node-consistent if <u>all the values</u> in the variable's domain satisfy the variable's <u>unary constraints</u>
- Example (a variant of map coloring)
 - Assume South Australians dislike green
 - Variable SA starts with domain {red,green,blue}
 - We can <u>make SA node consistent</u> by <u>eliminating green</u>, leaving SA with the reduced domain {red,blue}
- A CSP network is node-consistent if every variable in the network is node-consistent

CSPs with binary constraints

Unary constraints can be eliminated by running node consistency

All n-ary constraints can be transformed into binary ones

We will consider CSPs with only binary constraints

- Simplest form of propagation makes each arc consistent
- A variable is arc-consistent if every value in its domain satisfies the variable's binary constraints

Formally:

Assume there is a binary constraint between X_i and X_j , X_i is arc consistent with respect to X_j iff for every value x for X_i , there is some allowed y for X_i that

for every value x for X_i , there is some allowed y for X_i that satisfies the binary constraint between X_i and X_i

 \square X_i is **arc consistent** with respect to X_i iff for every value x for X_i , there is some allowed y for X_i

SA is **arc-consistent** with respect to **NSW**

 \square X_i is **arc consistent** with respect to X_i iff for every value x for X_i , there is some allowed y for X_i

- NSW is not arc-consistent with respect to SA
- To make NSW arc-consistent with SA, it is sufficient to remove the value blue from the domain of NSW

 \square X_i is **arc consistent** with respect to X_j iff for every value x for X_j , there is some allowed y for X_j

If a variable X loses a value, neighbors of X need to be rechecked

 \square X_i is **arc consistent** with respect to X_i iff for every value x for X_i , there is some allowed y for X_i

- Arc consistency detects failure earlier than forward checking
- Can be run as a <u>preprocessor</u> or <u>after each assignment</u>

(Mackworth 1977)

```
function AC-3 (csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp
```

```
while queue is not empty do
(X_i, X_j) \leftarrow \text{Remove-First}(queue)
if \underline{\text{RM-Inconsistent-Values}}(X_i, X_j) then
for each X_k in \underline{\text{Neighbors}}[X_i] do
add (X_k, X_i) to \underline{queue}
```

- If **Di** <u>unchanged</u> → the algorithm just moves on to the next arc
- If Di<u>reduced</u> → we add to the queue all arcs (Xk,Xi) where Xk is a neighbor of Xi

```
function RM-Inconsistent-Values (X_i, X_j) returns true iff remove a value removed \leftarrow false

for each x in Domain [X_i] do

if no value y in Domain [X_j] allows (x,y) to satisfy constraint (X_i, X_j) then delete x from Domain [X_i]; removed \leftarrow true return removed
```

Complexity of AC-3

- For binary CSPs
 - □ n: number of variables
 - c: number of binary constraints (arcs)
 - d: domain size
- □ Time: O(cd³)
 - Each arc (X_k,X_i) inserted in the queue only d times because X_i has at most <u>d values</u> to delete
 - □ Checking consistency of an arc can be done in O(d²) time
 - Thus, O(cd³) total worst-case time

Is arc consistency enough?

- □ By using AC we can <u>remove</u> many incompatible values
 - Do we get a solution?
 - Do we know if there exists a solution?
- Unfortunately, the answer to both above questions is NO!

■ Example:

CSP is arc consistent but there is <u>no solution</u>

Is arc consistency enough?

- So what are the benefits of AC?
 - Sometimes we have a solution/failure after AC
 - \blacksquare a domain is empty \rightarrow no solution exists
 - all the domains are singleton → we have <u>a solution</u>
 - □ In general, AC prunes the search space → equivalent <u>easier</u> problem

Path consistency (PC)

- □ How to strengthen the consistency level?
- Require consistency over more than one constraint
- A two-variable set {Xi, Xi} is path-consistent with respect to a third variable Xm if
 - \forall assignment $\{Xi = a, Xj = b\}$ consistent with the constraints on $\{Xi, Xj\}$ \exists assignment to Xm that satisfies
 - the constraints on {Xi, Xm} and
 - the constraints on{Xm, Xi}
- This is called <u>path consistency</u> since it is like to consider
 a **path** from **Xi** to **Xj** with **Xm** in the middle

Path consistency (PC)

- Path consistency
 - does <u>not guarantee</u> that <u>all the constraints</u> among the variables on the path are <u>satisfied</u>
 - only the constraints between the neighbouring variables must be satisfied

 V_0 V_1 V_3 V_3 V_3 V_3 V_4 V_3 V_4 V_5 V_5 V_6 V_7 V_8 V_8 V_8 V_8 V_8 V_8 V_8 V_9 V_9

PC is still not a complete technique

A,B,C,D in
$$\{1,2,3\}$$

A \neq B, A \neq C, A \neq D, B \neq C, B \neq D, C \neq D is PC but has not solution

Other stronger consistency notions...

Review: Constraint propagation

- □ Constraint propagation
 - May be interleaved with search
 - May be done as a preprocessing step, before search starts
 - Sometimes it can solve the whole problem, so no search is required
 - By enforcing local consistency (arc consistent, or path consistency,...) in each part of the constraint graph inconsistent values are eliminated in graph