MH-Z19 二氧化碳气体传感器

产品描述

MH-Z19 二氧化碳气体传感器(以下简称传感器)是一个通用型、小型传感器,利用非色散红外(NDIR)原理对空气中存在的CO₂进行探测,具有很好的选择性,无氧气依赖性,寿命长。内置温度补偿;同时具有数字输出与波形输出,方便使用。该传感器是将成熟的红外吸收气体检测技术与精密光路设计、精良电路设计紧密结合而制作出的高性能传感器。

传感器特点

高灵敏度、高分辨率、低功耗

提供UART、PWM波形等多种输出方式

温度补偿, 卓越的线性输出

优异的稳定性

使用寿命长

抗水汽干扰、不中毒

主要应用

可广泛应用于暖通制冷与室内空气质量监控。

技术指标

表1

产品型号	MH-Z19				
检测气体	二氧化碳				
工作电压	3.6∼5.5 V DC				
平均电流	< 18 mA				
接口电平	3.3 V				
测量范围	0~0.5% Vo1 范围内可选(详见表 2)				
松山岸只	UART				
制出信号 	PWM				
预热时间	3 min				
响应时间	$T_{90} < 60 \text{ s}$				
工作温度	0∼50 ℃				
工作湿度	0~95% RH (无凝结)				
外形尺寸	$33 \text{ mm} \times 20 \text{ mm} \times 9 \text{ mm} \text{ (L} \times \text{W} \times \text{H)}$				
重 量	21 g				
寿 命	> 5年				

图 1: 传感器结构图

量程和精度

表 2

		· ·			
气体名称	分子式	量程	精度	备注	
二氧化碳	CO	$0{\sim}2000$ ppm	± (50ppm+	温度补偿	
一手(化恢	CO_2	0∼5000 ppm	5%读数值)	温度补偿	

管脚定义

表 3

管脚名称	管脚说明
Pin 6	Vin 电压输入
Pin 7	GND
Pin 1	Vout (3.3V 电源输出,输出电流
	小于 10mA)
Pin 9	PWM
Pin 5	HD (校零,低电平7秒以上有效)
Pin 2	UART (RXD) 0~3.3 V 数据输入
Pin 3	UART (TXD) 0~3.3 V 数据输出
Pin 4	SR (工厂预留)
Pin 8	AOT (工厂预留)

图 2: 管脚定义图

应用电路

图3: 应用电路

读取数据

1、PWM 输出

以测量范围为 2000ppm 的 PWM 输出为例:

C02 浓度输出范围0~2000 ppm周期1004 ms±5%周期起始段高电平输出2 ms±5%中部周期1000ms±5%周期结束段低电平输出2 ms±5%通过 PWM 获得当前 C02 浓度值的计算公式:

$$C_{ppm} = 2000 \times (T_H - 2ms)/(T_H + T_L - 4ms)$$
 (这个公式是图片,比其他数字大)

其中:

 C_{ppm} 为通过计算得到的 CO2 浓度值,单位为 ppm;

 T_H 为一个输出周期中输出为高电平的时间;

 T_L 为一个输出周期中输出为低电平的时间;

图 4: PWM 输出图示

2、串口输出

将传感器 Vin 端接 5V, GND 端接电源地,用户通讯接口的 RXD 端接探测器的 TXD, TXD 端接探测器的 RXD。探测器可以直接通过传感器的 UART 接口读出气体浓度值。

2.1 通讯协议

2.1.1 通用设置

表 4

波特率	9600
数据位	8 位
停止位	1 位
校验位	无

2.1.2 命令

每条命令或返回:

包含9字节(字节0~字节8)

起始字节固定为 0xFF

命令包含传感器编号(出厂默认值为 0x01)

以校验结尾(校验计算方法见 校验计算 3.1.3)

命令列表

表 5

0x86	读气体浓度值						
0x87	校准传感器 零点 (ZERO)						
0x88	校准传感器 跨度点 (SPAN)						

读气体浓度值

发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	传感器编号	命令	-	-	-	-	1	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

传感器返回值

传感器返回 (例)								
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte							Byte8	
起始字节	命令	浓度值高位	浓度值低位	-	-	-	_	校验值
0xFF	0x86	0x02	0x60	0x47	0x00	0x00	0x00	0xD1

气体浓度值 = 浓度值高位 * 256 + 浓度值低位

校准传感器零点

发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	传感器编号	命令	-	-	-	-	-	校验值
0xFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	0x78

传感器无返回值

校准传感器跨度值

发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	传感器编号	命令	跨度值高位	跨度值低位	-	-	-	校验值
0xFF	0x01	0x88	0x07	0xD0	0x00	0x00	0x00	0xA0

传感器无返回值

2.1.3 校验计算

校验 = (取反(字节1+ -----+ 字节7))+1

例如读气体浓度值:

发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	传感器编号	命令	-	-	-	-	-	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

1. 除 Byte0 和 Byte8 以外的其他字节全部相加

$$0x1 + 0x86 + 0 + 0 + 0 + 0 + 0 = 0x87$$

2. 第一步得到的值取反

$$0xff - 0x87 = 0x78$$

3. 第二步计算的值加1

$$0x78 + 0x01 = 0x79$$

2.2 示例程序

C语言计算校验和例程

```
char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 8; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

注意事项

- 1、 不要在粉尘密度大的环境长期使用传感器
- 2、 请在传感器供电范围内使用传感器。