

RAPPORT DE STAGE

Fracturation de floes de glace par percution dans un modèle granulaire

Superviseur Stéphane Labbé

ÉtudiantDesmond Roussel Nzoyem

Enseignant référent Christophe Prud'HOMME

Ce stage à été effectué dans le cadre du master 2 CSMI, du 03 février 2021, au 31 juillet 2021; initié par le groupe SASIPau LJLL.

Année académique 2020 - 2021

Remerciements

Table des matières

Re	emerciements	j
1	Introduction	1
2	Environnement économique du stage	2
	2.1 Le secteur d'activité	2
	2.2 Le Laboratoire Jacques-Louis Lions	2
3	État de l'art	3
	3.1 Position du problème	3
	3.2 État de l'art	4
	3.2.1 Le modèle du floe	5
	3.2.2 Le modèle de l'environnement	9
4	Travaux et apports	10
		10
	4.2 Les apports du stage	10
5	Déroulement du stage	11
	5.1 Journal de bord	11
6	Conclusion	12
Bi	bliographie	13

Introduction

Environnement économique du stage

- 2.1 Le secteur d'activité
- 2.2 Le Laboratoire Jacques-Louis Lions

État de l'art

3.1 Position du problème

Nous commençons par présenter une modélisation mathématique d'une plaque de glace (appelé floe) sur la mer. Six variables (locales) sont nécessaires pour décrire le floe occupant la région fermée de l'espace Ω (voir figure 3.1) :

- Un ouvert connexe $\omega \in \mathbb{R}^2$ décrivant la section longitudinale du floe;
- Deux fonctions $h_+, h_- \in \mathcal{F}(\omega, \mathbb{R})$ décrivant l'épaisseur du floe, telle que $\forall x \in \omega, h_-(x) \leq h_+(x)$;
- Le centre de masse du floe G(w);
- Deux vecteurs $\mathbf{e}_1(\omega)$ et $\mathbf{e}_2(\omega)$ formant une base sur ω .

FIGURE 3.1 – Illustration de la géométrie d'un floe de glace Ω .

On confond le floe au volume qu'il occupe dans l'espace Ω :

$$\Omega = \{(x, z) | x \in \omega \in \mathbb{R}^2, z \in]h_{-}(x), h_{+}(x)[\}.$$

Les fonctions h_- et h_+ permettent de définir trois quantités (voir figure 3.2) :

- L'épaisseur moyenne du floe : $\bar{h} = \sup_{x \in \omega} h_+(x) \inf_{x \in \omega} h_-(x)$;
- La plus forte épaisseur : $\bar{h}^* = \sup_{x \in \omega} |h_+(x) h_-(x)|$;
- La plus faible épaisseur : $\underline{h}^* = \inf_{x \in \omega} |h_+(x) h_-(x)|$.

Les vecteurs $\mathbf{e}_1(\omega)$ et $\mathbf{e}_2(\omega)$ sont liés à ω , et pointent vers un point fixe du bord $\partial \omega$ du floe c-à-d :

$$\exists \sigma_i \in \partial \omega \, | \, e_i(\omega) = \frac{\sigma_i - G(\omega)}{\|\sigma_i - G(\omega)\|}, \text{ pour } i \in \{1, 2\},$$

FIGURE 3.2 – Différentes épaisseurs décrivant un floe de glace. Pour l'instant, afin d'obtenir un floe relativement plat (i.e \bar{h} faible), h_- sera pris identiquement nul, et h_+ constant.

où $\|\cdot\|$ désigne la norme euclidienne de \mathbb{R}^2 . Notons que $\sigma_1 \neq \sigma_2$, et $\mathbf{e}_1(\omega) \cdot \mathbf{e}_2(\omega) = 0$ de façon à ce que la base orthonormée $(\mathbf{e}_1(\omega), \mathbf{e}_2(\omega))$ soit directe.

Un floe $\Omega = (\omega, \mathbf{e}_1(\omega), \mathbf{e}_2(\omega), G(\omega), h_-, h_+)$ se déplace sur la mer $M \in \mathbb{R}^2$. Au temps t après une translation de vecteur u(t) (et de matrice $\mathsf{T}_{u(t)}$), et une rotation de vecteur $\theta(t)$ (et de matrice $\mathsf{R}_{\theta(t)}$), on obtient le floe $\Omega(t)$ défini par :

$$\Omega(t) = (\omega', \mathbf{e}^1(\omega'), \mathbf{e}^2(\omega'), G(\omega'), h_-, h_+),$$

avec

$$\begin{cases} \boldsymbol{\omega}' = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \boldsymbol{\omega}, \\ \mathsf{e}_1(\boldsymbol{\omega}') = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \mathsf{e}_1(\boldsymbol{\omega}), \\ \mathsf{e}_2(\boldsymbol{\omega}') = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \mathsf{e}_2(\boldsymbol{\omega}), \\ \boldsymbol{G}(\boldsymbol{\omega}') = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \boldsymbol{G}(\boldsymbol{\omega}). \end{cases}$$

C'est cette dernière notation mettant en exergue la dépendance avec le temps que nous utiliserons tout au long de ce rapport.

Lors de leur mouvements sur la surface de la mer, les floes se fracturent sous l'effet des vents et des courants océaniques, des phénomènes thermodynamiques, etc. Nous nous intéresserons donc au phénomène de percussion en vue de l'initialisation des fractures dans les floes de glace. Afin de décrire le mouvement des floes de glace sur la mer, nous devons nous munir d'un repère absolu, que nous notons $\mathcal{R}_{abs} = (O, \mathbf{i}, \mathbf{j}, \mathbf{k})$. Le repère associé au floe Ω_i sera noté $\mathcal{R}_{\Omega_i} = (O, \mathbf{e_1}(\omega), \mathbf{e_2}(\omega), \mathbf{k})$. Dans ce repère absolu, le floe possède 3 degrés de libertés : l'abscisse et l'ordonné de son centre de gravité $G_i(\omega)$, et son orientation donnée par l'angle $\theta_i(t)$ (voir figure 3.3).

3.2 État de l'art

Une fois le modèle défini, il nous faut établir les équations décrivant la dynamique du floe, et celle de son environnement. Les travaux de RABATEL, 2015 et BALASOIU, 2020 ont extensivement traité le problème de modélisation dynamique et de simulation d'un assemblage de floe de glace. Nous résumons ici les principales idées de leurs raisonnements, tout en présentant l'état de l'art dans ce domaine.

^{1.} Pour l'instant, la mer est considérée comme un ouvert dans \mathbb{R}^2 . Plus tard, nous prendrons en compte sont épaisseur lorsque nous la modéliserons par une sphère de \mathbb{R}^3 .

FIGURE 3.3 – Positionnement d'un floe de glace Ω_i dans le repère absolu \mathcal{R}_{abs} .

3.2.1 Le modèle du floe

3.2.1.1 La cinétique du floe

L'approche discrète décrite dans (Rabatel, 2015) utilise les mêmes notations que celles présentées à la section 3.1. Les obstacles 2 sont des floes aux mêmes propriétés que les floes de glace, à la seule différence qu'ils ont une masse (volumique) infinie. Dans (Rabatel, 2015), l'auteur travaille dans un repère orthonormé direct $\mathcal{R}_{abs} = (O, \mathbf{i}, \mathbf{j}, \mathbf{k})$; cependant, vu que la mer est considérée plane, le mouvement du floe peut être décrit dans le plan $\mathcal{P} = (O, \mathbf{i}, \mathbf{j})$. Ensuite, Rabatel désigne la vitesse angulaire du floe Ω_i par

$$\Theta_i(t) = \Theta_i(t)\mathbf{k} = (0, 0, \Theta_i(t))^T$$
.

Soit P (de coordonné x) un point quelconque de $\mathcal{P} \subset \mathbb{R}^2$. Sa vitesse dans le repère \mathcal{R}_{abs} est donnée est donnée par la formule de Varignon :

$$\dot{P}(t) = \dot{G}_i(t) + \Theta_i(t) \wedge \mathbf{G_i} \mathbf{P}$$

où le symbole \wedge représente le produit vectoriel dans \mathbb{R}^3 . La masse (constante) du floe rigide indéformable est donnée par

$$M_i = \rho_i \int_{\Omega_i(t)} h_{i,+}(x) \, \mathrm{d}x.$$

Ensuite, l'auteur défini :

— la somme des forces par unité de volume qui s'applique au centre de masse du floe Ω_i :

$$\mathbf{F}_i = \rho_i \int_{\Omega_i(t)} \mathbf{F}(x) \, \mathrm{d}x,$$

— le moment cinétique 3 en G:

$$L_i = \rho_i \int_{\Omega^i(t)} \mathbf{G} \mathbf{P} \wedge \dot{\mathbf{P}}(t) \, \mathrm{d}x,$$

— le moment dynamique en *G* :

$$\mathfrak{M}_i = \int_{\Omega^i(t)} \mathbf{GP} \wedge \mathbf{F}(x) \, \mathrm{d}x.$$

^{2.} Nous faisons allusion aux obstacles au déplacement des floes. Il peut s'agir des iles, des stations offshore, etc.

^{3.} Il s'agit d'un moment dû à l'accélération du floe; alors que le moment dynamique est dû aux forces extérieures. Notons que ces deux vecteurs sont portés par **k**, et peuvent donc être remplacé par des scalaires correspondants.

Sous le formalisme de Newton-Euler, RABATEL montre que chaque floe Ω_i vérifie :

$$\begin{cases} M_i \frac{\mathrm{d}\dot{\mathbf{G}}_i(t)}{\mathrm{d}t} &= \mathbf{F}_i \\ \mathcal{I}_i \frac{\mathrm{d}\dot{\boldsymbol{\theta}}_i(t)}{\mathrm{d}t} &= \mathbf{M}_i \end{cases}$$

où \mathcal{I}_i représente le moment d'inertie du floe i. Ce système se réécrit facilement sous la forme

$$\mathcal{M}_i \frac{\mathrm{d}W_i(t)}{\mathrm{d}t} = \mathcal{H}_i(t), \tag{3.1}$$

avec

$$\mathcal{M}_{i} = \begin{pmatrix} M_{i} & 0 & 0 \\ 0 & M_{i} & 0 \\ 0 & 0 & \mathcal{I}_{i} \end{pmatrix}, \quad W_{i}(t) = \begin{pmatrix} \dot{\mathbf{G}}(t) \\ \dot{\theta}_{i}(t) \end{pmatrix}, \text{ et } \quad \mathcal{H}_{i}(t) = \begin{pmatrix} \mathbf{F}_{i}(t) \\ \mathbf{\mathfrak{M}}_{i}(t) \end{pmatrix}.$$

Pour un système *S* composé de *n* floes, le problème précédent doit être satisfait pour tous les floes. (RABATEL, 2015, p.18) montre que cela revient à résoudre l'équation

$$\mathcal{M}\frac{\mathrm{d}W(t)}{\mathrm{d}t} = \mathcal{H}(t),\tag{3.2}$$

avec

$$\mathcal{M} = (\mathcal{M}_i)_{1 \le i \le n}$$
, $\mathcal{W}(t) = (\mathcal{W}_i(t))_{1 \le i \le n}$, et $\mathcal{M}(t) = (\mathcal{M}_i(t))_{1 \le i \le n}$.

L'énergie cinétique du floe Ω_i quant à elle sera donné par :

$$E_i(t) = \frac{1}{2}M_i\dot{G}_i(t)^2 + \frac{1}{2}I_i\dot{\theta}_i(t)^2.$$

3.2.1.2 L'interaction entre les floes

Le domaine de la mécanique du contact s'est grandement développé ces derniers siècles, avec plusieurs scientifiques qui ont tenté de décrire le phénomène de contact entre des corps rigides. Notons que le problème d'interaction entre les floes est un probleme de dynamique non-régulière (contraitement au probleme de éplacement des floes entre deux collisions qui lui, est un probleme de dynamque resguliere). Dans (RABATEL, 2015), l'auteur considère deux lois de contact afin de décrire des phénomènes précis:

- la condition unilatérale de Signorini : afin de décrire la condition de non-interpénétration;
- la loi de friction de Coulomb : afin de modéliser le comportement de friction pendant une collision.

Afin de traiter ces problemes de contact, deux approches principales ont été developpées par les scientifiques : l'approche non-régulière et l'approche de r; egularisation des lois de contact.

Parmis les pioniers dans l'approche de régularisation pour la résolution de la condition unilatérale de Signorini, nous pourvons citer Hertz; Nevins et Whitney [NW72, Whi77], Moore [MW88b]; Ces méthodes se sont largement répandues dans les études liées à la robotique, à la réalité virtuelle ou encore dans les opérations assistées par ordinateur, pour simuler un grand nombre d'objets en contact en petites ou grandes déformations comme des habits, des cheveux ou encore des organes (voir [WW90, VCMT95, BW98, RGF+04]). Concernant la seconde, la loi de friction de Coulomb, la discontinuité entre les phases de glissement et non glissement a été traitée de différentes façons; en utilisant la notion de coefficeint de restitution, ou des modeles masse-ressorts.

L'approche non-régulière a été développée en utilisant les concepts d'inclusion différentielles; ceci afin de traiter la condition de Signorini. Moreau [Mor85b], Aubin [AC84] et Monteiro Marques [MM85], ont montré des résultats d'existence et d'unicité de solutions du probleme sans friction. Puis, des résultats similaires ont été établis pour le contact unique avec friction (voir [Mor85a, MM88, Pan85, JP85, MM94]). Cependant, cette notion d'inclusion differentielle est difficile à manipuler; raison pour laquelle le problème du contact multiple avec friction reste encore très peu traité. Il a donc fallu attendre les années 80 avec l'essort des méthodes LCP pour doner un nouvau soufle à l'approche non régulière. Nous pouvons citer ici les travaux de Lötstedt qui des

preuves d'existence et d'unicité pour le contact avec la friction de Coulomb (voir [Lot81, Lot82b, Lot82a]). On cite aussi Klarbring et Pang, pour leur apport sur le plan des méthodes de programmations. (RABATEL, 2015) a opté pour cette approche car elle facilite la construction des solutions à partir d'algorithmes tels que ceux de Lemke (voir [Lem78]). RABATEL s'insipire aussi des travaux de Baraff [Bar93], qui écrit les forces de contact dans les repères locaux aux points de contact. Ces repères sont définis par la normale et la tangente aux points de contact. La condition de complémentarité se résume comme ceci : "S'il y a contact alors la réaction est strictement positive et l'accélération relative nulle, et s'il n'y a pas contact l'accélération relative est strictement positive et la réaction nulle. ". Cependant, les travaux de Baraff sur l'existence de solutions sont limités par l'approche accéleération-force qui est utilisée, et le coefficient de friction. En utilisant des formulations en vitesse et impulsion, les chercheurs ont réussi à démontrer l'existence de solutions pour toute configuration à contacts multiples avec n'importe quel coefficient de friction.

Pour traiter le problème de collision entre les floes, les glaciologues retiennent une multitude de modèles principalement intégrés aux milieux continus. Par exemple, dans les articles de Solomon [Sol70], ceux de Hibler [HI79] et ceux de Bratchie [Bra84], la force résultante des interactions est due à une contrainte interne. On note aussi les modèles basés sur théorie des flux de particules. Dans [SHL86, Hop85] par exemple, les collisions ne sont pas détectées précisément et les paramètres décrivant la collision sont déterminés par une méthode de Monte Carlo. L'introduction de ces déformations dans les modèles discrets de la banquise a été initié dans les années 90 par Hopkins [Hop96], et récement par Herman et Wilchinsky [Her11, WFH10]. Cependant, elles sont basées sur la régularisation des lois de contact. Avant les travaux de RABATEL, il n'existait pas de modèle discret de banquise en utilisant une dynamique du contact non régulière.

Le modèle décrit par (RABATEL et al., 2015, p.5892) utilise deux conditions de complémentarité pour déterminer les vitesses des floes après le contact. La première est une condition de Signorini (SIGNORINI, 1933) pour s'assurer de la non-interpénétration ⁴ des floes. Pour décrire ces conditions, il faut au préalable écrire le problème de contact entre floes comme un problème implicite, où les inconnus sont les impulsions après le choc. Pour cette condition de complémentarité, RABATEL se base donc sur les travaux de Delassus (1917), Moreau (63), (Pfeiffer and Glocker, 1996). RABATEL se base ensuite sur les travaux de [Stewart and Trinkle, 1996] pour décrire une deuxième condition de complémentarité vérifiant la loi de fraction de Coulomb. Dans (RABATEL et al., 2015, p.5892)complémentarité. Le problème résultant a ensuite résolu en utilisant un algorithme de Lemke [Cottle et al., 1992, Alg. 6.3.1].

IMAGE D'UNE COLLISION EN Pi

Soit P_j , $(j \in \{1, ..., n\})$ un point de contact entre les floes Ω_k et Ω_l . Nous notons $\mathbf{F}_{kj}(t)$ la force de contact du floe Ω_k au floe Ω_l appliquée en P_i . Par convention, une matrice de contact $\mathbf{M_c}$ est définie telle que son coefficient $c_k j$ vaut :

- 0 si le point de contact P_i n'est pas un point de contact du floe Ω_k ;
- -1 si le point de contact P_j est un point de contact entre les floes Ω_k et Ω_l avec k < l;
 -1 si le point de contact P_j est un point de contact entre les floes Ω_k et Ω_l avec k > l.

En notant E_k l'ensemble des points de contact du floe Ω_k au temps t, (RABATEL, 2015, p.26) définit la résultante des forces de contact $\mathbf{F}_{k}^{c}(t)$, au floe Ω_{k} comme :

$$\mathbf{F}_k^c(t) = \sum_{j \in E_k} c_{jk} \mathbf{F}_{kj}(t).$$

En rajoutent ces forces aux forces extérieures lors du bilan des forces à l'équation (3.3), pour un floe $\Omega_k(t)$, on obtient:

$$\mathcal{M}\frac{\mathrm{d}W(t)}{\mathrm{d}t} = \mathcal{H}(t) + \sum_{j \in E_k} \begin{pmatrix} \mathbf{F}_{kj}(t) \\ \mathbf{G}^{\mathbf{k}} \mathbf{P_j} \wedge \mathbf{F}_{kj}(t) \end{pmatrix}. \tag{3.3}$$

^{4.} Deux floes s'interpénètre si la "distance" entre ces deux floes est négative.

3.2.1.3 Formulation en problème linéaire de complémentarité

Il existe deux principales manières de formuler le problème du contact entre deux solides rigides. L'auteur de (Rabatel, 2015) opte pour le formalisme vitesse-impulsion, au détriment du formalisme accélération-force. En effet, L'approche en vitesse impulsion apporte l'avantage de pouvoir exprimer la force de friction de Coulomb directement par rapport à la vitesse. Il n'est pas nécessaire de connaître la nature du contact. Il nous faut donc définir les notions d'impulsion. Sur un intervalle de temps δt^* , s'il y a un contact entre les floes Ω_k et Ω_l au point P_j , nous dirons que le floe Ω_k a subi un choc provenant du floe Ω_l au point de contact P_j caractérisé par l'impulsion :

$$\mathcal{I}_{kj} = \int_{\delta t^*} c_{kj} \mathbf{F}_{kj}(t) \, \mathrm{d}t.$$

Rabatel fait donc apparaître les impulsions dans les équations des moments équation (3.3) pour le floe Ω_k sur l'intervalle temporel δt^* :

$$\mathcal{M}_k \int_{\delta t^*} \dot{W}_k(t) dt = \int_{\delta t^*} \mathcal{H}(t) dt + \sum_{j \in E_k} \begin{pmatrix} \mathcal{I}_{kj} \\ G_k P_j \wedge \mathcal{I}_{kj} \end{pmatrix}.$$

En écrivant $\delta t^* = [t^-, t^+]$, on peut donc introduire les inconnues β , $\lambda \in (\mathbb{R}^2)^m$ pour le problème de contact

$$\mathcal{M}(W(t^{+}) - W(t^{-})) = \int_{\delta t^{+}} \mathcal{H}(t) dt + \mathbf{B}\beta + \mathbf{J}\lambda, \qquad (3.4)$$

où **B** et **J** sont deux matrices de $(\mathbb{R}^3)^{n \times m}$ telle que

$$\mathbf{B} = (d_{kj})_{\substack{1 \leq k \leq n \\ 1 \leq j \leq m}}, \quad d_{kj} = \begin{cases} 0 \in \mathbb{R}^3 & \text{si } P_j \text{ n'est pas un point de contact de } \Omega_k \\ \begin{pmatrix} c_{kj} \mathbf{T}_j \\ c_{kj} \mathbf{P}_j \mathbf{G}_k \wedge \mathbf{T}_j \end{pmatrix} & \text{si } P_j \text{ est un point de contact de } \Omega_k \end{cases}$$

$$\mathbf{J} = (s_{kj})_{\substack{1 \leq k \leq n \\ 1 \leq j \leq m}}, \quad s_{kj} = \begin{cases} 0 \in \mathbb{R}^3 & \text{si } P_j \text{ n'est pas un point de contact de } \Omega_k \\ \begin{pmatrix} c_{kj} \mathbf{N}_j \\ c_{kj} \mathbf{P}_j \mathbf{G}_k \wedge \mathbf{N}_j \end{pmatrix} & \text{si } P_j \text{ est un point de contact de } \Omega_k \end{cases}$$

Les matrices **B** et **J** sont obtenues par décomposition des forces de contact dans le repère de contact $\mathcal{R}_{\Omega_j} = (P_j, \mathbf{T}_j, \mathbf{N}_i)$ (voir figure Plus Haut).

Afin de modéliser la friction dans une collision qui respecte la loi de Coulomb, (Rabatel, 2015) se base sur les travaux de Stewart et Trinkle (96) qui définissent une condition de complémentarité reliant la composante tangentielle β_j de l'impulsion appliquée au point P_j , la composante normale λ_j , la vitesse relative tangentielle du point P_j et le coefficient de friction μ . On introduit le vecteur $\tilde{\beta}$ contenant les composantes de l'impulsion tangentielle dans chacune des directions possible de glissement \mathbf{T}_j et $-\mathbf{T}_j$. Il devient alors possible de formuler le problème de contact (sur tout le système S) sans interpénétration par le problème linéaire de complémentarité :

$$\begin{cases}
\begin{pmatrix}
0 \\ \mathbf{w} \\ \gamma \\ \sigma
\end{pmatrix} = \begin{pmatrix}
\mathcal{M} & -\mathbf{J} & -\mathbf{D} & 0 \\
\mathbf{J}^{T} & 0 & 0 & 0 \\
\mathbf{D}^{T} & 0 & 0 & \mathbf{H} \\
0 & \mu & -\mathbf{H}^{T} & 0
\end{pmatrix} \begin{pmatrix}
W(t^{+}) \\ \lambda \\ \tilde{\beta} \\ \alpha
\end{pmatrix} + \begin{pmatrix}
\int_{\delta t^{*}} \mathcal{H}(t) \, \mathrm{d}t - \mathcal{M}W(t^{-}) \\
0 \\ 0
\end{pmatrix} \\
\begin{pmatrix}
\mathbf{w} \\ \gamma \\ \sigma
\end{pmatrix} \ge 0, \quad \begin{pmatrix}
\lambda \\ \tilde{\beta} \\ \alpha
\end{pmatrix} \ge 0, \quad \begin{pmatrix}
\mathbf{w} \\ \gamma \\ \sigma
\end{pmatrix} \cdot \begin{pmatrix}
\lambda \\ \tilde{\beta} \\ \alpha
\end{pmatrix} = 0,
\end{cases} (3.5)$$

avec

$$\mathbf{w} = \mathbf{J}^T W(t^+), \quad \mathbf{H}^T = (e_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq 2m}}, \quad \tilde{\beta} = (\tilde{\beta}_j)_{1 \leq j \leq m}, \quad \lambda = (\lambda_j)_{1 \leq j \leq m},$$

 μ est la matrice diagonale de diagonale (μ_1, \dots, μ_m) ,

$$e_{ij} = \begin{cases} 1 \text{ si } j = 2(i-1) + 1 \text{ ou } j = 2(i-1) + 2 \\ 0 \text{ sinon} \end{cases},$$

$$D = (\mathbf{B}_1 | -\mathbf{B}_1 | \dots | \mathbf{B}_m | -\mathbf{B}_m)$$
 avec \mathbf{B}_j la colonne j de la matrice \mathbf{B} .

Le problème consiste alors à trouver les vitesses après contact $W(t^+)$, à l'aide des composantes inconnues tangentielle et normale des impulsions dans les repères de contact $(\tilde{\beta} \gamma)$, elles-mêmes inconnues du système.

3.2.1.4 Consistance énergétique

D'après l'auteur de (RABATEL, 2015, p.42), traiter le problème de contact à partir de lois non régulières ne permet pas d'obtenir des solutions satisfaisant à la fois la non-interpénétration, la friction de Coulomb et une consistance énergétique. Le problème a donc été divisé en une phase de compression et une phase de décompression suivant la loi de Poisson, durant lesquelles un problème de complémentarité (équation (3.5)) a été résolu. Durant la phase de décompression, RABATEL a donc opté pour la consistance énergétique et la non-interpénétration avec la solution :

$$W^{N} = (1 + \varepsilon)W^{c} - \varepsilon W(t^{-}),$$

où W^c représente les vitesses des floes après la phase de compression, et ε le coefficient de restitution pour les contacts considérés inélastiques.

3.2.1.5 Traitement des conditions aux bords

3.2.2 Le modèle de l'environnement

Travaux et apports

- 4.1 Les travaux effectués
- 4.2 Les apports du stage
 - L' utilisation de TIKZ

Déroulement du stage

5.1 Journal de bord

Conclusion

Bibliographie

Balasoiu, Dimitri (2020). « Modélisation et simulation du comportement mécanique de floes de glace ». Thèse de doct. Université Grenoble Alpes.

RABATEL, Matthias (nov. 2015). « Modélisation dynamique d'un assemblage de floes rigides ». Theses. Université Grenoble Alpes. url: https://tel.archives-ouvertes.fr/tel-01293341.

RABATEL, Matthias et al. (2015). « Dynamics of an assembly of rigid ice floes ». In: *Journal of Geophysical Research: Oceans* 120.9, p. 5887-5909.

SIGNORINI, Antonio (1933). « Sopra alcune questioni di elastostatica ». In : *Atti della Societa Italiana per il Progresso delle Scienze* 27, p. 69.