Audio Source Separation using Deep Learning methods

Group Members: - António Estêvão (fc58203) - Diogo Venes (fc58216) - Guilherme Gouveia (fc58176)

A. Quick rubric (\checkmark / \triangle / X)

Criterion	Assessment	Notes			
Technical soundness	Δ	Goal is clear, but architecture choice still vague (CNN-based U-Net, Dual-Path RNN, TDCN++). Need to fix a time-frequency representation and decide between spectrogram masking vs. end-to-end waveform.			
Feasible on free- tier GPUs	√	MUSDB18 (150 min stereo, 44 kHz) fits; U-Net-style models train in < 3 h on a Colab T4 with 90-s crops and mixed precision.			
Dataset availability & readiness	✓	MUSDB18 is open; musdb Python package streams stems and mixtures.			
Starting-code / transfer-learning plan	Δ	Open-source baselines (Open-Unmix, Demucs v4, Spleeter) exist; choose one to fine-tune rather than training from scratch.			
Evaluation metrics	Δ	Manual listening is subjective; must report SDR / SI-SDR , SAR , SIR (Mir-Eval v0.7) on MUSDB18 test.			
$(\sqrt{\text{ = ready; }} \Delta = \text{needs work; } X = \text{high risk})$					

B. Focused suggestions

1. Fix the processing pipeline now

```
WAV \rightarrow STFT (hop 1024, win 2048) \rightarrow magnitude |S| / phase \angleS \downarrow U-Net mask estimator copy phase \downarrow \hat{S} = mask \bigcirc |S| \rightarrow ISTFT \rightarrow separated wav
```

- STFT-masking is simpler than waveform end-to-end and converges faster on free GPUs.
- Use log-scaled magnitude (+ epsilon) as input; batch-normalise across time-freq.

2. Baseline model choices

Model	Params	Train time*	Open weights
Open-Unmix (3-layer Bi-LSTM encoder–decoder)	3.3 M	2 h	√
Demucs v4-mini (ConvTasNet 10 M params)	10 M	3 h	✓
Spleeter-5stems (U-Net)	20 M	2 h	✓

^{*}Colab T4, 90-s segments, batch 4, AMP.

Fine-tune a single-target branch (vocals-only or vocals/instruments) first; expand to 2-way later.

3. Class-imbalance & overfitting

- MUSDB has \approx 65 % vocal-free segments. Use **random chunking** with 50 % probability to force inclusion of vocal frames.
- Apply **SpecAugment** (time-mask, freq-mask) to mitigate overfitting short clips.

4. Objective & loss

- **Multi-resolution STFT loss** (L1 on |S| at 1024/2048/4096 windows) improves high-frequency detail.
- Add **phase-consistency loss** if you later switch to hybrid T-F + waveform.

5. Metrics to implement before full training

```
from museval import eval_mus_track
sdr, sir, sar, _ = eval_mus_track(track ref, track est)
```

Report **median SI-SDR** over 50 test tracks and compare to open-unmix baseline to ensure your pipeline is wired correctly.

6. Compute budget (Colab T4)

Task	GPU h
Data pre-chunk & cache	0.3
Fine-tune Open-Unmix 100 epochs	1.5
Hyper-param sweep (×2)	1.0
Inference + metrics	0.3
Total	≈ 3.1 h

- 7. Next steps for Milestone 1
- 8. Clone sigsep/open-unmix-pytorch; modify --targets vocals drums | to your 2-class setup.
- 9. Write prepare_data.py that streams MUSDB, applies STFT and saves 6-s chunks to .npy.
- 10. **Train 10 epochs** to verify GPU memory (should peak \approx 6 GB) and compute SDR on three validation songs.

With these concrete design fixes your group can spend time tuning models rather than struggling with data or metric code, staying within free-tier GPU limits while producing publishable separation results.