

Actividad 2

E. P. DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

SERIES DE TIEMPO

Docente: M.Sc. Alcides RAMOS CALCINA.

DESCOMPOSICIÓN Y ANALISIS DE COMPONENTES

- 1. Haciendo uso del software estadístico y lenguaje de programación R-Studio simule las series temporales donde las componentes de variación actúen de manera aditiva y/o multiplicativa con las siguientes características:
 - a) Tendencia lineal

• Tendencia: $T_t = 2t + 1$

• Estacional: $E_t = 30 \sin \left[\frac{2\pi}{12} (t+1) \right] + 100$

• Irregular: $I_t \sim N(\mu = 0; \sigma = 5)$

Los modelos a simular:

i) Modelo aditivo: $Y_t = T_t + E_t + I_t$

ii) Modelo mixto: $Y_t = T_t \cdot E_t + I_t$

Componente irregular: $I_t \sim N(\mu = 0; \sigma = 500)$

b) Tendencia exponencial

• Tendencia: $T_t = e^{2t}$

2. La siguiente tabla presenta las temperaturas medias mensuales registradas en una ciudad del hemisferio sur, en el período de tiempo que abarca desde enero de 2010 a diciembre de 2019. Interesa estudiar el modelo de comportamiento y realizar una previsión de las temperaturas de la década siguiente.

Mes	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Ene	26.8	27.1	26.9	26.8	26.3	27.1	26.8	27.1	26.3	27.0
Feb	27.2	27.5	26.3	26.9	27.1	27.1	27.1	27.5	26.7	27.4
Mar	27.1	27.4	25.7	26.7	26.2	27.4	27.4	26.2	26.6	27.0
Abr	26.3	26.4	25.7	26.1	25.7	26.8	26.4	28.2	25.8	26.3
May	25.4	24.8	24.8	26.2	25.5	25.4	25.5	27.1	25.2	25.9
Jun	23.9	24.3	24.0	24.7	24.9	24.8	24.7	25.4	25.1	24.6
Jul	23.8	23.4	23.4	23.9	24.2	23.6	24.3	25.6	23.3	24.1
Ago	23.6	23.4	23.5	23.7	24.6	23.9	24.4	24.5	23.8	24.3
Set	25.3	24.6	24.8	24.7	25.5	25.0	24.8	24.7	25.2	25.2
Oct	25.8	25.4	25.6	25.8	25.9	25.9	26.2	26.0	25.5	26.3

Actividad 2

E. P. DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

Nov	26.4	25.8	26.2	26.1	26.4	26.3	26.3	26.5	26.4	26.4
Dic	26.9	26.7	26.5	26.5	26.9	26.6	27.0	26.8	26.7	26.7

- a) Realice la descomposición de los componentes de la serie de temperaturas.
- b) ¿Cree que podría haber un componente cíclico en las temperaturas? Explique su respuesta.
- c) ¿Utilizaría los componentes de tendencia o estacionalidad, o ambos para realizar el pronóstico en la previsión de las temperaturas de la década siguiente?
- 3. Los datos de la siguiente tabla dan las ventas trimestrales de una popular tienda comercial del país. Utilice el método de descomposición multiplicativa para analizar los componentes de la serie de ventas.

Año	Trimestre	Ventas	Año	Trimestre	Ventas	Año	Trimestre	Ventas
2019	1	20		1	28	2021	1	24
	2	50	2020	2	29		2	27
	3	35	2020	3	43		3	39
	4	44		4	48		4	56

Así mismo realice lo siguiente:

- a) Grafique las observaciones contra el tiempo, ¿qué clase de tendencia parece haber?
- b) Si se supone que una tendencia lineal VEN_t = β_0 + β_1 t, describe las observaciones, determine las estimaciones puntuales de mínimos cuadrados de β_0 y β_1 .
- c) Determine a través de los métodos gráficos y estadísticos la existencia de los componentes de estacionalidad y ciclicidad.
- 4. Los niveles de ventas trimestrales cuantificados en millones de dólares para una empresa americana se muestran en la siguiente tabla. ¿Parece que hay algún efecto estacional significativo de estos niveles de venta? Analice esta serie de tiempo para obtener los cuatro índices estacionales, determine la magnitud del componente estacional en las ventas de la empresa. Además, determine si existe el componente cíclico y que puede concluir al respecto.

Año -	Trimestre							
Allo	1	II	III	IV				
2010	2292	2450	2363	2477				
2011	2063	2358	2316	2366				
2012	2268	2533	2479	2625				
2013	2616	2793	2656	2746				
2014	2643	2811	2679	2736				
1015	2692	2871	2900	2811				
2016	2497	2792	2838	2780				
2017	2778	3066	3213	2928				
2018	2874	3000	2913	2916				
2019	2910	3052	3116	3210				

Actividad 2

E. P. DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA

2020	3243	3351	3305	3267
2021	3246	3330	3340	3300