Laboratory Work 1 Simple semiconductor device circuits design and simulation

Nikolai Poliakov Arina Arbuzina (polyakov_n_a@itmo.ru) (arbyzina99@gmail.com)

Summary

ITMO

- 1. LT Spice simulation for electronic device analysis
- 2. Diode parameters analysis
- 3. Rectifier scheme simulation
- 4. Capacitor parameter analysis
- 5. Overvoltage test
- 6. Starting current test
- 7. Uploading report to the

Goal and tasks

ITMO

The goal of laboratory work «Simple semiconductor device circuits design and simulation» is to study rectifier scheme on the basis of proposed diode.

Laboratory work task are:

- 1. Rectifier scheme simulation
- 2. Diode parameters analysis
- 3. Capacitor parameter analysis
- 4. Overvoltage check
- 5. Starting current check

pn-junction under external voltage

Forward-biased diode models

ITMO

Maximum repetitive peak surge forward current

$$I_{fwd_imp} = 10 (A)$$

Diode forward bias voltage

$$V_{fwd_max}(I_{fwd_imp}) = 1.05 \tag{V}$$

Diode threshold voltage:

$$v_{ON} = 0.68 \tag{V}$$

$$r_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_{imn}} - I_{fwd}(v_{ON})} = (\Omega)$$

Maximum repetitive peak surge forward current

$$I_{fwd_imp} = 40 (A)$$

Diode forward bias voltage

$$V_{fwd_max}(I_{fwd_imp}) = 1.0 (V)$$

Diode threshold voltage:

$$v_{ON} = 0.35 \tag{V}$$

$$r_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_{imp}} - I_{fwd}(v_{ON})} \tag{\Omega}$$

Diode breakdown

ITMO

Half-Wave Rectifier (HWR)

Load parameters:

$$V_{R_{LAVG}} = \frac{V_s}{\pi} = \frac{\sqrt{2}V_{S_{RMS}}}{\pi} \approx 0.45V_{S_{RMS}}$$

$$V_{R_{L_{RMS}}} = \frac{V_{S}}{2} = \frac{V_{S_{RMS}}}{\sqrt{2}} \approx 0.707 V_{S_{RMS}}$$

Average load current

$$I_{L_{AVG}} = \frac{V_{R_{L_{AVG}}}}{R_{L}} = \frac{\sqrt{2}V_{S_{RMS}}}{\pi R_{L}} \approx 0.45 \frac{V_{S_{RMS}}}{R_{L}}$$

RMS load current through diode

$$I_{L_{RMS}} = \frac{V_{S}}{2R_{L}} = \frac{V_{S_{RMS}}}{\sqrt{2}R_{L}} \approx 0.707 \frac{V_{R_{LRMS}}}{R_{L}}$$

Source voltage
$$v_s(t)$$

 $v_s(t) = V_s \cdot \sin(f \cdot 2\pi \cdot t) = V_s \cdot \sin(\omega \cdot t)$

Voltage on the load resistance R_L

$$v_{R_L}(t) = \begin{cases} 0, & if \quad v_s(t) \le 0 \\ v_s(t), & if \quad v_s(t) > 0 \end{cases}$$

Diode parameters:

Average diode current

$$I_{VD_{AVG}} = I_{L_{AVG}} = \frac{\sqrt{2}V_{S_{RMS}}}{\pi R_L} \approx 0.45 \frac{V_{S_{RMS}}}{R_L}$$

MAX diode current

$$I_{VD_{max}} = \frac{V_S}{R_L}$$

MAX diode reverse voltage

$$V_{VD_{max}} = V_{S}$$

Half-Wave Rectifier with DC filter capacitor

$$v_{R_L}(t) = V_{R_{LAVC}} + v_{R_{LAVC}}(t) \approx V_{R_L}$$
 =const

$$v_{VD}(t) = v_S(t) - V_{R_{L_{AVG}}}$$
 $I_{L_{AVG}} = I_{VD_{AVG}} = \frac{1}{T} \sqrt{\int_0^T I_{VD}(t) dt}$

 $I_{L_{AVG}} = \frac{1}{T} \int_{\frac{T}{2} - \theta/(2 \cdot \omega)}^{\frac{T}{4} + \theta/(2 \cdot \omega)} \frac{1}{r_{IN}} (V_S \cdot \sin(\omega \cdot t) - V_{R_{L_{AVG}}}) dt = \frac{V_{R_{L_{AVG}}}}{R_{I_{L_{AVG}}}}$

 r_{VD}

 r_{V_S}

$$r_{IN}$$
= r_{VD} + r_{VS} — input resistance of the rectifier

$$\theta = \omega \cdot \Delta t = \frac{2\pi}{T} \cdot \Delta t$$
 — angle of diode open state

$$\Delta t$$
 — diode open state time interval

$$\frac{V_{R_{LAVG}}}{V_S} = \frac{R_L}{\pi r_{IN}} \left(\sin \left(\frac{\theta}{2} \right) - \frac{V_{R_{LAVG}}}{V_S} \frac{\theta}{2} \right)$$

$$V_{VD}\left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right) = V_{S} \sin(\omega \left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right)) - V_{RL_{AVG}} = 0 \Rightarrow V_{RL_{AVG}} = V_{S}\left(\omega \left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right)\right) = V_{S} \sin\left(\frac{\pi}{2} \pm \frac{\theta}{2}\right)$$

Half-Wave Rectifier with DC filter capacitor

Average diode current:

$$I_{L_{AVG}} = \frac{1}{T} \sqrt{\int_{\frac{T}{4}}^{\frac{T}{4} + \theta/(2 \cdot \omega)} \frac{1}{r_{IN}} (V_S \cdot \sin(\omega \cdot t) - V_{R_{L_{AVG}}})) dt} = \frac{V_{R_{L_{AVG}}}}{R_L}$$

Where

$$r_{IN}$$
= r_{VD} + r_{Vs} — input resistance of the rectifier

 diode resistance r_{VD}

$$r_{V_S}$$
 — voltage source resistance $\theta = \omega \cdot \Delta t = \frac{2\pi}{T} \cdot \Delta t$ — angle of diode open state

diode open state time interval

$$\frac{\Delta t}{\frac{V_{R_{LAVG}}}{V_S}} = \frac{R_L}{\pi r_{IN}} \left(\sin \left(\frac{\theta}{2} \right) - \frac{V_{R_{LAVG}}}{V_S} \frac{\theta}{2} \right)$$

$$V_{VD}\left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right) = V_{S} \sin(\omega \left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right)) - V_{R_{LAVG}} = 0 \Rightarrow V_{R_{LAVG}} = V_{S}\left(\omega \left(\frac{T}{4} \pm \frac{\theta}{2 \cdot \omega}\right)\right) = V_{S} \sin\left(\frac{\pi}{2} \pm \frac{\theta}{2}\right)$$

$$\frac{V_{R_{LAVG}}}{V_{S}} = \cos\left(\frac{\theta}{2}\right) \Rightarrow \cos\left(\frac{\theta}{2}\right) = \frac{R_{L}}{\pi r_{IN}} \left(\sin\left(\frac{\theta}{2}\right) - \cos\left(\frac{\theta}{2}\right) \cdot \frac{\theta}{2}\right) \Rightarrow \frac{r_{IN}}{R_{L}} = \frac{1}{\pi} \left(\tan\left(\frac{\theta}{2}\right) - \frac{\theta}{2}\right)$$

Half-Wave Rectifier with DC filter capacitor

From
$$\frac{r_{IN}}{R_L} = \frac{1}{\pi} \left(\tan \left(\frac{\theta}{2} \right) - \frac{\theta}{2} \right)$$
 angle of diode open state θ can be evaluated:

$$\tan\left(\frac{\theta}{2}\right) \approx \frac{\theta}{2} + \frac{1}{3}\left(\frac{\theta}{2}\right)^3 \Rightarrow \theta = 2 \cdot \sqrt[3]{3\pi \frac{r_{IN}}{R_L}}$$

Average load voltage:
$$V_{R_{LAVG}} = V_S \cos\left(\frac{\theta}{2}\right)$$

Average load (diode) current:
$$I_{VD} = \frac{V_S}{R_L} \cos\left(\frac{\theta}{2}\right)$$

Peak (repetitive) diode current:
$$I_{VD_{max}} = \frac{v_S - v_{R_{LAVG}}}{r_{IN}}$$

Peak (turn on) diode current:
$$I_{VD_{ON}} = \frac{V_S}{r_{IN}}$$

Diode reverse voltage:
$$V_{VD_{max}} = V_S + V_{R_{LAVG}} \approx 2 \cdot V_S$$

From equation of capacitor charge on the interval of $\tau_1 < t < \tau_2 = T - \frac{\theta}{\omega}$

$$\Delta Q = \mathbf{C} \cdot \Delta V_{R_L} = I_{L_{AVG}} \left(T - \frac{\theta}{\omega} \right)$$

Power filter capacitor evaluation to provide required ripple factor

$$C = \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (2\pi - \theta) = \frac{I_{L_{AVG}}}{\omega \cdot \Delta V_{R_L}} (2\pi - \theta)$$

Center-Tap Full Wave Rectifier

ITMO

Full Wave Bridge Rectifier

ITMO

Full-Wave rectifiers (without C-filter)

load voltage:
$$V_{R_{L_{AVG}}} = egin{cases} rac{V_S}{\pi}, \\ rac{2 \cdot V_S}{\pi}, \end{cases}$$

(A)

 $V_{R_{L_{RMS}}} = \begin{cases} \frac{V_{S}}{2}, \\ \frac{V_{S}}{\sqrt{2}}, \end{cases}$

 $V_{VD_{max}} = V_{VD_{max}} = \begin{cases} 2V_S \\ V_{S} \end{cases}$

 $I_{L_{AVG}} = \frac{V_{R_{LAVG}}}{R_L} = \begin{cases} \frac{V_S}{\pi R_L}, \\ \frac{2 \cdot V_S}{\pi R_L}, \end{cases}$

 $I_{L_{RMS}} = \frac{V_{R_{L_{RMS}}}}{R_L} = \begin{cases} \frac{V_S}{2R_L}, \\ \frac{V_S}{\sqrt{S_R}}, \end{cases}$

Average load voltage:

RMS load voltage:

Average load current:

RMS load current:

Max peak diode reverse voltage:

for **FBR** or **CTR** schemes

for FBR or CTR schemes

for CTR scheme (V)

for FBR or CTR schemes

for **FBR** or **CTR** schemes

for **HWR** schemes

HWR schemes

for **HWR** schemes

for **HWR** schemes

Full-Wave rectifiers (without C-filter)

ITMO

Average diode rectified output current:

$$I_{VD} = \begin{cases} I_{L_{AVG}}, & \text{for HWR schemes} \\ \frac{I_{L_{AVG}}}{2}, & \text{for FBR or CTR schemes} \end{cases}$$
 (A)

• Peak repetitive forward output current:

$$I_{VD_{max}} = \begin{cases} \frac{V_S}{R_L}, & \text{for HWR schemes} \\ \frac{V_S}{2R_L}, & \text{for FBR or CTR schemes} \end{cases}$$
 (A

• Voltage ripple factor: $K_p = \sqrt{\left(\frac{V_{R_{L_RMS}}}{V_{R_{L_AVG}}}\right)^2 - 1} = \begin{cases} \sqrt{\left(\frac{\pi}{2}\right)^2 - 1} \approx 1.21, & \text{for HWR schemes} \\ \sqrt{\left(\frac{\pi}{2 \cdot \sqrt{2}}\right)^2 - 1} \approx 0.48 & \text{for FBR or CTR schemes} \end{cases}$

Full-Wave rectifiers (with C-filter)

FBR schemes

• Source output resistance (overcurrent protection):
$$r_{on} = \frac{V_S}{I_{FSM}}$$

• Source output resistance (overcurrent protection):
$$r_{on} = \frac{r_S}{I_{FSM}}$$
 (Ω)
• Input rectifier resistance: $r_{IN} = \begin{cases} r_{vd} + r_{V_S}, \\ 2 \cdot r_{vd} + r_{V_S}, \end{cases}$ for HWR or CTR schemes for FBR schemes

• Diode opening state angle:
$$\theta = \begin{cases} 2 \cdot \sqrt[3]{3 \cdot \pi \cdot \frac{r_{IN}}{R_L}}, & \text{for HWR schemes} \\ 2 \cdot \sqrt[3]{\frac{3}{2} \cdot \pi \cdot \frac{r_{IN}}{R_L}}, & \text{for FBR or CTR schemes} \end{cases}$$
 (rad)

• Average load voltage
$$V_{R_{L_{AVG}}} = V_{S} \cdot \cos\left(\frac{\theta}{2}\right) = \begin{cases} V_{S} \cdot \cos\left(\frac{3}{3} \cdot \pi \cdot \frac{r_{IN}}{R_{L}}\right), & \text{for HWR schemes} \\ V_{S} \cdot \cos\left(\frac{3}{3} \cdot \pi \cdot \frac{r_{IN}}{R_{L}}\right), & \text{for FBR or CTR schemes} \end{cases}$$
 (V)

• Average load current:
$$I_{L_{AVG}} = \begin{cases} \frac{1}{\pi \cdot r_{IN}} (V_S \cdot \sin\left(\frac{\theta}{2}\right) - V_{R_{L_{AVG}}} \cdot \frac{\theta}{2}), & \text{for HWR schemes} \\ \frac{2}{\pi \cdot r_{IN}} (V_S \cdot \sin\left(\frac{\theta}{2}\right) - V_{R_{L_{AVG}}} \cdot \frac{\theta}{2}), & \text{for FBR or CTR schemes} \end{cases}$$
(A)

Full-Wave rectifiers (with C-filter)

(A)

(A)

$$I_{VD} = \begin{cases} \frac{V_S}{R_L} \cdot \cos\left(\frac{\theta}{2}\right) = \frac{V_S}{R_L} \cdot \cos\left(\sqrt[3]{3 \cdot \pi \cdot \frac{r_{IN}}{R_L}}\right), & \text{for HWR schemes} \\ \frac{V_S}{2 \cdot R_L} \cdot \cos\left(\frac{\theta}{2}\right) = \frac{V_S}{2 \cdot R_L} \cdot \cos\left(\sqrt[3]{\frac{3}{2} \cdot \pi \cdot \frac{r_{IN}}{R_L}}\right), & \text{for FBR or CTR schemes} \end{cases}$$

 $I_{VD_{max}} = \frac{V_S - V_{R_{LAVG}}}{r}$

Starting (Non-repetitive) maximum peak surge diode current in rectifier scheme:
$$I_{VD_{ON}} = \frac{V_S}{r_{IN}}$$
 (A)

Peak repetitive reverse voltage: $V_{VD_{max}} = \begin{cases} V_S + V_{R_{L_{AVG}}}, & \text{for HWR or CTR} \text{schemes} \\ \frac{V_S + V_{R_{L_{AVG}}}}{r_{IN}}, & \text{for FBR schemes} \end{cases}$ (V)

$$C = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (2\pi - \theta), \\ \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (\pi - \theta), \end{cases}$$

$$\Delta V_{R_L} = \begin{cases} \frac{I_{LAVG}}{2\pi f \cdot C} (2\pi - \theta), \\ \frac{I_{LAVG}}{2\pi f \cdot C} (\pi - \theta), \end{cases}$$

$$\Delta V_{RL} = \begin{cases} \frac{I_{LAVG}}{2\pi f \cdot C} (\pi - \theta), \\ \frac{I_{LAVG}}{2\pi f \cdot C} (\pi - \theta), \end{cases}$$

$$K_p = \sqrt{\left(\frac{V_{RLRMS}}{V_{RLAVG}}\right)^2 - 1}$$

for FBR schemes

Evaluations

	$I_{VD_{AVG}}$	$I_{VD_{max}}$	$V_{VD_{max}}$	r_{IN}
Half - Wave rectifier (HWR)	$=I_{L_{AVG}}$	$\approx 7I_{L_{AVG}}$	$= V_S \cdot 2 \approx 3V_{R_{L_{AVG}}}$	$= r_{VD} + r_{V_S}$
Central Tap Rectifier (CTR)	$=\frac{I_{L_{AVG}}}{2}$	$\approx 3.5 I_{L_{AVG}}$	$= V_S \cdot 2 \approx 3V_{R_{L_{AVG}}}$	$= r_{VD} + r_{V_S}$
Full bridge (Graetz) rectifier (FBR)	$=\frac{I_{L_{AVG}}}{2}$	$\approx 3.5 I_{L_{AVG}}$	$= V_S \approx 1.5 V_{R_{L_{AVG}}}$	$=2r_{VD}+r_{V_S}$

Step One: LT Spice XVII start

Step Two: Lab1_Rectifiers.asc

Specify your personal .lib file according to yo	ur variant
Right-click to edit:	.lib Variant No.lib
	· .iib varianc_wo.iib · · · · · · · · · · · · · · · · · ·
Simulation parameters:	
Source Voltage:	SINE(0 {V_s} {f} 0 0 90)
Time step parameters:	.tran 0 {20/(f)} {10/(f)} {1/(200*f)} uic
Step for R_load parameters	*.step param R_L list 100 1000 10000
Step for C_F parameter	*.step param C_real list 1n 1u 10u 100u
	simulation:
	Sandid Cott
	K1 L1 L2 L3 1 **https://clck.ru/XqKtfl**
Source voltage amplitude [V]	
Source volcage amplicade [v]	param · · Vs · · · · · · · = 10 · · · ·
*************	*******************
Source voltage frequency [Hz]	.param f = 100
***********	.param f = 100
Load resistance [Ω]	
*******	.param R_L = 15k
Source output resistance (overcurrent protection) [9	<u> </u> :
	param R_vs = 10
Capacitor [F]	*****
Capacitor [1]	.param C_real = 10u

Source voltage amplitude [V] for breakdown	.param Vs breakdown = 150
	.param V s = Vs

You should delete all rectifier schemes which are not your variant from template

Step Three: Variant data

ITMO

Step Four: Simulation

LABORATORY WORK REPORT №1

2

1. Work purpose: to study parameters of semiconductor elements and basis of the semiconductor device design

Goals:

- 1) Design rectifier model on the basis of diode «diode name»
- 2) Simulate rectifier scheme and analyze dependencies of DC voltage ripple from load and filter capacitor values variation
- 3) Simulate overvoltage and overcurrent states (optional)

2. Starting data

- 2.1.1. Parameters of the voltage source:
 - One-phase sine voltage source
 - Rectifier scheme: Half-Wave Rectifier (HWR) /Central tap rectifier (CTR) /Full -Bridge rectifier (FBR)
 - Source voltage amplitude

$$V_e =$$
 (V)

Source voltage frequency

- 2.1.2. Diode: (copy the 1stand the second line of .lib file of your variant)
- 2.1.3. Required parameters of DC output:
 - Load resistance:

$$R_L = R_{LOAD_HWR/CTR/FBR} =$$
 (V)

Desired DC voltage ripple factor:

$$K_n = .$$

LABORATORY WORK REPORT №1

3. Simulation report

Fig. 3.1 - Rectifier scheme model

3.1.1. Filter parameters:

$$-- C_{real} = 470$$
 (uF

3.1.2. Load parameters:

3.2.Simulation results

Fig 3.2 - Simulation results

ITMO

$$K_p = \gamma = \sqrt[2]{\left(\frac{V_{S_{RMS}}}{V_{R_{LAVG}}}\right)^2 - 1}$$

Fig 3.3 -Voltage ripple analysis

To define Average and RMS values use CTRL+left click mouse button on the signal name. Use 2-3 Voltage periods in the end of simulation interval

Right-click with mouse on the signal name gives access to the signal cursor

ITMO

Theta issues

From equation of capacitor charge on the interval of $\tau_1 < t < \tau_2 = T - \frac{\theta}{\omega}$

$$\mathbf{C} = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (2\pi - \theta) , & \text{for HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (\pi - \theta) , & \text{for FBR or CTR schemes} \end{cases}$$
 (F)

From equation of capacitor charge on the interval of $au_1 < t < au_2 = T - \frac{\theta}{T}$

for HWR schemes

$$\mathbf{C} = \begin{cases} \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (2\pi - \theta) , & \text{for HWR schemes} \\ \frac{I_{L_{AVG}}}{2\pi f \cdot \Delta V_{R_L}} (\pi - \theta) , & \text{for FBR or CTR schemes} \end{cases}$$
 (F)

Voltage ripple:

If currents are less 1A it is better to use open –state current value al least 100mA to determine theta from simulation

150.0ms

3.2.2.>Voltage ripple from simulation results¶

• 3.2.3.→Ripple factor¶

$$K_p = \gamma = \sqrt[2]{\left(\frac{V_{S_{RMS}}}{V_{R_{LAVG}}}\right)^2 - 1}$$

• 3.2.4. Diode opening state angle: ¶

$$\rightarrow$$
 $\tau_1 = \rightarrow$ (s)
 \rightarrow $\theta_{exp} = \tau_1 \cdot f \cdot 2\pi = \frac{\tau_1}{\tau} \cdot 2\pi = \rightarrow$ (rad)

Fig. 3.4 — θ_{exp} angle definition from simulation results \P (It is recommended to consider diode open-state at current-level 0.05-0.1A or determine theta on the capacitor charging interval) \P

LABORATORY WORK REPORT №1

б

3.2.6. Starting (Non-repetitive) maximum peak surge diode current in rectifier scheme

Fig 3.5 -Starting current

$$I_{VD_{ON}exp} = 2.493 \tag{A}$$

Conclusions should contain:

- 1) Diode check results:
- Is breakdown voltage check passed? /Is voltage source changed because of overvoltage?
- Is starting current check passed? /Is additional resistance r_vs added to prevent overcurrent in diode/capacitor?
- 2) Capacitor information: nominal value, tolerance, allowed current
- 3) Provided ripple factor value

ITMO

Conclusion should contain:

- 1) Diode check results:
- Is breakdown voltage check passed? Is voltage source changed because of overvoltage?
- Is starting current check passed? /Is additional resistance r_vs added to prevent overcurrent in diode/capacitor?
- 2) Capacitor information: nominal value, tolerance, allowed current
- 3) Ripple factor value

If there are no conclusion or some parts o conclusion is missing – the score will be reduced by 1 point of 3

Practice task 1 Simple semiconductor device circuits design

Nikolai Poliakov Arina Arbuzina (polyakov_n_a@itmo.ru) (arbyzina99@gmail.com)

Diode active resistance

ITMO

Maximum repetitive peak surge forward current

$$I_{fwd_imp} =$$
 (A)

Diode forward bias voltage

$$V_{fwd_max}(I_{fwd_imp}) =$$
 (V)

Diode threshold voltage:

$$v_{ON} =$$
 (V)

Diode current at starting conduct state:

$$I_{fwd}(v_{ON}) = \tag{A}$$

$$r_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_{imn}} - I_{fwd}(v_{ON})} = (\Omega)$$

Evaluations

ITMO

	$I_{VD_{AVG}}$	$I_{VD_{max}} = I_{fwd_imp}$	$V_{VD_{max}}$	r_{IN}
Half - Wave rectifier (HWR)	$=I_{L_{AVG}}$	$\approx 7I_{L_{AVG}}$	$= V_S \cdot 2 \approx 3V_{R_{L_{AVG}}}$	$= r_{VD} + r_{V_S}$
Central Tap Rectifier (CTR)	$=\frac{I_{L_{AVG}}}{2}$	$\approx 3.5 I_{L_{AVG}}$	$= V_S \cdot 2 \approx 3V_{R_{LAVG}}$	$= r_{VD} + r_{V_S}$
Full bridge (Graetz) rectifier (FBR)	$=\frac{I_{L_{AVG}}}{2}$	$\approx 3.5 I_{L_{AVG}}$	$= V_S \approx 1.5 V_{R_{LAVG}}$	$=2r_{VD}+r_{V_S}$

 $I_{VD_{AVG}(experimental)}$

Diode active resistance

 (Ω)

$$r_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_{imp}} - I_{fwd}(v_{ON})}$$

Diode active resistance

ITMO

Maximum repetitive peak surge forward current

$$I_{fwd_imp} = 40 (A)$$

Diode forward bias voltage

$$V_{fwd_max}(I_{fwd_imp}) = 1.0 (V)$$

Diode threshold voltage:

$$v_{ON} = 0.35 \tag{V}$$

$$r_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_{imp}} - I_{fwd}(v_{ON})} \tag{\Omega}$$

$$r_{VD} = \frac{1-0.35}{40-0.1} = 0.0163 \,\Omega$$

Diode VI in LT Spice

Maximum repetitive peak surge forward current

$$I_{fwd_imp} =$$
 (A)

Diode forward bias voltage

$$V_{fwd_max}(I_{fwd_imp}) =$$
 (V)

Diode threshold voltage:

$$v_{ON} =$$
 (V)

$$T_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_mn} - I_{fwd}(v_{ON})} \tag{\Omega}$$

$$r_{VD} = - = 0$$

Diode active resistance

Maximum repetitive peak surge forward current

$$I_{fwd_imp} = 7 (A)$$

Diode forward bias voltage

$$V_{fwd_max}(I_{fwd_imp}) = 1.2 \tag{V}$$

Diode threshold voltage:

$$v_{ON} = 0.75$$
 (V)

$$r_{VD} = \frac{V_{fwd_max} - v_{ON}}{I_{fwd_{imp}} - I_{fwd}(v_{ON})}$$

$$r_{VD} = \frac{1.2 - 0.75}{7 - 0.1} = 0,065 \Omega$$
(Ω)

Laboratory Work 1

Practice task 1

https://forms.yandex.com/cloud/6500ee1702848f28e1856a23/

https://forms.yandex.com/cloud/650103e590fa7b299554a509/

https://clck.ru/35gixy

https://clck.ru/35giyD

