PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA A 11 SETTEMBRE 2008

1) Nel circuito in figura, i transistori possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento $V_u(V_i)$, per 0< V_i < V_{cc} .

 V_{cc} = 5 V, $β_F$ = 100, R_1 = 10 kΩ, R_2 = 5 kΩ, R_3 = 20 kΩ, R_4 = 20 kΩ.

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{Tn} e V_{Tp} e dai coefficienti β_i . Il segnale di ingresso V_i sia periodico, alternando i valori 0 e V_{dd} con periodo T pari a 1 ns, e duty-cycle pari al 50%. Si determini l'andamento del segnale V_u . A questo scopo, si assimilino i

transitori del segnale V_x a transizioni istantanee, ritardate rispetto all'ingresso di un tempo pari al tempo di propagazione relativo. Si calcoli quindi la potenza dinamica media complessivamente dissipata per effetto delle correnti di "corto circuito" (non considerando cioè la potenza dinamica associata alla carica e scarica del condensatore C).

 V_{dd} = 3.3 V, V_{Tn} = 0.4 V, V_{Tp} = -0.5 V, β_1 = β_3 = β_5 = β_8 = 1mA/V², β_2 = β_4 = β_6 = β_7 = 0.5 mA/V², C=30 fF.

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m).

Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse

L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Osservazioni preliminari:

i) T1 e T3 quando on sono in AD.

Regione 1: Vi $\leq v_{\gamma}$, T1 off e T2 off. Si noti che fintantoché T1 e T2 sono off, vu non cambia. T3 on e in AD: se per assurdo non lo fosse, vbase(T3)=vcc, vu=0, quindi vbe(T3)> v_{γ} , e in AD (collettore di T3 a vcc).

ib3=(vcc- v_{γ} -vu)/r3	da cui si ricava che vu=4.20833 V
i4=vu/r4	Si rimane in regione 1 fintantoché T2 va on,
Ma $i4=ib3*(\beta_f+1)$	quindi per vi>vγ.

Regione 2: Regione 2: T1 off, T2 in AD, T3 in AD - calcolo di Vu

ib3= $(\text{vcc-vu-v}_{\gamma})/\text{r3}$ ib2= $(\text{vi-v}_{\gamma})/\text{r2}$ i4= vu/r4 Ma	Risolvendo si trova che: vu=7.149 -3.921 vi Si rimane in questa regione fintantochè (A) T2 va sat,
$ib3*(\beta_f+1)=i4+\beta_f*ib2$	(B) oppure T1 va on.
(A) Quando T2 va sat, vce2=vu=vcesat, ma vu=7.149 -3.921 vi=vcesat da cui si ricava che T2 va sat per vi = 1.772 V	(B) Invece T1 va on, quando vbe(T1)= v_{γ} sse vi-vu=vi –(7.149 -3.921 vi)= v_{γ} Risolvendo si trova che T1 va on se vi =1.605 V. Quindi T1 va ON prima che T2 vada sat.
Si rimane in regione 2 per $v_{\gamma} < vi < 1.605V$.	

Regione 3: T1 AD, T2 AD, T3 AD.

110g10HC C. 111HB, 12HB, 13	12.
ib3=(vcc-vu- v_{γ})/r3	Ma $(\beta_f+1)*(ib3+ib1)=i4+\beta_f*ib2$, da cui si ricava che
$ib2=(vi-v_{\gamma})/r2$	vu=1.900 -0.651 vi
i4=vu/r4	In questa regione si rimane fintantoché T2 va sat, sse
$ib1=(vi-vu-v_{\gamma})/r1$	vu=1.900 -0.651 vi=vcesat, sse vi =2.611 V.
·	
Si rin	nane in regione 3 per 1.605 V <vi <2.611="" th="" v<=""></vi>

Regione 4: Per vi>2.611V, T1 AD, T2 SAT, T3 AD: vu =vcesat.

Di seguito si riporta la caratteristica statica di trasferimento.

Puck-Docu type >; >y >u Liter Visig 1.58 0 433 4 Ice I 3235 44 eledin 166.4 w 6 t pur + 333.5 20 <u>=</u> 284. 5 PHE