Chapter 7

PERMUTATION, COMBINATION AND PROBABILITY

FACTORIAL NOTATION

Let n be a positive integer. Then the product n(n-1)(n-2)......3.2.1 is denoted by n! or $\underline{\mathbf{n}}$ and read as n factorial.

i.e.
$$n! = n(n-1)(n-2)......3.2.1$$

and $n! = n(n-1)!$ where $0! = 1$

EXERCISE 7.1

Q.1 Evaluate each of the following:

(i) 4! (ii) 6! (iii)
$$\frac{8!}{7!}$$
 (iv) $\frac{10!}{7!}$ (v) $\frac{11!}{4! \, 7!}$ (vi) $\frac{6!}{3! \, 3!}$ (vii) $\frac{8!}{4! \, 2!}$ (viii) $\frac{11!}{2! \, 4! \, 5!}$ (ix) $\frac{9!}{2! \, (9-2)!}$ (x) $\frac{15!}{15! \, (15-15)!}$ (xi) $\frac{3!}{0!}$ (xii) 4! 0! 1!

Solution:

(i)
$$4! = 4.3.2.1 = 24$$

(ii)
$$6! = 6.5.4.3.2.1 = 720$$

(iii)
$$\frac{8!}{7!} = \frac{8.7.6.5.4.3.2.1}{7.6.5.4.3.2.1} = 8$$

(iv)
$$\frac{10!}{7!} = \frac{10.9.8.7.6.5.4.3.2.1}{7.6.5.4.3.2.1} = 720$$

(v)
$$\frac{11!}{4! \, 7!} = \frac{11.10.9.8.7.6.5.4.3.2.1}{4.3.2.1 \, 7.6.5.4.3.2.1} = 330$$

(vi)
$$\frac{6!}{3! \ 3!} = \frac{6.5.4.3.2.1}{3.2.1.3.2.1} = 20$$

(vii)
$$\frac{8!}{4! \ 2!} = \frac{8.7.6.5.4.3.2.1}{4.3.2.1.2.1} = 840$$

(viii)
$$\frac{11!}{2! \cdot 4! \cdot 5!} = \frac{11.10.9.8.7.6.5!}{2.1.4.3.2.1.5!} = 6930$$

(ix)
$$\frac{9!}{2!(9-2)!} = \frac{9!}{2!7!} = \frac{9.8.7!}{2.1.7!} = 36$$

(x)
$$\frac{15!}{15!(15-15)!} = \frac{15!}{15!0!} = \frac{15!}{15!.1} = 1$$

(xi)
$$\frac{3!}{0!} = \frac{3.2.1}{1} = 6$$

(xii)
$$4! \ 0! \ 1! = 4.3.2.1.1.1 = 24$$

Write each of the following in factorial form: Q.2

(iv)
$$\frac{10.9}{2.1}$$

(v)
$$\frac{8.7.6}{3.2.1}$$

(vi)
$$\frac{52.51.50.49}{4.3.2.1}$$

(vii)
$$n(n-1)(n-2)$$

$$n(n-1)(n-2)$$
 (viii) $(n+2)(n+1)(n)$

504

(ix)
$$\frac{(n+1)(n)(n-1)}{3.2.1}$$

(x)
$$n(n-1)(n-2)....(n-r+1)$$

Solution:

(i)
$$6.5.4 = \frac{6.5.4.3.2.1}{3!} = \frac{6!}{3!}$$

(ii)
$$12.11.10 = \frac{12.11.10.9!}{9!} = \frac{12!}{9!}$$

(iii)
$$20.19.18.17 = \frac{20.19.18.17.16!}{16!} = \frac{20!}{16!}$$

(iv)
$$\frac{20.9}{2.1} = \frac{10.9.8!}{2.8!} = \frac{10!}{2!8!}$$

(v)
$$\frac{8.7.6}{3.2.1} = \frac{8.7.6.5!}{3.2.1.5!} = \frac{8!}{3! \, 5!}$$

(vi)
$$\frac{52.51.50.49}{4.3.2.1} = \frac{52.51.50.49.48!}{4.3.2.1.48!} = \frac{52!}{4!48!}$$

(vii)
$$n(n-1)(n-2) = \frac{n(n-1)(n-2)(n-3)!}{(n-3)!} = \frac{n!}{(n-3)!}$$

(viii)
$$(n+2)(n+1)(n) = \frac{(n+2)(n+1)n(n-1)!}{(n-1)!} = \frac{(n+2)!}{(n-1)!}$$

(x)
$$n(n-1)(n-2)....(n-r+1) = \frac{n(n-1)(n-2)....(n-r+1)(n-r)!}{(n-r)!} = \frac{n!}{(n-r)!}$$

505

PERMUTATION

An ordering (arrangement) of n objects is called a permutation of the objects.

EXPLANATION

Think of three places as shown . Since we can write any one of three vertices A, B, C at first place, so it is written in 3 different ways as shown .

Now two vertices are left. So, corresponding to each way of writing at first place, there are two ways of writing at second place as shown $\boxed{3}$ $\boxed{2}$ $\boxed{}$.

Now just one vertex is left. So, we can write at third place only one vertex in one way as shown $\boxed{3}$ $\boxed{2}$ $\boxed{1}$.

 \Rightarrow The total number of possible ways is the product 3.2.1. = 6.

FUNDAMENTAL PRINCIPLE OF COUNTING

Suppose A and B are two events. The first event A can occur in P different ways. After A has occurred, B can occur in q different ways. The number of ways that the two events can occur is the product p.q.

THEOREM

A permutation of $\, n \,$ different objects taken $\, r \, (\leq n) \,$ at a time is an arrangement of the $\, r \,$ objects. Generally it is denoted by $\, ^n P_r \,$ or $\, P \, (n, \, r) \,$ where

$${}^{n}P_{r} = n (n-1) (n-2) \dots (n-r+1) = \frac{n!}{(n-r)!}$$

EXERCISE 7.2

Q.1 Evaluate the following:

(i) $^{20}P_3$ (ii) $^{16}P_4$ (iii) $^{12}P_5$ (Lahore Board 2006) (iv) $^{10}P_7$ (v) $^{9}P_8$

Solution:

Using formula ${}^{n}P_{r} = \frac{n!}{(n-r)!}$

(i)
$${}^{20}P_3 = \frac{20!}{(20-3)!} = \frac{20.19.18.17!}{17!} = 6840$$