1. 개요

- 목차
- 1) 트리 정의 및 표현
 - Definitions
 - 3 Reresentation: Adjacency Matrix, Adjacency List, Adjacency M-list
- 2) 그래프 기본 연산 (Elementary Graph Operation)
 - Depth First search, Breadth First search
- 3) Minimum Cost Spanning Tree (MST)

 Kruskal, Prim, Sollin
- 4) Shortest Path (single source all destination)

여기에 gragh 알고리즘 적용• 가장최단거리 찾는 알고리즘

1.1 정의

A graph, G, consists of two sets, a finite set of vertices and a finite set of edges.

G = (V, E) V: set of vertex E: Set of edges

. Undirected Graph (무방향): (v1, v2) = (v2, v1)

G1, G2

- . Directed Graph (방향): <v1, v2> ≠ <v2, v1>

G3

G1 not tree

G2 tree

G3 not tree

정점 2의 차수: 3 전체 차수 : **12**, 선의개수 :**6** 정점 0의 차수 2 전체 차수 : 12, 선의 개수 : 6

전체 차수: 6. 선의 개수: 3

 $V(G1) = \{0,1,2,3\}$

 $V(G2) = \{0,1,2,3,4,5,6\}$

 $V(G3) = \{0,1,2,\}$

 $E(G1) = \{(0,1)(0,2)(0,3)(1,2)(1,3)(2,3)\}$ $E(G2) = \{(0,1)(0,2)(1,3)(1,4)(2,5)(2,6)\}$ $E(G3) = \{<0,1><1,0><1,2>\}$

Restriction on a graph: **no self-loop, and no Multigraph**

self-loop: 자기 자신을 가리키는 간선

multigraph: 두 정점간에 여러 간선있는 graph

Complete Graph 란? →

the maximum number of edges 를 갖는 그래프 (ex. G1 is a complete Graph, G2, G3 is not complete graph)

- ⇒ For undirected graph max number of edges
- ⇒ For directed graph, max number of edges

- If (0,1) is an edge in undirected graph, then vertices 0 and 1 are <u>ADJACENT</u>,
 and the edge (0,1) is <u>INCIDENT</u> on vertices 0 and 1
 - ex) In Graph G2, vertices 3,4,0 are adjacent to vertex 1 and edges (0,1), (1,3), (1,4) are incident on vertex 1
- Subgraph: A subgraph of graph G is G', such that $V(G') \subseteq V(G)$ & $E(G') \subseteq E(G)$
 - ex) in Graph G1, many subgraphs, such as

Cycle and Path

- Path(경로): 정점(간선)들의 연속
 - 경로의 길이 : 경로상의 간선 수
 - Simple PATH(단순경로): 서로 다른 정점으로 구성된 경로
- CYCLE: (처음과 끝 정점이 같은 단순경로)

Cycle is a simple path in which the FIRST and LAST vertices are the same vertex

CONNECTED: 연결(connected) 그래프, G vi 에서 vi 로의 경로 존재 $vi, vj \in V(G)$

모든 정점들이 연결되어 있기 때문에

- Connected Component: number of subgraphs ex) G4 has two components H1 and H2
 - * Diff with Tree and Graph (트리와 그래프의 차이점)
 - 1) Tree is special case of graph
 - 2) Tree is a graph that is connected
 - 3) Tree is a graph that has no cycle (ex. G1, G3 is not Tree, G2 is tree)

차수

- number of edges incident to that vertex **DEGREE:**
 - . Undirected Graph:
 - . Directed Graph : (indegree, outdegree) In G3, vertex 1: indegree 1, outdegree 2 → degree 3.

If d_i is degree of vertex i in G, with n vertices and e edges:

⇒ number of edges :

$$e = \left(\sum_{i=0}^{n-1} d_{i}\right) / 2$$

1.2 Graph Representation (3 가지 표현방법)

- 1)인접행렬 (Adjacent matrix)
- 2)인접리스트 (Adjacent list)
- 3)인접다중리스트 (Adjacent multilist)

1) Adjacency Matrix

. Undirected Graph: Symmetric

. can save space by storing only upper/lower triangle of matrix

. Degree of any vertex $=\frac{1}{2}$

row sum

0

. Directed Graph: Not symmetric

. Degree of vertex: row sum -> outdegree col sum -> indegree

- Space complexity = $O(n^2)$

0

- Sparse graphs 란?: 간선의 개수가 적은 그래프를 뜻함
- sparse graph 를 adjacency matrix 로 표현하면 memory waste 임. adjacency list 가 적합함.

2) Adjacent List space complexity = O(n+e)// e=edges

Replace n rows of adjacency matrix with n linked list, one for each vertex in G (각 정점에 대해 1개의 리스트 존재)

For G3:

3) Adjacent Multilist

인접리스트에서는 각 간선이 두 번 표현되었음 (예: (1,0)) => Multilist 로 해결 가능

■ Node structure

marked | vertex1 | vertex2 | path1 | path2

The lists are: vertex0: N1->N2->N3

vertex1: N1->N4->N5 vertex2: N2->N4->N6 vertex3: N3->N5->N6

2. Elementary Graph Operations

```
1) DFS (Depth First Search): 깊이 우선탬색
    . use Adjacency linked list
    . visited[MAX_VERTICES]: 배열 (초기치 = FALSE)
    . visited[i] = TRUE : 정점 i 방문
                            . 시작정점 v 방문 (visited[v]=true)
    void DFS(int v)
                            . For each vertex W adjacent to v do
       {
                                 if not visited[W] then DFS(W);
         Node
                            . 더이상 없으면 dfs 끝
         visited[v] = true;
         cout << v;
        for (w= graph[v]; w!=NULL; w=w->link)
           if (!visited[w->link]) DFS(w->link);
     0
                     A. list representation:
                vertex0
                                          null
                                       3
                                                   null
                               0
                      1
                              0
                                                   null
                     3
                                       7
                               1
                                          null
                     4
                                          null
                     5
                                          null
                     6
                                          null
Start from V_0,: 0, 1, 3,7,4,5,2,6
                             visited
```

Analysis: total time of DFS by A. List: O(e),
 by A. matrix: O(n²)

2) BFS (Breadth First Search) . Implement with Linked Queue

same as DFS

Analysis of BFS:

```
Sample Code
  class node {
      int vertex; node *next;
      node(int num)  { vertex = num; next = 0; }
    friend class Graph;
  };
  class Graph {
      private:
        node *graph[MaxVertices];
        bool visited[MaxVertices];
               *front; node *rear;
        node
      public:
        Graph() \{front = 0; rear = 0;\}
        void initGraph();
        void displayGraph();
        void enqueue(int v);
        int dequeue();
         void bfs(int v);
    };
void Graph::initGraph()
   for (int i = 0; i < MaxVertices; i++) {
        graph[i] = 0; visited[i] = false; }
void Graph::enqueue(int v)
    node *temp = new node(v); \dots \dots
  }
int Graph::dequeue()
    node *p; int vertex;
```


Definition: any tree that includes all the vertices in G

예) 하나의 연결 G 는 출발점이나 검색방법에 따라 각기 다른 신장 트리가 만들어진다.

- We can use dfs or bfs to create a spanning tree
 - when dfs is used => the result is dfs spanning tree
 - when bfs is used => the result is bfs spanning tree

Greedy Method

문제를 해결하는 각 단계에서 가장 최선의 방법을 결정하는 것으로 optimal solution을 구할 수 있다. (best solution 이 아닐 수도 있다)

- 예) 현재, 11 ♥,5 ♥,1 ♥ 가 있는데 15 ♥ 만들기
 - → 1-11 ¢, 4-1 ¢ 로 만들 수 있다. 그러나 실제로는 3-5 ¢ 로 만들 것이다.

3. Minimum cost spanning trees(MST)

- ▶ cost가 제일 적은 신장트리 최소비용 알고리즘 반드시 알고있어야됨
- ▶ Greedy Method 의 응용 예 ▶ 총 (n-1) edges 이다
 - 대표적인 MST algorithms
 - ⇒ Kruskal's, Prim's, Sollin's

1) Kruskal's Algorithm (Greedy method)

28
10/ 1
14/\ldot\16
5 6 2 25 24 /
1/8 /12
22
[3]

cost	edge	action
10	(0,5)	accept
12	(2,3)	accept
14	(1,6)	accept
16	(1,2)	accept
18	(3,6)	reject => cycle
22	(3,4)	accept
24	(4,6)	reject => cycle
25	(4,5)	accept
28	stop	already (n-1) edges added

2) Prim's Algorithm - 각 단계에서 선택된 간선의 집합 = 트리 Prim's algorithm form a tree at each stage, but Kruskal's form a forest

```
{can start with any vertex}
Algorithm:
      T = \{ \};
      TV={0} //start with vertex 0//
      while (T contains fewer than n-1 edges)
           let (u,v) be a least cost edge such that
                                                   u∈TV & v∉TV;
               (there is no such edge)
                                         break;
           else
                 add
                       v to TV:
                 add
                       (u,v) to T;
      if
          (T contains fewer than n-1 edges)
                   printf ("No spanning Tree");
```

ex) starting vertex '0'

- 3) Sollin's Algorithm 각 단계별, T에 포함될 간선을 여러개 선택
 - (i) 그래프의 모든 n 정점을 포함하는 신장트리 구성
 - (ii) forest 내의 각 트리에 대해 하나의 간선 선택, (최소비용선택)

- . Tree $\{0,5\}:=>(1,0),(4,5)$, will select (4,5) since cost is 25 (minimum)
- . Tree $\{1,6\}$: => (1,2), (6,3), will select (1,2) since cost is 16 (min)
- . Tree $\{2,3,4\}:=>(2,1),(3,6)(4,6)$, will select (2,1) since cost is 16 (min)

4. Shortest Path (최단경로)

- 1) Single Source All Destination (단일 출발점-> 모든 도착지)
- v0(source)에서 G의 다른 모든 정점(도착지)까지의 최단경로

	45
0 50	10 4
20/) 15	35
104	20 30
2	3
15	3

path	length
1) v0 v2	10
2) v0 v2 v3	25
3) v0 v2 v3 v1	45
4) v0 v4	45

< shortest path from v0 to v1,v2,v3,v4> <no path from v0 to v5>

* found[i]: if found[i]=TRUE vi 까지의 최단경로 발견

distance[i]: v0에서 S내의 정점만을 거친 vi까지의 최단거리

(S=최단경로가 발견된 정점의 집합)

- 초기치 : distance[i] = cost[0][i] -- 기치도 전에 이 친기 값 - cost[i][j] : <i, j>의 가중치

* 그래프 : 비용 인접 행렬(cost adjacency matrix)로 표현

void initCostMatrix(int cost[][8]) {
int I, j;

```
for (i = 0; i < 8; i++)
for (j = 0; j < 8; j++)
if (i == j) cost[i][j] = 0;
else cost[i][j] = 10000;
```

• Algo (Shortest path) by Dijkstra's algorithm

```
Void Shortestpath (int v, int cost[][], int dist[], int n, bool found[]) {
     int I,u,w;
     for (I=0; I<n; I++) {
                                              O(n)
                                              . found all FALSE
         found[I] = false;
         distance[I] = cost[v,I]; }
                                             . initial value assign
                      // start vertex mark
     found[v]=true;
                      // start vertex 0
     distance[v]=0;
     for (I=0; I<n-2; I++)
       u = choose(distance, n, found); // find min value node
                                                  // mark that node
       found[u]= true;
       for (w =0; w<n; w++) // and replace if revised value
    if (!found[w]) // if not marked
if (distance[u]+cost[u,w]<distance[w]) //is smaller than org
distance[w] = distance[u] + cost[u,w]; // value
} }
int choose(int dist[], int n, bool found[])
     int i, min, minpos;
{
     min = INT_MAX;
     minpos = -1;
   for (i = 0; i < n; i++)
         if (dist[i] < min && !found[i]) {
              min = dist[i];
              minpos = i;
   return minpos;
```


クランララ1·	↑ ∤				
0	1	2	3	4	5
0	50	10		45	
1		15		10	
2 20		15	5		
3	20			35	
4			30		
5			3		
비용	인접	행렬] -	cost	

Vertex	0	1	2	3	4	5
Distance	0	50	10	999	45	999
S	1	0	0	0	0	0

1. S = {v0} : 초기는 공백

distance(1) = 50

distance(2) = 10 <=

distance(3) = 999 임의로 큰수 넣어놓음

distance(4) = 45

distance(5) = 999

Vertex	0	1	2	3	4	5
distance	0	50	10	999	45	999
S	1	0	1	0	0	0

2. $S = S \cup \{v2\} = \{v0, v2\}$

distance(1)<- min{distance(1), distance(2)+(v2,v1,999)} 50 distance(3)<-min{distance(3), distance(2)+(v2,v3,15)} 25 <= min

 $distance(4) < -min{distance(4), distance(2)+(v2,v4,999)}$ 45

distance(5)<- min{distance(5), distance(2)+(v2,v5,999)} 999

vertex	0	1	2	3	4	5
distance	0	50	10	25	45	999
S	1	0	1	1	0	0

3. $S = S \cup \{v3\} = \{v0, v2, v3\}$ distance(1)<- min{distance(1), distance(3)+ $v3,v1,20\}$ } 45 <= min distance(4)<- min{distance(4), distance(3)+(v3,v4,35)} 45 $\stackrel{\text{Qistance}}{\text{qistance}}$ distance(5)<- min{distance(5), distance(3)+(v3,v5,999)} 999

Vertex	0	1	2	3	4	5
Distance	0	45	10	25	45	999
S	1	1	1	1	0	0

4. $S = S \cup \{v1\} = \{v0, v1, v2, v3\}$

distance(4)<-min{distance(4), distance(1)+(v1,v4,10)} 45<= min distance(5)<- min{distance(5), distance(1)+(v1,v5,999)} 999

Vertex	0	1	2	3	4	5
distance	0	45	10	25	45	999
S	1	1	1	1	1	0

5. $S = S \cup \{v4\}$

distance(5)	<-min	{ distanc	ce(5), di	istance(4)+(v4,	v5,999)]	} 999 <=	
Vertex	0	1	2	3	4	5		
Distance	0	45	10	25	45	999		
S	1	1	1	1	1	1		

min

6. $S = S \cup \{v5\}$

Ex2)

Matrix		0	1	2	3	4	5	6	7
(cost[v,I])	0	0	∞						
	1	300	0						
	2	1000	800	0					
	3			1200	0				
	4				1500	0	250		
	5				1000		0	900	1400
	6							0	1000
	7	1700							0

- Found: FFFFFFF false initially

- Distance: $0 \infty \infty \infty \infty \infty \infty \infty$ 1^{st} iteration

			Distance							
		vertex	LA	SF	DEN	CHI	BOS	NY	MA	NO
Iteratio	on visited	selected	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Initi	al -	-	∞	∞	∞	1500	0	<u>250</u>	∞	∞
1	4	5	∞	∞	∞ /	1250	0	250	<u>1150</u>	1650
2	4,5	6	∞	∞	%	<u>1250</u>	0	250	1150	1650
3	4,5,6	3	∞	∞ /	2450	1250	0	250	1150	<u>1650</u>
4	4,5,6,3	7	3350	ø	<u>2450</u>	1250	0	250	1150	1650
5	4,5,6,3,7	2	3350/	<u> 3250</u>	2450	1250	0	250	1150	1650
6	4,5,6,3,7,2	1	3350	3250	2450	125	0 0	250	1150	1650
	{4,5,6,3,7,2,1}									

* 250 + 1000 < 1500

if (distance[u] + cost[u,w] < distance[w]) // is smaller than org distance[w] = distance[u] + cost[u,w]; // value 1250 250 + 1000

therefore CHI has been changed to 1250 thereafter

Boston 1500 250 Chi 1000 NY but this do not change