TEXT AUGMENTATION

OUTLINE

- Idea
- Some techniques
 - Thesaurus
 - Word embeddings
 - Back translation
 - Contextualize word embeddings
 - Text generation
 - Random deletion
- Some wellknown researches
 - In English
 - In Vietnamese
- References

IDEA

- More data we have, better model, performance we can achieve.
- Training data is **NOT** unlimited.
- We need a techniques to generate more data.

Thesaurus

Definition (Thesaurus)

Replace non-stop words or phrase with their synonyms.

Thesaurus

Definition (Thesaurus)

Replace non-stop words or phrase with their synonyms.

Definition (Stop word)

Words which are filtered out before processing of natural language data.

Thesaurus

Definition (Thesaurus)

Replace non-stop words or phrase with their synonyms.

Definition (Stop word)

Words which are filtered out before processing of natural language data.

```
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords') # run only the first time
print(set(stopwords.words('english')))
# {'the', 'they', 'of', 'you', 'each', 'some', 'be', 'down
', 's', 're', 'between', 'we', "mustn't", 'so', ... }
print(len(set(stopwords.words('english'))))
# 179
```

Listing 3: Stop words in English

Thesaurus - Automatic thesaurus generation

There are two main approaches:

Thesaurus - Automatic thesaurus generation

There are two main approaches:

Exploit word co-occurrence

Thesaurus - Automatic thesaurus generation

There are two main approaches:

- Exploit word co-occurrence
- Use a shallow grammatical analysis

Thesaurus - Automatic thesaurus generation

There are two main approaches:

- Exploit word co-occurrence
- Use a shallow grammatical analysis

Word	Nearest neighbors
absolutely	absurd, whatsoever, totally, exactly, nothing
bottomed	dip, copper, drops, topped, slide, trimmed
captivating	shimmer, stunningly, superbly, plucky, witty
doghouse	dog, porch, crawling, beside, downstairs
makeup	repellent, lotion, glossy, sunscreen, skin, gel
mediating	reconciliation, negotiate, case, conciliation
keeping	hoping, bring, wiping, could, some, would
lithographs	drawings, Picasso, Dali, sculptures, Gauguin
pathogens	toxins, bacteria, organisms, bacterial, parasite
senses	grasp, psyche, truly, clumsy, naive, innate

► Figure 9.4 An example of an automatically generated thesaurus. This example is based on the work in Schütze (1998), which employs latent semantic indexing (see Chapter 18).

Word embeddings

Definition (Word embeddings)

Represent a word by a high-dimensional vector where each dimension represents a value of a property

December 26, 2019

Word embeddings

Definition (Word embeddings)

Represent a word by a high-dimensional vector where each dimension represents a value of a property

Example:

Guitar =
$$\begin{pmatrix} 0.12 \\ 0 \\ 0 \\ 0.74 \\ -0.89 \end{pmatrix}$$
Piano =
$$\begin{pmatrix} 0.67 \\ 0.8 \\ 0 \\ 0.22 \\ -0.80 \end{pmatrix}$$

Word embeddings

Definition (Word embeddings)

Represent a word by a high-dimensional vector where each dimension represents a value of a property

Example:

Guitar =
$$\begin{pmatrix} 0.12 \\ 0 \\ 0.74 \\ -0.89 \end{pmatrix}$$
 Piano = $\begin{pmatrix} 0.67 \\ 0.8 \\ 0 \\ 0.22 \\ -0.80 \end{pmatrix}$ \Longrightarrow cos_sim = 0.6157

Word embeddings

Definition (Word embeddings)

Represent a word by a high-dimensional vector where each dimension represents a value of a property

Example:

Guitar =
$$\begin{pmatrix} 0.12 \\ 0 \\ 0.74 \\ -0.89 \end{pmatrix}$$
 Piano = $\begin{pmatrix} 0.67 \\ 0.8 \\ 0 \\ 0.22 \\ -0.80 \end{pmatrix}$ \Longrightarrow cos_sim = 0.6157

Some useful models for word embeddings: word2vec, GloVe, fastText

word2vec	GloVe	fasttext
foxes	nbc	henhouse
squirrel	abc	foxes
rabbit	cbs	hare
squirrels	turner	Fox
coyote	disney	fennec

Figure: Most similar words of fox among classical word embeddings models

Word embeddings - Gensim Word2Vec Model

 Install gensim, beautifulsoup4 library pip install gensim beautifulsoup4

```
#import libraries
from gensim.models import Word2Vec
import bs4 as bs
```

Listing 4: Library importation

Word embeddings - Gensim Word2Vec Model

 Install gensim, beautifulsoup4 library pip install gensim beautifulsoup4

```
#import libraries
from gensim.models import Word2Vec
import bs4 as bs
```

Listing 5: Library importation

 Other utility: nltk.stem.PorterStemmer, nltk.stem.WordNetLemmatizer
 Example: (programs, programming, programed, ...) = program

Back translation

Definition (Back translation)

Translate target language to source language and mixing both original source sentence and back-translated sentence to train a model

Back translation

Definition (Back translation)

Translate target language to source language and mixing both original source sentence and back-translated sentence to train a model

Example:

English: I play soccer

Vietnamese : \Rightarrow Tôi chi bóng đá

 $\mathsf{English} : \Rightarrow \mathsf{I} \mathsf{\ play\ football}$

Text generation

Definition (Text generation)

Generate text with the goal of appearing indistinguishable to human-written text.

Text generation

Definition (Text generation)

Generate text with the goal of appearing indistinguishable to human-written text.

Some useful libraries/techniques:

- LSTM Recurrent Neural Networks in Python with Keras
- N-gram, RNNs, GRUs, LSTMs, seq2seq(Conditional Language Model)

Text generation

Definition (Text generation)

Generate text with the goal of appearing indistinguishable to human-written text.

Some useful libraries/techniques:

- LSTM Recurrent Neural Networks in Python with Keras
 - N-gram, RNNs, GRUs, LSTMs, seq2seq(Conditional Language Model)

Example:

When we type: as soon as

Text generation

Definition (Text generation)

Generate text with the goal of appearing indistinguishable to human-written text.

Some useful libraries/techniques:

- LSTM Recurrent Neural Networks in Python with Keras
- N-gram, RNNs, GRUs, LSTMs, seq2seq(Conditional Language Model)

Example:

When we type: as soon as

Google suggest: as soon as possible

Random deletion

Definition

Randomly remove one (or many) word(s) from a sentence to create a now sentence.

Random deletion

Definition

Randomly remove one (or many) word(s) from a sentence to create a now sentence.

Example:

Original: The quick brown fox jumps over the lazy dog

Augmented Text: The fox jumps over the lazy dog

SOME WELLKNOWN RESEARCHES

- In English
 - Gmail suggestion while composing.
 - Google BERT
 - Facebook RoBERTa.
 - Amazon sagemaker.

SOME WELLKNOWN RESEARCHES

- In English
 - Gmail suggestion while composing.
 - Google BERT
 - Facebook RoBERTa.
 - Amazon sagemaker.
- In Vietnamese
 - Vietnam Language and Speech Processing (https://vlsp.hpda.vn/)

REFERENCES

- https://towardsdatascience.com/data-augmentation-library-for-text-9661736b13ff
- https://towardsdatascience.com/data-augmentation-in-nlp-2801a34dfc28
- 1 https://www.kilgarriff.co.uk/Publications/2003-K-Beijing-thes4NLP.pdf
- 4 https://vlsp.hpda.vn/demo
- https://nlp.stanford.edu/IR-book/html/htmledition/automatic-thesaurus-generation-1.html
- https://stackabuse.com/implementing-word2vec-with-gensim-library-in-python/
- https://towardsdatascience.com/exploring-wild-west-of-natural-language-generation-from-n-gram-and-rnns-to-seq2seq-2e816edd89c6
- https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

LINEAR REGRESSION

Idea

- Linear regression is a linear approach to modeling the relationship between a scalar response and one or more explanatory variables.
- Type of linear regression :
 - ► Simple linear regression : $\hat{y} = xw + b$ where \hat{y}, x, w, b is a scalar variable.
 - ► Multivariate linear regression : $\hat{y} = xw + b = \bar{x}w$ where w, x are vectors, \hat{y}, b is a scalar number.