Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

1. A qué valor de presión de aire se debe inflar un neumático (fig. 1) de un auto de carrera en boxes teniendo en cuenta que cuando esté en carrera la temperatura del neumático será de T_n y la presión optima deberá ser de P_{opt} ? Considerar la temperatura del neumático frio en boxes de 20 °C y el volumen del mismo es de V_n . El aumento de volumen del neumático de frio a caliente es del 20%. Suponga que la presión atmosférica es de 100 KPa.

$$T_n = 60 \,^{\circ} C$$
 $P_{opt} = 40 \,\text{psi}$ $V_n = 0.025 \,\text{m}^3$

Figure 1: Neumático

2. Un tanque sufre, en una de sus paredes verticales planas, una abolladura como se muestra en la figura 2. La misma puede considerarse como un cilindro de sección elipsoidal (semiejes de longitud A y B) y largo L. Calcule cuál es la fuerza hidrostática resultante sobre la abolladura (en función de sus dimensiones) y qué torque genera respecto a los puntos de concentración de tensiones (a y b). Exprese el resultado en términos de los parámetros del problema:

Figure 2: Abolladura elipsoidal en pared plana

Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

3. Considere el generador eólico de la figura 3. Utilizando balances integrales de momento lineal, calcule la velocidad mínima de incidencia del viento para que comience a generar potencia cuando el salto de presión es de Δp . El diámetro del círculo de los alabes es de D_{al} . La eficiencia de la turbo máquina es del n. Suponga la densidad del aire de ρ_a .

$$\Delta p = 0,04 \mathrm{psi}$$
 $D_{al} = 27 \mathrm{ft}$ $n = 30\%$ $\rho_a = 0,076 \, \mathrm{lb/ft}^3$

Figure 3: Generador eólico