東大 2018 年度数学解答例

文殊の知恵 高橋那弥

目次

第1問																								1
第1問問題	文	٠																 						1
第1問解答																	•	 				•		2
第2問																								4
第2問問題	文	٠																 						4
第2問解答		•						•									•	 						5
第3問																								7
第3問問題	文	٠																 						7
第3問解答	5例																	 						8

問題文 第1問

第1問

第1問 問題文

次の連立一次方程式を解く問題を考える.

$$Ax = b$$

ここで, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ は与えられた定数の行列とベクトルであり, $x \in \mathbb{R}^n$ は未知ベクトルである. 以下の問いに答えよ.

- (1) $\overline{A} = (A | b)$ のように、行列 A の最後の列の後ろに 1 列追加した $m \times (n+1)$ 行列を作る. 例えば、 $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$ の場合には、 $\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 1 & 1 & 0 & 4 \\ 0 & 1 & 1 & 2 \end{pmatrix}$ となる.この例の \overline{A} の第 i 列ベクトルを a_i (i = 1, 2, 3, 4) とする.
 - (i) a_1, a_2, a_3 のうち線形独立なベクトルの最大個数を求めよ.
 - (ii) a_4 が a_1 , a_2 , a_3 の線形和で表されることを, $a_4=x_1a_1+x_2a_2+a_3$ となるスカラー x_1 , x_2 を求めることで示せ.
 - (iii) a_1, a_2, a_3, a_4 のうち線形独立なベクトルの最大個数を求めよ.
- (2) 任意のm, n, A, bに対して $\operatorname{rank} \overline{A} = \operatorname{rank} A$ のとき連立一次方程式の解が存在することを示せ.
- (3) $\operatorname{rank} \overline{A} > \operatorname{rank} A$ ならば解は存在しない. m > n, $\operatorname{rank} A = n$ で, $\operatorname{rank} \overline{A} > \operatorname{rank} A$ のとき, 連立一次方程式の右辺と 左辺の差のノルムの 2 乗 $\| \boldsymbol{b} \boldsymbol{A} \boldsymbol{x} \|^2$ を最小にする \boldsymbol{x} を求めよ.
- (4) m < n, rank $\mathbf{A} = m$ のとき, どのような \mathbf{b} に対しても連立一次方程式を満たす解が複数存在する. 解のうちで $\|\mathbf{x}\|^2$ を最小にする \mathbf{x} を, 連立一次方程式の制約条件として, ラグランジュ乗数法を用いて求めよ.
- (5) 任意のm, n, Aに対して、以下の4つの式を満たす $P \in \mathcal{R}^{n \times m}$ が唯一に決まることを示せ.

$$egin{aligned} m{APA} &= m{A} \ m{PAP} &= m{P} \ (m{AP})^T &= m{AP} \ (m{PA})^T &= m{PA} \end{aligned}$$

(6) (3) で求めた x と (4) で求めた x が、いずれも x = Pb の形で表せることを示せ.

解答例 第1問

第1問 解答例

(1) (i) a_1, a_2 が線形従属の関係にある場合, 実数 $c \neq 0, \in \mathbb{R}$ を用いて

$$\mathbf{a}_1 = c \, \mathbf{a}_2$$

と表すことができる. しかし, $m{a}_1=\begin{pmatrix}1\\1\\0\end{pmatrix}$, $m{a}_2=\begin{pmatrix}0\\1\\1\end{pmatrix}$ であることから, これを満たす実数 c は存在しないので,

 $m{a}_1$, $m{a}_2$ は線形独立なベクトルである. \dot{n} \dot{n}

$$\boldsymbol{a}_3 = c_1 \boldsymbol{a}_1 + c_2 \boldsymbol{a}_2$$

と表すことが出来る. $m{a}_3=egin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ であるので, $c_1=-1,\,c_2=1$ とすればこの式は満たされる. ゆえに $m{a}_3$ は線

形従属の関係にあるので、線形独立なベクトルの最大個数は2個である.

(ii) a_4 について a_1 , a_2 , a_3 の線形和で表されることを x_1 , x_2 を求めることで示す.

$$a_{4} = x_{1}a_{1} + x_{2}a_{2} + a_{3}$$

$$\iff \begin{pmatrix} 2\\4\\2 \end{pmatrix} = x_{1} \begin{pmatrix} 1\\1\\0 \end{pmatrix} + x_{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix} + \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

$$\iff \begin{cases} 2 = x_{1} - 1\\4 = x_{1} + x_{2}\\2 = x_{2} + 1 \end{cases}$$

$$\iff \begin{cases} x_{1} = 3\\x_{2} = 1 \end{cases}$$

したがって, $x_1 = 3$, $x_2 = 1$ というスカラーの組が求まったので, a_4 は a_1 , a_2 , a_3 の線形和で表される.

- (iii) a_4 は a_1 , a_2 , a_3 の線形和で表されることから a_4 は a_1 , a_2 , a_3 と線形従属な関係であるので, 線形独立なベクトルの最大個数は 2 個である.
- (2) 行列 \boldsymbol{A} の第 i 列ベクトルを \boldsymbol{a}_i (i=1,2,...,n) とする. $\operatorname{rank} \overline{\boldsymbol{A}} = \operatorname{rank} \boldsymbol{A}$ のとき, 実数 c_i $(\neq 0, \in \mathbb{R})$ を用いて

$$oldsymbol{b} = \sum_{i=1}^n c_i oldsymbol{a}_i$$

と表すことができる.この c_i を 1 から順に n まで縦に並べた $\boldsymbol{c}=\begin{pmatrix}c_1\\c_2\\\vdots\\c_n\end{pmatrix}$ をつくると

$$Ac = b$$

となるので, c は連立方程式の解x となる. ゆえに題意は示された.

(3) 以下のように変形することができる.

$$||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}||^2 = (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})^T(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})$$
$$= (\boldsymbol{b}^T - \boldsymbol{x}^T\boldsymbol{A}^T)(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})$$
$$= \boldsymbol{x}^T\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{x} - 2\boldsymbol{x}^T\boldsymbol{A}^T\boldsymbol{b} + \boldsymbol{b}^T\boldsymbol{b}$$

これをxで微分すると

$$\frac{\partial \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|^2}{\partial \boldsymbol{x}} = 2\boldsymbol{A}^T \boldsymbol{A}\boldsymbol{x} - 2\boldsymbol{A}^T \boldsymbol{b}$$

解答例 第 1 問

となる. ゆえに最小となる必要条件は

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$$

である. ${\rm rank} {\pmb A}=n$ かつ ${\rm rank} {\pmb A}>{\rm rank} {\pmb A}$ のとき, ${\rm rank} ({\pmb A}^T{\pmb A})=n$ となる. ゆえに ${\pmb A}$ は正則であるので, 逆行列が存在して

$$(\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$$
$$\iff \boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$$

となる.

問題文 第 2 問

第2問

第2問 問題文

関数 f_1 を [0,1] 上で定義される正値の定数関数とし, $f_1(x)=c$ とおく.また,正の実数 p,q を 1/p+1/q=1 を満たすものとする.これらに対し,[0,1] 上で定義される関数の列 $\{f_n\}$ を

$$f_{n+1}(x) = p \int_0^x (f_n(t))^{1/q} dt$$

で定める. 以下の問いに答えよ.

(1) $a_1 = 0$, $c_1 = c$ かつ

$$a_{n+1} = q^{-1}a_n + 1$$
 $(n = 1, 2, ...),$
 $c_{n+1} = \frac{p(c_n)^{1/q}}{a_{n+1}}$ $(n = 1, 2, ...)$

で定まる実数列 $\{a_n\}$ と $\{c_n\}$ を用いて $f_n(x) = c_n x^{a_n}$ と表されることを示せ.

- (2) $n \ge 2$ に対し [0,1] 上で定義される関数 g_n を $g_n(x) = x^{a_n} x^p$ とおく. $n \ge 2$ に対し $a_n \ge 1$ となることに注意して、 g_n がある点 $x = x_n$ で最大値をとることを示し、この x_n を求めよ.
- (3) 任意の $x \in [0,1]$ に対して $\lim_{n \to \infty} g_n(x) = 0$ となることを示せ.
- (4) $d_n=(c_n)^{q^n}$ とおく. d_{n+1}/d_n が $n\to\infty$ のとき有限な正の値に収束することを示せ. なお, $\lim_{t\to\infty}(1-1/t)^t=1/e$ となることは用いて良い.
- (5) $\lim_{n\to\infty} c_n$ の値を求めよ.
- (6) 任意の $x \in [0,1]$ に対して $\lim_{n \to \infty} f_n(x) = x^p$ となることを示せ.

解答例 第 2 問

第2問 解答例

(1) 数学的帰納法によって示す.

(i) n = 1 のとき,

$$f_1(x) = c = c \cdot x^0 = c_1 x^{a_0}$$

となるので、成立する.

(ii) n=k のとき $f_n(x)=c_nx^{a_n}$ であると仮定すると, n=k+1 のときは

$$f_{k+1}(x) = p \int_0^x ((f_k(t))^{1/q} dt)$$

$$= p \int_0^x (c_k x^{a_k})^{1/q} dt$$

$$= p \left[c_k^{1/q} \cdot \frac{q}{a_k + q} x^{\frac{a_k + q}{q}} \right]_0^x$$

$$= p c_k^{1/q} \cdot \frac{1}{q^{-1} a_k + 1} x^{q^{-1} a_k + 1}$$

$$= \frac{p c_k^{1/q}}{a_{k+1}} x^{a_{k+1}}$$

$$= c_{k+1} x^{a_{k+1}}$$

となり,成立する.

(i),(ii) より, 数学的帰納法より, 題意は示された.

(2) $n \ge 2$ のとき,

$$g_n'(x) = a_n x^{a_n - 1} - p x^{p - 1}$$

ここで, a_n の一般項を求める. 特性方程式 $\alpha=q^{-1}\alpha+1$ を解くことによって, $\alpha=p$ となる. ゆえに

$$a_n - p = q^{-1} (a_n - p)$$

 $a_n = p (1 - q^{1-n}) < p$

ゆえに, $g'_n(x) = 0$ となるときは

$$g'_n(x) = 0$$

$$\iff a_n x^{a_n - 1} - p x^{p - 1} = 0$$

$$\iff x^{a_n - 1} \left(a_n - p x^{p - a_n} \right) = 0$$

$$\iff x = 0, \left(\frac{a_n}{p} \right)^{\frac{1}{p - a_n}}$$

 $g'_n(1) = a_n - p < 0$ より増減表は以下のように書くことができる.

x	0		$\left(\frac{a_n}{p}\right)^{\frac{1}{p-a_n}}$		1
$g'_n(x)$	0	+	0	_	$a_n - p$
$g_n(x)$	0	7		×	0

よって $,x_n=\left(\frac{a_n}{p}\right)^{\frac{1}{p-a_n}}$ のとき最大値をとることが示された.

(3) まず,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left\{ p(1 - q^{1-n}) \right\} = p$$

解答例 第 2 問

より,

$$\lim_{n \to \infty} g'_n(x) = \lim_{n \to \infty} a_n x^{a_n - 1} - p x^{p - 1}$$
$$= p x^{p - 1} - p x^{p - 1}$$
$$= 0$$

これより関数 $g_n'(x)$ は区間 [0,1] において増減がなく, $n\to\infty$ において $g_n(0)=g_n(1)=0$ であるから, 任意の $x\in[0,1]$ に対しても $n\to\infty$ において $g_n(x)=0$ となる. よって, 題意は示された.

(4) qの大きさについて

$$\frac{1}{p} + \frac{1}{q} = 1 \Longrightarrow \frac{1}{q} < 1$$

$$\iff q > 1$$

となる. d_{n+1}/d_n について整理すると

$$\frac{d_{n+1}}{d_n} = \frac{\left(\frac{p(c_n)^{1/q}}{a_{n+1}}\right)^{q^{n+1}}}{(c_n)^{q^n}} \\
= \frac{\frac{p^{q^{n+1}}(c_n)^{q^n}}{(a_{n+1})^{q^{n+1}}}}{(c_n)^{q^n}} \\
= \frac{p^{q^{n+1}}}{(a_{n+1})^{q^{n+1}}} \\
= \left(\frac{p}{p(1-q^{-n})}\right)^{q_{n+1}} \\
= \left(\frac{1}{1-q^{-n}}\right)^{q^{n+1}} \\
= \left(\frac{1}{1-\frac{1}{q^n}}\right)^{q^n} \cdot \left(\frac{1}{1-\frac{1}{q^n}}\right)$$

q>1 より, $n\to\infty$ のとき $q^n\to\infty$ であることを用いて

$$\lim_{n \to \infty} \frac{d_{n+1}}{d_n} = \lim_{n \to \infty} \left(\frac{1}{1 - \frac{1}{q^n}} \right)^{q^n} \cdot \left(\frac{1}{1 - \frac{1}{q^n}} \right)$$
$$= \frac{1}{q^n}$$

問題文 第 3 問

第3問

第3問 問題文

赤いカードが 2 枚と白いカードが 1 枚入った袋および複素数 z_n , w_n (n=0,1,2,...) について考える. まず, 袋から 1 枚のカードを取り出し袋に戻す. このとき取り出されたカードの色に応じて z_{k+1} (k=0,1,2,...) を以下のルールで生成する.

次に、袋からもう一度 1 枚のカードを取り出し袋に戻す。このとき取り出したカードの色に応じて w_{k+1} を以下のルールで生成する。

ここで、各カードは独立に等確率で取り出されるものとする。また初期状態を $z_0=1,\,w_0=1$ とする。すなわち、 $z_n,\,w_n$ は、 $z_0=1,\,w_0=1$ の状態から始め、上記の一連の二つの操作を n 回繰り返した後の値である。なお、ここでは i は虚数単位とする。

以下の問いに答えよ.

- (1) n が奇数のとき $\text{Re}(z_n)=0$, 偶数のとき $\text{Im}(z_n)=0$ であることを示せ. ただし, Re(z), Im(z) はそれぞれ z の実 部, 虚部を表すものとする.
- (2) $z_n = 1$ である確率を P_n , $z_n = i$ である確率を Q_n とする. P_n , Q_n についての漸化式を立てよ.
- (3) $z_n = 1$, $z_n = i$, $z_n = -1$, $z_n = -i$ である確率をそれぞれ求めよ.
- (4) z_n の期待値が $(i/3)^n$ であることを示せ.
- (5) $z_n = w_n$ である確率を求めよ.
- (6) $z_n + w_n$ の期待値を求めよ.
- (7) $z_n w_n$ の期待値を求めよ.

解答例 第 3 問

第3問 解答例

(1) 赤いカードが2回連続で出されたら

$$z_{k+2} = -z_k^2$$

となり、これは白いカードが 2 回連続で出された場合も同様である。赤いカードが取り出され、白いカードが取り出された場合

$$z_{k+2} = z_k^2$$

となり、これは白いカードが取り出され、赤いカードが取り出された場合も同様である. ゆえに、

$$z_{k+2} = \left\{ egin{array}{ll} -z_k^2 & \qquad & \mbox{同じカードが 2 回連続で取り出された場合} \\ z_k^2 & \qquad & \mbox{異なるカードが取り出された場合} \end{array}
ight.$$

ここで, n=0 のとき $z_0=1$ であるので, z_2 は 1 または -1 の値をとる.帰納的に n=2k のとき z_n は 1 または -1 の値をとるので, $\mathrm{Im}(z_n)=0$ となる.一方で,n=1 のとき, z_1 は i または -i である.帰納的に n=2k+1 のとき z_n は i または -i の値をとるので, $\mathrm{Re}(z_n)=0$ となる.よって,題意は示された.