Aula 2 – Aleatoriedade, probabilidade e sorteios

Curso de simulações em linguagem R

Danilo G. Muniz

Importância de sorteios em simulações

Fonte de variação e aleatoriedade

Sorteios garantem que sucessivas repetições (rodadas) de uma simulação sejam parecidas, mas não iguais

Aleatoriedade

Aleatório = Imprevisível

Um evento imprevisível é aquele cujo resultado exato é impossível de prever. Mesmo que um resultado esperado possa ser previsto.

Números pseudoaleatórios

Computadores só podem gerar números pseudoaleatórios.

Um pouco sobre probabilidade

Primeiro teorema da probabilidade

"Probabilidade tem que somar 1" _ Dr. M

"A soma das probabilidades de todos os eventos elementares é igual a 1"

Primeiro teorema da probabilidade

$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

Regra do E

A probabilidade de dois eventos independentes, com probabilidades p_1 e p_2 ocorrerem é igual a $p_1 \cdot p_2$

Regra do OU

Dados dois eventos independentes, com probabilidades p_1 e p_2 , a probabilidade de pelo menos um ocorrer é igual a p_1 + p_2

Por exemplo...

Suponha uma população de predadores e uma população muito maior de presas.

A cada intervalo de tempo, um predador encontra 2 presas, e tem probabilidade 0,25 de capturar cada uma.

Vamos calcular um pouco?

Presas capturadas	Probabilidade	
zero	0,75 · 0,75	0,5625
1	(0,25·0,75)+ (0,75·0,25)	0,375
2	0,25 · 0,25	0,0625
Soma das probabilidades		1
Média de presas capturadas		0,5

Uma observação sobre modelos baseados em indivíduos...

Número médio de presas = 0,5

Modelo matemático determinístico

- cada predador captura ½ presa
- morre uma quantidade de presas exatamente igual à
 ½ do número de predadores

Uma observação sobre modelos baseados em indivíduos...

Número médio de presas = 0,5

Modelo baseado em indivíduos

- um sorteio é feito para cada encontro. O destino de cada presa e predador é determinado individualmente.
- Na média morre uma quantidade de presas igual à ½ do número de predadores

Vamos por no gráfico...

Presas capturadas

Com vocês, a distribuição binomial

Número de sucessos em N tentativas/sorteios com probabilidade p de acerto.

Distribuição binomial

Número de sucessos

Distribuição de probabilidades

"Uma distribuição de probabilidades descreve o quão provável é que uma variável assuma um determinado valor."

Algumas distribuições úteis (além da binomial...)

Uniforme

Poisson

Normal 'Gaussiana)

Normal truncada

Distribuição uniforme

Distribuição contínua com probabilidades iguais entre dois valores

Pra que serve essa distribuição?

Distribuição Poisson

Distribuição discreta com valores entre zero e infinito

Descreve a probabilidade de uma série de eventos ocorrer num certo período de tempo, se estes eventos ocorrem em taxa constante e independentemente de quando ocorreu o último evento.

Distribuição Poisson

Parâmetro: λ – média e variância distribuição

Pra que serve essa distribuição?

Distribuição normal ou Gaussiana

Aquela distribuição que tudo deveria seguir mas nada nunca segue.

Distribuição contínua e sem limites.

Possui média e variação independentes.

Seus parâmetros são a média e o desvio padrão.

Distribuição Gaussiana

Média u ; desvio s

Pra que serve essa distribuição?

Distribuição normal truncada

Distribuição normal que teve uma ou ambas as caudas truncada ou amputada.

De volta a binomial...

Pra que serve essa distribuição?

De volta aos eventos aleatórios/probabilísticos

Calculando probabilidades...

E se a probabilidade de captura variasse de acordo com:

- Características da pesa
- Características da predador
- Fatores abióticos ou sazonais

Precisamos de uma função!

Valores entre zero e um

WWW.MATHWAREHOUSE.COM

Algumas funções úteis

Categórica

Assintótica

Logística inversa (inverse logit)

Exponencial negativa

Vamos falar um pouco sobre o número e

Vamos falar sobre o número de Euller

2,718281828459045235360287

 A função e^x representa crescimento (ou decrescimento) a uma taxa constante

X

X

Função categórica

$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

$$\sum_{i=1}^{N} p_i = 1$$

Mas como calcular p_i ?

Suponha que um predador vai atacar uma das três lebres, e que as vermelhas são 5 vezes mais visíveis que a branca.

Para facilitar a conta suponha que a probabilidade da branca ser capturada é igual a x.

Mas como calcular p_i ?

A probabilidade da branca ser capturada é igual a x.

Vamos calcular um pouco?

Vamos isolar o x

$$5x + 5x + x = 1$$

$$x \cdot (5 + 5 + 1) = 1$$

$$X = \frac{1}{5+5+1} = \frac{1}{11}$$

$$5x = \frac{5}{11}$$

Mas como calcular p_i ?

Probabilidade de captura:

Vermelhas: 5/11

Branca: 1/11

$$p_i = \frac{capturabilidade}{soma \ das \ capturabilidades}$$

Cor da lebre	Capturabilidade
Branca	1
Vermelha	5

Generalizando um pouco...

$$p_i = \frac{z_i}{\sum_{j=1}^N z_j}$$

z pode ser qualquer característica do item ou indivíduo *i*

Pra que serve essa equação?

$$p_i = \frac{z_i}{\sum_{j=1}^{N} z_j}$$

Modelar escolha comparativa ou processos parecidos.

Escolha comparativa?

Escolha comparativa

Escolha comparativa

Adicionando intensidade de escolha

$$p_i = \frac{z_i^B}{\sum_{j=1}^N z_j^B}$$

$$p_i = \frac{exp(B \cdot z_i)}{\sum_{j=1}^{N} exp(B \cdot z_j)}$$

Ou mais traços/atributos...

$$p_{i} = \frac{z_{i}^{B} + w_{i}^{C}}{\sum_{j=1}^{N} (z_{j}^{B} + w_{i}^{C})}$$

$$p_i = \frac{exp(B \cdot z_i + C \cdot w_i)}{\sum_{j=1}^{N} exp(B \cdot z_j + C \cdot w_j)}$$

Continuando...

Agora para escolhas binárias...

Função assintótica

$$p = \frac{x}{x+c}$$

Função assintótica

$$p = \frac{x}{x+c}$$

c – valor de x para o qual $p = \frac{1}{2}$

Função assintótica

$$p = \frac{c}{x+c}$$

c – valor de x para o qual $p = \frac{1}{2}$

$$p = \frac{\exp(x)}{\exp(x) + 1}$$

$$p = \frac{\exp(a + bx)}{\exp(a + bx) + 1}$$

$$p = \frac{\exp(x)}{\exp(x) + 1}$$

$$p = logit^{-1}(a + bx)$$

$$b = 1,0$$

$$(xq + bx)$$

$$0,75$$

$$= 1,0$$

$$0,75$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$= 1,0$$

$$p = logit^{-1}(a + bx)$$

Exponencial negativa

$$p = \exp(-x)$$

$$\begin{array}{c}
1 \\
0,75 \\
0,5 \\
0,25 \\
0
\end{array}$$

$$\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}$$
X

Exponencial negativa quadrática

$$p = \exp(-x^2)$$

Exponencial negativa quadrática

$$p = \exp(-x^2)$$

Equação de "matching"

$$p_{ij} = exp(-A \cdot (z_i - z_j)^2)$$

Equação Gaussiana!

$$\phi = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Equação Gaussiana!

sobrevivência =
$$exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$mu = 4$$

$$0,75$$

$$0,5$$

$$0,25$$

$$0$$

$$0$$

$$2$$

$$4$$

$$6$$

$$8$$

Hora de simular... ALGUMA COISA!