

REC'D 17 JUN 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 4月16日

出願番号 Application Number:

特願2003-111703

[ST. 10/C]:

[JP2003-111703]

出 願 人
Applicant(s):

小野薬品工業株式会社

本庶 佑

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

2004年 4月22日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

ONP4547

【提出日】

平成15年 4月16日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

C07K

【発明者】

【住所又は居所】

京都府京都市左京区岩倉大鷺町19-4

【氏名】

本庶 佑

【発明者】

【住所又は居所】

京都府京都市伏見区醍醐京道町9番地1

【氏名】

岡崎 拓

【特許出願人】

【識別番号】

000185983

【住所又は居所】

大阪府大阪市中央区道修町2丁目1番5号

【氏名又は名称】

小野薬品工業株式会社

【代表者】

松本 公一郎

【特許出願人】

【識別番号】

396023812

【住所又は居所】

京都府京都市左京区岩倉大鷺町19-4

【氏名又は名称】

本庶 佑

【代理人】

【識別番号】

100081086

【住所又は居所】

東京都中央区日本橋人形町2丁目2番6号 堀口第2ビ

ル7階 大家特許事務所

【弁理士】

【氏名又は名称】

大家 邦久

【電話番号】

03 (3669) 7714

【代理人】

【識別番号】 100117732

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口第2ビ

ル7階 大家特許事務所

【弁理士】

【氏名又は名称】 小澤 信彦

【電話番号】 03(3669)7714

【代理人】

【識別番号】 100121050

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口第2ビ

ル7階 大家特許事務所

【弁理士】

【氏名又は名称】 林 篤史

【電話番号】 03(3669)7714

【手数料の表示】

【予納台帳番号】 043731

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0209021

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 心臓疾患治療物質のスクリーニング方法および心臓疾患治療医薬組成物

【特許請求の範囲】

【請求項1】 抗心筋トロポニンI抗体と心筋トロポニンIと被験物質を接触させて、抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用に対する被験物質の阻害活性を測定し評価することを特徴とする、抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を阻害する物質のスクリーニング方法。

【請求項2】 抗心筋トロポニンI抗体と標的組織と被験物質を接触させて、抗心筋トロポニンI抗体による標的組織への作用に対する被験物質の阻害活性を測定し評価することを特徴とする、抗心筋トロポニンI抗体による標的組織への作用を阻害する物質のスクリーニング方法。

【請求項3】 標的組織が心筋細胞である請求項2記載のスクリーニング方法。

【請求項4】 請求項1乃至3記載のスクリーニング方法によって活性を有する物質を選択する工程、前記選択された物質を製造する工程、前記製造工程によって製造された物質を薬理学的に許容する溶剤と混合し製剤化する工程により製造される心臓疾患治療医薬組成物。

【請求項5】 心筋トロポニン I タンパク質、その部分タンパク質またはそれらの修飾体から選択される一つ以上の物質を有効成分として含む心臓疾患治療 医薬組成物。

【請求項6】 心臓疾患が拡張型心筋症である請求項4または5記載の心臓疾患治療医薬組成物。

【請求項7】 請求項1乃至3記載の方法によって選択された物質が吸着されている心臓疾患治療用基材。

【請求項8】 心筋トロポニン I タンパク質、その部分タンパク質またはそれらの修飾体から選択される一つ以上の物質が吸着されている心臓疾患治療用基材。

【請求項9】 心臓疾患が拡張型心筋症である請求項7または8記載の心臓

疾患治療用基材。

【請求項10】 患者より採取した血液を血球と血漿に分離する血漿分離器、分離した血漿を請求項7または8記載の心臓疾患治療用基材と接触させる体外免疫吸着器、前記体外免疫吸着器で処理した血漿を、分離した血球と混合して再び体内に送り返す還流装置を備えていることを特徴とする心臓疾患治療装置。

【請求項11】 心臓疾患が拡張型心筋症である請求項10記載の心臓疾患 治療装置。

【請求項12】 抗心筋トロポニンI抗体を投与することを特徴とする心臓疾患評価動物の作製方法。

【請求項13】 心臓疾患が拡張型心筋症である請求項12記載の心臓疾患 評価動物の作製方法。

【請求項14】 請求項12記載の方法で作製された動物に被験物質を投与し、心臓疾患に対する作用効果を判定することを特徴とする心臓疾患治療物質の選択方法。

【請求項15】 請求項13記載の方法で作製された動物に被験物質を投与し、心臓疾患に対する作用効果を判定することを特徴とする拡張型心筋症治療物質の選択方法。

【請求項16】 抗心筋トロポニンI自己抗体の産生を阻害する物質を有効成分として含む拡張型心筋症治療医薬組成物。

【請求項17】 抗心筋トロポニン I 自己抗体量を測定することを特徴とする拡張型心筋症診断方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、抗心筋トロポニンI自己抗体が関与する疾患の発症を阻害する物質のスクリーニング方法、その方法により製造される物質を含む心臓疾患治療医薬組成物および心臓疾患治療用基材、抗心筋トロポニンI自己抗体を除去することによるその抗体が関与する疾患の治療装置、抗心筋トロポニンI抗体を投与する心臓疾患評価動物の作製方法、その動物を使用する心臓疾患治療物質の選択方法

並びに抗心筋トロポニンI自己抗体量を測定することによる拡張型心筋症の診断 方法に関する。

[0002]

【発明の背景および従来技術】

拡張型心筋症は心筋収縮性機能の進行的な抑制と拡張性心室によって特徴付けられる心筋の病気であり、拡張した左心室の収縮機能不全を呈す。この病気は慢性的に進行することが多く、予後が改善されにくいため、欧米では心移植が必要となることが多く、わが国における心移植適応例の90%以上はこの病気である。拡張型心筋症患者のうち30%は、細胞内の細胞骨格を細胞間マトリックスへ連結している心筋の重要成分に対する遺伝子の先天的な変異によるとされているが、残りの症例は原因不明のままである。どちらの場合も、そのかなり高い発症頻度(10万人に36.5人)と高死亡率を有するが、現時点では心臓移植以外に有効な治療法はない。

[0003]

現在までに、拡張型心筋症は、虚血性、毒性、代謝性、感染性、遺伝的原因に加えて、自己免疫が主因の1つであることが疑われている。心筋炎と原因不明の拡張型心筋症を伴う患者においては、心臓反応性自己抗体の存在についての報告がある。拡張型心筋症患者血清中で認められる自己抗体として挙げられるミトコンドリア性ADP/ATPトランスロケータあるいは β 1ーアドレノ受容体に対する抗体は、心筋細胞のC2+電流非特許文献1;ジャーナル・オブ・エクスペリメンタル・メディスン(Journal of Experimental Medicine),1988年,第168巻,第6号,p2105-2019、非特許文献2;ヨーロピアン・ジャーナル・ファルマコロジー(Europian Journal of Pharmacology),2001年,第423巻,第2-3号,p115-119)を増加させることが示されている。また、その免疫吸着療法による有益な効果も(非特許文献3;サーキュレーション(Circulation),2001年,第103巻,第22号,p2681-2686)報告されている。フェリクスらは(非特許文献4;ジャーナル・オブ・ジ・アメリカン・カレッジ・カルディオロジー(Journal of the American College of Cardiology),2002年,第39巻,第4号,p646-652)、免疫吸着療法によって拡張型心筋症患者の血行動態を改良することができて

、回収した抗体を含む免疫吸着法カラムからのカラム溶離液が、Ca²+電流の抑 制による心筋細胞での細胞収縮を減少させると報告している。齧歯動物の研究で は、心臓指向性のウイルス感染あるいは心臓抗原による免疫が、心臓反応性自己 抗体の産生と細胞傷害性T細胞(非特許文献 5 ; サーキュレーション(Circulati on), 1982年, 第65巻, 第6号, p1230-1235、非特許文献 6; クリニカル・イ ムノロジー・アンド・イムノパソロジー(Clinical immunology and immunopatho logy), 1987年, 第43巻, 第1号, p129-139、非特許文献 7; ジャーナル・オ ブ・モレキュラー・アンド・セルラー・カルディオロジー(Journal of molecula r and cellular cardiology), 1997年, 第29巻, 第2号, p 641 - 655、非特許文 献8;ジャーナル・オブ・イムノロジー(Journal of Immunology), 1987年, 第1 39巻, 第11号, p 3630-3636) の組み合わせによって、心筋障害に至る心筋細胞 への傷害を引き起こすのかもしれないことを示唆している。しかしながら、自己 免疫応答が、心臓の炎症の結果生じるかもしれないため、拡張型心筋症の病因論 における自己免疫のかかわり合いはまだ論争の余地があった(非特許文献9;ジ ャーナル・オブ・イムノロジー(Journal of Immunology), 1990年, 第145巻, 第 12号, p4094-4100)。

$[0\ 0.0\ 4]$

PD-1はCD28/CTLA-4系に属している免疫抑制性受容体で、そのリガンドPD-L1あるいはPD-L2 (非特許文献10;カレント・オピニオン・イムノロジー(Current Opinion Immunology), 2002年, 第14巻, 第6号, p779-782) との結合によって、SHP-2が仲介する抗原受容体シグナリングを阻害する。C57BL/B6系PD-1欠損マウスは、ループス様糸球体腎炎と関節炎を発症する(非特許文献10)。発明者らは、最近、BALB/C系PD-1欠損マウスが拡張型心筋症を発症するのを示した(非特許文献11;サイエンス(Science), 2001年, 第291巻, 第5502号, p319-322、特許文献1;国際公開第02/39813号パンフレット)。

[0005]

このマウスの肥大した心臓では、心筋細胞における免疫複合体の際立った沈着が認められた。さらに、すべてのPD-1欠損マウスの血清は、心臓特有の30

[0006]

【非特許文献1】

H.P.Schultheiss, 外5名, ジャーナル・オブ・エクスペリメンタル・メディスン (Journal of Experimental Medicine), 1988年, 第168巻, 第6号, p2105-2019

【非特許文献2】

A. Staudt, 外9名, ヨーロピアン・ジャーナル・ファルマコロジー (Europian Journal of Pharmacology), 2001年, 第423巻, 第2-3号, p115-119

【非特許文献3】

A. Staudt, 外10名, サーキュレーション (Circulation), 2001年, 第103巻, 第22号, p2681-2686

【非特許文献4】

S.B.Felix , 外 9名, ジャーナル・オブ・ジ・アメリカン・カレッジ・カルディオロジー(Journal of the American College of Cardiology), 2002年 , 第 39巻, 第 4 号, 9646-652

【非特許文献5】

A. Matsumori , 外1名, サーキュレーション (Circulation) , 1982年, 第65巻, 第6号, p1230-1235

【非特許文献6】

F.L.Alvarez, 外4名, クリニカル・イムノロジー・アンド・イムノパソロジー (Clinical immunology and immunopathology), 1987年, 第43巻, 第1号, p129-139

【非特許文献7】

【非特許文献8】

N. Neu , 外 5 名, ジャーナル・オブ・イムノロジー (Journal of Immunology), 1987年, 第139巻, 第11号, p3630-3636

【非特許文献9】

N. Neu , 外 2 名, ジャーナル・オブ・イムノロジー (Journal of Immunology) , 1990年, 第145巻, 第12号, p4094-4100

【非特許文献10】

T.Okazaki , 外 2 名, カレント・オピニオン・イムノロジー (Current Opinio n Immunology) , 2002年, 第14巻, 第6号, p779-782

【非特許文献11】

H.Nishimura, 外10名, サイエンス (Science), 2001年, 第291巻, 第5502号, p319-322

【特許文献1】

国際公開第02/39813号パンフレット

[0007]

【発明が解決しようとする課題】

本発明の課題は、抗心筋トロポニンI自己抗体が関与する疾患の治療医薬組成物、治療装置および診断方法の提供にある。

[0008]

【課題を解決するための手段】

本発明者らは、PD-1欠損マウス血清中に抗心筋トロポニンI自己抗体の存在を認め、心筋トロポニンIに対する自己抗体が拡張型心筋症の発症因子であることを同定した。

[0009]

PD-1欠損マウス血清中に抗心筋トロポニン I 自己抗体の存在が認められた ことおよび心筋細胞の表面での免疫複合体沈着等の解析結果などから、抗心筋ト

ロポニン I 自己抗体が、PD-1欠損マウスでの拡張型心筋症の発症に関連していると考えるに至った。具体的には、心筋細胞の表面上で抗心筋トロポニン I 抗体が心筋トロポニン I に結合することによって、心臓機能が損なわれると考えた。さらに、抗心筋トロポニン I モノクローナル抗体の添加が、正常な心筋細胞の電圧依存性 C a 2+電流を増大させたことから、心筋細胞の表面で発現される心筋トロポニン I が、C a 2+電流量を制御するための機能を有していることを示した。以上の結果並びに考察から、発明者らは抗心筋トロポニン I 自己抗体が心筋細胞の C a 2+電流の慢性的増進によって拡張型心筋症を引き起こすことを示唆した。よって、抗心筋トロポニン I 自己抗体を除去すること、抗心筋トロポニン I 抗体による標的組織への作用を阻害すること、抗心筋トロポニン I 自己抗体産生を阻害することによって、抗心筋トロポニン I 自己抗体産生を阻害することによって、抗心筋トロポニン I 自己抗体を原因とする疾患を治療することができると考えられる。また、抗心筋トロポニン I 自己抗体を原因とする疾患の診断は、患者の採取血液中、血清中、血漿中、尿中または組織中の該抗体量を測定することによって行うことができる。

[0010]

以上の知見および考察に基いて本発明者らは、以下の抗心筋トロポニン I 自己抗体が関与する疾患の発症を阻害する物質のスクリーニング方法、その方法により製造される物質を含む心臓疾患治療医薬組成物および心臓疾患治療用基材、抗心筋トロポニン I 自己抗体を除去することによるその抗体が関与する疾患の治療装置、抗心筋トロポニン I 抗体を投与する心臓疾患評価動物の作製方法、その動物を使用する心臓疾患治療物質の選択方法、並びに拡張型心筋症の診断方法に係る発明を完成した。

[0011]

すなわち、本発明は、

1. 抗心筋トロポニン I 抗体と心筋トロポニン I と被験物質を接触させて、抗心筋トロポニン I 抗体と心筋トロポニン I との相互作用に対する被験物質の阻害活性を測定し評価することを特徴とする、抗心筋トロポニン I 抗体と心筋トロポニン I との相互作用を阻害する物質のスクリーニング方法、

2. 抗心筋トロポニン I 抗体と標的組織と被験物質を接触させて、抗心筋トロポニン I 抗体による標的組織への作用に対する被験物質の阻害活性を測定し評価することを特徴とする、抗心筋トロポニン I 抗体による標的組織への作用を阻害する物質のスクリーニング方法、

[0012]

- 3. 標的組織が心筋細胞である前項2記載のスクリーニング方法、
- 4. 前項1乃至3記載のスクリーニング方法によって活性を有する物質を選択する工程、前記選択された物質を製造する工程、前記製造工程によって製造された物質を薬理学的に許容する溶剤と混合し製剤化する工程により製造される心臓疾患治療医薬組成物、
- 5. 心筋トロポニン I タンパク質、その部分タンパク質またはそれらの修飾体から選択される一つ以上の物質を有効成分として含む心臓疾患治療医薬組成物、
- 6. 心臓疾患が拡張型心筋症である前項4または5記載の心臓疾患治療医薬組成物、

[0013]

- 7. 前項1乃至3記載の方法によって選択された物質が吸着されている心臓疾患治療用基材、
- 8. 心筋トロポニン I タンパク質、その部分タンパク質またはそれらの修飾体から選択される一つ以上の物質が吸着されている心臓疾患治療用基材、
- 9. 心臓疾患が拡張型心筋症である前項7または8記載の心臓疾患治療用基材、

[0014]

- 10.患者より採取した血液を血球と血漿に分離する血漿分離器、分離した血漿を前項7または8記載の心臓疾患治療用基材と接触させる体外免疫吸着器、前記体外免疫吸着器で処理した血漿を、分離した血球と混合して再び体内に送り返す還流装置を備えていることを特徴とする心臓疾患治療装置、
- 11. 心臓疾患が拡張型心筋症である前項10記載の心臓疾患治療装置、
- 12. 抗心筋トロポニン I 抗体を投与することを特徴とする心臓疾患評価動物の作製方法、
- 13. 心臓疾患が拡張型心筋症である前項12記載の心臓疾患評価動物の作製方

法、

- 14. 前項12記載の方法で作製された動物に被験物質を投与し、心臓疾患に対する作用効果を判定することを特徴とする心臓疾患治療物質の選択方法、
- 15. 前項13記載の方法で作製された動物に被験物質を投与し、心臓疾患に対する作用効果を判定することを特徴とする拡張型心筋症治療物質の選択方法、

[0015]

- 16. 抗心筋トロポニン I 自己抗体の産生を阻害する物質を有効成分として含む拡張型心筋症治療医薬組成物、
- 17. 抗心筋トロポニンI自己抗体量を測定することを特徴とする拡張型心筋症 診断方法に関する。

[0016]

【詳細な説明】

本発明において、心筋トロポニン I タンパク質は、マウス、ラット、ハムスター、モルモット、イヌ、ブタ、サル、ヒトなどの哺乳動物の心筋トロポニン I タンパク質を含む。

[0017]

ヒト心筋トロポニン I タンパク質は、Protein_id:CAA38102.1に示される配列を有する210アミノ酸のタンパク質または少なくとも1箇所または2箇所以上のアミノ酸が置換した変異タンパク質を含む。さらに、ヒト心筋トロポニン I タンパク質およびその変異タンパク質は、少なくとも10アミノ酸または20アミノ酸、好ましくは少なくとも30、40、50、60、10または200アミノ酸の連続したアミノ酸領域において、少なくとも70%、好ましくは少なくとも80または90%、より好ましくは95%以上相同性を有するタンパク質をも含む。

[0018]

心筋トロポニンIの部分タンパク質は、心筋トロポニンIタンパク質および変異タンパク質の部分タンパク質を示す。これら部分タンパク質は、抗心筋トロポニンI自己抗体に結合するものであって、少なくとも10アミノ酸、好ましくは少なくとも20アミノ酸、例えば30、40、50、60、100または200

[0019]

本発明において、抗心筋トロポニンI抗体は、本発明の心筋トロポニンIまたはその部分タンパク質に特異的に結合するものであればいずれのものでもよく、さらに抗心筋トロポニンI自己抗体を含む。該抗体のポリクローナルまたはモノクローナル抗体は、定法(Kohler, Milstein,ネイチャー(Nature),1975年,第256巻,p495-497)により齧歯動物を免疫して取得することができる。該抗体あるいはその部分断片は、ポリクローナルまたはモノクローナル抗体、ヒト化抗体、完全ヒト型抗体またはその短縮型(例えば、F(ab')2、Fab'、Fab、Fv)抗体などのいずれの形体であってもよい。F(ab')2、Fab'、Fab、Fv抗体フラグメントは、完全型抗体をプロテアーゼ酵素により処理して、場合により還元して得ることができる。また、抗体を産生するハイブリドーマから、そのcDNAを単離し、遺伝子改変によって作製された発現ベクターを用いて、抗体またはその抗体の断片あるいは抗体の断片と別のタンパク質との融合タンパク質として産生することができる。

[0020]

抗心筋トロポニンI自己抗体とは、自己の免疫細胞から産生され、自己の心筋トロポニンIタンパク質に反応する抗体をいう。自己抗体はいずれのイムノグロブリンサブタイプから構成されてもよく、循環血中、採取血液中、血清中、血漿中、尿中または組織中に含まれる状態あるいはそれらから実質的に純粋な形で精製されたものであってもよい。自己抗体は、本発明が対象とする疾患の患者の血液中から分離または精製することによって取得することができる。さらに、対象とする疾患の患者から、抗心筋トロポニンI自己抗体を産生する実質的に単一なリンパ球細胞を単離して、さらに自己抗体のcDNAを単離し、遺伝子改変によって作製された発現ベクターを用いて、その抗体またはその断片あるいは抗体の

断片と別のタンパク質との融合タンパク質として産生することができる。

[0021]

本発明において、標的組織には、心臓、心房、心室、弁、心臓壁、下大静脈、上大静脈、大動脈、肺動脈幹、左上肺静脈、冠動脈及び冠静脈の部分組織が含まれ、さらに、該組織由来の初代培養細胞あるいは細胞株も含まれる。好ましくは、心筋細胞あるいは心筋トロポニン I タンパク質を発現している該組織あるいは組織由来の細胞が挙げられる。

[0022]

本発明において、被験物質は、ペプチド、ポリペプチド、ヌクレオチド、ポリ ヌクレオチド、多糖、ポリ多糖、天然物、発酵生産物、細胞抽出物、植物抽出物 、動物組織抽出物、抗体、抗血清またはそれらの類縁体または修飾体、合成化合 物、有機合成化合物等から選択される。

[0023]

自己抗体の標的組織への作用を阻害する物質は、自己抗体がその抗原を発現するあるいは抗原が存在する組織に結合した結果生じる作用を阻害するいずれの物質でもよく、好ましくは抗原タンパク質、その部分タンパク質またはその修飾体、より好ましくは抗原タンパク質、その部分タンパク質またはその修飾体を吸着させた基材である。

[0024]

抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を阻害する物質は、心筋トロポニンIへの該抗体の結合を阻害するいずれの物質でもよい。例えば、該抗体の抗原認識部位に結合する物質等が挙げられる。好ましくは心筋トロポニンIタンパク質、その部分タンパク質またはそれらの修飾体、より好ましくは、心筋トロポニンIタンパク質、その部分タンパク質またはそれらの修飾体を吸着させた基材である。

[0025]

本発明の抗心筋トロポニンI抗体による標的組織への作用を阻害する物質は、標的組織への抗体の結合を阻害する物質または抗体の作用によって発生する電気 生理学的シグナルの亢進あるいは抑制を阻害する物質、該抗体の作用の結果発生

する組織傷害を阻害する物質のいずれの物質でもよい。例えば、該抗体の抗原認識部位に結合する物質等が挙げられるが、好ましくは心筋トロポニン I タンパク質、その部分タンパク質またはそれらの修飾体、より好ましくは、心筋トロポニン I タンパク質、その部分タンパク質またはそれらの修飾体を吸着させた基材である。

[0026]

抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を阻害する物質のスクリーニングは、抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を定性的あるいは定量的に評価することができる方法によっても行うことができる。具体的には、ラジオイムノアッセイ(RIA)、化学発光免疫検定法(CIA)、酵素免疫検定法(EIA)、ウエスタンブロット法、BiaCore測定法等を用いて行うことができる。いずれの方法においても、抗心筋トロポニンI抗体、心筋トロポニンI及び対照物質を混合した時の抗心筋トロポニンI抗体と心筋トロポニンIの相互作用力に対する抗心筋トロポニンI抗体、心筋トロポニンIの相互作用力に対する抗心筋トロポニンI抗体、心筋トロポニンI

[0027]

抗心筋トロポニンI抗体による標的組織への作用を阻害する物質のスクリーニングは、標的組織の作用の程度を定性的あるいは定量的に評価する方法によっても行うことができる。標的組織が細胞の場合は、生存細胞数測定法(例えば、MTTアッセイ、XTTアッセイ、FACS法)、細胞増殖活性測定法、細胞活動活性(例えば、ATP合成活性)測定、細胞傷害活性(例えば、LDH遊離活性)測定法を用いて行うことができる。細胞が心筋細胞の場合は、該細胞に抗心筋トロポニンI抗体を作用させたときの流入Ca²+電流の増加に対する被験物質の効果を評価することによっても行うことができる。いずれの方法においても、抗心筋トロポニンI抗体、心筋トロポニンIを発現する細胞及び対照物質を混合した時の心筋トロポニンIを発現する細胞の測定値に対する抗心筋トロポニンI抗体、心筋トロポニンIを発現する細胞及び被験物質を混合させた時の測定値の割合を算定して目的とする物質を選択することができる。また、標的組織が生組織

の場合には、組織傷害性を組織染色あるいは免疫学的組織染色法によって評価することことができる。

[0028]

抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を阻害する物質のスクリーニング、あるいは抗心筋トロポニンI抗体による標的組織への作用を阻害する物質のスクリーニングによって選択された物質は、いずれの方法によるかを問わず、選択されたペプチド、ポリペプチド、ヌクレオチド、ポリヌクレオチド、多糖、ポリ多糖、天然物、発酵生産物、細胞抽出物、植物抽出物、動物組織抽出物、抗体、抗血清またはそれらの類縁体または修飾体、合成化合物、有機合成化合物等として実質的に純粋な形態で生産し、あるいは合成することができる。

[0029]

選択された該物質がペプチドまたはポリペプチド、好ましくは心筋トロポニン Iまたはその部分タンパク質またはそれらの修飾体である場合には、遺伝子組み 換え技術を用いたタンパク質発現系(宿主-ベクター系)、例えば、細菌、酵母 、昆虫細胞および哺乳動物細胞の発現系を用いて製造することができる。

[0030]

ベクター系としては、大腸菌由来のプラスミド(例、pBR322, pBR325, pUC12, pUC13)、酵母由来プラスミド(例、pSH19, pSH15)、 λ ファージなどのバクテリオファージ、レトロウイルス,ワクシニアウイルス,バキュロウイルスなどの動物ウイルスなどの他、pA1-11、pXT1、pRc/CMV、pRc/RSV、 $pcDNAI/Neoなどが用いられる。本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応した適切なプロモーターであればいかなるものでもよい。例えば、動物細胞を宿主として用いる場合は、<math>SR\alpha$ プロモーター、SV40プロモーター、LTRプロモーター、CMVプロモーター、HSV-TKプロモーターが挙げられる。これらのうち、CMV(サイトメガロウイルス)プロモーター、 $SR\alpha$ プロモーターを用いるのが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、P10プロモーターが好ましい。

[0031]

発現ベクターで形質転換したエシェリヒア属菌を適当な培地で培養して、その 菌体より目的とするペプチドを得ることができる。また、バクテリアのシグナル ペプチド (例えば、pelBのシグナルペプチド) を利用すれば、ペリプラズム 中に目的とするペプチドを分泌することもできる。さらに、他のペプチドとのフ ュージョン・プロテインを生産することもできる。

[0032]

哺乳動物細胞で発現させる場合は、例えば、目的とするタンパク質をコードした c DNAを適当な発現ベクターを用いて、宿主細胞として適当な哺乳動物細胞を形質転換し、形質転換体を適当な培地で培養することによって、その培養液中に目的とするペプチドが分泌される。

[0033]

宿主細胞としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞などが用いられる。エシェリヒア属菌の具体例としては、例えば、エシェリヒア・コリK12、DH1、JM103、HB101、JM109、DH5、DH5、OH5。 なとが用いられる。昆虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盗蛾の幼虫由来株化細胞(Sf細胞)が用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞(BmN細胞)などが用いられる。Sf細胞としては、例えば、Sf9細胞(ATCC CRL1711)、Sf21細胞(Vaughn, J.L., イン・ヴィボ(In Vivo),1977年,第13巻,p213~217)が用いられる。昆虫としては、カイコの幼虫などが用いられる。動物細胞としては、例えば、サルCOS-1細胞、COS-7細胞、Vero、チャイニーズハムスター細胞CHO(以下、CHO細胞と略記する。)、dhf r 遺伝子欠損チャイニーズハムスター細胞CHO(以下、CHO(d hfrー)細胞と略記する。)、マウスL細胞、マウスAtT-20、マウスミエローマ細胞、ラットGH3、HEK293T細胞、ヒトFL細胞が用いられる。

[0034]

エシェリヒア属菌を形質変換する場合には、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. (USA)), 1972年, 第69巻, 第2110号に記載の方法に従

って行うことができる。酵母を形質転換するには、例えば、メソッズ・イン・エンザイモロジー(Methods in Enzymology), 1991年, 第194巻, p182-187、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc.Natl.Acad.Sci.(USA)), 1978年, 第75巻, 第1929号に記載の方法に従って行うことができる。昆虫細胞または昆虫を形質転換するには、例えば、バイオ/テクノロジー(Bio/Technology), 1988年, 第6巻, p47-55に記載の方法に従って行うことができる。動物細胞を形質転換する場合には、例えば、細胞工学別冊8新細胞工学実験プロトコール, 秀潤社, 1995年, 第263やヴァイロロジー(Virology), 1973年, 第52巻, 第456号に記載の方法に従って行うことができる。

[0035]

心筋トロポニン I またはその部分タンパク質は、他のタンパク質の一部と融合した形態で作製することができる。融合に適当な部分タンパク質としては、ヒスチジンータグ、免疫グロブリン定常部のFc断片、GST(グルタチオン・S・トランスフェラーゼ)等が挙げられる。これらは、大量生産後の精製作業を有利にでき、また、融合タンパク質の溶解度を増加でき、さらに、立体配座を安定させる効果を期待することができる。

[0036]

タンパク質修飾体には、タンパク質の任意あるいは特定の箇所を化学的あるいは酵素的にアミノ化、リン酸化、アシル化、メチル化、エステル化、ミリステル化、ジスルフィド化、ユビキチン化、糖付加、オリゴ糖付加、多糖付加、酸化、還元または加水分解されたタンパク質が含まれる。また、タンパク質を製造する際に、既に修飾された状態で産生されるものも含まれる。

[0037]

以上のようにして得られたタンパク質は、通常の方法、例えば塩析、イオン交換クロマトグラフィー、ゲルろ過、疎水性クロマトグラフィー、アフィニティークロマトグラフィー(例えば、 Ni^{2+} イオンカラム、抗GST抗体固定化アフィニティーカラム、Protein all n A固定化アフィニティーカラム、Protein all n をどにより精製できる。

[0038]

抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を阻害する物質あるいは抗心筋トロポニンI抗体による標的組織への作用を阻害する物質を吸着させた基材は、該物質を静電気的、化学的あるいは生化学的に結合させた基材である。基材の材料は、不溶性担体として、ポリスチレン、ポリプロピレン、ポリアミド、ポリイミド、ポリ芳香族ビニル化合物、ポリエステル、ポリメチルメタクリレート、ポリスルホン、ポリエチレン、ポリビニルアルコール、ポリテトラフルオロエチレンなどの合成高分子や、セルロース、アガロース、セファロース、デキストラン、キチン、キトサンおよびそれらの誘導体を含む天然高分子などを使用することができる。さらに、金属類、シリカゲル系、けいそう土、セライト、ゼオライト、多孔性ガラス系、イオン交換樹脂系および上述の物質の派生物、有機または無機の多孔性材料、磁気ビーズ、マイクロビーズ等が含まれるが、これらに限定されるものではない。

[0039]

本発明の基材の形状は、粒子状、繊維状、膜状、中空糸状等、特に制限はないが、取扱いの容易さから粒子状及び繊維状のものが好ましい。粒子状の場合、カラムに充填した時の目づまり及び吸着物の吸着速度の面から球径が通常 $10\sim5000 \mu \, \mathrm{m}$ 、好ましくは $50\sim1000 \mu \, \mathrm{m}$ であるが、これらに限定されるものではない。また、本発明の吸着は、高圧蒸気圧滅菌、EOG滅菌、 γ 一線照射滅菌等の方法により滅菌を行うことができる。

[0040]

該物質の基材への結合は、アミンカップリング法、ビオチンーアビジン結合反応を用いたカップリング法、His-Tagを用いたカップリング法、チオレート法、カルボキシル基を用いたアミノカップリング法、臭化シアン法等で行うことができる。

[0041]

抗心筋トロポニンI抗体を投与することにより作製される心臓疾患評価動物とは、抗心筋トロポニンI抗体を1回または2回以上断続的に投与することによって、心臓機能または組織の障害によりヒトの心臓疾患様の疾患を発症する哺乳動

物である。該動物は、好ましくは、マウス、ラット、ハムスター、モルモット、 イヌ、ブタ、サルである。

[0042]

抗心筋トロポニン I 抗体を投与することにより作製される拡張型心筋症評価動物とは、抗心筋トロポニン I 抗体を 1 回または 2 回以上断続的に投与することによって、心臓機能または組織の障害によりヒトの拡張型心筋症様の疾患を発症する哺乳動物である。該動物は、好ましくは、マウス、ラット、ハムスター、モルモット、イヌ、ブタ、サルである。

[0043]

抗心筋トロポニンI抗体を投与することにより心臓疾患を発症した哺乳動物に被験物質を投与することによる心臓疾患治療物質の選択方法は、抗心筋トロポニンI抗体を投与することによって発現する心臓機能の異常、組織学的あるいは形態的異常所見に対する改善度を評価することによって行うことができる。心臓疾患がヒトの拡張型心筋症に対応する疾患である場合には、収縮末期容量、拡張末期容量、駆出分画、圧力駆動率、心室収縮末期容量エラスタンス、全身末梢血管抵抗指数、拡張末期圧、右心房圧力等のいずれかの心臓機能指数を評価することによって行うことができ、心臓の組織傷害性を組織染色あるいは免疫学的組織染色法によっても評価することができる。このとき、薬理学的に許容し得る溶剤に混合した被験物質を、抗心筋トロポニンI抗体投与前、投与中あるいは投与後から経口あるいは非経口投与によって投与して行うことができる。

[0044]

抗心筋トロポニンI自己抗体を原因とする疾患の治療は、患者の血液中から抗心筋トロポニンI自己抗体を除去する方法、心筋トロポニンI自己抗体の標的組織あるいは標的細胞への作用を阻害する物質を有効成分として含む治療医薬組成物あるいは心筋トロポニンI自己抗体の産生を阻害する物質を有効成分として含む治療医薬組成物を投与する方法によって行うことができる。

[0045]

抗心筋トロポニンI自己抗体を原因とする疾患とは心臓疾患であり、特に拡張型心筋症が挙げられる。

患者の血液中から抗心筋トロポニン I 自己抗体を除去する方法は、(1)対象 患者より採取した血液から血球と血漿を分離する工程、(2)分離した血漿を抗 心筋トロポニン I 抗体と心筋トロポニン I との相互作用を阻害する物質または抗 心筋トロポニン I 抗体による標的組織への作用を阻害する物質を吸着させた基材 と接触させる工程、(3)(2)において処理した血漿を、分離した血球と混合 して再び体内に送り返す工程を含む方法によって実施することができる。

患者の血液中から抗心筋トロポニン I 自己抗体を除去することによる治療装置は、(1)対象患者より採取した血液から血球と血漿を分離する血漿分離器と、

(2)分離した血漿を抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を阻害する物質または抗心筋トロポニンI抗体による標的組織への作用を阻害する物質を吸着させた疾患治療基材と接触させる体外免疫吸着器と、(3)(2)において処理した血漿を、分離した血球と混合して再び体内に送り返す還流装置を必須構成要素として含む心臓疾患治療、好ましくは拡張型心筋症治療装置である。

[0047]

抗心筋トロポニン I 自己抗体産生を阻害する物質を有効成分として含む拡張型心筋症の治療医薬組成物は、抗心筋トロポニン I 自己抗体産生を阻害する物質を有効成分として含むものである。心筋トロポニン I 自己抗体産生を阻害する物質は、具体的には、抗体産生自体あるいは抗体の細胞外分泌を直接的にあるいは間接的に阻害する物質、自己抗体を産生するクローナルなリンパ球細胞の分化、成熟、増殖のいずれかを抑制する、または該リンパ球のアポトーシスを誘導あるいは特異的に傷害するいずれの物質であってもよい。また、該疾患の発症に関連する免疫反応全体を抑制する免疫抑制物質であってもよい。

[0048]

本発明において、心筋トロポニン I 自己抗体量の測定は、ラジオイムノアッセイ(RIA)、化学発光免疫検定法(CIA)、酵素免疫検定法(EIA)、ウエスタンブロット法、BiaCore測定法等によって行うことができる。これら測定法は、少なくとも(1)ヒト心筋トロポニン I またはその部分タンパク質

を静電気的、化学的、生化学的に結合させた測定用ブロックに対象サンプルとしての血液、血清、血漿、尿または組織抽出液を接触、さらに反応させ、(2) (1) の測定用ブロックに、放射性物質標識、酵素標識またはアフィニティー物質標識された二次抗体を添加し、さらに反応させ、(3) 放射性物質標識の場合はシンチレーション、酵素標識された該二次抗体の場合はその化学的発光基質または化学的発色基質、アフィニティー物質標識された該二次抗体の場合はアフィニティー物質標識された酵素およびその化学的発光基質または化学的発色基質を添加し反応させることによって発生する発光または発色シグナルを測定する工程から構成される。各工程間では任意の洗浄工程を設けることができる。

[0049]

抗心筋トロポニンI自己抗体を原因とする疾患の診断は、患者の採取血液中、 血清中、血漿中、尿中または組織中の該抗体量を上記の方法によって測定するこ とにより実施できる。

[0050]

抗心筋トロポニン I 自己抗体を原因とする疾患の診断試薬は、少なくとも(1)とト心筋トロポニン I またはその部分タンパク質を静電気的、化学的、生化学的に結合させた測定用ブロック、(2)患者から採取した血液、血清、血漿、尿または組織抽出物のための希釈緩衝液、(3)放射性物質標識、酵素標識またはアフィニティー物質標識された二次抗体、および(4)アフィニティー物質標識された二次抗体の場合はアフィニティー物質標識された酵素、(5)放射性物質標識の場合はシンチレーション、アフィニティー物質標識または酵素標識された二次抗体の場合は、化学的発光基質または化学的発色基質から構成される。

[0051]

【医薬品への適用】

本発明による抗心筋トロポニンI抗体と心筋トロポニンIとの相互作用を阻害する物質または抗心筋トロポニンI抗体による標的組織への作用を阻害する物質あるいは抗心筋トロポニンI自己抗体産生を阻害する物質は、薬理学的に許容し得る形態で投与されたとき、抗心筋トロポニンI自己抗体が関与する心臓疾患の治療に有用である。心臓疾患としては、心筋症(拡張型心筋症、家族性肥大型心

施症、肥大型心筋症、原発性心筋症、特発性心筋症、続発性心筋症、拘束型心筋症、うっ血性心筋症)、心筋梗塞、心筋梗塞後症候群、心膜切開後症候群、心膜炎(膠原病性心膜炎、リウマチ性心膜炎、特発性心膜炎)心内膜炎、心筋炎等の疾患が挙げられる。

[0052]

本発明の物質を投与する際には、経口投与の場合、薬理学的に許容する溶剤と 混合し製剤化した内服用固形剤または内服用液剤として、一方、非経口投与の場合、薬理学的に許容する溶剤と混合し製剤化した注射剤、外用剤、坐剤等として 用いることができる。

[0053]

経口投与のための内服用固形剤には、錠剤、丸剤、カプセル剤、散剤、顆粒剤等が含まれる。カプセル剤には、ハードカプセルおよびソフトカプセルが含まれる。

[0054]

内服用固形剤においては、ひとつまたはそれ以上の活性物質がそのままか、または賦形剤(ラクトース、マンニトール、グルコース、微結晶セルロース、デンプン等)、結合剤(ヒドロキシプロピルセルロース、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等)、崩壊剤(繊維素グリコール酸カルシウム等)、滑沢剤(ステアリン酸マグネシウム等)、安定剤、溶解補助剤(グルタミン酸、アスパラギン酸等)等と混合され、常法に従って製剤化して用いられる。また、必要によりコーティング剤(白糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等)で被覆していてもよいし、また2以上の層で被覆していてもよい。さらにゼラチンのような吸収されうる物質のカプセルも包含される。

[0055]

経口投与のための内服用液剤は、薬剤的に許容される水剤、懸濁剤、乳剤、シロップ剤、エリキシル剤等を含む。このような液剤においては、ひとつまたはそれ以上の活性物質が、一般的に用いられる希釈剤(精製水、エタノールまたはそれらの混液等)に溶解、懸濁または乳化される。さらにこの液剤は、湿潤剤、懸

濁化剤、乳化剤、甘味剤、風味剤、芳香剤、保存剤、緩衝剤等を含有していても よい。

[0056]

非経口投与のための注射剤としては、溶液、懸濁液、乳濁液および用時溶剤に溶解または懸濁して用いる固形の注射剤を包含する。注射剤は、ひとつまたはそれ以上の活性物質を溶剤に溶解、懸濁または乳化させて用いられる。溶剤として、例えば注射用蒸留水、生理食塩水、植物油、プロピレングリコール、ポリエチレングリコール、エタノールのようなアルコール類等およびそれらの組み合わせが用いられる。さらにこの注射剤は、安定剤、溶解補助剤(グルタミン酸、アスパラギン酸、ポリソルベート80(登録商標)等)、懸濁化剤、乳化剤、無痛化剤、緩衝剤、保存剤等を含んでいてもよい。これらは最終工程において滅菌するか無菌操作法によって製造、調製される。また無菌の固形剤、例えば凍結乾燥品を製造し、その使用前に無菌化または無菌の注射用蒸留水または他の溶剤に溶解して使用することもできる。

[0057]

非経口投与のための、その他の製剤としては、ひとつまたはそれ以上の活性物質を含み、常法により処方される外用液剤、軟膏剤、塗布剤、吸入剤、スプレー剤、坐剤および膣内投与のためのペッサリー等が含まれる。

[0058]

スプレー剤は、一般的に用いられる希釈剤以外に亜硫酸水素ナトリウムのような安定剤と等張性を与えるような緩衝剤、例えば塩化ナトリウム、クエン酸ナトリウムあるいはクエン酸のような等張剤を含有していてもよい。スプレー剤の製造方法は、例えば米国特許第2,868,691号明細書および同第3,095,355号明細書に詳しく記載されている。

[0059]

本発明の治療医薬組成物は、通常、全身的または局所的に、経口または非経口の形で投与される。

投与量は、年齢、体重、症状、治療効果、投与方法、処理時間等により異なるが、通常、成人一人あたり、1回につき、0.1mgから100mgの範囲で、1

日1回から数回経口投与されるか、または成人一人あたり、1回につき、0.01mgから30mgの範囲で、1日1回から数回非経口投与(好ましくは、静脈内投与)されるか、または1日1時間から24時間の範囲で静脈内に持続投与される。

もちろん前記したように、投与量は、種々の条件によって変動するので、上記 投与量より少ない量で十分な場合もあるし、また範囲を越えて必要な場合もある 。

[0060]

【実施例】

以下に実施例を挙げて本発明をより具体的に説明するが、これらは本発明の範囲を制限するものではない。

[0061]

実施例1:30kDa自己抗原の精製と同定

(a) 30kDaバンドの可溶化と精製

ラット心臓の抽出から30kDa抗原の精製を行った。ラット心臓を界面活性 剤無緩衝液(0.25Mスクロース(プロテアーゼインヒビターCoqtail含(ロシュより購入)))中でホモジナイズし、ビスートリス緩衝液(20mM ビス・トリス、50mM NaCl(pH6.8))に対して透析し、NaCl勾配に従ったモノーQカラム(アマーシャム・ファルマシアより購入)によって分画した。各画分は、PD-1欠損マウス血清を使用したウエスタンブロットによって検出した。図1(a)左にPD-1遺伝子欠損マウス血清の銀染色、右にウエスタンブロットを示す。図中、レーン1は界面活性剤含ラット心臓抽出物、レーン2は界面活性剤無ラット心臓抽出物、レーン3はQセファロースの画分22、レーン4はSセファロースの画分33についての結果である。

[0062]

(b)陰イオン交換カラムクロマトグラフィー

ラット心臓抽出物を、NaCl勾配モノーQカラム(アマーシャム・ファルマシア)によって分画し、各画分をPD-1遺伝子欠損マウス血清を使用したウエスタンブロッティングによって検出した。このときの抗原含有画分(21と22

の画分)を図1(b)に陰影で示した。

[0063]

(c)陽イオン交換カラムクロマトグラフィー

モノーQセファロースカラムの画分21と22を、MES緩衝液(50 mM MES、50 mM NaCl(p H5.5))に対して透析し、NaCl勾配に従ったモノーSカラム(アマーシャム・ファルマシアより購入)によって分画した。このときの抗原含有画分(33と34の画分)を図1(c)に陰影で示した。

[0064]

(d) 逆層HPLCカラムクロマトグラフィー

さらに、ポジティブフラクションをSDS-PAGEによって分離し、30k Da 周辺の主要なバンドを切除した。ゲル中でトリプシンによって消化した <math>30k kDa タンパク質を逆層 HPLCシステムによって分画して(図1(d))。

[0065]

(e) 心筋トロポニン I と精製バンドのアミノ酸配列の比較

図1 (d) 中、矢印で示したピークのペプチドのアミノ酸配列決定を行い、ラット、マウス、ヒト、ウシの心筋トロポニンIと比較した。決定された配列は心筋トロポニンI (c T n I) の配列と同じであった(図1 (e))。

[0066]

実施例2:抗心筋トロポニンIモノクローナル抗体の作製

マウス心臓mRNAから逆転写PCR法によってマウス心筋トロポニンIの相補的DNAを作製し、心筋トロポニンIの組換え型のGST融合蛋白質を作製し、その後のPreScissionプロテアーゼ分裂(アマーシャム・ファルマシアより購入)によってマウス心筋トロポニンIタンパク質を取得した。この組換え型心筋トロポニンI(>95%純粋SDS-PAGEで判断)によるPD-1欠損マウスへの免疫により、マウス心筋トロポニンIに対するモノクローナル抗体(2003年4月2日付で日本国茨城県つくば市東1丁目1番地1中央第6、独立行政法人産業技術総合研究所 特許生物寄託センターに、受託番号:FERM P-19287で寄託されている「cTnI-1-4A」と命名したハイプリドーマが産生する抗体)を取得した。該モノクローナル抗体はウエスタンブ

ロッティングで心臓抽出で30kDa抗原を検出した。バンドのサイズは、PD-1欠損マウス血清とマウス心筋トロポニンI(サンタクルスより購入)に対する市販ヤギポリクローナル抗体によって認識されるそれらと同じであることを確認した。

[0067]

実施例3:心筋トロポニンIの免疫学的特徴

(a) 心臓抽出物由来心筋トロポニン I の免疫沈降

心臓粗抽出物をヤギ抗心筋トロポニンIポリクローナル抗体(サンタクルスより購入)にて免疫沈降して、上清(sup)および沈殿物(ppt)を取得した。PD-1欠損マウス血清を使用したウエスタンブロットによって30kDa抗原の存在を調べた。その結果を図2(a)に示す(図中、crudeは心臓粗抽出物、supは上清,pptは沈降物を示す。)。抗心筋トロポニンIモノクローナル抗体はウエスタンブロッティングにおいて心臓抽出物から30kDa抗原を検出した。バンドのサイズは、PD-1欠損マウス血清とマウス心筋トロポニンI(サンタクルスより購入)に対する市販ヤギポリクローナル抗体によって認識されるものと同じであった。

[0068]

(b) 組換え型心筋トロポニン I による競争実験

PD-1欠損マウス血清(マウス#101、#104および#117)を正常マウス心臓抽出物のウエスタンブロットに使用した。組換え型心筋トロポニンIを1、10および100 μ g/mlで免疫ブロット溶液に添加した競争実験を行った。PD-1欠損マウス血清によって認識される30kDa抗原は、抗心筋トロポニンI抗体と共に免疫沈降され、ペレット画分中に回収された。

他の小規模のバンドは影響を受けなかったが、PD-1欠損マウス血清によって認識されるバンドの強度は、競合的組換え型心筋トロポニンIの添加によって適用量依存的に弱められた(図 2 (b))。これらの結果から、3 0 k D a 抗原が心筋トロポニンI であることが確認された。

[0069]

(c)正常な心臓切片の免疫染色

[0070]

実施例4:抗心筋トロポニン I 抗体で処理されたマウスの血行動態

抗心筋トロポニンIモノクローナル抗体投与下の野生型マウスの左心室圧力一容積関係を測定するため、カテーテル法で心室機能の評価を行った。4週例BALB/c雌マウスに600μgの抗心筋トロポニンIモノクローナル抗体と600μgコントロールマウスIgを投与開始初日および投与開始後7、21、35、49、63、77日目にそれぞれ投与して、82日目に解析した。図3にコントロールIg処理マウスでの圧力一容積関係のグラフ(図3(a))、抗心筋トロポニンIモノクローナル抗体処理マウスの圧力一容積関係のグラフ(図3(b):点線は収縮終末期と拡張終末圧一体積関係を表す。)、コントロールIg処理マウス(左)および抗心筋トロポニンI抗体処理マウス(右)の左心室圧曲線(図3(c))、コントロールIg処理マウス(左)および抗心筋トロポニンI抗体(右)処理マウスでの単位時間収縮期圧変化の誘導期勾配(図3(d))、コントロールIgもしくは抗心筋トロポニンIモノクローナル抗体処理群間のESV(収縮末期容量)、EDV(拡張末期容量)、EF(駆出分画)および圧力駆動率(dP/dtmax)の比較(図3(e):それぞれの値は平均±標準誤差を意味する)を示す。

[0071]

抗心筋トロポニン I モノクローナル抗体投与開始の12週後の処置マウスでは、左心室の収縮末期容量(ESV)と拡張終期容積(EDV)はそれぞれ198%、29%の増大を示した。左心室の駆出分画(EF)は、79.3%から50.8%(図3(a)、(b)、(e))まで低下した。圧力発生の低下(dP/dtma

x, -35%) および収縮末期エラスタンスの低下(-70%)(図3(b)、(d)、(e)および図5のデータ(統計的有意差は、Post-hoc test(Bonferr oni/Dunn)によって計算)参照)に反映されるように、収縮機能は著しくは抑制された。また、拡張期弛緩は、圧力発生の低下(dP/dtmax, -35%)および弛緩期のモノ指数時定数(t、10.1~11.7ms)(図3(b)、(d)、および図5参照)の延長によって反映されるように遅延した。拡張末期圧、右心房圧力(平均右心房圧力)および末梢血管耐性(全身血管抵抗指数)の増加は、心不全であることを示している(図5)。これらの血行動態データは、抗心筋トロポニンIモノクローナル抗体の長期投与が、収縮期と弛緩期の機能の両方を弱めることによって、左心室のESVとEDVの増大を引き起こしたことを示した。

[0072]

実施例 5: PD-1 欠損マウスの肥大心臓由来心筋細胞の電気生理学的分析と正常心筋細胞への抗心筋トロポニン I 抗体の効果

単離した心筋細胞の抗心筋トロポニン I 抗体のイン・ビトロ (in vitro) 効果を調べるため、PD-1欠損マウスの肥大した心臓の心筋細胞の電気生理学的変化を分析した。心筋細胞の単離は、以下の方法で行った。マウスを麻酔下に、気管挿管し、人工呼吸した。大動脈上行部にカニューレを入れ、心臓だけを取り出し、カニューレのみで吊した。カニューレからコラゲナーゼを入れ、冠動脈を介して心臓全体を30分間潅流した。コラゲナーゼを含まない液で数分間潅流した後、カニューレから外して、ビーカーに入れ、ピンセットでやさしくほぐして心筋細胞が単離した。

[0073]

野生型マウスおよび拡張型心筋症発症マウスから心筋細胞をとりだし、whole cellのパッチクランプを行った。細胞外のKイオンをCsイオンに置き換える事により、Caイオンによる電流だけを観察した。

[0074]

図4 (a) に野生型 (w t) マウスおよび (c) PD-1欠損マウスのそれぞれのテストパルス (上側パネル) によって惹起される脱分極 C a $^{2+}$ 電流 (下側パネル)、図4 (b) および (d) にw t マウスの標準電圧 - 電流相関関係および

PD-1欠損マウスの標準電圧-電流相関関係(Ca^{2+} 電流値は、それぞれの細胞の膜容量によって標準化し、平均±標準誤差としてプロットした。 \blacksquare はピーク値(peak)を表し、 \triangle は Ca^{2+} 電流の極大値(plateau)を表す。)を示し、図4(e)~(i)に正常心筋細胞の Ca^{2+} 電流への抗心筋トロポニンI 抗体の効果、すなわち正常心筋細胞に対して、コントロールヤギIgG(e)、抗心筋トロポニンI ポリクローナル抗体(f)、抗心筋トロポニンI モノクローン抗体(1-1A, 1-4A, 3-18A)を微小潅流させ、6 秒毎に ± 0 m V 脱分極パルス惹起流入 Ca^{2+} 電流をモニターし、それぞれの値を初期 Ca^{2+} 電流量に対する比率とした結果を示す((g)~(i))。

[0075]

最大電圧依存性 Ca^{2+} 電流は肥大した心臓の心筋細胞で約 3 倍に増大した(図 4 (a) 、(c))。心筋細胞の膜容量はあまり変化($147\pm31pF$ 対 $169\pm27pF$)が認められなかったため、膜容量による補正(pA/pF)に伴う Ca^{2+} 電流の標準値の変動は減少しなかった(図 4 (b) 、(d))。したがって、増大している Ca^{2+} 電流は L 型 Ca^{2+} チャンネル自体における変化のためであった。

[0076]

【図面の簡単な説明】

- 【図1】 実施例1による30kDa自己抗原の精製と同定の結果を示す。
 (a) はPD-1遺伝子欠損マウス血清の銀染色(左)およびウエスタンブロット(右)を示し、(b) は陰イオン交換カラムクロマトグラフィー、(c) は陽イオン交換カラムクロマトグラフィー、(d) は逆層HPLCカラムクロマトグラフィー、(e) は心筋トロポニンIと精製バンドのアミノ酸配列の比較を示す。
 - 【図2】 実施例3よる心筋トロポニンIの免疫学的特徴を示す。
- (a)は心臓抽出物由来心筋トロポニンIの免疫沈降、(b)は組換え型心筋トロポニンIによる競争実験、(c)は正常な心臓切片の免疫染色を示す。
- 【図3】 実施例4による抗心筋トロポニン I 抗体で処理されたマウスの血行動態を示す。
- (a)はコントロールIg処理マウスでの圧力 容積関係グラフ、(b)は抗心筋トロポニンIモノクローナル抗体処理マウスでの圧力 容積関係グラフ(点線は収縮終末期と拡張終末圧ー体積関係)、(c)はコントロールIg処理マウス(左)および抗心筋トロポニンI抗体処理マウス(右)の左心室圧曲線、(d)はコントロールIg処理マウス(左)および抗心筋トロポニンI抗体(右)処理マウスでの単位時間収縮期圧変化の誘導期勾配、(e)はコントロールIgもしくは抗心筋トロポニンIモノクローナル抗体処理群間のESV(収縮末期容量)、EDV(拡張末期容量)、EF(駆出分画)および圧力駆動率(d P/d t m a x)の比較を示す。
- 【図4】 実施例5によるPD-1欠損マウスの肥大心臓由来心筋細胞の電気生理学的分析と正常心筋細胞への抗心筋トロポニンI抗体の効果を示す。
- (a)は野生型(w t)マウスおよび(c) P D -1 欠損マウスのそれぞれのテストパルス(上側パネル)によって惹起される脱分極 C a $^{2+}$ 電流(下側パネル)、(b)はw t マウスの標準電圧- 電流相関関係、(d)は P D -1 欠損マウスの標準電圧- 電流相関関係、(e)~(i)は正常心筋細胞の C a $^{2+}$ 電流への抗心筋トロポニン I 抗体の効果を示す。
 - 【図 5 】 抗心筋トロポニン I 抗体処理マウスの血行動態改善データを示す

ページ: 29/E

(大型)、	コントロール版の	抗CT n IF 少位一十小右体	います。
ではある。	232±09	22.3+04	The Table 并
	131.7生60	1307 ± 43	
	370±4	389±10	6 5
	1038±67	981+42	6 4
24.2×人が5円/mmLg/ ID Sな曲をは4.4カル/・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23±0.4	84+20) () ()
ない。おいて、当一もの様くのアダントが変大をしていまっています。	0.66±0.04	057+010	\$ E
STREET NOTE NOTE NOTE NOTE NOTE NOTE NOTE N	242±15	210+35	Ē
- Parabotation Electronic Artifacture Ar	29±03	43407	\ \ \ \ \
五个ing 自我们指领mme/m.ing	3156土16.5	387.5 上 81.1	£
· 电电话发射器 医甲状状腺 电电阻电阻 医克里氏虫 医多种性电子 医多种性电子 医多种性 医多种性 医克朗氏 医多种多种 医耳样 医多种 医多种 医多种 医多种 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	计工程 计电影电影 医二甲基甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基		
	以簡嚴能	医艾克尔氏性 医电子电子 医手术 医电子性 医甲状状腺素 化苯丙基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基	等 中意學者等在語 等有 款 异国葡萄医化学 走 在 新
de you lieawilling so 個通い個的総本相図結上ルムをプレーニー	8256±762	5463±649	4005
型に プラー という でき フェスナノく アノス に 日 で の と と と と と と と と と と と と と と と と と と	17,36±463	5.27 ± 0.82	4006
パミー・ハインと、作用を富く立てレベンス	0.70±0.19	2.01±0.32	<0.05
	広子慰殺音		
dP/dt mirkmrHg/s)	-5171 ± 218	104年6月6日	
/ur/or max// di-/dt mir/ 相談: / Mi Sei + 最近 mir/	1.60±0.13	1.67±016	7.5
派十つ中国な政大都も使用レベジンズ(mm上が mi-100mg) バ(ms)	03310.45	0.49±0.46	£ 5
	101+1.1	11,7±26	ā
			Contraction of the Contraction o

【書類名】 要約書

【要約】

【構成】 抗心筋トロポニン I 自己抗体が関与する疾患の発症を阻害する物質のスクリーニング方法、その方法により製造される物質を含む心臓疾患治療医薬組成物および心臓疾患治療用基材、抗心筋トロポニン I 自己抗体を除去することによるその抗体が関与する疾患の治療装置、抗心筋トロポニン I 抗体を投与する心臓疾患評価動物の作製方法、その動物を使用する心臓疾患治療物質の選択方法、並びに抗心筋トロポニン I 自己抗体量を測定することによる拡張型心筋症診断方法。

【効果】 抗心筋トロポニン I 自己抗体を除去する本発明の治療装置および該抗体が関与する疾患の治療医薬組成物は、心臓疾患の治療および/または予防に有用である。

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-111703

受付番号 50300630805

書類名 特許願

担当官 神田 美恵 7397

作成日 平成15年 5月28日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000185983

【住所又は居所】 大阪府大阪市中央区道修町2丁目1番5号

【氏名又は名称】 小野薬品工業株式会社

【特許出願人】

【識別番号】 396023812

【住所又は居所】 京都府京都市左京区岩倉大鷺町19-4

【氏名又は名称】 本庶 佑

【代理人】

申請人

【識別番号】 100081086

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口

第2ビル7階 大家特許事務所

【氏名又は名称】 大家 邦久

【代理人】

【識別番号】 100117732

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口

第二ビル7階 大家特許事務所

【氏名又は名称】 小澤 信彦

【代理人】

【識別番号】 100121050

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口

第2ビル7階 大家特許事務所

【氏名又は名称】 林 篤史

特願2003-111703

出願人履歴情報

識別番号

[396023812]

1. 変更年月日 [変更理由]

19.98年 1月22日 住所変更

L 変更理田」 住 所

京都府京都市左京区岩倉大鷺町19-4

氏 名 本庶 佑

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

×	BLACK BORDERS
X	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
対	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox