## 7-Step Framework



### From last time

- Characterize materials by physical properties:
  - Density
  - Magnetic susceptibility
  - Electrical conductivity
  - Chargeability
  - Electrical permittivity
  - Elastic moduli/velocity







### From last time

- Each physical property has one or more survey methods:
  - Density → Gravity
  - Magnetic susceptibility → Magnetics
  - Electrical conductivity → DCR and EM
  - Chargeability → IP
  - Electrical permittivity → GPR
  - Elastic moduli/velocity → Seismology

#### Geophysics requires physical property contrast(s)



## Today

Our geoscientific problem/question



Our best solution/answer

We need to develop a framework!

## The seven-step framework

- 1. Setup: What is the geoscientific question/problem?
- 2. Physical Properties: Which are diagnostic?
- 3. Survey: What survey type(s) should we use?
- 4. Data: What data are collected?
- 5. Processing: Turning raw data into something we can interpret
- 6. Interpretation: Inferring answer to question from data
- 7. Synthesis: Comparing your answer with other interpretations













## 1. Setup

- Ask questions...
- Gather information...
- Establish expectation...

Bad question: "Where is the water?"

Good question: "Where is the best location for drilling some test boreholes?"

Showing of small water gushing/wet ceiling/leakage Fresh or salt water Interference from mining activities Budget and feasibility

Existence or details about water location
A cross section image or a 3D volume?
Use the results as input to another survey? Spot a test drill hole?
Be realistic!



## 2. Property

Host: rock salt or sandstone

Target: water

What physical property?

Contrast large enough?

What survey can exploit the physical property contrast?



## 3. Survey

#### 3.5 km of DC resistivity survey along tunnels



- Active or passive
- Platform
- Station/line spacing
- Cost-effectiveness
- Feasibility study
- Noise source
- Instrumentation

### 4. Data



#### Apparent resistivity pseudo-section



- Data QC & visualization
- Bad electrode removal
- Reciprocity check
- Preliminary processing/interpretation

## 4. Data









## 5. Processing

- A pseudo-section (plot of data) may not be a good representation of subsurface
- Use a technique called inversion to convert data to a physical property model through physical modeling



25

50

75

100

100.0 56.2

31.6

75

100

-100

-75

-50

-25

0

X (m)

!Mystery DC data pole-dipole, a=10 n=7 : 124 data

### What is inversion?



Inversion procedure



- Inversion: find values for cells such that data are explained.
- Use mathematical optimization theory.
- Difficulties:
  - Solution is non-unique.
  - Computationally demanding.



# Geophysical inversion is analogous to medical imaging

Image of a brain based on MRI measurements.



Image of an ore body based on magnetic field measurements.



## Viewing an inversion result

- 3D volume can be viewed in many ways. Here:
  - Data on top
  - Pixels showing material property values visible along the slice.
  - Isosurface highlighting the ore bodies



## 6. Interpretation



- Large area of "blue" (low res.)
- Two "out-cropping" both are water?
- One is metal pipe; the other is water inflow



## 7. Synthesis





Water found

## Mt. Milligan: A mining example





## Mt. Milligan: Setup





- Geologic engineers need to know where to drill or to dig for ore
- Geophysics will try to provide information regarding:
  - Location and geometry of ore-bearing rocks in the region
  - Concentration and grade of the deposit

## Mt. Milligan: Physical Properties



Porphyry deposit with Pyrite and chalcopyrite (sulfides)

- susceptibility
- conductivity
- chargeability





# Mt. Milligan: Aeromagnetic Survey and Data





Helicopter-borne magnetometer

Total magnetic field (nT)

Question: can you answer the questions asked at the beginning by looking at the magnetic field data map?

# Mt. Milligan: Processing - 3D magnetic inversion



## Mt. Milligan: Interpretation



isosurface 0.03 SI

## Mt. Milligan: Synthesis

Magnetic Inversion

**Chargeability Inversion** 





Can we answer those questions now?

How confident?

Iterate or add information from other surveys or disciplines?

## The seven-step framework

- 1. Setup: Want to find location, orientation and grade of ore bodies
- 2. Physical Properties: conductivity, chargeability, susceptibility
- 3. Survey: Airborne magnetics (also DCIP or EM surveys)
- 4. Data: Magnetic (also DCIP and EM data)
- 5. Processing: Plotting and 3D magnetic inversion
- 6. Interpretation: Localized region of high susceptibility
- 7. Synthesis: One area shows high susceptibility AND chargeability















## Recap

- Seven steps for applying geophysics
  - Setup: ask good questions
  - Property: exploit property contrast
  - Survey: choose the right tools
  - Data: acquisition and QC
  - Processing: invert data to model
  - Interpretation: non-uniqueness
  - Synthesis: other information
- More case histories using the 7-step framework
  - https://em.geosci.xyz/content/case\_histories/index.html
- TBL 1 exercise: A geophysical journey around Ireland
  - Practice your 7-step skills! (answer on Google Form)

### **Unit Activities**

- Labs: (Physical Properties)
  - Monday, September 9<sup>th</sup>
  - Tuesday, September 10<sup>th</sup>
- TBL:
  - Wednesday, September 11<sup>th</sup>
- Quiz:
  - Wednesday, September 11<sup>th</sup>