208dowels-bootstrap

B-MAT-400

Frequency distribution

- A frequency distribution is a series that represents the frequency of various observations in an experiment.
- Example: number of times there is x defective pieces among in 100 samples of 100 pieces
- Notation
 - x is the observed class (number of defective pieces among 100 pieces)
 - O_x is the observed size of the class (number of samples where there was x defective pieces)
 - $N = \sum_{x} O_{x}$ is the number of total observations

x	0	1	2	3	4	5	6	7	8+	Total
O_{χ}	2	7	14	21	19	17	11	5	4	100

Distribution fitting

- Fitting observations to a probability distribution:
 - Normal distribution
 - Binomial distribution
 - Poisson distribution
 - ...
- This allows to replace the values of the observations with only the parameters of the distribution (mean, variance, etc.)
- Notation:
 - T_x is the theoretical size of the class

Reminder: Binomial distribution

• B(n,p) is the probability distribution of the number of successes in n independent Bernouilli trials of probability p

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

• C_n^k is the binomial coefficient: $C_n^k = \frac{n!}{k!(n-k)!}$

Binomial distribution fitting

• Finding n and p so that B(n, p) is a good fit to our observations:

$$T_x = N \times C_n^x p^x (1-p)^{n-x}$$

- Example: Probability of having x defective pieces in a sample
 - ullet If each observed piece is a trial, then n is the total number of pieces in a sample
 - The average number of defective pieces is $\bar{x} = \frac{1}{N} \sum_{x} x O_{x}$, so the probability that one piece is defective is:

$$p = \frac{\bar{x}}{n} = \frac{1}{nN} \sum_{x} x O_{x}$$

Example

x	0	1	2	3	4	5	6	7	8+	Total
O_{χ}	2	7	14	21	19	17	11	5	4	100

•
$$n = 100$$

•
$$p = \frac{0 \times 2 + 1 \times 7 + \dots + 7 \times 5 + 8 \times 4}{100 \times 100} = 0.0392$$

•
$$T_x = 100 \times C_{100}^x (0.0392)^x (1 - 0.0392)^{100 - x}$$

x	0	1	2	3	4	5	6	7	8+	Total
T_{x}	1.8	7.5	15.1	20.1	19.9	15.6	10.1	5.5	4.3	100

• To ensure that $N = \sum_{x} T_{x}$, the last class size is computed by subtracting the other sizes to N.

χ^2 test

- How to evaluate the goodness of the fit?
- Measure of the deviation between observed theoretical sizes of the classes:

$$\chi^2 = \sum_{\chi} \frac{(O_{\chi} - T_{\chi})^2}{T_{\chi}}$$

- If $\chi^2 = 0$, there is no deviation, and the fit is perfect
- The greater χ^2 is, the worst the fit is.
- Classes must have a significant size, so they may need to be merged before computing χ^2

χ^2 distribution

- The value of χ^2 follows the χ^2 distribution, which also depends
 on a parameter called the
 degrees of freedom
- Comparing the value of χ^2 with the cumulative distribution function will indicate how likely the observed size will deviate from the theoretical sizes.

Degrees of freedom

- ν is the number of independent classes x when applying the probability distribution
- If k is the number of classes and p the number of constraints use to compute the fitting:

$$\nu = k - p$$

• In the binomial fitting, we fixed $N = \sum_{x} O_{x} = \sum_{x} T_{x}$ and we used \bar{x} to compute B(n,p), so we have:

$$\nu = k - 2$$

χ^2 table

• Knowing the value of χ^2 and the degrees of freedom, we can use a χ^2 table to determine the goodness of the fit

ν	99%	90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	2%	1%
1	0.00	0.02	0.06	0.15	0.27	0.45	0.71	1.07	1.64	2.71	3.84	5.41	6.63
2	0.02	0.21	0.45	0.71	1.02	1.39	1.83	2.41	3.22	4.61	5.99	7.82	9.21
3	0.11	0.58	1.01	1.42	1.87	2.37	2.95	3.66	4.64	6.25	7.81	9.84	11.34
4	0.30	1.06	1.65	2.19	2.75	3.36	4.04	4.88	5.99	7.78	9.49	11.67	13.28
5	0.55	1.61	2.34	3.00	3.66	4.35	5.13	6.06	7.29	9.24	11.07	13.39	15.09
6	0.87	2.20	3.07	3.83	4.57	5.35	6.21	7.23	8.56	10.64	12.59	15.03	16.81
7	1.24	2.83	3.82	4.67	5.49	6.35	7.28	8.38	9.80	12.02	14.07	16.62	18.48
8	1.65	3.49	4.59	5.53	6.42	7.34	8.35	9.52	11.03	13.36	15.51	18.17	20.09
9	2.09	4.17	5.38	6.39	7.36	8.34	9.41	10.66	12.24	14.68	16.92	19.68	21.67
10	2.56	4.87	6.18	7.27	8.30	9.34	10.47	11.78	13.44	15.99	18.31	21.16	23.21

Example

• First, we merge our classes to get sizes large enough

x	0-1	2	3	4	5	6	7+	Total
$O_{\mathcal{X}}$	9	14	21	19	17	11	9	100
T_{x}	9.3	15.1	20.1	19.9	15.6	10.1	9.8	100

- Then we compute $\chi^2 = \sum_{\chi} \frac{(O_{\chi} T_{\chi})^2}{T_{\chi}} = 0.45$
- We have $\nu = 7 2 = 5$ degrees of freedom
- Using the table, we can see that our fit is valid with a probability larger than 99%.

208dowels

- Goal: Compute a binomial fit for defective pieces and validate it with a χ^2 test
- Inputs: sizes of the 9 observed classes
- Outputs:
 - Frequency distribution table with observed and theoretical sizes
 - Binomial distribution used for the fit
 - Value of χ^2
 - Value of ν
 - Probability range of the fit validity

Exercise: Binomial distribution fit

• Given the observed sizes of classes and the number of total pieces per observed sample, compute n and p for the binomial distribution fit B(n,p)

Exercise: Theoretical sizes

 Given a binomial distribution fit, compute the theoretical sizes of each class

$$T_x = N \times C_n^x p^x (1-p)^{n-x}$$

Exercise: Classes merge

- Given the observed sizes of classes and a minimum size, return the list of merged classes so that each size is at least the minimum value.
- Smallest classes must be merged first

Exercise: χ^2

• Given the observed and theoretical sizes of merged classes, compute the value of χ^2

$$\chi^2 = \sum_{\chi} \frac{(O_{\chi} - T_{\chi})^2}{T_{\chi}}$$