Decision Theory: Part 2

Dr. Qiuzhuang Sun STAT3023

Minimax procedures

• Recall that for a given subset $\Theta_0 \subseteq \Theta$, a decision rule $\tilde{d}(\cdot)$ is said to be minimax (over Θ_0) if

$$\max_{\theta \in \Theta_0} E_{\theta}[L(\tilde{d}(\mathbf{X})|\theta)] \leq \max_{\theta \in \Theta_0} E_{\theta}[L(d(\mathbf{X})|\theta)]$$

for any other d.

- Such procedures can be harder to find than Bayes procedures. However, they have a certain appeal (especially when $\Theta_0 = \Theta$) since they do not require the choice of a weight function.
- Such procedures are viewed as pessimistic since they lead to the best worst-case scenario.

1

We now present two theorems (with examples; proofs provided in the advanced workshop) which show how Bayes procedures can be used as theoretical tools to find minimax procedures.

Theorem 1. Suppose that for $k=1,2,\ldots,d_k(\cdot)$ is the Bayes procedure with respect to a "**proper prior**" $w_k(\cdot)$ on Θ and loss function $L(d|\theta)$. If the procedure $\tilde{d}(\cdot)$ is such that

$$\begin{split} \max_{\theta \in \Theta_0} E_{\theta}[L(\tilde{d}(\mathbf{X})|\theta)] &\leq \lim_{k \to \infty} B_{w_k}(d_k) \\ &= \lim_{k \to \infty} \int_{\Theta} E_{\theta}[L(d_k(\mathbf{X})|\theta)] w_k(\theta) d\theta, \end{split}$$

then \tilde{d} is minimax over Θ under the loss function $L(\cdot|\theta)$.

Example: Suppose X_1,\ldots,X_n are iid $N(\theta,1)$. The decision space is $\mathcal{D}=\mathbb{R}$, and the loss is $(d-\theta)^2$. Write down the risks of \bar{X} and $d_k(\cdot)$, the Bayes procedure using $N(\mu_0,k)$ as the weight function/prior. Hence using Theorem 1, show that \bar{X} is minimax over \mathbb{R} .

Theorem 2. Suppose $d(\cdot)$ is a Bayes Procedure with respect to a loss function $L(\cdot|\theta)$ and a **proper prior** $w(\cdot)$ on Θ . Let Θ_0 denote the support of $w(\cdot)$. If

- (i) $E_{\theta}[L(d(\mathbf{X})|\theta)] = c$ (constant) for all $\theta \in \Theta_0$;
- (ii) $E_{\theta}[L(d(\mathbf{X})|\theta)] \leq c$ for all $\theta \in \Theta$,

then $d(\cdot)$ is minimax over Θ for $L(\cdot|\theta)$.

Basically, if a Bayes procedure has constant risk, it is minimax.

Example: Suppose X_1,\ldots,X_n are independent with $X_i\sim \text{Bin}(m_i,\theta)$ with known m_1,\ldots,m_n . Let $M=\sum_{i=1}^n m_i$. Based on the lecture notes last week, the Bayes procedure under the squared-error loss using a $\text{Beta}(\alpha,\beta)$ density as prior is

$$d(\mathbf{X}) = \frac{\alpha + \sum_{i=1}^{n} X_i}{\alpha + \beta + M}.$$

Based on this Bayes procedure, using Theorem 2 to find minimax procedures over [0,1].

7

- The two minimax estimators derived in the two examples above are unfortunately quite rare; not many "globally" (over the whole parameter space) minimax procedures such as these can be explicitly determined.
- We shall see through the following example that there are cases where minimax procedures are not desirable.

Consider the minimax procedure in the binomial example above:

$$\tilde{d}(\mathbf{X}) = \frac{\sum_{i=1}^{n} X_i + \frac{\sqrt{M}}{2}}{M + \sqrt{M}}$$

(also the Bayes procedure corresponding to prior $\text{Beta}(\frac{\sqrt{M}}{2},\frac{\sqrt{M}}{2})$).

In general, can we find $d(\mathbf{X})$ which minimises

$$\lim_{\substack{\mathbf{n}\to\infty}} \max_{a\leq\theta\leq b} R_{\mathbf{n}}(\theta|d)$$

for all decisions $d(\cdot)$?

Such procedures are called asymptotically minimax.

An asymptotic minimax procedure can be found with 2 steps.

(i) Determine a lower bound on

$$\lim_{n\to\infty}\max_{a\leq\theta\leq b}R_n(\theta|d)$$

for any procedure $d(\cdot)$.

(ii) Show that a given procedure attains the lower bound.

Example (interval estimation of mean of a Poisson): Suppose that $\mathbf{X} = (X_1, \dots, X_n)$ are iid Poisson (θ) for some unknown $\theta \in \Theta = (0, \infty)$. The decision space is $\mathcal{D} = (0, \infty)$; the loss function is

$$L(d|\theta) = 1\{|d-\theta| > c/\sqrt{n}\}$$

for some c > 0. Find asymptotically minimax procedures over [a, b].

Recall that $d(\cdot)$ is asymptotically minimax if it minimises

$$\lim_{n\to\infty}\max_{\theta\in[a,b]}R_{\mathbf{n}}(\theta|d)$$

- Sometimes R_n is rescaled
- Why maximum risk over an interval?

Example: Suppose $\mathbf{X} = (X_1, \dots, X_n)$ consists of iid $N(\theta, 1)$ and we want to estimate θ using the squared-error loss. Consider the following 2 estimators:

- $d_1(\mathbf{X}) = \bar{X}$;
- $d_2(\mathbf{X}) = \bar{X} \cdot 1\{|\bar{X}| > n^{-\frac{1}{4}}\} = \begin{cases} \bar{X}, & |\bar{X}| > n^{-\frac{1}{4}} \\ 0, & \text{otherwise.} \end{cases}$

In words, d_2 favors the special point $\theta=0$, if the sample mean is near 0 (i.e., $[-n^{1/4},n^{1/4}]$). We would like to compare the two estimators under different risks.

Lessons from the previous example:

- The limiting pointwise (rescaled) risk on its own may not be the best measure when comparing estimates. The limiting maximum (rescaled) risk over an interval is a better idea.
- We cannot always swap "lim" and "max".

The following theorem uses the (pointwise) limiting (rescaled) risk of certain Bayes procedures to provide a lower bound to the limiting **maximum** (rescaled) risk for any estimator.

Theorem: Suppose that for sequence $\{L_n(\cdot|\theta)\}$ of loss functions and any $\theta_0 < \theta_1$, the corresponding sequence of Bayes procedures $\{\tilde{d}_n(\cdot)\}$ based on the $\mathrm{Unif}(\theta_0,\theta_1)$ prior $w(\theta) = (\theta_1 - \theta_0)^{-1} \mathbf{1} \{\theta_0 < \theta < \theta_1\}$ is such that for each $\theta_0 < \theta < \theta_1$,

$$\lim_{n\to\infty} E_{\theta}[L_n(\tilde{d}_n(\mathbf{X})|\theta)] = S(\theta),$$

where $S(\cdot)$ is a continuous function. Then, for any other sequence of procedures $\{d_n(\cdot)\}$ and any a < b,

$$\lim_{n\to\infty} \max_{a\leq\theta\leq b} E_{\theta}[L_n(d_n(\mathbf{X})|\theta)] \geq \max_{a\leq\theta\leq b} S(\theta).$$

Example (interval estimation of mean of a Poisson continued): Suppose that $\mathbf{X}=(X_1,\ldots,X_n)$ are iid Poisson (θ) for some unknown $\theta\in\Theta=(0,\infty)$. The decision space is $\mathcal{D}=(0,\infty)$; the loss function is $L(d|\theta)=1\{|d-\theta|>c/\sqrt{n}\}$ for some c>0. Find asymptotically minimax procedures over [a,b].

Recall we have claimed that when $d(\mathbf{X})=\bar{X}$ (i.e., the interval estimator is $\bar{X}\pm\frac{c}{\sqrt{n}}$),

$$\lim_{n\to\infty} \max_{a\leq\theta\leq b} R_n(\theta|\bar{X}) \leq 2\left(1-\Phi\left(\frac{c}{\sqrt{b}}\right)\right).$$

We now show that (i) the above is an equality; (ii) it is indeed a lower bound on $\lim_{n\to\infty} \max_{a\leq\theta\leq b} R_n(\theta|d)$, and hence show $d(\mathbf{X})=\bar{X}$ is asymptotically minimax over [a,b].