A Practical Guide for SystemVerilog Assertions

A Practical Guide for SystemVerilog Assertions

by

Srikanth Vijayaraghavan

Meyyappan Ramanathan

Srikanth Vijayaraghavan & Meyyappan Ramanthan Synopsys, Inc. Mountan View, CA USA

A Practical Guide for SystemVerilog Assertions

Library of Congress Control Number: 2005049012

ISBN 0-387-26049-8 e-ISBN 0-387-26173-7 ISBN 9780387260495

Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

98765432

springer.com

Dedication

Srikanth Vijayaraghavan Synopsys, California

To my wife, Devi, and my children, Parvathi and Aravind – thank you for your patience during the long hours spent in completing the book.

Meyyappan Ramanathan Synopsys, California

Table of Contents

LIST	Γ OF FIGURES	XIII
LIST	T OF TABLES	XIX
FOF	REWORD	XXI
PRE	FACE	XXIII
CHA	APTER 0: ASSERTION BASED VERIFICATION	1
CHA	APTER 1: INTRODUCTION TO SVA	7
1.1	What is an Assertion?	7
1.2	Why use SystemVerilog Assertions (SVA)?	8
1.3	SystemVerilog Scheduling	10
1.4	SVA Terminology	11
1.4	Concurrent assertions	11
1.4	Immediate assertions	12
1.5	Building blocks of SVA	13
1.6	A simple sequence	14
1.7	Sequence with edge definitions	16
1.8	Sequence with logical relationship	17
1.9	Sequence Expressions	18
1.10	Sequences with timing relationship	19
1.11	Clock definitions in SVA	21
1.12	Forbidding a property	22
1.13	A simple action block	24
1.14	Implication operator	24
1.1	4.1 Overlapped implication	25
1.1	14.2 Non-overlapped implication	26
1.1	4.3 Implication with a fixed delay on the consequent	27
1.1	4.4 Implication with a sequence as an antecedent	29
1.15	Timing windows in SVA Checkers	30
1.1	15.1 Overlapping timing window	33
1.1	15.2 Indefinite timing window	33
1.16	The "ended" construct	35

1.17	SVA Checker using parameters	39
1.18	SVA Checker using a select operator	40
1.19	SVA Checker using `true expression	41
1.20	The "\$past" construct	43
1.20.1	The \$past construct with clock gating	45
1.21	Repetition operators	45
1.21.1	Consecutive repetition operator [*]	47
1.21.2	Consecutive repetition operator [*] on a sequence	48
1.21.3	Consecutive repetition operator [*] on a sequence with a delay	
	window	50
1.21.4	, , , , , , , , , , , , , , , , , , , ,	51
1.21.5	Go to repetition operator [->]	53
1.21.6	Non-consecutive repetition operator [=]	54
1.22	The "and" construct	56
1.23	The "intersect" construct	58
1.24	The "or" construct	61
1.25	The "first_match" construct	63
1.26	The "throughout" construct	64
1.27	The "within" construct	66
1.28	Built-in system functions	67
1.29	The "disable iff" construct	69
1.30	Using "intersect" to control length of the sequence	70
1.31	Using formal arguments in a property	72
1.32	Nested implication	74
1.33	Using if/else with implication	76
1.34	Multiple clock definitions in SVA	77
1.35	The "matched" construct	79
1.36	The "expect" construct	80
1.37	SVA using local variables	81
1.38	SVA calling subroutine on a sequence match	84
1.39	Connecting SVA to the design	86
1.40	SVA for functional coverage	88
CHAP	TER 2: SVA SIMULATION METHODOLOGY	89
2.1	A sample system under verification	89
2.1.1	The Master device	89
2.1.2	The Mediator	92
2.1.3	The Target device	94
2.2	Block level verification	96
2.2.1	SVA in design blocks	96
2.2.2	Arbiter verification	97

A PRACTICAL GUIDE FOR s	systemverilog assertions
-------------------------	--------------------------

2.2.3	SVA Checks for arbiter in simulation	98
2.2.4	Master verification	100
2.2.5	SVA Checks for the master in simulation	102
2.2.6	Glue verification	105
2.2.7	SVA Checks for the glue logic in simulation	107
2.2.8	Target verification	109
2.2.9	SVA Checks for the target in simulation	111
2.3	System level verification	113
2.3.1	SVA Checks for system level verification	114
2.4 F	unctional coverage	120
2.4.1	Coverage plan for the sample system	121
2.4.	1.1 Request Scenario	121
2.4.	1.2 Master to Target transactions	124
2.4.	1.3 Advanced coverage options	129
2.4.2	Functional coverage summary	129
2.5 S	VA for transaction log creation	130
2.6 S	VA for FPGA Prototyping	133
2.7 S	Summary on SVA simulation methodologies	137
CHAP	TER 3: SVA FOR FINITE STATE MACHINES	139
3.1 S	ample Design – FSM1	140
3.1.1	Functional description of FSM1	140
3.1.2	SVA Checkers for FSM1	145
3.2	Sample Design – FSM2	150
3.2.1	Functional description of FSM2	150
3.2.2	SVA Checkers for FSM2	155
3.2.3	FSM2 with a timing window protocol	163
3.3 S	Summary on SVA for FSM	166
CHAP	TER 4: SVA FOR DATA INTENSIVE DESIGNS	167
4.1	A simple multiplier check	167
	Sample Design – Arithmetic unit	169
4.2.1	WHT Algorithm	169
4.2.2	WHT Hardware implementation	170
4.2.3	SVA Checker for WHT block	171
4.3	Sample Design – A JPEG based data path design	174
4.3.1	A closer look at the individual modules	175
4.3.2	SVA Checkers for the JPEG design	179
4.3.3	Data checking for the JPEG model	184
4.4	Summary for data intensive designs	190

ìx

CHAPTER 5: SVA FOR MEMORIES	191
5.1 Sample System – Memory controller	191
5.1.1 CPU – AHB Interface Operation	191
5.1.2 Memory controller operation	194
5.2 SDRAM Verification	198
5.2.1 SDRAM Assertions	203
5.3 SRAM/FLASH Verification	220
5.3.1 SRAM/FLASH Assertions	221
5.4 DDR-SDRAM Verification	229
5.4.1 DDR-SDRAM Assertions	229
5.5 Summary on SVA for Memories	231
CHAPTER 6: SVA FOR PROTOCOL INTERFACE	233
6.1 PCI – A Brief Introduction	234
6.1.1 A sample PCI Read transaction	236
6.1.2 A sample PCI Write transaction	237
6.2 A sample PCI System	238
6.3 Scenario 1 – Master DUT Device	239
6.3.1 PCI Master assertions	240
6.4 Scenario 2 – Target DUT Device	260
6.4.1 PCI Target assertions	261
6.5 Scenario 3 – System level assertions	279
6.5.1 PCI Arbiter assertions	279
6.6 Summary on SVA for standard protocol	283
CHAPTER 7: CHECKING THE CHECKER	285
7.1 Assertion Verification	286
7.2 Assertion Test Bench (ATB) for SVA with two signals	288
7.2.1 Logical relationship between two signals	288
7.2.2 Stimulus generation for logical relationship – Level sensitive	290
7.2.3 Stimulus generation for logical relationship – Edge sensitive	293
7.2.4 Timing relationship between two signals	296
7.2.5 Stimulus generation for timing relationship	297
7.2.6 Repetition relationship between two signals	307
7.2.7 Environment for ATB involving two signals	311
7.3 ATB example for a PCI Checker	323
7.4 Summary for checking the checker	327

A PRACTICAL GUIDE FOR systemverilog assertions	xi
REFERENCES	329
INDEX	333

List of Figures

Chapter 0: Assertion Based Verification

Figure 0-1. Before Assertion based verification	2
Figure 0-2. After SystemVerilog assertions	4
Chapter 1: Introduction to SVA	
Figure 1-1. Waveform for sample assertion	9
Figure 1-2. Simplified SV event schedule flow chart	11
Figure 1-3. Waveform for a sample concurrent assertion	12
Figure 1-4. Waveform for a sample immediate assertion	13
Figure 1-5. SVA Building blocks	14
Figure 1-6. Waveform for simple sequence s1	15
Figure 1-7. Waveform for simple sequence with edge definition	17
Figure 1-8. Waveform for sequence s3	18
Figure 1-9. Waveform for sequence s4	19
Figure 1-10. Waveform of SVA checker forbidding a property	23
Figure 1-11. Waveform for property p8	26
Figure 1-12. Waveform for property p9	27
Figure 1-13. Waveform for property p10	28
Figure 1-14. Waveform for property p11	30
Figure 1-15. Waveform for property p12	31
Figure 1-16. Waveform for property p13	33
Figure 1-17. Waveform for property p14	34
Figure 1-18. Waveform for SVA checker using "ended"	37
Figure 1-19. Waveform for SVA checker with parameters	40
Figure 1-20. Waveform for SVA checker using select operator	40
Figure 1-21. Waveform for SVA checker using 'true expression	43
Figure 1-22. Waveform for SVA checker using "\$past" construct	44
Figure 1-23. Waveform for SVA checker using consecutive repeat	48
Figure 1-24. Waveform for SVA checker using consecutive repeat on a sequence	49
Figure 1-25. Waveform for SVA checker using consecutive repeat on a sequence	
with window of delay	51
Figure 1-26. Waveform for SVA checker using consecutive repeat	
and eventuality	53
Figure 1-27. Waveform for SVA checker using go to repetition operator	54
Figure 1-28. Waveform for SVA checker using non-consecutive	
repetition operator	55
Figure 1-29. Waveform for SVA checker using "and" construct	57

Figure 1-30. Waveform for SVA checker using "intersect" construct	59
Figure 1-31. Waveform for SVA checker using "or" construct	62
Figure 1-32. Waveform for SVA checker using "first_match" construct	64
Figure 1-33. Waveform for SVA checker using "throughout" construct	65
Figure 1-34. Waveform for SVA checker using "within" construct	67
Figure 1-35. Waveform for SVA checker using built-in system functions	68
Figure 1-36. Waveform for SVA checker using "disable iff" construct	70
Figure 1-37. Waveform for SVA checker using intersect to control the	
length of the sequence	71
Figure 1-38. Waveform for SVA checker using formal arguments in a property	73
Figure 1-39. SVA checker with nested implication	75
Figure 1-40. SVA checker using "matched" construct	80
Figure 1-41. Waveform for SVA with local variables	82
Figure 1-42. SVA with local variable assignment	83
Figure 1-43. SVA using subroutines on sequence match	85
Chapter 2: SVA Simulation Methodology	
Figure 2-1. A sample system	90
Figure 2-2. Sample master device	91
Figure 2-3. Write transaction of aaster device	91
Figure 2-4. Sample read transaction of a master device	92
Figure 2-5. Sample mediator device	93
Figure 2-6. Waveform for mediator functionality	94
Figure 2-7. Sample target device	95
Figure 2-8. Target write transaction	95
Figure 2-9. Target read transaction	96
Figure 2-10. Arbiter checks in simulation	100
Figure 2-11. Master checks in simulation for target 1	104
Figure 2-12. Glue checks in simulation	109
Figure 2-13. Target checks in simulation	113
Figure 2-14. FPGA Prototyping	134
Chapter 3: SVA for Finite State Machines	
Figure 3-1. Bubble diagram for FSM1	141
Figure 3-2. Waveform A for FSM1	145
Figure 3-3. Waveform B for FSM1	145
Figure 3-4. Waveform for FSM1_chk2	147
Figure 3-5. Waveform for FSM1_chk3	148
Figure 3-6. Waveform for FSM1_chk4	149
Figure 3-7. Bubble diagram for FSM2	151

A PRACTICAL GUIDE FOR systemverilog assertions	xv
Figure 3-8. Waveform for FSM2	155
	157
=	159
-	160
-	161
Figure 3-8. Waveform for FSM2 Figure 3-9. Waveform for FSM2_chk2 Figure 3-10. Waveform for FSM2_chk3 Figure 3-11. Waveform for FSM2_chk4 Figure 3-12. Waveform for FSM2_chk5 Figure 3-13. Waveform for window check Chapter 4: SVA for Data Intensive Designs Figure 4-1. Waveform for Multiplier checker Figure 4-2. WHT hardware block diagram Figure 4-3. WHT checker configuration Figure 4-4. Waveform for WHT checker Figure 4-5. Block diagram of JPEG model Figure 4-6. Data feeder block diagram Figure 4-7. Waveform for Data feeder module Figure 4-8. Block diagram showing details of the pipeline Figure 4-9. Waveform for pipeline control Figure 4-10. Block diagram for data control block Figure 4-11. Waveform for JPEG_chk1 Figure 4-13. Waveform for JPEG_chk2 Figure 4-14. Waveform for JPEG_chk5 Figure 4-15. Waveform for JPEG_chk5 Figure 4-16. Waveform for JPEG_chk5 Figure 4-17. Golden output from C model Figure 4-18. Dynamic Pipeline checker Chapter 5: SVA for Memories Figure 5-1. System block diagram Figure 5-2. CPU block diagram Figure 5-3. CPU-AHB write Figure 5-5. Memory Controller block diagram Figure 5-6. SDRAM write operation Figure 5-7. SDRAM read operation Figure 5-8. SRAM interface signals	164
Chapter 4: SVA for Data Intensive Designs	
Figure 4-1. Waveform for Multiplier checker	169
•	171
-	172
	174
-	175
Figure 4-6. Data feeder block diagram	176
· ·	176
_	177
	177
	178
Figure 4-11. Waveform for control block	179
Figure 4-12. Waveform for JPEG_chk1	180
Figure 4-13. Waveform for JPEG_chk2	181
Figure 4-14. Waveform for JPEG chk3	182
Figure 4-15. Waveform for JPEG chk5	184
	184
-	186
Figure 4-18. Dynamic Pipeline checker	186
Chapter 5: SVA for Memories	
Figure 5-1. System block diagram	192
Figure 5-2. CPU block diagram	193
Figure 5-3. CPU-AHB write	194
Figure 5-4. CPU-AHB read	194
Figure 5-5. Memory Controller block diagram	195
Figure 5-6. SDRAM write operation	196
Figure 5-7. SDRAM read operation	196
Figure 5-8. SRAM interface signals	198
Figure 5-9. Flash interface signals	198
Figure 5-10. Load Mode Register/Active command	199
Figure 5-11. SDRAM read/write	200
Figure 5-12. Precharge / Auto-refresh	201

Figure 5-13. SDRAM operation flow chart	202
Figure 5-14. Load mode register to Active command, tMRD	205
Figure 5-15. SDRAM read with tCAS latency	206
Figure 5-16. Active to Read/Write command, tRCD	207
Figure 5-17. Active to Active command, tRC	208
Figure 5-18. Auto-refresh to Auto-refresh command, tRFC	209
Figure 5-19. Precharge to Active command, tRP	211
Figure 5-20. Disabling Auto-precharge	213
Figure 5-21. 128-bit data transfer	215
Figure 5-22. 64-bit data transfer	216
Figure 5-23. Burst write to Burst terminate command	218
Figure 5-24. Read to Burst terminate	219
Figure 5-25. Write terminated by a Read command	220
Figure 5-26. Write cycle time, tWC	222
Figure 5-27. Write pulse width, tWP	223
Figure 5-28. Read cycle time, tRC	224
Figure 5-29. Chip select to valid data, tCO	225
Figure 5-30. Valid address to Valid data, tAA	225
Figure 5-31. Flash waveform for tELQV, tAPA, tAVAV	227
Figure 5-32. Flash waveform for tAPA	228
Figure 5-33. DDR-SDRAM Burst read operation	230
Figure 5-34. DDR-SDRAM Burst write operation	231
Chapter 6: SVA for Protocol Interface	
Figure 6-1. PCI compliant device	234
Figure 6-2. Sample PCI read transaction	237
Figure 6-3. Sample PCI write transaction	238
Figure 6-4. Sample PCI system	239
Figure 6-5. Sample configuration for PCI Master device as the DUT	240
Figure 6-6. PCI Master check1	241
Figure 6-7. PCI Master check2	242
Figure 6-8. PCI Master check3	244
Figure 6-9. PCI Master check6	246
Figure 6-10. PCI Master check7	247
Figure 6-11. PCI Master check8	249
Figure 6-12. PCI Master check9	250
Figure 6-13. PCI Master check10	252
Figure 6-14. PCI Master check11	253
Figure 6-15. PCI Master check13	255
Figure 6-16. PCI Master check14	256
Figure 6-17. PCI Master check15	257

A PRACTICAL GUIDE FOR system verilog assertions	xvii
Figure 6-18. PCI Master check 16/17	259
Figure 6-19. Sample configuration for PCI Target device as DUT	261
Figure 6-20. PCI Target check1	262
Figure 6-21. PCI Target check 5b	264
Figure 6-22. PCI Target check6_1	266
Figure 6-23. PCI Target check7	267
Figure 6-24. PCI Target check8	268
Figure 6-25. PCI Target check9	271
Figure 6-26. PCI Target check10	273
Figure 6-27. PCI Target check11	274
Figure 6-28. PCI Target check12	276
Figure 6-29. PCI Target check13	277
Figure 6-30. Sample PCI System for Arbiter checks	279
Figure 6-31. PCI Arbiter checks 1,2,3	280
Figure 6-32. PCI Arbiter checks 4,5,6	282
Chapter 7: Checking the Checker	
Figure 7-1. Typical simulation configuration	286
Figure 7-2. Assertion relationship	287
Figure 7-3. Logical relationship tree for SVA with two signals	289
Figure 7-4. Waveform for logical relation between two level sensitive	
signals	292
Figure 7-5. Logical condition on edge based signals - FF, FR	295
Figure 7-6. Logical condition on edge based signals - RR, RF	296
Figure 7-7. Timing relationship tree	297
Figure 7-8. Timing (fixed) between two level sensitive signals	307
Figure 7-9. Timing (variable) between two edge sensitive signals	307
Figure 7-11. Waveform for "repeat until" condition	311
Figure 7-10. Waveform for "repeat after" condition	311
Figure 7-12. ATB Environment	312
Figure 7-13. PCI Checker verification	326

List of Tables

Chapter 0: Assertion Based Verification

Table 0-1. New verification environment	5
Chapter 1: Introduction to SVA	
Table 1-1. Evaluation table for sequence s1	15
Table 1-2. Evaluation table for sequence s2	17
Table 1-3. Evaluation table for sequence s4	20
Table 1-4. Evaluation table for property p6	23
Table 1-5. Evaluation table for property p8	26
Table 1-6. Evaluation table for property p9	27
Table 1-7. Evaluation table for property p10	28
Table 1-8. Evaluation table for property p12	32
Table 1-9. Evaluation table for property p14	34
Table 1-10. Evaluation table for SVA checker using "ended"	38
Table 1-11. Evaluation table for SVA checker using select operator	41
Table 1-12. Evaluation table for SVA checker using "\$past" construct	44
Table 1-13. Evaluation table for SVA checker using "and" construct	57
Table 1-14. Evaluation table for SVA checker using "intersect" construct	60
Table 1-15. Evaluation table for SVA checker using "or" construct	62
Table 1-16. Evaluation table for SVA checker using built-in functions	69
Table 1-17. Evaluation table for SVA checker using intersect operator to	
control the length of the sequence	72
Chapter 2: SVA Simulation Methodology	
Table 2-1. Master request scenarios	121
Table 2-2. Master to target transactions	124
Chapter 3: SVA for Finite State Machines	
Table 3-1. Matrix diagram for FSM2 state transition	156
Chapter 5: SVA for Memories	
Table 5-1. SDRAM Commands	200
Table 5-2. Timing parameters for SDRAM	204
Table 5-3. Timing parameters for SRAM	221

XX	A PRACTICAL GUIDE FOR system	nveriiog assertions
Table 5-4. Timing par	ameters for Flash memory	221
Chapter 6: SVA fo	r Protocol Interface	
Table 6-1. PCI Bus co	mmands	235
Table 6-2. Target later	ncy table	269
Chapter 7: Checking	ng the Checker	
Table 7-1. Parameter	definitions	312
Table 7-2. Logical conditions for PCI check		325

Foreword

by Ira Chayut, Verification Architect Nvidia Corporation

When Gateway Design Automation, Inc. created Verilog in the mid-1980's, the process of integrated circuit design was very different than it is today. The role of Verilog, as well as its capability, has evolved since its inception into today's SystemVerilog.

The task of ASIC Functional Verification is becoming increasingly difficult. How difficult is a matter of conjecture and argument. In 2001, Andreas Bechtolsheim, Cicso Systems engineering vice president, was quoted in *EE Times* with one of the higher estimates:

Design verification still consumes 80 percent of the overall chip development time¹

In contrast, an *EE Times* poll that was taken in 2004 of 662 professionals at the Design Automation Conference placed functional verification as 22 percent of the integrated design process².

The gap between 22 percent and 80 percent is indicative of how vague the delineation between verification and the other "stages" of integrated circuit design and development. Many "verification" efforts are implemented by the design engineers themselves, but are still part of the verification process and can benefit from the same tools that assist dedicated verification professionals.

Regardless of the actual percentage (assuming that it could be accurately measured), Functional Verification of an integrated circuit design is a significant fraction of the total effort. Verification is also a critical step to shippable first silicon. Even as the costs of the masks run over \$1 million, that figure can be dwarfed by the lost-opportunity of the weeks it takes for each re-spin. Any tools that can reduce the cost of verification and increase the probability of shipping early silicon should be adopted aggressively.

¹ http://www.eedesign.com/article/printableArticle.jhtml?articleID=17407503

² http://www.eetimes.com/showArticle.jhtml?articleID=21700028

While assertions have been a part of software development for many years, Assertion-Based Verification (ABV) has recently become popular. In some ways, this is odd, as the process of hardware specification has become more similar to software design. However, the properties that we wish to declare and assert in a hardware design are fundamentally different than those in the software world.

The difference between hardware and software programming models is *time*. Hardware languages, such as Verilog, have mechanisms to represent the passage of time and procedural programming languages (C, C++, Java, etc.) do not. So, it is not surprising that the software methods of specifying assertions did not have a way of incorporating time.

SystemVerilog, the most recent descendent of Gateway's Verilog, includes SystemVerilog Assertions (SVA) – a set of tools to allow engineers to include ABV into their designs. SVA has a rich syntax to support time within sequences, properties, and (ultimately) assertions.

With SVA, design and verification engineers can encode the intended behavior of hardware designs and can create thorough checks for bus protocols. These (relatively) terse descriptions can be used in simulation, in formal verification, and as additional documentation for the design.

It is clear that SVA will have a major impact on how integrated circuits are designed and verified. To benefit from this impact, you need to learn the syntax of SVA and how to apply it to your own design. This book can help you learn and apply SVA. It uses examples, including the PCI bus protocol, to illustrate how to write SVA and their simulation results.

The detailed examples of the SVA language within this book are very helpful to understanding the concepts and syntax of time-based assertions. They make the book what it is and are essential in all SystemVerilog design and verification engineers' library.

As a final note, Stevie, my daughter, claims that no one ever reads the foreward of books. If you did take the time to read this, please let her know by sending her a brief e-mail at: steviechayut@gmail.com.

Thanks Ira

Preface

It was the middle of the year 2002 and we received an email from our manager. It said, "Who would like to pick up the support for OVA?" Our first thoughts were "what the heck is OVA?" After talking to a few other engineers, we figured out that it was a subset of "open VERA language." OVA stands for "Open VERA Assertions" and it is a declarative language that can describe temporal conditions. As always, to satisfy our technical thirst, we agreed to pick up the support for OVA. We learned the language in a couple of months and started training customers, training around 200 customers in less than 6 months. The way customers were flooding the class rooms really impressed us. We were convinced that this is the next best thing in verification domain. While customers were getting trained in a hurry, they were not developing any OVA code. This was a new dimension of verification technique and the language was new. The tools were just starting to support these language constructs. There was not much intellectual property (IP) available. Naturally, customers were not as comfortable as we thought they should be.

In the meantime, Synopsys Inc. had donated the Open VERA language to the Accellera committee to be part of the SystemVerilog language. Several other companies made contributions for the formation of the new SystemVerilog language. The Accellera committee SystemVerilog 3.1 language as a standard at DAC 2004. The SystemVerilog language included the assertion language as part of the standard. This is commonly referred to as "SystemVerilog Assertions" (SVA). We continued in the path of training customers in Assertion based verification, only now we were teaching SVA. We could see clearly that customers were more comfortable with the pre-developed assertion libraries, but they were reluctant to write custom assertion code. What could be holding them back? Was it the tools? No, the tools were ready. Was it the language? Maybe, but it is a standard now, so that wasn't necessarily the case.

After a few lengthy discussions, we realized that the lack of examples to demonstrate SVA language constructs could be holding back customers from using this new technology. The lack of expertise typically contributes to slow adoption. This is when we thought an SVA cookbook might help—a book of examples, a book that could act as a tutorial, a book that could teach the language. And that is how this project started. We have made an effort to write what we learned from teaching this subject for the past two years.

While there is much more to learn in this area, this is just an effort to share what we have learned.

How to read this book.

This book is written in a way such that engineers can get up to speed with SystemVerilog assertions quickly.

Chapters 0, 1 and 2 are sufficient to learn the basics of the syntax and some of the common simulation techniques. After reading these three chapters, the user should be able to write assertions for their design/verification environment.

Chapter 3, 4, 5 and 6 are cookbooks for different types of designs. A user can refer to these chapters if they come across similar designs in their own environment and use these chapters as a starting point for writing assertions. These chapters can also be used as a tutorial.

If you are someone new to assertion based verification, you need to read chapters 0 through 2 before reading the other chapters. If you are familiar with SVA language, you can refer to these chapters on an as needed basis.

- Chapter 0 This is a white paper on "Assertion based verification (ABV)" methodology. It introduces the concept of ABV and the importance of function coverage.
- Chapter 1 Discusses SVA syntax with simple examples and goes through a detailed analysis of the execution of SVA constructs in dynamic simulation. Simulation waveforms and event tables are included for the reader's reference. To know the details of every SVA construct, the user should refer to the SystemVerilog 3.1 a LRM (Chapter 17).
- Chapter 2 Uses a system example to illustrate SVA simulation methodology. Topics cover protocol extraction, simulation control and functional coverage.
- Chapter 3 Illustrates how to verify FSMs with SVA, uses two different FSM models as examples.
- Chapter 4 Illustrates verification of a data path using SVA. A partial JPEG design is used to demonstrate verification of both control signals and data using SVA.

Chapter 5 – Illustrates verification of a memory controller using SVA. The controller supports different types of memories such as SDRAM, SRAM, Flash, etc.

Chapter 6 – Illustrates verification of a PCI local bus based system using SVA. A sample PCI system configuration is used and various PCI protocols are verified using SVA.

Chapter 7 – Illustrates a sample testbench for verifying the assertions. It also discusses the theory behind verifying the accuracy of an assertion.

A CD-ROM is included with the book. All the examples shown in the book can be run with VCS 2005.06 release. Sample scripts to run the examples are included. VCS is a registered trademark of Synopsys Inc.

Acknowledgements

The authors would like to convey their sincere thanks to the following individuals that have contributed immensely for the completion of this book.

Anupama Srinivasa, DSP Solutions Architect, AccelChip, Inc. Jim Kjellsen, Staff Applications Consultant, Synopsys, Inc. Juliet Runhaar, Senior Applications Consultant, Synopsys, Inc.

We would also like to thank the following individuals for reviewing the book and providing several constructive suggestions:

Ira Chayut, Bohran Roohipour, Irwan Sie, Ravindra Viswanath, Parag Bhatt, Derrick Lin, Anders Berglund, Steve Smith, Martin Michael, Jayne Scheckla, Rakesh Cheerla, Satish Iyengar

Useful Web links

<u>www.systemVerilogforall.com</u> – Page maintained by us that provides tips, examples and discussions on SystemVerilog language.

<u>www.accellera.org</u> – Official website of Accellera committee. The SystemVerilog LRM can be downloaded from this site. There are also several other useful papers and presentations on the latest standards.