

Universidade de Brasília Faculdade do Gama

Matemática Discreta 2

Prof. Dr. Glauco Vitor Pedrosa

- É um método matemático utilizado para demonstrar a verdade de proposições
- Exemplo:

A soma dos n primeiros números naturais é dado por:

$$1 + 2 + 3 + ... + n = \frac{n \cdot (n+1)}{2}$$

O conjunto dos números naturais é infinito. Então, o teorema acima precisa ser verdade para qualquer valor de n. Como provar isso?

 A prova por Indução Matemática é dividida em dois passos:

Passo base:

Provar que a proposição é válida para um valor pequeno

Passo Indutivo:

- Assumir que a proposição é válida para o valor n
- Mostrar que a proposição continua válida para o valor n+1

Vamos provar por indução finita o seguinte teorema:

$$1 + 2 + 3 + ... + n = \frac{n.(n+1)}{2}$$

- Passo base:
 - Para n = 1, temos:

$$1 = \frac{1.(1+1)}{2} = 1$$

O passo base é verdadeiro, então podemos prosseguir para o passo indutivo

Vamos provar por indução finita o seguinte teorema:

$$1 + 2 + 3 + ... + n = \frac{n \cdot (n+1)}{2}$$

Passo indutivo:

- Vamos assumir que o teorema acima é verdade para um valor n
- Devemos provar que o teorema acima continua verdadeiro para um valor n+1
- Para um valor n+1 temos a seguinte expressão:

$$1 + 2 + 3 + ... + n + (n+1) = \frac{(n+1).((n+1)+1)}{2}$$

Será que isso é verdade?

Demonstrar as seguintes proposições

a)
$$1+3+5+...+(2n-1)=n^2$$
, para $n \ge 1$

b)
$$2+4+6+....+2n = n(n+1)$$
, para $n \ge 1$

c)
$$2 + 6 + 10 + ... + (4n-2) = n^2$$
, para $n \ge 1$

d)
$$\sum_{i=1}^{n-1} i(i+1) = \frac{n(n-1)(n+1)}{3}, \forall \text{ inteiros } n \geq 2$$

- e) $n < 2^n$ para $n \ge 1$
- f) $n^2 > (n+1) \text{ para } n \ge 2$
- g) $n^2 < 2^n$ para $n \ge 5$
- h) (n-1)! < n! para $n \ge 2$

Prove por indução matemática que

$$n < 2^n$$
 para $n \ge 1$

Passo base

Para n = 1, temos que:

$$1 < 2^{1}$$

Temos que o passo base é verdadeiro, logo podemos prosseguir com o passo indutivo

Prove por indução matemática que

$$n < 2^n$$
 para $n \ge 1$

Passo indutivo

- Assumimos que a expressão é verdadeira para n, ou seja, $n < 2^n$
- Devemos mostrar que a expressão continua verdadeira para (n+1):

$$(n+1) < 2^{n+1}$$

 $(n+1) < 2^n + 2^n$

Anteriormente, assumimos como verdade a seguinte expressão ${\bf n}<{\bf 2^n}$. Se multiplicarmos por 2 em ambos os lados temos:

$$n.2 < 2^n.2$$

 $n+n < 2^n+2^n$

Logo, temos que $n+1 < n+n < 2^n + 2^n$

Temos que a expressão é válida.

Prove por indução matemática que

$$n^2 > (n+1)$$
 para $n \ge 2$

Passo base

Para n = 2, temos que:

$$2^2 > (2+1)$$

 $4 > 3$

Temos que o passo base é verdadeiro, logo podemos prosseguir com o passo indutivo

Prove por indução matemática que

$$n^2 > (n+1)$$
 para $n \ge 2$

Passo indutivo

- Assumimos que a expressão é verdadeira para n, ou seja, n² > (n+1)
- Devemos mostrar que a expressão continua verdadeira para (n+1):

$$(n+1)^2 > ((n+1)+1)$$

 $n^2+2n+1 > (n+2)$

Anteriormente, assumimos como verdade a seguinte expressão n² > (n+1). Se somarmos +1 em ambos os lados temos:

$$n^2+1 > (n+1)+1$$

 $n^2+1 > n+2$

Logo, temos que $n^2+2n+1 > n^2+1 > n+2$

Temos que a expressão é válida.

Prove por indução matemática que

$$n^2 < 2^n$$
 para $n \ge 5$

Passo base

Para n = 5, temos que:

$$5^2 < 2^5$$

Temos que o passo base é verdadeiro, logo podemos prosseguir com o passo indutivo

Prove por indução matemática que

$$n^2 < 2^n$$
 para $n \ge 5$

Passo indutivo

- Assumimos que a expressão é verdadeira para n, ou seja, $n^2 < 2^n$
- Devemos mostrar que a expressão continua verdadeira para (n+1):

$$(n+1)^2 < 2^{n+1}$$

 $n^2+2n+1 < 2^n + 2^n$

Anteriormente, assumimos como verdade a seguinte expressão $n^2 < 2^n$. Se somarmos 2^n em ambos os lados temos:

$$n^2 + 2^n < 2^n + 2^n$$

Logo, temos que $n^2+2n+1 < n^2 + 2^n < 2^n + 2^n$ Temos que a expressão é válida.

Seja a sequência $a_1, a_2, a_3,, a_n$ definida por:

$$a_1 = 3$$

 $a_i = 7. a_{i-1}$

Prove, por indução matemática, que $a_n = 3.7^{n-1}$

Seja a sequência $a_1, a_2, a_3,, a_n$ definida recursivamente por:

$$a_0 = 1$$

$$a_i = 2. a_{i-1}$$

Ache a fórmula fechada para o i-ésimo termo e prove por indução matemática

Prove por indução matemática que, para todo número inteiro n > 0, então $(3^n - 2)$ é um número ímpar.

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para n = 1, 3¹ − 2 = 1 é impar. O passo base é verdadeiro.
- (b) Passo indutivo: se a afirmação é verdadeira para n = k, k ≥ 1 então deve ser verdadeira para n = k+1.
 - Hipótese indutiva: ∀k ≥ 1,3^k − 2 é ímpar.
 - Deve-se mostrar que: 3^{k+1} − 2 é ímpar.

Sabe-se que: $3^{k+1} - 2 = 3 \cdot 3^k - 2 = 3 \cdot 3^k - 6 + 4 = 3(3^k - 2) + 4$.

Pela hipótese indutiva $3^k - 2$ é um número ímpar que quando multiplicado por 3 e somado com 4 continua sendo um número ímpar.

Prove por indução matemática que: $n! > 3^n$, para n > 6

Encontre a fórmula fechada do seguinte somatório e prove por indução:

$$1 + 2 + 4 + 8 + \dots + 2^n$$