convex if the upper contour set $uc(x) = \{y \in X: y \geq x \}$ is convex. xy+ (1-x) z > x , 4 x € [0, 1] uc(x) Concave Strictly convex Interpretation of convexity: Dinningsling marginal rate of substitution (slope becomes ence for diversition (Average bundle over extremes) (pt w)

Example: Lexicographic Profuences
Example: Lexicographic frequences $X = IR^{2} + 1$ Define $\Rightarrow as$ follows: $x > y$ if either: $x > y$
Define > as follows: x > y if either:
(i) 2, > y,
(2) N=4, B X2 > 42
≥ is: complete transitive
strongly monotone
spictly convex
suaunifna de ≤
b
$x'' = \left(\frac{1}{n}, 0\right) \qquad x'' = \left(0, 1\right) \neq n$
$x^n > y^n + y$
$x = \lim_{n \to \infty} x^n = (0, 0)$
$y = \lim_{n \to \infty} y^n = (0,1)$ (-limit jumps)
and so y > x.

	Mility Functions:
	A preference relation \Rightarrow is represented by a whility function $u: X \to R$ if $\forall x, y$ $x \ge y \iff u(x) \ge u(y)$
	Utility f' are not unique.
	Let $g: R \to R$ be any emitty increasing f^n Define $\hat{u}(x) = g(u(x))$
	$\tilde{u}(n) > \tilde{u}(y) \iff u(x) > u(y) \Leftrightarrow \underset{\sim}{\times} > y$
	ü(n) also represents z
9	When can we find a utility for to represent \geq ?
	Theorem: \geq can be represented by a utility f^h only if it is rational.
	Proof: Homework (Irrational - transitivity - can't come up with white pn): Is the following true?
Harder &	: Is the following true?
	Theorem " : If \geq is ordional, then I a utility. In representing it.

	(rabonal,)
Example	for lexicographic prefs, indifférence sets are singletons
	No indifference curves. They are just pit. more utility
	Sufficient conditions for a utility representation:
00	Finitenes of x is finite, I exist a utility representation.
2	Continuity A >
	Theorem: If preferences are rational b continuous, then I exists a utility for that represents them. Furthermore, I exists - continuous u() that represents them.
	Proof: Chow for use that > & strongly monotone. Idea: (1) Construct a Condidates " u(c) 2) Check it works

	last step: Show proposed u(.) represents >
	$u(y) > u(n) \Rightarrow y \approx x$
2	$y \geq n \Rightarrow u(y) > u(n)$
	For (1):
	ty > tx (def n 1 u) tye > txe (monotonocity)
	y~tye > txe~x (def of t) y > n (transitivity)
	For (2): Take y >> e
	(tye) ~y = x~(txe) (def " ft)
	tye > txe (transibinity) ty > tx (monotonocity)
	u(y) > u(x) (def of u)
_	Also true that a continuous u(.) exists
_	Justher conditions on & that quarantee a differentiable u(·) exists (also ship)

-	We have constructed one utility representation
	We have constructed one utility representating, there are (many) others, not all are continuous.
	$g(x) = \begin{cases} x, & x \leq 1 \\ 2x, & x > 1 \end{cases}$
	ũ(x) = g(u(x)) also represento ≥.