Timing Library 0.1.0

Project Overview – Source Code

CONTENTS 1

Contents

1	File Index					
	1.1	File Lis	t	2		
2	File I	Docume	entation	3		
	2.1	Change	elog.md File Reference	3		
	2.2	delay.c	File Reference	3		
	2.3	delay.h	File Reference	3		
		2.3.1	Detailed Description	3		
		2.3.2	Macro Definition Documentation	3		
		2.3.3	Function Documentation	4		
	2.4	READN	ME.md File Reference	4		

2 CONTENTS

1 Fil	e Ind	ex
-------	-------	----

1.1 File List

Here is a list of all files with brief descriptions:

-1	_			_
п	_	ıa۱	•	r
u	·	u	7.	v

Implements functions used to abstract away interacting with Wii devices over I2C 3

3

delay.h

Defines public constants and prototypes related to delaying processing

2 File Documentation 3

2 File Documentation

2.1 Changelog.md File Reference

2.2 delay.c File Reference

Implements functions used to abstract away interacting with Wii devices over I2C.

```
#include "delay.h"
Include dependency graph for delay.c:
```

2.3 delay.h File Reference

Defines public constants and prototypes related to delaying processing.

```
#include <stdint.h>
```

Include dependency graph for delay.h: This graph shows which files directly or indirectly include this file:

Macros

• #define MICRO_SECONDS_PER_TICK 1000000

Number of microseconds that will occur within one tick of the system clock.

• #define MILLI_SECONDS_PER_TICK 1000

Number of milliseconds that will occur within one tick of the system clock.

Functions

void Delay_Init (uint32_t sysClk)

Initializes internal variable(s) used to determine delay time in system ticks.

void Delay_Us (uint32_t duration)

Delays processing for the given number of microseconds.

void Delay_Ms (uint32_t duration)

Delays processing for the given number of milliseconds.

2.3.1 Detailed Description

Defines public constants and prototypes related to delaying processing.

2.3.2 Macro Definition Documentation

2.3.2.1 MICRO_SECONDS_PER_TICK

```
#define MICRO_SECONDS_PER_TICK 1000000
```

Number of microseconds that will occur within one tick of the system clock.

4 CONTENTS

2.3.2.2 MILLI_SECONDS_PER_TICK

```
#define MILLI_SECONDS_PER_TICK 1000
```

Number of milliseconds that will occur within one tick of the system clock.

2.3.3 Function Documentation

2.3.3.1 Delay_Init()

Initializes internal variable(s) used to determine delay time in system ticks.

[in] sysClk Current system clock value in Hz (e.g. 80000000).

2.3.3.2 Delay_Ms()

```
void Delay_Ms (
uint32_t duration )
```

Delays processing for the given number of milliseconds.

Uses the number of core processor ticks to determine the number of ticks to execute a while-loop. This loop effectively delays non-interrupt driven processing. Bare in mind, this is not a precise implementation but will [minimally] provide the delay requested.

[in] duration Number of milliseconds to delay processing.

2.3.3.3 Delay_Us()

Delays processing for the given number of microseconds.

Uses the number of core processor ticks to determine the number of ticks to execute a while-loop. This loop effectively delays non-interrupt driven processing. Bare in mind, this is not a precise implementation but will [minimally] provide the delay requested.

[in] duration Number of microseconds to delay processing.

2.4 README.md File Reference