日期:

一种强风锅锅锅用了半年1.卷料品

输入图像大小: $H_{in} \times W_{in} \times n_c$

每个滤波器(卷积核)大小: $k \times k \times n_c$

滤波器(卷积核)个数: K

加边填充 padding: P

卷积核滑动步幅(stride): S

输出特征图像大小:

计算卷积层输出特征图大小, 当除不尽时, 一般向下取整。

2. 20 kg &

- 输入图像大小: H_{in} × W_{in} × n_c
- 每个滤波器(卷积核)大小: k×k×nc
- 滤波器(巻积核)个数: K
- · 卷积滑动步幅(stride): S
- 加边填充 padding: P

□ 输出图像大小:

$$\left(\frac{H_{in}-k+2P}{S}+1\right)\times\left(\frac{W_{in}-k+2P}{S}+1\right)\times K$$

计算池化层输出特征图大小, 当除不尽时, 通常向上取整。

コ期:

- 考数计算: (Lenars 为码)

□ 1. Input

输入图像统一归一化为32*32。

□ 2. C1 卷积层

经过(5*5*1)*6卷积核, stride=1, pad=0, 生成feature map为28*28*6。

□ 3. S2池化层

经过(2*2)池化核,平均池化, stride=2, pad=0, 生成feature map为14*14*6。

□ 4. C3 卷积层

经过(5*5*6)*16卷积核, stride=1, pad=0, 生成feature map为10*10*16。

□ 5. S4池化层

经过(2*2)池化核,平均池化, stride=2, pad=0, 生成feature map为5*5*16。

□ 6. C5 卷积层

经过(5*5*16)*120卷积核, stride=1, pad=0, 牛成feature map为1*1*120。

□ 7. F6全连接层

输入为1*1*120,输出为1*1*84,总参数量为120*84。

□ 8. F7 全连接层 (输出层)

输入为1*1*84,输出为1*1*10,总参数量为84*10。10就是分类的类别数。输出层激活函数是 softmax。

■ 中间隐层激活函数是ReLU

待估计的权重参数量:

$$5*5*1*6+5*5*6*16+5*5*16*120+120*84+84*10$$

待估计全部参数量(权重+偏置):

5 * 5 * 1 * 6(卷积核) + 6(偏置) + 5 * 5 * 6 * 16(卷积核) + 16(偏置) + 5 * 5 * 16 * 120(卷积核) + 120(偏置)

+ 120 * 84(全连接权重) + 84(偏置) + 84 * 10(全连接权重) + 10(偏置)

卷彩层:有考数, 池仙层;元参数.

∃期:

老似、鬼

• 一个卷积核的参数: 2 × 2 × 3 = 12; (in_channels=3, kernel_size=2)

• 16 个卷积核的参数: 16 ×12 = 192; (out_channels=16)

• 加上偏置: 192 + 16 = 208; (weights × x + bias)

在连接 及:

三叶、月夜杂度 Tlops

- 衡量卷积计算量的指标是FLOPs (Floating Point Operations, 浮点运算次数)
- □ 一次乘法或一次加法表示一个浮点运算次数
- □ CNN 中单个卷积层的乘法和加法浮点运算次数:

$$[(k \times k \times n_c) + (k \times k \times n_c - 1) + 1] \times H_{out} \times W_{out} \times K$$

- 卷积核每滑动一次的乘法浮点计算量: $k \times k \times n_c$
- 卷积核每滑动一次的加法浮点计算量: $k \times k \times n_c 1$
- •输出单个特征图的卷积**乘法**浮点计算量: $(k \times k \times n_c) \times H_{out} \times W_{out}$
- 输出单个特征图的卷积**加法**浮点计算量: $(k \times k \times n_c 1) \times H_{out} \times W_{out}$
- 输出 K 个特征图的卷积乘法浮点计算量: $(k \times k \times n_c) \times H_{out} \times W_{out} \times K$
- 输出 K 个特征图的卷积加法浮点计算量: $(k \times k \times n_c 1) \times H_{out} \times W_{out} \times K$
 - 输出单个特征图的偏置浮点加法计算量: $H_{out} imes W_{out}$
 - 输出 K 个特征图的偏置浮点加法计算量: $H_{out} \times W_{out} \times K$

□ 单个卷积层的乘法和加法的浮点计算量:

$$FLOPs = 2 \times k \times k \times n_c \times H_{out} \times W_{out} \times K$$

- 上式是乘法和加法运算的总和,将一次乘运算或加运算都视作一次 浮点运算
- 在计算机视觉论文中,**常常将一个<u>*</u>乘-加'组合视为一次浮点运算**, 英文表述为'Multi-Add',运算量正好是上面的算法减半,此时的 运算量为:

$$FLOPs = k \times k \times n_c \times H_{out} \times W_{out} \times K$$

① 左连接层的浮点计算量

□ 单个全连接层的乘法和加法浮点计算量(权重+偏置):

$$FLOPs = [N_{in} + (N_{in} - 1) + 1] \times N_{out} = 2 \times N_{in} \times N_{out}$$

- 其中 N_{in} 表示输入层神经元个数, N_{out} 表示输出层神经元个数。上述式子中第一个 N_{in} 表示乘法运算量, N_{in} -1 表示加法运算量, +1表示 N_{out} 个偏置项计算量, $\times N_{out}$ 表示计算 N_{out} 个神经元的值。
- □ 单层全连接层的网络模型参数量(权重+偏置):

$$parameters = (N_{in} + 1) \times N_{out}$$

□ 如果将一个'乘-加'组合视为一次浮点运算,则此时单个全连接 层的浮点运算量为:

$$FLOPs = N_{in} \times N_{out}$$

• 其中 N_{in} 表示输入层神经元个数, N_{out} 表示输出层神经元个数。

日期:	/		