

Machine Learning Fundamentals: Bias vs. Variance

Rensheng Wang,

https://sit.instructure.com/courses/34886

Bias vs. Variance

- Whenever we discuss model prediction, its important to understand prediction errors (bias and variance).
- There is a tradeoff between a models ability to minimize bias and variance.
- Gaining a proper understanding of these errors would help us not only to build accurate models but also to avoid the mistake of **overfitting** and **underfitting**.
- **Bias:** Bias is the difference between the average prediction of our model and the correct value which we are trying to predict.
- **Variance:** Variance is the variability of model prediction for a given data point or a value which tells us spread of our data.

Bias vs. Variance

	Bias: Bias is the difference between the average prediction of our model and the correct value which we are trying to predict.
	Model with high bias pays very little attention to the training data and oversimplifies the model.
	It always leads to high error on training and test data.
F	Variance: Variance is the variability of model prediction for a given data point or a value which tells us spread of our data.
	Model with high variance pays a lot of attention to training data and does not generalize on the data which it hasnt seen before.
	As a result, such models perform very well on training data but has high error rates on test data.

Let the variable we are trying to predict as Y and other covariates as X. We assume there is a relationship between the two such that

$$Y = f(X) + e$$

Where e is the error term and its normally distributed with a mean of 0.

We will make a model $\hat{f}(X)$ of f(X) using linear regression or any other modeling technique. So the expected squared error at a point x is

$$Err(x) = E\left[\left(Y - \hat{f}(x)\right)^{2}\right]$$

where $E[\cdot]$ is the expectation.

 \square As Y = f(x) + e, the Err(x) can be further decomposed as

$$Err(x) = E\left[\left(f(x) + e - \hat{f}(x)\right)^{2}\right] = E\left[\left(f(x) - \hat{f}(x)\right)^{2} + e^{2} + 2e[f(x) - \hat{f}(x)]\right]$$

 \square The Err(x) can be further decomposed as

$$Err(x) = E\left[\left(f(x) - \hat{f}(x)\right)^2 + 2e[f(x) - \hat{f}(x)] + e^2\right]$$

$$= E\left[\left(f(x) - \hat{f}(x)\right)^2 + 2e[f(x) - \hat{f}(x)]\right] + \sigma_e^2$$

where $E[e^2] = \frac{\sigma_e^2}{\sigma_e^2}$.

The noise term e is independent of f(x) and $\hat{f}(x)$, then the expectation $E\left[2e\left(f(x)-\hat{f}(x)\right)\right]=0.$

$$Err(x) = E\left[\left(f(x) - \hat{f}(x)\right)^2 + \frac{2e[f(x) - \hat{f}(x)]}{2e[f(x) - \hat{f}(x)]}\right] + \sigma_e^2$$
$$= E\left[\left(f(x) - \hat{f}(x)\right)^2\right] + \frac{1}{2e}$$

 $\hfill \Box$ Reform the term $E[(f(x)-\hat{f}(x))^2]$

$$\begin{split} &E\left[\left(\hat{f}(x)-\hat{f}(x)\right)^2\right]\\ =&E\left[\left(\hat{f}(x)-f(x)\right)^2\right]\\ =&E\left[\left(\hat{f}(x)-E[\hat{f}(x)]+E[\hat{f}(x)]-f(x)\right)^2\right]\\ =&E\left[\left(\hat{f}(x)-E[\hat{f}(x)]\right)^2\right]+\left(E[\hat{f}(x)]-f(x)\right)^2+2E\left[\left(\hat{f}(x)-E[\hat{f}(x)]\right)\left(E[\hat{f}(x)]-f(x)\right)\right]\\ =&\operatorname{Variance}+\operatorname{Bias}^2+2E\left[\left(\hat{f}(x)-E[\hat{f}(x)]\right)\left(E[\hat{f}(x)]-f(x)\right)\right]\\ \text{where Variance}=E\left[\left(\hat{f}(x)-E[\hat{f}(x)]\right)^2\right] \text{ and } \operatorname{Bias}=E[\hat{f}(x)]-f(x). \end{split}$$

Note in the above equation, the bias $(E[\hat{f}(x)] - f(x))$ is a deterministic term and the expectation operation vanished over the bias.

☐ We further simplify the term,

$$\begin{split} &E\left[\left(f(x)-\hat{f}(x)\right)^2\right] \\ = & \text{Variance} + \text{Bias}^2 + 2E\left[\left(\hat{f}(x)-E[\hat{f}(x)]\right)\left(E[\hat{f}(x)]-f(x)\right)\right] \end{split}$$

As aforementioned, the bias term ($E[\hat{f}(x)] - f(x)$) is independent of the expectation operator, we can move it out of the expectation,

$$E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right) \left(E[\hat{f}(x)] - f(x)\right)\right]$$

$$= E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)\right] \cdot \left(E[\hat{f}(x)] - f(x)\right)$$

$$= \left(E[\hat{f}(x)] - E[\hat{f}(x)]\right) \cdot \left(E[\hat{f}(x)] - f(x)\right) = 0$$

Overall we have the error term

$$Err(x) = E\left[\left(f(x) - \hat{f}(x)\right)^2\right] + \sigma_e^2 = Variance + Bias^2 + \sigma_e^2$$

Bias vs. Variance: Tradeoff

lacksquare In the error term, the noise variance σ_e^2 is irreducible and therefore we can only work on the bias and variance terms.

like Linear and logistic regression.

In supervised learning, underfitting happens when a model unable to capture the underlying pattern of the data.
These models usually have high bias and low variance.
It happens when we have very less amount of data to build an accurate model or when we try to build a linear model with a nonlinear data.

☐ For instance, these kind of models are very simple to capture the complex patterns in data

- In supervised learning, overfitting happens when our model captures the noise along with the underlying pattern in data. It happens when we train our model a lot over noisy dataset.
- ☐ These models have low bias and high variance. These models are very complex like Decision

trees which are prone to overfitting.

- If our model is too simple and has very few parameters then it may have high bias and low variance.
- On the other hand if our model has large number of parameters then its going to have high variance and low bias.
- So we need to find the right/good balance without overfitting and underfitting the data. This tradeoff in complexity is why there is a tradeoff between bias and variance.

Bias vs. Variance: Tradeoff

To build a good model, we need to find a good balance between bias and variance such that it minimizes the total error.

Total Error =
$$Bias^2 + Variance + Noise$$

Let us assume we have both training and testing data sets.
Let us assume in a classification example, the best model, i.e., the benchmark model, whatever using human or machine, can reach 0% error rate.
If the model learned on training data has an error rate $\gg 0\%$, for instance, 15%, then there is a big bias, i.e., underfitting.
If the learned model applies for the testing data has an error rate 30% , then there is a big variance at this model.
Comparing both training and testing data error rates with the benchmark model, this learning method has both big bias and big variance.
If the same model applies for the testing data has an error rate 16% , then there is a big bias but small variance at this model.

- Let us assume we have both training and testing data sets.
- Let us assume in a classification example, the best model, i.e., the benchmark model, whatever using human or machine, can reach 0% error rate.

Training Error Rate	Testing Error Rate	Bias vs. Variance	Note
15 %	30 %	big bias, big variance	Underfitting
15 %	16 %	big bias, small variance	Underfitting
1 %	15%	small bias, big variance	Overfitting
1%	2%	small bias, small variance	

