Project 1: Monte Carlo Simulation

Joel Huffman <u>huffmajo@oregonstate.edu</u>

Tables and Graphs

Peak Performance Across Number of Trials and Number of Threads

		Number of Trials				
		10	1000	100000	10000000	
Number of Threads	1	10.24685	17.80818	17.64512	17.293013	
	2	6.992783	31.49103	33.72904	34.260624	
	4	4.353522	57.07446	67.09135	67.535927	
	6	3.987159	79.63081	100.1878	101.31315	
	8	3.535971	89.16641	134.3709	134.75348	
	10	2.755569	87.16145	122.2687	158.82726	
	12	2.790208	88.12901	143.2854	158.22583	

Probability of Hitting Plate Across Number of Trials and Number of Threads

		Number of Trials				
		10	1000	100000	10000000	
Number of Threads	1	0.1	0.784	0.19073	0.190309	
	2	0.2	0.194	0.19007	0.190347	
	4	0.4	0.202	0.18977	0.190325	
	6	0.2	0.19	0.18887	0.190156	
	8	0.1	0.182	0.18948	0.190403	
	10	0.1	0.187	0.19044	0.190343	
	12	0.1	0.195	0.19055	0.190303	

Explanation and Analysis

All of the runs using 10,000,000 trials yielded around 0.19 as the probability of the beam striking the plate. These consistent results across all tested thread counts with higher numbers of trials lead me to believe the actual probability is 0.19.

Speedups for each of the thread counts are calculated and shown below. The peak performance values were all pulled from the runs using 10,000,000 trials. Speedup efficiency decreases as the thread count increases and seems to start to hit a limit around 12 threads. We may be approaching the optimal performance of the parallel portion of the program around these thread counts.

$$S_2 = P_2 / P_1 = 34.260624 / 17.293013 = 1.98$$

 $S_4 = P_4 / P_1 = 67.535927 / 17.293013 = 3.91$
 $S_6 = P_6 / P_1 = 101.313148 / 17.293013 = 5.86$
 $S_8 = P_8 / P_1 = 134.753478 / 17.293013 = 7.79$
 $S_{10} = P_{10} / P_1 = 158.827255 / 17.293013 = 9.18$
 $S_{12} = P_{12} / P_1 = 158.22583 / 17.293013 = 9.15$

The Parallel Fraction values are calculated and shown below for each thread count. Fp only just starts to dip around the 12 thread end of our testing. This may show that we maybe be approaching our max speedup soon after 12 threads.

$$Fp_2 = \frac{2}{1} \left(1 - \frac{1}{1.98} \right) = 0.990$$

$$Fp_4 = \frac{4}{3} \left(1 - \frac{1}{3.91} \right) = 0.992$$

$$Fp_6 = \frac{6}{5} \left(1 - \frac{1}{5.86} \right) = 0.995$$

$$Fp_8 = \frac{8}{7} \left(1 - \frac{1}{7.79} \right) = 0.996$$

$$Fp_{10} = \frac{10}{9} \left(1 - \frac{1}{9.18} \right) = 0.990$$

$$Fp_{12} = \frac{12}{11} \left(1 - \frac{1}{9.15} \right) = 0.972$$