

Calcolo integrale — Scheda di esercizi n. 8 19 Maggio 2023 — Compito n. 00097

 $\label{eq:caselle} \textbf{Istruzioni} : \mbox{le prime due caselle } (\mathbf{V} \ / \ \mathbf{F}) \\ \mbox{permettono di selezionare la risposta vero/falso.} \\ \mbox{La casella "\mathbf{C}" serve a correggere eventuali errori invertendo la risposta data.}$

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes 0 \boxtimes).

Nome:				
Cognome:				
cognome.				
Matricola:				

1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D 4A 4B 4C 4D \mathbf{v} \mathbf{F} \mathbf{C}

1) Si consideri l'equazione differenziale:

$$y''(t) + 2y'(t) + 3y(t) = 0.$$

- **1A)** L'equazione ha un'unica soluzione.
- **1B)** Esiste un'unica soluzione dell'equazione tale che y(2) = 3.
- **1C)** Esiste un'unica soluzione dell'equazione tale che y(4) = 3 e y'(4) = 6.
- ${\bf 1D)}$ Non esistono soluzioni dell'equazione tali che

$$y(3) = 2, \ y'(3) = 7, \ y''(3) = 25.$$

2) Si consideri l'equazione differenziale

(1)
$$y''(t) - 11y'(t) + 28y(t) = 84$$
.

- **2A)** Il polinomio caratteristico dell'equazione è $P(L) = L^2 11L + 28$.
- **2B)** La funzione $y_0(t) = 4e^{4t}$ è soluzione dell'equazione omogenea associata a (1).
- **2C)** La funzione $\overline{y}(t) = 3$ è una soluzione particolare di (1).
- **2D)** Se y(0) = 3 e y'(0) = 0, la soluzione di (1) è costante.

3) Si consideri l'equazione differenziale

$$y''(t) + Ay(t) + By(t) = 0, \quad A, B \in \mathbb{R}.$$

- **3A)** Il polinomio caratteristico dell'equazione è $P(L) = L^2 + AL + B$.
- **3B)** Se A = 0 e B = -25, la funzione $y(t) = 6e^{5t} 9e^{-5t}$ non è soluzione dell'equazione.
- **3C)** Se A = -4 e B = 0, la funzione y(t) = 6 non è soluzione dell'equazione.
- **3D)** Se A = -10 e B = 29, la funzione $y(t) = 2e^{5t} \sin(2t)$ è soluzione dell'equazione.
- 4) Si consideri l'equazione differenziale

$$y''(t) - 5y'(t) = -30$$
.

- **4A)** Tutte le soluzioni dell'equazione omogenea associata sono date da $y_0(t) = C + D e^{5t}$.
- 4B) Esistono soluzioni costanti dell'equazione.
- **4C)** La funzione $\overline{y}(t) = 6t$ non è soluzione dell'equazione.
- **4D)** Se y(0) = 6 e y'(0) = 6, la soluzione dell'equazione è un'esponenziale.

Docente

- □ DelaTorre Pedraza
- ☐ Orsina

Cognome	Nome	Matricola	Compito 00097
---------	------	-----------	---------------

(1)
$$y''(t) - 18y'(t) + 72y(t) = -6e^{6t}.$$

- ${\bf a)}$ Scrivere il polinomio caratteristico dell'equazione in (1) e trovarne le radici.
- ${\bf b}$) Scrivere tutte le soluzioni dell'equazione omogenea associata a (1).
- c) Trovare una soluzione particolare di (1).
- d) Trovare l'unica soluzione di (1) tale che y(0) = 0 e y'(0) = 1.

Cognome	Nome	Matricola	Compito 00097
---------	------	-----------	---------------

(1)
$$y''(t) - 4y'(t) + 4y(t) = 2e^{2t}.$$

- a) Si determini il polinomio caratteristico di (1) e si trovino tutte le soluzioni dell'equazione omogenea associata a (1).
- b) Si trovi una soluzione particolare di (1).
- c) Si trovi l'unica soluzione di (1) tale che y(0) = 0 e y'(0) = 2.
- d) Si trovi l'unica soluzione di (1) tale che y(0) = 7 e y'(0) = 0.

Soluzioni del compito 00097

1) Si consideri l'equazione differenziale:

$$y''(t) + 2y'(t) + 3y(t) = 0.$$

1A) L'equazione ha un'unica soluzione.

Falso: Trattandosi di un'equazione differenziale ordinaria del secondo ordine, ha infinite soluzioni, dipendenti da due parametri reali.

1B) Esiste un'unica soluzione dell'equazione tale che y(2) = 3.

Falso: L'equazione ha infinite soluzioni, dipendenti da due parametri reali. Assegnando una sola condizione, si "fissa" uno solo dei due parametri, e quindi l'equazione ha infinite soluzioni tali che y(2) = 3.

1C) Esiste un'unica soluzione dell'equazione tale che y(4) = 3 e y'(4) = 6.

Vero: Assegnando due condizioni, una sulla funzione e una sulla derivata, si ottiene un problema di Cauchy, che ha un'unica soluzione.

1D) Non esistono soluzioni dell'equazione tali che

$$y(3) = 2$$
, $y'(3) = 7$, $y''(3) = 25$.

Vero: Se y(3) = 2 e y'(3) = 7, dall'equazione segue che deve essere

$$0 = y''(3) + 2y'(3) + 3y(3) = y''(3) + 2 \cdot 2 + 3 \cdot 7 = y''(3) + 25,$$

da cui segue che y''(3) = -25. Pertanto, l'unica soluzione dell'equazione che soddisfa le condizioni y(3) = 2 e y'(3) = 7 è tale che $y''(3) = -25 \neq 25$; in altre parole, non esistono soluzioni dell'equazione che soddisfano le tre condizioni richieste.

(1)
$$y''(t) - 11y'(t) + 28y(t) = 84.$$

2A) Il polinomio caratteristico dell'equazione è $P(L) = L^2 - 11L + 28$.

Vero: Sostituendo y'' con L^2 , y' con L e y con 1, si trova che

$$P(L) = L^2 - 11L + 28.$$

2B) La funzione $y_0(t) = 4e^{4t}$ è soluzione dell'equazione omogenea associata a (1).

Vero: Il polinomio caratteristico dell'equazione è $P(L) = L^2 - 11L + 28$, che si annulla per $L_1 = 4$ e $L_2 = 7$. Pertanto, tutte le soluzioni dell'equazione omogenea associata sono date da

$$y_0(t) = C e^{4t} + D e^{7t}$$

con C e D numeri reali. Scegliendo C = 4 e D = 0, si ha che $y_0(t) = 4 e^{4t}$ è soluzione dell'equazione omogenea associata a (1).

Alternativamente, se $y_1(t) = e^{4t}$ si ha, derivando,

$$y_1'(t) = 4 e^{4t}, y_1''(t) = 16 e^{4t},$$

e, sostituendo nell'equazione,

$$y_1''(t) - 11 y_1'(t) + 28 y_1(t) = [16 - 11 \cdot 4 + 28] e^{4t} = 0 \cdot e^{4t} = 0$$

e quindi $y_1(t)$ è soluzione dell'equazione omogenea associata a (1). Dato che tale equazione è lineare, anche $y_0(t) = 4y_1(t)$ è soluzione dell'omogenea.

2C) La funzione $\overline{y}(t) = 3$ è una soluzione particolare di (1).

Vero: Sostituendo nell'equazione si ha, essendo nulle sia la derivata prima che la derivata seconda di $\overline{y}(t)$,

$$y'' - 11y' + 28y = 28 \cdot 3 = 84$$

e quindi $\overline{y}(t) = 3$ è una soluzione particolare di (1).

2D) Se y(0) = 3 e y'(0) = 0, la soluzione di (1) è costante.

Vero: Come detto nell'esercizio **2C**, la funzione $y(t) \equiv 3$ è soluzione dell'equazione (1). Dato che soddisfa inoltre le condizioni y(0) = 3 e y'(0) = 0, la funzione $y(t) \equiv 3$ è soluzione di un problema di Cauchy per un'equazione differenziale del secondo ordine, e quindi è l'unica soluzione di (1) che soddisfa tali condizioni.

$$y''(t) + A y(t) + B y(t) = 0, \quad A, B \in \mathbb{R}.$$

3A) Il polinomio caratteristico dell'equazione è $P(L) = L^2 + AL + B$.

Vero: Sostituendo y'' con L^2 , y' con L e y con 1, si trova che

$$P(L) = L^2 + AL + B.$$

3B) Se A=0 e B=-25, la funzione $y(t)=6e^{5t}-9e^{-5t}$ non è soluzione dell'equazione.

Falso: Se A=0 e B=-25, il polinomio caratteristico dell'equazione è $P(L)=L^2-25$ che si annulla per $L=\pm 5$. Pertanto, tutte le soluzioni dell'equazione sono date da

$$y(t) = C e^{5t} + D e^{-5t}$$
.

Scegliendo C=6 e D=-9, si ha che $y(t)=6\,\mathrm{e}^{5\,t}-9\,\mathrm{e}^{-5\,t}$ è soluzione dell'equazione.

3C) Se A = -4 e B = 0, la funzione y(t) = 6 non è soluzione dell'equazione.

Falso: Se A = -4 e B = 0, il polinomio caratteristico dell'equazione è $P(L) = L^2 - 4L$ che si annulla per L = 0 e per L = 4. Pertanto, tutte le soluzioni dell'equazione sono date da

$$y(t) = C e^{0t} + D e^{4t} = C + D e^{4t}$$
.

Scegliendo C=6 e D=0, si ha che y(t)=6 è soluzione dell'equazione.

3D) Se A = -10 e B = 29, la funzione $y(t) = 2e^{5t} \sin(2t)$ è soluzione dell'equazione.

Vero: Se A=-10 e B=29, il polinomio caratteristico dell'equazione è $P(L)=L^2-10\,L+29$, che si annulla per $L=5\pm 2\,i$. Pertanto, tutte le soluzioni dell'equazione sono date da

$$y(t) = e^{5t} [C \cos(2t) + D \sin(2t)].$$

Scegliendo C=0 e D=2, si ha che $y(t)=2\,\mathrm{e}^{5\,t}\,\sin(2\,t)$ è soluzione dell'equazione.

$$y''(t) - 5y'(t) = -30.$$

4A) Tutte le soluzioni dell'equazione omogenea associata sono date da $y_0(t) = C + De^{5t}$.

Vero: Il polinomio caratteristico dell'equazione è $P(L) = L^2 - 5L$, che si annulla per L = 0 e L = 5. Pertanto, tutte le soluzioni dell'equazione omogenea associata sono date da

$$y_0(t) = C e^{0 \cdot t} + D e^{5 t} = C + D e^{5 t},$$

con C e D numeri reali.

4B) Esistono soluzioni costanti dell'equazione.

Falso: Se $y(t) \equiv Q$ è una costante, sostituendo nell'equazione si ha

$$y''(t) - 5y'(t) = 0 - 5 \cdot 0 = 0 \neq -30$$

e quindi l'equazione non ha soluzioni costanti. Alternativamente, sappiamo dalla domanda ${\bf 4A}$ che le costanti sono soluzioni dell'equazione omogenea, e quindi non possono essere soluzioni dell'equazione "completa".

4C) La funzione $\overline{y}(t) = 6t$ non è soluzione dell'equazione.

Falso: Se $\overline{y}(t) = 6t$, si ha $\overline{y}'(t) = 6$ e $\overline{y}''(t) = 0$. Sostituendo nell'equazione si ha

$$\overline{y}''(t) - 5\overline{y}'(t) = -5 \cdot 6 = -30$$

e quindi $\overline{y}(t) = 6t$ è soluzione dell'equazione.

4D) Se y(0) = 6 e y'(0) = 6, la soluzione dell'equazione è un'esponenziale.

Falso: Sappiamo già, dagli esercizi 4A e 4C, che tutte le soluzioni dell'equazione sono date da

$$y(t) = y_0(t) + \overline{y}(t) = C + De^{5t} + 6t$$
,

con C e D numeri reali. Pertanto,

$$y'(t) = 5 D e^{5t} + 6$$
.

Pertanto, assegnando le condizioni iniziali, si ha

$$6 = C + D$$
, $6 = 5D + 6$.

Dalla seconda si ricava D=0, e sostituendo nella prima si ricava C=6. Ne segue che l'unica soluzione dell'equazione è

$$y(t) = 6 + 6t,$$

che è un polinomio di primo grado (e quindi non è un'esponenziale).

(1)
$$y''(t) - 18y'(t) + 72y(t) = -6e^{6t}.$$

- a) Scrivere il polinomio caratteristico dell'equazione in (1) e trovarne le radici.
- b) Scrivere tutte le soluzioni dell'equazione omogenea associata a (1).
- c) Trovare una soluzione particolare di (1).
- d) Trovare l'unica soluzione di (1) tale che y(0) = 0 e y'(0) = 1.

Soluzione:

a) Sostituendo in (1) L^2 a y'', L a y' e 1 a y, si trova

$$P(L) = L^2 - 18L + 72,$$

che si annulla per $L_1 = 6$ e per $L_2 = 12$.

b) Usando le radici del polinomio caratteristico calcolate al punto precedente, abbiamo che tutte le soluzioni dell'equazione omogenea associata a (1) sono date da

$$y_0(t) = C e^{6t} + D e^{12t}$$

con C e D numeri reali.

c) Dato che $g(t) = e^{6t}$ è una soluzione dell'equazione omogenea, cerchiamo una soluzione particolare della forma

$$\overline{y}(t) = Q t e^{6t}$$
.

Si ha

$$\overline{y}'(t) = Q(1+6t)e^{6t}, \qquad \overline{y}''(t) = Q(12+36t)e^{6t}.$$

Sostituendo in (1) si ha

$$\overline{y}'' - 18\overline{y} + 72\overline{y} = Qe^{6t}[12 + 36t - 18(1 + 6t) + 72t] = -6Qe^{6t},$$

e quindi $\overline{y}(t)$ è soluzione di (1) se Q è tale che

$$-6Qe^{6t} = -6e^{6t},$$

da cui segue Q = 1 e quindi

$$\overline{y}(t) = t e^{6t}.$$

d) Da b) e c) abbiamo che tutte le soluzioni di (1) sono date da

$$y(t) = y_0(t) + \overline{y}(t) = C e^{6t} + D e^{12t} + t e^{6t}$$

con C e D numeri reali. Dato che

$$y'(t) = 6 C e^{6t} + 12 D e^{12t} + e^{6t} + 6 t e^{6t}$$

si ha y(0) = C + D e y'(0) = 6C + 12D + 1. Imponendo le condizioni iniziali, si ha che deve essere C + D = 0 e 6C + 12D + 1 = 1, da cui si ricava facilmente C = D = 0. Ne segue che l'unica soluzione di (1) che soddisfa le condizioni y(0) = 0 e y'(0) = 1 è

$$y(t) = t e^{6t}.$$

(1)
$$y''(t) - 4y'(t) + 4y(t) = 2e^{2t}.$$

- a) Si determini il polinomio caratteristico di (1) e si trovino tutte le soluzioni dell'equazione omogenea associata a (1).
- b) Si trovi una soluzione particolare di (1).
- c) Si trovi l'unica soluzione di (1) tale che y(0) = 0 e y'(0) = 2.
- d) Si trovi l'unica soluzione di (1) tale che y(0) = 7 e y'(0) = 0.

Soluzione:

a) Il polinomio caratteristico è $P(L) = L^2 - 4L + 4$, che si annulla per $L_1 = L_2 = 2$. Conseguentemente, tutte le soluzioni dell'equazione omogenea associata ad (1) sono date da

$$y_0(t) = (C + D t) e^{2t}$$

con C e D numeri reali.

b) Dato che sia e^{2t} che te^{2t} sono soluzioni dell'equazione omogenea, cerchiamo una soluzione particolare di (1) della forma

$$\overline{y}(t) = Q t^2 e^{2t}.$$

Derivando, si ha

$$\overline{y}'(t) = Q(2t + 2t^2)e^{2t}, \qquad \overline{y}''(t) = Q(2 + 8t + 4t^2)e^{2t}.$$

Sostituendo nell'equazione si ha

$$\overline{y}'' - 4\overline{y}' + 4\overline{y}(t) = Q e^{2t} [2 + 8t + 4t^2 - 4(2t + 2t^2) + 4t^2] = 2 Q e^{2t},$$

da cui segue che $\overline{y}(t)$ è soluzione di (1) se Q=1. Si ha dunque che tutte le soluzioni di (1) sono date da

$$y(t) = y_0(t) + \overline{y}(t) = (C + Dt + t^2) e^{2t}$$
,

da cui segue, derivando, che

$$y'(t) = (2C + D + (2D + 2)t + 2t^2)e^{2t}$$
.

Pertanto

(2)
$$y(0) = C$$
, $y'(0) = 2C + D$.

c) Da (2) e dalle condizioni date segue che deve essere C=0 e $2\,C+D=2$, da cui C=0 e D=2. L'unica soluzione di (1) è quindi data da

$$y(t) = (2t + t^2) e^{2t}$$
.

d) Da (2) e dalle condizioni date segue che deve essere C = 7 e 2C + D = 0, da cui D = -14. L'unica soluzione di (1) è quindi data da

$$y(t) = (7 - 14t + t^2) e^{2t}$$
.