Wspomaganie Decyzji – Semestr 2020Z Laboratorium nr 1

1) Model rzeczowy

Parametry modelu:

cena1 = 100 - cena (za 1 godzinę zegarową) pracy konsultanta w 1. zespole wsp1 = 2 - współczynnik efektywności konsultanta w 1. zespole

cena2 = 10 - cena (za 1 godzinę zegarową) pracy konsultanta w 2. zespole wsp2 = 0.5 - współczynnik efektywności konsultanta w 2. zespole

Zmienne decyzyjne:

x1 – liczba godzin zegarowych pracy konsultanta w 1. zespole x2 – liczba godzin zegarowych pracy konsultanta w 2. zespole

Wyjścia modelu:

q1 – koszt realizacji projektu q2 – czas realizacji projektu

Kryteria optymalizacji:

min q1 min q2

Ograniczenia:

q1 = x1*cena1 + x2*cena2 q2 = x1 + x2 wsp1*x1 >= 10 wsp2*x2 >= 20 30 <= wsp1*x1 + wsp2*x2 <= 200

2) Przestrzeń rozwiązań dopuszczalnych – przestrzeń zmiennych decyzyjnych

3) Przestrzeń rozwiązań dopuszczalnych – przestrzeń kryteriów

4) Model rzeczowy, rozszerzony o metodę punktu odniesienia:

Parametry modelu:

cena1 = 100 - cena (za 1 godzinę zegarową) pracy konsultanta w 1. zespole wsp1 = 2 - współczynnik efektywności konsultanta w 1. zespole

cena2 = 10 - cena (za 1 godzinę zegarową) pracy konsultanta w 2. zespole wsp2 = 0.5 - współczynnik efektywności konsultanta w 2. zespole

eps = 0.001

Punkt odniesienia:

q1prim = 2000 – oczekiwany koszt q2prim = 120 – oczekiwany czas realizacji

Zmienne decyzyjne:

x1 – liczba godzin zegarowych pracy konsultanta w 1. zespole x2 – liczba godzin zegarowych pracy konsultanta w 2. zespole

Wyjścia modelu:

q1 – koszt realizacji projektu q2 – czas realizacji projektu

Kryterium optymalizacji:

 $\max z + eps/2 * ((-q1+ q1prim) + (-q2+ q2prim))$

Ograniczenia:

z<= -q1+ q1prim
z<= -q2+ q2prim

q1 = x1*cena1 + x2*cena2
q2 = x1 + x2

wsp1*x1 >= 10
wsp2*x2 >= 20
30 <= wsp1*x1+wsp2*x2 <= 200</pre>

5) Model w języku AMPL

```
# Parametry modelu
param cena1 = 100; # cena (za 1 godzinę zegarowa) pracy konsultanta w 1. zespole
param wsp1 = 2; # współczynnik efektywności konsultanta w 1. zespole
param cena2 = 10; # cena (za 1 godzinę zegarową) pracy konsultanta w 2. zespole
param wsp2 = 0.5; # współczynnik efektywności konsultanta w 2. zespole
param q1prim = 2000; # oczekiwany koszt projektu
param q2prim = 120; # oczekiwany czas trwania projektu
param eps = 0.001; # epsilon w metodzie punktu odniesienia
# Zmienne decyzyjne
var x1; # czas pracy 1. konsultanta
var x2; # czas pracy 2. konsultanta
# Wyjścia modelu
var q1; # łączny koszt projektu
var q2; # łączny czas projektu
# Zmienna pomocnicza
var z;
# Kryterium optymalizacji
maximize S: z + eps/2 * ( (-q1 + q1prim) + (-q2 + q2prim) );
# Ograniczenia
subject to o1: z <= -q1+ q1prim;</pre>
subject to o2: z <= -q2+ q2prim;</pre>
subject to o3: q1 = x1*cena1 + x2*cena2; # koszt realizacji projektu
subject to o4: q2 = x1 + x2; # czas realizacji projektu
subject to o5: wsp1*x1 >= 10;
subject to o6: wsp2*x2 >= 20;
subject to o7: 30 <= wsp1*x1 + wsp2*x2 <= 200;</pre>
```

6) Analiza możliwych rozwiązań

Uzyskane wyniki (dla różnych współrzędnych punktów odniesienia q1prim, q2prim) zamieszczam w poniższej tabeli.

Nr testu	1	2	3	4	5	6	7	8	9	10
q1prim	2000	5000	100	4300	9400	10	15000	7000	3000	30000
q2prim	120	300	360	385	130	4	250	120	200	500
q1	900	900	900	900	900	900	900	900	900	900
q2	45	45	45	45	45	45	45	45	45	45
x1	5	5	5	5	5	5	5	5	5	5
x2	40	40	40	40	40	40	40	40	40	40
S	75.5875	257.178	-800.243	341.87	89.2925	-890.466	212.153	78.0875	156.27	469.778

Wnioski.

Zauważmy, że w przypadku naszego obszaru rozwiązań dopuszczalnych w przestrzeni kryteriów, istnieje tylko jeden punkt (B'(900,45)), w którym minimalizujemy jednocześnie wartości kryteriów q1 oraz q2.

Uzyskane wyniki testów potwierdzają powyższą obserwację, zatem model zadania zapisany w języku AMPL jest poprawny.