STA6171: Statistical Computing for DS 1 EM Algorithm

Ick Hoon Jin

Yonsei University, Department of Statistics and Data Science

2020.10.07

- Introduction
- 2 EM Algorithm
- 3 EM Variants

Introduction

- The expectation-maximization (EM) algorithm is an iterative optimization strategy motivated by a notion of missingness and by consideration of the conditional distribution of what is missing given what is observed.
- Popularity of the EM algorithm
 - Simple to implement
 - Reliable to find the global optimum.

Introduction

- Frequentist Setting
 - Observed data from X along with missing data from Z.
 - Complete data Y = (X, Z).
 - Given observed data x, maximize a likelihood $L(\theta|x)$. Difficult to work with this likelihood
 - A easier way is working with the density $Y|\theta$ and $Z|x,\theta$.
- Bayesian Setting: Interest Often focuses on estimating the mode of a posterior distribution $f(\theta|x)$.
- Missing data may not truly be missing: they may be only a conceptual ploy that simplifies the problem. In this case, Z is often referred to as latent.

Missing Data and Marginalization - Frequentist

- In the presence of missing data, only a function of the complete-data y is observed.
- Assume that the missing data are random, so that

$$f(y|\theta) = f(x, z|\theta) = f_X(x|\theta) \cdot f_{Z|X}(z|x, \theta).$$

Thus, it follows that

$$I_X(\theta) = I_Y(\theta) - \log f_{Z|X}(Z|X,\theta).$$

• Useful when maximizing $I_X(\theta)$ can be difficult but maximizing the complete log-likelihood I is simple.

Missing Data and Marginalization - Bayesian

- View the likelihood $L(\theta|x)$ as a marginalization of the complete-data likelihood $L(\theta|y) = L(\theta|x,z)$.
- Consider there to be missing parameter ψ , whose inclusion simplifies Bayesian calculations even though ψ is of no interest itself. Since Z and ψ are both missing random quantities, it matters little whether we use notation that suggests the missing variables to be unobserved data or parameters.

EM Algorithm

- EM algorithm iteratively seeks to maximize $L(\theta|x)$ with respect to θ .
- Let $\theta^{(t)}$ denote the estimated maximizer at iteration t, for $t = 0, 1, \cdots$.
- Define $Q(\theta|\theta^{(t)})$ to be the expectation of the joint log-likelihood for the complete data, conditional on the observed data X = x.

$$Q\left(\theta|\theta^{(t)}\right) = E\left\{\log L(\theta|Y)\middle|x,\theta^{(t)}\right\}.$$

• Then, $Q\left(\theta|\theta^{(t)}\right)$ is maximized w.r.t θ , that is $\theta^{(t+1)}$ is found such that

$$Q\left(\theta^{(t+1)}|\theta^{(t)}\right) \geq Q\left(\theta|\theta^{(t)}\right)$$

for all $\theta \in \Theta$.

EM Algorithm

- EM is initiated from $\theta^{(0)}$ then alternates between two steps: E is for expectation and M for maximization.
- The algorithm is summarized as:
 - **1 E Step**: Compute $Q(\theta|\theta^{(t)})$.
 - **2 M** Step: Maximize $Q\left(\theta|\theta^{(t)}\right)$ with respect to θ . Set $\theta^{(t+1)}$ equal to the maximizer of Q.
 - 3 Return to the E step unless a stopping criterion has been met.

EM Algorithm - Exponential Families

- The computation of these two steps simplify a great deal when it can be shown that the log-likelihood is linear in the sufficient statistic for θ (Exponential Family).
- The E-step reduces to computing the expectation of the complete-data sufficient statistic given the observed data.
- In M-step, the conditional expectations of the sufficient statistics computed in the E-step can be directly substituted for the sufficient statistics that occur in the expressions obtained for the complete-data maximum likelihood estimators of θ , to obtain the next iterate.

Appealing Properties of the EM Algorithm

- It is typically easily implemented because it relies on complete-data computations
 - The E-step of each iteration only involves taking expectations over complete-data conditional distributions.
 - The M-step of each iteration only requires complete-data maximum likelihood estimation, for which simple closed form expressions are already available.
- It is numerically stable: each iteration is required to increase the log-likelihood $I_X(\theta)$ in each iteration, and if $I_X(\theta)$ is bounded, the sequence $I_X(\theta^{(t)})$ converges to a stationery value.

The log of the observed-data density can be re-expressed as

$$\log f_X(x \mid \theta) = \log f_Y(y \mid \theta) - \log f_{Z|X}(z \mid x, \theta).$$

Therefore,

$$E\left\{\log f_X(x\mid\theta)\mid x,\theta^{(t)}\right\} = E\left\{\log f_Y(y\mid\theta)\mid x,\theta^{(t)}\right\} - E\left\{\log f_{Z\mid X}(z\mid x,\theta)\mid x,\theta^{(t)}\right\},\,$$

where the expectations are taken with respect to the distribution of $Z \mid (x, \theta^{(t)})$. Thus,

$$\log f_X(x \mid \theta) = Q(\theta \mid \theta^{(t)}) - H(\theta \mid \theta^{(t)}),$$

where

$$H(\theta \mid \theta^{(t)}) = E\left\{\log f_{Z|X}(Z \mid X, \theta) \mid X, \theta^{(t)}\right\}.$$

Show that $H(\theta \mid \theta^{(t)})$ is maximized with respect to θ when $\theta = \theta^{(t)}$. Write

$$H\left(\theta^{(t)} \mid \theta^{(t)}\right) - H\left(\theta \mid \theta^{(t)}\right) = E\left\{\log f_{Z|X}\left(Z \mid X, \theta^{(t)}\right) - \log f_{Z|X}\left(Z \mid X, \theta\right) \mid X, \theta^{(t)}\right\}$$

$$= \int -\log \left[\frac{f_{Z|X}(z \mid X, \theta)}{f_{Z|X}(z \mid X, \theta^{(t)})}\right] f_{Z|X}(z \mid X, \theta^{(t)}) dz$$

$$\geq -\log \int f_{Z|X}(z \mid X, \theta) dz = 0$$

Thus, any $\theta \neq \theta^{(t)}$ makes $H(\theta \mid \theta^{(t)})$ smaller than $H(\theta^{(t)} \mid \theta^{(t)})$.

If we choose $\theta^{(t+1)}$ to maximize $Q(\theta \mid \theta^{(t)})$ with respect to θ , then

$$\log f_X(x \mid \theta^{(t+1)}) - \log f_X(x \mid \theta^{(t)}) \geq 0,$$

since Q increases and H decreases, with restrict inequality when $Q(\theta^{(t+1)} \mid \theta^{(t)}) > Q(\theta^{(t)} \mid \theta^{(t)})$.

- Choosing $\theta^{(t+1)}$ at each iteration to maximize $Q(\theta \mid \theta^{(t)})$ with respect to θ constitutes the standard EM algorithm.
- If instead we simply select any $\theta^{(t+1)}$ for which

$$Q(\theta^{(t+1)} \mid \theta^{(t)}) > Q(\theta^{(t)} \mid \theta^{(t)}),$$

then resulting algorithm is called generalized EM.

- A step that increase Q increases the log-likelihood.
- The global rate of EM convergence is defined as

$$\rho = \lim_{n \to \infty} \frac{||\theta^{(t+1)} - \hat{\theta}||}{||\theta^{(t)} - \hat{\theta}||}.$$

 ρ effectively serves as a scalar summary of overall proportion of missing information.

- Conceptually, the proportion of missing information equals one minus the ratio of the observed information to the information that would be contained in the complete data.
- EM suffers slower convergence when the proportion of missing information is larger.
- The linear convergence of EM can be extremely slow compared to the quadratic convergence of, say, Newton's method, particularly when the fraction of missing information is large.
- However, the ease of implementation and the stable ascent of EM are often very attractive despite its slow convergence.

One-dimensional Illustration of EM Algorithm

FIGURE 4.1 One-dimensional illustration of EM algorithm as a minorization or optimization transfer strategy.

Illustration of EM Algorithm

To further understand how EM works, note that

$$I(\theta|x) \geq Q\left(\theta \mid \theta^{(t)}\right) + I\left(\theta^{(t)} \mid x\right) - Q\left(\theta^{(t)} \mid \theta^{(t)}\right) = G\left(\theta \mid \theta^{(t)}\right).$$

- Since the last two terms in $G(\theta \mid \theta^{(t)})$ are independent of θ , the functions Q and G are maximized at the same θ .
- G is tangent to I at θ^(t) and lies everywhere below I. We say that G is a minorizing function for I.
- The EM strategy transfers optimization from I to the surrogate function G (effectively to Q), which is more convenient to maximize. The maximizer of G provides an increase in I.
- Each E step amounts to forming the minorizing function G, and each M step amounts to maximizing it to provide an uphill step.

Example: Simple Exponential Distribution

- Suppose Y₁, Y₂ ~ exp(θ) and y₁ = 5 is observed but the value y₂ is missing.
- The complete-data log likelihood function is

$$\log L(\theta|y) = 2\log \theta - \theta y_1 - \theta y_2.$$

Because

$$E(Y_2|y_1,\theta^{(t)}) = E(Y_2|\theta^{(t)}) = \frac{1}{\theta^{(t)}},$$

the conditional expectation of $\log L(\theta|Y)$ yields

$$Q(\theta|\theta^{(t)}) = 2\log\theta - 5\theta - \theta/\theta^{(t)}$$
.

• The maximizer of $Q(\theta|\theta^{(t)})$ with respect to θ is easily to found to be the root of $2/\theta - 5 - 1/\theta^{(t)} = 0$.

Example: Univariate Normal Distribution

Let the complete-data vector $y=(y_1,\cdots,y_n)$ be a random sample from $N(\mu,\sigma^2)$. Then,

$$f(y|\mu,\sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2}\left(\sum y_i^2 - 2\mu\sum y_i + n\mu^2\right)\right\}.$$

which implies that $(\sum y_i, \sum y_i^2)$ are sufficient statistics for $\theta = (\mu, \sigma^2)$. The complete-data log-likelihood function is

$$I(\mu.\sigma^2) = -\frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\sum y_i^2 + \frac{\mu}{\sigma^2}\sum y_i - \frac{n\mu^2}{\sigma^2} + \text{constant}.$$

Example: Univariate Normal Distribution

Suppose $y_i, i = 1, \dots, m$ are observed and $y_i, i = m + 1, \dots, n$ are missing. Denote the observed data by $y_{obs} = (y_1, \dots, y_m)$.

The E-step requires the computation of

$$E_{\theta}\left(\sum y_i|y_{obs}\right)$$
 and $E_{\theta}\left(\sum y_i^2|y_{obs}\right)$.

At the t-th iteration of the E-step, compute

$$\begin{aligned} s_1^{(t)} &= E_{\theta} \left(\sum y_i | y_{obs} \right) = \sum_{i=1}^m y_i + (n-m) \mu^{(t)} \\ s_2^{(t)} &= E_{\theta} \left(\sum y_i^2 | y_{obs} \right) = \sum_{i=1}^m y_i^2 + (n-m) \left[\sigma^{2(t)} + \mu^{(t)2} \right] \end{aligned}$$

Example: Univariate Normal Distribution

lacktriangle The complete-data maximum likelihood estimation of μ and σ^2 are

$$\hat{\mu} = \frac{\sum_{i=1}^{n} y_i}{n}$$
 and $\hat{\sigma^2} = \frac{\sum_{i=1}^{n} y_i^2}{n} - \left(\frac{\sum_{i=1}^{n} y_i}{n}\right)^2$.

At the t-th iteration of the M-step, compute

$$\mu^{(t+1)} = \frac{\mathbf{s}_1^{(t)}}{n}$$

$$\sigma^{2(t+1)} = \frac{\mathbf{s}_2^{(t)}}{n} - \mu^{(t+1)2}.$$

Example: Multinomial Distribution

- Define $y = (y_1, y_2, y_3, y_4)$ with multinomial probability $(\frac{1}{2} \frac{1}{2}\theta, \frac{1}{4}\theta, \frac{1}{4}\theta, \frac{1}{2}) = (p_1, p_2, p_3, p_4).$
- Let $y_{obs} = (y_1, y_2, y_3 + y_4) = (38, 34, 125)$ be observed counts from a multinomial population, and then, observed data vector is a function of the complete-data vector.
- Since only y₃ + y₄ is observed and y₃ and y₄ are not, the observed data is considered incomplete.
- The complete-data log-likelihood is

$$I(\theta) = y_1 \log p_1 + y_2 \log p_2 + y_3 \log p_3 + y_4 \log p_4 + \text{constant}.$$

where y_1, y_2, y_3, y_4 are sufficient statistics.

Example: Multinomial Distribution

E-step:

$$\begin{split} E_{\theta}(y_1|y_{obs}) &= y_1 = 38, \quad \text{and} \quad E_{\theta}(y_2|y_{obs}) = y_2 = 34, \\ E_{\theta}(y_3|y_{obs}) &= E_{\theta}(y_3|y_3 + y_4) = 125\frac{\frac{1}{4}\theta}{\frac{1}{2} + \frac{1}{4}\theta}, \quad y_3^{(t)} = 125\frac{\frac{1}{4}\theta^{(t)}}{\frac{1}{2} + \frac{1}{4}\theta^{(t)}} \end{split}$$

• M-step: The complete-data maximum likelihood estimate of θ is

$$\frac{y_2 + y_3}{y_1 + y_2 + y_3}.$$

Then,

$$\theta^{(t+1)} = \frac{34 + y_3^{(t)}}{72 + y_3^{(t)}}.$$

- Three possible alleles: C, I, and T.
- C is dominant to I and T is recessive to I
 - Genotype CC, CI, and CT \Rightarrow carbonaria phenotype.
 - Genotype TT ⇒ typica phenotype.
 - Genotype II and TI ⇒ intermediate phenotype called insularia.
- If the allele frequencies in the population are p_C , p_I , and p_T , then the genotype frequencies should be p_C^2 , $2p_Cp_1$, $2p_Cp_T$, p_I^2 , $2p_Ip_T$, and p_T^2 for genotypes CC, CI, CT, II, IT, and TT, respectively. Note that $p_C + p_I + p_T = 1$.
- Capture n moths, of which there are n_C , n_I , and n_T of the carbonaria, insularia, and typica phenotypes, respectively. Thus, $n = n_C + n_I + n_T$.

- The observed data are $x = (n_C, n_I, n_T)$ and the complete data are $y = (n_{CC}, n_{CI}, n_{CT}, n_{II}, n_{IT}, n_{TT})$. The mapping from the complete data to the observed data is $x = M(y) = (n_{CC} + n_{CI} + n_{CT}, n_{II} + n_{IT}, n_{TT})$.
- Wish to estimate the allele probabilities, p_C, p_I, and p_T.
- The complete data log likelihood function is multinomial

$$\begin{split} \log L(\rho|y) &= n_{CC} \log \left\{ p_C^2 \right\} + n_{CI} \log \left\{ 2 p_C p_I \right\} + n_{CT} \log \left\{ 2 p_C p_T \right\} \\ &+ n_{II} \log \left\{ p_I^2 \right\} + n_{IT} \log \left\{ 2 p_I p_T \right\} + n_{TT} \log \left\{ p_T^2 \right\} \\ &+ \log \left(\frac{n}{n_{CC} n_{CI} n_{CT} n_{II} n_{IT} n_{TT}} \right). \end{split}$$

E-Step

$$E\left\{N_{CC}|n_{C},n_{I},n_{T},p^{(t)}\right\} = n_{CC}^{(t)} = \frac{n_{C}\left(p_{C}^{(t)}\right)^{2}}{\left(p_{C}^{(t)}\right)^{2} + 2p_{C}^{(t)}p_{I}^{(t)} + 2p_{C}^{(t)}p_{T}^{(t)}}$$

$$E\left\{N_{CI}|n_{C},n_{I},n_{T},p^{(t)}\right\} = n_{CI}^{(t)} = \frac{2n_{C}p_{C}^{(t)}p_{I}^{(t)}}{\left(p_{C}^{(t)}\right)^{2} + 2p_{C}^{(t)}p_{I}^{(t)} + 2p_{C}^{(t)}p_{T}^{(t)}}$$

$$E\left\{N_{CT}|n_{C},n_{I},n_{T},p^{(t)}\right\} = n_{CT}^{(t)} = \frac{2n_{C}p_{C}^{(t)}p_{I}^{(t)} + 2p_{C}^{(t)}p_{T}^{(t)}}{\left(p_{C}^{(t)}\right)^{2} + 2p_{C}^{(t)}p_{I}^{(t)} + 2p_{C}^{(t)}p_{T}^{(t)}}$$

E-Step

$$E\left\{N_{II}|n_{C}, n_{I}, n_{T}, p^{(t)}\right\} = n_{II}^{(t)} = \frac{n_{I}\left(p_{I}^{(t)}\right)^{2}}{\left(p_{I}^{(t)}\right)^{2} + 2p_{I}^{(t)}p_{T}^{(t)}}$$

$$E\left\{N_{IT}|n_{C}, n_{I}, n_{T}, p^{(t)}\right\} = n_{IT}^{(t)} = \frac{2n_{I}p_{I}^{(t)}p_{I}^{(t)}}{\left(p_{I}^{(t)}\right)^{2} + 2p_{I}^{(t)}p_{T}^{(t)}}$$

Then,

$$\begin{aligned} Q(p|p^{(t)}) &= n_{CC}^{(t)} \log\{p_C^2\} + n_{CI}^{(t)} \log\{2p_Cp_I\} + n_{CT}^{(t)} \log\{2p_Cp_T\} \\ &+ n_{II}^{(t)} \log\{p_I^2\} + n_{IT}^{(t)} \log\{2p_Ip_T\} + n_{TT} \log\{p_T^2\} + \kappa(n_C, n_I, n_T, p^{(t)}). \end{aligned}$$

• M-Step: Recall $p_T = 1 - p_C - p_I$ and differentiate w.r.t p_C and p_I .

$$\frac{dQ(p|p^{(t)})}{dp_{C}} = \frac{2n_{CC}^{(t)} + n_{CI}^{(t)} + n_{CT}^{(t)}}{p_{C}} + \frac{2n_{TT}^{(t)} + n_{CT}^{(t)} + n_{IT}^{(t)}}{1 - p_{C} - p_{I}}$$
$$\frac{dQ(p|p^{(t)})}{dp_{I}} = \frac{2n_{II}^{(t)} + n_{IT}^{(t)} + n_{CI}^{(t)}}{p_{C}} + \frac{2n_{TT}^{(t)} + n_{CT}^{(t)} + n_{IT}^{(t)}}{1 - p_{C} - p_{I}}$$

Then,

$$p_C^{(t+1)} = \frac{2n_{CC}^{(t)} + n_{CI}^{(t)} + n_{CT}^{(t)}}{2n}, \qquad p_I^{(t+1)} = \frac{2n_{II}^{(t)} + n_{IT}^{(t)} + n_{CI}^{(t)}}{2n}$$

• Suppose the observed phenotpye counts are $n_C = 85$, $n_I = 196$, and $n_T = 341$.

Example: Bayesian Posterior Mode

• Consider a Bayesian problem with likelhood $L(\theta|x)$, prior $\pi(\theta)$, and missing data or parameters Z. To find the posterior mode, the E-step requires

$$Q(\theta|\theta^{(t)}) = E\left[\log\left\{L(\theta|y)\pi(\theta)\kappa(y)\right\}|x,\theta^{(t)}\right]$$

= $E\left\{\log L(\theta|y)|x,\theta^{(t)}\right\} + \log \pi(\theta) + E\left\{\log \kappa(y)|x,\theta^{(t)}\right\},$

where the final term is a normalizing constant that can be ignored.

- This function Q is obtained by simply adding the log prior to the Q function that would be used in a maximum likelihood setting.
- Unfortunately, the addition of the log prior often makes it more difficult to maximize Q during the M step.

Variance Estimation

- In maximum likelihood settings, the EM algorithm is used to find an MLE but does not automatically produce an estimate of the covariance matrix of the MLEs.
- Use the asymptotic normality of the MLEs to justify seeking an estimate of the Fisher information matrix. One way to estimate the covariance matrix is to compute the observed information, $-l''(\hat{\theta}|x)$.
- In a Bayesian setting, an estimate of the posterior covariance matrix for θ can be motivated by noting the asymptotic normality of the posterior.

Louis's Method

Taking second partial derivatives of

$$\log f_X(x \mid \theta) = Q(\theta \mid \theta^{(t)}) - H(\theta \mid \theta^{(t)}),$$

and negating both sides yields

$$-I''(\theta \mid X) = -Q''(\theta \mid \omega) \Big|_{\omega=\theta} + H''(\theta \mid \omega) \Big|_{\omega=\theta},$$
$$\hat{i}_{X}(\theta) = \hat{i}_{Y}(\theta) - \hat{i}_{Z|X}(\theta),$$

where $\hat{i}_X(\theta) = -l''(\theta \mid x)$ is the observed information, and $\hat{i}_Y(\theta)$ and $\hat{i}_{Z|X}(\theta)$ will be called the complete information and the missing information, respectively.

Louis's Method

Interchanging integration and differentiation (when possible), we have

$$\hat{i}_{Y}(\theta) = -Q''(\theta \mid \omega)\Big|_{\omega=\theta} = -E\{I''(\theta \mid Y) \mid x, \theta\},$$

which is reminiscent of the Fisher information.

• The missing-information principle can be used to obtain an estimated covariance matrix for $\hat{\theta}$. It can be shown that

$$\hat{i}_{Z|X}(\theta) = \operatorname{var}\left\{\frac{d \log f_{Z|X}(Z \mid X, \theta)}{d\theta}\right\}$$

where the variance is taken with respect to $f_{Z|X}$.

Louis's Method

• Since the expected score is zero at $\hat{\theta}$,

$$\hat{i}_{Z|X}(\hat{\theta}) = \int S_{Z|X}(\hat{\theta}) S_{Z|X}(\hat{\theta})^{\mathsf{T}} f_{Z|X}(z \mid X, \hat{\theta}) dz,$$

where

$$S_{Z|X}(\theta) = \frac{d \log f_{Z|X}(z \mid x, \theta)}{d\theta}.$$

- The missing-information principle enables us to express $\hat{i}_X(\theta)$ in terms of the complete-data likelihood and the conditional density of the missing data given the observed data, while avoiding calculations involving the complicated marginal likelihood of the observed data.
- If $\hat{i}_Y(\theta)$ or $\hat{i}_{Z|X}(\theta)$ is difficult to compute analytically, it may be estimated via the Monte Carlo methods.

SEM Algorithm

• The EM algorithm defines a mapping $\theta^{(t+1)} = \Psi(\theta^{(t)})$ where the function $\Psi(\theta) = (\Psi_1(\theta), \cdots, \Psi_p(\theta))$ and $\theta = (\theta_1, \cdots, \theta_p)$. When EM converges, it converges to a fixed point of this mapping, so $\hat{\theta} = \Psi(\hat{\theta})$ with Jacobian matrix $\Psi'(\theta)$ with (i, j)-th element equaling $d\Psi_i(\theta)/d\theta_j$. Then,

$$\Psi'\left(\hat{\theta}\right)^{T} = \hat{i}_{Z|X}\left(\hat{\theta}\right)\hat{i}_{Y}\left(\hat{\theta}\right)^{-1}.$$

If we reexpress the missing information principle as

$$\hat{i}_{X}\left(\hat{\theta}\right) = \left[I - \hat{i}_{Z|X}\left(\hat{\theta}\right)\hat{i}_{Y}\left(\hat{\theta}\right)^{-1}\right]\hat{i}_{Y}\left(\hat{\theta}\right),$$

where I is an identity matrix, then inverting $\hat{i}_X\left(\hat{\theta}\right)$ provides the estimate

$$\hat{var}\left\{\hat{\theta}\right\} = \hat{i}_{Y}\left(\hat{\theta}\right)^{-1}\left(I + \Psi'\left(\hat{\theta}\right)^{T}\left[I - \Psi'\left(\hat{\theta}\right)^{T}\right]^{-1}\right).$$

SEM Algorithm

- This result is appealing in that it expresses the desired covariance matrix as the complete-data covariance matrix plus an incremental matrix that takes account of the uncertainty attributable to the missing data.
- When coupled with the following numerical differentiation strategy to estimate the increment, Meng and Rubin have termed this approach the supplemented EM (SEM) algorithm.
- Since numerical imprecisions in the differentiation approach affect only the estimated increment, estimation of the covariance matrix is typically more stable than the generic numerical differentiation approach.

Monte Carlo EM

In the Monte Carl EM algorithm, the *t*-th E-step can be replaced with the following two steps:

- ① Draw missing datasets $Z_1^{(t)}, \dots, Z_{m^{(t)}}^{(t)}$ iid from $f_{Z|X}(z|x, \theta^{(t)})$. Each $Z_j^{(t)}$ is a vector of all the missing values needed to compete the observed dataset, so $Y_j = (x, Z_j)$ denotes a complete dataset where the missing values have been replaced by Z_j .
- Calculate

$$\hat{Q}^{(t+1)}(\theta|\theta^{(t)}) = \frac{1}{m^{(t)}} \sum_{j=1}^{m^{(t)}} \log f_Y(Y_j^{(t)}|\theta).$$

Then, $\hat{Q}^{(t+1)}(\theta|\theta^{(t)})$ is Monte Carlo estimate of $Q^{(t+1)}(\theta|\theta^{(t)})$. The M-step is modified to maximize $\hat{Q}^{(t+1)}(\theta|\theta^{(t)})$.

ECM Algorithm

- Meng and Rubin's ECM algorithm replaces the M step with a series of computationally simpler conditional maximization (CM) steps.
- Each conditional maximization is designed to be a simple optimization problem that constrains θ to a particular subspace and permits either an analytical solution or a very elementary numerical solution.
- We call the collection of simpler CM steps after the t-th E step a CM cycle. Thus, the t-th iteration of ECM is composed of the t-th E step and the t-th CM cycle.

ECM Algorithm

- ECM Algorithm
 - Let S denote the total number of CM steps in each CM cycle. For $s=1,\cdots,S$, the s-th CM step in the t-th cycle requires the maximization of $Q(\theta|\theta^{(t)})$ subject to (or conditional on) a constraint, say

$$g_s(\theta) = g_s(\theta^{(t+(s-1)/S)})$$

where $\theta^{(t+(s-1)/S)}$ is the maximizer found in the (s-1)th CM step of the current cycle.

- When the entire cycle of S steps of CM has been completed, we set $\theta^{(t+1)} = \theta^{(t+S/S)}$ and proceed to the E step for the (t+1)-th iteration.
- Clearly any ECM is a GEM algorithm, since each CM step increases Q.

ECM Algorithm

- In order for ECM to be convergent, we need to ensure that each CM cycle permits search in any direction for a maximizer of $Q(\theta|\theta^{(t)})$, so that ECM effectively maximizes over the original parameter space for θ and not over some subspace.
- The art of constructing an effective ECM algorithm lies in choosing the constraints cleverly. Usually, it is natural to partition θ into S sub-vectors, $\theta = (\theta_1, \cdots, \theta_S)$. Then in the sth CM step, one might seek to maximize Q with respect to θ_S while holding all other components of θ fixed.
- This amounts to the constraint induced by the function $g_s(\theta) = (\theta_1, \dots, \theta_{s-1}, \theta_{s+1}, \dots, \theta_s)$. A maximization strategy of this type has previously been termed *iterated conditional modes*.

EM Gradient Algorithm

- If maximization cannot be accomplished analytically, then one might consider carrying out each M step using an iterative numerical optimization approach.
- This would yield an algorithm that had nested iterative loops.
- The ECM algorithm inserts S conditional maximization steps within each iteration of the EM algorithm, also yielding nested iteration.
- To avoid the computational burden of nested looping, Lange proposed replacing the M step with a single step of Newton's method, thereby approximating the maximum without actually solving for it exactly.

EM Gradient Algorithm

The M step is replaced with the update given by

$$\theta^{(t+1)} = \theta^{(t)} - Q'' \left(\theta \mid \theta^{(t)}\right)^{-1} \Big|_{\theta = \theta^{(t)}} Q' \left(\theta \mid \theta^{(t)}\right) \Big|_{\theta = \theta^{(t)}}$$
$$= \theta^{(t)} - Q'' \left(\theta \mid \theta^{(t)}\right)^{-1} \Big|_{\theta = \theta^{(t)}} I' \left(\theta^{(t)} \mid \mathbf{x}\right)$$

where $l'(\theta^{(t)} \mid x)$ is the evaluation of the score function at the current iterate.

- This EM gradient algorithm has the same rate of convergence to $\hat{\theta}$ as the full EM algorithm.
- In particular, when Y has an exponential family distribution with canonical parameter θ, ascent is ensured.