19日本国特許庁

(11)実用新桨出願公告

実用新案公報

昭53-10396

DInt. Cl.2 B 24 B 41 / 06 識別記号 520日本分類 庁内整理番号 →公告 昭和53年(1978)3月18日

74 K 21

6642 - 33

(全3百)

図接線切込みにおける被加工物提み防止装置

変像 顧 昭48-31449

四出 顧 昭48 (1973) 3月14日

開 昭49-133875.

❸昭49(1974)11月18日

案 者 久田三郎 個考

名古屋市北区辻町2の23の3

创出 顧 人 株式会社大隈鉄工所

名古屋市北区辻町1の32

20代 人 弁理士 三宅宏 外1名

砂実用新案登録請求の範囲

被加工物を自転並びに公転させる支持部材を設 け、被加工物の公転中に砥石の前面を通過させて 15 フォロアーを取付けたレスト軸を摺動可能に設け 研削する接線切込み方式において、前記支持部材 には一端に被加工物を受けるシューを他端にカム フオロアを取付けたレスト軸を被加工物とほぼ直 角に摺動可能に設け、更に前記支持部材に対して 砥石と反対側に被加工物方向に微細送り機構を介 20 して進退可能なカムを固定する部材を設けてなり 被加工物が公転中に研削されるとき、前記レスト 軸が前記カムにより被加工物の直径の変化に追従 して前進し被加工物を支えるようにしたことを特 徴とする接線切込みにおける被加工物撓み防止装 25 置。

考案の詳細な説明

本考案は細長い被加工物あるいは振れを生じや すい被加工物を研削する場合に研削抵抗等により 被加工物が変形した状態で研削される事を防止す 30 る被加工物撓み防止装置に関するもので、研削に よる被加工物の直径の変化に応じてシューを自動。 的に追従させて高精度の研削をなし得る事を目的 とするものである。

従来においては上記目的を達成するものに砥石 35 台の送り機構にシンクロ発信機を取付け、被加工 物機み防止装置側にシンクロ受信機を取付け、

砥石台の切込みによりシンクロ発信機を回転させい て信号をシンクロ受信機に送りシンクロ受信機を 同調回転させ、回転動力伝達機構を介してねじを 回し研削による被加工物の直径の変化に応じてレ 5 スト軸のシューを自動的に追従させるものである。 しかし、このものは高価であり、又ねじや歯車等 を多く使用しているのでパツクラツシユの発生す る部分が多く剛性不足で被加工物の直径の変化に. 対して正確に追従する事が困難である。

2

本考案はかかる欠点を除き、前配目的を達成す るために傷心軸の回動で早送りされ、且つ、傾斜 カムの直線移動で微細調整される倣いカムを固定 側に取付け、一方回動するホルダーバーには、一 端にシユーを、他端に前記倣いカム係合するカム ホルダーバーの回動によりカムフオロアが倣いカ ムに係合してレスト軸を前進させ、研削による被 加工物の直径の変化に応じてシューを自動的に追 從させるようにしたものである。

次に本考案を図面に示す実施例に基いて説明す ると1は所望の位置で回転する砥石、2は機台上 に設けられたテーブル、3はテーブルの上部空間 部分に回動自在に枢支されたホルダーバー、4は ホルダーバーに締着した主軸台および心押台(図 示せず)のセンタで支持された被加工物、5はテ ーブルに固着したブラケット、6は該ブラケット に回動自在に枢支された偏心軸で前記ブラケット に固着した油圧モータ7で回動される。8はベア リング9を介して偏心軸の大径部に装着されたラ イナーである。10はブラケット内で左右方向に **摺動可能ラムで一端に被加工物の直径減少量に対** 応するリフト量を有する倣いカム!」を固着し、 他端にはねじ軸12の回動により上下方向に摺動 可能な傾斜カム13を取付けている。14はわじ 軸に固着した握りである。15は傾斜カムを偏心 軸のライナーに常時押付ける為のばねである。1 6 はラムに固着したホルダーで止ねじ17でドツ

- グ18を保持している。19はブラケツトに固着 したラム前進確認用のリミツトスイツチである。 20はプラケツトに固着したラム後退確認用のリ ミツトスイツチである。ホルダーバー3には直角 ア22を設けたレスト軸23を摺動自在に挿入し ている。24はレスト軸をカムフオロア側に常時 付勢しているばねである。

上記のような構成において、被加工物4の搬入 1および倣いカム1 1はホルターバー 3 に対してそ れぞれ左右方向に離間している。被加工物4が両 センタ間に支持されるとホルダーバー3は10位 置まで反時計方向に急速旋回する。急速旋回が完 パー3側に前進し所定の位置に位置決めされる。 (做いカム11は油圧モータ7の回動によつて偏 心軸6が回動し傾斜カム13を介して左行し、ド ツグ1 8 かりミツトスイツチ1 9を押して油圧モー タの回転が止まり、最終位置決めは偏心軸に固着 20 した腕25がストツパポルト28に当つて停止す る)倣いカムの微細位置決めは握り14を回し傾 斜カム13を上下方向に動かして行なう砥石1お よび倣いカム11の位置決め完了後ホルダーパー 3は時計方向に自転回動し研削を開始する。 (こ 25 の時被加工物は自転しながら公転している事は貿 うまでもない)これによりカムフオロア22が倣 いカム11に係合してレスト軸23は左方に摺動 し、シユー21が被加工物4に接触する。被加工 物 4 の直径は砥石 1 の前面を通過するまで変化し 30

レスト軸23のシュー21も被加工物の直径の変 化に迫従して行く。

その他の動きとしては砥石が位置決めされた後 ホルダーバーが時計方向に 自転回動して被加工物 に一蝎にシユー21を固着し、他蝎にカムフオロ 5 の表面の黒皮が無くなつた時に倣いカムを前進位 置決めすることもあり得る。

本考案は上記のように、位置決め位置を調整出 来る倣いカムを固定側に設け、一方回動するホル ダーバーにレスト軸を摺動可能に設けて、ホルダ 搬出はaの位置で行なわれる。この時点では砥石 10 ーパーを回動させて被加工物の直径の変化に追徙 してレスト軸が摺動する構造にしたため構造が簡 単で製作費が安い上にパツクラツシュの発生する ねじや歯車をあまり使用していないので剛性を高 くすることが出来る。その上追従開始位置が任意。 了すると、砥石1および倣いカム11はホルダー ¹⁵ に選択出来、しかも倣いカムの前進端でどの位置 でも被加工物の研削進行に対応出来る等の効果が あり、所望の位置で回転している砥石に対して、 テーブルに回動自在に枢支されたホルダーバーに 主軸台と心押台とを締着し、両者のセンタで支持 された被加工物を自転およびホルダーパーの回動 で公転させながら前記砥石の前面を通過させて研 削する形式の接線切込みの研削盤に使用して特に 有効である。

図面の簡単な説明

図面は本考案の実施例を示すもので、第1図は **桜断面図、第2図は1部横断面図である。**

10……カムを固定する部材であるラム、11 ……倣いカム(カム)、21……シユー、22… …カムフオロア、23……レスト軸。

X ? E

