In [2]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import scipy.stats as stats from scipy.special import ndtri</pre>
	Narišite histogram dohodkov vseh družin v Kibergradu. Pri tem dohodke razdelite v enako široke razrede. Širino posameznega razreda določite v skladu s Freedman–Diaconisovim pravilom, Kjer sta q $1/4$ in q $3/4$ prvi in tretji kvartil, n pa je število enot. To vrednost nato smiselno zaokrožite na število oblike k · 10^r , kjer je k $\in \{1, 2, 5\}$ in $r \in Z$.""
	<pre>pot = "kibergrad.csv" data = pd.read_csv(pot) lastnosti = data.columns #print(data.head())</pre>
	<pre>dohodki = data.iloc[:,[3]] #stolpec dohodkov n = dohodki.size #tevilo vrstic oz podatkov q1 = dohodki.describe().loc['25%'][0] #1. kvartil q3 = dohodki.describe().loc['75%'][0] #3. kvartil</pre>
	<pre>zacetek = int(dohodki.describe().loc['min'][0]) #zacetek histograma konec = int(dohodki.describe().loc['max'][0]) sirina = 2*(q3 - q1)/np.cbrt(n) sirina = int(sirina//1000*1000)</pre>
	<pre>mu = dohodki.describe().loc["mean"][0] std = dohodki.describe().loc["std"][0] zacetek = (zacetek // sirina) * sirina #da se zacnejo na celo "lepo" stevilo konec = (konec // sirina + 1) * sirina k = 0</pre>
	<pre>y = [] while (k< (konec - zacetek)//sirina): #st intervalov dolzine sirina a= int(dohodki[(dohodki >= zacetek+ k*sirina) & (dohodki < zacetek + (k+1)*sirina y.append(a) k = k + 1</pre>
In [4]:	<pre>x = np.linspace(zacetek, konec, (konec - zacetek)//sirina+1) dohodki_np = dohodki.to_numpy() #normirano plt.figure() plt.hist(dohodki_np, bins=((konec - zacetek)//sirina), range=(zacetek, konec), densit</pre>
	<pre>plt.plot(x, stats.norm.pdf(x, mu, std)) plt.show()</pre> le-5 175
	1.25 - 1.00 - 0.75 -
	0.50 - 0.25 - 0.00 0 100000 200000 300000 400000
In [5]:	""" Narišite kumulativno porazdelitveno funkcijo porazdelitve dohodkov družin v Kibergradu in primerjajte s kumulativno porazdelitveno funkcijo ustrezne normalne porazdelitve. """ komulativno = np.cumsum(y) x = []
	<pre>for i in range(x.size-1): sredina = (x[i+1] + x[i])/2 X.append(sredina) y_cdf = stats.norm.cdf(X, mu, std) komulativno = komulativno/komulativno[-1] #normiramo podatke</pre>
In [6]:	
	0.8 -
	0.4 -
	0.0 100000 200000 300000 400000 """ d) Narišite še primerjalni kvantilni (Q–Q) grafikon, ki porazdelitev dohodkov družin v Kibergradu primerja z normalno porazdelitvijo ("""
In [7]:	<pre>dohodki_np = np.hstack(dohodki_np) urejen = np.sort(dohodki_np, axis=None) #uredimo array #normalno porazdelitev razdelimo na n+1 delov. delcki = np.arange(1,n+1)/(n+1) #range ne vkluci zadnjega</pre>
	<pre>#izracunamo teoreticne vrednosti porazdelitve teoreticne_vrednosti = ndtri(delcki) #normaliziramo nase vrednosti norm_podatki = (urejen - mu)/std</pre>
In [8]:	<pre>#narisemo graf plt.figure() plt.plot(norm_podatki, teoreticne_vrednosti) #scatter da v tocke plt.plot(teoreticne_vrednosti, teoreticne_vrednosti) #primerjava z normalno porazdeli; plt.show()</pre>
	4 - 3 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	0 - -1 - -2 - -3 -
	-4 - 2.5 0.0 2.5 5.0 7.5 10.0 12.5 """ Vzemite 1000 enostavnih slučajnih vzorcev velikosti 400 in narišite histogram vzorčnih povprečij dohodkov družin. """
In [9]:	<pre>vzorci_povprecja = [] var = [] #potrebujemo za f primer m = 1000 #st vzorcev for i in range(m): vzorec = dohodki.sample(n=400) vzorec mean = vzorec.describe().loc['mean'][0] #povprecje vzorca</pre>
In [10]:	<pre>vzorci_povprecja.append(vzorec_mean) #vzorec_var = np.std(vzorec, ddof=1) #deljeno z n-1 #var.append(np.square(vzorec_var)) plt.figure() plt.hist(vzorci_povprecja, bins=((konec - zacetek)//sirina), range=(zacetek, konec))</pre>
	plt.show() 400-
	200 - 100 -
In [11]:	0 100000 200000 300000 400000 vzorci_povprecja[0:5]
	<pre>print(min(vzorci_povprecja)) print(max(vzorci_povprecja)) nov_zacetek = min(vzorci_povprecja)//sirina*sirina nov_konec = (max(vzorci_povprecja)//sirina+1)*sirina 35633.0925</pre>
In [12]:	<pre>#Ker so razredi zelo skupaj si prilagodimo x os plt.figure() plt.hist(vzorci_povprecja, bins=(int((nov_konec - nov_zacetek)//sirina)), range=(nov_plt.show()</pre>
	400 -
	200 -
In []:	34000 36000 38000 40000 42000 44000 46000 48000 """f) Dorišite normalno gostoto, katere pričakovana vrednost se ujema s povprečnim dohodkom na družino
In [13]:	v Kibergradu, standardni odklon pa s standardno napako za enostavni slučajni vzorec velikosti 400. Komentirajte, kako dobro se prilega.""" #standardna napake je standardni odklon povprečij. Torej kako so porazdeljena povprečj povprecje_vzorcev = np.sum(vzorci_povprecja)/m #ker so ravno enake velikosti #SE = np.sqrt(np.sum(var)/n)
Out[13]:	<pre>S = np.std(vzorci_povprecja, ddof=1)/np.sqrt(1000) sigma = np.std(vzorci_povprecja, ddof=1) S 50.58825419940912</pre>
In [14]:	<pre>x = np.linspace(nov_zacetek, nov_konec, m) #namesto velikega st int((nov_konec - nov_z plt.figure() plt.hist(vzorci_povprecja, bins=(int((nov_konec - nov_zacetek)//sirina)), range=(nov_plt.plot(x, stats.norm.pdf(x, povprecje_vzorcev, S)) plt.show()</pre>
	0.007 - 0.006 - 0.005 - 0.004 -
	0.002 - 0.001 - 0.000
	Vidimo, da so povprečja zelo ozko porazdeljena kar je pričakovano. Za vzorčna povprečja podobno kot prej narišite še kumulativno porazdelitveno funkcijo in primerjalni kvantilni grafikon ter primerjajte z normalno porazdelitvijo. Komentirajte prileganje.
In [15]:	<pre>#res = stats.cumfreq(vzorci_povprecja, numbins=8) #x = np.linspace(nov_zacetek, nov_konec,8) #fig = plt.figure(figsize=(10, 4)) #ax1 = fig.add_subplot(1, 2, 1) #ax1.hist(vzorci_povprecja, bins=x, range=(nov_zacetek, nov_konec))</pre>
	<pre>#ax2 = fig.add_subplot(1, 2, 2) #ax2.bar(x, res.cumcount, width=10, color="blue") #plt.show() y = stats.cumfreq(vzorci_povprecja, numbins=(int((nov_konec - nov_zacetek)//sirina)), len(y[0]) x = np.linspace(nov_zacetek + 1000, nov_konec - 1000, int((nov_konec - nov_zacetek)//s</pre>
Out[15]:	<pre>len(x) 7 x = np.linspace(nov_zacetek, nov_konec, int((nov_konec - nov_zacetek)//sirina+1)) y = stats.cumfreq(vzorci_povprecja, numbins=(int((nov_konec - nov_zacetek)//sirina)),</pre>
	<pre>x = np.linspace(nov_zacetek + 1000, nov_konec - 1000, int((nov_konec - nov_zacetek)//s plt.figure() komulativno = y[0] plt.plot(x,komulativno) plt.show()</pre>
	1000 - 800 - 600 -
	400 - 200 - 0 -
In []:	<pre>kom_norm = komulativno/komulativno[-1] #normirana komulativna porazdelitev X = np.linspace(nov_zacetek, nov_konec, m)</pre>
	<pre>x = np.linspace(nov_zacetek, nov_konec, m) y_cdf = stats.norm.cdf(X, povprecje_vzorcev, S) plt.figure() plt.plot(x, kom_norm) plt.plot(X, y_cdf) plt.show()</pre>
	0.8 -
	0.4 - 0.2 - 0.0 -
In [18]:	0.0 34000 36000 38000 40000 42000 44000 46000 48000 q-q grafikon urejeno = np.sort(vzorci_povprecja) #uredimo po vrsti
	<pre>#normalno porazdelitev razdelimo na n+1 delov. delcki = np.arange(1,m+1)/(m+1) #range ne vkluci zadnjega #izracunamo teoreticne vrednosti porazdelitve teoreticne_vrednosti = ndtri(delcki)</pre>
In [19]:	<pre>#normaliziramo nase vrednosti norm_podatki = (urejeno - povprecje_vzorcev)/S #narisemo graf plt.figure()</pre>
	plt.plot(norm_podatki, teoreticne_vrednosti) #scatter da v tocke plt.plot(teoreticne_vrednosti, teoreticne_vrednosti) #primerjava z normalno porazdeli plt.show() 3
	-2 - -3 - 100 -50 0 50 100
	Povprečja o sicer porazdeljena normalno, ampak z neko drugo normalno porazdelitvijo kar je pričakovano, saj smo za parameter sigma uporbili standardno napako in ne cenilke za standardni odklon vzorčnega povprečja. Primerjajmo porazdelitev vzorčnih povprečij z normalno porazdelitvijo ki ima za standardni odklon
In [20]:	<pre>nepristransko cenilko za standardni odklon. x = np.linspace(nov_zacetek, nov_konec, m) #namesto velikega st int((nov_konec - nov_z) plt.figure() plt.hist(vzorci_povprecja, bins=(int((nov_konec - nov_zacetek)//sirina)), range=(nov_plt.plot(x, stats.norm.pdf(x, povprecje_vzorcev, sigma)) plt.show()</pre>
	0.00025 - 0.00020 -
	0.00015 - 0.00010 - 0.00005 -
T- [22].	0.00000 34000 36000 38000 40000 42000 44000 46000 48000 Normalna porazdelitev se zelo prilega vzorčnim povprečjem.
In [22]:	<pre>x = np.linspace(nov_zacetek + 1000, nov_konec - 1000, int((nov_konec - nov_zacetek))//s kom_norm = komulativno/komulativno[-1] #normirana komulativna porazdelitev X = np.linspace(nov_zacetek, nov_konec, m) y_cdf = stats.norm.cdf(X, povprecje_vzorcev, sigma) plt.figure() plt.plot(x, kom_norm)</pre>
	plt.plot(X, y_cdf) plt.show() 10 - 0.8 -
	0.6 -
T	0.2 - 0.0 - 34000 36000 38000 40000 42000 44000 46000 48000 urejeno = np.sort(vzorci povprecja) #uredimo po vrsti
In [24]:	<pre>urejeno = np.sort(vzorci_povprecja) #uredimo po vrsti #normalno porazdelitev razdelimo na n+1 delov. delcki = np.arange(1,m+1)/(m+1) #range ne vkluci zadnjega #izracunamo teoreticne vrednosti porazdelitve teoreticne_vrednosti = ndtri(delcki)</pre>
In [25]:	<pre>#normaliziramo nase vrednosti norm_podatki = (urejeno - povprecje_vzorcev)/sigma #narisemo graf</pre>
	plt.figure() plt.plot(norm_podatki, teoreticne_vrednosti) #scatter da v tocke plt.plot(teoreticne_vrednosti, teoreticne_vrednosti) #primerjava z normalno porazdeli: plt.show()
	2-1-0-
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$