Science and Technology Class 09

Previous Class Topic

- **Criteria** for mobile networks to be classified as 5G.
- **Standard-setting organizations** for mobile networks.

Millimeter Waves and Frequency Bands

Millimeter Waves in 5G

- 5G utilizes **millimeter waves**, which are radio waves with frequencies between 30 and 300 gigahertz (GHz).
- Called 'millimeter waves' because their wavelengths range from 1 to 10 millimeters; for example, at 30 GHz, wavelength (λ) is 10 mm; at 300 GHz, λ is 1 mm.
- The formula $\lambda = C/f$ ($C = speed \ of \ light$) shows frequency and wavelength are inversely proportional.
- Satellite communication has long used these frequencies; mobile networks are adopting them for the first time on a large scale. $= \frac{1}{10}$

Conventional vs. 5G Frequency Usage

- Earlier mobile networks operated on lower frequencies (e.g., 600-800 megahertz and up to a few GHz).
- 5G networks employ bands from 24 to 40 GHz, marking a substantial increase.
- ITU (International Telecommunication Union) regulates frequency allocation, with satellite communications using L band (1–2 GHz), S band (2–4 GHz), C band (4–8 GHz), Ku and Ka bands, among others.
- It is beneficial to recognize these bands even without precise memorization.

Characteristics and Challenges of Millimeter Waves

- Higher frequencies allow greater bandwidth, enabling higher data speeds.
- Millimeter waves are more susceptible to attenuation and scattering due to atmospheric conditions (rain, snow) and obstacles (metallic objects).
- Range decreases from several kilometers at lower frequencies to under a kilometer at millimeter wave frequencies.
- This requires a denser network of "small cell" stations to ensure coverage; small cell stations are compact and can be placed in more urban locations, roughly every kilometer.

Technologies Enabling 5G Networks

Small Cell Stations

• Short-range but numerous antenna installations, essential for 5G due to reduced propagation distance of higher frequencies.

Massive MIMO (Multiple Input, Multiple Output) and Beamforming

- **Massive MIMO** uses multiple antennas at each base station to send/receive signals from numerous devices simultaneously, increasing data rates and capacity.
- **Beamforming** creates highly directional transmission, focusing energy towards intended devices, reducing interference and improving both range and quality.

Network Slicing

- Network slicing allows a single physical network to be partitioned into multiple virtual networks.
- Each slice can be configured for specific applications or users, optimizing resource usage for different requirements (e.g., low-latency for critical communications).

Edge Computing

- Brings data processing and storage closer to the location where it is needed, reducing latency and improving speed.
- Complements cloud computing rather than replacing it, handling processing locally for smaller, real-time tasks and leaving large-scale processing to central cloud resources.

Other Communication and Internet Technologies

HTTP vs. HTTPS

- HTTP stands for Hypertext Transfer Protocol, the base protocol for the web.
- **HTTPS** (Hypertext Transfer Protocol Secure) adds a layer of encryption, improving security for website access.

Li-Fi and FSOCC

- **Li-Fi** (Light Fidelity) uses visible LED light to transmit data—very high speed but limited range and higher costs restrict its widespread adoption.
- **FSOCC** (Free Space Optical Communication Channel) uses laser light across air, employing complex modulation methods (e.g., frequency and phase); does not require government licensing as visible spectrum is unregulated.

Wi-Fi and Evolving Standards

- IEEE and similar bodies ensure Wi-Fi evolves in tandem with changing specifications of mobile networks, promoting interoperability and improvement.
- Wi-Fi standards are distinct but aim for compatibility with mobile frameworks.

Net Neutrality

- Net neutrality mandates equal treatment of all data by internet service providers; no
 preferential treatment, blocking, or throttling for specific services, apps, or websites, provided
 content is legal.
- Ensures a level playing field for all online participants—the wealthy and resource-limited entities alike.
- Example: India adopted net neutrality after rejecting selective free internet initiatives.
- Promotes fair competition and innovation by preventing discriminatory bandwidth allocation or blocking.
- The absence of net neutrality could have hindered early-stage companies such as Facebook from growing in competition with established platforms.

Broader Applications and Challenges in 5G Ecosystem

Frequency Range Flexibility in 5G

- 5G can operate in low (*less than 1 GHz*), mid (2-8 GHz), and high (24–40 GHz and above) frequencies.
- Companies select frequency bands based on application requirements and regional context; high-frequency (millimeter) bands require more dense infrastructure.

Physical Constraints: Scattering and Absorption

• High-frequency millimeter waves are more easily scattered and absorbed due to interaction with molecules and atmospheric constituents, leading to reduced range.

Internet of Things, Cyber-Physical Systems, and Edge Computing

Internet of Things (IoT)

- Refers to interconnected devices capable of communicating and acting based on data, often without direct human input.
- Examples include smartwatches (syncing health data), smart bulbs, and home automation features.
- IoT potential lies in automatic coordination among appliances (e.g., thermal sensors signaling ACs to shut off in unoccupied rooms).

Edge Computing

- Designed to work alongside IoT for efficient, real-time processing closer to data sources.
- Reduces latency and server load by allowing actions/processing to occur locally rather than via distant cloud servers.
- A notification or response (like an AC turning off when a room is empty) happens instantly across devices on the same local network.
- Inspired by the principle of subsidiarity and decentralized systems; tasks are handled locally unless they require broader resources.

Cloud Computing

- Involves storing and processing data on remote, Internet-accessible servers ("cloud") rather than exclusively on local computers.
- *Origin story*: Amazon developed spare computing capacity for festive sales and began renting it out to others (known today as Amazon Web Services).
- Includes services like data backup (Google Photos, Apple's iCloud), remote-accessible software (SaaS model), and storage accessible on multiple devices.
- Key for global IT outsourcing and everyday activities, such as Gmail and DigiLocker.

Comparison Table: Cloud vs. Edge Computing

Feature	Cloud Computing	Edge Computing
Processing Location	Remote servers/data centers	Near data source/device
Latency	Higher (distant servers)	Lower (local processing)
Security	Dependent on network/server	Improved (less exposure to networks)
Scalability	High	Limited (local resources)
Applications	Backups, heavy analytics, SaaS	IoT actions, immediate responses

Standalone Devices, CPS, and IoT Differences

- Not all sensor-equipped devices are IoT; network connectivity and data-sharing are essential for IoT classification.
- Cyber-Physical Systems (CPS) is a broader term; while all IoT devices are CPS, some devices may be CPS without network connectivity.

Misconceptions and Safety with 5G

Concerns about 5G Radiation

- 5G radiation is a form of non-ionizing electromagnetic radiation (radio wave); substantially lower in frequency than visible light.
- It is harmless at regulated intensities, with no credible scientific basis for claimed harms to birds, humans, or the Earth's magnetic field.
- Harm is a function of both intensity and frequency; for example, high-intensity lasers (not used in communication) can cause damage.

Specific Absorption Rate (SAR)

- **SAR** measures the energy absorption rate in the body from devices like mobile phones.
- Regulatory frameworks ensure SAR values remain within safe limits.
- Prolonged direct exposure (e.g., long calls) may increase exposure but not beyond regulated safety guidelines.

Separating Correlation and Causation

- Incidents like bird deaths near towers are often misattributed to radiation without factual causality; alternative explanations may include pollution or other environmental factors.
- Scientific practice requires distinguishing correlation from proven cause for accurate health risk assessments.

Socio-Political and Economic Dimensions of 5G in India

Spectrum and Cost

- High cost of spectrum allocation can impact final data usage prices and industry competition.
- Indian data is inexpensive due to a high population and intense price competition; yet, spectrum costs have led to market consolidation.
- Two major players (Jio and Airtel) now dominate the Indian telecom market.

Digital Divide and Infrastructure

- 5G requires dense and fast infrastructure, potentially increasing the urban-rural divide if not systematically addressed.
- Significant investment in infrastructure and technology is needed to extend benefits evenly.

High Energy Consumption and Foreign Dependence

- Operating denser high-frequency networks may significantly elevate energy requirements.
- Reliance on foreign technologies (especially in hardware) presents a technological and strategic challenge.

Cybersecurity

- Increased connectivity heightens cybersecurity risks as more data transits over networked infrastructure.
- Continuous investment is needed to protect privacy and ensure security resilience.

Sensors, Actuators, IoT, and CPS

Role of Sensors and Actuators

- Sensors detect and record physical properties (e.g., temperature, motion, pressure, infrared).
- Actuators respond to sensor data, performing actions (e.g., ACs shutting off, taps running automatically, escalators operating).
- These underpin both IoT and broader CPS networks.

Communication Protocols: RFID and NFC

 IoT and CPS devices may communicate using technologies like RFID (Radio Frequency Identification) and NFC (Near Field Communication), allowing data transfer and control actions wirelessly.

Smart Devices and Networks

- Examples extend from home automation (bulbs, thermostats) to industrial supply chains and urban services (metro escalators, water taps).
- Autonomous vehicles exemplify advanced CPS systems by using sensors and local processing to navigate independently.

Advanced Computing Paradigms

Biocomputers

- Biocomputers operate by leveraging biological molecules (proteins, DNA) to perform computations, aiming to mimic complex biological processes.
- The technology is under development but demonstrates potential for unique problem-solving capabilities.

Brain-Computer Interfaces

- Brain-Computer Interfaces (BCI) connect the human brain directly to machines, enabling control of devices through cognitive signals.
- Used primarily for medical aid, such as prosthetics for paralyzed individuals or those with vision impairment.
- **Neuralink** is at the forefront, developing implants for seamless machine-brain interaction.

Ethical and Security Considerations

- Ethical challenges include potential cognitive augmentation beyond restoration, impacting fairness and privacy.
- Data privacy remains a paramount concern as brain data may be highly sensitive and valuable.
- Ongoing development must address these ethical and technical challenges.

Augmented Reality, Virtual Reality, Mixed Reality, and Metaverse Augmented Reality (AR)

- AR overlays 3D holographic projections or digital images/video onto the real environment, enhancing the user's experience.
- Utilized for education, interactive demonstrations, and visualization of complex concepts.

Virtual Reality (VR)

- VR immerses users in an entirely simulated digital environment, often requiring specialized headgear (e.g., Oculus Quest).
- Applications span gaming, medical training (e.g., surgery simulations), trauma therapy, distance education, and tourism via virtual experiences.

Mixed Reality (MR) and Extended Reality (XR)

- MR blends AR and VR, allowing users to interact with digital projections while remaining aware of their real surroundings.
- XR serves as an umbrella term encompassing AR, VR, and MR.

Metaverse

- Metaverse represents a persistent virtual universe where users interact through avatars; activities include socializing, economic transactions, and entertainment.
- Conceived as the next phase of digital interaction, but widespread adoption and legal frameworks remain limited.

Supercomputers

Nature and Capabilities

- Supercomputers are highly specialized, powerful machines capable of solving complex computational problems and running large-scale simulations.
- They use parallel processing to execute billions of instructions simultaneously, outperforming standard computers.
- Performance is measured in **FLOPS** (Floating Point Operations per Second); current top machines reach petaflops (10^15 flops) and exaflops range.

Key Hardware Characteristics

Characteristic	Typical Supercomputer	Standard Computer
CPUs/GPUs	Specialized, parallel (many cores)	General-purpose CPUs, fewer cores
RAM and Storage	Massive (for handling big data)	Limited to personal/office use
Processing Mode	Parallel (many tasks at once)	Mostly sequential

Applications of Super computers -

- Weather Forecasting and Climate Modeling: Integrate massive environmental data sets for accurate short- and long-term predictions.
- **Supply Chain Management**: Companies (e.g., Amazon, Asian Paints) use supercomputers for logistics optimization and consumer demand forecasting.
- **Big Data Analytics**: Extract patterns and correlations across diverse datasets for recommendations (e.g., YouTube, Spotify), public service delivery, and risk assessment.
- **Pharmaceutical Research**: Molecular simulations for drug development streamline initial testing by predicting potential outcomes.
- Cosmology and Astronomy: Model evolution of the universe, solar system formation, and related phenomena.
- **Civil and Material Engineering**: Simulate stresses and performance under various operating conditions.
- **Deep Learning**: Support training of large-scale artificial intelligence systems. **Examples**:
- Weather prediction: Supercomputers process data from weather balloons and sensors to forecast parameters like rainfall and temperature.
- Social services: Cross-linked analytics to identify deserving beneficiaries in welfare schemes.
- Online services: Algorithms recommend content by analyzing user history and broader trends.

Development and Initiatives in India

- **Param 8000**: Developed in 1991 by C-DAC after the US denied India's technology request, marking a milestone in indigenous supercomputing.
- Current Leading Machines: Pratyush, Erawat, Param Siddhi AI, and Mihir.
- National Supercomputing Mission (2015):
- Objective to establish at least 70 supercomputing facilities across research institutions.
- Managed by the Department of Science & Technology and Ministry of Electronics & IT.
- Progress includes over 28 installed supercomputers, with several above 1 petaflop in capacity.
- Focuses on indigenization (local assembly), workforce training (BTech/MTech programs), and high-speed grid networking across facilities.
 - -> Param Ganga in IIT Roorkee has 1.66PF capacity.

Quantum Technologies: Overview and Foundational Concepts

Meaning of Quantum

- "Quantum" refers to discrete, fundamental units, especially as applied in quantum mechanics and quantum technologies.
- Classical mechanics (Newtonian physics) suffices at everyday scales but fails at the atomic and subatomic levels.

Wave-Particle Duality

- Light, initially thought to be either a wave (Huygens, Maxwell) or particle (Newton), is actually both (as shown by the photoelectric effect).
- *Photoelectric effect*: Light of certain frequencies (e.g., blue) can immediately release electrons from metals, an observation Einstein explained using "quanta" (now known as photons).
- All particles (including electrons, shown in double-slit experiments) exhibit wave-like as well as particle-like properties.
- The mathematical treatment (not everyday intuition) accurately encapsulates this duality.

Heisenberg's Uncertainty Principle

- It is impossible to determine certain pairs of physical properties (e.g., position and velocity) of a particle with absolute precision at the same time.
- The act of measuring one property more precisely results in increased uncertainty in the other.
- This is not a technological limitation but a fundamental law of nature, observed universally in experiments.

Development of Quantum Mechanics

- Scientists like Erwin Schrödinger and Paul Dirac combined ideas to formulate the modern theory of quantum mechanics in the early 20th century.
- All entities at microscopic scale possess dual (wave-particle) nature and are described probabilistically.
- Quantum technologies now build upon these principles for innovation in fields such as computing and secure communication.

Topic to be Discussed in the Next Class

- Quantum technologies, including basic principles of quantum mechanics.
- Applications and implications of quantum computing and communication.