Breaking Through the 80% Glass Ceiling: Raising the State of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph Information

Michele Bevilacqua and Roberto Navigli

ACL2020

Overview

- Worse Sense Disambiguation: given a word w and a context c, predict the sense (synset) of the word.
- This work (EWISER) extends the idea of the EWISE (ACL2019) model in:
 - + Computing the unnormalized scores of the words (logits) z.
 - + Using synset embeddings O in the output layer.

EWISE

$$\mathbf{z}_s = \mathbf{h}^T \mathbf{g}^{(\mathbf{s})} + \mathbf{b}^T \mathbf{g}^{(\mathbf{s})}$$

EWISER: Baseline

- Use BERT to produce context-aware representations for words.
- The unnormalized scores of the words z are computed by:

$$B = B_{-4} + B_{-3} + B_{-2} + B_{-1}$$

$$H_0 = \text{BatchNorm}(B)$$

$$H_1 = \text{swish}(H_0W + \mathbf{b})$$

$$Z = H_1O$$

EWISER: Structured logits

- Using Lexical Knowledge Bases (LKBs) with relational information between synsets to obtain different structures.
- The structures are encoded by an adjacency matrix A, which can be learned or fixed during training.
- The score of a word w.r.t a sense (synset) now also depends on the neighbors of the main synset in the structure encoded in A.

$$\mathbf{q}_s = \mathbf{z}_s + \sum_{s' \in V | \langle s', s \rangle \in E} w(\langle s', s \rangle) \cdot \mathbf{z}_{s'}$$

EWISER: Structured logits

 This work experiments with different relations existing in WordNet to obtain different types of A.

Model A	Model Arch.			No15-		
baseline	-	74.2	73.9	52.2		
hyper	A-freeze	75.6	75.4	59.8		
	A-train	75.9	75.5	59.2		
hypo	A-freeze	74.6	74.4	57.7		
	A-train	74.6	74.3	54.5		
hyper+hypo	A-freeze	75.7	75.5	59.8		
	A-train	75.7	75.4	57.7		
hyper*	A-freeze	75.2	75.0	58.6		
	A-train	75.4	75.3	57.7		
hyper+hypo*	A-freeze	75.4	75.3	59.9		
	A-train	74.7	74.4	56.5		

Table 1: Evaluation of structured logits on English allwords WSD. F1 is reported.

EWISER: Synset Embeddings

- Try different strategies for incorporating the synset embeddings into the network:
 - + Init: plain initialization
 - + Freeze: Pretrained initiliazation and freeze.
 - + Thaw: Training a freeze model, restore the best checkpoint, further training "thawed".
 - + Thaw*: same as "Thaw", but with a smaller learning rate.

EWISER: Synset Embeddings

Model A	ALL	No15	No15		
baseline	_	74.2	73.9	52.2	
Deconf	O-init	75.3	75.2	55.2	
	O-freeze	66.4	66.0	72.2	
	O-thaw	75.3	75.2	60.5	
	O-thaw*	73.8	73.7	62.3	
LMMS	O-init	75.5	75.4	55.1	
	O-freeze	75.9	75.4	59.4	
	O-thaw	75.4	75.0	57.4	
	O-thaw*	75.8	75.4	57.3	
LMMS +	O-init	76.1	76.0	59.4	
SensEmBERT	O-freeze	76.3	76.0	64.7	
	O-thaw	76.4	76.1	62.3	
	O-thaw*	76.7	76.6	63.4	

Table 2: Evaluation of *O* initialization and training strategies on English all-words WSD. F1 is reported.

Results

S	G	\mathbf{G}^{+}	E	System	ALL	No15	No15	S2	S3	S7	S13	S15	N	V	A	R
\	V	21	-	Kumar et al. (2019)	71.8	70.9*	-	73.8	71.1	67.3	69.4	74.5	74.0	60.2	78.0	82.1
1	1	-	-	Loureiro and Jorge (2019)	75.4	75.2*	-	76.3	75.6	68.1	75.1	77.0	-	-	1-0	-
1	-	-	-	Hadiwinoto et al. (2019)	73.7*	73.2*	-	75.5	73.6	68.1	71.1	76.2	-	- 1	-	-
1	1	-	-	Huang et al. (2019)	77.0*	76.2*	-	77.7	75.2	72.5	76.1	80.4	-	-	-	-
1	1	-	-	Scarlini et al. (2020) - Sup.	- 1	A.1	-		-	- 1	78.7	-	80.4	- 1	1-0	-
1	-	-	-	Vial et al. (2019)	75.6	-	-	-	-	-	-	-	-	-	-	-
1	-	_	-	Vial et al. (2019) - ENS	76.7	76.5*	_	77.5	77.4	69.5	76.0	78.3	79.6	65.9	79.5	85.5
1	†	-	-	$EWISER_{hyper}$	77.0*	76.9	60.4	77.5	77.9	71.0	76.4	77.8	79.9	66.4	79.0	85.5
1	1	-	-	$EWISER_{hyper}$	77.5	77.3	68.2	78.4	77.4	71.0	77.4	78.7	80.7	65.1	80.9	86.1
1	†	- 1	-	$EWISER_{hyper+hypo}$	76.8	76.8	59.5	77.7	77.9	70.3	76.2	76.3	79.4	65.9	80.0	86.7
1	1	-	-	$EWISER_{hyper+hypo}$	78.3	78.2	69.1	78.9	78.4	71.0	78.9	79.3	81.7	66.3	81.2	85.8
√	\	✓	1	Vial et al. (2019)	77.1	21	-	-	-	21	141	_	_	21	-	
1	1	~	1	Vial et al. (2019) - ENS	79.0*	78.4*	-	79.7	77.8	73.4	78.7	82.6	81.4	68.7	83.7	85.5
1	1	1	1	EWISER_{hyper}	80.1	79.8	75.2	80.8	79.0	75.2	80.7	81.8	82.9	69.4	83.6	87.3
V	1	✓	V	$EWISER_{hyper+hypo}$	79.8	79.3	75.1	80.2	78.5	73.8	80.6	82.3	82.7	68.5	82.9	87.6
-	-	-	-	Scozzafava et al. (2020)	71.7	71.0*	-	71.6	72.0	59.3	72.2	75.8	-	-	-	-
-	1	21	-	Scarlini et al. (2020) - KB	-	21	-	-	-	2	74.8	-	75.9	-	(=)	-

Results

Cross-lingual WSD:

		S15				
	DE	ES	FR	IT	ES	IT
Scozzafava et al. (2020)	76.4	74.1	70.3	72.1	63.4	69.0
Scarlini et al. (2020)	79.2*	73.4*	77.8*	69.8*	_	-
Ours (baseline)	81.7	76.6	80.8	77.2	67.3	70.6
Ours (EWISER)	80.9	78.8	83.6	77.7	69.5	71.8