

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 15/12, C07K 14/705

A2

(11) International Publication Number: WO 95/11974

(43) International Publication Date: 4 May 1995 (04.05.95)

(21) International Application Number: PCT/US94/11897

(22) International Filing Date: 19 October 1994 (19.10.94)

(30) Priority Data:

08/141,500 22 October 1993 (22.10.93) US 08/143,215 26 October 1993 (26.10.93) US

(71) Applicant: LIGAND PHARMACEUTICALS, INC. [US/US]; 9393 Towne Center Drive, San Diego, CA 92121 (US).

(72) Inventor: MUKHERJEE, Ranjan; 11341 Avenida De Los Lobos, San Diego, CA 92127 (US).

(74) Agents: CHEN, Anthony, C. et al.; Lyon & Lyon, First Interstate World Center, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US). (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR

AND THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPE

(57) Abstract

YX

A human peroxisome proliferation activated receptor gene is purified from the environment in which it naturally occurs, and preferably provided within an expression vector.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	Li	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		J		

1

DESCRIPTION

Human Peroxisome Proliferator Activated Receptor

Cross Reference to Related Application

application is a continuation-in-part Application Docket No. 202/041, titled "Human Peroxisome Proliferator Activated Receptor, "filed October 22, 1993, by Mukherjee, the disclosure of which is incorporated herein by reference.

Field of the Invention

5

This invention relates to the cloning and uses of a human peroxisome proliferator activated receptor.

Background of the Invention

A peroxisome proliferator is an agent that induces peroxisomal proliferation. Peroxisome proliferators are a diverse group of chemicals which include unsaturated fatty acids, hypolipidemic drugs, herbicides, leukotriene antagonists, and plasticizers (for a review, see Green, 10 S., 43 Biochem. Pharmacol. 393-400, 1992). Hypolipidemic drugs such as clofibrates have been found to lower triglycerides and cholesterol levels in plasma and to be beneficial in the prevention of ischaemic heart disease in individuals with elevated levels of cholesterol (Havel, 15 R.J. and Kane, J.P., 13 Ann. Rev. Pharmac. 287-308, 1973). Therapeutic use of such drugs, however, is questioned because clofibrates are carcinogens in rats.

Peroxisome proliferator activated receptor (PPAR) is a member of the steroid receptor family. It is activated 20 by peroxisome proliferators. Issemann and Green, 347 Nature 645, 1990, cloned a mouse peroxisome proliferator activated receptor (mPPAR) gene from a mouse liver complementary DNA (cDNA) library. Göttlicher et al., 89 Proc. Nat. Acad. Sci. USA 4653-4657, 1992, cloned a rat 25 peroxisome proliferator activated receptor (rPPAR) gene from a rat liver cDNA library. PPARs from mouse and rat share 97% homology in amino acid sequence

2

particularly well-conserved putative ligand-binding Three members of the Xenopus nuclear hormone domain. receptor superfamily have also been found to be structurally and functionally related to the **mPPAR** (Dreyer et al., 68 Cell 879-887, 1992).

Schmidt et al., 6 Molecular Endocrinology 1634-1641, 1992, cloned a steroid hormone receptor gene, NUC1, from a human osteosarcoma cell cDNA library. The homology between amino acid sequence of NUC1 and that of the mouse PPAR is only 62%. Thus, although it is clear that NUC1 is a member of the PPAR receptor group, it remains to be determined whether NUC1 is the human homolog of the mouse PPAR or a new member of the PPAR family.

Sher et al., 32 Biochemistry 5598-5604, 1993, cloned 15 a human PPAR gene from a human liver cDNA library. clone has 85% nucleotide sequence homology and 91% amino acid sequence homology with the mPPAR clone.

Summary of the Invention

10

25

The present invention relates to the cloning of a human PPAR gene, hPPAR1. 20 The protein encoded by hPPAR1 has 92% homology with the mouse PPAR. It is different from the human PPAR cloned by Sher et al., supra, at two locations in the amino acid sequence, i.e., amino acids 268 and 296.

The hPPAR1 clone can be used for the expression of large amounts of hPPAR1. This human PPAR clone is also useful for screening compounds for improved pharmacological profiles for the treatment hyperlipidemia with higher potency, efficacy, and fewer 30 side effects. Specifically, the human PPAR clone can be used to screen for compounds active as primary endogenous inducers of the human PPAR. In addition, it is useful for establishing the tissue specific expression pattern of human PPAR. For example, a Northern blot can be used to 35 reveal tissue specific expression of the gene to aid treatment of diseases such as atherosclerosis.

3

Thus, in a first aspect, the invention features a purified nucleic acid encoding a human PPAR with the nucleotide base sequence shown in Figure 1, and given as SEQ ID NO. 1. By purified nucleic acid is meant that the nucleic acid is separated from its natural environment and from other nucleic acids.

In a second aspect, the present invention features a vector containing the human PPAR gene. This vector may be used for multiplication of the human PPAR gene or expression of the human PPAR gene.

In a preferred embodiment, the vector is an expression vector. In one example, the expression vector is used to make a recombinant human PPAR nucleic acid, which can be used as a specific probe for DNA or RNA complementary to the human PPAR sequence. In another example, the expression vector is used to express human recombinant PPAR protein.

By vector is meant a plasmid or viral DNA molecule into which either a cDNA or a genomic DNA sequence is inserted.

20

By expression vector is meant a vector that directs protein synthesis from a promoter. In a preferred embodiment, either vector pBacPAK8 (Clontech) or vector pBacPAK9 (Clontech) is used to express the human PPAR in insect cells. In another preferred embodiment, vector pYES2 (Invitrogen) is used to express the human PPAR in yeast cells. In yet another preferred embodiment, pBKCMV (Stratagene) is used to express the human PPAR in mammalian cells.

30 By recombinant human PPAR is meant a non-naturally expressed human PPAR.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

4

Description of the Preferred Embodiments Drawings

Figure 1 is the nucleotide and amino acid sequence of hPPAR1; and

Figure 2 is a comparison of the amino acid sequences of hPPAR1 and the mouse PPAR.

What follows is an example of the cloning of a human PPAR. Those of ordinary skill in the art will recognize that equivalent procedures can be readily used to isolate human PPAR from cDNA libraries or genomic libraries of other tissues than that exemplified below, namely the liver.

In general, the cloning of the human PPAR involved probing a human liver cell cDNA library with a labeled 5 EcoRI-BglII fragment (nucleotides 450-909) of the rat PPAR (459 bases). The sequence of the probe is shown in Göttlicher et al. supra.

The recipes for buffers, mediums, and solutions in the following examples are given in J. Sambrook, E. F. 20 Fritsch, and T. Maniatis, <u>Molecular Cloning: A Laboratory Manual</u>, 2 Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.

Example 1: Cloning of a human PPAR

A human PPAR subtype, hPPAR1, was cloned from a human liver 5'-stretch cDNA library (Clontech #HL1115a) in lambda gt10 phages. C600-Hfl coli (Clontech) was grown overnight in LB broth supplemented with 0.2% maltose. A required amount of phage (corresponding to 2 million plaques) was mixed with 200 microliters of 10 mM MgCl₂/10 mM CaCl₂ and 1.5 milliliters of the overnight C600-Hfl coli and incubated at 37°C for 30 minutes. Soft LB agarose was added at 48°C, mixed and poured onto prewarmed 22x22 cm rectangular LB agar plates and incubated overnight at 37°C.

Plague lifts were performed by chilling the plates at 4°C to harden the top agarose and prevent it from peeling,

PCT/US94/11897 WO 95/11974

5

marking a nylon or nitrocellulose filter on the surface contacting the plaques, laying the filter on the surface without trapped air bubbles, and leaving it for about a A number of asymmetric dots were inserted with 5 Indian ink with a syringe and needle so that the ink soaked into the agar. The sheets were then peeled gently away, and laid plaque side up on two sheets of Whattman 3MM soaked in denaturing solution, and left for about 2 minutes. The sheets were then peeled away and immersed in a standard neutralizing solution for 5 minutes, immersed in 5% SSC, air dried, and baked at 80°C under vacuum, for 2 hours.

The filters were prehybridized in 40% formamide, 5X SSC, 0.1 % SDS, 1X Denhardt, and 100 ng/ml denatured 15 salmon sperm DNA at 37°-42°C for 1 hour. Labeled DNA probe (1 million cpm/ml) was denatured by heating at 100°C and then minutes, chilled, added prehybridization solution, and hybridized at 37°-42°C The filters were washed in 2X SSC and, 0.1% overnight. 20 SDS at 42°C or higher temperature.

Positive plaques were identified and purified by rescreening two more times. The probe was labeled by nick-translation.

Phage stocks were made by isolating and removing a 25 well separated plaque with the narrow end of an autoclaved Pasteur pipette, immersing it in 1 ml of standard SM buffer, and adding a drop of chloroform. This was left for a few hours at room temperature (20°C-24°C) or overnight at 4°C, vortexed, and centrifuged.

30

The cDNA insert was amplified by polymerase chain reactions (PCR). 20 microliters of phage stock was used in 100 microliters of standard PCR reaction buffer, by adding all components except Polymerase. This mixture was heated to 99°C, and Vent DNA polymerase (Biolabs) was 35 added to start the PCR cycles. The PCR conditions were 95°C 1 minute, 72°C 1 minute, 72°C 3 minutes (1 minute per

6

kilobase) for 30 cycles, 72°C 5 minutes, and kept at 4°C till further utilized.

The applicant isolated a clone from the cDNA library using an EcoR1-BglII fragment (nucleotides 450-909) of the 5 rat PPAR (459 bases) as a probe and the hybridization conditions provided above. This clone was purified and its sequence defined. This sequence is shown in Figure 1, and as SEQ. ID. NO. 1. Figure 2 is a comparison of mPPAR and hPPAR1 amino acid sequences with those amino acids 10 having identity between the two sequences enclosed in blocks.

Example 2: Northern blot analysis

A human multiple tissue Northern blot was purchased from Clontech. Screening was done following the 15 manufacturer's protocol. The blot was prehybridized in 5X 10X Denhardt's solution, $100\mu g/ml$ of freshly denatured salmon sperm DNA, 50% formamide and 2% SDS for 3 hours at 42°C. DNA from the EcoR1 site at position 1025 of the coding region to the end of the cloned gene was 20 used as probe (see Figure 1). This DNA was labeled by random priming, boiled and added at a concentration of 1 of prehybridization million cpm/ml solution. Hybridization was carried out for 13 hours at 42°C. blot was then washed in 2X SSC, 0.05% SDS at room 25 temperature followed by two washes in 0.1% SSC, 0.1% SDS at 50°C and exposed to X-ray film.

A specific band of about 10 kilobase was observed in all tissues except the brain. Maximal expression was observed in skeletal muscle, followed by heart, placenta, pancreas, liver, kidney, and lung. The expression of hPPAR1 gene is therefore observed in tissues known to express PPARs in other species.

	SEQUENCE LISTING
	(1) GENERAL INFORMATION:
	(i) APPLICANT:
5 10	 (A) NAME: LIGAND PHARMACEUTICALS, INC. (B) STREET: 9393 Towne Centre Drive (C) CITY: San Diego (D) STATE: California (E) COUNTRY: United States of America (F) POSTAL CODE (ZIP): 92121 (G) TELEPHONE: (619) 535-3900 (H) TELEFAX: (619) 535-3906
15	(ii) TITLE OF INVENTION: HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR
	(iii) NUMBER OF SEQUENCES: 3
	(iv) COMPUTER READABLE FORM:
20	(A) MEDIUM TYPE: 3.5" Diskette, 1.44 Mb (B) COMPUTER: IBM compatible (C) OPERATING SYSTEM: IBM P.C. DOS (Version 5.0)
	(D) SOFTWARE: WordPerfect (Version 5.1)
25	(v) CURRENT APPLICATION DATA:
	APPLICATION NUMBER: To Be Assigned
	(vi) PRIOR APPLICATION DATA:
30	(A) APPLICATION NUMBER: 08/141,500 (B) FILING DATE: 22-OCT-1993
	(vi) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 08/143,215 (B) FILING DATE: 26-OCT-1993
35	(2) INFORMATION FOR SEQ ID NO: 1:
•	• •
	(i) SEQUENCE CHARACTERISTICS:
40	 (A) LENGTH: 1407 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

8

(ii) SEQUENCE DESCRIPTION : SEQ ID NO: 1:

							TCC Ser	CCA Pro	39
5							GAA Glu 25		78
10							TCG Ser		117
	 	 					TTT Phe		156
15							GAT Asp		195
							AGC Ser		234
20							GTG Val 90		273
25							AGA Arg		312
							GTC Val		351
30·							ACG Thr		390
		Leu	Tyr		Cys		AGC Ser		429
35							TAT Tyr 155		468
40							CAC His		507

					-				
			GGA Gly					GCA Ala	546
5			GAA Glu						585
			ACT Thr 200						624
10			GCC Ala						663
15			CGG Arg						702
			TTT Phe						741
20			AAG Lys						780
			AAC Asn 265						819
25			TGC Cys						858
30			GCC Ala						897
			GAT Asp						936
35			ATA Ile						975
			ATG Met 330						1014
40			TTC Phe						1053

10

			ATC Ile											1092
5			GCA Ala											1131
			GCT Ala 380										GGC Gly 390	1170
10			AAC Asn											1209
15			CAT His										CAC His	1248
			GAT Asp											1287
20			GAC Asp											1326 ·
			CAG Gln 445											1365
25			CCG Pro											1404
	TGA													1407
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	10:	2:					
30		(i)	SEÇ	OUENC	CE CH	IARAC	TERI	STIC	es:					
			(E	3) TY	ENGTH PE: POLC			an	8 am nino .near	acid		ls		
35		(ii	.) SE	EQUEN	ICE D	ESCF	RIPTI	ON:	SEQ	ID	NO:	2		
	Met	Val	Asp	Thr	Glu 5	Ser	Pro	Leu	Cys	Pro 10	Leu	Ser	Pro	

Leu Glu Ala Gly Asp Leu Glu Ser Pro Leu Ser Glu Glu

20

11

Phe Leu Gln Glu Met Gly Asn Ile Gln Glu Ile Ser Gln Ser Ile Gly Glu Asp Ser Ser Gly Ser Phe Gly Phe Thr 45 Glu Tyr Gln Tyr Leu Gly Ser Cys Pro Gly Ser Asp Gly Ser Val Ile Thr Asp Thr Leu Ser Pro Ala Ser Ser Pro Ser Ser Val Thr Tyr Pro Val Val Pro Gly Ser Val Asp 10 85 Glu Ser Pro Ser Gly Ala Leu Asn Ile Glu Cys Arg Ile 100 95 Cys Gly Asp Lys Ala Ser Gly Tyr His Tyr Gly Val His 110 15 Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile 120 Arg Leu Lys Leu Val Tyr Asp Lys Cys Asp Arg Ser Cys Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys 20 Arg Phe His Lys Cys Leu Ser Val Gly Met Ser His Asn Ala Ile Arg Phe Gly Arg Met Pro Arg Ser Glu Lys Ala 175 Lys Leu Lys Ala Glu Ile Leu Thr Cys Glu His Asp Ile Glu Asp Ser Glu Thr Ala Asp Leu Lys Ser Leu Ala Lys 200 Arg Ile Tyr Glu Ala Tyr Leu Lys Asn Phe Asn Met Asn 30 Lys Val Lys Ala Arg Val Ile Leu Ser Gly Lys Ala Ser Asn Asn Pro Pro Phe Val Ile His Asp Met Glu Thr Leu 240 35 Cys Met Ala Glu Lys Thr Leu Val Ala Lys Leu Val Ala 255

	Asn	Gly	Ile	Gln	Asn 265	Lys	Glu	Ala	Glu	Val 270	_	Ile	Phe
	His	Cys 275	Cys	Gln	Cys	Thr	Ser 280	Val	Glu	Thr	Val	Thr 285	
5	Leu	Thr	Glu	Phe 290	Ala	Lys	Ala	Ile	Pro 295	Gly	Phe	Ala	Asr
	Leu 300	Asp	Leu	Asn	Asp	Gln 305	Val	Thr	Leu	Leu	Lys 310	Tyr	Gly
10	Val	Tyr	Glu 315	Ala	Ile	Phe	Ala	Met 320	Leu	Ser	Ser	Val	Met 325
	Asn	Lys	Asp	Gly	Met 330	Leu	Val	Ala	Tyr	Gly 335	Asn	Gly	Ph∈
	Ile	Thr 340	Arg	Glu	Phe	Leu	Lys 345	Ser	Leu	Arg	Lys	Pro 350	Phe
15	Cys	Asp	Ile	Met 355	Glu	Pro	Lys	Phe	Asp 360	Phe	Ala	Met	Lys
	Phe 365	Asn	Ala	Leu	Glu	Leu 370	Asp	Asp	Ser	Asp	Ile 375	Ser	Leu
20	Phe	Val	Ala 380	Ala	Ile	Ile	Cys	Cys 385	Gly	Asp	Arg	Pro	Gly 390
	Leu	Leu	Asn	Val	Gly 395	His	Ile	Glu	Lys	Met 400	Gln	Glu	Gly
	Ile	Val 405	His	Val	Leu	Arg	Leu 410	His	Leu	Gln	Ser	Asn 415	His
25	Pro	Asp	Asp	Ile 420	Phe	Leu	Phe	Pro	Lys 425	Leu	Leu	Gln	Lys
	Met 430	Ala	Asp	Leu	Arg	Gln 435	Leu	Val	Thr	Glu	His 440	Ala	Gln
30	Leu	Val	Gln 445	Ile	Ile	Lys	Lys	Thr 450	Glu	Ser	Asp	Ala	Ala 455
	Leu	His	Pro	Leu	Leu 460	Gln	Glu	Ile	Tyr	Arg 465	Asp	Met	Tyr 468

13

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 468 amino acids (B) TYPE: amino acid

5 (D) TOPOLOGY: linear

(ii) SEQUENCE DESCRIPTION : SEQ ID NO: 3:

Met Val Asp Thr Glu Ser Pro Ile Cys Pro Leu Ser Pro 5 10

Leu Glu Ala Asp Asp Leu Glu Ser Pro Leu Ser Glu Glu 10 15 20 25

Phe Leu Gln Glu Met Gly Asn Ile Gln Glu Ile Ser Gln 30 35

Ser Ile Gly Glu Glu Ser Ser Gly Ser Phe Gly Phe Ala 40 45 50

15 Asp Tyr Gln Tyr Leu Gly Ser Cys Pro Gly Ser Glu Gly
55 60 65

Ser Val Ile Thr Asp Thr Leu Ser Pro Arg Ser Ser Pro 70 75

Ser Ser Val Ser Cys Pro Val Ile Pro Ala Ser Thr Asp 20 80 85 90

Glu Ser Pro Gly Ser Ala Leu Asn Ile Glu Cys Arg Ile 95 100

Cys Gly Asp Lys Ala Ser Gly Tyr His Tyr Gly Val His 105 110 115

25 Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile 120 125 130

Arg Leu Lys Leu Val Tyr Asp Lys Cys Asp Arg Ser Cys
135

Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys 150 155

Arg Phe His Lys Cys Leu Ser Val Gly Met Ser His Asn 160 165

Ala Ile Arg Phe Gly Arg Met Pro Arg Ser Glu Lys Ala 175 180

Lys Leu Lys Ala Glu Ile Leu Thr Cys Glu His Asp Leu 185 190 195

	Lys	Asp	Ser	Glu	Thr 200	Ala	Asp	Leu	Lys	Ser 205	Leu	Gly	Lys
	Arg	Ile 210	His	Glu	Ala	Tyr	Leu 215	Lys	Asn	Phe	Asn	Met 220	Asn
5	Lys	Val	Lys	Ala 225	Arg	Val	Ile	Leu	Ala 230	Gly	Lys	Thr	Ser
	Asn 235	Asn	Pro	Pro	Phe	Val 240	Ile	His	Asp	Met	Glu 245	Thr	Leu
10	Cys	Met	Ala 250	Glu	Lys	Thr	Leu	Val 255	Ala	Lys	Met	Val	Ala 260
•	Asn	Gly	Val	Glu	Asp 265	Lys	Glu	Ala	Glu	Val 270	Arg	Phe	Phe
	His	Cys 275	Cys	Gln	Cys	Met	Ser 280	Val	Glu	Thr	Val	Thr 285	Glu
15	Leu	Thr	Glu	Phe 290	Ala	Lys	Ala	Ile	Pro 295	Gly	Phe	Ala	Asn
	Leu 300	Asp	Leu	Asn	Asp	Gln 305	Val	Thr	Leu	Leu	Lys 310	Tyr	Gly
20	Val	Tyr	Glu 315	Ala	Ile	Phe	Thr	Met 320	Leu	Ser	Ser	Leu	Met 325
	Asn	Lys	Asp	Gly	Met 330	Leu	Ile	Ala	Tyr	Gly 335	Asn	Gly	Phe
	Ile	Thr 340	Arg	Glu	Phe	Leu	Lys 345	Asn	Leu	Arg	Lys	Pro 350	Phe
25	Cys	Asp	Ile	Met 355	Glu	Pro	Lys	Phe	Asp 360	Phe	Ala	Met	Lys
	Phe 365	Asn	Ala	Leu	Glu	Leu 370	Asp	Asp	Ser	Asp	Ile 375	Ser	Leu
30	Phe	Val	Ala 380	Ala	Ile	Ile	Cys	Cys 385	Gly	Asp	Arg	Pro	Gly 390
	Leu	Leu	Asn	Ile	Gly 395	Tyr	Ile	Glu	Lys	Leu 400	Gln	Glu	Gly
	Ile	Val 405	His	Val	Leu	Lys	Leu 410	His	Leu	Gln	Ser	Asn 415	His
35	Pro	Asp	Asp	Thr 420	Phe	Leu	Phe	Pro	Lys 425	Leu	Leu	Gln	Lys

Met 430	Val	Asp	Leu	Arg	Gln 435	Leu	Val	Thr	Glu	His 440	Ala	Glr
Leu	Val	Gln 445	Val	Ile	Lys	Lys	Thr 450	Glu	Ser	Asp	Ala	Ala 455
Leu	His	Pro	Leu		Gln						Met	

16

What is claimed is:

- 1. Purified nucleic acid comprising the nucleotide sequence shown in SEQ ID NO. 1.
- A vector comprising said nucleic acid of claim
 1.
 - 3. Recombinant PPAR expressed from said nucleic acid of claim 1.

1300 1400 1407 0001 1100 1200 8 900 700 909 30 400 200 200 ACAGGGACAT R D M TGAAAAATG E K M GCAGACCTCC A D L R CTGGTAGCGT AGTTCAATGC F N A AGAACAAGGA N K E TTCTGAAACT S E T TCGGGATGTC G M S 1234567890 ATGGGAAACA M G N I CCTGGCTCAG ATGGCTCGGT P G S D G S V TCAAAAATG (TTTGCCATGA A TAGGACACAT G H I CAGGAGATCT O ACATAGAAGA 1 TCCCAGGCTT P AGACGGGATG 0 G M TECCTTTCTG 1 GCGACGATT R CATCCTCTCA I L S GCTGGTGGCC AATGGCATCC CCAGTGGAGC S G A CAAGTTTGAT 1 K F D F GCCAAGGCCA I CTTCTAAACG 1 CAAAACTTCT ' CCCGCTACTG (TGTGAACATG / TGATGAACAA M N K GACGAGTCTC (GCTTCTTTCG (AGGAAGCTGT (AACAAATGCC AGTATTGTCG ATTTCACAAG N K C Q Y C R F H K AACAAGGTCA AAGCCCGGGT N K V K A R V CTGCGCTGCA (TCATGGAACC (THCTCTTCC (TCGTCCTGGC (R P G L AATTCTTACC 1 CACGGAATTC (TGGTGGCCAA (ATTCGCCATG CTGTCTTCTG F A M L S S V GGCTGCAAGG (CGCCAGCGTG (TTTACGGAAT ACCAGTATTT F T E Y Q Y L GGACGATATC T D D I F GAGTCGGATG (E S D A TTCTGTGATA 1 F C 0 1 GCTGTGGAGA 1 C G D TGAAAGCAGA A K A E CTTCAACATG A GAGAAGACGC 1 E K T L TCACGGAGCT (CTGTGGTCCC (CGCGTGTGAA (60 1234567890 AAGGAAACCG 1 R K P F CAAGAAGACG (GCTATCATTT OF A I I C GCAACCACCC (GTGGAGACCG V ATGAGGCCAT AAAGAACAGA / ACTTGAAGAA L GTGTATGGCT C M A AAGCTTTGGC S ACGGAGTCCA (50 1234567890 1 1CGAGGCCGG (GTGACTTATC I ACACAACGCG ATTCGTTTTG GACGAATGCC AAGATCTGAG AAAGCAAAAC H N A I R F G R M P R S E K A K L TGCAGATCAT (CACCTGCAGA (TACGGAGTTT V TACGAGGCCT A CGTGAATTCC TAAAAAGCCT R E F L K S L TTTTGTGGCT F V A CCCCTCCTCG (GCTATCATT , ATACATGATA TGGAGACACT CGCATCTTTC ACTGCTGCCA GTGCACGTCA R I F H C C Q C T S CGCAGCTGCA AGATCCAGAA R S C K I Q K ATCGGCGAGG ATAGTTCTGG GCTCAGACTC (GCGCAGCTGG 1 ATTGCTAAAA] CAAGAGAATC T GATGACAGTG ATATCTCCCT 0 0 S 0 1 S L CAGCTTCGAG C CAAGGCCTCA (ATCAAGTGAC GACGGAGCAT TTGTACATGT V H V ACCTTTTGTC / GTTTATAACT F I T 10 20 1234567890 1234567890 1 ATGGTGGACA CGGAAAGCCC AV M V D T E S P TCTGCGGGA (CAAGTGCGAC GCAGATCTCA AATCTCTGGC A D L K S L A ACCCTTTCAC (TTCGCAATCC S Q S CAGGAGGGTA : ACTGGAACTG (GGCGGAGGTC (GACCTGAACG / ATGGAAATGG (G N G GTAACAATCC N N P GGCAGCTGGT 0 L V CATCACGGAC A GAATGTAGAA 1 E C R I TGGTGTATGA V Y D TCCAAGAGAT 0 E I RECTIFIED SHEET (RULE 91)

ISA/EP

RF	MVOTESPICP MVOTESPLCP	LSPLEADDLE LSPLEADDLE	SPLSEEFLOE SPLSEEFLOE	MGN I QE I SQS MGN I QE I SQS	IGEESSGSFG IGEOSSGSFG	FADYQYLGSC FITEYQYLGSC	PGSEGSVITO PGSDGSVITO	TLSPRSSPSS TLSPASSPSS	LOE MGNIQEISOS IGEEBSGSFG FADYOYLGSC PGSEGSVITO TLSPRSSPSS VSCPVIPAST DESPGSALNI LOE MGNIQEISOS IGEOSSGSFG FTEYOYLGSC PGSOGSVITO TLSPASSPSS VIYPVVPGSV DESPSGALNI	ESPESALNI ESPSGALNI	100
CTIFIED	ECRICGDKAS ECRICGDKAS	GYHYGVHACE GYHYGVHACE	GCKGFFRRTI GCKGFFRRTI	RKKL VYDKCD RKKL VYDKCD	RSCK I QKKNR RSCK I QKKNR	NKCQYCRFHK NKCQYCRFHK	CLSVGMSHNA CLSVGMSHNA	I RFGRMPRSE I RFGRMPRSE	RTI RKKLVYDKCD RSCKIQKKNR NKCQYCRFHK CLSVGMSHNA IRFGRMPRSE KAKLKAEILT CEHÖLKDSET RTI RKKLVYDKCD RSCKIQKKNR NKCQYCRFHK CLSVGMSHNA IRFGRMPRSE KAKLKAEILT CEHÖIEDSET	EHOLKDSET EHOIEDSET	200
SHEET	ADLKSLGKRI ADLKSLAKRI	HEAYLKNFNM YEAYLKNFNM	NKVKARV ILA NKVKARV ILS	GKISNNPPFV GKASNNPPFV	IHDMETLCMA IHDMETLCMA	EKTLVAK VA EKTLVAKLVA	NGVEDKEAEV NGI QNKEAEV	R-FHCCQQVS RIFHCCQQIS	IIJA GRIBNNPPFV IHDMETLCMA EKTLVAKAVA NGVEDKEAEV RFFHCCOOMS VETVTELTEF AKAIPGFANU ILIS GRASNNPPFV IHDMETLCMA EKTLVAKAVA NGIONKEAEV RIFHCCOOLIS VETVTELTEF AKAIPGFANU	AKA I PGFANL AKA I PGFANL	300
(RULE S	DLNDQVTLLK	YGVYEAIHIM YGVYEAIHAM	LSSLMNKDGM LSSVMNKDGM	LIAYGNGFIT LVAYGNGFIT	REFLKMLRKP REFLKSLRKP	FCDIMEPKFD FCDIMEPKFD	FAMKFNALEL FAMKFNALEL	DOSDISLFVA DDSDISLFVA	DGM LIAYGNGFIT REFLKMLRKP FCDIMEPKFD FAMKFNALEL DDSDISLFVA AIICCGDRPG LLNIGYIEUK DGM LVAYGNGFIT REFLKSLRKP FCDIMEPKFD FAMKFNALEL DDSDISLFVA AIICCGDRPG LLNYGHIEUM	LNVGHIEUM	400
31)	OEGIVHVLK QEGIVHVLR	HLQSNHPDDI HLQSNHPDDI	FLFPKLLQKM FLFPKLLQKM	VDL.RQL.VTEH ADL.RQL.VTEH	AQL VQMIKKT AQL VQI IKKT	OKM VDLROLVTEH AQLVOMIKKT ESDAALHPLL QEIYROMY- OKM ADLROLVTEH AQLVOIIKKT ESDAALHPLL QEIYROMYX	QEIYRDMY- QEIYRDMYX				468 469

ISA/EP

FIG.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☑ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.