Logistic Models in R

Jim Bentley

1 Sample Data

The following code reads the titanic data that we will use in our examples.

```
> titanic = read.csv(
```

- + "http://bulldog2.redlands.edu/facultyfolder/jim_bentley/downloads/math111/titanic.cs
- > titanic\$AGE=factor(titanic\$AGE,labels=c(Child,Adult))
- > titanic\$CLASS=factor(titanic\$CLASS,labels=c(0,1,2,3))
- > titanic\$SEX=factor(titanic\$SEX, labels=c(Female,Male))
- > titanic\$SURVIVED=factor(titanic\$SURVIVED,labels=c(No,Yes))

Note that the plus signs (+) at the beginning of the lines are there to indicate that R is reading from a new line. They should not be entered as part of the code.

We can now check to see if the data frames have been created by entering

> ls()

[1] "titanic"

2 Loading R Packages

```
> ## load a few packages
```

- > #install.packages("xtable")
- > library(Hmisc)
- > library(xtable)
- > library(lattice)

3 Fitting Logistic Models

The models fitted here are the equivalent of those fitted in the SAS documentation.

3.1 CLASS

A model to test for the difference in odds of survival as determined by class may be fitted using the glm function with binomial error and logit link.

```
> titanic.logistic.class=glm(SURVIVED~CLASS,
```

- + family=binomial(logit),data=titanic)
- > summary(titanic.logistic.class)

Call:

```
glm(formula = SURVIVED ~ CLASS, family = binomial(logit), data = titanic)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.3999 -0.7623 -0.7401 0.9702 1.6906
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.15516
                       0.07876 -14.667 < 2e-16 ***
CLASS1
            1.66434
                       0.13902 11.972 < 2e-16 ***
CLASS2
            0.80785
                       0.14375
                                 5.620 1.91e-08 ***
CLASS3
            0.06785
                       0.11711
                                 0.579
                                          0.562
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                  1
```

(Dispersion parameter for binomial family taken to be 1)

```
Null deviance: 2769.5 on 2200 degrees of freedom Residual deviance: 2588.6 on 2197 degrees of freedom
```

AIC: 2596.6

Number of Fisher Scoring iterations: 4

Note that the (log) odds of survival do not differ for classes 0 (viewed as baseline) and 3. However, classes 1 and 2 differ from 0 (and thus 3) as well as from each other. This can most easily be seen using the odds ratios.

```
(Intercept) 0.3150074 0.2699482 0.3675878

CLASS1 5.2822069 4.0223687 6.9366366

CLASS2 2.2430799 1.6923031 2.9731124

CLASS3 1.0702008 0.8507054 1.3463295
```

> rm(coefs)

While the odds for class 3 relative to class 0 are essentially 1:1, class 1 has a 5.28:1 odds of survival and class 2 has a 2.24:1 odds of survival relative to class 0.

3.2 AGE and SEX

Deviance Residuals:

1Q

-1.6497 -0.6732 -0.6732

Min

Median

A model to test for the difference in odds of survival as determined by age and sex may be fitted using the glm function with binomial error and logit link.

```
> titanic.logistic.agesex=glm(SURVIVED~AGE*SEX,
+ family=binomial(logit), data=titanic)
> summary(titanic.logistic.agesex)
Call:
glm(formula = SURVIVED ~ AGE * SEX, family = binomial(logit),
    data = titanic)
Deviance Residuals:
              10
                   Median
                                30
                                        Max
-1.6497 -0.6732 -0.6732
                            0.7699
                                     1.7865
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
                   0.4990
                              0.3075
                                       1.623
                                               0.1046
                                       1.729
AGEAdult
                              0.3269
                                               0.0837 .
                   0.5654
SEXMale
                  -0.6870
                              0.3970 -1.731
                                               0.0835 .
AGEAdult:SEXMale -1.7465
                              0.4167 -4.191 2.77e-05 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2769.5 on 2200 degrees of freedom
Residual deviance: 2312.8 on 2197 degrees of freedom
AIC: 2320.8
Number of Fisher Scoring iterations: 4
This model may also be expressed as
> titanic.logistic.agesex2=glm(SURVIVED~AGE+SEX+AGE:SEX,
+ family=binomial(logit),data=titanic)
> summary(titanic.logistic.agesex2)
Call:
glm(formula = SURVIVED ~ AGE + SEX + AGE:SEX, family = binomial(logit),
    data = titanic)
```

Max

1.7865

3Q

0.7699

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
                                       1.623
(Intercept)
                   0.4990
                              0.3075
                                               0.1046
AGEAdult
                              0.3269
                                               0.0837 .
                   0.5654
                                       1.729
SEXMale
                              0.3970 - 1.731
                                               0.0835 .
                  -0.6870
                              0.4167 -4.191 2.77e-05 ***
AGEAdult:SEXMale -1.7465
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2769.5 on 2200
                                    degrees of freedom
Residual deviance: 2312.8 on 2197
                                    degrees of freedom
AIC: 2320.8
Number of Fisher Scoring iterations: 4
The odds associated with the model are
> coefs=summary(titanic.logistic.agesex2)$coef
> est=exp(coefs[,1])
> upper.ci=exp(coefs[,1]+1.96*coefs[,2])
> lower.ci<-exp(coefs[,1]-1.96*coefs[,2])</pre>
> cbind(est,lower.ci,upper.ci)
                       est
                             lower.ci upper.ci
(Intercept)
                 1.6470588 0.90154072 3.0090740
AGEAdult
                 1.7601573 0.92740960 3.3406529
SEXMale
                 0.5030612 0.23104993 1.0953069
AGEAdult:SEXMale 0.1743855 0.07705575 0.3946531
```

3.3 CLASS, AGE and SEX

> rm(coefs)

A model to test for the difference in odds of survival as determined by class, age and sex may be fitted using the glm function with binomial error and logit link.

Deviance Residuals:

```
Min 1Q Median 3Q Max -2.6771 -0.7099 -0.5952 0.2374 2.2293
```

```
Coefficients: (1 not defined because of singularities)
                 Estimate Std. Error z value Pr(>|z|)
                             0.73347
                                       2.537 0.01118 *
(Intercept)
                  1.86087
AGEAdult
                  0.03625
                             0.39325
                                       0.092 0.92655
SEXMale
                             0.81614 -3.014 0.00258 **
                 -2.46011
CLASS1
                 17.99982 920.38674
                                     0.020 0.98440
CLASS2
                 17.11036 405.66288
                                     0.042 0.96636
CLASS3
                 -2.05502
                             0.63854 -3.218 0.00129 **
                                     -1.307 0.19116
AGEAdult:SEXMale -0.68679
                             0.52541
SEXMale:CLASS1
                 -1.13608
                             0.82048
                                     -1.385 0.16616
SEXMale:CLASS2
                 -1.06807
                             0.74658 -1.431 0.15254
SEXMale:CLASS3
                  1.66387
                                      2.536 0.01120 *
                             0.65601
AGEAdult:CLASS1 -16.34159 920.38639
                                     -0.018 0.98583
AGEAdult:CLASS2 -17.19040
                           405.66231
                                      -0.042
                                             0.96620
AGEAdult:CLASS3
                       NA
                                  NA
                                          NA
                                                  NΑ
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 2200 degrees of freedom Residual deviance: 2097.5 on 2189 degrees of freedom

AIC: 2121.5

Number of Fisher Scoring iterations: 15

The odds associated with the model are

- > coefs=summary(titanic.logistic.classagesex)\$coef
- > est=exp(coefs[,1])
- > upper.ci=exp(coefs[,1]+1.96*coefs[,2])
- > lower.ci<-exp(coefs[,1]-1.96*coefs[,2])</pre>
- > cbind(est,lower.ci,upper.ci)

	est	lower.ci	upper.ci
(Intercept)	6.429309e+00	1.52693798	27.0711771
AGEAdult	1.036918e+00	0.47973665	2.2412280
SEXMale	8.542543e-02	0.01725325	0.4229640
CLASS1	6.564805e+07	0.0000000	Inf
CLASS2	2.697330e+07	0.00000000	Inf
CLASS3	1.280899e-01	0.03664230	0.4477617

AGEAdult:SEXMale 5.031883e-01 0.17967631 1.4091922 SEXMale:CLASS1 3.210755e-01 0.06429782 1.6033118 SEXMale:CLASS2 3.436711e-01 0.07955044 1.4847160 SEXMale:CLASS3 5.279697e+00 1.45950127 19.0991297 AGEAdult:CLASS1 7.997191e-08 0.00000000 Inf AGEAdult:CLASS2 3.422187e-08 0.00000000 Inf

> rm(coefs)