Clase 5

April 12, 2022

Matriz inversa

Notemos que al multiplicar una matriz identidad I_n por una $A \in \mathbb{F}^{n \times n}$ siempre se obtiene la misma A: Basta ver cómo quedan los elementos del producto AI_n ,

$$(AI_n)_{ij} = \sum_{k=1}^n A_{ik}(I_n)_{kj} = A_{ij}.1 = A_{ij},$$

pues los elementos de I_n son 1 cuando están en la diagonal principal (o sea cuando k=j) y son 0 en los demás casos.

De forma análoga cuando multiplicamos $I_n A$,

$$(I_n A)_{ij} = \sum_{k=1}^n (I_n)_{ik} A_{kj} = 1. A_{ij} = A_{ij}.$$

Definition 1 Sea $A \in \mathbb{F}^{n \times n}$, una matriz cuadrada. A es invertible si existe una matriz $B \in \mathbb{F}^{n \times n}$ tal que

$$AB = BA = I_n$$
.

A dicha matriz B se le llama matriz inversa de A.

Lemma 2 Si $A \in \mathbb{F}^{n \times n}$ es una matriz invertible entonces su inversa es única.

Proof. Supongamos que A tiene dos inversas, digamos $B,C\in\mathbb{F}^{n\times n}$. Ambas cumplen que

$$AB = BA = I_n$$

$$AC = CA = I_n$$

Pero entonces

$$B = B.I_n = B(AC) = (BA)C = I_nC = C.$$

Notation 3 Ahora que sabemos que solo hay una única matriz invertible en cada caso, la denotaremos por A^{-1} .

Example 4 Si $A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix}$, entonces podemos comprobar que $A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ -1 & \frac{2}{3} \end{bmatrix}$. Pues

$$A.A^{-1} = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} . \begin{bmatrix} 0 & \frac{1}{3} \\ -1 & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

y también

$$A^{-1}.A = \begin{bmatrix} 0 & \frac{1}{3} \\ -1 & \frac{2}{3} \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

Example 5 Si $A = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$ entonces podemos comprobar que $A^{-1} =$

$$\begin{bmatrix} -\frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. En efecto,

$$A.A^{-1} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} -\frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3,$$

también,

$$A^{-1}.A = \begin{bmatrix} -\frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 3 \end{bmatrix} . \begin{bmatrix} -4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3.$$

Theorem 6 Si $A, B \in \mathbb{F}^{n \times n}$ son matrices invertibles entonces AB es invertible y se cumple que

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Proof. Sabemos que $(AB)^{-1}$ denota la matriz inversa de AB. Lo que debemos comprobar es que realmente tiene la forma de $B^{-1}A^{-1}$. Para ello basta calcular el producto $(AB)(B^{-1}A^{-1})$ y ver que nos da la I_n :

Pero por la propiedad asociativa de matrices tenemos que

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

Como $BB^{-1} = I_n$,

$$(AB)(B^{-1}A^{-1}) = A(I_n)A^{-1}$$

ahora asociamos de cualquier forma,

$$(AB)(B^{-1}A^{-1}) = (AI_n)A^{-1}$$

y resolvemos finalmente....

$$(AB)(B^{-1}A^{-1}) = AA^{-1} = I_n.$$

De forma análoga se puede obtener que $(B^{-1}A^{-1})(AB) = I_n$ (verlo!), con lo que probamos efectivamente que $B^{-1}A^{-1}$ es la inversa de AB. O sea

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Definition 7 Dada una matriz $A \in \mathbb{F}^{n \times n}$ definimos las potencias de A como

$$A^0 = I_n$$

 $A^n = A....A$ (n factores).

Si A es, además, invertible entonces

$$A^{-n} = (A^{-1})^n = A^{-1}....A^{-1}$$
 (n factores).

Theorem 8 Sea $A \in \mathbb{F}^{n \times n}$ una matriz invertible. Entonces

- 1. A^{-1} es invertible $y(A^{-1})^{-1} = A$.
- 2. A^n es invertible $y(A^n)^{-1} = A^{-n}$.
- 3. Para cualquier $\alpha \in \mathbb{F}$, $\alpha \neq 0$, αA es invertible $y(\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}$.

Proof. (1) Por la simetría de la definición de matriz inversa, que A^{-1} sea inversa de A quiere decir que cumple

$$AA^{-1} = A^{-1}A = I_n$$

Si leemos con atención las igualdades anteriores nos dice básicamente que A es una matriz tal que si se la multiplicamos a A^{-1} nos da la I_n . Pero es justamente que A cumple el rol de matriz inversa de A^{-1} . Como la inversa es única no queda otra que $(A^{-1})^{-1} = A$.

(2) Primero $(A^n)^{-1}$ es solo una notación de la matriz inversa de A^n . Lo que debemos comprobar es que A^{-n} es la matriz inversa de A^n . Pero,

$$A^{n}A^{-n} = (A....A)(A^{-1}....A^{-1}) = A...(AA^{-1})...A^{-1} = A...(I_{n})...A^{-1} = = AA^{-1} = I_{n}.$$

(3) Solo hacemos la cuenta...recordemos que en la Proposición 13 de la clase 4 mostramos que un escalar conmutaba con cualquier matriz,

$$(\alpha A).\left(\frac{1}{\alpha}A^{-1}\right) = \alpha A \frac{1}{\alpha}A^{-1} = A\alpha \frac{1}{\alpha}A^{-1} = A.1.A^{-1} = AA^{-1} = I_n.$$

Una cuanta análoga muestra que $\left(\frac{1}{\alpha}A^{-1}\right)$. $(\alpha A) = I_n$. Con lo que claramente $\frac{1}{\alpha}A^{-1}$ es la matriz inversa de αA .

Volvemos a los sistemas de ecuaciones...

Theorem 9 Toda matriz elemental es invertible y la inversa de una elemental también es una matriz elemental.

Proof. Sea E una matriz elemental de tamaño $n \times n$. Entonces tal matriz, por definición, se obtuvo de aplicar una operación elemental de fila a la matriz identidad I_n ,

$$E = e(I_n).$$

Ahora sabemos que para dicha operación elemental existe su operación inversa e^{-1} . Consideremos $E' = e^{-1}(I_n)$, o sea la matriz elemental que se obtiene de aplicar e^{-1} a I_n . Afirmamos entonces que la matriz E' es la matriz inversa de E. Veamos...

$$E.E' = [e(I_n)] [e^{-1}(I_n)]$$

por el Lema 4 visto en la clase 4 se tenía que aplicar una operación e a una matriz cualquiera era lo mismo que aplicar dicha operación a la identidad y luego premultiplicar por la matriz en cuestión...

$$E.E' = [e(I_n)] [e^{-1}(I_n)] = e [e^{-1}(I_n)]$$

y por definición, aplicar una operación y su inversa al mismo tiempo nos queda la misma matriz....

$$E.E' = [e(I_n)] [e^{-1}(I_n)] = e [e^{-1}(I_n)] = I_n.$$

Una cuenta análoga muestra que $E'.E = I_n$. Con lo que hemos probado efectivamente que toda matriz elemental es invertible.

El siguiente Teorema nos proveerá de un método para calcular la inversa de una matriz invertible.

Theorem 10 Sea $A \in \mathbb{F}^{n \times n}$. Los siguientes ítems son equivalentes entre si.

- 1. A es invertible.
- 2. AX = 0 tiene únicamente la solución trivial (X = 0).
- 3. La MERF de A es $R_A = I_n$.
- 4. A es producto de matrices elementales.

Proof. (1) \Rightarrow (2): Supongamos A invertible. Sea X_0 una solución del sistema lineal AX = 0. Es decir,

$$AX_0 = 0$$

Premultiplicamos ambos lados de dicha ecuación por A^{-1} obtenemos:

$$A^{-1}(AX_0) = A^{-1}0$$

$$(A^{-1}A)X_0 = 0$$

$$I_nX_0 = 0$$

$$X_0 = 0$$

(es fácil ver que cualquier matriz multiplicada por la matriz nula 0 da la matriz nula 0).

 $(2)\Rightarrow (3)$: Supongamos que AX=0 tiene únicamente la solución trivial X=0. Entonces si escribimos este sistema en notación de ecuaciones nos queda que

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ & \dots \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \end{cases}$$

Ahora escribimos la matriz ampliada:

$$A \mid 0 = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 \end{bmatrix}$$

Entonces aplicamos el método de eliminación de Gauss-Jordan para llegar a la R_A . Pero en vista de que asumimos que solo se tiene la solución trivial X=0, debe pasar que

$$R_A | \, 0 = \left[egin{array}{cccccc} 1 & 0 & & 0 & 0 \ 0 & 1 & & 0 & 0 \ ... & ... & & ... \ 0 & 0 & & 1 & 0 \end{array}
ight]$$

O sea $R_A = I_n$.

 $(3)\Rightarrow (4)$: Supongamos ahora que la MERF de A es $R_A=I_n$. Esto significa que $A\sim_f I_n$. O sea que existe una sucesión de operaciones elementales de filas que llevan de A hasta I_n :

$$A \to e_1(A) \to e_2(e_1(A)) \to \dots \to e_n(e_{n-1}(\dots(e_1(A)))) = I_n$$

pero por el Lema 4 de la clase 4 se tenía que $e_k(A) = e_k(I).A = E_k.A$ (ya que $e_k(I_n)$ por definición es una matriz elemental). Luego como

$$e_n(e_{n-1}(...(e_1(A)))) = I_n$$

podemos reescribirla como

$$E_n E_{n-1} ... E_1 A = I_n$$

Pero por el Teorema anterior toda matriz elemental es invertible. Esto es, existe E_k^{-1} tal que $E_k^{-1}E_k=I_n$. Entonces a la igualdad anterior la premultiplicamos por $E_1^{-1}...E_{n-1}^{-1}E_n^{-1}$:

$$\begin{array}{rclcrcl} \left(E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1}\right)\left(E_{n}E_{n-1}...E_{1}A\right) & = & \left(E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1}\right)I_{n} \\ E_{1}^{-1}...E_{n-1}^{-1}\left(E_{n}^{-1}E_{n}\right)E_{n-1}...E_{1}A & = & E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1} \\ E_{1}^{-1}...E_{n-1}^{-1}(I_{n})E_{n-1}...E_{1}A & = & E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1} \\ E_{1}^{-1}...\left(E_{n-1}^{-1}E_{n-1}\right)...E_{1}A & = & E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1} \\ & \cdots & = & \cdots \\ \left(E_{1}^{-1}E_{1}\right)A & = & E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1} \\ I_{n}A & = & E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1} \\ & A & = & E_{1}^{-1}...E_{n-1}^{-1}E_{n}^{-1} \end{array}$$

O sea A es un producto de matrices elementales.

(4) \Rightarrow (1): Supongamos ahora que A es producto de matrices elementales. O sea

$$A = E_1 E_2 \dots E_n$$

Veamos que A es invertible. Pero por el Teorema anterior toda matriz elemental es invertible. Y por un teorema probado antes, el producto de matrices invertibles es una matriz invertible. Luego A es invertible.

Cómo calcular A^{-1} a partir de A?

Notemos que por el Teorema que acabamos de probar tenemos que si $A \in \mathbb{F}^{n \times n}$ es una matriz invertible entonces $A \sim_f I_n$. Luego existen una sucesión de operaciones elementales de filas que transforman A en I_n :

$$A \to e_1(A) \to e_2(e_1(A)) \to \dots \to e_n(\dots(e_2(e_1(A)))\dots) = I_n \ (**)$$

Si aplicamos las mismas operaciones anteriores a I_n obtenemos una matriz:

$$I_n \to e_1(I_n) \to e_2(e_1(I_n)) \to \dots \to e_n(\dots(e_2(e_1(I_n)))\dots) = B$$

Si ahora multiplicamos A por B

$$BA = e_n(...(e_2(e_1(I_n)))...).A$$

$$(*) = E_n...E_2E_1.A$$

$$= e_n(...(e_2(e_1(A)))...)$$

$$(**) = I_n.$$

(*) recordar que por definición de matriz elemental $e_k(I_n) = E_k$.

Y como sabemos que A es invertible (así lo supusimos de entrada) entonces por unicidad de A^{-1} no queda otra que $B = A^{-1}$.

Remark 11 Esto sugiere el siguiente método para hallar A^{-1} : PRIMERO reducir por filas a A hasta llegar a I_n . SEGUNDO apicar las mismas operaciones que se aplicaron a A y en el mismo orden pero a I_n . Entonces llegamos a A^{-1} . Gráficamente sería:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \rightarrow e_1 \rightarrow \dots \rightarrow e_n \rightarrow I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & 1 \end{bmatrix}$$

y luego

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & 1 \end{bmatrix} \rightarrow e_1 \rightarrow \dots \rightarrow e_n \rightarrow A^{-1}.$$

Example 12 Sea $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$. Apliquemos Gauss-Jordan:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \rightarrow e_1 : f_2 + (-2)f_1 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 1 & 0 & 8 \end{bmatrix} \rightarrow e_2 : f_3 + (-1)f_1 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & -2 & 5 \end{bmatrix} \rightarrow e_3$$

$$\rightarrow e_3: f_3 + 2f_2 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & -1 \end{array}\right] \rightarrow e_4: (-1)f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{cccc} 1 &$$

$$\rightarrow e_6: f_1 + (-3)f_3 \rightarrow \left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \rightarrow e_7: f_1 + (-2)f_2 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3$$

Ahora comenzamos desde I_3 y aplicamos las mismas operaciones en el mismo orden que le aplicamos a A:

$$I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow e_{1} : f_{2} + (-2)f_{1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow e_{2} : f_{3} + (-1)f_{1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \rightarrow e_{2} : f_{3} + (-1)f_{1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \rightarrow e_{2} : f_{3} + (-1)f_{1} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \rightarrow e_{3} : f_{3} + (-1)f_{1} \rightarrow f_{2} + (-1)f_{2} \rightarrow f_{3} + (-1)f_{3} \rightarrow f_{3} + (-1)f_{4} \rightarrow f_{3} + (-1)f_{4} \rightarrow f_{3} + (-1)f_{4} \rightarrow f_{4} \rightarrow f_{4} + (-1)f_{4} \rightarrow f_{4} \rightarrow f$$

$$\rightarrow e_3: f_3 + 2f_2 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -5 & 2 & 1 \end{array} \right] \rightarrow e_4: (-1)f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_2 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_5: f_3 + 3f_3 \rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 13 & -5 & -$$

$$\rightarrow e_6: f_1 + (-3)f_3 \rightarrow \left[\begin{array}{ccc} -14 & 6 & 3 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] \rightarrow e_7: f_1 + (-2)f_2 \rightarrow \left[\begin{array}{ccc} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right] = A^{-1}$$

De hecho:

$$A.A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \cdot \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

también

$$A^{-1}.A = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} . \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3.$$

Theorem 13 Si $A \in \mathbb{F}^{n \times n}$ es invertible entonces el sistema AX = b tiene solución única $X = A^{-1}b$.

Proof. Hay que probar dos cosas. Que $X=A^{-1}b$ es una solución y que es la ÚNICA!

Lo primero es obvio ya que

$$A(A^{-1}b) = (A.A^{-1})b = I_nb = b.$$

Para ver la unicidad, supongamos que X_0 es otra solución. Es decir cumple $A.X_0 = b$. Entonces pre-multiplicamos ambos lados de esta igualdad por A^{-1} :

$$A.X_0 = b$$

$$A^{-1}(A.X_0) = A^{-1}b$$

$$(A.A^{-1})X_0 = A^{-1}b$$

$$I_nX_0 = A^{-1}b$$

$$X_0 = A^{-1}b$$

O sea, no hay otra.

Una caracterización más...

Theorem 14 Sea $A \in \mathbb{F}^{n \times n}$. Son equivalentes:

- 1. A es invertible.
- 2. El sistema AX = b es consistente $\forall b \in \mathbb{F}^{n \times 1}$ (tiene solución)
- 3. El sistema AX = b tiene una única solución $\forall b \in \mathbb{F}^{n \times 1}$.

Notation 15 Al conjunto de todas las matrices invertibles de tamaño $n \times n$ se las denota por $GL(n,\mathbb{F})$. Dicho conjunto se denomina el grupo lineal general.