MOS transistors (in subthreshold)

- History of MOSFET
- Review of Semiconductors
- What is a MOSFET? CMOS?
- How physics of transistors and voltage-sensitive nerve membrane channels are related
- MOS capacitor structure
- Surface: accumulation, depletion, inversion
- Capacitive dividers: The back-gate/body effect parameter kappa
- MOS transistor in subthreshold

History of the Transistor

The term "transistor" is a generic name for a solid-state device with 3 or more terminals.

The field-effect transistor structure was first described in a patent by J. Lilienfeld in the $1930 \mathrm{s}!$ It took about 40 years before MOS transistors were in mass production.

The first transistor (point-contact bipolar) fabricated at Bell Labs in 1947 (Bardeen, Brattain, Shockley). MOS transistors were not commericalized until mid 1970's.

Cross-section of a complementary pair of Field-Effect Transistor (FET)

Top and Side Views of Field-Effect Transistor (FET)

nFET terminology

pFET terminology

Review on Semiconductors

Intrinsic silicon is undoped *Extrinsic* silicon is doped

Majority carriers are holes Minority carriers are electrons Majority carriers are electrons Minority carriers are holes

Review on Energy Band Diagrams

Equilibrium in a p-n Junction

Reverse-biased p-n Junction

Mechanisms of Carrier Transport

<u>Drift</u>: Movement of charge carriers due to an external field

<u>Diffusion</u>: Movement of carriers due to a concentration gradien

The built-in potentials in the *pn* junctions create an *energy barrier*. Controlling the barrier height controls the diffusion current.

Larger Vgs, Vds=0

Measuring voltage-dependent nerve membrane currents

Hodgkin & Huxley 1952

Comparing transistor and membrane channel currents

Neuron channels and Transistors

Both depend on Boltzmann distributions.

Neurons

- Membrane ionic conductance is exponentially dependent on the voltage across the neuron membrane.
- The population of open channels depends exponentially on potential across barrier.

Transistors

- Current flow in transistors is exponentially dependent on barrier height.
- The **population of carriers** depends exponentially on the barrier height.

FIGURE 4.6 Exponential current–voltage characteristic of voltage-dependent channels. At high voltages, the fraction of channels that are open approaches unity, causing a saturation of the curves. (*Source:* [Hodgkin et al., 1952b, p. 464].)

n-type MOSFET

Regimes of operation for FET (dependent on V_{gs})

•Cutoff - Surface is accumulated

Subthreshold (Weak Inversion) Regime

Current flows through diffusion

Above threshold (Strong Inversion) Regime

Current flows through drift

n
Fet curve: I vs. V_{gs}

Subthreshold nFET: Current is diffusion current

Subthreshold nFET: Current is diffusion current

$$N_d = N_o e^{-\theta_d/U_T}$$

N=carrier density per unit volume W=channel width L=channel length D=diffusion constant θ_o =built-in voltage

Fwd Rev

We have equation for subthreshold current, but we don't directly control the surface potential

$$I = -qWD_{n} \frac{dN}{dz} = I_{0}e^{\psi_{s}/U_{T}} (e^{-V_{d}/U_{T}} - e^{-V_{s}/U_{T}})$$

How is the surface potential related to the gate voltage?

We need to understand effect of gate on surface potential

MOS capacitor structure

MOS capacitor structure: accumulation

MOS capacitor structure: flat band

MOS capacitor structure: depletion

MOS capacitor structure: inversion

What is a *depletion capacitor*?

Influence of gate on surface potential

$$\kappa(kappa) = \frac{\partial \psi_{s}}{\partial V_{g}} = \frac{C_{ox}}{C_{ox} + C_{dep}}$$

 ψ_s = Surface potential

Gate-depletion capacitive divider

How does changing V_g change ψ_s ?

- 1. CV=Q
- 2. Charge Q on ψ_s is constant
- 3. Change V, hold Q constant

$$C_{\rm ox}(\Delta V_g - \Delta \psi_s) = C_{\rm dep} \Delta \Psi_s$$

$$C_{\text{ox}} \Delta V_g = (C_{\text{ox}} + C_{\text{dep}}) \Delta \Psi_s$$

$$\frac{\Delta \Psi_{\rm s}}{\Delta V_g} = \frac{C_{\rm ox}}{C_{\rm ox} + C_{\rm dep}} = K$$

Surface potential as function of $V_{\rm g}$

Equations for Subthreshold nFET

$$I = I_0 e^{\kappa V_g/U_T} (e^{-V_s/U_T} - e^{-V_d/U_T})$$

$$= I_f - I_r$$

$$I_f = \text{forward current}$$

$$I_r = \text{reverse current}$$

$$I_{f} = I_{0}e^{\kappa V_{g}/U_{T}}e^{-V_{s}/U_{T}}$$
 $I_{r} = I_{0}e^{\kappa V_{g}/U_{T}}e^{-V_{d}/U_{T}}$

nFET curve: I vs V_{gs}

nFet Threshold

Regimes of Subthreshold Operation (dependence on V_{ds})

Triode/Linear Region

$$I = I_0 e^{(\kappa V_g - V_s)/U_T} (1 - e^{-(V_d - V_s)/U_T})$$

Saturation Region

$$I = I_f = I_0 e^{(\kappa V_g - V_s)/U_T}$$

nFET subthreshold Operation V in units of U_T

Triode/Linear Region

$$I = I_0 e^{\kappa V_g - V_s} (1 - e^{-V_{ds}})$$

Saturation Region, $V_{ds} > a$ few U_T

$$I = I_f = I_0 e^{\kappa V_g - V_s}$$

nFET drain curve: I vs V_{ds}

What about the pre-exponential I_0 ?

$$I = I_f = I_0 e^{(\kappa V_g - V_s)/U_T}$$

• I_0 comes from the built-in barrier and the doping concentrations. It takes the form

$$I_0 = N_s U_T^2 \beta (T) \exp \left(\frac{-\kappa V_T}{U_T} \right)$$
Dimensionless source concentration
$$U_T \beta : \text{diffusivity}$$

$$U_T : \text{factor for density of states}$$

Concentration at source reduced by barrier

Band Diagram for subthreshold nFET

p-type MOSFET

well (back gate) source gate drain

p

All voltages are referenced to $V_w = V_{dd}$

Band Diagram for subthreshold pFET

Equations for Subthreshold pFET

$$V_s \xrightarrow{\bigcup_{l} V_g} V_d$$

$$I = I_0 e^{-\kappa V_g/U_T} (e^{V_s/U_T} - e^{V_d/U_T})$$

$$= I_f - I_r$$

$$I_f = \text{forward current}$$

$$I_r = \text{reverse current}$$

$$I_{f} = I_{0}e^{-\kappa V_{g}/U_{T}}e^{V_{s}/U_{T}}$$
 $I_{r} = I_{0}e^{-\kappa V_{g}/U_{T}}e^{V_{d}/U_{T}}$

pFET subthreshold Operation V in units of U_T

Triode/Linear Region

$$I = I_0 e^{-\kappa V_g + V_s} (1 - e^{+V_{ds}})$$

Saturation Region, $V_{ds} > a$ few U_T

$$I = I_f = I_0 e^{-\kappa V_g + V_s}$$

nFET functional behavior

pFET functional behavior

Circuit question

- •What is V_{out} vs. V_{in} ?
- •Why is this circuit called a *source follower*?
- •How can you use this circuit to measure kappa?

THE END

Next week:

What is the transistor threshold?

Above threshold operation.

Drain conductance-Early effect

