Funkcje sklejane

Jakub Kędra

Gr. nr 4

Spis treści

Informacje techniczne	3
Zadanie	3
Funkcja	3
Węzły równoodległe	3
Funkcje sklejane 3-go stopnia – sześcienna	4
Warunek brzegowy – ilorazy różnicowe – Cubic function	4
Warunek brzegowy – zerowy – Natural Cubic Spline	5
Wykresy interpolacji sześciennej	6
Funkcje sklejane 2-go stopnia - kwadratowa	1
Warunek brzegowy – zerowy – "Natural Spline"	1
Warunek brzegowy – "Clamped boundary"	
Wykresy interpolacji kwadratowej	
Błędy	
Błędy w interpolacji kwadratowej	
Błędy w interpolacji sześciennej	
Efekt Rungego	
Wnioski	
Bibliografia	
Dibliografia	1
Spis tabel	
Tabela 1. Informacje techniczne	3
Tabela 2. Błędy obliczeniowe interpolacji przy pomocy funkcji sklejanych 2-go rzędu	
Tabela 3. Błędy obliczeniowe interpolacji przy pomocy funkcji sklejanych 3-go rzędu	1
Spis wykresów	
Wykres 3. Spline sześcienny – "free boundary" – n=8	6
Wykres 4. Spline sześcienny – ilorazy różnicowe – n=8	
Wykres 5.Spline sześcienny – "free boundary" – n=10	
Wykres 6. Spline sześcienny – ilorazy różnicowe – n=10	
Wykres 5. Spline sześcienny – "free boundary" – n=20	
Wykres 6. Spline sześcienny – ilorazy różnicowe – n=20	
Wykres 5. Spline sześcienny – "free boundary" – n=30	
Wykres 6. Spline sześcienny - ilorazy różnicowe – n=30	
Wykres 3. Spline kwadratowy – "free boundary" – n=8	
Wykres 4. Spline kwadratowy – "clamped boundary" – n=8	
Wykres 5.Spline kwadratowy – "free boundary" – n=10	
Wykres 6. Spline kwadratowy – "clamped boundary" – n=10	

Wykres 5. Spline kwadratowy – "free boundary" – n=20	1
Wykres 6. Spline kwadratowy – "clamped boundary" – n=20	
Wykres 5. Spline kwadratowy – "free boundary" – n=30	1
Wykres 6. Spline kwadratowy – "clamped boundary" – n=30	1
Wykres 29. Hermit - równomierny - n=8	2
Wykres 30. Hermit - równomierny - n=9	2
Wykres 31. Hermit - równomierny - n=10	2
Wykres 32. Spline kwadratowy –iloraz różnicowy- n=8	2
Wykres 33. Spline kwadratowy – iloraz różnicowy- n=9	2
Wykres 34. Spline kwadratowy – iloraz różnicowy - n=10	2
Spis równań	
Równanie 1. Podstawowa interpolowana funkcja	3
Równanie 2. Interpolowana funkcja	
Równanie 3. Miejsca zerowe interpolowanej funkcji	
Równanie 4. Wzór na interpolacje sześcienną funkcji w x	
Równanie 5. Wzór na b _i , c _i , d _i dla interpolacji funkcją sklejaną 3-go stopnia	
Równanie 6. Wzór na i-tą sigmę	
Równanie 7. Założenia funkcji sklejanych 3-go stopnia	
Równanie 8. Warunki brzegowe Cubic function	
Równanie 9. Wzory na i-tą Δ stopnia od 1 do 3	
Równanie 10. Przekształcenia warunków brzegowych Cubic function	
Równanie 11. Otrzymane warunki brzegowe Cubic function	
Równanie 12. Układ równań interpolacji sześciennej dla warunku Cubic function	
Równanie 13. Warunek brzegowy natural cubic spline	
Równanie 14. Wzór na i-tą sigmę	
Równanie 15. Otrzymane warunki brzegowe Natural Cubic Spline	
Równanie 16. Układ równań interpolacji sześciennej dla warunku Natural Cubic Spline	
Równanie 17. Wzór na interpolacje 2-go stopnia	
Równanie 18. Wzór na z _{i+1}	
Równanie 19. Wzór na a _i , b _i oraz c _i dla interpolacji funkcją sklejaną 2-go stopnia	
Równanie 20. Wzór ogólny na interpolacje funkcją sklejaną 2-go stopnia	
Równanie 21. Założenia funkcji sklejanej 2-go stopnia	
Równanie 22. Warunki brzegowe Natural Spline	
Równanie 23. Wzór ogólny na interpolację funkcją sklejaną 2-go stopnia	
Równanie 24. Różniczka wzoru ogólnego na interpolację funkcją sklejaną 2-go stopnia	
Równanie 25. Przekształcenie różniczki s(x)	
Równanie 26. Otrzymany warunek brzegowy Natural Spline interpolacji kwadratowej	
Równanie 27. Warunki brzegowe Clamped Boundary	
Równanie 28. Przybliżenie pierwszej pochodnej i-tego elementu	
Równanie 29. Przybliżenia wartości warunków brzegowych Clamped boundary	
Równanie 30. Wzór ogólny a interpolację funkcją sklejaną 2-go stopnia	
Równanie 31. Różniczka wzoru ogólnego na interpolację funkcją sklejaną 2-go stopnia	
Równanie 32. Przekształcenia różniczki s(x)	
Równanie 33. Otrzymany warunek brzegowy Clamped boundary funkcji kwadratowej	3

Informacje techniczne

Poniższa tabela zawiera informacje sprzętowe

System operacyjny	Windows 10 Home (64bit, kompilacja 19045)
Procesor	i7 9750h
Język programowania	Python
Kompilator	Python 3.8.10

Tabela 1. Informacje techniczne

7adanie

Celem zadania było wyznaczenie, przeprowadzenie oraz zbadanie wielomianu interpolującego z wykorzystaniem funkcji sklejanych 2-go i 3-go stopnia (odpowiednio interpolacji kwadratowej oraz sześciennej) dla równoodległego rozmieszczenia węzłów.

Funkcja

Interpolowana funkcja prezentuje się następująco:

$$f(x) = e^{-k\sin(mx)} + k\sin(mx) - 1$$

Równanie 1. Podstawowa interpolowana funkcja

Dla:

- k = 1
- m = 2
- $x \in [0,3\pi]$

Podstawiając parametry do wzoru otrzymujemy:

$$f(x) = e^{-\sin(2x)} + \sin(2x) - 1$$

Równanie 2. Interpolowana funkcja

Z miejscami zerowymi dla

$$x = \left\{ \pi n, \ \pi n + \frac{\pi}{2} \right\}, n \in Z$$

Równanie 3. Miejsca zerowe interpolowanej funkcji

Węzły równoodległe

Interpolacje zostały przeprowadzone dla węzłów równoodległych – rozmieszczonych równolegle na całej dziedzinie interpolowanej funkcji.

Funkcje sklejane 3-go stopnia – sześcienna

Interpolację 3-go stopnia, zwaną również interpolacją sześcienną, wykonujemy z wykorzystaniem poniższego wzoru:

$$s(x) = y_i + b_i \cdot (x - x_i) + c + i \cdot (x - x_i)^2 + d_i \cdot (x - x_i)^3$$

Równanie 4. Wzór na interpolacje sześcienną funkcji w x

Dla $x \in [x_i, x_{i+1}]$, gdzie:

 b_i , c_i , d_i – określone są dla każdego przedziału za pomocą wzorów:

$$b_i = \frac{y_{i+1} - y_i}{h_i} - h_i(\sigma_{i+1} + 2\sigma_i)$$

$$c_i = 3 \cdot \sigma_i$$

$$d_i = \frac{\sigma_{i+1} - \sigma_i}{h_i}$$

Równanie 5. Wzór na b_i, c_i, d_i dla interpolacji funkcją sklejaną 3-go stopnia

Gdzie:

$$\sigma_i = \frac{1}{6}s''(x_i)$$

Równanie 6. Wzór na i-tą sigmę

Dodatkowo, funkcje sklejane 3-go stopnia posiadają następujące założenia:

1.
$$s_i(x_{i+1}) = f(x_{i+1})$$

2.
$$s_i(x_{i+1}) = s_{i+1}(x_{i+1})$$

3.
$$s_i'(x_{i+1}) = s_{i+1}'(x_{i+1})$$

4.
$$s_i''(x_{i+1}) = s_i''(x_{i+1})$$

Równanie 7. Założenia funkcji sklejanych 3-go stopnia

Warunek brzegowy – ilorazy różnicowe – Cubic function

Warunek brzegowy, wykorzystujący ilorazy różnicowe, konstruujemy z wykorzystaniem poniższych założeń. Niech:

 $C_1(x)$ – f. sześcienna przez pierwsze 4 punkty

 $C_n(x)$ – f. sześcienna przez ostatnie 4 punkty

Za warunki brzegowe przyjmujemy:

$$s'''(x_1) = C_1'''$$

$$s^{\prime\prime\prime}(x_n) = C_n^{\prime\prime\prime}$$

Równanie 8. Warunki brzegowe Cubic function

Stałe C_1''' oraz C_n''' mogą zostać określone bez znajomości $C_1(x)$ oraz $C_n(x)$ za pomocą wzorów:

$$\Delta_{i} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}}$$

$$\Delta_{i}^{(2)} = \frac{\Delta_{i+1} - \Delta_{i}}{x_{i+2} - x_{i}}$$

$$\Delta_{i}^{(2)} = \frac{\Delta_{i+1}^{(2)} - \Delta_{i}^{(2)}}{x_{i+3} - x_{i}}$$

Równanie 9. Wzory na i-tg ∆ stopnia od 1 do 3

Ponieważ:

$$s'''(x_1) = c_1'''(x_1) \Rightarrow \frac{6}{h_1}(\sigma_2 - \sigma_1) = 6\Delta_1^{(3)}$$

 $s'''(x_n) = c_n'''(x_1) \Rightarrow \frac{6}{h_{n-1}}(\sigma_n - \sigma_{n-1}) = 6\Delta_{n-3}^{(3)}$

Równanie 10. Przekształcenia warunków brzegowych Cubic function

Po przekształceniu otrzymujemy następujące warunki brzegowe

$$\begin{cases} -h_1\sigma_1 + h_1\sigma_2 = h_1^2 \Delta_1^{(3)} \\ h_{n-1}\sigma_{n-1} - h_{n-1}\sigma_n = -h_{n-1}^2 \Delta_{n-3}^{(3)} \end{cases}$$

Równanie 11. Otrzymane warunki brzegowe Cubic function

Które wstawiamy do układu równań (dla interpolacji sześciennej):

$$egin{bmatrix} -h_1 & h_1 & 0 & 0 & \dots & 0 \ h_1 & 2(h_1+h_2) & h_2 & 0 & \dots & 0 \ 0 & h_2 & 2(h_2+h_3) & h_3 & \dots & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \ 0 & 0 & \dots & 0 & h_{n-1} & -h_{n-1} \end{bmatrix} egin{bmatrix} \sigma_1 \ \sigma_2 \ \sigma_3 \ \dots \ \sigma_{n-1} \ \sigma_n \end{bmatrix} = egin{bmatrix} h_1^2 \Delta_1^{(3)} \ \Delta_2 - \Delta_1 \ \Delta_2 - \Delta_1 \ \dots \ \sigma_{n-1} \ \sigma_n \end{bmatrix}$$

Równanie 12. Układ równań interpolacji sześciennej dla warunku Cubic function

Który następnie rozwiązujemy

Warunek brzegowy – zerowy – Natural Cubic Spline

Zerowy warunek brzegowy, znany również jako "natural cubic spline" bądź też "free boundary" powstaje poprzez wykorzystanie warunku:

$$s''(x_1) = s''(x_n) = 0$$

Równanie 13. Warunek brzegowy natural cubic spline

Korzystając z wzoru:

$$\sigma_i = \frac{1}{6}s''(x_i)$$

Równanie 14. Wzór na i-tą sigmę

Otrzymujemy:

$$\sigma_1 = 0$$
, $\sigma_n = 0$

Równanie 15. Otrzymane warunki brzegowe Natural Cubic Spline

Które podstawiamy to równania (dla interpolacji sześciennej):

$$egin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \ h_1 & 2(h_1+h_2) & h_2 & 0 & \dots & 0 \ 0 & h_2 & 2(h_2+h_3) & h_3 & \dots & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \ 0 & 0 & 0 & \dots & 1 \end{bmatrix} egin{bmatrix} \sigma_1 \ \sigma_2 \ \sigma_3 \ \dots \ \sigma_{n-1} \ \sigma_n \end{bmatrix} = egin{bmatrix} 0 \ \Delta_2-\Delta_1 \ \Delta_2-\Delta_1 \ \dots \ \sigma_{n-1} \ \sigma_n \end{bmatrix}$$

Równanie 16. Układ równań interpolacji sześciennej dla warunku Natural Cubic Spline

Który następnie rozwiązujemy

Wykresy interpolacji sześciennej

Poniżej znajdują się przykładowe wykresy interpolacji sześciennej, dla obu warunków brzegowych (po lewej "Free boundary", a po prawej wykorzystujące ilorazy różnicowe). Także i w tym przypadku minimalną liczbą węzłów, jaką potrzebujemy do interpolacji, jest n=4.

Wykres 1. Spline sześcienny – "free boundary" – n=8

Wykres 2. Spline sześcienny – ilorazy różnicowe – n=8

Wykres 3.Spline sześcienny – "free boundary" – n=10

Wykres 4. Spline sześcienny – ilorazy różnicowe – n=10

Wykres 5. Spline sześcienny – "free boundary" – n=20

Wykres 6. Spline sześcienny – ilorazy różnicowe – n=20

Wykres 7. Spline sześcienny – "free boundary" – n=30

Wykres 8. Spline sześcienny - ilorazy różnicowe – n=30

Jak możemy zauważyć, interpolacje wydają się być o wiele dokładniejsze od interpolacji z wcześniejszych laboratoriów. Wraz z wzrostem liczby węzłów wzrasta również dokładność interpolacji. Możemy również zaobserwować na powyższych wykresach, że wybór odpowiedniego warunku brzegowego również ma znaczenie.

Funkcje sklejane 2-go stopnia - kwadratowa

Interpolacja 2-go stopnia, zwaną również interpolacją kwadratową, wykonujemy z wykorzystaniem wzoru:

$$s(x) = \frac{z_{i+1} - z_i}{2(x_{i+1} - x_i)} (x - x_i)^2 + z_i(x - x_i) + y_i$$

Równanie 17. Wzór na interpolacje 2-go stopnia

Dla $x \in [x_i, x_{i+1}]$, gdzie z_i obliczamy za pomocą wzoru:

$$z_{i+1} = -z_i + 2\frac{y_{i+1} - y_i}{x_{i+1} - x_i} = -z_i + 2\Delta_i$$

Równanie 18. Wzór na z_{i+1}

Gdzie z_0 determinuje warunek brzegowy. Dla uproszczenia możemy przyjąć, że:

$$a_i = \frac{z_{i+1} - z_i}{2(x_{i+1} - x_i)}$$
$$b_i = z_i$$
$$c_i = y_i$$

Równanie 19. Wzór na a_i , b_i oraz c_i dla interpolacji funkcją sklejaną 2-go stopnia

W wyniku czego otrzymujemy

$$s(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

Równanie 20. Wzór ogólny na interpolacje funkcją sklejaną 2-go stopnia

Dodatkowo, funkcje sklejane 2-go stopnia posiadają następujące założenia:

1.
$$s_i(x_{i+1}) = f(x_{i+1})$$

2.
$$s_i(x_{i+1}) = s_{i+1}(x_{i+1})$$

3.
$$s_i'(x_{i+1}) = s_{i+1}'(x_{i+1})$$

Równanie 21. Założenia funkcji sklejanej 2-go stopnia

Warunek brzegowy – zerowy – "Natural Spline"

Zerowy warunek brzegowy, znany również jako "natural cubic spline" bądź też "free boundary" powstaje poprzez wykorzystanie warunku:

$$s'(x_1) = 0$$
 lub $s'(x_n) = 0$

Równanie 22. Warunki brzegowe Natural Spline

Posiadając funkcję bazową w postaci:

$$s(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

Równanie 23. Wzór ogólny na interpolację funkcją sklejaną 2-go stopnia

Obliczamy jej różniczkę:

$$s'(x) = b_i + 2c_i(x - x_i)$$

Równanie 24. Różniczka wzoru ogólnego na interpolację funkcją sklejaną 2-go stopnia

Gdzie $b_i = z_i$. Po podstawieniu warunku brzegowego dla $s'(x_1)$ (korzystając z pierwszego założenia) oraz z_i otrzymujemy:

$$s'(x_1) = 0 = z_1 + 2c_1(x_1 - x_1)$$

$$s'(x_n) = 0 = z_n + 2c_n(x_n - x_n)$$

Równanie 25. Przekształcenie różniczki s(x)

Z którego otrzymujemy warunek brzegowy

$$z_1 = 0 \ \lor z_n = 0$$

Równanie 26. Otrzymany warunek brzegowy Natural Spline interpolacji kwadratowej

Który podstawiamy do wcześniejszego wzoru

Warunek brzegowy – "Clamped boundary"

Warunek brzegowy typu "clamped boundary" powstaje poprzez wykorzystanie przynajmniej jednego z warunków:

$$s'(x_1) = f_1' \quad \forall \quad s'(x_n) = f_n'$$

Równanie 27. Warunki brzegowe Clamped Boundary

Wartości pochodnych możemy natomiast przybliżyć, korzystając z wzoru

$$f_i' \approx \Delta_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Równanie 28. Przybliżenie pierwszej pochodnej i-tego elementu

Otrzymujemy:

$$f_1' \approx \Delta_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

$$f_n' \approx \Delta_1 = \frac{y_n - y_{n-1}}{x_n - x_{n-1}}$$

Równanie 29. Przybliżenia wartości warunków brzegowych Clamped boundary

Podobnie i w tym przypadku, rozpoczynamy z funkcji bazowej:

$$s(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$

Równanie 30. Wzór ogólny a interpolację funkcją sklejaną 2-go stopnia

W tym przypadku również obliczymy jej różniczkę:

$$s'(x) = b_i + 2c_i(x - x_i)$$

Równanie 31. Różniczka wzoru ogólnego na interpolację funkcją sklejaną 2-go stopnia

Gdzie $b_i=z_i$. Po podstawieniu warunku brzegowego dla $s'(x_1)$ (korzystając z pierwszego założenia) oraz z_i otrzymujemy:

$$s'(x_1) = f_1' = z_1 + 2c_1(x_1 - x_1)$$

$$s'(x_n) = f'_n = z_n + 2c_n(x_n - x_n)$$

Równanie 32. Przekształcenia różniczki s(x)

Z którego otrzymujemy warunek brzegowy

$$z_1 = f_1' \approx \Delta_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

$$z_n = f_n' \approx \Delta_n = \frac{y_n - y_{n-1}}{x_n - x_{n-1}}$$

Równanie 33. Otrzymany warunek brzegowy Clamped boundary funkcji kwadratowej

Który podstawiamy do wcześniejszego wzoru

Wykresy interpolacji kwadratowej

Poniżej znajdują się przykładowe wykresy interpolacji kwadratowej, dla obu warunków brzegowych (po lewej "Free boundary", a po prawej "Clamped boundary"). W przypadku spline'ów minimalną liczbą węzłów, jaką potrzebujemy do interpolacji, jest n=4.

Wykres 9. Spline kwadratowy – "free boundary" – n=8

Wykres 10. Spline kwadratowy – "clamped boundary" –

Wykres 11.Spline kwadratowy – "free boundary" – n=10

Wykres 12. Spline kwadratowy – "clamped boundary" – n=10

Wykres 13. Spline kwadratowy – "free boundary" – n=20

Wykres 14. Spline kwadratowy – "clamped boundary" – n=20

Wykres 15. Spline kwadratowy – "free boundary" – n=30

Wykres 16. Spline kwadratowy – "clamped boundary" – n=30

W tym przypadku również możemy zauważyć, że interpolacje wydają się być dokładniejsze od interpolacji z wcześniejszych laboratoriów. Podobnie jak w przypadku interpolacji sześciennej, wraz z wzrostem liczby węzłów, rośnie dokładność interpolacji. Pomimo tego, interpolacja ta wydaje się jednak być trochę mniej dokładna od interpolacji sześciennej. Dodatkowo, w przypadku interpolacji kwadratowej różnice pomiędzy wybranymi warunkami brzegowymi są bardziej widoczne.

Błędy

Do wyliczenia stosownych błędów skorzystałem z poniższych wzorów:

• Wzór na błąd maksymalny punktów:

$$\max_{i=0,...,500} |f(x_i) - w(x_i)|$$

Wzór na błąd sumy kwadratów punktów:

$$\frac{1}{500} \sqrt{\sum_{i=0}^{500} (f(x_i) - w(x_i))^2}$$

Poniżej prezentują się skumulowane w tabelach wyniki obliczeń błędów

Błędy w interpolacji kwadratowej

n	clamped max	natural max	clamped square	natural square
4	7,18282E-01	7,18282E-01	1,53059E-02	1,53059E-02
5	6,80009E-01	6,81086E-01	1,38119E-02	1,37603E-02
7	7,18282E-01	7,18282E-01	1,53059E-02	1,53059E-02
8	6,44741E-01	6,42025E-01	1,22999E-02	1,22821E-02
9	5,09452E-01	5,09313E-01	1,17892E-02	1,18796E-02
10	5,07028E-01	5,06892E-01	1,08101E-02	1,08888E-02
11	5,51783E-01	5,52223E-01	9,83647E-03	9,85713E-03
12	4,46955E-01	4,47019E-01	8,34793E-03	8,33351E-03
15	2,57582E-01	2,43948E-01	4,26325E-03	4,18955E-03
20	1,36232E-01	1,16663E-01	1,49430E-03	1,35981E-03
30	3,50600E-02	2,72181E-02	2,84411E-04	2,36117E-04
40	1,23073E-02	1,29582E-02	8,87895E-05	9,42569E-05
50	6,38975E-03	7,80853E-03	3,51411E-05	5,06594E-05
60	3,65301E-03	5,23327E-03	1,67611E-05	3,11267E-05
70	2,26436E-03	3,77217E-03	9,18651E-06	2,07811E-05
80	1,45943E-03	2,79804E-03	5,55427E-06	1,46994E-05
90	1,02774E-03	2,23841E-03	3,60178E-06	1,08531E-05
100	7,37987E-04	1,80624E-03	2,45958E-06	8,28318E-06

Tabela 2. Błędy obliczeniowe interpolacji przy pomocy funkcji sklejanych 2-go rzędu

Z powyższej tabeli wynika, że wraz ze wzrostem liczby węzłów, dokładność naszej interpolacji również rośnie. W przeciwieństwie do interpolacji w zagadnieniu Newtona czy w zagadnieniu Hermita – nie zauważymy tutaj spadku dokładności po przekroczeniu określonej liczby węzłów.

Błędy w interpolacji sześciennej

n	i. różn. max	natural max	i. różn. square	natural square
4	7,18282E-01	7,18282E-01	1,53059E-02	1,53059E-02
5	1,15885E+00	1,32143E+00	2,19208E-02	2,62246E-02
7	7,18282E-01	7,18282E-01	1,53059E-02	1,53059E-02
8	8,19991E-01	8,00022E-01	1,44276E-02	1,41324E-02
9	7,28149E-01	6,78826E-01	1,48500E-02	1,41319E-02
10	7,85788E-01	7,14498E-01	1,32113E-02	1,30957E-02
11	8,74601E-01	7,90254E-01	1,82254E-02	1,75253E-02
12	1,09526E+00	1,18555E+00	2,34314E-02	2,59728E-02
15	6,45948E-01	5,57911E-01	1,08570E-02	9,54934E-03
20	4,21569E-01	4,89007E-01	7,70983E-03	9,41014E-03
30	3,96290E-02	3,28296E-02	8,03722E-04	6,00700E-04
40	2,53911E-02	8,02165E-03	6,70461E-04	1,28126E-04
50	1,61068E-02	3,29634E-03	4,66095E-04	5,78083E-05
60	1,12122E-02	1,70625E-03	3,39713E-04	3,10641E-05
70	8,22480E-03	9,98293E-04	2,57486E-04	1,86696E-05
80	6,41578E-03	6,49461E-04	2,01452E-04	1,21224E-05
90	5,10276E-03	4,35354E-04	1,61724E-04	8,32740E-06
100	4,16057E-03	3,14631E-04	1,32596E-04	5,97395E-06

Tabela 3. Błędy obliczeniowe interpolacji przy pomocy funkcji sklejanych 3-go rzędu

W tym przypadku również możemy zauważyć, że wraz z wzrostem liczby węzłów, dokładność interpolacji również rośnie. Dla mniejszej liczby węzłów (do n=12) możemy zauważyć również lekkie fluktuacje. Natomiast w tym przypadku warunki brzegowe typu "natural cubic spline" okazały się być nieco dokładniejsze dla większych n niż warunki brzegowe wykorzystujące ilorazy różnicowe.

Efekt Rungego

Efekt Rungego polega na występowaniu zmniejszenia dokładności wraz ze zwiększaniem liczby węzłów. Dodatkowo, zachodzi on tylko w przypadku gdy równocześnie interpolujemy wielomianami oraz gdy węzły interpolacyjne są równoodległe. Jednak korzystając z interpolacji wykorzystującej funkcje sklejane, unikamy tego efektu. Funkcje te przybierają postać wielomianów bardzo niskiego stopnia na swoich wybranych przedziałach, dlatego też jesteśmy w stanie uniknąć tego niekorzystnego efektu, nawet dla bardzo dużej liczby węzłów.

Wnioski

Interpolacja funkcjami sklejanymi dała nam o wiele lepsze efekty niż wcześniejsze interpolacje w zagadnienu Lagrange'a, Newtona czy Hermita. Jednocześnie interpolacja charakteryzuje się o wiele mniejszym kosztem obliczeniowym.

Wraz ze wzrostem liczby węzłów, dokładność interpolacji rośnie. Dodatkowo, wybór warunków brzegowych również miał wpływ na dokładność interpolacji. W naszym przypadku interpolacja sześcienna z warunkiem Clamped boundary okazała się być najmniej dokładną z prezentowanych w tym sprawozdaniu interpolacji. Najdokładniejszą natomiast okazała się interpolacja sześcienna z warunkiem brzegowym Natural Cubic Spline. Jednakże, wyniki mogą różnić się w zależności od posiadanej funkcji interpolowanej, a także dla posiadanej liczby węzłów. Dodatkowo, pomimo różnic, interpolacje funkcjami sklejanymi dalej pozostają najdokładniejszą metodą interpolacji funkcji z dotychczas omawianych zagadnień.

Bibliografia

- Metody obliczeniowe w nauce i technice wykłady AGH 2022/23
- Numerical Mathematics and Computing edycja 6. Ward Cheney, David Kincaid Chapter 9.1