4.1 Exact Binomial Test and Confidence Interval for Prevalence Proportion

Suppose that in a population of size N, X have contracted a certain disease. We defined the prevalence proportion of the disease as p = X/N. Suppose now that in a sample of size n, the disease is recorded for x individuals. The point estimator for p is $\hat{p} = x/n$. If we want to test $H_0: p = p_0$ vs $H_1: p \geq p_0$ (upper-tailed) or $p \leq p_0$ (lower-tailed) or $p \neq p_0$ (two-tailed), we can conduct an approximate z-test with the test statistic $z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$, which under H_0 has a standard normal distribution. Also, an approximate $100 \cdot (1 - \alpha)\%$ confidence interval for p is

$$\left[\hat{p} - z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right].$$

However, it is better to conduct not an approximate but an exact test based on a binomial distribution. This test is called the **exact binomial test**. The distribution of X is binomial with parameters N and p. Since we draw a simple random sample (for which every individual in the population is equally likely to be chosen), it is reasonable to assume that x is also binomially distributed with parameters n and p. Denote by B a binomial random variable with parameters n and p_0 . The p-value for the test depends on the form of the alternative hypothesis and is computed as follows:

• For
$$H_1: p \ge p_0$$
, p -value= $\mathbb{P}(B \ge x) = \sum_{k=x}^{n} \binom{n}{k} p_0^k (1 - p_0)^{n-k}$.

• For
$$H_1: p \le p_0$$
, p -value= $\mathbb{P}(B \le x) = \sum_{k=0}^{x} \binom{n}{k} p_0^k (1-p_0)^{n-k}$.

• For $H_1: p \neq p_0$, if $x \geq n/2$,

$$p$$
-value = $\mathbb{P}(B \ge x \text{ or } B \le n - x) = \sum_{k=x}^{n} \binom{n}{k} p_0^k (1 - p_0)^{n-k}$

$$+\sum_{k=0}^{n-x} \binom{n}{k} p_0^k (1-p_0)^{n-k} = \sum_{k=r}^n \binom{n}{k} \left[p_0^k (1-p_0)^{n-k} + p_0^{n-k} (1-p_0)^k \right].$$

• For $H_1: p \neq p_0$, if $x \leq n/2$,

$$p$$
-value = $\mathbb{P}(B \le x \text{ or } B \ge n - x) = \sum_{k=0}^{x} \binom{n}{k} p_0^k (1 - p_0)^{n-k}$

$$+\sum_{k=0}^{n} {n \choose k} p_0^k (1-p_0)^{n-k} = \sum_{k=0}^{x} {n \choose k} \left[p_0^k (1-p_0)^{n-k} + p_0^{n-k} (1-p_0)^k \right].$$

A $100 \cdot (1 - \alpha)\%$ exact binomial confidence interval for p is chosen so that the probability of being below the interval is the same as being above it. Such intervals are called *equal-tailed*. The probability of each tail is $\alpha/2$. The CI has the form $[p_L, p_U]$ where p_L , the lower confidence limit, and p_U , the upper confidence limit, solve:

$$\sum_{k=0}^{x} \binom{n}{k} p_U^k (1 - p_U)^{n-k} = \alpha/2,$$

and

$$\sum_{k=n}^{n} \binom{n}{k} p_L^k (1 - p_L)^{n-k} = \alpha/2.$$

Proof: The values of p_0 that are covered by the confidence interval will be those for which the null hypothesis will not be rejected in favor of a two-sided alternative, at the $\alpha\%$ significance level. It means that the lower confidence limit p_L is the smallest p_0 that satisfies $\mathbb{P}(B \geq x) \geq \alpha/2$, and the upper confidence level p_U is the largest p_0 for which $\mathbb{P}(B \leq x) \geq \alpha/2$.

Example. A cohort of 10,000 individuals was followed for the duration of an influenza season. In this study, 725 individuals contracted the flu. The estimated prevalence proportion for this sample is $\hat{p} = 725/10000 = 0.0725$. We would like to test at the 5% significance level whether the true population prevalence proportion is larger than 7%, and construct an exact 90% confidence interval for the population parameter based on the binomial distribution, and an approximate 90% CI based on a normal distribution. We run the following SAS and R codes that compute the p-value for the exact binomial test as well as the confidence interval based on the binomial distribution. An approximate confidence interval based on z-distribution is also given in the output.

In SAS:

```
data flu_freq;
do i=1 to 725;
   flu="yes";
   output;
end;
```

```
do i=726 to 10000;
   flu="no";
   output;
end;
run;
proc freq data=flu_freq;
table flu/binomial (p=.07 level="yes") alpha=0.1;
run;
/*or */
data flu_freq2;
input flu$ freq;
cards;
yes 725
no 9275
proc freq data=flu_freq2;
table flu/binomial (p=0.07 level="yes") alpha=0.1;
weight freq;
run;
```

flu	Frequency	Percent	Cumul		Cumulative Percent
no	9275	92.75		9275	92.75
yes	725	7.25	1	10000	100.00
	E	Binomial I	Proporti	on	
		flu = yes			
	Proportion			0.072	5
	ASE	ASE		0.002	6
	90% L	90% Lower Conf Limit		0.068	2
	90% U	90% Upper Conf Limit		0.076	8
	Exact	Exact Conf Limits			
	90% L	90% Lower Conf Limit		0.068	3
	90% U	90% Upper Conf Limit 0		0.076	9
	Test	Test of H0: Proportion = 0.07			7
	ASE	ASE under H0		0.0026	6
	Z	Z		0.9798	3
	One-	sided Pr	> Z	0.1636	6
	Two	sided Pr	> Z	0.3272	2

In R:

```
#exact binomial test
binom.test(725, 10000, p=0.07, alternative="greater")
#options are alternative=c("two.sided", "greater", "less")
```

Exact binomial test

```
data: 725 and 10000
number of successes = 725, number of trials = 10000, p-value = 0.1683
alternative hypothesis: true probability of success is greater than 0.07
95 percent confidence interval:
```

0.06827716 1.00000000 sample estimates: probability of success 0.0725

#exact binomial confidence interval binom.test(725, 10000, conf.level=0.9)

Exact binomial test

0.06830067 0.07693330 sample estimates:

90 percent confidence interval:

p 0.0725

From the above outputs, in SAS, the one-sided p-value is 0.1636, the exact 90% CI is [0.0683, 0.0769], and the approximate 90% CI is [0.0682, 0.0768]. In R, the p-value= 0.1683, the exact 90% CI is [0.06827716, 0.07690823], and the approximate CI is [0.06830067, 0.07693330]. The conclusion is that the true population prevalence proportion is not larger than 7%. \square