Definition 1 (DFA (Def. 1.5)) *Deterministic finite automaton is defined by 5-tuple* $(Q, \Sigma, \delta, q_0, F)$ *, where*

- Q is a finite set of states
- Σ is a finite alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- q_0 is the start state
- $F \subseteq Q$ is the set of accept states

Definition 2 (NFA (Def. 1.37)) A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states
- Σ is a finite alphabet
- $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states.

Definition 3 (RE (Def. 1.52)) R is a regular expression (RE) if

- 1. R = a for some a in the alphabet Σ ,
- 2. $R = \epsilon$,
- 3. $R = \emptyset$
- 4. $R = (R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
- 5. $R = (R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, OR
- 6. $R = (R_1^*)$, where R_1 is a regular expression.

Note:

- ϵ represents a language with one string; **empty string**
- Ø represents a language with **no strings**
- Regular expressions get defined recursively!

Theorem 1 (Pumping Lemma (Def. 1.70)) If A is a regular language, then there is a number p, referred to as the pumping length, where if s is any string in A with $|s| \ge p$, then s may be divided into three parts, s = xyz, satisfying the following conditions:

- 1. For each $i \geq 0$, $xy^iz \in A$
- 2. |y| > 0
- $3. |xy| \leq p$

Definition 4 (CFG (Def. 2.2)) A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- V is a finite set called the variables,
- Σ is a finite set, disjoint from V, called the terminals,
- R is a finite set of rules, with each rule being a variable and a string of variables and terminals, and
- $S \in V$ is the start variable

Definition 5 (Def. 2.8) A context-free grammar is in **Chomsky normal form** if every rule is of the form

$$A \to BC$$
$$A \to a$$

where a is any terminal and A, B, and C are any variables – except that B and C may not be the start variable. In addition, we permit the rule $S \to \epsilon$, where S is the start variable.

Definition 6 (Def. 2.13) A pushdown automata is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is the finite set of states
- Σ is the finite input alphabet
- Γ is the finite stack alphabet
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Theorem 2 (Thm. 2.34: Pumping lemma for CFL) If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions

- 1. $uv^i xy^i z \in A$ for each $i \ge 0$
- 2. |vy| > 0
- 3. $|vxy| \leq p$.

Definition 7 (Turing machine TM (Def. 3.3)) *Turing machine is a 7-tuple* $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$:

- Q is the finite set of states
- Σ is the finite input alphabet, not containing the blank symbol \Box
- Γ is the finite tape alphabet, $\Box \in \Gamma$ and $\Sigma \subset \Gamma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function
- $q_0, q_{accept}, q_{reject} \in Q$ are the start, accept and reject states, $q_{accept} \neq q_{reject}$

Definition 8 (Def. 3.5) Language L is **Turing-recognizable** if Turing machine M exists that recognizes L.

Definition 9 (Def. 3.6) A language is **Turing-decidable** (or decidable) if a Turing Machine exists that decides it.

Definition 10 *Set* \mathbb{X} *is* countable *if it is finite, or a bijection between* \mathbb{X} *and* $\mathbb{N} = \{1, 2, ...\}$ *exists*

Theorem 3 (Theorem 4.22) A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Definition 11 A function $f: \Sigma^* \to \Sigma^*$ is a computable function if some TM, on every input w, halts with just f(w) on its tape.

Definition 12 (Def. 5.20) Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w, w \in A \iff f(w) \in B$. The function f is called the reduction from A to B.

Definition 13 (Def. 7.7) Let $t : \mathbb{N} \to \mathbb{R}^+$ be a function. Define the **time complexity class**, TIME(t(n)), to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

Definition 14 (Def. 7.12) *P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine,*

$$P = \bigcup_k \mathit{TIME}(n^k)$$

Definition 15 (Hamiltonian Path problem) $HAMPATH \triangleq \{\langle G, s, d \rangle \mid G \text{ is a directed graph with } h. p. s \rightarrow d\}$

Definition 16 (Def. 7.19) *NP is the class of languages that have polynomial time verifiers.*

Theorem 4 (Thm. 7.20) A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

Definition 17 (Subset-Sum Problem) Given n items with weights w_i , is there a subset of items with a total weight of W.

Definition 18 (Def. 7.28) A function $f: \Sigma^* \to \Sigma^*$ is a **polynomial time computable function** if some polynomial time Turing machine M exists that halts with just f(w) on its tape, when started on any input w.

Definition 19 (Def. 7.29) Language A is **polynomial time** (mapping) reducible to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the polynomial time reduction of A to B.

Definition 20

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

Definition 21 (Def. 7.34) A language B is NP-complete if it satisfies two conditions:

- 1. B is in NP
- 2. Every A in NP is polynomial time reducible to B

Definition 22 (NP-hard) A language B is NP-hard if every $A \in NP$ is polynomial time reducible to B.

Corollary 5 A language B is NP-complete if it is (i) NP and (ii) NP-hard.

Decision problem Function problem	Problem name	Problem description	P NP-complete NP-hard
	Shortest path	Find a shortest path from i to j	/
1	Min. spanning tree	Find the minimum spanning tree	1
/	Vertex cover	Does G have a size k vertex cover	/
/	Minimum vertex cover	Determine a smallest possible v.c.	1
/	Clique	Does G contain a clique of size k	1
/	k-clique	Determine a size k clique in G	1
/	Maximum clique	Determine a largest clique in G	/
/	Independent set decision	Does G have a size k i.s.	/
/	Maximum independent set	Determine a largest possible i.s.	/

- Decision problem: output is True or False
- Function problem: output is a string, e.g., a list of nodes
 - Instead of P and NP, we have FP and FNP, ...

Table 1: Time complexity of common graph problems.

Definition 23 (Def. 8.1) Let M be a deterministic TM that halts on all inputs. The **space complexity** of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that M scans on any input of length n.

If M is a NTM wherein all branches halt on all inputs, we define the space complexity to be the maximum number of tape cells M scans on any branch for any input of length n.

Theorem 6 (Savitch's theorem (Thm. 8.5)) For any function $f: \mathbb{N} \to \mathbb{R}^+$, where $f(n) \ge n$

$$NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Definition 24 (PSPACE and NPSPACE) PSPACE is the class of languages that are decidable in polynomial space

$$PSPACE = \bigcup_k SPACE(n^k)$$

and similarly for the NPSPACE.

Definition 25 (Probabilistic Turing Machine (PTM)) *Probabilistic TMs are like NTM, but*

- 1. Single branch with two possible moves in every step
 - 50:50 probability, known as the coin-flip
 - independent events!
- 2. Outcome quantified using probabilities

$$egin{aligned} \mathbf{P}\{\mathsf{accept}\} &= \sum_{b \in \mathcal{B}_A(w)} 2^{-k_b}, \ \mathbf{P}\{\mathsf{reject}\} &= \sum_{b \in \mathcal{B}_R(w)} 2^{-k_b}, \end{aligned}$$

where $\mathcal{B}_A(w)$ and $\mathcal{B}_R(w)$ denote the sets of branches with accepting and rejecting final state, and k_b is the number of steps in branch b.

Definition 26 *Time complexity of PTM is according to the worst case of all branches.*

Definition 27 (Probabilistic TM and Decidability)

Probabilistic TM M decides on language A with error probability ϵ iff

- 1. $\mathbf{P}\{\mathsf{accept}\} \ge 1 \epsilon \text{ for all } w \in A$
- 2. $\mathbf{P}\{\text{reject}\} \ge 1 \epsilon \text{ for all } w \notin A$

Definition 28 (Class BPP) Language $A \in BPP$ if there is a probabilistic polynomial time TM M (PPT-TM) that decides on language A with error probability $\epsilon = 1/3$.

		DFA	CFG	TM
Accept	A_x	✓	✓	Х
Empty	E_x	✓	✓	X
Equivalent	EQ_x	1	X	X
Halting	HALT _{TM}			Х
Regular L.	$REGULAR_{TM}$			X

Table 2: Decidability results for DFAs, PDAs, and TMs

Problem	context
SAT and 3SAT	boolean expressions
3COLOR	graph node coloring
CLIQUE	size k cliques in a graph
HAMPATH	Hamiltonian path from s to d
SUBSET-SUM	list of integers and their subsets

Table 3: Some NP-complete problems.