

Simulare examen național de bacalaureat decembrie 2024 Proba E, d) Fizică

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 puncte)

Subjectul I

Nr. item	Soluție, rezolvare	Punctaj
I.1.	С	3p
2.	d	3р
3.	b	3p
4.	С	3p
5.	С	3p
TOTAL pen	ru subiectul I	15p

Subjectul al II-lea

Nr. item	Soluție, rezolvare	Punctaj
II.a.	Reprezentarea corectă a forțelor 3p	3р
b.	$v = const \implies a = 0$	4p
	$G_t - F_f = 0$	
	$G_t = m \cdot g \cdot \sin \alpha $ 1p	
	$F_f = 120 N$	
C.	$N - G_n - F_f = 0 1p$	4p
	$G_n = m \cdot g \cdot cos \alpha$	
	$F_f = \mu \cdot N$	
	$\mu = 0.5$	
d.	$G_t - F_f' = ma 1p$	4p
	$F_f' = \mu \cdot N'$	
	$N' = G_n$	
	$a = 2\frac{m}{s^2}$	
TOTAL pent	ru subiectul II	15p

Nr. item	Soluție, rezolvare	Punctaj
III.a.	$E_p = mgh 1p$	3р
	$E_p = 100J$	
	h = 10 m	
b.	$v = \frac{h}{t}$	4p
	$v = 2\frac{m}{s}$	
	$E_c = \frac{m \cdot v^2}{2}$	
	$E_c = 2J$	
C.	$P = F \cdot v $ 2p	4p
	F = mg	
	P = 20W	
d.	$p = m \cdot v$	4p
	$E_{p max} = E_c + E_p $ 1p	
	$ E_p = 3 \cdot E_c $	
	$p = 10 N \cdot s$	
TOTAL penti	ru subiectul III	15p

B.ELEMENTE DE TERMODINAMICĂ

(45 puncte)

Subiectul I

Nr. item	Soluție, rezolvare	Punctaj
I.1.	a	3p
2.	b	3p
3.	c	3p
4.	a	3p
5.	b	3p
TOTAL pe	ntru subiectul I	15p

Subjectul al II-lea

Nr. item	Soluție, rezolvare		Punctaj
II.a.	$m_0 = \frac{\mu \sigma_2}{N_A}$	2p	3р
	rezultat final $m_0\cong 5.31\cdot 10^{-23}~{ m g}$		
	1p		
b.	U _{in} = U _{fin}	1 p	4p
	$v_1 C_{v_1} T_1 + v_2 C_{v_1} T_2 = v_1 C_{v_1} T_{fin} + v_2 C_{v_2} T_{fin}$	1p	
	$v_1 = \frac{p_1 V_1}{RT_1}$; $v_2 = \frac{p_2 V_2}{RT_2}$	1р	
	rezultat final : $T_{fin} \cong 356K$	1p	
C.	$p_{fin} (V_1 + V_2) = (\nu_1 + \nu_2) R_{Tfin}$	3р	4p
	rezultat final: $p_{fin}\cong 1.55\cdot 10^5\ Pa$	1p	
d.			4p
	$\mu_m = \frac{m}{\nu} = \frac{m}{\nu_1 + \nu_2} = \frac{\nu_1 \mu_{O_2} + \nu_2 \mu_{Ar}}{\nu_1 + \nu_2}$	3р	
	rezultat final: $\mu_m \cong 36,57 \text{ g mol}^{-1}$	1p	
ΓΟΤΑL pen	tru subiectul II		15p

Nr. item	Soluție, rezolvare		Punctaj
III.a.	p ₂ =p ₁ / 4		4p
	1p		
	$ \frac{1p}{\frac{p_2}{p_3}} = \frac{v_2}{v_2} = 4 $ $ p_3 = \frac{p_1}{16} $	1p	
	$p_3 = \frac{p_1}{16}$	1p	
	rezultat final: $p_3 = 0.25 \cdot 10^5 Pa$	1p	
b.	$Q_{12} = v RT_1 ln V_2 / V_1$	2р	3р
	rezultat final: $Q_{12} = 560 \text{ KJ}$	1p	
C.	L ₁₂ = Q ₁₂	1p	4p
	$L_{23} = A_{trapez} = -(p_2 + p_3)3V_1/2$	1p	
	$L_{31} = 0$	1p	
	rezultat final: L = L ₁₂ + L ₂₃ + L ₃₁ = 372,5KJ	1p	
d.	T ₁ = 16 T ₃	1p	4p
	$\Delta U_{23} = \mathbf{v} C_V (T_3 - T_2)$	2p	
	rezultat final: Δ U ₂₃ = - 937,5 KJ	1p	
OTAL pen	tru subiectul III		15p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

(45 puncte)

Subjectul I

Nr. item	Soluție, rezolvare	Punctaj
I.1.	а	3p
2.	b	3р
3.	b	3p
4.	а	3p
5.	d	3p
TOTAL pent	ru subiectul I	15p

Subjectul al II-lea

Nr. item	Soluție, rezolvare		Punctaj
II.a.	Pentru:		4p
	$U_{V} = E = 30 \text{ V}$	1p	
	$E = Ir + (U_R + U_b)$	1p	
	$R = U_R/I = 74\Omega$		
	1p		
	$R_b = U_b/I = 225 \Omega$	1p	
b.	K și K_1 închis, K_2 deschis.		4 p
	E = I ₁ R + I ₁ r	1p	
	$I_1 = 0.4A$	1p	
	$U_{V_1} = E - I_1 r$	1p	
	rezultat final $U_{V_1} = 29.6 V$	1p	
C.	K, K ₁ , K ₂ închise		4p
	Pentru:		
	l ₂ = E/ r = 30 A	2p	
	$U_{V_2} = E - I_2 \mathbf{r}$	1p	
	rezultat final U_{V_2} = 0	1p	
d.	I = ne/t	2р	3р
	rezultat final n = 3,75 . 10 ²⁰ electroni	1p	
TOTAL pen	tru subiectul II		15p

Nr. item	Soluție, rezolvare		Punctaj
III.a.	6 U ₁ + U _{R1} = U	1p	4р
	$I_1 = P_1/U_1$	1p	
	$R_1 = U_{R1} / I_1$	1p	
	rezultat final R_1 = 296 Ω	1p	
b.	$U_1 + U_{R2} = U$	1p	4p
	$I = 6 I_1$ $R_2 = U_{R2} / I$	1p	
	rezultat final $R_2\cong 69{,}33~\Omega$	1p	
C.	$P_{R_1} = I_1^2 R_1$	1p	4p
	$P_{R2} = I^2 R_2$	1p	
	$P_{R_1} = 74 \text{ W}$	1p	
	$P_{R2} = 623,97 W$	1p	
d.	$W = I^2 R_2 \Delta t$	2p	3р
	rezultat final $W = 74,876$ KJ	1p	
OTAL per	tru subiectul III		15p

D. OPTICĂ (45 puncte)

Subjectul I

Nr. item	Soluție, rezolvare	Punctaj
I.1.	d	3p
2.	С	3p
3.	b	3p
4.	d	3р
5.	d	3р
TOTAL pe	entru subiectul I	15p

Subjectul al II-lea

Nr. item	Soluție, rezolvare		Punctaj
II.a.	$C = \frac{1}{fs}$	2p	3р
	$C = 10 m^{-1}$	1p	
b.	construcția corectă a imaginii prin sistemul optic	4p	4p
C.	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_S}$	1p	4p
	$\beta = \frac{x_2}{x_1}$	1p	
	$\beta = \frac{y_2}{y_1}$	1p	
	$-y_2 = 2 cm$	1p	
d.	sistem afocal	1p	4p
	d = 2f	1p	
	$\frac{1}{f_S} = \frac{1}{f} + \frac{1}{f}$	1p	
	d = 40 cm	1p	
TOTAL pen	tru subiectul II		15p

Nr. item	Soluție, rezolvare		Punctaj
III.a.	$i = \frac{D \cdot \lambda}{2l}$	3р	4 p
	$\lambda = 5 \cdot 10^{-7} m$	1p	
b.	Condiția de maxim de interferență $\delta = k \cdot \lambda$	1p	3р
	k = 2	1p	
	$\delta = 10^{-6} \mathrm{m}$	1p	
C.	$x_2^{\text{max}} = 2i$	1p	4p
	$x_2^{\min} = 1,5i$	1p	
	$d = x_2^{\text{max}} + x_2^{\text{min}}$	1p	
	d = 3,5 mm	1p	
d.	Deplasarea sistemului de franje cu $\Delta x = \frac{(n-1)eD}{2l}$	2р	4 p
	$\Delta x = x_2^{\text{max}} = 2i$	1p	
	n = 1,5	1p	
TOTAL per	ntru subiectul III		15p