Restaurant Recommender

A Yelp Open Data Project in R

Data Studies Summer Series | September 9, 2015

Students:

Graham Sarasy

Shubhangi Srivastava Adam Zhu **Andrew Tom**

Iris Xie

Mentors:

Prof. Duncan Temple Lang & Prof. Joe Dumit

Approaching the Dataset

- Previously attempted data problem:
 - Identify "struggling" businesses
- Strategy
 - Text mining of user reviews to find trends
 - Sentiment analysis to gauge the accuracy of star ratings
- Limitations of this data problem:
 - Businesses close for reasons unrelated to star ratings
 - On the periphery of Yelp's capabilities
- Back to the drawing board
 - Further exploratory analysis
 - Problem clarification
 - Research on previous Yelp dataset projects

Newly Refined Data Problem

- Recommendation System
 - Suggesting new restaurants to Yelp users, based off the star ratings of other Yelp users who have reviewed similar or the same restaurants as the user
 - This allows for a more personalized user experience
 - Focus: consumers near college neighborhoods
 - There are a number of filtering techniques that can be applied to populations

Goals

- Cluster Yelp users based on similar preferences
 - Preferences determined by nearest neighbors (i.e. users that positively review the same businesses)
 - Star rating from 1 to 5
 - Similarity based on review scores alone
- Predict user ratings based on preference clusters
 - Generate index of similar users
 - Connect user preferences to business_id
 - Map the unique business IDs to actual business names

Data Collection

- Yelp Academic dataset variables:
 - Businesses
 - Reviews
 - Users
- Information known about users:
 - User id
 - Review id
- Information known about businesses:
 - o Business id
 - College neighborhood
 - Location (City, State, latitude, longitude)
 - Aggregate star ratings for business

Data Cleaning

- Cleaned "categories" using Google Refine:
 - Cleaned Typos
 - Merged and tagged neighborhoods associated with one campus.
 - e.g. UCBerkeley-UC/Campus Area/Telegraph Avenue/Downtown

13490 rows						Exten	sions: Fre
Show as: rows records Show: 5 10 25 50 rows Sort ▼ « first < previous 1 - 10 ne.							
city	review_cour	name	neighborhoo	▼ url	▼ longitude	▼ state	stars
Provider	ice 5	roba!dolce	Brown;College Hill	http://www.yelp.com/biz/roba-dolce- providence	-71.4006111	RI	2
Provider	ice 20	Grad Center Bar	Brown;College Hill	http://www.yelp.com/biz/grad- center-bar-providence	-71.4007221	RI	4.5

Sampling the Population

- 1) Take out a portion of the data to be used as a "holdout" set for cross-validating our results.
 - a) For each run of the algorithm, 4 businesses were sampled out.
- 2) Create a comparison matrix (M).
- 3) Create a distance matrix:
 - a) users (rows) and businesses (columns)
 - b) For the purpose of determining the distance between different users that reviewed the same businesses to find "nearest neighbors."
- 4) Make predictions based on neighbors
 - a) Calculate which users are closest to one another
 - b) Smallest distance => closest neighbor => best recommendation

User / Business Matrix

Sparse matrix of dimensions length(business_id), length(user_id)

M	Business ID 1	Business ID 2
User ID 1	Review Score	Review Score
User ID 2	Review Score	Review Score

- 1) Generate a matrix
- 2) Compare User reviews to Businesses
- 3) Map overlap between user reviews for similar businesses

Distance Matrix

Calculate distance between reviewers from difference between review scores

D	User_id		
User_id	Score 1 minus Score 2		

- Generate a matrix of distance between user reviews for the same business
- 2) Populate this matrix based on the most prolific user

Refining the Algorithm

- Variables (matrix considers only ratings)
- Cut the population down to only include users > 5 reviews
- Similarity constant (Euclidean distance)
 - "How far away a neighbor can be"
 - Varied depending on the matrix, city, # of neighbors, etc
- # of k-nearest neighbors (20 neighbors)

Results

Number of businesses recommended varied based on our recommendation criteria (>3 or >4 stars).

```
> recover3

DfrvJL-6H5i1nsyL6H6VGg ubjbE_LZIYS_i6yg8S21-Q hzsyQBWeox94WOpUtxuWVg aysngmx-Tqb7Lpyx9f6yPw yoem-Kw_Jln0LqsdLwLeUQ
5.0 5.0 4.0 4.0 4.0

q2EXggq1IIrw20YPSfvJeQ uKB1eXRNNBq2w4-wUkusZA 4.0 4.0 4.0 4.0
4.0 4.0 4.0 4.0

BU6FTbHe38g3Enbi077fvA 4y49CSzDlkZB7nkyViZuzg
4.0 3.5
```

Results

 Once we subset the recommended business IDs, we could match those to business names for an output of businesses.

Replicated commendations based on prediction matrix, subset by city

- Berkeley, CA
- Los Angeles, CA
- Cambridge, MA

- 20890 Reviews, 185 Unique Businesses
- 17925 Reviews, 308 Unique Businesses
- 30767 Reviews, 259 Unique Businesses

Top Recommended Restaurants

In the slides that follow, we mapped out functional output to maps.

Prediction / Error Checking

Cross validation between whole dataset and prediction subset

Error checking (actual - prediction & holdout - prediction)

Error Checking

- Cross validation between whole dataset and prediction subset
- Errors within 0.5 stars would result in stronger recommendations

Limitations

- Used reviews from Oct. 2004 Oct. 2012
 - Populated matrix using 1 users' reviews their old reviews are less descriptive of the business at present.
- We are assuming that similar reviews are comparable
 - i.e. Is user A's 3-star rating the same as user B's 3-star rating?
- Recommendations
 - The code only recommends for 1 person at a time
 - Not all average ratings (for specific businesses) are based off the same number of reviews
 - Sparse matrix some recommendations better than others
 - o In an ideal world, we would have a perfectly populated matrix
- Error Checking
 - Again, because of the sparsity of the matrix, some predictions were stronger for some randomly sampled businesses than for others

Conclusions

- The recommender system is useful to Yelp users seeking a refined user experience that shows businesses closer to their preferences.
- Taking this further:
 - We aim to apply this algorithm to multiple users at a time, instead of just one user.
 - Ideally, acquiring updated data would help make the recommendation system more accurate as we would have a better idea of the businesses that are still open/have opened since 2012.

Thank You

Please email any questions you may have.

Andrew Tom - Collaborator & Analyst

andrewtom.careers@gmail.com