STAT 337 Tutorial 3 – Module 3 – Confounding and effect modification

Section 3.1: Causation and Confounding

Causation: A change in X CAUSES a direct change in Y

Association: As X changes, Y also appears to change, i.e. as X increases, Y tends to increase etc.

The goal in medical research is to determine if there's an association between an exposure and disease by conducting studies which examine the characteristics of the individuals with and without the disease. To investigate these questions the following order is typically used:

- A. Descriptive studies based on clinical observations or available data. Used to generate hypothesis and refine medical research questions.
- B. Observational Studies typically start with Case-Control and/or Cross sectional since relatively quick and then can move to cohort.
- C. Experimental Studies Randomised control trials.

Guidelines for judging whether an association is Causal:

Set of Criteria created by Sir Austin Bradford Hill

Major Criteria	Minor Criteria
Temporal Relationship	Strength of Association
Replication of Findings	Dose-Response Relationship
Biological Plausibility	Cessation of Exposure
Consideration of Alternative Explanations	

Bias, Confounding and Effect Modification:

Bias	Confounding	Effect Modification
A systematic error in	Occurs when the association between an exposure of	Occurs when a variable differently modifies the true
the design or conduct of	interest and disease/outcome is distorted by the	association between the exposure of interest and the
a study that results in an	presence of another factor. Put a simpler way - Two	disease/ outcome, i.e there is a different association
erroneous estimate of	variables are said to be confounded if it is impossible	in different groups.
the true association	to separate their effects on the response. i.e. describes	Modifier
between exposure and	an association that exists but potentially is misleading.	
outcome, i.e creates an	If the confounder is known and measured, we can	
association that is not	adjust for it in our modelling.	
true:	Formal definition:	
	1.Factor X is a risk factor for Outcome B	
Measurement error/	2.Factor X is associated with Factor A BUT not a direct	
bias	result of Factor A.	
Nonresponse bias,	Then X is a confounder	
Recall bias	Factor A	
Selection bias,	2. Association	
Information bias,	Factor X Association of Interest	
Misclassification bias	Association of Interest	
	1. Risk Factor	
	Outcome B	
	-Positive confounding – true association is enhanced	
	(looks stronger).	
	-Negative confounding – true association is dimmed	
	(looks weaker)	

Carefully planning for your study can help reduce bias	At Design stage can minimise effect by matching, stratification, randomisation if unknown.	Typically investigated using stratification and/or interaction terms in linear or logistic regression.
	At Analysis stage, if have data can include in analysis to adjust/control for its effect. Linear regression, logistic regression, post-stratification or restriction	

Section 3.2: Multiple Linear Regression

Suggested analysis methods:

		Outcome Variable	
		Binary	Continuous
Covariate(s)	Binary	2×2 tables	z or t -test
		χ^2 test	Linear Regression
	Continuous	Logistic regression	Linear Regression

Simple Linear Regression:

Purpose of model:

- 1. Describe the associations between the outcome of interest and one or more explanatory variables.
- 2. Predict values of the outcome variable for new levels of the explanatory variable.
- 3. Adjust for other covariates and confounding variables.

In simple linear regression there is only one explanatory variable and the notation used is as follows:

- Response Variable, Y
- Explanatory Variable, X

We are interested in estimating the line of best fit, where a straight-line relating Y (response variable) to x (explanatory variable) has an equation of the form:

Where

- $\mu_{Y|X} = E(Y|X)$ and represents the true mean value of Y for a given value of x.
- $\mu_{Y|X}$ is typically referred to as the **deterministic part** of the model and captures the **known variation**.

Visualising the line of best fit:

Figure 15.2: Illustration of the linear regression model for a simulated data set.

More conventionally we write the model as:

$$Y = \beta_0 + \beta_1 x + \epsilon$$

Total Variation = known variation + unknown variation

Where

• Y is the response variable (observed)

• x is the explanatory variable (observed)

• β_0 is the Y-intercept (unknown parameter and needs to be estimated)

• β_1 is the slope (unknown parameter and needs to be estimated)

• ϵ is a random error term (residual), and represents the unknown variation

Once the unknown parameters are estimated using the data collected, we can use our **estimated regression line** to make

predictions on the response variable:

Where

• \hat{Y} represents the **predicted value of Y** for a given value of X, strictly speaking is captures $\hat{\mu}_{Y|X}$

• $\hat{\beta}_0$ and $\hat{\beta}_1$ represent the statistics that estimate β_0 and β_1 respectively.

Interpreting the parameter estimates $\hat{\beta}_0$ and $\hat{\beta}_1$:

• $\hat{\beta}_0$ is the estimated average response when **x=0** (may not be of interest depending on whether x=0 has meaning or not)

• $\hat{\beta}_1$ is the estimated change in the average response for a **one unit increase** in x.

This notion can be extended into Multiple Linear Regression:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$
 with iid $\epsilon_i \sim N(0, \sigma^2)$

The β_j 's are the regression coefficients. Here β_0 is the intercept (i.e. the expected value of y at $x_1 = \cdots = x_p = 0$) and for $j = 1, \ldots, p$, β_j represents the expected change in y for a one unit increase in x_j holding all other x's constant.

Testing the significance of an explanatory variables, i.e is it really associated with the outcome, while adjusting for the other covariates.

Step 1: State your Hypothesis - H_0 : $\beta_i = 0 \ vs. H_a$: $\beta_i \neq 0$

Step 2: Solve for test statistic value

The test statistic is

$$t^* = \frac{\hat{\beta}_j - 0}{se(\hat{\beta}_j)}$$

which has a $t_{n-(p+1)}$ distribution (note p+1 parameters in the model).

Step 3: Solve for p-value or critical value

Step 4: Make conclusion – if p-value < alpha we Reject the null hypothesis.

n=sample size

Pt1=total # of

parameters.

Interpreting the parameter estimates $\hat{\beta}_0$ and $\hat{\beta}_i s$:

- $\hat{\beta}_0$ is the estimated average response when **x=0** (may not be of interest depending on whether x=0 has meaning or not)
- $\hat{\boldsymbol{\beta}}_i$ is the estimated change in the average response for a **one unit increase** in the corresponding x_i , while holding all other covariates fixed.

Using Regression Models to check for Confounding:

Recall confounding Occurs when the association between an exposure of interest and disease/outcome is distorted by the presence of another factor. Put a simpler way - Two variables are said to be confounded if it is impossible to separate their effects on the response. i.e. describes an association that exists but potentially is misleading. If the confounder is known and measured, we can adjust for it in our modelling.

Using Regression Models to Check for Confounding

Is the factor x_2 a confounder for the association between exposure x_1 and outcome Y? Using the formal definition of confounding we need to check:

1. Is the covariate x_2 a risk factor for outcome y?

Consider: $Y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$. If $\hat{\beta}_2 \neq 0$ then yes

Or consider: $Y = \hat{\theta}_0 + \hat{\theta}_1 x_2$. If $\hat{\theta}_1 \neq 0$ then yes

2 continuous

2. Is x_2 associated with exposure x_1 (but not a direct consequence of it)?

- Consider a model like $x_1 = \hat{\gamma}_0 + \hat{\gamma}_1 x_2$. If $\hat{\gamma}_1 \neq 0$ then yes
- Use scientific context of the study to determine if x_2 is a direct consequence of x_1

If we answer yes to both of the above then we conclude that x_2 is a confounder. Note in above tests often use a larger significance level (i.e. $\alpha = 0.10$ or 0.20).

Using Regression Models to check for effect modification:

Recall effect modification occurs when a variable differently modifies the true association between the exposure of interest and the disease/ outcome, i.e there is a different association in different groups.

For this we need to introduce an interaction term leading to the following

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$
 with iid $\epsilon_i \sim N(0, \sigma^2)$

The fitted models are shown below.

$$Y = \hat{\alpha}_0 + \hat{\alpha}_1 x_1$$

$$Y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_1 x_2$$

$$\begin{cases} 2 & & \\ &$$

Let's examine the interaction model. When $x_2 = 0$ the model becomes

$$Y = \beta_0 + \beta_1 x_1$$

When $x_2 = 1$ the model is becomes

$$Y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x_1$$

Example:

This question is based on the following paper:

Doll, Richard and Hill, A. Bradford. The Mortality of Doctors in Relation to Their Smoking Habits. British Medical Journal, June 26, 1954, pp 145-1455.

This is the first major report in what would be a long running prospective cohort study.

18. (a) Referring back to the paper in question 16. (in particular Table I) would you consider age to be a confounder for the relationship between smoking and lung cancer mortality? Use the formal definition of confounding in your solution.

(b) If you were to run a similar cohort study today give at least two other potential con-

founders would you want to be sure to consider.

factor. lung concer

15 a risk factor

an associati

TABLE I.—Amount of Tobacco Smoked. Male Doctors Aged 35 Years and Above

	1				
Age in Years	No. of Non-	No. of M	fen Smoking Average of:	† a Daily	Total No.
m I Cars	smokers	1 g‡	15 g.–	25 g.+	of Men
35–44	1,457 (16·3%)	2,864	2,888	1,716 (19·2%)	8,925 (100·0%)
45–54	835	2,087 (29·2%)	(32.7%)	1,886	7,140
55–64	(9.3%)	1,376 (33·9%)	1,283 (31·6%)	1,027 (25·3%)	4,063
65–74	(8·6%)	1,218 (45·2%)	(30.0%)	438° (16·3%)	2,694
75-84	164 (11·8%)	768 (55·3%)	326 (23·5%)	132°. (9.5%)	1,390° (100.1%)
85 and above	29 (16·4%)	(66·7%)	26 (14·7%)	(2.3%)	177 (100·1%)
All ages (Crude %)	3,093 (12·7%)	8,431 (34 -6%)	7,662 (31·4%)	5,203 (21·3%)	24,389 (100·0%)
	<u> </u>	<u></u>	,	ī	<u> </u>

[†] The figures include (a) men smoking the given amounts at the end of 1951, and (b) ex-smokers smoking the given amounts at the time they gave up smoking.

11 cigarette equals 1 g.; 1 oz. of tobacco a week taken to equal 4 g. a day.

e shows more non-smokers at a young old age groups man in the midd

Example:

The dataset 'FEV.xls' contains information to investigate forced expiratory volume (FEV measured in liters) as a primary indicator of lung function. FEV corresponds to the volume of air that can forcibly be blown out in the first second after full inspiration. The variables included are FEV, age in years, height, sex (0: Female, 1: Male), and exposure to smoke (0: exposed, 1: not exposed).

- a) The investigators are interested in determining whether there is an association between FEV and Age. However, they suspect that smoking status is a confounding variable.
 - I. Using the formal definition of confounding determine whether smoking status is a confounding variable.
 - II. Fit appropriate regression models to determine whether smoking status is a confounding variable.
- b) The investigators are again interested in determining whether there is an association between FEV and Age. However, they now want to determine whether sex is an effect modifier.
 - I. Create an appropriate scatter plot and comment on whether sex appears to be an effect modifier.
 - II. Fit an appropriate regression model to determine whether sex is an effect modifier.

	Juhin	i age	2
Sm	Ming		?
./ (J		, fe	\
ris	ok w	•	

	Mean	Std
smoke		
0	2.57	0.85
1	3.28	0.75
All	2.64	0.87
	0	smoke 0 2.57 1 3.28

		age	
		Mean	Std
	smoke		
E	0	9.53	2.74
正	1	13.52	2.34
	All	9.93	2.95

The UNIVARIATE Procedure smoke=0

The UNIVARIATE Procedure Fitted Normal Distribution for fev (fev)

smoke=0

Parameters for Normal Distribution				
Parameter Symbol Estimate				
Mean	Mu	2.566143		
Std Dev	Sigma	0.850522		

Goodness-of-Fit Tests for Normal Distribution				
Test	S	Statistic	p Val	ue
Kolmogorov-Smirnov	D	0.05669864	Pr > D	<0.010
Cramer-von Mises	W-Sq	0.69524680	Pr > W-Sq	<0.005
Anderson-Darling	A-Sq	4.87043523	Pr > A-Sq	<0.005

Quantiles for Normal Distribution					
	Quantile				
Percent	Observed	Estimated			
1.0	1.09200	0.58753			
5.0	1.42300	1.16716			
10.0	1.58900	1.47616			
25.0	1.92000	1.99247			

Quantiles for Normal Distribution				
	Quantile			
Percent	Observed	Estimated		
50.0	2.46500	2.56614		
75.0	3.04800	3.13981		
90.0	3.74100	3.65613		
95.0	4.23200	3.96513		
99.0	5.08300	4.54475		

The UNIVARIATE Procedure smoke=1

The UNIVARIATE Procedure Fitted Normal Distribution for fev (fev)

smoke=1

Parameters for Normal Distribution			
Parameter	Symbol	Estimate	
Mean	Mu	3.276862	
Std Dev	Sigma	0.749986	

Goodness-of-Fit Tests for Normal Distribution				
Test	Statistic p Value			e
Kolmogorov-Smirnov	D	0.09706844	Pr > D	0.131
Cramer-von Mises	W-Sq	0.10252212	Pr > W-Sq	0.103
Anderson-Darling	A-Sq	0.61174156	Pr > A-Sq	0.108

Quantiles for Normal Distribution					
	Quantile				
Percent	Observed	Estimated			
1.0	1.69400	1.53213			
5.0	2.21600	2.04324			
10.0	2.27600	2.31572			
25.0	2.79500	2.77100			

Quantiles for Normal Distribution			
	Qua	ntile	
Percent	Observed	Estimated	
50.0	3.16900	3.27686	
75.0	3.75100	3.78272	
90.0	4.40400	4.23801	
95.0	4.75600	4.51048	
99.0	4.87200	5.02159	

The REG Procedure Model: MODEL1 **Dependent Variable: fev fev**

Number of Observations Used | 654

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	283.05825	141.52913	443.25	<.0001
Error	651	207.86159	0.31930		
Corrected Total	653	490.91984			

Root MSE	0.56506	R-Square	0.5766	
Dependent Mean	2.63678	Adj R-Sq	0.5753	
Coeff Var	21.43003			

Farameter Estimates						
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	0.36737	0.08144	4.51	<.0001
age	age	1	0.23060	0.00818	28.18	<.0001
smoke	smoke	1	-0.20899	0.08075	-2.59	0.0099

Parameter Estimates

(1) is smoking a risk factor.

For fev? +E

y=Bo+B, x, +B, x,
p-value

=0.0099 \(\text{N} = 0.1 \)

=0 smoking is

a risk factor

on fev.

The REG Procedure Model: MODEL1 Dependent Variable: age age

Number of Observations Read	654
Number of Observations Used	654

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	1	931.15178	931.15178	127.36	<.0001	
Error	652	4766.75189	7.31097			
Corrected Total	653	5697.90367				

Root MSE	2.70388	R-Square	0.1634
Dependent Mean	9.93119	Adj R-Sq	0.1621
Coeff Var	27.22614		

	Parameter Estimates					
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	9.53480	0.11141	85.58	<.0001
smoke	smoke	1	3.98827	0.35340	11.29	<.0001

2) is smoking associated with age but not a suirect cause of age? $x_1 = \beta_0 + \beta_1 x_2 + \epsilon$ $x_2 = \beta_0 + \beta_1 x_2 + \epsilon$ $x_3 = \beta_0 + \beta_1 x_2 + \epsilon$ $x_4 = \delta_0 + \delta_1 x_2 + \epsilon$ =0 Smoking is associated with age

	fev		
	Mean	Std	
sex			
0	2.45	0.65	
1	2.81	1.00	
All	2.64	0.87	

The UNIVARIATE Procedure sex=0

The UNIVARIATE Procedure Fitted Normal Distribution for fev (fev)

sex=0

Parameters for Normal Distribution							
Parameter Symbol Estimate							
Mean	Mu	2.45117					
Std Dev	Sigma	0.645736					

Goodness-of-Fit Tests for Normal Distribution						
Test	S	Statistic	p Val	p Value		
Kolmogorov-Smirnov	D	0.05822940	Pr > D	<0.010		
Cramer-von Mises	W-Sq	0.21055286	Pr > W-Sq	<0.005		
Anderson-Darling	A-Sq	1.38204856	Pr > A-Sq	<0.005		

Quantiles for Normal Distribution							
	Quantile						
Percent	Observed	Estimated					
1.0	1.09200	0.94896					
5.0	1.37000	1.38903					
10.0	1.55200	1.62363					
25.0	1.94700	2.01563					

Quantiles for Normal Distribution						
	Quantile					
Percent	Observed	Estimated				
50.0	2.48600	2.45117				
75.0	2.99300	2.88671				
90.0	3.23600	3.27871				
95.0	3.42800	3.51331				
99.0	3.77400	3.95338				

The UNIVARIATE Procedure

sex=1

The UNIVARIATE Procedure Fitted Normal Distribution for fev (fev)

Parameters for Normal Distribution							
Parameter Symbol Estimate							
Mean	Mu	2.812446					
Std Dev	Sigma	1.003598					

Goodness-of-Fit Tests for Normal Distribution						
Test	S	Statistic	p Value			
Kolmogorov-Smirnov	D	0.08680796	Pr > D	<0.010		
Cramer-von Mises	W-Sq	0.78154058	Pr > W-Sq	<0.005		
Anderson-Darling	A-Sq	4.75442138	Pr > A-Sq	<0.005		

Quantiles for Normal Distribution						
	Quantile					
Percent	Observed	Estimated				
1.0	1.25300	0.47773				
5.0	1.52700	1.16168				
10.0	1.66500	1.52628				
25.0	2.00700	2.13553				

Quantiles for Normal Distribution						
	Quantile					
Percent	Observed	Estimated				
50.0	2.60600	2.81245				
75.0	3.53950	3.48936				
90.0	4.28400	4.09861				
95.0	4.63700	4.46322				
99.0	5.22400	5.14716				

The REG Procedure Model: MODEL1 **Dependent Variable: fev fev** B=0.16243 2+B2= 0.16273
40.11075
=0.27348

Number of Observations Used 654

	Analysis of Variance								
Source		DF	5	Sum of Squares		Mean Square	FV	alue	Pr > F
Model		3	31	5.41042	1	05.13681	38	9.37	<.0001
Error		650	17	5.50942		0.27001			
Correct	ed Total	653	49	0.91984					
	Root MS	E		0.5196	3	R-Square	e 0.	6425	

2.63678 **Adj R-Sq Dependent Mean** 0.6408 **Coeff Var** 19.70696

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	0.84947	0.10220	8.31	<.0001
age	age	1	0.16273	0.00995	16.35	<.0001
sex	sex	1	-0.77587	0.14275	-5.44	<.0001
AgebySex	1	1	0.11075	0.01379	8.03	<.0001

sex 1 -0.77587 0.14275 -5.44 <.0001
ebySex 1 0.11075 0.01379 8.03 <.0001
$$\angle X = 0.005$$

 $Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_1 X_2 + E$.

```
APPENDIX:
```

SAS Code

proc import datafile='/home/ddawoud0/sasuser.v94/FEV.xls' DBMS=xls out=FEV;

run;

/*Investigate association between FEV and Smoke*/

when 8ex = 0 y = 130 + 13, x, + 8

proc sort data=FEV;

by smoke;

run;

proc tabulate data=FEV;

class smoke;

var fev;

table (smoke ALL), fev*(MEAN STD);

run;

when Sex = 1 $y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x_1 + \epsilon$

proc boxplot data=FEV;

plot fev*smoke;

run;

B₁ = 0.16273 = 0 for every 1 increase in age the average response increased by 0.1627

while holding sex fixed.

proc tabulate data=FEV; class smoke; var age; table (smoke ALL), age*(MEAN STD); run; proc boxplot data=FEV; plot age*smoke; run; proc univariate data=FEV noprint; histogram fev/ normal vscale=proportion; by smoke; run; proc sgplot data=FEV; scatter y=fev x=age / group=smoke; reg y=fev x=age / group=smoke;

run;

```
/*Determine is smoking is a confounder*/
proc reg data=FEV plots=none;
model fev= age smoke; /*smoke is statistically significant i.e is a risk factor of FEV*/
run;
proc reg data=FEV plots=none;
model age = smoke; /*smoke is associated with age, however is smoking a direct consequence of age?*/
run;
/*Investigate associations between FEV and Sex*/
proc sort data=FEV;
by sex;
run;
proc tabulate data=FEV;
class sex;
var fev;
table (sex ALL), fev*(MEAN STD);
```

```
run;
proc boxplot data=FEV;
plot fev*sex;
run;
proc univariate data=FEV noprint;
histogram fev/ normal vscale=proportion;
by sex;
run;
proc sgplot data=FEV;
scatter y=fev x=age / group=sex;
reg y=fev x=age / group=sex;
run;
/*Determine if Sex is an effect modifier*/
data FEV1;
set FEV;
AgebySex = age*sex;
```

```
run;

proc reg data=FEV1 plots=none;

model fev= age sex AgebySex; /*add interaction term*/
run;
```