Título presentación

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

11 de noviembre de 2024

1/6

Agenda

- Hamiltoniano y Péndulo
 - El problema y las coordenadas
 - El Lagrangeano y el Hamiltoniano

2
$$\mathcal{H}=q+te^p$$
 y la transformación $Q=q+e^p, P=p$

Hamiltoniano y Péndulo

El punto de suspensión de un péndulo está obligado a moverse a lo largo de la parábola $y=ax^2$. Encontrar el Hamiltoniano.

• Sen las coordenadas del punto de sustentación del péndulo son x, y y las coordenadas de la masa x', y',

Hamiltoniano y Péndulo

El punto de suspensión de un péndulo está obligado a moverse a lo largo de la parábola $y=ax^2$. Encontrar el Hamiltoniano.

- Sen las coordenadas del punto de sustentación del péndulo son x, y y las coordenadas de la masa x', y',
- Se tiene las siguientes relaciones:

$$x' = x + l \operatorname{sen} \theta$$
, $y' = y - l \operatorname{cos} \theta = ax^2 - l \operatorname{cos} \theta$

$$\dot{x}' = \dot{x} + I\dot{\theta}\cos\theta, \quad \dot{y}' = \dot{y} - I\cos\theta = a\dot{x} - I\cos\theta$$

 $\dot{x}' = \dot{x} + I\dot{\theta}\cos\theta, \quad \dot{y}' = \dot{y} + I\dot{\theta}\sin\theta = 2a\dot{x}\dot{x} + I\dot{\theta}\sin\theta$

• La energía cinética viene dada por: $T = \frac{1}{2}m\left(\dot{x}'^2 + \dot{y}'^2\right) \Rightarrow T = \frac{1}{2}m\left(\dot{x}^2 + l^2\dot{\theta}^2 + 4a^2x^2\dot{x}^2 + 2l\dot{x}\dot{\theta}\cos\theta + 4axl\dot{x}\dot{\theta}\sin\theta\right)$

- La energía cinética viene dada por: $T = \frac{1}{2}m(\dot{x}'^2 + \dot{y}'^2) \Rightarrow$ $T = \frac{1}{2}m(\dot{x}^2 + l^2\dot{\theta}^2 + 4a^2x^2\dot{x}^2 + 2l\dot{x}\dot{\theta}\cos\theta + 4axl\dot{x}\dot{\theta}\sin\theta)$
- y la energía potencial por: $V = mgy' = mg(ax^2 I\cos\theta)$

- La energía cinética viene dada por: $T = \frac{1}{2}m\left(\dot{x}'^2 + \dot{y}'^2\right) \Rightarrow T = \frac{1}{2}m\left(\dot{x}^2 + l^2\dot{\theta}^2 + 4a^2x^2\dot{x}^2 + 2l\dot{x}\dot{\theta}\cos\theta + 4axl\dot{x}\dot{\theta}\sin\theta\right)$
- y la energía potencial por: $V = mgy' = mg(ax^2 I\cos\theta)$
- A partir del lagrangiano $\mathcal{L} = T V$, obtenemos $p_x = \frac{\partial L}{\partial \dot{x}} = m\dot{x}\left(1 + 4a^2x^2\right) + ml\dot{\theta}(\cos\theta + 2ax\sin\theta)$ $p_\theta = ml^2\dot{\theta} + ml\dot{x}(\cos\theta + 2ax\sin\theta)$

- La energía cinética viene dada por: $T = \frac{1}{2}m(\dot{x}'^2 + \dot{y}'^2) \Rightarrow$ $T = \frac{1}{2}m(\dot{x}^2 + l^2\dot{\theta}^2 + 4a^2x^2\dot{x}^2 + 2l\dot{x}\dot{\theta}\cos\theta + 4axl\dot{x}\dot{\theta}\sin\theta)$
- y la energía potencial por: $V = mgy' = mg(ax^2 I\cos\theta)$
- A partir del lagrangiano $\mathcal{L} = T V$, obtenemos $p_x = \frac{\partial L}{\partial \dot{x}} = m\dot{x}\left(1 + 4a^2x^2\right) + ml\dot{\theta}(\cos\theta + 2ax\sin\theta)$ $p_\theta = ml^2\dot{\theta} + ml\dot{x}(\cos\theta + 2ax\sin\theta)$
- Despejando las velocidades $\dot{x} = \frac{p_x}{m} \frac{1}{(\sin\theta 2ax\cos\theta)^2} \frac{p_\theta}{ml} \frac{\cos\theta + 2ax\sin\theta}{(\sin\theta 2ax\cos\theta)^2}$ $\dot{\theta} = \frac{p_\theta}{ml^2} \frac{1 + 4a^2x^2}{(\sin\theta 2ax\cos\theta)^2} \frac{p_x}{ml} \frac{\cos\theta + 2ax\sin\theta}{(\sin\theta 2ax\cos\theta)^2}$

- La energía cinética viene dada por: $T = \frac{1}{2}m\left(\dot{x}'^2 + \dot{y}'^2\right) \Rightarrow$ $T = \frac{1}{2}m\left(\dot{x}^2 + l^2\dot{\theta}^2 + 4a^2x^2\dot{x}^2 + 2l\dot{x}\dot{\theta}\cos\theta + 4axl\dot{x}\dot{\theta}\sin\theta\right)$
- y la energía potencial por: $V = mgy' = mg(ax^2 I\cos\theta)$
- A partir del lagrangiano $\mathcal{L} = T V$, obtenemos $p_x = \frac{\partial L}{\partial \dot{x}} = m\dot{x}\left(1 + 4a^2x^2\right) + ml\dot{\theta}(\cos\theta + 2ax\sin\theta)$ $p_\theta = ml^2\dot{\theta} + ml\dot{x}(\cos\theta + 2ax\sin\theta)$
- Despejando las velocidades $\dot{x} = \frac{p_x}{m} \frac{1}{(\sin \theta 2ax \cos \theta)^2} \frac{p_\theta}{ml} \frac{\cos \theta + 2ax \sin \theta}{(\sin \theta 2ax \cos \theta)^2}$ $\dot{\theta} = \frac{p_\theta}{ml^2} \frac{1 + 4a^2x^2}{(\sin \theta - 2ax \cos \theta)^2} - \frac{p_x}{ml} \frac{\cos \theta + 2ax \sin \theta}{(\sin \theta - 2ax \cos \theta)^2}$
- Con lo cual $\mathcal{H} = \dot{x}p_{x} + \dot{\theta}p_{\theta} L$ se puede expresar $\mathcal{H} = \frac{p_{x}^{2}}{2m} \frac{1}{(\sin\theta 2ax\cos\theta)^{2}} + \frac{p_{\theta}^{2}}{2ml^{2}} \frac{1 + 4a^{2}x^{2}}{(\sin\theta 2ax\cos\theta)^{2}}$

$$\mathcal{H}=q+te^p$$
 y $Q=q+e^p$ & $P=p$ 1/2

El hamiltoniano de un cierto sistema físico es: $\mathcal{H}=q+te^p$. Muestre que la transformación $Q=q+e^p, P=p$ es una transformación canónica. Seguidamente, encuentre la función generatriz de esta transformación. Finalmente, determine el nuevo hamiltoniano y resuelva las ecuaciones de movimiento en las nuevas coordenadas.

.

•
$$\{Q,Q\} = \frac{\partial Q}{\partial q} \frac{\partial Q}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial q} = (1)(e^p) - (e^p)(1) = 0;$$

$$\mathcal{H}=q+te^p$$
 y $Q=q+e^p$ & $P=p$ 1/2

El hamiltoniano de un cierto sistema físico es: $\mathcal{H}=q+te^p$. Muestre que la transformación $Q=q+e^p, P=p$ es una transformación canónica. Seguidamente, encuentre la función generatriz de esta transformación. Finalmente, determine el nuevo hamiltoniano y resuelva las ecuaciones de movimiento en las nuevas coordenadas.

.

- $\{Q,Q\} = \frac{\partial Q}{\partial q} \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial q} = (1)(e^p) (e^p)(1) = 0;$
- $\{P,P\} = \frac{\partial P}{\partial q} \frac{\partial P}{\partial p} \frac{\partial P}{\partial p} \frac{\partial P}{\partial q} = (0)(1) (1)(0) = 0$; y finalmente

$$\mathcal{H}=q+te^p$$
 y $Q=q+e^p$ & $P=p$ 1/2

El hamiltoniano de un cierto sistema físico es: $\mathcal{H}=q+te^p$. Muestre que la transformación $Q=q+e^p, P=p$ es una transformación canónica. Seguidamente, encuentre la función generatriz de esta transformación. Finalmente, determine el nuevo hamiltoniano y resuelva las ecuaciones de movimiento en las nuevas coordenadas.

.

- $\{Q,Q\} = \frac{\partial Q}{\partial q} \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial q} = (1)(e^p) (e^p)(1) = 0;$
- $\{P,P\} = \frac{\partial P}{\partial q} \frac{\partial P}{\partial p} \frac{\partial P}{\partial p} \frac{\partial P}{\partial q} = (0)(1) (1)(0) = 0$; y finalmente
- $\{Q,P\} = \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} \frac{\partial Q}{\partial p} \frac{\partial P}{\partial q}$. Calculando cada una $\frac{\partial Q}{\partial q} = 1$, $\frac{\partial Q}{\partial p} = e^p$, $\frac{\partial P}{\partial q} = 0$, y $\frac{\partial P}{\partial p} = 1$, obtenemos $\{Q,P\} = (1)(1) (e^p)(0) = 1$.

$\mathcal{H}=q+te^p$ y $Q=q+e^p$ & P=p 1/2

El hamiltoniano de un cierto sistema físico es: $\mathcal{H}=q+te^p$. Muestre que la transformación $Q=q+e^p, P=p$ es una transformación canónica. Seguidamente, encuentre la función generatriz de esta transformación. Finalmente, determine el nuevo hamiltoniano y resuelva las ecuaciones de movimiento en las nuevas coordenadas.

.

- $\{Q,Q\} = \frac{\partial Q}{\partial q} \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial q} = (1)(e^p) (e^p)(1) = 0;$
- $\{P,P\} = \frac{\partial P}{\partial q} \frac{\partial P}{\partial p} \frac{\partial P}{\partial p} \frac{\partial P}{\partial q} = (0)(1) (1)(0) = 0$; y finalmente
- $\{Q,P\} = \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} \frac{\partial Q}{\partial p} \frac{\partial P}{\partial q}$. Calculando cada una $\frac{\partial Q}{\partial q} = 1$, $\frac{\partial Q}{\partial p} = e^p$, $\frac{\partial P}{\partial q} = 0$, y $\frac{\partial P}{\partial p} = 1$, obtenemos $\{Q,P\} = (1)(1) (e^p)(0) = 1$.
- Por lo tanto, como la tranformación cumple con $\{Q,Q\}=0,\quad \{P,P\}=0,\quad \text{y}\quad \{Q,P\}=1.$ Es canónica

$$\mathcal{H} = q + te^p \text{ y } Q = q + e^p \& P = p \ 2/2$$

Para encontrar la función generadora F supondremos una función generadora del tipo $F_2(q, P)$, que depende de q y P

• Las relaciones para $F_2(q,P)$ son: $p=\frac{\partial F_2}{\partial q}$ y $Q=\frac{\partial F_2}{\partial P}$

$$\mathcal{H} = q + te^p \text{ y } Q = q + e^p \& P = p \ 2/2$$

Para encontrar la función generadora F supondremos una función generadora del tipo $F_2(q, P)$, que depende de q y P

- Las relaciones para $F_2(q,P)$ son: $p=\frac{\partial F_2}{\partial q}$ y $Q=\frac{\partial F_2}{\partial P}$
- Sustituyendo p=P en $Q=q+e^P$, como $Q=\frac{\partial F_2}{\partial P}\Rightarrow$, $F_2(q,P)=qP+\int e^P\,dP\Rightarrow F_2(q,P)=qP+e^P+C$ y C=0

$$\mathcal{H} = q + te^p \text{ y } Q = q + e^p \& P = p \ 2/2$$

Para encontrar la función generadora F supondremos una función generadora del tipo $F_2(q, P)$, que depende de q y P

- Las relaciones para $F_2(q,P)$ son: $p=\frac{\partial F_2}{\partial q}$ y $Q=\frac{\partial F_2}{\partial P}$
- Sustituyendo p=P en $Q=q+e^P$, como $Q=\frac{\partial F_2}{\partial P}\Rightarrow$, $F_2(q,P)=qP+\int e^P\,dP\Rightarrow F_2(q,P)=qP+e^P+C$ y C=0
- La función generadora es $F_2(q, P) = qP + e^P$