Discrete Structures (MA5.101)

Quiz - 2 (Monsoon 2021)

International Institute of Information Technology, Hyderabad

Time: 60 Minutes Total Marks: 30

Instructions: This is online examination.

Write at the top of your answer book the following:

Discrete Structures (MA5.101)

Quiz - 2 (Monsoon 2021)

Date: 27-Dec-2021

Name:

Roll Number:

Submit your scanned hand-written answer script in the moodle with the file name: RollNo_Quiz2_SecNo_27Dec2021.pdf

December 27, 2021

- 1. Choose the correct option for the following questions:
 - (a) If A and B are symmetric relations, then the relation $A \cup B$ is
 - (A) Reflexive
 - (B) Symmetric
 - (C) Transitive
 - (D) None of these
 - (b) Let $S = \{0, 1, 2, 3, 4\}$, a partition be $P = \{\{0, 2\}, \{1\}, \{3, 4\}\}$, and a relation R induced by a partition which is an equivalence relation. Then, the ordered pairs in R is _____.
 - (A) $\{(0,0),(2,2),(0,2),(2,0),(1,1),(3,3),(4,4),(3,4),(4,3)\}$
 - (B) $\{(0,0),(2,4),(4,2),(0,2),(2,0),(1,1),(3,3),(4,4),(3,4),(4,3)\}$
 - (C) $\{(0,0),(2,3),(3,2),(0,2),(2,0),(1,1),(3,3),(4,4),(3,4),(4,3)\}$
 - (D) $\{(0,0),(1,2),(2,1),(0,2),(2,0),(1,1),(3,3),(4,4),(3,4),(4,3)\}$
 - (c) Let R be a relation on a set S, and R is symmetric as well as transitive relation. Then, R will be an equivalence relation if ______.
 - (A) $\forall a \in S \nexists b$ such that xRy
 - (B) for some $a \in S \exists b$ such that xRy
 - (C) $\forall a \in S \exists b \text{ such that } xRy$
 - (D) None of above
 - (d) Let \mathbb{R} be a set of real numbers, and define a binary relation R on $\mathbb{R} \times \mathbb{R}$: $\forall (x, y), (z, w) \in \mathbb{R} \times \mathbb{R}$, (x, y)R(z, w) if and only if either x < z or both x = z and $y \le w$. The, R is ______.

- (A) Reflexive, Symmetric and transitive
- (B) Reflexive, antisymmetric and not transitive
- (C) Reflexive, antisymmetric and transitive
- (D) A partial order relation
- (e) Let R be a relation on the set \mathbb{Z} (set of all integers) and define as follows: $\forall x, y \in \mathbb{Z}, xRy$ if and only if (x+y) is divisible by 2. Then, R is _____.
 - (A) A partial order relation
 - (B) A symmetric relation
 - (C) An antisymmetric relation
 - (D) An antisymmetric but not partial order relation
- (f) Let a set S contains 23 elements, and then the cardinality of symmetric relations can be
 - (A) 2^{529}
 - (B) 2^{506}
 - (C) 2^{276}
 - (C) 2^{253}
- (g) Let $A = \{0, 1, 2, 3\}$ and define the relations R, S, and T on A as follows:

i.
$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\},\$$

ii.
$$S = \{(0,0), (0,2), (0,3), (2,3)\},\$$

iii.
$$T = \{(0,1), (2,3)\}$$

Then, which of the following statement is/are correct(s):

- (A) R reflexive, symmetric, and transitive
- (B) R reflexive and not transitive.
- (C) S is not reflexive
- (D) T is transitive
- (h) Let a relation R on \mathbb{Z} and define as $(a,b) \in R | a \ge b^2$. Then R is _____.
 - (A) Not transitive
 - (B) Antisymmetric
 - (C) Symmetric
 - (D) Not reflexive
- (i) Let m and n be integers and let d be a positive integer. m is congruent to n modulo d is define by $m \equiv n \pmod{d}$ iff $d \mid (m-n)$. Then, which of the following statement(s) is/are true:
 - (A) $12 \equiv 7 \pmod{5}$
 - (B) $6 \equiv -8 \pmod{4}$
 - (C) $3 \equiv 3 \pmod{7}$
 - (D) None of the above
- (j) Let $S = \{0, 1, 2, 3, 4\}$ and define a relation R on S as $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$. Then, the distinct equivalence classes are _____.
 - (A) $\{0,4\}$ and $\{1,3\}$
 - (B) $\{0,4\},\{1,3\},$ and $\{2\}$
 - (C) $\{1,3\}$ and $\{2\}$
 - (D) None of the above

$$[10 \times 1 = 10]$$

- 2. Consider the set $A = \{a, b, c\}$ and a relation R defined in it as $R = \{(a, a), (b, b), (c, c), (b, c), (c, a)\}$.
 - (i) Find the symmetric closure of R.
 - (ii) Find the transitive closure of R.

$$[5 + 5 = 10]$$

- 3. (a) Let $\epsilon = 0.0005$, and let R_{ϵ} be the relation defined as $\{(x,y) \in \mathbb{R}^2 : |x-y| < \epsilon\}$, where R_{ϵ} could be interpreted as the relation "approximately equal". Prove or disprove that R_{ϵ} is reflexive, symmetric, and transitive.
 - (b) Give an example of a relation on the set of positive integers which is
 - (i) symmetric and reflexive, but not transitive
 - (ii) reflexive and transitive, but not symmetric

$$[5 + (2.5 + 2.5) = 10]$$