09/701962

EJU

FCT/JP99/030.3

日本国特許

PATENT OFFICE
JAPANESE GOVERNMENT

04.06.99

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1998年10月 2日

REC'D 27 JUL 1999

WIPO PCT

出 願 番 号 Application Number:

平成10年特許願第296105号

出 願 人 Applicant (s):

A. S. A.

株式会社京都第一科学

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Patent Office

特平10-296105

【書類名】 特許願

【整理番号】 P541

【提出日】 平成10年10月 2日

【あて先】 特許庁長官殿

【国際特許分類】 G01N 27/30

【発明の名称】 イオン活量測定器具の製造方法

【請求項の数】 3

【発明者】

【住所又は居所】 京都府京都市南区東九条西明田町57番地 株式会社京

都第一科学内

【氏名】 井上 敏久

【特許出願人】

【識別番号】 000141897

【氏名又は名称】 株式会社京都第一科学

【連絡先】 075-662-8956

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【書類名】 明細書

【発明の名称】 イオン活量測定器具の製造方法

【特許請求の範囲】

【請求項1】 イオン活量測定器具を製造する方法であって、不織布をカバーフィルムに埋め込ませて接合することを特徴とするイオン活量測定器具の製造方法。

【請求項2】 前記カバーフィルムと不織布が超音波融着によって接合させる事を特徴とする請求項1に記載するイオン活量測定器具の製造方法。

【請求項3】 前記不織布とカバーフィルムがローレット融着によって接合させる事を特徴とする請求項1及び2に記載するイオン活量測定器具の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、液体試料中のイオン活量を測定するために用いられるイオン活量測定器具の製造方法に関する。

[0002]

【従来の技術】

液体試料に含まれるイオン活量を測定するため、ポテンショメトリー法を用い た測定器具の1つとして、乾式電極が使用されている。

[0003]

イオン活量測定器具は、少なくとも1対の電極を有し、電極の一方は液体試料に接触させ、他方は参照液に接触させている。液体試料に接触する電極はイオン選択性を持っており、液体試料と参照液とがそれぞれの電極に接触したときに電極間に生じたイオン活量の差に応じた電位差が測定され、この電位差を持ってイオン活量に換算している。

[0004]

この様な電位差を生じさせるためには、液体試料と参照液との間に電気的導通をもたらす必要があり、これは液体試料のための液溜めと参照液のための液溜めの間にブリッジを設けることによって実現させている。

このようなブリッジの例としては、特公昭58-4981号公報に記載されているような、みぞからなるスリットブリッジ、特公昭58-4659号公報に記載されているような、疎水性皮膜層に挟まれた多孔性層からなる三層ラミネートブリッジ、特開昭58-201056号公報に記載されているような、液の拡散を閉塞するシールドにより区画された領域からなる多孔性ブリッジであるシールドタイプブリッジ、特開昭58-211648号公報に記載されているような、より糸からなるより糸ブリッジなどがある。

[0006]

また、本発明者らは、液溜め部に接する部位が親水性である疎水性ブリッジを備えることを特徴とするイオン活量測定器具について、(特願平10-158129号公報)特許出願を行っている。ブリッジ部の製造方法は、ブリッジを構成する部材である糸や不織布を用いて試料が添加される液溜め部と参照液が添加される液溜め部の間を橋渡しが行える様に製造しなければならない。

[0007]

【発明が解決しようとする課題】

ブリッジを構成する部材は、ポリエステル、ナイロン、ポニビニレン、レーヨン、ポリエチレン等の材質が選択されてシート状に作製された不織布を、カバーフィルムに接合させるが、この時の接合は、接着剤を用いる接合方法や、熱を加えて行う熱融着が一般的に行われている。

[0008]

本発明では、ブリッジを構成する部材として、不織布を例にあげて製造方法に関する説明を行う。カバーフィルムと不織布の接合は、不織布をカバーフィルムに重なり合わせることによって行うが、重なり合わせる部分に、接着剤を用いて行う接合方法では、不織布自身の厚みの他にも、塗布する接着剤の厚みを持ってしまう。

熱融着による接合方法でも、不織布の厚みを持つ構造になるために、カバーフィルムとの間に段差を生じてしまう。

液体試料及び参照液は、それぞれ別々の液溜め部に添加され、液が満たされるが

、液体試料や参照液は、ピペット等を用いて比較的早いスピードで添加されるため、カバーフィルムと不織布間に生じる段差に空気の層が形成されて前記液体試料や参照液がブリッジに展延しなかったり、または展延しにくいといった現象が起きていた。

[0009]

また、カバーフィルムと不織布を単に熱融着したのみの接合方法では、融着部分に力を加えると、簡単に不織布が剥がれてしまう。そのため、イオン活量測定器 具の輸送や使用時における落下等によってブリッジが剥がれて使用できない危険 性も充分想定されるので、改善の必要性が生じていた。

[0010]

【課題を解決するための手段】

前述した問題点を解決すべく、本発明者らは、試料中のイオン活量を測定するイオン活量測定器具を製造する方法であって、不織布をカバーフィルムに埋め込ませて接合することによって、カバーフィルムとブリッジの段差を少なくする接合によってイオン活量測定器具を製造する方法を見いだした。不織布をカバーフィルムに埋め込ませるためには、不織布が重なる部位に熱を加えて、加圧することにより、不織布の厚みをできるだけカバーフィルム側に押し込んで製造する方法が効果的である。

[0011]

前記カバーフィルムとブリッジの段差を少なくする接合方法は、前記カバーフィルムと不織布を、超音波融着によるローレット融着させることが最も望ましい

熱融着によるローレット融着をすることによって、不織布をカバーフィルムに埋め込ませることが可能であるが、不織布をすべてカバーフィルムに埋め込ます必要はなく、不織布の厚みによって生じる段差を小さくすることによって、液体試料や参照液が展延しやすくなる効果が得られればよい。

[0012]

ローレット融着は、融着機の先端にあるホーン部がローレット加工されており 、超音波振動しながら融着部材を溶かして、一定の圧力を加えることにより、ロ ーレット加工部に接している融着部材の面がローレット模様に仕上げられる接合 方法のうちの1つである。

[0013]

熱融着には、加熱融着方法、超音波融着方法、高周波融着方法がある。これらの方法は、熱を直接加えるか、或いは熱を発生させて融着部材を溶解して一定の圧力を加える事により接合される。

加熱融着方法は、融着部に熱を直接与えて接合する方法であるが、融着させたい 場所以外にも熱が加わるために、加圧してカバーフィルムが歪まない様な手段が 必要である。

高周波融着方法は、融着部材に存在するアルミ等の金属粒子が高周波によって振動して熱を発生し、その発生する熱で融着させる部材を溶解して接合する方法であるが、アルミ等の金属粒子を混合して不織布またはペットフィルムを製造する必要がある。

本発明で最も望ましい融着方法は、超音波融着方法であり超音波を伝導させるホーンを使用して、前記ホーンを融着部分に接触させることにより、各接触面で融 着部材の溶解が起こって接合される。

[0014]

融着を行うカバーフィルムと不織布は、厚さによって接合強度が異なる。その ため強度が保たれる程度の厚さが、カバーフィルムでは50~250μmである ことが好ましく、不織布は、30~150μmであることが好ましい。

[0015]

【発明の実施の形態】

以下に、本発明の実施の形態を詳細に説明する。

[0016]

本発明イオン活量測定器具は、ポテンショメトリー法に基づいてイオン活量を 測定するものである。すなわち、本発明イオン活量測定器具は少なくとも1対の 電極部を有し、電極部に検体と参照液とが接触すると電極部間にイオン活量の差 に応じた電位差が生じる。この電位差が、検量線に基づき活量に換算される。

検体としては、全血、血清、血漿、尿などの液体試料が挙げられる。

[0017]

本発明イオン活量測定器具は、特定の構造のブリッジを有する他は従来の乾式 電極を用いたイオン活量測定器具と同様に構成することができる。

[0018]

このようなイオン活量測定器具は、一般に、第1電極部、前記第1電極部上に配置された第1液溜め、第2電極部、前記第2電極部上に配置された第2液溜め、および、前記第1液溜めと前記第2液溜めとの間に電気的導通をもたらすことのできるブリッジを備えており、乾燥状態で保存され、使用時に第1液溜めおよび第2液溜めに液体試料および参照液が入るとブリッジにより第1液溜めと第2液溜めの間の電気的導通が達成されるものである。

[0019]

各電極部は、基板の上に、液体試料または参照液と接触する電極部、イオン活量測定装器具と電気的に接続するための端子部、および、電極部と端子部とを連絡する導線部からなるパターンの電極用金属層を形成し、電極部を規制するようにレジスト膜を印刷などにより形成し、該金属層の電極部を化学処理して金属塩層を形成し、レジスト膜で規制された該電極部上に電解質層およびイオン選択性膜を必要に応じて設けることにより形成できる。第1電極部と第2電極部とからなる電極対は複数設けられていてもよい。

[0020]

基板としては、絶縁性材料のフィルムまたはシート、例えば、プラスチックのフィルムが使用される。プラスチックとしては、ポリエステル、ポリプロピレン、アクリル樹脂、塩化ビニル樹脂などが好ましい。

[0021]

電極用金属としては、銀、銅、アルミニウム等の金属が使用でき、銀が好ましい。電極金属層は、通常の方法、例えば、金属ペーストのスクリーン印刷、金属 蒸着などによって形成できる。

[0022]

レジスト膜は、絶縁性材料からなる層であり、電極部および端子部を残して他 の部分を覆うように形成する。このレジスト膜は、後の工程で電極部上に電解質

層およびイオン選択性膜を形成する際に、これらを規制する「壁」の役割を果たす。「壁」は、電極部の外縁よりも0.2~1.0mm外側に位置させ、隙間を設けると、均一なイオン選択性膜を形成する上で有利である(特開平2-287146号公報参照)。レジスト膜と電極部とが接合する部分に、レジスト膜を形成する前に非導電性部を設けることによって「壁」と電極部との間に隙間を設けたのと同様の効果が得られる。非導電性部の材料としては、市販の絶縁性インクなどを使用できるが、接着性、耐エッチング性などの点で非導電性金属ペーストが好ましい。非導電性ペーストは金属ペーストの金属含量が、実質的に導電性にならない程度に少ないものをいう。

[0023]

レジスト膜の材料としては、絶縁性のものであれば特に制限はないが、通常には、市販の絶縁インクが用いられ、例としては、紫外線硬化型の日本アチソン製ML25089、ML25094およびED450SS(商品名)、シントーケミトロン製STR5320(商品名)、十条化工製DS-4およびINS-3(商品名)、太陽インキ製造製FOC-3S(商品名)など、熱硬化型のシントーケミトロン製STR-5110(商品名)、十条化工製HIPET9300(商品名)、大阪アサヒ化学製CR420GおよびCR48G(商品名)などが挙げられる。

[0024]

レジスト膜の形成は、紫外線硬化型の絶縁インクを用いた場合には、絶縁インクをスクリーン印刷によって形成し、次いで、UV照射機により紫外線を照射し硬化させることを、所定の膜厚になるまで繰り返すことによって行うことができる。熱硬化型の絶縁インクの場合には、紫外線を照射するかわりに、100~150℃に加熱すればよい。

[0025]

このレジスト膜により規制された電極部を化学処理して金属表面に金属塩層を 作る。金属塩は、通常ハロゲン化物、好ましくは塩化物であるが、他の塩でもよ い。

[0026]

次いで、レジスト膜により囲まれた領域を利用して、電極部上に電解質層およびイオン選択性膜を形成する。なお、特開昭 5 7 - 1 0 6 8 5 2 号公報に記載の電極のように電解質層は無くてもよい。

[0027]

電解質溶液をこの領域に注入すると、表面張力により、電極上でほぼ厚さの等しい液膜が形成されるので、液を乱すことなく乾燥すると、少なくとも参照電極上に膜厚の均一な電解質層を形成することができる。電解質は、前記金属塩のアニオンと同種のアニオンを含むものが好ましいが、異種アニオンを含むものでもよいし、さらに電解質を含まない電解質層をポリマーのみで形成してもよい。

[0028]

さらに電解質層の上に、イオン選択性膜材料の溶液を注入して乾燥すると、同様に膜厚の均一なイオン選択性膜が形成できる。イオン選択性膜材料は、公知のもの、例えば、特公昭58-4981号公報に記載の疎水性イオン選択性膜材料を使用できる。複数の電極対が設けられている場合には、各電極対に異なる種類のイオン選択性膜材料を使用でき、複数のイオン活量を同時に測定することが可能になる。

[0029]

液溜めは、電極部上に測定試料や参照液を保持できる限り特に制限はなく、絶縁性材料で作成された凹部であってもよく、複数の絶縁性材料の積層により作成された空間であってもよい。好ましくは、試料供給孔、空気抜き用孔、ブリッジ用孔および端子露出孔が設けられた絶縁性材料のフィルムからなるカバーフィルム上に、液溜め形状のレジスト膜を形成し、これを、上記のイオン選択性膜を形成した基板に貼り合わせ、基板のレジスト膜、カバーフィルムおよびカバーフィルムのレジスト膜により液溜めを形成する。このような液溜めを有するイオン活量測定器具はプレート状の形状にでき、使い捨てのイオン活量測定器具として好ましいものである。

[0030]

イオン活量測定器具の電極側の面には、使用時に容易に剥がすことのできる保 護用のフィルムを設けてもよい。また、イオン活量測定装置への装着方向を示す 印刷を施してもよい。さらに、裏面にはバーコードなどの識別コードを印刷して もよい。

[0031]

本発明イオン活量測定器具は、液溜め部に接する部位が親水性である疎水性ブリッジを備えることを特徴とする。このブリッジは、液溜め部に接する部位の全てが親水性であってもよいし、液溜めに接する部位の先端の一部分のみが親水性であってもよい。

[0032]

疎水性ブリッジを構成する部材の形態としては、液が浸透できる限り特に制限はないが、不織布または織物などの多孔性部材を挙げることができる。また、ブリッジを構成する部材の材料としては、疎水性ポリマーが挙げられる。この材料はカバーフィルムに融着可能なものであることが好ましい。疎水性ポリマーの具体例としては、ポリエステル(例えば、ポリエチレンテレフタレート)、ナイロン、ポリプロピレン、レーヨン、ポリエチレン等が挙げられる。

[0033]

上記のような構造を有するブリッジは、カバーフィルムと不織布を超音波融着機を使用することによって融着を行うことが望ましい。その際に前記超音波融着機に使用するホーン先端部を、ローレット加工を施して、前記超音波融着機に取り付けたのち、接合を行うことで接着力の強い、望ましいイオン活量測定器具が製造できる。

[0034]

次に液溜め部に接する部位の親水性処理は、例として界面活性剤および親水性ポリマーを使用することができる。界面活性剤としては、イオン活量の測定への影響の点から、ノニオン系界面活性剤を使用することが好ましい。血球を含む試料について測定をする場合には、血球を破裂させるなどの影響の少ないトライトンX405(商品名)、レシチンなどのノニオン系化合物を用いることが好ましい。親水性ポリマーとしては、ポリビニルアルコール、または、ポリビニルピロリドン(例えば、PVPK15(商品名))を用いることが可能である。界面活性剤および親水性ポリマーは、その一方のみを用いてもよいし、両方を組み合わせ

て用いてもよい。また、それぞれ、その1種を単独で用いてもよいし、2種以上 を組み合わせて用いてもよい。

[0035]

展延促進剤での処理は、展延促進剤の適宜の溶媒による溶液を、噴霧、コーティング、ディッピング、点着等によりブリッジの両端にしみ込ませ、乾燥させることにより行うことができる。展延促進剤での処理により、処理された部位は親水化される。

[0036]

本発明イオン活量測定器具を用いたイオン活量測定方法の再現性が向上する理由は、以下のように推定される。従来のブリッジでは、液の浸透方向において均一な材料によって構成されているので、第1液溜めと第2液溜めとから浸透した液の先端は均一にならないことが多く、更にブリッジ先端が段差を生じているため、液体試料及び参照液の添加時に空気の層が発生して液体の展延を部分的に妨げていた。そのためブリッジにおいても液の部分的接触や液の混合が生じていると考えられる。

一方、本発明イオン活量測定器具におけるブリッジでは、ブリッジ先端は、ローレット融着により接合されているためカバーフィルムとの段差が小さく、液体試料及び参照液の添加時に空気の層が発生することがないので、液体の展延が促される。また、第1液溜めと第2液溜めの間に、液の浸透方向において親水性部分一疎水性部分一親水性部分の3部分構造が構成されるので、両液溜め内の液は、先ず、親水性部分に浸透するが、中央部分が疎水性であるので、直ぐには疎水性の中央部分に進まない。そして、十分量の液が親水性部分に保持された後、一気に疎水性部分に進み、両液が接触する。このため、本発明イオン活量測定器具では、イオン活量測定の再現性に悪影響を与えると考えられる液の展延不良、液の部分的接触や液の混合が抑制されるため、再現性の向上をもたらしていると考えられる。

[0037]

以下、本発明イオン活量測定器具の一例として、図1を参照して、プレート状のイオン活量測定器具について説明する。図1はイオン活量測定器具の分解斜視

図を示す。

[0038]

このイオン活量測定器具では、3対の電極を構成する、電極部2、端子部3および導線部4からなる電極金属層、第1レジスト膜5並びにイオン選択性膜を形成した基板1に、試料供給孔8、空気抜き用孔9および端子露出孔10が設けられた絶縁性材料のカバーフィルムからなり、第2レジスト膜6が形成されたカバーフィルム7を、貼り合わせることによって、第1レジスト膜5、カバーフィルム7および第2レジスト膜6により液溜めが形成されている。

[0039]

ブリッジを有するカバーフィルムの構造の例を、図2に示す。

図2に示す例では、ブリッジ用孔11を覆うようにブリッジ材料(多孔性部材)として不織布または織物が配置され、カバーフィルム7に融着される。

[0040]

ブリッジ用孔の幅 b は、第 2 レジストの第 1 液溜めと第 2 液溜めとを隔てる部分であるセパレータの幅以上とし、液溜めからの液の流れを妨害しないようにする。空気抜き孔 9 はブリッジ用孔を兼ねている。この態様では、ブリッジ 1 2 は空気抜き用孔 9 の一部に液溜めの空気抜きが可能なように配置される。

[0041]

不織布または織物のカバーフィルム7への融着方法としては、超音波や熱による融着が挙げられる。ブリッジ12に使用する不織布または織物の融着する長さはプレートと同じ長さでもよく、部分的な長さであってもよい。但し、ブリッジ用孔よりは長い。

[0042]

前述のブリッジ材料において、液の広がりに異方性がある場合は、該材料の接着方向を選ぶことにより、応答電位の安定性に重要な因子である基準液(参照液)と測定液(液体試料)のブリッジ部分での混和状態、速度を制御することが可能である。

[0043]

次に、イオン活量測定器具の製造方法の一例を図1を参照して説明する。

[0044]

先ず、図1(a)に示すように、プラスチックフィルムの基板1上に、印刷などの常法により、導電性金属ペースト(好ましくは銀ペースト)を塗布して、電極部2、端子部3、および、電極部2と端子部3とを連絡する導線部4からなる電極パターンの電極用金属層を形成する。この段階で電極部2となる部分を化学処理して、金属表面をハロゲン化銀に変換してもよいが、好ましくは、第1レジスト膜5を形成した後に化学処理を行う。また、第1レジスト膜5を形成する前に、電極用金属層と第1レジスト膜5とが接合する部分(すなわち、電極部2の周囲部分)に非導電性材料の層を設けておくと、均一なイオン選択性膜を形成するのに有利である。

[0045]

次いで、電極用金属層を形成した基板1上に、図1 (b) に示すような、電極 部2および端子部3の他の部分を覆う形状の第1レジスト層5を形成する。

[0046]

この段階で、第1レジスト層5に囲まれた電極部2の上の領域に所定量のイオン選択性膜材料溶液を注ぎ、乾燥させてイオン選択性膜を形成する。イオン選択性膜は左右に1対ずつ、本図の場合、3種類のイオンに対するイオンキャリアを含んで形成される。なお、イオン選択性膜の形成の前に、第1レジスト層5に囲まれた電極部2の上の領域に所定量の電解質溶液を注ぎ、乾燥させて電解質層を形成し、形成された電解質層の上にイオン選択性膜を形成してもよい。

[0047]

一方、図1(d)に示すように、試料供給孔8、空気抜き孔9および端子露出 用孔10を設けたプラスチックフィルムからなるカバーフィルム7を準備し、ブ リッジ孔を兼ねる空気抜き孔9を横切るように疎水性のポリマーからなるリボン 状の不織布を融着する。

[0048]

このカバーフィルム7上に、図1 (c)に示すような、電極部2の対の一方を それぞれ含む二つの液溜めを形成する形状の第2レジスト層6を形成する。二つ の液溜めを隔てる部分(セパレータ)の幅は空気抜き孔9よりも狭くする。

[0049]

第2レジスト層6を設けた面に、露出している不織布部分が親水性になるよう に、展延促進剤の溶液を噴霧し、乾燥させる。これにより、ブリッジが形成され る。

[0050]

このようにして得られたカバーフィルム7の第2レジスト層6側と、上記のイオン選択性膜を形成した基板1の第1レジスト層5側とを貼り合わせることによって、本発明イオン活量測定器具が完成する。なお、上記の手順においては、特に個数について触れずに説明したが、スクリーン印刷機等の印刷できる大きさに合わせて複数のイオン活量測定器具分のパターンを1枚のフィルム上に作成することができる。この場合には最後にフィルムを裁断することによって、多数の本発明イオン活量測定器具を同時に製造できる。

[0051]

測定に際しては、一方の試料供給孔から、イオン活量を測定すべき液体試料を、他方の試料供給孔から、予め定めたイオン活量の参照液をほぼ同時に供給する。供給された液体試料および参照液は、カバーフィルム、第1レジスト層および第2レジスト層で形成された各空間(液溜め)全体に、毛管現象によって広がり、各電極部に接触するとともに、ブリッジに浸透して両液溜めの間に電気的導通をもたらす。

[0052]

これによって、それぞれの対になった電極部間に電池が形成されるので、その 起電力を測定し、予め作成した検量線で濃度を算出すればよい。

[0053]

本発明イオン活量測定器具の好ましい製造方法では、液溜めを構成し且つブリッジ用孔を有する部材上に多孔性部材を設け、その上にブリッジ用孔上を横切るようにセパレータを設け、次いで、展延促進剤を噴霧することにより、多孔性部材の露出している部分を展延促進剤で処理し、ブリッジを形成する。

[0054]

ブリッジ用孔を有する部材は、通常には、上述のカバーフィルムである。セパ

レータは第1液溜めおよび第2液溜めを隔てる部材であり、通常には、第2レジストの一部として形成される。そして、セパレータを設けた後に、展延促進剤を噴霧することによって、多孔性部材の両端のみが展延促進剤で処理され、容易に、多孔性部材から成る親水性部分一疎水性部分一親水性部分の3部分構造を得ることができる。従って、この製造方法は、本発明イオン活量測定器具の大量生産に適している。

[0055]

また、リボン状の不織布をプレート全長に配置し、カバーフィルムに融着する ことによってブリッジを形成することが好ましい。この態様によれば、本発明の イオン活量測定器具を一枚のフィルムから最後に裁断することによって大量に製 造する場合、多孔性材料の位置合わせおよび融着が容易になるので、大量生産が 容易になる。

[0056]

【実施例】

以下に、本発明を実施例により具体的に説明する。

[0057]

【実施例1】

以下の工程にて、Na、KおよびClの各イオンを同時に測定するためのイオン活量測定器具を製造した。

[0058]

1. 熱硬化性銀ペースト(日本アチソン製VO-200)を200メッシュ、 膜厚20μmの版でポリエステルフィルム上に、電極部、端子部、および、電極 部と端子部とを接続する導線部からなるパターンにより3対の電極部を形成する ように印刷後、150℃で30分間加熱し、硬化させて銀層を形成した。

[0059]

2. レジスト膜と電極部との接合部に紫外線硬化型レジスト(日本アチソン製ML-25089)を300メッシュ、膜厚10 μ mの版で印刷し、紫外線を照射し、硬化させた。

[0060]

3. 端子部および電極部の他の部分に紫外線硬化型レジストを300メッシュ、膜厚40μmの版で印刷し、紫外線を照射し、硬化させた。これを3回繰り返し、膜厚約50μmのレジスト膜を形成した。

[0061]

4. 3 N硝酸水溶液中に1分間浸漬し、洗浄した。

[0062]

5. クロム酸溶液(1%重クロム酸、0. 15N塩酸、0. 2N塩化カリウム)中に3分間浸漬し、洗浄することにより、塩化銀層を形成した。

[0063]

6. 表1に示す組成のイオン選択性膜材料溶液を1孔当たり0. 7μ1ずつ滴下し、乾燥し、イオン選択性膜を形成した。

[0064]

【表1】

イオン選択性膜処方

	Na	K	C 1
ポリ塩化ビニル (aldrich)	8.00	8.00	8.00
アジピン酸ジオクチル (和光純薬)	27.00	28. 00	17.00
NaTFPB (同人化学)	0.05		
B124 (同人化学)	0.06		
KTCPB (同人化学)		0.05	
パリノマイシン (Calbiochem)		0.35	
Capriquat (同人化学)			8.00
テトラヒドロフラン (ナカライテスク)	64.35	63.60	67.00

NaTFPB: ナトリウムテトラキス [3, 5-ビス (トリフルオロメチル) フェニル] ボレート

B124:ビス〔(12-クラウン-4)メチル〕-2-ドデシル-2-メチルマロネート

KTCPB:カリウムテトラキス (p-クロロフェニル) ボレート

Capriquat: トリーn-オクチルメチルアンモニウムクロライド

7. 試料供給孔、空気抜き用孔、端子部露出用孔およびブリッジ孔が設けられたポリエステルフィルムを準備し、ブリッジ孔上に、ポリエチレンテレフタレート製の不織布 (MF-80K (商品名)、日本バイリーン社製、厚さ:80μm)を配置し、カバーフィルムと不織布を超音波融着機(日本エマソン社製)ブランソン超音波プラスチックアッセンブリーシステム947Dを使用することによって融着を行った。前記超音波融着機に使用するホーンの先端は、大きさ24×5mmの範囲に0.3mmのサイズでローレット加工を施して、前記超音波融着機に取り付けて使用した。

[0065]

不織布は、ポリエステル性のものを使用し、厚さ100μm、幅2mmのリボン 状の不織布を使用した。

カバーフィルムは、PET (ポリエチレンテレフタレート) 性で、厚さ 188μ m、大きさ 16×17 cmとした。

前記リボン状の不織布を前記空気抜き用孔 のほぼ中央にあわせた後に、超音波融着機により接合を行う。融着の条件は、ブランソン超音波プラスチックアッセンブリーシステム947Dを使用する場合で、周波数が40KHz、融着時間を0.12秒、圧力を1.0kgf/cm²に設定して行った。

[0066]

液溜めを形成するパターンで紫外線硬化型レジストを300メッシュ、膜厚40μmの版で印刷し、紫外線を照射し、硬化させた。これを3回繰り返し、膜厚約50μmのレジスト膜を形成した。

[0067]

界面活性剤および親水性ポリマーの溶液(水:トライトンX-405:PVP K15=98.5:1.0:0.5(重量比))を、ポリエステルフィルムのレジスト膜を形成した面に1.0mg/cm²の割合で噴霧し、乾燥させることにより、ブリッジのレジスト膜で覆われていない部分のみを界面活性剤および親水性ポリマーで処理した。

上記6および9で得られたポリエステルフィルムを貼り合わせて、所定の大き さに裁断してイオン活量測定器具を得た。

[0069]

【発明の効果】

本発明の、乾式電極を用いたイオン活量測定器具によれば、イオン活量を再現 性よく測定することができる。また、本発明のイオン活量測定器具は、その製造 方法を単純化することができ、一貫生産ラインへの導入が容易なので、コストダ ウンが可能である。

【図面の簡単な説明】

【図1】 イオン活量測定器具の分解斜視図を示す。

【図2】 ブリッジを含むカバーフィルムの構造の一例の平面図である。

【符号の説明】

- 1 基板
- 2 電極部
- 3 端子部
- 4 導線部
- 5 第1レジスト膜
- 6 第2レジスト膜
- 7 カバーフィルム
- 8 試料供給孔
- 9 空気抜き用孔
- 10 端子露出用孔
- 11 ブリッジ用孔
- 12 ブリッジ
- 13 融着部位

【書類名】

図面

【図1】

【図2】

【書類名】 要約書

【要約】

【課題】 イオン活量を再現性よく測定するためのイオン活量測定器具の製造方法を提供する。

【解決手段】 本発明イオン活量測定器具は、液溜め部に接する部位が親水性である疎水性ブリッジを備える。疎水性ブリッジは、例えば、ポリエステル、ナイロン、ポリプロピレン、レーヨンおよびポリエチレンからなる群から選ばれる少なくとも1つからなり、超音波融着によって接合することによりイオン活量測定器具が作製される。

【選択図】 図1

特平10-296105

【書類名】 手続補正書

【提出日】 平成10年11月24日

【あて先】 特許庁長官 殿

【事件の表示】

【出願番号】 平成10年特許願第296105号

【補正をする者】

【事件との関係】 特許出願人

【識別番号】 000141897

【氏名又は名称】 株式会社京都第一科学

【代表者】 土井 茂

【発送番号】 026452

【手続補正 1】

【補正対象書類名】 特許願

【補正対象項目名】 特許出願人

【補正方法】 変更

【補正の内容】

【特許出願人】

【識別番号】 000141897

【住所又は居所】 京都府京都市南区東九条西明田町57

【氏名又は名称】 株式会社京都第一科学

【代表者】 土井 茂

認定・付加情報

特許出願の番号

平成10年 特許願 第296105号

受付番号

29822500364

書類名

手続補正書

担当官

小野田 猛

7 3 9 3

作成日

平成11年 2月17日

<認定情報・付加情報>

【補正をする者】

申請人

【識別番号】

000141897

【住所又は居所】

京都府京都市南区東九条西明田町57番地

【氏名又は名称】

株式会社京都第一科学

出願人履歴情報

識別番号

[000141897]

1. 変更年月日 1990年 8月11日

[変更理由] 新規登録

住 所 京都府京都市南区東九条西明田町57番地

氏 名 株式会社京都第一科学