Fire Dynamics Flame spread

Haejun Park

Objectives

- Understanding flame spread for
 - Solids
 - Concurrent flow flame spread
 - Opposed flow flame spread

Flame spread on solids

Flame spread rate

• Flame spread rate(=pyrolysis front velocity) (v_p) ?

$$v_p = \frac{dy_p}{dt} = \frac{\delta_f}{t_f} = \frac{y_f - y_p}{t_f}$$

where,

 v_p = Flame spread rate [mm/s]

 $y_p = Pyrolysis height [mm]$

 y_f = Flame height [mm]

 t_f = Ignition time of the region $(\delta_f)[s]$

Flame spread rate

For thermally thin

$$v_{p} = \frac{\delta_{f}}{t_{f}} = \frac{\delta_{f}}{\rho c_{p} d\left(\frac{T_{ig} - T_{s}}{\dot{q}_{f}''}\right)} = \frac{\dot{q}_{f}'' \delta_{f}}{\rho c_{p} d\left(T_{ig} - T_{s}\right)}$$

• For thermally thick
$$v_{p} = \frac{\delta_{f}}{t_{f}} = \frac{\delta_{f}}{\pi} = \frac{\delta_{f}}{\pi} \left(\frac{T_{ig} - T_{s}}{\dot{q}_{f}''}\right)^{2} = \frac{4(\dot{q}_{f}'')^{2} \delta_{f}}{\pi (k\rho c_{p})(T_{ig} - T_{s})^{2}}$$

Opposed flow flame spread rate

- Only for opposed flow and thermally thick
 - Lateral spread or downward spread
 - Flame spread rate ~constant

$$v_{p} = \frac{\delta_{f}}{t_{f}} = \frac{4(\dot{q}_{f}^{"})^{2} \delta_{f}}{\pi (k\rho c_{p})(T_{ig} - T_{s})^{2}} = \frac{\Phi}{k\rho c_{p} (T_{ig} - T_{s})^{2}}$$
where,

$$\Phi = \frac{4}{\pi} (\dot{q}_f'')^2 \, \delta_f \approx \text{ constant under natural convection}$$

i.e., \dot{q}_f'' and δ_f are linked together and material specific.

Opposed flow flame spread rate

Typical range of flame spread

	T _{ig} (°C)	$k\rho c_p[kW^2s/m^4K^2]$	$\Phi \left[kW^2/m^3 \right]$	T _{s'min}	v _p (mm/s)
wood fiber board	355	0.46	2.3	210	0.24
wood hard board	365	0.88	11	40	0.12
plywood	390	0.54	13	120	0.33
pmma	380	1	14.4	90	0.17
flexible foam plastic	390	0.32	11.7	120	0.5
rigid foam plastic	435	0.03	4.1	215	2.82
acrylic carpet	300	0.42	9.9	165	1.29
wallpaper on plasterboard	412	0.57	0.8	240	0.05
glass-reinforced plastic	390	0.32	10	80	0.33

Flame spread rate

Approximate ranges for variables

```
25 < \dot{q}_f'' < 70 [kW/m<sup>2</sup>] \delta_f \approx 1 \sim 2 [mm], for opposed flow flame spread
```


Example

Calculate the concurrent and opposed flame spread rates for plywood (thermally thick) 2 sec after the ignited region is 0.1 m high.

Assume the heat flux from the flame is 25 kW/m².

The lateral fire spread occurs after 120°C and the flame height is given as below.

$$y_f = 3y_p$$

