CSC363H5 Tutorial 5

warning: do not attempt to learn social skills from me

Paul "sushi_enjoyer" Zhang

University of Chungi (in polar coordinates)

February 10, 2021

Learning objectives this tutorial

By the end of this tutorial, you should...

- Be able to come up with terrible CSC363 flirtatious quotes that are almost as bad as mine.
- ▶ Be able to state what $A \leq_m B^1$ means.
- ▶ Understand why if $A \leq_m B$ and A is c.e., then so is B.
- Appreciate the fact that reading week is in 3 days, and then realize your assignment is also in 3 days; -; 2

This is read "A is m-reducible to B".

²so ask me any questions you have!

Some readings (again, certified by helo_fish.jpg)

- ► Chapter 7.1, 7.2 (up to page 107)
- ► Chapter 10.1, 10.2, 10.3

Again, read those to cheat on the homework! honestly though, it would really help with the homework questions, and it contains a solution to at least one of the homework questions.

here's valentines day chungus <3

pls ignore watermarks. because i'm low budget.

DISCLAIMER

DO NOT attempt to use any of the terrible pick-up lines you encounter in this tutorial, labelled in red. You have been warned.³

Using these pick-up lines may result in:

- ▶ Being called to the principal's office.
- Lovesickness, emotional pain, melancholy.
- Severe social withdrawal and repulsion.
- Prosecution via the *Copyright Act* (or whatever copyright policy your jurisdiction has).
- Forfeiture of privilege of eating sushi (or whatever your favourite food is).
- Music torture via the song "Big Chungus".

³I do not make any copyright claims to any of these awkward flirting lines.

Just a quick note for Q4 of the assignment!

hopefully you have started the assignment already! D:

in Q4, by "the set of partial computable functions is c.e.", we mean the set $\{e \in \mathbb{N} : \varphi_e \text{ is p.c.}\}$ is c.e.. By "the set of (total) computable functions is not c.e.", we mean the set $\{e \in \mathbb{N} : \varphi_e \text{ is total}\}$ is not c.e..

Task: prove that the set of good memories we will create is not computably enumerable.

m-reduction? •••

Let $A, B \subseteq \mathbb{N}$ (as always!). We say $A \leq_m B$ (read "A is m-reducible to B") if there exists a computable function f such that

$$x \in A \Leftrightarrow f(x) \in B$$
.

Note: f doesn't have to be a bijection! it doesn't even have to be injective.

Let $A, B \subseteq \mathbb{N}$ (as always!). We say $A \leq_m B$ (read "A is m-reducible to B") if there exists a computable function f such that

$$x \in A \Leftrightarrow f(x) \in B$$
.

Example: if $A = \{0, 2, 4, ...\}$ and $B = \{0, 4, 8, ...\}$. Then $A \leq_m B$, since f(x) = 2x is a computable function that satisfies $x \in A \Leftrightarrow f(x) \in B$.

Example: if A is any computable set and $B = \{1\}$, then $A \leq_m B$ via $f(x) = I_A(x)$.

m-reduction? •••

Are you a natural number? Cuz I am, and we can apply the Cantor pairing function $\stackrel{ ext{ op}}{=}$

Again, do not attempt to use these lines. I take no responsibility for any potential injuries you may incur from using these quotes.

(either way, I hope you recall the Cantor pairing function!)

m-reduction? •••

Task: Let $K_0 = \{\langle x, y \rangle : \varphi_x(y) \downarrow \}$. Show that $K \leq_m K_0$ by finding a computable function f such that $x \in K \Leftrightarrow f(x) \in K_0$.⁴

Task: Show that I am m-reducible to you. Conclude that there exists a computable function f that maps me to you exclusively. <3

Task: Show that my feelings for you are in \overline{K} .

 $^{{}^{4}}K = \{x : \phi_{x}(x) \downarrow \}.$

Task: Let $K_0 = \{\langle x, y \rangle : \varphi_x(y) \downarrow \}$. Show that $K \leq_m K_0$ by finding a computable function f such that $x \in K \Leftrightarrow f(x) \in K_0.5$

Answer: let $f(x) = \langle x, x \rangle$. Then

$$x \in K \Leftrightarrow \varphi_x(x) \downarrow \Leftrightarrow \langle x, x \rangle \in K_0.$$

 $^{{}^{5}}K = \{x : \phi_x(x) \downarrow \}.$

The following theorem is saying that if $A \leq_m B$, then B is "at least as hard to compute as A'', in some sense.

Theorem

- 1. If $A \leq_m B$ and B is computable, then A is computable.
- 2. If $A \leq_m B$ and B is c.e., then A is c.e..

Task: Prove the above.

Hint:

- 1. Show that we can decide whether something is in A or not.
- 2. Using the normal form theorem, we can suppose there exists a computable relation R such that

$$x \in B \Leftrightarrow \exists y R(x, y).$$

Show that $A \in \Sigma_0^1$.

Theorem

- 1. If $A \leq_m B$ and B is computable, then A is computable.
- 2. If $A \leq_m B$ and B is c.e., then A is c.e..

Proof:

- 1. Let f be a computable function so that $x \in A \Leftrightarrow f(x) \in B$. Then to check whether some arbitrary $x \in A$, we just check whether $f(x) \in B$ or not.
- 2. Let f be a computable function so that $x \in A \Leftrightarrow f(x) \in B$. Using the normal form theorem, we can suppose there exists a computable relation R such that

$$x \in B \Leftrightarrow \exists y R(x, y).$$

Then

$$x \in A \Leftrightarrow f(x) \in B \Leftrightarrow \exists y R(f(x), y).$$

Theorem

If your feelings are so much harder to compute than my feelings, then I < 3 you.

Exercise 7.1.6

Again, $K_0 = \{\langle x, y \rangle : \varphi_x(y) \downarrow \}.$

Task: Convince yourself that K_0 is c.e..

Task: Let $A \subseteq \mathbb{N}$. Show that A is c.e. if and only if $A \leq_m K_0$.

Hint: Normal form theorem! A is c.e. implies $A = W_e$ for some e.

Answer: Suppose A is c.e.. Then $A=W_e$ for some e. Consider the function $f(x)=\langle x,e\rangle$:

 $x \in A \Leftrightarrow x \in W_e \Leftrightarrow$

Conversely suppose $A \leq_m K_0$. Since proven, A is also c.e..

15 / 17

Exercise 7.1.6

Again, $K_0 = \{\langle x, y \rangle : \varphi_x(y) \downarrow \}.$

Task: Convince yourself that K_0 is c.e..

Task: Let $A \subseteq \mathbb{N}$. Show that A is c.e. if and only if $A \leq_m K_0$.

Hint: Normal form theorem! A is c.e. implies $A = W_e$ for some e.

Answer: Suppose A is c.e.. Then $A=W_e$ for some e. Consider the function $f(x)=\langle x,e\rangle$:

$$x \in A \Leftrightarrow x \in W_e \Leftrightarrow \phi_e(x) \downarrow \Leftrightarrow \langle x, e \rangle \in K_0.$$

Conversely suppose $A \leq_m K_0$. Since K_0 is c.e., by the theorem we have proven, A is also c.e..

363 is hard ;-; are you CSC363? because i don't want to fail you ;-; are you a math course? i'm sorry, i'd prefer passing on you. :

as you can see, you shouldn't ask me for relationship advice.

i planned the tutorial to end here, i don't have any more content prepared. sorry ;-; and have a nice day! here's some plain sushi

Task: come up with pickup lines that are nearly as bad as mine.

Task: convince yourself that instead of *m*-reducibility, you've learned more about how to convince people to stay away from you.