Similarities between The OSI (Open Systems Interconnection) model and the TCP/IP model

Student Name: Richard Karanu Mbuti

Reg No.: SCT212-0062/2019

Unit Code: BIT 2204

Unit Name: Network Systems Administration

The OSI (Open Systems Interconnection) model and the TCP/IP model are both conceptual frameworks used to describe networking protocols.

Similarities

- 1. **Purpose:** Both models were created to standardize and categorize the complex processes of computer-to-computer communication into layered approaches.
- Layered Architecture: Both models use a layered approach, ensuring that each layer
 has specific functionality and that each layer communicates with the layers immediately
 above and below it.
- 3. **Data Encapsulation:** As data is passed from the top to the bottom layer in the source machine and vice versa in the destination machine, additional headers (and sometimes trailers) are added at various layers.
- 4. **End-to-End Communication:** Both models enable end-to-end communication, even if the source and destination computers have different hardware and software configurations.
- 5. **Interoperability**: By standardizing functions at various layers, different vendors and technologies can interoperate in a network.

Differences

Feature / Aspect	OSI Model	TCP/IP Model
Number of Layers	7 layers	4 layers (sometimes considered 5)
Development and Standardization	Developed by the International Organization for Standardization (ISO)	Developed by the Department of Defense (DoD) and standardized by the Internet Engineering Task Force (IETF)
Layer Names	1. Physical 2. Data Link 3. Network 4. Transport 5. Session 6. Presentation 7. Application	Network Access (or Link/Physical) Internet 3. Transport 4. Application (Sometimes split into Application, Presentation, Session)
Protocol Examples	Various standards, not necessarily tied to specific protocols (e.g., X.25 for Network layer)	Specific protocols defined (e.g., IP for Internet layer, TCP/UDP for Transport layer)
Approach	More theoretical and general, designed as a reference model	More practical and based on real-world requirements and protocols
Adoption	OSI is more of an idealized model. Some of its protocols were not widely adopted	TCP/IP protocols are the foundation of the modern Internet
Data Link Layer	Divided into two sub-layers: Logical Link Control (LLC) and Media Access Control (MAC)	No such division; it's usually combined in the Network Access layer
Protocol Specification	Protocols and the model were developed simultaneously	The model was derived from already-existing protocols

Due to its granularity, the OSI model can accommodate a wide variety of protocols at each layer	TCP/IP is more rigid in its definitions, but this has helped in its widespread adoption
---	---