Math 307: Problems for section 3.2

February 2, 2011

- 1. Review of complex numbers:
 - (a) Show that |zw| = |z||w| for any complex numbers z and w.
 - (b) Show that $\overline{zw} = \overline{z}\overline{w}$ for any complex numbers z and w.
 - (c) Show that $\bar{z}z = |z|^2$ for every complex number z.
- 2. Calculate the inner products and norms for the following:
 - (a) the real vectors $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -3 \\ 5 \\ -1 \end{bmatrix}$,
 - (b) the complex vectors $\begin{bmatrix} 1+i \\ 3-i \\ 2+2i \\ 6-3i \end{bmatrix} \text{ and } \begin{bmatrix} 2-2i \\ 4+3i \\ 6-i \\ 1 \end{bmatrix},$
 - (c) the functions x-1 and $\cos x$ on the interval $[-\pi,\pi]$,
 - (d) the functions e^{3ix} and e^{-ix} on the interval $[0, 2\pi]$.
- 3. Plot the location of the complex numbers $z_k = e^{2\pi i k/5}$, k = 0, 1, 2, 3, 4 in the complex plane. Show that these numbers are fifth roots of unity, that is, they satisfy $z^5 = 1$. What is z_0 ? The numbers z_k are the five roots of the polynomial $z^5 1$ which implies that $z^5 1 = (z z_0)(z z_1)(z z_2)(z z_3)(z z_4)$. Now compute $(z^5 1)/(z 1)$ in two ways: by polynomial long division and by dividing the factorization above by z 1. Set these expressions equal to find the factorization of $z^4 + z^3 + z^2 + z + 1$. Use this factorization to compute $z_k^4 + z_k^3 + z_k^2 + z_k + 1$ for k = 0, 1, 2, 3, 4.