

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2010; month=7; day=22; hr=14; min=56; sec=47; ms=541;]

=====

Application No: 10520016 Version No: 2.0

Input Set:

Output Set:

Started: 2010-07-15 16:22:05.765
Finished: 2010-07-15 16:22:06.588
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 823 ms
Total Warnings: 8
Total Errors: 0
No. of SeqIDs Defined: 8
Actual SeqID Count: 8

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)

SEQUENCE LISTING

<110> OKADA, Hidechika
OKADA, Noriko

<120> Human IgM antibody lysing activated lymphocytes under mediation by homologous complement

<130> Q117947

<140> 10520016
<141> 2010-07-15

<150> PCT/JP2003/008306
<151> 2003-03-30

<150> JP 2002-227952
<151> 2002-07-01

<150> JP 2003-74312
<151> 2003-03-18

<160> 8

<170> PatentIn version 3.5

<210> 1
<211> 481
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<400> 1
gctgaattct ggctgaccag ggcagtccacc agagctccag acaatgtctg tctccttcct 60
catcttcctg cccgtgctgg gcctccatg gggtgtcctg tcacaggtac agctgcagca 120
gtcagggtcca ggactggta agccccgcga gaccctctca ctcacacctgtg ccatactccgg 180
ggacagtgta tcttagcaaca gtgctacttg gaactggatc aggcagtccc cattgagagg 240
ccttggagtgg ctggaaagga catactacag gtccaaagtgg tataatgatt atgcagtatc 300
tgtgaaaagt cgaataacca tcaacccaga cacatccaag aaccaggttct ccctgcagct 360
gaactctgtg actcccgagg acacggctgt gtattactgt gcaagagaga attactatgg 420
ttcggggagg tacaactggc tcgaccctcg gggccaggga accctggtca ccgtctcctc 480
a 481

<210> 2
<211> 401

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<400> 2
tgtcaggaca cagcatggac atgagggtcc ccgctcagct cctggggctc ctgctgcct 60
ggttcccagg ttccagatgc gacatccaga tgaccaggc tccatcttcc gtgtctgcat 120
ctgttaggaga cagagtacc accacttgc gggcgagtca gggtattagc agctggtag 180
cctggtatca gcagaaacca gggaaagccc ctaagctcct gatctatgat gcatccagtt 240
tgcaaagtgg ggtcccatca aggttcagcg gcagtggatc tggacagat ttcaacttca 300
ccatcagcag cctgcagcct gaagatttg caacttacta ttgtcaacag gctaacaagtt 360
tccctctcac tttcgccgga gggaccaagg tggagatcaa a 401

<210> 3
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<400> 3
atatctgttt ctttttaat tttttacct gtttttaggtt taccttgagg tgttttatct 60
caagttcaat tacaacaatc tggcctggt ttagttaaac ctgctcaaac tttatcttta 120
acttgtgcta ttctgggtga ttctgtttct tctaattctg ctactgaaa ttgaattcgt 180
caatctcctt tacgtggttt agaatgatta ggtcgactt attatcggtc taaatgataat 240
aatgattatg ctgtttctgt taaatctcgat attactatta atcctgatac ttctaaaaat 300
caatttctt tacaattaaa ttctgttact cctgaagata ctgctgttta ttattgtgct 360
cgtaaaaatt attatggttc tggtcgttat aattgatttg atccttgagg tcaaggtaact 420
ttagttactg ttcttct 438

<210> 4
<211> 438
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<400> 4

atgtccgtct ctttcttgat ctctttgccc gtcttgggct tgccctgggg cgtcttgtcc	60
caggtccagt tgcagcagtc cggccccggc ttggtaaaggc ccggcccaagac cttgtccctg	120
acctgcgcca tctccggcga ctccgtctcc tccaaactccg ccacctggaa ctggatccgc	180
cagtccccc tgcgcggctt ggagtggttg ggccgcacct actaccgctc caagtggtagc	240
aacgactacg ccgtctccgt caagtcccgc atcaccatca accccgacac ctccaagaac	300
cagttctcct tgcagttgaa ctccgtcacc cccgaggaca ccgccgtcta ctactgcgcc	360
cgcgagaact actacggctc cggccgctac aactggttcg acccctgggg ccagggcacc	420
ttggtcaccc tctcctcc	438

<210> 5
<211> 121
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<220>
<221> misc_feature
<222> (110)..(119)

<220>
<221> misc_feature
<222> (110)..(119)
<223> n is a, c, g, or t

<400> 5
aatccccac catgaaactg gggctccgct gggtttcct ttttgcatt ttagaaggta 60
tccagtgtga ggtgcagctg gtggagtcgt ggggaggcct ggtcaagccn nnnnnnnnnng 120
g 121

<210> 6
<211> 121
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<220>
<221> misc_feature
<222> (106)..(115)
<223> n is a, c, g, or t

<400> 6
ggggtgg tac cttgaccccg aggcgaccca aaaggaacaa cgataaaatc ttccacaggt 60
cacactccac gtcgaccacc tcagaccccc tccggaccag ttcggnnnn nnnnnctta 120
a 121

<210> 7
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide

<400> 7

Met Ser Val Ser Phe Leu Ile Phe Leu Pro Val Leu Gly Leu Pro Trp
1 5 10 15

Gly Val Leu Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val
20 25 30

Lys Pro Ala Gln Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser
35 40 45

Val Ser Ser Asn Ser Ala Thr Trp Asn Trp Ile Arg Gln Ser Pro Leu
50 55 60

Arg Gly Leu Glu Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr
65 70 75 80

Asn Asp Tyr Ala Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp
85 90 95

Thr Ser Lys Asn Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu
100 105 110

Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Asn Tyr Tyr Gly Ser Gly
115 120 125

Arg Tyr Asn Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val
130 135 140

Ser Ser
145

<210> 8
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide

<400> 8

Met Ser Val Ser Phe Leu Ile Phe Leu Pro Val Leu Gly Leu Pro Trp
1 5 10 15

Gly Val Leu Ser Gln Val Gln Leu
20