Spis treści

1		estrzenie metryczne	2
	1.1	Pojęcie przestrzeni metrycznej	2
		Podstawowe, wybrane pojęcia topologiczne	
	1.3	Przestrzenie metryczne ośrodkowe i zupełne	7
2	Przestrzenie liniowe		
	2.1	Konwencja sumacyjna	7
	2.2	Pojęcie przestrzeni liniowej	9
	2.3	Przestrzenie skończenie wymiarowe. Baza algebraiczna	12
	2.4	Przestrzenie unormowane	14
	2.5	Przestrzenie unitarne	16

1 Przestrzenie metryczne

1.1 Pojęcie przestrzeni metrycznej

Definicja 1. Przestrzenią metryczną nazywamy układ $\{\mathbb{D};d\}$, w którym \mathbb{D} jest niepustym zbiorem elementów X, Y, Z, zwanych **punktami**, natomiast $d: \mathbb{D} \times \mathbb{D} \to \mathcal{R}$ (\mathcal{R} – zbiór (ciało) liczb rzeczywistych) jest odwzorowaniem, zwanym **metryką**, spełniających warunki:

1.
$$d(X, Y) \ge 0, d(X, Y) = 0 \Leftrightarrow X = Y$$
,

2.
$$d(X, Y) = d(Y, X)$$
,

3.
$$d(X, Y) \leq d(X, Z) + d(Z, Y)$$
,

dla dowolnych X, Y, Z $\in \mathbb{D}$. Liczbę d(X, Y) nazywamy odległością punktu X od Y). Jeżeli $\mathbb{B} \subset \mathbb{D}$ $d' = d|_{\mathbb{B} \times \mathbb{B}}$, to $\{\mathbb{B}, d'\}$ nazywamy **podzbiorem metrycznym** (podprzestrzenią metryczną) przestrzeni \mathbb{D} .

! Mówimy krótko: **przestrzeń** (metryczna) $\mathbb D$ - chociaż na danym zbiorze może być określonych wiele różnych metryk. Metryki d i d' są **równoważne** (z definicji), jeśli

$$\exists \alpha, \beta \in \mathscr{R} \quad \alpha d(X, Y) \leqslant d'(X, Y) \leqslant \beta d(X, Y) \quad \forall X, Y \in \mathbb{D}.$$

Przykład 1. Niech $\mathscr{R}^n=\{\mathbf{X}\stackrel{\mathrm{df}}{=}(x_1,...,x_n);x_i\in\mathscr{R}\ dla\ i=1,...,n\}\ i\ \mathbb{D}=\mathscr{R}^n\ (zbi\acute{o}r\ ciąg\acute{o}w\ n\text{-}elementowych).\ Niech$

$$d(X, Y) = \left[\sum_{i=1}^{n} (y_i - x_i)^2\right]^{\frac{1}{2}},$$

$$d'(X, Y) = \sum_{i=1}^{n} |y_i - x_i|,$$

$$d''(X, Y) = \max_{i=1,...,n} |y_i - x_i|$$
.

Odwzorowania d, d' i d'' są metrykami na \mathcal{R}^n (i to równoważnymi). Zwykle $\mathcal{R}^n \equiv \{\mathcal{R}^n, d\}$ nazywamy <u>arytmetyczną przestrzenią metryczną</u> (z metryką euklidesową).

Przykład 2. Niech Ω dowolny zbiór elementów ξ , η , ζ ,... i niech $f:\Omega\to\mathscr{R}$ dowolne odwzorowanie ograniczone (tzn. $\sup_{\eta\in\mathscr{R}}|f(\eta)|<\infty$). Zbiór

$$F(\Omega, \mathcal{R}) = \{ f : \Omega \to \mathcal{R}; \sup_{\Omega} |f(\eta)| < \infty \}$$

 $wraz\ z\ odwzorowaniem$

$$d(f,g) = \sup_{\Omega} |f(\eta) - g(\eta)|$$

jest przestrzenią metryczną (tzw. $\underline{funkcyjnq}$) - tzn. $\{\mathbb{D},d\}$ przy $\mathbb{D}=F(\Omega,\mathcal{R})$ (punktami przestrzeni \mathbb{D} są tu funkcje ze zbioru F).

Przykład 3. Niech $\{\mathbb{D}_1, d_1\}, ..., \{\mathbb{D}_n, d_n\}$ - przestrzenie metryczne. Wtedy $\{\mathbb{D}, d\}$, przy

$$\mathbb{D} \stackrel{\mathrm{df}}{=} \mathbb{D}_1 \times ... \times \mathbb{D}_n \ni X \times Y = (X_1, ..., X_n) \times (Y_1, ..., Y_n) \to d(X, Y) = \sum_{i=1}^n d_i(X_i, Y_i)$$

 $jest\ przestrzeni \ a\ metryczn \ a.$

1.2 Podstawowe, wybrane pojęcia topologiczne

Niech \mathbb{D} przestrzeń metryczna z ustaloną metryką d.

Definicja 2. Odległość między zbiorami $\mathbb{A}, \mathbb{B} \subset \mathbb{D}$:

$$d(\mathbb{A}, \mathbb{B}) = \inf d(X, Y), X \in \mathbb{A}, Y \in \mathbb{B}$$

•

Definicja 3. Zbiór \mathbb{Z} ($\mathbb{Z} \subset \mathbb{D}$) jest ograniczony jeśli:

$$\sup d(X, Y) < \infty X, Y \in \mathbb{Z}$$

.

Definicja 4. Średnicą zbioru ograniczonego nazywamy:

$$\rho(\mathbf{Z}) \stackrel{\mathrm{df}}{=} \sup_{\mathbf{X}, \mathbf{Y} \in \mathbf{Z}} d(\mathbf{X}, \mathbf{Y})$$

.

Definicja 5. Ciąg $\{X_n\}$ punktów z \mathbb{D} jest zbieżny do X (ma granicę $X \in \mathbb{D}$):

$$\lim_{n \to \infty} X_n = X \Leftrightarrow \lim_{n \to \infty} d(X_n, X) = 0.$$

Definicja 6. Domknięcie zbioru Z ($Z \subset D$):

$$\bar{Z} \stackrel{\text{ozn}}{=} \operatorname{clos}(Z) \stackrel{\text{df}}{=} \{ X' \in \mathbf{Z}; X' = \lim_{n \to \infty} X_n, X_n \in \mathbf{D} \ dla \ n = 1, 2, \dots \}.$$

!

$$Z\subset \bar Z$$

Definicja 7. Zbiór **A** gęsty w zbiorze $\mathbb{B}(\mathbf{A} \subset \mathbf{B} \subset \mathbf{D})$, jeśli $\mathbf{B} \subset \bar{\mathbf{A}}$.

Definicja 8. Zbiór Z jest domknięty jeśli $Z = \overline{Z}$.

Definicja 9. <u>Kula</u> (otwarta) o środku C' i promieniu r:

$$K(C', r) = \{ X \in D; d(X, C') < r \}$$

Definicja 10. Kula domknięta o środku C' i promieniu r – domknięcie kuli:

$$\mathbf{K}(C',r) = \{ X \in \mathbf{D}; d(X,C') \leqslant r \}$$

Definicja 11. Sfera o środku C' i promieniu r:

$$S(C',r) = \{ X \in D; d(X,C') = r \}$$

Definicja 12. Punkt X zbioru Z jest wewnętrzny jeśli

$$\exists r > 0 \ \mathbf{K}(\mathbf{X}, r) \subset \mathbf{Z}.$$

Definicja 13. <u>Wnętrze</u> zbioru Z: int(Z) = zbiór punktów wewnętrznych zbioru Z

Definicja 14. Brzeg zbioru Z:

$$\partial Z = \operatorname{clos}(Z) - \operatorname{int}(Z).$$

Definicja 15. Punkt brzegowy zbioru Z – punkt należący do brzegu ∂Z .

Definicja 16. Zbiór Z <u>otwarty</u> jeśli Z = int(Z)

- ! Kula (otwarta) jest zbiorem otwartym, kula domknięta i sfera są zbiorami domkniętymi. Sfera jest brzegiem kuli otwartej i domkniętej.
- ! Iloczyn dowolnie wielu zbiorów domkniętych oraz suma skończenie wielu zbiorów domkniętych są zbiorami domkniętymi.
- ! Suma dowolnie wielu zbiorów otwartych oraz iloczyn skończenie wielu zbiorów otwartych są zbiorami otwartymi.

Definicja 17. Dopełnienie zbioru Z:

$$Z' = D - Z$$
.

- ! Dopełnieni zbioru domkniętego jest zbiorem otwartym, a otwartego domkniętym.
- ! $\mathbf{D}' = \emptyset(\text{zbi\'or pusty}), \emptyset' = \mathbf{D}.$

Definicja 18. Zbiór Z jest <u>otoczeniem</u> punktu X jeśli $X \in \text{int } Z$.

Definicja 19. Jeśli Z <u>otoczenie</u> X, to $Z - \{X\}$ sąsiedztwo X.

Definicja 20. Punkt X zbioru Z jest <u>izolowany</u> wtw, $\exists r > 0 \ \mathbf{K}(X,r) \cap Z = \{X\}.$

Definicja 21. Zbiór złożony jedynie z punktów izolowanych - zbiór dyskretny.

Definicja 22. Zbiór Z $\underline{skończony}$ ($\underline{policzalny}$) - $\underline{wszystkie}$ elementy $\underline{można}$ $\underline{policzy\acute{c}}$: Zbiór Z \underline{n} -elementowy $\overline{(sko\acute{n}czony)}$, $\underline{je\acute{z}eli}$ \underline{jest} $\underline{postaci}$:

$$Z = \{ X_1, X_2, \dots, X_n \}.$$

Definicja 23. Zbiór Z $\underline{przeliczalny}$ - wszystkie elementy można ponumerować, tj. ustawić w ciąg:

$$Z = \{ X_1, \ldots, X_i, \ldots \}.$$

Definicja 24. Zbiór Z spójny, jeżeli

$$Z = A \cup B \Rightarrow \bar{A} \cap B \neq \emptyset \lor A \cap \bar{B} \neq \emptyset.$$

Definicja 25. Zbiór otwarty i spójny - obszar.

Definicja 26. Domknięcie obszaru - obszar domknięty.

Definicja 27. Obszar domknięty ograniczony - bryła.

Definicja 28. Zbiór Z <u>zwarty</u> = każdy ciąg punktów zbioru zbioru Z zawiera podciąg zbieżny do pewnego punktu zbioru Z:

$$\{X_1,\ldots,X_n,\ldots\}\subset Z\ i\ \rho(\{X_1,\ldots,X_n,\ldots\})<\infty$$

 $\Rightarrow \exists \{n_k\} \subset \mathcal{N}(\textit{zbi\'or liczby naturalnych}) \; i \, \exists \, \mathbf{X} \in \, \mathbf{Z} \; \; lim_{k \to \infty} \, \mathbf{X}_{n_k} = \, \mathbf{X}$

! Jeśli Z zwarty, to domknięty i ograniczony.

Definicja 29. Zbiór Z wypukły, jeżeli $\forall X, Y \in Z$ odcinek $XY \subset Z$.

Definicja 30. <u>Odcinek</u> o końcach X i X w przestrzeni D:

$$\overline{\mathbf{X}\,\mathbf{Y}} \stackrel{\mathrm{df}}{=} \{\,\mathbf{Z} \in \mathbf{D}; d(\,\mathbf{X},\,\mathbf{Y}) + d(\,\mathbf{Z},\,\mathbf{Y}) = d(\,\mathbf{X},\,\mathbf{Y})\}.$$

1.3 Przestrzenie metryczne ośrodkowe i zupełne

Definicja 31. Niech $\{D, d\}$, przestrzeń metryczna. Przestrzeń D jest <u>ośrodkowa</u>, jeżeli istnieje zbiór B (skończony lub przeliczalny) gesty w D (tzn. B = D).

- ! Dowolny podzbiór Z przestrzeni ośrodkowej $\{\mathbf{D},d\}$ jest przestrzenią ośrodkową $\{\mathbf{Z},d'\},d'=d_{\mathbf{Z}\times\mathbf{Z}}.$
- ! Produkt kartezjański przestrzeni metrycznych $\mathbf{D}_1 \times \cdots \times \mathbf{D}_n$ jest przestrzenią ośrodkową jeśli wszystkie \mathbf{D}_i są ośrodkowe (por. Przykład 3. z p. 1.1).

Definicja 32. Przestrzeń metryczna **D** (z metryką d) jest <u>zupełna</u>, jeżeli każdy ciąg $\{X_n\}$ elementów z **D** spełniający **warunek Cauchy** ego:

$$\forall \varepsilon > 0 \; \exists N \in \mathcal{N} \; \forall m \geqslant n \geqslant N \; d(X_m, X_n) < \varepsilon$$

jest zbieżny do pewnego punktu $X \in \mathbf{D}$ (tzn. $X_n \to X$, $\lim_{n \to \infty} X_n = X$).

- ! Każdy ciąg zbieżny spełnia warunek Cauchy.
- ! Zbiór $\mathcal R$ jako przestrzeń metryczna jest zupełny.
- ! Podzbiór Z przestrzeni zupełniej **D** jest zupełny (przestrzenią zupełną jako podprzestrzeń) wtedy, gdy Z jest domknięty.
- ! Produkt kartezjański przestrzeni metrycznych $\mathbf{D}_1 \times \cdots \times \mathbf{D}_n$ jest przestrzenią zupełną wtedy, gdy wszystkie \mathbf{D}_i są zupełne (por Przykład 3 z p. 1.1).

2 Przestrzenie liniowe

2.1 Konwencja sumacyjna

W sumach postaci:

$$A = \sum_{i=1}^{n} \alpha_i \beta_i = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \dots + \alpha_n \beta_n,$$

$$B_i = \sum_{j=1}^n \alpha_{ij}\beta_j = \alpha_{i1}\beta_1 + \alpha_{i2}\beta_2 + \dots + \alpha_{in}\beta_n,$$

$$C = \sum_{i=1}^{n} \alpha_{ii} = \alpha_{11} + \dots + \alpha_{nn}$$

pomijamy symbol \sum , jeżeli wskaźniki podlegające sumowaniu, zwane **martwy-** \mathbf{mi} , powtarzają się.

Zatem piszemy:

$$A = \alpha_i \alpha_b,$$

$$B_i = \alpha_{ij} \beta_j,$$

$$C = \alpha_{ii}.$$

Oznaczenie wskaźnika martwego nie jest istotne:

$$A = \alpha_i \beta_i = \alpha_k \beta_k = \alpha_1 \beta_1 + \cdots + \alpha_n \beta_n$$
.

Wskaźniki nie podlegające sumowaniu zwane wolnymi, muszą być jednakowe po obu stronach równości. Np.:

$$B_{\mathbf{i}} = \alpha_{\mathbf{i}j}\beta_{j}$$
.

Wskaźniki umieszczamy także na **górnym poziome** (i bywa, że po lewej stronie **litery rdzeniowej**). Na przykład:

$$A = \alpha_i^i,$$

$$B^j = a^{ij}b_i,$$

$${}^k_r C = {}^r_k \alpha_i \beta_i.$$

Nie należy wskaźników na górnym poziomie rozumieć jako wykładników potęg. Wielkości potęgowane umieszczamy w nawiasach:

$$(\alpha^i)^2,$$
 $(\alpha^i)^j \beta_j,$
 $(\alpha_{ij})^k \gamma_k.$

Jeżeli wyróżniamy 'i-ty' składnik sumy

$$\alpha_i \beta_i = \alpha_1 \beta_1 + \dots + \alpha_n \beta_n,$$

to wskaźnik tego składnika podkreślamy, czyli:

$$\alpha_i \beta_i = \alpha_1 \beta_1 + \dots + \alpha_i \beta_i + \dots + \alpha_n \beta_n,$$

Wielkościami numerowanymi za pomocą wskaźników mogą być wielkości liczbowe i wektorowe (a także inne obiekty i struktury matematyczne).

2.2 Pojęcie przestrzeni liniowej

Definicja 33. Przestrzenią liniową (wektorową) nad ciałem liczb rzeczywistych $\mathscr R$ nazywamy niepusty zbiór $\vec{\mathbf V}$ elementów, zwanych wektorami (oznaczanych przez $\vec x, \ \vec y, \ \ldots$), wraz z dwoma działaniami:

1. sumą wektorów

$$\vec{\mathbf{V}} \times \vec{\mathbf{V}} \rightarrow \vec{\mathbf{V}}; \ \vec{z} = \vec{x} + \vec{y},$$

2. iloczynem wektora przez liczbę

$$\mathscr{R} \times \vec{\mathbf{V}} \to \vec{\mathbf{V}}; \ \vec{z} = \alpha \vec{x},$$

spełniającymi warunki:

1. łączności dodawania

$$(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z}),$$

2. przemienności dodawania

$$\vec{x} + \vec{y} = \vec{y} + \vec{x},$$

3. rozdzielności dodawania względem mnożenia

$$\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y},$$

$$(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x},$$

4. łączności iloczynu

$$\alpha(\beta \vec{x}) = (\alpha \beta) \vec{x}$$

5. istnienia wektora zerowego

$$\vec{0} + \vec{x} = \vec{x} + \vec{0} = \vec{x}$$

6. istnienia wektora przeciwnego $-\vec{x}$ do wektora \vec{x}

$$\vec{x} + (-\vec{x}) = (-\vec{x}) + \vec{x} = \vec{x} - \vec{x} = \vec{0}$$

7. niezmienności wektora mnożonego przez 1

$$1\vec{x} = \vec{x}$$

dla dowolnych wektorów \vec{x} , \vec{y} , \vec{z} oraz liczb α , β .

Przykład 4. $\underline{Przestrze\'n~arytmetyczna}$ Zbiór

$$\mathscr{R}^n = \{ \vec{x} \stackrel{\mathrm{df}}{=} (x_1, \dots, x_n) \stackrel{\mathrm{ozn}}{=} (x_i); x_i \in \mathscr{R} dlai = 1, \dots, n \},$$

czyli

$$\mathscr{R}^n = \underbrace{\mathscr{R} \times \cdots \times \mathscr{R}}_{n \ razy},$$

z działaniami

$$\vec{x} + \vec{y} \stackrel{\text{df}}{=} (x_i + y_i) = (x_1 + y_1, \dots, x_n + y_n),$$

$$\alpha \vec{x} \stackrel{\text{df}}{=} (\alpha x_i) = (\alpha x_1, \dots, \alpha x_n),$$

dla dowolnych $\vec{x} = (x_i), \ \vec{y} = (y_i) \in \mathcal{R}^n \ i \ \alpha \in \mathcal{R}, \ jest przestrzenią wektorową.$ Wektorem zerowym jest ciąg n zer:

$$\vec{0} = (0, \cdots, 0)$$

a wektorem przeciwnym do wektora - ciągu $\vec{x} = (x_i)$ jest ciąg liczb przeciwnych

$$-\vec{x} = (-x_i) = (-x_1, \cdots, -x_n)$$

Dla n = 1 wnioskujemy, że \mathcal{R} jest także przestrzenią wektorową przy

$$\mathscr{R}^{1} \stackrel{\text{ozn}}{=} \mathscr{R}, (x_1) \stackrel{\text{ozn}}{=} z.$$

Przykład 5. Przestrzeń funkcyjna

Niech Ω dowolny zbiór, a $\vec{\mathbf{V}}$ dowolna przestrzeń wektorowa. Zbiór funkcji (odwzorowań)

$$F(\Omega, \vec{\mathbf{V}}) = \{ \vec{x} = \vec{f}(\xi), \xi \in \Omega \}$$

wraz z działaniami:

$$(\vec{f} + \vec{g})(\xi) \stackrel{\text{df}}{=} \vec{f}(\xi) + \vec{f}(\xi), \xi \in \Omega,$$

$$(\alpha \vec{f})(\xi) \stackrel{\mathrm{df}}{=} \alpha \vec{f}(\xi), \xi \in \Omega$$

dla dowolnych $\vec{x} = \vec{f}(\xi), \ \vec{g} = \vec{g}(\xi) \ (\xi \in \Omega) \ i \ \alpha \in \mathcal{R} \ tworzy \ przestrzeń wektorową.$

Przykład 6. Przestrzeń ciągów

 $Niech\{\vec{\mathbf{V}}_i, \overline{i \in I}\}\ (I - skończony lub przeliczalny zbiór numerów/wskaźników)$ będzie rodziną przestrzeni liniowych. Zbiór

$$\vec{\mathbf{V}} = \{ \vec{x} = (\vec{x}_i; \vec{x}_i \in \vec{\mathbf{V}}_i dlai \in I \}$$

z działaniami:

$$\vec{x} + \vec{y} = (\vec{x}_i + \vec{y}_i),$$
$$\alpha \vec{x} = (\alpha \vec{x}_i,$$

dla dowolnych $\vec{x}=(\vec{x}_i), \ \vec{y}=(\vec{y}_i) \in \vec{\mathbf{V}} \ oraz \ \alpha \in \mathscr{R}, \ jest \ przestrzenią wektorową.$ Na przykład, gdy $I=\mathscr{N}, \ to \ \vec{x}=(\vec{x}_i)=(\vec{x}_1,\cdots,\vec{x}_n,\cdots)$ - ciąg wektorów a gdy ponadto $\vec{\mathbf{V}}_i=\mathscr{R}$ dla wszystkich $iinI=\mathscr{N}, \ to \ \vec{x}=(x_i)=(x_1,\cdots,x_n,\cdots)$ - ciąg liczbowy.

Definicja 34. Zbiór $\vec{\mathbf{U}}$ zawarty w przestrzeni wektorowej (liniowej) $\vec{\mathbf{V}}$ nazywamy podprzestrzenią (liniową) przestrzeni $\vec{\mathbf{V}}$, jeżeli $\vec{\mathbf{U}}$ z działaniami określonymi w $\vec{\mathbf{V}}$ i ograniczonymi do $\vec{\mathbf{U}}$ stanowi przestrzeń wektorową.

Twierdzenie 1. (Kryterium podprzestrzeni). Jeśli dla każdych $\vec{x}, \vec{y} \in \vec{\mathbf{U}} \subset \vec{\mathbf{V}}$ i $\alpha \in \mathcal{R}$ jest:

$$\vec{x}+\vec{y}\in\vec{\mathbf{U}},$$

$$\alpha \vec{x} \in \vec{\mathbf{U}},$$

to $\vec{\mathbf{U}}$ jest podprzestrzenią (liniową) przestrzeni $\vec{\mathbf{V}}$.

Definicja 35. Niech $\{\vec{v}_1, \cdots, \vec{v}_m\} \subset \vec{\mathbf{V}}$ dowolny skończony podzbiór wektorów przestrzeni $\vec{\mathbf{V}}$ i niech $(\vec{v}_i)^{\mbox{\scriptsize OZII}}_{=}(\vec{v}_i, \cdots, \vec{v}_m)$. Wektor

$$\vec{x} = \xi_i \vec{v}_i$$

dla $(\xi_i) = (\xi_i, \dots, \xi_m) \in \mathcal{R}^m$ nosi nazwę kombinacji liniowej ciągu (\vec{v}_i) .

Przykład 7. Niech

$$\vec{\mathbf{u}} \stackrel{\text{OZn}}{=} \text{lin}(\vec{v}_i) \stackrel{\text{df}}{=} \{ \vec{x} = \xi_i \vec{v}_i; (\xi_i) \in \mathcal{R}^m \}$$

gdzie \vec{v}_i dowolny ustalony podzbiór (ciąg, układ) m wektorów przestrzeni wektorowej $\vec{\mathbf{V}}$. Zbiór $\vec{\mathbf{U}}$ (wszystkich kombinacji liniowych wektorów $(\vec{v}_1,\cdots,\vec{v}_m)$) jest podprzestrzenią liniową przestrzeni $\vec{\mathbf{V}}$ (na mocy kryterium) – tzw. przestrzenią generowaną przez układ wektorów $(\vec{v}_1,\cdots,\vec{v}_m)$.

Definicja 36. Niech $\vec{\mathbf{U}}'$ i $\vec{\mathbf{U}}''$ podprzestrzenie liniowe $\vec{\mathbf{V}}$. Zbiór

$$\vec{\mathbf{U}} = \vec{\mathbf{U}}' + \vec{\mathbf{U}}'' = \{ \vec{u} = \vec{u}' + \vec{u}''; \vec{u}' \in \vec{\mathbf{U}}'; \vec{u}'' \in \vec{\mathbf{U}}'' \},$$

nosi nazwę sumy podprzestrzeni $\vec{\mathbf{U}}'$ i $\vec{\mathbf{U}}''$. Jest to podprzestrzeń $\vec{\mathbf{V}}$. Jeśli ponadto $\vec{\mathbf{U}}' \cap \vec{\mathbf{U}}'' = \{\vec{\mathbf{0}}\}$ to $\vec{\mathbf{U}} \stackrel{\text{OZB}}{=} \vec{\mathbf{U}}' \oplus \vec{\mathbf{U}}$ " jest tzw. sumą prostą $\vec{\mathbf{U}}'$ i $\vec{\mathbf{U}}''$.

2.3 Przestrzenie skończenie wymiarowe. Baza algebraiczna

Definicja 37. Podzbiór $\vec{e}_1, \dots, \vec{e}_n \stackrel{\text{OZI}}{=} (\vec{e}_i) = (\vec{e}_i, \dots, \vec{e}_n)$ przestrzeni wektorowej $\vec{\mathbf{V}}$ nazywa się liniowo niezależnym, jeżeli prawdziwa jest implikacja:

$$\alpha_i \vec{e_i} = \vec{0} \rightarrow \alpha_i = 0 \ \forall i = 1, \cdots, n$$
.

Definicja 38. Zbiór $\vec{\mathbf{B}} = (\vec{e_i})$ wektorów z przestrzeni $\vec{\mathbf{V}}$ nazywamy <u>bazą (algebraiczną)</u>, jeżeli:

- 1. $\vec{\mathbf{B}}$ jest liniowo niezależnym
- 2. $\lim \vec{\mathbf{B}} = \vec{\mathbf{V}} \ (\vec{\mathbf{B}} \ generuje \ \vec{\mathbf{V}}).$

Definicja 39. Jeżeli w przestrzeni $\vec{\mathbf{V}}$ istnieje baza n-elementowa $\vec{\mathbf{B}}$, to $\vec{\mathbf{V}}$ nazywamy n-wymiarową (skończenie wymiarową o wymiarze n) i piszemy

$$\dim \vec{\mathbf{V}} = n$$

- ! Jeżeli istnieje w $\vec{\mathbf{V}}$ baza n-elementowa, to istnieje nieskończenie wiele baz i każda jest n-elementowa.
- ! Jeżeli $\vec{\mathbf{B}}$ jest n-elementową bazą przestrzeni $\vec{\mathbf{V}}$, to

$$\forall \vec{x} \in \vec{\mathbf{V}} \exists (x^i) \in \mathscr{R}^n \ \vec{x} = x^i \vec{e}_i,$$

gdzie (x^i) są tzw. współczynnikami rozkładu lub współrzędnymi wektorze \vec{x} w bazie $\vec{\mathbf{B}}$. Przy tym rozkład ten jest jednoznaczny, bowiem

$$\vec{x} = x^i \vec{e_i} = y^i \vec{e_i} \to (x^i - y^i) \vec{e_i} = \vec{0} \to x^i - y^i = 0 \ \forall i = 1, 2, \dots, n$$

Przykład 8. Bazą przestrzeni arytmetycznej \mathcal{R}^n – tzw. <u>bazą standardową</u> - jest układ ciągów

$$\vec{e}_1 = (1, 0, 0, \cdots, 0),$$

$$\vec{e}_2 = (0, 1, 0, \cdots, 0),$$

:

$$\vec{e}_n = (0, 0, 0, \cdots, 1)$$

czyli

$$\vec{e_i} = (\delta_{ij})dlai = 1, \cdots, n,$$

gdzie

$$\delta_{ij} \stackrel{\mathrm{df}}{=} CASES$$

jest tzw. symbolem Kroneckera.

- ! Przestrzeń funkcyjna $F(\Omega,\vec{\mathbf{V}})$ nieskończenie wymiarowa.
- ! Jeżeli $(\vec{e}_1,\cdots,\vec{e}_m)\subset \vec{\mathbf{V}}$ liniowo niezależny, to $\mathrm{lin}(\vec{e}_1,\cdots,\vec{e}_k)\oplus \mathrm{lin}(\vec{e}_{k+1},\cdots,\vec{e}_m)=\mathrm{lin}(\vec{e}_1,\cdots,\vec{e}_m)$ oraz $\mathrm{dim}\,\mathrm{lin}(\vec{e}_1,\cdots,\vec{e}_m)=m.$
- ! Niech $(\vec{e}_i \text{ i } (\vec{e'}_i)^{\text{OZII}} (\vec{e}_{i'})(i, i' = 1, \dots, n)$ dwie bazy przestrzeni n-wymiarowej $\vec{\mathbf{V}}$. Zatem

$$\vec{e}_{i'}$$
 $A_{i'}^i \vec{e}_i$, \vec{e}_i $A_{i'}^{i'} \vec{e}_{i'}$,

a w konsekwencji

$$\vec{e}_{i'} = A^i_{i'} \vec{e}_i = A^i_{i'} A^{j'}_{i} \vec{e}_{j'},$$

skąd

$$A_{i'}^i A_i^{j'} = \delta_{i'}^{i'} = CASES,$$

czyli

$$[A_{i'}^i][A_i^{j'}] = [\delta_{i'}^{j'}],$$

lub

$$\mathbb{A}\mathbb{A}' = \mathbb{I} \ (\mathbb{A}' = \mathbb{A}^{-1}),$$

w notacji macierzowej, przy

$$\mathbb{A} = [A_{i'}^i], \quad \mathbb{A}' = [A_i^{i'}],$$

tzw macierzach transformacji baz (z $\vec{e_i}$ do $\vec{e_{i'}}$ i na odwrót).

Jeżeli det $\mathbb{A} > 0$, to bazy $(\vec{e_i})$ i $(\vec{e_{i'}})$ są zgodnie zorientowane. Niech

$$\vec{x} = x^i \vec{e_i} = x^{i'} \vec{e_{i'}}$$
.

Wobec

$$x^{i'}\vec{e}_{i'} = x^{i'}A^{i}_{i'}\vec{e}_{i} = x^{i}\vec{e}_{i} = x^{i}A^{i'}_{i}\vec{e}_{i'},$$

mamy

$$x^{i'} = A^{i'}_i x^i, \ \ x^i = A^i_{i'} x^{i'},$$

czyli w notacji macierzowej

$$[x^{i'}] = [A_i^{i'}][x^i], \quad [x^i] = [x_{i'}^i][x^{i'}]$$

! Niech $\vec{\mathbf{B}} = (\vec{e}_i)$ ustalona baza przestrzeni $\vec{\mathbf{V}}$. Odwzorowanie

$$\vec{\mathbf{i}}_{\vec{\mathbf{B}}}: \vec{\mathbf{V}} \to \mathcal{R}^n; \ \vec{\mathbf{i}}_{\vec{\mathbf{B}}}(\vec{x}) = (x^i), \ \vec{x} = x^i \vec{e_i},$$

ustala tzw.
 <u>izomorfizm</u> $\vec{\mathbf{V}}$ i \mathcal{R}^n w danej bazi
e $\vec{\mathbf{B}}.$

2.4 Przestrzenie unormowane

Definicja 40. Przestrzenią (liniową, wektorową) <u>unormowaną</u> nazywamy parę (układ) $\{\vec{\mathbf{V}}, |\cdot|\}$, gdzie $\vec{\mathbf{V}}$ jest przestrzenią wektorową, a $|\cdot|$ – odwzorowaniem, zwanym normą, o następujących własnościach:

$$|\cdot|: \vec{\mathbf{V}} \to < p, \infty) \subset \mathcal{R},$$

- 1. $|\vec{x}| = 0 \Leftrightarrow \vec{x} = \vec{0}$,
- 2. $|\alpha \vec{x}| = |\alpha| |\vec{x}| \ \forall \alpha \in \mathcal{R}, \forall \vec{x} \in \vec{\mathbf{V}},$
- 3. $|\vec{x} + \vec{y}| \leq |\vec{x}| + |\vec{y}| \quad \forall \vec{x}, \vec{y} \in \vec{\mathbf{V}}$.

 $Liczba |\vec{x}| - \underline{norma} \ lub \ dlugość \ wektora \ \vec{x}.$

! Wektor jednostkowy (inaczej wersor) – wektor o długości jednostkowej (\vec{i} - wersor \Leftrightarrow $|\vec{i}| = 1$).

Przykład 9. Przestrzeń wektorowa arytmetyczna \mathcal{R}^n jest unormowana – z normą:

$$|\vec{x}| = \stackrel{\text{df}}{=} \sum_{i=1}^{n} |x_i|, \ \vec{x} = (x_i).$$

Przykład 10. Niech $\vec{\mathbf{V}}$ przestrzeń unormowana z normą $|\cdot|$. Zbiór

$$L^{\infty}(\Omega, \vec{\mathbf{V}}) = \{ \vec{f} \in F(\Omega, \vec{\mathbf{V}}); \sup_{\xi \in \Omega} |\vec{f}(\xi)| < \infty \},$$

jest podprzestrzenią liniową przestrzeni $F(\Omega, \vec{\mathbf{V}})$, co wynika z kryterium podprzestrzeni, a więc jest przestrzenią wektorową - tzw. przestrzenią funkcji ograniczonych. Ponadto przestrzeń ta jest unormowana, gdyż

$$||\vec{f}||_{\infty} \stackrel{\text{df}}{=} \sup_{\xi \in \Omega} |\vec{f}(\xi)|,$$

spełnia warunki definicyjne normy.

! Jeżeli $\vec{\mathbf{V}}$ jest skończenie wymiarowa, to każde dwie normy na $\vec{\mathbf{V}}$ są <u>równoważne,</u> tzn.

$$\exists \alpha, \beta > 0 \ \alpha |\vec{x}|_1 \leqslant |\vec{x}|_2 \leqslant |\vec{x}|_1 \ \forall \vec{x} \in \vec{\mathbf{V}}.$$

! Jeżeli $\vec{\mathbf{U}}$ jest podprzestrzenią liniową przestrzeni unormowanej $\vec{\mathbf{V}}$ z normą $|\cdot|$, to $\vec{\mathbf{U}}$ jest również unormowana – z normą $|\cdot|$ obciętą do $\vec{\mathbf{U}}$.

Twierdzenie 2. Przestrzeń wektorowa unormowana $\{\vec{\mathbf{V}}, |\cdot|\}$ jest "automatycznie" metryczna – z metryką generowaną przez normę:

$$d(\vec{x}, \vec{y}) \stackrel{\text{df}}{=} |\vec{y} - \vec{x}|, \ \forall \vec{x}, \vec{y} \in \vec{\mathbf{V}},$$

(jeśli wektory przestrzeni $\vec{\mathbf{V}}$ potraktować także jako punkty przestrzeni $D = \vec{\mathbf{V}}$).

Definicja 41. Jeżeli przestrzeń unormowana $\vec{\mathbf{V}}$ jest jako przestrzeń metryczna (z metryką generowaną przez normę) zupełna, to nazywa się przestrzenią Banacha.

- ! Każda skończenie wymiarowa i unormowana przestrzeń wektorowa jest przestrzenią Banacha (w tym \mathcal{R}^n).
- ! Każda skończenie wymiarowa podprzestrzeń przestrzeni unormowanej jest domknięta.
- ! Żadna nieskończenie wymiarowa przestrzeń Banacha $\vec{\mathbf{V}}$ nie daje się przedstawić w postaci sumy $\vec{\mathbf{V}}_1 \cup \vec{\mathbf{V}}_2 \cup \cdots$ skończenie wymiarowych podprzestrzeni $\vec{\mathbf{V}}$.

Przykład 11. Niech K podzbiór zwarty przestrzeni \mathcal{R}^n i niech $C(K, \mathcal{R}^m)$ przestrzeń funkcji ciągłych (jako podprzestrzeń przestrzeni $F(K; \mathcal{R}^m)$). Przestrzeń ta jest przestrzenią Banacha z normą:

$$||f|| = \sup_{x \in K} |f(x)|,$$

 $gdzie |f(x)| - dowolna norma w \mathcal{R}^n.$

Przykład 12. Niech U oznacza podzbiór otwarty i mierzalny (w sensie Lebesgue'a) w \mathcal{R}^n i niech $L(U;\mathcal{R})$ oznacza zbiór wszystkich funkcji całkowalnych (w sensie Lebesgue'a) na U o wartościach w \mathcal{R} . $L(U,\mathcal{R})$ jest podprzestrzenią liniową przestrzeni funkcyjnej $F(U,\mathcal{R})$, a ponadto przestrzenią Banacha z normą

$$|f| = \int_{U} |f(x)| dV,$$

gdzie dV – miara w $U \subset \mathcal{R}^n$, $dV = dx_1 \cdot ... \cdot dx_n$ przy $x = (x_1, ..., x_n)$.

Definicja 42. Niech $(\vec{\mathbf{V}}_n) = \{\vec{\mathbf{V}}_n \subset \vec{\mathbf{V}}; n \in \mathcal{N}\}$ <u>ciąg</u> podprzestrzeni liniowych przestrzeni unormowanej (Banacha) $\subset V$. Mówimy, że ciąg $(\vec{\mathbf{V}}_n)$ <u>aproksymuje</u> przestrzeń $\vec{\mathbf{V}}$, jeżeli

$$\forall \varepsilon > 0 \ \forall \vec{x} \in \vec{\mathbf{V}} \ \exists N \in \mathscr{N} \ \exists \vec{x}_N \in \vec{\mathbf{V}}_N \ |\vec{x} - \vec{x}_N| < \varepsilon$$

oraz, że ciąg $(\vec{\mathbf{V}}_n)$ aproksymuje przestrzeń $\vec{\mathbf{V}}$ jednostajnie, jeżeli

$$\forall \varepsilon > 0 \ \exists N \in \mathscr{N} \ \forall \vec{x} \in \vec{\mathbf{V}} \ \exists \vec{x}_N \in \vec{\mathbf{V}}_N \ |\vec{x} - \vec{x}_N| < \varepsilon$$

.

2.5 Przestrzenie unitarne

Definicja 43. Przestrzenią (liniową) unitarną (przestrzenią z iloczynem skalarnym) nazywamy parę $\{\vec{\mathbf{V}}; <\cdot,\cdot>\}$, gdzie $\vec{\mathbf{V}}$ jest przestrzenią wektorową (liniową), a $<\cdot,\cdot>$ odwzorowaniem

$$<\cdot,\cdot>: \vec{\mathbf{V}} \times \vec{\mathbf{V}} \to \mathcal{R} (<\vec{x},\vec{y}) \stackrel{\text{OZI}}{=} \vec{x} \cdot \vec{y},$$

zwanym iloczynem skalarnym (produktem skalarnym), spełniającym warunki:

- 1. $\vec{x} \cdot \vec{x} \ge 0$, $\vec{x} \cdot \vec{x} = 0 \Leftrightarrow \vec{x} = \vec{0}$,
- $2. \ \vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x},$
- 3. $(\alpha \vec{x}' + \beta \vec{x}'') \cdot \vec{y} = \alpha \vec{x}' \cdot \vec{y} + \beta \vec{x}'' \cdot \vec{y}$.
- ! Przestrzeń unitarna $\{\vec{\mathbf{V}},<\cdot,\cdot>\}$ jest unormowana (
automatycznie) z normą:

$$|\vec{x}| \stackrel{\text{df}}{=} \sqrt{\vec{x}\vec{x}}, \ \vec{x} \in \vec{\mathbf{V}},$$

(tzw, <u>normą generowaną przez iloczyn skalarny</u> a w konsekwencji przestrzenią metryczną – z metryką generowaną przez normę:

$$d(\vec{x}, \vec{y}) = |\vec{y} - \vec{x}| = \sqrt{(\vec{y} - \vec{x}) \cdot ()\vec{y} - \vec{x}}, \ \vec{x}, \vec{y} \in \vec{\mathbf{V}},$$

(jeśli wektory \vec{x} , \vec{y} potraktować jako punkty).

Definicja 44. Wektory \vec{x} i \vec{y} nazywamy <u>prostopadłymi</u> (lub <u>ortogonalnymi</u> – $\vec{x} \perp \vec{y}$), gdy $\vec{x} \cdot \vec{y} = 0$. Natomiast prostopadłe są zbiory $\vec{\mathbf{U}}'$ i $\vec{\mathbf{U}}''$ przestrzeni $\vec{\mathbf{V}}$ ($\vec{\mathbf{U}}' \perp \vec{\mathbf{U}}''$), jeśli

$$\forall \vec{x} \in \vec{\mathbf{U}}' \ \forall \vec{y} \in \vec{\mathbf{U}}'' \ \vec{y} \perp \vec{x}.$$

! Prawdziwa jest nierówność Cauchy'ego

$$|\vec{x} \cdot \vec{y} \leqslant |\vec{x}| |\vec{y}|$$
.

Przykład 13. w przestrzeni \mathcal{R}^n

$$\vec{x} \cdot \vec{y} = x_i y_i, \ \vec{x} = (x_i), \ \vec{y} = (y_i),$$

określa iloczyn skalarny, zwany <u>standardowym</u>, który generuje w \mathcal{R}^n tzw, <u>standardowe</u> (lub <u>euklidesowe</u>) normę i metrykę:

$$|\vec{x}| = \sqrt{x_i x_i},$$

$$d(\vec{x}, \vec{y}) = \sqrt{(y_i - x_i)(y_i - x_i)}.$$

Przykład 14. Niech U oznacza podzbiór otwarty i mierzalny (w sensie Lebesque'a) w \mathscr{R}^n i niech

$$L^2_{\rho}(U,\mathscr{R}) = \{ f \in F(U,\mathscr{R}); \int_U \rho(x) f^2(x) dV < \infty \},$$

oznacza zbiór funkcji całkowalnych z kwadratem z wagą ρ na U (w sensie Lebesgue'a), gdzie $\rho: U \to \mathcal{R}$ jet funkcją mierzalną nieujemną, nazwaną wagą. Zbiór ten jest podprzestrzenią liniową przestrzeni $F(U,\mathcal{R})$, a więc jest przestrzenią wektorową, a przy tym unitarną z iloczynem skalarnym:

$$\langle f, g \rangle_{\rho} = \int_{U} \rho(x) f(x) g(x) dV,$$

$$dV = dx_1 \cdot ... \cdot dx_n \text{ przy } x = (x_1, ..., x_n).$$

Iloczyn skalarny generuje tzw. normę <u>średniokwadratowa</u> (i odpowiednią metrykę średniokwadratową) – z wagą ρ lub "bez wagi":

$$||g||_{\rho} = (\langle f, f \rangle_{\rho})^{1/2} = \left(\int_{U} \rho(x)f^{2}(x)dV\right)^{1/2}$$

$$||g|| = (\langle f, f \rangle)^{1/2} = \left(\int_{U} f^{2}(x)dV\right)^{1/2}$$

Przykład 15. Niech $\{\vec{\mathbf{V}}_i; \langle \cdot, \cdot \rangle_i\}$, $i \in \mathbf{I}$ (\mathbf{I} – skończony lub przeliczalny zbiór wskaźników) będzie rodziną przestrzeni unitarnych. Niech $\rho = (\rho_i)$ – ciąg liczbowy ($\rho_i \in \mathcal{R}, i \in \mathbf{I}$). Zbiór

$$l_{\rho}^{2} = \left\{ \vec{x} = (\vec{x}_{i}) \in \vec{\mathbf{V}}; \ \vec{x}_{i} \in \vec{\mathbf{V}}_{i} \ \forall i \in \mathbf{i}, \ \sum_{i \in \mathbf{I}} \rho_{i} < \vec{x}_{i}, \vec{x}_{i} >_{i} < \infty \right\}$$

jest podprzestrzenią liniową przestrzeni wektorowej

$$\vec{\mathbf{V}} = \{ \vec{x} = (\vec{x}_i); \ \vec{x}_i \in \vec{\mathbf{V}}_i, \ iin \mathbf{I} \},$$

a więc jest przestrzenią wektorową – przy tym unitarną z iloczynem skalarnym:

$$<\vec{x},\vec{y}>_{\rho}=\sum_{i\in\mathbf{i}}\rho_{i}<\vec{x}_{i},\vec{y}_{i}>_{i}$$

 $i\ norma\ generowana\ przez\ ten\ iloczyn:$

$$|ec{x}|_
ho = \left(\sum_{i \in \mathbf{i}}
ho_i < ec{x}_i, ec{x}_i >_i
ight)^{1/2}$$
 .

W szczególności, gdy <u>ciąg wagowy</u> jest <u>jednostkowy</u>, tzn. $\vec{\rho} = (1, 1, ...)$, mamy przestrzeń z oznaczeniami:

$$l^2(\vec{\mathbf{V}}), <\cdot,\cdot> i|\cdot|$$

Jeżeli $\vec{\mathbf{V}} = \mathcal{R}$ dla wszystkich $i \in \mathbf{i}$, to mamy tzw. przestrzeń ciągów liczbowych (skończonych lub przeliczalnych) sumowalnych z kwadratem – z wagą ρ : (t.j. ciągiem wagowym $\rho = (\rho_i)$) lub "bez wagi" (tj. ciągiem wagowym jednostkowym):

$$l_{\rho}^{2} \stackrel{\text{df}}{=} \left\{ \vec{x} = (x_{i}); x_{i} \in \mathcal{R} \ \forall i \in \mathbf{I}, \sum_{i \in \mathbf{I}} \rho_{i} x_{i}^{2} < \infty \right\},$$
$$< \vec{x}, \vec{y} >_{\rho} = \sum_{i \in \mathbf{I}} \rho_{i} x_{i} y_{i}, \ |\vec{x}|_{\rho} = \sum_{i \in \mathbf{I}} \rho_{i} x_{i}^{2},$$

(z oznaczeniami l^2 , $<\cdot,\cdot>i$ $|\cdot|$ przy "braku wagi"). W przypadku, gdy $\mathbf{I}=\{1,2,3,..,n\}$ przestrzeń l^2 pokrywa się z \mathcal{R}^n ze standardowym iloczynem skalarnym i normą.