NP-Vollständigkeit wichtiger Probleme Sebastian

Bernauer

Komplexitätsklasse

Problem (SAT)
3-SAT

ique Problem

Knapsack P

artition Problem

Beweis

BP

Problem

eweis

HC ...

oblem

veis

veis

m

olem

1/27

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

25. Februar 2019

Inhalt I	NP-Vollständigkeit wichtiger Probleme
Komplexitätsklassen	Sebastian Bernauer
Satisfiability Problem (SAT) 3-SAT	Komplexitätsklassen Satisfiability
Clique Problem	Problem (SAT) 3-SAT
Beweis	
Knapsack Problem Beweis	Knapsack Problem
Partition Problem	Partition Problem Beweis
Beweis	BP Problem
BP	Beweis
Problem	Problem
Beweis	Beweis
	HC Problem
DHC	Beweis
Problem	TSP
	Problem 2 / 27

Inhalt II **Beweis**

Problem **Beweis**

Problem **Beweis**

HC

TSP

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

- - 3 / 27

Definition: \leq_{p} ördnet Entscheidungsprobleme bezüglich ihrer Komplexität. Aufsteigende Komplexitätsklassen:

1. P - polynomiell lösbar

NP-Vollständigkeit wichtiger Probleme

> Sebastian Bernauer

Komplexitätsklassen

Definition: \leq_p ördnet Entscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Satisfiability Problem (SAT)

Clique

eis

napsack Problem

rtition Problem

BP

Problem

IC.

roblem

НС

Beweis

ım

olem 4

Definition: <_p ördnetEntscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig

 $\rightarrow \forall L' \in NP : L' \leq_p L$

NP-Vollständigkeit

wichtiger Probleme Sebastian Bernauer

Komplexitätsklassen

Definition: <_p ördnetEntscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig $\rightarrow \forall L' \in NP : L' <_{p} L$
- 4. NP-vollständig $\rightarrow L \in NP \text{ und } \forall L' \in NP : L' \leq_p L$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassen

Definition: <_p ördnetEntscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig $\rightarrow \forall L' \in NP : L' <_{p} L$
- 4. NP-vollständig
 - $\rightarrow L \in NP \text{ und } \forall L' \in NP : L' \leq_p L$
 - →Alle folgenden Probleme sind NP-vollständig

NP-Vollständigkeit wichtiger Probleme

> Sebastian Bernauer

Komplexitätsklassen

Definition: \leq_{p} ördnet $\ddot{\mathsf{E}}$ ntscheidungsprobleme bezüglich ihrer Komplexität.

Aufsteigende Komplexitätsklassen:

- 1. P polynomiell lösbar
- 2. NP nichtdeterministisch polynomiell lösbar
- 3. NP-schwierig $\rightarrow \forall L' \in NP : L' \leq_n L$
- 4. NP-vollständig
 - $\rightarrow L \in NP \text{ und } \forall L' \in NP : L' \leq_p L$
 - $\rightarrow\! Alle \ folgenden \ Probleme \ sind \ NP-vollständig$
- nicht rekursiv

NP-Vollständigkeit wichtiger Probleme Sebastian

Bernauer

Komplexitätsklassen Satisfiability

3-SAT

ique Problem

Knapsack Problem

rtition Problen

.....

3P

eweis

Problem

eweis

IC

blem veis

veis D

oblem

Satisfiability Problem

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i, j \in \{1, ..., n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1, ..., a_n\} \in \{0, 1\}^n$ der Variablen $x_1, ..., x_n$ gibt, so dass alle Klauseln erfüllt sind.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Satisfiability Problem (SAT)

Satisfiability Problem

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i, j \in \{1, ..., n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1, ..., a_n\} \in \{0, 1\}^n$ der Variablen $x_1, ..., x_n$ gibt, so dass alle Klauseln erfüllt sind.

Fragestellung: Existiert eine Wahrheitsbelegung der Variablen x_1, \dots, x_n so dass alle Klauseln erfüllt sind?

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Satisfiability Problem (SAT)

3-5A1

Beweis

napsack Problem

Partition Problem

DD

BP

Problem

НС

Problem

Beweis

HC

roblem leweis

roblem

5/27

Für natürliche Zahlen n und m seien m Klauseln über n Variablen gegeben. Eine Klausel ist die Disjunktion [Veroderung] von einigen Literalen x_i bzw. $\overline{x_i}$ mit $i,j \in \{1,...,n\}$. Es soll entschieden werden, ob es eine Belegung $a = \{a_1,...,a_n\} \in \{0,1\}^n$ der Variablen $x_1,...,x_n$ gibt, so dass alle Klauseln erfüllt sind.

Fragestellung: Existiert eine Wahrheitsbelegung der Variablen $x_1, ..., x_n$, so dass alle Klauseln erfüllt sind?

 \rightarrow Satz von Cook: SAT is NP-vollständig

3-SAT

- Spezialfall von SAT
- Jede Klausel enthält 3 Literale
- Es wurde bewiesen, dass SAT durch 3-SAT abbildbar und damit gleich komplex (NP-vollständig) ist

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

3-SAT

Clique Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique Problem

Clique Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

Abbildung: Ein Graph mit einer Clique der Größe 3.

 $Quelle: \ https://de.wikipedia.org/wiki/Clique_(Graphentheorie)\#/media/File:6n-graf-clique.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

atisfiability Problem (SAT)

Clique Problem

Reweis

napsack Problem

Partition Problem

BP

Problem Beweis

OHC

Problem

НС

Problem Beweis

m

em 7 /

Clique - Beispiel

Abbildung: Ein Graph mit 2 Cliquen der Größe 4.

Quelle: https://en.wikipedia.org/wiki/Clique_(graph_theory)#/media/File:VR_complex.svg

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique Problem

Clique - Fragestellungen

1. Gibt es eine Clique der Größe k?

 $\rightarrow\! Entscheidungsproblem$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

atisfiability
roblem (SAT)

Clique Problem

Beweis

apsack Problem

tition Problem

RP

Problem

IC.

eweis

IC

eweis

olom

9,

Clique - Fragestellungen

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem
- 2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.
 - →Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

Problem (SAT)

3-SAT

Clique Problem

napsack Problem

tition Problem

Beweis

BP

Problem

HC

weis

HC

roblem eweis

roblem

Clique - Fragestellungen

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Clique Problem

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem
- 2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.
 - →Optimale Lösung
- 3. Berechne eine Clique mit dem größten k.
 - \rightarrow Optimierungsproblem

Clique - Beweis

Es wurde bereits bewiesen, dass $CLIQUE \in NP$ und SAT NP-vollständig ist.

Nun ist zu beweisen, dass $SAT <_{p} CLIQUE$.

Daraus folgt: Clique ist NP-vollständig.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Beweis

Clique - Beweis

Konstruiere einen Graphen, der mittels Clique ein Problem löst, welches ein SAT-Problem ist.

1. Füge für jedes Literal in den Klauseln einen Knoten hinzu.

NP-Vollständigkeit wichtiger Probleme

> Sebastian Bernauer

Reweis

lique Problem

Beweis

napsack Problem

Partition Problem

BP

Problem Reveis

ЭНС

Problem

шс

roblem leweis

Problem

Konstruiere einen Graphen, der mittels *Clique* ein Problem löst, welches ein *SAT*-Problem ist.

- 1. Füge für jedes Literal in den Klauseln einen Knoten hinzu.
- 2. Verbinde alle Literale außer folgende Kanten:
 - Klauselgruppen untereinander
 - Gegensätzliche Literale (z.B. x_1 und $\overline{x_1}$)
- Suche eine Clique der Größe k, k ist die Anzahl der Klauseln. Da die Knoten einer Klauselgruppe nicht verbunden sind, muss aus jeder Klausel ein Literal "wahr" sein. Da die Literale in den Klauseln ODER-verknüpft sind, sind alle Klauseln erfüllt.

Clique - Beweis

Abbildung: Graph nach Transformation von Clique- in SAT-Problem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Beweis

Clique - Beweis

 \rightarrow SAT-Probleme können in ein Clique-Problem transferiert werden (mit polynomialen Zeitaufwand).

 \rightarrow *Clique* ist NP-vollständig.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasse

roblem (SAT)

Clique

Knapsack Problem

ieweis

Beweis

BP

oblem

С

weis

С

Problem Beweis

roblem

Knapsack Problem

Gegeben sind ein Rucksack und n Objekte mit Gewichten $g_1,...,g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1,...,a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

nplexitätsklassei

Satisfiability Problem (SAT)

A.I

Seweis

Knapsack Problem

rtition Proble

BP

Problem

НС

blem

10

Problem Beweis

P

Knapsack Problem

Gegeben sind ein Rucksack und *n* Objekte mit Gewichten $g_1, ..., g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1, ..., a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

Abbildung: Ein zu befüllender Rucksack.

Quelle: https://de.wikipedia.org/wiki/Rucksackproblem#/media/File:Knapsack.svg

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Knapsack Problem

Knapsack - Fragestellungen

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - $\rightarrow\! Entscheidungsproblem$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

atisfiability roblem (SAT)

5-5/41

veis

Knapsack Problem

seweis

rtition Problem

BP

Problem

HC

Beweis

HC

Beweis

blem

em 15 /

Knapsack - Fragestellungen

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - \rightarrow Entscheidungsproblem
- 2. Berechne den größtmöglichen Nutzwert.
 - ightarrow Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklasser

atisfiability roblem (SAT)

3-SAT

Clique Problem

Knapsack Problem

Beweis

artition Problem

BP

Problem

HC

Problem

C

Problem Beweis

-m

roblem .

Knapsack - Fragestellungen

1. Gibt es - unter Beachtung des Limits - eine Beladung mit mindestens diesem Nutzwert?

 \rightarrow Entscheidungsproblem

2. Berechne den größtmöglichen Nutzwert.

 \rightarrow Optimale Lösung

3. Berechne die optimale Beladung.

ightarrowOptimierungsproblem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Komplexitätsklassei

roblem (SAT)

3-SAT

lique Problem

Knapsack Problem

iapsack Problem

rtition Problem

RP

BP

Beweis

roblem

Problem

С

oblem weis

P

roblem

wichtiger Probleme

Sebastian
Bernauer

NP-Vollständigkeit

Komplexitatsklassei

Problem (SAT)

. . . .

weis

Beweis

tion Problem

eweis

)

roblem

blem

.

...

weis

16 / 27

16 / 27

Knapsack - Beweis

Beweis

Partition Problem

Gegeben sind $b_1, ..., b_n \in \mathbb{N}$. Gibt es eine Teilmenge $I \subseteq \{1, ..., n\}$, so dass die Summe aller b_i , $i \in I$ gleich der Summe aller b_i , $i \notin I$ ist? → Teil eine Menge von Gewichten in 2 gleich schwere Haufen auf.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Partition Problem

Partition - Beweis

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Beweis

18 / 27

Beweis

BP Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Problem

19 / 27

Problem

BP Beweis

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

tompiexitatskiassei

Problem (SAT

îliane.

veis

napsack Prol

ition Probl

S

em

Beweis

C .

veis

oblem weis

20 / 2

20 / 27

DI Deweis

Beweis

Deweis

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Jiipiexitatskiassi

Problem (SA 3-SAT

que P

veis

tition els

--

lem

Problem

is

em s

21 / 27

DHC Problem

Problem

DHC Beweis

Beweis

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

Beweis

HC Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Problem

23 / 27

Problem

HC Beweis

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Beweis

24 / 27

Beweis

TSP Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

25 / 27

Problem

TSP Beweis

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Complexitätsklassei

Problem (SAT)

3-3A1

veis

napsack Probl

weis

is

lem

veis

blem veis

oblem

Problem Beweis 26 / 27

Beweis

Quellen

Ingo WEGENER. Theoretische Informatik. Eine algorithmenorientierte Einführung. Teubner, 2005. NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer