

FCC SAR TEST REPORT

APPLICANT

Solnik S.A.

PRODUCT NAME

TBW9612C8

MODEL NAME

HY2-2169NE

TRADE NAME

N/A

BRAND NAME

HYUNDAI

FCC ID

2AFRUHY22169NE

STANDARD(S)

47CFR 2.1093 IEEE 1528-2013

ISSUE DATE

015-09-23

Certificatio

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Http://www.morlab.com
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Fax: 86-755-36698525

Fax: 86-755-36698525

E-mail: service@morlab.cn

DIRECTORY

TEST REPORT DECLARATION	4
1.TECHNICAL INFORMATION ······	<u>5</u>
1.1 IDENTIFICATION OF APPLICANT ······	5
1.2 IDENTIFICATION OF MANUFACTURER·····	5
1.3 EQUIPMENT UNDER TEST (EUT)	5
1.3.1 PHOTOGRAPHS OF THE EUT·	5
1.3.2 IDENTIFICATION OF ALL USED EUT	6
1.4 APPLIED REFERENCE DOCUMENTS	6
2. SPECIFIC ABSORPTION RATE (SAR)	8
AE IN GLAD HORL HO. AE IN GLAD HORL HO.	la.
2.1 INTRODUCTION ·····	8
2.2 SAR DEFINITION ······	8
3. SAR MEASUREMENT SETUP	9
TE TIME TORL MO. TE TIME TORL MO. TE	la.
3.1 THE MEASUREMENT SYSTEM ······	9
3.2 PROBE	9
3.3 PROBE CALIBRATION PROCESS	
3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE ······	
3.3.2 Free Space Assessment Procedure	
3.3.3 TEMPERATURE ASSESSMENT PROCEDURE	
3.4 PHANTOM	12
3.5 DEVICE HOLDER ·····	12
4. TISSUE SIMULATING LIQUIDS	13
ORLAN MORE THE ARE ORLAND MORE THE ARE ORLAND	
5. UNCERTAINTY ASSESSMENT	15
OFF THE SE STATE OFF THE SE STATE OF	
5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST·······	15

6. SAR MEASUREMENT EVALUATION.		W		18
CAS ORLE MO				MA
6.1 System Setup ······· 6.2 Validation Results ······	OEL MC			18
6.2 VALIDATION RESULTS ·····	NO.		•••••	19
7. OPERATIONAL CONDITIONS DURIN	G TEST·····			20
7.1 INFORMATION ON THE TESTING				20
7.2 BODY-WORN CONFIGURATIONS ········	MUS.			21
7.3 MEASUREMENT PROCEDURE ·····				21
7.4 DESCRIPTION OF INTERPOLATION/EXTRA	POLATION SCHEME			22
8. HOTSPOT MODE EVALUATION PROC	CEDURE			23
O. HOTSI OT MODE EVALUATION THO	OFFI HIL		AE ORLAN	More
O MEACUREMENT OF CONDUCTED OF	LITPLIT DOWER			AB S
9. MEASUREMENT OF CONDUCTED O	UIPUI POWER			22
10. TEST RESULTS LIST ······				28
11. REPEATED SAR MEASUREMENT····				32
12. MULTIPLE TRANSMITTERS EVALUA	ATION			35
NORTH MIC ALE	al All MORLE	MC OB	QLAR.	NORP
13. ANNEX A GENERAL INFORMATION	N			39
13. ANNEX A GENERAL IN ORMANO	ORL MC	.0	AE ORLE	Wolan 20
AB TRUE - MORE	Me LAB			AB GB
14. ANNEX B PHOTOGRAPHS OF THE	EUT			38
15. ANNEX C PLOTS OF HIGH SAR TES	T RESULTS			38
16. ANNEX D SYSTEM PERFORMANCE	E CHECK DATA	<u></u>	<u></u>	38
RLA MORE ME AF	RLAL	NOE WE	NB a	LAT
17. ANNEX A GENERAL INFORMATIO	N			39
I. ANDREA A CITIVERAL INFLIKIVIALILI				

		Change History
Issue	Date	Reason for change
1.0	2015-09-23	First edition
More	SE M	B ORLE MORE S ME LAS ORLE MORE

TEST REPORT DECLARATION

Applicant	Solnik S.A.		
Applicant Address	Dr Emilio Ravignani 1724 - C.A.B.A República Argentina		
Manufacturer	Beijing Benywave Wireless Communication Co. Ltd.,		
Manufacturer Address	No 55, Jiachuang second road, Zhongguancun science Park OPTO — Mechatronics Industrial Park, Tongzhou District, Beijing, China 101111		
Product Name	TBW9612C8		
Model Name	HY2-2169NE		
Brand Name	HYUNDAI		
HW Version	TBW9612_P2_001		
SW Version	961221_9716_VXXX		
Test Standards	47CFR 2.1093; IEEE 1528-2013		
Test Date	2015-09-02 to 2015-09-03		
	Head	0.246W/kg	
The Highest Reported	Body-worn	0.964W/kg	Lineit/\A//leg\. 4 C\A//leg
1g-SAR(W/kg)	Hotspot	1.314W/kg	Limit(W/kg): 1.6W/kg
	Simultaneous	1.546W/kg	

Tested by	-:	Liu Jun	

Liu Jun

Reviewed by

Zhu Zhan

Approved by Zeng Dexin

1.TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant.

1.1 Identification of Applicant

Company Name:	Solnik S.A.
Address:	Dr Emilio Ravignani 1724 - C.A.B.A República Argentina

1.2 Identification of Manufacturer

Company Name:	Beijing Benywave Wireless Communication Co. Ltd.,
Address:	No 55, Jiachuang second road, Zhongguancun science Park OPTO -
MORLY MOTO	Mechatronics Industrial Park, Tongzhou District, Beijing, China 101111

1.3 Equipment Under Test (EUT)

Model Name:	HY2-2169NE		
Trade Name:	N/A		
Brand Name:	HYUNDAI		
Hardware Version:	TBW9612_P2_001		
Software Version:	961221_9716_VXXX		
Tx Frequency Bands:	GSM 850: 824-849 MHz; GSM 1900: 1850-1910 MHz;		
	WCDMA Band II: 1850-1910MHz; WCDMA Band V: 824-849 MHz;		
	802.11 b/g/n20: 2412-2462 MHz;		
	Bluetooth2.1+EDR; 2402-2480 MHz;		
Uplink Modulations:	GSM/GPRS: GSMK; EDGE: GMSK/8PSK;		
	WCDMA/HSDPA/HSUPA/HSPA+:QPSK;		
	WIFI 802.11b: DSSS; WIFI 802.11g: OFDM; WIFI 802.11n20:OFDM;		
	Bluetooth: GFSK/π/4-DQPSK/8-DPSK;		
Multislot Class:	GPRS: Class 12; EDGE: Class 12;		
GPRS Class:	Class B		
DTM:	Not support		
Antenna type:	Fixed Internal Antenna		
Development Stage:	Identical prototype		
Hotspot function:	Support		

1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

1.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	TBW9613_P2.2_001	961315_9783_VXXXX

1.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title		
1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable		
HORD B MA LAB		Devices		
2 IEEE 1528-2013		IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human		
				O'ALA
es Mus	LAB GELAN M	Measurement Techniques		
3	KDB 447498 D01v05r02	General RF Exposure Guidance		
4	KDB 248227 D01v02	SAR Measurement Procedures for 802.11 a/b/g Transmitters		
5	KDB 941225 D01v03	SAR Measurement Procedures for 3G Devices		
6	KDB 941225 D02v02r02	HSPA and 1x Advanced		
7	KDB 941225 D03v01	SAR Test Reduction GSM GPRS EDGE		
8	KDB 941225 D04v01	SAR for GSM E GPRS Dual Xfer Mode		
9 💉	KDB941225 D06v01r01	Hotspot Mode SAR		
10	KDB 865664 D01v01r03	SAR Measurement 100 MHz to 6 GHz		
11	KDB 865664 D02v01r01	SAR Reporting		
12	KDB648474 D04v01r02	Handset SAR		

1.5 Device Category and SAR Limits <u>Uncontrolled Environment</u>

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2. SPECIFIC ABSORPTION RATE (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \Big(\frac{dW}{dm} \Big) = \frac{d}{dt} \Big(\frac{dW}{\rho dv} \Big)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

3. SAR MEASUREMENT SETUP

3.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm

- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

Probe linearity: <0.25 dB
Axial Isotropy: <0.25 dB
Spherical Isotropy: <0.25 dB

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/VIin(N)$$

(N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$

(N=1,2,3)

Where DCP is the diode compression point in mV.

3.3 Probe Calibration Process

3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

C = heat capacity of tissue (brain or muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Frequency Band (MHz)	750	83	35	1750	19	000 110 110	2450	2600
Tissue Type	Body	Head	Body	Body	Head	Body	Body	Body
Ingredients (% by we	ight)	LAB	OPLA	MOR	S W	LAB	ORLA	anc.
Deionised Water	50.00	50.36	50.20	68.80	54.90	40.40	73.20	68.1
Salt(NaCl)	0.80	1.25	0.90	0.20	0.18	0.50	0.10	0.10
Sugar	48.80	0.00	48.50	0.00	0.00	58.00	0.00	0.00
Tween 20	0.00	48.39	0.00	0.00	0.00	0.00	0.00	0.00
HEC	0.20	0.00	0.20	0.00	0.00	1.00	0.00	0.00
Bactericide	0.20	0.00	0.20	0.00	0.00	0.10	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	31.00	44.92	0.00	26.70	31.8
Diethylenglycol monohexylether	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Target dielectric para	meters	ORL	We	A.B	RLAR	MORL	Me	Q.B
Dielectric Constant	55.50	41.50	56.10	53.40	39.90	53.30	52.70	52.5
Conductivity (S/m)	0.96	0.90	0.95	1.49	1.42	1.52	1.95	2.16

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.									
Date	Freq.(MHz Liquid Parameters Meas.		meters Meas. Targe		Delta(%)	Limit±(%)			
2045/00/00		Relative Permittivity(cr):	41.36	41.5	-0.34	5			
2015/09/02	Head 835	Conductivity(σ):	0.91	0.90	1.11	9 5			
0045/00/00 D- 1- 005		Relative Permittivity(ɛr):		56.10	-0.73	5			
2015/09/02	Body 835	Conductivity(σ):	0.97	0.95	2.11	5			
2015/00/02	Heed 1000	Relative Permittivity(cr):	39.98	39.90	0.20	5			
2015/09/03	Head 1900	Conductivity(σ):	1.41	1.42	-0.70	5			
2015/00/02	Pody 1000	Relative Permittivity(cr):	53.10	53.3	-0.38	5			
2015/09/03	Body 1900	Conductivity(σ):	1.53	1.52	0.66	5			
2015/00/02	Hood 24F0	Relative Permittivity(cr):	39.11	39.20	-0.23	5			
2015/09/03	Head 2450	Conductivity(σ):	1.79	1.80	-0.56	5			

5. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST

	V.	. 30					@s		
a nor more no more no	b	C	d	e= f(d,k)	f MORLAS	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-	Vi
Barration of Original	OR BU	QLAS.	- 11	Sel. M.	4101	VE III.	QLAB.	%)	ORLP.
Measurement System Probe calibration	E.2.1	4.76	N	1.082.00	1 110	1	4.76	4.7	
JE. W.	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	
Axial Isotropy		9	al.h	O`		100.	.0	الله	
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1,0	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1 110	1	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1 ORL	0.58	0.5	8
Readout Electronics	E.2.6	0.02	N	1 1	1	1	0.02	0.0	8
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	10100	1, "	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	10	1 ala	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1 alas	1"	1.15	1.1 5	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1 E	0.03	0.0	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1 ME ME	1 MORLAR	2.89	2.8 9	∞
Test sample Related	A	ORL	III.	AB.		RLAN	MORE	111	
Test sample positioning	E.4.2.	0.03	N	1 _{more}	1 MC	1 NORLAE	0.03	0.0	N- 1
Device Holder Uncertainty	E.4.1.	5.00	N	1 100	1 🚜	1	5.00	5.0	N-

2LAB CORL	1	TB W.	alp	40	A. B.	More	"B M.	0	1
Output power Power drift -	6.6.2	4.04	R	$\sqrt{3}$	1 , 1	1	2.33	2.3	∞
SAR drift measurement	"B W	CLAB) 	ORLA	Mole	Bhu	LAB	3	ORL
Phantom and Tissue Para	meters	More	9 111	LAB		RLA	Mole	0 1	77
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1,	1	90.	0.0	8
(Shape and thickness	MOIL	AE M	ORLA	B	LA	Moles	0.03	3	8
tolerances)	F 0 0	4.57	R	<i>\sigma</i>	0.04	0.40	4.00	4.4	∞
Liquid conductivity - deviation from target value	E.3.2	4.57	K	$\sqrt{3}$	0.64	0.43	1.69	1.1	~
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	1 _m oR	0.64	0.43	3.20	2.1 5	M
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0 4	8
Liquid permittivity - measurement uncertainty	E.3.3	10.0	N W	1 ORLAS	0.6	0.49	6.00	4.9	М
Combined Standard Uncertainty	10RL	AE MO	RSS	3 III MO	LAB	MORLIN	11.55	10. 67	8
Expanded Uncertainty (95% Confidence interval)	WE MO.	ORLAB	K=2	RLAE	MORLA	LAE MC	23.11	21. 33	ORL

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a West Late	b work	С	d	e=	f	g	h=		k
	A.B	RLAL	212	f(d,k)	Mic	OB.	c*f/e	c*g/	ORL
AB ALAP OR	4	NO.	40	al Alb	٠.٥	2 les	Mo.	е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
	More	(+-	· ALA	, o ^R	(1g)	(10g)	(+-%)	Ui	8
	ORI	%)	Dist.	B	LAP	.0	RLA	(+-	
3 ORLA MORE	BIN	LAB	.0	RLA	Moles	BIN	LAB	%)	RLA
Measurement System	Like	NOFE	B W	LAB	.0	RLA	MORE	2 1/1	
Probe calibration	E.2.1	4.76	N	1,101	1, 1	1 100	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞ .
Boundary effect	E.2.3	1.0	R 🐠	$\sqrt{3}$	1	1.8	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1 110	1 💦	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	108	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1,5	1 1 1 1	1	0.02	0.0	∞

G. Company									
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1,10	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1,8	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1 11	1	1.15	1.1 5	8
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1,1111	0.03	0.0	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	10°	1 MARINE	2.89	2.8	8
Dipole	OR	Like	Mole	S M	, AS	3	RLA	Mole	
Dipole axis to liquid Distance	8,E.4. 2	1.00	N	$\sqrt{3}$,10h	1 M	0.58	0.5 8	∞
Input power and SAR drift measurement	8,6.6. 2	4.04	R	$\sqrt{3}$	1 M	1 NOPLAS	2.33	2.3	8
Phantom and Tissue Para	meters	Ale	MORE	Mo	0.5	3	QLAR	MORE	
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	NIORE	1 M	0.03	0.0	8
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	8
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.2 4	М
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0 4	8
Liquid permittivity - measurement uncertainty	E.3.3	10.0 0	N	$\sqrt{3}$	0.6	0.49	3.46	2.8	M
Combined Standard Uncertainty	A.B	AORLA	RSS	RLAB	III.	RLAB	8.83	8.3 7	OF
Expanded Uncertainty (95% Confidence interval)	ORLAN	AE MOT	K=2	Ma MOE	LAB	MORLA	17.66	16. 73	3 11

6. SAR MEASUREMENT EVALUATION

6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to

6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	835MHz(H)	835MHz(B)	
Target value 1W (1g)	9.68W/Kg	10.04 W/Kg	
Test value 1g (100 mW input power)	0.954 W/Kg (09.02)	0.992 W/Kg (09.02)	
Normalized to 1W value(1g)	9.54 W/Kg	9.92 W/Kg	

Frequency	1900MHz(H)	1900MHz(B)	2450MHz(H)
Target value 1W (1g)	39.36 W/Kg	42.36W/Kg	54.74 W/Kg
Test value 1g (250 mW input power)	4.018 W/Kg (09.03)	4.348 W/Kg (09.03)	5.256 W/Kg (09.03)
Normalized to 1W value(1g)	40.18 W/Kg	43.48 W/Kg	52.56 W/Kg

Note: System checks the specific test data please see Annex D

7. OPERATIONAL CONDITIONS DURING TEST

7.1 Information on the testing

The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level.

The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom.

Illustration for Tilted Position

Description of the "cheek" position:

The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost.

Description of the "tilted" position:

The mobile phone is well placed in the "cheek" position as described above. Then the mobile phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost.

Remark: Please refer to Appendix B for the test setup photos.

7.2 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

7.3 Measurement procedure

The Following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or

8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

8. HOTSPOT MODE EVALUATION PROCEDURE

The SAR evaluation procedures for Portable Devices with Wireless Router function is according to KDB 941225 D06 Hot Spot SAR v01r01.

SAR must be tested for all surfaces and edges (side) with a transmitting antenna with in 2.5 cm from that surface or edge, at a test separation distance of 10 mm, in the wireless mode that support wireless routing.

Edge configurations:

Edge D

Assessment	, M ^o H	otspot sic	le for SAR			
				RLAP .	Test distance	e: 10mm
Antennas	Back	Front	Edge A	Edge B	Edge C	Edge D
WCDMA/GSM	Yes	Yes	Yes	Yes	No	Yes
WLAN&BT	Yes	Yes	No	No	Yes	Yes

9. MEASUREMENT OF CONDUCTED OUTPUT POWER

1. WCDMA mode conducted output power values

	band	W	CDMA 8	50	W	CDMA 19	900
Item	ARFCN	4132	4183	4233	9262	9400	9538
	subtest		dBm			dBm	
5.2(WCDMA)	non	23.53	24.47	24.32	23.99	24.34	24.16
RLAD	1 1	24.34	24.26	24.15	23.82	23.99	24.25
HCDDA	2	24.32	24.27	24.13	23.84	23.98	24.22
HSDPA	3	23.83	23.75	23.66	23.31	23.46	23.74
AB WAR	4	23.81	23.76	23.64	23.33	23.47	23.73
MO	<u>√</u> 1	24.53	24.38	24.21	23.99	24.17	24.30
ZLAE 30	2	22.55	22.37	22.24	21.97	22.16	22.29
HSUPA	3	23.52	23.39	23.20	22.98	23.15	23.31
10RL	4	22.54	22.38	22.23	21.99	22.14	22.28
AB M. SLAB	5	24.55	24.40	24.22	23.98	24.18	24.31
HSPA+	1	24.54	24.37	24.18	23.87	24.18	24.33
Note	The Cond					VCDMA / ver meter	

2. GSM Mode

Band	Channel	Frequency (MHz)	Output Power(dBm)
CCM	128	824.2	32.74
GSM	190	836.6	32.71
850	251	848.8	33.14
D00	512	1850.2	29.43
PCS	661	1880.0	29.53
1900	810	1909.8	29.63

3. GPRS Mode Conducted peak output power

Dond	Channal	Frequency	Output Power(dBm)					
Band	Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4		
CCM	128	824.2	32.10	30.98	29.93	28.92		
GSM	190	836.6	32.05	30.93	29.88	28.87		
850	251	848.8	31.97	30.85	29.80	28.79		
DOC	512	1850.2	27.62	26.50	25.45	24.44		
PCS -	661	1880.0	27.73	26.61	25.56	24.55		
	810	1909.8	27.78	26.66	25.61	24.60		

GPRS Time-based Average Power

Band	Channel	Frequency		Output Power(dBm)				
Barid	Onamici	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4		
GSM -	128	824.2	23.07	24.96	25.67	25.91		
	190	836.6	23.02	24.91	25.62	25.86		
850	251	848.8	22.94	24.83	25.54	25.78		
DOC 1110	512	1850.2	18.59	20.48	21.19	21.43		
PCS	661	1880.0	18.70	20.59	21.30	21.54		
1900	810	1909.8	18.75	20.64	21.35	21.59		

Timeslot consignations:

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2Up3Down	3Up2Down	4Up1Down
Duty Cycle	1:8	1:4	1:2.67	1:2
Correct Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB

3. EDGE Mode Conducted peak output power

		70.	1.		, O,	
Dond	Channal	Frequency		Output P	ower(dBm)	
Band	Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4
GSM	128	824.2	29.09	27.97	26.92	25.91
	190	836.6	28.94	27.82	26.77	25.76
850	251	848.8	28.81	27.69	26.64	25.63
DOC	512	1850.2	25.34	24.22	23.17	22.16
PCS	661	1880.0	25.35	24.23	23.18	22.17
1900	810	1909.8	25.48	24.36	23.31	22.30

EDGE Time-based Average Power

Band	Channel	Frequency		Output Po	ower(dBm)	
Baria	Chamor	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4
GSM	128	824.2	20.06	21.95	22.66	22.90
	190	836.6	19.91	21.80	22.51	22.75
850	251	848.8	19.78	21.67	22.38	22.62
DCC	512	1850.2	16.31	18.20	18.91	19.15
PCS	661	1880.0	16.32	18.21	18.92	19.16
1900	810	1909.8	16.45	18.34	19.05	19.29

4. WiFi Average output power

	V' 40'		_8	- L	In.
		Frequency	(Output Power(dl	Bm)
Band	Channel	(MHz)	802.11b	802.11g	802.11n20
		()	(DSSS)	(OFDM)	(OFDM)
MORLE	1	2412	7.03	5.26	2.15
WiFi	6	2437	6.17	5.12	1.12
The Mon	11	2462	6.23	4.33	1.11

5. BT+EDR 2.1 average output power

Band	Channel	Frequency	(Output Power(dl	3m)
Dallu	Chamilei	(MHz)	GFSK	π/4-DQPSK	8-DPSK
NO.	0	2402	10.08	7.02	5.90
ВТ	39	2441	7.92	4.81	3.64
MO. OB	78	2480	6.85	3.86	2.61

10. TEST RESULTS LIST

Summary of Measurement Results (GSM 850MHz Band)

Tomporatare. 21	.0 20.0 0,	humidity: 54~60%	1	1	1087	400	*
Phantom Confiç	gurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	Plot No.
Right Sic	de	Cheek/Touch	OR MIL	0.186	ORLAR	0.198	0
Of Head		Ear/Tilt	ORLAN	0.101		0.107	410
Left Side		Cheek/Touch	128	0.211	1.062	0.224	9 1
Of Head	d	Ear/Tilt	128	0.109	1.062	0.116	0
AB ORL	CCM	Back upward	A.B	0.468		0.497	PLA
	GSM	Front upward	ORL SING	0.281		0.298	
Body	Ole	Back upward	ORLAN	0.496	AB	0.505	2
(10mm	OPLA	Front upward	AF AF	0.283		0.288	B
Separation)	GPRS	Edge A	128	0.060	1.019	0.061	
	110	Edge B	AB	0.218		0.222	RLAN
	OB.	Edge D	OBT. MO	0.267		0.272	

Summary of Measurement Results (GSM 1900MHz Band)

Phantom Config	gurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	Plot No.
Right Side Of Head Left Side Of Head		Cheek/Touch	810	0.148	1.089	0.161	3
		Ear/Tilt		0.071		0.077	0,
		Cheek/Touch		0.125		0.136	30.
		Ear/Tilt		0.061		0.066	G bu
ORLAN ORDAN	CCM	Back upward	AB OR	0.440	B	0.479	
	GSM	Front upward	· B	0.341	RLA	0.371	LAB
LA Desta MOR	-0	Back upward	ORLA	0.399	LAB	0.437	0,0
(10mm Separation)	ORLA	Front upward	ME	0.430	Mole	0.471	4
	GPRS	Edge A	810	0.437	1.096	0.479	es bu
	MORE	Edge B	AB ORI	0.090		0.099	
	B	Edge D	ME	0.103	RLA	0.113	A.B

Note:

1. GPRS/EDGE test Scenario (Based on the Max. Time-based Average Power)

Band	Channel	Slots	Power level	Duty Cycle
GPRS850	128	4	5	1:2
GPRS1900	810	Ø 4	0	1:2

2. SAR is not required for EDGE mode because its output power is less than that of GPRS mode.

Summary of Measurement Results (WCDMA 850MHz Band)

Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	Plot No.
Right Side	Cheek/Touch	RLAS	0.108	A.B	0.109	
Of Head	Ear/Tilt	MO. AB	0.041	MORL!	0.041	QLA.
Left Side	Cheek/Touch	MORL	0.098	RLAB	0.099	5
Of Head	Ear/Tilt	AB ARI	0.033	Mo.	0.033	-11
A.B	Back upward	4183	0.406	1.007	0.409	0B
Body	Front upward	RLAB	0.285	AB T	0.287	
(10mm	Edge A	MO. AB	0.062	MOBIL N	0.062	QLA
Separation)	Edge B	MORL	0.286	RLAB	0.288	Mo
RLAD MO	Edge D	of al	0.111	Wo.	0.112	6

Summary of Measurement Results (WCDMA 1900MHz Band)

Temperature: 21.0~	23.8°C, humidity: 54	~60%.	Mo. NB	al AB	JORL	Mor
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	Plot No.
Right Side	Cheek/Touch	LAB OF	0.232	* Q	0.246	7
Of Head	Ear/Tilt	0.400	0.101	4.000	0.107	J.A.B
Left Side	Cheek/Touch	9400	0.170	1.062	0.181	MOL
Of Head	Ear/Tilt	ME	0.084	Moles	0.089	, of
MOL W.	TAB ORLA	9262	0.857	1.125	0.964	S W
ORLA	Back upward	9400	0.839	1.062	0.891	RLA
E ME		9538	0.850	1.081	0.919	AB
Body	Front upward	9400	0.617	1.062	0.655	Moke
(10mm	More	9262	0.931	1.125	1.047	8
Separation)	Edge A	9400	1.237	1.062	1.314	S W
ORLAN		9538	0.969	1.081	1.047	al A
G ME AE	Edge B	9400	0.241	1.062	0.26	AB
MORL	Edge D	9400	0.253	1.062	0.269	MORE

Note:

- When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r02)
 - ≤ 0.8 W/kg and transmission band ≤ 100 MHz
 - ≤ 0.6 W/kg and, 100 MHz < transmission bandwidth ≤ 200 MHz
 - ≤ 0.4 W/kg and transmission band > 200 MHz
- 2. The WCDMA mode is test with 12.2kbps RMC and TPC set to all "1", if maximum SAR for 12.2kbps RMC is ≤ 75% of the SAR limit (i.e. 1.2W/Kg 1g) and maximum average output of each RF channel with HSDPA/HSUPA active is less than 1/4 dB Middle than that measured without HSDPA/HSUPA using 12.2kbps RMC, according to KDB 941225D01v02, SAR is not required for this handset with HSPA capabilities.
- 3. BT & WiFi SAR test is conducted according to section 12 stand-alone SAR evaluation of this report.
- 4. IEEE Std 1528-2013 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 5. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required.
- 6. The WCDMA mode is test with 12.2kbps RMC and TPC set to all "1", if maximum SAR for 12.2kbps RMC is ≤ 75% of the SAR limit (i.e. 1.2W/Kg 1g) and maximum average output of each RF channel with HSDPA/HSUPA active is less than 1/4 dB higher than that measured without HSDPA/HSUPA using 12.2kbps RMC, according to KDB 941225D01v02, SAR is not required for this handset with HSPA capabilities. This module supports 3GPP release R7 HSPA+ using QPSK only without 16QAM in the uplink. So PBA is not required for HSPA+.
- 7. SIM 1 and SIM 2 is a chipset unit and tested as a single chipset. The SIM 1 is chosen for test.

Summary of Measurement Results (Bluetooth Band)

Temperature: 2°	1.0~23.8°C, humid	ty: 54~60%.	S 111	AB ORLAS	MOLE	S M
Phantom Configuration	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	Plot No.
Right Side	Cheek/Touch	LE OPL	0.067	e me	0.074	MOL
Of Head	Ear/Tilt	GFSK	0.032	4.400	0.035	AB
Left Side	Cheek/Touch	0	0.055	1.102	0.061	9
Of Head	Ear/Tilt	AB	0.022	Oler a We	0.024	RLA

1. Scaling Factor calculation

Band	Tune-up power tolerance(dBm)	SAR test channel Power (dBm)	Scaling Factor 1.062	
GSM 850	PCL = 5, PWR =32.5+-0.5	32.74		
GPRS 850	PCL = 5, PWR =28.5+-0.5(4 slots)	28.92	1.019	
GSM 1900	PCL = 0, PWR =29.5+-0.5	29.63	1.089	
GPRS1900	PCL = 0, PWR =24.5+-0.5(4 slots)	24.60	1.096	
WCDMA 850	Max output power =23.5(+1/-2)	24.47	1.007	
A.B	ORLAN MORE AND AR	23.99	1.125	
WCDMA 1900	Max output power =23.5(+1/-2)	24.34	1.062	
	MORI. MO. AB SELAB	24.16	1.081	
Bluetooth	Max output power =10+-0.5	10.08	1.102	

11. REPEATED SAR MEASUREMENT

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

			Meas.SAR(W/kg)		Largest to	
Band	Test Position	Test Channel	Original	Panastad	Smallest SAR	
			Original	Repeated	Ratio	
WCDMA1900	Back upward	9400	0.857	0.864	1.008	
WCDMA1900	Edge A	9400	1.237	1.250	1.011	
WCDMA1900	Edge A	0400	1.250	1 241	1.007	
(repeated)	Edge A	9400	1.250	1.241	1.007	

12. MULTIPLE TRANSMITTERS EVALUATION

Stand-alone SAR

Test distance	e: 5mm	MIC AR SELAR MORL MIC AR	RLAB
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
WIFI(2.4G)	5.62	[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√f(GHz)] ≤ -	No
ВТ	11.22	3.0 for 1-g SAR	Yes

Test distance	: 10mm	MO, JE W. STWE JOHN, MO,	18 W
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
WIFI(2.4G)	5.62	[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√f(GHz)] ≤	No
ВТ	11.22	3.0 for 1-g SAR	No No

The Body SAR test for BT is not required.

The SAR test for 802.11b (2.4GHz) is not required.

The WiFi stand-alone SAR and the Body SAR test for BT are not required, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

(Max power=8.91 mW; min. test separation distance= 5mm for Head; f=2.4GHz)

WiFi estimated Head SAR =0.464W/Kg (1g);

(Max power=8.91 mW; min. test separation distance= 10mm for Body; f=2.4GHz)

WiFi estimated Body SAR =0.232W/Kg (1g);BT estimated Body SAR =0.116W/Kg

Simultaneous SAR

	Simultaneous transmission conditions							
	WWAN		WLAN		- Sum of			
#	GSM	WCDMA	802.11b/g/n	BT MORE	WWAN& WLAN			
1	×	a W	×	MORE	×			
2	AB	×	×	BRLAN	× III			
3	×	AB	RLAL	×	×			
4	2 CLA	×	a.B	×	×			

Note:

- 1. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another WWAN transmitter. Both transmitter often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.
- 2. The hotspot SAR result may overlap with the body-worn accessory SAR requirements, per KDB 941225 D06, the more conservative configurations can be considered, thus excluding some unnecessary body-worn accessory SAR tests.
- GSM supports voice and data transmission, though not simultaneously. WCDMA supports voice and data transmission simultaneously.
- 4. Simultaneous Transmission SAR evaluation is not required for BT and WiFi, because the software mechanism have been incorporated to guarantee that the WLAN and Bluetooth transmitters would not simultaneously operate.
- Per KDB 447498D01v05r01, Simultaneous Transmission SAR Evaluation procedures is as followed:
 - Step 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.
 - Step 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.
 - Step 3: If the ratio of SAR to peak separation distance is ≤ 0.04, Simultaneous SAR measurement is not required.

Step 4: If the ratio of SAR to peak separation distance is > 0.04, Simultaneous SAR measurement is required and simultaneous transmission SAR value is calculated.

(The ratio is determined by: (SAR1 + SAR2) ^ 1.5/Ri ≤ 0.04,

Ri is the separation distance between the peak SAR locations for the antenna pair in mm)

6. Applicable Multiple Scenario Evaluation

Test	Main Ant. SARMax (W/Kg)	Bluetooth SAR(W/Kg)	WiFi SARMax(W/Kg)	∑1-g SARMax(W/Kg)	
Position	SAKIMAX (W/Ng)			BT&Main Ant	WiFi&Main Ant
Head SAR	0.246	0.074	0.464	0.320	0.710
Body SAR	1.314	0.116	0.232	1.430	1.546

Simultaneous Transmission SAR evaluation is not required for WiFi and WCDMA&GSM, because the sum of 1g SARMax is **1.546**W/Kg < 1.6W/Kg for Wifi and WCDMA&GSM.

Simultaneous Transmission SAR evaluation is not required for BT and WCDMA&GSM, because the sum of 1g SARMax is **1.430**W/Kg < 1.6W/Kg for BT and WCDMA&GSM.

(According to KDB 447498D01v05r01, the sum of the Highest <u>reported SAR</u> of each antenna does not exceed the limit, simultaneous transmission SAR evaluation is not required.)

677.7	A.	. 100	-10	
40		OFNIED AL	INFORMATION	~~!
1			INIECIENIA III	
IJ.		GENTINAL		<i></i>

- 14. ANNEX B PHOTOGRAPHS OF THE EUT
- 15. ANNEX C PLOTS OF HIGH SAR TEST RESULTS
- 16. ANNEX D SYSTEM PERFORMANCE CHECK DATA

17. ANNEX A GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		

3. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due	
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)	
2	Network Emulator	Aglient (8960, SN:10752)	2015-2-21	1year	
3	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2015-8-20	1year	
4	Voltmeter	Keithley (2000, SN:1000572)	2015-8-24	1year	
5	Signal Generator	Rohde&Schwarz (SMP_02)	2015-8-24	1year	
6	Power Amplifier	PRANA (Ap32 SV125AZ)	2015-8-24	1year	
7	Power Meter	Agilent (E4416A, SN:MY45102093)	2015-5-07	1year	
8	Power Sensor	Agilent (N8482A, SN:MY41091706)	2015-5-07	1year	
9	Directional coupler	Giga-tronics(SN:1829112)	2014-9-24	1year	
10	Probe	Satimo (SN:SN 37/08 EP80)	2015-8-17	1year	
11	Dielectric Probe Kit	Agilent (85033E)	2015-9-24	1year	
12	Phantom	Satimo (SN:SN_36_08_SAM62)	2015-9-24	1year	
13	Liquid	Satimo(Last Calibration: 2015-09-02 to 2015-09-03)	N/A	N/A	
14	Dipole 835MHz	Satimo (SN 20/08 DIPC 99)	2014-9-22	3year	
15	Dipole 1900MHz	Satimo (SN 30/13 DIP1G900-261)	2014-9-22	3year	
16	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2014-9-22	3year	

***** END OF REPORT *****