»Гл. ас. д-р Георги Чолаков »Бази от данни	
Релационна алгебра >	

Въведение

Третата и последна част на релационния модел (манипулативната част) се състои от множество от оператори, които образуват така наречената релационна алгебра. Тя дефинира теоретичен модел за манипулиране на данните чрез релационни оператори с цел извличане на полезна информация.

Соdd дефинира 8 операции:

> SELECT (RESTRICT)

> PROJECT

> LINION

- > UNION > INTERSECT
- > DIFFERENCE
- > PRODUCT > JOIN
- > DIVIDE

Затвореност

Релационната алгебра притежава свойството затвореност резултатът от всяка релационна операция е отново релация (релационна затвореност).

- > Така всеки изход от една операция може да бъде вход на друга операция;
- > Ще е възможно да създаваме <u>вградени изрази</u> т.е. операндите могат да бъдат представени посредством изрази;

>

SELECT (RESTRICT) Приложен върху една таблица (унарен) връща отново таблица, която съдържа всички колони от оригиналната и само записите, отговарящи на специфицираните условия (предикати). Т.е. операторът SELECT връща хоризонтално подмножество от таблицата, т.е. редовете, които имат стойности на атрибутите си, отговарящи на зададените условия.

PROJECT — RPUMEP C TABOULUTS | PROJECT D | MANUAL | Manual Project Description | Manual Project Descri

Съвместимост на типове Нека разгледаме обединението: » В математиката обединението на две множества е множеството на всички елементи, принадлежащи към едно от двете оригинални множества; » Понеже релацията е множество от записи – възможно е да конструираме обединението на две релации; » Но възможно ли е да възникнат проблеми?

LE	TURERS	O	бедин	ение			_
FName LName	Title	Faculty	1				
Стоян Колев	Проф.	ФМИ	1	SUBJE	CTS		
Петър Иванов	Доц.	Право	←	Subject	Horarium	Hall	
Венета Георгие	а Стн.с.	Икономика		Бази от данни	30	422	
Спас Петров	Доц.	ФМИ		Изкуствен интелект	20	424	
Резултат:	2	?	?				
Резултат: ? Стоян	? Kones	?	?				
?			-				
?	Колев Иванов	Проф.	ФМИ				
? Стоян Петър	Колев Иванов	Проф. Доц. 424	ФМИ	ia a			
? Стоян Петър Изкуствен интел	Колев Иванов ст 20	Проф. Доц. 424	ФМИ Право	28			

»	Въпреки, че резултатът е множество от (разнотипни) редове,
	той не е релация!	

- » Релацията не може да съдържа смесени типове записи!
- » Искаме резултатът да е релация, за да запазим свойството затвореност;
- » Следователно, обединението в релационната алгебра не е идентично с математическото обединение;
- » По-скоро то е специален случай, при който изискваме двете входни релации да бъдат от един и същ тип.

- » Двете релации да имат идентични заглавни части т.е.:
 - > Да имат еднакви множества от имена на атрибутите;
 - > Кореспондиращите атрибути да са дефинирани върху еднакви области.
- » Съвместимост по типове се изисква за операторите:
 - > Обединение (UNION)
 - > Сечение (INTERSECT)
 - > Разлика (DIFFERENCE)

>

JOIN » Това е сред най-полезните оператори в релационната алгебра и е най-често използвания способ за комбиниране на данни от две или повече релации; Ще разгледаме следните видове JOIN операции: » Natural join » Theta (Θ) join » Equi-join » Semi-join » Anti-join » Outer join

Α (1.		, эледы	эно от		декартовс иите 2. SEL	произве ЕСТ и 3. Г	•	
	NAME		_	REGION ID	NAME	OOLINEEDY ID	NAME	DEGION
1	Източна Евр	ona		REGION_ID	NAME Източна Европа	COUNTRY_ID BG	NAME България	REGION_I
3	Азия		1	1	Източна Европа Източна Европа	CH	Вългария Швейцария	5
5	Западна Евр	опа	2	1	Източна Европа	CN	Китай	3
		AxB	4	1	Източна Европа	DE	Германия	5
PRO	DUCT		⇒ 5	3	Азия	BG	България	1
В			6	3	Азия	CH	Швейцария	5
ь			7	3	Азия	CN	Китай	3
	NAME	REGION_ID	8	3	Азия	DE	Германия	5
COUNTRY_ID		1	9	5	Западна Европа	BG	България	1
COUNTRY_ID BG	България			5	0			
	България Швейцария	5	10	D	Западна Европа	CH	Швейцария	5
BG		5	10	5	Западна Европа Западна Европа	CN	Швейцария Китай	3

SQL Que	sut Statistics			
SELECT				
	GIONS NATURAL JOIN	comment		
		COUNTRI	Lo	
OKDER B	Y REGION_ID			Забележки:
		-1-	1-1-1	забележки:
∰ - û	DDV FECH	0 8 7	r 🛆 🍕 🖯 🔐 🛍 🖷	У Не всички SQL езици поддържат синтаксиса за
REGIO	N ID REGION NAME	COUNTRY	D NAME	
) 1		- RO	Pysoson	NATURAL JOIN;
2		8G	Eurrapies	 ✓ От фигурата се вижда, че атрибутът REGION_II
3		50	Cupties	
4		US	Съединени американски щеп	 участва само веднъж в резултата, за разлика с
3		··· AR	Аржентина	anusana e DDODLICT
6		··· BR	Бразилия	примера с PRODUCT.
7		** CA	Kanaga	
8		MX	Meeceep	
9		·· CN	Karrali Xosennar	
20				
12		9G #	Concanyp	
13		- N	Minores Vennes	
14	April Consum unner in Admires	- 24	Veges	
15		60	Leaner	
26		KW	Kyreit	
17	4 Совани изпос и Афонка	ZM	Zandes	
28		ZW	Implefee	_
	4 Среден изток и Африка	NG	Harrensa	
29				

Θ-JOIN	
» Нека релациите А и В нямат общи атрибути и нека Ө е валиден оператор за сравнение (=, >, <, >=, <=, <>). Тогава Ө-јоіп на релацията А върху атрибута X с релацията В върху атрибута Y е резултатът от изпълнението на израза:	
(A × B) WHERE X Θ Y	
т.е. резултатната релация е със:	
 заглавна част – като на Декартовото произведение на А и В, т.е. обединението на заглавните части на А и В; 	
 тяло – множеството на всички записи, принадлежащи на Лекартовото произведение за които X Q V е верно 	>

	JOIN	ı — I	іриі	wet) 1				
te	ка имаме	следнит	е релации	и АиВ,	съдър	жащи с	ъответно препода ът за сравнение '='	ватели Тогава	и университет
							о произведение, с		
									_
١	TEACH_IN	FName	LName	Title	В	UNI_ID	Name	Sho	ort
X	101	Стоян	оян Колев	Проф.		101	Пловдивски университе		
8	102	Петър	Иванов	Доц.		102	Софийски университе	т СУ	
N	101	Венета	Георгиева	Ст.н.с.					
	(A × B) TEACH_IN	FName	LName	H_IN Title	UNI_IE	Name		Short	1
				_	-	Name	D ивски университет	Short	
	TEACH_IN	FName	LName	Title	UNI_IE	Name			
	TEACH_IN	FName Стоян	LName Kones	Title	UNI_IE	Name Пловд Софи	ивски университет	ПУ	
	TEACH_IN 101 101	FNате Стоян Стоян	Kones Kones	Title Проф. Проф.	UNI_IE	Пловд Софи	ивски университет йски университет	СУ	
	TEACH_IN 101 101 102	FNате Стоян Стоян Петър	LName Колев Колев Иванов	Title Проф. Проф. Доц.	101 102 101	Пловд Софиі Пловд Софиі	ивски университет йски университет ивски университет	Cy Ny	

		Триме				
		-194.141.98.98.TradeCompany	(se (52))*			- 0 ×
sququ	ry1.sql - 19eCompany					ė.
	□SELEC					i i
	FROM	REGIONS, C	OUNTRIES			
	WHERE	REGTONS R	EGTON TD	= COLIN	TRIES.REGIO	ON TO
194.50	THI I CALL	REGIONSTR	-01011_10	COOM	MILITALI	- TD
⊞ A	outs (19 Messages					
	REGION_ID	NAME	COUNTRY_ID	NAME	REGION_ID	
	1	Източна Европа	BG	България	1	
1		Западна Европа	CH	Швейцария	5	
2	5					
2 3	3	Азия	CN	Китай	3	

EQUI-JOIN	
» Това е частен случай на Θ -join, в който операторът Θ е само операторът за сравнение =.	

BPъща редовете от първата релация, за които има поне един съвпадащ от втората релация; Pазликата между него и досега описаните е, че редовете от първата релация ще участват в резултата най-много по веднъж; Дори втората релация да има два съвпадащи за ред от първата, само едно копие на реда ще бъде върнато в резултата; Pеализира се с предикатите EXISTS или IN.

ANTI-JOIN

- » Операторът ANTI-JOIN между две релации върши обратното на SEMI-JOIN: връща редовете от първата релация, които нямат съвпадения във втората.
- » По своята природа това е операторът за разлика (MINUS), но може да бъде реализиран и с предикатите NOT EXISTS или NOT IN.

>

INNER/OUTER JOIN

- » Изброените дотук видове JOIN операции (NATURAL JOIN, Θ-JOIN) реализират т.нар. вътрешни съединения, характерни с това, че в резултата участват само редовете от двете релации, които имат съвпадения.
- » За случаите, в които ще се налага от една от двете или и от двете релации да бъдат запазени всички редове в резултатната релация, се използват външни съединения.

>

OUTER JOIN » Външното съединение генерира релация, в която записите, които нямат съвпадения в двете релации, могат също да участват в резултата; » Видове: 1. Left Outer Join: съединение, в което записите от L, които нямат съответни в R (сравнение в общите атрибути), също ще участват в резултатната релация. 2. Right Outer Join: съединение, в което записите от R, които нямат съответни в L, също ще участват в резултатната релация. 3. Full Outer Join: съединение, в което записите от L, които нямат съответни в R, ще участват в резултатната релация, както и тези от R, които нямат съответни в B, ще участват в резултатната релация, както и тези от R, които нямат съответни в L, също ще участват в резултатната релация. > > Хемпадата объетна в Съответни в В, също ще участват в резултатната релация.

DIVIDE — Пример 1 Искаме да извлечем всички студенти, които са завършили поставените им задачи по Бази от данни и ще бъдат допуснати до изглит. Completed Sudent Task Chene Koree 15a, самостоятема работа Стеме Косее 15a, - управления Венета Георгиева 15a, - управления Венета Георгиева 15a, - управления Имыя Пенев ВД - самостоятема работа Имыя Пенев ВД - самостоятема работа Имыя Пенев Компотърна графика Венета Георгиева Вд. - ответстоятема работа Имыя Пенев Компотърна графика

Алгебрични свойства на операторите
<u>Асоциативност</u> :
> UNION: (A UNION B) UNION C A UNION (B UNION C)
> INTERSECTION: (A INSTERSECT B) INTERSECT C ⇔ A INTERSECT (B INTERSECT C)
> PRODUCT: (A TIMES B) TIMES C 🖨 A TIMES (B TIMES C)
> IOIN: (A JOIN B) JOIN C ⇔ A JOIN (B JOIN C) ⇔ A JOIN B JOIN C
<u>Комутативност</u> :
> UNION: A UNION B = B UNION A
> INTERSECTION: A INSTERSECT B = B INTERSECT A
> PRODUCT: A TIMES B AS R TIMES A

За какво е релационната алгебра?

Демонстрираните примери бяха предимно за извличане на данни, но това не означава, че релационната алгебра е приложима само при извличане. Нейната основна цел е да позволи <u>писането на изрази</u>, които да послужат за:

- > Дефиниране на обхват за извличани данни задаване на условия, на които да отговарят резултатите;
- > Дефиниране на обхват за промяна на данни при въвеждане, промяна и изтриване;
- > Дефиниране на (именувани) виртуални релации изгледи, напр.;
- > Дефиниране на правила за сигурност;

> JOIN: A JOIN B \Leftrightarrow B JOIN A

- Дефиниране на правила за цялостност;
- > и др.