

Índice

- Locality-sensitive hashing (LSH)
- 2. MinHashing
- 3. Shazam

Locality-sensitive hashing (LSH)

Hash Function

Locality-sensitive hashing (LSH)

Locality-sensitive hashing (LSH)

LSH family \mathcal{F} es (R,cR,p_1,p_2) -sensitive con respecto a la distancia d(x,y) si para algún $h\in\mathcal{H}$ tenemos que:

- Si $d(x,y) \le R$ entonces $P_{\mathcal{H}}[h(x) = h(y)] \ge p_1$
- Si $d(x, y) \ge cR$ entonces $P_{\mathcal{H}}[h(x) = h(y)] \le p_2$

Hashing points with projections

$$h_1: \mathbb{R}^2 \longrightarrow \mathbb{Z}$$
 $x = (x_1, x_2) \in \mathbb{R}^2$

$$h_1(\mathbf{x}) = \lfloor x_1 \rfloor$$

$$a \sim b \iff h_1(a) = h_1(b)$$

Hashing points with projections

$$h_2: \mathbb{R}^2 \longrightarrow \mathbb{Z}$$
 $x = (x_1, x_2) \in \mathbb{R}^2$

$$h_2(\mathbf{x}) = \lfloor x_2 \rfloor$$

$$a \sim b \iff h_1(a) = h_1(b)$$

Hashing points with projections

$$h_1: \mathbb{R}^2 \longrightarrow \mathbb{Z}$$
 $x = (x_1, x_2) \in \mathbb{R}^2$
 $h_2: \mathbb{R}^2 \longrightarrow \mathbb{Z}$

$$h_1(\mathbf{x}) = \lfloor x_1 \rfloor$$
$$h_2(\mathbf{x}) = \lfloor x_2 \rfloor$$

$$a \sim b \Leftrightarrow \begin{cases} h_1(a) = h_1(b) \\ h_2(a) = h_2(b) \end{cases}$$

Hiperplanos!

Hiperplanos!

$$h_1: \mathbb{R}^2 \longrightarrow \mathbb{Z}$$
 $x = (x_1, x_2) \in \mathbb{R}^2$

$$h_1(\mathbf{x}) = [Ux_1 + b]$$

$$h_i: \mathbb{R}^2 \longrightarrow \mathbb{Z}$$
 $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$

$$h_i(\mathbf{x}) = [Ux_i + b]$$

$$h_i: \mathbb{R}^2 \longrightarrow \mathbb{Z}$$
 $x = (x_1, x_2) \in \mathbb{R}^2$

$$h_i(\mathbf{x}) = [Ux_i + b]$$

$$h_i: \mathbb{R}^2 \longrightarrow \mathbb{Z}$$
 $x = (x_1, x_2) \in \mathbb{R}^2$

$$h_i(\mathbf{x}) = \lfloor Ux_i + b \rfloor$$

$$a \sim b \iff \#\{i: h_i(a) = h_i(b)\} \ge j$$

$$k = 5$$

Buscar frases similares

k-shingling

flying fish flew by the space station

Vocabulario

Vocabulario

MinHashing

```
1
O
signature:
O
1
O
1
```


MinHashing

Band method

Band method

Band method

$$P = 1 - (1 - s^r)^b$$

Shazam

Dominio de Frecuencia

$$X[n,k] = \sum_{m=n-(N_w-1)}^{n} (x[m]w[n-m])e^{-j2\pi mk/N} = \sum_{m=n-(N_w-1)}^{n} (x[m]w[n-m])e^{-j\omega_k m}$$

Dominio de Tiempo

Dominio de Frecuencia

