

NLP Reading Group

October 15th 2025

"Modern LLMs - Part 1 (Architectures)"

Talk by: Nikolai Rozanov (nikolai.rozanov@mbzuai.ac.ae)

Modern LLMs

Modern LLMs: Building Blocks

- 1. Architecture
 - a. Positional Embeddings
 - b. Attention
 - c. Feed-forward
- 2. Data
 - a. Pre-training
 - b. Mid-training
 - c. Post-training
- 3. Infrastructure
 - a. Fault-tolerant Multi-node training
 - b. Model-sharding
 - c. Efficient GPU Code for Multi-node training & inference

Focus Today!

Modern LLMs: Architecture

- Positional Embeddings
 - a. Sinusoidal
 - b. ROPE
 - c. Yarn
- 2. Attention
 - a. MHA
 - b. MQA
 - c. GQA
 - d. MLA
 - e. "Linear Attention" (State-Space Models, DeltaNet, Mamba)
- 3. "FFN"
 - a. Classical FFN
 - b. MoE
 - c. Model-sharding
 - d. Efficient GPU Code for Multi-node training & inference

Focus Today!

Modern LLMs: How to we go from GPT-2 -> GPT-OSS

GPT-2 XL 1.5B (2019)

GPT-OSS 20B (2025)

Attention Mechanisms

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

"Attention is all you need" https://arxiv.org/pdf/1706.03762

Figure 1: The Transformer - model architecture.

Scaled Dot-Product Attention

Multi-Head Attention Linear Concat Scaled Dot-Product Attention

"Attention is all you need" https://arxiv.org/pdf/1706.03762

Text

Tokens

Embeddings

Computations needed to generate N2 tokens given N1 input tokens:

$$(N1+1)+(N1+2)+...+(N1+N2) = \sim N^2 * Layers* *Heads*dim$$

Space Needed for KV-Cache: 2*N*Layers*Heads*dim

$$=rac{e^{w_{41}}}{\sum_{i}w_{4i}}$$

Q4

Q4

K1

K2

w41

w42

$$oxed{egin{array}{c} oxed{\mathsf{h4}} \end{array}} = \sum_{j} a_{4j} v_{j}$$

Multi-Query Attention (MQA)

Group Query Attention (GQA)

Multi-Head Latent Attention (MLA)

Attention Comparison

Attention	Computation	Memory	Expressivity
Multi-Head Attention (MHA)	H x D x L x N^2	2 x H x D x L x N	High
Multi-Query Attention (MQA)	1 x D x L x N^2	2 x 1 x D x L x N	Low
Group-Query Attention (GQA)	G x D x L x N^2	2 x G x D x L x N	Medium
Multi-Head Latent Attention (MLA)	(H) x d x L x N^2	2 x d x L x N	Medium+

Attention Comparison

Self-attention architecture

Image source: DeepSeek-V2

Alternative Attention Mechanisms:

- Self-Attention:
 - a. "Sliding Window" Attention
- 2. Linear Self-Attention (State Space Models)
 - a. Mamba2 (Falcon-H1)
 - b. DeltaNet (Qwen3-Next)

C

Model	Parameterization	Learnable parameters
Mamba (Gu & Dao, 2023)	$\mathbf{G}_t = \exp(-(1^{T} \boldsymbol{\alpha}_t) \odot \exp(\mathbf{A})), \boldsymbol{\alpha}_t = \operatorname{softplus}(\boldsymbol{x}_t \boldsymbol{W}_{\alpha_1} \boldsymbol{W}_{\alpha_2})$	$A \in \mathbb{R}^{d_k \times d_v}, W_{\alpha_1} \in \mathbb{R}^{d \times \frac{d}{16}}, W_{\alpha_2} \in \mathbb{R}^{\frac{d}{16} \times d_v}$
Mamba-2 (Dao & Gu, 2024)	$\mathbf{G}_t = \gamma_t 1^T 1, \gamma_t = \exp(-\operatorname{softplus}(\boldsymbol{x}_t \boldsymbol{W}_\gamma) \exp(a))$	$W_{\gamma} \in \mathbb{R}^{d \times 1}, a \in \mathbb{R}$
mLSTM (Beck et al., 2024; Peng et al., 2021)	$\mathbf{G}_t \!=\! \gamma_t 1^{^{T}} 1, \hspace{0.3cm} \gamma_t \!=\! \sigma(oldsymbol{x}_t oldsymbol{W}_{\gamma})$	$W_{\gamma} \in \mathbb{R}^{d \times 1}$
Gated Retention (Sun et al., 2024)	$\mathbf{G}_t = \gamma_t 1^{T} 1, \gamma_t = \sigma(\boldsymbol{x}_t \boldsymbol{W}_{\gamma})^{\frac{1}{\tau}}$	$oldsymbol{W}_{\gamma}\!\in\!\mathbb{R}^{d imes 1}$
DFW (Mao, 2022; Pramanik et al., 2023)	$\mathbf{G}_t = \boldsymbol{lpha}_t^{T} \boldsymbol{eta}_t, \boldsymbol{lpha}_t = \sigma(oldsymbol{x}_t oldsymbol{W}_lpha), oldsymbol{eta}_t = \sigma(oldsymbol{x}_t oldsymbol{W}_eta)$	$W_{\alpha} \in \mathbb{R}^{d \times d_k}, W_{\beta} \in \mathbb{R}^{d \times d_v}$
GateLoop (Katsch, 2023)	$\mathbf{G}_t = \boldsymbol{lpha}_t^{T} 1, \boldsymbol{lpha}_t = \sigma(\boldsymbol{x}_t \boldsymbol{W}_{lpha_1}) \mathrm{exp}(\boldsymbol{x}_t \boldsymbol{W}_{lpha_2} \mathbf{i})$	$oldsymbol{W}_{lpha_1}\!\in\!\mathbb{R}^{d imes d_k}, oldsymbol{W}_{lpha_2}\!\in\!\mathbb{R}^{d imes d_k}$
HGRN-2 (Qin et al., 2024b)	$\mathbf{G}_t \! = \! oldsymbol{lpha}_t^{ op} 1, oldsymbol{lpha}_t \! = \! oldsymbol{\gamma} \! + \! (1 \! - \! oldsymbol{\gamma}) \sigma(oldsymbol{x}_t oldsymbol{W}_lpha)$	$W_{\alpha} \in \mathbb{R}^{d \times d_k}, \gamma \in (0,1)^{d_k}$
RWKV-6 (Peng et al., 2024)	$\mathbf{G}_t = \boldsymbol{lpha}_t^{T} 1, \boldsymbol{lpha}_t = \exp(-\exp(\boldsymbol{x}_t \boldsymbol{W}_{lpha}))$	$oldsymbol{W}_{lpha}\!\in\!\mathbb{R}^{d imes d_k}$
Gated Linear Attention (GLA)	$\mathbf{G}_t = \boldsymbol{\alpha}_t^{T} 1, \boldsymbol{\alpha}_t = \sigma(\boldsymbol{x}_t \boldsymbol{W}_{\alpha_1} \boldsymbol{W}_{\alpha_2})^{\frac{1}{\tau}}$	$W_{\alpha_1} \in \mathbb{R}^{d \times 16}, W_{\alpha_2} \in \mathbb{R}^{16 \times d_k}$

Table 1: Gated linear attention formulation of recent models, which vary in their parameterization of G_t . The bias terms are omitted.

Source: Yang, Songlin, et al. "Gated linear attention transformers with hardware-efficient training." arXiv preprint arXiv:2312.06635(2023).

Linear Attention Mechanisms: Core Idea ("Kernel Trick")

$$Attention(Q, K, V) = softmax(QK^{T})V$$

$$softmax(q^{T}k) = \frac{exp(q^{T}k)}{\sum_{k} exp(q^{T}k)}$$

Key insight: We can approximate exponential similarity with kernel function ϕ :

$$exp(q^T k) \approx \phi(q)^T \phi(k)$$

For a single query-key-value triple:

$$A(q,k,v) = rac{\sum_{j=1}^{N} \phi(q)^{T} \phi(k_{j}) v_{j}}{\sum_{j=1}^{N} \phi(q)^{T} \phi(k_{j})}$$

Using matrix associativity:

$$(\phi(Q)\phi(K)^{\top})V = \phi(Q)(\phi(K)^{\top}V)$$
 (Assosiative property)

$$A(q, k, v) = rac{\phi(q)^T \sum_{j=1}^N \phi(k_j) v_j^T}{\phi(q)^T \sum_{j=1}^N \phi(k_j)}$$

For full attention across all queries:

$$LinearAttention(Q, K, V) = \phi(Q)(\phi(K)^T V)$$

https://arxiv.org/pdf/2006.16236

Feed Forward

Feed forward: Variants

Figure 1: The Transformer - model architecture.

https://arxiv.org/pdf/1706.03762

Feed forward: Variants

- Vanilla Feedforward
 - a. GLU
 - b. SwiGLU
- Mixture of Experts (MoE)
 - a. Shared Experts
 - b. Sparse Experts
 - c. Skip-Connection Experts (LongCat Chat)

Feed forward: Vanilla FeedForward to GLU FeedForward

FeedForward module

FeedForward (SwiGLU) module

GLU Variants Improve Transformer

Noam Shazeer Google noam@google.com

February 14, 2020

$\mathrm{FFN}_{\mathrm{GLU}}(x, W, V, W_2) = (\sigma(xW) \otimes xV)W_2$
$\text{FFN}_{\text{Bilinear}}(x, W, V, W_2) = (xW \otimes xV)W_2$
$\mathrm{FFN}_{\mathrm{ReGLU}}(x,W,V,W_2) = (\max(0,xW)\otimes xV)W$
$\mathrm{FFN}_{\mathrm{GEGLU}}(x,W,V,W_2) = (\mathrm{GELU}(xW) \otimes xV)W$
$FFN_{SwiGLU}(x, W, V, W_2) = (Swish_1(xW) \otimes xV)W$

Training Steps	65,536	$524,\!288$
$\overline{\mathrm{FFN}_{\mathrm{ReLU}}(baseline)}$	1.997 (0.005)	1.677
FFN_{GELU}	$1.983 \ (0.005)$	1.679
$\mathrm{FFN}_{\mathrm{Swish}}$	$1.994 \ (0.003)$	1.683
FFN_{GLU}	1.982 (0.006)	1.663
$FFN_{Bilinear}$	$1.960 \ (0.005)$	1.648
FFN_{GEGLU}	1.942 (0.004)	1.633
FFN_{SwiGLU}	1.944 (0.010)	1.636
$\mathrm{FFN}_{\mathrm{ReGLU}}$	$1.953 \ (0.003)$	1.645

https://magazine.sebastianraschka.com/p/the-big-llm-architect ure-comparison

Feed forward: Mixture of Experts

f 7,168

- Model size is 235B
- · but only 8 experts active per token
- · only 22B parameters are active per inference step

DeepSeek V3/R1

Resource savings:

- Model size is 671B
- · but only 1 (shared) + 8 experts active per token
- · only 37B parameters are active per inference step

Kimi K2

Resource savings:

- Model size is 1T
- · but only 1 (shared) + 8 experts active per token
- · only 32B parameters are active per inference step

GPT-OSS

eads

7,168

Feed forward: Beyond Mixture of Experts

"Zero-Computation Experts"

Additions:

- 1. Zero-Computation Experts
- 2. Additional MLA Block

$$\begin{aligned} \mathsf{MoE}(x_t) &= \sum_{i=1}^{N+Z} g_i \, E_i(x_t), \\ g_i &= \begin{cases} R(x_t)_i, & \text{if } R(x_t)_i \in \mathsf{TopK}\big(R(x_t)_i + b_i \bigm| 1 \leq i \leq N+Z, K\big), \\ 0, & \text{otherwise}, \end{cases} \\ E_i(x_t) &= \begin{cases} \mathsf{FFN}_i(x_t), & \text{if } 1 \leq i \leq N, \\ x_t, & \text{if } N < i \leq N+Z, \end{cases} \end{aligned}$$

Main Architecture Summary

Figure 1: The Transformer - model architecture.

https://arxiv.org/pdf/1706.03762

Qwen3 30B-A3B Deeper, more & smaller experts

https://magazine.sebastianraschka.com/p/the-big-llm-architecture-comparison

Conclusion & Takeaways

Conclusions & Takeaways

- Architectures keep evolving.
- 2. The key questions / challenges are:
 - a. Memory scaling (to use all of the available memory efficiently)
 - b. Computational scaling (to use compute efficiently)
 - c. Both for Training and Inference
- 3. Model Architectures are becoming quite exotic:
 - a. We are operating on the "Residual Stream"
 - b. What other operators are useful?
 - c. How to better scale speed and memory?

Main Architecture Trade-offs

- 1. Deep vs. Wide
 - a. I.e. Many layers vs. large embedding sizes
- 2. Many Small Experts vs. Few Larger Experts
 - a. Sparse Experts
- 3. Many Heads vs. Fewer Heads
- 4. Attention Mechanisms
 - a. Linear vs. Classical
- 5. Other Trade-offs:
 - a. Positional Embeddings
 - b. Normalisation
 - c. Activation Functions
- 6. Exotic Features:
 - a. New Operators on Residual Stream
 - b. New arrangement (beyond attention-feed_forward blocks)
 - c. Maximising Memory / Compute use

References

Bibliography

- The Great LLM Comparison: https://magazine.sebastianraschka.com/p/the-big-llm-architecture-comparison
- Qwen2.5 https://arxiv.org/pdf/2412.15115
- DeepSeek 2.5 https://arxiv.org/pdf/2405.04434
- DeepSeek V3 https://arxiv.org/pdf/2412.19437
- Qwen 3 https://arxiv.org/pdf/2505.09388
- LongCat Chat https://arxiv.org/pdf/2509.01322
- Qwen3-Next
 https://qwen.ai/blog?id=3425e8f58e31e252f5c53dd56ec47363045a3f6b&from=research.re
 search-list
- K2Think (Qwen2.5 Base) https://arxiv.org/pdf/2509.07604
- Attention Comparison https://cyk1337.github.io/notes/2024/05/10/Memory-Efficient-Attention/
- Falcon H1: https://arxiv.org/pdf/2507.22448

