Институт по математика и информатика-БАН Съюз на математиците в България Фондация Георги Чиликов

Седмица на олимпийската математика на ИМИ София, 2 – 7 януари 2024 г.

Контролно по алгебра, 02.01.2024

Задача 1. Неотрицателните реални числа a,b,c,d са такива, че

$$\frac{1}{a+3} + \frac{1}{b+3} + \frac{1}{c+3} + \frac{1}{d+3} = 1.$$

Да се докаже, че съществува пермутация (x_1, x_2, x_3, x_4) на редицата (a, b, c, d) такава, че

$$x_1x_2 + x_2x_3 + x_3x_4 + x_4x_1 \ge 4.$$

Задача 2. Нека $\varepsilon>0$ е реално число. Да се докаже, че съществува константа C>0, такава, че за всяко $\alpha\in(0,1)$ и всяко $m\geq\frac{C}{\alpha}$, редицата $\{a_n\}$, дефинирана чрез $a_0=\alpha$ и

$$a_{n+1} = a_n + \varepsilon a_n^2$$

изпълнява условието $a_m > 1$.

Задача 3.Дадени са 100 различни реални числа $a_1, a_2, \ldots, a_{100}$. Винаги ли съществуват 100 различни реални числа $b_1, b_2, \ldots, b_{100}$ и 2024 различни полинома с реални коефициенти $P_1, P_2, \ldots, P_{2024} \in \mathbb{R}[X]$ всеки от степен най-много 98 такива, че за всяко $i=1,2,\ldots,2024$ стойностите $(P_i(a_1), P_i(a_2), \ldots, P_i(a_{100}))$ са винаги пермутация на $(b_1, b_2, \ldots, b_{100})$?