UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in MAT4410 — Advanced linear analysis.

Day of examination: Friday, December 1, 2017.

Examination hours: 14:30 – 18:30.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: You must justify all your answers!

Problem 1

Let (Ω, \mathcal{A}, P) be a probability space, thus $P(\Omega) = 1$. Let \mathcal{G} be a σ -algebra of subsets of Ω such that $\mathcal{G} \subset \mathcal{A}$ and denote by $P|_{\mathcal{G}}$ the restriction of P to a finite measure on \mathcal{G} . Recall that for $f \in L^1(\Omega, \mathcal{A}, P)$, the conditional expectation of f given \mathcal{G} is a function $\mathcal{E}(f \mid \mathcal{G})$ in $L^1(\Omega, \mathcal{G}, P|_{\mathcal{G}})$ defined by the identity

$$\int_{G} f \, dP = \int_{G} \mathcal{E}(f \mid \mathcal{G}) \, dP|_{\mathcal{G}} \text{ for every } G \in \mathcal{G}, \tag{1}$$

where $\mathcal{E}(f \mid \mathcal{G})$ is unique P-a.e. among \mathcal{G} -measurable functions satisfying (1). It is assumed known that $\mathcal{E}(\cdot \mid \mathcal{G}) : L^1(\Omega, \mathcal{A}, P) \to L^1(\Omega, \mathcal{G}, P|_{\mathcal{G}})$ is linear and satisfies $\mathcal{E}(f \mid \mathcal{G}) \geq 0$ whenever $f \geq 0$.

1a

(15 points) Show that $|\mathcal{E}(f \mid \mathcal{G})| \leq \mathcal{E}(|f| \mid \mathcal{G})$ P-a.e for every $f \in L^1(\Omega, \mathcal{A}, P)$.

1b

(15 points) Prove that $\|\mathcal{E}(f \mid \mathcal{G})\|_1 \leq \|f\|_1$ for every $f \in L^1(\Omega, \mathcal{A}, P)$.

1c

(5 points) If \mathcal{H} is a σ -algebra of subsets of Ω such that $\mathcal{H} \subset \mathcal{G} \subset \mathcal{A}$, prove that

$$\mathcal{E}(\mathcal{E}(f \mid \mathcal{H}) \mid \mathcal{G}) = \mathcal{E}(f \mid \mathcal{H}) P$$
-a.e.

1d

(5 points) If \mathcal{H} is a σ -algebra of subsets of Ω such that $\mathcal{H} \subset \mathcal{G} \subset \mathcal{A}$, prove that

$$\mathcal{E}(\mathcal{E}(f \mid \mathcal{G}) \mid \mathcal{H}) = \mathcal{E}(f \mid \mathcal{H}) P$$
-a.e.

Problem 2

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space such that μ is σ -finite. For every 1 , consider the space

$$L^p(\mu) = \{ f : \Omega \to \mathbb{C} \mid f \text{ is } \mathcal{A} - \text{measurable }, ||f||_p^p = \int_{\Omega} |f|^p d\mu < \infty \};$$

it is assumed known that this is a Banach space with the $\|\cdot\|_p$ -norm. Let $1 < q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$.

2a

(15 points) Suppose that $\{f_n\}_{n\geq 1}$ is a sequence in $L^p(\mu)$ such that

$$\lim_{n \to \infty} \int_{\Omega} f_n g \, d\mu = 0 \tag{2}$$

for every $g \in L^q(\mu)$. Prove that $\sup\{\|f_n\|_p \mid n \geq 1\} < \infty$ and for every $E \in \mathcal{A}$ with $\mu(E) < \infty$ it holds that

$$\lim_{n \to \infty} \int_E f_n \, d\mu = 0.$$

2b

(15 points) Prove conversely that if $\sup\{\|f_n\|_p \mid n \geq 1\} < \infty$ and for every $E \in \mathcal{A}$ with $\mu(E) < \infty$ we have $\lim_{n\to\infty} \int_E f_n d\mu = 0$, then (2) holds for every $g \in L^q(\mu)$. (You may use without proof that the space of simple \mathcal{A} -measurable functions s such that $\mu(\{x \in \Omega \mid s(x) \neq 0\}) < \infty$ is dense in $L^q(\mu)$ for the $\|\cdot\|_q$ -norm.)

Problem 3

Let X be a normed space over \mathbb{C} .

3a

(10 points) Prove that for each $x \in X$ there exists $\ell_x \in X^*$ such that $\|\ell_x\| \le 1$ and $\|\ell_x(x)\| = \|x\|$.

Let $B=\{x\in X\mid \|x\|\leq 1\}$ be the closed unit ball in X and let $S=\{x\in X\mid \|x\|=1\}$ be the closed unit sphere. Assume that B is compact.

(Continued on page 3.)

3b

(10 points) Prove that there exist bounded linear functionals ℓ_1, \ldots, ℓ_n in X^* for some $n \in \mathbb{N}$ such that

$$S \subset \bigcup_{j=1}^{n} \{x \in X \mid |\ell_n(x)| > \frac{1}{2} \}.$$

3c

(10 points) Prove that there exists a linear injective map $F:X\to\mathbb{C}^n$ given by

$$F(x) = (\ell_1(x), \dots, \ell_n(x)).$$

What can you conclude about the dimension of X as a vector space?

END