1

Chapitre 1. Introduction aux systèmes échantillonnés

1. Notion de commande numérique de processus

L'importance en automatique de l'étude des systèmes échantillonnés est récente. Elle est due essentiellement à l'utilisation des calculateurs numérique (système à processeur) dans la commande numérique.

Un système de commande numérique est donné par le schéma bloc suivant :

CNA: Convertisseur Numérique Analogique

CAN: Convertisseur Analogique Numérique

Les principaux avantages de la commande numérique sont :

- La facilité d'implémentation logiciel et non pas matériel
- La précision (paramètres de réglage précis)
- La flexibilité (changement facile des paramètres)
- La possibilité d'utiliser des commandes complexées.

Le principal inconvénient de la commande numérique est l'opérateur d'échantillonnage qui est accompagné par une perte d'information sur l'évolution du système.

2. Echantillonnage et reconstitution d'un signal

2.1. Echantillonnage d'un signal continu

L'échantillonnage d'un signal continu f(t) consiste à remplacer par la suite discontinue de ses valeurs. On note $f(t) \rightarrow \{f(nT_e)\}$ respective aux instants d'échantillonnage.

Pour $t = nT_e \to n = 0, 1, 2, ...$

T_e: Période d''échantillonnage (s).

f*: signal échantillonné.

$$f^*(t) = \sum_{n=0}^{+\infty} f(nT_e)\delta(t - nT_e)$$

Avec $\delta(t)$: impulsion de Dirac.

Le signal échantillonné $f^*(t)$ représente l'ensemble des impulsions de Dirac aux instants (nT_e) et d'amplitude respective $f(nT_e)$.

$$F^*(p) = \sum_{n=0}^{+\infty} f(nT_e) e^{-nT_e p}$$

L'opération d'échantillonnage est effectuée au niveau de l'entrée du (CAN).

2.2. Reconstitution du signal

La question qui se pose est que peut-on reconstruire le signal continu f(t) à partir de ces échantillons $f(nT_e)$.

Théorème de Shannon : La reconstitution est possible si la fréquence d'échantillonnage $f_e = \frac{1}{T_e}$ est supérieur au double de la plus haute fréquence f_{\max} contenue dans le spectre du signal initial f(t).

La transformée de Fourier : $F(f) = \int_{-\infty}^{+\infty} f(t)e^{-j2\pi ft}dt$

$$f(t) \rightarrow F(f) = \int_{-\infty}^{+\infty} f(t) e^{-j2\pi f t} dt \rightarrow |F(f)|$$

Une reconstitution approchée est généralement utilisée en commande numérique est obtenue avec un bloqueur d'ardre 0 qui a pour action de maintenir constante l'amplitude de $f(nT_e)$ entre deux instants (nT_e) et $((n+1)T_e)$.

Échantillonnage

Reconstitution par un bloqueur d'ordre zéro :

