在谓词逻辑中符号化如下语句。

- (1)所有年轻人都喜欢一些明星。
- (2)发光的不都是金子。
- (3)某些人吃某些食物过敏。
- (4)有些人喜欢读任何书籍。
- (5)每个人都有些缺点。
- (6)尽管有人幸运, 但未必人人幸运。
- (7)王菲是聪明勤奋的。
- (8)每个人的外祖母都是他母亲的母亲。

解答: 思路: 其一, 参照已有的符号化语句模型; 其二, 练习重述的技巧。

(1) 所有年轻人都喜欢一些明星。 有一些<u>明星被所有的年轻人</u>喜欢?

S(x): x 是年轻人, X(x): x 是明星, L(x, y): x 喜欢 y

 $(\forall x)(S(x)\rightarrow(\exists y)(X(y)\land L(x, y)))$

书写规范,量词用括号括起

弄清辖域,量词辖域内的对象用括号括起

(2) 发光的不都是金子。

P(x): x 发光, G(x): x 是金子

$$\neg(\forall x)(P(x)\rightarrow G(x))$$
 $\vec{\boxtimes}$ $(\exists x)(P(x)\land \neg G(x))$

(3) 某些人吃某些食物过敏。

F(x, y): x 吃 y 过敏,M(x): x 是人,G(x): x 是食物 $(\exists x)(M(x) \land (\exists y)(G(y) \land F(x, y)))$ 或 $(\exists x)(\exists y)(M(x) \land G(y) \land F(x, y))$

(4) 有些人喜欢读任何书籍。

H(x, y): x 喜欢读 y, M(x): x 是人, S(x): x 是书籍 $(\exists x)(M(x) \land (\forall y)(S(y) \rightarrow H(x, y)))$

(5) 每个人都有些缺点。

H(x,y): x 有 y, M(x): x 是人, S(x): x 是缺点 $(\forall x)(M(x) \rightarrow (\exists y)(S(y) \land H(x,y)))$

(6) 尽管有人幸运,但未必人人幸运。

M(x): x 是人, S(x): x 幸运

$$(\exists x)(M(x) \land S(x)) \land \neg(\forall x)(M(x) \rightarrow S(x))$$

(7) 王菲是聪明勤奋的。

M(x): x 是聪明的, S(x): x 是勤奋的,a: 王菲 王菲用个体词符号表示出来 $M(a) \wedge S(a)$

(8) 每个人的外祖母都是他母亲的母亲。

H(x): x 是人,G(x, y): x 是 y 的外祖母,M(x, y): x 是 y 的母亲

 $(\forall x)(\forall y)(H(x) \land H(y) \land G(x, y)) \rightarrow (\exists z)(H(z) \land M(x, z) \land M(z, y)))$

对于宇宙中的一切事物而言,如果 x 是人,且 y 是人,且 x 是 y 的外祖母,那么,存在一个 z,她是人,且 x 是她的母亲,且她是 y 的母亲。

每一个被 2 整除的整数都是偶数 $(\forall x)((I(x)\land Q(2,x))\rightarrow O(x))$

若个体域是全人类。则本题的解答为:

 $(\forall x)(\forall y)(G(x, y)\rightarrow(\exists z)(M(x, z)\land M(z, y)))$

对于全人类而言,如果 x 是 y 的外祖母,那么,存在一个 z,她是 y 的母亲, \exists x 是她的母亲。

命题逻辑中证明重言蕴涵, 9 种方法:

- (1)直接证法。
- (2)间接证法。
- (3) 公式等价变换。
- (4) 真值表法。
- (5) 用公式的主析取范式。
- (6) 演绎法。

命题逻辑中证明等价, 3 种方法:

- (1)公式等价变换。
- (2) 真值表法。
- (3) 定理 1。

$1, (\forall x)P(x) \Rightarrow (\exists x)P(x)$

证明:方法1,使用命题逻辑里证明重言蕴涵的直接证法:假设前件为1,推出后件为1。

设个体域为 D, 在任一解释 I 下有($\forall x$)P(x)=1,则<mark>对于任意的 $x \in D$ </mark>,有 P(x)=1,因此,($\exists x$)P(x)=1。

方法 2, 回到定义中去, 用公式等价变换证明 $(\forall x) P(x) \rightarrow (\exists x) P(x)$ 为有效公式。

1证明: (Yx)P(x) => (3x)P(x).

即证明: (xx)P(x) -> (3x)P(x) 为有效价.

- = 7(x) (x) (x) (x) .
- (x) x E V (x) T (x E) =
- = (=x)(x)(x)(x)) = 1.
- 敏(xx)p(x)=)(3x)p(x).

$2 \cdot \neg (\forall x) P(x) = (\exists x) \neg P(x)$

证明: 从上题的证明过程中,可以看出证明有效蕴涵,利用直接证法,很简单! 能否借助有效蕴涵的思路去证明等价?

有效蕴涵和等价有什么关系?

重言蕴涵式性质

- · 自反性:对任何命题公式A,有A⇒A。
- · 传递性: 若A⇒B且B⇒C, 则A⇒C。
- · 反对称性: 若A⇒B且B⇒A, 则A=B。

--符号 "="表示 "等价"。

如此, 第2题的证明转换成了证明:

 $(1) \neg (\forall x) P(x) \Rightarrow (\exists x) \neg P(x) \perp \exists (2) (\exists x) \neg P(x) \Rightarrow \neg (\forall x) P(x)$

思路简述为: 左为真右也为真, 左为假右也为假

- (1) 设个体域为 D, 在任一解释 I 下,有¬($\forall x$)P(x)=1,则($\forall x$)P(x)=0,因此, 存在 $x_0 \in D$, 使得 P(x_0)=0,因此,¬P(x_0)=1,亦即,($\exists x$)¬P(x)=1。
- (2) 设个体域为 D, 在任一解释 I 下, 有($\exists x$) $\neg P(x) = 1$, 则存在 $x_0 \in D$, 使得 $\neg P(x_0) = 1$, 故 $P(x_0) = 0$, 因此, $(\forall x)P(x) = 0$, 亦即, $\neg (\forall x)P(x) = 1$ 。

上述从语义上,利用直接证法证明了等价。

观察下面做法:

证明: $\neg(\forall x)P(x)$: 并非所有的 x 都具有性质 P,

(∃x)¬P(x): 至少存在一个 x 不具有性质 P。

所以, $\neg(\forall x)P(x) = (\exists x)\neg P(x)$ 。

这种方法仅从语义上说明了等价。

证明: 在 $\{x_1,x_2\}$ 域上分析,即使 $\{x_1,x_2,...,x_n\}$ 与 $\{x_1,x_2,...,\}$ 也不行。

 $\neg(\forall x)P(x) = \neg(P(x_1) \land P(x_2)) = \neg P(x_1) \lor \neg P(x_2) = (\exists x) \neg P(x)$

这种方法仅针对具体指定的个体域讨论了等价。

$3 \cdot (\forall x)(A(x) \lor B) = (\forall x)A(x) \lor B$

证明: 方法 1,

第3题的证明转换成了证明:

- (1) $(\forall x)(A(x)\lor B) \Rightarrow (\forall x)A(x)\lor B \stackrel{!}{\perp} (2) (\forall x)A(x)\lor B \Rightarrow (\forall x)(A(x)\lor B)$
- (1) 设个体域为 D, 在任一解释 I下,有($\forall x$)(A(x) \lor B) = 1,即对任意的 $x \in D$,有 A(x) \lor B = 1。若 B = 1,则($\forall x$)A(x) \lor B = 1;若对任意的 $x \in D$,有 A(x) = 1,则($\forall x$)A(x) \lor B = 1。
- (2) 设个体域为 D, 在任一解释 I 下, 有($\forall x$)A(x) \lor B = 1。若 B = 1,则对任意的 $x \in D$,有 A(x) \lor B = 1,亦即($\forall x$)(A(x) \lor B) = 1;若($\forall x$)A(x) = 1,则对任意的 $x \in D$,有 A(x) \lor B = 1,亦即($\forall x$)(A(x) \lor B) = 1。

方法 2, 公式的等价变换

 $(\forall x)(A(x)\lor B) = (\forall x)(\neg A(x) \to B) = (\exists x)\neg A(x) \to B = \neg(\exists x)\neg A(x)\lor B = (\forall x)A(x)\lor B$

4, $(\forall x)(A(x) \land B(x)) = (\forall x)A(x) \land (\forall x)B(x)$

证明: 方法1,

第4题的证明转换成了证明:

- (1) $(\forall x)(A(x) \land B(x)) \Rightarrow (\forall x)A(x) \land (\forall x)B(x) \perp$
- (2) $(\forall x)A(x)\land(\forall x)B(x) \Rightarrow (\forall x)(A(x)\land B(x))$
- (1)设个体域为 D, 在任一解释 I下, 有(\forall x)(A(x) \land B(x))=1, 即对任意的 x \in D, 有 A(x) \land B(x)=1, 亦即对任意的 x \in D, A(x)=B(x)=1, 因此, (\forall x)A(x)=(\forall x)B(x)=1, 故有, (\forall x)A(x) \land (\forall x)B(x)=1。
- (2) 设个体域为 D, 在任一解释 I下,有($\forall x$)A(x) \land ($\forall x$)B(x)=1,即($\forall x$)A(x)=($\forall x$)B(x)=1,故对任意的 $x \in D$,A(x)=B(x)=A(x) \land B(x)=1,亦即($\forall x$)(A(x) \land B(x))=1。

方法 2, 公式的等价变换

 $(\forall x)(A(x)\land B(x))$

- $= (\forall x) \neg (\neg A(x) \lor \neg B(x))$
- $= \neg(\exists x)(\neg A(x) \lor \neg B(x))$
- $= \neg((\exists x)(\neg A(x) \lor \neg B(x)))$
- $= \neg((\exists x) \neg A(x) \lor (\exists x) \neg B(x))$
- $= \neg(\exists x) \neg A(x) \land \neg(\exists x) \neg B(x)$
- $= (\forall x)A(x) \land (\forall x)B(x)$

$5 \cdot (\exists x)(A(x) \land B(x)) \Rightarrow (\exists x)A(x) \land (\exists x)B(x)$

证明:

方法1,直接证法

设个体域为 D, 在任一解释 I 下, 有($\exists x$)(A(x) \land B(x)) = 1, 则存在 $x_0 \in$ D, 使得 A(x_0) \land B(x_0) = 1, 亦即:存在 $x_0 \in$ D, 使得 A(x_0) = B(x_0) = 1, 因此, ($\exists x$)A(x) = ($\exists x$)B(x) = 1, 亦即, ($\exists x$)A(x) \land ($\exists x$)B(x) = 1。

方法 2, 演绎法, 直接证明

证明:

- 1) $(\exists x)(A(x) \land B(x))$ P
- 2) $A(c) \land B(c)$ ES 1)
- 3) A(c) T 2) I
- 4) B(c) T 2) I
- 5) $(\exists x)A(x)$ EG 3)

- 6) $(\exists x)B(x)$ EG 4)
- 7) $(\exists x)A(x) \land (\exists x)B(x)$ T 5)6) I

且看上述推论的逆推导:

- 1) $(\exists x)A(x) \land (\exists x)B(x)$ P
- 2) $(\exists x)A(x)$ T 1) I
- 3) A(c) ES 2)
- 4) $(\exists x)B(x)$ T 1) I
- 5) B(c) ES 4)
- 6) $A(c) \land B(c)$ T 3)4) I
- 7) $(\exists x)(A(x) \land B(x))$ EG 6)

由此可见, $(\exists x)A(x)\land(\exists x)B(x)\Rightarrow(\exists x)(A(x)\land B(x))$ 不成立。

正确的推导:

- 1) $(\exists x)A(x) \land (\exists x)B(x)$ P
- 2) $(\exists x)A(x)$ T 1) I
- 3) A(c) ES 2)
- 4) $(\exists x)B(x)$ T 1) I
- 5) B(b) ES 4)
- 6) $A(c) \land B(b)$ T 3)4) I
- 7) $(\exists x)(\exists y)(A(x) \land B(y))$ EG 6)

由此可见, $(\exists x)A(x)\land(\exists x)B(x)\Rightarrow(\exists x)(\exists y)(A(x)\land B(y))不成立。$

$6 \cdot (\forall x) A(x) \lor (\forall x) B(x) \Rightarrow (\forall x) (A(x) \lor B(x))$

证明:方法1,直接证法

设个体域为 D, 在任一解释 I下,有($\forall x$)A(x) \lor ($\forall x$)B(x)=1。若($\forall x$)A(x)=1,则 对任意的 $x \in D$,A(x)=1,则 A(x) \lor B(x)=1,因此,($\forall x$)(A(x) \lor B(x))=1;若($\forall x$)B(x)=1,则($\forall x$)(A(x) \lor B(x))=1。

方法 2, 演绎法, 直接证明 证明:

- 1) $(\forall x)A(x)\lor(\forall x)B(x)$ P
- 2) $(\forall x)(\forall y)(A(x)\lor B(y))$ T 1) E
- 3) $(\forall y)(A(\mathbf{x})\lor B(y))$ US 2)
- 4) $(\forall x)(A(x)\lor B(x))$ T 3) E

此方法是错误的。从 3) 到 4) 将约束变元 v 更名的时候, 不能使用辖域内已经

出现过的变元名称 x, 所以从 3) 不能得到 4)。

全称量词消去规则(US规则)

你里叫用去戏别(US戏判》

两种形式:

 $(\forall x)A(x) \Rightarrow A(y)$ $(\forall x)A(x) \Rightarrow A(c)$

使用此规则时要注意:

1. y可以是任意的个体变元,但不能是A(x)中的约束变元。可以在A(x)中自由出现,也可以在证明序列中前面的公式中出现。

此题目用演绎法的正确解法如下:

$(\forall x)A(x)\lor(\forall x)B(x) \Rightarrow (\forall x)(A(x)\lor B(x))$

用反证法

- (1) ¬ $(\forall x)(A(x)\lor B(x))$ P 附加
- $(2) (\exists x) (\neg A(x) \land \neg B(x)) \qquad T E (1)$
- $(3) \neg A(c) \land \neg B(c)$ ES (2)
- $(4) \neg A(c) \qquad T(3) I$
- (5) $\neg B(c)$ T (3) I
- (6) $(\exists x) \neg A(x)$ EG (4)
- $(7) (\exists x) \neg B(x) \qquad EG (5)$
- $(8) \neg (\forall x) A(x) \qquad T E (6)$
- $(9) \neg (\forall x) B(x) \qquad T E (7)$
- $(10) (\forall x) A(x) \lor (\forall x) B(x)$ P
- (11) $(\forall x)B(x)$ T I (8)(10)
- (12) $\neg(\forall x)B(x)\land(\forall x)B(x)$ TI(9)(11) 矛盾

方法 3, 间接证法, 依据 $P \rightarrow O = \neg O \rightarrow \neg P$ 。

要证($\forall x$)A(x) \vee ($\forall x$)B(x) \Rightarrow ($\forall x$)(A(x) \vee B(x)),转化为证明

- $\neg(\forall x)(A(x)\lor B(x)) \Rightarrow \neg((\forall x)A(x)\lor(\forall x)B(x))$
- $\neg(\forall x)(A(x)\lor B(x))$
- $= (\exists x)(\neg A(x) \land \neg B(x))$
- $\Rightarrow (\exists x) \neg A(x) \land (\exists x) \neg B(x)$ 注意下一步的写法

因为, $(\exists x) \neg A(x) \land (\exists x) \neg B(x) = \neg(\forall x) A(x) \land \neg(\forall x) \neg B(x) = \neg((\forall x) A(x) \lor (\forall x) B(x))$,

所以, $\neg(\forall x)(A(x)\lor B(x)) \Rightarrow \neg((\forall x)A(x)\lor(\forall x)B(x))$ 。

7、判断下列公式的真假。(要有解题步骤)

- (1) $(\forall x)(\forall y)(P(x,y) \land Q(x,y) \rightarrow P(x,y))$.
- (2) $(\forall x)(\forall y)(P(x,y) \vee \neg P(x,y))$.
- (3) $(\forall x)(\forall y)(P(x,y) \land \neg P(x,y))$.

解: (1) 设个体域为 D, 在任一解释 I下, 对任意的 $x \in D$, $y \in D$, 若 $P(x,y) \land$

Q(x,y) = 1,则 P(x,y) = Q(x,y) = 1,因此($\forall x$)($\forall y$)($P(x,y) \land Q(x,y) \rightarrow P(x,y)$) = 1。

(2) 设个体域为 D, 在任一解释 I 下, 对任意的 $x \in D$, $y \in D$, 若 P(x,y) = 1, 则

 $\neg P(x,y) = 0$,则 $P(x,y) \lor \neg P(x,y) = 1$,若 P(x,y) = 0,则 $\neg P(x,y) = 1$,则 $P(x,y) \lor \neg P(x,y) = 0$,则 $\neg P($

 $\neg P(x,y) = 1$, 因此, 对任意的 $x \in D$, $y \in D$, $P(x,y) \vee \neg P(x,y) = 1$, 亦即,

 $(\forall x)(\forall y)(P(x,y) \lor \neg P(x,y)) = 1$.

(3) 设个体域为 D, 在任一解释 I 下, 对任意的 $x \in D$, $y \in D$, 若 P(x,y) = 1, 则 $\neg P(x,y) = 0$, 则 $P(x,y) \land \neg P(x,y) = 0$, 若 P(x,y) = 0, 则 $\neg P(x,y) = 1$, 则 $P(x,y) \land \neg P(x,y) = 0$, 因此, 对任意的 $x \in D$, $y \in D$, $P(x,y) \land \neg P(x,y) = 0$, 亦即, $(\forall x)(\forall y)(P(x,y) \land \neg P(x,y)) = 0$ 。