

Komunikacijske mreže

3.

Komunikacijski protokoli podatkovne poveznice Lokalna mreža

Ak.g. 2011./2012.

Sadržaj predavanja

- Komunikacijski protokoli podatkovne poveznice
 - Osnovni modeli komunikacijskih protokola
 - Učinkovitost podatkovne poveznice: iskoristivost kanala
- Komunikacija u lokalnoj mreži
 - Podsloj upravljanja pristupom mediju
 - Podsloj upravljanja logičkom poveznicom
- Normiranje lokalnih mreža
- Lokalna mreža Ethernet, IEEE 802.3

Komunikacijski protokoli podatkovne poveznice

Podsjetimo se

Komunikacijski protokoli (1)

Skup pravila i formata za postupak razmjene informacije između entiteta u mreži kojim se ostvaruje usklađenost predajnog i prijamnog entiteta te zaštita od mogućih pogrešaka u prijenosu i kvarova na sustavima i prijenosnim medijima.

U sloju podatkovne poveznice:

- razmjena okvira
- upravljanje pogreškama
- upravljanje tokom

Komunikacijski protokoli podatkovne poveznice uvode načela koja se primjenjuju i na višim slojevima!

Komunikacijski protokoli (2)

- Komunikacijski protokoli podatkovne poveznice mogu omogućiti transparentan prijenos:
 - znakova (okteta), npr. ASCII-znakova
 znakovni protokol (engl. byte-oriented protocol)

ili

bilo kakve kombinacije bita bitovni protokol (engl. bit-oriented protocol) što je važnije za mreže!

Osnovni teorijski modeli protokola

Jednosmjerni protokol:

- okviri s podacima (podatkovni okviri) prenose se od sustava
 A do sustava B jednosmjerni tok podataka:
 - Jednosmjerni protokol bez ograničenja
 - Jednosmjerni protokol "stani i čekaj"
 - Jednosmjerni protokol za kanal sa smetnjama (ARQ, PAR)

Dvosmjerni protokol:

- okviri s podacima prenose se od sustava A do sustava B i u suprotnom smjeru, od sustava B do sustava A – dvosmjerni tok podataka
 - dvosmjerni protokol za kanal sa smetnjama

Jednosmjerni protokol bez ograničenja

engl. Unrestricted Simplex Protocol

Način rada:

- predajnik u sustavu A šalje podatkovne okvire, a prijemnik u sustavu B prima ih bez ograničenja
- jednosmjerni tok podatkovnih okvira od A prema B i jednosmjerna komunikacija (kanal od A prema B)

Idealizacija:

- predajnik i prijemnik uvijek spremni
- prijenos bez pogrešaka
- obrada beskonačno brza
- spremnici beskonačni

Tanenbaum: utopijski protokol!

Jednosmjerni protokol "Stani i čekaj" (1)

engl. Simplex Stop-and-Wait Protocol

Način rada:

- predajnik u sustavu A pošalje podatkovni okvir, pa stane s odašiljanjem i čeka upravljački okvir s potvrdom od prijemnika u sustavu B, da bi poslao sljedeći podatkovni okvir
- jednosmjerni tok podatkovnih okvira od A prema B, a dvosmjerna komunikacija (kanal od A prema B i povratni kanal od B prema A)

Korak prema stvarnosti:

- obrada realnog trajanja
- spremnici konačnog kapaciteta, ali prijenos bez pogrešaka!

Jednosmjerni protokol "Stani i čekaj" (2)

Dvije vrste okvira

- podatkovni okvir (okvir s podacima)
- upravljački okvir (potvrda)

Zaustavljanje predajnika nakon odašiljanja okvira i čekanje na potvrdu sprječava preopterećenje prijamnika

PCI podaci podatkovni okvir

PCI upravljački okvir (potvrda u PCI)

Jednosmjerni protokol za kanal sa smetnjama (1)

Stvarnost:

 pogreške u prijenosu mogu izazvati oštećenje ili gubitak podatkovnog okvira ili potvrde

Način rada:

- ako primi ispravan podatkovni okvir, prijamnik vraća pozitivnu potvrdu, a ako primi oštećeni okvir, vraća negativnu potvrdu
- kad dobije pozitivnu potvrdu, predajnik šalje sljedeći podatkovni okvir, a kad dobije negativnu potvrdu ponavlja prethodno poslani podatkovni okvir
- uvodi se vremenska kontrola da ne bi gubitak podatkovnog okvira ili potvrde izazvao bi beskonačno čekanje

Jednosmjerni protokol za kanal sa smetnjama (2)

Rješenje:

- numeracija okvira omogućuje njihovo razlikovanje
 - predajnik zna koji okvir mora poslati, a prijamnik koji je okvir primio
 - izbjegava se gubitak ili višestruki prijam istog podatkovnog okvira
- numeracija okvira rješava se u okviru protokolne upravljačke informacije (PCI)

Slijedni broj (engl. sequence number):

- označava okvire u slijedu (0, 1,, 2ⁿ-1 ili 2ⁿ-1, 2ⁿ-2, ..., 0)
- najkraći slijedni broj duljine 1 bit (alternirajući bit, 0/1) označava okvire naizmjenično s 0, 1, 0, 1, ...

Jednosmjerni protokol za kanal sa smetnjama (3)

Ovakvi protokoli nazivaju se:

Automatski zahtjev za ponavljanjem (engl. *Automatic Repeat reQuest*, ARQ)

i

Pozitivna potvrda s ponavljanjem (engl. *Positive Acknowledgment with Retransmission*, PAR)

PCI podaci podatkovni okvir (slijedni broj u PCI)

Potvrda ispravnih podatkovnih okvira naizmjenično označenih slijednim brojevima 0,1

PCI

upravljački okvir (potvrda u PCI)

Jednosmjerni protokol za kanal sa smetnjama (4)

Gubitak upravljačkog okvira s potvrdom

- prvi poslani okvir označen slijednim brojem 0 nije potvrđen na vrijeme
- predajnik ponavlja isti okvir
- prijemnik zna da je taj okvir već primio pa će ga potvrditi predajniku, ali ga neće isporučiti mrežnom sloju

Dvosmjerni protokol za kanal sa smetnjama (1)

engl. Full-Duplex Protocol, Bidirectional Protocol

Način rada:

 dvosmjerni tok podatkovnih okvira od A prema B i od B prema A i dvosmjerni tok upravljačkih okvira s potvrdom (kanal od A prema B i kanal od B prema A)

Učinkovito rješenje:

 dvosmjerni protokol s jedinstvenim okvirom u kojem su sadržani i podaci koji se šalju (polje podataka) i potvrda primljenih podataka (protokolna upravljačka informacija)

Dvosmjerni protokol za kanal sa smetnjama (2)

Primjer

Protokol s alternirajućim bitom (engl. alternating bit protocol):

- okviri su označeni naizmjenično slijednim brojevima 0 i 1
- protokolna upravljačka informacija sadrži dva polja:
 - slijedni broj okvira koji se šalje (0 ili 1)
 - potvrda: slijedni broj zadnjeg ispravno primljenog okvira (0 ili 1)
- svaki sustav (A, B) i predaje i prima okvire s podacima:
 - odašilje okvire na načelu "stani i čekaj" tako da šalje "okvir po okvir" (dok ne primi potvrdu za prethodne, ne šalje okvir s novim podacima)
 - potvrđuje zadnji ispravno primljeni okvir

Dvosmjerni protokol za kanal sa smetnjama (3)

Okvir (x, y, z):

- x broj okvira koji se šalje
- y broj zadnjeg ispravnog primljenog okvira
- z podaci

A šalje 0, potvrđuje 1, podaci A0 B šalje 0, potvrđuje 0, podaci B0 A šalje 1, potvrđuje 0, podaci A1

PCI podaci

jedinstveni okvir (slijedni broj i potvrda u PCI)

Složeni modeli protokola

Problem:

 komunikacija "okvir po okvir" izrazito je neučinkovita kod duljih relacija s većim kašnjenjem

Naznaka rješenja:

- odašiljanje više okvira bez čekanja potvrde
- slijedni brojevi poslanih, a nepotvrđenih okvira zapisani u tzv.
 klizećem prozoru (engl. sliding window)
- prozor je ograničene veličine (n > 1)
- po primitku potvrde za m ≤ n okvira, prozor "klizi" prema m novih okvira, čime se omogućuje njihovo odašiljanje

Koje je veličine prozor u prethodnom primjeru protokola?

Rasprava o performansama (1)

1. Kako na propusnost utječe količina upravljačke informacije?

polje podataka:
n_p bita

protokolna upravljačka informacija:
n_c bita

protokolna jedinica podataka: $n = n_p + n_c$ bita

protokolni dodatak (engl. *overhead*): $n_c/(n_c + n_p)$

brzina prijenosa:
c bit/s

■ maksimalna propusnost: $c (1 - n_c/(n_c + n_p))$

- 2. U kakvim bi se uvjetima prijenosa mogla postići maksimalna propusnost?
- 3. Na što utječu udaljenost komunicirajućih sustava i vrsta prijenosnog medija?

Rasprava o performansama (2)

- 4. Kako na propusnost utječe veličina protokolne jedinice podataka?
- Kolika je maksimalna propusnost koju se može postići protokolom "stani i čekaj":
 - na komunikacijskom kanalu kapaciteta c = 1Gbit/s,
 - pri prijenosu okvira duljine n = 10 kbit,
 - uz propagacijsko kašnjenje d = 2 μs i
 - uz pretpostavku da je upravljački s okvir s potvrdom zanemarivo kratki, kao i obrada na izvoru i odredištu?

Zadaci

- Nacrtajte vremenski dijagram za protokol "Stani i čekaj", s označenim vremenima obrade u predajniku i prijamniku, prijenosa okvira i propagacijskim kašnjenjem.
- 2. Primjenjuje se dvosmjerni protokol s alternirajućim bitom kao u primjeru (pp 17 od 50). Okvir (1,0,A1) primljen je oštećen. Nacrtajte i objasnite slijedni dijagram.
- 3. Primjenjuje se dvosmjerni protokol s alternirajućim bitom kao u primjeru (pp 17 od 50). A i B započinju slanje okvira (0,1,A0) i (0,1,B0) istodobno. Nacrtajte i objasnite slijedni dijagram.

Lokalna mreža

Lokalna mreža i pristup Internetu ...

Problem: zašto?

 ostvariti povezivanje ograničenog broja stanica (krajnjih sustava/uređaja, najčešće računala) unutar zgrade ili skupine susjednih zgrada, u pravilu uz dobre uvjete komuniciranja (malo kašnjenje, mala vjerojatnost pogreške)

Funkcionalnost: što?

 lokalna mreža (engl. Local Area Network, LAN), uz ostvarivanje većih i velikih brzina prijenosa

Izvedba: kako?

Ethernet, IEEE 802.3

Literatura: "Osnovne arhitekture mreža", 4. Lokalne mreže

Komunikacija u lokalnoj mreži

Fizički sloj:

- izvorno: dijeljeni medij (koaksijalni kabel) na koji su spojene, sve stanice – topologija sabirnice, a zatim
- parica s prvim komunikacijski uređajem paričnim obnavljačem (engl. hub) – topologija zvijezde

- način rada: razašiljanje (engl. broadcast)
 - jedna stanica šalje okvir
 - sve stanice primaju okvir
- problem pristupa mediju:
 - kako dodijeliti medij jednoj stanici ako više istodobno želi slati okvir?

Sloj podatkovne poveznice u lokalnoj mreži (1)

Sloj podatkovne poveznice:

- podsloj upravljanja pristupom mediju (Media Access Control, MAC)
 - dodjela medija stanici radi odašiljanja podataka
 - specifično rješenje za svaku vrstu lokalnih mreža
- podsloj upravljanja logičkom poveznicom (Logical Link Control, LLC)
 - razmjena jedinica podataka između dvije stanice
 - jednako rješenje za sve vrste lokalnih mreža, neovisno o načinu upravljanja pristupom mediju

Sloj podatkovne poveznice u lokalnoj mreži (2)

Viši slojevi			
Mrežni sloj			
Sloj podatkovne poveznice			
Fizički sloj			

Višestruki pristup: više stanica pristupa istom mediju

Upravljanje pristupom mediju

Podsloj MAC

- dinamička dodjela prijenosnog medija stanici u lokalnoj mreži (na zahtjev, po potrebi)
- izvodi se na mrežnoj kartici stanice ili u priključku mrežnog uređaja (port)
- pristupni protokoli:
- pravila koja određuju redoslijed pristupanja mediju
- upravljanje pristupom mediju:
- centralizirano ili distribuirano
- pristup mediju:
- prozivka (polling) ili slučajni pristup (random access): ALOHA, CSMA/CD

Slučajni pristup mediju – ALOHA

ALOHA – paketska radijska mreža (Abramson, 1970)

- stanica šalje podatke kad god ih ima, potpuno decentralizirano i slučajno
- kad više stanica pošalje podatke istodobno, sukobljeni okviri će se međusobno uništiti
- nakon što ustanovi da je okvir uništen, stanica će ponoviti slanje podataka
- problem: slaba iskoristivost kanala zbog čestih sudara okvira
- Rješenja:
 - uvođenje vremenskih odsječaka (Slotted ALOHA)
 - smanjivanje mogućnosti sudara i otkrivanje sudara (CSMA/CD)

Slučajni pristup mediju – CSMA/CD

CSMA/CD (Carrier Sense Multiple Access/Collision Detection)

- prije slanja okvira stanica ustanovljava da li je medij zauzet mjerenjem napona - osluškivanje signala nositelja (Carrier Sense)
- više stanica pristupa mediju (Multiple Access) te može istodobno ustanoviti da je medij slobodan i poslati okvir
- na mediju se događa i otkriva sudar okvira (Collision Detection)
- ukoliko otkrije sudar, stanica ga označava posebnim nizom bita (jam signal) te ponavlja pokušaj nakon isteka slučajnog vremena

Upravljanje logičkom poveznicom

Podsloj LLC

- omogućuje protokolima mrežnog sloja da dijele podatkovnu poveznicu, tj. multipleksira/demultipleksira pakete mrežnog sloja – svakom mrežnom protokolu dodijeljena posebna SAP
- izveden kao upravljački program ili programski modul mrežnog uređaja
- usluge:
- nespojna usluga bez potvrde primitka okvira (u većini LAN-ova)
- nespojna usluga s potvrdom primitka okvira (u posebnim izvedbama mreža)
- spojna usluga (iznimno rijetko)

Struktura jedinice podataka PDU LLC

DSAP	SSAP	Upravljačka polje	Korisnička informacija
(8 okteta)	(6 okteta)	(8 ili 16 okteta)	(varijabilno)

LLC PCI:

adresna informacija

DSAP - odredišna točka pristupa usluzi (Destination SAP)

SSAP - izvorišna točka pristupa usluzi (Source SAP)

upravljačko polje

upravljanje logičkom poveznicom (ovisno o vrsti LLC PDU)

LLC SDU:

korisnička informacija

PDU mrežnog sloja, npr. datagram protokola IP

Normiranje lokalnih mreža

Odbor IEEE 802

802.7

Broadband TAG

Lokalna mreža IEEE 802.3, Ethernet

802.8

Fibre optic TAG

Označavanje norme IEEE 802.3

brzina prijenosa podataka:

- 1 Mbit/s
- 10 Mbit/s
- 100 Mbit/s
- 1000 Mbit/s = 1Gbit/s

način prijenosa signala medijem:

- BASE prijenos u osnovnom pojasu
- BROAD širokopojasni prijenos

najveća dozvoljena duljina segmenta izražena u jedinicama od po 100 metara:

- 5
- 2
- 36

odnosno slovo koje opisuje korišteni medij:

- T (twisted pair) upredena parica
- F (fiber) optičko vlakno
- L (long) optičko vlakno, laseri za veće valne duljine
- S (short) optičko vlakno, laseri za manje valne duljine

Izvedbe norme IEEE 802.3

- brzina 10 Mbit/s
 - 10BASE5 debeli koaksijalni kabel, topologija: sabirnica FER 1985
 - 10BASE2 tanki koaksijalni kabel, topologija: sabirnica FER 1985
 - 10BASE-T upredena parica (UTP, STP), topologija: zvijezda
 - 10BASE-F optičko vlakno, topologija: zvijezda
 - 10BROAD36 širokopojasni koaksijalni kabel: sabirnica
- brzina 100 Mbit/s
 - 100BASE-T Fast Ethernet, topologija: zvijezda FER 2007
- brzina 1 Gbit/s
 - 1000 BASE-X Gigabit Ethernet, topologija: zvijezda FER 2007

IEEE 802.3 i Ethernet

- Ethernet je definirao i razradio industrijski konzorcij DIX (Digital, Intel, Xerox):
 - prijenosni medij: koaksijalni kabel
 - fizička topologija: sabirnica
 - upravljanje pristupom: CSMA/CD
 - dvije norme: Ethernet I (1980) i Ethernet II (1982)
- IEEE 802.3 nastavio rad koji je započeo DIX:
 - ista načela
 - okviri različiti, zbog usklađivanja s drugim normama za lokalne mreže
- za obje vrste lokalnih mreža koristi se naziv Ethernet
- neki parametri uvjetovani su stanjem tehnologije u 80-tima

Struktura okvira (1)

Ethernet	Preambula		Odredište	Izvorište	Tip	Podaci	FCS
	(8 okteta)		(6 okteta)	(6 okteta)	(2 okteta)	(46 - 1500 okteta)	(4 okteta)
IEEE 802.3	Preambula	SoF	Odredište	Izvorište	Duljina	LLC i podaci	FCS
	(7 okteta)	(1)	(6 okteta)	(6 okteta)	(2 okteta)	(46 - 1500 okteta)	(4 okteta)

Odredišna adresa (48 bita, bitovi 0-47)

Najviši 47. bit: "0" – adresa pojedine stanice

"1" – adresa skupine stanica (engl. *multicast address*)

46. bit: "0" – globalno administrirana adresa (sklopovski unos)

"1" – lokalno administrirana adresa (mrežni administrator)

Svi bitovi 0-47:"1" – adresa svih stanica (engl. broadcast address)

Struktura okvira (2)

Polje podataka:

 ako je količina podataka manja od 46 okteta, provodi se punjenje do 46 okteta

Duljina okvira:

- minimalna duljina okvira je 72 okteta uz adrese od 6 okteta (8+6+6+2+46+4), odnosno 64 okteta uz adrese od 2 okteta (8+2+2+2+46+4)
- okvir treba biti takve duljine da:
 - jamči otkrivanje sudara i olakšava njihovo prepoznavanje,
 - sprječava odašiljanje novog okvira prije nego li je prethodni stigao do odredišta, čime se smanjuje broj potencijalnih sudara.

Izvedba CSMA/CD u mreži Ethernet (1)

1-ustrajni CSMA/CD (engl. 1-persistent CSMA/CD)

- vjerojatnost prijenosa okvira p = 1 ako je kanal slobodan
- nakon svakog okvira čeka se vrijeme potrebno za prijenos 96 bita (12 okteta) kako bi se postigao razmak između sukcesivnih okvira (engl. interframe gap, IFG), zašto?
- nema potvrde, zašto?

Stanice 2 i 4 razmjenjuju okvire:

- stanica 2 ustanovljava slobodan kanal i šalje okvir stanici 4
- stanica 4 ustanovljava slobodan kanal i šalje okvir stanici 2

Izvedba CSMA/CD u mreži Ethernet (2)

otkrivanje i označavanje sudara – jam signal

- nakon otkrivanja sudara (povećani napon na mediju), stanica obustavlja prijenos okvira i odašilje signal zagušenja (jam signal)
- istražite kakve je duljine i sadržaja niz bita koji predočuje jam signal!

stanice 2 i 5 pokušavaju istodobno poslati okvire, dolazi do sudara

Sudari u mreži Ethernet (1)

Rani sudar:

- stanica A ustanovljava da je kanal slobodan i šalje okvir
- tijekom slanja okvira stanica A osluškuje medij, pa otkriva sudar i odašilje jam signal
- stanica A ponavlja pokušaj slanja okvira nakon isteka slučajnog vremena

Sudari u mreži Ethernet (2)

Kasni sudar:

- stanica ustanovljava da je kanal slobodan i šalje okvir
- tijekom slanja okvira stanica A ne otkriva sudar
- do sudara dolazi nakon što je stanica A završila slanje okvira
- stanica A prestala je sa slanjem okvira i nije svjesna da je došlo do sudara – kako postići sigurno otkrivanje sudara?

Otkrivanje sudara (1)

Teorijski:

- minimalno vrijeme potrebno za sigurno otkrivanje sudara jednako je dvostrukom trajanju prijenosa d:
 - prvi bit okvira stiže neposredno ispred prijamne stanice (d), a zadnji bit okvira još nije poslan
 - otkriveni sudar propagira se unatrag do predajne stanice (2d)

Praktički:

- minimalno vrijeme je veće zbog dodatnog kašnjenja u komunikacijskim uređajima kojima prolazi signal (npr. obnavljači signala):
 - 50 µs za brzinu prijenosa 10 Mbit/s na udaljenost od 2500 m
 - minimalna duljina okvira 500 bita \rightarrow 512 bita (64 x 8)

Otkrivanje sudara (2)

Zahtjev:

okvir treba imati fiksnu duljinu, neovisno o brzini prijenosa
 Posljedica:

- ako je duljina okvira fiksna, kraći je domet na većim brzinama – zašto?
- CSMA/CD načelo nije prikladno za velike brzine prijenosa (Gigabit Ethernet)

Ponavljanje pokušaja prijenosa okvira

eksponencijalni porast vremena ponavljanja (engl. *exponential backoff*) – zašto?

 nakon otkrivanja sudara, stanica ponavlja pokušaj nakon isteka slučajnog vremena r:

k = min (10, brojPokusaja)

 $r = random (0, 2^k - 1) x vremenskiOdsjecak$

random vraća slučajni cijeli broj, s ravnomjernom raspodjelom između 0 i eksponencijalno rastuće gornje granice

vremenskiOdsjecak = vrijeme prijenosa 512 bita

koje su moguće vrijednosti r nakon trećeg pokušaja?

Adresiranje stanica u lokalnoj mreži (1)

- svaka mrežna kartica ima svoju sklopovsku MAC adresu
 - 48 bita (MAC-48 identifikator)
 - prva tri okteta: jednoznačni identifikator organizacije proizvođača
 - druga tri okteta: identifikator mrežnog sučelja NIC (Network Interface Card)
- MAC adrese se zapisuju u heksadekadskoj notaciji
 - primjer: 08 00 20 4C D3 E5

Adresiranje stanica u lokalnoj mreži (2)

Kakve adrese treba imati računalo spojeno na lokalnu mrežu putem koje pristupa Internetu?

- MAC-adresa
 sloj podatkovne poveznice
- IP-adresa mrežni sloj

uz pridruživanje:
 MAC-adresa – IP-adresa

Ostale izvedbe lokalnih mreža

IEEE 802.4 Token Bus

IEEE 802.5 Token Ring

Za pristup mediju primjenjuje se prozivka (engl. *polling*):

- pravo slanja okvira s podacima se označava znakom (engl. token) koji kruži između stanica
- znak: kratki pristupni okvir
- kad stanica dobije pravo, tj. primi znak, može poslati okvir
- pravo se ciklički prenosi narednoj stanici u slijedu

IEEE 802.4 Token Bus

fizička topologija: sabirnica

logička topologija: prsten

IEEE 802.5 Token Ring

fizička topologija: prsten

logička topologija: prsten

