# Cryptographie

Aurèle Barrière & Nathan Thomasset

10 mars 2016

### Mise en situation

# Intérêt de la cryptographie

- Cartes bleues
- Mail
- Transactions bancaires
- Chiffrement des données sensibles (militaires ou privées)

## Un codage ultime?

Seul quelqu'un qui connaitraît la clé pourrait décoder : est-ce réellement possible ?

Cryptographie symétrique : on a tous les deux une même clé.



## Exemple : chiffrement de César

Décalage constant.

$$A \rightarrow B, B \rightarrow C, ...$$
  
 $A \rightarrow C, B \rightarrow D, ...$ 



Source: Wikipedia

### Casser le code de César

## 26 décalages possibles.

Mot à décrypter : iravivqvqrpelcgv

jsbwjwrwrsqfmdhw ludylytytushofjy nwfanavavwujghla pyhcpcxcxywlsinc rajerezezaynulpe tclgtgbgbcapwnrg venivididecrypti xgpkxkfkfgetarvk zirmzmhmhigvctxm bktobojojkixevzo dmvqdqlqlmkzgxbq foxsfsnsnombizds hqzuhupupqodkbfu

ktcxkxsxstrgneix mvezmzuzuvtipgkz oxgbobwbwxvkrimb gzidgdydyzxmtkod sbkfsfafabzovmgf udmhuhchcdbgxosh wfojwjejefdszquj yhqlylglghfubswl ajsnaninijhwduyn clupcpkpkljyfwap enwrermrmnlahycr gpytgtotopncjaet iravivqvqrpelcgv

## Énumération des clés

Énumérer les clés possibles (décalages). Regarder tous les résultats.

```
# caesar cipher
word = "iravivqvqrpelcgv"

for i in range(1,27):
    for c in word :
        print(chr((((ord(c)+i)-97)%26)+97), end="")
    print()
```

Ensemble de clés fini

### Complexité

#### Le calcul, c'est pas gratuit

Trop de clés ⇒ trop de calcul, trop de résultats

L'objectif n'est pas de créer un chiffrement incassable, mais un chiffrement qui soit trop coûteux à casser.



THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Source: xkcd.com

# D'autres exemples

#### Hill

$$\begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 9 \\ 5 \end{pmatrix}$$

#### Vigenere

## Analyse fréquentielle

#### Trop de clés

Matrices  $3 \times 3 : 5429503678976$ 

Matrices  $10 \times 10$ :

314293064158293883017435778850162642728266998876247525637 417317539899590842010402346543259906970228933096407508161 1719197835869803511992549376



Source : manudiclemente, Wikipedia

# Cryptographie asymétrique

Clé publique, clé privée Mise en situation

# RSA

Schéma

#### Limites



Source: xkcd.com

### Conclusion

Cryptographie symétrique et asymétrique Énumération des clés Complexité du calcul

GPG mail