

Av. Blanco Encalada 2120

Santiago, Chile Fono: 978 4525 Fax: 688 9705

Un estudio para la determinación de la superficie de quiebre en una mina subterránea en El Teniente

Informe Final

Raúl Manásevich (director)
Roger Bustamante
Javier Ruiz
Duvan Henao
Matias Courdurier
Claudia Vallejos
Matias Valdenegro
Lenardo (Apoyo a Duvan)
Lenardo Jofré
Mael (apoyo de Duvan.....)
Cristian Jara
Mario Fernández

31 de diciembre de 2012

Índice

1.	Resu	umen Ejecutivo	2
2.	Líne	a FEM (<i>Duvan Henao</i>)	3
	2.1.	Resumen	3
	2.2.	El Modelo	3
	2.3.	Descripción Software	3
	2.4.	Casos de estudio	3
		2.4.1. Caso Pilar Norte	3
		2.4.2. Caso Esemeralda	3
	2.5.	Resultados Generales	3
	2.6.	Extensiones futura	3
	2.7.	Manual de Uso	3
3.	Líne	a FEM (Roger Bustamante)	4
	3.1.	Resumen	4
	3.2.	El Modelo	4
	3.3.	Descripción Software	4
	3.4.	Casos de estudio	4
		3.4.1. Caso Pilar Norte	4
		3.4.2. Caso Esemeralda	4
	3.5.	Resultados Generales	4
	3.6.	Extensiones futura	4
	3.7.	Manual de Uso	4
4.	Line	a Time Reversal (Matias Courdurier. Leonardo Jofré)	5
	4.1.	Resumen Estimación y Clasificación de Fuentes	5
	4.2.	Casos de Estudio	5
		121 Estimación de las Fuentes	5

		4.2.2. Input	6
		4.2.3. Output	12
	4.3.	Test de Reconstrucción de Fuentes	27
		4.3.1. Clasificación de las Fuentes	29
		4.3.2. Output	29
	4.4.	Conclusión Estimación y Clasificación de Fuentes	44
	4.5.	Resumen Time-reversal	44
	4.6.	Casos de Estudio	45
		4.6.1. Input	45
		4.6.2. Output	45
	4.7.	Conclusiones en Time Reversal	49
	4.8.	Modelos	49
		4.8.1. Ecuación de Ondas Elástica	49
		4.8.2. Modelo de Time-Reversal	50
		4.8.3. Estimación de Fuentes Utilizando Mínimos Cuadrados	51
		4.8.4. Clasificación de Fuentes Reconstruidas	52
	4.9.	Descripción del Software y Manual de Uso	53
		4.9.1. Forma de importar los datos al sistema	53
		4.9.2. Descripción de estructuras de datos	53
		4.9.3. Resumen de implementacion (En Matlab y Python)	53
		4.9.4. Manual de uso	59
5.	Line	a Sismica	61
	5.1.	Resumen	61
	5.2.	El Modelo	61
	5.3.	Descripción Software	61
	5.4.	Casos de estudio	61
		5.4.1. Caso Pilar Norte	61
		5.4.2. Caso Esemeralda	61
	5.5.	Resultados Generales	61
	5.6.	Extensiones futura	61
	5.7.	Manual de Uso	61
6.	Line	a DEM	62
	6.1.	Resumen	62

	6.2.	El Modelo	62
	6.3.	Descripción Software	62
	6.4.	Casos de estudio	62
		6.4.1. Caso Pilar Norte	62
		6.4.2. Caso Esemeralda	62
	6.5.	Resultados Generales	62
	6.6.	Extensiones futura	62
	6.7.	Manual de Uso	62
7.	Line	inea Geométrica (CME3D)	
	7.1.	Resumen	63
	7.2.	El Modelo	63
	7.3.	Descripción Software	63
	7.4.	Casos de estudio	63
		7.4.1. Caso Pilar Norte	63
		7.4.2. Caso Esemeralda	63
	7.5.	Resultados Generales	63
	7.6.	Extensiones futura	63
	7.7.	Manual de uso	63
8.	Bibli	iografía	64

Resumen Ejecutivo

El presente informe da cuenta de los resultados del proyecto *Un estudio para la determinación de la superficie de quiebre en una mina subterránea en El Teniente*, realizado por académicos e ingenieros de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, agrupados en torno al Laboratorio de Modelamiento Matemático para Geomecánica (MMGeo) perteneciente al Centro de Modelamiento Matemático (CMM), y con el apoyo en recursos humanos y financieros de la Superintendencia de Geomecánica de la División El Teniente, Codelco.

El proyecto tiene como objetivo la evaluación de factibilidad de distintos métodos de estimación de la superficie de quiebre. Estos métodos son:

Línea FEM (Duvan Henao)

- 2.1. Resumen
- 2.2. El Modelo
- 2.3. Descripción Software
- 2.4. Casos de estudio
- 2.4.1. Caso Pilar Norte

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

2.4.2. Caso Esemeralda

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

- 2.5. Resultados Generales
- 2.6. Extensiones futura
- 2.7. Manual de Uso

Línea FEM (Roger Bustamante)

- 3.1. Resumen
- 3.2. El Modelo
- 3.3. Descripción Software
- 3.4. Casos de estudio
- 3.4.1. Caso Pilar Norte

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

3.4.2. Caso Esemeralda

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

- 3.5. Resultados Generales
- 3.6. Extensiones futura
- 3.7. Manual de Uso

Linea Time Reversal (Matias Courdurier. Leonardo Jofré)

4.1. Resumen Estimación y Clasificación de Fuentes

Se propone una reconstrucción de las fuentes sísmicas, como una fuerza, a partir de las mediciones sísmicas. Luego se propone una clasificación de las fuentes reconstruidas, separándolas en fuentes contenidas principalmente en un plano o fuentes con componentes comparables en todas las direcciones.

El estudio de las fuentes sísmicas se realiza con la intención de identificar propiedades que permitan caracterizar fuentes sísmicas cercanas a la superficie de quiebre. Lograr esta caracterización permitiría ocupar la localizción de las fuentes sísmicas para ubicar la superficie de quiebre.

4.2. Casos de Estudio

4.2.1. Estimación de las Fuentes

Para la lista de eventos

```
'1998_aug_02_07_30_40.d5g'
'1998_aug_07_16_24_33.i6b'
'1998_aug_09_21_49_22.4n3'
'1998_aug_10_07_42_08.216'
'1998_aug_20_08_37_39.ery'
'1998_jul_04_13_49_28.6bt'
'1998_jul_05_02_34_05.5hj'
'1998_jul_06_12_14_55.e8j'
'1998_jun_26_10_12_59.2ia'
'1998_jun_27_06_14_09.2jt'
'1998_jun_28_12_21_02.exs'
'1998_jun_29_22_24_21.jp6'
'1998_nov_01_22_40_34.7rv'
'1998_nov_02_14_15_20.j34'
'1998_nov_07_21_23_08.ji5'
```

```
'1998_nov_13_06_30_43.00d'
'1998_oct_10_16_00_15.fzn'
'1998_oct_15_22_38_44.11n'
'1998_oct_20_16_06_43.byq'
'1998_oct_21_17_20_29.8mp'
'1998_oct_21_18_22_44.h9e'
'1998_oct_21_20_10_32.kxv'
'1998_oct_27_19_38_10.1o0'
'1998_oct_29_18_22_05.2ph'
'2011_apr_10_02_27'
'2011_apr_10_04_56'
'2011_apr_10_06_00'
'2011_apr_10_06_16'
```

realizamos la reconstrucción de las fuentes sísmicas como una fuerza mediante un método de mínimos cuadrados descrito más adelante.

4.2.2. Input

Para cada evento se usó el archivo procesado en python con el mismo nombre del evento. Estos archivos contienen la posición y el tiempo estimado del evento sísmico, y además una serie de datos importantes, como por ejemplo, la frecuencia de muestreo de cada uno de los sensores. El detalle se puede ver en el siguiente ejemplo del primer evento de la lista como objeto matlab.

```
name: {'1998_aug_02_07_30_40.d5g'}
beta_est: 3500
alpha_est: 5600
alpha_ind: []
beta_ind: []
    gss: [1x7 Geosensor]
    alpha: 5600
    beta: 3500
    rho: 2700
first_time: 40.5227
last_time: 41.5579
    count: 7
    LocR: [1x3 double]
```

origin_time: 40.5655

tail_per: 0

error: 0.0196

xi: -892.7790

xf: -20.2270

yi: -1.5404e+03

yf: -715.6420

zi: -2.2857e+03

zf: -1.9726e+03

dx: 14.7890

dy: 13.9790

dz: 34.7967

dt: []

nx: []

ny: []

nz: []

nt: []

n_rsmpl: []

max_norm: []

x_axis: [1x60 double]

y_axis: [1x60 double]

z_axis: [1x10 double]

t_axis: [1x50 double]

X_domain: []

Y_domain: []

Z_domain: []

T_domain: []

origin_time_est: 40.5655

LocR_est: [1x3 double]

r0: []

all_est: []

alpha_ind_post: []

beta_ind_post: []

src: [100x4 double]

filtsrc: [100x4 double]

e: []
v1: 0.4784
v2: 0.2860
v3: 0.2356
vr1: 0.1808
vr2: 0.2440
vr3: 0.5752
A: []
U: [1x73395 double]

indices: []

alphas: []

cada evento tiene un conjunto de sensores que pueden ser velocímetros o acelerómetros. A modo de ejemplo se muestran a continuación el gráfico de cada una de las mediciones que contiene el evento 1998_aug_02_07_30_40.d5g.

Figura 4.1: Campo de velocidad del sensor 1

Figura 4.2: Campo de velocidad del sensor 2

Figura 4.3: Campo de velocidad del sensor 3

Figura 4.4: Campo de velocidad del sensor 4

Figura 4.5: Campo de velocidad del sensor 5

Figura 4.6: Campo de velocidad del sensor 6

Figura 4.7: Campo de velocidad del sensor 7

4.2.3. Output

El algoritmo retorna una estimación de la fuente como una fuerza para cada uno de los eventos sismicos. La linea vertical roja representa el tiempo estimado por codelco mediante la variable origin_time y el número entre 0 y 1 bajo cada gráfico representa la cantidad de fuerza en cada eje, esto quiere decir, en la componente x,y,z respectivamente.

Figura 4.8: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_aug_02_07_30_40.d5g

Figura 4.9: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_aug_07_16_24_33.i6b

Figura 4.10: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_aug_09_21_49_22.4n3

Figura 4.11: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_aug_10_07_42_08.2l6

Figura 4.12: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_aug_20_08_37_39.ery

Figura 4.13: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_jul_04_13_49_28.6bt

Figura 4.14: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_jul_05_02_34_05.5hj

Figura 4.15: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_jul_06_12_14_55.e8j

Figura 4.16: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_jun_26_10_12_59.2ia

Figura 4.17: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_jun_27_06_14_09.2jt

Figura 4.18: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_jun_28_12_21_02.exs

Figura 4.19: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_jun_29_22_24_21.jp6

Figura 4.20: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_nov_01_22_40_34.7rv

Figura 4.21: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_nov_02_14_15_20.j34

Figura 4.22: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_nov_07_21_23_08.ji5

Figura 4.23: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_nov_13_06_30_43.00d

 $Figura~4.24:~Estimación~por~m\'inimos~cuadrados~de~la~fuente~como~una~fuerza~para~el~evento~1998_oct_10_16_00_15.fzn$

Figura 4.25: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_oct_15_22_38_44.11n

Figura 4.26: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_oct_20_16_06_43.byq

Figura 4.27: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_oct_21_17_20_29.8mp

Figura 4.28: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_oct_21_18_22_44.h9e

Figura 4.29: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_oct_21_20_10_32.kxv

Figura 4.30: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_oct_27_19_38_10.1o0

Figura 4.31: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 1998_oct_29_18_22_05.2ph

Figura 4.32: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 2011_apr_10_02_27

Figura 4.33: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 2011_apr_10_04_56

 $Figura\ 4.34:\ Estimación\ por\ mínimos\ cuadrados\ de\ la\ fuente\ como\ una\ fuerza\ para\ el\ evento\ 2011_apr_10_06_00$

Figura 4.35: Estimación por mínimos cuadrados de la fuente como una fuerza para el evento 2011_apr_10_06_16

 $Figura\ 4.36:\ Estimación\ por\ mínimos\ cuadrados\ de\ la\ fuente\ como\ una\ fuerza\ para\ el\ evento\ 2011_apr_10_07_52$

4.3. Test de Reconstrucción de Fuentes

Para validar que la reconstrucción de las fuentes sísmicas de cada uno de los eventos es correcta, se diseño un test en el cual mediante una fuente artificial se generan sensores artificiales en las mismas posiciones de las de un evento real. Luego se reconstruye la fuente mediante mínimos cuadrados y se compara con la fuente artificial.

Para el evento 1998_aug_02_07_30_40.d5g se obtuvieron los siguientes resultados que validan el funcionamiento del software.

Figura 4.37: Fuente artificial para el evento 1998_aug_02_07_30_40.d5g

Figura 4.38: Reconstrucción de la fuente artificial para el evento 1998_aug_02_07_30_40.d5g

Figura 4.39: Superposición entre la fuente artificial y su reconstrucción 1998_aug_02_07_30_40.d5g

4.3.1. Clasificación de las Fuentes

El segundo paso consiste en la clasificación de las fuentes sísmicas reconstruidas. La clasificación propuesta es separar las fuentes sísmicas de acuerdo a si son fuerzas contenidas en un plano o si son fuerzas con componentes comparables en todas las direcciones.

En resumen, separaramos las fuentes de acuerdo a la componente más pequeña, después de un proceso de filtrado y rotación (cambio de base).

4.3.2. **Output**

Para cada una de las fuentes reconstruidas, el filtrado y rotación de éstas, en componentes principales, entrega los siguientes resultados.

Figura 4.40: Filtro y rotación de la fuente como una fuerza para el evento 1998_aug_02_07_30_40.d5g

Figura 4.41: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_aug_07_16_24_33.i6b

Figura 4.42: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_aug_09_21_49_22.4n3

Figura 4.43: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_aug_10_07_42_08.2l6

Figura 4.44: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_aug_20_08_37_39.ery

Figura 4.45: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_jul_04_13_49_28.6bt

Figura 4.46: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_jul_05_02_34_05.5hj

Figura 4.47: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_jul_06_12_14_55.e8j

Figura 4.48: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_jun_26_10_12_59.2ia

Figura 4.49: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_jun_27_06_14_09.2jt

 $Figura~4.50:~Filtro~y~rotaci\'on~de~la~fuente~estimada~como~una~fuerza~para~el~evento~1998_jun_28_12_21_02.exs$

Figura 4.51: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_jun_29_22_24_21.jp6

Figura 4.52: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_nov_01_22_40_34.7rv

 $Figura~4.53:~Filtro~y~rotaci\'on~de~la~fuente~estimada~como~una~fuerza~para~el~evento~1998_nov_02_14_15_20.j34$

Figura 4.54: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_nov_07_21_23_08.ji5

 $Figura~4.55:~Filtro~y~rotaci\'on~de~la~fuente~estimada~como~una~fuerza~para~el~evento~1998_nov_13_06_30_43.00d$

 $Figura~4.56:~Filtro~y~rotaci\'on~de~la~fuente~estimada~como~una~fuerza~para~el~evento~1998_oct_10_16_00_15.fzn$

Figura 4.57: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_oct_15_22_38_44.11n

Figura 4.58: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_oct_20_16_06_43.byq

Figura 4.59: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_oct_21_17_20_29.8mp

Figura 4.60: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_oct_21_18_22_44.h9e

Figura 4.61: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_oct_21_20_10_32.kxv

Figura 4.62: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_oct_27_19_38_10.1o0

Figura 4.63: Filtro y rotación de la fuente estimada como una fuerza para el evento 1998_oct_29_18_22_05.2ph

 $Figura\ 4.64:\ Filtro\ y\ rotaci\'on\ de\ la\ fuente\ estimada\ como\ una\ fuerza\ para\ el\ evento\ 2011_apr_10_02_27$

Figura 4.65: Filtro y rotación de la fuente estimada como una fuerza para el evento 2011_apr_10_04_56

Figura 4.66: Filtro y rotación de la fuente estimada como una fuerza para el evento $2011_apr_10_06_00$

Figura 4.67: Filtro y rotación de la fuente estimada como una fuerza para el evento 2011_apr_10_06_16

 $Figura\ 4.68:\ Filtro\ y\ rotaci\'on\ de\ la\ fuente\ estimada\ como\ una\ fuerza\ para\ el\ evento\ 2011_apr_10_07_52$

4.4. Conclusión Estimación y Clasificación de Fuentes

Al considerar las 29 fuentes sísmicas reconstruidas, los valores obtenidos para las componentes más pequeñas (después del filtrado y la rotación) son:

Figura 4.69: Grafico con la clasificación de la componente más pequeña mediante algoritmo de las kmedias con 3 clusters

El valor para estas cantidades varia entre 0 y 1/3. Valores cercanos a 0 corresponden a fuentes contenidas principalmente en un plano, valores cercanos a 1/3 corresponde a fuentes componentes comparables en todas las direcciones.

Al estudiar las 29 fuentes reconstruidas se observa acumulamiento de las primeras componentes en tres grupos. Aquellos sismos con primera componente por debajo de 0.165, sismos con primera componente entre 0.165 y 0.22 y sismos con primera componente mayor a 0.22. Esta diferenciación se observa claramente en el grupo de eventos considerados, que ya es de un tamaño razonable, pero se sugiere validar la observación estudiando un conjunto más grande de eventos. La diferenciación observada confirma en primera instancia, de manera muy positiva, la posibilidad de clasificar los eventos de acuerdo a su componente más pequeña.

Esto, en particular, se puede ocupar como información complementaria para la clasificación utilizada en la linea sísmica de este proyecto.

4.5. Resumen Time-reversal

En time-reversal se calcula la propagación de una onda cuyas fuentes se relacionan con las mediciones sismográficas invertidas en el tiempo. En el caso ideal de suficientes mediciones, adecuadamente distribuidas, la onda así generada debería concentrarse en la posición correspondiente al orígen del sismo

y dar indicaciones del tiempo de origen y la forma de la fuente.

4.6. Casos de Estudio

Los casos de estudio son los siguentes 3 eventos:

```
'1998_aug_02_07_30_40.d5g'
'1998_aug_07_16_24_33.i6b'
'1998_aug_09_21_49_22.4n3'
```

4.6.1. Input

Set de datos entregados por codelco, procesados por el script en python y consumidos por matlab mediante el script de importación.

4.6.2. Output

Se obtienen las siguientes visualizaciones de las inversiones de los campos de desplazamiento de las ondas sísmicas.

Figura 4.70: Time reversal para el evento 1998_aug_02_07_30_40.d5g

Figura 4.71: Time reversal para el evento $1998_aug_07_16_24_33.i6b$

Figura 4.72: Time reversal para el evento 1998_aug_09_21_49_22.4n3

4.7. Conclusiones en Time Reversal

La implementación y experimentación del método de time reversal con datos reales resultó ser bastante más difícil que el caso de datos sintéticos realizados en la primera etapa de este proyecto.

Las mayores dificultades aparecieron en dos aspectos independientes del método.

Primero, en términos de complejidad computacional, el gran tamaño de las mediciones (del orden de 4×10^3 mediciones temporales por cada sensor por cada componente) y el tamaño necesario de la reconstrucción (del orden de $60\times60\times10$ puntos espaciales, por 50 puntos temporales, por cada componente) hicieron imposible una implementación directa del método desarrollado durante la primera etapa. Para superar esta dificultad, programamos un método de subsampleo variable de las mediciones y cambiamos los métodos de propagación de onda ya implementados, para poder trabajar con esta nueva estructura de datos.

Segundo, otra dificultad surgió por la relativamente baja cobertura de sensores. En particular, en las experimentaciones realizadas observamos que la baja distribución de sensores alrededor de las fuentes sísmicas provocaba una sobreponderación artificial de los sensores que se encontraban más cerca de la fuente y una sobreponderación artificial en las direcciones con mayor densidad de sensores. Corregimos parcialmente eso con una pre-ponderarción de las mediciones (multiplicando por las distancias entre sensores y la posición estimada de la fuente al cuadrado, de acuerdo a la expresión de la función de Green). Esto mejoró bastante la focalización de la onda de time reversal, pero no pudimos lidiar de manera completa con la distribución no homogénea de sensores alrededor de la fuente sísmica.

En conclusión, para los eventos estudiados se logró superar bastantes de las dificultades que se presentaron en el desarrollo del método, obteniendo una implementación de time reversal con un tiempo de cómputo factible (del orden de 90 minutos) y en la que se observa focalización de la onda de time reversal en la posición y tiempos adecuados (según estimaciones independientes de tiempos de viaje). Pero a pesar de esto, nuestra evaluación final del método es que no produjo resultados al nivel de las expectativas que teníamos. Las reconstrucciónes obtenidas no presentan suficiente resolución y estabilidad para una estimación robusta de la posición, tiempo de origen y forma de las fuentes sísmicas.

4.8. Modelos

4.8.1. Ecuación de Ondas Elástica

Consideraremos que la propagación de la onda sísmica en el medio rocoso esta bien modelada por la ecuación de onda elástica en un medio homogéneo sin fronteras. Es decir, si u(x,y,z,t) representa el desplazamiento en el punto (x,y,z) debido a la onda, en el tiempo t, entonces asumimos que la propagación de la onda u está modelada adecuadamente por la ecuación

$$\rho \frac{\partial^2 u}{\partial t^2} - (\lambda + 2\mu) \nabla (\nabla \cdot u) + \mu \nabla \times (\nabla \times u) = F \quad \text{en} \quad \mathbb{R}^3$$
 (4.1)

donde la densidad ρ y los parámetros de Lamé λ, μ se asumen constantes y conocidos. El lado derecho F es la fuente (fuerza localizada) del sísmo.

Para resolver la ecuación (4.1) tenemos una expresión explícita de la función de Green, es decir del campo de desplazamientos en la dirección i debido a un impulso en la dirección j en el tiempo t=0 $(i,j\in\{\hat{x},\hat{y},\hat{z}\})$. Tenemos que $G_i,j=0$ para t<0 y para $t\geq0$

$$G_{ij}(x,y,z,t) = \frac{1}{4\pi\rho} \left(3\gamma_i \gamma_j - \delta_{ij}\right) \frac{t}{r^3} \mathbb{1}_{\left[\frac{r}{\alpha},\frac{r}{\beta}\right]}(t) + \frac{1}{4\pi\rho\alpha^2} \gamma_i \gamma_j \frac{1}{r} \delta(t - \frac{r}{\alpha}) - \frac{1}{4\pi\rho\beta^2} \left(\gamma_i \gamma_j - \delta_{ij}\right) \frac{1}{r} \delta(t - \frac{r}{\beta})$$

donde $r=\sqrt{x^2+y^2+z^2}$, $\gamma_{\hat{x}}=x/r$ (análogo para $i\in\{\hat{y},\hat{z}\}$), $\delta_{ij}=1$ si i=j y 0 si $i\neq j$, $\mathbbm{1}_A(t)=1$ si $t\in A$ y 0 si $t\notin A$, $\delta(\cdot)$ es el delta de Dirac en el tiempo (una dimensión) y donde $\alpha=\sqrt{(\lambda+2\mu)/\rho}$ y $\beta=\sqrt{\mu/\rho}$ son las velocidades de la onda p y s respectivamente.

4.8.2. Modelo de Time-Reversal

La observación principal que motiva y justifica el método de time reversal es que si u(x,y,z,t) es una solución de la ecuación elástica, entonces $\tilde{u}(x,y,z,t)=u(x,y,z,T-t)$ también es una solución de la ecuación elástica con los **mismos coeficientes**.

Si se mide u(x,y,z,t) en toda la frontera Σ de algún conjunto $\Omega\subset\mathbb{R}^3$, durante un intervalo de tiempo $[t_1,t_2]$, se puede resolver la ecuación

$$\rho \frac{\partial^2 \hat{u}}{\partial t^2} - (\lambda + 2\mu) \nabla (\nabla \cdot \hat{u}) + \mu \nabla \times (\nabla \times \hat{u}) = 0$$

$$\hat{u}(x, y, z, t) = u(x, y, z, t_2 - t) \text{ para } (x, y, z) \in \Sigma, t \in [0, t_2 - t_1]$$

La unicidad de la solución implica que con condiciones adecuadas $\hat{u}(x,y,z,t)=u(x,y,z,t_2-t)$ en Ω para todo $t\in[0,t_2-t_0]$, obteniendo $u(x,y,z,t_2-t_0)$ en el momento del sísmo y por ende recuperando la fuente sísmica (en principio t_0 no es conocido y también debe ser recuperado en este proceso).

En el método de time-reversal se propone invertir el tiempo en las mediciones y ocuparlas como fuentes sintéticas para producir una onda que se concentre en la fuente sísmica original, recuperando así la posición, el tiempo en que se originó y la forma de ésta.

Más específicamente, la onda u (o derivadas temporales de u que permitirían recuperar u) se mide en K estaciones, localizadas en $\{r_k\}_{k=1}^K$ (cada $r_k=(x_k,y_k,z_k)$) y por intervalos de tiempos [0,T] con con $0 < t_0$ y T suficientemente grande. Para cada k=1,...,K resolvemos la ecuacion

$$\rho \frac{\partial^2 \hat{u}_k}{\partial t^2} - (\lambda + 2\mu) \nabla (\nabla \cdot \hat{u}_k) - \mu \nabla \times (\nabla \times \hat{u}_k) = \delta_{r_k}(r) u(r_k, T - t) \text{ para } t \ge 0$$
 (P_k)

y definimos $\hat{u} = \sum_{k=1}^{K} \hat{u}_k$. Si la cobertura de los geófonos es suficientemente adecuada respecto al origen de la fuente sísmica, entonces \hat{u} debería relacionarse con la propagación invertida de la onda original

(i.e. u(x, y, z, T - t)) y la focalización de \hat{u} se podría utilizar para identificar el momento t_0 en que ocurrió el sismo y obtener la forma espacial de la fuente sísmica.

Se puede resolver la ecuación (P_k) ocupando la función de Green, que conocemos explícitamente y está descrita arriba. Si $G = [G_{ij}]_{i,j=1,2,3}$ es la matriz simétrica de 3×3 con componentes G_{ij} , entonces $\hat{u}_k(x,y,z,t)$ se puede calcular como

$$\hat{u}_k(x,y,z,t) = \int_0^t G((x,y,z) - r_k, t - \tau) \cdot u(r_k, T - \tau) d\tau$$

(donde $G \cdot u$ es el producto entre una matriz de 3×3 y un vector en \mathbb{R}^3). Es decir \hat{u}_k corresponde a la convolución en el tiempo entre la seña del geófono localizado en r_k invertida en el tiempo, y la función de Green trasladada a r_k .

Una vez construida \hat{u} se puede estudiaría el momento y la forma en la cual se focaliza, lo que debería corresponder al momento y la forma de la fuente sísmica.

4.8.3. Estimación de Fuentes Utilizando Mínimos Cuadrados.

Como describimos anteriormente, una fuente sísmica (una fuerza) localizada en $r_0=(x_0,y_0,z_0)$ y modulada temporalmente según s(t), se puede incluir en la ecuación (4.1) como un lado derecho de la forma $s(t)\delta_{r_0}(r)$.

Denotando la función de Green de la ecuación como G(r|t), podemos calcular el campo de desplazamiento de la onda en el punto r=(x,y,z) en el tiempo t, como

$$u(r,t) = [G(r - r_0|\cdot) * s(\cdot)](t).$$

Las mediciones corresponden (despues de integrar temporalmente si es necesario) al campo de desplazamiento, a lo largo del tiempo, en las posiciones $\{r_k\}_{k=1}^K$. Es decir, nuestras mediciones corresponde al conocimiento de $u_k(t) := u(r_k, t)$ para t en un intervalo $T_k \subset \mathbb{R}$.

Asumiendo que la posición r_0 de la fuente es conocida (obtenida por ejemplo mediante tiempos de viaje) y que s(t) esta soportado cerca de un tiempo t_0 conocido (también obtenido por tiempos de viaje por ejemplo), queremos plantear un método de reconstrucción de s(t) mediante mínimos cuadrados.

Consideremos $\{\varphi_j\}_{j=1}^J$ una familia de funciónes linealmente independientes, soportadas alrededor de t_0 , que nos permitan describir s(t) aproximadamente. Es decir, consideraremos que

$$s(t) = \sum_{j=1}^{J} \alpha_j \varphi_j(t), \forall t$$

La familia $\{\varphi_j\}_{j=1}^J$ está dada y el objetivo es encontrar $\{\alpha_j\}_{j=1}^J$ a partir de las mediciones. Para esto, según el modelo de propagación de onda, tenemos que α_j deberían cumplir, para todo k=1,...,K y

para todo $t \in T_k$, que

$$\begin{aligned} u_k(t) &= [G(r_k - r_0) * s](t) \\ &= [G(r_k - r_0) * \sum_{j=1}^{J} \alpha_j \varphi_j](t) \\ &= \sum_{j=1}^{J} \alpha_j [G(r_k - r_0) * \varphi_j](t). \end{aligned}$$

Encontraremos los valores $\{\alpha_j\}_{j=1}^j$ resolviendo la ecuación anterior, o escogiendo aquellos que la se acerquen lo más posible a resolverna. Más explícitamente, encontraremos los α_j como

$$\{\alpha_j\} = \arg\min_{\{\alpha_j\}} \left(\sum_{k=1}^K \int_{T_k} \left(u_k(t) - \sum_{j=1}^J \alpha_j [G(r_k - r_0) * \varphi_j](t) \right)^2 dt \right)$$

Como las mediciones temporales son efectivamente discretas, lo anterior se puede escribir de manera matricial como

$$\arg\min ||u - \alpha \cdot A||^2$$

donde $u=(u_k(t))_{k=1,\dots,K;t\in T_k}$, $\alpha=(\alpha_1,\dots,\alpha_J)$ y $A=\left([G(r_k-r_0)*\varphi_j](t)\right)_{k=1,\dots,K;t\in T_k;j=1,\dots,J}$ escritos de manera adecuada. El problema anterior es un problema estándard de mínimos cuadrados y la solución (de menor norma en caso de admitir múltiples minimizantes) se escribe como

$$\hat{\alpha} = u \cdot A^t \cdot (AA^t)^{\dagger}$$

(donde B^\dagger es la pseudo-inversa de Perron cuando B no es invertible). Esto entrega una reconstrucción de s(t) como

$$\hat{s}(t) = \sum_{j=1}^{J} \hat{\alpha}^{j} \varphi_{j}(t)$$

4.8.4. Clasificación de Fuentes Reconstruidas.

Al tener reconstrucciones de las fuentes sísmicas, queremos encontrar una posible clasificación de las fuentes según la proximidad de éstas a la superficie de quiebre. Obteniendo así información sobre la posición de la superficie de quiebre.

En la linea sísmica del proyecto se presentaron ideas y criterios relacionados a la superficie de quiebre, para clasificaciones de las fuentes síismicas. Dado que los investigadores de esa linea entienden mucho mejor que nosotros los mecanismos geofísicos involucrados en la fractura de la roca, nos dimos la libertad

de tomar prestado uno de los criterios que propusieron, haciendo aquí explicito que la autoría de esa idea pertenece a los investigadores de esa linea.

Básicamente, la idea es separar los sísmos en aquellos correspondientes a fracturas de cizalla y en aquellos correspondientes a implosión de roca.

Interpretamos esta caracterización como eventos correspondientes a fuentes sísmicas contenidas mayoritariamente en un plano y fuentes sísmicas con componentes comparables en todas las direcciones.

Para poder identificar estos dos casos, encontramos la dirección de menor proyección para cada fuente sísmica y calculamos la fracción de la fuerza que se proyecta en esa dirección. Ésto se obtiene haciendo un cambio de base de la fuente reconstruida $s(t) \in \mathbb{R}^3$ sobre los vectores propios de la matriz $[S_{ij}]_{i,j=1,2,3}$, donde $S_{ij} = \int s_i(t)s_j(t)dt$.

La proyección de menor componente contiente entre 0 y 1/3 de la fuerza total. Si la menor componente es 0 la fuente sísmica está contenida en un plano, si la menor componente es 1/3 la fuente sísmica tiene componentes completamente comparables en todas las direcciones.

Idealmente, un valor límite para la separación entre fuentes planas y fuentes isotrópicas aparecerá naturalmente al estudiar una familia de eventos sísmicos.

4.9. Descripción del Software y Manual de Uso

4.9.1. Forma de importar los datos al sistema

La información desde los archivos de texto codificados en ascii se importan por medio de un script en python. El script toma cada archivo de los eventos sísmicos y genera una carpeta con un nombre y además con el sufijo FOLDER.

4.9.2. Descripción de estructuras de datos

Las información de un evento está almacenada en dos clases matlab con los nombres Event.m y Geonsensor.m los cuales están relacionados como se muestra en la figura.

El detalle de estos clases se muestra en la siguiente lista:

Los métodos de las clases se describirán en el resumen de la implementación de las funciones en matlab.

4.9.3. Resumen de implementacion (En Matlab y Python)

Scripts en Python

readFile.py Se usa una rutina en python para separar la informacón desde los documentos de los geófonos y convertirla a archivos que servirán de imput que funciones matlab trasnformen la información a objetos matlab.

patterns.py Conjunto de expresiones regulares con la información necesaria que luego se extraerá mediante readFile.py.

Clases Matlab

Event.m Clase que contiene una lista de geófonos y los parámetros de un evento sísmico especifico. Estos son los atributos de los set de datos entregados por Codelco. Los atributos principales son de esta clase son:

- count: Cantidad de geofonos que hicieron mediciones en el evento sísmico medido.
- name: Nombre del evento sísmico y que tiene caracter único.
- lacktriangle alpha: Velocidad de la onda p.
- ullet beta: Velocidad de la onda s.
- rho: Densidad del medio rocoso
- LocR: Ubicación estimada de la fuente dada por el set de datos.
- origintime: Tiempo estimado de la fuente dado por el set de datos.
- gss: lista de objetos del tipo geosensor que representan a cada uno de los geófonos con sus atributos y mediciones.
- src: Donde se almacena la estimación de la fuente
- filtsrc: Estimación de la fuente filtrada.
- err: Error de estimación de la fuente por mínimos cuadrados.

Geonsensor.m Clase que contiene la información de cada uno de los geofonos en un evento específico. Contiene las mediciones y atributos que definen totalmente a un geofono en un evento en específico.

- firsttime: Tiempo de la primera medición del geófono
- lasttime: Tiempo de la última medición del geófono
- resampleSize: Cantidad de mediciones del campo de desplazamiento del sismógrafo remuestreado.
- timeresamplevector: Vector de tiempo remuestreado.
- timevector: Vector de tiempo de la medición

- lacktriangle diferencia PS valida: es 0 si el tiempo de llegada de la onda p es menor al tiempo de llegada de la onda s
- mediciones Validas: Vector Booleano (b_1, b_2, b_3) que dice que dimensiones del sismográma tiene mediciones.
- r0: Posición física del geófono.
- hardware_sampling_rate: Frecuencia de muestreo del geófono.
- resampling_rate: Frecuencia variable de remuestreo del campo de desplazamiento de la señal.
- period: Periodo variable, cumple la relación period = 1/resampling_rate
- TriggerPosition: indice del tiempo estimado en donde ocurrió el evento sísmico.
- r_x: Campo de desplazamiento remuestreado en el eje x
- r_y: Campo de desplazamiento remuestreado en el eje y
- ullet r_z: Campo de desplazamiento remuestreado en el eje z
- L: Cantidad de mediciones del sismógrama.
- data: Mediciones.
- t_time: Tiemoo en el cual
- p_time: Tiempo de llevada de la onda p
- ullet s_time: Tiempo de llegada de la onda s
- validP: Flag que indica la validez de la onda p
- ullet validS: Flag que indice la validez de la onda s
- validSP Flag que indica la validez de ambas ondas no, necesariamente es la conjunción de validP y validS.
- IsAccelerometer: Flag que indica si es el geófono es un acelerómetro.
- IsSpeedometer: Flag que indica si el geófono es un velocímetro.
- sensor_id: Clave identificadora del geófono.
- validAll: Flag que dice si en cada uno de los ejes existen mediciones válidas.

Documentación de las Rutinas Principales

Importar información a matlab desde los archivos procesados

Archivo: script/importEvents.m

Comando: events = importEvents()

■ Descripción: Almacena la información desde los archivos tratados por el script python readFile.py

a una vector de objetos Event en matlab.

• input: no recibe parámetros de entrada dado que hace lecturas sobre archivos de texto almacenados

en disco.

• output: event lista de objetos del tipo Event que contienen a todos los eventos sísmicos almace-

nados en la carpeta './project/data sets'

Estimar la fuente de un evento sísmico como una fuerza

■ Archivo: script/source.m

■ Dependencia: filterLowPassSersor.m scalarGreenKernel.m

■ Comando: [src, filtsrc, error] = source(event, nSrc, L, por)

■ Dependencia: filterLowPassSersor.m scalarGreenKernel.m

• Descripción: Estima la fuente como una fuerza $\hat{s}(t)$ en un intervalo de tiempo de largo L dado

el conjunto de sismógrafos que definen al evento por medio de mínimos cuadrados. Los geofonos

son los mismos de event con una discretización del dominio con nSrc con una fracción por de la

fuente antes de event.origin_time es cual es el valor estimado por codelco.

■ input:

• event: Objeto del tipo Event el cual representa el sísmico del cual se quiere obtener la

estimación de la fuente f(t) como una fuerza.

• nSrc: número de puntos de la discretización uniforme en el tiempo con la cual se va a estimar

la fuente.

• L: largo de la ventana de tiempo en donde se va a estimar la fuente

• por: porcentaje de la ventana de tiempo que está antes del tiempo de origen estimado por

el documento del evento.

56

output:

- src: fuente sismica como una fuerza en el punto r_0 estimado desde los valores dados por las mediciones de los geofonos
- filtsrc: src pero filtrada eliminando los modos bajos
- error: error de estimación $\sum_{k,t} \|\hat{u}_k[t] u_k[t]\|_2^2$

construcción de un sismograma dada una fuente

- Archivo: script/constructsensor.m
- Dependencia: scalarGreenKernel.m
- Comando: [gsRec] = constructsensor(event, index, src)
- Descripción: de el evento event considera el dominio temporal del geófono número index y recosntruye la señal en ese dominio dado por una fuente de la forma src.
- input:
 - event: Evento del cual se desea hacer una reconstrucción de los sismogramas
 - index: Indice del geófono que se quiere estimas dentro de la lista existente en event
 - src: Fuente sísmica como fuerza que al ser convolucionada con la función de Green de la ecuación de onda elástica recontruirá al sismograma del geófono index.
- output:
 - gsRec: sismograma reconstruido.

Función de Green

- Archivo: script/scalarGreenKernel.m
- Comando: [G11,G12,G13,G22,G23,G33] = scalarGreenKernel(x,y,z,T, alpha, beta,rho)
- Descripción: retorna cada uno de los elementos de la matriz simétrica que determina a la función de Green de forma discreta.
- input:
 - T: Dominio temporal discretizado en donde se va a calcular la función de Green.
 - (x,y,z): traslación r para hacer el cálculo de $G(r-r_0,t-t_0)$

• t: traslación de t para hacer el cálculo de $G(r-r_0,t-t_0)$

 \blacksquare alpha, beta, rho: velocidad de la onda p, onda s y densidad del medio respectivamente.

output:

• G11,G12,G13,G22,G23,G33 : Componentes de la matriz simétrica que representa a la función

de Green para la ecuación diferencial elástica.

Inversión de un conjunto de sismogramas en el tiempo

■ Archivo: sripts/reverse_signal.m

■ Dependencia: field.m

■ Comando: [X, Y, Z, X_domain, Y_domain, Z_domain, T_domain] = reverse_signal(obj)

■ Descripción:Genera la inversión en el tiempo de los sismogramas, eso se obtiene considerando al

campo de desplazamiento del sismograma con una fuente.

input:

Rotación de una fuente sísmica

■ Archivo: scripts/rotate.m

Comando: [rotatesrc] = rotate(src)

■ Descripción: Toma un evento sísmico y lo rota mediante un cambio de base con respecto los

vectores propios de la matriz de covariaza entre los ejes de la estimación de la fuente como una

fuerza.

src: Fuente sismica

■ rotatesrc: Fuente sismica rotada

Remuestreo de un campo de desplazamiento de un sismograma

■ Archivo: scripts/variableResample.m

■ Comando: geo = variableResample(geo, error)

■ Dependencia: find_tail_limit.m

58

■ Descripción: Toma el campo de desplazamiento y la remuestre de forma variable de tal manera

de almacenar mediante una cantidad mínima de datos la señal completa. La cantidad de datos

remuestreados son los suficientes que produzcan que $\|\hat{u} - u\|_1 <=$ error

input:

geo: Objeto del tipo geosensor sin las mediciones remuestreadas

• error: Hace referencial al error de remuestreo

• out: geo: Objeto del tipo geosensor con dados remuestreados almacenados en los atributos r_x,

 r_y , r_z .

Seleccionar la parte de la señal de un sismograma

Archivo: scripts/windowsErase.m

■ Comando: ev = windowsErase(ev)

Descripción: El costo de encontrar una fuente sismica depende de la cantidad de mediciones

implicadas en cada uno de los sismogramas, como una parte del sismograma son solo mediciones

ruidosas con se puede omitir para hacer una estimación más rápida en terminos computacionales.

• input ev: Objeto del tipo evento con todas las mediciones de campo de desplazamiento.

• output ev: Objeto del tipo event en el cual la ventana temporal de las mediciones es el tiempo de

llegada de la onda p y la onda s

Clusterización de los eventos sismicos

Archivo: scripts/clustering.m

comando:

■ Descripción: Visualización de la agrupación de las mediciones por medio de un algoritmos de

agrupación de k-medias dada una norma l_2 de las componentes filtradas y rotadas de la fuente

sísmica (fuerza).

4.9.4. Manual de uso

La importación de los datos desde los archivos dados se hacen mediante el program en python

readFile.py que fué programado y testeado en un ambiente linux, dado que las rutas a carpetas son

distintas entre los distintos sistemas operativos como lo son los de Microsoft y otros basados en UNIX

59

se hace necesaria la advertencia. El uso del programa propiamente tal está descrito en dos archivos matlab (*.m) con un ejemplo explicativo correspondiente para cada uno. En el primero sampletimereversal.m se describe como invertir la señal en el tiempo. En el segundo archivo sampleRecSource.m se describen los pasos para la reconstruccion de una fuente sismica a partir de la información de los geofonos dados por Codelco. Para probar la validez del producto existen un conjunto de pruebas de software en la carpeta test.

Linea Sismica

- 5.1. Resumen
- 5.2. El Modelo
- 5.3. Descripción Software
- 5.4. Casos de estudio
- 5.4.1. Caso Pilar Norte

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

5.4.2. Caso Esemeralda

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

- 5.5. Resultados Generales
- 5.6. Extensiones futura
- 5.7. Manual de Uso

Linea DEM

- 6.1. Resumen
- 6.2. El Modelo
- 6.3. Descripción Software
- 6.4. Casos de estudio
- 6.4.1. Caso Pilar Norte

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

6.4.2. Caso Esemeralda

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

- 6.5. Resultados Generales
- 6.6. Extensiones futura
- 6.7. Manual de Uso

Linea Geométrica (CME3D)

- 7.1. Resumen
- 7.2. El Modelo
- 7.3. Descripción Software
- 7.4. Casos de estudio
- 7.4.1. Caso Pilar Norte

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

7.4.2. Caso Esemeralda

El primer ejemplo que se presenta, consiste en ...

Input

Output

Visualización

Análisis de los resultados

- 7.5. Resultados Generales
- 7.6. Extensiones futura
- 7.7. Manual de uso

Bibliografía

- [1] Superintendencia de Geomecánica TTE-GRMD. Modelo para monitoreo de Caving. Noviembre 2010.
- [2] MMGeo. Estudio 2D de Escenarios de Interés en el Pre-acondicionamiento y Determinación de la Cavidad Máxima Estable en 3D. Marzo, 2011.
- [3] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47-65.
- [4] A.I. Prilepko, D.G. Orlovskii, I.A. Vasin, *Methods for Solving Inverse Problems in Mathematical Physics*, Marcel Dekker, New York, 2000.