1

Control Systems

G V V Sharma*

		Contents		9	Phase Margin 2
1	Signa	Signal Flow Graph		10	Oscillator 2
	1.1	Mason's Gain Formula	1		10.1 Introduction 2
	1.2	Matrix Formula	1		10.2 Example 2
2	Bode Plot		1	Ahs	tract—This manual is an introduction to control
	2.1	Introduction	1		is based on GATE problems.Links to sample Python
	2.2	Example	1		are available in the text.
3	Secon	Second order System		Do	wnload python codes using
	3.1	Damping	1	svn c	o https://github.com/gadepall/school/trunk/
	3.2	Example	1		ontrol/codes
	3.3	Settling Time	1		
4	Routh	n Hurwitz Criterion	2		
	4.1	Routh Array	2		1 Signal Flow Graph
	4.2	Marginal Stability	2 2	11λ	Aason's Gain Formula
	4.3	Stability			
	4.4	Example	2	1.2 N	Aatrix Formula
5	State-Space Model		2		2 Bode Plot
	5.1	Controllability and Observ-		2.1 In	ntroduction
		ability	2	2 2 E	xample
	5.2	Second Order System	2	2.2 E	
	5.3	Example	2		3 Second order System
	5.4	Example	2 2	31 Г	Damping
	5.5	Example	2		• •
6	Nyau	ist Plot	2	3.2 E	Example
	6.1	Introduction	2	3.3 S	ettling Time
	6.2	Example	2 :	3.3.1. I	Find the closed loop transfer function for the
		•		s.s.1. <u>1</u>	system in Fig. given that
7	_	pensators	2		
	7.1	Phase Lead	2		$G(s) = \frac{1}{s^2 + 2s} \tag{3.3.1.1}$
	7.2	Example	2		$s^2 + 2s$
8	Gain	Gain Margin			
	8.1	Introduction	2	r	$\int \int $
	8.2	Example	2		$k \rightarrow G(s)$
*Т	he author :	is with the Dengriment of Flactrical Engineer	ring		
*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail:					
gadar	all@iith ac	in All content in this manual is released under (THE		

Fig. 3.3.1

gadepall@iith.ac.in. All content in this manual is released under GNU

GPL. Free and open source.

Solution: The closed loop transfer function is

$$H(s) = \frac{kG(s)}{1 + kG(s)}$$
(3.3.1.2)

$$=\frac{k}{s^2+2s+k}\tag{3.3.1.3}$$

after substituting from (3.3.1.1).

3.3.2. Find the step response of the system.

Solution: The characteristics of the poles of transfer function describes the property of the transfer function.

Calculating poles:

$$s^{2} + 2s + k = 0$$

$$s = \frac{-2 \pm \sqrt{(-2)^{2} - 4(1)(k)}}{2(1)}$$
(3.3.2.2)

$$s = -1 \pm \sqrt{1 - k} \tag{3.3.2.3}$$

Calculating step response for a general damping system (3.3.1.3):

$$X(s) = \frac{1}{s} \tag{3.3.2.4}$$

$$Y(s) = H(s)X(s)$$
 (3.3.2.5)

$$= H(s)X(s)$$
 (3.3.2.5)
= $\frac{k}{s^2 + 2s + k} \frac{1}{s}$ (3.3.2.6)

$$= u(t) + \frac{k}{(2\sqrt{1-k})(-1+\sqrt{1-k})}e^{(-1+\sqrt{1-k})t}u(t)$$

$$+ \frac{k}{(2\sqrt{1-k})(1+\sqrt{1-k})}e^{(-1-\sqrt{1-k})t}u(t)$$

Over Damped System:

For the closed loop transfer function (3.3.1.3) to be Over damped system, poles should be Real and Distinct, this happens when k is less than 1.

Under Damped System:

For the closed loop transfer function (3.3.1.3) to be Under damped system, poles should be Complex and Conjugate, this happens when k is greater than 1.

For the closed loop transfer function (3.3.1.3) to be Critical damped system, poles should be Real at same location, this happens when k is 1.

(3.3.1.3) 3.3.3. Find steady state response using the final value theorem.

Solution:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$
 (3.3.3.1)

$$= \lim_{s \to 0} s \frac{k}{s^2 + 2s + k} \frac{1}{s}$$
 (3.3.3.2)

$$= \lim_{s \to 0} \frac{k}{s^2 + 2s + k} \tag{3.3.3.3}$$

$$=\frac{k}{k}=1$$
 (3.3.3.4)

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- **6** Nyquist Plot
- 6.1 Introduction
- 6.2 Example
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
- 10 Oscillator
- 10.1 Introduction
- 10.2 Example

Critical Damped System: