

## **Application Note: AN\_SY6982C**

### High Efficiency, 2A, Two-Cell Boost Li-Ion Battery Charger Preliminary Specification

### **General Description**

SY6982C is a 3.0- $5.5V_{IN}$ , 2A two-cell synchronous boost Li-Ion battery charger integrates 1MHz switching frequency and full protection functions. The charge current up to 2A can be programmed by using the external resistor for different portable applications and indicates the charger current information simultaneous. It also has a programmable charge timeout and adaptive input current limit with selectable threshold for safety battery charge operation. SY6982C can disconnect output when there is output short circuit or shutdown happens. It consists of 18V rating FETs with extremely low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

SY6982C along with small QFN3x3 footprint provides small PCB area application.

### **Ordering Information**



| Ordering Number | Package type | Note |
|-----------------|--------------|------|
| SY6982CQDC      | QFN3x3-16    |      |

#### **Features**

- Low Profile QFN3x3 Package for Portable Applications
- Integrated Synchronous Boost with 18V Rating Low R<sub>DSON</sub> FETs for High Charge Efficiency
- Trickle Current / Constant Current / Constant Voltage Charge Mode
- Adaptive Input Current Limit with selectable threshold
- Maximum 2A Constant Charge Current
- Charge Current Information Indication.
- Programmable Charge Timeout
- Programmable Constant Charge Current
- Constant Voltage Selectable
- Thermal Regulation Protection
- External Shutdown Function
- Input Voltage UVLO and OVP
- Over Temperature Protection
- Output Short Circuit Protection
- Charge Status Indication
- Normal Synchronous Boost Operation When Battery Removed

### **Applications**

- Cellular Telephones, PDA, MP3 Players, MP4 Players
- Digital Cameras
- Bluetooth Applications
- PSP Game Players, NDS Game Players
- Notebook

## Typical Applications



Figure 1. Schematic Diagram



# Pinout (top view)



Top Mark: **XX**xyz, (Device code: XX, x=year code, y=week code, z= lot number code)

| Name                         | ne Pin Number Description                                     |                                                                                                        |  |
|------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| LX                           | 14                                                            | Switch node pin. Connect to external inductor.                                                         |  |
| STAT                         | 1                                                             | Charge status indication pin. It is open drain output pin and pull high to S <sub>VIN</sub> thru a LED |  |
| SIAI                         | to indicate the charge                                        | to indicate the charge in process. When the charge is done, LED is off.                                |  |
|                              |                                                               | Analog power input pin. Connect a MLCC from this pin to ground to decouple high                        |  |
| SVIN                         | 16                                                            | harmonic noise. This pin has OVP and UVLO function to make the charger operate                         |  |
|                              |                                                               | within safe input voltage area.                                                                        |  |
| CV                           | 5                                                             | Battery CV voltage selection pin. Pull down for 8.4V cell voltage and pull up for 8.7V                 |  |
| CV                           | 3                                                             | cell voltage.                                                                                          |  |
|                              |                                                               | Adaptive input current limit setting Pin. Select the permitted maximum input voltage                   |  |
| ILIM                         | 6                                                             | drop to trigger the input current limit function. Pull high for 500mV voltage drop, pull               |  |
|                              |                                                               | low for 375mV, floating for 250mV.                                                                     |  |
|                              |                                                               | Charge time limit pin. Connect this pin with a capacitor to ground. Internal current source            |  |
| TIM                          | 3                                                             | charge the capacitor for charge time limit. TC charge time limit is about 1/10 of CC                   |  |
|                              |                                                               | charge time.                                                                                           |  |
|                              |                                                               | Charge current program pin, pull down to GND with a resistor R <sub>ICHG</sub> . The mirror current    |  |
| ICHG                         | 9                                                             | about 1/10000 of the blocking FET current will dump into the external resitor thru ICHG                |  |
| 10110                        |                                                               | pin and compared to the internal reverence 1V. So $I_{CC}$ =(1V/ $R_{ICHG}$ )x10000, $I_{TC}$ =(1V/    |  |
|                              |                                                               | R <sub>ICHG</sub> )x1000.                                                                              |  |
|                              |                                                               | Thermal protection pin. UTP threshold is typical 75% V <sub>SVIN</sub> and OTP threshold is typical    |  |
| NTC                          | 4                                                             | 25% V <sub>SVIN</sub> . Pull up to SVIN can disable charge logic and make the IC operate as normal     |  |
|                              |                                                               | boost regulator. Pull down to ground can shut down the IC.                                             |  |
| BAT 12 Battery positive pin. |                                                               |                                                                                                        |  |
| BST                          | Boost-Strap pin. Supply Rectified FET's gate driver. Decouple | Boost-Strap pin. Supply Rectified FET's gate driver. Decouple this pin to LX with 0.1uF                |  |
|                              |                                                               | ceramic cap.                                                                                           |  |
| BD                           | 10, 13                                                        | Connect to the Drain of internal Blocking FET. Bypass at least 4.7uF ceramic cap to                    |  |
|                              |                                                               | GND.                                                                                                   |  |
| EN                           | 7                                                             | Enable control pin. High logic for enable on, and low logic for enable off.                            |  |



| SYSRT | 2  | System ON/OFF control pin. When $V_{BAT}$ is lower than 6V, SYSRT pin outputs low logic to turn off the system operation; when $V_{BAT}$ is high than 6V, SYSRT pin outputs high logic to turn on the system operation. |
|-------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SGND  | 8  | Signal ground pin.                                                                                                                                                                                                      |
| PGND  | 15 | Power ground pin.                                                                                                                                                                                                       |



| Absolute Maximum Ratings                         |               |
|--------------------------------------------------|---------------|
| SVIN, BAT, LX, NTC, STAT, BD, EN, ICHG, CV, ILIM | 18V           |
| TIM                                              | 4V            |
| BST-LX Voltage                                   |               |
| LX Pin current continuous                        |               |
| Power Dissipation, PD @ TA = 25°C, QFN3X3        | TBD           |
| Package Thermal Resistance                       |               |
| $\theta_{	ext{ JA}}$                             | TBD           |
| $\theta_{ m JC}$                                 | TBD           |
| Junction Temperature Range                       |               |
| Lead Temperature (Soldering, 10 sec.)            | 260°C         |
| Storage Temperature Range                        | 65°C to 150°C |
| Recommended Operating Conditions                 |               |
| SVIN                                             | 3V to 5.5V    |
| BAT, LX, NTC, STAT, BD, EN, ICHG, CV, ILIM       |               |
| TIM                                              |               |
| LX Pin current continuous                        | 5A            |
| Junction Temperature Range                       | 40°C to 125°C |
| Ambient Temperature Range                        |               |



5

### **Electrical Characteristics**

 $(T_A=25^{\circ}C,\,V_{\text{IN}}=5V,\,GND=0V,\,C_{\text{IN}}=4.7uF,\,L=0.68uH,\,R_{\text{ICHG}}=10k\Omega,\,C_{\text{TIM}}=470nF,\,unless\,\,otherwise\,\,specified.)$ 

| Symbol                | Parameter                                                  | Conditions                                                          | Min Typ |      | Max  | Unit       |
|-----------------------|------------------------------------------------------------|---------------------------------------------------------------------|---------|------|------|------------|
| Bias Suppl            | y (V <sub>SVIN</sub> )                                     |                                                                     |         |      |      |            |
| V <sub>SVIN</sub>     | Supply voltage                                             |                                                                     | 3       |      | 16   | V          |
| V <sub>UVLO</sub>     | V <sub>SVIN</sub> under voltage lockout threshold          | $V_{SVIN}$ rising and measured from $V_{SVIN}$ to GND               |         |      | 2.9  | V          |
| $\Delta V_{\rm UVLO}$ | V <sub>SVIN</sub> under voltage lockout hysteresis         | Measured from V <sub>SVIN</sub> to GND                              |         | 100  |      | mV         |
| V <sub>OVP</sub>      | Input overvoltage protection                               | V <sub>SVIN</sub> rising and measured from V <sub>SVIN</sub> to GND | 6       |      |      | V          |
| $\Delta V_{OVP}$      | Input overvoltage protection hysteresis                    | Measured from V <sub>SVIN</sub> to GND                              |         | 0.5  |      | V          |
| Quiescent             | Current                                                    |                                                                     |         |      |      |            |
| $I_{BAT}$             | Battery discharge current                                  | Shutdown IC                                                         |         |      | 25   | uA         |
| $I_{IN}$              | Input quiescent current                                    | Disable Charge                                                      |         |      | 1.5  | mA         |
| Oscillator            | and PWM(TBD)                                               |                                                                     |         |      |      |            |
| $f_{SW}$              | Switching frequency                                        |                                                                     |         | 1000 |      | kHz        |
| T <sub>MINOFF</sub>   | Main N-FET minimum off time                                | With 16V rating                                                     |         | 100  |      | ns         |
| T <sub>MAXOFF</sub>   | Main N-FET maximum off time                                | With 16V rating                                                     |         | 30   |      | us         |
| T <sub>MINON</sub>    | Main N-FET minimum on time                                 | With 16V rating                                                     |         | 100  |      | ns         |
| Power MO              |                                                            |                                                                     |         | I I  |      |            |
| R <sub>NFET_M</sub>   | R <sub>DS(ON)</sub> of Main N-FET                          |                                                                     |         | 80   |      | mΩ         |
| R <sub>NFET_R</sub>   | R <sub>DS(ON)</sub> of Rectified N-FET                     |                                                                     |         | 40   |      | mΩ         |
| R <sub>NFET_B</sub>   | R <sub>DS(ON)</sub> of Blocking N-FET                      |                                                                     |         | 40   |      | mΩ         |
| Voltage Re            |                                                            |                                                                     |         | 1    |      |            |
| $V_{CV}$              | 2-Cell CV charge mode voltage                              | V <sub>CV</sub> <1V                                                 | 8.32    | 8.40 | 8.48 | V          |
| · CV                  |                                                            | $V_{CV}>2V$                                                         | 8.62    | 8.70 | 8.78 | ,          |
| $V_{CV1/2H}$          | High level logic for CV1/2                                 |                                                                     | 2       |      |      | V          |
| $V_{CV1/2L}$          | Low level logic for CV1/2                                  |                                                                     |         |      | 1    | V          |
| $\Delta V_{RCH}$      | 2-Cell Recharge Voltage                                    |                                                                     | 100     | 200  | 300  | mV         |
| $V_{TRK}$             | 2-cell TC charge mode battery voltage threshold            | V <sub>BAT</sub> rising edge threshold                              | 5.5     | 5.6  | 5.7  | V          |
| Battery Co            | nnect Detection                                            |                                                                     |         |      |      |            |
| $V_{\text{DET}}$      | NTC voltage threshold for Battery detect                   | NTC Falling Edge                                                    | 85%     |      | 95%  | $V_{SVIN}$ |
| $t_{DET}$             | Detect delay time                                          |                                                                     | 30      | 35   | 40   | ms         |
| Charge Cu             | rrent                                                      |                                                                     |         |      |      |            |
|                       | Internal charge current accuracy for Constant Current Mode | I <sub>CC</sub> =1000mA                                             | -10%    |      | 10%  |            |
|                       | Internal charge current accuracy for Trickle Current Mode  | I <sub>TC</sub> =100mA                                              | -50%    |      | 50%  |            |
| I <sub>TERM</sub>     | Termination current                                        | I <sub>CC</sub> =1000mA                                             | 50      | 100  | 150  | mA         |
| Output Vo             | ltage OVP                                                  |                                                                     |         |      |      |            |
| V <sub>OVP</sub>      | Output voltage OVP threshold                               |                                                                     | 105%    | 110% | 115% | $V_{CV}$   |
| Input Curi            | rent Limit                                                 |                                                                     |         | '    |      |            |
| -                     |                                                            | Float ILIM                                                          |         | 250  |      |            |
| $V_{DISSDRP}$         | Vin drop for slow CC REF                                   | Pull low ILIM                                                       |         | 375  |      | mV         |
|                       | discharge Voltage Threshold                                | Pull high ILIM                                                      |         | 500  |      |            |



| Δ V <sub>DISS</sub> |                                                                                           |                                       |       | 50   |            | mV                      |
|---------------------|-------------------------------------------------------------------------------------------|---------------------------------------|-------|------|------------|-------------------------|
| l I                 | V:- 4 f f CC DEE 4:1                                                                      | Float ILIM                            |       | 500  |            |                         |
|                     | Vin drop for fast CC REF discharge<br>Voltage Threshold                                   | Pull low ILIM                         |       | 750  |            | mV                      |
|                     | Voltage Threshold                                                                         | Pull high ILIM                        |       | 1000 |            |                         |
| $\Delta V_{DISF}$   | Fast Discharge Voltage Hysteresis                                                         |                                       |       | 50   |            | mV                      |
| Timer               |                                                                                           |                                       |       |      |            |                         |
| $T_{TC}$            | Trickle current charge timeout                                                            | $C_{TIM}$ =330nF                      | 0.425 | 0.5  | 0.575      | hour                    |
|                     | Constant current charge timeout                                                           | C <sub>TIM</sub> -330III              | 3.825 | 4.5  | 5.175      | hour                    |
| $T_{MC}$            | Charge mode change delay time                                                             |                                       |       | 30   |            | ms                      |
| T <sub>TERM</sub>   | Termination delay time                                                                    |                                       |       | 30   |            | ms                      |
| $T_{RCHG}$          | Recharge time delay                                                                       |                                       |       | 30   |            | ms                      |
|                     | it Protection                                                                             |                                       |       |      |            |                         |
| V <sub>SHORT</sub>  | Output short protection threshold                                                         |                                       | 1.70  | 2.00 | 2.30       | V                       |
| System ON/          | OFF Control                                                                               |                                       |       |      |            |                         |
| VIICVODT            | High logic of system ON/OFF control                                                       |                                       | 2.1   |      |            | V                       |
|                     | Low logic of system ON/OFF control                                                        |                                       |       |      | 0.6        | V                       |
|                     | Hysteresis for positive and negative edge                                                 |                                       |       | 100  |            | mV                      |
| Linear char         | ger Mode                                                                                  |                                       |       |      |            |                         |
|                     | Battery Charger current when the blocking FET is in linear mode                           | V <sub>BAT</sub> <v<sub>SHORT</v<sub> |       | 5%   |            | $I_{CC}$                |
| T DEL TE            | Peak linear current when Battery is absent                                                |                                       |       | 1    |            | A                       |
| $V_{\mathrm{BD}}$   | Bus voltage regulation                                                                    |                                       | 5.8   | 6    | 6.2        | V                       |
| V                   | Blocking FET fully turn on threshold V <sub>TRON</sub> =V <sub>BAT</sub> -V <sub>IN</sub> | $V_{\text{BAT}} > V_{\text{TRK}}$     |       | 100  |            | mV                      |
|                     | OFF Control                                                                               |                                       | l I   | · ·  | ll entered |                         |
| $V_{ENH}$           | High level logic for enable control                                                       |                                       | 1.5   |      |            | V                       |
|                     | Low level logic for enable control                                                        |                                       |       |      | 0.4        | V                       |
|                     | ermal Protection NTC                                                                      |                                       |       |      | <u>'</u>   |                         |
|                     | Under temperature protection                                                              |                                       | 70%   | 75%  | 80%        |                         |
| UTP                 | Under temperature protection                                                              | Falling edge                          |       | 5%   |            |                         |
|                     | hysteresis                                                                                | Talling edge                          |       | 370  | V          |                         |
|                     | Over temperature protection                                                               |                                       | 28%   | 30%  | 32%        | V <sub>SVIN</sub>       |
| _                   | Over temperature protection                                                               | Rising edge                           |       | 2%   |            |                         |
|                     | hysteresis                                                                                | Tubing cuge                           |       | 2/0  |            |                         |
|                     | gulation And Thermal shutdown                                                             |                                       |       |      |            |                         |
|                     | Thermal regulation threshold                                                              |                                       |       | 120  |            | $^{\circ}\! \mathbb{C}$ |
|                     | Thermal regulation hysteresis falling edge                                                |                                       |       | 20   |            | °C                      |
|                     | Thermal regulation fold back ratio                                                        |                                       |       | 0.25 |            | $I_{CC}$                |
|                     | Thermal shutdown temperature                                                              | Rising Threshold                      |       | 160  |            | °C                      |
| т                   | Thermal shutdown temperature hysteresis                                                   |                                       |       | 30   |            | °C                      |

**Note 1**: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



Note 2:  $\theta_{JA}$  is measured in the natural convection at  $T_A = 25^{\circ}C$  on a low effective four-layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3: The device is not guaranteed to function outside its operating conditions



**SY6982C** 

### **General Function Description**

SY6982C is a  $3.0-5.5 \, V_{IN}$ , 2A two-cell synchronous boost Li-Ion battery charger integrates 1MHz switching frequency and full protection functions. The charge current up to 2A can be programmed by using the external resistor for different portable applications and indicates the charger current information simultaneous. It also has a programmable charge timeout and adaptive input current limit for safety battery charge operation. SY6982C can disconnect output when there is output short circuit or shutdown happens. It consists of 18V rating FETs with extremely low ON resistance to achieve high charge efficiency and simple peripheral circuit design.

#### **Charging Status Indication Description**

- Charge-In-Process Pull and keep STAT pin to Low:
- 2. Charge Done Pull and keep STAT pin to High;
- 3. Fault Mode Output high and low voltage alternatively with 1.3Hz frequency. Connect a LED from SVIN to STAT pin, LED ON means Charge-in-Process, LED OFF means Charge Done, LED Flashing with 1.3HZ means Fault Mode.

# Switching Mode Boost Charger Basic Operation Description

#### **Switching Mode Control Strategy**

SY6982C is a switching mode Boost charger for the applications with USB power input. SY6982C utilizes quasi-fixed frequency constant OFF time control to simplify the internal close-loop compensation design. Slope compensation is not necessary for the stable operation. The quasi-fixed frequency settled at 1MHz is easy for the size minimization of peripheral circuit design. During the light load operation, when the output voltage of the internal error amplifier VC is lower than the minimum threshold 0.3V, the OFF time is going to be stretched to achieve frequency fold back.

#### **Operation Principle**

SY6982C can normally work with or without Li-Ion battery both.

#### **Battery Present**

Before SY6982C start-up,  $C_{BD}$  is charged by the battery thru the body diode of blocking FET, and  $V_{BD}$  equals to  $V_{BAT}$ .

If the plug in input voltage  $V_{IN}$  is higher than  $V_{BD} = V_{BAT}$ ,  $C_{BD}$  is charged by  $V_{IN}$  further thru the body diode of sync-FET. Under this condition, the Boost

charger operates in light load mode and regulates the  $V_{BD}$  at 6V and the blocking FET works in linear charge mode. If the  $V_{BAT}$  is lower than the internal short circuit threshold  $V_{SHORT}$ , the linear charge current is  $1/20~I_{CC}$ . When  $V_{BAT}$  is higher than  $V_{SHORT}$  but lower than the threshold of trickle charge, the linear charge current is 1/10~ of  $I_{CC}$ . Note that, charging current would not be increased to  $I_{CC}$  when the block FET operates in linear mode. With the increasing of  $V_{BAT}$ , when  $V_{BAT}$  is higher than both  $V_{IN}$  and  $V_{TRK}$  the blocking FET is fully turned on and the switching mode boost charger takes over the battery charging. The current in the blocking FET is mirrored to be as the charging current  $I_{CHG}$ . If  $V_{IN}$  is lower than  $V_{BD} = V_{BAT}$  at the plug in time, the switching mode boost charger starts work directly.

During the charging mode, constant (trickle) charging current loop is active first. When  $V_{BAT}$  equals to constant voltage threshold  $V_{CV}$ , constant voltage loop takes over and pull down the charging current. When  $I_{CHG}$  is lower than the termination current threshold  $I_{TERM}$ , the main FET of boost charger is turned off firstly. Sync-FET and blocking FETs are turned off together when the current is down to zero. Then, SY6982C is waiting for recharge mode.

#### **Battery Absent**

If there's no battery connection detected thru NTC pin, SY6982C operates as a normal switching mode boost converter. When  $V_{SVIN}$  is higher than UVLO threshold, the blocking FET is softly turned on. After the blocking FET fully turn-on, switching mode boost converter starts work. The internal current loop and voltage loop are active both.

#### **Basic Protection Principle**

SY6982C has fully battery charging protection. When the input over voltage protection, the output over voltage protection, the thermal protection or the timeout protection happens, the main FET of the boost charger is turned off immediately. The sync-FET and the blocking FET are turned off later when the current is down to zero. When the  $V_{\rm BAT}$  is lower than  $V_{\rm SHORT}$ , the short circuit protection happens. The main FET is turned off firstly. The block FET enters linear mode with 100mA charging current. When  $V_{\rm BAT}$  recovers back to be higher than  $V_{\rm SHORT}$ , the boost charger restarts to work at light load and regulates  $V_{\rm BD}$  at 6V. The linear charge current is increased from 100mA to be trickle current.

#### **Basic Adaptive Input Current Limit Principle**

SY6982C has adaptive input current limit function. Before the IC starts charging work, the input voltage is



## SY6982C

detected and saved as reference  $V_{\rm INREF}$ . Once IC starts to charge, the output charging current  $I_{\rm CHG}$  is ramped up softly and the  $V_{\rm IN}$  drop is monitored simultaneously. When the input voltage drop is larger than  $V_{\rm DISS}$  the output charging current reference  $I_{\rm CHGREF}$  starts to be discharged slowly and when the voltage drop is larger than  $V_{\rm DISF}$  the  $I_{\rm CHGREF}$  starts to be fast discharged. With the discharging of  $I_{\rm CHGREF}$ , the charging current is deceased and the  $V_{\rm IN}$  would recover back. Once the  $V_{\rm IN}$  recovers back into the normal range, the  $I_{\rm CHGREF}$  is kept

on the current value. The  $I_{CHGREF}$  would be decreased along with the increasing of output voltage to keep the input power at the maximum value. The internal digital machine state is built up to achieve this function.

#### **Constant Voltage Threshold Program Principle**

SY6982C can program the constant voltage threshold thru the CV pin. When  $V_{CV}$  is higher than 2V, the constant voltage threshold is 8.7V; when  $V_{CV}$  is lower than 1V, the constant voltage threshold is 8.4V.



### **Typical Performance Characteristics**

 $T_A$ =25°C,  $V_{IN}$ =5V,  $R_{RCH}$ =10k $\Omega$ , unless otherwise specified.









### **Applications Information**

Because of the high integration of SY6982C, the application circuit based on this regulator IC is rather simple. Only input capacitor  $C_{\text{IN}}$ , output capacitor  $C_{\text{OUT}}$ , inductor L, NTC resistors R1,R2 and timer capacitor  $C_{\text{TIM}}$  need to be selected for the targeted applications specifications.

#### NTC resistor:

SY6982C monitors battery temperature by measuring the input voltage and NTC voltage. The controller triggers the UTP or OTP when the rate K (K= $V_{\rm NTC}/V_{\rm SVIN}$ ) reaches the threshold of UTP (Kut) or OTP (Kot). The temperature sensing network is showed as below.

Choose R1 and R2 to program the proper UTP and OTP points.



The calculation steps are:

- 1. Define Kut,  $\bar{K}$ ut =70~80%
- 2. Define Kot, Kot = 28~32%
- 3. Assume the resistance of the battery NTC thermistor is Rut at UTP threshold and Rot at OTP threshold.
- 4. Calculate R2,

$$R2 = \frac{Kot(1 - Kut)Rut - Kut(1 - Kot)Rot}{Kut - Kot}$$

5. Calculate R1

$$R1 = (1/K_{OT} - 1)(R2 + R_{OT})$$

If choose the typical values  $K_{\rm UT}$  =75% and  $K_{\rm OT}{=}30\%$  , then

$$R2 = 0.17R_{UT} - 1.17R_{OT}$$
  
 $R1 = 2.3(R2 + R_{OT})$ 

#### Timer capacitor CTIM

The charger also provides a programmable charge timer. The charge time is programmed by the capacitor connected between the TIM pin and GND. The capacitance is given by the formula:

$$C_{\text{TIM}}=2*10^{-11}T_{\text{CC}}$$
 Unit:F

T<sub>CC</sub> is the target constant charge time, unit: s.

#### **Input capacitor CIN:**

The ripple current through input capacitor is greater than

$$I_{\text{CIN\_RMS}} = \frac{V_{\text{IN}} * (V_{\text{OUT}} - V_{\text{IN}})}{2\sqrt{3} * L * F_{\text{SW}} * V_{\text{OUT}}}$$

X5R or X7R ceramic capacitors with greater than 4.7uF capacitance are recommended to handle this ripple current.

#### Output capacitor C<sub>OUT</sub>:

The output capacitor is selected to handle the output ripple noise requirements. This ripple voltage is related to the capacitance and its equivalent series resistance (ESR). For the best performance, it is recommended to use X5R or better grade low ESR ceramic capacitor. The voltage rating of the output capacitor should be higher than the maximum output voltage. The minimum required capacitance can be calculated as:

$$C_{\text{OUT}} = \frac{I_{\text{CC*}}(V_{\text{OUT}} - V_{\text{IN}})}{F_{\text{SW}} \times V_{\text{OUT}} \times V_{\text{RIPPLE}}}$$

 $V_{\text{RIPPLE}}$  is the peak to peak output ripple,  $I_{\text{CC}}$  is the setting charge current.

For SY6982C, output capacitor is paralleled by  $C_{BD}$  and  $C_{BAT}$ , for smaller output ripple noise, each capacitor with greater than 10uF capacitance is recommended.

#### **Inductor L:**

There are several considerations in choosing this inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the average input current. The inductance is calculated as:

$$L = \left(\frac{V_{\text{IN}}}{V_{\text{OUT}}}\right)^2 \frac{(V_{\text{OUT}} - V_{\text{IN}})}{I_{\text{CC}} \times F_{\text{SW}} \times 40\%}$$

Where  $F_{SW}$  is the switching frequency and  $I_{CC}$  is the setting charge current.

The SY6982C is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.



 The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{SAT,MIN} > \left(\frac{V_{OUT}}{V_{IN}}\right) \times I_{CC} + \left(\frac{V_{IN}}{V_{OUT}}\right)^2 \frac{(V_{OUT} - V_{IN})}{2 \times F_{SW} \times L}$$

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<10mohm to achieve a good overall efficiency.

#### **Layout Design:**

The layout design of SY6982C regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC:  $C_{SVIN}$ , L,  $C_{BD}$ .

1) The loop of main MOSFET, rectifier diode, and  $C_{\rm BD}$  must be as short as possible



- 2) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance.
- 3) C<sub>SVIN</sub> must be close to pin SVIN and GND.
- 4) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.
- 5) The small signal component  $R_{\rm ICHG}$  must be placed close to IC and must not be adjacent to the LX net on the PCB layout to avoid the noise problem



## QFN3x3-16 FC Package Outline Drawing





**Top View** 

**Side View** 



**Bottom View** 

Notes: All dimension in MM and exclude mold flash & metal burr



## **Taping & Reel Specification**

### 1. Taping orientation





15

Feeding direction ----

### 2. Carrier Tape & Reel specification for packages



| Package<br>types | Tape<br>width<br>(mm) | Pocket<br>pitch(mm) | Reel size<br>(Inch) | Reel<br>width(mm) | Trailer<br>length(mm) | Leader length (mm) | Qty per<br>reel |
|------------------|-----------------------|---------------------|---------------------|-------------------|-----------------------|--------------------|-----------------|
| QFN3x3           | 12                    | 8                   | 13''                | 12.4              | 400                   | 400                | 5000            |

### 3. Others: NA