

数学实验与实践

MATLAB入门

数学类科技应用软件

- 1. 商业数学软件: MATLAB, Mathematica, Maple
- 2. 开源数学软件: Octave, Scilab, FreeMat, Python/sage

本次课主要内容

- 01 MATLAB简介;
- 02 MATLAB工作环境;
- 03 变量与函数;
- 04 数组;

- 05 矩阵;
- 06 MATLAB命令系统;
 - 07 MATLAB语言中的关系与逻辑运算;
- 08 MATLAB编程。

超过百万的工程师和科学家将 $MATLAB^{8}$ 应用于各行各业。拓展产品将为您的应用领域提供专业的工具支持。

您可以根据您的兴趣选择下列六种产品组合的30天免费试用。

下载试用软件,即刻体验正版。

选择您感兴趣的下列六种组合:

Data Analytics

计算金融

图像处理与计算机视觉

控制系统

信号处理与通信

计算生物

MATLAB的五大通用功能:

- 1. 数值计算功能(Numeric);
- 2. 符号计算功能(Symbolic);
- 3. 数据可视化功能(Graphic);
- 4. 数据图形文字统一处理功能(Notebook);
- 5. 建模仿真可视化功能(Simulink)。

MATLAB:

- 1. MATLAB 主包:数百个核心内部函数;
- 2. 各种可选Toolbox "工具包":

功能性工具包:扩充MATLAB的符号计算功能、图示建模仿真功能、文字处理功能、硬件适时交互功能;

学科性工具包: Control toolbox, Optimization toolbox,

它可用来求解各类学科的问题,包括:信号处理、图象处理、自动控制、系统识别、神经网络等问题。

MATLAB的主要特点:

- 1. 语言简洁紧凑,使用方便灵活,库函数极其丰富;
- 2. 运算符丰富;
- 3. 具有结构化的控制语句(如for循环、while循环、break语句和if 语句和面向对象编程的特性):
- 4. 语法限制不严格,程序设计自由度大;
- 5. 图形功能强大:

MATLAB的主要特点:

- 6. 功能强大的工具箱;
- 7. 源程序的开放性;

优点:功能强大;界面友善,语言自然;开放性强。

编程效率高、易学易用.

运行MATLAB的可执行文件,自动创建MATLAB指令窗(Command Window)。

初学者可在命令窗键入: >>demo 或 intro(入门演示)

指令不知如何使用时,可以使用help命令:

>>help sin

SIN Sine.

SIN(X) is the sine of the elements of X.

在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之后,并按入ENTER键即可。例如:

>> (10*19+2/4-34) /2*3

ans

= 234.7500

MATLAB可以自选计算结果的精度:

format short (默认格式) 小数点后4位

format long 15位数字表示

format short e 5位科学计数表示

format long e 15位科学计数表示

等等

练习: 自己测试上述命令: >>10000*230/7

↑↓ 二个游标键, 可将用过的指令叫回来重复使用

Ctrl+C: 中止执行中的计算进程

关闭MATLAB:

- 1. Exit
- 2. Quit
- 3. 直接关闭命令视窗(Command window)

1. 变量

MATLAB中变量的命名规则是:

- (1) 不含空格的单个词;
- (2) 区分大小写;
- (3) 最多不超过19个字符;
- (4) 必须以字母打头,之后可以是任意字母、数字或下划线, 不允许使用标点符号.
 - >>syms A123, a123
 - >>syms fish_123

系统预定义的变量

ans	预设的计算结果的变量名
eps	默认时表示1的精度eps(1)=2^(-52)=2.2204e-16
pi	内建的π值
inf	∞值, 无限大(1/0)
NaN	无法定义一个数目(0/0)
i 或 j	虚数单位i=j=(-1)^(1/2)

而键入clear则是清除所有定义过的变量名称。

2. 数学运算符号及标点符号

+	数字、同阶矩阵相加.
_	减法运算
*	乘法运算
.*	点乘运算
/	除法运算
./	点除运算
^	乘幂运算
. ^	点乘幂运算
\	反斜杠表示左除.

```
练习: >>3+7
>>3+7,
>>3+7;
>>3.*7, 3/7, 3./7, 3\7
```

- (1) 每条命令后加逗号或无标点符号,则显示输出结果;若命令后为分号,则暂不显示结果.
- (2) "%"后面所有文字为注释.
- (3) "....."表示续行.

2. 数学运算符号及标点符号

+	加法运算,适用于两个数或两个同阶矩阵相加.
_	减法运算
*	乘法运算
.*	点乘运算 向量计算
/	除法运算
./	点除运算 向量计算
^	乘幂运算
. ^	点乘幂运算 向量计算
\	反斜杠表示左除.

a=0, b=2, c=8 A=[1, 2], B=[2, 4]

练习: 尝试上述运算符

3. 数学函数

三角函数和双曲函数

名称	含义	名称	含义	名称	含义
sin	正弦	csc	余割	atanh	反双曲正切
cos	余弦	asec	反正割	acoth	反双曲余切
tan	正切	acsc	反余割	sech	双曲正割
cot	余切	sinh	双曲正弦	csch	双曲余割
asin	反正弦	cosh	双曲余弦	asech	反双曲正割
acos	反余弦	tanh	双曲正切	acsch	反双曲余割
atan	反正切	coth	双曲余切		
acot	反余切	asinh	反双曲正弦		
sec	正割	acosh	反双曲余弦		

3. 数学函数

指数函数

名称	含义	名称	含义	名称	含义
exp	e为底的指数	log10	10为底的对数	pow2	2的幂
log	自然对数	log2	2为底的对数	sqrt	平方根

复数函数

名称	含义	名称	含义	名称	含义
abs	绝对值	conj	复数共轭	real	复数实部
angle	相角	imag	复数虚部		

3. 数学函数

取整函数和求余函数

名称	含义	名称	含义
ceil	向+∞取整	rem	求余数
fix	向0取整	round	向靠近整数取整
floor	向-∞取整	sign	符号函数
mod	模除求余		

了解详情可以用: HELP 函数名

3. 数学函数

矩阵变换函数

名称	含义	名称	含义
fliplr	矩阵左右翻转	diag	产生或提取对角阵
flipud	矩阵上下翻转	tril	产生下三角
flipdim	矩阵特定维翻转	triu	产生上三角
Rot90	矩阵反时针90翻转		

3. 数学函数

其他函数 (更多信息请查阅MATLAB手册)

名称	含义	名称	含义
min	最小值	max	最大值
mean	平均值	median	中位数
std	标准差	diff	相邻元素的差
sort	排序	length	个数
norm	欧式范数	sum	总和
prod	总乘积	dot	内积
cumsum	累计元素总和	cumprod	累计元素总乘积
cross	外积		

3. 数学函数

可查阅在线帮助helpwin中MATLAB\elfun或help elfun。

4. m文件

为MATLAB定义新函数,必须编写函数文件.函数文件是文件名后缀为m的文件.

m文件建立方法:

- 1. 在MATLAB中, 点: File->New->M-file
- 2. 在编辑窗口中输入程序内容
- 3. 点: File->Save, 存盘, m文件名最好与函数名一致。

m文件格式: 开头第一行应为 function 因变量名 = 函数名(自变量名) 具体运算获得函数值, 并赋给因变量.

新版MATLAB增加了一些功能,此处不做介绍。

例: 定义函数 f(x)=3x+sinx-6lnx

1. 建立并保存M文件: fun.m

function f=fun(x)

f=3*x+sin(x)-6*log(x)

2. 直接使用函数 fun.m

例如: 计算 f(7), 只需在MATLAB命令窗口键入命令: fun(7)

或者: >> x=7; fun(x)

练习1: 定义函数
$$f(x) = \frac{\sqrt{e^x + x^2}}{\ln x + \sin x}$$
, 并计算 $f(4)$

- 建立并保存m文件: fun.m
 function f=fun(x)
 f=sqrt(exp(x)+x^2)/(log(x)+sin(x))
- 直接使用函数 fun.m
 >>fun(4)
 或者 >>x=4; fun(x)

1. 创建简单的数组

MATLAB的运算事实上是以数组(array)及矩阵(matrix)方式在做运算。

x=[abcdef];创建包含指定元素的行向量

>>x=[12345678]; %一维1×8阵列

>>x=[12345678;4567891011]; %二维2×8矩阵,以; 表示分行

2. 建立等距数组

定义一串等距数组,可采用以下的方式:

x=first: last 比如: x=1: 100

创建从first开始,加1计数,到last结束的行向量

x=first:increment:last

创建始于first, 步长increment, 终于last的向量

>>x=0:0.02:1 %起始值=0、增量值=0.02、终止值=1的向量

>>x=0:0.02:1; %不想立即输出结果,末尾添加分号

2. 建立等距数组

定义一串等距数组,可采用以下的方式:

x=linspace (first, last, n) 对从first到last的区间做n-1等分,取其端点为行向量

>>x=linspace(0, 1, 10); %对区间[0, 1]进行9等分, 取其10个端点为行向量

- 练习2: 1. 如何生成向量[0, 0.01, 0.02, 0.03, ..., 1]?
 - 2. 如何得到将区间[3,5]做100等分的端点?
 - 3. x=linspace(0, 100, 100)得到一个多少维向量?

四 数 组

3. 数组的方向

行向量与列向量,

产生列向量有两种方法: 直接产生 例 C=[1;2;3;4]

转置产生 例 B=[1234]; C=B'

说明:以空格或逗号分隔的元素指定的是不同列的元素,而以分号分隔的元素指定了不同行的元素.

4. 数组的运算

(1) 标量-数组运算

数组对标量的加、减、乘、除、乘方是数组的每个元素对该标量施加相应的加、减、乘、除、乘方运算.

设: $a=[a_1, a_2, ..., a_n], c=标量$ 则: $a+c=[a_1+c, a_2+c, ..., a_n+c]$ $a.*c=[a_1*c, a_2*c, ..., a_n*c]$ $a./c=[a_1/c, a_2/c, ..., a_n/c]$ (右除)

 $a.\c=[c/a_1, c/a_2, ..., c/a_n]$ (左除)

 $a.^c=[a_1^c, a_2^c, ..., a_n^c]$

 $c.^{a}=[c^{a_1}, c^{a_2}, ..., c^{a_n}]$

练习3:

a=[1, 2, 3, 4], c=2验证各种运算.

(2) 数组-数组运算

当两个数组有相同维数时,加、减、乘、除、幂运算可按元素对元素方式进行的.

不同维数的数组不能进行运算.

设:
$$a=[a_1, a_2, ..., a_n], b=[b_1, b_2, ..., b_n]$$
 $a+b=[a_1+b_1, a_2+b_2, ..., a_n+b_n]$
 $a.*b=[a_1*b_1, a_2*b_2, ..., a_n*b_n]$
 $a./b=[a_1/b_1, a_2/b_2, ..., a_n/b_n]$
 $a.\b=[b_1/a_1, b_2/a_2, ..., b_n/a_n]$
 $a.\b=[a_1^b_1, a_2^b_2, ..., a_n^b_n]$

练习4:

a=[2 2 2], b=[3 3 3] 测 试上述运算.

```
a+b=[a_1+b_1, a_2+b_2, ..., a_n+b_n]
a.*b=[a_1*b_1, a_2*b_2, ..., a_n*b_n]
a./b=[a_1/b_1, a_2/b_2, ..., a_n/b_n]
a.\b=[b_1/a_1, b_2/a_2, ..., b_n/a_n]
a.^b=[a_1^b_1, a_2^b_2, ..., a_n^b_n]
```

五 矩 阵

1. 矩阵的建立

逗号或空格用于分隔某一行的元素,分号用于区分不同的行.除了分号,在输入矩阵时,按Enter键也表示开始一新行.输入矩阵时,严格要求所有行有相同的列

例 m=[1 2 3 4; 5 6 7 8; 9 10 11 12]

 $p=[1\ 1\ 1\ 1$

2 2 2 2

3 3 3 3]

五 矩 阵

特殊矩阵的建立:

a=[] 产生一个空矩阵, 当对一项操作无结果时, 返回空矩阵, 空矩阵的大小为零.

b=zeros(m, n) 产生一个m行、n列的零矩阵

c=ones(m, n) 产生一个m行、n列的1矩阵

d=eye(m, n) 产生一个m行、n列的单位矩阵

五 矩 阵

测试几次该命令,总结其规律.

- 2. 矩阵中元素的操作
 - (1) A(r,:)— 提取矩阵A的第r行;
 - (2) A(:, r)— 提取矩阵A的第r列;
 - (3) A(:) 一 依次提取A的每一列, 做成长列向量;

例: A=[1 2 3

4 5 6

789]

分别验证上述命令.

- 2. 矩阵中元素的操作
- (4) A(i:j, m:n)— 提取A位于i~j行和m~n列组成新矩阵;
- (5) A(j:-1:i,:)— 逆序提取A的i~j行构成新矩阵;
- (6) A(:, n:-1:m)— 以逆序提取矩阵A的第m~n列,构成新矩阵;

例: A=[1 2 3

4 5 6

789] 验证上述命令.

- 2. 矩阵中元素的操作
 - (7) A(i:j,:)=[] 删除i~j行, 剩余元素构成新矩阵;
 - (8) A(:, m:n)=[] 删除m~n列, 剩余元素构成新矩阵;
 - (9) [AB]或[A; B] 将A, B拼接成新矩阵, 前者左右拼, 后者上下拼.

例: A=[1 2 3;4 5 6;7 8 9] B=[0 0 0;1 1 1;2 2 2] 验证上述命令.

$$A = [1 \ 2 \ 3; 4 \ 5 \ 6; 7 \ 8 \ 9]$$
 $A1 = A (2, :)$
 $A2 = A (:, 2)$
 $A3 = A (:)$
 $A4 = A (1:2, 2:3)$

$$A = 1 2 3$$

$$4 5 6$$

$$7 8 9$$

$$A1 = 4 5 6$$

$$4$$

$$7 A2 = 2$$

$$2 5$$

$$8$$

$$8$$

$$8$$

$$3 A4 = 2 3$$

$$6 5 6$$

$$A = [1 \ 2 \ 3$$
 $4 \ 5 \ 6$
 $7 \ 8 \ 9]$
 $A5 = A \ (2:-1:1, :)$
 $A6 = A \ (:, 3:-1:2)$
 $A7 = A; A7 \ (1:2, :) = []$

$$A5 = 4 5 6$$
 $1 2 3$
 $A6 = 3 2$
 $6 5$
 $9 8$
 $A7 = 7 8 9$

$$A8 = 2 3$$
 $5 6$
 $8 9$
 $A9 = 1 2 3 2$
 $4 5 6 5$
 $7 8 9 8$
 $A10 = 1 2 3$
 $4 5 6$
 $7 8 9$
 $4 5 6$

- 3. 矩阵的运算
 - (1) 标量-矩阵运算 同标量-数组运算。
 - (2) 矩阵-矩阵运算

[1]元素对元素的运算,同数组-数组运算。

相应运算有意义: A.*B, A./B, A.\B, A.^B

练习5: 计算a.*b和a*b, a./b和a/b, a.^b和a^b.

$$\rightarrow$$
 >> A=[1, 2, 3, 4,; 5, 6, 7, 8; 2, 3, 2, 6]

$$>> B=[1, 6, 4, 9; 1, 2, 1, 5; 0, 4, 6, 2,]$$

- >> a*b
- **???** Error using ==> *

Inner matrix dimensions must agree.

[2]矩阵运算:

矩阵加法: A+B

矩阵乘法: A*B 注意: 矩阵乘法A*B与A.*B意义不同

方阵的行列式: det(A) %determinant

方阵的逆: inv(A) %inverse

$$a = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 $b = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ $c = \begin{bmatrix} 2 & 7 & 3; 3 & 9 & 4; 1 & 5 & 3 \end{bmatrix}$

计算: a+a, a*b, det(c), inv(c)

$$c1 = 2 \quad 4 \quad 6$$

$$8 \quad 10 \quad 12$$

$$c2 = 6 \quad 12$$

$$15 \quad 30$$

$$c = 2 \quad 7 \quad 3$$

$$3 \quad 9 \quad 4$$

$$1 \quad 5 \quad 3$$

$$c3 = -3$$

练习6:

- 1. 生成8*8随机矩阵A, 生成元素全是2的4*6矩阵B;
- 2. 提取A的2-5行、4-7列, 做成矩阵C;
- 3. 提取B的前4列, 做成矩阵D;
- 4. 分别计算C.*D和C*D, C./D和C/D;
- 5. 计算C.*D的行列式, C*D的逆矩阵。

六 MATLAB命令系统

命令	含义
help	在线帮助
helpwin	在线帮助窗口
helpdesk	在线帮助工作台
demo	运行演示程序
ver	版本信息
readme	显示Readme文件
who	显示当前变量
whos	显示当前变量的详细信息
clear	清空工作间的变量和函数

六 MATLAB命令系统

命令	含义
pack	整理工作间的内存
load	把文件调入变量到工作间
save	把变量存入文件中
quit/exit	退出MATLAB
what	显示指定的MATLAB文件
lookfor	在HELP里搜索关键字
which	定位函数或文件
path	获取或设置搜索路径
echo	命令回显
cd	改变当前的工作目录

六 MATLAB命令系统

命令	含 义
pwd	显示当前的工作目录
dir	显示目录内容
unix	执行unix命令
dos	执行dos命令
!	执行操作系统命令
computer	显示计算机类型

可查阅在线帮助helpwin中MATLAB\general或help general。

七 MATLAB语言中的关系与逻辑运算

关系运算

指令	含义
<	小于
<=	小于等于
>	大于
>=	大于等于
==	等于
~=	不等于

七 MATLAB语言中的关系与逻辑运算

>>A=1: 2: 11;

>>B=2: 1: 7;

测试:

>>A>B

>>A>A==B

>>A>=B

MATLAB语言中的关系与逻辑运算 七

>>A=1: 2: 11; >>B=2: 1: 7;

>>A>B%判断关系是否成立 ANS = 0 0 1 1 1 1

$$A=[1, 3, 5, 7, 9, 11]$$

 A=[1, 3, 5, 7, 9, 11]
 >>A==B%不成立则输出0

 B=[2, 3, 4, 5, 6, 7]
 ANS = 0 1 0 0 0

→ >>A>=B%成立则输出1 ANS = 0 1 1 1 1 1

七 MATLAB语言中的关系与逻辑运算

逻辑运算

指令	含 义
&	逻辑 and
	逻辑 or
~	逻辑 not

七 MATLAB语言中的关系与逻辑运算

逻辑关系函数

指令	具体用法,可以调用帮助查看: help XXXX
xor	不相同就取1,否则取0
any	只要有非0就取1,否则取0
all	全为1取1, 否则为0
isnan	为数NaN取1, 否则为0
isinf	为数inf取1,否则为0
isfinite	有限大小元素取1,否则为0
ischar	是字符串取1, 否则为0
isequal	相等取1,否则取0
ismember	两个矩阵是属于关系取1,否则取0
isempty	矩阵为空取1, 否则取0
isletter	是字母取1,否则取0(可以是字符串)
isstudent	学生版取1
isprime	质数取1, 否则取0
isreal	实数取1, 否则取0
isspace	空格位置取1,否则取0

MATLAB提供如下几种控制流结构:

For循环, While循环, If-Else-End结构和switch-case-end结构。

这些结构经常包含大量的MATLAB命令,故经常出现在

MATLAB程序中,而不是直接加在MATLAB提示符下.

1. For循环

For循环允许一条语句或一组语句被重复执行预先指定的次数。For循环的一般形式是:

for x =array 语句

end

在for和end语句之间的语句,按数组中的每一个数字执行一次。 在每一次迭代中,x被指定为数组的下一个。

在for和end之间的语句,按数组中的每一个数字执行一次。 每次执行,x被指定为数组的下一个。

例: 对于n=1, 2, ..., 10, 求 $x_n = \sin \frac{n\pi}{10}$ 的值.

```
for n=1:10
x(n)=sin(n*pi/10);
end
```

X

>>

```
x= \\ 0.3090 \quad 0.5878 \quad 0.8090 \quad 0.9511 \quad 1.0000 \quad 0.9511 \\ 0.8090 \quad 0.5878 \quad 0.3090 \quad 0.0000
```

sum

例 求1+2+…+100的和。

练习: 求和: $\sum_{k=1}^{10} \sin \frac{\pi}{k}$

例 设计一个九九乘法表。

```
clear %清除内存中保留的变量
for i=1: 9;
for j=1:9
a(i, j)=i*j; %定义矩阵, 元素为两两数字乘积
end
end
a
```

a=32 36

注意:

- ❖ 在For循环内接受任何有效的MATLAB数组;
- ❖ For循环可按需要嵌套;
- ❖ 当有一个等效的数组方法来解给定的问题时,应避免用 For循环。

2. While循环

与For循环以固定次数求一组命令的值相反,While循环通过逻辑判断来决定重复执行一组语句的次数。While循环的一般形式是: while 表达式1 语句1

end

只要表达式1里的所有元素为真,就执行while和end之间的语句1,否则,就结束循环。

例 设银行年利率为11.25%。将10000元钱存入银行,问多长时间会连本带利翻一番?

练习: n取多少时, $\sum_{k=1}^{n} \frac{1}{k} > 10$?

例 设计一个九九乘法表。

```
clear %清除内存中保留的变量
for i=1:9;
for j=1:9
a(i, j)=i*j; %定义矩阵,元素为两两数字乘积
end
end
a
```

自己考虑:

- 1. 挑出乘法表中大于20的数字
- 2. 挑出乘法表中的偶数

例 求1-100的偶数和。

```
clear
x=0;
sum=0;
while x<101
sum=sum+x;
x=x+2;
end
sum %显示结果
```

练习: 求1-100的奇数和。

3. If-else-end 结构

很多情况下,命令的序列必须根据关系的检验有条件地执行。 在编程语言里,这种逻辑由某种if-else-end结构来提供。

最简单的 if-else-end 结构是: if 表达式1

语句1

end

如果在表达式1中的所有元素为真,就执行if和end语言之间的语句1。

例: 设
$$f(x) = \begin{cases} x^2+1, x>1 \\ 2x, x \le 1 \end{cases}$$
, 求 $f(2), f(-1)$. 建立fun1.m, 求fun1(2), fun1(-1)。

```
function f=fun1(x)

if x>1

    f=x^2+1

end

if x<=1
    f=2*x

end
```

例: 对函数
$$y = \begin{cases} 0, x \le 0 \\ x, 0 < x \le 1 \end{cases}$$
, 编写m文件使之可以计算任何函数值 $1, x > 1$.

练习:编写m文件,使之输入x可以输出下面函数值: $y = \begin{cases} 2\sin x + 1, & x > \pi \\ 3\ln(2 + \sin x), & \pi \ge x > -\pi \\ 1 + x^3, & x \le -\pi \end{cases}$ 并计算 $\sum_{n=-10}^{10} y(\frac{n\pi}{4})$

假如有两个选择, if-else-end结构是: if 表达式1 语句1 else 语句2 end

在这里,如果表达式1为真,则执行语句1;如果表达式是假,则执行语句2。

当有三个或更多的选择时, if-else-end结构采用形式

if 表达式1

语句1

elseif 表达式2

语句2

elseif 表达式3

语句3

elseif 表达式4

语句4

elseif ·····

else

语句

end

例: 设
$$f(x) = \begin{cases} x^2 + 1, x > 1 \\ 2x, 0 < x \le 1 \end{cases}$$
, 编写m文件并计算f(2), f(0.5), f(-1).
$$x^3, x \le 0$$
 function f=fun3(x) if x>1
$$f=x^2 + 1$$
 else if x<=0
$$f=x^3$$
 else

end

实验作业

- 1. 用起泡法对10个数由小到大排序,即将相邻两个数比较,将小的调到前头;
- 2. 有一个4×5矩阵, 编程求出其最大值及其所处的位置;
- 3. 编程求 ∑n!;
- 4. 一球从100米高度自由落下,每次落地后跳回原高度的一半,再落下,求它在第10次落地时,共经过多少米?第十次反弹有多高?
- 5. 求函数 $f(x, y)=x^2+\sin xy+2y$, 写一程序, 输入自变量的值, 输出函数值.
- 6. 按下面的公式计算 $e=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!}+...$ 使误差小于给定的 ε