Topologia Diferencial

1 Aula 1

Função suave. Espaço tangente.

2 Aula 2

2.1 Lembre

Dada uma variedade suave M. Definimos como velocidades de curvas ou como derivações: T_pM é um espaço vetorial de dimensão n, onde para $p \in U$, (U, ϕ) carta, $\phi = (x^1, \dots, x^n)$

com base
$$\left\{ \frac{\partial}{\partial x_1} \Big|_{p}, \dots, \frac{\partial}{\partial x^n} \Big|_{p} \right\}$$
. O *espaço cotangente* é

$$T_{\mathfrak{p}}^*M=(T_{\mathfrak{p}}M)^*=\text{Hom}(T_{\mathfrak{p}}M,\mathbb{R}).$$

A base dual é $\{dx^1|_p, \dots, dx^n|_p\}$ dada por

$$dx^{i}|_{p} = \left(\frac{\partial}{\partial x^{j}}\right)\Big|_{p} = \delta^{j}_{i} = \begin{cases} 1 & \text{se } i = j\\ 0 & \text{se não} \end{cases}$$

e ai extendemos por linearidade a todos os demais covetores.

Remark Note que mudando de carta a gente muda de base—não tem uma base canônica do espaço cotantente.

2.2 Fórmula de mudança de bases

Fórmula de mudança de bases (Exercício) $(U,\phi),(V,\psi),p\in U\cap V,\,\phi=(x^1,\ldots,x^n,\,\psi(y^1,\ldots,y^n\text{ com bases})$

$$\left\{ \frac{\partial}{\partial x_1} \Big|_{p}, \dots, \frac{\partial}{\partial x^n} \Big|_{p} \right\}, \qquad \left\{ \frac{\partial}{\partial y_1} \Big|_{p}, \dots, \frac{\partial}{\partial y^n} \Big|_{p} \right\},$$

mostre que

$$\frac{\partial}{\partial x^{j}} = \sum_{i=1}^{n} \frac{\partial y^{i}}{\partial x^{j}} \frac{\partial}{\partial y^{i}}$$

2.3 Fibrado tangente

M variedade,

$$TM := \bigsqcup_{p \in M} T_p M.$$

Note que para toda carta (U, ϕ) existe uma bijeção

$$\begin{split} \varphi^{-1}: U \times \mathbb{R}^n &\longrightarrow \pi^{-1}(U) \\ \left(p, (\nu_1, \dots, \nu_n)\right) &\longmapsto \sum_{i=1}^n \nu_i \frac{\partial}{\partial x^i} \end{split}$$

usando essa bijeção, topologizamos TM. Mas ainda, induz uma estrutura de variedade topológica com cartas dadas pelas φ. Mas exatamente, as cartas são

$$\begin{split} \varphi_{(U,\phi)} : & \pi^{-1}(U) \longrightarrow \phi(U) \times \mathbb{R}^n \subset \mathbb{R}^{2n} \\ & \sum \nu_i \frac{\partial}{\partial x^i} \bigg|_p \longmapsto \Big(\phi(p), (\nu_i)\Big) \end{split}$$

e a mudança de coordenadas também é C^{∞} , i.e. esa estrutura é diferenciável.

Remark Se variedade é C^k , o fibrado tangente é C^{k-1} .

A gente vai fazer isso mesmo com o fibrado cotangente:

$$T^*M = \bigsqcup_{p \in M} T_p^*M.$$

O mesmo procedimento mostra que T^*M é uma C^{∞} -variedade de dimensão 2n.

Remark Para todo $p \in M$ existe $U \ni p$ vizinhança tal que $\pi_1(U) \cong U \times \mathbb{R}^n$. Mas $TM \not\cong M \times \mathbb{R}^n$ em geral; nesse caso dizemos que M é *paralelizável*.

Casos onde $TM \cong M \times \mathbb{R}^n$

- 1. $M \cong \mathbb{R}^n$, $TM \cong \mathbb{R}^n \times \mathbb{R}^n$.
- 2. $M = S^1, TS^1 \cong S^1 \times \mathbb{R}$.
- 3. M 3-variedade orientável, então TM \cong M \times \mathbb{R}^3 . (Difícil mas verdadeiro.) **Hint.** Usando quaternios não é difícil obter uma base global.

2.4 Imersões e mergulhos

Até agora definimos funções suaves, mas não o que é a diferencial delas.

Definition M, N variedades suaves e $f: M \rightarrow N$ suave. A *derivada de* $f \notin M$

$$Df_p: T_pM \to T_{f(p)}N$$
,

uma aplicacão linear que pode ser definida usando a definição do espaço tangente de curvas ou de derivações. Se pensamos que ν é uma clase de equivalência de curvas, $Df_p[\gamma] = [f \circ \gamma]$. Se $\nu : C^{\infty}(M) \to \mathbb{R}$ é uma derivação, a definição é o pus rward

$$\begin{aligned} Df_p\nu : C^\infty(N) &\longrightarrow \mathbb{R} \\ (Df_p\nu)g &\longmapsto \nu(g\circ f). \end{aligned}$$

Tem outra forma de definir, que usando cartas coordenadas, onde Df_p está dada como uma matriz em termos das bases locais: em cartas $(U,\phi),(V,\psi)$ de p e f(p), $\phi=(x^1,\ldots,x^n)$ e $\psi=(y^1,\ldots,y^n)$. A notação fica

$$\mathrm{Df}_{\mathrm{p}}\left(\frac{\partial}{\partial x^{\mathrm{j}}}|_{\mathrm{p}}\right) = \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial f_{\mathrm{i}}}{\partial x^{\mathrm{j}}}|_{\mathrm{p}} \frac{\partial}{\partial y^{\mathrm{i}}}|_{f(\mathrm{p})}$$

onde $\frac{\partial f_i}{\partial x^j}$ é definida como

$$D(\psi \circ f \circ \phi^{-1})_{ij} = \frac{\partial}{\partial x^j} (\psi \circ \phi \circ \phi^{-1})$$

Definition (Imersão) Seja $f: M \to N$ uma função suave. $f \in \text{uma } imersão \ em \ p \ se \ a derivada <math>Df_p \in \text{injetiva}$. $f \in \text{uma } submersão \ em \ p \ se \ Df_p \in \text{sobrejetiva}$. $f \in \text{um } mergulho$ se $f \in \text{uma } mergulho \ se \in \text{uma } mersão \ injetiva \ tom \ inversa \ g: <math>f(M) \to M$ contínua.

Example O exemplo mas fácil é o caso das incusões em variedades produto:

$$M \longrightarrow M \times N$$
$$p \longmapsto (p,q)$$

E as projecões:

$$M \times N \longrightarrow M$$
 $(p,q) \longmapsto p$

Outros exemplos de submersões são as projeções dos fibrados tangente e cotangente.

Para ver por que na definição de mergulho pedimos que a inversa seja contínua, considere o seguinte contraexemplo: $\mathbb{R} \to \mathbb{R}^2$ uma curva que tem um ponto límite demais: a topologia no domínio é uma linha, mas a topologia no contradomínio e de um outro espaço, mas f é um mergulho injetivo! A inversa de f não é contínua (não manda limites em limites).

Remark Se $f: M \to N$ é um mergulho, então f(M) herda uma estrutura de variedade diferenciável e f é um difeomorfismo entre M e f(M).

Upshot Merhulo são as treis condições que precisamos para que a imagem de f(M) tenha estrutura diferenciável e f um difeomorphismo entre M e f(M). O lance é usar o teorema da função inversa. f(M) é chamada de uma *subvariedade* de N.

Uma definição alternativa de *subvariedade* é que para cada ponto $p \in Q \subset M$, Q subespaço topológico, existe uma carta de N tal que $\phi(U \cap Q) = \mathbb{R}^k$. (Misha's). Tem uma terceira definição: Q é a imagem de um mergulho; para isso pode usar a inclusão como o mergulho. In Misha's handouts:

Exercise 2.23 Let N_1 , N_2 be two manifolds and let $\varphi_i : N_i \to M$ be smooth embeddings. Suppose that the image of N_1 coincides with that of N_2 . Show that N_1 and N_2 are isomorphic.

Remark 2.10 By the above problem, in order to define a smooth structure on N, it sufficies to embed N into \mathbb{R}^n . As it will be clear in the next handout, every manifold is embeddable into \mathbb{R}^n (assuming it admits partition of unity). Therefore, in place of a smooth manifold, we can use "manifolds that are smoothly embedded into \mathbb{R}^n ".

Notação Se $f: M \to N$ é uma imersão escrevemos $M \xrightarrow{\circ} N$, se é mergulho $M \hookrightarrow N$ e se é submersão $f: M \twoheadrightarrow N$.

Uma subvariedade imersa é a imagem de uma imersão (que pode nem ser variedade...)

Remark $Q \subset M$ subvariedade, então existe uma inclusão natural $T_q Q \subset T_q M$ (linear injetiva) para todo $q \in Q$. Claro, a derivada da inclusão $\iota: Q \to M$, i.e. $D\iota_q: T_q Q \to T_q M$.

kj Dado $q \in Q$, existe (U, ϕ) carta de M tal que $\phi|_{U \cap Q}$ é uma carta de Q, é só botar a base $\left\{ \frac{\partial}{\partial x_1} \Big|_p, \ldots, \frac{\partial}{\partial x^n} \Big|_p \right\}$ dentro da base de M.

Valores regulares

Definition Seja f : M → N C^{∞} , um ponto y ∈ N é dito *valor regular* se f é uma submersão em x para todo x ∈ f⁻¹(y) i.e. Df_x é sobrejetiva para todo x ∈ f⁻¹(y).

Theorem (Do valor regular) Se y é um valor regular de f, então $f^{-1}(y)$ é uma subvariedade de M de dimensão dim $M-\dim N$. (Se $f^{-1}(y)\neq\varnothing$.)

Remark Isso é só outra encarnação do teorema da função implícita.

Proof. $x \in f^{-1}(y) := Q$. Pega cartas ϕ de x e ψ de y. Supondo que $f(U) \subset V$, e que x,y tem coordenadas 0.

$$U \subset M \xrightarrow{f} V \subset N$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{R}^{m} \xrightarrow{\Phi: \psi \circ f \circ \omega^{-1}} \mathbb{R}^{n}$$

Note que $\Phi(0) = 0$ e que $\Phi^{-1}(0) = \varphi(f^{-1}(y) \cap U)$.

Claim $\Phi^{-1}(0)$ é uma subvariedade.

Para tudo ficar claro vamos reescrever o teorema de função implícita. $\Phi'(0)$ é sobrejetiva. Temos que

$$: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{m-n}$$
$$z \longmapsto \Phi(z)$$

A ideia é que existe uma vizinhança W de $0 \in \mathbb{R}^m$ e um difeomorfismo $\eta: W \to W^{\smile}$ tal que

$$\phi \circ \eta : W \subset \mathbb{R}^n \times \mathbb{R}^{m-n} \longrightarrow \mathbb{R}^n$$
$$(x_1, x_2) \longmapsto x_1$$

2.5 Fibrados vetoriais

Um fibrado vetorial é uma coisa que generaliza os fibrados tangente e cotangente.

Definition Sejam E, M variedades e π : E $\to M$ submersão sobrejetiva. Dizemos que π é um *fibrado vetorial* se para todo $p \in M$, $\pi^{-1}(p) = E_p$ possui uma estrutura de espaço vetorial tal que para todo $p \in M$ existe $U \ni p$ aberto e um difeomorfismo $\phi : \pi^{-1}(U) \to U \times \mathbb{R}^n$ tal que o seguinte diagrama comuta

e

$$\phi|_{E_{\mathfrak{p}}}: E_{\mathfrak{p}} \to \{\mathfrak{p}\} \times \mathbb{R}^n$$

é um isomorfismo.

Example $TM, T^*M, TM \oplus TM, TM \otimes TM, \Lambda^k(TM), \Lambda^k(T^*M), Sym^k(TM).$

2.6 Seções

Definition Uma *seção* de π : E \rightarrow M é s : M \rightarrow E suave tal que $\pi \circ s = id$

$$\begin{array}{c}
E \\
\pi \downarrow \uparrow s \\
M
\end{array}$$

Uma seção de TM é uma função $X: M \to TM$ tal que $X(p) \in T_pM$, um *campo vetorial*.

Theorem (da bola cabeluda) $M = S^n$, n par, $X : M \to TM$ campo vetorial, então existe $p \in M$ tal que $X(p) = 0 \in T_pM$.

Notação $\Gamma(E) = \{\text{seções de } \pi : E \to M\}, \Gamma(TM) = \mathfrak{X}(M), \Gamma(T^*M) = \Omega^1(M), \Gamma(\Lambda^k(T^*M)) = \Omega^k(M).$

Para qualquer espaço vetorial V,

$$\operatorname{\mathsf{Sym}}^2(V^*) = \{ f : V \times V \to \mathbb{R}, \text{ bilinear, } f(x,y) = f(y,x) \} \subset V^* \otimes V^*.$$

E para fibrado vetorial E,

$$\text{Sym}^2(E) = \bigsqcup_{p \in M} \text{Sym}^2(E_p^*).$$

Definition Uma *métrica Riemanniana* em E é uma seção $s:M\to \operatorname{Sym}^2(E)$ tal que $s(p):E_p\times E_p\to \mathbb{R}$ é positiva definida, i.e. s(p)(x,x)>0 se $x\neq 0$.

Remark (Aprox.) Todo fibrado vetorial tem uma métrica Riemanniana: usando a métrica euclidiana dada em cada carta, usamos uma partição da unidade para extender a uma seção global, somar e notar que fica positiva definida.

É muito fácil construir seções do fibrado cotangente: para $f \in C^{\infty}(M)$, a diferencial $df : M \to T^*M$ é uma seção do fibrado cotangente, i.e. $df \in \Gamma(T^*M)$ porque

$$df_p = Df_p : T_pM \to T_{f(p)}\mathbb{R}$$

Exercise Qualquer seção é um mergulho de M em E.

Extra q uma métrica Riemanniana em TM.

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

$$g_p^{\sharp}: T_pM \longrightarrow T_p^*M$$

$$v \longmapsto g(v,\cdot)$$

Então o gradiente de f é

$$(g_p^\sharp)^{-1}(df_p) := \text{grad}_p \; f$$