Задача о назначениях

Виктор Васильевич Лепин

План лекции

• Постановка задачи

Постановка задачи

Для n работников и работ, дана матрица $n \times n$, задающая стоимость выполнения каждой работы каждым работником. Найти минимальную стоимость выполнения работ, такую что каждый работник выполняет ровно одну работу, а каждую работу выполняет ровно один работник. Т.е. произвести назначение (assignment) работника на работу.

Постановка задачи

Для n работников и работ, дана матрица $n \times n$, задающая стоимость выполнения каждой работы каждым работником. Найти минимальную стоимость выполнения работ, такую что каждый работник выполняет ровно одну работу, а каждую работу выполняет ровно один работник. Т.е. произвести назначение (assignment) работника на работу.

• Назначение это биекция ϕ между двумя конечными множествами из n элементов.

Постановка задачи

Для n работников и работ, дана матрица $n \times n$, задающая стоимость выполнения каждой работы каждым работником. Найти минимальную стоимость выполнения работ, такую что каждый работник выполняет ровно одну работу, а каждую работу выполняет ровно один работник. Т.е. произвести назначение (assignment) работника на работу.

- Назначение это биекция ϕ между двумя конечными множествами из n элементов.
- В оптимизационной задаче нужно найти наилудшее назначение, т.е. нам нужно оптимизировать некоторую целевую функцию, которая зависит от назначения ϕ .

Способы представления назначения

Назначения могут быть представлены разными способами.

• Биективное отображение между двумя конечными множествами V и W может быть представлено прямым способом посредством совершенного паросочетания в двудольном графе G=(V,W;E), где множества вершин V и W имеет n вершин. Ребро $(i,j)\in E$ является ребром совершенного паросочетания тогда и только тогда, когда $j=\phi(i)$, см. рис. 1.

$$\varphi \ = \ \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{array}\right)$$

$$X_{\varphi} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Способы представления назначения

• Идентифицируя множества V и W, мы получаем представление назначения перестановкой.

Способы представления назначения

- Идентифицируя множества V и W, мы получаем представление назначения перестановкой.
- Каждая перестановка ϕ множества $N = \{1, ..., n\}$ уникальным образом соответствует матрице перестановок $X_{\phi} = (x_{ij})$ с $x_{ij} = 1$ для $j = \phi(i)$ и $x_{ij} = 0$ для $j \neq \phi(i)$.

Эту матрицу X_{ϕ} можно рассматривать как матрицу смежности двудольного графа G, представляющего совершенное паросочетание, см. рис.1.

Матрица весов

Определение

Пусть $(K_{n,n},w)$ — взвешенный полный двудольный граф, $w(x_i,y_j)=w_{ij}$ для всех $i,j=1,2,\ldots,n$. Квадратная матрица $W=(w_{ij})$ порядка n называется матрицей весов этого графа.

Матрица весов

Определение

Пусть $(K_{n,n}, w)$ — взвешенный полный двудольный граф, $w(x_i, y_j) = w_{ij}$ для всех $i, j = 1, 2, \ldots, n$. Квадратная матрица $W = (w_{ij})$ порядка n называется матрицей весов этого графа.

Так, матрица на рис. справа задает взвешенный граф $(K_{3,3},w)$ на рис. слева.

$$W = \begin{pmatrix} 3 & 4 & 4 \\ 3 & 2 & 3 \\ 4 & 5 & 2 \end{pmatrix}$$

Задача о назначениях в матричной форме

• Предположим, что 3 рабочим $I = \{I_1, I_2, I_3\}$ доступны 3 рабочих места $J = \{J_1, J_2, J_3\}$, и дана рейтинговая матрица R положительных целых чисел, где r_{ij} представляет рейтинг человека i для работы j.

$$R = \left[\begin{array}{rrr} 1 & \mathbf{6} & 0 \\ 0 & 8 & \mathbf{6} \\ \mathbf{4} & 0 & 1 \end{array} \right]$$

- Вопрос: как распределять задания, чтобы получить максимальную сумму оценок (когда одному человеку назначается ровно одна работа)?
- В оригинальной статье Куна Задача о назначениях описывается как максимизация рейтингов. Альтернативная и эквивалентная постановка задачи минимизация затрат. Например, мы можем установить стоимость $c_{ij} = C - r_{ij}$, где C обозначает наибольший рейтинг.

Задача о назначениях в терминах теории графов

 ЗАДАЧА О НАЗНАЧЕНИЯХ также может быть описана на языке теории графов, где узлы представляют людей и должности, а ребра представляют рейтинги.

$$R = \begin{bmatrix} 1 & 6 & 0 \\ 0 & 8 & 6 \\ 4 & 0 & 1 \end{bmatrix} \qquad {}_{I_{2}}$$

• Таким образом, задача Assignment по существу пытается найти Max Weighted Matching в двудольном графе.

Задача о назначениях на минимум

Дано: n рабочих, n станков, c_{ij} — время работы i-рабочего на j-м станке.

Найти назначение рабочих на станки с минимальным суммарным временем.

• Цель — минимизировать стоимость выполнения работ:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$

• Цель — минимизировать стоимость выполнения работ:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$

• Ограничение: работа выполняется одним работником:

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots, n$$

• Цель — минимизировать стоимость выполнения работ:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$

• Ограничение: работа выполняется одним работником:

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots, n$$

• Работник выполняет одну работу:

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i = 1, \dots, n$$

• Цель — минимизировать стоимость выполнения работ:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$

• Ограничение: работа выполняется одним работником:

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots, n$$

• Работник выполняет одну работу:

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i = 1, \dots, n$$

• Все переменные бинарные: $x_{ij} \in \{0, 1\}.$

<u>Матем</u>атическая модель

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots, n$$

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i = 1, \dots, n$$

$$x_{ij} \in \{0, 1\}.$$

ПРИМЕР ЗАДАЧИ О НАЗНАЧЕНИЯХ

Π емма 1

Если веса всех ребер полного двудольного графа, инцидентных какой-либо вершине, изменить (увеличить или уменьшить) на одно и то же число, то для новой задачи совершенное паросочетание наименьшего веса будет состоять из тех же ребер, что и в старой.

ЛЕММА 1

Если веса всех ребер полного двудольного графа, инцидентных какой-либо вершине, изменить (увеличить или уменьшить) на одно и то же число, то для новой задачи совершенное паросочетание наименьшего веса будет состоять из тех же ребер, что и в старой.

ДОКАЗАТЕЛЬСТВО

Совершенное паросочетание для каждой вершины содержит ровно одно ребро, инцидентное этой вершине.

Указанная операция изменит на одно и то же число вес любого паросочетания.

Значит, ребро, которое принадлежало оптимальному паросочетанию в старом графе, в новом графе тоже будет ему принадлежать.

ВСПОМОГАТЕЛЬНЫЕ ЛЕММЫ

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно лемме 1, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно лемме 1, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

ЛЕММА 2

Выделим в множествах X и Y подмножества X', Y'. Пусть $d = \min\{c(xy)|x \in X \setminus X', y \in Y'\}$.

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно лемме 1, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

ЛЕММА 2

Выделим в множествах X и Y подмножества X', Y'. Пусть $d=\min\{c(xy)|x\in X\setminus X',y\in Y'\}.$

Прибавим d ко всем весам ребер, инцидентных вершинам из X'.

ВСПОМОГАТЕЛЬНЫЕ ЛЕММЫ

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно лемме 1, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

ЛЕММА 2

Выделим в множествах X и Y подмножества X', Y'. Пусть $d=\min\{c(xy)|x\in X\setminus X',y\in Y'\}.$

Прибавим d ко всем весам ребер, инцидентных вершинам из X'.

Затем отнимем d от всех весов ребер, инцидентных вершинам из Y' (далее для краткости эта операция обозначается как $X' \uparrow \downarrow Y'$).

ВСПОМОГАТЕЛЬНЫЕ ЛЕММЫ

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно лемме 1, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

ЛЕММА 2

Выделим в множествах X и Y подмножества X', Y'. Пусть $d=\min\{c(xy)|x\in X\setminus X',y\in Y'\}.$

Прибавим d ко всем весам ребер, инцидентных вершинам из X'.

Затем отнимем d от всех весов ребер, инцидентных вершинам из Y' (далее для краткости эта операция обозначается как $X'\uparrow\downarrow Y'$).

Тогда:

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно лемме 1, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

ЛЕММА 2

Выделим в множествах X и Y подмножества X', Y'. Пусть $d=\min\{c(xy)|x\in X\setminus X',y\in Y'\}.$

Прибавим d ко всем весам ребер, инцидентных вершинам из X'.

Затем отнимем d от всех весов ребер, инцидентных вершинам из Y' (далее для краткости эта операция обозначается как $X' \uparrow \downarrow Y'$).

Тогда:

Веса всех ребер графа останутся неотрицательными.

ВСПОМОГАТЕЛЬНЫЕ ЛЕММЫ

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно лемме 1, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

ЛЕММА 2

Выделим в множествах X и Y подмножества X', Y'. Пусть $d=\min\{c(xy)|x\in X\setminus X',y\in Y'\}.$

Прибавим d ко всем весам ребер, инцидентных вершинам из X'.

Затем отнимем d от всех весов ребер, инцидентных вершинам из Y' (далее для краткости эта операция обозначается как $X' \uparrow \downarrow Y'$).

Тогда:

Веса всех ребер графа останутся неотрицательными. Веса ребер вида xy, где $x \in X'$, $y \in Y'$ или $x \in X \setminus X'$, $y \in Y \setminus Y'$, не изменятся.

Доказательство

Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества X' и Y' состоят из первых элементов множеств X и Y соответственно (мы упорядочиваем множества по номерам вершин).

ВСПОМОГАТЕЛЬНЫЕ ЛЕММЫ

ДОКАЗАТЕЛЬСТВО

Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества X' и Y' состоят из первых элементов множеств X и Y соответственно (мы упорядочиваем множества по номерам вершин). Тогда вся матрица делится на 4 блока:

	Υ'	Y\Y ′
X'	A+d-d	C+d
X\X'	B-d	D

ДОКАЗАТЕЛЬСТВО

Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества X' и Y' состоят из первых элементов множеств X и Y соответственно (мы упорядочиваем множества по номерам вершин). Тогда вся матрица делится на 4 блока:

	Υ'	Y\Y ′
X'	A+d-d	C+d
X\X'	B-d	D

Веса группы A будут сначала увеличены, а потом уменьшены на d, поэтому они не изменятся, веса группы D вообще изменяться не будут.

ДОКАЗАТЕЛЬСТВО

Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества X' и Y' состоят из первых элементов множеств X и Y соответственно (мы упорядочиваем множества по номерам вершин). Тогда вся матрица делится на 4 блока:

	Υ'	Y\Y ′
X'	A+d-d	C+d
X\X'	B-d	D

Веса группы A будут сначала увеличены, а потом уменьшены на d, поэтому они не изменятся, веса группы D вообще изменяться не будут.

Все веса группы B будут уменьшены на d, но d — минимум среди этих весов, поэтому они останутся неотрицательными.

ЛЕММА 3

Если веса всех ребер графа неотрицательны и некоторое совершенное паросочетание состоит из ребер нулевого веса, то оно является оптимальным.

Лемма 3

Если веса всех ребер графа неотрицательны и некоторое совершенное паросочетание состоит из ребер нулевого веса, то оно является оптимальным.

ДОКАЗАТЕЛЬСТВО

Действительно, паросочетание с какими-то другими весами ребер имеет больший вес и оптимальным не является.

Венгерский алгоритм

① Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.

Венгерский алгоритм

- Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента.

Теперь в каждом столбце есть хотя бы один нулевой элемент.

ВЕНГЕРСКИЙ АЛГОРИТМ

- Вычитаем из каждой строки значение ее минимального элемента.
 Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента.

Теперь в каждом столбце есть хотя бы один нулевой элемент.

О Ищем в текущем графе совершенное паросочетание из ребер нулевого веса:

Венгерский алгоритм

- Вычитаем из каждой строки значение ее минимального элемента.
 Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента.

Теперь в каждом столбце есть хотя бы один нулевой элемент.

Мщем в текущем графе совершенное паросочетание из ребер нулевого веса:

if оно найдено, то желаемый результат достигнут, **return**.

Венгерский алгоритм

- Вычитаем из каждой строки значение ее минимального элемента.
 Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента.

Теперь в каждом столбце есть хотя бы один нулевой элемент.

Мщем в текущем графе совершенное паросочетание из ребер нулевого веса:

if оно найдено, то желаемый результат достигнут, return.
else покроем нули матрицы весов минимальным количеством
строк и столбцов (это не что иное, как нахождение минимального
вершинного покрытия в двудольном графе).

Венгерский алгоритм

- Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента.

Теперь в каждом столбце есть хотя бы один нулевой элемент.

 Ищем в текущем графе совершенное паросочетание из ребер нулевого веса:

if оно найдено, то желаемый результат достигнут, return. else покроем нули матрицы весов минимальным количеством строк и столбцов (это не что иное, как нахождение минимального вершинного покрытия в двудольном графе).

Пусть X_c и Y_c — множества вершин минимального вершинного покрытия из левой и правой долей (то есть, строк и столбцов) соответственно, тогда применим преобразование $X_c \uparrow \downarrow (Y \setminus Y_c)$.

ВЕНГЕРСКИЙ АЛГОРИТМ

- Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента.

Теперь в каждом столбце есть хотя бы один нулевой элемент.

Мщем в текущем графе совершенное паросочетание из ребер нулевого веса:

if оно найдено, то желаемый результат достигнут, return.
else покроем нули матрицы весов минимальным количеством
строк и столбцов (это не что иное, как нахождение минимального
вершинного покрытия в двудольном графе).

Пусть X_c и Y_c — множества вершин минимального вершинного покрытия из левой и правой долей (то есть, строк и столбцов) соответственно, тогда применим преобразование $X_c \uparrow \downarrow (Y \setminus Y_c)$. Для этого преобразования d будет минимумом по всем ребрам между $X \setminus X_c$ и $Y \setminus Y_c$, то есть, ребер нулевого веса здесь нет, поэтому, после его выполнения в матрице весов появится новый

Перейти к шагу 1.

нуль.

Анализ времени работы

- Поиск максимального паросочетания или минимального вершинного покрытия в двудольном графе совершается за $O(n^3)$ операций.
- При каждом повторении шагов 1-4 в матрице весов появляется новый нуль.
- Этот нуль соответствует некоторому новому ребру между вершинами из множеств $X \setminus X_c$ и $Y \setminus Y_c$.
- \bullet Всего в графе n^2 ребер, значит, всего будет совершено не более $O(n^2)$ итераций внешнего цикла.
- Поэтому, верхняя оценка времени работы данного метода — $O(n^5)$.
- Временная сложность оригинального алгоритма была $O(n^4)$, однако Эдмондс и Карп показали, что его можно модифицировать так, чтобы достичь времени выполнения $O(n^3)$.
- Форд и Фалкерсон распространили метод на общие транспортные задачи.

Задача о назначениях на максимум

MAXWEIGHTEDMATCHING В ДВУДОЛЬНОМ ГРАФЕ

ВХОД: полный двудольный граф $G = (I \cup J, E)$, каждому ребру (i, j) приписан вес r_{ij} .

ВЫХОД: **совершенное паросочетание** M, имеющее наибольший суммарный вес.

$$R = \begin{bmatrix} 1 & \mathbf{6} & 0 \\ 0 & 8 & \mathbf{6} \\ \mathbf{4} & 0 & 1 \end{bmatrix} \qquad {}_{I_2}$$

ЦЛП ФОРМУЛИРОВКА ЗАДАЧИ MAXWEIGHTEDMATCHING

ЦЛП ФОРМУЛИРОВКА ЗАДАЧИ MAXWEIGHTEDMATCHING

• Из-за весов ребер метод сетевого потока не работает, как в задаче MAXMATCHING. Теперь вернемся к ЦЛП формулировке.

ЦЛП ФОРМУЛИРОВКА ЗАДАЧИ MAXWEIGHTEDMATCHING

- Из-за весов ребер метод сетевого потока не работает, как в задаче MAXMATCHING. Теперь вернемся к ЦЛП формулировке.
- Прямая задача:

$$\max_{s.t.} \begin{array}{cccc} \sum_{j \in I} \sum_{j \in J} & r_{ij}x_{ij} \\ s.t. & \sum_{i \in I} & x_{ij} & = & 1 & \text{для всех } j \in J \\ & \sum_{j \in J} & x_{ij} & = & 1 & \text{для всех } i \in I \\ & & x_{ij} & = & 0/1 & \text{для всех } i \in I, j \in J \end{array}$$

Двойственная задача: MinWeightedVertexCover

Двойственная задача: MinWeightedVertexCover

• Матрица коэффициентов прямой задачи полностью унимодулярна; таким образом, мы можем заменить $x_{ij} = 0/1$ на $1 \ge x_{ij} \ge 0$ и написать двойственную задачу (задачу о минимальном взвешенном покрытии вершин).

Двойственная задача: MinWeightedVertexCover

- Матрица коэффициентов прямой задачи полностью унимодулярна; таким образом, мы можем заменить $x_{ij} = 0/1$ на $1 \ge x_{ij} \ge 0$ и написать двойственную задачу (задачу о минимальном взвешенном покрытии вершин).
- Двойственная задача:

Критерий оптимальности для X и (U, V)

• Прямая задача:

$$\begin{array}{llll} \max & \sum_{i \in I} \sum_{j \in J} & r_{ij} x_{ij} \\ s.t. & \sum_{i \in I} & x_{ij} & = & 1 & \text{для всех } j \in J \\ & \sum_{j \in J} & x_{ij} & = & 1 & \text{для всех } i \in I \\ & & x_{ij} & \leq & 1 & \text{для всех } i \in I, j \in J \end{array}$$

Критерий оптимальности для X и (U, V)

• Прямая задача:

• Двойственная задача:

$$\begin{array}{llll} \min & \sum_{i \in I} u_i & + & \sum_{j \in J} v_j \\ s.t. & u_i & + & v_j & \geq & r_{ij} & \text{ для всех ребер } (i,j) \end{array}$$

Критерий оптимальности для X и (U, V)

• Прямая задача:

$$\begin{array}{llll} \max & \sum_{i \in I} \sum_{j \in J} & r_{ij}x_{ij} \\ s.t. & \sum_{i \in I} & x_{ij} & = & 1 & \text{для всех } j \in J \\ & \sum_{j \in J} & x_{ij} & = & 1 & \text{для всех } i \in I \\ & & x_{ij} & \leq & 1 & \text{для всех } i \in I, j \in J \end{array}$$

• Двойственная задача:

$$\min_{s.t.} \ \sum_{i \in I} u_i + \sum_{j \in J} v_j \\ s.t. \ u_i + v_j \geq r_{ij}$$
для всех ребер (i,j)

• ортогональность: утверждает, что прямая и двойственная задачи имеют одинаковые значения целевых функций.

$$(u_i + v_j - r_{ij})x_{ij} = 0$$
 для всех (i,j)

Критерий оптимальности для X и (U,V)

• Прямая задача:

$$\begin{array}{llll} \max & \sum_{i \in I} \sum_{j \in J} & r_{ij}x_{ij} \\ s.t. & \sum_{i \in I} & x_{ij} & = & 1 & \text{для всех } j \in J \\ & \sum_{j \in J} & x_{ij} & = & 1 & \text{для всех } i \in I \\ & & x_{ij} & \leq & 1 & \text{для всех } i \in I, j \in J \end{array}$$

• Двойственная задача:

$$\min_{s.t.} \ \sum_{i \in I} u_i + \sum_{j \in J} v_j \\ s.t. \ u_i + v_j \geq r_{ij}$$
для всех ребер (i,j)

• ортогональность: утверждает, что прямая и двойственная задачи имеют одинаковые значения целевых функций.

$$(u_i + v_j - r_{ij})x_{ij} = 0$$
 для всех (i, j)

• Критерий оптимальности:

ДВЕ СТРАТЕГИИ РЕШЕНИЯ

- Критерий оптимальности:
 - (1) X допустимое решение прямой задачи: X представляет совершенное паросочетание.

ullet (2) (U,V) — допустимое решение двойственной задачи:

$$u_i + v_j \geq r_{ij}$$
 для всех ребер (i,j)

• (3) X и (U,V) являются ортогональными:

$$(u_i + v_j - r_{ij})x_{ij} = 0$$
 для всех (i, j)

Две стратегии решения

- Критерий оптимальности:
 - (1) X допустимое решение прямой задачи: X представляет совершенное паросочетание.

ullet (2) (U,V) — допустимое решение двойственной задачи:

$$u_i + v_j \geq r_{ij}$$
 для всех ребер (i,j)

• (3) X и (U,V) являются ортогональными:

$$(u_i + v_j - r_{ij})x_{ij} = 0$$
 для всех (i, j)

• Прямой метод: инициализировать X и (U,V), чтобы они удовлетворяли условиям (1) и (2), и улучшить их, чтобы условие (3) выполнялось.

Две стратегии решения

- Критерий оптимальности:
 - (1) X допустимое решение прямой задачи: Xпредставляет совершенное паросочетание.

• (2) (U,V) — допустимое решение двойственной задачи:

$$u_i + v_j \geq r_{ij}$$
 для всех ребер (i,j)

• (3) X и (U,V) являются ортогональными:

$$(u_i + v_j - r_{ij})x_{ij} = 0$$
 для всех (i, j)

- Прямой метод: инициализировать X и (U, V), чтобы они удовлетворяли условиям (1) и (2), и улучшить их, чтобы условие (3) выполнялось.
- Двойственный метод: инициализировать X и (U, V), чтобы они удовлетворяли условиям (2) и (3), и улучшить их, чтобы условие (1) выполнялось. Это то, что делает венгерский

2.1 Венгерский метод: решения двойственной задачи

Венгерский метод: решения двойственной задачи

• Двойственная задача:

$$\begin{array}{llll} \min & \sum_{i \in I} u_i & + & \sum_{j \in J} v_j \\ s.t. & u_i & + & v_j & \geq & r_{ij} & \text{ для всех ребер } (i,j) \end{array}$$

Венгерский метод: решения двойственной задачи

• Двойственная задача:

$$\begin{array}{llll} \min & \sum_{i \in I} u_i & + & \sum_{j \in J} v_j \\ s.t. & u_i & + & v_j & \geq & r_{ij} & \text{ для всех ребер } (i,j) \end{array}$$

• Основная идея: изначально устанавливается (U, V) так чтобы эта пара была двойственным допустимым решением и выполнялась ортогональность X и (U, V), т.е. $(U_i + v_j - r_{ij})x_{ij} = 0$ для всех (i, j). Затем пытаемся сделать X допустимым решением прямой задачи, т.е. в результате X образует совершенное паросочетание.

Венгерский метод

• Найти двойственное допустимое (U, V) и ортогональное X — тривиально (установить $x_{ij} = 0$, если $u_i + v_j > r_{ij}$). Эгервари и Кун удалили такие ребра и сосредоточились на оставшемся графе (называемом графом равенств $G_E(U, V)$).

ВЕНГЕРСКИЙ МЕТОД

- 1: Положить $u_i = \max_j r_{ij}$;
- 2: Положить $v_i = 0$;
- 3: while TRUE do
- 4: Построить граф равенств $G_E(U,V)$ с единственным ребром (i,j) если $u_i+v_j=r_{ij}$;
- 5: **if** $G_E(U,V)$ имеет совершенное паросочетание **M** then
- 6: return M;
- 7: end if
- 8: Уменьшить u_i или v_j ;
- 9: end while

Задача 1. Дан двудольный граф, требуется найти в нём максимальное паросочетание минимального веса (т.е. в первую очередь максимизируется размер паросочетания, во вторую — минимизируется его стоимость).

Задача 1. Дан двудольный граф, требуется найти в нём максимальное паросочетание минимального веса (т.е. в первую очередь максимизируется размер паросочетания, во вторую — минимизируется его стоимость).

• Для решения просто строим задачу о назначениях, ставя на месте отсутствующих рёбер число «бесконечность».

Задача 1. Дан двудольный граф, требуется найти в нём максимальное паросочетание минимального веса (т.е. в первую очередь максимизируется размер паросочетания, во вторую — минимизируется его стоимость).

- Для решения просто строим задачу о назначениях, ставя на месте отсутствующих рёбер число «бесконечность».
- После этого решаем задачу венгерским алгоритмом, и удаляем из ответа рёбра бесконечного веса (они могли войти в ответ, если у задачи нет решения в виде совершенного паросочетания).

Задача 2. Дан двудольный граф, требуется найти в нём паросочетание максимального веса.

Задача 2. Дан двудольный граф, требуется найти в нём паросочетание максимального веса.

• Решение опять же очевидно, только все веса надо умножить на минус единицу (либо в венгерском алгоритме заменить все минимумы на максимумы, а бесконечности — на минус бесконечности).

Задача 3. Детектирование движущихся объектов по снимкам: было произведено два снимка, по итогам которых было получено два набор координат. Требуется соотнести объекты на первом и втором снимке, т.е. определить для каждой точки второго снимка, какой точке первого снимка она соответствовала. При этом требуется минимизировать сумму расстояний между сопоставленными точками (т.е. мы ищем решение, в котором объекты суммарно прошли наименьший путь).

Задача 3. Детектирование движущихся объектов по снимкам: было произведено два снимка, по итогам которых было получено два набор координат. Требуется соотнести объекты на первом и втором снимке, т.е. определить для каждой точки второго снимка, какой точке первого снимка она соответствовала. При этом требуется минимизировать сумму расстояний между сопоставленными точками (т.е. мы ищем решение, в котором объекты суммарно прошли наименьший путь).

 Для решения мы просто строим и решаем задачу о назначениях, где в качестве весов рёбер выступают евклидовы расстояния между точками.

Задача 4. Детектирование движущихся объектов по локаторам:

• есть два локатора, которые умеют определять не положение объекта в пространстве, а лишь направление на него.

- есть два локатора, которые умеют определять не положение объекта в пространстве, а лишь направление на него.
- С обоих локаторов (расположенных в различных точках) поступила информация в виде таких направлений.

- есть два локатора, которые умеют определять не положение объекта в пространстве, а лишь направление на него.
- С обоих локаторов (расположенных в различных точках) поступила информация в виде таких направлений.
- Требуется определить положение объектов, т.е. определить предполагаемые положения объектов и соответствующие им пары направлений так, чтобы минимизировать сумму расстояний от объектов до лучей-направлений.

- есть два локатора, которые умеют определять не положение объекта в пространстве, а лишь направление на него.
- С обоих локаторов (расположенных в различных точках) поступила информация в виде таких направлений.
- Требуется определить положение объектов, т.е. определить предполагаемые положения объектов и соответствующие им пары направлений так, чтобы минимизировать сумму расстояний от объектов до лучей-направлений.
- Решение строим и решаем задачу о назначениях, где вершинами первой доли являются n направлений с первого локатора, вершинами второй доли n направлений со второго локатора, а весами рёбер расстояния между соответствующими лучами.