Radii and Chords

Perpendicular to a Chord Theorem: The perpendicular from the center of the circle to any chord bisects the chord.

Center to Chord Midpoint Theorem: The line joining the center of the circle to the midpoint of any chord which is not a diameter is perpendicular to the chord.

Perpendicular Bisector Chord to Center Theorem: The perpendicular bisector of a chord of a circle passes through the center of the circle.

Perpendicular Bisector Chord to Central Angle Theorem: The perpendicular bisector of a chord of a circle bisects the central angle subtended by the chord.

Central Angle Bisector Theorem: The bisector of a central angle subtended by the chord is the perpendicular bisector of the chord.

Distance–Chord Theorem: In the same circle or in congruent circles, chords are congruent if and only if their distances from the center(s) of the circle(s) are equal.

Chord – Arc Congruence Theorem: In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Practice Exercises

A. In \odot I, \overline{PH} and \overline{CE} are diameters with $\overline{PH} \perp \overline{AE}$ and $\overline{PH} \perp \overline{CU}$.

- 1. Name the midpoint of \overline{PH} .
- 2. Name the midpoint of \overline{CE} .
- 3. Name the midpoint of \overline{AE} .
- 4. Name the midpoint of \overline{CU} .
- 5. If $\overline{IW} \cong \overline{IN}$, name a chord congruent to \overline{AE} and an arc congruent to \overline{CHU} .
- 6. Name two arcs congruent to AP.

B. In $\odot T$, \overline{AT} is a radius and \overline{AL} is a chord.

- 1. If $\overline{TK} \perp \overline{AL}$, then \overline{TK} ___ \overline{AL} .
- 2. If \overrightarrow{TK} bisects $\angle ATL$, then \overrightarrow{TK} AL
- 3. If \overline{TK} is a perpendicular bisector of \overline{AL} , then \overline{TK} ____ $\angle ATL$.
- 4. The altitude \overrightarrow{TK} to the base of $\triangle ATL$ is also a _____.

Radii and Chords

Perpendicular to a Chord Theorem: The perpendicular from the center of the circle to any chord bisects the chord.

Center to Chord Midpoint Theorem: The line joining the center of the circle to the midpoint of any chord which is not a diameter is perpendicular to the chord.

Perpendicular Bisector Chord to Center Theorem: The perpendicular bisector of a chord of a circle passes through the center of the circle.

Perpendicular Bisector Chord to Central Angle Theorem: The perpendicular bisector of a chord of a circle bisects the central angle subtended by the chord.

Central Angle Bisector Theorem: The bisector of a central angle subtended by the chord is the perpendicular bisector of the chord.

Distance–Chord Theorem: In the same circle or in congruent circles, chords are congruent if and only if their distances from the center(s) of the circle(s) are equal.

Chord – **Arc Congruence Theorem**: In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Practice Exercises

A. In \odot I, \overline{PH} and \overline{CE} are diameters with $\overline{PH} \perp \overline{AE}$ and $\overline{PH} \perp \overline{CU}$.

- 1. Name the midpoint of \overline{PH} .
- 2. Name the midpoint of \overline{CE} .
- 3. Name the midpoint of \overline{AE} .
- 4. Name the midpoint of \overline{CU} .
- 5. If $\overline{IW}\cong \overline{IN}$, name a chord congruent to \overline{AE} and an arc congruent to \overline{CHU} .
- 6. Name two arcs congruent to $\widehat{\mathsf{AP}}$.

- 1. If $\overline{TK} \perp \overline{AL}$, then $\overline{TK} = \overline{AL}$.
- 2. If \overrightarrow{TK} bisects $\angle ATL$, then \overrightarrow{TK} AL.
- 3. If \overline{TK} is a perpendicular bisector of \overline{AL} , then \overline{TK} ____ $\angle ATL$.
- 4. The altitude \overrightarrow{TK} to the base of $\triangle ATL$ is also a ____.

Problem Set

Find the value of x in each figure.

Problem Set

Find the value of x in each figure.

