

LINIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

	General Certificate of Education Orc		JING
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
COMBINED S	CIENCE		5129/02
Paper 2			May/June 201 2 hours 15 minutes
Candidates ar	nswer on the Question Paper.		2 nours 15 minutes
No Additional	Materials are required.		
READ THESE	INSTRUCTIONS FIRST		
-	ntre number, candidate number and name	on all the work you hand in.	

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

This document consists of 20 printed pages.

Fig. 1.1 shows a mains plug. 1

Fig. 1.1

	(i) the wire labelled A,		[1]	
	(ii)	the component labelled B .	[1]	
(b)	Sta	te the colour of the neutral wire.	[1]	

© UCLES 2011 5129/02/M/J/11

2 Fig. 2.1 shows a root hair cell.

		Fig. 2.1
(a)	Nar	ne two substances that are absorbed by root hair cells from the soil.
	1	
	2	[2]
(b)		lain how the structure of a root hair cell helps it to absorb these substances efficiently. se reference to
	(i)	the shape of the cell,
	(ii)	the cell wall.
		[2]
(c)		ch part of the cell controls the movement of substances in and out of the plasm?
		[1]

3

(a) Fig. 3.1 shows the outline of part of the Periodic Table. Fig. 3.1 The following statements describe some properties of four elements W, X, Y and Z. The letters are not the chemical symbols of the elements. W is a halogen and is a gas. W displaces bromine from potassium bromide solution. **X** is a soft metal which has the lowest melting point in its group. It reacts violently with water producing an alkaline solution. An atom of Y contains 13 protons and has 3 electrons in its outermost shell. Z is a gaseous non metal. It forms the Z^{2-} ion, when it reacts with metal X. Use the letters W, X, Y and Z to place each element in an appropriate position on Fig. 3.1. [4] (b) Element X and element W form a compound XW.

© UCLES 2011 5129/02/M/J/11

Suggest the type of bonding present in compound **XW**.

4	(a)	Nuclei of the isotope of plutonium $^{236}_{94}$ Pu emit alpha particles. The half-life of this isotope is 2.9 years. A sample of this plutonium emits 4,000 alpha particles per second.	For Examiner's Use
		Calculate how long it takes for the rate to fall to 1,000 alpha particles per second.	
		time = years [2]	
	(b)	For a nucleus of $^{236}_{94}$ Pu, what is the number of	
		(i) protons,[1]	
		(ii) neutrons?[1]	
	(c)	State the nature of an alpha particle.	
		[1]	
	(d)	When an alpha particle approaches the nucleus of any atom, it is repelled. Explain why.	
		[1]	
5	(a)	Magnesium oxide reacts with hydrochloric acid to produce magnesium chloride and water.	
		The equation for the reaction is	
		$MgO + 2HCl \longrightarrow MgCl_2 + H_2O$	
		The relative molecular mass, $M_{\rm r}$, of magnesium chloride is 95. [$A_{\rm r}$: Mg, 24; O, 16; H, 1]	
		Complete the following sentences.	
		g of magnesium oxide produces 95 g of magnesium chloride and g	
		of water.	
		g of magnesium oxide produces 4.75g of magnesium chloride. [3]	
	(b)	Suggest the names of two other substances which react with hydrochloric acid to produce magnesium chloride.	
		and	

6 Two groups of wheat seeds are treated in different ways.

For Examiner's Use

Group A – soaked in water for 24 hours.

Group B – left unsoaked.

Each group of seeds is then scattered onto a different starch-agar plate, as shown in Fig. 6.1, and kept at 25 °C.

Fig. 6.1

After three days, the seeds are removed from each starch-agar plate and the plates are tested for starch by adding iodine solution.

lodine solution is brown but turns blue-black in the presence of starch.

The results are shown in Fig. 6.2.

Fig. 6.2

		e for Group B at the	end of the experir	rch content of th ment.		Exar L
					[
(b)	Nam plate	· · · · · · · · · · · · · · · · · · ·	duced by seeds, v	which causes the	e difference between the tw	/O
(c)	 Expl	ain the function of t			[by stating	1]
	(i)	what substance it p	oroduces.	-		
	(-)	•			[11
	(ii)	why this substance				',
					[1]
Use	the v	words from the list to	o complete the se	ntences below. heart	hormones	
Use	the v		•		hormones veins	
		arteries	glucose urea	heart valves		
Eac Bloo	n wor	arteries plasma rd may be used one pumped round to	glucose urea ce, more than once	heart valves e, or not at all.		ne
Eacl Bloc	n wor	arteries plasma rd may be used one pumped round to	glucose urea e, more than once the circulatory sy	heart valves e, or not at all. stem by the m	veins	
Eacl Bloc 	n word is	arteries plasma rd may be used one pumped round to	glucose urea ee, more than once the circulatory sy the correct direct	heart valves e, or not at all. stem by the m	veins uscular contractions of th	
Eac Bloc The and	n word is blood in the	arteries plasma rd may be used one pumped round the d is kept flowing in	glucose urea e, more than once the circulatory sy the correct direct	heart valves e, or not at all. stem by the m	veins uscular contractions of th	ırt

7

8 Fig. 8.1 shows how the potential difference across a lamp varies with the current passing through it.

Fig. 8.1

- (a) Use Fig. 8.1 to find
 - (i) the potential difference across the lamp for a current of 0.5 A,

potential difference =V

(ii) the current for a potential difference of 9V.

current = A [2]

(b) The current in the lamp is 0.5 A. Calculate the resistance of the lamp.

resistance = unit [2]

9 Fig. 9.1 shows some reactions of ethene.

For Examiner's Use

Fig. 9.1

(a) Identify A, B, C and D

(b) Ethene burns in a plentiful supply of oxygen, producing carbon dioxide and water.

Balance the equation for the reaction.

$$C_2H_4 + \dots CO_2 + \dots H_2O$$
 [1]

(c) State one use of poly(ethene).

.....[1]

10 The percentages of the population with HIV infection in five different towns are shown in Fig. 10.1.

For Examiner's Use

Fig. 10.1

The percentages of the population who are heroin users in the same five towns are shown in Fig. 10.2.

Fig. 10.2

(a)	It is use.	suggested that the differences in HIV infection are linked to differences in heroin
	Use	Fig. 10.1 and Fig. 10.2 to give
	(i)	one piece of evidence that supports this idea,
		[1]
	(ii)	one piece of evidence that does not support this idea.
		[1]
(b)	Ехр	lain why heroin users are likely to be infected by HIV.
		[2]
(c)		e one other problem, apart from increased risk of infection, that is associated with bin abuse.
		[1]

11	A hydroelectric power station uses water flowing from a high level to a lower level.	For
	Complete the following sentences.	Examiner's Use
	As the water falls it loses energy.	
	The turbine and generator convert into electrical energy.	
	Some energy is wasted as energy.	

12 Fig. 12.1 shows a spanner being used. A moment of 30 Nm is needed to tighten the nut.

Fig. 12.1

Calculate the force applied to the spanner.

force =N [2]

13	Two	Two isotopes of nitrogen are represented by the following symbols.					
				¹⁴ ₇ N	¹⁵ ₇ N		
	(a)	What a	are isotopes?				
	(b)	Compl	ete the following t				[2]
			isotope	number of protons	number of neutrons	number of electrons	
			¹⁴ ₇ N			7	
			¹⁵ ₇ N	7	8		
							[3]
	(c)			ogen cause the co	uel is burned in a	-	[1]

14 The transformer shown in Fig. 14.1 is used to reduce mains voltage to 12V. The transformer has two coils and a core.

For Examiner's Use

Fig. 14.1

(a)	State the name of the coil connected to the mains supply.	
		[1]
(b)	Name a suitable material for the core.	
		[1]
(c)	Explain, in detail, the operation of a transformer.	
		.[3]

15	(a)	Give a word e		•	ation in humans.		[0]
	(b)	Explain why a				the human body.	[2]
							[2]
	(c)			•		naerobic respiration	
		2					
		3					[3]
16	The Wat Soli	broken bottle a er is added to d sodium chlor words from th	and the sodiu the mixture in ide is recover e list below to	m chloride are the beaker. ed from this m complete the	following sentence	into a beaker.	
	Eac	h word may be	·			insolubl	•
		evaporat so	luble	distillation	filtration solute	solvent	е
	The	glass does no	t dissolve in tl	ne water beca	use it is		
	Sod	ium chloride	dissolves in	the water	to form a solut	ion, because wat	er is a
				for sodiu	n chloride.		
				•			
			ride is obtaine	ed from the so	lution by		
	of th	ne water.					[4]

17 Fig. 17.1 shows a food web.

Fig. 17.1

(a)	Use	e the food web in Fig. 17.1 to complete this food chain.	
		→ beetle → → eagle	[2]
(b)	Fro	m the food web in Fig. 17.1 name	
	(i)	one producer,	
			[1]
	(ii)	one carnivore.	
			[1]
(c)	Wh	at is the source of energy for this food web?	
			[1]
(d)	Ene	ergy flow in food webs is non-cyclical.	
	Exp	plain the meaning of the term <i>non-cyclical</i> .	
			1]

Ten	npera	ture may be measured with a laboratory thermometer or a clinical thermometer.	Ex
(a)	Stat	re two differences between a laboratory thermometer and a clinical thermometer.	
	1		
	2		
		[2]	
(b)		temperature reading of a liquid-in-glass thermometer increases as the liquid inside thermometer changes.	
	Stat	e the change, if any, in	
	(i)	the volume of the liquid,	
		[1]	
	(ii)	the density of the liquid.	
		[1]	
		s an acceleration of 2.5m/s^2 . The force accelerating the car is 3750N . The what is meant by acceleration.	
		[1]	
(b)	Cald	culate the mass of the car.	
		L., [0]	
		mass = kg [2]	

20 Fig. 20.1 shows elements in the reactivity series.

For Examiner's Use

element	Cu	Н	Fe	С	Zn	Ca	Na	K
	increas	ing re	eactivi	ty				

Fig. 20.1

(a) (i)	Name an ore of iron. [1]
(ii)	Explain, using the reactivity series, why iron can be extracted from an ore by heating with carbon.
	[1]
(iii)	Iron rusts but stainless steel does not. In what way does stainless steel differ from the element iron?
	[1]
	m the list of elements in Fig. 20.1, state the name of one metal that does not react hydrochloric acid.
	[11]

21 Fig. 21.1 shows a ray of light incident on one side of a glass block in air.

Fig. 21.1

- (a) On Fig. 21.1, draw a normal to the glass block where the ray is incident on the block. [1]
- (b) On Fig. 21.1, draw the ray passing

(i) through the block, [1]

(ii) into the air. [1]

22 In Fig. 22.1, the boxes on the left give the names of some elements and the boxes on the right list some uses of these elements.

Draw a line from each element to link the element to its correct use.

 oxygen
 water purification

 chlorine
 making steel

 hydrogen
 filling lamps

 argon
 making margarine

Fig. 22.1

[4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2011 5129/02/M/J/11

DATA SHEET
The Periodic Table of the Elements

						=		2 2 3 3 3 3 3 3 3 3	Group	Group	3						
_	=											≡	≥	>	5		0
							-					-					4
							I										무
							Hydrogen 1										Helium 2
7	0					,						£	12	14	16	19	20
=	Be											Ш	ပ	z	0	ш	Ne
3 Lithium	Beryllium 4	-										Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											Ν	Si	۵		CI	Ar
Sodium 11	Magnesium 12	Ε										Aluminium 13	Silicon 14	Phosphorus 15		Chlorine 17	Argon 18
39	40	45 48	48	51	52	55	56	59	29	49	65	70	73	75	62	80	84
¥	Ca	Sc	F	>	ပ်	Mn	Рe	ပိ	Z	D C	Zu	Ga		As	Se	ģ	궃
Potassium 19	Calcium 20	Scandium Titanium 21 22		Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Ε	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	.6	91	93	96		101	103	106	108	112	115		122	128	127	131
	ഗ്	>	Zr	qN	Mo				Pd	Ag	ပ	п	Sn			Ι	Xe
Rubidium 37	Strontium 38	Trionium Zirconium 39 40		liobium	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46		Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137			181	184	186	190	192	195	197	201	204	207			210	222
S	Ва	La	Έ	Та	≥	Re	Os	<u>_</u>	풉	Αn	Нg	11	Pb		S S	Αt	Ru
Caesium 55	Barium 56	Lanthanum 57 * 72	Hafnium Ta	ıntalum	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	_	Polonium 84	Astatine 85	Radon 86
223	226	227															
ŗ	Ba	Ac															
Francium 87	Radium 88	Actinium 89 †															
* 58–71	anthar	* 58–71 Lanthanoid series		140	141	144	147	150	152	157	159	162	165	167	169	173	175
+ 90-10;	3 Actino	+ 90-103 Actinoid series					Pm	Sm	En		P				Ε		ר
<u> </u>			28	Serium	Praseodymium 59 6	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69		Lutetium 71
	В	a = relative atomic mass	SS	232	231	238	237	244	243	247	247	251	252	257	258	259	260
Key	×	X = atomic symbol		Ч	Ра	-		Pu	Am	CH	益	ర	Es	Fn	Md	8	۲
q		b = atomic (proton) number	 	horium	Protactinium 9	Uranium 92	E	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103
									})		}			_		

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).