

1889

Europäisches
PatentamtEuropean
Patent OfficeOffice européen
des brevets

EP 00/317

EJV

09/889,890

REC'D 14 FEB 2000

WIPO PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

99101122.2

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts:
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN
THE HAGUE,
LA HAYE, LE
08/02/00

This Page Blank (uspto)

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Blatt 2 der Bescheinigung
Sheet 2 of the certificate
Page 2 de l'attestation

Anmeldung Nr.:
Application no.: **99101122.2**
Demande n°:

Anmeldetag:
Date of filing: **21/01/99**
Date de dépôt:

Anmelder:
Applicant(s):
Demandeur(s):
SIEMENS AKTIENGESELLSCHAFT
80333 München
GERMANY

Bezeichnung der Erfindung:
Title of the invention:
Titre de l'invention:
Lastverteilungsverfahren eines Multiprozessorsystems und Multiprozessorsystem

In Anspruch genommene Priorität(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:	Tag:	Aktenzeichen:
State:	Date:	File no.
Pays:	Date:	Numéro de dépôt:

Internationale Patentklassifikation:
International Patent classification:
Classification internationale des brevets:
G06F9/46

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE
Etats contractants désignés lors du dépôt:

Bemerkungen:
Remarks:
Remarques:

This Page Blank (uspto)

EPO - Munich
46

1

21 Jan. 1999

Beschreibung

Lastverteilungsverfahren eines Multiprozessorsystems und
Multiprozessorsystem

5

Die Erfindung betrifft ein Verfahren zur Lastverteilung in
einem Multiprozessorsystem, insbesondere in einem
Multiprozessorsystem eines Kommunikationssystems, bei dem
anfallende Aufgaben von mehreren Prozessoren MP_i (mit
10 $i=1, 2, \dots, n$) unter Realzeitbedingungen abgearbeitet werden
können und ein Multiprozessorsystem, insbesondere eines
Kommunikationssystems, mit einem Lastverteilungsmechanismus.

Ein ähnliches Verfahren zur Lastverteilung in einem
15 Multiprozessorsystem, insbesondere in einem
Multiprozessorsystem eines Kommunikationssystems, ist
beispielsweise aus der Europäischen Patentanmeldung EP 0 645
702 A1 der Anmelderin bekannt. Diese Schrift offenbart ein
Verfahren zum Lastenausgleich in einem Multiprozessorsystem,
20 insbesondere ein Multiprozessorsystem eines
Kommunikationssystems, bei dem anfallende Aufgaben von
mehreren Prozessoren unter Realzeitbedingungen abgearbeitet
werden können, wobei zur Durchführung des Lastausgleiches
allgemein die folgenden Verfahrensschritte genannt sind:
25 - jeder Prozessor ermittelt seinen Lastzustand in Form einer
quantifizierten Größe,
- jedem Prozessor werden die Lastzustände der anderen
Prozessoren innerhalb eines Zeitrasters mitgeteilt,
- jeder Prozessor gibt in Abhängigkeit vom Überschreiten
30 einer bestimmten Größe seines Lastzustandes und in
Abhängigkeit von den Lastzuständen der übrigen Prozessoren
zumindest einen Teil der bei ihm anfallenden Aufgaben an die
übrigen Prozessoren ab, und

- die abgegebenen Aufgaben werden entsprechend den Lastzuständen der übrigen Prozessoren auf diese aufgeteilt.

15 Im Ausführungsbeispiel wird das Verfahren dahingehend konkretisiert, daß im Betrieb ständig und vor dem Einstieg in die Lastverteilung, die hier erst ab dem Erreichen einer bestimmten Überlast beginnt, Verteilungsquoten errechnet werden, nach denen die einzelnen Prozessoren im Fall der Überlast an andere Prozessoren ihre verteilbare Last abgeben.

20 10 Ist das System dauerhaft ungleichmäßig ausgelastet, so wird die Last erst bei Überlast eines oder mehrerer Prozessoren verteilt. Damit geht aber unnötige Lastabwehr einher. Die Reduktion der Überlastschwelle auf einen niedrigeren Wert führt zu keinem befriedigenden Ergebnis, weil dann unnötig 15 viel Last verteilt wird und es zu Schwingungszuständen kommen kann. Diese Situation ergibt sich aus der dort getroffenen Annahme, daß die Überlast oder die ungleichmäßige Belastung von kurzer Dauer ist.

25 Es ist daher Aufgabe der Erfindung, ein verbessertes 20 Lastverteilungsverfahren für ein Multiprozessorsystem anzugeben, welches rechtzeitig und "weich" einsetzt und dadurch dauerhafte Schieflastzustände im Lastangebot ohne Lastabwehr bewältigt. Außerdem soll auch ein entsprechendes Multiprozessorsystem angegeben werden.

30 25 Die Aufgabe wird einerseits durch ein Verfahren mit den Verfahrensschritten des ersten Verfahrensanspruches und andererseits durch ein Multiprozessorsystem mit den Merkmalen des ersten Vorrichtungsanspruches gelöst.

35 30 Demgemäß schlagen die Erfinder ein Verfahren zur Lastverteilung in einem Multiprozessorsystem, insbesondere in einem Multiprozessorsystem eines Kommunikationssystems, bei dem anfallende Aufgaben von mehreren Prozessoren MP_i (mit $i=1, 2, \dots, n$) unter Realzeitbedingungen abgearbeitet werden

können, mit folgenden iterativen und sich in Zeitintervallen CI wiederholenden Verfahrensschritten vor:

- jeder Prozessor MP_i ermittelt seinen tatsächlichen Lastzustand Y_i - bestimmt gegebenenfalls direkt hieraus einen mehrwertigen Laststatus (load state) MP_{ls_i} - und schätzt in Abhängigkeit von zuvor mitgeteilten Verteilungsquoten q_i (alt) (mit q_i =an andere Prozessoren MP_k nach Möglichkeit zu verteilender Lastanteil) und dem typischerweise verteilbaren Anteil V einer typischen Aufgabe seine angebotene Last A_i , die zu einem mehrwertigen Lastindikationswert (Balancing Indicator) MP_{bi_i} führt,
- jeder Prozessor MP_i teilt seinen Lastindikationswert MP_{bi_i} den jeweils anderen Prozessoren MP_k (mit $k=1,2,\dots,i-1,i+1,\dots,n$) mittelbar oder unmittelbar mit,
- jeder Prozessor MP_i bestimmt seine Lastverteilungsfaktoren p_{ij} (mit $j=1,2,\dots,n$) in Abhängigkeit von den Lastindikationswerten MP_{bi_k} dieser anderen Prozessoren MP_k ,
- jeder Prozessor MP_i bestimmt seine Verteilungsquote q_i (neu) in Abhängigkeit von seinem tatsächlichen Lastzustand Y_i und den Lastverteilungsfaktoren p_{ij} ,
- jeder Prozessor MP_i verteilt anhand seiner Quote q_i und seiner Lastverteilungsfaktoren p_{ij} seine verteilbare Last an andere Prozessoren MP_k , wenn seine Verteilungsquote q_i (neu) einen vorgegebenen Wert q_v überschreitet.

Zur Abschätzung der angebotenen Last A_i eines Prozessors MP_i ist es vorteilhaft, die Formel $A_i := Y_i / (1 - q_i V)$ zu verwenden.

Vorteilhaft ist auch eine Unterteilung des mehrwertigen Lastindikationswertes (balancing indicator) MP_{bi_i} in drei

4

diskrete Werte, wobei vorzugsweise die folgende Abgrenzung mit Schwellenwerten gilt: NORMAL für $MPbi_i$, wenn die Prozessorauslastung 0 bis 70% beträgt, HIGH für $MPbi_i$, wenn die Prozessorauslastung 70% bis 85% beträgt, und OVERLOAD für $MPbi_i$, wenn die Prozessorauslastung über 85% beträgt.

Vorteilhaft ist es auch, wenn eine Hysterese bei Lastzustandswechsel aufgrund von Schwellenwertüberschreitung oder Schwellenwertunterschreitung bei steigender oder 10 fallender Prozessorauslastung eingeführt wird.

Außerdem kann es vorteilhaft sein, wenn der Lastindikationswert (balancing indicator) $MPbi_i$ bezüglich Änderungen einer zeitlichen Hysterese unterliegt und damit 15 eine gewisse Trägheit erfährt. Als Hysteresegrenze können vorteilhaft Werte von 1 bis 2 Zeitintervallen CI angenommen werden.

Bezüglich des mehrwertigen Laststatus (load state) $MPls_i$ wird 20 als besonders bevorzugt die Annahme von vier diskreten Werten vorgeschlagen, wobei vorzugsweise angenommen wird: NORMAL für $MPls_i$, wenn die Prozessorauslastung unter 70% liegt, HIGH für $MPls_i$, wenn die Prozessorauslastung 70% bis 85%, OVERLOAD für $MPls_i$, wenn die Prozessorauslastung über 85% liegt und 25 EXTREME für $MPls_i$, wenn dauerhaft der Lastzustand OVERLOAD vorherrscht. Auch hier kann es vorteilhaft sein, wenn der Laststatus (load state) $MPls_i$ bezüglich Änderungen einer Hysterese unterliegt. Als Hysteresegrenze können vorteilhaft Werte von 1 bis 2 Zeitintervallen CI angenommen werden.

30

Weitere vorteilhafte Annahmen bei der Durchführung des erfindungsgemäßen Verfahrens sind: der typische verteilbare Anteil V einer typischen Aufgabe soll der durchschnittliche

5

oder maximale Anteil sein und als typische Bearbeitungszeit einer Aufgabe soll eine durchschnittliche oder maximale Bearbeitungszeit einer Aufgabe angenommen werden.

Vorteilhaft kann hierbei der jeweilige Durchschnittswert oder

- 5 Maximalwert eines Anteils beziehungsweise einer Aufgabe auch während der Betriebszeit ständig ermittelt und gegebenenfalls als gleitender Wert mitgeführt und aktualisiert in das Lastverteilungsverfahren übernommen werden. Günstig ist es hierbei, wenn die Zeitdauer, über die die gleitenden Werte ermittelt werden, groß gegenüber dem Kontrollintervall CI ist.

Besonders vorteilhaft ist es auch, wenn für den vorgegebenen Wert q_v der Verteilungsquote q_i , ab dem der Prozessor MPi

- 15 verteilbare Last an andere Prozessoren MP_k verteilt, gilt: $0,05 < q_v < 0,3$, vorzugsweise $0,1 < q_v < 0,25$, vorzugsweise $q_v = 0,2$.

Weiterhin kann das erfindungsgemäße Verfahren besonders vorteilhaft ausgestaltet werden, wenn bei der Berechnung der

- 20 Verteilungsquote q_i die folgenden Kriterien erfüllt werden:

- $p_{ii} := 0$
- falls MP_{bi}_j einer mittlere Last entspricht, vorzugsweise MP_{bi}_j=NORMAL, gilt: $p_{ij}(\text{neu}) = p_{ij}(\text{alt}) + p_{ci}/n$, für $j=1, \dots, n$ und $i \neq j$

- 25 - falls MP_{bi}_j einer hohen Last entspricht, vorzugsweise MP_{bi}_j=HIGH gilt: $p_{ij}(\text{neu}) = p_{ij}(\text{alt}) - p_{ci}/n$, für $j=1, \dots, n$ und $i \neq j$

- falls MP_{bi}_j einer Überlast entspricht, vorzugsweise MP_{bi}_j=OVERLOAD, gilt: $p_{ij}(\text{neu}) = 0$

- 30 - wobei vorzugsweise die p_{ij} ($j=1, \dots, n$) mit der Summe p_{sum} der p_{ij} auf 1 normiert wird und

6

- als Initialisierungswert beim Beginn der Verteilungsprozesse alle p_{ij} , ausgenommen p_{ii} , gleich sind.

5 Als vorteilhafte Zahlenwerte können für die Konstante p_{c1} $0,1 < p_{c1} < 0,5$, vorzugsweise $0,2 < p_{c1} < 0,3$ und vorzugsweise $p_{c1}=0,25$ angenommen werden. Ebenso ist es vorteilhaft für die Konstante p_{c2} $0,1 < p_{c2} < 0,5$, vorzugsweise $0,2 < p_{c2} < 0,3$, vorzugsweise $p_{c2}=0,25$ zu setzen. Auch kann der 10 Initialisierungswert der p_{ij} beim Beginn der Verteilungsprozesse gleich $(n-1)^{-1}$ gesetzt werden.

15 Weiterhin kann das erfindungsgemäße Verfahren besonders vorteilhaft ausgestaltet werden, wenn bei der Berechnung der Lastindikationswerte MP_{bi} die folgenden Kriterien erfüllt werden:

- falls MP_{ls_i} der höchsten Last entspricht, vorzugsweise $MP_{ls_i}=EXTREME$, gilt: $q_i(\text{neu})=q_{c1}$,
- 20 - falls $p_{sum} \geq 1$ gilt:
- falls der tatsächliche Lastzustand Y_i größer als ein vorgegebener Wert $threshold_H$ ist, wird q_i vergrößert mit $q_i=\min\{q_i+c_{q1}, 1\}$,
- falls der tatsächliche Lastzustand Y_i kleiner als ein 25 vorgegebene Wert $threshold_N$ ist, wird q_i verkleinert mit $q_i=\max\{q_i-c_{q2}, c_{q3}\}$, mit $0 < c_{q3} < q_v$, vorzugsweise $c_{q3}=0,1$,
- andernfalls ($threshold_N \leq Y_i \leq threshold_H$) erhält q_i einen Zwischenwert zwischen den beiden oben genannten Alternativen, vorzugsweise durch lineare Interpolation
- 30 - falls $p_{sum} \leq 1$ gilt: $q_i(\text{neu})=q_i(\text{alt}) * p_{sum}$.

Zur optimalen Ausgestaltung des Verfahrens sind für die Konstante c_{q1} die folgenden Zahlenbereiche und -werte

7

bevorzugt: $0,05 < c_{q1} < 0,3$, vorzugsweise $0,1 < c_{q1} < 0,2$, vorzugsweise $c_{q1}=0,15$. Außerdem kann für die Konstante c_{q2} vorzugsweise $0,05 < c_{q2} < 0,2$, vorzugsweise $c_{q2}=0,10$ angenommen werden.

5

Bezüglich der Konstanten $threshold_N$ gilt als bevorzugter Wertebereich: $0,6 < threshold_N < 0,8$, vorzugsweise $threshold_N = 0,7$.

10 Bezüglich der Konstanten $threshold_H$ gilt als bevorzugter Wertebereich: $0,7 < threshold_H < 0,95$, vorzugsweise $threshold_H = 0,85$.

15 Eine andere Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß zusätzlich in jedem Zeitintervall CI ein Überlastwert OL_i der Prozessoren MP_i ermittelt wird, der ein Maß für die Größe der Überlast ist und als Maßstab zur Überlastabwehr dient, mit $OL_i=0,1, \dots, m$, und die Verteilungsquote q_i auf jeden Fall vergrößert wird, falls 20 $OL_i > 0$ mit $q_i(\text{neu}) := \min\{q_i(\text{alt}) + c_{q1}, 1\}$.

25 Erfindungsgemäß besteht auch die Möglichkeit, eine Adaption des Lastverteilungsverfahrens an sich ändernde Randbedingungen durchzuführen, indem die oben angegebenen Konstanten ($q_v, p_{c1}, p_{c2}, q_{c1}, q_{c2}, threshold_N, threshold_H, c_{q1}, c_{q2}, c_{q3}$) im Betrieb zumindest teilweise angepaßt werden.

30 Erfindungsgemäß wird außerdem ein Multiprozessorsystem, insbesondere eines Kommunikationssystems, mit mehreren Prozessoren MP_i (mit $i=1, 2, \dots, n$) zur Ausführung anfallender Aufgaben unter Realzeitbedingungen, vorgeschlagen, wobei:
- jeder Prozessor MP_i Mittel aufweist, um seinen tatsächlichen Lastzustand Y_i zu bestimmen, -

8

gegebenenfalls direkt hieraus einen mehrwertigen Laststatus (load state) MP_{ls_i} zu bestimmen - und in Abhängigkeit von zuvor mitgeteilten Verteilungsquoten q_i (alt) (mit q_i =an andere Prozessoren MP_k nach Möglichkeit zu verteilender Lastanteil) und dem typischerweise verteilbaren Anteil V einer typischen Aufgabe seine angebotene Last A_i zu schätzen, die zu einem mehrwertigen Lastindikationswert (Balancing Indicator) MP_{bi_i} führt,

10 - jeder Prozessor MP_i Mittel aufweist, um seinen Lastindikationswert MP_{bi_i} den jeweils anderen Prozessoren MP_k (mit $k=1,2,\dots,i-1,i+1,\dots,n$) mittelbar oder unmittelbar mitzuteilen,

- jeder Prozessor MP_i Mittel aufweist, um seine

15 Lastverteilungswahrscheinlichkeiten p_{ij} (mit $j=1,2,\dots,n$) in Abhängigkeit von den Lastindikationswerten MP_{bi_k} dieser anderen Prozessoren MP_k zu bestimmen,

- jeder Prozessor MP_i Mittel aufweist, um seine

20 Verteilquote q_i (neu) in Abhängigkeit von seinem tatsächlichen Lastzustand Y_i zu bestimmen, und

- jeder Prozessor MP_i Mittel aufweist, um anhand seiner Quote q_i und seiner Lastverteilungsfaktoren p_{ij} seine verteilbare Last an andere Prozessoren MP_k zu verteilen,

25 wenn seine Verteilquote q_i (neu) einen vorgegebenen Wert q_v überschreitet.

Erfindungsgemäß kann das oben vorgeschlagene Multiprozessorsystem so ausgestaltet werden, daß jeweils eines der oben genannten Verfahren implementiert ist, wobei die Implementierung durch eine entsprechende Programmierung der Prozessoren erfolgt.

9

Es ist noch darauf hinzuweisen, daß der Index (alt) sich jeweils auf die Werte des vorhergehenden Iterationsschrittes, beziehungsweise der Index (neu) sich auf den jetzt aktuellen Iterationsschritt beziehen.

5

Der besondere Vorteil des erfindungsgemäßen Verfahrens und des entsprechenden Multiprozessorsystems liegt darin, daß es im Gegensatz zum eingangs genannten Stand der Technik einen "weichen" Einstieg in die Lastverteilung gewährleistet und

10

dadurch anpassungsfähiger, weniger anfällig gegen Schieflastsituationen ist und Schwingungszustände besser vermieden werden. Im Endeffekt wird hierdurch die Wahrscheinlichkeit für die Abwehr von Aufgaben, insbesondere Vermittlungsaufgaben reduziert.

15

Weitere Ausgestaltungen, zusätzliche Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die Zeichnungen.

20

Es versteht sich, daß die vorstehend genannten und nachstehend noch zu erläuternden Merkmale der Erfindung nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, 25 ohne den Rahmen der Erfindung zu verlassen.

Die Figuren zeigen im einzelnen:

Figur 1: Flußbild des anfallenden und verteilten
30 Lastangebotes

Figur 2a: Grafische Darstellung der Entscheidungen zur
Aktualisierung der Lastverteilungsfaktoren p_{ij}

Figur 2b: Grafische Darstellung der Entscheidungen zur
Aktualisierung der Verteilungsquoten q_i

35 Figur 3: Formel zur linearen Interpolation von q_i

10

Das erfindungsgemäße Verfahren (Normal Load Balancing=NLB) ist ein quotiertes Load Balancing Verfahren, das auf einem Multiprozessorsystem, insbesondere in einer Vermittlungsstelle eines Kommunikationssystems, zur

5 Verteilung anfallender Arbeitslasten auf die jeweils anderen Prozessoren abläuft und sicherstellen soll, daß andauernde Schieflastsituationen bewältigt und möglichst alle angeforderten Aufgaben in möglichst kurzer Zeit abgearbeitet werden. Nachfolgend soll eine besonders vorteilhafte

10 Ausführungsform dieses Verfahrens beschrieben werden.

Auf jedem Prozessor MP_i mit $i=1,2,\dots,n$ wird eine Verteilquote q_i geführt, die den Anteil V der verteilbaren Last, der tatsächlich verteilt werden soll, festsetzt. Eine

15 solche Quote ermöglicht einen weicheren Ein- beziehungsweise Ausstieg aus der Lastverteilung an andere Prozessoren. Auf diese Weise werden Schwingzustände und Lastschwankungen vermieden. Dies kann beispielsweise der Fall sein, wenn ein Prozessor so viel Last an einen anderen verteilt, daß dieser

20 wiederum überlastet wird.

Die Verteilquote q_i wird jedes Zeitintervall CI neu bestimmt. Die einzige Information, die jedes CI von den anderen Prozessoren MP_k mit $k=1,\dots,i-1,i+1,\dots,n$ benötigt wird, sind

25 Lastwertindikatoren (Balancing Indikatoren) $MPbi_i$. Diese Lastwertindikatoren sind - ähnlich wie die Laststatuswerte (Load States) von der Load Control - Lastzustände mit den Wertigkeiten NORMAL, HIGH oder OVERLOAD. Während der Load State anhand der tatsächlich bearbeiteten Last Y_i des

30 Prozessors MP_i bestimmt wird, wird der Lastwertindikatoren $MPbi_i$ aus einer Schätzung der aktuell angebotenen Last A_i ermittelt. Die geschätzte angebotene Last A_i kann durch Lastverteilung erheblich mehr als die tatsächlich bearbeitete Last Y_i sein und stellt die maßgebliche Größe dar, die (in

35 Form des Lastwertindikators $MPbi_i$) ein Prozessor MP_i den anderen MP_k als Information zur Verfügung stellt.

11

Zusätzlich zur Verteilungsquote q_i werden auf jedem MP_i Wahrscheinlichkeiten p_{ij} geführt, welche die Wahrscheinlichkeit angeben, daß bei Lastverteilung Last vom i-ten Prozessor MP_i auf den j-ten Prozessor MP_j übertragen wird. Die Wahrscheinlichkeiten werden so bestimmt, daß, wenn etwa der j-te Prozessor MP_j schon viel Last zu bearbeiten hat und deshalb nur wenig zusätzliche Last aufnehmen kann, das zugehörige p_{ij} kleiner ist als das P_{ik} für einen freien MP_k .

10 In Figur 1 wird das Zusammenspiel der p_{ij} und q_i veranschaulicht. Die doppelte Indizierung "ij" der Kenngrößen besagt, daß jeweils der Prozessor mit der Nummer des ersten Index (hier i) jeweils eine "Spalte" von n Werten mit dem zweiten Index (hier j) kennt. Es ist zu bemerken, daß jeder 15 Prozessor nur seine relevanten Werte (also seine Spalte) kennt, wobei insgesamt im System eine quadratische Matrix bekannt ist. So ist zum Beispiel p_{ij} die Wahrscheinlichkeit, daß Last vom i-ten MP auf den j-ten MP verteilt wird, wenn der i-te MP zu viel Last hat.

20 In der Figur 1 ist außerdem die tatsächlich bearbeitete Last des j-ten Prozessors MP_j mit Y_j , die geschätzte angebotene Last mit A_j und der Teil des Lastangebotes, der verlagert werden kann, mit a bezeichnet. Die gezeigte Lastsituation ist 25 Überlast (OVERLOAD) auf MP_1 , auf den MP_k mit $k=2,3,4$ ist noch Raum für zusätzliche Aufgaben. Es wird gezeigt, wie der MP_1 einen ersten Teil der Last selbst bearbeitet und den Rest a verteilt. Von diesem Rest a geht der größte Anteil an MP_3 , der kleinste Anteil an MP_4 , der in diesem Beispiel also schon 30 viel eigene Last zu bearbeiten hat. Nicht eingezeichnet sind die Lasten, welche die MP_k außer von MP_1 noch erhalten. Die Breite der Fließbalken stellen ein Maß für die Größe der Last dar.

35 Gemäß dem Erfindungsgedanken ergibt sich also der folgende Algorithmus: Meldet der j-te Prozessor MP_j den Balancing Indikator NORMAL, wird auf dem jeweils betrachteten MP_i das

p_{ij} vergrößert. Es steigt also die Wahrscheinlichkeit, daß dieser Prozessor MP_i Last an MP_j abgibt, wenn er Last verteilen muß. Wird der Balancing Indikator HIGH gemeldet, so wird das p_{ij} verkleinert. Wird der Balancing Indikator 5 OVERLOAD gemeldet, wird p_{ij} auf Null gesetzt, so daß keine Last an den j -ten Prozessor MP_j abgegeben wird. Die Verteilungsquote q_i wird anschließend an die Bestimmung der p_{ij} verändert. Konnten viele der p_{ij} vergrößert werden, so ist die Summe der p_{ij} über j größer 1 und offenbar noch Platz auf 10 den anderen Prozessoren MP_k . Die Verteilungsquote q_i kann also nach den Erfordernissen des (betrachteten) Prozessors verändert werden.

Bei hoher Last Y_i auf dem betrachteten Prozessor MP_i wird die Verteilungsquote q_i vergrößert, bei niedriger Last wird q_i 15 verkleinert. Sind viele der p_{ij} verringert worden, dann ist die Summe der p_{ij} über j kleiner 1 und die Verteilungsquote q_i muß verringert werden.

Eine Veranschaulichung dieser Entscheidungen ist in den 20 Figuren 2a und 2b dargestellt. Die Entscheidungsdiagramme zeigen die Aktualisierungsalgorithmen für p_{ij} (Figur 2a) und für Verteilungsquote q_i (Figur 2b), die jedes Zeitintervall CI für den i -ten Prozessor MP_i durchgeführt werden.

25 Bei dem erfindungsgemäßen Lastverteilungsverfahren (NLB) werden einige Parameter (Konstanten) benötigt, deren Wahl das Verhalten in bestimmten Lastsituationen stark beeinflussen kann. Es ergibt sich in den meisten Fällen ein Konflikt zwischen einem Lastverteilungsverfahren, das schnell auf 30 Laständerungen reagieren kann, und einem stabilen Lastverteilungsverfahren, das nicht zu Schwingungen und zum Weiterverteilen von Aufgaben neigt. "Weiterverteilen" bedeutet hier das gleichzeitige Verteilen von eigener Last und das Bearbeiten von fremder Last auf einem Prozessor.

35 Folgende Parameterveränderungen bewirken ein schneller reagierendes NLB:

13

- Das stärkere Verändern von q_i mit: $0,15 < c_{q1}, 0,1 < c_{q2}$
- Das stärkere Verändern der p_{ij} mit: $0,25 < p_{c1}, 0,25 < p_{c2}$
- Das spätere Setzen der Lastindikationswerte MPb_{ij} mit: $threshold_H > 0,7$ (d.h. erst bei höherer Last 'HIGH' an die anderen Prozessoren MP_k melden)

5

Detailliert verläuft das bevorzugte Verfahren bei einem Multiprozessor-Kommunikationsrechner also wie folgt:

10 Als Dauer des Zeitintervalls (Kontrollintervall) CI des Zeitrasters, mit dem das Verfahren iterativ abläuft, wird bei den derzeit bekannten Multiprozessorsystemen der Vermittlungstechnik bevorzugt 1 bis 2 Sekunden gewählt. Es ist selbstverständlich, daß mit steigender Prozessorleistung 15 das Zeitintervall gekürzt werden kann.

Jedes Kontrollintervall CI werden die Größen q_i, p_{ij}, MP_{ls_i} und MPb_{ij} aktualisiert.

20 Die tatsächlich bearbeitete Last Y_i eines Prozessors MP_i wird als Prozessorlaufzeitgröße, gemessen in Erlang, ermittelt.

25 Die geschätzte angebotene Last A_j eines Prozessors MP_i wird aus der Verteilquote q_i des aktuellen Kontrollintervalls CI und dem geschätzten verteilbaren Anteil einer durchschnittlichen Aufgabe, zum Beispiel der Abarbeitung eines Calls, ermittelt.

Es gilt:

30 Die Anzahl der Prozessoren MP_i im Multiprozessorsystem ist n.

$A_i := Y_i / (1 - q_i V)$, wobei V der verteilbare Anteil eines Calls ist.

35 MP_{ls_i} : Load State des i-ten MPs, kann die Werte NORMAL, HIGH, OVERLOAD oder EXTREME annehmen. Zur Berechnung des Load States wird die tatsächlich bearbeitete Last Y_i herangezogen.

Zur Vermeidung von vorschnellen Änderungen des MP_{ls_i} werden Hysteresen eingeführt. Wird etwa der MP_{ls_i} von NORMAL auf HIGH gesetzt, muß $Y_i > threshold_N + \Delta_+$ sein, wohingegen, um von HIGH nach NORMAL zu kommen, $Y_i < threshold_N - \Delta_-$ sein muß. Diese Vorgehensweise ist auch als High Water-Low Water Methode bekannt. Bei EXTREME muß aus systemtechnischen Gründen der Vermittlungsstelle das Verteilungsverfahren (Load Balancing) für diesen Prozessor MP_i abgeschaltet werden.

threshold_N: Ist die Normallastschwelle - nach Berücksichtigung einer Hysterese wird unterhalb dieser der MP_{ls} als NORMAL geführt, oberhalb als HIGH.

threshold_H: Hochlastschwelle - nach Berücksichtigung einer Hysterese und einer lastabhängigen zeitlichen Verzögerung (Startindikator) wird unterhalb dieser Schwelle der MP_{ls} als HIGH geführt, oberhalb als OVERLOAD.

Der Lastindikationswert (Balancing Indikator) MP_{bi_i} des i-ten Prozessors MP_i kann die Werte NORMAL, HIGH oder OVERLOAD annehmen. Dieser wird wie der MP_{ls_i} berechnet, nur wird hier anstelle der tatsächlichen Last Y_i die geschätzte angebotene Last A_i zugrundegelegt und andere Werte für Δ_+ und Δ_- genommen, mit $\Delta_+ = \Delta_- = 0.02$.

Zusätzlich wird ein Overload Level OL_i des Prozessors MP_i bestimmt, der die Werte 0... 6 annehmen kann und als Quantifizierung des Überlastzustandes des Prozessors MP_i gedacht ist. Ist der $OL_i > 0$, werden Calls abgewehrt, je höher der Wert, desto wahrscheinlicher wird ein Call abgewiesen.

Die Last, die von MP_i nach MP_j verteilt werden soll, wird als Wahrscheinlichkeit p_{ij} ausgedrückt und kann somit Werte zwischen 0 und 1 annehmen.

Die Größe des Wertes p_{ij} bestimmt sich durch folgende Kriterien:

15

- Initialisiere p_{ij} mit $p_{ij} := (n-1)^{-1}$
- $p_{ii} := 0$, MP_i soll nicht an sich selbst verteilen.
- Falls $MP_{bi,j} = NORMAL$: $p_{ij} \rightarrow p_{ij} + 0.25/n$, $j=1, \dots, n$, $i \neq j$. Das alte p_{ij} kann vergrößert werden, weil auf dem Prozessor MP_j noch Platz ist.
- Falls $MP_{bi,j} = HIGH$: $p_{ij} \rightarrow p_{ij} - 0.25/n$. Das alte p_{ij} muß verkleinert werden, weil MP_j voll ausgelastet ist.
- Falls $MP_{bi,j} = OVERLOAD$: $p_{ij} = 0$. Es soll keine Last an überlastete Prozessoren MP_n abgeben werden.

5

10

15

Die neu bestimmten p_{ij} müssen noch normiert werden:

Setze $p_{sum} = \text{summe}(p_{ij})$ über $j=1, \dots, n$
und normiere (falls $p_{sum} > 0$) mit $p_{ij} \rightarrow p_{ij}/p_{sum}$

15 Anschließend wird die Verteilungsquote q_i mit den folgenden Kriterien bestimmt:

- Initialisierungswert: $q_i = 0.1$
- Falls der $MP_{1,i} = EXTREME$: $q_i = 0.1$. Dieser MP ist so stark überlastet, daß ihn auch der Eigenanteil für einen verteilten Call überfordern würde. Deshalb kein Load Balancing, sondern nur Abwehr; das Load Balancing ist zudem aus systemtechnischen Gründen der Vermittlungsstelle nicht sinnvoll.
- Falls $p_{sum} > 1$, kann offenbar mehr Last verteilt werden. Dann kann q_i nach den Erfordernissen des MP_i bestimmt werden, mit:
 1. Falls der $OL_i > 0$, q_i auf jeden Fall vergrößern mit: $q_i \rightarrow \min\{q_i + 0.15, 1\}$
 2. Falls $Y_i > threshold_H$, q_i vergrößern mit: $q_i \rightarrow \min\{q_i + 0.15, 1\}$
 3. Falls $Y_i < threshold_N$, q_i verkleinern mit: $q_i \rightarrow \max\{q_i - 0.10, 0.1\}$.
 4. Andernfalls, falls $threshold_N < Y_i < threshold_H$ gilt:

$$q_i \rightarrow \min\{\max\{q_i + (0.25/(threshold_H - threshold_N)) * (Y_i - threshold_N) - 0.1, 0.1\}, 1.0\}$$

16

Dies ist die lineare Interpolation zwischen der obigen Vergrößerung um 0.15 und der obigen Verkleinerung um 0.1. Die Formel ist nochmals in besser lesbarer Weise in der Figur 3 dargestellt.

5

- Falls $p_{sum} < 1$, wurde offenbar zuviel Last verteilt und q_i muß verkleinert werden mit: $q_i \rightarrow q_i * p_{sum}$.
- Der Prozessor MP_i verteilt Last an andere Prozessoren MP_k , wenn $q_i > 0.25$ wird.

10

Das erfindungsgemäße Verfahren weist somit die folgenden Eigenschaften und Vorteile auf:

15

Ein sehr geringer Informationsoverhead zwischen den am Lastverteilungsverfahren beteiligten Prozessoren. Gegenseitig bekannt sind nur wenige, vorzugsweise dreiwertige Lastzustände, die nur einmal pro Kontrollintervall aktualisiert und verteilt werden.

20

Für jeden Prozessor gibt es eine Quote, die jedes Kontrollintervall aktualisiert wird und die den Anteil der Last regelt, die vom betrachteten Prozessor an die anderen beteiligten Prozessoren verteilt werden soll.

25

Für jeden Prozessor gibt es Einzelregulatoren, welche die zu verteilende Last auf die anderen Prozessoren aufteilen.

30

Das Verfahren ist nicht nur als "Feuerwehrmaßnahme" konzipiert, das erst wirksam wird, wenn ein Prozessor in Überlast gerät und gegebenenfalls Aufgaben (Calls) abgewehrt werden, sondern es setzt die Lastverteilung früher und weicher ein. Dadurch können Dauerschieflastzustände besser und mit weniger abgewiesenen Aufgaben (Calls) verarbeitet werden.

17

Im erfindungsgemäßen Verfahren werden die Lastzustände, die an die anderen Prozessoren verteilt werden, konsequent anhand der geschätzten angebotenen Last und nicht anhand der tatsächlich bearbeiteten Last ermittelt.

5

Das Verfahren benötigt kein Load Balancing Flag, das den Einstieg in die Lastverteilung regelt. Der Einstieg wird über die Verteilquote q_i geregelt. Weiterhin sind durch das Fehlen eines Load Balancing Flags gegenseitige Abhängigkeiten

10 zwischen den Lastzuständen und dem Load Balancing Flag eliminiert worden. Dadurch ist eine nachträgliche Anpassung des Algorithmus an veränderte Bedingungen leichter möglich.

15 Die lastabhängige Veränderung der Einzelregulatoren (Lastverteilungsfaktoren p_{ij}) geschieht in Abhängigkeit von der Anzahl n der an der Lastverteilung beteiligten Prozessoren. Somit ist das Verfahren unabhängig von der Anzahl der beteiligten Prozessoren.

20 Die lastabhängige Veränderung der Verteilungsquoten und der Einzelregulatoren pro Kontrollintervall geschieht so, daß ein zu langsames "Heranschleichen" an den optimalen Wert vermieden wird.

25 Die lastabhängige Veränderung der Einzelregulatoren vermeidet ein Verharren der Werte auf die Einstellung der vorangegangenen Lastverteilungsperiode während einer Periode ohne Lastverteilung. Es wird vielmehr auf eine Ausgangsstellung zurückgeregelt.

30

Die aus dem Stand der Technik bekannte Trägheit in der Veränderung der Quoten wurde entfernt, um ein leichteres Nachführen an die tatsächlich vorliegende Lastsituation zu ermöglichen.

Patentansprüche

1. Verfahren zur Lastverteilung in einem
Multiprozessorsystem, insbesondere in einem
5 Multiprozessorsystem eines Kommunikationssystems, bei
dem anfallende Aufgaben von mehreren Prozessoren MP_i
(mit $i=1,2,\dots,n$) unter Realzeitbedingungen
abgearbeitet werden können, mit folgenden iterativen und
sich in Zeitintervallen CI wiederholenden
10 Verfahrensschritten:

- jeder Prozessor MP_i ermittelt seinen tatsächlichen
Lastzustand Y_i - bestimmt gegebenenfalls direkt
hieraus einen mehrwertigen Laststatus (load state)
 MP_{i1s_i} - und schätzt in Abhängigkeit von zuvor
15 mitgeteilten Verteilungsquoten $q_i(\text{alt})$ (mit $q_i=\text{an}$
andere Prozessoren MP_k nach Möglichkeit zu
verteilender Lastanteil) und dem typischerweise
verteilbaren Anteil V einer typischen Aufgabe
seine angebotene Last A_i , die zu einem mehrwertigen
20 Lastindikationswert (Balancing Indicator) MP_{bi_i}
führt,
- jeder Prozessor MP_i teilt seinen
Lastindikationswert MP_{bi_i} den jeweils anderen
Prozessoren MP_k (mit $k=1,2,\dots,i-1,i+1,\dots,n$)
25 mittelbar oder unmittelbar mit,
- jeder Prozessor MP_i bestimmt seine
Lastverteilungswahrscheinlichkeiten p_{ij} (mit
 $j=1,2,\dots,n$) in Abhängigkeit von den
Lastindikationswerten MP_{bi_k} dieser anderen
30 Prozessoren MP_k ,
- jeder Prozessor MP_i bestimmt seine Verteilungsquote
 $q_i(\text{neu})$ in Abhängigkeit von seinem tatsächlichen
Lastzustand Y_i und den Lastverteilungsfaktoren p_{ij}

19

- jeder Prozessor MP_i verteilt anhand seiner Quote q_i und seiner Lastverteilungsfaktoren p_{ij} seine verteilbare Last an andere Prozessoren MP_k wenn seine Verteilquote $q_i(\text{neu})$ einen vorgegebenen Wert q_v überschreitet.

5

2. Verfahren gemäß dem voranstehenden Anspruch 1, dadurch gekennzeichnet, daß die geschätzte angebotene Last A_i eines Prozessors MP_i nach der Formel $A_i := Y_i / (1 - q_i V)$ errechnet wird.

10

3. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der mehrwertige Lastindikationswert (balancing indicator) $MPbi_i$ drei diskrete Werte, vorzugsweise NORMAL (=0 bis 0,7), HIGH (=0,7 bis 0,85) und OVERLOAD (=0,85 bis 1) annehmen kann.

15

4. Verfahren gemäß dem voranstehenden Anspruch 3, dadurch gekennzeichnet, daß der Lastindikationswert (balancing indicator) $MPbi_i$ bezüglich Änderungen einer Hysterese unterliegt.

20

5. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der mehrwertige Laststatus (load state) $MPls_i$ vier diskrete Werte, vorzugsweise NORMAL (=0 bis 0,7), HIGH (=0,7 bis 0,85), OVERLOAD (=0,85 bis 1) und EXTREME (wenn Laststatus über mehrere CI OVERLOAD) annehmen kann.

25

6. Verfahren gemäß dem voranstehenden Anspruch 3, dadurch gekennzeichnet, daß der Laststatus (load state) $MPls_i$ bezüglich Änderungen einer Hysterese unterliegt.

30

7. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Wert der tatsächlichen Last Y_i proportional zur Prozessorlaufzeit ist.

8. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß als typischer verteilbarer Anteil V einer typischen Aufgabe CallP der durchschnittliche oder maximale Anteil ist.

9. Verfahren gemäß dem voranstehenden Anspruch 8, dadurch gekennzeichnet, daß der durchschnittliche oder maximale Anteil einer typischen Aufgabe ständig als gleitender Durchschnitt oder gleitender Maximalwert über eine vorgegebene Zeitspanne t_D ermittelt wird.

10. Verfahren gemäß dem voranstehenden Anspruch 9, dadurch gekennzeichnet, daß für die vorgegebene Zeitspanne t_D gilt: $t_D \gg CI$.

11. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß als typische Aufgabe eine durchschnittliche oder maximale Aufgabe angenommen wird.

12. Verfahren gemäß dem voranstehenden Anspruch 8, dadurch gekennzeichnet, daß die durchschnittliche oder maximale Aufgabe ständig als gleitender Durchschnitt oder gleitender Maximalwert über eine vorgegebene Zeitspanne t_D ermittelt wird.

21

13. Verfahren gemäß dem voranstehenden Anspruch 12, dadurch gekennzeichnet, daß für die vorgegebene Zeitspanne t_D gilt: $t_D \gg CI$.

5 14. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für den vorgegebenen Wert q_v der Verteilquote q_i , ab dem der Prozessor MPi verfügbare Last an andere Prozessoren MPk verteilt gilt: $0,05 < q_v < 0,3$, vorzugsweise $0,1 < q_v < 0,25$, vorzugsweise $q_v = 0,2$.

10 15. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Berechnung der Verteilquote q_i die folgenden Kriterien erfüllt:

15 - $p_{ii} := 0$
- falls $MP_{bi,j}$ einer mittlere Last entspricht, vorzugsweise $MP_{bi,j} = NORMAL$, gilt:
 $p_{ij}(\text{neu}) = p_{ij}(\text{alt}) + p_{c1}/n$, für $j=1, \dots, n$ und $i \neq j$
- falls $MP_{bi,j}$ einer hohen Last entspricht, vorzugsweise $MP_{bi,j} = HIGH$ gilt:
 $p_{ij}(\text{neu}) = p_{ij}(\text{alt}) - p_{c2}/n$, für $j=1, \dots, n$ und $i \neq j$
- falls $MP_{bi,j}$ einer Überlast entspricht, vorzugsweise $MP_{bi,j} = OVERLOAD$, gilt:
 $p_{ij}(\text{neu}) = 0$
20 - wobei vorzugsweise die p_{ij} ($j=1, \dots, n$) mit der Summe p_{sum} der p_{ij} auf 1 normiert wird und
- als Initialisierungswert beim Beginn der Verteilungsprozesse alle p_{ij} , ausgenommen p_{ii} , gleich sind.

25 30 16. Verfahren gemäß dem voranstehenden Anspruch 15, dadurch gekennzeichnet, daß für die Konstante p_{c1} gilt:

22

$0,1 < p_{c1} < 0,5$, vorzugsweise $0,2 < p_{c1} < 0,3$, vorzugsweise $p_{c1}=0,25$.

17. Verfahren gemäß einem der voranstehenden Ansprüche 15-
 5 16, dadurch gekennzeichnet, daß für die Konstante p_{c2} gilt: $0,1 < p_{c2} < 0,5$, vorzugsweise $0,2 < p_{c2} < 0,3$, vorzugsweise $p_{c2}=0,25$.

18. Verfahren gemäß einem der voranstehenden Ansprüche 15-
 10 17, dadurch gekennzeichnet, daß der Initialisierungswert der p_i , beim Beginn der Verteilungsprozesse gleich $(n-1)^{-1}$ gesetzt wird.

19. Verfahren gemäß einem der voranstehenden Ansprüche 15-
 15 18, dadurch gekennzeichnet, daß die Berechnung der Lastindikationswerte MPb_i die folgenden Kriterien erfüllt:

- falls MPb_i der höchsten Last entspricht, vorzugsweise $MPb_i=EXTREME$, gilt:
 $q_i(\text{neu})=q_{c1}$,
- falls $p_{sum} \geq 1$ gilt:
 - falls der tatsächliche Lastzustand Y_i größer als ein vorgegebener Wert $threshold_N$ ist, wird q_i vergrößert mit $q_i=\min\{q_i+c_{q1}, 1\}$,
 - falls der tatsächliche Lastzustand Y_i kleiner als ein vorgegebener Wert $threshold_N$ ist, wird q_i verkleinert mit $q_i=\max\{q_i-c_{q2}, c_{q3}\}$, mit $0 < c_{q3} < q_v$, vorzugsweise $c_{q3}=0,1$,
 - andernfalls ($threshold_N \leq Y_i \leq threshold_H$) erhält q_i einen Zwischenwert zwischen den beiden oben genannten Alternativen, vorzugsweise durch lineare Interpolation
 - falls $p_{sum} \leq 1$ gilt: $q_i(\text{neu})=q_i(\text{alt}) * p_{sum}$.

20. Verfahren gemäß dem voranstehenden Anspruch 19, dadurch gekennzeichnet, daß für die Konstante c_{q1} gilt:
 $0,05 < c_{q1} < 0,3$, vorzugsweise $0,1 < c_{q1} < 0,2$, vorzugsweise $c_{q1} = 0,15$.

21. Verfahren gemäß einem der voranstehenden Ansprüche 19-20, dadurch gekennzeichnet, daß für die Konstante c_{q2} gilt: $0,05 < c_{q2} < 0,2$, vorzugsweise $c_{q2} = 0,10$.

10 22. Verfahren gemäß einem der voranstehenden Ansprüche 19-21, dadurch gekennzeichnet, daß für die Konstante $threshold_N$ gilt: $0,6 < threshold_N < 0,8$, vorzugsweise $threshold_N = 0,7$.

15 23. Verfahren gemäß einem der voranstehenden Ansprüche 19-22, dadurch gekennzeichnet, daß für die Konstante $threshold_H$ gilt: $0,7 < threshold_H < 0,95$, vorzugsweise $threshold_H = 0,85$

20 24. Verfahren gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß zusätzlich ein Überlastwert OL_i der Prozessoren MP_i ermittelt wird, der ein Maß für die Größe der Überlast ist, mit $OL_i = 0,1, \dots, m$ und die Verteilquote q_i auf jeden Fall vergrößert wird, falls $OL_i > 0$ mit $q_i(\text{neu}) := \min\{q_i(\text{alt}) + c_{q1}, 1\}$.

25 25. Multiprozessorsystem, insbesondere eines Kommunikationssystems, mit mehreren Prozessoren MP_i (mit $i = 1, 2, \dots, n$) zur Ausführung anfallender Aufgaben unter Realzeitbedingungen, wobei:
- jeder Prozessor MP_i Mittel aufweist, um seinen tatsächlichen Lastzustand Y_i zu bestimmen, -

24

gegebenenfalls direkt hieraus einen mehrwertigen
 Laststatus (load state) MP_{ls_i} zu bestimmen - und in
 Abhängigkeit von zuvor mitgeteilten
 Verteilungsquoten q_i (alt) (mit $q_i = an$ andere
 5 Prozessoren MP_k nach Möglichkeit zu verteilender
 Lastanteil) und dem typischerweise verteilbaren
 Anteil V einer typischen Aufgabe, seine angebotene
 Last A_i zu schätzen, die zu einem mehrwertigen
 Lastindikationswert (Balancing Indicator) MP_{bi_i}
 führt,

- jeder Prozessor MP_i Mittel aufweist, um seinen
 Lastindikationswert MP_{bi_i} den jeweils anderen
 Prozessoren MP_k (mit $k=1, 2, \dots, i-1, i+1, \dots, n$)
 mittelbar oder unmittelbar mitzuteilen,
- jeder Prozessor MP_i Mittel aufweist, um seine
 Lastverteilungswahrscheinlichkeiten p_{ij} (mit
 15 $j=1, 2, \dots, n$) in Abhängigkeit von den
 Lastindikationswerten MP_{bi_k} dieser anderen
 Prozessoren MP_k zu bestimmen,
- jeder Prozessor MP_i Mittel aufweist, um seine
 Verteilquote q_i (neu) in Abhängigkeit von seinem
 tatsächlichen Lastzustand Y_i zu bestimmen, und
- jeder Prozessor MP_i Mittel aufweist, um anhand
 20 seiner Quote q_i und seiner Lastverteilungsfaktoren
 p_{ij} seine verteilbare Last an andere Prozessoren MP_k
 zu verteilen, wenn seine Verteilquote q_i (neu) einen
 25 vorgegebenen Wert q_v überschreitet.

30 26. Multiprozessorsystem gemäß Anspruch 25, dadurch
 gekennzeichnet, daß eines der Verfahren gemäß einem der
 Ansprüche 1-24 implementiert ist.

This Page Blank (uspto)

EPO - Munich
42

21. Jan. 1999

Fig. 2

 p_{ij} : q_i :

Fig. 3

$$q_i \rightarrow \min \left[\max \left\{ q + \frac{0.25}{threshold_H - threshold_N} (Y_i - threshold_N) - 0.10, 10 \right\} \right]$$

Zusammenfassung

Lastverteilungsverfahren eines Multiprozessorsystems und
Multiprozessorsystem

5 Die Erfindung betrifft ein Verfahren zur Lastverteilung in
einem Realzeit-Multiprozessorsystem und ein
Multiprozessorsystem, wobei auf jedem Prozessor eine
Verteilquote geführt wird, die den Anteil der verteilbaren
10 Last, der tatsächlich verteilt werden soll, festsetzt. Die
Verteilquote wird in Zeitintervallen neu bestimmt. Die
einige Information, die jedes Zeitintervall von den anderen
Prozessoren benötigt wird, sind Lastwertindikatoren, die von
einer geschätzten Last abhängen. Zusätzlich werden
15 Wahrscheinlichkeiten geführt, welche angeben, wie bei
Lastverteilung Last von einem auf die anderen Prozessoren
übertragen wird. Anschließend verteilt jeder Prozessor anhand
seiner Verteilquote und seiner Lastverteilungsfaktoren seine
Verteilbare Last an andere Prozessoren, wenn seine
20 Verteilquote einen vorgegebenen Wert überschreitet.

Figur 1

This Page Blank (uspiu)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)