Magic States Distillation Using Quantum LDPC Codes.

David Ponarovsky

March 30, 2024

1 Current Status.

- 1. Section 5 Correct. In any CSS code, one can find a large subspace $\Lambda \subset C_X$ with a dimension that is linear in n and this subspace also satisfies the required relation for distillation. Specifically, for any $x \in \Lambda$, $y, z \in C_X$, it holds that xy = 0 and xyz = 0.
- 2. Sections 6 and 7 Incorrect. Initially, I believed that assuming the code is LDPC, one could encode the state C_Z^{\perp} in constant depth. However, this idea turned out to be incorrect both in calculation and in contrast to the fact that synthesizing the ground state of the Toric code requires $\Omega(\log n)$ depth.

2 Punctured Polyonomial Codes.

For $\Delta = 4^c$, $\Delta < q$, We have that

$$\sum_{x\in\mathbb{F}_{\Delta}}x^{i}=_{\Delta}\in\{0\;,\;\Delta/2\}$$

$$\sum_{\substack{x \in \mathbb{F}_{\Delta} \\ x < \Delta}} x^{i+j} =_{\Delta} \sum_{x \in \mathbb{F}_{\Delta}} x^{i+j} =_{\Delta} \begin{cases} 0 & i+j \neq_{q} \Delta - 1 \\ \Delta - 1 & \text{else} \end{cases}$$

So the punctured d-dgree polynomial code is orthogonal for the punctured n-1-d polynomial code. So we can take d=q/2-1, and $\Delta=\alpha q$ to have $[\alpha q,q/2-1,q/2-(1-\alpha)q]$ code. For example we can take $\alpha=7/8$ and have [7/8q,q/2-1,3/8q]. The rate of the code is

$$\sim \frac{1}{2} / \frac{7}{8} = \frac{4}{7} > \frac{1}{2}$$

Claim 2.1. For any $\Delta > 5$ there are good LDPC family C such that for any $x, y \in C$ it holds that $x \cdot y =_{(\Delta - 1)} 0$.

Proof. Consider the Tanner code defined by using the Δ -punctured polynomial code as C_0 , where the rate of C_0 is strictly greater than $\frac{1}{2}$. Then we have for any $x,y\in C$:

$$x \cdot y =_{(\Delta - 1)} \sum_{v \in V^+} x|_v \cdot y|_v =_{(\Delta - 1)} 0$$

3 Candidate For Triorthogonal LDPC Code.

Consider the Tannner **Graph**, such that the graph G is bipartite, and every two checks overlap on the ith bucket, Δ -size, bits. So for any two checks, we have that

$$\sum_{x=i\cdot\Delta}^{(i+1)\Delta} x^j =_{\Delta} \sum_{x'=(i-1)\cdot\Delta}^{i\Delta} (x'+\Delta)^j$$

$$=_{\Delta} \sum_{x=(i-1)\cdot\Delta}^{i\Delta} x'^{,j} = \sum_{x\in\mathbb{F}_{\Delta}} x^j$$

$$\sum_{x\in\mathbb{F}_{\Delta}} (x+a\Delta)^i (x+b\Delta)^j = \sum_{x\in\mathbb{F}_{\Delta}} x^{i+j}$$

So it's left to show that if we take the bipartite graph to be an expander graph then we have a good code.

Let G be a bipartite graph G=(L,R,E) that is a (n,m,γ,α) expander. This means that for any subset $S\subset V(G)$ with $|S|<\gamma n$, the size of the group of neighbors of S is at least $\Gamma(|S|)>\alpha |S|$. Consider the graph $G'=(\Delta\times L,R,E')$ defined as follows:

$$E' = \{\{(i, v), u\} : i \in [\Delta], \{u, v\} \in E\}$$

Thus for any $S \subset \Delta \times L$ if $|S|/\Delta < \gamma n$ we have that: $\Gamma'(S) < \Gamma(|S|/\Delta)$.

Therefore, if S is the set of vertices associated with the non-trivial symbols induced by the assignment of a codeword on the vertices, then if $|S| < \gamma n$, we have:

$$\frac{|S|}{\Gamma'(|S|)} \le \frac{|S|}{\Gamma(|S|/\Delta)} \le \frac{\Delta}{\alpha}$$

So there is a check that sees on his local view less than Δ/α non-trival bits $< d(C_0)$.

4 Hyprproduct Code of two Triorthogonal Codes.

Suppose that H is a parity check matrix scuh that $h_i h_j =_{\Delta} \in \{\Delta, , \Delta/2\}$ for any two rows. IS that true that the same property holds for the following check matrix?

$$H' \leftarrow [H \otimes I | I \otimes H]$$

$$H'_iH'_j = (H \otimes I)_i(H \otimes I)_j + (I \otimes H)_i(I \otimes H)_j$$

Denote $i = (i_1, i_2)$ and $j = (j_1, j_2)$. So:

$$(H \otimes I)_i (H \otimes I)_j = \delta_{i_2, j_2} H_{i_1} H_{j_1}$$

and

$$(I \otimes H)_i (I \otimes H)_i = \delta_{i_1,i_1} H_{i_2} H_{i_3}$$

5 Good Codes With Large Λ .

Claim 5.1. Let $v_1, v_2..v_k$ vectors in \mathbb{F}_2^n , then there are $u_1, u_2..u_{k'}$ for k' > k/2. Such span $\{u_1, u_2..u_{k'}\} \subset \text{span } \{v_1, v_2..v_k\}$ and for any i, j it holds that $u_i u_j = 0$.

```
ı Let J \leftarrow \emptyset
 ı Let J \leftarrow \emptyset
                                                                                   2 for i \in [k/3] do
 2 for i \in [k/2] do
                                                                                            J \leftarrow J \cup \{v_{3i-2}, v_{3i-1}, v_{3i}\}
          J \leftarrow J \cup \{v_{2i-1}, v_{2i}\}
                                                                                            for S \subset J do
          for S \subset \hat{J} do
 4
                                                                                                  Compute the vector m_S
               Compute the vector m_S define as m_{S,j} = u_j \sum_{w \in S} w
 5
                                                                                                     define as
 6
                                                                                                    m_{S,j,j'} = u_{j'}u_j \sum_{w \in S} w
 7
          Pick S such m_S = 0 and set
                                                                                            Pick S such m_S = 0 and set
                                                                                   8
           u_i \leftarrow \sum_{w \in S} w
                                                                                            \begin{array}{l} u_i \leftarrow \sum_{w \in S} w \\ \text{Choose randomly } w \in S \text{ and set} \end{array}
          Choose randomly w \in S and set
            J \leftarrow J/w
10 end
                                                                                  10 end
   : Find commuted vectors u_1, u_2, ... u_{k'}
                                                                                      : Find commuted vectors u_1, u_2, ... u_{k'}
```

Proof. Consider Algorithm 1a, We are going to prove that at line number (8) the alg always finds a subset S that satisfies the equality. Assume not. On one hand, the number of possible values that m_S can have is $2^i - 1$. On the other hand, since J contains i + 1 vectors on the ith iteration, it follows that the number of subsets is $2^{i+1} - 1 \ge 2^i$.

Therefore, there must be at least two different subsets S and S' such that $u_S = u_{S'}$. However, this means that

$$m_{S\Delta S',j} = u_j \sum_{w \in S\Delta S'} w = u_j \left(\sum_{w \in S\Delta S'} w + 2 \sum_{w \in S\cap S'} w \right)$$
$$= m_{S,j} + m_{S',j} = 0$$

Thus, $m_{S\Delta S'}=0$. Additionally, it is clear that the rank does not decrease, as for u_i , there exists one v_j such that only u_i is supported by v_j .

Claim 5.2. Let $v_1, v_2..v_k$ vectors in \mathbb{F}_2^n and m be an integer m < k, then there are $u_1, u_2..u_{k'}$ for k' > k/2-m. Such span $\{u_1, u_2..u_{k'}\} \subset \text{span } \{v_{m+1}, v_{m+2}..v_k\}$, for any i, j it holds that $u_iu_j = 0$ and for any $i \in]k'$, $j \leq m$ it holds that $u_iv_j = 0$.

Proof. Modify the Algorithm 1a as follows, Initialize $u_1, ... u_m$ to be $v_1, ..., v_m$ and $J = \{v_{m+1}, ... v_{2m+2}\}$. Notice that in the *i*th iteration, for the counting argument to works in the proof of Claim 5.1, we have to ensure that:

$$|J| \ge m+i+1, \text{ So } m+i+1 \le k-m-i$$

$$\Rightarrow i \le k/2-m-\frac{1}{2}$$

In the end, $u_{m+1}, u_{m+2}, ..., u_{k'}$ will satisfy the equations.

Claim 5.3. Let $v_1, v_2..v_k$ vectors in \mathbb{F}_2^n , then there are $u_1, u_2..u_{k'}$ for k' > k/4. Such span $\{u_1, u_2..u_{k'}\} \subset \text{span } \{v_1, v_2..v_k\}$. And for any $i, j \sum u_{i,k} u_{j,k} = 0$.

Proof. Use the Algorithm 1a twice. However, in the second iteration, define $m_{S,j}$ to be the product of module 4. Note that $m_{S,j}$ must be either 4n or 4n+2. Thus, we can follow the proof of Claim 5.1.

Claim 5.4. [COMMENT] Complete for the above the version, which handle triples. number of options is $(2^i)^2 = 2^{2i}$ and therefore we have the correctness if |J| > 2i + 1.

Claim 5.5. Consider the Left-Right (Δ,n) -Complex Γ . dim $C_X/C_Z^{\perp} \cap C_Z/C_X^{\perp}$ is linear in n.

Proof. The rates of both C_X/C_Z^{\perp} and C_Z^{\perp}/C_X^{\perp} are $(2\rho-1)^2$, where ρ can be any number in the range (0,1) [LZ22]. Consider choosing ρ such that the rates of the quotient spaces are strictly greater than $\frac{1}{2} + \alpha$. This implies that the rate of their intersection is greater than 2α .

Corollary 5.1. Fix the rate of the small codes C_A and C_B to $\rho = \frac{1}{2} + \alpha$. There is a subspace $\Lambda \subset C_X/C_Z^{\perp}$ at rate $\frac{1}{4} \cdot 2\alpha$ such that for any $x \in \Lambda$ and $y, z \in C_Z^{\perp} \cup \Lambda$ it holds that:

1.
$$xy =_4 0$$

2.
$$xyz =_4 \sum_i x_i y_i z_i =_4 0$$

Claim 5.6. Consider C, Λ and C', Λ' defined in $\ref{eq:constraints}$. Denote by $\bar{\Lambda}$ the subspace C/Λ . Then:

$$d(C'/\bar{\Lambda}') \ge d(C/\bar{\Lambda})$$

Proof. The way we perform Guess elimination is critical. We want to make sure that we do not add an Λ row to a $\bar{\Lambda}$ row. [COMMENT] Continue, Easy. Just need to perform the row reduction when rows of Λ at bottom, and then rotate the matrix \curvearrowright

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \curvearrowright \begin{bmatrix} D & C \\ B & A \end{bmatrix}$$

Claim 5.7 (Not Formal). It is easy to see that by using concatenation again, one can obtain the code dim $\Lambda' \leftarrow \frac{1}{2} \dim \Lambda'$. For any $x \in \text{gen } \Lambda'$, $|x|_4 = 1$, and for any $x \in C'/\Lambda'$, we have $|x|_4 = 0$.

Proof. [COMMENT] We will do it by iterating the generators of C after performing rows reduction to the generator matrix. Now we will concatenate the i coordinate to complete the weight of the ith row to satisfy the requirements.

6 Compute $|C_Z^{\perp}\rangle$ In Constant Depth. [COMMENT] Wrong Section.

Let C_0 be a Δ -length error linear binary code, Γ a Δ -regular bipartite graph, and let C_Z be the Tanner code defined by C_0 and Γ . We are about to prove that the uniform superposition over C_Z^\perp codewords can be computed with constant probability at a depth dependent only on Δ , in particular independent of the C_Z^\perp -length. For this, we are going to use Proposition 10 in [MN98], which states that both the encoder and the decoder of any stabilizer m-length code can be implemented by a circuit at depth $\Theta(\log m)$ with $\Theta(m^2)$ ancillae.

Claim 6.1. Let G be a Δ -regular bipartite graph, and denote by C_Z^{\perp} the dual-tanner code $\mathcal{T}(G, C_0^{\perp})^{\perp}$. Then there is a circuit that with constant probability computes the state $|C_Z^{\perp}\rangle$ at $\Theta(\log \Delta)$ depth, and $\Theta(\Delta^2)n$ ancillary qubits.

Proof. Let E_v and D_v be the encoder and the decoder of C_0 over the local view of vertex v, By [MN98] we have that both have depth $\Theta(\log \Delta)$ and require Δ^2 ancillae. Since Γ is bipartite, we can decompose V into V^- and V^+ such that the local views of any two vertices in V^\pm are disjoint. Therefore, for any two different vertices $v, u \in V^\pm$, the encoders E_v and E_u act on disjoint subsets of qubits, each corresponding to the local view of either v or v. Consider the following algorithm:

- 1 Initialize 2n qubits.
- ${\bf 2}\;$ Call the left and right segments L and R.
- 3 Apply E_v in parallel on L for any $v \in V^+$.
- 4 Apply E_v in parallel on R for any $v \in V^-$.
- 5 XOR R into L by applying CNOT from the ith bit of R to the ith bit of L.
- 6 Apply D_v in parallel on R for any $v \in V^-$.
- ⁷ Apply H^k on L. And measure.
- 8 Accept if the result in C_Z

Algorithm 1: Compute $|C_Z^{\perp}\rangle$

For any $v \in V$, let $|z_v\rangle$ be the superposition of codewords in C_0 supported by the local view of v. Similarly, for any subset of vertices $W \subset V$, let $|z_W\rangle$ be the uniform superposition over the subspace spanned by the generators supported by the vertices in W. In other words:

$$|z_W\rangle = |\sum_{v \in W} z_v\rangle$$

Using the notation, applying the encoders E_v , E_u for any pair of vertices with disjoints local view become:

$$E_v \cup E_u |0\rangle^n = E_v |0 + z_u\rangle = E_v |0/u\text{'s view}\rangle \otimes |z_u\rangle$$
$$= |z_v\rangle |z_u\rangle = |z_u + z_v\rangle = |z_{\{u,v\}}\rangle$$

So applying all the encoders E_v at once over the positive vertices results in:

$$(\bigcup_{v \in V^+} E_v) |0\rangle^n = (\bigcup_{v \in V^+/v_0} E_v) |z_{v_0} + 0\rangle = |z_{V^+}\rangle$$

Thus the whole computation sum up into:

$$(\cup_{v \in V^{+}} E_{v}) \otimes (\cup_{v \in V^{+}} E_{v}) \qquad |0\rangle^{n} \otimes |0\rangle^{n} \mapsto$$

$$CNOT \sum_{z \in A} \sum_{z' \in B} \qquad |z_{V^{+}}\rangle |z_{V^{-}}\rangle \mapsto$$

$$I \otimes H^{k} \sum_{z \in A} \sum_{z' \in B} \qquad |z + z'\rangle |z'\rangle \mapsto$$

$$\sum_{z \in A} \sum_{z' \in B} \qquad |z + z'\rangle (-1)^{wz'} |w\rangle \mapsto$$

So if $w \in C_Z$ then clearly z'w = 0. The probability for that to occur is

$$\Pr[w \in C_Z] = \frac{|C_Z|}{\mathbb{F}_2^n} = 2^{(\rho-1)n}$$

7 Distillate $|\Lambda + C_Z^{\perp} angle$ Into Magic.

Let $|f\rangle$ be a codeword in C_X , and let \hat{X}_g be the indicator that equals 1 if f has support on generator g, and 0 otherwise. Observe that applying T^{\otimes} on $|f\rangle$ yields the state:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= T^{\otimes n} \left| \sum_g \hat{X}_g g \right\rangle = \exp \left(i \pi / 4 \sum_g \hat{X}_g |g| - 2 \cdot i \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h |g \cdot h| \right. \\ &+ 4 \cdot i \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h \hat{X}_l |g \cdot h \cdot l| - 8 \cdot i \pi / 4 \cdot \text{ integers} \right) \left| f \right\rangle \\ &= \exp \left(i \pi / 4 \sum_g \hat{X}_g |g| - 2 \cdot \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h |g \cdot h| + 4 \cdot i \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h \hat{X}_l |g \cdot h \cdot l| \right) \left| f \right\rangle \end{split}$$

So in our case:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= \\ &= \exp \left(i \pi / 4 \sum_{g \in \, \text{gen } \Lambda} \hat{X}_g \right. \\ &\left. - 2 \cdot \pi / 4 \sum_{g,h \in \, \text{gen } C_Z^\perp} \hat{X}_g \hat{X}_h |g \cdot h| \right. \\ &\left. + 4 \cdot i \pi / 4 \sum_{g,h \in \, \text{gen } C_Z^\perp} \hat{X}_g \hat{X}_h \hat{X}_l |g \cdot h \cdot l| \right) |f\rangle \end{split}$$

So eventually, we have a product of gates when non-Clifford gates are applied on only on generators of C_Z^\perp .

$$T^n \left| f \right\rangle = \prod_{g \in \, \text{gen } \Lambda} T_g \quad \prod_{g,h \in \, \text{gen } C_Z^\perp} \{CS_{g,h} | CZ_{g,h} | I\} \quad \prod_{g,h,l \in \, \text{gen } C_Z^\perp} \{CCZ_{g,h,l} | I\} \left| f \right\rangle$$

Decompose $f = f_1 + f_2$, where f_1 is supported only on C_X/C_Z^{\perp} and f_2 is supported only on C_Z^{\perp} . By using commuting relations, the above can be turned into.

$$\begin{split} T^n \left| f \right\rangle &= \prod_{g \in \, \text{gen} \, \Lambda} T_g \; X_{f_1} \\ & \prod_{g,h \in \, \text{gen} \, C_Z^\perp} \{ CS_{g,h} | CZ_{g,h} | I \} \; \prod_{g,h,l \in \, \text{gen} \, C_Z^\perp} \{ CCZ_{g,h,l} | I \} \left| f_2 \right\rangle \end{split}$$

Denote by M_1, M_2 the gates:

$$\begin{split} M_1 &= \prod_{g \in \text{ gen } \Lambda, h} \{CZ_{g,h}|I\} \\ M_2 &= \prod_{g,h \in \text{ gen } C_Z^{\perp}} \{CS_{g,h}|CZ_{g,h}|I\} \quad \prod_{g,h,l \in \text{ gen } C_Z^{\perp}} \{CCZ_{g,h,l}|I\} \end{split}$$

And then we get that

$$\begin{split} &\prod_{g\in\,\text{gen }\Lambda} T_g\,|f\rangle = M_1^\dagger T^n M_2^\dagger\,|f\rangle \\ &\prod_{g\in\,\text{gen }\Lambda} T_g\,|f\rangle = M_1^\dagger T^n\ E\ L[M_2^\dagger]\ |L[f]\rangle \end{split}$$

Claim 7.1. Let $v \in V^-$, and let g_1 be the generator supported by v, which matches an assignment of a codeword in $C_A \otimes C_B$ on the local view of v. Denote by U_{v,g_1} the control-gate which, depending on the control bit (v,1), turns on g_1 over the edges associated with the local view of v in the graph G. Then, the depth of U_{v,g_1} depend only on Δ .

Claim 7.2. Let (v, g_1) and (u, g_2) be control wires for two different generators in the graph G. Then U_{v,g_1} and U_{u,g_2} [COMMENT] There must be a claim about the relationship between two different generators intersection, But I don't sure exactly why.

Definition 7.1. We say that a quantum circuit C is well error spreading if the light cone define by any T.

Claim 7.3. The state:

$$\begin{split} \sum_{z \in C_Z^\perp} \exp \Big(- 2 \cdot \pi/4 \sum_{g,h \in \text{ gen } C_Z^\perp} \hat{X}_g \hat{X}_h |g \cdot h| \\ + 4 \cdot i \pi/4 \sum_{g,h \in \text{ gen } C_Z^\perp} \hat{X}_g \hat{X}_h \hat{X}_l |g \cdot h \cdot l| \Big) \, |z\rangle \end{split}$$

Can be computed such that any

Proof. Denote by U_v the gate which turn on all the generators supported on v. As any of them is just of a code word of $C_A \otimes C_B$, namely turning on generator require touching at most constant number of qubits combing

Claim 7.4. The state $\left(M_2^{\dagger} \otimes I\right) |C_Z^{\perp} + \Lambda\rangle |0\rangle$ can be computed, such that the light cone depth of any non-clifford gate is bounded by constant.

Proof.

$$(I \otimes H_X) CX_{n \to n} (E \otimes E) \quad I \otimes L[M_2^{\dagger}] \prod_{\substack{J \in \{ \text{gen } \Lambda, \ g \in J} \\ \text{gen } C_Z^{\dagger} \}}} \prod_{\substack{J \in \{ \text{gen } \Lambda, \ g \in J}} \left(I + X_{L[g]} \right) \qquad |0\rangle |0\rangle$$

$$= (I \otimes H_X) CX_{n \to n} \sum_{\substack{z \in C_Z^{\dagger} \\ x \in \Lambda}} e^{\varphi(z)} \qquad |x\rangle |z\rangle$$

$$= \sum_{\substack{z \in C_Z^{\dagger} \\ x \in \Lambda}} \left(M_2^{\dagger} \otimes I \right) \qquad |x + z\rangle |0\rangle$$

$$= \left(M_2^{\dagger} \otimes I \right) \qquad |C_Z^{\dagger} + \Lambda\rangle |0\rangle$$

Denote by $p \in [0, 1]$ the error rate of input magic states, and let $|A\rangle$ be an ancilla initialized to a one-qubit magic state. This $|A\rangle$ can be used to compute the T gate, with a probability of Z error occurring with a probability of p [BH12].

Claim 7.5. There are constant numbers $\zeta_{\Delta}, \xi_{\Delta}$, and a circuit C such that:

1. In the no-noise setting, The circuit compute the state

$$\mathcal{C}\left|0\right\rangle^{\Theta(n)}\otimes\left|A\right\rangle^{\Theta(n)}\rightarrow\prod_{g\in\ \mathrm{gen}\ \Lambda}T_{g}\left|C_{Z}^{\perp}+\Lambda\right\rangle$$

2. Otherwise, the circuit computes the state

$$\mathcal{C}\left|0\right\rangle^{\Theta(n)}\otimes\left|A\right\rangle^{\Theta(n)}\to Z^{e}\prod_{g\in\operatorname{gen}\Lambda}T_{g}\left|C_{Z}^{\perp}+\Lambda
ight
angle$$

, where the probability that $e_i=1$ is less than $\zeta_{\Delta} \cdot p$. Additionally, for any i, there are at most ξ_{Δ} indices j such that e_i and e_j are dependent.

Proof. Concatinate the $T^n \otimes I$ with the gate in Claim 7.4.

Claim 7.6. For any $\alpha \in (0,1)$ the probability that $|e| > (1+\alpha)p\zeta_{\Delta}$ is less than:

$$\mathbf{Pr}\left[|e| > (1+\alpha)\mathbf{E}\left[|e|\right]\right] < \frac{1 \cdot \xi_{\Delta} n}{\alpha^2 \zeta_{\Delta}^2 p^2 n^2} = o\left(1/n\right)$$

Proof. By the Chebyshev inequality, notice that the number for which $\mathbf{E}\left[e_{i}e_{j}\right] - \mathbf{E}\left[e_{i}\right]\mathbf{E}\left[e_{j}\right] \neq 0$ is less than $\xi_{\Delta}n$.

Definition 7.2. We will said that a decoder \mathcal{D} for the good qunatum LDPC code is an good-local decoder if

- 1. There is a treashold μn such that if the error size is less than $|e| < \mu n$ then \mathcal{D} correct e in constant number of rounds. With probability 1 o(1/n).
- 2. In any rounds \mathcal{D} performs at most O(n) work (depth \times width).
- 3. The above is true in operation-noisy settings, where there is a probability of p for an error to occur after acting on a qubit. (\star)
- \star The motivation for this is that if the decoder does not act on the qubit, then it also does not apply a T gate on it. Therefore, in the distillation setting, there is zero chance for an error to occur.

Claim 7.7. Suppose there is a good local decoder \mathcal{D} for the good qLDPC code. Then, there exists p_0 such that for any sufficiently large n, there is a distillation protocol that, given $\Theta(n)$ magic states at an error rate $p < p_0$, successfully distills $\Theta(n)$ perfect magic states with a probability of 1 - o(1/n). Furthermore, the protocol's space and time complexity (both quantum and classical) are $\Theta(n)$ and $\Theta(n^2)$, respectively.

References

- [MN98] Cristopher Moore and Martin Nilsson. *Parallel Quantum Computation and Quantum Codes.* 1998. arXiv: quant-ph/9808027 [quant-ph].
- [BH12] Sergey Bravyi and Jeongwan Haah. "Magic-state distillation with low overhead". In: *Physical Review A* 86.5 (2012), p. 052329.
- [LZ22] Anthony Leverrier and Gilles Zémor. *Quantum Tanner codes*. 2022. arXiv: 2202.13641 [quant-ph].