MALIS Group Exercise

October 4 2022

Group Name:	
Group Members:	
Introduction and Set	up
 Give an example of 	f a real world problem that can be solved using machine learning in each of
the setups listed b	elow. Be specific about the input data and the expected output. Do not use
any example that	may have been given during the lecture.
a. Regression pro	olem
b. Classification p	roblem
c. Clustering	
Suppose vou have	a file of data where the examples are classified into two possible classes, 0

and 1. In the file, the first half of examples belong to class 0 and the last half of examples belong to class 1. Before applying your learning algorithm, you split the data so that the first 70% of examples from the file correspond to your training data and the last 30% of examples

from the file correspond to your test data. Why might this be problematic?

k-Nea	arest	Neig	hbors
-------	-------	------	-------

3.	. What is the training accuracy (i.e.,	accuracy on the	e training data) (of a k nearest	neighbor
	classifier when k=1?				

4. Suppose when using a k nearest neighbor classifier on N training examples, you set k equal to N. What will be true about the classifier's predictions on the test data?

5. Recall the Minkowski distance. As p $\rightarrow \infty$, what does the distance represent?

6. Suppose a hyper cube in a D-dimensional space, with each edge of length 1, i.e. [0,1]^D. What is the volume of the 5% outermost part of the hypercube, when D= 2, 10, 1000? (See the illustration in 2D below) You need to show how you arrive to your answer.

Estimate the volume (area in this case) of the shaded zone for D=2, 10, 1000.

How do you see the observed phenomenon may affect the performance of the kNN algorithm?