Self-testing

Thomas Van Himbeeck

April 8, 2021

Lemma 1 (de Finetti). Let $\mathbf{p} = p(x_1, \dots x_n)$ be permutation invariant. Then for any $k \leq n$, the distribution obtained by tracing out k variables is close to a convex combination of iid distributions:

$$|p(x_1, \dots x_{n-k}) - \int \mu(q) \bigotimes_{i=1}^{n-k} q(x_i)| \le \epsilon_{dF}(k, n)$$
(1)

where $\epsilon(n,k) \to 0$, when $n \to \infty$ and $n/k \to c$ remain proportional for some constant c.

Lemma 2 (Azuma-Hoeffding). Let $0 \le X_i \le 1$ be iid. bounded random variables, with $E[X_i] = \mu$ then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \delta\right] \leq \epsilon_{AH}(\delta,n) \tag{2}$$

with $\epsilon_2(\delta, n) \to 0$ when $n \to \infty$ and δ is constant

Our protocol

- 1. Start with n boxes.
- 2. Pick a box $J \in [n]$ uniformly at random
- 3. Of the remaining boxes, pick a subset $S \subset [n] \setminus \{J\}$, of size $|S| = k = \lfloor 0.1n \rfloor$, uniformly at random.
- 4. Play the GHZ game in each of the remaining boxes, with result $X_i \in \{0,1\}$ for $i \in [n] \setminus (\{J\} \cup S)$.
- 5. Verify if the average GHZ game score is higher than some threshold μ

$$\Omega: \sum_{i \in [n] \setminus (\{J\} \cup S)} X_i \ge \mu \tag{3}$$

If the test Ω passes, then we conclude with high probability that the expected value of the GHZ test of the randomly chosen box J satisfies

$$T: \quad E[X_J] \ge \mu - \delta \,, \tag{4}$$

Proposition 1 (Security statement). For any implementation of the boxes, the joint probability that that the test Ω passes and that the conclusion T is false, is smaller than ϵ : $\Pr[\Omega \cap \overline{T}] \leq \epsilon$, where ϵ is a function of n and δ .

Proof. Denote by $\mathbf{p} = p(x_1, \dots x_n)$ the joint distribution of the results of the GHZ games, for a given strategy (states and measurements) implemented by the adversary. We want to upper-bound the quantity $\Pr[\Omega \cap \bar{T}]_{\mathbf{p}} = \sum_{j,\mathcal{S}} p(j,\mathcal{S}) \Pr[\Omega \cap \bar{T}|j,\mathcal{S}]_{\mathbf{p}}$, which we note is invariant under permutations acting on \mathbf{p} . We thus have $\Pr[\Omega \cap \bar{T}]_{\mathbf{p}} = \Pr[\Omega \cap \bar{T}]_{\mathbf{\bar{p}}}$, where $\mathbf{\bar{p}}$ is the symmetrized version of \mathbf{p} , and this implies that

$$\Pr[\Omega \cap \bar{T}]_{\bar{p}} = \Pr[\Omega \cap \bar{T}|j', \mathcal{S}']_{\bar{p}}$$
(5)

where we have chosen a particular value for the random element J = j' = 1 and the set $S' = \{n - k + 1, \dots n\}$, which we implicitly assume fixed from now. The events Ω and T now only involve the n - k first systems and so we can trace out the last k systems.

By the de Finetti theorem we know that the resulting distribution $\bar{p}' = \bar{p}(x_1, \dots x_{n-k})$ is ϵ_2 close to a convex combination of iid. distributions and so

$$\Pr[\Omega \cap \bar{T}]_{\bar{p}'} \le \max_{\{q \ iid.\}} \Pr[\Omega \cap \bar{T}]_q + \epsilon_{dF}(k, n)$$
(6)

Now for each iid distribution $\mathbf{q} = \prod_{i=1}^{n-k} q(x_i)$, the proposition $E[X_1] \leq \mu - \delta$ is either false or true. Assuming, it is true, then, by the Azuma-Hoeffding inequality, we find

$$\Pr[\Omega \cap \bar{T}]_{q} = \Pr\left[\sum_{i=2}^{n-k} I_{i} \ge \mu\right]_{q} \le \epsilon_{AH}(\delta, n-k-1)$$
(7)

and so we conclude the proposition with $\epsilon = \epsilon_{dF}(k,n) + \epsilon_{AH}(\delta,n-k-1)$