4 Détermination des liaisons équivalentes

4.1 Introduction

4.1.1 Rappel sur les torseurs des liaisons

Définition - Torseur cinématique

De manière générale, le torseur cinématique peut être noté :

$$\left\{\mathcal{V}\left(i/j\right)\right\} = \left\{\begin{array}{c} \overrightarrow{\Omega\left(i/j\right)} \\ \overrightarrow{V\left(P,i/j\right)} \end{array}\right\}_{P} = \left\{\begin{array}{c} p_{ij}\overrightarrow{x} + q_{ij}\overrightarrow{y} + r_{ij}\overrightarrow{z} \\ u_{ij}\overrightarrow{x} + v_{ij}\overrightarrow{y} + w_{ij}\overrightarrow{z} \end{array}\right\}_{P} = \left\{\begin{array}{c} p_{ij} \quad u_{ij} \\ q_{ij} \quad v_{ij} \\ r_{ij} \quad w_{ij} \end{array}\right\}_{P,\mathcal{R}}.$$

On notera n_c le nombre d'inconnues cinématiques d'une liaison. En d'autres termes, n_c correspond donc au nombre de mobilités de la liaison.

Définition - Torseur Statique

De manière générale, le torseur statique peut être noté :

$$\left\{\mathcal{T}\left(i\rightarrow j\right)\right\} = \left\{\begin{array}{c} \overrightarrow{R\left(i\rightarrow j\right)} \\ \overrightarrow{\mathcal{M}\left(P,i\rightarrow j\right)} \end{array}\right\}_{P} = \left\{\begin{array}{c} X_{ij}\overrightarrow{x} + Y_{ij}\overrightarrow{y} + Z_{ij}\overrightarrow{z} \\ L_{ij}\overrightarrow{x} + M_{ij}\overrightarrow{y} + N_{ij}\overrightarrow{z} \end{array}\right\}_{P} = \left\{\begin{array}{c} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{array}\right\}_{P,\mathcal{R}}.$$

On notera n_s le nombre d'inconnues statiques d'une liaison. En d'autres termes, n_s correspond au degré de liaison. On a $n_s = 6 - n_c$.

4.1.2 Graphe des liaisons

Définition - Chaînes et cycles

Selon la forme du graphe de liaisons, on peut distinguer 3 cas :

FIGURE 4.1 – Robot humanoïde Lola

FIGURE 4.2 – Simulateur de vol Lockheed

On appelle cycle, un chemin fermé ne passant pas deux fois par le même sommet. À partir d'un graphe des liaisons donné, il est possible de vérifier qu'il existe un nombre maximal de cycles indépendants. Ce nombre est appelé nombre cyclomatique. En notant L le nombre de liaisons et S le nombre de solides, on note γ le nombre cyclomatique et on a : $\gamma = L - S + 1$.

Remarques

- ▶ Dans le cas d'une chaîne ouverte, γ est nul.
- ▶ Le degré d'hyperstatisme d'une chaîne fermée « simple » ne peut pas excéder 6.
- ▶ À partir du graphe de structure, il est possible de déterminer le nombre cyclomatique d'une chaîne complexe... si elle n'est pas trop complexe.

4.2 Liaisons équivalentes

Objectif

La détermination de la liaison équivalente correspondant à l'association de plusieurs liaisons doit permettre :

- ▶ de transmettre les mêmes actions mécaniques que l'association de liaisons;
- ▶ d'autoriser les mêmes mouvements relatifs que l'association de liaisons.

4.2.1 Liaisons en parallèles

Méthode -

La liaison équivalente aux liaisons en parallèles doit permettre de transmettre la somme de chacune des actions mécaniques. Ainsi :

$$\{\mathcal{T}(1 \to 2)\}_{\text{eq}} = \sum_{i=1}^{n} \{\mathcal{T}(1 \to 2)\}_{i}.$$

Remarque

La liaison équivalente devant permettre les même mobilités que les liaisons en série, il est donc aussi possible de déterminer la liaison équivalente en résolvant le système d'équation suivant :

$$\{\mathcal{V}(1/2)\}_{eq} = \{\mathcal{V}(1/2)\}_1 = \{\mathcal{V}(1/2)\}_2 = \dots = \{\mathcal{V}(1/2)\}_n$$
.

Cependant cette méthode dite « cinématique » est moins aisée à mettre en œuvre que la première.

4.2.2 Liaisons en série

Méthode -

La liaison équivalente aux liaisons en série se détermine en utilisant la composition du torseur cinématique. En effet :

$$\{\mathcal{V}(1/n)\}_{\text{eq}} = \sum_{i=1}^{n-1} \{\mathcal{V}(i/i+1)\}.$$

Remarque

L'application successive du principe fondamental de la statique à chacun des solides permet de déterminer le torseur équivalent de la liaison :

$$\left\{\mathcal{T}\left(n\rightarrow1\right)\right\}_{\mathrm{eq}}=\left\{\mathcal{T}\left(2\rightarrow1\right)\right\}=\left\{\mathcal{T}\left(3\rightarrow2\right)\right\}=\ldots=\left\{\mathcal{T}\left(n\rightarrow n-1\right)\right\}.$$

L'observation de la forme du torseur de la liaison équivalente ne suffit pas à déduire le nom de la liaison : il faut aussi s'assurer que les composantes du torseur sont bien indépendantes.

4.2.3 Décomposition des liaisons

Chacune des liaisons normalisées à n degré de liberté peut être décomposée en n liaisons ponctuelles en parallèles (sphère – plan). Par exemple, une liaison rotule (sphérique) est équivalente à 3 liaisons ponctuelles en parallèles dont les normales sont non coplanaires et concourantes en un point.

Application 1:

Liaisons équivalentes – Sujet

D'après P. Dupas.

Liaisons en parallèle

Question 1 Déterminer la liaison équivalente des liaisons suivantes.

Liaisons en série

Question 2 Déterminer la liaison équivalente des liaisons suivantes.

