The original constrained problem

The original constrained problem is stated as

$$\min_{\tau} \iint -\operatorname{sgn}\left(v\right) u \, f_Y\left(u,v;\tau\right) \, du \, dv$$
 subject to $\kappa - \iint \operatorname{sgn}\left(v\right) w \, f_Z\left(w,v;\tau\right) \, dw \, dv \geq 0, \text{and } \tau^{\mathsf{T}}\tau = 1.$

Suppose that the strict feasible set $\operatorname{strict}(\mathcal{F})$ is non-empty, and let τ^0 denote a constrained minimizer of this original problem. For simplicity, we let $g(\tau) = -\iint \operatorname{sgn}(v) u \, f_Y(u, v; \tau) \, du \, dv$, $c_1(\tau) = \kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau) \, dw \, dv$, and $c_2(\tau) = \tau^{\dagger} \tau$. The value of $g(\tau)$ at $\tau = \tau^0$, $g(\tau^0)$, is denoted by g^0 . Similarly, c_i^0 denotes the value of $c_i(\tau)$ at $\tau = \tau^0$, $c_i(\tau^0)$, for i = 1, 2. Also, \mathcal{A}^0 denotes the set of active constraint at τ^0 , $\mathcal{A}(\tau^0)$. In our current case, it is either $\mathcal{A}^0 = \{c_1^0, c_2^0\}$, or $\mathcal{A}^0 = \{c_2^0\}$.

Penalty-barrier function

One of the method to solve equality-inequality mixed constrained optimization problem is use penalty-barrier function, which is a composite measure of the objective function and the penalty of violating the constraints. The penalty-barrier function is then formalized as

$$\Phi_{BP}(\tau,\mu) = \iint -\operatorname{sgn}(v)uf_Y(u,v;\tau) \, du \, dv$$
$$-\mu \ln \left[\kappa - \iint \operatorname{sgn}(v)wf_Z(w,v;\tau) \, dw \, dv\right] + \frac{1}{2\mu} \|\tau^{\mathsf{T}}\tau - 1\|_2^2,$$

where μ is a sequence of positive decreasing small constants converging to zero. An unconstrained minimizer of $\Phi_{BP}(\tau,\mu)$ is denoted by $\tau^*(\mu)$ for emphasizing that it is a vector function of μ , or τ^*_{μ} for short. It can be proven that the constraint is strictly satisfied, i.e., $c(\tau^*_{\mu}) = \kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau^*_{\mu}) dw dv > 0$.

There is theorem which gives the conditions under which, for sufficiently small μ , the sequence $\{\tau_{\mu}^*\}$ defines a differentiable penalty-barrier trajectory converging to τ_{μ}^0 .

To find τ_{μ}^* , we exploit its stationarity. The gradient of $\Phi_{PB}(\tau,\mu)$ is

$$\nabla_{\tau} \Phi_{PB}(\tau, \mu) = \iint -\operatorname{sgn}(v) u \nabla_{\tau} f_Y(u, v; \tau) \, du \, dv$$
$$+ \mu \frac{\iint \operatorname{sgn}(v) w \nabla_{\tau} f_Z(w, v; \tau) \, dw \, dv}{\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau) \, dw \, dv} + \frac{2}{\mu} \left(\tau^{\mathsf{T}} \tau - 1\right) \tau,$$

noting that ∇_{τ} represents the first order derivative with respect to τ . If we are willing to assume that $\Phi_{PB}(\tau,\mu)$ is twice-continuously differentiable, it must hold that $\nabla\Phi_{PB}(\tau_{\mu}^*,\mu) = 0$ to satisfy the stationarity, i.e.,

$$\iint \operatorname{sgn}\left(v\right) u \, \nabla_{\tau} f_{Y}\left(u, v; \tau_{\mu}^{*}\right) \, du \, dv = \mu \, \frac{\iint \operatorname{sgn}(v) w \nabla_{\tau} f_{Z}(w, v; \tau_{\mu}^{*}) \, dw \, dv}{\kappa - \iint \operatorname{sgn}(v) \, w \, f_{Z}(w, v; \tau_{\mu}^{*}) \, dw \, dv} + \frac{2}{\mu} \left(\tau_{\mu}^{*\mathsf{T}} \tau_{\mu}^{*} - 1\right) \tau_{\mu}^{*},$$

with $\tau_{\mu}^{*\dagger}\tau_{\mu}^{*\dagger}-1=0$. The barrier multiplier, the coefficient in this linear relationship above, denoted by λ_{μ} , is defined as

$$\lambda_{\mu} \triangleq \frac{\mu}{\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) dw dv}.$$

This relationship can be re-written as

$$\lambda_{\mu} \left[\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) dw dv \right] = \mu.$$

This relationship between the barrier multiplier, the constraint value, and the barrier parameter, called perturbed complementarity, is analogous as $\mu \to 0$ to the complementarity condition $c(\tau^*)\lambda^* = 0$ that holds at a KKT point.

Estimation of the log-barrier penalty function

To estimate the log-barrier penalty function, we use kernel density estimators, denoted by $\widehat{f}_Y(u,v;\tau)$ and $\widehat{f}_Z(w,v;\tau)$, to estimate the corresponding density functions. Hence, the estimated log-barrier function is

$$\widehat{B}(\tau,\mu) = \iint -\operatorname{sgn}(v)u\widehat{f}_Y(u,v;\tau)\,du\,dv - \mu\operatorname{ln}\left[\kappa - \iint \operatorname{sgn}(v)w\widehat{f}_Z(w,v;\tau)\,dw\,dv\right],$$

and the gradient of the estimator is

$$\begin{split} \nabla \widehat{B}(\tau,\mu) &= \iint -\mathrm{sgn}(v) u \nabla \widehat{f}_Y(u,v;\tau) \, du \, dv + \mu \frac{\iint \mathrm{sgn}(v) w \nabla \widehat{f}_Z(w,v;\tau) \, dw \, dv}{\kappa - \iint \mathrm{sgn}(v) w \widehat{f}_Z(w,v;\tau) \, dw \, dv} \\ &= \iint -\mathrm{sgn}(v) u \nabla \widehat{f}_Y(u,v;\tau) \, du \, dv + \widehat{\lambda}_{\mu} \iint \mathrm{sgn}(v) w \nabla \widehat{f}_Z(w,v;\tau) \, dw \, dv, \end{split}$$

where $\widehat{\lambda}_{\mu}(\tau) = \mu/\kappa - \iint \operatorname{sgn}(v) w \widehat{f}_{Z}(w, v; \tau) dw dv$.

Consistency of $\hat{\tau}^k$ and $\hat{\lambda}_{\mu}$.

We need to prove that $\widehat{\tau}^k$ is a consistent estimator of τ^{*k} . $\widehat{\tau}^k - \tau^{*k} = O_p(n^{1/2})$, and $\widehat{\lambda}^k - \lambda^{*k} = O_p(n^{1/2})$.

Theorem proved that λ_{μ} is bounded.

Asymptotic distribution of $\hat{\tau}^k$

Estimating equations:

$$\nabla \widehat{B}(\tau,\mu) = \iint -\operatorname{sgn}(v)u\nabla \widehat{f}_Y(u,v;\tau) \,du \,dv + \widehat{\lambda}_{\mu}(\tau) \iint \operatorname{sgn}(v)w\nabla \widehat{f}_Z(w,v;\tau) \,dw \,dv = 0$$

where $\hat{\lambda}_{\mu}(\tau) = \mu/[\kappa - \iint \operatorname{sgn}(v)w \hat{f}_{Z}(w, v; \tau) dw dv]$.

$$\nabla \widehat{B}(\tau, \mu) = \iint -\operatorname{sgn}(v) u \nabla \widehat{f}_{Y}(u, v; \tau) du dv + \widehat{\lambda}_{\mu} \iint \operatorname{sgn}(v) w \nabla \widehat{f}_{Z}(w, v; \tau) dw dv$$

$$= -\frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Y1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i} + \widehat{\lambda}_{\mu}(\tau) \frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i}$$

$$= N(\mu_{1}, \Sigma_{1}) + C_{p} N(\mu_{2}, \Sigma_{2})$$

$$\nabla^{2}\widehat{B}(\tau,\mu) = \iint -\operatorname{sgn}(v)u\nabla^{2}\widehat{f}_{Y}(u,v;\tau) du dv +$$

$$\nabla \widehat{\lambda}_{\mu}(\tau) \iint \operatorname{sgn}(v)w\nabla \widehat{f}_{Z}(w,v;\tau) dw dv + \widehat{\lambda}_{\mu}(\tau) \iint \operatorname{sgn}(v)w\nabla^{2}\widehat{f}_{Z}(w,v;\tau) dw dv$$

$$= -\frac{2}{nh} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \left(\widehat{\lambda}_{\mu}(\tau)\boldsymbol{\beta}_{Z1} - \boldsymbol{\beta}_{Y1} \right) k' \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}}\boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\mathsf{T}} +$$

$$\frac{2}{n} \sum_{i=1}^{n} \nabla \widehat{\lambda}_{\mu}(\tau) \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}}\boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i}$$

$$\nabla \widehat{\lambda}_{\mu}(\tau) = \frac{\mu}{\left(\kappa - \iint \operatorname{sgn}(v) w \widehat{f}_{Z}(w, v; \tau) dw dv\right)^{2}} \iint \operatorname{sgn}(v) w \nabla \widehat{f}_{Z}(w, v; \tau) dw dv$$

$$= \mu \left[\kappa - \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} \left\{1 - 2K \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h}\right)\right\}\right]^{-1} \left[\frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h}\right) \boldsymbol{X}_{i}\right]$$

[Notation: k and κ looks to similar]

[Need to estimate $\hat{\beta}$ too]

Need to prove that the difference between $\widehat{B}_n(\tau, \hat{\beta}, \mu)$ and $\widehat{B}_n(\tau, \beta^*, \mu)$ is negligible? i.e., $\widehat{B}_n(\beta^*) - \widehat{B}_n(\hat{\beta}) = O_p(n^{-1/2})$

Taylor expansion of $\nabla \widehat{B}(\tau^{*k}, \mu)$ at $\tau = \widehat{\tau}^k$ shows that

$$\nabla \widehat{B}(\tau^{*k}, \mu) = \nabla \widehat{B}(\widehat{\tau}^k, \mu) - \nabla^2 \widehat{B}(\widetilde{\tau}^k, \mu)(\widehat{\tau}^k - \tau^{*k}),$$

where $\tilde{\tau}^k$ is between τ^{*k} and $\hat{\tau}^k$. As $\hat{\tau}^k$ is the minimizer of $B(\tau,\mu)$, it satisfies the first order condition that $\nabla B(\hat{\tau}^k,\mu)=0$. Therefore, we have

$$\sqrt{n}\nabla \widehat{B}(\tau^{*k},\mu) = -\sqrt{n}\nabla^2 \widehat{B}(\widehat{\tau}^k,\mu)(\widehat{\tau}^k - \tau^{*k}).$$

Derivation of the integrations

The integration we need

$$\iint \operatorname{sgn}(v) u f(u, v; \tau, \beta_{\cdot 1}) du dv$$

$$= 2 \iint u \mathbb{I}(v \ge 0) f(v, u; \tau, \beta_{\cdot 1}) dv du - \int u f(u; \beta_{\cdot 1}) du$$

The estimator is

$$\begin{split} &\iint \operatorname{sgn}\left(v\right) u \, \widehat{f}_n\left(u, v; \tau, \beta_{\cdot 1}\right) \, du \, dv \\ = &2 \iint u \, \mathbb{I}\left(v \geq 0\right) \, \widehat{f}_n\left(v, u; \tau, \beta_{\cdot 1}\right) \, dv \, du - \int u \, \widehat{f}_n\left(u; \tau, \beta_{\cdot 1}\right) \, du \\ = &\frac{2}{nh^2} \iint u \, \mathbb{I}\left(v \geq 0\right) \sum_{i=1}^n k \left(\frac{v - V_i}{h}\right) k \left(\frac{u - U_i}{h}\right) \, du \, dv - \\ &\frac{1}{nh} \int u \sum_{i=1}^n k \left(\frac{u - U_i}{h}\right) \, du \\ = &\frac{2}{n} \sum_{i=1}^n X_{i,1}^{\mathsf{T}} \beta_{\cdot 1} \left\{1 - K \left(-\frac{X_i^{\mathsf{T}} \tau}{h}\right)\right\} - \frac{1}{n} \sum_{i=1}^n X_{i,1}^{\mathsf{T}} \beta_{\cdot 1} \\ = &\frac{1}{n} \sum_{i=1}^n X_{i,1}^{\mathsf{T}} \beta_{\cdot 1} \left\{1 - 2K \left(-\frac{X_i^{\mathsf{T}} \tau}{h}\right)\right\} \end{split}$$

where $\widehat{f}_n(u_1, u_2; \tau, \widehat{\beta}_{\cdot 1})$ are the kernel density estimator for $(X^{\dagger}\tau, X^{\dagger}\beta_{\cdot 1})$ with the forms of

$$\widehat{f}_n(u, v; \boldsymbol{\tau}, \widehat{\boldsymbol{\beta}}_{\cdot 1}) = \frac{1}{nh^2} \sum_{i=1}^n k\left(\frac{u - U_i}{h}\right) k\left(\frac{v - V_i}{h}\right).$$

Moreover, K(s) is the corresponding CDF of the kernel function k(s), which is chosen to be a symmetric probability density. More precisely, k(s) satisfies the following assumptions:

- 1. $\int_{-\infty}^{\infty} k(s) ds = 1.$
- 2. k(s) > 0 for all s.
- 3. k(-s) = k(s) for all s.

4. The first order derivative of the kernel, k'(s), exists and is bounded.

The last equality above holds by following the derivation.

We first derive $\frac{2}{h^2} \iint u_2 \mathbb{I}(u_1 \ge 0) k\left(\frac{u_1 - U_{i,1}}{h}\right) k\left(\frac{u_2 - U_{i,2}}{h}\right) du_1 du_2$. Let $s = \frac{u_1 - U_{i,1}}{h}$ and $t = \frac{u_2 - U_{i,2}}{h}$. Then, $u_1 = U_{i,1} + sh$ and $u_2 = U_{i,2} + th$. Also, $du_1 = h ds$ and $du_2 = h dt$.

$$\begin{split} &\frac{2}{h^2} \iint u_2 \mathbb{I} \left(u_1 \geq 0 \right) k \left(\frac{u_1 - U_{i,1}}{h} \right) k \left(\frac{u_2 - U_{i,2}}{h} \right) du_1 du_2 \\ =& 2 \iint \left(U_{i,2} + th \right) \mathbb{I} \left(U_{i,1} + sh \geq 0 \right) k \left(s \right) k \left(t \right) ds dt \\ =& 2 \iint \left(s \geq -\frac{U_{i,1}}{h} \right) k \left(s \right) ds \\ =& 2 U_{i,2} \left\{ 1 - K \left(-\frac{U_{i,1}}{h} \right) \right\} \\ =& 2 \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{\cdot 1} \left\{ 1 - K \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \right\}, \end{split}$$

where $K(s) = \int k(s) ds + c$. The second equality holds, as $\int k(t) dt = 1$ and $\int t k(t) dt = 0$. The third equality holds as $\int \mathbb{I}\left(s \geq -\frac{U_{i,1}}{h}\right) k(s) ds = 1 - \int_{-\infty}^{-U_{i,1}/h} k(s) ds = 1 - K\left(-\frac{U_{i,1}}{h}\right)$, where $U_{i,1} = \boldsymbol{X}_i^{\mathsf{T}} \boldsymbol{\tau}$.

Then, we derive $\frac{1}{h} \int u_2 k(\frac{u_2 - U_{i,2}}{h}) du_2$ by changing variable similarly. Let $t = \frac{u_2 - U_{i,2}}{h}$, and we get $u_2 = U_{i,2} + th$, and $du_2 = h dt$.

$$\frac{1}{h} \int u_2 k \left(\frac{u_2 - U_{i,2}}{h} \right) du_2$$

$$= \int \left(U_{i,2} + th \right) k \left(t \right) dt$$

$$= U_{i,2} = \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{:1}.$$

Again, the second equality holds as $\int k(t) dt = 1$, and $\int t k(t) dt = 0$. The integration over the first-order derivative

$$\iint \operatorname{sgn}(v) u \nabla \widehat{f}_{n}(u, v; \tau, \beta_{\cdot 1}) du dv$$

$$= \frac{\partial}{\partial \tau} \iint \operatorname{sgn}(v) u \widehat{f}_{n}(u, v; \tau, \beta_{\cdot 1}) du dv$$

$$= \frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{\cdot 1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i}$$