Step A. For $q = 0, 1, \ldots, n$, do

- 1. Partition V into V_1 and V_2 of sizes n_1 and n_2 .
- 2. For each $X_1 \subseteq V_1$, do
 - a) For each independent $Y_1 \subseteq X_1$, do

$$h[V_2 \setminus N(Y_1)] \leftarrow h[V_2 \setminus N(Y_1)] + z^{|Y_1|}$$

b) For each independent $Y_2 \subseteq V_2$, do

$$l[Y_2] \leftarrow z^{|Y_2|}$$

- c) $h \leftarrow (h\zeta') \cdot l$
- d) $h \leftarrow h\zeta$
- e) For each $X_2 \subseteq V_2$, do

$$r \leftarrow r + (-1)^{n-|X_1|-|X_2|} \cdot h[X_2]^q$$

- 3. Return coefficient c_n of z^n in r.
- Step B. Construct interpolating polynomial $\chi_G(t)$ on points (q, c_{nq}) .
- Step C. Return $\chi_G(t)$.