

Motivations

https://www.kaggle.com/surveys/2017

What tools you use at work?

R Programmer Salaries in New York, NY

Salary estimated from 2,477 employees, users, and past and present job advertisements on Indeed in ? the past 36 months. Last updated: July 10, 2018

Our Main Tasks

- 1.Clean
- 2.Transform
- 3. Summarise
- 4.Model
- 5. Visualize

learn but ..

School teaches us what to

NEVER teaches <u>HOW</u> to learn.

Learning HARD.

What we're going to learn today?

- R Basics
- Data Types
- Data Frame
- Data Transformation
- Data Visualization
- Data Modeling

R is (advanced) calculator

```
Console ~/Desktop/R PROGRAMMING/ > 1 * 100
[1] 100
> 2 * 500 + 5000
[1] 6000
> 2 ** 3
[1] 8
> 2 ** 20
[1] 1048576
>
```

Basic Operations in R

```
Addition (+)
Subtraction (-)
Multiply (*)
Division (/)
Power (**)
Modulo (%%)
```

Set Working Directory

Assign Variables

```
money <- 2000
food_expense <- 500
```

left_over <- money - food_expense</pre>

Good Variable Names

use underscore to connect words
hello_world
my_expense
student_scores
total sales

Keyboard Shortcuts

CTRL+ENTER to run code in that line

CTRL+SHIFT+ENTER to run script

CTRL+L to clear script

CTRL+1 or CTRL+2 to switch cursor

F1 when you need help about function

R is object-oriented programming
 language

• R is case sensitive

- R keeps data in memory (RAM)
- R uses single core CPU (default)
- Everything in R is a function call

Basic Data Types

- 1.Numeric -- 1.23 2.57 300 200 120.2
- 2.Character -- "Hello" "Data" "Rockie"
- 3.Logical -- TRUE, FALSE
- 4. Factor -- male/female

Basic Data Structures

- 1. Vector -- c(100,200,300)
- **2.List** -- list(x, y)
- **3.Matrix** -- matrix(1:9, ncol = 3, byrow = T)
- 4. DataFrame -- What we use the most!!

Subsetting

There are 3 ways to subset data in R

- 1.By position
- 2.By name
- 3.By condition (logic)

If you see this [] it's subsetting.

Examples

```
# create a vector

set.seed(123)

x <- rnorm(20)

print(x)

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774

[6] 1.71506499 0.46091621 -1.26506123 -0.68685285 -0.44566197

[11] 1.22408180 0.35981383 0.40077145 0.11068272 -0.55584113

[16] 1.78691314 0.49785048 -1.96661716 0.70135590 -0.47279141
```

subset by position

```
x[1:5]
x[c(1:5, 10)]
```

subset by condition/logic

```
x[x > 0]
X[x*2 >= 3]
```

What is DataFrame?

_	ile Ho	me Inse	it rage	Layout	Formulas	Data	Review	View He	=ip /~	Tell me what	you want to	<i>,</i> ao
A:	ı		· :	× ✓	f _x							
4	А	В	С	D	Е	F	G	н	1	J	K	L
1		mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
2	Mazda RX	21	6	160	110	3.9	2.62	16.46	0	1	4	
3	Mazda RX	21	6	160	110	3.9	2.875	17.02	0	1	4	
4	Datsun 71	22.8	4	108	93	3.85	2.32	18.61	1	. 1	4	
5	Hornet 4 [21.4	6	258	110	3.08	3.215	19.44	1	. 0	3	
6	Hornet Sp	18.7	8	360	175	3.15	3.44	17.02	0	0	3	
7	Valiant	18.1	6	225	105	2.76	3.46	20.22	1	. 0	3	
8	Duster 360	14.3	8	360	245	3.21	3.57	15.84	0	0	3	
9	Merc 240E	24.4	4	146.7	62	3.69	3.19	20	1	. 0	4	
10	Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	. 0	4	
11	Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	1	. 0	4	
12	Merc 2800	17.8	6	167.6	123	3.92	3.44	18.9	1	. 0	4	
13	Merc 450S	16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	
14	Merc 450S	17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	
15	Merc 450S	15.2	8	275.8	180	3.07	3.78	18	0	0	3	
16	Cadillac Fl	10.4	8	472	205	2.93	5.25	17.98	0	0	3	
17	Lincoln Co	10.4	8	460	215	3	5.424	17.82	0	0	3	
18	Chrysler It	14.7	8	440	230	3.23	5.345	17.42	0	0	3	
19	Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	. 1	4	
20	Honda Civ	30.4	4	75.7	52	4.93	1.615	18.52	1	. 1	4	
21	Toyota Co	33.9	4	71.1	65	4.22	1.835	19.9	1	. 1	4	
22	Toyota Co	21.5	4	120.1	97	3.7	2.465	20.01	1	. 0	3	
23	Dodge Ch	15.5	8	318	150	2.76	3.52	16.87	0	0	3	
24	AMC Javel	15.2	8	304	150	3.15	3.435	17.3	0	0	3	
25	Camaro Z2	13.3	8	350	245	3.73	3.84	15.41	0	0	3	
26	Pontiac Fi	19.2	8	400	175	3.08	3.845	17.05	0	0	3	
27	Fiat X1-9	27.3	4	79	66	4.08	1.935	18.9	1	. 1	4	
28	Porsche 9:	26	4	120.3	91	4.43	2.14	16.7	0			
29	Lotus Euro		4	95.1	113	3.77	1.513	16.9	1		5	
30	Ford Panto	15.8	8	351	264	4.22	3.17	14.5	0			
31	Ferrari Dir	19.7	6	145	175	3.62	2.77	15.5	0	_		
32	Maserati F	15.7	8	301	335	3.54	3.57	14.6	0	_	_	
33		21.4	4	121	109	4.11	2.78	18.6	1			

*	mpg ‡	cyl ‡	disp ‡	hp ‡	drat ‡	wt ‡	qsec ÷	vs [‡]	am ‡	gear ‡	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	
incoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	- 1	4	
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	- 1	4	
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	

DataFrame Basics

library(tidyverse)

```
glimpse(mtcars)
dim(mtcars)
head(mtcars)
tail(mtcars)
summary(mtcars)
nrow(mtcars)
ncol(mtcars)
names(mtcars)
```

```
mean(mtcars$mpg)
median(mtcars$mpg)
sd(mtcars$mpg)
sum(mtcars$mpg)
table(mtcars$am)

complete.cases(mtcars)
```

drop na(mtcars)

Let's CLEAN some data

library(tidyverse)

glimpse(msleep)

Quiz

- Any NA values?
- How many complete cases in dataset?

Imputation

- Mean
- Median

Replace missing value with mean or median

→FUNCTION →

output <- make_smoothie(\overline{\overli

print(output)

Leaderboard

Most downloaded packages

memor

15,520 indexed packages

2,207,054

Wed Jul 11 2018 13:40:03

WOSE GOV	illoaded packages			Most delive manical					
Name	Direct downloads →	Indirect downloads\$	Total ≑	Name	Direct downloads 	Indirect downloads\$	Total→		
			Next >				<u>Next</u> ➤		
Newest p	ackages 🐧			Newest u	ıpdates 😉				
washeR		V	Ved Jul 11 2018 11:00:03	pavo			Wed Jul 11 2018 16:20:03		
rt.test			Tue Jul 10 2018 17:30:03	<u>bmlm</u>			Wed Jul 11 2018 16:10:03		
stablelearn	er		Tue Jul 10 2018 17:20:03	nabor			Wed Jul 11 2018 16:00:02		
SubgrPlots			Tue Jul 10 2018 17:10:09	did			Wed Jul 11 2018 15:40:03		
syllabifyr			Tue Jul 10 2018 17:10:02	xkcd			Wed Jul 11 2018 15:30:02		
peakPanth	eR		Tue Jul 10 2018 17:00:03	bigmatch			Wed Jul 11 2018 15:20:02		
DiscreteFD	R		Tue Jul 10 2018 16:50:07	llama			Wed Jul 11 2018 14:30:03		
countgmifs			Tue Jul 10 2018 16:40:28	desctable			Wed Jul 11 2018 14:20:02		

metansue

Tue Jul 10 2018 16:40:25

Most active maintainers

Function Anatomy

```
function_name(arg1, arg2, ...)
```

Write an R function is simple

```
sum_two_nums <- function(a,b) {
    return(a+b)
}</pre>
```

Your First R Function


```
roll_dices <- function(){
    ...
}</pre>
```


Five Verbs from dplyr

install.packages("dplyr")
library(dplyr)

- select() -- เลือก column
- filter() -- เลือก row
- arrange() -- เรียงข้อมูล
- mutate() -- สร้างตัวแปร (คอลั่มใหม่)
- summarise() -- สรุปผลสถิติ

select()

```
select(mtcars, wt, hp, mpg)
select(mtcars, 1:3)
select(mtcars, starts_with("a"))
select(mtcars, ends_with("p"))
select(mtcars, contains("a"))
```

select(df, column1, column2, ...)

filter()

filter(df, conditions)

```
filter(mtcars, mpg > 20)
filter(mtcars, mpg > 20 & gear == 5)
filter(mtcars, mpg > 30 | mpg < 15)
filter(mtcars, hp %in% 100:200)
filter(mtcars, carb %in% c(1,8))</pre>
```

arrange()

```
arrange(df, column1, column2, ...)
arrange(mtcars, mpg)
arrange(mtcars, desc(mpg))
arrange(mtcars, -mpg)
Descending order
```

pipe operator

```
mtcars %>%
    select(wt, hp, mpg) %>%
    filter(mpg > 20) %>%
    arrange(-mpg) %>%
    head(3)
```

mutate()

summarise()

group_by()

Analyzing NYC flights

install.packages("nycflights13") library(nycflights13) library(tidyverse)

glimpse(flights)

Challenge: 10 สายการบินที่บินเยอะที่สุดในเดือน กันยายนปี 2013 ชื่อว่าอะไรบ้าง?

Four main types of JOIN

Customer Age ID Name ID Age 29 Toy Hello 30 World 4 18 6 25 SQL 26 Awesome

Result

ID	Name	Age		
1	Toy	29		
2	Hello	30		
4	SQL	18		

ผลลัพธ์ออกมาเฉพาะ ROW ที่ matched กันได้ของสองตารางเท่านั้น

ตารางซ้ายมือยังอยู่เหมือนเดิม แต่จะ เชื่อมตารางขวาใน row ที่ matched

Customer Age

ID	Name	ID	Age
1	Toy	1	29
2	неllo	2	30
3	World	4	18
4	SQL	6	25
5	Awesome	7	26

ID	Name	Age		
1	Toy	29		
2	Hello	30		
3	World	NULL		
4	SQL	18		
5	Awesome	NULL		

FULL OUTER JOIN

Age

Customer

ID Name ID Age 1 29 Toy 2 Hello 30 3 World 18 4 6 25 SQL 5 26 Awesome

Result

ID	Name	Age		
1	Тоу	29		
2	Hello	30		
3	World	NULL		
4	SQL	18		
5	Awesome	NULL		
6	NULL	25		
7	NULL	26		

```
> flights %>%
      filter(month == 9) %>%
+
      group_by(carrier) %>%
      summarise(n = n()) \%>\%
      arrange(desc(n)) %>%
      head(10)
  A tibble: 10 x 2
   carrier
                n
                        New
   <chr>
            <int>
                        Column
 1 EV
             4725
 2 UA
             4694
                        แสดงชื่อ
 3 B6
             4291
                        สายการบิน
                        เต็มๆ
   DL
             3883
 5 AA
             2614
   MQ
             2206
 7 US
             1698
   9E
             1540
             1010
   WN
```

453

10 VX

What's the relationship between cty and hwy?

> head(mpg, 15)

# 2	A tibble: 15 x	x 11	L								
	${\tt manufacturer}$	mod	del	displ	year	cyl	trans	drv	cty	hwy	fl
	<chr></chr>	< cl	hr>	<db1></db1>	$\langle int \rangle$	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<cl< td=""></cl<>
1	audi	a4		1.8	<u>1</u> 999	4	auto(1~	f	18	29	p
2	audi	a4		1.8	<u>1</u> 999	4	manual~	f	21	29	p
3	audi	a4		2	<u>2</u> 008	4	manual~	f	20	31	p
4	audi	a4		2	<u>2</u> 008	4	auto(a~	f	21	30	p
5	audi	a4		2.8	<u>1</u> 999	6	auto(1~	f	16	26	p
6	audi	a4		2.8	<u>1</u> 999	6	manual~	f	18	26	p
7	audi	a4		3.1	<u>2</u> 008	6	auto(a~	f	18	27	p
8	audi	a4	quat~	1.8	<u>1</u> 999	4	manual~	4	18	26	p
9	audi	a4	quat~	1.8	<u>1</u> 999	4	auto(1~	4	16	25	p
10	audi	a4	quat~	2	<u>2</u> 008	4	manual~	4	20	28	p
11	audi	a4	quat~	2	<u>2</u> 008	4	auto(s~	4	19	27	p
12	audi	a4	quat~	2.8	<u>1</u> 999	6	auto(1~	4	15	25	p
13	audi	a4	quat~	2.8	<u>1</u> 999	6	manual~	4	17	25	p
14	audi	a4	quat~	3.1	<u>2</u> 008	6	auto(s~	4	17	25	p
15	audi	a4	quat~	3.1	<u>2</u> 008	6	manual~	4	15	25	p
#	with 1 mos	ce t	variab]	le: cla	ass <cl< td=""><td>nr></td><td></td><td></td><td></td><td></td><td>i</td></cl<>	nr>					i

Geometry

Aesthetic Mapping

Data

A Few Basic Plots

- Histogram
- Bar Plot
- Scatter Plot
- Box Plot
- Line Plot

- Jitter
- Violin
- Bin2d
- Density
- Smoother

Common Graphs

install.packages("gridExtra")

library (gridExtra)

```
library (ggplot2)
glimpse(diamonds)
# histogram
p1 <- ggplot(diamonds, aes(carat)) +
                    geom histogram()
# bar plot
p2 <- ggplot(diamonds, aes(color)) +
    geom bar()
# point
p3 <- ggplot(diamonds, aes(carat, price)) +
    geom point()
# bin2d
p4 <- ggplot(diamonds, aes(carat, price)) +
    geom bin2d()
```

```
# point + smooth
p5 <- ggplot(diamonds, aes(carat, price)) +
    geom point() +
    geom smooth()
# boxplot
p6 <- ggplot(diamonds, aes(cut, price)) +</pre>
    geom boxplot()
# violin
p7 <- ggplot(diamonds, aes(cut, price)) +
    geom violin()
# jitter
p8 <- ggplot(sample n(diamonds, 2000),
aes(cut, price)) +
    geom jitter()
# density
p9 <- ggplot(diamonds, aes(carat)) +</pre>
    geom density()
# line
p10 <- ggplot(economics, aes(date,
unemploy)) +
    geom line()
```

arrange grid
grid.arrange(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, ncol=5)

Setting vs. Mapping

Mapping จะเกิดขึ้นใน aes() เท่านั้นนะคร้าบ

Dealing with **OVERPLOTTING**


```
ggplot(data = mpq,
                                    aes(cty, hwy, col=drv)) +
Scale
                                    geom point() +
                                    theme minimal() +
Labels
                                    labs(title = 'Scatter
                             Plot',
Theme
                                            x = 'city mpg',
                                            y = 'highway mpg') +
                                 scale color manual(values =
                             c('red', 'gold', 'blue'))
```

facet

Regression

Dependent Variable = Numeric

Classification

Dependent Variable = Classes
(factors)

Linear Regression aims to minimize sum(all_errors)

Model 101

One independent variable
y = b0 + b1.x1
จุดตัดแกนตั้ง ความชั้น

More than one independent variables y = b0 + b1.x1 + b2.x2 + b3.x3 + ...

Let's build your first model in R

Steps to Build (any) a Model

- 1.Split Data
- 2.Train Model
- 3.Test Model

We build model that can be used in the future.

GENERALIZATION (4)

Practice predicting house price in Boston

Price = f(x ...)

Build Linear Regression in R

```
# install MASS
install.packages("MASS")
library (MASS)
# dataset
glimpse(MASS::Boston)
# [1] split data
set.seed(123)
index <- sample(1:nrow(Boston), 0.7*nrow(Boston),</pre>
                 replace = FALSE)
train_data <- Boston[index, ]
test_data <- Boston[-index, ]</pre>
```

Build Linear Regression in R

sqrt(mean((test_data\$medv - predictions)**2))

Can we improve the model?

i.e. lower the RMSE value

1.Collect More Data

2.Add more X's variables

3. Try other algorithms

Try This !!

ใส่ทุก variable ใน dataframe ลงไปใน formula

http://gooeybrains.com/wp-content/uploads/2016/08/Neuron-image.jpg

CAT OR DOG?

Neural Network Architecture

input layer

hidden layer 1

hidden layer 2

output layer

How Neuron Works (Perceptron)

How Neuron Works (Perceptron)

$dot_product = b0 + w1.x1 + w2.x2 + w3.x3$

How Neuron Works (Perceptron)

Activation Function

https://en.wikipedia.org/wiki/Sigmoid_function

Forward Pass

input layer

hidden layer 1

hidden layer 2

output layer

Forward Pass

input layer

hidden layer 1

hidden layer 2

output layer

Backward Pass

Steps to build Neural Network

- 1. Define architecture
- 2. Forward pass
- 3. Compare prediction vs. actual y
- 4. Backward pass (optimize weights)
- 5.Wait and be amazed with results!!

BACKWARD PROPAGATION

Steps to Build (any) a Model

- 1.Split Data
- 2.Train Model
- 3.Test Model


```
# install nnet
install.packages("nnet")
library(nnet)
library(tidyverse)
# dataset
```

glimpse(iris)

```
# [1] split data
set.seed(123)
train_data <- iris[index, ]
test_data <- iris[-index, ]</pre>
```


index <- sample(1:nrow(iris), 0.7*nrow(iris), replace=FALSE)</pre>

```
# [2] train model
set.seed(123)
nn_model <- nnet(Species ~ Petal.Length + Petal.Width,</pre>
                 data = train_data, size = 4)
summary(nn model)
# We can plot our nn_model using package NeuralNetTools
install.packages("NeuralNetTools")
library(NeuralNetTools)
plotnet(nn model)
```


plotnet(nn_model)

```
[3] test model
predictions <- predict(nn_model, test_data, type = "class")</pre>
print(predictions)
confusion_mat <- table(test_data$Species, predictions)</pre>
print(confusion_mat)
          predicted_y
           setosa versicolor virginica
setosa
               15
versicolor
virginica
                                               %Accuracy
```

Confusion Matrix Explained

	Predicted y=0	Predicted y=1
Actual y=0	CORRECT	FALSE
Actual y=1	FALSE	CORRECT

sum(diag(confusion_mat)) / sum(confusion_mat)

PROJECT: BANK NOTE

IMPORT DATA FROM THE UCI PORTAL

```
my_df <- read.table("https://archive.ics.uci.edu/ml/machine-learning-
databases/00267/data_banknote_authentication.txt", sep = ",", header = FALSE,
col.names = c("var", "skew", "kur", "entropy", "class"))
head(my_df)
glimpse(my_df)</pre>
```

```
ggplot(my_df, aes(skew,kur, col=class)) +
    geom_point(size = 3, alpha = 1/2) +
    theme_minimal()
```

my df\$class <- as.factor(my df\$class)</pre>

STEP 1

ปล. อย่าลืมตั้งค่า set.seed() ด้วยนะคร้าบ

STEP 2-3

- สร้างโมเดลด้วย train_data
- ทดสอบโมเดลด้วย test_data
- ประเมินผลการทำนายด้วย confusion matrix

HOW DOES YOUR MODEL PERFORM?

How we evaluate models depends of the type of problem.

Regression

Classification

What we've learned is called:
ARTIFICIAL NEURAL NETWORK (ANN)

Modern architecture is so deep Deep neural network

Deep Learning

DEEP NEURAL NETWORK

What we learn today

- 1.Clean
- 2.Transform
- 3.Summarise_
- 4.Model
- 5. Visualize

dplyr

ggplot2 Neural network

Featured Courses

Thank you very 🚱 🦸 🐞 much kub:)

DataRockie

