

OBBIETTIVO: TROVARE R

Bisogna tenere a mente che noi misuriono tensione e corrente e quincli V=R·l -0 R=V e ma Resistenza MISURATA

$$\mathcal{H}a \quad i_{m} = i_{v} + i_{R} = 0 \quad R_{m} = \frac{V_{m}}{i_{v} + i_{R}} \quad m_{a} \quad \begin{cases} l_{v} = \frac{V_{m}}{Rv} \\ -0 \end{cases} \quad R_{m} = \frac{V_{m}}{R} + \frac{V_{m}}{Rv} = \frac{R}{R} + Rv$$

$$\int c_{V} = \frac{V_{m}}{RV}$$

$$\int c_{V} = \frac{V_{m}}{R}$$

$$R_m = \frac{V_{m}}{V_{m}} + \frac{V_{m}}{R_{m}}$$

=0 RmR+RmRv=RRv

$$-D R = -\frac{RmRv}{Rm-Rv} = \frac{RmRv}{Rv-Rm} R$$

Nel coso in cui la Res int del Voltm: Rv x 106

Se il voltmetro ha una resistenza interna molto grande allora possiamo approssimare il tutto alla resistenza misurata

VOLTHETRO

MONTE

In questo coso il Voltmetro legge la caduta di tensione dell'Ampm.

$$V_{m} = V_{A} + V_{R}$$

$$- o V_{R} = V_{m} - V_{A}$$

$$mor V_{A} = R_{A} \cdot C_{m}$$

$$V_{m} = V_{A} + V_{R} \qquad e \qquad R = \frac{V_{R}}{\iota_{m}} = \frac{V_{m} - V_{A}}{\iota_{m}}$$

$$- \circ V_{R} = V_{m} - V_{A}$$

$$mo \cdot V_{A} = R_{A} \cdot \iota_{m} \qquad = \frac{V_{m}}{\iota_{m}} - R_{A}$$

$$im \qquad = \frac{V_{m}}{\iota_{m}} - R_{A}$$

$$R = \frac{V_m}{im} - R_A \qquad \text{Ma} \qquad R_m = \frac{V_m}{im} = 0 \qquad R = R_m - R_A$$

OBBIETTIVO: TROVARE R

Se l'amperometro ha una resistenza interna molto bassa, allora la resistenza da misurare è approssimabile alla resistenza misurata con questa configurazione.

USARE UNA O L'ALTRA CONFIGURAZIONE QUANDO

A VALLE VOLTHETRO

Se la resistenza del voltmetro è molto grande allora Rm=R. Di conseguenza usiamo questa configurazione quando la resistenza da misurare è molto più piccola di quella del voltmetro.

VOLTHETRO A MONTE

Se la resistenza dell'amperometro è molto piccola allora Rm=R. Di conseguenza usiamo questa configurazione quando la resistenza da misurare è molto più grande di quella dell'amperometro.

INCERTEZZA COMPOSTA VOLTHETRO A VALLE

d'incerterra e comporta e di peude da $R = \frac{RmRv}{Rv-Rm}$ ma $Rm = \frac{V_m}{Lm} = 0$ $R = \frac{Rv \cdot \frac{V_m}{im}}{Rv - \frac{V_m}{im}}$

 $-0 R = \frac{Rv \cdot Vm}{im} = \frac{Rv \cdot Vm}{imRv \cdot Vm} = \frac{Rv$

Applico la ligge incertezza composta: $U_{R}^{2} = \left(\frac{\partial R}{\partial V_{m}}\right)^{2} \cdot V_{m}^{2} + \left(\frac{\partial R}{\partial i_{m}}\right)^{2} \cdot i_{m}^{2} + \left(\frac{\partial R}{\partial R_{v}}\right)^{2} \cdot R_{v}^{2}$

oftengo $U_R^2 = \left(\frac{1}{R_V - R_m}\right)^2 \left[\left(U_{V_m}^2 + U_{im}^2\right) R_V^2 + \left(R_m^2 - U_{R_V}^2\right) \right]$ Trascurabile

Sappions (Hp) che $R_V \gg Rm = 0$ $\frac{1}{R_V^2} \left(U_{Vm}^2 + U_{im}^2 \right) R_V^2 = 0$ $U_R^2 = U_{Vm}^2 + U_{im}^2$

Il contributo dell'incertezza del voltmetro è trascurabile rispetto alle incertezze della tensione misurata e della corrente misurata. In altre parole stiamo dicendo che il massimo errore che si compie è sulle misurazioni.