Motivación:

- Sistema de control de temperatura de un panal de abejas. Sistema de recolección de alimento de un hormiguero. Interacción entre las acciones de los individuos y un "estado macro" (temperatura, rastros de feromonas en el entorno, etc.).
- Desarrollar un sistema formal sencillo para estudiar la interacción elemental entre el estado micro (p.ej., la colección de los estados de las abejas en un instante determinado), y un estado macro (p.ej., la temperatura del panal) (Elementary Micro Macro Interaction, EMMI).
- Comparación con los autómatas celulares.

Definición de un EMMI:

- Sea $\mathcal{I} = \{1, ..., I\}$ un conjunto de agentes. Para cada $i \in \mathcal{I}$ se define:
 - (a) Umbral $u_i \in [0, 1]$.
 - (b) Estado $x_i[k] \in \{0,1\}$, para $k \in \mathbb{N}$.

(c) Regla
$$x_i[k+1] = \begin{cases} 1, & \text{si } X[k] \le u_i \\ 0, & \text{si } u_i < X[k] \end{cases}$$

■ Estado macro: $X[k] = \sum_{i \in \mathcal{I}} x_i[k]$, para $k \in \mathbb{N}$.

Lema 1. No puede haber dos transiciones consecutivas a estados de mayor número de individuos. Es decir, si $X[k] \le X[k+1]$, entonces $X[k+2] \le X[k+1]$.

Demostración. Supongamos que $X[k] \le X[k+1]$. Vamos a demostrar primero que para todo $i \in \mathcal{I}$ se tiene que $x_i[k+2] \le x_i[k+1]$. Sea i arbitrario y observe que $x_i[k+1] \in \{0,1\}$. Consideremos cada caso por aparte:

- Supongamos que $x_i[k+1] = 0$. Luego, por la definición de $x_i[k+1]$ (ver (c) arriba) y por la hipótesis se tiene que $u_i < X[k] \le X[k+1]$. Es decir, $u_i < X[k+1]$ y, de nuevo por (c) aplicado a k+2, se tiene que $x_i[k+2] = 0$. Por lo tanto $x_i[k+2] \le x_i[k+1]$.
- Supongamos que $x_i[k+1] = 1$. Como $x_i[k+2] \in \{0,1\}$, entonces $x_i[k+2] \le x_i[k+1]$.

Como i es arbitrario, entonces $x_i[k+2] \le x_i[k+1]$ para todo $i \in \mathcal{I}$. En consecuencia, $\sum_{i \in \mathcal{I}} x_i[k+2] \le \sum_{i \in \mathcal{I}} x_i[k+1]$. Por lo tanto, por la definición de X[k] se tiene que $X[k+2] \le X[k+1]$.

Lema 2. No puede haber dos transiciones consecutivas a estados de menor número de individuos. Es decir, si $X[k+1] \le X[k]$, entonces $X[k+1] \le X[k+2]$.

Teorema 1. No existen ciclos de longitud 3. Es decir, no existe $k \in \mathbb{N}$ tal que $X[k] \neq X[k+1] \neq X[k+2]$ y X[k+3] = X[k].

Demostración. Para todo $k \in \mathbb{N}$ vamos a demostrar que si $X[k] \neq X[k+1] \neq X[k+2]$, entonces $X[k+3] \neq X[k]$. Sea k arbitrario y supongamos la hipótesis. Consideremos por aparte los casos X[k] < X[k+1] y X[k] < X[k+1]:

- Supongamos que X[k] < X[k+1]. Por el lema 1 se sigue que $X[k+2] \le X[k+1]$. Tenemos dos casos para comparar X[k] y X[k+2] (ya sabemos que, por hipótesis, ellos son distintos):
 - Caso X[k+2] < X[k]. Supongamos por absurdo que X[k+3] = X[k]. Entonces, como arriba supusimos que X[k] < X[k+1], se sigue que X[k+2] < X[k+3] < X[k+1]. Esto contradice el lema 1. Concluimos que $X[k+3] \neq X[k]$.
 - Caso X[k] < X[k+2]. Supongamos por absurdo que X[k+3] = X[k]. Entonces, como arriba vimos que $X[k+2] \le X[k+1]$, se sigue que $X[k+3] < X[k+2] \le X[k+1]$. Esto contradice el lema 2. Concluimos que $X[k+3] \ne X[k]$.

En cualquiera de estos dos casos, se sigue que $X[k+3] \neq X[k]$.

■ Supongamos que X[k+1] < X[k]. El razonamiento aquí es similar al caso anterior, para concluir que $X[k+3] \neq X[k]$.

En cualqueir caso, $X[k+3] \neq X[k]$, y como k es arbitrario, entonces concluimos que si $X[k] \neq X[k+1] \neq X[k+2]$, entonces $X[k+3] \neq X[k]$, para todo $k \in \mathbb{N}$. \square