I.I.S. 25 APRILE - FACCIO MATEMATICA

Francesco Giuseppe Gillio 7 Novembre, 2024

Classe:	
Studente:	

La prova si svolge in 100 minuti, per un massimo di 100 punti.

Sistema di Valutazione

Question:	1	2	3	4	5	Total
Points:	20	20	30	15	15	100
Score:						

- 1. Risolvi le seguenti equazioni esponenziali:
 - (a) (5 points) $2^{x+1} = 16$

Solution: $16 = 2^4$, quindi:

$$2^{x+1} = 2^4 \quad \Rightarrow \quad x+1=4 \quad \Rightarrow \quad x=3$$

Conclusione: x = 3

(b) (5 points) $3^{2x-1} = \frac{1}{27}$

Solution: $\frac{1}{27} = 3^{-3}$, quindi:

$$3^{2x-1} = 3^{-3} \implies 2x - 1 = -3 \implies 2x = -2 \implies x = -1$$

Conclusione: x = -1

(c) (5 points) $\sqrt{5^{2x+3}} = 25$

Solution: $\sqrt{5^{2x+3}} = 5^{\frac{2x+3}{2}} \text{ e } 25 = 5^2$, quindi:

$$5^{\frac{2x+3}{2}} = 5^2 \quad \Rightarrow \quad \frac{2x+3}{2} = 2 \quad \Rightarrow \quad 2x+3 = 4$$

$$2x = 1 \quad \Rightarrow \quad x = \frac{1}{2}$$

Conclusione: $x = \frac{1}{2}$

(d) (5 points) $4^{x+1} = \sqrt{2^{3x+4}}$

Solution: $4 = 2^2 e^{\sqrt{2^{3x+4}}} = 2^{\frac{3x+4}{2}}$, quindi:

$$(2^2)^{x+1} = 2^{\frac{3x+4}{2}} \implies 2^{2(x+1)} = 2^{\frac{3x+4}{2}} \implies 2x+2 = \frac{3x+4}{2}$$

$$4x + 4 = 3x + 4 \quad \Rightarrow \quad x = 0$$

Conclusione: x = 0

- 2. Risolvi le seguenti disequazioni esponenziali:
 - (a) (5 points) $5^x \le 125$

Solution: $125 = 5^3$, quindi:

$$5^x \le 5^3 \quad \Rightarrow \quad x \le 3$$

Conclusione: $x \leq 3$

(b) (5 points) $3^{x+2} > 27$

Solution: $27 = 3^3$, quindi:

$$3^{x+2} > 3^3 \quad \Rightarrow \quad x+2 > 3 \quad \Rightarrow \quad x > 1$$

Conclusione: x > 1

(c) (5 points) $9^{x+1} \le 3^{3x-2}$

Solution: $9 = 3^2$, quindi:

$$(3^2)^{x+1} \le 3^{3x-2} \quad \Rightarrow \quad 3^{2(x+1)} \le 3^{3x-2}$$

$$2x + 2 \le 3x - 2 \quad \Rightarrow \quad -x \le -4 \quad \Rightarrow \quad x \ge 4$$

Conclusione: $x \ge 4$

(d) (5 points) $2^{2x+1} - 2^x \cdot 4 > 0$

Solution: $4 = 2^2$, quindi:

$$2^{2x+1} - 2^x \cdot 2^2 > 0 \quad \Rightarrow \quad 2^{2x+1} - 2^{x+2} > 0$$

$$2^{x}(2^{x+1}-2^{2})>0 \implies 2^{x+1}-2^{2}>0$$

$$2^{x+1} > 2^2 \quad \Rightarrow \quad x+1 > 2 \quad \Rightarrow \quad x > 1$$

Conclusione: x > 1

3. Risolvi le seguenti disequazioni di secondo grado:

(a) (10 points)
$$x^2 - 4x + 3 > 0$$

Solution:

Per risolvere la disequazione ricerchiamo le radici dell'equazione $x^2 - 4x + 3 = 0$:

$$\Delta = (-4)^2 - 4 \cdot 1 \cdot 3 = 16 - 12 = 4$$

$$x_1 = \frac{4 + \sqrt{4}}{2 \cdot 1} = 3, \quad x_2 = \frac{4 - \sqrt{4}}{2 \cdot 1} = 1$$

L'espressione $x^2 - 4x + 3$ rappresenta una parabola con concavità verso l'alto (poichè il coefficiente di x^2 è positivo), quindi:

$$x^2 - 4x + 3 > 0 \quad \Rightarrow \quad x \in (-\infty, 1) \cup (3, +\infty)$$

Conclusione: $x \in (-\infty, 1) \cup (3, +\infty)$

(b) (10 points) $\frac{x+1}{x-2} \ge 0$

Solution:

Per risolvere la disequazione ricerchiamo gli intervalli in cui il rapporto tra i segni di numeratore e denominatore è maggiore o uguale a zero:

• numeratore: $x + 1 \ge 0 \implies x \ge -1$

• denominatore: $x - 2 > 0 \implies x > 2$

	x < -1	-1 < x < 2	2 < x
x+1	_	+	+
x-2	_	_	+
	+	_	+
$\Rightarrow x \in (-\infty, -1] \cup (2, +\infty)$			

Conclusione: $x \in (-\infty, -1] \cup (2, +\infty)$

(c) (10 points) $\frac{x-3}{x^2-9} < 0$

Solution:

Per risolvere la disequazione ricerchiamo gli intervalli in cui il rapporto tra i segni di numeratore e denominatore è maggiore o uguale a zero:

• numeratore: $x - 3 \ge 0 \implies x \ge 3$

• denominatore: $x^2 - 9 > 0 \implies x \in (-\infty, -3) \cup (3, +\infty)$

	x < -3	-3 < x < 3	3 < x	
x-3	_	_	+	
$x^2 - 9$	+	_	+	
	_	+	+	
$\Rightarrow x \in (-\infty, -3)$				

Conclusione: $x \in (-\infty, -3)$

4. (15 points) Risolvi la seguente disequazione:

$$3^{2x+1} - 5 \cdot 3^x + 4 \le 0$$

5. (15 points) Risolvi la seguente disequazione:

$$\frac{4^{x+1}}{2^{2x}+3\cdot 2^x-4} \ge 1$$