Kvik bestun

Bergur Snorrason

February 5, 2024

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

fyrir ölll n > k.

Frægasta dæmið um rakningarvensl er Fibonacci runan.

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- Hún er stigs rakningarvensl gefin með fallinu f(x,y) = x + y.

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- ► Hún er annars stigs rakningarvensl gefin með fallinu f(x,y) = x + y.

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- Hún er annars stigs rakningarvensl gefin með fallinu f(x,y) = x + y.
- Reikna má upp úr þessum venslum endurkvæmt.

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- ▶ Hún er annars stigs rakningarvensl gefin með fallinu f(x, y) = x + y.
- Reikna má upp úr þessum venslum endurkvæmt.

```
3 int fib(int x)
4 {
5     if (x < 3) return 1;
6     return fib(x - 1) + fib(x - 2);
7 }</pre>
```

• Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(\)$.

▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.

- ▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.
- Við getum þó bætt þetta til muna með því að geyma niðurstöðuna úr hverju kalli.

- ▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.
- Við getum þó bætt þetta til muna með því að geyma niðurstöðuna úr hverju kalli.
- Þá nægir að reikna hvert gildi einu sinni.

- ▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.
- Við getum þó bætt þetta til muna með því að geyma niðurstöðuna úr hverju kalli.
- Þá nægir að reikna hvert gildi einu sinni.
- Þessi viðbót kallast minnun (e. memoization).

```
1 #include <stdio.h>
2 #define MAXN 1000000
 3
 4 int d[MAXN];
 5 int fib(int x)
 6
7
       if (d[x] != -1) return d[x];
8
       if (x < 2) return 1;
9
       return d[x] = fib(x - 1) + fib(x - 2);
10 }
11
12 int main()
13
   {
14
       int n, i;
       scanf("%d", &n);
15
16
       for (i = 0; i < n; i++) d[i] = -1;
17
       printf("%d \ n", fib(n - 1));
18
       return 0;
19 }
```

Nú reiknum við hvert gildi aðeins einu sinni.

- Nú reiknum við hvert gildi aðeins einu sinni.
- Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(\)$ tíma, svo í heildina er forritið $\mathcal{O}(\)$.

- Nú reiknum við hvert gildi aðeins einu sinni.
- Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}($

- Nú reiknum við hvert gildi aðeins einu sinni.
- Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}(n)$.

- Nú reiknum við hvert gildi aðeins einu sinni.
- Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}(n)$.
- An minnunar náum við með erfiðum að reikna fertugustu Fibonacci töluna (því eframatið $\mathcal{O}(2^n)$ mætti bæta ögn) en með minnun náum við hæglega að reikna milljónustu Fibonacci töluna (hún mun þó ekki einu sinni passa í 64 bita).

- Nú reiknum við hvert gildi aðeins einu sinni.
- Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}(n)$.
- An minnunar náum við með erfiðum að reikna fertugustu Fibonacci töluna (því eframatið $\mathcal{O}(2^n)$ mætti bæta ögn) en með minnun náum við hæglega að reikna milljónustu Fibonacci töluna (hún mun þó ekki einu sinni passa í 64 bita).
- ► Ef lausnin okkar er endurkvæm með minnun kallast hún ofansækin kvik bestun (e. top down dynamic programming).

Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.

- Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.
- Eina sem við þurfum að passa er að reikna gildin í vaxandi röð.

- Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.
- Eina sem við þurfum að passa er að reikna gildin í vaxandi röð.

```
3 int main()
4 {
5    int n, i;
6    scanf("%d", &n);
7    int a[n];
8    a[0] = a[1] = 1;
9    for (i = 2; i < n; i++) a[i] = a[i - 1] + a[i - 2];
10    printf("%d\n", a[n - 1]);
11    return 0;</pre>
```

- Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.
- Eina sem við þurfum að passa er að reikna gildin í vaxandi röð.

```
3 int main()
4 {
5    int n, i;
6    scanf("%d", &n);
7    int a[n];
8    a[0] = a[1] = 1;
9    for (i = 2; i < n; i++) a[i] = a[i - 1] + a[i - 2];
10    printf("%d\n", a[n - 1]);
11    return 0;
12 }</pre>
```

▶ Pegar ofansækin kvik bestunar lausn er útfærð með ítrun köllum við það neðansækna kvika bestun (e. bottom up dymanic programming). ► Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.

- ► Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst niður flóknu dæmin í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.

- Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst niður flóknu dæmin í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.
- ► Ef endurkvæmnafallið okkar er háð *k* breytum þá segjum við að lausnin okkar sé *k víð kvik bestun*.

- Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst niður flóknu dæmin í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.
- Ef endurkvæmnafallið okkar er háð k breytum þá segjum við að lausnin okkar sé k víð kvik bestun.
- Ofansækin kvik bestun hentar þegar við erum að vinna með fleiri en eina vídd.

- Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- Í ofansækinni kvikri bestun brjótum við fyrst niður flóknu dæmin í smærri dæmi sem við vitum svarið við og reiknum svo út úr því.
- Ef endurkvæmnafallið okkar er háð k breytum þá segjum við að lausnin okkar sé k víð kvik bestun.
- Ofansækin kvik bestun hentar þegar við erum að vinna með fleiri en eina vídd.
- ▶ Þá getur verið erfitt að ítra í gegnum stöðurnar í "réttri röð".

Annar kostur ofansækinnar kvikrar bestunar er að lausnirnar geta verið nokkuð einsleitar.

Annar kostur ofansækinnar kvikrar bestunar er að lausnirnar geta verið nokkuð einsleitar.

```
4 int d[MAXN];
 5 int dp lookup(int x)
 6
7
       if (d[x] != -1) return d[x];
       if (/* Er betta grunntilfelli? */)
10
            /* Skila tilheyrandi grunnsvari */
11
12
       /* Reikna d[x] */
13
       return d[x];
14 }
15
16 int main()
17 {
18
       int n, i;
       scanf("%d", &n);
19
       for (i = 0; i < MAXN; i++) d[i] = -1;
20
       printf("%d\n", dp lookup(n));
21
22
       return 0;
23 }
```

► Neðansækin kvik bestun hefur sýna kosti.

- Neðansækin kvik bestun hefur sýna kosti.
- ▶ Það er stundum hægt að bæta tímaflækjuna, til dæmis með sniðugri gagnagrind.

- Neðansækin kvik bestun hefur sýna kosti.
- Það er stundum hægt að bæta tímaflækjuna, til dæmis með sniðugri gagnagrind.
- Sumar þessara bætinga krefjast þess að útfærsla sé neðansækin.

► Tökum annað dæmi.

- Tökum annað dæmi.
- ▶ Látum $S = s_1 s_2 ... s_n$ og $T = t_1 t_2 ... t_m$ vera strengi af lengd n og m, þannig að $1 \le n, m \le 10^3$.

- ▶ Tökum annað dæmi.
- ▶ Látum $S = s_1 s_2 ... s_n$ og $T = t_1 t_2 ... t_m$ vera strengi af lengd n og m, þannig að $1 \le n, m \le 10^3$.
- Hver er lengd lengsta strengs X þannig að hann sé hlutruna í bæði S og T?

- Tökum annað dæmi.
- ▶ Látum $S = s_1 s_2 ... s_n$ og $T = t_1 t_2 ... t_m$ vera strengi af lengd n og m, þannig að $1 \le n, m \le 10^3$.
- Hver er lengd lengsta strengs X þannig að hann sé hlutruna í bæði S og T?
- Takið eftir að "12" og "13" eru hlutrunur í "123" en "21" er það ekki.

Getum við sett upp dæmið með þægilegum rakningarvenslum?

- Getum við sett upp dæmið með þægilegum rakningarvenslum?
- ► Ef svo er þá getum við notað kvika bestun.

- Getum við sett upp dæmið með þægilegum rakningarvenslum?
- Ef svo er þá getum við notað kvika bestun.
- ▶ Það er yfirleitt þægilegast að hugsa um rakningarvenslin sem fall, frekar en runu.

- Getum við sett upp dæmið með þægilegum rakningarvenslum?
- Ef svo er þá getum við notað kvika bestun.
- ▶ Það er yfirleitt þægilegast að hugsa um rakningarvenslin sem fall, frekar en runu.
- Látum f(i,j) tákna lengstu sameiginlegu hlutrunu strengjanna $s_1s_2...s_i$ og $t_1t_2...t_j$.

- Getum við sett upp dæmið með þægilegum rakningarvenslum?
- Ef svo er þá getum við notað kvika bestun.
- ▶ Það er yfirleitt þægilegast að hugsa um rakningarvenslin sem fall, frekar en runu.
- Látum f(i,j) tákna lengstu sameiginlegu hlutrunu strengjanna $s_1s_2...s_i$ og $t_1t_2...t_j$.
- ▶ Okkur mun svo nægja að reikna f(n, m).

▶ Við vitum að f(0, i) = f(j, 0) = 0.

- ► Við vitum að f(0, i) = f(j, 0) = 0.
- ▶ Petta munu vera grunntilfellin okkar.

- ► Við vitum að f(0, i) = f(j, 0) = 0.
- ▶ Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.
- ► Ef $s_i \neq t_j$ þá verður annað stakið (eða bæði stökin) að vera ekki í hlutrununni.

- ▶ Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.
- ► Ef $s_i \neq t_j$ þá verður annað stakið (eða bæði stökin) að vera ekki í hlutrununni.
- Við veljum að sjálfsögðu að sleppa þeim sem gefur okkur betra svar, það er að segja $f(i,j) = \max(f(i-1,j), f(i,j-1))$.

- ► Við vitum að f(0, i) = f(j, 0) = 0.
- Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.
- ► Ef $s_i \neq t_j$ þá verður annað stakið (eða bæði stökin) að vera ekki í hlutrununni.
- Við veljum að sjálfsögðu að sleppa þeim sem gefur okkur betra svar, það er að segja $f(i,j) = \max(f(i-1,j), f(i,j-1))$.
- ▶ Við getum svo sett allt saman og fengið

$$f(i,j) = \left\{ \begin{array}{ll} 0, & \text{ef } i=0 \text{ e\'oa } j=0 \\ f(i-1,j-1)+1, & \text{annars, og ef } s_i=t_j \\ \max(f(i-1,j),f(i,j-1)), & \text{annars.} \end{array} \right.$$

```
6 char s[MAXN], t[MAXN];
7 int d[MAXN][MAXN];
8 int dp lookup(int x, int y)
9
  {
10
       if (d[x][y] != -1) return d[x][y];
       if (x = 0 \mid \mid y = 0) return 0;
11
       if (s[x-1] = t[y-1]) return d[x][y] = dp lookup(x-1, y-1) + 1;
12
13
       return d[x][y] = max(dp_lookup(x - 1, y), dp_lookup(x, y - 1));
14 }
15
16
  int lcs(char *a, char *b)
17
18
       int i, j, n = strlen(a) - 1, m = strlen(b) - 1;
19
       strcpy(s, a), strcpy(t, b);
20
       for (i = 0; i < n + 1; i++) for (j = 0; j < m + 1; j++) d[i][j] = -1;
21
       return dp lookup(n, m);
22 }
```

▶ Pað er þessi virði að bera saman dp_lookup(...) fallið í forritinu og f(i,j) af glærunni að framan.

```
f(i,j) = \left\{ \begin{array}{ll} 0, & \text{ef } i=0 \text{ eða } j=0 \\ f(i-1,j-1)+1, & \text{annars, og ef } s_i=t_j \\ \max(f(i-1,j),f(i,j-1)), & \text{annars.} \end{array} \right.
```

```
8 int dp_lookup(int x, int y)
9 {
10     if (d[x][y] != -1) return d[x][y];
11     if (x == 0 || y == 0) return 0;
12     if (s[x - 1] == t[y - 1]) return d[x][y] = dp_lookup(x - 1, y - 1) + 1;
13     return d[x][y] = max(dp_lookup(x - 1, y), dp_lookup(x, y - 1));
14 }
```

Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- ▶ En hvert gildi má reikna í $\mathcal{O}($) tíma.

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- ▶ En hvert gildi má reikna í $\mathcal{O}(1)$ tíma.

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- ▶ En hvert gildi má reikna í $\mathcal{O}(1)$ tíma.
- Svo forritið hefur tímaflækjuna $\mathcal{O}($).

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á f(i,j), sem eru $(n+1) \cdot (m+1)$ talsins.
- En hvert gildi má reikna í $\mathcal{O}(1)$ tíma.
- Svo forritið hefur tímaflækjuna $\mathcal{O}(n \cdot m)$.

► Skoðum aftur Skiptimyntadæmið.

- Skoðum aftur Skiptimyntadæmið.
- ▶ Þú ert með ótakmarkað magn af *m* mismunandi myntum.

- Skoðum aftur Skiptimyntadæmið.
- ▶ Þú ert með ótakmarkað magn af *m* mismunandi myntum.
- ightharpoonup þær eru virði $x_1, x_2, ..., x_m$.

- Skoðum aftur Skiptimyntadæmið.
- ▶ Þú ert með ótakmarkað magn af *m* mismunandi myntum.
- \triangleright Þær eru virði $x_1, x_2, ..., x_m$.
- ▶ Til þæginda gerum við ráð fyrir því að $x_1 = 1$.

- Skoðum aftur Skiptimyntadæmið.
- ▶ Þú ert með ótakmarkað magn af *m* mismunandi myntum.
- \triangleright Þær eru virði $x_1, x_2, ..., x_m$.
- ▶ Til þæginda gerum við ráð fyrir því að $x_1 = 1$.
- Hver er minnsti nauðsynlegi fjöldi af klinki sem þú þarft ef þú vilt gefa n krónur til baka.

ightharpoonup Gerum ráð fyrir að við byrjum að gefa til baka x_j krónur.

- ► Gerum ráð fyrir að við byrjum að gefa til baka x_i krónur.
- ightharpoonup Þá erum við búin að smækka dæmið niður í $n-x_j$.

- ► Gerum ráð fyrir að við byrjum að gefa til baka x_i krónur.
- \blacktriangleright Þá erum við búin að smækka dæmið niður í $n-x_i$.
- ightharpoonup Við getum því skoðað öll mögulega gildi x_i og séð hvað er best.

- Gerum ráð fyrir að við byrjum að gefa til baka xi krónur.
- ▶ Þá erum við búin að smækka dæmið niður í $n x_i$.
- ightharpoonup Við getum því skoðað öll mögulega gildi x_i og séð hvað er best.
- Við viljum því reikna gildin á fallinu

$$f(i) = \left\{ \begin{array}{ll} \infty, & \text{ef } i < 0 \\ 0, & \text{ef } i = 0 \\ \min_{j=1,2,\ldots,m} f(i-x_j) + 1, & \text{annars.} \end{array} \right.$$

```
7 int n, m, a [MAXM];
8 int d[MAXN];
9 int dp_lookup(int x)
10 {
11
       int i;
12
       if (x < 0) return INF;
13
       if (d[x] = -1) return d[x];
       if (x = 0) return 0;
14
15
       d[x] = INF;
       for (i = 0; i < m; i++) d[x] = min(d[x], dp_lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

▶ Þetta dæmi má þó hæglega gera neðansækið.

```
5 int main()
6 {
7
       int i, j, n, m;
8
       scanf("%d%d", &n, &m);
       int d[n + 1], a[m];
9
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
           for (j = 0; j < n + 1 - a[i]; j++) if (d[j] < INF)
15
               d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
       printf("%d\n", d[n]);
16
17
       return 0;
18 }
```

► Breytum dæminu örlítið.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.
- Nú er óþarfi að gera ráð fyrir því að $x_1 = 1$.

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.
- Nú er óþarfi að gera ráð fyrir því að $x_1 = 1$.
- Hvernig mætti breyta neðansæknu lausninni til að leysa þetta?

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$ (núna geta verið endurtekin gildi).
- Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n krónur, ef það er á annað borð hægt.
- Nú er óþarfi að gera ráð fyrir því að $x_1 = 1$.
- Hvernig mætti breyta neðansæknu lausninni til að leysa þetta?
- Skoðum aftur neðansæknu lausnina.

```
5 int main()
6 {
7
       int i, j, n, m;
8
       scanf("%d%d", &n, &m);
       int d[n + 1], a[m];
9
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
           for (j = 0; j < n + 1 - a[i]; j++) if (d[j] < INF)
15
               d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
       printf("%d\n", d[n]);
16
17
       return 0;
18 }
```

```
5 int main()
6 {
7
       int i, j, n, m;
8
       scanf("%d%d", &n, &m);
       int d[n + 1], a[m];
9
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
           for (j = n - a[i]; j >= 0; j--) if (d[j] < INF)
14
15
               d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
       printf("%d\n", d[n]);
16
17
       return 0;
18 }
```

Skoðum báðar aðferðirnar á litlu sýnidæmi.

- Skoðum báðar aðferðirnar á litlu sýnidæmi.
- ▶ Skoðum fyrst með endurtekningum og síðan án endurtekningar.

n = 10

n = 10

n = 10

$$n = 10$$

 $a = [1, 3, 5]$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2]$$

$$n = 10$$

$$a = [1, 3, 5]$$

$$0 1 2 3 4 5 6 7 8 9 10$$

$$d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]$$

$$n = 10$$

$$a = [1, 3, 5]$$

$$0 1 2 3 4 5 6 7 8 9 10$$

$$d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]$$

$$n = 10$$

$$a = [1, 3, 5]$$

$$0 1 2 3 4 5 6 7 8 9 10$$

$$d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1]$$

$$n = 10$$

 $a = [1, 3, 5]$

Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.
- Annaðhvort notum við hann, eða ekki.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.
- Annaðhvort notum við hann, eða ekki.
- Svo við látum f(n,j) tákna minnsta fjölda af klinki sem þarf til að gefa til baka n krónur, ef við megum nota klink $x_i, x_{i+1}, ..., x_m$.

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- Við þurfum að hugsa það aðeins öðruvísi.
- Nú höfum við um tvennt að velja fyrir hvern pening.
- Annaðhvort notum við hann, eða ekki.
- Svo við látum f(n,j) tákna minnsta fjölda af klinki sem þarf til að gefa til baka n krónur, ef við megum nota klink $x_i, x_{i+1}, ..., x_m$.
- Þá fáum við að

$$f(i,j) = \left\{ egin{array}{ll} \infty, & ext{ef } i < 0 \ \infty, & ext{ef } i
eq 0 ext{ og } j = m+1 \ 0, & ext{ef } i = 0 ext{ og } j = m+1 \ \min(f(i,j+1), & ext{f}(i-x_j,j+1)+1), & ext{annars.} \end{array}
ight.$$

▶ Það er léttara að ákvarða tímaflækjurnar á neðansæknu lausnunum.

- ▶ Það er léttara að ákvarða tímaflækjurnar á neðansæknu lausnunum.
- Pær eru báðar tvöfaldar for -lykkjur, sú ytri af lengd m og innri af lengd $\mathcal{O}(n)$.

- Það er léttara að ákvarða tímaflækjurnar á neðansæknu lausnunum.
- Pær eru báðar tvöfaldar for -lykkjur, sú ytri af lengd m og innri af lengd $\mathcal{O}(n)$.
- Svo tímaflækjurnar eru $\mathcal{O}($).

- ▶ Það er léttara að ákvarða tímaflækjurnar á neðansæknu lausnunum.
- Pær eru báðar tvöfaldar for -lykkjur, sú ytri af lengd m og innri af lengd $\mathcal{O}(n)$.
- Svo tímaflækjurnar eru $\mathcal{O}(n \cdot m)$.

ightharpoonup Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.

```
9 int dp lookup(int x)
10 {
11
12
       if (x < 0) return INF;
       if (d[x] \stackrel{!}{=} -1) return d[x];
13
14
       if (x = 0) return 0;
15
       d[x] = INF;
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

- ightharpoonup Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}($) tíma.

```
9 int dp lookup(int x)
10 {
11
       if (x < 0) return INF;
12
       if (d[x] \stackrel{!}{=} -1) return d[x];
13
14
       if (x = 0) return 0;
15
       d[x] = INF;
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

- ightharpoonup Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}(m)$ tíma.

```
9 int dp lookup(int x)
10 {
11
       if (x < 0) return INF;
12
       if (d[x] \stackrel{!}{=} -1) return d[x];
13
14
       if (x = 0) return 0;
15
       d[x] = INF:
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

- ▶ Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}(m)$ tíma.
- Svo í heildina er hún $\mathcal{O}($).

```
9 int dp lookup(int x)
10 {
11
12
       if (x < 0) return INF;
13
       if (d[x] != -1) return d[x];
       if (x = 0) return 0;
14
15
       d[x] = INF:
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

- ightharpoonup Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}(m)$ tíma.
- Svo í heildina er hún $\mathcal{O}(n \cdot m)$.

```
9 int dp lookup(int x)
10 {
11
12
       if (x < 0) return INF;
13
       if (d[x] != -1) return d[x];
       if (x = 0) return 0;
14
15
       d[x] = INF:
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

• Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.

- Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- ▶ Hvert gildi má þó reikna í $\mathcal{O}($) tíma.

- ▶ Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- lacktriangle Hvert gildi má þó reikna í $\mathcal{O}(1)$ tíma.

- ▶ Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- Hvert gildi má þó reikna í $\mathcal{O}(1)$ tíma.
- Svo í heildina er hún $\mathcal{O}($).

- Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.
- Hvert gildi má þó reikna í $\mathcal{O}(1)$ tíma.
- Svo í heildina er hún $\mathcal{O}(n \cdot m)$.

► Hvað gerum við ef við viljum vita *hvaða* klink á að gefa til baka, ekki bara hversu mikið?

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x - a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x - a[y], y + 1) + 1.

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x - a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x - a[y], y + 1) + 1.
- Okkur nægir því að geyma fyrir hvert inntak í dp_lookup(...) hver besta leiðin er.

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x - a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x - a[y], y + 1) + 1.
- Okkur nægir því að geyma fyrir hvert inntak í dp_lookup(...) hver besta leiðin er.
- Kvik bestun byggir á því að besta leiðin sé alltaf sú sama.

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x - a[y], y + 1) + 1) þá erum við í raun að velja hvort er betra: dp(x, y + 1) eða dp(x - a[y], y + 1) + 1.
- Okkur nægir því að geyma fyrir hvert inntak í dp_lookup(...) hver besta leiðin er.
- Kvik bestun byggir á því að besta leiðin sé alltaf sú sama.
- Síðan er hægt að þræða sig í gegn eftir á og finna klinkið sem þarf.

```
5 int main()
 6 {
7
       int i, j, n, m, x;
8
       scanf("%d%d", &n, &m);
9
       int d[n + 1], a[m];
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
10
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
            for (j = 0; j < n + 1 - a[i]; j++)
                if (d[j] < INF && d[j + a[i]] > d[j] + 1)
15
16
           d[j + a[i]] = d[j] + 1;
17
18
19
       }
20
21
       printf("%d\n", d[n]);
22
23
24
25
26
27
28
29
       return 0:
30 }
```

```
5 int main()
 6
   {
7
       int i, j, n, m, x;
       scanf("%d%d", &n, &m);
9
       int d[n + 1], a[m], e[n + 1];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
11
       for (i = 0; i < n + 1; i++) d[i] = INF;
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
            for (j = 0; j < n + 1 - a[i]; j++)
15
                if (d[j] < INF && d[j + a[i]] > d[j] + 1)
       {
16
17
            d[j + a[i]] = d[j] + 1;
18
            e[j + a[i]] = a[i];
19
20
21
       printf("%d\n", d[n]);
22
       x = n;
23
       while (x != 0)
24
25
            printf("%d ", e[x]);
26
            \times -= e[x]:
27
       printf("\n");
28
29
       return 0;
30 }
```

▶ Í stað þess að geyma besta skrefið getum við skoðað öll skrefin og valið það besta.

```
int dp lookup(int x)
 8
9
       int i:
10
       if (x < 0) return INF;
11
       if (d[x] != -1) return d[x];
12
       if (x == 0) return 0;
13
       d[x] = INF;
14
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
15
       return d[x];
16 }
17
18
  int dp traverse(int n, int *r)
19
20
       int i = 0, mn, mni, j;
21
       while (n > 0)
22
23
            for (mn = INF, j = 0; j < m; j++) if (mn > dp lookup(n - a[j]) + 1)
24
                mn = dp lookup(n - a[j]) + 1, mni = j;
25
            r[i++] = a[\overline{m}ni];
26
            n -= a[mni];
27
28
       return i;
29 }
```

▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(\)$ tíma.

▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.

- ▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.
- ► Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.

- ▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.
- Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.
- Þetta kemur bara til með að gera nógu góða lausn hæga ef það þarf að reikna fyrir mörg gildi.

- ▶ Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað í $\mathcal{O}(1)$ tíma.
- Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.
- Þetta kemur bara til með að gera nógu góða lausn hæga ef það þarf að reikna fyrir mörg gildi.
- Skoðum nú hvernig við getum nýtt þetta til að finna eina af lengstu sameiginlegu hlutrunum tveggja strengja.

```
5 char s[MAXN], t[MAXN];
 6 int d[MAXN][MAXN];
 7 int dp lookup(int x, int y)
 8
9
       if (d[x][y] != -1) return d[x][y];
10
       if (x == 0 \mid | y == 0) return 0;
       if (s[x-1] = t[y-1]) return d[x][y] = dp lookup(x-1, y-1) + 1;
11
       return d[x][y] = max(dp lookup(x - 1, y), dp lookup(x, y - 1));
12
13 }
14
15 int lcs(char *a, char *b, char *r)
16 {
17
       int i, j, k, n = strlen(a) - 1, m = strlen(b) - 1, x, y;
18
       strcpy(s, a), strcpy(t, b), memset(r, '\0', MAXN);
       for (i = 0; i < n + 1; i++) for (j = 0; j < m + 1; j++) d[i][j] = -1;
19
       for (k = dp | lookup(n, m), x = n, y = m; x > 0 && y > 0;)
20
21
       {
22
           if (s[x-1] == t[v-1]) r[--k] = s[x-1]. x=-. y=-:
23
           else (dp lookup(x, y - 1) > dp lookup(x - 1, y)) ? y—: x—;
24
25
       return dp lookup(n, m);
26 }
```

Seinni skiptimyntadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).

- Seinni skiptimyntadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).
- Dæmið er einfalt.

- Seinni skiptimyntadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).
- Dæmið er einfalt.
- ▶ Gefnar eru *n* jákvæðar heiltölur a_1, \ldots, a_n ásamt heiltölu *c*.

- Seinni skiptimyntadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).
- Dæmið er einfalt.
- ▶ Gefnar eru n jákvæðar heiltölur a_1, \ldots, a_n ásamt heiltölu c.
- ► Hvaða hlutruna af tölum gefur hæstu summuna án þess að fara yfir c.

Látum

 $f(i,j) = \left\{ egin{array}{ll} 1, & ext{ef til er hlutruna af } a_1, \ldots, a_i ext{ sem hefur summu } j, \\ 0, & ext{annars.} \end{array}
ight.$

Látum

$$f(i,j) = \begin{cases} 1, & \text{ef til er hlutruna af } a_1, \dots, a_i \text{ sem hefur summu } j, \\ 0, & \text{annars.} \end{cases}$$

Við getum nú umritað

$$f(i,j) = \left\{ egin{array}{ll} 1, & ext{ef } i=0 ext{ og } j=0, \ 0, & ext{ef } i=0 ext{ og } j
eq 0, ext{ eda } j < 0, \ \min(1,f(i-1,j) \ +f(i-1,j-a_i)), & ext{ef } i
eq 0. \end{array}
ight.$$

Látum

$$f(i,j) = \left\{ \begin{array}{ll} 1, & \text{ef til er hlutruna af } a_1, \ldots, a_i \text{ sem hefur summu } j, \\ 0, & \text{annars.} \end{array} \right.$$

► Við getum nú umritað

$$f(i,j) = \left\{ egin{array}{ll} 1, & ext{ef } i=0 ext{ og } j=0, \ 0, & ext{ef } i=0 ext{ og } j
eq 0, ext{ eða } j < 0, \ \min(1,f(i-1,j) \ +f(i-1,j-a_i)), & ext{ef } i
eq 0. \end{array}
ight.$$

▶ Svarið er þá stærsta $\ell \le c$ þannig að $f(n, \ell)$ er einn.

```
7 int d[MAXN][MAXC], b[MAXN];
8 int dp lookup(int x, int y)
9 {
10
       if (x < 0) return y == 0;
if (y < 0) return 0;</pre>
11
       if (d[x][y] != -1) return d[x][y];
12
        return d[x][y] = dp lookup(x-1, y) \mid\mid dp lookup(x-1, y-b[x]);
13
14 }
15
16 int subsetsum(int *a, int n, int c)
17
18
       int i, j;
        for (i = 0; i < n; i++) for (j = 0; j < c + 1; j++) d[i][j] = -1;
19
20
        for (i = 0; i < n; i++) b[i] = a[i];
21
        while (!dp_lookup(n - 1, c)) c--;
22
        return c:
23 }
```

▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}($).

▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}($) tíma að reikna f(i,j).

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).
- ► En sökum minnunar tekur það $\mathcal{O}(q + n \cdot c)$ tíma að reikna q sinnum fallgildi fallsins f.

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).
- ▶ En sökum minnunar tekur það $\mathcal{O}(q + n \cdot c)$ tíma að reikna q sinnum fallgildi fallsins f.
- Við þurfum að reikna það, í versta falli, c sinnum, svo forritið er $\mathcal{O}($).

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.
- Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).
- ▶ En sökum minnunar tekur það $\mathcal{O}(q + n \cdot c)$ tíma að reikna q sinnum fallgildi fallsins f.
- ▶ Við þurfum að reikna það, í versta falli, c sinnum, svo forritið er $\mathcal{O}(n \cdot c)$.

Ein algeng hagnýting á þessu er tvískipting talna.

- Ein algeng hagnýting á þessu er tvískipting talna.
- ightharpoonup Látum a_1, \ldots, a_n vera jákvæðar heiltölur.

- Ein algeng hagnýting á þessu er tvískipting talna.
- ▶ Látum a_1, \ldots, a_n vera jákvæðar heiltölur.
- Hvernig er best að skipta þeim í tvo hópa þannig að mismunur summa hvors hóps sé sem minnstur.

- Ein algeng hagnýting á þessu er tvískipting talna.
- Látum a_1, \ldots, a_n vera jákvæðar heiltölur.
- Hvernig er best að skipta þeim í tvo hópa þannig að mismunur summa hvors hóps sé sem minnstur.
- ► Ef tölurnar eru (10, 2, 10, 30, 15, 2, 30, 10) þá skiptum við í (2, 2, 10, 10, 30) og (10, 15, 30).

- Ein algeng hagnýting á þessu er tvískipting talna.
- Látum a_1, \ldots, a_n vera jákvæðar heiltölur.
- Hvernig er best að skipta þeim í tvo hópa þannig að mismunur summa hvors hóps sé sem minnstur.
- ► Ef tölurnar eru (10, 2, 10, 30, 15, 2, 30, 10) þá skiptum við í (2, 2, 10, 10, 30) og (10, 15, 30).
- Summurnar eru 54 og 55, og mismunur þeirra er 1.

► Hvernig getum við leyst þetta?

- ► Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.

- ► Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.
- ▶ Við getum nú notað subsetsum(...) með c = |T/2|.

- ► Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.
- ▶ Við getum nú notað subsetsum(...) með $c = \lfloor T/2 \rfloor$.
- Það gefur okkur annan hópinn og hinn hópurinn verður afgangurinn.

- Hvernig getum við leyst þetta?
- Látum T vera summu allra talnanna.
- ▶ Við getum nú notað subsetsum(...) með $c = \lfloor T/2 \rfloor$.
- Það gefur okkur annan hópinn og hinn hópurinn verður afgangurinn.
- Okkur vantar þó að finna hvaða tölur eiga að vera í hvorum hóp.

```
7 int d[MAXN][MAXC], b[MAXN];
8 int dp lookup(int x, int y)
9 {
10
       if (x < 0 | | y < 0) return y == 0;
       if (d[x][y] != -1) return d[x][y];
11
       return d[x][y] = dp \ lookup(x-1, y) \ || \ dp \ lookup(x-1, y-b[x]);
12
13 }
14
15 void partition (int *a, int *r, int n)
16 {
17
       int i, j, t = 0, c;
       for (i = 0; i < n; i++) t += a[i], r[i] = 0, b[i] = a[i];
18
19
       c = t/2;
20
       for (i = 0; i < n; i++) for (j = 0; j < c + 1; j++) d[i][j] = -1;
21
       while (!dp lookup(n-1, c)) c--;
22
       for (i = n - 1, j = c; i \ge 0 \&\& j > 0; i --)
23
           if (dp \ lookup(i - 1, j - a[i])) \ r[i] = 1, j -= a[i];
24 }
```

Látum T vera summu allra talnanna.

- Látum T vera summu allra talnanna.
- \blacktriangleright Þá er tímaflækjan $\mathcal{O}($).

- Látum T vera summu allra talnanna.
- ▶ Þá er tímaflækjan $\mathcal{O}(n \cdot T)$.

- Látum T vera summu allra talnanna.
- ▶ Þá er tímaflækjan $\mathcal{O}(n \cdot T)$.
- ▶ Það er til skemmtileg leið, kennd við Pisinger, til að fá tímaflækjuna $\mathcal{O}(n \cdot w)$, þar sem w er stærsta talan í inntakinu.

- Látum T vera summu allra talnanna.
- ▶ Þá er tímaflækjan $\mathcal{O}(n \cdot T)$.
- ▶ Það er til skemmtileg leið, kennd við Pisinger, til að fá tímaflækjuna $\mathcal{O}(n \cdot w)$, þar sem w er stærsta talan í inntakinu.
- ► Takið eftir að tímaflækjan $\mathcal{O}(n \cdot T)$ er í raun sú sama og $\mathcal{O}(n^2 \cdot w)$.

► Hlutmengjasummudæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).

- ► Hlutmengjasummudæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).
- Gerum ráð fyrir að við séum með n hluti sem allir hafa einhverja vigt og verðgildi.

- ► Hlutmengjasummudæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).
- Gerum ráð fyrir að við séum með n hluti sem allir hafa einhverja vigt og verðgildi.
- Við erum einnig með bakpoka sem þolir tiltekna samtals vigt.

- Hlutmengjasummudæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).
- Gerum ráð fyrir að við séum með n hluti sem allir hafa einhverja vigt og verðgildi.
- Við erum einnig með bakpoka sem þolir tiltekna samtals vigt.
- Verkefnið snýst þá um að hámarka heildarverðgildi hluta sem hægt er að setja í bakpokann.

- Hlutmengjasummudæmið er í raun sértilfelli af bakpokadæminu (e. Knapsack Problem).
- Gerum ráð fyrir að við séum með n hluti sem allir hafa einhverja vigt og verðgildi.
- Við erum einnig með bakpoka sem þolir tiltekna samtals vigt.
- Verkefnið snýst þá um að hámarka heildarverðgildi hluta sem hægt er að setja í bakpokann.
- ► Ef sérhver hlutur hefur sömu vigt og verðgildi þá erum við komin með hlutmengjasummudæmið.

Nánar, við höfum jákvæðar heiltölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.

- Nánar, við höfum jákvæðar heiltölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.
- ▶ Við viljum ákvarða tölur $b_1, \ldots, b_n \in \{0, 1\}$ þannig að

$$\sum_{i=1}^{n} b_i \cdot w_i \le c \quad \text{og} \quad \sum_{i=1}^{n} b_i \cdot v_i \text{ sé hámarkað.}$$

- Nánar, við höfum jákvæðar heiltölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.
- $lackbox{ Við viljum ákvarða tölur } b_1,\ldots,b_n\in\{0,1\}$ þannig að

$$\sum_{i=1}^n b_i \cdot w_i \le c$$
 og $\sum_{i=1}^n b_i \cdot v_i$ sé hámarkað.

Látum f(i,j) tákna hámarksverðgildi sem má fá úr fyrstu i hlutunum með bakpoka sem þolir þyngd j.

- Nánar, við höfum jákvæðar heiltölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.
- $lackbox{ Við viljum ákvarða tölur } b_1,\ldots,b_n\in\{0,1\}$ þannig að

$$\sum_{i=1}^n b_i \cdot w_i \leq c$$
 og $\sum_{i=1}^n b_i \cdot v_i$ sé hámarkað.

- Látum f(i,j) tákna hámarksverðgildi sem má fá úr fyrstu i hlutunum með bakpoka sem þolir þyngd j.
- Við höfum þá

$$f(i,j) = \left\{ egin{array}{ll} -\infty, & ext{ef } j < 0, \ 0, & ext{annars, ef } i = 0, \ ext{max}(f(i-1,j), & \ f(i-1,j-w_i) + v_i), & ext{annars.} \end{array}
ight.$$

```
8 int d[MAXN][MAXC], a[MAXN], b[MAXN];
9 int dp lookup(int x, int y)
10 {
11
       if (y < 0) return -INF;
12
       if (x < 0) return 0;
13
       if (d[x][y] != -1) return d[x][y];
14
       return d[x][y] = max(dp lookup(x - 1, y),
                                dp lookup(x - 1, y - b[x]) + a[x]);
15
16 }
17
18
   void knapsack(int *v, int *w, int *r, int n, int c)
19
  {
20
       int i, j, s[MAXN], ss;
21
       for (i = 0; i < n; i++) for (j = 0; j <= c; j++) d[i][j] = -1;
22
       for (i = 0; i < n; i++) a[i] = v[i], b[i] = w[i], r[i] = 0;
23
       for (i = c, i = n - 1; i >= 0; i--)
24
           if (dp \ lookup(i-1, j) < dp \ lookup(i-1, j-w[i]) + v[i])
25
               j = w[i], r[i] = 1;
26 }
```

Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.

- Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}($).

- Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(1)$.

- Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(1)$.
- ▶ Í heildina er þetta því $\mathcal{O}($).

- Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(1)$.
- ▶ Í heildina er þetta því $\mathcal{O}(n \cdot c)$.

Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- ► Tökum vel þekkt dæmi.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- ▶ Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ▶ Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.
- ▶ Petta er fræga Farandsölumannadæmið (e. Travelling Salseman Problem).

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.
- Þetta er fræga Farandsölumannadæmið (e. Travelling Salseman Problem).
- ▶ Sígilt er að leysa þetta dæmi endurkvæmt í $\mathcal{O}((n+1)!)$ tíma.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel þekkt dæmi.
- ► Gerum ráð fyrir að við séum með *n* stöður.
- ▶ Gefið er tvívítt fylki $(d_{ij})_{1 \le i,j \le n}$, þar sem d_{ij} táknar tímann sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna.
- Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð þannig að við byrjum og endum í sömu stöðu, förum í hverja stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og tökum sem stystan tíma.
- Þetta er fræga Farandsölumannadæmið (e. Travelling Salseman Problem).
- ▶ Sígilt er að leysa þetta dæmi endurkvæmt í $\mathcal{O}((n+1)!)$ tíma.
- ▶ Við höfum nú tólin til að gera betur.

Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- ▶ Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- ▶ Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum P tákna mengi alla staða, A vera eiginlegt hlutmengi þar í og s vera stak utan A.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ▶ Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- Við getum þá látið f(s, A) vera stystu leiðina til að fara í allar stöður P \ A nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- ▶ Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- ▶ Við getum þá látið f(s, A) vera stystu leiðina til að fara í allar stöður $P \setminus A$ nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- Rakningarformúla fyrir f fæst því með

$$f(s,A) = \begin{cases} 0, & \text{ef } s = 1 \text{ og } A = P \\ \infty, & \text{ef } s = 1 \text{ og } A \neq \emptyset \\ \min_{e \in P \setminus A} (d_{se} + f(e, A \setminus e)), & \text{annars.} \end{cases}$$

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ▶ Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- ▶ Við getum þá látið f(s, A) vera stystu leiðina til að fara í allar stöður $P \setminus A$ nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- Rakningarformúla fyrir f fæst því með

$$f(s,A) = \left\{ egin{array}{ll} 0, & ext{ef } s=1 ext{ og } A=P \ \infty, & ext{ef } s=1 ext{ og } A
eq \emptyset \ \min_{e \in P \setminus A} (d_{se} + f(e,A \setminus e)), & ext{annars.} \end{array}
ight.$$

Svarið við dæminu fæst svo með f().

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ► Látum *P* tákna mengi alla staða, *A* vera eiginlegt hlutmengi þar í og *s* vera stak utan *A*.
- Við getum þá látið f(s, A) vera stystu leiðina til að fara í allar stöður P \ A nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- Rakningarformúla fyrir f fæst því með

$$f(s,A) = \left\{ egin{array}{ll} 0, & ext{ef } s=1 ext{ og } A=P \ \infty, & ext{ef } s=1 ext{ og } A
eq \emptyset \ \min_{e \in P \setminus A} (d_{se} + f(e,A \setminus e)), & ext{annars.} \end{array}
ight.$$

▶ Svarið við dæminu fæst svo með $f(1, \emptyset)$.

```
7 int d[MAXN][1 << MAXN], g[MAXN][MAXN], n;</pre>
8 int dp lookup(int x, int y)
9 {
10
       int i:
11
       if (d[x][y] != -1) return d[x][y];
12
       if (x = 0 \&\& y != 0) return (y = ((1 << n) - 1)) ? 0 : INF;
       for (d[x][y] = INF, i = 0; i < n; i++) if <math>((y&(1 << i)) == 0)
13
           d[x][y] = min(d[x][y], dp lookup(i, y + (1 << i)) + g[x][i]);
14
15
       return d[x][y];
16 }
17
18 int tsp(int *a, int n)
19 {
20
       int i, i;
       for (i = 0; i < n; i++) for (j = 0; j < (1 << n); j++) d[i][j] = -1;
21
22
       for (i = 0; i < n; i++) for (j = 0; j < n; j++) g[i][j] = a[i*MAXN + j];
23
       return dp lookup(0, 0);
24 }
```

► Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna falligildi á f, ef við erum með n stöður.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}($) tíma.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}($

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- ightharpoonup Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \leq 10^8$

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \le 18$.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- ▶ Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \le 18$.
- Við náum bara $n \le með$ augljósu endurkvæmnu lausninni.

- Wikipedia kennir þessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ▶ Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$.
- Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \le 18$.
- lacktriangle Við náum bara $n \leq 10$ með augljósu endurkvæmnu lausninni.

► Tökum nú dæmi sem er ekki jafn staðlað.

- ► Tökum nú dæmi sem er ekki jafn staðlað.
- ▶ Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með heiltölu a_i .

- Tökum nú dæmi sem er ekki jafn staðlað.
- ▶ Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með heiltölu a_i.
- Reitirnir liggja jafndreift á beinni línu og þú byrjar á reit númer eitt.

- Tökum nú dæmi sem er ekki jafn staðlað.
- ▶ Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með heiltölu a_i.
- Reitirnir liggja jafndreift á beinni línu og þú byrjar á reit númer eitt.
- Þú vilt síðan ferðast á reit n með því að hoppa á milli reitanna.

- Tökum nú dæmi sem er ekki jafn staðlað.
- Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með heiltölu a_i.
- Reitirnir liggja jafndreift á beinni línu og þú byrjar á reit númer eitt.
- Þú vilt síðan ferðast á reit n með því að hoppa á milli reitanna.
- Þú færð ai stig ef þú lendir á i-ta reitnum og heildarstigafjöldinn er summa stiganna fyrir öll hoppin.

- Tökum nú dæmi sem er ekki jafn staðlað.
- Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með heiltölu a_i.
- Reitirnir liggja jafndreift á beinni línu og þú byrjar á reit númer eitt.
- Þú vilt síðan ferðast á reit n með því að hoppa á milli reitanna.
- Þú færð ai stig ef þú lendir á i-ta reitnum og heildarstigafjöldinn er summa stiganna fyrir öll hoppin.
- Hvert stökk má þó ekki vera lengra en stökkið á undan.

- Tökum nú dæmi sem er ekki jafn staðlað.
- ▶ Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með heiltölu a_i .
- Reitirnir liggja jafndreift á beinni línu og þú byrjar á reit númer eitt.
- Þú vilt síðan ferðast á reit n með því að hoppa á milli reitanna.
- Þú færð ai stig ef þú lendir á i-ta reitnum og heildarstigafjöldinn er summa stiganna fyrir öll hoppin.
- Hvert stökk má þó ekki vera lengra en stökkið á undan.
- Hver er mesti fjöldi stiga sem þú getur fengið.

- Tökum nú dæmi sem er ekki jafn staðlað.
- Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með heiltölu a_i.
- Reitirnir liggja jafndreift á beinni línu og þú byrjar á reit númer eitt.
- Þú vilt síðan ferðast á reit n með því að hoppa á milli reitanna.
- Þú færð ai stig ef þú lendir á i-ta reitnum og heildarstigafjöldinn er summa stiganna fyrir öll hoppin.
- Hvert stökk má þó ekki vera lengra en stökkið á undan.
- Hver er mesti fjöldi stiga sem þú getur fengið.
- ► Takið eftir að $1 \le n \le 3 \cdot 10^3$ og $-10^9 \le a_i \le 10^9$.

Finnum rakningarformúlu sem lýsir svarinu.

- Finnum rakningarformúlu sem lýsir svarinu.
- Látum f(i,j) vera mesta stigafjöldan sem má fá með því að stökkva frá i-ta reitnum með stökkum sem eru ekki lengri en j.

- Finnum rakningarformúlu sem lýsir svarinu.
- Látum f(i,j) vera mesta stigafjöldan sem má fá með því að stökkva frá i-ta reitnum með stökkum sem eru ekki lengri en j.
- Við fáum þá

$$f(i,j) = \left\{ egin{array}{ll} a_n, & ext{ef } i = n, \ \max_{1 \leq k \leq \min(j,n-i)} f(i+k,k) + a_i, & ext{annars.} \end{array}
ight.$$

```
8 II d[MAXN][MAXN], a[MAXN], n;
9 II dp_lookup(II x, II y)
10 {
11
       II i;
12
       if (x == n - 1) return a[x];
13
       if (d[x][y] != -INF) return d[x][y];
14
       for (i = 1; i < min(y + 1, n - x); i++)
           d[x][y] = max(d[x][y], dp_lookup(x + i, i));
15
16
       return d[x][y] = d[x][y] + a[x];
17 }
```

Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(\)$.

▶ Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(n)$.

- ▶ Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(n)$.
- ▶ Svo heildartímaflækjan er $\mathcal{O}($).

- ▶ Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(n)$.
- ▶ Svo heildartímaflækjan er $\mathcal{O}(n^3)$.

- ▶ Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(n)$.
- ▶ Svo heildartímaflækjan er $\mathcal{O}(n^3)$.
- ► En nú má *n* vera, allt að, $3 \cdot 10^3$ og $(3 \cdot 10^3)^3 = 27 \cdot 10^9$.

- ▶ Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(n)$.
- ▶ Svo heildartímaflækjan er $\mathcal{O}(n^3)$.
- ► En nú má *n* vera, allt að, $3 \cdot 10^3$ og $(3 \cdot 10^3)^3 = 27 \cdot 10^9$.
- Svo þessi lausn er of hæg.

- ▶ Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(n)$.
- ▶ Svo heildartímaflækjan er $\mathcal{O}(n^3)$.
- ► En nú má *n* vera, allt að, $3 \cdot 10^3$ og $(3 \cdot 10^3)^3 = 27 \cdot 10^9$.
- Svo þessi lausn er of hæg.

Subm	ission					
ID	DATE	PROBLEM	STATUS	CPU	LANG	
	TEST CASES					
8387732	15:12:47	Decelerating Jump	≭ Time Limit Exceeded	> 1.00 s	С	

Útfærum nú lausnina neðansækið í von um að geta bætt hana síðan.

- Útfærum nú lausnina neðansækið í von um að geta bætt hana síðan.
- ► Munum að

$$f(i,j) = \begin{cases} a_n, & \text{ef } i = n, \\ \max_{1 \le k \le \min(j,n-i)} f(i+k,k) + a_i, & \text{annars.} \end{cases}$$

- Útfærum nú lausnina neðansækið í von um að geta bætt hana síðan.
- ► Munum að

$$f(i,j) = \begin{cases} a_n, & \text{ef } i = n, \\ \max_{1 \le k \le \min(j, n-i)} f(i+k, k) + a_i, & \text{annars.} \end{cases}$$

Nú er f(i,j) bara háð styttri stökkum eða jafn löngum stökkum sem byrja aftar.

- Útfærum nú lausnina neðansækið í von um að geta bætt hana síðan.
- ► Munum að

$$f(i,j) = \begin{cases} a_n, & \text{ef } i = n, \\ \max_{1 \le k \le \min(j,n-i)} f(i+k,k) + a_i, & \text{annars.} \end{cases}$$

- Nú er f(i,j) bara háð styttri stökkum eða jafn löngum stökkum sem byrja aftar.
- Svo við getum reiknað út f(i,j) í vaxandi stökk röð, og minnkandi upphafsstöðum.

- Útfærum nú lausnina neðansækið í von um að geta bætt hana síðan.
- ► Munum að

$$f(i,j) = \begin{cases} a_n, & \text{ef } i = n, \\ \max_{1 \le k \le \min(j,n-i)} f(i+k,k) + a_i, & \text{annars.} \end{cases}$$

- Nú er f(i,j) bara háð styttri stökkum eða jafn löngum stökkum sem byrja aftar.
- Svo við getum reiknað út f(i,j) í vaxandi stökk röð, og minnkandi upphafsstöðum.
- ▶ Með öðrum orðum látum við j vaxa, og i minnka.

```
9 int main()
10 {
11
       II i, j, k, n;
12
       scanf("%||d". &n):
13
       II d[n][n], a[n];
14
       for (i = 0; i < n; i++) scanf("%||d", &a[i]);
15
       for (i = 0; i < n; i++) for (i = 0; i < n; i++) d[i][i] = -INF;
16
       d[n-1][1] = a[n-1];
       for (i = n - 2; i >= 0; i--) d[i][1] = d[i + 1][1] + a[i];
17
       for (i = 0; i < n; i++) d[n-1][i] = a[n-1];
18
       for (i = 2; j < n; j++)
19
20
           for (i = n - 2; i \ge 0; i--)
21
               for (k = 1; k < min(j + 1, n - i); k++)
22
                   d[i][j] = max(d[i][j], d[i+k][k] + a[i]);
       printf("%||d \rangle n", d[0][n-1]);
23
24
       return 0:
25 }
```

Nú er þetta forrit lítið annað en þreföld for -lykkja, hver af lengd $\mathcal{O}(n)$.

- Nú er þetta forrit lítið annað en þreföld for -lykkja, hver af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}($).

- Nú er þetta forrit lítið annað en þreföld for -lykkja, hver af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^3)$.

- Nú er þetta forrit lítið annað en þreföld for -lykkja, hver af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^3)$.
- Þetta ætti því einnig að vera of hægt.

- Nú er þetta forrit lítið annað en þreföld for -lykkja, hver af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^3)$.
- ▶ Petta ætti því einnig að vera of hægt.

- Nú er þetta forrit lítið annað en þreföld for -lykkja, hver af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^3)$.
- ▶ Petta ætti því einnig að vera of hægt.

Tökum þó eftir einu.

Pegar við reiknum fallgildið f(i,j) þá tökum við stærsta gildið á skálínunni $f(i+1,1), f(i+2,2), \ldots, f(i+j,j)$.

- Pegar við reiknum fallgildið f(i,j) þá tökum við stærsta gildið á skálínunni $f(i+1,1), f(i+2,2), \ldots, f(i+j,j)$.
- Eftir að hafa reiknað fallgildin fyrir tiltekna stökklengd hefur eitt stak bæst við hverja skálínu.

- Pegar við reiknum fallgildið f(i,j) þá tökum við stærsta gildið á skálínunni $f(i+1,1), f(i+2,2), \ldots, f(i+j,j)$.
- Eftir að hafa reiknað fallgildin fyrir tiltekna stökklengd hefur eitt stak bæst við hverja skálínu.
- Það er lítið mál að halda utan um stærsta stakið á hverri skálínu með því að uppfæra eftir að nýtt fallgildi er reiknað.

- Pegar við reiknum fallgildið f(i,j) þá tökum við stærsta gildið á skálínunni $f(i+1,1), f(i+2,2), \ldots, f(i+j,j)$.
- Eftir að hafa reiknað fallgildin fyrir tiltekna stökklengd hefur eitt stak bæst við hverja skálínu.
- Það er lítið mál að halda utan um stærsta stakið á hverri skálínu með því að uppfæra eftir að nýtt fallgildi er reiknað.
- Þá getum við líka reiknað hvert fallgildi í föstum tíma.

```
9 int main()
10 {
11
       II i, j, k, n;
       scanf("%||d", &n);
12
       II d[n][n], e[n], a[n];
13
14
       for (i = 0; i < n; i++) scanf("%Ild", &a[i]);
15
       for (i = 0; i < n; i++) for (j = 0; j < n; j++) d[i][j] = -INF;
16
       d[n-1][1] = e[n-1] = a[n-1];
17
       for (i = n - 2; i >= 0; i--) e[i] = d[i][1] = d[i + 1][1] + a[i];
18
       for (i = 2; i < n; i++)
19
           e[n - j] = max(e[n - j], d[n - 1][j] = a[n - 1]);
20
21
           for (i = n - 2; i >= 0; i--)
22
23
               d[i][j] = e[i + 1] + a[i]:
24
               if (i \ge j - 1) e[i - j + 1] = max(e[i - j + 1], d[i][j]);
25
26
27
       printf("%||d\n", d[0][n - 1]);
28
       return 0;
29 }
```

Nú er þetta forrit lítið annað en tvöföld for -lykkja, hvor af lengd $\mathcal{O}(n)$.

- Nú er þetta forrit lítið annað en tvöföld for -lykkja, hvor af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}($).

- Nú er þetta forrit lítið annað en tvöföld for -lykkja, hvor af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^2)$.

- Nú er þetta forrit lítið annað en tvöföld for -lykkja, hvor af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^2)$.
- Petta ætti sleppa, því $(3 \cdot 10^3)^2 = 9 \cdot 10^6 < 10^8$.

- Nú er þetta forrit lítið annað en tvöföld for -lykkja, hvor af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^2)$.
- ▶ Petta ætti sleppa, því $(3 \cdot 10^3)^2 = 9 \cdot 10^6 < 10^8$.

Subm	ission						
ID	DATE	PROBLEM	STATUS	CPU	LANG		
	TEST CASES						
8388221	16:50:36	Decelerating Jump	✓ Accepted	0.10 s	С		