Grundlagen der Informationstechnik

Zusatzaufgaben

Technische Universität Carolo-Wilhelmina zu Braunschweig Institut für Datentechnik und Kommunikationsnetze (IDA)
Abteilung Kommunikationsnetze

A1) Retransmission im CSMA/CD Protokoll

Beim CSMA/CD Protokoll wartet der Adapter nach einer Kollision für *K* x 512 Bitsekunden, wobei K zufällig gewählt wird.

- a) Wie hoch ist die Wahrscheinlichkeit, dass nach der fünften Kollision der Knoten K = 15 wählt?
- b) Wie hoch ist Delay (in Sekunden) bei einem K = 15 auf einem 100 Mbps Ethernet Broadcast Kanal?

a) Wie hoch ist die Wahrscheinlichkeit, dass nach der fünften Kollision der Knoten K = 15 wählt?

Bei n Kollisionen wählt der betroffene Knoten ein zufälliges K aus $\{0, 1, 2, ..., 2^n-1\}$

Je mehr Kollisionen wahr genommen werden, desto größer wird das Interval aus dem K gewählt wird

Nach n = 5 Kollision wählt der Knoten aus einem Intervall von {0, 1, 2,..., 31}.

 \rightarrow Die Wahrscheinlichkeit, dass K = 15 gewählt wird liegt bei P(K = 15) = 1/32.

b) Wie hoch ist der Delay (in Sekunden) bei einem K = 15 auf einem 100 Mbps Ethernet Broadcast Kanal?

Warte K x 512 Bitzeiten: 15×512 Bit = 7680 Bit

Wartezeit für 100 Mbps:

$$\frac{7680 \, Bit}{100 \, Mbit/s} = \frac{7680 \, Bit}{100 \cdot 10^6 \, b/s} = 0,0000768 \, s = 76,8 \, \mu \, s$$

A2) Durchsatz und Auslastung

Gegeben sei eine Bus Topologie mit folgenden Daten:

- $v_B = 100 Mbit/s$
- N = 20 Stationen
- d = 2000m
- $v_A = 2 \cdot 10^8 \text{ m/s}$
- L = 5000 bit

Berechnen Sie

- a) Die maximale Auslastung ρ_{max}
- b) Den maximalen Durchsatz *v_{max}*

a) Berechnen Sie die maximale Auslastung ho_{max}

• $v_B = 100 \text{ Mbit/s}$

• $v_A = 2 \cdot 10^8 \text{ m/s}$

• N = 20 Stationen

• L = 5000 bit

• d = 2000m

Propagation Delay:

$$\tau = \frac{d}{v_A} = \frac{2000 \, m}{2 \cdot 10^8 \, m/s} = 10 \, \mu s$$

Übertragungsdauer:

$$t_T = \frac{L_{min}}{v_B} = \frac{5000 \, bit}{100 \, Mbit/s} = 50 \, \mu \, s$$

Lokalitätsfaktor:

$$a = \frac{\tau}{t_T} = 0,2$$

Max. Auslastung (Medium):

$$\rho_{\text{max}} = \frac{1}{1 + a(1 + 2e)} \approx \frac{1}{1 + 6.44 a} \approx 0,437$$

b) Berechnen Sie den maximalen Durchsatz V_{max}

• $v_B = 50$ Mbit/s

• $v_A = 2 \cdot 10^8 \text{ m/s}$

• N = 20 Stationen

• L = 2500 bit

• d = 2000m

Propagation Delay:

$$\tau = \frac{d}{v_A} = \frac{2000 \, m}{2 \cdot 10^8 \, m/s} = 10 \, \mu s$$

Übertragungsdauer:

$$t_T = \frac{L_{min}}{v_B} = \frac{2500 \, bit}{50 \, Mbit/s} = 50 \, \mu \, s$$

Lokalitätsfaktor:

$$a = \frac{\tau}{t_T} = 0,2$$

Max. Auslastung (Medium):

$$\rho_{\text{\tiny max}} = \frac{1}{1 + a(1 + 2e)} \approx \frac{1}{1 + 6.44 \, a} \approx 0,437$$

Max. Durchsatz:

$$v_{max} = v_B \cdot \rho_{max} = 43,7 \, Mbit/s$$

A3) Adressvergabe mittels CIDR

Ein Unternehmen benötigt von einem Provider 2000 Host-Adressen. Dieser verwendet CIDR um einen geeignenten zusammenhängenden Adressbereich bereitzustellen. Zeigen Sie diesen Adressbereich und die Netzmaske, falls der Adressbereich bei 192.172.64.0 beginnen soll.

64. 1	<u>- 64.255</u>	255
65.0	65.255	256
66.0	- 66,255	256
67.0	-67,255	256
68-0	- 68.285	256
69. 0	69.255	25b 25b
70.0	<u>-70.185</u>	
71.0	- 71.254	255

- Unternehmen benötigt 2000 Host-Adressen
- Adressbereich beginnt bei 192.172.64.0
- 2^{11} $2=2046 \rightarrow 11$ Bits für Host-Anteil benötigt

Maske:

Netzwerk-Adresse:

Adressbereich:

```
11000000.10101100.01000000.00000001 \leftrightarrow 192.172.64.1
11000000.10101100.01000111.11111110 \leftrightarrow 192.172.71.254
```

- → Netzwerk-Adresse ist 192.172.64.0/21
- → Host-Adressbereich bei 192.172.64.1 192.172.71.254
- → Broadcast-Adresse ist 192.172.71.255

A4) Mehrfach Fragmentierung

Sie haben 5212 Byte Nutzdaten und soll diese mittels des IP-Protokolls über 2 Netzwerke zum Ziel-Host vermittelt werden. Es wird angenommen, dass der IP-Header keine Optionen enthält.

- a) Das erste Netzwerk besitzt eine MTU = 1188 Byte, das zweite eine MTU = 576 Byte. Geben Sie die Größen und den Offset aller Fragmente in den beiden Netzen an. Zeigen Sie die Defragmentierung im Ziel-Host.
- b) Mittels einer path-MTU Discovery-Prozedur erfährt der Quell-Host, dass die path-MTU 576 Byte beträgt. Geben Sie die Größen und Anzahl der Fragmente für diesen Fall an.

a) Das erste Netzwerk besitzt eine MTU = 1188 Byte, das zweite eine MTU = 576 Byte. Geben Sie die Größen und den Offset aller Fragmente in den beiden Netzen an. Zeigen Sie die Defragmentierung im Ziel-Host.

Nutzdaten von 5212 Byte werden in N Fragmente aufgeteilt

Netz 1:

MTU1 = 1188 Byte

→ 1188 Byte – 20 Byte IP-Header = 1168 Byte für Nutzdaten je Fragment

Offset: 1168 / 8 = 146

→ maximale Nutzdatenlänge Vielfaches von 8

Fragmente im Netz1			Fragmente im Netz2			
Nutzdaten	Offset	Fragmentlänge	Nutzdaten	Offset	Fragmentlänge	
1168 Byte	0	1188 Byte				
1168 Byte	1168/8=146	1188 Byte				
1168 Byte	2336/8=292	1188 Byte				
1168 Byte	3504/8=438	1188 Byte				
100 Byte	4672/8=584	120 Byte				

a) Das erste Netzwerk besitzt eine MTU = 1188 Byte, das zweite eine MTU = 576 Byte. Geben Sie die Größen und den Offset aller Fragmente in den beiden Netzen an. Zeigen Sie die Defragmentierung im Ziel-Host.

Netz 2:

MTU2 = 576 Byte

→ 576 Byte– 20 Byte IP-Header = 556 Byte für Nutzdaten je Fragment

Offset: 556 / 8 = 69,5

- → maximale Nutzdatenlänge nicht Vielfaches von 8
- → maximal 8 * 69 = 552 Byte Nutzdaten in den Fragmenten 1,...,N-1
 - → maximal 556 Byte im letzten Fragment

Fragmente im Netz1			Fragmente im Netz2			
Nutzdaten	Offset	Fragmentlänge	Nutzdaten	Offset	Fragmentlänge	
1168 Byte	0	1188 Byte	552 Byte	0	572 Byte	
			552 Byte	69	572 Byte	
			64 Byte	138	84 Byte	
1168 Byte	1168/8=146	1188 Byte	552 Byte	146	572 Byte	
			552 Byte	215	572 Byte	
			64 Byte	284	84 Byte	
1168 Byte	2336/8=292	1188 Byte	552 Byte	292	572 Byte	
			552 Byte	361	572 Byte	
			64 Byte	430	84 Byte	
1168 Byte	3504/8=438	1188 Byte	552 Byte	438	572 Byte	
			552 Byte	507	572 Byte	
			64 Byte	576	84 Byte	
540 Byte	4672/8=584	560 Byte	540 Byte	584	560 Byte	

b) Mittels einer path-MTU Discovery-Prozedur erfährt der Quell-Host, dass die path-MTU 576 Byte beträgt. Geben Sie die Größen und Anzahl der Fragmente für diesen Fall an.

Path-MTU = 576 Byte

- → maximal 8 * 69 = 552 Byte Nutzdaten pro Fragment
 - \rightarrow 5212 Byte = 9 * 552 Byte + 244 Byte
 - → Anzahl der Fragmente: 10

Es ist das Netzwerk in der Abbildung gegeben. Zeigen Sie das Verhalten von Dijkstra's (Link-State) Algorithmus mit dem Ursprungsknoten Node E.

Iteration	Knotenmarkierungen						
	N	D(A), p(A)	D(B), p(B)	D(C), p(C)	D(D), p(D)	D(F), p(F)	
0.	{E}	∞, 0	10, E	∞, 0	4, E	2, E	
1.	{E, F}	∞, 0	5, F	∞, 0	4, E	min, w=2 (2, E)	
2.	{E, F, D}	8, D	5, F	6, D	min, w=4 (4, E)	-	
3.	{E, F, D, B}	8, D	min, w=5 (5, F)	6, D	-	-	
5.	{E, F, D, B, C}	8, D	-	min, w=6 (6, D)	-	-	
6.	{E, F, D, B, C, A}	min, <i>w</i> =8	-	-	ı	-	

