Todoy's content

- Palr Sum
- Pair Difference
- -> count of subarroys with sum=K.
- → Triplet Sum
- -> Maximum water accumulated.

Qj) Given arr [N] with sorted distinct elements, count all the pairs (1,j) such that arr[i] + arr[j] = x and i! = j.

Graph $arr = [-3 \ 0 \ 1 \ 3 \ 6 \ 8 \ 11 \ 14 \ 18 \ 25]$, x = 17.

idea-1. - Consider all the pairs. TC - O(N2), S.C-O(1)
NlogN
NlogN

iden-d. $a+b=K \Rightarrow \{b=k-a\}$ Fix one element, then apply B.S. Ifor and element. (k-a) $T(-) O(N \log N)$, S:C->O(1)

idea-3: using Hashset.

- insert all the elements in the hs.

- fix one element and check if second element (K-a)

is present in hoshset.

T.C - O(N), S.C - O(N)

$$-3 + 25 > 17$$
 (decrease j)
 $-3 + 18 < 17$ (increase i)
 $0 + 18 > 17$ (decrease j)
 $0 + 19 < 17$ (increase i)
 $1 + 19 < 17$ (increase i)
 $1 + 19 < 17$ (increase i)
 $1 + 19 < 17$ (ound ++, i++, j--
 $1 + 19 < 17$ (ound ++, i++, j--

psudo- code-

$$\lambda = 0, j = N-1$$

$$while \left(i = j \right) f$$

$$sum = am[i] + am[j]$$

$$if \left(sum = + k \right) f$$

$$count + t$$

$$j + t$$

$$j - -$$

$$selx f \left(sum = k \right) f$$

$$i + t$$

$$j - -$$

$$selx f \left(sum = k \right) f$$

$$i + t$$

Qu) Given arr [N] with sorted distinct elements, count of all the pairs (1,j) such that arr [j]-arr [i] == k.

and i!=j.

$$\frac{E_{4}}{2} = \frac{1}{2} =$$

0 1.0, j.N.1.

$$2\pi (j)$$
 am (i) > K
 $25 - (-3) = 28$ > K. Ambiguidy
 $2\pi (-3) = 28$ > K. Ambiguidy

prendo-code.

```
J = 0, j = J, count = 0, k = |k|

while [j \leq N] if [diff = k] if [diff = k] if [diff \leq k] if [diff
```

Qi Given an array of +ve integers, find count of subarrays with sym = K. arr = [3 2 5 1 8 6 2 10], K=15 ans=1] idea-1. Consider all the subarrays & check their sum.

T.C. O (N3)

Carry forward

O (N2) 14a2 - psum [] - 3 5 10 11 19 25 127 37 Sum of subarray from i j = psum[j] - psum[i-i] = k. Sum of subarray = K. from i to j to handle (i=0) edge care. $\begin{cases} p(um[j] = = K.) \\ count + + \end{cases}$ add 10° in the Code - Htodo. starting psum(7

```
Que Given arr [N] with sorted distinct elements. Find triplet

(i,j,k) such that arr[i] + arr[j] + arr[k] = sum. (i]=j]=k)

arr + [-8 - 4 - 3 - 1 2 3 5 7 9 ], sum = 14.

ideal: Consider all the triplets. T = O(N^2)

ideal: a + b + c = sum.

At b + c = sum.

At b + c = sum.
```

Approach = fix all the elements one by one,
then apply 2. pointer approach to find all the
pairs having target = sum-arrlis.

Count = 0;

$$S \cdot L \rightarrow O(1)$$

 $S \cdot L \rightarrow O(1)$
 $S \cdot L \rightarrow O(1)$
for $i = 0$; $i < M$; $i++$) S
 $farget = Sum - arr[i]$
 $count + = pairSum(arr, target, i);$
 $S \cdot L \rightarrow O(1)$

Q) Given arr [N] where every element represents height of walls. You need to pick any two walls such that water accumulated is maximum.

In later accumulated for patr (i,j) = Min(arr(i), arr(j)) * (j-i) $[T.C. O(N^2), S.C. O(1)]$

$$9*2 = 18.$$
 $8*1 = 8$
 $7*3 = 21$
 $6*4 = 25$
 $9*4 = 16$
 $9*3 = 15$
 $9*4 = 12$
 $9*4 = 3$

pseudo-code.

-30 ·

\