

# Universidade Federal do Ceará Campus de Itapajé

**Redes Neurais Artificiais** 

TRABALHO COMPUTACIONAL Mini-projeto I:

Prof. Dr. Hitalo Nascimento hitalo.nascimento@ufc.br



Esse projeto consiste na implementação de uma RNA do tipo MLP, visando a análise de um problema de classificação de três **cultivares** de vinhos diferentes na Itália. Nesse sentido, um data set contendo os resultados da análise físico-química de 178 amostras de vinho tinto de tais cultivares é fornecido para realização do projeto.



Ao todo, 13 parâmetros físico-químicos estão disponíveis no data set: https://archive.ics.uci.edu/dataset/109/wine

- 1) Alcohol
- 2) Malic acid
- 3) Ash
- 4) Alcalinity of ash
- 5) Magnesium
- 6) Total phenols
- 7) Flavanoids
- 8) Nonflavanoid phenols
- 9) Proanthocyanins
- 10)Color intensity
- 11)Hue
- 12)OD280/OD315 of diluted wines
- 13)Proline



• Exemplo do data set. A primeira coluna, refere-se à classe.

```
1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
21,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
31,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
41,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
51,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735
61,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450
71,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290
81,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295
```



Esse projeto consiste na implementação de uma RNA do tipo MLP, cuja o objetivo da classificação é prever se o cliente irá realizar (sim/não) um depósito bancário (variável y). Nesse sentido, os dados são oriundos de campanhas de marketing de uma instituição bancária portuguesa. As campanhas de marketing foram baseadas em ligações telefônicas.



Ao todo, 17 parâmetros estão disponíveis no data set: https://archive.ics.uci.edu/data set/222/bank+marketing

| Variable Name | Role    | Туре        | Demographic        | Description                                                                                                                                                                                                                                                                                                               |
|---------------|---------|-------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| age           | Feature | Integer     | Age                |                                                                                                                                                                                                                                                                                                                           |
| job           | Feature | Categorical | Occupation         | type of job (categorical: 'admin.','blue-collar','entrepreneur','housemaid','m employed','services','student','technician','unemployed','unknown')                                                                                                                                                                        |
| marital       | Feature | Categorical | Marital<br>Status  | marital status (categorical: 'divorced','married','single','unknown'; note: 'div widowed)                                                                                                                                                                                                                                 |
| education     | Feature | Categorical | Education<br>Level | (categorical: 'basic.4y','basic.6y','basic.9y','high.school','illiterate','professional.course','u                                                                                                                                                                                                                        |
| default       | Feature | Binary      |                    | has credit in default?                                                                                                                                                                                                                                                                                                    |
| balance       | Feature | Integer     |                    | average yearly balance                                                                                                                                                                                                                                                                                                    |
| housing       | Feature | Binary      |                    | has housing loan?                                                                                                                                                                                                                                                                                                         |
| loan          | Feature | Binary      |                    | has personal loan?                                                                                                                                                                                                                                                                                                        |
| contact       | Feature | Categorical |                    | contact communication type (categorical: 'cellular', 'telephone')                                                                                                                                                                                                                                                         |
| day_of_week   | Feature | Date        |                    | last contact day of the week                                                                                                                                                                                                                                                                                              |
| month         | Feature | Date        |                    | last contact month of year (categorical: 'jan', 'feb', 'mar',, 'nov', 'dec')                                                                                                                                                                                                                                              |
| duration      | Feature | Integer     |                    | last contact duration, in seconds (numeric). Important note: this attribute h target (e.g., if duration=0 then y='no'). Yet, the duration is not known befor after the end of the call y is obviously known. Thus, this input should only b purposes and should be discarded if the intention is to have a realistic pred |
| campaign      | Feature | Integer     |                    | number of contacts performed during this campaign and for this client (nur                                                                                                                                                                                                                                                |
| pdays         | Feature | Integer     |                    | number of days that passed by after the client was last contacted from a pr<br>-1 means client was not previously contacted)                                                                                                                                                                                              |
| previous      | Feature | Integer     |                    | number of contacts performed before this campaign and for this client                                                                                                                                                                                                                                                     |
| poutcome      | Feature | Categorical |                    | outcome of the previous marketing campaign (categorical: 'failure','nonexis                                                                                                                                                                                                                                               |
| у             | Target  | Binary      |                    | has the client subscribed a term deposit?                                                                                                                                                                                                                                                                                 |



Exemplo do data set. A última coluna, refere-se a classe.

| "age" | "job"          | "marital"  | "education" | "default" | "balance" | "housing" | "loan" | "contact" | "day" | "month" | "duration" | "campaign" | "pdays" | "previous" | "poutcome" | "y"  |
|-------|----------------|------------|-------------|-----------|-----------|-----------|--------|-----------|-------|---------|------------|------------|---------|------------|------------|------|
| 58    | "management"   | "married"  | "tertiary"  | "no"      | 2143      | "yes"     | "no"   | "unknown" | 5     | "may"   | 261        | 1          | -1      | 0          | "unknown"  | "no" |
| 44    | "technician"   | "single"   | "secondary" | "no"      | 29        | "yes"     | "no"   | "unknown" | 5     | "may"   | 151        | 1          | -1      | 0          | "unknown"  | "no" |
| 33    | "entrepreneur" | "married"  | "secondary" | "no"      | 2         | "yes"     | "yes"  | "unknown" | 5     | "may"   | 76         | 1          | -1      | 0          | "unknown"  | "no" |
| 47    | "blue-collar"  | "married"  | "unknown"   | "no"      | 1506      | "yes"     | "no"   | "unknown" | 5     | "may"   | 92         | 1          | -1      | 0          | "unknown"  | "no" |
| 33    | "unknown"      | "single"   | "unknown"   | "no"      | 1         | "no"      | "no"   | "unknown" | 5     | "may"   | 198        | 1          | -1      | 0          | "unknown"  | "no" |
| 35    | "management"   | "married"  | "tertiary"  | "no"      | 231       | "yes"     | "no"   | "unknown" | 5     | "may"   | 139        | 1          | -1      | 0          | "unknown"  | "no" |
| 28    | "management"   | "single"   | "tertiary"  | "no"      | 447       | "yes"     | "yes"  | "unknown" | 5     | "may"   | 217        | 1          | -1      | 0          | "unknown"  | "no" |
| 42    | "entrepreneur" | "divorced" | "tertiary"  | "yes"     | 2         | "yes"     | "no"   | "unknown" | 5     | "may"   | 380        | 1          | -1      | 0          | "unknown"  | "no" |
| 58    | "retired"      | "married"  | "primary"   | "no"      | 121       | "yes"     | "no"   | "unknown" | 5     | "may"   | 50         | 1          | -1      | 0          | "unknown"  | "no" |
| 43    | "technician"   | "single"   | "secondary" | "no"      | 593       | "yes"     | "no"   | "unknown" | 5     | "may"   | 55         | 1          | -1      | 0          | "unknown"  | "no" |
| 11    | "admin "       | "divorced" | "cocondon"  | "no"      | 270       | "1400"    | "no"   | "unknoum" | _     | "mov"   | 222        | 1          | 1       | ^          | "unknown"  | "no" |



Esse projeto consiste na implementação de uma RNA do tipo MLP, cuja o objetivo é classificar pessoas como tendo crédito bom ou ruim. Dois data sets são fornecidos. O data set original, no formato fornecido pelo Prof. Hofmann, que contém atributos categóricos/simbólicos e está no arquivo "german.data". Para algoritmos que necessitam de atributos numéricos, pode-se usar o arquivo "german.data-numeric". Este arquivo foi editado para torná-lo adequado para algoritmos que não conseguem lidar com variáveis categóricas. Vários atributos ordenados categóricos (como o atributo 17) foram codificados como inteiros.



Ao todo, 20 parâmetros estão

disponíveis no data set:

https://archive.ics.uci.edu/dataset/144/

statlog+german+credit+data

| Variable Name | Role    | Type        | Demographic       | Description                                              | Units  | Missing Values |
|---------------|---------|-------------|-------------------|----------------------------------------------------------|--------|----------------|
| Attribute1    |         | Categorical | Demographic       | Status of existing checking account                      | onics  |                |
| Attribute     | Feature | Categorical |                   | Status or existing checking account                      |        | no             |
| Attribute2    | Feature | Integer     |                   | Duration                                                 | months | no             |
| Attribute3    | Feature | Categorical |                   | Credit history                                           |        | no             |
| Attribute4    | Feature | Categorical |                   | Purpose                                                  |        | no             |
| Attribute5    | Feature | Integer     |                   | Credit amount                                            |        | no             |
| Attribute6    | Feature | Categorical |                   | Savings account/bonds                                    |        | no             |
| Attribute7    | Feature | Categorical | Other             | Present employment since                                 |        | no             |
| Attribute8    | Feature | Integer     |                   | Installment rate in percentage of disposable income      |        | no             |
| Attribute9    | Feature | Categorical | Marital<br>Status | Personal status and sex                                  |        | no             |
| Attribute10   | Feature | Categorical |                   | Other debtors / guarantors                               |        | no             |
| Attribute11   | Feature | Integer     |                   | Present residence since                                  |        | no             |
| Attribute12   | Feature | Categorical |                   | Property                                                 |        | no             |
| Attribute13   | Feature | Integer     | Age               | Age                                                      | years  | no             |
| Attribute14   | Feature | Categorical |                   | Other installment plans                                  |        | no             |
| Attribute15   | Feature | Categorical | Other             | Housing                                                  |        | no             |
| Attribute16   | Feature | Integer     |                   | Number of existing credits at this bank                  |        | no             |
| Attribute17   | Feature | Categorical | Occupation        | Job                                                      |        | no             |
| Attribute18   | Feature | Integer     |                   | Number of people being liable to provide maintenance for |        | no             |
| Attribute19   | Feature | Binary      |                   | Telephone                                                |        | no             |
| Attribute20   | Feature | Binary      | Other             | foreign worker                                           |        | no             |
| class         | Target  | Binary      |                   | 1 = Good, 2 = Bad                                        |        | no             |



Exemplo do dataset. A última coluna, refere-se a classe (1 - BOM / 2 - RUIM).

| 1  | 1 | 6  | 4 | 12 | 5 | 5 | 3 | 4 | 1 | 67 | 3 | 2 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
|----|---|----|---|----|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2  | 2 | 48 | 2 | 60 | 1 | 3 | 2 | 2 | 1 | 22 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 2 |
| 3  | 4 | 12 | 4 | 21 | 1 | 4 | 3 | 3 | 1 | 49 | 3 | 1 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4  | 1 | 42 | 2 | 79 | 1 | 4 | 3 | 4 | 2 | 45 | 3 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 5  | 1 | 24 | 3 | 49 | 1 | 3 | 3 | 4 | 4 | 53 | 3 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
| 6  | 4 | 36 | 2 | 91 | 5 | 3 | 3 | 4 | 4 | 35 | 3 | 1 | 2 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 7  | 4 | 24 | 2 | 28 | 3 | 5 | 3 | 4 | 2 | 53 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 8  | 2 | 36 | 2 | 69 | 1 | 3 | 3 | 2 | 3 | 35 | 3 | 1 | 1 | 2 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 9  | 4 | 12 | 2 | 31 | 4 | 4 | 1 | 4 | 1 | 61 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 10 | 2 | 30 | 4 | 52 | 1 | 1 | 4 | 2 | 3 | 28 | 3 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |



Esse projeto consiste na implementação de uma RNA do tipo MLP, cuja o objetivo da classificar estudantes em umas das seguintes categorias (abandono, matrícula e graduado / formando) ao final da duração normal de um curso de graduação.

 O data set foi criado a partir de uma instituição de ensino superior, para alunos matriculados em diferentes cursos de graduação, como agronomia, design, educação, enfermagem, jornalismo, gestão, serviço social e tecnologias.



O data set inclui informações conhecidas no momento da matrícula dos alunos (percurso acadêmico, dados demográficos e fatores socioeconômicos) e o desempenho acadêmico dos alunos no final do primeiro e segundo semestres.

Ao todo, 36 parâmetros estão disponíveis no banco de dados https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success



Exemplo do data set. A última coluna, refere-se a classe.

| Curricular units 2nd sem (without evaluations | Unemployment rate | Inflation rate | GDP   | Target   |
|-----------------------------------------------|-------------------|----------------|-------|----------|
| 0                                             | 10.8              | 1.4            | 1.74  | Dropout  |
| 0                                             | 13.9              | -0.3           | 0.79  | Graduate |
| 0                                             | 10.8              | 1.4            | 1.74  | Dropout  |
| 0                                             | 9.4               | -0.8           | -3.12 | Graduate |
| 0                                             | 13.9              | -0.3           | 0.79  | Graduate |
| 5                                             | 16.2              | 0.3            | -0.92 | Graduate |
| 0                                             | 15.5              | 2.8            | -4.06 | Graduate |
| 0                                             | 15.5              | 2.8            | -4.06 | Dropout  |
| 0                                             | 16.2              | 0.3            | -0.92 | Graduate |
| 0                                             | 8.9               | 1.4            | 3.51  | Dropout  |
| 0                                             | 12 0              | 0.3            | 0.70  | Craduata |



- Esse projeto consiste na implementação de uma RNA do tipo MLP, cuja o objetivo da classificação é prever se uma casal irá se divorciar (SIM ou NÃO). Trata-se um conjunto de dados real, construído a partir de um formulário com 170 respostas.
- Ao todo, 54 parâmetros estão disponíveis no banco de dados https://archive.ics.uci.edu/dataset/497/divorce+predictors+data+set



Exemplo do data set. A última coluna, refere-se a classe.

| AQ    | AR    | AS    | AT    | AU    | AV    | AW    | AX    | AY    | AZ    | BA    | ВВ    | BC    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Atr43 | Atr44 | Atr45 | Atr46 | Atr47 | Atr48 | Atr49 | Atr50 | Atr51 | Atr52 | Atr53 | Atr54 | Class |
| 1     | 2     | 3     | 2     | 1     | 3     | 3     | 3     | 2     | 3     | 2     | 1     | 1     |
| 3     | 4     | 2     | 2     | 2     | 3     | 4     | 4     | 4     | 4     | 2     | 2     | 1     |
| 2     | 3     | 2     | 3     | 2     | 3     | 1     | 1     | 1     | 2     | 2     | 2     | 1     |
| 3     | 2     | 3     | 2     | 2     | 3     | 3     | 3     | 3     | 2     | 2     | 2     | 1     |
| 3     | 0     | 2     | 2     | 1     | 2     | 3     | 2     | 2     | 2     | 1     | 0     | 1     |
| 2     | 3     | 0     | 2     | 2     | 1     | 2     | 1     | 1     | 1     | 2     | 0     | 1     |
| 3     | 4     | 3     | 3     | 2     | 3     | 2     | 3     | 3     | 2     | 2     | 2     | 1     |
| 3     | 2     | 0     | 0     | 1     | 2     | 2     | 2     | 1     | 1     | 1     | 0     | 1     |
| 2     | 2     | 2     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |



- Esse projeto consiste na implementação de uma RNA do tipo MLP, cuja o objetivo é classificar cerâmicas com base em sua composição química;
- Ao todo, 19 parâmetros estão disponíveis no seguinte conjunto de dados:https://archive.ics.uci.edu/dataset/583/chemical+composition+o f+ceramic+samples



Ceramic.Name: name of ceramic types from Longquan and Jindgezhen

Part: a binary categorical variable ('Body' or 'Glaze')

Na2O: percentage of Na2O (wt%)

MgO: percentage of MgO (wt%)

Al2O3: percentage of Al2O3 (wt%)

SiO2: percentage of SiO2 (wt%)

K2O: percentage of K2O (wt%)

CaO: percentage of CaO (wt%)

TiO2: percentage of TiO2 (wt%)

Fe2O3: percentage of Fe2O3 (wt%)

MnO: percentage of MnO (ppm)

CuO: percentage of CuO (ppm)

ZnO: percentage of ZnO (ppm)

PbO2: percentage of PbO2 (ppm)

Rb2O: percentage of Rb2O (ppm)

SrO: percentage of SrO (ppm)

Y2O3: percentage of Y2O3 (ppm)

ZrO2: percentage of ZrO2 (ppm)

P2O5: percentage of P2O5 (ppm)

.........



Exemplo do data set. A primeira coluna, refere-se a classe.

| 1 Ceramic Name       | Part       | Na2O | MgQ  | Al2O3 | SiO2  | K2O  | CaQ  | TiO2 | Fe2O3 |
|----------------------|------------|------|------|-------|-------|------|------|------|-------|
| <sup>2</sup> FLQ-1-b | Body       | 0.62 | 0.38 | 19.61 | 71.99 | 4.84 | 0.31 | 0.07 | 1.18  |
| 3 FLQ-2-b            | Body       | 0.57 | 0.47 | 21.19 | 70.09 | 4.98 | 0.49 | 0.09 | 1.12  |
| 4 FLQ-3-b            | Body       | 0.49 | 0.19 | 18.60 | 74.70 | 3.47 | 0.43 | 0.06 | 1.07  |
| 5 FLQ-4-b            | Body       | 0.89 | 0.30 | 18.01 | 74.19 | 4.01 | 0.27 | 0.09 | 1.23  |
| 6 FLQ-5-b            | Body       | 0.03 | 0.36 | 18.41 | 73.99 | 4.33 | 0.65 | 0.05 | 1.19  |
| 7 FLQ-6-b            | Body       | 0.62 | 0.18 | 18.82 | 73.79 | 4.28 | 0.30 | 0.04 | 0.96  |
| 8 FLQ-7-b            | Body       | 0.45 | 0.33 | 17.65 | 74.99 | 3.53 | 0.70 | 0.07 | 1.28  |
| e ELOOI              | <b>–</b> 1 | 0 F0 | ^ .F | 04.40 | 74 40 |      | A AF | ^ ^E | 4 00  |



- Esse projeto consiste na implementação de uma RNA do tipo MLP, cuja o objetivo é prever a idade de um abalone a partir de medições físicas;
- Ao todo, 8 parâmetros estão disponíveis no seguinte conjunto de dados: https://archive.ics.uci.edu/dataset/1/abalone



| Variable Name  | Role    | Туре        | Demographic | Description                 | Units | Missing Values |
|----------------|---------|-------------|-------------|-----------------------------|-------|----------------|
| Sex            | Feature | Categorical |             | M, F, and I (infant)        |       | no             |
| Length         | Feature | Continuous  |             | Longest shell measurement   | mm    | no             |
| Diameter       | Feature | Continuous  |             | perpendicular to length     | mm    | no             |
| Height         | Feature | Continuous  |             | with meat in shell          | mm    | no             |
| Whole_weight   | Feature | Continuous  |             | whole abalone               | grams | no             |
| Shucked_weight | Feature | Continuous  |             | weight of meat              | grams | no             |
| Viscera_weight | Feature | Continuous  |             | gut weight (after bleeding) | grams | no             |
| Shell_weight   | Feature | Continuous  |             | after being dried           | grams | no             |
| Rings          | Target  | Integer     |             | +1.5 gives the age in years |       | no             |



Exemplo do data set. A última coluna, refere-se a classe.

```
1M, 0.455, 0.365, 0.095, 0.514, 0.2245, 0.101, 0.15, 15
2M, 0.35, 0.265, 0.09, 0.2255, 0.0995, 0.0485, 0.07, 7
3 F, 0.53, 0.42, 0.135, 0.677, 0.2565, 0.1415, 0.21, 9
4M, 0.44, 0.365, 0.125, 0.516, 0.2155, 0.114, 0.155, 10
5 I, 0.33, 0.255, 0.08, 0.205, 0.0895, 0.0395, 0.055, 7
6I,0.425,0.3,0.095,0.3515,0.141,0.0775,0.12,8
7F, 0.53, 0.415, 0.15, 0.7775, 0.237, 0.1415, 0.33, 20
```



Em todos os projetos, a Rede Neural deve ser treinada até que consiga atingir uma acurácia de pelo meno 80% em relação aos testes.

**Parte I:** Defina e implemente os componentes necessários para o treinamento da rede neural:

- Entradas;
- Pesos: Utilizar a inicialização de Xavier;
- Duas camadas escondidas: em que o número de unidades de processamento é igual ao tamanho da entrada;
- N saídas: a depender do problema; taxa de aprendizado; função de custo; o número de iterações e épocas);



Parte II: Implemente a propagação para frente e calcule o custo;

Parte III: Calcule o gradiente da função de custo;

Parte IV: Implemente a retropropagação. (Use a regra de atualização para o gradiente descendente);

Parte V: Teste diferentes números de camadas intermediárias, e verifique se há uma melhora na qualidade dos resultados no teste. Qual o número de camadas que ideal?



- O trabalho pode ser feito em dubla;
- Deve ser apresentado em sala de aula até o dia 09/11;
- Deve ser implementado em qualquer linguagem de programação;
- É necessário evidenciar a execução do código.