Shortest Path Queries for Indoor Venues with Temporal Variations

Tiantian Liu[†] Zijin Feng[‡] Huan Li[†] Hua Lu[†] Muhammad Aamir Cheema[§] Hong Cheng[‡] Jianliang Xu[‡]

†Aalborg University, Denmark †The Chinese University of Hong Kong, Hong Kong §Monash University, Australia †Hong Kong Baptist University, Hong Kong

1. Introduction

• Background.

- Indoor location-based services are becoming increasingly popular.
- Shortest path/distance queries are fundamental in many indoor location-based services.
- Some temporal variations could change the indoor topology.

• Challenges of handling indoor temporal-variation aware shortest path query (ITSPQ).

- -The existing graphs used to model the indoor space do not consider temporal variations.
- The pre-computed and materialized door-to-door distances become invalid when one or more doors open or close at certain times.

Contributions.

- A new type of query called Indoor Temporal-variation aware Shortest Path Query (ITSPQ) is defined.

- A graph structure (IT-Graph) that captures indoor temporal variations is

- designed.

 We design two algorithms that check a door's accessibility synchronously
- We design two algorithms that check a door's accessibility synchronously and asynchronously, respectively.
- We experimentally evaluate the proposed techniques using synthetic data. The results show that our methods are efficient.

3. ITSPQ Processing

- Indoor temporal-variation graph (IT-Graph) G_{IT} (V, E, L_v, L_E):
- 1) V is the set of vertices such that each vertex $v \in V$ is an indoor partition.
- 2) E is the set of directed edges such that each edge $(v_i, v_j, d_k) \in E$ means one can reach v_i from v_i through a door d_k .
- 3) L_V is the set of vertex labels, each being a 3-tuple(ID_V , p-type, DM).
- 4) L_E is the set of edge labels, each being a 3-tuple (ID_d , d-type, ATIs).

Different Methods for ITSPQ Processing

- 1) **Synchronous Check.** Look up a door *d*'s *ATIs* and compare it to the arrival time when one just leaves for *d*.
- 2) **Asynchronous Check.** Directly refer to a time-dependent IT-Graph that only keeps all currently open doors. The information of IT-Graph only needs to be updated asynchronously at the next checkpoint.

2. Problem Formulation

- Active Time Interval (ATI). We use [open-time, close-time) to denote an active time interval (ATI) of a door.
- Indoor Temporal-variation Aware Shortest Path Query (ITSPQ). Given a start point p_s , a target point p_t , and a current timestamp t, an indoor temporal-variation aware shortest path query ITSPQ(p_s , p_t , t) returns the valid shortest path from p_s to p_t that meets:
- 1) Each door d_i in the path should be open at $t + \Delta t$, where Δt is the walking time from p_s to d_i and it is computed based on human's average walking speed — 5km/h;
- 2) The path should not go through any private partition except the private partitions that contain p_s and/or p_t .

Active Time Intervals (ATIs) of Doors

Door, ATIs	Door, ATIs
d_1 , $\langle [5:00, 23:00) \rangle$	d_2 , $\langle [8:00, 16:00) \rangle$
<i>d</i> ₃ , ⟨[6:00, 23:00)⟩	d_4 , $\langle [9:00, 18:00) \rangle$
d_5 , $\langle [6:30, 23:00) \rangle$	d_6 , $\langle [8:00, 16:00) \rangle$
d_7 , $\langle [6:00, 23:30) \rangle$	<i>d</i> ₈ , ⟨[9:00, 18:00)⟩
d_9 , $\langle [0:00, 6:00), [6:30, 23:00) \rangle$	d_{10} , $\langle [8:00, 16:00) \rangle$
d_{11} , $\langle [5:00, 23:00) \rangle$	d_{12} , $\langle [5:00, 23:00) \rangle$
d_{13} , $\langle [5:00, 17:00), [18:00, 23:00) \rangle$	d_{14} , $\langle [0:00, 24:00) \rangle$
d_{15} , $\langle [8:00, 16:00) \rangle$	d_{16} , $\langle [8:00, 17:00) \rangle$
d_{17} , $\langle [0:00, 24:00) \rangle$	d_{18} , $\langle [0:00, 23:00) \rangle$
d_{19} , $\langle [8:00, 16:00) \rangle$	d_{20} , $\langle [5:00, 23:00) \rangle$
d_{21} , $\langle [8:00, 16:00) \rangle$	

4. Experimental Results

- Indoor Space Settings. A 5-floor indoor space with 705 partitions and 1120 doors.
- **Temporal Variations.** We select random pairs of open time and close time to form the checkpoint set *T* in size of 4, **8**, 12, or 16.
- ParametersSettings|T|4, 8, 12, 16 δ_{s2t} (m)1100, 1300, 1500, 1700, 1900t0:00, 2:00, ..., 12:00, ..., 22:00

Parameter Settings for Synthetic Data

- Query Instances. For each setting of δ_{s2t} , we generate five pairs of p_s and p_t to form the query instances. In each query instance, time t is fixed to 12:00 to make a fair comparison.
- Performance Metrics. We run each query instance ten times, and measure the average running time and memory cost.
- Results.

