A priori databases

$$\vec{y}_1
ightharpoonup \vec{x}_1$$
 $\vec{y}_2
ightharpoonup \vec{x}_2$
 $\vec{y}_3
ightharpoonup \vec{x}_3$
 \cdots
 $\vec{y}_1
ightharpoonup \vec{x}_1$
 $\vec{y}_2
ightharpoonup \vec{x}_2$
 $\vec{y}_3
ightharpoonup \vec{x}_3$
 \cdots

$$\vec{y}_1 \rightarrow \vec{x}_1$$
 $\vec{y}_2 \rightarrow \vec{x}_2$
 $\vec{y}_3 \rightarrow \vec{x}_3$
...

$$\vec{y}_1
ightarrow \vec{x}_1$$
 $\vec{y}_2
ightarrow \vec{x}_2$
 $\vec{y}_3
ightarrow \vec{x}_3$
...

Observation

Posterior

$$w(\vec{y}, \vec{y}_1) \cdot \vec{x}_1$$
 $w(\vec{y}, \vec{y}_2) \cdot \vec{x}_2$
 $w(\vec{y}, \vec{y}_3) \cdot \vec{x}_3$
...

$$w(y, y_n) \propto (\vec{y} - \vec{y}_n)^T \mathbf{S}^{-1} (\vec{y} - \vec{y}_n)$$
$$\sum_n w(y, y_n) = 1$$

Retrieved state

 \vec{x}