Devoir surveillé n° 2 : corrigé

SOLUTION 1.

$$\begin{aligned} \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} &= \frac{1 - \frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}}{1 + \frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}} \\ &= \frac{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}} = \cos\left(2 \times \frac{\theta}{2}\right) = \cos\theta \end{aligned}$$

$$\begin{split} \frac{2\tan\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}} &= \frac{2\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}}{1+\frac{\sin^2\frac{\theta}{2}}{\cos^2\frac{\theta}{2}}} \\ &= \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos^2\frac{\theta}{2}+\sin^2\frac{\theta}{2}} = \sin\left(2\times\frac{\theta}{2}\right) = \sin\theta \end{split}$$

SOLUTION 2.

- 1. Tout d'abord $1+i=\sqrt{2}e^{\frac{i\pi}{4}}$ donc les racines carrées de 1+i sont $\sqrt[4]{2}e^{\frac{i\pi}{8}}$ et $-\sqrt[4]{2}e^{\frac{i\pi}{8}}=\sqrt[4]{2}e^{\frac{9i\pi}{8}}$.
- 2. Soit maintenant z une racine carrée de 1+i. Posons z=x+iy avec $(x,y)\in\mathbb{R}^2$. Puisque $z^2=1+i$, on a $x^2-y^2=1$ et 2xy=1. Par ailleurs, $|z|^2=|z^2|=|1+i|=\sqrt{2}$ donc $x^2+y^2=\sqrt{2}$. On en déduit que $x^2=\frac{\sqrt{2}+1}{2}$ et $y^2=\frac{\sqrt{2}-1}{2}$.

Puisque
$$xy = \frac{1}{2} > 0$$
,
$$\begin{cases} x = \sqrt{\frac{\sqrt{2} + 1}{2}} \\ y = \sqrt{\frac{\sqrt{2} - 1}{2}} \end{cases} \text{ ou} \begin{cases} x = \sqrt{\frac{\sqrt{2} + 1}{2}} \\ y = -\sqrt{\frac{\sqrt{2} - 1}{2}} \end{cases} \text{. Les racines carrées de 1+i sont donc } \sqrt{\frac{\sqrt{2} + 1}{2}} + i\sqrt{\frac{\sqrt{2} - 1}{2}} \end{cases}$$

$$\text{et } -\sqrt{\frac{\sqrt{2} + 1}{2}} - i\sqrt{\frac{\sqrt{2} - 1}{2}}.$$

3. Puisque $\frac{\pi}{8} \in \left[0, \frac{\pi}{2}\right]$, $\cos \frac{\pi}{8} \ge 0$. On peut alors identifier les racines carrées de 1+i sous forme exponentielle et algébrique. En particulier,

$$\sqrt[4]{2}e^{\frac{i\pi}{8}} = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}$$

On en déduit que

$$\sqrt[4]{2}\cos\frac{\pi}{8} = \sqrt{\frac{\sqrt{2}+1}{2}}$$
 et $\sqrt[4]{2}\sin\frac{\pi}{8} = \sqrt{\frac{\sqrt{2}-1}{2}}$

puis que

$$\cos \frac{\pi}{8} = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$$
 et $\sin \frac{\pi}{8} = \sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}}$

et enfin que

$$\cos \frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}$$
 et $\sin \frac{\pi}{8} = \frac{1}{2}\sqrt{2 - \sqrt{2}}$

4.

$$\tan\frac{\pi}{8} = \frac{\sin\frac{\pi}{8}}{\cos\frac{\pi}{8}} = \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}} = \sqrt{\frac{(2-\sqrt{2})^2}{(2+\sqrt{2})(2-\sqrt{2})}} = \frac{2-\sqrt{2}}{\sqrt{2}} = \sqrt{2}-1$$

5. Puisque $\frac{3\pi}{8} = \frac{\pi}{2} - \frac{\pi}{8}$

$$\cos\frac{3\pi}{8} = \sin\frac{\pi}{8} = \frac{1}{2}\sqrt{2-\sqrt{2}} \qquad \qquad \sin\frac{3\pi}{8} = \cos\frac{\pi}{8} = \frac{1}{2}\sqrt{2+\sqrt{2}} \qquad \qquad \tan\frac{3\pi}{8} = \frac{1}{\tan\frac{\pi}{8}} = \sqrt{2}+1$$

Puisque $\frac{5\pi}{8} = \pi - \frac{3\pi}{8}$,

$$\cos\frac{5\pi}{8} = -\cos\frac{3\pi}{8} = -\frac{1}{2}\sqrt{2-\sqrt{2}} \qquad \sin\frac{5\pi}{8} = \sin\frac{3\pi}{8} = \frac{1}{2}\sqrt{2+\sqrt{2}} \qquad \tan\frac{5\pi}{8} = -\tan\frac{3\pi}{8} = -\sqrt{2}-1$$

Puisque $\frac{7\pi}{8} = \pi - \frac{\pi}{8}$,

$$\cos\frac{7\pi}{8} = -\cos\frac{\pi}{8} = -\frac{1}{2}\sqrt{2+\sqrt{2}} \qquad \sin\frac{7\pi}{8} = \sin\frac{\pi}{8} = \frac{1}{2}\sqrt{2-\sqrt{2}} \qquad \tan\frac{7\pi}{8} = -\tan\frac{\pi}{8} = 1-\sqrt{2}$$

SOLUTION 3.

1. Soit z une solution de (E). On a donc

$$(1+iz)^3(1-i\tan\alpha) = (1-iz)^3(1+i\tan\alpha)$$

En passant au module, on en déduit

$$|1 + iz|^3 |1 - i \tan \alpha| = |1 - iz|^3 |1 + i \tan \alpha|$$

Or $1-i\tan\alpha=\overline{1+i\tan\alpha}$ donc $|1-i\tan\alpha|=|1+i\tan\alpha|$. Comme $1\pm i\tan\alpha\neq 0$, $|1\pm i\tan\alpha|\neq 0$. En simplifigant par $|1\pm i\tan\alpha|$, on obtient $|1+iz|^3=|1-iz|^3$. Comme la fonction $x\in\mathbb{R}\mapsto x^3$ est bijective, |1+iz|=|1-iz|. Puisque |1+iz|=|i(z-i)|=|z-i| et |1-iz|=|-i(z+i)|=|z+i|, |z-i|=|z+i|. Le point d'affixe z est donc sur la médiatrice du segment reliant les points d'affixes -i et +i, c'est-à-dire l'axe des abscisses. Ainsi $z\in\mathbb{R}$.

- $\mathbf{2.}\ \frac{1+\mathrm{i}\tan\alpha}{1-\mathrm{i}\tan\alpha} = \frac{\cos\alpha(1+\mathrm{i}\tan\alpha)}{\cos\alpha(1-\mathrm{i}\tan\alpha)} = \frac{\cos\alpha+\mathrm{i}\sin\alpha}{\cos\alpha-\mathrm{i}\sin\alpha} = \frac{e^{\mathrm{i}\alpha}}{e^{-\mathrm{i}\alpha}} = \left(e^{\mathrm{i}\alpha}\right)^2.$
- 3. Comme $1-iz\neq 0$ et $1-i\tan \alpha\neq 0$, l'équation (E) équivaut à $\left(\frac{1+iz}{1-iz}\right)^3=\frac{1+i\tan \alpha}{1-i\tan \alpha}$. D'après la question précédente, ceci équivaut à $\left(e^{i\varphi}\right)^6=\left(e^{i\alpha}\right)^2$. Cette dernière équation équivaut à $6\varphi\equiv 2\alpha\pmod{2\pi}$ i.e. $\varphi\equiv \frac{\alpha}{3}\pmod{\frac{\pi}{3}}$. Les solutions sont donc les réels de la forme $\frac{\alpha}{3}+k\frac{\pi}{3}$ avec $k\in\mathbb{Z}$ tels que $-\frac{\pi}{2}<\frac{\alpha}{3}+k\frac{\pi}{3}<\frac{\pi}{2}$. Comme $-\frac{\pi}{6}<\frac{\alpha}{3}<\frac{\pi}{6}$, ceci équivaut à $k\in\{-1,0,1\}$. Les solutions de l'équation en φ sont donc $\frac{\alpha}{3}-\frac{\pi}{3},\frac{\alpha}{3}$ et $\frac{\alpha}{3}+\frac{\pi}{3}$.
- **4.** On a vu que les solutions de (E) étaient nécessairement réelles. De plus, $z = \tan \phi$ est solution de (E) si et seulement si $\phi \in \left\{\frac{\alpha}{3} \frac{\pi}{3}, \frac{\alpha}{3}, \frac{\alpha}{3} + \frac{\pi}{3}\right\}$. On en déduit que l'ensemble des solutions de (E) est $\left\{\tan\left(\frac{\alpha}{3} \frac{\pi}{3}\right), \tan\frac{\alpha}{3}, \tan\left(\frac{\alpha}{3} + \frac{\pi}{3}\right)\right\}$.

SOLUTION 4.

- 1. Si on avait $\omega = 1$, on aurait $\frac{\pi}{n} \equiv 0[2\pi]$ puis $1 \equiv 0[2n]$, ce qui est faux. Ainsi $\omega \neq 1$.
- 2. On reconnaît la somme des termes d'une suite géométrique de raison $\omega \neq 1$. Ainsi

$$A_n = \frac{1-\omega^n}{1-\omega} = \frac{1-e^{\mathrm{i}\pi}}{1-\omega} = \frac{2}{1-\omega}$$

3. Classiquement

$$\begin{split} &C_n = \sum_{k=0}^{n-1} \operatorname{Re}\left(e^{\frac{ik\pi}{n}}\right) = \sum_{k=0}^{n-1} \operatorname{Re}\left(\omega^k\right) = \operatorname{Re}\left(\sum_{k=0}^{n-1} \omega^k\right) = \operatorname{Re}(A_n) \\ &S_n = \sum_{k=0}^{n-1} \operatorname{Im}\left(e^{\frac{ik\pi}{n}}\right) = \sum_{k=0}^{n-1} \operatorname{Im}\left(\omega^k\right) = \operatorname{Im}\left(\sum_{k=0}^{n-1} \omega^k\right) = \operatorname{Im}(A_n) \end{split}$$

En utilisant la méthode de l'arc-moitié :

$$A_n = \frac{2}{e^{\frac{i\pi}{2n}} \left(e^{-\frac{i\pi}{2n}} - e^{\frac{i\pi}{2n}}\right)} = \frac{2e^{-\frac{i\pi}{2n}}}{-2i\sin\frac{\pi}{2n}} = \frac{ie^{-\frac{i\pi}{2n}}}{\sin\frac{\pi}{2n}} = \frac{i\left(\cos\frac{\pi}{2n} - i\sin\frac{\pi}{2n}\right)}{\sin\frac{\pi}{2n}} = \frac{\sin\frac{\pi}{2n} + i\cos\frac{\pi}{2n}}{\sin\frac{\pi}{2n}} = 1 + i\frac{\cos\frac{\pi}{2n}}{\sin\frac{\pi}{2n}} = 1 + i\frac{\sin\frac{\pi}{2n}}{\sin\frac{\pi}{2n}} = 1$$

On en déduit les résultats voulus.

4. Pour tout $k \in [0, n-1]$,

$$\omega^{2k} - 1 = e^{\frac{2ik\pi}{n}} - 1 = 2ie^{\frac{ik\pi}{n}} \sin \frac{k\pi}{n}$$

Puisque $\frac{k\pi}{n} \in [0, n-1]$, $\sin \frac{k\pi}{n} \geqslant 0$ de sorte que

$$|\omega^{2k} - 1| = 2|\mathfrak{i}| \left| e^{\frac{\mathfrak{i}k\pi}{n}} \right| \left| \sin \frac{k\pi}{n} \right| = 2\sin \frac{k\pi}{n}$$

Ainsi

$$B_n = 2\sum_{k=0}^{n-1} \sin \frac{k\pi}{n} = 2S_n = \frac{2\cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n}}$$

SOLUTION 5.

1. Les points A et B sont confondus si et seulement si z = 1.

Les points A et C sont confondus si et seulement si $z^2 = 1$ i.e. z = 1 ou z = -1.

Les points A et D sont confondus si et seulement si $z^3 = 1$ i.e. z = 1, z = j ou $z = j^2$.

Les points B et C sont confondus si et seulement si $z^2 = z$ i.e. z = 0 ou z = 1.

Les points B et D sont confondus si et seulement si $z^3 = z$ i.e. z = 0, z = -1 ou z = 1.

Les points C et D sont confondus si et seulement si $z^3 = z^2$ i.e. z = 0 ou z = 1.

Ainsi les points A, B, C, D sont deux à deux distincts si et seulement si $z \notin \{0, 1, -1, j, j^2\}$.

2. ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$, c'est-à-dire si et seulement si $z-1=z^2-z^3$ ou encore $-z^3+z^2-z+1=0$. Puisque $z\neq -1$, $-z^3+z^2-z+1=\frac{(-z)^4-1}{-z-1}=-\frac{z^4-1}{z-1}$. Ainsi ABCD est un parallélogramme si et seulement si $z^4=1$. Puisque les racines quatrièmes de l'unité sont 1,i,-1,-i et que $z\notin \{-1,1\}$, ABCD est un parallélogramme si et seulement si z=i ou z=-i.

Si z = i, A, B, C, D sont les points d'affixes respectifs 1, i, -1, -i donc ABCD est un carré.

Si z = -i, A, B, C, D sont les points d'affixes respectifs 1, -i, -1, i donc ABCD est à nouveau un carré.

3. Le triangle ABC est rectangle isocèle en A si et seulement si AB = AC et $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2} [\pi]$. En termes d'affixes,

ABC est rectangle isocèle en A si et seulement si $\begin{cases} |z-1|=|z^2-1| \\ \arg\frac{z^2-1}{z-1}\equiv\frac{\pi}{2}[\pi] \end{cases} \text{ ou encore } \begin{cases} \left|\frac{z^2-1}{z-1}\right|=1 \\ \arg\frac{z^2-1}{z-1}\equiv\frac{\pi}{2}[\pi] \end{cases}. \text{ Puisque }$

 $\frac{z^2 - 1}{z - 1} = z + 1, \text{ ceci \'equivaut \`a} \begin{cases} |z + 1| = 1 \\ \arg(z + 1) \equiv \frac{\pi}{2} [\pi] \end{cases} \text{ ou encore } z + 1 = \pm i.$

Finalement, ABC est rectangle isocèle en A $s\bar{i}$ et seulement $s\bar{i}$ $z=-1\pm i$.

4. On sait que $z^3 - 1 = (z - 1)(z^2 + z + 1)$. Le triangle ABD est rectangle isocèle en A si et seulement si AB = AD

et $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2}[\pi]$. En termes d'affixes, ABD est rectangle isocèle en A si et seulement si $\begin{cases} |z-1| = |z^3-1| \\ \arg \frac{z^3-1}{z-1} \equiv \frac{\pi}{2}[\pi] \end{cases}$

ou encore $\begin{cases} \left|\frac{z^3-1}{z-1}\right|=1\\ \arg\frac{z^3-1}{z-1}\equiv\frac{\pi}{2}[\pi] \end{cases}$. Puisque $\frac{z^3-1}{z-1}=z^2+z+1$, ceci équivant à $\begin{cases} |z^2+z+1|=1\\ \arg(z^2+z+1)\equiv\frac{\pi}{2}[\pi] \end{cases}$ ou encore

 $z^2 + z + 1 = \pm i$.

Finalement, ABC est rectangle isocèle en A si et seulement si z est solution d'une des deux équations (E_1) : $Z^2 + Z + 1 + i = 0$ ou (E_2) : $Z^2 + Z + 1 - i = 0$.

Le discriminant de (E_1) est $-3-4i=(1-2i)^2$. Les solutions de (E_1) sont donc $\frac{-1+(1-2i)}{2}=-i$ et $\frac{-1-(1-2i)}{2}=-1+i$. Puisque les coefficients de l'équation (E_2) sont les conjuguées de ceux de l'équation (E_1) , les solutions de (E_2) sont les conjuguées de celles de l'équation (E_1) , c'est-à-dire i et -1-i.

Le triangle ABD est rectangle isocèle en A si et seulement si $z \in \{i, -i, 1+i, 1-i\}$.

SOLUTION 6.

- 1. Deux cas se présentent.
 - ▶ Si m est un multiple de n, $\omega^m = 1$ et donc

$$\sum_{k=0}^{n-1} \omega^{km} = n$$

► Sinon $\omega^m \neq 1$ et ainsi,

$$\sum_{k=0}^{n-1} \omega^{km} = \frac{\omega^{nm} - 1}{\omega^m - 1} = 0$$

2. Soit $z \in \mathbb{C}$. Appliquons la formule du binôme de Newton.

$$S(z) = \sum_{k=0}^{n-1} \sum_{l=0}^{n} \binom{n}{l} \omega^{lk} z^{l}$$

$$= \sum_{l=0}^{n} \sum_{k=0}^{n-1} \binom{n}{l} \omega^{lk} z^{l} \qquad \text{en permutant les sommes}$$

$$= \sum_{l=0}^{n} \binom{n}{l} z^{l} \sum_{k=0}^{n-1} \omega^{lk}$$

D'après la première question, pour tout $l \in [1, n-1]$,

$$\sum_{k=0}^{n-1} \omega^{lk} = 0$$

et pour l = 0 ou l = n,

$$\sum_{k=0}^{n-1} \omega^{lk} = n$$

Ainsi $S(z) = n(z^n + 1)$.

3. Tout d'abord, S $\left(e^{\frac{i\pi}{n}}\right)=e^{i\pi}+1=0$ d'après la question précédente. Mais on a également

$$S\left(e^{\frac{i\pi}{n}}\right) = \sum_{k=0}^{n-1} \left(e^{\frac{i\pi}{n}} + e^{\frac{ik\pi}{n}}\right)^{n}$$

$$= \sum_{k=0}^{n-1} \left(2e^{\frac{(2k+1)i\pi}{2n}}\cos\left(\frac{(2k-1)\pi}{2n}\right)\right)^{n} \quad \text{par arc-moitié}$$

$$= \sum_{k=0}^{n-1} 2^{n}e^{\frac{(2k+1)i\pi}{2}}\cos^{n}\left(\frac{(2k-1)\pi}{2n}\right)$$

$$= 2^{n}\sum_{k=0}^{n-1} e^{ik\pi}e^{\frac{i\pi}{2}}\cos^{n}\left(\frac{(2k-1)\pi}{2n}\right)$$

$$= 2^{n}i\sum_{k=0}^{n-1} (-1)^{k}\cos^{n}\left(\frac{(2k-1)\pi}{2n}\right)$$

On en déduit l'égalité demandée.