# Elektrotehnički fakultet - Univerzitet u Beogradu Katedra za signale i sisteme



## Neuralne mreže - Prvi projektni zadatak

Varijanta:

$$A = 2$$
,  $B = 3$ ,  $f1 = 15$ ,  $f2 = 9$ 

P = 3 (dataset3), Q = 5 (letterRecognition)

Anja Marković 0420/2017 Vukašin Drašković 0455/2017

## **PRVI ZADATAK**

Funkcija bez šuma h(x) i sa šumom y(x)



## Kriva performanse



## Regresiona kriva



## Funkcija sa šumom i predikcija neuralne mreže

Funkcija y(x) - plavo

Predikcija neuralne mreže - crveno



Vidi se da predikcija dobro aproksimira polaznu funkciju. Na regresionoj krivoj se vidi da postoji skoro linearna veza (R=0.98901).

## **DRUGI ZADATAK**

#### Podaci po klasama

Klase delimo po trećoj koloni(0 ili 1). Klasa 1 je prikazana crvenom bojom, a klasa 2 plavom.



### Podela podataka

80% ulaznih podataka uzimamo za trening skup, a 20% za test skup. Pre podele je potrebno izmešati ulazne podatke da bi se i u trening i u test skupu našao približno jednak broj obe ulazne klase.

## Kriva performanse

## Kriva za optimalnu neuralnu mrežu



#### Kriva za underfit neuralnu mrežu



#### Kriva za overfit neuralnu mrežu



#### Konfuziona matrica

## Konfuziona matrica za trening skup

## Optimalna neuralna mreža



Precision = 1198 / (1198 + 79) = 93,8%

Recall = 1198 / (1198 + 18) = 98,7%

#### Underfit neuralna mreža



#### Overfit neuralna mreža



## Konfuziona matrica za test skup

## Optimalna neuralna mreža



#### Underfit neuralna mreža



#### Overfit neuralna mreža



## Granica odlučivanja

Klasa 1 – crveno

Klasa 2 – plavo

Neodređeno - zeleno

## Optimalna neuralna mreža



#### Underfit neuralna mreža



#### Overfit neuralna mreža



Rezultati su očekivani. Optimalna mreža pravi kružni oblik jer pokušava da uopšti granicu odlučivanja. Underfit mreža ne uspeva da se obuči kako treba, a overfit mreža pravi previše komplikovanu granicu što je znak da se preobučila.

## TREĆI ZADATAK

#### Postavka problema

Posmatrani problem je problem prepoznavanja slova.

Postoji 26 različitih slova i svako ima određene osobine.

Ulazni podaci nam govore sledeće osobine o svakom slovu:

- 1. lettr capital letter (26 values from A to Z)
- 2. x-box horizontal position of box (integer)
- 3. y-box vertical position of box (integer)
- 4. width width of box (integer)
- 5. high height of box (integer)
- 6. onpix total # on pixels (integer)
- 7. x-bar mean x of on pixels in box (integer)
- 8. y-bar mean y of on pixels in box (integer)
- 9. x2bar mean x variance (integer)
- 10. y2bar mean y variance (integer)
- 11. xybar mean x y correlation (integer)
- 12. x2ybr mean of x \* x \* y (integer)
- 13. xy2br mean of x \* y \* y (integer)
- 14. x-ege mean edge count left to right (integer)
- 15. xegvy correlation of x-ege with y (integer)
- 16. y-ege mean edge count bottom to top (integer)
- 17. yegvx correlation of y-ege with x (integer)

Potrebno je na osnovu novih ulaznih podataka odrediti slovo o kojem se radi.

Na sledećem grafiku vidimo koliko ima svakog slova u ulaznim podacima.

Vidi se da su podaci balansirani.

Podela je izvršena na isti način kao u prethodnom zadatku. Od svake klase se uzima 80% za trening i 20% za treniranje.



Unakrsna validacija

Cilj unakrsne validacije je da se nađu optimalni parametri mreže. Uzimamo u obzir strukturu mreže (proizvoljno uzeti nekoliko struktura), aktivacionu funkciju i regularizaciju (uzeta iz skupa [0, 1]). Kriterijum po kome vršimo selekciju optimalnih hiperparametara je ACC (accuracy).

Dobijeni optimalni parametri su:

Struktura: [10 10 20]Regularizacija: 0,1

Aktivaciona funkcija: tansig

## Kriva performanse



#### Matrice konfuzije

#### Matrica konfuzije za trening skup





#### Matrica konfuzije za test skup



