TD N°4 Econométrie

Exercice 1:

On considère la fonction de consommation (C_t) pour le Royaume Uni. Les variables explicatives sont le revenu réel personnel disponible (Y_t) et l'inflation (INF_t) mesurée par la différence première du logarithme de l'indice de prix à la consommation. Les données sont annuelles et couvrent la période 1960-1984. Toutes les variables sont transformées en logarithme.

On fournit les résultats d'estimation suivants :

$$(1): C_t = 0.25 + 0.93Y_t - 0.14INF_t + \varepsilon_t$$

$$BG = 4.53 (0.033)$$

$$(2): C_t = 0.25 + 0.88Y_t - 0.16INF_t + 0.06Y_{t-1} + \varepsilon_t$$

$$BG = 9.74 (0.002)$$

$$(3): C_t = 0.16 + 0.71Y_t - 0.18INF_t + 0.24C_{t-1} + \varepsilon_t$$

$$BG = 5.98 (0.014)$$

$$(4): C_t = -0.01 + 0.68Y_t - 0.15INF_t - 0.40Y_{t-1} + 0.72C_{t-1} + \varepsilon_t$$

$$BG = 0.36 (0.549)$$

1) Vérifier à chaque fois si les erreurs sont autocorrélées d'ordre 1?

N.B.: BG est la statistique de Breusch-Godfrey et les chiffres entre parenthèses indiquent sa p-value.

- 2) Préciser la nature de chacun des modèles estimés et transformer son équation à l'aide de l'opérateur retard.
- 3) Remplir le tableau suivant avec les élasticités-revenu correspondantes :

Modèle	Court terme	Long terme	
1			
2			
3			
4			

Exercice 2:

On se propose de modéliser le lien entre les dépenses d'investissement, notées (y_t) , et les profits passés, notés (x_t) , d'une certaine industrie chimique. Pour cela, on dispose de données trimestrielles telles que t = 1,..., 44. La recherche du nombre de retards optimal a permis d'obtenir le tableau suivant :

Décalage	Akaike	Schwarz	
0	11,96	11,96	
1	11,50	11,54	
2	11,04	11,12	
3	10,55	10,68	
4	10,25	10,42	
5	9,99	10,21	
6	9,84	10,10	
7	9,88	10,19	
8	9,96	10,31	
9	10,03	10,43	
10	10,10	10,55	

- 1) Quel nombre de retards doit-on retenir dans le modèle ? Justifier la réponse.
- 2) Détailler le calcul des critères d'Akaike et de Schwarz pour le retard retenu et en déduire la SCR.
- 3) Ecrire l'équation du modèle à retards échelonnés.

4) Commenter et interpréter le résultat d'estimation de ce modèle qui se présente ci-après :

Variable	Coefficient	Écart type	t de Student	Prob.
С	501,5414	154,8486	3,238915	0,0029
X	- 0,011389	0,081532	- 0,139687	0,8898
X(-1)	0,061265	0,124906	0,490487	0,6274
X(-2)	0,227569	0,119635	1,902194	0,0668
X(-3)	0,167932	0,112997	1,486158	0,1477
X(-4)	0,118734	0,127454	0,931580	0,3590
X(-5)	0,000169	0,136907	0,001235	0,9990
X(-6)	0,237174	0,084065	2,821310	0,0084

5) Calculer le délai moyen.

Exercice 3:

En considérant l'exemple de l'exercice précédent, on vous demande de :

- 1) Réécrire le modèle selon la méthode d'Almon, puis selon la méthode de Koyck.
- 2) Calculer les élasticités de long et de court termes des dépenses d'investissement au profit dans le cas d'une spécification à distribution géométrique. Interpréter.

On donne les résultats d'estimation du modèle sous forme logarithmique comme suit:

$$Log y_t = 0.904 Log y_{t-1} + 0.184 Log x_t - 0.699 + v_t$$
(27.3) (8.48) (-2.36)

Exercice 4:

Calculer le retard moyen et les multiplicateurs de court et long termes pour le modèle à retards échelonnés suivant :

$$y_t = 0.55(0.02x_t + 0.15x_{t-1} + 0.43x_{t-2} + 0.23x_{t-3} + 0.17x_{t-4}) + \varepsilon_t$$