Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

## Why tune your model?



#### Untuned Model Example



#### Tuned Model Example

Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

# Let's tune some models!

Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

# **Tunable parameters in XGBoost**

#### Common tree tunable parameters

- **learning rate:** learning rate/eta
- gamma: min loss reduction to create new tree split
- **lambda:** L2 reg on leaf weights
- alpha: L1 reg on leaf weights
- max\_depth: max depth per tree
- **subsample:** % samples used per tree
- **colsample\_bytree:** % features used per tree



#### Linear tunable parameters

• **lambda:** L2 reg on weights

• **alpha:** L1 reg on weights

• lambda\_bias: L2 reg term on bias

 You can also tune the number of estimators used for both base model types!

Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

# Let's get to some tuning!

Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

### **Review of Grid Search and Random Search**

#### Grid Search: Review

- Search exhaustively over a given set of hyperparameters, once per set of hyperparameters
- Number of models = number of distinct values per hyperparameter multiplied across each hyperparameter
- Pick final model hyperparameter values that give best cross-validated evaluation metric value

**Extreme Gradient Boos** 

#### Grid Search: Example

```
In [1]: import pandas as pd
In [2]: import xgboost as xgb
In [3]: import numpy as np
In [4]: from sklearn.model selection import GridSearchCV
In [5]: housing_data = pd.read_csv("ames_housing_trimmed_processed.csv")
In [6]: X, y = housing data[housing data.columns.tolist()[:-1]],
   ...: housing data[housing data.columns.tolist()[-1]
In [7]: housing_dmatrix = xgb.DMatrix(data=X,label=y)
In [8]: gbm_param_grid = {
   ...: 'learning rate': [0.01,0.1,0.5,0.9],
   ...: 'n estimators': [200],
   ...: 'subsample': [0.3, 0.5, 0.9]}
In [9]: gbm = xgb.XGBRegressor()
In [10]: grid mse = GridSearchCV(estimator=gbm,
    ...: param_grid=gbm_param_grid,
   ...: scoring='neg mean squared error', cv=4, verbose=1)
In [11]: grid_mse.fit(X, y)
```

#### Random Search: Review

- Create a (possibly infinite) range of hyperparameter values per hyperparameter that you would like to search over
- Set the number of iterations you would like for the random search to continue
- During each iteration, randomly draw a value in the range of specified values for each hyperparameter searched over and train/evaluate a model with those hyperparameters
- After you've reached the maximum number of iterations, select the

  hyperparameter configuration with the best evaluated score.



#### Random Search: Example

```
In [1]: import pandas as pd
In [2]: import xgboost as xgb
In [3]: import numpy as np
In [4]: from sklearn.model_selection import RandomizedSearchCV
In [5]: housing data = pd.read csv("ames housing trimmed processed.csv")
In [6]: X,y = housing data[housing data.columns.tolist()[:-1]],
   ...: housing_data[housing_data.columns.tolist()[-1]]
In [7]: housing dmatrix = xgb.DMatrix(data=X,label=y)
In [8]: gbm param grid = {
   ...: 'learning rate': np.arange(0.05,1.05,.05),
   ...: 'n estimators': [200],
   ...: 'subsample': np.arange(0.05,1.05,.05)}
In [9]: gbm = xgb.XGBRegressor()
In [10]: randomized mse = RandomizedSearchCV(estimator=gbm,
    ...: param_distributions=gbm_param_grid, n_iter=25,
    ...: scoring='neg mean squared error', cv=4, verbose=1)
In [11]: randomized mse.fit(X, y)
```

Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

## Let's practice!

Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

# **Limits of Grid Search** and Random Search

#### Grid Search and Random Search Limitations

- Grid Search
  - Number of models you must build with every additional new parameter grows very quickly
- Random Search
  - Parameter space to explore can be massive
  - Randomly jumping throughout the space looking for a "best" result becomes a waiting game

Extreme Gradient Boos



EXTREME GRADIENT BOOSTING WITH XGBOOST

## Let's practice!