

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Системы обработки информации и управления»

Отчёт по лабораторной работе №5

По дисциплине: «Технологии машинного обучения»

По теме:

«Линейные модели, SVM и деревья решений»

Выполнил:

Столяров Ю. А.

Цель лабораторной работы

Изучение линейных моделей, SVM и деревьев решений

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train test split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
 - одну из линейных моделей;
 - SVM;
 - дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.

Дополнительное задание

- 1. Проведите эксперименты с важностью признаков в дереве решений;
- 2. Визуализируйте дерево решений.

Ход выполнения лабораторной работы

Подключим необходимые библиотеки и загрузим датасет

In [1]:

```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train test split
from sklearn.linear model import SGDClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import fl score, precision score
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, plot tree
%matplotlib inline
# Устанавливаем тип графиков
sns.set(style="ticks")
# Для лучшего качествоа графиков
from IPython.display import set matplotlib formats
set_matplotlib_formats("retina")
# Устанавливаем ширину экрана для отчета
pd.set option("display.width", 70)
# Загружаем данные
data = pd.read csv('heart.csv')
data.head()
```

Out[1]:

_	а	ge	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
()	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
:	ı	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
:	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
	1	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [2]:

```
data.isnull().sum()
Out[2]:
```

age 0 sex 0 ср trestbps 0 chol 0 fbs restecg thalach 0 exang 0 oldpeak 0 slope ca thal 0 target dtype: int64

In [3]:

```
data.isna().sum()
```

Out[3]:

age 0 sex 0 ср trestbps 0 chol 0 fbs 0 restecg 0 thalach 0 exang 0 oldpeak slope 0 0 thal 0 target 0 dtype: int64

Как видим, пустых значений нет, значет нет необходимости преобразовывать набор данных

In [4]:

Разделим данные на целевой столбец и признаки

```
X = data.drop("target", axis=1)
y = data["target"]
print(X, "\n")
print(y)
     age
           sex
                   trestbps
                               chol
                                     fbs
                                           restecg
                                                     thalach
                                                              exang
                ср
0
                          145
                                                  0
                                                         150
      63
             1
                 3
                                233
                                        1
                                                                   0
1
      37
                          130
                                250
                                        0
                                                  1
                                                         187
                                                                   0
2
      41
             0
                 1
                          130
                                204
                                        0
                                                  0
                                                         172
                                                                   0
3
      56
             1
                 1
                          120
                                236
                                        0
                                                  1
                                                         178
                                                                   0
4
                                354
      57
                 0
                                                  1
             0
                          120
                                        0
                                                         163
                                                                   1
298
      57
            0
                 0
                          140
                                241
                                        0
                                                  1
                                                         123
                                                                   1
299
      45
             1
                 3
                          110
                                264
                                        0
                                                  1
                                                         132
                                                                   0
300
      68
             1
                 0
                          144
                                193
                                        1
                                                 1
                                                         141
                                                                   0
301
      57
                 0
                          130
                                131
                                                  1
                                                         115
                                                                   1
302
      57
             0
                 1
                          130
                                        0
                                                 0
                                                         174
                                                                   0
                                236
     oldpeak
               slope
                           thal
                      ca
0
         2.3
                   0
                       0
                              1
         3.5
                   0
                       0
                              2
1
                              2
2
         1.4
                   2
                       0
3
                   2
                              2
         0.8
                       0
                   2
                              2
4
         0.6
                       0
298
         0.2
                   1
                       0
                              3
299
         1.2
                   1
                       0
                              3
300
         3.4
                   1
                       2
                              3
301
         1.2
                              3
                   1
                       1
                              2
302
         0.0
                       1
[303 rows x 13 columns]
0
       1
       1
1
2
       1
3
       1
4
       1
298
       0
299
       0
300
       0
301
       0
       0
302
Name: target, Length: 303, dtype: int64
In [5]:
# Предобработаем данные, чтобы методы работали лучше
columns = X.columns
```

```
scaler = StandardScaler()
X = scaler.fit transform(X)
pd.DataFrame(X, columns=columns).describe()
```

Out[5]:

age	sex	ср	trestbps	chol	fbs	restecg	1
3.030000e+02	3.030000e+02	3.030000e+02	3.030000e+02	3.030000e+02	3.030000e+02	3.030000e+02	3.0300
4.690051e-17	-1.407015e-16	2.345026e-17	-7.035077e-16	-1.113887e-16	-2.345026e-17	1.465641e-16	-6.800
1.001654e+00	1.001654e+00	1.001654e+00	1.001654e+00	1.001654e+00	1.001654e+00	1.001654e+00	1.0016
-2.797624e+00	-1.468418e+00	-9.385146e-01	-2.148802e+00	-2.324160e+00	-4.176345e-01	-1.005832e+00	-3.4392
-7.572802e-01	-1.468418e+00	-9.385146e-01	-6.638668e-01	-6.814943e-01	-4.176345e-01	-1.005832e+00	-7.061
6.988599e-02	6.810052e-01	3.203122e-02	-9.273778e-02	-1.210553e-01	-4.176345e-01	8.989622e-01	1.466
7.316189e-01	6.810052e-01	1.002577e+00	4.783913e-01	5.456738e-01	-4.176345e-01	8.989622e-01	7.151
2.496240e+00	6.810052e-01	1.973123e+00	3.905165e+00	6.140401e+00	2.394438e+00	2.803756e+00	2.2894
	3.030000e+02 4.690051e-17 1.001654e+00 -2.797624e+00 -7.572802e-01 6.988599e-02 7.316189e-01	3.030000e+02 3.030000e+02 4.690051e-17 -1.407015e-16 1.001654e+00 1.001654e+00 -2.797624e+00 -1.468418e+00 -7.572802e-01 -1.468418e+00 6.988599e-02 6.810052e-01 7.316189e-01 6.810052e-01	3.030000e+02 3.030000e+02 3.030000e+02 4.690051e-17 -1.407015e-16 2.345026e-17 1.001654e+00 1.001654e+00 1.001654e+00 -2.797624e+00 -1.468418e+00 -9.385146e-01 -7.572802e-01 -1.468418e+00 -9.385146e-01 6.988599e-02 6.810052e-01 3.203122e-02 7.316189e-01 6.810052e-01 1.002577e+00	3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 4.690051e-17 -1.407015e-16 2.345026e-17 -7.035077e-16 1.001654e+00 1.001654e+00 1.001654e+00 -2.797624e+00 -1.468418e+00 -9.385146e-01 -2.148802e+00 -7.572802e-01 -1.468418e+00 -9.385146e-01 -6.638668e-01 6.988599e-02 6.810052e-01 3.203122e-02 -9.273778e-02 7.316189e-01 6.810052e-01 1.002577e+00 4.783913e-01	3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 4.690051e-17 -1.407015e-16 2.345026e-17 -7.035077e-16 -1.113887e-16 1.001654e+00 1.001654e+00 1.001654e+00 -2.797624e+00 -1.468418e+00 -9.385146e-01 -2.148802e+00 -2.324160e+00 -7.572802e-01 -1.468418e+00 -9.385146e-01 -6.638668e-01 -6.814943e-01 6.988599e-02 6.810052e-01 3.203122e-02 -9.273778e-02 -1.210553e-01 7.316189e-01 6.810052e-01 1.002577e+00 4.783913e-01 5.456738e-01	3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 4.690051e-17 -1.407015e-16 2.345026e-17 -7.035077e-16 -1.113887e-16 -2.345026e-17 1.001654e+00 1.001654e+00 1.001654e+00 1.001654e+00 -2.797624e+00 -1.468418e+00 -9.385146e-01 -2.148802e+00 -2.324160e+00 -4.176345e-01 -7.572802e-01 -1.468418e+00 -9.385146e-01 -6.638668e-01 -6.814943e-01 -4.176345e-01 6.988599e-02 6.810052e-01 3.203122e-02 -9.273778e-02 -1.210553e-01 -4.176345e-01 7.316189e-01 6.810052e-01 1.002577e+00 4.783913e-01 5.456738e-01 -4.176345e-01	3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 3.030000e+02 4.690051e-17 -1.407015e-16 2.345026e-17 -7.035077e-16 -1.113887e-16 -2.345026e-17 1.465641e-16 1.001654e+00 1.001654e+00 1.001654e+00 1.001654e+00 1.001654e+00 -2.797624e+00 -1.468418e+00 -9.385146e-01 -2.148802e+00 -2.324160e+00 -4.176345e-01 -1.005832e+00 -7.572802e-01 -1.468418e+00 -9.385146e-01 -6.638668e-01 -6.814943e-01 -4.176345e-01 -1.005832e+00 6.988599e-02 6.810052e-01 3.203122e-02 -9.273778e-02 -1.210553e-01 -4.176345e-01 8.989622e-01 -7.316189e-01 6.810052e-01 1.002577e+00 4.783913e-01 5.456738e-01 -4.176345e-01 8.989622e-01

```
In [6]:
# C использованием метода train_test_split разделим выборку на обучающую и тестовую
 X\_train, \ X\_test, \ y\_train, \ y\_test = train\_test\_split(X, \ y, \ test\_size=0.25, \ random\_state=1) 
print("X_train:", X_train.shape)
print("X_test:", X_test.shape)
print("y_train:", y_train.shape)
print("y_tost:", y_tost_shape)
print("y_test:", y_test.shape)
X train: (227, 13)
X_test: (76, 13)
y_train: (227,)
y_test: (76,)
In [7]:
def test_model(model):
    print("f1 score:"
           f1_score(y_test, model.predict(X_test)))
    print("precision score:",
           precision_score(y_test, model.predict(X_test)))
Линейная модель — SGDClassifier
In [8]:
SGD = SGDClassifier(max iter=10000)
SGD.fit(X_train, y_train)
Out[8]:
SGDClassifier(alpha=0.0001, average=False, class_weight=None,
               early_stopping=False, epsilon=0.1, eta0=0.0, fit intercept=True,
               l1_ratio=0.15, learning_rate='optimal', loss='hinge',
               max_iter=10000, n_iter_no_change=5, n_jobs=None, penalty='l2',
               power_t=0.5, random_state=None, shuffle=True, tol=0.001,
               validation fraction=0.1, verbose=0, warm start=False)
In [9]:
test model(SGD)
f1 score: 0.7804878048780488
precision_score: 0.7804878048780488
SVM
In [10]:
SVC = SVC(kernel='rbf')
SVC.fit(X_train, y_train)
Out[10]:
SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
In [11]:
test model(SVC)
```

Дерево решений

f1_score: 0.8275862068965518 precision_score: 0.782608695652174

In [12]:

```
DT = DecisionTreeClassifier(random_state=1)
DT.fit(X_train, y_train)
```

Out[12]:

In [13]:

```
test_model(DT)
```

 $f1_score: 0.72$

precision_score: 0.7941176470588235

In [14]:

```
fig, ax = plt.subplots(figsize=(50, 50))
plot_tree(DT, ax=ax, filled='true', fontsize=12, feature_names=data.columns)
plt.savefig('tree_high_dpi', dpi=100)
```


Как видим, метод опорных векторов показал лучший результат