Devoir à la maison

Oscillations d'atomes piégés dans un potentiel parabolique

à rendre pour le 31 mai 2023

On considère une expérience effectuée avec des atomes froids, en l'occurence des atomes de césium, placés dans un piège parabolique réalisé à l'aide d'un faisceau laser. Les atomes seront considérés comme des particules ponctuelles de masse $m=2.2\times 10^{-25}$ kg et leur mouvement sera supposé unidimensionnel selon l'axe x. L'opérateur impulsion est simplement noté \hat{p} , de sorte que l'hamiltonien du système s'écrit

$$\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right), \tag{1}$$

où $\omega/(2\pi) = 91$ kHz. On rappelle que l'opérateur \hat{a} est défini par

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\frac{\hat{x}}{a_0} + i \frac{a_0}{\hbar} \hat{p} \right), \tag{2}$$

avec $a_0 = \sqrt{\hbar/(m\omega)}$. Les états propres de l'hamiltonien seront noté $|n\rangle$, avec $n \in \mathbb{N}$ et on rappelle les relations $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$ et $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$. La fonction d'onde associée à l'état $|n\rangle$ est notée $\psi_n(x)$ et sa transformée de Fourier est notée $\varphi_n(p)$, avec en particulier

$$\psi_0(x) = \frac{1}{(\pi a_0^2)^{1/4}} \exp\left(-\frac{x^2}{2a_0^2}\right),\tag{3}$$

et

$$\varphi_0(p) = \left(\frac{a_0^2}{\pi\hbar^2}\right)^{1/4} \exp\left(-\frac{a_0^2 p^2}{2\hbar^2}\right).$$
(4)

1. Mesure par vol libre de la densité de probabilité de l'impulsion

- 1.1 Rappeler sans démonstration l'expression des niveaux d'énergie du système.
- 1.2 Compte tenu de la valeur numérique de a_0 , pensez-vous qu'il soit possible de résoudre l'extension spatiale de l'état fondamental à l'aide d'un microscope optique utilisant de la lumière visible?
- 1.3 Au lieu de mesurer la densité de probabilité de la position, on choisit de mesurer la densité de probabilité de l'impulsion, $|\varphi(p,t_0)|^2$, à un instant t_0 donné. Pour cela, on éteint brusquement le laser de piégeage à l'instant t_0 , de sorte que les atomes se comportent comme un paquet d'ondes libre pour $t > t_0$. On rappelle que dans ce cas, pour $t t_0$ suffisamment grand, on a $|\psi(x,t)|^2 \propto |\varphi(p = mx/(t t_0), t_0)|^2$ (méthode dite du temps de vol ou du vol libre). L'image obtenue reflète ainsi la densité de probabilité de l'impulsion $|\varphi(p,t_0)|^2$ à l'instant t_0 où le laser de piégeage a été coupé. Commenter la Figure 1(a), obtenue de cette manière lorsque $|\psi(t_0)\rangle = |0\rangle$, et estimer un ordre de grandeur du temps de vol choisi, $T_v = t t_0$.

FIGURE 1 – Représentation du nuage atomique mesuré en faisant l'image de la fluorescence émise à l'aide d'un microscope, après un vol libre effectué durant le temps de vol T_v . Le système est placé initialement dans l'état $|0\rangle$ (a) ou $|1\rangle$ (b). La barre horizontale représente une longueur de 200 μ m. On ne tiendra pas compte de l'extension du nuage selon l'axe y perpendiculaire à l'axe x.

1.4 On considère une fonction d'onde $\psi(x)$ ainsi que sa transformée de Fourier $\varphi(p)$. Ecrire l'expression de $\hat{a}^{\dagger}\psi(x)$ sous forme d'un opérateur différentiel, puis montrer que

$$\hat{a}^{\dagger}\varphi(p) = \frac{-i}{\sqrt{2}} \left(\frac{a_0}{\hbar} p - \frac{\hbar}{a_0} \frac{d}{dp} \right) \varphi(p). \tag{5}$$

- **1.5** En déduire que l'on peut écrire $\varphi_1(p) = \xi p \varphi_0(p)$, où ξ est un nombre complexe que l'on déterminera.
- **1.6** Commenter la Figure 1(b).

2. Préparation du système dans le premier état excité

On suppose qu'à l'instant initial le système est dans l'état fondamental $|\psi(0)\rangle = |0\rangle$. Afin de manipuler l'état du système, on applique alors un second faisceau laser de fréquence appropriée de sorte que, pour t > 0, l'hamiltonien du système \hat{H}_0 est remplacé par le nouvel hamiltonien

$$\hat{H}_1 = \frac{\hbar\Omega}{2} (|1\rangle \langle 0| + |0\rangle \langle 1|), \tag{6}$$

où Ω est une grandeur réelle positive.

- **2.1** Déterminer les états propres de \hat{H}_1 ainsi que les valeurs propres correspondantes.
- **2.2** Décomposer l'état $|\psi(0)\rangle$ dans la base propre obtenue à la question précédente, puis en déduire pour t > 0 l'expression de $|\psi(t)\rangle$ dans cette même base.
- **2.3** Ecrire $|\psi(t)\rangle$ dans la base propre de \hat{H}_0 .
- **2.4** Calculer la probabilité $\mathcal{P}(t)$ qu'une mesure de H_0 effectuée à l'instant t donne le résultat $3\hbar\omega/2$, puis montrer que cette fonction est une fonction périodique dont on déterminera la période T.
- **2.5** A quel instant faut-il interrompre l'application du second laser pour placer le système dans l'état $|1\rangle$ (à une phase près)?

3. Préparation d'un état non stationnaire

Dans cette partie, on choisit d'interrompre l'application du second faisceau laser discuté à la partie précédente à l'instant T/4. L'hamiltonien du système est ainsi H_1 pout $0 \le t \le T/4$ puis à nouveau \hat{H}_0 pout t > T/4.

- **3.1** Ecrire dans la base propre de \hat{H}_0 l'état du système à l'instant t = T/4, $|\psi(T/4)\rangle$, sachant que $|\psi(0)\rangle = |0\rangle$.
- **3.2** En déduire l'expression de $|\psi(t=T/4+\tau)\rangle$ pour $\tau>0$.
- **3.3** Exprimer la densité de probabilité $|\varphi(p,t)|^2$ en fonction de $|\varphi_0(p)|^2$.

FIGURE 2 – Mesure de la distribution de l'impulsion effectuée à l'instant $t = T/4 + \tau$, pour différentes valeurs du temps d'évolution τ .

3.4 La Figure 2 représente la densité de probabilité obtenue par la méthode du vol libre pour différentes valeurs du temps d'évolution $\tau = q\tau_0$, où q est un entier. Justifier qualitativement la forme de ces courbes puis déterminer la valeur de τ_0 .