Feuille 6 : Théorème de Cauchy global Primitives. Logarithme

Exercice 1. Pour r > 0, on désigne par f_r la fonction définie sur D(0,r) par la formule

$$f_r(z) = \int_{\gamma_r} \exp\left(\zeta + \frac{1}{\zeta}\right) \frac{d\zeta}{\zeta - z}, \ z \in D(0, r),$$

où γ_r est le cercle de centre 0 de rayon r orienté positivement.

- 1. Montrer que f_r est holomorphe sur D(0,r).
- 2. Montrer que $f_r(z) = f_R(z)$ pour tout R > r et tout $z \in D(0,r)$. (On calculera $f_r(z) f_R(z)$ à partir d'une intégrale sur un cycle convenable).
- 3. En déduire qu'il existe une fonction entière f_{∞} telle que pour tout r > 0, $f_{\infty}|_{D(0,r)} = f_r$.

Exercice 2. Soit la fonction définie sur $\mathbb{R}_+^* \times \mathbb{C}^*$ à valeurs dans \mathbb{C} donnée par $H(s,z) = |z|^{s-1}z$.

- 1. Montrer que H est C^1 sur $\mathbb{R}_+^* \times \mathbb{C}^*$.
- 2. Soit γ un lacet de \mathbb{C}^* . Montrer que γ est homotope à un lacet contenu dans $\{z \in \mathbb{C}, |z| = 1\}$.

Exercice 3. Soit $\Omega = \{z = x + iy \in \mathbb{C}; |xy| < 1\}$. Montrer que Ω est simplement connexe.

Exercice 4. Soit V l'ouvert de \mathbb{C} donné par $V = \{z \in \mathbb{C}; z \neq it \text{ pour tout } t \text{ avec } |t| \geq 1\}.$

- 1. Montrer que V est simplement connexe.
- 2. Soit f l'unique primitive de $\frac{1}{1+z^2}$ sur V, vérifiant f(0)=0. Que vaut f(x) lorsque x est réel? Écrire un développement limité de f au voisinage de 0.
- 3. Montrer que si Re z > 0, $f(z) + f(1/z) = \pi/2$.
- 4. Montrer que lorsque z tend vers l'infini dans $\{\text{Re}\,z>0\},\ f(z)$ admet un développement asymptotique en puissances de $\frac{1}{z}$.
- 5. Soit γ un lacet de $\mathbb{C} \{-i, i\}$. Calculer $\int_{\gamma} \frac{dz}{1 + z^2}$ à partir de $\operatorname{Ind}_{\gamma}(i)$ et $\operatorname{Ind}_{\gamma}(-i)$. En déduire que lorsque γ est un lacet de $\mathbb{C} [-i, i]$, $\int_{\gamma} \frac{dz}{1 + z^2} = 0$.
- 6. Montrer qu'il existe f_1 holomorphe sur l'ouvert $U = \mathbb{C} [-i, i]$, telle que $f'_1(z) = \frac{1}{1+z^2}$.
- 7. Peut-on choisir f_1 telle que $f = f_1$ sur $U \cap V$? Justifier.

Exercice 5. Soit $\log z$ la détermination principale du logarithme dans $\mathbb{C}\backslash\mathbb{R}^-$, i.e. $\log z = \log|z| + i\operatorname{Arg} z$ où $|\operatorname{Arg} z| < \pi$. On définit $z^{\alpha} = e^{\alpha\operatorname{Log} z}$.

- 1. On considère $z = e^{\frac{2i\pi}{3}}$; comparer $\log(z^2)$ et $2\log z$.
- 2. On considère $z=e^{\frac{3i\pi}{4}}$; comparer $z^{2i},\,(z^2)^i$ et $(z^i)^2.$

Exercice 6. Montrer que $\operatorname{Re}(\cos z) > 0$ si $|\operatorname{Re} z| < \frac{\pi}{2}$. En déduire une détermination holomorphe du logarithme de $\cos z$ dans $\{|\operatorname{Re} z| < \frac{\pi}{2}\}$.