第四章数值积分(和数值微分)

内容提要

- 4.1 数值积分概论
- 4.2 牛顿-柯特斯公式
- 4.3 复化求积公式
- 4.4 龙贝格求积公式
- 4.5 高斯求积公式

4.1 数值积分概论

4.1.1 数值求积的基本思想

对定义在区间 [a,b] 上的定积分

$$I = \int_a^b f(x) \mathbf{d}x = F(b) - F(a)$$

但实际使用这种积分方法时往往有困难,有时<mark>原函数不能用初等函数表示</mark>,有时原函数又十分复杂,难于求出或计算;另外如被积函数是由测量或数值计算给出的一张数据表示时,上述方法也不能直接运用。因此有必要研究积分的数值计算问题。

计算定积分有微积分基本公式

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

但很多函数找不到原函数,如

$$f(x) = \frac{\sin x}{x}, \qquad f(x) = e^{-x^2}$$

等。而实际上,有很多函数只知一些离散点的函数值,并无表达式,这就需要利用已知条件求出近似值。

积分中值定理告诉我们:

$$T = \int_a^b f(x) \, \mathbf{d}x \approx \frac{[f(a) + f(b)]}{2} (b - a) \qquad R = \int_a^b f(x) \, dx \approx (b - a) f\left(\frac{a + b}{2}\right)$$

$$R = \int_{a}^{b} f(x) dx \approx (b-a) f\left(\frac{a+b}{2}\right)$$

梯形公式

平均高度

中矩形公式

平均高度

如果简单地选取区间[a,b]的一个端点或区间中点的高度作为平均高度,这样建立的求积公式分别是:

左矩形公式: $I(f) \approx (b-a)f(a)$

右矩形公式: $I(f) \approx (b-a)f(b)$

中矩形公式: *I(f)≈(b-a)f[(a+b)/2]*

更一般地,我们构造具有下列形式的求积公式

$$\int_{a}^{b} f(x) \mathbf{d}x \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$
求积系数 求积节点

这类数值积分方法通常称为机械求积,其特点是将积分求值问题归结为函数值的计算,这就避开了牛顿-莱布尼兹公式需要寻求原函数的困难。

4.1.2 代数精度的概念

定义4-1 如果某个求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m次代数精度。

梯形公式
$$\left(T = \int_a^b f(x) \, dx \approx \frac{[f(a) + f(b)]}{2} (b - a)\right)$$
 代数精度 $\diamondsuit f(x) = 1, x,$ 当 $f(x) = 1,$ 左边 $= \int_a^b 1 \, dx = b - a$ 左边 $=$ 右边 $= \frac{[1 + 1]}{2} (b - a) = b - a$ 左边 $=$ 右边 $=$ 右边 $= \frac{b^b}{a} x \, dx = \left[\frac{x^2}{2}\right]_a^b = \frac{b^2}{2} - \frac{a^2}{2}$ 左边 $=$ 右边 $= \frac{[b + a]}{2} (b - a) = \frac{b^2}{2} - \frac{a^2}{2}$ 左边 $=$ 右边 $= \frac{b^b}{a} x^2 \, dx = \left[\frac{x^3}{3}\right]_a^b = \frac{b^3}{3} - \frac{a^3}{3} = \frac{(b^2 + ab + a^2)}{3} (b - a)$ 右边 $= \frac{[b^2 + a^2]}{2} (b - a)$ 左边 \neq 右边 $= \frac{[b^2 + a^2]}{2} (b - a)$

因此梯形公式具有一次代数精确度。

利用代数精度的概念构造求积公式

例4-1 确定下面公式中的待定参数, 使其代数精度尽量高, 并指明所构造的求积公式所具有的代数精度

$$\int_{-h}^{h} f(x) dx \approx Af(-h) + Bf(x_1)$$

$$\begin{cases}
A + B = 2h \\
-hA + Bx_1 = 0 \\
h^2 A + Bx_1^2 = \frac{2}{3}h^3
\end{cases}$$

解得 $x_1 = \frac{1}{3}h$, $A = \frac{1}{2}h$, $B = \frac{3}{2}h$. 于是

$$\int_{-h}^{h} f(x) dx \approx \frac{h}{2} \left[f(-h) + 3f\left(\frac{1}{3}h\right) \right]$$

再 $\Leftrightarrow f(x) = x^3$, 得

$$0 = \int_{-h}^{h} x^{3} dx \neq \frac{h}{2} \left[(-h)^{3} + 3 \left(\frac{1}{3} h \right)^{3} \right] = -\frac{4}{9} h^{4}$$

故求积公式具有2次代数精度。

课堂求解练习

例4-2 确定下面公式中的待定参数, 使其代数精度尽量高, 并指明所构造的求积公式所具有的代数精度

$$\int_{0}^{1} f(x) dx \approx Af(0) + Bf(x_{1}) + Cf(1)$$

解: $\Diamond f(x) = 1$, x, x^2 , x^3 , 代入公式两端并令其相等,得

$$\begin{cases} A + B + C = 1 \\ Bx_1 + C = \frac{1}{2} \\ Bx_1^2 + C = \frac{1}{3} \\ Bx_1^3 + C = \frac{1}{4} \end{cases}$$

解得,
$$x_1 = \frac{1}{2}$$
, $A = \frac{1}{6}$, $B = \frac{2}{3}$, $C = \frac{1}{6}$. 于是
$$\int_0^1 f(x) dx \approx \frac{1}{6} f(0) + \frac{2}{3} f\left(\frac{1}{2}\right) + \frac{1}{6} f(1)$$

再 $\Leftrightarrow f(x) = x^4$, 得

$$\frac{1}{5} = \int_0^1 x^4 dx \neq \frac{2}{3} \left(\frac{1}{2}\right)^4 + \frac{1}{6} = \frac{5}{24}$$

故求积公式具有3次代数精度。

4.1.3 插值型的求积公式

设给定一组节点

$$a \le x_0 < x_1 < \dots < x_n \le b$$

且已知 函数 f(x) 在这些节点上的值 f_k ($k = 0,1,2,\dots,n$),作拉格朗日插 值多项式

$$L_n(x) = \sum_{k=0}^n l_k(x) f_k$$

于是, 得到积分 $I = \int_a^b f(x) dx$ 的近似值

$$I_{n} = \int_{a}^{b} L_{n}(x) dx = \int_{a}^{b} \sum_{k=0}^{n} l_{k}(x) f_{k} dx = \sum_{k=0}^{n} \left[\int_{a}^{b} l_{k}(x) dx \right] f_{k} = \sum_{k=0}^{n} A_{k} f_{k}$$

这样构造的求积公式称为插值型的求积公式。

点数 (条件数目) 阶导

它的余项为
$$R[f] = I - I_n = \int_a^b \left[f(x) - L_n(x) \right] dx = \int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) dx$$

这时的求积公式至少具有n次代数精度

点数 (条件数目) 阶乘

梯形公式余项:
$$R[f] = \int_a^b \frac{f''(\xi)}{2} (x-a)(x-b) dx = -\frac{(b-a)^3}{12} f''(\eta)$$
 , $\eta \in (a,b)$

同理,辛普森公式余项:
$$R[f] = -\frac{b-a}{180} \left(\frac{b-a}{2}\right)^4 f^{(4)}(\eta)$$
 , $\eta \in (a,b)$

定理4-1 形如 $I_n = \sum_{k=0}^{n} A_k f(x_k)$ 的积分公式至少有n 次代数精度的

充分必要条件是:它是插值型的。

辛普森(Simpson)公式

$$\int_{a}^{b} f(x) dx \approx S = \frac{b - a}{6} [f(a) + 4f(\frac{a + b}{2}) + f(b)]$$

Theorem 1.11 (Weighted Integral Mean Value Theorem). Assume that $f, g \in C[a, b]$ and $g(x) \ge 0$ for $x \in [a, b]$. Then there exists a number c, with $c \in (a, b)$, such that

(14)
$$\int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx.$$

Theorem 1.10 (Mean Value Theorem for Integrals). Assume that $f \in C[a, b]$. Then there exists a number c, with $c \in (a, b)$, such that

$$\frac{1}{b-a} \int_a^b f(x) \, dx = f(c).$$

The value f(c) is the average value of f over the interval [a, b].

Theorem 1.8 (First Fundamental Theorem). If f is continuous over [a, b] and F is any antiderivative of f on [a, b], then

(12)
$$\int_{a}^{b} f(x) dx = F(b) - F(a) \quad \text{where } F'(x) = f(x).$$

Theorem 1.6 (Mean Value Theorem). Assume that $f \in C[a, b]$ and that f'(x) exists for all $x \in (a, b)$. Then there exists a number c, with $c \in (a, b)$, such that

(11)
$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Simpson's Rule

Approximate the function by a parabola

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{2} c_{i} f(x_{i}) = c_{0} f(x_{0}) + c_{1} f(x_{1}) + c_{2} f(x_{2})$$

$$= \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

$$f(x)$$

$$X_{1}$$

$$X_{2}$$

4.2 牛顿-柯特斯公式

一、柯特斯系数

设将求积区间[a,b]做n等分,步长 $h = \frac{b-a}{n}$,在等距节点 $x_{\nu} = a + kh$ 构造出的插值型求积公式

$$I_n = (b-a)\sum_{k=0}^n \mathbf{C}_k^{(n)} f(x_k),$$

称为 牛顿-柯特斯公式 (Newton-Cotes公式), $\mathbf{C}_{k}^{(n)}$ 称为 柯特斯**系数.**

由插值型求积公式:
$$I_n = \int_a^b L_n(x) dx = \sum_{k=0}^n \left[\int_a^b l_k(x) dx \right] f_k$$
 知

求积系数
$$A_k = \int_a^b l_k(x) dx$$
, $k = 0, 1, \dots, n$

引入变换
$$x = a + th$$

则有

$$C_k^{(n)} = \frac{h}{b-a} \int_0^n \prod_{\substack{j=0\\j\neq k}}^n \frac{t-j}{k-j} dt = \frac{(-1)^{n-k}}{nk!(n-k)!} \int_0^n \prod_{\substack{j=0\\j\neq k}}^n (t-j) dt.$$

当n=1时,得到梯形公式

$$\int_{a}^{b} f(x) dx \approx T = \frac{b-a}{2} [f(a) + f(b)]$$

当n=2时,得到**辛普森(Simpson)公式**

$$\int_{a}^{b} f(x) dx \approx S = \frac{b-a}{6} [f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)]$$

n=3呢? 推导

$$\int_{a}^{b} f(x) dx \approx C = \frac{b-a}{90} [7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)],$$

柯特斯系数表. $n \ge 8$ 时 $C_k^{(n)}$ 出现负值, N-C 公式不稳定

Report: Cotes公式?还是Boole公式?数值积分历史

由于构造Newton-Cotes公式需要Cotes系数,将其列表如下:

n	0	1	2	3	4	5	6	7	8
1	$\frac{1}{2}$	$\frac{1}{2}$							
2	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$						
3	$\frac{1}{8}$	$\begin{array}{c} \frac{4}{6} \\ \frac{3}{8} \end{array}$	$\begin{bmatrix} -6\\ 3\\ 8 \end{bmatrix}$	$\frac{1}{8}$					
4	$\frac{7}{90}$	$\frac{16}{45}$	$\frac{2}{15}$	$\frac{16}{45}$	$\frac{7}{90}$				
5	$\frac{19}{288}$	$\frac{25}{96}$	$\frac{25}{144}$	$\frac{25}{144}$	$\frac{25}{96}$	$\frac{19}{288}$			
6	$\frac{41}{840}$	$\frac{9}{35}$	$\frac{9}{280}$	$\frac{34}{105}$	$\frac{9}{280}$	$\frac{9}{35}$	$\frac{41}{840}$		
7	$\frac{751}{17280}$	$\frac{3577}{17280}$	$\frac{1323}{17280}$	$\frac{2989}{17280}$	$\frac{2989}{17280}$	$\frac{1323}{17280}$	$\frac{3577}{17280}$	$\frac{751}{17280}$	
8	$\frac{989}{28350}$	$\frac{5888}{28350}$	$\frac{-928}{28350}$	$\frac{10496}{28350}$	$\frac{-4540}{28350}$	$\frac{10496}{28350}$	$\frac{-928}{28350}$	$\frac{5888}{28350}$	$\frac{989}{28350}$

解计算Cotes系数

于是有
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

$$R[f] = \frac{1}{2!} \int_{a}^{b} f''(\xi_{x})(x-a)(x-b) dx$$

$$= \frac{f''(\eta)}{2} \int_{a}^{b} (x-a)(x-b) dx = -\frac{(b-a)^{3}}{12} f''(\eta), \quad \eta \in (a,b)$$

 $C_0^{(1)} = -\int_0^1 (t-1) dt = \frac{1}{2}, \quad C_1^{(1)} = \int_0^1 t dt = \frac{1}{2},$

课堂推导

若记
$$M_2 = \max_{q \le x \le b} |f''(x)|$$
 ,则有误差估计

$$|R[f]| \le \frac{M_2}{12} (b-a)^3$$

从几何上看:

所以公式

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)] = T$$

也称为**梯形公式**,记为T.

例2 设 $f(x) \in \mathbb{C}^4[a, b]$, 求n=2时的Newton-Cotes公式并估计误差.

解 计算Cotes系数

$$C_0^{(2)} = \frac{1}{4} \int_0^2 (t-1)(t-2)dt = \frac{1}{6},$$

$$C_1^{(2)} = -\frac{1}{2} \int_0^2 t(t-2) dt = \frac{4}{6},$$

$$C_2^{(2)} = \frac{1}{4} \int_0^2 t(t-1) dt = \frac{1}{6},$$

于是有

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)] = S.$$

称之为Simpson公式或抛物线公式,记为S.

容易证明Simpson公式对不高于三次的多项式精确成立,即

$$\int_{a}^{b} p_{3}(x)dx = \frac{b-a}{6} [p_{3}(a) + 4p_{3}(\frac{a+b}{2}) + p_{3}(b)]$$

构造三次多项式 $H_3(x)$, 使满足 $H_3(a)=f(a)$, $H_3(b)=f(b)$,

$$H_3(\frac{a+b}{2}) = f(\frac{a+b}{2}), H_3'(\frac{a+b}{2}) = f'(\frac{a+b}{2}),$$
 这时插值误差为

$$f(x) - H_3(x) = \frac{f^{(4)}(\xi_x)}{4!}(x-a)(x-\frac{a+b}{2})^2(x-b), \quad \xi_x \in (a,b)$$
于是有
$$R[f] = \int_a^b f(x)dx - S$$

$$= \int_a^b f(x)dx - \int_a^b H_3(x)dx$$

$$= \frac{1}{4!} \int_a^b f^{(4)}(\xi_x)(x-a)(x-\frac{a+b}{2})^2(x-b)dx$$

$$= \frac{f^{(4)}(\eta)}{4!} \int_a^b (x-a)(x-\frac{a+b}{2})^2(x-b)dx$$

$$= -\frac{(b-a)^5}{2880} f^{(4)}(\eta) \qquad , \eta \in (a,b)$$
若记 $M_4 = \max_{a \le x \le b} |f^{(4)}(x)|, \quad \text{則有}$

$$|R[f]| \le \frac{M_4}{2880} (b-a)^5$$

例3 求*n*=4的Newton-Cotes公式及误差.

解 查表可得

$$C_0^{(4)} = \frac{7}{90}, \quad C_1^{(4)} = \frac{16}{45}, C_2^{(4)} = \frac{2}{15}, \quad C_3^{(4)} = \frac{16}{45}, \quad C_4^{(4)} = \frac{7}{90}$$

于是有

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{90} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right]$$

其中, $x_k=a+kh$, k=0,1,2,3,4, h=(b-a)/4.

称之为Cotes公式,记为C。其误差为

$$R[f] = -\frac{2(b-a)}{945} \left(\frac{b-a}{4}\right)^{6} f^{(6)}(\eta)$$
$$= -\frac{(b-a)^{7}}{1935360} f^{(6)}(\eta) \qquad , \eta \in (a,b)$$

例4-3 运用梯形公式、辛普森公式分别计算积分 $\int_0^1 e^x dx$,并估计误差。

解: 运用梯形公式

$$\int_0^1 e^x dx \approx \frac{1}{2} [e^0 + e^1] = 1.8591409$$

其误差为
$$|R[f]| = \left| -\frac{1}{12} e^{\eta} (1-0)^3 \right| \le \frac{e}{12} = 0.2265235, \quad \eta \in (0,1)$$

运用辛普森公式

$$\int_0^1 e^x dx \approx \frac{1}{6} \left[e^0 + 4e^{\frac{1}{2}} + e^1 \right] = 1.7188612$$

其误差为

$$|R[f]| = \left| -\frac{1}{180} e^{\eta} \left(\frac{1-0}{2} \right)^4 \right| = \left| -\frac{1}{2880} e^{\eta} \right| \le \frac{e}{2880} = 0.00094385, \quad \eta \in (0,1)$$

牛顿-柯特斯公式的代数精度

定理4-2 若n为偶数,则n阶 N-C 公式至少有n+1次代数精度.

§ 2 求积公式的代数精度

定义4.1 若求积公式

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$

对 $f(x)=x^{j}$ (j=0,1,2,...,m) 都精确成立,但对 $f(x)=x^{m+1}$ 不精确成立,即

$$\int_{a}^{b} x^{j} dx = \sum_{k=0}^{n} A_{k} x_{k}^{j} , j = 0,1,2,..., m$$

$$\int_{a}^{b} x^{m+1} dx \neq \sum_{k=0}^{n} A_{k} x_{k}^{m+1}$$

则称此公式具有 加次代数精度.

可见, 若公式具有m次代数精度,则公式对所有次数不超过m的多项式都精确成立. n+1个节点的插值型求积公式至少具有n次代数精度,n是偶数时具有n+1次代数精度.

若求积公式 $\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$,具有n次代数精度,则

$$\begin{cases} A_0 + A_1 + \dots + A_n = b - a \\ x_0 A_0 + x_1 A_1 + \dots + x_n A_n = \frac{b^2 - a^2}{2} \\ \dots \\ x_0^n A_0 + x_1^n A_1 + \dots + x_n^n A_n = \frac{b^{n+1} - a^{n+1}}{n+1} \end{cases}$$

$$(4. 1)$$

这是关于 $A_0, A_1, ..., A_n$ 的线性方程组,其系数行列式为

$$D = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_0 & x_1 & x_2 & \cdots & x_n \\ x_0^2 & x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_0^n & x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix} = \prod_{0 \le i < j \le n} (x_j - x_i) \ne 0$$

所以方程组(4.1)有唯一解。

例5 确定形如

$$\int_0^3 f(x)dx \approx A_0 f(0) + A_1 f(1) + A_2 f(3)$$

的求积公式, 使其代数精度尽可能高。

解 令公式对 $f(x)=1, x, x^2$ 都精确成立,则

$$\begin{cases} A_0 + A_1 + A_2 = 3 \\ A_1 + 3A_2 = 4.5 \\ A_1 + 9A_2 = 9 \end{cases}$$
,解之得: $A_0 = 0$, $A_1 = 9/4$, $A_2 = 3/4$.

数值求积公式为

$$\int_0^3 f(x)dx \approx \frac{3}{4} [3f(1) + f(3)]$$

例6 试确定参数 A_0 , A_1 , A_2 , 使求积公式

$\int_{-1}^{1} f(x)dx \approx A_0 f(-1) + A_1 f(0) + A_2 f(1)$

具有尽可能高的代数精度,并问代数精度是多少?

解 令公式对 $f(x)=1, x, x^2$ 都精确成立,则

$$\begin{cases} A_0 + A_1 + A_2 = 2 \\ -A_0 + A_2 = 0 \\ A_0 + A_2 = 2/3 \end{cases}, \text{ \mathbb{R}^2: $A_0 = A_2 = 1/3$, $A_1 = 4/3$.}$$

求积公式为

$$\int_{-1}^{1} f(x)dx \approx \frac{1}{3} [f(-1) + 4f(0) + f(1)]$$

当 $f(x)=x^3$ 时, 左=0, 右=0, 公式也精确成立.

当 $f(x)=x^4$ 时, 左=2/5, 右=2/3, 公式不精确成立.

所以,此公式的代数精度为3.

例7 试确定参数 A_0 , A_1 , A_2 , 使求积公式

$$\int_{-1}^{1} x^{2} f(x) dx \approx A_{0} f(-1) + A_{1} f(0) + A_{2} f(1)$$

具有尽可能高的代数精度,并问代数精度是多少?

解 令公式对 $f(x)=1, x, x^2$ 都精确成立,则

$$\begin{cases} A_0 + A_1 + A_2 = 2/3 \\ -A_0 + A_2 = 0 \\ A_0 + A_2 = 2/5 \end{cases}$$
,解得: $A_0 = A_2 = 1/5$, $A_1 = 4/15$.

求积公式为

$$\int_{-1}^{1} x^2 f(x) dx \approx \frac{1}{15} [3f(-1) + 4f(0) + 3f(1)]$$

经验证公式对 $f(x)=x^3$ 精确成立,但对 $f(x)=x^4$ 不精确成立, 公式的代数精度为3.

例8 试确定参数 A_0 , A_1 和 X_0 , X_1 , 使求积公式

$$\int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$$

具有尽可能高的代数精度,并问代数精度是多少?

解 令公式对 $f(x)=1, x, x^2, x^3$ 都精确成立,则

$$\begin{cases} A_0 + A_1 = 2 \\ A_0 X_0 + A_1 X_1 = 0 \\ A_0 X_0^2 + A_1 X_1^2 = 2/3 \\ A_0 X_0^3 + A_1 X_1^3 = 0 \end{cases}, \text{ \mathbb{R}^2} : \begin{cases} A_0 = A_1 = 1 \\ -x_0 = x_1 = \frac{1}{\sqrt{3}} \end{cases}$$

求积公式为

$$\int_{-1}^{1} f(x) dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

求积公式的代数精度为3。

课堂练习

课堂练习

4.3 复合求积公式

一、问题与基本思想

在使用牛顿-柯特斯公式时将导致求积系数出现负数(当n≥8 时,牛顿.柯特斯求积系数会出现负数),因而不可能通过提 高阶的方法来提高求积精度。为了提高精度通常采用将积 分区间划分成若干个小区间,在各小区间上采用低次的求 积公式(梯形公式或辛普森公式),然后再利用积分的可加 性,把各区间上的积分加起来,便得到新的求积公式,这 就是复化求积公式的基本思想。本节只讨论复化的梯形公 式和复化的辛普森公式。

复化梯形公式积分法

二、复合梯形公式

将区间 [a,b] 等分为 n 个小区间 $[x_k,x_{k+1}]$,其中

$$x_k = a + kh, \quad \left(h = \frac{b-a}{n}, k = 0, 1, \dots, n-1\right),$$

并在每个小区间上应用梯形公式,则得复合梯形公式

$$I = \int_{a}^{b} f(x) dx = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x) dx = \sum_{k=0}^{n-1} \frac{h}{2} [f(x_{k}) + f(x_{k+1})] + R_{n}[f]$$

$$\exists \exists T_n = \frac{h}{2} \sum_{k=0}^{n-1} [f(x_k) + f(x_{k+1})] = \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b) \right]$$

称为复合梯形公式, 余项为

$$R_{n}[f] = I - T_{n} = \sum_{k=0}^{n-1} \left[-\frac{h^{3}}{12} f''(\eta_{k}) \right], \quad \eta_{k} \in (x_{k}, x_{k+1})$$
$$= -\frac{b - a}{12} h^{2} f''(\eta), \qquad \eta \in (a, b)$$

Composite Trapezoid Rule

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{1}} f(x) dx + \int_{x_{1}}^{x_{2}} f(x) dx + \dots + \int_{x_{n-1}}^{x_{n}} f(x) dx$$

$$\approx \frac{h}{2} [f(x_{0}) + f(x_{1})] + \frac{h}{2} [f(x_{1}) + f(x_{2})] + \dots + \frac{h}{2} [f(x_{n-1}) + f(x_{n})]$$

$$= \frac{h}{2} [f(x_{0}) + 2f(x_{1}) + \dots + 2f(x_{i}) + \dots + 2f(x_{n-1}) + f(x_{n})]$$

复化Simpson公式积分法

三、复合辛普森公式

记 $[x_k, x_{k+1}]$ 的中点为 $x_{k+\frac{1}{2}}$,在每个小区间上应用

辛普森公式,则得复合辛普森公式

$$I = \int_{a}^{b} f(x) dx = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x) dx$$

$$= \sum_{k=0}^{n-1} \frac{h}{6} [f(x_{k}) + 4f(x_{k+\frac{1}{2}}) + f(x_{k+1})] + R_{n}[f],$$

$$\vdots \qquad S_{n} = \frac{h}{6} \sum_{k=0}^{n-1} [f(x_{k}) + 4f(x_{k+\frac{1}{2}}) + f(x_{k+1})]$$

$$= \frac{h}{6} \left[f(a) + 4 \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}) + 2 \sum_{k=1}^{n-1} f(x_{k}) + f(b) \right]$$

称为复合辛普森公式。

1, 4, 2, 4, 2, 4, 2, ..., 4, 2, 4, 1

Composite Simpson's Rule

Multiple applications of Simpson's rule

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{4}} f(x)dx + \dots + \int_{x_{n-2}}^{x_{n}} f(x)dx$$

$$= \frac{h}{3} \Big[f(x_{0}) + 4 f(x_{1}) + f(x_{2}) \Big] + \frac{h}{3} \Big[f(x_{2}) + 4 f(x_{3}) + f(x_{4}) \Big]$$

$$+ \dots + \frac{h}{3} \Big[f(x_{n-2}) + 4 f(x_{n-1}) + f(x_{n}) \Big]$$

$$= \frac{h}{3} \Big[f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + 2 f(x_4) + \cdots \\ + 4 f(x_{2i-1}) + 2 f(x_{2i}) + 4 f(x_{2i+1}) + \cdots \\ + 2 f(x_{n-2}) + 4 f(x_{n-1}) + f(x_n) \Big]$$

注意中英文讲法之区别

余项为
$$R_n[f] = I - S_n = -\frac{h}{180} \left(\frac{h}{2}\right)^4 \sum_{k=0}^{n-1} f^{(4)}(\eta_k), \quad \eta_k \in (x_k, x_{k+1})$$

$$= -\frac{b-a}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\eta), \qquad \eta \in (a,b)$$

例4-4 对于函数 $f(x) = \frac{\sin x}{x}$, 给出n = 8 时的函数表,试用复合梯形

公式及复合辛普森公式计算积分 $I = \int_0^1 \frac{\sin x}{x} dx$ 。

x_i	0	1/8	1/4	3/8	1/2
$f(x_i)$	1 (极限)	0.9973978	0.9896158	0.9767267	7 0.9588510
X_i	5/8	}	3/4	7/8	1
$f(x_i)$	0.9361	556 0.90	88516 0	.8414709	0.8414709

$$T_8 = \frac{1}{8} \left[\frac{f(0)}{2} + f\left(\frac{1}{8}\right) + f\left(\frac{1}{4}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{1}{2}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{3}{4}\right) + f\left(\frac{7}{8}\right) + \frac{f(1)}{2} \right]$$

$$\approx 0.945 690 9.$$

$$S_4 = \frac{1}{4 \times 6} \left\{ f(0) + 4 \left[f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right) \right] + 2 \left[f\left(\frac{1}{4}\right) + f\left(\frac{1}{2}\right) + f\left(\frac{3}{4}\right) \right] + f(1) \right\} \approx 0.946 \ 083 \ 2$$

例4-5 计算积分 $I = \int_0^{\pi/2} \sin x \, dx$,若用复合梯形公式,问区间 $\left[0, \frac{\pi}{2}\right]$ 应分多少等份才能使误差不超过 $10^{-3}/2$,若取同样的求积节点,改用复合辛普森公式,截断误差是多少?(辛普森公式需引入半个节点值)

解: 由于 $f'(x) = \cos x$, $f''(x) = -\sin x$, $f^{(4)}(x) = \sin x$, $b - a = \frac{\pi}{2}$.

故复合梯形公式,要求

$$|R_n[f]| = \left| -\frac{b - a}{12} h^2 f''(\eta) \right| \le \frac{1}{12} \cdot \frac{\pi}{2} \cdot \left(\frac{\pi}{2n} \right)^2 \le \frac{1}{2} \times 10^{-3}, \ \eta \in \left(0, \frac{\pi}{2} \right)$$

即 $n^2 \ge \frac{\pi^3}{48} \times 10^3$, $n \ge 25.416$, 取n = 26, 即将区间 $[0, \pi/2]$ 分为26等份时,

用复合梯形公式计算,截断误差不超过10-3/2。

用复合辛普森公式(考虑引入半个节点值),截断误差为

$$|R_{\rm S}[f]| = \left| -\frac{b-a}{180} h^4 f^{(4)}(\eta) \right| \le \frac{\pi}{180 \times 2} \left(\frac{\pi}{2n} \right)^4 \le 0.1162608 \times 10^{-7}$$

例4-6 计算积分 $I=\int_0^1 e^x dx$,若用复合梯形公式,问区间[0,1]应分多少等份才能使误差不超过 $10^{-5}/2$;若改用复合普森公式,要达到同样精度,区间[0,1]应该分多少等份。解:由于 $f'(x)=e^x$, $f''(x)=e^x$, $f^{(4)}(x)=e^x$,b-a=1,对复合梯形公式 T_n 余项

$$|R[f]| = \left| -\frac{b-a}{12} h^2 f''(\xi) \right| \le \left| -\frac{1}{12} \left(\frac{1}{n} \right)^2 e \right| \le \frac{1}{2} \times 10^{-5}$$

由此有 $n^2 \ge \frac{e}{6} \times 10^5$, $n \ge 212.85$, 可取n = 213, 即将区间[0,1]分为213等份,则可使误差不超过 $10^{-5}/2$ 。

复合辛普森公式计算积分,则由余项公式可知要满足精度要求,必须使

$$\left| R[f] \right| = \frac{b - a}{180} \left(\frac{h}{2} \right)^4 \left| f^4(\xi) \right| \le \frac{1}{180} \left(\frac{1}{2n} \right)^4 e \le \frac{1}{2} \times 10^{-5}$$

由此得 $n^4 \ge \frac{e}{144} \times 10^4$, $n \ge 3.707$ 取4, $2n \ge 2*3.707 = 7.414$ 取8 ,也即,复合辛普森公式可达到精度要求,此时区间[0,1] 实际上应分为8 等份。

课堂练习与确认

Error Analysis

Corollary 7.3 (Simpson's Rule: Error Analysis). Suppose that [a, b] is subdivided into 2M subintervals $[x_k, x_{k+1}]$ of equal width h = (b - a)/(2M). The composite Simpson rule

(14)
$$S(f,h) = \frac{h}{3}(f(a) + f(b)) + \frac{2h}{3} \sum_{k=1}^{M-1} f(x_{2k}) + \frac{4h}{3} \sum_{k=1}^{M} f(x_{2k-1})$$

is an approximation to the integral

(15)
$$\int_{a}^{b} f(x) dx = S(f, h) + E_{S}(f, h).$$

Furthermore, if $f \in C^4[a, b]$, there exists a value c with a < c < b so that the error term $E_S(f, h)$ has the form

(16)
$$E_S(f,h) = \frac{-(b-a)f^{(4)}(c)h^4}{180} = \mathbf{O}(h^4).$$

4.4 龙贝格求积公式

一、梯形法的递推化 (变步长求积法)

把区间 [a,b] 作 n 等分得 n 个小区间 $[x_k,x_{k+1}], h = \frac{b-a}{n}$,则复合梯形公式

$$T_n = \sum_{k=0}^{n-1} \frac{h}{2} [f(x_k) + f(x_{k+1})] = \frac{h}{2} \left[f(a) + 2 \sum_{k=0}^{n-1} f(x_k) + f(b) \right].$$

把区间 [a,b] 作 2n 等分,记 $[x_k,x_{k+1}]$ 的中点 $x_{k+\frac{1}{2}} = \frac{x_k + x_{k+1}}{2}$,则复合梯形公式

$$T_{2n} = \sum_{k=0}^{n-1} \frac{1}{2} \left(\frac{h}{2} \right) [f(x_k) + 2f(x_{k+\frac{1}{2}}) + f(x_{k+1})]$$

$$= \frac{h}{4} \sum_{k=0}^{n-1} [f(x_k) + f(x_{k+1})] + \frac{h}{2} \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}})$$

$$= \frac{1}{2} T_n + \frac{h}{2} \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}).$$

于是可以逐次对分形成一个序列{ T_1 , T_2 , T_4 , T_8 ,...},此序列收敛于积分真值 I。当 $|T_{2n}$ - $T_n|$ < ε 时,取 T_{2n} 为 I 的近似值。以上算法称为变步长求积法。但由于此序列收敛太慢。下节我们将其改造成为收敛快的序列。

例如 利用变步长的梯形法求 $I = \int_0^1 \frac{\sin x}{x} dx$ 的近似值。

解:
$$T_1 = \frac{1}{2}[f(0) + f(1)] = 0.9207355$$

$$T_2 = \frac{1}{2}T_1 + \frac{1}{2}f\left(\frac{1}{2}\right) = 0.9397933$$

$$T_4 = \frac{1}{2}T_2 + \frac{1}{4}\left[f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right)\right] = 0.9445135$$

$$T_8 = \frac{1}{2}T_4 + \frac{1}{8}\left[f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right)\right] = 0.956909$$

. .

二、龙贝格算法 (1955)

如何提高收敛速度以节省计算量是龙贝格算法要讨论的中心问题。

Richardson外推extrapolation: 1910

$$I - T_n = -\frac{b - a}{12} h^2 f''(\eta_1) \quad \eta_1 \in (a, b)$$

$$I - T_{2n} = -\frac{b - a}{12} \left(\frac{h}{2}\right)^2 f''(\eta_2) \quad \eta_2 \in (a, b)$$
假定 $f''(\eta_1) \approx f''(\eta_2)$,则有
$$\frac{I - T_n}{I - T_{2n}} \approx 4 \qquad \qquad$$
整理,移项得
于是
$$I \approx \frac{4T_{2n} - T_n}{4 - 1} \quad$$
和
$$I - T_{2n} \approx \frac{1}{3} (T_{2n} - T_n)$$
记
$$S_n = \frac{4T_{2n} - T_n}{4 - 1}$$

这样我们从收敛较慢的
$$\{T_n\}$$
序列推出了收敛较快的 $\{S_n\}$ 序列。可以证明 $\{S_n\}$ 序列实际上就是逐次分半的复化辛普森公式序列。

同理,
$$I-S_{2n} \approx \frac{1}{15}(S_{2n}-S_n)$$
 和 $I \approx \frac{16}{15}S_{2n}-\frac{1}{15}S_n$

$$C_n = \frac{16}{15} S_{2n} - \frac{1}{15} S_n = \frac{4^2 S_{2n} - S_n}{4^2 - 1}$$

龙贝格求积公式

$$R_n = \frac{64}{63}C_{2n} - \frac{1}{63}C_n = \frac{4^3C_{2n} - C_n}{4^3 - 1}$$

这样我们从 $\{C_n\}$ 序列又推出了收敛更快的 $\{R_n\}$ 序列. $\{R_n\}$ 序列也称为龙贝格序列。

总结:我们从收敛较慢的 $\{T_n\}$ 序列只用了一些四则运算,便推出了收敛更快的 $\{S_n\}$ 序列, $\{C_n\}$ 序列和 $\{R_n\}$ 序列。

$$I - S_n = -\frac{(b-a)^5}{2880n^4} f^{(4)}(\eta) \qquad , \eta \in (a,b)$$

$$I - S_{2n} = -\frac{(b-a)^5}{2880(2n)^4} f^{(4)}(\overline{\eta}) \qquad , \overline{\eta} \in (a,b)$$

所以有

$$\frac{I - S_n}{I - S_{2n}} \approx 16$$

由此得

一方面,若 $|S_{2n}-S_n|$ < 15ε ,则有近似误差 $|I-S_{2n}|$ < ε .

另一方面, $(16S_{2n}-S_n)/15$ 应比 S_n 和 S_{2n} 的近似程度更好.

事实上,有 $(16S_{2n}-S_n)/15=C_n$

类似地,由于

$$I - C_n = -\frac{(b-a)^7}{1935360n^6} f^{(6)}(\eta) , \eta \in (a,b)$$

$$I - C_{2n} = -\frac{(b-a)^7}{1935360(2n)^6} f^{(6)}(\overline{\eta}) , \overline{\eta} \in (a,b)$$

所以有

$$\frac{I - C_n}{I - C_{2n}} \approx 64$$

由此得

一方面,若 $|C_{2n}-C_n|$ <63 ε ,则有近似误差 $|I-C_{2n}|$ < ε .

另一方面, $(64C_{2n}-C_n)/63$ 应比 C_n 和 C_{2n} 的近似程度更好.

记 $(64C_{2n}-C_n)/63=R_n$,称为Romberg求积公式.

运算顺序表

实际计算可按下表顺序进行

k	区间等分数 n=2 ^k	梯形公式 <i>T_I®</i>	Simpson公式 $T_2^{(k)}$	Cotes公式 $T_3^{(k)}$	Romberg公式 $T_4^{(k)}$
	n-2	•	120	13.	14'
0	1	$T_I^{(0)}$			
1	2	$T_I^{(1)}$	$T_2^{(0)}$		
2	4	$T_I^{(2)}$	$T_2^{(1)}$	$T_{\it 3}^{(0)}$	
3	8	$T_I^{(3)}$	$T_2^{(2)}$	$T_{3}^{(1)}$	$T_4^{(0)}$
4	16	$T_{I}^{(4)}$	$T_2^{(3)}$	$T_{\it 3}^{(2)}$	$T_4^{(1)}$
:	÷	÷	÷	÷	÷

例11 利用Romberg积分公式计算积分

$$I = \int_0^1 \frac{4}{1 + x^2} \, dx$$

解 按递推公式计算,结果如下

k	$n=2^k$	$T_I^{(k)}$	$T_2^{(k)}$	$T_3^{(k)}$	$T_4^{(k)}$
0	1	3.0000000			
1	2	3.1000000	3.1333333		
2	4	3.1311765	3.1415687	3.1421177	
3	8	3.1389885	3.1415925	3.1415941	3.1415858
4	16	3.1409416	3.1415926	3.1415926	3.1415926

可见,由于 $|T_1^{(4)}-T_1^{(3)}|$ =0.0019531,应有 $|I-T_1^{(4)}|$ <0.000651033. 由于 $|T_2^{(3)}-T_2^{(2)}|$ =0.0000001,应有 $|I-T_2^{(3)}|$ <0.000000006666. 由于 $|T_3^{(2)}-T_3^{(1)}|$ =0.0000015,应有 $|I-T_3^{(2)}|$ <0.0000000238. 由于 $|T_4^{(1)}-T_4^{(0)}|$ =0.0000068,应有 $|I-T_4^{(1)}|$ <0.0000002666.

例4-7 利用龙贝格求积算法求 $I = \int_0^1 \frac{\sin x}{x} dx$ 的近似值

k	T_2^k	S_2^{k-1}	C_2^{k-2}	R_2^{k-3}
0	0.9207355			
1	0.9397933	0.9461459		
2	0.9445135	0.9460869	0.9460830	
3	0.9456909	0.9460833	0.9460831	0.9460831

这里利用二分**3**次的数据(它们的精度都很差,只有两三位有效数字)通过三次加速求得**R**1=0.9460831,这个结果的每一位数字都是有效数字,可见加速效果是十分显著的。

4.5 高斯求积公式

一般理论

机械求积公式

$$\int_{a}^{b} f(x) dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$

含有 2n+2 个待定参数, x_k 和 $A_k(k=0,1,\cdots,n)$ 。插值型求积公式的代数精度至少 n 次。如果适当选取 x_k ($k=0,1,\cdots,n$) 有可能使求积公式具有 2n+1 次代数精度,这类求积公式称为高斯(Gauss)求积公式。

一般地,我们研究带权积分

$$I = \int_a^b \rho(x) f(x) dx \approx \sum_{k=0}^n A_k f(x_k) ,$$

定义4-2 若一组节点 $a \le x_0 < x_1 < \cdots < x_n \le b$,使插值型求积公式具有2n+1次代数精度,则称此组节点为**高斯点**,并称此求积公式为**高斯求积公式**。

构造高斯求积公式方法(一)

利用代数精度的定义,只要求解方程组

$$\int_{a}^{b} x^{m} \rho(x) dx = \sum_{i=0}^{n} A_{i} x_{i}^{m}, \quad m = 0, 1, \dots, 2n + 1.$$

例4-8 试构造高斯求积公式

$$\int_0^1 \sqrt{x} f(x) dx \approx A_0 f(x_0) + A_1 f(x_1) .$$

解: 令公式对于 $f(x) = 1, x, x^2, x^3$ 准确成立,得

$$\begin{cases} A_0 + A_1 = \frac{2}{3} \\ x_0 A_0 + x_1 A_1 = \frac{2}{5} \\ x_0^2 A_0 + x_1^2 A_1 = \frac{2}{7} \\ x_0^3 A_0 + x_1^3 A_1 = \frac{2}{9} \end{cases}$$

解得 Report

$$x_0 = 0.821 \ 162$$
, $A_0 = 0.389 \ 111$
 $x_1 = 0.289 \ 949$, $A_1 = 0.277 \ 556$

于是, 高斯公式为

$$\int_0^1 \sqrt{x} f(x) dx \approx 0.389111 f(0.821162) + 0.277556 f(0.289949)$$

MATLAB函数 solve, vpasolve, fsolve, fzero, roots 功能和信息概览

求解函 数	多项式型	非多项式型	一维	高维	符号	数值	算法
solve	支持,得到全部符 号解	若可符号解则得到根	支持	支持	支持	当无符号 解时	符号解方法: 利用等式性质得到标准可解函数的方法基本即模拟人工运算
vpasolv e	支持,得到全部数 值解	(随机初值)得到一个 实根	支持	支持	×	支持	未知
fsolve	由初值得到一个实根	由初值得到一个实根	支持	支持	×	支持	优化方法,即用优化方法求解函数距离零点最近,具体方法为信赖域方法。 包含预处理共轭梯度(PCG)、狗腿(dogleg)算法和Levenberg-Marquardt算法等
fzero	由初值得到一个实根	由初值得到一个实根	支持	×	×	支持	一 维解非线性方程方法 ,二分法、二次反插和割线法的混合运用 具体原理见数值求解非线性方程的 <u>二分法、不动点迭代和牛顿法</u> 和插 值方法
roots	支持,得到全部数 值解	×	支持	×	×	支持	特征值方法,即将多项式转化友矩阵(companion matrix) 然后使用求矩阵特征值的算法求得所有解(那是另外一个问题了)

https://www.cnblogs.com/gentle-min-601/p/9672221.html

注:同学可整该网页为PPT后课堂开讲

构造高斯求积公式方法(二)

先确定了节点 x_k ,后利用方程组求解系数 A_k 。

定理4-3 插值型求积公式的节点 $a \le x_0 < x_1 < \cdots < x_n \le b$ 是高斯点 \Leftrightarrow

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

与任何次数不超过n 的多项式P(x) 带权 $\rho(x)$ 正交, 即

$$\int_a^b \rho(x)\omega_{n+1}(x)P(x)\mathrm{d}x = 0.$$

定理 4-3 表明在 [a,b] 上带权的 n+1 次正交多项式的零点就是求积公式的高斯点,有了求积节点 x_k $(0,1,\cdots,n)$,再利用代数精度概念得到一组关于求积系数 A_0 , A_1 , \cdots , A_n 的线性方程组。解此方程组的系数 $\{A_k\}$ 。也可直接由插值多项式求出求积系数。

§ 5.2 多种Gauss型求积公式

(1) Gauss-Legendre求积公式

区间[-1,1]上权函数 $\rho(x)$ =1的Gauss型求积公式,称为

Gauss-Legendre求积公式,其Gauss点为Legendre多项式的

零点.公式的Gauss点和求积系数可在数学用表中查到.

n	x_k	A_k		n	x_k	A_k
1	0	2			± 0.9324695142	0.1713244924
2	± 0.5773502692	1		6	± 0.6612093865	0.3607615730
	± 0.7745966692	0.555555556			± 0.2386191861	0.4679139346
3	0	0.888888889			± 0.9491079123	0.1294849662
	100611262116	0.2470540451	$\ \cdot \ $	7	± 0.7415311856	0.2797053915
	± 0.8611363116	0.3478548451			± 0.4058451514	0.3818300505
4	± 0.3399810436	0.6521451549			0	0.4179591837
	1 0 0061700470	0.2260260071			± 0.9602898565	0.1012285363
_	± 0.9061798459	0.2369268851		8	± 0.7966664774	0.2223810345
5	± 0.5384693101	0.4786286705		Ü	± 0.5255324099	0.3137066459
	0	0.568888889			± 0.1834346425	0.3626837834

注意:此表中n为点数【非以前的n,相当于以前的(n+1)】。

Gauss-Legendre求积公式的余项为

$$R[f] = \frac{2^{2n+1}(n!)^4}{[(2n)!]^3(2n+1)} f^{(2n)}(\eta) , \eta \in (-1,1)$$

例13 用3点Gauss公式计算积分 $I = \int_{-1}^{1} \cos x dx$.

解 查表得*x*₁=-0. 7745966692, *x*₂=0, *x*₃=0. 7745966692,

 $A_1 = A_3 = 0.5555555555556$, $A_2 = 0.8888888889$,所以有

 $I \approx A_1 \cos x_1 + A_2 \cos x_2 + A_3 \cos x_3 = 1.68300355$ 误差为

$$R[f] = \left| \frac{2^7 \times 6^4}{(6!)^3 \times 7} (-\cos \eta) \right| \le 6.3492 \times 10^{-5}$$

实际上,I=2sin1=1.68294197,误差为|R[/]|=6.158×10-5.

用Simpson公式,则有*I*≈1.69353487,误差为|*R*[/]|=1.06×10⁻².

由于

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{a+b}{2} + \frac{b-a}{2}t)dt \quad (x = \frac{(a+b) + (b-a)t}{2})$$

因此, [a,b] 上权函数 $\rho(x)=1$ 的Gauss型求积公式为

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \sum_{i=1}^{n} A_{i} f(\frac{a+b}{2} + \frac{b-a}{2} x_{i})$$

求积误差可表示为

注意: 此处下标从1开始

$$R[f] = \frac{(b-a)^{2n+1}(n!)^4}{[(2n)!]^3(2n+1)} f^{(2n)}(\eta) , \eta \in (a,b)$$

例14 用3点Gauss公式计算积分 $I = \int_0^1 \frac{4}{1+x^2} dx$.

解 这里Gauss点和积分系数与上例相同,所以

$$I = \int_0^1 \frac{4}{1+x^2} dx \approx \frac{1}{2} \sum_{i=1}^3 A_i \frac{4}{1+\left[(1+x_i)/2 \right]^2} = 3.141068$$

结果远比Simpson公式的结果精确.

(2) Gauss-Laguerre求积公式

区间[$0, +\infty$)上权函数 $\rho(x)=e^{-x}$ 的Gauss型求积公式,称为Gauss-Laguerre求积公式,其Gauss点为Laguerre多项式的零点. 公式的Gauss点和求积系数可在数学用表中查到.

n	x_k	A_k	n	x_k	A_k
2	0.5858864376	0.8535533905		0.2635603197	0.5217556105
	3.4142135623	0.1464466094		1.4134030591	0.3986668110
	0.4157745567	0.7110930099	5	3.5964257710	0.0759424497
3	2.2942803602	0.2785177335		7.0858100058	0.0036117587
	602899450829	0.0103892565		12.6408008442	0.0000233700
	002077130027	0.0103072303		0.2228466041	0.4589646793
	0.3225476896	0.6031541043		1.1889321016	0.4170008307
	1.7457611011	0.3574186924	6	2.9927363260	0.1133733820
4	4.5366202969	0.0388879085	O	5.7751435691	0.0103991975
	9.3950709123	0.0005392947		9.8374674183	0.0002610172
	7.3730707123	0.0000000000000000000000000000000000000		15.9828739806	0.0000008985

注意:此表中n为点数【非以前的n,相当于以前的(n+1)】。

(3) Gauss-Hermite求积公式

区间($-\infty$, $+\infty$)上权函数 $\rho(x) = e^{-x^2}$ 的Gauss型求积公式, 称为**Gauss-Hermite求积公式**, 其**Gauss**点为Hermite多项式的零点. 公式的Gauss点和求积系数可在数学用表中查到.

n	x_k	A_k	n	x_k	A_k
2	± 0.7071067811	0.8862269254		± 0.4360774119	0.7246295952
3	± 1.2247448713	0.2954089751	6	± 1.3358490704	0.1570673203
	0	1.8163590006		± 2.3506049736	0.0045300099
4	± 0.5246476232	0.8049140900		± 0.8162878828	0.4256072526
	± 1.6506801238	0.0813128354		± 1.6735516287	0.0545155828
	± 0.9585724646	0.3936193231	7	± 2.6519613563	0.0009717812
5	± 2.0201828704	0.0199532421		0	0.8102646175
	0	0.9453087204			

Gauss-Hermite求积公式为

$$\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \sum_{i=1}^{n} A_i f(x_i) \quad \text{ is } \quad \int_{-\infty}^{+\infty} f(x) dx \approx \sum_{i=1}^{n} A_i e^{x_i^2} f(x_i)$$

注意:此表中n为点数【非以前的n,相当于以前的(n+1)】。

知识结构图

数值 积分 基本概念

牛顿-柯特斯公式

复合求积公式

龙贝格求积公式

高斯求积公式

复习与思考题(无需提立) P134: 2, 5, 6, 7, 8, 9, 10

习题(知愿可做, 无需提定) P135: 1, 4, 5, 10

> 习题(需提立) P135: 2, 11