Everyone

- Truss theories and how to design a truss general research
- Reading through the home built airplanes about our truss, Ollie posted a bit on there and they gave good suggestions :
 - https://www.homebuiltairplanes.com/forums/threads/flight-club-ultralight-build-log.33380/
- Read through our sections about the truss: https://www.blog2.flightclubaerospace.com/
- Affordaplane and Legal Eagle build manuals
- Specific qualities of the steel we're using (5/8" x 0.035" 4130 Chromoly Steel)
- Get accustomed with fusion
 - Recad the truss cad your version of the truss

Un personaje:

- Crash section of the <u>textbook</u> & truss if they have any
- Beam theory

Truss Theories

https://www.sciencedirect.com/science/article/abs/pii/S1359836812002351

- Equilibrium of physical and material forces

https://www.teachengineering.org/content/cub_/activities/cub_polygons_angles_trusses/cub_polygons lesson01 presentation v2 tedl.pdf

- Truss made of:
 - Structural members, joints or nodes, angles, polygons
 - Distribute a point of weight over a wider area
 - Planar truss:
 - 2D plane, ex. Bike frame
 - Space truss: 3D plane, ex. Bridge

http://www.klabs.org/DEI/References/design_guidelines/design_series/1242lerc.pdf

- PSAM (probabilistic structural analysis methods) contained in the computer code NESSUS (Numerical Evolution of Stochastic Structures Under Stress)
 - Identify and quantify the reliability fo the space structure
 - I can't find the download for this??

http://www.aerostudents.com/courses/aerospace-design-and-systems-engineering-elements-1/FuselageDesign.pdf

- Fuselage Design

Textbook Notes:

Welding:

- Very durable, but may lead to warping

 "Critical structural parts should not be made from welded aluminum due to a reduction in fatigue life"

5.3 Airframe structural layout

- Wood, welded steel, stiffed skin construction, composites are our options
- Welded steel more for high drag planes → US!

Ch. 12 Anatomy of the fuselage

- Frustrum- shaped Fuselage
 - Reduces production cost
- Steps:
 - Layout where we need things
 - Note the CG envelope
 - Estimate weight of all known components making up the plane
 - Like the CG calculator Rudy made
- It'll look like this when the plan is completed

- Streamline as posible
- Take into account landing gear
- How far the pilot can see:

FIGURE 12-16 Recommended pilot's field-of-view.

- Space for pilot recommendation:

Small General Aviation Aircraft (Singles)

d

Aircraft Design MS db

6 Basic Requirements;

- 1. Keep the fuselage as small and compact as possible.
- 2. Arrangement to be symmetric from the top view as far as possible.
- 3. There must be sufficient space to accommodate all of the items.
- 4. Usable loads such as fuel must be close to the aircraft center of gravity.
- 5. The pilot cockpit must be allocated the most forward location of the fuselage, to enable the pilot to view the runway during take-off and landing.
- 6. Arrangements must be such that the aircraft center of gravity is close to the wing/ fuselage aerodynamic center.

Figure 7.6 Linear body dimensions (cm)

- To avoid take off rotation or landing with a high AOA: rear fuselage upsweep angle must be taken into account
 - Cessna is 10 degrees

Do we have a specified length or width?

Limitations to welded steel

Advantages:

- Weld: 100% of OG

- Rivets: 75%

One continuous structure

Easier than riveting

Disadvantages

- Do not allow any form of expansion Contractions will make it weak
- Prone to developing cracks after some time
- Hard to get right

- Internal and external distortions can happen while the areas of the connection are exposed to diff heating in welding
- Fatigue can take place if the weld is not great

From Legal Eagle:

ALL TRIANGLES!!!

- Triangularly braced

- You can separate it a bit and it'll make it easier to weld

Beam Theory

- Calculating the load-carrying and deflection of beams
- Doesn't really apply because it is only for transverse loads
 - Not compression/ tension which is what we want
 - Maybe applies for battery and pilot

- Transverse loads
- Cross-sections don't deform

A future read:

https://www.homebuiltairplanes.com/forums/threads/best-fuselage-shape.33673/page-3#post-5 35958