"The Formal Definition of Reference Priors"

by Berger, Bernardo and Sun (2009)

Hans Niederhausen

Dept. of Physics and Astronomy Stony Brook University

December 3, 2015

Motivation

Objectivity is a fundamental scientific desideratum

"Bayesians address the question everyone is interested in by using assumptions no-one believes" - Louis Lyons (2006)

(particle physicists mostly use classical inference: "profile likelihood" cf. presentation by Hechuan Wang)

Motivation

Objectivity is a fundamental scientific desideratum

"Bayesians address the question everyone is interested in by using assumptions no-one believes" - Louis Lyons (2006)

(particle physicists mostly use classical inference: "profile likelihood" cf. presentation by Hechuan Wang)

- Reference priors offer objective Bayesian inference (Bernardo, 1979)
- Bernardo, Berger and Sun (2009) give rigorous definition for single parameter models (this talk!)

Motivation

Objectivity is a fundamental scientific desideratum

"Bayesians address the question everyone is interested in by using assumptions no-one believes" - Louis Lyons (2006)

(particle physicists mostly use classical inference: "profile likelihood" cf. presentation by Hechuan Wang)

- Reference priors offer objective Bayesian inference (Bernardo, 1979)
- Bernardo, Berger and Sun (2009) give rigorous definition for single parameter models (this talk!)
- Why do I care about Bayes?
 - → include scientific information/knowledge
 - (e.g. about nuisance parameters e.g. modeling of detector response)

Definitions

DEFINITION 8 (Reference Prior):

A function $\pi\left(\theta\right)=\pi\left(\theta|M,P\right)$ is a reference prior for model M given a class of prior functions P if it is <u>permissible</u> and has the MMI property (Maximizing Missing Information)

Definitions

DEFINITION 8 (Reference Prior):

A function $\pi(\theta) = \pi(\theta|M, P)$ is a reference prior for model M given a class of prior functions P if it is permissible and has the MMI property (Maximizing Missing Information)

some properties

- · independent of sample size
- · compatible with sufficient statistics
- consistent under re-parametrization (invertible, one-to-one)
- · reduce to Jeffrey's priors (if regularity conditions are met)

$$\pi\left(\theta\right) = \sqrt{I\left(\theta\right)} \text{ with } I\left(\theta\right) = -E_{x}\left\{\frac{\partial^{2}}{\partial\theta^{2}}\log\left[f(x|\theta)\right]\right\}$$

 \to view improper prior (defined on $\Theta)$ as approximation to the analysis based on the "true but difficult to specify" large bounded space

(aside: physics problems typically do NOT live in non-bounded parameter spaces)

 \to view improper prior (defined on $\Theta)$ as approximation to the analysis based on the "true but difficult to specify" large bounded space

(aside: physics problems typically do NOT live in non-bounded parameter spaces)

 \rightarrow reference prior defined on Θ , when restricted to any large compact Θ_0 , yields reference prior on Θ_0

ightarrow view improper prior (defined on Θ) as approximation to the analysis based on the "true but difficult to specify" large bounded space

(aside: physics problems typically do NOT live in non-bounded parameter spaces)

 \rightarrow reference prior defined on Θ , when restricted to any large compact Θ_0 , yields reference prior on Θ_0

DEFINITION 5 (Permissible Prior):

A strictly positive continuous function $\pi\left(\theta\right)$ is a permissible prior if 1.) $\int_{\Theta}f(x|\theta)\pi\left(\theta\right)d\theta<\infty$ for all $x\in X$ and 2.) for some approximating compact sequence $\{\Theta\}_{i=1}^{\infty}$ converging to Θ , the corresponding posterior sequence is expected logarithmically convergent to $\pi\left(\theta|x\right)\propto f\left(x|\theta\right)\pi\left(\theta\right)$

DEFINITION 4 (Expected Logarithmic Convergence):

[...] The corresponding sequence of posteriors $\{\pi_i\left(\theta|x\right)\}_{i=1}^{\infty}$ is expected logarithmically convergent to $\pi\left(\theta|x\right)$ if

$$\lim_{i \to \infty} \int_X \kappa \left\{ \pi \left(\theta | x \right) | \pi_i \left(\theta | x \right) \right\} p_i \left(x \right) dx = 0 \tag{1}$$

DEFINITION 4 (Expected Logarithmic Convergence):

[...] The corresponding sequence of posteriors $\{\pi_i(\theta|x)\}_{i=1}^{\infty}$ is expected logarithmically convergent to $\pi(\theta|x)$ if

$$\lim_{i \to \infty} \int_X \kappa \left\{ \pi \left(\theta | x \right) | \pi_i \left(\theta | x \right) \right\} p_i \left(x \right) dx = 0 \tag{1}$$

where $p_{i}\left(x\right)=\int_{\Theta_{i}}f\left(x|\theta\right)\pi_{i}\left(\theta\right)d\theta$ (prior predictive distribution)

DEFINITION 4 (Expected Logarithmic Convergence):

[...] The corresponding sequence of posteriors $\{\pi_i(\theta|x)\}_{i=1}^{\infty}$ is expected logarithmically convergent to $\pi(\theta|x)$ if

$$\lim_{i \to \infty} \int_X \kappa \left\{ \pi \left(\theta | x \right) | \pi_i \left(\theta | x \right) \right\} p_i \left(x \right) dx = 0 \tag{1}$$

where $p_{i}\left(x\right)=\int_{\Theta_{i}}f\left(x|\theta\right)\pi_{i}\left(\theta\right)d\theta$ (prior predictive distribution)

and $\kappa\left\{p|\tilde{p}\right\}=\int_{\Theta}p\left(\theta\right)\log\frac{p\left(\theta\right)}{\tilde{p}\left(\theta\right)}d\theta$ (Kullback-Leibler divergence)

DEFINITION 4 (Expected Logarithmic Convergence):

[...] The corresponding sequence of posteriors $\{\pi_i(\theta|x)\}_{i=1}^{\infty}$ is expected logarithmically convergent to $\pi(\theta|x)$ if

$$\lim_{i \to \infty} \int_X \kappa \left\{ \pi \left(\theta | x \right) | \pi_i \left(\theta | x \right) \right\} p_i \left(x \right) dx = 0 \tag{1}$$

where $p_{i}\left(x\right)=\int_{\Theta_{i}}f\left(x|\theta\right)\pi_{i}\left(\theta\right)d\theta$ (prior predictive distribution)

and $\kappa\left\{p|\tilde{p}\right\} = \int_{\Theta} p\left(\theta\right)\log\frac{p\left(\theta\right)}{\tilde{p}\left(\theta\right)}d\theta$ (Kullback-Leibler divergence)

The expectation in eq. (1) is needed to ensure consistency of the corresponding interval estimates

(K-L divergence was also covered in Chen Mingshen's presentation)

"MMI property" uses concept of missing information

DEFINITION 6 (Expected Information):

The information to be expected from one observation from Model $M \equiv \{f\left(x|\theta\right), \theta \in \Theta, x \in X\}$ with prior $q\left(\theta\right)$ is

$$I(q|M) = \int \int_{X \times \Theta} f(x|\theta) \, q(\theta) \log \frac{p(\theta|x)}{q(\theta)} dx d\theta$$

$$= \int_{X} \kappa \left\{ q(\theta) \, | \, p(\theta|x) \right\} p(x) \, dx$$
(3)

"MMI property" uses concept of missing information

DEFINITION 6 (Expected Information):

The information to be expected from one observation from Model $M \equiv \{f\left(x|\theta\right), \theta \in \Theta, x \in X\}$ with prior $q\left(\theta\right)$ is

$$I(q|M) = \int \int_{X \times \Theta} f(x|\theta) \, q(\theta) \log \frac{p(\theta|x)}{q(\theta)} dx d\theta$$

$$= \int_{Y} \kappa \left\{ q(\theta) \, | \, p(\theta|x) \right\} p(x) \, dx$$
(3)

- \rightarrow interpret as expected K-L divergence between prior and posterior distributions from one observation
- \rightarrow measure of information gain from one observation

Infinitely many observations $\{x_1,...,x_k\}$ $(k \to \infty)$ provide any missing information about the value of θ

 $ightarrow I\left(q|M^k
ight)$ is measure of missing information (as $k
ightarrow\infty$).

Infinitely many observations $\{x_1,...,x_k\}$ $(k \to \infty)$ provide any missing information about the value of θ

 $ightarrow I\left(q|M^k
ight)$ is measure of missing information (as $k
ightarrow\infty$).

DEFINITION 7 (Maximizing Missing Information):

The function $\pi\left(\theta\right)$ is said to have the MMI property for model M given P if, for any compact set $\Theta_{0}\in\Theta$ and any $p\in P$,

$$\lim_{k \to \infty} \left\{ I\left(\pi_0 | M^k\right) - I\left(p_0 | M^k\right) \right\} \ge 0 \tag{4}$$

where π_0 and p_0 are the normalized restrictions of π and p to Θ_0 .

Reference Prior

THEOREM 7 (Explicit Form):

Let $\pi^*(\theta)$ be strictly positive, continuous, s.t. posterior distribution $\pi^*(\theta|t_k) \propto f(t_k|\theta) \, \pi^*(\theta)$ is proper and consistent. For any interior point $\theta_0 \in \Theta$ define

$$f_{k}\left(heta
ight) =\exp\left\{ \int_{T_{k}}p\left(t_{k}| heta
ight) \log\left[\pi^{st}\left(heta|t_{k}
ight)
ight] dt_{k}
ight\}$$
 (5)

$$f(\theta) = \lim_{k \to \infty} \frac{f_k(\theta)}{f_k(\theta_0)} \tag{6}$$

Reference Prior

THEOREM 7 (Explicit Form):

Let $\pi^*(\theta)$ be strictly positive, continuous, s.t. posterior distribution $\pi^*(\theta|t_k) \propto f(t_k|\theta) \, \pi^*(\theta)$ is proper and consistent. For any interior point $\theta_0 \in \Theta$ define

$$f_{k}\left(\theta\right) = \exp\left\{\int_{T_{k}} p\left(t_{k}|\theta\right) \log\left[\pi^{*}\left(\theta|t_{k}\right)\right] dt_{k}\right\}$$
 (5)

$$f\left(\theta\right) = \lim_{k \to \infty} \frac{f_k\left(\theta\right)}{f_k\left(\theta_0\right)} \tag{6}$$

 $\pi\left(\theta\right)=f\left(\theta\right)$ is the reference prior for model M, if

- 1) $f_k(\theta)$ is continuous
- 2) $\{f_k^0(\theta)/f_k^0(\theta_0)\}$ monotonic in k or bounded above (in θ)
- 3) $\hat{f}(\theta)$ is permissible
- + authors describe routine for numerical computation of $\pi\left(\theta\right)$ on discrete points in parameter space

A C++ implementation (requires BOOST) of the described algorithm available from:

► https://github.com/HansN87/ReferencePriors

applied to example 10 - unif (θ, θ^2) :

$$f(x|\theta) = \frac{1}{\theta^2 - \theta}, \quad \theta < x < \theta^2, \quad \theta > 1 \tag{7}$$

$$\pi\left(\theta\right) \propto \frac{2\theta - 1}{\theta\left(\theta - 1\right)} \exp\left\{\psi\left(\frac{2\theta}{2\theta - 1}\right)\right\} \tag{8}$$

A C++ implementation (requires BOOST) of the described algorithm available from:

► https://github.com/HansN87/ReferencePriors

applied to example 10 - unif (θ, θ^2) :

$$f(x|\theta) = \frac{1}{\theta^2 - \theta}, \quad \theta < x < \theta^2, \quad \theta > 1 \tag{7}$$

$$\pi\left(\theta\right) \propto \frac{2\theta - 1}{\theta\left(\theta - 1\right)} \exp\left\{\psi\left(\frac{2\theta}{2\theta - 1}\right)\right\} \tag{8}$$

► https://github.com/HansN87/ReferencePriors

applied to example 11 - triangular distribution (no exact solution known):

$$f\left(x|\theta\right) = \begin{cases} \frac{2x}{\theta} & \text{for } 0 < x \leq \theta \\ & \text{and } 0 < \theta < 1 \end{cases} \tag{9}$$

$$\frac{2(1-x)}{1-\theta} & \text{for } \theta < x < 1$$

► https://github.com/HansN87/ReferencePriors

applied to example 11 - triangular distribution (no exact solution known):

$$f\left(x|\theta\right) = \begin{cases} \frac{2x}{\theta} & \text{for } 0 < x \le \theta \\ & \text{and } 0 < \theta < 1 \end{cases} \tag{9}$$

$$\frac{2(1-x)}{1-\theta} & \text{for } \theta < x < 1$$

Conclusion

- Reference priors offer objective Bayesian inference
- Based on concept of maximizing missing information
- Presented analytic formula + numerical algorithm ...
- ... that provide solutions even in non-regular cases
- Multivariate generalizations exist but appear more involved
- Check out [1] for more details

Thank you!