

LEQB/MEQB, 2024.25

Chemical and Biological Engineering Section, Department of Chemistry, FCT/NOVA

Isabel Esteves

Instructor - Filtration

- Prof. Isabel Esteves (TP, P2, P3)
 - Office 226 DQ/Lab 513 DQ
 - Email: i.esteves@fct.unl.pt

Book C&R J.M. Coulson and J.F. Richardson, Chemical Engineering, II Vol., 5^a Ed., 2002, Elsevier Butterworth-Heinemann

OSF-FCTUNL

Filtration 2/2

OSF-EQB-FCT NOVA-IE

63

Problema 2 _e

Filtra-se uma polpa, que contém 100 kg de cré (densidade 3000 kg/m³) por m³ de água, num filtro prensa de placas e caixilhos, que leva 15 min a desmontar, limpar e voltar a montar. Se o bolo de filtração for incompressível e tiver uma porosidade de 0.4, qual é a espessura óptima de bolo para uma t' pressão de filtração de 1000 kN/m²?

Se o bolo for lavado a 550.65 kN/m² e se o volume total de água de lavagem empregue for um quarto do filtrado, de que modo é afectada a espessura óptima do bolo?

Desprezar a resistência do meio filtrante e considerar a viscosidade da água igual a 1 cP. Num ensaio, uma pressão de 165 kN/m² produziu um caudal de água de 0.02 cm^3 /s através de um centímetro cúbico V de bolo (A=1 cm² e l=1 cm) de filtração.

Perguntas:

P

Q

Como calcular a espessura óptima do bolo no filtro prensa para uma dada pressão de filtração?

O que se pode calcular de imediato?

OSF-EQB-FCT NOVA-IE

Problema 2 – cálculo de r

General filtration equation

V (m³) - Volume of filtrate recovered over time t (s)

r= Cake specific resistance, m $^{-2}$

$$\frac{1}{A}\frac{dV}{dt} = \frac{(-\Delta P)}{r\mu l} \qquad \Rightarrow \qquad r = \frac{A(-\Delta P)}{\frac{dV}{dt}\mu l}$$

No ensaio, uma pressão de 165 kN/m^2 produziu um caudal de água de $0.02 \text{ cm}^3/\text{s}$ (= dV/dt) através de um centímetro cúbico de bolo (A=1 cm² e I=1 cm) de filtração. Logo,

$$(-\Delta P)_{ensaio} = 165 - 101.3 = 63.7 \text{ kN/m}^2$$

$$r = \frac{A(-\Delta P)}{\frac{dV}{dt}\mu l} = \frac{1 \times 63.7 \times 10^3}{0.02 \times 10^{-3} \times 1} 10^4 = 3.185 \times 10^{13} \text{ m}^{-2}$$

OSF-EQB-FCT NOVA-IE

6.5

Problema 2 – cálculo de J

 $\frac{J}{1-J} = \frac{\text{fração mássica de sólidos em suspensão}}{\text{fração mássica de água na suspensão}}$ $\frac{J}{1-J} = \frac{100 \text{ kg sólidos}}{1000 \text{ kg água}} = 0.1$

$$J = 0.0909 \frac{\text{kg solido}}{\text{kg susp}}$$

OSF-EQB-FCT NOVA-IE

Problema 2 – cálculo de v

Sabemos que V (volume de bolo/volume de filtrado) se relaciona com a porosidade do bolo (e), a concentração de sólidos em suspensão (J), e as massas específicas do sólido e do fluído, ρ_s e ρ .

$$v = \frac{J\rho}{(1-J)(1-e)\rho_s - Je\rho}$$

$$v = \frac{0.0909 \times 1000}{(1 - 0.0909)(1 - 0.4)3000 - 0.0909 \times 0.4 \times 1000}$$

$$v = 0.0568$$

 $(v/v \approx volume bolo/volume filtrado)$

OSF-EQB-FCT NOVA-IE

N VA

Problema 2

Plate and frame press filter cake Negligible filter resistance (L=0) $(-\Delta P)$ =constant $(2a_{frame}n)^2(-\Delta P)$ rμv $v = \frac{Al}{V} = \frac{cake \, volume}{filtrate \, volume}$

 $r\mu v$

t, s- duration of filtration t^{\prime} , s- stop time (unlock the press, remove each frame, remove the

 $Q = \frac{1}{t + t'}$ Average filtrate flowrate over the year

A espessura ótima do bolo obtém-se quando o fluxo de filtração é máximo.

Sugestões?

FCE

Plate and frame press filter

 $\begin{tabular}{ll} \textbf{Conclusion}: The filtration time should be set equal to the stop time t'; in this way the filtrate flowrate is maximised t'. The stop time t' is the stop time t' in this way the filtrate flowrate is maximised. The stop time t' is the stop time t' in this way the filtrate flowrate is maximised. The stop time t' is the stop time t' in this way the filtrate flowrate is maximised. The stop time t' is the stop time t' in this way the filtrate flowrate is maximised. The stop time t' is the stop time t' in this way the filtrate flowrate is maximised. The stop time t' is the stop time t' in this way the filtrate flowrate is maximised. The stop time t' is the stop time t' in this way the filtrate flowrate is maximised. The stop time t' is the stop time t' in this way the stop time t' is the stop time t' in this way the stop time t' is the stop time t' in this way the stop time t' is the stop time t' in this way the stop time t' is the stop time t' in this way the stop time t' is the stop time t' in this way the stop time t' is the stop time t' in this way the stop time t' is the stop time t' in this way the stop time t' is the stop time t' in the stop time t' in the stop time t' is the stop time t' in the stop time t' in the stop time t' is the stop time t' in the stop time t' in the stop time t' is the stop time t' in the stop time t' in the stop time t' is the stop time t' in the stop time t' in the stop time t' is the stop time t' in the stop time t' in the stop time t' is the stop time t' in the stop t$

OSF-EQB-FCT NOVA-IE

60

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Problema 2

Case 1. Incompressible filtration: $(-\Delta P)$

=constant

$$rac{dV}{dt} = rac{A^2(-\Delta P)}{r\mu vV}$$
 General filtration Eq. For incompressible cake

If the filtration equipment operates at constant $(-\Delta P)$

$$\int_0^V V dV = \frac{A^2(-\Delta P)}{r\mu v} \int_0^t dt$$

$$\frac{V^2}{2} = \frac{A^2(-\Delta P)}{r\mu v}t$$

Question: is the the filtrate flowrate $\frac{dV}{dt}$ = constant?

OSF-EQB-FCT NOVA-IE

Vejamos o que significa o ciclo ótimo de filtração...

Sabendo que

$$\frac{1}{A}\frac{dV}{dt} = \frac{(-\Delta P)}{r\mu l}$$

$$\frac{1}{A}\frac{dV}{dt} = \frac{(-\Delta P)}{r\mu l} \qquad v = \frac{Al}{V} \quad \Rightarrow \quad l = \frac{vV}{A}$$

então, se o filtro opera a pressão constante,

$$\frac{dV}{dt} = \frac{A^2(-\Delta P)}{r\mu vV} \Rightarrow \int_0^V V dV = \frac{A^2(-\Delta P)}{r\mu v} \int_0^t dt$$

$$\frac{V^2}{2} = \frac{A^2(-\Delta P)}{r\mu v}t$$

 $\frac{V^2}{2} = \frac{A^2(-\Delta P)}{ruv}t$ Notar que no nosso problema não conhecemos a área de filtração A!

Pergunta: Se a espessura ótima do bolo se obtém quando o fluxo de filtração é máximo, então como a calculamos?

OSF-EQB-FCT NOVA-IE

Nova school of Science & Technology

Vejamos o que significa o ciclo ótimo de filtração...

Se
$$\left[\frac{V^2}{2} = \frac{A^2(-\Delta P)}{r\mu v}t\right] \rightarrow V = Kt^{0.5}$$
, com $K = \left[\frac{2A^2(-\Delta P)}{r\mu v}\right]^{0.5}$, então

$$Q = \frac{V}{t + t'} = \frac{Kt^{0.5}}{t + t'}$$

$$y = u^{n}$$

$$y = u/v$$

$$y' = nu^{n-1}u'$$

$$y' = \frac{u'v - v'u}{v^{2}}$$

$$\frac{dQ}{dt} = 0 \quad \Rightarrow \quad 0.5 \cancel{k} t^{-0.5} (t + t') - \cancel{k} t^{0.5} = 0$$

$$\Rightarrow \quad 0.5 (t + t') = t^{0.5 + 0.5}$$

$$\Rightarrow \quad 0.5 t = 0.5 t'$$

$$\Rightarrow \quad t = t'$$

$$Q_{\text{max}}$$
 obtém-se quando $t = t'$

Ciclo ótimo de filtração

No nosso problema 2 vem: $t = t' = 15 \, \text{min} = 900 s$

OSF-EQB-FCT NOVA-IE

Pergunta: Se espessura ótima do bolo se obtém quando o fluxo de filtração é máximo, então como a calculamos?

$$\frac{V^2}{2} = \frac{A^2(-\Delta P)}{r\mu v}t$$

 $\frac{V^2}{2} = \frac{A^2(-\Delta P)}{ruv}t$ Notar que no nosso problema não conhecemos ... a área de filtração A e o volume de filtrado V!

Mas ...
$$\left(\frac{V}{A}\right)^2 = \frac{2(-\Delta P)t}{r\mu v} = \frac{2(1000 - 101.3)10^3 \times 900}{3.185 \times 10^{13} \times 10^{-3} \times 0.0568} = 0.894 \text{ m}^2$$

$$\frac{V}{A} = 0.945 \text{ m}$$
 $l = \frac{vV}{A}$ = 0.0568 × 0.945 = 0.05371 m

Espessura ótima de bolo no filtro prensa 2l = 107 mm

Problema 2 (cont.)

Filtra-se uma polpa, que contém 100 kg de cré (densidade 3000 kg/m³) por m³ de água, num filtro prensa de placas e caixilhos, que leva 15 min a desmontar, limpar e voltar a montar. Se o bolo de filtração for incompressível e tiver uma porosidade de 0.4, qual é a espessura óptima de bolo para uma pressão de filtração de 1000 kN/m²?

Se o bolo for lavado a 550.65 kN/m² e se o volume total de água de lavagem empregue for um quarto do filtrado, de que modo é afectada a espessura óptima do bolo?

Desprezar a resistência do meio filtrante e considerar a viscosidade da água igual a 1 cP. Num ensaio, uma pressão de 165 kN/m² produziu um caudal de água de 0.02 cm³/s através de um centímetro cúbico de bolo (A=1 cm² e l=1 cm) de filtração.

Pergunta:

Que efeito tem a lavagem na espessura ótima do bolo?

Na operação de lavagem completa $\left| \frac{dV_w}{dt_w} = \frac{1}{4} \frac{A(-\Delta P_w)}{r\mu l} \right|$ e no final da filtração $\left| \frac{dV}{dt} \right|_{t_{\text{final}}} = \frac{A(-\Delta P)}{r\mu l}$

$$\frac{dV_w}{dt_w} = \frac{1}{4} \frac{A(-\Delta P_w)}{r\mu l}$$

$$\left. \frac{dV}{dt} \right|_{t_{\text{final}}} = \frac{A(-\Delta P)}{r\mu l}$$

logo

$$(-\Delta P_w) = 550.65 - 101.3 = 449.35 \text{ kN/m}^2$$

$$\frac{dV_w}{dt_w} = \frac{1}{4} \frac{(-\Delta P_w)}{(-\Delta P)} \frac{A(-\Delta P)}{r\mu l} \quad \Rightarrow \quad \frac{dV_w}{dt_w} = \frac{1}{4} \frac{(-\Delta P_w)}{(-\Delta P)} \frac{dV}{dt} \bigg|_{t_{\text{final}}} \qquad (-\Delta P) = 1000 - 101.3 = 898.7 \text{ kN/m}^2$$

$$\Rightarrow \frac{dV_w}{dt_w} = \frac{1}{4} \frac{449.35}{898.7} \frac{dV}{dt} \bigg|_{t_{\text{final}}} \Rightarrow \frac{dV_w}{dt_w} = 0.125 \frac{dV}{dt} \bigg|_{t_{\text{final}}} = \text{constante}$$

$$\Rightarrow \quad \frac{V_w}{t_w} = \frac{1}{8} \frac{A(-\Delta P)}{r\mu l}$$

$$\Rightarrow \quad \frac{V_w}{t_w} = \frac{1}{8} \frac{A(-\Delta P)}{r\mu l} \quad \text{e} \quad v = \frac{Al}{V} \quad \Rightarrow \quad l = \frac{vV}{A}$$

$$\Rightarrow \quad \frac{V_w}{t_w} = \frac{1}{8} \frac{A^2(-\Delta P)}{r\mu vV}$$

OSF-EQB-FCT NOVA-IE

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Problema 2

Plate and frame press filter FCL

". "Complete" washing flowrate 4x slower

antes de resolver o problema 2, vamos deduzir...

No nosso problema, como $V_{w} = \frac{V}{4} \quad e \quad \frac{V_{w}}{t_{w}} = \frac{1}{8} \frac{A^{2}(-\Delta P)}{r \mu v V} \quad \Rightarrow \quad V_{w}^{2} = \frac{1}{32} \frac{A^{2}(-\Delta P)}{r \mu v} t_{w}$ Considerando $\frac{V^{2}}{2} = \frac{A^{2}(-\Delta P)}{r \mu v} t \quad , \text{ vem}$ $\frac{(4V_{w})^{2}}{2} = \frac{A^{2}(-\Delta P)}{r \mu v} t \quad \Rightarrow \quad V_{w}^{2} = \frac{1}{8} \frac{A^{2}(-\Delta P)}{r \mu v} t$ e logo $\frac{1}{32} \frac{A^{2}(-\Delta P)}{\mu v} t_{w} = \frac{1}{8} \frac{A^{2}(-\Delta P)}{r \mu v} t \quad \Rightarrow \quad t_{w} = 4t$ $t_{ciclo} = t + t_{w} + t_{paragem} = 5t + 900 \text{ s}$

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Problema 2

Como
$$Q = \frac{V}{t_{ciclo}}$$
 e $V = Kt^{0.5}$, com $K = \left[\frac{2A^2(-\Delta P)}{r\mu v}\right]^{0.5}$, vem $Q = \frac{Kt^{0.5}}{900 + 5t}$ e

$$\frac{dQ}{dt} = 0 \quad \Rightarrow \quad 0.5Kt^{-0.5}(900 + 5t) - 5Kt^{0.5} = 0$$

$$\Rightarrow \quad 0.5(900 + 5t) = 5t^{0.5 + 0.5}$$

$$\Rightarrow \quad t = 180 \text{ s}$$

Finalmente
$$\left(\frac{V}{A}\right)^2 = \frac{2(-\Delta P)t}{r\mu v} = \frac{2 \times 898.7 \times 10^3 \times 180}{3.185 \times 10^{13} \times 10^{-3} \times 0.0568} = 0.1788 \text{ m}^2$$

$$\frac{V}{A} = 0.4228 \text{ m}$$
 $l = \frac{vV}{A}$ $= 0.0568 \times 0.4228$

Espessura bolo no filtro prensa

$$2l = 48 \text{ mm}$$

OSF-EQB-FCT NOVA-IE

81

Problema 4

Na filtração de uma certa lama num filtro prensa de pratos e caixilhos, o período inicial efectua-se a caudal constante com a bomba de alimentação à capacidade máxima até que a pressão atinge $400 \, \mathrm{kN/m^2}$. Mantém-se depois a pressão neste último valor durante o resto da filtração.

O funcionamento a caudal constante demora 15 minutos e obtém-se um terço da totalidade de filtrado durante este período.

Desprezando a resistência do meio filtrante, determine:

- (a) o tempo total de filtração; e o tempo de ciclo de filtração se o tempo para remover o bolo e voltar a montar a prensa for de 20 minutos;
- (b) o tempo de ciclo de filtração com a bomba existente para a máxima capacidade diária, se o tempo para remover o bolo e voltar a montar a prensa for de 20 minutos. Não se lava o bolo.

OSF-EQB-FCT NOVA-II

Na filtração de uma certa lama num filtro prensa de pratos e caixilhos, o período inicial efectua-se a caudal constante com a bomba de alimentação à capacidade máxima até que a pressão atinge 400 kN/m². Mantém-se depois a pressão neste último valor durante o resto da filtração. O funcionamento a caudal constante demora 15 minutos e obtém-se um terço da totalidade de filtrado durante este período. Desprezando a resistência do meio filtrante, determine:

(a) o tempo total de filtração; e o tempo de ciclo de filtração se o tempo para remover o bolo e voltar a montar a prensa for de 20 minutos.

Como
$$\frac{V^2}{2} = \frac{A^2(-\Delta P)}{r\mu v}t$$
, então $V^2 - V_1^2 = \frac{2A^2(-\Delta P)}{r\mu v}(t - t_1)$ Após a filtração durante t_1 a caudal constante e volume V_1 obtido, seguese o período t - t_1 a pressão constante e

Após a filtração durante t_1 a caudal com volume total filtrado V

assumindo bolo incompressível e sem resistência do meio filtrante.

OSF-EQB-FCT NOVA-IE

Problema 4

A) Para o período inicial (1) a caudal constante,

Case 2. Incompressible filtration: flow
$$rate = dV/dt = constant$$

$$rac{dV}{dt} = rac{A^2(-\Delta P)}{r \mu
u V}$$
 General filtration Eq. For incompressible cake

If the flowrate is contant then $\frac{dV}{dt} = \frac{V}{t} = constant$

$$\frac{V}{t} = \frac{A^2(-\Delta F)}{r\mu v}$$

FCŁ

$$V^2 = \frac{A^2(-\Delta P)}{r\mu v}t$$

$$\frac{dV}{dt} = \frac{V}{t} = constante$$

$$V_1^2 = \frac{A^2(-\Delta P)}{r\mu v}t_1 \implies t_1 = \frac{r\mu v}{A^2(-\Delta P)}V_1^2 = 15 \times 60$$

$$\frac{r\mu v}{A^2(-\Delta P)} = \frac{900}{V_1^2}$$

B) Para o período (2) a pressão constante, não há lavagem e $\begin{cases} V_1 = V/3 \rightarrow V = 3V_1 \\ t - t_1 \end{cases}$, donde de A) e B) vem

Case 1. Incompressible filtration: $(-\Delta P)$ = constant $\frac{dV}{dt} = \frac{A^2(-\Delta P)}{r\mu vV}$ General filtration Eq. For incompressible cake

If the filtration equipment operates at constant
$$(-\Delta P)$$

$$\int_0^V V dV = \frac{A^2(-\Delta P)}{r\mu v} \int_0^t dt$$
$$\frac{V^2}{2} = \frac{A^2(-\Delta P)}{r\mu v} t$$

$$V^{2} - V_{1}^{2} = \frac{2A^{2}(-\Delta P)}{r\mu v}(t - t_{1})$$

$$(3V_1)^2 - V_1^2 = \frac{2A^2(-\Delta P)}{r\mu\nu}(t - t_1) \Rightarrow 8V_1^2 = \frac{2V_1^2}{900}(t - t_1)$$

$$\Rightarrow (t - t_1) = 900 \times 4$$

$$= \frac{2V_1^2}{900}$$

$$= 3600 \text{ s}$$

Tempo total de filtração =
$$900 + 3600 = 4500$$
 s

Tempo total de ciclo =
$$4500 + 20 \times 60 = 5700 \text{ s}$$

OSF-EQB-FCT NOVA-IE

81

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Problema 4

Na filtração de uma certa lama num filtro prensa de pratos e caixilhos, o período inicial efectua-se a caudal constante com a bomba de alimentação à capacidade máxima até que a pressão atinge $400~\rm kN/m^2$. Mantém-se depois a pressão neste último valor durante o resto da filtração. O funcionamento a caudal constante demora 15 minutos e obtém-se um terço da totalidade de filtrado durante este período. Desprezando a resistência do meio filtrante, determine:

(b) o tempo de ciclo de filtração com a bomba existente para a máxima capacidade diária, se o tempo para remover o bolo e voltar a montar a prensa for de 20 minutos. Não se lava o bolo.

No período de caudal constante,
$$V_1^2 = \frac{A^2(-\Delta P)}{r\mu v}t_1 \implies t_1 = \underbrace{\frac{r\mu v}{A^2(-\Delta P)}}_{1/V}V_1^2 \Rightarrow \underbrace{t_1 = \frac{V_1^2}{K}}_{1/V}$$

No período de pressão constante,
$$t - t_1 = \frac{r\mu v}{2A^2(-\Delta P)}(V^2 - V_1^2) = \frac{V^2 - V_1^2}{2K}$$

$$\Rightarrow t = \frac{V^2 - V_1^2}{2K} + t_1 = \frac{V^2 - V_1^2}{2K} + \frac{V_1^2}{K} = \frac{V^2 + V_1^2}{2K}$$

OSF-FOR-FCT NOVA-IF

Como
$$\Rightarrow t = \frac{V^2 + V_1^2}{2K}$$
, o caudal de filtração vem $Q = \frac{V}{t + t_d} = \frac{2KV}{V^2 + V_1^2 + 2Kt_d}$

Para o caudal máximo de filtração,

 V_1 obtido, seguido de período t - t_1 a pressão constante e com volume total filtrado V

$$\frac{dQ}{dV} = 0 \quad \Rightarrow \quad \frac{2K(V^2 + V_1^2 + 2Kt_d) - 2V \times 2KV}{(V^2 + V_1^2 + 2Kt_d)^2} = 0$$

$$\Rightarrow \quad V^2 + V_1^2 + 2Kt_d - 2V^2 = 0$$

$$\begin{cases}
K = \frac{A^2(-\Delta P)}{r\mu v} \\
V^2 - V_1^2 = \frac{2A^2(-\Delta P)}{r\mu v}(t - t_1)
\end{cases}$$

$$\Rightarrow V^2 + V_1^2 + 2Kt_d - 2V^2 = 0$$

$$\Rightarrow t_d = \frac{V^2 - V_1^2}{2K} = t - t_1 \Rightarrow 20 \times 60 = t - 900$$
Filtração durante t_1 a caudal constante e volume
$$\Rightarrow t = 2100 \text{ s}$$

Tempo de ciclo = $2100 + 20 \times 60 = 3300 \text{ s} = 55 \text{ min}$