Exercice 1: Intégration

1. (a) On remarque que f est dérivable comme quotient d'applications dérivables dont le dénominateur ne s'annule pas. De plus,

$$\forall x \in [1, +\infty[, f'(x) = \frac{e^t t - e^t}{t^2} = \frac{e^t}{t^2}(t - 1)$$

Ainsi, $\forall x > 1$, f'(x) > 0, donc f est strictement croissante.

(b) Soit $n \in \mathbb{N}^*$ et $t \in [n, n+1]$, d'après la croissance précédemment établie, $f(n) \le f(t) \le f(n+1)$. Comme l'intégrale est croissante, on en déduit $\int_n^{n+1} f(n) dt \le \int_n^{n+1} f(t) dt \le \int_n^{n+1} f(n+1) dt$, soit encore

$$f(n) \le \int_{n}^{n+1} f(t)dt \le f(n+1)$$

ce qui donne le résultat attendu.

- (c) Soit $n \in \mathbb{N}^*$. Comme l'intervalle [n,n+1] est de longueur 1, $\int_n^{n+1} f(t)dt$ représente la valeur moyenne de f sur [n,n+1], on sait d'après la continuité de f que cette valeur moyenne appartient à f([n,n+1]) (c'est une conséquence du TVI). Ceci prouve l'existence. Or d'après la question 1.a), f est strictement croissante, donc injective. Par conséquent, il y a unicité.
- 2. (a) D'après la définition de $(u_n)_{n\in\mathbb{N}^*}$, $\forall n\in\mathbb{N}^*$, $n\leq u_n\leq n+1$. Or $n+1\sim n$ quand n tend vers $+\infty$. Par théorème d'encadrement, $u_n\sim n$ quand n tend vers $+\infty$.
 - (b) Soit $t \in [n, n+1]$, comme la fonction inverse est décroissante sur \mathbb{R}_+^* , on en déduit $\frac{1}{n+1} \le \frac{1}{t} \le \frac{1}{n}$. Comme $e^t/t \ge 0$, on en déduit $\frac{1}{n+1} \frac{e^t}{t} \le \frac{e^t}{t^2} \le \frac{1}{n} \frac{e^t}{t}$. Comme l'intégrale est croissante, cela entraîne

$$\frac{1}{n+1}\int_n^{n+1}\frac{e^t}{t}dt \leq \int_n^{n+1}\frac{e^t}{t^2}dt \leq \frac{1}{n}\int_n^{n+1}\frac{e^t}{t}dt$$

Comme $1/n \xrightarrow[n \to +\infty]{} 0$, on obtient bien

$$\int_{n}^{n+1} \frac{e^{t}}{t^{2}} dt = o\left(\int_{n}^{n+1} \frac{e^{t}}{t} dt\right)$$

quand *n* tend vers $+\infty$.

(c) Soit $n \in \mathbb{N}^*$. Comme les fonctions $t \mapsto e^t$ et $t \mapsto 1/t$ sont de classe C^1 sur [n, n+1], on peut appliquer une intégration par parties, ce qui entraîne

$$\int_{0}^{n+1} \frac{e^{t}}{t} dt = \left[\frac{e^{t}}{t} \right]_{0}^{n+1} - \int_{0}^{n+1} \frac{-e^{t}}{t^{2}} dt = \frac{e^{n+1}}{n+1} - \frac{e^{n}}{n} + \int_{0}^{n+1} \frac{e^{t}}{t^{2}} dt$$

Quand n tend vers $+\infty$, le résultat 2.b) assure que

$$\int_{n}^{n+1} \frac{e^{t}}{t} dt = \frac{e^{n}}{n} \left(e^{\frac{n}{n+1}} - 1 \right) + o \left(\int_{n}^{n+1} \frac{e^{t}}{t} dt \right)$$

Par conséquent,

$$\int_{0}^{n+1} \frac{e^{t}}{t} dt \sim \frac{e^{n}}{n} \left(e \frac{n}{n+1} - 1 \right) \sim \frac{e^{n}}{n} (e-1)$$

On en déduit d'après la définition de u_n que $\frac{e^{u_n}}{u_n} \sim \frac{e^n}{n}(e-1)$. Or $u_n \sim n$ d'après 2.a), donc $e^{u_n-n} \sim e-1$. Comme $e-1 \neq 1$, on peut passer au logarithme dans l'équivalent, ce qui donne $u_n-n \sim \ln(e-1)$, i.e $u_n-n \xrightarrow[n \to +\infty]{} \ln(e-1)$.

Exercice 2: Algèbre linéaire

- 1. Montrons que la famille (a,b) est libre. Soit λ,μ deux réels tels que $\lambda a + \mu b = 0$. Alors la première composante de ce vecteur de \mathbb{R}^4 vaut $\lambda \times 0 + \mu \times 3 = 0$, ce qui entraîne $\mu = 0$. La seconde composante implique alors $\lambda \times 6 + 0 \times 3 = 0$, soit $\lambda = 0$. D'autre part, la famille est génératrice de F d'après la définition de F. Conclusion, c'est une base de F, donc dim(F) = 2.
- 2. Montrons que la famille (u, v, w) est libre. Soit λ, μ, ν trois réels tels que $\lambda u + \mu v + \nu w = 0$. On l'écrit sous forme de système linéaire

$$\begin{cases} \lambda + \mu &= 0 \\ -\mu + 2\nu &= 0 \\ \nu &= 0 \\ \mu &= 0 \end{cases}$$

La quatrième ligne entraîne $\mu=0$, donc la première implique $\lambda=0$. Au final, $(\lambda,\mu,\nu)=(0,0,0)$. D'autre part, (u,v,w) est génératrice de G, donc c'est une base de G et dim(G) = 3.

3. Il s'agit d'un calcul direct

$$2v + w = (2 \times 1 + 0, 2 \times (-1) + 2, 2 \times 0 + 1, 2 \times 1 + 0) = (2, 0, 1, 2)$$

$$\frac{1}{3}(2b-a) = \frac{1}{3}(2\times3-0,2\times3-6,2\times1+1,2\times5-4) = \frac{1}{3}(6,0,3,6) = (2,0,1,2)$$

4. On note $\varphi : \mathbb{R}^4 \to \mathbb{R}$, $(x, y, z, t) \mapsto -y + 2z - t$. C'est une forme linéaire non nulle puisque $\varphi(0, 1, 0, 0) = -1 \neq 0$. Elle vérifie

$$\varphi(u) = 0$$
, $\varphi(v) = 1 + 0 - 1 = 0$, $\varphi(w) = -2 + 2 - 0 = 0$

Ainsi, $G \subset \ker(\varphi)$. Or $\dim(G) = 3$ d'après 1. et $\dim(\ker(\varphi)) = 3$ puisque φ est une forme linéaire non nulle. Il y a donc égalité $G = \ker(\varphi)$. Enfin, $\varphi(a) = -12$, donc $a \notin \ker(\varphi)$, d'où $a \notin G$.

- 5. Comme $H \subset F$, $\dim(H) \le \dim(F) = 2$. Toutefois, $a \notin H$ d'après ce qui précède, donc $H \ne F$ et $\dim(H) \le 1$. Enfin, $2v + w = \frac{1}{3}(2b a) \in H$, donc H n'est pas réduit à $\{0\}$ et $\dim(H) = 1$.
- 6. D'après la formule de Grassmann, $\dim(F+G) = \dim F + \dim G \dim(F\cap G) = 2+3-1=4$.
- 7. Comme $F + G \subset \mathbb{R}^4$ et $\dim(F + G) = 4 = \dim(\mathbb{R}^4)$, il y a égalité $F + G = \mathbb{R}^4$. Toutefois, $F \cap G = H$ n'est pas réduit à $\{0\}$, donc F et G ne sont pas en somme directe.

Problème: Opérateur de moyenne intégrale

- 1. (a) Soit $x \in [0,1]$. On distingue deux cas
 - Si x = 0, alors $\int_0^1 f(ux)du = \int_0^1 f(0)du = f(0) = [T(f)](0)$.
 - Si $x \neq 0$, alors on effectue le changement de variable t = ux, ce qui donne dt = xdu et

$$[T(f)](x) = \frac{1}{x} \int_0^1 f(ux)x du = \int_0^1 f(ux) du$$

On a bien l'égalité attendue dans tous les cas.

(b) Soit $(x, y) \in [0, 1]^2$. D'après ce qui précède, par linéarité de l'intégrale,

$$[T(f)](x) - [T(f)](y) = \int_0^1 (f(ux) - f(uy)) du$$

On en déduit par inégalité triangulaire,

$$|[T(f)](x) - [T(f)](y)| = \left| \int_0^1 (f(ux) - f(uy)) du \right| \le \int_0^1 |f(ux) - f(uy)| du$$

(c) Soit $\varepsilon > 0$, comme f est continue sur [0,1], elle y est uniformément continue, donc il existe un réel $\delta > 0$ tel que

$$\forall (s,t) \in [0,1]^2, |s-t| \le \delta \Rightarrow |f(s)-f(t)| \le \varepsilon$$

Soit $(x,y) \in [0,1]^2$ tel que $|x-y| \le \delta$. Alors pour tout réel u dans [0,1], $|ux-uy| = |u||x-y| \le |x-y| \le \delta$. On en déduit que

$$\forall u \in [0,1], |f(ux) - f(uy)| \le \varepsilon$$

D'après ce qui précède, on en déduit, par croissance de l'intégrale,

$$|[\mathsf{T}(f)](x) - [\mathsf{T}(f)](y)| \le \int_0^1 \varepsilon du = \varepsilon$$

Récapitulons, pour tout $\varepsilon > 0$, on dispose d'un réel $\delta > 0$ tel que pour tous réels x,y, dans $[0,1], |x-y| \le \delta$ implique $|[\mathsf{T}(f)](x) - [\mathsf{T}(f)](y)| \le \varepsilon$. On a donc prouvé l'uniforme continuité de $\mathsf{T}(f)$, donc sa continuité.

Page Remarque

On peut faire beaucoup plus simple pour prouver la continuité de T(f). Elle est de classe C^1 sur]0,1], donc continue sur]0,1]. En utilisant le développement limité $T(f)(x) = \frac{0+f(0)x+o(x)}{x} = f(0)+o(1)$, on a directement sa continuité en 0.

2. (a) Soit $(f,g) \in \mathcal{C}^2$, $(\lambda,\mu) \in \mathbb{R}^2$ et $x \in [0,1]$. Alors — Si x = 0,

$$T(\lambda f + \mu g)(0) = (\lambda f + \mu g)(0) = \lambda f(0) + \mu g(0) = \lambda T(f)(0) + \mu T(g)(0)$$

— Si $x \in]0,1]$, par linéairité de l'intégrale,

$$T(\lambda f + \mu g)(x) = \frac{1}{x} \int_0^x (\lambda f + \mu g)(t) dt = \lambda \frac{1}{x} \int_0^x f(t) dt + \mu \frac{1}{x} \int_0^x g(t) dt = \lambda T(f)(x) + \mu T(g)(x)$$

On vient de vérifier que pour tout réel x dans [0,1], $T(\lambda f + \mu g)(x) = \lambda T(f)(x) + \mu T(g)(x)$, donc l'égalité d'applications $T(\lambda f + \mu g) = \lambda T(f) + \mu T(g)$. Ainsi, l'opérateur T est linéaire.

- (b) Soit $f \in \ker(T)$. Alors $\forall x \in]0,1]$, $\frac{1}{x} \int_0^x f(t) dt = 0$, donc $\forall x \in]0,1]$, $\int_0^x f(t) dt = 0$. Si l'on note F la primitive de f qui s'annule en 0, ce qui précède montre que $\forall x \in]0,1]$, F(x)=0. On en déduit $\forall x \in [0,1]$, F(x)=0. Ainsi, F est dérivable et $\forall x \in [0,1]$, F'(x)=0. D'après le théorème fondamental du calcul intégral, F'=f, donc f est l'application nulle de [0,1] dans \mathbb{R} . Conclusion, $\ker(T)=\{0\}$. En particulier, T est injective.
- (c) La réponse est négative. Pour cela on remarque que pour tout f dans C, T(f) est de classe C^1 sur]0,1]. Or il existe des fonctions continues sur [0,1] qui ne sont pas de classe C^1 sur]0,1, par exemple $x \mapsto |x-1/2|$.
- 3. (a) L'opérateur de dérivation D est linéaire. Comme [0,1] est un intervalle, $E = \ker(D)$, donc E est un sev de C. L'opérateur $Z: f \mapsto f(0)$ d'évaluation en D est linéaire, donc D est un sev de D.
 - (b) Montrons cela par une méthode d'analyse/synthèse. Soit $f \in \mathcal{C}$. Phase d'analyse : soit $(g,h) \in E \times F$ tel que f = g+h. Alors f(0) = g(0)+h(0). Comme $h \in F$, f(0) = g(0). Comme g est constante, g = f(0) (la fonction constante égale à f(0)). On en déduit h = f f(0). Cette phase d'analyse montre l'unicité sous réserve d'existence. Phase de synthèse : On pose g = f(0) la fonction constante à f(0) et h = f g. Alors g est continue et constante, h est continue et nulle en h0. Enfin, h1 est conclusion, toute fonction h2 admet une unique décomposition dans h3 E + F, ces sev sont donc supplémentaires dans h2, i.e h3 E h4.
 - (c) D'après le travail précédent, $p: f \mapsto f(0)$ la fonction constante égale à f(0) et $q = \mathrm{id}_{\mathcal{C}} p: f \mapsto f f(0)$.
 - (d) Soit $f \in E$, alors f est constante à f(0). Soit $x \in [0,1]$, alors

$$T(f)(x) = \frac{1}{x} \int_0^x f(t)dt = \frac{1}{x} \int_0^x f(0)dt = \frac{f(0)x}{x} = f(0)$$

De plus, T(f)(0) = f(0). Par conséquent, T(f) est bien constante (égale à f(0)), i.e $T(f) \in E$. Soit $f \in F$. Alors f(0) = 0. D'après la définition de T(f), T(f)(0) = f(0) = 0. Par conséquent, $T(f) \in F$.

(e) Soit $f \in \mathcal{C}$. Alors p(f) = f(0) est la fonction constante égale à f(0). D'après le travail fait précédemment, Tf est alors encore la fonction constante égale à f(0), i.e T(p(f)) = f(0). D'autre part, p(T(f)) est la fonction constante à égale à T(f)(0). D'après la définition de T(f), T(f)(0) = f(0), donc p(T(f)) = f(0) la fonction constante égale à f(0). Ainsi, T(p(f)) = p(T(f)). Par conséquent, $T \circ p = p \circ T$. Comme id $_{\mathcal{C}}$ commute avec T, on en déduit

$$T \circ q = T \circ (id_{\mathcal{C}} - p) = T - T \circ p = T - p \circ T = (id_{\mathcal{C}} - p) \circ T = q \circ T$$

- 4. Soit $\lambda \in \mathbb{R}$.
 - (a) Si $\lambda = 0$, il s'agit de l'application nulle. Supposons $\lambda \neq 0$. Soit $g:]0,1] \to \mathbb{R}$ dérivable. g vérifie cette équation différentielle si et seulement si

$$\forall x \in]0,1], g'(x) = \frac{\frac{1}{\lambda} - 1}{x}g(x)$$

Or $x \mapsto (\frac{1}{\lambda} - 1)\ln(x)$ est une primitive de $x \mapsto \frac{\frac{1}{\lambda} - 1}{x}$. On en déduit que g est solution si et seulement si

$$\exists k \in \mathbb{R}, \forall x \in]0,1], g(x) = k \exp\left(\left(\frac{1}{\lambda} - 1\right) \ln(x)\right) = kx^{\frac{1}{\lambda} - 1}$$

(b) Soit $f \in \ker(T - \lambda Id_{\mathcal{C}})$. Si $\lambda = 0$, on a vu que $\ker(T) = \{0\}$. Supposons $\lambda \neq 0$. Alors en particulier, $\forall x \in]0,1]$, $\lambda f(x) = \frac{1}{x} \int_0^x f(t) dt$. D'après le théorème fondamental de l'intégration, f est alors C^1 sur [0,1], donc dérivable sur [0,1] et on obtient en dérivant,

$$\forall x \in]0,1], \lambda f'(x) = \frac{f(x)}{x} - \frac{1}{x^2} \int_0^x f(t) dt = \frac{f(x)}{x} - \lambda \frac{f(x)}{x}$$

On en déduit que f satisfait l'équation différentielle

$$\forall x \in]0,1], \lambda x f'(x) + (\lambda - 1)f(x) = 0$$

D'après le travail précédent, il existe alors un réel k tel que $\forall x \in]0,1]$, $f(x)=kx^{\frac{1}{\lambda}-1}$. On sait toutefois que f est continue en 0. Si k est non nul, on en déduit que $\frac{1}{\lambda}-1 \geq 0$, i.e $0 < \lambda \leq 1$. Par conséquent, si $\lambda \in]-\infty,0] \cup]1,+\infty[$, f=0. Enfin, si $\lambda \in]0,1]$, $\forall k \in \mathbb{R}$, la fonction $g_k: x \mapsto kx^{\frac{1}{\lambda}-1}$ est bien continue. En remontant tous les calculs précédents, elle vérifie $\forall x \in]0,1]$, $T(g_k)(x)=\lambda g_k(x)$. Enfin, $T(g_k)(0)=g_k(0)=0=\lambda g_k(0)$. Ainsi, $T(g_k)=\lambda g_k$ et $g_k \in \ker(T-\lambda \operatorname{id}_{\mathcal{C}})$. Récapitulons,

- Si $\lambda \in]-\infty,0]\cup]1,+\infty[$, $\ker(T-\lambda Id_{\mathcal{C}})=\{0\}$.
- Si $\lambda \in]0,1]$, $\ker(T \lambda Id_{\mathcal{C}}) = \operatorname{Vect}(x \mapsto x^{\frac{1}{\lambda}-1})$. On remarque en particulier qu'il s'agit d'un espace vectoriel de dimension 1.
- 5. (a) Soit $n \in \mathbb{N}^*$, $x \in [0, 1]$,

$$T^{n}(f)(x) - f(0) = (T^{n}(f)(x) - T^{n}(P)(x)) + (T^{n}(P)(x) - P(0)) + (P(0) - f(0))$$

On en déduit via l'inégalité triangulaire,

$$|T^n(f)(x) - f(0)| \le |T^n(f)(x) - T^n(P)(x)| + |T^n(P)(x) - P(0)| + |P(0) - f(0)|$$

D'après l'inégalité vérifiée par P, $|f(0) - P(0)| \le \varepsilon$. D'autre part, d'après la linéarité de T et les propriétés de l'intégrale,

$$|\mathsf{T}(f)(x)-\mathsf{T}(\mathsf{P})(x)|=|\mathsf{T}^n(f-\mathsf{P})(x)|=\left|\int_0^1(f(ux)-\mathsf{P}(ux))du\right|\leq \int_0^1|f(ux)-\mathsf{P}(ux)|du\leq \int_0^1\varepsilon du=\varepsilon$$

On en déduit par récurrence que $|T^n(f)(x) - T^n(P)(x)| \le \varepsilon$. En conclusion,

$$|T^n(f)(x) - f(0)| \le |T^n(P)(x) - P(0)| + 2\varepsilon$$

(b) Soit $k \in \mathbb{N}$. On identifie abusivement X^k et la fonction polynomiale associée, ce qui donne $T(X^k) = \frac{X^k}{k+1}$. Par récurrence, on en déduit $T^n(X^k) = \frac{X^k}{(k+1)^n}$. On note alors $P = \sum_{k=0}^N a_k X^k$. Par linéarité de T^n , $T^n(P) = \sum_{k=0}^N \frac{a_k}{(k+1)^n} X^k$, donc $T^n(P) - P(0) = \sum_{k=1}^N \frac{a_k}{(k+1)^n} X^k$. On en déduit alors que

$$\forall x \in [0,1], |T^n(P)(x) - P(0)| \le \sum_{k=1}^N \frac{|a_k|}{(k+1)^n} \le \frac{1}{2^n} \sum_{n=1}^N |a_k|$$

Or la suite $(2^{-n})_{n\in\mathbb{N}}$ est convergente de limite nulle, donc il existe entier N' tel que

$$\forall n \ge N', \frac{1}{2^n} \sum_{n=1}^N |a_k| \le \varepsilon$$

On en déduit que

$$\forall n \ge N', \forall x \in [0,1], |T^n(f)(x) - f(0)| \le |T^n(P)(x) - P(0)| + 2\varepsilon \le 3\varepsilon$$

Autrement dit, la suite $(T^n(f)(x))_{n\in\mathbb{N}}$ est convergente de limite f(0).

On a même prouvé que cette convergence « ne dépend pas » du réel x dans [0,1]. On dit que la convergence est uniforme. En langage topologique, on prouvé que la suite d'applications linéaires $(T^n)_{n\in\mathbb{N}}$ converge uniformément vers le projecteur p.