Knowledge Share

Privolin Naidoo

November 2017

Contents

- Overview
- History of Neural Networks
- Why use Neural Networks
- Perceptron
- Feed-Forward Neural Networks
- Training and Visualizing Neural Networks

Overview

- Neural Networks are a machine learning technique modelled around the human brain.
- Specifically the neurons in the brain.
- It is used for a variety of tasks:
 - Image Processing
 - Speech Recognition
 - Machine Translation
 - Medical Diagnosis
 - 'Artificial Intelligence'
 - Prediction, Classification, Regression, etc.

Brief History of Neural Networks

- Neural Networks have a unique history.
- They have been around since the 1950's
- When they were initially introduced, they were immediately popular, but fell away shortly after.
- Decades after its creation, Neural networks are now one of the most popular machine learning algorithms being used in the world today.

Perceptrons/Artificial Neurons

- These are the building blocks of the neural network.
- Modelled on the neurons in our brain.

Perceptrons/Artificial Neurons

Activation Functions

- The activation functions are simple calculations which are used to transform the inputs.
- These are loosely modelled on what researchers think our neurons do.
- One of the reasons of using simple functions, is that we also require their derivatives during training.
- Examples of Activation Functions
 - Rectifier Linear Unit (ReLU)
 - tanh (hyperbolic tangent function)
 - sigmoid
 - Linear Function

Activation Functions

Activation functions

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU)[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Topology of the FF Neural Network

"Non-deep" feedforward neural network

input layer output layer

Deep neural network

Feed Forward Neural Networks

Input Layer

 Stream of input features, each node represents a different feature

Hidden Layer

- A layer of Perceptrons
- Outputs of a hidden layer perceptrons are inputs for the next layer

Output Layer

- Final layer of perceptrons in the network.
- Nodes represents the different classes or objectives of the neural Network

Training FF Neural Networks

- The weights of the inputs to each layer are being estimated/trained.
- Regularization inputs to each layer, to avoid overfitting.
- Uses Gradient Descent in the training process on output layer
- Back propagates the changes in weight using output of gradient descent.

Training and Visualising Neural Networks

playground.tensorflow.org/

R Implementation of a FF Neural Network

github.com/Privolin/Neural_Networks_R