World Happiess Score Prediction ¶

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LinearRegression
import pickle as pkl
from sklearn.metrics import mean_squared_error, r2_score

In [58]: df = pd.read_csv('happiness_score_dataset.csv')

In [59]: df.head()

Out[59]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	(GDP per Capita)	Family	Health (Life Expectancy)	Freedom	(Gr C
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	
4										•

In [60]: df.tail()

Out[60]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	(GDP per Capita)	Family	Health (Life Expectancy)	Freedom	(Gc C
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.59201	
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.48450	
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.15684	
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.11850	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.36453	
4										•

In [61]: df.shape

Out[61]: (158, 12)

In [62]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Country	158 non-null	object
1	Region	158 non-null	object
2	Happiness Rank	158 non-null	int64
3	Happiness Score	158 non-null	float64
4	Standard Error	158 non-null	float64
5	Economy (GDP per Capita)	158 non-null	float64
6	Family	158 non-null	float64
7	Health (Life Expectancy)	158 non-null	float64
8	Freedom	158 non-null	float64
9	Trust (Government Corruption)	158 non-null	float64
10	Generosity	158 non-null	float64
11	Dystopia Residual	158 non-null	float64

dtypes: float64(9), int64(1), object(2)

memory usage: 14.9+ KB

```
In [63]: df.isnull().sum()
Out[63]: Country
                                            0
         Region
                                            0
         Happiness Rank
                                            0
         Happiness Score
                                            0
         Standard Error
                                            0
         Economy (GDP per Capita)
                                            0
                                            0
         Family
         Health (Life Expectancy)
                                            0
         Freedom
                                            0
         Trust (Government Corruption)
                                            0
         Generosity
                                            0
         Dystopia Residual
                                            0
         dtype: int64
In [64]: df.describe()
```

Out[64]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Tru (Governme Corruptio
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.0000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	0.1434
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	0.1200
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	0.0000
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	0.0616
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	0.1072
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	0.1802
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	0.5519
4								•

It is noticed taht the happiness_rank column has a very high standard deviation of 45.182384.

The average happiness score is 5. 38, with a range of 2.69 to 7.77. Which shows quit a gap between the highest and lowest happiness score.

```
In [65]: df.groupby('Region')['Happiness Score'].median().sort_values().plot(kind='barh', col
    plt.title('Regions Vs. happiness scores median')
    plt.xlabel('Happiness Score')
    plt.ylabel('Regions');
    plt.grid(True, alpha=0.3)
```


The region that has highest happiness score across all years is Australia and New Zealand.

The region that has lowest happiness score across all years is Sub-Saharan Africa.

```
In [66]: #Distribution of Happiness score
    plt.figure(figsize=(10, 6))
        sns.histplot(df['Happiness Score'], bins=20, kde=True, color='skyblue')
        plt.title('Distribution of Happiness Scores')
        plt.xlabel('Happiness Score')
        plt.ylabel('Frequency')
        plt.show()
```



```
In [67]: sns.barplot(y = df['Country'][-10:], x = df['Happiness Score'][-10:] )
```

Out[67]: <Axes: xlabel='Happiness Score', ylabel='Country'>


```
In [68]: plt.figure(figsize=(14,12))
    sns.heatmap(df.corr(), annot=True, vmin=-1.0, vmax=1.0)
    plt.show()
```

C:\Users\99Minds-1\AppData\Local\Temp\ipykernel_18484\392568953.py:2: FutureWarnin g: The default value of numeric_only in DataFrame.corr is deprecated. In a future v ersion, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df.corr(), annot=True, vmin=-1.0, vmax=1.0)


```
In [69]: df.dtypes
Out[69]: Country
                                            object
                                            object
         Region
         Happiness Rank
                                             int64
                                           float64
         Happiness Score
         Standard Error
                                           float64
         Economy (GDP per Capita)
                                           float64
         Family
                                           float64
         Health (Life Expectancy)
                                           float64
         Freedom
                                           float64
                                           float64
         Trust (Government Corruption)
         Generosity
                                           float64
         Dystopia Residual
                                           float64
         dtype: object
In [70]: df.duplicated().any()
```

Out[70]: False

There are no duplicates records found.

In [71]: df.plot(kind='box',subplots=True, layout=(2,6))

Out[71]: Happiness Rank
Happiness Score
Standard Error
Economy (GDP per Capita)
Family
Health (Life Expectancy)
Freedom
Trust (Government Corruption)
Generosity
Dystopia Residual

dtype: object

Axes(0.125,0.53;0.110714x0.35)
Axes(0.257857,0.53;0.110714x0.35)
Axes(0.390714,0.53;0.110714x0.35)
Axes(0.523571,0.53;0.110714x0.35)
Axes(0.656429,0.53;0.110714x0.35)
Axes(0.789286,0.53;0.110714x0.35)
Axes(0.125,0.11;0.110714x0.35)
Axes(0.257857,0.11;0.110714x0.35)
Axes(0.390714,0.11;0.110714x0.35)
Axes(0.523571,0.11;0.110714x0.35)

Friendto (no overnment Conceptions) i Dyystopia Residual

```
In [72]: # Correlation between GDP per capita and hapiness Score
sns.regplot(x='Economy (GDP per Capita)', y='Happiness Score', data=df)
```

Out[72]: <Axes: xlabel='Economy (GDP per Capita)', ylabel='Happiness Score'>


```
In [73]: # Correlation between GDP per capita and hapiness Score
sns.regplot(x='Economy (GDP per Capita)', y='Health (Life Expectancy)', data=df)
```

Out[73]: <Axes: xlabel='Economy (GDP per Capita)', ylabel='Health (Life Expectancy)'>


```
In [74]: df.drop(['Country', 'Region'], axis=1, inplace=True)
```

```
In [75]: #splitting the data into x & y variable
X=df.drop('Happiness Score', axis=1)
y=df['Happiness Score']
```

```
In [76]: scaler=MinMaxScaler()
X=pd.DataFrame(scaler.fit_transform(X), columns=X.columns)
```

In [77]: X

Out[77]:

	Happiness Rank	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystor Residu
0	0.000000	0.131954	0.826132	0.962403	0.918244	0.993789	0.760595	0.372895	0.6686
1	0.006369	0.256311	0.770412	1.000000	0.924496	0.938841	0.256292	0.548198	0.7250
2	0.012739	0.124947	0.784113	0.970297	0.853099	0.969615	0.876175	0.428947	0.6608
3	0.019108	0.171549	0.863099	0.949167	0.863409	1.000000	0.661394	0.435983	0.6527
4	0.025478	0.143943	0.784592	0.943219	0.883326	0.945112	0.597144	0.575602	0.6485
153	0.974522	0.136429	0.131376	0.551764	0.418083	0.883953	1.000000	0.284314	0.1044
154	0.980892	0.152638	0.169573	0.252355	0.311241	0.723426	0.145132	0.229432	0.3985
155	0.987261	0.267370	0.392329	0.338668	0.704150	0.234184	0.342556	0.592790	0.0000
156	0.993631	0.574926	0.009051	0.296578	0.218444	0.176937	0.182312	0.247864	0.4595
157	1.000000	0.411904	0.123449	0.099805	0.277425	0.544294	0.194434	0.209592	0.3783

158 rows × 9 columns

```
In [78]: X_train, X_test, y_train, y_test=train_test_split(X,y, test_size=0.2, random_state=4
```

```
In [79]: model=LinearRegression()
model.fit(X_train, y_train)
```

```
Out[79]: v LinearRegression LinearRegression()
```

```
In [80]: from sklearn.metrics import mean_absolute_error, r2_score

# Predict on the test set
y_pred = model.predict(X_test)

# Calculate metrics
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Absolute Error: {mae}')
print(f'R2 Score: {r2}')
```

Mean Absolute Error: 0.00023374650842916678

R2 Score: 0.999999476481373

```
In [81]: plt.scatter(y_test, y_pred)
    plt.xlabel('Actual Charges')
    plt.ylabel('Predicted Charges')
    plt.title('Actual vs Predicted Charges')
    plt.show()
```


Thankyou

```
In [ ]:

In [ ]:
```