MAT292 - Fall 2019

Term Test 2 - November 14, 2019

Time allotted: 105 mir	nutes		Aids permitted: None
Total marks: 66			
Full Name:	Last	First	
a			
Student Number:			
Email:			@mail.utoronto.ca

- DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.
- Please have your **student card** ready for inspection and read all the instructions carefully.
- DO NOT start the test until instructed to do so.

Time allotted: 105 minutes

- In the first section, only answers and brief justifications are required.
- In the second section, justify your answers fully.
- This test contains 12 pages (including this title page). Make sure you have all of them.
- You can use pages 10–12 for rough work or to complete a question (Mark clearly).

DO NOT DETACH PAGES 10–12.

• No calculators, cellphones, or any other electronic gadgets are allowed. If you have a cellphone with you, it must be turned off and in a bag underneath your chair.

Question	Q1-Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Total
Marks	10	5	5	10	8	10	8	10	66

SE	CTION I	No explanation is necessary	7.	$(10 \mathrm{marks})$
1.	(2 marks) Use	Euler's method with step s	ize $h = 0.5$ for the IVP y'	= t + y, y(0) = 1.
	Final answer, n	o justification required:	$y(1) \approx \underline{\hspace{1cm}}$	
2.	(2 marks) Sele	ct all properties that apply	to the solution of $y'' - y'$	=0, y(0) = 1, y'(0) = 1.
) bounded	always positive	ve	dic increasing
3.	(2 marks) Con	sider the IVP $y' = f(t, y)$, g	$y(0) = y_0$. You estimate $y(0)$	(1) two ways:
		er's Method with two steps (Runge-Kutta Method with t		
	Make a choice:			
	$\bigcirc y(1) - y_{\rm RK} $	$\leq y(1) - y_{\text{Euler}} $ $\bigcirc y(1) $	$ -y_{\mathrm{RK}} \geqslant y(1) - y_{\mathrm{Euler}} $	O This can not be decided.
4.	ODEs, if we fo		$\vec{x}_1, \ \vec{x}_2, \ \vec{x}_3, \ ext{then any oth}$	em of three linear first-order her solution can be written as
	Make a choice:		ent is TRUE.	○ The statement is FALSE.
	Justify briefl	y :		
5.	`	nsider this statement: The tents such that $y(t) = 3e^{2t} + \frac{1}{2}e^{2t}$		nomogeneous linear ODE with
	Make a choice:	○ The statem	ent is TRUE.	○ The statement is FALSE.
	Justify briefl	y :		

SECTION II Justify your answers.

(56 marks)

6. (5 marks) Show the following: If $Y_1(t)$ is a particular solution of $y'' + p(t)y' + q(t)y = g_1(t)$, and $Y_2(t)$ is a particular solution of $y'' + p(t)y' + q(t)y = g_2(t)$, then $Y(t) = Y_1(t) + Y_2(t)$ is a particular solution of $y'' + p(t)y' + q(t)y = g_1(t) + g_2(t)$

7. (5 marks) Consider an initial value problem y' = f(t, y), $y(t_0) = y_0$ such that y'' > 0 at all times. When using Euler's Method to numerically approximate the solution to this IVP, explain why, at every step, you would underestimate y(t).

8. Solve the initial value problem

$$y'' + y' - 2y = -10\sin(t), \quad y(0) = 1, \quad y'(0) = 0,$$

using the following three steps.

(a) (3 marks) Use the characteristic polynomial to solve the complementary equation.

(b) (4 marks) Use the method of undetermined coefficients to find a particular solution.

(c) (3 marks) Now solve the initial value problem.

9. Consider the ODE problem

$$x_1'(t) = x_2(t), \quad x_2'(t) = -\frac{\pi^2}{4}x_1(t), \quad x_1(0) = 0, \quad x_2(1) = 0.$$

Note in the conditions that x_1 is evaluated at t=0 and x_2 is evaluated at t=1.

(a) (4 marks) Verify that it has solutions $x_1(t) = A \sin\left(\frac{\pi}{2}t\right), x_2(t) = A\frac{\pi}{2}\cos\left(\frac{\pi}{2}t\right)$ for any $A \in \mathbb{R}$.

(b) (4 marks) Why does this result not violate the existence-uniqueness theorem? Explain.

10. A MAT292 student implemented the improved Euler method for an initial value problem x'(t) = f(t,x), x(0) = 0, $t \in [0,1]$. The student's MATLAB code below produced the results in the table for various values of the stepsize h and number of steps N

N	h	estimated $x(1)$	estimated error	t = 0; x = 0; h = 1/N;
10	0.10000	-0.07394	0.00666	for $n=1:N$
20	0.05000	-0.07791	0.00269	k1 = f(t,x);
40	0.02500	-0.07942	0.00118	k2 = f(t,x+h*k1);
80	0.01250	-0.08005	0.00055	x = x + h*(k1+k2)/2;
160	0.00625	-0.08034	0.00026	t = t + h;
320	0.00313	-0.08047	0.00013	end

(a) (4 marks) Considering the table on the left, for what order k do you estimate that the error can be bounded in terms of $C \cdot h^k$, for some constant C? Explain.

(b) (2 marks) What order k did you expect?

(c) (4 marks) Find the bug in the code that lead to the discrepancy between parts (a) and (b).

- **11.** Let $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$.
 - (a) (5 marks) Use the definition of the matrix exponential to compute e^{At} .

(b) (3 marks) Substitute -t for t to explicitly verify for this matrix A that $e^{At}e^{-At}=I$.

12. The human systemic circulatory system can be modelled with a system of differential equations based on the following assumptions. Time t is given in minutes.

There are four compartments: Left heart, Arteries, Veins, and Right heart. They are connected by three vessel networks. The flow through each network, given in L/min, is described by $Q_{\rm L}$, $Q_{\rm S}$ and $Q_{\rm R}$.

(a) (1 mark) The flow out of the heart is given as

$$Q_{\rm L}(t) = 5 + 5\sin\left(\frac{2\pi t}{T}\right).$$

What do you think is a realistic value for the parameter T?

- (b) (2 marks) The pressure in the compartments A and V, measured in mmHg, is $P_{\rm A}(t)$ and $P_{\rm V}(t)$. The volume of blood, measured in litres, is $V_{\rm A}(t)$ and $V_{\rm V}(t)$. We assume that in each case, volume is proportional to pressure. Express this in two formulas introducing constants.
- (c) (2 marks) Blood flows between connected compartments at a rate proportional to their difference in pressures, from the high pressure to the low pressure compartment. Use this fact to express $Q_{\rm S}$ in terms of $P_{\rm A}$ and $P_{\rm V}$, also introducing a constant.

(d) (1 mark) Using the same assumptions, now also express Q_R in terms of P_V and P_R .

For the remainder of the question, consider that the net flow of blood into a compartment changes its volume. For example, $\frac{d}{dt}V_{\rm A}=Q_{\rm L}-Q_{\rm S}$.

Also note that the pressure in compartment R can be assumed to be constant at $P_{\rm R}=5{\rm mmHg}.$

(e) (3 marks) Use the assumptions and diagram above to write down a system of differential equations for $P_{\rm V}(t)$ and $P_{\rm A}(t)$.

(f) (1 mark) If a person, due to injury, were to lose a significant amount of blood, how would you account for this within the model?

Page for scratch work or	for clearly-labelle	ed overflow from	previous pages

Page for scratch work or	for clearly-labelled	d overflow from p	revious pages

Page for scratch work or for clearly-labelled overflow from previous pages	