Separating the Expressive Power of Propositional Dynamic and Modal Fixpoint Logics

Eric Alsmann <u>Florian Bruse</u> Martin Lange

University of Kassel, Germany

August 23, 2021

- All these logics have different expressive power
- Constructive proofs: exhibit property that cannot be expressed
- Dashed lines show proper inclusions

- All these logics have different expressive power
- Constructive proofs: exhibit property that cannot be expressed
- Dashed lines show proper inclusions

- All these logics have different expressive power
- Constructive proofs: exhibit property that cannot be expressed
- Dashed lines show proper inclusions

LTS with Propositions p,q,\ldots , transitions in $\Sigma=\{a,b,c,\ldots\}$ Formulas:

$$\varphi ::= p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle L \rangle \varphi$$
$$s \in \llbracket \langle L \rangle \varphi \rrbracket \text{ iff ex. } t \in \llbracket \varphi \rrbracket \text{ s.t. } s \xrightarrow{w} t \text{ w. } w \in L$$

• PDL[REG]: L regular over Σ , e.g., $\langle \{a^{3n} \mid n \in \mathbb{N}\} \rangle p$

LTS with Propositions p,q,\ldots , transitions in $\Sigma=\{a,b,c,\ldots\}$ Formulas:

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle L \rangle \varphi$$

 $s \in [\![\langle L \rangle \varphi]\!]$ iff ex. $t \in [\![\varphi]\!]$ s.t. $s \xrightarrow{w} t$ w. $w \in L$

• PDL[REG]: L regular over Σ , e.g., $\langle a^{3n} \rangle p$

LTS with Propositions p,q,\ldots , transitions in $\Sigma=\{a,b,c,\ldots\}$ Formulas:

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle L \rangle \varphi$$

$$s \in [\![\langle L \rangle \varphi]\!]$$
 iff ex. $t \in [\![\varphi]\!]$ s.t. $s \xrightarrow{w} t$ w. $w \in L$

- PDL[REG]: L regular over Σ , e.g., $\langle a^{3n} \rangle p$
- PDL[CFL]: L context-free over Σ , e.g., $\langle a^n b a^n \rangle p$

LTS with Propositions p,q,\ldots , transitions in $\Sigma=\{a,b,c,\ldots\}$ Formulas:

$$\varphi ::= \mathbf{p} \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle \mathbf{L} \rangle \varphi$$

$$s \in [\![\langle L \rangle \varphi]\!]$$
 iff ex. $t \in [\![\varphi]\!]$ s.t. $s \xrightarrow{w} t$ w. $w \in L$

- PDL[REG]: L regular over Σ , e.g., $\langle a^{3n} \rangle p$
- PDL[CFL]: L context-free over Σ , e.g., $\langle a^n b a^n \rangle p$
- PDL[VPL]: L visibly pushdown over Σ , e.g., $\langle a^n b^n \rangle p$
 - visibly pushdown language: accepted by pushdown automaton with stack operations tied to alphabet
 - e.g., must push on a, pop on b, leave stack height be on c
 - visibly pushdown: $\{a^nb^n \mid n \in \mathbb{N}\}$
 - not visibly pushdown: $\{a^nba^n \mid n \in \mathbb{N}\}$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

• Modal μ -calculus (\mathcal{L}_{μ}):

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Idea: Fixpoint unfolding

$$\mu X. \langle a \rangle [b](p \vee X) = \langle a \rangle [b](p \vee \mu X. \langle a \rangle [b](p \vee X))$$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Idea: Fixpoint unfolding

$$\mu X. \langle a \rangle [b](p \vee X) = \langle a \rangle [b](p \vee \mu X. \langle a \rangle [b](p \vee X))$$
$$= \langle a \rangle [b](p \vee \langle a \rangle [b](p \vee \mu X. \langle a \rangle [b](p \vee X)))$$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Idea: Fixpoint unfolding

$$\mu X. \langle a \rangle [b](p \vee X) = \langle a \rangle [b](p \vee \mu X. \langle a \rangle [b](p \vee X))$$

$$= \langle a \rangle [b](p \vee \langle a \rangle [b](p \vee \mu X. \langle a \rangle [b](p \vee X)))$$

$$\vdots$$

$$= \bigvee_{p \in \mathbb{N}} (\langle a \rangle [b])^{n} p$$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Formula: $(\langle a \rangle [b])^n p$

• Fixpoint Logic with Chop (FLC):

$$\varphi ::= p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi \mid \varphi; \varphi \mid \tau$$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle \mathsf{a} \rangle \varphi \mid \mathsf{X} \mid \mu \mathsf{X}.\, \varphi$$

Formula: $(\langle a \rangle [b])^n p$

• Fixpoint Logic with Chop (FLC):

$$\varphi ::= p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi \mid \varphi; \varphi \mid \tau$$

$$(\mu X. [b] \lor \langle a \rangle; X; \langle a \rangle); p$$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Formula: $(\langle a \rangle [b])^n p$

• Fixpoint Logic with Chop (FLC):

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi \mid \varphi; \varphi \mid \tau$$

$$(\mu X. [b] \lor \langle a \rangle; X; \langle a \rangle); p$$

= ([b] \lor \langle a \rangle; (\mu X. [b] \lor \langle a \rangle; X; \langle a \rangle); \langle a \rangle; p

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Formula: $(\langle a \rangle [b])^n p$

• Fixpoint Logic with Chop (FLC):

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi \mid \varphi; \varphi \mid \tau$$

$$\begin{split} & (\mu X. [b] \vee \langle a \rangle; X; \langle a \rangle); p \\ &= ([b] \vee \langle a \rangle; (\mu X. [b] \vee \langle a \rangle; X; \langle a \rangle); \langle a \rangle); p \\ &= ([b] \vee \langle a \rangle; ([b] \vee \langle a \rangle; (\mu X. [b] \vee \langle a \rangle; X; \langle a \rangle); \langle a \rangle); \langle a \rangle); p \end{split}$$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Formula: $(\langle a \rangle [b])^n p$

 $n \in \mathbb{N}$

• Fixpoint Logic with Chop (FLC):

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi \mid \varphi; \varphi \mid \tau$$

$$(\mu X. [b] \lor \langle a \rangle; X; \langle a \rangle); p$$

$$= ([b] \lor \langle a \rangle; (\mu X. [b] \lor \langle a \rangle; X; \langle a \rangle); \langle a \rangle); p$$

$$= ([b] \lor \langle a \rangle; ([b] \lor \langle a \rangle; (\mu X. [b] \lor \langle a \rangle; X; \langle a \rangle); \langle a \rangle); \langle a \rangle); p$$

$$\vdots$$

$$= \bigvee \langle a^n \rangle; [b]; \langle a^n \rangle; p$$

• Modal μ -calculus (\mathcal{L}_{μ}) :

$$\varphi ::= p \mid \varphi \vee \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi$$

Formula: $(\langle a \rangle [b])^n p$

• Fixpoint Logic with Chop (FLC):

$$\varphi ::= p \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid X \mid \mu X. \varphi \mid \varphi; \varphi \mid \tau$$

Formula: $\langle a^n \rangle [b] \langle a^n \rangle$; p

- Visibly pushdown FLC (vpFLC):
 - constraints on concatenation of modal operators, mimic VPL
 - Dedicated talk: CONCUR session Thursday 26th, 14:00–15:15
 - allowed: $(\mu X. \langle a \rangle; [b] \vee \langle a \rangle; X; [b]); p$ "=" $\langle a^n \rangle [b^n] p$
 - not allowed: $(\mu X. [b] \lor \langle a \rangle; X; \langle a \rangle); p$ "=" $\langle a^n \rangle [b] \langle a^n \rangle p$ due to VPL constraints

Separate PDL[CFL], vpFLC via: $\langle a^n \rangle [b^n] p$ ineffable in PDL[CFL] Also separates PDL[VPL] and vpFLC

Have already seen this in vpFLC: $(\mu X. \langle a \rangle; [b] \lor \langle a \rangle; X; [b]); p$

Witness for: $\langle a^n \rangle [b^n] p$ ineffable in PDL[CFL]

Top LTS satisfies $\langle a^n \rangle [b^n] p$, bottom one does not k, l to be determined

Witness for: $\langle a^n \rangle [b^n] p$ ineffable in PDL[CFL]

Top LTS satisfies $\langle a^n \rangle [b^n] p$, bottom one does not k, l to be determined

Analyzing the Difference

Assume: φ separates the two LTS; Fix:

- CFL L_1, \ldots, L_n used in φ
- modal depth d (nesting depth of $\langle \cdot \rangle$)

k, l still open, but > 0

Analyzing the Difference

Assume: φ separates the two LTS; Fix:

- CFL L_1, \ldots, L_n used in φ
- modal depth d (nesting depth of $\langle \cdot \rangle$)

k, l still open, but > 0

- Need to get rid of the length difference
- Only one transition label: → context-free = regular
 - L_1, \ldots, L_n w.l.o.g. regular, given as DFA A_1, \ldots, A_n
- Problem: Several languages to consider, even if regular
- → simultaneous pumping lemma for regular languages needed

Goal: categorize behavior of all DFA A_1, \ldots, A_n simultaneously:

Goal: categorize behavior of all DFA A_1, \ldots, A_n simultaneously:

Goal: categorize behavior of all DFA A_1, \ldots, A_n simultaneously:

Enumerate profiles for $b,b^2,\ldots o$ eventually one will repeat

Goal: categorize behavior of all DFA A_1, \ldots, A_n simultaneously:

Enumerate profiles for $b,b^2,\ldots o$ eventually one will repeat

Goal: categorize behavior of all DFA A_1, \ldots, A_n simultaneously:

Enumerate profiles for $b, b^2, \ldots \rightarrow$ eventually one will repeat

Goal: categorize behavior of all DFA A_1, \ldots, A_n simultaneously:

Enumerate profiles for $b,b^2,\ldots o$ eventually one will repeat

Goal: categorize behavior of all DFA A_1, \ldots, A_n simultaneously:

Enumerate profiles for $b, b^2, \ldots \rightarrow$ eventually one will repeat

Can pump $b^{l=m+k} \leftrightarrow b^m$ with no DFA "noticing"

Analyzing the Difference (ctd.)

Lifting to modal depth d:

$$\longrightarrow \bigcup_{l' \geq (m+k) \cdot d}^{b} \longrightarrow \bigcup_{k}^{b} \dots \bigcup_{l' \geq (m+k) \cdot d}^{b}$$

Lemma 1

F.a. CFL L_1, \ldots, L_n , modal depth d, ex. m, k > 0 s.t. $\varphi \in \mathsf{PDL}[L_1, \ldots, L_n]$ of modal depth d cannot distinguish the above LTS if $l' \geq (m+k) \cdot d$.

In other words: given L_1, \ldots, L_n , and depth d, can find pair of structures to cheat φ

Finishing the Proof

Rest of proof: Induction, case distinction

Finishing the Proof

Rest of proof: Induction, case distinction

Theorem 2

 $\langle a^n \rangle [b^n] p$ is ineffable in PDL[CFL] hence $vpFLC \not\leq PDL[CFL], vpFLC \not\leq PDL[VPL].$

Summary

Key points:

- upwards: increase in language power yields separation
- left to right: modality alternation yields separation

Summary

Key points:

- upwards: increase in language power yields separation
- left to right: modality alternation yields separation