

	Date	Topic	Page(s)
Week 1 Monday, Aug 30 - Friday, Sep 3		Small-group meetups! Watch the welcome video explaining how the class works, and then join us for an optional zoom meeting to meet some of your classmates and chat with us face-to-face!	
	Monday, Sep 6	Holiday - no class	
Week 2	Wednesday, Sep 8	It's alive! Or is it? Characteristics of living things and why we study biology	6-7
	Friday, Sep 10	The discovery of the cell Laser Pointer Microscope	8-11
	Monday, Sep 13	The Parts of the Cell Meet the organelles. Prokaryotes & Eukaryotes	12-15
Week 3	Wednesday, Sep 15	Unicellular vs Multicellular life A look at the incredible diversity of cellular life!	16-17
	Friday, Sep 17	Cell Quiz Show Practice Quiz 1	18-19
	Science Vocabulary C	rossword and Word Search!	20-21
	Monday, Sep 20	Biomolecules The molecules that make living things	22-23
Week 4	Wednesday, Sep 22	Osmosis! All about cell membranes and why we salt our food	24-26
	Friday, Sep 24	Proteins and Enzymes A deeper look at enzymes and cell proteins	27-28
	Monday, Sep 27	Sugars and Carbohydrates The main source of energy	29
Week 5	Wednesday, Sep 29	DNA The instructions for the cell	30-31
	Friday, Oct 1	Extract DNA from fruit Hands on science project	32-35
Week 6	Monday, Oct 4	Mitosis and cell division How one cell becomes two	36-37
	Wednesday, Oct 6	Biomolecules Quiz Show Practice Quiz 2	38-39
	Friday, Oct 8	Where does energy come from? Eating vs making food	40

There are 5 projects in the course, each listed in bold in this table of contents. A supply list for all projects and activities can be found on page 5.

	Date	Topic	Page(s)
	Monday, Oct 11	Animals & Fungi Diversity of the consumers	
Week 7	Wednesday, Oct 13	Cellular Respiration Making energy in the mitochondria	43-44
	Friday, Oct 15	Plants The big producers	45-46
	Monday, Oct 18	Photosynthesis Making sugars in the chloroplast	47-48
Week 8	Wednesday, Oct 20	Inesday, Oct 20 The Single-Celled Archaea The most diverse groups of all	
	Friday, Oct 22	DIY Petri Dishes Culture your own microorganisms	51-53
	Monday, Oct 25	Diversity of Life Quiz Show Practice Quiz 3	54-55
Week 9	Wednesday, Oct 27	Systems of the human body The body is made of different systems of cells	56-57
	Friday,Oct 29	What is blood? Introduction to circulatory system and different blood cells	58-60
	Monday, Nov 1	Why we need to breathe An introduction to the respiratory system	61-62
Week 10	Wednesday, Nov 3	How nerves work Introduction to the nervous system and the longest cells!	63-64
	Friday, Nov 5	There's more of us than you! Introduction to the digestive system and the microbiome	65

	Date	Topic	Page(s)
	Monday, Nov 8	The Immune System An introduction to the body's most fascinating system	66-68
Week 11	Wednesday, Nov 10	How Antibodies Work The basic defenses and fighters against infections	69
	Friday, Nov 12	You're Allergic to What? How a misbehaving immune system causes allergies	70-71
	Monday, Nov 15	What makes things poisonous? What happens when things go wrong in the cell	72-75
Week 12	Wednesday, Nov 17	Physiology Art Hands on science project	76
	Friday, Nov 19	Physiology Quiz Show Practice Quiz 4	77
Week 13	Nov 22 - Nov 26	Thanksgiving Break - no class	
	Monday, Nov 29	Most Wanted Microbes An overview of viruses, fungi, bacteria, and parasites	78-80
Week 14	Wednesday, Dec 1	Pre-industrial Medicine A look at common 16th century treatments	81-82
	Friday, Dec 3	Scurvy and Trials The evolution of modern medicine	83-85
	Monday, Dec 6	The Story of Smallpox How a deadly disease led to the first vaccine	86-89
Week 15	Wednesday, Dec 8	The Problem with Polio An exercise in understanding and comparing risk	90-91
	Friday, Dec 10	Elementary Epidemiology Lessons from looking at diseases in large populations	92-95
	Monday, Dec 13	Penicillin & the Discovery of Antibiotics How a moldy dish led to medicine	96-97
Week 16	Wednesday, Dec 15	MRSA and antibiotic resistance How overuse of a good tool is breeding superbugs	98-99
	Friday, Dec 17	Final Quiz Show And a showcase of Most Wanted Microbe art from students.	100
		Suggested Microbe List	101
	Appendix	pendix Most Wanted Microbe Template	
		Body System Templates	103-106

Have questions, corrections, or suggestions? Contact jenny@science.mom or serge@science.mom

Project Supply List

Sep 10 - Laser Pointer Microscope

- Laser pointer
- Paper clip or plastic pipette
- Tape
- Water from a stream, pond, or pet water dish

Oct 1 - Extract DNA from Fruit

- 2 fresh strawberries (or bananas or other fruit)
- ½ cup warm water
- 1 tsp salt
- Plastic bag or bowl and fork
- 2 tsp concentrated dish soap
- Rubbing alcohol (91%)
- Coffee filter
- Jar or cup
- Meat tenderizer (if using the split pea option)
- Blender (if using the split pea option)

Oct 22 - DIY Petri Dishes

- 8 oz boiling water
- 1 bouillon cube
- Cotton swabs
- 4 petri dishes (clean containers with lids)
- 1 Tbsp agar (or 1 packet unflavored gelatin)
- 2 tsp sugar
- Permanent marker

Nov 17 - Physiology Art Project

- Several pieces of waxed paper or tracing paper
- Pencil
- Markers
- Brads (paper fastener)

Nov 29 - Most Wanted Microbe Art Project

- Copies of the most wanted microbe template
- Pencil
- Markers
- Butter knife (optional)
- Ink and napkin (optional)

Other (optional) Activities

Oct 13 - Respiration

- 2 Tbsp Yeast
- 2 Balloons
- 2 Water bottles
- Sugar

Oct 29 - What is Blood?

- 1/3 c measuring cup
- 6 L of water and two containers
- Timer or stopwatch

Nov 1 - Why We Breathe

- · 2 balloons
- Plastic bottle with bottom cut off

Nov 3 - How Nerves Work

Ruler

Dec 8 - The Problem with Polio

2 dice

How to get the most from this course:

This course can be used in a variety of ways! You can participate passively by just watching the videos, or actively by filling out the notes and completing the projects. You can do the entire course at once or participate in one lesson or section at a time.

For BEST learning, we recommend:

- Read the pages that go with each lesson before watching the video. Take 10-15 minutes to see if you can fill in the blanks.
- On quiz show days, take the practice quiz before you watch the class!
- Complete each of the science activities, and then share your work with a family member or friend.
- Download the answer key for the notes, but don't look at the answers until after you give things a try yourself!

Next Generation Science Standards

This class covers the following Next Generation Science Standards. Often referred to as NGSS, they are the United States education standards for science.

MS-LS1-1: Sep 8, Sept 10, Sep 15 Living things are made of cells

MS-LS1-2: Sep 13, Oct 27

The function of a cell as a whole and how the parts of a cell contribute to that function

MS-LS1-3: Oct 27, Oct 29, Nov 1, Nov 3, Nov 5 The body is a system of interacting subsystems composed of groups of cells

MS-LS1-6: Oct 8, Oct 15, Oct 18

Photosynthesis and its role in cycling matter and the flow of energy in and out of organisms

MS-LS1-7: Oct 8, Oct 11, Oct 13

How food is rearranged through chemical reactions to form new molecules that support growth and release energy

MS-LS1-8: Nov 3

Sensory receptors respond to stimuli by sending messages to the brain

What makes something alive? This is not an easy question to answer! Most definitions agree that living things include all the following qualities or abilities:

The question of whether or We can be programmed to have all of the characteristics of life! not Al is alive is currently being debated, and will be Except being one of the more important made of cells. questions of the century! So? Cells shouldn't even be on the list anyway. Write down three of the best reasons for each side of the argument and then share your opinion. What do *you* think? What are 3 arguments for technology or AI to be considered alive? What are 3 arguments for technology or AI to be considered nonliving? 2₀ _____ What is your opinion?

COULD ARTIFICIAL INTELLIGENCE (AI) BE CONSIDERED ALIVE?

-SCIENCE MMM

THE DISCOVERY OF THE CELL

FOR THOUSANDS OF YEARS. PEOPLE KNEW THAT CURVED GLASS MAGNIFIED DETAILS.

THEN, IN 1590, TWO GLASS MAKERS CREATED THE FIRST COMPOUND MICROSCOPE.

IF WE PUT LENSES ON BOTH SIDES OF A TUBE, THE OBJECTS ON THE OTHER SIDE ARE EXTRA MAGNIFIED!

HANS & ZACHARIAS JANSSEN Dutch glassmakers

THE NEXT CENTURY SAW HUNDREDS OF **EXPERIMENTS ON** IMPROVING THE MAGNIFICATION OF MICROSCOPES AND MANY **PUBLICATIONS ABOUT WHAT WAS** OBSERVED UNDER THE LENS.

THE MOST FAMOUS OBSERVATIONS WERE MADE BY ROBERT HOOKE...

ROBERT HOOKE'S MICROSCOPE 1665

THIS SPECIMEN OF CORK PLANT IS FULL OF PORES! THEY LOOK LIKE THE PLAIN UNFURNISHED ROOMS OF MONKS.

...AND DUTCH SCIENTIST ANTON VON LEEUWENHOEK.

I MADE INCREDIBLY TINY LENSES BY MELTING, GRINDING, AND BLOWING GLASS.

THERE IS ONLY ONE LENS IN THIS MICROSCOPE, BUT THE QUALITY IS SO GOOD I CAN SEE WITH 200 TIMES MAGNIFICATION!

CONTINUED ON NEXT PAGE...

LEEUWENHOEK LOOKED AT POND WATER AND WAS ASTONISHED BY WHAT HE SAW. SO MANY LITTLE ANIMALS! I SHALL CALL THEM ANIMALCULES.

OVER THE NEXT 200
YEARS, MICROSCOPES
BECAME POWERFUL
ENOUGH TO SEE ATOMS
AND WE DISCOVERED
HOW THE PARTS OF
CELLS WORKED!

Your notes:	

Hands-on Science Project

LASER POINTER MICROSCOPE

MATERIALS:

Tape

SAFETY WARNING

NEVER POINT A LASER BEAM AT ANYONE'S EYES. LOOKING DIRECTLY AT A LASER BEAM CAN PERMANENTLY DAMAGE YOUR EYES.

- 1. Straighten out a large paper clip and then bend one end so that it forms a small loop.
- 2. Test the loop to be sure that It holds a water droplet. When you dip it in water and then lift it out again, a drop of water should stay inside the loop. If the loop does not hold water then bend it again and make it smaller.
- 3. Attach the paperclip to the laser pointer with tape so that the loop is directly in the path of the beam.
- 4. Carefully dip the wire loop into a water source that will have bacteria and other microbial life. Pond water, aquarium water, or water from a pet drinking dish are all good choices.
- 5. Shine the laser toward a white surface. For best results, conduct this activity in a darkened room.
- 6. Observe your results and experiment with different sources of water.

SAFETY TIP

WASH YOUR HANDS AFTER HANDLING SAMPLES OF WATER THAT COULD CONTAIN MICROBES.

For BEST results

Choose a source of water that is chlorine free and exposed to sunlight. Observe multiple drops of water from different sources.

Set up the laser in a dark room and shine it on a flat white surface.

Arrange the laser so that no one is touching it. The less it moves, the better you'll see the microbes in the water.

Adjust the distance between the laser and flat white surface to see which distance gives you the best view.

WHICH SOURCE OF WATER HAD THE MOST MICROBES?

It's time to go exploring! Gather some clean containers or plastic bags and collect water from several sources. If using the paper clip method, be sure to use different paper clips OR to clean your paperclip before testing each sample. If you gather a saliva sample, do NOT put the paperclip in your mouth! Spit into a container and sample the saliva from there. Before you gather your samples, make a prediction about which water will have the most microbes. Then, after observing each sample put a **check mark** by the type of water that had microbes, and a **zero** by water that was microbe-free. Put a **double check mark** by the water that had the MOST microbes. Write NA if you didn't test that type of water.

YOUR PREDICTION: The water with the most microbes wi	ll be	
Water from the kitchen sink.		
water from the kitchen sink.		
Water from a natural outdoor soul that looks clean like a lake or rive		
Water from a natural outdoor soul dirty or scummy like a puddle, sw		
A drop of saliva.		
Water from a pet's water dish.		
Water from the tank (not the bowl	!) of a toilet.	
Other:		
YOUR RESULT:		
The water with the most observed ma	icrobes was	_
Which of these did you obse laser pointer micros Check all that appl	cope?	Your notes:
Crieck all that appl	у.	
Clean water with Circular cells	Sausage or worm-	
no microbes.	like cells.	
A swimmer! A cell that is moving itself through the water rather than drifting.	Something with a tail or flagella.	

The Parts of a Cell

FILL IN THE BLANKS USING THESE WORDS:

DNA proteins	living	org	anelles			
plasma membrane	dead c	ytoplasm	diversity			
The cells that Rol	oert Hooke	saw in t	he bark of	a cork tree were actually		
This is why they le	ooked so	empty	0	cells contain several important parts or		
	that	help ther	m survive. I	Ribosomes build If the		
cell has a nucleus	s, it contair	ns the	M	itochondria or chloroplasts are		
involved in digest	ing or crea	ating food	for the ce	II, and all of this activity is contained		
within a cell wall of	within a cell wall or The liquid inside a cell is					
called the Not every type of cell will contain all of these						
parts. There is incredible between different types of cells!						
	DRAW LINES TO CONNECT THE NAME & DESCRIPTION WITH THE CORRESPONDING PICTURE					

Cytoplasm

The liquid inside the cell. It's mostly water.

Nucleus

Keeps the DNA separate from the rest of the cell.

Chloroplast

Uses CO₂ and sunlight to create sugars.

Plasma Membrane

Keeps the cytoplasm inside the cell.

Cell Wall

Keeps the cytoplasm inside the cell.

Flagella

Helps the cell move. Works like a little paddle or tail to push it through the water.

Ribosome

The thing that makes the proteins.

DNA

The instructions for making proteins and other stuff for the cell.

Mitochondria

Uses oxygen and sugar to create energy for the cell.

PROKARYOTIC CELLS

Your notes:	IS SOMETHING AS SMALL AS A SALMONELLA BACTERIUM REALLY <i>ALIVE</i> ? LET'S CHECK:
	METABOUSM ✓ IT EATS FOOD AND PRODUCES WASTE.
	SUGARS GO IN. TOXINS COME OUT.
	RESPONDS TO STIMULI ✓ WILL MOVE TOWARD A WETTER AND BETTER ENVIRONMENT
	WHEN IT FINDS A GREAT LOCATION IT FORMS A BIOFILM A COLONY OF CELLS STUCK TOGETHER WITH SLIME.
	HA HA! THEY'LL NEVER GET RID OF US NOW! TEAM WORK MAKES THE DREAM WORK!
	GROWTH ✓ REPRODUCES ✓ THIS IS WHY YOU HEAR ABOUT SALMONELLA "OUTBREAKS" IN FOOD. FIRST YOU HAVE ONE, THEN TWO THEN MILLIONS.

EUKARYOTIC CELLS

Your notes:

Eukaryotic cells can have incredibly different shapes and parts, but they will always contain:

A NUCLEUS which holds the DNA

MITOCHONDRIA which provide energy

MEMBRANE which surrounds the cell

RIBOSOMES which make proteins

BONUS ORGANELLE!

What is the crazy-shaped thing around the nucleus with ribosomes stuck to it? It's called the **endoplasmic reticulum** and it helps make proteins. We won't be talking about it more in this class, but of all the organelles, it has one of the coolest names!

Cellular Life

Can you place each of these organisms in their matching category?

Taxonomy is the study of classifying groups of organisms based on shared characteristics. Classification systems have changed a lot in recent years thanks to the ability to compare DNA sequences. We'll learn more about taxonomy in Biology 2.

Five misclassified marvels

Scientists group things into categories to better understand them, but some organisms don't exactly fit! This page is dedicated to five organisms that people often mistake for something else. One is already filled out as an example. Choose 4 more from these lists to fill in the remaining blocks!

Plant or Fungus? Caloplaca marina (Orange Sea Lichen), Sarcodes sanguina (Snow Flower), Monotropa uniflora (Ghost Pipe), or Clathrus archeri (Octopus Stinkhorn):

Animal or Plant? Diploria labyrinthiformis (Brain Coral), Xestospongia muta (Giant barrel sponge), Elysia chlorotica (Emerald Elysia), or Pseudocolochirus violaceus (Sea Apple)

What in the world? Caulerpa taxifolia, Acetabularia, and Volvox.

ANSWER THE QUESTIONS TO SEE WHAT YOU LEARNED ABOUT CELLULAR LIFE!

- (1) Which of these is the best simple definition for the word homeostasis?
 - A. The ability to regulate internal conditions.
 - B. The ability to use energy.
 - C. The ability to reproduce.
 - D. The ability to respond to a stimulus.
- (2) What are two characteristics of living things?
- When did humans invent a microscope that can see structures inside a cell that are smaller then the wavelength of light (< 500 nanometers)?
 - A. 1665
 - B. 1850
 - C. 1903
 - D. 1951
- A No cell is large enough to be viewed without the help of a microscope.
 - A. True
 - B. False
- (5) Which type of cell has a nucleus?
 - A. Prokaryotic
 - B. Eukaryotic
- (6) Fungi are plants, but plants are not fungi.
 - A. True
 - B. False
- Which domains of life have both single-celled and multi-celled organisms?
 - A. Only protists
 - B. Archaea and eubacteria
 - C. Fungi and protists
 - D. Only archaea
 - E. Only fungi
 - Which of the following are prokaryotic?
- A. Bacteria and archaea
 - B. Fungi, animals, and plants
- Protists are which type of cell?
- (9) A. Prokaryotic
 - B. Eukaryotic

- (10) A cell can only have one nucleus.
 - A. True
 - B. False
- The average prokaryotic cell is _____ than the average eukaryotic cell.
 - A. 2 to 5 times smaller
 - B. 20 to 100 times smaller
 - C. More than 1,000 times smaller
- Which organelle is responsible for making proteins in the cell?
 - A. Mitochondria
 - B. Ribosome
 - C. Plasma membrane
 - D. Endoplasmic reticulum
- (13) Which of the following are made of cells?
 - A. Wood
 - B. Plastic
 - C. Tomato
 - D. Polyester fabric
- Which organelle uses oxygen and sugar to create energy for the cell?
 - A. Mitochondria
 - B. Chloroplast
 - C. Nucleus
 - D. Flagella
- (15) Which of the following statements is true?
 - A. Some living things are too small to see.
 - B. Animals are made of prokaryotic cells.
 - C. Fungi contain chloroplasts.
 - D. Every cell has a nucleus.
- (16) Which organelle is only found in plants or protists?
 - A. Chloroplasts
 - B. Mitochondria
- Eukaryotic cells are bigger than prokaryotic cells.
 - A. True
 - B. False

18)	Which of these is the best simple definition for the word metabolism?		
	A. The ability to regulate internal conditions		
	B. The ability to use energyC. The ability to reproduce		
	D. The ability to respond to a stimulus		
19	Draw a simple bacterial cell. Label the plasma membrane, cell wall, DNA, ribosomes, and	flagella.	
			١
			,
20	Draw a simple animal cell. Label the plasma membrane, DNA, ribosomes, mitochondria, a	nd nucleus	
20	To Draw a simple animal cell. Laber the plasma membrane, DNA, fibosomes, mitochondria, a	Tid Tidcleds.	
			1
,		/	′
		,	
		−SCIENCE M®M	

Gellular Word Search

There are a lot of new words to learn when studying biology. Repetition is the best way to learn them, and word games can be part of that! Find each of the hidden words in the word-search. The words can run in any direction: horizontal or diagonal, and the letters might go left to right or right to left!

METABOLISM

MEMBRANE

RIBOSOME

MITOCHONDRIA

DEOXYRIBONUCLEIC ACID

CYTOPLASM

NUCLEUS
CHLOROPLAST
FLAGELLA
ARCHAEA
PROKARYOTIC
UNICELLULAR

MULTICELLULAR
EUKARYOTIC
PROTIST
CILLIA
ORGANELLE

В R W M X M Α 0 Α E R M Р G Ν F M G R S OO M Α Н D S S 0 В C 0 Ν M R F Α Ν S K В Т R Р Ν Α O Η M R C E W D 0M O Н В Q Р D Р F P C S E U G Ν 0O O S Р Ν E Η E C Н F 0 Α C Ν OZ Ε S Ζ R R Ν Ε M В Т C W O O O O Ν Ν W M Ν S M M O Α Α C G C F F C 0 K K C Ε R 0 U Н U E 0 \Box E R \bigcirc Н F Α M В C Ν Р M R Α Ν \mathbf{O} R R В W R В R 0 G Α O Α В F M M C U Α Ν Α R В Ε M Α W Ν U Ν O Ν Α O 0 O Z F S Р В R U Α O M Ν R C R R R N В M S C S M Α Α Ν X U Ν S C R M Α P O Т R Ν F F W 0 G

Biology Crossword

Use the clues below to fill in the crossword puzzle.

Horizontal Words

- 1. The organelle that performs photosynthesis.
- 2. The 'powerhouse' of the cell.
- 3. Keep's the cell intact by surrounding the cell.
- 4. A tail that some cells use to travel through fluid.
- 5. The central feature of most plant, fungus, or animal cells.

Vertical Words

- 6. A structure within a living cell.
- 7. Organelles that assist the function of DNA, very common throughout the cell.
- 8. An organism that is eukaryotic but not a fungus, animal, or plant.
- 9. Contains all of the organelles.

BIOMOLECULES

The molecules that make living things! After completing each topic, return to this page and draw or write a favorite fact you learned about each biomolecule.

POLYMERS AND MONOMERS

USE THE WORDS BELOW TO FILL IN THE BLANKS WITH THE CORRECT MONOMER AND POLYMER FOR EACH PICTURE:

DNA	protein	beads	starch	words	amino acids
stories	HDPE	ethylene	nucleotides	glucose	necklace
Monomer:	Poor times and bad times est of times; it was the worst of times.	it was stillings	Monomer:	rmer has the sha	pe of a spiral or helix
] [
Monomer:	/mer:		Monomer:	mer:	
	L][0	
Clue: This	polymer is used to s	etore energy.	H C H	Clu poly Poly the n	e: One name for this ymer is High Density yethylene. It's one of nore common plastics.
Monomer:			Monomer:		
Poly	/mer:		Poly	mer:	

osmosis impermeable semipermeable

A substance that nothing will pass through is called ______. You could

think of it as a solid steel door. Something that is ______ is like a screen

door; it lets the air through but keeps the bugs outside.

Grape skins, gummy candy, and cell membranes are all semipermeable. They allow water and other small molecules to pass through them. This movement of water or other molecules through a semipermeable membrane is called .

Which examples of osmosis have you seen?

A grape left in the sun shrivels into a raisin.

A dried cranberry soaked in water becomes plump.

A cucumber soaked in brine becomes a pickle.

A gummy bear left in water expands.

Why does water move out of a cucumber or into dried fruit? Whenever there is something like salt or sugar (**the solute**) dissolved in water (**the solvent**), water will always move toward the area with a high concentration of solutes.

DRAW LINES TO SHOW WHAT WOULD HAPPEN IF A SEMIPERMEABLE BAG OF SALTY WATER WAS PLACED IN ANOTHER CONTAINER OF SALTY WATER. THE DOTS REPRESENT THE AMOUNT OF SALT, OR SOLUTE.

Lipids Make Membranes

If you mixed a large spoonful of each of the biomolecules into a glass of water, would it mix completely with the water or not? Color in the cup with your prediction.

FILL IN THE BLANKS USING THESE WORDS:

	phospholipids cholesterol	channel hydrophobic	hydrophilic		
Th	ne membranes c	of animal cells a	re made of		
		These mol	ecules have a		
"h	ead" that is		(attracted to		
Wa	ater) and a "tail"	that is			
(re	epelled by water)			
m	olecules stabiliz	e the membran	e and		
		proteins can op	en to allow		
m	molecules to pass through and enter the cell.				

