

Today's Lecture

- 1. Wrapping-up centrality measures: PageRank and HITS.
- 2. Random graphs, Erdős-Rényi model.
- 3. Probability recap: binomial and Poisson distribution.

Recall: PageRank

Note

We define random walk on a directed graph in a natural way. The walk can only follow the direction of arrows.

Algebraically more complicated as A_G is not symmetric and the eigenvalues are complex.

- Web graph = directed network of pages and hyperlinks.
- Eigenvector centrality does not work directly in directed graphs with sinks or disconnected components.
- PageRank modifies the random walk with teleportation:

$$P_{\alpha} = \alpha P + (1 - \alpha) \frac{1}{N} \mathbf{1} \mathbf{1}^{T},$$

where P is the transition matrix of the web, $\alpha \in (0,1)$.

• Stationary distribution of $P_{\alpha} = \text{PageRank vector}$.

Beyond PageRank: The HITS Algorithm

Goal: Identify both *authorities* and *hubs* in a directed network.

- A good hub points to many good authorities.
- A good authority is pointed to by many good hubs.

Beyond PageRank: The HITS Algorithm

Goal: Identify both *authorities* and *hubs* in a directed network.

- A good hub points to many good authorities.
- A good authority is pointed to by many good hubs.

Beyond PageRank: The HITS Algorithm

Goal: Identify both *authorities* and *hubs* in a directed network.

- A good hub points to many good authorities.
- A good authority is pointed to by many good hubs.

Context:

- Introduced by Jon Kleinberg (1999).
- Used originally to rank web pages within a topic query.
- Query-dependent unlike PageRank, which is global.

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node i has: authority score a_i , hub score h_i .

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node i has: authority score a_i , hub score h_i .

They satisfy the mutual reinforcement relations:

$$\begin{cases} h \propto Aa, & \text{(hubs get votes from authorities)} \\ a \propto A^\top h, & \text{(authorities get votes from hubs)} \end{cases}$$

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node i has: authority score a_i , hub score h_i .

They satisfy the mutual reinforcement relations:

$$\begin{cases} h \propto Aa, & \text{(hubs get votes from authorities)} \\ a \propto A^\top h, & \text{(authorities get votes from hubs)} \end{cases}$$

Combining gives:

$$a \propto A^{\top} A a$$
, $h \propto A A^{\top} h$.

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node i has: authority score a_i , hub score h_i .

They satisfy the mutual reinforcement relations:

$$\begin{cases} h \propto Aa, & \text{(hubs get votes from authorities)} \\ a \propto A^\top h, & \text{(authorities get votes from hubs)} \end{cases}$$

Combining gives:

$$a \propto A^{\top} A a$$
, $h \propto A A^{\top} h$.

- Take a and h to be **dominant eigenvectors** of $A^{T}A$ and AA^{T} .
- In the iterative HITS algorithm, a and h are renormalized at each step, so the proportionality becomes equality after scaling.
- Equivalent viewpoint: HITS computes the first left and right singular vectors of *A*.

Adjacency matrix:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Graph representation:

Adjacency matrix:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Graph representation:

Iterative algorithm:

- 1. Initialize $a_i = h_i = 1$.
- 2. Repeat $a \leftarrow A^{\top}h$, normalize; $h \leftarrow Aa$, normalize.

Adjacency matrix:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Graph representation:

Iterative algorithm:

- 1. Initialize $a_i = h_i = 1$.
- 2. Repeat $a \leftarrow A^{\top}h$, normalize; $h \leftarrow Aa$, normalize.

Python demo:

```
import networkx as nx
G = nx.DiGraph()
G.add_edges_from([(1,2),(1,3),(2,3),(3,4)])
hubs, auth = nx.hits(G)
```

Adjacency matrix:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Graph representation:

Iterative algorithm:

- 1. Initialize $a_i = h_i = 1$.
- 2. Repeat $a \leftarrow A^{\top}h$, normalize; $h \leftarrow Aa$, normalize.

Python demo:

```
import networkx as nx
G = nx.DiGraph()
G.add_edges_from([(1,2),(1,3),(2,3),(3,4)])
hubs, auth = nx.hits(G)
```

Interpretation:

- Node $1 \rightarrow$ strong hub (points to many).
- Node 4 → strong authority (pointed to by many).

Random graphs and Erdős–Rényi model

Why random graphs?

Real networks (social, economic, financial) are noisy and constantly evolving. We need a simple *baseline model* to compare against.

Definition (Erdős-Rényi (ER) model)

G(N, p): a random graph on N nodes where each of the $\binom{N}{2}$ possible edges appears independently with probability p.

Why random graphs?

Real networks (social, economic, financial) are noisy and constantly evolving. We need a simple *baseline model* to compare against.

Definition (Erdős-Rényi (ER) model)

G(N, p): a random graph on N nodes where each of the $\binom{N}{2}$ possible edges appears independently with probability p.

Paul Erdős (1913 - 1996)

Alfréd Rényi (1921-1970)

Erdős and Rényi (1959-60) launched the probabilistic study of graphs.

G(N, p) Model

Take N=4 then the graph can have up to six edges. Each with distribution Bern(p):

If $p = \frac{1}{2}$, each graph appears with the same probability $\frac{1}{2^6} = \frac{1}{64}$.

Probability recap: Binomial

Definition

If $X \sim \text{Bin}(n, p)$ then

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \mathbb{E}[X] = np, \quad \operatorname{Var}(X) = np(1-p).$$

Useful characterization: $X = \sum_{i=1}^{n} Z_i$ with independent $Z_i \sim \text{Bern}(p)$.

In the ER graph G(N, p):

• Number of edges:

$$L \sim \operatorname{Bin}\left(\binom{N}{2}, p\right).$$

Degree of a fixed vertex v:

$$deg(v) \sim Bin(N-1, p).$$

Probability recap: Binomial

Definition

If $X \sim \text{Bin}(n, p)$ then

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \mathbb{E}[X] = np, \quad \operatorname{Var}(X) = np(1-p).$$

Useful characterization: $X = \sum_{i=1}^{n} Z_i$ with independent $Z_i \sim \text{Bern}(p)$.

In the ER graph G(N, p):

• Number of edges:

$$L \sim \operatorname{Bin}\left(\binom{N}{2}, p\right).$$

Degree of a fixed vertex v:

$$deg(v) \sim Bin(N-1, p).$$

Probability recap: Poisson (as Binomial limit)

Theorem

If $X_n \sim \text{Bin}(n, p_n)$ with $n \to \infty$ and $np_n \to \lambda > 0$, then

$$X_n \longrightarrow X \sim \operatorname{Pois}(\lambda), \qquad \mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

The approximation $Bin(n, p) \approx Poiss(\lambda)$ for $\lambda = pn$ is particularly good if p is small.

Example (Quick check)

For n=2000, p=0.003, $\lambda=np=6$. Compare $\mathbb{P}(X=0)$: Binomial $=(1-p)^{2000}\approx 0.00245$ vs. Poisson $e^{-6}\approx 0.00248$ (very close).

Degree distribution in G(N, p)

If
$$p=\lambda/(N-1)$$
, then, for any $v\in V$,
$$\deg(v) \ \sim \ \mathrm{Bin}(N-1,p) \ \approx \ \mathrm{Pois}(\lambda).$$

- Mean degree: $\mathbb{E}[\deg(v)] = (N-1)p$.
- $\mathbb{P}(\deg(v) = k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$.

Note

This gives closed forms for expectations; Poisson is a great approximation when N is large and p small.