

电路与电子学实验报告

院(系):智能工程学院

学号: 20354027

姓名: 方桂安

自期: 2021.12.9

实验名称: RLC 串联电路的幅频特性与谐振现象

一、 实验目的

1. 测定 R、L、C 串联谐振电路的频率特性曲线。

2. 观察串联谐振现象,了解电路参数对谐振特性的影响。

二、 实验原理

1. R、L、C串联电路(图 10-1)的阻抗是电源频率的函数,即:

$$Z = R + j\left(\omega L - \frac{1}{\omega C}\right) = |Z|e^{j\varphi}$$

当 $\omega L = \frac{1}{\omega c}$ 时,电路呈现电阻性, U_S 一定时,电流达最大,这种现象称为串联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。

即

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 或 $f_0 = \frac{1}{2\pi\sqrt{LC}}$

上式表明谐振频率仅与元件参数 L、C 有关, 而与电阻 R 无关。

- 2. 电路处于谐振状态时的特征
 - (1) 复阻抗 Z 达最小, 电路呈现电阻性, 电流与输入电压同相。
- (2) 电感电压与电容电压数值相等,相位相反。此时电感电压(或电容电压) 为电源电压的Q倍,Q称为品质因数,即

$$Q = \frac{U_L}{U_S} = \frac{U_C}{U_S} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

在L和C为定值时,Q值仅由回路电阻R的大小来决定。

(3) 在激励电压有效值不变时,回路中的电流达最大值,即:

$$I = I_0 = \frac{U_S}{R}$$

- 3. 串联谐振电路的频率特性:
- (1) 回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的 图形称为串联谐振曲线。电流与角频率的关系为:

$$I(\omega) = \frac{U_S}{\sqrt{R^2 \left(\omega L - \frac{1}{\omega c}\right)^2}} = \frac{U_S}{R\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}} = \frac{I_0}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

当 L、C 一定时,改变回路的电阻 R 值,即可得到不同 Q 值下的电流的幅频特性曲线(图 10-2)。显然 Q 值越大,曲线越尖锐。

有时为了方便,常以 $\frac{\omega}{\omega_0}$ 为横坐标, $\frac{I}{I_0}$ 为纵坐标画电流的幅频特性曲线(这称为通用幅频特性),图 10-3 画出了不同 Q 值下的通用幅频特性曲线。回路的品质因数 Q 越大,在一定的频率偏移下, $\frac{I}{I_0}$ 下降越厉害,电路的选择性就越好。

(2) 为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值 1 下降到 0.707 时所对应的上、下频率之间的宽度称为通频带(以 BW 表示)即:

$$BW = \frac{\omega_2}{\omega_0} - \frac{\omega_1}{\omega_0}$$

由图 10-3 看出 Q 值越大,通频带越窄,电路的选择性越好。

(3) 激励电压与响应电流的相位差 φ 角和激励电源角频率 ω 的关系称为相频特性,即:

$$\varphi(\omega) = arctg \frac{\omega L - \frac{1}{\omega c}}{R} = arctg \frac{X}{R}$$

显然,当电源频率 ω 从 0 变到 ω_0 时,电抗X由 $-\infty$ 变到 0 时, φ 角从 $-\frac{\pi}{2}$ 变到 0,电路为容性。 ω 从 ω_0 变到 ∞ 时,电抗X由 0 变到 ∞ 时, φ 角从 0 变到 $\frac{\pi}{2}$,电路为感性。相角 φ 与 $\frac{\omega}{\omega_0}$ 的关系称为通用相频特性,如图 10-4 所示。

图 10-4

谐振电路的幅频特性和相频特性是衡量电路特性的重要标志。

三、实验设备

名称	型号	数量	M
电路分析实验箱	TPE-DG2L	1	
数字万用表	SDM3065	1	
示波器	SDS5054X	1	
函数信号发生器	SDG6032X-E	1	

四、 实验内容与步骤

接图 10-5 连接线路,电源 \dot{U}_S 为低频信号发生器。将电源的输出电压接示波器的 Y_A 插座,输出电流从R两端取出,接到示波器的 Y_B 插座以观察信号波形,取 L=0.1H, $C=0.5\mu F$, $R=10\Omega$,电源的输出电压 $U_S=3V$ 。

- 1. 计算和测试电路的谐振频率
- (1) $f_0 = \frac{1}{2\pi\sqrt{LC}}$ 用 L、C 之值带入式中计算出 f_0 。

(2)测试:用交流毫伏表接在R两端,观察 U_R 的大小,然后调整输入电源的频率,使电路达到串联谐振,当观察到 U_R 最大时电路即发生谐振,此时的频率即为 f_0 (最好用数字频率计测试一下)

当 Ur 最大时,两波形如下:

2. 测定电路的幅频特性

(1)以 f_0 为中心,调整输入电源的频率从 100Hz~2000Hz,在 f_0 附近,应多取些测试点。用交流毫伏表测试每个测试点的 U_R 值,然后计算出电流I的值,记入表格 10-1 中。

11 40	表 10-1						
序号	1	2	3	4	5	6	7
f(Hz)							
$U_R(mV)$							
I(mA)							
序号	8	9	10	11	12	13	14
f(Hz)							
$U_R(mV)$							
I(mA)							

(2) 保持 $U_S = 3V$, L = 0.1H, $C = 0.5\mu F$, 改变R, 使 $R = 100\Omega$, 即改变了回路Q值,重复步骤(1)。

序号	1	2	3	4	5	6	7
f(Hz)							
$U_R(mV)$							
I(mA)							
序号	8	9	10	11	12	13	14
f(Hz)							
$U_R(mV)$							
I(mA)							

3. 测定电路的相频特性

仍保持 $U_S = 3V$,L = 0.1H, $C = 0.5\mu F$, $R = 10\Omega$ 。以 f_0 为中心,调整输入电源的频率从 100Hz~2000Hz。在 f_0 的两旁各选择几个测试点,从示波器上显示的电压、电流波形上测量出每个测试点电压与电流之间的相位差 $\varphi = \varphi_u - \varphi_i$,数据表格自拟。

表 10-3 序号 f(Hz) $\Delta T(ms)$ $\Delta \varphi$ 序号 9 10 11 12 13 14 15 f(Hz) $\Delta T(ms)$ Δφ

五、 思考题回答

- 1. 仍用哪些实验方法可以判断电路处于谐振状态?
- 答: LC 回路的电压和电流相角差为零; $U_L = U_C$ 或者 $u_L + u_C = 0$ (适用于电感和电容自身损耗很低的情况); 电压一定时,谐振回路电流达到最大值。
- 2. 实验中,当 RLC 串联电路发生谐振时,是否有 $U_C = U_L \supset U_R = U_S$? 若关系不成立,试分析其原因。
 - 答: 因为 L 本身具有一定的电阻, 分压会更多。

六、 实验结果描述与分析

- 1. 计算和测试电路的谐振频率
- (1) 由于给出了L=0.1H, $C=0.5\mu F$, $R=10\Omega$,电源的输出电压 $U_s=3V$ 则 f_0 的理论值为

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{0.1 \times 0.5 \times 10^{-6}}} = 711.76 \text{ Hz}$$

(2) 测试 f_0 如下:

图 10-6

此时:

$$f_0 = 720 \; Hz$$

2. 测定电路的幅频特性

(1) 表 10-1 的填写:

表 10-4 (原表 10-1)

序号	1	2	3	4	5	6	7
f(Hz)	100	300	500	600	650	700	720
$U_R(mV)$	6. 541	23.065	61.122	121. 499	197. 096	365. 438	411.154
I(mA)	0.6541	2.3065	6. 1122	12. 1499	19.7096	36. 5438	41. 1154
序号	8	9	10	11	12	13	14
f(Hz)	740	800	900	1200	1500	1800	2000
$U_R(mV)$	373. 454	195.881	99.861	43. 244	29. 113	21.919	19.060
I(mA)	37. 3454	19. 5881	9. 9861	4. 3244	2. 9113	2. 1919	1. 9060

此时, $U_S = 3V$, L = 0.1H, $C = 0.5\mu F$, $R = 10\Omega$, Q = 44.7。

可以看出,当f从 100Hz 逼近 $f_0=720Hz$ 时, U_R 和I逐渐增大到最大值,并在 720Hz 时达到顶峰;当f从 f_0 增大到 2000Hz 时, U_R 和I逐渐从峰值减小。

(2) 表 10-2 的填写

表 10-5 (原表 10-2)

序号	1	2	3	4	5	6	7
f(Hz)	100	300	500	600	650	700	720
$U_R(mV)$	63. 5674	229. 501	569.09	955.65	1238. 687	1467. 406	1480.651
I(mA)	0.635674	2. 29501	5.6909	9.5565	12. 38687	14.67406	14.80651
序号	8	9	10	11	12	13	14
f(Hz)	740	800	900	1200	1500	1800	2000
$U_R(mV)$	1468. 101	1231.91	843.413	413.23	281.726	218. 124	187.075
I(mA)	14. 6810	12. 3191	8. 4341	4. 132	2.8172	2. 1812	1.87075

此时, $U_S = 3V$, L = 0.1H, $C = 0.5 \mu F$, $R = 100 \Omega$, Q = 4.47。

可以看出,当f从 100Hz 逼近 $f_0=720Hz$ 时, U_R 和I逐渐增大到最大值,并在 720Hz 时达到顶峰;当f从 f_0 增大到 2000Hz 时, U_R 和I逐渐从峰值减小。

3. 测定电路的相频特性

表 10-3 的填写:

表 10-6 (原表 10-3)

序号	1	2	3	4	5	6	7	8
f(Hz)	100	250	350	450	550	650	700	720
$\Delta T(ms)$	-2.51	-0.97	-0.66	-0.52	-0.40	-0.27	-0.11	0
arDelta arphi	-1.58	-1.52	-1.45	-1.47	-1.38	-1.10	-0.48	0
序号	9	10	11	12	13	14	15	\
f(Hz)	750	850	1000	1200	1400	1700	2000	
$\Delta T(ms)$	0.14	0.23	0.24	0.20	0.17	0.14	0.12	
arDelta arphi	0.66	1.23	1.48	1.51	1.50	1.50	1.51	

此时, $U_S=3V$, L=0.1H, $C=0.5\mu F$, $R=10\Omega$, Q=44.7。

表 10-7

序号	1	2	3	4	5	6	7	8
f(Hz)	100	250	350	450	550	650	700	720
$\Delta T(ms)$	-2.39	-0.95	-0.63	-0.43	-0.31	-0.15	-0.05	0
arDelta arphi	-1.50	-1.49	-1.39	-1.22	-1.08	-0.60	-0.22	0
序号	9	10	11	12	13	14	15	\
f(Hz)	750	850	1000	1200	1400	1700	2000	
$\Delta T(ms)$	0.06	0.16	0.18	0.17	0.16	0.13	0.12	
arDelta arphi	0.28	0.83	1.13	1.28	1.41	1.39	1.45	

此时, $U_S = 3V$, L = 0.1H, $C = 0.5 \mu F$, $R = 100 \Omega$, Q = 4.47。

当电源频率 ω 从 0 变到 $\omega_0=720Hz$ 时,电抗X由 $-\infty$ 变到 0 时, φ 角从 $-\frac{\pi}{2}$ 变到 0,电路为容性。 ω 从 ω_0 变到 ∞ 时,电抗X由 0 变到 ∞ 时, φ 角从 0 变到 $\frac{\pi}{2}$,电路为感性。

不同 Q 值下, 幅频特性曲线和相频特性曲线做图如下:

如图所示,由于 $Q_1 = 44.7$, $Q_2 = 4.47$,图像特征与实验说明中的理论图像高度符合,可以认为实验成功。

七、实验结论

结论:处于谐振状态时,RLC 的电源电压与电阻电压处于同相的状态,电路呈现电阻性,此时的频率称为电路的固有频率。当 LC 一定时,改变回路的 R 值,可以得到不同 Q 值下的电流幅频特性曲线和相频特性曲线,Q 值越大,幅频特性曲线越尖锐,相频特性曲线在 $\frac{\omega}{\omega_0}$ = 1处的斜率越大,且在该点左侧电路表现为容性,右侧表现为感性。

误差:主要原因在于电感本身存在较大的电阻,所以测量回路电流时出现了电流偏小的情况。以及测量仪器本身存在的精度误差,以及人为连接电路的误差,此外,电阻箱本身的瑕疵可能也对实验带来了影响。

收获:进一步学习了 RLC 电路的幅频特性和相频特性曲线的特征,以及连接电路时实验操作的规范性,对 RLC 电路有了进一步的认识。