2022-2023 MP2I

32. Intégration

Exercice 1. (i) Soit $f: \mathbb{R} \to \mathbb{R}$ continue et périodique. Montrer que f est uniformément continue.

Exercice 2. (m) Soit f une fonction continue de \mathbb{R} dans \mathbb{R} admettant des limites finies a et b en $+\infty$ et en $-\infty$. Montrer que f est uniformément continue.

Exercice 3. \circledast Soit f uniformément continue de \mathbb{R} dans \mathbb{R} . Montrer qu'il existe $(a,b) \in \mathbb{R}^2$ tel que $\forall x \in \mathbb{R}, |f(x)| \leq a + b|x|$.

Exercice 4. (i) Soit $f:[0,1] \to \mathbb{R}$ continue telle que $\int_0^1 f(t)dt = \frac{1}{2}$. Montrer qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.

Exercice 5. (i) On suppose que f est continue et que $\int_0^{\pi} f(t) \sin(t) dt = \int_0^{\pi} f(t) \cos(t) dt = 0$. Montrer que f s'annule au moins deux fois sur $[0, \pi]$.

Exercice 6. $\boxed{\mathbf{m}}$ Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{x \to +\infty} f(x) = l \in \mathbb{R}$. Pour $n \in \mathbb{N}$, on pose $u_n = \int_n^{n+1} f(t)dt$. Montrer que $\lim_{n \to +\infty} u_n = l$.

Exercice 7. (i) Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$. On suppose que pour toute fonction g en escalier sur [0,1], $\int_0^1 f(t)g(t)dt = 0$. Montrer que $\forall t \in [0,1], f(t) = 0$.

Exercice 8. (m) Soit f continue sur [0,1].

- 1) On suppose que f(1) = 0. Montrer que $\lim_{n \to \infty} n \int_0^1 x^n f(x) dx = 0$.
- 2) En déduire, dans le cas général, que $\lim_{n\to\infty} n \int_0^1 x^n f(x) dx = f(1)$.

Exercice 9. (m) Soit $f, g \in \mathcal{C}^0([0,1], \mathbb{R})$ telles que f(1) = 0 et $\forall t \in [0,1[, 0 \le g(t) < 1]$. Montrer que

$$\lim_{n \to +\infty} \int_0^1 f(t)g(t)^n dt = 0.$$

Exercice 10. (c) Déterminer les limites des suites :

1)
$$u_n = \sum_{k=1}^n \frac{1}{n+k}$$
 2) $v_n = \sum_{k=0}^n \frac{n}{n^2 + k^2}$
3) $w_n = \sin\left(\frac{\pi}{n}\right) \sum_{k=1}^{n-1} \frac{k}{2n + \frac{k^2}{n}}$ 4) $x_n = \sum_{k=n}^{n} \frac{1}{k}$.

Exercice 11. (m) Déterminer les limites des suites :

1)
$$u_n = \frac{1}{n^2} \sum_{k=1}^{n} k e^{-k/n}$$

2)
$$v_n = \frac{1}{n^2} \sum_{k=1}^n (\ln(k^k) - \ln(n^k))$$

$$3) \quad w_n = \frac{1}{n} \sum_{k=1}^n \cos^2\left(\frac{k\pi}{n}\right)$$

4)
$$x_n = n \sum_{k=1}^n \frac{1}{(n+k)^2}$$
.

Exercice 12. (m) Déterminer les limites des suites :

1)
$$u_n = \frac{\sqrt{1 + \sqrt{2} + \ldots + \sqrt{n}}}{n\sqrt{n}}$$

$$2) \quad v_n = \sqrt[n]{\prod_{k=1}^n \left(1 + \left(\frac{k}{n}\right)^2\right)}$$

3)
$$w_n = \sum_{k=1}^n \frac{1}{\sqrt{4n^2 - k^2}}$$

4)
$$x_n = \left(\frac{(2n)!}{n!n^n}\right)^{1/n}$$
.

Exercice 13. (i) Soit a > -1. Déterminer un équivalent de $u_n = \sum_{k=1}^n k^a$.

Exercice 14. (m) Vérifier que $\forall x \in [0,1], \ x^2 - \frac{1}{3}x^4 \le \sin^2(x) \le x^2$ et en déduire $\lim_{n \to +\infty} \sum_{k=1}^n \sin^2\left(\frac{1}{\sqrt{k+n}}\right)$.

Exercice 15. (i) Soit f une fonction convexe sur \mathbb{R} et $g \in \mathcal{C}^0([0,1],\mathbb{R})$. Montrer que

$$f\left(\int_0^1 g(t)dt\right) \le \int_0^1 f(g(t))dt.$$

Exercice 16. $(\overline{\mathbf{m}})$ Soit $f:[0,1] \to \mathbb{R}$ continue.

- 1) Déterminer $\lim_{n \to +\infty} S_n$ où $S_n = \frac{1}{n^2} \sum_{1 \le i,j \le n} f\left(\frac{i}{n}\right) f\left(\frac{j}{n}\right)$.
- 2) Déterminer $\lim_{n \to +\infty} T_n$ où $T_n = \frac{1}{n^2} \sum_{1 \le i \le j \le n} f\left(\frac{i}{n}\right) f\left(\frac{j}{n}\right)$.

Exercice 17. (*) Soit $f, g \in \mathcal{C}^0([0,1], \mathbb{R})$. Déterminer $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) g\left(\frac{k+1}{n}\right)$.

Exercice 18. * Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$ à valeurs strictements positives et $n \in \mathbb{N}^*$.

1) Montrer qu'il existe une unique subdivision $x_0 = a < x_1 < \ldots < x_n = b$ telle que

$$\forall i \in \llbracket 1,n \rrbracket, \ \int_{x_{i-1}}^{x_i} f(t) dt = \frac{1}{n} \int_a^b f(t) dt.$$

2) Déterminer $\lim_{n\to+\infty} \frac{1}{n} \sum_{k=0}^{n} f(x_k)$.

Exercice 19. (*) Soit f continue et positive sur le segment [a, b]. Montrer que :

$$\lim_{n \to +\infty} \left(\int_a^b f^n(x) dx \right)^{1/n} = \sup_{x \in [a,b]} f(x).$$

2