

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/783,059	02/20/2004	Han-Chung Lai	250122-1260	6768
24504	7590	11/23/2005		EXAMINER
THOMAS, KAYDEN, HORSTEMEYER & RISLEY, LLP 100 GALLERIA PARKWAY, NW STE 1750 ATLANTA, GA 30339-5948			KITOV, ZEEV	
			ART UNIT	PAPER NUMBER
			2836	

DATE MAILED: 11/23/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

AK

Office Action Summary	Application No.	Applicant(s)	
	10/783,059	LAI, HAN-CHUNG	
	Examiner Zeev Kitov	Art Unit 2836	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 09/080/05.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1 - 11 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1 - 11 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 20 February 2004 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____ .
3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date <u>04/09/04</u> .	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____ .

DETAILED ACTION

Examiner acknowledges a submission of the election of species filed on September 08, 2005. Group II corresponding to Fig. 5 is selected. Accordingly, Claims 1 – 11 are examined.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter, which the applicant regards as his invention.

1. Claims 2, 4, 6, 8, 9, 11 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. A reason for that is in the claim limitations reciting “ equivalent channel width”. A meaning of the term is not clear. The Specification is silent with regard to the term. Modifying the width of the transistor channel can change a variety of the transistor characteristics, such as the ON resistance, the capacitance and others. A lack of certainty regarding the term makes the claim indefinite. For purpose of examination, the term was interpreted as “channel width”.

2. Claims 1, 3, 5, 7, 10 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. A reason for that is in the claim limitations reciting “ equivalent impedance”. A meaning of the term is not clear. It is particularly not clear how this impedance is measured, between the input pad and the circuit terminal or

between the trace and the ground. The Specification is silent with regard to the term. The ESD protection device has different characteristics in normal conditions when it is idle and totally different characteristics when it is activated. A lack of certainty regarding the term makes the claim indefinite. For purpose of examination, the term was interpreted as "impedance of conducting element".

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 1, 5, 7 and 10 are rejected under 35 U.S.C. 103(a) as being unpatentable over Applicant Admitted Prior Art (AAPA) in view of Saito et al. (US 2004/0026741 A1). Regarding Claims 1 and 5, AAPA discloses following elements: a mechanism for preventing ESD damage to a electronic device including at least one connection area having a plurality of pads (P1 to P n in Fig. 1) arranged sequentially for mounting to an integrated circuit, and a plurality of fan-out signal lines (F1 to Fn in Fig. 1) extending from the pads (P1 to P n in Fig. 1) respectively, the pads (P1 and P n in Fig. 1) disposed on outermost sides of the connection area, the mechanism including: a plurality of ESD protection device (ES1 to ES n in Fig. 1 and 2) configured corresponding to the fan-out signal lines (F1 to Fn in Fig. 1). It further discloses: "When ESD occurs in the TFT LCD

panel, the ESD protection device of each signal line disposed on outermost sides of the connection area 10 has the longest path" (page 2, lines 11 – 17). Eventually, it affects the ESD dispersion and signal lines disposed on outermost sides of the connection area become the most vulnerable to the ESD. However, it does not disclose the ESD devices disposed on outermost sides of the connection area having smaller impedance than the other ESD protection devices. Saito et al. disclose the ESD protection devices (NT1 – NTn in Fig. 3) having unequal impedances, since the devices in area B have larger impedance than the devices in area A. It further discloses compensation of uneven impedances by varying the resistance of the ESD device (shown in Fig. 8, paragraph [0037]). An added correction is roughly proportional to the additional impedance of the connecting line. Both references have the same problem solving area, namely providing ESD protection for the semiconductor circuits. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified the AAPA solution by setting the impedances of the ESD protection devices disposed on outermost sides of the connection area, i.e. ES1 and ES n, smaller than impedances of the other ESD protection devices, because (I) AAPA states that these lines are the longest and therefore have the highest impedance, which is to be compensated, and (II) as Saito et al. state (page 1, [0009] – [0011]), such correction will result in uniform distribution of the ESD load to the protective elements.

Regarding Claim 7, it differs from Claim 3 by its limitation of the first and the last ESD protection devices having impedance different from other ESD protection devices. As was stated above (see Claim 3 rejection), when conditions of gradually changing

impedance are satisfied, the first and the last ESD protection elements will have the impedance lower than other ESD protection devices.

Regarding Claim 10, AAPA discloses a liquid crystal display including a pixel array (Fig. 1 of Drawings, Specification, page 1, line 10 – page 2, line 6).

Claim 3 is rejected under 35 U.S.C. 103(a) as being unpatentable over Applicant Admitted Prior Art (AAPA) in view of Saito et al. and Haba et al. (US 6,376,904). As per Claim 3, it differs from Claim 1 rejected above by its limitation of the ESD protection devices impedance being gradually increase from one outermost device to some intermediate device and being decreased from there to another outermost device. Haba et al. disclose the integrated circuit connections layout (Fig. 4A), wherein the outermost connections between the external terminals and the die are the longest and intermediate connections have their lengths gradually reduced toward the center connection. The impedance of the connections is proportional to their length. Saito et al. disclose the ESD protection devices (NT1 – NTn in Fig. 3) having unequal impedances, since the connective trace in area B has larger impedance than the trace in area A. It further discloses compensation of uneven impedances by varying the resistance of the ESD device (shown in Fig. 8, paragraph [0037]). An added correction is roughly proportional to the additional impedance of the connecting trace. Both references have the same problem solving area, namely providing ESD protection for the semiconductor circuits. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified the AAPA solution by

setting the impedances of the ESD protection devices ES1 to ES j being gradually increased and impedances of the ESD protection devices ES j+1 to ES n gradually decrease, ($1 < j < n$), in accordance with the impedance of the connecting lines, because as Saito et al. state (page 1, [0009] – [0011]), such correction will result in uniform distribution of the ESD load to the protective elements.

Claims 2, 6, 8 and 11 are rejected under 35 U.S.C. 103(a) as being unpatentable over Applicant Admitted Prior Art (AAPA) in view of Saito et al., and Esch (US 6,118,310). Claims 2, 6 and 11 differ from Claims 1 and 5 rejected above by their limitation of at least one element having a MOS transistor circuit structure and channel widths of the ESD protection devices disposed on outermost sides of the connection area, i.e. ES1 and Esn, are longer than channel widths of the other ESD protection devices. Saito et al. disclose at least one element having a MOS transistor circuit structure (NT 1 – NT n in Fig. 1). As per Claims 2 and 6, Esch discloses setting specific value of the circuit impedance by setting the channel widths of the ESD protection devices (col. 6, lines 10 – 39). Both references have the same problem solving area, namely providing ESD protection for the semiconductor devices and setting the circuit impedance. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have further modified the AAPA solution by setting the protection circuit impedance by varying the channel widths of the ESD protection devices according to Esch, because modification of the circuit impedance by varying the

channel width will simplify the circuit making unnecessary the resistor; as well known in the art, the silicide resistors consume a space and often require an additional manufacturing process, and therefore, are not desirable elements in the integrated circuit.

As per Claim 8, Esch discloses setting specific value of the circuit impedance by setting the channel widths of the ESD protection devices (col. 6, lines 10 – 39). Both references have the same problem solving area, namely providing ESD protection for the semiconductor devices and setting the circuit impedance. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have further modified the AAPA solution by setting the protection circuit impedance by varying the channel widths of the ESD protection devices according to Esch, because modification of the circuit impedance by varying the channel width will simplify the circuit making unnecessary the resistor; as well known in the art, the silicide resistors consume a space and often require an additional manufacturing process, and therefore, are not desirable elements in the integrated circuit.

Claims 4 and 9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Applicant Admitted Prior Art (AAPA) in view of Saito et al., Haba et al. and Esch (US 6,118,310). Claim 4 differs from Claim 2 rejected above by its limitation of the channel width of the ESD protection devices being gradually decreased from one outermost device to some intermediate device and being increased from there to another outermost device. Haba et al. disclose the integrated circuit connections layout (Fig.

4A), wherein the outermost connections between the external terminals and the die are the longest and intermediate connections have their lengths gradually reduced toward the center connection. The impedance of the connections is proportional to their length. Esch discloses setting specific value of the circuit impedance by setting the channel widths of the ESD protection devices (col. 6, lines 10 – 39). Both references have the same problem solving area, namely providing ESD protection for the semiconductor devices and setting the circuit impedance. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have further modified the AAPA solution by setting the protection circuit impedance by varying the channel widths of the ESD protection devices according to Esch, because modification of the circuit impedance by varying the channel width will simplify the circuit making unnecessary the resistor; as well known in the art, the silicide resistors consume a space and often require an additional manufacturing process, and therefore, are not desirable elements in the integrated circuit and setting particular values of the channel width in accordance with the length of connections demonstrated by Haba et al., i.e., the longer connection, the larger the channel width, because this way assures the even distribution of the impedances, and therefore, the IC will be less vulnerable to the ESD event.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Zeev Kitov whose current telephone number is (571)

272 - 2052. The examiner can normally be reached on 8:00 – 4:30. If attempts to reach examiner by telephone are unsuccessful, the examiner's supervisor, Brian Sircus can be reached on (571) 272 – 2800, Ext. 36. The fax phone number for organization where this application or proceedings is assigned is (571) 273-8300 for all communications.

Z.K.
11/20/2005

BRIAN SIRCUS
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2800