Esame Reti 20 Luglio 2017 Parte A

- OSPF, LSP, LSA, Flooding
- Subnetting + Tabelle Routing
- Percorso di un pacchetto tra due sottoreti
 - Router-on-a-stick e trunking
 - Calcolo Lunghezza cavo da efficienza

Esercizio 1 (10 punti) Considerate il grafo delle reti in figura, a cui viene applicato OSPF limitatamente a ABCDE. Le etichette sono RTT espressi in decisecondi (1 decisecondo=100 msec). Fornite, descrivendone la struttura, i messaggi link state inviati dal nodo C ai vicini. Descrivete la propagazione dei messaggi link state inviati a F.

Impostando C come "router designato", esso invierà degli LSP ai router vicini A, B, E ed F. Ciascun LSP conterrà un Router LSA (LSA di tipo 1), il quale al suo interno descriverà tutto i link state verso i 4 router adiacenti a C, e le relative metriche, eventualmente specificando delle metriche diverse per diversi tipi servizi.

Struttura LSP Header pacchetto

Body (LSA di tipo Router)

Dunque, ipotizzando che:

- i messaggi siano di tipo Link State Update (tipo 4)
- A, B, C, D, E appartengano all'area 1
- Si stiano inviando degli LSA di tipo Router LSA (Tipo LSA = 1)
- Si utilizzi una metrica unica per tutti i TOS (quindi sia sufficiente specificare la metrica per TOS 0) un esempio per questo caso specifico potrebbe essere

Header LSP (header del pacchetto IP)

Pacchetto LSA

Header LSA

(LS age) (Options) 1 (OSPF_ID di A) (OSPF_I	C) (Num seq.) (Checksum LSA) (length)
---	---------------------------------------

Body LSA

Padding		4 (Num. link da C)				
1 (Per questo	LS utilizzo l'ID	del router vicino)				
(OSPF_ID di A	A)					
1 (pnt2pnt)	0 (n. tos diff)	5 (metrica)				
1 (Per questo	LS utilizzo l'ID	del router vicino)				
(OSPF_ID di E	3)					
1 (pnt2pnt)	0 (n. tos diff)	3 (metrica)				
1 (Per questo	LS utilizzo l'ID	del router vicino)				
(OSPF_ID di E	Ξ)					
1 (pnt2pnt) 0 (n. tos diff) 1 (metrica)						
1 (Per questo LS utilizzo l'ID del router vicino)						
(OSPF_ID di F	(OSPF_ID di F)					
1 (pnt2pnt)	0 (n. tos diff)	2 (metrica)				

La propagazione dei messaggi Link State inviati a F seguirà l'algoritmo di flooding, ossia la propagazione su tutti i canali connessi al dispositivo, eccetto quello di provenienza del messaggio.

Dunque, i link state in arrivo ad F si dirameranno con la seguente struttura

Esercizio 2 (8 punti) Un'azienda dispone di tre reti locali A, B, C da 10 host ciascuna, collegate tra loro tramite tre router R1 (A-B), R2 (A-C), R3 (C-B).

Dato l'indirizzo di classe C 198.20.6.0/24, definite uno schema di indirizzamento usando il subnetting VLSM. Specificate le maschere di sottorete e subnetID per tutte le sottoreti, nonché la configurazione dei tre router.

Fornite il percorso passo-passo per un pacchetto generato da un host della sottorete A e diretto a un host della sottorete C.

Ipotesi:

- Ignoro la RFC che impone il non utilizzo di indirizzi di sottoreti con tutti uni o tutti zeri.
- Il router R1 esce sulla rete A con l'interfaccia F0/0 e sulla rete B con l'interfaccia F0/1
- Il router R2 esce sulla rete A con l'interfaccia F0/0 e sulla rete C con l'interfaccia F0/1
- Il router R3 esce sulla rete B con l'interfaccia F0/0 e sulla rete C con l'interfaccia F0/1

Dato che tutte le reti richiedono 10 host, il numero minimo di bit necessari per coprire il fabbisogno è 4. Questo permetterà di costruire delle sottoreti con 16 IP ciascuna, di cui 14 riservati agli host. La maschera che si utilizzerà per le sottoreti di host sarà quindi la /28 (255.255.250.240).

NOME RETE	NET MASK	NET ID	HOST RANGE	BROADCAST IP
Α	255.255.255.240	198.20.6.0	198.20.6.1 - 14	198.20.6.15
В	255.255.255.240	198.20.6.16	198.20.6.17 - 30	198.20.6.31
С	255.255.255.240	198.20.6.32	198.20.6.33 - 46	198.20.6.47

Ipotesi: gli indirizzi delle interfacce dei router sono i seguenti:

R1

- F0/0: 198.20.6.1 (net A) - F0/1: 198.20.6.17 (net B)

R2

- F0/0: 198.20.6.2 (net A) - F0/1: 198.20.6.33 (net C)

R3

- F0/0: 198.20.6.18 (net B) - F0/1: 198.20.6.34 (net C)

Tabella R1

Destination	Gateway	Genmask		MSS	Iface	
198.20.6.0						
192.20.6.1 198.20.6.0	0.0.0.0 0.0.0.0	255.255.255.255 255.255.255.240	U	40 40	L F0/0	
198.20.6.16						
192.20.6.17 198.20.6.16	0.0.0.0 0.0.0.0	255.255.255.255 255.255.255.240	U	40 40	L F0/1	

198.20.6.32 198.20.6.2	255.255.255.240	UG	40	F0/0
------------------------	-----------------	----	----	------

Tabella R2

Destination	Gateway	Gateway Genmask I		MSS	Iface			
198.20.6.0	198.20.6.0							
192.20.6.2 198.20.6.0	0.0.0.0 0.0.0.0	255.255.255.255 255.255.255.240	U	40 40	L F0/0			
198.20.6.32								
192.20.6.33 198.20.6.32	0.0.0.0 0.0.0.0	255.255.255.255 255.255.255.240	U	40 40	L F0/1			
198.20.6.16	198.20.6.1	255.255.255.240	UG	40	F0/0			

Tabella R3

Destination	Gateway Genmask F		Flag	MSS	Iface
198.20.6.16					
192.20.6.18 198.20.6.16	0.0.0.0 0.0.0.0	255.255.255.255 255.255.255.240	U	40 40	L F0/0
198.20.6.32					
192.20.6.34 198.20.6.32	0.0.0.0 0.0.0.0	255.255.255.255 255.255.255.240	U	40 40	L F0/1
198.20.6.0	198.20.6.17	255.255.255.240	UG	40	F0/0

Percorso di un pacchetto dalla sottorete A a C.

Ipotizzo che vi sia uno switch in comune tra i router, secondo la seguente struttura

Il formato dei frame / pacchetti si riferisce al momento dell'uscita dal dispositivo

1) Host Rete A

Lv 2: Ethernet Frame

Preambolo	MAC R2(F0/0)	MAC Host Sor.	0x0800 (IPv4)	Dati	CRC

Lv 3: Pacchetto IPv4

4 (IPv4)	Lungh. Head.	TOS	Lungh. Tot.	Identification	Flags	Offset
TTL	6 (TCP)	Checksum	IP Sorg.	IP dest.	Opzioni	Dati

2) Switch SW_A

Lv 2: Ethernet Frame (uguale)

Lv 3: Pacchetto IPv4 (uguale)

3) Router R2

Lv 2: Ethernet Frame

Preambolo	MAC Host Dest	MAC R2(F0/1)	0x0800 (IPv4)	Dati	CRC
Freambolo	MAC HOST DEST	MAC RZ(FU/T)	0X0000 (IPV4)	Dati	CRC

Lv 3: Pacchetto IPv4 (uguale)

4) Switch SW_C

Lv 2: Ethernet Frame (uguale)

Lv 3: Pacchetto IPv4 (uguale)

5) Host Rete C - Arrivo a Destinazione

Esercizio 3 (8 punti) Considerando la inter-rete in figura, introducete uno switch a livello 2 ed eseguite la sua configurazione in modo che:

- Le sottoreti 10.0.1.X e 10.0.3.X corrispondano ad altrettante VLAN
- La connessione a livello 3 tra le due sottoreti sia assicurata da un unico router

La vostra nuova configurazione e quella originale si applicano allo stesso scenario ? Perché si' o perchè no ?

La nuova configurazione avrà la seguente topologia

Stabiliamo due VLAN: VLAN 10 e VLAN 20, rispettivamente per le sottoreti 10.0.1.X e 10.0.3.X lpotizzando che lo switch abbia 24 porte (eth0 - eth23), configureremo lo switch in modo che: Le porte da eth0 a erh10 saranno dedicate a VLAN 10, mentre le porte da erh11 a eth21 saranno dedicate a VLAN 20.

Sulle porte eth22 e eth23 verrà attivato il trunking, come pure sulle porte eth0 e eth1 del router A. Data la ridondanza del collegamento, verrà applicato il protocollo Per-VLAN spanning tree, in modo da spegnere uno dei due collegamenti e lasciarlo in caso di guasto.

Questa configurazione permetterà di applicare a Router A la configurazione di Router-on-a-stick. Grazie a questa configurazione, sarà possibile far comunicare le due VLAN, e quindi le due sottoreti, come nella configurazione iniziale.

La nuova configurazione come la vecchia suddivide le due sottoreti, e ipotizzando che i router A e B della prima configurazione siano configurati a tal proposito, per entrambe le configurazioni è possibile far comunicare le due sottoreti.

La seconda configurazione tuttavia non prevede la necessaria esistenza delle sottoreti 10.0.4.X e 10.0.2.X, lasciando queste sottoreti per eventuali crescite future ed operando un grande risparmio in termini di indirizzi occupati (queste sottoreti, nella prima configurazione, riservano ben 508 IP per i due collegamenti punto-punto tra i due router).

Esercizio 5 (4 punti) Un canale di comunicazione su cavo ha PDU 1 kbit e bit rate di 40Kbps. Specificate la lunghezza del cavo del PDU per cui idle RQ fornisce un'efficienza del 90%.

La formula per il calcolo dell'efficienza è
U = 1 / (1 + 2 Tp / Tix)
Con
Tp = Lung/VelocitaPropagazione
Tix = NumBitFrame / BitRate

In questo caso
U = 0.9
VelocitaPropagazione = 2*10⁸
NumBitFrame = 1024 bit
BitRate = 40000
Lung = x

E quindi Tp = (Tix - U*Tix) / 2U Tp = (0.0256 - 0.9*0.0256) / (2*0.9) = 0.00142 Tp = x / 2*10^8 \rightarrow x = Tp * 2 * 10^8 \rightarrow 0.001152 * 2 * 10^8 = 284000 metri