Project Garble

Milestone 2: Project Update Document

Joseph Kim, Malla Reddy Adaboina, Bharat Ramanathan

Outline

- Problem Definition
- Proposed Solution
- Project Scope
- Project Workflow
- Process Flow
- Data
- Models

Problem Definition

There are many lectures, podcasts, and other audio content online that we would like to consume. But in their current form, they're too long for us to go through them one by one.

We would like to be able to quickly get the key takeaways from all these audio files efficiently.

Proposed Solution

We would like to build an app, accessible through a browser on mobile or desktop, that would allow any user to upload an audio file. The app would then generate a succinct text summary that capture the key points of the audio content.

Proposed Solution

1. Upload audio. 2. Receive text summary. 3. Read and profit.

Project Scope

Proof Of Concept (POC)

Two types of data: text and audio datasets.

- Long-form text. Should be "single voice" and include a summary.
- Long-form audio. Should be "single voice" and include a summary.
 Helpful to also have audio transcript.
- Conduct EDA across datasets
- Build baseline model
- Evaluate the performance of the baseline model

Prototype

- Create a mockup of screens to see how the app could look like
- Deploy one model to Fast API to service model predictions as an API

Minimum Viable Product (MVP)

- Create an integrated app (basic frontend) to generate text summaries for audio files
- Separate backend API server for converting audio to text and generating summaries

Project Workflow

Process Flow

Data: Sources

Name	Description	Source			
AMI Meeting Corpus	100 hours of meeting recordings in English by mostly non-native speakers	https://github.com/gcunhase/AMIC orpusXML			
Common Crawl (CC) News	708241 English language news articles published between Jan 2017 and December 2019 from all over the world.	https://github.com/huggingface/dat asets/tree/master/datasets/cc_ne ws			
CNN/Dailymail	300k unique news articles as written by journalists at CNN and the Daily Mail	https://github.com/abisee/cnn-daily mail			
ICSI Meeting Corpus	70 hours of meeting recordings (multi-speaker meetings) in English. Includes non-native speakers.	http://www1.icsi.berkeley.edu/Spe ech/mr/			
MediaSum	463.6K interview transcripts from NPR and CNN with summmaries	https://github.com/zcgzcgzcg1/Me diaSum			
Spotify	100k podcasts	https://podcastsdataset.byspotify.c om/			
TedX	All audio-video recordings of TED Talks uploaded to the official TED.com website until September 21st, 2017	TedX Kaggle Link			
Extreme Summarization	226,711 news articles accompanied with a one-sentence summary	https://github.com/huggingface/dat asets/tree/master/datasets/xsum			

^{**} for more details, check out the respective dataset_cards.md file for each dataset here: https://github.com/parambharat/AC215_projectgarble/tree/datasets/datasets/raw/supervised/summarization

Data: Quality

Name	Quality Rating	Additional Comments
AMI Meeting Corpus	4	Though this dataset mostly includes non-native speakers, it includes contains a wide range of other annotations including transcriptions, dialogue acts, topic segmentation, and extractive and abstractive summaries.
Common Crawl (CC) News	3	Large dataset useful for fine-tuning language models.
CNN/Dailymail	5	Large dataset useful for fine-tuning. Commonly used dataset for training models for the purposes of text summarization.
ICSI Meeting Corpus	1	Not ideal for a number of reasons: non-native speakers, varying audio quality, small data set, multiple speakers.
MediaSum	4	Large dataset of news articles with summaries of each. Perfect for training and testing. Written language though.
Spotify	5	This dataset covers a broad array of podcast types. It includes transcripts and summaries. As such, we can select the podcasts that specific fit our criteria.
TedX	4	TedX has the proper form that we're looking for: single speaker, long, and spoken language. Each Ted talk has a description which isn't necessarily the best summaries but should suffice.
Extreme Summarization	4	This news article dataset was explicitly compiled for the task of generating extractive and abstractive summaries. As such, this dataset has the "correct" summaries which can be used as the benchmark for testing. The downside is that the training text is "written" speech and not "spoken" speech.

Data Details (Doc Count & Mean)

1		_	+		
cc_news			char_count	566592.00	1991.58
			sentence_count	566592.00	22.48
		document	sentence_density	566592.00	0.06
			stopword_count	566592.00	170.73
			word_count	566592.00	396.85
	s trai	n	char_count	566592.00	151.82
			sentence_count	566592.00	2.07
		summary	sentence_density	566592.00	0.09
			stopword_count	566592.00	9.58
			word_count	566592.00	29.00
1			ahan aassut	70170.00	04607.60
		document	char_count	79173.00	24687.60
			sentence_count	79173.00	81.67
			sentence_density	79173.00	0.02
spotify			stopword_count	79173.00	3255.05
	train		word_count	79173.00	5891.62
	train		char_count	79173.00	409.57
			sentence_count	79173.00	3.50
		summary	sentence_density	79173.00	0.05
			stopword_count	79173.00	32.76
			word_count	79173.00	76.06

i			1		1					
cnn_dailymail		document		char_count		287113.00		3341.85		
				sentence_count			287113.00		39.10	
				sentence_densit	у	287113.0	0	0.06		
				stopword_count		287113.0	0	308.80		
				word_count		287113.0		691.89		
				char_count		287113.0	0	244.16		
				sentence_count		287113.0		3.83		
		sumn	nary	sentence_densit	у	287113.0		0.08		
				stopword_count		287113.0		19.02		
					word_count		287113.0		51.57	
i I i	· · · · · ·	-	1			- '	-			
				char_count		2828.00		8	8118.03	
				sentence_count		2828.00		9	93.89	
		stop		sen	tence_density	2	828.00	0	.05	
ted train -	sto			oword_count	2828.00		937.08			
	wor			d_count	2	828.00	1	759.56		
	ıraın			cha	r_count	2	828.00	3	24.96	
			sen	tence_count	2	828.00	4	.04		

summary

sentence density 2828.00 0.07

stopword_count

word_count

2828.00 27.83

2828.00 64.32

Sample Descriptive Visualization: TedX

Baseline Model

NLP Summarization Task

Use off-the-shelf
SpaCy Textrank
module to create
extractive summaries

```
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textrank")

def summarize_examples(examples):
    docs = nlp.pipe([" ".join(document) for document in examples["document"]])
    output_summaries = []
    for doc, summary in zip(docs, examples["summary"]):
        output_summary = doc._textrank.summary(limit_sentences=len(summary))
        output_summaries.append([item.text for item in output_summary])
    return {"predicted_summary": output_summaries}
```

```
# metric = datasets.load metric("rouge")
def stringify summaries(examples):
    return {"summary":["\n".join(document) for document in examples["summary"]],
    "predicted summary":["\n".join(document) for document in examples["predicted summary"]],
data splits = load data splits from dir(RAW SUMMARIZATION DATASETS DIR)
features = datasets.features.Features({
    'document': datasets.Sequence(feature=datasets.Value(dtype='string', id=None), length=-1, id=None),
    'summary': datasets.Sequence(feature=datasets.Value(dtype='string', id=None), length=-1, id=None)
   })
baseline scores = {}
for name, splits in tqdm(data splits.items()):
   metric = datasets.load metric("rouge")
   def compute rouge(examples):
        result = metric.add batch(predictions=examples["predicted summary"], references=examples["summary"])
        return examples
    test dataset = datasets.load dataset("json", name, data files={"test": splits["test"]}, features=features,)["test"]
    test dataset = test dataset.map(summarize examples, batched=True)
    test dataset = test dataset.map(stringify summaries, batched=True, remove columns=test dataset.column names)
    test dataset = test dataset.map(compute rouge, batched=True,)
    # test dataset = test dataset.to pandas()
    baseline scores[name] = metric.compute( use stemmer=True)
```

Baseline Evaluation of Predicted Summaries

Next Steps

- Build a abstractive summary transformer model
- Evaluate model performance
- Tweak and iterate
- Build out API, frontend
- Integrate with Google speech-to-text
- Containerize apps and deploy
- End-to-end test