CLAIM LISTING

1. (Currently Amended) An <u>first</u> electronic circuit adapted to communicate a signal to a

plurality of <u>two or more</u> additional electronic circuits over a common transmission line

while simultaneously receiving additional signals from the <u>plurality of two or more</u>

additional electronic circuits over the common transmission line, the <u>first</u> electronic

circuit including:

- (a) signal sending circuitry coupled to an interface node which is adapted to be coupled to the common transmission line, the signal sending circuitry for applying a signal from the <u>first</u> electronic circuit to cooperate in creating a combined signal at the interface node, the combined signal being dependent upon the signal from the <u>first</u> electronic circuit and the additional signals simultaneously applied by the plurality of two or more additional electronic circuits connected at other points on the common transmission line; and
- (b) decoding circuitry coupled to the interface node, the decoding circuitry for detecting the combined signal at the interface node and decoding the additional signals from the combined signal, the additional signals being simultaneously applied by the two or more additional electronic circuits separate from the first electronic circuit.

2. (Currently Amended) The <u>first</u> electronic circuit of Claim 1 wherein the signal sending circuitry includes:

1		(a)	a signal driver; and
2		(b)	an encoding element connected between the signal driver and the interface node.
3			
4	3.	(Curre	ntly Amended) The first electronic circuit of Claim 2 wherein the encoding element
5		compr	ises a resistor.
6			
7	4.	(Curre	ently Amended) The first electronic circuit of Claim 1 wherein the decoding
8		circuit	ry includes:
9		(a)	a first differential receiver having a positive input connected to receive the
10			combined signal and having a[[n]] negative input connected to a first reference
11			voltage source.
12			
13	5.	(Curre	ently Amended) The first electronic circuit of Claim 1 wherein the decoding
14		circui	try includes:
15		(a)	a reference voltage multiplexer connected to receive a first digital signal as a
16			control signal, and having second and third reference voltage inputs;
17		(b)	a second differential receiver having a positive input connected to receive the
18			combined signal, and a negative input connected to receive an output of the
19			reference voltage multiplexer.
20			
21	6.	(Curr	ently Amended) The first electronic circuit of Claim 1 wherein the decoding
22		circui	try includes:

Page 3 of 20

1		(a)	an additional reference muniplexer connected to so controlled by a mor again.
2			signal and a second digital signal and having fourth, fifth, sixth, and seventh
3			reference voltage inputs; and
4		(b)	a third differential receiver having a positive input connected to receive the
. 5			combined signal and a[[n]] negative input connected to receive an output from the
6			additional reference voltage multiplexer.
7			
8	7.	(Curr	ently Amended) An electronic circuit arrangement including:
9		(a)	[[a]] three or more circuits connected together by a common transmission line,
10			each circuit adapted to assert a respective digital signal;
11		(b)	each circuit including sending circuitry connected to the common transmission
12			line, the sending circuitry of the respective circuits cooperating to produce an
13			encoded signal on the transmission line based upon the values of the respective
14			digital signals asserted by the respective circuits, the encoded signal comprising
15			one signal from a set of unique encoded signals with each different signal in the
16			set being representative of a particular combination of digital signals asserted
17			simultaneously from the respective circuits; and
18		(c)	each circuit further including a decoding arrangement for decoding the encoded
19			signal appearing on the common transmission line to produce the digital signals
20			asserted from each other circuit.
21			

	_	(Original) The electronic circuit arrangement of Claim 7 wherein each circuit is located
1	8.	
2		on a separate integrated circuit chip and the common transmission line comprises a
3		conductor connected to a single electrode on each separate integrated circuit chip.
4		
5	9.	(Original) The electronic circuit arrangement of Claim 7 wherein the signal sending
6		circuitry in each respective circuit includes an encoding element comprising a resistor.
7		
8	10.	(Currently Amended) The electronic circuit arrangement of Claim 7 wherein the plurality
9		of three or more circuits includes a first circuit providing a first digital signal, a second
10		circuit providing a second digital signal, and a third circuit providing a third digital
11		signal, and wherein the decoding arrangement associated with the second and third
12		circuits includes a first digital signal decoding arrangement comprising:
13		(a) a first differential receiver having a positive input connected to receive the
14		encoded signal and having a[[n]] negative input connected to a first reference
15		voltage source.
16		
17	11.	(Currently Amended) The electronic circuit arrangement of Claim 7 wherein the plurality
18		of three or more circuits includes a first circuit providing a first digital signal, a second
19		circuit providing a second digital signal, and a third circuit providing a third digital
20		signal, and wherein the decoding arrangement associated with the first and third circuits
21		includes a second digital signal decoding arrangement comprising:

1		(a)	a reference voltage multiplexer connected to receive the first digital signal as a
2			control signal, and having second and third reference voltage inputs;
3		(b)	a second differential receiver having a positive input connected to receive the
. 4			encoded signal, and a[[n]] negative input connected to receive an output of the
. 5			reference voltage multiplexer.
6			
7	12.	(Curr	ently-Amended) The electronic circuit arrangement of Claim 7 wherein the plurality
8		of thr	ee or more circuits includes a first circuit providing a first digital signal, a second
9		circui	t providing a second digital signal, and a third circuit providing a third digital
10		signa	l, and wherein the decoding arrangement associated with the first and second circuits
11		includ	des a third digital signal decoding arrangement comprising:
12		(a)	an additional reference multiplexer connected to be controlled by the first digital
13			signal and second digital signal, and having fourth, fifth, sixth, and seventh
14			reference voltage inputs; and
15		(b)	a third differential receiver having a positive input connected to receive the
16			encoded signal and a[[n]] negative input connected to receive an output from the
17			additional reference voltage multiplexer.
18			
19	13.	(Orig	inal) An electronic system having a first circuit producing a first digital signal, a
20		secor	nd circuit producing a second digital signal, and a third circuit producing a third
21		digita	al signal, the system including:

Page 6 of 20

. 5

	(a)	a first circuit encoding element included in the first circuit, a second circuit
		encoding element included in the second circuit, and a third circuit encoding
		element included in the third circuit, each respective encoding element connected
		between a digital signal output of the respective circuit and a common
		transmission network between the first, second, and third circuits, the first,
		second, and third encoding elements cooperating to produce an encoded signal on
		the common transmission network based upon the values of the first, second, and
		third digital signals, the encoded signal comprising one signal from a set of unique
		encoded signals with each different signal in the set being representative of a
		particular combination of the first, second, and third digital signals; and
	(b)	a first circuit decoding arrangement included with the first circuit, a second circuit
		decoding arrangement included with the second circuit, and a third circuit
		decoding arrangement included with the third circuit, the decoding arrangement
		for each respective circuit for decoding the encoded signal to produce the digital
		signals produced by each other circuit in the system.
14.	(Orig	inal) The electronic system of Claim 13 wherein the encoding elements each
	comp	rise a resistor.
		: •
15.	(Orig	inal) The electronic system of Claim 13 wherein the first circuit decoding
	arrang	gement includes:

1		(a)	a reference voltage multiplexer connected to be controlled by the first digital
2			signal and connected to receive second and third reference voltage signals as
3			inputs;
4		(b)	a second differential receiver having a positive input connected to receive the
5			encoded signal and a negative input connected to receive a reference voltage
6			multiplexer output;
7		(c)	an additional reference voltage multiplexer connected to be controlled by the first
8			digital signal and the second digital signal, and connected to receive fourth, fifth,
9			sixth, and seventh reference voltage signals as inputs; and
10		(d)	a third differential receiver having a positive input connected to receive the
11			encoded signal and a negative input connected to receive an output of the
12			additional reference voltage multiplexer.
13			
14	16.	(Origi	nal) The electronic system of Claim 13 wherein the second circuit decoding
15		arrang	gement includes:
16		(a)	a first differential receiver having a positive input connected to receive the
17			encoded signal and a negative input connected to receive a first reference voltage
18			signal;
19		(b)	an additional reference voltage multiplexer connected to be controlled by the first
20			digital signal and the second digital signal, and connected to receive fourth, fifth,
21			sixth, and seventh reference voltage signals as inputs; and

1		(c)	a third differential receiver having a positive input connected to receive the
2			encoded signal and a negative input connected to receive an output of the
3			additional reference voltage multiplexer.
4			
.5	17.	(cance	led)
6			
7	18.	(New)	The electronic system of Claim 13 wherein the third circuit decoding arrangement
8		includ	es:
9		(a)	a first differential receiver having a positive input connected to receive the
10			encoded signal and a negative input connected to receive a first reference voltage
11			signal;
12		(ь)	a reference voltage multiplexer connected to be controlled by the first digital
13			signal and connected to receive second and third reference voltage signals as
14.			inputs; and
15		(c)	a second differential receiver having a positive input connected to receive the
16			encoded signal and a negative input connected to receive an output of the
17			reference voltage multiplexer.
18			
19	19.	(New)	An electronic circuit arrangement including:
20		(a)	a first circuit, a second circuit, and a third circuit connected together by a common
21			transmission line, the first circuit being adapted to assert a first digital signal, the

Page 9 of 20

P.12

		فأنتسانه فالمراق ورواني والمراق
1		second circuit being adapted to assert a second digital signal, and the third circuit
2		being adapted to assert a third digital signal;
3	(b)	the first circuit, second circuit, and third circuit each including sending circuitry
4		connected to the common transmission line, the sending circuitry of the respective
.5		first, second, and third circuits cooperating to produce an encoded signal on the
6		transmission line based upon the value of the first digital signal, second digital
7		signal, and third digital signal, the encoded signal comprising one signal from a
8		set of unique encoded signals with each different signal in the set being
9		representative of a particular combination of digital signals asserted
10		simultaneously from the first circuit, second circuit, and third circuit; and
11	(c)	the first circuit, second circuit, and third circuit each further including a decoding
12	• •	arrangement for decoding the encoded signal appearing on the common
13		transmission line to produce the digital signals asserted from each other circuit,
14		and
15	(d)	wherein the decoding arrangement associated with the first and second circuits
16		includes a third digital signal decoding arrangement comprising an additional
17		reference multiplexer connected to be controlled by the first digital signal and
18		second digital signal, and having fourth, fifth, sixth, and seventh reference voltage
19		inputs, and a third differential receiver having a positive input connected to
20		receive the encoded signal and a negative input connected to receive an output
21		from the additional reference voltage multiplexer.
		*
22		:

1	20.	(New)	An electronic system having a first circuit producing a first digital signal, a second
2		circuit	producing a second digital signal, and a third circuit producing a third digital
3		signal,	the system including:
4		(a)	a first circuit encoding element included in the first circuit, a second circuit
- 5			encoding element included in the second circuit, and a third circuit encoding
6			element included in the third circuit, each respective encoding element connected
7			between a digital signal output of the respective circuit and a common
8			transmission network between the first, second, and third circuits, the first,
9			second, and third encoding elements cooperating to produce an encoded signal on
10			the common transmission network based upon the values of the first, second, and
11			third digital signals, the encoded signal comprising one signal from a set of unique
12			encoded signals with each different signal in the set being representative of a
13			particular combination of the first, second, and third digital signals; and
14		(b)	a first circuit decoding arrangement included with the first circuit, a second circuit
15			decoding arrangement included with the second circuit, and a third circuit
16			decoding arrangement included with the third circuit, the decoding arrangement
17			for each respective circuit for decoding the encoded signal to produce the digital
18			signals produced by each other circuit in the system, and
19		(c)	wherein the second circuit decoding arrangement includes a first differential
20			receiver having a positive input connected to receive the encoded signal and a
21			negative input connected to receive a first reference voltage signal, an additional
22			reference voltage multiplexer connected to be controlled by the first digital signal

and the second digital signal, and connected to receive fourth, fifth, sixth, and
seventh reference voltage signals as inputs, and a third differential receiver having
a positive input connected to receive the encoded signal and a negative input
connected to receive an output of the additional reference voltage multiplexer.