

Math Methods for Political Science

Lecture 5: Eigenvectors and Eigenvalues

Outline

1 Eigenvectors and eigenvalues

2 The characteristic equation

3 Diagonalization

Eigenvectors and eigenvalues

Definition 1 (Eigenvectors and eigenvalues)

Let A be an $n \times n$ matrix.

- **x** $\in \mathbb{R}^n$ is an eigenvector if $\mathbf{x} \neq 0$ and $\exists \lambda \in \mathbb{R}$ s.t. $A\mathbf{x} = \lambda \mathbf{x}$.
- $\lambda \in \mathbb{R}$ is an eigenvalue if $\exists \mathbf{x} \in \mathbb{R}^n$ s.t. $\mathbf{x} \neq \mathbf{0}$ and $A\mathbf{x} = \lambda \mathbf{x}$.

Example 1 (Eigenvectors and eigenvalues)

If
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, then
$$\begin{cases} \mathbf{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix} & \implies A\mathbf{u} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4\mathbf{u} \\ \mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} & \implies A\mathbf{v} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \mathbf{v}$$

Eigenvectors and eigenvalues cont'd

Example 2 (Eigenvectors and eigenvalues cont'd)

If
$$\lambda = 7$$
, then $A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow (A - 7I)\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix} \mathbf{x} = \mathbf{0}$.

To find **x**:
$$\begin{bmatrix} A - 7I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hence, Nul $(A - 7I) = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \implies \mathbf{x} \in \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ is an eigenvector corresponding to $\lambda = 7$.

Sets of eigenvectors

Let A be an $n \times n$ matrix.

Theorem 1 (Sets of eigenvectors)

If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_r$, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

Example 3 (Eigenvectors and eigenvalues)

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \implies \mathbf{v}_1 = \begin{bmatrix} 6 \\ -5 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 correspond to eigenvalues -4 and 7. Hence, $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0} \iff c_1 = 0, \ c_2 = 0$.

Triangular matrices

Let A be an $n \times n$ matrix.

Theorem 2 (Eigenvalues of triangular matrices)

If A is triangular, its eigenvalues are the entries on its diagonal.

Example 4 (Eigenvalues of triangular matrices)

- The only eigenvalue of *I* is 1.
- The eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ and $A^{\top} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ are 1 and 3.

Outline

1 Eigenvectors and eigenvalues

2 The characteristic equation

3 Diagonalization

The characteristic equation

Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$.

Definition 2 (Eigenspace)

The **eigenspace** of *A* corresponding to λ is Nul $(A - \lambda I)$.

Remark: the eigenspace is a subspace of \mathbb{R}^n .

Theorem 3 (The characteristic equation)

The following statements are equivalent:

- 1. λ is an eigenvalue of A. 3. dim $Nul(A \lambda I) > 0$.
- 2. $\exists \mathbf{x} \neq \mathbf{0}$ s.t. $(A \lambda I)\mathbf{x} = \mathbf{0}$ 4. $\det(A \lambda I) = 0$ (the ch.eq.)

Example 5 (The characteristic equation)

If
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, then $A - \lambda I = \begin{bmatrix} 1 - \lambda & 6 \\ 5 & 2 - \lambda \end{bmatrix}$.

Hence, $det(A - \lambda I) = (2 - \lambda)(1 - \lambda) - 30 = \lambda^2 - 3\lambda - 28$.

Invertible matrices cont'd

Theorem 4 (Characterization of the matrix inverse cont'd)

Let A be a $n \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, then the following statements are equivalent:

- 1. A is invertible.
- 2. A is r.e. to I_n .
- 3. A has n pivot positions.
- 4. The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.
- 5. $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^n$.
- 6. $Span\{a_1, \dots, a_n\} = \mathbb{R}^n$.
- 7. $\exists C \ n \times n \ s.t. \ CA = I_n$.

Furthermore:

16. det $A \neq 0$.

- 8. $\exists B \ n \times n \ s.t. \ AB = I_n$.
- 9. A^{\top} is invertible.
- 10. $\mathbf{a}_1, \dots, \mathbf{a}_n$ form a basis of \mathbb{R}^n .
- 11. $Col A = \mathbb{R}^n$.
- 12. $\dim Col A = n$.
- 13. Rank A = n.
- **14**. *Nul* $A = \{\mathbf{0}\}$.
- **15**. dim Nul A = 0.
- 17. 0 is not an eigenvalue of A.

The characteristic polynomial

Let A be an $n \times n$ matrix and $\lambda \in \mathbb{R}$.

Definition 3 (The characteristic polynomial)

- $det(A \lambda I)$ is the **characteristic polynomial** of A.
- The (algebraic) **multiplicity** of an eigenvalue λ , Mult (A, λ) , is its multiplicity as a root of the characteristic equation.

Example 6 (The characteristic polynomial)

Let
$$A = \begin{bmatrix} 5 & -2 & 6 \\ 0 & 3 & -8 \\ 0 & 0 & 5 \end{bmatrix}$$
, then $A - \lambda I = \begin{bmatrix} 5 - \lambda & -2 & 6 \\ 0 & 3 - \lambda & -8 \\ 0 & 0 & 5 - \lambda \end{bmatrix}$.

Hence, $\det(A - \lambda I) = (5 - \lambda)^2 (3 - \lambda)$ and $\det(A - \lambda I) = 0$ implies $\lambda \in \{5,3\}$ with Mult (A,5) = 2 and Mult (A,3) = 1.

Theorem 5 (Eigenspace dimension and multiplicity)

If λ is an eigenvalue, then dim $Nul(A - \lambda I) \leq Mult(A, \lambda)$.

Outline

1 Eigenvectors and eigenvalues

2 The characteristic equation

3 Diagonalization

Similarity

Let A and B be $n \times n$ matrices.

Definition 4 (Similarity)

If $\exists P$ invertible s.t. $P^{-1}AP = B$, then A is **similar** to B, $A \sim B$.

Example 7 (Similarity)

Let
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Then $P^{-1} = P$, $PAP = B \implies A \sim B$, $PBP = A \implies B \sim A$.

Theorem 6 (Similarity)

- 1. $A \sim A$,
- 2. $A \sim B \implies B \sim A$
- If $A \sim B$, then
- 4. $\det A = \det B$,
- 5. Rank A = Rank B,

- 3. If C is an $n \times n$ matrix, then
 - $A \sim B$ and $B \sim C \implies A \sim C$
- 6. A invertible \iff B invertible,
- 7. $det(A \lambda I) = det(B \lambda I)$.

Diagonalization

Let A be an $n \times n$ matrix.

Definition 5 (Diagonalizable matrix)

A is **diagonalizable** if it is similar to a diagonal matrix D.

Example 8 (Diagonalizable matrix)

If A is diagonalizable, then $\exists P$ s.t. $A = P^{-1}DP$, which implies that $A^2 = (P^{-1}DP)(P^{-1}DP) = P^{-1}D^2P$ and $A^k = P^{-1}D^kP$.

Theorem 7 (The diagonalization theorem)

A is diagonalizable \iff A has n linearly independent eigenvectors.

To diagonalize A:

- 1. Find its eigenvalues $\{\lambda_1, \dots, \lambda_n\}$.
- 2. Find the corresponding eigenvectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.
- 3. Let $P = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$
- 4. Let the diagonal entries of D be $\{\lambda_1, \dots, \lambda_n\}$.

Diagonalization cont'd

Example 9 (Diagonalization)

Let
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

- 1. $\det A \lambda I = -(\lambda 1)(\lambda + 2)^2 \implies$ the eigenvalues are 1 and -2.
- 2. Nul (A I) = Span $\{\mathbf{v}_1\}$, Nul (A + 2I) = Span $\{\mathbf{v}_2, \mathbf{v}_3\}$, where $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. Since $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent, A is diagonalizable.

3.
$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

4.
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Conditions for diagonalization

Let A be an $n \times n$ matrix.

Theorem 8 (Sufficient condition)

If the n eigenvalues are distinct, then A is diagonalizable.

Example 10 (Sufficient condition)

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 5 \end{bmatrix} \Rightarrow \text{eigenvalues are } \{1, 0, 5\} \Rightarrow \text{diagonalizable.}$$

Conditions for diagonalization cont'd

Let A be an $n \times n$ matrix, $\lambda_1, \dots, \lambda_p$ be the distinct eigenvalues with $\mathcal{B}_1, \dots, \mathcal{B}_p$ the bases of their corresponding eigenspaces.

Theorem 9 (Necessary and sufficient conditions)

The following statements are equivalent:

- 1. A diagonalizable
- 2. $|U_{k-1}^p \mathcal{B}_k| = n$

3. $\lambda_k \in \mathbb{R}$ and $|\mathcal{B}_k| = Mult(A, \lambda_k) \ \forall k$

Example 11 (Necessary and sufficient condition)

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \implies \det(A - \lambda I) = (1 - \lambda)^2 \implies 1$$
 is the only

eigenvalue and Mult (A, 1) = 2. Since Nul $(A - I) = \text{Span } \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$,

A is not diagonalizable.