(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Burcau

(43) International Publication Date 6 September 2002 (06.09.2002)

PCT

(10) International Publication Number WO 02/068633 A2

(51) International Patent Classification⁷: C12Q 1/68, G01N 33/574, C07K 14/47

(US). LIU, Chenghua [CN/US]; 1125 Ranchero Way, #14, San Jose, CA 95117 (US).

(21) International Application Number

(21) International Application Number: PCT/US01/43612

C12N 15/09,

(22) International Filing Date:

21 November 2001 (21.11.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/252,500

22 November 2000 (22.11.2000) U

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

60/252,500 (CIP)

Filed on

22 November 2000 (22.11.2000)

(71) Applicant (for all designated States except US): DI-ADEXUS, INC. [US/US]; 343 Oyster Point Boulevard, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MACINA, Roberto, A. [AR/US]; 4118 Crescendo Avenue, San Jose, CA 95136 (US). RECIPON, Herve [FR/US]; 85 Fortuna Avenue, San Francisco, CA 94115 (US). CHEN, Sei-Yu [—/US]; 160 Mira Street, Foster City, CA 94404 (US). SUN, Yongming [CN/US]; 551 Shoal Drive, Redwood City, CA 94065 San Jose, CA 95117 (US).

- (74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell P.C., 66 E. Main Street, Marlton, NJ 08053 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

(57) Abstract: The present invention relates to newly identified nucleic acids and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue, monitoring and identifying and/or designing and antagonists of polypeptide of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

WO 02/068633

-1-

COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

This application claims the benefit of priority from U.S. Provisional Application

Serial No. 60/252,500 filed November 22, 2000, which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to newly identified nucleic acid molecules and
polypeptides present in normal and neoplastic lung cells, including fragments, variants
and derivatives of the nucleic acids and polypeptides. The present invention also relates
to antibodies to the polypeptides of the invention, as well as agonists and antagonists of
the polypeptides of the invention. The invention also relates to compositions comprising
the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists
of the invention and methods for the use of these compositions. These uses include
identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and noncancerous disease states in lung, identifying lung tissue and monitoring and identifying
and/or designing agonists and antagonists of polypeptides of the invention. The uses also
include gene therapy, production of transgenic animals and cells, and production of
engineered lung tissue for treatment and research.

BACKGROUND OF THE INVENTION

Throughout the last hundred years, the incidence of lung cancer has steadily increased, so much so that now in many countries, it is the most common cancer. In fact, lung cancer is the second most prevalent type of cancer for both men and women in the

United States and is the most common cause of cancer death in both sexes. Lung cancer deaths have increased ten-fold in both men and women since 1930, primarily due to an increase in cigarette smoking, but also due to an increased exposure to arsenic, asbestos, chromates, chloromethyl ethers, nickel, polycyclic aromatic hydrocarbons and other agents. See Scott, Lung Cancer: A Guide to Diagnosis and Treatment, Addicus Books

(2000) and Alberg et al., in Kane et al. (eds.) Biology of Lung Cancer, pp. 11-52, Marcel Dekker, Inc. (1998). Lung cancer may result from a primary tumor originating in the

WO 02/068633 PCT/US01/43612

-2-

lung or a secondary tumor which has spread from another organ such as the bowel or breast. Although there are over a dozen types of lung cancer, over 90% fall into two categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). See Scott, supra. About 20-25% of all lung cancers are characterized as SCLC, while 70-5 80% are diagnosed as NSCLC. Id. A rare type of lung cancer is mesothelioma, which is generally caused by exposure to asbestos, and which affects the pleura of the lung. Lung cancer is usually diagnosed or screened for by chest x-ray, CAT scans, PET scans, or by sputum cytology. A diagnosis of lung cancer is usually confirmed by biopsy of the tissue. Id.

SCLC tumors are highly metastatic and grow quickly. By the time a patient has been diagnosed with SCLC, the cancer has usually already spread to other parts of the body, including lymph nodes, adrenals, liver, bone, brain and bone marrow. See Scott, supra; Van Houtte et al. (eds.), Progress and Perspective in the Treatment of Lung Cancer, Springer-Verlag (1999). Because the disease has usually spread to such an extent that surgery is not an option, the current treatment of choice is chemotherapy plus 15 chest irradiation. See Van Houtte, supra. The stage of disease is a principal predictor of long-term survival. Less than 5% of patients with extensive disease that has spread beyond one lung and surrounding lymph nodes, live longer than two years. *Id.* However, the probability of five-year survival is three to four times higher if the disease is diagnosed and treated when it is still in a limited stage, i.e., not having spread beyond 20 one lung. Id.

NSCLC is generally divided into three types: squamous cell carcinoma, adenocarcinoma and large cell carcinoma. Both squamous cell cancer and adenocarcinoma develop from the cells that line the airways; however, adenocarcinoma develops from the goblet cells that produce mucus. Large cell lung cancer has been thus named because the cells look large and rounded when viewed microscopically, and generally are considered relatively undifferentiated. See Yesner, Atlas of Lung Cancer, Lippincott-Raven (1998).

Secondary lung cancer is a cancer initiated elsewhere in the body that has spread to the lungs. Cancers that metastasize to the lung include, but are not limited to, breast 30 cancer, melanoma, colon cancer and Hodgkin's lymphoma. Treatment for secondary lung cancer may depend upon the source of the original cancer. In other words, a lung

15

20

25

30

WO 02/068633 PCT/US01/43612

-3-

cancer that originated from breast cancer may be more responsive to breast cancer treatments and a lung cancer that originated from the colon cancer may be more responsive to colon cancer treatments.

The stage of a cancer indicates how far it has spread and is an important indicator of the prognosis. In addition, staging is important because treatment is often decided according to the stage of a cancer. SCLC is divided into two stages: limited disease, *i.e.*, cancer that can only be seen in one lung and in nearby lymph nodes; and extensive disease, *i.e.*, cancer that has spread outside the lung to the chest or to other parts of the body. For most patients with SCLC, the disease has already progressed to lymph nodes or elsewhere in the body at the time of diagnosis. *See* Scott, *supra*. Even if spreading is not apparent on the scans, it is likely that some cancer cells may have spread away and traveled through the bloodstream or lymph system. In general, chemotherapy with or without radiotherapy is often the preferred treatment. The initial scans and tests done at first will be used later to see how well a patient is responding to treatment.

In contrast, non-small cell cancer may be divided into four stages. Stage I is highly localized cancer with no cancer in the lymph nodes. Stage II cancer has spread to the lymph nodes at the top of the affected lung. Stage III cancer has spread near to where the cancer started. This can be to the chest wall, the covering of the lung (pleura), the middle of the chest (mediastinum) or other lymph nodes. Stage IV cancer has spread to another part of the body. Stage I-III cancer is usually treated with surgery, with or without chemotherapy. Stage IV cancer is usually treated with chemotherapy and/or palliative care.

A number of chromosomal and genetic abnormalities have been observed in lung cancer. In NSCLC, chromosomal aberrations have been described on 3p, 9p, 11p, 15p and 17p, and chromosomal deletions have been seen on chromosomes 7, 11, 13 and 19. See Skarin (ed.), Multimodality Treatment of Lung Cancer, Marcel Dekker, Inc. (2000); Gemmill et al., pp. 465-502, in Kane, supra; Bailey-Wilson et al., pp. 53-98, in Kane, supra. Chromosomal abnormalities have been described on 1p, 3p, 5q, 6q, 8q, 13q and 17p in SCLC. Id. The loss of the short arm of chromosome 3p has also been seen in greater than 90% of SCLC tumors and approximately 50% of NSCLC tumors. Id.

A number of oncogenes and tumor suppressor genes have been implicated in lung cancer. See Mabry, pp. 391-412, in Kane, supra and Sclafani et al., pp. 295-316, in

-4-

Kane, *supra*. In both SCLC and NSCLC, the p53 tumor suppressor gene is mutated in over 50% of lung cancers. *See* Yesner, *supra*. Another tumor suppressor gene, FHIT, which is found on chromosome 3p, is mutated by tobacco smoke. *Id.*; Skarin, *supra*. In addition, more than 95% of SCLCs and approximately 20-60% of NSCLCs have an absent or abnormal retinoblastoma (Rb) protein, another tumor suppressor gene. The *ras* oncogene (particularly K-*ras*) is mutated in 20-30% of NSCLC specimens and the c-*erbB2* oncogene is expressed in 18% of stage 2 NSCLC and 60% of stage 4 NSCLC specimens. *See* Van Houtte, *supra*. Other tumor suppressor genes that are found in a region of chromosome 9, specifically in the region of 9p21, are deleted in many cancer cells, including p16^{INK4A} and p15^{INK4B}. *See* Bailey-Wilson, *supra*; Sclafani *et al.*, *supra*. These tumor suppressor genes may also be implicated in lung cancer pathogenesis.

10

15

20

25

30

In addition, many lung cancer cells produce growth factors that may act in an autocrine fashion on lung cancer cells. See Siegfried et al., pp. 317-336, in Kane, supra; Moody, pp. 337-370, in Kane, supra and Heasley et al., 371-390, in Kane, supra. In SCLC, many tumor cells produce gastrin-releasing peptide (GRP), which is a proliferative growth factor for these cells. See Skarin, supra. Many NSCLC tumors express epidermal growth factor (EGF) receptors, allowing NSCLC cells to proliferate in response to EGF. Insulin-like growth factor (IGF-I) is elevated in greater than 95% of SCLC and greater than 80% of NSCLC tumors; it is thought to function as an autocrine growth factor. Id. Finally, stem cell factor (SCF, also known as steel factor or kit ligand) and c-Kit (a proto-oncoprotein tyrosine kinase receptor for SCF) are both expressed at high levels in SCLC, and thus may form an autocrine loop that increases proliferation. Id.

Although the majority of lung cancer cases are attributable to cigarette smoking, most smokers do not develop lung cancer. Epidemiological evidence has suggested that susceptibility to lung cancer may be inherited in a Mendelian fashion, and thus have an inherited genetic component. Bailey-Wilson, *supra*. Thus, it is thought that certain allelic variants at some genetic loci may affect susceptibility to lung cancer. *Id*. One way to identify which allelic variants are likely to be involved in lung cancer susceptibility, as well as susceptibility to other diseases, is to look at allelic variants of genes that are highly expressed in lung.

10

15

25

30

-5-

The lung is susceptible to a number of other debilitating diseases as well, including, without limitation, emphysema, pneumonia, cystic fibrosis and asthma. See Stockley (ed.), Molecular Biology of the Lung, Volume I: Emphysema and Infection, Birkhauser Verlag (1999), hereafter Stockley I, and Stockley (ed.), Molecular Biology of the Lung, Volume II: Asthma and Cancer, Birkhauser Verlag (1999), hereafter Stockley II. The cause of many these disorders is still not well understood and there are few, if any, good treatment options for many of these noncancerous lung disorders. Thus, there also remains a need for understanding of various noncancerous lung disorders and for identify treatments for these diseases.

PCT/US01/43612

The development and differentiation of the lung tissue during embryonic development is also very important. All of the epithelial cells of the respiratory tract, including those of the lung and bronchi, are derived from the primitive endodermal cells that line the embryonic outpouching. See Yesner, supra. During embryonic development, multipotent endodermal stem cells differentiate into many different types of specialized cells, which include ciliated cells for moving inhaled particles, goblet cells for producing mucus, Kulchitsky's cells for endocrine function, and Clara cells and type II pneumocytes for secreting surfactant protein. Id. Improper development and differentiation may cause respiratory disorders and distress in infants, particularly in premature infants, whose lungs cannot produce sufficient surfactant when they are born. Further, some lung cancer cells, particularly small cell carcinomas, appear multipotent, and can spontaneously differentiate into a number of cell types, including small cell carcinoma, adenocarcinoma and squamous cell carcinoma. Id. Thus, a better understanding of lung development and differentiation may help facilitate understanding of lung cancer initiation and progression.

Accordingly, there is a great need for more sensitive and accurate methods for predicting whether a person is likely to develop lung cancer, for diagnosing lung cancer, for monitoring the progression of the disease, for staging the lung cancer, for determining whether the lung cancer has metastasized and for imaging the lung cancer. There is also a need for better treatment of lung cancer. There is also a great need for diagnosing and treating noncancerous lung disorders such as emphysema, pneumonia, lung infection, pulmonary fibrosis, cystic fibrosis and asthma. There is also a need for compositions and methods of using compositions that are capable of identifying lung tissue for forensic

10

15

20

25

30

-6-

purposes and for determining whether a particular cell or tissue exhibits lung-specific characteristics.

SUMMARY OF THE INVENTION

The present invention solves these and other needs in the art by providing nucleic acid molecules and polypeptides as well as antibodies, agonists and antagonists, thereto that may be used to identify, diagnose, monitor, stage, image and treat lung cancer and non-cancerous disease states in lung; identify and monitor lung tissue; and identify and design agonists and antagonists of polypeptides of the invention. The invention also provides gene therapy, methods for producing transgenic animals and cells, and methods for producing engineered lung tissue for treatment and research.

Accordingly, one object of the invention is to provide nucleic acid molecules that are specific to lung cells, lung tissue and/or the lung organ. These lung specific nucleic acids (LSNAs) may be a naturally-occurring cDNA, genomic DNA, RNA, or a fragment of one of these nucleic acids, or may be a non-naturally-occurring nucleic acid molecule. If the LSNA is genomic DNA, then the LSNA is a lung specific gene (LSG). In a preferred embodiment, the nucleic acid molecule encodes a polypeptide that is specific to lung. In a more preferred embodiment, the nucleic acid molecule encodes a polypeptide that comprises an amino acid sequence of SEQ ID NO: 165 through 284. In another highly preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence of SEQ ID NO: 1 through 164. By nucleic acid molecule, it is also meant to be inclusive of sequences that selectively hybridize or exhibit substantial sequence similarity to a nucleic acid molecule encoding an LSP, or that selectively hybridize or exhibit substantial sequence similarity to an LSNA, as well as allelic variants of a nucleic acid molecule encoding an LSP, and allelic variants of an LSNA. Nucleic acid molecules comprising a part of a nucleic acid sequence that encodes an LSP or that comprises a part of a nucleic acid sequence of an LSNA are also provided.

A related object of the present invention is to provide a nucleic acid molecule comprising one or more expression control sequences controlling the transcription and/or translation of all or a part of an LSNA. In a preferred embodiment, the nucleic acid molecule comprises one or more expression control sequences controlling the

5

10

15

20

25

30

-7-

transcription and/or translation of a nucleic acid molecule that encodes all or a fragment of an LSP.

Another object of the invention is to provide vectors and/or host cells comprising a nucleic acid molecule of the instant invention. In a preferred embodiment, the nucleic acid molecule encodes all or a fragment of an LSP. In another preferred embodiment, the nucleic acid molecule comprises all or a part of an LSNA.

Another object of the invention is to provided methods for using the vectors and host cells comprising a nucleic acid molecule of the instant invention to recombinantly produce polypeptides of the invention.

Another object of the invention is to provide a polypeptide encoded by a nucleic acid molecule of the invention. In a preferred embodiment, the polypeptide is an LSP. The polypeptide may comprise either a fragment or a full-length protein as well as a mutant protein (mutein), fusion protein, homologous protein or a polypeptide encoded by an allelic variant of an LSP.

Another object of the invention is to provide an antibody that specifically binds to a polypeptide of the instant invention..

Another object of the invention is to provide agonists and antagonists of the nucleic acid molecules and polypeptides of the instant invention.

Another object of the invention is to provide methods for using the nucleic acid molecules to detect or amplify nucleic acid molecules that have similar or identical nucleic acid sequences compared to the nucleic acid molecules described herein. In a preferred embodiment, the invention provides methods of using the nucleic acid molecules of the invention for identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung. In another preferred embodiment, the invention provides methods of using the nucleic acid molecules of the invention for identifying and/or monitoring lung tissue. The nucleic acid molecules of the instant invention may also be used in gene therapy, for producing transgenic animals and cells, and for producing engineered lung tissue for treatment and research.

The polypeptides and/or antibodies of the instant invention may also be used to identify, diagnose, monitor, stage, image and treat lung cancer and non-cancerous disease states in lung. The invention provides methods of using the polypeptides of the invention to identify and/or monitor lung tissue, and to produce engineered lung tissue.

-8-

The agonists and antagonists of the instant invention may be used to treat lung cancer and non-cancerous disease states in lung and to produce engineered lung tissue.

Yet another object of the invention is to provide a computer readable means of storing the nucleic acid and amino acid sequences of the invention. The records of the computer readable means can be accessed for reading and displaying of sequences for comparison, alignment and ordering of the sequences of the invention to other sequences.

DETAILED DESCRIPTION OF THE INVENTION

Definitions and General Techniques

5

30

Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by 10 those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid 15 chemistry and hybridization described herein are those well-known and commonly used in the art. The methods and techniques of the present invention are generally performed according to conventional methods well-known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press (1989) and 20 Sambrook et al., Molecular Cloning: A Laboratory Manual, 3d ed., Cold Spring Harbor Press (2001); Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2000); Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular 25 Biology – 4th Ed., Wiley & Sons (1999); Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1990); and Harlow and Lane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1999); each of which is incorporated herein by reference in its entirety.

Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and

15

20

25

30

WO 02/068633 PCT/US01/43612

-9-

pharmaceutical chemistry described herein are those well-known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

The following terms, unless otherwise indicated, shall be understood to have the following meanings:

A "nucleic acid molecule" of this invention refers to a polymeric form of nucleotides and includes both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. A nucleotide refers to a ribonucleotide, deoxynucleotide or a modified form of either type of nucleotide. A "nucleic acid molecule" as used herein is synonymous with "nucleic acid" and "polynucleotide." The term "nucleic acid molecule" usually refers to a molecule of at least 10 bases in length, unless otherwise specified. The term includes single- and double-stranded forms of DNA. In addition, a polynucleotide may include either or both naturally-occurring and modified nucleotides linked together by naturally-occurring and/or non-naturally occurring nucleotide linkages.

The nucleic acid molecules may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) The term "nucleic acid molecule" also includes any topological conformation, including single-stranded, double-stranded, partially duplexed, triplexed, hairpinned, circular and padlocked conformations. Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.

A "gene" is defined as a nucleic acid molecule that comprises a nucleic acid sequence that encodes a polypeptide and the expression control sequences that surround

10

15

20

25

30

the nucleic acid sequence that encodes the polypeptide. For instance, a gene may comprise a promoter, one or more enhancers, a nucleic acid sequence that encodes a polypeptide, downstream regulatory sequences and, possibly, other nucleic acid sequences involved in regulation of the expression of an RNA. As is well-known in the art, eukaryotic genes usually contain both exons and introns. The term "exon" refers to a nucleic acid sequence found in genomic DNA that is bioinformatically predicted and/or experimentally confirmed to contribute a contiguous sequence to a mature mRNA transcript. The term "intron" refers to a nucleic acid sequence found in genomic DNA that is predicted and/or confirmed to not contribute to a mature mRNA transcript, but rather to be "spliced out" during processing of the transcript.

PCT/US01/43612

A nucleic acid molecule or polypeptide is "derived" from a particular species if the nucleic acid molecule or polypeptide has been isolated from the particular species, or if the nucleic acid molecule or polypeptide is homologous to a nucleic acid molecule or polypeptide isolated from a particular species.

An "isolated" or "substantially pure" nucleic acid or polynucleotide (e.g., an RNA, DNA or a mixed polymer) is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, e.g., ribosomes, polymerases, or genomic sequences with which it is naturally associated. The term embraces a nucleic acid or polynucleotide that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotide" is found in nature, (3) is operatively linked to a polynucleotide which it is not linked to in nature, (4) does not occur in nature as part of a larger sequence or (5) includes nucleotides or internucleoside bonds that are not found in nature. The term "isolated" or "substantially pure" also can be used in reference to recombinant or cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems. The term "isolated nucleic acid molecule" includes nucleic acid molecules that are integrated into a host cell chromosome at a heterologous site, recombinant fusions of a native fragment to a heterologous sequence, recombinant vectors present as episomes or as integrated into a host cell chromosome.

A "part" of a nucleic acid molecule refers to a nucleic acid molecule that comprises a partial contiguous sequence of at least 10 bases of the reference nucleic acid

PCT/US01/43612 WO 02/068633

-11-

molecule. Preferably, a part comprises at least 15 to 20 bases of a reference nucleic acid molecule. In theory, a nucleic acid sequence of 17 nucleotides is of sufficient length to occur at random less frequently than once in the three gigabase human genome, and thus to provide a nucleic acid probe that can uniquely identify the reference sequence in a

nucleic acid mixture of genomic complexity. A preferred part is one that comprises a nucleic acid sequence that can encode at least 6 contiguous amino acid sequences (fragments of at least 18 nucleotides) because they are useful in directing the expression or synthesis of peptides that are useful in mapping the epitopes of the polypeptide encoded by the reference nucleic acid. See, e.g., Geysen et al., Proc. Natl. Acad. Sci.

USA 81:3998-4002 (1984); and United States Patent Nos. 4,708,871 and 5,595,915, the 10 disclosures of which are incorporated herein by reference in their entireties. A part may also comprise at least 25, 30, 35 or 40 nucleotides of a reference nucleic acid molecule, or at least 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 or 500 nucleotides of a reference nucleic acid molecule. A part of a nucleic acid molecule may comprise no other nucleic acid sequences. Alternatively, a part of a nucleic acid may comprise other nucleic acid sequences from other nucleic acid molecules.

15

20

25

30

The term "oligonucleotide" refers to a nucleic acid molecule generally comprising a length of 200 bases or fewer. The term often refers to single-stranded deoxyribonucleotides, but it can refer as well to single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs, among others. Preferably, oligonucleotides are 10 to 60 bases in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19 or 20 bases in length. Other preferred oligonucleotides are 25, 30, 35, 40, 45, 50, 55 or 60 bases in length. Oligonucleotides may be single-stranded, e.g. for use as probes or primers, or may be double-stranded, e.g. for use in the construction of a mutant gene. Oligonucleotides of the invention can be either sense or antisense oligonucleotides. An oligonucleotide can be derivatized or modified as discussed above for nucleic acid molecules.

Oligonucleotides, such as single-stranded DNA probe oligonucleotides, often are synthesized by chemical methods, such as those implemented on automated oligonucleotide synthesizers. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms. Initially, chemically synthesized DNAs

-12-

typically are obtained without a 5' phosphate. The 5' ends of such oligonucleotides are not substrates for phosphodiester bond formation by ligation reactions that employ DNA ligases typically used to form recombinant DNA molecules. Where ligation of such oligonucleotides is desired, a phosphate can be added by standard techniques, such as those that employ a kinase and ATP. The 3' end of a chemically synthesized oligonucleotide generally has a free hydroxyl group and, in the presence of a ligase, such as T4 DNA ligase, readily will form a phosphodiester bond with a 5' phosphate of another polynucleotide, such as another oligonucleotide. As is well-known, this reaction can be prevented selectively, where desired, by removing the 5' phosphates of the other polynucleotide(s) prior to ligation.

10

25

30

The term "naturally-occurring nucleotide" referred to herein includes naturally-occurring deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" referred to herein includes nucleotides with modified or substituted sugar groups and the like. The term "nucleotide linkages" referred to herein includes nucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroamidate, phosphoroamidate, and the like. See e.g., LaPlanche et al. Nucl. Acids Res. 14:9081-9093 (1986); Stein et al. Nucl. Acids Res. 16:3209-3221 (1988); Zon et al. Anti-Cancer Drug Design 6:539-568 (1991); Zon et al., in Eckstein (ed.) Oligonucleotides and Analogues: A Practical

Approach, pp. 87-108, Oxford University Press (1991); United States Patent No. 5,151,510; Uhlmann and Peyman Chemical Reviews 90:543 (1990), the disclosures of which are hereby incorporated by reference.

Unless specified otherwise, the left hand end of a polynucleotide sequence in sense orientation is the 5' end and the right hand end of the sequence is the 3' end. In addition, the left hand direction of a polynucleotide sequence in sense orientation is referred to as the 5' direction, while the right hand direction of the polynucleotide sequence is referred to as the 3' direction. Further, unless otherwise indicated, each nucleotide sequence is set forth herein as a sequence of deoxyribonucleotides. It is intended, however, that the given sequence be interpreted as would be appropriate to the polynucleotide composition: for example, if the isolated nucleic acid is composed of RNA, the given sequence intends ribonucleotides, with uridine substituted for thymidine.

15

20

25

30

-13-

The term "allelic variant" refers to one of two or more alternative naturallyoccurring forms of a gene, wherein each gene possesses a unique nucleotide sequence. In a preferred embodiment, different alleles of a given gene have similar or identical biological properties.

The term "percent sequence identity" in the context of nucleic acid sequences refers to the residues in two sequences which are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36 or more nucleotides. There are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin. FASTA, which includes, e.g., the programs FASTA2 and FASTA3, provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, Methods Enzymol. 183: 63-98 (1990); Pearson, Methods Mol. Biol. 132: 185-219 (2000); Pearson, Methods Enzymol. 266: 227-258 (1996); Pearson, J. Mol. Biol. 276: 71-84 (1998); herein incorporated by reference). Unless otherwise specified, default parameters for a particular program or algorithm are used. For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference.

A reference to a nucleic acid sequence encompasses its complement unless otherwise specified. Thus, a reference to a nucleic acid molecule having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence. The complementary strand is also useful, e.g., for antisense therapy, hybridization probes and PCR primers.

In the molecular biology art, researchers use the terms "percent sequence identity", "percent sequence similarity" and "percent sequence homology"

10

20

25

30

interchangeably. In this application, these terms shall have the same meaning with respect to nucleic acid sequences only.

-14-

PCT/US01/43612

The term "substantial similarity" or "substantial sequence similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 50%, more preferably 60% of the nucleotide bases, usually at least about 70%, more usually at least about 80%, preferably at least about 90%, and more preferably at least about 95-98% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above.

Alternatively, substantial similarity exists when a nucleic acid or fragment thereof hybridizes to another nucleic acid, to a strand of another nucleic acid, or to the complementary strand thereof, under selective hybridization conditions. Typically, selective hybridization will occur when there is at least about 55% sequence identity, preferably at least about 65%, more preferably at least about 75%, and most preferably at least about 90% sequence identity, over a stretch of at least about 14 nucleotides, more preferably at least 17 nucleotides, even more preferably at least 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 or 100 nucleotides.

Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, solvents, the base composition of the hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. "Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different physical parameters. The most important parameters include temperature of hybridization, base composition of the nucleic acids, salt concentration and length of the nucleic acid. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization. In general, "stringent hybridization" is performed at about 25°C below the thermal melting point (T_m) for the specific DNA hybrid under a particular set of conditions. "Stringent washing" is performed at temperatures about 5°C lower than the T_m for the specific DNA hybrid under a particular set of conditions. The T_m is the temperature at which 50% of the target sequence

5

15

20

hybridizes to a perfectly matched probe. See Sambrook (1989), supra, p. 9.51, hereby incorporated by reference.

-15-

The T_m for a particular DNA-DNA hybrid can be estimated by the formula: $T_m = 81.5^{\circ}C + 16.6 (\log_{10}[Na^+]) + 0.41 \text{ (fraction G + C)} - 0.63 \text{ (% formamide)} - (600/l)$ where l is the length of the hybrid in base pairs.

The T_m for a particular RNA-RNA hybrid can be estimated by the formula: $T_m = 79.8^{\circ}\text{C} + 18.5 \, (\log_{10}[\text{Na}^+]) + 0.58 \, (\text{fraction G + C}) + 11.8 \, (\text{fraction G + C})^2 - 0.35 \, (\% \, \text{formamide}) - (820/1).$

The T_m for a particular RNA-DNA hybrid can be estimated by the formula: $T_m = 79.8^{\circ}C + 18.5(\log_{10}[Na^{+}]) + 0.58 \text{ (fraction G + C)} + 11.8 \text{ (fraction G + C)}^2 - 0.50$ (% formamide) - (820/l).

In general, the T_m decreases by 1-1.5°C for each 1% of mismatch between two nucleic acid sequences. Thus, one having ordinary skill in the art can alter hybridization and/or washing conditions to obtain sequences that have higher or lower degrees of sequence identity to the target nucleic acid. For instance, to obtain hybridizing nucleic acids that contain up to 10% mismatch from the target nucleic acid sequence, 10-15°C would be subtracted from the calculated T_m of a perfectly matched hybrid, and then the hybridization and washing temperatures adjusted accordingly. Probe sequences may also hybridize specifically to duplex DNA under certain conditions to form triplex or other higher order DNA complexes. The preparation of such probes and suitable hybridization conditions are well-known in the art.

An example of stringent hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or Northern blot or for screening a library is 50% formamide/6X SSC at 42°C for at least ten hours and preferably overnight (approximately 16 hours). Another example of stringent hybridization conditions is 6X SSC at 68°C without formamide for at least ten hours and preferably overnight. An example of moderate stringency hybridization conditions is 6X SSC at 55°C without formamide for at least ten hours and preferably overnight. An example of low stringency hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or Northern blot or for screening a library is 6X SSC at 42°C for at least ten hours. Hybridization conditions to identify

20

25

WO 02/068633 PCT/US01/43612

nucleic acid sequences that are similar but not identical can be identified by experimentally changing the hybridization temperature from 68°C to 42°C while keeping the salt concentration constant (6X SSC), or keeping the hybridization temperature and salt concentration constant (e.g. 42°C and 6X SSC) and varying the formamide concentration from 50% to 0%. Hybridization buffers may also include blocking agents to lower background. These agents are well-known in the art. See Sambrook et al. (1989), supra, pages 8.46 and 9.46-9.58, herein incorporated by reference. See also Ausubel (1992), supra, Ausubel (1999), supra, and Sambrook (2001), supra.

Wash conditions also can be altered to change stringency conditions. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see Sambrook (1989), supra, for SSC buffer). Often the high stringency wash is preceded by a low stringency wash to remove excess probe. An exemplary medium stringency wash for duplex DNA of more than 100 base pairs is 1x SSC at 45°C for 15 minutes. An exemplary low stringency wash for such a duplex is 4x SSC at 40°C for 15 minutes. In general, signal-to-noise ratio of 2x or higher than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization.

As defined herein, nucleic acid molecules that do not hybridize to each other under stringent conditions are still substantially similar to one another if they encode polypeptides that are substantially identical to each other. This occurs, for example, when a nucleic acid molecule is created synthetically or recombinantly using high codon degeneracy as permitted by the redundancy of the genetic code.

Hybridization conditions for nucleic acid molecules that are shorter than 100 nucleotides in length (e.g., for oligonucleotide probes) may be calculated by the formula: $T_m = 81.5^{\circ}\text{C} + 16.6(\log_{10}[\text{Na}^{+}]) + 0.41(\text{fraction G+C}) - (600/\text{N}),$

wherein N is change length and the [Na⁺] is 1 M or less. See Sambrook (1989), supra, p. 11.46. For hybridization of probes shorter than 100 nucleotides, hybridization is usually performed under stringent conditions (5-10°C below the T_m) using high concentrations (0.1-1.0 pmol/ml) of probe. Id. at p. 11.45. Determination of hybridization using mismatched probes, pools of degenerate probes or "guessmers," as well as hybridization solutions and methods for empirically determining hybridization conditions are well-known in the art. See, e.g., Ausubel (1999), supra; Sambrook (1989), supra, pp. 11.45-11.57.

-17-

The term "digestion" or "digestion of DNA" refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes referred to herein are commercially available and their reaction conditions, cofactors and other requirements for use are known and routine to the skilled artisan. For analytical purposes, typically, 1 µg of plasmid or DNA fragment is digested with about 2 units of enzyme in about 20 µl of reaction buffer. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 µg of DNA are digested with 20 to 250 units of enzyme in proportionately larger volumes. Appropriate buffers and substrate amounts for particular restriction enzymes are described in standard laboratory manuals, such as those referenced below, and they are specified by commercial suppliers. Incubation times of about 1 hour at 37°C are ordinarily used, but conditions may vary in accordance with standard procedures, the supplier's instructions and the particulars of the reaction. After digestion, reactions may be analyzed, and fragments may be purified by electrophoresis through an agarose or polyacrylamide gel, using well-known methods that are routine for those skilled in the art.

10

15

20

25

30

The term "ligation" refers to the process of forming phosphodiester bonds between two or more polynucleotides, which most often are double-stranded DNAS. Techniques for ligation are well-known to the art and protocols for ligation are described in standard laboratory manuals and references, such as, e.g., Sambrook (1989), supra.

Genome-derived "single exon probes," are probes that comprise at least part of an exon ("reference exon") and can hybridize detectably under high stringency conditions to transcript-derived nucleic acids that include the reference exon but do not hybridize detectably under high stringency conditions to nucleic acids that lack the reference exon. Single exon probes typically further comprise, contiguous to a first end of the exon portion, a first intronic and/or intergenic sequence that is identically contiguous to the exon in the genome, and may contain a second intronic and/or intergenic sequence that is identically contiguous to the exon in the genome. The minimum length of genomederived single exon probes is defined by the requirement that the exonic portion be of sufficient length to hybridize under high stringency conditions to transcript-derived nucleic acids, as discussed above. The maximum length of genome-derived single exon probes is defined by the requirement that the probes contain portions of no more than one

15

20

25

30

WO 02/068633 PCT/US01/43612

-18-

exon. The single exon probes may contain priming sequences not found in contiguity with the rest of the probe sequence in the genome, which priming sequences are useful for PCR and other amplification-based technologies.

The term "microarray" or "nucleic acid microarray" refers to a substrate-bound collection of plural nucleic acids, hybridization to each of the plurality of bound nucleic acids being separately detectable. The substrate can be solid or porous, planar or non-planar, unitary or distributed. Microarrays or nucleic acid microarrays include all the devices so called in Schena (ed.), <u>DNA Microarrays: A Practical Approach (Practical Approach Series)</u>, Oxford University Press (1999); *Nature Genet.* 21(1)(suppl.):1 - 60 (1999); Schena (ed.), <u>Microarray Biochip: Tools and Technology</u>, Eaton Publishing Company/BioTechniques Books Division (2000). These microarrays include substrate-bound collections of plural nucleic acids in which the plurality of nucleic acids are disposed on a plurality of beads, rather than on a unitary planar substrate, as is described, *inter alia*, in Brenner *et al.*, *Proc. Natl. Acad. Sci. USA* 97(4):1665-1670 (2000).

The term "mutated" when applied to nucleic acid molecules means that nucleotides in the nucleic acid sequence of the nucleic acid molecule may be inserted, deleted or changed compared to a reference nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. In a preferred embodiment, the nucleic acid molecule comprises the wild type nucleic acid sequence encoding an LSP or is an LSNA. The nucleic acid molecule may be mutated by any method known in the art including those mutagenesis techniques described *infra*.

The term "error-prone PCR" refers to a process for performing PCR under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product. See, e.g., Leung et al., Technique 1: 11-15 (1989) and Caldwell et al., PCR Methods Applic. 2: 28-33 (1992).

The term "oligonucleotide-directed mutagenesis" refers to a process which enables the generation of site-specific mutations in any cloned DNA segment of interest. See, e.g., Reidhaar-Olson et al., Science 241: 53-57 (1988).

-19-

5

20

30

The term "assembly PCR" refers to a process which involves the assembly of a PCR product from a mixture of small DNA fragments. A large number of different PCR reactions occur in parallel in the same vial, with the products of one reaction priming the products of another reaction.

The term "sexual PCR mutagenesis" or "DNA shuffling" refers to a method of error-prone PCR coupled with forced homologous recombination between DNA molecules of different but highly related DNA sequence *in vitro*, caused by random fragmentation of the DNA molecule based on sequence similarity, followed by fixation of the crossover by primer extension in an error-prone PCR reaction. *See*, *e.g.*, Stemmer, *Proc. Natl. Acad. Sci. U.S.A.* 91: 10747-10751 (1994). DNA shuffling can be carried out between several related genes ("Family shuffling").

The term "in vivo mutagenesis" refers to a process of generating random mutations in any cloned DNA of interest which involves the propagation of the DNA in a strain of bacteria such as *E. coli* that carries mutations in one or more of the DNA repair pathways. These "mutator" strains have a higher random mutation rate than that of a wild-type parent. Propagating the DNA in a mutator strain will eventually generate random mutations within the DNA.

The term "cassette mutagenesis" refers to any process for replacing a small region of a double-stranded DNA molecule with a synthetic oligonucleotide "cassette" that differs from the native sequence. The oligonucleotide often contains completely and/or partially randomized native sequence.

The term "recursive ensemble mutagenesis" refers to an algorithm for protein engineering (protein mutagenesis) developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. See, e.g., Arkin et al., Proc. Natl. Acad. Sci. U.S.A. 89: 7811-7815 (1992).

The term "exponential ensemble mutagenesis" refers to a process for generating combinatorial libraries with a high percentage of unique and functional mutants, wherein small groups of residues are randomized in parallel to identify, at each altered position, amino acids which lead to functional proteins. See, e.g., Delegrave et al., Biotechnology Research 11: 1548-1552 (1993); Arnold, Current Opinion in Biotechnology 4: 450-455

-20-

5

10

20

25

30

(1993). Each of the references mentioned above are hereby incorporated by reference in its entirety.

"Operatively linked" expression control sequences refers to a linkage in which the expression control sequence is contiguous with the gene of interest to control the gene of interest, as well as expression control sequences that act in *trans* or at a distance to control the gene of interest.

The term "expression control sequence" as used herein refers to polynucleotide sequences which are necessary to affect the expression of coding sequences to which they are operatively linked. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., ribosome binding sites); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include the promoter, ribosomal binding site, and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

The term "vector," as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double-stranded DNA loop into which additional DNA segments may be ligated. Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC). Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Viral vectors that infect bacterial cells are referred to as bacteriophages. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable

-21-

of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector.

However, the invention is intended to include other forms of expression vectors that serve equivalent functions.

The term "recombinant host cell" (or simply "host cell"), as used herein, is intended to refer to a cell into which an expression vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein.

As used herein, the phrase "open reading frame" and the equivalent acronym "ORF" refer to that portion of a transcript-derived nucleic acid that can be translated in its entirety into a sequence of contiguous amino acids. As so defined, an ORF has length, measured in nucleotides, exactly divisible by 3. As so defined, an ORF need not encode the entirety of a natural protein.

As used herein, the phrase "ORF-encoded peptide" refers to the predicted or actual translation of an ORF.

15

20

25

As used herein, the phrase "degenerate variant" of a reference nucleic acid sequence intends all nucleic acid sequences that can be directly translated, using the standard genetic code, to provide an amino acid sequence identical to that translated from the reference nucleic acid sequence.

The term "polypeptide" encompasses both naturally-occurring and non-naturally-occurring proteins and polypeptides, polypeptide fragments and polypeptide mutants, derivatives and analogs. A polypeptide may be monomeric or polymeric. Further, a polypeptide may comprise a number of different modules within a single polypeptide each of which has one or more distinct activities. A preferred polypeptide in accordance with the invention comprises an LSP encoded by a nucleic acid molecule of the instant invention, as well as a fragment, mutant, analog and derivative thereof.

5

10

15

20

25

30

-22-

The term "isolated protein" or "isolated polypeptide" is a protein or polypeptide that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species (3) is expressed by a cell from a different species, or (4) does not occur in nature. Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A polypeptide or protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well-known in the art.

PCT/US01/43612

A protein or polypeptide is "substantially pure," "substantially homogeneous" or "substantially purified" when at least about 60% to 75% of a sample exhibits a single species of polypeptide. The polypeptide or protein may be monomeric or multimeric. A substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and preferably will be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well-known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well-known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well-known in the art for purification.

The term "polypeptide fragment" as used herein refers to a polypeptide of the instant invention that has an amino-terminal and/or carboxy-terminal deletion compared to a full-length polypeptide. In a preferred embodiment, the polypeptide fragment is a contiguous sequence in which the amino acid sequence of the fragment is identical to the corresponding positions in the naturally-occurring sequence. Fragments typically are at least 5, 6, 7, 8, 9 or 10 amino acids long, preferably at least 12, 14, 16 or 18 amino acids long, more preferably at least 20 amino acids long, more preferably at least 25, 30, 35, 40 or 45, amino acids, even more preferably at least 50 or 60 amino acids long, and even more preferably at least 70 amino acids long.

A "derivative" refers to polypeptides or fragments thereof that are substantially similar in primary structural sequence but which include, e.g., in vivo or in vitro chemical and biochemical modifications that are not found in the native polypeptide. Such modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation,

-23-

covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. Other modification include, e.g., labeling with radionuclides, and various enzymatic modifications, as will be readily appreciated by those skilled in the art. A variety of methods for labeling polypeptides and of substituents or labels useful for such purposes are well-known in the art, and include radioactive isotopes such as ¹²⁵I, ³²P, ³⁵S, and ³H, ligands which bind to labeled antiligands (e.g., antibodies), fluorophores, chemiluminescent agents, enzymes, and antiligands which can serve as specific binding pair members for a labeled ligand. The choice of label depends on the sensitivity required, ease of conjugation with the primer, stability requirements, and available instrumentation. Methods for labeling polypeptides are well-known in the art. See Ausubel (1992), supra; Ausubel (1999), supra, herein incorporated by reference.

10

15

20

25

30

The term "fusion protein" refers to polypeptides of the instant invention comprising polypeptides or fragments coupled to heterologous amino acid sequences. Fusion proteins are useful because they can be constructed to contain two or more desired functional elements from two or more different proteins. A fusion protein comprises at least 10 contiguous amino acids from a polypeptide of interest, more preferably at least 20 or 30 amino acids, even more preferably at least 40, 50 or 60 amino acids, yet more preferably at least 75, 100 or 125 amino acids. Fusion proteins can be produced recombinantly by constructing a nucleic acid sequence which encodes the polypeptide or a fragment thereof in frame with a nucleic acid sequence encoding a different protein or peptide and then expressing the fusion protein. Alternatively, a fusion protein can be produced chemically by crosslinking the polypeptide or a fragment thereof to another protein.

-24-

10

cyclize the peptide.

The term "analog" refers to both polypeptide analogs and non-peptide analogs. The term "polypeptide analog" as used herein refers to a polypeptide of the instant invention that is comprised of a segment of at least 25 amino acids that has substantial identity to a portion of an amino acid sequence but which contains non-natural amino acids or non-natural inter-residue bonds. In a preferred embodiment, the analog has the same or similar biological activity as the native polypeptide. Typically, polypeptide analogs comprise a conservative amino acid substitution (or insertion or deletion) with respect to the naturally-occurring sequence. Analogs typically are at least 20 amino acids long, preferably at least 50 amino acids long or longer, and can often be as long as a full-length naturally-occurring polypeptide.

The term "non-peptide analog" refers to a compound with properties that are analogous to those of a reference polypeptide of the instant invention. A non-peptide compound may also be termed a "peptide mimetic" or a "peptidomimetic." Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to useful peptides may be used to produce 15 an equivalent effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a desired biochemical property or pharmacological activity), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: --CH2NH--, --CH2S--, --CH2-CH2--, --CH=CH--(cis and trans), --COCH₂--, --CH(OH)CH₂--, and -CH₂SO--, by methods 20 well-known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may also be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus 25 sequence variation may be generated by methods known in the art (Rizo et al., Ann. Rev. Biochem. 61:387-418 (1992), incorporated herein by reference). For example, one may add internal cysteine residues capable of forming intramolecular disulfide bridges which

A "polypeptide mutant" or "mutein" refers to a polypeptide of the instant

invention whose sequence contains substitutions, insertions or deletions of one or more
amino acids compared to the amino acid sequence of a native or wild-type protein. A
mutein may have one or more amino acid point substitutions, in which a single amino

10

15

20

25

30

-25-

acid at a position has been changed to another amino acid, one or more insertions and/or deletions, in which one or more amino acids are inserted or deleted, respectively, in the sequence of the naturally-occurring protein, and/or truncations of the amino acid sequence at either or both the amino or carboxy termini. Further, a mutein may have the same or different biological activity as the naturally-occurring protein. For instance, a mutein may have an increased or decreased biological activity. A mutein has at least 50% sequence similarity to the wild type protein, preferred is 60% sequence similarity, more preferred is 70% sequence similarity. Even more preferred are muteins having 80%, 85% or 90% sequence similarity to the wild type protein. In an even more preferred embodiment, a mutein exhibits 95% sequence identity, even more preferably 97%, even more preferably 98% and even more preferably 99%. Sequence similarity may be measured by any common sequence analysis algorithm, such as Gap or Bestfit.

PCT/US01/43612

Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinity or enzymatic activity, and (5) confer or modify other physicochemical or functional properties of such analogs. For example, single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the naturally-occurring sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. In a preferred embodiment, the amino acid substitutions are moderately conservative substitutions or conservative substitutions. In a more preferred embodiment, the amino acid substitutions are conservative substitutions. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to disrupt a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence). Examples of art-recognized polypeptide secondary and tertiary structures are described in Creighton (ed.), Proteins, Structures and Molecular Principles, W. H. Freeman and Company (1984); Branden et al. (ed.), Introduction to Protein Structure, Garland Publishing (1991); Thornton et al., Nature 354:105-106 (1991), each of which are incorporated herein by reference.

As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Golub et al. (eds.), <u>Immunology - A Synthesis</u> 2nd Ed.,

Sinauer Associates (1991), which is incorporated herein by reference. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as -, -disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides of the present invention.

Examples of unconventional amino acids include: 4-hydroxyproline, γ-carboxyglutamate,
 -N,N,N-trimethyllysine, -N-acetyllysine, O-phosphoserine, N-acetylserine,
 N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, s-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the lefthand direction is the amino terminal direction and the right hand
 direction is the carboxy-terminal direction, in accordance with standard usage and convention.

A protein has "homology" or is "homologous" to a protein from another organism if the encoded amino acid sequence of the protein has a similar sequence to the encoded amino acid sequence of a protein of a different organism and has a similar biological activity or function. Alternatively, a protein may have homology or be homologous to another protein if the two proteins have similar amino acid sequences and have similar biological activities or functions. Although two proteins are said to be "homologous," this does not imply that there is necessarily an evolutionary relationship between the proteins. Instead, the term "homologous" is defined to mean that the two proteins have similar amino acid sequences and similar biological activities or functions. In a preferred embodiment, a homologous protein is one that exhibits 50% sequence similarity to the wild type protein, preferred is 60% sequence similarity, more preferred is 70% sequence similarity. Even more preferred are homologous proteins that exhibit 80%, 85% or 90% sequence similarity to the wild type protein. In a yet more preferred embodiment, a homologous protein exhibits 95%, 97%, 98% or 99% sequence similarity.

15

20

25

30

When "sequence similarity" is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. In a preferred embodiment, a polypeptide that has "sequence similarity" comprises conservative or moderately conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar

chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino

10

15

30

WO 02/068633 PCT/US01/43612

-27-

acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson, Methods Mol. Biol. 24: 307-31 (1994), herein incorporated by reference.

For instance, the following six groups each contain amino acids that are conservative substitutions for one another:

- 1) Serine (S), Threonine (T);
- 2) Aspartic Acid (D), Glutamic Acid (E);
 - 3) Asparagine (N), Glutamine (Q);
 - 4) Arginine (R), Lysine (K);
 - 5) Isoleucine (I), Leucine (L), Methionine (M), Alanine (A), Valine (V), and
 - 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet *et al.*, *Science* 256: 1443-45 (1992), herein incorporated by reference. A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.

Sequence similarity for polypeptides, which is also referred to as sequence identity, is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Other programs include FASTA, discussed supra.

A preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially blastp or tblastn. See, e.g., Altschul et al., J. Mol. Biol. 215: 403-410 (1990); Altschul et al., Nucleic Acids Res. 25:3389-402 (1997); herein incorporated by reference. Preferred parameters for blastp are:

15

20

25

-28-

PCT/US01/43612

Expectation value: 10 (default)

Filter: seg (default)

Cost to open a gap: 11 (default)

Cost to extend a gap: 1 (default

5 Max. alignments: 100 (default)

Word size: 11 (default)

No. of descriptions: 100 (default)

Penalty Matrix: BLOSUM62

The length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues. When searching a database containing sequences from a large number of different organisms, it is preferable to compare amino acid sequences.

Database searching using amino acid sequences can be measured by algorithms other than blastp are known in the art. For instance, polypeptide sequences can be compared using FASTA, a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (1990), supra; Pearson (2000), supra. For example, percent sequence identity between amino acid sequences can be determined using FASTA with its default or recommended parameters (a word size of 2 and the PAM250 scoring matrix), as provided in GCG Version 6.1, herein incorporated by reference.

An "antibody" refers to an intact immunoglobulin, or to an antigen-binding portion thereof that competes with the intact antibody for specific binding to a molecular species, e.g., a polypeptide of the instant invention. Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. Antigen-binding portions include, inter alia, Fab, Fab', F(ab')2, Fv, dAb, and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide. An Fab fragment is a monovalent fragment consisting of the VL, VH, CL and CH1 domains; an F(ab')2 fragment is a bivalent fragment comprising two Fab

10

15

20

25

30

WO 02/068633 PCT/US01/43612

fragments linked by a disulfide bridge at the hinge region; an Fd fragment consists of the VH and CH1 domains; an Fv fragment consists of the VL and VH domains of a single arm of an antibody; and a dAb fragment consists of a VH domain. See, e.g., Ward et al., Nature 341: 544-546 (1989).

By "bind specifically" and "specific binding" is here intended the ability of the antibody to bind to a first molecular species in preference to binding to other molecular species with which the antibody and first molecular species are admixed. An antibody is said specifically to "recognize" a first molecular species when it can bind specifically to that first molecular species.

A single-chain antibody (scFv) is an antibody in which a VL and VH region are paired to form a monovalent molecule via a synthetic linker that enables them to be made as a single protein chain. See, e.g., Bird et al., Science 242: 423-426 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85: 5879-5883 (1988). Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites. See e.g., Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993); Poljak et al., Structure 2: 1121-1123 (1994). One or more CDRs may be incorporated into a molecule either covalently or noncovalently to make it an immunoadhesin. An immunoadhesin may incorporate the CDR(s) as part of a larger polypeptide chain, may covalently link the CDR(s) to another polypeptide chain, or may incorporate the CDR(s) noncovalently. The CDRs permit the immunoadhesin to specifically bind to a particular antigen of interest. A chimeric antibody is an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies.

An antibody may have one or more binding sites. If there is more than one binding site, the binding sites may be identical to one another or may be different. For instance, a naturally-occurring immunoglobulin has two identical binding sites, a single-chain antibody or Fab fragment has one binding site, while a "bispecific" or "bifunctional" antibody has two different binding sites.

An "isolated antibody" is an antibody that (1) is not associated with naturally-associated components, including other naturally-associated antibodies, that accompany

5

10

15

20

25

30

it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature. It is known that purified proteins, including purified antibodies, may be stabilized with non-naturally-associated components. The non-naturally-associated component may be a protein, such as albumin (e.g., BSA) or a chemical such as polyethylene glycol (PEG).

-30-

PCT/US01/43612

A "neutralizing antibody" or "an inhibitory antibody" is an antibody that inhibits the activity of a polypeptide or blocks the binding of a polypeptide to a ligand that normally binds to it. An "activating antibody" is an antibody that increases the activity of a polypeptide.

The term "epitope" includes any protein determinant capable of specifically binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics. An antibody is said to specifically bind an antigen when the dissociation constant is less than $1 \mu M$, preferably less than $10 \mu M$.

The term "patient" as used herein includes human and veterinary subjects.

Throughout this specification and claims, the word "comprise," or variations such as "comprises" or "comprising," will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The term "lung specific" refers to a nucleic acid molecule or polypeptide that is expressed predominantly in the lung as compared to other tissues in the body. In a preferred embodiment, a "lung specific" nucleic acid molecule or polypeptide is expressed at a level that is 5-fold higher than any other tissue in the body. In a more preferred embodiment, the "lung specific" nucleic acid molecule or polypeptide is expressed at a level that is 10-fold higher than any other tissue in the body, more preferably at least 15-fold, 20-fold, 25-fold, 50-fold or 100-fold higher than any other tissue in the body. Nucleic acid molecule levels may be measured by nucleic acid hybridization, such as Northern blot hybridization, or quantitative PCR. Polypeptide levels may be measured by any method known to accurately quantitate protein levels, such as Western blot analysis.

PCT/US01/43612 WO 02/068633

-31-

Nucleic Acid Molecules, Regulatory Sequences, Vectors, Host Cells and Recombinant Methods of Making Polypeptides

Nucleic Acid Molecules

5

15

20

25

30

One aspect of the invention provides isolated nucleic acid molecules that are specific to the lung or to lung cells or tissue or that are derived from such nucleic acid molecules. These isolated lung specific nucleic acids (LSNAs) may comprise a cDNA, a genomic DNA, RNA, or a fragment of one of these nucleic acids, or may be a nonnaturally-occurring nucleic acid molecule. In a preferred embodiment, the nucleic acid molecule encodes a polypeptide that is specific to lung, a lung-specific polypeptide (LSP). In a more preferred embodiment, the nucleic acid molecule encodes a polypeptide that comprises an amino acid sequence of SEQ ID NO: 165 through 284. In another highly preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence of SEO ID NO: 1 through 164.

An LSNA may be derived from a human or from another animal. In a preferred embodiment, the LSNA is derived from a human or other mammal. In a more preferred embodiment, the LSNA is derived from a human or other primate. In an even more preferred embodiment, the LSNA is derived from a human.

By "nucleic acid molecule" for purposes of the present invention, it is also meant to be inclusive of nucleic acid sequences that selectively hybridize to a nucleic acid molecule encoding an LSNA or a complement thereof. The hybridizing nucleic acid molecule may or may not encode a polypeptide or may not encode an LSP. However, in a preferred embodiment, the hybridizing nucleic acid molecule encodes an LSP. In a more preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule that encodes a polypeptide comprising an amino acid sequence of SEQ ID NO: 165 through 284. In an even more preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule comprising the nucleic acid sequence of SEQ ID NO: 1 through 164.

In a preferred embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under low stringency conditions. In a more preferred embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under moderate stringency conditions. In a more preferred

-32-

5

10

15

30

embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under high stringency conditions. In an even more preferred embodiment, the nucleic acid molecule hybridizes under low, moderate or high stringency conditions to a nucleic acid molecule encoding a polypeptide comprising an amino acid sequence of SEQ ID NO: 165 through 284. In a yet more preferred embodiment, the nucleic acid molecule hybridizes under low, moderate or high stringency conditions to a nucleic acid molecule comprising a nucleic acid sequence selected from SEQ ID NO: 1 through 164. In a preferred embodiment of the invention, the hybridizing nucleic acid molecule may be used to express recombinantly a polypeptide of the invention.

By "nucleic acid molecule" as used herein it is also meant to be inclusive of sequences that exhibits substantial sequence similarity to a nucleic acid encoding an LSP or a complement of the encoding nucleic acid molecule. In a preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule encoding human LSP. In a more preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NO: 165 through 284. In a preferred embodiment, the similar nucleic acid molecule is one that has at least 60% sequence identity with a nucleic acid molecule encoding an LSP, such as a polypeptide having an amino acid sequence of SEQ ID NO: 165 through 284, more preferably at least 70%, even more preferably at least 80% and even more preferably at least 85%. In a more preferred embodiment, the similar nucleic acid molecule is one that has at least 90% sequence identity with a nucleic acid molecule encoding an LSP, more preferably at least 95%, more preferably at least 97%, even more preferably at least 98%, and still more preferably at least 99%. In another highly preferred embodiment, the nucleic acid molecule is one that has at least 99.5%, 99.6%, 99.7%, 99.8% or 99.9% sequence identity with a nucleic acid molecule encoding an LSP.

In another preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to an LSNA or its complement. In a more preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 164. In a preferred embodiment, the nucleic acid molecule is one that has at least 60% sequence identity

-33-

with an LSNA, such as one having a nucleic acid sequence of SEQ ID NO: 1 through 164, more preferably at least 70%, even more preferably at least 80% and even more preferably at least 85%. In a more preferred embodiment, the nucleic acid molecule is one that has at least 90% sequence identity with an LSNA, more preferably at least 95%, more preferably at least 97%, even more preferably at least 98%, and still more preferably at least 99%. In another highly preferred embodiment, the nucleic acid molecule is one that has at least 99.5%, 99.6%, 99.7%, 99.8% or 99.9% sequence identity with an LSNA.

A nucleic acid molecule that exhibits substantial sequence similarity may be one that exhibits sequence identity over its entire length to an LSNA or to a nucleic acid molecule encoding an LSP, or may be one that is similar over only a part of its length. In this case, the part is at least 50 nucleotides of the LSNA or the nucleic acid molecule encoding an LSP, preferably at least 100 nucleotides, more preferably at least 150 or 200 nucleotides, even more preferably at least 250 or 300 nucleotides, still more preferably at least 400 or 500 nucleotides.

10

15

20

25

30

The substantially similar nucleic acid molecule may be a naturally-occurring one that is derived from another species, especially one derived from another primate, wherein the similar nucleic acid molecule encodes an amino acid sequence that exhibits significant sequence identity to that of SEQ ID NO: 165 through 284 or demonstrates significant sequence identity to the nucleotide sequence of SEQ ID NO: 1 through 164. The similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule from a human, when the LSNA is a member of a gene family. The similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule derived from a non-primate, mammalian species, including without limitation, domesticated species, e.g., dog, cat, mouse, rat, rabbit, hamster, cow, horse and pig; and wild animals, e.g., monkey, fox, lions, tigers, bears, giraffes, zebras, etc. The substantially similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule derived from a non-mammalian species, such as birds or reptiles. The naturally-occurring substantially similar nucleic acid molecule may be isolated directly from humans or other species. In another embodiment, the substantially similar nucleic acid molecule may be one that is experimentally produced by random mutation of a nucleic acid molecule. In another embodiment, the substantially similar nucleic acid molecule may be one that is

-34-

experimentally produced by directed mutation of an LSNA. Further, the substantially similar nucleic acid molecule may or may not be an LSNA. However, in a preferred embodiment, the substantially similar nucleic acid molecule is an LSNA.

By "nucleic acid molecule" it is also meant to be inclusive of allelic variants of an LSNA or a nucleic acid encoding an LSP. For instance, single nucleotide polymorphisms (SNPs) occur frequently in eukaryotic genomes. In fact, more than 1.4 million SNPs have already identified in the human genome, International Human Genome Sequencing Consortium, *Nature* 409: 860-921 (2001). Thus, the sequence determined from one individual of a species may differ from other allelic forms present within the population. Additionally, small deletions and insertions, rather than single nucleotide polymorphisms, are not uncommon in the general population, and often do not alter the function of the protein. Further, amino acid substitutions occur frequently among natural allelic variants, and often do not substantially change protein function.

In a preferred embodiment, the nucleic acid molecule comprising an allelic
variant is a variant of a gene, wherein the gene is transcribed into an mRNA that encodes
an LSP. In a more preferred embodiment, the gene is transcribed into an mRNA that
encodes an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In
another preferred embodiment, the allelic variant is a variant of a gene, wherein the gene
is transcribed into an mRNA that is an LSNA. In a more preferred embodiment, the gene
is transcribed into an mRNA that comprises the nucleic acid sequence of SEQ ID NO: 1
through 164. In a preferred embodiment, the allelic variant is a naturally-occurring
allelic variant in the species of interest. In a more preferred embodiment, the species of
interest is human.

By "nucleic acid molecule" it is also meant to be inclusive of a part of a nucleic acid sequence of the instant invention. The part may or may not encode a polypeptide, and may or may not encode a polypeptide that is an LSP. However, in a preferred embodiment, the part encodes an LSP. In one aspect, the invention comprises a part of an LSNA. In a second aspect, the invention comprises a part of a nucleic acid molecule that hybridizes or exhibits substantial sequence similarity to an LSNA. In a third aspect, the invention comprises a part of a nucleic acid molecule that is an allelic variant of an LSNA. In a fourth aspect, the invention comprises a part of a nucleic acid molecule that encodes an LSP. A part comprises at least 10 nucleotides, more preferably at least 15,

25

-35-

17, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 or 500 nucleotides. The maximum size of a nucleic acid part is one nucleotide shorter than the sequence of the nucleic acid molecule encoding the full-length protein.

By "nucleic acid molecule" it is also meant to be inclusive of sequence that encoding a fusion protein, a homologous protein, a polypeptide fragment, a mutein or a polypeptide analog, as described below.

5

15

20

25

30

Nucleotide sequences of the instantly-described nucleic acids were determined by sequencing a DNA molecule that had resulted, directly or indirectly, from at least one enzymatic polymerization reaction (e.g., reverse transcription and/or polymerase chain reaction) using an automated sequencer (such as the MegaBACETM 1000, Molecular Dynamics, Sunnyvale, CA, USA). Further, all amino acid sequences of the polypeptides of the present invention were predicted by translation from the nucleic acid sequences so determined, unless otherwise specified.

In a preferred embodiment of the invention, the nucleic acid molecule contains modifications of the native nucleic acid molecule. These modifications include nonnative internucleoside bonds, post-synthetic modifications or altered nucleotide analogues. One having ordinary skill in the art would recognize that the type of modification that can be made will depend upon the intended use of the nucleic acid molecule. For instance, when the nucleic acid molecule is used as a hybridization probe, the range of such modifications will be limited to those that permit sequence-discriminating base pairing of the resulting nucleic acid. When used to direct expression of RNA or protein *in vitro* or *in vivo*, the range of such modifications will be limited to those that permit the nucleic acid to function properly as a polymerization substrate. When the isolated nucleic acid is used as a therapeutic agent, the modifications will be limited to those that do not confer toxicity upon the isolated nucleic acid.

In a preferred embodiment, isolated nucleic acid molecules can include nucleotide analogues that incorporate labels that are directly detectable, such as radiolabels or fluorophores, or nucleotide analogues that incorporate labels that can be visualized in a subsequent reaction, such as biotin or various haptens. In a more preferred embodiment, the labeled nucleic acid molecule may be used as a hybridization probe.

-36-

Common radiolabeled analogues include those labeled with ³³P, ³²P, and ³⁵S, such as -³²P-dATP, -³²P-dCTP, -³²P-dGTP, -³²P-dTTP, -³²P-3'dATP, -³²P-ATP, -³²P-CTP, -³²P-GTP, -³²P-UTP, -³⁵S-dATP, α-³⁵S-GTP, α-³³P-dATP, and the like.

Commercially available fluorescent nucleotide analogues readily incorporated into the nucleic acids of the present invention include Cy3-dCTP, Cy3-dUTP, Cy5-5 dCTP, Cy3-dUTP (Amersham Pharmacia Biotech, Piscataway, New Jersey, USA), fluorescein-12-dUTP, tetramethylrhodamine-6-dUTP, Texas Red®-5-dUTP, Cascade Blue®-7-dUTP, BODIPY® FL-14-dUTP, BODIPY® TMR-14-dUTP, BODIPY® TR-14-dUTP, Rhodamine GreenTM-5-dUTP, Oregon Green® 488-5-dUTP, Texas Red®-12-dUTP, BODIPY® 630/650-14-dUTP, BODIPY® 650/665-14-dUTP, Alexa 10 Fluor® 488-5-dUTP, Alexa Fluor® 532-5-dUTP, Alexa Fluor® 568-5-dUTP, Alexa Fluor® 594-5-dUTP, Alexa Fluor® 546-14-dUTP, fluorescein-12-UTP, tetramethylrhodamine-6-UTP, Texas Red®-5-UTP, Cascade Blue®-7-UTP, BODIPY® FL-14-UTP, BODIPY® TMR-14-UTP, BODIPY® TR-14-UTP, Rhodamine GreenTM-5-UTP, Alexa Fluor® 488-5-UTP, Alexa Fluor® 546-14-UTP (Molecular 15 Probes, Inc. Eugene, OR, USA). One may also custom synthesize nucleotides having other fluorophores. See Henegariu et al., Nature Biotechnol. 18: 345-348 (2000), the

Haptens that are commonly conjugated to nucleotides for subsequent labeling include biotin (biotin-11-dUTP, Molecular Probes, Inc., Eugene, OR, USA; biotin-21-UTP, biotin-21-dUTP, Clontech Laboratories, Inc., Palo Alto, CA, USA), digoxigenin (DIG-11-dUTP, alkali labile, DIG-11-UTP, Roche Diagnostics Corp., Indianapolis, IN, USA), and dinitrophenyl (dinitrophenyl-11-dUTP, Molecular Probes, Inc., Eugene, OR, USA).

disclosure of which is incorporated herein by reference in its entirety.

20

25

30

Nucleic acid molecules can be labeled by incorporation of labeled nucleotide analogues into the nucleic acid. Such analogues can be incorporated by enzymatic polymerization, such as by nick translation, random priming, polymerase chain reaction (PCR), terminal transferase tailing, and end-filling of overhangs, for DNA molecules, and *in vitro* transcription driven, *e.g.*, from phage promoters, such as T7, T3, and SP6, for RNA molecules. Commercial kits are readily available for each such labeling approach. Analogues can also be incorporated during automated solid phase chemical synthesis. Labels can also be incorporated after nucleic acid synthesis, with the 5' phosphate and 3'

-37-

hydroxyl providing convenient sites for post-synthetic covalent attachment of detectable labels.

Other post-synthetic approaches also permit internal labeling of nucleic acids.

For example, fluorophores can be attached using a cisplatin reagent that reacts with the

N7 of guanine residues (and, to a lesser extent, adenine bases) in DNA, RNA, and PNA
to provide a stable coordination complex between the nucleic acid and fluorophore label
(Universal Linkage System) (available from Molecular Probes, Inc., Eugene, OR, USA
and Amersham Pharmacia Biotech, Piscataway, NJ, USA); see Alers et al., Genes,
Chromosomes & Cancer 25: 301- 305 (1999); Jelsma et al., J. NIH Res. 5: 82 (1994);

Van Belkum et al., BioTechniques 16: 148-153 (1994), incorporated herein by reference.
As another example, nucleic acids can be labeled using a disulfide-containing linker
(FastTagTM Reagent, Vector Laboratories, Inc., Burlingame, CA, USA) that is photo- or
thermally-coupled to the target nucleic acid using aryl azide chemistry; after reduction, a
free thiol is available for coupling to a hapten, fluorophore, sugar, affinity ligand, or
other marker.

One or more independent or interacting labels can be incorporated into the nucleic acid molecules of the present invention. For example, both a fluorophore and a moiety that in proximity thereto acts to quench fluorescence can be included to report specific hybridization through release of fluorescence quenching or to report exonucleotidic excision. See, e.g., Tyagi et al., Nature Biotechnol. 14: 303-308 (1996); Tyagi et al., Nature Biotechnol. 16: 49-53 (1998); Sokol et al., Proc. Natl. Acad. Sci. USA 95: 11538-11543 (1998); Kostrikis et al., Science 279: 1228-1229 (1998); Marras et al., Genet. Anal. 14: 151-156 (1999); U. S. Patent 5,846,726; 5,925,517; 5,925,517; 5,723,591 and 5,538,848; Holland et al., Proc. Natl. Acad. Sci. USA 88: 7276-7280 (1991); Heid et al., Genome Res. 6(10): 986-94 (1996); Kuimelis et al., Nucleic Acids Symp. Ser. (37): 255-6 (1997); the disclosures of which are incorporated herein by reference in their entireties.

Nucleic acid molecules of the invention may be modified by altering one or more native phosphodiester internucleoside bonds to more nuclease-resistant, internucleoside bonds. See Hartmann et al. (eds.), Manual of Antisense Methodology: Perspectives in Antisense Science, Kluwer Law International (1999); Stein et al. (eds.), Applied Antisense Oligonucleotide Technology, Wiley-Liss (1998); Chadwick et al. (eds.),

-38-

Oligonucleotides as Therapeutic Agents - Symposium No. 209, John Wiley & Son Ltd (1997); the disclosures of which are incorporated herein by reference in their entireties. Such altered internucleoside bonds are often desired for antisense techniques or for targeted gene correction. See Gamper et al., Nucl. Acids Res. 28(21): 4332-4339 (2000), the disclosure of which is incorporated herein by reference in its entirety.

Modified oligonucleotide backbones include, without limitation, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 10 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Representative United States patents that teach the preparation of the above 15 phosphorus-containing linkages include, but are not limited to, U. S. Patents 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, the disclosures of which are incorporated herein by reference in their entireties. In a preferred embodiment, the modified internucleoside linkages may be used for antisense techniques.

Other modified oligonucleotide backbones do not include a phosphorus atom, but have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts. Representative U.S. patents that teach the preparation of the above backbones include, but are not limited to, U.S.

25

-39-

Patent 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437 and 5,677,439; the disclosures of which are incorporated herein by reference in their entireties.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage are replaced with novel groups, such as peptide nucleic acids (PNA). In PNA compounds, the phosphodiester backbone of the nucleic acid is replaced with an amide-containing backbone, in particular by repeating N-(2-aminoethyl) glycine units linked by amide bonds. Nucleobases are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone, typically by methylene carbonyl linkages. PNA can be synthesized using a modified peptide synthesis protocol. PNA oligomers can be synthesized by both Fmoc and tBoc methods. Representative U.S. patents that teach the preparation of PNA compounds include, but are not limited to, U.S Patent 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Automated PNA synthesis is readily achievable on commercial synthesizers (see, e.g., "PNA User's Guide," Rev. 2, February 1998, Perseptive Biosystems Part No. 60138, Applied Biosystems, Inc., Foster City, CA).

PNA molecules are advantageous for a number of reasons. First, because the PNA backbone is uncharged, PNA/DNA and PNA/RNA duplexes have a higher thermal 20 stability than is found in DNA/DNA and DNA/RNA duplexes. The Tm of a PNA/DNA or PNA/RNA duplex is generally 1°C higher per base pair than the Tm of the corresponding DNA/DNA or DNA/RNA duplex (in 100 mM NaCl). Second, PNA molecules can also form stable PNA/DNA complexes at low ionic strength, under conditions in which DNA/DNA duplex formation does not occur. Third, PNA also 25 demonstrates greater specificity in binding to complementary DNA because a PNA/DNA mismatch is more destabilizing than DNA/DNA mismatch. A single mismatch in mixed a PNA/DNA 15-mer lowers the Tm by 8-20°C (15°C on average). In the corresponding DNA/DNA duplexes, a single mismatch lowers the Tm by 4-16°C (11°C on average). Because PNA probes can be significantly shorter than DNA probes, their specificity is 30 greater. Fourth, PNA oligomers are resistant to degradation by enzymes, and the lifetime of these compounds is extended both in vivo and in vitro because nucleases and proteases

10

WO 02/068633 PCT/US01/43612

-40-

do not recognize the PNA polyamide backbone with nucleobase sidechains. See, e.g., Ray et al., FASEB J. 14(9): 1041-60 (2000); Nielsen et al., Pharmacol Toxicol. 86(1): 3-7 (2000); Larsen et al., Biochim Biophys Acta. 1489(1): 159-66 (1999); Nielsen, Curr. Opin. Struct. Biol. 9(3): 353-7 (1999), and Nielsen, Curr. Opin. Biotechnol. 10(1): 71-5 (1999), the disclosures of which are incorporated herein by reference in their entireties.

Nucleic acid molecules may be modified compared to their native structure throughout the length of the nucleic acid molecule or can be localized to discrete portions thereof. As an example of the latter, chimeric nucleic acids can be synthesized that have discrete DNA and RNA domains and that can be used for targeted gene repair and modified PCR reactions, as further described in U.S. Patents 5,760,012 and 5,731,181, Misra et al., Biochem. 37: 1917-1925 (1998); and Finn et al., Nucl. Acids Res. 24: 3357-3363 (1996), the disclosures of which are incorporated herein by reference in their entireties.

Unless otherwise specified, nucleic acids of the present invention can include any topological conformation appropriate to the desired use; the term thus explicitly 15 comprehends, among others, single-stranded, double-stranded, triplexed, quadruplexed, partially double-stranded, partially-triplexed, partially-quadruplexed, branched, hairpinned, circular, and padlocked conformations. Padlock conformations and their utilities are further described in Banér et al., Curr. Opin. Biotechnol. 12: 11-15 (2001); Escude et al., Proc. Natl. Acad. Sci. USA 14: 96(19):10603-7 (1999); Nilsson et al., 20 Science 265(5181): 2085-8 (1994), the disclosures of which are incorporated herein by reference in their entireties. Triplex and quadruplex conformations, and their utilities, are reviewed in Praseuth et al., Biochim. Biophys. Acta. 1489(1): 181-206 (1999); Fox, Curr. Med. Chem. 7(1): 17-37 (2000); Kochetkova et al., Methods Mol. Biol. 130: 189-201 (2000); Chan et al., J. Mol. Med. 75(4): 267-82 (1997), the disclosures of which are 25 incorporated herein by reference in their entireties.

Methods for Using Nucleic Acid Molecules as Probes and Primers

The isolated nucleic acid molecules of the present invention can be used as

30 hybridization probes to detect, characterize, and quantify hybridizing nucleic acids in,
and isolate hybridizing nucleic acids from, both genomic and transcript-derived nucleic
acid samples. When free in solution, such probes are typically, but not invariably,

-41-

detectably labeled; bound to a substrate, as in a microarray, such probes are typically, but not invariably unlabeled.

In one embodiment, the isolated nucleic acids of the present invention can be used as probes to detect and characterize gross alterations in the gene of an LSNA, such as deletions, insertions, translocations, and duplications of the LSNA genomic locus through fluorescence in situ hybridization (FISH) to chromosome spreads. See, e.g., Andreeff et al. (eds.), Introduction to Fluorescence In Situ Hybridization: Principles and Clinical Applications, John Wiley & Sons (1999), the disclosure of which is incorporated herein by reference in its entirety. The isolated nucleic acids of the present invention can be used as probes to assess smaller genomic alterations using, e.g., Southern blot detection of restriction fragment length polymorphisms. The isolated nucleic acid molecules of the present invention can be used as probes to isolate genomic clones that include the nucleic acid molecules of the present invention, which thereafter can be restriction mapped and sequenced to identify deletions, insertions, translocations, and substitutions (single nucleotide polymorphisms, SNPs) at the sequence level.

15

20

25

In another embodiment, the isolated nucleic acid molecules of the present invention can be used as probes to detect, characterize, and quantify LSNA in, and isolate LSNA from, transcript-derived nucleic acid samples. In one aspect, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to detect, characterize by length, and quantify mRNA by Northern blot of total or poly-A⁺- selected RNA samples. In another aspect, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to detect, characterize by location, and quantify mRNA by in situ hybridization to tissue sections. See, e.g., Schwarchzacher et al., In Situ Hybridization, Springer-Verlag New York (2000), the disclosure of which is incorporated herein by reference in its entirety. In another preferred embodiment, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to measure the representation of clones in a cDNA library or to isolate hybridizing nucleic acid molecules acids from cDNA libraries, permitting sequence level characterization of mRNAs that hybridize to LSNAs, including, without limitations, identification of deletions, insertions, substitutions, truncations, alternatively spliced forms and single nucleotide polymorphisms. In yet another preferred embodiment, the nucleic acid molecules of the instant invention may be used in microarrays.

25

WO 02/068633 PCT/US01/43612

-42-

All of the aforementioned probe techniques are well within the skill in the art, and are described at greater length in standard texts such as Sambrook (2001), *supra*; Ausubel (1999), *supra*; and Walker *et al.* (eds.), <u>The Nucleic Acids Protocols Handbook</u>, Humana Press (2000), the disclosures of which are incorporated herein by reference in their entirety.

Thus, in one embodiment, a nucleic acid molecule of the invention may be used as a probe or primer to identify or amplify a second nucleic acid molecule that selectively hybridizes to the nucleic acid molecule of the invention. In a preferred embodiment, the probe or primer is derived from a nucleic acid molecule encoding an LSP. In a more preferred embodiment, the probe or primer is derived from a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NO: 165 through 284. In another preferred embodiment, the probe or primer is derived from an LSNA. In a more preferred embodiment, the probe or primer is derived from a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164.

In general, a probe or primer is at least 10 nucleotides in length, more preferably at least 12, more preferably at least 14 and even more preferably at least 16 or 17 nucleotides in length. In an even more preferred embodiment, the probe or primer is at least 18 nucleotides in length, even more preferably at least 20 nucleotides and even more preferably at least 22 nucleotides in length. Primers and probes may also be longer in length. For instance, a probe or primer may be 25 nucleotides in length, or may be 30, 40 or 50 nucleotides in length. Methods of performing nucleic acid hybridization using oligonucleotide probes are well-known in the art. See, e.g., Sambrook et al., 1989, supra, Chapter 11 and pp. 11.31-11.32 and 11.40-11.44, which describes radiolabeling of short probes, and pp. 11.45-11.53, which describe hybridization conditions for oligonucleotide probes, including specific conditions for probe hybridization (pp. 11.50-11.51).

Methods of performing primer-directed amplification are also well-known in the art. Methods for performing the polymerase chain reaction (PCR) are compiled, *inter alia*, in McPherson, PCR Basics: From Background to Bench, Springer Verlag (2000); Innis et al. (eds.), PCR Applications: Protocols for Functional Genomics, Academic Press (1999); Gelfand et al. (eds.), PCR Strategies, Academic Press (1998); Newton et al., PCR, Springer-Verlag New York (1997); Burke (ed.), PCR: Essential Techniques, John Wiley & Son Ltd (1996); White (ed.), PCR Cloning Protocols: From Molecular

10

15

20

25

30

WO 02/068633 PCT/US01/43612

-43-

Cloning to Genetic Engineering, Vol. 67, Humana Press (1996); McPherson et al. (eds.), PCR 2: A Practical Approach, Oxford University Press, Inc. (1995); the disclosures of which are incorporated herein by reference in their entireties. Methods for performing RT-PCR are collected, e.g., in Siebert et al. (eds.), Gene Cloning and Analysis by RT-PCR, Eaton Publishing Company/Bio Techniques Books Division, 1998; Siebert (ed.), PCR Technique:RT-PCR, Eaton Publishing Company/ BioTechniques Books (1995); the disclosure of which is incorporated herein by reference in its entirety.

PCR and hybridization methods may be used to identify and/or isolate allelic variants, homologous nucleic acid molecules and fragments of the nucleic acid molecules of the invention. PCR and hybridization methods may also be used to identify, amplify and/or isolate nucleic acid molecules that encode homologous proteins, analogs, fusion protein or muteins of the invention. The nucleic acid primers of the present invention can be used to prime amplification of nucleic acid molecules of the invention, using transcript-derived or genomic DNA as template.

The nucleic acid primers of the present invention can also be used, for example, to prime single base extension (SBE) for SNP detection (See, e.g., U.S. Patent 6,004,744, the disclosure of which is incorporated herein by reference in its entirety).

Isothermal amplification approaches, such as rolling circle amplification, are also now well-described. See, e.g., Schweitzer et al., Curr. Opin. Biotechnol. 12(1): 21-7 (2001); U.S. Patents 5,854,033 and 5,714,320; and international patent publications WO 97/19193 and WO 00/15779, the disclosures of which are incorporated herein by reference in their entireties. Rolling circle amplification can be combined with other techniques to facilitate SNP detection. See, e.g., Lizardi et al., Nature Genet. 19(3): 225-32 (1998).

Nucleic acid molecules of the present invention may be bound to a substrate either covalently or noncovalently. The substrate can be porous or solid, planar or non-planar, unitary or distributed. The bound nucleic acid molecules may be used as hybridization probes, and may be labeled or unlabeled. In a preferred embodiment, the bound nucleic acid molecules are unlabeled.

In one embodiment, the nucleic acid molecule of the present invention is bound to a porous substrate, e.g., a membrane, typically comprising nitrocellulose, nylon, or positively-charged derivatized nylon. The nucleic acid molecule of the present invention

-44-

can be used to detect a hybridizing nucleic acid molecule that is present within a labeled nucleic acid sample, e.g., a sample of transcript-derived nucleic acids. In another embodiment, the nucleic acid molecule is bound to a solid substrate, including, without limitation, glass, amorphous silicon, crystalline silicon or plastics. Examples of plastics include, without limitation, polymethylacrylic, polyethylene, polypropylene, polyacrylate, polymethylmethacrylate, polyvinylchloride, polytetrafluoroethylene, polystyrene, polycarbonate, polyacetal, polysulfone, celluloseacetate, cellulosenitrate, nitrocellulose, or mixtures thereof. The solid substrate may be any shape, including rectangular, disk-like and spherical. In a preferred embodiment, the solid substrate is a microscope slide or slide-shaped substrate.

10

15

30

The nucleic acid molecule of the present invention can be attached covalently to a surface of the support substrate or applied to a derivatized surface in a chaotropic agent that facilitates denaturation and adherence by presumed noncovalent interactions, or some combination thereof. The nucleic acid molecule of the present invention can be bound to a substrate to which a plurality of other nucleic acids are concurrently bound, hybridization to each of the plurality of bound nucleic acids being separately detectable. At low density, e.g. on a porous membrane, these substrate-bound collections are typically denominated macroarrays; at higher density, typically on a solid support, such as glass, these substrate bound collections of plural nucleic acids are colloquially termed microarrays. As used herein, the term microarray includes arrays of all densities. It is, therefore, another aspect of the invention to provide microarrays that include the nucleic acids of the present invention.

Expression Vectors, Host Cells and Recombinant Methods of Producing Polypeptides

Another aspect of the present invention relates to vectors that comprise one or

more of the isolated nucleic acid molecules of the present invention, and host cells in
which such vectors have been introduced.

The vectors can be used, *inter alia*, for propagating the nucleic acids of the present invention in host cells (cloning vectors), for shuttling the nucleic acids of the present invention between host cells derived from disparate organisms (shuttle vectors), for inserting the nucleic acids of the present invention into host cell chromosomes (insertion vectors), for expressing sense or antisense RNA transcripts of the nucleic acids of the present invention *in vitro* or within a host cell, and for expressing polypeptides

5

10

15

20

25

30

-45-

encoded by the nucleic acids of the present invention, alone or as fusions to heterologous polypeptides (expression vectors). Vectors of the present invention will often be suitable for several such uses.

Vectors are by now well-known in the art, and are described, inter alia, in Jones et al. (eds.), Vectors: Cloning Applications: Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd. (1998); Jones et al. (eds.), Vectors: Expression Systems:

Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd. (1998);

Gacesa et al., Vectors: Essential Data, John Wiley & Sons Ltd. (1995); Cid-Arregui (eds.), Viral Vectors: Basic Science and Gene Therapy, Eaton Publishing Co. (2000);

Sambrook (2001), supra; Ausubel (1999), supra; the disclosures of which are incorporated herein by reference in their entireties. Furthermore, an enormous variety of vectors are available commercially. Use of existing vectors and modifications thereof being well within the skill in the art, only basic features need be described here.

Nucleic acid sequences may be expressed by operatively linking them to an expression control sequence in an appropriate expression vector and employing that expression vector to transform an appropriate unicellular host. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Such operative linking of a nucleic sequence of this invention to an expression control sequence, of course, includes, if not already part of the nucleic acid sequence, the provision of a translation initiation codon, ATG or GTG, in the correct reading frame upstream of the nucleic acid sequence.

A wide variety of host/expression vector combinations may be employed in expressing the nucleic acid sequences of this invention. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic nucleic acid sequences.

In one embodiment, prokaryotic cells may be used with an appropriate vector. Prokaryotic host cells are often used for cloning and expression. In a preferred embodiment, prokaryotic host cells include *E. coli*, *Pseudomonas*, *Bacillus* and *Streptomyces*. In a preferred embodiment, bacterial host cells are used to express the nucleic acid molecules of the instant invention. Useful expression vectors for bacterial hosts include bacterial plasmids, such as those from *E. coli*, *Bacillus* or *Streptomyces*, including pBluescript, pGEX-2T, pUC vectors, col E1, pCR1, pBR322, pMB9 and their

-46-

derivatives, wider host range plasmids, such as RP4, phage DNAs, e.g., the numerous derivatives of phage lambda, e.g., NM989, λGT10 and λGT11, and other phages, e.g., M13 and filamentous single-stranded phage DNA. Where E. coli is used as host, selectable markers are, analogously, chosen for selectivity in gram negative bacteria: e.g., typical markers confer resistance to antibiotics, such as ampicillin, tetracycline, chloramphenicol, kanamycin, streptomycin and zeocin; auxotrophic markers can also be used.

In other embodiments, eukaryotic host cells, such as yeast, insect, mammalian or plant cells, may be used. Yeast cells, typically S. cerevisiae, are useful for eukaryotic genetic studies, due to the ease of targeting genetic changes by homologous recombination and the ability to easily complement genetic defects using recombinantly expressed proteins. Yeast cells are useful for identifying interacting protein components, e.g. through use of a two-hybrid system. In a preferred embodiment, yeast cells are useful for protein expression. Vectors of the present invention for use in yeast will typically, but not invariably, contain an origin of replication suitable for use in yeast and a selectable marker that is functional in yeast. Yeast vectors include Yeast Integrating plasmids (e.g., YIp5) and Yeast Replicating plasmids (the YRp and YEp series plasmids), Yeast Centromere plasmids (the YCp series plasmids), Yeast Artificial Chromosomes (YACs) which are based on yeast linear plasmids, denoted YLp, pGPD-2, 2μ plasmids and derivatives thereof, and improved shuttle vectors such as those 20 described in Gietz et al., Gene, 74: 527-34 (1988) (YIplac, YEplac and YCplac). Selectable markers in yeast vectors include a variety of auxotrophic markers, the most common of which are (in Saccharomyces cerevisiae) URA3, HIS3, LEU2, TRP1 and LYS2, which complement specific auxotrophic mutations, such as ura3-52, his3-D1, leu2-D1, trp1-D1 and lys2-201. 25

Insect cells are often chosen for high efficiency protein expression. Where the host cells are from Spodoptera frugiperda, e.g., Sf9 and Sf21 cell lines, and expresSFTM cells (Protein Sciences Corp., Meriden, CT, USA)), the vector replicative strategy is typically based upon the baculovirus life cycle. Typically, baculovirus transfer vectors are used to replace the wild-type AcMNPV polyhedrin gene with a heterologous gene of interest. Sequences that flank the polyhedrin gene in the wild-type genome are positioned 5' and 3' of the expression cassette on the transfer vectors. Following co-

-47-

5

10

15

20

25

30

transfection with AcMNPV DNA, a homologous recombination event occurs between these sequences resulting in a recombinant virus carrying the gene of interest and the polyhedrin or p10 promoter. Selection can be based upon visual screening for lacZ fusion activity.

In another embodiment, the host cells may be mammalian cells, which are particularly useful for expression of proteins intended as pharmaceutical agents, and for screening of potential agonists and antagonists of a protein or a physiological pathway. Mammalian vectors intended for autonomous extrachromosomal replication will typically include a viral origin, such as the SV40 origin (for replication in cell lines expressing the large T-antigen, such as COS1 and COS7 cells), the papillomavirus origin, or the EBV origin for long term episomal replication (for use, e.g., in 293-EBNA cells, which constitutively express the EBV EBNA-1 gene product and adenovirus E1A). Vectors intended for integration, and thus replication as part of the mammalian chromosome, can, but need not, include an origin of replication functional in mammalian cells, such as the SV40 origin. Vectors based upon viruses, such as adenovirus, adeno-associated virus, vaccinia virus, and various mammalian retroviruses, will typically replicate according to the viral replicative strategy. Selectable markers for use in mammalian cells include resistance to neomycin (G418), blasticidin, hygromycin and to zeocin, and selection based upon the purine salvage pathway using HAT medium.

Expression in mammalian cells can be achieved using a variety of plasmids, including pSV2, pBC12BI, and p91023, as well as lytic virus vectors (e.g., vaccinia virus, adeno virus, and baculovirus), episomal virus vectors (e.g., bovine papillomavirus), and retroviral vectors (e.g., murine retroviruses). Useful vectors for insect cells include baculoviral vectors and pVL 941.

Plant cells can also be used for expression, with the vector replicon typically derived from a plant virus (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) and selectable markers chosen for suitability in plants.

It is known that codon usage of different host cells may be different. For example, a plant cell and a human cell may exhibit a difference in codon preference for encoding a particular amino acid. As a result, human mRNA may not be efficiently translated in a plant, bacteria or insect host cell. Therefore, another embodiment of this invention is directed to codon optimization. The codons of the nucleic acid molecules of

10

15

20

25

30

-48-

the invention may be modified to resemble, as much as possible, genes naturally contained within the host cell without altering the amino acid sequence encoded by the nucleic acid molecule.

Any of a wide variety of expression control sequences may be used in these vectors to express the DNA sequences of this invention. Such useful expression control sequences include the expression control sequences associated with structural genes of the foregoing expression vectors. Expression control sequences that control transcription include, e.g., promoters, enhancers and transcription termination sites. Expression control sequences in eukaryotic cells that control post-transcriptional events include splice donor and acceptor sites and sequences that modify the half-life of the transcribed RNA, e.g., sequences that direct poly(A) addition or binding sites for RNA-binding proteins. Expression control sequences that control translation include ribosome binding sites, sequences which direct targeted expression of the polypeptide to or within particular cellular compartments, and sequences in the 5' and 3' untranslated regions that modify the rate or efficiency of translation.

Examples of useful expression control sequences for a prokaryote, e.g., E. coli, will include a promoter, often a phage promoter, such as phage lambda pL promoter, the trc promoter, a hybrid derived from the trp and lac promoters, the bacteriophage T7 promoter (in E. coli cells engineered to express the T7 polymerase), the TAC or TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, or the araBAD operon. Prokaryotic expression vectors may further include transcription terminators, such as the aspA terminator, and elements that facilitate translation, such as a consensus ribosome binding site and translation termination codon, Schomer et al., Proc. Natl. Acad. Sci. USA 83: 8506-8510 (1986).

Expression control sequences for yeast cells, typically *S. cerevisiae*, will include a yeast promoter, such as the CYC1 promoter, the GAL1 promoter, the GAL10 promoter, ADH1 promoter, the promoters of the yeast _-mating system, or the GPD promoter, and will typically have elements that facilitate transcription termination, such as the transcription termination signals from the CYC1 or ADH1 gene.

Expression vectors useful for expressing proteins in mammalian cells will include a promoter active in mammalian cells. These promoters include those derived from mammalian viruses, such as the enhancer-promoter sequences from the immediate early

gene of the human cytomegalovirus (CMV), the enhancer-promoter sequences from the Rous sarcoma virus long terminal repeat (RSV LTR), the enhancer-promoter from SV40 or the early and late promoters of adenovirus. Other expression control sequences include the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase. Other expression control sequences include those from the gene comprising the LSNA of interest. Often, expression is enhanced by incorporation of polyadenylation sites, such as the late SV40 polyadenylation site and the polyadenylation signal and transcription termination sequences from the bovine growth hormone (BGH) gene, and ribosome binding sites. Furthermore, vectors can include introns, such as intron II of rabbit β-globin gene and the SV40 splice elements.

10

15

20

Preferred nucleic acid vectors also include a selectable or amplifiable marker gene and means for amplifying the copy number of the gene of interest. Such marker genes are well-known in the art. Nucleic acid vectors may also comprise stabilizing sequences (e.g., ori- or ARS-like sequences and telomere-like sequences), or may alternatively be designed to favor directed or non-directed integration into the host cell genome. In a preferred embodiment, nucleic acid sequences of this invention are inserted in frame into an expression vector that allows high level expression of an RNA which encodes a protein comprising the encoded nucleic acid sequence of interest. Nucleic acid cloning and sequencing methods are well-known to those of skill in the art and are described in an assortment of laboratory manuals, including Sambrook (1989), supra, Sambrook (2000), supra; and Ausubel (1992), supra, Ausubel (1999), supra. Product information from manufacturers of biological, chemical and immunological reagents also provide useful information.

Expression vectors may be either constitutive or inducible. Inducible vectors

include either naturally inducible promoters, such as the trc promoter, which is regulated by the lac operon, and the pL promoter, which is regulated by tryptophan, the

MMTV-LTR promoter, which is inducible by dexamethasone, or can contain synthetic promoters and/or additional elements that confer inducible control on adjacent promoters.

Examples of inducible synthetic promoters are the hybrid Plac/ara-1 promoter and the

PLtetO-1 promoter. The PltetO-1 promoter takes advantage of the high expression levels from the PL promoter of phage lambda, but replaces the lambda repressor sites with two copies of operator 2 of the Tn10 tetracycline resistance operon, causing this promoter to

be tightly repressed by the Tet repressor protein and induced in response to tetracycline (Tc) and Tc derivatives such as anhydrotetracycline. Vectors may also be inducible because they contain hormone response elements, such as the glucocorticoid response element (GRE) and the estrogen response element (ERE), which can confer hormone inducibility where vectors are used for expression in cells having the respective hormone receptors. To reduce background levels of expression, elements responsive to ecdysone, an insect hormone, can be used instead, with coexpression of the ecdysone receptor.

In one aspect of the invention, expression vectors can be designed to fuse the expressed polypeptide to small protein tags that facilitate purification and/or visualization. Tags that facilitate purification include a polyhistidine tag that facilitates 10 purification of the fusion protein by immobilized metal affinity chromatography, for example using NiNTA resin (Qiagen Inc., Valencia, CA, USA) or TALON™ resin (cobalt immobilized affinity chromatography medium, Clontech Labs, Palo Alto, CA, USA). The fusion protein can include a chitin-binding tag and self-excising intein, permitting chitin-based purification with self-removal of the fused tag (IMPACTTM 15 system, New England Biolabs, Inc., Beverley, MA, USA). Alternatively, the fusion protein can include a calmodulin-binding peptide tag, permitting purification by calmodulin affinity resin (Stratagene, La Jolla, CA, USA), or a specifically excisable fragment of the biotin carboxylase carrier protein, permitting purification of in vivo biotinylated protein using an avidin resin and subsequent tag removal (Promega, 20 Madison, WI, USA). As another useful alternative, the proteins of the present invention can be expressed as a fusion protein with glutathione-S-transferase, the affinity and specificity of binding to glutathione permitting purification using glutathione affinity resins, such as Glutathione-Superflow Resin (Clontech Laboratories, Palo Alto, CA, USA), with subsequent elution with free glutathione. Other tags include, for example, 25 the Xpress epitope, detectable by anti-Xpress antibody (Invitrogen, Carlsbad, CA, USA), a myc tag, detectable by anti-myc tag antibody, the V5 epitope, detectable by anti-V5 antibody (Invitrogen, Carlsbad, CA, USA), FLAG® epitope, detectable by anti-FLAG® antibody (Stratagene, La Jolla, CA, USA), and the HA epitope.

For secretion of expressed proteins, vectors can include appropriate sequences that encode secretion signals, such as leader peptides. For example, the pSecTag2 vectors (Invitrogen, Carlsbad, CA, USA) are 5.2 kb mammalian expression vectors that

30

-51-

carry the secretion signal from the V-J2-C region of the mouse Ig kappa-chain for efficient secretion of recombinant proteins from a variety of mammalian cell lines.

Expression vectors can also be designed to fuse proteins encoded by the heterologous nucleic acid insert to polypeptides that are larger than purification and/or identification tags. Useful fusion proteins include those that permit display of the encoded protein on the surface of a phage or cell, fusion to intrinsically fluorescent proteins, such as those that have a green fluorescent protein (GFP)-like chromophore, fusions to the IgG Fc region, and fusion proteins for use in two hybrid systems.

Vectors for phage display fuse the encoded polypeptide to, e.g., the gene III

protein (pIII) or gene VIII protein (pVIII) for display on the surface of filamentous
phage, such as M13. See Barbas et al., Phage Display: A Laboratory Manual, Cold
Spring Harbor Laboratory Press (2001); Kay et al. (eds.), Phage Display of Peptides and
Proteins: A Laboratory Manual, Academic Press, Inc., (1996); Abelson et al. (eds.),
Combinatorial Chemistry (Methods in Enzymology, Vol. 267) Academic Press (1996).

Vectors for yeast display, e.g. the pYD1 yeast display vector (Invitrogen, Carlsbad, CA,
USA), use the -agglutinin yeast adhesion receptor to display recombinant protein on the
surface of S. cerevisiae. Vectors for mammalian display, e.g., the pDisplay™ vector
(Invitrogen, Carlsbad, CA, USA), target recombinant proteins using an N-terminal cell
surface targeting signal and a C-terminal transmembrane anchoring domain of platelet
derived growth factor receptor.

A wide variety of vectors now exist that fuse proteins encoded by heterologous nucleic acids to the chromophore of the substrate-independent, intrinsically fluorescent green fluorescent protein from *Aequorea victoria* ("GFP") and its variants. The GFP-like chromophore can be selected from GFP-like chromophores found in naturally occurring proteins, such as *A. victoria* GFP (GenBank accession number AAA27721), *Renilla reniformis* GFP, FP583 (GenBank accession no. AF168419) (DsRed), FP593 (AF272711), FP483 (AF168420), FP484 (AF168424), FP595 (AF246709), FP486 (AF168421), FP538 (AF168423), and FP506 (AF168422), and need include only so much of the native protein as is needed to retain the chromophore's intrinsic fluorescence. Methods for determining the minimal domain required for fluorescence are known in the art. *See* Li *et al.*, *J. Biol. Chem.* 272: 28545-28549 (1997). Alternatively, the GFP-like chromophore can be selected from GFP-like chromophores modified from

30

-52-

those found in nature. The methods for engineering such modified GFP-like chromophores and testing them for fluorescence activity, both alone and as part of protein fusions, are well-known in the art. See Heim et al., Curr. Biol. 6: 178-182 (1996) and Palm et al., Methods Enzymol. 302: 378-394 (1999), incorporated herein by reference in its entirety. A variety of such modified chromophores are now commercially available and can readily be used in the fusion proteins of the present invention. These include EGFP ("enhanced GFP"), EBFP ("enhanced blue fluorescent protein"), BFP2, EYFP ("enhanced yellow fluorescent protein"), ECFP ("enhanced cyan fluorescent protein") or Citrine. EGFP (see, e.g., Cormack et al., Gene 173: 33-38 10 (1996); United States Patent Nos. 6,090,919 and 5,804,387) is found on a variety of vectors, both plasmid and viral, which are available commercially (Clontech Labs, Palo Alto, CA, USA); EBFP is optimized for expression in mammalian cells whereas BFP2, which retains the original jellyfish codons, can be expressed in bacteria (see, e.g., Heim et al., Curr. Biol. 6: 178-182 (1996) and Cormack et al., Gene 173: 33-38 (1996)). Vectors containing these blue-shifted variants are available from Clontech Labs (Palo 15 Alto, CA, USA). Vectors containing EYFP, ECFP (see, e.g., Heim et al., Curr. Biol. 6: 178-182 (1996); Miyawaki et al., Nature 388: 882-887 (1997)) and Citrine (see, e.g., Heikal et al., Proc. Natl. Acad. Sci. USA 97: 11996-12001 (2000)) are also available from Clontech Labs. The GFP-like chromophore can also be drawn from other modified GFPs, including those described in U.S. Patents 6,124,128; 6,096,865; 6,090,919; 20 6,066,476; 6,054,321; 6,027,881; 5,968,750; 5,874,304; 5,804,387; 5,777,079; 5,741,668; and 5,625,048, the disclosures of which are incorporated herein by reference in their entireties. See also Conn (ed.), Green Fluorescent Protein (Methods in Enzymology, Vol. 302), Academic Press, Inc. (1999). The GFP-like chromophore of each of these GFP variants can usefully be included in the fusion proteins of the present 25

Fusions to the IgG Fc region increase serum half life of protein pharmaceutical products through interaction with the FcRn receptor (also denominated the FcRp receptor and the Brambell receptor, FcRb), further described in International Patent Application Nos. WO 97/43316, WO 97/34631, WO 96/32478, WO 96/18412.

invention.

30

For long-term, high-yield recombinant production of the proteins, protein fusions, and protein fragments of the present invention, stable expression is preferred. Stable

PCT/US01/43612 WO 02/068633

-53-

expression is readily achieved by integration into the host cell genome of vectors having selectable markers, followed by selection of these integrants. Vectors such as pUB6/V5-His A, B, and C (Invitrogen, Carlsbad, CA, USA) are designed for high-level stable expression of heterologous proteins in a wide range of mammalian tissue types and cell lines. pUB6/V5-His uses the promoter/enhancer sequence from the human ubiquitin C gene to drive expression of recombinant proteins: expression levels in 293, CHO, and NIH3T3 cells are comparable to levels from the CMV and human EF-1a promoters. The bsd gene permits rapid selection of stably transfected mammalian cells with the potent antibiotic blasticidin.

Replication incompetent retroviral vectors, typically derived from Moloney murine leukemia virus, also are useful for creating stable transfectants having integrated provirus. The highly efficient transduction machinery of retroviruses, coupled with the availability of a variety of packaging cell lines such as RetroPackTM PT 67, EcoPack^{2TM}-293, AmphoPack-293, and GP2-293 cell lines (all available from Clontech Laboratories, 15 Palo Alto, CA, USA), allow a wide host range to be infected with high efficiency; varying the multiplicity of infection readily adjusts the copy number of the integrated provirus.

10

20

25

Of course, not all vectors and expression control sequences will function equally well to express the nucleic acid sequences of this invention. Neither will all hosts function equally well with the same expression system. However, one of skill in the art may make a selection among these vectors, expression control sequences and hosts without undue experimentation and without departing from the scope of this invention. For example, in selecting a vector, the host must be considered because the vector must be replicated in it. The vector's copy number, the ability to control that copy number, the ability to control integration, if any, and the expression of any other proteins encoded by the vector, such as antibiotic or other selection markers, should also be considered. The present invention further includes host cells comprising the vectors of the present invention, either present episomally within the cell or integrated, in whole or in part, into the host cell chromosome. Among other considerations, some of which are described above, a host cell strain may be chosen for its ability to process the expressed protein in the desired fashion. Such post-translational modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation,

10

15

WO 02/068633 PCT/US01/43612

and acylation, and it is an aspect of the present invention to provide LSPs with such post-translational modifications.

Polypeptides of the invention may be post-translationally modified. Posttranslational modifications include phosphorylation of amino acid residues serine, threonine and/or tyrosine, N-linked and/or O-linked glycosylation, methylation, acetylation, prenylation, methylation, acetylation, arginylation, ubiquination and racemization. One may determine whether a polypeptide of the invention is likely to be post-translationally modified by analyzing the sequence of the polypeptide to determine if there are peptide motifs indicative of sites for post-translational modification. There are a number of computer programs that permit prediction of post-translational modifications. See, e.g., www.expasy.org (accessed August 31, 2001), which includes PSORT, for prediction of protein sorting signals and localization sites, SignalP, for prediction of signal peptide cleavage sites, MITOPROT and Predotar, for prediction of mitochondrial targeting sequences, NetOGlyc, for prediction of type O-glycosylation sites in mammalian proteins, big-PI Predictor and DGPI, for prediction of prenylationanchor and cleavage sites, and NetPhos, for prediction of Ser, Thr and Tyr phosphorylation sites in eukaryotic proteins. Other computer programs, such as those included in GCG, also may be used to determine post-translational modification peptide motifs.

General examples of types of post-translational modifications may be found in web sites such as the Delta Mass database http://www.abrf.org/ABRF/Research Committees/deltamass/deltamass.html (accessed October 19, 2001); "GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources" Cooper et al. Nucleic Acids Res. 29; 332-335 (2001) and

25 http://www.glycosuite.com/ (accessed October 19, 2001); "O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins" Gupta et al. Nucleic Acids Research, 27: 370-372 (1999) and http://www.cbs.dtu.dk/databases/OGLYCBASE/ (accessed October 19, 2001); "PhosphoBase, a database of phosphorylation sites: release 2.0.", Kreegipuu et al. Nucleic Acids Res 27(1):237-239 (1999) and http://www.cbs.dtu.dk/

30 databases/PhosphoBase/ (accessed October 19, 2001); or http://pir.georgetown.edu/pirwww/search/textresid.html (accessed October 19, 2001).

Tumorigenesis is often accompanied by alterations in the post-translational modifications of proteins. Thus, in another embodiment, the invention provides polypeptides from cancerous cells or tissues that have altered post-translational modifications compared to the post-translational modifications of polypeptides from normal cells or tissues. A number of altered post-translational modifications are known. One common alteration is a change in phosphorylation state, wherein the polypeptide from the cancerous cell or tissue is hyperphosphorylated or hypophosphorylated compared to the polypeptide from a normal tissue, or wherein the polypeptide is phosphorylated on different residues than the polypeptide from a normal cell. Another common alteration is a change in glycosylation state, wherein the polypeptide from the cancerous cell or tissue has more or less glycosylation than the polypeptide from a normal tissue, and/or wherein the polypeptide from the cancerous cell or tissue has a different type of glycosylation than the polypeptide from a noncancerous cell or tissue. Changes in glycosylation may be critical because carbohydrate-protein and carbohydratecarbohydrate interactions are important in cancer cell progression, dissemination and invasion. See, e.g., Barchi, Curr. Pharm. Des. 6: 485-501 (2000), Verma, Cancer Biochem. Biophys. 14: 151-162 (1994) and Dennis et al., Bioessays 5: 412-421 (1999).

10

15

25

30

Another post-translational modification that may be altered in cancer cells is prenylation. Prenylation is the covalent attachment of a hydrophobic prenyl group (either farnesyl or geranylgeranyl) to a polypeptide. Prenylation is required for localizing a protein to a cell membrane and is often required for polypeptide function. For instance, the Ras superfamily of GTPase signaling proteins must be prenylated for function in a cell. See, e.g., Prendergast et al., *Semin. Cancer Biol.* 10: 443-452 (2000) and Khwaja et al., *Lancet* 355: 741-744 (2000).

Other post-translation modifications that may be altered in cancer cells include, without limitation, polypeptide methylation, acetylation, arginylation or racemization of amino acid residues. In these cases, the polypeptide from the cancerous cell may exhibit either increased or decreased amounts of the post-translational modification compared to the corresponding polypeptides from noncancerous cells.

Other polypeptide alterations in cancer cells include abnormal polypeptide cleavage of proteins and aberrant protein-protein interactions. Abnormal polypeptide cleavage may be cleavage of a polypeptide in a cancerous cell that does not usually occur

WO 02/068633

10

15

20

25

30

in a normal cell, or a lack of cleavage in a cancerous cell, wherein the polypeptide is cleaved in a normal cell. Aberrant protein-protein interactions may be either covalent cross-linking or non-covalent binding between proteins that do not normally bind to each other. Alternatively, in a cancerous cell, a protein may fail to bind to another protein to which it is bound in a noncancerous cell. Alterations in cleavage or in protein-protein interactions may be due to over- or underproduction of a polypeptide in a cancerous cell compared to that in a normal cell, or may be due to alterations in post-translational modifications (see above) of one or more proteins in the cancerous cell. See, e.g., Henschen-Edman, *Ann. N.Y. Acad. Sci.* 936: 580-593 (2001).

-56-

PCT/US01/43612

Alterations in polypeptide post-translational modifications, as well as changes in polypeptide cleavage and protein-protein interactions, may be determined by any method known in the art. For instance, alterations in phosphorylation may be determined by using anti-phosphoserine, anti-phosphothreonine or anti-phosphotyrosine antibodies or by amino acid analysis. Glycosylation alterations may be determined using antibodies specific for different sugar residues, by carbohydrate sequencing, or by alterations in the size of the glycoprotein, which can be determined by, e.g., SDS polyacrylamide gel electrophoresis (PAGE). Other alterations of post-translational modifications, such as prenylation, racemization, methylation, acetylation and arginylation, may be determined by chemical analysis, protein sequencing, amino acid analysis, or by using antibodies specific for the particular post-translational modifications. Changes in protein-protein interactions and in polypeptide cleavage may be analyzed by any method known in the art including, without limitation, non-denaturing PAGE (for non-covalent protein-protein interactions), SDS PAGE (for covalent protein-protein interactions and protein cleavage), chemical cleavage, protein sequencing or immunoassays.

In another embodiment, the invention provides polypeptides that have been post-translationally modified. In one embodiment, polypeptides may be modified enzymatically or chemically, by addition or removal of a post-translational modification. For example, a polypeptide may be glycosylated or deglycosylated enzymatically. Similarly, polypeptides may be phosphorylated using a purified kinase, such as a MAP kinase (e.g., p38, ERK, or JNK) or a tyrosine kinase (e.g., Src or erbB2). A polypeptide may also be modified through synthetic chemistry. Alternatively, one may isolate the polypeptide of interest from a cell or tissue that expresses the polypeptide with the

WO 02/068633

5

10

15

20

25

30

desired post-translational modification. In another embodiment, a nucleic acid molecule encoding the polypeptide of interest is introduced into a host cell that is capable of post-translationally modifying the encoded polypeptide in the desired fashion. If the polypeptide does not contain a motif for a desired post-translational modification, one may alter the post-translational modification by mutating the nucleic acid sequence of a nucleic acid molecule encoding the polypeptide so that it contains a site for the desired post-translational modification. Amino acid sequences that may be post-translationally modified are known in the art. See, e.g., the programs described above on the website www.expasy.org. The nucleic acid molecule is then be introduced into a host cell that is capable of post-translationally modifying the encoded polypeptide. Similarly, one may delete sites that are post-translationally modified by either mutating the nucleic acid sequence so that the encoded polypeptide does not contain the post-translational modification motif, or by introducing the native nucleic acid molecule into a host cell that is not capable of post-translationally modifying the encoded polypeptide.

-57-

PCT/US01/43612

In selecting an expression control sequence, a variety of factors should also be considered. These include, for example, the relative strength of the sequence, its controllability, and its compatibility with the nucleic acid sequence of this invention, particularly with regard to potential secondary structures. Unicellular hosts should be selected by consideration of their compatibility with the chosen vector, the toxicity of the product coded for by the nucleic acid sequences of this invention, their secretion characteristics, their ability to fold the polypeptide correctly, their fermentation or culture requirements, and the ease of purification from them of the products coded for by the nucleic acid sequences of this invention.

The recombinant nucleic acid molecules and more particularly, the expression vectors of this invention may be used to express the polypeptides of this invention as recombinant polypeptides in a heterologous host cell. The polypeptides of this invention may be full-length or less than full-length polypeptide fragments recombinantly expressed from the nucleic acid sequences according to this invention. Such polypeptides include analogs, derivatives and muteins that may or may not have biological activity.

Vectors of the present invention will also often include elements that permit in vitro transcription of RNA from the inserted heterologous nucleic acid. Such vectors

-58-

typically include a phage promoter, such as that from T7, T3, or SP6, flanking the nucleic acid insert. Often two different such promoters flank the inserted nucleic acid, permitting separate *in vitro* production of both sense and antisense strands.

Transformation and other methods of introducing nucleic acids into a host cell (e.g., conjugation, protoplast transformation or fusion, transfection, electroporation, liposome delivery, membrane fusion techniques, high velocity DNA-coated pellets, viral infection and protoplast fusion) can be accomplished by a variety of methods which are well-known in the art (See, for instance, Ausubel, supra, and Sambrook et al., supra). Bacterial, yeast, plant or mammalian cells are transformed or transfected with an expression vector, such as a plasmid, a cosmid, or the like, wherein the expression vector comprises the nucleic acid of interest. Alternatively, the cells may be infected by a viral expression vector comprising the nucleic acid of interest. Depending upon the host cell, vector, and method of transformation used, transient or stable expression of the polypeptide will be constitutive or inducible. One having ordinary skill in the art will be able to decide whether to express a polypeptide transiently or stably, and whether to express the protein constitutively or inducibly.

10

15

A wide variety of unicellular host cells are useful in expressing the DNA sequences of this invention. These hosts may include well-known eukaryotic and prokaryotic hosts, such as strains of, fungi, yeast, insect cells such as Spodoptera frugiperda (SF9), animal cells such as CHO, as well as plant cells in tissue culture. Representative examples of appropriate host cells include, but are not limited to, bacterial cells, such as E. coli, Caulobacter crescentus, Streptomyces species, and Salmonella typhimurium; yeast cells, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, Pichia methanolica; insect cell lines, such as those from Spodoptera frugiperda, e.g., Sf9 and Sf21 cell lines, and expresSF™ cells (Protein 25 Sciences Corp., Meriden, CT, USA), Drosophila S2 cells, and Trichoplusia ni High Five® Cells (Invitrogen, Carlsbad, CA, USA); and mammalian cells. Typical mammalian cells include BHK cells, BSC 1 cells, BSC 40 cells, BMT 10 cells, VERO cells, COS1 cells, COS7 cells, Chinese hamster ovary (CHO) cells, 3T3 cells, NIH 3T3 cells, 293 cells, HEPG2 cells, HeLa cells, L cells, MDCK cells, HEK293 cells, WI38 30 cells, murine ES cell lines (e.g., from strains 129/SV, C57/BL6, DBA-1, 129/SVJ), K562 cells, Jurkat cells, and BW5147 cells. Other mammalian cell lines are well-known and

10

15

20

25

30

readily available from the American Type Culture Collection (ATCC) (Manassas, VA, USA) and the National Institute of General Medical Sciences (NIGMS) Human Genetic Cell Repository at the Coriell Cell Repositories (Camden, NJ, USA). Cells or cell lines derived from lung are particularly preferred because they may provide a more native post-translational processing. Particularly preferred are human lung cells.

Particular details of the transfection, expression and purification of recombinant proteins are well documented and are understood by those of skill in the art. Further details on the various technical aspects of each of the steps used in recombinant production of foreign genes in bacterial cell expression systems can be found in a number of texts and laboratory manuals in the art. See, e.g., Ausubel (1992), supra, Ausubel (1999), supra, Sambrook (1989), supra, and Sambrook (2001), supra, herein incorporated by reference.

Methods for introducing the vectors and nucleic acids of the present invention into the host cells are well-known in the art; the choice of technique will depend primarily upon the specific vector to be introduced and the host cell chosen.

Nucleic acid molecules and vectors may be introduced into prokaryotes, such as *E. coli*, in a number of ways. For instance, phage lambda vectors will typically be packaged using a packaging extract (*e.g.*, Gigapack® packaging extract, Stratagene, La Jolla, CA, USA), and the packaged virus used to infect *E. coli*.

Plasmid vectors will typically be introduced into chemically competent or electrocompetent bacterial cells. *E. coli* cells can be rendered chemically competent by treatment, *e.g.*, with CaCl₂, or a solution of Mg²⁺, Mn²⁺, Ca²⁺, Rb⁺ or K⁺, dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III), Hanahan, *J. Mol. Biol.* 166(4):557-80 (1983), and vectors introduced by heat shock. A wide variety of chemically competent strains are also available commercially (*e.g.*, Epicurian Coli® XL10-Gold® Ultracompetent Cells (Stratagene, La Jolla, CA, USA); DH5 competent cells (Clontech Laboratories, Palo Alto, CA, USA); and TOP10 Chemically Competent E. coli Kit (Invitrogen, Carlsbad, CA, USA)). Bacterial cells can be rendered electrocompetent, that is, competent to take up exogenous DNA by electroporation, by various pre-pulse treatments; vectors are introduced by electroporation followed by subsequent outgrowth in selected media. An extensive series of protocols is provided online in Electroprotocols

-60-

(BioRad, Richmond, CA, USA) (http://www.biorad.com/LifeScience/pdf/ New_Gene Pulser.pdf).

5

10

15

20

25

30

Vectors can be introduced into yeast cells by spheroplasting, treatment with lithium salts, electroporation, or protoplast fusion. Spheroplasts are prepared by the action of hydrolytic enzymes such as snail-gut extract, usually denoted Glusulase, or Zymolyase, an enzyme from *Arthrobacter luteus*, to remove portions of the cell wall in the presence of osmotic stabilizers, typically 1 M sorbitol. DNA is added to the spheroplasts, and the mixture is co-precipitated with a solution of polyethylene glycol (PEG) and Ca²⁺. Subsequently, the cells are resuspended in a solution of sorbitol, mixed with molten agar and then layered on the surface of a selective plate containing sorbitol.

For lithium-mediated transformation, yeast cells are treated with lithium acetate, which apparently permeabilizes the cell wall, DNA is added and the cells are co-precipitated with PEG. The cells are exposed to a brief heat shock, washed free of PEG and lithium acetate, and subsequently spread on plates containing ordinary selective medium. Increased frequencies of transformation are obtained by using specially-prepared single-stranded carrier DNA and certain organic solvents. Schiestl et al., Curr. Genet. 16(5-6): 339-46 (1989).

For electroporation, freshly-grown yeast cultures are typically washed, suspended in an osmotic protectant, such as sorbitol, mixed with DNA, and the cell suspension pulsed in an electroporation device. Subsequently, the cells are spread on the surface of plates containing selective media. Becker *et al.*, *Methods Enzymol.* 194: 182-187 (1991). The efficiency of transformation by electroporation can be increased over 100-fold by using PEG, single-stranded carrier DNA and cells that are in late log-phase of growth. Larger constructs, such as YACs, can be introduced by protoplast fusion.

Mammalian and insect cells can be directly infected by packaged viral vectors, or transfected by chemical or electrical means. For chemical transfection, DNA can be coprecipitated with CaPO₄ or introduced using liposomal and nonliposomal lipid-based agents. Commercial kits are available for CaPO₄ transfection (CalPhosTM Mammalian Transfection Kit, Clontech Laboratories, Palo Alto, CA, USA), and lipid-mediated transfection can be practiced using commercial reagents, such as LIPOFECTAMINETM 2000, LIPOFECTAMINETM Reagent, CELLFECTIN® Reagent, and LIPOFECTIN® Reagent (Invitrogen, Carlsbad, CA, USA), DOTAP Liposomal Transfection Reagent,

-61-

FuGENE 6, X-tremeGENE Q2, DOSPER, (Roche Molecular Biochemicals, Indianapolis, IN USA), Effectene™, PolyFect®, Superfect® (Qiagen, Inc., Valencia, CA, USA). Protocols for electroporating mammalian cells can be found online in Electroprotocols (Bio-Rad, Richmond, CA, USA) (http://www.bio-rad.com/LifeScience/pdf/

New_Gene_Pulser.pdf); Norton et al. (eds.), Gene Transfer Methods: Introducing DNA into Living Cells and Organisms, BioTechniques Books, Eaton Publishing Co. (2000); incorporated herein by reference in its entirety. Other transfection techniques include transfection by particle bombardment and microinjection. See, e.g., Cheng et al., Proc. Natl. Acad. Sci. USA 90(10): 4455-9 (1993); Yang et al., Proc. Natl. Acad. Sci. USA 87(24): 9568-72 (1990).

Production of the recombinantly produced proteins of the present invention can optionally be followed by purification.

Purification of recombinantly expressed proteins is now well by those skilled in the art. See, e.g., Thorner et al. (eds.), Applications of Chimeric Genes and Hybrid

15 Proteins, Part A: Gene Expression and Protein Purification (Methods in Enzymology, Vol. 326), Academic Press (2000); Harbin (ed.), Cloning, Gene Expression and Protein Purification: Experimental Procedures and Process Rationale, Oxford Univ. Press (2001); Marshak et al., Strategies for Protein Purification and Characterization: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press (1996); and Roe (ed.), Protein Purification Applications, Oxford University Press (2001); the disclosures of which are incorporated herein by reference in their entireties, and thus need not be detailed here.

Briefly, however, if purification tags have been fused through use of an expression vector that appends such tags, purification can be effected, at least in part, by means appropriate to the tag, such as use of immobilized metal affinity chromatography for polyhistidine tags. Other techniques common in the art include ammonium sulfate fractionation, immunoprecipitation, fast protein liquid chromatography (FPLC), high performance liquid chromatography (HPLC), and preparative gel electrophoresis.

Polypeptides

30

Another object of the invention is to provide polypeptides encoded by the nucleic acid molecules of the instant invention. In a preferred embodiment, the polypeptide is a lung specific polypeptide (LSP). In an even more preferred embodiment, the polypeptide

WO 02/068633

5

10

15

20

25

30

is derived from a polypeptide comprising the amino acid sequence of SEQ ID NO: 165 through 284. A polypeptide as defined herein may be produced recombinantly, as discussed *supra*, may be isolated from a cell that naturally expresses the protein, or may be chemically synthesized following the teachings of the specification and using methods well-known to those having ordinary skill in the art.

-62-

PCT/US01/43612

In another aspect, the polypeptide may comprise a fragment of a polypeptide, wherein the fragment is as defined herein. In a preferred embodiment, the polypeptide fragment is a fragment of an LSP. In a more preferred embodiment, the fragment is derived from a polypeptide comprising the amino acid sequence of SEQ ID NO: 165 through 284. A polypeptide that comprises only a fragment of an entire LSP may or may not be a polypeptide that is also an LSP. For instance, a full-length polypeptide may be lung-specific, while a fragment thereof may be found in other tissues as well as in lung. A polypeptide that is not an LSP, whether it is a fragment, analog, mutein, homologous protein or derivative, is nevertheless useful, especially for immunizing animals to prepare anti-LSP antibodies. However, in a preferred embodiment, the part or fragment is an LSP. Methods of determining whether a polypeptide is an LSP are described *infra*.

Fragments of at least 6 contiguous amino acids are useful in mapping B cell and T cell epitopes of the reference protein. See, e.g., Geysen et al., Proc. Natl. Acad. Sci. USA 81: 3998-4002 (1984) and U.S. Patents 4,708,871 and 5,595,915, the disclosures of which are incorporated herein by reference in their entireties. Because the fragment need not itself be immunogenic, part of an immunodominant epitope, nor even recognized by native antibody, to be useful in such epitope mapping, all fragments of at least 6 amino acids of the proteins of the present invention have utility in such a study.

Fragments of at least 8 contiguous amino acids, often at least 15 contiguous amino acids, are useful as immunogens for raising antibodies that recognize the proteins of the present invention. See, e.g., Lerner, Nature 299: 592-596 (1982); Shinnick et al., Annu. Rev. Microbiol. 37: 425-46 (1983); Sutcliffe et al., Science 219: 660-6 (1983), the disclosures of which are incorporated herein by reference in their entireties. As further described in the above-cited references, virtually all 8-mers, conjugated to a carrier, such as a protein, prove immunogenic, meaning that they are capable of eliciting antibody for the conjugated peptide; accordingly, all fragments of at least 8 amino acids of the proteins of the present invention have utility as immunogens.

15

20

25

30

Fragments of at least 8, 9, 10 or 12 contiguous amino acids are also useful as competitive inhibitors of binding of the entire protein, or a portion thereof, to antibodies (as in epitope mapping), and to natural binding partners, such as subunits in a multimeric complex or to receptors or ligands of the subject protein; this competitive inhibition permits identification and separation of molecules that bind specifically to the protein of interest, U.S. Patents 5,539,084 and 5,783,674, incorporated herein by reference in their entireties.

The protein, or protein fragment, of the present invention is thus at least 6 amino acids in length, typically at least 8, 9, 10 or 12 amino acids in length, and often at least 15 amino acids in length. Often, the protein of the present invention, or fragment thereof, is at least 20 amino acids in length, even 25 amino acids, 30 amino acids, 35 amino acids, or 50 amino acids or more in length. Of course, larger fragments having at least 75 amino acids, 100 amino acids, or even 150 amino acids are also useful, and at times preferred.

One having ordinary skill in the art can produce fragments of a polypeptide by truncating the nucleic acid molecule, e.g., an LSNA, encoding the polypeptide and then expressing it recombinantly. Alternatively, one can produce a fragment by chemically synthesizing a portion of the full-length polypeptide. One may also produce a fragment by enzymatically cleaving either a recombinant polypeptide or an isolated naturally-occurring polypeptide. Methods of producing polypeptide fragments are well-known in the art. See, e.g., Sambrook (1989), supra; Sambrook (2001), supra; Ausubel (1992), supra; and Ausubel (1999), supra. In one embodiment, a polypeptide comprising only a fragment of polypeptide of the invention, preferably an LSP, may be produced by chemical or enzymatic cleavage of a polypeptide. In a preferred embodiment, a polypeptide fragment is produced by expressing a nucleic acid molecule encoding a fragment of the polypeptide, preferably an LSP, in a host cell.

By "polypeptides" as used herein it is also meant to be inclusive of mutants, fusion proteins, homologous proteins and allelic variants of the polypeptides specifically exemplified.

A mutant protein, or mutein, may have the same or different properties compared to a naturally-occurring polypeptide and comprises at least one amino acid insertion, duplication, deletion, rearrangement or substitution compared to the amino acid sequence

WO 02/068633

10

-64-

of a native protein. Small deletions and insertions can often be found that do not alter the function of the protein. In one embodiment, the mutein may or may not be lung-specific. In a preferred embodiment, the mutein is lung-specific. In a preferred embodiment, the mutein is a polypeptide that comprises at least one amino acid insertion, duplication, deletion, rearrangement or substitution compared to the amino acid sequence of SEQ ID NO: 165 through 284. In a more preferred embodiment, the mutein is one that exhibits at least 50% sequence identity, more preferably at least 60% sequence identity, even more preferably at least 70%, yet more preferably at least 80% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In yet a more preferably 95% or 96%, and yet more preferably at least 97%, 98%, 99% or 99.5% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284.

PCT/US01/43612

A mutein may be produced by isolation from a naturally-occurring mutant cell, tissue or organism. A mutein may be produced by isolation from a cell, tissue or 15 organism that has been experimentally mutagenized. Alternatively, a mutein may be produced by chemical manipulation of a polypeptide, such as by altering the amino acid residue to another amino acid residue using synthetic or semi-synthetic chemical techniques. In a preferred embodiment, a mutein may be produced from a host cell comprising an altered nucleic acid molecule compared to the naturally-occurring nucleic 20 acid molecule. For instance, one may produce a mutein of a polypeptide by introducing one or more mutations into a nucleic acid sequence of the invention and then expressing it recombinantly. These mutations may be targeted, in which particular encoded amino acids are altered, or may be untargeted, in which random encoded amino acids within the polypeptide are altered. Muteins with random amino acid alterations can be screened for 25 a particular biological activity or property, particularly whether the polypeptide is lungspecific, as described below. Multiple random mutations can be introduced into the gene by methods well-known to the art, e.g., by error-prone PCR, shuffling, oligonucleotide-directed mutagenesis, assembly PCR, sexual PCR mutagenesis, in vivo mutagenesis, cassette mutagenesis, recursive ensemble mutagenesis, exponential 30 ensemble mutagenesis and site-specific mutagenesis. Methods of producing muteins with targeted or random amino acid alterations are well-known in the art. See, e.g.,

-65-

Sambrook (1989), *supra*; Sambrook (2001), *supra*; Ausubel (1992), *supra*; and Ausubel (1999), U.S. Patent 5,223,408, and the references discussed *supra*, each herein incorporated by reference.

By "polypeptide" as used herein it is also meant to be inclusive of polypeptides homologous to those polypeptides exemplified herein. In a preferred embodiment, the polypeptide is homologous to an LSP. In an even more preferred embodiment, the polypeptide is homologous to an LSP selected from the group having an amino acid sequence of SEO ID NO: 165 through 284. In a preferred embodiment, the homologous polypeptide is one that exhibits significant sequence identity to an LSP. In a more preferred embodiment, the polypeptide is one that exhibits significant sequence identity to an comprising an amino acid sequence of SEQ ID NO: 165 through 284. In an even more preferred embodiment, the homologous polypeptide is one that exhibits at least 50% sequence identity, more preferably at least 60% sequence identity, even more preferably at least 70%, yet more preferably at least 80% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In a yet more preferred embodiment, the homologous polypeptide is one that exhibits at least 85%, more preferably 90%, even more preferably 95% or 96%, and yet more preferably at least 97% or 98% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In another preferred embodiment, the homologous polypeptide is one that exhibits at least 99%, more preferably 99.5%, even more preferably 99.6%, 99.7%, 99.8% or 99.9% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In a preferred embodiment, the amino acid substitutions are conservative amino acid substitutions as discussed above.

10

15

25

30

In another embodiment, the homologous polypeptide is one that is encoded by a nucleic acid molecule that selectively hybridizes to an LSNA. In a preferred embodiment, the homologous polypeptide is encoded by a nucleic acid molecule that hybridizes to an LSNA under low stringency, moderate stringency or high stringency conditions, as defined herein. In a more preferred embodiment, the LSNA is selected from the group consisting of SEQ ID NO: 1 through 164. In another preferred embodiment, the homologous polypeptide is encoded by a nucleic acid molecule that hybridizes to a nucleic acid molecule that encodes an LSP under low stringency, moderate stringency or high stringency conditions, as defined herein. In a more preferred

-66-

5

10

20

25

30

embodiment, the LSP is selected from the group consisting of SEQ ID NO: 165 through 284.

The homologous polypeptide may be a naturally-occurring one that is derived from another species, especially one derived from another primate, such as chimpanzee, gorilla, rhesus macaque, baboon or gorilla, wherein the homologous polypeptide comprises an amino acid sequence that exhibits significant sequence identity to that of SEQ ID NO: 165 through 284. The homologous polypeptide may also be a naturallyoccurring polypeptide from a human, when the LSP is a member of a family of polypeptides. The homologous polypeptide may also be a naturally-occurring polypeptide derived from a non-primate, mammalian species, including without limitation, domesticated species, e.g., dog, cat, mouse, rat, rabbit, guinea pig, hamster, cow, horse, goat or pig. The homologous polypeptide may also be a naturally-occurring polypeptide derived from a non-mammalian species, such as birds or reptiles. The naturally-occurring homologous protein may be isolated directly from humans or other species. Alternatively, the nucleic acid molecule encoding the naturally-occurring homologous polypeptide may be isolated and used to express the homologous polypeptide recombinantly. In another embodiment, the homologous polypeptide may be one that is experimentally produced by random mutation of a nucleic acid molecule and subsequent expression of the nucleic acid molecule. In another embodiment, the homologous polypeptide may be one that is experimentally produced by directed mutation of one or more codons to alter the encoded amino acid of an LSP. Further, the homologous protein may or may not encode polypeptide that is an LSP. However, in a preferred embodiment, the homologous polypeptide encodes a polypeptide that is an LSP.

Relatedness of proteins can also be characterized using a second functional test, the ability of a first protein competitively to inhibit the binding of a second protein to an antibody. It is, therefore, another aspect of the present invention to provide isolated proteins not only identical in sequence to those described with particularity herein, but also to provide isolated proteins ("cross-reactive proteins") that competitively inhibit the binding of antibodies to all or to a portion of various of the isolated polypeptides of the present invention. Such competitive inhibition can readily be determined using immunoassays well-known in the art.

10

15

20

25

30

As discussed above, single nucleotide polymorphisms (SNPs) occur frequently in eukaryotic genomes, and the sequence determined from one individual of a species may differ from other allelic forms present within the population. Thus, by "polypeptide" as used herein it is also meant to be inclusive of polypeptides encoded by an allelic variant of a nucleic acid molecule encoding an LSP. In a preferred embodiment, the polypeptide is encoded by an allelic variant of a gene that encodes a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO: 165 through 284. In a yet more preferred embodiment, the polypeptide is encoded by an allelic variant of a gene that has the nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 through 164.

In another embodiment, the invention provides polypeptides which comprise derivatives of a polypeptide encoded by a nucleic acid molecule according to the instant invention. In a preferred embodiment, the polypeptide is an LSP. In a preferred embodiment, the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO: 165 through 284, or is a mutein, allelic variant, homologous protein or fragment thereof. In a preferred embodiment, the derivative has been acetylated, carboxylated, phosphorylated, glycosylated or ubiquitinated. In another preferred embodiment, the derivative has been labeled with, e.g., radioactive isotopes such as ¹²⁵I, ³²P, ³⁵S, and ³H. In another preferred embodiment, the derivative has been labeled with fluorophores, chemiluminescent agents, enzymes, and antiligands that can serve as specific binding pair members for a labeled ligand.

Polypeptide modifications are well-known to those of skill and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as, for instance Creighton, Protein Structure and Molecular Properties, 2nd ed., W. H. Freeman and Company (1993). Many detailed reviews are available on this subject, such as, for example, those provided by Wold, in Johnson (ed.), Posttranslational Covalent Modification of Proteins, pgs. 1-12, Academic Press (1983); Seifter et al., Meth. Enzymol. 182: 626-646 (1990) and Rattan et al., Ann. N.Y. Acad. Sci. 663: 48-62 (1992).

PCT/US01/43612

It will be appreciated, as is well-known and as noted above, that polypeptides are not always entirely linear. For instance, polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslation events, including natural processing event and events brought about by human manipulation which do not occur naturally. Circular, branched and branched circular polypeptides may be synthesized by non-translation natural process and by entirely synthetic methods, as well. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. In fact, blockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification, is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well. For instance, the amino terminal residue of polypeptides made in *E. coli*, prior to proteolytic processing, almost invariably will be N-formylmethionine.

Useful post-synthetic (and post-translational) modifications include conjugation to detectable labels, such as fluorophores. A wide variety of amine-reactive and thiol-reactive fluorophore derivatives have been synthesized that react under nondenaturing conditions with N-terminal amino groups and epsilon amino groups of lysine residues, on the one hand, and with free thiol groups of cysteine residues, on the other.

15

20

Kits are available commercially that permit conjugation of proteins to a variety of amine-reactive or thiol-reactive fluorophores: Molecular Probes, Inc. (Eugene, OR, USA), e.g., offers kits for conjugating proteins to Alexa Fluor 350, Alexa Fluor 430, Fluorescein-EX, Alexa Fluor 488, Oregon Green 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, and Texas Red-X.

A wide variety of other amine-reactive and thiol-reactive fluorophores are

available commercially (Molecular Probes, Inc., Eugene, OR, USA), including Alexa
Fluor® 350, Alexa Fluor® 488, Alexa Fluor® 532, Alexa Fluor® 546, Alexa Fluor®

568, Alexa Fluor® 594, Alexa Fluor® 647 (monoclonal antibody labeling kits available
from Molecular Probes, Inc., Eugene, OR, USA), BODIPY dyes, such as BODIPY

493/503, BODIPY FL, BODIPY R6G, BODIPY 530/550, BODIPY TMR, BODIPY

558/568, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591,
BODIPY TR, BODIPY 630/650, BODIPY 650/665, Cascade Blue, Cascade Yellow,
Dansyl, lissamine rhodamine B, Marina Blue, Oregon Green 488, Oregon Green 514,

Pacific Blue, rhodamine 6G, rhodamine green, rhodamine red, tetramethylrhodamine, Texas Red (available from Molecular Probes, Inc., Eugene, OR, USA).

The polypeptides of the present invention can also be conjugated to fluorophores, other proteins, and other macromolecules, using bifunctional linking reagents. Common homobifunctional reagents include, e.g., APG, AEDP, BASED, BMB, BMDB, BMH, BMOE, BM[PEO]3, BM[PEO]4, BS3, BSOCOES, DFDNB, DMA, DMP, DMS, DPDPB, DSG, DSP (Lomant's Reagent), DSS, DST, DTBP, DTME, DTSSP, EGS, HBVS, Sulfo-BSOCOES, Sulfo-DST, Sulfo-EGS (all available from Pierce, Rockford, IL, USA); common heterobifunctional cross-linkers include ABH, AMAS, ANB-NOS, APDP, ASBA, BMPA, BMPH, BMPS, EDC, EMCA, EMCH, EMCS, KMUA, KMUH, GMBS, LC-SMCC, LC-SPDP, MBS, M2C2H, MPBH, MSA, NHS-ASA, PDPH, PMPI, SADP, SAED, SAND, SANPAH, SASD, SATP, SBAP, SFAD, SIA, SIAB, SMCC, SMPB, SMPH, SMPT, SPDP, Sulfo-EMCS, Sulfo-GMBS, Sulfo-HSAB, Sulfo-KMUS, Sulfo-LC-SPDP, Sulfo-MBS, Sulfo-NHS-LC-ASA, Sulfo-SADP, Sulfo-SANPAH, Sulfo-SIAB, Sulfo-SMCC, Sulfo-SMPB, Sulfo-LC-SMPT, SVSB, TFCS (all available Pierce, Rockford, IL, USA).

The polypeptides, fragments, and fusion proteins of the present invention can be conjugated, using such cross-linking reagents, to fluorophores that are not amine- or thiol-reactive. Other labels that usefully can be conjugated to the polypeptides, fragments, and fusion proteins of the present invention include radioactive labels, echosonographic contrast reagents, and MRI contrast agents.

20

25

The polypeptides, fragments, and fusion proteins of the present invention can also usefully be conjugated using cross-linking agents to carrier proteins, such as KLH, bovine thyroglobulin, and even bovine serum albumin (BSA), to increase immunogenicity for raising anti-LSP antibodies.

The polypeptides, fragments, and fusion proteins of the present invention can also usefully be conjugated to polyethylene glycol (PEG); PEGylation increases the serum half-life of proteins administered intravenously for replacement therapy. Delgado *et al.*, *Crit. Rev. Ther. Drug Carrier Syst.* 9(3-4): 249-304 (1992); Scott *et al.*, *Curr. Pharm. Des.* 4(6): 423-38 (1998); DeSantis *et al.*, *Curr. Opin. Biotechnol.* 10(4): 324-30 (1999), incorporated herein by reference in their entireties. PEG monomers can be attached to the protein directly or through a linker, with PEGylation using PEG monomers activated

WO 02/068633

5

10

20

25

with tresyl chloride (2,2,2-trifluoroethanesulphonyl chloride) permitting direct attachment under mild conditions.

In yet another embodiment, the invention provides analogs of a polypeptide encoded by a nucleic acid molecule according to the instant invention. In a preferred embodiment, the polypeptide is an LSP. In a more preferred embodiment, the analog is derived from a polypeptide having part or all of the amino acid sequence of SEQ ID NO: 165 through 284. In a preferred embodiment, the analog is one that comprises one or more substitutions of non-natural amino acids or non-native inter-residue bonds compared to the naturally-occurring polypeptide. In general, the non-peptide analog is structurally similar to an LSP, but one or more peptide linkages is replaced by a linkage selected from the group consisting of --CH₂NH--, --CH₂S--, --CH₂-CH₂--, --CH=CH--(cis and trans), --COCH₂--, --CH(OH)CH₂-- and --CH₂SO--. In another embodiment, the non-peptide analog comprises substitution of one or more amino acids of an LSP with a D-amino acid of the same type or other non-natural amino acid in order to generate more stable peptides. D-amino acids can readily be incorporated during chemical peptide synthesis: peptides assembled from D-amino acids are more resistant to proteolytic attack; incorporation of D-amino acids can also be used to confer specific three-dimensional conformations on the peptide. Other amino acid analogues commonly added during chemical synthesis include ornithine, norleucine, phosphorylated amino acids (typically phosphoserine, phosphothreonine, phosphotyrosine), L-malonyltyrosine, a non-hydrolyzable analog of phosphotyrosine (see, e.g., Kole et al., Biochem. Biophys. Res. Com. 209: 817-821 (1995)), and various halogenated phenylalanine derivatives.

Non-natural amino acids can be incorporated during solid phase chemical synthesis or by recombinant techniques, although the former is typically more common. Solid phase chemical synthesis of peptides is well established in the art. Procedures are described, inter alia, in Chan et al. (eds.), Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Practical Approach Series), Oxford Univ. Press (March 2000); Jones, Amino Acid and Peptide Synthesis (Oxford Chemistry Primers, No 7), Oxford Univ. Press (1992); and Bodanszky, Principles of Peptide Synthesis (Springer Laboratory), Springer Verlag (1993); the disclosures of which are incorporated herein by reference in their entireties.

15

-71-

Amino acid analogues having detectable labels are also usefully incorporated during synthesis to provide derivatives and analogs. Biotin, for example can be added using biotinoyl-(9-fluorenylmethoxycarbonyl)-L-lysine (FMOC biocytin) (Molecular Probes, Eugene, OR, USA). Biotin can also be added enzymatically by incorporation into a fusion protein of a *E. coli* BirA substrate peptide. The FMOC and tBOC derivatives of dabcyl-L-lysine (Molecular Probes, Inc., Eugene, OR, USA) can be used to incorporate the dabcyl chromophore at selected sites in the peptide sequence during synthesis. The aminonaphthalene derivative EDANS, the most common fluorophore for pairing with the dabcyl quencher in fluorescence resonance energy transfer (FRET) systems, can be introduced during automated synthesis of peptides by using EDANS-FMOC-L-glutamic acid or the corresponding tBOC derivative (both from Molecular Probes, Inc., Eugene, OR, USA). Tetramethylrhodamine fluorophores can be incorporated during automated FMOC synthesis of peptides using (FMOC)-TMR-L-lysine (Molecular Probes, Inc. Eugene, OR, USA).

Other useful amino acid analogues that can be incorporated during chemical synthesis include aspartic acid, glutamic acid, lysine, and tyrosine analogues having allyl side-chain protection (Applied Biosystems, Inc., Foster City, CA, USA); the allyl side chain permits synthesis of cyclic, branched-chain, sulfonated, glycosylated, and phosphorylated peptides.

A large number of other FMOC-protected non-natural amino acid analogues 20 capable of incorporation during chemical synthesis are available commercially, including, e.g., Fmoc-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, Fmoc-3-endoaminobicyclo[2.2.1]heptane-2-endo-carboxylic acid, Fmoc-3-exoaminobicyclo[2.2.1]heptane-2-exo-carboxylic acid, Fmoc-3-endo-aminobicyclo[2.2.1]hept-5-ene-2-endo-carboxylic acid, Fmoc-3-exo-amino-bicyclo[2.2.1]hept-25 5-ene-2-exo-carboxylic acid, Fmoc-cis-2-amino-1-cyclohexanecarboxylic acid, Fmoctrans-2-amino-1-cyclohexanecarboxylic acid, Fmoc-1-amino-1-cyclopentanecarboxylic acid, Fmoc-cis-2-amino-1-cyclopentanecarboxylic acid, Fmoc-1-amino-1cyclopropanecarboxylic acid, Fmoc-D-2-amino-4-(ethylthio)butyric acid, Fmoc-L-2amino-4-(ethylthio)butyric acid. Fmoc-L-buthionine, Fmoc-S-methyl-L-Cysteine, Fmoc-30 2-aminobenzoic acid (anthranillic acid), Fmoc-3-aminobenzoic acid, Fmoc-4aminobenzoic acid, Fmoc-2-aminobenzophenone-2'-carboxylic acid, Fmoc-N-(4-

-72-

aminobenzoyl)-\(\beta\)-alanine, Fmoc-2-amino-4,5-dimethoxybenzoic acid, Fmoc-4aminohippuric acid, Fmoc-2-amino-3-hydroxybenzoic acid, Fmoc-2-amino-5hydroxybenzoic acid, Fmoc-3-amino-4-hydroxybenzoic acid, Fmoc-4-amino-3hydroxybenzoic acid, Fmoc-4-amino-2-hydroxybenzoic acid, Fmoc-5-amino-2hydroxybenzoic acid, Fmoc-2-amino-3-methoxybenzoic acid, Fmoc-4-amino-3methoxybenzoic acid, Fmoc-2-amino-3-methylbenzoic acid, Fmoc-2-amino-5methylbenzoic acid, Fmoc-2-amino-6-methylbenzoic acid, Fmoc-3-amino-2methylbenzoic acid, Fmoc-3-amino-4-methylbenzoic acid, Fmoc-4-amino-3methylbenzoic acid, Fmoc-3-amino-2-naphtoic acid, Fmoc-D,L-3-amino-3-10 phenylpropionic acid, Fmoc-L-Methyldopa, Fmoc-2-amino-4,6-dimethyl-3pyridinecarboxylic acid, Fmoc-D,L-amino-2-thiophenacetic acid, Fmoc-4-(carboxymethyl)piperazine, Fmoc-4-carboxypiperazine, Fmoc-4-(carboxymethyl)homopiperazine, Fmoc-4-phenyl-4-piperidinecarboxylic acid, Fmoc-L-1,2,3,4-tetrahydronorharman-3-carboxylic acid, Fmoc-L-thiazolidine-4-carboxylic acid, all available from The Peptide Laboratory (Richmond, CA, USA). 15

Non-natural residues can also be added biosynthetically by engineering a suppressor tRNA, typically one that recognizes the UAG stop codon, by chemical aminoacylation with the desired unnatural amino acid. Conventional site-directed mutagenesis is used to introduce the chosen stop codon UAG at the site of interest in the protein gene. When the acylated suppressor tRNA and the mutant gene are combined in an *in vitro* transcription/translation system, the unnatural amino acid is incorporated in response to the UAG codon to give a protein containing that amino acid at the specified position. Liu *et al.*, *Proc. Natl Acad. Sci. USA* 96(9): 4780-5 (1999); Wang *et al.*, *Science* 292(5516): 498-500 (2001).

25 Fusion Proteins

20

30

The present invention further provides fusions of each of the polypeptides and fragments of the present invention to heterologous polypeptides. In a preferred embodiment, the polypeptide is an LSP. In a more preferred embodiment, the polypeptide that is fused to the heterologous polypeptide comprises part or all of the amino acid sequence of SEQ ID NO: 165 through 284, or is a mutein, homologous polypeptide, analog or derivative thereof. In an even more preferred embodiment, the nucleic acid molecule encoding the fusion protein comprises all or part of the nucleic

5

10

15

20

25

30

-73-

acid sequence of SEQ ID NO: 1 through 164, or comprises all or part of a nucleic acid sequence that selectively hybridizes or is homologous to a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 164.

The fusion proteins of the present invention will include at least one fragment of the protein of the present invention, which fragment is at least 6, typically at least 8, often at least 15, and usefully at least 16, 17, 18, 19, or 20 amino acids long. The fragment of the protein of the present to be included in the fusion can usefully be at least 25 amino acids long, at least 50 amino acids long, and can be at least 75, 100, or even 150 amino acids long. Fusions that include the entirety of the proteins of the present invention have particular utility.

The heterologous polypeptide included within the fusion protein of the present invention is at least 6 amino acids in length, often at least 8 amino acids in length, and usefully at least 15, 20, and 25 amino acids in length. Fusions that include larger polypeptides, such as the IgG Fc region, and even entire proteins (such as GFP chromophore-containing proteins) are particular useful.

As described above in the description of vectors and expression vectors of the present invention, which discussion is incorporated here by reference in its entirety, heterologous polypeptides to be included in the fusion proteins of the present invention can usefully include those designed to facilitate purification and/or visualization of recombinantly-expressed proteins. See, e.g., Ausubel, Chapter 16, (1992), supra. Although purification tags can also be incorporated into fusions that are chemically synthesized, chemical synthesis typically provides sufficient purity that further purification by HPLC suffices; however, visualization tags as above described retain their utility even when the protein is produced by chemical synthesis, and when so included render the fusion proteins of the present invention useful as directly detectable markers of the presence of a polypeptide of the invention.

As also discussed above, heterologous polypeptides to be included in the fusion proteins of the present invention can usefully include those that facilitate secretion of recombinantly expressed proteins — into the periplasmic space or extracellular milieu for prokaryotic hosts, into the culture medium for eukaryotic cells — through incorporation of secretion signals and/or leader sequences. For example, a His⁶ tagged protein can be purified on a Ni affinity column and a GST fusion protein can be purified on a

-74-

WO 02/068633

glutathione affinity column. Similarly, a fusion protein comprising the Fc domain of IgG can be purified on a Protein A or Protein G column and a fusion protein comprising an epitope tag such as myc can be purified using an immunoaffinity column containing an anti-c-myc antibody. It is preferable that the epitope tag be separated from the protein encoded by the essential gene by an enzymatic cleavage site that can be cleaved after purification. See also the discussion of nucleic acid molecules encoding fusion proteins that may be expressed on the surface of a cell.

PCT/US01/43612

Other useful protein fusions of the present invention include those that permit use of the protein of the present invention as bait in a yeast two-hybrid system. See Bartel et 10 al. (eds.), The Yeast Two-Hybrid System, Oxford University Press (1997); Zhu et al., Yeast Hybrid Technologies, Eaton Publishing (2000); Fields et al., Trends Genet. 10(8): 286-92 (1994); Mendelsohn et al., Curr. Opin. Biotechnol. 5(5): 482-6 (1994); Luban et al., Curr. Opin. Biotechnol. 6(1): 59-64 (1995); Allen et al., Trends Biochem. Sci. 20(12): 511-6 (1995); Drees, Curr. Opin. Chem. Biol. 3(1): 64-70 (1999); Topcu et al., Pharm. Res. 17(9): 1049-55 (2000); Fashena et al., Gene 250(1-2): 1-14 (2000); Colas et al., (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclindependent kinase 2. Nature 380, 548-550; Norman, T. et al., (1999) Genetic selection of peptide inhibitors of biological pathways. Science 285, 591-595, Fabbrizio et al., (1999) Inhibition of mammalian cell proliferation by genetically selected peptide aptamers that functionally antagonize E2F activity. Oncogene 18, 4357-4363; Xu et al., (1997) Cells 20 that register logical relationships among proteins. Proc Natl Acad Sci USA. 94, 12473-12478; Yang, et al., (1995) Protein-peptide interactions analyzed with the yeast twohybrid system. Nuc. Acids Res. 23, 1152-1156; Kolonin et al., (1998) Targeting cyclindependent kinases in Drosophila with peptide aptamers. Proc Natl Acad Sci USA 95, 14266-14271; Cohen et al., (1998) An artificial cell-cycle inhibitor isolated from a 25 combinatorial library. Proc Natl Acad Sci USA 95, 14272-14277; Uetz, P.; Giot, L.; al, e.; Fields, S.; Rothberg, J. M. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627; Ito, et al., (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98, 4569-4574, the disclosures of which are incorporated herein by 30 reference in their entireties. Typically, such fusion is to either E. coli LexA or yeast

-75-

5

10

25

30

GAL4 DNA binding domains. Related bait plasmids are available that express the bait fused to a nuclear localization signal.

Other useful fusion proteins include those that permit display of the encoded protein on the surface of a phage or cell, fusions to intrinsically fluorescent proteins, such as green fluorescent protein (GFP), and fusions to the IgG Fc region, as described above, which discussion is incorporated here by reference in its entirety.

The polypeptides and fragments of the present invention can also usefully be fused to protein toxins, such as *Pseudomonas* exotoxin A, *diphtheria* toxin, *shiga* toxin A, *anthrax* toxin lethal factor, ricin, in order to effect ablation of cells that bind or take up the proteins of the present invention.

Fusion partners include, *inter alia*, *myc*, hemagglutinin (HA), GST, immunoglobulins, β-galactosidase, biotin trpE, protein A, β-lactamase, -amylase, maltose binding protein, alcohol dehydrogenase, polyhistidine (for example, six histidine at the amino and/or carboxyl terminus of the polypeptide), lacZ, green fluorescent protein (GFP), yeast _mating factor, GAL4 transcription activation or DNA binding domain, luciferase, and serum proteins such as ovalbumin, albumin and the constant domain of IgG. *See*, *e.g.*, Ausubel (1992), *supra* and Ausubel (1999), *supra*. Fusion proteins may also contain sites for specific enzymatic cleavage, such as a site that is recognized by enzymes such as Factor XIII, trypsin, pepsin, or any other enzyme known in the art.

Fusion proteins will typically be made by either recombinant nucleic acid methods, as described above, chemically synthesized using techniques well-known in the art (*e.g.*, a Merrifield synthesis), or produced by chemical cross-linking.

Another advantage of fusion proteins is that the epitope tag can be used to bind the fusion protein to a plate or column through an affinity linkage for screening binding proteins or other molecules that bind to the LSP.

As further described below, the isolated polypeptides, muteins, fusion proteins, homologous proteins or allelic variants of the present invention can readily be used as specific immunogens to raise antibodies that specifically recognize LSPs, their allelic variants and homologues. The antibodies, in turn, can be used, *inter alia*, specifically to assay for the polypeptides of the present invention, particularly LSPs, *e.g.* by ELISA for detection of protein fluid samples, such as serum, by immunohistochemistry or laser scanning cytometry, for detection of protein in tissue samples, or by flow cytometry, for

-76-

5

10

15

20

25

30

detection of intracellular protein in cell suspensions, for specific antibody-mediated isolation and/or purification of LSPs, as for example by immunoprecipitation, and for use as specific agonists or antagonists of LSPs.

One may determine whether polypeptides including muteins, fusion proteins, homologous proteins or allelic variants are functional by methods known in the art. For instance, residues that are tolerant of change while retaining function can be identified by altering the protein at known residues using methods known in the art, such as alanine scanning mutagenesis, Cunningham *et al.*, *Science* 244(4908): 1081-5 (1989); transposon linker scanning mutagenesis, Chen *et al.*, *Gene* 263(1-2): 39-48 (2001); combinations of homolog- and alanine-scanning mutagenesis, Jin *et al.*, *J. Mol. Biol.* 226(3): 851-65 (1992); combinatorial alanine scanning, Weiss *et al.*, *Proc. Natl. Acad. Sci USA* 97(16): 8950-4 (2000), followed by functional assay. Transposon linker scanning kits are available commercially (New England Biolabs, Beverly, MA, USA, catalog. no. E7-102S; EZ::TNTM In-Frame Linker Insertion Kit, catalogue no. EZI04KN, Epicentre Technologies Corporation, Madison, WI, USA).

Purification of the polypeptides including fragments, homologous polypeptides, muteins, analogs, derivatives and fusion proteins is well-known and within the skill of one having ordinary skill in the art. *See, e.g.*, Scopes, <u>Protein Purification</u>, 2d ed. (1987). Purification of recombinantly expressed polypeptides is described above. Purification of chemically-synthesized peptides can readily be effected, *e.g.*, by HPLC.

Accordingly, it is an aspect of the present invention to provide the isolated proteins of the present invention in pure or substantially pure form in the presence of absence of a stabilizing agent. Stabilizing agents include both proteinaceous or non-proteinaceous material and are well-known in the art. Stabilizing agents, such as albumin and polyethylene glycol (PEG) are known and are commercially available.

Although high levels of purity are preferred when the isolated proteins of the present invention are used as therapeutic agents, such as in vaccines and as replacement therapy, the isolated proteins of the present invention are also useful at lower purity. For example, partially purified proteins of the present invention can be used as immunogens to raise antibodies in laboratory animals.

-77-

In preferred embodiments, the purified and substantially purified proteins of the present invention are in compositions that lack detectable ampholytes, acrylamide monomers, bis-acrylamide monomers, and polyacrylamide.

The polypeptides, fragments, analogs, derivatives and fusions of the present invention can usefully be attached to a substrate. The substrate can be porous or solid, planar or non-planar; the bond can be covalent or noncovalent.

5

10

20

25

30

For example, the polypeptides, fragments, analogs, derivatives and fusions of the present invention can usefully be bound to a porous substrate, commonly a membrane, typically comprising nitrocellulose, polyvinylidene fluoride (PVDF), or cationically derivatized, hydrophilic PVDF; so bound, the proteins, fragments, and fusions of the present invention can be used to detect and quantify antibodies, *e.g.* in serum, that bind specifically to the immobilized protein of the present invention.

As another example, the polypeptides, fragments, analogs, derivatives and fusions of the present invention can usefully be bound to a substantially nonporous substrate, such as plastic, to detect and quantify antibodies, e.g. in serum, that bind specifically to the immobilized protein of the present invention. Such plastics include polymethylacrylic, polyethylene, polypropylene, polyacrylate, polymethylmethacrylate, polyvinylchloride, polytetrafluoroethylene, polystyrene, polycarbonate, polyacetal, polysulfone, celluloseacetate, cellulosenitrate, nitrocellulose, or mixtures thereof; when the assay is performed in a standard microtiter dish, the plastic is typically polystyrene.

The polypeptides, fragments, analogs, derivatives and fusions of the present invention can also be attached to a substrate suitable for use as a surface enhanced laser desorption ionization source; so attached, the protein, fragment, or fusion of the present invention is useful for binding and then detecting secondary proteins that bind with sufficient affinity or avidity to the surface-bound protein to indicate biologic interaction there between. The proteins, fragments, and fusions of the present invention can also be attached to a substrate suitable for use in surface plasmon resonance detection; so attached, the protein, fragment, or fusion of the present invention is useful for binding and then detecting secondary proteins that bind with sufficient affinity or avidity to the surface-bound protein to indicate biological interaction there between.

Antibodies

10

20

25

30

WO 02/068633

In another aspect, the invention provides antibodies, including fragments and derivatives thereof, that bind specifically to polypeptides encoded by the nucleic acid molecules of the invention, as well as antibodies that bind to fragments, muteins, derivatives and analogs of the polypeptides. In a preferred embodiment, the antibodies are specific for a polypeptide that is an LSP, or a fragment, mutein, derivative, analog or fusion protein thereof. In a more preferred embodiment, the antibodies are specific for a polypeptide that comprises SEQ ID NO: 165 through 284, or a fragment, mutein, derivative, analog or fusion protein thereof.

The antibodies of the present invention can be specific for linear epitopes, discontinuous epitopes, or conformational epitopes of such proteins or protein fragments, either as present on the protein in its native conformation or, in some cases, as present on the proteins as denatured, as, e.g., by solubilization in SDS. New epitopes may be also due to a difference in post translational modifications (PTMs) in disease versus normal tissue. For example, a particular site on a LSP may be glycosylated in cancerous cells, but not glycosylated in normal cells or visa versa. In addition, alternative splice forms of a LSP may be indicative of cancer. Differential degradation of the C or N-terminus of a LSP may also be a marker or target for anticancer therapy. For example, a LSP may be N-terminal degraded in cancer cells exposing new epitopes to which antibodies may selectively bind for diagnostic or therapeutic uses.

As is well-known in the art, the degree to which an antibody can discriminate as among molecular species in a mixture will depend, in part, upon the conformational relatedness of the species in the mixture; typically, the antibodies of the present invention will discriminate over adventitious binding to non-LSP polypeptides by at least 2-fold, more typically by at least 5-fold, typically by more than 10-fold, 25-fold, 50-fold, 75-fold, and often by more than 100-fold, and on occasion by more than 500-fold or 1000-fold. When used to detect the proteins or protein fragments of the present invention, the antibody of the present invention is sufficiently specific when it can be used to determine the presence of the protein of the present invention in samples derived from human lung.

Typically, the affinity or avidity of an antibody (or antibody multimer, as in the case of an IgM pentamer) of the present invention for a protein or protein fragment of the present invention will be at least about 1×10^{-6} molar (M), typically at least about 5×10^{-6}

-79-

5

10

15

20

25

 7 M, 1 x 10⁻⁷ M, with affinities and avidities of at least 1 x 10⁻⁸ M, 5 x 10⁻⁹ M, 1 x 10⁻¹⁰ M and up to 1 X 10⁻¹³ M proving especially useful.

The antibodies of the present invention can be naturally-occurring forms, such as IgG, IgM, IgD, IgE, IgY, and IgA, from any avian, reptilian, or mammalian species.

Human antibodies can, but will infrequently, be drawn directly from human donors or human cells. In this case, antibodies to the proteins of the present invention will typically have resulted from fortuitous immunization, such as autoimmune immunization, with the protein or protein fragments of the present invention. Such antibodies will typically, but will not invariably, be polyclonal. In addition, individual polyclonal antibodies may be isolated and cloned to generate monoclonals.

Human antibodies are more frequently obtained using transgenic animals that express human immunoglobulin genes, which transgenic animals can be affirmatively immunized with the protein immunogen of the present invention. Human Ig-transgenic mice capable of producing human antibodies and methods of producing human antibodies therefrom upon specific immunization are described, *inter alia*, in U.S. Patents 6,162,963; 6,150,584; 6,114,598; 6,075,181; 5,939,598; 5,877,397; 5,874,299; 5,814,318; 5,789,650; 5,770,429; 5,661,016; 5,633,425; 5,625,126; 5,569,825; 5,545,807; 5,545,806, and 5,591,669, the disclosures of which are incorporated herein by reference in their entireties. Such antibodies are typically monoclonal, and are typically produced using techniques developed for production of murine antibodies.

Human antibodies are particularly useful, and often preferred, when the antibodies of the present invention are to be administered to human beings as *in vivo* diagnostic or therapeutic agents, since recipient immune response to the administered antibody will often be substantially less than that occasioned by administration of an antibody derived from another species, such as mouse.

IgG, IgM, IgD, IgE, IgY, and IgA antibodies of the present invention can also be obtained from other species, including mammals such as rodents (typically mouse, but also rat, guinea pig, and hamster) lagomorphs, typically rabbits, and also larger mammals, such as sheep, goats, cows, and horses, and other egg laying birds or reptiles such as chickens or alligators. For example, avian antibodies may be generated using techniques described in WO 00/29444, published 25 May 2000, the contents of which are hereby incorporated in their entirety. In such cases, as with the transgenic human-

-80-

antibody-producing non-human mammals, fortuitous immunization is not required, and the non-human mammal is typically affirmatively immunized, according to standard immunization protocols, with the protein or protein fragment of the present invention.

As discussed above, virtually all fragments of 8 or more contiguous amino acids of the proteins of the present invention can be used effectively as immunogens when conjugated to a carrier, typically a protein such as bovine thyroglobulin, keyhole limpet hemocyanin, or bovine serum albumin, conveniently using a bifunctional linker such as those described elsewhere above, which discussion is incorporated by reference here.

Immunogenicity can also be conferred by fusion of the polypeptide and fragments of the present invention to other moieties. For example, peptides of the present invention can be produced by solid phase synthesis on a branched polylysine core matrix; these multiple antigenic peptides (MAPs) provide high purity, increased avidity, accurate chemical definition and improved safety in vaccine development. Tam et al., Proc. Natl. Acad. Sci. USA 85: 5409-5413 (1988); Posnett et al., J. Biol. Chem. 263: 1719-1725 (1988).

10

15

20

25

Protocols for immunizing non-human mammals or avian species are well-established in the art. See Harlow et al. (eds.), Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory (1998); Coligan et al. (eds.), Current Protocols in Immunology, John Wiley & Sons, Inc. (2001); Zola, Monoclonal Antibodies: Preparation and Use of Monoclonal Antibodies and Engineered Antibody Derivatives (Basics: From Background to Bench), Springer Verlag (2000); Gross M, Speck J.Dtsch. Tierarztl. Wochenschr. 103: 417-422 (1996), the disclosures of which are incorporated herein by reference. Immunization protocols often include multiple immunizations, either with or without adjuvants such as Freund's complete adjuvant and Freund's incomplete adjuvant, and may include naked DNA immunization (Moss, Semin. Immunol. 2: 317-327 (1990).

Antibodies from non-human mammals and avian species can be polyclonal or monoclonal, with polyclonal antibodies having certain advantages in immunohistochemical detection of the proteins of the present invention and monoclonal antibodies having advantages in identifying and distinguishing particular epitopes of the proteins of the present invention. Antibodies from avian species may have particular advantage in detection of the proteins of the present invention, in human serum or tissues (Vikinge et al., *Biosens. Bioelectron.* 13: 1257-1262 (1998).

WO 02/068633

5

10

15

20

25

30

Following immunization, the antibodies of the present invention can be produced using any art-accepted technique. Such techniques are well-known in the art, Coligan, supra; Zola, supra; Howard et al. (eds.), Basic Methods in Antibody Production and Characterization, CRC Press (2000); Harlow, supra; Davis (ed.), Monoclonal Antibody Protocols, Vol. 45, Humana Press (1995); Delves (ed.), Antibody Production: Essential Techniques, John Wiley & Son Ltd (1997); Kenney, Antibody Solution: An Antibody Methods Manual, Chapman & Hall (1997), incorporated herein by reference in their entireties, and thus need not be detailed here.

Briefly, however, such techniques include, *inter alia*, production of monoclonal antibodies by hybridomas and expression of antibodies or fragments or derivatives thereof from host cells engineered to express immunoglobulin genes or fragments thereof. These two methods of production are not mutually exclusive: genes encoding antibodies specific for the proteins or protein fragments of the present invention can be cloned from hybridomas and thereafter expressed in other host cells. Nor need the two necessarily be performed together: *e.g.*, genes encoding antibodies specific for the proteins and protein fragments of the present invention can be cloned directly from B cells known to be specific for the desired protein, as further described in U.S Patent 5,627,052, the disclosure of which is incorporated herein by reference in its entirety, or from antibody-displaying phage.

Recombinant expression in host cells is particularly useful when fragments or derivatives of the antibodies of the present invention are desired.

Host cells for recombinant production of either whole antibodies, antibody fragments, or antibody derivatives can be prokaryotic or eukaryotic.

Prokaryotic hosts are particularly useful for producing phage displayed antibodies of the present invention.

The technology of phage-displayed antibodies, in which antibody variable region fragments are fused, for example, to the gene III protein (pIII) or gene VIII protein (pVIII) for display on the surface of filamentous phage, such as M13, is by now well-established. See, e.g., Sidhu, Curr. Opin. Biotechnol. 11(6): 610-6 (2000); Griffiths et al., Curr. Opin. Biotechnol. 9(1): 102-8 (1998); Hoogenboom et al., Immunotechnology, 4(1): 1-20 (1998); Rader et al., Current Opinion in Biotechnology 8: 503-508 (1997); Aujame et al., Human Antibodies 8: 155-168 (1997); Hoogenboom, Trends in

-82-

Biotechnol. 15: 62-70 (1997); de Kruif et al., 17: 453-455 (1996); Barbas et al., Trends in Biotechnol. 14: 230-234 (1996); Winter et al., Ann. Rev. Immunol. 433-455 (1994).
Techniques and protocols required to generate, propagate, screen (pan), and use the antibody fragments from such libraries have recently been compiled. See, e.g., Barbas (2001), supra; Kay, supra; Abelson, supra, the disclosures of which are incorporated herein by reference in their entireties.

Typically, phage-displayed antibody fragments are scFv fragments or Fab fragments; when desired, full length antibodies can be produced by cloning the variable regions from the displaying phage into a complete antibody and expressing the full length antibody in a further prokaryotic or a eukaryotic host cell.

Eukaryotic cells are also useful for expression of the antibodies, antibody fragments, and antibody derivatives of the present invention.

10

25

For example, antibody fragments of the present invention can be produced in Pichia pastoris and in Saccharomyces cerevisiae. See, e.g., Takahashi et al., Biosci.

Biotechnol. Biochem. 64(10): 2138-44 (2000); Freyre et al., J. Biotechnol. 76(2-3):1

57-63 (2000); Fischer et al., Biotechnol. Appl. Biochem. 30 (Pt 2): 117-20 (1999);

Pennell et al., Res. Immunol. 149(6): 599-603 (1998); Eldin et al., J. Immunol. Methods.

201(1): 67-75 (1997);, Frenken et al., Res. Immunol. 149(6): 589-99 (1998); Shusta et al., Nature Biotechnol. 16(8): 773-7 (1998), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies, including antibody fragments and derivatives, of the present invention can also be produced in insect cells. See, e.g., Li et al., Protein Expr. Purif. 21(1): 121-8 (2001); Ailor et al., Biotechnol. Bioeng. 58(2-3): 196-203 (1998); Hsu et al., Biotechnol. Prog. 13(1): 96-104 (1997); Edelman et al., Immunology 91(1): 13-9 (1997); and Nesbit et al., J. Immunol. Methods 151(1-2): 201-8 (1992), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies and fragments and derivatives thereof of the present invention can also be produced in plant cells, particularly maize or tobacco, Giddings et al., Nature Biotechnol. 18(11): 1151-5 (2000); Gavilondo et al., Biotechniques 29(1): 128-38 (2000); Fischer et al., J. Biol. Regul. Homeost. Agents 14(2): 83-92 (2000); Fischer et al., Biotechnol. Appl. Biochem. 30 (Pt 2): 113-6 (1999); Fischer et al., Biol. Chem. 380(7-8): 825-39 (1999); Russell, Curr. Top. Microbiol. Immunol. 240: 119-38 (1999); and Ma et

al., Plant Physiol. 109(2): 341-6 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies, including antibody fragments and derivatives, of the present invention can also be produced in transgenic, non-human, mammalian milk. See, e.g. Pollock et al., J. Immunol Methods. 231: 147-57 (1999); Young et al., Res. Immunol. 149: 609-10 (1998); Limonta et al., Immunotechnology 1: 107-13 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Mammalian cells useful for recombinant expression of antibodies, antibody fragments, and antibody derivatives of the present invention include CHO cells, COS cells, 293 cells, and myeloma cells.

10

15

20

25

Verma et al., J. Immunol. Methods 216(1-2):165-81 (1998), herein incorporated by reference, review and compare bacterial, yeast, insect and mammalian expression systems for expression of antibodies.

Antibodies of the present invention can also be prepared by cell free translation, as further described in Merk et al., J. Biochem. (Tokyo) 125(2): 328-33 (1999) and Ryabova et al., Nature Biotechnol. 15(1): 79-84 (1997), and in the milk of transgenic animals, as further described in Pollock et al., J. Immunol. Methods 231(1-2): 147-57 (1999), the disclosures of which are incorporated herein by reference in their entireties.

The invention further provides antibody fragments that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

Among such useful fragments are Fab, Fab', Fv, F(ab)'₂, and single chain Fv (scFv) fragments. Other useful fragments are described in Hudson, *Curr. Opin. Biotechnol.* 9(4): 395-402 (1998).

It is also an aspect of the present invention to provide antibody derivatives that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or

-84-

one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

Among such useful derivatives are chimeric, primatized, and humanized antibodies; such derivatives are less immunogenic in human beings, and thus more suitable for in vivo administration, than are unmodified antibodies from non-human mammalian species. Another useful derivative is PEGylation to increase the serum half life of the antibodies.

Chimeric antibodies typically include heavy and/or light chain variable regions (including both CDR and framework residues) of immunoglobulins of one species, typically mouse, fused to constant regions of another species, typically human. See, e.g., 10 United States Patent No. 5,807,715; Morrison et al., Proc. Natl. Acad. Sci USA.81(21): 6851-5 (1984); Sharon et al., Nature 309(5966): 364-7 (1984); Takeda et al., Nature 314(6010): 452-4 (1985), the disclosures of which are incorporated herein by reference in their entireties. Primatized and humanized antibodies typically include heavy and/or light chain CDRs from a murine antibody grafted into a non-human primate or human antibody V region framework, usually further comprising a human constant region, Riechmann et al., Nature 332(6162): 323-7 (1988); Co et al., Nature 351(6326): 501-2 (1991); United States Patent Nos. 6,054,297; 5,821,337; 5,770,196; 5,766,886; 5,821,123; 5,869,619; 6,180,377; 6,013,256; 5,693,761; and 6,180,370, the disclosures of which are incorporated herein by reference in their entireties. 20

Other useful antibody derivatives of the invention include heteromeric antibody complexes and antibody fusions, such as diabodies (bispecific antibodies), single-chain diabodies, and intrabodies.

25

It is contemplated that the nucleic acids encoding the antibodies of the present invention can be operably joined to other nucleic acids forming a recombinant vector for cloning or for expression of the antibodies of the invention. The present invention includes any recombinant vector containing the coding sequences, or part thereof, whether for eukaryotic transduction, transfection or gene therapy. Such vectors may be prepared using conventional molecular biology techniques, known to those with skill in the art, and would comprise DNA encoding sequences for the immunoglobulin V-regions including framework and CDRs or parts thereof, and a suitable promoter either with or without a signal sequence for intracellular transport. Such vectors may be transduced or

10

15

20

30

WO 02/068633 PCT/US01/43612

-85-

transfected into eukaryotic cells or used for gene therapy (Marasco et al., <u>Proc. Natl.</u>

<u>Acad. Sci. (USA)</u> 90: 7889-7893 (1993); Duan et al., <u>Proc. Natl. Acad. Sci. (USA)</u> 91: 5075-5079 (1994), by conventional techniques, known to those with skill in the art.

The antibodies of the present invention, including fragments and derivatives thereof, can usefully be labeled. It is, therefore, another aspect of the present invention to provide labeled antibodies that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

The choice of label depends, in part, upon the desired use.

For example, when the antibodies of the present invention are used for immunohistochemical staining of tissue samples, the label is preferably an enzyme that catalyzes production and local deposition of a detectable product.

Enzymes typically conjugated to antibodies to permit their immunohistochemical visualization are well-known, and include alkaline phosphatase, β-galactosidase, glucose oxidase, horseradish peroxidase (HRP), and urease. Typical substrates for production and deposition of visually detectable products include o-nitrophenyl-beta-D-galactopyranoside (ONPG); o-phenylenediamine dihydrochloride (OPD); p-nitrophenyl

phosphate (PNPP); p-nitrophenyl-beta-D-galactopryanoside (PNPG); 3',3'-diaminobenzidine (DAB); 3-amino-9-ethylcarbazole (AEC); 4-chloro-1-naphthol (CN); 5-bromo-4-chloro-3-indolyl-phosphate (BCIP); ABTS®; BluoGal; iodonitrotetrazolium (INT); nitroblue tetrazolium chloride (NBT); phenazine methosulfate (PMS);

25 phenolphthalein monophosphate (PMP); tetramethyl benzidine (TMB); tetranitroblue tetrazolium (TNBT); X-Gal; X-Gluc; and X-Glucoside.

Other substrates can be used to produce products for local deposition that are luminescent. For example, in the presence of hydrogen peroxide (H₂O₂), horseradish peroxidase (HRP) can catalyze the oxidation of cyclic diacylhydrazides, such as luminol. Immediately following the oxidation, the luminol is in an excited state (intermediate reaction product), which decays to the ground state by emitting light. Strong enhancement of the light emission is produced by enhancers, such as phenolic

15

30

WO 02/068633 PCT/US01/43612

-86-

compounds. Advantages include high sensitivity, high resolution, and rapid detection without radioactivity and requiring only small amounts of antibody. See, e.g., Thorpe et al., Methods Enzymol. 133: 331-53 (1986); Kricka et al., J. Immunoassay 17(1): 67-83 (1996); and Lundqvist et al., J. Biolumin. Chemilumin. 10(6): 353-9 (1995), the disclosures of which are incorporated herein by reference in their entireties. Kits for such enhanced chemiluminescent detection (ECL) are available commercially.

The antibodies can also be labeled using colloidal gold.

As another example, when the antibodies of the present invention are used, e.g., for flow cytometric detection, for scanning laser cytometric detection, or for fluorescent immunoassay, they can usefully be labeled with fluorophores.

There are a wide variety of fluorophore labels that can usefully be attached to the antibodies of the present invention.

For flow cytometric applications, both for extracellular detection and for intracellular detection, common useful fluorophores can be fluorescein isothiocyanate (FITC), allophycocyanin (APC), R-phycoerythrin (PE), peridinin chlorophyll protein (PerCP), Texas Red, Cy3, Cy5, fluorescence resonance energy tandem fluorophores such as PerCP-Cy5.5, PE-Cy5, PE-Cy5.5, PE-Cy7, PE-Texas Red, and APC-Cy7.

Other fluorophores include, *inter alia*, Alexa Fluor® 350, Alexa Fluor® 488, Alexa Fluor® 532, Alexa Fluor® 546, Alexa Fluor® 568, Alexa Fluor® 594, Alexa Fluor® 647 (monoclonal antibody labeling kits available from Molecular Probes, Inc., Eugene, OR, USA), BODIPY dyes, such as BODIPY 493/503, BODIPY FL, BODIPY R6G, BODIPY 530/550, BODIPY TMR, BODIPY 558/568, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY TR, BODIPY 630/650, BODIPY 650/665, Cascade Blue, Cascade Yellow, Dansyl, lissamine rhodamine B, Marina Blue, Oregon Green 488, Oregon Green 514, Pacific Blue, rhodamine 6G, rhodamine green, rhodamine red, tetramethylrhodamine, Texas Red (available from Molecular Probes, Inc., Eugene, OR, USA), and Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, all of which are also useful for fluorescently labeling the antibodies of the present invention.

For secondary detection using labeled avidin, streptavidin, captavidin or neutravidin, the antibodies of the present invention can usefully be labeled with biotin.

15

25

30

When the antibodies of the present invention are used, e.g., for Western blotting applications, they can usefully be labeled with radioisotopes, such as ³³P, ³²P, ³⁵S, ³H, and ¹²⁵L

As another example, when the antibodies of the present invention are used for radioimmunotherapy, the label can usefully be ²²⁸Th, ²²⁷Ac, ²²⁵Ac, ²²³Ra, ²¹³Bi, ²¹²Pb, ²¹²Bi, ²¹¹At, ²⁰³Pb, ¹⁹⁴Os, ¹⁸⁸Re, ¹⁸⁶Re, ¹⁵³Sm, ¹⁴⁹Tb, ¹³¹I, ¹²⁵I, ¹¹¹In, ¹⁰⁵Rh, ^{99m}Tc, ⁹⁷Ru, ⁹⁰Y, ⁹⁰Sr, ⁸⁸Y, ⁷²Se, ⁶⁷Cu, or ⁴⁷Sc.

As another example, when the antibodies of the present invention are to be used for *in vivo* diagnostic use, they can be rendered detectable by conjugation to MRI contrast agents, such as gadolinium diethylenetriaminepentaacetic acid (DTPA), Lauffer *et al.*, *Radiology* 207(2): 529-38 (1998), or by radioisotopic labeling.

As would be understood, use of the labels described above is not restricted to the application for which they are mentioned.

The antibodies of the present invention, including fragments and derivatives thereof, can also be conjugated to toxins, in order to target the toxin's ablative action to cells that display and/or express the proteins of the present invention. Commonly, the antibody in such immunotoxins is conjugated to *Pseudomonas* exotoxin A, *diphtheria* toxin, *shiga* toxin A, *anthrax* toxin lethal factor, or ricin. *See* Hall (ed.), <u>Immunotoxin</u> Methods and Protocols (Methods in Molecular Biology, vol. 166), Humana Press (2000); and Frankel *et al.* (eds.), <u>Clinical Applications of Immunotoxins</u>, Springer-Verlag (1998), the disclosures of which are incorporated herein by reference in their entireties.

The antibodies of the present invention can usefully be attached to a substrate, and it is, therefore, another aspect of the invention to provide antibodies that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, attached to a substrate.

Substrates can be porous or nonporous, planar or nonplanar.

For example, the antibodies of the present invention can usefully be conjugated to filtration media, such as NHS-activated Sepharose or CNBr-activated Sepharose for purposes of immunoaffinity chromatography.

For example, the antibodies of the present invention can usefully be attached to paramagnetic microspheres, typically by biotin-streptavidin interaction, which microspheres can then be used for isolation of cells that express or display the proteins of the present invention. As another example, the antibodies of the present invention can usefully be attached to the surface of a microtiter plate for ELISA.

As noted above, the antibodies of the present invention can be produced in prokaryotic and eukaryotic cells. It is, therefore, another aspect of the present invention to provide cells that express the antibodies of the present invention, including hybridoma cells, B cells, plasma cells, and host cells recombinantly modified to express the antibodies of the present invention.

In yet a further aspect, the present invention provides aptamers evolved to bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

In sum, one of skill in the art, provided with the teachings of this invention, has available a variety of methods which may be used to alter the biological properties of the antibodies of this invention including methods which would increase or decrease the stability or half-life, immunogenicity, toxicity, affinity or yield of a given antibody molecule, or to alter it in any other way that may render it more suitable for a particular application.

Transgenic Animals and Cells

15

20

25

In another aspect, the invention provides transgenic cells and non-human organisms comprising nucleic acid molecules of the invention. In a preferred embodiment, the transgenic cells and non-human organisms comprise a nucleic acid molecule encoding an LSP. In a preferred embodiment, the LSP comprises an amino

acid sequence selected from SEQ ID NO: 165 through 284, or a fragment, mutein, homologous protein or allelic variant thereof. In another preferred embodiment, the transgenic cells and non-human organism comprise an LSNA of the invention, preferably an LSNA comprising a nucleotide sequence selected from the group consisting of SEQ 5 ID NO: 1 through 164, or a part, substantially similar nucleic acid molecule, allelic variant or hybridizing nucleic acid molecule thereof.

In another embodiment, the transgenic cells and non-human organisms have a targeted disruption or replacement of the endogenous orthologue of the human LSG. The transgenic cells can be embryonic stem cells or somatic cells. The transgenic non-human organisms can be chimeric, nonchimeric heterozygotes, and nonchimeric homozygotes. Methods of producing transgenic animals are well-known in the art. See, e.g., Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, 2d ed., Cold Spring Harbor Press (1999); Jackson et al., Mouse Genetics and Transgenics: A Practical Approach, Oxford University Press (2000); and Pinkert, Transgenic Animal Technology: A Laboratory Handbook, Academic Press (1999).

15

Any technique known in the art may be used to introduce a nucleic acid molecule of the invention into an animal to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection. (see, e.g., Paterson et al., Appl. Microbiol. Biotechnol. 40: 691-698 (1994); Carver et al., Biotechnology 11: 1263-1270 (1993); Wright et al., Biotechnology 9: 830-834 (1991); and U.S. Patent 20 4,873,191 (1989 retrovirus-mediated gene transfer into germ lines, blastocysts or embryos (see, e.g., Van der Putten et al., Proc. Natl. Acad. Sci., USA 82: 6148-6152 (1985)); gene targeting in embryonic stem cells (see, e.g., Thompson et al., Cell 56: 313-321 (1989)); electroporation of cells or embryos (see, e.g., Lo, 1983, Mol. Cell. Biol. 3: 1803-1814 (1983)); introduction using a gene gun (see, e.g., Ulmer et al., Science 259: 25 1745-49 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (see, e.g., Lavitrano et al., Cell 57: 717-723 (1989)).

Other techniques include, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (see, e.g., Campell et al., Nature 380: 64-66 (1996); Wilmut et al., Nature 385: 810-813 (1997)). The present invention provides for transgenic animals that carry the transgene (i.e., a

15

20

25

30

WO 02/068633 PCT/US01/43612

nucleic acid molecule of the invention) in all their cells, as well as animals which carry the transgene in some, but not all their cells, i. e., mosaic animals or chimeric animals.

The transgene may be integrated as a single transgene or as multiple copies, such as in concatamers, e. g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, e.g., the teaching of Lasko et al. et al., Proc. Natl. Acad. Sci. USA 89: 6232-6236 (1992). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, *in situ* hybridization analysis, and reverse transcriptase-PCR (RT-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of

20

30

WO 02/068633 PCT/US01/43612

the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Methods for creating a transgenic animal with a disruption of a targeted gene are also well-known in the art. In general, a vector is designed to comprise some nucleotide sequences homologous to the endogenous targeted gene. The vector is introduced into a cell so that it may integrate, via homologous recombination with chromosomal sequences, into the endogenous gene, thereby disrupting the function of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type. See, e.g., Gu et al., Science 265: 103-106 (1994). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. See, e.g., Smithies et al., Nature 317: 230-234 (1985); Thomas et al., Cell 51: 503-512 (1987); Thompson et al., Cell 5: 313-321 (1989).

In one embodiment, a mutant, non-functional nucleic acid molecule of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous nucleic acid sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene. See, e.g., Thomas, supra and Thompson, supra. However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site *in vivo* using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient *in vivo*. Such cells may be obtained from an animal or patient or an MHC

-92-

5

10

15

20

25

30

compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered in vitro using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e.g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.

The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally.

Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. See, e.g., U.S. Patents 5,399,349 and 5,460,959, each of which is incorporated by reference herein in its entirety.

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well-known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

-93-

Computer Readable Means

10

15

20

25

30

A further aspect of the invention relates to a computer readable means for storing the nucleic acid and amino acid sequences of the instant invention. In a preferred embodiment, the invention provides a computer readable means for storing SEQ ID NO: 1 through 164 and SEQ ID NO: 165 through 284 as described herein, as the complete set of sequences or in any combination. The records of the computer readable means can be accessed for reading and display and for interface with a computer system for the application of programs allowing for the location of data upon a query for data meeting certain criteria, the comparison of sequences, the alignment or ordering of sequences meeting a set of criteria, and the like.

The nucleic acid and amino acid sequences of the invention are particularly useful as components in databases useful for search analyses as well as in sequence analysis algorithms. As used herein, the terms "nucleic acid sequences of the invention" and "amino acid sequences of the invention" mean any detectable chemical or physical characteristic of a polynucleotide or polypeptide of the invention that is or may be reduced to or stored in a computer readable form. These include, without limitation, chromatographic scan data or peak data, photographic data or scan data therefrom, and mass spectrographic data.

This invention provides computer readable media having stored thereon sequences of the invention. A computer readable medium may comprise one or more of the following: a nucleic acid sequence comprising a sequence of a nucleic acid sequence of the invention; an amino acid sequence comprising an amino acid sequence of the invention; a set of nucleic acid sequences wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set representing a nucleic acid sequence comprising the sequence of one or more nucleic acid sequences of the invention; a data set representing a nucleic acid sequence comprising the sequence of an amino acid sequence of the invention; a set of nucleic acid sequences wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set

representing a nucleic acid sequence comprising the sequence of a nucleic acid sequence of the invention; a data set representing a nucleic acid sequence encoding an amino acid sequence comprising the sequence of an amino acid sequence of the invention. The computer readable medium can be any composition of matter used to store information or data, including, for example, commercially available floppy disks, tapes, hard drives, compact disks, and video disks.

Also provided by the invention are methods for the analysis of character sequences, particularly genetic sequences. Preferred methods of sequence analysis include, for example, methods of sequence homology analysis, such as identity and similarity analysis, RNA structure analysis, sequence assembly, cladistic analysis, sequence motif analysis, open reading frame determination, nucleic acid base calling, and sequencing chromatogram peak analysis.

A computer-based method is provided for performing nucleic acid sequence identity or similarity identification. This method comprises the steps of providing a nucleic acid sequence comprising the sequence of a nucleic acid of the invention in a computer readable medium; and comparing said nucleic acid sequence to at least one nucleic acid or amino acid sequence to identify sequence identity or similarity.

A computer-based method is also provided for performing amino acid homology identification, said method comprising the steps of: providing an amino acid sequence comprising the sequence of an amino acid of the invention in a computer readable medium; and comparing said an amino acid sequence to at least one nucleic acid or an amino acid sequence to identify homology.

A computer-based method is still further provided for assembly of overlapping nucleic acid sequences into a single nucleic acid sequence, said method comprising the steps of: providing a first nucleic acid sequence comprising the sequence of a nucleic acid of the invention in a computer readable medium; and screening for at least one overlapping region between said first nucleic acid sequence and a second nucleic acid sequence.

Diagnostic Methods for Lung Cancer

30

20

25

The present invention also relates to quantitative and qualitative diagnostic assays and methods for detecting, diagnosing, monitoring, staging and predicting cancers by

15

20

25

30

WO 02/068633 PCT/US01/43612

-95-

comparing expression of an LSNA or an LSP in a human patient that has or may have lung cancer, or who is at risk of developing lung cancer, with the expression of an LSNA or an LSP in a normal human control. For purposes of the present invention, "expression of an LSNA" or "LSNA expression" means the quantity of LSG mRNA that can be measured by any method known in the art or the level of transcription that can be measured by any method known in the art in a cell, tissue, organ or whole patient. Similarly, the term "expression of an LSP" or "LSP expression" means the amount of LSP that can be measured by any method known in the art or the level of translation of an LSG LSNA that can be measured by any method known in the art.

The present invention provides methods for diagnosing lung cancer in a patient, in particular squamous cell carcinoma, by analyzing for changes in levels of LSNA or LSP in cells, tissues, organs or bodily fluids compared with levels of LSNA or LSP in cells, tissues, organs or bodily fluids of preferably the same type from a normal human control, wherein an increase, or decrease in certain cases, in levels of an LSNA or LSP in the patient versus the normal human control is associated with the presence of lung cancer or with a predilection to the disease. In another preferred embodiment, the present invention provides methods for diagnosing lung cancer in a patient by analyzing changes in the structure of the mRNA of an LSG compared to the mRNA from a normal control. These changes include, without limitation, aberrant splicing, alterations in polyadenylation and/or alterations in 5' nucleotide capping. In yet another preferred embodiment, the present invention provides methods for diagnosing lung cancer in a patient by analyzing changes in an LSP compared to an LSP from a normal control. These changes include, e.g., alterations in glycosylation and/or phosphorylation of the LSP or subcellular LSP localization.

In a preferred embodiment, the expression of an LSNA is measured by determining the amount of an mRNA that encodes an amino acid sequence selected from SEQ ID NO: 165 through 284, a homolog, an allelic variant, or a fragment thereof. In a more preferred embodiment, the LSNA expression that is measured is the level of expression of an LSNA mRNA selected from SEQ ID NO: 1 through 164, or a hybridizing nucleic acid, homologous nucleic acid or allelic variant thereof, or a part of any of these nucleic acids. LSNA expression may be measured by any method known in the art, such as those described *supra*, including measuring mRNA expression by

10

25

30

-96-

Northern blot, quantitative or qualitative reverse transcriptase PCR (RT-PCR), microarray, dot or slot blots or *in situ* hybridization. *See*, *e.g.*, Ausubel (1992), *supra*; Ausubel (1999), *supra*; Sambrook (1989), *supra*; and Sambrook (2001), *supra*. LSNA transcription may be measured by any method known in the art including using a reporter gene hooked up to the promoter of an LSG of interest or doing nuclear run-off assays. Alterations in mRNA structure, *e.g.*, aberrant splicing variants, may be determined by any method known in the art, including, RT-PCR followed by sequencing or restriction analysis. As necessary, LSNA expression may be compared to a known control, such as normal lung nucleic acid, to detect a change in expression.

In another preferred embodiment, the expression of an LSP is measured by determining the level of an LSP having an amino acid sequence selected from the group consisting of SEQ ID NO: 165 through 284, a homolog, an allelic variant, or a fragment thereof. Such levels are preferably determined in at least one of cells, tissues, organs and/or bodily fluids, including determination of normal and abnormal levels. Thus, for instance, a diagnostic assay in accordance with the invention for diagnosing over- or underexpression of LSNA or LSP compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of lung cancer. The expression level of an LSP may be determined by any method known in the art, such as those described supra. In a preferred embodiment, the LSP expression level may be determined by radioimmunoassays, competitive-binding assays, ELISA, Western blot, FACS, immunohistochemistry, immunoprecipitation, proteomic approaches: two-dimensional gel electrophoresis (2D electrophoresis) and non-gel-based approaches such as mass spectrometry or protein interaction profiling. See, e.g, Harlow (1999), supra; Ausubel (1992), supra; and Ausubel (1999), supra. Alterations in the LSP structure may be determined by any method known in the art, including, e.g., using antibodies that specifically recognize phosphoserine, phosphothreonine or phosphotyrosine residues, two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and/or chemical analysis of amino acid residues of the protein. Id.

In a preferred embodiment, a radioimmunoassay (RIA) or an ELISA is used. An antibody specific to an LSP is prepared if one is not already available. In a preferred embodiment, the antibody is a monoclonal antibody. The anti-LSP antibody is bound to a solid support and any free protein binding sites on the solid support are blocked with a

protein such as bovine serum albumin. A sample of interest is incubated with the antibody on the solid support under conditions in which the LSP will bind to the anti-LSP antibody. The sample is removed, the solid support is washed to remove unbound material, and an anti-LSP antibody that is linked to a detectable reagent (a radioactive substance for RIA and an enzyme for ELISA) is added to the solid support and incubated under conditions in which binding of the LSP to the labeled antibody will occur. After binding, the unbound labeled antibody is removed by washing. For an ELISA, one or more substrates are added to produce a colored reaction product that is based upon the amount of an LSP in the sample. For an RIA, the solid support is counted for radioactive decay signals by any method known in the art. Quantitative results for both RIA and ELISA typically are obtained by reference to a standard curve.

10

15

20

25

Other methods to measure LSP levels are known in the art. For instance, a competition assay may be employed wherein an anti-LSP antibody is attached to a solid support and an allocated amount of a labeled LSP and a sample of interest are incubated with the solid support. The amount of labeled LSP detected which is attached to the solid support can be correlated to the quantity of an LSP in the sample.

Of the proteomic approaches, 2D PAGE is a well-known technique. Isolation of individual proteins from a sample such as serum is accomplished using sequential separation of proteins by isoelectric point and molecular weight. Typically, polypeptides are first separated by isoelectric point (the first dimension) and then separated by size using an electric current (the second dimension). In general, the second dimension is perpendicular to the first dimension. Because no two proteins with different sequences are identical on the basis of both size and charge, the result of 2D PAGE is a roughly square gel in which each protein occupies a unique spot. Analysis of the spots with chemical or antibody probes, or subsequent protein microsequencing can reveal the relative abundance of a given protein and the identity of the proteins in the sample.

Expression levels of an LSNA can be determined by any method known in the art, including PCR and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASBA), can be used to detect malignant cells for diagnosis and monitoring of various malignancies. For example, reverse-transcriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other

-98-

mRNA species. In RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR reaction.

Hybridization to specific DNA molecules (e.g., oligonucleotides) arrayed on a solid support can be used to both detect the expression of and quantitate the level of expression of one or more LSNAs of interest. In this approach, all or a portion of one or more LSNAs is fixed to a substrate. A sample of interest, which may comprise RNA, e.g., total RNA or polyA-selected mRNA, or a complementary DNA (cDNA) copy of the RNA is incubated with the solid support under conditions in which hybridization will 10 occur between the DNA on the solid support and the nucleic acid molecules in the sample of interest. Hybridization between the substrate-bound DNA and the nucleic acid molecules in the sample can be detected and quantitated by several means, including, without limitation, radioactive labeling or fluorescent labeling of the nucleic acid molecule or a secondary molecule designed to detect the hybrid.

15

The above tests can be carried out on samples derived from a variety of cells, bodily fluids and/or tissue extracts such as homogenates or solubilized tissue obtained from a patient. Tissue extracts are obtained routinely from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva or any other bodily secretion or derivative thereof. By blood it is meant to include whole blood, plasma, serum or any derivative of blood. In a preferred embodiment, the specimen 20 tested for expression of LSNA or LSP includes, without limitation, lung tissue, fluid obtained by bronchial alveolar lavage (BAL), sputum, lung cells grown in cell culture, blood, serum, lymph node tissue and lymphatic fluid. In another preferred embodiment, especially when metastasis of a primary lung cancer is known or suspected, specimens include, without limitation, tissues from brain, bone, bone marrow, liver, adrenal glands 25 and colon. In general, the tissues may be sampled by biopsy, including, without limitation, needle biopsy, e.g., transthoracic needle aspiration, cervical mediatinoscopy, endoscopic lymph node biopsy, video-assisted thoracoscopy, exploratory thoracotomy, bone marrow biopsy and bone marrow aspiration. See Scott, supra and Franklin, pp. 529-570, in Kane, supra. For early and inexpensive detection, assaying for changes in 30 LSNAs or LSPs in cells in sputum samples may be particularly useful. Methods of obtaining and analyzing sputum samples is disclosed in Franklin, supra.

-99-

All the methods of the present invention may optionally include determining the expression levels of one or more other cancer markers in addition to determining the expression level of an LSNA or LSP. In many cases, the use of another cancer marker will decrease the likelihood of false positives or false negatives. In one embodiment, the one or more other cancer markers include other LSNA or LSPs as disclosed herein. Other cancer markers useful in the present invention will depend on the cancer being tested and are known to those of skill in the art. In a preferred embodiment, at least one other cancer marker in addition to a particular LSNA or LSP is measured. In a more preferred embodiment, at least two other additional cancer markers are used. In an even more preferred embodiment, at least three, more preferably at least five, even more preferably at least ten additional cancer markers are used.

PCT/US01/43612

Diagnosing

10

15

20

30

WO 02/068633

In one aspect, the invention provides a method for determining the expression levels and/or structural alterations of one or more LSNAs and/or LSPs in a sample from a patient suspected of having lung cancer. In general, the method comprises the steps of obtaining the sample from the patient, determining the expression level or structural alterations of an LSNA and/or LSP and then ascertaining whether the patient has lung cancer from the expression level of the LSNA or LSP. In general, if high expression relative to a control of an LSNA or LSP is indicative of lung cancer, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of lung cancer, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control. The normal human control may be from a different patient or from uninvolved tissue of the same patient.

The present invention also provides a method of determining whether lung cancer has metastasized in a patient. One may identify whether the lung cancer has metastasized by measuring the expression levels and/or structural alterations of one or more LSNAs and/or LSPs in a variety of tissues. The presence of an LSNA or LSP in a certain tissue

WO 02/068633

at levels higher than that of corresponding noncancerous tissue (e.g., the same tissue from another individual) is indicative of metastasis if high level expression of an LSNA or LSP is associated with lung cancer. Similarly, the presence of an LSNA or LSP in a tissue at levels lower than that of corresponding noncancerous tissue is indicative of metastasis if low level expression of an LSNA or LSP is associated with lung cancer. Further, the presence of a structurally altered LSNA or LSP that is associated with lung cancer is also indicative of metastasis.

-100-

PCT/US01/43612

In general, if high expression relative to a control of an LSNA or LSP is indicative of metastasis, an assay for metastasis is considered positive if the level of expression of the LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of metastasis, an assay for metastasis is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control.

The LSNA or LSP of this invention may be used as element in an array or a multi-analyte test to recognize expression patterns associated with lung cancers or other lung related disorders. In addition, the sequences of either the nucleic acids or proteins may be used as elements in a computer program for pattern recognition of lung disorders.

Staging

20

The invention also provides a method of staging lung cancer in a human patient.

The method comprises identifying a human patient having lung cancer and analyzing cells, tissues or bodily fluids from such human patient for expression levels and/or structural alterations of one or more LSNAs or LSPs. First, one or more tumors from a variety of patients are staged according to procedures well-known in the art, and the expression level of one or more LSNAs or LSPs is determined for each stage to obtain a standard expression level for each LSNA and LSP. Then, the LSNA or LSP expression levels are determined in a biological sample from a patient whose stage of cancer is not known. The LSNA or LSP expression levels from the patient are then compared to the

-101-

standard expression level. By comparing the expression level of the LSNAs and LSPs from the patient to the standard expression levels, one may determine the stage of the tumor. The same procedure may be followed using structural alterations of an LSNA or LSP to determine the stage of a lung cancer.

PCT/US01/43612

5 Monitoring

20

30

WO 02/068633

Further provided is a method of monitoring lung cancer in a human patient. One may monitor a human patient to determine whether there has been metastasis and, if there has been, when metastasis began to occur. One may also monitor a human patient to determine whether a preneoplastic lesion has become cancerous. One may also monitor a human patient to determine whether a therapy, e.g., chemotherapy, radiotherapy or surgery, has decreased or eliminated the lung cancer. The method comprises identifying a human patient that one wants to monitor for lung cancer, periodically analyzing cells, tissues or bodily fluids from such human patient for expression levels of one or more LSNAs or LSPs, and comparing the LSNA or LSP levels over time to those LSNA or LSP expression levels obtained previously. Patients may also be monitored by measuring one or more structural alterations in an LSNA or LSP that are associated with lung cancer.

If increased expression of an LSNA or LSP is associated with metastasis, treatment failure, or conversion of a preneoplastic lesion to a cancerous lesion, then detecting an increase in the expression level of an LSNA or LSP indicates that the tumor is metastasizing, that treatment has failed or that the lesion is cancerous, respectively. One having ordinary skill in the art would recognize that if this were the case, then a decreased expression level would be indicative of no metastasis, effective therapy or failure to progress to a neoplastic lesion. If decreased expression of an LSNA or LSP is associated with metastasis, treatment failure, or conversion of a preneoplastic lesion to a cancerous lesion, then detecting an decrease in the expression level of an LSNA or LSP indicates that the tumor is metastasizing, that treatment has failed or that the lesion is cancerous, respectively. In a preferred embodiment, the levels of LSNAs or LSPs are determined from the same cell type, tissue or bodily fluid as prior patient samples. Monitoring a patient for onset of lung cancer metastasis is periodic and preferably is done on a quarterly basis, but may be done more or less frequently.

The methods described herein can further be utilized as prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with increased or decreased expression levels of an LSNA and/or LSP. The present invention provides a method in which a test sample is obtained from a human patient and one or more LSNAs and/or LSPs are detected. The presence of higher (or lower) LSNA or LSP levels as compared to normal human controls is diagnostic for the human patient being at risk for developing cancer, particularly lung cancer. The effectiveness of therapeutic agents to decrease (or increase) expression or activity of one or more LSNAs and/or LSPs of the invention can also be monitored by analyzing levels of expression of the LSNAs and/or LSPs in a human patient in clinical trials or in *in vitro* screening assays such as in human cells. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the human patient or cells, as the case may be, to the agent being tested.

Detection of Genetic Lesions or Mutations

5

10

15

20

30

The methods of the present invention can also be used to detect genetic lesions or mutations in an LSG, thereby determining if a human with the genetic lesion is susceptible to developing lung cancer or to determine what genetic lesions are responsible, or are partly responsible, for a person's existing lung cancer. Genetic lesions can be detected, for example, by ascertaining the existence of a deletion, insertion and/or substitution of one or more nucleotides from the LSGs of this invention, a chromosomal rearrangement of LSG, an aberrant modification of LSG (such as of the methylation pattern of the genomic DNA), or allelic loss of an LSG. Methods to detect such lesions in the LSG of this invention are known to those having ordinary skill in the art following the teachings of the specification.

25 Methods of Detecting Noncancerous Lung Diseases

The invention also provides a method for determining the expression levels and/or structural alterations of one or more LSNAs and/or LSPs in a sample from a patient suspected of having or known to have a noncancerous lung disease. In general, the method comprises the steps of obtaining a sample from the patient, determining the expression level or structural alterations of an LSNA and/or LSP, comparing the expression level or structural alteration of the LSNA or LSP to a normal lung control,

-103-

and then ascertaining whether the patient has a noncancerous lung disease. In general, if high expression relative to a control of an LSNA or LSP is indicative of a particular noncancerous lung disease, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of a noncancerous lung disease, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control. The normal human control may be from a different patient or from uninvolved tissue of the same patient.

One having ordinary skill in the art may determine whether an LSNA and/or LSP is associated with a particular noncancerous lung disease by obtaining lung tissue from a patient having a noncancerous lung disease of interest and determining which LSNAs and/or LSPs are expressed in the tissue at either a higher or a lower level than in normal lung tissue. In another embodiment, one may determine whether an LSNA or LSP exhibits structural alterations in a particular noncancerous lung disease state by obtaining lung tissue from a patient having a noncancerous lung disease of interest and determining the structural alterations in one or more LSNAs and/or LSPs relative to normal lung tissue.

Methods for Identifying Lung Tissue

20

25

In another aspect, the invention provides methods for identifying lung tissue. These methods are particularly useful in, e.g., forensic science, lung cell differentiation and development, and in tissue engineering.

In one embodiment, the invention provides a method for determining whether a sample is lung tissue or has lung tissue-like characteristics. The method comprises the steps of providing a sample suspected of comprising lung tissue or having lung tissue-like characteristics, determining whether the sample expresses one or more LSNAs and/or LSPs, and, if the sample expresses one or more LSNAs and/or LSPs, concluding that the sample comprises lung tissue. In a preferred embodiment, the LSNA encodes a

WO 02/068633

25

-104-

PCT/US01/43612

polypeptide having an amino acid sequence selected from SEQ ID NO: 165 through 284, or a homolog, allelic variant or fragment thereof. In a more preferred embodiment, the LSNA has a nucleotide sequence selected from SEQ ID NO: 1 through 164, or a hybridizing nucleic acid, an allelic variant or a part thereof. Determining whether a sample expresses an LSNA can be accomplished by any method known in the art. Preferred methods include hybridization to microarrays, Northern blot hybridization, and quantitative or qualitative RT-PCR. In another preferred embodiment, the method can be practiced by determining whether an LSP is expressed. Determining whether a sample expresses an LSP can be accomplished by any method known in the art. Preferred methods include Western blot, ELISA, RIA and 2D PAGE. In one embodiment, the LSP has an amino acid sequence selected from SEQ ID NO: 165 through 284, or a homolog, allelic variant or fragment thereof. In another preferred embodiment, the expression of at least two LSNAs and/or LSPs is determined. In a more preferred embodiment, the expression of at least three, more preferably four and even more preferably five LSNAs and/or LSPs are determined. 15

In one embodiment, the method can be used to determine whether an unknown tissue is lung tissue. This is particularly useful in forensic science, in which small, damaged pieces of tissues that are not identifiable by microscopic or other means are recovered from a crime or accident scene. In another embodiment, the method can be used to determine whether a tissue is differentiating or developing into lung tissue. This is important in monitoring the effects of the addition of various agents to cell or tissue culture, e.g., in producing new lung tissue by tissue engineering. These agents include, e.g., growth and differentiation factors, extracellular matrix proteins and culture medium. Other factors that may be measured for effects on tissue development and differentiation include gene transfer into the cells or tissues, alterations in pH, aqueous:air interface and various other culture conditions.

Methods for Producing and Modifying Lung Tissue

In another aspect, the invention provides methods for producing engineered lung tissue or cells. In one embodiment, the method comprises the steps of providing cells, 30 introducing an LSNA or an LSG into the cells, and growing the cells under conditions in which they exhibit one or more properties of lung tissue cells. In a preferred

-105-

embodiment, the cells are pluripotent. As is well-known in the art, normal lung tissue comprises a large number of different cell types. Thus, in one embodiment, the engineered lung tissue or cells comprises one of these cell types. In another embodiment, the engineered lung tissue or cells comprises more than one lung cell type. Further, the culture conditions of the cells or tissue may require manipulation in order to achieve full differentiation and development of the lung cell tissue. Methods for manipulating culture conditions are well-known in the art.

Nucleic acid molecules encoding one or more LSPs are introduced into cells, preferably pluripotent cells. In a preferred embodiment, the nucleic acid molecules encode LSPs having amino acid sequences selected from SEQ ID NO: 165 through 284, or homologous proteins, analogs, allelic variants or fragments thereof. In a more preferred embodiment, the nucleic acid molecules have a nucleotide sequence selected from SEQ ID NO: 1 through 164, or hybridizing nucleic acids, allelic variants or parts thereof. In another highly preferred embodiment, an LSG is introduced into the cells. Expression vectors and methods of introducing nucleic acid molecules into cells are well-known in the art and are described in detail, *supra*.

Artificial lung tissue may be used to treat patients who have lost some or all of their lung function.

Pharmaceutical Compositions

20

25

15

In another aspect, the invention provides pharmaceutical compositions comprising the nucleic acid molecules, polypeptides, antibodies, antibody derivatives, antibody fragments, agonists, antagonists, and inhibitors of the present invention. In a preferred embodiment, the pharmaceutical composition comprises an LSNA or part thereof. In a more preferred embodiment, the LSNA has a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through 164, a nucleic acid that hybridizes thereto, an allelic variant thereof, or a nucleic acid that has substantial sequence identity thereto. In another preferred embodiment, the pharmaceutical composition comprises an LSP or fragment thereof. In a more preferred embodiment, the LSP having an amino acid sequence that is selected from the group consisting of SEQ ID NO: 165 through 284, a polypeptide that is homologous thereto, a fusion protein comprising all or a portion of the polypeptide, or an analog or derivative thereof. In another preferred embodiment, the

WO 02/068633

5

10

15

20

25

pharmaceutical composition comprises an anti-LSP antibody, preferably an antibody that specifically binds to an LSP having an amino acid that is selected from the group consisting of SEQ ID NO: 165 through 284, or an antibody that binds to a polypeptide that is homologous thereto, a fusion protein comprising all or a portion of the polypeptide, or an analog or derivative thereof.

-106-

PCT/US01/43612

Such a composition typically contains from about 0.1 to 90% by weight of a therapeutic agent of the invention formulated in and/or with a pharmaceutically acceptable carrier or excipient.

Pharmaceutical formulation is a well-established art, and is further described in Gennaro (ed.), Remington: The Science and Practice of Pharmacy, 20th ed., Lippincott, Williams & Wilkins (2000); Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, 7th ed., Lippincott Williams & Wilkins (1999); and Kibbe (ed.), Handbook of Pharmaceutical Excipients American Pharmaceutical Association, 3rd ed. (2000), the disclosures of which are incorporated herein by reference in their entireties, and thus need not be described in detail herein.

Briefly, formulation of the pharmaceutical compositions of the present invention will depend upon the route chosen for administration. The pharmaceutical compositions utilized in this invention can be administered by various routes including both enteral and parenteral routes, including oral, intravenous, intramuscular, subcutaneous, inhalation, topical, sublingual, rectal, intra-arterial, intramedullary, intrathecal, intraventricular, transmucosal, transdermal, intranasal, intraperitoneal, intrapulmonary, and intrauterine.

Oral dosage forms can be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Solid formulations of the compositions for oral administration can contain suitable carriers or excipients, such as carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, or microcrystalline cellulose; gums including arabic and tragacanth; proteins such as gelatin and collagen; inorganics, such as kaolin, calcium carbonate, dicalcium phosphate, sodium chloride; and other agents such as acacia and alginic acid.

-107-

Agents that facilitate disintegration and/or solubilization can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate, microcrystalline cellulose, corn starch, sodium starch glycolate, and alginic acid.

Tablet binders that can be used include acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Povidone™), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose.

5

10

15

20

25

Lubricants that can be used include magnesium stearates, stearic acid, silicone fluid, tale, waxes, oils, and colloidal silica.

Fillers, agents that facilitate disintegration and/or solubilization, tablet binders and lubricants, including the aforementioned, can be used singly or in combination.

Solid oral dosage forms need not be uniform throughout. For example, dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which can also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.

Oral dosage forms of the present invention include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Additionally, dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, *i.e.*, dosage.

Liquid formulations of the pharmaceutical compositions for oral (enteral) administration are prepared in water or other aqueous vehicles and can contain various suspending agents such as methylcellulose, alginates, tragacanth, pectin, kelgin, carrageenan, acacia, polyvinylpyrrolidone, and polyvinyl alcohol. The liquid formulations can also include solutions, emulsions, syrups and elixirs containing, together with the active compound(s), wetting agents, sweeteners, and coloring and flavoring agents.

-108-

The pharmaceutical compositions of the present invention can also be formulated for parenteral administration. Formulations for parenteral administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions.

For intravenous injection, water soluble versions of the compounds of the present invention are formulated in, or if provided as a lyophilate, mixed with, a physiologically acceptable fluid vehicle, such as 5% dextrose ("D5"), physiologically buffered saline, 0.9% saline, Hanks' solution, or Ringer's solution. Intravenous formulations may include carriers, excipients or stabilizers including, without limitation, calcium, human serum albumin, citrate, acetate, calcium chloride, carbonate, and other salts.

Intramuscular preparations, e.g. a sterile formulation of a suitable soluble salt form of the compounds of the present invention, can be dissolved and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution. Alternatively, a suitable insoluble form of the compound can be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil base, such as an ester of a long chain fatty acid (e.g., ethyl oleate), fatty oils such as sesame oil, triglycerides, or liposomes.

10

20

25

Parenteral formulations of the compositions can contain various carriers such as vegetable oils, dimethylacetamide, dimethylformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like).

Aqueous injection suspensions can also contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Non-lipid polycationic amino polymers can also be used for delivery. Optionally, the suspension can also contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Pharmaceutical compositions of the present invention can also be formulated to permit injectable, long-term, deposition. Injectable depot forms may be made by forming microencapsulated matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot

5

10

15

20

25

30

-109-

injectable formulations are also prepared by entrapping the drug in microemulsions that are compatible with body tissues.

The pharmaceutical compositions of the present invention can be administered topically.

For topical use the compounds of the present invention can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of lotions, creams, ointments, liquid sprays or inhalants, drops, tinctures, lozenges, or throat paints. Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration of the active ingredient. In other transdermal formulations, typically in patch-delivered formulations, the pharmaceutically active compound is formulated with one or more skin penetrants, such as 2-N-methyl-pyrrolidone (NMP) or Azone. A topical semi-solid ointment formulation typically contains a concentration of the active ingredient from about 1 to 20%, e.g., 5 to 10%, in a carrier such as a pharmaceutical cream base.

For application to the eyes or ears, the compounds of the present invention can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.

For rectal administration the compounds of the present invention can be administered in the form of suppositories admixed with conventional carriers such as cocoa butter, wax or other glyceride.

Inhalation formulations can also readily be formulated. For inhalation, various powder and liquid formulations can be prepared. For aerosol preparations, a sterile formulation of the compound or salt form of the compound may be used in inhalers, such as metered dose inhalers, and nebulizers. Aerosolized forms may be especially useful for treating respiratory disorders.

Alternatively, the compounds of the present invention can be in powder form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery.

The pharmaceutically active compound in the pharmaceutical compositions of the present invention can be provided as the salt of a variety of acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts

-110-

tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.

After pharmaceutical compositions have been prepared, they are packaged in an appropriate container and labeled for treatment of an indicated condition.

5

15

20

25

30

The active compound will be present in an amount effective to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

A "therapeutically effective dose" refers to that amount of active ingredient, for example LSP polypeptide, fusion protein, or fragments thereof, antibodies specific for LSP, agonists, antagonists or inhibitors of LSP, which ameliorates the signs or symptoms of the disease or prevents progression thereof; as would be understood in the medical arts, cure, although desired, is not required.

The therapeutically effective dose of the pharmaceutical agents of the present invention can be estimated initially by *in vitro* tests, such as cell culture assays, followed by assay in model animals, usually mice, rats, rabbits, dogs, or pigs. The animal model can also be used to determine an initial preferred concentration range and route of administration.

For example, the ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population) can be determined in one or more cell culture of animal model systems. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as LD50/ED50. Pharmaceutical compositions that exhibit large therapeutic indices are preferred.

The data obtained from cell culture assays and animal studies are used in formulating an initial dosage range for human use, and preferably provide a range of circulating concentrations that includes the ED50 with little or no toxicity. After administration, or between successive administrations, the circulating concentration of active agent varies within this range depending upon pharmacokinetic factors well-known in the art, such as the dosage form employed, sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors specific to the subject requiring treatment. Factors that can be taken into account by the practitioner include the severity of the disease state, general health of the subject, age,

-111-

weight, gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Where the therapeutic agent is a protein or antibody of the present invention, the therapeutic protein or antibody agent typically is administered at a daily dosage of 0.01 mg to 30 mg/kg of body weight of the patient (e.g., 1 mg/kg to 5 mg/kg). The pharmaceutical formulation can be administered in multiple doses per day, if desired, to achieve the total desired daily dose.

Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

Conventional methods, known to those of ordinary skill in the art of medicine, can be used to administer the pharmaceutical formulation(s) of the present invention to the patient. The pharmaceutical compositions of the present invention can be administered alone, or in combination with other therapeutic agents or interventions.

20 Therapeutic Methods

5

10

15

25

30

The present invention further provides methods of treating subjects having defects in a gene of the invention, e.g., in expression, activity, distribution, localization, and/or solubility, which can manifest as a disorder of lung function. As used herein, "treating" includes all medically-acceptable types of therapeutic intervention, including palliation and prophylaxis (prevention) of disease. The term "treating" encompasses any improvement of a disease, including minor improvements. These methods are discussed below.

Gene Therapy and Vaccines

The isolated nucleic acids of the present invention can also be used to drive in vivo expression of the polypeptides of the present invention. In vivo expression can be driven from a vector, typically a viral vector, often a vector based upon a replication

incompetent retrovirus, an adenovirus, or an adeno-associated virus (AAV), for purpose of gene therapy. *In vivo* expression can also be driven from signals endogenous to the nucleic acid or from a vector, often a plasmid vector, such as pVAX1 (Invitrogen, Carlsbad, CA, USA), for purpose of "naked" nucleic acid vaccination, as further described in U.S. Patents 5,589,466; 5,679,647; 5,804,566; 5,830,877; 5,843,913; 5,880,104; 5,958,891; 5,985,847; 6,017,897; 6,110,898; and 6,204,250, the disclosures of which are incorporated herein by reference in their entireties. For cancer therapy, it is preferred that the vector also be tumor-selective. *See*, *e.g.*, Doronin *et al.*, *J. Virol.* 75: 3314-24 (2001).

In another embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising a nucleic acid of the present invention is administered. The nucleic acid can be delivered in a vector that drives expression of an LSP, fusion protein, or fragment thereof, or without such vector. Nucleic acid compositions that can drive expression of an LSP are administered, for example, to complement a deficiency in the native LSP, or as DNA vaccines. Expression vectors derived from virus, replication deficient retroviruses, adenovirus, adeno-associated (AAV) virus, herpes virus, or vaccinia virus can be used as can plasmids. See, e.g., Cid-Arregui, supra. In a preferred embodiment, the nucleic acid molecule encodes an LSP having the amino acid sequence of SEQ ID NO: 165 through 284, or a fragment, fusion protein, allelic variant or homolog thereof.

In still other therapeutic methods of the present invention, pharmaceutical compositions comprising host cells that express an LSP, fusions, or fragments thereof can be administered. In such cases, the cells are typically autologous, so as to circumvent xenogeneic or allotypic rejection, and are administered to complement defects in LSP production or activity. In a preferred embodiment, the nucleic acid molecules in the cells encode an LSP having the amino acid sequence of SEQ ID NO: 165 through 284, or a fragment, fusion protein, allelic variant or homolog thereof.

Antisense Administration

5

10

20

25

30

Antisense nucleic acid compositions, or vectors that drive expression of an LSG antisense nucleic acid, are administered to downregulate transcription and/or translation of an LSG in circumstances in which excessive production, or production of aberrant protein, is the pathophysiologic basis of disease.

-113-

Antisense compositions useful in therapy can have a sequence that is complementary to coding or to noncoding regions of an LSG. For example, oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred.

Catalytic antisense compositions, such as ribozymes, that are capable of sequence-specific hybridization to LSG transcripts, are also useful in therapy. See, e.g., Phylactou, Adv. Drug Deliv. Rev. 44(2-3): 97-108 (2000); Phylactou et al., Hum. Mol. Genet. 7(10): 1649-53 (1998); Rossi, Ciba Found. Symp. 209: 195-204 (1997); and Sigurdsson et al., Trends Biotechnol. 13(8): 286-9 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Other nucleic acids useful in the therapeutic methods of the present invention are those that are capable of triplex helix formation in or near the LSG genomic locus. Such triplexing oligonucleotides are able to inhibit transcription. See, e.g., Intody et al., Nucleic Acids Res. 28(21): 4283-90 (2000); McGuffie et al., Cancer Res. 60(14): 3790-9 (2000), the disclosures of which are incorporated herein by reference. Pharmaceutical compositions comprising such triplex forming oligos (TFOs) are administered in circumstances in which excessive production, or production of aberrant protein, is a pathophysiologic basis of disease.

In a preferred embodiment, the antisense molecule is derived from a nucleic acid molecule encoding an LSP, preferably an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fragment, allelic variant or homolog thereof. In a more preferred embodiment, the antisense molecule is derived from a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

25 Polypeptide Administration

5

10

15

20

30

In one embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising an LSP, a fusion protein, fragment, analog or derivative thereof is administered to a subject with a clinically-significant LSP defect.

Protein compositions are administered, for example, to complement a deficiency in native LSP. In other embodiments, protein compositions are administered as a vaccine to elicit a humoral and/or cellular immune response to LSP. The immune response can

-114-

WO 02/068633

5

10

15

20

25

30

be used to modulate activity of LSP or, depending on the immunogen, to immunize against aberrant or aberrantly expressed forms, such as mutant or inappropriately expressed isoforms. In yet other embodiments, protein fusions having a toxic moiety are administered to ablate cells that aberrantly accumulate LSP.

PCT/US01/43612

In a preferred embodiment, the polypeptide is an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the polypeptide is encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

Antibody, Agonist and Antagonist Administration

In another embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising an antibody (including fragment or derivative thereof) of the present invention is administered. As is well-known, antibody compositions are administered, for example, to antagonize activity of LSP, or to target therapeutic agents to sites of LSP presence and/or accumulation. In a preferred embodiment, the antibody specifically binds to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the antibody specifically binds to an LSP encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

The present invention also provides methods for identifying modulators which bind to an LSP or have a modulatory effect on the expression or activity of an LSP. Modulators which decrease the expression or activity of LSP (antagonists) are believed to be useful in treating lung cancer. Such screening assays are known to those of skill in the art and include, without limitation, cell-based assays and cell-free assays. Small molecules predicted via computer imaging to specifically bind to regions of an LSP can also be designed, synthesized and tested for use in the imaging and treatment of lung cancer. Further, libraries of molecules can be screened for potential anticancer agents by assessing the ability of the molecule to bind to the LSPs identified herein. Molecules identified in the library as being capable of binding to an LSP are key candidates for

-115-

further evaluation for use in the treatment of lung cancer. In a preferred embodiment, these molecules will downregulate expression and/or activity of an LSP in cells.

In another embodiment of the therapeutic methods of the present invention, a pharmaceutical composition comprising a non-antibody antagonist of LSP is administered. Antagonists of LSP can be produced using methods generally known in the art. In particular, purified LSP can be used to screen libraries of pharmaceutical agents, often combinatorial libraries of small molecules, to identify those that specifically bind and antagonize at least one activity of an LSP.

In other embodiments a pharmaceutical composition comprising an agonist of an LSP is administered. Agonists can be identified using methods analogous to those used to identify antagonists.

In a preferred embodiment, the antagonist or agonist specifically binds to and antagonizes or agonizes, respectively, an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the antagonist or agonist specifically binds to and antagonizes or agonizes, respectively, an LSP encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

Targeting Lung Tissue

15

20

25

30

The invention also provides a method in which a polypeptide of the invention, or an antibody thereto, is linked to a therapeutic agent such that it can be delivered to the lung or to specific cells in the lung. In a preferred embodiment, an anti-LSP antibody is linked to a therapeutic agent and is administered to a patient in need of such therapeutic agent. The therapeutic agent may be a toxin, if lung tissue needs to be selectively destroyed. This would be useful for targeting and killing lung cancer cells. In another embodiment, the therapeutic agent may be a growth or differentiation factor, which would be useful for promoting lung cell function.

In another embodiment, an anti-LSP antibody may be linked to an imaging agent that can be detected using, e.g., magnetic resonance imaging, CT or PET. This would be useful for determining and monitoring lung function, identifying lung cancer tumors, and identifying noncancerous lung diseases.

-116-

EXAMPLES

Example 1: Gene Expression analysis

LSGs were identified by mRNA subtraction analysis using standard methods.

The sequences were extended using GeneBank sequences, Incyte's proprietary database.

5 From the nucleotide sequences, predicted amino acid sequences were prepared.

DEX0291_1, DEX0291_2 correspond to SEQ ID NO.1, 2 etc. DEX0134 was the parent sequence found in the mRNA subtractions.

	DEX0291_1	DEX0134_1 DEX0291_165
	DEX0291_2	flex DEX0134_1
10	DEX0291_3	DEX0134_2 DEX0291_166
	DEX0291_4	flex DEX0134_2
	DEX0291_5	DEX0134_3 DEX0291_167
	DEX0291_6	flex DEX0134_3 DEX0291_168
	DEX0291_7	DEX0134_4 DEX0291_169
15	DEX0291_8	flex DEX0134_4 DEX0291_170
	DEX0291_9	DEX0134_5 DEX0291_171
	DEX0291_10	flex DEX0134_5
	DEX0291_11	DEX0134_6 DEX0291_172
	DEX0291_12	flex DEX0134_6
20	DEX0291_13	DEX0134_7 DEX0291_173
	DEX0291_14	flex DEX0134_7
	DEX0291_15	DEX0134_8 DEX0291_174
	DEX0291_16	flex DEX0134_8 DEX0291_175
	DEX0291_17	DEX0134_9
25	DEX0291_18	DEX0134_10 DEX0291_176
	DEX0291_19	DEX0134_11 DEX0291_177
	DEX0291_20	flex DEX0134_11
	DEX0291_21	DEX0134_12 DEX0291_178
	DEX0291_22	flex DEX0134_12 DEX0291_179

	DEX0291_23	DEX0134_13 DEX0291_180
	DEX0291_24	DEX0134_14 DEX0291_181
	DEX0291_25	DEX0134_15 DEX0291_182
	DEX0291_26	flex DEX0134_15 DEX0291_183
5	DEX0291_27	DEX0134_16 DEX0291_184
	DEX0291_28	flex DEX0134_16 DEX0291_185
	DEX0291_29	DEX0134_17 DEX0291_186
	DEX0291_30	flex DEX0134_17 DEX0291_187
	DEX0291_31	DEX0134_18 DEX0291_188
10	DEX0291_32	DEX0134_19 DEX0291_189
	DEX0291_33	DEX0134_20 DEX0291_190
	DEX0291_34	flex DEX0134_20 DEX0291_191
	DEX0291_35	DEX0134_21 DEX0291_192
	DEX0291_36	flex DEX0134_21
15	DEX0291_37	DEX0134_22 DEX0291_193
	DEX0291_38	flex DEX0134_22 DEX0291_194
	DEX0291_39	DEX0134_23
	DEX0291_40	DEX0134_24 DEX0291_195
	DEX0291_41	DEX0134_25
20	DEX0291_42	DEX0134_27 DEX0291_196
	DEX0291_43	flex DEX0134_27
	DEX0291_44	DEX0134_28
	DEX0291_45	DEX0134_29 DEX0291_197
	DEX0291_46	flex DEX0134_29 DEX0291_198
25	DEX0291_47	DEX0134_30 DEX0291_199
	DEX0291_48	flex DEX0134_30 DEX0291_200
	DEX0291_49	DEX0134_31 DEX0291_201
	DEX0291_50	flex DEX0134_31
	DEX0291_51	DEX0134_32 DEX0291_202

	DEX0291_52	DEX0134_33
	DEX0291_53	DEX0134_34 DEX0291_203
	DEX0291_54	flex DEX0134_34 DEX0291_204
	DEX0291_55	DEX0134_35 DEX0291_205
5	DEX0291_56	flex DEX0134_35 DEX0291_206
	DEX0291_57	DEX0134_36 DEX0291_207
	DEX0291_58	flex DEX0134_36 DEX0291_208
	DEX0291_59	DEX0134_37 DEX0291_209
	DEX0291_60	flex DEX0134_37 DEX0291_210
10	DEX0291_61	DEX0134_38 DEX0291_211
	DEX0291_62	flex DEX0134_38 DEX0291_212
	DEX0291_63	DEX0134_39 DEX0291_213
	DEX0291_64	flex DEX0134_39
	DEX0291_65	DEX0134_40 DEX0291_214
15	DEX0291_66	flex DEX0134_40
	DEX0291_67	DEX0134_41 DEX0291_215
	DEX0291_68	flex DEX0134_41
	DEX0291_69	DEX0134_42 DEX0291_216
	DEX0291_70	flex DEX0134_42
20	DEX0291_71	DEX0134_43
	DEX0291_72	DEX0134_44 DEX0291_217
	DEX0291_73	flex DEX0134_44 DEX0291_218
	DEX0291_74	DEX0134_46
	DEX0291_75	flex DEX0134_46
25	DEX0291_76	DEX0134_47 DEX0291_219
	DEX0291_77	flex DEX0134_47 DEX0291_220
	DEX0291_78	DEX0134_48 DEX0291_221
	DEX0291_79	flex DEX0134_48 DEX0291_222
	DEX0291 80	DEX0134 49 DEX0291 223

-119-

flex DEX0134_49 DEX0291_81 DEX0291_224 DEX0134_51 DEX0291_225 DEX0291_82 flex DEX0134_51 DEX0291_83 DEX0291 84 DEX0134 52 DEX0291 226 5 DEX0291_85 flex DEX0134_52 DEX0291 86 DEX0134 53 DEX0291 227 DEX0291 87 flex DEX0134 53 DEX0291_228 DEX0134 54 DEX0291_229 DEX0291 88 DEX0291_89 flex DEX0134_54 DEX0291_230 10 DEX0291_90 DEX0134_55 DEX0291_231 DEX0291_91 flex DEX0134_55 DEX0291_92 DEX0134_56 DEX0291_232 DEX0291_93 flex DEX0134_56 DEX0291_233 DEX0291 94 DEX0134 57 DEX0291 234 15 DEX0291 95 DEX0134 58 DEX0291 235 DEX0291 96 flex DEX0134 58 DEX0291_97 DEX0134_60 DEX0291_236 DEX0291_98 flex DEX0134_60 DEX0291_99 DEX0134_61 DEX0291_237 20 DEX0291_100 flex DEX0134_61 DEX0291_101 DEX0134_62 DEX0291_238 DEX0291 102 flex DEX0134 62 DEX0291_239 DEX0291_103 DEX0134_63 DEX0291_240 DEX0291_104 DEX0134_64 DEX0291 241 25 DEX0291 105 flex DEX0134_64 DEX0291_106 DEX0134_65 DEX0291_242 DEX0291 107 flex DEX0134_65 DEX0291_243 DEX0291_108 DEX0134_66 DEX0291_244 DEX0291 109 flex DEX0134_66

-120-

DEX0291_110 DEX0134_67 DEX0291 111 flex DEX0134_67 DEX0291_245 DEX0291 112 DEX0134_68 DEX0291_246 DEX0291_113 flex DEX0134_68 DEX0291_247 5 DEX0291 114 DEX0134_69 DEX0291_248 DEX0291 115 flex DEX0134_69 DEX0291_249 DEX0291 116 DEX0134_70 DEX0291_250 DEX0291 117 flex DEX0134_70 DEX0291 251 DEX0291_118 DEX0134_71 DEX0291_252 10 DEX0291_119 DEX0134_72 DEX0291_253 DEX0291 120 flex DEX0134_72 DEX0291 121 DEX0134 73 DEX0291_254 DEX0291_122 flex DEX0134_73 DEX0291_255 DEX0291 123 DEX0134_74 DEX0291_256 15 DEX0291 124 flex DEX0134_74 DEX0291 125 DEX0134 75 DEX0291_257 DEX0291 126 flex DEX0134_75 DEX0291 127 DEX0134 76 DEX0291_258 DEX0291_128 flex DEX0134_76 DEX0291_259 20 DEX0291_129 DEX0134_77 DEX0291_260 DEX0291_130 flex DEX0134_77 DEX0291_131 DEX0134_78 DEX0291_261 DEX0291_132 flex DEX0134_78 DEX0291_133 DEX0134_79 DEX0291_262 25 DEX0291_134 DEX0134 80 DEX0291 263 DEX0291_264 DEX0291_135 flex DEX0134_80 DEX0291_136 DEX0134_81 DEX0291_265 DEX0291_137 DEX0134_82 DEX0291_266 DEX0291_138 DEX0134_83 DEX0291_267

-121-

DEX0291_139 flex DEX0134_83 DEX0291_140 DEX0134_84 DEX0291_268 DEX0291_141 flex DEX0134_84 5 DEX0291_143 DEX0134_86 DEX0291_270 DEX0291 144 flex DEX0134 86 DEX0291_145 DEX0134_87 DEX0291 146 DEX0134 88 DEX0291 271 DEX0291_147 DEX0134_89 DEX0291_272 10 DEX0291_148 flex DEX0134_89 DEX0291_149 DEX0134_90 DEX0291_273 DEX0291 150 flex DEX0134 90 DEX0291_274 DEX0291 151 DEX0134 91 DEX0291_275 DEX0291 152 flex DEX0134 91 15 DEX0291_153 DEX0134_92 DEX0291_276 DEX0291 154 flex DEX0134 92 DEX0291_155 DEX0134_93 DEX0291_277 DEX0291_156 flex DEX0134_93 DEX0291_157 DEX0134_94 20 DEX0291_158 DEX0134_95 DEX0291_278 DEX0291_159 DEX0134_96 DEX0291_279 DEX0291_160 DEX0134_97 DEX0291_280 DEX0291 161 flex DEX0134 97 DEX0291 281 DEX0291 162 DEX0134 98 DEX0291_282 25 DEX0291 163 DEX0134 99 DEX0291 283 DEX0291_164 flex DEX0134 99 DEX0291_284 The chromosomal locations were as follows:

30

DEX0291 6

chromosome 14

	DEX0291_12	chromosome 2
	DEX0291_16	chromosome 19
	DEX0291_19	chromosome 17
	DEX0291_21	chromosome 1
5	DEX0291_23	chromosome 12
	DEX0291_24	chromosome 16
	DEX0291_26	chromosome 10
	DEX0291_28	chromosome 4
	DEX0291_31	chromosome 11
10	DEX0291_33	chromosome 11
	DEX0291_34	chromosome 11
	DEX0291_36	chromosome 5
	DEX0291_38	chromosome 11
	DEX0291_39	chromosome 16
15	DEX0291_40	chromosome 13
	DEX0291_41	chromosome 13
	DEX0291_42	chromosome 10
	DEX0291_43	chromosome 10
	DEX0291_44	chromosome 7
20	DEX0291_46	chromosome 12
	DEX0291_48	chromosome 10
	DEX0291_52	chromosome 7
	DEX0291_53	chromosome 7
	DEX0291_56	chromosome X
25	DEX0291_58	chromosome 15
	DEX0291_59	chromosome 7
	DEX0291_60	chromosome 7
	DEX0291_61	chromosome 5
	DEX0291_62	chromosome 5

WO 02/068633

-123-

PCT/US01/43612

	DEX0291_68	chromosome 5
	DEX0291_70	chromosome 8
	DEX0291_73	chromosome 2
	DEX0291_77	chromosome 8
5	DEX0291_78	chromosome 16
	DEX0291_79	chromosome 16
	DEX0291_85	chromosome 15
	DEX0291_89	chromosome 20
	DEX0291_91	chromosome 2
10	DEX0291_93	chromosome 1
	DEX0291_94	chromosome 15
	DEX0291_98	chromosome 15
	DEX0291_99	chromosome 2
	DEX0291_101	chromosome 8
15	DEX0291_102	chromosome 8
	DEX0291_107	chromosome 4
	DEX0291_111	chromosome 7
	DEX0291_118	chromosome 7
	DEX0291_123	chromosome 4
20	DEX0291_124	chromosome 4
	DEX0291_127	chromosome 6
	DEX0291_128	chromosome 16
	DEX0291_131	chromosome 3
	DEX0291_132	chromosome 3
25	DEX0291_135	chromosome 1
	DEX0291_138	chromosome 18
	DEX0291_139	chromosome 18
	DEX0291_141	chromosome 3
	DEX0201 142	chromosome 1

-124-

WO 02/068633

DEX0291_146 chromosome 5 DEX0291_150 chromosome 1 DEX0291 151 chromosome 7 DEX0291 152 chromosome 7 5 DEX0291 153 chromosome 5 DEX0291 156 chromosome 12 DEX0291 160 chromosome 8 DEX0291_161 chromosome 8 DEX0291_162 chromosome 17 10 DEX0291 163 chromosome 6 DEX0291 164 chromosome 6

LSGs were also identified by a systematic analysis of gene expression data in the LIFESEQ® Gold database available from Incyte Genomics Inc (Palo Alto, CA) using the data mining software package CLASP™ (Candidate Lead Automatic Search Program). CLASPTM is a set of algorithms that interrogate Incyte's database to identify 15 genes that are both specific to particular tissue types as well as differentially expressed in tissues from patients with cancer. LifeSeq® Gold contains information about which genes are expressed in various tissues in the body and about the dynamics of expression in both normal and diseased states. CLASP™ first sorts the LifeSeq® Gold database into defined tissue types, such as breast, ovary and prostate. CLASP™ categorizes each 20 tissue sample by disease state. Disease states include "healthy," "cancer," "associated with cancer," "other disease" and "other." Categorizing the disease states improves our ability to identify tissue and cancer-specific molecular targets. CLASPTM then performs a simultaneous parallel search for genes that are expressed both (1) selectively in the defined tissue type compared to other tissue types and (2) differentially in the "cancer" disease state compared to the other disease states affecting the same, or different, tissues. This sorting is accomplished by using mathematical and statistical filters that specify the minimum change in expression levels and the minimum frequency that the differential expression pattern must be observed across the tissue samples for the gene to be

PCT/US01/43612

-125-

considered statistically significant. The CLASP™ algorithm quantifies the relative abundance of a particular gene in each tissue type and in each disease state.

To find the LSGs of this invention, the following specific CLASP™ profiles were utilized: tissue-specific expression (CLASP 1), detectable expression only in cancer 5 tissue (CLASP 2), highest differential expression for a given cancer (CLASP 4); differential expression in cancer tissue (CLASP 5), and. cDNA libraries were divided into 60 unique tissue types (early versions of LifeSeq® had 48 tissue types). Genes or ESTs were grouped into "gene bins," where each bin is a cluster of sequences grouped together where they share a common contig. The expression level for each gene bin was 10 calculated for each tissue type. Differential expression significance was calculated with rigorous statistical significant testing taking into account variations in sample size and relative gene abundance in different libraries and within each library (for the equations used to determine statistically significant expression see Audic and Claverie "The significance of digital gene expression profiles," Genome Res 7(10): 986-995 (1997), including Equation 1 on page 987 and Equation 2 on page 988, the contents of which are incorporated by reference). Differentially expressed tissue-specific genes were selected based on the percentage abundance level in the targeted tissue versus all the other tissues (tissue-specificity). The expression levels for each gene in libraries of normal tissues or non-tumor tissues from cancer patients were compared with the expression levels in tissue libraries associated with tumor or disease (cancer-specificity). The results were 20 analyzed for statistical significance.

The selection of the target genes meeting the rigorous CLASP™ profile criteria were as follows:

- (a) CLASP 1: tissue-specific expression: To qualify as a CLASP 1 candidate, a gene must exhibit statistically significant expression in the tissue of interest compared to all other tissues. Only if the gene exhibits such differential expression with a 90% of confidence level is it selected as a CLASP 1 candidate.
- (b) CLASP 2: detectable expression only in cancer tissue: To qualify as a CLASP

 2 candidate, a gene must exhibit detectable expression in tumor tissues and
 undetectable expression in libraries from normal individuals and libraries

-126-

- from normal tissue obtained from diseased patients. In addition, such a gene must also exhibit further specificity for the tumor tissues of interest.
- (c) CLASP 4: highest differential expression for a given cancer: To qualify as a CLASP 4 candidate, a gene must be differentially expressed in tumor libraries in the tissue of interest compared to normal libraries for all tissues. In addition, it must be one of the 50 genes with the highest differential expression.
- (d) CLASP 5: differential expression in cancer tissue: To qualify as a CLASP 5 candidate, a gene must be differentially expressed in tumor libraries in the tissue of interest compared to normal libraries for all tissues. Only if the gene exhibits such differential expression with a 90% of confidence level is it selected as a CLASP 5 candidate.

DEX0291_86 Lung 5 H DEX0291_87 Lung 5 H

15

10

5

The individual tissue expression levels from the Incyte LifeSeq database were as follows:

	DEX0291_1	SEQ ID NO: 1	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_10	SEQ ID NO: 10	OVR .0021	PRO .0034	UNC .004	THR .0045
	DEX0291_100	SEQ ID NO: 100	LMN .0028	NOS .0073		
20	DEX0291_101	SEQ ID NO: 101	INS .0067	GLB .0139	UTR .0182	NOS .022
	DEX0291_104	SEQ ID NO: 104	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_105	SEQ ID NO: 105	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_108	SEQ ID NO: 108	LMN .0028	UNC .004		
	DEX0291_11	SEQ ID NO: 11	FTS .0006	SPL .0021	LNG .0034	INS .0038
25	DEX0291 110	SEQ ID NO: 110	LIV .0038	THY .004	CRD .0068	
	DEX0291_112	SEQ ID NO: 112				
	DEX0291 113	SEQ ID NO: 113	BLD .0225	•		
	DEX0291_114	SEQ ID NO: 114		CRD .0068	BON .0169	
	DEX0291 115	SEQ ID NO: 115	PNS .0047	CRD .0068	BON .0169	
30	DEX0291_116	SEQ ID NO: 116		OVR .001	PRO .0017	BLD .0048
	DEX0291 117	SEQ ID NO: 117	LNG .0006	OVR .001	PRO .0017	BLD .0048
	DEX0291_118	SEQ ID NO: 118	LNG .0006	LMN .0028		
	DEX0291_119	SEQ ID NO: 119	PAN .0047	NOS .0073	GLB .0139	
	DEX0291_12	SEQ ID NO: 12	FTS .0006	SPL .0021	LNG .0034	INS .0038
35	DEX0291 120	SEQ ID NO: 120	PAN .0047	NOS .0073	GLB .0139	
	DEX0291 123	SEQ ID NO: 123	UNC .004	NOS .0073	LIV .0076	ADR .0089
	DEX0291 124	SEQ ID NO: 124	UNC .004	NOS .0073	LIV .0076	ADR .0089
	DEX0291 127	SEQ ID NO: 127	INS .001	BLD .0016	LNG .0017	MAM .0019
	DEX0291 128	SEQ ID NO: 128	PNS .007			
40	DEX0291_13	SEQ ID NO: 13	OVR .0154	LNG .0296		
	DEX0291 131	SEQ ID NO: 131	UTR .0006	LMN .0028	FAL .0063	
	DEX0291_132	SEQ ID NO: 132	UTR .0006	LMN .0028	FAL .0063	
	DEX0291_137	SEQ ID NO: 137		PNS .0094	MAM .0194	FAL .0251
	DEX0291_138	SEQ ID NO: 138		MAM .0028	UNC .004	FAL .0126
45	DEX0291_139	SEQ ID NO: 139	INS .001	MAM .0028	UNC .004	FAL .0126

	DEX0291_14	SEQ ID NO: 14		LNG .0296		
	DEX0291_142	SEQ ID NO: 142				
	DEX0291_146	SEQ ID NO: 146		INL .0004	CON .0007	8000. MAY
	DEX0291_147	SEQ ID NO: 147		PLE .0449		
5	DEX0291_148	SEQ ID NO: 148	UTR .0075	PLE .0449		
	DEX0291_15	SEQ ID NO: 15	INS .0789			
	DEX0291_151	SEQ ID NO: 151	UTR .0006	PAN .0012		
	DEX0291_152	SEQ ID NO: 152		PAN .0012		m. ra 0000
	DEX0291_155	SEQ ID NO: 155		PRO .0017	MAM .0019	PNS .0023
10	DEX0291_158	SEQ ID NO: 158	OVR .0021	KID .0039	GLB .0046	FAL .0063
	DEX0291_160	SEQ ID NO: 160				
	DEX0291_161	SEQ ID NO: 161		W. V. 0060		
	DEX0291_18	SEQ ID NO: 18	BRN .0006	FAL .0063	DOX 0005	
	DEX0291_19	SEQ ID NO: 19	UTR .0063	LMN .0167	BON .0225	TON 0200
15	DEX0291_2	SEQ ID NO: 2	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_20	SEQ ID NO: 20	UTR .0063	LMN .0167	BON .0225	DIT 1062
	DEX0291_21	SEQ ID NO: 21	PAN .0353	LMN .0416	OVR .0503	INT .1052
	DEX0291_22	SEQ ID NO: 22	PAN .0353	LMN .0416	OVR .0503	INT .1052
•	DEX0291_23	SEQ ID NO: 23	CRD .0114	KID .0128	ADR .0209	PLE .0449
20	DEX0291_25	SEQ ID NO: 25	LIV .0057			
	DEX0291_26	SEQ ID NO: 26	LIV .0057	TAT 0062		
	DEX0291_27	SEQ ID NO: 27	PRO .0034	FAL .0063		
	DEX0291_29	SEQ ID NO: 29	UTR .0013	ADR .0015	ADR .0015	BLV .0016
25	DEX0291_33	SEQ ID NO: 33	MAM .0005	LNG .0006	ADR .0015	BLV .0016
25	DEX0291_34	SEQ ID NO: 34	MAM .0005	LNG .0006	AUK .0015	DL V .0010
	DEX0291_37	SEQ ID NO: 37	BRN .0031	THR .0045 THR .0045		
	DEX0291_38	SEQ ID NO: 38	BRN .0031	C+00. MT		
	DEX0291_45	SEQ ID NO: 45	GLB .0093 PNS .0047	CRD .0068	BON .0169	
20	DEX0291_47	SEQ ID NO: 47	PNS .0047	CRD .0068	BON .0169	•
30	DEX0291_48	SEQ ID NO: 48	UTR .0263	NOS .066	DOI1.0107	
	DEX0291_49 DEX0291_5	SEQ ID NO: 49 SEQ ID NO: 5	THR .0091	BMR .0129	LMN .0139	
	DEX0291_51	SEQ ID NO: 51	LIV .0019	OVR .0031	URE .0112	
	DEX0291_51 DEX0291_53	SEQ ID NO: 53	PAN .0071	NOS .0073	LMN .0083	PRO .0119
35	DEX0291_54	SEQ ID NO: 54	PAN .0071	NOS .0073	LMN .0083	PRO .0119
22	DEX0291_55	SEQ ID NO: 55	LNG .0006	OVR .001	PRO .0017	BLD .0048
	DEX0291_56	SEQ ID NO: 56	LNG .0006	OVR .001	PRO .0017	BLD .0048
	DEX0291_59	SEQ ID NO: 59	SPL .0042			
	DEX0291_65	SEQ ID NO: 65	FTS .0012	INS .0019	SPL .0021	KID .009
40	DEX0291_66	SEQ ID NO: 66	FTS .0012	INS .0019	SPL .0021	KID .009
10	DEX0291_67	SEQ ID NO: 67	BRN .0023	LIV .0038	URE .0112	
	DEX0291_68	SEQ ID NO: 68	BRN .0023	LIV .0038	URE .0112	
	DEX0291_7	SEQ ID NO: 7	CON .0011			
	DEX0291_70	SEQ ID NO: 70	CRD .0023	BLD .0064		
45	DEX0291 71	SEQ ID NO: 71	PRO .0003	UTR .0004	BLO .0006	PRO .0006
	DEX0291_72	SEQ ID NO: 72	CON .0113	LIV .0189	ADR .0209	
	DEX0291_74	SEQ ID NO: 74	CON .0113	LIV .0189	ADR .0209	
	DEX0291_75	SEQ ID NO: 75	CON .0113	LIV .0189	ADR .0209	
	DEX0291_78	SEQ ID NO: 78	THY .006	KID .009	GLB .0093	LIV .0132
50	DEX0291_79	SEQ ID NO: 79	THY .006	KID .009	GLB .0093	LIV .0132
	DEX0291_8	SEQ ID NO: 8	CON .0011			
	DEX0291_80	SEQ ID NO: 80	NOS .0073	STO .0081	ESO .0102	
	DEX0291_86	SEQ ID NO: 86	BLO .0006	BLV .0006	INL .0012	LNG .0017
	DEX0291_87	SEQ ID NO: 87	BLO .0006	BLV .0006	INL .0012	LNG .0017
55	DEX0291_88	SEQ ID NO: 88	CRD .0023	PNS .0047	INT .015	URE .0225
	DEX0291_89	SEQ ID NO: 89	CRD .0023	PNS .0047	INT .015	URE .0225
	DEX0291_9	SEQ ID NO: 9	OVR .0021	PRO .0034	UNC .004	THR .0045
	DEX0291_90	SEQ ID NO: 90	LMN .0028	NOS .0073		

WO 02/068633

30

-128-

PCT/US01/43612

	DEX0291 91	SEQ ID NO: 91	LMN .0028	NOS .0073	
	DEX0291 92	SEQ ID NO: 92	INL .0045		
	DEX0291_93	SEQ ID NO: 93	INL .0045		
	DEX0291_95	SEQ ID NO: 95	CRD .0023	BLD .0064	
5	DEX0291_97	SEQ ID NO: 97	ADR .0104	KID .0141	PLE .015
	DEX0291_98	SEQ ID NO: 98	ADR .0104	KID .0141	PLE .015
	DEX0291_99	SEQ ID NO: 99	LMN .0028	NOS .0073	
	Abbreviation	for tissues:			

BLO Blood; BRN Brain; CON Connective Tissue; CRD Heart; FTS Fetus; INL Intestine, Larg INS Intestine, Small; KID Kidney; LIV Liver; LNG Lung; MAM Breast; MSL Muscles; NRV Nervous Tissue; OVR Ovary; PRO Prostate; STO Stomach; THR Thyroid Gland; TNS Tonsil Adenoids; UTR Uterus

Example 2: Relative Quantitation of Gene Expression

Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation 15 detection system utilizing the 5'- 3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, CA, USA). Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ATPase, or 18S ribosomal RNA (rRNA) is used as this 25 endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample were used as the basis for comparative results (calibrator). Quantitation relative to the "calibrator" can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

The tissue distribution and the level of the target gene are evaluated for every sample in normal and cancer tissues. Total RNA is extracted from normal tissues, cancer tissues, and from cancers and the corresponding matched adjacent tissues. Subsequently, first strand cDNA is prepared with reverse transcriptase and the polymerase chain reaction is done using primers and Taqman probes specific to each target gene. The 35 results are analyzed using the ABI PRISM 7700 Sequence Detector. The absolute numbers are relative levels of expression of the target gene in a particular tissue compared to the calibrator tissue.

5

10

15

20

35

One of ordinary skill can design appropriate primers. The relative levels of expression of the LSNA versus normal tissues and other cancer tissues can then be determined. All the values are compared to normal tissue (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

The relative levels of expression of the LSNA in pairs of matching samples and 1 cancer and 1 normal/normal adjacent of tissue may also be determined. All the values are compared to normal tissue (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

In the analysis of matching samples, the LSNAs show a high degree of tissue specificity for the tissue of interest. These results confirm the tissue specificity results obtained with normal pooled samples.

Further, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual are compared. This comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent).

Altogether, the high level of tissue specificity, plus the mRNA overexpression in matching samples tested are indicative of SEQ ID NO: 1 through 164 being diagnostic markers for cancer.

	Sequences	Sequence ID	ddx QPCR code
	DEX0134_10	DEX0291_18	Lng261
	DEX0134_17	DEX0291_29	Lng262
		DEX0291_30	
25	DEX0134_2	DEX0291_3	Lng259
		DEX0291_4	
	DEX0134_24	DEX0291_40	Lng260
	DEX0134_77	DEX0291_129	Lng264
		DEX0291_130	
30	DEX0134_80	DEX0291_134	Lng256
		DEX0291_135	
	DEX0134_96	DEX0291_159	Lng228

DEX0134_10; DEX0291_18(SEQ_ID_NO:18); Lng261

Experiments are underway to test primers and probes for QPCR.

-130-

DEX0134_17; DEX0291_29(SEQ ID NO: 29); DEX0291_30(SEQ ID NO: 30); Lng262

Experiments are underway to test primers and probes for QPCR.

5 Primers Used for QPCR Expression Analysis in DEX291_29

Primer Probe Oligo	Start	End To	queryLength	sbjctDescript
lng262For	33	50	18	DEX0134_17
lng262Rev	122	101	22	DEX0134_17
lng262Probe	54	74	21	DEX0134_17

DEX0134 2; DEX0291 3(SEQ ID NO: 3); DEX0291 4(SEQ ID NO:4); Lng259

Experiments are underway to test primers and probes for QPCR.

DEX0134 24; DEX0291_40(SEQ ID NO: 40); Lng260

Experiments are underway to test primers and probes for QPCR.

DEX0134_77; DEX0291_129(SEQ ID NO: 129); DEX0291_130(SEQ ID NO: 130); Lng264

Experiments are underway to test primers and probes for QPCR.

20 DEX0134_80; DEX0291_134(SEQ ID NO: 134); DEX0291_135(SEQ ID NO: 135); Lng256

Experiments are underway to test primers and probes for QPCR.

25 DEX0134 96; DEX0291 159(SEQ ID NO: 159); Lng228

Experiments are underway to test primers and probes for QPCR.

Primers Used for QPCR Expression Analysis

Primer Probe	Start	End To	queryLength	sbjctDescript
Oligo	From			
lng228For	814	837	24	DEX0134_96
lng228Rev	940	917	24	DEX0134_96
lng228Probe	906	877	30	DEX0134_96

30

35

10

Example 3: Protein Expression

The LSNA is amplified by polymerase chain reaction (PCR) and the amplified DNA fragment encoding the LSNA is subcloned in pET-21d for expression in *E. coli*. In addition to the LSNA coding sequence, codons for two amino acids, Met-Ala, flanking the NH₂-terminus of the coding sequence of LSNA, and six histidines, flanking the

COOH-terminus of the coding sequence of LSNA, are incorporated to serve as initiating Met/restriction site and purification tag, respectively.

An over-expressed protein band of the appropriate molecular weight may be observed on a Coomassie blue stained polyacrylamide gel. This protein band is confirmed by Western blot analysis using monoclonal antibody against 6X Histidine tag.

Large-scale purification of LSP was achieved using cell paste generated from 6-liter bacterial cultures, and purified using immobilized metal affinity chromatography (IMAC). Soluble fractions that had been separated from total cell lysate were incubated with a nickle chelating resin. The column was packed and washed with five column volumes of wash buffer. LSP was eluted stepwise with various concentration imidazole buffers.

Example 4: Protein Fusions

5

10

15

20

25

30

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5'and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector. For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 2, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced. If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. See, e. g., WO 96/34891.

Example 5: Production of an Antibody from a Polypeptide

In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine

serum (inactivated at about 56°C), and supplemented with about 10 g/1 of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100, µg/ml of streptomycin. The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP20), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands *et al.*, *Gastroenterology* 80: 225-232 (1981).

The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide. 10 Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The 15 splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies. Using the Jameson-Wolf methods the following epitopes were predicted. (Jameson and Wolf, CABIOS, 4(1), 181-186, 1988, the contents of which are incorporated by reference).

```
DEX0291 166 Antigenicity Index(Jameson-Wolf)
25
             positions
                             AI avg length
             21-37
                             1.23
                                     17
                     Antigenicity Index(Jameson-Wolf)
     DEX0291_168
                             AI avg length
             positions
                             1.07
                                     12
             69-80
30
                     Antigenicity Index(Jameson-Wolf)
     DEX0291 169
                             AI avg length
             positions
             15-25
                             1.06
                                     11
                     Antigenicity Index(Jameson-Wolf)
     DEX0291_170
             positions
                             AI avg length
35
             54-64
                             1.06
     DEX0291_175 Antigenicity Index(Jameson-Wolf)
             positions
                             AI avg length
             166-176
                             1.36
                                     11
             41-65
                             1.18
                                     25
```

WO 02/068633

-133-

PCT/US01/43612

```
190-207
                             1.15
                                     18
             71-84
                             1.03
                                     14
     DEX0291_177 Antigenicity Index(Jameson-Wolf)
             positions
                             Al avg length
 5
             42-54
                             1.12
     DEX0291 182 Antigenicity Index(Jameson-Wolf)
             positions
                             Al avg length
             35-50
                             1.20
                                     16
     DEX0291 183 Antigenicity Index(Jameson-Wolf)
10
             positions
                             Al avg length
                                     19
             48-66
                             1.16
                                     20
             68-87
                             1.13
     DEX0291 184 Antigenicity Index(Jameson-Wolf)
             positions
                             Al avg length
15
             52-93
                             1.05
                                     42
     DEX0291_185 Antigenicity Index(Jameson-Wolf)
                             AI avg length
             positions
             199-209
                             1.24
                                     11
                             1.22
                                     23
             4-26
20
             322-353
                             1.09
                                     32
                                     55
             408-462
                             1.08
             467-482
                             1.01
                                     16
             30-49
                             1.01
                                     20
     DEX0291_187 Antigenicity Index(Jameson-Wolf)
25
             positions
                             Al avg length
             67-80
                             1.15
                                     14
     DEX0291_193
                     Antigenicity Index(Jameson-Wolf)
             positions
                             Al avg length
                                     30
             5-34
                             1.13
30
     DEX0291_194 Antigenicity Index(Jameson-Wolf)
             positions
                             AI avg length
             58-71
                             1.33
                                     14
             195-210
                             1.06
                                     16
             37-52
                             1.04
                                     16
35
     DEX0291 196 Antigenicity Index(Jameson-Wolf)
             positions
                             AI avg length
             70-87
                             1.15
                                     18
     DEX0291 199 Antigenicity Index(Jameson-Wolf)
                             AI avg length
             positions
40
             79-91
                             1.10
                                     13
     DEX0291_200 Antigenicity Index(Jameson-Wolf)
             positions
                             Al avg length
                                     28
             262-289
                             1.09
             225-234
                             1.07
                                     10
45
             412-426
                             1.03
                                     15
     DEX0291 203 Antigenicity Index(Jameson-Wolf)
             positions
                             Al avg length
             66-77
                             1.26
                                     12
     DEX0291_204 Antigenicity Index(Jameson-Wolf)
50
             positions
                             Al avg length
             109-141
                             1.04
                                     33
             61-78
                             1.03
                                     18
             46-58
                             1.00
                                     13
     DEX0291 205 Antigenicity Index(Jameson-Wolf)
55
             positions
                             Al avg length
             12-37
                             1.03
                                     26
     DEX0291_206 Antigenicity Index(Jameson-Wolf)
                             Al avg length
             positions
```

	91-100	1.19	10
	DEX0291_208 Antige		
		AI avg	
	positions		
5	33-45	1.18	13
J	105-122	1.10	18
	58-103	1.02	46
	DEX0291_212 Antige		
	positions	AI avg	
	373-393	1.24	21
10	70-81	1.20	12
	430-457	1.11	28
	485-533	1.07	49
	204-254	1.06	51
	289-314	1.04	26
15	141-165	1.03	25
	462-478	1.03	17
	126-135	1.02	10
	172-202	1.02	31
	318-363		
20		1.02	46
20	10-34	1.01	25
	98-119	1.00	22
	DEX0291_216 Antige		
	positions	AI avg	
	10-21	1.35	12
25	DEX0291_218 Antige	enicity Inde	ex(Jameson-Wolf)
	positions	AI avg	length
	662-694	1.20	33
	36-61	1.12	26
	98-118	1.10	21
30	283-334	1.02	52
•	699-740	1.01	42
	DEX0291_221 Antige		
	positions	AI avg	
	20-32	1.17	13
35	DEX0291_225 Antige		
33			
	positions	AI avg	
	61-72	1.16	12
	3-58	1.07	56
	DEX0291_226 Antige		
40	positions	AI avg	
	7-20	1.02	14
	DEX0291_228 Antige	enicity Inde	x(Jameson-Wolf)
	positions	AI avg	length
	73-83	1.05	11
45	170-183	1.01	14
			x(Jameson-Wolf)
	positions	AI avg	
	13-41	1.11	29
			ex(Jameson-Wolf)
50	positions	AI avg	
50	38-54	1.25	17
			ex(Jameson-Wolf)
	positions	AI avg	
~ ~	35-56	1.07	22
55			ex(Jameson-Wolf)
	positions	AI avg	
	35-48	1.10	14
	DEX0291_245 Antige	enicity Inde	ex(Jameson-Wolf)

-135-

		. ~	
	positions	AI avg	_
	144-155	1.04	12
	DEX0291_247 Antigenicity Index(Jameson-Wolf		
_		AI avg	length
5	44-57		14
	93-107	1.06	15
	69-84	1.02	16
	DEX0291_249 Antigen	icity Inde	ex(Jameson-Wolf)
		AI avg	
10	262-289	1.09	28
	225-234	1.07	10
	412-426	1.03	15
	DEX0291_251 Antigen	icity Inde	ex(Jameson-Wolf)
	positions	Alavg	
15	91-100	1.19	10
	DEX0291_255 Antigen		ex(Jameson-Wolf)
	positions	AI avg	
	14-25	1.18	12
	DEX0291_256 Antigen		
20	positions	AI avg	
	12-21	1.11	10
	DEX0291_257 Antigen		
	positions	AI avg	
	21-31	1.19	11
25			
23	positions	AI avg	lenath
	595-607	1.25	13
	446-457	1.15	
	80-92	1.09	13
30	632-641		10
20	246-257	1.08 1.06	12
		1.06	
	1054-1073		20
	336-383	1.05	48
25	955-975	1.02	21
35	1477-1505	1.02	29
	425-439	1.01	15
	DEX0291_264 Antigen		
	positions	AI avg	
40	22-32	1.02	11
40	DEX0291_276 Antigen	icity Inde	x(Jameson-Wolf)
	positions	AI avg	
	53-73	1.06	21
	DEX0291_280 Antigen		
	positions	AI avg	
45	32-48	1.04	17
	DEX0291_281 Antigen		x(Jameson-Wolf)
	positions	AI avg	length
	34-48	1.23	15
	DEX0291_282 Antigen	icity Inde	x(Jameson-Wolf)
50	positions	AI avg	
	58-113	1.10	56
	DEX0291_284 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	
	111-131	1.05	21

55

The predicted helicities were as follows:

```
DEX0291 169 PredHel=2
                            Topology=024-43i55-770
    DEX0291_170 PredHel=3
                            Topology=i29-48063-82i94-1160
                            Topology=i144-1660209-231i312-3340349-371i373-
    DEX0291_175 PredHel=5
   3950
    DEX0291_183 PredHel=1
                            Topology=020-42i
    DEX0291_190 PredHel=1
                            Topology=157-790
    DEX0291_193 PredHel=1
                            Topology=033-52i
    DEX0291_195 PredHel=1
                            Topology=i21-380
10 DEX0291_209 PredHel=1
                            Topology=036-58i
    DEX0291 213 PredHel=1
                            Topology=020-37i
    DEX0291_218 PredHel=1
                            Topology=0616-638i
                            Topology=020-42i55-860
    DEX0291_223 PredHel=2
    DEX0291_229 PredHel=2
                            Topology=i5-22027-45i
15 DEX0291_239 PredHel=1
                            Topology=i58-80o
    DEX0291 247 PredHel=2
                            Topology=020-42i205-2270
    DEX0291 254 PredHel=1
                            Topology=i7-290
    DEX0291 259 PredHel=6
                            Topology=0761-780i828-8500865-883i896-9180983-
    100511035-10520
20 DEX0291_260 PredHel=1
                            Topology=055-77i
                            Topology=o50-67i
    DEX0291_262 PredHel=1
    DEX0291_270 PredHel=1
                            Topology=i20-390
    DEX0291_272 PredHel=1
                            Topology=010-32i
                            Topology=042-64i99-1210126-148i
    DEX0291_279 PredHel=3
25 DEX0291_281 PredHel=1
                            Topology=i82-1030
    DEX0291 283 PredHel=2
                            Topology=i13-35055-77i
```

Examples of post-translational modifications (PTMs) of the LSP of this invention are listed below. In addition, antibodies that specifically bind such post-translational modifications may be useful as a diagnostic or as therapeutic. Using the ProSite database 30 (Bairoch et al., Nucleic Acids Res. 25(1):217-221 (1997), the contents of which are incorporated by reference), the following PTMs were predicted for the LSPs of the invention (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_prosite.html most recently accessed October 23, 2001).

```
DEX0291 165 Pkc Phospho_Site 8-10;
```

- DEX0291_166 Asn_Glycosylation 29-32; Ck2_Phospho_Site 9-12; Pkc_Phospho_Site 25-27;31-33;
 DEX0291_167 Myristyl 4-9;30-35;32-37; Prokar_Lipoprotein 24-34;
 DEX0291_169 Ck2_Phospho_Site 20-23; Pkc_Phospho_Site 20-22;90-92;
 DEX0291_170 Ck2_Phospho_Site 59-62; Pkc_Phospho_Site 2-4;9-11;17-19;21-23;59-61;
 DEX0291_172 Ck2_Phospho_Site 29-32;34-37; Myristyl 10-15;
- 40 DEX0291_173 Pkc_Phospho_Site 33-35;
 - DEX0291_175 Asn_Glycosylation 191-194;396-399; Ck2_Phospho_Site 164-167;308-311;344-347;405-408;414-417; Leucine_Zipper 291-312;298-319; Myristyl 97-102;174-179;176-181;258-263;375-380;431-436; Pkc_Phospho_Site 304-306;308-310; Tyr_Phospho_Site 62-70:
- 45 DEX0291_176 Camp_Phospho_Site 13-16; Ck2_Phospho_Site 5-8; Pkc_Phospho_Site 9-11;16-18;

DEX0291_177 Myristyl 20-25;52-57; Pkc_Phospho_Site 60-62;86-88; DEX0291 178 Ck2 Phospho Site 25-28;33-36;46-49; Pkc Phospho_Site 15-17;50-52; DEX0291 179 Ck2 Phospho Site 58-61;80-83;84-87; Pkc Phospho Site 28-30; Ck2 Phospho Site 11-14;46-49; Pkc Phospho Site 2-4;46-48; DEX0291 181 DEX0291 182 Ck2 Phospho Site 16-19;30-33; Myristyl 20-25; Pkc Phospho Site 47-49; DEX0291 183 Asn Glycosylation 80-83; Ck2 Phospho Site 82-85; Myristyl 26-31;30-35;63-68; Pkc Phospho Site 10-12;82-84; Myristyl 16-21;40-45;44-49; Pkc_Phospho_Site 59-61;77-79; DEX0291_184 Amidation 15-18;88-91; Asn_Glycosylation 186-189;396-399; Camp_Phospho_Site DEX0291_185 10 476-479; Ck2_Phospho_Site 31-34;74-77;110-113;198-201;423-426; Fibrin Ag C Domain 430-442; Myristyl 27-32;40-45;43-48;169-174;194-199;362-367;447-452;458-463;470-475; Pkc Phospho Site 336-338;392-394;411-413;474-476;479-481; Tyr Phospho Site 202-208;288-295; DEX0291_186 Pkc_Phospho_Site 29-31; 15 Amidation 105-108; Bzip Basic 125-139;126-139; Ck2_Phospho_Site 51-54;115-118; DEX0291_187 Glycosaminoglycan 23-26; Myristyl 2-7;37-42;96-101;102-107; Pkc_Phospho_Site 7-9;144-146; Pkc Phospho Site 10-12; DEX0291 188 Ck2 Phospho Site 19-22; Pkc Phospho Site 3-5;41-43; Tyr_Phospho_Site 5-13; DEX0291 189 20 DEX0291 190 Myristyl 49-54; Pkc Phospho Site 24-26; Prokar_Lipoprotein 38-48; Ck2 Phospho Site 35-38;95-98; Myristyl 6-11; DEX0291 191 DEX0291_192 Myristyl 22-27; Pkc_Phospho_Site 43-45; DEX0291_193 Camp Phospho Site 15-18; Myristyl 24-29;27-32; Pkc_Phospho_Site 47-49;55-57; Asn Glycosylation 30-33; Camp_Phospho_Site 62-65;120-123; Ck2_Phospho_Site 65-DEX0291 194 25 68;79-82;131-134;136-139;138-141;152-155; Myristyl 69-74;73-78;100-105;198-203; Pkc Phospho Site 79-81;133-135;193-195; Asn Glycosylation 32-35; Ck2_Phospho_Site 56-59; DEX0291 196 DEX0291 197 Asn Glycosylation 36-39; Myristyl 12-17; Pkc_Phospho_Site 20-22; DEX0291 198 Ck2 Phospho Site 73-76; Myristyl 12-17;17-22;66-71; Pkc Phospho Site 91-93; 30 DEX0291 199 Asn Glycosylation 125-128; Camp Phospho Site 70-73; Ck2 Phospho Site 118-121; Myristyl 61-66;131-136; Pkc Phospho Site 32-34;68-70;80-82;89-91;140-142;153-155; Amidation 2-5; Asn Glycosylation 74-77;127-130; Ck2 Phospho Site 76-79;230-DEX0291 200 233;242-245;262-265;423-426;566-569; Leucine Zipper 95-116; Myristyl 34-39;419-424;499-504;536-541; Pkc_Phospho_Site 276-278;380-382;387-389;442-444;591-593; 35 Tyr Phospho_Site 561-568;562-568; DEX0291_202 Myristyl 5-10; Ck2_Phospho_Site 31-34;48-51; Myristyl 4-9; Pkc_Phospho_Site 84-86; DEX0291 203 Prokar Lipoprotein 39-49;

Asn_Glycosylation 64-67; Ck2_Phospho_Site 33-36;166-169;188-191;234-237;236-239; DEX0291_204 Pkc Phospho Site 66-68;140-142;243-245;249-251; Tyr_Phospho_Site 124-132; Camp Phospho Site 22-25; Myristyl 70-75; Pkc_Phospho_Site 13-15; DEX0291 205 Ck2 Phospho Site 66-69;96-99; Glycosaminoglycan 50-53; Myristyl 47-52;49-54;53-DEX0291_206 5 58;62-67; Pkc Phospho Site 12-14;132-134;141-143;192-194;210-212; Prokar Lipoprotein 159-169; DEX0291_207 Asn_Glycosylation 70-73; Ck2_Phospho_Site 15-18;81-84; DEX0291 208 Asn Glycosylation 75-78; Camp Phospho_Site 84-87; Ck2_Phospho_Site 36-39;78-81; Pkc Phospho Site 111-113; Asn Glycosylation 30-33; Myristyl 5-10; Pkc Phospho Site 26-28; 10 DEX0291 209 Asn Glycosylation 56-59;90-93;173-176; Ck2 Phospho Site 24-27;58-61;92-95;138-DEX0291 210 141;148-151;270-273; Myristyl 45-50;49-54;306-311;312-317;354-359;397-402;426-431;433-438; Peroxidase 2 252-263; Pkc Phospho Site 70-72;138-140;145-147;163-165;195-197;207-209;252-254;263-265;275-277;325-327;359-361;402-404;444-446; 15 Wd Repeats 267-281;351-365; DEX0291 211 Myristyl 5-10; Amidation 102-105;521-524; Asn Glycosylation 33-36;62-65;201-204;230-233;313-DEX0291_212 316;342-345;343-346;454-457;536-539; Ck2 Phospho Site 194-197;204-207;388-391;511-514; Myristyl 183-188;220-225; Pkc Phospho Site 6-8;143-145;177-179;286-20 288;345-347;398-400;404-406;521-523; Zinc_Finger_C2h2 25-45;53-73;81-101;109-129;137-157;165-185;193-213;221-241;249-269;277-297;305-325;333-353;361-381;389-409;417-437;445-465;473-493; DEX0291_213 Myristyl 24-29; DEX0291 214 Pkc Phospho Site 9-11; 25 DEX0291 215 Myristyl 5-10;8-13;11-16; DEX0291 216 Camp Phospho Site 18-21; Pkc Phospho Site 17-19;60-62; Pkc_Phospho_Site 30-32; DEX0291 217 DEX0291 218 Asn_Glycosylation 72-75;261-264;370-373;474-477;516-519; Camp_Phospho_Site 224-227;366-369; Ck2 Phospho Site 36-39;180-183;253-256;333-336;380-383;457-30 460;778-781; Myristyl 177-182;217-222;266-271;319-324;368-373;381-386;384-389;393-398;482-487;575-580;585-590;649-654;731-736;732-737; Pkc_Phospho_Site 50-52;151-153;315-317;475-477;507-509;513-515;637-639;653-655;694-696; Tyr_Phospho Site 193-200;290-296;681-688; DEX0291_219 Ck2_Phospho_Site 39-42; Myristyl 47-52;48-53; Pkc_Phospho_Site 39-41; 35 DEX0291_220 Asn Glycosylation 20-23; Ck2 Phospho Site 123-126; Glycosaminoglycan 72-75; Myristyl 30-35;75-80; Pkc_Phospho_Site 123-125; Prokar_Lipoprotein 70-80; Tyr Phospho Site 107-114; DEX0291 221 Amidation 29-32; Asn Glycosylation 23-26; Ck2_Phospho_Site 36-39; Pkc_Phospho Site 24-26;36-38;

Ck2 Phospho Site 78-81; Myristyl 34-39;36-41; Pkc Phospho_Site 96-98; DEX0291 222 Myristyl 27-32;31-36;33-38;60-65;64-69;66-71;67-72;70-75;77-82;84-89;93-98;95-DEX0291 223 100;98-103; Prokar Lipoprotein 27-37;58-68; DEX0291 224 Asn Glycosylation 30-33;181-184; Camp Phospho_Site 37-40; Ck2_Phospho_Site 7-5 10; Pkc Phospho Site 83-85; DEX0291 225 Asn Glycosylation 24-27; Ck2 Phospho Site 3-6;72-75; Myristyl 20-25; Pkc Phospho Site 48-50; DEX0291_226 Pkc Phospho_Site 19-21; DEX0291 227 Leucine Zipper 10-31; Pkc Phospho Site 3-5; 10 DEX0291 228 Asn Glycosylation 182-185; Camp Phospho Site 27-30; Ck2 Phospho_Site 21-24;41-44;78-81;98-101;112-115; Myristyl 53-58;96-101;103-108; Pkc_Phospho_Site 9-11;58-60; Tyr_Phospho_Site 76-82; DEX0291 229 Myristyl 13-18; DEX0291_231 Pkc_Phospho_Site 16-18; 15 DEX0291 233 Ck2 Phospho Site 79-82; Myristyl 22-27;47-52; Pkc_Phospho_Site 15-17;97-99; Prokar Lipoprotein 42-52; DEX0291_235 Asn_Glycosylation 44-47; Myristyl 30-35; DEX0291 236 Ck2 Phospho Site 40-43; Pkc Phospho Site 40-42; DEX0291 237 Ck2 Phospho_Site 13-16; Myristyl 19-24;23-28;54-59; Pkc_Phospho_Site 32-34;95-97; 20 DEX0291_238 Amidation 14-17; Pkc_Phospho_Site 14-16; DEX0291 239 Ck2 Phospho Site 30-33; Myristyl 52-57;53-58;71-76; Pkc_Phospho_Site 49-51; DEX0291 240 Amidation 119-122; Camp Phospho Site 121-124; Ck2 Phospho Site 124-127; 181-184; Glycosaminoglycan 115-118; Myristyl 5-10;13-18;14-19;16-21;18-23;19-24;20-25;21-26;22-27;23-28;33-38;36-41;37-42;55-60;90-95;103-108;105-110;106-111;108-25 113;116-121;136-141;170-175; Pkc Phospho_Site 9-11; DEX0291_241 Asn_Glycosylation 19-22;53-56; Ck2_Phospho_Site 4-7;80-83; Myristyl 52-57; Pkc Phospho Site 103-105; DEX0291 242 Leucine Zipper 10-31; DEX0291 243 Myristyl 10-15;57-62; 30 DEX0291 244 Rgd 15-17; DEX0291 245 Ck2 Phospho Site 144-147; Myristyl 5-10;165-170; DEX0291_247 Asn_Glycosylation 73-76;101-104;167-170; Camp_Phospho_Site 230-233; Ck2 Phospho_Site 159-162;194-197; Glycosaminoglycan 33-36; Leucine_Zipper 198-219; Myristyl 2-7;34-39;74-79;87-92;112-117;116-121;119-124;149-154;164-169;186-35 191;217-222; Pkc_Phospho_Site 43-45;77-79;129-131;134-136;171-173; DEX0291 248 Ck2 Phospho Site 34-37; Myristyl 43-48; Pkc Phospho Site 58-60; Tyr Phospho Site 16-24: Amidation 2-5; Asn Glycosylation 74-77;127-130; Ck2_Phospho_Site 76-79;230-DEX0291 249 233;242-245;262-265;423-426;566-569; Leucine Zipper 95-116; Myristyl 34-39;419-

-140-

WO 02/068633

424;499-504;536-541; Pkc Phospho Site 276-278;380-382;387-389;442-444;591-593; Tyr Phospho Site 561-568;562-568; DEX0291 251 Ck2 Phospho Site 66-69;96-99; Glycosaminoglycan 50-53; Myristyl 47-52;49-54;53-58;62-67; Pkc_Phospho_Site 12-14;132-134;141-143;192-194;210-212; 5 Prokar Lipoprotein 159-169; DEX0291_252 Camp_Phospho_Site 27-30; Myristyl 15-20; Pkc_Phospho_Site 5-7; DEX0291 253 Asn Glycosylation 55-58; DEX0291_254 Pkc_Phospho_Site 9-11; DEX0291 255 Camp Phospho_Site 20-23; Myristyl 67-72; 10 DEX0291_256 Camp_Phospho_Site 15-18; Ck2_Phospho_Site 23-26; Pkc_Phospho_Site 18-20;30-32; DEX0291 257 Asn Glycosylation 2-5;27-30; Myristyl 15-20; Pkc_Phospho_Site 4-6; DEX0291 258 Ck2 Phospho Site 53-56; DEX0291_259 Amidation 362-365;513-516;968-971; Asn_Glycosylation 133-136;144-147;233-236;298-301;478-481;601-604;635-638;638-641;830-833; Ck2_Phospho_Site 9-12;235-238;300-303;343-346;459-462;587-590;698-701;706-709;788-791; Myristyl 35-40;53-15 58:68-73:69-74:102-107:211-216:229-234:296-301:473-478:728-733:747-752; Pkc Phospho Site 86-88;212-214;235-237;343-345;353-355;480-482;617-619;706-708;729-731;818-820;925-927; Prokar Lipoprotein 978-988; Tyr_Phospho_Site 697-704;891-898; 20 DEX0291 260 Ck2 Phospho Site 17-20;49-52;77-80; Pkc_Phospho_Site 45-47; DEX0291 261 Pkc Phospho_Site 5-7;32-34; DEX0291 262 Asn_Glycosylation 76-79; Ck2 Phospho_Site 16-19;45-48; Myristyl 6-11;9-14;56-61;58-63; Pkc Phospho Site 25-27;84-86; DEX0291_264 Asn_Glycosylation 19-22; Camp_Phospho_Site 31-34; Ck2_Phospho_Site 40-43;74-77; 25 Myristyl 37-42;90-95; DEX0291 267 Asn Glycosylation 56-59;98-101; Myristyl 66-71; DEX0291_268 Pkc_Phospho_Site 33-35; DEX0291 269 Ck2 Phospho Site 8-11; DEX0291_270 Asn_Glycosylation 3-6; Ck2_Phospho_Site 6-9; 30 DEX0291 271 Myristyl 10-15; DEX0291 272 Myristyl 9-14; Pkc Phospho Site 3-5; DEX0291 273 Ck2 Phospho Site 29-32; Pkc_Phospho_Site 29-31; DEX0291_274 Ck2_Phospho_Site 215-218; Pkc_Phospho_Site 184-186; DEX0291_275 Myristyl 2-7; Pkc_Phospho_Site 15-17; 35 DEX0291_276 Ck2_Phospho_Site 5-8; Pkc_Phospho_Site 21-23;33-35;44-46;65-67; DEX0291 279 Myristyl 78-83;122-127; Pkc Phospho_Site 25-27; Prokar Lipoprotein 49-59; DEX0291_280 Asn_Glycosylation 11-14; Camp_Phospho_Site 33-36;34-37; Pkc_Phospho Site 32-34:37-39:51-53: DEX0291_281 Ck2 Phospho_Site 35-38;44-47;

PCT/US01/43612

WO 02/068633

15

20

25

30

-141-

PCT/US01/43612

DEX0291_282 Camp_Phospho_Site 109-112;123-126;161-164; Ck2_Phospho_Site 98-101;141144;150-153;151-154; Myristyl 38-43; Pkc_Phospho_Site 23-25;71-73;78-80;98100;133-135;141-143;150-152;155-157;156-158;

DEX0291 283 Asn Glycosylation 2-5; Myristyl 19-24; Pkc Phospho Site 51-53;

5 DEX0291 284 Ck2 Phospho Site 5-8;14-17;25-28;102-105;137-140;148-151; Myristyl 60-65;91-96;

Example 6: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA is isolated from individual patients or from a family of individuals that have a phenotype of interest. cDNA is then generated from these RNA samples using protocols known in the art. See, Sambrook (2001), supra. The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO: 1 through 164. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky et al., Science 252(5006): 706-9 (1991). See also Sidransky et al., Science 278(5340): 1054-9 (1997).

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations are then cloned and sequenced to validate the results of the direct sequencing. PCR products is cloned into T-tailed vectors as described in Holton et al., Nucleic Acids Res., 19: 1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements may also be determined. Genomic clones are nick-translated with digoxigenin deoxyuridine 5' triphosphate (Boehringer Manheim), and FISH is performed as described in Johnson *et al.*, *Methods Cell Biol.* 35: 73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C-and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. *Id.* Image collection, analysis and

5

25

chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

-142-

PCT/US01/43612

Example 7: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

Antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific 10 antibodies, at a final concentration of 0.2 to 10 µg/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described above. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced. The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove 15 unbound polypeptide. Next, 50 µl of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbound conjugate. 75 µl of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl 20 phosphate (NPP) substrate solution are added to each well and incubated 1 hour at room temperature.

The reaction is measured by a microtiter plate reader. A standard curve is prepared, using serial dilutions of a control sample, and polypeptide concentrations are plotted on the X-axis (log scale) and fluorescence or absorbance on the Y-axis (linear scale). The concentration of the polypeptide in the sample is calculated using the standard curve.

Example 8: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of

WO 02/068633

15

20

25

administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

-143-

PCT/US01/43612

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1, μg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 μg/kg/hour to about 50 mg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semipermeable polymer matrices in the form of shaped articles, e. g., films, or microcapsules. Sustained-release matrices include polylactides (U. S. Pat. No.3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22: 547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15: 167-277 (1981), and R. Langer, Chem. Tech. 12: 98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE Epstein et al., Proc. Natl. Acad. Sci. USA 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad.

-144-

Sci. USA 77: 4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U. S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, I. e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.

For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides. Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

20

30

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e. g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

5

10

15

25

-145-

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

PCT/US01/43612

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e. g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1 % (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container (s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 9: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 µg/kg of the polypeptide for six consecutive days. Preferably, the

polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided above.

Example 10: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided above.

Example 11: Method of Treatment Using Gene Therapy

5

10

15

25

30

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e. g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks. pMV-7 (Kirschmeier, P. T. et al., DNA, 7: 219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5'and 3'end sequences respectively as set forth in Example 1. Preferably, the 5'primer contains an EcoRI site and the 3'primer

includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB 101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media.

If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

25 Example 12: Method of Treatment Using Gene Therapy-In Vivo

20

30

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide.

The polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known

5

10

20

25

30

WO 02/068633 PCT/US01/43612

in the art, see, for example, W0 90/11092, W0 98/11779; U. S. Patent 5,693,622; 5,705,151; 5,580,859; Tabata H. et al. (1997) Cardiovasc. Res. 35 (3): 470-479, Chao J et al. (1997) Pharmacol. Res. 35 (6): 517-522, Wolff J. A. (1997) Neuromuscul. Disord. 7 (5): 314-318, Schwartz B. et al. (1996) Gene Ther. 3 (5): 405-411, Tsurumi Y. et al. (1996) Circulation 94 (12): 3281-3290 (incorporated herein by reference).

The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P. L. et al. (1995) Ann. NY Acad. Sci. 772: 126-139 and Abdallah B. et al. (1995) Biol. Cell 85 (1): 1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by

-149-

the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 µg/kg body weight to about 50 mg/kg body 10 weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be 15 determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during 20 angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

25

30

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about

-150-

0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e. g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice.

The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.

Example 13: Transgenic Animals

10

15

The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e. g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

Any technique known in the art may be used to introduce the transgene (i. e., polynucleotides of the invention) into animals to produce the founder lines of transgenic 20 animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40: 691-698 (1994); Carver et al., Biotechnology (NY) 11: 1263-1270 (1993); Wright et al., Biotechnology (NY) 9: 830-834 (1991); and Hoppe et al., U. S. Patent 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82: 6148-6152 25 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56: 313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3: 1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e. g., Ulmer et al., Science 259: 1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back 30 into the blastocyst; and sperm mediated gene transfer (Lavitrano et al., Cell 57: 717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl.

-151-

Rev. Cytol. 115: 171-229 (1989), which is incorporated by reference herein in its entirety.

5

10

15

20

25

30

Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated occytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., Nature 380: 64-66 (1996); Wilmut et al., Nature 385: 810813 (1997)).

The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, I. e., mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, e. g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89: 6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 265: 103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and reverse transcriptase-PCR

-152-

(rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

20 Example 14: Knock-Out Animals

5

15

25

30

Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (E. g., see Smithies et al., Nature 317: 230-234 (1985); Thomas & Capecchi, Cell 51: 503512 (1987); Thompson et al., Cell 5: 313-321 (1989); each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such

-153-

approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e. g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in vivo using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e. g., knockouts) are administered to a patient *in vivo*. Such cells may be obtained from the patient (I. e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e. g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered *in vitro* using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e. g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.

10

15

20

25

30

The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e. g., in the circulation, or intraperitoneally.

Alternatively, the cells can be incorporated into a matrix and implanted in the body, e. g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U. S. Patent 5,399,349; and Mulligan & Wilson, U. S. Patent 5,460,959 each of which is incorporated by reference herein in its entirety).

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the

-154-

5

10

15

development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

All patents, patent publications, and other published references mentioned herein are hereby incorporated by reference in their entireties as if each had been individually and specifically incorporated by reference herein. While preferred illustrative embodiments of the present invention are described, one skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration only and not by way of limitation. The present invention is limited only by the claims that follow.

-155-

CLAIMS

We claim:

molecule is genomic DNA.

- 1. An isolated nucleic acid molecule comprising
- (a) a nucleic acid molecule comprising a nucleic acid sequence that encodes an amino acid sequence of SEQ ID NO: 165 through 284;
 - (b) a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 164;
 - (c) a nucleic acid molecule that selectively hybridizes to the nucleic acid molecule of (a) or (b); or
- 10 (d) a nucleic acid molecule having at least 60% sequence identity to the nucleic acid molecule of (a) or (b).
 - 2. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is a cDNA.

3. The nucleic acid molecule according to claim 1, wherein the nucleic acid

- 4. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is a mammalian nucleic acid molecule.
 - 5. The nucleic acid molecule according to claim 4, wherein the nucleic acid molecule is a human nucleic acid molecule.
- 25 6. A method for determining the presence of a lung specific nucleic acid (LSNA) in a sample, comprising the steps of:
 - (a) contacting the sample with the nucleic acid molecule according to claim 1 under conditions in which the nucleic acid molecule will selectively hybridize to a lung specific nucleic acid; and
- 30 (b) detecting hybridization of the nucleic acid molecule to a LSNA in the sample, wherein the detection of the hybridization indicates the presence of a LSNA in the sample.

-156-

WO 02/068633 PCT/US01/43612

- 7. A vector comprising the nucleic acid molecule of claim 1.
- 8. A host cell comprising the vector according to claim 7.

5

9. A method for producing a polypeptide encoded by the nucleic acid molecule according to claim 1, comprising the steps of (a) providing a host cell comprising the nucleic acid molecule operably linked to one or more expression control sequences, and (b) incubating the host cell under conditions in which the polypeptide is produced.

10

- 10. A polypeptide encoded by the nucleic acid molecule according to claim 1.
- 11. An isolated polypeptide selected from the group consisting of:
- (a) a polypeptide comprising an amino acid sequence with at least 60% sequence identity to of SEQ ID NO: 165 through 284; or
 - (b) a polypeptide comprising an amino acid sequence encoded by a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 164.
- 12. An antibody or fragment thereof that specifically binds to the polypeptide according to claim 11.
 - 13. A method for determining the presence of a lung specific protein in a sample, comprising the steps of:
- (a) contacting the sample with the antibody according to claim 12 under conditions in which the antibody will selectively bind to the lung specific protein; and
 - (b) detecting binding of the antibody to a lung specific protein in the sample, wherein the detection of binding indicates the presence of a lung specific protein in the sample.
- 30 14. A method for diagnosing and monitoring the presence and metastases of lung cancer in a patient, comprising the steps of:

-157-

- (a) determining an amount of the nucleic acid molecule of claim 1 or a polypeptide of claim 6 in a sample of a patient; and
- (b) comparing the amount of the determined nucleic acid molecule or the polypeptide in the sample of the patient to the amount of the lung specific marker in a normal control; wherein a difference in the amount of the nucleic acid molecule or the polypeptide in the sample compared to the amount of the nucleic acid molecule or the polypeptide in the normal control is associated with the presence of lung cancer.
- 15. A kit for detecting a risk of cancer or presence of cancer in a patient, said
 kit comprising a means for determining the presence the nucleic acid molecule of claim 1
 or a polypeptide of claim 6 in a sample of a patient.
- 16. A method of treating a patient with lung cancer, comprising the step of administering a composition according to claim 12 to a patient in need thereof, wherein
 15 said administration induces an immune response against the lung cancer cell expressing the nucleic acid molecule or polypeptide.
 - 17. A vaccine comprising the polypeptide or the nucleic acid encoding the polypeptide of claim 11.

1

SEQUENCE LISTING

<110> Macina, Roberto

S	hen, un, iu,	oon, Herve Sei-Yu Yongming Chenghua exus, Inc.					
<120> Proteir	_	positions a	nd Methods 1	Relating to	Lung Specif	fic Genes and	
<130>	DEX-	-0292					
<150> <151>		252,500 0-11-22					
<160>	284						
<170>	Pate	entIn versio	on 3.1				
<210> <211> <212> <213>		o sapien					
<400>	1						
tggatac	gag	cggacagccc	gggcaggtac	cgcatactag	caaaggtaat	ggtgatetag	60
caaacaa	aat	tggtttctag	cagttagaag	tgagcaggag	cacttgtatt	atagtattta	120
aataato	ctg	gttaatctct	ttttaagccg	agtaacccct	ccagattttg	cctttttatt	180
attgagg	gctg	gctttatttt	cttctacttt	ttttcccgtt	ttatagcagt	taattatttt	240
tgtgatt	att	atgcaagaag	cattgccctt	gagttaaact	gttattgttt	cataagcagc	300
tattaaa	ata	actgagcatg	ttttatgaac	atacacta			338
<212>	2 2446 DNA Homo	s sapien					
<400> aaggato	2 ctt	aattaaatta	atccccccc	ccctttttt	ttgtattctt	gccagtacag	60
tatatgg	jttt	ttctacccca	attacatact	gggttttgta	ccacatcact	aaaggcccaa	120
atcattg	jaag	atacaaaacc	gtacatgcag	gctggttgtc	tggttagtca	atggctgatt	180
tgcttca	act	gtctagtatg	tatgtgcagc	ctgaaactgg	ctccttaaaa	ggaaagccgg	240
gtcagto	atc	ttgaaaaaat	gacatgtaaa	agtaaatcga	taattgtttt	gagagacggt	300
acatgtt	tta	aaggttggcc	ttaagcttca	gtaacattgt	cattttgtga	ccttttgttg	360
+ a > a > a >	.+~+	accetaacct	ananaanntt	anataatatt	ttttataaa	0020222002	420

aaacctggtg	ttgtgacttt	tatcctaatg	gttcttaggc	aaggttagtg	agaagaaaca	480
caaacccaga	tgcatgcatt	gtgcattatt	ttgtagacaa	gctacttttt	cttctgtccc	540
tttaacaaat	ttgcagcaat	taccctccct	ttggggtcta	gagtgaaagc	taatttgtgg	600
gtagatgaga	ttgcagaaga	atggatgtcc	atggctgtga	acactgcaca	ctgcacatcc	660
atctccagtg	ctcacactgt	gcagctacca	ctccctggct	gcgtgccatg	ctgtcgggtt	720
gcagatttgc	acacataaat	tcctcaggaa	gagtttgcat	gagcatcacc	togcaatatt	780
ctgtactgac	caaacaaggg	atttgaacgt	ttttcagcac	aaaaggataa	cttccgagtg	840
gtggtctgta	cgcatactag	caaaggtaat	ggtgatctag	caaacaaaat	tggtttctgc	900
agttagaagt	gagcaggagc	acttgtatta	tagtatttaa	ataatcctgg	ttaatctctt	960
tttaagccga	gtaacccctc	cagattttgc	ctttttatta	ttgaggctgg	ctttattttc	1020
ttctactttt	tttcccgttt	tatagcagtt	aattatttt	gtgattatta	tgcaagaagc	1080
attgcccttg	agttaaactg	ttattgtttc	ataagcagct	attaaaataa	ctgagcattg	1140
ttttatgaac	atacactaat	ctgagatact	gaaaagcttt	gcaactaaaa	agcaaaacaa	1200
cctacattag	tcatctagcc	attgtttgga	tgttttgagt	tgattttta	tggtgcctct	1260
tttagcttgg	aatattacgt	ttactttaat	ccaagtctag	gccttttaaa	gggtccttaa	1320
aattaaagtt	cagaatgtga	atccctttga	catctattac	aggtttatag	gacctttttg	1380
gttgtgatta	ctgttttcaa	tacgattgta	taaatgaagt	taactttgtc	agaagttaaa	1440
atggaggtca	taggagttcc	tggagaaatg	gctctcctgt	ttctttcatt	accccactga	1500
agttcacccc	agtttctggc	cacaagaata	tgagaaagga	accctgttgt	tttccaaggg	1560
aaatcattcc	tetetgteee	cactgttgat	taactaaagt	cctggacacc	ttccttcctc	1620
cactggccaa	gacccacctt	gacccacctt	gaacctcttt	tcagagccga	gtggcatgaa	1680
tatgtgtact	gtttctgctt	ctgttgatgg	agtggctgtg	ggagaattaa	aggaaatgct	1740
aatttgagct	tcattcatag	gggaacctac	tatatattgc	atccctgctg	gttggaaatt	1800
atcttcatct	ctggactgca	ttgtttagaa	aaatgttaat	ggcttacaat	tctgagaact	1860
ttattgtgtg	gctctggggt	taagaattct	gtggtttgaa	aaaaaataaa	tattttgtat	1920
tgattctcac	gtcatttcaa	tgttgtgact	atgtactaaa	tgcactaaga	ctgggtattc	1980
tcttagaaga	gtgcgttttg	ttaaacagat	ggcagttcac	tctcattagt	tctatttgtc	2040
aatattacag	ccacacactt	caggataact	tactcaaatg	tgaagtcatg	ggaagctatg	2100
gctagtaaca	ggaatgcttg	tgaaaaattt	ggagggcaag	cacgagcaga	ggcttttgcc	2160

3

WO 02/068633 PCT/US01/43612

actcactagc	acagccagag	caaggatgaa	gcatgaagtc	ttgttcctag	tggtgcttgt	2220
atgtcagaag	ccatagtgag	ctcagcccgg	gcgttctgca	catcatctct	ttaatcccag	2280
aaaaacaaat	ggcggatgaa	actcctattg	acctgggata	caagccctga	ctttggctct	2340
tgatcttttg	gtgggttctg	aatcactcct	tctgtattag	ggcatatact	ttcactctaa	2400
aacttgtggt	aaatgaaata	aatcttgtac	agatgtaaaa	aaaaaa		2446
<210> 3 <211> 460 <212> DNA <213> Home	o sapien					
<400> 3	atgtattcca	agaggatagt	ctataeceac	tgaaagatga	aatttttac	60
	gagatgagcc					120
_		_				
	agctgcagaa					180
	tgaaagaaga					240
					aggcttgacc	300
tgcaactccc	aggaccctgc	tggtcatgtc	aatcccaagg	gcagaaatat	ctcttctaga	360
atccttccag	ctcacctcca	ctgtggctac	aagtgaaagc	cataagtcaa	acgggagctg	420
caggaagcca	cacttactgc	actgtccaag	aataaatcaa			460
<210> 4 <211> 594 <212> DNA <213> Home	; o sapien					
<400> 4 acacacccaa	atgtattcca	agaccatact	ctgtgacagc	tgaaagatca	aatttttgc	60
ttgctatcca	gagatgagcc	ttctgctcca	ctgggaactt	ggctctacca	gctcacagac	120
ccctttggga	agctgcagaa	ataaaacact	cccctctatg	cctcactaca	caagattaat	180
acacttctag	tgaaagaaga	attttaatgc	acttgagatg	aaagaagcca	gatgctttcc	240
tatttatgtc	ctttccaacc	atttagagtg	cgggggatgg	aagtgtagca	aggcttgacc	300
tgcaactccc	aggaccctgc	tggtcatgtc	aatcccaagg	gcagaaatat	ctcttctaga	360
atccttccag	ctcacctcca	ctgtggctac	aagtgaaagc	cataagtcaa	acgggagctg	420
caggaagcca	cacttactgc	actgtccaag	aataaatcaa	aagcttttaa	tagcaagaag	480
ttaaaaataa	agcagcacgt	ccttaaaaat	aaaatttcct	acaactgaca	aaataaagga	540
cgaacacgca	ctggttgttt	cttaaccact	agtggacaag	caaagggaaa	aagc	594

4

<210> 5 <211> 283 <212> DNA <213> Homo sapien <400> 5 actactaaag gcaaccggca tggactcata atatttgtgg ggacagcaaa aagactaaaa 60 gttctaagga agaaaatgcg aaccttgata gtttgaaata gttaaaaaaga cagtgtagaa 120 actgcttagg cagttggatt atggactatt agatgatact tgggtctgat aatggtataa 180 ggagaataaa gtatttaggg atccaatatt acgcctgcag ctttttccaa atagttcatg 240 283 ggggagggg atgtgtaagt ggttaactga agtctaacta gat <210> 6 <211> 2237 <212> DNA <213> Homo sapien <400> 6 tttttttttt caagaaaaaa aaatcacttt aattgaggaa cactttcagt ttgtgacaaa 60 attatgctgt gaatcaggtg ttgcaaatta tggcccactg cctgcttttg tgtaagtttt 120 attggaacac agctacattc agtccatggc tgcttttaga atacaacagt agactttaac 180 atttggaaca gggaacagaa accagagcca tacagctaat aaacttgaaa atatttacaa 240 gttgatgctt tacaaaatcc atctgctgac ccctgctctg taccattgtt ctcttctgat 300 ggtctgttta ctaaaaaata aaaacttcac aaacatgtaa aaaatagatt tgccatttaa 360 aatgtgcttt tcaagtttga ctttttagga tgcaattaat tcactaaata cagaacttaa 420 480 aagaactgta aacateetaa gettacaaca aacetateta gttagaette agttaaceae 540 ttacacatcc ccctccccca tgaactattt ggaaaaagct gcaggcgtaa tattggatcc 600 ctaaatactt tattctcctt ataccattat cagacccaag tatcatctaa tagtccataa 660 720 tcaaactgcc taagcagttt ctacactgtc tttttaacta tttcaaacta tcaaggttcg cattttcttc cttagaactt ttagtctttt tcttccccaa aatatttgag tccatgccag. 780 ttgcctttag ttgtacccaa ataatggttt gtctatttcc taaaagtagt actcttaaat 840 ttaaatttag tgttattttt gttgtcattg ttccttcttc ctcatgtggt tgtgcaggca 900 gagcttgagc atccagattt caaaattaaa aaataaaaga taatctagtt taatatatag 960 tagttgaatc accttaagtc tagactgctg tatgagcacc cattatcttt cactatattc 1020

5

			5			
catcatcccc	caacataicc	acagtagatg	aagggcagtt	tgctcaaaca	ttgttttgat	1080
cctgtcatgt	ctgttcagaa	atgcctgtct	attcagaaac	ccacgtctaa	taacaaaatc	1140
ttggactggt	tactatcaaa	acccaacaac	atacagactc	ctcagctagg	ccctagggat	1200
atttttctac	cttgatttcc	aaatgttcat	tgaaagaatg	cttaattcta	atttggaaaa	1260
aagtttttgg	cttcccactt	ctgctttaca	cgttcatctt	tcttgaaatc	aaatccaatc	1320
caatctatat	tctaagaacc	tgctcaaatc	ttggttcttc	aaagctttcc	ctggtatttt	1380
gcatttttgc	tttgaatagt	tccacgaagg	ataacttctt	actccttcct	tcatctttct	1440
gtatcttgca	tatagtaaat	attaatgact	tgtttgcatt	ttgttatcct	aacttggcta	1500
taaagaaaat	cagatgtctt	caccagtcgt	tcaaacttca	ggtctgccta	cagattcata	1560
gatggctgtg	gatttttata	attttgtcac	aaagttagtg	gtaactacag	gttatctcag	1620
aatatctttt	ttggcgtata	aattttttc	ttttcctttt	ttagacagtc	tetetetetg	1680
tcgcccaggc	tagagtgcag	tggcgtgatc	ccggctcact	acaacctctg	cctcctgggt	1740
tcaagagatt	cttagcctca	gcctcccgag	tagctagggt	tacaggcgcg	caccacctcc	1800
atgcccagct	cttttgtatt	tttaagtaga	gacagggttt	caccatgttg	gtcaggctgg	1860
tctcgaactt	ctgacttcag	gcaaccttag	ccgcctcggc	ctcccaaagt	gctgggatta	1920
caggcacaag	ccactgcacc	cagccttatt	accataaatc	atcttgatgc	tggtacctga	1980
taagattcta	tttgcttttc	tttattcata	gagaccacaa	acagatcgca	gatccaggtt	2040
tctcaaactg	gagcatctgc	ttaattttcc	cataaaatca	gtcttattct	ttctgacagc	2100
tctgagactc	ctccggccac	gactaggtgc	tgtcctggag	gaaacggtgg	aggacggccg	2160
cacaaaaacc	aatctacctg	atgaaaactc	cgttcccttc	tcgccagaaa	cataaaatgc	2220
gatggatacg	ctcgtgc					2237

<210> 7 <211> 777 <212> DNA <213> Homo sapien

tggggtcgcg gcgaggtacc tttctgtttt aaaatgttca aataatgtat tttttaaaaa 60 tgtgtaatca ttcaaggaaa cgggaaaaca agtctaaata aaaccgggtc ctaaagttta 120 ctctaggagt cattattctt cctttgcagt ctcaattcta tttactccgt aacaagtaaa 180 240 ctgttttatc ccttcggctg ggaaggataa tttttaccct accaagatga tgacaatgcc actgcagtgc tcacccagca agaaacacat aaatatgaag cagcgtcaaa gtctttctat 300

360 qaaqtqtatq caaqaattga tttgcaatgc attaattcag gaattcagtg gagaggctcc tactatacct agcagatcta aacttgagct catgataaca ctgcacaaag ctatggtaga 420 taaaagtgat aggtaatgcc aatagaacaa ttccactgac aacacaaact cctccaagaa 480 ttcttccagg cactgtgata ggatacatat ctccatagcc aactgtagtc atagagataa 540 600 tcacccacca gcaggcagca ggaatgctgg taaagtcctt gttggatgtt tccaggtcca gcccatgttc aagaagctga gaaagtgcac taaagattgc catggcaaca caaatgaaga 660 cagtaacata accatctctc ggtagcacgt ttgagagtca accgagtgct gaagaccatt 720 aagtgacggc agctggcgta atcatgtcta gctgttctgt gtgaatgttc gtcaacc 777

<210> 8

<211> 911

<212> DNA

<213> Homo sapien

<400> 8

ggttgacgaa cattcacaca gaacagctag acatgattac gccagctgcc gtcacttaat 60 ggtcttcagc actcggttga ctctcaaacg tgctaccgag agatggttat gttactgtct 120 180 tcatttgtgt tgccatggca atctttagtg cactttctca gcttcttgaa catgggctgg 240 acctggaaac atccaacaag gactttacca gcattcctgc tgcctgctgt gggtgattat 300 ctctatgact acagttggct atggagatat gtatcctatc acagtgcctg gaagaattct tggaggagtt tgtgttgtca gtggaattgt tctattggca ttacctatca cttttatcta 360 420 ccatagettt gtgcagtgtt atcatgaget caagtttaga tetgetaggt atagtaggag cctctccact gaattcctga attaatgcat tgcaaatcaa ttcttgcata cacttcatag 480 aaagactttg atgctgcttc atatttatgt gtttcttgct gggtgagcac tgcagtggca 540 ttgtcatcat cttggtaggg taaaaattat ccttcccagc cgaagggata aaacagttta 600 cttgttatgg agtaaataga attgagactg caaaggaaga ataatgactc ctagagtaaa 660 ctttaggacc cggttttatt tagacttgtt ttcccgtttc cttgaatgat tacacatttt 720 taaaaaatac attattgaa cattttaaaa cagaaaggta ctattttcca atgttttcc 780 atcttatgaa ttcagaagaa gcttggaact tatagtgttt tttgtttgag agtaacattt 840 tcatttctaa atgttttata atttctcata tcaatgtcag aagtatcctg gaaacatatg 900 911 tcacatgcga g

<210> 9

<211> 445

<212> DNA

PCT/US01/43612

1020

7

<213> Homo sapien

<400> gccgcccggg caggtacatg tgcacttaaa tgtaatagca ccaacattca ttatattatg 60 aaggggatac tttataagaa ttataaatta tttttacatg attaaataat tttggcagag 120 taagtccgca ggacttaaat aaccagtcag ccttagtatc tacatctgga ccaggaagcc 180 ttgtgttaca gacacagatt ccctgtgaag ttctccaggg tgtaaagaag gccccaggga 240 ggtgccgacg ggatgtgagg gctgcctttc agctcaggcg agcctgcaag caacagggca 300 gttgggaagg gtcacaggca caggaaggga gcagtgggca accattgatt acatcaaacc 360 aggatggttt cttcttttta aagaaacttt tgtgagtgtt tacccacccc catccacaca 420 aatatgctct ctaggaaatg tgaaa 445 <210> 10 <211> 1254 <212> DNA <213> Homo sapien <400> 10 gtccgcttaa ttaaagatct ttttttttt tttttttta ttgttaagca tatttgtata 60 ttttttacta gttatttcat acttgccctg aaagaataca cattcaaaaa gcttgaaatt 120 aggcaatgtc agtctcatca aacaaaacca gcattggaag cgaatattaa caaatatcag 180 240 aatgaaatta caaaatatac atctccagcc tcataaaaca tgaattttat aagcactttc ataaacataa gaaaaatagc tttgacaata actatttgaa aacattatta ttaataatct 300 360 tgtatactgt acatgtgcac ttaaatgtaa tagcaccaac attcattata ttatgaaggg gatactttat aagaattata aattattttt acatgattaa ataattttgg cagagtaagt 420 ccgcaggact taaataacca gtcagcctta gtatctacat ctggaccagg aagcctttgt 480 gttacagaca cagattccct gtgaagttct ccagggtgta aagaaggccc cagggaggtg 540 ccgacgggat gtgagggctg cctttcagct caggcgagcc tgcaagcaac agggcagttt 600 gggaagggtc acaggcacag gaagggagca gtgggcaacc attgattaca tcaaaccagg 660 atggtttctt ctttttaaag aaacttttgt tgagtgttta cccaccccca tccacacaaa 720 780 tatgetetet aggaaatgtg aaagtataag etteagaaaa atgtttttet eateetttaa tttctggttt tatgatcaaa tgttccgaag acactgcttc tttttgctca aaatagttga 840 cattgtcatt gcttctagtt tttcagctcc tactatgctt actatgtcca tgggtgccat 900 tgacgtcttt ggctatttat catctctaga aaagaaaaaa aaaacattaa aattttagga 960

tgtaggattc acaataaatc tettaccaaa teeteettaa ateeetaaae tetetaeetg

gctctgactc caggatcacc ctttcagttc tttccatgtt tttcttcgga aaatgtagtt	1080
toctaacctt totacccacc cttctcgtct actcttaggt ctgcagccac agtgatagtt	1140
ctaagttgca aacctgatca tgtccttcca gtacttagtc gttgaaaaat cttcctactt	1200
cccgcagatt gaagcctgaa ctctttaata ggcatctaag gacttggacc cgga	1254
<210> 11 <211> 838 <212> DNA <213> Homo sapien	
<400> 11 gcccgggcag gtacttaact aattgggctg aggatgaata tatcagccac agcacattaa	60
agaatgagcc aaggattgtc atggttggtc actttttaaa gtattgatta ctgcaactgg	120
agaatggaaa gtgtatattg gtgacgccaa cctcagtttc tgagcactcc tgctctgtgg	180
tgagaatcag acaaaaattc atcggggtga aaaaggcatt acctgattca cacccttgtc	240
ttgctagccc tcttccattc atttctcaca cagcacttgc tctgttaaat cctctctctg	300
tctcagacca tgcttgcccc ttcaaagggt atggttcagg ctcctttcaa gacattggag	360
tttctctctg gggaaagaga gccccctact ggtttggctt cagtctaggt ccaccatccc	420
tctcgatctg gcatcttgga gattaattta aaaggcaagc tcaccacaat gtaagcctat	480
ggtctggcca accttgcttt gggaactgtg acaccaaagc ccccaggact atctgcctct	540
ccaggagcca gatagaatga catgcctttt tcctaattgt ccacattcca cccccaagcc	600
actgccactg tgggccaage catccatett gcaatettca tetaaaacag eteteattte	660
atgccagttt tgtcaaacct gcaccgtcac aagatattca gaagatgaaa acgttagaag	720
acacccctga attaaaagca cttactagca gggggtggat tatccaaaag tgccgtgatc	780
ggttgtacct gggtttctca ccaatggaat cagctcctgg tgaacaagca tgtgggtg	838
<210> 12 <211> 1033 <212> DNA <213> Homo sapien <400> 12	
atttaagget gtacttaact aatttggget gaggatgaat atateageea cageacatta	60
aagaatgago caaggatttg tcatggttgg tcacttttta aagtatttga ttactgcaac	120
tggagaatga aaagtgtata ttggtgacgc caacctcagt ttctgagcac tcctgctctg	180
tggtgagaat cagacaaaaa ttcatcgggg tgaaaaaaaa aaggcattac ctgattcaca	240

			9			
cccttgtctt	gctagccctc	ttccattcat	ttctcacaca	gcactttgct	ctgttaaatc	300
ctctctctgt	ctcagaccat	tgcttgcccc	ttcaaagggt	atggttcagg	ctcctttcaa	360
gacatttgga	gtttctctct	ggggaaagag	agccccctac	tggtttggct	tcagtctagg	420
tccaccatcc	ctctcgatct	ggcatcttgg	agattaattt	aaaaggcaag	ctcaccacaa	480
tgtaagccta	tggtctggcc	aaccttgctt	ttgggaactg	tgacaccaaa	gcccccagga	540
ctatctgcct	ctccaggagc	cagatagaat	gacatgcctt	tttcctaatt	gtccacattc	600
cacccccaac	ccactgccac	tgtgggccaa	gccatccatc	ttgcaatctt	catctaaaac	660
agctctcatt	tcatgccagt	tttgctcaaa	cctgcaccgt	cacaagatat	tcagaagatg	720
aaaacgtaga	agacacccct	gaattaaaaa	cacttacata	gcagtggctg	gaattactcc	780
aaaacgtgcc	cagtgatcgc	actgtaacat	gggattttct	cacccaaata	ggcaactcat	840
gcttcctgag	tgtaatcaaa	gcatgtggtg	ttttggggcc	atatgcacca	ggtttctatt	900
ttagaaacct	tcagctgtct	tgcttatgta	ccgtatgtaa	atttattctt	tttaaaaatc	960
acttttattt	gattttgact	tattaaatgc	tttaaaagcc	aaaaaaaaa	aaaaaaaaa	1020
aaaattggt	cgg					1033
<210> 13 <211> 824 <212> DNA <213> Homo	o sapien					
<400> 13 acatatgaaa	gtgacctcca	aggggattgg	tgaatagtca	taaggatctt	caggctgaac	60
agactatgtc	tggggaaaga	acggattatg	ccccattaaa	taacaagttg	tgttcaagag	120
tcagagcagt	gagctcagag	gcccttctca	ctgagacagc	aacatttaaa	ccaaaccaga	180
ggaagtattt	gtggaactca	ctgcctcagt	ttgggtaaag	gatgagcaga	caagtcaact	240
aaagaaaaaa	gaaaagcaag	gaggagggtt	gagcaatcta	gagcatggag	ttgttaagtg	300
ctctctggat	ttgagttgaa	gagcatccat	ttgagttgaa	ggccgcaggg	cacaatgagc	360
tctcccttct	accaccagaa	agtccctggt	caggtctcag	gtagtgcggt	gtggctcagc	420
tgggttttta	attagcgcat	tctctatcca	acatttaatt	gtttgaaagc	ctccatatag	480
ttagattgtg	ctttgtaatt	ttgttgttgt	tgctctatct	tattgtatat	gcattgagta	540
ttaacctgaa	tgttttgtta	cttaaatatt	aaaaaacact	gttatcctac	aaagaaaaaa	600
aaacaaaaca	aaaaaaaca	agggtggggg	taatccgtcg	ggcataagct	gtcccctgtg	660

tgactggggt tctccgtccc catccccatc tccgtgacac acaaaaaagg ccagacggcg

720

WO 02/068633			

10

PCT/US01/43612

cacatgcact	caccgaccag	tacaaccaca	caaggaaacg	acgtaggcac	accaacaacc	780
gacagcagaa	agcaatacag	aaaacaacaa	caaccacacc	tcac		824
<210> 14 <211> 1093 <212> DNA <213> Homo	s sapien					
<400> 14						60
	gttggaccat					60
	agcttacatc					120
agtagaattc	catcccagta	ccaaagccag	ataggccccc	taggaaactg	aggtaagagc	180
agtctctaaa	aactacccac	agcagcattg	gtgcagggga	acttggccat	taggttatta	240
tttgagagga	aagtcctcac	atcaatagta	catatgaaag	tgacctccaa	ggggattggt	300
gaatactcat	aaggatcttc	aggctgaaca	gactatgtct	ggggaaagaa	cggattatgc	360
cccattaaat	aacaagttgt	gttcaagagt	cagagcagtg	agctcagagg	cccttctcac	420
tgagacagca	acatttaaac	caaaccagag	gaagtatttg	tggaactcac	tgcctcagtt	480
tgggtaaagg	atgagcagac	aagtcaacta	aagaaaaaag	aaaagcaagg	aggagggttg	540
agcaatctag	agcatggagt	ttgttaagtg	ctctctggat	ttgagttgaa	gagcatccat	600
ttgagttgaa	ggccacaggg	cacaatgagc	tetecettet	accaccagaa	agtccctggt	660
caggtctcag	gtagtgcggt	gtggctcagc	tgggttttta	attagcgcat	tctctatcca	720
acatttaatt	gtttgaaagc	ctccatatag	ttagattgtg	ctttgtaatt	ttgttgttgt	780
tgctctatct	tattgtatat	gcattgagta	ttaacctgaa	tgttttgtta	cttaaatatt	840
aaaaacactg	ttatcctaca	aaaaaaaaa	aaaaaaaaa	aaaaaaacaa	gggtggggt	900
aatccgtcgg	gcataagctg	tcccctgtgt	gactggggtt	ctccgtcccc	atccccatct	960
ccgtgacaca	caaaaaaggc	cagacggcgc	acatgcactc	accgaccagt	acaaccacac	1020
					aaacaacaac	1080
aaccacacct						1093
<210> 15 <211> 428 <212> DNA <213> Home	o sapien					
<400> 15		-11		h	taata	60
	ggcatggtca					60
gaggtgtttt	tgctgtctta	atttactaaa	ttgcctaatt	tttagttgat	ttctctacag	120

agettacett gtgtagetat ttetetttta etgttgettt ggtgtgttet tgaagtttga	180
ttgattattt ttggtcattg agttcttagt gtagtttgct agatgcatta ttaagattct	240
tttgtgtctg acacttgtgg tgagttgctt ttgaaatctg ttgagatttc catgtgaaga	300
actgataatc aggctcttga tctgcttccc taaattactt ttttagagcc caaaccccag	360
gtttagggtg agggtttgta atacaaagaa acacttccat cacttctgcc cttaaccctt	420
gcctctat	428
<210> 16 <211> 6823 <212> DNA <213> Homo sapien	
<400> 16 aaacttggag agacgcagga caggatcccg gcggcagaag gacggagaga aaggggaccc	60
cgggacggga aaggcgcaga gcaggcgcgg gcggcggg cggcggggca gggcagggcg	120
ggcgtcccgg cagagggegc gcggtcgccc tgtcgccctc cgccccgccg gggtcacagt	180
geceetece tegegeeeta geegeeetge egggetattt ttacgegegg acaceggaca	240
ccggacaccg ggctggggcg gcggcggcgg cggccgaggc ggccgaggcg gggccgcacc	300
ggggccgggc gtcggggcca cacgtcggtt cgcgggtcgc cggggctgcg cgcgccatgg	360
agccgcggtg cccgccgccg tgcggctgct gcgagcggct ggtgctcaac gtggccgggc	420
tgcgcttcga gacgcgggcg cgcacgctgg gccgcttccc ggacactctg ctaggggacc	480
cagegegeeg eggeegette taegaegaeg egegeegega gtatttette gaeeggeaee	540
ggcccagctt cgacgccgtg ctctactact accagtccgg tgggcggctg cggcggccgg	600
cgcacgtgcc gctcgacgtc ttcctggaag aggtggcctt ctacgggctg ggcgcggcgg	660
ccctggcacg cctgcgcgag gacgagggct gcccggtgcc gcccgagcgc cccctgcccc	720
gccgcgcctt cgcccgccag ctgtggctgc ttttcgagtt tcccgagagc tctcaggccg	780
cgcgcgtgct cgccgtagtc tccgtgctgg tcatcctcgt ctccatcgtc gtcttctgcc	840
tegagaeget geetgaette egegaegaee gegaeggeae ggggettget getgeageeg	900
cageeggeee gtteeceget eegetgaatg geteeageea aatgeetgga aateeaceee	960
gcctgccctt caatgacccg ttcttcgtgg tggagacgct gtgtatttgt tggttctcct	1020
ttgagetget ggtaegeete etggtetgte caageaagge tatettette aagaaegtga	1080
tgaacctcat cgattttgtg gctatccttc cctactttgt ggcactgggc accgagctgg	1140
cccggcagcg aggggtgggc cagcaggcca tgtcactggc catcctgaga gtcatccgat	1200

tggtgcgtgt cttccgcatc	ttcaagctgt	cccggcactc	aaagggcctg	caaatcttgg	1260
gccagacgct tcgggcctcc	atgcgtgagc	tgggcctcct	catctttttc	ctcttcatcg	1320
gtgtggtcct cttttccagc	gccgtctact	ttgccgaagt	tgaccgggtg	gactcccatt	1380
tcactagcat ccctgagtcc	ttctggtggg	cggtagtcac	catgactaca	gttggctatg	1440
gagacatggc acccgtcact	gtgggtggca	agatagtggg	ctctctgtgt	gccattgcgg	1500
gcgtgctgac tatttccctg	ccagtgcccg	tcattgtctc	caatttcagc	tacttttatc	1560
accgggagac agagggcgaa	gaggctggga	tgttcagcca	tgtggacatg	cagccttgtg	1620
gcccactgga gggcaaggcc	aatggggggc	tggtggacgg	ggaggtacct	gagctaccac	1680
ctccactctg ggcaccccca	gggaaacacc	tggtcaccga	agtgtgagga	acagttgagg	1740
tetgeaggae eteacacete	cctagaggga	gggagggagg	gcagggtgga	gggcaaggct	1800
ggggggaggg gattgggttt	aggaagagct	aggttaagtc	gtaacgagtg	gggaaacact	1860
gagtettgtt gggtettggg	ttgtgtggtt	tggtagctcc	tgtgggtacc	tcctgaagca	1920
gcagcgaatg gcaatgggtt	gtgttgtgtt	aatgaagact	caattggttc	atattactct	1980
gagttgtgca aagctcatgg	agccttttgg	ggtagtgttg	agataggttt	ggtcgtatca	2040
ttttgtgagt ttcctaggtc	agtgttgggt	ttggttgggt	tgtgagtetg	ggatagtgtg	2100
gtccagctgc attgtgtagg	attctgtggt	ttggtgggtc	ccctagggcc	atgttgggtc	2160
aagttagatg gtcccccatg	gcattgttga	gatcgaatgt	gtgtggtgtt	aagtttcgtt	2220
gagacatggt ggaaattgtg	tagctctgtg	attcttccag	gggcatgtta	ttttaggttc	2280
tgtgaacttg cgagtcatgt	agaaatgtga	agagtccagt	ggtagaattt	gagctttcta	2340
ggtcacattg ggttaagttt	gtatgaccaa	atgaatcttg	tagggttctg	ttgggcttaa	2400
ctgtgtagag gtgtgtggct	ggacattttt	cgtggccaca	gcgagttgag	ttgtgttgaa	2460
ttgtacaacc atatgagcct	tgtaaggcca	gttcagttgg	gtcatgccac	tgtttgagtc	2520
tcatagggcc atgctgaatt	gagttccatt	gagttgtgtc	actatgtgag	tcctacagga	2580
agttgggttg agttggactg	tgcgaacgag	ttccataggg	ccacatcggg	ctgttttgca	2640
tttagtggta gcaccaggac	ccaaaggaaa	tagcagtggg	gaagcatcat	gtatctggga	2700
gcatgcagtg gcgagggctc	tgggaggtgt	gccgagctgg	ctccccagct	cgctgtaggg	2760
ggcgggactg gattctgtat	ccatgggatt	gggtgttcat	ccagaggcga	ctgggtaaat	2820
taggaagagg tggatgctcc	tcctgtttac	cccacatcca	cttcattgtg	ctgttcactc	2880
ccattctccc ctacagtttt	atgctcagac	atggaggtca	gagccacaag	ggaaagggga	2940

3000 gaggggaga aaactgtact ctgtccagac atgatagagg gacagagcca aaaggataga 3060 gaaagagacc cagaaaaagg aagaggtgga aacccagaga gacagagacc caaagggaga gaaacagaga ctcagggaga gggagacaat gacctggagg gtggggtatg gcagagacgc 3120 3180 agaagagag aacagaaatc cagagtgggg agacagagac caagagcagg ggatagaagc cgggcgaagt ggcccatgcc tgtaatctca gcactctggg agaccgagga agggggattg 3240 3300 attgaggcca ggagttcaag accagcctgg gcaacatggt gagaccccat ctctacaaaa aatacaaaaa ttagctgagt gtggtggcac atgcctgtga tcccagctac tcaggaagct 3360 gaggcagaaa gatcccttga ccctgagagg tagaggctgc attgagccat gattgcacca 3420 ctgcactcca gcctgggcaa cagagggagc ccccgtctca acaaacaaac aaaaagagcc 3480 agtgggggag ggagggacag agacccagag ggcagcgtca gacacccaga gttggagaca 3540 3600 qaacaacaga qtctcaqqqa aaqaqaacca caatagaaaa aggcagaaaa ggccgggcgc 3660 ggtggctcac gcctgtaatc ccagcacttt gggaggccga ggtgggcaaa ttacgaggtc aggagateca gaccatectg getaacaegg tgaaaceetg tgeetaetaa aaatteaaaa 3720 3780 aattagccgg gtgtactggc atgtgcctgt aatcctagct acttgggagg ctgaggcagg agaatcactt gaacctggga ggcggagctt gcagtgagcc aagatcacgc cactgcactc 3840 3900 ttgttggagt acattttccc tgcattttag agattaggac agtggtcact ttctagttgc 3960 4020 cgtcttcaca gacaaacttg aaaggtatta aggaaaaaat tccacatagc tctgggcctt ttttgtattc tgattgccac gttaatctgt aatcgttaag tacccatgaa agaatgtgtt 4080 4140 tcagtatcag tgcttttttg gtactttaac aagtattgta ggcacggtgg atttttttga aatacccatg tgtccaatag caagttaagg aacctagcgc atcaaatttt gttttcttca 4200 4260 ttcatttgga accttatttt cgcaaaaaac ctagctggaa taataatgcc atattgtatt ttgcacactg ctttattttc tagaggctct gggagcaaat tacattcatc acattacctc 4320 tgctctctca agattaaagt ctttcagcaa cattctttat tgtcatcata aggaaaaact 4380 tttatcgcaa tgatagtcag ttcacattag tttagcacta tagatagtat tcagaaattg 4440 ctttctcttt ggtaaagaag ataaataggt gaattttatt gcctgtgttt tcaggcttca 4500 4560 gaggtacctg gcaccttact caagcaaaaa caaaaaacag ctttacttca aaagcatgtg cctctggtaa attatccatc acttttgttt taaagtggtc cctccaagaa taatgtggca 4620 4680 tacacagtgg gtttggttgt aaggcagatg taatagatga cttcaaaaagc ctgctcctta ctgcactctg gacaaggccc tggtctgtat agtttggctt cctctgttaa gtcattctac 4740

aaggtgactt	gccatttgaa	ctttcgtaag	agacctcagc	agttagactg	agaaaagtta	4800
gagtgctgta	gttatgaagt	catacatttt	tgataaaata	cctgtggaaa	accagggatc	4860
ctctcctgtt	tetetetett	gcctccccct	ttccctccat	tcctctgtcg	cctcccctc	4920
tcctccactt	tctttaagaa	tcagggggta	cagaataacc	tacaaacaac	ctcttcaaag	4980
tacccttgga	aattgaagtt	caatcttaag	ttttttgctg	tctttaattt	actagaattg	5040
cctaattttt	agttgatttc	tctacagagc	ttagcttgtg	tagttatttc	tcttttactg	5100
ttgctttggt	gtgtcttgaa	gtttgattga	ttatttttgg	tcattgagtt	cttagtgtag	5160
tttgctagat	gattattaag	attcttttgt	gtctgacact	tgtggtgagt	tgcttttgaa	5220
atctgttgag	atttccatgt	gagaactgat	aatcaggctc	ttgatctgct	tccctaaatt	5280
acttttttag	agcccaaacc	ccaggtttag	ggtgagggtt	tgtaatacaa	agaaacactt	5340
ccatcacttc	tgcccttaac	cettgeetet	attacctaag	cttagtaagt	agttttctta	5400
atattgtcca	atgtttggtg	ttatctgcat	tgttttttgt	ttttttaatt	gtggttgttc	5460
tgacgtgtga	aatttaagga	aagagccatt	ttttaaaaat	gccgagcagg	gcaatgcaag	5520
tacagccaaa	tattagactt	gatgtgcaat	cttcggtcct	ttttaatctg	gggtattata	5580
ggcagtactt	taaattgcaa	agtetteegg	gcctattttc	ctctacattt	ttgtaattaa	5640
ctctgggggc	ttacttgttt	tggcagtact	gaaatcaaag	gagctggttc	ttcttttctc	5700
ccaattattt	tcatatgaaa	gcacctacaa	ttagcctgtt	agtcctattc	agatacatca	5760
aatatcagtg	aatgctttac	tattcgcaca	tttaagcatc	tttgttttac	ataaaattag	5820
agtatgaaaa	ccagtgttca	attttttatc	ttgttgagct	tgtaaaatgc	cagcaattta	5880
aaactaggac	ttttcccccc	ataagccaag	gaggtagaat	tactaataca	agggttaaag	5940
aaggtagatt	ttgttttcaa	tatttgggta	atattagaaa	gattcttccc	acagggaaga	6000
actagcaagt	gtcccaattt	tttccaaacg	ttggggaggg	gaaaattcac	tgtatcatga	6060
aaccctaagg	gtttgttgca	cttcctgctt	tttaggcctg	gataacagta	tcaccatcct	6120
tatttacaga	agggtaaaac	tgactcttaa	tgagaaaagc	tttataagtt	caagggctgt	6180
aaaatatgaa	ctacttaggg	tegtttgeet	tccatgggaa	cttggctaga	cttagaaaaa	6240
gctgtttgtt	gtgctaatgt	aaaagtgtca	tacaatttag	aagatttttg	aagatggtaa	6300
acttagaaga	attctatgtt	ctgaaatgca	cacttttaga	atgtttttct	ttgaaaacag	6360
gctaatagtt	ctttctttt	ttgacaaagt	ttcagctcct	ctttaaagtt	attgtgtcat	6420
ttttctggtt	taaatttccc	ttatatttcc	acctgtaatg	tcagtggcaa	caacatcata	6480

6540 cttcacttac ttgttaattt actttttacc cttattctaa gagcaagttg agttgaactg 6600 aatcttcctt qtcttagtaa caatgtataa atagtggctt ttctgtacaa aaggttgtaa tgcctcctga tggatataat tttgtgattg tatttaaaag ttgaataaat cacaccagct 6660 tcctgaaaat gttcataatg catcttttgg aaaacaaata catgcctact ttgtgcatat 6720 6780 ttgcattaac atggcaaaga ttgtatgaaa tacctgtttt tcagaaaata aaggttcagt ctcaaaagat aaaaaaaaaa aaaaaaaaaa aaaaaaggcg gtc 6823

15

PCT/US01/43612

<210> 17 <211> 984 <212> DNA

<213> Homo sapien

<220>

WO 02/068633

<221> misc_feature <222> (211)..(456) <223> a, c, g or t

<400> 17 tggccctttg agatttccta tctcaccgtt acttcagttt acccttgcag ggggccaggg 60 agtcaagaat ataccgtgtt cctccagggt ttaagccggc catgccttcc cgagagcata 120 accaacttga caggggtgcc cagttacccc acaaactgaa ggaaggagat ccttcccccg 180 tccccaggag tgctctcaac cagcctcaga nnnnnnnnn nnnnnnnnn nnnnnnnnn 240 300 360 420 480 nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnccct aaccggccta ccacgacccc actgaacagc gcatgacgcc acgagaccgg aacgacaagg cggaccaaga cagaaatcag 540 600 actcaaacac aacagaccaa gataaaccgg caaatccacc acagaaatcc agggcagaaa aaccgacagc aacagcacaa actcgtgaga ccaaaagagc gacacaaaag ggacaaaggg 660 aaacacgaac agaaaagcca gcctatgacc agcacgacac aaccccaaac gccaccagag 720 cacccagacc gagccataga caacaacacc gacagccata acgtacggac tgctgccgac 780 aacccaaccc agcacaaata aagacgcacg gaaccccaca tgcagagcct ccactgaatg 840 gcgccacccg cacggacacg acagcaaccg ccgcaatcag accaagcact ccccaacaga 900 ccacggagag acccgcaaca agcggcagca caagacacag atcggacaac accaagaaga 960 984 taggagagag ccccaggtaa caac

16

WO 02/068633 PCT/US01/43612

<210> <211> <212> <213>	18 186 DNA Homo	sapien					
.400.	10						
<400> ggtcgcg	18 gcg	aggtacaaac	gtgctgtaat	tataagtctg	tggtgcagtt	ccattttatg	60
ctacaca	itta	aggcttttaa	ttttgtgtaa	aaggaatttt	tggaatagtc	ttcattgaga	120
ctcttt	taa	tcttatactt	tctaatttag	aattataaga	cattcaattt	gaattataga	180
aaaatt							186
<210><211><211><212><213>	19 418 DNA Homo	sapien					
<400>	19 acta	tatagccatg	gtccttaatc	atoctoaoco	gcgcagtgtg	atggatcgcc	60
					agcagcttga		120
					ctggtgatgg		180
					taatgggcca		240
					cagatacatg		300
					cctcgcccta		360
					atattctgtt		418
<210><211><211><212><213>	20 1811 DNA Homo	Sapien					
<400> atcccg		tctgggggcc	caatctcccc	ccaggggctc	ttccaagaca	ccgaggcttt	60
cgctcgt	ccc	tgtttaacag	cctgcggtgt	cttttatata	tacgctccct	gggggcccgt	120
gtcacca	acaa	cgtgtggtag	tgaaatagtg	gegeetetgg	aggaaattcc	ttgatggcgc	180
cggcct	cttg	tatgtgttag	aagacgctct	ttactatggt	gtggtctagt	actaattgct	240
gattcat	cga	tgcggccttt	tttttttt	tgacggttcc	tatataacgt	ttatttctgg	300
aagttaa	aagt	agatacagca	atataccaaa	aaaaaaaaa	aaaaaaaaa	agacaaaaaa	360
cctcaca	aata	atataaattt	ttacactatg	aagtacacat	tggaatttga	atgcagtggc	420
	.~~	aattataaaa	anaattataa	ataggtaagg	22002000	attendtone	490

17

ctgggctggg	gatggggagg	gggcagtgga	caggaagcgg	gcagggcctg	aggaccctgt	540
tctttaatgg	gccacaacag	ggctcagctc	ctctcagaac	ttttgctaca	atcagagtta	600
agaccagata	catgctacct	aaggccatga	acttgacaat	atctgctcca	gagaagccct	660
gaaccctcgc	cctaggtccc	tatgatttaa	acccaatggt	aagcccaagt	ctcacctttc	720
taaatattct	gtttatcagt	taagcttatt	atgtactgaa	gagtgttgct	ggagaagtaa	780
gagctctgca	tgacacatca	actgtctcca	ggcaggagga	ctggggcgaa	ccctgttcat	840
cctagagaag	gtcgtctccc	ccttaattca	gagaccagct	aatttgattt	aacaaacaga	900
attccacaga	aactctgatc	agctgaggca	aggtggtttt	gagttgccaa	atccggccat	960
gcctctgagt	cagaggcagc	ccatccagca	cgtgctaggt	gttcccatac	gcacaggaga	1020
ggcgagctag	ccagccaagg	cgggcaggcg	gggaggccct	ctagctgttc	tgcctcacct	1080
gtggggccc	agcagggagg	agtcaccagc	ctcagaggga	ggccaggtat	acaccctcat	1140
acgagggcag	actcaagttt	atcagtaagc	ctttgccctg	catgaactga	atgaagacgc	1200
cattacaagt	gccactggat	atcaccaaga	aactggctaa	gaaccatatt	cctgagctca	1260
accagacacg	tegetgggge	cccatagtgt	gcatcatgtc	caacctgtaa	ctctctcccc	1320
ctcttcttcc	atgaggtcct	gagaccagga	ttcctaaaac	aaacaggatg	agggaccttt	1380
agacacgcaa	ggagacatgc	ctctagcagg	atcaggggga	ctggggtcgg	gagggtgggg	1440
caggaaggaa	gccagaatca	gaagtatccc	agccctgata	aggcacccac	agaaacaacc	1500
tagcctctga	aacagcagat	caagtccagg	gagaaaggga	gtcaaggttg	taagcaccct	1560
ctgcccagcc	ttactcacta	aaaggccaat	acattacaaa	ggaaaataag	tctatttata	1620
aaaaaaagtc	taaaatgctt	agattctcct	taaaccttcc	tatttcaaca	ccaaaggcca	1680
ggttgcagct	tcagatgtct	taagggtttg	acctgaagcc	cgtttcaggg	attatataaa	1740
ttaccagcct	gaaggaagct	gaatgcttaa	agcaccaagg	aggctgttaa	ctgaagtttc	1800
tttttttt	t					1811

<210> 21 <211> 602

<212> DNA

<213> Homo sapien

cggccgccgg caggtacagg tttttttggt aatgcgattt aaaattttta aaaacatggg 60 cttcatgaaa acaccattgt tactaacttg ggcttagatg ggaatctaat gtgaatagtt 120 caagttatgg gacttgtcta aatgtgtcta tactctaaac ctggggggaag gtggtgtgga 180

18

acattgactt gactacagtc gaatacatgt tgggaatcat tcccaatcat aagacatcgt 240 300 cgtttctgta ggatgactgc atatgttcag agtagctttt tgaatttggt tcccttagct ttagggatgt gatgttatag tccaaaatgt ttacaagaaa acctaagtct tcaaaagcac 360 420 aacttttgtt gettaggaet ttgeatcaac tgttgtteea gaecteactt caacttettg gtctctgaac tggttttagc tagcatgcat gagagacagt tttcatgtat gctagctaaa 480 accagttcag agacagtttt catgtataat gtttctgctc tgcaactgga aagtggttta 540 600 ctttqcacaa atqctqatqa aaacttcatg actatgagac ttttcttctg tgtatcaaga 602 aa <210> 22 <211> 4114 <212> DNA <213> Homo sapien <400> 22 tttttttttt aattaggata atgcctttat taacgaaaat gaaacgttca ttcctccttc 60 cactcctttt cgttggtttt ttggacacag ctcacctgat cctgctaaaa acgttgtcag 120 180 totgottggg gottccctcc ttgattgact cacgotgggg gatgtottga aaagtattta tccacttcat gggaatgagc cctccaatat cagccaacat caatcattct tacctaaaga 240 ataataagaa aaagttaata taaaagacaa gggtataaaa taaaggtttg aaaatgctag 300 360 tcaacttcaa aatttaaaga qtaaaaatcc agagataaag attgggggta agttacagca taaaaaaata ggaagaaact tcatggtggg ggggaaatct aaaattattc ttacataaaa 420 taagtagaca cctgaattag aatgaaaact gtattttctt taaaatgtaa aagcctgact 480 ctcagtttca ccagtctgag cacaagtttg actgcaaccc aaaatatact atcccttatg 540 600 tgaaggtatg tgacaacgtt gacctcacca aatgagtttt aacatcagct ctttttcat 660 atqaaaqcac ataccctqct ccccattcaa gtatgtcttc cattgtcagg caggctgacc accttcagca ggagtcctcc aagagtgccc aactcccctt cccacagtac acaacgctgt 720 agttgttgtc ctgcaatcct ttgtatttac ctcattcttt cccatctaag tcctcactga 780 gttttaaagt tagggctgga aaagctatgc cttactggga cagcaaggaa ccaatttttt 840 tctgagggag aagacattca ccttcactat atgcctggca gggccacagt gcacaaaaca 900 aagatcagcc ttcattcaag ttccaggttt ttcttcctcc ctgaatgatt actgcaaagg 960 gtatatgaag taagagttcc ctgttgcaca tgtaccatcc ataagggata ctatatcgtt 1020

ttgcattctt cccccattc tccacattgt cctatcttaa gtccaagccc ttttcactct

1080

19

caaaaaaaaa aaaaaaatat ttttttcagc actggtgttc aaaagcaacg tttttatggt 1140 1200 taatggttta ccagcaactg ttgagatttc cagttgagtc ttaaaaaattg ccaatcatta tctagcagca atgacagatg attaggagca gtcaaatcct ctgaattctt tccctaatag 1260 1320 gcagccattt gagaactgca ctagctgaca tcactaaaac attatcagct aaagccaaaa ccaaataaag gcccagacca acatcctggc tctctaaaac ctgtccaaaa tcattaagtg 1380 1440 aaaggcagta aatgcaggac tgtggatcat gtcactgcag ctgacaatga ttaacaatag 1500 gagacatgca acccccatta aggttaaaag tccaaaacta gtcacacgca tctctttatt ggggaaaagt gagactatta tgcattcttg gtaggtttgc aaccttgcat gaagagcacc 1560 cattgcattt ctttcatctt tcagaaagca ccggtatctg ttccaagggc ctaacagtac 1620 1680 gaaaatacat totggcatca cacctotgaa cocaagactg ttotcattaa aaataatttt 1740 ggtttgtaac aaaattatga aatacaatgc aagcacctcg gtatagcatt attactgaaa 1800 ccacttaatt cccagctttt tgagtttttt aaaaaaaccc actgcactaa gattcacaat tcattgctac atacaaatta aagctagtaa gaacacacta acgtcacaag tttctcattc 1860 taaagtgcaa aagcctaatc atctgaaagt gaacagggta aggcaaaatt aaccccccac 1920 1980 cccaataaag ttcctgaagt ccatatatta tataccaagt acattctcta aaaattgtta 2040 ctgactggta agaaatagac ctgagttttt atttctaaca cccaatcact aaaccacggc 2100 agcaagcact ggccaccgat ttaatggatt acgacacagg aaaccccatc agggttctat gtaatttagt gatactcatg tcactaatat tgagcattat acttgatctg cattatattg 2160 ttgatatgca gaggctaaac tagtcatcat ttgctctttc atctatcagt agagtccaaa 2220 gttgtttgct tgaatggact acatgttaaa gtacaagtct gtccccacct tgtgaattgc 2280 ttgccaacga gcaagctttt tcttgataca cagaagaaaa gtctcatagt catgaagttt 2340 2400 tcatcagcat ttatgcaaag taaaccactt tccagttaca gagcagaaac attatacatg aaaactgtct ctcatgcatg ctagctaaaa ccagttcaga gaccaagaag ttgaagtgag 2460 gtctggaaca acagttgatg caaagtccta agcaacaaaa gttgtgcttt tgaagactta 2520 ggttttcttg taaacatttt ggactataac atcacatccc taaagctaag ggaaccaaat 2580 tcaaaaaqct actctgaaca tatgcagtca tcctacagaa acgacgatgt cttatgattg 2640 2700 caggittaga gtatagacac atttagacaa gtcccataac tigaactati cacattagat 2760 tcccatctaa gcccaagtta gtaacaatgg tgttttcatg aagcccatgt ttttaaaaaat 2820 tttaaatcgc attacaaaaa aacctgtact tttagttcaa ctcaacttgt agaattacca 2880

agattgcata	atgaaattac	tgatattgcc	gatctatggg	caggtcagtt	tgctacaata	2940
gagactaatt	atcacatgct	atacggtcca	tgtcaaggtg	ctaaaagcac	cctagttccc	3000
aagtatagtt	tagttccctc	tccccacac	cactgatgtg	ttccatgtta	tcttcagtta	3060
caatgcaact	aaaggaaacc	acaactgagt	cagatatacc	aaagaatcaa	gttgcacttt	3120
ttatctgaga	actgcaacag	cactgaattc	tgcctgacaa	attacagctc	taaccccaca	3180
cccacacagt	tttgatgtaa	gctagcttta	ccatacaagt	gttaggtgct	gcactgtaat	3240
ttcatgtcag	aaatgtgatg	ccagaatgcc	cacggaataa	aagtacatac	aagtcaccaa	3300
gttagattat	atgcttgtta	cctacctgta	tgcagtcggc	aatgagaatc	ttggagcaag	3360
caggaatact	acatccgggt	cctaatgtcc	attgccattt	gcggtactac	gttcctcaca	3420
gttacgcact	gcagaaatgc	tggctaaatg	cagttatgta	gcaggccact	actttaatag	3480
tgcataattg	cagtccaaga	acaccagaaa	acattccgcc	acaacttagt	ggcttgccca	3540
agaaaagcca	agtatctaaa	ttttaatctg	ccataatatg	ccacttaaaa	attgcacagg	3600
cgtaacatta	caatttcccc	attttttagc	tgtttatatt	agtggtacaa	tacatctata	3660
aagagtggtg	gggttaggtc	tgtaatttgt	caggcagaat	tcagtgctgt	tgcagttctc	3720
agataaaaag	tgcaaacttg	attctttggt	atatctgact	cagttgtgtg	gtgtccttta	3780
gttgcattgt	aactgaagat	aacatggaac	acatcagtgg	tgtggggtta	ggtctgtaat	3840
ttgtcaggca	gagtgaggtt	tgttgtggag	ctggcagatc	caaagttgga	ggtgaaatgg	3900
tataaaaatg	gtcaagaaat	tcgacccagt	accaaataca	tctttgaaca	caaaggatgc	3960
cagagaatcc	tgtttatcaa	taactgtcag	atgacagatg	attcagagta	ttatgtgaca	4020
gccggtgatg	cgaaatgttc	cactgagete	ttcgtaagag	agcctccatt	tatggtgccg	4080
agcagctgga	tagaaacccc	cgctgattgt	tgtt			4114
<210> 23 <211> 234						
<212> DNA						
<213> Hom	o sapien					
<400> 23					L L L .	
agtgtttgca	acagcaccat	ttgtcaaatt	caaagatgct	caaaaggtgt	tccctacttt	60
gcatgagagg	gagagctttg	taacaggaaa	ttgtataagg	caaactctct	attcattcct	120
aaggcctctg	ttcattccta	atgtttacat	ggttctctac	tctgaagggc	accaacatgg	180

acctcacctt cttaacatgg aaaatcaaaa tctaaatgaa tacaattaaa agga

234

21

WO 02/068633

<210> 24 <211> 600 <212> DNA <213> Homo sapien	
<400> 24 actgcattgg tggcttctcc atagggaggg ggtcctatct catagactcc aaacttcatg	60
atggcaggga ggatatctgg atttgctcac ccctgtattt tcagagcctc acacagtgcc	120
cggaacatgg taaacattta atactatctg tcaaaaacaa atgactgaaa gagcagatgg	180
aaagagccaa teetgeattg aagagatate catggtggee etaaaactae teaaaccaga	240
tgtctcttca gcttcccact ggaaaatgga ccggtgggca aaccaccatc tcacatctca	300
gcgagagggt caatgtgcaa aagtatttaa atagcgacga ggtcccacac cccatcccag	360
gacagccccc agcatcctgc tccaacataa gcagaaaaag acaatgaggt gcaaagagct	420
tatctcctgg gatggttccc gggtggtctg cattgccaca cagcacatca tgctttgatc	480
ctgaaggaca aggccccaat aagccctatt tctcagcaca gtcttaaaat cacctggaaa	540
tcattccacc taggacccct cgtgaatcag cactgatccc aagcgacacg ggaaccccta	600
<210> 25 <211> 496 <212> DNA <213> Homo sapien	
<400> 25 ggcaggtaca ttgtaataat aaccacaaaa taattgtata aggagaaaaa taataactga	60
cattcatggc cctctgcaag gcacagtatc tgctttctca tttggtcctt cgttggttcc	120
atcctttgaa ggtctgagag cagcaggccc attccatgaa caccaaagcc cttcctacca	180
cgccagccca gactgccatt tcccctccag aaggccagtg ttcatcatcg atagggctag	240
agaccatccc ggagtcccca tgtttcagga ctcccgaatc ttcaaatagt ccatctttaa	300
gaagggatet eetggeaget aagagggtga agetaategt tetacaaagt agtgeetaac	360
tgttgataag atggcagtgt gtaggaagct gtgtgttggg tcggattccc cttttcatga	420
gccattttct gtggtaggtt ccacggacat ggacaccatg gcctcatgga agcatgaaca	480
gctccaacac agggtg	496
<210> 26 <211> 1690 <212> DNA <213> Homo sapien	
<pre><400> 26 atgcctagca cggatgctgg tgcctcgcag ggtttacgaa tgatctgtcc cgtctccagt</pre>	60

PCT/US01/43612

22

gacgccctct	caggacccac	taccgaagtc	attaggactc	ctttgtttgc	agatgacagt	120
taccgagctc	agataagagg	tggcaaagag	tgccagtccc	ccatcaaggg	tggacccaac	180
aggtggacag	ctcagagagg	cctggatgcc	ggggatgggc	tctcagcaga	tgtaggagga	240
gctcaagtgc	tggcaacagg	caagacccct	ggggctgaaa	ttgatttcaa	gtacgccctc	300
atcgggactg	ctgtgggtgt	cgccatatct	gctggcttcc	tggccctgaa	gatctgcatg	360
atcaggaggc	acttatttga	cgacgactct	tccgacctga	aaagcacacc	tgggggcctc '	420
agtgacacca	tcccgctaaa	gaagagagcc	ccaaggcgaa	accacaattt	ctccaaaaga	480
gatgcacagg	tgattgagct	gtaggtgagc	agtgacgtga	agaggggttc	tagccccgtg	540
gaaaacagcc	catggttaac	atctcaggat	gttctgcatt	caaacaccca	aggctggtaa	600
tgaactttca	catggactga	atattggagg	caaataatag	aaggaataga	atatacagtg	660
cctctgtcct	gaaggaaaat	atcatgcctc	ttctggaaga	aacggactgc	acagaggaag	720
gattgagcaa	tttagcctgc	agtggaagaa	ggtggacacc	aaaagcttca	ccctgtgttg	780
gagctgttca	tgcttccatg	aggccatggt	gtccatgtcc	gtggaaccta	ccacagaaaa	840
tggctcatga	aaaggggaat	ccgacccaac	acacagcttc	ctacacactg	ccatcttatc	900
aacagttagg	cactactttg	tagaacgatt	agcttcaccc	tcttaġctgc	caggagatcc	960
cttcttaaag	atggactatg	tgaagattcg	ggagtcctga	aacatgggga	ctccgggatg	1020
gtctctagcc	ctatcgatga	tgaacactgg	ccttctggag	gggaaatggc	agtetggget	1080
ggcgtggtag	gaagggcttt	ggtgttcatg	gaatgggcct	gctgctctca	gaccttcaaa	1140
ggatggaacc	aacgaaggac	caaatgagaa	agcagatgct	gtgccttgca	gagggccatg	1200
aatgtcagtt	attattttc	tccttataca	attattttgt	ggttattatt	acaatgtaca	1260
tggctgttgc	atagaagaca	tgactggtgg	aggetgagga	aagccatgac	attctacaat	1320
tgccatcagg	ctaaggcccc	gtgagcattt	ctctcccttg	taatattaac	cctgtatttc	1380
tgggatcaca	tcacggaata	ttctttgcct	ttccactttc	caggaaatct	ctcggactgg	1440
gctaccctcc	ttgtgtgtga	tgaaagatga	gctatatttc	agaacaaagt	gctgtgttgt	1500
catgatttgc	ctggactccc	agggcgtctc	ttacccaact	tgataacgat	gctgttcatt	1560
agcagccttt	gttaactgat	aaccaagagc	ggtaatgtga	tactcataag	caattttctg	1620
tgtgtaggat	aaaataaacc	atcttgtatg	ggaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1680
aaaggcggtc						1690

<210> 27

23

PCT/US01/43612

WO 02/068633

<211> 461 <212> DNA <213> Homo	sapien					
<400> 27 gggtgataat	catataggcg	aatggtctct	agatgctgct	cgagcggcgc	agtgtgatgg	60
atgcgcccgg	gcaggtacca	agctcccagg	cccttcctct	atcatggatg	ctgggtgact	120
tcgggaagtc	accacctctt	cccaagcctg	tttcccatat	cacagatgtg	gggccatggc	180
ctcgatgatg	gtctccacag	gtctttccac	ctctgtgagt	ccaagtcagg	tcaatcagca	240
aggacccatc	tctgccctgg	gtcagctcct	cagaaccaac	ccccagcatc	cctaaagcaa	300
aagcctcacc	tcaagggctg	ctcagaagag	agcaccttca	gcatgagttg	ttgctggaag	360
atctaataag	ctgtgtttcc	tgggaagtgg	tgctttactt	agccctgtgg	acaacttctc	420
tatgcatctg	tgtgagcaga	tgatcattgt	attacctttt	a		461
	s o sapien					
<400> 28 ccgcttaatt	aaagatcttt	tttttttt	ttttttctc	ataaacagga	actttattaa	60
actacatgtt	acataaaaga	acatataaat	ggaccattaa	atacattcag	tttattttaa	120
acaaatttac	atagatactt	atttacattt	ctccattgta	ttcttaaatt	atttttccaa	180
gcttactacc	gataaaaggt	aatacaatga	tcatctgctc	acacagatgc	atagagaagt	240
tgtccacagg	gctaagtaaa	gcaccacttc	ccaggaaaca	cagcttatta	gatettecag	300
caacaactca	tgctgaaggt	gctctcttct	gagcagccct	tgaggtgagg	cttttgcttt	360
agagatgctg	ggggttggtt	ctgaggagct	gacccagggc	agagatgggt	ccttgctgat	420
tgacctgact	tggactcaca	gaggtggaaa	gacctgtgga	gaccatcatc	gaggccatgg	480
cccacatct	gtgatatggg	aaacaggctt	gggaagaggt	ggtgacttcc	caaagtcacc	540
cagcatccat	gatagaggaa	gggcctggga	gcttggtacc	cagggttcct	ccaagaggtc	600
ccgatccctc	tgctatccac	aaatccacaa	acttagaatc	acttgcatcc	attttccacc	660
accatggacc	ttatgctttg	aactgttttg	tctacctgat	taaatatata	acttcttagg	720
cttcttgaga	tggtgaaaag	cagctcagga	ttcccataag	caactttgtg	gagccctgga	780
aatacctact	cagggctgtt	tttacaagag	gttttgtggt	caggtgcttt	actacttcag	840
ccataacgtt	tacctttaaa	actcagctga	cttatggaag	ctcagcattt	ccaattcgct	900
tagatgacag	gcaacagtct	gcagaaggga	ggttctaacg	tcaaccacgt	ggattcccca	960

caaacgcatc	atatttgcct	aaatccatct	atctaccaat	gtcagatcta	aaatgaggtt	1020
tcactaataa	gtgacctaaa	attaaaaaaa	acacaaaaaa	gtttcttaaa	aaaaaaattc	1080
caagaatttc	cccgtttccc	aattagtctc	agaggagtcg	tgaaatgggc	attgggtaga	1140
aaaagtccat	gttttcaact	gtttcttttg	aataaagcct	gattccccca	ctctgccccc	1200
aaacttttcc	cgatgatata	cattcttctg	aaagcaattt	catgctttta	gtctgcttta	1260
aaaaacctga	cttggttctt	ctcaggattt	aaaaaccact	gtaccaagga	agagatgtcc	1320
acgttaaaaa	ctattattaa	gagacagaga	caaggagaga	gagactctct	ccaggccatg	1380
ttagaaaaga	aggaagtgct	gggagcacac	aaagagagaa	gaaaggctgg	gagacagaat	1440
ggtttgcacc	tccctgtaac	cagagtgaac	acaggtcata	gcagccttca	ctcagtttta	1500
taacagacac	acgaatggag	gaacatggga	ttggaaagac	gcacactgtc	aaacagccct	1560
gatgcctttc	cactaaaata	tggcacttct	agattccaga	gaaatccagc	attctaccag	1620
gggctgccac	ccatctgcag	ggaagcctgc	cctgcaacca	tgaggccctc	aaggctcata	1680
ctccactgct	cacaatgcgc	gccctgaata	catggaagca	tctgatttct	gtctgagtcc	1740
aactttccct	cctgttccta	gacagactca	cacccagagt	catgcacgga	gaagtgggca	1800
agccagacaa	tetteaggga	gacacagccc	atcacaggat	acccaaggct	tatggggaag	1860
tccagttgcc	agcaacggac	cctgtgtggg	caggtgaaac	tctgaagcca	gagaacacag	1920
gaagataaaa	atatcttcat	actgaggata	tactgcacaa	gtgtggtggc	tcacacctgt	1980
aatcccagca	ccttgggagg	ccaaagtggg	ctgatagctt	gagcctagga	gtttgaaact	2040
agcctgggca	acataatgag	accctaactc	tacaaaaaaa	aaaaaaatac	caaaaaaaaa	2100
aaaaaaatca	gctgtgttgg	tagtatgtgc	ctgtagtccc	agctatccag	gaggctgaga	2160
tgggagatca	cctgagccca	caacctggag	tcttgatcat	gctactgaac	tgtagcctgg	2220
gcaacagagg	atagtgagat	cctgtctcaa	aaaaaaaaat	taattaaaaa	gccaggaaac	2280
aagacttagc	tctaacatct	aacatagctg	acaaaggagt	aatttgatgt	ggaattcaac	2340
ctgatattta	aaagttataa	aatatctata	attcacaatt	tggggtaaga	taaagcactt	2400
gcagtttcca	aagattttac	aagtttacct	ctcatattta	tttccttatt	gtgtctattt	2460
tagagcacca	aatatatact	aaatggaatg	gacaggggat	tcagatatta	ttttcaaagt	2520
gacattattt	gctgttggtt	aatatatgct	ctttttgttt	ctgtcaacca	aaggatggac	2580
agtgattcag	aaccgtcaag	acggtagtgt	tgactttggc	aggaaatggg	atccatataa	2640
acagggattt	ggaaatgttg	caaccaacac	agatgggaag	aattactgtg	gcctaccagg	2700

PCT/US01/43612 WO 02/068633

			25			
taacgaacag	gcatgcaaaa	taaaatcatt	ctatttgaaa	tgggatttt	tttaattaaa	2760
aaacattcat	tgttggaagc	ctgttttagg	cagttaagag	gagtttcctg	acaaaaatgt	2820
ggaagctaaa	gataagggaa	gaaaggcagt	ttttagtttc	ccaaaatttt	atttttggtg	2880
agagatttta	ttttgttttt	cttttaggtg	aatattggct	tggaaatgat	aaaattagcc	2940
agcttaccag	gatgggaccc	acagaacttt	tgatagaaat	ggaggactgg	aaaggagaca	3000
aagtaaaggc	tcactatgga	ggattcactg	tacagaatga	agccaacaaa	taccagatct	3060
cagtgaacaa	atacagagga	acagccggta	atgccctcat	ggatggagca	tctcagctga	3120
tgggagaaaa	caggaccatg	accattcaca	acggcatgtt	cttcagcacg	tatgacagag	3180
acaatgacgg	ctggtatgtg	tggcactctt	tgctcctgct	ttaaaaatca	cactaatatc	3240
attactcaga	atcattaaca	atatttttaa	tagctaccac	ttcctgggca	cttactgtca	3300
gccactgtcc	taagctcttt	atgcatcact	cgaaagcatt	tcaactataa	ggtagacatt	3360
cttattctca	ttttacagat	gagatttaga	gagattacgt	gatttgtcca	atgtcacaca	3420
actacccaga	gataaaacta	gaatttgagc	acagttactt	tctgaataat	gagcatttag	3480
ataaatacct	atatctctat	attctaaagt	gtgtgtgaaa	actttcattt	tcatttccag	3540
ggttctctga	tactaagggt	tgtaaaagct	attattccag	tataaagtaa	caaacacagt	3600
ccctagatgg	attgccacaa	aggcccagtt	atctctctt	cttgctatag	ggcacaggag	3660
gtctttggtg	tattagtgtg	actctatgta	tagcacccaa	aggaaagact	actgtgcaca	3720
cgagtgtagc	agtcttttat	gggtaatctg	caaaacgtaa	cttgaccacc	gtagttctgt	3780
ttctaataac	gccaaacaca	ttttctttca	ggttaacatc	agatcccaga	aaacagtgtt	3840
ctaaagaaga	cggtggtgga	tggtggtata	atagatgtca	tgcagccaat	ccaaacggca	3900
gatactactg	gggtggacag	tacacctggg	acatggcaaa	gcatggcaca	gatgatggtg	3960
tagtatggat	gaattggaag	gggtcatggt	actcaatgag	gaagatgagt	atgaagatca	4020
ggcccttctt	cccacagcaa	tag				4043
				•		
<210> 29						

<211> 176 <212> DNA

<213> Homo sapien

ttataataac aaaaaaagtg tgaggggatg ttttcccaag cccccttctc cggtgggcgg 60 ctctcgtgtg aggacccatg gtgacagagt ctctctcatc tcctcactct gaaagcattc 120 cactggggag agtcaaccct ggctcggggc ttcctccaca cagcacacgg cccttc 176

26

```
<210> 30
<211> 1332
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (623)..(642)
<223>
<220>
<221> misc_feature
<222> (623)..(642)
<223> a, c, g or t
<400> 30
atcccgggaa cttgacacct cgtcccgggg cagcagcggc tctcctgcgc acgccgagtc
                                                                      60
ctactccagc ggcggcggcg gccagcagaa attccgggta gatatgcctg gctcaggcag
                                                                     120
                                                                     180
tgcattcatc cccaccatca acgccatcac gaccagccag gacctgcagt ggatggtgca
                                                                     240
gcccacagtg atcacctcca tgtccaaccc ataccetege tegcatecet acagecceet
                                                                     300
geoggeetg geetetgteg etggacacat ggeeeteeca agacetggeg tgateaagae
                                                                     360
cattggcacc accgtgggcc gcaggaggag agatgagcag ctgtctcctg aagaggagga
                                                                     420
gaagegtege atceggeggg agaggaacaa getggetgea gecaagtgee ggaacegaeg
                                                                     480
ccgggagctg acagagaagc tgcaggcggt gaggaactct gcgtagggtg ggagcacctc
                                                                     540
tgggtgggct ggagtgagag ccccgggggt cctgatectc tctcccacag ctgtctcctt
                                                                     600
acccacaaat gccctacaga tgagtcagtg gagatagagc tttccttcct ttggacacat
gggtcagcat tgtgttgatt gannnnnnn nnnnnnnnn nngtggcgtt tagcaccagc
                                                                     660
                                                                     720
cagggcccag agggaagaaa tgaacaacct tctgtggggg tgctagccac ggtttttacg
                                                                     780
cagcacctga gtgttctctg ctcacagaac tgtgggggct cctgggtgag ggatgatgga
gggtgggagc cagggcaggt ccagacctgc cccatccagg gctgcttccc gaggttccag
                                                                     840
                                                                     900
ccacteccat geetgeegee ateaggagtg geecageetg geetaageae tetgggttgg
qccagagaga agtcttgatg gagataggtc acgtggcagc agggttgtat tttcttgggg
                                                                     960
ttttctcatt tcctttatgg gcaggegggt tccccacctc tatcatgaac tcagagctgt
                                                                    1020
ggccatggta ccgcgtgctg ctcttgtgag tcactctccc gtgccgccta attgcccaga
                                                                    1080
cctggggacc cgcagcctg cccttccctc tgttaagctt gacctgacca acgtcacgta
                                                                    1140
actocottca gagootggoo otgoaggaag ggoogtgtgo tgtgtggagg aagcoocgag
                                                                    1200
```

WO 02/068633

ccagggttga ctctccccag tggaatgctt tcagagtgag gagatgagag agactctgtc	1260
agtggtcctc acagtgactg cccaggatgg ggcttgggaa aacatcccct cacacttttt	1320
ttgttattat aa	1332
<210> 31 <211> 571 <212> DNA <213> Homo sapien	
<400> 31 gccgcccggg caggtacctg tagtcccagc tactgaggag gctgaagcag gaggatccct	60
cgagcacaaa agtttcaggc tgtggtaagc tatgactgtg ccactgcaca ccagcctgag	120
ttacagaggg agatcccaac tcttaaaaac taaaacaaca ataaatatat acaagaatca	180
taacataaag ggattcatgc ttagaaaaaa tccataaact cccttctaaa tattgagaca	240
ctccaggctt ctttcagaca aataacttct aattattcca tatttttcaa gttattaacc	300
aagataaaga atctctcagt tagtggggaa aatgaaaatt attaagaata gaattgtctt	360
ctgactttaa aaacaattta gactttaaaa catgaactgt ttactcaggc tggtgatact	420
ctagtttgtt agtataccat acttgaagat atcatcaaga tcactatagt tgtatatatt	480
ctctattttt atatgtaatg ttaacttagt tcaagtattt tttgcttgta tcgttaactg	540
atcatcaaat acaatcctaa agatatatca g	571
<210> 32 <211> 240 <212> DNA <213> Homo sapien	
<400> 32 ccgggcaggt acatattcta cagaaaaaaa tcaaatatgt atacaaataa gtatgcacag	60
gatttagaat cttacataaa aatgtattta acttggctgg agtgtgtgtg tgtgtttccc	120
aggttaagta aaattagaaa gccagaatca caagccacaa aaaagaaaaa ctgataaatt	180
agataccatc aaaattaaaa tototaactg ctacaaataa taccatcaag aatgggaatt	240
<pre><210> 33 <211> 1026 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (883)(883) <223> a, c, g or t</pre>	

27

PCT/US01/43612

<400> 33 aatagctcga	ccgcgcgttt	tgatggatga	gcgacgaggt	caggaggacc	tgtatcacaa	60
aaaaaaagaa	aagggaaaaa	agaagagaaa	gcagcagcat	gatacctgac	atgacagatg	120
tgggagaccc	acagcctgca	gacactgtgt	ggctggaagg	tggcgacggg	agtggtgccg	180
gtggagtgtg	gagctgtctg	aaagtgacgc	agcagacagt	agaagcatag	gtgggcgaag	240
cccaggtgac	cctcaaaacg	ttgcacaaga	acatcaggga	aaaagaacta	gaatccttta	300
aggaaaatgt	tcttcatgta	tgagagacta	aagtgatttt	tctaagaaag	ttcagccctt	360
ctctgactta	cctggacatt	tctagatact	tccaaaggac	cctctgggaa	tccatagctt	420
cctaatctgg	agatgggagg	tcataaggga	gacgctgtgg	ggttccttga	agtttcttgg	480
gttcacagag	gagccccctc	acttggtgtt	ctcccgtgag	ccagcctcca	cctgccaaag	540
acactctggt	cctcgtatag	tgagtaatgg	ggctcagggc	ctctccaaca	acagagagga	600
gctgatgctg	tagggctgac	cccgtgactt	cctggagtcc	tcaccctgtc	cagtgctttg	660
agattcttcc	cacctcccca	tcctcaccag	ccggatcggg	cgctgtgcag	tgtggtcagc	720
atggtgaaga	aagtcatttc	cttggtggac	agtattcctc	tttatctctc	attacactgg	780
aaatgttatt	tctgctgtat	catccgtgct	ccaacgtttc	tagtctgtca	ggctcacctt	840
ctctctggaa	agaattgctt	aacttgacat	tccatgtgcc	gcntataaaa	tatattttga	900
aagaacaaaa	aaaaccaaaa	aaaaaaaaac	ggtgggggta	acctgggcca	aaacgcgtcc	960
ccggggtgaa	ttgttctccg	ccccactcaa	ccccaccaac	aaaaaaataa	acagacaaaa	1020
aacaaa						1026
<210> 34 <211> 154 <212> DNA <213> Hom	~					
<400> 34 gccgacaatg	acatcggagc	cgtctcaacc	acagggcatg	gggaaagcat	cctgaaggtg	60
aacctggcta	gactcaccct	gttccacata	gaacaaggaa	agacggtaga	agaggctgcg	120
gacctatcgt	tgggttatat	gaagtcaagg	gttaaaggtt	taggtggcct	catcgtggtt	180
agcaaaacag	gagactgggt	ggcaaagtgg	acctccacct	ccatgccctg	ggcagccgcc	240
aaggacggca	agctgcactt	cggaattgat	cctgacgata	ctactatcac	cgaccttccc	300
taagccgctg	gaagattgta	ttccagatgc	tagcttagag	gtcaagtaca	gtctcctcat	360
gagacatago	ctaatcaatt	agatctagaa	ttggaaaaat	tgtcccgtct	gtcacttgtt	420

29

ttgttgcctt	aataagcatc	tgaatgtttg	gttgtggggc	gggttctgaa	gcgatgagag	480
aaatgcccgt	attaggagga	ttacttgagc	cctggaggtc	aaagctgagg	tgagccatga	540
ttactccact	gcactccagc	ctgggcaaca	gagccaggcc	ctgtatcaaa	aaaaaagaa	600
aagggaaaaa	agaaagaaag	cagcagcatg	atcctgacat	gacagatgtg	ggagacccac	. 660
agcctgcaga	cactgtgggc	tggaaggtgg	gaagggaggg	gccggtggag	gtggagctgt	720
ttgaaagtga	cacagcagca	gtagaagcag	tggtgggcga	agcccaggtg	accctcagaa	780
cgttgcacaa	gaacatcagg	gaaaagaacc	agaatccttt	aaggaaaatg	ttcttcatgt	840
atgagagact	aaagtgattt	ttctaagaaa	gttcagccct	tctctgactt	acctggacat	900
ttctagatac	ttccaaagga	ccctctggga	atccatagct	tcctaatctg	gagatgggag	960
gtcataaggg	agacgctgtg	gggttccttg	aagtttcttg	ggttcacaga	ggagccccct	1020
cacttggtgt	tctcccgtga	gccagcctcc	acctgccaaa	gacactctgg	tcctcgtata	1080
gtgagtaatg	gggctcaggg	cctctccaac	aacagagagg	agctgatgct	gtagggctga	1140
ccccgtgact	tcctgagtcc	tcaccctgtc	cagtgctttg	agattcttcc	cacctcccca	1200
tcctcaccag	ccggatcggg	cgctgtgcag	tgtggtcagc	atggtgaaga	aagtcatttc	1260
ctcggtgggc	agtattcctc	tttatctctc	attacactgg	aaatgttatt	tctgctgtat	1320
catccgtgct	caacgtttta	gtctgtcagg	ctcaccttct	ctctggaaag	aatttgctta	1380
acttgacatt	ccatgtgccg	ctaataaaat	atattttgaa	agaaaaaaa	aaaaaaaaa	1440
aaaaaaaacg	gtgggggtaa	cctgggccaa	aacgcgtccc	cggggtgaat	tgttctccgc	1500
cccactcaac	cccaccaaca	aaaaaataaa	cagacaaaaa	acaaa		1545

<210> 35

<211> 338 <212> DNA

<213> Homo sapien

<400> 35

tgatcactca ctataggcct ggtgctctag atcatgctcg agcggcgcag tgtgatggat 60 ggccgcccgg gcaggtactc agaatggagg ggctggaagt ggggccagtg gtcctggtag 120 tcagcctccc cttctgacac aagaattatc gtggaacagc ttgtgtgacc gatcaactgg 180 tctctccatc tttaagccat tgtcttgttg actctgttac tgcagagttt ggggaggtct 240 300 catggcttct cgggatccta tttcctgagc ttccctgaag ccaacttctg gccactggta 338 tgtgatgcga gcacagtgcc tcctcctgct cctccagg

<210> 36

30

<211> 1851 <212> DNA

<213> Homo sapien

<400> 36

gccgcatatt tttttttt tttttttt tttttcaagg ttggaaaatc ccactttact 60 tcaagtgaag tcactgggtt gtccccatga aatatctcca caatgggtgt gctagacctt 120 tactctctgt ggcaccacca agaccccctc accctgccag agccctctga agtgtactca 180 gaatggaggg gctggaagtg gggccagtgg tcctggtagt cagcctcccc ttctgacaca 240 agaattatcg tggaacagct tgtgtgaccg atcaactggt ctctccatct ttaagccatt 300 gtcttgttga ctctgttact gcagagtttg gggaggtctc atggcttctc gcatcctatt 360 tcctgagctt ccctgaagcc aacttctggc cactggtatg tgatgcgagc acagtgcctc 420 ctcctgctcc tccaggaagc ttctgctgat tgaacgcagg ccagatggcg agatccggag 480 caaccttctt agatcaaggg aagaaagggg cacaagaggg gagtaggtaa caagataaaa 540 600 qqaqctccct ccctqatqac tacagagcca tcgtggcagc cctgggcctc catttcagac 660 gttcatcttg cctaagccac caccatcagg gtctcagtca gtcatcattc tcatttactc 720 gggtggctgg gtgagggcgg aatactacct tccagctgtc tgagattaag cctaagccac caccatcagg gtctcagtca gtcatcattc tcatttactc gggtggctgg gcgagggcgg 780 aatactacct tccagctgtc tgagattaag cagaacagca gctaaagcag taacagcagg 840 teteetteag eagettgeea eagggaagag ggteeegegt gaacegaact eaactteeac 900 960 ctgcgcagag gtagctacca tttgcgtaga ggtagctggg tctttaaggt tagagggaag gcgcagggag ggagagacgg cgggtggggg ttgaacaaag tggagattca caaaagcaga 1020 1080 ctagggeggg egacgtgate agatgacetg tgegggegge ageeteetge eeteeteee ttcgtgcgcc ggctggagcg aagagttctt ttgacagccg tgagcttccc cgccaggaac 1140 1200 ttactggggc tgcatcaccc tagaaacgtg gctttgggct gtggaaacgc tgcctctgtg gaagtetete etegeggggg tggaegggte getgegegee cagegttett etgeggttet 1260 cacageeege egeegeege geetegggga cetttgeggg gaggeeteag gteagegeeg 1320 cccttgcgat ggcgggagag cagagcggcc ccagggcctc tgagctccgg ccccggcacg 1380 tecegecete tecteegett gegggageeg gggegeeteg gagggaaace tteeggacae 1440 aggccgggag aagaggggcc gtggcgccat cgcgcagctt cctggtttcg gccatgtttt 1500 tttttttttttttq agacggagtt tcgctctttt tgcccaggct ggagggcaat ggcgccgtct 1560 cggctccctg cagccgccgc ctcccgggtt gaagggactc tccggcctca ggccgcggtg 1620 31

ttcttgtaaa	ttagaaccgg	cctatgcgcc	aagcgcgggt	ctcgcggctg	cggagagagg	1680
cccagcaggg	ggcggggacc	ccgggaggcg	gggcctggcc	gagctgcgca	cacccgggtg	1740
gttctggcta	cgggtacccg	gacctgccca	acgaccgttc	tccattcccg	acctccgcac	1800
cctacccggt	ccgcagggca	ccttcctcct	ctctctcagg	cacgtcctcg	a	1851
<210> 37 <211> 409 <212> DNA <213> Homo	o sapien					
<400> 37 gagagcaagt	tcaagcaggg	ccaggaacag	gacagccggc	aggagagcag	gctcaacgag	60
gactttctgg	gaatgctggt	ccacaccagg	tccctgctga	aggagacact	ggacatctct	120
gtgggactca	ggaacaaata	cgagctgctg	gccctcacca	ttaggagcca	tgggacccga	180
ctaggtcggc	tgaaaaatga	ttatcttaaa	gtataggtgg	aaggatacaa	atgctagaaa	240
gagggaatca	aatcagcccc	gttttggagg	gtggggaca	gaagatgggg	ctacatttcc	300
cccataccta	ctatttttt	atatcccgat	ttgcactttg	agaatacatc	taaggtcatc	360
tttcaaaaga	gaaaaattgg	acacttgagt	gacttgtttt	tagtttgtt		409
	s sapien					
<211> 2112 <212> DNA	sapien	aggatatett	tagccaaagg	aaaagctccg	cattcccacc	60
<211> 2112 <212> DNA <213> Homo <400> 38	sapien agagateete		-			60 120
<211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag	sapien agagateete attgaaatae	tatcaggggg	caagagcctt	tetetecage	tacacactcc	
<211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa	agagatcctc attgaaatac agcaagggga	tatcaggggg aactccgaga	caagagcctt	tctctccagc	tacacactcc	120
<211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa atctcccggg	agagatcctc attgaaatac agcaagggga aggggttccc	tatcaggggg aactccgaga cgctacgcct	caagagcctt ggagggcaac gtgccggagg	tctctccagc agagccagca agttccagtc	tacacactec tettgccagg accgagcgag	120 180
<211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa atctcccggg gccccggagg	agagatcctc attgaaatac agcaagggga aggggttccc gtgggtgcat	tatcaggggg aactccgaga cgctacgcct cctgcgctgc	caagagcctt ggagggcaac gtgccggagg ggcgggcgcg	tctctccagc agagccagca agttccagtc ctacccagac	tacacactec tettgccagg accgagcgag gctggtgtgc	120 180 240
<pre><211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa atctccggg gccccggagg gggcgcaagg</pre>	agagatcctc attgaaatac agcaagggga aggggttccc gtgggtgcat gaagcctgct	tatcaggggg aactccgaga cgctacgcct cctgcgctgc ggggactggg	caagagcctt ggagggcaac gtgccggagg ggcgggcgcg	tetetecage agagecagea agttecagte etacecagae cageaageca	tacacactec tettgccagg acegagegag getggtgtge getgggaetg	120 180 240 300
<pre><211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa atctcccggg gccccggagg gggcgcaagg agagccacat</pre>	agagatecte attgaaatac agcaagggga aggggttece gtgggtgeat gaageetget tgteteaggg	tatcaggggg aactccgaga cgctacgcct cctgcgctgc ggggactggg agacgctgac	caagagcctt ggagggcaac gtgccggagg ggcggcgcg ggccagggag tcgcaaagac	tetetecage agagecagea agttecagte etacecagae cageaageca actecettee	tacacactcc tettgccagg acegagcgag gctggtgtgc gctgggactg ttgtgcctgg	120 180 240 300 360
<pre><211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa atctcccggg gccccggagg ggcgcaagg agagccacat aggcggacgc</pre>	agagatecte attgaaatac agcaagggga aggggttece gtgggtgeat gaageetget tgteteaggg	tatcaggggg aactccgaga cgctacgcct cctgcgctgc ggggactggg agacgctgac gtccctggcc	caagagcett ggagggcaac gtgccggagg ggcgggcgcg ggccagggag tcgcaaagac atcctgaata	tetetecage agagecagea agttecagte etacecagae cageaageca actecettee tecagaatgg	tacacactcc tettgccagg acegagcgag gctggtgtgc gctgggactg ttgtgcctgg tgtttctgaa	120 180 240 300 360 420
<pre><211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa atctcccggg gccccggagg gggcgcaagg agagccacat aggcggacgc gtaaaaagtc</pre>	agagatecte attgaaatac agcaagggga aggggttece gtgggtgeat gaageetget tgteteaggg teeteetggg	tatcaggggg aactccgaga cgctacgcct cctgcgctgc ggggactggg agacgctgac gtccctggcc tctgccacct	caagagcett ggagggcaac gtgccggagg ggcgggcgcg ggccagggag tcgcaaagac atcctgaata gtgtcaaggc	tetetecage agagecagea agttecagte etacecagae cageaageca acteeettee tecagaatgg tacttegatg	tacacactcc tettgccagg acegagegag getggtgtge getgggaetg ttgtgcetgg tgtttctgaa gececeteta	120 180 240 300 360 420 480
<pre><211> 2112 <212> DNA <213> Homo <400> 38 ttgagagcag cagtccagaa atctcccggg gccccggagg ggcgcaagg agagccacat aggcggacgc gtaaaaagtc gttcttctgc</pre>	agagatecte attgaaatac agcaagggga aggggttece gtgggtgeat gaageetget tgteteaggg teeteetggg atgagtteet	tatcaggggg aactccgaga cgctacgcct cctgcgctgc ggggactggg agacgctgac gtccctggcc tctgccacct cctgcacca	caagagcett ggagggcaac gtgccggagg ggcgggcgcg ggccagggag tcgcaaagac atcctgaata gtgtcaaggc	tetetecage agagecagea agttecagte etacecagae cageaageca acteeettee tecagaatgg tacttegatg eccegatgggg	tacacactcc tettgccagg acegagegag getggtgtge getgggaetg ttgtgcetgg tgtttetgaa gececeteta actatgagga	120 180 240 300 360 420 480 540

cgtgctgggc cgccaggtgg	aggatgctgg	gcgcgtgctg	gagggcatca	gcaaaagcat	780
ctcctacgac ctagacgggg	aagagagcta	tggcaagtac	ctgcggcggg	agtcccacca	840
gatcggggat gcctactcca	actcggacaa	atccctcact	gagctggaga	gcaagttcaa	900
gcagggccag gaacaggaca	gccggcagga	gagcaggctc	aacgaggact	ttctgggaat	960
gctggtccac accaggtccc	tgctgaagga	gacactggac	atctctgtgg	ggctcaggga	1020
caaatacgag ctgctggccc	tcaccattag	gagccatggg	acccgactag	gtcggctgaa	1080
aaatgattat cttaaagtat	aggtggaagg	atacaaatgc	tagaaagagg	gaatcaaatc	1140
agccccgttt tggagggtgg	gggacagaag	atggggctac	atttccccca	tacctactat	1200
ttttttatat cccgatttgc	actttgagaa	tacatctaag	gtcatctttc	aaaagagaaa	1260
aattggacac ttgagtgact	ttgtttttag	ttttgttttt	gtacattatt	tatgtgattg	1320
ttatggaatt gtcacctgga	aagaacaatt	ttaagcaatg	tcatttctag	atgggtttct	1380
aattctgcag agacacccgt	ttcagccaca	tctaaaagag	cacagtttat	gtggtgcgga	1440
attaaacttc cccatcctgc	agattatgtg	gaaataccca	aagataatag	tgcatagctc	1500
ctttcagcct ctagccttca	ctcctgggct	ccaaaagcta	tcccagttgc	ctgtttttca	1560
aatgaggttc aaggtgctgc	tttgcatgcc	tgccaaccca	tggaagttgt	ttcttacttc	1620
ttttctctct tatttattaa	ccatggtctg	agagttgttt	ttgttctatg	taacagtatt	1680
gccacaaaac tataggcaaa	tcgtgtttgc	agggagattt	ctgatgcctc	tgtgggtgtg	1740
tgtaagttaa agtggccaca	tttaagaagg	ccaagctttg	tagtggttgc	acagtcacac	1800
tgatatgctg atttgctctt	tctcattgta	tgtctatgct	ttgtcatcag	tgctatagta	1860
aattacaaag aaataggtag	attgtatgaa	catacccaca	aatgcctatg	atttaggtta	1920
ccaatgtatt ctttctcatt	tggggttttg	cttctgtctg	tctgtttatt	ggaaacttgt	1980
acttcaagta gggggaatcc	taattctaat	aactccttag	ctaagtttta	ttattcaggc	2040
aataaacatg ttttcatgta	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2100
aaaaagatcg gc					2112

<210> 39 <211> 713 <212> DNA <213> Homo sapien

<220>

<221> misc_feature
<222> (260)..(539)
<223> a, c, g or t

<400> 39 ccgcccgggc aggtacctac ctgatgaagc tgttcatgct tccagcatca aactggacgt 60 ttactgtctg cccaaaagcc agtttccaaa aggtttgctt ccctctgttc agtggattct 120 tgactacata taggtcatat atttcaaaaa ataatgccta gctatttcta ctttgaaatc 180 atgactaaag ccaaaccaca accacagcaa agataaccta aggatttgtt taccagaaat 240 300 360 420 480 540 600 caccetgeca aaaagtttge catggteegg caggeaaagt tgeaacegga geegtteetg ggtgaaaagc ttggcggtaa tccttgtcct atccttgttc ccttgtgtgg acatttgttt 660 713 teccegetee ecaateteee ecataceete ecacaaaaaa aaaccaggae aac <210> 40 <211> 338 <212> DNA <213> Homo sapien <400> 40 ctgatttaaa gtcatagaat ttactgaaat acctacacag ctctgaatcc aacatttttg 60 tcatggttat tagaagaaac caaaacaact gactgaaaat gaaatgttca gtcagacagt 120 180 gtttgtccac atctttttt ttttgaagtt ttgaatcatc cattcacaga aaacacttgt ttatgggtat aatgcaaaac ttttgaaaca aaaaaaccta ctaaaaatgc tttcgctaaa 240 300 gtgattggct tttcattcat gctttgaaat aaaattatct agaaaggttg gagaagggtt 338 tgccgaacag ccatcttcct gatgtgcctt agattaga

<210> 41

<211> 805

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (241)..(520)

<223> a, c, g or t

<400> 41

		J=			
aatgctgctc gagcgcgcgc	agttatgatg	gatgtggtcg	cggccgaggt	ctcagtttcc	60
ctatttgtaa aatggaaata	atggtagctg	cctcaaacct	cattacgaat	tcaatgagtt	120
aaacttgaaa agacttatta	cagtagctgg	cacataaaga	cttgatagta	gtttatatgg	180
atgctatctc atattagcat	atatggaatt	aatagtgtat	cactatactt	ttttttcttt	240
תחתחתחתחת תחתחתחתחת	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	300
nnnnnnnnn nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	360
nnnnnnnnn nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	420
nnnnnnnnn nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	480
nnnnnnnnn nnnnnnnnn	ממתתתתתת	nnnnnnnnn	ttactatgct	atcaattcca	540
tatatggaac ggtgtcttcc	ctttcagagc	tctttaaagc	tctgcagaag	atttacatgt	600
gtttatagag ctaagagaaa	tcgggccatg	gaaatgtggg	tgtgtaacta	acaaatttaa	660
cctcttcatg ttatattaat	catgcataat	tctatcttca	tcctctgaaa	gtggcctaga	720
gcaaccatca cagtaggaag	cttgggtatc	atggccatag	ctggtcctgg	tgtgaattgt	780
ttcgtcaatc caaaaaaaaa	aaaag				805
<210> 42 <211> 300 <212> DNA <213> Homo sapien					
<400> 42 gaatgtatga tcactatagg	gccatgggtt	atctagatgc	tgctcgagcg	cgcgcagtgt	60
gatggatcgt ggtcgcggcg	aggtacccct	tgagcctggg	caaggtgcat	gacacacact	120
tggtcactgg aggaaatgat	gagtagagag	tgacaagcag	aggagggag	ctttgggcct	180
gagtcctctg gggcacaaga	gtggttgagg	cttggcactt	gccacctaga	tttcagacaa	240
tgtgtcagga atcctggatg	cccagaaaga	aacctgctca	gggtctggag	ccccaacata	300
<210> 43 <211> 561 <212> DNA <213> Homo sapien					
<400> 43 ggactgagaa ttcctgtggt	ctcctgagat	cagtttcttt	ccaccagatt	gtaaacaagc	60
tgtggaaagt tttagttett	agcgactcca	cgacccacac	tagtcaggca	gaagccccca	120
tgtacaaggt accecttgag	ccttggcaag	gtgcatgaca	cacacttggt	cactggagga	180
aatgatgagt agagagtgac	aagcagagga	ggggagcttt	gggcctgagt	cctctggggc	240

acaagagtgg ttgaggcttg gcacttgcca cctagatttc agacaatgtg tcaggaatcc 300 tggatgccca gaaagaaacc tgctcagggt ctggagcccc aacataaagc ttttatttag 360 420 gcaatgttga gcactaatat gtggttggag ctctgcaggg ggtctccatg ggtgcactgt gtagcaaagc tgtgggagaa aggccttacc cctcaaaatt ccagaattat aaatctatca 480 -540 gccgcttgca acttcagcct ggaaaagcca tgggcattaa actccaaact gtgagagcag 561 ccatgtggct gcaccctcaa g <210> 44 <211> 530 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (102)..(182) <223> a, c, g or t <400> 44 gttttaaaaa gaggagctcc cctgcatgag atctcacttt ttgcctgcta ccatttatgt 60 120 aagatgtgac ttgctccttc ttgccttcca tcatgactgt gnnnnnnnn nnnnnnnnn 180 nngcccgccg cgggcgtctc cacccgcctc tccgccgccg ccccaccccc gccgccccgc 240 300 gcgccacgag cagatcggag cagcaggccg cgaggagcag gcgagcggcc gccagtaggc gegaegegtg cegeggagae gaegeeeggg gegtgeaege egetgaggee gaggaeageg 360 atgcgccgcg cgaggcgcgg agcgaggagg agcggcgtgg accgccccag cggccgagga 420 cgggcgagcg gcgcggggag gcccgaaggc gaggaggagg tgcgggacgg ggggacgaga 480 530 <210> 45 <211> 709 <212> DNA <213> Homo sapien <400> 45 acaaaatagt aatgatagcc atggaagttt taccttattc tgtgagaagt gttcttaaac 60 ttattaagtg tctaaactaa ggtttagtgc ttttttaaag gaaagttgtc ccaggattca 120 tcctaaagaa agcaaaagtt aattcaactg atccaccaat ggaattagat gggtagagtt 180 gggttcttga gttttaccac cacttagttc ccgctgaatt ttgtaacttc ctgtgtttgc 240

36

WO 02/068633 PCT/US01/43612

atcctctqtt cctattctgc ccttgctctg tgtcatctca gtcatttgac ttagaaagtg 300 cccttcaaaa ggaccctgtt cactgctgca cttttcaatg aattaaaatt tatttctgtt 360 ctagctggga acacaaacaa caactcaact acaaaatcac gctctgtggg cagtatccct 420 tgcgccctta gcctttcccc cgggtgtcac tttgtcttcg ccccccatt ccccccact 480 540 cgtcagcgcg cgtcgcgctc gcgccgtgcg gctcgcctcg ccgtctctcc ctcctctccg 600 cogogtocco geogeogogo gtotgocogt cootogtoct cogotoccot cotoogocog 660 cogcetecce ecgecegtet gecacteget cectagtgeg egegegeee 709

<210> 46 <211> 1808

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature <222> (153)..(153) <223> a, c, g or t

<400> 46

tcataagagt gaaatagtca gctgctgacg gcacctcagc cacgccacty ttactcagtt 60 caqtgggtgt gcttgcgtgg taggatgtgg tgcagccctc tctacgctct tctatttttg 120 gtatatttyc tatttaacct tcaaatagct tcnaattctt tttttcttgg actggcttca 180 ttctgaattt gtgctaaaat aatctttcat aaagagacct cagtttatag cgtaacagac 240 tacacaatgc actgatgttt tcataatgtt taagggaccc actgcaagaa ggttgctgcc 300 360 tccttttaat tgtattcatt tagattttga ttttccatgt taagaaggtg aggtccatgt tgqtgcctt cagagtagag aaccatgtaa acattaggaa tgaacagagg ccttaggaat 420 gaatagagag tttgccttat acaatttcct gttacaaagc tctccctctc atgcaaagta 480 gggaacacct tttgagcatc tttgaatttg acaaatggtg ctgttgcaaa cacttttttt 540 ttgagatgaa gtctcgcggt tgtcacccgg gctggagtgc agtggcgtga tctcggctca 600 ctgcaacttc cacctcctgg gttccagcag ttctcctgcc tcagcctccc aagtagctga 660 720 gattacaggc gcctgccacc ccacctggct gatttttgta attttagtag agacggggtt tcaccatgtt ggccaggetg attaactect gacctcaggt gatccacctt teteggeete 780 ccaaagtgct gggattacgg gtgtgagcca ccgtgcccgg cctgcaaaca cattttaatt 840

gacaacacta gggctgttgt acaaaatagt aatgatagcc atggaagttt taccttattc

900

37

WO 02/068633 PCT/US01/43612

tgtgagaagt	gttcttaaac	ttattaagtg	tctaaactaa	ggtttagtgc	tttttaaag	960
gaaagttgtc	ccaggattca	tcctaaagaa	agcaaaagtt	aattcaactg	atccaccaat	1020
ggaattagat	gggtagagtt	gggttcttga	gttttaccac	cacttagttc	ccactgaatt	1080
ttgtaacttc	ctgtgtttgc	atcctctgtt	cctattctgc	ccttgctctg	tgtcatctca	1140
gtcatttgac	ttagaaagtg	cccttcaaaa	ggaccctgtt	cactgctgca	cttttcaatg	1200
aattaaaatt	tatttctgtt	ctagtgggaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1260
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1320
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	actgagaaga	gggggtgccg	1380
tgcttgtcct	tctccccacg	ggcgggcgca	gcgcgtgcac	cacccccgtg	gtgttaagtt	1440
aaaagggggc	agcgggcccg	ctcaggcggg	tgtatataag	agagagagag	aggggcggct	1500
tacacacaaa	atagatctgg	cggcagaagg	aggcgaataa	aaaagttgct	ttcagaagtc	1560
ctcatgatac	ttgggctgaa	gaagacaaga	acatcctttt	cagaatgcgg	atgtagagat	1620
aatatcaatc	gaaggagcca	caccacccta	agtagaaaat	tagtcagggt	cctcagtcca	1680
tattgagcag	taaaaatatt	caatgattca	gaagtcgtta	cggatctaca	acagcaagca -	1740
tgatgttact	tcctgccgcg	gaagactgag	actttgctgc	tcgagtatct	ataagacaaa	1800
taatatcg						1808

<210> 47

<211> 760

<212> DNA

<213> Homo sapien

<400> 47

60 aatgctgctc gagccgcgcg ttatgtgatg gatgccgccg ggcaggtact gggtcccgag cgtggtgggt atttgccaca ctgggtggcc agctcagcag cccccacct ctctttattc 120 tctccaaagc tggtctttct gactatcatt gtggtagggg gaggacagat gctaaaggtg 180 gaagctgacc tggagaaaga gacacacggg gtgactgtgg caaaggacag ctggaaaaga 240 300 aactctatca cttcttcatt ggcaaccaca aggcacccga ggccatggca ctcccagagg 360 ctgtgcgcag tagccaagcc tctcaacctc ttctggccct gcgtcctgca gcgaagtctc tgctgtaaga cagtagactc cttcgatgag gtgctcaaaa atgctacccg gggtggtggt 420 gtctggcttg cagtctggcc cagttcagag aaagttgcag agatcagggg ccaaggatgt 480 catagececa ggttgteete agggteecaa teetagggea gggtgtgeat ggaageaaga 540 actatggaaa cctagctcca gtctgcaggc tctgagcccc tagttcctca ctccagcggg 600

WO 02/068633

38

PCT/US01/43612

1380

660 gctccctcac tgcacagaac ccaccccttc tgtgtgggca ctgctgacca cacagatgac 720 ccagacccaa agagcctggc agaagctctg tgcgttggag ctgggctccg tcctccggtc tggttcaggg ggatcaggaa ggctcttttc acctgtggct 760 <210> 48 4940 DNA <213> Homo sapien <400> 48 tgaagttcag tagagccggc cgctgcaggc cagaaggtgg gagccagcgg gggcatcgcc 60 gcccgcgccc ctctaagtgc cgggccgcaa gctccaccgc agccgcctgc aagcagcggc 120 gcctcggccc tcgacctgcg cgcaaagcct gtgctggagc cgtcctcccg cggcgggac 180 cgggaccggg gacccaagcc aatcgaaagc tccaaccatg gccatggggc tcttccgcgt 240 gtgtctggtg gtggtgacgg ccatcatcaa ccacccgctg ctgttcccgc gggagaacgc 300 cacagtecee gagaacgagg aggagateat cegeaagatg caggegeace aggagaaget 360 420 gcagetggag cagttgegee tggaggagga ggtggetegg etggeggeeg aaaaggagge 480 actggagcag gtggcggagg agggcaggca gcagaacgag acacgcgtgg cctgggacct ctggagcacc ctctgcatga tcctcttcct gatgatcgag gtgtggcggc aggaccacca 540 600 ggaggggccc tcacctgagt gcctgggcgg tgaggaggat gagctgcctg ggctgggggg egececettg cagggeetea ceetgeecaa caaggeeaeg ettggeeaet tttatgageg 660 720 etgeateegg ggggeeacgg cegatgeage cegtaceegg gagtteetgg aaggettegt ggatgacttg ctggaagccc tgaggagcct ctgcaaccgg gacaccgaca tggaggtgga 780 840 ggacttcatt ggcgtggaca gcatgtacga gaactggcag gtggacaggc cactgctgtg 900 ccaccttttc gtgcccttca cacccccga gccctaccgc ttccacccag agctctggtg eteeggeege teagtgeeee tggategeea gggetaegge cagattaagg tggteegege 960 cgatggggac acattgagct gcatctgcgg caagaccaag ctcggggaag acatgctgtg 1020 1080 tetectgeae ggeaggaaea geatggegee teeetgegge gaeatggaga acetgetgtg 1140 tgccacagat tccctgtacc tggacacgat gcaggtcatg aagtggttcc agacggccct caccagagec tggaagggea tegeceacaa gtacgagtte gacetggeet ttggecaget 1200 ggacagcccg gggtccctga agatcaagtt ccgttcaggg aagttcatgc ccttcaacct 1260 gatteetgtg atceagtgtg atgactegga cetgtaettt gteteecace tteecaggga 1320

gccctctgag ggcaccccag cctccagcac agactggctc ctgtcctttg ctgtctatga

39

gcgacacttc	ctcaggacga	cactaaaggc	actoccoao	ageacetace	acctcagetg	1440
						1500
	gcatccttcc	·				
cagcagctac	cacctgaaga	cggccctact	gcacctccta	ctcctccggc	aggccgccga	1560
ctggaaggcg	gggcagctgg	acgctcgtct	gcacgagttg	ctgtgcttcc	tggagaagag	1620
cttgctccag	aagaagctcc	accacttctt	catcggcaac	cgcaaggtgc	ctgaggccat	1680
gggactccct	gaggccgtgc	tcagggccga	gcccctcaac	ctcttccggc	ccttcgtcct	1740
gcagcgaagc	ctttaccgta	agacactgga	ctccttctat	gagatgctca	agaatgcccc	1800
agcgctcatt	agcgagtatt	ccctacatgt	ccctcagac	cagcctaccc	caaaaagctg	1860
acgtctttta	cagaatgtgg	gatcctcgag	ctaagatgag	ggcatccctc	acgttcacac	1920
ccctggtggc	atctgccagc	cctgttctgg	ggacaaggcg	ggctttcgtg	ggagccatgc	1980
tcagcctgcc	aggaagccaa	gccctacagt	gcagaggaaa	cagaatttca	acgggaagct	2040
ggtttgcttc	ataccattgg	gatctgctgg	taaagctgtt	atttgggttt	agggactgat	2100
cccttgcagt	ttacttctgg	atcaccatga	atggccaaga	tggtggcaga	acacgctgtg	2160
gaccctgagt	tagagacaat	gcaaatgttg	gattgggtgt	aattctttt	gaatcccaga	2220
tccagtctgt	acttgaatat	gagcagagga	tctacaagaa	tgctgacagg	gaaccgtgtt	2280
aagacccagc	acccctattc	ccaggagctt	ctggcctgac	catctgcagc	caaagcacta	2340
acagggacag	atatgggaat	gtccaccttt	gatccgcatc	ctgcacaata	gtggtcccac	2400
catggctgcc	acttttttat	actatttgga	gaaaagacct	tgtataaatt	cgaggcccga	2460
gtgactaacg	tctctgtcac	acggaaatgg	gtacttggtg	gcatagagaa	acacaattag	2520
ccacttttc	agctacactt	ctcactcagc	tgcaccctac	acttctcact	caggtgcacc	2580
cccttctgct	gtcctttccc	caacgtactg	ggtcccgagc	gtggtgggta	tttgccacac	2640
tgggtgccag	ctcagcagcc	ccccacctct	ctttattctc	tccaaagctg	gtctttctga	2700
ctatcattgt	ggtagggga	ggacagatgc	taaaggtgga	agctgacctg	gagaaagaga	2760
cacacggggt	gactgtggca	aaggacagct	ggaaaagaaa	ctctatcact	tcttcattgg	2820
caaccacaag	gcacctgagg	ccatggcact	cccagaggct	gtgcgcagag	ccaagcctct	2880
caacctcttc	tggccctgcg	tcctgcagcg	aagtctctgc	tgtaagacag	tagactcctt	2940
cgatgaggtg	ctcaaaaatg	ctacccgggg	tggtggtgtc	tggcttgcag	tctggcccag	3000
ttcagagaaa	gttgcagaga	tcaggggcca	aggatgtcat	agccccaggt	tgtcctcagg	3060
gtcccaatcc	tagggcaggg	tgtgcatgga	agcaagaact	atggaaacct	agctccagtc	3120
tgcaggctct	gagecectag	ttcctcactc	cagcggggct	ccctcactgc	acagaaccca	3180

ccccttctgt	gtgggcactg	ctgaccacac	agatgaccca	gacccaaaga	gcctggcaga	3240
agctctgtgg	ttggagctgg	gctccgtctc	caggtctggt	tcagggggat	caggaaggct	3300
cttttccacc	tgtggcttca	ctggcccttt	gagatttcct	atctcaccgt	tacttcagtt	3360
accettgeag	ggggccaggg	agtcaagaat	ataccgtgtt	cctccagggt	ttaagccggc	3420
catgccttcc	cgagagcata	accaacttga	caggggtgcc	cagttacccc	acaaactgaa	3480
ggaaggagat	ccttccccca	tccccaggag	tgctctcaac	cagcctcaga	aagcttgaga	3540
agatggaccc	tttgcccacc	agggttaatt	cctggtgggg	cagctcggct	gtgatcaggg	3600
caaccaaacc	tataggaagc	cttccagtgt	gagctggaat	tagactgaac	atgtgcttgg	3660
gcctgcctct	ccctagacgc	agttgcgggg	cactccaggg	aatgaaccag	ctcaagtgtg	3720
tccctaacag	cagcctggag	ctacccccaa	tccctcacag	cctgaccctc	ctcattccat	3780
cagatgcatt	tgtagaatcg	gggcaaattt	ccttatttat	ttatggccca	tgcctttccc	3840
cctcttcatc	ctgatcccgt	tttgctttga	agagacccca	gtaaccaaaa	aacagcctcc	3900
agaagccaaa	accatgcctg	gatctcccat	agcttctcct	ttgcttccag	gagaaagttc	3960
actgaaaaaa	aaatatcttc	tggcttcttg	tgtgtacaga	gacaacagaa	ctcggtgggg	4020
aaacgggaat	cttttctgca	ccaaagetge	ttctaaagca	gaaagcagtg	gggctcttgg	4080
tgtttcatgc	tgccttattt	atattaaagg	aagaattaaa	tcttgcaagg	agtaaaaatg	4140
gtcactgttt	ggtttttaaa	cttcaggaaa	tctgtgaggc	tcccagggca	gagttgggga	4200
caggggggtg	gatttcctat	tgacaaagca	gaagctttca	ctccctttt	attcttacac	4260
tttcaggaga	ctttaaaaaa	taacaaaaca	gaacatttct	accctgtctt	tgaggcaact	4320
tgtgtgctgc	ccgcagggct	ccagaaaggg	cctttgaaag	ctggctgtag	ggtggattcc	4380
agcctaagac	cttatttcac	agagctaatg	tcagcgagaa	atataggagc	tggaactaac	4440
aggaagcttt	tgggttttaa	agaaagagat	tgtattttaa	atagaggatt	ttgagtcctc	4500
tagggcactt	tggcctttcc	actaaggaca	accetgeeet	ctttccccag	agtctctttc	4560
ccaaggatgc	ttgactttcc	ccagcaactg	ctcacttgct	ttgcaaaata	acaagggtga	4620
aatgaataga	gttggcccct	aggccaagag	gctggttatg	ttggggaagg	gccttatatc	4680
ctcaaaagct	ctagcccctc	tgcatgcctg	gctgaagcac	agccccgcgt	tgagaacctg	4740
ggggtggagc	tctggttcat	catcaagggt	gtcatccgaa	tcacccagac	aacctggtcc	4800
attgccccga	ccccgccttg	aacctacatg	gtgctcagaa	tccagtctgg	agtggtcagg	4860
ctaggetega	tttttaaaga	tttcccccaa	gtgtctgatg	tacccctagc	tgaggaagag	4920

41

ctcagcttta	tggtaccgac					4940
<210> 49 <211> 782 <212> DNA <213> Homo	o sapien					
<400> 49 accattctga	acgatgttaa	agcaagtgtg	gtttatttat	ggcatgaacc	atgtaacttg	60
aaatatgaac	ttacaaggag	gggcactcat	taggtaacaa	gttcttacac	caaacttcct	120
tgatgaaata	agccaaaata	atcctaaaat	tcattaaaaa	gaacttgata	aaagactcaa	180
ataaatgtta	gaaagagccc	ataattttag	gactcctata	aaattcttcc	tgtttgttaa	240
tgctattaaa	actcagattc	aagggaaata	ccagcttcca	cttgagtcac	tttgaaatag	300
ttaattcaac	agcaccatgt	tagaaatata	ttggcagcca	agactctgaa	ctctgcagaa	360
acatttgttt	cacccagact	tcaaactcta	gccctgacta	tgatgcccct	gtgtgcattt	420
acaataaaga	ctccaacgga	gggagcctgt	tggtgttaaa	ttgtttacat	ttctttatac	480
aaataatgtg	ctttcagtgc	cttagttaca	gctccctttc	tgtttcttgt	tccaaaggga	540
ttctgtagta	tgtaggtgtg	ttttcttagg	taaagtctct	tattgctact	gaaagggaaa	600
tggtctctaa	acactggtca	ctgtagcagg	taaacactac	tctaacgtgg	gagaaatgag	660
cctccatgct	gaggtagggg	gtgccctaaa	gcctgttatt	tatgctgtga	aaacgaaatg	720
ggtttgctac	ctgataagct	gggggatcca	tggcctagct	gttcctgggt	gaatgtttcg	780
ca						782
<210> 50 <211> 2675 <212> DNA <213> Homo	sapien					
<400> 50 ggtttatcct	aaattactca	accccttgta	gccttgacaa	attttacctt	aaaaccaaaa	60
tgaaacacaa	aaattaatcc	ttaataatga	tagcaagtga	tettettt	tagttttagc	120
cttccttttt	caatagtaat	atttaaaccc	actcttgacc	aattgtttgc	ccaaatattc	180
ttgtcatttg	gagtcagtgg	aaaatccagc	acaccaagca	ccagtcttct	tctgaggcaa	240
aagaaaagtg	ttgtcatttt	cactctgttg	gagctgcaca	cttttttct	ttttctttt	300
ttttttttgt	cgtgtaagaa	ggatgctggt	cagagetgea	gaaaatatga	ggcaattaaa	360
agtctttagc	tgttagcaaa	cctgttagtt	ttacttctgc	attgaaccag	cctcagaagc	420
tacttactgc	tttatgtact	ctttgggcat	taatgccttc	tctgtaatta	tatctcgttt	480

ttgcttgaca	gtgacctagc	cagtaattgc	atcgtgcatt	gccatgaaag	gtaaacacat	540
tgtgaactga	acttaccaag	cagattctgt	aagaaagcgc	tggttgaggc	tgaacactgt	600
tgacacatca	tttttattgg	aagagtatta	actggtgcct	cttctgaaac	acaccaaccc	660
atattcctct	gctccccaa	agctgtttct	gatcctgctg	ggagcaacta	actagttatt	720
atgcacatct	gctccagacc	cagctcttta	acttcacggt	tttacagctt	gttttttctt	780
tttctttct	tttcttttt	tttttaaaa	aagcaccttt	ttttgttgtt	tccccttaat	840
aaaagaggtt	tctaatttat	gtttctctaa	gatttccttt	ggttgtattt	agaaacacaa	900
atagttttat	aatcaggatt	gcatttgtgc	tgggtaaaag	aggagagctg	tgctttctac	960
cccaaagttg	ttggtaatgg	agccggtctg	cccttcctac	aaactcaaga	ggctcattgt	1020
tcaaggtgta	acaacattta	attgcatgtc	ctctaacgct	ttgaaacctt	tagagggaag	1080
atcctcattt	tttacaattt	tgttcctttt	catcatagaa	aacatgttta	agataaaata	1140
caaactttac	ctaccccaaa	ttcataaagt	acatttagtg	ctgtatagca	ctaaaactta	1200
gagatacaga	cactgtactt	actttttaag	aattagagac	agtaactcca	aaaataattg	1260
tcctttttc	tttcttttt	tttttttaca	ataaggctct	tgaaaattgt	cattacttgt	1320
gttttcctat	acattcatct	gtgtgaaagc	ctttttcttc	tttgatttaa	aaaaattata	1380
cagttaatgg	tttagaactt	agaactactt	agaattaatg	ctaaagtgtc	aggaagaaat	1440
taatttagct	tcaataattg	tgactggcct	caggaattct	cccttccaca	cctgcccacc	1500
tcacctcacc	tcacctcacc	gcaccgcacc	gcaccgcacc	gcaccgcacc	agagccagag	1560
cagctgcttg	tctgcagcag	gacacggttc	ctacatacgt	ttcagttctt	tcatggtaag	1620
ctcaatggac	tttgaattgt	ttacagtgct	gtatgtccaa	ttgttaaatg	taccattctg	1680
aacgatgtta	aagcaagtgt	ggtttattta	tggcatgaac	catgtaactt	gaaatatgaa	1740
cttacaagga	ggggcactca	ttaggtaaca	agttcttaca	ccaaacttcc	ttgatgaaat	1800
aagccaaaat	aatcctaaaa	ttcattagaa	gaacttgata	aaagactcaa	ataaatgtta	1860
gaaagagccc	gtaattttag	gactcctata	aaattcttcc	ttgtttgtta	atgctattaa	1920
aactcagatt	caagggaaat	accagettee	acttgagtca	ctttgaaata	gttaattcaa	1980
cagcaccatg	ttagaaatat	attggcagcc	aagactctga	actctgcaga	aacatttgtt	2040
tcacccagac	ttcaaactct	agccctgact	atgatgcccc	tgtgtgcatt	tacaataaag	2100
actccaacgg	agggagcctg	ttggtgttaa	attgtttaca	tttctttata	caaataatgt	2160
gctttcagtg	ccttagttac	agctcccttt	ctgtttcttg	ttccaaggat	tctgtagtat	2220

43

WO 02/068633 PCT/US01/43612

gtagtgtgtt tcttaggtaa agtctctttt tgctactgaa agggaaatgg tctctaaaca 2280 ctggtcactg tagcaggtaa acactactct aacgtggaga aatgagcttc atgctgaggt 2340 agtggttgcc ttagagctgt tatttatgct gtagaaaacg aaaatggttt tgctacctga 2400 2460 taagetteag attagatata geeetaaagt tateetgtae etgeattaaa tttteatttt agaagagaat cttggttttg gtaattcatt tttttttaag atcattatgt gcaaaacacc 2520 aagttttaaa aataactcac agaatggcct tagttttcaa tgtctgatgg tatatttgtg 2580 agttgtgtta tctgtaatat acatcccaga ataaaggagt gaattaaata gtttaaaaaa 2640 aaaaaaaaa aaaaaagatc tttaattaag cggtc 2675 <210> 51 <211> 168 <212> DNA <213> Homo sapien <400> 51 acaacacaac ctgttaggta gcaggctggg tattacctga gtaaaaagtc cctattcttt 60 ccatttctcc atgctattta aaagcatgtg gtgatccttc aataaattaa agatataaca 120 168 aattatttga tgccattagg cggcctggat caccaattct aagtcttt <210> 52 <211> 1139 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (291)..(576) <223> a, c, g or t <400> 52 caaaattgga ttcttcaaaa cgccaggttg gcctttcttg actccaaaag aggtgactct 60 tgtagcattc ttacaggcct aacatagcac ttactttatg ttgcaatgct gtgtgcaatg 120 ctgtgttttt ttactcacta gctctgagca aaacattatt tattcttggt aattgtaaca 180 cttggtagtg aagacatatt ttttggccat ataatggatt atactttgta tttgaatcca 240 tgtgaatcag tagcatattg gtcttcattg tttttcctcc ttctccgacg nnnnnnnnnn 300 360 תחתחתחתות תחתחתחתות החתחתחתות תחתחתחתות תחתחתחתות החתחתחתות 420 480 540

nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnntaac	catattttt	ccaattatta	600
aaaaatcttt	tttcccccta	aggaatgtgt	ttctaaggtc	accatgtttt	tagtgcttca	660
gtttgacttg	tctacatcta	aagttaactc	tttaaggctt	acatttatga	ttataattct	720
ttccatcgag	ggatttagtc	tccattattg	tcatgtttct	tgatttttt	cattatactt	780
agttcttctt	ttgtctaggt	tttatatata	ccttaattaa	ttctttcttg	gctgttttat	840
atctatgttg	ctgtcagcat	gggaatctct	attattagaa	agctattaac	ttttaaaata	900
tgtatctttg	gtgatttctt	tgtcctaaca	gtttagatgg	cctgttgctc	ttctaaatct	960
taaatcatag	gtattctatt	ttggttgttg	tgtttcatta	cactgtcata	gtttttgata	1020
ttttcattac	tattgaggta	ctgtggttta	ccaatgttct	gttggtacga	atactttcca	1080
tetgttgggg	agctcaaact	gggaaccagc	acgttcgtga	tgttcgcacc	cccacccc	1139

<210> 53

<400> 53

<211> 681

<212> DNA

<213> Homo sapien

ggtacgggga gaacatatca aaaaggggaa ggatggattc ccttgatgcc caggattaca 60 gtggcaccta aagcacattt ttttttttct gagccaacca gctaaaggat cactgcagct 120 aaatacagat agagaagcaa caaagccagg caaataccca tcagagacag tgacaagagc 180 agctgggggc acgggggggg cggaaggaag agaaagaagg ggaggagcct ccagagtccc 240 300 agccccaacc ccctctgcca tgggctaccc ttgctcccca aaaatcccgt tggggttgaa 360 gtgaggagga ctgcaggctg gggtgaaaat acacaaggac agcccaacaa aatacaacaa ggactagcat cagtetecee ettacteega eececaagaa aaataceett attggtgaet 420 agtatttatg aaaatctgta aggagactat tctatgtagt gggctctaat cccatataca 480 cagcagctgc ctgtgtgggg aaccttttca aatcagtgat tgcgggaaca aacagtattt 540 tragettett arggtgerea tgraggettt tarraagare ttggttaagt ceragtraca 600 tttactttct gtcttcatct agaaaagggt gaggaaagag ggagggacaa ggtgctccag 660 gtgctagtaa gctgggtatc c 681

<210> 54

<211> 3191

<212> DNA

<213> Homo sapien

<400> 54

45

gtgctgccga gtagtcccgg aagcgaagca gcgatggcgg agagtccgac tgaggaggcg 60 120 gcaacggcgg gcgccggggc ggcgggcccc ggggcgagca gcgttgctgg tgttgttggc 180 gttageggea geggeggegg gttegggeeg cettteetge eggatgtgtg ggeggeggeg geggeagegg getecegeee teageegetg eccaegggge egegetgett ageeactggg 240 300 accocacget cageteegac tgggaeggeg agegeacege geegeagtgt etacteegga 360 tcaagcggga tatcatgtcc atttataagg agcctcctcc aggaatgttc gttgtacctg atactgttga catgactaag attcatgcat tgatcacagg cccatttgac actccttatg 420 aagggggttt cttcctgttc gtgtttcggt gtccgcccga ctatcccatc cacccacctc 480 540 qqqtcaaact gatgacaacg ggcaataaca cagtgaggtt taaccccaac ttctaccgca 600 660 agagcatete eteagtgete atetetatee agteeetgat gaetgagaae ceetateaea atgagcccgg ctttgaacag gagagacatc caggagacag caaaaactat aatgaatgta 720 780 tccggcacga gaccatcaga gttgcagtct gtgacatgat ggaaggaaag tgtccctgtc ctgaacccct acgagggtg atggagaagt cctttctgga gtattacgac ttctacgagg 840 900 tggcctgcaa agatcgcctg caccttcaag gccaaactat gcaggaccct tttggagaga 960 ageggggcca etttgactae cagtecetet tgatgegeet gggactgata egteagaaag tgctggagag gctccataat gagaatgcag aaatggactc tgatagcagt tcatctggga 1020 1080 cagagacaga cetteatggg ageetgaggg tttagaccet geteceatet eccetteece cactcaagag tcccagcaga atcccttccc cccacccag ggatggagag gcactgtgta 1140 teteceteca gaetegaagt cateetgeaa gatggeaaga accaageaag eteegatece 1200 1260 agggtgtggg agtgggggc tgttcccggt ctgacctcct tggcactgga gcatctgggg cttcgttcat ccattcatcc cgtatcaggg ggccaaggta cctttacagg agcacctaga 1320 gcgagggcct ttggcaaaaa caaaacaacc aacacacctc tccacagggc cagctcctta 1380 1440 gggataagtg gaagatggaa attgcaattc caagagggag tgtgcccaaa tgatttatgg 1500 ggatacctgg aagggagctt ggggtggggg ctgtctgtga cacttaagca gtctgggtgg ttgtctattt gtctgtcttc agtcttgaag cagggettec caatgecett tteeteeetg 1560 cetteettee eccattattt eccacaggee ageataattt tgttttteet aatttatagt 1620 cactgttcta gacagaccaa agagaaggaa cagtggtgga gtctaggctg ctgatcagta 1680 agetttacet ageacetgag cacetttete cectecete ttteeteace etttetaga 1740 1800 tgtaagacag aaagtaaatg tgactgggac ttaaccaagg tcttggtaaa gcctgcatgg

caccgtaaga	agctgaaaat	actgtttgtt	cccgcaatca	ctgatttgaa	aagttcccaa	1860
cacaggcagc	tgctgtgtat	atgggattag	agccactaca	tagaatagtc	tcttacagat	1920
tttcataaat	actagtcaca	ataagggtat	ttttcttggg	ggtggagtaa	gggggagact	1980
gatgctagtc	cttgttgtat	tttgttgggc	tgtccttgtg	tattttcacc	ccagcctgta	2040
gtcctcctca	cttcaacccc	agggatttgt	ggggagcaag	ggtagccaat	ggcagagggg	2100
gttggggctg	ggactctgga	ggctcctccc	cttctttctc	ttccttctgc	ctccccgtg	2160
ccccagctg	ctcttgtcac	tgtctctgat	gggtatttgc	ctggctttgt	tgcttctcta	2220
tctgtattta	gctgcagtga	tcctttagct	ggttggctca	gaaaaaaaaa	aatgtgcttt	2280
aggtgccctg	taatcctggg	catcaaggga	atccatcctt	ccccttttg	atatgttctc	2340
cccgtacttc	cagatttatt	gttatggctc	ccagtgggta	ttggcgattc	ttgtgatgca	2400
gggcctcagt	cagtgtccag	ccatgcataa	gggagaggat	agtgtgtacc	tgccctgccc	2460
tctgctatga	aggtctctgc	cttgtggatc	atgggactcc	ccttggagga	tctgtgcaaa	2520
ggggggctgg	gcacaaagga	gaatgtccta	tttgggaggg	caggaagcaa	aggaactgga	2580
cagggattgg	tgggcttggg	gaacggaagt	ttatcttgga	tacccttgaa	gaggctgggt	2640
ctcttcacat	gaagatcgaa	aagggaccct	gcttccaatt	tecetettee	attcctcgag	2700
ctactccagg	gctcagaaga	atgctcttgg	tctgtgggtc	cagtgttgtc	tgtcatccat	2760
ttaagtgttc	ccactttcaa	gtgacaatcc	tctccttggc	cctgccatag	ggcagagcat	2820
gtctggcata	gcagcctgac	ttttatgccc	taatcttgag	ttgaggaaat	atatgcacag	2880
gagtcaaaga	gatgtcttta	tatctgactg	ttataaatga	agttttgcgt	tetgttgggt	2940
tcccttttgg	ctgccatcaa	cgtcgtcttg	cacgccagac	gtgctgggga	ttggagggct	3000
tggttcagca	cgcattggtc	ctttgtcacc	ccctcctagg	ccgttgtggg	gcacgacgcc	3060
cgattgttgg	accccttctc	tgtcgcggcg	gcgtggcgca	cgccttctcg	agggccacgc	3120
cccgccttgg	gcccgcccct	ggggctcagg	aggcctcctg	gtgcgcgtct	ccgggcgcct	3180
cccgcaccgg	t					3191

<210> 55

<211> 385

<212> DNA

<213> Homo sapien

<400> 55

actgctaacc cctgccaggc ccagctgcca caccctttct gggagaagca tggcctacag 60
aatgaagagg gggaccagga acccctgtgg gagaggctta gacctgaagc agtgcccact 120

ctggctcctc ctgccttggc tgactgggtt cctggaccat gtgcatttca ctgggccatg	180
ggatetacat etecttgcat ecceagetgg tetgatecet gecagggece ettectteet	240
gctcatggtc ttcaggtggc ctgatcatgg aaagtaagga gttaggcatt accttctggg	300
agtgaaccct gactccatcc ccctattgcc accctaacca atcatgcaaa cttctccctc	360
cctggggtaa ttcaacagtt aaaag	385
<210> 56 <211> 1977 <212> DNA <213> Homo sapien	
<400> 56 ttcacccggc cctcgcctgt caccttcaca gagaaggggc tgcctgcagg aagaaagcac	60
ggcccacgcc cctccagtca catactgcct gtgggccctg gtgtagtgag gggggctgcc	120
gaggcactge tgcactcacc aggcacgtge tggtcggcaa acttgatgtt gatgatgtag	180
ttgcctggct ctgtggggca gtaggtcacc tggcgggaca ggtgcctggc tgctacaaac	240
catgeaatga gecatgeece geeetggaca eeeeegeeca geatetggge etecaegett	300
gggaccgtgg gagcggccaa cagagctatg tctggagaca tatgataaac cacctcagcc	360
cccaccaagc cgccgcaccc gtagaccaga ccccaaggac cctggccacc atgggccaga	420
gagcattacc ttcatctctg gctctgctga gccggccctt gagtccccca cctgctgcct	480
getetggega ecetgggtgt gggagtggtg eegggetgee ttetgettee geeegetgee	540
gggattgcct ccagcgctgt ggaggcctgt gtgcggggat gcagcccctg cctgtctact	600
gaggactccc actgagggga ctgctgaagc caactggtgc caaggagcac aatggagtgc	660
ccccagccc tgatcgtgca ccccccagac cggcgggatg gccaggcggg ctgcaagtca	720
accatgggca gcagcttcag ctaccccgat gttaagctca aaggcatccc tgtgtatccc	780
tacccgagag gccacctccc cagcccctga tgcggactcc tgctgcaagg agccactggc	840
cgatccccca cccatgcgag cacagcctgc ccagcacctt tgccagtagt cctcgtggct	900
cegaggagta ctattettte catgagtegg acctggacet geeggagatg ggeagtgget	960
ccatgtcgag ccgagaaatt gatgtgctca tcttcaagaa gctgacagag gctgttcagc	1020
gtacaccaga tcgatgagct ggccaagtgc acatcagaca ctgtgttcct ggagaagacc	1080
agtaagatet eggaeettat eageageate aegeaggaet aeeaeetgga tgageaggat	1140
gctgagggcc gcctggtacg cggcatcatt cgcattagta cccgaaagag ccgtgctcgc	1200
ccacagacct cggagggtcg ttcaactcgg gctgctgccc caaccgctgc tgcccctgac	1260

PCT/US01/43612 WO 02/068633

agtggccatg agaccatggt	gggctcaggt	ctcagccagg	atgagctgac	agtgcagatc	1320
tcccaggaga cgactgcaga	tgccatcgcc	cggaagctga	ggccttatgg	agctccaggg	1380
tacccagcaa gccatgactc	atccttccag	ggcaccgaca	cagactcgtc	gggggcaccc	1440
ttgctccagg tgtactgcta	acccctgcca	ggcccagctg	ccacaccctt	tctgggagaa	1500
gcatggccta cagaatgaag	agggggacca	ggaacccctg	tgggagaggc	ttagacctga	1560
agcagtgccc actctggctc	ctcctgcctt	ggctgactgg	gttcctggac	catgtgcatt	1620
tcactgggcc atgggatcta	catctccttg	catccccagc	tggtctgatc	cctgccaggg	1680
ccccttcctt cctgctcatg	gtcttcaggt	ggcctgatca	tggaaagtaa	ggagttaggc	1740
attaccttct gggagtgaac	cctgactcca	tccccctatt	gccaccctaa	ccaatcatgc	1800
aaacttctcc ctccctgggg	taattcaaca	gttaaaagaa	gcttatctta	aatgtattgt	1860
attggggggt gggcagggc	cactctatgt	tatgttaagg	agttggttct	ggttcttggc	1920
tgatgttctg tatcttaaca	tgaccacaġt	ttgtaagtac	ctcgctcgcg	accacgc	1977
<210> 57 <211> 629 <212> DNA <213> Homo sapien					
<400> 57 tgggtgatct agtctgtcga	gcgcgcatgt	gatggatagc	gtggtcgcgg	gcccggaggt	60
tacatggtgg cctatacaaa	agcactccat	gtttctgcct	gaataacgta	cgttgatcgc	120
ttggttgcct gagcaaatgt	: ataagggagc	tgcttggagg	ggaaaggaac	acaataaaac	180
gcctctggag gtatttcaaa	gagtagtttc	tcaaatctct	ctgattcagg	aagaggatga	240
cgagagggag agaacgtgga	attacttaaa	gtcatctaac	tcattggtct	tgttcaacaa	300
gaaagaattc tggtttgtgg	g ctgaatctga	tttaacagct	gccaatagct	cattacttct	360
aagatgtata tctaattcaa	aactagatgc	teccectee	ctctttttc	cctaaaagct	420
gggaacttgt aagtaaatgg	g cctagtgaaa	tagacactgg	ctattttaga	aaaagggtca	480
gaaggtagac caggaactat	gtatcaagaa	gaagtaagtg	aggctcaagc	ccaggccacc	540
taggctgtgt ttattcagto					
33 3 3	cacccaatcc	aatgtcaaag	ccccaagtgg	gccagtgtta	600

629

cctttatctt cccatctttg tatttctga

<210> 58

<211> 3535 <211> DNA <213> Homo sapien

<400> 58 gtgataggca gctttccttc ttttcaacag tgatacctac gaaaatcaaa ataaatgcaa 60 gctgaggttt tgtgctcact gaaagggctg tcaaccccag aaggccgaca caaaaaaaaa 120 ggtatgtgaa gatgcaccgt cttttcaaat ggcctgggag agtcaaatgg cctgggagag 180 240 ggggcctgcc cttctctgct gtgtcctttc ggcttcccag ttgagctccc aagaccagga 300 cccactgggg catataaaat ctctgctgta tcctttcggc ttcccagttg agctcccaag accaggaccc actggggcat ataaaaaagt caaaaatcaa aatcaaacaa caagttctga 360 gttacttagg aaacagactt cgcatttcaa tcagagaggc cacagagcaa ggtctaaact 420 480 tctggcttct agacaaattc ctgatagaac atttaaatgt gggaagtggc ttccccaggt 540 cccatccct gtttagggat agagttgata tcatttttat aggtgccatg tatgcctctg 600 cctgaatttt tttaattgac ttttgagctt ttgagattgc acgagggaga acaaggcctt tgctgttgtg gataggaaag acttaaccta aaattaaacc agcaagaaag cattagtaaa 660 720 aatctaacaa tatgaagggc tcttatgagt catttttttc aaaagatgaa aactccagaa 780 acgcacagga acgaaatacc tcccagaaac atgaagcaat catcgaagac tcactggtaa 840 tatttttaaa aagtatacag atcaaagcaa aaagaagcca tgtgtaacaa agagaaatgt 900 gcaaatattt tttaaggcag tattaagtgc aagaggagta acatgaaata aacattcttt 960 cacatggcta ctgggaatat aaatttcgct ccagaaaggc cgtagcagtt tgacgatagg tggcaaaacc ttaagattgt gtactggggc ccagaatttt tatttctagg aatgtatcct 1020 1080 gaggaaatta toogagatoo coacaaactg caatgtttag gaattgtoot tatagcattg catacacaag aaaaacagag aaaagcctga tccctgtcag tggaaaaggg gttcaatgaa 1140 1200 ttacggtgtg tctgcatgag gcttttatga cattaaaaat tgttgaacaa cggcctggca cagtggctca tgcctgtaat cccagaactt tgggaggcca aggtgggcgg ataacttgag 1260 gtcaggagtt tgagactagc ctggccaata tggtgaaacc ccgtctctac taaaaataca 1320 1380 aaaattaget gggcgtggtg geaggegeet gtagteecag etgeteggga ggetgaggea 1440 ggagaatcgc ttgaacccgg gaggcggagg ttccagtaag ccaagatcgt gccactgcac 1500 aacaaaaata aagtotatgo coattaagac gtottotaat toagttgtga ttgtotgoto 1560 ctacttaaaa aaatatttaa gcttgatgtt taattattcc ctttcagcaa atttggatca 1620 1680 gaaaattaaa gtatgtgaca agatcaggtc accttgaatt tccacacaat ctcaagacac tgaatagcaa aaaagtaaca ttacacagta atgattagga tatttcctta gactttgctg 1740

gatctttggt	cttaaggtaa	catgtaaaag	tagtgaagcc	tttcctttca	tggccctgtg	1800
caatgtaacg	gttttctgcc	tcctcttcag	ctggaagcgt	tagtggtagt	atgggcacag	1860
aatatatgta	cactggcgat	gctgaccatg	cctcccaggt	accctggctc	tgggttcctt	1920
gacctaggga	acaagattgg	atgaggcaga	tctttgagcc	catgtgacta	tagaatttgc	1980
tgatgatata	attttacaat	aacaatggat	aggaatttta	cctctcttt	tattagttta	2040
atattattta	atattatgta	cataagtgtt	cactcgccta	attaaaaaca	ttgagtaaac	2100
caagttttta	tatagactac	ccttgccata	tgatgctctt	tttctctaat	aatatgcagt	2160
ttaaatcctg	aggaatcaat	gcccagcatt	tcaccacatc	tgaactctgt	gtgggcattc	2220
ttcactcgcc	tacaaggggt	aaacaaggct	accagaactt	gaatttgact	tatagggagc	2280
tacccaggaa	ggggaaagcc	cttgggactt	tttccaaaac	aatcttctat	ttgaactgtt	2340
catcagccaa	agtagtccac	tgaggtgaca	aagctttcag	aaatacaaag	atgggaagat	2400
aaaggtaaca	ctggcccact	tggggctttg	acattggatt	gggtggactg	aataaacaca	2460
gcctaggtgg	cctgggcttg	agcctcactt	acttctcctt	gatacatagt	tcctggtcta	2520
ccttctgacc	ctttttctaa	aatagccagt	gtctatttca	ctaggccatt	tacttacaag	2580
ttcccagctt	ttagggaaaa	aagagggagg	ggggagcatc	tagttttgaa	ttagatatac	2640
atcttagaag	taatgagcta	ttggcagctg	ttaaatcaga	ttcagccaca	aaccagaatt	2700
ctttcttgtt	gaacaagacc	aatgagttag	atgactttaa	taattccact	tttctctccc	2760
tetettetee	tetteetgaa	atcagagaga	tgagaaacta	ctctttgaaa	tacctccaga	2820
ggcgttttat	tgtgttcctt	tcccctccaa	gcagctccct	ttatacaatt	ttgctcaggc	2880
aaccaaggac	agagtatcgg	cagaaacatg	gagtgctttt	gtataggcca	cctgtacata	2940
aaagtgtaat	tatttattta	attttcccat	ttgtatcata	ttaaagcttt	gtacagtgtt	3000
ttaagttctg	tttaaaatt	attttgtatt	ttatttttat	aacctagtaa	taaaatattc	3060
attccgcatg	caaaaaaaaa	cacacacaca	acccaaacaa	ccaaaaacaa	acagaaccaa	3120
aagatagaaa	ccaaacacag	caacagacag	acacaagaga	agacgaaaac	aaccacacaa	3180
acagcacaca	caaccgcagc	ggagaaccaa	caaagccaaa	cgcaagacag	cacaacaagg	3240
gacaaaacac	acacgtagca	caaagcagcc	gcagaaccga	acacacatct	aaagacaggc	3300
gacaacaaca	tagcaggccg	tagcaccgac	aaccactaaa	ccataactat	ccagcggaga	3360
tcagatcaca	gaagccgaca	cagaaagaaa	agcatgtatg	caacgcatga	caccgcaggg	3420
cggataaaaa	cactcgtagg	cgggaccgcc	gcagaacgat	cgaaggctaa	caaacaagct	3480

51

agtagat	cac	aagtacgtga	ccacgccctc	ttatctataa	aggaggaaga	gggag	3535
<211> <212>	59 348 DNA Homo	sapien					
	59 tgc	tatatagggc	catgggtgca	ctgatgcatg	gctcgagcgg	ccgcagtgtg	60
atggatc	gcg	gcgaggtact	tctgccatca	ttttattcca	ttccagcgct	ctggcatgca	120
agataat	cca	tctctaaaat	tcaagacttc	caaattgaga	tgaacgatta	tgggcttggg	180
ttggggt	tta	taaccaatcc	gatcattgat	catttgttcc	cggctcttgg	gatcactgct	240
aagccca	atg	gctccttctc	catcactgcc	tcctacaact	tccacatctt	ccttctgttt	300
cttacgg	gtc	tccaggtcct	ttcgaatgtt	ctcaaactct	tcaatgtc		348
<211> <212> <213>		o sapien					
	60 cta	tgctcgacca	cttggagtgt	tcaacctcgt	tcaccggggt	tttaatggtg	60
aaaccac	gct	tgctcgtccg	tgtttcttgg	aacgcttgcc	ctgtaccata	cctatgcgcc	120
cgtggtc	tat	acggaagggt	ctaaaacttt	tctacggcta	atgcggccca	caaagttttt	180
tctttgt	gtg	tttttgtttg	gatgcctcac	agtggtccaa	aatatattta	ttttaaaaa	240
cagaaaa	tca	gatcagtttt	atagagtcaa	attttcaaga	gacaaaccag	agtttggatt	300
ccagctt	aga	gtgcaagtga	agcatcagta	atctcatgca	gaagatttgt	ctctgcagga	360
ggtacat	tct	gcttgactgc	aagcactcaa	ttctctaaat	ctggtttgta	cttctgccat	420
catttta	ttc	cattccagcg	ctctggcatg	caagataatc	catctctaaa	attcaagact	480
tccaaat	tga	gatgaacgat	tattgggctt	gggttggggt	ttataaccaa	tccgatcatt	540
gatcatt	tgt	tcccggctct	tgggatcact	gctaagccca	atggctcctt	ctccatcact	600
gcctcct	aca	acttccacat	cttccttctg	tttcttacgg	gtctccaggt	cctttcgaat	660
gttctca	aac	tcttcaatgt	catcaagctt	tagctctagg	cgtgttggtt	tccgtctcag	720
catactg	aag	tcaacactaa	gggccaaacc	cagtgaacta	ttagcaattc	acaggattat	780
cctccgc	gtc	caaacagatc	ttaaatgtgt	acgtcattca	ttaaacaaac	acttcttgtg	840
ttccagc	tac	agagttaaaa	ggtacagtca	taatctcttt	tcaagccggc	ctagcccctt	900
cccqqaa	cct	caactccccc	ccaacgaaac	tactgctaag	ccaactggac	tacacttccc	960

agactgcttg	gagcctctct	ctccgcagaa	cctcgtcttc	cgcgagcttt	tcctggaggt	1020
tctaggaggg	atgcccctca	atgccacgac	gccatttcct	actacgactt	ccatcatgct	1080
ccgcgccgct	ccgggggcgg	tgacccctct	tggcccacgt	cttgtcagtg	acgcacttcc	1140
tgcaaccaaa	actaaagcac	ccgacgactt	agttgctccg	gtcgtgaaga	aaccacacat	1200
ctattatgga	agtttggaag	agaaggagag	ggagcgtctg	gccaaaggag	agtctgggat	1260
tttggggaaa	gacggactta	aagcagggat	cgaagctgga	aatattaata	taacctctgg	1320
agaagtgttt	gaaattgaag	agcatatcag	cgagcgacag	gcagaagtat	tggctgagtt	1380
tgagagaagg	aagcgagccc	ggcagatcaa	tgtttccaca	gatgactcag	aggtcaaagc	1440
ttgccttaga	gccttggggg	aacccatcac	actttttgga	gagggtcctg	ctgaaagaag	1500
agaaaggtta	agaaatatcc	tctcagttgt	cggtactgat	gccttgaaaa	agaccaaaaa	1560
ggatgatgag	aagtctaaaa	agtccaaaga	agagtatcag	caaacctggt	atcatgaagg	1620
accaaatagc	ttgaaggtgg	caagactatg	gattgctaat	tattcgttgc	ccagggcaat	1680
gaaacgcttg	gaagaggccc	gactccataa	ggagattcct	gagacaacaa	ggacctccca	1740
gatgcaagag	ctgcacaagt	ctctccggtc	tttgaataat	ttttgcagtc	agattgggga	1800
tgatcggcct	atctcctact	gtcactttag	tcccaattcc	aagatgctgg	ccacagcttg	1860
ttgtgatgaa	ccagtggcag	atattgaagg	ccatacagtg	cgtgtggcgc	gggtaatgtg	1920
gcatccttca	ggacgtttcc	tgggcaccac	ctgctatgac	cgttcatggc	gcttatggga	1980
tttggaggct	caagaggaga	tcctgcatca	ggaaggccat	agcatgggtg	tgtatgacat	2040
tgccttccat	caagatggct	ctttggctgg	cactggggga	ctggatgcat	ttggtcgagt	2100
ttgggaccta	cgcacaggac	gttgtatcat	gttcttagaa	ggccacctga	aagaaatcta	2160
tggaataaat	ttctccccca	atggctatca	cattgcaacc	ggcagtggtg	acaacacctg	2220
caaagtgtgg	gacctccgac	agcggcgttg	cgtctacacc	atccctgctc	atcagaactt	2280
agtgactggt	gtcaagtttg	agcctatcca	tgggaacttc	ttgcttactg	gtgcctatga	2340
taacacagcc	aagatctgga	cgcacccagg	ctggtccccg	ctgaagactc	tggctggcca	2400
cgaaggcaaa	gtgatgggcc	tagatatttc	ttccgatggg	cagctcatag	ccacttgctc	2460
atatgacagg	accttcaagc	tgtggatggc	tgaatag			2497

<210> 61

<211> 604

<212> DNA <213> Homo sapien

<400> 61	
	ge ttttgtgaat etecaetttg tteaaceece 60
accegeegte tetecetece tgegeette	cc ctctaacctt aaagacccag ctacctctac 120
gcaaatggta gctacctctg cgcaggtg	ga agttgagttc ggttcacgcg ggaccctctt 180
ccctgtggca agctgctgaa ggagacctg	ge tgttactget ttagetgetg ttetgettaa 240
tctcagacag ctggaaggta gtattccg	cc ctcgcccagc cacccgagta aatgagaatg 300
atgactgact gagaccctga tggtggtgg	gc ttaggcttaa tctcagacag ctggaaggta 360
gtattccgcc ctcacccagc cacccgag	ca aatgagaatg atgactgact gagaccetga 420
tggtggtggc ttaggcaaga tgaacgtc	g aaatggaggc ccagggctgc cacgatggct 480
ctgtagtcat cagggaggga gctccttt	ta tettgttace tacteceete ttgtgeeeet 540
ttcttccctt gatctaagaa ggttgctc	eg ggatetegee atetggeetg egtteaatea 600
gcag	604
<210> 62 <211> 4733 <212> DNA <213> Homo sapien	
<400> 62 atggagagaa accagaacag aaaagtgg	aa aattccaaaa accagagcgt ctcttctcct 60
ccaaaggatc acagctcctc accagcaa	gg gaacaaact ggatggagaa tgagtttgat 120
gaattgacag aagtaggctt cagaaggt	ca gtaataacaa acteeteega getaaaggag 180
catgototaa cocatcacaa ggaagota	aa aaccttgaaa aaagtgttaa cactcctgtg 240
gacgttttgt ctttgttttt caccccag	tc cacacctctg ctgttagtga ggggctcctg 300
gtcatcacag ccacatgtgg actcccct	ge tetgtacete ceageettte tgecaacage 360
actggcctca cagtgctgtc ctggggat	tg agtgagatag ctataatgtg gagtcgctgc 420
tgcctgctaa ctcgcccaga cgttcttc	ga gtgtcacatt tgaagacgag cactgaggat 480
gaggaaccaa ctgaagaata tgaaaatg	tt ggaaatgcag catctaagtg gccaaaagtg 540
gaggatccta tccctgaatc taaggttg	gt gacacatgtg tttgggatag caaggtagag 600
aatcaacaga aaaagcctgt ggaaaaca	gg atgaaggagg acaaaagcag catcagggaa 660
gcaatcagca aagccaagag tacagcaa	at ataaagacag aacaggaagg tgaggcatct 720
gagaagaget tgcatetgag cccacage	at atcacacacc agactatgcc tataggacag 780
agaggcagtg agcaaggcaa acgtgtgg	ag aacattaatg gaacctccta ccctagtcta 840
caccacaaaa ccaatoctot taacaaat	ta cataaatgtg atgaatgtgg gaaatccttc 900

aaatataatt	cccgccttgt	tcaacataaa	attatgcaca	ctggggaaaa	gcgctatgaa	960
tgtgatgact	gtggagggac	tttccggagc	agctcgagcc	ttcgggtcca	caaacggatc	1020
cacactgggg	agaagccgta	caagtgtgag	gaatgtggga	aagcctacat	gtcctactcc	1080
agccttataa	accacaaaag	cacccattct	ggggagaaga	actgtaaatg	tgatgaatgt	1140
ggaaaatcct	tcaattatag	ctctgttctg	gaccagcata	aaaggatcca	cactggggag	1200
aagccctatg	aatgtggtga	gtgtgggaag	gccttcagga	acagctctgg	gctcagagtc	1260
cacaaaagga	tccacacggg	ggagaagccc	tatgaatgcg	acatctgtgg	gaaaaccttc	1320
agtaacagct	ctggccttag	ggtccataaa	aggatccaca	caggtgagaa	accttacgaa	1380
tgtgatgagt	gtgggaaggc	cttcattact	tgtagaacac	ttctcaacca	taaaagcatc	1440
cactttggag	ataaacccta	taaatgtgat	gagtgtgaga	aatcttttaa	ttatagctct	1500
cttctcattc	agcataaagt	catccacact	ggagagaaac	cttatgaatg	tgatgaatgt	1560
gggaaggctt	tcaggaacag	ctcaggcctc	atagtgcata	aaaggatcca	cacaggagag	1620
aaaccttaca	agtgtgatgt	ctgtggcaaa	gcattcagct	atagctcagg	cctcgcagtc	1680
cataaaagca	ttcaccctgg	gaagaaagcc	catgaatgta	aggagtgtgg	gaaatccttt	1740
agttataact	cactacttct	tcaacacaga	actattcata	ccggagagag	accttatgta	1800
tgtgatgtgt	gtgggaaaac	gttcagaaac	aatgcaggcc	tcaaagtcca	caggaggctc	1860
catactgggg	aaaaaccata	taagtgtgat	gtgtgtggga	aagcctatat	ctcacgctct	1920
agccttaaaa	atcacaaagg	aatccacctt	ggggagaagc	cctataaatg	tagctattgt	1980
gagaaatcct	tcaactacag	ctctgccctt	gaacagcata	aaaggattca	taccagggaa	2040
aaaccctttg	ggtgtgatga	gtgtggtaaa	gctttcagaa	ataattctgg	ccttaaagta	2100
cataaacgaa	tccacactgg	ggaacgacct	tacaaatgtg	aagaatgtgg	gaaagcatac	2160
atctctctct	cgagccttat	aaatcataaa	agtgtacacc	ctggggagaa	gccctttaag	2220
tgtgacgagt	gtgagaaggc	cttcatcaca	taccgaaccc	ttacaaacca	caaaaaagtt	2280
catcttgggg	agaagcccta	caaatgtgat	gtgtgtgaga	aatcttttaa	ttacacatcg	2340
ctcctttctc	agcacagaag	ggtccacact	agagagaaac	cctatgaatg	tgacaggtgt	2400
gagaaggtct	tcagaaacaa	ctcaagcctt	aaagttcata	aaagaatcca	tactggggag	2460
aggccctatg	aatgtgatgt	gtgtggaaaa	gcctacatct	cacactcaag	ccttattaac	2520
cataagagta	cccaccctgg	caagacaccc	catacatgtg	atgaatgtgg	aaaagctttt	2580
ttctcaagca	gaactcttat	aagccataaa	agagtccatc	ttggggagaa	accettcaag	2640

tgtgttgagt	gtgggaaatc	tttcagttac	agctctctcc	tttctcagca	caagaggatc	2700
cacacagggg	agaaacccta	tgtgtgtgat	aggtgtggga	aggccttcag	gaacagctca	2760
ggcctcacag	tgcataaaag	gatccacaca	ggtgagaaac	cctatgaatg	tgatgagtgt	2820
gggaaggcat	acatctcaca	ctcaagtctt	atcaatcata	aaagtgtcca	ccaggggaag	2880
cagccctata	attgtgagtg	tgggaaatcc	ttcaattata.	gatcagtcct	tgaccagcac	2940
aaaaggatcc	acactggaaa	gaagccatac	cgatgtaatg	agtgtgcaca	tatacccaac	3000
gccaccgcgg	acctcatgaa	agtggaccat	gaagaggagc	cccagctctc	cgagccctac	3060
ctttctaaac	aaaagaagct	catggccaag	atcttggagc	atgatgatgt	gagctacctg	3120
aagaagatcc	tcggggaact	ggccatggtg	ctggaccaga	ttgaggcgga	gctggagaag	3180
aggaagctgg	agaacgaggc	actttcccag	tggaaagaat	ttgatgccat	ttccgcacac	3240
ccaaattcct	gttggcagga	taatcagcaa	gtaatacaga	gagctgcttc	cttcaacagc	3300
tgcattcagc	acaaaaccga	gggccgatta	tgtggagaaa	tatccttcag	agaagcatgt	3360
gatctttgtt	ctgccttttg	ccctttgaag	catatgatct	ttgttcctac	tecctgttcg	3420
tacactccct	ccccttttga	aatccttaat	aaaaacctgc	tggttttacg	gctcaggaag	3480
cttctgctga	ttgaacgcag	gccagatggc	gagatccgga	gcaaccttct	tagatcaagg	3540
gaagaaaggg	gcacaagagg	ggagtaggta	acaagataaa	aggagetece	tccctgatga	3600
ctacagagcc	atcgtggcag	ccctgggcct	ccatttcaga	cgttcatctt	gcctaagcca	3660
ccaccatcag	ggtctcagtc	agtcatcatt	ctcatttact	cgggtggctg	ggtgagggcg	3720
gaatactacc	ttccagctgt	ctgagattaa	gcctaagcca	ccaccatcag	ggtctcagtc	3780
agtcatcatt	ctcatttact	cgggtggctg	ggcgagggcg	gaatactacc	ttccagctgt	3840
ctgagattaa	gcagaacagc	agctaaagca	gtaacagcag	gtctccttca	gcagettgee	3900
acagggaaga	gggtcccgcg	tgaaccgaac	tcaacttcca	cctgcgcaga	ggtagctacc	3960
atttgcgtag	aggtagctgg	gtctttaagg	ttagagggaa	ggcgcaggga	gggagagacg	4020
gcgggtgggg	gttgaacaaa	gtggagattc	acaaaagcag	actagggcgg	gcgacgtgat	4080
cagatgacct	gtgcgggcgg	cagcctcctg	ccctcctccc	cttcgtgcgc	cggctggagc	4140
gaagagttct	tttgacagcc	gtgagcttcc	ccgccaggaa	cttactgggg	ctgcatcacc	4200
ctagaaacgt	ggctttgggc	tgtggaaacg	ctgcctctgt	ggaagtctct	cctcgcgggg	4260
gtggacgggt	cgctgcgcgc	ccagcgttct	tctgcggttc	tcacagcccg	cccgccgccg	4320
ccgcctcggg	gaccctttgc	ggggaggcct	caggtcagcg	ccgccccttg	cgatggcggg	4380
agagcagagc	ggccccaggg	cctctgagct	ccggccccgg	cacgtcccgc	cctctcctcc	4440

~~++~~~~	~~~~~~~	ataggagga	aacattaaaa	ascsasaaca	aaaaaaaa	4500
	gccggggcgc					4300
gggcccgtgg	cgccatcggc	gcagcgttcc	tggtttcggc	catgttttt	tttttttt	4560
tgagacggag	tttcgctctt	tttgcccagg	ctggagggca	atggcgccgt	ctcggctccc	4620
tgcagccgcc	gcctcccggg	ttgaagggac	teteeggeet	caggccgcgg	tgttcttgta	4680
aattagaacc	ggcctatgcg	ccaagcgcgg	gtctcgcggc	tgcggagaga	ggc	4733
<210> 63 <211> 577 <212> DNA <213> Homo	o sapien					
<400> 63 aaaaacaaac	aaaaaaacca	gttatttact	tggctataac	aatgtctgta	aatggtaaag	60
acagaaaaca	acctaagttg	ttcattgggg	gactagataa	atttaaattg	gttacattcc	120
atacaatgtg	gaagataaag	tagctgtgag	gaacgatgcg	cctcctccct	ttacagatgt	180
ggaatgaccg	ccaagataca	gccaggaaaa	aagcaagaag	agaacagttg	gtgatctgct	240
gtttcagttc	aaaataacca	attttaaaaa	aatgtctcta	gaaggctaca	taagaggctg	300
gtgagacagt	ggtcctgtgg	gagggaatgt	gggtaacagg	caacaggatg	ggagggatgg	360
tcaccataca	tcttttggca	cactctgcat	tttgaaacat	atgattggtt	ttccctagtc	420
taacaaaata	actttaggtc	caactgactg	tagtaaattg	gtcactagca	aaaaaaaaa	480
aaaaaacaaa	aaaagcgtgg	ggggaacccg	gggccaacgc	gggtccccgg	tggggaatgg	540
gtttcccggc	tccaatttcc	ccccattttg	cgcacaa			577
<210> 64 <211> 744 <212> DNA <213> Home	o sapien					
<400> 64 aaaaacaaac	aaaaaaacca	gttatttact	tggctataac	aatgtctgta	aatggtaaag	60
acagaaaaca	acctaagttg	ttcattgggg	gactagataa	atttaaattg	gttacattcc	120
atacaatgtg	gaagataaag	tagctgtgag	gaacgatgcg	cctcctccct	tacagatgtg	180
gaatgaccgc	caagatacac	agccaggaaa	aaagcaagaa	gagaacagtt	tgtgatctgc	240
tgtttcagtt	caaaataaca	atttaaaaaa	atgtctctag	aaggctacat	aagaggctgg	300
tgagacagtt	gctctgtggg	agggaaagtg	ggtaacaggg	aacaggatgg	gagggattgt	360
caccatacat	ctttttgcac	actctgcatt	ttgaaacata	tgattgtatt	tcctagtcta	420

)

57

acaaaataac	attaggtcca	actgactgta	gtaaattgtc	actagaatct	ttgtcttgga	480
gtcatttgat	tttattttc	acagaagggc	atatggttag	atagcctaaa	acagcagggg	540
agggagcagt	gtgtgctagg	agctgccaca	tgccaggcac	ctgatagata	ccagctctat	600
ctcacgctcc	ccctgtccct	tgaggtaggt	gtttctgttt	ctacttacaa	gaaaatagac	660
taaggcgtaa	agtaacacaa	tcacggtcac	acatgtggca	agcagcacag	cctggatttg	720
aagctaggca	agtctgactc	taag				744
<210> 65 <211> 318 <212> DNA <213> Homo	o sapien					
<400> 65 taagtgtttt	aaagaaacta	gagcagcaga	gaagagagac	tcagaagccc	gtggcacggc	60
tttctcggcg	tcccctccag	cgagggggtc	tccattgctg	cagttgccgg	ttttgtccaa	120
ccaggtcagg	aggctgcccg	gececetece	cactctcaaa	gttgcttgtt	aaacacagag	180
tcgtaatttg	tggctaaata	taactagtgt	gttctcacgg	aaagtataat	tcagggtgct	240
cattgtatga	ggttatcaac	aagacccatc	tgggttaaat	taaagtgatt	ttcataaagg	300
gcagaagcgc	ccctttac					318
<210> 66 <211> 250 <212> DNA <213> Home						
<400> 66 ctgcgcccc	aataatcgtg	tgttgggtat	ctctccattg	ttccctgggc	cattagtcaa	60
agggcaaatt	agaaacaatt	tcttgacgac	aaaaattgac	tcttaattct	tcccaccaga	120
ggcgcagggg	gacaagtcca	gaggccaggc	ctgaggctgg	ggctggcggc	aggaggggta	180
ggcggggtag	aggtggggta	gaggtggggg	atctaagatg	gttcacagca	cagagacctc	240
cctcaactgg	agggcagcag	cagctcaccc	ccaccccaga	atcagtgttc	cagaggacag	300
ctgggggcag	ggggttagga	acaatcccac	teceteetgg	aagaggtcct	gacccccac	360
cccacccatc	tgcctgtacg	ggtccctctg	ctatcgactg	gggcgagttc	ttttcatgag	420
ggccttgcct	ggtgcctgga	gggaacaggg	tgtgggggaa	aggtctgtgt	gttcccccct	480
cacctcccct	gctcagcggt	gtggcctctg	gctctgggga	ggatcgggaa	gccccagggt	540
ccgtgccttg	gagtgggggg	acagcctttt	ctctgccaca	gcttctgcct	ttgggggctt	600
accettecta	ggagcagaac	tgttgtggag	gggaagagga	cggtgaaggt	tccgaaggga	660

agggggctgc	cccactgaa	aacgaagctt	ccagtcacag	ccccttcatt	atttatcagg	720
acccagggga	tgaggtggca	ggggagggg	ctgcatggag	ggagtgccct	caccctcgtc	780
cccagcgcct	gcccctccc	gaccaggcct	gggctgaggc	ccagggtaag	ggggctgagg	840
caggccacag	aggagcaaga	cttgtcaggg	gccagacctg	ggtaggagga	ttgtcctcca	900
ggcacacacg	gcccccagcc	ccccagcctg	tcgaactggg	ctctcccaga	aggtccccgg	960
ctccagccca	agcagggagc	caggttgggg	gtgtgggaag	gcagaagtcc	cagggatcct	1020
gggggaggct	caggttgtac	ctgcaggcca	cagtctcctc	gacagacctc	ggacgaggtt	1080
gtaagtgttt	taaagaaact	agagcagcag	agaagagaga	ctcagaagcc	cgtggcacgg	1140
ctttctcggc	gtcccctcca	gcgagggggt	ctccattgct	gcagttgccg	gttttgtcca	1200
accaggtcag	gaggctgccc	ggccccctcc	ccactctcaa	agttgcttgt	taaacacaga	1260
gtcgtaattt	gtggctaaat	ataactagtg	tgttctcacg	gaaagtataa	ttcagggtgc	1320
tcattgtatg	aggttatcaa	caagacccat	ctgggttaaa	ttaaagtgat	tttcataaag	1380
ggcagaagcg	cccctttgcc	tggtttcccc	tgccttttta	ttagtgacag	tgttattgtt	1440
gcaattatta	gaggggatca	aggaaggtgg	gagttgccag	ggacccccag	gctgaggagg	1500
gagcctccca	gccccctcc	actcaccatt	gtcctgctgc	ccctccagcc	ccctggtcac	1560
tgtcacctct	gcggctggag	ggctggagaa	aggcccagga	gcccagggaa	cctccaccat	1620
gccaggctgc	cttccctaaa	ggccggctcc	ttccccccag	gcagccagtc	tgggggtgga	1680
cctggagggg	cagggttctc	tgggaatctc	tgggccaagg	gatgcccttt	ggggatctgc	1740
tggaataaag	agtaatcggt	tttccttgca	ggaggttgac	ccgaaacagc	cctccgtctt	1800
cctgcccatg	aggatgagga	caggaagcca	gacccgggag	agaaagccca	gatcagacag	1860
atgggggttg	ggagggccta	gtggctgaaa	ctgccctgct	tggggacaat	gctcaggcag	1920
gaccaatcca	aacgagggca	ctgcttatgt	ggtccttccg	gagcatcctc	caaggcagag	1980
cctggcttcg	ggccctccct	gcaaggacac	ctgcctccac	tccctgccag	accaggcctg	2040
gctgcagagg	cggaggggcg	gcagggctgc	ctgtctccac	tgtttggcgg	tgtttacacg	2100
tgtcgctgtc	agggtgtctg	gacagtgggg	gtcgggggcc	tecegggeee	agacttcccc	2160
acgctcccca	agagcagcag	atgtaggtct	cccggctccc	aaacctctga	gatgctgctc	2220
tgtctgaaat	catcatataa	ataatcattt	tttaatacaa	gggggtgggg	gtgtcaggca	2280
agttccatga	aattgtgaat	tagccgctgc	tccaaataaa	tgcctgcttc	ggcccgagag	2340
cagccgcgct	gcgcccgctg	cgcccccaat	aatcgtgtgc	tgggtatctc	tccatttgtt	2400

WO 02/068633

59

PCT/US01/43612

ccctgggcca	ttagtccaaa	gggcacaatt	agaaacaatt	tcttgacgac	aaaaattgac	2460
tcttaattct	tcccaccaga	ggcgcagggg	ggacaagtcc	cagag		2505
<210> 67 <211> 247 <212> DNA <213> Homo	o sapien					
<400> 67	taggaatge	2266626161	aggaagtagg	gtgagtatac	teccacaa	60
						120
				gccatacact		180
				aagtaagaaa		
tgaggagaaa	tcaaggaaag	catggtttta	gaacatgtgt	gggatgtttt	ttgtatcgag	240
actgaag						247
<210> 68 <211> 2458 <212> DNA <213> Homo	3 o sapien					
<400> 68 ttgcgctgtt	ttgggtgatc	ttgtggtgcc	gtcgcgcgcg	tcatgcttgt	tttctcagcg	60
gtgctatctg	tgcgtcggta	tgtgtgtctg	ctgcacgggc	tggtgcgacg	cgtggtttgt	120
gctcgtgatg	aatgggctgc	ggcgtttgtg	cctatggggc	ctgttcaagt	atgggggcct	180
ttgtgggcct	tcggggattt	ttggggggcg	cgcccgttgc	ttgtggttgg	acggccgctc	240
tgaggatgtc	aggtagcccg	ttactggtgt	cggaagtttg	tgcaagattg	agataaatga	300
ttagtaatta	caggaaaact	aacttgtaaa	aatcttaaag	acattgaatg	ggttaatgta	360
ctgagcagct	acggaatgca	aggcactgta	ggagtagggt	gagtatactc	cccacaaggg	420
ctcagggtca	ggcaggggag	gtgagataaa	aacccacagc	catacactag	ctggcctgtc	480
ctgagggttg	tgaggcacaa	aatgctagga	gactagagaa	gtaagaaatg	tcttgacatg	540
aggagaaatc	aaggaaagca	tggttttaga	acatgtgtgg	gatgttttt	gtatcgagac	600
tgaagaggct	ttttaaagtg	gagggaaggc	aaactgaggc	atagagatgc	caataccagg	660
tcttgtcagg	aagaacagag	tccaatttgg	ctgcaggata	gggcatatgt	aggggagggg	720
ataagactgg	catgggggca	gagggggact	tgaatgtcag	gtgacagagt	caaagcttgc	780
actcaagtag	gtgattgata	ggtgatcttg	ggggcttttg	agcaggaaga	gtgataaatc	840
aacattggct	taggacaatc	cctttggctt	tggcgaaatt	gtgactcagg	taagggacag	900
ttgggggaga	caaggatggg	aagatgcatg	ataaatgggc	cctgagcttg	gcaggcaaca	960

PCT/US01/43612 WO 02/068633

ggaaggcagt	gcaatgtttt	gtagaaatag	acttagcaga	gcaggcgccc	agcattcagc	1020
gagaccacag	attcttagcc	actgtatgac	ttgaaggtga	tactaactcc	cctgaacctg	1080
tctcatctac	aaaatgggca	tagtagcacc	tatgtcatag	ggttgcttta	tggcaggtaa	1140
ttattcttgt	aaagcattta	gcacagctct	gatgacacat	ggggaatgct	cagtaaatat	1200
taatgtcact	aattccagtc	aattccatta	actggaatta	attagttgga	gttaggaagg	1260
aaacaggtgt	cagctgggtc	gactgaagga	agcagagatc	tcaggaagca	gtacatggtg	1320
gtacagtggg	agcatggcat	ctgtggggga	gactgtctgc	agtgggatcc	cacctctatt	1380
gctggccagc	tgtgatcttg	tacaggatac	ttaacccctt	tctagctcag	tttctttagc	1440
tgtaaagcca	gcgcaatgtt	accatggagc	tggtatgtga	aagcaatgca	tgttaagtgt	1500
gtagtatgtg	cctgatacat	tgttagtgcc	cagtaaatgt	tagttatcag	gtgaggggtg	1560
ggatgtgggg	ttgagtagat	ttgcctcgtc	cactcataga	ggcaggatgt	gcaaggaggg	1620
gtggagacat	gcagcaaggg	attgggcatg	aaggttttct	ccaggcccgg	ggagaacact	1680
cggcctggag	atattcagga	gtccctggcc	cagaggagat	tacaactctg	cagggatatg	1740
agccacgagt	ggagtgtaga	cataggccta	aggaagcaat	cagacacttc	cagaatagag	1800
gacatttgct	aagacagctg	gcctggatgc	ttcaaaaagt	atcatgggaa	aatatgtcgg	1860
ggttgttgta	gactgaaagt	gactagagtt	gaaaccaaaa	gaatgtatga	accttgatgg	1920
gacctggttg	ttgtcgttgt	ttttaaagac	aaacattctg	gagacaattg	ttgaatactg	1980
attaagggct	ctgtattaga	ggctataaag	aagttactgt	ttatattttt	aggcatgatc	2040
atcttaatgt	aatcatgtag	aacggtgtct	ttgtgctcag	gaaatctatg	tggtaatact	2100
caggggtcga	aatgtcattc	tatgtacaca	tgcatggggt	ggagagaata	gtaaatctgg	2160
caaaatgtta	acaactattc	aatccaagtg	gagagtatgt	atctgagtat	tcattgtgct	2220
agcctttcaa	ctttttctgg	atgtgtggaa	tttttcaata	taaaaaaata	agaaaaaaa	2280
gaggcctatg	gaaaaactgg	gaaccagtat	gcaacaggaa	aaggaattct	ttgaaggaaa	2340
aacaggatcc	acctaccaag	agagcaattt	caagggagag	attaagcaca	caatgaaggc	2400
tgcaaataga	tcatcatatt	tggtcactgg	gagattgtgg	cagcttggaa	atagtccg	2458

<210> 69 <211> 894 <212> DNA <213> Homo sapien

<220>

<221> misc_feature

PCT/US01/43612 WO 02/068633

<222> (341)..(341) <223> a, c, g or t

<400> 69 gatgataatc atataggcca atggtgactc tagatctgct cgagcgggcg cagtgtgatg 60 gatcgtggtc gcggcgaggt actccgctac tcttttactt cttttgtaaa gtattgactc 120 180 tggaaggcta cagtatacaa agtctcaaca tgttttttaa aagaaataag gagcaagcga ctgccctgct agaaatcaca aaccgatttt tgtagaatat tttgtgcccc aggcattaat 240 ttcactgact ccagaacctg cagttcagag aatgatttct tatgatgata aaaatcgaat 300 gggatcagac gatggtttgc atttttttta attaacttgg naataggaca cctcaagttt 360 gagatttcat tttcttttag aacacagtca caagattaat ctggtgaatc cttttgtcac 420 480 gtcacattta attgcttttt gggaccattg aatagttggg aagtaagaat tttttaattg 540 gcattaaaac ggtcctcaac tgttaaatta accaaatttg acctgtcttt aaaaaaaggc 600 ttatttgtat gattttgggc taactccccg gggaccatat taaatgacaa aaatgctcct 660 ttgggtgaca caccctacaa agtatttgct gttacgaaca taaacgccca cattcttaat 720 780 atctaatatt tttgaccagt gatgtcttat gctgtcatct gaacctagag aagcagtgtc agaggaaacc tggtgtccat gtgtcttagc aaagggtact gatcgagggt ctgtgacaaa 840 894 gatggcccga gagctggggt atcatggcat agtgttctgg gtaatgttcg ccac

<210> 70 <211> 1335

<212> DNA <213> Homo sapien

<220>

<221> misc_feature <222> (278)..(278)

<223> a, c, g or t

<400> 70

cgtggtcgcg gcgaggtact ccgctactct tttacttctt ttgtaaagta ttgactctgg 60 aaggctacag tatacaaagt ctcaacatgt tttttaaaag aaataaggag caagcgactg 120 ccctgctaga aatcacaaac cgatttttgt agaatatttt gtgccccagg cattaatttc 180 actgactcca gaacctgcag ttcagagaat gatttcttat gatgataaaa atcgaatggg 240 300 atcagacgat ggtttgcatt ttttttaatt aacttggnaa taggacacct caagtttgag atttcatttt cttttagaac acagtcacaa gattaatctg gtgaatcctt ttgtcacagt 360

tctcgtgtgt gt	tgtgcgcgt	ctccgtgtgt	gtgtgtgtgc	atgtgtgtaa	aactggtcac	420
atttaattgc ti	ttttggacc	attgaatagt	tgggaagtaa	gaattttta	attggcatga	480
gacggttcct ca	aactgttaa	attaaccaac	tttgacctgt	ctttagaaaa	aggcttattt	540
gtatgatttt g	ggctaactc	cccggggacc	atattaaatg	acaaaaatgc	tcctttgggt	600
gacacaccct a	caaagtatt	tgctgttacg	aacataaacg	cccacattct	taatatctaa	660
tatttttgac ca	agtgatgtt	ttatgctgtc	atctgaaccc	tagagaagca	gtgtcagagg	720
aaaccttggt g	tcacatgtg	tcttagcaaa	agggttacca	tgatcgaggg	tcatgtgacc	780
aaaagatgct c	cagagaagc	ttgagaattt	gtttcaagtt	gggaggaggg	ttggagatac	840
aaaaatcact c	tgctctaca	ggactcttca	gctgtctatg	caagaaattc	cgttttctct	900
ttcagcacct g	gaaagacac	agcagcccac	tgaggcgata	ggtgattcac	taagcacaag	960
aggaatgttt t	ctaagcaag	gcgtcccttg	cctctcaaac	aaatgccctc	caagtttgtt	1020
agggtttcta t	tcctgcaac	ttgtggtatc	aaaaccactt	cctgaaattg	tcaaagcact	1080
gccaaaataa a	tgtttttcc	cccttctaag	aaaaaaaaaa	tgacagtgct	catatttgac	1140
acttgtgtat t	ggactctct	tttgaatgaa	taaaaaggaa	aaggggtttg	gtgtaattcc	1200
tgatggggtg c	gtgttgttt	ttcatgccat	ggtttgtgaa	ttttaattgt	ggtttcccat	1260
ttcgttgttg t	aactgggca	gaaattaaaa	aagaaaaatc	aataaaaata	caaagaaatg	1320
gttaaaaaaa a	aaaa			,		1335
<210> 71						
<211> 137 <212> DNA						
	sapien					
<400> 71						
cgggcaggta c	gcacaagca	ggcccagctg	ggagacgcta	ggataactaa	gacctggtca	60
gcgccctgag g	agtcttgtc	tggataaagg	gagacacaca	ctagcttgga	cttatgcgtg	120
cagcggagct g	tgtaga					137
<210> 72						
<211> 694 <212> DNA						
	sapien					
<400> 72						
ccgcccgggc a	ggtaccaac	cccagcacac	cccaacagcc	tttcctcggc	ccctcctcag	60
gcctcctaat t	actctttct	cagcctggag	tgtggggccg	ttaccgtcct	cttccccctt	120

PCT/US01/43612 WO 02/068633

				63			
ctccttcc	cat	actgcactta	accttgctgg	aagacttaat	gatggagatt	tagggcaatc	180
tgtggctg	gct	tggacccttc	cctggaccaa	aggaacttaa	aacccaaacc	tgacactgga	240
atgaaato	cca	agtttttaaa	tatcaccttt	caatcactca	cagatctcac	tctatcttaa	300
aatactca	agc	ctcactcctt	aatgagtgct	tgctgaaggg	agaaaattcc	attttaaaaa	360
cgtattca	act	ttactgatta	ctgtgcaatt	tgaattaagt	cacgattctt	tagtaaatgg	420
aggtgaga	aat	ctcagattca	aattgtcaga	gaccatgatt	tagaagtcta	ccaaacaccc	480
agtttcct	tc	cactgtttta	gggtaacagg	aaaacatgag	attggggtgg	tgtccgctat	540
taaatgga	aac	cacacatcat	gaaattcaat	tctcatgtta	agacattctg	tattgtggga	600
tgtcaaaa	agt	atttcccaaa	ctttcgtttg	acctgcagag	ttggagatgg	cttacctccc	660
tataactt	ca	agtttgtttc	acaaagcttg	gcgt			694
<210>	73						
<211> 8	8095	•					
<212> I	ANC						
<213> I	Homo	sapien -					

<400> 73

60 tttttttttt gccacctaga gatgataatt tattgtttta ccatgactca gaagagaaac aacataaaga gaatatttca aatccccaca atttccttcc tcaacctcac tactcttaac 120 atttetttat cagacgecae tggetteeta aaatggacca etgaetatgt atgtgtacae 180 atttcattat gctgcctttt ctcttatgat taaaacttta gccctcattc gaggtttcca 240 300 atggttactt ttagtggagg agttccctag cttttaaaaa accacttttc ctctaagatt 360 ccattattta ttgaaagaag tctttctaga aatgttaagg aggattttaa atgaacacat tcaattaaaa aaaaaatcac gtattgaaca tctaccaagc atctggactc ttcggaacct 420 480 agtaaaatga aaaaatccag ttttaacaac agtaacttca ttctgcgggt atacagagac aagcacgttt cttcttttgg tctaatttat tctaaacgaa gaagctggga actgacaaaa 540 caggacaggt tgtttttaat ccagtctaca aataaacaag acaatgcctg agttagccct 600 660 ctatatagat ttaggettat getgaeeteg ttgtaaaate tgtatttaae taaaagttaa taaaaataca tatqttcatt ttaaaataat tactgatttt gcttggctat cccacccctt 720 acccccaaac tcatatattt ttaggacaag attttcctgc ataaccacaa cctgtctcct 780 cccacccac ccccatcata gatgttttca aataagaacc cctgcgatca gcagaagcat 840 ctctaatcta acatgctttg tccttgctag ggcaggctaa aagctttaaa aagcaaccgg 900 atgetettet etggttgagg tgaggggaag gegetegggt accaacccca geacacccca 960

acagcctttc	ctcggcccct	cctcaggcct	cctaattact	ctttctcago	ctggagtgtg	1020
gggccgttad	cgtcctcttc	ccccttctcc	ttccatactg	cacttaacct	tgctggaaga	1080
cttaatgato	g gagatttagg	gcaactgtgg	ctgcttggac	ccttccctgg	accaaaggaa	1140
cttaaaacco	: aaacctgaca	ctggaatgaa	atccaagttt	ttaaatatca	cctttcaatc	1200
actcacagat	ctcactctat	cttaaaatac	tcagcctcac	tccttaatga	gtgcttgctg	1260
aagggagaaa	attccatttt	aaaaacgtat	tcactttact	gattactgtg	caatttgaat	1320
taagtcacga	ttctttagta	aatggaggtg	agaatctcag	attcaaattg	tcagagacca	1380
tgatttagaa	gtctaccaaa	cacccagttt	ccttccactg	ttttagggta	acaggaaaac	1440
atgagattgg	ggtggtgtcc	gctattaaat	ggaaccacac	atcatgaaat	tcaattctca	1500
tgttaagaca	ttctgtattg	tgggatgtca	aaagtatttc	ccaaactttc	gtttgacctg	1560
cagagttgga	gatggcttac	ctccctataa	cttcaagttt	gtttcacaaa	gctttgaaaa	1620
gtaaaacaga	taatttcatt	ttcagataat	aaaaaatctg	aatagcaaaa	taattgcttt	1680
taaatgtagt	gtgtccactc	taaaaaaaaa	aaccctaaat	ctatgttaga	aaaacttttc	1740
aaataatgcc	ttttattaaa	ttctccagta	gtagttgaaa	taaaaatcta	ccctaatttc	1800
tatgaaatga	tctatttata	tcactgactt	ttcttttct	ctgattctat	atttcattta	1860
acaatctgca	gactttcacc	ccatttccca	gatgggaaaa	ccctagcccc	ctcgtatctc	1920
tgagaagttg	ctcagagtag	gacacagaga	aatatggccc	ccaccctggg	aagtactgct	1980
gtcactgttt	aagtgtattt	cagttctgtt	actccaattc	atacacacag	tcttccatga	2040
ggatggtagg	atgaacctgg	ttagctggct	ttggataagt	agatcagcat	gactacctgg	2100
aataaaagtg	actgactcta	ggataaaaat	taaaaaaaga	ttctttcaca	gcaacgagtc	2160
tttgcaaaac	ctctctccta	ataatcacaa	accaggggaa	gaaaagtggg	agcagggaac	2220
acaggaacac	agccaaaggg	aatattgcaa	aatgcttccc	gagcttcatc	agacagactt	2280
cttgcaatgc	cacgactgga	tgcatctgca	cacaattccg	ggaaatgccc	accttgctgt	2340
tctcctatcc	ccaattttct	ttctttcttt	ctttctttt	ttctttttt	tgagacagag	2400
tctctgttac	ccaggctgga	gtgcagtggt	gcaatctcgg	ctcactggca	acctctgcct	2460
cccagattta	ggtgattctc	ctgcctcagc	ctcctgagta	gctgggacta	caggcgccca	2520
ccaccacgcc	cggctaattt	ttgtattttt	agtagagaca	ggctttcacc	acgttggcca	2580
ggctggtctc	aaactcctga	cctcaagtga	tccgcccacc	tctgcctccc	aaagtgctga	2640
gattacagga	gtgagccacc	gtgcctggcc	agtcctatcc	tcccccaac	ctttttttt	2700
tttttgacat	ggagtctcac	gccatcaccc	aggctggagt	gcagtggcgc	catcttggct	2760

cactgcaacc	tccgcctccc	atgttcaagt	gatcctcctg	cctcagcctc	ctgagtagct	2820
gggactacag	atgaagacaa	gcacctgtgg	tgcccctcac	tgcaagaagt	cagggaggca	2880
ttccacagcc	tgggtgccca	cagtcctgcc	ctgtaccctc	tggggccctt	ttggcacggt	2940
ggcagcgctt	ccagatttcc	tttcagaaag	atgcagtcct	tccgcagctg	ggccatgcag	3000
atctcctggc	atccaacttg	ttggaaacag	tggccctctg	ctcaatgatg	agactgggga	3060
ggggaaacag	gaggacattt	caaggaaagg	atggagcgtg	gatatgaatg	ggaagcgggt	3120
ggtggggag	ctcatcagca	tcctcagagg	ggctcatgcc	cacgctgcaa	cacagaatgg	3180
gacttgccag	atgtttgtag	tcgactctga	gtgccccgtg	ctgagaaacc	tgaaagcaca	3240
cccacctatg	gctgcgcgtg	ttgcacgctc	aaggctgagt	tcacatagtt	ctgtagcctc	3300
ctcctacacc	aagtcaggtc	ggccctgtgt	gaccagtaga	agagatggga	tgtcactttc	3360
gagggtgctt	ccaggcgagg	ctggcctgaa	tgagaatgag	gagcaggacg	ctccccaaga	3420
gattgccttg	gacatcagcc	tgggccacat	ctacaagttc	agacccattc	agcagctaaa	3480
ttccaggagc	atcacggaga	atctccggcg	agctcagcac	caaggcaggc	actgtgctgg	3540
ctgtgggccg	gatgctacag	aaactgtgtt	atcggacacg	ggtcctgatc	taggccccaa	3600
gagagagttc	ttgtacaaga	aagaattggg	gccaggcatg	tttctggcgc	tgtgtgccca	3660
ggcccagccg	ggggcctaca	ctgatgagaa	cctcatggga	ctgattgagc	tgctgtgccg	3720
caccagcctg	gacgtggggc	teegeetget	gcccaaagtt	gacctccagc	agcttctcct	3780
cttgctcctg	gagaacatcc	gggagtggcc	agggaaggcg	cttccttcca	ggacagatgt	3840
cccacggctt	gcagatggct	gggcccagga	gacggtgcta	gcccttcctc	tgagagaagg	3900
ggtgcaggct	gccgccaccg	tgcccatcct	cctgtacaac	ctggaggatg	gcttgtcaga	3960
ccatcccctg	gaccagggcc	ccgctgccct	gcccggcggc	cctgcagccc	tgcctcggct	4020
ccagctctca	catcgccaaa	gaagcccaag	atacaggcac	ctggggaaac	cgttgacggt	4080
ttttgctgtt	ccagttttgg	ctgcttctca	agatcacgaa	gcccagggca	ctctgcaagg	4140
gtttctgcaa	gttcagcagt	tcatcgctgg	agggcgcttc	cttccaggac	agatgtccca	4200
cggcttgcag	atggctgggc	cccaggagac	ggtgctagcc	cttcctctga	gagaaggggt	4260
gcaggctgcc	gccaccgcgc	ccatcctcct	gtacaacctg	gaggatggct	tgtcagacca	4320
tcccctggac	caggggcccc	gctgccctgc	ccggcggccc	tgcagccctg	cctcggctcc	4380
agctcccaca	tcgccaaaga	agcccaagat	gcaggcacct	ggggaaacgt	ttcccactga	4440
ctggagcccc	ccgcccgtgg	aattcctcaa	cccgagggtg	ctgcaggcca	gtcgggaggc	4500

66

cccggcccag aggtgggtgg gtgtggtggg cccccagggc ctgaggagac tggctggtga 4560 4620 gctgcccgag gagttggagc aggaacacct ggacttggac ccgaagaggg gcctggcctt gccagagaag ctgttctgga acacgtcagg cctgagccag caggctgcgg ccccagagtt 4680 4740 ttcctggggg ggctcaggaa gctacttcaa caacctggac tacttactgc aggagaagag 4800 ggaacaggcc ctggagcagg agcgagagag gctgcttctg caggagtgtc tcaatctcaa ctccttggat cttgatgaag aggaagtgcc actcacaccc gagcacagaa agaggcaaga 4860 gagetetetg gggecettte ataagggtac caateetatt catgaagget ceacceteat 4920 4980 gcctcatcac ctcccaaagg ccccacttcc taatacettc accetggggc tttccttccg 5040 qaqacaagca gtaaataaga tcagtgaagt tgtgctgcaa gggctcctga gaaaggctaa 5100 cgctgggggc ataaggagtg ctgggaaagg tgtgggctct gatgatgtgg gctctaatca tgtgggcttt gatgatgaag gctctgatga tgaagggatg ctggtggaaa agtactcagt 5160 gtccctgcag accatcccgc cggtccatcc aggtgagact gtgtttctgc ccaggtgtca 5220 5280 cccctgcca tqcatcctgg actcctcact cctgaagcca cgcagccacc tggaagggct gttcctcagg cagtatgctg agcattggga cctcaaggat gaggaagatg cagtctctgc 5340 cctagaggag cttacagcag caggaagttt ctgtcatagg acagacccag ggctcaccaa 5400 gactcaagca gatgatgaag cctggggctc actggcccaa tcagcgtatt cagactggct 5460 ggctgcttat gaggctcttg ggccagggct gcctgctcag tgggcagctg actctagctg 5520 5580 ctgcaaaatg cctttcactc aaaggttttt gcttttgcca atcccctccc tcacatgcct 5640 tgaaacaagc actttcaaag acaaagacat aaacaacaaa agggtgcagg ctgagttgcc aacttacagt gtcattgggc cgattcaggt tcttgactgc tgcacaaaag aatttgagag 5700 caagtacaaa gcaaaagtag gtaaagaagt ttattgcaaa gcgaagatct cctgggaggc 5760 ccccgtggag aagaagactg agtgtatcca gaaagggaag aacaaccagg tgggtgcttg 5820 5880 gacgetgete etggtgetge etteacecea ggacgtetee teccattetg gecetegege totcactaac oggacacett tetgececca gacegagtge tteaacttea teegetteet 5940 gcagccctac aatgcctccc acctgtacgt ctgtggcacc tacgccttcc agcccaagtg 6000 6060 cacctacgtc aacatgctca ccttcacttt ggagcatgga gagtttgaag atgggaaggg caagtgtccc tatgacccag ctaagggcca tgctggcctt cttgtggatg gtgagctgta 6120 ctcqqccaca ctcaacaact tcctqggcac ggaacccatt atcctqcgta acatggggcc 6180 ccaccactcc atgaagacag agtacctggc cttttggctc aacgaacctc actttgtagg 6240 6300 ctctgcctat gtacctgaga gtgtgggcag cttcacgggg gacgacgaca aggtctactt

WO 02/068633

67

PCT/US01/43612

8040

cttcttcagg gagcgggcag tggagtccga ctgctatgcc gagcaggtgg tggctcgtgt 6360 ggcccgtgtc tgcaagggcg atatgggggg cgcacggacc ctgcagagga agtggaccac 6420 6480 gttcctgaag gcgcggctgg catgctctgc cccgaactgg cagctctact tcaaccagct 6540 gcaggcgatg cacaccetge aggacacete etggcacaac accaccttet ttggggtttt 6600 tcaagcacag tggggtgaca tgtacctgtc ggccatctgt gagtaccagt tggaagagat 6660 ccagcgggtg tttgagggcc cctataagga gtaccatgag gaagcccaga agtgggaccg 6720 ctacactgac cctgtaccca gccctcggcc tggctcgtgc attaacaact ggcatcggcg ccacggctac accagctccc tggagctacc cgacaacatc ctcaacttcg tcaagaagca 6780 6840 cccgctgatg gaggagcagg tggggcctcg gtggagccgc cccctgctcg tgaagaaggg 6900 caccaacttc acceactgg tggccgaccg ggttacagga cttgatggag ccacctatac 6960 agtgctgttc attggcacag gagacggctg gctgctcaag gctgtgagcc tgggggccctg ggttcacctg attgaggagc tgcagctgtt tgaccaggag cccatgagaa gcctggtgct 7020 atctcagage aaggtaaage tgetetttge eggeteeege teteagetgg tgeagetgee 7080 cgtggccgac tgcatgaagt atcgctcctg tgcagactgt gtcctcgccc gggaccccta 7140 7200 ttgcgcctgg agcgtcaaca ccagccgctg tgtggccgtg ggtggccact ctggatctct 7260 actgatecag catgtgatga ecteggacae tteaggeate tgeaacetee gtggeagtaa 7320 gaaagtcagg cccactccca aaaacatcac ggtggtggcg ggcacagacc tggtgctgcc etgecacete tectecaact tggcccatge cegetggace tttgggggee gggacetgee 7380 7440 tgcggaacag cccgggtcct tcctctacga tgcccggctc caggccctgg ttgtgatggc 7500 tgcccagccc cgccatgccg gggcctacca ctgcttttca gaggagcagg gggcgcgct 7560 ggctgctgaa ggctaccttg tggctgtcgt ggcaggcccg tcggtgacct tggaggcccg ggccccctg gaaaactgg ggctggtgt gctggcggtg gtggccctgg gggctgtgtg 7620 cctggtgctg ctgctgctgg tgctgtcatt gcgccggcgg ctgcgggaag agctggagaa 7680 7740 aggggccaag gctactgaga ggaccttggt gtaccccctg gagctgccca aggagcccac cagtecece tteeggeet gteetgaace agatgagaaa etttgggate etgteggtta 7800 ctactattca gatggctccc ttaagatagt acctgggcat gcccggtgcc agcccggtgg 7860 7920 ggggcccct tcgccacctc caggcatccc aggccagcct ctgccttctc caactcggct tcacctgggg ggtgggcgga actcaaatgc caatggttac gtgcgcttac aactaggagg 7980

ggaggaccgg ggagggctcg ggcaccccct gcctgagctc gcggatgaac tgagacgcaa

actgcagcaa	cgccagccac	tgcccgactc	caaccccgag	gagtcatcag	tatga	8095
<210> 74 <211> 435 <212> DNA <213> Homo	sapien					
<220> <221> misc <222> (86) <223> a, c	(86)					
<400> 74 ggatgttcga	tcactatagc	cttgtgcctc	tagatgctgc	tegageggeg	cagtgtgatg	60
gatgtcgcgg	ccgaggtact	tcccanggtg	ggggccatat	ttctctgtgt	cctactctga	120
gcaacttctc	agagatacga	gggggctagg	gttttcccat	ctgggaaatg	gggtgaaagt	180
ctgcagattg	ttaaatgaaa	tatagaatca	gcagaaaaag	aaaagtcagt	gatataaata	240
gatcatttca	tagaaattag	ggtagatttt	tatttcaact	actactggag	aatttaataa	300
aaggcattat	ttgaaaagtt	tttctaacat	agatttaggg	tttttttt	tagagtggac	360
acactacatt	taaaagcaat	tatttgtgct	atccagattt	tttattatct	gaaaatgaaa	420
ttatctgttt	tactt					435
<210> 75 <211> 608 <212> DNA <213> Homo	o sapien					
<400> 75 ggggggcata	tttctctgtg	toctactctg	agcaacttct	cagagatacg	agggggctag	60
ggttttccca	tctgggaaat	ggggtgaaag	tctgcagatg	ttaaatgaaa	tatagaatca	120
gagaaaaaga	aaagtcagtg	atataaatag	atcatttcat	agaaattagg	gtagattttt	180
atttcaacta	ctactggaga	atttaataaa	aggcattatt	tgaaaagttt	ttctaacata	240
gatttagggt	tttttttt	agaggggaca	cactcccttc	ctactcccca	acaaggggct	300
cactatcccc	aaagaaggag	ctgtggggga	cccacgacgc	agccccggta	cgggattaca	360
gcatattctc	atctcgggcc	ccgaggctgc	ctgtggggcg	aggggagacc	tcccatcacg	420
gagacagatc	acagaccacg	agtgcctttc	ccggaccggg	acgtggcctc	cagagcaggc	480
accagctctt	tccctctcta	gacagaaata	ttttggtaag	gttctggggc	agggagggag	540
catgaagtac	gaggaaaact	tgaattccag	attcttaatg	caaagtattt	atcatttcta	600
ccagaaat						608

<210> 76	
<211> 727	
<212> DNA <213> Homo sapien	
(213) Homo Bapten	
<400> 76	
gatgattoga ctcactatgg gcgaatgtgc ctctag	atgc tgctcgagcg gcgcagtgtg 60
atgggtegeg gegaggtaet teetagaeae tgtagt	ttaa aagaataatt tootgtagaa 120
aaacctaatc taataggacc tactcataat ttggca	aaat catceteata attecatget 180
actgaaatgg gggtgtaata aagaaaaaat catttg	ttta ttcatttaac agggtttatt 240
aaagcaccaa tatatgccca gaactttgca gtgcac	tgga agttcagaga taagaaagcc 300
acagtttctg ccatcaaaat gctaggaatc tagagg	toto aaacatoaga ggtooottoa 360
aactatgtot accaggaaaa taaaatacct gattto	eatcc ctgcaaacaa ctctatacag 420
acagaaatgc ttcctagctt ggaaactata gaaaat	tgaa catgaaaatg agagcaaaga 480
ttctacatca aaatggcaat gatccaatca gcccag	tcaa ggctgagtgg gttgaatggg 540
gacttcgagt ttggattcaa tgctttgaac ttcata	gctc cagagaagct gtgcaaaaag 600
gggggattet agggaatetg aggaagattg ttggag	aaac cagctttett ettgteteet 660
aatccctgct aagattgata ccagtcaagg agctga	gtta ctttcatttc attatgttga 720
ccaagag	727
<210> 77	
<211> 3052 <212> DNA	
<212> DNA <213> Homo sapien	
.400 88	
<400> 77 ggaggtggag gggaggagtg cctgcatggc catggg	gattg ttcttcattc cctttctcaa 60
ctgcacccag cagcagtggt ttttgctagg cctttt	gaag acagcaggaa totgggagaa 120
ggaacatcat cgtctttcac agcatggaaa catcaa	etett attecagaga agggaagaag 180
tccccaaagg tatgtccggt ttaacagttt ctcaag	rtggg ccaggaagtt ctttttcatg 240
ttctgggctc aatcgtgatg ctttgatttc acttgg	statt ttacttttag ttttgtctct 300
aacatctgga gcaaagatca gaagacctga gttcca	gatt tattctgtga ctcaatcact 360
gcttcaatca ctgagggacg tggtatgatg ttcttt	gete tgagettetg ettettgate 420
taaaaagaca ggtggttgtt ctgggtgatc aaaatc	etett ettgetetgt gtatettaga 480
atccatgaaa ttatgtctct ttgcatctat gataac	aaat caaaatatga atcacaattt 540

70

tcttacaggg ttgctgaggt taaagccgtg aaagcctggg aacaaatctc cccagggaag 600 gtttaagcaa gcattaactc tttcttctgc aagttccccc attcattgct agggtgttgt 660 720 ctgatagcca ccatgcacag ttgactttcc ttgggaaatc atgagtcttt tatttttgca 780 atttggcttt atctcctaca catcatccag atggtgcaac atctggtact atatgtccaa tggaattgcc acaactcagc cactgagatc caacattcct gcctctcttc attccaagat 840 tccttctgtt ctttattgtg gtagacaaga gcaagcattt ttatttgcag agatgtactt 900 atttaaaaag caattqtaa aqcatttgat ttaataatta ggattgtttc tccacgattc 960 tttttctgaa aaaaaatttt tttggtgtaa atttagagtt cataagtaac accaaagact 1020 1080 gagacaatga agtccatgca tactgtaaaa aaataacata aataacagtc cctagtatgc atcagtcatt gtactagagg ctttgtgtgt acattgattg tctcacttga aaatcaaaac 1140 1200 acggcagaag agtcaaatgc ttttgaatgt gctgaaactc aaattttctt ccaggtcatc totgtatgat toototttta cactgocatt actggottot aaaaccacta aagotatgca 1260 1320 gatagectgg tectaacatg ttetaaactg ggeattagtg aggggetgee tgetggettg 1380 tttaggggcc agttggctca gtttggaatg gtttaatatc agcaacaata gcattgggtt gatttgaata taaacaactt agactttaaa agttcatcct gaaaaacaag ccttcaagga 1440 caagtgagga catgaagcaa attcctaagg atgcctgggg ttcaggaagc aaagaagaat 1500 ctttggttat tcatgaaaac caaataccag ctatgtggca tcttctggga aagcacaggg 1560 1620 gtgggagaat cetggggtgt gtttggcagc actgtccaaa gtacagttga cttcttaggc 1680 tgctgaacaa atttcttctc ttgccccagg agaatttgat ctgcaggttc ccataagtag agtaacatct ttctcttgaa ataggtgctg tgtcaaagtc tgtatcataa gcttctcttg 1740 gtcaacataa tgaaatgaaa gtaactcagc tccttgactg gtatcaatct tagcagggat 1800 taggagacaa gaagaaagct ggtttctcca acaatcttcc tcagattccc tagaatcccc 1860 1920 cetttttgca cagettetet ggagetatga agttcaaage attgaateca aactegaagt ccccattcaa cccactcagc cttgactggg ctgattggat cattgccatt ttgatgtaga 1980 atctttgctc tcattttcat gttcaatttt ctatagtttc caagctagga agcatttctg 2040 tctgtataga gttgtttgca gggatgaaat caggtatttt attttcctgg tagacatagt 2100 ttgaagggac ctctgatgtt tgagacctct agattcctag cattttgatg gcagaaactg 2160 tggttttctt atctctgaac ttccagtgca ctgcaaagtt ctgggcatat attggtgctt 2220 aataaaccct gttaaatgaa taaacaaatg attttttctt tattacaccc ccatttcagt 2280 aqcatggaat tatgaggatg attttgccaa attatgagta ggtcctatta gattaggttt 2340

ttctacagga aattattctt t	tcaaactaca	gtgtctagga	agtaccttgc	acaaaataga	2400
cacaggatgc ataattgttg a	attaattagt	tcattttaac	ctatacacct	tggggttatc	2460
tagttatgtt ttcatgaaaa o	ctagggcttt	gtaatatcaa	tgtcatgtct	aataagccta	2520
aatttccagt tctaaaaaca a	aagttattca	acaacacttt	ctcaatttga	tgtgttttc	2580
ttttcctgaa ataattttt t	ttcttaagct	tttgatattt	gcttttgtgc	tgacatttga	2640
tagtcaaaac tcaaacgatc t	tcaagtactt	ctttctcagc	tcaataggat	catgtttcgc	2700
ttaacatttg tgaagttgat t	ttatctaatt	cattttgatc	ttgctaaaat	atgaccttta	2760
aaatttttca tgtcacattg t	tgacccagaa	agaccaaata	catacatgag	atcatagttt	2820
tacctgataa tatcactcct a	agtttgatga	tggaattaat	ttgtcaatat	ttcatggagt	2880
tctgctgaaa cgattgcaat t	ttcttgggca	agtttcagaa	cgaccagcat	atctgtggtc	2940
atgtcatctt gggtcatgtt a	aaccagttcc	attggattat	catgctgttc	ccttgtctga	3000
caaaaggatc tttgtgaaag (cacacactgt	ttcttcccat	aactcacatt	ca	3052
<210> 78 <211> 416					
<212> DNA <213> Homo sapien					
	ttttctctcc	agccttgaat	tgttccctgt	tggcttccca	60
<213> Homo sapien <400> 78					60 120
<213> Homo sapien <400> 78 gccgcccggg caggtagcct	gtccacactt	ccaaagccaa	gacccgagag	ggctttcact	
<213> Homo sapien <400> 78 gccgcccggg caggtagcct tagggcccatc tgctggtaca g	gtccacactt gaccttggga	ccaaagccaa	gacccgagag gcagaatcct	ggctttcact	120
<213> Homo sapien <400> 78 gccgcccggg caggtagcct tagggcccatc tgctggtaca gccccaagcc tctctcctgt g	gtccacactt gaccttggga tttggccaca	ccaaagccaa ttctgtcttg gctctttcaa	gacccgagag gcagaatcct tcaatgggta	ggettteact ttgtcagegg ttctagaace	120 180
<213> Homo sapien <400> 78 gccgcccggg caggtagcct dagggcccatc tgctggtaca gccccaagcc tctctcctgt gccctatgctct gtccttcctg	gtccacactt gaccttggga tttggccaca gggacgcgat	ccaaagccaa ttctgtcttg gctctttcaa accggtttac	gacccgagag gcagaatcct tcaatgggta acaaggggaa	ggettteact ttgteagegg ttetagaace acteetegag	120 180 240
<213> Homo sapien <400> 78 gccgcccggg caggtagcct tagggcccatc tgctggtaca gccccaagcc tctctcctgt gctcttgctct gtccttcctg tagggaggatgtc agagctggaa g	gtccacactt gaccttggga tttggccaca gggacgcgat ttttggtgac	ccaaagccaa ttctgtcttg gctctttcaa accggtttac agagcgagag	gacccgagag gcagaatcct tcaatgggta acaaggggaa ctaaaattga	ggettteact ttgteagegg ttetagaace acteetegag ggatteetga	120 180 240 300
<pre><213> Homo sapien <400> 78 gccgcccggg caggtagcct if agggcccatc tgctggtaca g gccccaagcc tctctcctgt g ctcttgctct gtccttcctg if gcaggatgtc agagctggaa g gctctgggag ggacggaggg atccagatct tgcctcccat if <210> 79 <211> 1451 <212> DNA <213> Homo sapien</pre>	gtccacactt gaccttggga tttggccaca gggacgcgat ttttggtgac	ccaaagccaa ttctgtcttg gctctttcaa accggtttac agagcgagag	gacccgagag gcagaatcct tcaatgggta acaaggggaa ctaaaattga	ggettteact ttgteagegg ttetagaace acteetegag ggatteetga	120 180 240 300 360
<pre><213> Homo sapien <400> 78 gccgcccggg caggtagcct if agggcccatc tgctggtaca g gccccaagcc tctctcctgt g ctcttgctct gtccttcctg if gcaggatgtc agagctggaa g gctctgggag ggacggaggg atccagatct tgcctcccat if <210> 79 <211> 1451 <212> DNA</pre>	gtccacactt gaccttggga tttggccaca gggacgcgat ttttggtgac cagccatctt	ccaaagccaa ttctgtcttg gctctttcaa accggtttac agagcgagag tctcccaata	gacccgagag gcagaatcct tcaatgggta acaaggggaa ctaaaattga aatttatgtt	ggettteact ttgteagegg ttetagaace actectegag ggatteetga atgtge	120 180 240 300 360
<pre><213> Homo sapien <400> 78 gccgcccggg caggtagcct if agggcccatc tgctggtaca g gccccaagcc tctctcctgt g ctcttgctct gtccttcctg if gcaggatgtc agagctggaa g gctctgggag ggacggaggg if atccagatct tgcctcccat if <210> 79 <211> 1451 <212> DNA <213> Homo sapien <400> 79</pre>	gtccacactt gaccttggga tttggccaca gggacgcgat ttttggtgac cagccatctt	ccaaagccaa ttctgtcttg gctctttcaa accggtttac agagcgagag tctcccaata	gacccgagag gcagaatcct tcaatgggta acaaggggaa ctaaaattga aatttatgtt	ggettteact ttgteagegg ttetagaace actectegag ggatteetga atgtge	120 180 240 300 360 416

			12			
agccggctct	gtttgcactt	tgctgccgac	attgcaaact	ttttggcagg	gtgggagact	240
gagtctcatt	ctgtcaccca	ggctggagtg	cagtggcccg	atctcagctt	actgcaacct	300
ctgccctcca	gggttctggc	aattccgcct	cagtctcctg	agtagctggg	attacaggca	360
tgcgccacca	cacccggtta	atttttgtat	ttttagtaga	gaccaggttt	catcatgttg	420
ggcaggatgg	tcttgaaccc	ctgacctcag	gtgatctgcc	catctcggcc	tctcaaagtg	480
ctgggattac	aagtgtgagc	catcgcgccc	ggcctgcaaa	cttttttgta	ggtatttctg	540
gtaaacaaat	ccttaggtta	tctttgctgt	ggttgtggtt	tggctttagt	catgatttca	600
aagtagaaat	agctaggcat	tattttttga	aatatatgac	ctatatgtag	tcaagaatcc	660
actgaacaga	gggaagcaaa	ccttttggaa	actggctttt	gggcagacag	taaacgtcca	720
gtttgatgct	ggaagcatga	acagcttcat	caggtaggta	ctcctcaact	ctgatgagtt	780
tgtcctttca	gcctaagggg	gtggaaggga	gttgtttgag	aatagcaaat	acgcatgttg	840
attgcgagtg	tgtggagaca	aaggcagttc	ccaccacagt	taggtcctgg	ccgttgtgtt	900
gtttcctcgc	ctgcgatgct	ccttgtacgt	cctcaccctc	ctctcccgcc	tctgccttct	960
gctgggtcaa	aggtggcctt	tttctctcca	gccttgaatt	gttccctgtt	ggcttcccaa	1020
gggcccatct	gctggtacag	tccacacttc	caaagccaag	acccgagagg	gctttcactg	1080
ccccaagcct	ctctcctgtg	accttgggat	tetgtettgg	cagaatcctt	tgtcagcggc	1140
tettgetetg	tccttcctgt	ttggccacag	ctctttcaat	caatgggtat	tctagaaccg	1200
caggatgtca	gagctggaag	ggacgcgata	ccggtttaca	caaggggaaa	ctcctcgagg	1260
ctctgggagg	gacggagggt	tttggtgaca	gagcgagagc	taaaattgag	gattcctgaa	1320
tccagatctt	gcctcccatc	agccatcttt	ctcccaataa	atttttgttt	tgtgcaaggc	1380
taaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1440
aaatgagcgg	С					1451
<210> 80 <211> 133 <212> DNA <213> Hom						
<400> 80 ccgaggtaca	aaggctttga	ggtccatgga	ctatacttgt	ccccatttat	catcccaggt	60
ggtgctttga	ccctgccata	ccctggctat	taagataaaa	agatttgtgg	acattaaaat	120
tatgaatatg	tcagtaataa	tccagcacac	attgaaatat	tgacacagat	taccataatt	180

tgtgcaacat cttataaaca atgtcatttc catagtagtc taaggcttca ccagcctggc

			13			
ccactgtatc	tagactttag	gttcatttta	ataattatgc	tttccttctc	tgtatcattt	300
gggaagttga	taaatatcac	ttccttagat	accttcattc	agtgatatat	ctggctttta	360
caattaaatt	ggaaaaggta	agtttctctt	tggtgggttg	agagttggac	catcaattct	420
aatctacaaa	aggaaattca	tgatttcact	ctgacgccta	ggatctagcc	aaggctggtc	480
tgcagtatca	aatgtccaaa	ctcatctact	attagccata	ttttgtgagt	cgtttgtcta	540
aactttgtca	aaaatgcctt	tgccatgatt	ttgttgctat	ctggatttca	aacatggaca	600
gttaggaaga	tgtgcattga	agtaggaaaa	tttgttcaga	ttgctgtatt	tattttttac	660
attaaacatg	gacatgtctc	tcaaaaaaaa	aaaaaaaaa	ggctgggggt	actcggggcc	720
atagcggttc	ccggggggaa	atgggtaccc	gcccacaatc	ccacacaaca	accgagcacc	780
ccccccacc	cccaaccaca	atacatataa	cacaaacctt	acataaaaaa	cactaacaca	840
acaaacacac	aacaaaaaa	acacaccaac	acacaaatca	ccataacaca	acaacataca	900
ccacaacaca	caacaacccc	gcccaccccc	caccactcaa	caccaccaca	caacacaaca	960
cccgcaccga	ccccacaca	cccccgcccc	acccaccaca	cgccccacca	caccaccacc	1020
cacacacaca	cacactccca	ccacacacac	acacccccc	caacacccac	ccaccccac	1080
aacaccaccc	caccacacca	cgcacccaca	ccccacacac	cgccaccacc	acacccccac	1140
gaccacccac	cacacacacc	cacacacccc	cacacccacc	cacaccccca	cccctcccca	1200
ccaccacacc	acacccaaca	tctcactcca	ctctctccc	ccaccaccca	cactcaacca	1260
catcatcact	cccctctaca	cacaacaaca	tcaccaacac	tccacctgca	cacacactca	1320
ctcccacac	atcacc					1336
<210> 81 <211> 1609 <212> DNA <213> Homo						
<400> 81 atttataagg	cccttcaaat	ttgtggcttc	ctttctcata	cttctcaagt	ataatgaaag	60
ggggagaaaa	accccaccat	caacacaaaa	gaaggctata	aagactgtgc	accttttaac	120
aagtcaattt	gtagtcagtc	cctgggcctg	tctttttt	tttttaattt	tgaagctacc	180
tgaggtttag	aattccttca	gccctagctg	cttttattct	gctttttatt	taaacaaaaa	240
gaggggagg	atctgaagga	aactagtttt	ctgtacaaag	gctttgaggt	ccatggacta	300
tacttgtccc	atttatcatc	ccaggtggtg	ctttgaccct	gccataccct	ggctattaag	360

ataaaaagat ttgtggacat taaaattatg aatatgtcag taataatcca gcacacattg

PCT/US01/43612 WO 02/068633

			74			
aaatattgac	acagattacc	ataatttgtg	caacatctta	taaacaatgt	catttccata	480
gtagtctaag	gcttcaccag	cctggcccac	tgtatctaga	ctttaggttc	attttaataa	540
ttatgctttc	cttctctgta	tcatttggga	agttgataaa	tatcacttcc	ttagatacct	600
tcattcagtg	atatatctgg	cttttacaat	taaattggaa	aaggtaagtt	tctctttggt	660
gggttgagag	ttggaccatc	aattctaatc	tacaaaagga	aattcatgat	ttcactctga	720
cgcctaggat	ctagccaagg	ctggtctgca	gtatcagatg	tccaaactca	tctactatta	780
gccatatttt	gtgagtcgtt	tgtctaaact	ttgtcaaaaa	tgcctttgcc	atgattttgt	840
tgctatctgg	atttcaaaca	tggacagtta	ggaagatgtg	cattgaagta	ggaaaatttt	900
gttcagattt	gctgttattt	attttttaaa	ttaaaaatgg	aaatgtaaaa	aaaaaaaaa	960
aaaaaaaaag	gctgggggta	ctcggggcca	tagcggttcc	cggggggaaa	tgggtacccg	1020
cccacaatcc	cacacaacaa	ccgagcaccc	cccccaccc	ccaaccacaa	tacatataac	1080
acaaacctta	cataaaaaac	actaacacaa	caaacacaca	acaaaaaaa	cacaccaaca	1140
cacaaatcac	cataacacaa	caacatacac	cacaacacac	aacaaccccg	cccaccccc	1200
accactcaac	accaccacac	aacacaacac	ccgcaccgac	ccccacacac	ccccgcccca	1260
cccaccacac	gccccaccac	accaccaccc	acacacacac	acactcccac	cacacaca	1320
caccccccc	aacacccacc	cacccccaca	acaccacccc	accacaccac	gcacccacac	1380
cccacacacc	gccaccacca	cacccccacg	accacccacc	acacacaccc	acacaccccc	1440
acacccaccc	acacccccac	ccctccccac	caccacacca	cacccaacat	ctcactccac	1500
tototoccc	caccacccac	actcaaccac	atcatcactc	ccctctacac	acaacaacat	1560
caccaacact	ccacctgcac	acacactcac	tccccacaca	tcacc		1605
<210> 82						

<211> 952 <212> DNA <213> Homo sapien

60 tatatatagg cgcatgggct aaatgatcat gctcgagcgg cgcagtgtga tggatcgtgg tcgcggcgag gtaccaggtg aagtgattgg cctgcagtta gggctgtgtt gtgcaaaaat 120 cacttgtttt ggggtgttag aaccacattt aggcgagaag atcacttttg gggagcttgg 180 gaactgaggc aggccgcagg tgcagcagag gcatgagctt gcccgggccc gccctcttgt 240 300 ctatgctcat ggagtgaagg gggggccagc ggaatggccc aaacaactga tttgtttttc tttttttaaa tctttttcag acaaatacca ttgtgtttaa gcgaaatgtg tgtataatgc 360 75

PCT/US01/43612 WO 02/068633

caaatcactg taccccacaa ccctgcacac ctctacactg gactgtaatt tcttgttcct 420 agtttgtctt gctagactgt aagctccgtg agagcaggga ccgtgtctgc ttgttgagtg 480 ggettteece tgtgeetgee ageatgeetg geatctagea ggtettetgt aaagatggga 540 600 tgagtttgta aaccetecag ceteaggagt ggetecatee tetgaggete tggggeeete tggcaggcta gtcatttttc tgccatgtac gtacaatgct ttattttcat gttgtatttt 660 cctttctagc cagtaagcaa agctcctact ggagcaagtt tctttgtggt gttatctctg 720 tatcctttca tcagggccag gccagagtaa gtaggtgctt cgaaggtgtt tggtaatgaa 780 840 tgactttggt accccgccca gtctggctca ctgtctgcgg ttgtctaatc tagatgaagc ccgattcgaa ggggggattt ccggagtgct tggggttgga aaaatctctt attgccgggt 900 952 actcattggg tcgggcgggg gcgagtgggg actgctggtc ggggatgtcg cc <210> 83 <211> 1933 <212> DNA <213> Homo sapien <400> 83 caccettttt gatagcatgt tatgaggete accaaggtet atcetetgge agtateeetg 60 gcctgttctc cccatctccc ctgccctctg ctcaccagtt ccctaaatgt atcttgatct 120 180 cactageect acagactgtg cacagagetg tttetacete cagtgacatg etteegeeca qqcttctccc cctcccgcct caatcttccc ctcaccaact taaggtctta ggggcccttc 240 300 taggaggcag tccccaactt ccagagccag ggtataggct acttctatgt gtcccatggt actgccacag aagagtctca gctctctcca ggattcagtt ctaaggtcag tgcctaagat 360 aaaaatggag tgtaattaaa attcctctta gaaatctaag gaaggtgccc tattgaagac 420 caacatettg aggteecatg tagteattte ttgeecatgt gggaacacat taetgtttgg 480 ttgagtacca ggtgaagtga ttggcctgca gttagggctg tgttgtgcaa aaatcacttg 540 600 ttttggggtg ttagaaccac atttaggcga gaagatcact tttggggagc ttgggaactg 660 aggeaggeeg caggtgeage agaggeatga gettgeeegg geeegeeete ttgtetatge tcatggagtg aaggagggc cagcggaatg gcccaaacaa ctgatttgtt tttcttttt 720 taaatctttt tcagacaaat accattgtgt ttaagcgaaa tgtgtgtata atgccaaatc 780 actgtacccc acaaccctgc acacctctac actggactgt aatttettgt tectagtttg 840 900

tcttgctaga ctgtaagetc cgtgagagea gggaccgtgt ctgcttgttg agtgggcttt

cccctgtgcc tgccagcatg cctggcatct agcaggtctt ctgtaaagat gggatgagtt

WO 02/068633

76

PCT/US01/43612

tgtaaaccct	ccagcctcag	gagtggctcc	atcctctgag	gctctggggc	cctctggcag	1020
gctagtcatt	tttctgccat	gtacgtacaa	tgctttattt	tcatgttgta	ttttcctttc	1080
tagccagtaa	gcaagctcct	aatgagcaag	tttctttgtg	gtgttatctc	tgtatccttt	1140
catcaggcca	gcccagagta	agtagtgctt	cgaaagtgtt	tggtaaatga	atgaattatg	1200
gtaacccagc	ccagttctgg	catcactgtc	tgcaggttag	tctaattcca	gatgaaagcc	1260
ccagattcga	aaaagggaag	attattcaga	agtgcatatg	gttgtataag	aaaaaaaat	1320
ctcattaaat	agacctgagt	aaacttcaaa	ttttgatgat	ctggccatgt	cggagctgaa	1380
gcttaccagc	tctctaaagc	atttgctagg	gaatcatgca	gatggtccaa	aatattttt	1440
agaaaagcat	tcatctgtcc	cgggatagaa	gtagaggaag	ctggtaggca	ggcgctagac	1500
cctaaagaag	gactgctgag	ccagttctta	agccagtggc	tcttttgcct	aaagcagcat	1560
tcctcaaact	tctcactcga	agcattaagt	tacggtgaga	tgctaacaca	cgctttagac	1620
ttaagtcaaa	atttactgtg	aagccacagc	aaaccatggc	ttcacagatg	aattagttgc	1680
tacacaaata	agttcgatac	ataagtacag	taattgcttt	taaaccttat	aataagcagt	1740
aaattagaag	ttaaaccatg	tttttcttt	acgaactgaa	agaagagaat	gcttttgata	1800
ctgagaatcg	cacactgtgt	ccaggcagat	tgttcttgca	taaccagacc	cacaataaat	1860
atctacaact	tttcttacat	gtttataaaa	taaatcttag	aaaaaaaaa	aaaaaaaaa	1920
aaaaagggcg	gcc					1933

<210> 84

<211> 376

<212> DNA

<213> Homo sapien

<400> 84

gcgtggtcgc agccgaggta ctccactcca aatttcccaa gaaattcaga agaattgtga 60 acaagttgct ggtttcacaa tactgcaagg acactgcaag gttattccaa gttcctcagc 120 aagtgtttac acattgggcc aaggacagat ttttcctgga gaaggatttt accactgcca 180 ccatcttgaa attcttcatc gttttggaac acagagccat agattttcat ttctgcactc 240 agetetgtte tgagaceggg gecatagggg ttettggaga gacagggcag atggaagaag 300 tggaaggcat ctgccacact gtagagtgcc tttaagccac ccccattgcc tgagttgttt 360 tcctttttta caaatg 376

<210> 85

<211> 1325 <212> DNA

PCT/US01/43612 WO 02/068633

<213> Homo sapien

<400> 85 ggccgcactt	tttttttt	tttttttc	agagacggag	agatttattt	taaggaattg	60
tgtggctggc	aagtccgaaa	tccatagggc	aggctggcag	gctgaaaagt	taagtgaggg	120
ttaatgccat	agaccggagt	cctgagtttg	aattccacag	ggcaacaggc	tggaaactca	180
gatagggttt	ctatgttgta	gtctcaagga	gaattccatc	ttctttagga	aacctcaatc	240
tttgttctta	atgccttcaa	ctgattggac	agggcccacc	cgtagtatgg	tgggtaacct	300
gctttactga	tttaagcgtt	aatctcatct	aaaaaaatac	ctttaccacc	atgtccagac	360
tagtgtttga	ccaaacaatg	agttggcata	ctccacgcaa	ggtgacgtgc	aaaatgaacc	420
atcacagcac	ttcttgtgtc	ttcatgtgcc	cacctggtac	atgggggtac	aactatctgg	480
cccaaagggg	tggtcaatcc	tgagtggata	aataatagga	atttagtcct	atgatgtgtc	540
ttgatttttc	ttttcttttc	ttaccttcct	atttttatta	acccgggtct	tctgcgccca	600
aagactcagc	ctcattcagg	accatattat	gttcatactt	ctgctgcgtc	caaggagtgt	660
tgacgaaaaa	gtggggcctt	ggaggggtag	aggccaaggg	acagtttccc	ctctgccctt	720
tgaagttcac	gatcttccat	gcaacaaaat	tgttttctgt	gaaaagcagg	aaatgaataa	780
caacagcgta	ggtgcgttgg	ctatgtccgg	tggcatttct	tcagaatttt	cattaatgac	840
acctgatttt	ggaggcattg	tatattttta	aatacatcca	gatgttgttt	cagttgcttc	900
ctctttggtt	ctttttgctt	ttcgttgttg	agcgtcactt	aaattcgtgt	catttcatgt	960
tggtacaggt	actccacttc	aaatttccca	agaaattcag	aagaattgtg	aacaagttgc	1020
tggtttcaca	atactgcaag	acactgcaag	ttattccaag	ttcctcagca	agtgtttaca	1080
cattgggcca	aggacagatt	tttcctggag	aaggatttta	ccactgccac	catcttgaaa	1140
ttcttcatcg	ttttggaaca	cagagccata	gattttcatt	tctgcactca	gctctgttct	1200
gagaccgggg	ccataggggt	tcttggagag	acagggcaga	tggaagaagt	ggaaggcatc	1260
tgccacactg	tagagtgcct	ttaagccacc	cccattgcct	gagttgtttt	ccttttttac	1320
aaatg						1325

<210> 86

<211> 744 <212> DNA

<213> Homo sapien

<400> 86

gcgtggtcgc ggcgaggtac ttttaactta aaaaaatgaa catctttgta gagaattttc б0 tggggaacat ggtgttcaat gaacaagcac aagcattgga aatgctaaaa ttcagttttg 120

cctcaagatt	ggaagtttat	tttctgactc	attcatgaaa	gtcattcctt	aattggaggc	180
ccaccattca	attattcatc	tattaattcc	ttgatccttc	atttatccat	tctgcaaact	240
tttcttgagc	accagcacgg	gtggccattt	gtggacttct	cttcattcct	atgtgttttc	300
ttatcaaagt	gatccactct	cgaaaggctc	ctttccagtc	tgtggttggg	ttcaagtcat	360
gccagggcca	gggggcccat	ctcctcgttt	agctctaggc	aaaatccagg	ggatctgcag	420
tggggagcgg	gggcaggaag	ctggagggaa	ggcctgtgaa	gggtagggat	gtggaaagac	48
aaggtgacag	aaggacccaa	taggaccttt	ctatatctct	ggcttagcat	tttctacatc	546
atattgtaat	cgtcttattt	gctagttttc	ttccttactg	tgagtgacta	acagtcatct	600
ttatcccaag	tgcctggtac	ataataagtg	atcaataaat	gttgattgac	taaatgtaaa	660
aaaaaaaaa	aaaaaagggc	tgggggaatc	agggccaagg	cttgtccggg	gtgaaattgt	720
ttccccccac	aaaaaaaaa	aaac				74
<210> 87 <211> 1833 <212> DNA <213> Homo	sapien					
<400> 87	-	actccaggga	ctctctctt	tcctgataac	atggccagca	6
<400> 87 tgctccagga	aagttctgtt			tcctgataac tggcagactc		60 120
<400> 87 tgctccagga agaaagtaat	aagttctgtt tacagtgttt	ggagcaacag	gggaagctgg		cgccaagcac	
<400> 87 tgctccagga agaaagtaat ctgggtctga	aagttotgtt tacagtgttt agcacgtggt	ggagcaacag gtacagcggc	gggaagctgg ctggagaacg	tggcagactc	cgccaagcac gacggatggc	12
<400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg	aagttotgtt tacagtgttt agcacgtggt tgccgcactt	ggagcaacag gtacagcggc tgacagcaag	gggaagetgg etggagaaeg ggegaggtgg	tggcagactc tcaagcgact	cgccaagcac gacggatggc ctggtccatt	120 180
<400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatcccca	aagttotgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg	gggaagetgg ctggagaaeg ggegaggtgg geetaetttg	tggcagactc tcaagcgact aggagtactt	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg	120 180 240
<400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatcccca cggcccgtga	aagttctgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt aagcctctga	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg tggagattac	gggaagctgg ctggagaacg ggcgaggtgg gcctactttg tacaccttgg	tggcagactc tcaagcgact aggagtactt aaaactttct	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg gggagatgta	120 180 240 300
<400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatcccca cggcccgtga ccaatggatg	aagttctgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt aagcctctga gtatctctgt	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg tggagattac tgctgatatt	gggaagctgg ctggagaacg ggcgaggtgg gcctactttg tacaccttgg ggagcagccg	tggcagactc tcaagcgact aggagtactt aaaactttct ctgtaccgat	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg gggagatgta ttttaattct	124 186 244 300 366
<pre><400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatccca cggcccgtga ccaatggatg ccagaggaat</pre>	aagttctgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt aagcctctga gtatctctgt ttttaggcaa	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg tggagattac tgctgatatt ggccgtgggg	gggaagctgg ctggagaacg ggcgaggtgg gcctactttg tacaccttgg ggagcagccg ctcagtgcag	tggcagactc tcaagcgact aggagtactt aaaactttct ctgtaccgat tctctagcat	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg gggagatgta ttttaattct aatacagcaa	120 188 244 300 360 42
<pre><400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatccca cggcccgtga ccaatggatg ccagaggaat tatgctgatg</pre>	aagttctgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt aagcctctga gtatctctgt ttttaggcaa ttttgtccaa	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg tggagattac tgctgatatt ggccgtgggg	gggaagctgg ctggagaacg ggcgaggtgg gcctactttg tacaccttgg ggagcagccg ctcagtgcag aaagaagtcc	tggcagactc tcaagcgact aggagtactt aaaactttct ctgtaccgat tctctagcat aagcactaac	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg gggagatgta ttttaattct aatacagcaa gattacccg	120 180 240 300 360 42 48
<pre><400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatccca cggcccgtga ccaatggatg ccaatggatg tatgctgatg gaagctttcg</pre>	aagttctgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt aagcctctga gtatctctgt ttttaggcaa ttttgtccaa agaagctggg	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg tggagattac tgctgatatt ggccgtgggg ggctttgggg	gggaagctgg ctggagaacg ggcgaggtgg gcctactttg tacaccttgg ggagcagccg ctcagtgcag aaagaagtcc gcaaaggaaa	tggcagactc tcaagcgact aggagtactt aaaactttct ctgtaccgat tctctagcat aagcactaac gagatgcaaa	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg gggagatgta ttttaattct aatacagcaa gattaccccg	120 180 241 300 366 42 48
<pre><400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatccca cggcccgtga ccaatggatg ccagaggaat tatgctgatg gaagctttcg tatgaaatga</pre>	aagttctgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt aagcctctga gtatctctgt ttttaggcaa ttttgtccaa agaagctggg agccagaccg	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg tggagattac tgctgatatt ggccgtgggg ggctttgggg attccctgca agatgtcaat	gggaagctgg ctggagaacg ggcgaggtgg gcctactttg tacaccttgg ggagcagccg ctcagtgcag aaagaagtcc gcaaaggaaa ctcacccacc	tggcagactc tcaagcgact aggagtactt aaaactttct ctgtaccgat tctctagcat aagcactaac gagatgcaaa tagccaatat	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg gggagatgta ttttaattct aatacagcaa gattaccccg gtgtcgtttc caaagtcaaa	120 180 241 300 366 422 488 54
<pre><400> 87 tgctccagga agaaagtaat ctgggtctga aagctggagg ggcatccca cggcccgtga ccaatggatg ccaatggatg tatgctgatg gaagctttcg tatgaaatga agcttcagcc</pre>	aagttctgtt tacagtgttt agcacgtggt tgccgcactt tgaccagtgt aagcctctga gtatctctgt ttttaggcaa ttttgtccaa agaagctggg agccagaccg agtttatctc	ggagcaacag gtacagcggc tgacagcaag ccgcgtggcg tggagattac tgctgatatt ggccgtgggg ggctttgggg attccctgca agatgtcaat agagaaccag	gggaagctgg ctggagaacg ggcgaggtgg gcctactttg tacaccttgg ggagcagccg ctcagtgcag aaagaagtcc gcaaaggaaa ctcacccacc	tggcagactc tcaagcgact aggagtactt aaaactttct ctgtaccgat tctctagcat aagcactaac gagatgcaaa tagccaatat aactaaatcc	cgccaagcac gacggatggc ctggtccatt cgcggcgtgg gggagatgta ttttaattct aatacagcaa gattaccccg gtgtcgtttc caaagtcaaa gaaaatcagc	120 188 244 300 366 422 488 54 600 666

ttcctgcggt cgcctcttca gtaggaagca ctgcattggt gataggacac ggtaatttga 900

ttcacattta	acttgctagt	tagtgataag	ggtggtacaa	ctgtttggta	aaatgagaag	960
cctcggaact	tggagcttct	ctcctaccac	taatgggagg	gcagattata	ctgggatttc	1020
tcctgggtga	gtaatttcaa	gccctaatgc	tgaaattccc	ctaggcagct	ccagttttct	1080
caactgcatt	gcaaaattcc	cagtgaactt	ttaagtactt	ttaacttaaa	aaaatgaaca	1140
tctttgtaga	gaattttctg	gggaacatgg	tgttcaatga	acaagcacaa	gcattggaaa	1200
tgctaaaatt	cagttttgcc	tcaagattgg	aagtttattt	tctgactcat	tcatgaagtc	1260
atctattgag	ccaccattca	attattcatc	tattaattcc	ttgatccttc	atttatccat	1320
tctgcaaact	tttcttgagc	accagcacgg	gtggccattt	gtggacttct	cttcattcct	1380
atgtgttttc	ttatcaaagt	gatccactct	cgaaaggctc	ctttccagtc	tgtggttggg	1440
ttcaagtcat	gccagggcca	gggggcccat	ctcctcgttt	agctctaggc	aaaatccagg	1500
ggatctgcag	tggggagcgg	gggcaggaag	ctggagggaa	ggcctgtgaa	gggtagggat	1560
gtggaaagac	aaggtgacag	aaggacccaa	taggaccttt	ctatatctct	ggcttagcat	1620
tttctacatc	atattgtaat	cgtcttattt	gctagttttc	ttccttactg	tgagtgacta	1680
acagtcatct	ttatcccagt	gcctggtaca	taataagtga	tcaataaatg	ttgattgact	1740
aaatgtaaaa	aaaaaaaaa	aaaaagggct	gggggaatca	gggccaaggc	ttgtccgggg	1800
tgaaattgtt	tecececaca	aaaaaaaaaa	aac			1833
<210> 88						
<211> 251						
<212> DNA <213> Hom	o sapien					
<400> 88						
	aaaaaaatga	aaaaaaaagt	tttgagcatt	atttgcatca	ttgggataca	60
tatgtcactt	cacaagatgt	tcaatttgaa	ggaaatacca	ctcattctct	atgtcctgtt	120
gtctgtagtg	tgcttcagtt	ttctcatatt	gagttgacct	aaatcctgga	ttcatgacaa	180
gaaaggagta	agtactacta	ttcattgttc	tatttgttta	taatctgtat	tataaaattg	240

251

cacataatta a

<210> 89 <211> 458 <212> DNA <213> Homo sapien

<220>

<221> misc_feature
<222> (327)..(327)

WO 02/068633

80

<223> a, c, g or t <220> <221> misc_feature <222> (435)..(457) <223> a, c, g or t <400> 89 ttgatattta tttagaaaac aagggaaagc ttttaattgt gtgcaatttt gtaagacaga 60 ttataaacaa atagaacaat gaatagtggg acttactcct ttcttgtcat gaatccagga 120 tttaggtcaa ctcaatatga aaaactgaag cacactacag acaacaggac atagagaatg 180 agtggtattt ccttcaaatt gaacatcttg tgaagtgaca tatgtatccc aatgatgcaa 240 300 ataatgctcc actctgtcgc tcaggctgga gtgcagtggc gcaattagaa ctcactgcag ccctaaccct cttggcttaa acaatcnctc caccttagcc ctctgagtag ctagcactac 360 aggcacacgc caccacaccc agctaacttt tttgaatttt tggagacagg gttcacctta 420 458 ttttttctcg tgccnnnnn nnnnnnnn nnnnnnnc <210> 90 <211> 251 <212> DNA <213> Homo sapien <400> 90 tggtcgcggc gaggtacaaa aacatggcag taggacaact ttgagctcaa cgcgcgcacc 60 tecceaggae eteteacace cacetgaece atecaaggge cacaceace egacagatac 120 teccaccace tttagaaaag agteacccaa tetggagaaa ggtgtggagg ttacatettt 180 aqaaaqaaat cattttaaat acatgaacat tagagaacac agtaaccgtg cttccaccca 240 251 gcacggggag g <210> 91 <211> 2399 <212> DNA <213> Homo sapien <400> 91 ggccgcatct ttttattttt ttttttttc ttacaaatgt gagttttatt tgcattctaa 60 cccaagcaca gatcccacat acagacttct cgtccgcact atggtacagt aacaagtgca 120 aaatatqctt tatttcaggt acaaaaacat ggcagtagga caactttgag ctcaacgccc 180 acctcccag gacctctcac acccacctga cccatccaag ggccacacca ccccgacaga 240

tactcccacc acctttagaa aagagtcacc caatctggag aaaggtgtgg aggttacatc

PCT/US01/43612

tttagaaaga	aatcatttta	aatacatgaa	cattagagaa	cacagtaacc	gtgcttccac	360
ccagcacggg	gaggctgcag	agaggcaccc	caaacagtcc	ccttctcttc	tgtggttaac	420
caagcaagcc	ccgcaaagct	tttcccagca	gagcacaccc	agccagcaat	gaggcctcag	480
gacagagcca	gcactgtgac	aaaagaactt	gtcccaccta	tctgagagca	tgagatctgc	540
aagtgggatc	cggactggac	accaggaage	tcaacctggc	tegggecate	agtagctgtg	600
ggaccctggc	ccccatctaa	cctcccagtt	gacttcctga	aaactgggct	agtgggggcc	660
tccccattgc	tttagggagg	atcgagtgag	aagctgacca	aatgcgcaga	acacaaagcc	720
tagcctgtta	gccccagctg	ctatcactac	tgttactcac	gaagaaagga	actgcagtgg	780
ctgctgtctg	cccctggagt	gaagacacca	ggggtgcaca	gaggetggae	aagccacagg	840
gggctggatg	gccacagccg	gacctcggac	ccatctcccg	tgggactcct	tccatttgag	900
gctgtccatc	ctccaatggc	agatgcagaa	ttctcaggcc	caggataccc	ttatggaggg	960
ccggggggcg	gcccctcaaa	accaccaagc	tgaggccact	gtgagcagtc	ccctttgtag	1020
caggaagagc	agctggacac	atgggaagag	gcttgcaggc	tccagagaag	ccaaaaggtc	1080
ctcagtcccc	aaggtactag	gtggaggtga	gatcaggetg	cccctcccag	gacaagagtg	1140
tgagctggcc	aggaggccac	tgctgcccac	cactgctcaa	agtccttctc	cacgcatcaa	1200
ccctgaggga	cctggccagg	ggatgcagac	caaaggccca	gegggteece	aggaacagga	1260
agcaggcggc	aagaaggaaa	gcaaagggct	ctgcattccc	accacgaggc	ggggtggact	1320
ctgcaggagc	cagctgaagc	accagaacct	tccaaggggg	gctcgccagc	cacacaggac	1380
acgagatgcg	tgataggcag	ggttaatgca	gaaaccgctc	atctgaatgc	ttcccctgct	1440
tccaagcgca	aaccaagtca	ttttattctt	ttaaaaaagc	ccttactgtc	tgaggctttc	1500
tttaaataat	ccaacaggga	tggaggtaat	ggaggtctgg	ctcagtagtc	agcagacttt	1560
ttctgtaacg	ggctagacgg	taaatatttt	gggctttcag	agccaagagg	caaaatcaat	1620
attatgttgg	cgtaagagca	aacaaatttc	cacaattttt	aaattgataa	aatccaaaat	1680
acaataattg	agtacatatt	tttggtaaat	acatgtctac	taaaaataag	aattttttt	1740
tttgtgatgg	gggagaaaac	acttcattgg	gttcaaagat	aatattccct	atcataaatc	1800
agtggcataa	acagccagtg	ggccaggtgg	gcccaccgta	tgctagctga	caagggcagt	1860
cacacaccgg	taagtgctga	tacaggatga	ggggtgcgga	gctgaggatg	ttgttctctt	1920
tgatgaaggc	ctgaaaactt	cccctggccc	ctgctgccca	cctcagggct	cctcaggacg	1980
aagggcatga	ggacaggttc	ccactctggc	ccttcgctgg	gggacatggt	ttggtttccc	2040

WO 02/068633

82

PCT/US01/43612

82	
categoragg etggecaget ggggeccaag caetgacegt eetteeccae ettateccat	2100
cagctgccct gcacaggagc agaaaaccca tgcctcagag ctacttccta aggacactgc	2160
ctctagaagg ccctaaagtg gcagagccgg ggatggcagg tgcagccctg gccactagca	2220
cagcagttgc cctcagatct gttagctgtg acccatagat tgggggaggg aggaaagcca	2280
ggaggagett ttgcagaaag gtetggaage taagtggggg tttcaggage tetcagggtg	2340
cccctgggca ggtcccaagg aggcctgggg tgcctgacca gcacctcact ggccctcaa	2399
<210> 92 <211> 595 <212> DNA <213> Homo sapien	
<pre><400> 92 gtgatcgact cactatagca tgttatctag atgcatgctt cgagcggcgc ctagtgatgg</pre>	60
ataggtcgcg gcgaggtaca aatcattaag gcaaatctac aaaggaccag taaggcactg	120
gggcacagca gctgactgca ggaagtctat gtaacttccg gtagtaaaac agcctttaat	180
gcagacatag gtgtgaaaaa ttcagtgtta tgttttttt tcagtgtcaa cctgcaccta	240
aagcacaaaa ggtcacttca agtcacttca atgtaataaa caattcccat tcatcacatt	300
accagtgaaa agagaaataa ttcactgggc tagaaggaat tagaagcagg aataaagaaa	360
atgccctttg gtttacactt actaaagaga atgtctttaa ctctccaagg aataccattc	420
cgctttgtga aattatacca attaattagg actcctctat attcccatta atgtcggatc	480
attacataac ttcaatagaa taaacacttt tttcccactt tgctataata atagctaggg	540
ataceteaae aatataataa tggtttaaat tatgaceatt tetetttgge ettgt	595
<210> 93 <211> 1457 <212> DNA <213> Homo sapien <400> 93	
cttatcctag agaataactc tgtatgaata aaattgctta attgagtctc ttactaaata	60
agtaactagt gccatgcttt tgtgagctct tggtatggcc catattactt tgtttttttt	120
ttttttattg ttgttttgtg atagtcttgc tctgtcgccc aggctgcagt gcagtggcac	180
aatctcagct cactgcaacc tctgcctcct gggttcaagc aattctcctg tctcagcctc	240
ctgggtagct gggactacag gtgcatgcca ccatgcctgg ctaacttttg tatttttagt	300
agagacaggg tttcaccacg ttggtcaggc tggtctcgaa ttcctaacct caggtgatcc	360
acctgccttg gcctcccaaa gtgctgagat tacaggcgtg agccaccgcg cctggcctgt	420

ttgtttttt	aacatgattt	ttctctaagc	ttaaatacca	caaggccaaa	gagaaatggt	480
cataatttaa	accattatta	tattgttgag	gtatccctag	ctattattat	agcaaagtgg	540
gaaaaaagtg	tttattctat	tgaagttatg	taatgatccg	acattaatgg	gaatatagag	600
gagtcctaat	taattggtat	aatttcacaa	agcggaatgg	tattccttgg	agagttaaag	660
acattctctt	tagtaagtgt	aaaccaaagg	gcattttctt	tattcctgct	tctaattcct	720
tctagcccag	tgaattattt	ctcttttcac	tggtaatgtg	atgaatggga	attgtttatt	780
acattgaagt	gacttgaagt	gaccttttgt	gctttaggtg	caggttgaca	ctgaaaaaaa	840
aacaaaacac	tgaattttc	acacctatgt	ctgcattaaa	ggctgtttta	ctaccggaag	900
ttacatagac	ttcctgcagt	cagctgctgt	gccccagtgc	cttactggtc	ctttgtagat	960
ttgccttaat	gatttgtaca	aatgactggg	aggcggggat	gctgcctgtg	tcctggtgaa	1020
ccttaatgaa	ggggccgtct	taggcacagt	gcaaaacaag	catttgtcct	gtactgttag	1080
agccaaaatt	gtgatgagca	atactgataa	ttgtccagtt	tatgtcatct	ttcccagatt	1140
ttaaaatctg	ttctagatat	tcttagcttg	aaccactttt	gattgtgaaa	tgtattaggt	1200
gttgtcccat	tattactgta	aaatgaagtt	ttgaatcttc	ttgttaataa	actgtggatt	1260
cccctctca	atttcttaaa	caacaacaaa	aaaatgcttg	aagattgtct	ttgagtgtaa	1320
gatctgcctt	ttcagaaagg	gagtgttagt	ttgtaatgtt	aaaaaataaa	gacctcattc	1380
aataaaagtt	gaagtcatct	tttaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1440
aaaaaaaaa	actcggc					1457
<210> 94 <211> 936						
<212> DNA <213> Homo	n annien					
	o sapien					
<400> 94 catcactata	gcgatgtgct	ctagatcatg	ctcgagcggc	gcagtgtgat	ggattgctgg	60
ctgccggcga	ggtacacaac	gccttctaat	ttgatcttca	tgactgtaga	cgggtgcccc	120
attccccctg	aaacaacggt	tgcgaggttt	gcgcattact	gcttcgcctg	tgcatgacta	180
cttgctgta	actactagcg	atgatcttgt	atcgaattgt	atctcagcca	cttatcctct	240
cagtatagta	caattaccat	tgcatacttg	tatacctcat	ggagaaggga	gttctctcca	300
gtcccaaccc	atgaatgtgt	tatcgattcg	cgcattcgtt	cgctcgcaac	ctcagataaa	360
cactcttcat	actttatcac	taccttccat	cttagtcaaa	gctcaagaca	aaaattaaac	420

aaaatgacac ctagccattc acctattaca accatcgacg tataagacac accattcgac

gtgaggaaat gacacacgta	tttccatcaa	cgagagtgct	ggatgggagg	gcaggacaca	540
gactggaagt cagcttcagc	gtatacccac	ttactcacaa	gggctgacca	tgatggccct	600
gctcttgcat gaggactcac	atggacagcc	agtggcactg	atgcctgcag	gactgcatgt	660
gccgacaaga tgatgcacat	tttaatattc	aaaatgtaaa	caaagtatcc	acaaatagtc	720
caaaaaagcc aaagaatggc	tttacttaac	aaattttaa	attgccctta	aaagtgactt	780
tttggcataa tgcctttctt	aaaaaaagaa	ctctcacaaa	aaaccatttt	ttttaaccca	840
aaaacaatgc ctagatcact	tcagaactga	aatcctcaga	tgaaacaggt	gaacacttct	900
gtgactgcta cctctcagaa	ggcttgggcg	tatcat			936
<210> 95 <211> 480 <212> DNA <213> Homo sapien <400> 95					
tetegageeg egecagagtg	atggatgcgg	ccgccgggca	ggtacttatt	aagcagagca	60
ctttgtaaga ttcagaactg	actcctgatt	atcttaagcc	attaaaagac	tcaagttttg	120
catggacttt ttgtcctctt	tggcccctga	gtgtgcccca	tetetgecca	gcactaataa	180
cacgttggaa gagcaaagga	tttcccacca	gegtgecaga	tgatttatat	aggcagggac	240
cttcattgaa aagaagggaa	gggacactgt	cttaaatgca	catttaaggt	tctttctgat	300
tattggcaat ctctatgaac	caacacttaa	tecatggget	aacagagaga	tttttttt	360
tttaatgtga agaggattaa	agaataaaga	aaaaacaaaa	aagtctttat	tctaaaataa	420
gaaatcagcc ccatctgtgg	cacagttctc	atgcagaata	ttgcacccag	tgtgaactag	480
<210> 96 <211> 1111 <212> DNA <213> Homo sapien					
<400> 96 cgtccaatca gaggctctgt	atttataaat	aacccgtgtg	ggattatgct	ctccagtgaa	60
tataactgga gcctaaattc	acaaccttaa	gatctgacag	ccagatgtgg	aaggtctaca	120
aagagctctg ctaataagta	atatgtttgc	aaagtgctct	gctaagtaag	gtacttatta	180
agcagagcac tttgtaagat	tcagaactga	ctcctgatta	tcttaagcca	ttaaaagact	240
caagttttgc atggactttt	tgtcctcttt	ggcccctgag	tgtgccccat	ctctgcccag	300
cactaataac acgttggaag	agcaaaggat	ttcccaccag	cgtgccagat	gatttatata	360

ggcagggacc ttcattgaaa agaagggaag ggacactgtc ttaaatgcac atttaaggtt	420
ctttctgatt attggcaatc tctatgaacc aacacttaat ccatgggcta acagagagat	480
ttttttttt taatgtgaag aggattaaag aataaagaaa aaacaaaaaa gtcttatact	540
aaaataagaa atcagcccca tcttggcaca gttctcatgc agaatattgc acccagtgtg	600
aactaacgct agaagcttca aactgtataa atttaaatgt atttgcatat tataaaaata	660
aagataaaca tatacatatt ttacactagt tatggaacag caatgaacgt cagtcgatcc	720
ctctttcaca tttaacagaa ctgaaatctg agtgctctaa atactgccac ctgtactgta	780
actatggctt atatgtgcac ggaaaacaaa atccctgaga agccattcga ctttttttt	840
tttttttttt tttcttcaag tagcgcgctc cttggaggat cacagttctg aggttcaggt	900
tgtaaaacat ttgctccatg ttctcgtcca tgcttccccc caccaccccc tccccacctc	960
ttccccagtc atccaaaaag caccctgcaa gcacgcgttg tcactcaagt tcacagaaca	1020
cgctggggtg agtgcagagg gtctgccagg tgcaaaagat ggtccaggtg ttcagatgct	1080
ctcttttctc catggaaatt ccacagccac a	1111
<210> 97 <211> 395	
<212> DNA <213> Homo sapien	
	60
<213> Homo sapien <400> 97	60 120
<213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc	
<213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc cactggttct taaggagtgg atctccggtc cacatctccc aatgctgctt agcccaggaa	120
<213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc cactggttct taaggagtgg atctccggtc cacatctccc aatgctgctt agcccaggaa atgaagacag ctgacaacac agaggaacat taacgaaaag aacaaacccc aaacttgaaa	120 180
<pre><213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc cactggttct taaggagtgg atctccggtc cacatctccc aatgctgctt agcccaggaa atgaagacag ctgacaacac agaggaacat taacgaaaag aacaaacccc aaacttgaaa tgcataactg ggactgctgg aatgggccaa ggcataccac ggcgggtcac tgtcaccagg</pre>	120 180 240
<pre><213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc cactggttct taaggagtgg atctccggtc cacatctccc aatgctgctt agcccaggaa atgaagacag ctgacaacac agaggaacat taacgaaaag aacaaacccc aaacttgaaa tgcataactg ggactgctgg aatgggccaa ggcataccac ggcgggtcac tgtcaccagg agggcgcctg tgttttagaa gggagtggcc aacaccgtct ggccaacctg gaagggagcc</pre>	120 180 240 300
<pre><213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc cactggttct taaggagtgg atctccggtc cacatctccc aatgctgctt agcccaggaa atgaagacag ctgacaacac agaggaacat taacgaaaag aacaaacccc aaacttgaaa tgcataactg ggactgctgg aatgggccaa ggcataccac ggcgggtcac tgtcaccagg agggcgcctg tgttttagaa gggagtggcc aacaccgtct ggccaacctg gaagggagcc aacgtgacag ctaagaacac tagacaagca tcctagcctt ctcacccatc gatctcagtg tgatcttgcc acagagccac tggcaagcca ttcgg </pre> <pre><210> 98 <211> 3813 <212> DNA <213> Homo sapien</pre>	120 180 240 300 360
<pre><213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc cactggttct taaggagtgg atctccggtc cacatctccc aatgctgctt agcccaggaa atgaagacag ctgacaacac agaggaacat taacgaaaag aacaaacccc aaacttgaaa tgcataactg ggactgctgg aatgggccaa ggcataccac ggcgggtcac tgtcaccagg agggcgcctg tgttttagaa gggagtggcc aacaccgtct ggccaacctg gaagggagcc aacgtgacag ctaagaacac tagacaagca tcctagcctt ctcacccatc gatctcagtg tgatcttgcc acagagccac tggcaagcca ttcgg </pre> <pre><210> 98 <211> 3813 <212> DNA</pre>	120 180 240 300 360
<pre><213> Homo sapien <400> 97 gcgtggtcgc ggcgaggtac caccagctac ttcagagtga agaaagaaag tgtctttcgc cactggttct taaggagtgg atctccggtc cacatctccc aatgctgctt agcccaggaa atgaagacag ctgacaacac agaggaacat taacgaaaag aacaaacccc aaacttgaaa tgcataactg ggactgctgg aatgggccaa ggcataccac ggcgggtcac tgtcaccagg agggcgcctg tgttttagaa gggagtggcc aacaccgtct ggccaacctg gaagggagcc aacgtgacag ctaagaacac tagacaagca tcctagcctt ctcacccatc gatctcagtg tgatcttgcc acagagccac tggcaagcca ttcgg <210> 98 <211> 3813 <212> DNA <213> Homo sapien <400> 98</pre>	120 180 240 300 360 395

acagaatata	caaaaacatt	ttgaaatttt	tttcatctac	tgatttttta	tataaacagg	240
attttttagg	aataatttat	acacagaaag	tcattttatg	taacaaattg	gccatgttat	300
taccttttt	tttcttactt	aaaaaaaatt	ttttttaac	aagaaaactc	agaaaatgca	360
ttatttgcgg	tgcatccatt	ccatcccgcc	ttctggtttg	attttttta	tcccagacaa	420
agggataccc	agaggtagac	aaactctggc	aaacctctca	cctcaacctc	actggcttag	480
aaagcagaca	ggtgttttca	ccgggcgtct	cttccaccgg	tggatgtgtg	tgtgcaacgc	540
caaacatcca	aatgaaaagt	tgaaaacaaa	acccaaatag	tttccagatc	tttctcctat	600
gtagcgcaaa	aaccccaggt	gtttcccatg	atagagatat	tgtggagttg	gggagacatg	660
gccaacaatc	cactggagtt	agaggaagtg	gagtcaactt	taaaaccaat	ttttgtgtat	720
gttatagttt	ttattaaaaa	ttcttttctg	tattggaaat	acgtatcttc	ggggttctgc	780
cttaaataaa	atagggtctc	ttctgtgttc	taacaaagca	gtaatcaatc	atgatacgag	840
gcatgtaagc	aaatggcctg	tgtgccccat	agctgtcatc	gtttatgtga	tcactgtgta	900
tgctgtaatc	atcatgaaaa	ccattggctg	tgcagtcaag	tcttcccatg	tccatggcac	960
tgtgctgaca	atgacggcag	ccagaccaat	caagccagat	gccgaacggt	gccatgcact	1020
gctgggctcc	aacacctcgg	ctgtttccat	ggccaatgag	gttctttcca	tctgtaaagt	1080
agctacactc	caaagggaaa	tgaccagtga	aaaatgatcc	ccgctcccaa	ccagagggtt	1140
ctgggaagac	ccagatactg	aagatacaga	actacttgtt	aaatcatcat	cattcctttg	1200
ttataaacta	gggccaaaaa	gcatgggggg	aaaagagggt	gaaccacgga	tggggtcagg	1260
gagaaatcct	tttttggcat	attgtaaagc	tagctagtaa	acaggtgtcc	taaaaaaaaa	1320
aaaaaaatgg	atcacaaaca	cacatttgca	cacacagaga	aaaaaaagt	gtctttaaat	1380
tattttcggc	aattataaac	tacaaacatt	ttataaaatt	attctgttct	tacaaaaatg	1440
caatgaaaca	tttaattagt	tcttgtaaac	cagatetteg	tcaactgact	acccgtaatc	1500
tactggactt	aagagcccta	ttgaaaacgc	taatgagtga	ctagttaaaa	caatgttgac	1560
cagaaagatg	cggacacaca	cacgtgggac	ataaaaatga	gtgatcgtta	tgttctcgca	1620
gaaacaaaac	gctaaagtca	tgccccagaa	ctgacaactg	acgagtgcga	tgtagtttgt	1680
gttcttgaac	aattegeett	aactccgaga	tcagtttcca	gagtaggatg	ttaggtttct	1740
ttgttgaaac	caaatgccca	cggatgactg	ctgagcctcg	atgtggtctg	atagcttcaa	1800
gaacaatcaa	gttcaaaacc	ttgcccacat	tccttccaag	ccctgcaccc	tgctgctcgt	1860
aactcttctc	tgtgccagga	tccctgtgac	aatggttctg	tacccaccac	ccggtcattc	1920

caccatcaag gagcactcac	ttctccaaat	gacgcaacca	gtcatctaag	atgaaggcca	1980
aaaatgaaac cctctgacct	gtccaaggtc	tgtatcttca	gcatctctgg	caacagaggt	2040
tcagtctaaa taacatcctc	tcttgaagtt	ctcatttgta	ccaccagcta	cttcagagtg	2100
aagaaagaaa gtgtctttcg	ccactggttc	ttaaggagtg	gatctctggt	ccacatctcc	2160
caatgctgct tagcccagga	aatgaagaca	gctgacaaca	cagaggaaca	ttaacgaaaa	2220
gaacaaaccc caaacttgaa	atgcataact	gggactgctg	gaatgggcca	aggcatacca	2280
cggcaggtca ctgtcaccag	gagggcgcct	gtgttttaga	agggagtggc	caacaccgtc	2340
tggccaccct ggaaggagcc	aacgtgacag	ctaagaacac	tagacaagca	tcctagcctt	2400
ctcacccatc gatctcagtg	tgatcttgcc	acagagccac	tggcaagcca	ttcggctgcc	2460
agcctgcaga ggtggactgc	tgtgggaaaa	gcttcagtgg	aacaaactgg	cctagaatct	2520
ggtgccagag aatagttggc	tcataaatct	tttatcccaa	agcaccccaa	tgtgcaccga	2580
gcatctcgcc atttggtagt	tccacagtga	ctgctcttct	attttacgaa	gccacttttc	2640
gtaccattga aatgtgactc	cgcatcttaa	gaaacaggcc	aggagaggcc	aggtcggcca	2700
cgaacacggt cttccatctt	ccaaggagga	ggctcgttcc	aaaggtatgt	caaacgtcat	2760
gacatcccac gaaggagacc	tggggtggtc	tgggtcttga	tcaagttcaa	cagtgtctcc	2820
agtacacacc agctcctgct	gcctcaggga	agggctgtgt	gggagaacgt	cttaatgctc	2880
acatcaattc catgatgtgc	ctcagtggtt	catatgactt	caagcagtgt	gagctgctgg	2940
cagaaggagg ttgcatggaa	aatgccacaa	ctcagcttaa	gattatttgg	aacacacaga	3000
gaaaaatcaa gaggcagaga	aatcagcatg	aagttaggct	agaactgtgg	atagatgatg	3060
ccttggtata gtcaaggtgg	gtgggttggt	ccagtaaaat	gactgcacca	tcacacaagc	3120
caagttttct cttttattga	ggtgtttctg	aagcatttgc	tatgatgggc	actacactgt	3180
tagtgttttc tacttaaaag	ctacctacat	aaaacaaaaa	caaaatgaca	tcagtaactc	3240
ggacagttta aacaaaaccc	ttataaccag	ctgaatgatc	tgtagaaatc	cagttgtgga	3300
aaccggtagg tatgtgcacg	agaggagagg	ccattattcc	aaggggtcac	ctacagtgtg	3360
gaagaacaaa accctgatcc	aacagtattt	ctcaatgacc	ttaagatccc	cggggtcctg	3420
ggagagatgg gtcgcgttcc	agcaggaggc	teetgagege	cttcacttag	gctggaattg	3480
ccgaggagcc atccacgctt	aggcaaagct	gcccgccaca	cttcccagcg	aaatcatcag	3540
tgcctgtaag agcagctgct	ggaagaggg	agcgagccgt	ctgtcctgtg	agcagcagga	3600
ccagggagac ggaggtacag	ccctggcggg	gggggcgtga	cgccacgagc	ctcggcgccg	3660
gccactgggc tttccagccg	gaaggtttgg	tacatctctg	tctaccccta	gggaaggagg	3720

tgagggagaa gttgagaggg cagcctggag ggggagggga	3780
tatcagggac tggctgtgag gtccggagct ctg	3813
<210> 99 <211> 960 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (716)(716)	
<223> a, c, g or t	
<400> 99 atgctcgagc cggcgcatat gtgatggatc gcccgggcag gtaccttggg gactgaggac	60
cttttggctt ctctggagcc tgcaagcctc ttcccatgtg tccagctgct cttcctgcta	120
caaaggggac tgctcacagt ggcctcagct tggtggtttt gaggggccgc cccccggccc	180
tecataaggg tateetggge etgagaatte tgeatetgee attggaggat ggacageete	240
aaatggaagg agtcccacgg gagatgggtc cgaggtccgg ctgtggccat ccagcccct	300
gtggcttgtc cagcctctgt gcacccctgg tgtcttcact ccaggggcag acagcagcca	360
ctgcagttcc tttcttcgtg agtaacagta gtgatagcag ctggggctaa caggctaggc	420
tttgtgttct gcgcatttgg tcagcttctc actcgatcct ccctaaagca atggggaggc	480
ccccactagc ccagttttca ggaagtcaac tgggaggtta gatgggggcc agggtcccac	540
atgetgetga tggcccgage caggttgage tteetggtgt ccagtccgga teeccaettg	600
cagateteat geteteagat aggtgggaea agttettttg teacagtget ggeetetgte	660
ctgaggcctc attgctggct gggtgtgctc atgcgtggga aaaagcttgg gccgtnaact	720
atggccatac ctgttccctg tgtggacatt gttctcccgc tcccatcccc atcccgccgc	780
acccaaccca ccccaacacc cacaccccac gcccccaaac gcccacaccc acaacaccac	840
accececae ecceaecece ecacaeceae eccaaeace acaecetege ecceeecea	900
cctccaccca cccaccaacc cacaacaca cacaccacca ccacca	960
<210> 100 <211> 2754 <212> DNA <213> Homo sapien	
gccagaagca gcctcagctt ggcaaggtgt ggagatgact gctgttccct tcgcatttgg	60

ggaaaacagg	ctccctcggt	agctcgatga	tcctcttttg	atcttgtgtg	acctcctgga	120
gagtggatga	cgctggtggc	cttagctttt	ctagacagtg	taaattgcac	tgggcgatgt	180
ccccagagca	gggcaaggtc	tctagagcgg	gtctcccaca	tgactggctt	cacacaggca	240
cttccgctcg	ggttgcatgc	tctgtgtcat	cttaccggtc	cagggttgca	ggtaggaaat	300
gtttgtaccc	tcttctgatt	gccacctcct	tcccatcgcc	ccttagggac	agggcttgag	360
ggccagtgag	gcgctggtca	ggcaccccag	gcctccttgg	gacctgccca	ggggcaccct	420
gagagctcct	gaaaccccca	cttagcttcc	agacctttct	gcaaaagctc	ctcctggctt	480
tcctccctcc	cccaatctat	gggtcacagc	taacagatct	gagggcaact	gctgtgctag	540
tggccagggc	tgcacctgcc	atccccggct	ctgccacttt	agggccttct	agaggcagtg	600
tccttaggaa	gtagctctga	ggcatgggtt	ttctgctcct	gtgcagggca	gctgatggga	660
taaggtgggg	aaggacggtc	agtgcttggg	ccccagctgg	ccagcctggc	gatggggaaa	720
ccaaaccatg	tcccccagcg	aagggccaga	gtgggaacct	gtcctcatgc	ccttcgtcct	780
gaggagccct	gaggtgggca	gcaggggcca	ggggaagttt	tcaggccttc	atcaaagaga	840
acaacatcct	cagctccgca	cccctcatcc	tgtatcagca	cttaccggtg	tgtgactgcc	900
cttgtcagct	agcatacggt	gggcccacct	ggcccactgg	ctgtttatgc	cactgattta	960
tgatagggaa	tattatcttt	gaacccaatg	aagtgttttc	tcccccatca	caaaaaaaaa	1020
aattcttatt	tttagtagac	atgtatttac	caaaaatatg	tactcaatta	ttgtattttg	1080
gattttatca	atttaaaaat	tgtggaaatt	tgtttgctct	tacgccaaca	taatattgat	1140
tttgcctctt	ggctctgaaa	gcccaaaața	tttaccgtct	agcccgttac	agaaaaagtc	1200
tgctgactac	tgagccagac	ctccattacc	tccatccctg	ttggattatt	taaagaaagc	1260
ctcagacagt	aagggctttt	ttaaaagaat	aaaatgactt	ggtttgcgct	tggaagcagg	1320
ggaagcattc	agatgagcgg	tttctgcatt	aaccctgcct	atcacgcatc	tcgtgtcctg	1380
tgtggctggc	gagcccccct	tggaaggttc	tggtgcttca	gctggctcct	gcagagtcca	1440
ccccgcctcg	tggtgggaat	gcagagccct	ttgctttcct	tettgeegee	tgcttcctgt	1500
tcctggggac	ccgctgggcc	tttggtctgc	atcccctggc	caggtccctc	agggttgatg	1560
cgtggagaag	gactttgagc	agtggtgggc	agcagtggcc	tcctggccag	ctcacactct	1620
tgtcctggga	ggggcagcct	gatctcacct	ccacctagta	ccttggggac	tgaggacctt	1680
ttggcttctc	tggagcctgc	aagcctcttc	ccatgtgtcc	agctgctctt	cctgctacaa	1740
aggggactgc	tcacagtggc	ctcagcttgg	tggttttgag	gggccgcccc	ccggccctcc	1800
ataagggtat	cctgggcctg	agaattctgc	atctgccatt	ggaggatgga	cagceteaaa	1860

tggaaggagt ccca	acgggag atgggtccga	ggtccggctg	tggccatcca	gccccctgtg	1920
gcttgtccag cct	ctgtgca cccctggtgt	cttcactcca	ggggcagaca	gcagccactg	1980
cagttccttt cttc	cgtgagt aacagtagtg	atagcagctg	gggctaacag	gctaggcttt	2040
gtgttctgcg catt	ttggtca gcttctcact	cgatcctccc	taaagcaatg	gggaggcccc	2100
cactagecea gttt	ttcagga agtcaactgg	gaggttagat	gggggccagg	gtcccacagc	2160
tactgatggc ccga	agccagg ttgagcttco	tggtgtccag	tccggatccc	acttgcagat	2220
ctcatgctct caga	ataggtg ggacaagtto	tttgtcaca	gtgctggctc	tgtcctgagg	2280
cctcattgct ggct	tgggtgt getetgetgg	gaaaagcttt	gcggggcttg	cttggttaac	2340
cacagaagag aagg	gggactg tttggggtgo	ctctctgcag	cctccccgtg	ctgggtggaa	2400
gcacggttac tgtg	gttctct aatgttcatg	tatttaaaat	gatttctttc	taaagatgta	2460
acctccacac ctt	tctccag attgggtgac	tcttttctaa	aggtggtggg	agtatctgtc	2520
ggggtggtgt ggc	ccttgga tgggtcaggt	gggtgtgaga	ggtcctgggg	aggtgggcgt	2580
tgagctcaaa gtt	gtectac tgccatgttt	ttgtacctga	aataaagcat	attttgcact	2640
tgttactgta ccat	tagtgcg gacgagaagt	ctgtatgtgg	gatctgtgct	tgggttagaa	2700
tgcaaataaa acto	cacattt gtaagaaaaa	aaaaaaaat	aaaaagatgc	ggcc	2754
<210> 101 <211> 301 <212> DNA <213> Homo sag	pien				
<400> 101 cagcggggga atg	tatagac aatatggccc	atggtgcact	aatgctgcga	geggeegeeg	60
agatgtgatg gate	ggtegeg geegaggtad	atttaatcca	tcttctccat	ttcctccttc	120
aggagccagc tate	gagattt cagtgcattt	ctagcccagc	ggatgttcat	tctccactaa	180
acttcatctt ttac	ctaagca aagggggatt	attccatgag	gcagccagga	gcaaggggcc	240
atgatattca tgad	ctttgtc tgctgggcat	ttttcaaagt	gtccttgaat	tcactcagca	300
a					301
<210> 102 <211> 4318 <212> DNA <213> Homo sap <400> 102	pien				

gttgtatatg ctttttttt ttccaaataa acttgtcacc ctgcatgccc ttggcaaata

agtgaagcag	aaataggaac	acagtccaca	ttcaagttga	ggaacagtgt	atctttaaga	120
gctgaccttt	gggtgacctg	gaaaggggga	aagatggcta	agcatggaga	gaaacgaggc	180
aagagacaag	ctatgataca	acaccgcttc	agcccctgcc	ctcaatagca	cacaacccac	240
atatcagctt	tctctagaga	aggaacctac	tgtttagtgc	tcctcacttt	gcaatgtttg	300
tgctacgcca	gaatttctcc	agttttttc	attatcatcc	ccctgagaaa	aaaattacat	360
tgaatttaaa	ttttccctaa	taagagaaat	taaatatgaa	agaataggat	tttgttgggt	420
aagattgagc	tttggaaggt	cacgaaccat	tattctatct	aaggtgtgtg	ttttgttttg	480
ttttttttg	ttttttttg	tttttttt	tgcaatccct	ctcccctga	accaatttca	540
cattgggaat	gcaggaccta	gactgctgaa	taaaaagcta	cttcttctat	aattgtcagg	600
ttctctccaa	tttctcagct	tcctcaaaga	catggggtgg	agttgggtgt	gccatcactg	660
agagagetet	ggaacttttg	actcttagtg	acatttttag	atttaggggt	tcatggcctt	720
ccacatgttg	ccaccaactg	gtgatctctg	ccccttcatg	ctgatcaaga	aagtagaaac	780
tectegtege	cttcaggttt	gcagtcgcag	aaacattgcc	tgctgtggac	tgtcagcaca	840
aaactgggac	actggtgtca	tttagactgt	cagcagtgca	catgattgta	cgatagactc	900
caggcaacca	tgtgcatctg	tgcaagatga	cctctgcccc	aagagaaggg	ttacggtcta	960
attaaatgtt	taccaagatg	gtaccagtgg	gctctccccg	tgtcctttgg	tgttattgga	1020
gctggtgtat	gacagactca	aggaaatttt	ttaaggaaaa	tgaagaagaa	atcaaccttt	1080
atggttctct	ttcattggaa	gaggagaata	aggaaagaaa	tggcaggtag	agagggaggg	1140
ggaaaggaat	agaaatggca	tgtctttgat	gctgtggctt	gtgtggggac	aatgggaaga	1200
gcacagcagg	cacaacatat	ctgtgttagt	gccacgtggt	atctgttaag	tatggccaga	1260
gcctcacata	taagtgaaga	gagttaagac	aattcttgct	ctttgaacaa	taatagtcta	1320
tagaatttct	attggcaaac	catcccagac	aacctgacct	atcaaacaaa	agcaaataat	1380
ccctgtctca	gaactgctgg	tctaaaagct	agaaggggca	tgataatgga	aattgctaga	1440
aaagagagaa	tgctctactc	tctttcctgt	gcctacctac	ccccatccta	aaccctgtaa	1500
aacagaattt	caaaatagat	gtcaaatatg	aagtaattca	gacttccaaa	gaaggaaaga	1560
gttctgccca	gggcagtatg	agcaaatcca	cagggatgtt	aagatttggt	ccaactcaaa	1620
ggtttatggg	cagtgagcct	agagtctctt	gagagtaaac	ccttgcattt	gggacaagga	1680
gaatatgtga	agttcaggag	tgctcacact	agagcaagat	ccagaaaaaa	aaaaatccaa	1740
tggcatttta	aactagattg	cattatcact	caatgctgtt	actttgagca	gacaaatcag	1800
ttgaatggga	gggcaaatgg	cagaaatgaa	caaaagctat	taggtgaaag	catccccaat	1860

gtatcagttg	tgagatgatt	tttgtttaat	gatgatcagg	tttacattga	agtggcttgg	1920
aagacgtatt	tcagagggac	tgggtttgta	ctgcaaaact	ctgaacacta	gagcaggttc	1980
tactagcact	tgggcagtaa	ggtagcgggt	gtgtattatg	ctattgccat	agttctcgtc	2040
tttgtggatt	cacataccct	ttcccatgag	gagcttgcta	ctaacagcct	cctgtttctg	2100
ttgtttttat	atgggagaag	agaaagagct	tggaatttca	attgtctaaa	caattggtat	2160
gatttacaag	aaggcaaacc	attcaggaga	tgttcaacag	tgtatcattc	ttagcattca	2220
atacaatgtt	tattataaaa	tatacacctg	agtttatgtt	tttctgccag	gctgaagggc	2280
aataatgtct	tgctatgcaa	acactctatt	ttatgtgtga	atttttttaa	ctgtaatttt	2340
atgtgtgaat	ttttttaact	aaactctatc	atcattttct	atgttgacat	ctttttttt	2400
ttttaatctg	tttccaactc	tgagtctgtg	aactatctct	tctgactgga	tgctggccta	2460
aaatcctatt	agtgcttaaa	cagacctcaa	aacactctga	acctgtaggc	caatacagag	2520
atgttgttct	ttgatatatc	ttgggtcctt	gatggcttca	acaaacaagg	tcataatttg	2580
tttaaattca	gtgttttctg	tagatacctt	cttctcagtt	tcattaagaa	gagtaaccat	2640
ctttggtttt	ccaaagaatg	gaaactccta	ccctagactt	tagacttaga	gcgtctgcct	2700
ttcacgatga	gtaagagatc	cagaatgttt	aggggatgtg	cgtcagccca	cctggtacag	2760
tggcaaagct	gaatgcgaac	ttgaggcctc	ctgaggcctg	accttctatg	ccccagccc	2820
tccaccccaa	gcaccttttg	gtgtggctgg	aaacacatga	cattggatgt	gatttttctc	2880
aagcccttca	ctgtggaagg	catgggagac	tgcccagcat	tgggcatgtg	gctgttaacg	2940
tttccatttc	aagtccctga	ttcttactgg	agaagttaag	gagccactta	atgttttcac	3000
agacctctga	ttctgttgtg	aatgtggcat	tccagtgagt	acaacctgct	tgctataaag	3060
aaagcagcat	attttgacaa	ttttatttct	tccttgggta	cttacatttt	tattacaaaa	3120
atggccgtta	taaaaaaaga	cagaagggct	gggcagtggc	ttgctcccta	gaaactgaga	3180
ttccgaagca	ggtgtttcct	ctcccctaga	ctcagaggta	catttaatcc	atcttctcca	3240
tttcctcctt	caggaccagc	tatgagattc	agtgcatttc	tagcccagcg	gatgttcatt	3300
ctccactaaa	cttcatcttt	tactaagcaa	agggggatta	ttccatgagg	cagccaggag	3360
caaggggcca	tgatattcat	gactttgtct	gctgggcatt	tttcaaagtg	tccttgaatt	3420
cattcagcaa	acaaagcttt	ctggagaatc	tctcaaaact	taggccctgc	tccatttggc	3480
caaaaatgat	ggctgctcca	aaactctgaa	cttcttaaaa	ctccatctgc	tacattattt	3540
ctggagttta	aacatgactt	tttctgtctt	tgagtataga	tgtgtttgtt	taattaacga	3600

93

WO 02/068633 PCT/US01/43612

agcacaagtc tgttaagcag aaggetecaa getgtattet ataettggga ateettggtg 3660 ccatctttat tctaccaagt gccaatcacc atggctaaag tgggcgtata ttacagcctg 3720 3780 tgtcctaagc ttagaagctt taatgtactt ttttaaatga aaagtattag agggggttga 3840 acattgtaac taaagcataa agttagacca attacatgca gagatgttta tttaatattg 3900 tgtgagetga gteettetgt ataaattatt tgeacaettt tettgeatga tgaactgatt 3960 ttttatagtt gtttgtacca gacggtggca tatttttgta aaaaactttt gacactgaat 4020 4080 gacgegegg ceggegeage catggtgaag attagettee agecegeegt ggetggeate 4140 aaqqqcqaca aqqctqacaa ggcgtcggcg tcggcccctg cgccggcctc ggccaccgag 4200 atcctgctga cgccggctag ggaggagcag cccccacaac atcgatccaa gaggggggc tcagtgggcg gcgtgtgcta cctgtcgatg ggcatggtcg tgctgctcat gggcctcgtg 4260 4318 ttegectetg tetacateta cagatactte tteettgege agetggeeeg agatgegg

<220>

<400> 103 60 tgtgacggaa acattcacac ggaacagcta ggccatgata cgccagcttc cccgtctatg ggataccaaa gttgccagca attaatttac attaccaaaa aggagaaacc attatttatg 120 180 ctatcaccaa agccataccc ttaaaagtaa aaacacatct ccacttgata ttagtaattt gagaaaactt agcatatcta caactactgc ttaatccaca acttttcatt gattcaacat 240 tatcacttaa atgcagatgc aaaataaccc ttgcatggca aacatgttta ctctgtgcta 300 360 atgaaactat gaaacagttc ctgcaagttc acagacacag tcaatcaatg attgactaca 420 qaacagactg gtgagtgtta ccaaaaacaa aagacctgcc caggggacca ctaggggtgg 480 aggaagaaca cctgggtctc actcactggg cacttgatgc tttcattttt atctgtaagc caggggacaa ttatattaat attgtatgaa tacactgcta ctgggaaaag cattcattca 540 600 acagatgccc agctacatac tctgtaccag gtagtgtgtt aagtgctgaa acagggaagg acaaggcaca tootacgggg gotogcagtg tgggcaggtg ctgagctaac gcacacaca 660

<210> 103

<211> 2288

<212> DNA

<213> Homo sapien

<221> misc_feature

<222> (948)..(949)

<223> a, c, g or t

aag	ggctggg	tacctgccag	atctgtatca	ctccggagcc	aacgacctgt	ctctctgaat	720
gat	ctctggc	atggtaaaag	agttaactgc	tatttcaaac	aggctgaaca	caaaactttt	780
ttt	gccttcg	cttactgcac	tgcttctcaa	acttgactca	cgctggcttc	acggcctgcg	840
acg	tactgca	ctcacgaact	tactcctgct	gaacgccttg	cgccgctaac	tccactgcgc	900
tca	ctacgcc	tgcttctccc	tgctgctgca	cacactctgc	tctactcnnc	cgctcacaat	960
cto	tccacac	aacataccgg	agccagcccc	cccccctcc	ccccgcccc	ccccctgccg	1020
ccc	cccccc	cccccccc	ccccccaac	actataactc	ctgcgctcag	cgcctcacct	1080
gco	cccgcac	tcccccagc	tccggcccac	acaccatgcc	ccgcagccca	accctcgcca	1140
cto	ccacact	gcacctccgc	gcctccaaac	agcccccgcg	accaacacac	accgcgccca	1200
cad	gccgact	acccccggcc	gcccagccca	cccaccactc	ccgacatgcc	ccctccgccg	1260
cto	caccata	gaacacctcc	geceeggece	cgcgcccgac	ggccccgaca	ccgcgccccc	1320
gco	gccgcca	acgcccgcac	gccaccaccg	ccacccaccc	ccacacacgc	acccagccac	1380
cad	tacccgc	caccatcccc	accccaccac	tcccacccgg	cccacaacca	cegeeeggee	1440
aco	caccaac	acacgcccgc	acgaccccca	ccccgccccg	ccccaccacc	tegeeeegee	1500
aac	aaccgcc	acccacaacg	cgcccgcccc	accgccccag	ccacccatcc	acacccaact	1560
aco	agccccc	gcccccccc	ccccgccacc	gcaccccact	ccaccaagac	gaaaactccc	1620
gad	accgccc	actaaacgca	ttacagcaag	ccgctgagac	ccgaaaacaa	cccccgcaa	1680
gca	agaggcac	cgctaccatc	aaacgcaaca	accacacaac	gcacggctat	catcccccc	1740
CC	accgtgac	cacaaacgca	ccaccccgcc	cgaccagcac	gccacacccc	cacggccatc	1800
acç	gcacagca	ccacacccca	cgcactcaca	cgacgaaata	ccccacgcc	agccgcccaa	1860
cto	ccacccc	ctacggcaca	aacccacacg	gcggacccac	acctaccaca	cacacgcaac	1920
aca	aggacgca	tcagaactac	ctaaccacac	gcacgaacac	acaacagcac	accaccccc	1980
aad	cacggac	gcacgagetg	tcgacccact	accaccacac	acgatgaccc	gacacagcgt	2040
gcg	gagcgcca	tacccgcgga	gcagcacagc	caatgcacgg	ccccacgacg	gcgacacgcc	2100
gc	catccttc	agcctcgcgc	cacccccgtc	caccgaacca	agaccaagac	gcagaatcgc	2160
agg	gccgcacc	acacccgcta	cggtccgtag	cgagacagca	aacaacaaga	cgactgcggc	2220
gco	gccacca	ccgccaagca	actacgcaca	accaccgacg	cetcatcace	ccaccaccac	2280
aad	cactta						2288

<210> 104 <211> 592

WO 02/068633

95

PCT/US01/43612

720

780

<212> DNA <213> Homo sapien <400> 104 60 ggatatcgac taactatagg ccatgttgac taatgctgct cgagccggcg ctgtgtgatg gattggtcgc ggccgaggta cacatattca tgccactcgg ctctgaaaag aggttcaagg 120 180 tgggtcaagg tgggtcttgg ccagtggagg aaggaaggtg tccaggactt taggttaatc aacagtgggg acagagagga atgatttccc ttgtgaaaac aacagggttc ctttctcata 240 ttcttgtggc cagaaactgg ggtgaacttc agttgtggtg taattgaaat gaaacagtga 300 qaqccatttc tccatggaac tcctatgacc tccattttaa cttctgacaa agttaacttc 360 420 atttatacaa totgtatttg aaaacagtaa toacaaccaa aaaggtoota taaacctgta atagatgtca aagggattca cattctgaac tttaatttta aggacccttt aaaaggccta 480 gacttggatt aaagtaaacg taatattcca agctaaaacg aggcaccata aaaaatcaac tcaaaacatc caaacaatgg ctagatggac taatgtaggt tgttttgctt tt 592 <210> 105 <211> 2180 <212> DNA <213> Homo sapien <400> 105 60 ttttttttt acatctgtac aagatttatt tcatttacca caagttttag agtgaaagta 120 tatgccctaa tacagaagga gtgattcaga acccaccaaa agatcaagag ccaaagtcag ggcttgtatc ccaggtcaat aggagtttca tccgccattt gtttttctgg gattaaagag 180 240 atgatgtgca gaacgcccgg gctgagctca ctatggcttc tgacatacaa gcaccactag 300 gaacaagact tcatgcttca tccttgctct ggctgtgcta gtgagtggca aaagcctctg ctcgtgcttg ccctccaaat ttttcacaag cattcctgtt actagccata gcttcccatg 360 420 acttcacatt tgagtaagtt atcctgaagt gtgtggctgt aatattgaca aatagaacta atgagagtga actgccatct gtttaacaaa acgcactctt ctaagagaat acccagtctt 480 agtgcattta gtacatagtc acaacattga aatgacgtga gaatcaatac aaaatattta 540 ttttttttca aaccacagaa ttcttaaccc cagagccaca caataaagtt ctcagaattg 600 taagccatta acatttttct aaacaatgca gtccagagat gaagataatt tccaaccagc 660

agggatgcaa tatatagtag gttcccctat gaatgaagct caaattagca tttcctttaa

ttctcccaca gccactccat caacagaagc agaaacagta cacatattca tgccactcgg

ctctgaaaag aggttcaagg tgggtcaagg tgggtcttgg ccagtggagg aaggaaggtg

			96			
tccaggactt	tagttaatca	acagtgggga	cagagaggaa	tgatttccct	tggaaaacaa	900
cagggttcct	ttctcatatt	cttgtggcca	gaaactgggg	tgaacttcag	tggggtaatg	960
aaagaaacag	gagagccatt	tctccaggaa	ctcctatgac	ctccatttta	acttctgaca	1020
aagttaactt	catttataca	atcgtattga	aaacagtaat	cacaaccaaa	aaggtcctat	1080
aaacctgtaa	tagatgtcaa	agggattcac	attctgaact	ttaattttaa	ggacccttta	1140
aaaggcctag	acttggatta	aagtaaacgt	aatattccaa	gctaaaagag	gcaccataaa	1200
aaatcaactc	aaaacatcca	aacaatggct	agatgactaa	tgtaggttgt	tttgcttttt	1260
agttgcaaag	cttttcagta	tctcagatta	gtgtatgttc	ataaaacaat	gctcagttat	1320
tttaatagct	gcttatgaaa	caataacagt	ttaactcaag	ggcaatgctt	cttgcataat	1380
aatcacaaaa	ataattaact	gctataaaac	gggaaaaaaa	gtagaagaaa	ataaagccag	1440
cctcaataat	aaaaaggcaa	aatctggagg	ggttactcgg	cttaaaaaga	gattaaccag	1500
gattatttaa	atactataat	acacagtgct	cctgctcact	tctaactgca	gaaaccaatt	1560
ttgtttgcta	gatcaccatt	acctttgcta	gtatgcgtac	agaccaccac	tcggaagtta	1620
tccttttgtg	ctgaaaaacg	ttcaaatccc	ttgtttggtc	agtacagaat	attgcgaggt	1680
gatgctcatg	caaactcttc	ctgaggaatt	tatgtgtgca	aatctgcaac	ccgacagcat	1740
ggcacgcagc	cagggagtgg	tagctgcaca	gtgtgagcac	tggagatgga	tgtgcagtgt	1800
gcagtgttca	cagccatgga	catccattct	tctgcaatct	catctaccca	caaattagct	1860
ttcactctag	accccaaagg	gagggtaatt	gctgcaaatt	tgttaaaggg	acagaagaaa	1920
aagtagcttg	tctacaaaat	aatgcacaat	gcatgcatct	gggtttgtgt	ttcttctcac	1980
taaccttgcc	taagaaccat	taggataaaa	gtcacaacac	caggttttgc	tttctgcccc	2040
acaaaaaac	agtagttaat	tcctgtcagg	ttagggtaca	ggtgtgacaa	caaaaggica	2100
caaaatgaca	atgttactga	agcttaaggc	caacctttaa	aacatgtacc	gtctctcaaa	2160
acaattatcg	atttactttt					2180
<210> 106 <211> 611 <212> DNA <213> Home	o sapien					

<213> Homo sapien

<400> 106

cgggcgtctg gcgcaggtac gttacggagc tatctgggag gaggaagccg tccacccaag 60 ctcacccgac tggttcaagg ttaacaatgg agagcctcac aaacacacgg aggcacttgc 120 gagaggcaga ggctggggcc acagagctgt gaggagagag tgaatctccg tgcatggcag 180

			97			
acatgttgtg	agaggcagag	gctggggccg	cagagctgtg	aggagacagt	gaatctccgt	240
gcacggcaga	cacacaaacc	ccatcctcag	ctgcagattc	acaggagagc	atgggggcaa	300
gtgggctctg	cagttataca	gcaggacagc	gcacggcctt	gggcaggcca	caatttctta	360
aagggaatgg	gaaaatgaga	gcttacggaa	agcaggataa	agcgccctcc	actcatgctg	420
aaaagcacga	agacctgctt	tccaggaatg	acctgcctga	ggccgggaca	gtcagctacc	480
aatgcaagac	acaagagcaa	gaaggcccaa	gtgcagagag	cgcaagttaa	ctcctccagc	540
tccaagacac	agggtgagag	caggctacgt	gtgggcagag	acggcatcta	tctgcccatc	600
tctgggaaaa	g					611
<210> 107 <211> 1845 <212> DNA <213> Homo	s sapien					
	tcgcactacc	ctgactacag	ctggagcgcc	cagaggcgag	ccctggtgga	60
ggaagaggtg	agctgagtgg	ggcctatgct	gggggaagct	ggcccttccc	acattccacg	120
ccctgagtgc	ggagtgctgt	tttccgccgg	ggtgctttga	gtetegetet	gtcaccaggc	180
tggagtgcag	tggtgcaatc	ccggctcact	gcaacctccg	cctcctgggt	tcaagcgatt	240
cttctgcctc	tgcctcccga	gtagctgggg	ttacaggcac	acaccaccac	gcccagctaa	300
tttttgtgtt	tttggtaggg	acggggtttc	accgtgttgg	ccaggatggt	ctctatctct	360
tgacgtcatt	tgtgatccac	ccgcgtcagc	ctcccaaagt	gctgggatta	caggcgtgag	420
caatgtaata	aacagacttt	attttttaga	gcagttgaag	gtaacaggaa	gtggagctga	480
aaacacaggg	tggccccatc	catgccctct	cacagcccct	ccttcctctg	agcccctcac	540
gtccttggct	ctcctccgaa	gcttcttttc	ccagagatgg	gcagatagat	gccgtctctg	600
cccacacgta	gcctgctctc	accctgtgtc	ttggagctgg	aggagttaac	ttgcgctctc	660
tgcacttggg	ccttcttgct	cttgtgtctt	gcattggtag	ctgactgtcc	cggcctcagg	720
caggtcattc	ctggaaagca	ggtcttcgtg	cttttcagca	tgagtggagg	gcgctttatc	780
ctgctttccg	taagctctca	ttttcccatt	ccctttaaga	aattgtggcc	tgcccaaggc	840
cgtgcgctgt	cctgctgtat	aactgcagag	cccacttgcc	ccctgctctc	ctgtgaatct	900
gcagctgagg	atggggtttg	tgtgtctgcc	gtgcacggag	attcactgtc	tcctcacagc	960
tctgcggccc	cagcetetge	ctctcacaac	atgtctgcca	tgcacggaga	ttcactctct	1020
cctcacagct	ctgtggcccc	agcctctgcc	tctcgcaagt	gcctccgtgt	gtttgtgagg	1080

98

70	
ctctccattg ttaaccttga accagtcggg tgagcttggg tggacggctt cctcctccca	1140
gataccetca egtaccetgg ggttetgggt gteacagaag etgetetggg tgeggeeact	1200
ctggagcggg gcccttgtgc caggtgagac acccttctcc tcagcaagcg gacttggtgc	1260
gcagcaggcc aatacgtcgg tgccgacatg ccatgaagca cgggaggccg taggagattg	1320
agggaggtga atgactcagt cctcatcgta aggagcgcgc tgaggccgaa gatgagcagc	1380
ggagctggtg catggggcg actggcccca tccatgccct ctcacagccc ctccttcctc	1440
tgagcccctc acgtccttgg ctctcctccg aagcttcttt tcccagagat ggggcagata	1500
gatgccgtct ctgcccacac gtagcctgct ctcaccctgt gtcttggagc tggaggagtt	1560
aacttgcgct ctctgcactt gggccttctt gctcttgtgt cttgcattgg tagctgactg	1620
teceggeete aggeaggtea tteetggaaa geaggtette gtgettttea geatgagtgg	1680
agggcgcttt atcctgcttt ccgtaagete teattttccc attcccttta agaaattgtg	1740
gcctgcccaa ggccgtgcgc tgtcctgctg tgtaactgca gagcccactt gccccctgct	1800
ctcctgtgaa tctgcagctg aggatggggt ttgtgtgtct accgt	1845
<pre><210> 108 <211> 160 <212> DNA <213> Homo sapien <400> 108 ctgttacttc cttttgctgt cagagggttg ttgacaatgg caaggggga tgttagtgag atccaggtgg tggtggcttc ttggtccact cagcttgcac acatgcaaga ggagggtctg tggcccctca gccgtgctgg tggcctcctt cctcaagctt <210> 109 <211> 4621 <212> DNA <213> Homo sapien</pre>	60 120 160
<400> 109 ctgagagaag cacgggggga ttgattggtg cttttagaga acacacctag atacaaatgt	60
gatacatttc tatactcaaa ttagaacaca tgataatgta gatttgttca ttcatcaaag	120
acaatcaccc attatagttg taattctcag tatttggctt ctcttgtgga tgatcagtat	180
tacttttctt tcataggtat tggatatgct ttttaggtct atcaaaaact aaagtctctg	240
aagtgacact ggtacaagca attcacttga atttctaaaa acagataaaa tataatggac	300
cggccgcggc cgccgggagt tttttatttg gaatattatt agatgatgcc ctatgataag	360
atgagacaaa tgatggggag ggaaggagga tggcccttct ctagaatcag caaacccaat	420

480	tccaggagct	tggatgcaga	gcagctggtc	caagcttgga	aggtcagacc	ggttctgtga
540	ttcctgctgg	agctctagca	agggcccacg	ggctctgccc	gaacaggaaa	gcagagtgtg
600	ggtctttgtt	ttagctaaga	agaaaggagc	aatttgacca	atcttagtta	cagattagag
660	agcctccaat	ctgtctgcag	tgcagtctgc	cagactcctg	ccaagactac	tccagaggac
720	gagccagcct	gcagccttca	ccccactgct	gcctcccagc	agtggtcttg	cacggtttaa
780	cctagtgtca	tacctgtcat	gctgccctgg	ctcctctcct	cgccaggagc	ctggactcag
840	cctgtttttc	acaaagtgat	catgtgcctc	ttctggagaa	ttgcacagca	cctatttgtt
900	ctctctaaac	agagagctca	ggcaggggtg	ggctaaggga	aagctgaggt	tcaccctcca
960	tcactactcc	tggggaatgg	gtcccctccc	tctaggccgt	gcaaggtgct	cacaggcagg
1020	aatgggctga	gagtgactgg	ggagtttgct	tgtggttttg	cacaggcccc	tcagcatggc
1080	tggtttgtca	cactgctcgg	aaggtagggg	tggaagcagc	ttccctgctg	ccccagccgt
1140	gtgtgatgag	cactgctaag	caggaagcca	tggttaggaa	cagccacgga	agctcagagg
1200	actccactta	agaggaggcc	agacaagtgc	acttcaagtg	gacatcctgg	ctagaaggga
1260	ggtccgaatt	aagcacattg	tgtttcactt	catgagcacg	cttagacctg	ggaccttcct
1320	cctctcagag	ctgccctctg	taccctggga	ttaaaccagg	aacccagctg	gtggcgcatg
1380	catcttccac	cttctcagcc	tcaggcaggc	aaggcgagca	cctggacttg	ccctacctgt
1440	aggaggcaac	taactacagt	gcagggactg	gctgagagga	gagccagggt	caggagtgca
1500	cagctatggt	ctcccatcca	tttgtgctcc	tcggattgac	tcattcctgc	tttgctggtg
1560	ggccattctc	gctagaacca	gggaagagtg	ctctctagtg	tccccagcag	agccagtatt
1620	cctcatggca	acggtcattc	tcctgacagg	agactcatgt	aggaagacca	agtcgaattt
1680	aacctgtgcc	tggtttgaac	tgtttcattt	cctccctcc	agttctaatt	tcactgactc
1740	cagtcttgag	gcttcatgtt	cacaattgga	tcctggagct	tcttccacct	tgcagctgtt
1800	aagctgtgaa	taatctatga	aggacagcca	ggcaggggat	ttccagacag	ctcctaatgt
1860	ccacttccca	aaggctttgc	gtctcatctg	acctcagatg	ggttatatag	acaaaccctg
1920	tccctgtatc	tggtggtttt	agctgaagag	acaaagaggt	ggtttgggga	gtgagcagag
1980	ggctgaccag	gtagctggct	gctgtggcta	tagtctctga	gaaagggctt	ctgattttca
2040	gccttccctt	ctcgtgtttg	taggacacct	tgtctgacca	tctaataggg	gggacggggg
2100	ccaggagtgc	atctgtatcc	acacacacaa	gtgtgcatgt	ttgtgtgtgt	tcttgtgtgt
2160	gatcagaggg	catgagagca	tgcaccatcc	tcttccgtgg	cactgggggc	ctcctgcagt

ctgtggtcag	gacttcctcc	cgagctgccc	tccctccctg	ggatgagttt	cctctccacc	2220
tgctccaagg	tgccttacga	ggtgcagctc	ttcacctggc	cacatggcat	ccatcaccgt	2280
gttgagaaat	ggtgggacgt	tggctggata	ttgtgtgcta	tgaatctgat	ttgtccaaat	2340
ctggacctca	gccaagccac	ctgtggtgga	accttgcaag	tcaaggtcat	gaacaaattt	2400
cttgtaacta	ttggaaataa	actaatgagg	tagaactgtc	atatccaaat	ggaagaggtg	2460
gttggtactg	ttacttcctt	ttgctgtcag	agggttgttg	acaatggcaa	ggggggatgt	2520
tagtgagatc	caggtggtgg	tggcttcttg	gtccactcag	cttgcacaca	tgcaagagga	2580
gggtctgtgg	cccctcagcc	gtgctggtgg	cctccttcct	caagctttaa	cttgtgccct	2640
ccctggcaac	agggagtcat	gggttaatgt	cacctgtcat	gcctctttct	tcagggaaaa	2700
tattaaaagg	ctcaaatcca	agctgtgact	tcccttagac	agtgtaagcc	tgtagggtgc	2760
agccccaagt	ttatgtccaa	aggctgcctc	agaaccctgg	agggagcagc	gcccagctgg	2820
cageteaete	tccccttgca	gttcactggc	cttttcgcag	ccaggctaag	ataggcagtg	2880
caaggagctt	cccactggcc	agagcagctg	ccttgtagaa	tgtggggctg	gcttttagaa	2940
gtttcacacg	cttgcagcta	agagtgcaga	gctctctgtt	ttacttcgtg	aaacattagc	3000
agctctgagg	ggcttggctt	ttggtaaggg	acttatagtc	tgacttgcca	caagcacctt	3060
gagctcctgg	gttggttggt	ggttggttgg	ttgggttgtt	ttaaatttga	ttttcttt	3120
cctgaagttt	gttagaagtc	agacctatgc	aaggaaaacc	atggcccact	tcagcagcca	3180
tccagtgggg	gtgcttaatc	ggtggtggta	ggattcatgg	aaacgttttt	ttgaaatgaa	3240
agagaagatg	atgtacttac	attgtaaaat	ggtttacaat	aaagtttggc	atcttattac	3300
agttttttt	aaaaagaaac	catcacattt	gtggttgttg	gttgtgggtt	ctctggagtt	3360
gaaacagctt	ggcagggtca	aaaaagattc	ccctgtgaat	tagaaggttc	tccccaggga	3420
ccagagtgag	aaggaacctt	acgaagcctc	atggcaggag	tgggagccag	caactgccca	3480
gtgaaaagcc	aaacatgctc	ttgccatgtc	catctccact	tcttcgctag	tgagaattaa	3540
agcaagtccg	tctctgagga	ggacatcgtg	ttggggaggt	agagtataag	cagtgagtag	3600
cccacatcct	tgtccctgag	gctgcggggc	tggaaggagg	tccctgggca	gagccgcagc	3660
atcaggtgcc	atctgcaggg	gcacccctgg	aactagtgga	aggcccccac	aaggcctggc	3720
ctgccctcag	ctgcctcttg	gcccatgtgc	cacatcctgg	gcattcctca	tgtcagcact	3780
tgtctcagat	caagcctggc	agtcctctca	ttggcctcct	ggagccaggg	tgtcaggagg	3840
gggattgggg	tggggttcaa	agtatgacag	caatggagtg	gcatttggga	taaccaaatg	3900
tcagtgcctg	gttgagttcc	atctgcctgg	agccttcgag	gataaaaata	atctccatca	3960

taaactgaaa	aggacttaga	tatgtgtgtt	actgggaggg	ctgcgaccta	tgcacaccta	4020
ttccccatac	ccaccccagg	cgtaggctcc	tggcctgtgc	cctgggggat	cttccccttg	4080
caaggagggg	tgtgttagga	gcttctagca	aaggagagct	aagtgacctt	ccggggagcc	4140
cttgggcctg	ttcttgtctc	tgcagctcag	tatctggagt	gggcttcact	ctccccacc	4200
ctctttgagc	aactgaaact	gtcctgcagg	ccagcccccc	tgcggtggcc	tcacctactc	4260
ggaggtgagt	aggctcaggc	ctgagcctga	gcctgtttcc	cacctctgtc	tcatcagtgc	4320
tgtcaccatc	gagcatggtt	tcctccctgg	tcctttccag	accccttact	ccccctctc	4380
tgaacttgca	gttggaatag	gatagaggac	aaggacatca	gcaaaaacat	gagcaactcc	4440
ccaggctccc	tttacctcac	tttctccacc	tgtgaacctg	tggtagcccc	tctctgagtt	4500
tgctgcaagg	gcccagtgag	cttgccataa	tcagacgcag	cagacacggg	aagctcctgc	4560
tctgccacca	tgcagggatg	gaaaatctgt	ccactggaat	ccaggggaag	ggatggaaga	4620
g						4621
<220> <221> misc <222> (176	sapien _feature)(255) , g or t					
<400> 110 tccctgttat	tgttccgtat	attacctgta	agcagatact	gtatttatt	ttagcctatt	60
tgacagaaca	catcactcag	aaaaagtgaa	gtttcagagc	aaacagtgaa	gaaatcagtg	120
tgattgtaga	caaaaagtcg	gttcacagaa	cggagcagcg	gggggaggaa	gggaannnnn	180
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	240
nnnnnnnn	nnnncccgg	gggcagccgg	ggctatgagg	ggacgtgctg	atgcgtgatg	300
atg						303
<210> 111 <211> 1848 <212> DNA <213> Homo	sapien					
<400> 111 tgtttttttg	agacacgggt	ctctggttaa	ccccggctgg	ggtgccatgg	tgccatctcg	60

102

geteactggc aacetttgcc teccegattt aaggeggttt tttecegect etagecetee 120 ttgagtatgc ttgggactac agggcgccca cctctcacgc ccggcttatc tctctgtaat 180 tettagtaga gacaggettt teacceaegg tggceegget ggteteeaac teetggeete 240 cagtggtccg ccccctttg ccttcccaag tgctgggatt accggggtgg ggcccccgtg 300 360 cetggeeegt cetateetee ecceaceet tittittit tittigacat ggagteteae gccatcaccc aggctggagt gcagtggcgc catcttggct cactgcaacc tccgcctccc 420 atgttcaagt gatcctcctg cctcagcctc ctgagtagct gggactacag gcgcccgcca 480 ccacgcccag ctatttttt gtatttttag tagagacggg gtttcgccat gttagccagg 540 600 atggtetega teteetgace ttgtgateea eeegeettgg teteecaaag tgetgggatt 660 acaggeetga gecaetgtge ceageettat ceteaatttt etaageataa ggatttaaga gttagtggga aagcatgact acggtttaaa agaacctggt cagctgaagc agtcccactt 720 780 ggccattcca gtacacttcc tactctcgct tcatggagaa gaccgtctac tgacaagaga atccatcccc tttgcacaca gtggtcacct gacagctcag aggtcaactt cttggttttg 840 900 aggaaaaatt caaaaggctg cacgtttaaa ggagttgttc catttcagtg ccccattagc 960 ctgtctttcc tcagaaattt accaatctct tgatgtgata agcaccaaac tatgaagctt 1020 ttcccttcct ctccccgctg ctccgttctg tgaaccgact ttttgtctac aatcacactg 1080 atttetteae tgtttgetet gaaactteae tttttetgag tgatgtgtte tgtcaaatag gctaaaataa aatacagtat ctgcttacag gtaatatacg gaacaataac aagggactga 1140 1200 aggtacaaaa cacacagga cattatggtc atataaaata tatagaagta cctaacgtta 1260 acaatttttg taagaagttg cacattttgc tattttttta aagcatttcc ccacattttt 1320 tttcatctgt agatcctctg cagttaagat tgagcacccc cccgcaactt ttttttttga tacagagect egetetgtea eteaaggetg gagtgecagt ggeatgatet tageteactg 1380 caaccteege etegeaggtt caagceatte teetgeetea geeteeegag tagetgggae 1440 1500 tacaggegtg egecactgtg eccagetaat tittititgt attittagta gagacaaggt 1560 ttcaccatgt tggccaggct ggtctcgaac tactgacctc gtgatccgcc tgcctcggcc teccaaagtg etgegattac aggegtgage caetgegeee ggecaagatt gageteeete 1620 ttgcaatgtt tctcaaattc atcacgattg gaacataccg acggaattca ttttctgtct 1680 gaagcaatga gtgctataca tgaaagtttt cctcacatat aatattcatc aagtttattt 1740 1800 acagtataag ctttccgatg ctaagggctg agatgtgatt aaaggctttg ccgtattcat 1848 cacattcagg aggctggggg ggggggatta atttaattaa ggatcctt

<210> 112 <211> 333 <212> DNA <213> Homo sapien <400> 112 ggccgaggtc tagaatgggt gaaggaatgt gttagtgtct ggagccatga aggccttgtg 60 ctgaccaagc tgctcacctc ggaggagctg gctctgtgtg gctccaggct gctggtcttg 120 ggctccttcc tgcttctctt ctgtggcctt ctctgctgtg tcactgctat gtgcttccac 180 cctgcgccgg gagtcccact ggtctagaac ccggctctga gggcactggc ctagttcccq 240 acttgtttct caggtgtgaa tcaacttctt gggccttggc tctgagttgg aaaaggtttt 300 agaaaaagtg aagagctgga atgtggggga aaa 333 <210> 113 <211> 2269 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (2266)..(2266) <223> a, c, g or t <400> 113 gcgagcggct ggcggatccg acgcgcgaga ccgggagggg acgagggcgt tgcaatcgtt 60 cggggcggg gctttccggg gagggggtgc tcaggtgcac cagcggcggc ggaccctcag 120 actotgocot cocotcoctt taaccocott coagooggac gggaggcggg gcagggotga 180 gcatttgtga cacctacatt tccgtggctc ccttcttttc ccccgacccc tgtttatctc 240 ttcgccttcc agaagttctt ttccatcagg ccgtcgcacc ttgcgtggga aggagcaccc 300 cacttggaag caggaggcgg ggttcagatc ttggccctac ccctcctgtg ttaaagtccg 360 cgagcctcag tttccctcac agtatttttt gcctcgcctt acccggtttt gaggatctgt 420 acgagaaaga gaaaggaagt ggacatttgt tgaattcctg catggccaaa taccacgcag 480 actgetteat cegecaegtt taateettat taettggtgt teteagaaet cecattteat 540 ggattcttaa gctcacagag tcagtgaata acagaaaggg attcagatct agccgtttag 600 ctgcacagtg gagttcttct ccagagtctt cccttgtctg ggctctggct ggaactattc 660 ctcagccaaa tcctcgcccc agaacagtgc ttcctgtttc tccagctgag aagtctccct 720 ttcagtttcc ttcttccagc acggagtaca ctgctctgcc tccacttaga ttacttcaga 780

104

aatgaaatgc	agcaaatatt	tatccagcag	tgcagggagt	tgaacttttg	gagtcgggaa	840
ccttggattc	ttgttctggc	tctgccactt	actgtgtggc	cttgggaagt	cctttgtctt	900
ctctgagctt	tetttetet	ttgcgtaaaa	gcggtgctct	tgtcccattc	teecteectg	960
tcttccagca	ggctctcccc	ggaggctcag	cccctctgc	tececatggg	caactgccag	1020
gcagggcaca	acctgcacct	gtgtctggcc	caccacccac	ctctggtctg	tgccactttg	1080
atcctgctgc	tecttggeet	ctctggcctg	ggccttggca	getteeteet	cacccacagg	1140
actggcctgc	gcagccctga	catcccccag	gactgggtct	cttttttgag	atcttttggc	1200
cagctgaccc	tgtgtcccag	gaatgggaca	gtcacaggga	agtggcgagg	gtctcacgtc	1260
gtgggcttgc	tgaccacctt	gaacttcgga	gacggtccag	acaggaacaa	gacccggaca	1320
ttccaggcca	cagtcctggg	aagtcagatg	ggattgaaag	gatcttctgc	aggacaactg	1380
gtccttatca	cagccagggt	gaccacagaa	aggactgcag	gaacctgcct	atattttagt	1440
gctgttccag	gaatcctacc	ctccagccag	ccacccatat	cctgctcaga	ggagggggct	1500
ggaaatgcca	ccctgagccc	tagaatgggt	gaggaatgtg	ttagtgtctg	gagccatgaa	1560
ggccttgtgc	tgaccaagct	gctcacctcg	gaggagctgg	ctctgtgtgg	ctccaggctg	1620
ctggtcttgg	gctccttcct	gcttctcttc	tgtggccttc	tctgctgtgt	cactgctatg	1680
tgcttccacc	cgcgccggga	gtcccactgg	tctagaaccc	ggctctgagg	gcactggcct	1740
agttcccgac	ttgtttctca	ggtgtgaatc	aacttcttgg	gccttggctc	tgagttggaa	1800
aaggttttag	aaaaagtgaa	gagctggaat	gtggggaaa	ataaaaagct	tttttgccca	1860
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1920
aaaaaaaaa	caagcaaaaa	gacaagagaa	gaaaacacaa	gaagaaaaa	aaaccacaaa	1980
caaagacaaa	agaaaagaaa	agaagagacg	aaaagagaga	aacaagaaag	aggagaggac	2040
aaagagcaag	aacgaagaga	gaagaaaaga	gagcacacaa	agagaagaga	agaagcgaga	2100
ggaagcgaaa	aagagagagg	aaaaagagaa	aagaagagaa	gaccaaaccc	gagaagaaga	2160
gagaggaaag	gcgagcgagc	aaagagcacg	agaagagaag	aaaggaagcg	agggtgccaa	2220
gagaagcgga	gagaacgaga	gggagaaaag	agggagagga	agaagnagt		2269

<210> 114

<211> 550

<212> DNA <213> Homo sapien

<400> 114

agagatatat agcccgtctg ggctaacttg tgtcctctag atcatgcgtc gagcggtcgc 60

WO 02/068633

105

PCT/US01/43612

cagtgttatg	tatcgctggt	cgcggccgag	gtacacacaa	gaagccagaa	gatattttt	120
tttcagtgaa	ctttctcctg	gaagcaaagg	agaagctatg	ggagatccag	gcatggtttt	180
ggcttctgga	ggctgttttt	tggttactgg	ggtctcttca	aagcaaaacg	ggatcaggat	240
gaagaggggg	aaaggcatgg	gccataaata	aataaggaaa	tttgccccga	ttctacaaat	300
gcatctgatg	gaatgaggag	ggtcaggctg	tgagggattg	ggggtagctc	caggctgctg	360
ttagggacac	acttgagctg	gttcattccc	tggagtgccc	cgcaactgcg	tctagggaga	420
ggcaggccca	agcacatgtt	cagtctaatt	ccagctcaca	ctggaaggct	tcctataggt	480
ttggttgccc	tgatcacagc	cgagctgccc	caccaggaat	taaccctggt	gggcaaaggg	540
tccatcttct						550
	l o sapien		·			
<400> 115 agcgggggca	tegeegeeeg	cgcccctcta	agtgccgggc	cgcaagctcc	accgcagccg	60
cctgcaagca	geggegeete	ggccctcgac	ctgcgcgcaa	agcctgtgct	ggagccgtcc	120
tcccgcggcg	gggaccggga	ccggggaccc	aagccaatcg	aaagctccaa	ccatggccat	180
ggggctcttc	cgcgtgtgtc	tggtggtggt	gacggccatc	atcaaccacc	cgctgctgtt	240
cccgcgggag	aacgccacag	teccegagaa	cgaggaggag	atcatccgca	agatgcaggc	300
gcaccaggag	aagctgcagc	tggagcagtt	gcgcctggag	gaggaggtgg	ctcggctggc	360
ggccgaaaag	gaggcactgg	agcaggtggc	ggaggagggc	aggcagcaga	acgagacacg	420
cgtggcctgg	gacctctgga	gcaccetetg	catgatcctc	ttcctgatga	tcgaggtgtg	480
gcggcaggac	caccaggagg	ggccctcacc	tgagtgcctg	ggcggtgagg	aggatgagct	540
gcctgggctg	gggggcgccc	ccttgcaggg	cctcaccctg	cccaacaagg	ccacgcttgg	600
ccacttttat	gagcgctgca	tccggggggc	cacggccgat	gcagcccgta	cccgggagtt	660
cctggaaggc	ttcgtggatg	acttgctgga	agccctgagg	agcctctgca	accgggacac	720
cgacatggag	gtggaggact	tcattggcgt	ggacagcatg	tacgagaact	ggcaggtgga	780
caggccactg	ctgtgccacc	ttttcgtgcc	cttcacaccc	cccgagccct	accgcttcca '	840
cccagagctc	tggtgctccg	gccgctcagt	gcccctggat	cgccagggct	acggccagat	900
caaggtggtc	cgcgccgatg	gggacacatt	gagctgcatc	tgcggcaaga	ccaagctcgg	960
ggaagacatg	ctgtgtctcc	tgcacggcag	gaacagcatg	gcgcctccct	gcggcgacat	1020

			200			
ggagaacctg	ctgtgtgcca	cagattccct	gtacctggac	acgatgcagg	tcatgaagtg	1080
gttccagacg	gccctcacca	gagcctggaa	gggcatcgcc	cacaagtacg	agttcgacct	1140
ggcctttggc	cagctggaca	gcccggggtc	cctgaagatc	aagttccgtt	cagggaagtt	1200
catgcccttc	aacctgattc	ctgtgatcca	gtgtgatgac	teggacetgt	actttgtctc	1260
ccaccttccc	agggagccct	ctgagggcac	cccagcctcc	agcacagact	ggctcctgtc	1320
ctttgctgtc	tatgagcgac	acttcctcag	gacgacacta	aaggcactgc	ccgagggcgc	1380
ctgccacctc	agctgcctgc	agatagcatc	cttcctgctc	tccaagcaga	gccgcctgac	1440
cggtcccagc	gggctcagca	gctaccacct	gaagacggcc	ctactgcacc	tcctactcct	1500
ccggcaggcc	gccgactgga	aggcggggca	gctggacgct	cgtctgcacg	agttgctgtg	1560
cttcctggag	aagagcttgc	tccagaagaa	gctccaccac	ttcttcatcg	gcaaccgcaa	1620
ggtgcctgag	gccatgggac	tccctgaggc	cgtgctcagg	gccgagcccc	tcaacctctt	1680
ccggcccttc	gtcctgcagc	gaagccttta	ccgtaagaca	ctggactcct	tctatgagat	1740
gctcaagaat	gccccagcgc	tcattagcga	gtattcccta	catgtcccct	cagaccagcc	1800
taccccaaaa	agctgacgtc	ttttacagaa	tgtgggatcc	tcgagctaag	atgagggcat	1860
ccctcacgtt	cacacccctg	gtggcatctg	ccagccctgt	tctggggaca	aggcgggctt	1920
tcgtgggagc	cgtgctcagc	ctgccaggaa	gccaagccct	acagtgcaga	ggaaacagaa	1980
tttcaacggg	aagctggttt	gcttcatacc	attgggatct	gctggtaaag	ctgttatttg	2040
ggtttaggga	ctgatccctt	gcagtttact	tctggatcac	catgaatggc	caagatggtg	2100
gcagaacacg	ctgtggaccc	tgagttagag	acaatgcaaa	tgttggattg	ggtgtaattc	2160
tttttgaatc	ccagatccag	tctgtacttg	aatatgagca	gaggatctac	aagaatgctg	2220
acagggaacc	gtgttaagac	ccagcacccc	tattcccagg	agcttctggc	ctgaccatct	2280
gcagccaaag	cactaacagg	gacagatatg	ggaatgtcca	cctttgatcc	gcatcctgca	2340
caatagtggt	cccaccatgg	ctgccacttt	tttatactat	ttggagaaaa	gaccttgtat	2400
aaattcgagg	cccgagtgac	taacgtctct	gtcacacgga	aatgggtact	tggtggcata	2460
gagaaacaca	attagccact	ttttcagcta	cacttctcac	tcagctgcac	cctacacttc	2520
tcactcaggt	gcaccccctt	ctgctgtcct	ttccccaacg	tactgggtcc	cgagcgtggt	2580
gggtatttgc	cacactgggt	gccagctcag	cagcccccca	cctctctta	ttctctccaa	2640
agctggtctt	tctgactatc	attgtggtag	ggggaggaca	gatgctaaag	gtggaagctg	2700
acctggaaaa	agagacacac	ggggtgactg	tggcaaagga	cagctggaaa	agaaactcta	2760
tcacttcttc	attggcaacc	acaaggcacc	tgaggccatg	gcactcccag	aggctgtgcg	2820

cagagccaag	cctctcaacc	tcttctggcc	ctgcgtcctg	cagcgaagtc	tctgctgtaa	2880
gacagtagac	tccttcgatg	aggtgctcaa	aaatgctacc	cggggtggtg	gtgtctggct	2940
tgcagtctgg	cccagttcag	agaaagttgc	agagatcagg	ggccaaggat	gtcatagccc	3000
caggttgtcc	tcagggtccc	aatcctaggg	cagggtgtgc	atggaagcaa	gaactatgga	3060
aacctagctc	cagtctgcag	gctctgagcc	cctagttcct	cactccagcg	gggctccctc	3120
actgcacaga	acccacccct	tctgtgtggg	cactgctgac	cacacagatg	acccagaccc	3180
aaagagcctg	gcagaagctc	tgtggttgga	gctgggctcc	gtctccaggt	ctggttcagg	3240
gggatcagga	aggctctttt	ccacctgtgg	cttcactggc	cctttgagat	ttcctatctc	3300
accgttactt	cagttaccct	tgcagggggc	cagggagtca	agaatatacc	gtgttcctcc	3360
agggtttaag	ccggccatgc	cttcccgaga	gcataaccaa	cttgacaggg	gtgcccagtt	3420
accccacaaa	ctgaaggaag	gagatccttc	ccccatcccc	aggagtgctc	tcaaccagcc	3480
tcagaaagct	tgagaagatg	gaccctttgc	ccaccagggt	taattcctgg	tggggcagct	3540
cggctgtgat	cagggcaacc	aaacctatag	gaagccttcc	agtgtgagct	ggaattagac	3600
tgaacatgtg	cttgggcctg	cctctcccta	gacgcagttg	cggggcactc	cagggaatga	3660
accagctcaa	gtgtgtccct	aacagcagcc	tggagctacc	cccaatccct	cacagcctga	3720
ccctcctcat	tccatcagat	gcatttgtag	aatcggggca	aatttcctta	tttatttatg	3780
gcccatgcct	ttecccetet	tcatcctgat	cccgttttgc	tttgaagaga	ccccagtaac	3840
	cctccagaag					3900
	agttcactga					3960
	tggggaaacg					4020
	cttggtgttt					4080
	aaatggtcac					4140
	ggggacaggg					4200
	tacactttca					4260
-	caacttgtgt					4320
_	attccagcct					4380
	ctaacaggag	cgtttggttt	tagagaaaga	ggaggtgtct	tggataactc	4440
t						4441

108

WO 02/068633 PCT/US01/43612

<211> 120 <212> DNA <213> Homo sapien <400> 116 acttacaaac tgtggtcatg ttaagataca gaacatcagc caagaaccag aaccaactcc 60 120 ttaacataac atagagtggg ccctgcccac cccccaatac aatacattta agataagctt <210> 117 <211> 1977 <212> DNA <213> Homo sapien <400> 117 ttcaccegge cetegeetgt cacetteaca gagaagggge tgeetgeagg aagaaageac 60 ggcccacgcc cctccagtca catactgcct gtgggccctg gtgtagtgag gggggctgcc 120 qaqqcactqc tqcactcacc aqqcacqtqc tqgtcqqcaa acttgatgtt gatgatgtag 1.80 ttgcctggct ctgtggggca gtaggtcacc tggcgggaca ggtgcctggc tgctacaaac 240 300 catgcaatga gccatgcccc gccctggaca cccccgccca gcatctgggc ctccacgctt 360 gggaccgtgg gagcggccaa cagagctatg tctggagaca tatgataaac cacctcagcc 420 cccaccaage egeegeacce gtagaccaga ccccaaggac cetggccacc atgggccaga gagcattace tteatetetg getetgetga geeggeeett gagteeeca cetgetgeet 480 540 getetggega ecetgggtgt gggagtggtg eegggetgee ttetgettee geeegetgee 600 gggattgcct ccagcgctgt ggaggcctgt gtgcggggat gcagcccctg cctgtctact gaggactccc actgagggga ctgctgaagc caactggtgc caaggagcac aatggagtgc 660 720 ccccaqccc tqatcqtqca cccccaqac cqqcqqqatq gccaqqcqqq ctqcaaqtca 780 accatgggca gcagcttcag ctaccccgat gttaagctca aaggcatccc tgtgtatccc 840 tacccgagag gccacctccc cagcccctga tgcggactcc tgctgcaagg agccactggc 900 cgatececca eccatgegag cacageetge ecageacett tgecagtagt cetegtgget 960 ccqaqqaqta ctattctttc catgagtcgg acctggacct gccggagatg ggcagtggct ccatgtcgag ccgagaaatt gatgtgctca tcttcaagaa gctgacagag gctgttcagc 1020 1080 qtacaccaga tcgatgaget ggccaagtgc acatcagaca ctgtgttcct ggagaagacc 1140 agtaagatet eggacettat eageageate aegeaggaet aecacetgga tgageaggat qctqagqqcc qcctggtacg cggcatcatt cgcattagta cccgaaagag ccgtgctcgc 1200 ccacagacct cggagggtcg ttcaactcgg gctgctgccc caaccgctgc tgcccctgac 1260 agtggccatg agaccatggt gggctcaggt ctcagccagg atgagctgac agtgcagatc 1320

tcccaggaga	cgactgcaga	tgccatcgcc	cggaagctga	ggccttatgg	agctccaggg	1380
tacccagcaa	gccatgactc	atccttccag	ggcaccgaca	cagactcgtc	gggggcaccc	1440
ttgctccagg	tgtactgcta	acccctgcca	ggcccagctg	ccacaccctt	tctgggagaa	1500
gcatggccta	cagaatgaag	agggggacca	ggaacccctg	tgggagaggc	ttagacctga	1560
agcagtgccc	actctggctc	ctcctgcctt	ggctgactgg	gttcctggac	catgtgcatt	1620
tcactgggcc	atgggatcta	catctccttg	catccccagc	tggtctgatc	cctgccaggg	1680
ccccttcctt	cctgctcatg	gtcttcaggt	ggcctgatca	tggaaagtaa	ggagttaggc	1740
attaccttct	gggagtgaac	cctgactcca	tccccctatt	gccaccctaa	ccaatcatgc	1800
aaacttctcc	ctccctgggg	taattcaaca	gttaaaagaa	gcttatctta	aatgtattgt	1860
attggggggt	gggcagggcc	cactctatgt	tatgttaagg	agttggttct	ggttcttggc	1920
tgatgttctg	tatcttaaca	tgaccacagt	ttgtaagtac	ctcgctcgcg	accacgc	1977
	o sapien					
<400> 118 catgttctct	aatgcatgct	ccgacggcgc	atgtgatgga	tcgcggcgag	tgaaaagcaa	60
gagccagaat	taagaggttg	ggtcagtctg	gcagtgagtt	catgcattta	gaggtgttct	120
tcaagatgac	taatgttcaa	aaattgagac	atctgttgcg	gttcttttt	ttttttttc	180
cc						182
<210> 119 <211> 875 <212> DNA <213> Hom <400> 119	o sapien					
	gaggtaccac	attggtccac	ttgacactaa	ccaatcgatc	atttttttt	60
aatcaagaaa	gctagattct	atcagataaa	atcactgctt	ctaaagagtt	taaatctagt	120
tagaaaaagt	tatagaaatg	tttgcaaaga	taagtaacag	atagagtcag	tagaggataa	180
gatcaaaaac	aaaaccaagc	aaaagatgag	ttcaggggag	tttgccatca	agtggcaaaa	240
ctgacttact	tagggaagaa	agttataaaa	caggaaaata	tgagatgaac	cttgagtgat	300
gtggaagatt	tagataaatg	gaaaggaagg	agaaaatgga	gttctttagg	tggttgtaat	360
tggaggagga	aatgaataca	cacatcttgt	tgacttaaac	ccagacattc	agcagctctc	420

PCT/US01/43612 WO 02/068633

110

tatacatatc tggaaaagac tgcacagtca cctcctgtct ctcaccccag gtattactta 480 540 gaattattat catatttccc ttcctttaaa gtaagtaagg gtgatggtga caatatggag 600 aactatgatt tttccattaa cctaataata attgtattta ttgagttctg ttaagcattt 660 tacatattaa ctcacttaag cctttcaaca gcctgggcaa aataggtatt attatccccc attttacagg caaagaaaac tgaggtttaa ggtaactgtg ccgaaagtgc catataacag qqctcacatt cagtatctgc agttgcaagc tcatgatcta tagtgccaag ttgcatatgg 780 tagtccatgt cacattatta cccttttata tccctggaat tttcatgggc aaccattagt 840 875 attcatttta atatcactaa acttccagcc ctgat <210> 120 <211> 987 <212> DNA <213> Homo sapien

<400> 120

ggtcgcggcc gaggtaccac attggtccac ttgacactaa ccaatcgatc atttttttt 60 aatcaagaaa gctagattct atcagataaa atcactgctt ctaaagagtt taaatctagt 120 tagaaaaagt tatagaaatg tttgcaaaga taagtaacag atagagtcag tagaggataa 180 gatcaaaaac aaaaccaagc aaaagatgag ttcaggggag tttgccatca agtggcaaaa 240 300 ctgacttact tagggaagaa agttataaaa caggaaaata tgagatgaac cttgagtgat 360 qtggaagatt tagataaatg gaaaggaagg agaaaatgga gttctttagg tggttgtaat tggaggagga aatgaataca cacatcttgt tgacttaaac ccagacattc agcagctctc 420 480 tatacatatc tggaaaagac tgcacagtca cctcctgtct ctcaccccag gtattactta gaattattat catatttccc ttcctttaaa gtaagtaagg gtgatggtga caatatggag 540 600 aactatgatt tttccattaa cctaataata attgtattta ttgagttctg ttaagcattt 660 tacatattaa ctcacttaag cctttcaaca gcctgggcaa aataggtatt attatccccc 720 attttacagg caaagaaaac tgaggtttaa ggtaactgtg ccgaaagtgc catataacag ggctcacatt cagtatctgc agttgcaagc tcatgatcta tagtgccaag ttgcatatgg 780 tagtocatgt cacattatta coccttttta tatcoctgga atttttccat gggcaaccat 840 tagctatttc atttaataat cacctaaaac ttttcagtct tctgattaaa attacgctgg 900 agtgatagaa tgtattttca tgatagaaat tgggaaaaaa aatggggaat gaagtttatc 960 987 agcatttcag acttgttttt tttttt

WO 02/068633

111 <211> 295 <212> DNA <213> Homo sapien <400> 121 . cgtggtcgcg gcgaggtaca taaagctatg attttgcatg ggaactcatt taaattaaag 60 ttaccaaggg aattccatat gtaaactttt cctggaacta tgaacttctg agacttcaga 120 aagattttga ctgtgtaggt tattctgtgt tgcgctatgg ggtccgcctt tgtgttgctg 180 agetggagag egtgeetetg etgeegeget gtgteagtag tggggattge aettttgttt 240 ccagctacag gccaaatttg agcaccttga gagacttcac caagaagaga gaatg 295 <210> 122 <211> 3210 <212> DNA <213> Homo sapien <220> <221> misc_feature
<222> (954)..(1013)
<223> a, c, g or t <220> <221> misc feature <222> (1958)..(2054) <223> a, c, g or t <400> 122 tagtgtaaat totactatga tgagtatttt tatatgtaaa gotttototg aatttaggat 60 ttttttaagc ctagatctca ggacattgaa agactatgga aaaatagaat acagttttaa 120 cattettgac atagttgaca attgacactt getttecagt gatgtttact agtacagttt 180 tcaataactg tttactgcat atattttatt tggaaaatag tgttgttgtt tttttccttt 240 ctggtaattt ctttctatac tttgcatctc ttatttttat tgagcatgga cttgagagac 300 tttaagaagt tttgtaggga aaatacacac cgagaaaata aaaactctag gaaaagttca 360 caatgtttta aaaatagttt tgtacataaa gctatgattt ttgcatggga actcatttaa 420 attaaagtta ccaagggaat tccatatgta aacttttcct tgaactatga acttctgaga 480 cttcagaaag atttgactgt gtaggttatt ctgtgttgcg ctatggggtc cgcctttgtg 540 ttgctgagct ggagagcgtg cctctgctgc cgcgctgtgt cagtagtggg gattgcactt 600

ttgtttccag ctacaggcca aatttgagca ccttaagaga cttcaccaag aagagagaat .

gaagcttgaa gaaaggagag acttttggaa gaagaaataa ttgctttctc taaaaagaaa

gctacctccg agatatttca cagccagtcc tttctggcaa caggcagcaa cctcaggaag

PCT/US01/43612

660

720

780

gacaaggacc	gtaagaggta	agaggcccag	ccaccctcag	gttgctgccc	tgcccacact	840
tgtcacattg	ccctgtcgga	tcttcctagc	gcttcttact	tctgcttcct	tatgctttgt	900
cttccttctc	caactaaatg	tcagctcctg	gagaggagag	accttgtccc	tctnnnnnn	960
nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnntttgcca	1020
aaatgaatga	atgaacaaaa	taaaaataca	tcacagtgtg	aaaaggatca	gttagctggg	1080
ggaaaatggc	tgctcttatt	gaatagccca	gctgtggccc	tagtacacag	ctaatggctg	1140
ctgacctacc	atgagttatt	ttgaatttca	tgtctaaata	aagctgtgcc	ctttgttggg	1200
gaattataga	cataagatag	tattttattg	aattaattct	taggttcagt	tttttagaac	1260
aaattctact	gatactgatt	ttgtgagaat	ttttatttta	ataagggaac	caggetgteg	1320
attcgaactc	ctgtgcattg	atgtcagagc	ttgtgaaacc	aatggtggac	gtaaagacgc	1380
agagaaaggt	agagagggcc	acagtgcaag	ggggcagcca	tgagtagcat	gtggatgata	1440
atcgcaaggc	gtgtaggttt	ggggtatgtg	ttaaaatcag	ttacccaagt	tttagaaaat	1500
aagtttattt	ttcctttttg	ataatttcct	tctgtacttt	gtgtcccttg	ttttatttct	1560
cccacttaag	tatccctgtc	ggtttaacta	tttggctctt	gaggaaattc	atcatgcctt	1620
gttctattca	gaatgctcat	ttgggggact	ctgcctcagt	ttactctagc	tacctctgtg	1680
ctagcagcgt	tgcatgctcc	catgttcccc	acagagcaac	acatctggtt	taatgctctc	1740
actgcatcta	tttcagaccc	attttcagaa	tattgcaact	caactttaaa	ataggaaaac	1800
ataaccttgg	cccattggtg	gctttcaatt	tttaaatatg	gagaagtaaa	ccacaggact	1860
ttggcagatt	ttattggctt	atatatttta	caggtatttt	tgtttgtttg	ttatgttttt	1920
ttggaaaaga	ggaaggaatt	ctcatgtatg	atctttcnnn	nnnnnnnn	nnnnnnnn	1980
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnn	2040
nnnnnnnnn	nnnnttattt	ttgaaagaat	aaatagtata	aaagctgtat	tttattcaag	2100
cattgaattt	agaaagataa	actataaatt	tattactgct	tttcaacatg	ctttggattt	2160
taaagctaat	ggatctttta	ttaatacctt	ttttcctttc	atcttaaccc	agtgttacta	2220
aaattagatt	tcccattttt	tcccctatat	gaaagataat	ttacatttac	cttgtaaaaa	2280
ttatcaccct	gctccacttg	agaaccctgc	tgttgtttgc	aaaatcagga	ccaagcccat	2340
attttttgag	agctctctag	aagaatttat	cttcaagaaa	atatggtttg	gtgtttttgg	2400
ttttttcttt	tctttttcaa	agtcccatgg	ccagatatcc	tataatatac	tagatgcatg	2460
tttgctaatt	tttacttgaa	tttttttaa	attgtaccaa	tcaaaaggtt	ctttttcttt	2520

113

•	ccagctccaa	ttttttgtaa	aacagaagtt	ccagagcaca	gaaggtcatc	atcacaagca	2580
i	aactttatta	aaaaaaaact	agaagtgtgc	tttgattttg	ctgttatttg	ttttatcact	2640
	tctatatttg	gtgaacagcc	acagttactg	atatttatgg	aaaagtactt	tcaagtacaa	2700
•	ggtcaataca	taagccagag	tgaatgatac	tacaagttga	gcatctctaa	ttcaaaaatc	2760
	tgaaatccag	aagcttcaaa	atctgaatct	ttttgagcac	tgacttgacc	ccacaagtgg	2820
	aaaattcccc	acccgacacc	tttgctttct	gatggttcag	tttaaacaga	ttttgtttct	2880
	tgcacaaaat	ttttgtataa	attactttca	ggctatatgt	ataaggtgga	tgtgaaacat	2940
•	gaattatgta	attagagtcg	ggtcccgtag	tgtatatgca	gatattccaa	acctgaaatc	3000
	caaaacactt	ctggtcccta	agcattttgc	actaagggat	actcagcttg	tacctatata	3060
	ttcctatata	ttcactgttg	ttagaaatgt	ttaagttgct	gttctgtgat	gaatctaaat	3120
	cttttctctt	gctaccaagc	tattgtcact	gcagtgcatt	ataccaaaga	gcgaagtcag	3180
	tgccactgaa	aatacagaac	cattatatcg				3210

<210> 123

<400> 123

gcgtggtcgc ggcgaggtac ctgcatctaa aatagaattt attttcttg agacacgtct 60 120 ttcaggcaga ggaaaggtaa tgggcacaca aaccttgatc atcttcttat aaaacaaggc 180 agcatccaca tttcaatact gtagcatatg aaataatttc tcaattccta ctctgtcata gcttaaatga cttactgatt aaaatatgag taacaataat tctggagctg aaagacattc 240 300 tcaaqccaaa aqqtaacatt aaacaatqtt ttactttaaa tttaatqtca tqtagggtca 360 ctaaaaacaa aatgtaaggg ataaatgtaa gtgcataaaa cagagataat accaatttcc 420 acaaatacaa cttttattat ccaaaatcat cttggaagga ctttttctaa tatgcccatt 480 ttctaaataa gattaaccat ttgatgggaa tatttccaat tgtatcacct ccttccttga cttttcttc atcaacttag ggcctgggtt gtaggcactg tggctctttg ggatagttaa 540 600 atgggtgcaa tttggctgag accgcccctg tcttaaatgg cccaggctac agggcttgcc aaatggcttg tggtttgcaa cctcttcctt tgatatccat tgaagaacac atgtcctacc 660 662 ct

<211> 662

<212> DNA

<213> Homo sapien

<210> 124

<211> 1845

<212> DNA

PCT/US01/43612

1680

114

<213> Homo sapien

<400> 124 tgtcagattg atggcctgtg ctgttgagta gttccgtctg attgacgtgg cgattcggat 60 gtggtcgggt gtggtgagtg gctgggtggg ctttcggtgg gtggtgtgtg tgcggccggt 120 ggtttgtgtg tgcgtgtgtc gcggcggtgt gggctgtggg tcggacggag ggcctggtgg 180 cgttgttaag aggctcgggt gtcggcgggg gtgtgttctg ttgggggctc gtcgtgtccg 240 ttcggtggtc cggcgtggtt gtgtggatat cgtggtgtcg cgtggttgcg tggctgcgct 300 360 ggtgcggcg tggcttatgt tgtgttttaa tgcgttgctc gtggggtcgg tggggtcgtg qcqgtgtqqt ggtgtatg tgtggtgttt gttcgcatgg ggcgtgttgt atgtgttggt 420 480 qqccqcqqta qqaqtccggc catctcctga tttattcttt tacagttttc tatgttttga attgatatca attcttagaa taaaatgcag tacctgcatc taaaatagaa tttatttttc 540 ttgagacacg tctttcaggc agaggaaagg taatgggcac acaaaccttg atcatcttct 600 tataaaacaa ggcagcatcc acatttcaat actgtagcat atgaaataat ttctcaattc 660 720 ctactctqtc ataqcttaaa tgacttactg attaaaatat gagtaacaat aattctggag 780 ctgaaagaca ttctcaagcc aaaaggtaac attaaacaat gttttacttt aaatttaatg 840 tcatgtaggg tcactaaaaa caaaatgtaa gggataaatg taagtgcata aaacagagat aataccaatt tccacaaata caacttttat tatccaaaat catcttggaa ggactttttc 900 960 taatatqccc attttctaaa taaqattaac catttgatgg gaatatttcc aattgtatca 1020 cctccttcct tgactttttc ttcatcaact tagggcctgg gttgtaggca ctgtggctct 1080 ttgggatagt taaatgggtg caatttggct gagaccgccc ctgtcttaaa tggcccaggc 1140 tacagggett gecaaatgge tttggtttge aacetettee tttgatatee attgaagaae 1200 acatgtccta ccctcttgat tgcaagcttc tatctgctat tggctatcag gagcataaca 1260 gataagttct aaggtccttc cagttccaaa agccattgac caaccctgtg aggcactatg 1320 agagattgga gattactgag gaatctcttc caataacata tgatatataa aggtaattgt gattctatga agagtgaata aaaattgaaa acaaaaccaa tcttgtttaa actattaaat 1380 gaagttttaa aaaataatgg agtgggtaga tgtattgcct atcaaattaa aattcaggga 1440 acacgtgtca gttatcacct ttataagtat gatctataag gttgaattaa ctaaagatct 1500 1560 aaccctaaac taagtgagat attactgggt tactaaatat agatgaatgg cttccttttt cctttaaaga tggaagaatc tcaaaagtat gcctgaatca gaagcagagg actcatgttc 1620

taatgacacg totgatcatc accotgagtt coataaagct atagcatatt gtagtagaaa

WO 02/068633

115

PCT/US01/43612

gtatatcagc	atgtgagtgg	agagatttaa	gggtatagat	ctctacgtat	ttccagctct	1740
gtcaccaact	ggtgacatga	ctttgggcag	aaactgtctt	attgattccc	tcgtgccgaa	1800
ttcttgctcg	aggccaaatt	ccctatagcg	aacttattga	acaga		1845
<210> 125						
<211> 306						
<212> DNA <213> Homo	sapien					
<400> 125						
geggegeegg	gcaggtacat	aagtgtcact	cgcctaatta	aaaacattga	gtaaaccaag	60
tttttatata	gactaccctt	gccatatgat	gctcttttc	tctaataata	tgcagtttaa	120
atcctgagga	atcaatgccc	agcatttcac	cacatctgaa	ctctgtgtgg	gcattcttca	180
ctcgcctaca	aggggtaaac	aaggctacca	gaacttgaat	ttgacttata	gggagctacc	240
caggaagggg	aaagcccttg	ggactttttc	caaaacaatc	ttctatttga	actgttcatc	300
agccaa						306
<210> 126 <211> 2049	e					
<212> DNA <213> Homo	o sapien					
	o sapica					
<400> 126 aaaaaaaaaa	gtaaaacaaa	aataaagtct	atgcccatta	agacgtcttc	taattcagtt	60
gtgattgtct	gctcctactt	aaaaaaatat	ttaagcttga	tgtttaatta	ttccctttca	120
gcaaatttgg	atcagaaaat	taaagtatgt	gacaagatca	ggtcaccttg	aatttccaca	180
caatctcaag	acactgaata	gcaaaaaagt	aacattacac	agtaatgatt	aggatatttc	240
cttagacttt	gctggatctt	tggtcttaag	gtaacatgta	aaagtagtga	agcctttcct	300
ttcatggccc	tgtgcaatgt	aacggttttc	tgcctcctct	tcagctggaa	gcgttagtgg	360
tagtatgggc	acagaatata	tgtacactgg	cgatgctgac	catgcctccc	aggtaccctg	420
gctctgggtt	ccttgaccta	gggaacaaga	ttggatgagg	cagatctttg	agcccatgtg	480
actatagaat	ttgctgatga	tataatttta	caataacaat	ggataggaat	tttacctctc	540
tttttattag	tttaatatta	tttaatatta	tgtacataag	tgttcactcg	cctaattaaa	600
aacattgagt	aaaccaagtt	tttatataga	ctacccttgc	catatgatgc	tettttete	660
taataatatg	cagtttaaat	cctgaggaat	caatgcccag	catttcacca	catctgaact	720
ctgtgtgggc	attcttcact	cgcctacaag	gggtaaacaa	ggctaccaga	acttgaattt	780
gacttatagg	gagetaceca	ggaaggggaa	agcccttggg	actttttcca	aaacaatctt	840

ctatttgaac	tgttcatcag	ccaaagtagt	ccactgaggt	gacaaagctt	tcagaaatac	900
aaagatggga	agataaaggt	aacactggcc	cacttggggc	tttgacattg	gattgggtgg	960
actgaataaa	cacagcctag	gtggcctggg	cttgagcctc	acttacttct	ccttgataca	1020
tagttcctgg	tctaccttct	gacccttttt	ctaaaatagc	cagtgtctat	ttcactaggc	1080
catttactta	caagttccca	gcttttaggg	aaaaaagagg	gagggggag	catctagttt	1140
tgaattagat	atacatctta	gaagtaatga	gctattggca	gctgttaaat	cagattcagc	1200
cacaaaccag	aattctttct	tgttgaacaa	gaccaatgag	ttagatgact	ttaataattc	1260
cacttttctc	tecetetett	ctcctcttcc	tgaaatcaga	gagatgagaa	actactcttt	1320
gaaatacctc	cagaggcgtt	ttattgtgtt	cctttcccct	ccaagcagct	ccctttatac	1380
aattttgctc	aggcaaccaa	ggacagagta	tcggcagaaa	catggagtgc	ttttgtatag	1440
gccacctgta	cataaaagtg	taattattta	tttaattttc	ccatttgtat	catattaaag	1500
ctttgtacag	tgttttaagt	tctgttttaa	aattattttg	tattttattt	ttataaccta	1560
gtaataaaat	attcattccg	catgcaaaaa	aaaacacaca	cacaacccaa	acaaccaaaa	1620
acaaacagaa	ccaaaagata	gaaaccaaac	acagcaacag	acagacacaa	gagaagacga	1680
aaacaaccac	acaaacagca	cacacaaccg	cagcggagaa	ccaacaaagc	caaacgcaag	1740
acagcacaac	aagggacaaa	acacacacgt	agcacaaagc	agccgcagaa	ccgaacacac	1800
atctaaagac	aggcgacaac	aacatagcag	gccgtagcac	cgacaaccac	taaaccataa	1860
ctatccagcg	gagatcagat	cacagaagcc	gacacagaaa	gaaaagcatg	tatgcaacgc	1920
atgacaccgc	agggcggata	aaaacactcg	taggcgggac	cgccgcagaa	cgatcgaagg	1980
ctaacaaaca	agctagtaga	tcacaagtac	gtgaccacgc	cctcttatct	ataaaggagg	2040
aagagggag						2049
	•					
<210> 127						
<211> 286 <212> DNA						
	sapien					
<400> 127						
acatctggtt	gcggagaaag	gaaaaacttc	tcaaagaaga	atttgaagtg	agctttaagg	60
gttgaatgga	atttttactg	ttagaggtag	agaaatacaa	tatcataaag	aaagatgtga	120
tccctacaag	aggattacgt	ggtaagttga	aagacattaa	acagtccaac	ctggtcattg	180
tcaaaactat	atacgttggg	cacagaactg	aagaccaggt	gtcaaaggag	gatggctctg	240

tcccctttgt gtccccagtg cctaaagcag tgtttggtgc aagctt

286

<210> 128 <211> 12421 <212> DNA <213> Homo sapien

<400> 128

60 agcccacggg atcgcccacg cgtcggggca ggtcaaggag gaggctgaaa gagcctgagc tgtgccctct ccattccact gctgtggcag ggtcagaaat cttggataga gaaaaccttt 120 tgcaaacggg aatgtatctt tgtaattcct agcacgaaag actctaacag gtgttgctgt 180 ggccagttca ccaaccagca tatccccct ctgccaagtg caacacccag caaaaatgaa 240 300 gaggaaaaca aacaggtgga gactcagcct gagaaatggt ctgttgccaa gcacaccaca gagctaccca acagattcct atggagttct tgaattccag ggtggcggat attccaataa 360 agccatgtat atccgtgtat cctatgacac caagccagac tcactgctcc atctcatggt 420 gaaagattgg cagctggaac tccccaagct cttaatatct gtgcatggag gcctccagaa 480 ctttqaqatq caqccaaqc tqaaacaagt ctttgggaaa ggcctgatca aggctgctat 540 600 gaccaccggg gcctggatct tcaccggggg tgtcagcaca ggtgttatca gccacgtagg ggatgccttg aaagaccact cctccaagtc cagaggccgg gtttgtgcta taggaattgc 660 tccatggggc atcgtggaga ataaggaaga cctggttgga aaggatgtaa caagagtgta 720 ccagaccatg tccaaccctc taagtaaget ctctgtgctc aacaactccc acacccactt 780 catcctggct gacaatggca ccctgggcaa gtatggcgcc gaggtgaagc tgcgaaggct 840 gctggaaaag cacatctccc tccagaagat caacacaaga ctggggcagg gcgtgcccct 900 cgtgggtctc gtggtggagg ggggccctaa cgtggtgtcc atcgtcttgg aatacctgca 960 1020 agaagagcct cccatccctg tggtgatttg tgatggcagc ggacgtgcct cggacatcct gtcctttgcg cacaagtact gtgaagaagg cggaataata aatgagtccc tcagggagca 1080 gcttctagtt accattcaga aaacatttaa ttataataag gcacaatcac atcagctgtt 1140 tgcaattata atggagtgca tgaagaagaa agaactcgtc actgtgttca gaatgggttc 1200 tgagggccag caggacatcg agatggcaat tttaactgcc ctgctgaaag gaacaaacgt 1260 1320 atotgotoca gatoagotga gottggcact ggottggaac cgcgtggaca tagcacgaag ccagatettt gtetttggge cecaetggae geceetggga ageetggeae eeeegaegga 1380 cagcaaagcc acggagaagg agaagaagcc acccatggcc accaccaagg gaggaagagg 1440 1500 aaaagggaaa ggcaagaaga aagggaaagt gaaagaggaa gtggaggaag aaactgaccc ccggaagata gagctgctga actgggtgaa tgctttggag caagcgatgc tagatgcttt 1560

agtcttagat	cgtgtcgact	ttgtgaagct	cctgattgaa	aacggagtga	acatgcaaca	1620
ctttctgacc	attccgaggc	tggaggagct	ctataacaca	agactgggtc	caccaaacac	1680
acttcatctg	ctggtgaggg	atgtgaaaaa	gagcaacctt	ccgcctgatt	accacatcag	1740
cctcatagac	atcgggctcg	tgctggagta	cctcatggga	ggagcctacc	gctgcaacta	1800
cactcggaaa	aactttcgga	ccctttacaa	caacttgttt	ggaccaaaga	ggcctaaagc	1860
tcttaaactt	ctgggaatgg	aagatgatga	gcctccagct	aaagggaaga	aaaaaaaaa	1920
aaagaaaaag	gaggaagaga	tcgacattga	tgtggacgac	cctgccgtga	gtcggttcca	1980
gtatcccttc	cacgagctga	tggtgtgggc	agtgctgatg	aaacgccaga	aaatggcagt	2040
gttcctctgg	cagcgagggg	aagagagcat	ggccaaggcc	ctggtggcct	gcaagctcta	2100
caaggccatg	gcccacgagt	cctccgagag	tgatctggtg	gatgacatct	cccaggactt	2160
ggataacaat	tccaaagact	tcggccagct	tgctttggag	ttattagacc	agtcctataa	2220
gcatgacgag	cagatcgcta	tgaaactcct	gacctacgag	ctgaaaaact	ggagcaactc	2280
gacctgcctc	aaactggccg	tggcagccaa	acaccgggac	ttcattgctc	acacetgeag	2340
ccagatgctg	ctgaccgata	tgtggatggg	aagactgcgg	atgcggaaga	accceggeet	2400
gaaggttatc	atggggattc	ttctaccccc	caccatcttg	tttttggaat	ttcgcacata	2460
tgatgatttc	tcgtatcaaa	catccaagga	aaacgaggat	ggcaaagaaa	aagaagagga	2520
aaatacggat	gcaaatgcag	atgctggctc	aagaaagggg	gatgaggaga	acgagcataa	2580
aaaacagaga	agtattccca	teggaacaaa	gatctgtgaa	ttctataacg	cgcccattgt	2640
caagttctgg	ttttacacaa	tatcatactt	gggctacctg	ctgctgttta	actacgtcat	2700
cctggtgcgg	atggatggct	ggccgtccct	ccaggagtgg	atcgtcatct	cctacatcgt	2760
gagcctggcg	ttagagaaga	tacgagagat	cctcatgtca	gaaccaggca	aactcagcca	2820
gaaaatcaaa	gtttggcttc	aggagtactg	gaacatcaca	gatctcgtgg	ccatttccac	2880
attcatgatt	ggagcaattc	ttcgcctaca	gaaccagccc	tacatgggct	atggccgggt	2940
gatctactgt	gtggatatca	tcttctggta	catccgtgtc	ctggacatct	ttggtgtcaa	3000
caagtatctg	gggccatacg	tgatgatgat	tggaaagatg	atgatcgaca	tgctgtactt	3060
tgtggtcatc	atgctggtcg	tgctcatgag	tttcggagta	gcccgtcaag	ccattctgca	3120
tccagaggag	aagccctctt	ggaaactggc	ccgaaacatc	ttctacatgc	cctactggat	3180
gatctatgga	gaggtgtttg	cagaccagat	agacctctac	gccatggaaa	ttaatcctcc	3240
ttgtggtgag	aacctatatg	atgaggaggg	caagcggctt	cctccctgta	tccccggcgc	3300

119

ctggctcact	ccagcactca	tggcgtgcta	tctactggtc	gccaacatcc	tgctggtgaa	3360
cctgctgatt	gctgtgttca	acaatacctt	ctttgaagta	aaatcaatat	ccaaccaggt	3420
gtggaagttc	cagcgatatc	agctgattat	gacatttcat	gacaggccag	teetgeecee	3480
accgatgatc	attttaagcc	acatctacat	catcattatg	cgtctcagcg	gccgctgcag	3540
gaaaaagaga	gaaggggacc	aagaggaacg	ggatcgtgga	ttgaagctct	tccttagcga	3600
cgaggagcta	aagaggetge	atgagttcga	ggagcagtgc	gtgcaggagc	acttccggga	3660
gaaggaggat	gagcagcagt	cgtccagcga	cgagcgcatc	cgggtcactt	ctgaaagagt	3720
tgaaaatatg	tcaatgaggt	tggaagaaat	caatgaaaga	gaaactttta	tgaaaacttc	3780
cctgcagact	gttgaccttc	gacttgctca	gctagaagaa	ttatctaaca	gaatggtgaa	3840
tgctcttgaa	aatcttgcgg	gaatcgacag	gtctgacctg	atccaggcac	ggtcccgggc	3900
ttcttctgaa	tgtgaggcaa	cgtatcttct	ccggcaaagc	agcatcaata	gcgctgatgg	3960
ctacagcttg	tatcgatatc	attttaacgg	agaagagtta	ttatttgagg	atacatctct	4020
ctccacgtca	ccagggacag	gagtcaggaa	aaaaacctgt	tccttccgta	taaaggaaga	4080
gaaggacgtg	aaaacgcacc	tagtcccaga	atgtcagaac	agtcttcacc	tttcactggg	4140
cacaagcaca	tcagcaaccc	cagatggcag	tcaccttgca	gtagatgact	taaagaacgc	4200
tgaagagtca	aaattaggtc	cagatattgg	gatttcaaag	gaagatgatg	aaagacagac	4260
agactctaaa	aaagaagaaa	ctatttcccc	aagtttaaat	aaaacagatg	tgatacatgg	4320
acaggacaaa	tcagatgttc	aaaacactca	gctaacagtg	gaaacgacaa	atatagaagg	4380
cactatttcc	tatcccctgg	aagaaaccaa	aattacacgc	tatttccccg	atgaaacgat	4440
caatgcttgt	aaaacaatga	agtccagaag	cttcgtctat	tcccggggaa	gaaagctggt	4500
cggtggggtt	aaccaggatg	tagagtacag	ttcaatcacg	gaccagcaat	tgacgacgga	4560
atggcaatgc	caagttcaaa	agatcacgcg	ctctcatagc	acagatattc	cttacattgt	4620
gtcggaagct	gcagtgcaag	ctgagcaaaa	agagcagttt	gcagatatgc	aagatgaaca	4680
ccatgtcgct	gaagcaattc	ctcgaatccc	tcgcttgtcc	ctaaccatta	ctgacagaaa	4740
tgggatggaa	aacttactgt	ctgtgaagcc	agatcaaact	ttgggattcc	catctctcag	4800
gtcaaaaagt	ttacatggac	atcctaggaa	tgtgaaatcc	attcagggaa	agttagacag	4860
atctggacat	gccagtagtg	taagcagctt	agtaattgtg	tctggaatga	cagcagaaga	4920
aaaaaaggtt	aagaaagaga	aagcttccac	agaaactgaa	tgctagtctg	ttttgtttct	4980
ttaattttt	ttttttaaca	gtcataacca	ctaatgggtg	tcatcttggc	catctaaaca	5040
tcatcaattt	ctaaaaacat	tttccttaaa	aaattttgga	aattcagact	tgatttacaa	5100

tttaatgcac	taaaagtagt	attttgttag	catatgttag	taggcttagt	ttttccagt	5160
tgcagtagta	tcaaatgaaa	gtgatgatac	tgtaacgaag	ataaattggc	taatcagtat	5220
acaagattat	acaatctctt	tattactgag	ggccaccaaa	tagcctagga	agtgccctcg	5280
agcactgaag	tcaccattag	gtcactcaag	aagtaagcaa	ctagctgggc	tcagtggctt	5340
atgcctgtaa	tcctagcact	ttgggaggct	gaggtaggcg	gattgcttga	ggccaggagt	5400
tcaagaccaa	cacggccaat	gtggcgaaac	cccgtctcta	ctgaaaaata	caaaattagc	5460
cgggtgtggt	ggtgggtgct	tgtagtctca	gctacttggg	aggctgaagc	aagagaattg	5520
cttgaatcca	ggaggaggag	gttgcagtga	gcccagatca	tgccactaca	ctccagcctg	5580
ggtgacagag	tgaggcactg	tctcaaaaaa	aaaaaaaaa	aaaaaaaga	tactgaacta	5640
ggcacttgac	atccaagatg	tccacttggc	ccttttctaa	gtgtacttca	ctttgttttc	5700
attcctcctc	taaagctttt	taacaaactg	tcactcatgt	tctaaaaaca	aacaaatgtc	5760
tttcatctca	ttttttactc	agcattatct	atcaaaggga	ctggatgtcc	catctagttt	5820
gtactttagt	ttctagctca	ttacatagga	aatgcaaata	aaaaacacaa	tgagatacca	5880
cttcacaccc	actaagatgg	ccataactta	tttttttaa	aaaaaggaaa	aggaaaataa	5940
taagtgttgg	tgaggaagtg	gacagaaatt	ggaattctca	tacattgctg	gtgggaatgt	6000
ggaatggttc	aactgctgtg	gaaaacagtt	tgtctgttcc	tcaaaaagct	aaacatagaa	6060
ttaacatatg	acccagcagt	tccactccta	gatatatacc	caagagaatg	caaaataggc	6120
attcaaacaa	atacaggtac	acaaacattc	atagcagcac	tattcccaat	agccaaaagt	6180
cagaaacaac	ccaaagtcca	tcaatgaatg	agtggataaa	taaattgtgc	tataaacaca	6240
taatacaatt	ttatttggcc	ataaaaatga	agtgttgata	catgctacta	tgtaaataaa	6300
tctcaaaaac	ttgtactaag	tgaaagaagc	cagacacaaa	aggtctcata	caattcgatt	6360
tatataaaat	agcaagaata	gataaaacca	tagagacaga	aagcagattg	gtggttgctg	6420
ggggctggag	gaaggaagga	atggagagta	tctgcttaat	gggatggggt	ttccttttag	6480
aggagaacat	tttttttgga	actttaaata	aaggtggtgg	ttatgcaaca	ttgttaacaa	6540
tactaagtgg	cactgaactt	ctcactttaa	aatagttaat	tttatgttat	gtgaagttta	6600
cctcaataaa	aaaattctta	aaaaaaaaa	ctcagtgata	tccaaccatt	aaaaatata	6660
agttacatag	ctcgtatata	atcaacttac	ttattactgc	actatgaggg	gcacccagat	6720
atgtaagaca	gagtcccaac	ctttggttgt	tggaggacta	tctaaggata	cagagattaa	6780
taaaaataaa	agaactacca	cgaaagaagt	gccctccaag	tacaaagaga	gttcaaatat	6840

121

gtacatctgg ttgcggagaa aggaaaaact tctcaaagaa gaatttgaag tgagctttaa 6900 gggttgaatg gaatttttac tgttagaggt agagaaatac aatatcataa agaaaagatgt 6960 gatecetaca agaggattae gtggtaagtt gaaagacatt aaacagteca acetggteat 7020 7080 tgtcaaaact atatacgttg ggcacagaac tgaagaccag gtgtcaaagg aggatggctc 7140 tgtccccttt gtgtccccag tgcctaaagc agtgtttggt gcatgcttgg tgattggtaa atgtcaaaga aaaagataaa agataaaata tagccgggcg cggtggctca agcctgtaat 7200 7260 cccagcactt tgggaggccg agcttaacat tgagaaaaga aaggaaatgc aacaagaaaa 7320 qcagaaaqca cttqatqtag aagcaagaaa gcaggttaac aggaagaaag ctttactgac tcgtgtccag gagattcttg acaatgttca ggttagaaaa gcacctaatg ccagtgattt 7380 tgatcagtgg gagatggaaa cagtttactc taattcagaa gtcagaaact tgaatgttcc 7440 tgctacattt ccaaatagct ttccaagcca tacggaacac tctactgcag caaagcttga 7500 7560 taagatagct gggattttgc cattggataa tgaggaccaa tgtaaaactg atggaataga 7620 cttagctaga gattcagaag gatttaattc tccgaagcaa tgtgatagtt ccaatattag 7680 tcatgtagaa aatgaagctt ttccaaaagac ctcttcagca accccacaag aaactcttat 7740 ttctgatggt cccttctcag taaatgaaca acaggatcta ccacttttgg cagaagtcat cccagatccc tatgtaatga gtcttcagaa tctgatgaaa aagtcaaagg aatatataga 7800 aagagaacaa totagacgca gtotgagagg tagtatgaac agaattgtta atgagagtca 7860 tttagacaaa gaacatgatg ctgttgaagt ggctgactgt gtaaaagaga aaggccagtt 7920 7980 gacaggcaaa cactgtgtct cagttattcc tgacaaacca agccttaata aatcaaatgt tcttctccaa ggtgcttcca ctcaagcaag cagcatgagt atgccagttt tagctagctt 8040 8100 ttcgaaagtg gacataccta tacgaactgg ccatcccact gttctagagt ctaattctga ttttaaagtt attcccactt ttgttaccga aaataatgtt atcaaaagtc ttacaggttc 8160 atatgccaaa ttacctagtc cagagccaag tatgagtcct aaaatgcacc gaagacgttc 8220 caggacatca tcagcgtgtc acatacttat aaataaccca ataaatgcct gtgaattaag 8280 ccctaaagga aaagaacagg caatggactt aattattcaa gatactgatg aaaacacaaa 8340 tgtgcccgaa attatgccaa agttaccaac tgatttagcg ggagtttgtt caagcaaggt 8400 8460 ggtatgtcaa tcttcaggaa atcatttaga aaataaagtt actcatggac ttgttactgt 8520 8580 ggaaggtcag ttaacatccg atgagagagg cgcacacata atgaacagta cctgtgctgc 8640 gatgccaaag ctgcatgaac catatgccag cagtcagtgt atagcaagtc caaactttgg

aactgtgagt	ggactcaagc	cagccagtat	gttagagaaa	aactgcagtt	tgcaaacaga	8700
actgaataag	tcttatgatg	taaaaaaccc	ttctccttta	ttgatgcaaa	accagaatac	8760
gagacagcag	atggacacac	ctatggtgtc	ctgtggaaat	gaacaatttt	tggataacag	8820
ttttgagaaa	gttaaacgga	gacttgattt	agatattgat	ggtttgcaaa	aagaaaactg	8880
cccttatgtc	ataacaagtg	gaataactga	acaagaaagg	caacatttgc	cagaaaaaag	8940
ataccctaag	ggatctggct	tcgttaacaa	gaataaaatg	ttaggaacta	gttccaaaga	9000
aagcgaggag	ttactaaaaa	gcaagatgtt	agcttttgaa	gaaatgcgga	agagactaga	9060
agaacagcac	gcccagcaat	tatcactact	catagctgag	caggaaaggg	aacaagaaag	9120
actgcaaaag	gtttttagtc	tggaaataca	agcaaaattt	aacaaaataa	ctgcagtggc	9180
aaaaggattt	cttactcgta	gacttatgca	gacagataag	ctgaagcaac	ttcgacaaac	9240
tgtaaaattg	cgagctgcct	tgtacggtat	tcatgacata	ttctttgtaa	tggatgcagc	9300
tgaaagaatg	tctattctac	atcatgatcg	agaagttcgc	aaagagaaaa	tgctcaggca	9360
aatggataaa	atgaaaagtc	cacgagtggc	tctttcagct	gcaacacaga	agtctcttga	9420
taggaagaaa	tacatgaatg	ttgggaatag	caggtacgag	tggatatact	ttcctactca	9480
tactgagctg	aacactggag	ggcccgttct	ggagatgatc	cttttccctg	tcataggtca	9540
ccatctcatg	aacaaccaca	gaccaccacc	cccgaatgaa	aacatggcgt	ctgcagaagg	9600
tgctgtg c gg	ccgctgcggg	gcggccagct	gcccttcaca	aacatggcgg	ccgaggggtg	9660
cggggagtgg	cggggtaagg	atgggaagcc	gagcagacgg	ccccagaaca	agcggtcatg	9720
tgactgggaa	gatggccgtc	tttccttgtt	tattattaag	gatattacaa	agaatacaga	9780
tgaacagcca	gatgaagagc	tacgtagggt	cacagagtca	aagacaaaga	aagtgaaccg	9840
gaaaggaagc	acttcttcca	egtectecte	ctcctccagc	tccgtggtgg	acccgctgag	9900
cagcgtcctc	gatgggactg	acccctctc	catgtttgca	gccactgctg	accccgcagc	9960
cttggcagct	gccatggaca	gctccagaag	gaaacgtgat	agagatgata	actccgttgt	10020
aggatcggat	tttgagcctt	ggaccaacaa	acggggagaa	atccttgccc	ggtacaccac	10080
taccgaaaag	ctgtctatta	atctgtttat	gggatctgaa	aaaggcaaag	ctgggactgc	10140
cacattggca	atgtcagaga	aggtgcggac	ccggctggag	gagctggatg	actttgagga	10200
gggttcccaa	aaggagctgt	tgaacttgac	tcagcaggat	tacgtgaacc	gcatagagga	10260
gctcaaccaa	tegetgaagg	atgcctgggc	ctcagaccag	aaagtgaagg	ctctaaaaat	10320
agtcatccag	tgttcaaagc	ttctttcaga	caccagtgtt	attcagttct	acccaagcaa	10380

atttgtcctt	atcaccgaca	tacttgatac	atttggaaag	ctcgtgtacg	agcgcatctt	10440
ttccatgtgt	gtggatagcc	gcagcgtctt	accaggatgt	ttttgtagtt	acgtggaggc	10500
atccatcctg	aaatgtaaca	aattcctctc	caaaacggga	atttcagagt	gcctgccccg	10560
gttgacatgc	atgatcagag	ggatcggaga	cccactagtg	tcggtgtatg	cccgtgccta	10620
cctgtgccgg	gtgggaatgg	aagtggcccc	acatctcaaa	gaaaccctaa	ataagaactt	10680
ttttgacttc	ctccttacgt	tcaaacagat	tcatggggat	acggtccaga	accagctggt	10740
ggtccaagga	gtggagctcc	catcttacct	ccccttgtac	ccgcctgcca	tggactggat	10800
cttccagtgc	atctcctacc	atgcccccga	ggctctgctg	accgagatga	tggaaaggtg	10860
taagaaacta	ggaaacaatg	ccttgctgtt	gaattctgtg	atgtctgcct	tccgggctga	10920
gttcatcgcc	acaaggtcta	tggatttcat	tggcatgatt	aaagagtgtg	atgaatctgg	10980
tttccccaag	catcttcttt	ttcgatcact	gggattaaac	ttggccttgg	ctgatcctcc	11040
tgagagtgac	cgacttcaga	ttctcaacga	agcttggaaa	gtcatcacta	agctgaagaa	11100
cccacaggac	tacattaatt	gtgccgaagt	gtgggtggaa	tacacctgca	agcatttcac	11160
gaaacgagag	gtgaataccg	ttttggcaga	tgtcatcaag	cacatgactc	cagatcgtgc	11220
atttgaagat	tcctaccccc	agcttcagtt	aataattaag	aaagttattg	cccacttcca	11280
tgacttctca	gttcttttct	cagtggaaaa	atttctgccg	tttctggaca	tgttccaaaa	11340
agagagtgtg	cgggtggagg	tttgcaaatg	catcatggac	gcctttatca	agcatcaaca	11400
agagcccacc	aaggacccgg	tcatcttgaa	tgcccttttg	catgtttgca	agaccatgca	11460
tgactctgtg	aatgcactca	ctcttgagga	tgagaaaaga	atgctgtcat	atttgattaa	11520
tggatttata	aaaatggttt	cctttggccg	tgattttgaa	caacagctga	gtttttatgt	11580
tgagtccagg	tcgatgtttt	gcaatctgga	gcctgttctt	gtgcagttga	ttcatgcctg	11640
tgttgcctac	tgcttcatca	ccatcccctc	cctggcgggc	atcttcacac	gtctcaatct	11700
ctacctgcat	tctggtcagg	tggccttggc	caaccagtgc	ctctcccaag	ctgatgcttt	11760
tttcaaagcc	gctataagcc	ttgttccgga	agttccaaag	atgattaata	ttgatgggaa	11820
gatgcggcca	tcggaatcgt	tccttctgga	attectetge	aatttcttt	ctactttatt	11880
aatagttccg	gatcatcctg	aacatggggt	cctgtttctt	gttcgagagc	ttctcaacgt	11940
gatccaggac	tacacctggg	aggacaacag	cgatgagaaa	atccgcatct	acacctgcgt	12000
cctgcatctc	ctctccgcca	tgagccagga	gacgtacctt	taccacatag	acaaagtgga	12060
ctccaacgac	agcctctacg	ggggagactc	caagttcctg	gcagaaaaca	acaagctgtg	12120
tgagacggtg	atggctcaga	tcctagagca	tctgaaaacc	ctggccaagg	acgaggccct	12180

gaagcgccag agctcgttgg	gcctttcctt	ctttaacagc	atcttggccc	atggggacct	12240
acgcaacaac aagctcaacc	agctctccgt	caacctgtgg	cacctggcac	agaggcacgg	12300
ctgtgcagac accaggacca	tggtgaaaac	gctagaatac	atcaagaagc	aaagcaaaca	12360
accagacatg actcatctga	cggagctggc	cctcagactc	cctctgcaaa	caaggacctg	12420
a					12421
<210> 129 <211> 1494 <212> DNA <213> Homo sapien					
<400> 129 cggccgccgg gcaggtacta	ggttctgaca	tcagtgaagt	agcttccatt	tcatttctct	60
gagtgcttca ctcagcaaga	gactatgcga	caactacgtg	ctgggtgttc	cagatgtatt	120
gaactctgga caaactgctt	gacttcagcc	tcttgaacta	ttgttaatac	acgggcagct	180
tgttatatag ctcccattgg	tatacaactt	gctaattaaa	tggaaaatac	ccttgggccc	240
acgtgccatt gtgcttgtgc	tatacaacca	tggtaaattc	cccaggcatt	ttattgggcg	300
cagtgtccac atgggccgtg	tgttggtatt	caacccttgg	aagtgctcag	gggaagattc	360
tgaagaaacc cattccttag	tcgccaaagc	gattggtttg	acatgcccgc	cggctctatt	420
ctaacctaac agacagaatt	acggaagaca	ttttatgtgc	ttgttgtgtc	cgctatgtgt	480
ttgtggctgc ggtgacaaac	ccagttgcta	aacacatacc	ttccaaggcc	tttacctttt	540
gcaacgcaat gtggcctttg	cacacaagta	ctggagaggg	aagattaccg	aactatatga	600
aaacccctct gtgcggaacg	gtggcccatg	gaacttggct	atttggccac	atggctagtt	660
aaggccacct aaaacggcaa	aattttgggt	tggtcgccta	agcgtttggt	caaatcagtt	720
gcccctaatg tggccctttg	ggtgcacggt	caactttatc	cgccgaagtt	tccgattcgt	780
aatagaatcg tagcatcatg	acatgaaacg	acacacacac	acacaaaaca	cactacaata	840
gcagcgctca ctgatgcagc	gagcggtaaa	taaccaccct	ccgacagaga	ggggcggacc	900
gaccacaaaa tagagacgca	gtgtagagta	ctacacacca	cccaggttgt	tagttgggta	960
gtgcagacac aacattcttc	ttgtgaatat	aaagcattcc	cgcgagtgat	ccttcctact	1020
accagtatta tcatccctac	tcatgctatg	gctacatcgt	gcaacaatta	ttcatgcacg	1080
tgcgagtgat agcgacacaa	acatacggtg	atacatctaa	ctagacgcta	acgcacatca	1140
gcatccaacg agaatatatt	atgaacagat	ggagcacgac	tgaagtcgta	ggttgattcg	1200
cacatgctgg acgtatgagt	atccggagat	gtcaactgac	aggagtgcat	gtgggcacag	1260

WO 02/068633

125

ggcttacggc agtagtagca ccatacggct gacctagaga tgg	attggta aatcaaagta 1320
gtgagggagc ggcggaatgg gaagcgtgac ggggatgtga tgt	tagetgt eggagttgga 1380
cggagggagg catgggagga acgtgtgagc aatagagccg gcg	aggtgtc tacaggaagg 1440
gagagcagag gcgagcacgg agcgatcgct ggagctgcag ctg	cccaggc ggcg 1494
<210> 130 <211> 1774 <212> DNA <213> Homo sapien	
<400> 130 tgtgagttcc acagaagatt tcagttgaaa agcactatta atg	tttccta ctgtggacag 60
catttagagg aaacatttta agcagcacgt tcatatttcc tct	gttcacg tacttagtca 120
acagetette attgtgeget tategtgtge aaggeagtgt tet	acatgct atggggtaaa 180
caagatgaca aatccctgtc cccttagaaa agagcttgca acc	acagtgg ctgttggaaa 240
gaagcaacag tggtgctaaa agacaccagg taaactggaa agg	aaaattc atcatatagc 300
gtactaggtt ctgacatcag tgaagtagct tccatttcat ttc	ttgaggc ttcatcagaa 360
gagatatgcg acaatacgtg ctgggtgttc cagatgtatt gaa	ctctgga caaactgctt 420
gacttcagcc tcttgaacta ttgttaatac acgggcagct tgt	tatatag ctcccattgg 480
tatacaactt gctaattaaa tggaaaatac ccttgggccc acg	tgccatt gtgcttgtgc 540
tatacaacca tggtaaattc cccaggcatt ttattgggcg cag	tgtccac atgggccgtg 600
tgttggtatt caaccettgg aagtgeteag gggaagatte tga	agaaacc cattccttag 660
tcgccaaagc gattggtttg acatgcccgc cggctctatt cta	acctaac agacagaatt 720
acggaagaca ttttatgtgc ttgttgtgtc cgctatgtgt ttg	tggctgc ggtgacaaac 780
ccagttgcta aacacatacc ttccaaggcc tttacctttt gca	acgcaat gtggcctttg 840
cacacaagta ctggagaggg aagattaccg aactatatga aaa	cccctct gtgcggaacg 900
gtggcccatg gaacttggct atttggccac atggctagtt aag	gccacct aaaacggcaa 960
aattttgggt tggtcgccta agcgtttggt caaatcagtt gcc	cctaatg tggccctttg 1020
ggtgcacggt caactttatc cgccgaagtt tccgattcgt aat	agaatcg tagcatcatg 1080
acatgaaacg acacacaca acacaaaaca cactacaata gca	gegetea etgatgeage 1140
gagoggtaaa taaccaccot cogacagaga ggggoggaco gad	cacaaaa tagagacgca 1200
gtgtagagta ctacacacca cccaggttgt tagttgggta gtg	cagacac aacattette 1260
ttgtgaatat aaagcattcc cgcgagtgat ccttcctact acc	agtatta tcatccctac 1320

PCT/US01/43612

tcatgctatg gctacatcgt	gcaacaatta	ttcatgcacg	tgcgagtgat	agcgacacaa	1380
acatacggtg atacatctaa	ctagacgcta	acgcacatca	gcatccaacg	agaatatatt	1440
atgaacagat ggagcacgac	tgaagtcgta	ggttgattcg	cacatgctgg	acgtatgagt	1500
atccggagat gtcaactgac	aggagtgcat	gtgggcacag	ggcttacggc	agtagtagca	1560
ccatacggct gacctagaga	tggattggta	aatcaaagta	gtgagggagc	ggcggaatgg	1620
gaagcgtgac ggggatgtga	tgttagctgt	cggagttgga	cggagggagg	catgggagga	1680
acgtgtgagc aatagagccg	gcgaggtgtc	tacaggaagg	gagagcagag	gcgagcacgg	1740
agcgatcgct ggagctgcag	ctgcccaggc	ggcg			1774
<210> 131 <211> 531 <212> DNA <213> Homo sapien <400> 131					
ccgaggtact taattctttg	gcaacaaaca	gcaagttttt	atggtttaat	tgtatttcct	60
ctctagagat cacaatactc	tgggtatttt	atatcccttc	taaaggtcat	ttgggttttc	120
aaatgggaag aatagtcaag	ctaagctgga	ctaaacctaa	gtaatatttt	atctcatcaa	180
aagaagttat taatctaact	gggttagcat	gagtcattca	ttttttagac	atgataaatg	240
ggaaacatat caaatcatta	gataaattct	gacctggaat	tgaattcccc	ctttcttaaa	300
atctttttaa tttgcttttt	tcatagactc	agtatggaac	tcttaactga	taagggagag	360
attettgate tggaacegtt	ccctgccatt	ctccttttt	ctctctgtct	aggtagctgg	420
ttccatagtg cccgtcacga	gggtccattt	cagtttgatg	acattagact	gcttacactc	480
agctggatgc cttgctgttt	gcagcaacat	gattttacag	tatgcttttc	t	531
<210> 132 <211> 4309 <212> DNA <213> Homo sapien				·	
<400> 132 tggggcatga agttctgcca	ctaaggcata	accagtaccc	aagtaggaaa	ggattattga	60
tccctggagt aaagattcct	agcttgcggg	gatctcacta	ttgatccccc	ggagtaaaga	120
ttectagete geaggaatet	tacttgcaca	cttaaggaaa	ataccagagg	gagccactag	180
caaccgaaaa atgaaggaaa	gatttaattt	ctctacccag	gtacaaatcc	aatgcatagt	240
atagtatatg ttatatgcag	aaagggcact	ggaggtgtga	gagccctttg	ggtaacagct	300

ctgctagttg ttac	ecttcac acttctctt	cttcttaatc	tctggtttct	cgtctgaaaa	360
atgagataat tgga	ctagat taatagttc	cageetttte	tagaacaaca	aattagatta	420
tctctgaagt cctt	ttccaa aatttcatg	ttccagtctc	tccccgtgat	tgcatattat	480
ccctaggcta atta	aaagtg tgctggtta	tcagtttctt	tactttttt	tctctcttt	540
ttttattctg tgtt	caggta tcatttgac	aacaacttgc	tcttaatctt	actgcgatga	600
ctgaaatctc caaa	gaggag agtatagtag	ttataggtct	agtaataata	atcttgtaaa	660
caattcatta tttt	ttaaaa cttaatgct	g tgtgcctaat	cagtgttgag	tatgactaaa	720
atgtaaatga gaac	caaata tgacactaa	gctggcacta	aattttattt	ttacttgtgt	780
acttaaagta cttt	actggc ctgttggga	a attgatttgt	ataagattca	cacctggttt	840
tggcagaaac agct	ttttaa agatacaati	aggctgactt	aaaaatgttt	tttattccac	900
agaatgtatc ttta	ttatgt cattcttace	gtetetetge	cttttttgac	catcatgtaa	960
ctacgcagta gtaa	atcatg gggtgcagg	tgatgaatta	gtagtctttg	taaaactaaa	1020
atgtaatgag cata	ggaaga gacagctct	ctggtgaaca	tggcagtttt	ccggtaatac	1080
cagccttgat gaat	aggcta aagacagct	g tgtactatgg	acattcaact	tcactggatt	1140
gcctggctta gctt	ttcagt tattgtcttg	g ccgtgaaaca	tggtgttgca	ctgtacacat	1200
tttagaatag tggc	aagaat gttctttag	actgcagata	acccaacaga	gaataccata	1260
ccaatatatc ggtt	tctcct gttacataga	a gatttggtat	ttcagtgatg	gttatggttt	1320
ttgactcacc tgtg	tgtcag tcctgctag	a gagacagtat	agaatcaaga	atttcttgat	1380
gtctttttaa aaat	agagat tataatggc	ttgctagttg	tcctgtgaag	tgacagaccc	1440
ttaattagaa atct	tttaat cctgctttc	attttacttc	tccaccattt	atttttaaca	1500
ttcattctct gaaa	atagtt atgattttt	gtgtaattgg	ctatgtttaa	gaaattccat	1560
ttcaaagtct taat	atgtaa caatcttcai	tttttataaa	attgaaggac	atttttgagg	1620
caaacttact ttta	tagete attttetee	: tagttaagga	gaattctctg	gtttcatata	1680
gagaatggct agct	ctgtga taccccacc	: tctttgtggc	ctaccagttg	ctgttgtgtt	1740
gcttaaaatt gcag	atattc tcataaaca	gatgatttt	ggcacaggcc	tttctttgct	1800
attgatttca aaat	aaagtt gggcaatcc	atttgaacta	ctttaataaa	cataatttag	1860
cattcctgta atga	gaaagt attttcaaa	ı gataaccaga	tttatttcta	ggattagaga	1920
tggcaaatac caat	gatagt atttttccc	agagcaatca	cagattaatc	tataaatatg	1980
agaagtcgca ttat	tgtact taattcttt	gcaacaaaca	gcaagttttt	attgtttaat	2040
tgtatttcct ctct	agagat cacaatacto	: tgggtatttt	atatcccttc	taaaggtcat	2100

ttgggttttc aaatgggaag	aatagtcaag	ctaagctgga	ctaaacctaa	gtaatatttt	2160
ttctcatcaa aagaagttat	taatctaact	gggttagcat	gagtcattca	ttttttagac	2220
atgataaatg ggaaacatat	caaatcatta	gataaattct	gacctggaat	tgaattcccc	2280
ctttcttaaa atcttttaa	tttgcttttt	tcatagactc	agtatggaac	tcttaactga	2340
taaggagaga ttcttgatct	ggaaccgttc	cctgccattc	tectgttttt	ctctctgtct	2400
aggtagetgg ttecatagtg	cccgtcacga	gggtccattt	cagtttgatg	acattagact	2460
gcttacactc agctggatgo	cttgctgttt	gcagcaacat	gattttacag	tatgcttttc	2520
tcaaagcttt gcattcttaa	tggagatatc	aaatggtgta	attccaaata	taaatatgtt	2580
tatgacacta atcatatgct	tttaacaata	actttttgat	aacttattgc	cctgtaagtt	2640
aaaccttaca cggagtgact	gttgccatca	gaaaatcccc	tttcacctgc	tagagagagt	2700
gaaagtagtg cgtggcctcc	acttttcagt	taacgagtag	caagcttcta	gtaggggctg	2760
cttatctgac ccatgtgggg	tcttgggcct	tgttactttc	ctgggttcgt	cccttcagct	2820
ggaaaggctg ttgaaaacac	ttgccaggaa	acagtaaagc	tgtgagagaa	tcttctagtc	2880
ttagatatag agaaatgagt	accagttgat	gctaacacga	tacttagact	ttgaggggct	2940
tccatccaag ctttggcatg	aatctgttag	acacggtttt	cttcactcct	ctgataatct	3000
ttttttccag aatggttttt	tgttgttgtt	gttgttaaca	aattctaaac	atccagtgtt	3060
actttttgtt ttgtttgttt	tgttttgttt	tgttttgttt	tgtttgccct	tcaggaaagt	3120
cctttttcga gtaggtattg	attgttccct	ggaaactctc	agcagtgtct	gtgcaggctc	3180
tgtgcatgct ttgtatgagt	tcggcttgaa	caatgcattt	gaagtcacct	gggatgtcca	3240
gttctggcat gtcttcattg	attgtgtttt	taaacatgtt	tcatgtttca	tgtcattttc	3300
caaacctcac tttacatctt	actcagagaa	gttaatcaag	gaatgaaatt	tctaggggga	3360
tagggatgat gagggtgggt	tgggggcttg	agtgaagtca	acttggggta	tttgctttaa	3420
agtgttttct aaagcagtto	ctaacagtat	ttagagattc	cctgggatgt	ttgtggctca	3480
acttattctg gacaaagtgt	gtgtgggggt	ggtcttactg	agatttgcat	tcttaatgca	3540
ggacaggctc taaatttcat	ctgtactcta	aatttgtgat	tgaatccaag	aagataacag	3600
agacagtgct cctgttgtaa	tgtttctggc	aagtgctccc	taaaatgcac	atcgaattct	3660
gttttctggg ccttttctcc	aatggtgcta	ggagataccg	ttgatttctg	cagctcttct	3720
cagtggtggg aagaagtctt	tgggattgtt	gagcaagggg	cagctggacc	atccactaaa	3780
tttttttgtt caagacacat	tagagaccct	cctgtatatc	tagtaagtca	taataaaggt	3840

129

		127			
gcttgggaaa gccttaaatt	tgaagacaca	tggaggcggt	agaaaattaa	acttgtaaga	3900
ggagaaaaac atgccattag	gtaacgcaga	gttgtaacta	ctggctaaga	ctcaatggaa	3960
cttccacttg ctctaaaacc	agggaaggga	gtgggacgat	aagtcttttg	aagacatcag	4020
ctcactgtgc tgagagaggg	accaaactca	aggaaacctc	tgatctatac	attcaactgc	4080
tgcatttttt tataaataca	tgtaaatgtc	ctgttgtaat	atttgatctt	ggaaataaaa	4140
acaaaaactt ttcgtagaaa	aaacacacac	gacaaaaaca	aaatttgggg	ggccggcgcc	4200
aagaagtttc aaccacatgt	gtggggccgg	cccaggtgaa	ggaaatggca	agtggccaag	4260
aaccggccag aaggggggtt	tcccaaaaaa	cgcgcgggcg	cgcgtttga		4309
<210> 133 <211> 730 <212> DNA <213> Homo sapien <400> 133					
gccgccgggc aggtacaacg	tggagatttc	cctctgggaa	aatcacccag	caagtgaaat	60
ccgacccaga gggggacaca	ggagtgctcc	cgtgggacag	cgtggccacc	actgggaggg	120
gctctggcag tttttcttgt	tttttacgct	gcgatgtctg	tgaatcttga	gagcccagct	180
gatgcgttgt aacctcacct	gggggcgatg	tggaacattc	caggcctggc	aggggctatg	240
cctgccatgc agacctcacc	cgagccatct	caccctgggt	ctgtcagagt	cccacgtgct	300
gtegecete acceaecece	gacggggcca	tgctcctggt	catgctgtga	ttcattcatc	360
attccatggg caggtgtggg	attgtctctg	tgtttctgtc	tgctttttaa	agaagatgag	420
gtaagcatgg aaaacaaaac	aaacgtggta	accccatcac	tcagacgtgt	ccactgttag	480
cattcgggaa caggtgagag	cagtctggcg	cacaggtttt	aaggctggct	ggcccagact	540
ttggtcttgt gctgtgtgat	cttggggaaa	tcactgattt	ctgagccttt	ttcccagctg	600
ctttttctct tggggctggt	agaaggaata	agagagtgag	tgtcaaaaaa	aaaaaaaaa	660
aaagcttggg gttaatcatt	ggcaaatatg	ttcccggtta	aaattgtttc	ggtcaaatcc	720
atttggagaa					730
<210> 134 <211> 226 <212> DNA <213> Homo sapien					
<pre><400> 134 gcccgggcag gtactgggtt</pre>	gcagcaagct	atgatgccct	gaggttccct	gaagacaagt	60

aagaacacac tcaacttgtc actcagaaac gcagccctta aaggcttcca gataagaata

120

WO 02/068633	PCT/US01/43612
--------------	----------------

atgactgggt aaagccaggc	tgccacctaa	gctgaagcta	caggtaggtg	actaaggaaa	180
cactgatgtc aggccagcct	aggccaactt	ctccatgtgt	tctttg		226
<210> 135 <211> 937 <212> DNA <213> Homo sapien					
<400> 135 tttttttttg agatggagtc	tcqctcaaqt	gcccaggcta	gagacagtgg	ctcaatctca	60
geteactgea accteegeet					120
gctgggatta caggcatgcc					180
gggtttcacc atattgtcca					240
tcagcctttc aaagtgctga					300
ttcttacctt gagcaggggc					360
totgotgoog cacaaggggo					420
tgaagacaag taagaacaca					480
agataagaat aatgactggg					540
gactaaggaa acactgatgt					600
caccaagctt taagtggatc					660
gtaagtgcca cagcactgtg	gattctcaat	tccgcagggg	gcaaccaacg	ggctgtggat	720
tttcattctt gcttatactt	caatcaagat	cacaaaacgt	ttaagatcat	gagctgcttt	780
aatttggaag aaagtacaga	tgacagaatc	tgggacattt	tettecettg	caagtagatg	840
ctataaggct cagagactta					900
agttcagaag ttttagtgct	taaatggcag	cctgagg			937
<210> 136 <211> 96 <212> DNA <213> Homo sapien					
<400> 136 gcccgggcag gtaccaatca	attttgaaaa	tgaaagggaa	aatacttatc	tttcctatat	60
gaattgggaa aataaaagga					96

<210> 137 <211> 151 <212> DNA

	<213> H	Iomo	sapien					
		37						
	aaaatgta	ıgg	cagcaaaagt	ggaagaggag	aggcagctgg	tgcactaatc	caggtgagag	60
	gtaaagat	gg	atgggtaggg	ctgaaggatg	gtggggcagg	tggtgagaag	tgacttggtt	120
	ctggagac	at	atgaaggaag	atggtcaggc	a			151
	<211> 6 <212> D	138 504 DNA Iomo	sapien					
		138 138	gcgaggtact	ttcttagacc	agtgtaacct	cacacctcag	tttggctttt	60
	ccaacçct	:ga	cttgaaaggc	atatttgtat	ctttttatta	gtgatagtga	agctgtgaca	120
	ctaacctt	tt	atacaaaaga	gtaaagaaag	aaaaactaca	gcgattaaga	tgagaacagt	180
	tctgcagt	ttg	ttgaactaga	tcacagcatt	gtaggcagaa	taaaaaatgt	tcatatctga	240
	gaatatto	cct	ttcgccatct	tttcccaagg	ccagacctcc	tggtggagca	cagttaaaag	300
	taacatto	ctg	ggccttgtaa	tcggagggct	gtgtctccag	ctggcagcct	tgttttaata	360
	tataatgo	cag	gactgtggaa	aacagttggc	atagaatatt	ttcacctaaa	aaagaaagaa	420
	aagacata	aca	aaactggatt	aattgcaaaa	agagaataca	gtaaaatacc	atataactgg	480
	acaaagct	tag	aagaaccttt	agaagatttg	tctgaaaaca	gatttcaaga	gtgagctttt	540
	atacacto	gct	cactaatttg	cttgattact	accaactctt	cttaaagtta	acacgtttaa	600
17	ataa							604
	<211> 4 <212> 1 <213> 1		o sapien					
		139 tcc	cctgttggcc	agggatggtc	tegateteet	gacctcgtga	tctgtccacc	60
	teggette	ccc	caagtgctgg	gattacaggc	atgagccacc	gcgcccagcc	tagccatatt	120
	tttatct	gca	tatatcagaa	tgtttctctc	ctttgaactt	attaaccaaa	aaggaacatg	180
	cttttca	tac	ctagagtcct	aatttcttca	tcatgaaggt	tgctattcaa	attgatccat	240
	catttta	att	ttaccaatgg	ctcaaaaatt	ctgttcagta	aatgtctttg	tgactggcca	300
	atggcat	aaa	ttatgtttaa	gattatgaac	ttttctgaca	gttgcagccc	atgttttccc	360
	tacgata	cca	gatttccatc	ttggggcata	ttggattgtt	gtatttaaga	ccgtcagaat	420

aatgatagtg tgtggtctcc agaggtagtc agaatcctgc tattgagttc tttttatatc 480 ttccttttcc attttttatt accattttgt ttgtttagac tacactttgt agggattgag 540 gggcaaatta tctcttggag tggaattcct gtgttttgag ccttacaacc aggaaatatg 600 agctatacta gatagcctca tgatagcatt tacgataaga acttatctcg tgtgttcatg 660 taattttttg agtaggaact gttttatctt gaatattgta gctaactata tatagcagaa 720 780 ctgcctcagt ctttttaaga aggaaataaa taatatatgt gtatgaattt atatatacat atacactcat agacaaactt aacagttggg gtcattctaa cagttaaaac aattgttcca 840 ttgtttaaat ctcagatcct ggtaaaatgt tcttaatttg tctgtgtaca ttttcctttc 900 atggacagac cattggagta cattaatttt cttaatctgc catttggcag ttcatttaat 960 ataccatttt ttggcaactt ggtaactaag aatcacagcc aaaatttgtt aacatcaaag 1020 aaagctctgc catatacccc gttactaaat tattatacat ccagcagatt ctgggatgta 1080 ctaacttagg gttaactttg ttgttgttga taatactaga ttgctccctc tttaattctt 1140 1200 cttctggtgc aaggttgctg cttaagttac cctgggaaat actactacaa ggtcaaattt tctagtatct tacagcctga ttgaaggtga ttcagatctt tgctcaatat aaatggattt 1260 tccaagattc tctgggccat ccttgaccca caggtgatct cgctggagta tattaactta 1320 acttcagtgc cagttggttt ggtgccatga gatccataat gaatccagaa cttcaccatt 1380 gcttagatat aagagtccct tggaagaata atgccactga tgatgggggt cagaaggtgt 1440 1500 attaactcaa catagagggc ttttagattt ttcttcaaaa aaatttcgag aaaagtattc ttttaccctc caaacagtta acagctctta gtttctccaa atatgctctt tgatttactt 1560 atttttägtt aaagatggta atttattgaa caatgaaatc cgtaatatat tgatttaagg 1620 acaaaagtga agttttagaa ttataaaagt acttaaatat tatatatttt ccatttcata 1680 attgttttcc tttctctgtg gctttaaagt ttttgactat tttacaatgt taatcactag 1740 gtaacttgcc atatttctgg ttctatatta agttctatcc tttataatgc tgttattata 1800 aagctggttt ttagcatttg tctgtagcaa tagaaatttt actaagtctc tgttctccca 1860 gtaagttttt tottttotca gtaagtooct aagaaaacat ttgtttgoca otottactat 1920 toccaatott ggattgttog agotgaaaaa aaatttgatg agaaacagga ggatcotttt 1980 ctggtgaata taggttcctg ctttaagaat gtggaaatcc attgctttat ataactaata 2040 2100 tacacacaga ttaattaaaa ttgtgagaaa taattcacac atgacaagta ggtaacatgc atgagttttg aattttttta aaaacccaac tgtttgacaa aatatagaac ccaaattggt 2160 actttcttag accagtgtaa cctcacacct cagttttgct tttccaaccc tgacttgaaa 2220

ggcatatttg	tatcttttta	ttagtgatag	tgaagctgtg	acactaacct	tttatacaaa	2280
agagtaaaga	aagaaaaact	acagcgatta	agatgagaac	agttctgcag	ttgttgaact	2340
agatcacagc	attgtaggca	gaataaaaaa	tgttcatatc	tgagaatatt	cctttcgcca	2400
tcttttccca	aggccagacc	tcctggtgga	gcacagttaa	aagtaacatt	ctgggccttt	2460
gtaatcggag	ggctgtgtct	ccagctggca	gcctttgttt	taatatata	tgcaggactg	2520
tggaaaacag	ttggcataga	atattttcac	ctaaaaaaga	aaaaaagac	atacaaaact	2580
ggattaattg	caaaaagaga	atacagtaaa	ataccatata	actggacaaa	gctagaagaa	2640
cctttagaag	atttgtctga	aaacagattt	caagagtgag	cttttataca	ctgctcacta	2700
atttgcttga	ttactaccaa	ctcttcttaa	agttaacacg	tttaaataag	gtatttctgg	2760
acttcctagc	cttttagcaa	gcttagagga	actagccatt	agctagtgat	gtaaaaatat	2820
tttggggact	gatgccctta	aaggttatgc	ccttgaaagt	tcttaccttt	tctctagtga	2880
tattaaggaa	cgagtgggta	gtgttctcag	ggtgaccagc	tgccctaaag	tgcctgggat	2940
tgagggtttc	cctggatgcg	ggactttccc	tggatacaaa	acttttagca	gagttttgta	3000
tatatgtgga	tttttctgat	aagtagcaca	tcagaggcct	taaccactgc	ccaaaagcga	3060
ttctccattg	agagtacata	tcttgaactt	aagaaattca	tttgctctga	ttttaatct	3120
tgtaaagttt	ttgctaaact	caaaacaagt	cccaggcaca	ccagaaggag	ctgaccacct	3180
taggtgttct	tgtgatttat	ccttacttcc	ctatgttgtc	atagttgctt	ctaaactcag	3240
ctgcactatg	gctgtcaaca	tttctgatac	ttattgggat	atgtgccatc	cagtcattta	3300
gtactttgaa	tggaacatga	gatttataac	acaggtaata	gctgaaggta	ccagtatggt	3360
ggtgagactc	acacttagtg	atccagctaa	ggtaactgat	gttataatgg	aacagagaag	3420
aggccaacta	gatagctaag	ttcttctgaa	cctatgtgta	tatgtaagta	caaatcatgc	3480
gtccttatgg	ggttaaactt	aatctgaaat	ttacattttt	catagtaaaa	ggaaaccaat	3540
tgttgcagat	ttcttttctt	gtgaggaaat	acatggcctt	tgatgctctg	gcgtctactg	3600
catttcccag	tctgttctgc	tcgagaagcc	agaatgtgtt	gttaacattt	ttccgtgaat	3660
gttgtgttaa	aatgattaaa	tgcatcagcc	aatggcaagt	gaaggaattg	ggtgtcctga	3720
tgcagactga	gcagtttctc	tcaattgtag	cctcatactc	ataaggtgct	taccagctag	3780
aacattgagc	acgtgaggtg	agatttttt	tctctgatgg	cattaacttt	gtaatgcaat	3840
atgatggatg	cagaccctgt	tcttgtttcc	ctctggaagt	ccttagtggc	tgcatccttg	3900
gtgcactgtg	atggagatat	taaatgtgtt	ctttgtgagc	tttcgttcta	tgattgtcaa	3960

aagtacgatg tggttccttt	tttatttta	ttaaacaatg	agctgaggct	ttattacagc	4020
tggttttcaa gttaaaattg	ttgaatactg	atgtctttct	cccacctaca	ccaaatattt	4080
tagtctattt aaagtacaaa	aaaagttctg	cttaagaaaa	cattgcttac	atgtcctgtg	4140
atttctggtc aatttttata	tatatttgtg	tgcatcatct	gtatgtgctt	tcacttttta	4200
ccttgtttgc tcttacctgt	gttaacagcc	ctgtcaccgt	tgaaaggtgg	acagttttcc	4260
tagcattaaa agaaagccat	ttgagttgtt	taccatgtta	ctatgggact	aatttttaat	4320
tgttttaatt tttatttaaa	ctgatctttt	tttatatggg	attacatttt	ggtgttcact	4380
ccctaaatta tatggaaacc	aaaaaagtg	attgtatttc	acatatggaa	aaaaaaaaa	4440
aaaaaaaaa aatatgcggc	c				4461
<210> 140 <211> 321					
<212> DNA					
<213> Homo sapien					
<400> 140 cgaccggcgc tttgtgatgg	atccgcccgg	gcaggtactc	tggtagecea	gtttgcaaga	60
gccaggttcc agcagggatg	gtagccagcc	tgggcacact	tttctgtatt	gtatttgaac	120
ctcatttcct gatgctcatc	cagaagttcc	tggctgggtg	agtaggtgaa	cagttcaagg	180
ctgtgtggat gaaactctgg	catctcttta	cagtgctgtc	cggcagggca	gtgtgaggcc	240
actetgteet cetttgacet	ctttcttctt	cagcagccaa	atggaggctc	tctaaaggtg	300
atgattaact tggcataaac	a				321
<210> 141 <211> 1438					
<211> 1438 <212> DNA					
<213> Homo sapien					
<400> 141 gggggacaca gcactgcctg	aagcagcatc	ttgtaggtca	gccagttccc	gttgacacgc	60
agaaagacag tactgctggg					120
tcatgggaag gcagcatgga					180
tcatcgaggt agctggaaag					240
aggtgcatag aggtgagagt	ggagatgctc	cagggagttt	gacagcaagc	acttggcagt	300
gatacagggg caggggtaca	gtctgaaagt	gctggactgg	ggtactctgg	tagccaagtt	360
ttgcaagagc cagggtttcc	agcagggatg	gtagccagcc	tgggcacact	tttctgtatt	420
gtatttgaac cccatttcct	gatgctcatc	cagaagttcc	tggctgggtg	agtaggtgaa	480

PCT/US01/43612 WO 02/068633

cagttcaagg ctgtgtggat gaaactctgg catctcttta cagtgctgtc cggcagggca	540
gtgtgaggcc actctgtcct cctttgacct ctttcttctt cagcagccaa atggaggctc	600
tctaaaggtg atgattaact tggcataaac atgccaagct ttcctgagcg tttgccctga	660
attgggctgt ctcttgctgc tctgagacag ggagactggc tgtctggctg accagccctt	720
ggggctgagg tetggctgtc aagttgcagg ttccaggcaa ccagcaattc ctggttgtca	780
cctggctcta gagattagag cagcagtgtt gctcactaga actttgtgca gtgatagtgt	840
tetttaatet geactgteta gtactgtage catgggeeae etgtgaettt caagecettg	900
aaatgtggct accggccagg cacagtggct catgcctgtt atccaggggt gtccaatctt	960
ttggcttccc tgggccacaa tggaagaaga attgtcttgg gccacacata atatacagta	1020
acactaatga tagctgatga gctttaaaaa aaaaatcaca aaaaatatct cataatgttt	1080
taggaaagtt tacgaatttg tgttgggctg catttgaagt ggtcctgggc cttggtctgc	1140
gggtgggaca aagcttgtta taatcccagc attttgggag gtggaggcag gacgatcact	1200
tgggcccagg agtttgagac caggctgggc aatatggcgg atcccatctc cacaaaaatt	1260
gcaaagttac cgggatggtg tcaggcgcta tagtccagct gcttgggaga ctgagcagga	1320
agaatgetta getgtaggga cagttgeggg eggatacagt atggeecage caggeaaggt	1380
gacccgtttc aaaaaaacaa cattggccgg cttataggta ataaacacaa acgatgta	1438
<210> 142 <211> 368 <212> DNA <213> Homo sapien	
<pre><400> 142 ggccgaggtt agcatttaat ctactggaat aagctggttg ctgtggctta tacctgtagt</pre>	60
cccagatact tgggaggctg aggcaggaga atcacttgag accagcctgg gcaatatagt	120
gagacctcac ctctaaaaaa gttttttata aatttacttg tctaaagtgg ggaaagggaa	180
attattctgt tttcttattc ttgcttcaag actatgacag atttgaaaga gaattctaaa	240
gcagatttag agaacctgct tctcttctta tctcctaatc cctaaattgt aatttagctc	300
ttatctgtat tgtgttttgt tttggtaaag ggatgatttt tacattgagt tttaaagtag	360

368

aataagaa

<210> 143 <211> 540 <212> DNA <213> Homo sapien

<400> 143						
	caggtactaa	gcatattaca	ccagtgtgtg	tggcttcaaa	tagaagactc	60
tctatctcta	ggtatcgaaa	tggcgaataa	gaattgcagc	tctgaaaata	taatataaac	120
acatttttca	gatagcatta	tacaaataaa	aatacttttg	gatactagaa	tttggggtta	180
gagctgactt	caataagggg	aggaaaaaat	atgtgcaaag	ggaagggagc	tcaatttgga	240
ataatatatt	tcaaagtatg	tggctttgca	ttttaaaat	gctaaccaaa	aaaaatgtga	300
gatagagtga	ccccaaggaa	ctttttacag	ccagcctctg	gataccagat	atagcattta	360
caacttctga	tatgctagac	aaattttcca	tagttttaat	tttcttaaag	acatatagtg	420
agtgaacacc	aacactggga	aggaggtagt	gttaatttga	tcaaatattg	atatttcccc	480
actgattcag	aaagtgcttg	ctctttctct	aggatatctc	aaaacccttc	caatttttct	540
<210> 144 <211> 1195 <212> DNA <213> Homo	s sapien					1
aaagactgca	tctatggccc	accttctcat	aacctcaaac	gcagagtact	cattctaaga	60
aacacatgca	ttcttgcctt	aactgaggac	tgaaatacca	aacccaacca	aaaataacag	120
aacttttaag	tgccctgatg	gaaatgtaca	gtatgagtta	catccatcca	tctatacaca	180
catacagaca	ctcatatgta	tatacaatat	atacatacaa	atgataatag	ctataccaaa	240
aatgtgcata	tttaatacag	ttttaaaaag	ccagtagatc	atggtataat	acaatttatt	300
tccactagtg	aatggcacaa	atggagaaat	gcaaaggagg	tgtttcaagt	acaatgaagt	360
catttttcac	aggtgaaaat	aaatagtatt	attccagtgt	ccaacataat	gtattctaca	420
aaagtttaaa	atgccagaca	tttagtactt	acagaaatag	aaagttacta	aagtctgctt	480
tatggtctca	aaaagacact	catagagttt	tcaatttttg	aaaagggggt	gagaaaaaaa	540
ttggtggaag	caggagggag	tgtccaggat	agtttcttta	gtgtactgaa	tgtttacctg	600
atgtctaggc	aaccaaaaat	catgactatg	ctaaaatgtt	ccatttacca	acaaatcctt	660
gacctagagt	actaagcata	ttacaccagt	gtgtgtggct	tcaaatacaa	gactctctat	720
ctctaggtat	tgaaatggcg	aataagaatt	gcagctctga	aaatataata	taaacacatt	780
tttcagatag	cattatacaa	ataaaaatac	ttttggatac	tagaatttgg	ggttagagct	840
gacttcaata	aggggaggaa	aaaatatgtg	caaagggaag	ggagctcaat	ttggaataat	900
atatttcaaa	gtatgtggct	ttgcattttt	aaaatgctaa	ccaaaaaaaa	tataagatag	960

agtgacccca aggaactttt tacagccagc ctctggatac	c cagatatagc atttacaact 1020
totgatatgo tagacaaatt ttocatagtt ttaatttto	t taaagacata tagtgagtga 1080
acaccaacac tgggaaggag gtagtgttaa tttgatcaa	a tattgatatt tececactga 1140
ttcagaaagt gcttgctctt tctctaggat atctcaaaaa	c ccttccaatt tttct 1195
<210> 145 <211> 787 <212> DNA <213> Homo sapien	
<220> <221> misc_feature <222> (344)(634) <223> a, c, g or t	
<400> 145 acatttagag aaggttaaaa gaaacagtga gaaatgtaaa	a cattcaaaat gataattgaa 60
tototoagtt gtgggaataa ttatoagaga catgoaactg	g aaaatgtete acettteate 120
tttttttctt aattcataaa gttatcttgt agaatttga	t gagaccetee tagteattet 180
caactggggc ggtgctgtca ccgaatggtg tttgagagtg	g ttggggctag ggcacatttt 240
tggttgtcac agcaactggg gtggcatttg ctgcccagtg	g ccaggaatag taacattatg 300
aatgccagga cagtgtgctc agtaaagtct tccatccaa	a aggnnnnnnn nnnnnnnnnn 360
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn	n nnnnnnnnn nnnnnnnnn 420
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn	n nnnnnnnnn nnnnnnnnn 480
nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn	nnnnnnnnn nnnnnnnnn 540
nnnnnnnn nnnnnnnn nnnnnnnnn nnnnnnnnn	n nnnnnnnnn nnnnnnnnn 600
nnnnnnnn nnnnnnnn nnnnnnnn nnnncgaaa	a catcccgtaa aaaaaaacac 660
ccccggttcg cttgtccctt cccccttgtg acaaacttt	t tcaaatccag aaagctgcgg 720
gtaatcatgg gcatagggct gttcctgtgg taaaattgt	t ttccggccaa tccccaaaac 780
aaaaaaa	787
<210> 146 <211> 193 <212> DNA <213> Homo sapien	
<pre><400> 146 tggtcgcggc gaggtacagg ccgcctactt actgccctgc</pre>	c ctgacccagg attcttagga 60
ggggaaagtg ctatccctgg ggccaggcag ggagccacag	g ccactcactg cattctcaga 120

VO 02/068633	PCT/US01/436

attctatcct	accaccccaa	agattgacct	gaaagagact	ccccttcctc	agtcatgtag	180
aagtccttta	cat					193
<210> 147 <211> 661 <212> DNA <213> Homo	o sapien					
<400> 147	aaaaaaaata	agraataaat	testesses	caacatacaa	agtactatta	60
	cgcgcgcatg					120
	tggccctatt					
atatggattt	atacgtaaat	taagaaaaaa	tgtccatttc	attcagttca	tatgttctaa	180
acgtattgct	gatcattctt	aaatgagact	ccaggtttac	attcttacat	aaagtgcagg	240
gatcccgaag	ttagccccaa	agatcccctt	gcctttttca	gacttgctca	aatgttacct	300
tatcagtggg	gcctttcctg	accacacttt	aaaaacctca	acacccaccc	atgggccttg	360
tcctccttcc	cggcttcatt	ttttggcata	tacttatcaa	atgtgaacat	atgatgcatt	420
tgctttattt	atcatcgatc	ttcactcact	ggcatgtaag	ctctgtgagt	gcaaagattt	480
tcatctagct	aatcttccag	aacagtgtct	ggcacagaga	aggagctcta	tgaatatgtg	540
ttgaatgaat	gactatcttt	gccttgtaaa	ccccatgcta	ttggctctct	cttcaggtgg	600
ctgaccactg	caccccaggg	catgctggaa	agacaggagt	cccaagccct	cccttctgct	660
С						661
<210> 148 <211> 189' <212> DNA <213> Home	7 o sapien					
<400> 148 agttttgcgt	tgcgccttgt	tgcttgcgtc	cgtcgtttgt	ttgcctgtgg	cttctgccgt	60
ctttttgtgg	gctcgccgtt	gcccgtgcct	gccgctgtca	cccttggcgc	ccgcctgggt	120
gctggggtcc	gcgattgcag	tcctttgata	gtgttagtga	ggggggctgt	cgtgcgtgtt	180
gtgtatggtc	cgcatggggg	agtcattagc	atgttgagtt	gactgtctcc	cggtccgttt	240
aacgtgcgtc	tggaaggtac	atttttgtaa	atcaagtagt	tggaactaaa	tccaacactg	300
ataattgcca	tttcaaacac	tgatctgaaa	agtgaattag	aagctgtaca	atatcatcat	360
tagaaattct	gcatatggct	aataaatatt	ccttttaaaa	ttaatagagt	ctaaagtctt	420
ccacatgate	tttacagata	gagtgggaga	ctatagaatt	ctgattatat	gatttagatt	480

ttagggatgt	tttaacattt	tcaaaccact	agaaggacat	tgggaacaga	aagtaataga	540
gccaacgtca	cgtggtaatg	atcaatagtc	cagttctacg	aggagaacaa	ttttaagctc	600
ttcactgagg	ccaattctgc	tgtattctaa	ttccttttag	gttcttggtg	gtagagtaat	660
gagctatgac	catctctgga	atactggtga	ggaaaatggc	agcagtaaag	aaatgaggaa	720
aatattacct	aattaatgat	aaagttaggt	ccagtacaga	gtcctgttat	tttctcttt	780
ggccctattt	ggctgctttt	attaatgcat	cagaacttta	tgtataatca	tatggattta	840
tacgtaaatt	aagaaaaaat	gtccatttca	ttcagttcat	atgttctaaa	cgtattgctg	900
atcattctta	aatgagactc	caggtttaca	ttcttacata	aagtgcaggg	atcccgaagt	960
tagccccaaa	gatccccttg	cctttttcag	acttgctcaa	atgttacctt	atcagtgggg	1020
cctttcctga	ccacacttta	aaaacctcaa	cacccaccca	tgggccttgt	cctccttccc	1080
ggcttcattt	tttggcatat	acttatcaaa	tgtgaacata	tgatgcattt	gctttattta	1140
tcatcgatct	tcactcactg	gcatgtaagc	tctgtgagtg	caaagatttt	catctagcta	1200
tcttccagaa	cagtgtctgg	cacagagaag	gagctctatg	aatatgtgtt	gaatgaatga	1260
ctatctttgc	cttgtaaacc	ccatgctatt	ggetetetet	tcaggtggct	gaccactgca	1320
ccccagggca	tgctggaaag	gacaggagtc	ccaagccctc	ccttctgctc	tactccaagc	1380
ttttcttctt	gggtgcattg	actcaagtca	ggtagtactt	ctctatgtct	gagcacagac	1440
gggctgtgtt	catgtatttg	tacatatgtg	tgaatagaca	gagaaactag	tagcatgggt	1500
atgtggggga	atccatcttt	tagggagaga	tttatctact	gtttttgtgt	ttagtctcac	1560
ctcagaccag	gttaagctgg	ccagggctca	tagttttcaa	agagcaacag	aaaaaatctg	1620
tttagcttac	attctaagca	tgttctcttt	atctttcctg	aaagctatcc	acttttaatt	1680
tcatctcata	ctacagagaa	aatattattt	gaaactgata	gctttccaga	aggttactga	1740
aatcacttat	ttttcagtgt	cttcactggc	accattcata	gtagctaaca	ttagccactt	1800
tccgtgggcc	tggtgctgtg	ttaaagtgct	ttacatatat	tatttcttt	aatccgcaca	1860
atgatccttt	caagtaggta	ctgttattat	tcccaat			1897

<210> 149 <211> 254

<212> DNA <213> Homo sapien

<400> 149

ccgaggtacc catctagctt ctggggctcc actgacagct gaggacagtc cacacccgac 60 ctggacccca ccccaccctg ggtctgtcca tctcagtccc ggcctgagcc tctgggccaa 120

agccacctct tctgagcagg	caggcagagc	gaaagactgg	gagcagcaga	caggggcaga	180
gcacggccca tgagcccacc	ctccacttcc	cagattggtc	agagttacat	ggtcaccttc	240
cctgcacctg cacc					254
<210> 150 <211> 1993 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (1822)(1822) <223> a, c, g or t					
<400> 150 aaggatcctt aattaaatta a	atececece	cccggggcgg	cccagcggat	cgtgccgcgg	60
cggccgagcg cagctacagg a					120
caacgagctg cccgagaaca t	tcctgctgga	gctgttcacg	cacgtgcccg	cccgccagct	180
gctgctgaac tgccgcctgg t	tctgcagcct	ctggcgggac	ctcatcgacc	tcgtgaccct	240
ctggaaacgc aagtgcctgc g	gagagggctt	catcactgag	gactgggacc	agecegtgge	300
cgactggaag atcttctact t	tcttacggag	cctgcacagg	aacctcctgc	acaacccgtg	360
cgctgaagag gggttcgagt t	tctggagcct	ggatgtgaat	ggaggcgatg	agtggaaggt	420
ggaggatete tetegagace a	agaggaagga	attccccaat	gaccaggttc	gcagccaggc	480
cagattgcgg gtccaagtac d	cagctgtgcg	ttcagctcct	gtcgtccgcg	cacgcgcctc	540
tggggacett ccagccagac o	ccggcgacca	tccagcagaa	gagcgatgcc	aagtggaggg	600
aggtctccca cacattctcc a	aactacccgc	ccggcgtccg	ctacatctgg	tttcagcacg	660
gcggcgtgga cactcattac t	tgggccggct	ggtacggccc	gagggtcacc	aacagcagca	720
tcaccatcgg gcccccgctg c	ccctgacacc	ccctgagccc	ccatctgctg	aaccctgact	780
ggtaaacaac tgctgtcaga a	aaagggctgg	gcttgggaag	gggaggtgga	ggccaggtgt	840
ccccagacct ctaacccttg	ccctagcag	cctcttcttt	gtggagcctc	tcagtgtggg	900
cagccctcgc atgctggggt c	egggccaget	ctccccgaaa	ggtcttgacc	tgaatgatgg	960
ccggggaage ctgcgtgtgc	ccctttcaga	gacggagcac	ctgagatgtg	ggaggtgcag	1020
catgttcccc tgggcccctc a	agaaagtcga	gcttggaggc	cagcctggat	ctgtctctcc	1080
cttcccctcc tgggaccatt c	ctacctgtgt	tctttgaccc	tcggagcagg	gacaggcaag	1140
acaactggca agcttgcagc t	tgccctgatg	gtgcaggtgc	agggaggtga	ccatgtaact	1200

		ユ ュア			
ctgaccaatc tgggaagtgg	agggtgggct	catgggccgt	getetgeece	tgtctgctgc	1260
tcccagtctt tcgctctgcc	tgcctgctca	gaagaggtgg	ctttggccca	gaggeteagg	1320
ccgggactga gatggacaga	cccagggtgg	ggtggggtcc	aggtcgggtg	tggactgtcc	1380
tcactgtcag tggagcccca	gaagctagat	gggtaccagg	tggggttagg	ttcccagagg	1440
actgagggaa tcctgtacag	gatgtcccag	ggtagatggg	gagcaggatt	gggacctgct	1500
ctgacagctg gacacatgag	ccctggatga	gtatggtagg	gggtttgaag	aatcccctgt	1560
ccacctccca aatccaggcc	cggccccctc	tggcttggag	agcattccaa	gcccccaccc	1620
cacccctaga actgccattc	ccaagacctc	tgtctcccag	ccaaccaccc	ttggaacttg	1680
cctcttgtcc tgctggaaag	atagcagtgt	tctcctgact	tegecetaet	gcatgcagcc	1740
aaataaaagg tgtgcccagt	ctaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1800
aaaaaaaaaa aaaaaaaaaa	anaaaaaaa	aaaacaaaac	tattgcttgt	gtttccgttt	1860
ggattggctt tgcgtatcta	ctttcagtgc	tttcgtcatt	tecttettee	tagctgctta	1920
tcatgcgata ggctacactg	tgeteettte	tcaattttac	ccagttctaa	tgggaatggt	1980
gtgtttagat ttt					1993
<210> 151 <211> 170 <212> DNA <213> Homo sapien					
<400> 151 gcgtggcgcg gccgaggtac	atactcatat	ttataaggac	ttcctcacta	ggagagattc	60
ctgggttcta cagaataaaa	ttcttggcta	cttgtcttat	agctctgaac	agacttattt	120
tcccagagag tatgtttatt	atgtaatagc	gagttgcctg	accccccaaa		170
<210> 152 <211> 1394 <212> DNA <213> Homo sapien					
<400> 152 taggtctgta tagaatacga	ctgaaagatt	ttgactgttg	atttcctttg	aagagattct	60
cctgttctcc tcttcagagg	aaagagagag	gagagaggga	gagaggagag	aaaagagaga	120
agagagggtg acttttcatt	atatgccttt	gtaatattta	atctcctccc	ttttctcacc	180
cccttgagca tgtatgcttt	tcaacaatta	aaaagattaa	aaagctctta	aatagataag	240
aatttcttag agcaactagt	aagtacacta	actgccaatt	gttttgaaat	gtagacattc	300
tgaaaaatca aaatgattgt					

PCT/US01/43612

368

aaagtacata	ctcatattta	taaggacttc	ctcactagga	agattcctgg	gttctacaga	420
ataaaattct	tggctacttg	tcttatagct	ctgaacagac	ttattttccc	agagagtatg	480
tttattatgt	aatagcgagt	tgcctgaccc	cccaaaaagc	tgtgttctat	catattaaaa	540
taaggcaaaa	tgattacttt	cagattaaga	aattgtggga	ctctagatct	tgttatatag	600
tgaagttctt	taaaaaactg	aggtcttggt	tctgaataat	agtgggttta	cattaattta	660
tttagaattg	tcattggggg	tatctctgac	ctatttttat	aaaataatct	caatttttaa	720
aataggagta	aaatgctcat	tggcataagc	cagtaataat	aatttagtat	ttttccaagt	780
atttatagtc	aatgtgttgc	catgaacttt	tttaagggat	gtttttaatt	ttagaagtgc	840
tttaaaaagc	aatatggcat	ctggctctgt	agaagtagaa	aacatggtaa	cttcaatgtg	900
atatatttgc	tttttcccc	tcttaggtct	ttggggtaaa	aaaaatccaa	agtttactca	960
attttatttc	tacatatatt	acctacaaat	tatagaggtg	agacctgctt	gctgcctgtt	1020
catacctgtc	agtgatacta	atacctcccg	tctgtacagt	gtttcatagt	ttccaaaggg	1080
ttctcgcatg	gttcctcact	tgagcctggt	gaggaaatac	ctgtaaacat	gggtagaagt	1140
tttagtccct	tgtaaaactc	tggtataata	tcaaaaccag	gaaattgttc	acagattcta	1200
aggattgggg	aaaagagaaa	aataaacaaa	ttgctcagga	gtagaattga	aaaaaagaaa	1260
aaaaaaaaa	aaaatttggg	ggcgggccga	aatttaaaca	gttgggggg	ccaggtggaa	1320
tggaagggca	ggaaacggga	gatggtgttc	caaaaaagcg	gggcgggtga	aaaagggcgg	1380
gggggtacga	gggt					1394
	o sapien					
	aggatatgga	caagtcagtc	agcattcaca	attaagagaa	aaacatctgt	60
gctttggaaa	atgttcttca	aggatagaga	attgtgccct	atgtccacca	aatttgcatg	120
agatctttat	aagattagac	agccagtgga	taaggcccct	tatctttctt	catggatggc	180
tgaggaaatt	ctccgccttc	cctgacatca	gctgcataac	tgtatttctg	cctcgtggaa	240
ataaagtaga	tgatcaggca	cttgcggttt	gttcttaata	caagaaagac	aatttgattt	300
ttaaaagttt	tgatttgtag	aataatgtaa	gacaatatgt	ttctttctac	tttggttttt	360
_						

ccattcaa

WO 02/068633

143

<210> 154 <211> 864 <212> DNA <213> Homo sapien	
<400> 154 ttgatatatt gcattcttga gcattaggct tctaggtgat ttgttaaact catagcaggt	60
tttagtacac agtgctgttt atgacagaaa aaaattttat cctacctctg aaataattgt	120
actttctgtg attcagataa aaactttata gaaactccct aatgaaaata ttgaagcatt	180
aaccagaaaa tgagtcagct ttttgtttcc aaaatgatgc aacaggaaaa cctttaacta	240
cttataatcc cgtatagtca ccatcaccac aaagtattga aaatctgttt tctcttttac	300
taagtgtctg cacggtcact tatgtatacc caaagccaga aagatatttt tatctcaggg	360
aaattccaga aatggaaaca tttttgtgta atattgattc atttctgtct caccaaagat	420
gtgttttcca cgtagcaaag aacatcagcc ccacgttata gggaacaagc gagtcccaaa	480
tcgtaccatc tgctgagcac tgagaaagga tatggacaag tcagtcagca ttcacaatta	540
agagaaaaac atctgtgctt tggaaaatgt tcttcaagga tagagaattg tgccctatgt	600
ccaccaaatt tgcatgagat ctttataaga ttagacagcc agtggataag gccccttatc	660
tttcttcatg gatggctgag gaaattctcc gccttccctg acatcagctg cataactgta	720
tttctgcctc gtggaaataa agtagatgat caggcacttg cggtttgttc ttaatacaag	780
aaagacaatt tgatttttaa aagttttgat ttgtagaata atgtaagaca atatgtttct	840
ttctactttg gtttttccat tcaa	864
<210> 155 <211> 179 <212> DNA <213> Homo sapien	
<400> 155	60
geggegeggt gttatggagt agegtggtte geggeegagg tacatgttt taaaaaatga etacatgttt cacetggtee tatttttget atttggacea tacttttaag atgaattgat	120
	179
cttacataca tgttaagtct gatttatctc cccacatttt taaacactaa atgaagctt	1.13
<210> 156 <211> 1849 <212> DNA <213> Homo sapien	
<400> 156 gcttgatacg ctcctaagga atttgccctc gagcaagcaa ttcggcacga ggctcgaacc	60
cotgacetea agrapheage Cogocheage thomagair gorgogatta Caggingat	120

PCT/US01/43612

ccactgcacc cg	gccggcat	tatgattttg	tgtactcttg	aaatggttat	ctttgtggat	180
gattttttt tt	ttaagctg	aaacttacct	catgaataac	ttgattaaag	tagtaggtga	240
ttaaaatttc aa	tagaatca	aatgagacaa	aaattttaaa	ctgactcatt	tgagtttcaa	300
ctttacagtc at	tgaccata	aagcacacta	aaaatgtaag	ttatttttaa	atacatctga	360
aataaaaata ct	tactaaaa	aggaagaagc	cgaagatgta	tatttagacc	agcacacaat	420
tttgatttca at	tagcctta	ttctaatatt	tagcttttag	atctttcata	cacattttca	480
cgtactttgc aa	ttgagacc	agaaagactt	gtaggtcttt	ctgcagaatg	agtgggtcct	540
tgcaaagtga gt	gggaaact	tactcctaga	tcagaaatgt	ttgcctctct	gagtaaaatg	600
tttctttcag at	gagccata	gaggggcac	cttttactca	acttttcttt	gttttgaaac	660
tttgtttccc at	actgtttt	cagccttttg	tttataatta	gaaattgtga	gaagcttcat	720
ttagtgttta aa	aatgtggg	gagataaatc	agacttaaca	tgtatgtaag	atcaattcac	780
ttaaaagtat gg	tccaaata	gcaaaaatag	gaccaggtga	aacatgtagt	cattttttaa	840
aaacatgtac tt	ggtctttt	gtgtgtgtct	gttttattcc	attagaataa	atgtgtcctt	900
gatgtaaatg ca	aagcattt	cttcctgatt	aaattgtaga	tgtagacttt	acaatataat	960
tcaataataa aa	agtaatta	acctctaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaacac	1020
ttgttgggcg cg	gcgcgggc	ccggagaaaa	gtttttaaaa	cccttcgtat	ggcgcgagga	1080
ggggccccag gt	aggggaac	ggaacacagg	ggccacggcg	gtgtagcaag	agggaaaacc	1140
cggtggcgaa ga	aaaagggc	gtggattctc	acccaataaa	aagcgcgccg	ggggggaacc	1200
ggaaggcgtt tg	ggaaacaa	gactctcaga	aagagggaga	ggcgtcagcg	gaggcgcaca	1260
ataaaggggg ga	ctcctcac	aacaccgggg	aggagetece	gaagaggaga ,	cgccccgaaa	1320
tagacaacaa tt	acagcccc	cgggcgcgcc	gggggcagat	accagaagac	gaagcacgag	1380
acgaagtagc ac	aagaagaa	aggacagaca	gaagcgagac	gagaggacag	aagggaggag	1440
agagaggcgg ag	gcgagggc	gaaaacaagg	ggacgacagc	aacgagaaga	gaaagaaaaa	1500
cacgacggag ga	acggggcg	gaaaaaggac	gagaaagccg	agagcaggcg	ggcgggggca	1560
cacgggggaa ac	gaagagca	aggaaagaag	acaacaggag	aggagggag	ggaagcgagc	1620
gaagagcgta ga	gacgccga	gcaacaagaa	gctagagaca	gcagtagaca	cggacagaca	1680
gacacggtga tg	gtagccgg	ggcggggga	catcttgggc	gcgaatgctt	cgccggggaa	1740
cagacagcgc ag	ggcgagca	gagcgaggaa	acgcagggaa	cgacgcgaca	gacaggaggt	1800
cagaagaagg ga	agatgagt	gcagcgggaa	gaccaacgga	gaaggagag		1849

WO 02/068633

-

<210> 157 <211> 903 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (139)..(139) <223> a, c, g or t <400> 157 ttgtttgttt ttttctttt tttacatttt tttttttttg tggacgaaac attcacacag 60 aaacagctag gaccagatta cgccagcttc atgagacctc tcctatctgg gcacgttgag 120 ttggctgact ctgggagcnc aggctgttgc ttcccagtct ggtggtgaat cctccatggt 180 ctggttgagt ccttttcaac tagtttttgt gttgtttttt gaacctcaag tcactgactc 240 cttcagcagt ggtttaagga agtatcttaa tttttaaatc acatgttgac catgcagcca 300 360 attgttggcc cgtagagtga acaaaaccag accacaagat tgagggcttg gagctggaga aagggaaaag aaaaagcagg ctgtgactct ctggggaaag aactgaaaga tgacactagg 420 aattotcaaa gogagaggaa aaggaaaggo ootttttogg aaatgacoto tgataaacac 480 accetecagg gttacacetg ceaetgtgte ttecaeggae agacaagetg caetttagea 540 gtcctgaata cctagagact tccttaacag agagtgggga atctcgtcat cttgcatggg 600 gatgggagct cgaagggaga acctcagcct tccagaaggt tatataaaac cagttgagaa 660 720 tttccctaag aatggagcag tggacaaaca attgttattg taatccaaat acatgagtct acctacataa tggagaaatg ctaacttaca gaaagcgtca ggcttggtgt tctcgaactg 780 gttttaattt ccttttataa aattacagcg aattatacaa ttacattgat taattgtaat 840 900 cagttctgag tctagataac aaaacacaac acacacaaac aaacaaacaa cctctcctca 903 aac <210> 158 <211> 368 <212> DNA <213> Homo sapien <400> 158 gcggcgcccg ggcaggtaca gtggcaacag cattagacta agtggaacat cccagcaggc 60 tgctttagaa tccgctcatt tgactagata cgatgtaatt ggctgtcttt aaaaaacgcg 120 cacacacaca caatctgata ggcatatctc atgcccattc aatatggaat gttcttcgct 180 tgctgaattt aagcctgtat tttaaggttt gtggttcctc ggccacaatg ggtgatgtca 240

PCT/US01/43612

WO 02/068633

146

ctgatagaac	gaagctgagt	ttccaagggt	tggggctgtg	caagagtaaa	cactagagct	300
tgagttgtta	tccagctggc	aagcacggaa	gtctttgaag	aatgtaatgt	aaaaagggaa	360
aagaatgt						368
<210> 159 <211> 1548	3					
<212> DNA <213> Homo	sapien					
<400> 159						
gtcgcggccg	aggtacatag	acacaggaca	attaataatt	tggaaaacaa	aagacttact	60
tatctccata	tctgctaatt	gtctcccaat	ctccttaaaa	tgcacttatt	agcaatcatt	120
tttcaccacc	catttaccca	aacaacagga	caaagactca	atttcctatt	ttatacaaaa	180
catgataagt	cagccaagta	ggttctggac	cggacaacaa	gggagatatt	aaattatagt	240
atttatataa	aagtggccca	ttcgtgtgat	acaaaacgtc	tcattatgtg	gaccaagaaa	300
catataaaat	atatcaatat	ataagttgga	aaaaataaca	aaaaagcaca	cacattaata	360
aataatcata	ttacacacac	ccacatctat	attctcttat	atacacgcac	acacaactgt	420
gtgtcttaac	aacaaactct	ccattttata	aaatatctca	ctgtatctct	ttataaccac	480
aagaaagatg	gaaacacaat	aaacaccaaa	aacaaagaca	cacagaaatc	atttgtgcgc	540
ctatatataa	taatcacact	cagtatattt	aaccaacact	tccccccca	tatcatctaa	600
tttatgtagt	actctataat	gtatcatcta	gtatattatg	tagaaaagtg	gcgccccata	660
tattatacag	ccgggcgccc	acgtgtatat	caaacaacag	ctgttgtcgt	tctgcccggg	720
gagcacaaaa	ggtgtataac	aacaaatgat	tatattcttc	acccgaggaa	gaagataatg	780
agaagggagt	aataataacc	agcgaagaag	gggcgggggg	acataataac	accgctaatc	840
aacaccaaag	aacgcgggcc	aaacgaaaca	acaacacaaa	cgagatgttg	tgccacacct	900
cagtaacacc	tacatgtcag	cgcgcagcga	caaaacaagg	gcatgaccag	aagaaacctg	960
aaaaaactgc	ggcaaaggga	accacaccac	cgacacacac	accccaatga	ggaaagagaa	1020
taaaaaacac	atagttgagg	acaccaaaaa	aaggacagga	ggaaaaacac	actgtggggt	1080
gtgcaaaaca	cacgttgtcg	taacaacacc	gcaggagatc	acaaaagaaa	acaccccaag	1140
acacaacaaa	atataagcga	acaccacaac	aacacaacaa	cgaaacaaaa	caagaaaaaa	1200
caaaacacac	aaccgaaaca	aacaaccaaa	acgaccacca	gaagcacaca	acacgagacc	1260
aggacaacac	cagacgcaga	cagacacgag	atgatgcaca	cgcgcatcgg	ccgagccagc	1320
aaacggcacg	ccaacaagca	agacggccag	cggagaacac	gagcatgtcg	aagtaggaca	1380

PCT/US01/43612

PCT/US01/43612

gcccgccaag	acgacaaaaa	accgaggaga	agagaggaag	aacacagaaa	ccgcgaggaa	1440
aggacaacgc	aggaggcgag	ataacggcgg	acaagcgcaa	gaagggagca	gagaagacag	1500
aaggcaagac	acgaaacaaa	aacacacaac	gaacaaacac	gcgagagg		1548
<210> 160 <211> 552 <212> DNA <213> Home	o sapien					
<400> 160 agaagactga	ctcatatagg	gcgatggtca	ctagatcatg	ccgagcggcg	ccattgtgat	60
ggatctagct	ttggctactg	ccggtagtgg	acaatatggc	acatggaaat	taaaaagtcc	120
ataaacgtgc	cctcctaaca	cgagaataag	aaaggtggct	gaagtagata	atttcagtga	180
cggaggggat	gaaatatttt	ttggttaatt	gatgtaatga	tgactcacta	tgccttattt	240
cctattttta	aaaacacaga	atgagcaagt	cattcctgaa	caaaaattta	ctgtgtgtat	300
aacatacacc	tcaaaatgaa	ttttaaggga	acatattact	aatcaaataa	cacagtttat	360
gctttttcaa	tttccacaaa	ttgttaatta	tgatacttaa	gggaaccctt	acaatatata	420
acaagtcatt	tcaatattat	tcatcatcct	taacttctga	aagtttggtt	tatgttatct	480
tatctagaaa	gaaaactact	tacaaatctc	attttcccac	aaaattaatt	caacatccaa	540
ccttaaaaat	aa					552
<210> 161 <211> 393 <212> DNA <213> Hom	7					
<400> 161 tgtagctggg		tacaccacca	cacccagcta	tttttttgta	tttttgttag	60
agacaggttt	ctccatgttg	gtcaggctgg	tctcgaactc	ccgacctcag	gtgatccgcc	120
cacctcggcc	tcccaaagtg	atgattttat	ttttatttt	aattgtatta	atctgcatct	180
agataatgac	tttgtgaagg	gtgtgtgttg	tgtgcaaaac	ttaaggtatt	ggttgagagt	240
taaatacatt	atttttataa	tatgttgggt	atagtctagt	tactaatgat	tttttttaag	300
tacttttata	aaaagttcat	ttttaaaatt	gtttgtttt	aaaagccaat	atacgttgca	360
gaattaggaa	cagtatttat	atttatttac	acaagacatt	gtgccatagc	atcctagtaa	420
aacaccttca	tgaatgagta	atgttatctc	ccagaattac	attaaaatta	tttctaaaaa	480
gtagcaaagt	cattaccttt	tgcttttaat	gacccacacc	tcaccagctc	ctggtctttt	540

ct	tcactgtt	gcccttattt	tgaggcaatt	tttcttaaaa	tatgactttt	atgcaccaca	600
tt	tagtagag	gcagtgacat	cagtgatctc	agtacccatc	agctgtcccc	ctcctctgcc	660
ct	tcttcatc	tcttctacct	tgtgaccatt	tcccttaccg	gttcatgttc	tcctttatct	720
ct	gcttttct	ttcttagcca	ggatacttcc	ctcacaactc	tcactcccaa	attcttttag	780
at	atacattt	ttctggatat	tggctgctga	aatctgaagc	tctggtaaag	ttcctagtat	840
ca	gagatcaa	tcctggagga	ggcctagttc	actattagat	tacaaagact	cctcacaaag	900
ta	aaggaaaa	tcaccttcaa	aaccacaacc	ctttatgttg	tcaagtctaa	tatgagtgtt	960
tt	tacgaagt	atttctttct	acccattgtt	caagaatgta	aatgtaaaaa	aaaatacaag	1020
ag	agttgggt	agatatgcat	gcttgaggaa	acttgctttt	actgttttcc	tacttgtatc	1080
cc	cagttcag	ttgaatttac	aaggacctac	aagatggtca	tgtttgtctt	ggtatgtgct	1140
ac	cccaattt	tagtgtttct	ttctttattt	taaatcagta	attattcagt	tgattgttta	1200
ta	ctatataa	tgaagtaaca	aaaacatttt	ggtttgtatg	ttttaagtaa	cagttgtgca	1260
aa	ttcctctt	gtttgttagg	tgctcccttt	gaatattttg	tgaactgtgt	cagagggaga	1320
99	ggtggtgg	ctaggaagag	ggtcagaaag	aagctagagg	gaggtcagga	gaagggtaac	1380
ag	ggaggatg	caaagcagac	atctaccctg	gtcaccccag	gatcaggata	tctgtccttg	1440
tt	tcatgttg	aattcaaaaa	ttggatctca	cttaggcttt	gaaggtgaca	gccatctctg	1500
at	agctgagc	ataagtaaag	aaaggtggag	tgccgatgca	gaaaggaaaa	tattcagctt	1560
tc	ctctctta	gatcgcactt	tgaagatggc	cttttggaga	caatctgaca	ggttaaaaca	1620
gg	aactgttg	gaattattct	agctgtaact	acctattggc	tatgtgttga	ttgatcctag	1680
aa	agaaaaaa	taatttttca	ttttagatct	tgattgaatt	taagatgtat	ttatatgcct	1740
ac	aaaaggtc	tgtcttgtaa	ctgttgtata	aaataaacct	aatctatggt	ttcattttta	1800
at	ctaaaaaa	agttgtgcct	taacaatagg	gcattgtatg	ttaataaggg	aaaacaacct	1860
tt	ttagtaga	tgggggaaaa	taggaacttt	ttgccattaa	aacttaagtt	cttttgatgt	1920
tt	ttaatatt	atagttgggg	gagattcatt	aaaattaaat	tgaaataaaa	ttatttttgc	1980
at	aacctagc	atttacaact	aaagtatgtt	ttttataaga	actggcatct	tgatgtatat	2040
ag	gtctgaaa	taatatttca	tcttttgatt	tttaatttta	ataatattag	accaggatag	51 00
at	cacagttt	tacaaatctt	agttttaaat	aaattatttc	agtgtgctgt	tagtcctcta	2160
ca	gtcatttt	ggtttaaaaa	gtgactattt	atttatggta	gcatatcaat	aatttattaa	2220
tg	ttaaaaaa	tactgtgtat	gacattacaa	accagaacag	ttcctggggg	agaggattct	2280
aa	ttgattgg	cagttctgag	agggcaagaa	gaatggaact	ttatacttca	aaaggaggtt '	2340

ttggttttac caggtactgc	ttatgtaaat	cgtttatttt	tatttcatca	aagcctggca	2400
agtatatgca ttccaattta	ccattggcaa	agctttattt	atttttaagg	ttggatgttg	2460
aattaatttt gtgggaaaat	gagatttgta	agtagttttc	tttctagata	agataacata	2520
aaccaaactt tcagaagtta	aggatgatga	ataatattga	aatgacttgt	tatatattgt	2580
aagggttccc ttaagtatca	taattaacaa	tttgtggaaa	ttgaaaaagc	ataaactgtg	2640
ttatttgatt agtaatatgt	tcccttaaaa	ttcattttga	ggtgtatgtt	atacacacag	2700
taaatttttg ttcaggaatg	acttgctcat	tctgtgtttt	taaaaatagg	aaataaggca	2760
tagtgagtca tcattacatc	aattaaccaa	aaaatatttc	atcccctccg	tcactgaaat	2820
tatctatttc agccaccttt	cttattctcg	tgttaggagg	gcacgtttat	ggacttttta	2880
atttccatgt gccatattgt	ccactaccgg	cagtagccaa	agctagctgt	ttcagtccca	2940
cagaagagac agtgctctgc	catgatgaca	gggcactgct	agggctggtt	tttcttgttt	3000
ttcccttttg gcagtgtgga	cttcaggaac	tagatgtata	tgcacaaggg	attgagttta	3060
cactaaaact aggaaatgga	gttttcaatc	tatgttcttg	cctcttcata	cttttattta	3120
ttttttgtca tcctgcctta	tactgggcta	acaatgagat	aaaataaaaa	tacctttgaa	3180
tactcttttc cctttcatgc	atttaaagcc	atggaggaac	tagaccatta	gctgttgccg	3240
tcacatgctt agacaccagt	ttacttagcg	tgttatgacc	ttcctcaccc	atactaccaa	3300
atttaaatgg gtcccgactt	caccctctgg	aaggaagtaa	actcttctct	ccccatggtt	3360
tcagagcagt ttttacctgc	aagcaccatc	tctgtatgtg	ctcttactag	attatacagt	3420
tcttgagagg gattgcatct	tggtgttttt	gtatttccac	ctcaccccca	gcacatagcc	3480
cagtctcttg cacaaattaa	gtacttaatg	tgtgttgagc	taaattgaat	aaaggattat	3540
tagcattagc atattttgtg	ccttggttgt	ataagctggt	tgtttgtttt	gttacctttg	3600
caaatattta tgattatcac	cccccacat	actaaattgt	ttttaaaagt	tttgcctttc	3660
cttcagatac taccccaggc	aatttgctgt	agataatgtg	attgcttcca	atgacataat	3720
tatcccaaac tctctgcccc	ggatatactt	tgccaaacga	aatttgaatt	ctctgaataa	3780
attggtcatg tctaaaaaaa	aaaaaaaaa	aaaattgggg	gcgggcgaaa	aattttaaac	3840
atgtgggggg gggcaatgaa	agaaggcagg	tccaagacgg	ggaaggggt	cacaaaaagc	3900
ggggggttga aaaggggggg	tggtataggt	aacgggg			3937

<210> 162 <211> 852 <212> DNA

<213> Homo	sapien					
<400> 162 cggccgcccg	ggcaggtacc	accatgccca	gctaattttt	atatttttag	tagagatggg	60
gttttgccat	attggccagg	ctggtctcaa	actcctgaac	tcaagtgata	acacccacct	120
tggcctccca	aagtgctggg	attacaggtg	tgagccacca	cactgggcca	atgcttaata	180
ttttaatgta	tctcaacaat	aaaaccaaga	agaaacaaag	ccttttgact	tgttagaatg	240
tattaagtag	tattttaaag	aaactttata	gttgtgacat	tgaaagactg	ttggggtggg	300
gggaggaaaa	ttttacttt	ccatcttaat	gtaaccttat	gctattctgt	atttttactg	360
tatattgctt	ttacaataaa	tataaaatga	aaatgtttat	gttgacaaaa	agaacaaaaa	420
acaacaaaca	acaaaaaaca	aaaggctggg	ggtgtcacac	ctgtgggcca	aaagctggtt	480
tccctggggg	tggacatttg	gttttatccc	ggccccacaa	ttccccaccc	aaatattacc	540
gggagacaac	gggaagaacg	acacaacaca	caaaaagaca	caacacacaa	aaccaccaca	600
cagcaacgcc	cgctcatcgg	aggcagcgca	caagacgaga	gcagaaggaa	aagggacaac	660
aaaaaaagc	aagtagcacg	atcacaacac	agagccacga	caagaagaga	aggacaatga	720
cgaaaacgag	cagcagcaca	agacacagac	aagacaaaag	caagaaagac	agaacacgac	780
agaagacaac	aagagacgaa	acaaccaaaa	agccacacaa	aaaagcgagc	gaaaacaaga	840
accaactaac	ac					852
	sapien					
<400> 163 caccgatgat	taaccagtac	agacgctgtt	ccactagatc	atggcgagcg	gttcgcagtg	60
ttatagtagt	gcgcggctga	catacttcat	ctgcttttta	ttgttgttgt	tgtgttttt	120
aaccaaaatg	gcatttgttt	ggctgtcatt	gtcgagtata	tatttattgt	gttttacaaa	180
catgagtata	tatgtatgta	tatgtataaa	ccaaacttat	atatatagaa	gtcaagggca	240
tgtatactag	atattttaaa	gagttattta	tcaagggaaa	aagatgtgtg	ttataaagta	300
aacagagtct	atattttcta	tataatgtag	atagtcaaac	atagcttata	aattatagga	360
ggttttggtt	ttctttttta	ttattaaagg	aaaaaaagaa	gaaaaaaaaa	gacaatgaat	420
gcaactgttc	ttagtgtttt	taaggccaaa	ctactgtgga	agctgggagg	cggccctccc	480
tgcgggcctc	cagcagccct	gtgcctgccg	ctaggagctc	cagagctgat	gcccgttgtg	540
atctctgcga	tgctcgatgc	tcggagccag	cggtcagcat	cactcagcca	gctggcctgt	600

WO 02/068633 PCT/US01/43612

gccgctctga cgtggcttcc agctgttctc cgcaatttgc attggtggga taaaggaatg	660
aaaaggataa ataaagattt aaaag	685
<210> 164 <211> 2396 <212> DNA <213> Homo sapien	
<400> 164 cggccactga attcccttgc ggccgcagaa tttttttttt	60
aaatctttat ttatcctttt cattccttta tcccaccaat gcaaattgcg gagaacagct	120
ggaagccacg tcagagcggc acaggccagc tggctgagtg atgctgaccg ctggctccga	180
gcatcgagca tcgcagagat cacaacgggc atcagctctg gagctcctag cggcaggcac	240
agggctgctg gaggcccgca gggagggccg cctcccagct tccacagtag tttggcctta	300
aaaacactaa gaacagttgc attcattgtc ttttttttc ttctttttt cctttaataa	360
taaaaaagaa aaccaaaacc tcctataatt tataagctat gtttgactat ctacattata	420
tagaaaatat agactetgtt tactttataa cacacatett ttteeettga taaataaete	480
tttaaaatat ctagtataca tgccttgact tcttatatat ataagtttgg ttttatacat	540
atacatacat atatactcat gtttgtaaaa cacaataaat atatactcga caatgacagc	600
caaacaaatg ccattttggt taaaaaacac aacaacaaca ataaaaagca gatgaagtac	660
tataaaagca ccaggcagca gacagaaagc cacatttgct agaaacttct ccctcccctg	720
ggcaaggcac agggcagaat actaaatacg tccaggtgcc tgaaagagaa ggaaggcagc	780
aaaggaatgg gtcagatcac aagcttttgt tttgtttctt agcctgggat tagaccaaga	840
atcacaagta agtcattgcg tttataagga aaaaccaagg ggctcattca acagcttagc	900
ccttgtggtg gctgcagggg acagtagaga cctggaaggg gaaggagag gacagtgacc	960
tggtgacaac tccatgacta ttgtctagcc cctgcctaca tctgcccagg caagcttttg	1020
attgccacac taagcatcaa gccattgcat ataatatgtt cttttcatga ctctattcac	1080
tgctggtgta aacagaaagg agtattcagt agtgcaacac tttgggaggc tgaatgagag	1140
ccacagtttc ggtggccccc tcaagggctc cagcaaatgg ggactgtgac gtgggggaga	1200
aaaaggccag tgggccattg ccttccactc ctgagacagt accggcttca cctccagatg	1260
ccactgggaa cactgagccc atcacctttt aaagaagcgc aggaggtctt gactcttcct	1320
atgagaagte ccagaagece cagteagtet gggtgggggg teecetgaaa etcagageae	1380
getecagetg etggeteetg tgeetggegg ggagaaggtg gagaggeggg catgeetgee	1440

152

gctgagaaag acataataac gctccagctg cacacccctt ttcttccacg gccctcctct 1500 ttctccccaa aaggaaacta aaatgtgggg ttctgatcat tgatttttaa acaagctccc 1560 caatgtcatg gcctctgctc tgtaaactcc aaggctctga tggccaaaaa cgtaggcggt 1620 1680 atgcaggtgg agggtgagcc aagtagacca agcctcagga aatcccagag gtgaagattt 1740 gatgcacatc ccccatcctt gccaaataaa atacaagtta gaggtcattg ttcacattac 1800 agtcacaatg ggacatttta aacagctcgt tttctgagta cattcaagac ataattgaat 1860 ttattttaaa aaatggattt cccggctggg cacggtggat cacgcctgtc atcccagcac 1920 tttgggaggt caaggaagcc ccttcttcac aggacatcct ggtgttcctc actgggcagg 1980 aggagatega agccatgage aagaegtgee gagacattge aaagcacete ceagaegget 2040 gccctgcgat gctggtcctt cctctgtacg cctccctgcc ctatgcacag cagctccgag 2100 tcttccaagg ggccccaaag ggctatcgca aagtgatcat ttcaaccaac atcgctgaaa 2160 cctccataac cattacagga ataaaatatg tagttgacac gggcatggtt aaagcaaaga 2220 agtataaccc tgacagtggt cttgaggtgt tagcagtgca gcgggtatcg aagacgcagg 2280 cttggcagcg cacagggagg gctggcagag aggacagtgg catctgctac cggctctaca 2340 cggaggacga gtttgagaag tttgataaga tgaccgtgcc agagatccag aggtag 2396

```
<210> 165
```

<400> 165

Met Arg Tyr Leu Pro Gly Leu Ser Ala Arg Ile 1 5 10

<210> 166

<211> 45

<212> PRT

<213> Homo sapien

<400> 166

Met Ser Ile Pro Arg Ala Glu Ile Ser Leu Leu Glu Ser Phe Gln Leu 1 5 10 15

Thr Ser Thr Val Ala Thr Ser Glu Ser His Lys Ser Asn Gly Ser Cys 20 25 30

<211> 11

<212> PRT

<213> Homo sapien

153

Arg Lys Pro His Leu Leu His Cys Pro Arg Ile Asn Gln

<210> 167 <211> 37 <212> PRT <213> Homo sapien

<400> 167

Met Ile Leu Gly Ser Asp Asn Gly Ile Arg Arg Ile Lys Tyr Leu Gly

Ile Gln Tyr Tyr Ala Cys Ser Phe Phe Gln Ile Val His Gly Gly 25

Gly Cys Val Ser Gly

<210> 168 <211> 82 <212> PRT <213> Homo sapien

<400> 168

Ser Leu Ser Val Ala Gln Ala Arg Val Gln Trp Arg Asp Pro Gly Ser 5

Leu Gln Pro Leu Pro Pro Gly Phe Lys Arg Phe Leu Ser Leu Ser Leu 25 . 30

Pro Ser Ser Ala Gly Tyr Arg Arg Ala Pro Pro Pro Cys Pro Ala Leu 40

Leu Tyr Phe Ala Val Glu Thr Gly Phe His His Val Gly Gln Ala Gly

Leu Glu Leu Leu Thr Ser Gly Asn Pro Ala Pro Pro Arg Pro Pro Lys 75 70

Val Leu

<210> 169

<211> 103

<212> PRT <213> Homo sapien

<400> 169

WO 02/068633

Met Ala Ile Phe Ser Ala Leu Ser Gln Leu Leu Glu His Gly Leu Asp 1 5 10 15

PCT/US01/43612

Leu Glu Thr Ser Asn Lys Asp Phe Thr Ser Ile Pro Ala Ala Cys Trp
20 25 30

Trp Val Ile Ile Ser Met Thr Thr Val Gly Tyr Gly Asp Met Tyr Pro 35 40 45

Ile Val Leu Leu Ala Leu Pro Ile Thr Phe Ile Tyr His Ser Phe Val 65 70 75 80

Gln Cys Tyr His Glu Leu Lys Phe Arg Ser Ala Arg Tyr Ser Arg Ser 85 90 95

Leu Ser Thr Glu Phe Leu Asn 100

<210> 170

<211> 131

<212> PRT

<213> Homo sapien

<400> 170

Arg Thr Ala Arg His Asp Tyr Ala Ser Cys Arg His Leu Met Val Phe 1 5 10 15

Ser Thr Arg Leu Thr Leu Lys Arg Cys Tyr Arg Glu Met Val Met Leu 20 25 30

Leu Val Phe Ile Cys Val Ala Met Ala Ile Phe Ser Ala Leu Ser Gln 35 40 45

Leu Leu Glu His Gly Leu Asp Leu Glu Thr Ser Asn Lys Asp Phe Thr 50 55 60

Ser Ile Pro Ala Ala Leu Leu Trp Val Ile Ile Ser Met Thr Thr Val 65 70 75 80

Gly Tyr Gly Asp Met Tyr Pro Ile Thr Val Pro Gly Arg Ile Leu Gly

PCT/US01/43612 WO 02/068633

155

85 90 95

Gly Val Cys Val Val Ser Gly Ile Val Leu Leu Ala Leu Pro Ile Thr 100 105

Phe Ile Tyr His Ser Phe Val Gln Cys Tyr His Glu Leu Lys Phe Arg 120

Ser Ala Arg .130

<210> 171

<211> 23

<212> PRT

<213> Homo sapien

<400> 171

Met Val Ala His Cys Ser Leu Pro Val Pro Val Thr Leu Pro Asn Cys

Pro Val Ala Cys Arg Leu Ala 20

<210> 172 <211> 57 <212> PRT <213> Homo sapien

<400> 172

Met Asn Gly Arg Gly Leu Ala Arg Gln Gly Cys Glu Ser Gly Asn Ala 5 10

Phe Phe Thr Pro Met Asn Phe Cys Leu Ile Leu Thr Thr Glu Gln Glu 25

Cys Ser Glu Thr Glu Val Gly Val Thr Asn Ile His Phe Pro Phe Ser 35 40

Ser Cys Ser Asn Gln Tyr Phe Lys Lys

<210> 173

<211> 50

<212> PRT

<213> Homo sapien

<400> 173

Met Ser Gly Glu Arg Thr Asp Tyr Ala Pro Leu Asn Asn Lys Leu Cys

PCT/US01/43612

Ser Arg Val Arg Ala Val Ser Ser Glu Ala Leu Leu Thr Glu Thr Ala

Thr Phe Lys Pro Asn Gln Arg Lys Tyr Leu Trp Asn Ser Leu Pro Gln

Phe Gly 50

WO 02/068633

<210> 174

<211> 31

<212> PRT

<213> Homo sapien

<400> 174

Met Val Thr Asn Leu Leu Thr Ala Gln Cys Gly Trp Met Val Ala Ala 10

Arg Cys Phe Cys Cys Leu Asn Leu Leu Asn Cys Leu Ile Phe Ser 25 20

<210> 175

<211> 456

<212> PRT

<213> Homo sapien

<400> 175

Met Glu Pro Arg Cys Pro Pro Pro Cys Gly Cys Cys Glu Arg Leu Val

Leu Asn Val Ala Gly Leu Arg Phe Glu Thr Arg Ala Arg Thr Leu Gly 20 25

Arg Phe Pro Asp Thr Leu Leu Gly Asp Pro Ala Arg Arg Gly Arg Phe 35 40

Tyr Asp Asp Ala Arg Arg Glu Tyr Phe Phe Asp Arg His Arg Pro Ser

Phe Asp Ala Val Leu Tyr Tyr Gln Ser Gly Gly Arg Leu Arg Arg

157

Pro Ala His Val Pro Leu Asp Val Phe Leu Glu Glu Val Ala Phe Tyr 90 Gly Leu Gly Ala Ala Ala Leu Ala Arg Leu Arg Glu Asp Glu Gly Cys 105 Pro Val Pro Pro Glu Arg Pro Leu Pro Arg Arg Ala Phe Ala Arg Gln 120 Leu Trp Leu Leu Phe Glu Phe Pro Glu Ser Ser Gln Ala Ala Arg Val 135 Leu Ala Val Val Ser Val Leu Val Ile Leu Val Ser Ile Val Val Phe Cys Leu Glu Thr Leu Pro Asp Phe Arg Asp Asp Asp Gly Thr Gly Leu Ala Ala Ala Ala Ala Gly Pro Phe Pro Ala Pro Leu Asn Gly 180 185 Ser Ser Gln Met Pro Gly Asn Pro Pro Arg Leu Pro Phe Asn Asp Pro Phe Phe Val Val Glu Thr Leu Cys Ile Cys Trp Phe Ser Phe Glu Leu Leu Val Arg Leu Leu Val Cys Pro Ser Lys Ala Ile Phe Phe Lys Asn Val Met Asn Leu Ile Asp Phe Val Ala Ile Leu Pro Tyr Phe Val Ala Leu Gly Thr Glu Leu Ala Arg Gln Arg Gly Val Gly Gln Gln Ala Met 265 Ser Leu Ala Ile Leu Arg Val Ile Arg Leu Val Arg Val Phe Arg Ile Phe Lys Leu Ser Arg His Ser Lys Gly Leu Gln Ile Leu Gly Gln Thr

Leu Arg Ala Ser Met Arg Glu Leu Gly Leu Leu Ile Phe Phe Leu Phe

158

Ile Gly Val Val Leu Phe Ser Ser Ala Val Tyr Phe Ala Glu Val Asp 330

Arg Val Asp Ser His Phe Thr Ser Ile Pro Glu Ser Phe Trp Trp Ala 340 345 350

Val Val Thr Met Thr Thr Val Gly Tyr Gly Asp Met Ala Pro Val Thr 355 360

Val Gly Gly Lys Ile Val Gly Ser Leu Cys Ala Ile Ala Gly Val Leu 370 375

Thr Ile Ser Leu Pro Val Pro Val Ile Val Ser Asn Phe Ser Tyr Phe 385 390 395 400

Tyr His Arg Glu Thr Glu Gly Glu Glu Ala Gly Met Phe Ser His Val 405 410

Asp Met Gln Pro Cys Gly Pro Leu Glu Gly Lys Ala Asn Gly Gly Leu 430 420 425

Val Asp Gly Glu Val Pro Glu Leu Pro Pro Pro Leu Trp Ala Pro Pro 435 440 445

Gly Lys His Leu Val Thr Glu Val 450 455

<210> 176

<211> 28 <212> PRT <213> Homo sapien

<400> 176

Met Ser Tyr Asn Ser Lys Leu Glu Ser Ile Arg Leu Lys Arg Val Ser

Met Lys Thr Ile Pro Lys Ile Pro Phe Thr Gln Asn 20

<210> 177

<211> 91

<212> PRT

<213> Homo sapien

<400> 177

159

Met Ala Leu Gly Ser Met Tyr Leu Val Leu Thr Leu Ile Val Ala Glu

1 10 15

Val Leu Arg Gly Ala Glu Pro Cys Cys Gly Pro Leu Lys Tyr Arg Val 20 25 30

Leu Arg Pro Cys Pro Leu Pro Val His Cys Ala Pro Pro His His Gln 35 40 45

Pro Ser Arg Gly Asn Pro Val Ala Cys Leu Pro Thr Tyr Lys Val Val 50 55 60

Tyr Gln Ala Ala Val Leu Ala Thr Ala Phe Lys Phe Gln Cys Asp Leu 65 70 75 80

Pro Gly Arg Ser Ile Thr Leu Arg Arg Ser Ala 85 90

<210> 178

<211> 54

<212> PRT

<213> Homo sapien

<400> 178

Met Lys Phe Ser Ser Ala Phe Val Gln Ser Lys Pro Leu Ser Ser Cys

1 10 15

Arg Ala Glu Thr Leu Tyr Met Lys Thr Val Ser Glu Leu Val Leu Ala 20 25 30

Ser Ile His Glu Asn Cys Leu Ser Cys Met Leu Ala Lys Thr Ser Ser 35 40 45

Glu Thr Lys Lys Leu Lys 50

<210> 179

<211> 88

<212> PRT

<213> Homo sapien

<400> 179

Gly Arg Val Arg Phe Val Val Glu Leu Ala Asp Pro Lys Leu Glu Val 1 5 10 15

Lys Trp Tyr Lys Asn Gly Gln Glu Ile Arg Pro Ser Thr Lys Tyr Ile

PCT/US01/43612 WO 02/068633

160

30 20 25

Phe Glu His Lys Gly Cys Gln Arg Ile Leu Phe Ile Asn Asn Cys Gln 40

Met Thr Asp Asp Ser Glu Tyr Tyr Val Thr Ala Gly Asp Ala Lys Cys

Ser Thr Glu Leu Phe Val Arg Glu Pro Pro Phe Met Val Pro Ser Ser

Trp Ile Glu Thr Pro Ala Asp Cys

<210> 180 <211> 26 <212> PRT <213> Homo sapien

<400> 180

Met Val Leu Tyr Ser Glu Gly His Gln His Gly Pro His Leu Leu Asn

Met Glu Asn Gln Asn Leu Asn Glu Tyr Asn 20

<210> 181 <211> 57 <212> PRT <213> Homo sapien

<400> 181

Met Thr Glu Arg Ala Asp Gly Lys Ser Gln Ser Cys Ile Glu Glu Ile 5

Ser Met Val Ala Leu Lys Leu Leu Lys Pro Asp Val Ser Ser Ala Ser

His Trp Lys Met Asp Arg Trp Ala Asn His His Leu Thr Ser Gln Arg 40 35

Glu Gly Gln Cys Ala Lys Val Phe Lys

<210> 182 <211> 67

WO 02/068633

PCT/US01/43612

161

<212> PRT

<213> Homo sapien

<400> 182

Met Asn Thr Lys Ala Leu Pro Thr Thr Pro Ala Gln Thr Ala Ile Ser 5 10

Pro Pro Glu Gly Gln Cys Ser Ser Ser Ile Gly Leu Glu Thr Ile Pro

Glu Ser Pro Cys Phe Arg Thr Pro Glu Ser Ser Asn Ser Pro Ser Leu

Arg Arg Asp Leu Leu Ala Ala Lys Arg Val Lys Leu Ile Val Leu Gln 50 55

Ser Ser Ala

<210> 183 <211> 91 <212> PRT

<213> Homo sapien

<400> 183

Asp Val Gly Gly Ala Gln Val Leu Ala Thr Gly Lys Thr Pro Gly Ala

Glu Ile Asp Phe Lys Tyr Ala Leu Ile Gly Thr Ala Val Gly Val Ala

Ile Ser Ala Gly Phe Leu Ala Leu Lys Ile Cys Met Ile Arg Arg His

Leu Phe Asp Asp Ser Ser Asp Leu Lys Ser Thr Pro Gly Gly Leu

Ser Asp Thr Ile Pro Leu Lys Lys Arg Ala Pro Arg Arg Asn His Asn

Phe Ser Lys Arg Asp Ala Gln Val Ile Glu Leu 85

<210> 184

<211> 101 <212> PRT

PCT/US01/43612

<213> Homo sapien

<400> 184

WO 02/068633

Met Arg Pro Gly Arg Tyr Gln Ala Pro Arg Pro Phe Leu Tyr His Gly
1 5 10 15

Cys Trp Val Thr Ser Gly Ser His His Leu Phe Pro Ser Leu Phe Pro 20 25 30

Ile Ser Gln Met Trp Gly His Gly Leu Asp Asp Gly Leu His Arg Ser 35 40 45

Phe His Leu Cys Glu Ser Lys Ser Gly Gln Ser Ala Arg Thr His Leu 50 55 60

Cys Pro Gly Ser Ala Pro Gln Asn Gln Pro Pro Ala Ser Leu Lys Gln 65 70 75 80

Lys Pro His Leu Lys Gly Cys Ser Glu Glu Ser Thr Phe Ser Met Ser 85 90 95

Cys Cys Trp Lys Ile 100

<210> 185

<211> 489

<212> PRT

<213> Homo sapien

<400> 185

Gly Trp Thr Val Ile Gln Asn Arg Gln Asp Gly Ser Val Asp Phe Gly 1 5 10 15

Arg Lys Trp Asp Pro Tyr Lys Gln Gly Phe Gly Asn Val Ala Thr Asn 20 25 30

Thr Asp Gly Lys Asn Tyr Cys Gly Leu Pro Gly Asn Glu Gln Ala Cys 35 40 45

Lys Ile Lys Ser Phe Tyr Leu Lys Trp Asp Phe Phe Ala Leu Lys Asn 50 55 60

Ile His Cys Trp Lys Pro Val Leu Gly Ser Ala Glu Glu Phe Pro Asp 65 70 75 80

163

Lys Asn Val Glu Ala Lys Asp Lys Gly Arg Lys Ala Val Phe Ser Phe 85 90 95

Pro Lys Phe Tyr Phe Trp Ala Glu Ile Leu Phe Cys Phe Ser Phe Gly 100 105 110

Glu Tyr Trp Leu Gly Asn Asp Lys Ile Ser Gln Leu Thr Arg Met Gly
115 120 125

Pro Thr Glu Leu Leu Ile Glu Met Glu Asp Trp Lys Gly Asp Lys Val

Lys Ala His Tyr Gly Gly Phe Thr Val Gln Asn Glu Ala Asn Lys Tyr 145 150 155 160

Gln Ile Ser Val Asn Lys Tyr Arg Gly Thr Ala Gly Asn Ala Leu Met 165 170 175

Asp Gly Ala Ser Gln Leu Met Gly Glu Asn Arg Thr Met Thr Ile His 180 185 190

Asn Gly Met Phe Phe Ser Thr Tyr Asp Arg Asp Asn Asp Gly Trp Tyr 195 200 205

Val Trp His Ser Leu Leu Leu Leu Ala Lys Ser His Ala Tyr His Tyr 210 215 220

Ser Glu Ser Leu Thr Ile Phe Leu Ile Ala Thr Thr Ser Trp Ala Leu 225 230 235 240

Thr Val Ser His Cys Pro Lys Leu Phe Met His His Ser Lys Ala Phe 245 250 255

Gln Leu Ala Gly Arg His Ser Tyr Ser His Phe Thr Asp Glu Ile Ala 260 265 270

Arg Asp Tyr Val Ile Cys Pro Met Ser His Asn Tyr Pro Glu Ile Lys 275 280 285

Leu Glu Phe Glu His Ser Tyr Phe Leu Asn Asn Glu His Leu Asp Lys 290 295 300

Tyr Leu Tyr Leu Tyr Ile Leu Lys Cys Val Ala Lys Leu Ser Phe Ser 305 310 315

WO 02/068633

164

Phe Pro Gly Phe Ser Asp Thr Lys Gly Cys Lys Ser Tyr Tyr Ser Ser 325 330 335

PCT/US01/43612

Ile Lys Ala Gln Thr Gln Ser Leu Asp Gly Leu Pro Gln Arg Pro Ser 340 345 350

Tyr Leu Ser Phe Leu Leu Ala Gly Thr Gly Gly Leu Trp Cys Ile Ser 355 360 365

Val Thr Leu Cys Ile Ala Pro Lys Gly Lys Thr Thr Val His Thr Ser 370 380

Val Ala Val Phe Tyr Gly Ala Ser Ala Lys Arg Asn Leu Thr Thr Val 385 390 395 400

Val Leu Phe Leu Ile Thr Pro Asn Thr Phe Ser Phe Arg Leu Thr Ser 405 410 415

Asp Pro Arg Lys Gln Cys Ser Lys Glu Asp Gly Gly Gly Trp Trp Tyr 420 425 430

Asn Arg Cys His Ala Ala Asn Pro Asn Gly Arg Tyr Tyr Trp Gly Gly
435 440 445

Gln Tyr Thr Trp Asp Met Ala Lys His Gly Thr Asp Asp Gly Val Val 450 455 460

Trp Met Asn Trp Lys Gly Ser Trp Tyr Ser Met Arg Lys Met Ser Met 465 470 475 480

Lys Ile Arg Pro Phe Phe Pro Gln Gln 485

<210> 186

<211> 33

<212> PRT

<213> Homo sapien

<400> 186

Met Val Thr Glu Ser Leu Ser Ser Pro His Ser Glu Ser Ile Pro Leu 1 5 10 15

Gly Arg Val Asn Pro Gly Ser Gly Leu Pro Pro His Ser Thr Arg Pro
20 25 30

PCT/US01/43612

Phe

<210> 187

WO 02/068633

<211> 149

<212> PRT

<213> Homo sapien

<400> 187

Pro Gly Asn Leu Asp Thr Ser Ser Arg Gly Ser Ser Gly Ser Pro Ala 1 5 10 15

His Ala Glu Ser Tyr Ser Ser Gly Gly Gly Gly Gln Gln Lys Phe Arg 20 25 30

Val Asp Met Pro Gly Ser Gly Ser Ala Phe Ile Pro Thr Ile Asn Ala 35 40 45

Ile Thr Thr Ser Gln Asp Leu Gln Trp Met Val Gln Pro Thr Val Ile 50 60 .

Thr Ser Met Ser Asn Pro Tyr Pro Arg Ser His Pro Tyr Ser Pro Leu 65 70 75 80

Pro Gly Leu Ala Ser Val Ala Gly His Met Ala Leu Pro Arg Pro Gly 85 90 95

Val Ile Lys Thr Ile Gly Thr Thr Val Gly Arg Arg Arg Asp Glu 100 105 110

Gln Leu Ser Pro Glu Glu Glu Lys Arg Arg Ile Arg Arg Glu Arg 115 120 125

Asn Lys Leu Ala Ala Ala Lys Cys Arg Asn Arg Arg Arg Glu Leu Thr 130 140

Glu Lys Leu Gln Ala 145

<210> 188

<211> 41

<212> PRT

<213> Homo sapien

<400> 188

166

Met Thr Val Pro Leu His Thr Ser Leu Ser Tyr Arg Gly Arg Ser Gln 1 5 10 . 15

Leu Leu Lys Thr Lys Thr Thr Ile Asn Ile Tyr Lys Asn His Asn Ile 20 25 30

Lys Gly Phe Met Leu Arg Lys Asn Pro 35 40

<210> 189

<211> 45

<212> PRT

<213> Homo sapien

<400> 189

Met Tyr Thr Asn Lys Tyr Ala Gln Asp Leu Glu Ser Tyr Ile Lys Met 1 5 10 15

Tyr Leu Thr Trp Leu Glu Cys Val Cys Val Phe Pro Arg Leu Ser Lys 20 25 30

Ile Arg Lys Pro Glu Ser Gln Ala Thr Lys Lys Lys Asn 35 40 45

<210> 190

<211> 91

<212> PRT

<213> Homo sapien

<400> 190

Met Phe Leu Cys Asn Val Leu Arg Val Thr Trp Ala Ser Pro Thr Tyr 1 5 10 15

Ala Ser Thr Val Cys Cys Val Thr Phe Arg Gln Leu His Thr Pro Pro 20 25 30

Ala Pro Leu Pro Ser Pro Pro Ser Ser His Thr Val Ser Ala Gly Cys
35 40 45

Gly Ser Pro Thr Ser Val Met Ser Gly Ile Met Leu Leu Leu Ser Leu 50 55 60

Leu Phe Ser Leu Phe Phe Phe Phe Val Ile Gln Val Leu Leu Thr Ser 65 70 75 80

Ser Leu Ile His Gln Asn Ala Arg Ser Ser Tyr

167

85 90

<210> 191

<211> 100

<212> PRT <213> Homo sapien

<400> 191

Ala Asp Asn Asp Ile Gly Ala Val Ser Thr Thr Gly His Gly Glu Ser

Ile Leu Lys Val Asn Leu Ala Arg Leu Thr Leu Phe His Ile Glu Gln

Gly Lys Thr Val Glu Glu Ala Ala Asp Leu Ser Leu Gly Tyr Met Lys

Ser Arg Val Lys Gly Leu Gly Gly Leu Ile Val Val Ser Lys Thr Gly

Asp Trp Val Ala Lys Trp Thr Ser Thr Ser Met Pro Trp Ala Ala Ala 70

Lys Asp Gly Lys Leu His Phe Gly Ile Asp Pro Asp Asp Thr Thr Ile

Thr Asp Leu Pro

<210> 192 <211> 54 <212> PRT <213> Homo sapien

<400> 192

Met Glu Glu Glu Glu Glu Ala Leu Cys Ser His His Ile Pro Val Ala 10

Arg Ser Trp Leu Gln Gly Ser Ser Gly Asn Arg Ile Pro Arg Ser His 20

Glu Thr Ser Pro Asn Ser Ala Val Thr Glu Ser Thr Arg Gln Trp Leu 40

Lys Asp Gly Glu Thr Ser 50

168

WO 02/068633

<210> 193 <211> 63 <212> PRT <213> Homo sapien

<400> 193

Met Ile Ile Leu Lys Tyr Arg Trp Lys Asp Thr Asn Ala Arg Lys Arg 10

PCT/US01/43612

Glu Ser Asn Gln Pro Arg Phe Gly Gly Trp Gly Thr Glu Asp Gly Ala 20 25

Thr Phe Pro Pro Tyr Leu Leu Phe Phe Tyr Ile Pro Ile Cys Thr Leu

Arg Ile His Leu Arg Ser Ser Phe Lys Arg Glu Lys Leu Asp Thr

<210> 194 <211> 211 <212> PRT <213> Homo sapien

<400> 194

Met Val Phe Leu Lys Phe Phe Cys Met Ser Phe Phe Cys His Leu Cys

Gln Gly Tyr Phe Asp Gly Pro Leu Tyr Pro Glu Met Ser Asn Gly Thr

Leu His His Tyr Phe Val Pro Asp Gly Asp Tyr Glu Glu Asn Asp Asp

Pro Glu Lys Cys Gln Leu Leu Phe Arg Val Ser Asp His Arg Arg Cys

Ser Gln Gly Glu Gly Ser Gln Val Gly Ser Leu Leu Ser Leu Thr Leu 75

Arg Glu Glu Phe Thr Val Leu Gly Arg Gln Val Glu Asp Ala Gly Arg 90

Val Leu Glu Gly Ile Ser Lys Ser Ile Ser Tyr Asp Leu Asp Gly Glu 100

169

PCT/US01/43612

Glu Ser Tyr Gly Lys Tyr Leu Arg Arg Glu Ser His Gln Ile Gly Asp 115 120 125

Ala Tyr Ser Asn Ser Asp Lys Ser Leu Thr Glu Leu Glu Ser Lys Phe 130 135 140

Lys Gln Gly Gln Glu Gln Asp Ser Arg Gln Glu Ser Arg Leu Asn Glu 145 150 155 160

Asp Phe Leu Gly Met Leu Val His Thr Arg Ser Leu Leu Lys Glu Thr 165 170 175

Leu Asp Ile Ser Val Gly Leu Arg Asp Lys Tyr Glu Leu Leu Ala Leu 180 185 190

Thr Ile Arg Ser His Gly Thr Arg Leu Gly Arg Leu Lys Asn Asp Tyr 195 200 205

Leu Lys Val 210

WO 02/068633

<210> 195

<211> 54

<212> PRT

<213> Homo sapien

<400> 195

Met Asp Asp Ser Lys Leu Gln Lys Lys Lys Asp Val Asp Lys His Cys
1 10 15

Leu Thr Glu His Phe Ile Phe Ser Gln Leu Phe Trp Phe Leu Leu Ile 20 25 30

Thr Met Thr Lys Met Leu Asp Ser Glu Leu Cys Arg Tyr Phe Ser Lys 35 40 45

Phe Tyr Asp Phe Lys Ser 50

<210> 196

<211> 88

<212> PRT

<213> Homo sapien

<400> 196

170

Met Leu Gly Leu Gln Thr Leu Ser Arg Phe Leu Ser Gly His Pro Gly

Phe Leu Thr His Cys Leu Lys Ser Arg Trp Gln Val Pro Ser Leu Asn 25

His Ser Cys Ala Pro Glu Asp Ser Gly Pro Lys Leu Pro Ser Ser Ala

Cys His Ser Leu Leu Ile Ile Ser Ser Asp Gln Val Cys Val Met

His Leu Ala Gln Ala Gln Gly Val Pro Arg Arg Asp His Asp Pro Ser

His Cys Ala Arg Ser Ser Ser Ile

<210> 197 <211> 48

<212> PRT

<213> Homo sapien

<400> 197

Met Thr Glu Met Thr Gln Ser Lys Gly Arg Ile Gly Thr Glu Asp Ala

Asn Thr Gly Ser Tyr Lys Ile Gln Arg Glu Leu Ser Gly Gly Lys Thr 20

Gln Glu Pro Asn Ser Thr His Leu Ile Pro Leu Val Asp Gln Leu Asn

<210> 198 <211> 121 <212> PRT

<213> Homo sapien

<400> 198

Phe Phe Ala Asp Glu Val Ser Arg Leu Ser Pro Gly Leu Glu Cys Ser

Gly Val Ile Ser Ala His Cys Asn Phe His Leu Leu Gly Ser Ser Ser 25

Ser Pro Ala Ser Ala Ser Gln Val Ala Glu Ile Thr Gly Ala Cys His

171

40 35

Pro Thr Trp Leu Ile Phe Val Ile Leu Val Glu Thr Gly Phe His His 55

Val Gly Gln Ala Asp Ala Leu Leu Thr Ser Gly Asp Pro Pro Phe Ser 70 75

Ala Ser Gln Ser Ala Gly Ile Thr Gly Val Ser His Arg Ala Arg Pro

Ala Asn Thr Phe Ala Leu Thr Thr Leu Gly Leu Leu Tyr Lys Ile Val 100 105 110

Met Ile Ala Met Glu Val Leu Pro Pro

<210> 199 <211> 162 <212> PRT <213> Homo sapien

<400> 199

Met Asp Ala Ala Gly Gln Val Leu Gly Pro Glu Arg Gly Gly Tyr Leu

Pro His Trp Val Ala Ser Ser Ala Ala Pro His Leu Ser Leu Phe Ser 20 25

Pro Lys Leu Val Phe Leu Thr Ile Ile Val Val Gly Gly Gln Met

Leu Lys Val Glu Ala Asp Leu Glu Lys Glu Thr His Gly Val Thr Val

Ala Lys Asp Ser Trp Lys Arg Asn Ser Ile Thr Ser Ser Leu Ala Thr 70

Thr Arg His Pro Arg Pro Trp His Ser Gln Arg Leu Cys Ala Val Ala

Lys Pro Leu Asn Leu Phe Trp Pro Cys Val Leu Gln Arg Ser Leu Cys 100 105 · 110

Cys Lys Thr Val Asp Ser Phe Asp Glu Val Leu Lys Asn Ala Thr Arg

172

115 120 125

Gly Gly Val Trp Leu Ala Val Trp Pro Ser Ser Glu Lys Val Ala 130 135 140

Glu Ile Arg Gly Gln Gly Cys His Ser Pro Arg Leu Ser Ser Gly Ser 145 150 155 160

Gln Ser

<210> 200

<211> 594

<212> PRT

<213> Homo sapien

<400> 200

Val Pro Gly Arg Lys Leu His Arg Ser Arg Leu Gln Ala Ala Pro 1 5 10 15

Arg Pro Ser Thr Cys Ala Gln Ser Leu Cys Trp Ser Arg Pro Pro Ala 20 25 30

Ala Gly Thr Gly Thr Gly Asp Pro Ser Gln Ser Lys Ala Pro Thr Met $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Met Gly Leu Phe Arg Val Cys Leu Val Val Val Thr Ala Ile Ile 50 55 60

Asn His Pro Leu Leu Phe Pro Arg Glu Asn Ala Thr Val Pro Glu Asn 65 70 75 80

Glu Glu Glu Ile Ile Arg Lys Met Gln Ala His Gln Glu Lys Leu Gln 85 90 95

Leu Glu Gln Leu Arg Leu Glu Glu Glu Val Ala Arg Leu Ala Ala Glu 100 . 105 110

Lys Glu Ala Leu Glu Gln Val Ala Glu Glu Gly Arg Gln Gln Asn Glu
115 120 125

Thr Arg Val Ala Trp Asp Leu Trp Ser Thr Leu Cys Met Ile Leu Phe 130 135 140

Leu Met Ile Glu Val Trp Arg Gln Asp His Gln Glu Gly Pro Ser Pro

173

145	150	155		160
Glu Cys Leu Gly Gl 16		p Glu Leu Pro 170	Gly Leu Gly	Gly Ala 175
Pro Leu Gln Gly Le 180	u Thr Leu Pr	o Asn Lys Ala 185	Thr Leu Gly 190	His Phe
Tyr Glu Arg Cys Il 195	e Arg Gly Al 20		Ala Ala Arg 205	Thr Arg
Glu Phe Leu Glu Gl 210	y Phe Val As 215	p Asp Leu Leu	Glu Ala Leu 220	Arg Ser
Leu Cys Asn Arg As 225	p Thr Asp Me 230	et Glu Val Glu 235		Gly Val 240
Asp Ser Met Tyr Gl		n Val Asp Arg 250	Pro Leu Leu	Cys His 255
Leu Phe Val Pro Ph 260	e Thr Pro Pr	o Glu Pro Tyr 265	Arg Phe His	Pro Glu
Leu Trp Cys Ser Gl 275	y Arg Ser Va 28		Arg Gln Gly 285	Tyr Gly
Gln Ile Lys Val Va 290	l Arg Ala As 295	sp Gly Asp Thr	Leu Ser Cys 300	Ile Cys
Gly Lys Thr Lys Le 305	u Gly Glu As 310	sp Met Leu Cys 315		Gly Arg 320
Asn Ser Met Ala Pr 32		ly Asp Met Glu 330	ı Asn Leu Leu	Cys Ala 335
Thr Asp Ser Leu Ty 340	r Leu Asp Th	nr Met Gln Val 345	. Met Lys Trp 350	
Thr Ala Leu Thr Ar 355	g Ala Trp Ly 36		His Lys Tyr 365	Glu Phe
Asp Leu Ala Phe Gl	y Gln Leu As 375	sp Ser Pro Gly	ser Leu Lys 380	Ile Lys

174

Phe Arg Ser Gly Lys Phe Met Pro Phe Asn Leu Ile Pro Val Ile Gln 390

Cys Asp Asp Ser Asp Leu Tyr Phe Val Ser His Leu Pro Arg Glu Pro 405 410

Ser Glu Gly Thr Pro Ala Ser Ser Thr Asp Trp Leu Leu Ser Phe Ala 425 420

Val Tyr Glu Arg His Phe Leu Arg Thr Thr Leu Lys Ala Leu Pro Glu 440 435

Gly Ala Cys His Leu Ser Cys Leu Gln Ile Ala Ser Phe Leu Leu Ser 455

Lys Gln Ser Arg Leu Thr Gly Pro Ser Gly Leu Ser Ser Tyr His Leu 465

Lys Thr Ala Leu Leu His Leu Leu Leu Leu Arg Gln Ala Ala Asp Trp 490

Lys Ala Gly Gln Leu Asp Ala Arg Leu His Glu Leu Leu Cys Phe Leu 500 505

Glu Lys Ser Leu Leu Gln Lys Lys Leu His His Phe Phe Ile Gly Asn

Arg Lys Val Pro Glu Ala Met Gly Leu Pro Glu Ala Val Leu Arg Ala 535

Glu Pro Leu Asn Leu Phe Arg Pro Phe Val Leu Gln Arg Ser Leu Tyr

Arg Lys Thr Leu Asp Ser Phe Tyr Glu Met Leu Lys Asn Ala Pro Ala 570

Leu Ile Ser Glu Tyr Ser Leu His Val Pro Ser Asp Gln Pro Thr Pro 585 580

Lys Ser

<210> 201

<211> 38 <212> PRT

175

<213> Homo sapien

<400> 201

Met Ser Leu His Ala Glu Val Gly Gly Ala Leu Lys Pro Val Ile Tyr

Ala Val Lys Thr Lys Trp Val Cys Tyr Leu Ile Ser Trp Gly Ile His

Gly Leu Ala Val Pro Gly

<210> 202

<211> 16 <212> PRT <213> Homo sapien

<400> 202

Met Glu Arg Ile Gly Thr Phe Tyr Ser Gly Asn Thr Gln Pro Ala Thr 1 5 10

<210> 203 <211> 87 <212> PRT <213> Homo sapien

<400> 203

Met Ala Glu Gly Val Gly Ala Gly Thr Leu Glu Ala Pro Pro Leu Leu

Ser Leu Pro Ser Ala Ser Pro Val Pro Pro Ala Ala Leu Val Thr Val

Ser Asp Gly Tyr Leu Pro Gly Phe Val Ala Ser Leu Ser Val Phe Ser 40

Cys Ser Asp Pro Leu Ala Gly Trp Leu Arg Lys Lys Met Cys Phe 55

Arg Cys His Cys Asn Pro Gly His Gln Gly Asn Pro Ser Phe Pro Phe

Leu Ile Cys Ser Pro Arg Thr

<210> 204

176

WO 02/068633

<211> 252 <212> PRT <213> Homo sapien

<400> 204

Met Ser Ile Tyr Lys Glu Pro Pro Pro Gly Met Phe Val Val Pro Asp

PCT/US01/43612

Thr Val Asp Met Thr Lys Ile His Ala Leu Ile Thr Gly Pro Phe Asp

Thr Pro Tyr Glu Gly Gly Phe Phe Leu Phe Val Phe Arg Cys Pro Pro 40

Asp Tyr Pro Ile His Pro Pro Arg Val Lys Leu Met Thr Thr Gly Asn

Asn Thr Val Arg Phe Asn Pro Asn Phe Tyr Arg Asn Gly Lys Val Cys

Leu Ser Ile Leu Gly Thr Trp Thr Gly Pro Ala Trp Ser Pro Ala Gln 85 90

Ser Ile Ser Ser Val Leu Ile Ser Ile Gln Ser Leu Met Thr Glu Asn

Pro Tyr His Asn Glu Pro Gly Phe Glu Gln Glu Arg His Pro Gly Asp

Ser Lys Asn Tyr Asn Glu Cys Ile Arg His Glu Thr Ile Arg Val Ala

Val Cys Asp Met Met Glu Gly Lys Cys Pro Cys Pro Glu Pro Leu Arg

Gly Val Met Glu Lys Ser Phe Leu Glu Tyr Tyr Asp Phe Tyr Glu Val 170 165

Ala Cys Lys Asp Arg Leu His Leu Gln Gly Gln Thr Met Gln Asp Pro

Phe Gly Glu Lys Arg Gly His Phe Asp Tyr Gln Ser Leu Leu Met Arg

Leu Gly Leu Ile Arg Gln Lys Val Leu Glu Arg Leu His Asn Glu Asn

177

220 215 210

Ala Glu Met Asp Ser Asp Ser Ser Ser Ser Gly Thr Glu Thr Asp Leu 230

His Gly Ser Leu Arg Val His Gly Ser Leu Arg Val

<210> 205 <211> 91 <212> PRT

<213> Homo sapien

<400> 205

Met Leu Thr Pro Ala Arg Pro Ser Cys His Thr Leu Ser Gly Arg Ser

Met Ala Tyr Arg Met Lys Arg Gly Thr Arg Asn Pro Cys Gly Arg Gly

Leu Asp Leu Lys Gln Cys Pro Leu Trp Leu Leu Pro Trp Leu Thr

Gly Phe Leu Asp His Val His Phe Thr Gly Pro Trp Asp Leu His Leu 55

Leu Ala Ser Pro Ala Gly Leu Ile Pro Ala Arg Ala Pro Ser Phe Leu

Leu Met Val Phe Arg Trp Pro Asp His Gly Lys 85

<210> 206

<211> 213

<212> PRT

<213> Homo sapien

<400> 206

Ser Pro His Gln Ala Ala Ala Pro Val Asp Gln Thr Pro Arg Thr Leu 10 5

Ala Thr Met Gly Gln Arg Ala Leu Pro Ser Ser Leu Ala Leu Leu Ser

Arg Pro Leu Ser Pro Pro Pro Ala Ala Cys Ser Gly Asp Pro Gly Cys 40

WO 02/068633

178

Gly Ser Gly Ala Gly Leu Pro Ser Ala Ser Ala Ala Gly Ile Ala

PCT/US01/43612

Ser Ser Ala Val Glu Ala Val Cys Gly Asp Ala Ala Pro Ala Cys Leu 65 70 75 80

Leu Arg Thr Pro Leu Arg Gly Leu Leu Lys Pro Thr Gly Pro Arg Ser 85 90 95

Thr Met Glu Cys Pro Pro Ala Leu Ile Val His Pro Pro Thr Gly Gly
100 . 105 110

Met Ala Arg Arg Ala Ala Ser Gln Pro Trp Ala Ala Ala Ser Ala Thr
115 120 125

Pro Met Leu Ser Ser Lys Ala Ser Leu Cys Ile Pro Thr Glu Arg Pro 130 135 140

Pro Pro Gln Pro Leu Met Arg Thr Pro Ala Ala Arg Ser His Trp Pro 145 150 155 160

Ile Pro His Pro Ala Ser Thr Ala Cys Pro Ala Pro Leu Pro Val Val
165 170 175

Leu Val Ala Pro Arg Ser Thr Ile Leu Ser Met Ser Arg Thr Trp Thr 180 185 190

Cys Arg Arg Trp Ala Val Ala Pro Cys Arg Ala Glu Lys Leu Met Cys 195 200 205

Ser Ser Ser Arg Ser 210

<210> 207

<211> 92

<212> PRT

<213> Homo sapien

<400> 207

Met Tyr Lys Gly Ala Ala Trp Arg Gly Lys Glu His Asn Lys Thr Pro 1 10 15

Leu Glu Val Phe Gln Arg Val Val Ser Gln Ile Ser Leu Ile Gln Glu 20 25 30

179

Glu Asp Asp Glu Arg Glu Arg Thr Trp Asn Tyr Leu Lys Ser Ser Asn 40

Ser Leu Val Leu Phe Asn Lys Lys Glu Phe Trp Phe Val Ala Glu Ser

Asp Leu Thr Ala Ala Asn Ser Ser Leu Leu Leu Arg Cys Ile Ser Asn 75

Ser Lys Leu Asp Ala Pro Pro Ser Leu Phe Phe Pro 85

<210> 208

<211> 130 <212> PRT <213> Homo sapien

<400> 208

Met Val Cys Glu Asp Ala Pro Ser Phe Gln Met Ala Trp Glu Ser Gln 5

Met Ala Trp Glu Arg Gly Pro Ala Leu Leu Cys Cys Val Leu Ser Ala

Ser Gln Leu Ser Ser Gln Asp Gln Asp Pro Leu Gly His Ile Lys Ser 40

Leu Leu Tyr Pro Phe Gly Phe Pro Val Glu Leu Pro Arg Pro Gly Pro

Thr Gly Ala Tyr Lys Lys Val Lys Asn Gln Asn Gln Thr Thr Ser Ser 65 70

Glu Leu Leu Arg Lys Gln Thr Ser His Phe Asn Gln Arg Gly His Arg 85

Ala Arg Ser Lys Leu Leu Ala Ser Arg Gln Ile Pro Asp Arg Thr Phe 105

Lys Cys Gly Lys Trp Leu Pro Gln Val Pro Ser Pro Val Val Pro Ser

Pro Val 130

<210> 209

<211> 63 <212> PRT <213> Homo sapien

<400> 209

Met Asn Asp Tyr Gly Leu Gly Leu Gly Phe Ile Thr Asn Pro Ile Ile

Asp His Leu Phe Pro Ala Leu Gly Ile Thr Ala Lys Pro Asn Gly Ser 25 . 30

Phe Ser Ile Thr Ala Ser Tyr Asn Phe His Ile Phe Leu Leu Phe Leu

Thr Gly Leu Gln Val Leu Ser Asn Val Leu Lys Leu Phe Asn Val

<210> 210 <211> 451 <212> PRT

<213> Homo sapien

<400> 210

Ala Thr Lys Thr Lys Ala Pro Asp Asp Leu Val Ala Pro Val Val Lys

Lys Pro His Ile Tyr Tyr Gly Ser Leu Glu Glu Lys Glu Arg Glu Arg

Leu Ala Lys Gly Glu Ser Gly Ile Leu Gly Lys Asp Gly Leu Lys Ala

Gly Ile Glu Ala Gly Asn Ile Asn Ile Thr Ser Gly Glu Val Phe Glu 55

Ile Glu Glu His Ile Ser Glu Arg Gln Ala Glu Val Leu Ala Glu Phe

Glu Arg Arg Lys Arg Ala Arg Gln Ile Asn Val Ser Thr Asp Asp Ser 90

Glu Val Lys Ala Cys Leu Arg Ala Leu Gly Glu Pro Ile Thr Leu Phe

Gly Glu Gly Pro Ala Glu Arg Arg Glu Arg Leu Arg Asn Ile Leu Ser 115 120 125

Val Val Gly Thr Asp Ala Leu Lys Lys Thr Lys Lys Asp Asp Glu Lys 130 135 140

Ser Lys Lys Ser Lys Glu Glu Tyr Gln Gln Thr Trp Tyr His Glu Gly 145 150 155 160

Pro Asn Ser Leu Lys Val Ala Arg Leu Trp Ile Ala Asn Tyr Ser Leu 165 170 175

Pro Arg Ala Met Lys Arg Leu Glu Glu Ala Arg Leu His Lys Glu Ile 180 185 190

Pro Glu Thr Thr Arg Thr Ser Gln Met Gln Glu Leu His Lys Ser Leu 195 200 205

Arg Ser Leu Asn Asn Phe Cys Ser Gln Ile Gly Asp Arg Pro Ile 210 215 220

Ser Tyr Cys His Phe Ser Pro Asn Ser Lys Met Leu Ala Thr Ala Cys 225 230 235

Cys Asp Glu Pro Val Ala Asp Ile Glu Gly His Thr Val Arg Val Ala 245 250 255

Arg Val Met Trp His Pro Ser Gly Arg Phe Leu Gly Thr Thr Cys Tyr 260 265 270

Asp Arg Ser Trp Arg Leu Trp Asp Leu Glu Ala Gln Glu Glu Ile Leu 275 280 285

His Gln Glu Gly His Ser Met Gly Val Tyr Asp Ile Ala Phe His Gln 290 295 300

Asp Gly Ser Leu Ala Gly Thr Gly Gly Leu Asp Ala Phe Gly Arg Val 305 310 315

Trp Asp Leu Arg Thr Gly Arg Cys Ile Met Phe Leu Glu Gly His Leu 325 330 335

Lys Glu Ile Tyr Gly Ile Asn Phe Ser Pro Asn Gly Tyr His Ile Ala 340 345 350

182

Thr Gly Ser Gly Asp Asn Thr Cys Lys Val Trp Asp Leu Arg Gln Arg

Arg Cys Val Tyr Thr Ile Pro Ala His Gln Asn Leu Val Thr Gly Val 375 380

Lys Phe Glu Pro Ile His Gly Asn Phe Leu Leu Thr Gly Ala Tyr Asp 385 390 395

Asn Thr Ala Lys Ile Trp Thr His Pro Gly Trp Ser Pro Leu Lys Thr 405 410

Leu Ala Gly His Glu Gly Lys Val Met Gly Leu Asp Ile Ser Ser Asp 425

Gly Gln Leu Ile Ala Thr Cys Ser Tyr Asp Arg Thr Phe Lys Leu Trp

Met Ala Glu 450

<210> 211 <211> 34 <212> PRT

<213> Homo sapien

<400> 211

Met Glu Ala Gln Gly Cys His Asp Gly Ser Val Val Ile Arg Glu Gly 5

Ala Pro Phe Ile Leu Leu Pro Thr Pro Leu Leu Cys Pro Phe Leu Pro 20 25

Leu Ile

<210> 212

<211> 610

<212> PRT

<213> Homo sapien

<400> 212

Gly Lys Ala Phe Ile Thr Cys Arg Thr Leu Leu Asn His Lys Ser Ile 10

183

His Phe Gly Asp Lys Pro Tyr Lys Cys Asp Glu Cys Glu Lys Ser Phe 20 25 30

Asn Tyr Ser Ser Leu Leu Ile Gln His Lys Val Ile His Thr Gly Glu 35 40 45

Lys Pro Tyr Glu Cys Asp Glu Cys Gly Lys Ala Phe Arg Asn Ser Ser 50 55

Gly Leu Ile Val His Lys Arg Ile His Thr Gly Glu Lys Pro Tyr Lys 65 70 75 80

Cys Asp Val Cys Gly Lys Ala Phe Ser Tyr Ser Ser Gly Leu Ala Val\$85\$ 90 $95^{\rm \cdot}$

His Lys Ser Ile His Pro Gly Lys Lys Ala His Glu Cys Lys Glu Cys 100 105 110

Gly Lys Ser Phe Ser Tyr Asn Ser Leu Leu Leu Gln His Arg Thr Ile 115 120 125

His Thr Gly Glu Arg Pro Tyr Val Cys Asp Val Cys Gly Lys Thr Phe 130 140

Arg Asn Asn Ala Gly Leu Lys Val His Arg Arg Leu His Thr Gly Glu 145 150 155 160

Lys Pro Tyr Lys Cys Asp Val Cys Gly Lys Ala Tyr Ile Ser Arg Ser 165 170 175

Ser Leu Lys Asn His Lys Gly Ile His Leu Gly Glu Lys Pro Tyr Lys 180 185 190

Cys Ser Tyr Cys Glu Lys Ser Phe Asn Tyr Ser Ser Ala Leu Glu Gln 195 200 205

His Lys Arg Ile His Thr Arg Glu Lys Pro Phe Gly Cys Asp Glu Cys 210 220

Gly Lys Ala Phe Arg Asn Asn Ser Gly Leu Lys Val His Lys Arg Ile 225 230 235 240

His Thr Gly Glu Arg Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Tyr 245 250 255

Ile Ser Leu Ser Ser Leu Ile Asn His Lys Ser Val His Pro Gly Glu 260 265 270

Lys Pro Phe Lys Cys Asp Glu Cys Glu Lys Ala Phe Ile Thr Tyr Arg 275 280 285

Thr Leu Thr Asn His Lys Lys Val His Leu Gly Glu Lys Pro Tyr Lys
290 295 300

Cys Asp Val Cys Glu Lys Ser Phe Asn Tyr Thr Ser Leu Leu Ser Gln 305 310 315 320

His Arg Arg Val His Thr Arg Glu Lys Pro Tyr Glu Cys Asp Arg Cys 325 330 335

Glu Lys Val Phe Arg Asn Asn Ser Ser Leu Lys Val His Lys Arg Ile 340 345 350

His Thr Gly Glu Arg Pro Tyr Glu Cys Asp Val Cys Gly Lys Ala Tyr 355 360 365

Ile Ser His Ser Ser Leu Ile Asn His Lys Ser Thr His Pro Gly Lys 370 380

Thr Pro His Thr Cys Asp Glu Cys Gly Lys Ala Phe Phe Ser Ser Arg 385 390 395 400

Thr Leu Ile Ser His Lys Arg Val His Leu Gly Glu Lys Pro Phe Lys 405 410 415

Cys Val Glu Cys Gly Lys Ser Phe Ser Tyr Ser Ser Leu Leu Ser Gln 420 425 430

His Lys Arg Ile His Thr Gly Glu Lys Pro Tyr Val Cys Asp Arg Cys 435 440 445

Gly Lys Ala Phe Arg Asn Ser Ser Gly Leu Thr Val His Lys Arg Ile 450 455 460

His Thr Gly Glu Lys Pro Tyr Glu Cys Asp Glu Cys Gly Lys Ala Tyr 465 470 475 480

Ile Ser His Ser Ser Leu Ile Asn His Lys Ser Val His Gln Gly Lys

185

485 490 495

Gln Pro Tyr Asn Cys Glu Cys Gly Lys Ser Phe Asn Tyr Arg Ser Val 500 505 510

Leu Asp Gln His Lys Arg Ile His Thr Gly Lys Lys Pro Tyr Arg Cys 515 520 525

Asn Glu Cys Ala His Ile Pro Asn Ala Thr Ala Asp Leu Met Lys Val 530 535 540

Asp His Glu Glu Glu Pro Gln Leu Ser Glu Pro Tyr Leu Ser Lys Gln 545 550 555 560

Lys Lys Leu Met Ala Lys Ile Leu Glu His Asp Asp Val Ser Tyr Leu 565 570 575

Lys Lys Ile Leu Gly Glu Leu Ala Met Val Leu Asp Gln Ile Glu Ala 580 585 580

Glu Leu Glu Lys Arg Lys Leu Glu Asn Glu Ala Leu Ser Gln Trp Lys 595 600 605

Glu Phe 610

<210> 213

<211> 47

<212> PRT

<213> Homo sapien

<400> 213

Met Cys Ala Lys Trp Gly Glu Ile Gly Ala Gly Lys Pro Ile Pro His 1 5 10 15

Arg Gly Pro Ala Leu Ala Pro Gly Ser Pro His Ala Phe Phe Val Phe 20 25 30

Phe Phe Phe Phe Ala Ser Asp Gln Phe Thr Thr Val Ser Trp Thr 35 40 45

<210> 214

<211> 25

<212> PRT

<213> Homo sapien

186

<400> 214

Met Glu Thr Pro Ser Leu Glu Gly Thr Pro Arg Lys Pro Cys His Gly

Leu Leu Ser Leu Ser Ser Leu Leu 20

<210> 215

<211> 29

<212> PRT

<213> Homo sapien

<400> 215

Met Ser Ser Tyr Gly Met Gln Gly Thr Val Gly Ser Arg Val Ser Ile 1 5

Leu Pro Thr Arg Ala Gln Gly Gln Ala Gly Glu Val Arg 20

<210> 216

<211> 64 <212> PRT <213> Homo sapien

<400> 216

Met Val Thr Leu Asp Leu Leu Glu Arg Ala Gln Cys Asp Gly Ser Trp

Ser Arg Arg Gly Thr Pro Leu Leu Phe Tyr Phe Phe Cys Lys Val Leu

Thr Leu Glu Gly Tyr Ser Ile Gln Ser Leu Asn Met Phe Phe Lys Arg

Asn Lys Glu Gln Ala Thr Ala Leu Leu Glu Ile Thr Asn Arg Phe Leu

<210> 217 <211> 50 <212> PRT

<213> Homo sapien

<400> 217

Met Glu Pro His Ile Met Lys Phe Asn Ser His Val Lys Thr Phe Cys

187

Ile Val Gly Cys Gln Lys Tyr Phe Pro Asn Phe Arg Leu Thr Cys Arg 20 25 30

Val Gly Asp Gly Leu Pro Pro Tyr Asn Phe Lys Phe Val Ser Gln Ser 35 40 45

Leu Ala 50

<210> 218

<211> 785

<212> PRT

<213> Homo sapien

<400> 218

Lys Ala Lys Ile Ser Trp Glu Ala Pro Val Glu Lys Lys Thr Glu Cys 1 5 10 15

Ile Gln Lys Gly Lys Asn Asn Gln Val Gly Ala Trp Thr Leu Leu Leu 20 25 30

Val Leu Pro Ser Pro Gln Asp Val Ser Ser His Ser Gly Pro Arg Ala 35 40 45

Leu Thr Asn Arg Thr Pro Phe Cys Pro Gln Thr Glu Cys Phe Asn Phe 50 55 60

Ile Arg Phe Leu Gln Pro Tyr Asn Ala Ser His Leu Tyr Val Cys Gly 65 70 75 80

Thr Tyr Ala Phe Gln Pro Lys Cys Thr Tyr Val Asn Met Leu Thr Phe 85 90 95

Thr Leu Glu His Gly Glu Phe Glu Asp Gly Lys Gly Lys Cys Pro Tyr 100 105 110

Asp Pro Ala Lys Gly His Ala Gly Leu Leu Val Asp Gly Glu Leu Tyr 115 120 125

Ser Ala Thr Leu Asn Asn Phe Leu Gly Thr Glu Pro Ile Ile Leu Arg 130 135 140

Asn Met Gly Pro His His Ser Met Lys Thr Glu Tyr Leu Ala Phe Trp 145 150 155 160

188

Leu Asn Glu Pro His Phe Val Gly Ser Ala Tyr Val Pro Glu Ser Val 165 Gly Ser Phe Thr Gly Asp Asp Asp Lys Val Tyr Phe Phe Phe Arg Glu 180 185 Arg Ala Val Glu Ser Asp Cys Tyr Ala Glu Gln Val Val Ala Arg Val 200 195 Ala Arg Val Cys Lys Gly Asp Met Gly Gly Ala Arg Thr Leu Gln Arg Lys Trp Thr Thr Phe Leu Lys Ala Arg Leu Ala Cys Ser Ala Pro Asn 235 230 Trp Gln Leu Tyr Phe Asn Gln Leu Gln Ala Met His Thr Leu Gln Asp Thr Ser Trp His Asn Thr Thr Phe Phe Gly Val Phe Gln Ala Gln Trp 260 265 Gly Asp Met Tyr Leu Ser Ala Ile Cys Glu Tyr Gln Leu Glu Glu Ile 280 Gln Arg Val Phe Glu Gly Pro Tyr Lys Glu Tyr His Glu Glu Ala Gln Lys Trp Asp Arg Tyr Thr Asp Pro Val Pro Ser Pro Arg Pro Gly Ser 310 Cys Ile Asn Asn Trp His Arg Arg His Gly Tyr Thr Ser Ser Leu Glu Leu Pro Asp Asn Ile Leu Asn Phe Val Lys Lys His Pro Leu Met Glu 345

Glu Gln Val Gly Pro Arg Trp Ser Arg Pro Leu Leu Val Lys Lys Gly
355 360 365

Thr Asn Phe Thr His Leu Val Ala Asp Arg Val Thr Gly Leu Asp Gly 370 375 380

Ala Thr Tyr Thr Val Leu Phe Ile Gly Thr Gly Asp Gly Trp Leu Leu 385 390 395 400

Lys Ala Val Ser Leu Gly Pro Trp Val His Leu Ile Glu Glu Leu Gln
405 410 415

Leu Phe Asp Gln Glu Pro Met Arg Ser Leu Val Leu Ser Gln Ser Lys
420 425 430

Val Lys Leu Phe Ala Gly Ser Arg Ser Gln Leu Val Gln Leu Pro 435 440 445

Val Ala Asp Cys Met Lys Tyr Arg Ser Cys Ala Asp Cys Val Leu Ala 450 455 460

Arg Asp Pro Tyr Cys Ala Trp Ser Val Asn Thr Ser Arg Cys Val Ala 465 470 475 480

Val Gly Gly His Ser Gly Ser Leu Leu Ile Gln His Val Met Thr Ser 485 490 495

Asp Thr Ser Gly Ile Cys Asn Leu Arg Gly Ser Lys Lys Val Arg Pro 500 505 \cdot 510

Thr Pro Lys Asn Ile Thr Val Val Ala Gly Thr Asp Leu Val Leu Pro 515 520 525

Cys His Leu Ser Ser Asn Leu Ala His Ala Arg Trp Thr Phe Gly Gly 530 540

Arg Asp Leu Pro Ala Glu Gln Pro Gly Ser Phe Leu Tyr Asp Ala Arg 545 550 555 560

Leu Gln Ala Leu Val Val Met Ala Ala Gln Pro Arg His Ala Gly Ala 565 570 575

Tyr His Cys Phe Ser Glu Glu Gln Gly Ala Arg Leu Ala Ala Glu Gly 580 585 590

Tyr Leu Val Ala Val Val Ala Gly Pro Ser Val Thr Leu Glu Ala Arg 595 600 605

Ala Pro Leu Glu Asn Leu Gly Leu Val Trp Leu Ala Val Val Ala Leu 610 620

Gly Ala Val Cys Leu Val Leu Leu Leu Leu Val Leu Ser Leu Arg Arg 625 630 635 640

190

Arg Leu Arg Glu Glu Leu Glu Lys Gly Ala Lys Ala Thr Glu Arg Thr 645 650 655

Leu Val Tyr Pro Leu Glu Leu Pro Lys Glu Pro Thr Ser Pro Pro Phe 660 665 670

Arg Pro Cys Pro Glu Pro Asp Glu Lys Leu Trp Asp Pro Val Gly Tyr 675 680 685

Tyr Tyr Ser Asp Gly Ser Leu Lys Ile Val Pro Gly His Ala Arg Cys 690 695 700

Gln Pro Gly Gly Gly Pro Pro Ser Pro Pro Pro Gly Ile Pro Gly Gln 705 710 715 720

Pro Leu Pro Ser Pro Thr Arg Leu His Leu Gly Gly Gly Arg Asn Ser 725 730 735

Asn Ala Asn Gly Tyr Val Arg Leu Gln Leu Gly Gly Glu Asp Arg Gly 740 745 750

Gly Leu Gly His Pro Leu Pro Glu Leu Ala Asp Glu Leu Arg Arg Lys 755 760 765

Leu Gln Gln Arg Gln Pro Leu Pro Asp Ser Asn Pro Glu Glu Ser Ser 770 775 780

Val 785

<210> 219

<211> 66

<212> PRT

<213> Homo sapien

<400> 219

Met Lys Met Arg Ala Lys Ile Leu His Gln Asn Gly Asn Asp Pro Ile 1 5 10 15

Ser Pro Val Lys Ala Glu Trp Val Glu Trp Gly Leu Arg Val Trp Ile 20 25 30

Gln Cys Phe Glu Leu His Ser Ser Arg Glu Ala Val Gln Lys Gly Gly

191

Ile Leu Gly Asn Leu Arg Lys Ile Val Gly Glu Thr Ser Phe Leu Leu 50 60

Val Ser

<210> 220

<211> 128

<212> PRT

<213> Homo sapien

<400> 220

Glu Val Glu Gly Arg Ser Ala Cys Met Ala Met Gly Leu Phe Phe Ile 1 5 10 15

Pro Phe Leu Asn Cys Thr Gln Gln Trp Phe Leu Leu Gly Leu Leu 20 25 30

Lys Thr Ala Gly Ile Trp Glu Lys Glu His His Arg Leu Ser Gln His 35 40 45

Gly Asn Ile Asn Leu Ile Pro Glu Lys Gly Arg Ser Pro Gln Arg Tyr 50 55 60

Val Arg Phe Asn Ser Phe Ser Ser Gly Pro Gly Ser Ser Phe Ser Cys 65 70 75 80

Ser Gly Leu Asn Arg Asp Ala Leu Ile Ser Leu Gly Ile Leu Leu Leu 90 95

Val Leu Ser Leu Thr Ser Gly Ala Lys Ile Arg Arg Pro Glu Phe Gln
100 105 110

Ile Tyr Ser Val Thr Gln Ser Leu Leu Gln Ser Leu Arg Asp Val Val
115 120 125

<210> 221

<211> 64

<212> PRT

<213> Homo sapien

<400> 221

Met Gly Ile Leu Glu Pro Gln Asp Val Arg Ala Gly Arg Asp Ala Ile 1 5 10 15 192

Pro Val Tyr Thr Arg Gly Asn Ser Ser Arg Leu Trp Glu Gly Arg Arg

PCT/US01/43612

Val Leu Val Thr Glu Arg Glu Leu Lys Leu Arg Ile Pro Glu Ser Arg 40

Ser Cys Leu Pro Ser Ala Ile Phe Leu Pro Ile Asn Leu Cys Tyr Val

<210> 222

WO 02/068633

<211> 105

<212> PRT

<213> Homo sapien

<400> 222

Cys Lys Leu Phe Gly Arg Val Gly Asp Ala Val Ser Phe Cys His Pro

Gly Trp Ser Ala Val Ala Arg Ser Gln Leu Thr Ala Thr Ser Ala Leu 20

Gln Gly Ser Gly Asn Ser Ala Ser Val Ser Ala Val Ala Gly Ile Thr

Gly Met Arg His His Thr Arg Leu Ile Phe Val Phe Leu Val Glu Thr

Arg Phe His His Val Gly Gln Asp Gly Leu Glu Pro Leu Thr Ser Gly

Asp Leu Pro Ile Ser Ala Ser Gln Ser Ala Gly Ile Thr Ser Val Ser

His Arg Ala Arg Pro Ala Asn Phe Phe 100

<210> 223

<211> 109

<212> PRT

<213> Homo sapien

<400> 223

Met Met Trp Leu Ser Val Gly Gly Gly Gly Arg Glu Trp Ser Glu Met 10

193

Leu Gly Val Val Trp Trp Gly Gly Val Gly Val Trp Val Gly Val

Gly Val Cys Gly Cys Val Trp Trp Val Val Val Gly Val Trp Trp 40

Arg Cys Val Gly Cys Gly Cys Val Val Trp Trp Gly Gly Val Val Gly

Val Gly Gly Cys Trp Gly Gly Cys Val Cys Val Val Gly Val Cys Val

Cys Val Gly Gly Val Val Gly Arg Val Val Gly Gly Ala Gly Val

Cys Gly Gly Arg Cys Gly Cys Cys Val Val Trp Trp Cys

<210> 224 <211> 196 <212> PRT <213> Homo sapien

<400> 224

Thr Arg Pro Gln Ser His Thr Thr Glu His Pro Pro Pro Pro

Thr Thr Ile His Ile Thr Gln Thr Leu His Lys Lys Thr Asn Thr Thr 20

Asn Thr Gln Gln Lys Lys His Thr Asn Thr Gln Ile Thr Ile Thr Gln

Gln His Thr Pro Gln His Thr Thr Pro Pro Thr Pro His His Ser 50 55

Thr Pro Pro His Asn Thr Thr Pro Ala Pro Pro Pro His Thr Pro Ala 70

Pro Pro Thr Thr Arg Pro Thr Thr Pro Pro Pro Thr His Thr His Thr

Pro Thr Thr His Thr His Pro Pro Gln His Pro Pro Thr Pro Thr Thr 100 105

194

Thr Thr Pro Pro His His Ala Pro Thr Pro His Thr Pro Pro Pro Thr 125

Thr Pro Pro Arg Pro Pro Thr Thr His Thr His Thr Pro Pro His Pro 135

Pro Thr Pro Pro Pro Leu Pro Thr Thr Thr Pro His Pro Thr Ser His 150 155

Ser Thr Leu Ser Pro His His Pro His Ser Thr Thr Ser Ser Leu Pro 170

Ser Thr His Asn Asn Ile Thr Asn Thr Pro Pro Ala His Thr Leu Thr 185

Pro His Thr Ser 195

<210> 225

<211> 92 <212> PRT

<213> Homo sapien

<400> 225

Met Thr Ser Leu Pro Glu Gly Pro Arg Ala Ser Glu Asp Gly Ala Thr 5

Pro Glu Ala Gly Gly Phe Thr Asn Ser Ser His Leu Tyr Arg Arg Pro 20

Ala Arg Cys Gln Ala Cys Trp Gln Ala Gln Gly Lys Ala His Ser Thr

Ser Arg His Gly Pro Cys Ser His Gly Ala Tyr Ser Leu Ala Arg Gln

Thr Arg Asn Lys Lys Leu Gln Ser Ser Val Glu Val Cys Arg Val Val 65

Gly Tyr Ser Asp Leu Ala Leu Tyr Thr His Phe Ala 85

<210> 226

<211> 42

<212> PRT <213> Homo sapien

195

<400> 226

Met Lys Ile Tyr Gly Ser Val Phe Gln Asn Asp Glu Glu Phe Gln Asp 1 5 10 15

Gly Gly Ser Gly Lys Ile Leu Leu Gln Glu Lys Ser Val Leu Gly Pro 20 25 30

Met Cys Lys His Leu Leu Arg Asn Leu Glu

<210> 227

<211> 57

<212> PRT

<213> Homo sapien

<400> 227

Met Leu Ser Gln Arg Tyr Arg Lys Val Leu Leu Gly Pro Ser Val Thr 1 5 10 15

Leu Ser Phe His Ile Pro Thr Leu His Arg Pro Ser Leu Gln Leu Pro 20 25 30

Ala Pro Ala Pro His Cys Arg Ser Pro Gly Phe Cys Leu Glu Leu Asn 35 40 45

Glu Glu Met Gly Pro Leu Ala Leu Ala 50 55

<210> 228

<211> 205

<212> PRT

<213> Homo sapien

<400> 228

Gln Gln Gly Lys Leu Val Ala Asp Ser Ala Lys His Leu Gly Leu Lys
1 10 15

His Val Val Tyr Ser Gly Leu Glu Asn Val Lys Arg Leu Thr Asp Gly 20 25 30

Lys Leu Glu Val Pro His Phe Asp Ser Lys Gly Glu Val Glu Glu Tyr 35 40 45

Phe Trp Ser Ile Gly Ile Pro Met Thr Ser Val Arg Val Ala Ala Tyr 50 55 60

WO 02/068633

196

Phe Glu Asn Phe Leu Ala Ala Trp Arg Pro Val Lys Ala Ser Asp Gly

PCT/US01/43612

Asp Tyr Tyr Thr Leu Ala Val Pro Met Gly Asp Val Pro Met Asp Gly 90

Ile Ser Val Ala Asp Ile Gly Ala Ala Val Ser Ser Ile Phe Asn Ser 105

Pro Glu Glu Phe Leu Gly Lys Ala Val Gly Leu Ser Ala Glu Ala Leu

Thr Ile Gln Gln Tyr Ala Asp Val Leu Ser Lys Ala Leu Gly Lys Glu 135

Val Arg Asp Ala Lys Ile Thr Pro Glu Ala Phe Glu Lys Leu Gly Phe

Pro Ala Ala Lys Glu Ile Ala Asn Met Cys Arg Phe Tyr Glu Met Lys 165 170

Pro Asp Arg Asp Val Asn Leu Thr His Gln Leu Asn Pro Lys Val Lys 185 180

Ser Phe Ser Gln Phe Ile Ser Glu Asn Gln Gly Ala Phe 200

<210> 229

<211> 46

<212> PRT

<213> Homo sapien

<400> 229

Met Lys Lys Lys Val Leu Ser Ile Ile Cys Ile Ile Gly Ile His Met 5

Ser Leu His Lys Met Phe Asn Leu Lys Glu Ile Pro Leu Ile Leu Tyr 20

Val Leu Leu Ser Val Val Cys Phe Ser Phe Leu Ile Leu Ser 40

<210> 230

<211> 53

197

<212> PRT

<213> Homo sapien

<400> 230

Val Ala Gln Ala Gly Val Gln Trp Arg Asn Ala Asn Ser Leu Gln Pro 10

Ala Pro Ser Trp Leu Lys Gln Ala Leu His Leu Ser Pro Leu Ser Ser

Ala His Tyr Arg His Thr Pro Pro His Pro Ala Asn Phe Phe Glu Phe

Leu Glu Thr Gly Phe 50

<210> 231 <211> 30 <212> PRT <213> Homo sapien

<400> 231

Met Gly Gln Val Gly Val Arg Gly Pro Gly Glu Val Arg Ala Leu Ser

Ser Lys Leu Ser Tyr Cys His Val Phe Val Pro Arg Arg Asp

<210> 232

<211> 39

<212> PRT

<213> Homo sapien

<400> 232

Met Val Phe Leu Gly Glu Leu Lys Thr Phe Ser Leu Val Ser Val Asn

Gln Arg Ala Phe Ser Leu Phe Leu Leu Leu Ile Pro Ser Ser Pro Val 25 20

Asn Tyr Phe Ser Phe His Trp 35

<210> 233

<211> 107

<212> PRT

<213> Homo sapien

198

WO 02/068633 PCT/US01/43612

<400> 233

Phe Phe Phe Leu Leu Leu Phe Cys Asp Ser Leu Ala Leu Ser Pro 1 5 10 15

Arg Leu Gln Cys Ser Gly Thr Ile Ser Ala His Cys Asn Leu Cys Leu 20 25 30

Leu Gly Ser Ser Asn Ser Pro Val Ser Ala Ser Trp Val Ala Gly Thr 35 40 45

Thr Gly Ala Cys His His Ala Trp Leu Thr Phe Val Phe Leu Val Glu 50 55 60

Thr Gly Phe His His Val Gly Gln Ala Gly Leu Glu Phe Leu Thr Ser 65 70 75 80

Gly Asp Pro Pro Ala Leu Ala Ser Gln Ser Ala Glu Ile Thr Gly Val 85 90 95

Ser His Arg Ala Trp Pro Val Cys Phe Phe Asn 100 105

<210> 234

<211> 57

<212> PRT

<213> Homo sapien

<400> 234

Met Cys Ile Ile Leu Ser Ala His Ala Val Leu Gln Ala Ser Val Pro 1 5 10 15

Leu Ala Val His Val Ser Pro His Ala Arg Ala Gly Pro Ser Trp Ser 20 25 30

Ala Leu Val Ser Lys Trp Val Tyr Ala Glu Ala Asp Phe Gln Ser Val 35 40 45

Ser Cys Pro Pro Ile Gln His Ser Arg 50 55

<210> 235

<211> 50

<212> PRT

<213> Homo sapien

WO 02/068633

199

<400> 235

Met Lys Val Pro Ala Tyr Ile Asn His Leu Ala Arg Trp Trp Glu Ile 10

PCT/US01/43612

Leu Cys Ser Ser Asn Val Leu Leu Val Leu Gly Arg Asp Gly Ala His

Ser Gly Ala Lys Glu Asp Lys Lys Ser Met Gln Asn Leu Ser Leu Leu 40

Met Ala 50

<210> 236

<211> 44

<212> PRT

<213> Homo sapien

<400> 236

Met His Asn Trp Asp Cys Trp Asn Gly Pro Arg His Thr Thr Ala Gly 10 5

His Cys His Gln Glu Gly Ala Cys Val Leu Glu Gly Ser Gly Gln His

Arg Leu Ala Asn Leu Glu Gly Ser Gln Arg Asp Ser

<210> 237

<211> 146 <212> PRT <213> Homo sapien

<400> 237

Met Gly Ala Arg Val Pro His Ala Ala Asp Gly Pro Ser Gln Val Glu 10

Leu Pro Gly Val Gln Ser Gly Ser Pro Leu Ala Asp Leu Met Leu Ser

Asp Arg Trp Asp Lys Phe Phe Cys His Ser Ala Gly Leu Cys Pro Glu 40

Ala Ser Leu Leu Ala Gly Cys Ala His Ala Trp Glu Lys Ala Trp Ala

200

Val Asn Tyr Gly His Thr Cys Ser Leu Cys Gly His Cys Ser Pro Ala

Pro Ile Pro Ile Pro Pro His Pro Thr His Pro Asn Thr His Thr Pro 90

Arg Pro Gln Thr Pro Thr Pro Thr Pro His Pro Pro Thr Pro Thr 105 110

Pro Pro His Pro Pro Gln His Pro His Pro Arg Pro Pro Pro Thr Ser

Thr His Pro Pro Thr His Asn Thr Pro His Thr His His Gln His 135

His His 145

<210> 238 <211> 47 <212> PRT <213> Homo sapien

<400> 238

Met Tyr Arg Gln Tyr Gly Pro Trp Cys Thr Asn Ala Ala Ser Gly Arg

Arg Asp Val Met Asp Gly Arg Gly Arg Gly Thr Phe Asn Pro Ser Ser

Pro Phe Pro Pro Ser Gly Ala Ser Tyr Glu Ile Ser Val His Phe

<210> 239 <211> 91

<212> PRT

<213> Homo sapien

<400> 239

Met Val Lys Ile Ser Phe Gln Pro Ala Val Ala Gly Ile Lys Gly Asp

Lys Ala Asp Lys Ala Ser Ala Ser Ala Pro Ala Pro Ala Ser Ala Thr 20 . 25

201

Glu Ile Leu Leu Thr Pro Ala Arg Glu Glu Gln Pro Pro Gln His Arg 35 40 45

Ser Lys Arg Gly Gly Ser Val Gly Gly Val Cys Tyr Leu Ser Met Gly 50 55 60

Met Val Val Leu Leu Met Gly Leu Val Phe Ala Ser Val Tyr Ile Tyr 65 70 75 80

Arg Tyr Phe Phe Leu Ala Gln Leu Ala Arg Asp 85 90

<210> 240

<211> 188

<212> PRT

<213> Homo sapien

<400> 240

Met Arg Leu Val Gly Gly Val Gly Ser Phe Arg Leu Gly Gly Val Gly 1 5 10 15

Cys Gly Gly Gly Gly Gly Ala Gly Ala Gly Ser Trp Val Trp Met 20 25 30

Gly Gly Trp Gly Gly Gly Ala Gly Ala Leu Trp Val Ala Val Val Gly 35 40 45

Gly Ala Arg Trp Trp Gly Gly Ala Gly Trp Gly Ser Cys Gly Arg Val 50 55 60

Leu Val Gly Gly Arg Ala Val Val Gly Arg Val Gly Val Val Gly 65 70 75 80

Trp Gly Trp Trp Arg Val Val Ala Gly Cys Val Cys Gly Gly Gly 85 90 95

Trp Arg Trp Trp Arg Ala Gly Val Gly Gly Gly Gly Ala Val Ser 100 105 110

Gly Pro Ser Gly Ala Gly Pro Gly Arg Arg Cys Ser Met Val Glu Arg 115 120 125

Arg Arg Gly His Val Gly Ser Gly Gly Trp Ala Gly Arg Pro Gly Val 130 135 140

202

Val Gly Val Trp Ala Arg Cys Val Leu Val Ala Gly Ala Val Trp Arg 145 150 155 160

Arg Gly Gly Ala Val Trp Glu Trp Arg Gly Leu Gly Cys Gly Ala Trp
165 170 175

Cys Val Gly Arg Ser Trp Gly Glu Cys Gly Gly Arg

<210> 241

<211> 110

<212> PRT

<213> Homo sapien

<400> 241

Met Lys Leu Thr Leu Ser Glu Val Lys Met Glu Val Ile Gly Val Pro 1 5 10 15

Trp Arg Asn Gly Ser His Cys Phe Ile Ser Ile Thr Pro Gln Leu Lys 20 25 30

Phe Thr Pro Val Ser Gly His Lys Asn Met Arg Lys Glu Pro Cys Cys 35 40 45

Phe His Lys Gly Asn His Ser Ser Leu Ser Pro Leu Leu Ile Asn Leu 50 55 60

Lys Ser Trp Thr Pro Ser Phe Leu His Trp Pro Arg Pro Thr Leu Thr 65 70 75 80

His Leu Glu Pro Leu Phe Arg Ala Glu Trp His Glu Tyr Val Tyr Leu 85 90 95

Gly Arg Asp Gln Ser Ile Thr Gln Arg Arg Leu Glu Gln His
100 105 110

<210> 242

<211> 102

<212> PRT

<213> Homo sapien

<400> 242

Met Pro Ser Leu Pro Thr Arg Ser Leu Leu Ser Pro Cys Val Leu Glu
1 5 10 15

Leu Glu Glu Leu Thr Cys Ala Leu Cys Thr Trp Ala Phe Leu Leu Leu

203

25 30 20

Cys Leu Ala Leu Val Ala Asp Cys Pro Gly Leu Arg Gln Val Ile Pro 40

Gly Lys Gln Val Phe Val Leu Phe Ser Met Ser Gly Gly Arg Phe Ile 55

Leu Leu Ser Val Ser Ser His Phe Pro Ile Pro Phe Lys Lys Leu Trp

Pro Ala Gln Gly Arg Ala Leu Ser Cys Cys Ile Thr Ala Glu Pro Thr 85 90

Cys Pro His Ala Leu Leu 100

<210> 243 <211> 86 <212> PRT <213> Homo sapien

<400> 243

Leu Ala Val Ser Leu Cys His Gln Ala Gly Val Gln Trp Cys Asn Pro

Gly Ser Leu Gln Pro Pro Pro Pro Gly Phe Lys Arg Phe Phe Cys Leu 25

Cys Leu Pro Ser Ser Trp Gly Tyr Arg His Thr Pro Pro Arg Pro Ala 40

Asn Phe Cys Val Phe Gly Arg Asp Gly Val Ser Pro Cys Trp Pro Gly

Trp Ser Leu Ser Leu Asp Val Ile Cys Asp Pro Pro Arg Gln Pro Pro

Lys Val Leu Gly Leu Gln

<210> 244

<211> 53

<212> PRT

<213> Homo sapien

PCT/US01/43612 WO 02/068633

204

<400> 244

Met Leu Leu Pro Phe Ala Val Arg Gly Leu Leu Thr Met Ala Arg Gly 10

Asp Val Ser Glu Ile Gln Val Val Val Ala Ser Trp Ser Thr Gln Leu

Ala His Met Gln Glu Glu Gly Leu Trp Pro Leu Ser Arg Ala Gly Gly

Leu Leu Pro Gln Ala 50

<210> 245

<211> 183 <212> PRT

<213> Homo sapien

<400> 245

Leu Thr Pro Ala Gly Val Pro Trp Cys His Leu Gly Ser Leu Gln Pro 5

Leu Pro Pro Arg Phe Lys Ala Val Phe Ser Arg Leu Ala Pro Ser Leu

Glu Tyr Ala Trp Asp Tyr Arg Ala Pro Thr Ser His Ala Arg Leu Ile 35 40

Ser Leu Ala Phe Leu Val Glu Thr Gly Phe Ser Pro Thr Val Ala Arg

Leu Val Ser Asn Ser Trp Pro Pro Val Val Arg Pro Pro Leu Pro Ser 70 65 75

Gln Ser Ala Gly Ile Thr Gly Val Gly Pro Pro Cys Leu Ala Arg Pro 85

Ile Leu Pro Pro His Pro Phe Phe Phe Phe Asp Met Glu Ser His

Ala Ile Thr Gln Ala Gly Val Gln Trp Arg His Leu Gly Ser Leu Gln

Pro Pro Pro Pro Met Phe Lys Ala Ser Ser Cys Leu Ser Leu Leu Ser 130 135 140

Ser Trp Asp Tyr Arg Arg Pro Pro Pro Arg Pro Ala Ile Phe Cys Ile 150 155

Phe Ser Arg Asp Gly Val Ser Pro Cys Ala Pro Gly Trp Ser Arg Ser 165 170

Pro Asp Leu Thr Pro Asp Leu 180

<210> 246

<211> 12

<212> PRT

<213> Homo sapien

<400> 246

Met Ala Pro Asp Thr Asn Thr Phe Leu His Pro Phe 1 5

<210> 247 <211> 240 <212> PRT <213> Homo sapien

<400> 247

Met Gly Asn Cys Gln Ala Gly His Asn Leu His Leu Cys Leu Ala His

His Pro Pro Leu Val Cys Ala Thr Leu Ile Leu Leu Leu Gly Leu

Ser Gly Leu Gly Leu Gly Ser Phe Leu Leu Thr His Arg Thr Gly Leu

Arg Ser Pro Asp Ile Pro Gln Asp Trp Val Ser Phe Leu Arg Ser Phe

Gly Gln Leu Thr Leu Cys Pro Arg Asn Gly Thr Val Thr Gly Lys Trp 70

Arg Gly Ser His Val Val Gly Leu Leu Thr Thr Leu Asn Phe Gly Asp 90

Gly Pro Asp Arg Asn Lys Thr Arg Thr Phe Gln Ala Thr Val Leu Gly

206

Ser Gln Met Gly Leu Lys Gly Ser Ser Ala Gly Gln Leu Val Leu Ile 115 120 125

Thr Ala Arg Val Thr Thr Glu Arg Thr Ala Gly Thr Cys Leu Tyr Phe 130 135 140

Ser Ala Val Pro Gly Ile Leu Pro Ser Ser Gln Pro Pro Ile Ser Cys 145 150 155 160

Ser Glu Glu Gly Ala Gly Asn Ala Thr Leu Ser Pro Arg Met Gly Glu 165 170 175

Glu Cys Val Ser Val Trp Ser His Glu Gly Leu Val Leu Thr Lys Leu 180 185 190

Leu Thr Ser Glu Glu Leu Ala Leu Cys Gly Ser Arg Leu Leu Val Leu 195 200 205

Gly Ser Phe Leu Leu Phe Cys Gly Leu Leu Cys Cys Val Thr Ala 210 215 220

Met Cys Phe His Pro Arg Arg Glu Ser His Trp Ser Arg Thr Arg Leu 225 230 235 240

<210> 248

<211> 75

<212> PRT

<213> Homo sapien

<400> 248

Met Arg Arg Ala Val Ala Ser Val Met Tyr Arg Trp Ser Arg Pro Arg 1 5 10 15

Tyr Thr Gln Glu Ala Arg Arg Tyr Phe Phe Phe Ser Glu Leu Ser Pro 20 25 30

Gly Ser Lys Gly Glu Ala Met Gly Asp Pro Gly Met Val Leu Ala Ser 35 40

Gly Gly Cys Phe Leu Val Thr Gly Val Ser Ser Lys Gln Asn Gly Ile 50 60

Arg Met Lys Arg Gly Lys Gly Met Gly His Lys 65 70 75

PCT/US01/43612 WO 02/068633

<210> 249 <211> 594 <212> PRT

<213> Homo sapien

<400> 249

Val Pro Gly Arg Lys Leu His Arg Ser Arg Leu Gln Ala Ala Pro

Arg Pro Ser Thr Cys Ala Gln Ser Leu Cys Trp Ser Arg Pro Pro Ala

Ala Gly Thr Gly Thr Gly Asp Pro Ser Gln Ser Lys Ala Pro Thr Met

Ala Met Gly Leu Phe Arg Val Cys Leu Val Val Val Thr Ala Ile Ile 55

Asn His Pro Leu Leu Phe Pro Arg Glu Asn Ala Thr Val Pro Glu Asn

Glu Glu Glu Ile Ile Arg Lys Met Gln Ala His Gln Glu Lys Leu Gln

Leu Glu Gln Leu Arg Leu Glu Glu Glu Val Ala Arg Leu Ala Ala Glu 105

Lys Glu Ala Leu Glu Gln Val Ala Glu Glu Gly Arg Gln Gln Asn Glu

Thr Arg Val Ala Trp Asp Leu Trp Ser Thr Leu Cys Met Ile Leu Phe

Leu Met Ile Glu Val Trp Arg Gln Asp His Gln Glu Gly Pro Ser Pro 150

Glu Cys Leu Gly Gly Glu Glu Asp Glu Leu Pro Gly Leu Gly Gly Ala

Pro Leu Gln Gly Leu Thr Leu Pro Asn Lys Ala Thr Leu Gly His Phe 185

Tyr Glu Arg Cys Ile Arg Gly Ala Thr Ala Asp Ala Ala Arg Thr Arg 200

208

Glu Phe Leu Glu Gly Phe Val Asp Asp Leu Leu Glu Ala Leu Arg Ser 210 215 220

Leu Cys Asn Arg Asp Thr Asp Met Glu Val Glu Asp Phe Ile Gly Val 225 230 235 240

Asp Ser Met Tyr Glu Asn Trp Gln Val Asp Arg Pro Leu Leu Cys His
245 250 255

Leu Phe Val Pro Phe Thr Pro Pro Glu Pro Tyr Arg Phe His Pro Glu 260 265 270

Leu Trp Cys Ser Gly Arg Ser Val Pro Leu Asp Arg Gln Gly Tyr Gly 275 280 285

Gln Ile Lys Val Val Arg Ala Asp Gly Asp Thr Leu Ser Cys Ile Cys 290 295 300

Gly Lys Thr Lys Leu Gly Glu Asp Met Leu Cys Leu Leu His Gly Arg 305 310 315

Asn Ser Met Ala Pro Pro Cys Gly Asp Met Glu Asn Leu Leu Cys Ala 325 330 335

Thr Asp Ser Leu Tyr Leu Asp Thr Met Gln Val Met Lys Trp Phe Gln 340 345 350

Thr Ala Leu Thr Arg Ala Trp Lys Gly Ile Ala His Lys Tyr Glu Phe 355 360 365

Asp Leu Ala Phe Gly Gln Leu Asp Ser Pro Gly Ser Leu Lys Ile Lys 370 380

Phe Arg Ser Gly Lys Phe Met Pro Phe Asn Leu Ile Pro Val Ile Gln 385 390 395 400

Cys Asp Asp Ser Asp Leu Tyr Phe Val Ser His Leu Pro Arg Glu Pro 405 415

Ser Glu Gly Thr Pro Ala Ser Ser Thr Asp Trp Leu Leu Ser Phe Ala 420 425 430

Val Tyr Glu Arg His Phe Leu Arg Thr Thr Leu Lys Ala Leu Pro Glu 435 440 445

WO 02/068633

209

PCT/US01/43612

Gly Ala Cys His Leu Ser Cys Leu Gln Ile Ala Ser Phe Leu Leu Ser 455 450

Lys Gln Ser Arg Leu Thr Gly Pro Ser Gly Leu Ser Ser Tyr His Leu 465 475

Lys Thr Ala Leu Leu His Leu Leu Leu Leu Arg Gln Ala Ala Asp Trp 490 485

Lys Ala Gly Gln Leu Asp Ala Arg Leu His Glu Leu Leu Cys Phe Leu

Glu Lys Ser Leu Leu Gln Lys Lys Leu His His Phe Phe Ile Gly Asn 520

Arg Lys Val Pro Glu Ala Met Gly Leu Pro Glu Ala Val Leu Arg Ala 535

Glu Pro Leu Asn Leu Phe Arg Pro Phe Val Leu Gln Arg Ser Leu Tyr

Arg Lys Thr Leu Asp Ser Phe Tyr Glu Met Leu Lys Asn Ala Pro Ala 565 570

Leu Ile Ser Glu Tyr Ser Leu His Val Pro Ser Asp Gln Pro Thr Pro 580 585

Lys Ser

<210> 250

<211> 23 <212> PRT

<213> Homo sapien

<400> 250

Met Tyr Cys Ile Gly Gly Trp Ala Gly Pro Thr Leu Cys Tyr Val Lys . 10 5

Glu Leu Val Leu Val Leu Gly

<210> 251

<211> 213

210

<212> PRT

<213> Homo sapien

<400> 251

Ser Pro His Gln Ala Ala Ala Pro Val Asp Gln Thr Pro Arg Thr Leu 1 5 10 15

Ala Thr Met Gly Gln Arg Ala Leu Pro Ser Ser Leu Ala Leu Leu Ser 20 25 30

Arg Pro Leu Ser Pro Pro Pro Ala Ala Cys Ser Gly Asp Pro Gly Cys 35 40 45

Gly Ser Gly Ala Gly Leu Pro Ser Ala Ser Ala Ala Ala Gly Ile Ala 50 55 60

Ser Ser Ala Val Glu Ala Val Cys Gly Asp Ala Ala Pro Ala Cys Leu 65 70 75 80

Leu Arg Thr Pro Leu Arg Gly Leu Leu Lys Pro Thr Gly Pro Arg Ser 85 90 95

Thr Met Glu Cys Pro Pro Ala Leu Ile Val His Pro Pro Thr Gly Gly
100 105 110

Met Ala Arg Arg Ala Ala Ser Gln Pro Trp Ala Ala Ala Ser Ala Thr
115 120 . 125

Pro Met Leu Ser Ser Lys Ala Ser Leu Cys Ile Pro Thr Glu Arg Pro 130 135 140

Pro Pro Gln Pro Leu Met Arg Thr Pro Ala Ala Arg Ser His Trp Pro 145 150 155 160

Ile Pro His Pro Ala Ser Thr Ala Cys Pro Ala Pro Leu Pro Val Val 165 170 175

Leu Val Ala Pro Arg Ser Thr Ile Leu Ser Met Ser Arg Thr Trp Thr
180 185 190

Cys Arg Arg Trp Ala Val Ala Pro Cys Arg Ala Glu Lys Leu Met Cys 195 200 205

Ser Ser Ser Arg Ser 210

211

<210> 252

<211> 32

<212> PRT

<213> Homo sapien

<400> 252

Met His Glu Leu Thr Ala Arg Leu Thr Gln Pro Leu Asn Ser Gly Ser 1 5 10 15

Cys Phe Ser Leu Ala Ala Ile His His Met Arg Arg Arg Ser Met His 20 25 30

<210> 253

<211> 58

<212> PRT

<213> Homo sapien

<400> 253

Met Ser Leu Gln Leu Gln Ile Leu Asn Val Ser Pro Val Ile Trp His
1 5 10 15

Phe Arg His Ser Tyr Leu Lys Pro Gln Phe Ser Leu Pro Val Lys Trp
20 25 30

Gly Ile Ile Pro Ile Leu Pro Arg Leu Leu Lys Gly Leu Ser Glu 35 40

Leu Ile Cys Lys Met Leu Asn Arg Thr Gln 50

<210> 254

<211> 34

<212> PRT

<213> Homo sapien

<400> 254

Met Gly Ser Ala Phe Val Leu Leu Ser Trp Arg Ala Cys Leu Cys Cys

Arg Ala Val Ser Val Val Gly Ile Ala Leu Leu Phe Pro Ala Thr Gly 20 25 30

Gln Ile

212

<210> 255

<211> 74

<212> PRT

<213> Homo sapien

<400> 255

Lys Arg Phe Phe Phe Pro Ala Pro Ile Phe Cys Lys Thr Glu Val 10

Pro Glu His Arg Arg Ser Ser Ser Gln Ala Asn Phe Ile Lys Lys

Leu Glu Val Cys Phe Asp Phe Ala Val Ile Cys Phe Ile Thr Ser Ile

Phe Gly Glu Gln Pro Gln Leu Leu Ile Phe Met Glu Lys Tyr Phe Gln 50 55

Val Gln Gly Gln Tyr Ile Ser Gln Ser Glu

<210> 256 <211> 34 <212> PRT <213> Homo sapien

<400> 256

Met Ile Lys Val Cys Val Pro Ile Thr Phe Pro Leu Pro Glu Arg Arg

Val Ser Arg Lys Ile Asn Ser Ile Leu Asp Ala Gly Thr Ser Pro Arg 25

Pro Arg

<210> 257 <211> 37 <212> PRT <213> Homo sapien

<400> 257

Met Asn Ser Ser Asn Arg Arg Leu Phe Trp Lys Lys Ser Gln Gly Leu

Ser Pro Ser Trp Val Ala Pro Tyr Lys Ser Asn Ser Ser Ser Gly Ser 25 20

213

Leu Val Tyr Pro Leu 35

<210> 258

<211> 73

WO 02/068633

<212> PRT

<213> Homo sapien

<400> 258

Met Glu Phe Leu Leu Glu Val Glu Lys Tyr Asn Ile Ile Lys Lys

PCT/US01/43612

Asp Val Ile Pro Thr Arg Gly Leu Arg Gly Lys Leu Lys Asp Ile Lys 25

Gln Ser Asn Leu Val Ile Val Lys Thr Ile Tyr Val Gly His Arg Thr

Glu Asp Gln Val Ser Lys Glu Asp Gly Ser Val Pro Phe Val Ser Pro

Val Pro Lys Ala Val Phe Gly Ala Ser

<210> 259 <211> 1533 <212> PRT <213> Homo sapien

<400> 259

Met Tyr Ile Arg Val Ser Tyr Asp Thr Lys Pro Asp Ser Leu Leu His 10

Leu Met Val Lys Asp Trp Gln Leu Glu Leu Pro Lys Leu Leu Ile Ser

Val His Gly Gly Leu Gln Asn Phe Glu Met Gln Pro Lys Leu Lys Gln 40

Val Phe Gly Lys Gly Leu Ile Lys Ala Ala Met Thr Thr Gly Ala Trp

Ile Phe Thr Gly Gly Val Ser Thr Gly Val Ile Ser His Val Gly Asp 70

Ala Leu Lys Asp His Ser Ser Lys Ser Arg Gly Arg Val Cys Ala Ile Gly Ile Ala Pro Trp Gly Ile Val Glu Asn Lys Glu Asp Leu Val Gly 105 Lys Asp Val Thr Arg Val Tyr Gln Thr Met Ser Asn Pro Leu Ser Lys 115 120 Leu Ser Val Leu Asn Asn Ser His Thr His Phe Ile Leu Ala Asp Asn 135 Gly Thr Leu Gly Lys Tyr Gly Ala Glu Val Lys Leu Arg Arg Leu Leu 155 150 Glu Lys His Ile Ser Leu Gln Lys Ile Asn Thr Arg Leu Gly Gln Gly Val Pro Leu Val Gly Leu Val Val Glu Gly Gly Pro Asn Val Val Ser 185 Ile Val Leu Glu Tyr Leu Gln Glu Glu Pro Pro Ile Pro Val Val Ile 200 195 Cys Asp Gly Ser Gly Arg Ala Ser Asp Ile Leu Ser Phe Ala His Lys 210 215 Tyr Cys Glu Glu Gly Gly Ile Ile Asn Glu Ser Leu Arg Glu Gln Leu 235 240 230 225 Leu Val Thr Ile Gln Lys Thr Phe Asn Tyr Asn Lys Ala Gln Ser His 255 245 Gln Leu Phe Ala Ile Ile Met Glu Cys Met Lys Lys Glu Leu Val 270 260 265 Thr Val Phe Arg Met Gly Ser Glu Gly Gln Gln Asp Ile Glu Met Ala 280 275 Ile Leu Thr Ala Leu Leu Lys Gly Thr Asn Val Ser Ala Pro Asp Gln 290 Leu Ser Leu Ala Leu Ala Trp Asn Arg Val Asp Ile Ala Arg Ser Gln 305 310

Ile Phe Val Phe Gly Pro His Trp Thr Pro Leu Gly Ser Leu Ala Pro 330 Pro Thr Asp Ser Lys Ala Thr Glu Lys Glu Lys Lys Pro Pro Met Ala 345 340 Thr Thr Lys Gly Gly Arg Gly Lys Gly Lys Gly Lys Lys Lys Gly Lys 355 360 Val Lys Glu Glu Val Glu Glu Glu Thr Asp Pro Arg Lys Ile Glu Leu 375 Leu Asn Trp Val Asn Ala Leu Glu Gln Ala Met Leu Asp Ala Leu Val Leu Asp Arg Val Asp Phe Val Lys Leu Leu Ile Glu Asn Gly Val Asn Met Gln His Phe Leu Thr Ile Pro Arg Leu Glu Glu Leu Tyr Asn Thr 420 425 Arg Leu Gly Pro Pro Asn Thr Leu His Leu Leu Val Arg Asp Val Lys 435 440 Lys Ser Asn Leu Pro Pro Asp Tyr His Ile Ser Leu Ile Asp Ile Gly 455 Leu Val Leu Glu Tyr Leu Met Gly Gly Ala Tyr Arg Cys Asn Tyr Thr Arg Lys Asn Phe Arg Thr Leu Tyr Asn Asn Leu Phe Gly Pro Lys Arg 490 Pro Lys Ala Leu Lys Leu Leu Gly Met Glu Asp Asp Glu Pro Pro Ala 500 505 Lys Gly Lys Lys Lys Lys Lys Lys Lys Glu Glu Glu Ile Asp Ile Asp Val Asp Asp Pro Ala Val Ser Arg Phe Gln Tyr Pro Phe His Glu Leu Met Val Trp Ala Val Leu Met Lys Arg Gln Lys Met Ala Val Phe

Leu Trp Gln Arg Gly Glu Glu Ser Met Ala Lys Ala Leu Val Ala Cys Lys Leu Tyr Lys Ala Met Ala His Glu Ser Ser Glu Ser Asp Leu Val Asp Asp Ile Ser Gln Asp Leu Asp Asn Asn Ser Lys Asp Phe Gly Gln Leu Ala Leu Glu Leu Leu Asp Gln Ser Tyr Lys His Asp Glu Gln Ile Ala Met Lys Leu Leu Thr Tyr Glu Leu Lys Asn Trp Ser Asn Ser Thr 630 635 Cys Leu Lys Leu Ala Val Ala Ala Lys His Arg Asp Phe Ile Ala His Thr Cys Ser Gln Met Leu Leu Thr Asp Met Trp Met Gly Arg Leu Arg Met Arg Lys Asn Pro Gly Leu Lys Val Ile Met Gly Ile Leu Leu Pro Pro Thr Ile Leu Phe Leu Glu Phe Arg Thr Tyr Asp Asp Phe Ser Tyr Gln Thr Ser Lys Glu Asn Glu Asp Gly Lys Glu Lys Glu Glu Glu Asn 710 715 Thr Asp Ala Asn Ala Asp Ala Gly Ser Arg Lys Gly Asp Glu Glu Asn Glu His Lys Lys Gln Arg Ser Ile Pro Ile Gly Thr Lys Ile Cys Glu Phe Tyr Asn Ala Pro Ile Val Lys Phe Trp Phe Tyr Thr Ile Ser Tyr

Leu Gly Tyr Leu Leu Phe Asn Tyr Val Ile Leu Val Arg Met Asp

WO 02/068633

217

PCT/US01/43612

Gly Trp Pro Ser Leu Gln Glu Trp Ile Val Ile Ser Tyr Ile Val Ser 785 790 795 800

Leu Ala Leu Glu Lys Ile Arg Glu Ile Leu Met Ser Glu Pro Gly Lys 805 810 815

Leu Ser Gln Lys Ile Lys Val Trp Leu Gln Glu Tyr Trp Asn Ile Thr 820 825 830

Asp Leu Val Ala Ile Ser Thr Phe Met Ile Gly Ala Ile Leu Arg Leu 835 840 845

Gln Asn Gln Pro Tyr Met Gly Tyr Gly Arg Val Ile Tyr Cys Val Asp 850 855 860

Ile Ile Phe Trp Tyr Ile Arg Val Leu Asp Ile Phe Gly Val Asn Lys 865 870 870 875 880

Tyr Leu Gly Pro Tyr Val Met Met Ile Gly Lys Met Met Ile Asp Met 885 890 895

Leu Tyr Phe Val Val Ile Met Leu Val Val Leu Met Ser Phe Gly Val 900 905 910

Ala Arg Gln Ala Ile Leu His Pro Glu Glu Lys Pro Ser Trp Lys Leu 915 920 925

Ala Arg Asn Ile Phe Tyr Met Pro Tyr Trp Met Ile Tyr Gly Glu Val 930 935 940

Phe Ala Asp Gln Ile Asp Leu Tyr Ala Met Glu Ile Asn Pro Pro Cys 945 950 955 960

Gly Glu Asn Leu Tyr Asp Glu Glu Gly Lys Arg Leu Pro Pro Cys Ile 965 970 975

Pro Gly Ala Trp Leu Thr Pro Ala Leu Met Ala Cys Tyr Leu Leu Val 980 985 990

Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Val Phe Asn Asn Thr 995 1000 1005

Phe Phe Glu Val Lys Ser Ile Ser Asn Gln Val Trp Lys Phe Gln 1010 1015 1020

Arg	Tyr 1025	Gln	Leu	Ile	Met	Thr 1030	Phe	His	Asp	Arg	Pro 1035	Val	Leu	Pro
Pro	Pro 1040	Met	Ile	Ile	Leu	Ser 1045	His	Ile	Tyr	Ile	Ile 1050		Met	Arg
Leu	Ser 1055	Gly	Arg	Cys		Lув 1060		Arg	Glu	Gly	Asp 1065	Gln	Glu	Glu
Arg	Asp 1070	Arg	Gly	Leu	Lys	Leu 1075	Phe	Leu	Ser	Asp	Glu 1080		Leu	Lys
Arg	Leu 1085	His	Glu	Phe		Glu 1090		Суз	Val	Gln	Glu 1095	His	Phe	Arg
Glu	Lys 1100	Glu	Авр	Glu	Gln	Gln 1105	Ser	Ser	Ser	Asp	Glu 1110	Arg	Ile	Arg
Val	Thr 1115	Ser	Glu	Arg	Val	Glu 1120		Met	Ser		Arg 1125	Leu	Glu	Glu
Ile	Asn 1130	Glu	Arg	Glu	Thr	Phe 1135	Met	Lys	Thr	Ser	Leu 1140	Gln	Thr	Val
Asp	Leu 1145	Arg	Leu	Ala	Gln	Leu 1150		Glu	Leu	Ser	Asn 1155		Met	Val
Asn	Ala 1160		Glu	Asn		Ala 1165	Gly	Ile	qeA	Arg	Ser 1170	Asp	Leu	Ile
Gln	Ala 1175	Arg	Ser	Arg	Ala	Ser 1180	Ser	Glu	Сув	Glu	Ala 1185	Thr	Tyr	Leu
Leu	Arg 1190	Gln	Ser	Ser	Ile	Asn 1195	Ser	Ala	Asp	Gly	Tyr 1200	Ser	Leu	Tyr
Arg	Tyr 1205	His	Phe	Asn	Gly	Glu 1210	Glu	Leu	Leu	Phe	Glu 1215	Asp	Thr	Ser
Leu	Ser 1220	Thr	Ser	Pro	Gly	Thr 1225	Gly	Val	Arg	ГÀв	Lys 1230	Thr	Cys	Ser
Phe	Arg 1235	Ile	Гув	Glu	Glu	Lys 1240	Asp	Val	Lys	Thr	His 1245	Leu	Val	Pro

Glu Cys G 1250	Gln Asn	Ser Leu	His 1255		Ser	Leu	Gly	Thr 1260	Ser	Thr	Ser
Ala Thr I 1265	Pro Asp	Gly Ser	His 1270		Ala	Val	Asp	Asp 1275	Leu	Lys	Asn
Ala Glu G 1280	Glu Ser	Lys Lev	Gly 1285		Asp	Ile	_	Ile 1290	Ser	Lys	Glu
Asp Asp 0	3lu Arg	Gln Thr	Asp 1300	Ser	Lys	Lys	Glu	Glu 1305	Thr	Ile	Ser
Pro Ser I 1310	Leu Asn	Lys Thr	Asp 1315		Ile	His	-	Gln 1320	Asp	Lys	Ser
Asp Val 6	3ln Asn	Thr Glr	Leu 1330		Val	Glu	Thr	Thr 1335	Asn	Ile	Glu
Gly Thr 1	Ile Ser	Tyr Pro	Leu 1345		Glu	Thr		Ile 1350	Thr	Arg	Tyr
Phe Pro P	Asp Glu	Thr Ile	Asn 1360		Сув	Lys	Thr	Met 1365	ГЛв	Ser	Arg
Ser Phe N 1370	Val Tyr	Ser Arg	Gly 1375	-	Lys	Leu	Val	Gly 1380	Gly	Val	Asn
Gln Asp V 1385	Val Glu	Tyr Ser	Ser 1390		Thr	Asp		Gln 1395	Leu	Thr	Thr
Glu Trp G	Gln Cys	Gln Val	Gln 1405	ГЛа	Ile	Thr	Arg	Ser 1410	His	Ser	Thr
Asp Ile F 1415	Pro Tyr	Ile Val	Ser 1420	Glu	Ala	Ala	Val	Gln 1425	Ala	Glu	Gln
Lys Glu G 1430	31n Phe	Ala Asp	Met 1435	Gln	Asp	Glu	His	His 1440	Val	Ala	Glu
Ala Ile F 1445	Pro Arg	Ile Pro	Arg 1450	Leu	Ser	Leu	Thr	Ile 1455	Thr	Asp	Arg
Asn Gly M	Met Glu	Asn Leu	Leu	Ser	Val	Lys	Pro	qaA	Gln	Thr	Leu

PCT/US01/43612 WO 02/068633

220

1470 1465 1460

Gly Phe Pro Ser Leu Arg Ser Lys Ser Leu His Gly His Pro Arg 1480

Asn Val Lys Ser Ile Gln Gly Lys Leu Asp Arg Ser Gly His Ala 1495 1500

Ser Ser Val Ser Ser Leu Val Ile Val Ser Gly Met Thr Ala Glu 1510

Glu Lys Lys Val Lys Lys Glu Lys Ala Ser Thr Glu Thr Glu Cys 1525

<210> 260 <211> 92 <212> PRT <213> Homo sapien

<400> 260

Met Ile Ile Leu Val Val Gly Arg Ile Thr Arg Gly Asn Ala Leu Tyr

Ser Gln Glu Glu Cys Cys Val Cys Thr Thr Gln Leu Thr Thr Trp Val

Val Cys Ser Thr Leu His Cys Val Ser Ile Leu Trp Ser Val Arg Pro 40

Ser Leu Ser Glu Gly Gly Tyr Leu Pro Leu Ala Ala Ser Val Ser Ala . 55

Ala Ile Val Val Cys Phe Val Cys Val Cys Val Val Ser Cys His Asp

Ala Thr Ile Leu Leu Arg Ile Gly Asn Phe Gly Gly 85

<210> 261

<211> 66

<212> PRT

<213> Homo sapien

<400> 261

Met Glu Leu Leu Thr Asp Lys Gly Glu Ile Leu Asp Leu Glu Pro Phe

221

Pro Ala Ile Leu Leu Phe Ser Leu Cys Leu Gly Ser Trp Phe His Ser

Ala Arg His Glu Gly Pro Phe Gln Phe Asp Asp Ile Arg Leu Leu Thr 40

Leu Ser Trp Met Pro Cys Cys Leu Gln Gln His Asp Phe Thr Val Cys

Phe Ser

<210> 262

<211> 90 <212> PRT

<213> Homo sapien

<400> 262

Met Trp Asn Ile Pro Gly Leu Ala Gly Ala Met Pro Ala Met Gln Thr 5 10

Ser Pro Glu Pro Ser His Pro Gly Ser Val Arg Val Pro Arg Ala Val 20 25 30

Ala Pro His Pro Pro Pro Thr Gly Pro Cys Ser Trp Ser Cys Cys Asp 40

Ser Phe Ile Ile Pro Trp Ala Gly Val Gly Leu Ser Leu Cys Phe Cys 50 55

Leu Leu Phe Lys Glu Asp Glu Val Ser Met Glu Asn Lys Thr Asn Val 65

Val Thr Pro Ser Leu Arg Arg Val His Cys 85

<210> 263

<211> 13

<212> PRT

<213> Homo sapien

<400> 263

Met Ser Gly Gln Pro Arg Pro Thr Ser Pro Cys Val Leu 5

222

WO 02/068633

<210> 264 <211> 100 <212> PRT <213> Homo sapien

<400> 264

Phe Phe Leu Arg Trp Ser Leu Ala Gln Val Ala Gln Ala Arg Gln 10

PCT/US01/43612

Trp Leu Asn Leu Ser Ser Leu Gln Pro Pro Pro Pro Gly Phe Lys Arg

Phe Ser Cys Leu Gly Leu Leu Ser Ser Trp Asp Tyr Arg His Ala Pro

Pro Arg Pro Ala Ile Phe Val Phe Leu Val Glu Met Gly Phe His His

Ile Val Gln Ala Gly Leu Lys Pro Leu Thr Ser Gly Asp Leu Ala Thr 70

Ser Ala Phe Gln Ser Ala Glu Ile Ile Gly Val Ser His Cys Ala Gln 90

Pro Gln Lys Ser

<210> 265

<211> 10

<212> PRT

<213> Homo sapien

<400> 265

Met Lys Gly Lys Ile Leu Ile Phe Pro Ile 5

<210> 266

<211> 43

<212> PRT

<213> Homo sapien

<400> 266

Met Ser Pro Glu Pro Ser His Phe Ser Pro Pro Ala Pro Pro Ser Phe

Ser Pro Thr His Pro Ser Leu Pro Leu Thr Trp Ile Ser Ala Pro Ala

223

20 25 30

Ala Ser Pro Leu Pro Leu Leu Pro Thr Phe 35 40

<210> 267

<211> 124

<212> PRT

<213> Homo sapien

<400> 267

Met Val Phe Tyr Cys Ile Leu Phe Leu Gln Leu Ile Gln Phe Cys Met 1 5 10 15

Ser Phe Leu Ser Phe Leu Gly Glu Asn Ile Leu Cys Gln Leu Phe Ser 20 25 30

Thr Val Leu His Tyr Ile Leu Lys Gln Gly Cys Gln Leu Glu Thr Gln 35 40 45

Pro Ser Asp Tyr Lys Ala Gln Asn Val Thr Phe Asn Cys Ala Pro Pro 50 55 60

Gly Gly Leu Ala Leu Gly Lys Asp Gly Glu Arg Asn Ile Leu Arg Tyr 65 70 75 80

Glu His Phe Leu Phe Cys Leu Gln Cys Cys Asp Leu Val Gln Gln Leu 85 90 95

Gln Asn Cys Ser His Leu Asn Arg Cys Ser Phe Ser Phe Phe Thr Leu 100 105 110

Leu Tyr Lys Arg Leu Val Ser Gln Leu His Tyr His

<210> 268

<211> 67

<212> PRT

<213> Homo sapien

<400> 268

Met Pro Glu Phe His Pro His Ser Leu Glu Leu Phe Thr Tyr Ser Pro 1 5 10 15

Ser Gln Glu Leu Leu Asp Glu His Gln Glu Met Arg Phe Lys Tyr Asn 20 25 30

224

Thr Glu Lys Cys Ala Gln Ala Gly Tyr His Pro Cys Trp Asn Leu Ala 35 40 45

Leu Ala Asn Trp Ala Thr Arg Val Pro Ala Arg Ala Asp Pro Ser Gln 50 55 60

Ser Ala Gly

65

<210> 269

<211> 23

<212> PRT <213> Homo sapien

<400> 269

Met Thr Asp Leu Lys Glu Asn Ser Lys Ala Asp Leu Glu Asn Leu Leu 1 5 10 15

Leu Phe Leu Ser Pro Asn Pro 20

<210> 270

<211> 46

<212> PRT

<213> Homo sapien

<400> 270

Met Glu Asn Leu Ser Ser Ile Ser Glu Val Val Asn Ala Ile Ser Gly 1 5 10 15

Ile Gln Arg Leu Ala Val Lys Ser Ser Leu Gly Ser Leu Tyr Leu Thr 20 25 30

Phe Phe Leu Val Ser Ile Leu Lys Met Gln Ser His Ile Leu 35 40 45

<210> 271

<211> 15

<212> PRT

<213> Homo sapien

<400> 271

Met Thr Glu Glu Gly Glu Ser Leu Ser Gly Gln Ser Leu Gly Trp
1 5 10 15

225

<210> 272

<211> 46

<212> PRT

<213> Homo sapien

<400> 272

Met Pro Ser Ala Arg Met Ser Asp Gly Leu Val Ala Ala Glu Val Gln

Ser Pro Val Ile Phe Leu Phe Gly Pro Ile Trp Leu Leu Ile Leu Met

His Gln Asn Phe Met Tyr Asn His Met Asp Leu Tyr Val Asn

<210> 273 <211> 32 <212> PRT <213> Homo sapien

<400> 273

Met Gly Arg Ala Leu Pro Leu Ser Ala Ala Pro Ser Leu Ser Leu Cys

Leu Pro Ala Gln Lys Arg Trp Leu Trp Pro Arg Gly Ser Gly Arg Asp 25

<210> 274 <211> 224 <212> PRT <213> Homo sapien

<400> 274

Met Ala Val Gly Asn Ile Asn Glu Leu Pro Glu Asn Ile Leu Leu Glu 5 10

Leu Phe Thr His Val Pro Ala Arg Gln Leu Leu Leu Asn Cys Arg Leu

Val Cys Ser Leu Trp Arg Asp Leu Ile Asp Leu Val Thr Leu Trp Lys

Arg Lys Cys Leu Arg Glu Gly Phe Ile Thr Glu Asp Trp Asp Gln Pro

Val Ala Asp Trp Lys Ile Phe Tyr Phe Leu Arg Ser Leu His Arg Asn 75 70 65

226

Leu Leu His Asn Pro Cys Ala Glu Glu Gly Phe Glu Phe Trp Ser Leu 85 90 95

Asp Val Asn Gly Gly Asp Glu Trp Lys Val Glu Asp Leu Ser Arg Asp 100 105 110

Gln Arg Lys Glu Phe Pro Asn Asp Gln Val Arg Ser Gln Ala Arg Leu 115 120 125

Arg Val Gln Val Pro Ala Val Arg Ser Ala Pro Val Val Arg Ala Arg 130 135 140

Ala Ser Gly Asp Leu Pro Ala Arg Pro Gly Asp His Pro Ala Glu Glu 145 150 155 160

Arg Cys Gln Val Glu Gly Gly Leu Pro His Ile Leu Gln Leu Pro Ala 165 170 175

Arg Arg Pro Leu His Leu Val Ser Ala Arg Arg Arg Gly His Ser Leu 180 185 190

Leu Gly Arg Leu Val Arg Pro Glu Gly His Gln Gln His His His 195 200 205

Arg Ala Pro Ala Ala Leu Thr Pro Pro Glu Pro Pro Ser Ala Glu Pro 210 215 220

<210> 275

<211> 33

<212> PRT

<213> Homo sapien

<400> 275

Met Gly Gln Ala Thr Arg Tyr Tyr Ile Ile Asn Ile Leu Ser Gly
1 5 10 15

Lys Ile Ser Leu Phe Arg Ala Ile Arg Gln Val Ala Lys Asn Phe Ile 20 25 30

Leu

<210> 276

<211> 77

227

<212> PRT

<213> Homo sapien

<400> 276

Met Asn Gly Lys Thr Lys Val Glu Arg Asn Ile Leu Ser Tyr Ile Ile 1 5 10 15

Leu Gln Ile Lys Thr Phe Lys Asn Gln Ile Val Phe Leu Val Leu Arg
20 25 30

Thr Asn Arg Lys Cys Leu Ile Ile Tyr Phe Ile Ser Thr Arg Gln Lys
35 40 45

Tyr Ser Tyr Ala Ala Asp Val Arg Glu Gly Glu Phe Pro Gln Pro 50 55 60

Ser Met Lys Lys Asp Lys Gly Pro Tyr Pro Leu Ala Val 65 70 75

<210> 277

<211> 39

<212> PRT

<213> Homo sapien

<400> 277

Met Tyr Val Arg Ser Ile His Leu Lys Ser Met Val Gln Ile Ala Lys 1 5 10 15

Ile Gly Pro Gly Glu Thr Cys Ser His Phe Leu Lys Thr Cys Thr Ser 20 25 30

Ala Ala Asn His Ala Thr Pro

<210> 278

<211> 26

<212> PRT

<213> Homo sapien

<400> 278

Met Pro Ile Arg Leu Cys Val Cys Ala Arg Phe Leu Lys Thr Ala Asn 1 5 10 15

Tyr Ile Val Ser Ser Gln Met Ser Gly Phe 20 25

228

<210> 279

WO 02/068633

<211> 149 <212> PRT <213> Homo sapien

<400> 279

Met Leu Val Phe Ser Ala Gly Arg Leu Ala Cys Trp Arg Ala Val Cys 10

PCT/US01/43612

Trp Leu Gly Arg Cys Ala Cys Ala Ser Ser Arg Val Cys Leu Arg Leu

Val Leu Ser Trp Ser Arg Val Val Cys Phe Trp Trp Ser Phe Trp Leu 40

Phe Val Ser Val Val Cys Phe Val Phe Ser Cys Phe Val Ser Leu Leu 50 55

Cys Cys Cys Gly Val Arg Leu Tyr Phe Val Val Ser Trp Gly Val Phe 70 75

Phe Cys Asp Leu Leu Arg Cys Cys Tyr Asp Asn Val Cys Phe Ala His 85 90

Pro Thr Val Cys Phe Ser Ser Cys Pro Phe Phe Gly Val Leu Asn Tyr 100

Val Phe Phe Ile Leu Phe Pro His Trp Gly Val Cys Val Gly Gly Val 115

Val Pro Phe Ala Ala Val Phe Ser Gly Phe Phe Trp Ser Cys Pro Cys 130 135

Phe Val Ala Ala Arg 145

<210> 280

<211> 54

<212> PRT

<213> Homo sapien

<400> 280

Met Ile Leu Lys Gly Thr Leu Thr Ile Tyr Asn Lys Ser Phe Gln Tyr 10

Tyr Ser Ser Ser Leu Thr Ser Glu Ser Leu Val Tyr Val Ile Leu Ser

229

20 25 30

Arg Lys Lys Thr Thr Tyr Lys Ser His Phe Pro Thr Lys Leu Ile Gln 35 40 45

His Pro Thr Leu Lys Ile 50

<210> 281

<211> 114

<212> PRT

<213> Homo sapien

<400> 281

Val Ala Gly Ile Thr Gly Ile His His His Thr Gln Leu Phe Phe Cys
1 5 10 15

Ile Phe Val Arg Asp Arg Phe Leu His Val Gly Gln Ala Gly Leu Glu 20 25 30

Leu Pro Thr Ser Gly Asp Pro Pro Thr Ser Ala Ser Gln Ser Asp Asp 35 40 45

Phe Ile Phe Ile Phe Asn Cys Ile Asn Leu His Leu Asp Asn Asp Phe 50 55 60

Val Lys Gly Val Cys Cys Val Gln Asn Leu Arg Tyr Trp Leu Arg Val 65 70 75 80

Lys Tyr Ile Ile Phe Ile Cys Trp Val Ala Ser Ser Tyr Ala Ala 85 90 95

Phe Phe Leu Ser Thr Phe Ile Lys Ser Ser Phe Leu Lys Leu Phe Ile 100 105 110

Ile Phe

<210> 282

<211> 171

<212> PRT

<213> Homo sapien

<400> 282

Met Leu Phe Cys Ile Phe Thr Val Tyr Cys Phe Tyr Asn Lys Tyr Lys
1 10 15

Met Lys Met Phe Met Leu Thr Lys Arg Thr Lys Asn Asn Lys Gln Gln

Lys Thr Lys Gly Trp Gly Cys His Thr Cys Gly Pro Lys Ala Gly Phe 40

Pro Gly Gly His Leu Val Leu Ser Arg Pro His Asn Ser Pro Pro 55

Lys Tyr Tyr Arg Glu Thr Thr Gly Arg Thr Thr Gln His Thr Lys Arg

His Asn Thr Gln Asn His His Thr Ala Thr Pro Ala His Arg Arg Gln

Arg Thr Arg Arg Glu Gln Lys Glu Lys Gly Gln Gln Lys Lys Ala Ser

Ser Thr Ile Thr Thr Gln Ser His Asp Lys Lys Arg Arg Thr Met Thr 115 120 125

Lys Thr Ser Ser Ser Thr Arg His Arg Gln Asp Lys Ser Lys Lys Asp 135

Arg Thr Arg Gln Lys Thr Thr Arg Asp Glu Thr Thr Lys Lys Pro His 150

Lys Lys Ala Ser Glu Asn Lys Asn Gln Leu Thr 165

<210> 283

<211> 90 <212> PRT <213> Homo sapien

<400> 283

Met Asn Ala Thr Val Leu Ser Val Phe Lys Ala Lys Leu Leu Trp Lys

Leu Gly Gly Pro Pro Cys Gly Pro Pro Ala Ala Leu Cys Leu Pro

Leu Gly Ala Pro Glu Leu Met Pro Val Val Ile Ser Ala Met Leu Asp 40

Ala Arg Ser Gln Arg Ser Ala Ser Leu Ser Gln Leu Ala Cys Ala Ala 50 55 60

Leu Thr Trp Leu Pro Ala Val Leu Arg Asn Leu His Trp Trp Asp Lys 65 70 75 80

Gly Met Lys Arg Ile Asn Lys Asp Leu Lys 85 90

<210> 284

<211> 154

<212> PRT

<213> Homo sapien

<400> 284

Lys Glu Ala Pro Ser Ser Gln Asp Ile Leu Val Phe Leu Thr Gly Gln
1 5 10 15

Glu Glu Ile Glu Ala Met Ser Lys Thr Cys Arg Asp Ile Ala Lys His 20 25 30

Leu Pro Asp Gly Cys Pro Ala Met Leu Val Leu Pro Leu Tyr Ala Ser.
35 40 45

Leu Pro Tyr Ala Gln Gln Leu Arg Val Phe Gln Gly Ala Pro Lys Gly 50 55 60

Tyr Arg Lys Val Ile Ile Ser Thr Asn Ile Ala Glu Thr Ser Ile Thr 65 70 75 80

Ile Thr Gly Ile Lys Tyr Val Val Asp Thr Gly Met Val Lys Ala Lys
85 90 95

Lys Tyr Asn Pro Asp Ser Gly Leu Glu Val Leu Ala Val Gln Arg Val
100 105 110

Ser Lys Thr Gln Ala Trp Gln Arg Thr Gly Arg Ala Gly Arg Glu Asp 115 120 125

Ser Gly Ile Cys Tyr Arg Leu Tyr Thr Glu Asp Glu Phe Glu Lys Phe 130 140

Asp Lys Met Thr Val Pro Glu Ile Gln Arg 145 150

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 September 2002 (06.09.2002)

PCT

(10) International Publication Number WO 02/068633 A3

C12N 15/09, (51) International Patent Classification7: C12Q 1/68, G01N 33/574, C07K 14/47

San Jose, CA 95117 (US).

(21) International Application Number: PCT/US01/43612

(22) International Filing Date:

21 November 2001 (21.11.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/252,500

22 November 2000 (22.11.2000)

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

60/252,500 (CIP)

Filed on 22 November 2000 (22.11.2000)

(71) Applicant (for all designated States except US): DI-ADEXUS, INC. [US/US]: 343 Ovster Point Boulevard. South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MACINA, Roberto, A. [AR/US]; 4118 Crescendo Avenue, San Jose, CA 95136 (US). RECIPON, Herve [FR/US]; 85 Fortuna Avenue, San Francisco, CA 94115 (US). CHEN, Sei-Yu [-/US]; 160 Mira Street, Foster City, CA 94404 (US). SUN, Yongming [CN/US]; 551 Shoal Drive, Redwood City, CA 94065 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way, #14,

- (74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell P.C., 66 E. Main Street, Marlton, NJ 08053 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 27 March 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

(57) Abstract: The present invention relates to newly identified nucleic acids and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue, monitoring and identifying and/or designing and antagonists of polypeptide of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 01/43612

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/09 C12Q1/68 C07K14/47 G01N33/574 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12Q G01N C07K IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, EMBL, BIOSIS, MEDLINE, PAJ, WPI Data, SEQUENCE SEARCH C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1,2,4-8, X DATABASE EMBL [Online] 2 July 2000 (2000-07-02) DIAS NETO E. ET AL.: "QV0-HT0368-090200-099-d10 HT0368 Homo sapiens cDNA, mRNA sequence." retrieved from EBI Database accession no. BE156557 XP002204032 99.3% identity (100% ungapped) in 309 nt overlap (338-31:20-327) with SEQ ID NO:1. abstract -& EMANUEL DIAZ NETO ET AL: "SHOTGUN SEQUENCING OF THE HUMAN TRANSCRIPTOME WITH ORF EXPRESSED SEQUENCE TAGS" PNAS, vol. 97, no. 7, 28 March 2000 (2000-03-28), pages 3491-3496, XP000996193 the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. "P" document published prior to the International filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 07. 11. 2002 7 August 2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Schmitz, T

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/43612

		PC1/05 01/43012					
	Accontinuation) DOCUMENTS CONSIDERED TO BE RELEVANT ategory Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
Category °	Citation of document, with indication, where appropriate, of the relevant passages	helevals to Claim No.					
х	DATABASE EMBL [Online] 16 February 2000 (2000-02-16) PHILLIMORE, B.: "Human DNA sequence from clone RP11-427L15 on chromosome 10" retrieved from EBI Database accession no. AL139407 XP002204033 99.3% identity (100% ungapped) in 309 nt overlap (338-31:11807-12114) with SEQ ID NO:1. abstract	1,2,4-8					
Х,Р	WO 01 22920 A (HUMAN GENOME SCIENCES INC; ROSEN CRAIG A (US); BARASH STEVEN C (US) 5 April 2001 (2001-04-05) SEQ ID NO:969: 99.3% identity (100% ungapped) in 309 nt overlap (31-338:827-1134) with SEQ ID NO:1.	1-17					
A	WO 00 08206 A (MACINA ROBERTO A ;SUN YONGMING (CN); YANG FEI (CN); RECIPON HERVE) 17 February 2000 (2000-02-17) the whole document						
A	WO 99 60160 A (DIADEXUS LLC; SUN YONGMING (US); YANG FEI (US); MACINA ROBERTO A () 25 November 1999 (1999-11-25) the whole document						

International application No. PCT/US 01/43612

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	_
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Although claim 16 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	_
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; It is covered by claims Nos.: 1-17 all partially	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: claims 1-17 (all partially)

A nucleic acid molecule as defined by SEQ ID NO:1.

Further vectors and host cells comprising said nucleic acid sequence. Polypeptides encoded by said nucleic acid sequence, a method of producing said polypeptide, an antibody binding to said polypeptide. Methods for determining the presence of said nucleic acid or polypeptide in a sample. A kit, a vaccine and methods of treatment and diagnosis involving said nucleic acid or polypeptide.

Invention 2: claims 1-17 (all partially)

As subject 1, but referring to SEQ ID NO:2

Invention 3: claims 1-17 (all partially)

As subject 1, but referring to SEQ ID NO:3

Invention 164: claims 1-17 (all partially)

As subject 1, but referring to SEQ ID NO:164

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/US 01/43612

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0122920	A	05-04-2001	AU WO	7721500 A 0122920 A2	30-04-2001 05-04-2001
WO 0008206	Α	17-02-2000	EP JP WO	1104486 A1 2002522046 T 0008206 A1	06-06-2001 23-07-2002 17-02-2000
WO 9960160	A	25-11-1999	CA EP JP WO	2328138 A1 1082459 A1 2002515262 T 9960160 A1	25-11-1999 14-03-2001 28-05-2002 25-11-1999