ST 705 Linear models and variance components Homework problem set 3

January 24, 2023

1. Let V be a convex subset of some vector space. Recall that a function $f: V \to \mathbb{R}$ is said to be *convex* if for every $x, y \in V$ and every $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Show, by definition, that the sum of squared errors function

$$Q(\beta) := \|Y - X\beta\|_2^2$$

is convex.

- 2. Show that if $\operatorname{rank}(BC) = \operatorname{rank}(B)$, then $\operatorname{col}(BC) = \operatorname{col}(B)$, where $\operatorname{col}(\cdot)$ denotes the column space.
- 3. Let $A \in \mathbb{R}^{n \times p}$ with $\operatorname{rank}(A) = p$. Further, suppose $X \in \mathbb{R}^{n \times q}$ with $\operatorname{col}(X) = \operatorname{col}(A)$. Show that there exists a unique matrix S so that X = AS.
- 4. Show that the R^2 value for a simple linear regression can never achieve 1 if the observed data consists of repeated (different) observations of the response, y, at the same value of the predictor, x.
- 5. Suppose that the $m \times n$ matrix A has the form

$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

where A_1 is an $n \times n$ nonsingular matrix, and m > n. Define $A^+ := (A'A)^{-1}A'$, and prove that $||A^+||_2 \le ||A_1^{-1}||_2$.

- 6. Let $X \in \mathbb{R}^{n \times p}$, $u \in \mathbb{R}^n$, and $v \in \mathbb{R}^p$.
 - (a) Prove that

$$|u'Xv| \le \left(\max_{1 \le j \le p} \left\{ \sum_{i=1}^{n} |X_{i,j}| \right\} \right)^{\frac{1}{2}} \left(\max_{1 \le i \le n} \left\{ \sum_{i=1}^{p} |X_{i,j}| \right\} \right)^{\frac{1}{2}} \cdot ||u||_{2} \cdot ||v||_{2}.$$

(b)	Show that the Cauchy-Schwarz inequality is a special case of the inequality given in part (a).