Examen Final de Théorie des Graphes

Durée 1h003

Exercice 1. (9 pts)

1. Les équations représentant les contraintes de précédence. (2)

$$t_3 - t_1 \ge 5$$

 $t_4 - t_1 \ge 5$ et $t_4 - t_2 \ge 3$
 $t_5 - t_3 \ge 4$
 $t_6 - t_3 \ge 4$ et $t_6 - t_4 \ge 6$

Le graphe potentiel-tâches (1)

2. Les dates au plus tôt : (2)
$$t_1 = t_2 = 0$$
, $t_3 = 5$, $t_4 = 5$, $t_5 = 9$, $t_6 = 11$

La durée minimale du projet est : 16 jours (1)

- **3.** Le chemin 1,4,6 est critique, la tâche 5 n'est pas critique la diminution de sa durée n'implique pas de diminution de la durée du projet. Le chef de projet doit donc affecté des travailleurs à la tâche 6 (c'est une tâche critique) afin de diminuer sa durée et diminuer ainsi la durée du projet.
- S'il affecte 01 seul employé la durée du projet devient = 15 jours
- S'il en affecte 02, la durée du projet devient = 14 jours, le chemin 1, 3, 5 devient aussi critique
- S'il affecte 03 employés la durée du projet reste = 14 jours, même durée qu'avec 02 employés, il n'est donc pas nécessaire d'affecter 03 employés. (3)

Exercice2. (7 pts)

- **2.** Aucun des graphes n'admet de parcours Eulérien. En effet, ils ont tous plus de 02 sommets de degrés impairs. (1.5)
- 3. L'indice chromatique : (3)

On peut commencer par déterminer les bornes de l'indice chromatique $\gamma(G)$.

 $\gamma(G) \ge \text{ cardinal de la plus grande clique dans } G.$

Pour les deux graphes G_1 et G_3 la plus grade clique est d'ordre 2. $\gamma(G) \ge 2$.

Pour le graphe G_2 la plus grade clique est d'ordre 3, $\gamma(G_2) \ge 3$.

Pour les trois graphes G_1 , G_2 et G_3

$$\gamma(G) \le \Delta(G) + 1 = 3 + 1 = 4$$

$$2 \le \gamma(G_1) \le 4$$

$$3 \le \gamma(G_2) \le 4$$

$$2 \le \gamma(G_3) \le 4$$

L'application de l'algorithme de Welsh-Powell donne les colorations suivantes :

$$\gamma(G_1) = \gamma(G_3) = 2$$
$$\gamma(G_2) = 3$$

Ce qui correspond à la borne inférieure.

- **4.** Les deux graphes G_1 et G_3 sont des graphes bipartis leur indices chromatiques sont égaux à 2. Le graphe G_2 n'est pas un graphe biparti. (1.5)
- 1. Les graphes G_1 et G_2 ne sont pas isomorphes, de même G_2 et G_3 ne sont pas isomorphes G_1 et G_3 sont isomorphes. Il suffit de d'associer par exemple les sommets comme suit :

$$x_1 - y_1$$
, $x_2 - y_4$, $x_3 - y_3$, $x_4 - y_5$, $x_5 - y_6$, $x_6 - y_2$

On peut constater que s'il y a une arête entre un couple de sommets dans le graphe G_1 , il y a aussi une arête entre les sommets auxquels ils sont associés.

Exp: (x_1, x_2) est dans G_1 , (y_1, y_4) est dans G_3 . (1)

Exercice 3. (4 pts)

Démontrons d'abord que si un graphe G est une union de cliques alors si $\{x,y\}$ et $\{y,z\}$ sont dans E alors $\{x,z\}$ est aussi dans E.

 $\{x,y\}$ et $\{y,z\}$ sont dans E alors les 3 sommets x, y et z appartiennent à la même composante connexe et comme chaque composante connexe est une clique alors forcément les trois sommets sont reliés deux à deux $\Rightarrow \{x,z\}$ est aussi dans E. (2)

Pour démontrer la réciproque, on montre la contraposée, c-à-d que s'il existe une composante connexe *C* qui n'est pas une clique.

- C est d'ordre ≥ 3 ,
- *C* n'étant pas une clique, elle alors comporte au moins un couple de sommets qui ne sont pas reliés par une arête, soit *x* et *y* ces deux sommets. Ces deux sommets sont reliés par une chaîne. Considérons la plus courte chaîne reliant ces deux sommets.

Si cette chaîne est de longueur 2, soit x x'y cette chaîne, alors on a bien x x' qui est dans E et x'y qui est aussi dans E alors que x y n'est pas dans E. CQFD

Si elle est de longueur supérieure à 2 alors soit $x x_1 x_2 \dots x_k y$ cette chaîne, on peut constater que $x x_1$ est dans E et $x_1 x_2$ est aussi dans E mais $x x_2$ n'est pas dans E, car sinon $x x_2 \dots x_k y$ serait une chaîne plus courte. CQFD (2)