[CV-03] Data Centric 글자 검출 프로젝트

못해도 GEN찮아

팀원: 김준영, 신우진, 천지은, 전형우, 김승기

INDEX

- 1. 팀 목표
- 2. EDA
- 3. Data Relabeling
- 4. 실험
- 5. 앙상블
- 6. 협업 방식

1. 팀 목표

이번 프로젝트 팀의 목표

1.1 Team Goal

"데이터에 집중, 협업"

Annotation 가이드 작성, 재라벨링, 라벨링 검수

적극적인 의견 공유, 비판적 의견 제시하기

2. EDA

EDA

2.1 주어진 Dataset에 대한 EDA

01. Train Data 파악

구겨진 이미지

배경이 있는 이미지

종이에 노이즈가 있는 이미지

2.1 주어진 Dataset에 대한 EDA

01. Train Data 파악

가로 이미지

흐린 이미지

어두운 이미지

2.1 주어진 Dataset에 대한 EDA

01. Train Data 파악

3. Data Relabeling

데이터 Relabeling 파이프라인

3.1 Annotation Guide

01. Annotation Guide

Version

∷ Annotation	
폐기	글자 없음
폐기	모든 글자가 알아보기 어려움
폐기	외국어가 전체 글자 영역의 1/2 이상
제외	번짐, 가려짐, 뭉개짐으로 글자 파악 불가
박스	모든 글자가 최소한의 박스에 들어가야 함
박스	기본적으로 직사각형
박스	폰트 특성상 글자 크기 차이가 있다면 직사각형 변경 가능
박스	문장부호가 단독 주석된 경우 앞뒤 박스 높이 맞 추기
박스 분리	어절 단위의 띄어쓰기
박스 분리	자간이 너무 넓거나 애마한 경우 : 글자 가로폭 의 1/2 보다 넓으면 박스 분리
박스 분리	문장부호의 경우 바로 앞,뒤 글자 폭 기준 1/2

02. Relabel Using CVAT(UFO ↔ COCO)

UFO

```
"image_001.jpg": {
    "words": {
        "0": {
            "transcription": "E",
            "points": [[30,30],[134,30],[134,58],[30,58]],
            "orientation": "Horizontal",
            "language": "en",
            "tags": [],
            "confidence": 0.9900000095367432,
            "illegibility": false
             "transcription": "gilldong.hong@upstage.ai",
            "points": [[30,93],[61,93],[61,112],[30,112]],
            "orientation": "Horizontal",
            "language": "en",
            "tags": [],
            "confidence": 0.9900000095367432,
            "illegibility": false

    NAVER Connect Foundation
```

COCO

```
annotation{
image{
                                                "id"
                                                                  : int,
   "id"
                             : int.
                                                "image id"
                                                                  : int.
                                                "category_id"
                                                                  : int,
   "width"
                             : int.
                                                "segmentation"
                                                                  : RLE or [polygon],
   "height"
                            : int,
                                                "area"
                                                                  : float,
                                                 "bbox"
   "file name"
                            : str,
                                                                  : [x,y,width,height],
                                                "iscrowd"
                                                                  : 0 or 1,
   "license"
                             : int,
   "flickr url"
                             : str.
                                               categories[{
   "coco url"
                             : str,
                                                "id"
                                                                  : int,
   "date captured"
                                                "name"
                             : datetime,
                                                                  : str,
                                                "supercategory'
                                                                  : str,
```

- Categories와 기타 메타정보는 placeholder로 대체
- 포맷에 맞게 좌표 변환

points(UFO) -> bbox(COCO)로 변환 했으나,
 polygon의 vertices를 이용하는 segmentation으로 변환 시키는 게 더 쉬울 것으로 예상 됨

03. Relabel Using CVAT

• 앞에서 정한 annotation 가이드를 숙 지하고 relabeling 진행

• 팀원 5명에게 60장씩 분배

04. Relabel Using CVAT (Workspace)

• 하나의 작업 위에서 동시에 라벨링 해야 할 경우 Organization에서 팀원 초대 (무료는 3명까지)

• 프로젝트를 진행 할 때는 개인 workspace에서 진행한 경우가 많음!

05. Data Relabeling 파이프라인

- Inference에서 특수 case, 잘못 예측하는 부분에 대한 분석
- 주의 깊게 볼 케이스에 대한 가이드라인 재작성
- 일관되지 않은 라벨링이 보일 경우 가이드 교육 후 라벨링 작업 재분배

4. 실험

실험시간단축 데이터 Re-labeling 실험내용 4. Experiments

01. 실험 시간 단축

```
class SceneTextDataset(Dataset):
   def __init__(
       self,
       root_dir,
       split="train",
       num=3,
       image_size=1024,
       crop_size=512,
       color_jitter=True,
       normalize=True,
       if num == 0:
           pkl_dir = osp.join(root_dir, "ufo/{}.pickle".format(split))
       else:
           pkl_dir = osp.join(root_dir, "ufo/{}.pickle".format(split + str(num)))
       with open(pkl_dir, "rb") as fr:
           total = pickle.load(fr)
```

13~14분

6~7분

4. Experiments

02. Data Relabeling

4. Experiments

03. 실험 내용

실험

f1 score: 0.9546

베이스라인코드 Inference 결과 파악 seed: 1004 epoch: 150

배경을 검출하는 경우

배경 이미지만 있는 데이터셋을 이용 해 Fine-Tuning

QR 코드 검출하는 경우

- 항목별 설명, 일반사항 안내 Blur
- 해당하는 annotation 전부 삭제

• ?

5. Ensemble

앙상블

5. 앙상블

01. WBF 앙상블

기존 WBF F1 score 0.9664 -> 0.9498

• 한 모델에서 잘못 검출하는 경우가 있어도 다른 한 모델이 검출하지 않으면 결과에서 제거

• 앙상블 과정에서 bbox가 이전보다 더 정교해짐

5. 앙상블

01. WBF 앙상블

수정 후 WBF F1 score 0.9664 -> 0.9848

6. 협업 방식

협업 방식 소개

01. Git Convention

• Git Flow를 이용한 브랜치 전략

• Udacity convention 기반의 commit convention

02. Notion

- ▼ 오피스 아워 정리 (EAST 모델)
- 🖿 detect.py 코드분석
- 📢 JSON 파일 공유
- 🝱 CVAT 사용법
- 후 INFERENCE 분석
- Re-labeling
- COCO JSON
- № 외부 데이터셋
- Code

- ENSEMBLE
- **Q** EDA
- i OCR 대회 요약
- GitHub
- 🔳 기존 연구
- 👉 가이드 라인
- Augmentation
- Wrap-up report
- 목표
 - o Data-Centric 대회 답게 데이터를 최대한 만져보자.
- 추가 작업
 - 추가할 데이터 셋 찾기
- 기본 셋팅 값
 - o Optimizer
 - 종류 → Adam

• Notion에서 각자 실험, 작업한 내용 공유

End of Document Thank You.