Part III — Combinatorics

Based on lectures by B. Bollobás Summary created by Kaimyn Chapman-Brown Framework created by Dexter Chua

Michaelmas 2016

 $A\ brief\ summary\ of\ important\ ideas\ and\ results\ in\ the\ course$

Introduction 1

Notation and Terminology

Lecture 1

Notation. X, Y sets, then $\mathbb{P}(X)$ is the power set.

 $[n] = \{1, \dots, n\}, [m, n] = \{m, \dots, n\}$

Much of the time, |X| = n and X = [n] in this course Level sets: $X^{(r)} = \{A \in \mathbb{P}(X) : |A| = r\}, X^{(< r)} = \{A \in \mathbb{P}(X) : |A| < r\}$

 $X^{(\omega)} = \{ A \in \mathbb{P}(X) : A \text{ finite} \}$

If G is a graph, E(G) is its edge set, e(G) the number of edges, V(G) the vertex set and |G| the number of vertices. G may also be used to mean its vertex set

Definition (Set System). $\mathscr{A} \subset \mathbb{P}(X)$ is a **set system** or **family of sets** and can be identified with a bipartite graph $G_{\mathscr{A}}(U,W)$ with $U=\mathscr{A},W=\bigcup_{A\in\mathscr{A}}A$ or W=X.

Note that here the edge $Ax \in E(G_{\mathscr{A}}) \Leftrightarrow x \in A$. Basically, we're forming a bipartite graph where each vertex in one set is identified with the sets in \mathcal{A} , then each vertex in the other are just all the elements that appear in X.

Definition (Set of Distinct Representatives). Given $\mathscr{A} \subset \mathbb{P}(X)$, a set of distinct **representatives** (an SDR) is an injection $f: \mathcal{A} \to X$ s.t. $f(A) \in A \ \forall A \in \mathcal{A}$

If we look at the bipartite graph of an SDR as above, then we see that it corresponds to a complete matching $U \to W$ (i.e. ${\mathscr A}$ into all elements of X that ${\mathscr A}$ hits)

Theorem 1 (Hall, 1935). A set system \mathscr{A} has an SDR iff $\forall \mathscr{A}' \subset \mathscr{A}$:

$$\left| \bigcup_{A \in \mathscr{A}'} A \right| \ge \left| \mathscr{A}' \right|$$

If we look at a bipartite graph in the context of set systems, we see that every bipartite graph corresponds to a multiset of sets, giving us a reformulation of Hall:

Theorem 1 (Alternate Version). A bipartite graph G(U, W) has a complete matching iff, $\forall S \subset U$,

$$|\Gamma(S)| \ge |S| \tag{1}$$

Where $\Gamma(S)$ is the set of neighbours of S.

Proof 1. The necessary direction is trivial, so we look only at sufficiency.

Assume G is edge minimal w.r.t. (1). Here we look for a contradiction - suppose that G is not a matching, so we can find two edges out of one vertex in U - say uw_1 and uw_2 . Use minimality to get two sets S_1, S_2 in U with the same number neighbours as vertices and u is the only neighbour of w_i in S_i .

Then, use $|S_1 \cap S_2| \leq |\Gamma(S_1 \cap S_2)|$ and manipulate the RHS using conditions on the S_i and their intersection and minimality to get $|\Gamma(S_1 \cap S_2)| \leq |S_1 \cap S_2|$, so those two expressions are equal.

Then, delete u from $S_1 \cap S_2$ and look at that set's size (and the size of its neighbours) to get a contradiction.

Proof 2. The necessary direction is trivial, so we look only at sufficiency.

Assume G is edge minimal w.r.t. (1). Here we induct. Look at $\xi = \{E \subset U : |\Gamma(E)| =$ |E| > 0 $\neq \phi$.

Split into the cases about whether or $\exists E \in \xi$ where $E \neq U$. If it exists, then form the sub-graphs from $H = E \cup \Gamma(E)$ and $G \setminus H$ - both satisfy (1) so done by induction. Otherwise, pick an edge uw - then $G \setminus \{u, w\}$ satisfies (1) so add back u and w and we're done.

Corollary 2. G(U, W) bipartite, $d(u) \ge d(w) \ \forall u \in U, w \in W$. Then \exists a complete matching $U \to W$.

Proof. Pick $d(u) \ge d \ge d(w)$, look at a general $S \subset U$ to get $d|S| \le e(S, \Gamma(S)) \le d|\Gamma(S)|$

Lecture 2

Definition ((r, s)-regular). A bipartite graph G(U, W) is (r, s)-regular if d(u) = r and $d(w) = s \quad \forall u \in U, \ \forall w \in W$

Note that r|U| = e(G) = s|W| and that Corollary 2 implies that G(U, W) being (r, s)-regular gives us a complete matching from U to W if $|U| \le |W|$

Corollary 3. Let $0 \le i, j \le n$, with $\binom{n}{i} \le \binom{n}{j}$. Then \exists a complete matching $f: [n]^{(i)} \to [n]^{(j)}$ s.t. $f(A) \subset A$ if $j \le i$ and $f(A) \supset A$ if $i \le j$.

Theorem 4. Let G = G(U, W) be a connected (r, s)-regular graph. Then, for $\phi \neq A \subset U$,

$$\frac{|\Gamma(A)|}{|W|} \ge \frac{|A|}{|U|}$$

With equality iff A = U

Proof. Use $r|A| = e(A, \Gamma(A)) \le s|\Gamma(A)|$ and divide by |W| to get the result (noting r|U| = s|W|). If equality holds, then all edges out of $\Gamma(A)$ go into A, so A = U or the else graph is disconnected.

Definition (Partially Ordered Set). A **partially ordered set**, or **poset** is a set with a binary relation \leq that satisfies reflexivity $(a \leq a)$, antisymmetry $(a \leq b, b \leq a \Rightarrow a = b)$ and transitivity $(a \leq b, b \leq c \Rightarrow a \leq c)$

Definition (The Cube). We define **the cube**: $Q^n \cong \mathbb{P}(n) \cong [2]^n \cong$ the set of all 0-1 sequences.

Remarks. – Q^n can be considered as a graph - AB is an edge iff $|A\Delta B| = 1$ (look at an n dimensional cube with vertices containing all coordinates with 0 or 1 and put $j \in A$ if $x_j = 1$)

- It is also a poset via A < B if $A \subset B$
- Q^n has a natural orientation: \overrightarrow{AB} if $A = B \cup \{a\}$
- For the order induced on Q^n , see Dilworth's Theorem

2 Sperner Systems

Definition (Sperner). A set system $\mathscr{A} \subset \mathbb{P}(n)$ is **Sperner** if $A, B \in \mathscr{A}$, $A \neq B \Rightarrow A \not\subset B$. That is no two non-equal sets in \mathscr{A} contain each other.

The simplest example of Sperner sets are the level sets, $X^{(r)}$

Definition (Chain). In a poset, a **chain** is a linearly ordered set, $c_1 < c_2 < \cdots < c_m$

Definition (Antichain). In a poset, an ${\bf antichain}$ has no two elements that are comparable.

A set-system being Sperner is the same as being an antichain with the operation ⊆.

Theorem 1 (Sperner, 1928). If $\mathscr{A} \subset \mathbb{P}(n)$ is Sperner, then $|\mathscr{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$

Proof. For $0 \le r \le n-1$, we can easily find a complete matching between $X^{(r)}$ and $X^{(r+1)}$ from the smaller set to the larger set (where $AB \in E\left(X^{(r)}, X^{(r+1)}\right)$ iff $A \subset B$ or $B \subset A$). All these matchings put together create a collection of $\binom{n}{\lfloor n/2 \rfloor}$ paths in Q^n (look from the largest layer in the middle outward - i.e. the layer where $r = \lfloor n/2 \rfloor$), each of which is a chain. Hence our poset is covered by $\binom{n}{\lfloor n/2 \rfloor}$, giving $|\mathscr{A}| \le \binom{n}{\lfloor n/2 \rfloor}$

Definition (Weight). The weight w(A) of a set $A \in \mathbb{P}(n)$ is $w(A) = \frac{1}{\binom{n}{|A|}}$

Theorem 2 (LYM or YMBL¹). Let $\mathscr A$ be a Sperner system on X, with |X|=n. Then

$$w(\mathscr{A}) := \sum_{A \in \mathscr{A}} w(A) \le 1$$

Proof. Look at the maximal chains in $\mathbb{P}(X)$, $A_0 \subset A_1 \subset \cdots \subset A_n$, with $A_i \in X^{(i)}$ (so $|A_i| = i$). By just picking elements one at a time, we can see that the number of maximal chains is n!. Each such chain has ≤ 1 element of \mathscr{A} , as \mathscr{A} is Sperner. But also, every $A \in \mathscr{A}$ is in |A|! (n - |A|)! chains.

Hence, $\sum_{A \in \mathscr{A}} |A|! (n - |A|)! \le n!$ which gives the result.

Lecture 3

Theorem 2 (Alternate Version). If $\mathscr{A} \subset \mathbb{P}(n)$ is an anti-chain, then $w(\mathscr{A}) \leq 1$

Corollary 3. If $\mathscr{A} \subset \mathbb{P}(n)$ is a Sperner system, then $|\mathscr{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$, with equality iff \mathscr{A} is $X^{(\lfloor n/2 \rfloor)}$ or $X^{(\lceil n/2 \rceil)}$.

Proof. The inequality is immediate.

With equality, we see that $\mathscr{A} \subset X^{(\lfloor n/2 \rfloor)} \cup X^{(\lceil n/2 \rceil)}$ quickly², so the claim holds for n even - now we check n = 2k + 1. Write $\mathscr{A}_k = \mathscr{A} \cup X^{(k)}, \mathscr{A}_{k+1} = \mathscr{A} \cup X^{(k+1)}$, which yields a bipartite graph (if both non-empty, else claim holds).

Then, using Theorem 4 from Section 1, $|\mathscr{A}| = |\mathscr{A}_k| + |\mathscr{A}_{k+1}| < |\mathscr{A}_k| + |\Gamma(\mathscr{A}_{k+1})| \le \binom{n}{k}$.

Definition (k-Sperner). We say that $\mathscr{A} \subset \mathbb{P}(n)$ is k-Sperner if it does not contain $A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_{k+1}$ - i.e. it doesn't contain a chain of length k+1.

Note that a Sperner system is 1-Sperner.

Corollary 4 (Erdős, 1945). If $\mathscr{A} \in \mathbb{P}(n)$ is k-Sperner, then $|\mathscr{A}|$ is at most the sum of the k largest binomial coefficients.

 $^{^1\}mathrm{Yamamoto},\,1954;$ Meshalkin, 1963; Bollobás, 1965; Lubell, 1966

²Indeed, if A not in here, then w(A) is not minimal, so we can't have $\binom{n}{\lfloor n/2 \rfloor}$ terms

Theorem (Littlewood and Offord - LO³). $z_i \in \mathbb{C}$, $|z_i| \geq 1$, then the number of $\sum_{1}^{n} \pm z_i$ within k of each other is $\leq ck \frac{2^n \log n}{\sqrt{n}}$ for some constant c.

Theorem 5 (Erdős, 1945). Let $x_1, \dots, x_n \in \mathbb{R}$ with $x_i \geq 1$. Then the number of sums $\sum_{i=1}^{n} \pm x_i$ in an open interval J of length 2k is at most the sum of the k largest binomial coefficients.

Proof. Define $\mathscr{A}=\{A\in\mathbb{P}(n): \sum_{i\in A}x_i-\sum_{j\notin A}x_j\in J\}$ - this is k-Sperner, as moving x_i from one sum to the other gives a change in value of at least 2, so a chain of k+1 sets would need a change of at least 2k. Hence, we're done.

Conjecture (Erdős, 1945). If $x_1, \dots, x_n \in E$, where E is a normed space and $||x_i|| \ge 1$, then the number of sums $\sum x_i$ less than distance 2 from each other is $\binom{n}{\lfloor n/2 \rfloor}$

Definition (Symmetric Chain). A chain $A_0 \subset A_1 \subset \cdots \subset A_k$ is **symmetric** if $|A_{i+1}| = |A_i| + 1 \ \forall i \ \text{and} \ |A_0| + |A_k| = n$

Theorem 6 (Kleitman and Katona). $\mathbb{P}(n)$ has a decomposition into symmetric chains.

Proof. Induct on n - the base case is $\{\phi, \{1\}\}$.

If $\mathbb{P}(n-1) = \bigcup_{i=1}^{q} \mathscr{C}_i$ with $\mathscr{C}_i = \{A_0 \subset \cdots A_k\}$, then form

$$\mathscr{C}'_{i} = \{A_{0}, \cdots, A_{k-1}, A_{k} \cup \{n\}\}$$

and

$$\mathscr{C}_{i}'' = \{A_0 \cup \{n\}, \cdots, A_{k-1} \cup \{n\}\}$$

Then \mathscr{C}_i' and \mathscr{C}_i'' partition $\mathbb{P}(n)$ into symmetric chains.

Lecture 4

Remarks. Note that we've formed a partition into $\binom{n}{\lfloor n/2 \rfloor}$ symmetric chains, with $\binom{n}{i} - \binom{n}{i-1}$ chains of length n+1-2i (so 1 chain of length n+1, n-1 chains of length n-1, etc.)

For the next few results, let E be a normed space, $x_1, \dots, x_n \in E$, $||x_i|| \ge 1 \forall i$ and, for $A \in \mathbb{P}(n)$, $x_A = \sum_{i \in A} x_i$

Definition (Scattered). Call $\mathscr{D} \subset \mathbb{P}(n)$ scattered if $||x_A - x_B|| \ge 1 \ \forall A, B \in \mathscr{D}$.

Definition (Symmetric Partition). Call a partition $\mathbb{P}(n) = \dot{\bigcup}_1^s \mathcal{D}_j$ symmetric if there are precisely $\binom{n}{i} - \binom{n}{i-1}$ sets \mathcal{D}_i of cardinality n+1-2i.

Theorem 7 (Kleitman, 1970). E and $(x_i)_1^n$ as above. Then, $\mathbb{P}(n)$ has a symmetric partition into scattered sets.

Proof. ⁴ Induct on n - the base case is $\{\phi, \{1\}\}$.

Otherwise, let $\mathbb{P}(n-1) = \dot{\bigcup}_{i=1}^{q} \mathcal{D}_i$ be a scattered partition into scattered sets and let $\mathcal{D}_j = \{A_1, \dots, A_m\}$.

In each \mathscr{D}_j , pick A_m so that $\left|\left|x_{A_m}+x_n-x_{A_j}\right|\right|\geq ||x_n|| \ \forall \ 1\leq j< m$. This is possible-indeed, if not, then we can find a function $g:[n]\to [n]$ such that $\left|\left|x_{A_i}+x_n-x_{A_{g(i)}}\right|\right|<||x_n|| \ \forall i\in [n]$ and $g(i)\neq i$. It's clear then that we must be able to find k>1 and $r\in [n]$ with $g^k(r)=r$. But then $\left|\left|x_{A_{g^i(r)}}+x_n-x_{A_{g^{i+1}(r)}}\right|\right|<||x_n|| \ \forall \ 0\leq i< k$. Add all these up and divide the LHS by k to get a contradiction via the triangle inequality. Then, write

$$\mathscr{D}'_{j} = \{A_{1}, \cdots, A_{m}, A_{m} \cup \{n\}\}\$$

 $\mathscr{D}''_{j} = \{A_{1} \cup \{n\}, \cdots, A_{m-1} \cup \{n\}\}\$

³I don't think this is examinable

⁴Different in lectures - this avoids support functionals

That \mathscr{D}'_j and \mathscr{D}''_j form a symmetric partition is clear. To see scattered, note that it's trivially true for \mathscr{D}''_j and most of \mathscr{D}'_j - we only need to check the case $\left|\left|x_{A_m\cup\{n\}}-x_{A_j}\right|\right|\geq 1$. But this is true by our choice of A_m above - indeed $\left|\left|x_{A_m\cup\{n\}}-x_{A_j}\right|\right|=\left|\left|x_{A_m}+x_n-x_{A_j}\right|\right|\geq \left|\left|x_n\right|\right|\geq 1$

Theorem 8 (Kleitman⁵, 1970). If $\mathscr{A} \subset \mathbb{P}(n)$ s.t. $\forall A, B \in \mathscr{A}$, $||x_A - x_B|| < 1$, then $|\mathscr{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$

Proof. Take a symmetric partition $\mathbb{P}(n) = \dot{\bigcup}_{j=1}^{s} \mathscr{D}_{j}, \ s = \binom{n}{\lfloor n/2 \rfloor}$ into scattered sets. Then $|\mathscr{A} \cup \mathscr{D}_{j}| \leq 1$ because of the scattered condition, so $|\mathscr{A}| \leq s = \binom{n}{\lfloor n/2 \rfloor}$.

 $^{^5\}mathrm{A}$ conjecture of Erdoős in 1945

3 The Kruskal-Katona Theorem

Definition (Lower Shadow). If $\mathscr{A} \subset X^{(r)}$, then the **lower shadow of** \mathscr{A} , is given by $\partial \mathscr{A} = \{B \in X^{(r-1)} : B \subset A \text{ for some } A \subset \mathscr{A}\}$

Fact. $|\partial \mathscr{A}| \ge |\mathscr{A}| \binom{n}{r-1} / \binom{n}{r} = |\mathscr{A}| \frac{r}{n-r+1}$ with equality iff \mathscr{A} is ϕ or $X^{(r)}$.

Aim. We ask an in-between question - given m and r, we'd like to find $\mathscr{B} \subset X^{(r)}$ with $|\mathscr{B}| = m$ s.t. $|\partial \mathscr{B}| \leq |\partial \mathscr{A}|$ for any given $\mathscr{A} \subset X^{(r)}$ with $|\mathscr{A}| = m$.

Definition (Lexicographical Order). In the lexicographical order, A < B if $\min(A\Delta B) \in A$. It can be summarised as "prioritise using small numbers".

Definition (Colex Order). In the colex order, A < B if $\max(A\Delta B) \in B$, or alternatively if $\sum_{i \in A} 2^i < \sum_{j \in B} 2^j$. It can be summarised as "prioritise using small numbers".

Example (Lex and Colex orders). For n=6, r=3 we get the total orders: Lex: $123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, \cdots, 456$ Colex: $123, 124, 134, 234, 125, 135, 235, \cdots, 456$

Notation. We define $\mathscr{A} + D = \{A \cup D : A \in \mathscr{A}\}$ and:

Lecture 5

$$\mathcal{B}^{(r)}(m_r, \dots, m_s) = [m_r]^{(r)} \cup ([m_{r-1}]^{(r-1)} + \{m_r + 1\}\})$$

$$\cup ([m_{r-2}]^{(r-2)} + \{m_{r-1} + 1, m_r + 1\}\})$$

$$\cup \dots$$

$$\cup ([m_s]^{(s)} + \{m_{s+1} + 1, m_{s+2} + 1, \dots, m_r + 1\}\})$$

Furthermore, $b^{(r)}(m_r, \dots, m_s) = |\mathscr{B}^{(r)}(m_r, \dots, m_s)| = \sum_{i=s}^r {m_i \choose i}$

Note that
$$\partial \mathcal{B}^{(r)}(m_r, \dots, m_s) = \mathcal{B}^{(r-1)}(m_r, \dots, m_s),$$

So $b^{(r-1)}(m_r, \dots, m_s) = \sum_{j=s}^r {m_j \choose j-1}$

Lemma 1. For $\ell, r \in \mathbb{N}$, there exists unique $m_r > \cdots > m_s$ s.t. $\ell = \sum_{j=s}^r \binom{n_j}{j}$. Also, the first ℓ sets in $X^{(r)}$ under the colex ordering is $\mathscr{B}^{(r)}(m_r, \cdots, m_s)$.

Proof. The sets in $X^{(r)}$ not larger than $A = \{a_1, \dots, a_r\}$ with $a_1 < \dots < a_r$ in colex is $\mathscr{B}^{(r)}(a_r - 1, a_{r-1} - 1, \dots, a_{s+1} - 1, a_s)$, where $s = \min\{i : a_i < a_{i+1} - 1\}$ - i.e. the first index from the smallest upwards that doesn't have the numbers in consecutive order⁶.

That this works is a simple check.

Definition. An i, j-compression, for $i, j \in X$, $A \in \mathbb{P}(X)$ is:

tests

⁶e.g. in $\{3,4,7,9\}$, this would be between 4 and 7, so we get $\mathscr{B}^{(4)}(8,6,4)$, i.e. s=2

Index III Combinatorics

Index

Bollobás, 4	Offord, 5
	ordering
chain, 4	colex, 7
antichain, 4	lexicographical, 7
symmetric, 5	
cube, 3	poset, 3
Erdős, 4, 5	regular, 3
Hall	$\mathrm{SDR},2$
criterion, 2	set of distinct representatives, 2
theorem, 2	set system, 2
	lower shadow, 7
Katona, 5	scattered, 5
Kleitman, 5, 6	Sperner, 4
	k-Sperner, 4
Littlewood, 5	Theorem, 4
Lubell, 4	symmetric, 5
LYM, 4	,
	weight, 4
matching	
complete, 3	Yamamoto, 4
Meshalkin, 4	YMBL, 4