

RDFDFO

The Swiss-Army tool for RDF and Named Graph manipulation - http://rdfpro.fbk.eu/

Overview

RDFpro is an extensible, general-purpose, open source (public domain) Java tool for processing large RDF datasets on a commodity machine leveraging streaming and sorting techniques.

Addressed problem

- 1. tool support for RDF processing is fragmented and users often have to integrate heterogeneous tools even for simple workflows;
- 2. tools scaling to large datasets often require complex, distributed infrastructures such as Hadoop

RDFpro solution

- simple pipes & filter computation model supporting arbitrary sequential / parallel composition of RDF processors for different tasks
- out-of-the-box processors implementing common tasks
- possibility to plug-in new processors for custom task

- non-distributed computation based on streaming and sorting techniques for processing large datasets not fitting into memory
 - multi-threaded implementation for vertical scalability

Supported RDF Processing Tasks

@read, @write read/write data in multiple (compressed) formats download data from a SPARQL endpoint via queries @download upload data to a SPARQL endpoint via INSERT DATA @upload RDF quad deduplication and set/multiset operations @unique

TBox and VOID statistics extraction @tbox. @stats

RDF quad filtering and replacement with JavaScript / @transform

Groovy scripting support

@mapreduce MapReduce-like computation (multi-threaded, non-

distributed), supporting map and reduce scripts

owl:sameAs smushing @smush

RDFS inference with selectable rules @rdfs

inference with SPARQL-like rules (OWL 2 RL support) @rules

Concrete Use Case

Task: integrate relevant data from Freebase, GeoNames and DBpedia EN, ES, IT and NL, performing smushing, RDFS inference, provenance tracking with Named Graphs, and VOID statistics computation.

Pipeline of RDFpro processors:

Results (Intel Core I7 860 Linux pc, 16 GB ram, 500 GB 7200 rpm hd):

Processing step	Input size		Output size		Throughput		Time
	[Mquads]	[MiB]	[Mquads]	[MiB]	[Mquads/s]	[MiB/s]	[s]
Step 1 - Filtering	3175	31670	770	9871	0.76	7.55	4194
Step 2 - TBox extraction	770	9871	<1	~ 1	1.87	23.95	412
Step 3 - Smushing	770	9871	800	10538	0.34	4.36	2265
Step 4 - Inference	800	10539	1691	15884	0.21	2.79	3780
Step 5 - Deduplication	1691	15884	964	9071	0.40	3.73	4254
Step 6 - Statistics extract.	964	9072	<1	~3	0.37	3.50	2595
Steps 1-2 aggregated	3175	31670	770	9872	0.74	7.34	4315
Steps 3-6 aggregated	770	9872	964	9080	0.12	1.50	6590

Three Ways of Using RDFpro

Command line tool, cross-platform (tested on Linux/Mac/Windows)

dkmuser@dkm-server-1:/data/rdfpro-example \$ rdfpro @read dbpedia.abox.nt.gz @rdfs dbpedia.tbox.owl @transform '+p rdf:type rdfs:label'\ @mapreduce -u -e '+o dbo:Company' 's' @transform '+p rdfs:label' @write Iabels.nt.gz **14:56:10(I)** 27063 TBox triples read (165018 tr/s avg) **14:58:10(I)** 72309189 triples read (601518 tr/s avg) **14:58:10(I)** 125668722 records to sort (1045435 rec/s avg) **14:59:13(I)** 63193206 records from sort (1363391 rec/s avg) **14:59:13(I)** 13397105 reductions (289067 red/s avg) **14:59:13(I)** 68646 triples written (1499 tr/s avg) **14:59:13(I)** Done in 183 s

(2) **Web tool**, for PHP-enabled web servers (demo on RDFpro web site)

(3) **Java library**, available on Maven central

```
URI dboCompany = new URIImpl("http://dbpedia.org/ontology/Company");
RDFSource aboxSource = RDFSources. read(true, true, null, null, "dbpedia.tbox.owl");
RDFSource tboxSource = RDFSources.read(true, true, null, null, "dbpedia.abox.nt.gz");
RDFHandler labelsSink = RDFHandlers.write(null, 0, "labels.nt.gz");
RDFProcessor processor = RDFProcessors.sequence(
    RDFProcessors.rdfs(aboxSource, null, false, false),
    RDFProcessors.transform(Transformer.filter((Statement s) -> {
        URI p = s.getPredicate();
        return p.equals(RDF.TYPE) || p.equals(RDFS.LABEL); })),
   RDFProcessors.mapReduce(Mapper.select("s"), Reducer.filter(Reducer.IDENTITY,
        (Statement s) -> s.getObject().equals(dboCompany), null), true));
processor.apply(aboxSource, labelsSink, 1);
```

Powered by RDFpro

- RDF processing in NewsReader http://www.newsreader-project.eu/
- KnowledgeStore storage framework http://knowledgestore.fbk.eu/
- PIKES knowledge extraction suite http://pikes.fbk.eu/

References:

- Corcoglioniti, F., Rospocher, M., Mostarda, M., Amadori, M. Processing Billions of RDF Triples on a Single Machine using Streaming and Sorting. In: ACM SAC 2015.
- Corcoglioniti, F., Rospocher, M., Amadori, M., Mostarda, M. RDFpro: an Extensible Tool for Building Stream-Oriented RDF Processing Pipelines. In: ISWC Developers Workshop, 2014. • Corcoglioniti, F., Palmero Aprosio, A., Rospocher, M. Demonstrating the Power of Streaming and
- Sorting for Non-distributed RDF Processing: RDFpro. In: ISWC Posters & Demonstrations, 2015. • Corcoglioniti, F., Rospocher, M., Cattoni, R., Magnini, B., Serafini, L. *The KnowledgeStore: a Storage* Framework for Interlinking Unstructured and Structured Knowledge. In: IJSWIS, volume 11, 2015.

Supported by:

