2013 历安笔子科技大学

本资料适用专业科目代号: 811/821/831/844

信号与系统

策划/好网论坛考研版块 主编/@西电点儿

最新西电考研资讯尽在 http://weibo.com/xduky 免费西电考研资料尽在 http://blog.sina.com.cn/xduky

敬告:

- 1.本资料完全免费,禁止用于商业目的;
- 2.请使用B5纸双面打印;
- 3.本资料版本: 2012.11.18;
- 4.扫描左侧二维码可免费获取最新版本。

内容简介

该习题册是西电本科生的课后作业。原版为 32 页×3 本=96 页(分成三本的目的是交作业方便)、详解答案一本 44 页。本资料与原版保持高度一致,为节省打印费用,不留答题的空白区域,从而将 96 页压缩到了 30 页。这本习题册相对来说不是很重要,若复习时间不够,可以不做,要以辅导班笔记和真题为主。

可在打印之后将题目和答案分别装订成册,方便查看答案。

本资料已修正原纸质版的部分错误,详见本资料的更新日志,扫描本资料封面的二维码可查看。本资料制作时间仓促,请大家批评指正,编者会根据大家的反馈更新版本。

目 录

	题目	答案
第一章	1	31
第二章	3	33
第三章	6	38
第四章	8	41
第五章	15	50
第六章	18	55
第七章	22	63
第八章	25	68
2006 期末题	27	29

好网论坛考研版块: http://club.xdnice.com/forum-124-1.html

好网考研微博: http://weibo.com/xduky

好网考研博客: http://blog.sina.com.cn/xduky 好网考研交流 QQ 群:请访问博客获取群号。

第一章 信号与系统

1-1 波形绘制和冲激函数

- 一、画出下列各信号的波形[式中 $r(t) = t\varepsilon(t)$ 为斜升函数]
 - (1) $f_1(t) = \varepsilon(t)r(2-t)$ (2) $f_2(t) = r(t)\varepsilon(2-t)$

 - (3) $f_3(k) = k[\varepsilon(k) \varepsilon(k-4)]$ (4) $f_4(k) = 2^k[\varepsilon(3-k) \varepsilon(-k)]$
- 二、信号 f(t) 的波形如图 1-1 所示,绘出下列函数的波形: (1) f(2-0.5t) (2) $\frac{d}{dt}[f(0.5t-1)]$

- 三、已知信号 f(3-2t) 的波形如图 1-2 所示, 试分别画出 f(t) 和 $\frac{df(t)}{dt}$ 的波形。
- 四、填空题, 计算下列各题:

$$(1)\int_{-\infty}^{\infty} \frac{\sin(\pi t)}{t} \delta(t) dt = \underline{\hspace{1cm}};$$

$$(1)\int_{-\infty}^{\infty} \frac{\sin(\pi t)}{t} \delta(t) dt = ___; \qquad (2)\int_{-\infty}^{\infty} (2t^2 + 1) \delta(\frac{t}{2}) dt = __;$$

$$(3) \int_{0}^{t} \sin(t) \delta(t-5) dt = \underline{\hspace{1cm}}$$

(3)
$$\int_0^t \sin(t)\delta(t-5)dt = ____;$$
 (4) $\int_{-10}^{10} (2t^2 + t - 5)\delta'(t + \frac{1}{4})dt = ____;$

$$(5) \int_{2}^{2} (x-5)\delta(x-t) dx = _____{\circ}$$

1-2 连续系统方程与性质

一、如图 1-3 所示电路,写出以 $i_c(t)$ 为响应的微分方程。

二、某 LTI 连续系统,其初始状态一定,已知当激励为 f(t) 时,其全响应 $y_1(t)=6e^{-2t}-5e^{-3t}$, $t \ge 0$; 当 系统的初始状态不变,激励为 3f(t) 时,其全响应 $y_2(t)=8e^{-2t}-7e^{-3t}$, $t\geq 0$; 求激励为 2f(t) 时,系 统的零状态响应 $y_{re}(t)$ 。

- 三、试判别下列零状态响应系统是否为线性系统,是否为时不变系统,请在括号内填"是"或"否"。
 - (1) $y(t) = \frac{d}{dt} f(t t_0)$ 线性系统(), 时不变系统();
 - (2) $y(t) = \int_0^t f(x) dx$ 线性系统(), 时不变系统();
 - (3) y(t)=|f(t)| 线性系统(), 时不变系统();
 - (4) $y(t)=f^2(t)\cos t$ 线性系统(), 时不变系统();
- 四、试判别下列零状态响应系统是否为线性系统,是否为时不变系统,请在括号内填"是"或"否"。
 - (1) $\frac{\mathrm{d}y(t)}{\mathrm{d}t} + 2ty(t) = t^2 f(t)$ 线性系统(),时不变系统();
 - (2) $\frac{dy(t)}{dt} + 10y(t) + 3 = 2f(t)$ 线性系统(), 时不变系统(); (3) $\frac{dy(t)}{dt} + y^2(t) = f(t)$ 线性系统(), 时不变系统();

 - (4) $\frac{dy(t)}{dt} + 10y(t) = f(t+10)$ 线性系统(), 时不变系统();
- 五、试判别此零状态响应系统是否为时不变系统,并写出判断过程: v(t) = f(-t)

1-3 序列和差分方程

- 一、判定下列各序列是否是周期性的,如果是周期性的,试确定其周期。
 - (1) $f(k) = 5\cos(\frac{3\pi}{7}k \frac{\pi}{8})$ (2) $f(k) = 8\sin(\frac{1}{8}k \pi)$
- 二、已知序列 $f(k) = \begin{cases} 0, & k < -1 \\ 2^{-k} + 3k, & k > -1 \end{cases}$, 试分别写出下列各序列的表达式并绘出图形。
 - (1) f(k-2) (2) f(-k-2)
- 三、已知一离散系统的模拟框图如图 1-4 所示, 试列出该系统的差分方程。

四、一个乒乓球从h(m)高度自由落至地面,每次弹跳起来的最高值是前一次最高值的2/3。若以y(k)表 示第 k 次跳起的最高值, 试列写描述此过程的差分方程。

第二章 连续系统的时域分析

2-1 微分方程的求解

一、填空题

1.已知描述系统的微分方程如下, 求 $v(0_{+})$, $v'(0_{+})$ 。

(b)
$$y''(t) + 4y'(t) + 5y(t) = f'(t)$$
, $y(0_{-}) = 1$, $y'(0_{-}) = 2$, $f(t) = e^{-2t}\varepsilon(t)$, $y(0_{+}) = 2$, $y'(0_{+}) = 2$.

2.已知描述系统的微分方程和初始状态如下

(a)
$$y''(t) + 5y'(t) + 6y(t) = f(t), y(0_{-}) = 1, y'(0_{-}) = -1, \mathbb{Q} y_n(t) =$$
;

(b)
$$y''(t) + 2y'(t) + 5y(t) = f(t), y(0_{-}) = 2, y'(0_{-}) = -2, \quad \text{if } y_{ri}(t) = \frac{1}{2}$$

(c)
$$y''(t) + 2y'(t) + y(t) = f(t)$$
, $y(0_{-}) = 1$, $y'(0_{-}) = 1$, $y(t) = 1$

二、已知描述系统的微分方程,试求其零输入响应、零状态响应和完全响应

(a)
$$y''(t) + 4y'(t) + 3y(t) = f(t)$$
, $y(0_{-}) = y'(0_{-}) = 1$, $f(t) = \varepsilon(t)$.

(b)
$$y''(t) + 4y'(t) + 4y(t) = f'(t) + 3f(t)$$
, $y(0_{-}) = 1$, $y'(0_{-}) = 2$, $f(t) = e^{-t}\varepsilon(t)$.

三、如图 2-1 所示电路,已知 $u_s(t) = 2e^{-t}\varepsilon(t) V$,试列出i(t)为输出的微分方程,并求其零状态响应。

2-2 冲激响应和阶跃响应

一、填空题

1.已知描述系统的微分方程,计算各系统的冲激响应 h(t)。

(a)
$$y''(t) + 4y'(t) + 3y(t) = f'(t) + f(t)$$
, $h(t) = _____;$

(b)
$$y''(t) + 2y'(t) + 2y(t) = f'(t), h(t) =$$

2.已知描述系统的微分方程, 计算各系统的冲激响应 h(t) 和阶跃响应 g(t)。

(b)
$$y'(t) + 2y(t) = f''(t)$$
, $h(t) = ______$, $g(t) = ______$

- 二、如图 2-2 所示电路, $u_s(t)$ 为输入, $u_c(t)$ 为输出,求其冲激响应和阶跃响应。
- 三、如图 2-3 所示电路, $i_s(t)$ 为输入, $u_t(t)$ 为输出,求其冲激响应和阶跃响应。

2-3 卷积积分(1)

一、填空题

1. $f_1(t) = e^{-2t} \varepsilon(t)$, $f_2(t) = \varepsilon(t)$, $\mathbb{I} f_1(t) * f_2(t) =$

2. $f_1(t) = f_2(t) = e^{-2t} \varepsilon(t)$, $\iint f_1(t) * f_2(t) =$;

二、 $f_1(t)$ 、 $f_2(t)$ 、 $f_3(t)$ 如图 2-4 所示,试计算:

(a) $f_1(t)*f_2(t)$, 并画出波形; (b) $f_1(t)*f_3(t)$, 并画出波形。

图 2-4

三、计算下列卷积:

(1) $f_1(t)$ 如图 2-5(a)所示, $f_2(t) = e^t \varepsilon(t-2)$,求 $f_1(t) * f_2(t)$;

(2) $f_3(t)$ 如图 2-5(b)所示, $f_4(t) = e^{-(t+1)} \varepsilon(t+1)$,求 $f_3(t) * f_4(t)$;

(3) $f_5(t)$ 如图 2-5(c)所示, $f_6(t) = e^{-t}\varepsilon(t)$,求 $f_5(t) * f_6(t)$ 。

2-4 卷积积分(2)

一、填空题

1.

2.

则 v(6) =

, 则 y(3) =

3. $e^{-2t}\varepsilon(t)*2=$ ______; 4. $e^{3t}\varepsilon(t)*\delta'(t)=$ ______; 5. $\varepsilon(t+5)*\varepsilon(t-2)=$ _

二、某 LTI 系统的冲激响应如图 2-6 所示,试求当输入分别为 $f_1(t)$ 、 $f_2(t)$ 、 $f_3(t)$ 时的零状态响应,并画出波形。

图 2-6

三、如图 2-7 所示系统,试求当输入 $f(t) = \varepsilon(t)$ 时,系统的零状态响应。

四、如图 2-8 所示复合系统是由几个子系统组合而成,各子系统的冲激响应分别为: $h_a(t) = \delta(t-1)$, $h_b(t) = \varepsilon(t) - \varepsilon(t-3)$, 求复合系统的冲激响应 h(t)。

2-5 时域分析

- 一、已知信号 f(t) 如图 2-9 所示。
 - 1.试画出 $y(t) = f(2t+2) * \delta(t-3)$ 的波形;
 - 2. 若系统的冲激响应 h(t) = f(t), 试画出阶跃响应 g(t) 的波形;
 - 3.若系统的阶跃响应 g(t) = f(t), 试画出冲激响应 h(t) 的波形;
 - 4.若 $y(t) = f(t) * 2[\varepsilon(t-2) \varepsilon(t-4)]$,试求 y(0) 和 y(2) 的值。
- 二、某 LTI 系统的初始状态一定,当输入 $f(t) = \varepsilon(t)$ 时,全响应 $y(t) = 3e^{-t}\varepsilon(t)$,当输入 $f(t) = \delta(t)$ 时,全响应 $y(t) = \delta(t) + e^{-t}\varepsilon(t)$,试求系统的冲激响应 h(t) 。
- 四、已知某 LTI 系统的阶跃响应 $g(t) = \varepsilon(t-1) + e^{-t}\varepsilon(t)$,求当输入 $f(t) = 3e^{2t}(-\infty < t < \infty)$ 时系统的零状态响应。

第三章 离散系统的时域分析

3-1 差分方程的求解、单位序列响应、卷积和

一、填空题

1.求下列齐次方程的解:

(a)
$$y(k) - 2y(k-1) = 0$$
, $y(0) = 2$, $y(k) = ______;$

(b)
$$y(k) - 7y(k-1) + 16y(k-2) - 12y(k-3) = 0$$
, $y(0) = 0$, $y(1) = -1$, $y(2) = -3$, $y(k) = 0$;

(c)
$$y(k) - \frac{1}{3}y(k-1) = 0, y(-1) = -1$$
, $y(k) =$ _______

2.求下列差分方程所描述系统的零输入响应 $y_n(k)$:

(a)
$$y(k) + 3y(k-1) + 2y(k-2) = f(k), y(-1) = 0, y(-2) = 1$$
, $y_{ij}(k) =$ ______;

(b)
$$y(k) + 2y(k-1) + y(k-2) = f(k) - f(k-1), y(-1) = 1, y(-2) = -3$$
, $y_{ij}(k) =$ _______

3.求下列差分方程所描述系统的单位序列响应 h(k):

(a)
$$y(k) + 2y(k-1) = f(k-1)$$
, $\mathbb{M} h(k) =$;

(b)
$$y(k) + y(k-1) + \frac{1}{4}y(k-2) = f(k)$$
, $\emptyset h(k) = ____;$

(c)
$$y(k) + 4y(k-1) + 3y(k-2) = 3f(k-2) + f(k-1)$$
, $\mathbb{N} h(k) =$

二、各序列 $f_i(k)$ 的图形如图 3-1 所示, 求下列的卷积和:

(1)
$$f_1(k) * f_2(k)$$

(2)
$$f_1(k) * f_3(k)$$

(3)
$$f_2(k) * f_3(k)$$

(1)
$$f_1(k) * f_2(k)$$
 (2) $f_1(k) * f_3(k)$ (3) $f_2(k) * f_3(k)$ (4) $[f_2(k) - f_1(k)] * f_3(k)$

三、已知某 LTI 离散系统的阶跃响应 $g(k) = (\frac{1}{2})^k \varepsilon(k)$,求其单位序列响应。

3-2 离散系统时域分析

一、已知某 LTI 离散系统的输入 $f(k) = \begin{cases} 1, & k=0 \\ 4, & k=1,2 \end{cases}$ 时,其零状态响应为 $y(k) = \begin{cases} 0, & k<0 \\ 9, & k \geq 0 \end{cases}$

求系统的单位序列响应h(k)。

- 三、某 LTI 离散系统的输入 $f(k) = \delta(k) + \delta(k-2)$, 测出该系统的零状态响应 $y_{zz}(k)$ 如图 3-3 所示,求系统的单位序列响应 h(k)。
- 四、已知某 LTI 离散系统,当输入 $f(k) = \delta(k-1)$ 时,系统的零状态响应 $y_{zs}(k) = (\frac{1}{2})^k \varepsilon(k-1)$,试求当输入为 $f(k) = 2\delta(k) + \varepsilon(k)$ 时,系统的零状态响应。

3-3 综合

- 一、填空题
 - (1) 任一序列 f(k) 与单位序列信号 $\delta(k)$ 的关系为_____;
 - (2) 单位阶跃序列与单位序列的关系为;
 - (3) 阶跃响应 g(k) 与单位序列响应 h(k) 的关系为 ;
 - (4) $\exists \exists f_1(k) = (\frac{1}{3})^k \varepsilon(k), \ f_2(k) = \varepsilon(k) \varepsilon(k-3), \ f(k) = f_1(k) * f_2(k), \ \exists f(2) = \underline{\hspace{1cm}}, \ f(4) = \underline{\hspace{1$
- 二、已知某 LTI 离散系统的方程为 $y(k) y(k-1) 2y(k-2) = \varepsilon(k)$,且 y(0) = 0,y(1) = 1,求系统的零输入响应 $y_n(k)$ 、零状态响应 $y_n(k)$ 以及全响应 y(k)。
- 三、某 LTI 离散系统如图 3-4 所示, 试求:
 - (1) 写出该系统的差分方程;
 - (2) 当 $f(k) = \delta(k)$ 时,全响应的初始条件 y(0) = 1, y(-1) = -1 时,求系统的零输入响应 $y_n(k)$;
 - (3) 当 $f(k) = \delta(k)$ 时,求系统的零状态响应 $y_{zs}(k)$

第四章 傅里叶变换和系统的频域分析

4-1 傅里叶级数

- 一、前 4 个勒让德(Legendre)多项式为 $P_0(t) = 1$, $P_1(t) = t$, $P_2(t) = \frac{3}{2}t^2 \frac{1}{2}$, $P_3(t) = \frac{5}{2}t^3 \frac{3}{2}t$, 证明它们在区间 (-1,1)内是正交函数集。
- 二、实周期信号 f(t) 在区间 $(-\frac{T}{2}, \frac{T}{2})$ 内的能量定义为 $E = \int_{-\frac{T}{2}}^{\frac{T}{2}} f^2(t) dt$,如有和信号 $f(t) = f_1(t) + f_2(t)$,
 - (1) 若 $f_1(t)$ 与 $f_2(t)$ 在区间 $(-\frac{T}{2}, \frac{T}{2})$ 内相互正交,[例如 $f_1(t) = \cos(\omega t)$, $f_2(t) = \sin(\omega t)$],证明和信号 f(t) 的总能量等于各信号能量之和;
 - (2) 若 $f_1(t)$ 与 $f_2(t)$ 不是相互正交的[例如 $f_1(t) = \cos(\omega t)$, $f_2(t) = \sin(\omega t + 60^\circ)$], 求和 f(t) 的总能量。
- 三、利用奇偶性判断图 4-1 示各周期信号的傅里叶级数中所含的频率分量。

- 四、已知周期信号 f(t) 在 $0\sim \frac{T}{4}$ 的波形如图 4-2 所示,试画出下列各情况下的 $-\frac{T}{2}\sim \frac{T}{2}$ f(t) 的波形。
 - (1) f(t) 为偶函数,且仅含偶次谐波。(2) f(t) 为奇函数,且仅含偶次谐波。
 - (3) f(t) 为奇函数,且仅含奇次谐波。(4) f(t) 为偶函数,且仅含奇次谐波。
- 五、如图 4-3,下列周期信号的傅里叶级数的展开式中, $f_1(t)$ 含有_____; $f_2(t)$ 含有_____。
 - (A)直流 (B)各次谐波 (C)奇次谐波 (D)偶次谐波 (E)正弦波 (F)余弦波

4-2 周期信号的频谱、功率

- 一、某 1Ω 电阻两端的电压u(t) 如图 4-4 所示:
 - (1) 求u(t)的三角形式傅里叶级数;
 - (2) 利用(1)的结果和 $u(\frac{1}{2})=1$,求下列无穷级数之和: $S=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...$
 - (3) 求 ιΩ 电阻上的平均功率和电压有效值;
 - (4) 利用(3)的结果求下列无穷级数之和: $S = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

- 二、如图 4-5 所示电路,已知周期电源 $u_s(t) = 10 + 10\sqrt{2}\cos 3t \, \text{V}$,
 - (1) 求电流 i(t) 及有效值 I; (2) 求 $u_s(t)$ 产生功率, 电感的平均储能。

四、已知某周期信号 f(t) 的振幅谱与相位谱如图 4-6 所示,则该周期信号的级数表达式为 f(t)

4-3 傅里叶变换定义

- 一、求图 4-7 所示各信号的傅里叶变换。
- 二、 f(t) 复函数,可表示为 f(t) = f(t) + if(t),且 $\mathcal{F}[f(t)] = F(j\omega)$, 式中 $f_i(t)$ 、 $f_i(t)$ 均为实函数,证明:

- (1) $\mathcal{F}[f^*(t)] = F^*(-j\omega)$;
- (2) $\mathcal{F}[f_i(t)] = 0.5[F(j\omega) + F^*(-j\omega)], \quad \mathcal{F}[f_i(t)] = -j0.5[F(j\omega) F^*(-j\omega)].$
- 三、设 $f(t) \leftrightarrow F(j\omega) = R(\omega) + jX(\omega)$, 证明:
 - (1)当 f(t) 为实函数时, $R(\omega) = \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt, X(\omega) = -\int_{-\infty}^{\infty} f(t) \sin(\omega t) dt$
 - (2)当 f(t) 为实因果函数时, $R(\omega) = \frac{2}{\pi} \int_0^\infty \int_0^\infty R(y) \cos(yt) \cos(\omega t) dy dt$
- 四、若图 4-8 所示信号 $f(t) \leftrightarrow F(j\omega) = R(\omega) + jX(\omega)$,则

 $\mathcal{F}[f_1(t)] = ____; \quad \mathcal{F}[f_2(t)] = ____; \quad \mathcal{F}[f_3(t)] = ____; \quad \mathcal{F}[f_4(t)] = ____;$

4-4 傅里叶变换性质

一、利用对称性求下列函数的傅里叶变换。

(1)
$$f(t) = \frac{\sin[2\pi(t-2)]}{\pi(t-2)}$$

(2)
$$f(t) = \frac{2}{1+t^2}$$

(1)
$$f(t) = \frac{\sin[2\pi(t-2)]}{\pi(t-2)}$$
 (2) $f(t) = \frac{2}{1+t^2}$ (3) $f(t) = \left[\frac{\sin(2\pi t)}{2\pi t}\right]^2$

- 二、求下列信号的傅里叶变换。
 - (1) $f(t) = e^{-jt} \delta(t-2)$; (2) $f(t) = e^{-3(t-1)} \delta'(t-1)$; (3) $f(t) = \operatorname{sgn}(t^2 9)$;
 - (4) $f(t) = e^{-2t} \varepsilon(t+1)$; (5) $f(t) = \varepsilon(0.5t-1)$.
- 三、求下列函数的傅里叶逆变换:

(1)
$$F(j\omega) = \begin{cases} 1, & |\omega| < \omega_0 \\ 0, & |\omega| > \omega_0 \end{cases}$$
 (2)
$$F(j\omega) = \delta(\omega + \omega_0) - \delta(\omega - \omega_0)$$
 (3)
$$F(j\omega) = 2\cos(3\omega)$$

(4) $F(j\omega) = [\varepsilon(\omega) - \varepsilon(\omega - 2)]e^{-j\omega}$ (5) $F(j\omega) = \sum_{n=0}^{\infty} \frac{2\sin\omega}{\omega} e^{-j(2n+1)\omega}$

四、设 f(t) 的傅里叶变换为 $F(j\omega)$,则下列各频谱函数之原函数分别为

(1) $F[j(1-0.5\omega)] \leftrightarrow$; (2) $F[j(\omega+1)]e^{j\omega} \leftrightarrow$; (3) $F(j\omega)\cos\omega\leftrightarrow$

4-5 傅里叶变换性质

一、填空

- 1.若已知 $f(t) \leftrightarrow F(j\omega)$,则下列各函数的频谱函数分别为:
- $(1) tf(2t) \leftrightarrow \underline{\hspace{1cm}}; (2) (t-2)f(t) \leftrightarrow \underline{\hspace{1cm}}; (3) t \frac{\mathrm{d}f(t)}{\mathrm{d}t} \leftrightarrow \underline{\hspace{1cm}};$
- (4) $f(1-t) \leftrightarrow$ _____; (5) $(1-t)f(1-t) \leftrightarrow$ ____; (6) $f(2t-5) \leftrightarrow$ ____;

- (7) $\int_{-\infty}^{1-\frac{1}{2}t} f(\tau) d\tau \leftrightarrow \underline{\qquad}; \quad (8) \quad e^{jt} f(3-2t) \leftrightarrow \underline{\qquad}; \quad (9) \quad \frac{df(t)}{dt} * \frac{1}{\pi t} \leftrightarrow \underline{\qquad}$
- 2.如图 4-9 所示信号 f(t) 的频谱函数为 $F(j\omega)$, 求下列各值[不必求出 $F(j\omega)$]
 - (1) $F(0) = F(j\omega)|_{\omega=0} = ____;$ (2) $\int_{-\infty}^{\infty} F(j\omega)d\omega = ____;$

图 4-9

- (3) $\int_{-\infty}^{\infty} |F(j\omega)|^2 d\omega = \underline{\qquad}_{\circ}$
- 3.利用傅里叶变换特性, 计算下列积分
 - (1) $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin \omega}{\omega} d\omega = \underline{\qquad}; \qquad (2) \int_{-\infty}^{\infty} e^{j\omega(t-4)} d\omega = \underline{\qquad};$
- - (3) $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin \omega t}{\omega} d\omega = ____; \qquad (4) \int_{0}^{\infty} \frac{\sin^{3} \omega}{\omega^{3}} d\omega = ____.$

- 二、试用下列方法求图 4-10 所示信号 f(t) 的频谱函数。
 - (1) 利用延时和线性性质(门函数的频谱可利用已知结果):
 - (2) 利用时域积分定理;
 - (3) 将看作门函数 $g_2(t)$ 与冲激函数 $\delta(t+2)$ 、 $\delta(t-2)$ 的卷积之和。
- 三、设因果信号 $f(t) \leftrightarrow F(j\omega) = R(\omega) + jX(\omega)$, 证明: $R(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{X(y)}{\omega y} dy$; $X(\omega) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{R(y)}{\omega y} dy$ [上两式称为希尔伯特变换(Hilbert transforms)]。

4-6 周期信号傅里叶变换、频域分析

一、填空

- 一个周期为T的周期信号 f(t), 已知其指数形式的傅里叶系数为 F_n , 则下列各周期信号的傅里叶系数分别为
- (1) $f_1(t) = f(t t_0) \leftrightarrow \underline{\hspace{1cm}};$ (2) $f_2(t) = f(-t) \leftrightarrow \underline{\hspace{1cm}};$
- (3) $f_3(t) = \frac{\mathrm{d}f(t)}{\mathrm{d}t} \leftrightarrow \underline{\qquad}$; (4) $f_4(t) = f(at), a > 0 \leftrightarrow \underline{\qquad}$
- 二、求图 4-11 所示周期信号的频谱函数。

三、一个低通滤波器的频率响应
$$H(j\omega) = \begin{cases} 1 - \frac{|\omega|}{3}, & |\omega| < 3 \text{ rad/s} \\ 0, & |\omega| > 3 \text{ rad/s} \end{cases}$$

若输入
$$f(t) = \sum_{n=-\infty}^{\infty} 3e^{jn(\Omega t - \frac{\pi}{2})}$$
,其中 Ω =1rad/s,求输出 $y(t)$ 。

四、如图 4-12(a) 所示系统,已知带通滤波器的幅频响应如图 4-12(b) 所示,其相频特性 $\varphi(\omega)=0$, 若输入为 $f(t) = \frac{\sin(2\pi t)}{2\pi t}$, $s(t) = \cos(1000t)$, 求输出信号 y(t)。

五、如图 4-13 所示系统,已知
$$f(t) = \sum_{n=-\infty}^{\infty} \mathrm{e}^{\mathrm{j} n \Omega t}$$
 (其中 ϱ =1rad/s), $s(t) = \cos t$,频率响应
$$H(\mathrm{j}\omega) = \begin{cases} \mathrm{e}^{-\mathrm{j}\frac{\pi}{3}\omega}, & |\omega| < 1.5\,\mathrm{rad/s}\\ 0, & |\omega| > 1.5\,\mathrm{rad/s} \end{cases}$$

4-7 取样定理

- 一、有限频带信号 f(t) 的最高频率为 100Hz,若对下列信号进行时域取样,则其最小取样频率分别为

 - (1) $f(3t), f_S =$ _____; (2) $f^2(t), f_S =$ _____;

 - (3) $f(t)*f(2t), f_S = ____;$ (4) $f(t)+f^2(t), f_S = ____.$
- 二、有限频带信号 $f(t) = 5 + 2\cos(2\pi f_1 t) + \cos(4\pi f_1 t)$, 其中 f_1 =1kHz,用 f_S =5kHz 的冲激函数序列 $\delta_r(t)$ 进行取样。
 - (1) 画出 f(t) 及取样信号 $f_s(t)$ 在频率区间(-10kHz,10kHz)的频谱图;
 - (2) 若由 $f_s(t)$ 恢复原信号,理想低通滤波器的截止频率 f_s 应如何选择?
- 三、有限频带信号 $f(t) = 5 + 2\cos(2\pi f_t t) + \cos(4\pi f_t t)$, 其中 f_1 =1kHz,用 f_S =800Hz 的冲激函数序列 $\delta_{\tau_s}(t)$ 进行取样。(请注意 $f_S < f_1$)
 - (1) 画出 f(t) 及取样信号 $f_s(t)$ 在频率区间(-2kHz,2kHz)的频谱图;
 - (2) 若将取样信号 $f_{\rm S}(t)$ 输入到截止频率 $f_{\rm c}$ =500Hz,幅度为 $T_{\rm S}$ 的理想低通滤波器,其频率响应

$$H(jω) = H(j2πf)$$
 $\begin{cases} T_S, |f| < 500 \text{ Hz} \\ 0, |f| > 500 \text{ Hz} \end{cases}$, 画出滤波器输出信号的频谱,并求出输出信号 $y(t)$ 。

四、可以产生单边带信号的系统框图如图 4-14(b)所示,已知信号 f(t) 的频谱 $F(j\omega)$ 如图 4-14(a)所示, $H(j\omega) = -j sgn(\omega)$,且 $\omega_0 \gg \omega_n$,试求输出信号 y(t) 的频谱 $Y(j\omega)$,并画出其频谱图。

4-8 DTFT 和 DFT (本节考研不考)

一、求下列离散周期信号的傅里叶系数:

(1)
$$f(k) = \sin\left[\frac{(k-1)\pi}{6}\right]$$
 (2) $f(k) = 0.5^k, (0 \le k \le 3)(N = 4)$

二、求下列序列的离散时间傅里叶变换(DTFT)。

$$(1) \quad f_1(k) = \varepsilon(k) - \varepsilon(k-6) \qquad (2) \quad f_2(k) = k[\varepsilon(k) - \varepsilon(k-4)] \quad (3) \quad f_3(k) = 0.5^k \, \varepsilon(k)$$

(4)
$$f_4(k) = \begin{cases} a^k, & k \ge 0 \\ a^{-k}, & k < 0 \end{cases}$$
, $(0 < a < 1)$

三、用闭式写出下列有限长序列的 DFT。

(1)
$$f(k) = \delta(k)$$
 (2) $f(k) = \delta(k - k_0)$, $(0 < k_0 < N)$ (3) $f(k) = 1$

(4)
$$f(k) = a^k G_N(k)$$
 (5) $f(k) = e^{j\theta_0 k} G_N(k)$

四、若有限长序列
$$f(k) = \begin{cases} 1, & k=0 \\ 2, & k=1 \\ -1, & k=2 \end{cases}$$
,求 $f(k)$ 的 DFT,并由所得的结果验证 IDFT。 3、 $k=3$

4-9 综合

- 一、有限长序列 f(k) 如图 4-15 所示,画出下列序列 $f_1(k)$ 、 $f_2(k)$ 。
 - (1) $f_1(k) = f((k-2))_4 G_4(k)$ (2) $f_2(k) = f((-4))_4 G_4(k)$

二、已知
$$F(n) = \begin{cases} \frac{N}{2} e^{j\varphi}, & n = m \\ \frac{N}{2} e^{-j\varphi}, & n = N - m, \text{ 求 } f(k) = \text{IDFT}[F(n)] \text{ o} \\ 0, & 其余 \end{cases}$$

- 三、两有限长序列 $f_1(k)$ 和 $f_2(k)$ 如图 4-16 所示, 试求 $f(k) = f_1(k) \otimes f_2(k)$ 。
- 四、有限长序列 $f_1(k)$ 和 $f_2(k)$ 如图 4-17 所示, 试解答下列问题:
 - (1) 求 $f_1(k)$ 与 $f_2(k)$ 的线卷积 $f(k) = f_1(k) * f_2(k)$;
 - (2) 求 N = 4 时的 $f_1(k)$ 与 $f_2(k)$ 的圆卷积 $f(k) = f_1(k) \otimes f_2(k)$;
 - (3) 求 N=5 时的 $f_1(k)$ 与 $f_2(k)$ 的圆卷积。若要使 $f_1(k)$ 与 $f_2(k)$ 的圆卷积与线卷积相同,求长度 l 的最 小值。

第五章 连续系统的 s 域分析

5-1 拉氏变换定义

- 一、填空题
 - 1.信号 $f(t) = e^{-2t} \varepsilon(t)$ 的拉氏变换及收敛域为
 - 2.信号 $f(t) = e^{2t} \varepsilon(t)$ 的拉氏变换及收敛域为 ;
 - 3.信号 $f(t) = te^{-2t}$ 的单边拉氏变换及收敛域为。
- 二、求图 5-1 各信号的拉氏变换。

5-2 拉氏变换的性质

- 一、利用拉氏变换的性质,求下列函数的拉氏变换。
 - $(1) e^{-t} \varepsilon(t) e^{-(t-2)} \varepsilon(t-2) ;$
- $(2)\sin(\pi t)[\varepsilon(t)-\varepsilon(t-1)];$
- $(3)\sin(\pi t)\varepsilon(t) \sin[\pi(t-1)]\varepsilon(t-1); \qquad (4)\,\delta(4t-2);$
- $(5) \frac{\mathrm{d}^2}{\mathrm{d}t^2} [\sin(\pi t)\varepsilon(t)]; \quad (6) \frac{\mathrm{d}^2 \sin(\pi t)}{\mathrm{d}t^2} \varepsilon(t); \quad (7) t \mathrm{e}^{-(t-3)} \varepsilon(t-1)$
- 二、已知因果函数 f(t) 的象函数 $F(s) = \frac{1}{s^2 s + 1}$,求下列函数的象函数。
 - (1) $y_1(t) = e^{-t} f(\frac{t}{2});$ (2) $y_2(t) = tf(2t-1);$

(*a*)

- (3) $y_3(t) = e^{-2t} f(3t)$; (4) $y_4(t) = \frac{d f(0.5t-1)}{d t}$
- 三、求图 5-2 在 t=0 时接入的有始周期信号的象函数。

5-3 拉氏逆变换

一、求下列各象函数的拉氏逆变换。

$$(2)\frac{s^2+4s+5}{s^2+3s+2}$$
;

$$(3)\frac{2s+4}{s(s^2+4)}$$
;

$$(4)\frac{1}{s^2(s+1)}$$
;

$$(5)\frac{s^2-4}{(s^2+4)^2}$$

$$(4)\frac{1}{s^2(s+1)}; \qquad (5)\frac{s^2-4}{(s^2+4)^2}; \qquad (6)\frac{5}{s^3+s^2+4s+4}$$

二、求下列象函数的拉氏逆变换,并粗略画出它们的波形图。

$$(2)(\frac{1-e^{-s}}{s})^2$$

$$(3)\frac{e^{-2(s+3)}}{s+3}$$
;

$$(1)\frac{1-e^{-Ts}}{s+1}; \qquad (2)(\frac{1-e^{-s}}{s})^2; \qquad (3)\frac{e^{-2(s+3)}}{s+3}; \qquad (4)\frac{\pi(1+e^{-s})}{s^2+\pi^2}$$

三、设 $F(s) = \frac{\pi(1 + e^{-s})}{(s^2 + \pi^2)(1 - e^{-s})}$,求原函数f(t),并粗略画出它的波形

图 5-2

图。

四、已知因果信号 f(t) 满足 $f(t) - \int_0^t \sin(t-\tau)\varepsilon(t-\tau)f(\tau)d\tau = \sin(t)\varepsilon(t)$, 求该信号 f(t)。

5-4 s 域分析(1)

- 一、用拉氏变换求解微分方程 y''(t)+5y'(t)+6y(t)=3f(t) 在以下两种条件下的零输入响应 $y_{x}(t)$ 和零状态响应 $y_{x}(t)$ 。
 - (1) $\exists \exists f(t) = \varepsilon(t), \quad y(0_{-}) = 0, \quad y'(0_{-}) = 2;$ (2) $\exists \exists f(t) = e^{-t}\varepsilon(t), \quad y(0_{-}) = 0, \quad y'(0_{-}) = 1.$
- 二、描述某 LTI 系统的微分方程为 y'(t)+2y(t)=f'(t)+f(t), 求在下列激励下的零状态响应。
 - (1) $f(t) = e^{-t} \varepsilon(t)$; (2) $f(t) = t \varepsilon(t)$.
- 三、已知某 LTI 系统的阶跃响应 $g(t) = (1 e^{-2t})\varepsilon(t)$,欲使系统的零状态响应 $y_{zs}(t) = (1 e^{-2t} + te^{-2t})\varepsilon(t)$,求系统的输入信号 f(t)。
- 四、写出图 5-3 各 s 域框图所描述系统的系统函数 H(s) 。

五、描述某因果系统输出 $y_1(t)$ 和 $y_2(t)$ 的联立微分方程为 $\begin{cases} y_1'(t)+y_1(t)-2y_2(t)=4f(t)\\ y_2'(t)-y_1(t)+2y_2(t)=-f(t) \end{cases}$

已知 $y_1(0_-)=1$, $y_2(0_-)=2$, $f(t)=e^{-t}\varepsilon(t)$, 求 $y_1(t)$ 的零输入响应 $y_{1z}(t)$ 和零状态响应 $y_{1z}(t)$ 。

5-5 s 域分析(2)

一、如图 5-4 所示电路, 其输入均为单位阶跃函数 $\varepsilon(t)$, 求电压 u(t) 的零状态响应。

- 二、电路如图 5-5 所示,已知 L_1 = 3H , L_2 = 6H , R = 9 Ω ,若以 $i_s(t)$ 为输入,以 u(t) 为输出,求其冲 激响应 h(t) 和阶跃响应 g(t) 。
- 三、如图 5-6 所示的复合系统,由 4 个子系统连接组成,若各子系统的系统函数或冲激响应分别为:

$$H_1(s) = \frac{1}{s+1} \,, \quad H_2(s) = \frac{1}{s+2} \,, \quad h_3(t) = \varepsilon(t) \,, \quad h_4(t) = \mathrm{e}^{-2t} \varepsilon(t) \,, \quad \mbox{x 复合系统的冲激响应} \, h(t) \,.$$

四、某LTI系统在以下各种情况下其初始状态相同。已知, 当激励 $f_t(t) = \delta(t)$ 时,

其全响应
$$y_1(t) = \delta(t) + e^{-t}\varepsilon(t)$$
; 当激励 $f_2(t) = \varepsilon(t)$ 时,其全响应 $y_2(t) = 3e^{-t}\varepsilon(t)$ 。

(1) 如 $f_3(t) = e^{-2t} \varepsilon(t)$, 求系统的全响应; (2) 如 $f_4(t) = t[\varepsilon(t) - \varepsilon(t-1)]$, 求系统的全响应。

五、电路如图 5-7 所示, $u_s(t)=1$ V , 原已稳定, t=0 时将开关 S 打开,试求 $t\geq 0$ 时的 i(t) 。

六、电路如图 5-8 所示,原已稳定,t=0时将开关 S 由 1 打到 2,试求 $t \ge 0$ 时的 $u_0(t)$ 。

七、根据以下函数 f(t) 的象函数 F(s) , 求 f(t) 的傅里叶变换。

(1)
$$f(t) = \varepsilon(t) - \varepsilon(t-2)$$
; (2) $f(t) = \begin{cases} 0, & t < 0 \\ t, & 0 < t < 1 \\ 1, & t > 1 \end{cases}$

第六章 离散系统的z 域分析

6-1 z 变换定义与性质

一、求下列序列的双边 z 变换, 并注明收敛域。

(1)
$$f(k) = \begin{cases} 0.5^k, & k < 0 \\ 0, & k \ge 0 \end{cases}$$
; (2) $f(k) = \begin{cases} 2^k, & k < 0 \\ (\frac{1}{3})^k, & k \ge 0 \end{cases}$;

(3)
$$f(k) = (\frac{1}{2})^{|k|}, k = 0, \pm 1, ...;$$
 (4) $f(k) = \begin{cases} 0, & k < -4 \\ (\frac{1}{2})^k, & k \ge -4 \end{cases}$

二、求下列序列的 z 变换, 并注明收敛域。

(1)
$$f(k) = (\frac{1}{3})^k \varepsilon(k)$$
; (2) $f(k) = [(\frac{1}{2})^k + (\frac{1}{3})^{-k}]\varepsilon(k)$;

(3)
$$f(k) = \cos(\frac{k\pi}{4})\varepsilon(k)$$
; (4) $f(k) = \sum_{m=0}^{\infty} (-1)^m \delta(k-m)$

三、粗略画出下列因果序列的图形,并求出其 z 变换。

(1)
$$f(k) = \begin{cases} 0, & k$$
为奇数 ; (2) $f(k) = \begin{cases} 1, & k = 0,1,2,3 \\ -1, & k = 4,5,6,7 \end{cases}$ 0, 其余

四、已知 $a^k \varepsilon(k) \leftrightarrow \frac{z}{z-a}, |z| > |a|, k\varepsilon(k) \leftrightarrow \frac{z}{(z-1)^2}, |z| > 1$,利用z变换的性质求下列序列的z变换,并 注明收敛域。

(1)
$$\frac{1}{2}[1+(-1)^k]\varepsilon(k)$$
;

(2)
$$(-1)^k k \varepsilon(k)$$
;

(3)
$$k(k-1)\varepsilon(k-1)$$

$$(1) \quad \frac{1}{2}[1+(-1)^{k}]\varepsilon(k); \qquad (2) \quad (-1)^{k}k\varepsilon(k); \qquad (3) \quad k(k-1)\varepsilon(k-1); \qquad (4) \quad (\frac{1}{2})^{k}\cos(\frac{k\pi}{2})\varepsilon(k)$$

五、利用 z 变换的性质求下列序列的 z 变换。

(1)
$$k \sin(\frac{k\pi}{2})\varepsilon(k)$$
;

(1)
$$k \sin(\frac{k\pi}{2})\varepsilon(k)$$
; (2) $\frac{a^k - b^k}{k}\varepsilon(k-1)$; (3) $\frac{a^k}{k+1}\varepsilon(k)$; (4) $\sum_{k=1}^{k}(-1)^i\varepsilon(k)$

(3)
$$\frac{a^k}{k+1}\varepsilon(k)$$

$$(4)\sum_{i=0}^{k} (-1)^{i} \varepsilon(k)$$

6-2 逆 z 变换

一、求下列象函数 F(z) 的逆 z 变换。

$$(1) F(z) = \frac{1}{1 - 0.5z^{-1}}, |z| > 0.5; \quad (2) F(z) = \frac{3z + 1}{z + 0.5}, |z| > 0.5; \quad (3) F(z) = \frac{z^2 + z + 1}{z^2 + z - 2}, |z| > 2$$

二、求下列象函数F(z)的双边逆z变换。

$$(1) F(z) = \frac{z^2}{(z - \frac{1}{2})(z - \frac{1}{3})}, |z| < \frac{1}{3}; \quad (2) F(z) = \frac{z^2}{(z - \frac{1}{2})(z - \frac{1}{3})}, |z| > \frac{1}{2}; \quad (3) F(z) = \frac{z^3}{(z - \frac{1}{2})^2(z - \frac{1}{3})}, \frac{1}{3} < |z| < \frac{1}{2}$$

三、求下列象函数F(z)的逆z变换。

(1)
$$F(z) = \frac{1}{z^2 + 1}$$
, $|z| > 1$; (2) $F(z) = \frac{z^2 + z}{(z - 1)(z^2 - z + 1)}$, $|z| > 1$;

(3)
$$F(z) = \frac{z^2}{z^2 + \sqrt{2}z + 1}, |z| > 1;$$
 (4) $F(z) = \frac{z^2 + az}{(z - a)^3}, |z| > |a|$

四、利用卷积定理求下列序列 f(k) 与 h(k) 的卷积 y(k) = f(k)*h(k)。

(1)
$$f(k) = a^k \varepsilon(k)$$
, $h(k) = \varepsilon(k-1)$; (2) $f(k) = a^k \varepsilon(k)$, $h(k) = b^k \varepsilon(k)$

五、设因果序列 f(k) [即 f(k) = 0 , k < 0],满足方程 $\sum_{i=0}^{k-1} f(i) = [k\varepsilon(k)] * [(\frac{1}{2})^k \varepsilon(k)]$,求序列 f(k) 。

6-3 z 域分析(1)

- 一、描述某 LTI 离散系统差分方程为 y(k+2)-0.7y(k+1)+0.1y(k)=7f(k+1)-2f(k), 已知 $f(k)=0.4^k\varepsilon(k),\ y(-1)=-4,\ y(-2)=-38,\ 求该系统的零输入响应 <math>y_{zi}(k)$ 和零状态响应 $y_{zi}(k)$ 及 全响应 y(k)。
- 二、LTI 离散系统框图如图 6-1 所示,求该系统的单位序列响应 h(k) 和阶跃响应 g(k)。
- 三、LTI 离散系统框图如图 6-2 所示, 求该系统在下列激励作用下的零状态响应 $y_{rs}(k)$ 。
 - (1) $f(k) = \varepsilon(k)$; (2) $f(k) = k\varepsilon(k)$
- 四、LTI 离散系统框图如图 6-3 所示,
 - (1) 试证明图(a)、(b)、(c)的系统满足相同的差分方程;
 - (2) 求该系统的单位序列响应 h(k);
 - (3) 若 $f(k) = \varepsilon(k)$, 求该系统的零状态响应 $y_{rs}(k)$ 。
- 五、已知某 LTI 离散系统的差分方程为 y(k)-1.5y(k-1)-y(k-2)=f(k-1),
 - (1) 若该系统为因果系统, 求该系统的单位序列响应;
 - (2) 若系统函数 H(z) 的收敛域包含单位圆,求系统的单位序列响应,并计算当输入为 $f(k) = (-0.5)^k \varepsilon(k)$ 时系统的零状态响应 $y_{zz}(k)$ 。

6-4 z 域分析(2)

- 一、当输入 $f(k) = \varepsilon(k)$ 时,某 LTI 离散系统的零状态响应 $y_{zs}(k)$ 为 $y_{zs}(k) = 2[1-(0.5)^k]\varepsilon(k)$, 试计算当输入 $f(k) = (0.5)^k \varepsilon(k)$ 时系统的零状态响应 $y_{zs}(k)$ 。
- 二、如图 6-4 所示的复合系统由 3 个子系统连接组成,若已知各子系统的单位序列响应或系统函数分别为: $h_1(k)=\varepsilon(k)$, $H_2(z)=\frac{z}{z+1}$, $H_3(z)=\frac{1}{z}$, 试计算当输入为 $f(k)=\varepsilon(k)-\varepsilon(k-2)$ 时复合系统的零状态响应 $y_{zz}(k)$ 。
- 三、求图 6-5 所示离散系统的频率响应,并粗略画出 $\theta = \omega T_s$ 在 $-\pi \sim \pi$ 区间的幅频和相频响应。
- 四、某LTI 离散系统框图如图 6-6 所示, 若输入为 $f(k) = 5 + 5\cos(\frac{\pi}{2}k) + \cos(\pi k)$, 求系统的稳态响应 $y_{ss}(k)$.
- 五、已知某 LTI 离散因果系统的差分方程为 v(k)+0.2v(k-1)-0.24v(k-2)=f(k)+f(k-1),
 - (1) 求系统的系统函数 H(z) 和单位序列响应 h(k);
 - (2) 求出系统频率响应,并求当输入为 $f(k) = 12\cos(\pi k)$ 时系统的稳态响应 $y_{ss}(k)$ 。
- 六、已知某 LTI 离散系统的差分方程为 y(k)-1.5y(k-1)-y(k-2)=f(k-1),
 - (1) 若该系统为因果系统, 求系统函数, 标出收敛域并求单位序列响应;
 - (2) 若该系统为稳定系统, 求系统函数, 标出收敛域并求单位序列响应。

第七章 系统函数

7-1 系统函数零极点

- 一、填空题
- 1.描述系统的差分方程为

$$(a) y(k) + y(k-1) - \frac{3}{4} y(k-2) = 2 f(k) - f(k-1)$$
,则 $H(z) = _____$, 零点为_____, 极点为_____;

$$(b) y(k) - \frac{1}{2}y(k-1) + \frac{1}{8}y(k-2) = \frac{1}{2}f(k) + f(k-1)$$
,则 $H(z) = _____$,零点为_____,极点为____。

- 2.(a) 某系统 H(s) 的零极点分布如图 7-1 所示,且 H(0)=1,则 $H(s)=______$;
 - (b) 某系统 H(s) 的零点在: $0, -2 \pm i1$; 极点在: $-3, -1 \pm i3$; 且 H(-2) = -1, 则 H(s) = -1
 - (c) 某系统 H(s) 的零点在: $2 \pm j1$; 极点在: $-2 \pm j1$; 且 H(0) = 2,则 $H(s) = ______$ 。
- 3.下列因果系统的系统函数 $H(\bullet)$, 为使系统稳定,确定 k 应满足的条件:

(a)
$$H(s) = \frac{s}{s^2 + (4-k)s + 4}$$
, $k \not\supset$ ______;

(b)
$$H(z) = \frac{z^2 + 3z + 2}{2z^2 - (k-1)z + 1}, \quad k \not\supset ____;$$

(c)
$$H(z) = \frac{z^2 - 1}{z^2 + 0.5z + k + 1}$$
, $k \not\supset$ _______.

- 二、如图 7-2, 某离散系统,已知系统函数的零点在-1,2,极点在-0.8,0.5,求系数 a_0, a_1, b_1, b_2 。
- 三、二阶系统的系统函数 H(s) 的零极点分布如图 7-3 所示,且已知 $H(\infty)=1$,
 - (1) 求出 H(s) 的表达式; (2) 写出其幅频特性 $|H(j\omega)|$; (3) 试粗略画出其幅频特性曲线。

7-2 信号流图

一、填空

- 1.求信号流图 7-4 的增益 $G = \frac{Y}{F}$ 值。
 - (1) 信号流图(*a*)的增益 $G = \frac{Y}{F} = _______;$
 - (2) 信号流图(b)的增益 $G = \frac{Y}{F} = _____.$
- 2.求下列系统的系统函数。
 - (1) 系统流图(c)的 $H(s) = \frac{Y(s)}{F(s)} = ______;$
 - (2) 系统流图(*d*)的 $H(z) = \frac{Y(z)}{F(z)} = ______.$
- 二、已知某 LTI 系统,系统函数 H(s) 的零极点分布如图 7-5 所示,且 H(0) = -1.2 ,求:
 - (1) 系统函数 H(s) 及冲激响应 h(t);
 - (2) 写出输入与输出之间的微分方程;
 - (3) 求 $H(j\omega)$ 以及激励为 $\cos(3t)\varepsilon(t)$ 时系统的稳态响应。
- 三、如图 7-6 所示离散 LTI 因果系统的信号流图,
 - (1) 求系统函数H(z);
 - (2) 写出输入、输出之间的差分方程;
 - (3) 判断该系统是否稳定。

图 7-4

7-3 系统模拟

- 一、填空题
 - 1.连续系统的系统函数如下,试用直接型模拟此系统,并画出方框图。

$$(a) \frac{s-1}{(s+1)(s+2)(s+3)}$$

$$(b)\frac{s^2+4s+5}{(s+1)(s+2)(s+3)}$$

2. 离散系统的系统函数如下,试用直接型模拟此系统,并画出方框图。

(a)
$$\frac{z(z+2)}{(z-0.8)(z-0.6)(z-0.4)}$$
 (b) $\frac{z^3}{(z-0.5)(z^2-0.6z+0.25)}$

(b)
$$\frac{z^3}{(z-0.5)(z^2-0.6z+0.25)}$$

二、系统函数 $H(\bullet)$ 如下,试分别用级联形式和并联形式模拟,并画出方框图。

$$(a)\frac{s^2+s+2}{(s+2)(s^2+2s+2)}$$

$$(b)\frac{z^2}{(z+0.5)^2}$$

- 三、如图 7-7 所示连续 LTI 因果系统的信号流图。
 - (1) 求系统函数 H(s); (2) 写出输入与输出之间的微分方程; (3) 判断该系统是否稳定。

第八章 系统的状态变量分析

8-1 连续系统状态方程列写

- 一、如图 8-1 所示电路,列写出以 $u_c(t)$ 、 $i_L(t)$ 为状态变量 $x_1(t)$ 、 $x_2(t)$,以 $y_1(t)$ 、 $y_2(t)$ 为输出的状态变量和输出方程(矩阵形式)。
- 二、描述某连续系统的微分方程为 y'''(t)+5y''(t)+y'(t)+2y(t)=f'(t)+2f(t),写出该系统的状态方程和输出方程(矩阵形式)。
- 三、如图 8-2 所示系统的信号流图, 写出以 $x_1(t)$ 、 $x_2(t)$ 为状态变量的状态方程和输出方程(矩阵形式)。

四、如图 8-3 所示连续因果系统,

- (1) 写出 $x_1(t)$ 、 $x_2(t)$ 为状态变量的状态方程和输出方程(矩阵形式);
- (2) 为使该系统稳定,常数 a、b 应满足什么条件?

8-2 离散系统状态方程列写

- 一、某离散系统的信号流图如图 8-4 所示, 写出以 $x_1(k)$ 、 $x_2(k)$ 为状态变量的状态方程和输出方程(矩阵形式)。
- 二、如图 8-5 所示离散系统, 写出以 $x_1(k)$ 、 $x_2(k)$ 、 $x_3(k)$ 为状态变量的状态方程和输出方程(矩阵形式)。
- 三、某二阶离散 LTI 系统的信号流图如图 8-6 所示,
 - (1) 写出以 $x_1(k)$ 、 $x_2(k)$ 为状态变量的状态方程和输出方程(矩阵形式);
 - (2) 求系统函数 H(z);
 - (3) 写出描述系统的差分方程。

图 8-6

西安电子科技大学 2006 年期末试题 (考试时间: 120分钟)

一、**选择题**(共10小题,每小题3分,共30分)

- (A) -1 (B) -0.5 (C) 0 (D) 0.5

- (A) 2

- (C) 8 (D) 16
- 3. 下列微分方程描述的系统为线性时变系统的是

- (C) $y'(t) + y^2(t) = f(t)$
- (D) y'(t)y(t) = 2f(t)

- 题 4 图
- 4. 信号 $f_1(t)$ 和 $f_2(t)$ 的波形如题 4 图所示,设 $y(t) = f_1(t) * f_2(t)$,则 y(4) 等于

 - (A) 0 (B) 2 (C) 4 (D) 8
- 5. 信号 $f(t) = e^{-(2+j5)t} \varepsilon(t)$ 的傅里叶变换 $F(j\omega)$ 等于

(A)
$$\frac{e^{j \delta \omega}}{j \omega + 2}$$

- (A) $\frac{e^{j5\omega}}{i\omega + 2}$ (B) $\frac{1}{i(\omega 5) 2}$ (C) $\frac{1}{i(\omega + 5) + 2}$ (D) $\frac{1}{i(\omega 2) + 5}$
- 6. 连续信号 f(t) 的最高角频率 $\omega_{\rm m}=10^4\pi{\rm rad/s}$,若对其取样,并从取样后的信号中恢复原信号 f(t) , 则奈奎斯特间隔和所需理想低通滤波器的最小截止频率分别为
- (A) 10^{-4} s, 10^{4} Hz (B) 10^{-4} s, 5×10^{3} Hz (C) 2×10^{-4} s, 5×10^{3} Hz (D) 5×10^{-3} s, 10^{4} Hz
- 7. 已知因果函数 f(t) 的象函数为 F(s) ,则 $e^{-3t} f(t-1)$ 的象函数为
- (A) $e^{-s}F(s+3)$ (B) $e^{-(s+3)}F(s)$ (C) $e^{-(s+3)}F(s+3)$ (D) $e^{s-3}F(s-3)$
- 8. 已知一双边序列函数 $f(k) = \begin{cases} 2^k, & k \ge 0 \\ 3^k, & k < 0 \end{cases}$, 其 z 变换 F(z) 等于

 - (A) $\frac{-z}{(z-2)(z-3)}$, 2 < |z| < 3 (B) $\frac{z(2z-1)}{(z-2)(z-3)}$, 2 < |z| < 3

 - (C) $\frac{z}{(z-2)(z-3)}$, 2 < |z| < 3 (D) $\frac{-z}{(z-2)(z-3)}$, |z| < 2, |z| > 3
- 9.以下分别 是 4 个因果信号的拉普拉斯变换,其中不存在傅里叶变换的是
 - (A) $\frac{1}{s}$ (B) 1 (C) $\frac{1}{s+2}$ (D) $\frac{1}{s-2}$

- 10. 象函数 $F(z) = \frac{z}{(z-1)(z-2)(z-3)}$ 的收敛域不可能是

- (A) |z| < 1 (B) 1 < |z| < 2 (C) |z| > 3 (D) 1 < |z| < 3

二、填空题(共5小题,每小题4分,共20分)

- 11. 已知 f(t) 的波形如题 11 图所示, 试画出 f(1-2t) 的波形。
- 12. 信号 f(t) 如题 12 图所示, 其拉普拉斯变换 F(s) = 。

- 13. 频谱函数 $F(j\omega) = 2\cos(\omega)$ 的原函数 f(t) =
- 14. 如题 14 图所示的系统,它由几个子系统所组成,各子系统的冲激响应分别为 $h_1(t) = \varepsilon(t)$, $h_2(t) = \delta(t-1)$, $h_3(t) = -\delta(t)$,则复合系统的冲激响应 $h(t) = _____$ 。

三、计算题(共5小题,每小题10分,共50分)

- 16. (1) 请分别写出连续信号傅里叶变换的定义式和逆变换定义式;
 - (2) 请分别写出 DTFT 的定义式和双边 z 变换的定义式;
 - (3) 写出傅里叶变换的时域卷积定理,并证明之。
- 17. 已知系统的模拟框图如题 17 图所示。
 - (1) 求该系统的系统函数H(s);
 - (2) 为使信号通过系统后不产生幅度失真, 试确定常数 b 的值;
 - (3) 在系统不产生幅度失真的情况下,当输入周期信号 $f(t) = 1 \frac{1}{2}\cos(\frac{\pi}{4}t \frac{2\pi}{3}) + \sin(\frac{\pi}{2} \frac{\pi}{6})$ 时,求系统输出 y(t) 的功率 P 。

- 18. 描述某因果离散系统输出 y(k) 与输入 f(k) 的差分方程为 y(k) y(k-1) y(k-2) = 5 f(k-1),
 - (1) 求该系统的系统函数 H(z);
 - (2) 画出 H(z) 的零极点分布图,写出 H(z) 的收敛域,并判断该系统是否稳定。
 - (3) 求系统的单位序列响应 h(k);
 - (4) 画出该系统直接形式的信号流图。
- 19. 题 19 图所示电路,激励信号为 $u_s(t)$,输出为 $u_o(t)$ 。
 - (1) 求系统的系统函数 H(s) 和冲激响应 h(t);
 - (2) 当 $u_s(t) = e^{-t}\varepsilon(t)$, 在t = 0和t = 1时测得系统的输出为 $u_o(0) = 1$, $u_o(1) = 2e^{-1}$, 求系统的零输入 响应、零状态响应。
- 20. (编者注: 原版习题册的此题没有图)题 20图所示因果离散系统的模拟框图, 状态变量 x,(k)、x,(k) 如图所标。
 - (1) 试列出该系统的状态方程与输出方程;
 - (2) 试列出该系统的输出 y(k) 与输入 f(k) 之间的差分方程;
 - (3) 求该系统的频率响应;
 - (4) 当 $f(k) = 2 + 8\cos(\pi k)$ 时,求系统的稳态响应 $y_s(k)$ 。

参考答案

1-5 BDBAC 6-10 BCADD 11. 见图 12.
$$F(s) = \frac{1 - e^{-s} - se^{-s}}{s^2}$$
 13. $f(t) = \delta(t-1) + \delta(t+1)$

14.
$$h(t) = \varepsilon(t) - \varepsilon(t-1)$$
 15. $f_1(k) * f_2(k) = \{4, 13, 22, 15\}$

16.(1)
$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$
, $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)e^{j\omega t} d\omega$

$$(2) F(e^{j\theta}) = \sum_{k=-\infty}^{\infty} f(k)e^{-j\theta k} , \quad F(z) = \sum_{k=-\infty}^{\infty} f(k)z^{-k}$$

$$(3) f_1(t) * f_2(t) \leftrightarrow F_1(j\omega)F_2(j\omega)$$
证明略。
$$17.(1) H(s) = \frac{bs^2 + (3b - 12)s + 2b}{s^2 + 3s + 2}$$

$$(2) b = 2$$

$$(3) P = 6.5$$

17.(1)
$$H(s) = \frac{bs^2 + (3b-12)s + 2b}{s^2 + 3s + 2}$$
 (2) $b = 2$ (3) $P = 6.5$

18.(1)
$$H(z) = \frac{5z^{-1}}{1-z^{-1}-z^{-2}} = \frac{5z}{z^2-z-1}$$

(2) H(z) 的零点为: $\xi_1 = 0$, 极点为: $p_{1,2} = \frac{1 \pm \sqrt{5}}{2}$, 零极点分布如图(a)所示。

H(z) 的收敛域为 $|z| > \frac{1+\sqrt{5}}{2}$ 。对因果系统,因H(z) 有在单位圆外的极点,故系统不稳定。

(3)
$$H(z) = \frac{\sqrt{5}z}{z - \frac{1 + \sqrt{5}}{2}} - \frac{\sqrt{5}z}{z - \frac{1 - \sqrt{5}}{2}}, \quad h(k) = \sqrt{5} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right] \varepsilon(k)$$

(4) 系统直接形式的信号流图如图(b)所示。

19.(1)
$$H(s) = \frac{0.5s}{s^2 + 1.5s + 0.5} = \frac{-0.5}{s + 0.5} + \frac{1}{s + 1}$$
, $h(t) = (e^{-t} - 0.5e^{-0.5t})\varepsilon(t)$

(2)
$$U_{ozs}(s) = H(s)U_s(s) = \frac{0.5s}{s^2 + 1.5s + 0.5} \cdot \frac{1}{s+1} = \frac{-1}{s+0.5} + \frac{1}{(s+1)^2} + \frac{1}{s+1}$$

$$u_{ozs}(t) = (-e^{-0.5t} + te^{-t} + e^{-t})\varepsilon(t)$$
, $u_{ozs}(0) = 0$, $u_{ozs}(1) = (-e^{-0.5} + 2e^{-1})$,

$$u_{ozi}(0) = u_o(0) - u_{ozs}(0) = 1$$
, $u_{ozi}(1) = u_o(1) - u_{ozs}(1) = e^{-0.5}$, 特征根为 $\lambda_1 = -0.5$, $\lambda_2 = -1$,

故
$$u_{ozi}(t) = C_1 e^{-0.5t} + C_2 e^{-t}, t \ge 0$$
,得 $C_1 = 1$, $C_2 = 0$, $u_{ozi}(t) = e^{-0.5t}, t \ge 0$ 。

$$20.(1) \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0.2 & 0.4 \\ 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} f(k), \quad y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

(2)
$$y(k) - 0.6y(k-1) = 2f(k-1)$$

(3)
$$H(e^{j\theta}) = \frac{2}{e^{j\theta} - 0.6}$$

(4) 在 θ = 0, π 处的频率响应函数分别为:

$$H(z)|_{z=e^{j0}} = \frac{2}{1-0.6} = 5$$
, $H(z)|_{z=e^{j\pi}} = \frac{2}{e^{j\pi}-0.6} = \frac{2}{-1-0.6} = \frac{5}{4} \angle 180^{\circ}$

分别计算各频率分量,相加得到系统的稳态响应为: $y_s(k) = 10 + 10\cos(\pi k + 180^\circ)$ 。

案详解

第一章 信号与系统

1-1 波形绘制和冲激函数

一、从左至右依次为(1)、(2)、(3)、(4)

二、上图为(1), 下图为(2)

三、

- \square (1) π (2) 2 (3) $\varepsilon(t-5)\sin 5$ (4) 0 (5) $(t-5)[\varepsilon(t+2)-\varepsilon(t-2)]$

1-2 连续系统方程与性质

一、解: 由 KCL,得 $i_L = i_S - i_C$,即 $i_L'' = i_S'' - i_C''$

由 KVL,得
$$u_C + i_C R = u_L$$
,即 $u'_C + i'_C R = u'_L$ ① 面 $u'_C = \frac{1}{C}i_C$ ② $u'_L = Li''_L = L(i''_S - i''_C)$ ③

②式与③式代入①式,整理得
$$i_C''(t) + \frac{R}{L}i_C'(t) + \frac{1}{LC}i_C(t) = i_S''(t)$$

- 二、解: 设激励为 f(t) 时,零输入响应 $y_x(t)$,零状态响应 $y_f(t)$,由 LTI 系统的齐次性得 $y_f(t) = T[f(t)]$, $2y_f(t) = T[2f(t)], \quad 3y_f(t) = T[3f(t)], \quad \text{又由系统的可加性,得 } y_x(t) + y_f(t) = 6\mathrm{e}^{-2t} 5\mathrm{e}^{-3t}, t \ge 0 \,,$ $y_x(t) + 3y_f(t) = 8\mathrm{e}^{-2t} 7\mathrm{e}^{-3t}, t \ge 0 \,,$ 解得 $y_f(t) = \mathrm{e}^{-2t} \mathrm{e}^{-3t}, t \ge 0$
 - ∴ 当激励为 2f(t) 时,零状态响应为 $y_{zs}(t) = 2y_f(t) = 2(e^{-2t} e^{-3t}), t \ge 0$
- 三、(1)是,是 (2)是,是 (3)否,是 (4)否,否
- 四、(1)是, 否 (2)否, 是 (3)否, 是 (4)是, 是

1-3 序列和差分方程

- 一、(1) $\frac{2\pi}{3\pi/7} = \frac{14}{3}$, : f(k) 是周期信号, 且其周期 N=14。
 - (2) $\frac{2\pi}{1/8} = 16\pi$,无理数, :: f(k) 为非周期信号。

$$\exists (1) f(k-2) = \begin{cases} 0, & k < 1 \\ 2^{-(k-2)} + 3(k-2), & k \ge 1 \end{cases}$$

三、解: 如图,
$$\begin{cases} x(k) = a_1 f(k-1) + a_2 f(k) + bx(k-2) \\ y(k) = a_3 x(k-1) \end{cases}$$

消去
$$x(k)$$
, 得: $y(k+1)-by(k-1)=a_1a_3f(k-1)+a_2a_3f(k)$

四、解:
$$\begin{cases} y(k) - \frac{2}{3}y(k-1) = 0, k \ge 1 \\ y(0) = h \end{cases}$$

第二章 连续系统的时域分析

2-1 微分方程的求解

$$-$$
, 1.(a) -5, 29 (b) 1, 3

2.(a)
$$2e^{-2t} - e^{-3t}, t \ge 0$$
 (b) $2e^{-t}\cos(2t), t \ge 0$ (c) $(1+2t)e^{-t}, t \ge 0$

(b)
$$2e^{-t}\cos(2t), t \ge 0$$

(c)
$$(1+2t)e^{-t}, t \ge 0$$

二、(a) 解: 零输入响应
$$y_x(t)$$
 满足的微分方程
$$\begin{cases} y_x^2 + 4y_x^2 + 3y_x = 0 \\ y_x'(0_+) = y_x'(0_-) = y(0_-) = 1 \end{cases}$$

方程的解
$$y_x(t) = C_1 e^{-t} + C_2 e^{-3t}, t \ge 0$$
,代入初始条件,得
$$\begin{cases} -C_1 - 3C_2 = 1 \\ C_1 + C_2 = 0 \end{cases}$$
,解得 $C_1 = 2, C_2 = -1$

$$y_r(t) = 2e^{-t} - e^{-3t}, t \ge 0$$

零状态响应
$$y_f(t)$$
 满足的微分方程
$$\begin{cases} y_f'' + 4y_f' + 3y_f = \varepsilon(t) \\ y_f'(0_+) = y_f(0_+) = 0 \end{cases}$$

方程的解 $y_f(t) = D_1 e^{-t} + D_2 e^{-3t} + \frac{1}{3}, t \ge 0$,代入初始条件,

得
$$\begin{cases} -D_1 - 3D_2 = 0 \\ D_1 + D_2 + \frac{1}{3} = 0 \end{cases}, \quad 解得 D_1 = -\frac{1}{2}, D_2 = \frac{1}{6} \quad \therefore y_f(t) = -\frac{1}{2}e^{-t} + \frac{1}{6}e^{-3t} + \frac{1}{3}, t \ge 0$$

全响应
$$y(t) = y_x(t) + y_f(t) = \frac{3}{2}e^{-t} - \frac{5}{6}e^{-3t} + \frac{1}{3}, t \ge 0$$

(b) 解:由零输入响应的性质可知,零输入响应满足的微分方程为 $\begin{cases} y_x'' + 4y_x' + 4y_x = 0 \\ v_x(0) = 1 \end{cases}$

方程的解为
$$y_x(t) = C_1 \mathrm{e}^{-2t} + C_2 t \mathrm{e}^{-2t}, t \ge 0$$
,代入初始条件,得
$$\begin{cases} C_1 = 1 \\ -2C_1 + C_2 = 2 \end{cases}$$
,即 $C_1 = 1, C_2 = 4$

$$y_x(t) = e^{-2t} + 4te^{-2t}, t \ge 0$$

由零状态响应的性质可知,零状态响应满足的方程为
$$\begin{cases} y_f'' + 4y_f' + 4y_f = \delta(t) + 2\mathrm{e}^{-t}\varepsilon(t) \\ y_f'(0_-) = y_f(0_-) = 0 \end{cases}$$

方程右端含有冲激项,两边从0到0积分:

$$\int_{0}^{0_{+}} y_{f}'' dt + 4 \int_{0}^{0_{+}} y_{f}' dt + 4 \int_{0}^{0_{+}} y_{f} dt = \int_{0}^{0_{+}} \delta(t) dt + 2 \int_{0}^{0_{+}} e^{-t} \varepsilon(t) dt$$

考虑到 $y_{\ell}(t)$ 的连续性,得 $[y'_{\ell}(0_{+})-y'_{\ell}(0_{-})]+4[y_{\ell}(0_{+})-y_{\ell}(0_{-})]=1$

$$\mathbb{P} y_f'(0_+) = y_f'(0_-) + 1 = 1$$
, $y_f(0_+) = y_f(0_-) = 0$

当
$$t>0$$
 时,微分方程化为 $y_f''+4y_f'+4y_f=2{\rm e}^{-t}$,方程的解为 $y_f(t)=D_1{\rm e}^{-2t}+D_2t{\rm e}^{-t}+2{\rm e}^{-t}$, $t\geq0$,

代入初始条件,得
$$\begin{cases} D_1 + 2 = 0 \\ -2D_1 + D_2 - 2 = 1 \end{cases}, \quad \text{即 } D_1 = -2, D_2 = -1 \;, \quad \ \ \, \boldsymbol{\cancel{\cdot}} \; y_{\scriptscriptstyle f}(t) = -2\mathrm{e}^{-2t} - t\mathrm{e}^{-2t} + 2\mathrm{e}^{-t}, t \geq 0 \end{cases}$$

全响应
$$y(t) = y_x(t) + y_t(t) = (3t-1)e^{-2t} + 2e^{-t}, t \ge 0$$

$$\Xi$$
, \pm KVL, $u_C = u_L + 4i = i' + 4i$, $i_C = \frac{1}{2}u_C' = \frac{1}{2}i'' + 2i'$,

$$\mathbb{X} \boxplus \text{KVL}, \quad u_s = u_c + 2(i_c + i) = i' + 4i + 2(\frac{1}{2}i'' + 2i' + i)$$

: i(t) 为输出的微分方程为 $i'' + 5i' + 6i = 2e^{-t}\varepsilon(t)$

其零状态响应满足的微分方程为
$$\begin{cases} i_f'' + 5i_f' + 6i_f = 2e^{-t}\epsilon(t) \\ i_f'(0_+) = i_f(0_+) = 0 \end{cases}$$

方程的解为
$$i_f(t) = C_1 \mathrm{e}^{-2t} + C_2 \mathrm{e}^{-3t} + \mathrm{e}^{-t}, t \ge 0$$
,代入初始条件,得
$$\begin{cases} C_1 + C_2 + 1 = 0 \\ -2C_1 - 3C_2 - 1 = 0 \end{cases}$$

$$\mathbb{E}[C_1 = -2, C_2 = 1] \quad \text{if } i_f(t) = -2e^{-2t} + e^{-3t} + e^{-t}, t \ge 0$$

2-2 冲激响应和阶跃响应

$$-1.(a) e^{-3t} \varepsilon(t)$$
 (b) $(\cos t - \sin t) e^{-t} \varepsilon(t)$

2.(a)
$$\delta(t) - 3e^{-2t}\varepsilon(t)$$
, $(1.5e^{-2t} - 0.5)\varepsilon(t)$ (b) $\delta'(t) - 2\delta(t) + 4e^{-2t}\varepsilon(t)$, $\delta(t) - 2e^{-2t}\varepsilon(t)$

二、解: 由 KVL,
$$u_S = u_L + u_C$$
, 由 KCL, $i_L = i_R + i_C$, 又 $u_L = \frac{1}{2}i_L'$, $i_C = u_C'$, $u_C = \frac{1}{3}i_R$

联立以上各式,得 $u_{c}(t)$ 为输出的系统微分方程为 $u_{c}''+3u_{c}'+2u_{c}=2u_{s}$

当
$$u_S(t) = \varepsilon(t)$$
 时,阶跃响应为 $g(t) = C_1 \mathrm{e}^{-t} + C_2 \mathrm{e}^{-2t} + 1, t \ge 0$,代入初始条件,得
$$\begin{cases} C_1 + C_2 + 1 = 0 \\ -C_1 - 2C_2 = 0 \end{cases}$$

即
$$C_1 = -2, C_2 = 1$$
 $\therefore g(t) = (-2e^{-t} + e^{-2t} + 1)\varepsilon(t), t \ge 0$,沖激响应 $h(t) = \frac{\mathrm{d}}{\mathrm{d}t}g(t) = 2(e^{-t} - e^{-2t})\varepsilon(t)$

$$\Xi$$
、解: \pm KCL, $i_S = i_R + i_L$, \pm KVL, $i'_L = u_L + 2i_R$, $\nabla u_L = i'_R$,

联立以上各式,得以
$$u_L(t)$$
为输出的系统微分方程 $u'_L + u_L = \frac{1}{2}i''_S$,

选取新变量
$$u(t)$$
 , 使其满足 $u'(t)+u(t)=f(t)$, 则其冲激响应为 $h_i(t)=C_1e^{-t}$, $t\geq 0$,

代入初始条件,得
$$C_1$$
=1,即 $h_1(t) = e^{-t}\varepsilon(t), t \ge 0$

$$\therefore$$
 系统的冲激响应为 $h(t) = \frac{1}{2}h_1''(t) = \frac{1}{2}[\delta'(t) - \delta(t) + e^{-t}\varepsilon(t)]$,

阶跃响应为
$$g(t) = \int_{-\infty}^{t} h(x) dx = \frac{1}{2} [\delta(t) - e^{-t} \varepsilon(t)]$$

2-3 卷积积分(1)

$$-1. 0.5(1 - e^{-2t})\varepsilon(t) \qquad 2. \quad te^{-2t}\varepsilon(t) \qquad 3. \quad \frac{1}{4}(2t - 1 + e^{-2t})\varepsilon(t)$$

$$-1. \quad 0.5(1 - e^{-2t})\varepsilon(t) \qquad 2. \quad te^{-2t}\varepsilon(t) \qquad 3. \quad \frac{1}{4}(2t - 1 + e^{-2t})\varepsilon(t)$$

$$-1. \quad 0.5(1 - e^{-2t})\varepsilon(t) \qquad 2. \quad te^{-2t}\varepsilon(t) \qquad 3. \quad \frac{1}{4}(2t - 1 + e^{-2t})\varepsilon(t)$$

$$f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau = t^2 [\varepsilon(t) - \varepsilon(t-2)] + (4t - t^2) [\varepsilon(t-2) - \varepsilon(t-4)]$$

$$(b) \quad f_3(t) = \frac{1}{2} t [\varepsilon(t) - \varepsilon(t-2)] + (2 - \frac{1}{2} t) [\varepsilon(t-2) - \varepsilon(t-4)]$$

$$\begin{split} f_1(t) * f_3(t) &= \int_{-\infty}^{\infty} f_1(\tau) f_3(t - \tau) d\tau = \frac{1}{2} t^2 [\varepsilon(t) - \varepsilon(t - 2)] \\ &+ (6t - t^2 - 6) [\varepsilon(t - 2) - \varepsilon(t - 4)] + (\frac{1}{2} t^2 - 6t + 18) [\varepsilon(t - 4) - \varepsilon(t - 6)] \end{split}$$

(2)
$$f_3(t) = \varepsilon(t-1)+1$$

$$f_3(t) * f_4(t) = \int_{-\infty}^{\infty} f_3(\tau) f_4(t-\tau) d\tau = \int_{-\infty}^{1+t} e^{-(t-\tau+1)} d\tau \cdot \varepsilon(-t) + \left[\int_{-\infty}^{1} e^{-(t-\tau+1)} d\tau + 2 \int_{1}^{1+t} e^{-(t-\tau+1)} d\tau \right] \varepsilon(t)$$

$$= \varepsilon(-t) + (2 - e^{-t}) \varepsilon(t) = (1 - e^{-t}) \varepsilon(t) + 1$$

(3)
$$f_5(t) = 2[\varepsilon(t) - \varepsilon(t-1)]$$

$$f_5(t) * f_6(t) = \int_{-\infty}^{\infty} f_5(\tau) f_6(t-\tau) d\tau = 2 \int_0^t e^{-(t-\tau)} d\tau \cdot [\varepsilon(t) - \varepsilon(t-1)] + 2 \int_0^1 e^{-(t-\tau)} d\tau \cdot \varepsilon(t-1)$$

$$= 2(1 - e^{-t}) [\varepsilon(t) - \varepsilon(t-1)] + 2(e^{1-t} - e^{-t}) \varepsilon(t-1)$$

2-4 卷积积分(2)

-, 1. 6 2. 5 3. 1 4.
$$\delta(t) + 3e^{3t}\varepsilon(t)$$
 5. $(t+3)\varepsilon(t+3)$

$$(1) h(t) = \frac{1}{2}(t+2)[\varepsilon(t+2) - \varepsilon(t)] - \frac{1}{2}(t-2)[\varepsilon(t) - \varepsilon(t-2)]$$

$$f_1(t) = \delta(t+2) + \delta(t-2)$$
, $y_{f_1}(t) = f_1(t) * h(t) = h(t+2) + h(t-2)$

(2)
$$f_2(t) = \delta(t+1) + \delta(t-1)$$
, $y_{f_2}(t) = f_2(t) * h(t) = h(t+1) + h(t-1)$

(3)
$$f_3(t) = \delta(t-2) - \delta(t-3) + \delta(t-4)$$
, $y_{f_3}(t) = f_3(t) * h(t) = h(t-2) - h(t-3) + h(t-4)$

三、如图。

$$\begin{cases} 2x' + x = y \\ x'' + 3x' + 2x = f \end{cases}$$
 , 消去 $x(t)$, 得系统的微分方程 $y'' + 3y' + 2y = 2f' + f$

选取新变量
$$y_1(t)$$
,使 $y_1'' + 3y_1' + 2y_1 = f$,则其冲激响应 $h_1(t) = (e^{-t} - e^{-2t})\varepsilon(t)$

系统的冲激响应为 $h(t) = 2h'_1(t) + h_1(t) = (3e^{-2t} - e^{-t})\varepsilon(t)$

∴系统的阶跃响应为
$$g(t) = \varepsilon(t) * h(t) = \varepsilon(t) * (3e^{-2t} - e^{-t})\varepsilon(t) = (e^{-t} - \frac{3}{2}e^{-2t} + \frac{1}{2})\varepsilon(t)$$

四、解:
$$y(t) = [f(t) + h_a(t) + h_a(t) * h_a(t)] * h_b(t)$$
,系统的冲激响应为
$$h(t) = [\delta(t) + \delta(t-1) + \delta(t-1) * \delta(t-1)] * [\varepsilon(t) - \varepsilon(t-3)]$$
$$= \varepsilon(t) + \varepsilon(t-1) + \varepsilon(t-2) - \varepsilon(t-3) - \varepsilon(t-4) - \varepsilon(t-5)$$

2-5 时域分析

$$-1. \quad f(t) = \frac{1}{4}(t+4)[\varepsilon(t+4) - \varepsilon(t)] + \varepsilon(t) - \varepsilon(t-8), \quad y(t) = f(2t+2) * \delta(t-3) = f[2(t-3)+2] = f(2t-4)$$

2.
$$g(t) = \int_{-\infty}^{t} h(\tau) d\tau = (\frac{t^2}{8} + t + 2)[\varepsilon(t+4) - \varepsilon(t)] + (2+t)[\varepsilon(t) - \varepsilon(t-8)] + 10\varepsilon(t-8)$$

3.
$$h(t) = g'(t) = \frac{1}{4} [\varepsilon(t+4) - \varepsilon(t)] - \delta(t-8)$$

4.
$$y(0) = \int_{-\infty}^{\infty} f(\tau) \cdot 2[\varepsilon(-\tau - 2) - \varepsilon(-\tau - 4)] d\tau = 2 \int_{-4}^{-2} \frac{1}{4} (\tau + 4) d\tau = 1$$

$$y(2) = \int_{-\infty}^{\infty} f(\tau) \cdot 2[\varepsilon(2-\tau-2) - \varepsilon(2-\tau-4)] d\tau = 2\int_{-2}^{0} \frac{1}{4}(\tau+4) d\tau = 3$$

二、解: 当 $f(t) = \varepsilon(t)$ 时, $y(t) = y_x(t) + g(t) = 3e^{-t}\varepsilon(t)$,当 $f(t) = \delta(t)$ 时, $y(t) = y_x(t) + h(t) = \delta(t) + e^{-t}\varepsilon(t)$ 两式相减,得 $g(t) - h(t) = 2e^{-t}\varepsilon(t) - \delta(t)$,又 h(t) = g'(t) ,

则
$$g'(t) - g(t) = \delta(t) - 2e^{-t}\varepsilon(t)$$
, 方程的通解为 $g(t) = (Ce^{t} + e^{-t})\varepsilon(t)$

即 $g'(t) = (C+1)\delta(t) + (Ce^t + e^{-t})\varepsilon(t)$,由方程可知, g'(t) 只含一个 $\delta(t)$,则上式 C = 0,

$$\therefore g(t) = e^{-t}\varepsilon(t)$$
,沖激响应 $h(t) = g'(t) = \delta(t) - e^{-t}\varepsilon(t)$

三、解: 选取
$$g_1(t)$$
,使 $g_1'' + 3g_1' + 2g_1 = \varepsilon(t)$,则 $g_1(t) = (\frac{1}{2}e^{-2t} - e^{-t} + \frac{1}{2})\varepsilon(t)$

∴零状态响应
$$g(t) = g_1'(t) + 3g_1(t) = (\frac{1}{2}e^{-2t} - 2e^{-t} + \frac{3}{2})\varepsilon(t)$$

$$y_x(0_+) = y(0_+) - g(0_+) = 1 - 0 = 1$$
, $y_x'(0_+) = y'(0_+) - g'(0_+) = 3 - 1 = 2$

$$y_x(t) = C_1 e^{-t} + C_2 e^{-2t}, t \ge 0$$
,代入初始条件,得
$$\begin{cases} C_1 + C_2 = 1 \\ -C_1 - 2C_2 = 2 \end{cases}$$

四、解:
$$h(t) = g'(t) = \delta(t-1) + \delta(t) - e^{-t} \varepsilon(t)$$
, 系统的零状态响应为

$$y_f(t) = f(t) * h(t) = f(t-1) + f(t) - f(t) * [e^{-t}\varepsilon(t)] = 3e^{2(t-1)} + 3e^{2t} - e^{2t} = 3e^{2(t-1)} + 2e^{2t}$$

第三章 离散系统的时域分析

3-1 差分方程的求解、单位序列响应、卷积和

$$-$$
, 1.(a) $2^{k+1}, k \ge 0$ (b) $3^k - 2^k - k \cdot 2^k, k \ge 0$ (c) $-3^{-(k+1)}, k \ge 0$

2.(a)
$$(-1)^k (2-2^{k+2}), k \ge 0$$
 (b) $(-1)^k (2k+1), k \ge 0$

3.(a)
$$(-2)^{k-1} \varepsilon(k-1)$$
 (b) $(1+k)(-2)^{-k} \varepsilon(k)$

(c)
$$\left[-\frac{3}{2}(-1)^{k-2} + \frac{9}{2}(-3)^{k-2}\right]\varepsilon(k-2) + \left[-\frac{1}{2}(-1)^{k-1} + \frac{3}{2}(-3)^{k-1}\right]\varepsilon(k-1)$$

【化简上式,或用 z 变换可得答案 $(-1)^{k-1} \varepsilon(k-1)$ 】

$$(1) f_1(k) = \delta(k+1) + 2\delta(k) + \delta(k-1), \quad f_2(k) = \varepsilon(k+2) - \varepsilon(k-3)$$

$$f_1 * f_2 = [\delta(k+1) + 2\delta(k) + \delta(k-1)] * [\varepsilon(k+2) - \varepsilon(k-3)]$$

= $\varepsilon(k+3) + 2\varepsilon(k+2) + \varepsilon(k+1) - \varepsilon(k-2) - 2\varepsilon(k-3) - \varepsilon(k-4)$

(2)
$$f_3(k) = 3\delta(k) + 2\delta(k-1) + \delta(k-2)$$

$$f_1 * f_3 = [\delta(k+1) + 2\delta(k) + \delta(k-1)] * [3\delta(k) + 2\delta(k-1) + \delta(k-2)]$$

= $3\delta(k+1) + 8\delta(k) + 8\delta(k-1) + 4\delta(k-2) + \delta(k-3)$

(3)
$$f_2 * f_3 = [\varepsilon(k+2) - \varepsilon(k-3)] * [3\delta(k) + 2\delta(k-1) + \delta(k-2)]$$

$$=3\varepsilon(k+2)+2\varepsilon(k+1)+\varepsilon(k)-3\varepsilon(k-3)-2\varepsilon(k-4)-\varepsilon(k-5)$$

$$(4) (f_2 - f_1) * f_3 = [\delta(k+2) - \delta(k) + \delta(k-2)] * [3\delta(k) + 2\delta(k-1) + \delta(k-2)]$$

= $3\delta(k-2) + 2\delta(k+1) - 2\delta(k) - 2\delta(k-1) + 2\delta(k-2) + 2\delta(k-3) + \delta(k-4)$

$$\equiv h(k) = \nabla g(k) = g(k) - g(k-1) = \left(\frac{1}{2}\right)^k \varepsilon(k) - \left(\frac{1}{2}\right)^{k-1} \varepsilon(k-1)$$

$$=(\frac{1}{2})^k\varepsilon(k)-(\frac{1}{2})^{k-1}[\varepsilon(k)-\delta(k)]=2\delta(k)-(\frac{1}{2})^k\varepsilon(k)$$

3-2 离散系统时域分析

一、
$$f(k) = \delta(k) + 4\delta(k-1) + 4\delta(k-2)$$
 , $y(k) = 9\varepsilon(k)$, $\therefore y(k) = f(k) * h(k)$,
即 $[\delta(k) + 4\delta(k-1) + 4\delta(k-2)] * h(k) = 9\varepsilon(k)$, $\therefore h(k) + 4h(k-1) + 4h(k-2) = 9\varepsilon(k)$
差分方程的解为 $h(k) = [C_1(-2)^k + C_2k(-2)^k + 1]\varepsilon(k)$, $汉 h(0) = 9\varepsilon(0) - 4h(-1) - 4h(-2) = 9$,

$$h(1) = 9\varepsilon(1) - 4h(0) - 4h(-1) = -27$$
, 代入初始条件得
$$\begin{cases} C_1 + 1 = 9 \\ -2C_1 - 2C_2 + 1 = -27 \end{cases}$$
, 即
$$\begin{cases} C_1 = 8 \\ C_2 = 6 \end{cases}$$

:
$$h(k) = [(8+6k)(-2)^k + 1]\varepsilon(k)$$

$$(1) h(k) = \delta(k) * [h_1(k) - h_2(k)] * h_3(k) = [\varepsilon(k) - \varepsilon(k-4)] * \delta(k-1) = \varepsilon(k-1) - \varepsilon(k-5)$$

$$(2) g(k) = f(k) * h(k) = \varepsilon(k) * [\varepsilon(k-1) - \varepsilon(k-5)]$$

$$=\varepsilon(k)*[\delta(k-1)+\delta(k-2)+\delta(k-3)+\delta(k-4)]=\varepsilon(k-1)+\varepsilon(k-2)+\varepsilon(k-3)+\varepsilon(k-4)$$

$$\equiv$$
, $y_{zs}(k) = \varepsilon(k) - \varepsilon(k-6) + \varepsilon(k-2) - \varepsilon(k-4)$, $\chi f(k) * h(k) = y_{zs}(k) \perp f(k) = \delta(k) + \delta(k-2)$

$$\therefore h(k) + h(k-2) = y_{zs}(k)$$
,选取 $h_1(k)$,使 $h_1(k) + h_1(k-2) = \varepsilon(k)$,方程的解为:

$$h_1(k) = (C_1 \cos \frac{k\pi}{2} + C_2 \sin \frac{k\pi}{2} + \frac{1}{2})\varepsilon(k) \ \overline{m} \ h_1(0) = \varepsilon(0) - h_1(-2) = 1 \ , \quad h_1(1) = \varepsilon(1) - h_1(-1) = 1$$

代入初始条件,得
$$\begin{cases} C_1 + 1/2 = 1 \\ C_2 + 1/2 = 1 \end{cases}$$
,即 $C_1 = 1/2$, $C_2 = 1/2$, $h_1(k) = \frac{1}{2}(\cos\frac{k\pi}{2} + \sin\frac{k\pi}{2} + 1)\varepsilon(k)$

$$\begin{split} \therefore h(k) &= h_1(k) - h_1(k-6) + h_1(k-2) - h_1(k-4) \\ &= \frac{1}{2} (\cos \frac{k\pi}{2} + \sin \frac{k\pi}{2}) [\varepsilon(k) - \varepsilon(k-2) - \varepsilon(k-4) + \varepsilon(k-6)] + \frac{1}{2} [\varepsilon(k) + \varepsilon(k-2) - \varepsilon(k-4) - \varepsilon(k-6)] \\ &= \varepsilon(k) - \varepsilon(k-4) \end{split}$$

四、
$$\delta(k-1)*h(k) = h(k-1) = (\frac{1}{2})^k \varepsilon(k-1)$$
, $\cdot \cdot \cdot h(k) = (\frac{1}{2})^{k+1} \varepsilon(k)$, 当 $f(k) = 2\delta(k) + \varepsilon(k)$ 时,零状态响应
$$y_f(k) = f(k)*h(k) = 2(\frac{1}{2})^{k+1} \varepsilon(k) + \varepsilon(k) * (\frac{1}{2})^{k+1} \varepsilon(k) = 2(\frac{1}{2})^{k+1} \varepsilon(k) + [1-(\frac{1}{2})^{k+1}] \varepsilon(k) = [1+(\frac{1}{2})^{k+1}] \varepsilon(k)$$

3-3 综合

$$(1) f(k) * \delta(k) = f(k)$$

$$(2) \varepsilon(k) = \sum_{i=-\infty}^{k} \delta(i) \stackrel{\text{def}}{\boxtimes} \delta(k) = \varepsilon(k) - \varepsilon(k-1)$$

$$(3) g(k) = \sum_{i=-\infty}^{k} h(i) \stackrel{\text{def}}{\boxtimes} h(k) = g(k) - g(k-1)$$
 (4) 13/9, 13/81

二、零状态响应
$$y_{zs}(k)[C_1 \cdot 2^k + C_2 \cdot (-1)^k - \frac{1}{2}]\varepsilon(k)$$
,又 $y_{zs}(0) = \varepsilon(0) + y_{zs}(-1) + 2y_{zs}(-2) = 1$,

$$y_{zs}(1) = \varepsilon(1) + y_{zs}(0) + 2y_{zs}(-1) = 2 \text{ , } 代入初始条件,得 \begin{cases} C_1 + C_2 - 1/2 = 1 \\ 2C_1 - C_2 - 1/2 = 2 \end{cases}, \quad 即 \ C_1 = \frac{4}{3}, \ C_2 = \frac{1}{6}$$

:
$$y_{zs}(k)[\frac{4}{3}\cdot 2^k + \frac{1}{6}\cdot (-1)^k - \frac{1}{2}]\varepsilon(k)$$

零输入响应
$$y_{zi}(k) = [D_1 \cdot 2^k + D_2 \cdot (-1)^k] \varepsilon(k)$$
, 又 $y_{zi}(0) = y(0) - y_{zs}(0) = 0 - 1 = -1$,

$$y_{zi}(1) = y(1) - y_{zs}(1) = 1 - 2 = -1$$
,代入初始条件,得
$$\begin{cases} D_1 + D_2 = -1 \\ 2D_1 - D_2 = -1 \end{cases}$$
,即 $D_1 = -\frac{2}{3}$, $D_2 = -\frac{1}{3}$

$$\dot{\cdot} \cdot y_{zi}(k) = \left[-\frac{2}{3} \cdot 2^k - \frac{1}{3} \cdot (-1)^k \right] \varepsilon(k) , \quad \text{$\stackrel{\triangle}{=}$ } \dot{\text{\not}} \dot{\text{\not}} \dot{\text{\not}} \dot{\text{\not}} (k) = y_{zi}(k) + y_{zs}(k) = \left[\frac{2}{3} \cdot 2^k - \frac{1}{6} \cdot (-1)^k - \frac{1}{2} \right] \varepsilon(k)$$

三、(1) 设第一个加法器的输出为
$$x(k)$$
,则
$$\begin{cases} x(k) = f(k) + x(k-1) \\ y(k) = x(k) + x(k-1) + y(k-1) \end{cases}$$

消去
$$x(k)$$
, 得系统的差分方程为 $y(k)-2y(k-1)+y(k-2)=f(k)+f(k-1)$

(2) 零输入响应
$$y_{zi}(k) = (C_1 + C_2 k)\varepsilon(k)$$
, 又 $y_{zs}(0) = \delta(0) + \delta(-1) + 2y_{zs}(-1) - y_{zs}(-2) = 1$,

$$\therefore y_{zi}(0) = y(0) - y_{zs}(0) = 1 - 1 = 0$$
, $y_{zi}(-1) = y(-1) = -1$,代入初始条件,得
$$\begin{cases} C_1 = 0 \\ C_1 - C_2 = -1 \end{cases}$$

$$\mathbb{H} C_1 = 0, C_2 = 1, :: y_{zi}(k) = k\varepsilon(k)$$

(3) 选取
$$h_1(k)$$
,使 $h_1(k) - 2h_1(k-1) + h_1(k-2) = \delta(k)$,则 $h_1(k) = (D_1 + D_2k)\varepsilon(k)$,
又 $h_1(0) = \delta(0) + 2h_1(-1) - h_1(-2) = 1$, $h_1(1) = \delta(1) + 2h_1(0) - h_1(-1) = 2$,

代入初始条件,得
$$\begin{cases} D_1 = 1 \\ D_1 + D_2 = 2 \end{cases}$$
,即 $D_1 = 1$, $D_2 = 1$, $\therefore h_1(k) = (1+k)\varepsilon(k)$

$$\therefore y_{zs}(k) = h_1(k) + h_1(k-1) = (1+k)\varepsilon(k) + k\varepsilon(k-1)$$

第四章 傅里叶变换和系统的频域分析

4-1 傅里叶级数(1)

一、证明:
$$\int_{-1}^{1} p_0(t) p_1(t) dt = \int_{-1}^{1} t \, dt = 0, \qquad \int_{-1}^{1} p_0(t) p_2(t) \, dt = \int_{-1}^{1} (\frac{3}{2}t^2 - \frac{1}{2}) \, dt = 0,$$

$$\int_{-1}^{1} p_0(t) p_3(t) \, dt = \int_{-1}^{1} (\frac{5}{2}t^3 - \frac{3}{2}t) \, dt = 0, \qquad \int_{-1}^{1} p_1(t) p_2(t) \, dt = \int_{-1}^{1} t (\frac{3}{2}t^2 - \frac{1}{2}t) \, dt = 0,$$

$$\int_{-1}^{1} p_1(t) p_3(t) \, dt = \int_{-1}^{1} t (\frac{5}{2}t^3 - \frac{3}{2}t) \, dt = 0, \qquad \int_{-1}^{1} p_2(t) p_3(t) \, dt = \int_{-1}^{1} (\frac{3}{2}t^2 - \frac{1}{2}) (\frac{5}{2}t^3 - \frac{3}{2}t) \, dt = 0,$$

$$\int_{-1}^{1} p_0(t) \, dt = 2, \qquad \int_{-1}^{1} p_1^2(t) \, dt = \frac{2}{3}, \qquad \int_{-1}^{1} p_2^2(t) \, dt = \frac{2}{5}, \qquad \int_{-1}^{1} p_3^2(t) \, dt = \frac{2}{7}.$$

即当 $m \neq n$ 时, $\int_{-1}^{1} p_m(t) p_n(t) dt = 0$; 当m = n时, $\int_{-1}^{1} p_m(t) p_n(t) dt = K_m$ 。

- ∴前4个勒让德多项式在(-1,1)内是正交函数集。
- 二、(1) 证明: 设 $2\int_{-T/2}^{T/2} f_1(t) f_2(t) dt$, $E_2 = \int_{-T/2}^{T/2} f_2^2(t) dt$, $E = \int_{-T/2}^{T/2} f^2(t) dt = \int_{-T/2}^{T/2} [f_1(t) + f_2(t)]^2 dt = \int_{-T/2}^{T/2} f_1^2(t) dt + \int_{-T/2}^{T/2} f_2^2(t) dt + 2\int_{-T/2}^{T/2} f_1(t) f_2(t) dt$
 - $:: f_1(t) 与 f_2(t)$ 在区间 (-T/2, T/2) 内正交, $:: 2\int_{-T/2}^{T/2} f_1(t) f_2(t) dt = 0$,即 $E = E_1 + E_2$ 。
 - (2) $E_1(t) = f_2(t) \pm (-T/2, T/2)$ 不正交,则 $E = E_1 + E_2 + 2 \int_{-T/2}^{T/2} f_1(t) f_2(t) dt$
- 三、(a) $f_1(t) = f_1(-t) = -f_1(t \pm \frac{T}{2})$, $a_n = \frac{4}{T} \int_0^{T/2} f_1(t) \cos(n\Omega t) dt$, n = 1, 3, 5..., $a_n = 0$, n = 0, 2, 4..., $b_n = 0$, n = 1, 2, 3..., 即 $f_1(t)$ 的傅里叶级数中仅含有奇次余弦波。
 - (b) $f_2(t) = -f_2(-t)$, $a_n = 0$, n = 0, 1, 2..., $b_n = \frac{4}{T} \int_0^{T/2} f_2(t) \sin(n\Omega t) dt$, n = 1, 2, 3..., 即 $f_2(t)$ 的傅里叶级数中含有各次正弦波。
 - (c) $f_3(t) = f_3(-t)$, $a_n = \frac{4}{T} \int_0^{T/2} f_1(t) \cos(n\Omega t) dt$, n = 0, 1, 3, 5..., $a_n = 0$, n = 2, 4, 6..., $b_n = 0$, n = 1, 2, 3..., 即 $f_3(t)$ 的傅里叶级数中含有直流量和奇次余弦波。
 - (d) $f_4(t) = -f_4(t \pm \frac{T}{2})$, $a_n = 0$, n = 0, 2, 4..., $b_n = 0$, n = 2, 4, 6..., 即 $f_4(t)$ 的傅里叶级数中仅含有奇次正、余弦波。

四、

五、CE, ABE

4-2 周期信号的频谱、功率

$$T = 2, \quad \Omega = \frac{2\pi}{T} = \pi, \quad a_0 = \frac{2}{T} \int_{-T/2}^{T/2} u(t) \, \mathrm{d}t = \int_{-1}^{1} u(t) \, \mathrm{d}t = \int_{0}^{1} \mathrm{d}t = 1,$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} u(t) \cos(n\Omega t) \, \mathrm{d}t = \int_{0}^{1} \cos(n\pi t) \, \mathrm{d}t = 0, \quad n = 1, 2...,$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} u(t) \sin(n\Omega t) \, \mathrm{d}t = \int_{0}^{1} \sin(n\pi t) \, \mathrm{d}t = \frac{1 - (-1)^n}{n\pi}, \quad n = 1, 2...,$$

$$\therefore u(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \sin(n\pi t) \, (V)$$

(2)
$$u(\frac{1}{2}) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \sin \frac{n\pi}{2} = 1$$
, $\text{Im} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \sin \frac{n\pi}{2} = \frac{\pi}{2}$,

$$\therefore 2[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots] = \frac{\pi}{2}, \text{ Im} S = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

(3) 平均功率为
$$P = \frac{1}{T} \int_{-T/2}^{T/2} u^2(t) dt = \frac{1}{2} \int_{0}^{1} dt = \frac{1}{2} W$$
, 电压有效值为 $U_{\text{fg}} = \sqrt{P} = \frac{1}{\sqrt{2}} V$ 。

二、(1) 设
$$U_{S1} = 10$$
V, $U_{S2} = 10\sqrt{2}\cos 3t$ V,当只有 U_{S1} 激励时, $i_1 = \frac{10\text{V}}{(1+4)\Omega} = 2\text{A}$,

当只有 U_{s2} 激励时, $\dot{U}_{s2}=10\angle 0^{\circ}({\rm V})$ 。 $Z=1+{\rm j}6+41//(-{\rm j}4)=5\angle 53.1^{\circ}({\rm A})$,

$$\therefore \dot{I}_2 = \frac{\dot{U}_{S2}}{Z} = \frac{10\angle 0^{\circ}}{5\angle 53.1^{\circ}} = 2\angle -53.1^{\circ}(A), \quad \text{If } i_2 = 2\sqrt{2}\cos(3t - 53.1^{\circ})(A),$$

(2)
$$P = \frac{1}{T} \int_{-T/2}^{T/2} u_S(t) i(t) dt$$
$$= \frac{3}{2\pi} \int_{-\pi/3}^{\pi/3} [20 + 20\sqrt{2}\cos(3t - 53.1^\circ) + 20\sqrt{2}\cos 3t + 40\cos 3t\cos(3t - 53.1^\circ)] dt = 32W$$

· 42 · 好网考研微博,提供西电最新考研资讯 http://weibo.com/xduky

电感平均储能为
$$W = \frac{1}{T} \int_{-T/2}^{T/2} \frac{1}{2} Li^2(t) dt = \frac{1}{2} LI^2 = \frac{1}{2} \times 2 \times 8 = 8 J$$

$$\equiv$$
, $u(t) = 2 + 5\cos(\frac{\pi}{6}t - 143^{\circ}) + 2\cos(\frac{\pi}{3}t - 60^{\circ}) + \cos(\frac{2\pi}{3}t - 45^{\circ}) \text{ V}$

$$\square \cdot 1 + 6\cos(4t + \frac{\pi}{2}) + 4\cos(8t - \frac{\pi}{4})$$
, 27W, π s

4-3 傅里叶变换定义

$$F_1(j\omega) = \int_{-\infty}^{\infty} f_1(t) e^{-j\omega t} dt = \int_0^{\tau} e^{-j\omega t} dt = \frac{1}{j\omega} (1 - e^{-j\omega t})$$

$$F_2(j\omega) = \int_{-\infty}^{\infty} f_2(t) e^{-j\omega t} dt = \int_{-1}^{1} \cos(\frac{\pi}{2}t) e^{-j\omega t} dt = \frac{4\pi \cos \omega}{\pi^2 - 4\omega^2}$$

$$\begin{split} \mathcal{F}[f^*(t)] &= \int_{-\infty}^{\infty} [f_r(t) - \mathrm{j} f_i(t)] [\cos(\omega t) - \mathrm{j} \sin(\omega t)] \mathrm{d}t \\ &= \int_{-\infty}^{\infty} [f_r(t) \cos(\omega t) - f_i(t) \sin(\omega t)] \mathrm{d}t - \mathrm{j} \int_{-\infty}^{\infty} [f_r(t) \sin(\omega t) + f_i(t) \cos(\omega t)] \mathrm{d}t \\ &= \int_{-\infty}^{\infty} [f_r(t) \cos(\omega t) + f_i(t) \sin(-\omega t)] \mathrm{d}t + \mathrm{j} \int_{-\infty}^{\infty} [f_r(t) \sin(-\omega t) - f_i(t) \cos(\omega t)] \mathrm{d}t = F^*(-\mathrm{j}\omega) \end{split}$$

(2)
$$f_{r}(t) = \frac{1}{2}[f(t) + f^{*}(t)], \quad f_{i}(t) = \frac{1}{2j}[f(t) - f^{*}(t)], \quad \mathcal{I}\mathcal{F}[f(t)] = F(j\omega), \quad \mathcal{F}[f^{*}(t)] = F^{*}(-j\omega),$$
 由傅里叶变换的线性性质可得: $\mathcal{F}[f_{r}(t)] = \frac{1}{2}[F(j\omega) + F^{*}(-j\omega)], \quad \mathcal{F}[f_{i}(t)] = \frac{1}{2j}[F(j\omega) - F^{*}(-j\omega)].$

三、(1)
$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt = \int_{-\infty}^{\infty} f(t)[\cos(\omega t) - j\sin(\omega t)] dt = \int_{-\infty}^{\infty} f(t)\cos(\omega t) dt - j\int_{-\infty}^{\infty} f(t)\sin(\omega t) dt$$
,
又 $f(t)$ 为实函数,则 $R(\omega) = \int_{-\infty}^{\infty} f(t)\cos(\omega t) dt$, $X(\omega) = -\int_{-\infty}^{\infty} f(t)\sin(\omega t) dt$ 。

(2)
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} [R(\omega)\cos(\omega t) - X(\omega)\sin(\omega t)] d\omega$$
,易知 $R(\omega)$ 为偶函数, $X(\omega)$ 为奇函数,则 $R(\omega)\cos(\omega t)$ 为偶函数, $X(\omega)\sin(\omega t)$ 为偶函数。

$$f(t) = \frac{1}{\pi} \int_0^\infty [R(\omega)\cos(\omega t) - X(\omega)\sin(\omega t)] d\omega = \frac{1}{\pi} \int_0^\infty [R(\omega)\cos(\omega|t|) + X(\omega)\sin(\omega|t|)] d\omega = 0,$$

$$\therefore \int_0^\infty [R(\omega)\cos(\omega t) + X(\omega)\sin(\omega t)] d\omega = 0, \quad \text{If } \int_0^\infty R(\omega)\cos(\omega t) d\omega = -\int_0^\infty X(\omega)\sin(\omega t) d\omega,$$

代入(*) 式中,得
$$t > 0$$
 时, $f(t) = \frac{2}{\pi} \int_0^\infty R(\omega) \cos(\omega t) d\omega = \frac{2}{\pi} \int_0^\infty R(y) \cos(yt) dy$,

$$\therefore R(\omega) = \int_{-\infty}^{\infty} f(t)\cos(\omega t) dt = \int_{0}^{\infty} f(t)\cos(\omega t) dt = \int_{0}^{\infty} \left[\frac{2}{\pi}\int_{0}^{\infty} R(y)\cos(yt) dy\right]\cos(\omega t) dt$$
$$= \frac{2}{\pi}\int_{0}^{\infty} \int_{0}^{\infty} R(y)\cos(yt)\cos(\omega t) dy dt$$

$$\square$$
, $j2X(\omega)$, $2R(\omega)$, $F(j\omega) + F(-j\omega)e^{-2j\omega}$, $F(j\omega) + F(-j\omega)e^{-2j\omega} - F(-j\omega) - F(j\omega)e^{j2\omega}$

4-4 傅里叶变换性质

$$-\cdot, (1) f(t) = 2\operatorname{Sa}[2\pi(t-2)], \quad g_{4\pi}(t) \leftrightarrow 4\pi\operatorname{Sa}(2\pi\omega), \quad g_{4\pi}(t)e^{\mathrm{j}2t} \leftrightarrow 4\pi\operatorname{Sa}[2\pi(\omega-2)],$$

$$\frac{1}{2\pi}g_{4\pi}(t)e^{j2t} \leftrightarrow 2\operatorname{Sa}[2\pi(\omega-2)], \quad \therefore F(j\omega) = 2\pi \cdot \frac{1}{2\pi}g_{4\pi}(-\omega)e^{-j2\omega} = g_{4\pi}(\omega)e^{-j2\omega}$$

$$(2) e^{-\alpha|\mathbf{r}|} \leftrightarrow \frac{2\alpha}{\alpha^2 + \omega^2}, \quad e^{-|\mathbf{r}|} \leftrightarrow \frac{2}{1 + \omega^2}, \quad \therefore F(\mathbf{j}\omega) = 2\pi e^{-|\mathbf{r}|} = 2\pi e^{-|\mathbf{r}|}$$

$$(3) \ f(t) = \mathrm{Sa}^2(2\pi t) \ , \ \ \Xi角脉冲 \ f_{\scriptscriptstyle \Delta}(t) \leftrightarrow \frac{\tau}{2} \mathrm{Sa}^2(\frac{\omega \tau}{4}) \ , \ \ \mathbbm{x} \ \tau = 8\pi \ , \ \ \mathbbm{y} \ f_{\scriptscriptstyle \Delta}(t) \leftrightarrow 4\pi \, \mathrm{Sa}^2(2\pi \omega) \ ,$$

$$\therefore F(j\omega) = 2\pi \cdot \frac{1}{4\pi} f_{\Delta}(-\omega) = \frac{1}{2} (1 - \frac{2|-\omega|}{8\pi}) g_{8\pi}(-\omega) = \frac{1}{2} (1 - \frac{|\omega|}{4\pi}) g_{8\pi}(\omega)$$

$$\equiv$$
, $(1) \delta(t) \leftrightarrow 1$, $\delta(t-2) \leftrightarrow e^{-j2\omega}$, $e^{-jt} \delta(t-2) \leftrightarrow e^{-j2(\omega+1)}$

$$(2) \delta'(t) \leftrightarrow j\omega$$
, $e^{-3t} \delta'(t) \leftrightarrow 3 + j\omega$, $e^{-3(t-1)} \delta'(t-1) \leftrightarrow (3 + j\omega) e^{-j\omega}$

$$(3) f(t) = \operatorname{sgn}(t^2 - 9) = 1 - 2g_6(t) , \quad 1 \leftrightarrow 2\pi\delta(\omega) , \quad g_6(t) \leftrightarrow 6\operatorname{Sa}(3\omega) , \quad 1 - 2g_6(t) \leftrightarrow 2\pi\delta(\omega) - 12\operatorname{Sa}(3\omega)$$

$$(4) e^{-\alpha t} \varepsilon(t) \leftrightarrow \frac{1}{\alpha + j\omega}, \quad e^{-2t} \varepsilon(t) \leftrightarrow \frac{1}{2 + j\omega}, \quad e^{-2(t+1)} \varepsilon(t+1) \leftrightarrow \frac{e^{j\omega}}{2 + j\omega}, \quad e^{-2t} \varepsilon(t+1) \leftrightarrow \frac{e^{2+j\omega}}{2 + j\omega}$$

$$(5) \varepsilon(t) \leftrightarrow \pi \delta(\omega) + \frac{1}{j\omega}, \quad \varepsilon(t-1) \leftrightarrow [\pi \delta(\omega) + \frac{1}{j\omega}] e^{-j\omega},$$

$$\varepsilon(0.5t-1) \leftrightarrow 2[\pi\delta(2\omega) + \frac{1}{j2\omega}]e^{-j2\omega} = \pi\delta(\omega) + \frac{1}{j\omega}e^{-j2\omega}$$

$$\equiv (1) F(j\omega) = g_{2\omega_0}(\omega), \quad g_{2\omega_0}(t) \leftrightarrow 2\omega_0 \operatorname{Sa}(\omega_0\omega), \quad 2\omega_0 \operatorname{Sa}(\omega_0t) \leftrightarrow 2\pi g_{2\omega_0}(-\omega) = 2\pi g_{2\omega_0}(\omega),$$

$$\therefore f(t) = \frac{\omega_0}{\pi} \operatorname{Sa}(\omega_0 t) = \frac{\sin(\omega_0 t)}{\pi t}$$

$$(2) \quad 1 \leftrightarrow 2\pi\delta(\omega) \;, \quad \frac{1}{2\pi} e^{mj\omega_0 t} \leftrightarrow \delta(\omega \pm \omega_0) \;, \quad \therefore f(t) = \frac{1}{2\pi} (e^{-j\omega_0 t} - e^{j\omega_0 t}) = \frac{\sin(\omega_0 t)}{j\pi}$$

$$(3)\cos(3t) \leftrightarrow \pi[\delta(\omega+3)+\delta(\omega-3)] , \quad \pi[\delta(t+3)+\delta(t-3)] \leftrightarrow 2\pi\cos(3\omega) ,$$

$$\therefore f(t) = \delta(t+3) + \delta(t-3)$$

$$(4) F(j\omega) = g_2(\omega - 1)e^{-j\omega} , \quad g_2(t) \leftrightarrow 2Sa(\omega) , \quad g_2(t-1) \leftrightarrow 2e^{-j\omega} Sa(\omega) ,$$

$$\begin{aligned} 2\mathrm{e}^{-\mathrm{j}t}\,\mathrm{Sa}(t) &\leftrightarrow 2\pi g_2(-\omega-1) \;, \quad 2\mathrm{e}^{\mathrm{j}t}\,\mathrm{Sa}(-t) = 2\mathrm{e}^{\mathrm{j}t}\,\mathrm{Sa}(t) \leftrightarrow 2\pi g_2(\omega-1) \;, \\ 2\mathrm{e}^{\mathrm{j}(t-1)}\,\mathrm{Sa}(t-1) &\leftrightarrow 2\pi g_2(\omega-1)\mathrm{e}^{-\mathrm{j}\omega} \;, \quad \therefore f(t) = \frac{1}{\pi}\,\mathrm{e}^{\mathrm{j}(t-1)}\,\mathrm{Sa}(t-1) \\ (5)\,F(\mathrm{j}\omega) &= \frac{2\sin\omega}{\omega} \big[\mathrm{e}^{-\mathrm{j}\omega} + \mathrm{e}^{-\mathrm{j}3\omega} + \mathrm{e}^{-\mathrm{j}5\omega}\big] \;, \quad g_2(t) \leftrightarrow \frac{2\sin\omega}{\omega} \;, \quad g_2(t-1) \leftrightarrow \frac{2\sin\omega}{\omega} \mathrm{e}^{-\mathrm{j}\omega} \;, \\ g_2(t-3) &\leftrightarrow \frac{2\sin\omega}{\omega} \mathrm{e}^{-\mathrm{j}3\omega} \;, \quad g_2(t-5) \leftrightarrow \frac{2\sin\omega}{\omega} \mathrm{e}^{-\mathrm{j}5\omega} \;, \quad \therefore f(t) = g_2(t-1) + g_2(t-3) + g_2(t-5) \\ & \square \;, \quad (1) \; 2f(-2t)\mathrm{e}^{\mathrm{j}2t} \; \qquad (2) \; f(t+1)\mathrm{e}^{-\mathrm{j}(t+1)} \; \qquad (3) \; \frac{1}{2}[f(t+1) + f(t-1)] \end{aligned}$$

4-5 傅里叶变换性质

比较(*)(**)两式可得:
$$R(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{X(y)}{\omega - y} dy$$
, $X(\omega) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{R(y)}{\omega - y} dy$

4-6 周期信号傅里叶变换频域分析

$$-$$
, (1) $F_n e^{-jn\Omega t_0}$

(3)
$$jn\Omega F$$

一、(1)
$$F_n e^{-jn\Omega t_0}$$
 (2) F_{-n} (3) $jn\Omega F_n$ (4) F_n (信号周期为 $\frac{T}{a}$)

$$= 1 \leftrightarrow 2\pi\delta(\omega), \quad \cos\pi t \leftrightarrow \pi[\delta(\omega+\pi)+\delta(\omega-\pi)], \quad \therefore F(j\omega) = \pi\delta(\omega) + \frac{\pi}{2}\delta(\omega+\pi) + \frac{\pi}{2}\delta(\omega-\pi)$$

$$\therefore Y(j\omega) = F(j\omega)H(j\omega) = \sum_{n=-2}^{2} 3e^{-jn\frac{\pi}{2}} \cdot 2\pi\delta(\omega - n\Omega)(1 - \frac{|n\Omega|}{3}) = \sum_{n=-2}^{2} 3e^{-jn\frac{\pi}{2}} \cdot 2\pi\delta(\omega - n)(1 - \frac{|n|}{3})$$

$$= 6\pi\delta(\omega) + \mathrm{j}4\pi[\delta(\omega+1) - \delta(\omega-1)] - 2\pi[\delta(\omega+2) + \delta(\omega-2)], \quad \therefore y(t) = 3 + 4\sin t - 2\cos(2t)$$

四、
$$f(t) = \text{Sa}(2\pi t)$$
, 则 $F(j\omega) = \frac{1}{2}g_{4\pi}(\omega)$, $S(j\omega) = \pi[\delta(\omega + 1000) + \delta(\omega - 1000)]$,

设
$$x(t) = f(t) \cdot \delta(t)$$
, 则 $X(j\omega) = \frac{1}{2\pi} F(j\omega) * S(j\omega) = \frac{1}{4} [g_{4\pi}(\omega + 1000) + g_{4\pi}(\omega - 1000)]$,

$$\therefore Y(j\omega) = X(j\omega)H(j\omega) = \frac{1}{4}[g_2(\omega + 1000) + g_2(\omega - 1000)] = \frac{1}{2\pi} \cdot \frac{1}{2}g_2(\omega) * \pi[\delta(\omega + 1000) + \delta(\omega - 1000)]$$

$$\overline{\mathbf{m}} \frac{1}{2\pi} \mathbf{Sa}(t) \leftrightarrow \frac{1}{2} g_2(\omega) , \quad \cos(1000t) \leftrightarrow \pi [\delta(\omega + 1000) + \delta(\omega - 1000)] , \quad \therefore y(t) = \frac{1}{2\pi} \mathbf{Sa}(t) \cos(1000t)$$

$$\exists \text{L.} \quad f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t} = \sum_{n=-\infty}^{\infty} e^{jn\Omega t} , \quad \exists \text{IF } F_n = 1 , \quad \therefore Y_n = H(jn\Omega) F_n = \begin{cases} e^{-j\frac{\pi}{3}n}, & |n| < 1.5 \\ 0, & |n| > 1.5 \end{cases} ,$$

$$\therefore y(t) = \sum_{n=-\infty}^{\infty} Y_n e^{jn\Omega t} = e^{j\frac{\pi}{3}} \cdot e^{-jt} + 1 + e^{-j\frac{\pi}{3}} \cdot e^{jt} = 1 + 2\cos(t - \frac{\pi}{3})$$

4-7 取样定理

$$\equiv$$
, (1) $F(j\omega) = \mathcal{F}[5 + 2\cos(\omega_1 t) + \cos(2\omega_1 t)]$

$$=10\pi\delta(\omega)+2\pi[\delta(\omega+\omega_{_{\! 1}})+\delta(\omega-\omega_{_{\! 1}})]+\pi[\delta(\omega+2\omega_{_{\! 1}})+\delta(\omega-2\omega_{_{\! 1}})]\;,$$

其中 $\omega = 2\pi f$, $\omega_1 = 2\pi f_1 = 2\pi kHz$ 及以下 $\omega_s = 2\pi f_s = 10\pi kHz$ 。

$$\mathcal{S}(j\omega) = \mathcal{F}[\delta_{T_s}(t)] = \mathcal{F}[\sum_{n=-\infty}^{\infty} \delta(t - nT_s)] = \omega_s \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_s)$$

$$\therefore F_s(j\omega) = \frac{1}{2\pi}F(j\omega) * \delta(j\omega) = \frac{\omega_s}{2\pi} \sum_{n=-\infty}^{\infty} [10\pi\delta(\omega - n\omega_s)] + 2\pi\delta(\omega + \omega_1 - n\omega_s)$$

$$+2\pi\delta(\omega-\omega_{l}-n\omega_{s})+\pi\delta(\omega+2\omega_{l}-n\omega_{s})+\pi\delta(\omega-2\omega_{l}-n\omega_{s})$$

频率 f 区间 ($-10\,\mathrm{kHz},10\,\mathrm{kHz}$),对应的角频率 ω 区间为 ($-20\pi\mathrm{kHz},20\pi\mathrm{kHz}$),频谱图如下:

- (2) 若由 $f_s(t)$ 恢复原信号,理想低通滤波器的截止频率 f_c 应满足 $f_m < f_c < f_s f_m$,即 $2f_1 < f_c < f_s 2f_1$, \therefore 2 kHz < $f_c < 3$ kHz
- 三、(1)与二(1)题相同,只是此时 $\omega_s=2\pi f_s=1.6\pi\,\mathrm{kHz}$,频率 f 区间 ($-2\,\mathrm{kHz}$, $2\,\mathrm{kHz}$),对应的角频率 ω 区间为 ($-4\pi\,\mathrm{kHz}$, $4\pi\,\mathrm{kHz}$),频谱图如下:

 $(2) H(j\omega) = T_s g_{\omega_1}(\omega) ,$

$$Y(j\omega) = F_s(j\omega) \cdot H(j\omega) = 10\pi\delta(\omega) + 2\pi[\delta(\omega + \frac{\omega_1}{5}) + \delta(\omega - \frac{\omega_1}{5})] + \pi[\delta(\omega + \frac{2\omega_1}{5}) + \delta(\omega - \frac{2\omega_1}{5})]$$
其中 $\frac{\omega_1}{5} = 0.4\pi \, \text{kHz}$, $\frac{2\omega_1}{5} = 0.8 \, \text{kHz}$, 频谱图为下左图:

$$y(t) = 5 + 2\cos(\frac{1}{5}\omega_1 t) + \cos(\frac{2}{5}\omega_1 t) = 5 + 2\cos(2\pi\frac{f_1}{5}t) + \cos(4\pi\frac{f_1}{5}t)$$

四、设 $y_1(t) = f(t)\cos(\omega_0 t)$, $f_1(t) = f(t)*h(t)$, $y_2(t) = f_1(t)\sin(\omega_0 t)$,

$$\text{III} Y_{1}(j\omega) = \frac{1}{2\pi}F(j\omega) * \pi[\delta(\omega + \omega_{0}) + \delta(\omega - \omega_{0})] = \frac{1}{2}\{F[j(\omega + \omega_{0})] + F[j(\omega - \omega_{0})]\}$$

 $F_1(j\omega) = F(j\omega) \cdot H(j\omega) = -j \operatorname{sgn}(\omega) F(j\omega)$,

$$Y_2(j\omega) = \frac{1}{2\pi}F_1(j\omega) * j\pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)] = \frac{1}{2}\operatorname{sgn}(\omega + \omega_0) \cdot F[j(\omega + \omega_0)] - \frac{1}{2}\operatorname{sgn}(\omega - \omega_0) \cdot F[j(\omega - \omega_0)]$$

4-8 DTFT 和 DFT

$$\neg \cdot (1) f(k) = \sin\left[\frac{(k-1)\pi}{6}\right], \quad \exists \exists \exists N = 12, \quad f(k) = \frac{1}{j2} \left[e^{\frac{j^k-1}{6}\pi} - e^{-\frac{j^k-1}{6}\pi}\right], \quad F_N(n) = \sum_{k=0}^{N-1} f_N(k) \cdot e^{-\frac{j^n}{6}k}, \quad f(k) \cdot \exists \exists \exists x \in \mathbb{N}, \quad f(k) = \frac{1}{j2} \left[e^{\frac{j^n}{6}\pi} - e^{-\frac{j^n}{6}\pi}\right], \quad F_N(n) = \frac{j^n}{2}\pi, \quad F_N(n) = 6e^{\frac{j^n}{3}\pi}, \quad F_N(n) = 6e^{\frac{j^n}{3}\pi}, \quad F_N(n) = 6e^{\frac{j^n}{3}\pi}, \quad F_N(n) = 6e^{\frac{j^n}{3}\pi}, \quad f(n) = \frac{j^n}{2}\pi, \quad f(n) = \frac{$$

$$(1) f_1(k) = \varepsilon(k) - \varepsilon(k-6), \quad F(e^{j\theta}) = \sum_{k=0}^{5} e^{-j\theta k} = \frac{1 - e^{-j6\theta}}{1 - e^{-j\theta}} = \frac{e^{-j\frac{6}{2}\theta} \sin(\frac{6}{2}\theta)}{e^{-j\frac{1}{2}\theta} \sin(\frac{\theta}{2})} = e^{-j\frac{5}{2}\theta} \frac{\sin(3\theta)}{\sin(\frac{\theta}{2})}$$

$$(2) F(e^{j\theta}) = \sum_{k=0}^{3} k e^{-j\theta k} = e^{-j\theta} + 2e^{-j2\theta} + 3e^{-j3\theta} = 6\cos(\frac{\theta}{2})e^{-j\frac{5}{2}\theta} + j2\sin(\frac{\theta}{2})e^{-j\frac{3}{2}\theta}$$

(3)此题与课本例 4.10-2 第(2)小题一致,只是
$$a=\frac{1}{2}$$
,所以 $F_3(e^{j\theta})=\frac{1}{1-\frac{1}{2}e^{-j\theta}}$

$$(4) F(e^{j\theta}) = \sum_{k=0}^{\infty} a^k e^{-j\theta k} + \sum_{k=-\infty}^{-1} a^{-k} e^{-j\theta k} = \sum_{k=0}^{\infty} a^k e^{-j\theta k} + \sum_{k=1}^{\infty} a^k e^{j\theta k}$$
$$= \frac{1}{1 - ae^{-j\theta}} + \frac{ae^{j\theta}}{1 - ae^{j\theta}} = \frac{1 - a^2}{(1 - ae^{-j\theta})(1 - ae^{j\theta})} = \frac{1 - a^2}{1 - 2a\cos\theta + a^2}$$

(3)
$$F(n) = \sum_{k=0}^{N-1} W^{kn} = \begin{cases} N, & n=0\\ 0, & 0 < n \le N-1 \end{cases} = N \delta(n)$$

(4)
$$F(n) = \sum_{k=0}^{N-1} a^k W^{kn} = \frac{1 - a^N W^{Nn}}{1 - a W^n} = \frac{1 - a^N}{1 - a e^{j\frac{2\pi}{N}n}}, \quad \stackrel{\text{dis}}{=} a = 1, \quad \text{MF}(n) \ \boxed{\square}(3).$$

$$(5) F(n) = \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j}\theta_0 k} W^{kn} = \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j}(\theta_0 - \frac{2\pi}{N})k} = \frac{1 - \mathrm{e}^{\mathrm{j}N\theta_0}}{1 - \mathrm{e}^{\mathrm{j}(\theta_0 - \frac{2\pi}{N})}}, \quad 存在一种特殊情况,$$

在
$$\theta_0 = \frac{2\pi i}{N} + 2\pi j$$
 的情况下 $j \in N$, $i \in 0,...,N-1$, 则 $F(n) = \begin{cases} N, & N=8\\ 0, & 其他 \end{cases}$

四、
$$F(n) = \sum_{k=0}^{N-1} f(k) W^{kn} = 1 + 2e^{-j\frac{2\pi}{n}} - e^{-j\frac{4\pi}{N}n} + 3e^{-j\frac{6\pi}{N}n}, \quad f(k) = \frac{1}{N} \sum_{k=0}^{N-1} F(n) W^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} F(n) e^{j\frac{2\pi kn}{N}},$$
由于性质 $\sum_{k=0}^{N-1} e^{j\frac{2\pi kn}{N}} = \begin{cases} N, & k=0\\ 0, & k \neq 0 \end{cases}$, : 可以得到
$$f(k) = \frac{1}{N} \sum_{k=0}^{N-1} e^{j\frac{2\pi kn}{N}} + \frac{2}{N} \sum_{k=0}^{N-1} e^{j\frac{2\pi (k-1)n}{N}} - \frac{1}{N} \sum_{k=0}^{N-1} e^{j\frac{2\pi (k-2)n}{N}} + \frac{3}{N} \sum_{k=0}^{N-1} e^{j\frac{2\pi (k-3)n}{N}}$$

$$f(0) = 1, \quad f(1) = 2, \quad f(2) = -1, \quad f(3) = 3 \text{ s. } \oplus - \oplus \text{ Eff} F(n) \text{ A. } \text{ f.}$$

$$\therefore F(0) = 5, \quad F(1) = 2 + j, \quad F(2) = -5, \quad F(3) = 2 - j \text{ s.}$$

4-9

(1) $f_1(k)$ (2) $f_2(k)$ 3 $f_2(k)$ 3

三、
$$f_1(k)$$
与 $f_2(k)$ 的长度均为4,∴循环卷积长度为4。 $f(0) = \sum_{n=0}^{3} f_1(m) f_2((-m))_4 G_4(0) = 8$,

$$f(1) = \sum_{m=0}^{3} f_1(m) f_2((1-m))_4 G_4(1) = 12, \quad f(2) = \sum_{m=0}^{3} f_1(m) f_2((2-m))_4 G_4(2) = 12$$

$$f(3) = \sum_{m=0}^{3} f_1(m) f_2((3-m))_4 G_4(3) = 8$$
, $\therefore f(k) = \{8, 12, 12, 8\}$

$$\square$$
, $(1) f(k) = f_1(k) * f_2(k) = \sum_{k=-\infty}^{\infty} f_1(m) f_2(k-m)$,

$$f(0) = 2$$
, $f(1) = 6$, $f(2) = 9$, $f(3) = 8$, $f(4) = 4$, $f(5) = 1$, $f(k) = 0$

(2)
$$N=4$$
 $\exists f$, $f_1(k)$ \circledast $f_2(k)=\sum_{m=0}^3 f_1(m)f_2((k-m))_4$, $f(0)=6$, $f(1)=2+4+1=7$,

$$f(2) = 1 + 4 + 4 = 9$$
, $f(3) = 2 + 4 + 2 = 8$, $f(k) = \{6, 7, 9, 8\}$, $k = 0, 1, 2, 3$

(3)
$$N = 5 \, \text{Fr}$$
, $f_1(k) \, \text{?} f_2(k) = f(k) = \sum_{m=0}^4 f_1(m) f_2((k-m))_5$, $f(0) = 2 + 1 = 3$, $f(1) = 2 + 4 = 6$,

$$f(2) = 1 + 4 + 4 = 9$$
, $f(3) = 2 + 4 + 2 = 8$, $f(4) = 2 + 2 = 4$,

$$\therefore f(k) = \{3,6,9,8,4\}, k = 0,1,2,3,4, f_1(k)$$
长度为 4, $f_2(k)$ 长度为 3,

:线卷积长度为
$$4+3-1=6$$
,若要圆卷积与线卷积相同,则 L 最小值为 $L_{\min}=6$ 。

第五章 连续系统的 s 域分析

5-1 拉氏变换定义

$$\begin{array}{l} - 1. \quad \frac{1}{s+2}, \operatorname{Re}[s] > -2 \; ; \; 2. \frac{1}{s-2}, \operatorname{Re}[s] > 2 \; ; \; 3. \frac{1}{(s+2)^2}, \operatorname{Re}[s] > -2 \\ - 2. \quad (a) \; f(t) = \varepsilon(t) + \varepsilon(t-1) - \varepsilon(t-2) - \varepsilon(t-3) \; , \\ F(s) = \int_{-\infty}^{\infty} f(t) e^{-st} \; \mathrm{d}t = \int_{-\infty}^{\infty} [\varepsilon(t) + \varepsilon(t-1) - \varepsilon(t-2) - \varepsilon(t-3)] e^{-st} \; \mathrm{d}t \\ = \frac{1}{s} (1 + e^{-s} - e^{-2s} - e^{-3s}) = \frac{1}{s} (1 + e^{-s}) (1 - e^{-2s}), \operatorname{Re}[s] > -\infty \\ (b) \; f(t) = -\frac{1}{T} (t-T) [\varepsilon(t) - \varepsilon(t-T)] \\ F(s) = \int_{-\infty}^{\infty} f(t) e^{-st} \; \mathrm{d}t = \int_{0}^{T} -\frac{1}{T} (t-T) e^{-st} \; \mathrm{d}t = \frac{1}{s^2 T} (e^{-sT} - 1 + sT), \operatorname{Re}[s] > -\infty \\ (c) \; f(t) = \sin(\pi t) [\varepsilon(t) - \varepsilon(t-1)] \\ F(s) = \int_{-\infty}^{\infty} f(t) e^{-st} \; \mathrm{d}t = \int_{0}^{1} \sin(\pi t) e^{-st} \; \mathrm{d}t = \frac{\pi (1 + e^{-s})}{s^2 + \pi^2}, \operatorname{Re}[s] > -\infty \\ \end{array}$$

5-2 拉氏变换的性质

$$\begin{array}{l} -\cdot, \quad (1) e^{-t} \varepsilon(t) \leftrightarrow \frac{1}{s+1}, \quad e^{-(t-2)} \varepsilon(t-2) \leftrightarrow \frac{e^{-2s}}{s+1}, \quad \dot{\cdots} f(t) \leftrightarrow \frac{1-e^{-2s}}{s+1}, \operatorname{Re}[s] > -1 \\ (2) \sin(\pi t) \varepsilon(t) \leftrightarrow \frac{\pi}{s^2 + \pi^2}, \quad \sin \pi(t-1) \varepsilon(t-1) \leftrightarrow \frac{\pi e^{-s}}{s^2 + \pi^2}, \\ f(t) = \sin(\pi t) [\varepsilon(t) - \varepsilon(t-1)] = \sin(\pi t) \varepsilon(t) + \sin[\pi(t-1)] \varepsilon(t-1), \quad \dot{\cdots} f(t) \leftrightarrow \frac{\pi(1+e^{-s})}{s^2 + \pi^2}, \operatorname{Re}[s] > -\infty \\ (3) \dot{\boxplus}(2) \dot{\nexists} f(t) \leftrightarrow \frac{\pi(1-e^{-s})}{s^2 + \pi^2}, \operatorname{Re}[s] > 0 \\ (4) \delta(t) \leftrightarrow 1, \quad \delta(t-2) \leftrightarrow e^{-2s}, \quad \delta(4t-2) \leftrightarrow \frac{1}{4} e^{-s/2}, \operatorname{Re}[s] > -\infty \\ (5) \sin(\pi t) \varepsilon(t) \leftrightarrow \frac{\pi}{s^2 + \pi^2}, \operatorname{Re}[s] > 0, \quad \frac{d^2}{dt^2} [\sin(\pi t) \varepsilon(t)] \frac{\pi s^2}{s^2 + \pi^2}, \operatorname{Re}[s] > 0 \\ (6) \frac{d^2 \sin(\pi t)}{dt^2} = -\pi^2 \sin \pi t, \quad \dot{\cdots} \frac{d^2 \sin(\pi t)}{dt^2} \varepsilon(t) \leftrightarrow \frac{-\pi^3}{s^2 + \pi^2}, \operatorname{Re}[s] > 0 \\ (7) e^{-(t-3)} \varepsilon(t-1) = e^2 \cdot e^{-(t-1)} \varepsilon(t-1) \leftrightarrow e^2 \cdot \frac{e^{-s}}{s+1} = \frac{e^{2-s}}{s+1}, \operatorname{Re}[s] > -1 \\ t e^{-(t-3)} \varepsilon(t-1) \leftrightarrow -\frac{d}{ds} (\frac{e^{2-s}}{s+1}) = \frac{(s+2)e^{2-s}}{(s+1)^2}, \operatorname{Re}[s] > -1 \\ - - \cdot (1) f(\frac{t}{2}) \leftrightarrow 2F(2s), \quad e^{-t} f(\frac{t}{2}) \leftrightarrow 2F[2(s+1)], \quad \dot{\cdots} \gamma_1(s) = 2F[2(s+1)] = \frac{2}{4s^2 + 6s + 3} \\ (2) f(t-1) \leftrightarrow e^{-s} F(s), \quad f(2t-1) \leftrightarrow \frac{1}{2} e^{-s/2} F(\frac{s}{2}), \quad -tf(2t-1) \leftrightarrow \frac{1}{2} \frac{d}{dt} e^{-s/2} F(\frac{s}{2})] \end{array}$$

5-3 拉氏逆变换

$$\begin{array}{l} -\cdot, \ (1)F_{1}(s) = \frac{1}{(s+2)(s+4)} = \frac{1/2}{s+2} - \frac{1/2}{s+4}, \quad \dot{\cdots} \ f_{1}(t) = \frac{1}{2}(e^{-2t} - e^{-4t})\varepsilon(t) \\ (2)F_{2}(s) = \frac{s^{2} + 4s + 5}{s^{2} + 3s + 2} = 1 + \frac{s + 3}{(s+1)(s+2)} = 1 + \frac{2}{s+1} - \frac{1}{s+2}, \quad \dot{\cdots} \ f_{2}(t) = \delta(t) + (2e^{-t} - e^{-2t})\varepsilon(t) \\ (3)F_{3}(s) = \frac{2s + 4}{s(s^{2} + 4)} = \frac{2s + 4}{s(s+j2)(s-j2)} = \frac{1}{s} + \frac{\frac{1}{2}e^{\frac{j\pi}{2}}}{2s+j2} + \frac{\frac{1}{2}e^{-\frac{j\pi}{2}}}{s-j2} \\ \dot{\cdots} f_{3}(t) = \varepsilon(t) + 2 \times \frac{1}{2}e^{0} \cos(-2t + \frac{\pi}{2})\varepsilon(t) = [1 + \sin(2t)]\varepsilon(t) \\ (4)F_{4}(s) = \frac{1}{s^{2}(s+1)} = \frac{1}{s^{2}} - \frac{1}{s} + \frac{1}{s+1}, \quad \dot{\cdots} f_{4}(t) = (t-1+e^{-t})\varepsilon(t) \\ (5)F_{5}(s) = \frac{s^{2} - 4}{(s^{2} + 4)^{2}} = \frac{s^{2} - 4}{(s+j2)^{2}(s-j2)^{2}} = \frac{1/2}{(s+j2)^{2}} + \frac{1/2}{(s-j2)^{2}}, \\ \dot{\cdots} f_{5}(t) = \frac{1}{2} \times 2 \times t \times e^{0} \cos(2t)\varepsilon(t) = t \cos(2t)\varepsilon(t) \\ (6)F_{6}(s) = \frac{5}{(s+1)(s^{2} + 4)} = \frac{1}{s+1} + \frac{\sqrt{5}}{s+j2} + \frac{\sqrt{5}}{4}\frac{e^{-j153^{\circ}}}{s-j2} \\ \dot{\cdots} f_{6}(t) = e^{-t}\varepsilon(t) + 2 \times \frac{\sqrt{5}}{4}e^{0}\cos(-2t+153^{\circ})\varepsilon(t) = [e^{-t} - \frac{\sqrt{5}}{2}\cos(2t+27^{\circ})]\varepsilon(t) \end{array}$$

$$(2) F_2(s) = \left(\frac{1 - e^{-s}}{s}\right)^2 = \frac{1 - 2e^{-s} + e^{-2s}}{s^2} , \quad \therefore f_2(t) = t\varepsilon(t) - 2(t - 1)\varepsilon(t - 1) + (t - 2)\varepsilon(t - 2)$$

$$(3) \varepsilon(t-2) \leftrightarrow \frac{e^{-2s}}{s}, \quad e^{-3t} \varepsilon(t-2) \leftrightarrow \frac{e^{-2(s+3)}}{s+3}, \quad \therefore f_3(t) = e^{-3t} \varepsilon(t-2)$$

$$(4) F_4(s) = \frac{\pi (1 + e^{-s})}{s^2 + \pi^2} = \frac{\pi}{s^2 + \pi^2} + \frac{\pi e^{-s}}{s^2 + \pi^2}, \quad \therefore f_4(t) = \sin(\pi t) \varepsilon(t) + \sin[\pi (t - 1)] \varepsilon(t - 1)$$

$$\equiv$$
, $F(s) = \frac{\pi(1 + e^{-s})}{(s^2 + \pi^2)(1 - e^{-s})} = \frac{\pi(1 + e^{-s})}{s^2 + \pi^2} \cdot \frac{1}{(1 - e^{-s})}$,

$$\sin(\pi t)\varepsilon(t) + \sin[\pi(t-1)]\varepsilon(t-1) \leftrightarrow \frac{\pi(1+e^{-s})}{s^2+\pi^2}, \quad \sum_{n=0}^{\infty} \delta(t-n) \leftrightarrow \frac{1}{1-e^{-s}},$$

$$\therefore f(t) = \{\sin(\pi t)\varepsilon(t) + \sin[\pi(t-1)]\varepsilon(t-1)\} * \sum_{n=0}^{\infty} \delta(t-n) = \sum_{n=0}^{\infty} \sin[\pi(t-n)][\varepsilon(t-n) - \varepsilon(t-1-n)]$$

四、
$$\sin t \varepsilon(t) * f(t) = \int_0^t \sin(t-\tau) \varepsilon(t-\tau) f(\tau) d\tau$$
,则原方程变为 $f(t) - [\sin t \varepsilon(t) * f(t)] = \sin t \varepsilon(t)$,

两边作拉氏变换,得
$$F(s) - \frac{1}{s^2 + 1} F(s) = \frac{1}{s^2 + 1}$$
, $\therefore F(s) = \frac{1}{s^2}$, $\therefore f(t) = t\varepsilon(t)$

5-4 s 域分析(1)

一、方程两边作拉氏变换,得 $s^2Y(s) - sy(0_-) - y'(0_-) + 5sY(s) - 5y(0_-) + 6Y(s) = 3F(s)$,

$$: Y(s) = Y_{zi}(s) + Y_{zs}(s) = \frac{(s+5)y(0_{-}) + y'(0_{-})}{s^2 + 5s + 6} + \frac{3}{s^2 + 5s + 6} F(s)$$

(1)
$$\stackrel{\text{def}}{=} f(t) = \varepsilon(t) \stackrel{\text{def}}{=} f(t) = \frac{1}{s}, \quad Y_{zi}(s) = \frac{(s+5)y(0_-) + y'(0_-)}{s^2 + 5s + 6} = \frac{2}{(s+2)(s+3)} = \frac{2}{s+2} - \frac{2}{s+3}$$

$$\therefore y_{zi}(t) = 2(e^{-2t} - e^{-3t})\varepsilon(t) \circ Y_{zs}(s) = \frac{3}{s(s+2)(s+3)} = \frac{1/2}{s} + \frac{-3/2}{s+2} + \frac{1}{s+3}, \quad \therefore y_{zs}(t) = (\frac{1}{2} - \frac{3}{2}e^{-2t} + e^{-3t})\varepsilon(t)$$

(2)
$$\stackrel{\text{def}}{=} f(t) = e^{-t} \varepsilon(t)$$
 $\stackrel{\text{def}}{=} \cdot F(s) = \frac{1}{s+1}$, $Y_{zi}(s) = \frac{1}{s^2 + 5s + 6} = \frac{1}{s+2} - \frac{1}{s+3}$, $\therefore Y_{zi}(t) = (e^{-2t} - e^{-3t})\varepsilon(t)$

$$Y_{zs}(s) = \frac{3}{(s+1)(s+2)(s+3)} = \frac{3/2}{s+1} - \frac{3}{s+2} + \frac{3/2}{s+3}, \quad \therefore y_{zs}(t) = \frac{3}{2} (e^{-t} - 2e^{-2t} + e^{-3t}) \varepsilon(t)$$

二、零状态响应 $y_f(t)$,则 $y_f(0_-)=0$,

方程两边作拉氏变换,得
$$sY_f(s) + 2Y_f(s) = sF(s) + F(s)$$
, $\therefore Y_f(s) = \frac{s+1}{s+2}F(s)$

$$\exists \cdot G(s) = \frac{1}{s} - \frac{1}{s+2}, \quad \therefore H(s) = sG(s) = \frac{2}{s+2}, \quad \forall Y_{zs}(s) = \frac{1}{s} - \frac{1}{s+2} + \frac{1}{(s+2)^2} = \frac{3s+4}{s(s+2)^2},$$

$$F(s) = \frac{Y_{zs}(s)}{H(s)} = \frac{3s+4}{2(s+2)} = \frac{1}{s} + \frac{1/2}{s+2}, \quad f(t) = (1 + \frac{1}{2}e^{-2t})\varepsilon(t)$$

四、设右端积分器的输出为
$$X(s)$$
 ,则
$$\begin{cases} s^2X(s) = F(s) - 5sX(s) - 6X(s) \\ Y(s) = 2s^2X(s) - 3sX(s) - 4X(s) \end{cases}$$
 ,消去 $X(s)$,得

$$Y(s) = (2s^2 - 3s - 4) \cdot \frac{F(s)}{s^2 + 5s + 6}$$
, $\therefore H(s) = \frac{Y(s)}{F(s)} = \frac{2s^2 - 3s - 4}{s^2 + 5s + 6}$

五、对方程组作拉氏变换,得
$$\begin{cases} sY_1(s)-y_1(0_-)+Y_1(s)-2Y_2(s)=4F(s)\\ sY_2(s)-y_2(0_-)-Y_1(s)+2Y_2(s)=-F(s) \end{cases}, 解得$$

$$Y_1(s) = Y_{1zi}(s) + Y_{1zs}(s) = \left[\frac{(s+2)y_1(0_-)}{s(s+3)} + \frac{2y_2(0_-)}{s(s+3)}\right] + \frac{4s+6}{s(s+3)}F(s)$$

将
$$y_1(0_-)=1$$
 , $y_2(0_-)=2$ 代入 $Y_1(s)$ 得 $Y_{1zi}(s)=\frac{s+6}{s(s+3)}=\frac{2}{s}-\frac{1}{s+3}$, $\therefore y_{1zi}(t)=(2-e^{-3t})\varepsilon(t)$

将
$$F(s) = \frac{1}{s+1}$$
代入 $Y_1(s)$ 得 $Y_{1zs}(s) = \frac{4s+6}{s(s+1)(s+3)} = \frac{2}{s} - \frac{1}{s+1} - \frac{1}{s+3}$, $\therefore y_{1zs}(t) = (2 - e^{-t} - e^{-3t})\varepsilon(t)$

5-5 s 域分析(2)

一、(a) 所求为零状态响应,故电路的
$$s$$
 域模型与时域模型形式相同: $U(s) = \frac{sL \cdot \frac{1}{sC}}{sL + \frac{1}{sC}} \cdot I(s)$

将
$$I(s) = \frac{1}{s}$$
和各元件数值代入上式,得 $U(s) = \frac{2}{s^2+4}$, 取拉氏逆变换, $\therefore u(t) = \sin(2t)\varepsilon(t)$

(b)
$$U(s) = \frac{\frac{1}{sC} /\!\!/ sL}{R + \frac{1}{sC} /\!\!/ sL} \cdot U_s(s) = \frac{\frac{1}{RC} s}{s^2 + \frac{s}{RC} + \frac{1}{LC}} \cdot U_s(s)$$
, 将 $U_s(s) = \frac{1}{s}$ 和各元件数值代入上式,得

$$U(s) = \frac{2}{s^2 + 2s + 4} = \frac{\sqrt{3}}{(s+1)^2 + \sqrt{3}} \cdot \frac{2}{\sqrt{3}}, \quad \therefore u(t) = \frac{2}{\sqrt{3}} e^{-t} \sin(\sqrt{3}t) \varepsilon(t) \text{ V}$$

二、求零状态响应,电路的
$$s$$
 域模型与时域模型相同, $I_s(s) = [\frac{sL_1 \cdot (R+sL_2)}{sL_1 + R + sL_2}]^{-1} \cdot \frac{R+sL_2}{sL_2} \cdot U(s)$,

从而解得系统函数
$$H(s) = \frac{U(s)}{I_s(s)} = \frac{s^2 L_1 L_2}{R + s L_1 + s L_2}$$
,将各元件数值代入,得

$$H(s) = \frac{2s^2}{s+1} = 2s - 2 + \frac{2}{s+1}$$
, $G(s) = \frac{1}{s}H(s) = \frac{2s}{s+1} = 2 - \frac{2}{s+1}$

$$\dot{\cdot} \cdot h(t) = 2\delta'(t) - 2\delta(t) + 2e^{-t}\varepsilon(t) , \quad g(t) = 2\delta(t) - 2e^{-t}\varepsilon(t)$$

三、 $H_3(s) = \frac{1}{s}$, $H_4(s) = \frac{1}{s+2}$,由系统级联和并联的性质可知,复合系统的系统函数为

$$H(s) = H_1(s) \cdot [H_2(s) \cdot H_3(s) - H_4(s)] = \frac{1}{s+1} \cdot (\frac{1}{s+2} \cdot \frac{1}{s} - \frac{1}{s+2}) = \frac{1/2}{s} - \frac{2}{s+1} + \frac{3/2}{s+2},$$

取拉氏变换,得 $h(t) = (\frac{1}{2} - 2e^{-t} + \frac{3}{2}e^{-2t})\varepsilon(t)$

四、设系统函数为H(s),零输入响应为 $Y_{x}(s)$,

若
$$f_1(t) = \delta(t)$$
 ,则 $F_1(s) = 1$, 全响应 $Y_1(s) = H(s)F_1(s) + Y_x(s) = 1 + \frac{1}{s+1}$ (*)

若
$$f_2(t) = \varepsilon(t)$$
 ,则 $F_2(s) = \frac{1}{s}$,全响应 $Y_2(s) = H(s) \cdot \frac{1}{s} + Y_x(s) = \frac{3}{s+1}$ (**)

联立(*),(**) 两式,解得
$$H(s) = \frac{s}{s+1}$$
, $Y_x(s) = \frac{2}{s+1}$

(1) 若
$$f_3(t) = e^{-2t} \varepsilon(t)$$
,则 $F_3(s) = \frac{1}{s+2}$,

$$\dot{\cdot} \cdot Y_3(s) = Y_x(s) + H(s)F_3(s) = \frac{2}{s+1} + \frac{s}{s+1} \cdot \frac{1}{s+2} = \frac{1}{s+1} + \frac{2}{s+2}$$

即全响应
$$y_3(t) = (e^{-t} + 2e^{-2t})\varepsilon(t)$$

$$\therefore Y_4(s) = Y_x(s) + H(s)F_4(s) = \frac{2}{s+1} + \frac{s}{s+1} \cdot \frac{1 - (s+1)e^{-s}}{s^2} = \frac{1}{s} + \frac{1}{s+1} - \frac{e^{-s}}{s} ,$$

即全响应 $y_4(t) = (1 + e^{-t})\varepsilon(t) - \varepsilon(t-1)$

五、开关 S 未打开时,由时域模型分析,得 $i_L(0_-)=1A$, $u_C(0_-)=0$ 。开关打开后,电路的 s 域模型如

图,则
$$I(s) = \frac{U_s(s) - i_L(0_-)L}{s + 3 + \frac{2}{s}} = \frac{\frac{1}{s} - 1}{s + 3 + \frac{2}{s}} = \frac{-3}{s + 2} + \frac{2}{s + 1}$$
,作拉氏逆变换,得 $i(t) = (2e^{-t} - 3e^{-2t})\varepsilon(t)$

六、易知
$$i_L(0_-)=1$$
A, $u_C(0_-)=2$ V,当 $t\geq 0$ 时, $u_S(t)=2\varepsilon(t)$ V,即 $U_S(s)=\frac{2}{s}$,

设 lΩ 电阻的电流为 $i_R(t)$, 电感电流为 $i_L(t)$, 端电压为 $u_L(t)$, 电容电流为 $i_C(t)$, 端电压为 $u_C(t)$,

各量的象函数分别为 $I_R(s)$, $I_L(s)$, $I_C(s)$, $I_C(s)$, 由 KCL, $I_R(s) = I_L(s) + I_C(s)$,

$$\pm \text{ KVL}$$
, $U_S(s) - I_R(s) - U_L(s) - 2I_L(s) = 0$, $2I_L(s) + U_L(s) - U_C(s) = 0$,

$$\mathbb{X}U_{L}(s) = sLI_{L}(s) - Li_{L}(0_{-}) = sI_{L}(s) - 1$$
, $U_{C}(s) = \frac{1}{sC}I_{C}(s) + \frac{u_{C}(0_{-})}{s} = \frac{1}{2s}I_{C}(s) + \frac{2}{s}$

·54· 好网考研微博,提供西电最新考研资讯 http://weibo.com/xduky

联立以上五式,解得
$$U_c(s) = \frac{4s^2 + 9s + 4}{s(s+1)(2s+3)} = \frac{4/3}{s} + \frac{1}{s+1} + \frac{-2/3}{2s+3}$$
,作拉氏逆变换,得

$$u_0(t) = u_C(t) = (\frac{4}{3} + e^{-t} - \frac{1}{3}e^{-\frac{3}{2}t})\varepsilon(t)$$

$$t$$
. (1) $F(s) = \frac{1}{s}(1 - e^{-2s})$, Re[s] > -∞, ∴ $F(jω) = F(s)|_{s=jω} = \frac{1 - e^{-j2ω}}{jω}$

$$(2) F(s) = \frac{1}{s^2} (1 - e^{-s}) , \quad F(s) 有 - 双重极点 s = 0 , \quad \text{则} F(j\omega) = F(s)|_{s=j\omega} + \pi \delta(\omega) = \pi \delta(\omega) - \frac{1 - e^{-j\omega}}{\omega^2}$$

第六章 离散系统的 z 域分析

6-1 z 变换定义与性质

$$(1) F(z) = \sum_{k=-\infty}^{\infty} f(k) z^{-k} = \sum_{k=-\infty}^{-1} \left(\frac{1}{2}\right)^k z^{-k} \quad \stackrel{m=-k}{=\!=\!=\!=} \quad \sum_{m=1}^{\infty} (2z)^m = \frac{-2z}{2z-1}, |z| < \frac{1}{2}$$

$$(2) 2^{k} \varepsilon(-k-1) \leftrightarrow \frac{-z}{z-2}, |z| < 2, \quad (\frac{1}{3})^{k} \varepsilon(k) \leftrightarrow \frac{z}{z-\frac{1}{3}}, |z| > \frac{1}{3},$$

$$\therefore F(z) = \frac{-z}{z-2} + \frac{z}{z-\frac{1}{3}} = \frac{-5z}{(z-2)(3z-1)}, \frac{1}{3} < |z| < 2$$

$$(3)\left(\frac{1}{2}\right)^{k}\varepsilon(k)\leftrightarrow\frac{z}{z\leftrightarrow\frac{1}{2}},\left|z\right|>\frac{1}{2},\quad \left(\frac{1}{2}\right)^{-k}\varepsilon(-k-1)\leftrightarrow\frac{-z}{z-2},\left|z\right|<2,$$

$$\therefore F(z) = \frac{z}{z - \frac{1}{2}} + \frac{-z}{z - 2} = \frac{-3z}{(z - 2)(2z - 1)}, \frac{1}{2} < |z| < 2$$

(4)
$$\diamondsuit f_1(k) = (\frac{1}{2})^k \varepsilon(k)$$
,则 $F_1(z) = \frac{2z}{2z-1}, |z| > \frac{1}{2}$,由线性性质,得

$$F(z) = F_1(z) + \sum_{k=-1}^{-4} f(k)z^{-k} = \frac{2z}{2z-1} + \frac{2z-32z^5}{1-2z} = \frac{32z^5}{2z-1}, |z| > \frac{1}{2}$$

$$\exists (1) F(z) = \sum_{k=-\infty}^{\infty} f(k) z^{-k} = \sum_{k=0}^{\infty} (\frac{1}{3})^k z^{-k} = \frac{3z}{3z-1}, |z| > \frac{1}{3}$$

$$(2)\left(\frac{1}{2}\right)^{k}\varepsilon(k)\leftrightarrow\frac{2z}{2z-1},\left|z\right|<\frac{1}{2},\quad \left(\frac{1}{3}\right)^{-k}\varepsilon(k)\leftrightarrow\frac{z}{z-3},\left|z\right|>3$$

$$F(z) = \frac{2z}{2z-1} + \frac{z}{z-3} = \frac{4z^2 - 7z}{(2z-1)(z-3)}, |z| > 3$$

$$(3) f(k) = \frac{e^{j\frac{k\pi}{4}} + e^{-j\frac{k\pi}{4}}}{2} \varepsilon(k), \quad : F(z) = \frac{1}{2} \cdot \frac{z}{z - e^{j\frac{\pi}{4}}} + \frac{1}{2} \cdot \frac{z}{z - e^{-j\frac{\pi}{4}}} = \frac{z^2 - \frac{\sqrt{2}}{2}z}{z^2 - \sqrt{2}z + 1}, |z| > 1$$

$$(4) f(k) = \sum_{m=0}^{\infty} (-1)^m \delta(k-m) = (-1)^k \varepsilon(k) , \quad :: F(z) = \frac{z}{z+1}, |z| > 1$$

$$= \sum_{k=0}^{\infty} f(k)z^{-k} = \sum_{m=0}^{\infty} f(2m)z^{-2m} = \sum_{m=0}^{\infty} z^{-2m} = \frac{z^2}{z^2 - 1}$$

$$(2) F(z) = \sum_{k=0}^{\infty} f(k) z^{-k} = \sum_{k=0}^{3} z^{-k} + \sum_{k=4}^{7} (-z^{-k}) = \frac{z}{z-1} (\frac{z^4 - 1}{z^4})^2$$

图象见下页。

$$\square \cdot (1) \varepsilon(k) \leftrightarrow \frac{z}{z-1}, |z| > 1, \quad (-1)^k \varepsilon(k) \leftrightarrow \frac{z}{z+1}, |z| > 1, \quad \therefore F(z) = \frac{1}{2} \left(\frac{z}{z-1} + \frac{z}{z+1} \right) = \frac{z^2}{z^2-1}, |z| > 1$$

(2)
$$\Leftrightarrow f_1(k) = k\varepsilon(k)$$
, $\bigvee F_1(z) = \frac{z}{(z-1)^2}$, $|z| > 1$, ∴ $F(z) = F_1(-z) = \frac{-z}{(-z-1)^2} = \frac{-z}{(z+1)^2}$, $|z| > 1$

(3)
$$\Leftrightarrow f_1(k) = (k-1)\varepsilon(k-1)$$
, $\bigvee F_1(z) = z^{-1} \cdot \frac{z}{(z-1)^2} = \frac{1}{(z-1)^2}$, $|z| > 1$, ∴ $F(z) = -z \frac{d}{dz} F_1(z) = \frac{2z}{(z-1)^3}$, $|z| > 1$

$$(4) f(k) = (\frac{1}{2})^k \cos(\frac{k\pi}{2})\varepsilon(k) = (\frac{1}{2})^k \cdot \frac{e^{j\frac{k\pi}{2}} + e^{-j\frac{k\pi}{2}}}{2}\varepsilon(k) = \frac{1}{2}[(\frac{1}{2}e^{j\frac{\pi}{2}})^k + (\frac{1}{2}e^{-j\frac{\pi}{2}})^k]\varepsilon(k) = \frac{1}{2}[(j\frac{1}{2})^k + (-j\frac{1}{2})^k]\varepsilon(k)$$

$$\therefore F(z) = \frac{1}{2} \left(\frac{z}{z - j\frac{1}{2}} + \frac{z}{z + j\frac{1}{2}} \right) = \frac{4z^2}{4z^2 + 1}, |z| > \frac{1}{2}$$

$$\text{\pm.} (1) \sin(\frac{k\pi}{2})\varepsilon(k) = \frac{1}{2j}(e^{j\frac{k\pi}{2}} - e^{-j\frac{k\pi}{2}})\varepsilon(k) \leftrightarrow \frac{1}{2j}(\frac{z}{z - e^{j\frac{\pi}{2}}} - \frac{z}{z - e^{-j\frac{\pi}{2}}}) = \frac{z}{z^2 + 1},$$

$$F(z) = -z \frac{d}{dz} \left(\frac{z}{z^2 + 1} \right) = \frac{z(z^2 - 1)}{(z^2 + 1)^2}$$

(2)
$$a^k \varepsilon(k) \leftrightarrow \frac{z}{z-a}$$
, $a^k \varepsilon(k-1) \leftrightarrow a \cdot z^{-1} \cdot \frac{z}{z-a} = \frac{a}{z-a}$, $b^k \varepsilon(k-1) \leftrightarrow \frac{b}{z-b}$

$$\therefore F(z) = \int_{z}^{\infty} \left(\frac{a}{\eta - a} - \frac{b}{\eta - b}\right) \frac{1}{\eta} d\eta = \ln \frac{z - b}{z - a}$$

(3)
$$a^k \varepsilon(k) \leftrightarrow \frac{z}{z-a}$$
, $\therefore F(z) = z \int_z^\infty \frac{\eta}{\eta - a} \cdot \frac{1}{\eta^2} d\eta = \frac{z}{a} \ln \frac{z}{z-a}$

(4)
$$f(k) = \sum_{i=0}^{k} (-1)^{i} \varepsilon(k) = \begin{cases} 0, k$$
为奇数,且 $f(k)$ 为因果序列,则解法同三(1)题。

6-2 逆 z 变换

一、(1)由
$$|z| > \frac{1}{2}$$
知 $f(k)$ 为因果序列,则 $f(k) = (\frac{1}{2})^k \varepsilon(k)$

(2)由
$$|z| > \frac{1}{2}$$
知 $f(k)$ 为因果序列,而 $F(z) = \frac{3z+1}{z+\frac{1}{2}} = 2 + \frac{z}{z+\frac{1}{2}}$, $\therefore f(k) = 2\delta(k) + (-\frac{1}{2})^k \varepsilon(k)$

(3)由
$$|z| > 2$$
 知 $f(k)$ 为因果序列,而 $\frac{F(z)}{z} = \frac{z^2 + z + 1}{z(z - 1)(z + 2)} = \frac{-1/2}{z} + \frac{1/2}{z + 2} + \frac{1}{z - 1}$,

二、(1)由
$$|z| < \frac{1}{3}$$
知 $f(k)$ 为反因果序列, $\frac{F(z)}{z} = \frac{z}{(z - \frac{1}{2})(z - \frac{1}{3})} = \frac{3}{z - \frac{1}{2}} - \frac{2}{z - \frac{1}{3}}$,即 $F(z) = \frac{3z}{z - \frac{1}{2}} - \frac{2z}{z - \frac{1}{3}}$,

:
$$f(k) = [-3(\frac{1}{2})^k + 2(\frac{1}{3})^k] \varepsilon(-k-1)$$

(2)由
$$|z| > \frac{1}{2}$$
知 $f(k)$ 为因果序列, $: f(k) = [3(\frac{1}{2})^k - 2(\frac{1}{3})^k] \varepsilon(k)$

$$(3)\frac{F(z)}{z} = \frac{z^2}{(z - \frac{1}{2})^2(z - \frac{1}{3})} = \frac{3/2}{(z - \frac{1}{2})^2} - \frac{3}{z - \frac{1}{2}} + \frac{4}{z - \frac{1}{3}}, \quad \text{fif } F(z) = \frac{3z/2}{(z - \frac{1}{2})^2} - \frac{3z}{z - \frac{1}{2}} + \frac{4z}{z - \frac{1}{3}},$$

由收敛域 $\frac{1}{3}$ <|z|< $\frac{1}{2}$ 知上式中前两项逆z变换后为反因果序列,后一项逆z变换后为因果序列。

$$f(k) = \left[-\frac{3}{2}k(\frac{1}{2})^k + 3(\frac{1}{2})^k \right] \varepsilon(-k-1) + 4(\frac{1}{3})^k \varepsilon(k)$$

$$\exists \cdot (1) \frac{F(z)}{z} = \frac{1}{z(z+j)(z-j)} = \frac{1}{z} + \frac{-1/2}{z+j} + \frac{-1/2}{z-j}, \quad \exists F(z) = 1 - \frac{z/2}{z+j} - \frac{z/2}{z-j}, \quad \therefore f(k) = \delta(k) - \cos(\frac{k\pi}{2})\varepsilon(k)$$

$$(2)\frac{F(z)}{z} = \frac{z+1}{(z-1)(z^2-z+1)} = \frac{2}{z-1} + \frac{-1}{z-e^{i\frac{\pi}{3}}} + \frac{-1}{z-e^{-i\frac{\pi}{3}}}, \quad \text{If } F(z) = \frac{2}{z-1} - \frac{z}{z-e^{i\frac{\pi}{3}}} - \frac{z}{z-e^{-i\frac{\pi}{3}}}$$

$$f(k) = 2[1 - \cos(\frac{k\pi}{3})]\varepsilon(k)$$

$$(3)\frac{F(z)}{z} = \frac{z}{(z - e^{j\frac{3\pi}{4}})(z - e^{-j\frac{3\pi}{4}})} = \frac{\frac{\sqrt{2}}{2}e^{j\frac{\pi}{4}}}{z - e^{j\frac{3\pi}{4}}} + \frac{\frac{\sqrt{2}}{2}e^{-j\frac{\pi}{4}}}{z - e^{-j\frac{3\pi}{4}}}, \quad \text{Ell } F(z) = \frac{\frac{\sqrt{2}}{2}e^{j\frac{\pi}{4}}z}{z - e^{j\frac{3\pi}{4}}} + \frac{\frac{\sqrt{2}}{2}e^{-j\frac{\pi}{4}}z}{z - e^{-j\frac{3\pi}{4}}},$$

$$\therefore f(k) = \sqrt{2}\cos(\frac{3}{4}k\pi + \frac{\pi}{4})\varepsilon(k)$$

$$(4)\frac{F(z)}{z} = \frac{z+a}{(z-a)^3} = \frac{2a}{(z-a)^3} + \frac{1}{(z-a)^2}, \quad \mathbb{R}^1 F(z) = \frac{2az}{(z-a)^3} + \frac{z}{(z-a)^2},$$

:
$$f(k) = [2a \cdot \frac{1}{2}k(k-1)a^{k-2} + ka^{k-1}]\varepsilon(k) = k^2a^{k-1}\varepsilon(k)$$

四、(1)
$$F(z) = \frac{z}{z-a}$$
, $H(z) = \frac{1}{z-1}$, $Y(z) = F(z) \cdot H(z) = \frac{z}{(z-1)(z-a)} = \frac{1}{1-a} \cdot \frac{z}{z-1} + \frac{1}{a-1} \cdot \frac{z}{z-a}$,

$$\therefore y(k) = \frac{1}{1-a} \varepsilon(k) + \frac{1}{a-1} a^k \varepsilon(k) = \frac{1-a^k}{1-a} \varepsilon(k)$$
(2) $F(z) = \frac{z}{z-a}$, $H(z) = \frac{z}{z-b}$, $Y(z) = F(z) \cdot H(z) = \frac{z^2}{(z-a)(z-b)} = \frac{a}{a-b} \cdot \frac{z}{z-a} + \frac{b}{b-a} \cdot \frac{z}{z-b}$

$$\therefore y(k) = \frac{a}{a-b} \cdot a^k \varepsilon(k) + \frac{b}{b-a} \cdot b^k \varepsilon(k) = \frac{a^{k+1} - b^{k+1}}{a-b} \varepsilon(k)$$
五、设 $f_1(k) = \sum_{i=0}^{k-1} f(i) = \sum_{i=0}^{k} f(i) - f(k) = \sum_{i=-\infty}^{k} f(i) - f(k)$, 则 $F_1(z) = \frac{z}{z-1} F(z) - F(z) = \frac{F(z)}{z-1}$,
原方程作 z 变换,得 $F_1(z) = \frac{z}{(z-1)^2} \cdot \frac{z}{z-\frac{1}{2}}$,即 $\frac{F(z)}{z-1} = \frac{z^2}{(z-1)^2(z-\frac{1}{2})}$,

$$F(z) = \frac{z^2}{(z-1)(z-\frac{1}{2})} = \frac{2z}{z-1} + \frac{-z}{z-\frac{1}{2}}, \quad f(k) = \left[2 - (\frac{1}{2})^k\right] \varepsilon(k)$$

6-3 z 域分析(1)

一、原方程变形为
$$y(k) = 0.7y(k-1) + 0.1y(k-2) = 7f(k-1) - 2f(k-2)$$
,作 z 变换,得 $Y(z) - 0.7[z^{-1}Y(z) + y(-1)] + 0.1[z^{-2}Y(z) + y(-2) + z^{-1}y(-1)] = 7z^{-1}F(z) - 2z^{-2}F(z)$

$$\therefore Y(z) = Y_{zi}(z) + Y_{zs}(z) = \frac{0.7y(-1) - 0.1y(-2) - 0.1z^{-1}y(-1)}{1 - 0.7z^{-1} + 0.1z^{-2}} + \frac{7z^{-1} - 2z^{-2}}{1 - 0.7z^{-1} + 0.1z^{-2}}F(z)$$

将
$$y(-1) = -4$$
 , $y(-2) = -38$ 代入,得 $Y_{zi}(z) = \frac{1 + 0.4z^{-1}}{1 - 0.7z^{-1} + 0.1z^{-2}} = \frac{3z}{z - 0.5} + \frac{-2z}{z - 0.2}$

$$\therefore y_{zi}(k) = [3(0.5)^k - 2(0.2)^k] \varepsilon(k)$$
。 $f(k) = (0.4)^k \varepsilon(k)$,则 $F(z) = \frac{z}{z - 0.4}$,代入 $Y(z)$ 表达式,可得

$$Y_{zs}(z) = \frac{7z^{-1} - 2z^{-2}}{1 - 0.7z^{-1} + 0.1z^{-2}} \cdot \frac{z}{z - 0.4} = \frac{-10z}{z - 0.2} + \frac{-40z}{z - 0.4} + \frac{50z}{z - 0.5},$$

$$\dot{y}_{zs}(k) = 10[5(0.5)^k - 4(0.4)^k - (0.2)^k]\varepsilon(k) ,$$
全响应 $y(k) = y_{zi}(k) + y_{zi}(k) = [53(0.5)^k - 40(0.4)^k - 12(0.2)^k]\varepsilon(k)$

二、系统在零状态下的 z 域框图如左下图。

曲图可列出方程
$$Y_{zs}(z) = F(z) + \frac{1}{3}z^{-1}Y_{zs}(z)$$
,即 $Y_{zs}(z) = \frac{z}{z - \frac{1}{3}}F(z) = H(z)F(z)$,

∴系统函数
$$H(z) = \frac{z}{z - \frac{1}{3}}$$
, ∴ $h(k) = (\frac{1}{3})^k \varepsilon(k)$, 若 $f(k) = \varepsilon(k)$, 则 $F(z) = \frac{z}{z - 1}$,

阶跃响应的象函数
$$G(z) = \frac{z}{z - \frac{1}{3}} \cdot \frac{z}{z - 1} = \frac{\frac{3}{2}z}{z - 1} - \frac{\frac{1}{2}z}{z - \frac{1}{3}}$$
, $\therefore g(k) = [\frac{3}{2} - \frac{1}{2}(\frac{1}{3})^k]\varepsilon(k)$

三、系统在零状态下的 z 域框图如右上图。

曲图可列出方程组
$$\begin{cases} zX(z) = F(z) + \frac{1}{2}X(z) \\ Y_{zz}(z) = X(z) - zX(z) \end{cases}$$
,消去 $X(z)$,整理,得 $Y_{zz}(z) = \frac{1-z}{z-\frac{1}{2}}F(z)$

(1)若
$$f(k) = \varepsilon(k)$$
,则 $F(z) = \frac{z}{z-1}$,即 $Y_{zs}(z) = \frac{1-z}{z-\frac{1}{2}} \cdot \frac{z}{z-1} = \frac{-z}{z-\frac{1}{2}}$, $\therefore y_{zs}(k) = -(\frac{1}{2})^k \varepsilon(k)$

(2)若
$$f(k) = k\varepsilon(k)$$
, 则 $F(z) = \frac{z}{(z-1)^2}$, 即 $Y_{zs}(z) = \frac{1-z}{z-\frac{1}{2}} \cdot \frac{z}{(z-1)^2} = \frac{2z}{z-\frac{1}{2}} + \frac{-2z}{z-1}$, $\therefore y_{zs}(k) = 2[(\frac{1}{2})^k - 1]\varepsilon(k)$

四、(1)(a) 由框图可列出方程 $Y(z) = F(z) + \frac{3}{4}z^{-1}Y(z) - \frac{1}{8}z^{-2}Y(z)$

整理方程可得(a)图的系统函数
$$H_a(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

(b) 设左端延迟器的输入为
$$X(z)$$
, 由框图可列出方程组
$$\begin{cases} X(z) = F(z) + \frac{1}{2}z^{-1}X(z) \\ Y(z) = X(z) + \frac{1}{4}z^{-1}Y(z) \end{cases} ,$$

消去
$$X(z)$$
,整理,得 $Y(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} F(z)$, : $H_b(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$

(c) 设上下两延迟器的输入分别为 $X_1(z)$, $X_2(z)$,由框图可列出方程组

$$\begin{cases} X_1(z) = F(z) + (1/2)z^{-1}X_1(z) \\ X_2(z) = F(z) + (1/4)z^{-1}X_2(z) , & \text{if } \pm X_1(z) , & X_2(z) , & \text{set}, & \text{if } \mp Y(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} F(z) , \\ Y(z) = 2X_1(z) - X_2(z) \end{cases}$$

 $\therefore H_c(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$,综上可知三个系统的系统函数相等,即三个系统满足相同的差分方程。

(2)
$$H(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} = \frac{2z}{z - \frac{1}{2}} - \frac{z}{z - \frac{1}{4}}$$
, $\therefore h(k) = \left[2(\frac{1}{2})^k - (\frac{1}{4})^k\right] \varepsilon(k)$

五、(1)原方程作z变换,得 $Y(z)-1.5z^{-1}Y(z)-z^{-2}Y(z)=z^{-1}F(z)$,

$$\therefore H(z) = \frac{Y(z)}{F(z)} = \frac{z^{-1}}{1 - 1.5z^{-1} - z^{-2}} = \frac{\frac{2}{5}z}{z - 2} - \frac{\frac{2}{5}z}{z + \frac{1}{2}}, \quad \text{fif } h(k) = \frac{2}{5}[2^k - (-\frac{1}{2})^k]\varepsilon(k)$$

(2) 依题,知
$$H(z)$$
 的收敛域为 $\frac{1}{2} < |z| < 2$, $\therefore h(k) = -\frac{2}{5} \cdot 2^k \varepsilon (-k-1) - \frac{2}{5} \cdot (-\frac{1}{2})^k \varepsilon (k)$,

若
$$f(k) = (-0.5)^k \varepsilon(k)$$
 ,则 $F(z) = \frac{z}{z + \frac{1}{2}}$,

$$\therefore Y_{zs}(z) = H(z)F(z) = \frac{z^{-1}}{1 - 1.5z^{-1} - z^{-2}} \cdot \frac{z}{z + \frac{1}{2}} = \frac{\frac{1}{5}z}{(z + \frac{1}{2})^2} + \frac{-\frac{8}{25}z}{z + \frac{1}{2}} + \frac{\frac{8}{25}z}{z - 2},$$

$$\exists \mathbb{I} \ y_{zs}(k) = \left[\frac{1}{5}k(-\frac{1}{2})^k - \frac{8}{25}(-\frac{1}{2})^k\right] \varepsilon(k) - \frac{8}{25} \cdot 2^k \varepsilon(-k-1)$$

6-4 z 域分析(2)

一、 当
$$f(k) = \varepsilon(k)$$
 时, $F(z) = \frac{z}{z-1}$, $Y_{zs}(z) = 2(\frac{z}{z-1} - \frac{z}{z-0.5}) = \frac{z}{(z-1)(z-0.5)}$,

则可得系统函数 $H(z) = \frac{Y_{zs}(z)}{F(z)} = \frac{1}{z - 0.5}$; 当 $f(k) = (0.5)^k \varepsilon(k)$ 时, $F(z) = \frac{z}{z - 0.5}$,

:
$$Y_{zs}(z) = \frac{1}{z - 0.5} \cdot \frac{z}{z - 0.5} = \frac{z}{(z - 0.5)^2}$$
, : $y_{zs}(k) = k(0.5)^k \varepsilon(k)$

二、
$$h_1(k) = \varepsilon(k)$$
,则 $H_1(z) = \frac{z}{z-1}$,由框图可得该复合系统的系统函数

$$H(z) = [H_1(z) + H_2(z)] \cdot H_3(z) = \frac{2z}{(z-1)(z+1)}, \quad \stackrel{\text{dif}}{=} f(k) = \varepsilon(k) - \varepsilon(k-2),$$

$$\text{If } F(z) = \frac{z}{z-1} - z^{-2} \cdot \frac{z}{z-1} = \frac{z+1}{z} , \quad \therefore Y_{zs}(z) = H(z)F(z) = \frac{2z}{(z-1)(z+1)} \cdot \frac{z+1}{z} = \frac{2}{z-1} ,$$

$$\therefore y_{zs}(k) = 2\varepsilon(k-1)$$

三、(a) 由框图可列出方程
$$Y(z) = F(z) + \frac{1}{2}z^{-1}Y(z)$$
, 即 $Y(z) = \frac{z}{z - \frac{1}{2}}F(z) = H(z)F(z)$

∴系统函数
$$H(z) = \frac{z}{z - \frac{1}{2}}, |z| > \frac{1}{2}$$
,系统的频率响应 $H(e^{j\theta}) = H(z)|_{z=e^{j\theta}} = \frac{e^{j\theta}}{e^{j\theta} - \frac{1}{2}} = \frac{1}{(1 - \frac{1}{2}\cos\theta) + j\frac{1}{2}\sin\theta}$,

幅频响应
$$\left|H(\mathrm{e}^{\mathrm{j}\theta})\right| = \left|\frac{1}{(1-\frac{1}{2}\cos\theta)+\mathrm{j}\frac{1}{2}\sin\theta}\right| = \frac{1}{\sqrt{\frac{5}{4}-\cos\theta}}$$
,相频响应 $\varphi(\theta) = -\arctan(\frac{\frac{1}{2}\sin\theta}{1-\frac{1}{2}\cos\theta})$

(b) 设延迟器的输入为X(z),则由框图可列出方程组

$$\begin{cases} X(z) = F(z) + \frac{1}{2}z^{-1}X(z) \\ Y(z) = X(z) + z^{-1}X(z) \end{cases}, \quad \text{if } \pm X(z), \quad \text{if } + Y(z) = \frac{z+1}{z-\frac{1}{2}}F(z) = H(z)F(z),$$

∴系统函数
$$H(z) = \frac{z+1}{z-\frac{1}{2}}, |z| > \frac{1}{2}$$
, 系统的频率响应 $H(e^{j\theta}) = \frac{e^{j\theta}+1}{e^{j\theta}-\frac{1}{2}} = \frac{\cos\theta+1+j\sin\theta}{\cos\theta-\frac{1}{2}+j\sin\theta}$,

幅频响应
$$|H(e^{j\theta})| = \left| \frac{\cos \theta + 1 + j\sin \theta}{\cos \theta - \frac{1}{2} + j\sin \theta} \right| = \frac{4}{\sqrt{1 + 9\tan^2(\frac{\theta}{2})}},$$
 相频响应 $\varphi(\theta) = -\arctan[3\tan(\frac{\theta}{2})]$ 。

四、零状态下系统的 z 域框图如图,由框图可列出方程组

$$\begin{cases} X(z) = F(z) - \frac{1}{2}z^{-1}X(z) \\ Y(z) = X(z) + 2z^{-1}X(z) \end{cases}, \quad \mathring{\mathbf{n}} \pm X(z) , \quad \underline{\mathbf{e}} \pm \mathbf{p}, \quad \mathring{\mathbf{e}} + \mathbf{p} + \mathbf{p}$$

∴系统函数
$$H(z) = \frac{z+2}{z+\frac{1}{2}}$$
,系统的频率响应 $H(e^{j\theta}) = H(z)|_{z=e^{j\theta}} = \frac{e^{j\theta}+2}{e^{j\theta}+\frac{1}{2}}$,

则系统的稳态响应 $y_{ss}(k) = \text{Re}[H(e^{j\theta}) \cdot \dot{A}e^{jk\theta}]$,

若
$$f(k) = 5$$
,即 $\theta = 0$, $H(e^{j0}) = 2$, ∴ $y_{ss1}(k) = 2 \times 5 = 10$

若
$$f(k) = 5\cos(\frac{k\pi}{2}) = \text{Re}[5e^{\frac{j\pi}{2}}]$$
, 即 $\theta = \frac{\pi}{2}$, $H(e^{j\frac{\pi}{2}}) = 2e^{-j0.64}$,

$$\therefore y_{ss2}(k) = \text{Re}[2e^{-j0.64} \times 5e^{j\frac{k\pi}{2}}] = 10\cos(\frac{k\pi}{2} - 0.64)$$

若
$$f(k) = \cos(k\pi) = \text{Re}[e^{jk\pi}]$$
, 即 $\theta = \pi$, $H(e^{j\pi}) = -2$, $\therefore y_{ss3}(k) = \text{Re}[-2 \times e^{jk\pi}] = -2\cos(k\pi)$

综上,系统的稳态响应
$$y_{ss}(k) = y_{ss1}(k) + y_{ss2}(k) + y_{ss3}(k) = 2[5 + 5\cos(\frac{k\pi}{2} - 0.64) - \cos(k\pi)]$$

五、(1) 原方程作 z 变换,得 $Y_{zz}(z)+0.2z^{-1}Y_{zz}(z)-0.24z^{-2}Y_{zz}(z)=F(z)+z^{-1}F(z)$,整理,得

$$Y_{zs}(z) = \frac{z^2 + z}{z^2 + 0.2z - 0.24} F(z)$$
, \therefore 系统函数 $H(z) = \frac{z^2 + z}{z^2 + 0.2z - 0.24} = \frac{1.4z}{z - 0.4} - \frac{0.4z}{z + 0.6}$

$$h(k) = [1.4(0.4)^k - 0.4(-0.6)^k] \varepsilon(k)$$

(2)
$$H(z)$$
 收敛域 $|z| > 0.6$ 包含单位圆,则系统的频率响应 $H(e^{j\theta}) = \frac{e^{j2\theta} + e^{j\theta}}{e^{j2\theta} + 0.2e^{j\theta} - 0.24}$,

若
$$f(k) = 12\cos(k\pi) = \text{Re}[12e^{jk\pi}]$$
,即 $\theta = \pi$, $H(e^{j\pi}) = 0$, $\therefore y_{ss}(k) = \text{Re}[H(e^{j\theta}) \cdot \dot{A}e^{jk\theta}] = 0$

六、原方程作 z 变换,得 $Y_{sc}(z)-1.5z^{-1}Y_{sc}(z)-z^{-2}Y_{sc}(z)=z^{-1}F(z)$,整理,得

$$Y_{zs}(z) = \frac{z}{z^2 - 1.5z - 1} F(z) = H(z)F(z)$$
, \therefore 系统函数 $H(z) = \frac{z}{z^2 - 1.5z - 1} = \frac{0.4z}{z - 2} - \frac{0.4z}{z + 0.5}$

(1) 若该系统为因果系统,则其收敛域为|z|>2,

$$\mathbb{E} H(z) = \frac{z}{z^2 - 1.5z - 1}, \ |z| > 2, \quad h(k) = 0.4[2^k - (-0.5)^k] \varepsilon(k)$$

(2) 若该系统为稳定系统,则其收敛域为0.5 < |z| < 2,

$$\mathbb{E}[H(z)] = \frac{z}{z^2 - 1.5z - 1}, 0.5 < |z| < 2, \quad h(k) = -0.4[2^k \varepsilon (-k - 1) + (-0.5)^k \varepsilon (k)]$$

第七章 系统函数

7-1 系统函数零极点

$$- , 1.(a) \frac{z(2z-1)}{(z-\frac{1}{2})(z+\frac{3}{2})}, 0, 1/2; 1/2, -3/2 \qquad (b) \frac{z(\frac{1}{2}z+1)}{(z-\frac{1}{4})^2+\frac{1}{16}}, 0, -2; \frac{1}{4}\pm j\frac{1}{4}$$

2.(a)
$$\frac{-6(s-1)}{(s+2)(s+3)}$$
 (b) $\frac{5s[(s+2)^2+1]}{(s+3)[(s+1)^2+9]}$ (c) $\frac{2[(s-2)^2+1]}{(s+2)^2+1}$

- 3.(a) k < 4 (b) -2 < k < 4 (c) -1.5 < k < 0
- 二、设上端延迟器的输入为 X(z),则由框图可列出方程组 $\begin{cases} X(z) = F(z) + a_0 z^{-1} X(z) + a_1 z^{-2} X(z) \\ Y(z) = b_2 X(z) + b_1 z^{-1} X(z) z^{-2} X(z) \end{cases}$

消去 X(z),整理,得 $Y(z) = \frac{b_2 z^2 + b_1 z - 1}{z^2 - a_0 z - a_1} F(z) = H(z) F(z)$,则系统函数 $H(z) = \frac{b_2 z^2 + b_1 z - 1}{z^2 - a_0 z - a_1}$,

由二次方程根与系数的关系,得 $\begin{cases} -\frac{b_1}{b_2} = -1 + 2 \\ -\frac{1}{b_2} = -2 \end{cases}, \begin{cases} a_0 = -0.8 + 0.5 \\ -a_1 = -0.8 \times 0.5 \end{cases}, \quad \text{解得} \begin{cases} b_1 = -0.5 \\ b_2 = 0.5 \end{cases}, \begin{cases} a_0 = -0.3 \\ a_1 = 0.4 \end{cases}$

三、(1) 由零极点分布图,设 $H(s) = \frac{Ks^2}{(s+1)^2+4}$, $\because H(\infty) = 1$, $\therefore K = 1$,即 $H(s) = \frac{s^2}{(s+1)^2+4}$

(2)
$$|H(j\omega)| = \left| \frac{(j\omega)^2}{(j\omega+1)^2+4} \right| = \frac{\omega^2}{\sqrt{\omega^4 - 6\omega^2 + 25}}$$

(3) 见右图。

7-2 信号流图

-, 1.(1)-13/3 (2) 4
$$2.(1)\frac{2s^2-1}{s^3+4s^2+5s+6} \qquad (2)\frac{2z^2+\frac{1}{4}z}{z^2-\frac{1}{4}z+\frac{3}{8}}$$

二、(1) 由零极点分布图,设
$$H(s) = \frac{K(s-3)}{(s+2)^2+1}$$
, $\therefore H(0) = \frac{-3K}{4+1} = -1.2$, $\therefore K = 2$,
$$\mathbb{P}(s) = \frac{2s-6}{(s+2)^2+1} = \frac{1+j5}{s+2-j} + \frac{1-j5}{s+2+j} , \quad \text{作拉氏逆变换,} \quad \text{得} \quad h(t) = 2\sqrt{26}e^{-2t}\cos(t+78.7^\circ)\varepsilon(t)$$

(2)
$$Y(s) = H(s)F(s) = \frac{2s-6}{(s+2)^2+1}F(s) = \frac{2s-6}{s^2+4s+5}F(s)$$
,即 $s^2Y(s)+4sY(s)+5Y(s) = 2sF(s)-6F(s)$ 作拉氏逆变换,得 $y''(t)+4y'(t)+5y(t)=2f'(t)-6f(t)$

(3)
$$H(j\omega) = \frac{2(j\omega) - 6}{(j\omega + 2)^2 + 1} = \frac{-6 + j2\omega}{5 - \omega^2 + j4\omega}$$
, $\stackrel{\text{def}}{=} t \ge 0 \text{ Pr}$, $f(t) = \cos(3t) = \frac{1}{2}e^{-j3t} + \frac{1}{2}e^{j3t} = \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t}$

取
$$\Omega = 3$$
,则当 $n = -1$ 时, $F_{-1} = \frac{1}{2}$, $H(-j3) = \frac{-6 - j6}{5 - 9 - j12} = \frac{3\sqrt{5}}{10} e^{-j27^{\circ}}$, $Y_{-1} = H(-j3)F_{-1} = \frac{3\sqrt{5}}{20} e^{-j27^{\circ}}$,

当
$$n=1$$
时, $F_1=\frac{1}{2}$, $H(j3)=\frac{-6+j6}{5-9-j12}=\frac{3\sqrt{5}}{10}\mathrm{e}^{\mathrm{j}27^\circ}$, $Y_1=H(j3)F_1=\frac{3\sqrt{5}}{20}\mathrm{e}^{\mathrm{j}27^\circ}$,

当
$$n = \pm 1$$
 时, $F_n = 0$, $Y_n = 0$, $\therefore y(t) = \frac{3\sqrt{5}}{20} e^{-j27^\circ} e^{-j3t} + \frac{3\sqrt{5}}{20} e^{j27^\circ} e^{j3t} = \frac{3\sqrt{5}}{10} \cos(3t + 27^\circ)$

三、(1) 回路增益
$$L_1 = -z^{-1}$$
, $L_2 = -2z^{-2}$, $L_3 = 8z^{-2}$, $L_4 = 4$, 互不接触回路增益乘积 $L_1L_4 = -4z^{-1}$,

$$L_2L_4 = -8z^{-2}$$
, $\Delta = 1 - (-z^{-1} - 2z^{-2} + 8z^{-2} + 4) + (-4z^{-1} - 8z^{-2}) = -3 - 3z^{-1} - 14z^{-2}$, 前向通路增益

$$P_1 = 2z^{-2}$$
, $\Delta_1 = 1$, $P_2 = 2z^{-1}$, $\Delta_2 = 1 - 4 = -3$, $\therefore H(z) = \frac{P_1\Delta_1 + P_2\Delta_2}{\Delta} = \frac{2z^{-2} - 6z^{-1}}{-3 - 3z^{-1} - 14z^{-2}}$

(2)
$$Y(z) = H(z)F(z) = \frac{2z^{-2} - 6z^{-1}}{-3 - 3z^{-1} - 14z^{-2}}F(z)$$
,

变形,得
$$-3Y(z)-3z^{-1}Y(z)-14z^{-2}Y(z)=2z^{-2}F(z)-6z^{-1}F(z)$$
,

作逆 z 变换,并整理,得
$$y(k) + y(k-1) + \frac{14}{3}y(k-2) = 2f(k-1) - \frac{2}{3}f(k-2)$$

(3) 求
$$H(z)$$
 的极点,令 $-3-3z^{-1}-14z^{-2}=0$,得 $z_{1,2}=-0.5\pm j2.1$, $:|z_{1,2}|>1$,∴该系统不稳定。

7-3 系统模拟

二、(a) 级联实现:
$$H(s) = \frac{s^2 + s + 2}{(s+2)(s^2 + 2s + 2)} = \frac{1}{s+2} \cdot \frac{s^2 + s + 2}{s^2 + 2s + 2}$$
,

上述一阶节与二阶节信号流图如图 1、图 2 所示,级联后可得 H(s) 的信号流图如图 3 所示。

则相应的框图为

并联实现: $H(s)\frac{2}{s+2}+\frac{-s-1}{s^2+2s+2}$,令 $H_1(s)=\frac{2}{s+2}=\frac{2s^{-1}}{1+2s^{-1}}$, $H_2(s)=\frac{-s-1}{s^2+2s+2}=\frac{-s^{-1}-s^{-2}}{1+2s^{-1}+2s^{-2}}$,则 $H_1(s)$ 与 $H_2(s)$ 的信号流图分别如图 1、图 2 所示,并联后可得H(s)的信号流图如图 3 所示。

相应的框图为

(b) 级联实现:
$$H(z) = \frac{z^2}{(z+0.5)^2} = \frac{z}{z+0.5} \cdot \frac{z}{z+0.5}$$
,

$$\Leftrightarrow H_1(z) = \frac{z}{z + 0.5} = \frac{1}{1 + 0.5z^{-1}}, \quad H_2(z) = \frac{z}{z + 0.5} = \frac{1}{1 + 0.5z^{-1}},$$

 $H_1(z)$ 与 $H_2(z)$ 的信号流图分别如图 1、图 2 所示,级联后可得H(z)的信号流图如图 3 所示。

相应的框图为

并联实现:
$$H(z) = \frac{-0.5z}{(z+0.5)^2} + \frac{z}{z+0.5}$$
, $\diamondsuit H_1(z) = \frac{-0.5z}{(z+0.5)^2} = \frac{-0.5z^{-1}}{1+z^{-1}+0.25z^{-2}}$,

$$H_2(z) = \frac{z}{z+0.5} = \frac{1}{1+0.5z^{-1}}$$
,

 $H_1(z)$ 与 $H_2(z)$ 的信号流图分别如图 1、图 2 所示,并联后得H(z)的信号流图如图 3 所示。

相应的框图为

三、(1) 将系统看成由上下两个子系统 $H_1(s)$, $H_2(s)$ 并联而成,

$$\text{III} H_1(s) = \frac{3s^{-2} + 3s^{-1}}{1 - (-2s^{-1} - 2s^{-2})} = \frac{3s + 3}{s^2 + 2s + 2}, \quad H_2(s) = \frac{3}{1 - 2} = -3,$$

:
$$H(s) = H_1(s) + H_2(s) = \frac{3s+3}{s^2+2s+2} - 3 = \frac{-3s^2-3s-3}{s^2+2s+2}$$

(2)
$$Y(s) = H(s)F(s) = \frac{-3s^2 - 3s - 3}{s^2 + 2s + 2}F(s)$$
,

变形, 得
$$s^2Y(s) = 2sY(s) + 2Y(s) = -3s^2F(s) - 3sF(s) - 3F(s)$$

作拉氏逆变换, 并整理, 得 y''(t)+2y'(t)+2y(t)=-3f''(t)-3f'(t)-3f(t)

(3) 求 H(s) 的极点,令 $s^2 + 2s + 2 = 0$,得 $s_{1,2} = -1 \pm j$, : Re[$s_{1,2}$] = -1 < 0 , : 该系统是稳定的。

第八章 系统的状态变量分析

8-1 连续系统状态方程列写

一、如图,由 KVL,可列出回路方程: $-y_1 + Li'_L + u_C = 0$ ①, $-u_C + y_2 + u_S = 0$ ②。

由 KCL,可列出节点 a,b 方程: $i_S = i_L + \frac{y_1}{R_1}$ ③ $i_L = Cu_C' + \frac{y_2}{R_2}$ ④

联立以上四式,消去 y_1, y_2 ,得电路的状态方程

$$u_C' = -\frac{1}{R_2C}u_C + \frac{1}{C}i_L + \frac{1}{R_2C}u_S \; , \quad i_L' = -\frac{1}{L}u_C - \frac{R_1}{L}i_L + \frac{R_1}{L}i_S$$

矩阵形式
$$\begin{bmatrix} u'_C \\ i'_L \end{bmatrix} = \begin{bmatrix} -\frac{1}{R_2C} & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R_1}{L} \end{bmatrix} \begin{bmatrix} u_C \\ i_L \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{R_2C} \\ \frac{R_1}{L} & 0 \end{bmatrix} \begin{bmatrix} i_S \\ u_S \end{bmatrix}$$

由②与③式, 得 $y_1 = -R_1i_L + R_1i_S$, $y_2 = u_C - u_S$

矩阵形式
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 & -R_1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_C \\ i_L \end{bmatrix} + \begin{bmatrix} R_1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} i_S \\ u_S \end{bmatrix}$$

二、原方程作拉氏变换,得 $s^3Y(s)+5s^2Y(s)+sY(s)+2Y(s)=sF(s)+2F(s)$

整理, 得系统函数
$$H(s) = \frac{s+2}{s^3 + 5s^2 + s + 2} = \frac{s^{-2} + 2s^{-3}}{1 - (-5s^{-1} - s^{-2} - 2s^{-3})}$$

H(s)的信号流图为:

状态变量选取如上图,则 $\begin{cases} x_1' = x_2 \\ x_2' = x_3 \\ x_3' = -2x_1 - x_2 - 5x_3 + f \end{cases}$,输出方程 $y = 2x_1 + x_2$,

矩阵形式
$$\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -1 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} [f], \quad [y] = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

三、如图,引入中间变量 $p_1(t)$, $p_2(t)$, $p_3(t)$, 由图可列出

$$p_1 = f - p_3$$
 ①, $p_2 = 2x_1$ ②, $x_1' = p_1 - 3x_1$ ③, $p_3 = p_2 + 4x_2$ ④, $X_2(s) = (s^{-1} - 1)P_2(s)$ ⑤

将⑤式变形, 并作拉氏逆变换, 得 $x_2' = p_2 - p_2'$ ⑥, 联立①②③④⑥式, 消去 $p_1(t)$, $p_2(t)$, $p_3(t)$,

得状态方程
$$x_1' = -5x_1 - 4x_2 + f$$
 , $x_2' = 12x_1 + 8x_2 - 2f$,

输出方程 $y = 3p_1 + p_2 = 3(f - 2x_1 - 4x_2) + 2x_1 = -4x_1 - 12x_2 + 3f$

矩阵形式
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -5 & -4 \\ 12 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix} [f], [y] = [-4 & -12] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [3][f]$$

四、(1) 设左端加法器的输出为 p(t) ,由图可列出 $p = f - x_2$ ① , $X_1(s) = \frac{2}{s+a} P(s)$ ② ,

$$X_2(s) = \frac{s+b}{s+1} X_1(s)$$
 ③,②与③式变形,并作拉氏逆变换,得 $x_1' = 2p - ax_1$ ④,

$$x_2'=x_1'+bx_1-x_2$$
 ⑤,联立①④⑤,消去 $p(t)$,得状态方程 $x_1'=-ax_1-2x_2+2f$,

$$x_2' = (b-a)x_1 - 3x_2 + 2f$$
, 输出方程 $y = p + x_1 = x_1 - x_2 + f$

矩阵形式
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -a & -2 \\ b-a & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} [f]$$
, $[y] = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [1][f]$

(2) 与系统框图相应的信号流图为

$$F(s) = \frac{1}{\frac{s+b}{s+1}} Y(s)$$

则系统函数为
$$H(s) = \frac{1 + \frac{2}{s+a}}{1 + \frac{2}{s+a} \cdot \frac{s+b}{s+1}} = \frac{s^2 + (a+3)s + a + 2}{s^2 + (a+3)s + a + 2b}$$
,

将 H(s) 的特征多项式系数排成罗斯阵列: a+3 a+2b

由罗斯准则, a+3>0, a+2b>0, 即欲使系统稳定, a.b 应满足 a>-3, b>-a/2。

8-2 离散系统状态方程列写

一、由信号流图可列出: $x_1(k+1) = f(k) + 2x_2(k)$, $x_2(k+1) = -x_1(k) + x_1(k+1) - x_2(k)$, 整理,得状态方程: $x_1(k+1) = 2x_2(k) + f(k)$, $x_2(k+1) = -x_1(k) + x_2(k) + f(k)$ 输出方程: $y(k) = x_2(k+1) - x_2(k) = -x_1(k) + f(k)$

矩阵形式:
$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} [f(k)], \quad [y(k)] = [-1 \quad 0] \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + [1][f(k)]$$

二、设 x_1 、 x_2 、 x_3 作z 变换后结果为 $X_1(z)$ 、 $X_2(z)$ 、 $X_3(z)$, f(k)、y(k)作z 变换后为F(z)、Y(z)。

由信号流图,
$$\begin{cases} X_1(z) = X_2(z) \cdot \frac{z+1}{z+3} \\ X_3(z) = X_1(z) \cdot \frac{z+1}{z-2} \\ X_2(z) = [F(z) - 2X_2(z) - X_3(z)] \cdot \frac{1}{z-1} \end{cases}$$
,整理得
$$\begin{cases} zX_1(z) + 3X_1(z) = zX_2(z) + X_2(z) \\ zX_3(z) - 2X_3(z) = zX_1(z) + X_1(z) \\ zX_2(z) - X_2(z) = F(z) - 2X_2(z) - X_3(z) \\ Y(z) = X_1(z) - X_2(z) \end{cases}$$

作逆变换后得 $\begin{cases} x_1(k+1)+3x_1(k)=x_2(k+1)+x_2(k)\\ x_3(k+1)-2x_3(k)=x_1(k+1)+x_1(k)\\ x_2(k+1)-x_2(k)=f(k)-2x_2(k)-x_3(k) \end{cases}, 整理后得矩阵形式的状态方程和输出方程:$

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \\ x_3(k+1) \end{bmatrix} = \begin{bmatrix} -3 & 0 & -1 \\ 0 & -1 & -1 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} f(k) , \quad y(k) = x_1(k) - x_2(k) = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix}$$

三、(1) 由信号流图可列出状态方程 $x_1(k+1) = -0.5x_1(k) + f(k)$, $x_2(k+1) = 0.5x_1(k) + 2x_2(k) + f(k)$ 输出方程 $y(k) = x_1(k) + x_2(k)$

矩阵形式
$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} -0.5 & 0 \\ 0.5 & 2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} [f(k)], [y(k)] = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

(2) 各回路增益 $L_{\rm l} = -0.5z^{-1}$, $L_{\rm 2} = 2z^{-1}$, 互不接触回路增益乘积为 $L_{\rm l}L_{\rm 2} = -z^{-2}$

$$\Delta = 1 - (-0.5z^{-1} + 2z^{-1}) - z^{-2} = 1 - 1.5z^{-1} - z^{-2}$$

各前向通路增益为 $P_1=z^{-1}$, $\Delta_1=1-2z^{-1}$; $P_2=z^{-1}$, $\Delta_2=1+0.5z^{-1}$; $P_3=0.5z^{-2}$, $\Delta_3=1$

曲梅森公式,得
$$H(z) = \frac{z^{-1}(1-2z^{-1})+z^{-1}(1+0.5z^{-1})+0.5z^{-2}}{1-1.5z^{-1}-z^{-2}} = \frac{2z^{-1}-z^{-2}}{1-1.5z^{-1}-z^{-2}}$$

(3) $Y(z) = H(z)F(z) = \frac{2z^{-1} - z^{-2}}{1 - 1.5z^{-1} - z^{-2}}F(z)$,变形,得 $Y(z) - 1.5z^{-1}Y(z) - z^{-2}Y(z) = 2z^{-1}F(z) - z^{-2}F(z)$ 作逆 z 变换,得 y(k) - 1.5y(k-1) - y(k-2) = 2f(k-1) - f(k-2)