Proximal Policy Optimization (PPO)

A. Opris, A. Santamaria, M. Kreutz

T3 Drive

Schwächen von Policy Gradient Methoden (PGM)

- Schwer gute Resultate mit PGM zu erreichen
- PGM reagieren empfindlich bei der Wahl der Stepsize
- Ist die Stepsize zu
 - klein gewählt, ist der Fortschritt hoffnungslos langsam
 - groß gewählt und der Input verrauscht, dann führt das starken Einbrüchen in der Performance
- Ineffizientes Sampling, da hier Millionen oder auch Milliarden Timesteps benötigt werden um einfache Aufgaben zu erlernen

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathbf{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) A^{\pi_{\theta}}(s_{t}, a_{t}) \right]$$

$$\mathcal{L}(\theta_k, \theta) = \mathop{\mathbf{E}}_{s, a \sim \pi_{\theta_k}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right]$$

Nebenbedingung:

$$\bar{D}_{KL}(\theta||\theta_k) = \mathop{\mathbb{E}}_{s \sim \pi_{\theta_k}} \left[D_{KL} \left(\pi_{\theta}(\cdot|s) || \pi_{\theta_k}(\cdot|s) \right) \right] \le \delta$$

$$\mathcal{L}(\theta_k, \theta) = \mathop{\mathbf{E}}_{s, a \sim \pi_{\theta_k}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right]$$

Nebenbedingung:

$$\bar{D}_{KL}(\theta||\theta_k) = \mathop{\mathbb{E}}_{s \sim \pi_{\theta_k}} \left[D_{KL} \left(\pi_{\theta}(\cdot|s) || \pi_{\theta_k}(\cdot|s) \right) \right] \le \delta$$

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Probability Ratio:

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

Estimated Advantage Funktion:

$$\hat{A}_t = -V(s_t) + r_t + \gamma r_{t+1} + \dots + \gamma^{T-t+1} r_{T-1} + \gamma^{T-t} V(s_T)$$

Squared-error loss:

$$L_t^{VF} = (V_\theta(s_t) - V_t^{\text{targ}})^2$$

Vanilla Policy Gradient (VPG)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

No clipping or penalty:	$L_t(\theta) = r_t(\theta)\hat{A}_t$
Clipping:	$L_t(\theta) = \min(r_t(\theta)\hat{A}_t, \text{clip}(r_t(\theta)), 1 - \epsilon, 1 + \epsilon)\hat{A}_t$
KL penalty (fixed or adaptive)	$L_t(\theta) = r_t(\theta) \hat{A}_t - \beta \operatorname{KL}[\pi_{\theta_{\text{old}}}, \pi_{\theta}]$

algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Adaptive KL $d_{\text{targ}} = 0.003$	0.68
Adaptive KL $d_{\text{targ}} = 0.01$	0.74
Adaptive KL $d_{\text{targ}} = 0.03$	0.71
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

Tabelle: Basierend auf sieben simulierte Roboteraufgaben in OpenAl Gym mit MuJoCo Physics Engine

Proximal Policy Optimization (PPO) in Action *Roboschool (trained by OpenAI)*

Quellen

- https://openai.com/blog/openai-baselines-ppo/
- https://spinningup.openai.com/en/latest/algorithms/vpg.html
- https://spinningup.openai.com/en/latest/algorithms/ppo.html
- https://spinningup.openai.com/en/latest/algorithms/trpo.html
- https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
- https://arxiv.org/pdf/1707.06347.pdf
- https://arxiv.org/pdf/1502.05477.pdf
- https://towardsdatascience.com/understanding-and-implementing-proximal-policy-optimization-schulman-et-al-2017-9523078521ce
- http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture 13 advanced pg.pdf
- https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence