Three.VI Projection

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Orthogonal Projection Into a Line

Project a vector into a line

This shows a figure walking out on the line to a point \vec{p} such that the tip of \vec{v} is directly above them, where "above" does not mean parallel to the y-axis but instead means orthogonal to the line.

Project a vector into a line

This shows a figure walking out on the line to a point \vec{p} such that the tip of \vec{v} is directly above them, where "above" does not mean parallel to the y-axis but instead means orthogonal to the line.

Since the line is the span of some vector $\ell = \{c \cdot \vec{s} \mid c \in \mathbb{R}\}$, we have a coefficient $c_{\vec{p}}$ with the property that $\vec{v} - c_{\vec{p}}\vec{s}$ is orthogonal to $c_{\vec{p}}\vec{s}$.

Project a vector into a line

This shows a figure walking out on the line to a point \vec{p} such that the tip of \vec{v} is directly above them, where "above" does not mean parallel to the y-axis but instead means orthogonal to the line.

Since the line is the span of some vector $\ell = \{c \cdot \vec{s} \mid c \in \mathbb{R}\}$, we have a coefficient $c_{\vec{p}}$ with the property that $\vec{v} - c_{\vec{p}}\vec{s}$ is orthogonal to $c_{\vec{p}}\vec{s}$.

To solve for this coefficient, observe that because $\vec{v}-c_{\vec{p}}\vec{s}$ is orthogonal to a scalar multiple of \vec{s} , it must be orthogonal to \vec{s} itself. Then $(\vec{v}-c_{\vec{p}}\vec{s})\cdot\vec{s}=0$ gives that $c_{\vec{p}}=\vec{v}\cdot\vec{s}/\vec{s}\cdot\vec{s}$.

We have decomposed \vec{v} into two parts $\vec{v} = (c_{\vec{p}}\vec{s}) + (v - c_{\vec{p}}\vec{s})$.

Intuitively, some of \vec{v} lies with the line and that gives the first part $c_{\vec{p}}\vec{s}$. The part of \vec{v} that lies with a line orthogonal to ℓ is $\vec{v}-c_{\vec{p}}\vec{s}$. What's compelling about pairing these two parts is that they don't interact, in that the projection of one into the line spanned by the other is the zero vector.

We have decomposed \vec{v} into two parts $\vec{v} = (c_{\vec{p}}\vec{s}) + (v - c_{\vec{p}}\vec{s})$.

Intuitively, some of \vec{v} lies with the line and that gives the first part $c_{\vec{p}}\vec{s}$. The part of \vec{v} that lies with a line orthogonal to ℓ is $\vec{v}-c_{\vec{p}}\vec{s}$. What's compelling about pairing these two parts is that they don't interact, in that the projection of one into the line spanned by the other is the zero vector.

Note. We have an idea of 'angle' in \mathbb{R}^n but we have not given such a definition in some other spaces (for example, we have not defined an angle between two polynomials in \mathcal{P}_2). Thus we will stick to \mathbb{R}^n 's. Extending the definitions to other spaces is perfectly possible, but beyond our scope.

1.1 Definition The orthogonal projection of \vec{v} into the line spanned by a nonzero \vec{s} is this vector.

$$\operatorname{proj}_{\left[\vec{s}'\right]}(\vec{v}) = \frac{\vec{v} \cdot \vec{s}}{\vec{s} \cdot \vec{s}} \cdot \vec{s}$$

Example The projection of this \mathbb{R}^3 vector into the line

$$\vec{v} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 $L = \{c \cdot \vec{s} = c \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \mid c \in \mathbb{R} \}$

is this vector.

$$\frac{\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}}{\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/6 \\ 1/6 \end{pmatrix}$$

This 3-space picture of that projection

highlights that the projection vector is quite short: $|\vec{v}| = \sqrt{(6)} \approx 2.45$ while $|\text{proj}_{[\vec{s}']}(\vec{v})| = \sqrt{1/6} \approx 0.41$. The vector \vec{v} is nearly orthogonal to the line L—only a small part of it lies in the direction of the line.

Gram-Schmidt Orthogonalization

Mutually orthogonal vectors

The prior subsection suggests that projecting a vector \vec{v} into the line spanned by \vec{s} decomposes \vec{v} into two parts

that are orthogonal and so are in some sense non-interacting. We will develop that suggestion.

Mutually orthogonal vectors

The prior subsection suggests that projecting a vector \vec{v} into the line spanned by \vec{s} decomposes \vec{v} into two parts

that are orthogonal and so are in some sense non-interacting. We will develop that suggestion.

2.1 Definition Vectors $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^n$ are mutually orthogonal when any two are orthogonal: if $i \neq j$ then the dot product $\vec{v}_i \cdot \vec{v}_j$ is zero.

Example The vectors of the standard basis $\mathcal{E}_3 \subset \mathbb{R}^3$ are mutually orthogonal.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

This remains true if we rotate this basis.

Example These two vectors in \mathbb{R}^2 are mutually orthogonal.

2.2 Theorem If the vectors in a set $\{\vec{v}_1, \dots, \vec{v}_k\} \subset \mathbb{R}^n$ are mutually orthogonal and nonzero then that set is linearly independent.

2.2 Theorem If the vectors in a set $\{\vec{v}_1, \dots, \vec{v}_k\} \subset \mathbb{R}^n$ are mutually orthogonal and nonzero then that set is linearly independent.

Proof Consider $\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k$. For $i \in \{1, \dots, k\}$, taking the dot product of \vec{v}_i with both sides of the equation $\vec{v}_i \cdot (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k) = \vec{v}_i \cdot \vec{0}$, which gives $c_i \cdot (\vec{v}_i \cdot \vec{v}_i) = 0$, shows that $c_i = 0$ since $\vec{v}_i \neq \vec{0}$.

2.2 Theorem If the vectors in a set $\{\vec{v}_1, \dots, \vec{v}_k\} \subset \mathbb{R}^n$ are mutually orthogonal and nonzero then that set is linearly independent.

orthogonal and nonzero then that set is linearly independent. Proof Consider $\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k$. For $i \in \{1, \dots, k\}$, taking the dot product of \vec{v}_i with both sides of the equation $\vec{v}_i \cdot (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k) = \vec{v}_i \cdot \vec{0}$, which gives $c_i \cdot (\vec{v}_i \cdot \vec{v}_i) = 0$, shows that $c_i = 0$ since $\vec{v}_i \neq \vec{0}$. QED

2.3 Corollary In a k dimensional vector space, if the vectors in a size k set are mutually orthogonal and nonzero then that set is a basis for the space.

- 2.2 Theorem If the vectors in a set $\{\vec{v}_1, \dots, \vec{v}_k\} \subset \mathbb{R}^n$ are mutually orthogonal and nonzero then that set is linearly independent.
 - **Proof** Consider $\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k$. For $i \in \{1, \dots, k\}$, taking the dot product of \vec{v}_i with both sides of the equation $\vec{v}_i \cdot (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k) = \vec{v}_i \cdot \vec{0}$, which gives $c_i \cdot (\vec{v}_i \cdot \vec{v}_i) = 0$, shows that $c_i = 0$ since $\vec{v}_i \neq \vec{0}$. QED
- 2.3 Corollary In a k dimensional vector space, if the vectors in a size k set are mutually orthogonal and nonzero then that set is a basis for the space.

Proof Any linearly independent size k subset of a k dimensional space is a basis. QED

- 2.2 Theorem If the vectors in a set $\{\vec{v}_1, \ldots, \vec{v}_k\} \subset \mathbb{R}^n$ are mutually orthogonal and nonzero then that set is linearly independent. Proof Consider $\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k$. For $i \in \{1, ..., k\}$, taking the dot product of \vec{v}_i with both sides of the equation
 - taking the dot product of \vec{v}_i with both sides of the equation $\vec{v}_i \cdot (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k) = \vec{v}_i \cdot \vec{0}$, which gives $c_i \cdot (\vec{v}_i \cdot \vec{v}_i) = 0$, shows that $c_i = 0$ since $\vec{v}_i \neq \vec{0}$. QED
- 2.3 Corollary In a k dimensional vector space, if the vectors in a size k set are mutually orthogonal and nonzero then that set is a basis for the space.
 - *Proof* Any linearly independent size k subset of a k dimensional space is a basis. QED
- 2.5 *Definition* An *orthogonal basis* for a vector space is a basis of mutually orthogonal vectors.

2.7 Theorem If $\langle \vec{\beta}_1, \dots \vec{\beta}_k \rangle$ is a basis for a subspace of \mathbb{R}^n then the vectors

$$\begin{split} \vec{\kappa}_1 &= \vec{\beta}_1 \\ \vec{\kappa}_2 &= \vec{\beta}_2 - \text{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_2) \\ \vec{\kappa}_3 &= \vec{\beta}_3 - \text{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_3) - \text{proj}_{\left[\vec{\kappa}_2\right]}(\vec{\beta}_3) \\ &\vdots \\ \vec{\kappa}_k &= \vec{\beta}_k - \text{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_k) - \dots - \text{proj}_{\left[\vec{\kappa}_{k-1}\right]}(\vec{\beta}_k) \end{split}$$

form an orthogonal basis for the same subspace.

2.7 Theorem vectors

If $\langle \vec{\beta}_1, \dots \vec{\beta}_k \rangle$ is a basis for a subspace of \mathbb{R}^n then the

$$\begin{split} \vec{\kappa}_1 &= \vec{\beta}_1 \\ \vec{\kappa}_2 &= \vec{\beta}_2 - \text{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_2) \\ \vec{\kappa}_3 &= \vec{\beta}_3 - \text{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_3) - \text{proj}_{\left[\vec{\kappa}_2\right]}(\vec{\beta}_3) \\ &\vdots \\ \vec{\kappa}_k &= \vec{\beta}_k - \text{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_k) - \dots - \text{proj}_{\left[\vec{\kappa}_{k-1}\right]}(\vec{\beta}_k) \end{split}$$

form an orthogonal basis for the same subspace.

Proof We will use induction to check that each $\vec{\kappa}_i$ is nonzero, is in the span of $\langle \vec{\beta}_1, \dots \vec{\beta}_i \rangle$, and is orthogonal to all preceding vectors $\vec{\kappa}_1 \cdot \vec{\kappa}_i = \dots = \vec{\kappa}_{i-1} \cdot \vec{\kappa}_i = 0$. Then Corollary 2.3 gives that $\langle \vec{\kappa}_1, \dots \vec{\kappa}_k \rangle$ is a basis for the same space as is the starting basis.

2.7 Theorem 1

If $\langle \vec{\beta}_1, \dots \vec{\beta}_k \rangle$ is a basis for a subspace of \mathbb{R}^n then the

$$\begin{split} \vec{\kappa}_1 &= \vec{\beta}_1 \\ \vec{\kappa}_2 &= \vec{\beta}_2 - \operatorname{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_2) \\ \vec{\kappa}_3 &= \vec{\beta}_3 - \operatorname{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_3) - \operatorname{proj}_{\left[\vec{\kappa}_2\right]}(\vec{\beta}_3) \\ &\vdots \\ \vec{\kappa}_k &= \vec{\beta}_k - \operatorname{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_k) - \dots - \operatorname{proj}_{\left[\vec{\kappa}_{k-1}\right]}(\vec{\beta}_k) \end{split}$$

form an orthogonal basis for the same subspace.

Proof We will use induction to check that each $\vec{\kappa}_i$ is nonzero, is in the span of $\langle \vec{\beta}_1, \dots \vec{\beta}_i \rangle$, and is orthogonal to all preceding vectors $\vec{\kappa}_1 \cdot \vec{\kappa}_i = \dots = \vec{\kappa}_{i-1} \cdot \vec{\kappa}_i = 0$. Then Corollary 2.3 gives that $\langle \vec{\kappa}_1, \dots \vec{\kappa}_k \rangle$ is a basis for the same space as is the starting basis.

We shall only cover the cases up to $\mathfrak{i}=3,$ to give the sense of the argument. The full argument is Exercise 25 .

The i=1 case is trivial; taking $\vec{\kappa}_1$ to be $\vec{\beta}_1$ makes it a nonzero vector since $\vec{\beta}_1$ is a member of a basis, it is obviously in the span of $\langle \vec{\beta}_1 \rangle$, and the 'orthogonal to all preceding vectors' condition is satisfied vacuously.

The i=1 case is trivial; taking $\vec{\kappa}_1$ to be $\vec{\beta}_1$ makes it a nonzero vector since $\vec{\beta}_1$ is a member of a basis, it is obviously in the span of $\langle \vec{\beta}_1 \rangle$, and the 'orthogonal to all preceding vectors' condition is satisfied vacuously.

In the i = 2 case the expansion

$$\vec{\kappa}_2 = \vec{\beta}_2 - \operatorname{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_2) = \vec{\beta}_2 - \frac{\vec{\beta}_2 \cdot \vec{\kappa}_1}{\vec{\kappa}_1 \cdot \vec{\kappa}_1} \cdot \vec{\kappa}_1 = \vec{\beta}_2 - \frac{\vec{\beta}_2 \cdot \vec{\kappa}_1}{\vec{\kappa}_1 \cdot \vec{\kappa}_1} \cdot \vec{\beta}_1$$

shows that $\vec{\kappa}_2 \neq \vec{0}$ or else this would be a non-trivial linear dependence among the $\vec{\beta}$'s (it is nontrivial because the coefficient of $\vec{\beta}_2$ is 1). It also shows that $\vec{\kappa}_2$ is in the span of $\langle \vec{\beta}_1, \vec{\beta}_2 \rangle$. And, $\vec{\kappa}_2$ is orthogonal to the only preceding vector

$$\vec{\kappa}_1 \cdot \vec{\kappa}_2 = \vec{\kappa}_1 \cdot (\vec{\beta}_2 - \operatorname{proj}_{[\vec{\kappa}_1]}(\vec{\beta}_2)) = 0$$

because this projection is orthogonal.

The i=3 case is the same as the i=2 case except for one detail. As in the i=2 case, expand the definition.

$$\begin{split} \vec{\kappa}_3 &= \vec{\beta}_3 - \frac{\vec{\beta}_3 \cdot \vec{\kappa}_1}{\vec{\kappa}_1 \cdot \vec{\kappa}_1} \cdot \vec{\kappa}_1 - \frac{\vec{\beta}_3 \cdot \vec{\kappa}_2}{\vec{\kappa}_2 \cdot \vec{\kappa}_2} \cdot \vec{\kappa}_2 \\ &= \vec{\beta}_3 - \frac{\vec{\beta}_3 \cdot \vec{\kappa}_1}{\vec{\kappa}_1 \cdot \vec{\kappa}_1} \cdot \vec{\beta}_1 - \frac{\vec{\beta}_3 \cdot \vec{\kappa}_2}{\vec{\kappa}_2 \cdot \vec{\kappa}_2} \cdot (\vec{\beta}_2 - \frac{\vec{\beta}_2 \cdot \vec{\kappa}_1}{\vec{\kappa}_1 \cdot \vec{\kappa}_1} \cdot \vec{\beta}_1) \end{split}$$

By the first line $\vec{\kappa}_3 \neq \vec{0}$, since $\vec{\beta}_3$ isn't in the span $[\vec{\beta}_1, \vec{\beta}_2]$ and therefore by the inductive hypothesis it isn't in the span $[\vec{\kappa}_1, \vec{\kappa}_2]$. By the second line $\vec{\kappa}_3$ is in the span of the first three $\vec{\beta}$'s. Finally, the calculation below shows that $\vec{\kappa}_3$ is orthogonal to $\vec{\kappa}_1$.

$$\begin{split} \vec{\kappa}_1 \bullet \vec{\kappa}_3 &= \vec{\kappa}_1 \bullet \left(\vec{\beta}_3 - \operatorname{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_3) - \operatorname{proj}_{\left[\vec{\kappa}_2\right]}(\vec{\beta}_3) \right) \\ &= \vec{\kappa}_1 \bullet \left(\vec{\beta}_3 - \operatorname{proj}_{\left[\vec{\kappa}_1\right]}(\vec{\beta}_3) \right) - \vec{\kappa}_1 \bullet \operatorname{proj}_{\left[\vec{\kappa}_2\right]}(\vec{\beta}_3) \\ &= 0 \end{split}$$

(Here is the difference with the i=2 case: as happened for i=2 the first term is 0 because this projection is orthogonal, but here the second term in the second line is 0 because $\vec{\kappa}_1$ is orthogonal to $\vec{\kappa}_2$ and so is orthogonal to any vector in the line spanned by $\vec{\kappa}_2$.) A similar check shows that $\vec{\kappa}_3$ is also orthogonal to $\vec{\kappa}_2$. QED

Example This is a basis for \mathbb{R}^3 .

$$B = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \rangle$$

We produce the new basis by starting with $\vec{\beta}_1$.

$$\vec{\kappa}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Example This is a basis for \mathbb{R}^3 .

$$B = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \rangle$$

We produce the new basis by starting with $\vec{\beta}_1$.

$$\vec{\kappa}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

The next step is $\vec{\kappa}_2 = \vec{\beta}_2 - \text{proj}_{\vec{\kappa}_1}(\vec{\beta}_2)$.

$$\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} - \frac{\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}$$

The third step is $\vec{\kappa}_3 = \vec{\beta}_3 - \text{proj}_{[\vec{\kappa}_1]}(\vec{\beta}_3) - \text{proj}_{[\vec{\kappa}_2]}(\vec{\beta}_3)$.

$$\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}}{\begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4/3 \\ 4/3 \\ -4/3 \end{pmatrix}$$

The third step is $\vec{\kappa}_3 = \vec{\beta}_3 - \text{proj}_{\vec{\kappa}_1}(\vec{\beta}_3) - \text{proj}_{\vec{\kappa}_2}(\vec{\beta}_3)$.

$$\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}}{\begin{pmatrix} -3/2 \\ 3/2 \\ 3/2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 3/2 \\ 0 \end{pmatrix}} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4/3 \\ 4/3 \\ -4/3 \end{pmatrix}$$

The members of B are at odd angles but the members of K are mutually orthogonal.

$$B = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \rangle$$

The third step is $\vec{\kappa}_3 = \vec{\beta}_3 - \text{proj}_{\vec{\kappa}_1}(\vec{\beta}_3) - \text{proj}_{\vec{\kappa}_2}(\vec{\beta}_3)$.

$$\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}}{\begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4/3 \\ 4/3 \\ -4/3 \end{pmatrix}$$

The members of B are at odd angles but the members of K are mutually orthogonal.

$$K = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}, \begin{pmatrix} 4/3 \\ 4/3 \\ -4/3 \end{pmatrix} \rangle$$

$$\vec{\kappa}_{3}$$

The third step is $\vec{\kappa}_3 = \vec{\beta}_3 - \text{proj}_{\vec{\kappa}_1}(\vec{\beta}_3) - \text{proj}_{\vec{\kappa}_2}(\vec{\beta}_3)$.

$$\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - \frac{\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}}{\begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}} \cdot \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4/3 \\ 4/3 \\ -4/3 \end{pmatrix}$$

The members of B are at odd angles but the members of K are mutually orthogonal.

$$K = \langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -3/2 \\ 3/2 \\ 0 \end{pmatrix}, \begin{pmatrix} 4/3 \\ 4/3 \\ -4/3 \end{pmatrix} \rangle$$

$$\vec{K}_{3}$$

We could go on to make this basis even more like \mathcal{E}_3 by normalizing all of its members to have length 1, making an *orthonormal* basis.