Distributions of data and statistics

Overview

R odds and ends

for loops

Probability density functions and random numbers

Sampling distributions

Homework 1

- > library(SDS230)
- > download_homework(1)

Due on Gradescope by 11:59pm on Sunday September 13th

• Instructions for how to submit homework on Gradescope are on Canvas

For loops and R odds and ends...

CitiBike data

Let's look at the bike share data from NYC

> load('daily_bike_totals.rda')

CitiBike analysis

What does each case correspond to?

We can use the dim() function to get how many cases and variables there are

How many are there?

For loops

For loops are useful when you want to repeat a piece of code many times under similar conditions

The syntax for a for loop is:

```
for (i in 1:100) {
    # do something
}

This is repeated 100 times
    i is incremented by 1 each time
```

For loops

For loops are useful when you want to repeat a piece of code many times under similar conditions

The syntax for a for loop is:

```
for (i in 1:100) {
    print(i)
    i is incremented by 1 each time
}
```

For loops

For loops are particular useful in combination with vectors that can store the results

```
my_results <- NULL # create an empty vector to store the results
for (i in 1:100) {
      my_results[i] <- i^2
}</pre>
```

Sometimes there are more efficient ways to do the same thing without for loops

```
> (1:100)^2
```

Probability density functions and generating random data

Density Curves

A **density curve** is a mathematical function f(x) that has two important properties:

- 1. The total area under the curve f(x) is equal to 1
- 2. The curve is always ≥ 0

Which of these could **not** be a density curve?

Density Curves

The <u>area under the curve</u> in an interval [a, b] models the probability that a random number X will be in the interval

Pr(a < X < b) is the area under the curve from a to b

Example: Normal Density Curve

Normal distributions are a family of bell-shaped curves

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

There are two parameters that characterize normal curves, which are:

- The mean: μ
- The standard deviation: σ

Notation: $X \sim N(\mu, \sigma)$

Densities, probabilities and quantiles for **normal distributions**

We can plot the density curve using:

dnorm(x_vec, mu, sigma)

We can get the probability that we would get a random value less than x using:

pnorm(x_vec, mu, sigma)

We can get the quantile values using:

qnorm(area, mu, sigma)

Generating random data

R has built in functions to generate data from different distributions

The uniform distribution:

```
# generate n = 100 points from U(0, 1)
    rand_data <- runif(100)
    hist(rand_data)</pre>
```


The normal distribution

```
# generate n = 100 points from N(0, 1)
    rand_data <- rnorm(100)
    hist(rand_data)</pre>
```


Generating random data

If we want the same sequence of random numbers we can set the random number generating seed

```
> set.seed(123)
```

> runif(100)

Q: Why would we want the same sequence of random number?

Sample statistics

Q: What is a statistic?

```
The sample mean \bar{x} (shadow of the parameter \mu) rand_data <- runif(100) # generate n = 100 points from U(0, 1) mean(rand data)
```

Q: If we repeat the code above will we get the same statistic?

A distribution of *statistics* is called a *sampling distribution*

Reminder: For a *single categorical variable*, the main statistic of interest is the *proportion* (p̂) in each category

• (shadow of the parameter π)

Why would we be interested in the sampling distribution?

Sampling distribution

Statistics: \hat{p} , \overline{x} , s, r, b

```
sampling dist <- NULL
for (i in 1:1000) {
      rand data \leftarrow runif(100) # generate n = 100 points from U(0, 1)
       sampling dist[i] <- mean(rand data) # save the mean
hist(sampling_dist)
```

Distribution of OkCupid user's heights n = 100

heights <- profiles\$height

get one random sample of heights from 100 people height_sample <- sample(heights, 100)

get the mean of this sample mean(height_sample)

Distribution of OkCupid user's heights n = 100

```
sampling_dist <- NULL

for (i in 1:1000) {
        height_sample <- sample(heights, 100) # sample 100 random heights
        sampling_dist[i] <- mean(height_sample) # save the mean
}</pre>
```

hist(sampling_dist)

Next week: confidence intervals and the bootstrap

Videos for the next class will be posted online on (or before) Monday

Tuesday's class is optional office hours

- Ask questions about the videos, homework, etc.
- Fill out survey by 3pm on Wednesday

We will meet again synchronously on Thursday (9/17)