

Please paste the barcoded label here

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2020

TECHNICAL MATHEMATICS: PAPER I

EXAMINATION NUMBER								
Time: 3 hours						15	50 ma	arks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This question paper consists of 24 pages and an Information Sheet of 2 pages (i–ii). Please check that your question paper is complete.
- 2. Read the questions carefully.
- 3. Answer ALL the questions on the question paper and hand this in at the end of the examination. Remember to write your examination number in the space provided.
- 4. Diagrams are not necessarily drawn to scale.
- 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.
- 6. Round off your answers to <u>one decimal digit</u> where necessary, unless otherwise stated.
- 7. All the necessary working details must be clearly shown.
- 8. It is in your own interest to write legibly and to present your work neatly.
- 9. Two blank pages (pages 23 and 24) are included at the end of the paper. If you run out of space for a question, use these pages. Clearly indicate the question number of your answer should you use this extra space.

FOR OFFICE USE ONLY: MARKER TO ENTER MARKS

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	TOTAL
16	15	14	15	15	10	7	13	33	12	150

1.1	Solve for x where x is	an element of	f {Complex	Numbers},	leaving	answers	in
	simplified surd form who	ere applicable.					

,		

(3)

1.1.2	$2x^2 + 4x + 7 = 0$
1.1.4	

(4)

IEB Copyright © 2020

	on per hour, of		J of energy ir ance.	r total. Bo	
Determine	the value(s)	of 1, oo tho	4 v ² 2v · 0k	م النب	
roots.	the value(s)	oi k so ma	$t x^2 - 3x + 9k =$	∍o wiii nav	e real and t

Simplify without using a calculator		or $\frac{3^{2014}+9^{1007}}{}$		
Ompiny	without using a calculator	27 ⁶⁷¹		
Solve fo	or <i>x</i> :			
2.2.1	$5 - \sqrt{4x + 1} = x$			
2.2.2	$2\log x = \log 4 + \log(x-1)$			
			[′	

3.2

diagram shown below.

3.1 Write $\frac{3-2i}{1+5i}$ in the form a+bi, without using a calculator.

(5)
The voltage V in an alternating current circuit is represented by the Argand

3.2.1 Use the diagram to write V in the form $V = r(\cos \theta + i \sin \theta)$.

	(2)

3.2.2 Hence, write V in rectangular form.

4.1 A cellular phone has a marked price of R4 800. During a sale, a discount of 13,5% was offered. Calculate the selling price of the phone.

[Source: <www.juzdeals.com>]

(2	2)
2.1 Determine the nominal interest rate compounded quarterly if the effective interest rate is 9% per annum (correct to two decimal places).	
	_
	_
	_ _
(5)
2.2 Dan invests money in a Savings Bond paying simple interest. Determine the interest rate per annum if it takes 15 years for his money to treble value.	
	_ _

4.3	Calculate how long it will take for a vehicle to depreciate on a reducing balance at an interest rate of 13% per annum, so that it will be half of its original value. Give your answer correct to the nearest year.
	(4) [15]

Given below are the graphs of g and f defined by the equations g(x) = -x + k and $f(x) = ax^2 + bx + c$

f and g intersect on the y-axis at point T, and again at D(-2;5), the turning point of f. Line PQ is perpendicular to the x-axis at R, with P on g and Q on f.

5.1	Show that $k=3$	

(2)

	$-\frac{1}{2}$, write down the value of c and hence, determine the value of b .
	point on the straight line defined by $g(x)$ and Q is a point on the pd by $f(x)$, determine a simplified expression in terms of x for the I
Hence	, determine the coordinates of P if $PQ = 12$ units.

5.5	Use your graph to determine the values of x for which $g(x) \le f(x)$
	(2) [15]

(2)

QUESTION 6

The diagram shows the graphs of f and g defined by the equations $f(x) = 2^x + 1$ and $g(x) = \sqrt{r^2 - x^2}$ intersecting one another at A and B, where B lies on the y-axis.

Determine the coord	nates of point	B and hence d	letermine the equa	ition defi
Write down the doma	ain and range	of g.		

average gradient between A and B is given as 0,44.	$m{k})$ and the
	[′

Sketch the graphs of f and g on the system of axes below. Function f is defined by $f(x) = \frac{-4}{x} + 3$. Function g is a straight line intersecting f on the x-axis, and intersecting the asymptote of f on the y-axis. Show clearly all asymptotes, points of intersection and intercepts with axes.

	equation		л Бу	translating	g	vertically	uр	ı	uriit.	vviile	down	

IEB Copyright © 2020

8.1 If $f(x) = 5 - 2x$, determine $f'(x)$ from first principle	8.1	If $f(x)$	= 5 - 2x	determine	f'(x)) from	first principle
---	-----	-----------	----------	-----------	-------	--------	-----------------

(5)

8 2	Determine $\frac{dy}{dx}$	if $y = \frac{x^2 - 4x + 1}{x^2 - 4x}$	3
0.2	$\frac{dx}{dx}$	<i>x</i>	

(4)

8.3 If
$$f(x) = 2\sqrt{x} + \frac{1}{x^3} - \sqrt{2}x$$
, determine $f'(x)$.

(4)

9.1	A soft drink company manufactures aluminium cans with a right cylindrical shape. Each can must hold 375 ml of liquid.					
	9.1.1	If the	If the radius of the cylinder is <i>r</i> :			
		(a)	determine h in terms of r , where Volume = $\pi r^2 h$			
			(2)			
		(b)	hence, show that the total surface area of the cylinder (S) is given by $S = \frac{750}{r} + 2\pi r^2$, where $SA = 2\pi r^2 + 2\pi rh$			
	9.1.2		mine r (in terms of π) if the total surface area of aluminium sheeting is to be minimised.			
			(5)			

9.2 The graph of f is defined by $f(x) = x^3 + px^2 - 3x + q$. Curve f cuts the x-axis at -2 and touches the x-axis at 3. Points A and K lie on f.

9.2.1 Show that the numerical values of p and q are -4 and 18 respectively.

(4)

9.2.2 If p = -4 and q = 18 and the gradient of curve f at the point A is 8, find the coordinates of A.

9.2.3	Determine the co-ordinates of the turning points of <i>f</i> .		
	(5)		
9.2.4	Determine the equation of a straight line defined by $h(x)$ which is perpendicular to the tangent to f at K , the point where f meets the y -axis.		
	(3)		

9.3 The image below shows an oil leak from a car. The area of the expanding oil leak (in cm³), t seconds after it has been spilled, is given by the formula $A = -t^2 + 5t + 8$

[Source: < https://oards.com/oil-pan-gasket-leak-symptoms-and-cost/>]

Determine the initial area of the oil leak.	
Determine the rate of increase in area at $t = 2$ seconds.	
Determine the time at which the oil leak stops spreading.	

10.1	Simplif	y:	
	(a)	$\int 0 dx$	
			(1)
	(b)	$\int dx$	
			(1)
10.2	Determ	nine: $\int (3x^2 + x^{-1}) dx$	

(3)

10.3 Find the total area between the curve $y = x^3$ and the x-axis between x = -2 and x = 2.

(7) [12]

Total: 150 marks

ADDITIONAL SPACE (ALL questions)

REMEMBER TO CLEARLY INDICATE AT THE QUESTION THAT YOU USED THE ADDITIONAL SPACE TO ENSURE THAT ALL ANSWERS ARE MARKED.			

NATIONAL SENIOR CERTIFICATE: TECHNICAL MATHEMATICS: PAPER I	Page 24 of 24