EKN-812 Lecture 6

Elements of Supply (2)

Jesse Naidoo

University of Pretoria

Setup

- many locations $j = 1, \dots J$
- fixed number of fishermen N
- total output $g_j(N_j)$ increasing and concave
 - concavity implies that the per-worker catch $g_j(N_j)/N_j$ is decreasing in N_j
 - think of this as due to congestion
- competitive market for fish, so take P as given
- ullet government charges a fee C for using each site

Labor Supply

- what will determine the number of fishermen in each location?
 - does this vary with the fee charged by the government?
 - ullet does the price of fish, P, affect the allocation of fishermen across locations?

Price and Quantity in Equilibrium

- given the allocation of fishermen to locations, what is the equilibrium price?
 - and, what is the equilibrium quantity?

Supply with Differential Fees

- now, suppose the government charges different fees C_i for each location
 - could be, but not necessarily, related to the "capacity" of each location
- what will the equilibrium look like now?
 - will the locations with high fees have higher average yields?
- is supply upward sloping (in price) now?
 - could we have a negatively sloped supply curve? Why or why not?

Privatization

- now assume one of the locations is privatized, so the owner can set C_1 at will
 - would the private owner choose to set C₁ higher or lower than the government fee?
 - does it matter whether the government fees are common to all locations or not?
 - what if all fishermen could obtain a given wage w outside of the industry?
- what if all locations were privatized and could set their own fees?
 - how would each owner choose to set C_i?
 - what will the equilibrium allocation of fishermen across locations be?
 - what will be the aggregate supply of fish now?
 - will the market ever yield the same flat fee structure as the government?

References

Table of Contents