5. (a) Show that the polynomials $X^4 + 1$ and $X^6 + X^3 + 1$ are irreducible over the rational numbers.

Proof. It suffices to show that f(X+1) is irreducible. For if f(X) = g(X)h(X) with deg $g \ge 1$ or deg $h \ge 1$, then we would have f(X+1) = g(X+1)h(X+1), and this transformation has preserved the degrees of g and h. Since $f(X+1) = X^4 + 4X^3 + 6X^2 + 4X + 2$, applying Eisenstein's Criterion with p = 2 suffices.

Applying the same logic to $f(X) = X^6 + X^3 + 1$, we have $f(X+1) = X^6 + 6X^5 + 15X^4 + 21X^3 + 18X^2 + 9X + 3$, so p = 3 satisfies Eisenstein's Criterion.

(c) Show that the polynomial in two variables $X^2 + Y^2 - 1$ is irreducible over the rational numbers. Is it irreducible over the complex numbers?

Proof. Consider the polynomial as an element of $\mathbf{Z}[X][Y]$. Its image under the homomorphism $Y \mapsto 2$ is $X^2 + 3$, which is nonzero and of the same degree. By Eisenstein's Criterion, $X^2 + 3$ is irreducible over \mathbf{Q} , thus the original polynomial was irreducible over $\mathbf{Z}[X]$. So it is also irreducible over \mathbf{Q} .

Suppose that $f(X,Y) = X^2 + Y^2 - 1$ were reducible over \mathbb{C} . Then f = gh for some $g, h \in \mathbb{C}[X,Y]$, where neither of g or h is a unit. The units of $\mathbb{C}[X,Y]$ are just the constant polynomials, so neither g nor h is constant. It must then be that g and h both have degree 1 when considered as polynomials WLOG in Y over $\mathbb{C}[X]$. So we have a factorization

$$Y^{2} + (X^{2} - 1) = (Y + p(X))(Y - p(X))$$

for some $p(X) \in \mathbb{C}[X]$ such that $p(X)^2 = X^2 - 1$. (Write $Y^2 + (X^2 - 1) = (Y + a(X))(Y + b(X))$, since we may assume the coefficients of Y are 1. Expanding shows the factorization must take this form.) \mathbb{C} is factorial, so the only factorization of $X^2 - 1$ is (X + 1)(X - 1) (modulo units and permutation), hence no such p(X) can exist. So f must be irreducible over \mathbb{C} .

7. (a) Let k be a finite field with $q = p^m$ elements. Let $f(X_1, \ldots, X_n)$ be a polynomial in k[X] of degree d and assume $f(0, \ldots, 0) = 0$. An element $(a_1, \ldots, a_n) \in k^{(n)}$ such that f(a) = 0 is called a zero of f. If n > d, show that f has at least one other zero in $k^{(n)}$.

Proof. Consider the polynomials $F(X) = 1 - f(X)^{q-1}$ and $G(X) = \prod_i (1 - X_i^{q-1})$, which have degrees d(q-1) and n(q-1), respectively. These both induce the indicator function that is 1 at x = 0 and 0 elsewhere. Let $\overline{F}(X)$ be the reduced polynomial belonging to F(X). Then the degree of $\overline{F}(X) - G(X)$ in each variable is < q and this polynomial induces the 0 function on $k^{(n)}$. Thus, $\overline{F}(X) = G(X)$. Since $\overline{F}(X)$ is the reduced version of F(X), we have $n(q-1) = \deg G = \deg \overline{F} \le \deg F = d(q-1)$. Since $q \ge 2$, this contradicts that n > d.

(b) Refine the above results by proving that the number N of zeros of f in $k^{(n)}$ is $\equiv 0 \pmod{p}$.

Proof. Define a function on the nonnegative integers by $\psi(i) = \sum_{x \in k} x^i$. Clearly, $\psi(0) = 0$, so assume i > 0. If $q - 1 \mid i$ then we have

$$\psi(i) = 0 + \sum_{x \in k, x \neq 0} x^{i \pmod{q-1}} = 0 + \sum_{x \in k, x \neq 0} 1 = q - 1 = -1.$$

Otherwise, i > 0. So some g is a generator of k^{\times} , hence $g^i \neq 1$ and multiplication by g is an isomorphism on k, so

$$\psi(i) = \sum_{x \in k} x^i = \sum_{x \in k} (gx)^i = g^i \psi(i)$$

therefore $\psi(i) = 0$ (since $g^i \neq 1$). Now, define $\Psi(i_1, \dots, i_n) = \sum_{x \in k^{(n)}} x_1^{i_1} \cdots x_n^{i_n}$. Then by induction we have

$$\Psi(i_1, \dots, i_n) = \sum_{x_n \in k} x_n^{i_n} \left(\sum_{x_1 \in k} \dots \sum_{x_{n-1} \in k} x_1^{i_1} \dots x_{n-1}^{i_{n-1}} \right)$$

$$= \sum_{x_n \in k} x_n^{i_n} \psi(i_1) \cdots \psi(i_{n-1}) = \psi(i_1) \cdots \psi(i_n).$$

The number N of zeros (mod p) that f(x) has in $k^{(n)}$ can be expressed as $N = \sum_{x \in k^{(n)}} (1 - \sum_{x \in k$

 $f(x)^{q-1}$). This is because a given term is 1 if f(x) = 0 and 0 otherwise, and adding 1s and 0s in k amounts to adding them in its prime subfield \mathbf{Z}_p . $1 - f(x)^{q-1}$ is a sum of terms of the form $a_i x_1^{i_1} \cdots x_n^{i_n}$ with $\sum_j i_j \leq d(q-1) < n(q-1)$. Thus, each term in $\sum_{x \in k^{(n)}} 1 - f(x)^{q-1}$ contains a factor of $\Psi(i_1, \ldots, i_n)$, and furthermore some $i_j < q-1$. Therefore, since either $i_j = 0$ or $q-1 \nmid i_j$

factor of $\Psi(i_1, \ldots, i_n)$, and furthermore some $i_j < q-1$. Therefore, since either $i_j = 0$ or $q-1 \nmid i_j$ for this j, we know $\psi(i_j) = 0$ and thus, by the result of the last paragraph, the whole term is 0. So this entire sum is 0, meaning $p \mid N$.

(c) Extend Chevalley's theorem to r polynomials f_1, \ldots, f_r of degrees d_1, \ldots, d_r respectively, in n variables. If they have no constant term and $n > \sum d_i$, show that they have a non-trivial common zero.

Proof. Suppose the sum of the degrees is less than n. Then the number N of common zeros is congruent to $\prod (1 - f_i(x)^{q-1}) \pmod{p}$, since x is a common zero if and only if every factor equals 1. We also have

$$\deg \prod (1 - f_i(X)^{q-1}) = \sum_{1}^{r} \deg f_i(X)^{q-1} = (q-1) \sum_{1}^{r} d_i < n(q-1)$$

therefore every term contains some variable to a power less than q-1, so the entire sum is 0. Thus $p \mid N$.

If every polynomial has no constant term, then 0 is a common zero. But 1 is not divisible by any prime, so there must be another zero, which is then non-trivial.

(d) Show that an arbitrary function $f: k^{(n)} \to k$ can be represented by a polynomial. (As before, k is a finite field.)

Proof. Recall that every polynomial over k has a unique reduced polynomial which gives the same function. Since the multiplicative group of nonzero elements of k is cyclic of order q-1, we know that X^v agrees, as a function, with $X^{v\pmod{q-1}}$ as long as $v\neq q-1$. If v=q-1, then the two functions agree everywhere except for at 0, however this single point distinguishes them. So a set of representatives for the distinct polynomial functions on $k^{(n)}$ is the set of polynomials whose degree d in each variable satisfies $0 \le d \le q-1$ (by Corollary 1.8, we know that no two of these polynomials give the same function).

This means that there are q^{q^n} distinct polynomial functions $k^{(n)} \to k$. This is also the number of functions $k^{(n)} \to k$. So each of these functions must be given by exactly one of these polynomials.

8. Let A be a commutative entire ring and X a variable over A. Let $a, b \in A$ and assume that a is a unit in A. Show that the map $X \mapsto aX + b$ extends to a unique automorphism of A[X] inducing the identity on A. What is the inverse automorphism?

Proof. If φ is constrained to fix A, then it obviously extends to the unique homomorphism

$$c_n X^n + \dots + c_1 X + c_0 \mapsto c_n (aX + b)^n + \dots + c_1 (aX + b) + c_0.$$

This map has an inverse, which is $X \mapsto a^{-1}X - a^{-1}b$ (being of the same form, this also extends to a unique homomorphism fixing A). The composition of these maps clearly gives the identity on X and on A, and so the composition is the unique extension of $X \mapsto X$ fixing A, which is the identity. So this is an automorphism of A[X].

9. Show that every automorphism of A[X] inducing the identity on A is of the type described in Exercise 8

Proof. Let φ be an automorphism of A[X] inducing the identity on A. Then for any polynomial we have

$$c_n X^n + \dots + c_1 X + c_0 \mapsto c_n p(X)^n + \dots + c_1 p(X) + c_0$$

where p(X) is the image of X. If $\deg p > 1$ then for all nonconstant polynomials f we will have $\deg \varphi f > \deg f$, hence X is not in the image of φ . If $\deg p < 1$ then obviously φ is not injective, since it fixes A. So p(X) = aX + b for some $a, b \in A$.

 φ^{-1} satisfies the same hypothesis, and thus must be of the form cX+d. Since c(aX+b)+d=acX+cb+d=X, we must have ac=1 and d=-cb. Thus the inverse map is given by $X\mapsto a^{-1}X+a^{-1}b$, as claimed.

10. Let K be a field, and K(X) the quotient field of K[X]. Show that every automorphism of K(X) which induces the identity on K is of type

$$X \mapsto \frac{aX + b}{cX + d}$$

with $a, b, c, d \in K$ such that (aX + b)/(cX + d) is not an element of K, or equivalently, $ad - bc \neq 0$.

Proof. Let φ be an automorphism fixing K. Let $f(X) = \frac{p(X)}{q(X)}$ be the image of X, where p(X) and q(X) are relatively prime. Then X is a root of $g(Y) = q(Y)f(X) - p(Y) \in K(f(X))[Y]$, hence X is algebraic over K(f(X)). This polynomial is also contained in the subring K[f(X)][Y] = K[Y][f(X)], and it is irreducible in K[Y][f(X)] since it is linear in f(X). Thus it is irreducible over K[f(X)][Y]. But a polynomial is irreducible over a UFD if and only if it is irreducible over its field of fractions, thus g is irreducible in K(f(X)[Y]). Hence it is the minimal polynomial for X over K(f(X)), and so its degree (in Y) is the degree of the extension K(f(X))(X) over K(f(X)), which is thus $\max\{\deg(p), \deg(q)\}$ (the degrees taken in Y). But K(f(X))(X) = K(X) because $f(X) \in K(X)$, therefore

$$[K(X):K(f(X))] = \max\{\deg(p),\deg(q)\}.$$

Since φ is surjective, and its image $K(\varphi(X)) = K(f(X))$ must equal K(X). Therefore, the degree of this extension is 1, and so both p and q are either linear or constant. Finally, if ad - bc = 0 then we have

$$\frac{c}{a}\varphi(X) = \varphi(\frac{c}{a}X) = \frac{c}{a}\frac{aX+b}{cX+d} = \frac{acX+bc}{acX+ad} = 1$$

and so $\varphi(X) = \frac{a}{c}$, contradicting the injectivity of φ . So $ad - bc \neq 0$.

Next, we will show that all maps of this form are automorphisms. Let φ be the unique extension of $X \mapsto \frac{aX+b}{cX+d}$, fixing K, to a homomorphism $K[X] \to K(X)$. It takes p(X) to $p(\frac{aX+b}{cX+d})$. If $\varphi(p(X)) = p(\frac{aX+b}{cX+d}) = 0$, then $\frac{aX+b}{cX+d}$ is algebraic over K. Now note that

$$\frac{c}{bc-ad}\left(\frac{aX+b}{cX+d}-\frac{a}{c}\right)=\frac{1}{cX+d}$$

because $ad-bc \neq 0$, therefore $K(\frac{aX+b}{cX+d}) = K(\frac{1}{cX+d}) = K(cX+d) = K(X)$ is algebraic, a contradiction. So φ is injective.

Since φ is injective, it extends to a unique endomorphism $K(X) \to K(X)$ (since no denominator can map to 0). Since a field homomorphism is either injective or trivial, this map must be injective. By the discussion in the proof of the other direction, we have

$$[K(X): \mathrm{Im}] = [K(X): K(\frac{aX+b}{cX+d})] = \max\{\deg(aX+b), \deg(cX+d)\} = 1$$

since if both polynomials were constant we would have ad = bd = 0. Therefore, the image of the map is all of K(X), hence it is surjective.