

IMMERSE Meeting – Sept 2021

Théo BRIVOAL

Introduction: Actual status of IBI in IMMERSE

- eNEATL36 is functional on NEMO4.0-HEAD and NEMO4.2-RC versions
 - Over the 2017/08/23 2018/12/31 period
 - A few remaining bugs have been identified
- Functional with the new EMODNET bathymetry
 - Adjustment on tide parameters needed?
- AGRIF zoom: area has to be defined (based on cost estimation)

- 1. Comparison of NEMO pre (4.0) and post (4.2) IMMERSE versions
 - a) Twin simulations over the 2017/08/23 2018/12/31 period with similar physics
 - b) Scalability tests
 - c) Remaining issues
- 2. Using the new EMODNET Bathymetry
- What NEMO4.2_RC physics for IBI
- 4. AGRIF ZOOM: Area definition and cost estimations

a) Twin simulations over the 2017/08/23 - 2018/12/31 period with similar parameters

- Objective : estimate the differences between NEMO4.0 and NEMO4.2 :
 - similar setup:
 - Period
 - atmospheric forcing (IFS)
 - boundary (PSY4V3R1)
 - initial conditions (PSY4V3R1)
 - parameterizations
- The only difference between the two runs is the use of VVL or QCO
 - NEMO4.0-HEAD Variable Volume Level VVL (pre-IMMERSE)
 - **NEMO4.2-RC** Quasi-eulerian Coordinate QCO (post-IMMERSE)
 - -> Note that VVL is currently not working in the 4.2-RC version

- Small local differences between NEMO4.2 and NEMO4.0
- Related to qco?

- MLD : Changes at mesoscales
- Higher KE level in 4.0-HEAD
- Weak positive MLD difference (4.2_RC deeper)
- Perhaps related to qco vs vvl ?

KE and MLD averaged over 2018

- Offline harmonic analysis
 - Amplitude differences with FES < +- 15cm
 - -> Consistent with Maraldi et al. 2013
 - Small changes in internal waves signature between the 2 NEMO versions
 - -> Internal waves are closer to FES in 4.0

M2 Amplitude difference (m)

-0.09 -0.03 0.03 0.09

b) Scalability tests

• **Objective :** show differences between HPC cost of NEMO4.2 versus NEMO4.0

```
• Setup:
```

```
    NEMO4.0-HEAD – jpni*jpnj = Nprocs (no procs suppression over land)
```

NEMO4.2-RC – jpni*jpnj = Nprocs (no procs suppression over land)

• As VVL does not work in actual NEMO4.2 version, these runs are performed using a linear free surface (linssh).

No removal of earth processors (i.e : force Nprocs = jpni * jpnj)

Experimental setup:

- NEMO 4.0-HEAD & NEMO 4.2-RC
- 5 runs of 7 days per procs number
- Tests with ERAI (3h) and IFS (1h)
- No outputs, linear SSH

- 10% to 35% of improvement in NEMO4.2 for high number of processors
- Note: huge variability related to the Meteo-France supercomputer (belenos)

No removal of earth processors (i.e : force Nprocs = jpni * jpnj)

Experimental setup:

- NEMO 4.0-HEAD & NEMO 4.2-RC
- 5 runs of 7 days per procs number
- Tests with ERAI (3h) and IFS (1h)
- No outputs, linear SSH

- 10% to 35% of improvement in NEMO4.2
- Improvement for all subdomain size but better results for subdomain smaller than 1000 points

No removal of earth processors (i.e : force Nprocs = jpni * jpnj)

Experimental setup:

- NEMO 4.0-HEAD & NEMO 4.2-RC
- 5 runs of 7 days per procs number
- Tests with ERAI (3h) and IFS (1h)
- No outputs, linear SSH

- NEMO is 2 to 3 times faster with ERA-Interim
- Perhaps the results can be improved for IFS by selecting only the IBI area with ncks (preprocessing) ? (e.g. ~4Mo for 1day of 3h ERAI Tair data; ~648Mo for 1day of 1h IFS Tair data)

Issues with 4.2-RC:

Halos: systematic buffer size problem when jpni & jpnj = 0 -> related to BDYs

```
Fatal error in MPI_Recv: Message truncated, error stack:

MPI_Recv(224)...... MPI_Recv(buf=0x90b6480, count=192, MPI_DOUBLE_PRECISION, src=9, tag=2, comm=0xc4000003, status=0x1) failed

MPIDI_CH3U_Request_unpack_uebuf(618): Message truncated; 3072 bytes received but buffer size is 1536
```

Increase of the time step duration for very long simulations in NEMO4.2-RC: possible memory leak?

• **NEMO4.2 Reproducibility issue**: After 1week of simulation, 4th digit differences on SSH, S, T & U between a run with 2520 procs and 11400 procs (Note that the results are reproducible when using the same number of processors)

Summary

Summary:

- **No significant differences** in mean state for T, S, U & V between pre and post IMMERSE versions (when the same parameterisations are used)
- NEMO computational cost is reduced in the new version with high number of resources
- Remaining issues (halos, reproducibility)

What remains to be done:

- Comparison with a twin NEMO3.6 experiment (Not IMMERSE task)
- More comparison with observations: SSH, HF radar currents ... (collaboration with IMEDEA, PdE, CMMC)... but the validation should be statistic because it's free runs!
- Bugfixes (halos, reproducibility, vvl)
- Estimate the contribution of new 4.2 parameterisations / schemes
- -> does the new physical schemes / parameterisations implemented in 4.2-RC improves or deteriorates the results ?

2) Using the new EMODNET BATHYMETRY

Using the new EMODNET bathymetry

Twin experiments over the 2017/08/23 - 2018/12/31 period (with the same namelist parameters):

- NEMO4.2-RC QCO OLD BATHY based on GEBCO data (~1km resolution)
- NEMO4.2-RC QCO NEW BATHY based on EMODNET data (~100m resolution)

Objective: show the impact of the new bathymetry on the results

Bathymetry and differences between NEW and OLD bathy (m)

Using the new EMODNET bathymetry: **SST**

• No change in the mean state

OLD

Using the new EMODNET bathymetry: KE & MLD

NEW - OLD

- Strong local changes in MLD and KE
- Small increase in mean KE
- No change in MLD
- No major impact => however, the new bathy is based on a higher resolution product and is therefore more suitable for an AGRIF zoom

KE and MLD averaged over the simulation period

Using the new EMODNET bathymetry

-0.03 0.03

- Significant differences around the english channel (not surprising)
- It is however impossible to tell which bathymetry gives the better results :
 - -> OLD is closer to FES near the eastern english coast
 - -> NEW gives better results in the north sea (offshore)

Using the new EMODNET bathymetry

Flow across gibraltar:

	INFLOW (Sv)	OUTFLOW (Sv)	NETFLOW (Sv)
OLD BATHY	1.13	-1.03	0.11
NEW BATHY	1.07	-0.97	0.10
Litterature	0.7 to 0.9	-0.4 to -1.0	0.02 to 0.08

- New bathymetry reduces inflow, outflow and netflow across gibraltar
- All flows are overestimated -> NEW BATHY improves the results
- Mostly because the strait is smaller in the new bathymetry (7.82 km² in OLD 7.00 km² in new)
- Nb : In operational versions = noslip lateral boundary within the strait

Summary

Summary:

• No significant differences in mean state for T, S, U & V between new and old bathy

What remains to be done:

More comparison with observations: SSH, HF radar currents ... (collaboration with IMEDEA, PdE, CMMC)... but
 validation should be statistic because it's free runs!

3) What NEMO4.2_RC physics for IBI

What NEMO4.2_RC physics

Objectives: Estimate the contribution of new 4.2 parameterisations / schemes

-> does the new physical schemes / parameterisations implemented in 4.2-RC improves or deteriorates the results?

- Comparing two runs :
 - **NEMO4.2-RC** (with NEMO4.0 physical parameterisations and scheme)
 - NEMO4.2-RC NEW IMMERSE PHYSICS
- Which new physical scheme and parameterisation should be added in this run? Propositions:
 - New 4th order advection scheme
 - Current feedback param (Renault et al. 2017)
 - Cool skin param
 - Mass-flux Convection
- Should we make sensibility tests?

4) AGRIF ZOOM: Area definition and cost estimations

AGRIF ZOOM: Area definition and cost estimations

- eNEATL36: 1894 * 1294 points; (= 2450836 points)
- Computational cost (eNEATL36):
 - ~1h on 3800 processors (for 1 month simulation)
 - ~15h on 3800 processors (for 1 year and 3 month simulation)
- Data storage (eNEATL36):
 - **Standard outputs** = 2D hourly surface data (SSH, SST, SSS, MLD, surface currents) + 3D daily data (T°, S, 3D currents) = **2.8To** for 1 year and 3 months (182Go/month)
 - **Standard + additionnal 3D hourly outputs** (T, S, 3D currents) = **~29,2To** (1.9 To/month)
 - -> 3D hourly fields = 10 times more storage !!!! (However, only ~+1% of computational cost)

AGRIF ZOOM: Area definition and cost estimations

Computational cost of an AGRIF zoom:

$$Cost_{zoom} = Cost_{eNEATL36} * \left(\frac{N_{pts}(AGRIF)}{N_{pts}(eNEATL36)}\right) * 3$$

 $Cost_{suppl\ AGRIF} = Cost_{zoom} + Cost_{interp\ \&\ updates}$

Avec : $Cost_{interp \& updates} \approx 10\% * Cost_{zoom}$

 $Cost_{total} = Cost_{zoom} + Cost_{eNEATL36} + Cost_{interp \& updates}$

Supplementary information :

- $Cost_{interp\ \&\ updates}$ is an estimation from previous AGRIF zooms -> needs to be estimated over the future zooms in eNEATL36
- A smaller zoom (over bay of Biscay) will be used first to set up a first AGRIF configuration over eNEATL36

AGRIF ZOOM: Area definition and cost estimations

eNEATL36: 1894 * 1294 points; (= 2450836 points)

- ~15h on 3800 processors (for 1 year and 3 month simulation)
- 2.8 To storage (standard outputs for 1year 3 months)

Zoom proposals

		Npoints (zoom)	Computational cost (* eNEATL36 cost)	Standard outputs* (Zoom + eNEATL36) (To)	Standard + 3D hourly outputs (Zoom + eNEATL36) (To)
SST (°C)	ALL IBI (1/108°)	22057524	27	25.2	262.8 (17.1 To/month)
	IBI service (full)	11745000	16.8	16.2	140 (9.1 To/month)
	Atlantic French coasts and Ireland	8190000	12	12.2	98 (6.3 To/month)
	Atlantic French coasts and Ireland (reduced)	6176250	9.3	9.9	74 (4.8 To/month)
	All french coasts (exept corsica)	6075000	9.2	9.7	72 (4.7 To/month)
	All french coasts (with corsica)	6561000	9.8	10.3	78 (5 To/month)
	Atlantic French coasts + IMEDEA	4941000	7.7	8.4	59 (3.8 To/month)

^{*} Standard output = 2D hourly fields + 3D daily fields

4) Overall summary and work plan

Overall summary and work plan

- Evaluate the improvements of NEMO4.2
 - Scalability tests: Comparison between 4.0-HEAD and 4.2-RC ✓
 - -> Improvements in 4.2
 - Comparison between two long runs in 4.0-HEAD and 4.2-RC with the same physical characteristics
 - -> No significative changes between 4.0 and 4.2 for T, S, U & V.
 - Contribution of new parameterisations?
 - -> to be done

New bathymetry

- Comparison between the new and old bathymetry
 - -> No significative changes between OLD and NEW for T, S, U & V.
- Next step: comparison new 4.2 physics + new bathymetry vs new 4.2 physics + old bathymetry
 - -> to be done

AGRIF zoom

- Cost estimation ✓
- Choosing the area of the zoom To be done
- First AGRIF runs To be done

Additionnal slides

- Validation with NOOBS (observation operator)
- ODYSSEA SST
- Innovation = OBS MODEL
- Forecast error = abs(Innovation)

- Validation with NOOBS (observation operator)
- ESACCI SSS
- Stronger differences near coastlines

4.2-RC - 4.0-HEAD

Step 1 : No removal of earth processors (i.e : force Nprocs = jpni * jpnj)

Experimental setup:

- NEMO 4.0-HEAD & NEMO 4.2-RC
- 5 runs of 7 days per procs number
- Tests with ERAI (3h) and IFS (1h)
- No outputs, linear SSH

Less waste of CPU with 4.2-RC with IFS

Step 2: NEMO determines the subdomain size (jpni & jpnj =0)

- In orange: NEMO (4.2-RC) select the best domain decomposition (for a given proc number)
- Note that NEMO 4.0-HEAD does not work with jpni=jpnj=0 when Nprocs>~2500 procs
- When NEMO automatically choose the domain decomposition :
 - Improvement of SYPD
 - No significant changes in ratio cpu / elapsed time