(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-286142 (P2003-286142A)

(43)公開日 平成15年10月7日(2003.10.7)

(51) Int.Cl.⁷ A 6 1 K 7/11 識別記号

FΙ

テーマコート*(参考)

7/11

A61K 7/11

4C083

審査請求 未請求 請求項の数8 〇L (全 13 頁)

(21)出顧番号	特願2002-93943(P2002-93943)	(71)出願人 000005968
		三菱化学株式会社
(22)出顧日	平成14年3月29日(2002.3.29)	東京都千代田区丸の内二丁目5番2号
		(72)発明者 柴田 美奈子
		三重県四日市市東邦町1番地 三菱化学株
		式会社内
		(72)発明者 樋渡 智章
		三重県四日市市東邦町1番地 三菱化学株
		式会社内
		(74)代理人 110000109
		特許業務法人特許事務所サイクス (外 3
		名)
		最終頁に続く

(54) 【発明の名称】 毛髪化粧料用重合体組成物およびそれを用いた毛髪化粧料

(57)【要約】

【課題】 優れた整髪性とともに良好なセット保持力及 び自然な風合いの仕上り感を与える毛髪化粧料用重合体 組成物を提供する。

【解決手段】 (a)数平均分子量 $1\times10^3\sim1\times1$ 0 6 であり、且つ少なくとも2つのガラス転移点又は融点を有するブロック共重合体、及び(b)アニオン性重合体を、その両者の重量比率((a)/(b))として $1/10\sim10/1$ の割合で含有してなる毛髪化粧料用重合体組成物である。

【特許請求の範囲】

【請求項1】 (a)数平均分子量 $1\times10^3\sim1\times1$ 0 6 であり、且つ少なくとも2つのガラス転移点又は融点を有するブロック共重合体、及び(b)アニオン性重合体を、その両者の重量比率((a)/(b))として $1/10\sim10/1$ の割合で含有する毛髪化粧料用重合体組成物。

【請求項2】 (a) ブロック共重合体が、カルボン酸基、硫酸基、リン酸基およびこれらの塩からなるアニオン性基の群、アミノ基(四級アンモニウム塩基を含む)、ビリジル基およびこれらの塩からなるカチオン性基の群、水酸基、アルコキシ基、エポキシ基、アミド基およびシアノ基からなるノニオン性基の群、カルボキシベタイン基からなる両イオン性基の群、ならびにアミンオキサイド基からなる分極性基の群から選ばれる少なくとも1種の親水性基を有する構成単位からなるブロックを少なくとも1つ有する請求項1に記載の毛髪化粧料用重合体組成物。

【請求項3】 (b)アニオン性重合体が、カルボキシル基、硫酸基、リン酸基およびこれらの塩からなるアニオン性基を有する重合体である請求項1又は2に記載の毛髪化粧料用重合体組成物。

【請求項4】 (a) ブロック共重合体が、下記一般式 (1)~(5) のいずれかで表される構成単位を含むブロックを少なくとも1つ有する請求項1~3のいずれか1項に記載の毛髪化粧料用重合体組成物。

【化1】

一般式 (3)
$$- \frac{R^{1}}{CH_{2}-C-} - R^{3}$$

$$- \left(X^{1}\right)_{m} R^{2} - N-O^{-}$$

(式中、 R^1 は水素原子またはメチル基を表し、 R^2 および R^6 はそれぞれ炭素原子数 $1\sim 4$ の直鎖状または分岐鎖状のアルキレン基を表し、 R^3 、 R^4 および R^6 はそれぞれ水素原子、炭素原子数 $1\sim 2$ 4のアルキル基、炭素原子数 $6\sim 2$ 4のアリール基、またはこれらの組み合わせからなる炭素原子数 $7\sim 2$ 4のアリールアルキル基もしくはアルキルアリール基を表し、 X^1 は-COO-、-CONH-、-O-または-NH-を表す。 A^- はアニオンを表し、Mは水素原子、アルカリ金属イオンまたはアンモニウムイオンを表す。mは 0 または 1 を表し、nは $1\sim 5$ 0 のいずれかの整数を表す。)

【請求項5】 (a) ブロック共重合体が、ジブロック 共重合体、トリブロック共重合体またはマルチブロック 共重合体である請求項1~4のいずれか1項に記載の毛 髪化粧料用重合体組成物。

【請求項6】 (a) ブロック共重合体が、エチレン性不飽和カルボン酸由来の構成単位を10~90重量%、及びエチレン性不飽和カルボン酸エステル由来の単位を90~10重量%含む請求項1~5のいずれか1項に記載の毛髪化粧料用重合体組成物。

【請求項7】 請求項 $1\sim6$ のいずれか1項に記載の毛髪化粧料用重合体組成物を $0.1\sim10$ 重量%含有する毛髪化粧料。

【請求項8】 噴霧用気体又は液体を更に含有する請求

項7に記載の毛髪化粧料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ブロック共重合体とアニオン性重合体とを組み合わせてなる毛髪化粧料用重合体組成物およびそれを用いた毛髪化粧料に関する。本発明の組成物は、優れた整髪性を有し、良好なセット保持力及び良好な風合いの仕上り感を与えるので、ヘアスプレー、ヘアムース、ヘアセットローション、ヘアジェル等の用途に有用である。

[0002]

【従来の技術】整髪料として、皮膜形成性高分子化合物を水、低級アルコール又はそれらの混合溶媒等に溶解した溶液が用いられている。この整髪料を頭髪に塗布、乾燥することで、頭髪を所望の形状に保持するという整髪効果が得られる。従来、このような成膜成形高分子として、アニオン性高分子化合物が広く用いられているが、整髪効果を増す為に、硬く柔軟性のない皮膜を形成する高分子が使用されていたため、髪にごわつき感を与え、整髪効果も充分ではなかった。また整髪後、髪を櫛通しすると、形成されたフィルムが細かな砕片となるフレーキング現象を生じ、また、帯電により毛髪が広がりまとめにくい等の問題があり、満足し得るものではなかった。

【0003】このような問題点、とりわけ柔軟性を改善するために、アニオン性高分子化合物に、油脂類または界面活性剤等の化粧品用添加物を添加する試みがなされているが、添加により整髪力が更に低下し、未だ性能的にバランスされた整髪料は得られていない。また、特開昭55-59107号公報には、アニオン性高分子化合物とカチオン性高分子化合物とを組み合わせてなる毛髪化粧料組成物が提案されており、一方、特開昭56-92813号公報には、アニオン性高分子化合物と両イオン性高分子化合物とを組み合わせてなる毛髪化粧料組成物が、提案されている。また、特開平10-87439号公報には、アニオン性高分子化合物とアミンオキサイド含有樹脂とを組み合わせてなる毛髪化粧料組成物が、柔軟性、整髪力に優れた整髪料として提案されている。

[0004]

【発明が解決しようとする課題】しかしながら、これらの組み合わせでは、セット回復力、整髪力及び仕上り等で未だ性能的に満足のいく整髪料が得られていない。本発明は前記諸問題に鑑みなされたものであって、アニオン性高分子化合物を用いた従来の毛髪化粧料用重合体組成物の問題点を解決し、優れた整髪性とともにゴム弾性による良好なセット保持力を有し、違和感のない自然な風合いの仕上り感を与える毛髪化粧料用重合体組成物および毛髪化粧料を提供することを課題とする。

[0005]

【課題を解決するための手段】本発明者等は、上記課題

を解決するために鋭意検討した結果、アニオン性高分子 化合物と特定のブロック共重合体とを組み合わせること により、優れた整髪性を有し、良好な柔軟性、良好な風 合いの仕上り感を与える毛髪化粧料用重合体組成物が得 られるとの知見を得、この知見に基づいてさらに検討を 重ねた結果、本発明を完成するに至った。

【0006】即ち、本発明の毛髪化粧料用重合体組成物 は上記課題を解決するため、(a)数平均分子量1×1 $0^{3} \sim 1 \times 10^{6}$ であり、且つ少なくとも2つのガラス転 移点(以下「Tg」と略記することがある)又は融点を 有するブロック共重合体、及び(b)アニオン性重合体 を、その両者の重量比率 ((a)/(b)) として1/ 10~10/1の割合で含有することを特徴とする。 【0007】本発明の一態様として、(a)ブロック共 重合体が、カルボン酸基、硫酸基、リン酸基およびこれ らの塩からなるアニオン性基の群、アミノ基(四級アン モニウム塩基を含む)、ピリジル基およびこれらの塩か らなるカチオン性基の群、水酸基、アルコキシ基、エポ キシ基、アミド基およびシアノ基からなるノニオン性基 の群、カルボキシベタイン基からなる両イオン性基の 群、ならびにアミンオキサイド基からなる分極性基の群 から選ばれる少なくとも1種の親水性基を有する構成単 位からなるブロックを少なくとも1つ有する上記手髪化 粧料用重合体組成物; (b) アニオン性重合体が、カル ボキシル基、硫酸基、リン酸基およびこれらの塩からな るアニオン性基を有する重合体である上記毛髪化粧料用 重合体組成物; (a) ブロック共重合体が、下記一般式 (1)~(5)のいずれかで表される構成単位を含むブ ロックを少なくとも1つ有する上記毛髪化粧料用重合体 組成物;が提供される。

[0008]

【化2】

一般式 (3)
$$- \left(CH_2 - \stackrel{R^1}{C} - \right) - R^3 \\
 \left(\stackrel{+}{X^1} \right)_m R^2 - \stackrel{+}{N} - O^-$$

一般式(4)

$$-(CH_2-C-)$$
 $+\lambda^3$
 $(X^1)-R^2-N^{\pm}CH_2COO^{-1}$
 R^4

一般式 (5)
—(CII₂-C)
(
$$X^{1}_{2m}$$
($R^{6}O)_{n}$ H

【0009】式中、 R^1 は水素原子またはメチル基を表し、 R^2 および R^6 はそれぞれ炭素原子数 $1\sim 4$ の直鎖状または分岐鎖状のアルキレン基を表し、 R^3 、 R^4 および R^5 はそれぞれ水素原子、炭素原子数 $1\sim 24$ のアルキル基、炭素原子数 $6\sim 24$ のアリール基、またはこれらの組み合わせからなる炭素原子数 $7\sim 24$ のアリールアルキル基もしくはアルキルアリール基を表し、 X^1 は一 $COO-、-CONH-、-O-または-NH-を表す。<math>A^-$ はアニオンを表し、Mは水素原子、アルカリ金属イオンまたはアンモニウムイオンを表す。mは0または 1を表し、nは $1\sim 50$ のいずれかの整数を表す。

【0010】また、本発明の一態様として、(a)ブロック共重合体が、ジブロック共重合体、トリブロック共重合体をある上記毛髪化 重合体またはマルチブロック共重合体である上記毛髪化 粧料用重合体組成物;(a)ブロック共重合体が、エチレン性不飽和カルボン酸由来の構成単位を10~90重量%、及びエチレン性不飽和カルボン酸エステル由来の単位を90~10重量%含む上記毛髪化粧料用重合体組成物;が提供される。

【0011】また、別の観点から、本発明によって、上記毛髪化粧料用重合体組成物を0.1~10重量%含有する毛髪化粧料;噴霧用気体又は液体を更に含有する前記毛髪化粧料;が提供される。

[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。本発明の毛髪化粧料用重合体組成物は、(a)ブロック共重合体及び(b)アニオン性重合体を含有する。本発明に用いられる(a)ブロック共重合体は、数平均分子量 $1\times10^3\sim1\times10^6$ であり、且つ少なくとも2つのガラス転移点又は融点を有する。数平均分子量は5.0 $\times10^3\sim3.0\times10^5$ であるのが好ましい。数平均分子量が 1×10^3 未満であると皮膜形成能力が低下する傾向がある。一方、数平均分子量が 1×10^6 より大きいと粘度が過度に高くなる傾向があるが、前記範囲内であると、毛髪化粧料に用いた場合に、他の成分との配合が容易である。

【0013】前記ブロック共重合体は、2以上のガラス 転移点または融点を有する。2つのガラス転移点のう ち、高温度側のものとしては、25℃以上が好ましく、 40℃以上がより好ましく、50℃以上がさらに好まし い。2つのガラス転移点のうち、低温度側のものとして は、25℃未満が好ましく、0℃以下がより好ましく、 -20℃以下がさらに好ましい。融点はいずれも室温付 近あるいはそれ以上であるのが好ましい。前記ブロック 共重合体は、各ブロックに由来するガラス転移点または 融点を有しているのが好ましく、即ち、前記ブロック共 重合体の1つのブロックを構成しているモノマーからな るホモポリマーのガラス転移点または融点と略等しいガ ラス転移点または融点を有しているのが好ましい。例え ば、A-B型ブロック共重合体の態様では、2つのガラ ス転移点または融点を有し、それぞれのガラス転移点ま たは融点が、AおよびBのホモポリマーが各々有するガ ラス転移点または融点と略等しいのが好ましい。また、 A-B-C型ブロック共重合体の態様では、3つのガラ ス転移点または融点を有し、それぞれのガラス転移点ま たは融点が、A、BおよびCのホモポリマーが各々有す るガラス転移点または融点と略等しいのが好ましい。な お、本明細書において「略等しい」とは完全に同一であ る場合および測定誤差の許容範囲で同一である場合以外 にも、両者の差が10℃以下の範囲内である場合も含ま

【0014】前記ブロック共重合体のゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)については、特に制限はないが、2.5以下であるのが好ましく、2.0以下であるのがより好ましく、1.8以下であるのがさらに好ましく、1.5以下であるのが特に好ましい。Mw/Mnが2.5を越えるとブロック共重合体の均一性が低下する傾向がある。後述する制御ラジカル重合法を利用することによって、Mw/Mnが小さい、均一なブロック共重合体が得られる。

【0015】前記ブロック共重合体が親水性基を有する ブロックを少なくとも一つ有していると、洗髪により容 易に除去可能な良洗髪性の化粧料となるので好ましい。 また、親水性基を有するブロックがあると、種々の形態 の化粧料に配合可能となるので好ましい。親水性基とし ては、アニオン性基、カチオン性基、ノニオン性基、両 イオン性基および分極性基のいずれであってもよい。ア ニオン性基としては、カルボン酸基、硫酸基、リン酸基 およびこれらの塩等;カチオン性基としては、アミノ基 (四級アンモニウム基を含む)、ピリジル基およびこれ らの塩等; ノニオン性基としては、水酸基、アルコキシ 基、エポキシ基、アミド基およびシアノ基等;および両 イオン性基としては、カルボキシベタイン基、スルホベ タイン基、ホスホベタイン基等;および分極性基として はアミンオキサイド基等;が挙げられる。これらの親水 性基は、親水性基を有するモノマーを重合することによ って、または共重合体を製造した後、該共重合体に加水 分解処理などの後処理を施すことによって、ブロック共 重合体中に導入することができる。なお、本明細書にお いて分極性基とは、明確なイオン性基ではなく、イオン 性と共有結合性とを併せ持ちつつ、電子分布に偏りがあ るような基をいう。

【0016】前記ブロック共重合体は、上述した様に、親水性基を有する構成単位からなるブロックを少なくとも1つ有するのが好ましく、親水性基を有するとともに、エチレン性不飽和結合を有する化合物由来の構成単位からなるブロックを少なくとも1つ有するのが更に好ましい。親水性基を有する構成単位としては、下記一般式(1)~(5)のいずれかで表される構成単位が好ましい。

【0017】 【化3】

一般式(2)
$$\mathbf{R}^1$$
 $(\mathbf{C}\mathbf{H}_2 - \mathbf{C}_-)$ \mathbf{R}^3 $(\mathbf{X}_-^1)_m \mathbf{R}^2 - \mathbf{N}_-^1 \mathbf{R}^5 \cdot \mathbf{A}_-^7$

$$-$$
授式 (3)
$$- \left(CH_{2} - \stackrel{R^{1}}{C} - \right) - \stackrel{R^{3}}{\underset{R^{4}}{\overset{i+}{\longrightarrow}}} O^{-}$$

【0018】式中、 R^1 は水素原子またはメチル基を表し、 R^2 および R^6 はそれぞれ炭素原子数 $1\sim 4$ の直鎖状または分岐鎖状のアルキレン基を表し、 R^3 、 R^4 および R^5 はそれぞれ炭素原子数 $1\sim 24$ のアルキル基、炭素原子数 $6\sim 24$ のアリール基、またはこれらの組み合わせからなる炭素原子数 $7\sim 24$ のアリールアルキル基もしくはアルキルアリール基を表し、 X^1 は-COO-、-CONH-、-O-または-NH-を表す。 A^- はアニオンを表し、Mは水素原子、アルカリ金属イオンまたはアンモニウムイオンを表す。mは0または1を表し、nは $1\sim 50$ のいずれかの整数を表す。

【0019】R³、R⁴およびR⁵がそれぞれ表す炭素原子数1~24のアルキル基には、直鎖状、分岐鎖状および環状のアルキル基のいずれも含まれる。R³、R⁴およびR⁵がそれぞれ表すアリールアルキル基のアルキル基部分、およびアルキルアリール基のアルキル基部分についても同様である。

【0020】A-で表されるアニオンとしては、酸のアニオン性基が挙げられ、例えば、ハロゲンイオン、硫酸イオン、カルボキシレートイオン等が挙げられる。Mで表されるアルカリ金属イオンとしては、N a+およびK+が挙げられる。また、Mで表されるアンモニウムイオンにはアンモニアから誘導されるN H_4 +の他、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミ

ン、ジエチルアミン、トリエチルアミン、nープロピルアミン、nーブチルアミン、アリルアミン、エチレンジアミン、モルホリン、ピリジン等の揮発性アミン;モノー、ジーもしくはトリエタノールアミン、モノー、ジーもしくはトリイソパノールアミン、アミノエチルプロパノール、アミノエチルプロパンジオール、リジン等の非揮発性アミン;等のアミン類から誘導されるアルキルアンモニウムイオンも含まれる。

【0021】前記一般式(1)~(5)のいずれかで表 される構成単位を含むブロックは、前記一般式(1)~ (5)で表される構成単位に対応する二重結合含有化合 物をモノマーとして用いて重合することによって製造で きる。また、前記一般式(1) \sim (5)で表される構成 単位に対応する化合物をモノマーとして用いない場合で あっても、他のモノマーを用いて重合した後、生成した ブロックを加水分解等の後処理を施すことによって製造 できる。例えば、前記一般式(1)で表される構成単位 からなるブロックを有するブロック共重合体は、(メ タ) アクリル酸エステルを共重合モノマーとして用い、 該モノマーからなるブロックを有する共重合体を合成し た後、該ブロックを加水分解することによって、製造す ることもできる。前記ブロック共重合体は、前記一般式 (1)~(5)のいずれかで表される構成単位からなる ブロックを2種以上有するブロック共重合体であっても よい。

【0022】以下に、前記ブロック共重合体を構成可能 なエチレン性不飽和結合を有する化合物例(前記一般式 (1)~(5)で表される単位を形成可能な化合物例も 含む)を挙げるが、本発明は以下の具体例によってなん ら制限されるものではない。ノニオン性の単量体の例と して、アクリル酸メチル、アクリル酸エチル、アクリル 酸-n-プロピル、アクリル酸イソプロピル、アクリル 酸一n-ブチル、アクリル酸イソブチル、アクリル酸tーブチル、アクリル酸-n-ペンチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸 - n - ヘプチル、アクリル酸 - n - オクチル、アクリル 酸-2-エチルヘキシル、アクリル酸ノニル、アクリル 酸デシル、アクリル酸ドデシル、アクリル酸フェニル、 アクリル酸トルイル、アクリル酸ベンジル、アクリル酸 イソボルニル、アクリル酸-2-メトキシエチル、アク リル酸-3-メトキシブチル、アクリル酸-2-ヒドロ キシエチル、アクリル酸-2-ヒドロキシプロピル、ア クリル酸ステアリル、アクリル酸グリシジル、アクリル 酸2-アミノエチル、アー(メタクリロイルオキシプロ ピル) トリメトキシシラン、γ-(メタクリロイルオキ シプロピル)ジメトキシメチルシラン、アクリル酸のエ チレンオキサイド付加物、アクリル酸トリフルオロメチ ルメチル、アクリル酸2-トリフルオロメチルエチル、 アクリル酸-2-パーフルオロエチルエチル、アクリル 酸2-パーフルオロエチル-2-パーフルオロブチルエ チル、アクリル酸2ーパーフルオロエチル、アクリル酸パーフルオロメチル、アクリル酸ジパーフルオロメチルメチル、アクリル酸ー2ーパーフルオロメチルー2ーパーフルオロエチルメチル、アクリル酸ー2ーパーフルオロでキシルエチル、アクリル酸2ーパーフルオロでシルエチル、アクリル酸ー2ーパーフルオロでシルエチル、アクリル酸ー2ーパーフルオロへキサデシルエチルなどのアクリル酸エステル;スチレン、αーメチルスチレン、pーメチルスチレン、pーメトキシスチレンなどの芳香族アルケニル化合物;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル化合物;

【0023】ブタジエン、イソプレンなどの共役ジエン 系化合物;塩化ビニル、塩化ビニリデン、パーフルオロ エチレン、パーフルオロプロピレン、フッ化ビニリデン などのハロゲン含有不飽和化合物; ビニルトリメトキシ シラン、ビニルトリエトキシシランなどのケイ素含有不 飽和化合物;無水マレイン酸、マレイン酸、マレイン酸 のモノアルキルエステルおよびジアルキルエステル、フ マル酸、フマル酸のモノアルキルエステルおよびジアル キルエステルなどの不飽和ジカルボン酸化合物; 酢酸ビ ニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香 酸ビニル、桂皮酸ビニルなどのビニルエステル化合物; マレイミド、メチルマレイミド、エチルマレイミド、プ ロピルマレイミド、ブチルマレイミド、ヘキシルマレイ ミド、オクチルマレイミド、ドデシルマレイミド、ステ アリルマレイミド、フェニルマレイミド、シクロヘキシ ルマレイミドなどのマレイミド系化合物;メタクリル酸 メチル、メタクリル酸エチル、メタクリル酸ーnープロ ピル、メタクリル酸イソプロピル、メタクリル酸ーn-ブチル、メタクリル酸イソブチル、メタクリル酸-te rt-ブチル、メタクリル酸-n-ペンチル、メタクリ ル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メ タクリル酸-n-ヘプチル、メタクリル酸-n-オクチ ル、メタクリル酸-2-エチルヘキシル、メタクリル酸 ノニル、メタクリル酸デシル、メタクリル酸ドデシル、 メタクリル酸フェニル、メタクリル酸トルイル、メタク リル酸ベンジル、メタクリル酸イソボルニル、メタクリ ル酸-2-メトキシエチル、メタクリル酸-3-メトキ シブチル、メタクリル酸-2-ヒドロキシエチル、メタ クリル酸-2-ヒドロキシプロピル、メタクリル酸ステ アリル、メタクリル酸グリシジル、メタクリル酸2-ア ミノエチル、 γ - (メタクリロイルオキシプロピル)トリメトキシシラン、 γ - (メタクリロイルオキシプロピ ル) ジメトキシメチルシラン、メタクリル酸のエチレン オキサイド付加物、メタクリル酸トリフルオロメチルメ チル、メタクリル酸-2-トリフルオロメチルエチル、 メタクリル酸-2-パーフルオロエチルエチル、メタク リル酸-2-パーフルオロエチル-2-パーフルオロブ チルエチル、メタクリル酸-2-パーフルオロエチル、 メタクリル酸パーフルオロメチル、メタクリル酸ジパー フルオロメチルメチル、メタクリル酸-2-パーフルオ

ロメチルー2ーパーフルオロエチルメチル、メタクリル酸-2ーパーフルオロヘキシルエチル、メタクリル酸-2ーパーフルオロデシルエチル、メタクリル酸-2ーパーフルオロヘキサデシルエチルなどのメタクリル酸エステル:

【0024】ヒドロキシエチル (メタ) アクリレート、ボリエチレングリコール (メタ) アクリレート、メトキシポリ (エチレングリコール/プロピレングリコール) モノ (メタ) アクリレート、ボリエチレングリコールジ (メタ) アクリレート、Nーポリアルキレンオキシ (メタ) アクリルアミド等の (メタ) アクリル酸または (メタ) アクリルアミドと炭素数 2~4のアルキレンオキシドとから誘導されるモノマー; Nーシクロヘキシルマレイミド、Nーフェニルマレイミド、Nービニルピロリドン、Nー (メタ) アクリロイルモルフォリン、アクリルアミド等の親水性ノニオン性モノマー; などが挙げられる。なお、本明細書において「(メタ) アクリル」等の表記は「アクリル又はメタクリル」等を意味する。

【0025】アニオン性の単量体の例として、(メタ) アクリル酸、マレイン酸、無水マレイン酸、イタコン 酸、フマル酸、クロトン酸等の不飽和カルボン酸化合 物;不飽和多塩基酸無水物(例えば無水コハク酸、無水 フタル酸等)と、ヒドロキシル基含有(メタ)アクリレ ート(例えばヒドロキシエチル(メタ)アクリレート 等)とのハーフエステル化合物:スチレンスルホン酸、 スルホエチル (メタ) アクリレート等のスルホン酸基を 有する化合物;アシッドホスホオキシエチル(メタ)ア クリレート等のリン酸基を有する化合物;等が挙げられ る。これらのアニオン性不飽和単量体は、酸のままもし くは部分中和または完全中和して使用することができ、 または酸のまま共重合に供してから部分中和または完全 中和することもできる。中和に使用する塩基性化合物と しては例えば水酸化カリウム、水酸化ナトリウム等のア ルカリ金属水酸化物、アンモニア水、モノ、ジ、トリエ タノールアミン、トリメチルアミン等のアミン化合物が ある。

【0026】カチオン性単量体の例として、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド、P-ジメチルアミノメチルスチレン、P-ジメチルスチレン、P-ジメチルスチレン、ウージエチルアミノメチルスチレン、カチオン化剤(例えば、塩化メチル、臭化メチル、ヨウ化メチル等のハロゲン化アルキル類、ジメチル硫酸等のジ

アルキル硫酸類、N-(3-クロロ-2-ヒドロキシプロピル)-N,N,N-トリメチルアンモニウムクロリド等の第3級アミン鉱酸塩のエピクロルヒドリン付加物、塩酸、臭化水素酸、硫酸、リン酸等の無機塩、ギ酸、酢酸、プロピオン酸等のカルボン酸等)でカチオン化したカチオン性単量体が挙げられる。

【0027】両イオン性単量体の具体例としては、前述 のカチオン性単量体前駆体の具体例に、ハロ酢酸ナトリ ウムもしくはカリウム等の変性化剤を作用させることに よって得られる化合物が挙げられる。また、分極性単量 体の具体例としては、N,N-ジメチルアミノエチル (メタ) アクリレート、N, N-ジエチルアミノエチル (メタ) アクリレート、N, N-ジメチルアミノプロピ ル (メタ) アクリレート、N, N-ジエチルアミノプロ ピル(メタ)アクリレート、N, N-ジメチルアミノエ チル (メタ) アクリルアミド、N, N-ジエチルアミノ エチル (メタ) アクリルアミド、N, N-ジメチルアミ ノプロピル(メタ)アクリルアミド、N, Nージエチル アミノプロピル (メタ) アクリルアミド、N, N-ジメ チルアミノプロピオン酸ビニル、pージメチルアミノメ チルスチレン、p-ジメチルアミノエチルスチレン、p ジエチルアミノメチルスチレン、p - ジエチルアミノ エチルスチレン等のアミンオキシド化物;等が挙げられ る。これらの単量体は単独でまたはこれらの2種以上を 組み合わせて用いられる。

【0028】これらの中でも、工業的に入手しやすい点で、アクリル酸エステル、メタクリル酸エステル、芳香族アルケニル化合物、シアン化ビニル化合物、共役ジエン系化合物またはハロゲン含有不飽和化合物を用いるのが好ましい。

【0029】前記ブロック共重合体の好ましい態様とし て、エチレン性不飽和カルボン酸単位からなるブロック と、エチレン性不飽和カルボン酸エステル単位からなる ブロックとを各々少なくとも1種含むブロック共重合体 が挙げられる。エチレン性不飽和カルボン酸単位として は、高Tgを有し且つ親水性を示すモノマー由来の単位 が好ましく、例えば、アクリル酸、メタクリル酸由来の 単位が好ましい。一方、エチレン性不飽和カルボン酸エ ステル単位としては、低Tgで且つ疎水性を示すモノマ 一由来の単位が好ましく、例えば、アクリル酸エステ ル、メタクリル酸エステル由来の単位が好ましい。ポリ マーを構成するエチレン性不飽和カルボン酸ブロックと エチレン性不飽和カルボン酸エステルブロックとの組成 比は、前者が10~90重量%、後者が90~10重量 %であるのが好ましく、より好ましくは前者が15~8 ○重量%、後者が80~15重量%であり、さらに好ま しくは前者が20~50重量%、後者が80~50重量 %である。エチレン性不飽和カルボン酸ブロックの割合 が10重量%より少ないと、ブロック共重合体が水に対 して不溶性になる傾向があり、エチレン性不飽和カルボ

ン酸エステルブロックの割合が10重量%より少ないと 皮膜形成性が悪くなる傾向があり、樹脂のゴム弾性が著 しく低下する。なお、本明細書において「化合物由来の 構成単位」とは、該化合物をモノマーとして重合を行っ た結果形成された構成単位のみならず、前述した様に、 加水分解等の後処理を施した結果生成した、構造上該化 合物に由来する構成単位も含まれる。

【0030】前記ブロック共重合体は、ジブロック共重合体、トリブロック共重合体またはマルチブロック共重合体のいずれの態様であってもよい。例えば、前記ブロック共重合体がハードブロックA(高Tgのブロック)とを有する場合、A-B型のジブロック共重合体、A-B-A型のトリブロック共重合体、B-A-B型のトリブロック共重合体、(A-B)。型のマルチブロック共重合体、(A-B)。これらの中でも、樹脂にゴム弾性を付与するにはA-B-A型のトリブロック共重合体、(A-B)の型のマルチブロック共重合体、(A-B)が好ましい。

【0031】前記ブロック共重合体の構造は、線状ブロック共重合体または分岐状(星状)ブロック共重合体であり、これらの混合物であってもよい。このようなブロック共重合体の構造は、必要特性に応じて使い分ければよい。

【0032】前記ブロック共重合体は、水および/またはアルコールに分散可能もしくは溶解可能であるのが好ましい。前記ブロック共重合体の水溶性(もしくはアルコール可溶性)は、該ブロック共重合体1重量部と脱イオン水および/またはエタノール混合溶液99重量部とを60℃、2時間加熱撹拌し、冷却後1日室温に放置した後、水溶液が沈殿を形成することなく均一であり、655nmにおける透過率が70%以上であることにより確認できる。また、「分散可能」とは、水および/またはアルコール中に前記共重合体の微粒子が沈殿せずに分散し、乳濁液状もしくはラテックス状になることを意味する。

【0033】ここで、(a)成分のブロック共重合体の製造方法については、特に制限されないが、例えば次の ①~②の方法が挙げられる。中でも②制御ラジカル重合 の一種であるリビングラジカル重合を利用すると、製造 されるブロック共重合体の分子量および構造を容易に制 御できるので好ましい。

- リビングアニオン又はリビングカチオン重合
- ② リビングラジカル重合
- ③ 懸濁重合
- ② 高分子開始剤や連鎖移動剤を用いる方法

【0034】リビングラジカル重合とは、重合末端の活性が失われることなく維持されるラジカル重合をいう。 リビング重合とは狭義には、末端が常に活性を持ち続ける重合のことをいうが、一般的には、末端が不活性化さ れたものと活性化されたものが平衡状態にある擬リビン グ重合も含まれる意味で用いられ、本明細書でも後者の 意味で用いる。リビングラジカル重合は近年様々なグル ープで積極的に研究がなされている。その例としては、 ポリスルフィドなどの連鎖移動剤を用いるもの、コバル トポルフィリン錯体(J. Am. Chem. Soc. 1 994、116、7943) やニトロキシド化合物など のラジカル捕捉剤を用いるもの(Macromolec ules、1994、27、7228)、有機ハロゲン 化物などを開始剤とし遷移金属錯体を触媒とする原子移 動ラジカル重合(Atom Transfer Rad ical Polymerization: ATRP) などが挙げられる。本発明においてはいずれの方法によ り前記ブロック共重合体を製造してもよいが、制御の容 易さなどから原子移動ラジカル重合を利用するのが好ま しい。

【0035】前記ブロック重合体を製造する方法としては特に限定されないが、ハロゲン化銅を触媒とし、アミン配位子を用いた単量体の逐次添加による制御ラジカル重合により製造すると、製造されるブロック重合体の分子量制御が容易になるので好ましい。

【0036】重合により得られたブロック共重合体は、 本発明の化粧料重合体組成物に、そのまま用いてもよい し、もしくは加水分解等の後処理を施した後に用いても よい。後処理による変性率をコントロールすることによ り、得られるブロック共重合体の水溶性、皮膜形成能等 の諸特性を、用途に応じた所望の範囲とすることができ る。後処理としては、加水分解処理、四級化処理、アミ ンオキシド化処理等が挙げられる。例えば、加水分解処 理によって、アクリル酸エステル、メタクリル酸エステ ル等からなるブロックから、親水性基であるカルボン酸 基を有するアクリル酸またはメタクリル酸等由来のブロ ック(例えば、前記一般式(1)で表される構成単位を 有するブロック)を形成することができる。エステルの 加水分解処理は、塩酸、p-トルエンスルホン酸などの 酸触媒または水酸化ナトリウム等のアルカリ触媒を用い て行うことができる。加水分解率は触媒量および反応時 間により制御可能である。加水分解後、生成したカルボ ン酸を部分的にまたは完全に中和してから使用すること もできる。中和には、例えば、水酸化カリウム、水酸化 ナトリウムなどのアルカリ金属水酸化物; アンモニア 水、モノ、ジ、トリエタノールアミン、トリメチルアミ ンなどのアミン化合物;などの塩基が用いられる。

【0037】本発明では、(a)成分である前記ブロック共重合体とともに、(b)成分としてアニオン性基を有するアニオン性重合体を用いる。アニオン性基としては、カルボキシル基、硫酸基、リン酸基およびこれらの塩が好ましい。(b)成分として使用可能なアニオン性重合体の具体例としては、ガントレッツES-225、ES-425、A-425、V-225、V-425

(以上、ISP社製)等のメチルビニルエーテル/無水 マレイン酸アルキルハーフエステル共重合体;レジン2 8-1310 (ナショナルスターチ社)、ルビセットC A(BASF社製)等の酢酸ビニル/クロトン酸共重合 体;レジン28-2930 (ナショナルスターチ社)等 の酢酸ビニル/クロトン酸/ネオデカン酸ビニル共重合 体;ルビセットCAP(BASF社製)等の酢酸ビニル //クロトン酸/プロピオン酸ビニル共重合体 ; アドバン テージCP(ISP社製)等の酢酸ビニル/マレイン酸 モノブチル/イソボロニルアクリレート共重合体;ルビ マー100P(BASF社製)、ダイヤホールド(三菱 化学社製)等の(メタ)アクリル酸/(メタ)アクリル 酸エステル共重合体;ウルトラホールド=ストロング、 ウルトラホールド8(以上BASF社製)、バーサチル 42(ナショナルスターチ社)、プラスサイズL53P (互応化学)等のアクリル酸/アクリルアミド誘導体共 重合体;ルビフレックスVBM35(BASF社製)等 のポリビニルピロリドン/(メタ)アクリル酸/(メ タ)アクリル酸エステル共重合体;イーストマンAQポ リマー(イーストマンケミカル社製)等のジエチレング リコール/シクロヘキサンジメタノール/イソフタル酸 ジメチル/スルホン化イソフタル酸ジメチル系縮合体等 を挙げることができる。

【0038】(b)アニオン性重合体中のアニオン性基は、そのアニオン性基の一部又は全部が塩基性化合物で中和させた状態で用いることが、水溶性の点から好ましい。このような塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカル金属の水酸化物;アンモニア水等の無機塩基性化合物;エタノールアミン、ドリイソプロパノールアミン、トリエタノールアミン、トリイソプロパノールアミン、2ーアミノー2ーメチルー1ープロパノール、2ーアミノー2ーメチルー1,3ープロパンジオール、アミノメルカプトプロパンジオール等のアルカノールアミン類;リジン、アルギニン、ヒスチジン等の塩基性アミノ酸化合物等を使用することができる。これらの中で、特に水溶性の点から、2ーアミノー2ーメチルー1ープロパノール、水酸化カリウムを使用することが好ましい。

【0039】(b)アニオン性重合体は、アニオン性基を5重量%以上含有しているのが好ましく、10重量%以上含有しているのがより好ましく、15重量%以上含有しているのがさらに好ましい。

【0040】また、(b) アニオン性重合体の重量平均分子量は5,000 \sim 1,000,000であるのが好ましく、10,000 \sim 500,000であるのがより好ましく、20,000 \sim 300,000であるのがさらに好ましい。

【0041】本発明の毛髪化粧料用重合体組成物において、(a)ブロック共重合体と(b)アニオン性重合体との重量比((a)/(b))は、1/10~10/1

であり、好ましくは $1/5\sim10/1$ である。(a)/ (b)の比が1/10未満であると、柔軟性が不足し髪にごわつき感を与え、整髪効果が不十分で、櫛通しする際フレーキング現象や静電気による毛髪のまとめ難さ等の問題を生じることとなる。この比が10/1を越えると、硬さが不足するため髪の仕上り状態に腰、張りが出にくく、仕上り感が重い感触となり、得られる感触が低下する問題がある。本発明の毛髪化粧料用重合体組成物は、前記(a)成分と前記(b)成分を、組成物全量の $0.1\sim10$ 重量%含有しているのが好ましく、 $0.5\sim8$ 重量%であるのがより好ましい。0.1重量%未満では整髪力が不十分となりやすく、10重量%を越えるとごわつき感が増し感触を悪化させる問題が起こることがある。

【0042】なお、本発明の毛髪化粧料用重合体組成物 には、前記必須成分の(a)成分および(b)の他、通 常の化粧料に用いられる成分、例えば、ヒマシ油、カカ オ油、ミンク油、アボガド油、ホホバ油、マカデミアン ナッツ油、オリーブ油等のグリセリド;ミツロウ、ラノ リン等のロウ類;流動パラフィン、固形パラフィン、イ ソパラフィン、スクワラン等の炭化水素類;セチルアル コール、オレイルアルコール、ステアリルアルコール、 イソステアリルアルコール、ラウリルアルコール、2-オクチルドデカノール等の直鎖及び分岐鎖高級アルコー ル類:エチレングリコール、ポリエチレングリコール、 プロピレングリコール、ポリプロピレングリコール、グ リセリン、ソルビトール等の多価アルコール類;ポリオ キシエチレンラウリルエーテル、ポリオキシプロピレン セチルエーテル、ポリオキシエチレンポリオキシプロピ レンステアリルエーテル等の高級アルコールの酸化エチ レン及び/又は酸化プロピレン付加物類;ミリスチン酸 イソプロピル、ミリスチン酸オクチルドデシル、ラウリ ン酸ヘキシル、乳酸セチル等のエステル類:オレイン酸 ジエタノールアミド、ラウリン酸ジエタノールアミド等 のアミド類; ジメチルポリシロキサン、メチルフェニル ポリシロキサン、ポリエーテル変性シリコーン、アミノ 変性シリコーン等のシリコーン誘導体; ステアリルトリ メチルアンモニウムクロライド、ジステアリルジメチル アンモニウムクロライド、ラウリルトリメチルアンモニ ウムクロライド等のカチオン界面活性剤;ポリオキシエ チレンラウリルエーテルサルフェート、ポリオキシエチ レンラウリルスルホコハク酸塩等のアニオン界面活性 剤; ラウリルヒドロキシスルホベタイン、ラウリルジメ **チルカルボキシベタイン等の両性界面活性剤;コラーゲ** ン加水分解物、ケラチン加水分解物、ポリアミノ酸等の 蛋白誘導体、アミノ酸誘導体類;植物抽出物、生薬、ビ タミン類、オキシベンゼン等の紫外線吸収剤、EDTA -Na等のキレート剤、パラベン等の防腐剤、酸化防止 剤、色素、顔料、香料等を、本発明の効果を損なわない 範囲で適宜配合してもよい。

【0043】本発明の毛髪化粧料は、前記(a)成分と前記(b)成分とを含有する本発明の毛髪化粧料用重合体組成物を含むことを特徴とする。本発明の毛髪化粧料において、前記組成物の含有量は、毛髪化粧料全量の0.1~10重量%であるのが好ましく、0.5~8重量%であるのがより好ましい。0.1重量%未満では整髪力が不十分となり、10重量%を越えるとごわつき感が増し感触を悪化させる問題がある。なお、前記組成物が前述の他の成分を含有する場合は、毛髪化粧料において前記(a)成分と前記(b)成分との合計量が0.1~10重量%であるのが好ましく、0.5~8重量%であるのがより好ましい。

【0044】本発明の毛髪化粧料の用途や形態は特に限定されず、例えば、エアゾールへアスプレー、ポンプ式へアスプレー、フォーム状へアスプレー、ヘアミスト、セットローション、ヘアジェル、ヘアクリーム、ヘアーオイルとして使用することができる。本発明の毛髪化粧料は、上記(a)成分及び(b)を含む各成分を、水及び/又はエタノール、イソプロパノール等のアルコール類の溶媒に、常法に従い溶解、又は分散させることにより製造することができる。また、噴霧用の気体または液体として、トリクロルモノフルオロメタン、ジクロルジフルオロメタン等のクロルフルオロアルカン;アルカン類よりなる液化石油ガス;ジメチルエーテル;二酸化炭素ガス、窒素ガス等の圧縮ガス等、又はこれらの混合ガスを使用し、常法に従いエアゾール剤型とすることもできる。

[0045]

【実施例】以下、製造例、実施例を挙げて、更に本発明 を具体的に説明するが、本発明は、その発明の要旨を越 えない限りこれらの製造例、実施例に限定されるもので はない。なお、製造例及び実施例中の部及び%は、特に 規定する場合を除き重量基準で表わしたものである。

[例1] (アクリル酸2-エチルヘキシル-アクリル酸 t-ブチル系ブロック共重合体の製造)

反応容器に熱電対および撹拌翼を取り付け、窒素置換した後、臭化銅(I)を165mg入れて、80℃に昇温した。次に、反応容器内を窒素雰囲気に維持したまま、250rpmで撹拌しながら、ジメチル2,6ージブロモヘプタンジオエート692mg、アクリル酸2ーエチルへキシル184g、ペンタメチルジエチレントリアミン398mgおよびジメチルホルムアミド88gの混合液を反応容器内に加えた。3時間撹拌後、反応容器を洗浴にて急冷し、反応を停止させた。テトラヒドロフランと水との混合溶液を加え、ポリマー層と触媒層に層分離させて、臭化銅を除去後、ポリマー層を大量のメタノール中に滴下し、重合体を再沈させ、溶媒を沪過により除いた。アクリル酸2ーエチルへキシルの転化率は50%であった。得られたポリマー(以下、「ポリアクリル酸2ーエチルへキシル高分子開始剤」という場合がある)

は、重量平均分子量(Mw)が33,000、数平均分子量(Mn)が24,000、分子量分布(Mw/Mn)が1.38であった。

【0046】別の反応容器に熱電対および撹拌翼を取り 付け、窒素置換した後、臭化銅(I)を28.6mg、 臭化銅(II)を9.33mg入れて、80℃に昇温し た。次に、反応容器内を窒素雰囲気に維持したまま、2 50rpmで撹拌しながら、得られたポリアクリル酸2 エチルヘキシル高分子開始剤48g、アクリル酸tー ブチル128g、ペンタメチルジエチレントリアミン7 9. 7mgおよびジメチルホルムアミド53gの混合液 を加えた。2時間撹拌後、反応容器を氷浴にて急冷し、 反応を停止させた。テトラヒドロフランと水との混合溶 液を加え、ポリマー層と触媒層に層分離させて、ポリマ ー層をケイ酸アルミニウム(協和化学社製、「キョーワ ード 700SN」)を充填したカラムに通して、臭化 銅を完全に除去後、大量のメタノール中に滴下し、重合 体を再沈させ、溶媒を沪過により除いた。得られた共重 合体の重量平均分子量 (Mw) は56,000、数平均 分子量(Mn)は39,800、分子量分布(Mw/M n)は1.41であった。Mn値より算出した共重合体 中のアクリル酸2-エチルヘキシルとアクリル酸t-ブ チルの重量分率は、それぞれ60重量%と40重量%で あった。また、1H-NMRにより、共重合体中のアク リル酸2-エチルヘキシルとアクリル酸t-ブチルの重 量分率を確認した。得られたブロック共重合体は、ポリ (t-BA)/ポリ(2EHA)/ポリ(t-BA)の 構成のトリブロック共重合体であった。

【0047】例1で得られたアクリル酸2-エチルヘキ シルとアクリル酸t-ブチルとのトリブロック共重合体 の21gを、1,4-ジオキサン480mLに溶解させ た。6mo1/Lの塩酸を33mL加えた後、120℃ のオイルバスにて6時間加熱還流した。冷却した後、減 圧下溶媒を濃縮し、大量のヘキサンにて再沈させ、溶媒 を沪過により除いた。得られたポリマーを大量の水にて 洗浄した後、減圧乾燥して、ブロック共重合体P-1を 得た。ブロック共重合体P-1の加水分解率を、O.1 mo1/Lの水酸化カリウム水溶液を用いた中和滴定に より確認したところ、加水分解率は61%であった。ま た、以下に示した方法で測定したガラス転移温度(T g)は、アクリル酸2-エチルヘキシルブロックに由来 する-50℃と、アクリル酸t-ブチルブロックに由来 する43°Cと、アクリル酸に由来する107°Cであっ た。これらのガラス転移点は各々のホモポリマーの値と ほぼ一致していた。

【0048】 [例2] (アクリル酸2-エチルヘキシルーアクリル酸tーブチル系ブロック共重合体の製造) 例1と同様にしてポリアクリル酸2-エチルヘキシル高分子開始剤を製造した。但し、用いた臭化銅(I)の量を173mg、ジメチル2、6-ジブロモヘプタンジオ

エートの量を697mg、アクリル酸2-エチルヘキシル184g、ペンタメチルジエチレントリアミンの量を419mgに各々代え、撹拌時間も2時間に代えた。アクリル酸2-エチルヘキシルの転化率は50%であった。得られたポリアクリル酸2-エチルヘキシル高分子開始剤の重量平均分子量(Mw)は23,300、数平均分子量(Mn)は16,400、分子量分布(Mw/Mn)は1.41であった。

【0049】反応容器に熱電対および撹拌翼を取り付 け、窒素置換した後、臭化銅(I)717mgおよび臭 化銅(II)58.3mgを加え、80℃に昇温した。 次に、反応容器内を窒素雰囲気に維持したまま、250 rpmで撹拌しながら、得られたポリアクリル酸2-エ チルヘキシル高分子開始剤30g、アクリル酸tーブチ ル151g、ペンタメチルジエチレントリアミン1gお よびジメチルホルムアミド66gの混合液を加えた。3 時間撹拌後、反応容器を氷浴にて急冷し反応を停止させ た。その後は、例1と同一の操作で共重合体を得た。こ の共重合体の重量平均分子量 (Mw) は45,000、 数平均分子量(Mn)は25,400、分子量分布(M w/Mn)は1.77であった。Mn値より算出した共 重合体中のアクリル酸2-エチルヘキシルとアクリル酸 t-ブチルの重量分率は、それぞれ47重量%と53重 量%であった。また、1H-NMRにより、共重合体中 のアクリル酸2-エチルヘキシルとアクリル酸t-ブチ ルの重量分率を確認した。得られた共重合体は、トリブ ロック共重合体であった。

【0050】例2で得られたアクリル酸2-エチルヘキ シルとアクリル酸セーブチルとのトリブロック共重合体 の18gを、1,4-ジオキサン500mLに溶解させ た。6mo1/Lの塩酸を36mL加えた後、120℃ のオイルバスにて20時間加熱還流した。冷却した後、 減圧下溶媒を濃縮し、大量のヘキサンにて再沈させ、溶 媒を沪過により除いた。得られたポリマーを大量の水に て洗浄した後、減圧乾燥して、ブロック共重合体P-2 を得た。ブロック共重合体P-2の加水分解率を、0. 1 m o 1/Lの水酸化カリウム水溶液を用いた中和滴定 により確認したところ、加水分解率は50%であった。 また、以下に示した方法で測定したガラス転移温度(T g)は、アクリル酸2-エチルヘキシルブロックに由来 する-50℃と、アクリル酸セーブチルブロックに由来 する43℃と、アクリル酸に由来する107℃であっ た。これらのガラス転移点は各々のホモポリマーの値と ほぼ一致していた。

【0051】分子量および分子量分布は、テトラヒドロフランを移動相として、ポリスチレンゲルカラムを使用したGPC測定を行い、ポリスチレン換算で求めた。また、ガラス転移温度は、JIS K7121に従い、DSC(示差走査熱量測定)を用い、20℃/分の昇温速度で測定した。以下、同様である。

【 0 0 5 2 】 [例 3] (アミンオキシド基を有するラン ダム共重合体の製造)

還流冷却器、滴下ロート、温度計、窒素ガス導入管及び 撹拌装置付きの反応器にN、Nージメチルアミノエチル メタクリレート50部、メチルメタクリレート30部、 イソブチルメタクリレート20部、及び無水エタノール 150部を入れ、2,2'ーアゾビスイソブチロニトリ ル0.6部を添加後、窒素雰囲気下、80℃で8時間反 応後、60℃に冷却した。

【0053】次に、N,N-ジメチルアミノエチルメタクリレートと当モルの過酸化水素の31%水溶液を滴下ロートにて重合溶液に1時間で滴下し、更に20時間撹拌を続けることによってジメチルアミノ基のオキサイド化を行い、無水エタノールを添加しボリマー濃度を30%に調整した。オキサイド化反応の終了は、反応液のアミン価測定により確認した。得られたポリマーを「P-3」とする。尚、得られたポリマー重量平均分子量は110,000であった。また、赤外吸収スペクトルよりN-Oの吸収が認められ、アミンオキシド基の生成を確認した。

【0054】[実施例1~3、比較例1~6]表1に示 す組成の毛髪化粧料(ポンプスプレー)を常法により調 製し、これらを毛髪に使用した際の整髪力(カール保持 力)、毛髪の腰・張り、フレーキング、及びポリプロピ レンフィルムに塗布した際の帯電防止法(表面抵抗)、 セット力(毛束曲げ強度)、セット保持力(毛束破壊後 強度)を下記の方法で試験評価した。表1から明らかな ように、実施例1~3の毛髪化粧料は、優れた整髪力を 有しカールした毛髪の形状を高温多湿でも保持すること ができ、毛髪に張りのある弾力を与え、フレーキングも なく、帯電防止にも優れ、弾性によるセット保持力を有 していることが判った。一方、比較例1~6の毛髪化粧 料は、整髪力が不足したり、毛髪に張りを与えることが できなかったり、フレーキングが発生、帯電防止性が不 足するなど毛髪化粧料としては性能面で満足のいくもの ではなかった。

【0055】<試験評価方法>

(1)整髪力(カール保持力)

23cm、2gの癖のない毛髪に、ディスペンサーを使用し、(又はエアゾールの形態で)、毛髪に一定量塗布し、直ちに直径1.2cmのカーラーに巻き乾燥させる。次に、カーラーから外した毛髪を、30℃/95%RHの恒温恒湿機に吊るし、3時間後の毛髪の伸びを測定し下記のカールリテンションの評価式に代入しカール保持力(%)を求める。

カールリテンション評価式

カール保持力 (%) =[(23-L)/(23-L₀)] ×100

(式中、 L_0 はカーラーから外した直後のカールした毛束の長さ(cm)、Lは3時間後のカールした毛束の長

さ(cm)である)

カール保持力の値は71%以上であった。

 \triangle : カール保持力の値は $40\sim70\%$ であった。

× : カール保持力の値は40%未満であった。

【0056】(2)毛髪の腰・張り

上記整髪力(カール保持力)と同様に操作し得られたカールした毛髪を、23℃/60%RHの恒温恒湿の条件に放置し、カールを指で潰すときの張り、弾力性等の感触を評価する。

○ : 張りがあり、良好な弾性力があった。

△ : 張りがあるが、弾性力がなく脆かった。

× : 張りがなく、感触が悪かった。

【0057】(3)フレーキング

23cm、2gの癖のない毛髪に、ディスペンサーを使用し、(又はエアゾール形態で)、毛髪に一定量塗布し、エアゾールの形態で毛髪に一定量塗布し、直ちに指で均し、平板状の毛束を作成し乾燥させる。次に、23℃/60%RHの恒温恒湿の条件に放置し、櫛通しを行い、毛髪上に存在する剥離したポリマー片の量を実体顕微鏡(20倍)で観察する。

○ : ポリマー片が認められない、または僅かに認められた。

 \triangle : ポリマー片が認められた。

× : ポリマー片が多量に認められた。

【0058】(4)帶電防止性(表面抵抗)

表1に示す組成の毛髪化粧料の液を(噴射剤(ジメチルエーテル:DME、液化石油ガス:LPG)を使用する場合は、充填する前の液に、噴射剤と同じ重量のエタノールを添加し溶液を調整する)準備する。この溶液を放電処理を施したポリプロピレンフィルムに、22mi1バーコーターを使用し塗布し、ヘアドライヤーで乾燥後、23℃/60%RHの恒温恒湿の条件に放置し、絶縁抵抗計(HIGH MEGOHM METER:武田理研社製)で表面抵抗値を測定する。

○ : 表面抵抗値が1×10¹⁰未満であった。

 \triangle : 表面抵抗値が 1×10^{10} 以上 $\sim1\times10^{12}$ 未満

であった。

※ : 表面抵抗値が1×10¹²以上であった。 【0059】(5)セット力試験(毛束曲げ強度) 長さ15cmの毛髪束に、0.7gの各試料を塗布し、 直ちに2cm幅に整えて乾燥し、温度23℃および相対 湿度60%の恒温恒湿器に1時間放置した。その後、6 5mm間隔の支持台上に置いて中央を一定の速度で曲げた時の最大荷重を測定し、以下の基準で評価した。

○ : 最大荷重200g以上で、樹脂の違和感もなく、しなやかさは良好であった。

△ : 最大荷重100g以上200g未満で、しなやかさはあるが樹脂の違和感が残った。

× : 最大荷重100g以下で、樹脂の違和感があり、しなやかさは不良であった。

【0060】(6)セット保持力試験(毛東曲げ試験) 上記セット力試験終了後、毛束を破壊した後の最大荷重 を以下の基準で評価した。

○ : 最大荷重は15g以上であった。

△ : 最大荷重は10g以上15g未満であった。

× : 最大荷重は10g未満であった。

【0061】[実施例4~7、比較例7~10]表2に示す組成の毛髪化粧料(含水エアゾール、無水エアゾール)を常法により調製し、これらを実施例1と同様の評価を行ったところ、表2から明らかなように、実施例4~7の毛髪化粧料は、優れた整髪力を有しカールした毛髪の形状を高温多湿でも保持することができ、毛髪の張りのある弾力を与え、フレーキングもなく、帯電防止にも優れ、樹脂皮膜のゴム弾性によるセット保持力を有していることが判った。一方、比較例7~10の毛髪化粧料は、整髪力が不足したり、毛髪に張りを与えることができなかったり、フレーキングが発生、帯電防止性が不足する等毛髪化粧料としては性能面で満足のいくものではなかった。

[0062]

【表1】

								(%有効点	分量換算	E)
			実施例							
_		1	2	3	1	2	3	4	5	6
	P-2	2.0	2.0	2.0	_	-		_	_	
	アニオン性樹脂1	1.0	_	_	3.0	-	_	1.0	_	_
	アニオン性樹脂2	_	1.0	_	_	3.0	_	_	1.0	_
組	アニオン性樹脂3	_	_	1.0	_	-	3.0	_	_	1.0
成	P-3	_		_	_	-		2.0	2,0	2.0
	純水	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
	エタノール	バランス	バランス	バランス	パランス	バランス	バランス	ハランス	バランス	バランス
	合計	100.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	(1)整髪力	0	0	0	Δ	×	×	0	0	0
価格	(2)毛髪の黴、張り	0	0	0	Δ	Δ	Δ	0	0	0
	(3)フレーキング	0	0	0	×	×	×	0	0	0
	(4)帯電防止性	0	O.	0	×	×	×	0	0	О
	(5)セットカ	0	Ó	0	0	0	0	Δ	Δ	Δ
	(6)セット保持力	0	O	0	. ×	×	×	Δ	×	×

				7	(%:有効成分量換算)				
		実施例							
		4	5	6	7	7	8	9	10
組成	P-1	2.0	2.0	_	_	_	_	_	-
	P-2	1.0	_	2.0	2.0	-	_		_
	アニオン性謝脂1	_	1.0	_	_	3.0	_	1.0	_
	アニオン性樹脂2	-		1.0	_	-	3.0	_	1.0
	P-3	_	_		1.0	l –	_	2.0	2.0
	純水	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
	エタノール	バランス	バランス	パランス	バランス	バランス	バランス	バランス	バランス
	原液	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0
	LPG	10,0	10,0	10.0	10.0	10.0	10.0	10.0	10.0
	DME	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	合計	100.0	100.0	100.0	100.0	100.0	100,0	100.0	100.0
評価領果	(1)	O	0	0	0	×	×	0	0
	(2)毛髪の腰、張り	0	0	0	0	Δ	Δ	O	0
	(3)フレーキング	0	0	0	0	×	×	0	0
	(4)帯電防止性	0	0	0	0	×	×	Q	9
	(5)セットカ	0	0	0	0	0	0	Δ	Δ
	(8)セット保持力	lΩ	0	0	0	×	×	_	×

【0064】P-1: 製造例1で調整したブロック共重 合体

P-2:製造例2で調整したブロック共重合体

P-3:製造例3で調整したアミンオキサイド基含有共 重合体

アニオン性樹脂1:ダイヤホールドLP503(三菱化学社製)

アニオン性樹脂2:ガンツレッツES-225(ISP 社製)の酸部分の20モル%を2-アミノ-2-メチル -1-プロパノールで中和した部分中和物

アニオン性性樹脂3:レジン28-2930(ナショナ

ルスターチ社製)の酸部分の90モル%を2-アミノー 2-メチル-1-プロパノールで中和した部分中和物 【0065】

【発明の効果】以上説明した様に、本発明によれば、アニオン性高分子化合物を用いた従来の毛髪化粧料用重合体組成物の問題点を解決し、優れた整髪性とともに弾性による良好なセット保持力を有し、違和感のない自然な風合いの仕上り感を与える毛髪化粧料用重合体組成物および毛髪化粧料(ヘアスプレー、ヘアムース、ヘアセットセットローション、ヘアジェル等の各種の毛髪化粧料)を提供することができる。

フロントページの続き

Fターム(参考) 4C083 AC012 AC102 AC172 AC711 AD011 AD071 AD072 AD091 AD092 AD111 AD131 BB53 CC32 DD08 EE28