

**School of Computing** 

# Tutorial 9: Graphs Traversal II & MST

October 25, 2022

Gu Zhenhao

\* Partly adopted from tutorial slides by Wang Zhi Jian.

# Strongly Connected Component

What are SCCs and what do they imply?

# Strongly Connected Components

In directed graphs, a *strongly connected component (SCC)* is a subgraph where there is a path between **ALL** pairs of vertices.





# Strongly Connected Components

**Claim**: A graph contains SCC of size > 1 vertex  $\Leftrightarrow$  graph contains a cycle.

**Idea**: To detect a cycle, just use **Kosaraju's algorithm** to find the SCC! Time is still O(|V| + |E|).





# Graph Traversal (Continued)

How can we utilize traversal algorithms?

- n skyscrapers, numbered 1 to n,
- m pairwise comparisons of the height of skyscrapers,
- Goal: give one possible ordering of the height.

#### Info

1 taller than 3

2 taller than 5

3 taller than 5

2 taller than 4



Possible orderings:

•••

- Observation: this is a directed acyclic graph (DAG).
- Idea: We can use topological ordering to ensure that if  $\mathbf{u} > \mathbf{v}$ ,  $\mathbf{u}$  is put in front of  $\mathbf{v}$  in the ordering.



- n skyscrapers, numbered 1 to n,
- m pairwise comparisons/equality of the height of skyscrapers,
- Goal: give one possible ordering of the height.

#### Info

1 taller than 3

2 taller than 5

3 taller than 5

2 taller than 4

2 as tall as 3



Possible orderings:

$$1 > 3 = 2 > 5 > 4$$

•••

- Observation: this is no longer a DAG... so we cannot use topological sort!
- Question: Is it possible to turn this into a DAG?



- Observation: this is no longer a DAG... so we cannot use topological sort!
- Question: Is it possible to turn this into a DAG?
- Idea: We can view the vertices of equal height as 1 vertex!



Note: to implement this edge contraction in practice, we can

- Pick a representative vertex, e.g. 2.
- Connect the edges containing vertex 3 to vertex 2 instead.
- Keep a UFDS storing all the merged vertices.



What is MST and how to find the MST?

The *minimum spanning tree* of a connected, weighted and undirected graph is a tree of minimum total edge weight that connects all vertices.



**Cut property**: For every cut (partitioning of nodes into two sets), the edge with the smallest weight across the cut is in the MST. (Why?)



# Prim's Algorithm

#### Idea:

- Partition vertices into 2 sets: those already in our MST and those that are not.
- Find the minimum weighted edge across the cut and put it in MST.



# Prim's Algorithm

#### Implementation:

- Start from one node. Push all neighboring edges of MST into a min heap.
- Pop the minimum edge, include it in MST, and repeat the process.



**Cycle property**: For every cycle in the graph, the edge with the maximum weight is not in the MST. (Why?)



# Kruskal's Algorithm

**Cycle property**: For every cycle in the graph, the edge with the maximum weight is not in the MST. (Why?)



# Kruskal's Algorithm

#### Idea:

- Repeatedly add the smallest weighted edges into MST.
- Discard if the added edge form a cycle within the MST.



# Kruskal's Algorithm

#### Implementation:

- Keep a **UFDS** of all vertices: each set is a connected component in MST.
- If both ends of an edge are in the same set, adding this edge would form a cycle. (Why?)



True or false: The MST is always a connected, undirected graph.

**True.** This is by the property of MST. It is coming from an undirected graph. Since it also connects all vertices, it must be connected.

**True or false**: The MST will always have V-1 edges.

**True.** This is by the property of trees, number of edges in trees are always equal to V-1.

## Problem 2.c

**True or false**: For a graph with unique edge weights, the edge with the largest weight in any cycle of the graph can be included in the MST.

**False.** This can be proved with contradiction.

Suppose MST contains the largest-weighted edge e, there must be an edge e' of smaller weight in the cycle that is not in MST.

Then substituting e with e' will decrease total weight.



## Problem 2.d

**True or false**: For a graph with two disjoint sets of vertices A and B (vertices in A are not in B and vice versa), and another vertex x not inside both the sets, the combined MST of  $A \cup x$  and  $B \cup x$  is a MST of the original graph.



False. A counter example can be drawn.

The combined MST of  $A \cup x$  and  $B \cup x$  has total weight 3 + 4 = 7, while the minimum weight should be 1 + 3 = 4.

Given MST of a graph, find the new MST if another edge is added.

**Trivial Solution**: Re-run Prim's or Kruskal's algorithm on the new graph,  $O(E \log V)$  time.



**Observation**: the edges not in the original MST will not be in the new MST.

**Better Solution**: We don't need to consider those edges that are originally not in MST.  $O(V \log V)$  time.



**Observation**: the newly added edge forms a cycle with the old MST.

Idea: By the cycle property, simply remove the largest edge in the cycle!



#### Better solution: given a new edge (u, v)

- Do a DFS in the old MST from  $\mathbf{u}$  to  $\mathbf{v}$ , and find the largest edge e in the path.
- Compare e with the new edge. If the new edge have smaller weight, replace e with the new edge.



Given MST of a graph, find the new MST if a new vertex Y and a set of edges connecting Y are added.

Question: Can we simply run one step of Prim's algorithm, and simply pick the

smallest edge among the newly added edges?



Given MST of a graph, find the new MST if a new vertex Y and a set of edges connecting Y are added.

**Trivial Solution**: Re-run Prim's or Kruskal's algorithm on the new graph,  $O(E \log V)$  time.



**Observation**: the edges not in the original MST will not be in the new MST.

**Better Solution**: We don't need to consider those edges that are originally not in MST.  $O(V \log V)$  time.



**Observation**: the edges not in the original MST will not be in the new MST.

**Better Solution**: We don't need to consider those edges that are originally not in MST.  $O(V \log V)$  time.



Given a graph, find edges with sum at most b that minimizes number of connected components k.

Example: b = 15.



Given a graph, find edges with sum at most b that minimizes number of connected components k.

Example: b = 15.

We can simply choose all edges in the MST. k = 1.



Given a graph, find edges with sum at most b that minimizes number of connected components k.

Example: b = 8.

We need to delete some edges...



# Problem 4

Given a graph, find edges with sum at most b that minimizes number of connected components k.

Example: b = 8.

We need to delete at least 2 edges... leaving k = 3.



Observation: each deletion from MST adds one more connected component.

- Use Kruskal's algorithm!
- greedily add the smallest edges, until total weight reaches b!



Observation: each deletion from MST adds one more connected component.

- Use Kruskal's algorithm!
- greedily add the smallest edges, until total weight reaches b!



Observation: each deletion from MST adds one more connected component.

- Use Kruskal's algorithm!
- greedily add the smallest edges, until total weight reaches b!



Observation: each deletion from MST adds one more connected component.

- Use Kruskal's algorithm!
- greedily add the smallest edges, until total weight reaches b!



# Applications of MST

How to utilize MST and its variants?

Given an undirected graph, find a set of edges such that for every cycle in the graph, at least one edge in the set, and the total weight of the selected edges is minimized.

**Example**: Edge (B, E), (B, C) would be covering all cycles and total weight 6 is minimized.



#### Simplified Example:

Suppose we have only one cycle...

We can simply pick the edge with minimum weight.

Idea: for each cycle in graph, select the edge with minimum weight!





#### **Trivial Answer:**

- Run cycle detection algorithm, e.g. DFS.
- When a cycle is detected, find smallest edge within the cycle.
- delete the edge and repeat.

Will take O(|E|(|V| + |E|)) time.



**Recall**: in minimum spanning tree: in every cycle, the largest edge is not included (cycle property).

In maximum spanning tree: in every cycle, the smallest edge is not included!

**Idea**: find the maximum spanning tree instead. The edges not included are what we need.



#### Better Answer:

• Run Kruskal's algorithm, with edges in descending order (from largest to smallest)





#### **Better Answer**:

- Run Kruskal's algorithm, with edges in descending order (from largest to smallest)
- The edges that are not in the maximum spanning tree are selected.



- We have a graph, some vertices are "power plants".
- Find a set of edges that connects all vertices to at least one "power plant".



- We have a graph, some edges are "power plants".
- Find a set of edges that connects all vertices to at least one "power plant".

**Goal**: find *minimum spanning forest*, with each connected component containing at least one "power plant".

How to find a MST containing A?



#### **Attempt**:

- Use Prim's algorithm, starting from a power plant. (e.g. vertex A)
- We can get a MST starting from A...

This is not optimal!



What we are essentially doing is:

- partitioning A and remaining vertices into two sets,
- find the smallest edge in the cut,



What we are essentially doing is:

- partitioning A and remaining vertices into two sets,
- find the smallest edge in the cut,



#### What we are essentially doing is:

- partitioning A and remaining vertices into two sets,
- find the smallest edge in the cut,
- include that edge in MST... then continue.

How to take those into account?



• We can consider all "power plants" as connected.



- We can consider all "power plants" as connected.
- Find the min edge in the larger cut instead!



- We can consider all "power plants" as connected.
- Find the min edge in the larger cut instead!



- We can consider all "power plants" as connected.
- Find the min edge in the larger cut instead!



## End of File

Thank you very much for your attention :-)