Introduction to Scikit learn

Yu-Heng, Hsieh 10/24

What is Scikit Learn

- A python library that provides various implementation of machine learning/data mining algorithms
- Clustering
 - SVM, K-means, DBScan,
- Classification
 - NN, decision tree, KNN, naïve bayes

Install Scikit learn

- Use pip to install
- python -m pip install sklearn
- Need other libs like numpy and scipy. Can also install through pip
- If you cannot install scipy on windows you can install the package from http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy

Datasets

 Scikit learn provides some useful datasets in the "datasets" module.

```
Load the filenames and data from the 20 newsgroups dataset.
                                                        Load the 20 newsgroups dataset and transform it into tf-idf vectors.
datasets.fetch_20newsgroups_vectorized ([...])
datasets.fetch_california_housing ([...])
                                                       Loader for the California housing dataset from StatLib.
datasets.fetch_covtype ([data_home, ...])
                                                       Load the covertype dataset, downloading it if necessary
datasets.fetch_kddcup99 ([subset, data_home, ...]) Load and return the kddcup 99 dataset (classification).
datasets.fetch_lfw_pairs ([Subset, ...])
                                                       Loader for the Labeled Faces in the Wild (LFW) pairs dataset
                                                   Loader for the Labeled Faces in the Wild (LFW) people dataset
datasets.fetch_lfw_people ([data_home, ...])
datasets.fetch_mldata (dataname[, ...])
                                                       Fetch an mldata.org data set
{\tt datasets.fetch\_olivetti\_faces} \ ([{\tt data\_home}, \ldots]) \qquad {\tt Loader} \ for \ the \ Olivetti \ faces \ data-set \ from \ AT\&T.
datasets.fetch_rcv1 ([data_home, subset, ...])
                                                       Load the RCV1 multilabel dataset, downloading it if necessary.
datasets.fetch_species_distributions ([...])
                                                       Loader for species distribution dataset from Phillips et.
datasets.get_data_home ([data_home])
                                                       Return the path of the scikit-learn data dir.
{\tt datasets.load\_boston}~([return\_X\_y])
                                                       Load and return the boston house-prices dataset (regression).
{\tt datasets.load\_breast\_cancer}~([return\_X\_y])
                                                       Load and return the breast cancer wisconsin dataset
                                                        (classification).
                                                       Load and return the diabetes dataset (regression).
datasets.load_diabetes ([return_X_y])
datasets.load_digits ([n_class, return_X_y])
                                                       Load and return the digits dataset (classification).
datasets.load_files (container_path[, ...])
                                                       Load text files with categories as subfolder names
                                                       Load and return the iris dataset (classification).
datasets.load_iris([return_X_y])
datasets.load_linnerud ([return_X_y])
                                                       Load and return the linnerud dataset (multivariate regression).
datasets.load_mlcomp (*args, **kwargs)
                                                       DEPRECATED: since the http://mlcomp.org/ website will shut down
                                                       in March 2017, the load_mlcomp function was deprecated in version 0.19 and will be removed in 0.21.
```

Load Dataset

- The datasets that start with fetch operation often need to download the data from internet.
 - For example, datasets.fetch kddcup99()
- The datasets that start with load operation are already in the sklearn package.
 - For example, datasets.load_iris([return_X_y=False])
 - The return_X_y parameter decide whether the return value is (data, target) or an object with data, target, and DESCR as attribute.

Regressions

Linear and Logistic

- In this example, we would like to predict the house price of Boston using linear regression
- · First, we load the data

```
boston = datasets.load_boston()
```

Let's take a look at the data we get

Linear Regression

Boston House Prices dataset

More details about the data and attributes

Notes
....
Data Set Characteristics:

:Number of Instances: 506
:Number of Attributes: 13 numeric/categorical predictive
:Median Value (attribute 14) is usually the target

:Attribute Information (in order):
- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in \$1000's

- Now that's build the linear regression model with the data
- First, initialize the model

 lr = linear_model.LinearRegression(
 fit_intercept=True,
 normalize=False,
 copy_X=True,
 n_jobs=1)

Linear Regression

· Now we train the model

- Each row in the training data (X) represents one data
- Each column in the training data represents an attribute
- Each row in the target value represents the target value correspond to one data
- Each column of the target value is the different type of target we want to predict

Linear Regression

```
>>> X = boston.data
>>> y = boston.target
>>> lr.fit(X,y)
LinearRegression(copy_X=True, fit_intercept=True,
n_jobs=1, normalize=False)
>>>
pd.DataFrame(list(zip(boston.feature_names,lr.coef_)),
columns=["Feature", "Correlation"])
```

- From the correlation value we can find that the feature RM is highly correlated to the target
- Let's plot the scatter plot of RM and Price

```
>>> from matplotlib import pyplot as plt
>>> plt.scatter(X[:,5], y)
>>> plt.xlabel("Average number of room per dwelling
(RM)")
>>> plt.ylabel("Housing Price")
>>> plt.title("Relationship between RM and Price")
>>> plt.show()
```


 Now that's use the model to predict the house price. Here we predict the training data.

```
>>> predictY = lr.predict(X)
>>> predictY[0:5]
array([ 30.01, 25.03 , 30.57 , 28.61, 27.94])
>>> y[0:5]
array([ 24. , 21.6, 34.7, 33.4, 36.2])
```

Linear Regression

• We can also plot the predict price and the real price

```
>>> plt.scatter(predictY, y)
>>> plt.xlabel("Predicted Price")
>>> plt.ylabel("Real Price")
>>> plt.title("Relation between the predicted and real price")
>>> plt.show()
```


Cross validation

 To randomly divide the data, sklearn provides a function called train_test_split under the model_selection class

```
>>> X_train, X_test, y_train, y_test =
sklearn.model_selection.train_test_split(X, y,
test_size = 0.33)
>>> X_train.shape
(339, 13)
>>> X_test.shape
(167, 13)
>>> y_train.shape
(339,)
>>> y_test.shape
(167,)
```

- In this example, we would like to predict the class of the class if iris.
- Load the data with datasets.load_iris()
- There are 150 records and 4 attributes each.
- There are 3 different classes

Logistic Regression

• Initialize the logistic regression model with

```
linear_model.LogisticRegression(
penalty='12',
solver='liblinear',
multi_class='ovr',
verbose=0,
n_jobs=1)
```

```
>>> logr = linear_model.LogisticRegression()
>>> Xtrain, Xtest, ytrain, ytest =
sklearn.model_selection.train_test_split(iris.data,
iris.target, test_size = 0.16)
>>> Xtrain.shape
(126, 4)
>>> logr.fit(Xtrain, ytrain)
>>> logr.score(Xtrain, ytrain)
0.96031746031746035
>>> logr.score(Xtest, ytest)
1.0
```

Logistic Regression

- When the problem is multi-class problem, there are generally 2 algorithms.
- One versus rest:
 - The algorithm compares every class with all the remaining classes, building a model for every class. If you have ten classes to guess, you have ten models.
- One versus one:
 - The algorithm compares every class against every individual remaining class, building a number of models
 equivalent to n * (n-1) / 2, where n is the number of
 classes.

Logistic Regression

 We can modify the multi-class strategy using the "multi_class" parameter when initialize the model

```
>>> logr3 =
linear_model.LogisticRegression(multi_class='multinomia
l') # the default value is "ovr"
>>> logr3.fit(Xtrain, ytrain)
ValueError: Solver liblinear does not support a
multinomial backend.
```

Logistic Regression

 We can show the predicted probability that the sample belong to different classes

```
>>> logr3.predict_proba(Xtest[0].reshape(1, -1))
array([[ 5.55e-05,  1.17e-01,  8.83e-01]])
```

Classification

SVM, Decision Tree, Neural Network

SVM

- In this example, we use SVM to classify the hand written digits.
- Load the dataset using datasets.load digits()
- There are 1797 data and 64 attributes each
- The SVM of sklearn is based on libsym

```
>>> digit = datasets.load_digits()
>>> digit.data.shape
(1797, 64)
>>> np.unique(digit.target)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

SVM

• Initialize the svm model with

```
sklearn.svm.SVC(
C=1.0,
kernel='rbf',
degree=3,
gamma='auto',
decision_function_shape='ovr'
)
```

SVM

```
>>> svc_model = sklearn.svm.SVC(gamma=0.001, C=100., kernel='linear')
>>> svc_model.fit(Xtrain, ytrain)
>>> svc_model.score(Xtrain, ytrain)
1.0
>>> svc_model.score(Xtest, ytest)
0.979999999999999998
```

SVM

- In the previous example we set the C, gamma, and the kernel type
- However, these parameter greatly affect the performance of the SVM
- Unfortunately there is not any formula to find these values
- The grid search use brute force search to evaluate every possible combination of C, gamma and kernel type

SVM

 sklearn provides grid search cross validation function to help determine the parameter

```
>>> from sklearn.grid_search import GridSearchCV
>>> parameter_candidates = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
'kernel': ['rbf']},]
>>> clf = GridSearchCV(estimator=svm.SVC(),
param_grid=parameter_candidates, n_jobs=-1)
>>> clf.fit(X_train, y_train)
```

SVM

```
>>> print('Best score for training data:',
clf.best_score_)
Best score for training data: 0.9844097995545658
>>> print('Best `C`:',clf.best_estimator_.C)
Best `C`: 10
>>> print('Best kernel:',clf.best_estimator_.kernel)
Best kernel: rbf
>>> print('Best `gamma`:',clf.best_estimator_.gamma)
Best `gamma`: 0.001
```

Dimensionality reduction

- Let's visualize the result of SVM
- Frist we have to reduce the dimension of the data such that we can locate it on 2-D plane
- sklearn.manifold.Isomap
- sklearn.decomposition.PCA

Dimensionality reduction

• PCA

```
>>> from sklearn.decomposition import PCA
>>> PCA
<class 'sklearn.decomposition.pca.PCA'>
>>> pca = PCA(n_components = 2)
>>> pca.fit(digit.data)
>>> pdata = pca.transform(digit.data)
>>> pdata.shape
(1797, 2)
```

Plot

Isomap

```
>>> from sklearn.manifold import Isomap
>>> isoData = Isomap().fit_transform(digit.data)

Predicted labels

Actual Labels

Actual Labels

100
-50
-100
-100
-150
-200
```

Decision Tree

```
sklearn.tree.DecisionTreeClassifier(
criterion='gini',
splitter='best',
max_depth=None,
min_samples_split=2,
max_features=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0)
```

Decision Tree

```
>>> Xtrain, Xtest, ytrain, ytest =
sklearn.model_selection.train_test_split(iris.data,
iris.target, test_size = 0.17)
>>> dct = sklearn.tree.DecisionTreeClassifier()
>>> dct.fit(Xtrain, ytrain)
>>> dct.score(Xtest, ytest)
0.92307692307692313
>>> dct.score(Xtrain, ytrain)
1.0
```

Decision Tree

- You can export the tree with sklearn.tree.export_graphviz()
- The output file will be .dot format
- Graphviz is an open source graph visualization software.
- Represent structural information as diagrams of abstracted graphs and networks

Decision Tree

- · Generate the tree structure file using
- >>> sklearn.tree.export_graphviz(dct,
 out file="tree.dot")
- Use the graphviz tool to generate the picture
- > dot.exe -Tpng tree.dot -o tree.png

Decision Tree

Neural Network

- sklearn.neural_network.MLPClassifier
- MLP stand for Multi-Layer Perceptron
- MLP is sensitive to feature scaling, so it is highly recommended to scale the data first.
- Either map the data to [0,1] or [-1, +1], or standardize it to have mean 0 and variance 1
- sklearn provides an easy way for scaling the data

Data scaling

```
    StandardScaler(copy=True, with_mean=True,
with_std=True)
```

```
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> scaler.fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
```

Neural Network

```
sklearn.neural_network.MLPClassifier(
hidden_layer_sizes=(100, ),
activation='relu',
solver='adam',
alpha=0.0001,
batch_size='auto',
learning_rate='constant',
learning_rate_init=0.001,
max_iter=200,
shuffle=True,
momentum=0.9,)
```

Neural Network

```
>>> Xtrain, Xtest, ytrain, ytest =
sklearn.model_selection.train_test_split(iris.data,
iris.target, test_size = 0.165)
>>> scalar.fit(Xtrain)
>>> Xtrain2 = scalar.transform(Xtrain)
>>> Xtest2 = scalar.transform(Xtest)
>>> mlp = MLPClassifier(hidden_layer_sizes = (15,))
>>> mlp.fit(Xtrain, ytrain)
>>> mlp.score(Xtrain, ytrain)
0.839999999999997
>>> mlp.score(Xtest, ytest)
0.80000000000000000004
```

Neural Network

```
>>> mlp.fit(Xtrain2, ytrain)
>>> mlp.score(Xtrain2, ytrain)
0.872
>>> mlp.score(Xtest2, ytest)
0.88
```

Clustering

KMeans

KMeans

- In this example, we are going to cluster the hand written digit from the digit dataset
- Since we know that there are only 10 digits, we know there should be 10 clusters

KMeans

```
sklearn.cluster.KMeans(
n_clusters=8,
init='k-means++',
n_init=10,
max_iter=300,
)
```

KMeans

```
>>> data = digit.data
>>> reduced_data = PCA(n_components=2).fit_transform(data)
>>> kmeans = KMeans(init='k-means++', n_clusters=10)
>>> kmeans.fit(data)
>>> result = kmeans.predict(data)
>>> plt.scatter(reduced_data[:,0], reduced_data[:,1], c = result)
>>> plt.show()
```

KMeans

KMeans

```
>>> kmeans.fit(reduced_data)
>>> result = kmeans.predict(reduced_data)
>>> plt.scatter(reduced_data[:,0], reduced_data[:,1], c
= result)
>>> plt.show()
```


Reference

- http://blog.csdn.net/puqutogether/article/details/42971617
- https://machine-learning-python.kspax.io/Introduction/intro.html
- http://dataaspirant.com/2017/02/01/decision-tree-algorithm-python-with-scikit-learn/
- http://scikit-learn.org/stable/

HW2

Spam letter classification

Spam letter classification

- Use the sklearn library to determine whether a letter is spam letter or not.
- The dataset is downloaded from https://archive.ics.uci.edu/ml/datasets/spambase
- 57 attributes, the last attribute marks the class of the data.

Spam letter classification

- In this homework, you will have to do the classification in 4 ways
 - Regression
 - Decision Tree
 - SVM
 - Neural Network

Format and rule

- You should hand-in only one file classification.py alone with one report.pdf zipped into one file
 - We will execute the script with the following command
 - python classification.py [R, D, S, N] train.csv test.csv
 - The R, D, S, N determines what method you are going to use to classify
 - Only one method will be specified each time
 - The train.csv contains all attributes include the class information
 - The test.csv does not contain the class information
 - An example of train.csv and test.csv is provided in the homework file.
 - You should generate one "predict.csv" every time we execute the script

Format

- The predict.csv contains the same number of rows with test.csv
- Each row has only one number 1 or 0, which is the predicted class of the test
- You should describe the design of your model in the report.
- You should also compare the accuracy of different method and explain the reason
- The training data and the testing data will be split randomly from the data when judging the score.
- Do remember to cross validate your model

Scoring

- There are 4 method, each worth 20 points (80% total)
 - 15 points for correct implementation
 - 5 points for the model accuracy
 - The top 30 students get 5 points
 - Passing the baseline gets 4 points
- The report worth 20 points
- Do not pre-train your model with the data
- The late submission penalty is 15 points per day
- We accept late submission for at most 2 days.