AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1		1-21 (Canceled).
1		22. (Currently amended) A computer An computer system for solving an
2	i	nterval global optimization problem specified by a function f and a set of equality
3	C	constraints, the computer system comprising:
4		a processing unit;
5		a memory;
6		an interval arithmetic unit within the processing unit, wherein the interval
7	а	arithmetic unit is configured to receive floating-point numbers representing a first
8	e	endpoint and a second endpoint for a first interval and floating-point numbers
9	r	representing a first endpoint and a second endpoint for a second interval, and is
10	c	configured to-simultaneously perform arithmetic operations to produce a first
11	ı e	endpoint and a second endpoint representing a resulting interval;
12		wherein computational code within the memory is configured to perform
13	а	nn interval global optimization process to compute guaranteed bounds on a
14	g	globally minimum value of the function $f(\mathbf{x})$ subject to the set of equality
15	c	constraints;
16		wherein the interval global optimization process is configured to,
17		apply term consistency to the set of equality constraints
18		over a subbox X, and to

19	exclude portions of the subbox X that can be shown by
20	using term consistency to violate any of the equality constraints.
1	23. (Previously presented) The computer-system of claim 22,
2	wherein the interval arithmetic unit includes a first input, wherein the first
3	input includes a first floating point number representing a lower bound of the first
4	input and a second floating point number representing an upper bound of the first
5	input; and
6	wherein the interval arithmetic unit includes a second input, wherein the
7	second input includes a third floating point number representing a lower bound of
8	the second input and a fourth floating point number representing an upper bound
9	of the second input.
1	24. (Previously presented) The computer-system of claim 22, wherein the
2	optimizer is configured to:
3	precondition the set of equality constraints through multiplication by an
4	approximate inverse matrix B to produce a set of preconditioned equality
5	constraints;
6	apply term consistency to the set of preconditioned equality constraints
7	over the subbox X ; and to
8	exclude portions of the subbox X that can be shown to violate any of the
9	preconditioned equality constraints.
1	25. (Previously presented) The computer-system of claim 22, wherein the
2	optimizer is configured to:
3	keep track of a least upper bound f_bar of the function $f(x)$;
4	unconditionally remove from consideration any subbox for which
5	$inf(f(\mathbf{x})) > f \ bar;$

apply term consistency to the inequality $f(\mathbf{x}) \leq f_bar$ over the subbox \mathbf{X} ; 1 2 and to 3 exclude portions of the subbox X that violate the inequality. 26. (Previously presented) The computer-system of claim 22, wherein the 1 2 optimizer is configured to: apply box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$ (i=1,...,r)3 over the subbox X; and to 4 exclude portions of the subbox X that violate the set of equality 5 constraints. 6 27. (Previously presented) The computer-system of claim 22, wherein the 1 2 optimizer is configured to: 3 evaluate a first termination condition; wherein the first termination condition is TRUE if a function of the width 4 of the subbox X is less than a pre-specified value, ε_X , and the absolute value of the 5 function, f, over the subbox **X** is less than a pre-specified value, ε_F ; and to 6 terminate further splitting of the subbox X if the first termination 7 condition is TRUE 8 28. (Previously presented) The computer-system of claim 22, wherein the 1 optimizer is configured to perform an interval Newton step on the John 2 conditions. 3