Robótica Móvil un enfoque probabilístico

Algoritmo Iterative Closest Point (ICP)

Ignacio Mas

Motivación

Objetivo: Encontrar la transformación que alinea puntos

Definición del problema

 Dados dos conjuntos de puntos que se corresponden:

$$X = \{x_1, ..., x_{N_x}\}$$
$$P = \{p_1, ..., p_{N_p}\}$$

 Objetivo: Encontrar la traslación t y rotación R que minimiza la suma de los errores al cuadrado:

$$E(R,t) = \frac{1}{N_p} \sum_{i=1}^{N_p} ||x_i - Rp_i - t||^2$$

Aquí, x_i y p_i son puntos que se corresponden

Concepto principal

 Si las correspondencias correctas son conocidas, la rotación y translación correcta pueden ser calculadas en forma cerrada

Centro de masa

$$\mu_x = \frac{1}{N_x} \sum_{i=1}^{N_x} x_i$$
 y $\mu_p = \frac{1}{N_p} \sum_{i=1}^{N_p} p_i$

Son los centros de masa de los dos conjuntos de puntos

Idea:

- Restar el centro de masa correspondiente de cada punto en los dos conjuntos antes de calcular la transformación
- Los conjuntos de puntos resultantes son:

$$X' = \{x_i - \mu_x\} = \{x'_i\}$$
 $P' = \{p_i - \mu_p\} = \{p'_i\}$

Descomposición en valores singulares

Sea
$$W = \sum_{i=1}^{N_p} x_i' p_i'^T$$

se define la descomposición en valores singulares (SVD) de W como:

$$W = U \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} V^T$$

donde $U,V\in\mathbb{R}^{3 imes3}$ son unitarias, y $\sigma_1\geq\sigma_2\geq\sigma_3$ son los valores singulares de W

SVD

Teorema (sin demostración):

Si rango(W) = 3, la solución óptima de E(R,t) es única y está dada por:

$$R = UV^T$$
$$t = \mu_x - R\mu_p$$

El valor mínimo de la función de error en (R,t) es:

$$E(R,t) = \sum_{i=1}^{N_p} (||x_i'||^2 + ||y_i'||^2) - 2(\sigma_1 + \sigma_2 + \sigma_3)$$

ICP con asociación de datos desconocida

 Si las correspondencias correctas no son conocidas, es en general imposible determinar la rotación y translación relativa óptima en un solo paso

Algoritmo Iterative Closest Point (ICP)

- Idea: Iterar para encontrar alineamientos
- Búsqueda de puntos cercanos [Besl & McKay 92]
- Converge si las posiciones iniciales están lo "suficientemente cerca"

Algoritmo básico ICP

- Determinar los puntos que se corresponden
- Calcular rotación R, translación t por SVD
- Aplicar R y t a los puntos de conjunto a ser registrado
- Calcular el error E(R,t)
- Si el error decrece y error > umbral
 - Repetir los pasos anteriores
- Sino
 - Finalizar y devolver la alineación final

Ejemplo ICP

Variantes de ICP

Se han propuesto distintas variantes al método original:

- 1. Subconjuntos de puntos (de uno o ambos conjuntos de puntos)
- 2. Pesado de correspondencias
- 3. Asociación de datos
- 4. Rechazo de ciertos puntos (outliers)

Desempeño de variantes

- Varios aspectos del desempeño:
 - Velocidad
 - Estabilidad (mínimos locales)
 - Tolerancia a ruido y outliers
 - Cuencas de convergencia (desalineamiento máximo inicial)

Variantes de ICP

- 1. Subconjuntos de puntos (de uno o ambos conjuntos de puntos)
 - 2. Pesado de correspondencias
 - 3. Asociación de datos
 - 4. Rechazo de ciertos puntos (outliers)

Selección de puntos de entrada

- Usar todos los puntos
- Submuestreo uniforme
- Muestreo aleatorio
- Muestreo basado en características (features)
- Muestreo de espacio normal (Asegurarse que las muestras tienen distribuciones de normales tan uniformes como sea posible)

Muestreo de espacio normal

Muestreo uniforme

Muestreo de espacio normal

Comparación

 El muestreo de espacio normal es mejor para superficies mayormente suaves y con pocas features [Rusinkiewicz et al., 01]

Muestreo aleatorio

Muestreo de espacio normal

Comparación

 El muestreo de espacio normal es mejor para superficies mayormente suaves y con pocas features [Rusinkiewicz et al., 01]

Muestreo basado en características

- Encontrar puntos "importantes"
- Disminuye el número de correspondencias a encontrar
- Más eficiente y más preciso
- Requiere pre-procesamiento

Scan 3D (~200.000 Puntos)

Características extraídas (~5.000 puntos)

Aplicación ICP (con muestreo uniforme)

Variantes de ICP

- 1. Subconjuntos de puntos (de uno o ambos conjuntos de puntos)
- 2. Pesado de correspondencias
 - 3. Asociación de datos
 - 4. Rechazo de ciertos puntos (outliers)

Pesos

- Seleccionar un subconjunto de puntos de cada conjunto
- Machear los puntos seleccionados de ambos conjuntos
- Pesar los pares correspondientes
- Ejemplo: asignar pesos bajos a puntos con mayor distancia ente ellos
- Determinar la trasformación que minimiza la función de error

Variantes de ICP

- 1. Subconjuntos de puntos (de uno o ambos conjuntos de puntos)
- 2. Pesado de correspondencias

- 3. Asociación de datos
 - 4. Rechazo de ciertos puntos (outliers)

Asociación de Datos

- Tiene mayor incidencia en convergencia y velocidad
- Métodos de macheo:
 - Punto más cercano
 - Normal shooting
 - Punto compatible más cercano
 - Basado en proyección

Macheo por punto más cercano

 Encontrar el punto más cercano del otro conjunto (usando árboles kd)

Estable, pero de convergencia lenta y requiere pre-procesamiento

Normal Shooting

 Proyectar en la dirección normal, hasta encontrar el otro conjunto

Convergencia algo mejor para estructuras suaves, peor para estructuras ruidosas o complejas

Punto compatible más cercano

- Mejora las dos variantes previas al considerar la compatibilidad entre puntos
- Sólo machea puntos compatibles
- La compatibilidad se puede basar en
 - Normales
 - Colores
 - Curvatura
 - Derivadas de orden mayor
 - Otras características locales

Métrica de error de punto-al-plano

 Minimiza la suma de las distancias al cuadrado entre un punto y el plano tangente en su punto correspondiente [Chen & Medioni 91]

Métrica de error de punto-al-plano

- Se resuelve usando métodos estándar de cuadrados mínimos no-lineales (ej: método de Levenberg-Marquardt [Press92]).
- Cada iteración es más lenta que el macheo punto-a-punto, pero los tiempo de convergencia son mejores [Rusinkiewicz01]
- Al usar distancias de punto-al-plano en vez de punto-a-punto permite que regiones planas se deslicen una sobre otra [Chen & Medioni 91]

Proyección

- Encontrar el punto más cercano es el paso más costoso del algoritmo ICP
- Idea: Simplificar la búsqueda del vecino más cercano
- Para imágenes de distancia, se pueden proyectar los puntos según el punto de vista [Blais 95]

Variantes ICP

- 1. Subconjuntos de puntos (de uno o ambos conjuntos de puntos)
- 2. Pesado de correspondencias
- 3. Asociación de datos

Rechazo de pares de puntos (Outlier)

 Puntos correspondientes con una distancia punto-a-punto mayores que cierto umbral

Rechazo de pares de puntos (Outlier)

- Puntos correspondientes con una distancia punto-a-punto mayores que cierto umbral
- Rechazo de pares que no son consistentes con los pares vecinos [Dorai 98]

Rechazo de pares de puntos (Outlier)

- Puntos correspondientes con una distancia punto-a-punto mayores que cierto umbral
- Rechazo de pares que no son consistentes con los pares vecinos [Dorai 98]
- Clasificar correspondencias según su error y borrar el t% peor: Trimmed ICP (TrICP) [Chetverikov et al. 02]
 - t estima la superposición
 - Problema: se debe tener conocimiento de la superposición o debe ser estimada

Resumen: Algoritmo ICP

- Potencialmente muestrear puntos
- Determinar los puntos que se corresponden
- Potencialmente pesar/rechazar pares
- Calcular la rotación R y translación t (ej.: SVD)
- Aplicar R y t a todos los puntos de conjunto a ser registrado
- Calcular el error E(R,t)
- Si el error disminuye y error > umbral
 - Repetir para determinar correspondencias
- Sino
 - Finalizar y devolver resultado de alineación

Resumen ICP

- ICP es un buen algoritmo para calcular desplazamientos entre escaneos
- El mayor problema es determinar la asociación de datos correcta
- La convergencia depende de los puntos macheados
- Dada la asociación de datos correcta, la transformación se puede calcular de forma eficiente usando SVD
- ICP no siempre converge