Processamento de Imagens com MATLAB

Carlos Alexandre Mello

- Toolboxes
 - Image Processing
 - Diretório:
 - o toolbox/images/images

- Comando imshow():
 - Visualização de imagens
 - Uso:
 - o imshow(nome_do_arquivo ou variável)
 - Exemplo:
 - o imshow('eight.tif')
 - Exemplo:
 - o im = imread('eight.tif');
 - o imshow (im);

- E/S de arquivos de imagem
 - imread
 - Lê um arquivo de imagem
 - O Uso:
 - A = imread(filename)
 - Exemplo:
 - A = imread('eight.bmp')

- E/S de arquivos de imagem
 - Leitura de Imagem BMP
 - o [im, map] = imread ('nome.bmp')
 - Imagem indexada
 - Map armazena a paleta de cores
 - o im = imread ('nome.bmp')
 - Imagem em 24 bits
 - im é uma matriz m x n x 3
 - R = im(:, :, 1); % Componente de vermelho
 - G = im(:, :, 2); % Componente de verde
 - B = im(:, :, 3); % Componente de azul

- Dimensões de uma imagem
 - Função size
 - o [lin, col] = size (im);
 - % Para imagens em tons de cinza e preto e branco
 - [lin, col, plan] = size (im);
 - % Para imagens coloridas (plan = 3, indicando que é uma estrutura com 3 matrizes). Para imagens em tons de cinza ou preto-e-branco, se usado esse parâmetro, ele terá valor 1
 - % Se não usado aqui, a imagem ficará com o número de colunas multiplicado por 3

- E/S de arquivos de imagem
 - imwrite
 - Escreve uma imagem para um arquivo gráfico
 - O Uso:
 - imwrite(A, filename, FMT)
 - FMT = formato
 - Exemplo:
 - imwrite (A, 'eight.bmp', 'bmp')

- Visualização
 - image
 - Mostra uma matriz C como uma imagem
 - O Uso:
 - image(C)
 - Exemplo:
 - >> C = round(255*rand(255));
 - >> image(C);
 - Se não especificada, é usada a paleta de cores default

- Conversão entre Resoluções de Cores
 - dither
 - Dithering de uma imagem pelo método de Floyd-Steinberg
 - O Uso:
 - X = dither (im)
 - X = Imagem em preto-e-branco
 - im = Imagem em tons de cinza

- Conversão entre Resoluções de Cores
 - im2bw
 - Converte uma imagem para preto-e-branco
 - O Uso:
 - BW = im2bw(X, level)
 - X = Imagem original
 - level = Valor de corte (threshold): 0 ≤ level ≤ 1

• Exemplo:

```
im = imread('lena.bmp');
bw = im2bw(im, 0.4);
imshow(bw);
```


- Conversão entre Resoluções de Cores
 - rgb2gray
 - Converte uma imagem RGB para uma imagem em tons de cinza
 - O Uso:
 - I = rgb2gray(RGB)
 - RGB = imagem original true color
 - Exemplo:

```
A = imread('flowers.tif');
I = rgb2gray(A);
imshow(I);
```


- Conversão entre Tipos
 - rgb2ind
 - Converte uma imagem RGB para uma imagem indexada
 - O Uso:
 - [X, NEWMAP] = rgb2ind (RGB, N)
 - RGB = imagem 24 bits de entrada
 - NEWMAP = paleta de cores final
 - N = Número de Cores

- Tipos de Imagens
 - isbw
 - Verdadeiro para imagens preto e branco
 - isgray
 - o Verdadeiro para imagens em tons de cinza
 - isind
 - Verdadeiro para imagens indexadas

- Operações Geométricas
 - imresize
 - Altera o tamanho de uma imagem
 - O Uso:
 - B = imresize(A, M, 'method')
 - Retorna uma matriz que é M vezes maior (ou menor) que a imagem A
 - M pode ser também as novas dimensões: M = [m n]
 - 'method' =
 - nearest = vizinho mais próximo
 - bilinear = interpolação bilinear
 - bicubic = interpolação bicúbica

- Operações Geométricas
 - imresize
 - Exemplo:
 - >> A = imread('eight', 'tif');
 - >> B = imresize (A, 0.5, 'nearest');
 - >> imshow(B)

- >> A = imread('eight', 'tif');
- >> B = imresize (A, [100 50], 'nearest');
- >> imshow(B)

- Operações Geométricas
 - imrotate
 - Rotaciona uma imagem
 - O Uso:
 - B = imrotate(A, Ângulo, 'method');
 - Method = nearest, bilinear ou bicubic
 - Exemplo:
 - >> A = imread ('eight.tif');
 - >> B = imrotate (A, 45, 'nearest');
 - >> imshow(B)

- Valores de Pixels e Estatísticas
 - imhist
 - Histograma de uma imagem
 - Uso:
 - imhist(A): histograma de 256 cores
 - imhist(A, N): histograma de N cores

- Valores de Pixels e Estatísticas
 - mean2
 - Média de uma matriz
 - Uso:
 - mean2(A)
 - std2
 - Desvio padrão bidimensional
 - Uso:
 - std2(A)

- Realce de imagem
 - histeq
 - Equalização de Histograma
 - imnoise
 - Adiciona ruído a uma imagem
 - O ruído pode ser gaussiano, salt & pepper ou speckle
 - o Exemplo: J = imnoise(A, 'gaussian');

- Filtragem
 - imfilter
 - Filtro digital para matriz
 - O Uso:
 - imfilter(im, h) Filtra a imagem im usando o filtro definido pela matriz h
 - Bordas
 - X (constante, se não definido, assume valor zero), symmetric (reflexão), replicate (cópia do elemento mais próximo), circular (periódico)

- Filtragem
 - filter2
 - Exemplo:
 - o >> l=imread('rice.bmp');
 - o >> imshow(l);

- Filtragem
 - filter2
 - o » h=[1 2 1; 0 0 0; -1 -2 -1];
 - o » I2 = imfilter(I, h);
 - o» imshow(I2)

- Filtragem
 - nlfilter
 - Filtro não-linear
 - Exemplo:
 - » l=imread('rice.bmp');
 - » f=inline('max(l(:))'); % define uma função
 - » I2=nlfilter(I,[3 3],f); % processa a vizinhança
 - » imshow(I2)

- Filtragem
 - nlfilter

- Filtragem
 - Processamento em blocos
 - OB=blkproc(A,[M N], FUN)
 - Processa a imagem A aplicando sobre ela a função FUN a cada bloco MxN distinto de A
 - Exemplo:
 - » I =imread('rice.tif');
 - » f=inline('uint8(round(mean2(x)*ones(size(x))))');
 - » I2=blkproc(I,[8 8],f);
 - » imshow(l2)

- Filtragem
 - Processamento em blocos

- Filtragem
 - fspecial
 - Cria um filtro 2D de um tipo específico
 - gaussian
 - sobel
 - prewitt
 - laplacian
 - log
 - average
 - unsharp

Filtragem

- fspecial
 - Exemplo:
 - » h=fspecial('laplacian');
 - » l2=imfilter(l, h);
 - » imshow(I2)

Filtragem

- fspecial
 - Exemplo:
 - » h=fspecial('sobel');
 - » I2=imfilter(I, h);
 - » imshow(I2)

- Análise de Imagem
 - Edge:
 - Extração de bordas
 - O Uso:
 - BW = edge(A, 'method');
 - o Exemplo:
 - A = imread('rice', 'tif');
 - BW = edge (A, 'sobel');
 - imshow(BW);

```
method = 

sobel roberts prewitt log zerocross
```


- Manipulação de Paleta de Cores
 - brighten
 - O Clareia ou escurece uma paleta de cores
 - O Uso:
 - brighten(BETA)
 - Se 0 < BETA < 1: A paleta é clareada
 - Se -1 ≤ BETA < 0: A paleta escurece

- Imagens carregadas no formato uint8
- É preciso convertê-lo para outro formato para algumas operações
- Operações com imagens
 - Dadas duas imagens com as mesmas dimensões:

```
A = imread ('imagem1', 'ext');
B = imread ('imagem2', 'ext');
C = uint8(double(A) + double(B));
imshow (C);
```


Transformada de Hough

```
Your letter w
will be a precious souvenir to
written by you and your brother
similar monument of filial piet
That is a very great debt indee
one I owed to your Father for m
```

Imagem Original

Imagem Rotacionada 10° sentido anti-horário

Transformada de Hough

Função no MatLab

```
function y=posrot(x)
BW=edge(x);
theta=0:179;
[R,xp]=radon(double(BW),theta);
imagesc(theta,xp,R); colormap(hot);
xlabel('\theta (degrees)');ylabel('x'"); colorbar;
maxr = max(max(R));
tam=size(R);
for i=1:tam(1)
 for j=1:tam(2)
   if (R(i,j)==maxr)
     posi=i; posj=j;
   end
 end
end
y=90-posj;
```


Transformada de Hough

Resultado= -11°

- Operações morfológicas
 - strel
 - Define um elemento estruturante
 - disk, circle, line, square, octagon, rectangle
 - o se = strel('disk', 15);

- Operações morfológicas
 - imerode
 - imdilate
 - Erosão e dilatação

```
>> se = strel('disk', 3);
>> im = imread('blob1.bmp');
>> bw1 = imerode (im, se);
>> bw2 = imdilate (im, se);
```


- Operações morfológicas
 - Para complementar uma imagem de duas cores:

o im = ~im;

Imagem original

Imagem complementada

- Operações morfológicas
 - Abertura e Fechamento

Imagem original

Abertura

Fechamento

```
•
```

```
im = imread('zero-zero.bmp');
se = strel ('disk', 5);
bw1 = imopen(im, se);
bw2 = imclose(im, se);
```


- Operações morfológicas
 - Esqueletização e Afinamento

Imagem original

Esqueletização

Afinamento


```
im = imread('zero-zero.bmp');
im = ~im;
bw1 = bwmorph (im, 'skel', 'inf');
bw2 = bwmorph (im, 'thin', 'inf');
```


- Operações morfológicas
 - bwmorph
 - o endpoints
 - Encontra terminações em esqueletos
 - o branchpoints
 - Encontra pontos de cruzamento em esqueletos
 - o e diversas outras funções

- Operações morfológicas
 - bwlabel
 - Legenda os componentes conectados de uma imagem binária
 - Os objetos são os elementos em branco
 - Cada região em branco conectada recebe uma legenda de 1 a n
 - É atribuída a legenda 0 para todas as regiões em preto

- Operações morfológicas
 - bwlabel
 - o [legenda, n] = bwlabel(im); % n = 1
 - o imagesc(legenda);

- Operações morfológicas
 - bwlabel
 - o [legenda, n] = bwlabel(im); % n = 5
 - o imagesc(legenda);

Criação de função

```
function im2 = teste(nome)
im = imread(nome);
[lin, col] = size(im);
for i = 1:lin
   for j=1:col
   end
end
imwrite (im2, 'saida.bmp', 'bmp');
```

