Functions

Given sets A and B, a <u>function from A to B</u> is a <u>rule</u> f that associates with <u>each</u> element of A exactly one element of B.

If f associates $x \in A$ with $y \in B$, then we write $\boxed{f(x) = y}$ and say "f of x is y", or "f maps x to y", or the "value of f at x is y". If f is function from A to B, then we write: $\boxed{f:A \to B}$. We call A the **domain of** f, and B **the codomain of** f.

- **every** element of the domain has to be mapped somewhere in the codomain (but **not everything** in the codomain has to be a value of a domain element)
- one element cannot be mapped to 2 different places
 (but it can happen that 2 different elements are mapped to the same place)

Functions and not functions

Let H be the set of all humans, alive or dead. Let's make some $H \to H$ associations and discuss whether each is a $H \to H$ function or not.

- f(x) is a parent of x
 - This f is NOT a function, because people have two parents.
- f(x) is the mother of x
 - This f is a $H \to H$ function, because each person has exactly one mother.
- f(x) is the oldest child of x
 - This f is NOT a $H \to H$ function, because some person has no children.
- f(x) is the set of all children of x
 - Though this f is a function, it is NOT a $H \to H$ function, because each person is associated with a **set** of people rather than one person.
 - (This f is a $H \rightarrow P(H)$ function.)

Different ways of describing functions

FOR EXAMPLE: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$.

• We can describe a function $f: A \to B$ by listing all its associations:

$$f(a) = 1,$$
 $f(b) = 1,$ $f(c) = 2.$

• We can describe the same f by drawing points and arrows:

• We can describe the same f by drawing its 'graph':

More examples of $f: A \rightarrow B$ functions

• A function is a rule. Sometimes we can describe this rule by a single formula: Let $A = B = \mathbf{Z}$. For every $x \in \mathbf{Z}$, let

$$f(x) = 6x + 28$$

Then, for example, $f(2) = 6 \cdot 2 + 28 = 40$, f(0) = 28, f(-113) = -650, ...

Sometimes the rule can only be described by case distinction:

Let $A = B = \mathbf{N}$. For every $n \in \mathbf{N}$, let

$$g(n) = \begin{cases} 2^n, & \text{if } n \text{ is odd,} \\ 3n^2 + n + 1, & \text{if } n \text{ is even} \end{cases}$$

Then, for example, $g(4) = 3 \cdot 4^2 + 4 + 1 = 53$, $g(3) = 2^3 = 8$, ...

And the rule does not have to be described by a formula at all:

Let $A = \{E \mid E \text{ is a healthy African elephant}\}$ and $B = \{e \mid e \text{ is an elephant ear}\}.$

For every $E \in A$, let $\ell(E) = E$'s left ear

Some useful functions

• The <u>floor function</u> $igl[\ \]: \mathbf{R} o \mathbf{Z} \ igr]$ assigns to any real number x

the largest integer that is less than or equal to x.

For example: $\lfloor \frac{1}{2} \rfloor = 0$, $\lfloor -\frac{3}{2} \rfloor = -2$, $\lfloor 3.2 \rfloor = 3$, $\lfloor 9 \rfloor = 9$.

• The <u>ceiling function</u> $[\]: \mathbf{R} \to \mathbf{Z}]$ assigns to any real number x the smallest integer that is greater than or equal to x.

For example: $\left\lceil \frac{1}{3} \right\rceil = 1$, $\left\lceil -\frac{5}{4} \right\rceil = -1$, $\left\lceil 5.3 \right\rceil = 6$, $\left\lceil 7 \right\rceil = 7$.

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$
$$\lfloor -x \rfloor = -\lceil x \rceil$$
$$\lceil -x \rceil = -\lfloor x \rfloor$$

Functions with multiple arguments

If the domain of a function f is a Cartesian product $A_1 \times \cdots \times A_n$, we say that \underline{f} has arity n, or \underline{f} is an n-ary function, or \underline{f} has n arguments. In this case, for each n-tuple $(x_1, \ldots, x_n) \in A_1 \times \cdots \times A_n$,

 $f(x_1,\ldots,x_n)$ denotes the value of f at (x_1,\ldots,x_n) .

A function f with two arguments is also called a **binary function**.

For binary functions, we have the option of writing f(x,y)=z in the form x = z (such as, 4+5=9 instead of +(4,5)=9).

Tuples and sequences are functions

A tuple can be thought of as a function.

FOR EXAMPLE: The 5-tuple (22, 14, 55, 1, 700) can be thought of as a listing of the values of the function $f: \{0,1,2,3,4\} \rightarrow \mathbf{N}$ defined by

$$f(0) = 22,$$
 $f(1) = 14,$ $f(2) = 55,$ $f(3) = 1,$ $f(4) = 700.$

Similarly, an infinite sequence of objects can also be thought of as a function.

FOR EXAMPLE: Suppose that $(b_0, b_1, \ldots, b_n, \ldots)$ is an infinite sequence of objects from a set S. Then this sequence can be thought of as a listing of the values of the function $f: \mathbf{N} \to S$ defined by

$$f(n) = b_n$$
.

Functions are special binary relations

A function $f: A \to B$ can be considered as a relation from A to B:

$$\{(a,b) \in A \times B \mid f(a) = b\}$$

Relations that are also functions have two special properties:

- for every $a \in A$ there is some $b \in B$ with (a,b) being in the relation (every element of the domain has to be mapped somewhere in the codomain)
- and no two ordered pairs in the relation have the same first element (one element **cannot** be mapped to 2 different places)

FOR EXAMPLE:

 $\{(x,y) \in \mathbb{N} \times \mathbb{N} \mid y=x-1\}$ is NOT a function. $\{(x,y) \in \mathbf{Z} \times \mathbf{Z} \mid y = x - 1\}$ is a function.

 $\{(x,y) \in \mathbf{N} \times \mathbf{R} \mid x = y^2\}$ is NOT a function.

 $\{(x,y) \in \mathbf{N} \times \mathbf{N} \mid x=y^2\}$ is NOT a function.

 $\{(x,y) \in \mathbb{N} \times \mathbb{N} \mid y=x^2\}$ is a function.

WHY?

- 0 is not mapped
- f(n) = n 1
- (25,5) and (25,-5) are both in
- 2 is not mapped
- $f(n) = n^2$

Properties of functions

• A function $f: A \to B$ is called **one-to-one** (or **injective**)

if it maps distinct elements of A to distinct elements of B.

Another way to say this: f is one-to-one if for all elements x,y in A, if $x \neq y$ then $f(x) \neq f(y)$.

• A function $f: A \to B$ is called **onto** (or **surjective**)

if every element b in B can be obtained as b = f(a) for some a in A.

In general, this might not be the case. If f is an $A \to B$ function, this just means that for every $a \in A$, we have $f(a) \in B$. But the **range of** f

$$\mathsf{range}(f) = \{ f(a) \in B \mid a \in A \}$$

can be a **proper subset** of B.

A function is called a bijection if it is both one-to-one and onto.

Examples

Bijections and inverses

Bijections always come in pairs. If $f:A\to B$ is a bijection, then there is a function $f^{-1}:B\to A$, called the **inverse of** f defined by

$$f^{-1}(b) = a$$
 whenever $f(a) = b$

Then f^{-1} is also a bijection, and we have

•
$$f^{-1}(f(a)) = a$$
, for every $a \in A$,

$$f(f^{-1}(b)) = b$$
, for every $b \in B$.

FOR EXAMPLE: Let *Odd* and *Even* be the sets of odd and even natural numbers, respectively. Define a function $f: Odd \rightarrow Even$ by f(n) = n - 1.

Then f is a bijection and its inverse f^{-1} : Even $\to Odd$ is defined by

$$f^{-1}(n) = n + 1$$
.

Some important functions

For every set A, its identity function $id_A: A \to A$

is defined by, for all $a \in A$,

$$\mathsf{id}_A(a) = a$$

Then id_A is a bijection and its inverse is itself.

Let S be a set. For every subset $A \subseteq S$, its **characteristic function**

 $f_A: S \to \{0,1\}$ is defined by, for all $x \in S$,

$$f_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A \end{cases}$$

Say, if $A \subseteq \mathbf{N}$ then $f_A : \mathbf{N} \to \{0,1\}$ can be represented by an infinite 0-1 sequence.

Describing $N \to N$ functions by recursion

The factorial function:

Basis step: f(0) = 1 and f(1) = 1.

Recursive step: If n > 1 then $f(n) = f(n-1) \cdot n$.

We used to write n! for f(n).

The Fibonacci function:

Leonardo Fibonacci asked in 1202: Let's start with a pair of rabbits that needs one month to mature, and assume that every month each pair produces a new pair that becomes productive after one month. How many **new pairs** are produced each month?

Basis step: f(0) = 0 and f(1) = 1.

Recursive step: If n > 1 then f(n) = f(n-2) + f(n-1).

 $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$

Combining functions: composition

Let $q:A\to B$ and $f:B\to C$ be functions.

The **composition of** f and g is the function $| (f \circ g) : A \to C |$ defined by

$$(f\circ g):A o C$$
 defined by

$$(f \circ g)(a) = f(g(a))$$

for each $a \in A$.

We **only** define the composition $f \circ q$ when

"codomain of q'' = "domain of f''!

Composition of functions: examples

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Let function $g: X \to X$ be defined by

$$g(a) = b,$$
 $g(b) = c,$ $g(c) = a,$

and function $f: X \to Y$ be defined by

$$f(a) = 3,$$
 $f(b) = 2,$ $f(c) = 1.$

Then:

- $(f \circ g)(a) = f(g(a)) = f(b) = 2$, $(f \circ g)(b) = f(g(b)) = f(c) = 1$, $(f \circ q)(c) = f(q(c)) = f(a) = 3.$
- $(g \circ g)(a) = g(g(a)) = g(b) = c$, $(q \circ q)(b) = q(q(b)) = q(c) = a$ $(g \circ g)(c) = g(g(c)) = g(a) = b.$
- Watch out: $f \circ f$ and $g \circ f$ are not defined!

Properties of composition

Even if both are defined, $f \circ q$ and $q \circ f$ can be different: Let f and q be both $\mathbf{Z} \to \mathbf{Z}$ functions, defined by f(x) = 2x + 3 and q(x) = 3x + 2. Then:

$$(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7,$$

 $(g \circ f)(x) = g(f(x)) = g(2x+3) = 3(2x+3) + 2 = 6x + 11.$

- \circ is associative: $|f \circ (q \circ h)| = (f \circ q) \circ h$
- If $f: A \to B$ is a bijection then

$$f^{-1} \circ f = \mathrm{id}_A$$
 and $f \circ f^{-1} = \mathrm{id}_B$

For any function $f: A \to B$,

$$f \circ \mathsf{id}_A = \mathsf{id}_B \circ f = f$$

Comparing finite sets

It is not hard to compare the sizes of finite sets:

we simply count the number of elements in each.

If finite sets have the same number of elements, then there is always a <u>bijection</u> between them.

And infinite sets?

Idea: Two infinite sets have the same size if there is bijection between them.

We call a set A **countable** if it is either finite or there is a bijection between A and \mathbf{N} .

FOR EXAMPLE:

- As $id_N : N \to N$ is a bijection, N is countable.
- Let Odd be the set of odd natural numbers.

Strangely enough, even if $Odd \subset N$, it has the same size as N:

The function $f: \mathbf{N} \to Odd$ defined by

$$f(x) = 2x + 1$$

is a bijection.

N×N is countable

We need to describe a bijection between $N \times N$ and N.

We arrange the ordered pairs in $\mathbf{N} \times \mathbf{N}$ in such a way that they can be easily counted:

$$(0,0) \longleftrightarrow 0,$$

$$(0,1), (1,0), \longleftrightarrow 1, 2,$$

$$(0,2), (1,1), (2,0), \longleftrightarrow 3, 4, 5,$$

$$(0,3), (1,2), (2,1), (3,0), \longleftrightarrow 6, 7, 8, 9,$$

$$\dots$$

We can describe this $\mathbf{N} \times \mathbf{N} \to \mathbf{N}$ bijection by

$$(m,n) \longleftrightarrow (1+2+\cdots+(m+n))+m.$$

But not all sets are countable

The power set $P(\mathbf{N})$ of \mathbf{N} is NOT countable:

 $\neg \exists f (f \text{ is a bijection between } \mathbf{N} \text{ and } P(\mathbf{N}))$

In other words, there are more subsets of numbers than numbers.

WHY? We show that $\forall f \text{ (if } f: \mathbf{N} \to P(\mathbf{N}) \text{ then } f \text{ is not onto)}$:

Let $f: \mathbf{N} \to P(\mathbf{N})$ be an arbitrary function.

Then, for every $n \in \mathbb{N}$, f(n) is a subset of \mathbb{N} .

Now take the following subset D_f of \mathbf{N} : $D_f = \{n \in \mathbf{N} \mid n \notin f(n)\}$

$$D_f = \{ n \in \mathbf{N} \mid n \notin f(n) \}$$

We show that D_f is not in the range of f, that is, for every $n \in \mathbb{N}$, $|D_f \neq f(n)|$: Take an arbitrary $n \in \mathbb{N}$. Then there are two cases, either $n \in D_f$ or $n \notin D_f$.

If $n \in D_f$, then n should have the property describing D_f , so $n \notin f(n)$

$$\leadsto$$
 $D_f \not\subseteq f(n)$

If $n \notin D_f$, then the property describing D_f does not hold for n, so $n \in f(n)$

$$\rightsquigarrow f(n) \not\subseteq D_f$$