Rocket Launch Cost Prediction: First Stage Landing Success

VidyaHarkal 13 Apr 2025

OUTLINE

- Executive Summary
- Introduction
- Methodolog /
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Predicting the success of the Falcon 9 first stage landing
- Understanding the factors that contribute to successful landings
- Estimating the overall cost of a launch
- Providing valuable insights for companies seeking to bid against SpaceX
- Developing a predictive model that determines the likelihood of successful first stage landings.

INTRODUCTION

- Falcon 9 cost 62 million dollars whereas other cost 165 million
- Space X reuses Falcon9 first stage
- SpaceX's unique ability to reuse the first stage of the Falcon 9 rocket has significantly reduced launch costs compared to traditional providers.

METHODOLOGY

- Data Collection through:
 - SpaceX API
 - Web Scrapping
- **Data Wrangling**
- Data Analysis & Visualization using:
 - SQL
 - Pandas
 - Folium
 - Matplotlib & Seaborn
- ML Prediction of the Successful First stage Landing

METHODOLOGY: EDA & Interactive Visual Analytics (1/3)

Visualize the relationship between Flight Number and Launch Site

Visualize the relationship between Payload and Launch Site

METHODOLOGY: EDA & Interactive Visual Analytics (2/3)

Success rate of each orbit type

METHODOLOGY: Predictive Analysis

- Larger the flight amount at a launch site, the greater the success rate at a launch site.
- ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

RESULTS: EDA & Interactive Visual Analytics (3/3)

Visualize the relationship between FlightNumber and Orbit type

Visualize the relationship between Payload Mass and Orbit type

RESULTS: EDA With SQL (1/4)

 Unique launch sites in the space mission

 Total & Average payload mass carried by boosters launched by NASA (CRS)

RESULTS: EDA With SQL (2/4)

 First successful landing date

firstsuccessfull_landing_date 2015-12-22 Booster Version

RESULTS: EDA With SQL (3/4)

Successful Outcomes

 Booster_versions which have carried the maximum payload mass

	boosterversion	payloadmasskg
0	F9 B5 B1048.4	15600
1	F9 B5 B1048.5	15600
2	F9 B5 B1049.4	15600
3	F9 B5 B1049.5	15600
4	F9 B5 B1049.7	15600
5	F9 B5 B1051.3	15600
6	F9 B5 B1051.4	15600
7	F9 B5 B1051.6	15600
8	F9 B5 B1056.4	15600
9	F9 B5 B1058.3	15600
10	F9 B5 B1060.2	15600
11	F9 B5 B1060.3	15600

RESULTS: EDA With SQL (4/4)

 Failed landing outcomes in drone ship

	boosterversion	launchsite	landingoutcome
0	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
1	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Count of landing outcomes

	landingoutcome	count	
0	No attempt	10	
1	Success (drone ship)	5	
2	Failure (drone ship)	5	
3	Success (ground pad)	5	
4	Controlled (ocean)	3	
5	Uncontrolled (ocean)	2	
6	Precluded (drone ship)	1	
7	Failure (parachute)	1	

RESULTS: Interactive map with Folium (1/3)

All launch sites on a map

RESULTS: Interactive map with Folium (2/3)

Success/Failed launches for each site on the map

RESULTS: Interactive map with Folium (3/3)

• Distances between a launch site to its proximities

RESULTS: Plotly Dash dashboard (1/3)

Plotly Dashboard: All sites launch records

RESULTS: Plotly Dash dashboard (2/3)

Plotly Dashboard: Site CCAFS SLC 40 launch records

RESULTS: Plotly Dash dashboard (3/3)

Plotly Dashboard: Booster version and Payload

RESULTS: Predictive Analysis Classification Results (1/5)

Grid Search: Accuracy on the test data using the method score

RESULTS: Predictive Analysis Classification Results (2/5)

Support Vector Machine: Accuracy on the test data using the method

score

RESULTS: Predictive Analysis Classification Results (3/5)

Tree Classifier: Accuracy on the test data using the method score

RESULTS: Predictive Analysis Classification Results (4/5)

• K nearest neighbour: Accuracy on the test data using the method score

RESULTS: Predictive Analysis Classification Results (5/5)

Best performing Model: Decision Tree (Score=88%)

```
+ Code | + Markdown
   models = {
        "KNeighbors": knn cv.best score ,
       "DecisionTree": tree cv.best score ,
       "LogisticRegression": logreg cv.best score,
        "SupportVector": svm cv.best score,
   bestalgorithm = max(models, key=models.get)
   print(f"Best model is {bestalgorithm=}, with a score of, {models[bestalgorithm]}")
   if bestalgorithm == "DecisionTree":
       print("Best params is :", tree_cv.best_params_)
   if bestalgorithm == "KNeighbors":
       print("Best params is :", knn_cv.best_params_)
   if bestalgorithm == "LogisticRegression":
       print("Best params is :", logreg cv.best params )
   if bestalgorithm == "SupportVector":
       print("Best params is :", svm cv.best params )
Best model is bestalgorithm='DecisionTree', with a score of, 0.8875
Best params is : {'criterion': 'entropy', 'max_depth': 12, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'splitter
```

Launch sites

CONCLUSION

KSC LC-39A achieved a 76.9% success rate while aettina a 23.1% failure rate

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.