Periodic Table of Elements v4.4

	Super Se	Gas NO		nversions m = 101.3 J				Equilib			Quantum		Solu	tions (cont.)		Walent (Wa)				
	HBr	NO_2	K = '	$^{\circ}$ C + 273.15				When $a{\sf A}+b{\sf B}$ $K_c =$		E_{photor}	$h = hf = \frac{hc}{\lambda} =$	$\Rightarrow c = \lambda f$	$\Delta T_b = K_b mi$,	fmi	1 Walent = $0.082 \text{ L(mol K)}^{-1}$				
	HCI HNO ₃	CO CO ₂		$\frac{5}{9}({}^{\circ}F - 32)$ $\frac{9}{5}{}^{\circ}C + 32$				$K_c = \frac{[A]^a[B]^b}{(P_A)^a(P_B)^b}$			$\lambda = \frac{h}{mv}$ $= 1.097 \times$	$10^7 \; \mathrm{m}^{-1}$		$S_g = kP_g$						
		H_2SO_4 CH_4 1 cal		$\frac{5}{5}$ C + 32 = 4.184 J				$K_a = K_a$	$(P_A)^a(P_B)^b = [H^+][A^-]$		$\frac{1}{\lambda} = R_H \left(\frac{1}{n_i^2} - \right)$	$\left(\frac{1}{n^2}\right)$	$\Pi = \left(\frac{n}{V}\right)R$	T = MRT		R=1 Walentmosphere (Wam)				
	HCIO:		1 lb =	= 453.59 g		eriodic Trends		$K_a = \frac{0}{2}$			$-2.18 \times 10^{-18} \text{ J}$			$_{\rm er}) = (0.512, 1.86)$		= 1 Walentorr				
	C			=760 mmHg r=101.325 kPa	\mathbb{Z}_{eff} increase $ ightarrow_{\downarrow}$ EN, IE, & EA increase $ ightarrow \uparrow$			$K_w = K_a K_b = K_a K_b$	[-]			$n_f^2 = n_i^2$		$_{ ext{ter}} = 6.008 \text{ kJ/m}$		$1 \text{ m}^3 = 8.2 \times 10^{-5} \text{ Wamokel (Wal)}$				
				$^{5} \text{ Pa} = 10^{5} \text{ N/m}^{2}$	Radius & Metallic decrease →↑			$K_w = 1.0 \times 1$	$0^{-14} (25^{\circ} \text{ C})$	-	hermo/Electro	chem		$_{\rm c}=40.67~{\rm kJ/m}$		ldeal Gas at STP: 1.837 Wake (Wk)				
		SO_3					pl	$H = pK_a + \log \frac{[p]}{[p]}$			T , $\Delta E = q + w$, H			$f_{ce} = 2.093 \text{ J/(g}^{c}$						
	SO ₂			Constants $N_A = 6.02214 \times 10^{23} \text{mol}^{-1}$				$pH + pOH \ K_a = -\log K_a, p$		$\Delta S^{\circ} =$	$\sum_{products} S^{\circ} - \sum_{products} S^{\circ} - \sum_{\mathsf$	$\sum_{\text{reactants}} S^{\circ}$		$_{\text{ter}} = 4.184 \text{ J/(g}^{\circ}$ $_{\text{tem}} = 1.841 \text{ J/(g}^{\circ}$						
1	□2 Hydrogen	H ₂ H ₂ S Avogadro' ydrogen HCI Faraday C				$N_A = 6.02214 \times 10^{23} \text{mol}^{-1}$ $F = 96485.33 \text{ C mol}^{-1}$					ewise for ΔH° and $G^{\circ} = \Delta H^{\circ} - 1$		estea	im — 1.041 3/ (8	C)					
	1.01	2 IIA	Atomic M	Atomic Mass Constant		$.660538 \times 10^{-27}$	kg	Gasses/So		=	$-RT \ln K = -$	$-nFE^{\circ}$	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium 4.00		
	2 0.00		Molar Gas	s Constant	$R = 8.3145 \text{ J (mol K)}^{-1}$ $R = 0.082057 \text{ L atm (mol K)}^{-1}$		V^{-1} P_A	$PV = P_{total} X_A$, when		- E	$I = rac{q}{t}$ cell $= E_{ ext{cell}}^{\circ} - rac{R'}{nH}$	$\frac{T}{=} \ln Q$						10		
	3 0.98 Li	4 1.57				L torr (mol K)	1	$P_{\text{total}} = P_A + P$	$P_B + P_C + \cdots$	es	cell n	F & .	5 2.04 B	6 2.55 C	7 3.14 N ₂	8 3.44	9 3.98 E -	10 No		
2	L ∎ Lithium	Be Beryllium		s Constant	$k_e = 8.987$	$7551 \times 10^9 \; \text{N m}^2$	C^{-2}	$M=rac{ ext{moles solute}}{ ext{Liters solution}}, \ m=rac{ ext{moles solute}}{ ext{kg solvent}} \ M_1V_1 = M_2V_2 \ ext{for dilution}$			Kinetics		Boron	Carbon	Nitrogen	O ₂ Oxygen	F ₂ Fluorine	Ne Neon		
	6.94	9.01		Light (Vacuum) n Constant		$ imes 10^8~{ m m~s^{-1}} \ 7 imes 10^{-23}~{ m J~K^{-1}}$	ı	$STP = 273.15 \; K \; and \; 1.0 \; atm$			$-[A]_0 = -k $) th order)	10.81	12.01	14.01	16.00	19.00	20.18		
	11 0.93	12 1.31	Charge on	a Proton/Electi	ron $e = 1.602$	$\times 10^{-19} \text{ C}$		At STP, ideal gas tandard conditior		$\ln[A]_t$	$-\ln[A]_0 = -kt$	(1st order)	13 1.61	14 1.90	15 2.19	16 2.38	17 3.16 Cl ₂	18		
3	Na	Mg	Planck's (Constant eat cap. of H ₂ O	h = 6.626 $c = 4.18 k$		3	$v_{rms} =$		$\overline{[A]_t}$	$-\frac{1}{[A]_0} = kt \ (2^t)$ $/2 = \frac{0.693}{t} \ (1^{st})$	order)	AI	Si	P	S		Ar		
	Sodium	Magnesium	Specific in	eat cap. of 1120	(I) $C = 4.10 \text{ K}$	ong C		$v_{rms} - \sqrt{\mathcal{M}}$			$/2 - \frac{1}{t}$	order)	Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon		
	22.99	24.31	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	IB 8 VIIIB 9 VIIIB 1		10 VIIIB	10 VIIIB 11 IB 12 IIB			28.09	30.97	32.06	35.45	39.95		
	19 0.82	20 1.00	21 1.36			24 1.66	25 1.55	26 1.83	27 1.88	28 1.91	29 1.90	30 1.65	31 1.81	32 2.01 33 2		34 2.55	35 2.96	36 3.00		
1	K	Ca	Sc	Ti	23 1.63 V	Cr*	Mn	Fe	Co	Ni	Cu*	Zn	Ga	Ge	As	Se	Br ₂	Kr		
4	Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc ⁽²⁺⁾	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton		
	39.10	40.08			50.94 52.00		54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80		
	37 0.82	38 0.95	39 1.22	40 1.33	41 1.6	42 2.16	43 1.9	44 2.2	45 2.28	46 2.20	47 1.93	48 1.69	49 1.78	50 1.96	51 2.05	52 2.1	53 2.86	54 2.60		
5	Rb	Sr	Υ	Zr	Nb★	Mo★	Tc			Pd**	Ag★	Cd	In	Sn	Sb	Te	I_2	Xe		
5	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver ⁽¹⁺⁾	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon		
	85.47	87.62	88.91	91.22	92.91	95.95 (98)		101.07	102.91	106.42	107.87 112.41		114.82	118.71	121.76	127.60	126.90	131.29		
	55 0.79	56 0.89	57-71	72 1.3	73 1.5	74 2.36	75 1.9	76 2.2	77 2.20	78 2.28	79 2.54	80 2.00	81 1.62	82 1.87	83 2.02	84 2.0	85 2.2	86 2.2		
6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	lr	Pt★	Au★	Hg	TI	Pb	Bi	Po	At	Rn		
Ū	Caesium 132.91	Barium 137.33	Lanthanide	Hafnium	Tantalum	Tungsten	Rhenium 186.21	Osmium 190.23	Iridium 192.22	Platinum	Gold	Mercury	Thallium 204.38	Lead 207.2	Bismuth 208.98	Polonium (209)	Astatine (210)	Radon (222)		
	152.91	137.33		178.49 180.95 183.84		100.21	190.23	192.22	195.08	196.97 200.59		204.30	201.2	200.90	(203)	(210)	(222)			
	87 0.7	88 0.9	89-103	104	105	106	107	108	109	110 Ds	111	112	113	114	115	116	117	118		
7	Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Darm-	Rg	Cn	Nh	FI.	Mc	Lv	Ts	Og		
	Francium (223)	Radium (226)	Actinide .	Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (277)	Meitnerium (278)	stadtium	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (290)	Livermorium (293)	Tennessine (294)	Ogannesson (294)		
					()	()	(' ' ')		()	(281)		()	()	()	()	()	(-)	(-)		
	Alkali Metal Alkaline-Eart Metal		Z E.N.	57 1.1	58 1.12	59 1.13	60 1.14	61 1.13	62 1.17	63 1.2	64 1.2	65 1.1	66 1.22	67 1.23	68 1.24	69 1.25	70 1.1	71 1.27		
			Sym	La	Ce	Pr	Nd	Pm Promethium	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
	1	Metalloid	Name : mass :	Lanthanum 138.91	Cerium 140.12	Praseodymium 140.91	Neodymium 144.24	(145)	Samarium 150.36	Europium 151.96	Gadolinium 157.25	Terbium 158.93	Dysprosium 162.50	Holmium 164.93	Erbium 167.26	Thulium 168.93	Ytterbium 173.05	Lutetium 174.97		
		Non-metal Halogen		J																
	1	Noble Gas	nido	89 1.1	90 1.3 Th	91 1.5	92 1.38	93 1.36	94 1.28	95 1.13	96 1.28	97 1.3	98 1.3	99 1.3	100 1.3	101 1.3	102 1.3	103 1.3		
		Lanthanide/Acti Synthetic	mue	Ac Actinium		Pa Protactinium	U Uranium	Np Neptunium	Pu Plutonium	Am Americium	Cm Curium	Bk Berkelium	Cf Californium	Es Einsteinium	Fm Fermium	Md Mendelevium	No Nobelium	Lawrencium		
		ufbau Exception	1	(227)	Thorium 232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(266)		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Polyato	Polyatomic lons	
ammonium 1- 1- (Cro ₄) ⁻² (Cr ₂ O ₇) ⁻² nitrate hydroxide bicarbonate or hydrogen carbonate chlorate chlorate cyanide hypochlorite bisulfate or hydrogen sulfate dihydrogen phosphate dihydrogen phosphate cyanide cyanide cyanide dihydrogen phosphate dihydrogen phosphate hypoiodite (SiO ₄) ⁻³ (PO ₄) ⁻³ amide formate		1+		2-
nitrate nitrite hydroxide bicarbonate or hydrogen carbonate chlorate chlorate chlorite hypochlorite cyanide dihydrogen phosphate dihypoiodite hypoiodite formate form	$(\mathrm{NH_4})^{+1}$	ammonium	$(CrO_4)^{-2}$	chromate
nitrate hydroxide bicarbonate or hydrogen carbonate chlorate chlorate cyanide thiocyanate dihydrogen phosphate dihydrogen phosphate dihydroiodite formate form		1-	$(Cr_2O_7)^{-2}$	dichromate
hydroxide bicarbonate or hydrogen carbonate coetate coetate chlorate chlorate chlorate cyanide thiocyanate dihydrogen phosphate dihydrogen phosphate dihypoiodite charte cyanide dihydrogen phosphate dihydrogen phosphate formate for	$(NO_3)^{-1}$	nitrate	$(CO_3)^{-2}$	carbonate
hydroxide bicarbonate or hydrogen carbonate acetate (O ₂) ² (S ₂ O ₃) ² perchlorate chlorate chlorate chorite hypochlorite cyanide thiocyanate dihydrogen phosphate dihydrogen phosphate formate formate formate formate formate formate formate hydrogin differ formate formate	$(NO_2)^{-1}$	nitrite	$(\mathrm{HPO_4})^{-2}$	dibasic phosphate or
bicarbonate or hydrogen carbonate acetate (O ₂) ⁻² (O ₂) ⁻² (So ₃) ⁻² (So ₃) ⁻² chlorate chlorate (C ₂ O ₄) ⁻² (SO ₃) ⁻² (C ₂ O ₄) ⁻² hypochlorite cyanide thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate (C ₆ H ₅ O ₇) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ amide formate formate	(OH) ⁻¹	hydroxide		<u>hydrogen phosphate</u>
hydrogen carbonate acetate acetate (O ₂) ⁻² (S ₂ O ₃) ⁻² perchlorate (SO ₄) ⁻² (SO ₄) ⁻² (SO ₄) ⁻² (AsO ₄) ⁻³ thiocyanate hypochlorite cyanide thiocyanate dihydrogen phosphate dihydrogen phosphate (C ₆ H ₅ O ₇) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ periodate hypoiodite (SiO ₄) ⁻³ (SiO ₄) ⁻⁴ amide	$(HCO_3)^{-1}$	<u>bicarbonate</u> or		
acetate $(S_2O_3)^{-2}$ perchlorate $(SO_4)^{-2}$ chlorate $(SO_3)^{-2}$ chlorite hypochlorite $(SO_3)^{-2}$ cyanide thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate $(C_6H_5O_7)^{-3}$ periodate iodate hypoiodite $(SiO_4)^{-4}$ amide $(SiO_4)^{-4}$		hydrogen carbonate	$(MnO_4)^{-2}$	manganate
perchlorate chlorate chlorate chlorite hypochlorite cyanide thiocyanate dihydrogen phosphate dihydrogen phosphate hypoiodite formate formate formate formate formate formate formate chlorate (SO ₄) ⁻² (AsO ₄) ⁻³ (AsO ₄) ⁻³ (AsO ₃) ⁻³ (BO ₃) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ amide	$(C_2H_3O_2)^{-1}$	acetate	$(O_2)^{-2}$	peroxide
perchlorate chlorate chlorate chlorite hypochlorite cyanide thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate cholorite (AsO ₄) ⁻² (AsO ₄) ⁻³ (BO ₃) ⁻³ permanganate dihydrogen phosphate (C ₆ H ₅ O ₇) ⁻³ (PO ₄) ⁻³ periodate iodate hypoiodite (SiO ₄) ⁻⁴ amide			$(S_2O_3)^{-2}$	thiosulfate
chlorate chlorite hypochlorite cyanide thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate choosing periodate hypoiodite choosing (C ₆ H ₅ O ₇) ⁻³ (PO ₄) ⁻³ amide formate	$(C1O_4)^{-1}$	perchlorate	$(\mathrm{SO_4})^{-2}$	sulfate
chlorite hypochlorite cyanide thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate cyanide thiocyanate (AsO ₄) ⁻³ (AsO ₄) ⁻³ (BO ₃) ⁻³ permanganate dihydrogen phosphate (C ₆ H ₅ O ₇) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ amide formate	$(C10_3)^{-1}$	chlorate	$(SO_3)^{-2}$	sulfite
cyanide cyanide thiocyanate thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate dihydrogen phosphate periodate hypoiodite (SiO ₄) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ amide	$(CIO_2)^{-1}$	chlorite	$(C_2O_4)^{-2}$	oxalate
cyanide thiocyanate thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate dihydrogen phosphate periodate hypoiodite (SiO ₄) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ (PO ₄) ⁻³ amide	(CIO) ⁻¹	hypochlorite		
cyanide thiocyanate thiocyanate bisulfate or hydrogen sulfate dihydrogen phosphate dihydrogen phosphate $(C_6H_5O_7)^{-3}$ periodate iodate hypoiodite $(SiO_4)^{-4}$ amide formate	,			3-
thiocyanate bisulfate or hydrogen sulfate permanganate dihydrogen phosphate (C ₆ H ₅ O ₇) ⁻³ (PO ₄) ⁻³ periodate iodate hypoiodite (SiO ₄) ⁻⁴ amide	(CN)-1	cyanide	$(AsO_4)^{-3}$	arsenate
bisulfate or hydrogen sulfate permanganate dihydrogen phosphate (C ₆ H ₅ O ₇) ⁻³ (PO ₄) ⁻³ periodate iodate hypoiodite (SiO ₄) ⁻⁴ amide formate	(SCN)-1	thiocyanate	$(AsO_3)^{-3}$	arsenite
permanganate dihydrogen phosphate $(C_6H_5O_7)^{-3}$ $(PO_4)^{-3}$ periodate $(PO_3)^{-3}$ iodate $hypoiodite$ $SiO_4)^{-4}$ amide formate	$(\mathrm{HSO_4})^{-1}$	bisulfate or hydrogen sulfate	$(BO_3)^{-3}$	borate
dihydrogen phosphate $(C_6H_5O_7)^{-3}$ periodate $(PO_4)^{-3}$ iodate $(PO_3)^{-3}$ hypoiodite $(SiO_4)^{-4}$ amide formate	$(MnO_4)^{-1}$	permanganate	,	
periodate $(PO_4)^{-3}$ iodate $(PO_3)^{-3}$ hypoiodite $(SiO_4)^{-4}$ amide formate	$(H_2PO_4)^{-1}$	dihydrogen phosphate	$(C_6H_5O_7)^{-3}$	citrate
periodate $(PO_3)^{-3}$ iodate hypoiodite $(SiO_4)^{-4}$ amide formate			$(PO_4)^{-3}$	phosphate or tribasic phosphate
iodate hypoiodite amide formate	$(10_4)^{-1}$	periodate	$(PO_3)^{-3}$	phosphite
hypoiodite $(SiO_4)^{-4}$ amide formate	$(10_3)^{-1}$	iodate		-4-
	1-(OI)	hypoiodite	$(\mathrm{SiO_4})^{-4}$	silicate (ortho)
	(NH ₅) ⁻¹	amide		
	$(\mathrm{CHO}_2)^{-1}$	formate		

Atomic Ions	-1	F-1 Fluoride	Br-1 Bromide]	-2		Oride Oxide								-3		N ⁻³ Nitride	P-3 Phosphide	,			
Atomi	+1	Li ⁺¹ Lithium Na ⁺¹ Sodium	K ⁺¹ Potassium	Cu^{+1} Copper (I)	+2	Mg ⁺² Magnesium		Ba ⁺² Barium	•			Fe^{+2} Iron (II)	Mn ⁺² Manganese (II)	II) uii I	+3	Aluminum Aluminum	$ \operatorname{Fe}^{+3} $ Iron (III)			Pb ⁺⁴ Lead (IV)		Mn ⁺⁴ Manganese (IV)