머신러닝 프로젝트

Process Roadmap

ANALYSIS PROJECT > PHASE

Planning

- 비즈니스 도메인이 해하기
- 프로젝트 목표정의 하기
- 데이터 이해하기
- 평가 기준정의
- 위험 관리계획
- 프로젝트 계획 수립

• GIOLE

02

Data preparing

- 데이터 정의
- 레거시-시스템-이해
- <u>◆ 데이터-수집-및 저</u> 장
- 에이터 탐색
- 데이터 시각화
- 데이터-품질 확인
- <u>• 데이터-저장소디자</u> 인

03

Data analyzing

- 테스트-디자인-생성
- 가설 수립 및검증
- 변수 선택
- 비정형-데이터 분석
- 정형 데이터분석
- 모델 선택
- 모델 구축
- 모델 평가

System

developing

- •모델 이해하기
- 운영 데이터 준비
- <u>시스템-개발-계획수</u> 립
- 사스템-설계
- 시스템-개발
- 모델 확인
- 테스트

Deploying

- 배포 계획 수립
- 모니터링-및-유자 보수 모델 및 시스 템
- · 재건축 모델 및 시 스템 계획
- 모델 유효성검사
- 프로젝트 마무리

05

01

System developing

웹 애플리케이션을 구축하지 않는다면 System developing 단계에서의 활동은 하지 않아도 됩니다.

Planning Phase

ANALYSIS PROJECT > PHASE > Planning

Planning

- 비즈니스 도메인이 해하기
- 프로젝트 목표**정의** 하기
- 데이터 이해하기
- 평가 기준정의
- 위험 관리계획

프로젝트 계획 수립

0

1

Project Plan

- Objective
- Plan Point
- Goal (Quantitative, Qualitative)
- Analytic (Classification, Estimation, Prediction, Association, Clustering)
- Assess Criteria (Quality)
- Required Data
- Teaming
- Time Box Schedule
- Risk Management

Project Sponsorship

- Quantitative Measurement(정 양적 측정) 목표는 통계로 측정됩니다.
- Qualitative Measurement(정 성적 측정) 목표는 어떤 통계 없이 관리자의 관찰에 의해 측정됩니다.

Fill in the blanks

ANALYSIS PROJECT > PHASE > Planning

	보험사기자 예측	My Project
Objective	보험 사기자로 예상되는 사람들 분 류	
Plan Point	사기자 예측	
Goal (Quantitative, Qualitative)	보험사기자 예측률 향상	
Analytic (Classification, Estimation, Prediction, Association, Clustering)	일반인과 사기자로 분류 (Classification)	
Assess Criteria (Quality)	F-measure를 이용한 모델 검증	
Required Data	고객 데이터	
Teaming	팀 편성	
Time Box Schedule	프로젝트 일정표	
Risk Management	일정지연, 팀원손실 등 위험관리	

Data preparing Phase

ANALYSIS PROJECT > PHASE > Data preparing

Data preparing

- · 데이터 정의
- <u>▲ 레거시 시스템 이해</u>
- <u>▲ 데이터 수집 및 저장</u>
- 데이터 탐색
- 데이터 시각화
- <u>▲ 데이터 품질 확인</u>
- <u> 데이터 저장소디자인</u>

02

Data Acquirement

- Structured/Unstructured Data
- Data Item Definition
- Legacy ERD/Meta Data/Process
- Data Life Cycle
- Data Storing Design (RDB, NoSQL, HDFS, ...)

Data Quality

- Understanding Missing & Outlier Data
- EDA
- Consistent Data Quality

Fill in the blanks

ANALYSIS PROJECT > PHASE > Data preparing

	보험사기자 예측	My Project
Structured/Unstructured Data	데이터 재구조화, 데이터 병합	
Data Item Definition	테이블 및 변수 정의서 참고	
Legacy ERD/Meta Data/Process	관계 없음	
Data Life Cycle	2016년 데이터	
Data Storing Design (RDB, NoSQL, HDFS, ···)	csv 파일 형식	
Understanding Missing/Outlier	NA, NULL 값 등 결측치 처리	
EDA	기본 통계량 확인, 데이터 탐색	
Consistent Data Quality	관계 없음	

Data analyzing Phase

ANALYSIS PROJECT > PHASE > Data analyzing

Data analyzing

- <u>• 테스트 디자인생성</u>
- 가설수립 및 검증
- 변수 선택
- <u>비정형 데이터분석</u>
- 정형 데이터 분석
- 모델 선택
- 모델 구축
- 모델 평가

03

→ Model

- Handling Missing & Outlier Data
- Selection Variables, Derived Data
- Advanced Analytics Results (Classific ation, Estimation, Prediction, Associa tion, Clustering)
- Model Evaluation
- Considering Overfitting
- Model Algorithm Description

Assessing Model

- Model Assessing Criteria
- Training Data, Test Data, Validation Data

Fill in the blanks

ANALYSIS PROJECT > PHASE > Data analyzing

	보험사기자 예측	My Project
Understanding Missing & Outlier Data	결측치, 이상치 처리	
Selection Variables, Derived Data	변수 선택(PCA, SVMRFE 등)	
Advanced Analytics Results	NNet, SVM, XGBoost 등을 이용한 분류(Classification)	
Model Evaluation	F-measure를 이용한 모델 검증	
Considering Overfitting		
Model Algorithm Description	NNet, SVM, XGBoost	
Model Assessing Criteria	F-measure가 얼마인가?	
Training Data, Test Data, Validation Data	Training Set 70%, Test Set 30%	

가설 수립 리스트

변수 선택 및 추가 시나리오

개인 특성에 따른 가설

- ★ 고객의 성별, 나이에 따라 사기자 비율이 달라지지 않을까?
- ★ FP경력에 따라 사기자 비율이 달라지지 않을까?
- ★ 지역에 따라 사기자 비율이 달라지지 않을까?
- ★ 주거 타입에 따라 사기자 비율이 달라지지 않을까?
- ★ 고객 소득이 낮을 수록 사기자 비율이 낮지 않을까?

고객 로그 정보에 따른 가설

- ★ 사기자들은 보험 클레임을 많이 걸지 않을까?
- ★ 사기자들이 특정 병원 종류를 선호하지 않을까?
- ★ 금감원 유의 병원에 갔으면 사기자로 의심해야 할까?
- ★ 사기자들은 자기부담금 비율이 낮지 않을까?
- ★ 사기자들이 선호하는 청구사유가 있지 않을까?
- ★ 입원일수가 증가할 수록 사기자 비율이 증가하지않을까?
- ★ 사기자들이 선호하는 보험상품 종류가 있지 않을까?

가설에 따른 파생변수 추가

Data Sampling ANALYSIS PROJECT > PHASE > Data analyzing

Training Set & Test Set

이미 분류되어 있는 데이터 셋에 대하여 트레이닝 셋과 테스트 셋으로 나누고 트레이닝 셋을 이용하여 학습 모델을 생성한다. 테스트셋과 예측 데이터를 비교한 검정 통계량 확인을 통하여 모델의 적합도를 확인한다.

ML(Classification) Model

ANALYSIS PROJECT > PHASE > Data analyzing

모델링을 위해 어떤 패키지와 어떤 모델 알고리즘을 사용 할 것인가?

분류 모델의 평가 측도

ANALYSIS PROJECT > PHASE > Deploying

	$_N$ Predicted Target $_Y$		
N Actual	True/Negative 실제 N, 예측 N	False/Positive 실제 N, 예측 Y	
Target Y	False/Negative 실제 Y, 예측 N	True/Positive 실제 Y, 예측 Y	
혼동 행렬(Confusion Matrix)			
다양한 모델 평가 방법들 • TCO(Total Cost of Ownership) • ROI(Return Of Investment) • IRR(Internal Rate of Return) • NPV(Net Present Value) • PP(Payback Period) • RMSE(Root Mean Square Error) • MAPE(Mean Absolute Percentile Error)			
○ JavaSp	ecialist.co.kr		

메트릭	계산식	의미
정밀도 (Precision)	TP $FP + TP$	Y으로 예측된 것 중 실제로도 Y인 경우의 비율
민감도 (Recall)	TP $FN + TP$	실제로 Y인 것들 중 예측이 Y로 된 경우 비율(=Sensitivity)
정확도 (Accuracy)	TP + TN $TP + FP + FN + TN$	전체 예측에서 옳은 예측의 비율
특이도 (Specificity)	TN $FP + TN$	실제로 N인 것들 중에서 예측이 N으로 된 경우의 비율
오류율 (FP Rate)	FP $FP + TN$	Y가 아닌데 Y로 예측된 비 율.(=error rate) 1-Specificity와 같 은 값
F–measure	2 * (Precision * Recall) (Precision + Recall)	Precision과 Recall의 조화 평균. 시스템의 성능을 하나의 수치로 표현하기 위해 사용하는 점수. 0~1사이의 값을 가짐. Precision 과 Recall 두 값이 골고루 클 때 큰 값을 가짐.
Kappa	$K = \frac{Paccuracy - P(e)}{1 - P(e)}$	코헨의 카파. 두 평가자의 평가가 얼마나 일치하는지 평가하는 값. 0~1사이의 값을 가짐. P(e)는 두 평가자의 평가가 우연히 일치할 확률. 코헨의 카파는 두 평가자의 평가가 우연히 일치할 확률을 제 외한 뒤의 점수.

Lab ANALYSIS PROJECT > PHASE > Data analyzing

Step 1

R Review

R Review Ma chine Learning

R_Review.R M achine Learning.R

Step 2

Preprocessing

데이터 전처리 데이터 탐색 데이터 탐색 후 변수 제 거

> Lab_1-1.R Lab_1-2.R Lab_1-3.R

Step 3

Model Test

결측치 추정 파생 변수추가 변수 선택 기 계학습 학습 모델 평가

> Lab_2-1.R Lab_2-2.R Lab_2-3.R Lab_2-4.R Lab_2-5.R

Step 4

Modeling

Training Set & Pre diction Data Set M L을 이용한 분류 모 델 검증

> Lab_3-1.R Lab_3-2.R Lab_3-3.R

모델 선택

ANALYSIS PROJECT > PHASE > Data analyzing

VS

Neural Net

R 'nnet' PACKAGE

학습시간: 15~25min

사기자 F-MESURE : 평균60%

정상인 F-MESURE : 평균96%

Neural network 인간뇌의신경회로망에서수행하 는정보처리방식을모방한알고리

XGBoost

R 'xgboost' PACKAGE

학습시간: 5~30sec

사기자 F-MESURE : <mark>평균62%</mark>

정상인 F-MESURE : 평균97%

Boosting
잘못분류된개체들에집중하여새
로운분류규칙을만드는단계를반
복하는방법

Random Forest

R 'randomForest' PACKAGE

학습시간: 5~10min

사기자 F-MESURE : 평균58%

VS

정상인 F-MESURE : 평균96%

Bagging
단순복원임의추출법을통해원자료로부
터크기가동일한여러개의표본자료를 추 출해각모델링하여평균이나보팅하 는방 법

Comments

샘플링을여러번시행해평균값을계산함

