Nuclear and Elementary Particle Physics

Instructor: Siamak Gousheh Shahid Beheshti University

Fall 2022

Problem Set 4

This is an optional problem set for a maximum of two points as extra credit, to be added to your final grade. You can solve and send them to us by 11:59 PM of 2nd Bahman.

- 1. Suppose we have a collection of protons and neutrons at temperature T. Explain how and which heavier nuclei can be produced, as the temperature drops. Such a mechanism, called the Big Bang Nucleosynthesis, is believed to have occurred in the early universe, and after the recombination, these nuclei have become neutral atoms.
- 2. Using atomic mass tables in Atomic Mass Data Center (nds.iaea.org/amdc), compute the binding nergy of the "last neutron" that is, the energy required to remove a neutron from the following nuclei.
 - (a) H^2
 - (b) C^{13}
 - (c) U^{235}
- 3. Complete the following reactions and determine their Q-values.
 - (a) $Al^{27}(d,p)$
 - (b) $Li^6(p,\alpha)$
 - (c) $U^{235}(n,2n)$
 - (d) $U^{236}(\alpha, n)$
- 4. In nuclear reactors a newly-formed radioactive isotope A may be transformed into another isotope B by neutron absorption befor it has had an opportunity to decay. Neutron absorption occurs at a rate proportional to the amount of isotope A present in the system. If the proportionality constant is denoted by c, and the rate of production (atoms of A/sec) is denoted by R(t), show that the number of atoms of isotope A present in the reactor at time t is given by

$$n(t) = n_0 e^{-(\lambda + c)t} + e^{-(\lambda + c)t} \int_0^t e^{(\lambda + c)t'} R(t') dt', \tag{1}$$

where n_0 is the number of atoms of A present at t = 0.

- 5. Estimate quantitatively the neutrino flight path required for neutrino oscillations.
 - (a) Consider first the oscillation, mainly between ν_{μ} and ν_{τ} , mediated by θ_{23} . Assume a pure ν_{μ} source. Using the parameters of this oscillation given in the NuFIT (nu-fit.org), compute the position of the first maximum for ν_{τ} appearance and the position of the succeeding zero, for ν_{μ} energies of 1 GeV and 20 GeV (for neutrinos from an accelerator source).

- (b) Now consider the oscillation between ν_e and other species that gives rise to the oscillation of solar neutrinos. Compute the position of the first maximum for ν_{μ} appearance (or maximal ν_e disappearance) and the position of the succeeding zero, for ν_e energies of 1 MeV (for reactor or solar neutrinos) and 1 GeV and 20 GeV.
- 6. This problem will give you a chance to dip into the tables of elementary particle properties produced by the Particle Data Group (pdg.lbl.gov) and to use this information to understand better the systematics of ψ family particle decays.

To work this problem, you should recall that a decay rate in quantum mechanics is given by a partial width $\Gamma(A \rightarrow f)$, with units of energy. A partial width gives the rate of a basic quantum mechanical process. The total width of a resonance is

$$\Gamma_A = X f \Gamma_A(A \rightarrow f)$$

That is, it is the sum of the rates for all possible decay processes. The lifetime of the resonance is $\tau = \hbar/\Gamma_A$. The branching ratio to the decay channel f, the probability that a particular decay of A gives the final states f, is

$$BR(A \rightarrow f) = \Gamma(A \rightarrow f)/\Gamma_A$$

Usually, it is easiest to meaure branching ratios, but the real physics is in the actual rates. To obtain these, we must extract the partial widths from the information that we are given.

- (a) The J/ψ can decay in four different ways. (1) decay by $c\bar{c}$ annihilation directly to hadrons, (2) decay by $c\bar{c}$ annihilation to a virtual photon (a short-lived state of electromagnetic fields), which then materializes into an e^+e^- or μ^+ μ^- pair. The J/ψ is produced in e^+e^- annihilation by e^+e^- annihilation into a virtual photon which then materializes as a J/ψ . This decay is the reverse of that process, (3) decay by $c\bar{c}$ annihilation to a virtual photon, which then materializes into hadrons, (4) decay to 1 photon plus hadrons. There is also a decay to 3 photons with a very small branching ratio (about 10^5). Look up the listing for the J/ψ at the Particle Data Group (pdg.lbl.gov). The heading "pdgLive" gives the most recently updated information. Look under $c\bar{c}$ to find the information for the J/ψ . The entry $J/\psi \rightarrow ggg$ gives the branching ratio for direct decays to hadrons, mode (1) above. Similarly, the entry $J/\psi \rightarrow ggg$ gives the branching ratio for mode (4) above. Write the branching ratio for each of the decay modes (1)–(4). (These should add up to 100%, within the measurement errors.) Using the tabulated total width, find the partial width for each channel.
- (b) The $\psi(2S)$ can decay by the 4 modes above and also by 3 additional modes: (5) decay to the heavy lepton τ^+ τ^- , (6) decay to J/ ψ plus hadrons (π π , π θ , or η), (7) radiative decay to the 1P states χ_c . Using the information in the entry for the $\psi(2S)$, write the branching ratio for each of the decay modes (1)–(7). (Again, these should add up to 100%, within the measurement errors.) Using the tabulated total width, find the partial width for each channel.
- (c) Compute the ratios of the partial widths be tween the J/ψ and the $\psi(2S)$ for each of the processes (1)–(4). How do these ratios compare? Why would this result be expected?