Machine learning y deep learning

Rolando Gonzales Martinez, PhD

Fellow postdoctoral Marie Skłodowska-Curie

Universidad de Groningen (Países Bajos)

Investigador (researcher)

Iniciativa de Pobreza y Desarrollo Humano de la Universidad de Oxford (UK)

Objetivos de aprendizaje

Desarrollar habilidades para analizar datos cuantitativos con ML y DL en la práctica:

- Comprender qué herramientas cuantitativas están disponibles
- Entender cuándo usar esas herramientas
- Saber cómo usar esas herramientas

¿Cuáles son sus objetivos? ¿Qué les gustaría aprender en la clase?

(1) Introducción a la Inteligencia Artificial y su Historia

- · Orígenes y evolución de la inteligencia artificial.
- · Hitos importantes y figuras clave en el desarrollo de la IA.
- · Discusiones sobre las promesas y desafíos de la IA.

(2) Introducción a Machine Learning

- Definición y tipos de aprendizaje: supervisado, no supervisado y por refuerzo.
- Herramientas y lenguajes de programación más utilizados.
- · Laboratorio de introducción a Python.

(3) Fundamentos de Machine Learning

- · Preprocesamiento de datos: limpieza, normalización y transformación de datos.
- · Selección y extracción de características.
- · Modelos de regresión y clasificación: árboles de decisión, bosques aleatorios, máquinas de soporte vectorial, redes elásticas y otros modelos y algoritmos
- Laboratorio: Implementación de modelos de machine learning básicos.

(4) Evaluación y Mejora de Modelos

- Métodos de validación cruzada.
- · Técnicas de ajuste de hiper parámetros (Grid Search, Random Search).
- Laboratorio: validación y optimización de modelos de machine learning.

(5) Introducción al Deep Learning

- · Redes neuronales: perceptrones, redes multicapa.
- · Funciones de activación, propagación hacia adelante y retropropagación.
- · Laboratorio: Construcción de una red neuronal profunda con Keras.

(6) Modelos de Lenguaje de Gran Escala (LLMs)

- · Fundamentos y arquitecturas principales de LLMs: Transformers y GPT.
- · Aplicaciones en traducción automática, generación de texto, y comprensión de lenguaje.
- · Laboratorio: Aplicación de LLMs en tareas de NLP.
- · Aplicaciones Prácticas y Casos de Estudio

(7) Ética y Consideraciones Futuras en Al

- · Impacto social y ético de la inteligencia artificial.
- Tendencias futuras y áreas emergentes en machine learning y deep learning.

Horarios de clase

Lunes y miercoles: presencial, 7PM a 10 PM

Viernes: virtual, 7PM a 10 PM

Sábado: virtual, 8 AM a 12:30 PM - 3 PM a 7 PM

Ultima clase programada 31 de Agosto

Evaluación de la clase

- Prácticas en clase: 3 x 20 puntos = 60 puntos
- Examen de preguntas cerradas (respuesta multiple): 20 puntos
- Trabajo práctico individual: 20 puntos

Visión de enseñanza y aprendizaje en la clase

Discutir y cubrir el material relacionado con técnicas estadísticas básicas, conocidas y comúnmente aplicadas, pero también métodos estadísticos en las fronteras de la ciencia—en el marco del UDL, la pirámide de Miller y la taxonomía de Bloom—mediante el alineamiento constructivo y el aprendizaje activo:

"Learning [...] has to enable us to work at the boundary of what we know or [...] to go beyond those boundaries, or even reconstruct the very framework of our knowledge."

Fear of a Black Universe (p. 6, ch. 1, Escape From the Jungle of No Imagination), Stephon Alexander, 2021

UDL: Diseño universal para el aprendizaje inclusivo

No hay un solo método de enseñanza que sea eficaz para tod@s, por lo que se deben ofrecer múltiples formas de representación, expresión e involucramiento (engagement)

AFFECTIVE NETWORKS:
THE WHY OF LEARNING

RECOGNITION NETWORKS:
THE WHAT OF LEARNING

STRATEGIC NETWORKS:
THE **HOW** OF LEARNING

Engagement

For purposeful, motivated learners, stimulate interest and motivation for learning.

Representation

For resourceful, knowledgeable learners, present information and content in different ways.

Action & Expression

For strategic, goal-directed learners, differentiate the ways that students can express what they know.

Alineamiento constructivo (objetivos SMART)

La Taxonomía de Bloom para esta clase de maestría

Versión revisada para incluir el conocimiento*:

- Factual
- Conceptual
- Procedural
- Metacognitivo

(*) Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York: Longman.

Pirámide de Miller para para medir el progreso en la adquisición de habilidades y conocimientos

C: Conocimiento conceptual

H: Habilidad

A: Actitudes (valores, comportamientos y enfoques éticos)