位相的場の理論 ノート

高間俊至

2023年10月25日

目次

第1章	粒子の統計性	3
1.1	1 粒子の経路積分	3
1.2	2 つの同種粒子	5
	1.2.1 粒子の配位	5
	1.2.2 配位空間上の経路	6
	1.2.3 経路積分による量子化	7
1.3	同種粒子多体系	8
	1.3.1 $D=2$ の場合:組み紐群	9
	1.3.2 $D=3$ の場合:対称群	9
	1.3.3 経路積分の構成	10
	1.3.4 1 次元表現(可換な例)	10
	1.3.5 より高次元の表現(非可換な場合)	10
第2章	Chern-Simons 理論の導入	12
2.1	Charge-Flux composite	12
	2.1.1 Aharonov-Bohm 効果	12
	2.1.2 Charge-Flux composite としてのエニオン	13
	2.1.3 トーラス上のエニオンの真空	13
2.2	可換 Chern-Simons 理論の経験的導入	14
	2.2.1 ゲージ不変性	14
	2.2.2 運動方程式	15
	2.2.3 プロパゲーター	15
	2.2.4 真空中の可換 Chern-Simons 理論	16
	2.2.5 正準量子化	16
2.3	非可換 Chern-Simons 理論の経験的導入	16
	2.3.1 ゲージ不変性	17
	2.3.2 Chern-Simons 作用	17
2.4	古典的ゲージ理論	18
	2.4.1 内部対称性を持つ場の定式化	19
	2.4.2 主束の接続とゲージ場の定義	28
2.5	特性類と Chern-Simons 形式	33

付録 A	結び目理論入門	34
付録 B	ベクトル場の話	35
B.1	接束	37
B.2	ベクトル場の定義	39
	B.2.1 C^{∞} 関数の微分としてのベクトル場	41
	B.2.2 ベクトル場と C^{∞} 写像	42
B.3	積分曲線と流れ	44
	B.3.1 積分曲線	44
	B.3.2 流れ	45
	B.3.3 完備なベクトル場	48
参考文献		50

第1章

粒子の統計性

この章は $[1, \mathrm{Chapter } 3, 4]$ に相当する。この章では同種の多粒子系の経路積分による量子化を考察し、粒子の統計性と配位空間のホモトピー論の間の関係性を調べる。特に、プロパゲーターの合成則を充たす経路積分の測度と配位空間の基本群のユニタリ表現の対応を考察し、2+1 次元の同種 N 粒子系においてエニオンの統計性が生じ得ることを確かめる。なお、本章ではまだ場の量子化は行わない。

1.1 1 粒子の経路積分

 \mathcal{R}^D 内を運動する非相対論的 1 粒子の軌跡 $m{x}(t)$ を与える. 時刻 t_{i} に $m{x}_{\mathrm{i}}$ を出発し, 時刻 t_{f} に $m{x}_{\mathrm{f}}$ に到達しているとする.

この系を量子力学的に捉えてみる. 時刻 t_i に状態 $|x_i\rangle$ にあった系が時刻 t_f に状態 $|x_f\rangle$ にある遷移振幅は プロパゲーター (propagator) と呼ばれるが、それは系の時間発展を表すユニタリ演算子 $\hat{U}(t_f,t_i)$ を用いて

$$\langle \boldsymbol{x}_{\mathrm{f}} | \hat{U}(t_{\mathrm{f}}, t_{\mathrm{i}}) | \boldsymbol{x}_{\mathrm{i}} \rangle$$
 (1.1.1)

と書かれる*1. プロパゲーターが計算されると,系の波動関数 $\psi(x,t)\coloneqq\langle x|\psi(t)\rangle$ の時間発展が次のようにしてわかる:

$$\begin{split} \psi(\boldsymbol{x}_{\mathrm{f}},\,t_{\mathrm{f}}) &= \langle \boldsymbol{x}_{\mathrm{f}} | \psi(t_{\mathrm{f}}) \rangle \\ &= \langle \boldsymbol{x}_{\mathrm{f}} | \hat{U}(t_{\mathrm{f}},\,t_{\mathrm{i}}) | \psi(t_{\mathrm{i}}) \rangle \\ &= \int_{\mathbb{R}^{D}} \mathrm{d}^{D} \boldsymbol{x}_{\mathrm{i}} \, \langle \boldsymbol{x}_{\mathrm{f}} | \, \hat{U}(t_{\mathrm{f}},\,t_{\mathrm{i}}) \, | \boldsymbol{x}_{\mathrm{i}} \rangle \, \langle \boldsymbol{x}_{\mathrm{i}} | \psi(t_{\mathrm{i}}) \rangle \\ &= \int_{\mathbb{R}^{D}} \mathrm{d}^{D} \boldsymbol{x}_{\mathrm{i}} \, \langle \boldsymbol{x}_{\mathrm{f}} | \, \hat{U}(t_{\mathrm{f}},\,t_{\mathrm{i}}) \, | \boldsymbol{x}_{\mathrm{i}} \rangle \, \psi(\boldsymbol{x}_{\mathrm{i}},\,t_{\mathrm{i}}) \end{split}$$

従って、初期条件が与えられてかつ任意の時刻を繋ぐプロパゲーターが計算できれば系の時間発展が全てわかったことになる。そして Feynman の**経路積分** (path integral) による量子化とは、今考えている系の<u>古典的</u>作用

$$S[oldsymbol{x}(t)] = \int_{t_i}^{t_{
m f}} \mathrm{d}t \, L[oldsymbol{x}(t),\, \dot{oldsymbol{x}}(t),\, t]$$

^{*1} 状態ケット $|x\rangle$ は Schrödinger 表示である.

と、量子的なプロパゲーター (1.1.1) との間に

$$\langle \boldsymbol{x}_{f} | \hat{U}(t_{f}, t_{i}) | \boldsymbol{x}_{i} \rangle = \mathcal{N} \sum_{\boldsymbol{x}(t) \text{ s.t. } \boldsymbol{x}(t_{i}) = \boldsymbol{x}_{i}, \, \boldsymbol{x}(t_{f}) = \boldsymbol{x}_{f}} e^{iS[\boldsymbol{x}(t)]/\hbar}$$
(1.1.2)

の関係があることを主張するものである.

いま考えている系のハミルトニアンが

$$\hat{H}(\hat{\boldsymbol{p}},\,\hat{\boldsymbol{x}}) = \frac{\hat{\boldsymbol{p}}^2}{2m} + V(\hat{\boldsymbol{x}})$$

と書かれる場合に (1.1.2) が成り立っていることを確認する. Schrödinger 方程式より時間発展演算子は

$$\hat{U}(t_{\rm f}, t_{\rm i}) = e^{-\mathrm{i}\hat{H}(t_{\rm f} - t_{\rm i})/\hbar}$$

である. 十分大きな n に対して $\varepsilon \coloneqq (t_{\rm f} - t_{\rm i})/n$ とおくとことで時間間隔 $[t_{\rm i}, t_{\rm f}]$ を

$$[t_i, t_f] = [t_i, t_i + \varepsilon] \cup [t_i + \varepsilon, t_i + 2\varepsilon] \cup \cdots \cup [t_i + (n-1)\varepsilon, t_f]$$

のように分割し、 $t_k := t_i + k\varepsilon \ (k = 0, 1, ..., n)$ とおく*2. このとき ε は微小なので、 $\forall x_k \in \mathbb{R}^D$ に対して

$$\begin{split} \langle \boldsymbol{x}_{k+1} | \, \hat{U}(t_{k+1}, \, t_k) \, | \boldsymbol{x}_k \rangle &= \langle \boldsymbol{x}_{k+1} | \, e^{-\mathrm{i}\hat{H}\varepsilon/\hbar} \, | \boldsymbol{x}_k \rangle \\ &\approx \langle \boldsymbol{x}_{k+1} | \boldsymbol{x}_k \rangle - \frac{\mathrm{i}\varepsilon}{\hbar} \, \langle \boldsymbol{x}_{k+1} | \hat{H} | \boldsymbol{x}_k \rangle \\ &= \delta^D(\boldsymbol{x}_{k+1} - \boldsymbol{x}_k) - \frac{\mathrm{i}\varepsilon}{\hbar} \left(\langle \boldsymbol{x}_{k+1} | \, \frac{\hat{\boldsymbol{p}}}{2m} \, | \boldsymbol{x}_k \rangle + V(\boldsymbol{x}_k) \delta^D(\boldsymbol{x}_{k+1} - \boldsymbol{x}_k) \right) \\ &= \int \frac{\mathrm{d}^D \boldsymbol{p}}{(2\pi)^D} e^{\mathrm{i}\boldsymbol{p} \cdot (\boldsymbol{x}_{k+1} - \boldsymbol{x}_k)/\hbar} \left(1 - \frac{\mathrm{i}\varepsilon}{\hbar} H(\boldsymbol{p}, \, \boldsymbol{x}_k) \right) \\ &\approx \int \frac{\mathrm{d}^D \boldsymbol{p}}{(2\pi)^D} e^{\mathrm{i}\boldsymbol{p} \cdot (\boldsymbol{x}_{k+1} - \boldsymbol{x}_k)/\hbar} e^{-\mathrm{i}\varepsilon H(\boldsymbol{p}, \, \boldsymbol{x}_k)/\hbar} \end{split}$$

が成り立つ. ここに、4 行目以降に登場する $H(p, x_k)$ は演算子ではなく c 数である. 従って *3 、

$$\langle \boldsymbol{x}_{f} | \hat{U}(t_{f}, t_{i}) | \boldsymbol{x}_{i} \rangle = \langle \boldsymbol{x}_{f} | e^{-i\hat{H}n\varepsilon/\hbar} | \boldsymbol{x}_{i} \rangle$$

$$= \lim_{n \to \infty} \int \left(\prod_{k=1}^{n-1} d^{D}\boldsymbol{x}_{k} \right) \prod_{k=1}^{n-1} \langle \boldsymbol{x}_{k+1} | e^{-i\hat{H}\varepsilon/\hbar} | \boldsymbol{x}_{k} \rangle$$

$$= \lim_{\substack{n \to \infty \\ i.e. \ \varepsilon \to 0}} \int \left(\prod_{k=1}^{n-1} \frac{d^{D}\boldsymbol{x}_{k} d^{D}\boldsymbol{p}_{k}}{(2\pi)^{D}} \right) \exp \left\{ \frac{i}{\hbar} \varepsilon \sum_{k=1}^{n-1} \left(\boldsymbol{p}_{k} \cdot \frac{\boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}}{\varepsilon} - H(\boldsymbol{p}_{k}, \boldsymbol{x}_{k}) \right) \right\}$$

$$= \lim_{n \to \infty} \int \left(\prod_{k=1}^{n-1} \frac{d^{D}\boldsymbol{x}_{k} d^{D}\boldsymbol{p}_{k}}{(2\pi)^{D}} \right) \exp \left\{ \frac{i}{\hbar} \int_{t_{i}}^{t_{f}} dt \left(\boldsymbol{p} \cdot \dot{\boldsymbol{x}} - H(\boldsymbol{p}, \boldsymbol{x}) \right) \right\}$$

$$=: \int [d^{D}\boldsymbol{x} d^{D}\boldsymbol{p}] \exp \left\{ \frac{i}{\hbar} \int_{t_{i}}^{t_{f}} dt \left(\boldsymbol{p} \cdot \dot{\boldsymbol{x}} - H(\boldsymbol{p}, \boldsymbol{x}) \right) \right\}$$

 $^{*^2}$ 定義から $t_i = t_0$, $t_f = t_n$ である.

ただし $\int [\mathrm{d}^D x \, \mathrm{d}^D p] := \lim_{n \to \infty} \int \left(\prod_{k=1}^{n-1} \frac{\mathrm{d}^D x_k \mathrm{d}^D p_k}{(2\pi)^D} \right)$ は経路積分の測度である. ハミルトニアンの p 依存性 は運動項のみなので、(1.1.3) において p_k 積分を先に実行することができる:

$$\langle \boldsymbol{x}_{f} | \hat{U}(t_{f}, t_{i}) | \boldsymbol{x}_{i} \rangle = \lim_{\substack{n \to \infty \\ i.e. \ \varepsilon \to 0}} \int \left(\prod_{k=1}^{n-1} \frac{\mathrm{d}^{D} \boldsymbol{x}_{k} \, \mathrm{d}^{D} \boldsymbol{p}_{k}}{(2\pi)^{D}} \right)$$

$$= \exp \left\{ \frac{\mathrm{i}}{\hbar} \varepsilon \sum_{k=1}^{n-1} \left(-\frac{1}{2m} \left(\boldsymbol{p}_{k} - m \frac{\boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}}{\varepsilon} \right)^{2} + \frac{m}{2} \left(\frac{\boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}}{\varepsilon} \right)^{2} - V(\boldsymbol{x}_{k}) \right) \right\}$$

$$= \lim_{\substack{n \to \infty \\ i.e. \ \varepsilon \to 0}} \int \left(\prod_{k=1}^{n-1} \left(\frac{m\hbar}{2\pi \mathrm{i}\varepsilon} \right)^{D/2} \mathrm{d}^{D} \boldsymbol{x}_{k} \right) \exp \left\{ \frac{\mathrm{i}}{\hbar} \varepsilon \sum_{k=1}^{n-1} \left(\frac{m}{2} \left(\frac{\boldsymbol{x}_{k+1} - \boldsymbol{x}_{k}}{\varepsilon} \right)^{2} - V(\boldsymbol{x}_{k}) \right) \right\}$$

$$= \lim_{n \to \infty} \int \left(\prod_{k=1}^{n-1} \left(\frac{m\hbar}{2\pi \mathrm{i}\varepsilon} \right)^{D/2} \mathrm{d}^{D} \boldsymbol{x}_{k} \right) \exp \left\{ \frac{\mathrm{i}}{\hbar} \int_{t_{i}}^{t_{f}} \mathrm{d}t \left(\frac{m}{2} \dot{\boldsymbol{x}}^{2} - V(\boldsymbol{x}) \right) \right\}$$

$$=: \int [\mathrm{d}^{D} \boldsymbol{x}] \exp \left\{ \frac{\mathrm{i}}{\hbar} \int_{t_{i}}^{t_{f}} L[\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)] \right\}$$

これがまさに求めたい形 (1.1.2) である.

1.2 2 つの同種粒子

次に, $D(\geq 2)$ 次元 Euclid 空間* 4 \mathbb{R}^D 内に 2 つの同種粒子が存在する量子系 \mathcal{H} を考える.簡単のためこの節では粒子の内部自由度はないとする.

1.2.1 粒子の配位

この系における粒子の配位 (configuration) を記述する方法を考察しよう. いま, *coincidences* と呼ばれる集合を $\Delta := \{(x,x) \mid x \in \mathbb{R}^D\}$ で定義する. 内部自由度がないという仮定により,勝手な 1 つの $(x_1,x_2) \in (\mathbb{R}^D)^2 \setminus \Delta$ に対応する \mathcal{H} の元が一意に定まる. それを $|x_1,x_2\rangle \in \mathcal{H}$ と書こう*5. ここで,いわゆる粒子の不可弁別性により 2 つのケット $|x_1,x_2\rangle$, $|x_2,x_1\rangle$ が同じ物理状態*6を表していることに注意する. このため,集合 $(\mathbb{R}^D)^2 \setminus \Delta$ の上の同値関係 \sim を

$$\sim \quad \stackrel{ ext{def}}{\Longleftrightarrow} \quad (oldsymbol{x}_1,\,oldsymbol{x}_2) \sim (oldsymbol{x}_2,\,oldsymbol{x}_1)$$

と定義し、配位空間 (configuration space) $\mathcal C$ としては*⁷商集合 $((\mathbb R^D)^2 \setminus \Delta) / \sim$ を選ぶのが良い*8.

 $^{^{*4}}$ つまり,空間の Riemann 計量の成分は δ_{ij} であるとする.

^{*5} 写像 $|,\rangle:(\mathbb{R}^D)^2\longrightarrow \mathcal{H}$ は全単射ではある.

 $^{^{*6}}$ すなわち、Hilbert 空間の元としては $\mathrm{U}(1)$ 位相がかかるという違いしかない.

^{*7} 写像 $\mathcal{C} \longrightarrow \mathcal{H}$, $[(x_1, x_2)] \longmapsto |x_1, x_2\rangle$ は代表元の取り方に依存するので well-defined でないが,この写像は \mathcal{C} から Hilbert 空間 \mathcal{H} の射線 (ray) 全体が成す集合への写像だと思うことで well-defined な全単射になる。 \mathcal{C} のことを配位空間と呼ぶのはこの ためだと思われる。

^{*8} というよりも実は,位相幾何学においては位相空間 $\mathcal C$ のことを $\mathbb R^D$ の 2 次の (unordered) configuration space と呼ぶ (https://en.wikipedia.org/wiki/Configuration_space_(mathematics)). $\mathbb R^D$ を一般の位相空間に置き換えても良い.

以降では,同値類 a $[(oldsymbol{x}_1, oldsymbol{x}_2)] \in \mathcal{C}$ の代表元として

$$y_1^{\ 1} < y_2^{\ 1}$$
 \$\pm kt \text{i} \quad \text{\$y_1^{\ 1} = y_2^{\ 1}\$, \$y_1^{\ 2} < y_2^{\ 2}\$}\$\$\$\$\$\$\$ \pm kt \text{i} \quad \text{\$\cdots\$} \quad \quad \text{\$\cdots\$} \quad \quad \text{\$\cdots\$} \quad \text{\$\cdots\$} \quad \text{\$\cdots\$} \quad \text{\$\cdots\$} \quad \quad \text{\$\cdots\$} \quad \quad \quad \text{\$\cdots\$} \quad \quad \quad \quad \text{\$\cdots\$} \quad \qu

を充たす $(y_1, y_2) \in [(x_1, x_2)]$ を使う.

 $^{a}\left(oldsymbol{x}_{1},\,oldsymbol{x}_{2}
ight)\in\left(\mathbb{R}^{D}
ight)^{2}\setminus\Delta$ の \sim による同値類を $\left[\left(oldsymbol{x}_{1},\,oldsymbol{x}_{2}
ight)
ight]$ と書く.

1.2.2 配位空間上の経路

この系を経路積分によって量子化する際,積分すべき経路とは配位空間 $\mathcal C$ 上の連続曲線,すなわち連続写像 $l\colon [t_i,\,t_f]\longrightarrow \mathcal C$ のことである.始点 $l(t_i)=[(\boldsymbol x_{1i},\,\boldsymbol x_{2i})]=:\boldsymbol x_i$ および終点 $l(t_f)=[(\boldsymbol x_{1f},\,\boldsymbol x_{2f})]=:\boldsymbol x_f$ を固定した経路全体がなすホモトピー集合を $\Pi\mathcal C(\boldsymbol x_i,\,\boldsymbol x_f)$ と書こう. $\forall \boldsymbol x_i,\,\boldsymbol x_m,\,\boldsymbol x_f\in \mathcal C$ に対して, $\boldsymbol x_i$ と $\boldsymbol x_m$ を繋ぐ経路 l_0 と $\boldsymbol x_m$ と $\boldsymbol x_f$ を繋ぐ経路 l_1 の積と呼ばれる $\boldsymbol x_i$ と $\boldsymbol x_f$ を繋ぐ経路 l_1 を

$$(l_1 \cdot l_0)(t) := \begin{cases} l_0(2t - t_i), & t \in [t_i, \frac{t_i + t_f}{2}] \\ l_1(2t - t_f), & t \in [\frac{t_i + t_f}{2}, t_f] \end{cases}$$

と定義し、 $x_{\rm f}$ から $x_{\rm i}$ へむかう**逆**の経路を

$$(l^{-1})(t) := l(t_i + t_f - t)$$

と定義する. このとき、ホモトピー類の well-defined な積が

*:
$$\Pi C(\boldsymbol{x}_{\mathrm{m}}, \, \boldsymbol{x}_{\mathrm{f}}) \times \Pi C(\boldsymbol{x}_{\mathrm{i}}, \, \boldsymbol{x}_{\mathrm{m}}) \longrightarrow \Pi C(\boldsymbol{x}_{\mathrm{i}}, \, \boldsymbol{x}_{\mathrm{f}}),$$

 $([l_{1}], \, [l_{0}]) \longmapsto [l_{1} \cdot l_{0}]$

と定義され、以下の性質を充たす.

補題 1.1:

 $\forall x_i, x_m, x_n, x_f \in \mathcal{C}$ に対して以下が成り立つ:

 $(1) \ \forall [l_0] \in \Pi \mathcal{C}(\boldsymbol{x}_i, \, \boldsymbol{x}_m), \ \forall [l_1] \in \Pi \mathcal{C}(\boldsymbol{x}_m, \, \boldsymbol{x}_n), \ \forall [l_2] \in \Pi \mathcal{C}(\boldsymbol{x}_n, \, \boldsymbol{x}_f)$ に対して

$$([l_2] * [l_1]) * [l_0] = [l_2] * ([l_1] * [l_0])$$

(2) 定数写像 $[t_i, t_f] \longrightarrow C$, $t \longmapsto x$ のホモトピー類を $\mathbb{1}_x$ と書くとき, $\forall [l] \in \Pi C(x_i, x_f)$ に対して

$$[l] * \mathbb{1}_{x_i} = \mathbb{1}_{x_f} * [l]$$

(3) $\forall [l] \in \Pi \mathcal{C}(\boldsymbol{x}_{i}, \, \boldsymbol{x}_{f})$ に対して

$$[l^{-1}] * [l] = \mathbb{1}_{x_i}, \quad [l] * [l^{-1}] = \mathbb{1}_{x_f}$$

つまり、始点と終点がつながっていさえすれば、集合 $\Pi \mathcal{C} := \bigcup_{\boldsymbol{x}_i, \, \boldsymbol{x}_f \in \mathcal{C}} \Pi \mathcal{C}(\boldsymbol{x}_i, \, \boldsymbol{x}_f)$ は積 * に関して群のように振る舞う*9. 特に $\boldsymbol{x}_i = \boldsymbol{x}_f = \boldsymbol{x}$ のとき $\Pi \mathcal{C}(\boldsymbol{x}_i, \, \boldsymbol{x}_f)$ は基本群 (fundamental group) または 1 次のホモトピー群と呼ばれ、 $\pi_1(\mathcal{C}, \, \boldsymbol{x})$ と書かれる.

補題 1.2:

基本群は群である.

1.2.3 経路積分による量子化

配位空間 \mathcal{C} 上の始点と終点をそれぞれ $[(\boldsymbol{x}_{1i},\,\boldsymbol{x}_{2i})]=:\boldsymbol{x}_i,\,[(\boldsymbol{x}_{1f},\,\boldsymbol{x}_{2f})]=:\boldsymbol{x}_f$ に固定する. 時刻 t_i から t_f までの系の時間発展演算子を $\hat{U}(t_f,\,t_i)$ と書くと、プロパゲーターは素朴に

$$\langle \boldsymbol{x}_{1f}, \, \boldsymbol{x}_{2f} | \, \hat{U}(t_f, \, t_i) \, | \boldsymbol{x}_{1i}, \, \boldsymbol{x}_{2i} \rangle = \mathcal{N} \sum_{l \in \{ \text{ct. maps } [t_i, \, t_f] \to \mathcal{C} \}} e^{iS[l]/\hbar}$$

$$= \mathcal{N} \left(\sum_{l \text{ s.t.}[l] = +1} + \sum_{l \text{ s.t.}[l] = -1} \right) e^{iS[l]/\hbar}$$

$$(1.2.1)$$

と計算される. これは以下の2つの性質を充たさねばならない:

- $\hat{U}(t_{\rm f}, t_{\rm i})$ はユニタリ演算子
- 時刻 $\forall t_{\rm m} \in [t_{\rm i}, t_{\rm f}]$ に対して,

$$\langle \boldsymbol{x}_{1f}, \, \boldsymbol{x}_{2f} | \, \hat{U}(t_f, \, t_i) \, | \boldsymbol{x}_{1i}, \, \boldsymbol{x}_{2i} \rangle = \int d\boldsymbol{x}_{1m} \, d\boldsymbol{x}_{2m} \, \langle \boldsymbol{x}_{1f}, \, \boldsymbol{x}_{2f} | \, \hat{U}(t_f, \, t_m) \, | \boldsymbol{x}_{1m}, \, \boldsymbol{x}_{2m} \rangle \, \langle \boldsymbol{x}_{1m}, \, \boldsymbol{x}_{2m} | \, \hat{U}(t_m, \, t_i) \, | \boldsymbol{x}_{1i}, \, \boldsymbol{x}_{2i} \rangle$$

$$(1.2.2)$$

逆に(1),(2) を充たすような(1.2.1) の最右辺には他の可能性がある. それは例えば

$$\langle \boldsymbol{x}_{1f}, \, \boldsymbol{x}_{2f} | \, \hat{U}(t_f, \, t_i) \, | \boldsymbol{x}_{1i}, \, \boldsymbol{x}_{2i} \rangle$$

$$= \mathcal{N} \left(\sum_{l \, \text{s.t.}[l] = +1} - \sum_{l \, \text{s.t.}[l] = -1} \right) e^{iS[l]/\hbar}$$

$$(1.2.3)$$

^{*9} ΠC は位相空間 C の基本亜群 (fundamental groupoid) と呼ばれる.

である. というのも, このとき $\Pi \mathcal{C}$ の積の性質 (補題 1.1) および \mathbb{Z}_2 との類似から

$$\int dx_{1m} dx_{2m} \langle x_{1f}, x_{2f} | \hat{U}(t_{f}, t_{m}) | x_{1m}, x_{2m} \rangle \langle x_{1m}, x_{2m} | \hat{U}(t_{m}, t_{i}) | x_{1i}, x_{2i} \rangle$$

$$\propto \int dx_{1m} dx_{2m} \left(\sum_{l_{m \to f}: s.t. [l_{m \to f}] = +1} - \sum_{l_{m \to f}: s.t. [l_{m \to f}] = -1} \right) e^{iS[l_{m \to f}]/\hbar} \left(\sum_{l_{i \to m}: s.t. [l_{i \to m}] = +1} - \sum_{l_{i \to m}: s.t. [l_{i \to m}] = -1} \right) e^{iS[l_{i \to m}]/\hbar}$$

$$= \int dx_{1m} dx_{2m} \left(\sum_{[l_{m \to f}] = +1} \sum_{[l_{i \to m}] = -1} e^{i(S[l_{m \to f}] + S[l_{i \to m}])/\hbar} + \sum_{[l_{m \to f}] = -1} \sum_{[l_{i \to m}] = -1} e^{i(S[l_{m \to f}] + S[l_{i \to m}])/\hbar} \right)$$

$$- \int dx_{1m} dx_{2m} \left(\sum_{[l_{m \to f}] = +1} \sum_{[l_{i \to m}] = -1} e^{i(S[l_{m \to f}] + S[l_{i \to m}])/\hbar} + \sum_{[l_{m \to f}] = -1} \sum_{[l_{i \to m}] = +1} e^{i(S[l_{m \to f}] + S[l_{i \to m}])/\hbar} \right)$$

$$= \int dx_{1m} dx_{2m} \sum_{[l_{m \to f}: l_{i \to m}] = +1} e^{iS[l_{m \to f}: l_{i \to m}]/\hbar} - \int dx_{1m} dx_{2m} \sum_{[l_{m \to f}: l_{i \to m}] = -1} e^{iS[l_{m \to f}: l_{i \to m}]/\hbar}$$

$$= \left(\sum_{l_{i \to f}: s.t. [l_{i \to f}] = +1} - \sum_{l_{i \to f}: s.t. [l_{i \to f}] = -1} \right) e^{iS[l_{i \to f}]/\hbar}$$

が成り立ち (2) が充たされるのである。ただし、2 つめの等号で $S[l_{\mathrm{m}\to\mathrm{f}}]+S[l_{\mathrm{i}\to\mathrm{m}}]=S[l_{\mathrm{m}\to\mathrm{f}}\cdot l_{\mathrm{i}\to\mathrm{m}}]$ を使った。(1.2.3) はフェルミオンの経路積分を表す。

1.3 同種粒子多体系

次に $D(\geq 2)$ 次元 Euclid 空間 \mathbb{R}^D 内に N 個の同種粒子が存在する量子系 \mathcal{H} を考える. 簡単のためこの節でも粒子の内部自由度はないとし、粒子の生成・消滅は考えない.

経路積分による量子化では、2 粒子の場合と同様の議論ができる.まず配位空間 $\mathcal C$ は、集合 $(\mathbb R^D)^N\setminus \Delta$ の上の同値関係

$$\sim \iff (\boldsymbol{x}_1,\, \boldsymbol{x}_2,\, \dots,\, \boldsymbol{x}_N) \sim (\boldsymbol{x}_{\sigma(1)},\, \boldsymbol{x}_{\sigma(2)},\, \dots,\, \boldsymbol{x}_{\sigma(N)}), \quad orall \sigma \in \mathfrak{S}_N$$

による*10商集合 $\left((\mathbb{R}^D)^N\setminus\Delta\right)/\sim$ として定義される。積分すべき経路のホモトピー類は基本亜群 $\Pi\mathcal{C}$ をなす。また,経路の世界線*11を考えることでこれは D+1 次元空間を動く,互いに交わらない N 本の曲線とみなすこともできる。適当な基点 $\mathbf{x}\in(\mathbb{R}^D)^N\setminus\Delta$ を取ってきて基本群 $\pi_1(\mathcal{C},\mathbf{x})$ を考えれば良い。

1.3.1 D=2 の場合:組み紐群

 $^{^{*10}}$ \mathfrak{S}_N は N 次の対称群.従って一つの同値類は N! 個の $(\mathbb{R}^D)^N\setminus \Delta$ の元からなる. \mathfrak{S}_N の作用による軌道空間と見ても良い.

^{*11} つまり、D+1 次元の粒子の軌跡.

空間次元が D=2 の場合, $\pi_1(\mathcal{C}, \boldsymbol{x})$ は (Artin の) 組み紐群 (braid group) B_N と呼ばれる.

定義 1.1: 組み紐群(代数的)

語 (word) $\{\sigma_1, \ldots, \sigma_{N-1}\}$ で生成され、関係式

$$\begin{split} \sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1} \\ \sigma_i \sigma_j &= \sigma_j \sigma_i \end{split} \qquad \begin{aligned} 1 \leq i \leq N-2 \\ |i-j| > 1, \ 1 \leq i, \ j \leq N-1 \end{aligned}$$

を充たす群を Artin の組み紐群 (Artin braid group), もしくは単に組み紐群 (braid group) と呼ぶ.

 B_N の代数的な定義 1.1 と,位相幾何学的な定義 $\pi_1(\mathcal{C}, \boldsymbol{x})$ が同型であることは,例えば [3] に証明がある. 生成元 σ_i を図として表示するとわかりやすい.この場合, B_N の積とは単に組み紐を下から上へ* 12 繋げることに他ならない.

図 1.1: B₄ の生成元の表示. [1, p.29, Fig. 3.4] より引用.

組み紐不変量として特に重要なのが**巻き付き数** (winding number) である:

$$W := (\# \text{ of overcrossings}) - (\# \text{ of undercrossings})$$

1.3.2 D=3 の場合:対称群

空間次元が D=3 の場合, $\pi_1(\mathcal{C}, \boldsymbol{x})$ の様子は D=2 の場合と大きく異なる.

命題 1.1:

 S^1 の \mathbb{R}^3 への任意の 2 つの埋め込みは、それらを \mathbb{R}^4 への埋め込みと見做すことで同位になる.

命題 1.1 により、D=3 のとき $\pi_1(\mathcal{C}, \boldsymbol{x}) = \mathfrak{S}_N$ であることが分かる.

^{*12} 文献によって上下がまちまちである.

1.3.3 経路積分の構成

N=2 の場合と同様に考える.経路積分の終点と始点を $\{m{x}\}_{\mathrm{i}},\,\{m{x}\}_{\mathrm{f}}\in\mathcal{C}$ に固定する.まず簡単のため $\{m{x}\}_{\mathrm{i}}=\{m{x}\}_{\mathrm{f}}=:\{m{x}\}$ とすると,

$$\langle \{\boldsymbol{x}\}_{\mathrm{f}} | \hat{U}(t_{\mathrm{f}}, t_{\mathrm{i}}) | \{\boldsymbol{x}\}_{\mathrm{i}} \rangle = \mathcal{N} \sum_{[l] \in \pi_{1}(\mathcal{C}, \{\boldsymbol{x}\})} \rho([l]) \sum_{m \in [l]} e^{\mathrm{i}S[m]/\hbar}$$

とすれば条件 (1.2.2) が充たされる。ただしユニタリ性の条件を充たすため、群準同型 ρ : $\pi_1(\mathcal{C}, \{x\}) \longrightarrow$ $\mathrm{GL}(V)$ は基本群 $\pi_1(\mathcal{C}, \{x\})$ のユニタリ表現にとる。

1.3.4 1次元表現(可換な例)

まず ρ が $\pi_1(\mathcal{C}, \{x\})$ の 1 次元ユニタリ表現である場合を考える. つまり, 群準同型 $\rho: \pi_1(\mathcal{C}, \{x\}) \longrightarrow \mathrm{U}(1)$ としてあり得るものを全て列挙することを試みる.

【例 1.3.1】 2+1 次元の場合

 $\pi_1(\mathcal{C},\{x\})=B_N$ である. N-1 個の $\mathrm{U}(1)$ の元の組 $\{g_1,\ldots,g_{N-1}\}$ であって定義 1.1 の関係式を 充たすものを見つければ良い. $\mathrm{U}(1)$ は可換群なので 2 つ目の関係式は常に成り立つ. 1 つ目の関係式 が成り立つ必要十分条件は $g_1=g_2=\cdots=g_{N-1}=e^{\mathrm{i}\theta}$ ($\theta\in\mathbb{R}$ は任意) である. $1\leq \forall i\leq N-1$ に 対して $W(\sigma_i)=1$ であることから,

$$\rho_{\theta}(g) \coloneqq e^{i\theta W(g)} \quad (\forall \theta \in \mathbb{R})$$

によって全ての表現が尽くされた.

- $\theta = 0$ のとき $\rho_{\theta} : g \mapsto 1$ であり、ボゾン
- $\theta = \pi$ のとき $\rho_{\theta} : g \longmapsto (-1)^{W(g)}$ であり、フェルミオン
- 他の $\theta \in \mathbb{R}$ に対応する ρ_{θ} による統計性は**エニオン** (anyons), もしくは**分数統計** (fractional statistics) と呼ばれる. 特に U(1) が可換群なので**可換エニオン** (abelian anyons) という.

【例 1.3.2】3+1 次元の場合

 $\pi_1(\mathcal{C}, \{x\}) = \mathfrak{S}_N$ である. 定義 1.1 の関係式に $\sigma_i^2 = 1$ を追加したものが \mathfrak{S}_N の Coxeter presentation となる. つまり,【例 1.3.1】において $\theta = 0$, π の場合のみがあり得る. これはボゾンとフェルミオンであり, N = 2 の場合に考察した例の一般化になっている.

1.3.5 より高次元の表現(非可換な場合)

粒子の内部自由度を考慮しよう. 具体的には, $D(\geq 2)$ 次元 Euclid 空間 \mathbb{R}^D 内に N 個の同種粒子が存在する量子系 \mathcal{H} において内部自由度を指定する添字集合 \mathcal{I} が存在して,写像

$$|;\rangle: ((\mathbb{R}^D)^N \setminus \Delta) \times \mathcal{I} \longrightarrow \mathcal{H}, ((\boldsymbol{x}), i) \longmapsto |\{\boldsymbol{x}\}; i\rangle$$

が全単射となるような状況を考える* 13 . このとき $\forall \{x\}_i, \{x\}_f \in \mathcal{C}, \ \forall i,j \in \mathcal{I}$ に対するプロパゲーター

$$\langle \{\boldsymbol{x}\}_{\mathrm{f}};\,i|\,\hat{U}(t_{\mathrm{f}},\,t_{\mathrm{i}})\,|\{\boldsymbol{x}\}_{\mathrm{i}};\,j\rangle = \mathcal{N}\sum_{[l]\in\pi_{1}(\mathcal{C},\,\{\boldsymbol{x}\})}\left[\,\rho([l])\,\right]_{ij}\sum_{m\in[l]}e^{\mathrm{i}S[m]/\hbar}$$

を計算する必要がある.ここに、# $\mathcal{I}=M<\infty$ のとき群準同型

$$\rho \colon \pi_1(\mathcal{C}, \{x\}) \longrightarrow \mathrm{U}(M) \subset \mathrm{GL}(\mathbb{C}, M)$$

は $\pi_1(\mathcal{C},\{x\})$ の M 次元ユニタリ表現であり, $\left[\rho([l])\right]_{ij}$ というのは $M\times M$ ユニタリ行列 $\rho([l])$ の第 (i,j) 成分という意味である.一方 # $\mathcal{I}=\infty$ のとき ρ は無限次元表現となる.

【例 1.3.3】 2+1 次元の場合

特に空間次元が D=2 のとき, ρ は B_N の M 次元ユニタリ表現である. このような統計性を持つ粒子のことを**非可換エニオン** (nonabelian anyon) と呼ぶ^a.

【例 1.3.4】 3+1 次元の場合

特に空間次元が D=3 のとき, ρ は \mathfrak{S}_N の M 次元ユニタリ表現である.このような統計性を持つ 粒子のことを parastatistics と呼ぶが,実は暗に存在する付加的な制約のせいでボゾンかフェルミオン,もしくはいくつか内部自由度が追加されるかしか許されないことが示されている [4, Appendix B].このことについては後述する.しかし,粒子の描像を捨てて弦を考えるなどすると「面白い」例が得られるかもしれない.

 $[^]a\mathrm{\,U}(M)$ が非可換群なので

 $^{*^{13}}$ ややこしいが、定義域を同値関係で割る前なので (x) と表記した.

第2章

Chern-Simons 理論の導入

この章は [1, Chapter4, 5] に相当する.

2.1 Charge-Flux composite

2.1.1 Aharonov-Bohm 効果

空間を表す多様体を Σ と書く.電荷 q を持つ 1 つの粒子からなる系を考えよう.この系に静磁場をかけたとき,粒子の古典的作用は自由粒子の項 S_0 と,粒子と場の結合を表す項とに分かれる:

$$S[l] = S_0[l] + q \int_{t_i}^{t_f} \mathrm{d}t \, \dot{m{x}} \cdot m{A} = S_0[l] + q \int_l \mathrm{d}m{x} \cdot m{A}$$

ただし $l: [t_i, t_f] \longrightarrow \Sigma$ は粒子の軌跡を表す.

ここで、いつもの 2 重スリットを導入する.粒子が $x_i = x(t_i)$ から出発して $x_f = x(t_f)$ に到達するとき、これらの 2 点を結ぶ経路全体の集合 $\mathcal{C}(x_i, x_t)$ のホモトピー類は、スリット 1, 2 を通る経路それぞれでちょうど 2 つある.i.e. プロパゲーターは経路積分によって

$$\sum_{l \in \mathcal{C}(\boldsymbol{x}_{\mathrm{i}}, \boldsymbol{x}_{\mathrm{t}}) \text{ s.t. slit } 1} e^{\mathrm{i}S_{0}[l]/\hbar + \mathrm{i}(q/\hbar) \int_{l} \mathrm{d}\boldsymbol{x} \cdot \boldsymbol{A}} + \sum_{l \in \mathcal{C}(\boldsymbol{x}_{\mathrm{i}}, \boldsymbol{x}_{\mathrm{t}}) \text{ s.t. slit } 2} e^{\mathrm{i}S_{0}[l]/\hbar + \mathrm{i}(q/\hbar) \int_{l} \mathrm{d}\boldsymbol{x} \cdot \boldsymbol{A}}$$

と計算される。第 1 項と第 2 項の位相差は,片方の経路の逆をもう片方に足すことでできる閉曲線 ∂S について

$$\exp\left[\frac{\mathrm{i}q}{\hbar}\oint_{\partial S}\mathrm{d}\boldsymbol{x}\cdot\boldsymbol{A}\right] = \exp\left[\frac{\mathrm{i}q}{\hbar}\int_{S}\mathrm{d}\boldsymbol{S}\cdot(\boldsymbol{\nabla}\times\boldsymbol{A})\right] = \exp\left[\frac{\mathrm{i}q}{\hbar}\Phi_{S}\right]$$

となる*1.

- (1) 磁束が $\Phi_0 = 2\pi\hbar/q$ の整数倍の時は、位相シフトがない場合と物理的に区別がつかない.
- (2) 実は、静止した電荷の周りに磁束を動かしても全く同じ位相シフトが引き起こされる [5].

 $^{^{*1}}$ 粒子が侵入できない領域にのみ磁場がかかっているとする. なお、粒子の配位空間が単連結でないことが本質的に重要である. このとき、領域 S をホモトピーで 1 点に収縮することで、無限に細い管状の磁束(flux tube)の概念に到達する.

2.1.2 Charge-Flux composite としてのエニオン

荷電粒子と無限に細い磁束管 (flux tube) が互いに束縛し合って近接しているものを考える.この対を 2 次元系における、 (q,Φ) なるチャージを持つ 1 つの粒子と見做してみよう.

さて、粒子 i(=1,2) がチャージ (q,Φ) を持つとしよう.この 2 つの同種粒子の配位空間の基本群は前章の議論から \mathbb{Z}_2 であり、

- (1) 粒子 1 を 2 の周りに 1 周させる操作
- (2) 粒子の交換を2回行う操作

の 2 つが同じホモトピー類に属すことがわかる. 故に, これら 2 つの操作で得られる位相シフトは等しい. 操作 (1) による位相シフトは AB 効果によるもので, $e^{2iq\Phi/\hbar}$ である *2 . 故に, この粒子が<u>1 回</u>交換することによって得られる位相シフトは $e^{iq\Phi/\hbar}$ であるが, これは $\theta=q\Phi/\hbar$ なる可換エニオンの統計性である.

次に、エニオンの**フュージョン** (fusion) を経験的に導入する.これは、エニオン $(q_1, \Phi_1), (q_2, \Phi_2)$ が「融合」してエニオン $(q_1+q_2, \Phi_1+\Phi_2)$ になる,と言うものであり,今回の場合だと電荷,磁束の保存則に由来すると考えることができる.エニオン (q, Φ) と $(-q, -\Phi)$ がフュージョンすると I := (0, 0) になるだろう.この I をエニオンの真空とみなし*3, $(-q, -\Phi)$ のことを (q, Φ) の反エニオン (anti-anyon) と見做す.反エニオンをエニオンの周りに一周させたときの位相シフトが $e^{-2i\theta}$ になることには注意すべきである.

2.1.3 トーラス上のエニオンの真空

トーラス $T^1 := S^1 \times S^1$ の上のエニオン系の基底状態(真空)を考える.

トーラスには非自明なサイクルがちょうど 2 つあるので、それらを C_1 、 C_2 とおく、そして系の時間発展演算子のうち、次のようなものを考える:

- \hat{T}_1 ある時刻に C_1 の 1 点において粒子-反粒子対を生成し、それらを C_1 上お互いに反対向きに動かし、有限時間経過後に C_1 の対蹠点で対消滅させる.
- \hat{T}_2 ある時刻に C_2 の 1 点において粒子-反粒子対を生成し、それらを C_2 上お互いに反対向きに動かし、有限時間経過後に C_2 の対蹠点で対消滅させる.

 \hat{T}_1,\hat{T}_2 は非可換であり,基底状態への作用を考える限り,フュージョンダイアグラムと braiding の等式から

$$\hat{T}_2 \hat{T}_1 = e^{-i2\theta} \hat{T}_1 \hat{T}_2 \tag{2.1.1}$$

が成り立つことが分かる.然るに,基底状態が張る部分空間に制限すると $[T_1,H]=[T_2,H]=0$ なので *4 ,基底状態が縮退していることがわかる.

さて, T_i はユニタリなので, $T_1 |\alpha\rangle = e^{\mathrm{i}\alpha} |\alpha\rangle$ とおける. この時 (2.1.1) より

$$T_1(T_2 | \alpha \rangle) = e^{i(\alpha + 2\theta)} T_2 | \alpha \rangle$$

 $^{^{*2}}$ 2 がつくのは,粒子 1 の q が粒子 2 の Φ の周りを 1 周する AB 効果だけでなく,粒子 1 の Φ が粒子 2 の q の周りを 1 周する AB 効果の寄与があるからである. 一般に,粒子 i のチャージが (q_i,Φ_i) ならば $e^{\mathrm{i}(q_1\Phi_2+q_2\Phi_1)/\hbar}$ の位相シフトが起こる.

 $^{*^3}$ しかし、I のことは粒子として捉える.

^{*4} 基底状態 $|0\rangle$ と $\hat{T}_1 |0\rangle$ は同じエネルギーである.

である.つまり, $|\alpha\rangle$ が基底状態ならば $|\alpha+2\theta\rangle=T_2\,|\alpha\rangle$ もまた基底状態である.この操作を続けて,基底状態 $|\alpha+2n\theta\rangle=(T_2)^n\,|\alpha\rangle$ $(n\in\mathbb{Z}_{\geq 0})$ を得る.特に $\theta=\pi p/m$ (p,m) は互いに素)である場合を考えると,基底状態は m 重縮退を示している.

2.2 可換 Chern-Simons 理論の経験的導入

ゲージ場* 5 $a_{\alpha}=(a_{0},\,a_{1},\,a_{2})$ が印加された N 粒子 2 次元系であって,ラグランジアンが

$$L = L_0 + \int_{\Sigma} d^2x \left(\frac{\mu}{2} \epsilon^{\alpha\beta\gamma} a_{\alpha} \partial_{\beta} a_{\gamma} - j^{\alpha} a_{\alpha} \right) =: L_0 + \int_{\Sigma} d^2x \mathcal{L}$$
 (2.2.1)

と書かれるものを考える。ただし、 L_0 は場と粒子の結合を無視したときの粒子のラグランジアンであり、空間を表す多様体を Σ で書いた。粒子 n はチャージ q_n を持つものとし、 $j^\alpha=(j^0,\pmb{j})$ は

$$j^0(oldsymbol{x})\coloneqq\sum_{n=1}^Nq_n\delta(oldsymbol{x}-oldsymbol{x}_n), \ oldsymbol{j}(oldsymbol{x})\coloneqq\sum_{n=1}^Nq_n\dot{oldsymbol{x}}_n\delta(oldsymbol{x}-oldsymbol{x}_n)$$

と定義される粒子のカレントである。 ラグランジアン密度 $\mathcal L$ の第 1 項は場自身を記述し,第 2 項は場と粒子 の結合を記述する.

2.2.1 ゲージ不変性

ラグランジアン (2.2.1) のゲージ不変性は次のようにしてわかる:ゲージ変換

$$a_{\alpha} \longrightarrow a_{\alpha} + \partial_{\alpha} \chi$$

による 足 の変化は

$$\frac{\mu}{2}\epsilon^{\alpha\beta\gamma}\partial_{\alpha}\chi\partial_{\beta}a_{\gamma} + \frac{\mu}{2}\epsilon^{\alpha\beta\gamma}a_{\alpha}\partial_{\beta}\partial_{\gamma}\chi + \frac{\mu}{2}\epsilon^{\alpha\beta\gamma}\partial_{\alpha}\chi\partial_{\beta}\partial_{\gamma}\chi - j^{\alpha}\partial_{\alpha}\chi\partial_{\beta}\partial_{\gamma}\chi - j^{\alpha}\partial_{\alpha}\chi\partial_{\gamma}\chi - j^{\alpha}\partial_{\alpha}\chi\partial_{$$

であるから,空間積分を実行すると

$$\int_{\Sigma} d^{2}x \, \frac{\mu}{2} \partial_{\alpha} \left(\epsilon^{\alpha\beta\gamma} \chi \partial_{\beta} a_{\gamma} \right) - \int_{\Sigma} d^{2}x \, \frac{\mu}{2} \underbrace{\epsilon^{\alpha\beta\gamma} \chi \partial_{\alpha} \partial_{\beta} a_{\gamma}} - \int_{\Sigma} d^{2}x \, \partial_{\alpha} \left(j^{\alpha} \chi \right) + \int_{\Sigma} d^{2}x \, \partial_{\alpha} j^{\alpha} \chi d^{\alpha} d^$$

となる. ただしチャージの保存則 $\partial_{\alpha}j^{\alpha}=0$ を使った. このことから、もし空間を表す多様体 Σ の境界が $\partial\Sigma=\emptyset$ ならば*6ラグランジアンはゲージ不変である.

 $^{^{*5}}$ 一般相対論に倣い,時空を表す多様体 ${\cal M}$ の座標のうち時間成分を x^0 ,空間成分を x^1 , x^2 とする.

 $^{*^6}$ このような多様体の中で重要なのが**閉多様体** (closed manifold) である.

2.2.2 運動方程式

ラグランジアン密度 $\mathcal L$ から導かれる Euler-Lagrange 方程式は

$$\frac{\partial \mathcal{L}}{\partial a_{\alpha}} = \partial_{\beta} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\beta} a_{\alpha}} \right)$$

である.

$$\begin{split} \frac{\partial \mathcal{L}}{\partial a_{\alpha}} &= \frac{\mu}{2} \epsilon^{\alpha\beta\gamma} \partial_{\beta} a_{\gamma} - j^{\alpha}, \\ \partial_{\beta} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\beta} a_{\alpha}} \right) &= \partial_{\beta} \left(\frac{\mu}{2} \epsilon^{\alpha\beta\gamma} a_{\alpha} \right) = -\frac{\mu}{2} \epsilon^{\alpha\beta\gamma} \partial_{\beta} a_{\gamma} \end{split}$$

なのでこれは

$$j^{\alpha} = \mu \epsilon^{\alpha\beta\gamma} \partial_{\beta} a_{\gamma}$$

となる. 特に第0成分は、「磁場」 $\boldsymbol{b} \coloneqq \nabla \times \boldsymbol{a}$ を導入することで

$$\sum_{n=1}^{N} \frac{q_n}{\mu} \delta(\boldsymbol{x} - \boldsymbol{x}_n) = b^0$$

となる. つまり、位置 x_n に強さ q_n/μ の磁束管が点在している、という描像になり、charge-flux composite を説明できている.

2.2.3 プロパゲーター

簡単のため、全ての粒子のチャージが等しく q であるとする。N 粒子の配位空間 C における初期配位と終了時の配位をそれぞれ $\{x_i\}$ 、 $\{x_f\}$ とし、それらを繋ぐ経路全体の集合を $C(x_i,x_f)$ と書くと、プロパゲーターは経路積分によって

$$\sum_{l \in \mathcal{C}(\boldsymbol{x}_{i}, \, \boldsymbol{x}_{f})} e^{\mathrm{i}S_{0}[l]/\hbar} \int_{\mathcal{M}} \mathcal{D}a_{\mu}(x) \, e^{\mathrm{i}S_{\mathrm{CS}}[a_{\mu}(x)]/\hbar} e^{\mathrm{i}(q/\hbar) \int_{l} \mathrm{d}x^{\alpha} a_{\alpha}(x)}$$

と計算される。ここに $\mathcal{D}a_{\mu}(x)$ は汎函数積分の測度を表す。詳細は後述するが,場に関する汎函数積分を先に 実行してしまうと,実は

$$\sum_{l \in \mathcal{C}(\boldsymbol{x}_{\mathrm{i}},\,\boldsymbol{x}_{\mathrm{f}})} e^{\mathrm{i}S_{0}[l]/\hbar + \mathrm{i}\theta W(l)}$$

の形になることが知られている。ここに W(l) は,経路 l の巻きつき数である.経路に依存する位相因子 $e^{\mathrm{i}\theta W(l)}$ 前章で議論した $\pi_1\mathcal{C}$ の 1 次元ユニタリ表現そのものであり,エニオンの統計性が発現する機構が Chern-Simons 項により説明できることを示唆している.

2.2.4 真空中の可換 Chern-Simons 理論

粒子が存在しないとき,経路積分は

$$Z(\mathcal{M}) \coloneqq \int_{\mathcal{M}} \mathcal{D}a_{\mu}(x) \, e^{\mathrm{i} S_{\mathrm{CS}}[a_{\mu}(x)]/\hbar}$$

の形をする. $Z(\mathcal{M})$ は \mathcal{M} についてホモトピー不変であり, **分配関数** (partition function) と呼ばれる. $Z(\mathcal{M})$ が TQFT において重要な役割を果たすことを後の章で見る.

2.2.5 正準量子化

 $a_0=0$ なるゲージをとると、ラグランジアン密度における Chern-Simons 項は $-a_1\partial_0a_2+a_2\partial_0a_1$ の形になる.これは a_1 (resp. a_2) が a_2 (resp. a_1) の共役運動量であることを意味するので,正準量子化を行うならば

$$[a_1(oldsymbol{x}),a_2(oldsymbol{y})]=rac{\mathrm{i}\hbar}{\mu}\delta^2(oldsymbol{x}-oldsymbol{y})$$

を要請する*⁷.

さて、このときトーラス T^2 上の 2 つのサイクル C_1 , C_2 に対して Wilson ループ

$$W_j = \exp\left(\frac{\mathrm{i}q}{\hbar} \oint_{C_j} \mathrm{d}\boldsymbol{x} \cdot \boldsymbol{a}\right)$$

を考える. [A, B] が c 数である場合の BCH 公式から

$$W_1 W_2 = e^{iq^2/(\mu\hbar)} W_2 W_1$$

を得る. これは (2.1.1) を説明している. つまり、演算子 T_1 , T_2 とは Wilson loop のことだったのである*8.

2.3 非可換 Chern-Simons 理論の経験的導入

この節では自然単位系を使う.前節を一般化して,ゲージ場 $a_{\mu}(x)$ がある Lie 代数 $\mathfrak g$ に値をとるものとしよう.つまり,Lie 代数 $\mathfrak g$ の基底を $\sigma_a/(2\mathrm{i})$ とすると*9

$$a_{\mu}(x) = a_{\mu}^{a}(x) \frac{\sigma_{a}}{2i}$$

と書かれるような状況を考える *10 . $\sigma_a \in \mathfrak{g}$ が一般に非可換であることから、このような理論は非可換 Chern-Simons 理論と呼ばれる.

時空多様体 M 上の閉曲線 l に沿った **Wilson loop** は, **経路順序積** (path ordering) $\mathcal P$ を用いて

$$W_l := \operatorname{Tr} \left[\mathcal{P} \exp \left(\oint_l \mathrm{d}x^{\mu} \, a_{\mu}(x) \right) \right]$$

と定義される。Aharonov-Bohm 位相の一般化という気持ちであるが、経路 l の異なる 2 点 x,y を取ってきたときに $a_{\mu}(x)$ と $a_{\mu}(x')$ が一般に非可換であることが話をややこしくする。

^{*7} しかし、トーラス上の座標をどのように取るかと言うことは問題である.

^{*8} 疑問:座標の時間成分はどこへ行ったのか?

 $^{^{*9}}$ 因子 1/(2i) は物理学における慣習である. ややこしいことに、文献によってこの因子が異なる場合がある.

 $^{*^{10}}$ ゲージ接続が Lie 代数に値をとる 1-形式である、ということ.

2.3.1 ゲージ不変性

非可換 Chern-Simons 理論におけるゲージ変換は、 $U: \mathcal{M} \longrightarrow G$ を用いて

$$a_{\mu}(x) \longrightarrow U^{-1}(x) \left(a_{\mu}(x) + \partial_{\mu} \right) U(x)$$
 (2.3.1)

の形をする. このゲージ変換が Wilson loop を不変に保つことを,無限小の場合に確認しておこう.

 \mathcal{M} の任意の $2 点 x, y \in \mathcal{M}$ を結ぶ曲線* 11 $C: [0, 1] \longrightarrow \mathcal{M}$ をとり、Wilson line を

$$\tilde{W}_C(x, y) := \mathcal{P} \exp \left(\int_C \mathrm{d}x^{\mu} \, a_{\mu}(x) \right)$$

で定義する. 無限小だけ離れた $2 \, \text{点} \, x, \, x + \text{d}x$ を取ってくると

$$\tilde{W}_C(x, x + \mathrm{d}x) = 1 + a_\mu(x) \, \mathrm{d}x^\mu$$

と書けるので、

$$\tilde{W}_C(x, x + \mathrm{d}x) \longrightarrow U^{-1}(x)\tilde{W}_C(x, x + \mathrm{d}x)U(x + \mathrm{d}x)$$

$$= U(x)^{-1} \left[1 + a_{\mu}(x) \, \mathrm{d}x^{\mu} \right] \left[U(x) + \partial_{\mu}U(x) \, \mathrm{d}x^{\mu} \right]$$

$$= 1 + U^{-1}(x) \left[a_{\mu} + \partial_{\mu} \right] U(x) \, \mathrm{d}x^{\mu}$$

である*12.

2.3.2 Chern-Simons 作用

いささか天下り的だが、Chern-Simons action を

$$S_{\rm CS}[a_{\mu}] := \frac{k}{4\pi} \int_{\mathcal{M}} \mathrm{d}^3 x \, \epsilon^{\alpha\beta\gamma} \, \mathrm{Tr} \left[a_{\alpha} \partial_{\beta} a_{\gamma} + \frac{2}{3} a_{\alpha} a_{\beta} a_{\gamma} \right]$$

により定義する。第 2 項は可換な場合には必ず零になるので前節では登場しなかった。 $S_{\rm CS}$ が時空 M の計量によらない* 13 ことは、ゲージ場を 1-形式 a として書き表したときに

$$S_{\text{CS}}[a] = \frac{k}{4\pi} \int_{\mathcal{M}} \text{Tr}\left(a \wedge da + \frac{2}{3}a \wedge a \wedge a\right)$$

と書けることからわかる*14.

 S_{CS} にゲージ変換 (2.3.1) を施した結果は

$$S_{\rm CS}[a_{\mu}] \longrightarrow S_{\rm CS}[a_{\mu}] + 2\pi\nu k, \tag{2.3.2}$$

$$^{\rm w/} \nu := \frac{1}{24\pi^2} \int_{\mathcal{M}} \mathrm{d}^3 x \, \epsilon^{\alpha\beta\gamma} \, \mathrm{Tr} \big[(U^{-1} \partial_{\alpha} U) (U^{-1} \partial_{\beta} U) (U^{-1} \partial_{\gamma} U) \big]$$

^{*11} 閉曲線でなくとも良い.閉曲線ならば Wilson loop と呼ばれる.

 $^{^{*12}}$ 無限小の場合はゲージ不変であるように見えるが、一般に Wilson line 自身はゲージ不変ではない.

 $^{*^{13}}$ 計量不変 (metric invariant) であると言う.

^{*14 ...} と言うのは微妙に的を外している.より正確には 2+1 次元多様体 M を教会に持つような 4 次元多様体 N を用意し,N の作用 $S[a]:=k/(4\pi)\int_{M} {\rm Tr}(F\wedge F)$ を部分積分することで $S_{\rm CS}$ の別の定義が与えられる.

となる. ν は写像 $U: \mathcal{M} \longrightarrow G$ の**巻きつき数** (winding number),もしくは **Pontryagin index** と呼ばれ,常に整数値をとる.この極めて非自明な結果についても後述する.(2.3.2) から, S_{CS} は厳密にはゲージ不変ではない.然るに,もし $k \in \mathbb{Z}$ ならば(このとき k の値は **level** と呼ばれる),分配関数 $Z(\mathcal{M})$ がゲージ不変な形になってくれるので問題ない,と考える.2+1 次元においては,1 つのゲージ場からなる作用であって

- トポロジカル不変性(i.e. 計量不変性)
- 上述の意味のゲージ不変性

の2つを充たすものは他にない.

2.4 古典的ゲージ理論

時空の多様体を M と書く.

場 $\varphi: \mathcal{M} \longrightarrow \mathbb{K}^N$, $x \longmapsto (\varphi_1(x), \ldots, \varphi_N(x))$ が線型 Lie 群 $G \subset \operatorname{GL}(N, \mathbb{K})$ で記述される*15内部対称性を持っているような系を考える.つまり,任意の C^{∞} 写像 $U: \mathcal{M} \longrightarrow G$ に対して*16,系のラグランジアン密度の場に関する項 $\mathcal{L}[\varphi_{\mu}(x)]$ が $\mathcal{L}[[U(x)]_j^i \varphi_j(x)] = \mathcal{L}[\varphi_i(x)]$ を充たすとする.

この系を経路積分により量子化することを見据えて,場の配位空間の幾何学を考察すると見通しが良いだろう.そのため,まず時空上の無限小だけ離れた 2 点 $x_{\rm i}, x_{\rm f} \in M$ における場の配位 $\varphi(x_{\rm i}), \varphi(x_{\rm f})$ を比較しよう.内部自由度による変換性を議論したいので, $\varphi(x_{\rm f}) - \varphi(x_{\rm i})$ なる量を調べても意味がない. $x_{\rm i}, x_{\rm f}$ を結ぶ C^∞ 曲線 $\gamma\colon [t_{\rm i}, t_{\rm f}] \longrightarrow M$ を持ってきて, γ に沿って $\varphi(x_{\rm i})$ を $x_{\rm t}$ まで流してやるのが良い.つまり,場の配位空間 \mathbb{K}^N 上の C^∞ 曲線 $\varphi^{(\gamma)} \coloneqq \varphi \circ \gamma\colon [t_{\rm i}, t_{\rm f}]$ を考えれば,量 $\varphi(x_{\rm f}) - \varphi^{(\gamma)}(t_{\rm f})$ は $U(x_{\rm f}) \in G$ による変換を受ける. $x_{\rm i}, x_{\rm f}$ の両方を含む M のチャート $(U, (x^\mu))$ を持ってきて成分計算すると, $\mathrm{d}x \coloneqq x_{\rm f} - x_{\rm i}$ が*17 微小なので Taylor 展開において $\mathrm{d}x$ の 1 次の項まで残すことで

$$\varphi_i^{(\gamma)}(t_f) =: \varphi_i(x_i) + [A_\mu(x)]_i^j \varphi_j(x) dx^\mu$$

$$\varphi(x_f) = \varphi(x_i) + \partial_\mu \varphi(x) dx^\mu$$
(2.4.1)

と書ける。ただし、式 (2.4.1) の右辺によって $\dim \mathcal{M}$ 個の成分を持つ<u>新しい場</u> $A_{\mu} \colon \mathcal{M} \longrightarrow \mathrm{GL}(N, \mathbb{K})$ を定義した。この場は**ゲージ場**と呼ばれる。

ゲージ場 A_{μ} の変換性を調べるには、量

$$\varphi(x_{\rm f}) - \varphi^{(\gamma)}(t_{\rm f}) = (\partial_{\mu}\varphi(x) - A_{\mu}(x)\varphi(x)) dx^{\mu}$$

が $U(x_{\rm f})\in G$ による変換を受けることに注目すれば良い. つまり, 共変微分と呼ばれる線型写像を $\mathcal{D}_{\mu}(x)\coloneqq\partial_{\mu}-\mathrm{i}A_{\mu}(x)$ で定義すると, $\forall x\in\mathcal{M}$ における, 内部対称性による変換

$$\varphi(x) \longrightarrow \tilde{\varphi}(x) := U(x)\varphi(x)$$
 (2.4.2)

に伴って $\mathcal{D}_{\mu}(x)\varphi(x)$ は

$$\mathcal{D}_{\mu}(x)\varphi(x) \longrightarrow \tilde{\mathcal{D}}_{\mu}(x)\tilde{\varphi}(x) := U(x)\mathcal{D}_{\mu}(x)\varphi(x)$$

^{*15} ここでは $\mathbb{K} = \mathbb{R}$, \mathbb{C} としておく.

 $^{^{*16}}$ 内部対称性と言うのは,U が定数写像とは限らないことを意味する.

 $^{*^{17}}$ 厳密にはこれは座標関数の差 $\mathrm{d}x^{\mu}:=x^{\mu}(x_{\mathrm{f}})-x^{\mu}(x_{\mathrm{i}})$ の絶対値が小さいことを主張している.

の変換を受ける. このことから、場 φ の変換 (2.4.2) に伴う共変微分自身の変換則は

$$\mathcal{D}_{\mu}(x) \longrightarrow \tilde{\mathcal{D}}_{\mu}(x) = U(x)\mathcal{D}_{\mu}(x)U(x)^{-1}$$

となる. 従って場 A_{μ} : $\mathcal{M} \longrightarrow \mathrm{GL}(N, \mathbb{K})$ の,場 φ の変換 (2.4.2) に伴う変換則が

$$A_{\mu}(x) \longrightarrow U(x) (\partial_{\mu} + A_{\mu}(x)) U(x)^{-1}$$

だと分かった. このような場の変換則をゲージ変換 (gauge transformation) と呼ぶ.

2.4.1 内部対称性を持つ場の定式化

ゲージ場は、主東の接続として定式化できる。特に、主東の同伴ベクトル東が重要である。 まずファイバー東と主東を定義する。 C^{∞} 多様体の微分同相群 (diffeomorphism group) **Diff** M とは、

- 台集合 Diff $M := \{ f : M \longrightarrow M \mid 微分同相写像 \}$
- 単位元を恒等写像
- 積を写像の合成

として構成される群のことを言う.

定義 2.1: Lie 群の作用

• Lie 群 G の C^{∞} 多様体 M への**左作用**とは、群準同型 $\rho: G \longrightarrow \mathrm{Diff}\ M$ であって写像

$$\blacktriangleright: G \times M \longrightarrow M, (g, x) \longmapsto \rho(g)(x)$$

が C^{∞} 写像となるようなもののこと. $g \triangleright x := \triangleright (g, x)$ と略記する.

• Lie 群 G の C^{∞} 多様体 M への右作用とは、群準同型 $\rho: G^{\mathrm{op}} \longrightarrow \mathrm{Diff}\, M$ であって写像

$$\blacktriangleleft: M \times G \longrightarrow M, (x, g) \longmapsto \rho(g)(x)$$

が C^{∞} 写像となるようなもののこと. $x \triangleleft g \coloneqq \triangleleft (g, x)$ と略記する.

- Lie 群の左 (resp. 右) 作用が**自由** (free) であるとは, $\forall x \in X, \forall g \in G \setminus \{1_G\}, g \triangleright x \neq x$ (resp. $x \triangleleft g \neq x$) を充たすことを言う.
- Lie 群の左 (resp. 右) 作用が**効果的** (effective) であるとは、 $\rho: G \longrightarrow \mathrm{Diff}\, M$ (resp. $\rho: G^\mathrm{op} \longrightarrow \mathrm{Diff}\, M$) が単射であることを言う.

定義 2.2: C^{∞} ファイバー束

Lie 群 G が C^{∞} 多様体 F に効果的に作用しているとする. ファイバー束 (fiber bundle) とは、

- C[∞] 多様体 E, B, F
- C^{∞} の全射 $\pi: E \longrightarrow B$
- Lie 群 G と、G の F への左作用 \triangleright : $G \times F \longrightarrow F$
- B の開被覆 { U_λ }
- 微分同相写像の族

$$\{ \varphi_{\lambda} \colon \pi^{-1}(U_{\lambda}) \longrightarrow U_{\lambda} \times F \}_{\lambda \in \Lambda}$$

であって、 $\forall \lambda \in \Lambda$ に対して図 2.1 を可換にするもの.

$$\begin{array}{ccc}
\pi^{-1}(U_{\lambda}) & \xrightarrow{\varphi} U_{\lambda} \times F \\
\downarrow^{\pi} & & & \\
U_{\lambda} & & & \\
\end{array}$$

図 2.1: 局所自明性

C[∞] 写像の族

$$\left\{\,t_{\alpha\beta}\colon B\longrightarrow G\;\middle|\;\forall (p,\,f)\in (U_\alpha\cap U_\beta)\times F,\; \varphi_\beta^{-1}(p,\,f)=\varphi_\alpha^{-1}\bigl(p,\,t_{\alpha\beta}(p)\blacktriangleright f\bigr)\,\right\}_{\alpha,\,\beta\in\Lambda}$$

の 6 つのデータの組みのこと. 記号としては (E, π, B, F) や $F \hookrightarrow E \xrightarrow{\pi} B$ と書く.

以下ではファイバー束と言ったら C^{∞} ファイバー束のことを指すようにする. ファイバー束 (E,π,B,F) に関して,

- E を**全空間** (total space)
- B を底空間 (base space)
- *F* をファイバー (fiber)
- π を射影 (projection)
- φ_{λ} を局所自明化 (local trivialization)
- $t_{\alpha\beta}$ を変換関数 (transition map)

と呼ぶ*18. また、射影 π による 1 点集合 $\{b\}$ の逆像 $\pi^{-1}(\{b\}) \subset E$ のことを**点 b のファイバー** (fiber) と呼び、 $F|_b$ と書く.

定義 2.3: ベクトル束

ファイバーを n 次元 \mathbb{K} -ベクトル空間とし、構造群を $\mathrm{GL}(n,\mathbb{K})$ とするようなファイバー束のことを **階数 n のベクトル束** (vector bundle of rank n) と呼ぶ.

^{*18} 紛らわしくないとき、ファイバー束 (E, π, B, F) のことを $\pi: E \to B$ 、または単に E と略記することがある.

【例 2.4.1】接束

n 次元 C^{∞} 多様体 M の接束は、ベクトル束 $(TM, \pi, M, \mathbb{R}^n)$ である. 実際、M のチャート $(U_{\lambda}, (x^{\mu}))$ に対して局所自明化は

$$\varphi_{\lambda} \colon \pi^{-1}(U_{\lambda}) \longrightarrow U_{\lambda} \times \mathbb{R}^{n}, \ \left(p, v^{\mu} \left. \frac{\partial}{\partial x^{\mu}} \right|_{p} \right) \longmapsto \left(p, \left. \begin{vmatrix} v^{1} \\ \vdots \\ v^{n} \end{vmatrix} \right)$$

となり、チャート $(U_{\alpha},(x^{\mu})),(U_{\beta},(y^{\mu}))$ に対して

$$\varphi_{\beta}^{-1}(p, (v^1, \dots, v^n)) = v_{\alpha}^{-1}(p, \begin{bmatrix} \frac{\partial y^1}{\partial x^1}(p) & \cdots & \frac{\partial y^1}{\partial x^n}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial y^n}{\partial x^1}(p) & \cdots & \frac{\partial y^n}{\partial x^n}(p) \end{bmatrix} \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix})$$

となる. 故に変換関数は

$$t_{\alpha\beta}(p) := \begin{bmatrix} \frac{\partial y^1}{\partial x^1}(p) & \cdots & \frac{\partial y^1}{\partial x^n}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial y^n}{\partial x^1}(p) & \cdots & \frac{\partial y^n}{\partial x^n}(p) \end{bmatrix} \in GL(n, \mathbb{R})$$

で、ファイバーへの構造群の左作用はただ数ベクトルに行列を掛けることである.

定義 2.4: 束写像

ファイバー F と構造群 G を共有する二つのファイバー東 $\xi_i = (E_i, \pi_i, B_i, F)$ を与える.

• ξ_1 から ξ_2 への東写像 (bundle map) とは、二つの C^∞ 写像 $f: B_1 \to B_2$ 、 $\tilde{f}: E_1 \to E_2$ の組であって図 2.2

$$E_1 \xrightarrow{\tilde{f}} E_2$$

$$\pi_1 \downarrow \qquad \qquad \downarrow \pi_2$$

$$B_1 \xrightarrow{f} B_2$$

図 2.2: 束写像

を可換にし、かつ底空間 B_1 の各点 b において、点 b のファイバー $\pi_1^{-1}(\{b\}) \subset E_1$ への \tilde{f} の制限

$$\tilde{f}|_{\pi_1^{-1}(\{b\})} \colon \pi_1^{-1}(\{b\}) \to \tilde{f}(\pi_1^{-1}(\{b\})) \subset E_2$$

が微分同相写像になっているもののことを言う.

• ファイバー束 ξ_1 と ξ_2 が同型 (isomorphic) であるとは, $B_1=B_2=B$ であってかつ $f\colon B\to B$ が恒等写像となるような束写像 $\tilde{f}\colon E_1\to E_2$ が存在することを言う. 記号としては $\xi_1\simeq\xi_2$ とかく.

図 2.3: ファイバー束の同型

• 積束 $(B \times F, \operatorname{proj}_1, B, F)$ と同型なファイバー束を自明束 (trivial bundle) と呼ぶ.

ファイバー束 (E, π, B, F) は、射影 π によってファイバー F の情報を失う。F を復元するためにも、 $s: B \to E$ なる写像の存在が必要であろう。

定義 2.5: C^{∞} 切断

ファイバー束 $\xi=(E,\pi,B,F)$ の C^∞ 切断 (cross section) とは, C^∞ 写像 $s\colon B\to E$ であって $\pi\circ s=\mathrm{id}_B$ となるもののことを言う.

 ξ の切断全体の集合を $\Gamma(B,E)$ あるいは $\Gamma(E)$ と書く.

 $\xi=(E,\pi,B,F)$ をファイバー東とする. 底空間 B の開被覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ をとると,定義 2.2 から,どの $\alpha\in\Lambda$ に対しても局所自明性(図 2.4a)が成り立つ.ここでもう一つの $\beta\in\Lambda$ をとり, $U_{\alpha}\cap U_{\beta}$ に関して局所自明性の図式を横に並べることで,自明束 $\mathrm{proj}_1\colon (U_{\alpha}\cap U_{\beta})\times F\to U_{\alpha}\cap U_{\beta}$ の自己同型(図 2.4c)が得られる.

$$U_{\alpha} \times F \xleftarrow{\varphi_{\alpha}} \pi^{-1}(U_{\alpha}) \qquad \qquad \pi^{-1}(U_{\beta}) \xrightarrow{\varphi_{\beta}} U_{\beta} \times F$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi} \qquad \qquad \downarrow^{\text{proj}_{1}} \qquad \qquad \downarrow^{\text{proj}_{1}}$$

(a) U_{α} に関する局所自明性

(b) U_{β} に関する局所自明性

$$(U_{\alpha} \cap U_{\beta}) \times F \xrightarrow{\varphi_{\beta} \circ \varphi_{\alpha}^{-1}} (U_{\alpha} \cap U_{\beta}) \times F$$

$$U_{\alpha} \cap U_{\beta}$$

$$U_{\alpha} \cap U_{\beta}$$

(c) 自明束 $(U_{\alpha} \cap U_{\beta}) \times F$ の自己同型

図 2.4: 局所自明性の結合

全ての $U_{\alpha}\cap U_{\beta}$ に関する変換関数の族 $\{t_{\alpha\beta}\}$ が $\forall b\in U_{\alpha}\cap U_{\beta}\cap U_{\gamma}$ に対して条件

$$t_{\alpha\beta}(b)t_{\beta\gamma}(b) = t_{\alpha\gamma}(b) \tag{2.4.3}$$

を充たすことは図式 2.4 より明かである. 次の命題は、ファイバー東 (E, π, B, F) を構成する「素材」には

- 底空間となる C^{∞} 多様体 B
- ファイバーとなる C^{∞} 多様体 F
- B の開被覆 {U_λ}
- (2.4.3) を充たす C^{∞} 関数族 $\{t_{\alpha\beta}\colon U_{\beta}\cap U_{\alpha}\to \mathrm{Diff}\ F\}$

があれば十分であることを主張する:

命題 2.1: ファイバー束の構成

- C[∞] 多様体 B, F
- B の開被覆 {U_λ}_{λ∈Λ}
- コサイクル条件 (2.4.3) を充たす C^{∞} 関数の族 $\{t_{\alpha\beta}: U_{\beta} \cap U_{\alpha} \to G\}$

を与える.このとき,構造群 G と変換関数 $\{t_{\alpha\beta}\}_{\alpha,\,\beta\in\Lambda}$ を持つファイバー束 $\xi=(E,\,\pi,\,B,\,F)$ が存在する.

証明 まず手始めに, cocycle 条件 (2.4.3) より

$$t_{\alpha\alpha}(b)t_{\alpha\alpha}(b) = t_{\alpha\alpha}(b), \quad \forall b \in U_{\alpha}$$

だから $t_{\alpha\alpha}(b) = 1_G$ であり、また

$$t_{\alpha\beta}(b)t_{\beta\alpha}(b) = t_{\alpha\alpha}(b) = 1_G, \quad \forall b \in U_{\alpha} \cap U_{\beta}$$

だから $t_{\beta\alpha}(b) = t_{\alpha\beta}(b)^{-1}$ である.

開被覆 $\{U_{\lambda}\}$ の添字集合を Λ とする. このとき $\forall \lambda \in \Lambda$ に対して, $U_{\lambda} \subset B$ には底空間 B からの相対位相を入れ, $U_{\lambda} \times F$ にはそれと F の位相との積位相を入れることで, 直和位相空間

$$\mathcal{E} := \coprod_{\lambda \in \Lambda} U_{\lambda} \times F$$

を作ることができる*19. \mathcal{E} の任意の元は $(\lambda, b, f) \in \Lambda \times U_{\lambda} \times F$ と書かれる.

さて、 \mathcal{E} 上の二項関係 \sim を以下のように定める:

$$\sim \coloneqq \left\{ \left(\, (\alpha, \, b, \, f), \, (\beta, \, c, \, h) \, \right) \in \mathcal{E} \times \mathcal{E} \, \left| \, \, b = c, \, \, f = t_{\alpha\beta}(b) \, \blacktriangleright \, h \right\} \right.$$

~ が同値関係の公理を充たすことを確認する:

反射律 冒頭の議論から $t_{\alpha\alpha}(b) = 1_G$ なので良い.

対称律 冒頭の議論から $t_{\beta\alpha}(b) = t_{\alpha\beta}(b)^{-1}$ なので,

$$(\alpha, b, f) \sim (\beta, c, h) \implies b = c, f = t_{\alpha\beta}(b) \triangleright h$$

$$\implies c = b, h = t_{\alpha\beta}(b)^{-1} \triangleright f = t_{\beta\alpha}(b) \triangleright f$$

$$\implies (\beta, c, h) \sim (\alpha, b, f).$$

^{*19} $\mathcal E$ はいわば、「貼り合わせる前の互いにバラバラな素材(局所自明束 $U_{\alpha} \times F$)」である。証明の以降の部分では、これらの「素材」を $U_{\alpha} \cap U_{\beta} \neq \emptyset$ の部分に関して「良い性質 (2.4.3) を持った接着剤 $\{t_{\alpha\beta}\}$ 」を用いて「貼り合わせる」操作を、位相を気にしながら行う。

推移律 cocycle 条件 (2.4.3) より

$$(\alpha, b, f) \sim (\beta, c, h), \ (\beta, c, h) \sim (\gamma, d, k) \implies b = c, c = d, \ f = t_{\alpha\beta}(b) \triangleright h, h = t_{\beta\gamma}(c) \triangleright k$$

$$\implies b = d, \ f = (t_{\alpha\beta}(b)t_{\beta\gamma}(b)) \triangleright k = t_{\alpha\gamma}(b) \triangleright k$$

$$\implies (\alpha, b, f) \sim (\gamma, d, k).$$

したがって \sim は同値関係である. \sim による \mathcal{E} の商集合を E と書き、標準射影 (canonical injection) を $\operatorname{pr}: \mathcal{E} \to E, \ (\alpha, b, f) \mapsto [(\alpha, b, f)]$ と書くことにする.

集合 E に商位相を入れて E を位相空間にする.このとき開集合 $\{\alpha\} \times U_{\alpha} \times F \subset \mathcal{E}$ は pr によって E の 開集合 $\operatorname{pr}(\{\alpha\} \times U_{\alpha} \times F) \subset E$ に移される.ゆえに E は $\{\operatorname{pr}(\{\alpha\} \times U_{\alpha} \times V_{\beta})\}$ を座標近傍にもつ C^{∞} 多様体である(ここに $\{V_{\beta}\}$ は, C^{∞} 多様体 F の座標近傍である).

次に C^{∞} 写像 $\pi: E \to B$ を

$$\pi([(\alpha, b, f)]) := b$$

と定義すると、これは局所自明化

$$\varphi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F, \ [(\alpha, b, f)] \mapsto (b, f)$$

による局所自明性を持つ. 従って組 $\xi = (E, \pi, B, F)$ はファイバー束になり, 証明が終わる.

定義 2.6: 主束

構造群を G に持つファイバー東 $\xi = (P, \pi, M, G)$ が**主東** (principal bundle) であるとは, G の G 自身への左作用が自然な左作用^aであることを言う.

a つまり, $g \triangleright x := gx$ (Lie 群の積) である.

次の命題は証明の構成が極めて重要である:

命題 2.2: 主束の全空間への右作用

 $\xi=(P,\pi,M,G)$ を主東とする。このとき,G の全空間 P への自由な右作用が自然に定義され,その軌道空間 (orbit space) P/G が M になる。

<u>証明</u> ξ の局所自明化を $\{\varphi_{\lambda}\}_{\lambda\in\Lambda}$, 変換関数を $\{t_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to G\}_{\alpha,\,\beta\in\Lambda}$ と書く. $\forall u\in P,\,\forall g\in G$ をとる. $\pi(u)\in U_{\alpha}$ となる $\alpha\in\Lambda$ を選び、対応する局所自明化 φ_{α} による u の像を $\varphi_{\alpha}(u)=:(p,\,h)\in U_{\alpha}\times G$ とおく*20. このとき G の P への右作用 $\blacktriangleleft:P\times G\longrightarrow P$ を次のように定義する*21:

$$u \triangleleft g := \varphi_{\alpha}^{-1}(p, hg) \tag{2.4.4}$$

◆ Ø well-definedness

 $\beta \neq \alpha$ に対しても $\pi(u) \in U_{\beta}$ であるとする. このとき $\varphi_{\beta}(u) = (p,h') \in (U_{\alpha} \cap U_{\beta}) \times G$ と書けて、また変換関数の定義から

$$h' = t_{\alpha\beta}(p)h \quad (t_{\alpha\beta}(p) \in G)$$

^{*} 20 つまり、 $p\coloneqq\pi(u),\; h\coloneqq\mathrm{proj}_2\circ\varphi_\alpha(u)$ と言うことである.

^{*21} 右辺の h_q は Lie 群の乗法である.

である. したがって

$$\varphi_{\beta}^{-1}(p, h'g) = \varphi_{\beta}^{-1}\Big(p, \left(t_{\alpha\beta}(p)h\right)g\Big) = \varphi_{\beta}^{-1}\Big(p, t_{\alpha\beta}(p)hg\Big) = \varphi_{\beta}^{-1}\circ(\varphi_{\beta}\circ\varphi_{\alpha}^{-1})(p, hg) = \varphi_{\alpha}^{-1}(p, hg)$$

が分かり、式 (2.4.4) の右辺は局所自明化の取り方によらない.

- **◀ は右作用** 写像 ρ : $G^{\mathrm{op}} \longrightarrow \mathrm{Diff}\ P,\ g \longmapsto (u \longmapsto u \blacktriangleleft g)$ が群準同型であることを示す.
 - (1) $u \blacktriangleleft 1_G = \varphi_{\alpha}^{-1}(p, h1_G) = \varphi_{\alpha}^{-1}(p, h) = u$
 - (2) $\forall g_1, g_2 \in G$ をとる.

$$u \blacktriangleleft (g_1g_2) = \varphi_{\alpha}^{-1}(p, (hg_1)g_2) = \varphi_{\alpha}^{-1}(p, hg_1) \blacktriangleleft g_2 = (u \blacktriangleleft g_1) \blacktriangleleft g_2$$

◀ は自由

 $\forall \alpha \in \Lambda$ に対して $\forall u = (p, g) \in \pi^{-1}(U_{\alpha})$ をとる. $u \triangleleft g' = u$ ならば

$$u \blacktriangleleft g' = \varphi_{\alpha}^{-1}(p, gg') = u = \varphi_{\alpha}^{-1}(p, g1_G)$$

が成り立つが、局所自明化は全単射なので gg'=g が言える. g は任意なので $g'=1_G$ が分かった.

軌道空間が M

 $\forall \alpha \in \Lambda$ に対して,G の右作用(2.4.4)による $U \times G$ の軌道空間は $(U \times G)/G = U \times \{1_G\} = U$ となる. 故に P 全域に対しては P/G = B となる.

定理 2.1:

コンパクト Hausdorff 空間 P と,P に自由に作用しているコンパクト Lie 群 G を与える.この時,軌道空間への商写像

$$\pi\colon P\longrightarrow P/G$$

は主束である.

証明

構造群を G とするファイバー東 $F\hookrightarrow E\stackrel{\pi}{\to} M$ が与えられたとき,命題 2.1 を使うと,変換関数が共通の主東 $G\hookrightarrow P\stackrel{p}{\to} M$ が存在することがわかる.このようにして得られる主東をファイバー東 $F\hookrightarrow E\stackrel{\pi}{\to} M$ に同伴する (associated) 主東と呼ぶ.

【例 2.4.2】フレーム束

 $\mathbb{K}^n \hookrightarrow E \xrightarrow{\pi} M$ を、変換関数 $\{t_{\alpha\beta} \colon M \longrightarrow \mathrm{GL}(n, \mathbb{K})\}$ を持つ階数 n のベクトル束とする、 $\forall x \in M$ に対して

$$P_x \coloneqq \left\{ f \in \text{Hom}\left(\mathbb{K}^n, E_x\right) \mid$$
同型写像 $\right\}$

とし,

$$P \coloneqq \coprod_{x \in M} P_x, \quad \pi \colon P \longrightarrow M, \ (x, \, f) \longmapsto x$$

と定める. $\mathrm{GL}(n,\,\mathbb{K})P\xrightarrow{\pi} M$ に適切な局所自明化を入れて,変換関数が $\{t_{\alpha\beta}\colon M\longrightarrow \mathrm{GL}(n,\,\mathbb{K})\}$ になるような主束を構成してみよう.

 \mathbb{K}^n の標準基底を e_1,\ldots,e_n とすると、 $\forall f\in P_x$ に対して f は E_x の基底 $f(e_1),\ldots,f(e_n)$ と同一視される。実際、 $\forall v=v^\mu e_\mu\in\mathbb{K}^n$ に対して

$$f(v) = v^{\mu} f(e_{\mu})$$

である. よって $f_{\mu} \coloneqq f(e_{\mu})$ とおいて $f = (f_1, \ldots, f_n) \in P_x$ と表すことにする.

E の局所自明化 $\{\varphi_{\alpha}\colon \pi^{-1}(U_{\alpha})\longrightarrow U_{\alpha}\times\mathbb{K}^{n}\}$ を与える. このとき,n 個の U_{α} 上の局所切断 $s_{1},\ldots s_{n}\in\Gamma(E|_{U_{\alpha}})$ を

$$s_{\mu}(x) = \varphi_{\alpha}^{-1}(x, e_{\mu})$$

と定義すると、 $\forall x\in U_\alpha$ に対して $s_1(x),\ldots,s_n(x)$ が E_x の基底となる a . 故に、n 個の P の局所切 断 $p_\alpha\in\Gamma(P|_{U_\alpha})$ を

$$p_{\alpha}(x) \coloneqq (s_1(x), \ldots, s_n(x)) \in P_x$$

により定義できる。このとき, $\forall (x,f)=\left(x,\,(f_1,\,\ldots,\,f_n)\right)\in\pi^{-1}(U_\alpha)$ に対してある $g\in\mathrm{GL}(n,\,\mathbb{K})$ が存在して $f=p_\alpha(x)g$ と書ける。ただし g は基底の取り替え行列で,ただ単に右から行列の積として右から作用している。故に P の局所自明化を

$$\psi_{\alpha} : \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times GL(n, \mathbb{K}), (x, f) = (x, p_{\alpha}(x)g) \longmapsto (x, g)$$

と定義できる. 変換関数を計算すると

$$\psi_{\beta}^{-1}(x, g) = (x, p_{\beta}(x)g)$$

$$= \left(x, \left(\varphi_{\beta}^{-1}(x, e_{1}), \dots, \varphi_{\beta}^{-1}(x, e_{n})\right)g\right)$$

$$= \left(x, \left(\varphi_{\alpha}^{-1}(x, t_{\alpha\beta}(x)e_{1}), \dots, \varphi_{\beta}^{-1}(x, t_{\alpha\beta}(x)e_{n})\right)g\right)$$

$$= (x, p_{\alpha}(x)t_{\alpha\beta}(x)g)$$

$$= \psi_{\alpha}^{-1}(x, t_{\alpha\beta}(x)g)$$

となり、目標が達成された. この $\mathrm{GL}(n,\mathbb{K})\hookrightarrow P\xrightarrow{\pi}M$ のことを**フレーム束**と呼ぶ.

 $[^]a$ このような切断の組のことを**フレーム場**と呼ぶ.

命題 2.3: Borel 構成

 $G\hookrightarrow P\xrightarrow{\pi} M$ を主束とし、Lie 群 G の C^{∞} 多様体への左作用 \blacktriangleright : $G\times F\longrightarrow F$ を与える. (2.4.4) で定義された G の P への右作用を \blacktriangleleft : $P\times G\longrightarrow P$ と書く.

• 積多様体 $P \times F$ への G の新しい右作用 \blacktriangleleft : $(P \times F) \times G \longrightarrow P \times F$ を

$$(u, f) \triangleleft g := (u \triangleleft g, g^{-1} \triangleright f)$$

と定義し、この右作用による $P \times F$ の軌道空間を $P \times_G F := (P \times F)/G$ と書く.

• 商写像 $\varpi: P \times F \longrightarrow P \times_G F$, $(u, f) \longmapsto (u, f) \triangleleft G$ を考える. このとき写像

$$q: P \times_G F \longrightarrow M, \ \varpi(u, f) \longmapsto \pi(u)$$

が well-defined になる.

このとき, $F\hookrightarrow P\times_G F\stackrel{q}{\to} M$ は構造群 G をもち,変換関数が $G\hookrightarrow P\stackrel{\pi}{\to} M$ と同じであるようなファイバー束である.

証明 q の well-definedness は、(2.4.4) で定義した右作用 \blacktriangleleft が $\pi(u)$ を不変に保つので明らか.

 $G \hookrightarrow P \xrightarrow{\pi} M$ の開被覆,局所自明化,変換関数をそれぞれ $\{U_{\lambda}\}_{\lambda \in \Lambda}, \{\varphi_{\lambda} \colon \pi^{-1}(U_{\lambda}) \longrightarrow U_{\lambda} \times G\}_{\lambda \in \Lambda}, \{t_{\alpha\beta} \colon M \longrightarrow G\}_{\alpha,\beta \in \Lambda}$ と書く.また, $\forall \lambda \in \Lambda$ に対して局所切断 $s_{\lambda} \in \Gamma(P|_{U_{\alpha}})$ を

$$s_{\lambda} \colon M \longrightarrow \pi^{-1}(U_{\alpha}), \ x \longmapsto \varphi_{\lambda}^{-1}(x, 1_G)$$

と定義する.

このとき、 $\forall \lambda \in \Lambda$ に対して C^{∞} 写像

$$\psi_{\lambda} \colon q^{-1}(U_{\lambda}) \longrightarrow U_{\lambda} \times F, \ \varpi(s_{\lambda}(x), f) \longmapsto (x, f)$$

が well-defined な全単射になるので、族

$$\{\psi_{\lambda}\colon q^{-1}(U_{\lambda})\longrightarrow U_{\lambda}\times F\}_{\lambda\in\Lambda}$$

を $F \hookrightarrow P \times_G F \xrightarrow{q} M$ の局所自明化にとる. すると $\forall \alpha, \beta \in \Lambda, \forall (x, f) \in (U_\alpha \cap U_\beta) \times F$ に対して

$$\psi_{\beta}^{-1}(x, f) = \varpi(s_{\beta}(x), f)$$

$$= \varpi(\varphi_{\beta}^{-1}(x, 1_{G}), f)$$

$$= \varpi(\varphi_{\alpha}^{-1}(x, t_{\alpha\beta}(x)1_{G}), f)$$

$$= \varpi(\varphi_{\alpha}^{-1}(x, 1_{G}t_{\alpha\beta}(x)), f)$$

$$= \varpi(\varphi_{\alpha}^{-1}(x, 1_{G}) \blacktriangleleft t_{\alpha\beta}(x), f)$$

$$= \varpi(s_{\alpha}(x) \blacktriangleleft t_{\alpha\beta}(x), f)$$

$$= \varpi((s_{\alpha}(x) \blacktriangleleft t_{\alpha\beta}(x)) \blacktriangleleft t_{\alpha\beta}(x)^{-1}, t_{\alpha\beta}(x) \blacktriangleright f)$$

$$= \varpi(s_{\alpha}(x), t_{\alpha\beta}(x) \blacktriangleright f)$$

$$= \psi_{\alpha}^{-1}(x, t_{\alpha\beta}(x) \blacktriangleright f)$$

が成り立つので $F \hookrightarrow P \times_G F \stackrel{q}{\rightarrow} M$ の変換関数は

$$\{t_{\alpha\beta}\colon M\longrightarrow G\}_{\alpha,\,\beta\in\Lambda}$$

である.

【例 2.4.3】同伴ベクトル束

主東 $G \hookrightarrow P \xrightarrow{\pi} \mathcal{M}$ を任意に与える. Lie 群 G の, N 次元 \mathbb{K} ベクトル空間 V への左作用とは, Lie 群 G の表現 $\rho: G \longrightarrow \mathrm{GL}(V)$ のことに他ならない a . このとき, 命題 $\mathbf{2.3}$ の方法によって構成される 階数 N のベクトル東のことを $\mathbf{P} \times_{\mathbf{\rho}} \mathbf{V}$ と書き, 同伴ベクトル東 (associated vector bundle) と呼ぶ.

これでゲージ場を導入する準備が整った. つまり, この節の冒頭で考えた内部対称性を持つ場 $\varphi\colon \mathcal{M} \longrightarrow \mathbb{K}^N$ とは、厳密には主東

$$G \hookrightarrow P \xrightarrow{\pi} \mathcal{M}$$

の、線型 Lie 群 G の N 次元表現

$$\rho \colon G \longrightarrow \mathrm{GL}(\mathbb{K}^N), \ U \longmapsto (\boldsymbol{v} \longmapsto U\boldsymbol{v})$$

による同伴ベクトル東

$$\mathbb{K}^N \hookrightarrow P \times_{\mathfrak{o}} \mathbb{K}^N \xrightarrow{q} \mathcal{M}$$

の局所切断 $\phi: U_{\alpha} \longrightarrow P \times_{\rho} \mathbb{K}^{N}$ を、ある一つの局所自明化 $\sigma_{\alpha}: q^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{K}^{N}$ によって座標表示した(ものの第 2 成分を取り出してきたもの)

$$\varphi = \operatorname{proj}_2 \circ \sigma_{\alpha} \circ \phi \colon \mathcal{M} \longrightarrow \mathbb{K}^N$$

のことだと見做せる. と言うのも, こう考えることで場の変換性 (2.4.2)

$$\varphi(x) \longrightarrow \tilde{\varphi}(x) := U(x)\varphi(x)$$

が,時空の 2 つの開集合 $V,\,\tilde{V}\subset \mathcal{M}$ の共通部分上における,局所自明化 $\sigma,\,\tilde{\sigma}\colon\pi^{-1}(V\cap\tilde{V})\longrightarrow (V\cap\tilde{V})\times\mathbb{K}^N$ の取り替え(内部自由度に関する一般座標変換のようなもの)に伴う変換関数 $U_{\tilde{V}}_{V}\colon\mathcal{M}\longrightarrow G$ の作用

$$\tilde{\sigma} \circ \sigma^{-1} \colon (V \cap \tilde{V}) \times \mathbb{K}^N \longrightarrow (V \cap \tilde{V}) \times \mathbb{K}^N,$$
$$\left(x, \, \varphi(x)\right) \longmapsto \left(x, \, \rho\big(U_{\tilde{V}, \, V}(x)\big)\big(\varphi(x)\big)\right)$$

として上手く定式化できているのである.

2.4.2 主束の接続とゲージ場の定義

この小節は [6, 第 10 章], [7, Chapter 20], [8, 第 6 章] による. Lie 群 G の上の微分同相写像* 22

$$L_g: G \longrightarrow G, x \longmapsto gx,$$

 $R_g: G \longrightarrow G, x \longmapsto xg,$

 $[^]a$ End V に標準的な C^∞ 構造を入れて Lie 群と見做したものを $\mathrm{GL}(V)$ と書いた.

^{*22} 従って、命題 B.7 から L_q 、 R_q によるベクトル場の押し出しが一意的に存在する.

のことをそれぞれ**左移動、右移動**と言う. **左不変ベクトル場**とは、ℝ-ベクトル空間

$$\mathfrak{X}^{L}(G) := \{ X \in \mathfrak{X}(G) \mid \forall g \in G, (L_g)_* X = X \}$$

の元のことである. $\mathfrak{X}^L(G)$ はベクトル場の Lie ブラケットについて閉じ, [7, p.188, Proposition 8.30]Lie 代数の公理を充たす.

線型写像

$$\iota \colon \mathfrak{X}^L(G) \longrightarrow T_{1_G}G, \ X \longmapsto X_{1_G}$$

を考える. $\forall X \in \mathfrak{X}^L(G), \ \forall g \in G$ に対して $X_g = \left((L_g)_*X\right)_{1_G} = X_{1_G}$ であるから $X \in \mathfrak{X}^L(G)$ は X_{1_G} だけで完全に決まる. i.e. ι は単射である. 逆に $\forall v \in T_{1_G}G$ に対して,ベクトル場 $X \colon G \longrightarrow TG, \ g \longmapsto \left(g, T_{1_G}(L_g)v\right)$ は $v = \iota(X)$ でかつ $X \in \mathfrak{X}^L(G)$ を充たすので ι は全射である.

ここで $\mathfrak{g} \coloneqq T_{1_G}G$ とおき、 \mathfrak{g} 上の Lie ブラケットを

$$[X,Y] := \left[\iota^{-1}(X), \iota^{-1}(Y)\right]_{1_G} \in \mathfrak{g}$$

と定義すれば ι は Lie 代数の同型となる.この意味で $\mathfrak g$ のことを Lie 群 G の Lie 代数と呼ぶ.さて,慣例に 従って $X\in\mathfrak g$ に対して $X^{\#}:=\iota^{-1}(X)$ と書く.

Lie 群 G の 1 パラメータ部分群 (one parameter subgroup) とは、Lie 群の準同型写像 $\mathbb{R} \longrightarrow G$ 、 $t \longmapsto g_t$ の像 $\{g_t\}_{t \in \mathbb{R}}$ のことを言う.

命題 2.4: 指数写像の存在

G を Lie 群, \mathfrak{g} をその Lie 代数とする. このとき以下が成り立つ:

- (1) $\forall X \in \mathfrak{g}$ に対して、ベクトル場 $X^\# \in \mathfrak{X}^L(G)$ は完備である. 従って大域的な流れ a θ : $\mathbb{R} \times G \longrightarrow G$ を生成する.
- (2) $\forall X \in \mathfrak{g}, \ \forall t \in \mathbb{R}$ に対して $\exp_G(tX) \coloneqq \theta(t, 1_G)$ と書くと, $\theta_t = R_{\exp_G(tX)} \colon G \longrightarrow G$ が成り立つ.
- (3) $\forall X \in \mathfrak{g}, \ \forall s, t \in \mathbb{R}$ に対して $\exp_G(sX) \exp_G(tX) = \exp_G((s+t)X) \in G$ が成り立つ. i.e. $\{\exp_G(tX)\}_{t \in \mathbb{R}}$ は G の 1 パラメータ部分群である.
- (4) $\forall X \in \mathfrak{g}$ に対して $\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(\exp_G(tX)\right) = X \in \mathfrak{g}$ が成り立つ.
- (5) 対応 $X \mapsto \{\exp_G(tX)\}_{t \in \mathbb{R}}$ は \mathfrak{g} から G の 1 パラメータ部分群全体の全単射である.

従って、指数写像 $\exp_G: \mathfrak{g} \longrightarrow G$ が定義される.

a つまり, Lie 群 \mathbb{R} の作用.

<u>証明</u> (1) 命題 B.8 より、ベクトル場 $X^\#$ の積分曲線 $\gamma_{1_G}\colon (-\varepsilon,\,\varepsilon) \longrightarrow G$ で、 $\gamma_\varepsilon(0)=1_G$ を充たすものが存在する.このとき $\forall g\in G$ に対して C^∞ 曲線を

$$\gamma_q \colon (-\varepsilon, \varepsilon) \longrightarrow G, \ t \longmapsto g \gamma_{1_G}(t)$$

と定義すると

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}s} \bigg|_{s=0} \gamma_g(t+s) &= \left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} \left(L_g \circ \gamma_{1_G}(t+s) \right) \\ &= T_{\gamma_{1_G}(t)}(L_g) \left(\left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} \gamma_{1_G}(t+s) \right) \\ &= T_{\gamma_{1_G}(t)}(L_g) \left((X^\#)_{\gamma_{1_G}(t)} \right) \\ &= (X^\#)_{\gamma_g(t)} \end{aligned}$$

が成り立つので、 γ_g は初期条件 $\gamma_g(0)=g$ を充たす $X^\#$ の積分曲線である.

ここで $g_1 \coloneqq \gamma_{1_G}(\varepsilon/2), \ g_2 \coloneqq \gamma_{1_G}(-\varepsilon/2)$ とおいて

$$\gamma_{1_G}(t) \coloneqq \begin{cases} \gamma_{g_1}(t - \frac{\varepsilon}{2}), & t \in [\varepsilon/2, 3\varepsilon/2) \\ \gamma_{1_G}(t), & t \in [-\varepsilon/2, \varepsilon/2] \\ \gamma_{g_2}(t + \frac{\varepsilon}{2}), & t \in (-3\varepsilon/2, -\varepsilon/2] \end{cases}$$

と定義すると $\gamma_{1_G}\colon (-3\varepsilon/2,\,3\varepsilon/2)\longrightarrow G$ は well-defined で, $X^\#$ の積分曲線となる.同様の議論で定義域を拡張すれば,初期条件 $\gamma_{1_G}(0)=1_G$ を充たす $X^\#$ の積分曲線 $\gamma_{1_G}\colon \mathbb{R}\longrightarrow G$ が得られる.

次に、上の議論により得られた γ_{1G} を使って $\forall g \in G$ に対して

$$\gamma_q \colon \mathbb{R} \longrightarrow G, \ t \longmapsto g \gamma_{1_G}(t)$$

と定義するとこれは $\gamma_q(0)=g$ を充たす $X^\#$ の積分曲線である. よって $X^\#$ は大域的な流れ

$$\theta \colon \mathbb{R} \times G \longrightarrow G, \ (t, q) \longmapsto \gamma_a(t)$$

を生成する.

(2) (1) の証明より、 $\forall t \in \mathbb{R}, \forall g \in G$ に対して

$$\begin{split} \exp_G(tX) &= \theta(t,\, \mathbf{1}_G) = \gamma_{\mathbf{1}_G}(t), \\ \theta_t(g) &\coloneqq \theta(t,\, g) = \gamma_g(t) = g\gamma_{\mathbf{1}_G}(t) = R_{\exp_G(tX)}(g) \end{split}$$

が言える.

(3) (1) で得た θ が大域的な流れなので

$$\exp_G(sX)\exp_G(tX) = \theta_t \big(1_G \exp_G(sX)\big) = \theta_t \circ \theta_s(1_G) = \theta_{s+t}(1_G) = \exp_G\big((s+t)X\big)$$
 が成り立つ.

(4)

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} \left(\exp_G(tX) \right) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \gamma_{1_G}(t) = (X^\#)_{1_G} = \iota(X^\#) = X$$

(5)

定義 2.7: 微分表現

V を \mathbb{K} -ベクトル空間とする. Lie 群 G の表現 $\rho\colon G\longrightarrow \mathrm{GL}(V)$ の, $1_G\in G$ における微分 $T_{1_G}\rho\colon \mathfrak{g}\longrightarrow \mathfrak{gl}(V)$ は Lie 代数の準同型である. この $T_{1_G}\rho$ のことを ρ の微分表現 (differential representation) と呼ぶ.

【例 2.4.4】随伴表現

 $\forall g\in G$ に対して準同型 $F_g\colon G\longrightarrow G,\ x\longmapsto gxg^{-1}$ を考えると $F_{gh}=F_g\circ F_h$ が成り立つ. 故に, $1_G\in G$ における微分

$$T_{1_G}(F_q)\colon \mathfrak{g}\longrightarrow \mathfrak{g}$$

は、 T_{1_G} の関手性から $T_{1_G}(F_{gh}) = T_{1_G}(F_g) \circ T_{1_G}(F_h)$ を充たす. よって

$$Ad: G \longrightarrow GL(\mathfrak{g}), g \longmapsto T_{1_G}(F_g)$$

は Lie 群 G の表現となる. これを Lie 群 G の**随伴表現** (adjoint representation) と呼ぶ. Ad の微分表現は

ad:
$$\mathfrak{g} \longrightarrow \mathfrak{gl}(\mathfrak{g}), X \longmapsto (Y \mapsto [X, Y])$$

になる.

定義 2.8: 基本ベクトル場

Lie 群 G が C^{∞} 多様体 M に右から作用しているとする. この右作用を \blacktriangleleft : $M \times G \longrightarrow M$ と書く.

- $\forall g \in G$ に対して右移動 $R_g \colon M \longrightarrow M$ を $R_g(x) \coloneqq x \blacktriangleleft g$ と定義する.
- $\forall X \in \mathfrak{g}$ に対して、基本ベクトル場 (fundamental vector field) $X^{\#} \in \mathfrak{X}(M)$ を次のように定める:

$$(X^{\#})_x := \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (x \blacktriangleleft \exp_G(tX)) \in T_x M$$

 $\forall X, Y \in \mathfrak{g}$ に対して

$$[X^{\#}, Y^{\#}] = [X, Y]^{\#}$$

が成り立つ.

さて、Lie 群に関する準備が終わったのでいよいよ主東の接続を定義する.

定義 2.9: 主束の接続

 $G\hookrightarrow P\stackrel{\pi}{\to} M$ を主東とする. $\forall g\in G$ に対して、命題 2.2 の右作用によって右移動を $R_g\colon P\longrightarrow P,\ u\longmapsto u\blacktriangleleft g$ と定義する.

- 分布 $\{H_u \subset T_uP \mid u \in P\}$ が P 上の接続 (connection) であるとは、以下の 2 条件が成り立つことを言う:
 - (C-1) $\forall u \in P$ に対して

$$T_u P = \operatorname{Ker} T_u(\pi) \oplus H_u$$

(C-2) $\forall u \in P, \forall g \in G$ に対して

$$T_u(R_g)(H_u) = H_{R_g(u)}$$

が成り立つ(分布 $\{H_u\}$ は G-不変).

 $\operatorname{Ker} T_u(\pi)$, H_u をそれぞれ T_uP の垂直部分空間, 水平部分空間と呼ぶ.

- \mathfrak{g} 値 1 形式 $\omega \in \Omega^1(P;\mathfrak{g})$ が接続形式であるとは、次の 2 条件を充たすことをいう:
 - (CF-1) $\forall X \in \mathfrak{g}$ に対して

$$\omega(X^{\#}) = X$$

(CF-2) $\forall g \in G$ に対して

$$(R_q)^*\omega = \operatorname{Ad}(g^{-1})(\omega)$$

定理 2.2: 接続と接続形式の関係

 $G \hookrightarrow P \xrightarrow{\pi} M$ を主束とする.

(1) $\omega \in \Omega^1(P;\mathfrak{g})$ が接続形式ならば、分布

$$\{ \operatorname{Ker} \omega_u \subset T_u P \mid u \in P \}$$

はP上の接続である.

- (2) (1) は P 上の接続形式全体の集合から P 上の接続全体の集合への 1 対 1 対応を与える.
- <u>証明</u> (1) $\omega \in \Omega^1(P;\mathfrak{g})$ を接続形式とする. $\operatorname{Ker} T_u(\pi) = \{(X_u)^\# \in T_u P \mid X \in \mathfrak{g}\}$ であり、接続形式の 定義から $\forall X \in \mathfrak{g}$ に対して $\omega(X^\#) = X$ が成り立つ. よって $T_u P = \operatorname{Ker} T_u(\pi) \oplus \operatorname{Ker} \omega_u$ である. $\forall v \in \operatorname{Ker} \omega_u$ をとる. このとき **(CF-2)** より

$$\omega_{u \blacktriangleleft g} \left(T_u(R_g)(v) \right) = \left((R_g)^* \omega_u(v) \right) = \operatorname{Ad}(g^{-1}) \left(\omega_u(v) \right) = 0$$

が従い, $T_u(R_g)(\operatorname{Ker}\omega_u)\subset \operatorname{Ker}\omega_u \blacktriangleleft_g$ である.両辺の次元が等しいので $T_u(R_g)(\operatorname{Ker}\omega_u)=\operatorname{Ker}\omega_u \blacktriangleleft_g$ が言えた.

(2)

定理 2.3: 同伴ベクトル束上の接続

■ 2.5 特性類と Chern-Simons 形式

付録 A

結び目理論入門

定義 A.1: 結び目・絡み目

- **結び目** (knot) とは,空間対 (S^3, S^1) であって S^1 が S^3 の滑らかな部分多様体になっているもののこと.
- n 成分**絡み目** (link) とは、空間対 $(S^3,\underbrace{S^1 \coprod \cdots \coprod S^1}_n)$ であって $S^1 \coprod \cdots \coprod S^1$ が S^3 の滑らかな部分多様体になっているもののこと、n のことを**成分数**と呼ぶ。

定義 A.2: 結び目の同値

結び目 K_1, K_2 を与える. 以下の 2 つの定義は同値である.

- S^3 の向きを保つ自己同相写像 φ が存在して $\varphi(K_1)=K_2$ を充たすとき, K_1 と K_2 は**同値**であるという.
- S^3 の自己同相写像の族 $\{h_t\colon S^3\longrightarrow S^3\}_{t\in[0,1]}$ が存在するとき, K_1 と K_2 は全同位同値 (ambient isotopic) であるという:
 - $-H: S^3 \times [0, 1] \longrightarrow S^3, (x, t) \longmapsto h_t(x)$ は連続写像
 - $-h_0=\mathrm{id}_{S^3}$
 - $-h_1(K_1) = K_2$

付録 B

ベクトル場の話

 C^{∞} 多様体 M 上の C^{∞} 関数全体の集合のことを $C^{\infty}(M)$ と書く.

 C^{∞} 多様体の 1 つの極大 C^{∞} アトラスを C^{∞} 構造 (smooth structure) と呼ぶことにする. 集合 M の上に C^{∞} 構造を与えるには、例えば次のようにすればよい [7, p.21, Lemma 1.35]:

補題 B.1: C[∞] 構造の構成

- 集合 M
- M の部分集合族 $\left\{U_{\lambda}\right\}_{\lambda\in\Lambda}$
- 写像の族 $\{\varphi_{\lambda}\colon U_{\lambda}\longrightarrow \mathbb{R}^n\}_{\lambda\in\Lambda}$

の3つ組であって以下の条件を充たすものを与える:

- **(DS-1)** $\forall \lambda \in \Lambda$ に対して $\varphi_{\lambda}(U_{\lambda}) \subset \mathbb{R}^{n}$ は \mathbb{R}^{n} の開集合 a であり, $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は全単射である.
- (DS-2) $\forall \alpha, \beta \in \Lambda$ に対して $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta}), \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n}$ は \mathbb{R}^{n} の開集合である.
- (DS-3) $\forall \alpha, \beta \in \Lambda$ に対して, $U_{\alpha} \cap U_{\beta} \neq \emptyset$ ならば $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \longrightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ は C^{∞} 級である.
- (DS-4) 添字集合 Λ の<u>可算濃度の</u>部分集合 $I \subset \Lambda$ が存在して $\left\{U_i\right\}_{i \in I}$ が M の被覆になる.
- **(DS-5)** $p, q \in M$ が $p \neq q$ ならば、ある $\lambda \in \Lambda$ が存在して $p, q \in U_{\lambda}$ を充たすか、またはある $\alpha, \beta \in \Lambda$ が存在して $U_{\alpha} \cap U_{\beta} = \emptyset$ かつ $p \in U_{\alpha}, q \in U_{\beta}$ を充たす.

このとき, M の C^{∞} 構造であって, $\forall \lambda \in \Lambda$ に対して $(U_{\lambda}, \varphi_{\lambda})$ を C^{∞} チャートとして持つものが一意的に存在する.

証明 位相の構成

 \mathbb{R}^n の Euclid 位相を $\mathcal{O}_{\mathbb{R}^n}$ と表記する. 集合

$$\mathscr{B} := \left\{ \varphi_{\lambda}^{-1}(U) \mid \lambda \in \Lambda, \ U \in \mathscr{O}_{\mathbb{R}^n} \right\}$$

が開基の公理 (B1), (B2) を充たすことを確認する.

(B1) (DS-4) より明らか.

 $^{^{}a}$ いつものように、 \mathbb{R}^{n} には Euclid 位相を入れる.

(B2) $B_1, B_2 \in \mathcal{B}$ を任意にとる.このとき \mathcal{B} の定義から,ある $\alpha, \beta \in \Lambda$ および $U, V \in \mathcal{O}_{\mathbb{R}^n}$ が存在して $B_1 = \varphi_{\alpha}^{-1}(U), B_2 = \varphi_{\beta}^{-1}(V)$ と書ける.故に

$$B_1 \cap B_2 = \varphi_{\alpha}^{-1}(U) \cap \varphi_{\beta}^{-1}(V)$$
$$= \varphi_{\alpha}^{-1} (U \cap (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(V))$$
$$= \varphi_{\alpha}^{-1} (U \cap (\varphi_{\beta} \circ \varphi_{\alpha}^{-1})^{-1}(V))$$

が成り立つが、**(DS-3)** より $\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ は連続なので $(\varphi_{\beta}\circ\varphi_{\alpha}^{-1})^{-1}(V)\in\mathscr{O}_{\mathbb{R}^n}$ である. よって

$$B_1 \cap B_2 \in \mathscr{B}$$

であり, **(B2)** が示された.

従って \mathscr{B} を開基とする M の位相 \mathscr{O}_M が存在する.

$arphi_{\lambda}$ が同相写像であること

 $\forall \lambda \in \Lambda$ を 1 つ固定する. \mathcal{O}_M の構成と補題??-(4) より、 $\forall V \in \mathcal{O}_{\mathbb{R}^n}$ に対して $\varphi_{\lambda}^{-1}(V \cap \varphi_{\lambda}(U_{\lambda})) = \varphi_{\lambda}^{-1}(V) \cap U_{\lambda}$ は U_{λ} の開集合である*1. i.e. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は連続である.

 $\forall B \in \mathcal{B}$ をとる。このとき $\varphi_{\lambda}(B \cap U_{\lambda}) = \varphi_{\lambda}(B) \cap \varphi_{\lambda}(U_{\lambda})$ が成り立つが, \mathscr{O}_{M} の定義より $\varphi_{\lambda}(B) \in \mathscr{O}_{\mathbb{R}^{n}}$ なので $\varphi_{\lambda}(B \cap U_{\lambda})$ は $\varphi_{\lambda}(U_{\lambda})$ の開集合である。相対位相の定義と de Morgan 則より U_{λ} の任意の開集合は $B \cap U_{\lambda}$ の形をした部分集合の和集合で書けるので,位相空間の公理から φ_{λ} は U_{λ} の開集合を $\varphi_{\lambda}(U_{\lambda})$ の開集合に移す。i.e. $\varphi_{\lambda} : U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は連続な全単射でかつ開写像である。から同相写像である。

Hausdorff 性

位相空間 (M, \mathcal{O}_M) が Hausdorff 空間であることを示す. M の異なる 2 点 p, q を勝手にとる. このとき **(DS-5)** より,

- ある $\lambda \in \Lambda$ が存在して $p, q \in U_{\lambda}$ を充たす
- ある $\alpha,\,\beta\in\Lambda$ が存在して $U_{\alpha}\cap U_{\beta}=\emptyset$ かつ $p\in U_{\alpha},\;q\in U_{\beta}$ を充たす

のいずれかである.後者ならば証明することは何もない.

前者の場合を考える.このとき $\varphi_{\lambda}(U_{\lambda})$ は \mathbb{R}^{n} の開集合だから, \mathbb{R}^{n} の Hausdorff 性から $\varphi_{\lambda}(U_{\lambda})$ も Hausdorff 空間であり,従って $\varphi_{\lambda}(U_{\lambda})$ の開集合 $U, V \subset \varphi_{\lambda}(U_{\lambda})$ であって $\varphi_{\lambda}(p) \in U$ かつ $\varphi_{\lambda}(q) \in V$ かつ $U \cap V = \emptyset$ を充たすものが存在する.このとき $\varphi_{\lambda}^{-1}(U) \cap \varphi_{\lambda}^{-1}(V) = \varphi_{\lambda}^{-1}(U \cap V) = \emptyset$ で,かつ \mathcal{O}_{M} の構成から $\varphi_{\lambda}^{-1}(U), \varphi_{\lambda}^{-1}(V) \subset M$ はどちらも M の開集合である.そのうえ $p \in \varphi_{\lambda}^{-1}(U)$ かつ $q \in \varphi_{\lambda}^{-1}(V)$ が成り立つので M は Hausdorff 空間である.

第2可算性

 \mathbb{R}^n は第 2 可算なので、 $\forall \lambda \in \Lambda$ に対して $\varphi_{\lambda}(U_{\lambda})$ も第 2 可算である. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は同相写像なので、 U_{λ} も第 2 可算である.従って **(DS-4)** から M も第 2 可算である.

以上の考察から、位相空間 $(M,\,\mathcal{O}_M)$ が位相多様体であることが示された. さらに **(DS-3)** より $\mathcal{A}\coloneqq \left\{(U_\lambda,\,\varphi_\lambda)\right\}_{\lambda\in\Lambda}$ は $(M,\,\mathcal{O}_M)$ の C^∞ アトラスであることもわかる.

補題 B.1 とほとんど同じ手順で境界付き多様体を作ることもできる.

 $^{^{*1}}U_{\lambda}$ には (M,\mathscr{O}_{M}) からの相対位相が、 $\varphi_{\lambda}(U_{\lambda})$ には $(\mathbb{R}^{n},\mathbb{R}^{n})$ からの相対位相が入っている.

B.1 接束

境界あり/なし C^{∞} 多様体 M を与える. M の接束 (tangent bundle) とは集合

$$TM \coloneqq \coprod_{p \in M} T_p M$$

のことである. TM の任意の元は $p\in M, v\in T_pM$ を用いて (p,v) と書かれる. このことから、射影 (projection) と呼ばれる全射

$$\pi: TM \longrightarrow M, (p, v) \longmapsto p$$

が自然に定義できる.

命題 B.1: 接束の C^{∞} 構造

任意の n 次元境界あり/なし C^∞ 多様体 M に対して, TM は π が C^∞ 級となるような自然な 2n 次元の C^∞ 構造を持つ.

証明 M が境界を持たないとする. M の C^∞ 構造を $\{(U_lpha, arphi_lpha)\}_{lpha \in \Lambda}$ と書く. 写像の族

$$\left\{ \tilde{\varphi}_{\alpha} \colon \pi^{-1}(U_{\alpha}) \longrightarrow \mathbb{R}^{2n}, \ \left(p, \ v^{\mu} \left. \frac{\partial}{\partial x^{\mu}} \right|_{p} \right) \longmapsto \left(x^{1}(p), \dots, x^{n}(p), \ v^{1}, \dots, \ v^{n} \right) \right\}_{\alpha \in \Lambda}$$

を定める. ただし (x^{μ}) はチャート $(U_{\alpha}, \varphi_{\alpha})$ の座標関数である. このとき

- 集合 TM
- TM の部分集合族 $\left\{\pi^{-1}(U_{\alpha})\right\}_{\alpha\in\Lambda}$
- 写像の族 $\{\tilde{\varphi}_{\alpha}\}_{\alpha\in\Lambda}$

の3つ組が補題B.1の5条件を充たすことを確認する.

(DS-1) $\forall \alpha \in \Lambda$ に対して $(U_{\alpha}, \varphi_{\alpha})$ は M の C^{∞} チャートなので $\varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^{n}$ は \mathbb{R}^{n} の開集合である. ゆえに積位相の定義から $\tilde{\varphi}_{\alpha}(\pi^{-1}(U_{\alpha})) = \varphi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n} \subset \mathbb{R}^{2n}$ は \mathbb{R}^{2n} の開集合. また, 写像

$$\tilde{\varphi}_{\alpha} \colon \pi^{-1}(U_{\alpha}) \longrightarrow \varphi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n}, \ \left(p, v^{\mu} \left. \frac{\partial}{\partial x^{\mu}} \right|_{p} \right) \longmapsto \left(x^{1}(p), \ldots, x^{n}(p), v^{1}, \ldots, v^{n}\right)$$

は写像

$$\tilde{\varphi_{\alpha}}^{-1} \colon \varphi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n} \longrightarrow \pi^{-1}(U_{\alpha}), \ \left(x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}\right) \longmapsto \left(\varphi_{\alpha}^{-1}(x^{1}, \ldots, x^{n}), v^{\mu} \frac{\partial}{\partial x^{\mu}} \Big|_{\varphi_{\alpha}^{-1}(x^{1}, \ldots, x^{n})}\right)$$

を逆写像に持つので全単射である.

(DS-2, 3) $\forall \alpha, \beta \in \Lambda$ に対して

$$\tilde{\varphi}_{\alpha}(\pi^{-1}(U_{\alpha}) \cap \pi^{-1}(U_{\beta})) = \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n},$$

$$\tilde{\varphi}_{\beta}(\pi^{-1}(U_{\alpha}) \cap \pi^{-1}(U_{\beta})) = \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n}$$

はどちらも \mathbb{R}^{2n} の開集合である. さらに自然基底の変換則より

$$\tilde{\varphi}_{\beta} \circ \tilde{\varphi}_{\alpha}^{-1}(x^{1}, \dots, x^{n}, v^{1}, \dots, v^{n})$$

$$= \left(y^{1}(x), \dots, y^{n}(x), \frac{\partial y^{1}}{\partial x^{\mu}}(x)v^{\mu}, \dots, \frac{\partial y^{n}}{\partial x^{\mu}}(x)v^{\mu}\right)$$

なので $\tilde{\varphi}_{\beta}\circ \tilde{\varphi}_{\alpha}^{-1}$ は C^{∞} 級である。ただしチャート $(U_{\alpha},\,\varphi_{\alpha}),\,(U_{\beta},\,\varphi_{\beta})$ の座標関数をそれぞれ $(x^{\mu}),\,(y^{\mu})$ と書き, $x\coloneqq \varphi_{\alpha}^{-1}(x^{1},\,\ldots,\,x^{n})$ とおいた.

(DS-4) $\{(U_\alpha,\,\varphi_\alpha)\}_{\alpha\in\Lambda}$ は M のアトラスなので,可算濃度の部分集合 $I\subset\Lambda$ が存在して $\{U_i\}_{i\in I}$ が M の被覆になる.このとき

$$TM = \coprod_{p \in \bigcup_{i \in I} U_i} T_p M = \bigcup_{i \in I} \coprod_{p_i \in U_i} T_{p_i} M = \bigcup_{i \in I} \pi^{-1}(U_i)$$

が言える.

(DS-5) TM の任意の異なる 2 点 (p,v), (q,w) をとる. p=q ならば, $p\in U_{\alpha}$ を充たす $\alpha\in\Lambda$ に対して*2 (p,v), $(q,w)\in\pi^{-1}(\{p\})\subset\pi^{-1}(U_{\alpha})$ が成り立つ. $p\neq q$ ならば, $U_{\alpha}\cap U_{\beta}=\emptyset$ かつ $p\in U_{\alpha}$, $q\in U_{\beta}$ を充たすような α , $\beta\in\Lambda$ が存在する*3. このとき, TM の定義から明らかに $\pi^{-1}(U_{\alpha})\cap\pi^{-1}(U_{\beta})=\emptyset$ でかつ $(p,v)\in\pi^{-1}(U_{\alpha})$, $(q,w)\in\pi^{-1}(U_{\beta})$ が成り立つ.

B.2 ベクトル場の定義

 $^{^{*2}}$ $\{U_{\alpha}\}$ は M の開被覆なので、このような α は必ず存在する.

^{*3} M の極大アトラスをとっているため.

定義 B.1: ベクトル場

境界あり/なし C^{∞} 多様体 M を与える.

- M 上のベクトル場 (vector field) とは、接束 TM の切断のことを言う. i.e. 連続写像 $X: M \longrightarrow TM$ であって $\pi \circ X = \mathrm{id}_M$ を充たすもののこと.
- M 上の C^{∞} ベクトル場とは,M 上のベクトル場 X であって,TM に命題 B.1 の C^{∞} 構造 を入れたときに C^{∞} 写像となるもののこと.
- M 上のベクトル場 X の台 (support) とは、閉集合^b

$$\mathbf{supp}\,\boldsymbol{X} := \overline{\big\{\, p \in M \mid X_p \neq 0\,\big\}}$$

のこと. ただし⁻ は閉包を取ることを意味する. 特に $\operatorname{supp} X$ がコンパクト集合であるとき, X は**コンパクト台を持つ** (compactly supported) と言う.

• M の任意のベクトル場 X および任意のチャート $\left(U,\,(x^\mu)\right)$ を与える. このとき n 個の関数 $X^\mu\colon U\longrightarrow \mathbb{R}$ を

$$X_p =: \mathbf{X}^{\mu}(\mathbf{p}) \left. \frac{\partial}{\partial x^{\mu}} \right|_p$$

によって定義し、X の成分関数 (component function) と呼ぶ.

ベクトル場 $X\colon M\longrightarrow TM$ による点 $p\in M$ の行き先を X(p) と書く代わりに $\boldsymbol{X_p}$ と書く. さらに、混乱の恐れがないときは $X_p=(p,v)\quad (v\in T_pM)$ のとき v のことを X_p と書く場合がある.

命題 $\mathbf{B.2}$: ベクトル場の C^{∞} 性

境界あり/なし C^∞ 多様体 M と M の任意の C^∞ チャート $(U,(x^\mu))$ と M 上のベクトル場 X を与える。このとき,制限 $X|_U$ が C^∞ ベクトル場となる必要十分条件は X の U 上の成分関数が全て C^∞ 関数になることである.

証明 命題 B.1 の証明における TM の C^{∞} チャートの構成より明らか.

【例 B.2.1】座標ベクトル場

 C^{∞} 多様体 M の任意のチャート $\left(U,\left(x^{\mu}\right)\right)$ に対して、写像

$$\frac{\partial}{\partial x^{\mu}} \colon U \longrightarrow TM, \ p \longmapsto \left(p, \ \frac{\partial}{\partial x^{\mu}} \bigg|_{p} \right)$$

は U 上の C^∞ ベクトル場となる. C^∞ 性は,成分関数が $p \longmapsto \delta^\nu_\mu$ なる定数関数なので命題 $\mathbf{B}.2$ から従う.

 $[^]aTM$ の位相は命題 B.1 で構成したものを選ぶ.

 $[^]b$ ここで言う 0 とは,厳密には $(p,0)\in TM$ のことである.一点集合 $\{(p,0)\}$ はコンパクトだが,TM は命題 B.1 より Hausdorff 空間なので閉集合でもある.故に $TM\setminus\{(p,0)\}$ は開集合であり, $X:M\longrightarrow TM$ は連続写像なので $X^{-1}(TM\setminus\{0\})$ も開集合である.これの閉包を取ることで $\sup X$ が得られる.

境界あり/なし C^{∞} 多様体 M 上の C^{∞} ベクトル場全体の集合を $\mathfrak{X}(M)$ と書く.

命題 $\mathbf{B.3}$: $\mathfrak{X}(M)$ の加群としての構造

• $\mathfrak{X}(M)$ 上の加法とスカラー乗法を

$$(X + Y)_p := (p, X_p + Y_p)$$

 $(\lambda X)_p := (p, \lambda X_p)$

と定義すると $\mathfrak{X}(M)$ は \mathbb{R} ベクトル空間になる.

• $\mathfrak{X}(M)$ 上の $C^{\infty}(M)$ に関する加法とスカラー乗法を

$$(X+Y)_p := (p, X_p + Y_p)$$
$$(fX)_p := (p, f(p)X_p)$$

と定義すると $\mathfrak{X}(M)$ は左 $C^{\infty}(M)$ 加群になる.

証明 命題 B.2 および $C^{\infty}(M)$ が和と積

$$(f+g)(p) := f(p) + g(p)$$
$$(fg)(p) := f(p)g(p)$$

に関して環になることから従う. 加法単位元はどちらの場合も関数 $p \mapsto (p, 0)$ である.

定義 B.2: フレーム

n 次元 C^{∞} 多様体 M を与える.

- ベクトル場 a の順序付き k 対 (X_1,\ldots,X_k) が部分集合 $A\subset M$ 上線型独立 (linearly independent) であるとは, $\forall p\in A$ において $(X_1|_p,\ldots,X_k|_p)$ が $\mathbb R$ ベクトル空間 T_pM の元として線型独立であることを言う.
- M の局所フレーム (local frame) とは,ある開集合 $U \subset M$ 上の線型独立なベクトル場 b の n 対 (E_1,\ldots,E_n) であって, $\forall p \in U$ において $(X_1|_p,\ldots,X_k|_p)$ が T_pM を貼るようなもののこと.
- U=M 上の局所フレームのことを**大域的フレーム** (global frame) と呼ぶ.
- 局所フレーム (E_1, \ldots, E_n) であって E_i が C^{∞} ベクトル場であるもののことを C^{∞} フレーム (smooth frame) と呼ぶ.

定義 B.3: 平行化可能性

n 次元 C^{∞} 多様体 M が C^{∞} の大域的フレームを持つとき,M は**平行化可能** (parallelizable) であると言う.

 $[^]a$ C^∞ とは限らない

^b C[∞] とは限らない

B.2.1 C^{∞} 関数の微分としてのベクトル場

ベクトル場の定義に $C^{\infty}(M)$ に作用する微分作用素としての意味を持たせることができる.これによって、微分方程式とベクトル場の繋がりが明らかになる.

任意の M 上のベクトル場 X および M の開集合 $U\subset M$ 上定義された任意の C^∞ 関数 $f\colon U\longrightarrow \mathbb{R}$ を与える. このとき関数*4

$$Xf: U \longrightarrow \mathbb{R}, \ p \longmapsto X_p f$$

を考えることができる.

命題 $\mathbf{B.4}$: ベクトル場の C^{∞} 性

境界あり/なし C^∞ 多様体 M と M の任意の C^∞ チャート $(U,(x^\mu))$ と M 上のベクトル場 X を与える. このとき以下の 3 つは同値である:

- (1) X は C^{∞} ベクトル場
- (2) $\forall f \in C^{\infty}(M)$ に対して、関数 $Xf: M \longrightarrow \mathbb{R}$ は $M \perp C^{\infty}$ 級である.
- (3) 任意の開集合 $U\subset M$ および任意の $f\in C^\infty(U)$ に対して、関数 $Xf\colon U\longrightarrow \mathbb{R}$ は $U\perp C^\infty$ 級である.

証明 [7, p.180, Proposition 8.14] を参照.

命題 B.4 より、 $\forall X \in \mathfrak{X}(M)$ は線型写像

$$X: C^{\infty}(M) \longrightarrow C^{\infty}(M), f \longmapsto Xf$$

を誘導することが分かった. その上、接空間の元の Leibniz 則から

$$X(fg) = f Xg + g Xf$$

が成り立つこともわかる.このことから \mathbb{R} -線型写像 $X\colon C^\infty(M)\longrightarrow C^\infty(M)$ は微分 (derivation) である.逆に, $C^\infty(M)$ に作用する任意の微分は次の意味であるベクトル場と同一視できる:

命題 B.5: 微分とベクトル場

写像 $D\colon C^\infty(M)\longrightarrow C^\infty(M)$ が微分である, i.e. \mathbb{R} -線型写像でかつ Leibniz 則を充たす. ⇔ ある $X\in\mathfrak{X}(M)$ が存在して, $\forall f\in C^\infty(M)$ に対して D(f)=Xf が成り立つ.

証明 [7, p.180, Proposition 8.15]

B.2.2 ベクトル場と C^{∞} 写像

 $^{^{*4}}$ この時点では C^{∞} とは限らない.

M, N を C^∞ 多様体, $F: M \longrightarrow N$ を C^∞ 写像とする.このとき F によって $\mathfrak{X}(M)$ と $\mathfrak{X}(N)$ の間の自然な対応が生まれることを見る.

まず、接ベクトルの微分を思いだそう. これは $\forall p \in M$ に対して定まる

$$T_pF: T_pM \longrightarrow T_{F(p)}N, \ v \longmapsto (f \mapsto v(f \circ F))$$

という対応であり、基点付き C^∞ 多様体の圏 \mathbf{Diff}_0 から \mathbb{R} -ベクトル空間の圏 $\mathbf{Vec}_\mathbb{R}$ への関手

$$T_p \colon \mathbf{Diff}_0 \longrightarrow \mathbf{Vec}_{\mathbb{R}}$$

を構成するのだった.

定義 B.4:

境界あり/なし C^{∞} 多様体 M,N と C^{∞} 写像 $F\colon M\longrightarrow N$ を与える. M 上のベクトル場 X と N 上のベクトル場 Y が F-related であるとは, $\forall p\in M$ に対して

$$T_p F(X_p) = Y_{F(p)}$$

が成り立つことと定義する.

a C[∞] でなくとも良い.

 b C^{∞} でなくとも良い.

命題 B.6:

境界あり/なし C^{∞} 多様体 M,N と C^{∞} 写像 $F\colon M\longrightarrow N$ を与える.

 $X\in\mathfrak{X}(M)$ と $Y\in\mathfrak{X}(N)$ が F-related である必要十分条件は,N の任意の開集合 $U\subset N$ に対して, $\forall f\in C^\infty(U)$ が

$$X(f \circ F) = (Yf) \circ F \in C^{\infty}(M)$$

を充たすことである.

証明 $\forall p \in M$ と, $F(p) \in N$ の任意の開近傍上で定義された任意の C^{∞} 関数 f に対して

$$X(f \circ F)(p) = X_p(f \circ F) = T_p F(X_p)(f),$$

$$((Yf) \circ F)(p) = (Yf)(F(p)) = Y_{F(p)}(f)$$

が成り立つ.

【例 B.2.2】

 C^{∞} 写像 $F: \mathbb{R} \longrightarrow \mathbb{R}^2, t \longmapsto (\cos t, \sin t)$ を考える. このとき、 \mathbb{R} のチャート $\left(\mathbb{R}, (t)\right)$ による座標ベクトル場

$$\frac{\mathrm{d}}{\mathrm{d}t} \in \mathfrak{X}(\mathbb{R})$$

は、 \mathbb{R} のチャート $\left(\mathbb{R}^2, (x, y)\right)$ において

$$Y := -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \in \mathfrak{X}(\mathbb{R}^2)$$

と定義される a C^∞ ベクトル場 Y と F-related である. 実際, $\forall t \in \mathbb{R}$ および $\forall f \in C^\infty(\mathbb{R}^2)$ に対して

$$T_{t}F\left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t}\right)(f) = \frac{\mathrm{d}}{\mathrm{d}t}\left(f(\cos t, \sin t)\right)$$

$$= \frac{\mathrm{d}(\cos t)}{\mathrm{d}t}\frac{\partial f}{\partial x}(\cos t, \sin t) + \frac{\mathrm{d}(\sin t)}{\mathrm{d}t}\frac{\partial f}{\partial y}(\cos t, \sin t)$$

$$= -\sin t\frac{\partial f}{\partial x}(F(t)) + \cos t\frac{\partial f}{\partial y}(F(t))$$

$$= Y^{1}(F(t))\frac{\partial}{\partial x}\Big|_{F(t)}(f) + Y^{2}(F(t))\frac{\partial}{\partial y}\Big|_{F(t)}(f)$$

$$= Y_{F(t)}(f)$$

が成り立つ.

F-relrated なベクトル場は必ず存在するとは限らない.

命題 $\mathbf{B.7}$: C^{∞} ベクトル場の押し出し

 $F\colon M\longrightarrow N$ が微分同相写像ならば, $\forall X\in\mathfrak{X}(M)$ に対して F-related な $Y\in\mathfrak{X}(N)$ が一意的に存在する.

証明 図式

$$\begin{array}{ccc}
M & \xrightarrow{X} & TM \\
\downarrow F & & \downarrow T_p F \\
N & \xrightarrow{} & TN
\end{array}$$

において $p = F^{-1}(q)$ とすることで,

$$Y: N \longrightarrow TN, \ q \longmapsto \left(q, T_{F^{-1}(q)}F\left(X_{F^{-1}(q)}\right)\right)$$

が所望の $Y \in \mathfrak{X}(N)$ となる.

命題B.7で得られたYはFによるXの \pmb{m} し出し(push forward)と呼ばれ、よく $\pmb{F_*X}$ と略記される.

系 B.1: 押し出しの計算

$$((F_*X)f) \circ F = X(f \circ F)$$

a 成分関数が それぞれ $Y^1:(x,y)\longmapsto -y,\ Y^2:(x,y)\longmapsto x$ だということ.

B.3 積分曲線と流れ

B.3.1 積分曲線

定義 B.5: 積分曲線

境界あり/なし C^∞ 多様体 M を与える. M 上のベクトル場 X の積分曲線 (integral curve) とは, C^∞ 曲線 $Y: J \longrightarrow M$ であって,任意の時刻 $t \in J$ において

$$\dot{\gamma}(t) = X_{\gamma(t)}$$

を充たすもののことを言う.

 a C^∞ とは限らない

 b よって, $J \subset \mathbb{R}$ である.

チャート $(U, \varphi) = (U, (x^{\mu}))$ を取り、 γ を $\varphi \circ \gamma(t) =: (\gamma^{1}(t), \ldots, \gamma^{\dim M}(t))$ のように座標表示すると、

$$\dot{\gamma}(t) = \frac{\mathrm{d}\gamma^{\mu}}{\mathrm{d}t}(t) \left. \frac{\partial}{\partial x^{\mu}} \right|_{\gamma(t)},$$

$$X_{\gamma(t)} = X^{\mu} (\gamma(t)) \left. \frac{\partial}{\partial x^{\mu}} \right|_{\gamma(t)}$$

と書ける. つまり、積分曲線とは連立常微分方程式系

$$\frac{\mathrm{d}\gamma^1}{\mathrm{d}t}(t) = X^1(\gamma^1(t), \ldots, \gamma^{\dim M}(t)),$$

:

$$\frac{\mathrm{d}\gamma^{\dim M}}{\mathrm{d}t}(t) = X^{\dim M} \left(\gamma^1(t), \, \dots, \, \gamma^{\dim M}(t)\right)$$

の解 $\left(\gamma^1(t), \ldots, \gamma^{\dim M}(t)\right)$ のことである.

命題 B.8: 積分曲線の存在

境界あり/なし C^∞ 多様体 M と,その上の C^∞ ベクトル場 $X\in\mathfrak{X}(M)$ を与える. $\forall p\in M$ に対して,ある $\varepsilon>0$ と C^∞ 曲線 $\gamma\colon (-\varepsilon,\varepsilon)\longrightarrow M$ が存在して初期条件 $\gamma(0)=p$ を充たす X の積分曲線になる.

証明 常微分方程式の解の存在定理から従う.

B.3.2 流れ

定義 B.6: 大域的な流れ

 C^{∞} 多様体 M への Lie 群 \mathbb{R} の左作用

$$\theta \colon \mathbb{R} \times M \longrightarrow M$$

のことを M 上の大域的な流れ (global flow) と呼ぶ.

 a \mathbb{R} を加法に関して群と見做す.

大域的な流れ θ : $\mathbb{R} \times M \longrightarrow M$ が与えられたとき、

- $\forall t \in \mathbb{R}$ に対する連続写像 $\theta_t : M \longrightarrow M$ を $\theta_t(p) := \theta(t, p)$ により定める.
- $\forall p \in M$ に対する連続曲線 $\theta^{(p)}: \mathbb{R} \longrightarrow M$ を $\theta^{(p)}(t) := \theta(t, p)$ により定める.

命題 B.9: 大域的な流れの無限小生成子

 C^{∞} 多様体 M 上の C^{∞} 級の大域的な流れ $\theta \colon \mathbb{R} \times M \longrightarrow M$ を与える. M 上のベクトル場

$$V: M \longrightarrow TM, \ p \longmapsto \left(p, \ \theta^{(p)}(0)\right)$$

のことを θ の無限小生成子 (infinitesimal generator) と呼ぼう.

このとき $V \in \mathfrak{X}(M)$ であり、 $\forall p \in M$ に対して C^{∞} 曲線 $\theta^{(p)} : \mathbb{R} \longrightarrow M$ は V の積分曲線である.

<u>証明</u> $V \in \mathfrak{X}(M)$ を示すには、命題 B.4 より任意の開集合 $U \subset M$ 上定義された任意の C^{∞} 関数 $f \in C^{\infty}(U)$ に対して $Vf \in C^{\infty}(U)$ であることを示せば良い.実際このとき $\forall p \in U$ に対して

$$Vf(p) = V_p f = \theta^{(p)}(0) f = T_0 \theta^{(p)} \left(\frac{\mathrm{d}}{\mathrm{d}t} \Big|_{0} \right) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{0} f\left(\theta^{(p)}(t)\right) = \left. \frac{\partial}{\partial t} \right|_{(0,p)} f\left(\theta(t,p)\right)$$

が成り立つ*5. $f\big(\theta(t,p)\big)$ は C^∞ 写像の合成なので $\mathbb{R}\times U$ 上 C^∞ 級であり,その任意の偏導関数もまた C^∞ 級となる.

次に $\forall p \in M, \ \forall t \in \mathbb{R}$ に対して $\theta^{(p)}(t) = V_{\theta^{(p)}(t)}$ が成り立つことを示す. $\forall p \in M$ を 1 つ固定し, $\forall u \in \mathbb{R}$ に対して $q \coloneqq \theta^{(p)}(u)$ とおくと,

$$\theta^{(q)}(u) = \theta_t(q) = \theta(u, \theta(t, p)) = \theta(u + t, p) = \theta^{(p)}(u + t)$$

である. 従って q の開近傍上で定義された任意の C^{∞} 関数 f に対して

$$V_q f = \theta^{(q)}(0) f = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_0 f(\theta^{(q)}(t)) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_0 f(\theta^{(p)}(u+t)) = \theta^{(p)}(u) f$$

これが示すべきことであった.

命題 B.9 の逆に、 $\forall X \in \mathfrak{X}(M)$ が M 上の何かしらの大域的な流れの無限小生成子になっていると言いたくなるが、必ずしもそうではない。 つまり、積分曲線が $\mathbb R$ のある部分集合上で定義できないような C^∞ ベクトル場が存在する。

^{**5} ややこしいが, C^{∞} 曲線 $\gamma\colon I\longrightarrow M$ の微分 $\dot{\gamma}(t_0)$ は,厳密には $\mathbb R$ の接ベクトル $\mathrm{d}/\mathrm{d}t\mid_{t_0}$ の微分 $T_{t_0}\gamma\left(\mathrm{d}/\mathrm{d}t\mid_{t_0}\right)\in T_{\gamma(t_0)}M$ のことだった.

【例 B.3.1】

 $M=\mathbb{R}^2\setminus\{0\}$ とし,標準的なチャート $\left(M,(x,y)\right)$ を取る.**【例 B.2.1】**の座標ベクトル場 $V\coloneqq\frac{\partial}{\partial x}$ を考えよう.初期条件 $\gamma(0)=(-1,0)\in M$ を充たす V の積分曲線 γ は,常微分方程式

$$\frac{\mathrm{d}\gamma^1}{\mathrm{d}t}(t) = 1,$$
$$\frac{\mathrm{d}\gamma^2}{\mathrm{d}t}(t) = 0$$

を解くことで一意に $\gamma(t)\coloneqq (t-1,\,0)$ と求まる. しかるに γ は $\mathbb R$ の点 t=1 上定義不能である.

定義 B.7: 局所的な流れ

M を C^{∞} 多様体とする.

• 流れの定義域 (flow domain) とは、開集合 $\mathcal{D} \subset \mathbb{R} \times M$ であって、 $\forall p \in M$ に対して集合

$$\mathcal{D}^{(p)} := \left\{ t \in \mathbb{R} \mid (t, p) \in \mathcal{D} \right\} \subset \mathbb{R}$$

が 0 を含む開区間となっているようなもののことを言う.

• M 上の局所的な流れ (local flow) とは、流れの定義域を定義域にもつ連続写像

$$\theta \colon \mathcal{D} \longrightarrow M$$

であって、 $\forall p \in M$ に対して以下が成り立つもののこと:

(1)

$$\theta(0, p) = p$$

(2) $\forall s \in \mathcal{D}^{(p)}, \ \forall t \in \mathcal{D}^{(\theta(s,p))}$ に対して,

$$s+t \in \mathcal{D}^{(p)} \implies \theta(t, \theta(s, p)) = \theta(t+s, p)$$

• 極大積分曲線 (maximal integral curve) とは、積分曲線であって定義域をこれ以上大きな開区間に延長できないようなもののこと. 極大局所流 (maximal local flow) とは、これ以上流れの定義域を拡張できないような局所的な流れのこと.

局所的な流れ θ : $\mathcal{D} \longrightarrow M$ が与えられたとき,

• $\forall t \in \mathbb{R}$ に対して、M の部分集合 $M_t \subset M$ を

$$M_t := \{ p \in M \mid (t, p) \in \mathcal{D} \}$$

と定める^a.

• $\forall (t, p) \in \mathcal{D}$ に対する連続写像 $\boldsymbol{\theta_t} \colon M_t \longrightarrow M$, $\boldsymbol{\theta^{(p)}} \colon \mathcal{D}^{(p)} \longrightarrow M$ をそれぞれ $\boldsymbol{\theta_t}(p) = \boldsymbol{\theta^{(p)}}(t) \coloneqq \boldsymbol{\theta}(t, p)$ により定める.

 $[^]a\mathcal{D}^{(p)}$ は流れの領域 \mathcal{D} を,点 (0,p) を通るように「横に切り」, M_t は「縦に切る」と言うイメージ.

命題 B.10: 局所的な流れの無限小生成子

 C^{∞} 多様体 M 上の C^{∞} 級の局所的な流れ θ : $\mathcal{D} \longrightarrow M$ を与える. M 上のベクトル場

$$V \colon M \longrightarrow TM, \ p \longmapsto \left(p, \ \theta^{(p)}(0)\right)$$

のことを a θ の無限小生成子 (infinitesimal generator) と呼ぼう.

このとき $V \in \mathfrak{X}(M)$ であり、 $\forall p \in M$ に対して C^{∞} 曲線 $\theta^{(p)} : \mathcal{D}^{(p)} \longrightarrow M$ は V の積分曲線である.

a 流れの定義域の定義から $M_0=M$ であることに注意. このとき,接ベクトルの局所性から $\forall p\in M$ に対して $\theta^{(p)}(0)$ が定義される.

<u>証明</u>

命題 B.10 は逆も言える:

定理 B.2: 流れの基本定理

 $\forall V \in \mathfrak{X}(M)$ に対して,極大局所流 $\theta \colon \mathcal{D} \longrightarrow M$ であって無限小生成子が V であるようなものが一意的に存在する.さらに,この θ は以下の性質をみたす:

- (1) $\forall p \in M$ に対し、 $\theta^{(p)} : \mathcal{D}^{(p)} \longrightarrow M$ は初期条件 $\theta^{(p)}(0) = p$ を充たす V の唯一の極大積分曲線である.
- (2)

$$s \in \mathcal{D}^{(p)} \implies \mathcal{D}^{(\theta(s,p))} = \{ t - s \mid t \in \mathcal{D}^{(p)} \} =: \mathcal{D}^{(p)} - s$$

(3) $\forall t \in \mathbb{R}$ に対して、集合 M_t は M の開集合であり、連続写像 $\theta_t \colon M_t \longrightarrow M_{-t}$ は θ_{-t} を逆にも つ微分同相写像である.

上述の極大局所流 θ のことを, V によって生成された流れ (flow generated by V) と呼ぶ.

証明 [7, p.212, Theorem 9.12] を参照.

B.3.3 完備なベクトル場

定義 B.8: ベクトル場の完備性

 C^{∞} ベクトル場 $X \in \mathfrak{X}(M)$ が完備 (complete) であるとは、それが大域的な流れを生成することを言う.

定理 B.3: コンパクト台を持つベクトル場は完備

 C^{∞} ベクトル場 X がコンパクト台を持つならば、X は完備である.

証明 [7, p.216, Theorem 9.16]

系 B.4: コンパクト多様体のベクトル場は完備

コンパクトな C^∞ 多様体上の任意の C^∞ ベクトル場は完備である.

参考文献

- [1] S. Simon, Topological quantum: Lecture notes and proto-book, 2021, Available at http://www-thphys.physics.ox.ac.uk/people/SteveSimon/topological2021/TopoBook-Sep28-2021.pdf.
- [2] 中原幹夫 and 佐久間一浩, 理論物理学のための幾何学とトポロジー I 原著第 2 版 (日本評論社, 2018).
- [3] E. Fadell and J. Van Buskirk, Bull. Amer. Math. Soc 67, 211 (1961).
- [4] H. Halvorson and M. Mueger, arXiv e-prints, math (2006), [math-ph/0602036].
- [5] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).
- [6] 中原幹夫, 久木田真吾, 佐久間一浩, and 綿村尚毅, **理論物理学のための幾何学とトポロジー** II 原著第 2 版 (日本評論社, 2021).
- [7] J. M. Lee, Introduction to Smooth Manifolds (Springer, 2012).
- [8] 今野宏, 微分幾何学 (東京大学出版会, 2013).