Linear Transformations Part II

Textbook: Section 2.2

Announcements

- The last hour before the lecture next week will be a review session! Please collect your questions and email me if you would like to discuss anything particular. (include MAT224 in subject, thanks)
- All vector spaces from now on, unless stated otherwise, will be assumed to be finite dimensional.

Remember that a basis encodes a vector $\vec{v} \in V$ as an n-tuple. We can use the same idea to encode linear transformations

Example 2.2.2

Let $V = W = \mathbb{R}^2$ with the standard basis $\{\vec{e}_1, \vec{e}_2\}$. Define $V \xrightarrow{T} W$ by

$$T(\vec{e}_1) = \vec{e}_1 + \vec{e}_2$$

$$T(\vec{e}_2) = \vec{2}e_1 - 2\vec{e}_2$$

Algorithm

Given a linear transformation $V \xrightarrow{T} W$ given as a 'formula', this is how to compute its matrix in two chosen bases

$$\alpha = \{\vec{\alpha}_1, \dots \vec{\alpha}_m\}$$

of V and

$$\beta = \{\vec{\beta}_1, \dots \vec{\beta}_n\}$$

of W

- 1. For each basis element $\vec{\alpha}_i$ in V, compute $T(\vec{\alpha}_i)$.
- 2. Find the coorindate vector $\gamma^{\beta}(T(\vec{\alpha}_i)) = [T(\vec{\alpha}_i)]_{\beta}$.
- 3. Assemble these coordinate vectors as columns in a matrix

Discussion

Apply the above algorithm to find the matrix representing the derivative $\frac{d}{dx}$ from $\mathcal{P}_2(\mathbb{R})$ to itself. Choose the basis on $\mathcal{P}_2(\mathbb{R})$ consisting of monomials $\alpha = \{1, x, x^2\}$.

Definition 2.2.6

Let T be a linear transformation between finite dimensional vector spaces V and W with bases α and β respectively. The matrix of the linear transformation T with respect to bases α and β is the matrix $[T]^{\beta}_{\alpha}$ satisfying

$$[T]^{\beta}_{\alpha} \cdot [\vec{v}]_{\alpha} = [T(\vec{v})]_{\beta}$$

Linear Transformations, Image & Kernel

Discussion

- 1. What does he 'size' of the matrix $[T]_{\alpha}^{\beta}$ depend on?
- 2. What is the matrix of the identity transformation $V \xrightarrow{\mathrm{id}_V} V$?

Exmaple

We compute the matrix of the linear transformation $\mathcal{P}_3(\mathbb{R}) \xrightarrow{\mathrm{ev}_2} \mathbb{R}$

Discussion

On the contrary, given a matrix $A \in \operatorname{Mat}_{n,m}(\mathbb{R})$, does this give us a linear transformation? What are the domain and codomain?

Summary

- 1. The upshot of this section is that linear transformations are completely interchangable with matrices! The identification depends on the choice of bases for the domain and codomain.
- 2. The operations
 - matrix of a linear transformation $[T]^{\beta}_{\alpha}$
 - linear transformation of a matrix T_A

are inverse to each other.

We now rephrase the algorithm from before in more mathematical terms. (Remember, abstraction is a powerful tool!)

Proposition

In the context of the above definition, the matrix of T can be computed as

$$[T]^{\beta}_{\alpha} = \gamma^{\beta} \circ T \circ (\gamma^{\alpha})^{-1}$$

Proof.

Discussion

Without doing a lot of work, can you argue what the matrix representing the composition $F \circ T$ is assuming you know [F] and [T]?

Definition (2.3.1 & 2.3.10)

For a linear transformation $V \xrightarrow{T} W$, we define

- 1. the preimage $T^{-1}(S)$ of $S \subseteq W$ under T as all $\vec{v} \in V$ that map into S.
- 2. the kernel $\ker(T)$ of T as all $\vec{v} \in V$ that map to $\vec{0}$ under T,
- 3. the image im(T) of T as all $\vec{w} \in W$ such that $\vec{w} = T(\vec{v})$ for some $\vec{v} \in V$,

Example

- The kernel of $\mathcal{P}_n(\mathbb{R}) \xrightarrow{\frac{d}{dx}} \mathcal{P}_n(\mathbb{R})$ are all constant polynomials, while the image consists of polynomials of degree n-1.
- The kernel of the evaluation map $\mathcal{P}_n(\mathbb{R}) \xrightarrow{\text{ev}_2} \mathcal{P}_n(\mathbb{R})$ are all polynomials that have a root at x = 2. What is the image?
- What is the image of the linear transformation defined in example 2.2.2 $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$?

$$T(\vec{e}_1) = \vec{e}_1 + \vec{e}_2$$

$$T(\vec{e}_2) = \vec{2}e_1 - 2\vec{e}_2$$

Proposition 2.3.2 & 2.3.11

For every linear transformation $V \xrightarrow{T} W$

- 1. ker(T) is a subspace in V
- 2. im(T) is a subspace in W.

Proof.

Proposition 2.3.7

The subspace $\ker(T)$ is the solution space to the homogeneous system of $[T]_{\alpha}^{\beta}$.

Proof.

Example

Example of computation to find $\ker(T)$

Observation

The subspace $\operatorname{im}(T)$ is the space of all $\vec{b} \in \mathbb{R}^n$ such that the system $[T]^{\beta}_{\alpha}\vec{x} = \vec{b}$ has a solution.

Proposition 2.3.12

If $\{\vec{v}_1,\ldots,\vec{v}_k\}$ spans V, then $\{T(\vec{v}_1),\ldots,T(\vec{v}_k)\}$ spans $\operatorname{im}(T)$. *Proof.*

Definition

For a matrix $A = [a_1, a_2, \dots, a_m] \in \operatorname{Mat}_{n,m}(\mathbb{R})$ we denote the span of the columns of A by

$$col(A) = span\{a_1, \dots, a_m\}$$

Proposition

For every linear transformation $V \xrightarrow{T} W$

$$\operatorname{im}(T) = \operatorname{col}([T]_{\alpha}^{\beta})$$

Proof.

Example

Example computation to find im(T)

Notice that the columns might not be independent, in which case the columns are a spanning set of the image, but not a basis.

Theorem

Given a linear transformation $V \xrightarrow{T} W$ with matrix $[T]^{\beta}_{\alpha}$ for some bases α and β . Let $R = \text{RREF}([T]^{\beta}_{\alpha})$ be the reduced row echolon form of $[T]^{\beta}_{\alpha}$.

Then if the leading 1s in are R lie in columns j_1, j_2, \ldots, j_r , the columns j_1, j_2, \ldots, j_r of $[T]^{\beta}_{\alpha}$ are a basis for $\operatorname{col}([T]^{\beta}_{\alpha})$

Proof.

Discussion

Suppose a linear transformation $V \xrightarrow{T} W$ is given in a some bases α and β by

$$[T]_{\alpha}^{\beta} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

Find a basis for im(T) and ker(T).

Theorem 2.3.17 (Rank-Nullity)

For any linear transformation $V \xrightarrow{T} W$

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T))$$

Remark

- $\dim(\operatorname{im}(T))$ is the same as the rank of $[T]^{\beta}_{\alpha}$ and by abuse of notation also referred to as $\operatorname{rank}(T)$.
- Some books refer to $\dim(\ker(T))$ as the *nullity* of T.

Proof.

Theorem

A linear transformation T is injective if and only if $\ker(T) = \{\vec{0}\}\$

Proof.

True or False Let $V \xrightarrow{T} W$ be a linear transformation

- \square If T is an isomorphism, then $\dim(V) = \dim(W)$.
- \square If $\dim(V) > \dim(W)$, T has to be injective.