- HAI503I: Algorithmique 4 -

Chap. 3 – Analyse amortie, analyse d'algorithmes probabilistes

L3 informatique Université de Montpellier

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabiliste
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

1.1 Exemple 1 : le compteur binaire

- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Incrémenter un entier de 0 à $2^k - 1$

Représentation

- ► Tableau T de k bits (ou mot binaire de longueur k)
- ► Entier *N* représenté : $\sum_{i=0}^{k-1} T_{[i]} 2^i$

Incrément (T)

(de la gauche vers la droite...)

Entrée : Tableau T de taille k représentant un entier N Sortie : Le même T, représentant N+1 modulo 2^k

- 1. $i \leftarrow 0$
- **2.** Tant que i < k et $T_{[i]} = 1$:
- 3. $T_{[i]} \leftarrow 0$
- 4. $i \leftarrow i + 1$
- 5. Si $i < k : T_{[i]} \leftarrow 1$
- 6. Renvoyer T

Propriétés

Correction

▶ Si T représente N, alors après INCRÉMENT, T représente $N' = N + 1 \mod 2^k$

Preuve

- Si $N = 2^k 1$, $T_{[i]} = 1$ pour tout i et après incrément $T_{[i]} = 0$ pour tout i
- ▶ Sinon, soit *i* tel que $T_{[i]} = 0$ et $T_{[j]} = 1$ pour tout j < i:
 - Après : $T_{[i]} = 1$, $T_{[j]} = 0$ pour j < i et $T_{[k]}$ inchangé pour k > i
 - ▶ Donc $N' = N + 2^{i} \sum_{i < i} 2^{j} = N + 1$

Propriétés

Correction

▶ Si T représente N, alors après INCRÉMENT, T représente $N' = N + 1 \mod 2^k$

Preuve

- Si $N = 2^k 1$, $T_{[i]} = 1$ pour tout i et après incrément $T_{[i]} = 0$ pour tout i
- ▶ Sinon, soit *i* tel que $T_{[i]} = 0$ et $T_{[j]} = 1$ pour tout j < i:
 - Après : $T_{[i]} = 1$, $T_{[i]} = 0$ pour j < i et $T_{[k]}$ inchangé pour k > i
 - ▶ Donc $N' = N + 2^i \sum_{j < i} 2^j = N + 1$

Complexité

▶ INCRÉMENT a une complexité en O(k)

Preuve

ightharpoonup Pire cas ightsquigarrow on parcourt une fois tout le tableau T

Peut-on dire mieux?

La complexité est-elle vraiment O(k)?

- ▶ 01...11 \rightarrow 10...00 : demande effectivement *k* inversions de bits
- ightharpoonup 10...01 : ne demande qu'une inversion de bit

Comment prendre en compte les variations?

- ► Les déroulements de Incrément peuvent coûter 1, 2, ..., k
- Lesquels sont les plus fréquents?
- \leadsto Cela dépend de la séquence d'appel de ${\rm Incrément}$, mais on peut analyser le coût de cette séquence sur le même tableau ${\cal T}$.

Suite d'Incréments

On incrémente T de 0 à N-1 : quel est le coût global?

Analyse pire cas

- ▶ T est de taille $k \to \text{chaque Incrément coûte } O(k)$
- ▶ On effectue N Incrément \rightarrow coût global O(Nk)
- ▶ Remarque : si $N \simeq 2^k$, chaque Incrément coûte $O(\log N) \to O(N \log N)$

Suite d'Incréments

On incrémente T de 0 à N-1 : quel est le coût global?

Analyse pire cas

- ▶ T est de taille $k \to \text{chaque Incrément coûte } O(k)$
- ▶ On effectue N Incrément \rightarrow coût global O(Nk)
- ▶ Remarque : si $N \simeq 2^k$, chaque Incrément coûte $O(\log N) \to O(N \log N)$

Analyse amortie

- ► T_[0] est inversé à chaque fois
- $ightharpoonup T_{[1]}$ est inversé une fois sur deux
- $ightharpoonup T_{[k-1]}$ est inversé une fois sur 2^{k-1}
- ightarrow Coût global : $\sum_{i=0}^{k-1} \lfloor \frac{N}{2^i} \rfloor < N \sum_{i=0}^{+\infty} \frac{1}{2^i} = 2N$

Bilan sur INCRÉMENT

Coût d'un appel à INCRÉMENT

- ▶ Pire cas : on doit parcourir tout le tableau $T \rightarrow O(k)$
- On ne peut pas dire mieux a priori

Coût de N appels à INCRÉMENT

- ▶ Pire cas : $N \times O(k) = O(Nk)$
- lacktriangle Coût global amorti : O(N) car certains Incrément peu chers

Coût amorti

Le coût amorti de l'algorithme est O(1) par appel à INCRÉMENT

1.1 Exemple 1 : le compteur binaire

1.2 L'analyse amortie

1.3 Exemple 2 : les tableaux dynamiques

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Analyse pire cas et analyse amortie

Scénario

- Algo de complexité C(n) pour une entrée de taille n, dans le pire cas
- ▶ Séquence de N appels à : coût $c_i \leq C(n)$ sur l'entrée n°i

Deux analyses possibles

- ▶ Analyse pire cas : le coût global est borné par $N \times C(n)$
- ▶ Analyse amortie : le coût global est $\leq \sum_{i=1}^{N} c_i$
- L'analyse pire cas reste valide; l'analyse amortie est plus fine

Analyse pire cas et analyse amortie

Scénario

- ▶ Algo de complexité C(n) pour une entrée de taille n, dans le pire cas
- ▶ Séquence de N appels à : coût $c_i \leq C(n)$ sur l'entrée n°i

Deux analyses possibles

- ▶ Analyse pire cas : le coût global est borné par $N \times C(n)$
- ▶ Analyse amortie : le coût global est $\leq \sum_{i=1}^{N} c_i$
- L'analyse pire cas reste valide; l'analyse amortie est plus fine

Objectifs et techniques

- ▶ Objectif : borner le **coût amorti** par opération $\frac{1}{N} \sum_{i=1}^{N} c_i$
- Borner directement chaque c_i souvent difficile, voire impossible
- ► Plusieurs méthodes d'analyse :
 - méthode de l'agrégat
 - méthode comptable
 - méthode du potentiel

Méthode de l'agrégat

Idée : on calcule la somme totale $\sum_{i=1}^{N} c_i$ puis on divise par N

► Agrégat : mot compliqué mais idée simple ~> méthode directe

Mise en œuvre

- ► Regarder globalement les *N* appels comme une seule exécution
- Regrouper des opérations venant de différents appels pour mieux compter

Méthode de l'agrégat

Idée : on calcule la somme totale $\sum_{i=1}^{N} c_i$ puis on divise par N

► Agrégat : mot compliqué mais idée simple ~> méthode directe

Mise en œuvre

- ▶ Regarder globalement les *N* appels comme une seule exécution
- Regrouper des opérations venant de différents appels pour mieux compter

Exemple pour INCRÉMENT

- ▶ Compter le nombre total d'inversions du bit $T_{[0]}$, du bit $T_{[1]}$, etc.
- ► Coût total $2N \rightsquigarrow$ **coût amorti** 2, en O(1)

Méthode comptable

Idée : payer plus que le vrai coût à certains appels, et moins à d'autres

► 'Les coûts sont de l'argent, à la fin, notre compte doit être en positif'

Mise en œuvre

- À chaque appel, on ajoute une somme a_i à un compte et on prélève c_i le vrai coût des opérations sur ce compte
- ▶ Le compte doit toujours rester positif : pour tout i, on veut : $\sum_{j \le i} c_j \le \sum_{j \le i} a_j$
- ► Coût amorti par opération : $\frac{1}{N} \sum_{i} c_{i} \leq \frac{1}{N} \sum_{i} a_{i}$
- lacktriangle Remarque : plus général que l'agrégat (pour lequel, on prend $a_i=c_i$)

Méthode comptable

Idée : payer plus que le *vrai* coût à certains appels, et moins à d'autres

Mise en œuvre

- À chaque appel, on ajoute une somme a_i à un compte et on prélève c_i le vrai coût des opérations sur ce compte
- ▶ Le compte doit toujours rester positif : pour tout i, on veut : $\sum_{j \leq i} c_j \leq \sum_{j \leq i} a_j$
- ► Coût amorti par opération : $\frac{1}{N} \sum_{i} c_{i} \leq \frac{1}{N} \sum_{i} a_{i}$
- lacktriangle Remarque : plus général que l'agrégat (pour lequel, on prend $a_i=c_i$)

Exemple pour Incrément

- Intuition : quand un bit passe de 0 à 1, on paie 1, plus 1 pour l'inversion future $1 \rightarrow 0$
- ▶ $a_i = 2$ pour tout i car un seul bit passe de 0 à $1 \rightarrow$ coût amorti 2
- ▶ Solde du compte = nombre de bits à $1 \rightarrow$ toujours positif

Méthode du potentiel

Idée : associer à chaque état un *potentiel* et à chaque appel une *modification de potentiel*

► Technique pour calculer les a; de la méthode comptable, métaphore de l'énergie potentielle en physique

Mise en œuvre

- ▶ Définir une fonction potentiel Φ, qui vaut $Φ_t ≥ Φ_0$ après t appels
- **E**stimer le *coût amorti* de chaque appel : $a_i = c_i + (\Phi_i \Phi_{i-1})$
- Coût amorti par opération : $\frac{1}{N} \sum_{i=1}^{N} c_i = \frac{1}{N} \sum_{i=1}^{N} a_i \frac{1}{N} (\Phi_N \Phi_0) \le \frac{1}{N} \sum_i a_i$

Méthode du potentiel

Idée : associer à chaque état un *potentiel* et à chaque appel une *modification de potentiel*

Mise en œuvre

- ▶ Définir une fonction potentiel Φ , qui vaut $\Phi_t \ge \Phi_0$ après t appels
- Estimer le *coût amorti* de chaque appel : $a_i = c_i + (\Phi_i \Phi_{i-1})$
- Coût amorti par opération : $\frac{1}{N} \sum_{i=1}^{N} c_i = \frac{1}{N} \sum_{i=1}^{N} a_i \frac{1}{N} (\Phi_N \Phi_0) \le \frac{1}{N} \sum_i a_i$

Exemple pour Incrément

- Potentiel du tableau $T: \Phi_i = \text{nombre de } 1 \text{ dans } T \text{ après } i \text{ appels}$
- ▶ Avant le *i*ème appel, on écrit T = ...01...1 avec ℓ bits à 1
 - coût de Incrément(T): $c_i = \ell + 1$
 - différence de potentiel : $\Phi_i \Phi_{i-1} = -(\ell 1)$
 - coût amorti : $a_i = (\ell + 1) (\ell 1) = 2$

Bilan sur les trois méthodes

Techniques plus ou moins faciles

- Méthode de l'agrégat : idée évidente... mais demande une compréhension globale
- Méthodes comptable et du potentiel : plus difficile à mettre en œuvre, mais compréhension locale

Idées communes aux méthodes comptable et du potentiel

- Calcul direct d'un coût amorti pour chaque appel
- Preuve globale que le coût amorti défini est *valide*
- Forme d'analyse pire cas avec une notion de coût modifiée

Utilisation principale : structures de données

- Ensemble d'algorithmes de manipulation de la structure (ajout, suppression, etc.)
- Coûts variables → analyse amortie pour avoir un coût amorti par opération

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Exemple des list en Python

3

4

5

```
def test(n):
    L = []
    for i in range(n): L.append(i)
    for i in range(n//2):
        L[i], L[n-i-1] = L[n-i-1], L[i]
```


Exemple des list en Python

3

4

5

```
def test(n):
    L = []
    for i in range(n): L.append(i)
    for i in range(n//2):
        L[i], L[n-i-1] = L[n-i-1], L[i]
```


Quelle structure de données?

- Ajout en fin de liste en O(1) → liste chaînée?
- Accès à $L_{[i]}$ en temps $O(1) \rightarrow$ tableau?

Exemple des list en Python

3

4

5

```
def test(n):
    L = []
    for i in range(n): L.append(i)
    for i in range(n//2):
        L[i], L[n-i-1] = L[n-i-1], L[i]
```


Quelle structure de données?

- Ajout en fin de liste en $O(1) \rightarrow$ liste chaînée?
- Accès à $L_{[i]}$ en temps $O(1) \rightarrow$ tableau?

list = tableau dynamique

Les tableaux dynamiques

Idée de base

- Structure de donnée sous-jacente : un tableau
- ► Stockage de *n* éléments dans un tableau de taille *N*

Conditions à respecter

- ▶ Il faut toujours $N \ge n$ pour avoir assez de place
- ▶ If ne faut pas $N \gg n$: utilisation de place inutile

Objectifs

- ▶ Assurer $N \simeq n$: en pratique $n \leq N$ et $N/4 < n \rightsquigarrow N/4 < n \leq N$
- Accès à un élément en temps O(1) : immédiat
- ▶ Ajout et suppression en fin de tableau en O(1)

Ajout et suppression

Ajout d'un élément x à la fin

- ▶ Si N > n: ajouter x dans la case libre $T_{[n]}$
- ► Sinon:
 - Créer un nouveau tableau U de taille 2N
 - Recopier les N cases de T dans U
 - ▶ Ajouter x dans la case libre $U_{[N]}$
- ▶ Dans les deux cas : mettre à jour $n \leftarrow n+1$ et $N \leftarrow 2N$

Suppression d'un élément x à la fin

- ▶ Pas de difficulté : $n \leftarrow n-1$
- Pour éviter $N \gg n$, il faut (parfois) réduire la taille de T
 - ▶ Idée 1 : si n < N/2 on réduit de moitié \rightarrow mauvaise idée
 - ▶ Idée 2 : si n < N/4 on réduit de moitié → bonne idée

Remarque

- ▶ On garde toujours N > 1, même si n = 0
- ightharpoonup À la supression, inutile d'effacer T[n], l'opération n
 ightharpoonup n
 ightharpoonup 1 suffit ightharpoonup

Les algorithmes AJOUT et SUPPRESSION

AJOUT(T, N, n, x)

- **1**. Si n < N:
- 2. $T_{[n]} \leftarrow x$
- 3. Renvoyer $(T, N, \mathbf{n} + \mathbf{1})$
- **4.** $U \leftarrow \text{tableau de taille } 2N$
- 5. Pour i = 0 à N 1: $U_{[i]} \leftarrow T_{[i]}$
- 6. $U_{[N]} \leftarrow x$
- 7. Renvoyer $(\mathbf{U}, \mathbf{2N}, \mathbf{n} + \mathbf{1})$

Suppression(T, N, n)

- 1. Si n = 1 ou n > N/4:
- 2. Renvoyer $(T, N, \mathbf{n} \mathbf{1})$
- 3. $U \leftarrow \text{tableau de taille } N/2$
- 4. Pour i = 0 à n 2: $U_{[i]} \leftarrow T_{[i]}$
- 5. Renvoyer (U, N/2, n-1)

Dans le pire cas, Ajout et Suppression effectuent chacun O(n) affectations

Analyse amortie 1: uniquement des $A_{\rm JOUT}$

Coût de *m* AJOUT dans un tableau initialement vide?

Analyse pire cas

▶ Un AJOUT dans un tableau de taille k coûte O(k) \rightsquigarrow coût total $O(m^2)$

Analyse amortie 1: uniquement des $\mathrm{A}_{\mathrm{JOUT}}$

Coût de m AJOUT dans un tableau initialement vide?

Analyse pire cas

▶ Un AJOUT dans un tableau de taille k coûte O(k) \rightsquigarrow coût total $O(m^2)$

Méthode de l'agrégat

- ▶ Les affectations initiales $T_{[n]} \leftarrow x$ coûtent 1.
- ▶ Quand les **réaffectations** $U_{[i]} \leftarrow T_{[i]}$ ont lieu, la taille de T est doublée
- ightharpoonup N est toujours une puissance de 2, et T est doublé quand n=N
- ▶ Coût total des réaffectations : $\sum_{k=1}^{\lfloor \log m \rfloor} 2^k < 2^{\lfloor \log m \rfloor + 1} \le 2m$ \rightsquigarrow coût amorti des réaffectations par AJOUT : 2

Théorème

Coût amorti par ${
m A}_{
m JOUT}$ dans un tableau initialement vide : 3

Analyse amortie 2 : AJOUT et SUPPRESSION

Coût de m opérations dans un tableau initialement vide?

Notations

Après la ième opération,

- ▶ n_i : nombre d'éléments dans le tableau
- ► N_i : taille du tableau
- $ightharpoonup \alpha_i = n_i/N_i$: coefficient de remplissage
- $ightharpoonup c_i$: coût de la $i^{\text{ème}}$ opération (nombre d'affectations)

Fonction potential
$$\Phi_i = \begin{cases} 2n_i - N_i & \text{si } \alpha_i \ge \frac{1}{2} \\ N_i/2 - n_i & \text{si } 0 < \alpha_i \le \frac{1}{2} \\ 0 & \text{si } \alpha_i = 0 \end{cases}$$

Analyse amortie 2 : AJOUT et SUPPRESSION

Coût de m opérations dans un tableau initialement vide?

Notations

Après la ième opération,

- ▶ n_i : nombre d'éléments dans le tableau
- ► N_i : taille du tableau
- $ightharpoonup \alpha_i = n_i/N_i$: coefficient de remplissage
- $ightharpoonup c_i$: coût de la $i^{\text{ème}}$ opération (nombre d'affectations)

Fonction potential $\Phi_i = \begin{cases} 2n_i - N_i & \text{si } \alpha_i \ge \frac{1}{2} \\ N_i/2 - n_i & \text{si } 0 < \alpha_i \le \frac{1}{2} \\ 0 & \text{si } \alpha_i = 0 \end{cases}$

Le coût amorti $a_i = c_i + \Phi_i - \Phi_{i-1}$ de la $i^{\text{ème}}$ opération est ≤ 3 pour tout i

Bilan sur les tableaux dynamiques

Principes

- ► Tableau de taille variable
 - Mémoire *allouée* supérieure à celle utilisée
 - ▶ Remplissage : $\frac{1}{4} \le \alpha \le 1$
 - ► Taille doublée ou divisée par deux quand nécessaire
- Accès direct et Insertion/Suppression en fin de tableau en temps constant

Bilan sur les tableaux dynamiques

Principes

- ► Tableau de taille variable
 - Mémoire allouée supérieure à celle utilisée
 - ▶ Remplissage : $\frac{1}{4} \le \alpha \le 1$
 - ► Taille doublée ou divisée par deux quand nécessaire
- Accès direct et Insertion/Suppression en fin de tableau en temps constant

Complexité amortie

- Chaque opération coûte ≤ 3 affectations ^{→→} coût constant par opération
- Mais tout de même : si on connaît à l'avance la taille, coût triplé

Autres utilisations

- ► Création de pile → idem
- ► Création de file → travail supplémentaire, cf TD

Performance des list Python

- ► Insertion en début de tableau
- ► Uniquement insertion en fin de tableau
- ► Insertion et suppression en fin de tableau

Conclusion sur l'analyse amortie

Technique avancée d'analyse d'algorithmes

- Dépasser l'analyse pire cas
- Prendre en compte les variations de temps entre différents appels

Trois techniques

- Méthode de l'agrégat
- Méthode comptable
- ► Méthode du potentiel

Utilisation principale : structures de données

- Chaque opération peut coûter cher
- Mais peu d'opérations coûtent cher
- Si on utilise plusieurs fois la structure de donnée → coût amorti faible

1. Analyse amortie

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

1. Analyse amortie

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Problème de la sélection (ou kième rang)

QuickSelect(T, k)

Entrées : Tableau T de taille n d'entiers tous distincts; entier k entre 1 et n

Sortie : Le $k^{\text{ème}}$ plus petit élément $T^{(k)}$ de T

- 1. $p \leftarrow T_{[i]}$ avec i choisi aléatoirement entre 0 et n-1 (pivot)
- 2. $n_0 \leftarrow$ nombre d'éléments < p dans T (boucle Pour)
- 3. Si $n_0 = k 1$: Renvoyer *p*
- **4.** Si $n_0 \ge k$:
- 5. $T_0 \leftarrow \text{tableau des éléments de } T \text{ qui sont }$
- **6.** Renvoyer QUICKSELECT(T_0, k)
- 7. $T_1 \leftarrow \text{tableau des éléments de } T \text{ qui sont } > p \text{ (boucle Pour)}$
- **8.** Renvoyer QUICKSELECT($T_1, k n_0 1$)

Correction

$$T^{(k)} = egin{cases} p & ext{si } n_0 = k - 1 \ T_0^{(k)} & ext{si } n_0 \geq k \ T_1^{(k - n_0 - 1)} & ext{sinon} \end{cases}$$

Complexité de QUICKSELECT

Analyse en pire cas

- Deux boucles en O(n) + appel récursif sur un tableau de taille $\leq n-1$
- $ightharpoonup C_n \le C_{n-1} + O(n) o C_n = O(n^2)$ C_n : nombre de comparaisons

Peut-on dire mieux?

- Appel récursif sur un tableau de taille n-1 si $T_{[i]}$ est toujours le minimum ou toujours le maximum
- Est-ce que ça arrive en pratique?
 - Quelle est la taille moyenne (espérance) du tableau pour l'appel récursif?
 - Quelle est l'espérance du nombre de comparaisons effectuées?

Théorème

Soit C_n le nombre de comparaisons effectuées par QUICKSELECT(T, k) où T est de taille n. Alors $\mathbb{E}[C_n] \leq 4n$, quelque soit k.

Bilan sur QUICKSELECT

Nombre de comparaisons

- ightharpoonup Si on est **très** malchanceux, effectue $\sim \frac{1}{2} n^2$ comparaisons
- L'espérance du nombre de comparaisons effectuées est $\leq 4n = O(n)$

Que veut dire malchanceux?

- Espérance valable *quelque soit l'entrée* (*T* et *k*)
 - Pas de chance ou malchance par rapport à l'entrée
 - La probabilité porte sur les choix aléatoires de l'algorithme
- On peut être parfois malchanceux au cours de l'algorithme
 - Pas besoin d'avoir de la chance à chaque étape. . .
 - ... simplement de ne pas être très malchanceux à chaque étape
- Exemple : proba. de faire toujours le pire choix = 1/n!
 - ightharpoonup si n = 10 : 1/3628800
 - ightharpoonup si $n = 100 : < 1/10^{157}$

1. Analyse amortie

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Coupe minimale dans un graphe

Définition

- Une **coupe** dans un graphe G = (V, A) est une partition (V_1, V_2) de l'ensemble de ses sommets en deux ensembles non vides.
- ▶ La **taille** de la coupe (V_1, V_2) est le nombre d'arêtes entre V_1 et V_2 : $|\{u_1u_2 \in A : u_1 \in V_1, u_2 \in V_2\}|$

Coupe minimale dans un graphe

Définition

- Une **coupe** dans un graphe G = (V, A) est une partition (V_1, V_2) de l'ensemble de ses sommets en deux ensembles non vides.
- La **taille** de la coupe (V_1, V_2) est le nombre d'arêtes entre V_1 et V_2 : $|\{u_1u_2 \in A: u_1 \in V_1, u_2 \in V_2\}|$

Problème de la coupe minimale

Entrée : Graphe G = (V, A)

Sortie: Une coupe (V_1, V_2) de taille minimale

Généralisation nécessaire : multigraphes

- Un multigraphe est un graphe qui autorise plusieurs arêtes entre 2 sommets
- Coupe et problème de la coupe minimale définis de manière équivalente

Algorithme probabiliste pour la coupe minimale

Contraction d'arête

Soit G=(V,A) un (multi)graphe et uv une arête de G. Le (multi)graphe G/uv, obtenu par contraction de l'arête uv, a pour sommets $V\setminus v$ et pour ensemble d'arêtes $(A\setminus \{xv: xv\in A\})\cup \{xu: xv\in A, x\neq u\}$

Algorithme probabiliste pour la coupe minimale

Contraction d'arête

Soit G = (V, A) un (multi)graphe et uv une arête de G. Le (multi)graphe G/uv, obtenu par contraction de l'arête uv, a pour sommets $V \setminus v$ et pour ensemble d'arêtes $(A \setminus \{xv : xv \in A\}) \cup \{xu : xv \in A, x \neq u\}$

COUPEMIN(G)

- 1. Tant que G possède au moins 3 sommets :
- 2. Choisir une arête uv de G, aléatoirement et uniformément
- 3. Contracter l'arête uv dans G
- 4. Renvoyer la coupe définie par les deux sommets restants

Complexité de COUPEMIN

G: un multigraphe à n sommets

Lemme (admis)

Si G est représenté par listes d'adjacence avec pointeurs, la contraction d'une arête peut s'effectuer en temps O(n), où n est le nombre de sommets de G.

Complexité de COUPEMIN

G: un multigraphe à n sommets

Lemme (admis)

Si G est représenté par listes d'adjacence avec pointeurs, la contraction d'une arête peut s'effectuer en temps O(n), où n est le nombre de sommets de G.

Théorème

L'algorithme renvoie une coupe de G en temps $O(n^2)$

Preuve

- ightharpoonup À chaque itération, on contracte une arête ightharpoonup le nombre de sommets diminue de 1
- ▶ Le nombre d'itérations est donc $\leq n-2$
- ▶ La complexité totale est $O(n^2)$

La complexité ne dépend pas des choix probabilistes

Correction de COUPEMIN

Lemme de correction

L'algorithme appliqué à un multigraphe à n sommets renvoie une coupe minimale avec probabilité $\geq \frac{2}{n(n-1)}$

Correction de CoupeMin

Lemme de correction

L'algorithme appliqué à un multigraphe à n sommets renvoie une coupe minimale avec probabilité $\geq \frac{2}{n(n-1)}$

Remarque

- Cette probabilité est très petite
- Exemple pour n = 100, $\frac{2}{n(n-1)} \simeq 0,02\%...$

Répétitions de COUPEMIN

Probabilité de succès très faible \leadsto on répète l'algorithme pour améliorer cette probabilité

Technique très classique avec des algorithmes probabilistes!

Lemme de répétition

Si on répète N fois CoupeMin et qu'on garde la plus petite coupe renvoyée, cette coupe est minimale avec probabilité $\geq 1 - e^{-2N/n(n-1)}$

Remarques

- ▶ Si on répète $N = 2n^2$ fois l'algorithme, on obtient
 - une complexité $O(n^4)$
 - une coupe minimale avec probabilité $\geq 1 e^{-4} \simeq 98\%$

Bilan sur COUPEMIN

Complexité

- ▶ Un appel à coûte toujours $O(n^2)$
- ▶ On a besoin de $O(n^2)$ répétitions $\rightarrow O(n^4)$

Correction

- ▶ Un appel à renvoie une coupe minimale avec proba. $\geq \frac{2}{n(n-1)}$
- N appels à renvoient une coupe minimale avec proba. $> 1 e^{-2N/n(n-1)}$
- $ightharpoonup cn^2$ appels à renvoient une coupe minimale avec proba. $\geq 1-e^{-2c}$

Bilan sur COUPEMIN

Complexité

- ▶ Un appel à coûte toujours $O(n^2)$
- ▶ On a besoin de $O(n^2)$ répétitions $\rightarrow O(n^4)$

Correction

- ▶ Un appel à renvoie une coupe minimale avec proba. $\geq \frac{2}{n(n-1)}$
- N appels à renvoient une coupe minimale avec proba. $> 1 e^{-2N/n(n-1)}$
- $ightharpoonup cn^2$ appels à renvoient une coupe minimale avec proba. $\geq 1-e^{-2c}$

Théorème, Coupe minimale probilisée

CoupeMin répété $O(n^2)$ fois demande un temps $O(n^4)$, et retourne une coupe minimale avec très forte probabilité.

1. Analyse amortie

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Définition

Algorithme probabiliste

Un algorithme probabiliste est un algorithme qui effectue des choix aléatoires au cours de son exécution.

Remarque

Choix aléatoires : accès à un générateur de bits aléatoires, ou d'entiers aléatoires, etc.

Analyse d'un algorithme probabiliste

- Le comportement d'un algorithme probabiliste est une *expérience* probabiliste
- Le résultat renvoyé (correction) ou le nombre d'opérations effectuées (complexité) peuvent dépendre des choix aléatoires → deux familles d'algorithmes

Les algorithmes de type Las Vegas

Algorithme de type Las Vegas

Un algorithme probabiliste est de type Las Vegas si

- son résultat ne dépend pas des choix aléatoires
- sa complexité dépend des choix aléatoires
- Le nombre d'opérations élémentaires est modélisé par une variable aléatoire, son espérance donne la complexité attendue
- ► Exemple : QUICKSELECT

Signification de l'espérance de la complexité

"L'espérance de la complexité est $O(n^2)$ "

- ▶ On s'attend à avoir une exécution en temps $O(n^2)$
- Si on exécute l'algorithme de nombreuses fois (sur la même entrée), le temps de calcul moyen sera $O(n^2)$

Les algorithmes de type Las Vegas

Algorithme de type Las Vegas

Un algorithme probabiliste est de type Las Vegas si

- son résultat ne dépend pas des choix aléatoires
- sa complexité dépend des choix aléatoires
- Le nombre d'opérations élémentaires est modélisé par une variable aléatoire, son espérance donne la complexité attendue
- ► Exemple : QUICKSELECT

Signification de l'espérance de la complexité

"L'espérance de la complexité est $O(n^2)$ "

- ▶ On s'attend à avoir une exécution en temps $O(n^2)$
- Si on exécute l'algorithme de nombreuses fois (sur la même entrée), le temps de calcul moyen sera $O(n^2)$

Las Vegas: " toujours correct, souvent rapide "

Les algorithmes de type Monte Carlo

Algorithme de type Monte Carlo

Un algorithme probabiliste est de type Monte Carlo si

- son résultat dépend des choix aléatoires
- sa complexité ne dépend pas des choix aléatoires
- L'étude de la correction se fait avec une *probabilité de succès* : probabilité que l'algorithme soit correct
- ► Exemple : COUPEMIN

Améliorer la probabilité de succès par répétition

- ightharpoonup On note p la probabilité de succès et on répète N fois l'algorithme
- La probabilité qu'une (au moins) des répétitions soit correcte est $1-(1-p)^N \ge 1-e^{-pN}$
- ▶ Il faut alors multiplier la complexité par *N*...

Les algorithmes de type *Monte Carlo*

Algorithme de type Monte Carlo

Un algorithme probabiliste est de type Monte Carlo si

- son résultat dépend des choix aléatoires
- sa complexité ne dépend pas des choix aléatoires
- L'étude de la correction se fait avec une *probabilité de succès* : probabilité que l'algorithme soit correct
- ► Exemple : COUPEMIN

Améliorer la probabilité de succès par répétition

- ightharpoonup On note p la probabilité de succès et on répète N fois l'algorithme
- La probabilité qu'une (au moins) des répétitions soit correcte est $1-(1-p)^N \ge 1-e^{-pN}$
- ▶ Il faut alors multiplier la complexité par *N*...

Monte Carlo: " toujours rapide, souvent correct "

U > 4 DP > 4 E > 4 E > E 9 9 (~

Bilan sur les algorithmes probabilistes

Pourquoi des algorithmes probabilistes?

- Algorithmes souvent simples et efficaces
- ▶ Parfois, meilleure complexité que les algorithmes déterministes. En pratique, ils fonctionnent très bien!

Analyse des algorithmes probabilistes

- Modélisation probabiliste, avec variable aléatoire
- Las Vegas : étude de l'espérance de la complexité
- ▶ Monte Carlo : étude de la probabilité de succès

Et ensuite?

- ▶ Atlantic City: " souvent correct, souvent rapide "
- ▶ Algorithmes quantiques : généralisation des algorithmes probabilistes

1. Analyse amortie

- 1.1 Exemple 1 : le compteur binaire
- 1.2 L'analyse amortie
- 1.3 Exemple 2 : les tableaux dynamiques

2. Analyse d'algorithmes probabilistes

- 2.1 Exemple 1 : QUICKSELECT
- 2.2 Exemple 2 : coupe minimale
- 2.3 Algorithmes probabilistes
- 2.4 Exemple 3 : analyse probabiliste du tri rapide

Le tri rapide

TriRapide(T)

- 1. Si taille(T) = 1 : renvoyer T
- 2. $p \leftarrow T_{[i]}$ avec i choisi aléatoirement entre 0 et n-1 (pivot)
- 3. $n_p \leftarrow$ nombre d'indices i tels que $T_{[i]} = p$ (boucle Pour)
- 4. $T_0 \leftarrow \text{tableau des éléments de } T \text{ qui sont }$
- 5. $T_1 \leftarrow \text{tableau des éléments de } T \text{ qui sont } > p \text{ (boucle Pour)}$
- **6.** $T_0 \leftarrow \text{TriRapide}(T_0)$
- 7. $T_1 \leftarrow \text{TriRapide}(T_1)$
- **8.** Renvoyer la concaténation T_0 , n_p fois p, et T_1

Correction (rapide...)

- Par récurrence sur la taille n de T (n = 1 : ok)
- ▶ T_0 et T_1 sont de taille $< n \leadsto T_0$ et T_1 sont correctement triés
- donc le tableau renvoyé est correctement trié

Espérance du nombre de comparaisons

Théorème

L'espérance du nombre de comparaisons effectuées par $\operatorname{TriRAPIDE}$ est $O(n\log n)$

Notations

- $ightharpoonup T^{(i)}$: $i^{\text{ème}}$ plus petit élément de T
- $ightharpoonup X_{ij} = 1$ si $T^{(i)}$ est comparé à $T^{(j)}$ au cours de l'algo, 0 sinon
- lacksquare X : nombre total de comparaisons $\leadsto X = \sum_{i < j} X_{ij}$

Lemme

Pour
$$1 \le i < j \le n$$
, $\mathbb{E}[X_{ij}] = \Pr[X_{ij} = 1] = 2/(j - i + 1)$

Espérance du nombre de comparaisons

Théorème

L'espérance du nombre de comparaisons effectuées par $\operatorname{TriRapide}$ est $O(n \log n)$

Notations

- $ightharpoonup T^{(i)}: i^{\text{ème}}$ plus petit élément de T
- $ightharpoonup X_{ij} = 1$ si $T^{(i)}$ est comparé à $T^{(j)}$ au cours de l'algo, 0 sinon
- lacksquare X : nombre total de comparaisons $\leadsto X = \sum_{i < j} X_{ij}$

Lemme

Pour
$$1 \le i < j \le n$$
, $\mathbb{E}[X_{ij}] = \Pr[X_{ij} = 1] = 2/(j - i + 1)$

Preuve du théorème

- $\mathbb{E}[X] = \sum_{i < j} \mathbb{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \le \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k}$
- ▶ On admet que $\sum_{k=1}^{n} 1/k = O(\log n)$
- ▶ Donc $\mathbb{E}[X] = O(n \log n)$

Bilan sur le TriRapide

Propriétés du Trirapide

- L'algorithme est toujours correct
- L'espérance de sa complexité est $O(n \log n)$ (dans le pire des cas, complexité en $O(n^2)$)
- Type d'algorithme probabiliste : Las Vegas

Comportement pratique

- ▶ Le Trirapide est efficace en pratique, s'il est implanté en place
- En pratique, c'est un des algorithmes de tri les plus rapides, donc un des plus utilisés.

Conclusion générale

Analyse amortie

- ► Analyse de plusieurs exécutions consécutives d'un même algorithme
- Complexité amortie = temps moyen pris par les exécutions successives
- Trois techniques de preuve : agrégat, comptable et potentiel

Analyse d'algorithmes probabilistes

- Analyse d'algorithmes qui font des choix aléatoires
- ▶ Étude de l'espérance de la complexité ou de la probabilité de succès
- ► Comportement *moyen* vis-à-vis des choix aléatoires

Conclusion générale

Analyse amortie

- ► Analyse de plusieurs exécutions consécutives d'un même algorithme
- Complexité amortie = temps moyen pris par les exécutions successives
- Trois techniques de preuve : agrégat, comptable et potentiel

Analyse d'algorithmes probabilistes

- Analyse d'algorithmes qui font des choix aléatoires
- ▶ Étude de l'espérance de la complexité ou de la probabilité de succès
- ► Comportement *moyen* vis-à-vis des choix aléatoires

Plus loin : Analyse en moyenne

- Analyse du comportement d'algorithmes sur des entrées aléatoires
- Calcul de l'espérance de la complexité sur une entrée aléatoire
- Question à considérer : quelle distribution sur les entrées?

