CSc 466/566

Computer Security

20 : Cryptography — Signatures

Version: 2019/11/06 10:21:15

Department of Computer Science University of Arizona

collberg@gmail.com Copyright © 2019 Christian Collberg

Christian Collberg

1/41

Outline

- Introduction
- 2 RSA Signature Scheme
- Security Goals
- 4 Cryptographic Hash Functions
- 6 Practical Concerns
- 6 Exercises
- Summary

Introduction 2/41

Digital Signatures

- In this lecture we are going to talk about cryptographic hash functions (checksums) and digital signatures.
- We want to be able to
 - **Detect tampering**: is the message we received the same as the message that was sent?
 - Authenticate: did the message come from who we think it came from?

Signing a Public Key

THERE WAS A GIRL.

NO IDEA WHO SHE WAS.

DON'T EVEN KNOW HER NAME.

I WAS TOO DRUNK TO CARE.

AND WHAT, YOU

SLEPT WITH HER?

http://xkcd.com/364

Introduction 3/41 Introduction

4/41

Digital Signatures. . . . Alice $M \longrightarrow \text{sig} \leftarrow Ds_B(M) \longrightarrow M, \text{sig} \longrightarrow Bob \text{ sent } M$? $SBOD \longrightarrow M \longrightarrow Bob \text{ sent } M$?

Why do we sign with the decrypt function???

- Q: Why do we sign with the decrypt function?
- A: We need to sign using the private key. Only the decrypt function takes a private key as input!

Introduction 6/

Outline

Introduction

- Introduction
- RSA Signature Scheme
- Security Goals
- 4 Cryptographic Hash Functions
- Practical Concerns
- 6 Exercises
- Summary

RSA Signature Scheme

RSA Signature Scheme

5/41

- Alice applies the decryption function to her document M with her private key S_A , thereby creating a signature $S_{Alice}(M)$.
- ② Alice sends M and the signature $S_{Alice}(M)$ to Bob.
- Bob applies the encryption function to the document using Alice's public key, thereby verifying her signature.

7/41 RSA Signature Scheme 8/41

RSA Encryption: Algorithm

• Bob (Key generation):

1 Generate two large random primes p and q.

② Compute n = pq.

Select a small odd integer e relatively prime with $\phi(n)$.

1 Compute $\phi(n) = (p-1)(q-1)$.

Sompute $d = e^{-1} \mod \phi(n)$.

• $P_B = (e, n)$ is Bob's RSA public key.

• $S_B = (d, n)$ is Bob's RSA private key.

• Alice (encrypt a message *M* for Bob):

• Get Bob's public key $P_B = (e, n)$.

② Compute $C = M^e \mod n$.

• Bob (decrypt a message *C* from Alice):

1 Compute $M = C^d \mod n$.

RSA Signature Scheme

9/41

RSA Signature Algorithm

• Bob (Key generation): As before.

• $P_B = (e, n)$ is Bob's RSA public key.

• $S_B = (d, n)$ is Bob' RSA private key.

• Bob (sign a secret message M):

① Compute $S = M^d \mod n$.

2 Send M, S to Alice.

• Alice (verify signature *S* received from Bob):

10/41

12/41

lacktriangle Receive M, S from Alice.

2 Verify that $M \stackrel{?}{=} S^e \mod n$.

RSA Signature Scheme

Outline

Introduction

2 RSA Signature Scheme

Security Goals

4 Cryptographic Hash Functions

Practical Concerns

6 Exercises

Summary

Security Goals

• We want to ensure:

Nonforgeability

Nonmutability

Nonrepudiation

Security Goals 11/41 Security Goals

Nonforgeability

• Eve should not be able to create a message that appears to come from Alice.

Security Goals 13/41

Nonmutability

• Eve should not be able to take a valid signature for one message from Alice, and apply it to another one.

Security Goals 14/41

Nonrepudiation

• Alice should not be able to claim she didn't sign a document that she did sign.

Does RSA Provide Nonforgeability?

- Nonforgeability: Eve should not be able to create a message that appears to come from Alice.
- To forge a message M from Alice, Eve would have to produce

 $M^d \mod n$

without knowing Alice's private key d.

• This is equivalent of being able to break RSA encryption.

Security Goals 15/41 Security Goals 16/41

Does RSA Provide Nonmutability?

- Nonmutability: Eve should not be able to take a valid signature for one message from Alice, and apply it to another message.
- By itself, RSA does not achieve nonmutability.
- Not usually a problem since we normally sign the cryptographic hash of a message.

Security Goals 17/41

Nonmutability...

- Does this matter?
- Yes, if Alice is signing session (symmetric) keys.
- Such keys are just random numbers.
- In that case she has just signed a new key $M_3 = M_1 \cdot M_2!$

Nonmutability...

Security Goals

• Assume Eve has two valid signatures from Alice, on two messages M_1 and M_2 :

$$S_1 = M_1^d \mod n$$

$$S_2 = M_2^d \mod n$$

• Eve can then produce a new signature

$$S_1 \cdot S_2 = (M_1^d \mod n) \cdot (M_2^d \mod n)$$
$$= (M_1 \cdot M_2)^d \mod n$$

18/41

This is a valid signature for the message $M_1 \cdot M_2$!

Exercise: Goodrich & Tamassia R-8.1-4

What type of attack is Eve employing here:

- Eve has given a bunch of messages to Alice for her to sign using the RSA signature scheme, which Alice does without looking at the messages and without using a one-way hash function. In fact, these messages are ciphertexts that Eve constructed to help her figure out Alice's RSA private key.
- ② Choose one: ciphertext only, chosen ciphertext, chosen plaintext, known plaintext.

Security Goals 19/41 Security Goals 20/41

Outline

- Introduction
- 2 RSA Signature Scheme
- Security Goals
- 4 Cryptographic Hash Functions
- Practical Concerns
- 6 Exercises
- Summary

Cryptographic Hash Functions

21/41

Cryptographic Hash Functions

- Public key algorithms are too slow to sign large documents. A better protocol is to use a one way hash function also known as a cryptographic hash function (CHF).
- CHFs are checksums or compression functions: they take an arbitrary block of data and generate a unique, short, fixed-size, bitstring.

Cryptographic Hash Functions

22/41

Signature Protocol. . .

 Advantage: the signature is short; defends against MITM attack.

Cryptographic Hash Functions...

- CHFs should be
 - deterministic
 - one-way
 - 3 collision-resistant

i.e., easy to compute, but hard to invert.

- I.e.
 - given message M, it's easy to compute $y \leftarrow h(M)$;
 - given a value y it's hard to compute an M such that y = h(M).

This is what we mean by CHFs being one-way.

Cryptographic Hash Functions 23/41 Cryptographic Hash Functions 24/41

Weak vs. Strong Collision Resistance

- CHFs also have the property to be collision resistant.
- Weak collision resistance:
 - Assume you have a message M with hash value h(M).
 - Then it should be hard to find a different message M' such that h(M) = h(M').
- Strong collision resistance:
 - It should be hard to find two different message M_1 and M_2 such that $h(M_1) = h(M_2)$.
- Strong collision resistance is hard to prove.

Cryptographic Hash Functions

25/41

Merkle-Damgård Construction

• Hash functions are often built on a compression function C(X, Y):

- X is (a piece of) the message we're hashing.
- Y and Y' is the hash value we're computing.

Cryptographic Hash Functions

26/4

28/41

Merkle-Damgård Construction...

- For long messages M we break it into pieces M_1, \ldots, M_k , each of size m.
- Our initial hash value is an initialization vector v.
- We then compress one M_i at a time, chaining it together on the previous hash value.

Outline

- Introduction
- RSA Signature Scheme
- Security Goals
- 4 Cryptographic Hash Function
- 6 Practical Concerns
- 6 Exercise
- Summar

Cryptographic Hash Functions 27/41 Practical Concerns

Textbook vs. Real World

- The textbook description of RSA is not secure.
- There are several issues that we need to think about before we use it in the real world:
 - Encrypt-then-Sign or Sign-then-Encrypt?
 - Sign and Encrypt with the Same Key?
 - Secure padding schemes.

Practical Concerns

29/41

Sign and Encrypt with the Same Key?

Read this

https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php

to see the relationships between RSA-for-encryption and RSA-for signing.

• Summary: Use different keys for signing and encryption.

Encrypt-then-Sign or Sign-then-Encrypt

- We often want to both sign (for authentication) and encrypt (for confidentiality) a message M. Which do we do first?
 - Sign M, then encrypt the message + its signature?
 - Encrypt M, then append the signature of M?
- Sign, then encrypt:

Practical Concerns

http://www.cis.upenn.edu/~cse331/Fall02/Lectures/CSE331-21.pdf

- I.e: Alice wants to send a signed and encrypted message M to Bob:
 - Alice sends $E_{P_B}(M, \mathbf{sign}_{S_A}(M))$ to Bob
 - Bob first decrypts, and then checks the signature.

Optimal Asymmetric Encryption Padding

• We need to add padding to RSA-encrypt to make it secure to real world attacks.

https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php

This is called Optimal Asymmetric Encryption Padding (OAEP):

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

Practical Concerns Practical Concerns 31/41 32/41

Outline

- Introduction
- 2 RSA Signature Scheme
- Security Goals
- 4 Cryptographic Hash Functions
- Practical Concerns
- 6 Exercises
- Summary

Exercises

Final Exam: Protocols

Alice wants to send Bob a very large message M, such that

- Bob is able to forward M to Cathy, and Cathy can verify that Alice is the originator of the message, and
- 2 the protocol is efficient, but
- \odot they don't care about the confidentiality of M, i.e. there's no need to encrypt M.

At their disposal, Bob and Alice have access to

- A public key signature algorithm (RSA),
- 2 A cryptographic hash function (SHA-1).

Design the appropriate protocol.

Exercises 34

Final Exam: Digital Signatures — Definitions

- Define the following terms:
 - Nonforgeability
 - Nonmutability
 - Nonrepudiation

Final Exam: RSA signature: Nonmutability

- Show how the RSA signature scheme does not achieve nonmutability.
- Is this usually a problem? Why?

Exercises 35/41 Exercises 36/41

33/41

Final Exam: Cryptographic Hash Function Collision Resistance

• What is the difference between weak and strong collision resistance?

Final Exam: Final Exam: Merkle-Damgård Construction

• Show how, given a compression function C, a long message M can be hashed using the Merkle-Damgård Construction.

Exercises 37/41

Outline

- Introduction
- RSA Signature Scheme
- Security Goals
- 4 Cryptographic Hash Functions
- Practical Concerns
- 6 Exercises
- Summary

Summary

Exercises

- Digital signatures make a message tamper-proof and give us authentication and nonrepudiation
- They only show that it was signed by a specific key, however
- It's cheaper to sign a checksum of the message rather than the whole message
 - Cryptographic checksums are necessary to do this securely

Summary 39/41 Summary 40,

Readings and References		Acknowledgments	
• Chapter 8.1.7, 8.2.1, 8.5.2 in <i>Introduction to Computer Security</i> , by Goodrich and Tamassia.		Additional material and exercises have also been collected from these sources: 1 Matthew Landis, 620—Fall 2003—Cryptographic Checksums and Digital Signatures. 2 RFC1321 (MD5), www.ietf.org/rfc/rfc1321.txt	
Summary 41/	+1	Summary	42/41