Sameep Shah COSC 20803 Lab 2 November 1, 2023

I created a method to make a degenerate binary tree. Using the newly created method and the method given already to create a pseudo-random binary tree, I calculated the average number of comparisons and time taken to create both trees with increasing number of nodes(n). The following table (Table 1) contains the relevant data I found in my experiment.

	Pseudorandom		Degenerate		
n	Avg. Comparisons	Avg. Time	Avg. Comparisons	Avg. Time	
10000	159130.2	0.00364288	49995000	0.10846658	314.176693
20000	333638.8	0.00635666	199990000	0.42362914	599.4206909
40000	725536	0.01261011	799980000	1.66839257	1102.605522
60000	1150150.8	0.01959351	1799970000	3.68926153	1564.986087
80000	1565057.6	0.02742359	3199960000	6.65928987	2044.627623
100000	2009421	0.03568952	4999950000	10.2274128	2488.254079
120000	2436244.2	0.03995853	7199940000	15.1167226	2955.344132
140000	2921373.2	0.04957737	9799930000	20.488449	3354.562847
160000	3344983.8	0.05413482	12799920000	26.8419461	3826.601492
200000	4391807.8	0.06689136	19999900000	42.0170999	4553.910579
250000	5651018.8	0.07742932	31249875000	66.9160058	5529.954174
300000	6671875.4	0.09129846	44999850000	97.7613509	6744.707792
400000	8983097	0.11682763	79999800000	172.10702	8905.592359
500000	11511751.5	0.17483994	1.25E+11	256.96638	10858.44756
600000	14278595	0.24780038	1.8E+11	383.255602	12606.26133
700000	17059353	0.26492551	2.45E+11	504.102046	14361.60269
800000	19792894	0.28153996	3.2E+11	642.166966	16167.39826
900000	22970496	0.36612096	4.05E+11	852.667513	17631.2932
1000000	25609553	0.43071888	5E+11	1060.74193	19523.94483

Table 1: Experiment data containing average number of comparisons and time required to create a pseudo-random and degenerate tree plotted against different values of n

Using the data in Table 1, I plotted some graphs to help us analyze my findings.

Psuedo-random binary search tree:

Graph 1 – Comparing number of comparisons vs n, to a regular function which outputs n * log(n) values.

Graph 2 – Comparing number of comparisons vs n, to a regular function which outputs n^2 values.

Degenerate Binary Search Tree:

Graph 3 – Comparing number of comparisons my experiment took to functions which output n^2 and nlog(n) values.

Graph 4 – Comparing my recorded data to a function which outputs nlog(n) values.

Summary: From graph 1, we can observe that the recorded values for the pseudo-random BST are very similar to a regular function that outputs nlog(n) values. It seems like the values are just a factor more than the regular function. This can also be seen by looking at graph 2, where my recorded data curve and regular nlog(n) curve both dwarf in front of a n^2 curve, which can help us realize that the insertion of a new value in a BST should be O(nlogn), as out data tends to nlogn rather than n^2 .

Similarly, if we look at graph 3, we can observe that my recorded data of inserting a new value into a degenerate BST tends more to a normal n^2 function, than a normal $n\log(n)$ function. We can make sure that, this is true if we look at graph 4, where the normal $n\log(n)$ function dwarves in front of my recorded data from Table 1 of inserting a value in a degenerate BST. This makes us realize that in a degenerate BST, inserting a new node will take us $O(n^2)$ time.