Distribuciones notables

Distribución	FDP/FDM y soporte	Esperanza	Varianza	R
$\begin{array}{c} \text{Bernoulli} \\ \text{Bern}(p) \end{array}$	P(X = 1) = p $P(X = 0) = q = 1 - p$	p	pq	dbinom(x, size=1, prob=p)
Binomial $Bin(n,p)$ o $\mathcal{B}(n,p)$	$P(X = x) = \binom{n}{k} p^x q^{n-k}$ $x \in \{0, 1, 2, \dots n\}$	np	npq	dbinom(x, size=n, prob=p)
$\begin{array}{c} {\rm Geom\acute{e}trica} \\ {\rm Geom}(p) \end{array}$	$P(X = x) = q^x p$ $x \in \{0, 1, 2, \dots\}$	q/p	q/p^2	dgeom(x, prob=p)
Binomial Negativa $NegBin(r, p)$	$P(X = x) = {r+x-1 \choose r-1} p^r q^x$ $x \in \{0, 1, 2, \dots\}$	rq/p	rq/p^2	dnbinom(x, size=r, prob=p)
Hipergeométrica $\mathrm{HGeom}(m,n,k)$	$P(X = x) = {\binom{m}{x}} {\binom{n}{k-x}} / {\binom{m+n}{k}}$ $x \in \{0, 1, 2, \dots, k\}$	$\mu = \frac{km}{n+m}$	$\left(\frac{m+n-k}{m+n-1}\right)k\frac{\mu}{k}(1-\frac{\mu}{k})$	dhyper(x, m=m, n=n, k=k)
$\begin{array}{c} & \\ & \text{Multinomial} \\ & \text{Multinom}(n, p_1, \dots, p_k) \end{array}$	$P(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$ $x_i \in \{0, 1, \dots, n\} : \sum_i x_i = n$	$\mathbb{E}[X_i] = np_i$	$\operatorname{Var}[X_i] = np_i(1 - p_i)$	dmultinom($c(x_1,,x_k)$, size=n, prob= $c(p_1,,p_k)$)
Poisson Pois (λ) o $\mathcal{P}(\lambda)$	$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ $k \in \{0, 1, 2, \dots\}$	λ	λ	$dpois(k, lambda=\lambda)$
Uniforme Unif (a,b) o $\mathcal{U}(a,b)$	$f(x) = \frac{1}{b-a}$ $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	dunif(x, min=a, max=b)
Normal/Gaussiana $\mathcal{N}(\mu, \sigma^2)$ (var) o $\mathcal{N}(\mu, \sigma)$ (sd)	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$ $x \in (-\infty, \infty)$	μ	σ^2	$dnorm(x, mean=\mu, sd=\sigma)$
Exponencial $\operatorname{Expo}(\lambda)$	$f(x) = \lambda e^{-\lambda x}$ $x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$dexp(x, rate = \lambda)$
Chi-Cuadrado χ^2_n	$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2 - 1} e^{-x/2}$ $x \in (0, \infty)$	n	2n	dchisq(x, df=n)
t de Student t_n	$\frac{\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}(1+x^2/n)^{-(n+1)/2}}{x \in (-\infty, \infty)}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n > 2$	dt(x, df=n)
Distribución F $F_{n,m}$	$f(x) = \frac{1}{\text{Beta}(n,m)} \left(\frac{n}{m}\right)^{n/2} x^{\frac{n}{2}-1} \left(1 + \frac{n}{m}x\right)^{-\frac{n+m}{2}}$ $x > 0$	$\frac{m}{m-2}$ if $m>2$	$\frac{2m^2(n+m-2)}{n(m-2)^2(m-4)} \text{ if } m > 4$	$df(x,df1{=}n,df2{=}m)$