Samstag, 2. November 2024

15:58

Exercise 2.1.14 Show that any hyperplane W in a 2n-dimensional symplectic vector space (V, ω) is coisotropic. Thus $W^{\omega} \subset W$ and $\omega|_{W}$ has rank 2(n-1). **Hint:** By Exercise 2.1.12 the 2-form $\omega|_{W}$ has even rank. Hence there is some nonzero vector $w \in W$ such that $\omega(w, x) = 0$ for all $x \in W$. Show that this vector w spans W^{ω} . \square

dim W = 2n - 1 = 9 dim $W^{\alpha} = 1$. Assume $W^{\alpha} \notin W$. Then $W^{\alpha} \oplus W = V$. But then for a nonzero $v \in W^{\alpha}$ we have $\omega(v, -) = 0$. E. A fast way to argue about the vanh is using Exercise 2.1.13.