Теория вероятности

Храбров Александр Игоревич

21 июня 2023 г.

Содержание

1. Эле	ементарная теория вероятностей	1
1.1	Основные понятия	2
1.2	Предельные теоремы для схем Бернулли	5
2. Оби	цая теория вероятностей	9
2.1	Колмогоровская модель теории вероятности	10
2.2	Случайные величины	11
2.3	Совместное распределение	14
2.4	Математическое ожидание и дисперсия	17
2.5	Сходимость последовательностей случайных величин	22
2.6	Производящие функции	27
3. Метод характеристических функций		28
3.1	Характеристические функции случайных величин	29
3.2	Сходимость по распределению	33
3.3	Центральная предельная теорема	36
3.4	Большие уклонения	38
4. Дискретные случайные процессы		40
4.1	Условные математические ожидания	41
4.2	Ветвящиеся процессы	43
4.3	Цепи Маркова	44
4.4	Случайные блуждания	48
4.5	Процесс восстановления	51

1. Элементарная теория вероятностей

1 из 53

1.1. Основные понятия

Определение 1.1. $\Omega = \{\omega_1, \dots, \omega_n\}$ – пространство элементарных событий (исходов).

- 1. равновозможные
- 2. несовместные
- 3. одно всегда реализуется

Определение 1.2. Событие $A \subset \Omega$

$$P(A) = \frac{\#A}{\#\Omega}$$

Свойства. вероятности

- 1. $P(\emptyset) = 0, P(\Omega) = 1, P(A) \in [0, 1]$
- 2. Если $A \cap B = \emptyset$, то $P(A \cup B) = P(A) + P(B)$

3.
$$\underbrace{P(A \cup B)}_{=P(A)+P(B \setminus (A \cap B))} = P(A) + P(B) - P(A \cap B)$$

- 4. $P(\overline{A}) = 1 P(A)$, где $\overline{A} = \Omega \setminus A$
- 5. $P(A_1 \cup A_2 \cdots \cup A_m) = \sum_{i=1}^m P(A_i) \sum_{i \neq j} P(A_i \cap A_j) + \sum_{i \neq j, \ i \neq k, \ j \neq k} P(A_i \cap A_j \cap A_k) \cdots + (-1)^{m-1} \cdot P(A_1 \cap \cdots \cap A_m)$ формула включений-исключений.

Доказательство. Индукция по m.

База m=2.

Переход $m \to m+1$:

$$B_i = A_i \cup A_{m+1}$$

$$P(\underbrace{A_1 \cup \dots \cup A_m}_{=:B} \cup A_{m+1}) = P(B \cup A_{m+1}) = \underbrace{P(B)}_{\text{это умеем расписывать по инд. предп.}} + P(A_{m+1}) - P(B \cap A_{m+1})$$

$$A_{m+1}) =$$

$$= \sum_{j=1}^{m+1} P(A_j) - \sum_{i\neq j}^{m} P(A_i \cap A_j) + \sum_{i\neq j\neq k}^{m} P(A_i \cap A_j \cap A_k) - \underbrace{P(A_{m+1} \cap B)}_{=P(B_1 \cup B_2 \dots \cup B_m)}, \text{ где } B_i := A_i \cap B_i$$

$$A_{m+1}$$
.

6.
$$P(A \cup B) \le P(A) + P(B)$$

$$P(A_1 \cup \cdots \cup A_m) \le \sum_{j=1}^m P(A_j)$$

Определение 1.3. Условная вероятность.

$$B \neq \emptyset, \ P(B) > 0.$$

Знаем, что выполнилось событие B, хотим узнать вероятность наступления A.

$$P(A|B) = \frac{\#(A \cap B)}{\#B} = \frac{\frac{\#(A \cap B)}{\#\Omega}}{\frac{\#B}{\#\Omega}} = \frac{P(A \cap B)}{P(B)}$$

Свойства. 1. P(A|A) = 1, если $B \subset A$, то P(A|B) = 1

2. Если
$$A_1 \cap A_2 = \emptyset$$
, то $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$
В частности: $P(A|B) + P(\overline{A}|B) = 1$

Замечание. $P(A|B) + P(A|\overline{B})$ не обязана быть 1.

Пример: игральный кубик, B – выпало четное число, A – выпало кратное трем.

$$P(A|B) = \frac{1}{3}, \ P(A|\overline{B}) = \frac{1}{3}$$

Теорема 1.1. Формула полной вероятности.

Пусть
$$\Omega = \bigsqcup_{j=1}^m B_j, \ P(B_j) > 0.$$

Тогда
$$P(A) = \sum_{j=1}^{m} P(A|B_j) \cdot P(B_j)$$

Доказательство.
$$\sum_{j=1}^{m} \underbrace{P(A|B_{j})}_{P(B_{j})} \cdot P(B_{j}) = \sum_{j=1}^{m} P(A \cap B_{j}) = P(A \cap \bigsqcup_{j=1}^{m} B_{j}) = P(A)$$

Пример. Пусть есть 2 урны с шариками:

- I. 3 белых шара, 5 черных шаров
- II. 5 белых, 5 черных

2 шара из I положили в II, затем вынули 1 шар из II, P(вынули белый) =?

A — вынули из II белый шар.

 B_0 , B_1 , B_2 , где B_j – переложили j белых шаров из I в II.

Тогда
$$P(A|B_0) = \frac{5}{12}, \ P(A|B_1) = \frac{1}{2}, \ P(A|B_2) = \frac{7}{12}.$$

$$P(B_0) = \frac{C_5^2}{C_8^2} = \frac{5}{14}$$

$$P(B_1) = \frac{15}{C_8^2} = \frac{15}{28}$$

$$P(B_2) = \frac{C_3^2}{C_8^2} = \frac{3}{28}$$

Подставляем в формулу:

$$P(A) = \frac{5}{12} \cdot \frac{5}{14} + \frac{1}{2} \cdot \frac{15}{28} + \frac{7}{12} \cdot \frac{3}{28} = \frac{23}{48}$$

Теорема 1.2. Формула Байеса.

Пусть
$$P(A) > 0$$
, $P(B) > 0$, тогда $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$

Доказательство. Расписываем P(A|B), получаем в правой части: $\frac{P(A\cap B)}{P(B)} \cdot P(B) \cdot \frac{1}{P(A)}$.

Теорема 1.3. Байеса.

Пусть
$$P(A) > 0, \ P(B_j) > 0, \ \Omega = \bigsqcup_{j=1}^m B_j,$$
 тогда

$$P(B_j|A) = \frac{P(A|B_j) \cdot P(B_j)}{P(A|B_1)P(B_1) + \dots + P(A|B_m)P(B_m)}$$

Пример. Есть 2 монеты (одна симметричная, вторая $P(\text{орла}) = \frac{1}{3}$, $P(\text{решка}) = \frac{2}{3}$). Взялу наугад монету, побросили и выпал орел. Какова вероятность, что мы взяли симметричную монету?

A – выпал орел, B – монета симметричная (\overline{B} – монета кривая).

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\overline{B})P(\overline{B})} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{3}{5}$$

Определение 1.4. Независимые события.

Рассуждения: A не зависит от B, если $P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$.

Def: A, B независимые события, если $P(A \cap B) = P(A) \cdot P(B)$

Определение 1.5. События A_1, A_2, \ldots, A_m – независимы в совокупности, если

$$P(A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_k})=P(A_{i_1})\cdot P(A_{i_2})\cdot\cdots\cdot P(A_{i_k})$$
 – для любых индексов i_j .

Замечание. Независимость в совокупности \implies попарная независимость.

Наоборот неверно.

Пример. Есть два игральных кубика.

A — на первом кубике выпало четное число.

B – на втором выпало четное число.

C – сумма на кубиках четная.

Пространство элементарных исходов это все пары (i, j), где $i, j \in \{1, 2, 3, 4, 5, 6\}, \#\Omega = 36$.

$$P(A) = \frac{1}{2}, \ P(B) = \frac{1}{2}, \ P(C) = \frac{1}{2}.$$

$$A \cap B = A \cap C = B \cap C = A \cap B \cap C.$$

 $P(A \cap B) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A) \cdot P(B)$, остальные равенства тоже выполняются \implies попарная независимость.

$$P(A\cap B\cap C)=rac{1}{4}
eq rac{1}{2}\cdot rac{1}{2}\cdot rac{1}{2}=P(A)\cdot P(B)\cdot P(C)\implies$$
 нет независимости в совокупности.

Упражнение. Д-ть, что $A_1, \dots A_m$ независимы в совокупности $\Leftrightarrow P(B_1 \cap B_2 \cap \dots \cap B_m) = P(B_1) \dots P(B_m)$, где $B_j = A_j$ или $\overline{A_j}$ (все 2^m равенств).

Замечание. Небольшое обобщение.

$$\Omega = \{\omega_1, \dots, \omega_n\}$$
 – пр-во элементарных исходов.

Также у нас есть
$$p_1, \dots p_n : \sum_{i=1}^n p_i = 1, \ \forall i : \ p_i \ge 0.$$

$$P(A) = \sum_{i: \ \omega_i \in A} p_i.$$

Теорема 1.4. Схема Бернулли.

$$open = ycnex = 1.$$

решка =
$$\text{неудача} = 0$$
.

$$P(\text{opeл}) = p, \ 0 \le p \le 1$$

$$P(\text{решкa}) = 1 - p$$

Бросаем монету n раз, получаем последовательность исходов:

$$\Omega = \{x_1, x_2, \dots, x_n\} : x_j = 0$$
 или 1.

$$\omega = (x_1, x_2, \dots, x_n), \ P(\{\omega\}) = p^{\#i: \ x_i = 1} \cdot q^{\#i: \ x_i = 0} = p^{\sum x_i} \cdot q^{n - \sum x_i}$$

Хотим узнать:

P(выпало ровно k орлов) = $C_n^k p^k q^{n-k}$

P(i-ое подбрасывание) = P(орел) = p — независимые в совокупности по $i = 1, 2, \dots, n$.

Теорема 1.5. Полиномиальная схема.

$$p_1, p_2, \ldots, p_m : \sum p_i = 1.$$

$$P(x_i = k) = p_k$$
, где $x_i \in \{1, 2, \dots, m\}$

$$\Omega = \{(x_1, x_2, \dots, x_n)\}, \ \omega = (x_1, x_2, \dots, x_n)$$

$$P(\{\omega\}) = p_1^{\#\{i:x_i=1\}} \cdot \dots \cdot p_m^{\#\{i:x_i=m\}}$$

$$k_1 + k_2 + \cdots + k_m = n$$

$$P(k_1 \text{ раз выпало } 1, k_2 \text{ раз выпало } 2, ...) = \underbrace{\binom{n}{k_1, k_2, \dots, k_m}}_{=\frac{n!}{k_1 \cdot k_2 \cdot 1}} \cdot p_1^{k_1} \cdot \dots \cdot p_m^{k_m}$$

Теорема 1.6. Эрдёша-Мозера

Рассмотрим турнир на n команд. При каком наибольшем k можно всегда выбрать команды $A_1, A_2 \dots A_k$, так, что A_i выиграла у A_j , если i < j? При $k \le 1 + [2\log_2 n]$

Доказательство. Предположим, что $k \ge 2 + [2\log_2 n] > 1 + 2\log_2 n$. Хотим показать, что при таких k точно найдётся турнир, в котором нельзя выбрать k команд.

Рассмотрим случайный турнир(Всего встреч $\binom{n}{2}$, тогда $2^{\binom{n}{2}}$ разных турниров. Случайный - берём из этой кучи наугад).

P(A выиграла у $B) = \frac{1}{2}$.

Рассмотрим $A_1, A_2, \dots A_k$ команды.

- 1. $P(A_1, A_2 \dots A_k \text{ подходят}) = (\frac{1}{2})^{\binom{k}{2}}.$
- 2. $P(A_1, A_2 ... A_k$ можно переименовать, так, что они подошли) $\leq \frac{k!}{2\binom{k}{2}}$
- 3. $P(\text{какие-то } k \text{ команд подошли}) \leqslant \binom{n}{k} \cdot \frac{k!}{2\binom{k}{2}}$

Нужно понять, что если $k \ge 2 + [2\log_2 n]$, то $\binom{n}{k} \frac{k!}{2\binom{k}{2}} < 1$.

Действительно,
$$\binom{n}{k} \frac{k!}{2\binom{k}{2}} = \frac{n(n-1)(n-2)\dots(n-k+1)}{2^{\frac{k(k-1)}{2}}} < \frac{n^k}{(2^{\frac{k-1}{2}})^k} = \left(\frac{n}{2^{\frac{k-1}{2}}}\right)^k$$

Мы знаем, что $k>1+2\log_2 n \Leftrightarrow \frac{k-1}{2}>\log_2 n \implies 2^{\frac{k-1}{2}}>n$. И тогда $\left(\frac{n}{2^{\frac{k-1}{2}}}\right)^k<1$. Это значит, что вероятность, что никакие команды не подходят - положительная, значит есть турнир, в котором k команд выбрать нельзя.

1.2. Предельные теоремы для схем Бернулли

Определение 1.6. Схема Бернулли с вероятностью успеха $p \in (0,1)$. S_n - число успехов при n испытаниях. $P(S_n = k) = \binom{n}{k} p^k q^{n-k}$

Что будет больше $P(S_{1000}=220)$ при $p=\frac{1}{5}$ или $P(S_{2000})=360$ при $p=\frac{1}{6}$. Точные вычисления дают 0.008984 и 0.006625 соответственно.

Теорема 1.7. Пуассона

Схема Бернулли с n испытаниями и вероятностью успеха p_n - зависит от n. Если $np_n \to \lambda > 0$. Тогда $P(S_n = k) \to \frac{\lambda^k}{k!} e^{-\lambda}$

Замечание. Если $np_n = \lambda$, то теорема верна при $k = o(\sqrt{n})$

Доказательство.
$$P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n(n-1)\dots(n-k+1)}{k!} p^k (1-p)^{n-k} \sim \frac{n^k}{k!} p^k (1-p)^{n-k} = \frac{(np)^k}{k!} (1-p)^{n-k} \sim \frac{\lambda^k}{k!} (1-p)^{n-k}.$$

Осталось показать, что $(1-p)^{n-k} \sim e^{-\lambda}$. Прологарифмируем: $\ln(1-p)^{n-k} = (n-k)\ln(1-p) \sim -np \sim -\lambda$

Доказательство замечания:

Нам нужно показать, что $n(n-1)\dots(n-k+1)\sim n^k$, все остальные переходы будут верны.

$$\frac{n(n-1)\dots(n-k+1)}{n^k} = 1 \cdot (1 - \frac{1}{n}) \dots \cdot (1 - \frac{k-1}{n}) \underset{(*)}{\underbrace{\geqslant}} 1 - \frac{1}{n} - \dots - \frac{k-1}{n} = 1 - \frac{k(k-1)}{2n} \to 1$$

$$(*)$$
 Неравенство $(1-x_1)\dots(1-x_k)\geqslant 1-x_1-x_2-\dots-x_k$ при $0\leqslant x_i\leqslant 1$ - индукция.

Теорема 1.8. Прохорова

Если
$$\lambda=np$$
, то $\sum_{k=0}^{+\infty}|P(S_n=k)-\frac{\lambda^k}{k!}e^{-\lambda}|\leqslant \frac{2\lambda}{n}\cdot\min(2,\lambda)$

Пример. Игра в рулетку: 36 чисел и ноль.

$$p = \frac{1}{37}, n = 111, np = 3 = \lambda.$$

$$P(S_{111} = 3) = {111 \choose 3} (\frac{1}{37})^3 (1 - \frac{1}{37})^{111-3} = 0.227127$$

Из Пуассона $\frac{\lambda^3}{3!}e^{-\lambda}=0.224$

Видим, что приближение хорошее.

$$P(\text{ставка удачная хотя бы 4 раза})=1-P(S_{111}=0)-P(S_{111}=1)-P(S_{111}=2)-P(S_{111}=3)=1-\frac{\lambda^0}{0!}e^{-\lambda}-\frac{\lambda^1}{1!}e^{-\lambda}-\frac{\lambda^2}{2!}e^{-\lambda}-\frac{\lambda^3}{3!}e^{-\lambda}=0.352754$$

А по формулам 0.352768

Теорема 1.9. Локальная предельная теорема Муавра-Лапласа

Схема Бернулии с вероятностью успеха $p\in (0,1),\ q=1-p,\ x=\frac{k-np}{\sqrt{npq}},$ где k зависит от n, и n меняется. $|x|\leqslant T$ – при $n\to +\infty$ и любых k. Тогда:

$$P(S_n = k) \sim_{n \to +\infty} \frac{1}{\sqrt{2\pi npq}} e^{\frac{-x^2}{2}}$$

Доказательство.

1.
$$k = np + x\sqrt{npq} \geqslant np - T\sqrt{npq} \rightarrow +\infty$$

2.
$$n - k = nq - x\sqrt{npq} \geqslant nq - T\sqrt{npq} \to +\infty$$

$$P(S_n = k) = \binom{n}{k} p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

Напишем формулу Стирлинга ($n! \sim_{n \to \infty} \sqrt{2\pi n} \cdot n^n e^{-n}$):

$$\frac{n^n e^{-n} \sqrt{2\pi n} p^k q^{n-k}}{k^k e^{-k} \sqrt{2\pi k} \cdot (n-k)^{n-k} e^{-(n-k)} \sqrt{2\pi (n-k)}} = \frac{p^k q^{n-k}}{(\frac{k}{n})^k \cdot (\frac{n-k}{n})^{n-k} \cdot \sqrt{2\pi \frac{k}{n} (1-\frac{k}{n})n}}.$$

Заметим, что $\frac{k}{n}=p+\frac{x\sqrt{pq}}{\sqrt{n}}\to p$ и $\frac{n-k}{n}\to q$

Поэтому остаётся доказать, что $\frac{(\frac{k}{n})^k \cdot (\frac{n-k}{n})^{n-k}}{p^k q^{n-k}} \to e^{\frac{x^2}{2}}$. Прологарифмируем:

Получим: $k \ln \frac{k}{n} + (n-k) \ln \frac{n-k}{n} - k \ln p - (n-k) \ln q \to \frac{x^2}{2}$

Введём обозначения: $\alpha = \frac{k}{n} \to p, \beta = \frac{n-k}{n} \to q.$ Тогда $k = n\alpha, n-k = n\beta$ и всё перепишется в виде:

$$n\alpha \ln \alpha + n\beta \ln \beta - n\alpha \ln p - n\beta \ln q = \underbrace{n\alpha \ln \frac{\alpha}{p} + n\beta \ln \frac{\beta}{q}}_{(*)} \rightarrow \frac{x^2}{2}$$

Мы знаем, что $\frac{\alpha}{p}=1+x\sqrt{\frac{q}{np}}$ и $\frac{\beta}{q}=1-x\sqrt{\frac{p}{nq}}$ - из первых двух тождеств в доказательстве.

Напишем Тейлора:

$$ln(1+t) = t - \frac{t^2}{2} + o(t^2)$$

$$\ln \frac{\alpha}{p} = \ln(1 + x\sqrt{\frac{q}{np}}) = x\sqrt{\frac{q}{np}} - \frac{1}{2}x^2\frac{q}{np} + o(\frac{1}{n})$$

$$\ln \frac{\beta}{q} = \ln(1 - x\sqrt{\frac{p}{nq}}) = -x\sqrt{\frac{p}{nq}} - \frac{1}{2}x^2\frac{p}{nq} + o(\frac{1}{n})$$

Тогда
$$(*) = x\sqrt{pq}\sqrt{n} + x^2q - \frac{1}{2}x^2q + o(\frac{1}{n}) - x\sqrt{pq}\sqrt{n} + x^2p - \frac{1}{2}x^2p + o(\frac{1}{n}) = x^2(\frac{q}{2} + \frac{p}{2}) + o(1) = \frac{x^2}{2} + o(1)$$

Замечание. Если $\varphi(n)=o(n^{\frac{2}{3}})$ и $|k-np|\leqslant \varphi(n),$ то теорема тоже верна

Пример. Всё та же рулетка. n=222, k=111. Пытаемся ставить на четное/нечётное(кроме 0). $p=\frac{18}{37}$

$$P(S_{222} = 111) \approx \frac{1}{\sqrt{2\pi npq}} e^{\frac{-x^2}{2}} \approx 0.049395...$$

Если считать точно, то получим 0.0493228...

Теорема 1.10. Интегральная теорема Муавра-Лапласа

$$0 . $P(a < \frac{S_n - np}{\sqrt{npq}} \le b) \to_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$$

Стремление равномерно по $a, b \in \mathbb{R}$.

Теорема 1.11. Берри-Эссеена

Обозначение:
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
, $\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$ $\sup_{x \in \mathbb{R}} \left| P(\frac{S_n - np}{\sqrt{npq}} \leqslant x) - \Phi(x) \right| \leqslant \frac{p^2 + q^2}{\sqrt{npq}} \cdot \frac{1}{2}$

Замечание. Константа лучше, чем $\frac{c}{\sqrt{n}}$ не бывает.

Замечание.
$$P(a < S_n \leqslant b) = P(\frac{a-np}{\sqrt{npq}} < \frac{S_n-np}{\sqrt{npq}} \leqslant \frac{b-np}{\sqrt{npq}}) o \Phi(\frac{b-np}{\sqrt{npq}}) - \Phi(\frac{a-np}{\sqrt{npq}})$$

Отсюда получили, что лучше всего писать полуцелые a и b.

Замечание. Если p или q очень маленькие, то произведение np маленькое и оценка будет плохой. В таких случаях хорошо использовать Пуассона. Муавра-Лаплас же хорош, когда np большое.

Пример.
$$p=q=\frac{1}{2}$$
. Вопрос: $P(S_{2n}=n)=\binom{2n}{n}\frac{1}{2^{2n}}\sim \frac{4^n}{\sqrt{\pi n}}\frac{1}{4^n}=\frac{1}{\sqrt{\pi n}}$.

Ho
$$P(S_{2n} < n) = P(S_{2n} > n)$$
.

Тогда
$$P(S_{2n} \leqslant n) = \frac{1+P(S_{2n}=n)}{2} = \frac{1}{2} + \frac{1}{2\sqrt{\pi n}} + o(\frac{1}{\sqrt{n}})$$

Муавра-Лаплас нам говорит, что $P(S_{2n} \leqslant n) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{t^2}{2}} dt = \frac{1}{2}$

Ho
$$P(S_{2n} \leq n) = \frac{1}{2} + \frac{1}{2\sqrt{\pi n}} + o(\frac{1}{\sqrt{n}})$$

Пример. Задача о театре

Есть театр и 2 входа. У каждого входа расположен гардероб. В театре n=1600 мест. Хотим сделать размер гардероба как можно меньше, но чтобы переполнения случались как можно реже (не чаще, чем раз в месяц).

Пусть c мест в итоге в гардеробе.

За успех считаем ситуацию, когда человек вошел в театр и пошел в ближайший к нему гардероб (т.е. в ближайшем гардеробе было место, и человек не пошел в дальний гардероб). Пусть S_n – кол-во успешных испытаний.

Так как в каждый гардероб мы допускаем c мест, то кол-во успехов $S_n \leq c$.

 $p=q=\frac{1}{2}$. Нужно, чтобы $n-c\leqslant S_n\leqslant c$. И $P(n-c\leqslant S_n\leqslant c)>\frac{29}{30}$ – т.е. хотя бы в 29 днях из 30 ближайший к каждому входу гардероб не переполняется.

$$P(n-c \leqslant S_n \leqslant c) = P\left(\frac{n-c-\frac{n}{2}}{\sqrt{n \cdot \frac{1}{4}}} \leqslant \frac{S_n - \frac{n}{2}}{\sqrt{n \cdot \frac{1}{4}}} \leqslant \frac{c-\frac{n}{2}}{\sqrt{n \cdot \frac{1}{4}}}\right) =$$

$$P\left(\frac{800-c}{20} \leqslant \frac{S_n - 800}{20} \leqslant \frac{c-800}{20}\right) \to \Phi\left(\frac{800-c}{20}\right) - \Phi\left(\frac{c-800}{20}\right) = \frac{1}{\sqrt{2\pi}} \int_{\frac{800-c}{20}}^{\frac{c-800}{20}} e^{-\frac{t^2}{2}} dt = 2 \cdot \Phi_0\left(\frac{c-800}{20}\right) > \frac{29}{30}$$

$$\Phi_0\left(\frac{c-800}{20}\right) > \frac{29}{60} \implies c = 843.$$

Пример. Случайное блуждание на прямой

Есть прямая, будем считать, что у нас блуждания исключительно по целым точкам.

В каждой точке подбрасываем монетку. С вероятностью p идём вперёд, q - идём назад.

 $a_{n+1} = a_n + 1$ с вероятностью p

 $a_{n+1} = a_n - 1$ с вероятностью q

 $a_n \equiv n \mod 2$

Если представить, что шаг влево – это 0, а шаг в право – это 1, то сдвиг из точки a_n будет определяться как $2 \cdot x - 1$, где x = 0, 1 в зависимости от того, в какую сторону идем (т.е. $a_{n+1} = a_n + (2 \cdot x - 1)$).

Тогда пусть S_n – кол-во единичек, тогда $a_n = 2 \cdot S_n - n$.

Пусть мы всегда стартуем с $a_0 = 0$, тогда определим, чему равна вероятность попасть за n шагов в точку k ($a_n = k$):

$$P(a_n = k) = P(S_n = \frac{n+k}{2}) = \begin{cases} 0, \text{ если } n \not\equiv k \mod 2 \\ \left(\frac{n}{n+k}\right)p^{\frac{n+k}{2}}q^{\frac{n-k}{2}}, \text{ иначе} \end{cases}$$

Теорема 1.12. ван дер Вардена

Рассмотрим числа $1, 2 \dots k$ и покрасим их в 2 цвета.

Тогда существует k_n , такое, что, если $k > k_n$, то при любой раскраске найдётся одноцветная n-членная арифметическая прогрессия.

Теорема 1.13. Эрдеша-Радо

$$k_{n+1} \geqslant \sqrt{n \cdot 2^{n+1}}$$

Доказательство. $A_1, A_2 \dots A_m$ - все арифметические прогрессии длины n+1 из чисел $1, 2 \dots k$.

 ${\bf C}$ разностью 1:k-n прогрессий.

C разностью 2:k-2n прогрессий.

. . .

С разностью $\left[\frac{k}{n}\right]: k-\left[\frac{k}{n}\right]\cdot n$ прогрессий

Тогда $m=(k-n)+(k-2n)+\ldots+k-\left[\frac{k}{n}\right]\cdot n=k\cdot \left[\frac{k}{n}\right]-n\cdot \frac{\left[\frac{k}{n}\right]\cdot \left(\left[\frac{k}{n}\right]+1\right)}{2}=\left[\frac{k}{n}\right](k-\frac{1}{2}n(\left[\frac{k}{n}\right]+1))<\frac{k}{n}(k-\frac{1}{2}\cdot n\cdot \frac{k}{n})=\frac{k^2}{2n}$ - это оценка сверху.

 $P(A_i$ - одноцветная) = $2 \cdot \frac{1}{2^{n+1}} = \frac{1}{2^n}$ (2 - выбор цвета).

P(какое-то A_i - одноцветно $)=\sum_{i=1}^m P(A_i$ - одноцветно $)=\frac{m}{2^n}<\frac{k^2}{2n}\cdot\frac{1}{2^n}=(\frac{k}{\sqrt{2^{n+1}\cdot n}})^2\leqslant 1$ (если так, то найдётся, на которой не выполнится)

2. Общая теория вероятностей

2.1. Колмогоровская модель теории вероятности

Определение 2.1. (Ω, \mathcal{F}, P) - вероятностное пространство.

 Ω - множество или пространство элементарных исходов.

 ${\cal F}$ - σ -алгебра подмножеств Ω . Элементы ${\cal F}$ - случайный события.

P - мера на \mathcal{F} с условием $P(\Omega) = 1$.

Замечание. Если Ω не более чем счётно, то можно взять $\mathcal{F}=2^{\Omega}$

Определение 2.2. Условная вероятность. A - событие, такое, что P(A) > 0. Тогда $P(B|A) = \frac{P(B \cap A)}{P(A)}$, где $A, B \in \mathcal{F}$.

Определение 2.3. Независимые события A и B. Если $P(A \cap B) = P(A) \cdot P(B)$

Определение 2.4. Независимость в совокупности $A_1, A_2 \dots A_n$. $P(A_{i_1} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot \dots \cdot P(A_{i_k})$ для всевозможных наборов индексов.

Определение 2.5. Последовательность событий $A_1, A_2 \dots$ независимы - любой конечный набор событий независим в совокупности.

Лемма. Бореля-Кантелли

 A_1, A_2, \ldots случайные события.

- 1. Если $\sum_{n=1}^{\infty} P(A_n) < +\infty$, то вероятность, что случилось бесконечное число из них равна 0.
- 2. Если A_1,A_2,\ldots независимы и $\sum_{n=1}^{\infty}P(A_n)=+\infty$, тогда P(случилось бесконечное число из $A_n)=1$.

Доказательство. $B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ - это переформулировка события из условия в терминах множеств.

 $\omega \in B \Longleftrightarrow \omega \in \bigcup_{k=n}^{\infty} A_k \ \forall n \Longleftrightarrow w \in A_k$ для бесконечного количества индексов k.

Док-во этого факта:

- 1. \Leftarrow : Лежит в каждом объединении, значит лежит в B.
- 2. \Rightarrow : ω лежит в пересечении. Пусть лежит в конечном возьмём самый большой номер и получим противоречие.

Док-во теоремы:

1. Хотим доказать, что P(B) = 0 $B \subset \bigcup_{k=n}^{\infty} A_k \Rightarrow P(B) \leqslant P(\bigcup_{k=n}^{\infty} A_k) \leqslant \sum_{k=n}^{\infty} P(A_k)$ - это хвост сходящегося ряда, а он стремится к нулю.

2. Давайте смотреть на $\bar{A}_1, \bar{A}_2, \ldots$ - независимые события.

$$P(\bigcap_{k=1}^{n} \bar{A_k})$$
 $\stackrel{\text{независимость}}{=} \prod_{k=1}^{n} P(\bar{A_k}) \rightarrow_{n \to \infty} \prod_{k=1}^{\infty} P(\bar{A_k}) = \prod_{k=1}^{\infty} (1 - P(A_k))$ А ещё $P(\bigcap_{k=1}^{n} \bar{A_k}) \rightarrow P(\bigcap_{k=1}^{\infty} \bar{A_k})$ так как множества вложены в друг ди

А ещё $P(\bigcap_{k=1}^n \bar{A}_k) \to P(\bigcap_{k=1}^\infty \bar{A}_k)$, так как множества вложены в друг друга и есть монотонность меры.

Значит
$$P(\bigcap_{k=n}^{\infty} \bar{A}_k) = \prod_{k=n}^{\infty} (1 - P(A_k)) \stackrel{\text{логарифмируем}}{\Longleftrightarrow} \ln P(\bigcap_{k=n}^{\infty} \bar{A}_k) =$$

= $\sum_{k=n}^{\infty} \ln(1 - P(A_k)) \stackrel{\ln(1-t) \leqslant -t}{\leqslant} \sum_{k=n}^{\infty} (-P(A_k)) = -\infty$ - хвост расходящегося ряда.

А значит мы логарифмировали $0 \Rightarrow P(\bigcap_{k=n}^{\infty} \bar{A}_k) = 0 \Rightarrow P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \bar{A}_k) = 0 \Rightarrow P(\bar{B}) = 0 \stackrel{(*)}{\Rightarrow} P(B) = 1$

$$(*)$$
 $\overline{\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}\bar{A}_k} = \bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k = B$

Теорема 2.1. Закон нуля и единицы

Если $A_1, A_2 \dots$ независимы, то P(B) = 0 или P(B) = 1. При $B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$.

Пример. Испытания Бернулли, успех с вероятностью p,

P(OPO встречается бесконечное число раз) = ?.

 $A_n =$ случилось OPO на позициях n, n + 1, n + 2.

Тогда A_1, A_4, A_7, \dots независимы. $P(A_j) = pqp = p^2q > 0$.

Лемма Бореля-Кантелли говорит: бесконечное кол-во A_{3k+1} случится, если $\sum_{k=1}^{\infty} P(A_{3k+1}) = +\infty \implies P(\text{OPO встречается бесконечное число раз}) = 1.$

2.2. Случайные величины

Определение 2.6. (Ω, \mathcal{F}, P) - вероятностное пространство.

 $\xi:\Omega \to \mathbb{R}$ - случайная величина, если это измеримая функция.

Определение 2.7. Распределение случайное величины

 P_{ξ} - вероятностная мера на борелевских подмножествах $\mathbb R$

A – борелевское мн-во, $P_{\xi}(A) = P(\omega \in \Omega : \xi(\omega) \in A)$

Определение 2.8. Случаный величины ξ и η одинаково распределены, если $P_{\xi} = P_{\eta}$

Замечание. P_{ξ} однозначно определяются своими значениями на ячейках.

$$P_{\xi}(a,b] = P_{\xi}(-\infty,b] - P_{\xi}(-\infty,a] = P(\xi \leqslant b) - P(\xi \leqslant a)$$

Определение 2.9. Функция распределения случайной величины

$$F_{\xi}(x) = P(\xi \leqslant x)$$

Свойства. 1. Функция распределения однозначно определяет распределение случайной величины.

Доказательство. Функция распределения однозначно задаёт значения на ячейках

- 2. $0 \leqslant F_{\varepsilon}(x) \leqslant 1 \,\forall x \in \mathbb{R}$
- 3. $\lim_{x \to -\infty} F_{\xi}(x) = 0$

$$\lim_{x \to +\infty} F_{\xi}(x) = 1$$

Доказательство. берём
$$x_n \to -\infty, A_n = \{\xi \leqslant x_n\}$$
 Тогда $A_{n+1} \subset A_n$. Тогда $\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\varnothing) = 0$

- 4. F_{ξ} монотонно возрастает
- 5. Непрерывность справа: $\lim_{y\to x+} F_{\xi}(y) = F_{\xi}(x)$

Доказательство. берём y_n убывающие и $y_n \to x$. Тогда $A_n = \{\xi \leqslant y_n\}$. $A_{n+1} \subset A_n$. А тогда $\lim P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\xi \leqslant x) = F_{\xi}(x)$. Но с другой стороны $\lim P(A_n) = \lim P(\xi \leqslant y_n) = \lim F_{\xi}(y_n)$

6. $\lim_{y \to x^{-}} F_{\xi}(y) = P(\xi < x)$

Доказательство. берём y_n возрастающие и $y_n \to x$. $B_n = \{\xi \leqslant y_n\}$ и $B_n \subset B_{n+1}$. $\lim P(B_n) = P(\bigcup B_n) = P(\xi < x)$. Но с другой стороны $\lim P(B_n) = \lim F_{\xi}(y_n)$

7. $F_{\xi+a}(x) = F_{\xi}(x-a)$

Доказательство.
$$\{\xi + a \leqslant x\} = \{\xi \leqslant x - a\}$$

8. $F_{c\xi} = F_{\xi}(\frac{x}{c})$

Доказательство.
$$\{c\xi \leqslant x\} = \{\xi \leqslant \frac{x}{c}\}$$

Замечание. Фукнция, обладающая свойствами 3, 4, 5 - это фукнция распределения некоторой случайной величины.

Доказательство. пусть g - такая функция. Тогда $\nu_g(a,b]=g(b)-g(a)$. $\Omega=\mathbb{R}, \mathcal{F}$ - измеримо по Лебегу, случайная величина $\xi(w)=w$. Тогда $F_{\xi}=g$

Определение **2.10.** Случайная величина имеет дискретное распределение, если её множество значений не более чем счётное.

Замечание. $1.~\xi
ightarrow \{y_1,y_2,\ldots\}$

Если
$$x \neq y_k$$
, то $P(\xi = x) = 0$, т.е. $P_{\xi}(\{x\}) = 0$

2. $P_{\xi}(A) = \sum_{k:y_k \in A} P(\xi = y_k)$. Тут счётное число слагаемых, поэтому сумма корректно определена.

Распределение однозначно определяется набором вероятностей $P(\xi=y_k)$

3.
$$F_{\xi}(x) = \sum_{k:y_k \leq x} P(\xi = y_k)$$

Определение 2.11. Случайная величина имеет непрерывное распределение, если $\forall x \in \mathbb{R}: P(\xi = x) = 0$

Замечание. 1. ξ – имеет непрерывное распределение $\iff F_\xi$ непрерывна во всех точках.

$$P(\xi < x) = \lim_{y \to x^{-}} P(\xi \le y) = \lim_{y \to x^{-}} F_{\xi}(y)$$

$$0 = P(\xi = x) = P(\xi \le x) - P(\xi < x) = F_{\xi}(x) - \lim_{y \to x^{-}} F_{\xi}(y) \Rightarrow F_{\xi}(x) = \lim_{y \to x^{-}} F_{\xi}(y)$$

2. Непрерывные распределения бывают не очень хорошими, например Канторова лестница.

Определение 2.12. Случайная величина имеет абсолютно непрерывное распределение, если существует $p_{\xi}(t) \ge 0$, измеримая, т.ч. $F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t) dt \ (p_{\xi}(t) - \text{плотность распределения}).$

Свойства. 1. $A \subset \mathbb{R}$ – борелевское, то $P_{\xi}(A) = \int_{A} p_{\xi}(t) dt$

Доказательство. слева мера и справа написаны меры. На лучах они совпадают по определению, значит совпадают на ячейках, а значит и совпадают везде

$$P_{\xi}(a,b] = F_{\xi}(b) - F_{\xi}(a) = \int_{a}^{b} p_{\xi}(t) dt$$

- 2. $\int_{-\infty}^{+\infty} p_{\xi}(t) dt = 1$
- 3. p_{ξ} определена однозначно с точностью до почти везде (из теории меры)
- 4. F_{ξ} почти везде диффиренцируема и $F'_{\xi}(x) = p_{\xi}(x)$

Доказательство. без доказательства

Пример. Вероятностные распределения

1. Биномиальное распределение: $\xi \sim Binom(p, n), 0$

$$\xi: \Omega \to \{0, 1, \dots n\}. \ P(\xi = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

2. Распределение Пуассона: $\xi \sim Poisson(\lambda), \lambda > 0$.

$$\xi: \Omega \to \{0, 1, \ldots\}.$$
 $P(\xi = k) = \frac{\lambda^k}{k!}e^{-\lambda}$

3. Геометрическое распределение: $\xi \sim Geom(p), 0 .$

$$\xi: \Omega \to \{1, 2, \ldots\}.$$
 $P(\xi = k) = p(1-p)^{k-1}.$

4. Дискретное равномерное распределение:

$$\xi: \Omega \to \{1, 2, \dots n\}. \ P(\xi = k) = \frac{1}{n}$$

5. Непрерывно равномерное распределение: $\xi \sim U([a,b])$

$$\xi: \Omega \to [a, b]. \ p_{\xi}(t) = \frac{1}{b-a} \cdot \mathbb{1}_{[a, b]}(t)$$

6. Нормальное распределение: $\xi \sim \mathcal{N}(a, \sigma^2), a \in \mathbb{R}, \sigma > 0$

$$\xi: \Omega \to \mathbb{R}. \ p_{\xi}(t) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(t-a)^2}{2\sigma^2}}$$

Стандартное нормальное распределение: $\mathcal{N}(0,1)$

7. Экспонециальное распределение: $\xi \sim Exp(\lambda), \lambda > 0$.

$$\xi:\Omega \to [0,+\infty].$$
 $p_\xi(t)= egin{cases} \lambda e^{-\lambda t}, \ \text{при } t\geqslant 0 \\ 0, \ \text{в других точках} \end{cases}$

Замечание. 1. $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$.

На самом деле это функция распределения стандартной нормальной случайной величины.

2. Если $\nu \sim \mathcal{N}(0,1)$, то $\xi = \sigma \nu + a$. $\xi \sim \mathcal{N}(a,\sigma^2)$

$$F_{\xi}(x) = P(\sigma \nu + a \leqslant x) = P(\nu \leqslant \frac{x-a}{\sigma}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-a}{\sigma}} e^{-\frac{t^2}{2}} dt$$

Замена $t = \frac{s-a}{\sigma}$. Тогда $dt = \frac{ds}{\sigma}$

Тогда: $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-a}{\sigma}} e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(s-a)^2}{2\sigma^2}} ds$

2.3. Совместное распределение

Определение 2.13. Совместное (многомерное) распределение.

$$\bar{\xi} = (\xi_1, \xi_2, \dots, \xi_n) : \Omega \to \mathbb{R}^n$$

$$P_{\bar{\xi}}(A) = P(\bar{\xi} \in A),$$
 где A - борелевское подмножество \mathbb{R}^n

Замечание. $P_{\overline{\xi}}$ однозначно определяет распределение P_{ξ_k} , но не наоборот

Пример. $\xi, \eta : \Omega \to \{0, 1\}$ с равными вероятностями.

Если это были независимые подбрасывания: $(\xi, \eta): \Omega \to \{(0,0), (0,1), (1,0), (1,1)\}$ с равными вероятностями.

Если
$$\xi = \eta$$
, то $(\xi, \eta) : \Omega \to \{(0, 0), (1, 1)\}.$

То есть получили 2 разных совместных распределения, при это координатное распределение только одно

Определение 2.14. Случайные величины $\xi_1, \xi_2 \dots \xi_n$ независимы, если для любых борелевских подмножеств $A_1, A_2 \dots A_n \subset \mathbb{R}$, события $\{\xi_1 \in A_1\}, \dots, \{\xi_n \in A_n\}$ независимы

Замечание.
$$P(\xi_1 \in A_1, \dots, \xi_n \in A_n) = P(\xi_1 \in A_1) \cdot \dots \cdot P(\xi_n \in A_n)$$

Теорема 2.2. $\xi_1, \xi_2 \dots \xi_n$ независимы $\iff P_{\bar{\xi}} = P_{\xi_1} \times \dots \times P_{\xi_n}$

Доказательство. 1.
$$\Leftarrow P(\xi_1 \in A_1, \dots, \xi_n \in A_n) = P_{\xi_1, \dots, \xi_n}(A_1 \times \dots \times A_n) = P_{\xi_1}(A_1) \cdot \dots \cdot P_{\xi_n}(A_n)$$

2. \Rightarrow . Достаточно проверить совпадение на ячейках, то есть, что $P(\bar{\xi} \in (a,b]) = P_{\xi_1}(a_1,b_1] \cdot \ldots \cdot P_{\xi_n}(a_n,b_n]$. А это просто определение независимости.

Определение 2.15. Совместная (многомерная) функция распределения.

$$\bar{\xi}=(\xi_1\dots\xi_n).\ F_{\bar{\xi}}:\mathbb{R}^n o\mathbb{R}.$$
 и $F_{\bar{\xi}}(\bar{x})=P(\xi_1\leqslant x_1,\dots,\xi_n\leqslant x_n)$

Cooucmea. 1. $0 \leqslant F_{\bar{\xi}} \leqslant 1$

- 2. Монотонно возрастает по каждой координате
- 3. $\lim_{x_i \to -\infty} F_{\bar{\xi}}(\bar{x}) = 0$ $\lim_{x_1, \dots, x_n \to +\infty} F_{\bar{\xi}}(\bar{x}) = 1$

4.
$$\lim_{x_i \to +\infty} F_{\bar{\xi}}(\bar{x}) = F_{\xi_1,...,\xi_{i-1},\xi_{i+1},...,\xi_n}(x_1,...,x_{i-1},x_{i+1},...,x_n)$$

Определение 2.16. Совместная плотность $p_{\bar{\xi}}(\bar{t})$ - неотрицательная измеримая функция, такая, что $F_{\bar{\xi}}(\bar{\xi}) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\bar{\xi}}(\bar{t}) dt_n \dots dt_1$

Теорема 2.3.
$$\xi_1 \dots \xi_n$$
 независимы $\iff F_{\bar{\xi}}(\bar{x}) = F_{\xi_1}(x_1) \cdot \dots \cdot F_{\xi_n}(x_n), \ \forall \bar{x} \in \mathbb{R}^n$

Доказательство. 1. Докажем
$$\Rightarrow$$
. Независимость \Rightarrow $(*)P_{\bar{\xi}} = P_{\xi_1} \times \ldots \times P_{\xi_n} \Rightarrow P_{\bar{\xi}}((-\infty, x_1] \times \ldots \times (-\infty, x_n]) = P_{\xi_1}(-\infty, x_1] \cdot \ldots \cdot P_{\xi_n}(-\infty, x_n]$

2. Хотим проверить совпадение на ячейках, чтобы доказать (*) ещё и в другую сторону (приведем выкладки для n = 2, для больших n рассуждения не меняются).

$$\begin{split} & P_{\bar{\xi}}((a_1,b_1]\times(a_2,b_2]) = F_{\bar{\xi}}(b_1,b_2) + F_{\bar{\xi}}(a_1,a_2) - F_{\bar{\xi}}(a_1,b_2) - F_{\bar{\xi}}(a_2,b_1) = \\ & = (F_{\xi_1}(b_1) - F_{\xi_1}(a_1)) \cdot (F_{\xi_2}(b_2) - F_{\xi_2}(a_2)) = P_{\xi_1}(a_1,b_1] \cdot P_{\xi_2}(a_2,b_2] \end{split}$$

Следствие. $\xi_1 \dots \xi_n$ - абсолютно непрерывные случайные величины. Тогда $\xi_1 \dots \xi_n$ независимы $\iff p_{\bar{\xi}}(\bar{t}) = p_{\xi_1}(t_1) \cdot \dots \cdot p_{\xi_n}(t_n)$

В частности, в случае независимости $\bar{\xi}$ абсолютно непрерывна.

Доказательство. 1. Докажем \Rightarrow .

Независимость
$$\Rightarrow F_{\bar{\xi}}(\bar{x}) = F_{\xi_1}(x_1) \cdot \ldots \cdot F_{\xi_n}(x_n) = \int_{-\infty}^{x_1} p_{\xi_1}(t_1) dt_1 \cdot \ldots \cdot \int_{-\infty}^{x_n} p_{\xi_n}(t_n) dt_n = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p_{\xi_1}(t_1) \ldots p_{\xi_n}(t_n) dt_n \ldots dt_1.$$

Запихали всё под один интеграл, то что под интегралом и есть совместная плотность.

2. Докажем ←.

Просто проинтегрируем равенство.

$$\int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\bar{\xi}}(\bar{t}) dt_n \dots dt_1 = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p_{\xi_1}(t_1) \dots p_{\xi_n}(t_n) dt_n \dots dt_1 = F_{\xi_1}(x_1) \dots F_{\xi_n}(x_n)$$

по т. Тонелли можно выносить интегралы

т. Тонелли можно использовать, так как мы интегрируем неотрицательную функцию.

Замечание. Напоминание.

Свертка последовательностей: $\{a_n\}, \{b_n\}$ это $\{c_n\}$, такая что $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$.

Мотивировка: $(\sum_{n=0}^{\infty} a_n z^n) \cdot (\sum_{n=0}^{\infty} b_n z^n) = \sum_{n=0}^{\infty} c_n z^n$ (при наличии хоть каких-нибудь кругов сходимости у обоих рядов).

Замечание. Свертки мер

 μ и ν - конечные меры на борелевских подмножествах $\mathbb R.$

$$\mu*
u(A)=\int_{\mathbb{R}}\mu(A-x)\,d
u(x)$$
 - это свертка мер, где $(A-x):=\{a-x\mid a\in A\}.$

Свойства. Свойства свёртки

1.
$$\mu * \nu(A) = \int_{\mathbb{D}^2} \mathbb{1}_A(x+y) d\mu(x) d\nu(y)$$

Доказательство.
$$\mu*\nu(A)=\int_{\mathbb{R}}\mu(A-x)\,d\nu(x)\stackrel{\mu(A-x)=\int_{\mathbb{R}}\mathbbm{1}_{A-x}d\mu(y)}{=}\int_{\mathbb{R}}\mathbbm{1}_{A-x}(y)d\mu(y)\,d\nu(x)$$
 \square

Глава #2

- 2. $\mu * \nu = \nu * \mu$
- 3. $\mu_1 * \ldots * \mu_n(A) = \int_{\mathbb{D}^n} \mathbb{1}_A(x_1 + \ldots + x_n) d\mu_1(x_1) \ldots d\mu_n(x_n)$
- 4. $(\mu_1 * \mu_2) * \mu_3 = \mu_1 * (\mu_2 * \mu_3)$
- 5. $(\mu_1 + \mu_2) * \nu = \mu_1 * \nu + \mu_2 * \nu$
- 6. δ_x мера с единичной нагрузкой в точке x. Тогда $\mu * \delta_0 = \mu$.

Получили линейное пространство относительно + и *

Доказательство.
$$\mu * \delta_0(A) = \delta_0 * \mu(A) = \int_{\mathbb{R}} \delta_0(A-x) \, d\mu(x) \stackrel{\delta_0=1 \Leftrightarrow 0 \in A-x \Leftrightarrow x \in A}{=} \int_{\mathbb{R}} \mathbb{1}_A d\mu(x) = \mu A$$

Теорема 2.4. Пусть μ и ν имеют плотности p_{μ} и p_{ν}

Тогда $\mu * \nu$ имеет плотность $p(t) = \int_{\mathbb{R}} p_{\mu}(t-s)p_{\nu}(s) \, ds$

Доказательство. Возьмём функцию, определяемую этой формулой и проверим, что это плотность.

To есть проверим, что $\int_A p(x)dx = \mu * \nu(A)$.

$$\int_A p(t) dt = \int_A \int_{\mathbb{R}} p_{\mu}(t-s) p_{\nu}(s) ds dt = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{1}_A(t) p_{\mu}(t-s) p_{\nu}(s) ds dt = (*).$$

Положим
$$u=t-s$$
. Тогда $(*)=\int_{\mathbb{R}^2}\mathbbm{1}_A(u+s)p_\mu(u)p_\nu(s)\,ds\,du=\int_{\mathbb{R}^2}\mathbbm{1}_A(u+s)\,d\nu(s)\,d\mu(u)=\mu*\nu(A)$

Теорема 2.5. Если ξ и η независимые случайный величины, то $P_{\xi+\eta} = P_{\xi} * P_{\eta}$

Доказательство. Нужно взять какое-то борелевское множество и понять как устроено там распределение суммы.

Пусть
$$B = \{(x, y) : x + y \in A\}$$

$$P_{\xi+\eta}(A) = P(\xi + \eta \in A) = P((\xi, \eta) \in B) = P_{\xi,\eta}(B) = \int_{\mathbb{R}^2} \mathbb{1}_B(x, y) dP_{\xi,\eta}(x, y) = \int_{\mathbb{R}^2} \mathbb{1}_B(x, y) dP_{\xi}(x) dP_{\eta}(y) = \int_{\mathbb{R}^2} \mathbb{1}_A(x + y) dP_{\xi}(x) dP_{\eta}(y) = P_{\xi} * P_{\eta}(A)$$

Пример. 1. Свертка с дисректным распределением

$$\nu = \sum_{k=1}^{\infty} p_k \delta_{x_k}.$$

$$\delta_{x_k}(A) = \begin{cases} 1, & x \in A \\ 0, & otherwise \end{cases}$$
 (1)

Тогда $\mu*\nu(A)=\int_{\mathbb{R}}\mu(A-x)\,d\nu(x)=\sum_{k=1}^{\infty}\mu(A-x_k)p_k$

2. $\xi_i \sim Poisson(\lambda_i)$. ξ_1 и ξ_2 независимы.

$$P_{\xi_1+\xi_2}(\{n\}) = \sum_{k=0}^{+\infty} P_{\xi_1}(\{n-k\}) \cdot \frac{\lambda_2^k e^{-\lambda_2}}{k!} = \sum_{k=0}^n \frac{\lambda_1^{n-k} e^{-\lambda_1}}{(n-k)!} \cdot \frac{\lambda_2^k e^{-\lambda_2}}{k!} = e^{-\lambda_1} e^{-\lambda_2} \sum_{k=0}^n \frac{\lambda_1^{n-k} \lambda_2^k}{k!(n-k)!} = \frac{(\lambda_1+\lambda_2)^n e^{-\lambda_1-\lambda_2}}{n!}$$

 $\xi_1 + \xi_2 \sim Poisson(\lambda_1 + \lambda_2)$

2.4. Математическое ожидание и дисперсия

Определение 2.17. $\xi:\Omega\to\mathbb{R}$ - случайная величина ($\xi\geq0$, либо суммируемая функция). $\mathbb{E}\xi=\int_{\mathbb{R}}\xi(\omega)\,dP(\omega)$ - математическое ожидание (среднее значение случайной величины).

1. $a, b \in \mathbb{R}$: $\mathbb{E}(a\xi + b\eta) = a\mathbb{E}\xi + b\mathbb{E}\eta$ Свойства.

- 2. Если $\xi \geqslant 0$, с вероятностью 1, то $\mathbb{E}\xi \geqslant 0$ (по сути написано, что если функция почти везде неотрицательна, то интеграл неотрицателен).
- 3. Если $\xi \geqslant \eta$ с вероятностью 1, то $\mathbb{E}\xi \geqslant \mathbb{E}\eta$
- 4. $\mathbb{E}\xi = \int_{\mathbb{D}} x \, dP_{\xi}(x)$
- 5. Если $f:\mathbb{R}^n \to \mathbb{R}$ измерима относительно борелевской $\sigma-$ алгебры.

Тогда
$$\mathbb{E} f(\xi_1, \xi_2 \dots \xi_n) = \int_{\mathbb{R}^n} f(x_1, \dots, x_n) dP_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n)$$

Доказательство:
$$f = \mathbbm{1}_A$$
. Тогда $\mathbb{E}\mathbbm{1}_A(\xi_1,\ldots\xi_n) = \int_\Omega \mathbbm{1}_A(\xi_1(w),\ldots,\xi_n(w))dP(\omega) = P(\omega \in \Omega : \bar{\xi} \in A) = P_{\bar{\xi}}(A) = \int_{\mathbb{R}^n} \mathbbm{1}_A(x_1,\ldots,x_n)dP_{\bar{\xi}}(x_1,\ldots,x_n).$

Тогда по линейности верно для простых.

Теперь берём f_i неотрицательный простые, такие, что возрастают и $\to f$. И предельный переход по теореме Леви.

6. Если ξ_1 и ξ_2 независимы, то $\mathbb{E}(\xi \cdot \eta) = \mathbb{E}\xi \cdot \mathbb{E}\eta$

Доказательство:
$$\mathbb{E}(\xi\eta) = \int_{\mathbb{R}^2} xy dP_{\xi,\eta}(x,y) =$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} xy dP_{\xi}(x) dP_{\eta}(y) = \int_{\mathbb{R}} y \int_{\mathbb{R}} x dP_{\xi}(x) dP_{\eta}(y) = \mathbb{E}\xi \cdot \mathbb{E}\eta$$
 независимость сл. вел.

- 7. Если $\xi \geqslant 0$, то $\mathbb{E}\xi = \int_0^{+\infty} P(\xi \geqslant t) \, dt$ из теории меры.
- 8. Если p,q>1 и $\frac{1}{p}+\frac{1}{q}=1$, то $\mathbb{E}|\xi\eta|\leqslant (\mathbb{E}|\xi|^p)^{\frac{1}{p}}(\mathbb{E}|\eta|^q)^{\frac{1}{q}}$ неравенство Гёльдера
- 9. Неравенство Ляпунова

$$0 < r < s$$
, тогда $(\mathbb{E}|\xi|^r)^{\frac{1}{r}} \leqslant (\mathbb{E}|\xi|^s)^{\frac{1}{s}}$.

Доказательство:
$$p = \frac{s}{r} > 1$$
, $\frac{1}{q} = 1 - \frac{1}{p} = \frac{s-r}{s} < 1$.

Тогда запишем Гельдера для ξ и $\eta = 1$:

$$\mathbb{E}|\xi|^r|1| < (\mathbb{E}(|\xi|^r)^p)^{\frac{1}{p}} \cdot (\mathbb{E}1^q)^{\frac{1}{q}} = (\mathbb{E}|\xi|^s)^{\frac{r}{s}}.$$

Замечание. $\mathbb{E}(\xi\eta) = \mathbb{E}\xi \cdot \mathbb{E}\eta$ без независимости неверно.

Возьмём $\xi = \pm 1$ с вероятностями $\frac{1}{2}$. Тогда $\mathbb{E}\xi = 0$.

Также пусть $\eta=\xi.$ Тогда $\xi\eta=\mathbb{E}\xi^2=1\neq (\mathbb{E}\xi)^2$

Теорема 2.6. Неравенство Маркова

Если
$$\xi \geqslant 0, p, t > 0$$
, то $P(\xi \geqslant t) \leqslant \frac{\mathbb{E}\xi^p}{t^p}$.

Доказательство. Неравенство Чебышёва из теории меры.

 $Onpedenehue \ 2.18.$ 1. Моменты случайной величины. $\mathbb{E}(\xi^k)$ - k-ый момент.

- 2. Центральный момент. $\mathbb{E}(\xi \mathbb{E}\xi)^k$ k-ый центральный момент.
- 3. Абсолютный момент. $\mathbb{E}|\xi|^k$ k-ый абсолютный момент.

Определение 2.19. Медиана случайной величины. m - медиана ξ , если $P(\xi \geqslant m) \geqslant \frac{1}{2}$ и $P(\xi \leqslant m) \geqslant \frac{1}{2}$.

Замечание. Медиана не единственна.

Возьмём кубик. $\xi = 1, 2, \dots, 6$ с вероятностью $\frac{1}{6}$. Тогда любое число $m \in [3, 4]$ подходит.

Чаще всего всё равно берут середину, чтобы была единственность.

Пример. Есть организация из 1000 человек. 1 начальник и 999 подчиненных.

Зарплата начальника 1.000.000\$, а подчинённых 1000\$.

$$\mathbb{E} = \frac{999}{1000} \cdot 1000 + \frac{1}{1000} \cdot 1000000 = 1999$$

m = 1000 - медиана лучше характеризует ситуацию в этом случае.

 ${\it Onpedenehue}$ 2.20. Дисперсия. $\mathbb{D}\xi=\mathbb{E}(\xi-\mathbb{E}\xi)^2$ - второй центральный момент.

Обозначение в англоязычной литературе: $Var\xi$

Coourmea. 1.
$$\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2$$

Доказательство: Пусть $a = \mathbb{E}\xi$.

Тогда
$$\mathbb{D}\xi = \mathbb{E}(\xi - a)^2 = \mathbb{E}\xi^2 - 2a\mathbb{E}\xi + a^2$$

2. $\mathbb{D}\xi\geqslant 0$ и если $\mathbb{D}\xi=0,$ то $P(\xi=c)=1$

 \mathcal{A} оказательство: Если $\mathbb{D}\xi=0,$ то $\int_{\Omega}(\xi-a)^2\,dP=0,$ значит $(\xi-a)^2=0$ почти везде.

3. $\mathbb{D}(\xi + a) = \mathbb{D}\xi$

Доказательство:
$$\mathbb{E}(\xi+a)=\mathbb{E}\xi+a$$
. А тогда $(\xi+a)-\mathbb{E}(\xi+a)=\xi-\mathbb{E}\xi$

4. $\mathbb{D}(c\xi) = c^2 \mathbb{D}\xi$

Доказательство:
$$\mathbb{D}(c\xi) = \mathbb{E}(c\xi)^2 - (\mathbb{E}(c\xi))^2$$

5. Если ξ и η независимы, то $\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta$

Доказательство:
$$\mathbb{D}(\xi + \eta) = \mathbb{E}(\xi + \eta)^2 - (\mathbb{E}(\xi + \eta))^2 = \mathbb{E}\xi^2 + 2\mathbb{E}(\xi\eta) + \mathbb{E}\eta^2 - (\mathbb{E}\xi)^2 - 2\mathbb{E}\xi\mathbb{E}\eta - (\mathbb{E}\eta)^2 = \mathbb{D}\xi + \mathbb{D}\eta$$

6. Аналогично предыдущему, но для n случайных величин.

Доказательство: индукция

7.
$$\mathbb{E}|\xi - \mathbb{E}\xi| \leq \sqrt{\mathbb{D}\xi}$$

Доказательство: $\mathbb{E}|\xi-\mathbb{E}\xi|\leqslant (\mathbb{E}|\xi-\mathbb{E}\xi|^2)^{\frac{1}{2}}=\sqrt{\mathbb{D}\xi}$ - написали Ляпунова.

8. Неравенство Чебышёва

$$P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{D}\xi}{t^2}$$
, где $t > 0$

Доказательство: $P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{E}|\xi - \mathbb{E}\xi|^2}{t^2} = \frac{\mathbb{D}\xi}{t^2}$ - неравенство Маркова для p=2.

Определение **2.21**. Стандартное отклонение $\sigma = \sqrt{\mathbb{D}\xi}$

Пример. 1. $\xi \sim U[0, 1]$.

Тогда
$$\mathbb{E}\xi = \int_0^1 x \, dx = \frac{x^2}{2} \bigg|_0^1 = \frac{1}{2}.$$

$$\mathbb{E}\xi^2 = \int_0^1 x^2 dx = \frac{x^3}{3} \bigg|_0^1 = \frac{1}{3}$$
. А тогда $\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2 = \frac{1}{12}$

2. $\xi \sim U[a, b]$.

Если
$$\eta \sim U[0,1]$$
 и $\xi=(b-a)\eta+a \sim U[a,b].$ Тогда $\mathbb{E}\xi=\mathbb{E}((b-a)\eta+a)=\frac{a+b}{2}$

$$\mathbb{D}((b-a)\eta + a) = \mathbb{D}((b-a)\eta) = (b-a)^2 \mathbb{D}\eta = \frac{(b-a)^2}{12}$$

3. $\xi \sim \mathcal{N}(0, 1)$

$$\mathbb{E}\xi=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}xe^{\frac{-x^2}{2}}\,dx=0$$
, так как функция нечётная.

Значит
$$\mathbb{D}\xi = \mathbb{E}\xi^2 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^2 e^{-\frac{x^2}{2}} dx = -\frac{e^{\frac{-x^2}{2}}x}{\sqrt{2\pi}} \bigg|_{-\infty}^{+\infty} + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = 1$$

4. $\xi \sim \mathcal{N}(a, \sigma^2)$

Если
$$\eta \sim \mathcal{N}(0,1)$$
, то $\xi = \sigma \eta + a \sim \mathcal{N}(a,\sigma^2)$.

$$\mathbb{E}\xi=\mathbb{E}(\sigma\eta+a)=\sigma\mathbb{E}\eta+a=a$$

$$\mathbb{D}\xi = \mathbb{D}(\sigma\eta + a) = \sigma^2 \mathbb{D}\eta = \sigma^2$$

Определение 2.22. Пусть $\mathbb{E}\xi^2 < +\infty$ и $\mathbb{E}\eta^2 < +\infty$.

Ковариация $cov(\xi, \eta) = \mathbb{E}((\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta))$

Covicmea. 1. $cov(\xi, \xi) = \mathbb{D}\xi$

2.
$$cov(\xi, \eta) = cov(\eta, \xi)$$

3.
$$cov(c\xi, \eta) = c \cdot cov(\xi, \eta)$$

4.
$$cov(\xi_1 + \xi_2, \eta) = cov(\xi_1, \eta) + cov(\xi_2, \eta)$$

5.
$$cov(\xi, \eta) = \mathbb{E}(\xi \eta) - \mathbb{E}\xi \mathbb{E}\eta$$

Доказательство. $\mathbb{E}\xi = a, \mathbb{E}\eta = b$

$$cov(\xi,\eta) = \mathbb{E}((\xi - a)(\eta - b)) = \mathbb{E}(\xi\eta) - a\mathbb{E}\eta - b\mathbb{E}\xi + ab$$

6. Если ξ и η независимы, то $cov(\xi,\eta)=0$

7.
$$\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta + 2cov(\xi, \eta)$$

8.
$$\mathbb{D}(\xi_1 + \xi_2 + \ldots + \xi_n) = \mathbb{D}\xi_1 + \mathbb{D}\xi_2 + \ldots + \mathbb{E}\xi_n + 2\sum_{i < j} cov(\xi_i, \xi_j).$$

Пример. P(ycnex) = p. Делаем n подбрасываний. $\eta =$ количество переходов от орла к решке.

Пусть $\xi_i = 1$, если на i позиции орёл, на i+1 позиции решка, иначе $\xi_i = 0$.

$$\eta = \xi_1 + \ldots + \xi_{n-1}$$
. Тогда $\mathbb{E}\eta = \sum_{i=1}^{n-1} \mathbb{E}\xi_i = (n-1)pq$.

$$\mathbb{D}\eta = \sum_{i=1}^{n-1} \mathbb{D}\xi_i + 2\sum_{i < j} cov(\xi_i, \xi_j).$$

Если i+1 < j, то ξ_i и ξ_j независимы, поэтому в сумме почти везде нули.

Значит
$$\mathbb{D}\eta = \sum_{i=1}^{n-1} \mathbb{D}\xi_i + 2\sum_{i=1}^{n-1} cov(\xi_i, \xi_{i+1}).$$

$$\mathbb{D}\xi_i = \mathbb{E}\xi_i^2 - (\mathbb{E}\xi_i)^2 = pq - p^2q^2.$$

$$cov(\xi, \xi_{i+1}) = \mathbb{E}(\xi_i \xi_{i+1}) - \mathbb{E}\xi_i \mathbb{E}\xi_{i+1} = -p^2 q^2$$

Замечание. $1.~\{\xi:\mathbb{E}\xi^2<+\infty\}$

 $\langle \xi, \eta \rangle = \mathbb{E}(\xi \eta)$ - скалярное произведение.

 $\mathbb{E}\xi$ - ортогональная проекция на константы.

2. $\langle \xi, \eta \rangle = cov(\xi, \eta)$ - тоже скалярное произведение.

Норма - это стандартное отклонение.

Теорема 2.7. Выбор двудольного подграфа

Есть граф G с n вершинами и m рёбрами. Хотим стереть некоторое количество рёбер(как можно меньше) так, чтобы остался двудольный подграф.

Тогда G содержит двудольный подграф $\mathbf{c}\geqslant \frac{m}{2}$ рёбрами.

Доказательство. A - те вершины, на которых выпал орёл, B - на которых выпала решка.

Будем интересоваться матожиданием количества рёбер в такой ситуации. Пусть $xy \in E(G)$, сопоставим ребру следующую случайную величину:

$$\xi_{xy} = \begin{cases} 1, & \text{если x, y из разных долей} \\ 0, & \text{иначе} \end{cases}$$

Пусть $\eta = \sum_{xy \in E} \xi_{xy}$ - число рёбер, которое нужно оставить, при таком разбиении на доли.

 $\mathbb{E}\eta = \sum_{xy \in E} \mathbb{E}\xi_{xy} = m \cdot (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0) = \frac{m}{2}$, а значит есть реализация с $\frac{m}{2}$ рёбрами (если бы все значения кол-ва ребер были меньше $\frac{m}{2}$, то и мат. ожидание было бы меньше $\frac{m}{2}$).

Определение 2.23. Коэффициент корреляции. $\rho(\xi,\eta)=\frac{cov(\xi,\eta)}{\sqrt{\mathbb{D}\xi}\sqrt{\mathbb{D}\eta}}\in[-1,1]$

Определение 2.24. Если $cov(\xi, \eta) = 0$, то это некоррелирующие случайные величины.

Теорема 2.8. $v_1, v_2 \dots v_n \in \mathbb{R}^n$ - векторы единичной длины, тогда существует расстановка знаков $\varepsilon_1 = \pm 1, \dots, \varepsilon_n = \pm 1$, такая, что $||\varepsilon_1 v_1 + \dots + \varepsilon_n v_n|| \leqslant \sqrt{n}$.

Замечание. Эта оценка не улучшаема, если все вектора попарно ортогональны, тогда длина вектора \sqrt{n} .

Доказательство. Пусть $\varepsilon_1 \dots \varepsilon_n$ - независимые случайные величины, такие, что:

$$\varepsilon_i = \begin{cases} 1, & \text{с вероятностью } \frac{1}{2} \\ -1, & \text{с вероятностью } \frac{1}{2} \end{cases}$$

Введем величину $\xi = ||\varepsilon_1 v_1 + \ldots + \varepsilon_n v_n||^2$.

Тогда
$$\mathbb{E}\xi = \mathbb{E}\langle v, v \rangle = \mathbb{E}(\sum_{i,j=1}^n \varepsilon_i \varepsilon_j \langle v_i, v_j \rangle) = \sum_{i,j=1}^n \langle v_i, v_j \rangle \mathbb{E}\varepsilon_i \varepsilon_j = \sum_{i=1}^n \langle v_i, v_j \rangle = n.$$

- 1. Если i=j, то $\mathbb{E}\varepsilon_i\varepsilon_j=\mathbb{E}\varepsilon_i^2=1$
- 2. Если $i \neq j$, то $\mathbb{E}\varepsilon_i\varepsilon_j \stackrel{\text{независимость}}{=} \mathbb{E}\varepsilon_i \cdot \mathbb{E}\varepsilon_j = 0$

Теорема 2.9. $v_1, v_2 \dots v_n \in \mathbb{R}^n, ||v_i|| \leq 1, p_i \in [0, 1]$ и $w = p_1 v_1 + \dots + p_n v_n$

Тогда существует $\varepsilon_1 \in \{0,1\}, \ldots \varepsilon_n \in \{0,1\}$, такие, что $v = \varepsilon_1 v_1 + \ldots + \varepsilon_n v_n$ и $||v-w|| \leqslant \frac{\sqrt{n}}{2}$

Доказательство. Пусть $\varepsilon_1 \dots \varepsilon_n$ - независимые случайные величины.

$$\varepsilon_i = \begin{cases} 1, & \text{с вероятностью } p_i \\ 0, & \text{с вероятностью } 1-p_i \end{cases}$$

Интересуемся $\xi = ||v - w||^2$. Тогда $\mathbb{E}\xi = \mathbb{E}(\sum_{i,j=1}^n (\varepsilon_i - p_i)(\varepsilon_j - p_j) \langle v_i, v_j \rangle) = \sum_{i,j=1}^n \langle v_i, v_j \rangle \mathbb{E}(\varepsilon_i - p_i)(\varepsilon_j - p_j) \stackrel{\text{пояснение ниже}}{=} \sum_{i=1}^n \langle v_i, v_i \rangle (p_i - p_i^2) \leqslant \frac{n}{4}.$

- 1. Если i=j, то $cov(\varepsilon_i,\varepsilon_j)=\mathbb{D}\varepsilon_i=p_i-p_i^2\leqslant \frac{1}{4}$
- 2. Если $i \neq j$, то $cov(\varepsilon_i, \varepsilon_j) \stackrel{\text{независимы}}{=} 0$

Теорема 2.10. Харди-Рамануджана

Пусть $\nu(k)$ – число различных простых делителей в разложении k.

Хотим понять, чему будет равно это число, если мы наугад возьмем число из мн-ва $\{1,2,\ldots,n\}$.

$$P(|\nu(k) - \ln \ln n| \geqslant w(n)\sqrt{\ln \ln n}) \to_{n\to\infty} 0$$
, где $w(n) \to_{n\to\infty} +\infty$ и $k \in \{1, 2, \dots, n\}$.

Доказательство. Пусть $m=\sqrt[10]{n}.\ p\leqslant m$ - простое и

$$\xi_p(k) = egin{cases} 1, & ext{если } k \ ext{делится на } p \ 0, & ext{иначе} \end{cases}$$

 $\xi = \sum_{p \leqslant m} \xi_p$ - количество различных простых $\leqslant m$. Тогда $\nu(k) - 10 \leqslant \xi(k) \leqslant \nu(k)$.

Посчитаем матожидание ξ , тогда посчитаем мат. ожидание слагаемых:

$$\mathbb{E}\xi_p = \frac{[\frac{n}{p}]}{n} \leqslant \frac{\frac{n}{p}}{n} = \frac{1}{p}$$
. С другой стороны, $\mathbb{E}\xi_p \geqslant \frac{\frac{n}{p}-1}{n} = \frac{1}{p} - \frac{1}{n}$.

Знаем, что $\mathbb{E}\xi = \sum_{p \leqslant m} \mathbb{E}\xi_p$, тогда

 $\sum_{p\leqslant m} \frac{1}{p} - \frac{m}{n} \leqslant \sum_{p\leqslant m} \mathbb{E}\xi_p \leqslant \sum_{p\leqslant m} \frac{1}{p} = \ln \ln m + \mathcal{O}(1) = \ln \ln n + \mathcal{O}(1)$. Оценка в другую сторону аналогично, потому что $\frac{m}{n} \leqslant 1$.

Теперь считаем дисперсию для ξ_p :

$$\mathbb{D}\xi_p = \mathbb{E}\xi_p^2 - (\mathbb{E}\xi_p)^2 = \mathbb{E}\xi_p - (\mathbb{E}\xi_p)^2 = \frac{1}{p} - \frac{1}{p^2} + \mathcal{O}(\frac{1}{n})$$

Теперь оценим ковариацию:

$$cov(\xi_p,\xi_q) = \underbrace{\mathbb{E}(\xi_p\xi_q)}_{\text{аргумент равен 1, когда } n : pq} -\mathbb{E}\xi_p\mathbb{E}\xi_q = \frac{\left[\frac{n}{pq}\right]}{n} - \frac{\left[\frac{n}{p}\right]}{n} \cdot \frac{\left[\frac{n}{q}\right]}{n} = (*).$$

Оценим (*) с двух сторон:

1.
$$(*) \ge \frac{\frac{n}{pq}-1}{n} - \frac{\frac{n}{p}}{n} \cdot \frac{\frac{n}{q}}{n} = -\frac{1}{n}$$

2.
$$(*) \le \frac{\frac{n}{pq}}{n} - \frac{\frac{n}{p}-1}{n} \cdot \frac{\frac{n}{q}-1}{n} \le (\frac{1}{p} + \frac{1}{q}) \cdot \frac{1}{n}$$

Теперь смотрим на сумму ковариаций (так как она фигурирует как слагаемое для $\mathbb{D}\xi$):

$$\underbrace{\frac{1}{n} \cdot \sum_{p < q \le m} \left(\frac{1}{p} + \frac{1}{q}\right)}_{p < q \le m} cov(\xi_p, \xi_q) \ge -\frac{m^2}{n} = \mathcal{O}(1)$$

$$= \frac{1}{2n} \sum_{p \neq q, \ p, q \le m} \left(\frac{1}{p} + \frac{1}{q} \right) \le \frac{1}{2n} 2m \sum_{p \le m} \frac{1}{p} = \mathcal{O}(1)$$

Теперь оцениваем дисперсию для ξ :

$$\mathbb{D}\xi = \sum_{p \le m} \mathbb{D}\xi_p + 2\sum_{p < q \le m} cov(\xi_p, \xi_q) = \sum_{p \le m} \left(\frac{1}{p} - \frac{1}{p^2} + \mathcal{O}(\frac{1}{n})\right) + \mathcal{O}(1) =$$

$$= \mathcal{O}(1)$$

$$= \sum_{p \le m} \frac{1}{p} + \mathcal{O}(1) = \ln \ln m + \mathcal{O}(1) = \ln \ln n + \mathcal{O}(1).$$

Теперь применим Чебышёва.

 $P(|\xi - \mathbb{E}\xi| \geqslant t) \leqslant \frac{\mathbb{D}\xi}{t^2}$. В качестве t подставим $w(n)\sqrt{\ln \ln n}$.

Тогда
$$P(|\nu(k) - \ln \ln n| \geqslant w(n)\sqrt{\ln \ln n}) \underset{(**)}{\underbrace{<}} P(|\xi - \mathbb{E}\xi| \geqslant w(n)\sqrt{\ln \ln n}) \leqslant \frac{\mathbb{D}\xi}{w^2(n)\ln \ln n} \to 0.$$

(**) : такое нер-во можно писать, так как $|\nu(k) - \xi(k)| \le 10$ и $\mathbb{E}\xi = \ln \ln n + \mathcal{O}(1)$.

Теорема 2.11. Эрдёша-Каца

$$\lim_{n\to\infty} \frac{\#\{k \le n : a \le \frac{|\nu(k) - \ln \ln n|}{\sqrt{\ln \ln n}} \le b\}}{n} \to \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$

2.5. Сходимость последовательностей случайных величин

Теорема 2.12. ξ_1, ξ_2, \ldots - независимые случайные величины, $f_i: \mathbb{R}^{n_i} \to \mathbb{R}$ - измерима, относительно борелевской σ -алгребры.

Тогда $f_1(\xi_1,\dots\xi_{n_1}), f_2(\xi_{n_1+1},\dots,\xi_{n_1+n_2})$ - независимые случаные величины.

Доказательство. $f: \mathbb{R}^m \to \mathbb{R}$ и $g: \mathbb{R}^n \to \mathbb{R}$, $\xi_1 \dots \xi_m$ и $\eta_1 \dots \eta_n$ независимые случайные величины.

Возьмём \tilde{A} и $\tilde{B} \in \mathbb{R}$ борелевские.

Надо доказать, что

$$P(f(\xi_1 \dots \xi_m) \in \tilde{A}) \cdot P(g(\eta_1 \dots \eta_n) \in \tilde{B}) = P(f(\xi_1, \dots, \xi_m) \in \tilde{A}, g(\eta_1 \dots \eta_n) \in \tilde{B}).$$

$$P((\xi_1, \dots, \xi_m) \in \underbrace{f^{-1}(\tilde{A})}_{=:A}) \cdot P((\eta_1, \dots, \eta_n) \in \underbrace{g^{-1}(\tilde{B})}_{=:B}) = P((\xi_1, \dots, \xi_m) \in A, (\eta_1, \dots, \eta_n) \in B)$$

Поймём это для ячеек.

$$A = (a, b] : (\xi_1, \dots, \xi_m) \in (a, b] \Leftrightarrow \forall k : \xi_k \in (a_k, b_k]$$

$$B = (c, d] : (\eta_1, \dots, \eta_n) \in (c, d] \Leftrightarrow \forall k : \eta_k \in (c_k, d_k]$$

Мы знаем, что

$$P((\xi, \dots, \xi_m) \in A, (\eta_1, \dots, \eta_n) \in B) = P(\forall k : \xi_k \in (a_k, b_k], \forall k : \eta_k \in (c_k, d_k]) = \prod_{k=1}^m P(\xi_k \in (a_k, b_k]) \cdot \prod_{k=1}^n P(\eta_k \in (c_k, d_k])$$

Ho
$$\prod_{k=1}^{m} P(\xi_k \in (a_k, b_k]) = P((\xi_1, \dots, \xi_m) \in A)$$
, a $\prod_{k=1}^{n} P(\eta_k \in (c_k, d_k]) = P((\eta_1, \dots, \eta_n) \in B)$.

То есть доказали на ячейках, а значит и доказали теорему.

П

Определение 2.25. $\xi, \xi_1, \xi_2, ...: \Omega \to \mathbb{R}$.

1. ξ_n сходится к ξ почти наверное, если $P(w \in \Omega: \lim_{n \to \infty} \xi_n(w) = \xi(w)) = 1$

2. ξ_n сходится к ξ в среднем порядка r>0,если $\mathbb{E}(|\xi_n-\xi|^r)\to_{n\to\infty}0$

3. ξ_n сходится к ξ по вероятности, если $\forall \varepsilon > 0$, $P(\omega \in \Omega : |\xi_n(\omega) - \xi(\omega)| \geqslant \varepsilon) \to_{n \to \infty} 0$

4. $\xi_n:\Omega_n\to\mathbb{R}$.

 ξ_n сходится к ξ по распределению, если $\lim_{n\to\infty} F_{\xi_n}(x) = F_{\xi}(x)$ во всех точках непрерывности F_{ξ} .

Связь между сходимостями:

1. $1 \Rightarrow 3$: теорема Лебега из теории меры

 $2. \ 2 \Rightarrow 3$:

Пишем нер-во Маркова

$$P(|\xi_n - \xi| \ge \varepsilon) \le \frac{\mathbb{E}|\xi_n - \xi|^r}{\varepsilon^r} \to 0.$$

 $3. \ 2 \not\Rightarrow 1$:

$$\Omega := [0,1), \ P := \lambda \ (мера Лебега).$$

Возьмем такую последовательность функций, для которой нет такого следствия:

$$\mathbb{1}_{[0,1)},\mathbb{1}_{[0,\frac{1}{2})},\mathbb{1}_{[\frac{1}{2},1)},\mathbb{1}_{[0,\frac{1}{2})},\mathbb{1}_{[\frac{1}{2},\frac{2}{2})},\mathbb{1}_{[\frac{2}{2},1)},\ldots$$

Тогда
$$\mathbb{E}|\xi_n|^r=\mathbb{E}\ \mathbb{1}_{[\frac{k}{m},\frac{k+1}{m})}=\frac{1}{m}\to\infty,$$
 то сх-ть в среднем есть.

Сх-ти почти наверное нет, потому что ни в одной точке нет сх-ти, так как у $\xi_n(\omega)$ сколько угодно далеко есть как значения 1, так и значения 0.

Иными словами $\lim \xi_n(\omega)$ не существует.

 $4. 3 \not\Rightarrow 1$:

верно, так как
$$2 \Rightarrow 3$$
, но $2 \not\Rightarrow 1$.

5. $1 \not\Rightarrow 2$:

$$\Omega := [0, 1], \ P := \lambda$$
 (мера Лебега).

$$\xi_n(\omega) = n^{\frac{1}{r}} \cdot \mathbb{1}_{[0,\frac{1}{r})}.$$

Тогда $\xi_n(\omega) \to 0$ при $\omega \neq 0$, тогда ξ_n сх-ся к $\xi \equiv 0$ почти наверное.

$$\mathbb{E}|\xi_n|^r = \mathbb{E}\left(n\mathbb{1}_{[0,\frac{1}{n})}\right) = 1 \not\to 0$$

 $6. 3 \not\Rightarrow 2$:

верно, так как $1 \not\Rightarrow 2$.

7. $3 \Rightarrow 4$:

Хотим понять, что $P(\xi_1 \le x) \to P(\xi \le x)$ если x – точка непрерывности F_{ξ} .

$$\{\xi_n \le x\} \subset \{\xi \le x + \varepsilon\} \cup \{|\xi_n - \xi| > \varepsilon\}$$

$$P(\xi_n \le x) \subset P(\xi \le x + \varepsilon) + P(|\xi_n - \xi| > \varepsilon)$$

Напишем верхние пределы для этого нер-ва:

$$\overline{\lim} P(\xi_n \le x) \le \underbrace{P(\xi \le x + \varepsilon)}_{\text{это просто } const} + \underbrace{\overline{\lim} P(|\xi_n - \xi| > \varepsilon)}_{\rightarrow 0, \text{ т.к. } \text{ сх-ть по вероятности}}$$

Теперь надо подпереть чем-то снизу:

$$\{\xi_n \le x\} \supset \{\xi \le x - \varepsilon\} \setminus \{|\xi_n - \xi| > \varepsilon\}$$

$$P(\xi_n \le x) \ge P(\xi \le x - \varepsilon) - P(|\xi_n - \xi| > \varepsilon)$$

Теперь пишем нижние пределы:

$$\underline{\lim} P(\xi_n \le x) \ge \underbrace{P(\xi \le x - \varepsilon)}_{=const} - \underbrace{P(|\xi_n - \xi| > \varepsilon)}_{\to 0}$$

Тогда получаем, что

$$F_{\xi}(x-\varepsilon) \le \underline{\lim} F_{\xi_n}(x) \le \overline{\lim} F_{\xi_n}(x) \le F_{\xi}(x+\varepsilon)$$

Теперь устремим $\varepsilon \to 0$, тогда

$$F_{\varepsilon}(x) \leq \underline{\lim} F_{\varepsilon_n}(x) \leq \overline{\lim} F_{\varepsilon_n}(x) \leq F_{\varepsilon}(x)$$

Тогда $\lim_{n\to\infty} F_{\xi_n}(x) = F_{\xi}(x)$ – доказали стрелочку.

8. $4 \not\Rightarrow 3, 2, 1$:

из-за разных определений (где-то одно вероятностное пр-во, а где-то их может быть много разных)

Теорема 2.13. Закон больших чисел

 ξ_1, ξ_2, \ldots - попарно некоррелируемые случайные величины и $\mathbb{D}\xi_n = o(n)$.

$$S_n = \xi_1 + \xi_2 + \ldots + \xi_n.$$

Тогда
$$\frac{S_n}{n} - \mathbb{E} \frac{S_n}{n} \xrightarrow{P} 0$$
. То есть вероятность того, что $P(|\frac{S_n}{n} - \mathbb{E} \frac{S_n}{n}| \geqslant \varepsilon) \to 0$

Cnedcmeue. Если $\mathbb{D}\xi_n$ ограничены, то такой же вывод.

Доказательство.
$$P(\left|\frac{S_n}{n} - \mathbb{E}\frac{S_n}{n}\right| \geqslant \varepsilon) \leqslant \frac{\mathbb{D}\frac{S_n}{n}}{\varepsilon^2} = \frac{\mathbb{D}S_n}{\varepsilon^2 n^2} = \frac{\sum_{k=1}^n \mathbb{D}\xi_k}{\varepsilon^2 n^2} \to_{\text{Штольц}} \lim_{n \to \infty} \frac{\mathbb{D}\xi_n}{\varepsilon^2 (2n-1)} = 0.$$

Следствие. ЗБЧ в форме Чебышёва

 ξ_1, ξ_2, \dots независимые, одинаково распределенённые случайные величины с конечной дисперсией и $a=\mathbb{E}\xi_1$.

Тогда
$$P(\left|\frac{S_n}{n} - a\right| \geqslant \varepsilon) \to 0$$
 или же $\frac{S_n}{n} \xrightarrow{R} a$

Доказательство. Мат. ожидание всех случайных величин равно, они одинаково распределены. Поэтому $\mathbb{E} \frac{S_n}{n} = \mathbb{E} \frac{\xi_1 + \ldots + \xi_n}{n} = a$. Поэтому все условия предыдущей теоремы выполнены

Следствие. ЗБЧ для схем Бернулли

Есть схема Бернулли с вероятностью успеха $p \in (0,1)$.

Тогда $P(|\frac{S_n}{n}-p|\geq \varepsilon)\to 0$, где S_n число успехов при n подбрасываниях.

Теорема 2.14. Усиленный ЗБЧ

 ξ_1, ξ_2, \ldots - независимые случайные величины. $\mathbb{E}(\xi_n - \mathbb{E}\xi_n)^4 \leqslant C$.

Тогда $\frac{S_n}{n} - \mathbb{E} \frac{S_n}{n} \to 0$ почти наверное.

Доказательство. $\frac{S_n}{n} - \mathbb{E} \frac{S_n}{n} = \frac{1}{n} (S_n - \mathbb{E} S_n) = \frac{1}{n} (\sum_{k=1}^n (\xi_k - \mathbb{E} \xi_k))$. Задвинем все матожидания в

Тогда по условию $\mathbb{E}\xi_n^4\leqslant C$ и надо доказать, что $\frac{S_n}{n}\to 0$ почти наверное.

Пусть $A_n = \{\left|\frac{S_n}{n}\right| \geqslant \varepsilon\}$. Нам нужно понять, что бесконечное количество A_n случаются с нулевой вероятностью, то есть что $P(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k)=0$.

Из леммы Бореля-Кантелли, если $\sum_{k=1}^{\infty} P(A_n) < +\infty$, то нужное нам условие выполнено.

Напишем неравенство Маркова: $P(A_n) = P\left(\frac{S_n^4}{n^4} \ge \varepsilon^4\right) \leqslant \frac{\mathbb{E}\frac{S_n^4}{n^4}}{\varepsilon^4} = \frac{\mathbb{E}S_n^4}{n^4\varepsilon^4}$. Достаточно доказать, что $\mathbb{E}S_n^4 = \mathcal{O}(n^2)$, тогда ряд сойдётся. Раскроем все скобки.

$$\mathbb{E}(\xi_1 + \ldots + \xi_n)^4 = \sum_{i=1}^n \mathbb{E}\xi_i^4 + 4\sum_{i \neq j} \mathbb{E}\xi_i^3 \xi_j + 6\sum_{i \neq j} \mathbb{E}\xi_i^2 \xi_j^2 + 12\sum_{i \neq j \neq k} \mathbb{E}\xi_i^2 \xi_j \xi_k + 24\sum_{i \in \mathcal{E}} \mathbb{E}\xi_i \xi_j \xi_k \xi_m$$

- 1. $\mathbb{E}\xi_i\xi_j\xi_k\xi_m=0$
- $2. \ \mathbb{E}\xi_i^2 \xi_i \xi_k = 0$

Итого получаем $\sum_{i=1}^n \mathbb{E}\xi_i^4 + 6\sum \mathbb{E}x_i^2\mathbb{E}\xi_j^2 = (*)$. По неравенству Ляпунова $\mathbb{E}\xi_i^2 \leqslant \sqrt{\mathbb{E}\xi_i^4} \leqslant \sqrt{C}$.

Значит $(*) = nC + 6n(n-1)\sqrt{C}\sqrt{C} \leqslant 6Cn^2 = \mathcal{O}(n^2)$, значит ряд сходится и лемма Бореля-Кантелли выполняется.

Следствие. Усиленный ЗБЧ для схем Бернулли

В схеме Бернулли с вероятностью успеха $p:\frac{S_n}{n} \to p$ почти наверное.

Доказательство. Нужно проверить, что $\mathbb{E}(\xi_i - p)^4$ - конечно, раскроем скобки, получим какие-то константы и ξ_i^4 .

Теорема 2.15. Усиленный ЗБС в форме Колмогорова

 ξ_1, ξ_2, \dots - независимо, одинаково распределённые случайные величины.

Тогда $\frac{S_n}{n} \to a \in \mathbb{R}$ почти наверное $\Leftrightarrow a = \mathbb{E} \xi_1$

Метод Монте-Карло

Ф - ограниченная фигура на плоскости. Хотим примерно узнать её площадь.

Берём случайную точку в прямоугольнике и выясняем, попала она в фигуру или нет.

$$\xi_i = \begin{cases} 1, & \text{точка попала в } \Phi \\ 0, & \text{иначе} \end{cases}$$

Вероятность успеха $\frac{Area(\Phi)}{Area(прямоугольника)}$. Тогда усиленный ЗБЧ говорит, что $\frac{S_n}{n} \to p$ почти наверное.

Теорема 2.16. ξ_1, ξ_2, \ldots последовательность случайных величин, $\xi_n \to_P a \in \mathbb{R}$. f ограниченная функция, непрерывная в точке a.

Тогда $\mathbb{E}f(\xi_n) \to f(a)$

Доказательство. $|\mathbb{E}f(\xi_n) - f(a)| = |\mathbb{E}(f(\xi_n) - f(a))| \leqslant \mathbb{E}|f(\xi_n) - f(a)| = \mathbb{E}|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a < \varepsilon\}} + \mathbb{E}|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a \ge \varepsilon\}} = (*).$

Пусть f ограничена константой M.

$$\mathbb{E}|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a \ge \varepsilon\}} \le 2M \mathbb{E} \mathbb{1}_{\{\xi_n - a \ge \varepsilon\}}$$

$$|f(\xi_n - f(a))| \cdot \mathbb{1}_{\{\xi_n - a < \varepsilon\}} \le \sup_{|x - a| < \varepsilon} |f(x) - f(a)|$$

Тогда
$$(*) \leq \sup_{|x-a| < \varepsilon} |f(x) - f(a)| + 2MP(|\xi_n - a| \geqslant \varepsilon).$$

 $\overline{\lim} |\mathbb{E} f(\xi_n) - f(a)| \leqslant \sup_{|x-a| < \varepsilon} |f(x) - f(a)| + 2M\overline{\lim} P(|\xi_n - a| \geqslant \varepsilon) \leqslant \sup_{|x-a| < \varepsilon} |f(x) - f(a)| \to 0$ при $\varepsilon \to 0$.

Тогда
$$0 \leq \underline{\lim} \leq \overline{\lim} \leq 0 \Rightarrow \lim |\mathbb{E}f(\xi_n) - f(a)| = 0$$

Замечание. В условии теоремы $|\mathbb{E}f(\xi_n)-f(a)|\leqslant \sup_{|x-a|<arepsilon}|f(x)-f(a)|+2MP(|\xi_n-a|\geqslant arepsilon)$

Теорема 2.17. Вейерштрасса

 $f \in C[a,b]$, то существует последовательность многочленов P_n , такая, что $P_n \rightrightarrows f$ на [a,b]

Доказательство. Можно считать, что всё на [0,1]. Рассмотрим схему Бернулли с вероятностью успеха p. Тогда $\frac{S_n}{n} \to p$. Подставим $\xi_n = \frac{S_n}{n}$ в замечание.

$$|\mathbb{E}f(\frac{S_n}{n}) - f(p)| \leqslant \sup_{|x-a| < \varepsilon} |f(x) - f(a)| + 2MP(|\frac{S_n}{n} - p| \geqslant \varepsilon) = (*)$$

Из неравенства Чебышёва $P(\left|\frac{S_n}{n}-p\right|\geqslant \varepsilon)\leqslant \frac{\mathbb{D}^{\frac{S_n}{n}}}{\varepsilon^2}=\frac{np(1-p)}{n^2\varepsilon^2}\leqslant \frac{1}{4n\varepsilon^2}.$

И тогда $(*) \leq \sup_{|x-y|<\varepsilon} |f(x)-f(y)| + \frac{M}{2n\varepsilon^2}$. При $n=\frac{1}{\varepsilon^3}$ правое слагаемое оценивается ε' , а первое слагаемое мало из равномерной непрерывности.

Значит
$$\mathbb{E} f(\frac{S_n}{n}n) - f(p) \Rightarrow 0$$
. $\mathbb{E} f(\frac{S_n}{n}) = \sum_{k=0}^n f(\frac{k}{n}) \cdot \binom{n}{k} p^k (1-p)^{n-k}$ - многочлен Бернштейна. \square

Определение 2.26. Многочлен Бернштейна $B_n(x) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} x^k (1-x)^{n-k}$

Cnedcmeue. 1. $B_n(0) = f(0)$

- 2. $B_n(1) = f(1)$
- 3. $B'_n(0) = n(f(\frac{1}{n}) f(0))$

$$B'_n(1) = n(f(1) - f(\frac{n-1}{n}))$$

Доказательство:
$$B'_n(x) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} (kx^{k-1}(1-x)^{n-k} - (n-k)x^k(1-x)^{n-k-1}) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} x^{k-1} (1-x)^{n-k-1} (k-nx)$$

4.
$$B'_n(x) = \sum_{k=0}^n f(\frac{k}{n}) f(\frac{k}{n}) {n \choose k} x^{k-1} (1-x)^{n-k-1} (k-nx)$$

5.
$$B_n(\alpha f + \beta g, x) = \alpha B_n(f, x) + \beta B_n(g, x)$$

Кривые Безье

 $\sum_{k=0}^n a_k \binom{n}{k} t^k (1-t)^{n-k}, a_k \in \mathbb{R}^2$. Получается отображение $\gamma: [0,1] \to \mathbb{R}^2$.

- 1. n = 1 : a(1-t) + bt отрезок соединяющий точки a и b.
- 2. n=2 : $a(1-t)^2+2bt(1-t)+ct^2$. Мы знаем, что B'(0)=2(b-a) и B'(1)=2(c-b). Это кривая из точки a в c, параметр b задаёт касательную в a и c.
- 3. n = 3: $a(1-t)^3 + 3bt(1-t)^2 + 3ct^2(1-t) + dt^3$.

Здесь B(0)=a, B(1)=d, B'(0)=3(b-a), B'(1)=3(d-c). Кривая выходит из точки a с касательной 3(b-a), а заходит в точку d с касательной 3(d-c).

2.6. Производящие функции

Определение 2.27. $\xi:\Omega\to\{1,2,\ldots\}$ - случайная величина.

$$G_{\xi}(z) = \sum_{n=0}^{\infty} P(\xi=n) z^n$$
 - производящая фукнция

Свойства. 1. G_{ξ} однозначно определяет распределение

2.
$$G_{\xi}(1) = 1$$
 и G_{ξ} сходится в круге $|z| < 1$.

3.
$$G_{\xi}(x) = \mathbb{E}x^{\xi}$$
, где $x \in \mathbb{R}$

Доказательство:
$$\mathbb{E}x^{\xi} = \sum_{n=0}^{\infty} x^n \cdot P(\xi = n) = G_{\xi}(x)$$

4.
$$G'_{\xi}(1) = \mathbb{E}\xi$$

Доказательство: $G'_{\xi}(x) = \sum_{n=1}^{\infty} P(\xi = n) n x^{n-1}$ - если подставить единицу - получим матожидание.

5.
$$\mathbb{E}\xi^2 = G''_{\xi}(1) + G'_{\xi}(1)$$

Доказательство: $G''_{\xi}(x) = \sum_{n=2}^{\infty} P(\xi = n) n(n-1) x^{n-2}$ - если подставить единицу - получим матожидание.

6.
$$\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2 = G_{\varepsilon}''(1) + G_{\varepsilon}'(1) - (G_{\varepsilon}'(1))^2$$

7. G_{ξ} возрастает и выпукла на [0,1]

8. Если ξ и η независимы, то $G_{\xi+\eta}(z) = G_{\xi}(z) \cdot G_{\eta}(z)$

Доказательство: x^{ξ} и x^{η} независимы, а тогда $\mathbb{E}(x^{\xi} \cdot x^{\eta}) = \mathbb{E}x^{\xi} \cdot \mathbb{E}x^{\eta}$

Пример. 1. Равномерное распределение на $\{0,1,\ldots,n-1\}$.

Тогда $G_{\xi}(z) = \frac{1}{n}(1+z+z^2+\ldots z^{n-1}) = \frac{1-z^n}{1-z} \cdot \frac{1}{n}$. Пусть хотим посчитать матожидание и диспресию, но единицу то подставить нельзя в свернутую формулу. Решается эта проблема так:

Давайте скажем, что z=1+y. Тогда $G_\xi(1+y)=\frac{(1+y)^n-1}{ny}=1+\binom{n}{2}\frac{y}{n}+\binom{n}{3}\frac{y^2}{n}\dots$

Тогда
$$G'_{\xi}(1) = \frac{\binom{n}{2}}{n} = \frac{n-1}{2}, \mathbb{E}\xi^2 = G''_{\xi}(1) + G'_{\xi}(1) = 2\frac{n(n-1)(n-2)}{6n} + \frac{n-1}{2} = \frac{n-1}{2}(\frac{2n-4}{3}+1) = \frac{n-1}{2} \cdot \frac{2n-1}{3}.$$
 И тогда $\mathbb{D}\xi = \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2 = \frac{n-1}{2} \cdot \frac{n+1}{6} = \frac{n^2-1}{12}$

2. Задача Галилея

Есть 3 правильных кубика, бросили и посчитали сумму значений. Интересуемся вероятностью того, что в сумме выпало 10.

$$P(\text{в сумме } 10) = ?$$

 ξ_i - значение на i-том кубике. Тогда $G_{\xi_i}(z) = \frac{1}{6}(z+z^2+\ldots+z^6) = \frac{z(1-z^6)}{1-z}\cdot\frac{1}{6}$. Кубика у нас три, поэтому нас интересует $G_{\xi_1+\xi_2+\xi_3} = G_{\xi_1}\cdot G_{\xi_2}\cdot G_{\xi_3} = \left(\frac{z(1-z^6)}{1-z}\cdot\frac{1}{6}\right)^3 = (*)$

 $\frac{1}{(1-z)^3}=\sum_{n=0}^\infty \binom{n+2}{n}z^n$. Тогда $(*)=\frac{1}{6^3}(z^3-3z^9+3z^15-z^21)\cdot\sum_{n=0}^\infty \binom{n+2}{n}z^n$. Коэффициент при z^{10} будет такой $\frac{1}{6^3}(1\cdot\binom{9}{7}-3\cdot\binom{3}{1})=\frac{1}{6^3}(36-3^2)=\frac{1}{8}$

3. Метод характеристических функций

3.1. Характеристические функции случайных величин

Определение 3.1. Комплекснозначная случайная величина $\xi = \text{Re } \xi + i \text{Im } \xi$, где $\text{Re } \xi$ и $\text{Im } \xi$ вещественнозначные случайные величины.

Определение 3.2. $\xi:\Omega\to\mathbb{C}$

$$\mathbb{E}\xi = \mathbb{E}\operatorname{Re}\xi + i\mathbb{E}\operatorname{Im}\xi$$

Coourmea. 1.
$$\mathbb{E}(i\xi) = i\mathbb{E}\xi$$

- 2. Комплексная линейность $\mathbb{E}(\alpha\xi + \beta\eta) = \alpha\mathbb{E}\xi + \beta\mathbb{E}\eta$, где $\alpha, \beta \in \mathbb{C}, \xi, \eta : \Omega \to \mathbb{C}$ Доказательство: $\mathbb{E}(\alpha\xi) = \mathbb{E}(a+ib)\xi = \mathbb{E}(a\xi) + \mathbb{E}(b\xi i) = (a+bi)\mathbb{E}\xi$
- 3. $\overline{\mathbb{E}\xi} = \mathbb{E}\overline{\xi}$
- 4. $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$

 \mathcal{A} оказательство: Возьмём $c \in \mathbb{C}, |c| = 1$, такой, что $\mathbb{E}(c\xi) = |\mathbb{E}\xi|$, то есть $c = \frac{|\mathbb{E}\xi|}{\mathbb{E}\xi}$ (или $c = e^{-i \cdot \arg \mathbb{E}\xi}$).

Тогда
$$|\mathbb{E}\xi| = \mathbb{E}(c\xi) = \mathbb{E}(\operatorname{Re}(c\xi)) \leqslant \mathbb{E}|\operatorname{Re}(c\xi)| \leqslant \mathbb{E}|c\xi| = \mathbb{E}|\xi|$$

Определение 3.3. Ковариация $cov(\xi, \eta) = \mathbb{E}(\xi - \mathbb{E}\xi)\overline{(\eta - \mathbb{E}\eta)}$

Определение 3.4. Дисперсия $\mathbb{D}\xi = \mathbb{E}|\xi - \mathbb{E}\xi|^2$

$$cov(\xi, \xi) = \mathbb{D}\xi$$

Определение 3.5. $\xi:\Omega\to\mathbb{R}$. Назовём характеристической функцией ξ :

$$\phi_{\xi}(t) = \mathbb{E}e^{it\xi}$$
, где $t \in \mathbb{R}$

Свойства. 1. $\phi_{\xi}(0) = 1$ и $|\phi_{\xi}(t)| \leq 1$

Доказательство:
$$|\phi_{\xi}(t)| \leq |\mathbb{E}e^{it\xi}| \leq \mathbb{E}|e^{it\xi}| = 1$$

2. $\phi_{a\xi+b}(t) = e^{ibt}\phi_{\xi}(at)$

Доказательство:
$$\phi_{a\xi+b}(t) = \mathbb{E}e^{i(a\xi+b)t} = \mathbb{E}e^{ibt}e^{i\xi at} = e^{ibt}\mathbb{E}e^{i\xi(at)} = \phi_{\xi}(at)e^{ibt}$$

3. Если ξ и η независимы, то $\phi_{\xi+\eta}(t) = \phi_{\xi}(t) \cdot \phi_{\eta}(t)$

Доказательство: $e^{i\xi t}$ и $e^{i\eta t}$ независимы и пишем произведение матожиданий

4. $\overline{\phi_{\xi}(t)} = \phi_{\xi}(-t)$

Доказательство:
$$\overline{\phi_{\xi}(t)} = \overline{\mathbb{E}e^{i\xi t}} = \mathbb{E}\overline{e^{i\xi t}} = \mathbb{E}e^{-i\xi t} = \phi_{\xi}(-t)$$

5. ϕ_{ξ} равномерно непрерывна на \mathbb{R}

Доказательство:
$$|\phi_{\xi}(t+h) - \phi_{\xi}(t)| = |\mathbb{E}e^{i(t+h)\xi} - \mathbb{E}e^{it\xi}| = |\mathbb{E}\left(e^{it\xi}(e^{ih\xi} - 1)\right)| \le$$

 $\le \mathbb{E}\left|e^{it\xi}(e^{ih\xi} - 1)\right| = \mathbb{E}|e^{ih\xi} - 1| = \int_{\mathbb{R}}|e^{ihx} - 1|dP_{\xi}(x) \to_{(*)} 0.$

(*): Знаем, что $e^{ihx} \to_{h\to 0} 1$, хотим понять, что можно вносить предел под знак интеграла. Это сделать можно по теорема Лебега, где суммируемая мажоранта будет 2, так как мера вероятностная.

Напоминание Тh Лебега:

Теорема 2.22. Лебега о предельном переходе (о мажорируемой сходимости).

Пусть
$$f = \lim f_n$$
 и $|f_n| \le \underbrace{F}_{\text{суммируемая мажоранта}} - \text{суммируема на } E.$

Тогда $\lim \int_E f_n d\mu = \int_E f d\mu$, более того $\lim \int_E |f_n - f| d\mu = 0$

Пример. $\xi \sim \mathcal{N}(a, \sigma^2)$. Хотим посчитать характеристическую функцию.

Возьмём $\eta \sim \mathcal{N}(0,1)$. Тогда $\xi = \sigma \eta + a$ - имеет нужное нам распределение.

$$\phi_{\sigma\eta+a}(t) = e^{ita}\phi_{\eta}(\sigma t)$$

Считаем для η :

$$\phi_{\eta}(t) = \mathbb{E}e^{i\eta t} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{itx} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \int_{\mathbb{R}} e^{-\frac{(x-it)^2}{2}} dx.$$

Посчитаем
$$I:=\int_{\mathbb{R}}e^{-\frac{(x-it)^2}{2}}dx=\int_{-it+\mathbb{R}}e^{-\frac{z^2}{2}}dz$$

Чтобы найти I, посчитаем интеграл по контуру Γ_R :

 $\int_{\Gamma_R} e^{-\frac{z^2}{2}} dz = 0$ (т.к. особых точек внутри контура нет).

С другой стороны это также равно:
$$\int_{\Gamma_R} e^{-\frac{z^2}{2}} dz = \underbrace{-\int_{-R}^R + \int_{-R-it}^{R-it} + \int_{(*):\to 0}^R + \underbrace{\int_{-R-it}^{-R-it} + \int_{(*):\to 0}^R + \int_{(*):\to 0}^{-R-it}}_{(*):\to 0}$$

 $-\int_{-R}^{R} \to \sqrt{2\pi}$ — верно, так как $-\frac{1}{\sqrt{2\pi}} \cdot \int_{-R}^{R} \to 1$ — т.к. это вероятность всего (если есть более понятное объяснение, то PR/объяснение в лс приветствуется).

$$(*): \left| \int_{R-it}^{R} e^{-\frac{z^2}{2}} dz \right| =_{z=R+iy} \left| i \int_{-t}^{0} e^{-\frac{(R+iy)^2}{2}} dy \right| \le \int_{-t}^{0} \left| \dots \right| dy = \int_{-t}^{0} \left| e^{\frac{-R^2+y^2}{2}} \right| \cdot \underbrace{\left| e^{-2 \cdot i \cdot R \cdot y} \right|}_{=1} dy = \underbrace{\left| e^{-2 \cdot i \cdot R \cdot y} \right|}_{=1} dy$$

$$= \int_{-t}^{0} e^{\frac{-R^2 + y^2}{2}} dy \le \underbrace{te^{\frac{t^2}{2}}}_{const} e^{\frac{-R^2}{2}} \to_{R \to \infty} 0.$$

Тогда получаем, что $I = \sqrt{2\pi},$ и $\phi_{\eta}(t) = e^{-\frac{t^2}{2}}.$

Теперь находим $\phi_{\xi}(t)=e^{iat}\phi_{\eta}(\sigma t)=e^{-\frac{\sigma^2t^2}{2}+iat}.$

Теорема 3.1. Пусть $\mathbb{E}|\xi|^n < +\infty$.

Тогда при $k \leqslant n$ верно, что $\varphi^{(k)}(t) = \mathbb{E}((i\xi)^k e^{i\xi t}).$

В частности, $\varphi^{(k)}(0) = i^k \mathbb{E} \xi^k$.

Тут имеется в виду k-ая производная.

Следствие. Если $\mathbb{E}\xi^2 < +\infty$, то $\mathbb{E}\xi = -i\varphi'(0)$ и $\mathbb{D}\xi = -\varphi''(0) + (\varphi'(0))^2$

Доказательство. Теоремы.

Индукция по k

База k=0: определение φ .

Переход $k \to k+1$:

$$\varphi^{(k+1)}(t) = \lim_{h \to 0} \frac{\varphi^{(k)}(t+h) - \varphi^{(k)}(t)}{h} =$$

 $=\lim_{h\to 0}\frac{\mathbb{E}(i\xi)^ke^{i\xi(t+h)}-\mathbb{E}(i\xi)^ke^{it\xi}}{h}=\lim_{h\to 0}\mathbb{E}((i\xi)^ke^{it\xi}\cdot\frac{e^{ih\xi}-1}{h})=\mathbb{E}((i\xi)^ke^{it\xi}\cdot\lim_{h\to 0}\frac{e^{ih\xi}-1}{h}), \text{ а предел}-9$ то $i\xi$:

$$\lim_{h\to 0} \frac{e^{ih\xi}-1}{h} = \lim_{h\to 0} \frac{1+ih\xi+\mathbf{O}(h^2\cdot\xi^2)-1}{h} = i\xi + \underbrace{\lim_{h\to 0} \mathbf{O}(h\cdot\xi^2)}_{=0} = i\xi$$

Почему можно было запихать предел под матожидание?

 $\lim_{\mathbb{R}} \int_{\mathbb{R}} (ix)^k e^{itx} \frac{e^{ihx} - 1}{h} dP_{\xi}(x) = \int_{R} \lim_{h \to 0} ((ix)^k e^{itx} \frac{e^{ihx} - 1}{h}) dP_{\xi}(x)$ – нужна суммируемая мажоранта. $\left| (ix)^k e^{itx} \frac{e^{ihx} - 1}{h} \right| = |x|^k \left| \frac{e^{ihx} - 1}{h} \right| = (*).$

- 1. Если $|xh|\geqslant 1$, то $\frac{1}{|h|}\leq |x|$ и $\left|\frac{e^{ihx}-1}{h}\right|\leqslant \frac{2}{|h|}\leqslant 2|x|$ и тогда $(*)\leq 2|x|^{k+1}$.
- 2. Если |xh| < 1, то $e^{ihx} = 1 + \mathcal{O}(ihx) \Rightarrow \left| \frac{e^{ihx} 1}{h} \right| = \left| \frac{1 + \mathcal{O}(ihx) 1}{h} \right| = \mathcal{O}(x)$ и тогда $(*) = \mathcal{O}(|x|^{k+1})$.

Но $\int_{\mathbb{R}} |x|^{k+1} dP_{\xi}(x) = \mathbb{E}|\xi|^{k+1} < +\infty$ по условию, тогда мажоранту подобрали правильную. \square

Теорема 3.2. Если существует $\varphi_{\xi}''(0)$ и конечна, то $\mathbb{E}\xi^2<+\infty$

Замечание. Если существует $\varphi_{\xi}^{(2n)}$ и конечна, то $\mathbb{E}\xi^{2n}<+\infty$

Доказательство. $\mathbb{E}\xi^2 = \int_{\mathbb{R}} x^2 dP_{\xi}(x) = (*)$ – хотим доказать, что этот интеграл конечен.

Заметим, что $x=\lim_{t\to 0} \frac{\sin(tx)}{t}$ и подставим вместо x.

Тогла:

 $(*) = \int_{\mathbb{R}} \lim_{t \to 0} \frac{\sin^2(tx)}{t^2} dP_{\xi}(x) \leqslant \underline{\lim}_{t \to 0} \int_{\mathbb{R}} -\frac{e^{2itx} + e^{-2itx} - 2}{4t^2} dP_{\xi}(x) = (*)$ – лемма Фату и расписали синус как $\sin a = \frac{e^{ia} - e^{-ia}}{2i}$.

$$(*) = \underline{\lim}_{t\to 0} - \frac{\varphi_{\xi}(2t) - \varphi_{\xi}(-2t) - 2}{4t^2} = (*).$$

Причём
$$\varphi_{\xi}(u) = \varphi_{\xi}(0) + \varphi'_{\xi}(0) \cdot u + \frac{\varphi''_{\xi}(0)u^2}{2} + o(u^2).$$

Тогда
$$\varphi_{\xi}(2t) + \varphi_{\xi}(-2t) = 2 + \frac{\varphi_{\xi}''(0)((2t)^2 + (-2t)^2)}{2} + o(t^2)$$
, а тогда $(*) = \underline{\lim}_{t \to 0} (-\varphi_{\xi}''(0) + o(1))$.

То есть оценили сверху каким-то число, тогда интеграл конечен.

Теорема 3.3. Формула обращения

Пусть
$$a < b$$
 и $P(\xi = a) = P(\xi = b) = 0$.

Тогда
$$P(\xi \in [a, b]) = \lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} \varphi_{\xi}(t) dt$$

To есть
$$v.p.\frac{1}{2\pi}\int_{\mathbb{R}}\frac{e^{-iat}-e^{-ibt}}{it}\varphi_{\xi}(t)\,dt$$

Доказательство. Будем доказывать в несколько шагов:

1. Пусть $\xi = \frac{b-a}{2}\eta + \frac{a+b}{2}, \; \xi \in [a,b] \Leftrightarrow \eta \in [-1,1],$ тогда $P(\xi \in [a,b]) = P(\eta \in [-1,1]) = (').$

Допустим, что мы уже доказали эту формулу для $\eta \in [-1,1]$, тогда

$$P(\eta \in [-1, 1]) = \lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-it} - e^{it}}{it} \phi_{\eta}(t) dt = (*)$$

Пересчитаем левую часть формулы ('):

$$P(\xi \in [a,b]) = \lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{iat} - e^{ibt}}{it} \phi_{\eta}(\frac{b-a}{2}t) e^{i\frac{a+b}{2}t} dt =_{s:=\frac{b-a}{2}t}$$

$$= \lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T^{\frac{b-a}{2}}}^{T^{\frac{b-a}{2}}} \frac{e^{is} - e^{-is}}{is} \phi_{\eta}(s) ds = (**)$$

То есть если мы получили, что (*) = (**).

Тогда если мы докажем формулу при $\eta \in [-1, 1]$, то решим задачу.

2. Пусть a = -1, b = 1:

$$P(\xi \in [-1, 1]) \stackrel{?}{=} \lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{it} - e^{-it}}{it} \phi_{\xi}(t) dt.$$

Посчитаем интеграл:

 $\int_{-T}^{T} \frac{e^{it} - e^{-it}}{it} \phi_{\xi}(t) dt = \int_{-T}^{T} \frac{e^{it} - e^{-it}}{it} \int_{\mathbb{R}} e^{itx} dP_{\xi}(x) dt =_{\text{т. Фубини}} \int_{\mathbb{R}} \int_{-T}^{T} \frac{e^{it} - e^{-it}}{it} e^{itx} dt dP_{\xi}(x) - \text{теорему}$ Фубини можно применять, если подъинтегральная функция суммируема: $|e^{itx}| < 1$ и $|\frac{e^{it} - e^{-it}}{it}|$ – ограничена (при больших t значение меньше 2, при $t \in [-1, 1]$ это непрерывная функция, а значит ограничена на этом отрезке).

Давайте посмотрим на внутренний интеграл: $\Phi_T(x) = \int_{-T}^T \frac{e^{it} - e^{-it}}{it} e^{itx} dt$.

Заметим, что $\frac{e^{it}-e^{-it}}{it} = \int_{-1}^{1} e^{itu} du$.

Тогда $\Phi_T(x) = \int_{-T}^T \int_{-1}^1 e^{itu} e^{itx} du dt = \int_{-1}^1 \int_{-T}^T e^{it(u+x)} dt du$ – т. Фубини, т.к. подъинтегральная ф-я по модулю равна 1.

 $\lim_{T \to +\infty} \Phi_T(x) = \lim_{T \to +\infty} \int_{-1}^1 \int_{-T}^T e^{it(u+x)} dt du = (*).$

Заметим, что $\frac{e^{it(u+x)}}{i(u+x)}\bigg|_{t=-T}^{t=+T} = \frac{2\sin((u+x)T)}{u+x}$ – первообразная для внутреннего интергала (*).

Тогда $(*) = \lim_{T \to +\infty} \int_{-1}^{1} \frac{2\sin((u+x)T)}{u+x} du = (*)$. Сделаем замену y = (u+x)T, тогда $dy = T \cdot du$.

Тогда
$$(*)=\lim_{T\to +\infty}\int_{(-1+x)T}^{(1+x)T} \frac{2\sin y}{y}\,dy= egin{cases} 0, & \text{при } x>1 \\ 0, & \text{при } x<-1 \\ \int_{\mathbb{R}} \frac{2\sin y}{y}\,dy=2\pi, & \text{иначе} \end{cases}$$

Получили, что $\lim_{T\to\infty} \Phi_T(x) = 2\pi \cdot \mathbb{1}_{[-1,1]}(x)$.

Если докажем, что $\int_{\mathbb{R}} \Phi_T(x) dP_{\xi}(x)$ $\xrightarrow{\text{пользуемся } P(\xi=a)=P(\xi=b)=0}$ $\int_{\mathbb{R}} 2\pi \cdot \mathbb{1}_{[-1,1]}(x) dP_{\xi}(x)$, то решим за-

дачу, т.к. правая часть это как раз $2\pi P(\xi \in [-1,1])$.

То есть нужно понять, почему $\int_a^b \frac{\sin y}{y} \, dy$ ограничен — интеграл по лучу сходится, значит первообразная в бесконечностях имеет предел, значит в середине тоже ограничена, потому что непрервность — обоснование примерно такое.

Следствие. 1. Если $\varphi_{\xi}(t) = \varphi_{\eta}(t)$, то $P_{\xi} = P_{\eta}$

Доказательство: Рассмотрим $A = \{a \in \mathbb{R} : a \text{ - точка непрервности функции распределения} \}.$

Тогда $\mathbb{R} \setminus A$ - не более чем счётное. Если a < b и $a, b \in A$, то $P_{\xi}([a, b]) = P_{\eta}([a, b])$

(a) Пусть $a \in \mathbb{R}, b \in A$:

Рассмотрим $a_n \in A$, такие, что $a_n \to a$ и убывают.

$$P_{\xi}((a,b]) = \lim_{n \to \infty} P_{\xi}([a_n, b_n]) = \lim_{n \to \infty} P_{\eta}([a_n, b_n]) = P_{\eta}((a,b]).$$

(b) Пусть a < b произвольные:

Возьмём $b_n \in A$, такие, что $b_n \to b$ и убывают. Тогда $P_{\xi}((a,b]) = \lim_{n\to\infty} P_{\xi}(a,b_n] = \lim_{n\to\infty} P_{\eta}(a,b_n] = P_{\eta}(a,b] \Rightarrow P_{\xi} = P_{\eta}$ на ячейках, а тогда по единственности продолжения везде совпадают.

2. Если $\int_{\mathbb{R}} |\varphi_{\xi}(t)| dt < +\infty$, то ξ имеет плотность распределения $p_{\xi}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi_{\xi}(t) dt$ преобразование Фурье.

Доказательство: Из суммируемости $\varphi_{\xi}(t) \Rightarrow P_{\xi}((a,b]) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{-iat} - e^{-ibt}}{it} \varphi_{\xi}(t) dt.$

Проверим, что $P_{\xi}(a,b] = \int_{a}^{b} p_{\xi}(x) dx$.

 $\int_{a}^{b} p_{\xi}(x) dx = \frac{1}{2\pi} \int_{a}^{b} \int_{\mathbb{R}} e^{-itx} \varphi_{\xi}(t) dt dx = (*)$. Под внутренним интегралом суммируемая функция, значит можно переставлять местми интегралы.

Тогда $(*) = \frac{1}{2\pi} \int_{\mathbb{R}} \int_a^b e^{-itx} dx \varphi_{\xi}(t) dt$

Теорема 3.4. $\xi_k \sim \mathcal{N}(a_k, \sigma_k^2), c_k \in \mathbb{R}$ не все нулевые и ξ_k – независимы и $\xi = a_0 + \sum_{k=1}^n c_k \xi_k$. Тогда $\xi \sim \mathcal{N}(a, \sigma^2)$, где $a = a_0 + \sum_{k=1}^n c_k a_k$ и $\sigma^2 = \sum_{k=1}^n c_k^2 \sigma_k^2$.

Доказательство.
$$\varphi_{\xi}(t) = \varphi_{a_0}(t)\varphi_{c_1\xi_1}(t)\dots\varphi_{c_n\xi_n}(t) =$$

$$= e^{ita_0}(t)\varphi_{\xi_1}(c_1t)\dots\varphi_{\xi_n}(c_nt) = e^{ita_0}e^{ia_1c_1t}e^{-\frac{(c_1\sigma_1t)^2}{2}}\dots e^{ia_nc_nt}e^{-\frac{(c_n\sigma_nt)^2}{2}} = e^{ita}e^{-\frac{\sigma^2t^2}{2}}$$

3.2. Сходимость по распределению

Замечание. 1. Точек, где нет непрерывности F_{ξ} не более чем счётное множество

2. Если $F_{\xi_n}(b) - F_{\xi_n}(a) \to F_{\xi}(b) - F_{\xi}(a)$ для всех a,b, за исключением счётного множества. Тогда $F_{\xi_n}(b) \to F_{\xi}(b)$ за исключением счётного множества.

Доказательство. Рассмотрим F(x), функцию распределения. Возьмём хорошие a, т.ч. $F(a) < \varepsilon$ и b, т.ч. $F(b) > 1 - \varepsilon$.

Тогда
$$(F_n(b) - F_n(a)) - (F(b) - F(a)) \rightarrow 0 \implies |(F_n(b) - F_n(a)) - \underbrace{(F(b) - F(a))}_{>1-2\varepsilon}| < \varepsilon \implies$$

 $F_n(b) - F_n(a) > 1 - 3\varepsilon \implies F_n(a) < 3\varepsilon$ при больших n.

Возьмём хорошее
$$x$$
, $|F_n(x) - F(x)| \le |(F_n(x) - F_n(a)) - (F(x) - F(a))| + \underbrace{F_n(a)}_{<3\varepsilon} + \underbrace{F(a)}_{<\varepsilon} < 5\varepsilon$ при больших n

3. $D \subset \mathbb{R}$ не более чем счётное и $U \subset \mathbb{R}$ - открытое.

Тогда
$$U = \bigcup_{k=1}^{\infty} (a_k, B_k]$$
, где $a_k, b_k \notin D$

Доказательство. Нарезаем открытое множество с шагом 1, тем ячейки, которые целиком попали - берём. Те, что не попали - бьём пополам и так далее.

4. ξ и η независимые и η имеет непрерывное распределение.

Тогда $\xi + \eta$ имеет непрерывное распределение.

Доказательство. $P_{\xi+\eta} = P_{\xi} * P_{\eta}$

$$P_{\xi+\eta}(\{a\}) = \int_{\mathbb{R}} \underbrace{P_{\eta}(\{a-x\})}_{=0,\text{т.к. непрерывность}} dP_{\xi}(x)$$

Определение 3.6. Множество $B \subset \mathbb{R}$ - регулярное, относительно P_{ξ} , если $P_{\xi}(Cl \ B \setminus Int \ B) = 0$, то есть $P(\xi \in Cl \ B \setminus Int \ B) = 0$

Теорема 3.5. $\xi, \xi_1, \xi_2, \ldots$ - случаный величины, F, F_1, F_2, \ldots - их функции распределения, а $\varphi, \varphi_1, \varphi_2, \ldots$ - их характеристичечкие функции. Следующие условия равносильны:

- 1. ξ_n сходится к ξ по распределению (т.е. $F_n \to F$ в точках непрерывности F)
- 2. Для любого U открытого $\underline{\lim} P(\xi_n \in U) \geqslant P(\xi \in U)$
- 3. Для любого A замкнутого $\overline{\lim} P(\xi_n \in A) \leqslant P(\xi \in A)$
- 4. Для любого B регулярного борелевского $\lim P(\xi_n \in B) = P(\xi \in B)$
- 5. Для любого B регулярного борелевского $\lim \mathbb{E} \mathbb{1}_B(\xi_n) = \mathbb{E} \mathbb{1}_B(\xi)$
- 6. Для любой f непрерывной на \mathbb{R} и ограниченной $\lim \mathbb{E} f(\xi_n) = \mathbb{E} f(\xi)$
- 7. φ_n сходится к φ поточечно

Доказательство. 1. $2 \Longleftrightarrow 3$

Если
$$A = \mathbb{R} \setminus U$$
, тогда $P(\xi_n \in A) = 1 - P(\xi_n \in U)$.
$$P(\xi \in A) > \overline{\lim} P(\xi_n \in A) = 1 - \underline{\lim} P(\xi_n \in U) \leqslant 1 - P(\xi \in U) = P(\xi \in A)$$

 $2. \ 2 \cup 3 \implies 4$

Пусть
$$U = Int B, A = Cl B,$$
 тогда

$$\overline{\lim} P(\xi_n \in B) \leq \overline{\lim} P(\xi_n \in A) \underbrace{\leq}_{\text{по пункту (3)}} P(\xi \in A) \leq P(\xi \in B) + \underbrace{P(\xi \in A \setminus U)}_{\text{= 0, т.к. } B \text{ регулярное}}$$

$$\overline{\lim} P(\xi_n \in B) \ge \underline{\lim} P(\xi_n \in B) \le \underline{\lim} P(\xi_n \in U) \ge P(\xi \in U) \ge P(\xi \in B) - \underbrace{P(\xi \in A \setminus U)}_{=0}.$$

Получили равенство.

 $3. 4 \Longleftrightarrow 5$

$$\mathbb{E}1_B(\xi_n) = P(1_B(\xi_n) = 1) = P(\xi_n \in B)$$

 $4.6 \implies 7$

$$\varphi_{\eta}(t) = \mathbb{E}e^{et\eta} = \mathbb{E}\cos(t\eta) + i\mathbb{E}\sin(t\eta)$$

Тогда
$$\varphi_n(t) = \mathbb{E}\cos(t\xi_n) + i\mathbb{E}\sin(t\xi_n) \to \mathbb{E}\cos(t\xi) + i\mathbb{E}\sin(t\xi) = \varphi(t)$$

 $5. 1 \implies 2$

Берём открытое U, по замечанию 3 из начала параграфа: $U = \bigcup_{k=1}^{\infty} (a_k, b_k]$, где a_k, b_k - точки непрерывности F.

$$\{\xi_n \in U\} \supset \{\xi_n \in \bigcup_{k=1}^m (a_k, b_k)\} \implies P(\xi_n \in U) \geqslant \sum_{k=1}^m P(\xi_n \in (a_k, b_k))$$

$$\underline{\lim} P(\xi_n \in U) \geqslant \underline{\lim} \sum_{k=1}^m P(\xi_n \in (a_k, b_k]) \geqslant$$

$$\geqslant \sum_{k=1}^{m} \underline{\lim} P(\xi_n \in (a_k, b_k]) \stackrel{(*)}{=} \sum_{k=1}^{m} P(\xi \in (a_k, b_k]) \stackrel{m \to \infty}{\to} \sum_{k=1}^{\infty} P(\xi \in (a_k, b_k]) = P(\xi \in U)$$
 Пояснение перехода $(*): P(\xi_n \in (a_k, b_k]) = F_n(b_k) - F_n(a_k) \to F(b_k) - F(a_k) = P(\xi \in (a_k, b_k]).$ А значит $\underline{\lim} P(\xi_n \in U) \geqslant P(\xi \in U)$ – доказали.

$6.5 \implies 6$

Пусть $|f| \leq M$ и $D = \{x \in \mathbb{R} : P(f(\xi) = x) > 0\} = \{x : P_{\xi}(f^{-1}(x) > 0)\}$. Это не более чем счётное множество. Потому что для разных x - это дизъюнктные. Множеств с вероятностью $\frac{1}{2}$ - не больше двух, с вероятностью $\frac{1}{3}$ не больше трёх и так далее.

Пусть $-M = t_0 < t_1 < \ldots < t_m = M$, так, что $t_y \notin D$ и мелкость $< \varepsilon$.

Заведём множества $A_j = \{x \in \mathbb{R} : t_{j-1} \leqslant f(x) \leqslant t_j\} \supset B_j = \{x \in \mathbb{R} : t_{j-1} < f(x) \leqslant t_j\} \supset U_j = \{x \in \mathbb{R} : t_{j-1} < f(x) < t_j\}$. Где A_j - замкнутое,а U_j - открытое.

Мы поняли, что $U_j \subset Int B_j \subset B_j \subset Cl B_j \subset A_j \implies Cl B_j \setminus Int B_j \subset A_j \setminus U_j$

Тогда B_j регулярно относительно P_{ξ}

Определим $g(x) = \sum_{j=1}^{m} t_{j-1} \mathbb{1}_{B_j}(x)$. Тогда $g(x) < f(x) < g(x) + \varepsilon$.

 $|g(x)-f(x)|<\varepsilon$ и тогда $\mathbb{E}|g(\xi_n)-f(\xi_n)|\leqslant \varepsilon$ и мы знаем, что $\mathbb{E}g(\xi_n)\to \mathbb{E}g(\xi)$ - видно, если расписать матожидание g по линейности.

 $\mathbb{E}|f(\xi_n)-f(\xi)|\leqslant |\mathbb{E}f(\xi_n)-\mathbb{E}g(\xi_n)|+|\mathbb{E}g(\xi_n)-\mathbb{E}g(\xi)|+|\mathbb{E}g(\xi)-\mathbb{E}f(\xi)|<3\varepsilon \text{ при больших } n,$ каждый из модулей $<\varepsilon$

$7.7 \implies 1$

Возьмём $\eta \sim \mathcal{N}(0,\sigma^2),$ такую, что η не зависит от всех ξ_n и ξ

$$\varphi_{\xi_n+\eta}(t) = \varphi_{\xi_n}(t)\varphi_{\eta}(t) = \varphi_n(t) \cdot e^{-\frac{\sigma^2 t^2}{2}} \overset{\text{поточечно}}{\to} \varphi(t)e^{-\frac{\sigma^2 t^2}{2}} = \varphi_{\xi+\eta}(t)$$

 $\xi_n + \eta$ и $\xi + \eta$ имеют непрерывное распределение, поэтому можем не задумываясь писать формулу обращения:

$$P(\xi_n + \eta \in (a, b]) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-iat} - e^{-ibt}}{it} \varphi_{\xi_n + \eta}(t) dt \xrightarrow{*} \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-iat} - e^{-ibt}}{it} \varphi_{\xi + \eta} dt = P(\xi + \eta \in (a, b]).$$

(*): Использовали теорему Лебега, но нужна суммируемая мажоранта, посчитаем ее $\left|\frac{e^{-iat}-e^{-ibt}}{it}\varphi_{\xi_n+\eta}(t)\right|\leqslant e^{-\frac{\sigma^2t^2}{2}}$ - суммируемая мажоранта.

То есть
$$\underbrace{P(\xi_n + \eta \in (a, b])}_{G_n(b) - G_n(a)} \to \underbrace{P(\xi + \eta \in (a, b])}_{G(b) - G(a)}$$
, где $G_n(x) = F_{\xi_n + \eta}(x)$ и $G(x) = F_{\xi + \eta}(x)$

Тогда из замечания 2 с начала конспекта имеем: $G_n(x) \to G(x)$.

Возьмём x - точка непрерывности F и выберем $\delta>0,$ так, что $|F(x\pm\delta)-F(x)|<\varepsilon$ - есть из непрерывности.

$$(\{\xi_n + \eta \leqslant x - \delta\} \setminus \{|\eta| > \delta\}) \subset \{\xi_n \leqslant x\} \subset \{\xi_n + \eta \leqslant x + \delta\} \cup \{|\eta| > \delta\}.$$

Сделаем оценки:

- (a) $P(|\eta| > \delta) \leqslant \frac{\mathbb{D}\eta}{\delta^2} = \frac{\sigma^2}{\delta^2}$ нер-во Чебышева.
- (b) $G_n(x-\delta) P(|\eta| > \delta) \ge G_n(x-\delta) \frac{\sigma^2}{\delta^2} > G_n(x-\delta) \varepsilon > G(x-\delta) 2\varepsilon > F(x-2\delta) 3\varepsilon > F(x) 4\varepsilon$
- (c) $G_n(x+\delta) + P(|\eta| > \delta) \le G_n(x+\delta) + \frac{\sigma^2}{\delta^2} < G_n(x+\delta) + \varepsilon < G(x+\delta) + 2\varepsilon < F(x+2\delta) + 3\varepsilon < F(x) + 4\varepsilon$

Тогда $G_n(x-\delta) - P(|\eta| > \delta) \leqslant F_n(x) \leqslant G_n(x+\delta) + P(|\eta| > \delta).$

По теореме о двух миллиционерах (устремив $\varepsilon \to 0$) получаем, что $F_n \to F$.

Теорема 3.6. $F_n, F : \mathbb{R} \to [0, 1]$ монотонные, $F \in C(\mathbb{R})$ и $F_n \to F$ поточечно.

Тогда $F_n \rightrightarrows F$

Доказательство. Берём $\varepsilon > 0$ и $m > \frac{1}{\varepsilon}$. Пусть t_j , такие, что $F(t_j) = \frac{j}{m}$. Если для большого j точки не нашлось, то $F < \frac{j+1}{m}$, а если для маленького не нашлось, то $F > \frac{j-1}{m}$ (потому что иначе из непрерывности такие точки найдутся).

Знаем, что $F_n(t_i) \to F(t_i)$. Берём $N: \forall n \geqslant N |F_n(t_i) - F(t_i)| < \varepsilon$.

Теперь смотрим на произвольную точку: $t_j < t < t_{j+1}$. Тогда $F_n(t) \leqslant F_n(t_{j+1}) < F(t_{j+1}) + \varepsilon = \frac{j+1}{m} + \varepsilon = F(t_j) + \frac{1}{m} + \varepsilon \leqslant F(t) + \frac{1}{m} + \varepsilon < F(t) + 2\varepsilon$.

Аналогично в другую сторону:

$$F_n(t_j) > F(t_j) - \varepsilon = \frac{j}{m} - \varepsilon = F(t_{j+1}) - \frac{1}{m} - \varepsilon \geqslant F(t) - 2\varepsilon.$$

3.3. Центральная предельная теорема

Теорема 3.7. ЦПТ в форме Леви

 ξ_1,ξ_2,\ldots независимые, одинаково распределённые случайные величины.

$$a = \mathbb{E}\xi_1, \sigma^2 = \mathbb{D}\xi_1, S_n = \xi_1 + \xi_2 + \ldots + \xi_n.$$

Тогда
$$P\left(\frac{S_n-na}{\sigma\sqrt{n}}\leqslant x\right)=P\left(\frac{S_n-\mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}}\leqslant x\right) \rightrightarrows \Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{t^2}{2}}\,dt$$

Доказательство. Достаточно проверять поточечную сходимость характеристических функций.

$$arphi_{\xi_k-a}(t)=1-rac{\sigma^2t^2}{2}+o(t^2)$$
, потому что мы знаем, что $\mathbb{E}(\xi_k-a)=0$ и $\mathbb{D}(\xi_k-a)^2=\sigma^2$

Тогда
$$\varphi_{S_n-na}(t) = \prod_{k=1}^n \varphi_{\xi_k-a}(t) = \left(1 - \frac{\sigma^2 t^2}{2} + o(t^2)\right)^n$$

$$\varphi_{\frac{S_n-na}{\sigma\sqrt{n}}} = \varphi_{S_n-na}\left(\frac{t}{\sqrt{n}\sigma}\right) = \left(1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n\sigma^2}\right)\right)^n \to e^{-\frac{t^2}{2}}.$$

Чтобы получить последний переход - логарифмируем.

То есть $\frac{S_n-na}{\sqrt{n}\sigma}$ сходится по распределению к $\mathcal{N}(0,1) \implies$ функция распределения сходится равномерно.

Следствие. Интегральная теорема Муавра-Лапласа

 $S_n = \sum_{k=1}^n \xi_k$ – количество успехов в схеме Бернулли с вероятностью успеха $p \in (0,1)$, где $\xi_k \sim Bern(p)$ и независимы.

Тогда
$$P\left(\frac{S_n-np}{\sqrt{npq}}\leqslant\right) \Longrightarrow \Phi(x)$$

Доказательство.
$$\mathbb{E}\xi_k = p, \mathbb{D}\xi_k = pq$$

Пример. Посчитаем характеристическую функцию для $Poisson(\lambda)$

$$\varphi_{\xi}(t) = \mathbb{E}e^{it\xi} = \sum_{n=0}^{\infty} e^{itn} \frac{e^{-\lambda \lambda^n}}{n!} = \sum_{n=0}^{\infty} \frac{(\lambda e^{it})^n}{n!} \cdot e^{-\lambda} = exp(\lambda(e^{it} - 1))$$

Теорема 3.8. $P(\xi_{nk}=1)=p_{nk}\in(0,1)$ и $P(\xi_{nk}=0)=1-p_{nk}$ и пусть $S_n=\xi_{n1}+\ldots+\xi_{nn}$ независимые.

$$\max\{p_{n1},\ldots,p_{nn}\}\to 0\ \text{if}\ p_{n1}+\ldots p_{nn}\to \lambda.$$

Тогда
$$P(S_n = k) \to \frac{\lambda^k e^{-\lambda}}{k!}$$

Доказательство. $\varphi_{\xi_{nk}}(t) = \mathbb{E}e^{it\xi_{nk}} = 1 - p_{nk} + p_{nk}e^{it} = 1 + p_{nk}(e^{it} - 1)$

Мат. ожидание выше именно такое, т.к. $e^{it\xi_{nk}}=\begin{cases}1,\ \text{с вероятностью}\ (1-p_{nk})\\e^{it},\ \text{с вероятностью}\ p_{nk}\end{cases}$

Тогда $\varphi_{S_n}(t) = \prod_{k=1}^n (1 + p_{nk}(e^{it} - 1)) \stackrel{?}{\to} \underbrace{exp(\lambda(e^{it} - 1))}_{\text{хар. функция Пуассона}}$ – докажем для характеристических

функций, тогда будет верно и для распределений

Пусть
$$z = e^{it} - 1$$

Значит, нужно проверить $\sum_{k=1}^{n} \ln(1+p_{nk}z) \to \lambda z$. Раскладываем логарифм:

 $\sum_{k=1}^n p_{nk}z + \sum_{k=1}^n \mathcal{O}(p_{nk}^2)$. Значит осталось показать, что вторая сумма стремится к нулю.

Действительно,
$$\sum_{k=1}^{n} \mathcal{O}(p_{nk}^2) \leqslant (p_{n1} + \dots p_{nn}) \cdot \max\{p_{n1}, \dots, p_{nn}\} \to 0$$

Теорема 3.9. ЦПТ в форме Линденберга

 ξ_1,\ldots - независимые случайные величины, $a_k=\mathbb{E}\xi_k,\sigma_k^2=\mathbb{D}\xi_k>0, S_n=\xi_1+\ldots+\xi_n,\,\mathbb{D}_n^2=0$ $\sum_{k=1}^{n} \sigma_k^2 = \mathbb{D}S_n$

$$f(x)=x^2\mathbb{1}_{\{|x|\geqslant arepsilon\mathbb{D}_n\}}(x)$$
 и $Lind(arepsilon,n)=rac{1}{\mathbb{D}_n^2}\sum_{k=1}^n\mathbb{E}f(\xi_k-a_k) o 0:\ orall\,arepsilon>0.$

Тогда
$$P\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}} \leqslant x\right) \rightrightarrows \Phi(x)$$

Теорема 3.10. ЦПТ в форме Ляпунова

 ξ_1, ξ_2, \ldots – независимые случ. величины,

$$a_n := \mathbb{E}\xi_n, \ \sigma_n^2 := \mathbb{D}\xi_n,$$

$$\mathbb{D}_n^2 := \sum_{k=1}^n \sigma_k^2,$$

$$S_n := \xi_1 + \ldots + \xi_n$$

$$L(\delta):=rac{1}{\mathbb{D}_n^{2+\delta}}\cdot\sum_{k=1}^n\mathbb{E}|\xi_k-a_k|^{2+\delta} o 0$$
 для некоторого $\delta>0$

Тогда
$$P\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}} \le x\right) \rightrightarrows \Phi(x).$$

Доказательство. Линденберг \implies Ляпунов:

$$Lind(\varepsilon, n) = \frac{1}{\mathbb{D}_n^2} \sum_{k=1}^n \mathbb{E} \left(|\xi_k - a_k|^2 \cdot \underbrace{\mathbb{1}_{\{|\xi_k - a_k| \ge \varepsilon \mathbb{D}_n\}}}_{\leq \left(\frac{|\xi_k - a_k|}{\varepsilon \mathbb{D}_n}\right)^{\delta}} \right) \leq \frac{1}{\mathbb{D}_n^2} \sum_{k=1}^n \mathbb{E} \left(\frac{|\xi_k - a_k|^{2+\delta}}{\varepsilon^{\delta} \mathbb{D}_n^{\delta}} \right) = \frac{1}{\varepsilon^{\delta}} \frac{1}{\mathbb{D}_n^{2+\delta}} \sum_{k=1}^n \mathbb{E} \left(\xi_k - a_k \right)^{2+\delta} = \frac{L(\delta)}{\varepsilon^{\delta}} \to 0$$

Теорема 3.11. Пусть $\delta \in [0,1]$ и ξ_1, \ldots независимые случаные величины.

Тогда
$$\left| P\left(\frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}} \leqslant x \right) - \Phi(x) \right| \leqslant C_{\delta} L(\delta, n)$$

Глава #3

Теорема 3.12. Берри-Эссенна

 ξ_1, \dots независимые, одинаково распределённые случаные величины.

Тогда
$$\left| P\left(\frac{S_n - na}{\sqrt{\sqrt{n}\sigma}} \leqslant x \right) - \Phi(x) \right| \leqslant C_\delta \cdot \frac{\mathbb{E}|\xi_1 - a|^{2+\delta}}{n^{\frac{\delta}{2}}\sigma^{2+\delta}}$$

Доказательство.
$$\mathbb{D}_n^2 = n\sigma^2$$
 и $L(\delta,n) = \frac{1}{n^{1+\frac{\delta}{2}\cdot\sigma^{2+\delta}}}\cdot n\mathbb{E}|\xi_1-a|^{2+\delta}$

В частности при
$$\delta = 1 |P - \Phi| \leqslant C \frac{\mathbb{E} |\xi_1 - a|^3}{\sqrt{n}\sigma^3}$$

Замечание. Про константы

- 1. Эссен (1956) $C \geqslant \frac{3+\sqrt{10}}{6\sqrt{2\pi}} \approx 0,4097$
- 2. Шевцова (2014) $C \leq 0,469$
- 3. Для общего случая: $C_1 \leqslant 0,5583$
- 4. Для схемы Бернулли (2018) $C_1 \leqslant 0,4099$
- 5. Для схемы Бернулли с $p = \frac{1}{2} C = \frac{1}{\sqrt{2\pi}}$

Теорема 3.13. Хартмана-Винтнера (закон повторного логарифма)

$$\xi_1, \xi_2, \dots$$
 - независимые, одинаково распределённые. $\mathbb{E} \xi_1 = 0, \ \mathbb{D} \xi_1 = \sigma^2 > 0$

Тогда
$$\overline{\lim} \frac{S_n}{\sqrt{2n \ln \ln n}} = \sigma$$
, а $\underline{\lim} \frac{S_n}{\sqrt{2n \ln \ln n}} = -\sigma$

Теорема 3.14. Штрассена

$$\xi_1,\xi_2\dots$$
 независимые одинаково распределённые, $\mathbb{E}\xi_1=0$ и $\mathbb{D}\xi_1=\sigma^2>0$

Тогда любое число из $[-\sigma,\sigma]$ - пред. точка послед. $\frac{S_n}{\sqrt{2n\ln\ln n}}$

3.4. Большие уклонения

ЗБЧ в форме Чебышёва

 ξ_1,ξ_2,\dots - незаисимые, одинаково распределённые случайные величины. $\mathbb{E}\xi_1=a,\mathbb{D}=\sigma^2>0$

Тогда
$$P\left(\frac{S_n}{n}\geqslant r\right)\to 0,$$
 если $r>a$

Более того, $P\left(\frac{S_n}{n}\geqslant r\right)\leqslant \frac{\sigma^2}{(r-a)n}$ - это оценка из доказательства. Но оценка довольно плохая.

Определение 3.7. ξ удовлетворяет условию Крамера, если при $\lambda \in (0,\lambda_0)$: $\mathbb{E} e^{\lambda \xi} < +\infty$

Теорема 3.15. Оценка Чернова

 ξ_1,ξ_2,\dots - независимые, одинаково распределённые, удовлетворяющие условию Крамера и $r>a=\mathbb{E}\xi_1$

Хотим оценить
$$P\left(\frac{S_n}{n} \geqslant r\right) = P\left(S_n \geqslant nr\right) = P\left(\lambda S_n \geqslant \lambda nr\right) = P\left(e^{\lambda S_n} \geqslant e^{\lambda nr}\right) \stackrel{\text{Марков}}{\leqslant} \frac{\mathbb{E}e^{\lambda S_n}}{e^{\lambda nr}} \stackrel{*}{=} \left(\frac{\mathbb{E}e^{\lambda \xi_1}}{e^{\lambda r}}\right)^n$$

$$(*)\mathbb{E}e^{\lambda S_n} = \mathbb{E}(\prod_{k=1}^n e^{\lambda \xi_k}) = (\mathbb{E}e^{\lambda \xi_1})^n$$

А теперь, то что получилось - будем минимизировать по λ

$$\varphi(\lambda) = \ln \mathbb{E} e^{\lambda \xi_1} - \lambda r \to \inf$$
, где λ допустимое

$$I(r) = \sup_{\lambda} \{ \lambda r - \ln(\mathbb{E}e^{\lambda \xi_1}) \} \implies P\left(\frac{S_n}{n} \geqslant r\right) \leqslant e^{-nI(r)}$$

Пример. 1.
$$\xi \sim \mathcal{N}(0,1)$$

$$\mathbb{E}e^{\lambda\xi} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\lambda x} e^{\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{(x-\lambda)^2}{2}} dx \cdot e^{\frac{\lambda^2}{2}} = e^{\frac{\lambda^2}{2}}$$

$$\lambda r - \frac{\lambda^2}{2} \to \max_{\lambda>0}$$
, максимум при $\lambda = r$. И тогда $I(r) = \frac{r^2}{2}$

Значит
$$P\left(\frac{S_n}{n}\geqslant r\right)\leqslant e^{-\frac{nr^2}{2}}$$
 при $r>0$

2.
$$\xi \sim Exp(1)$$

$$\mathbb{E}e^{\lambda\xi} = \int_0^{+\infty} e^{\lambda x} e^{-x} dx = \frac{e^{(\lambda-1)x}}{\lambda-1} \bigg|_0^{+\infty} = \frac{1}{1-\lambda}$$
 сходимость есть при $\lambda \in (0,1)$

$$\lambda r - \ln \frac{1}{1-\lambda} = \lambda r + \ln(1-\lambda)$$
 - считаем производную по λ

$$(\lambda r + \ln(1-\lambda))'_{\lambda} = r - \frac{1}{1-\lambda} \implies 1-\lambda = \frac{1}{r} \implies \lambda = 1 - \frac{1}{r}, r > 1$$

Тогда
$$I(r)=r(1-\frac{1}{r})-\ln r=r-1-\ln r$$

$$P\left(\frac{S_n}{n} \geqslant r\right) \leqslant e^{-n(r-1-\ln r)} = r^n e^{-n(r-1)}$$

4. Дискретные случайные процессы

4.1. Условные математические ожидания

Определение 4.1. (Ω, \mathcal{F}, P) - вероятностное пространство, $\xi : \Omega \to \mathbb{R}$ и $\mathbb{E}|\xi| < +\infty$. Пусть $\mathcal{A} \subset \mathcal{F}$ и \mathcal{A} - σ -алгебра.

 $\mathbb{E}(\xi|\mathcal{A}) = \eta : \Omega \to \mathbb{R}$ - случайная величина, которая:

- 1. измерима относительно \mathcal{A}
- 2. $\forall A \in \mathbb{A} : \mathbb{E}(\xi \mathbb{1}_A) = \mathbb{E}(\eta \mathbb{1}_A)$

Теорема 4.1. $A \subset \mathcal{F}, \mathbb{E}|\xi| < +\infty$, тогда $\mathbb{E}(\xi|A)$ существует и единственно, с точностью до почти наверное

Доказательство. Существование:

 $\xi = \xi_+ - \xi_-$. Пусть $A \in \mathcal{A}$, определим $\mu_\pm A = \int_A \xi_\pm \, dP$ - это конечные меры на \mathcal{A} , так как интеграл от измеримой неотрицательной функции. А ещё эти меры абсолютно непрерывны относительно $P \stackrel{\text{т. Радона-Никодима}}{\Longrightarrow} \exists \, \eta_\pm > 0$ измеримые относительно \mathcal{A} , т.ч. $\mu_\pm A = \int_A \eta_\pm \, dP$

$$\eta = \eta_+ - \eta_-$$
, надо проверить, что $\forall A \in \mathcal{A} : \underbrace{\mathbb{E}(\xi \mathbb{1}_A)}_{\mathbb{E}(\xi + \mathbb{1}_A) - \mathbb{E}(\xi - \mathbb{1}_A)} = \mathbb{E}(\eta \mathbb{1}_A)$

A ещё $\mathbb{E}(\xi_+\mathbb{1}_A)=\mu_+A=\int_A\xi_+\,dP$ и для остальных точно также

Единственность:

Пусть η_1 и η_2 - условные матожидания. Тогда $\{\eta_1 > \eta_2\} \in \mathcal{A}$

$$\mathbb{E}(\eta_1\mathbb{1}_A) = \mathbb{E}(\xi\mathbb{1}_A) = \mathbb{E}(\eta_2\mathbb{1}_A) \implies \underbrace{\mathbb{E}((\eta_1 - \eta_2)\mathbb{1}_A)}_{=\int_A(\eta_1 - \eta_2)\,dP} = 0 \implies P(A) = P(\eta_1 > \eta_2) = 0.$$
 Аналогично

$$P(\eta_1 < \eta_2) = 0$$

Coourmea. 1. $\mathbb{E}(c|\mathcal{A}) = c$

- 2. $\mathbb{E}(\xi|\mathcal{A})$ линейно по ξ
- 3. $\xi \leqslant \eta$, to $\mathbb{E}(\xi|\mathcal{A}) \leqslant \mathbb{E}(\eta|\mathcal{A})$

Доказательство. Достаточно проверить, что если $\xi\geqslant 0$, то $\mathbb{E}(\xi|\mathcal{A})\geqslant 0$

4. $\mathbb{E}(\xi|\{\varnothing,\Omega\}) = \mathbb{E}\xi$

Доказательство. Измеримы относительно такой σ -алгебры только константы. Надо проверить, что $\mathbb{E}(\mathbb{E}\xi\mathbb{1}_A)=\mathbb{E}(\xi\mathbb{1}_A)$ для $A=\varnothing$ и $A=\Omega$

5. $\mathcal{F} \supset \mathcal{A}_1 \supset \mathcal{A}_2$ - σ -алгебры

Тогда $\mathbb{E}(\mathbb{E}(\xi|\mathcal{A}_1)|\mathcal{A}_2) = \mathbb{E}(\xi|\mathcal{A}_2)$

Доказательство. $\eta = \mathbb{E}(\xi|\mathcal{A}_2)$ и $\zeta = \mathbb{E}(\xi|\mathcal{A}_1)$

Надо доказать, что $\eta = \mathbb{E}(\zeta|\mathcal{A}_2)$. η измерима относительно \mathcal{A}_{\in} . Надо проверить, что $\forall A \in \mathcal{A}_2 : \mathbb{E}(\eta \mathbb{1}_A) = \mathbb{E}(\zeta \mathbb{1}_A) = \mathbb{E}(\xi \mathbb{1}_A)$, т.к. $A \in \mathcal{A}_1$ по определению ζ . А ещё $\mathbb{E}(\xi \mathbb{1}_A) = \mathbb{E}(\eta \mathbb{1}_A)$

- 6. $\mathbb{E}(\mathbb{E}(\xi|\mathcal{A})) = \mathbb{E}\xi$ из 4 и 5
- 7. Если ξ измерима относительно $\mathcal{A},$ о $\mathbb{E}(\xi|\mathcal{A})=\xi$

Пример. Пусть $\Omega = \bigcup A_k$ не более чем счётное объединение

 \mathcal{A} - натянутая на $A_1, A_2, \ldots \sigma$ -алгебра

$$\mathbb{E}(\xi|\mathcal{A}) = ?$$

Если η измерима относительно $\mathcal{A} \implies \eta = \sum c_k \mathbb{1}_{A_k}$

Нужно чтобы
$$\mathbb{E}(\xi \mathbb{1}_{A_n}) = \mathbb{E}(\underbrace{\eta \mathbb{1}_{A_n}}_{c_n \mathbb{1}_{A_n}}) = c_n P(A_n)$$

To есть
$$c_n = \frac{\mathbb{E}(\xi \mathbb{1}_{A_n})}{P(A_n)}$$

Замечание. Из свойства 6: $\mathbb{E}\xi=\mathbb{E}\eta=\sum \frac{\mathbb{E}(\xi\mathbb{1}_{A_k})}{P(A_k)}\cdot P(A_k)$

Определение 4.2. Условная вероятность относительно σ -алгебры

$$P(B|\mathcal{A}) = \mathbb{E}(\mathbb{1}_B|\mathcal{A})$$

Пример. ξ_1, ξ_2, \ldots - независимые, одинаково распределённые случайные величины, N - случайная величина с неотрицательными целыми значениями, не зависящая от ξ_1, \ldots

$$S = \xi_1 + \ldots + \xi_N$$

Пусть
$$A_n = \{N = n\}$$

$$\mathbb{E}S = \sum_{n=0}^{+\infty} \frac{\mathbb{E}(S\mathbb{1}_{A_n})}{P(A_n)} \cdot P(A_n) = \sum_{n=0}^{\infty} naP(N=n) = \mathbb{E}\xi_1 \cdot \mathbb{E}N$$

$$n=0$$
 $n=0$ $\mathbb{E}(S1_{A_n}) = \mathbb{E}(S|N=n) = \mathbb{E}(S_n|N=n) = \mathbb{E}(\xi_1 + \ldots + \xi_n|N=n)$ $n=0$ $\mathbb{E}(S1_{A_n}) = \mathbb{E}(S|N=n) = \mathbb{E}(\xi_1 + \ldots + \xi_n) = na,$ где $n=0$ $n=0$ $n=0$ $n=0$ $n=0$

Пример. Пусть ξ_k тоже принимают неотрицательные целые значения

Тогда $G_{\xi_1}(t) = G(t)$ - производящая функция ξ_k

$$G_S(t) = \mathbb{E}t^S = \sum_{n=0}^{\infty} \frac{\mathbb{E}(t^S \mathbb{1}_{A_n})}{P(A_n)} \cdot P(A_n) = \sum_{n=0}^{\infty} G^n(t) P(N=n) = G_n(G_{\xi}(t))$$

$$\frac{\mathbb{E}(t^{S}\mathbb{1}_{A_{n}})}{P(A_{n})} = \mathbb{E}(t^{S}|N=n) = \mathbb{E}(t^{S_{n}}|N=n) = \mathbb{E}(t^{\xi_{1}}....t^{\xi_{n}}|N=n) = \mathbb{E}(t^{\xi_{1}}....e^{\xi_{n}}) = (\mathbb{E}t^{\xi_{1}})^{n} = (G(t))^{n}$$

Замечание. Геометрическая интерпретация

Пусть
$$\mathbb{E}\xi^2 < +\infty$$

Тогда
$$\xi \in L^2(\Omega, \mathcal{F}, P)$$
. $\mathcal{A} \subset \mathcal{F}$ - σ - алгебра. Поэтому $\underbrace{L^2(\Omega, \mathcal{A}, P)}_{\text{замкнутое подпространство}} \subset L^2(\Omega, \mathcal{F}, P)$

 $\eta = \mathbb{E}(\xi|\mathcal{A})$ - тогда проекция ξ на $L^2(\Omega,\mathcal{A},P)$

Нужно проверить, что $\xi - \eta \perp L^2(\Omega, \mathcal{A}, P)$

В L^2 плотны ступенчатые, давайте проверим для них, а потом сделаем предельный переход. Достаточно даже понять только для 1 ступеньки.

Достаточно понять, что $\forall A \in \mathcal{A} : \xi - \eta \bot \mathbb{1}_A$

$$0 \stackrel{?}{=} \langle \xi - \eta, \mathbb{1}_A \rangle = \mathbb{E}((\xi - \eta)\mathbb{1}_A) = \mathbb{E}(\xi\mathbb{1}_A) - \mathbb{E}(\eta\mathbb{1}_A)$$

Определение 4.3. η - случайная величина. Пусть $\sigma(\eta)$ - наименьшая σ -алгебра, относительно которой η измерима

Замечание. Чтобы её получить, нужно взять все Лебеговы множества и натянуть на них σ -алгебру

 ${\it Onpedenehue}$ 4.4. $\mathbb{E}(\xi|\eta)=\mathbb{E}(\xi|\sigma(\eta))$ - условное матожидание ξ относительно η

Пример. η - дискретная, $\{y_1, y_2, \ldots\}$ - множество её значений

Все $\{\eta=y_k\}$ - измеримы, $\Omega=\bigcup\{\eta=y_k\},\,\sigma(\eta)$ - всевозможные объединения $\{\eta=y_k\}$

Теорема 4.2. 1. Если ξ и η независимы, то $\mathbb{E}(\xi|\eta) = \mathbb{E}\xi$

2. Если η измерима относительно \mathcal{A} , то $\mathbb{E}(\xi \eta | \mathcal{A}) = \eta \mathbb{E}(\xi | \mathcal{A})$

Доказательство. 1. Надо доказать, что $\forall A \in \sigma(\eta) : \mathbb{E}(\xi \mathbb{1}_A) \stackrel{?}{=} \mathbb{E}(\mathbb{E}\xi \cdot \mathbb{1}_A) = \mathbb{E}\xi\mathbb{E}\mathbb{1}_A$

То есть достаоточно проверить, что ξ и $\mathbb{1}_A$ независимы

Пусть
$$A = \{ \eta \leq a \}$$
. $P(\xi \in B, \mathbb{1}_A \in C) = P(\xi \in B) \cdot P(\mathbb{1}_A \in C)$

Достаточно рассмотреть только $C = \{0\}$ и $C = \{1\}$

$$P(\xi \in B, \mathbb{1}_A = 1) = P(\xi \in B, \eta \leqslant a) \stackrel{\text{независимость } \xi \text{ и } \eta}{=} P(\xi \in B) P(\eta \leqslant a) = P(\xi \in B) P(\mathbb{1}_A = 1).$$
 Для $\mathbb{1}_A = 0$ аналогично

Для Лебеговых множеств мы это получили, поэтому есть и для любых праобразов ячеек

2. Проверяем для $\eta = \mathbb{1}_A$, где $A \in \mathcal{A}$

 $\mathbb{1}_A \mathbb{E}(\xi|\mathcal{A})$ - условное матожидание $\mathbb{E}(\xi \mathbb{1}_A|\mathcal{A})$

Измеримость есть, поэтому достаточно проверить только второе условие

$$\forall B \in \mathcal{A} : \underbrace{\mathbb{E}(\xi \mathbb{1}_A \cdot \mathbb{1}_B)}_{=\mathbb{E}(\xi \mathbb{1}_{A \cap B})} \stackrel{?}{=} \underbrace{\mathbb{E}(\mathbb{1}_A \mathbb{E}(\xi | \mathcal{A}) \mathbb{1}_B)}_{=\mathbb{E}(\mathbb{1}_{A \cap B} \mathbb{E}(\xi | \mathcal{A}))}$$

Тогда по линейности верно для простых η , по теореме Леви предельный переход $\eta_n \to \eta$ поточечно.

Мы знаем, что есть равенство
$$\underbrace{\mathbb{E}(\xi\eta_n\mathbb{1}_B)}_{=\int_\Omega\xi\eta_n\mathbb{1}_B\,dP}=\underbrace{\underbrace{\mathbb{E}(\eta_n\mathbb{E}(\xi|\mathcal{A})\mathbb{1}_B)}_{=\int_\Omega\eta_n\mathbb{E}(\xi|\mathcal{A}\mathbb{1}_B\,dP)}}_{=\int_\Omega\eta_n\mathbb{E}(\xi|\mathcal{A}\mathbb{1}_B\,dP)}$$

Предельный переход можно делать для η_+ и η_- , сделаем, потом перейдём к η

4.2. Ветвящиеся процессы

 ξ_{nk} - независимые случаные величины с неотрицательными целыми значениями

Интерпретация - есть много частиц, которые размножаются/умирают. Тогда n - момент времени, k - номер частицы, ξ_{nk} - количество её потомков

$$\eta_n = \xi_{n1} + \xi_{n2} + \ldots + \xi_{n\eta_{n-1}}$$
 - количество частиц в момент n

 $\eta_0 = 1$ - изначально у нас есть только 1 частица

Считаем, что все ξ_{nk} одинаково распределены и $P(\xi_{nk} = m) = f_m$.

$$F(t) = \sum_{m=0}^{\infty} f_m t^m$$
 - производящая функция

Пусть $G_n(t)$ - производящая функция для η_n . Тогда $G_n(t) = G_{n-1}(F(t)) = F \circ F \circ F \dots \circ F(t)$ - результат был получен в примере выше.

$$\mathbb{E}\eta_n = G'_n(1) = G'_{n-1}(\underbrace{F(1)}_{=1}) \cdot \underbrace{F'(1)}_{=\mathbb{E}\xi} = \mathbb{E}\xi \cdot \mathbb{E}\eta_{n-1} = (\mathbb{E}\xi)^n$$

Теорема 4.3. Вероятность вырождения процесса - наименьший неотрицательный корень уравнения F(x) = x

П

Доказательство. $A_n = \{\eta_n = 0\}$ - на n-ном шаге не осталось частиц

 $P(A_n) = G_n(0) \leqslant 1$, а ещё $A_1 \subset A_2 \subset \dots$ - если процесс выродился, то он и останется вырожденным.

Поэтому у нас существует предел $q = \lim P(A_n) \leqslant 1$

 $\underbrace{G_{n+1}(0)}_{\rightarrow q} = \underbrace{F(G_n(0))}_{F(q)}$, а F непрерывная, поэтому q = F(q), поэтому веротяность - корень

уравнения. Осталось понять, что это наименьший корень

Пусть r другой корень уравнения r = F(r). Ещё мы знаем, что F монотонна, потому что производная неотрицательная (просто коэффициенты неотрицательны).

$$P(A_1) = G_1(0) = F(0) \stackrel{\text{монотонность}}{\leqslant} F(r) = r$$
 - верно в стартовый момент времени.

Пусть
$$P(A_n) \leqslant r$$
, тогда $P(A_{n+1}) = G_{n+1}(0) = F(G_n(0)) = F(P(A_n)) \leqslant F(r) = r$

Переходим к пределу и получаем, что $q \leqslant r$

Замечание. F непрерывная, монотонная, выпуклая на [0,1], а ещё F(1)=1 и $F(0)\geqslant 0$

Если $m=\mathbb{E}\xi=F'(1)>1,$ то есть вероятность вырождения <1, если же $m\leqslant 1,$ то вероятность вырождения =1

Теорема 4.4. Пусть $m = \mathbb{E}\xi = 1$, $b = \mathbb{D}\xi > 0$, q_n - вероятность вырождения к n-ному шагу, $\gamma_n = q_n - q_{n-1}$ - вероятность вырождения ровно на n-ном шаге.

Тогда

1.
$$\gamma_n \sim \frac{2}{hn^2}$$

2.
$$1 - q_n \sim \frac{2}{hn}$$

Доказательство. Пусть $p_n = 1 - q_n$ и H(x) = 1 - F(1 - x)

Тогда
$$H(p_n)=1-F(q_n)=1-q_{n+1}=p_{n+1},\ H(0)=1-F(1)=0,\ H'(0)=F'(1)=1,$$
 $H''(x)=F''(1-x)$ и тогда $H''(0)=-F''(1)=-b$

B итоге $H(x) = x - \frac{bx^2}{2} + o(x^2)$

Пусть
$$a_n = \frac{1}{p_n}$$
, $a_n - a_{n-1} = \frac{1}{p_n} - \frac{1}{p_{n-1}} = \frac{p_{n-1} - p_n}{p_n p_{n-1}} = \frac{p_{n-1} - H(p_{n-1})}{p_{n-1} H(p_{n-1})} = \frac{\frac{bp_{n-1}^2 + o(p_{n-1}^2)}{2} + o(p_{n-1}^2)}{p_{n-1}(p_{n-1} + o(p_{n-1}))} = \frac{b}{2} + o(1) \implies a_n \sim \frac{bn}{2}$

Тогда $p_n \sim \frac{2}{hn}$

$$\gamma_n = q_n - q_{n-1} = p_{n-1} - p_n = p_{n-1} - H(p_{n-1}) = \frac{bp_{n-1}^2}{2} + o(p_{n-1}^2) \sim \frac{bp_{n-1}^2}{2} \sim \frac{b}{2} \left(\frac{2}{bn}\right)^2 = \frac{2}{bn^2}$$

4.3. Цепи Маркова

Определение 4.5. У, не более чем счётное множество - фазовое пространство

 (Ω, \mathcal{F}, P) - вероятностное пространство, $\xi_n: \Omega \to Y$ - случайная величина, такая, что $P(\xi_n = a_n | \xi_{n-1} = a_{n-1}, \dots, \xi_0 = a_0) = P(\xi_n = a_n | \xi_{n-1} = a_{n-1}) \, \forall a_0, a_1, \dots, a_n \in Y$

Такая последовательность ξ_n - цепь Маркова

Замечание. То есть ξ_n зависит только от ξ_{n-1}

Пример. 1. Случайное блуждание по \mathbb{Z}

$$P(\xi_n = \xi_{n-1} + 1) = p$$

$$P(\xi_n = \xi_{n-1} - 1) = 1 - p$$

2. Прибор, который бывает в двух состояниях - работает и не работает.

Замечание. $\pi_0 = P_{\xi_0}$ - начальное распределение

 $p_n(a,b) = P(\xi_n = b | \xi_{n-1} = a)$ - вероятностости переходов. Этот набор данных однозначно определяет все распределения

Определение 4.6. Цепь Маркова называется однородной, если $p_n(a,b)$ не зависят от n.

То есть вероятности переходов не зависят от времени

Обозначение. $p_n(a,b) = p_{ab}$

Замечание. Интерпретация: есть частица, которая бегает по фазовому пространству. И мы в каждый момент фиксируем место, где находится частица.

Определение 4.7. Траектория: $\xi_0 = a_0, \xi_1 = a_1, \dots, \xi_n = a_n$

Теорема 4.5. $P(\xi_0 = a_0, \dots, \xi_n = a_n) = \pi_0(a_0) p_{a_0 a_1} p_{a_1 a_2} \dots p_{a_{n-1} a_n}$

Доказательство. Индукция по n

- 1. База индукция определение π_0
- 2. Переход: $n-1 \rightarrow n$

$$\underbrace{P(\xi_0 = a_0, \dots, \xi_n = a_n)}_{=p(\xi_n = a_n | \xi_{n-1} = a_{n-1}, \dots, \xi_0 = a_0) \cdot P(\xi_{n-1} = a_{n-1}, \dots, \xi_0 = a_0)}_{=p(\xi_n = a_n | \xi_{n-1} = a_{n-1})} \cdot \pi_0(a_0) p_{a_0 a_1} \dots p_{a_{n-2} a_{n-1}}}_{=p_{a_{n-1} a_n}}$$

Теорема 4.6. Пусть $\pi_0: Y \to [0,1],$ т.ч. $\sum_{y \in Y} \pi_0(y) = 1, p: Y \times Y \to [0,1],$ т.ч. $\sum_{y \in Y} p_{ay} = 1 \, \forall \, a \in Y$

Тогда существует такое пространство (Ω, \mathcal{F}, P) и последовательность $\xi_n : \Omega \to Y$, такая, что ξ_n цепь Маркова с начальным распределением π_0 и вероятностью перехода p_{ab}

Обозначение. $\pi_n = P_{\xi_n}$ и P - матрица $(p_{ab})_{a,b\in Y}$

Теорема 4.7. $\pi_n = \pi_0 P^n$

Доказательство. Индукция по n. Переход $n-1 \to n$

$$\pi_n(b) = P(\xi_n = b) = \sum_{y \in Y} P(\xi_n = b | \xi_{n-1} = y) \cdot P(\xi_{n-1} = y) = \sum_{y \in Y} p_{yb} \pi_{n-1}(y)$$

То есть $\pi_n = \pi_{n-1} P$

Обозначение. $p_{ab}(n)=P(\xi_{n+k}=b|\xi_k=a)$ - вероятность перехода за n шагов

Определение 4.8. $\pi:Y\to [0,1]$ - распределение на Y, если $\sum\limits_{y\in Y}\pi(y)=1$

Определение **4.9.** π - стационарное распределение для цепи Маркова, если $\pi=\pi P$

Пример. Симметричное случайное блуждание на \mathbb{Z} , то есть $p=\frac{1}{2}$

Пусть π - стационарное распределение для этого блуждания

Тогда $\frac{1}{2}\pi(n-1) + \frac{1}{2}\pi(n+1) = \pi(n) \iff \pi(n) - \pi(n-1) = \pi(n+1) - \pi(n)$, то есть разность $\alpha = \pi(n) - \pi(n-1)$ не зависит от n

- 1. $\alpha > 0$, то $\pi(n) = n\alpha + \pi(0) \to +\infty$, так не бывает
- 2. $\alpha < 0$, то $\pi(n) = n\alpha + \pi(0) \to -\infty$, так тоже не бывает
- 3. $\alpha = 0$ и $\pi = const$, но так тоже не бывает

Теорема 4.8. Эргодическая теорема Маркова

 ξ_n - конечная цепь Маркова и $p_{ab}>0\,\forall\,a,b\in Y$

Тогда существует единственное стационарное распределение и $\pi(b) = \lim_{n\to\infty} p_{ab}(n)$

Более того, $|\pi(b) - p_{ab}(n)| \leq cq^n$, где $q \in (0,1)$

Доказательство. Доказательство с использованием теоремы Банаха о сжатии из матанализа

d - количество элементов в Y. Рассмотрим \mathbb{R}^d с нормой $||x|| = |x_1| + \ldots + |x_d|$ - полное пространство

$$S = \{x \in \mathbb{R}^d : ||x|| = 1, x_1, x_2, \dots, x_d \geqslant 0\}$$
 - замкнутое подмножество \mathbb{R}^d - полное

$$T\,:\,S o S$$
 и $T(x)=x^TP,\,\delta=\min_{a,b\in Y}p_{ab}>0$

Проверяем, что T - сжатие с $\lambda = 1 - d\delta$

$$||T_x - T_y|| \stackrel{z = x - y}{=} ||T_z|| = \sum_{j=1}^d |(T_z)_j| = \sum_{j=1}^d \left| \sum_{k=1}^d z_k p_{kj} \right| = \sum_{j=1}^d \left| \sum_{k=1}^d z_k (p_{kj} - \delta) + \delta \sum_{k=1}^d z_k \right| \leqslant \sum_{j=1}^d \sum_{k=1}^d |z_k| (p_{kj} - \delta)$$

$$\delta) = \sum_{k=1}^{d} |z_k| \sum_{j=1}^{d} \underbrace{(p_{kj} - \delta)}_{=1 - \delta d = \lambda} = \lambda \sum_{k=1}^{d} |z_k| = \lambda ||x - y||$$

Замечание. Пусть ξ_n - конечная цепь Маркова, $m \in \mathbb{N}$, т.ч. $p_{ab}(m) > 0 \, \forall a,b \in Y$

Тогда существует единственное стационарное распределение

Определение 4.10. Состояние *b* достижимо из a, если $\exists n \in \mathbb{N}$, т.ч. $p_{ab}(n) > 0$

Определение 4.11. Состояния a и b сообщающиеся, если a достижимо из b, а b достижимо из a

Определение 4.12. Состояние a существенное, если $\forall b$, достижимого из a - состояния a и bсообщающиеся

Обозначение. $f_a(n) = P(\xi_n = a | x_{n-1} \neq a, \xi_{n-2} \neq a, \dots, \xi_1 \neq a, \xi_0 = a)$ - вероятность, стартовав из a, впервые вернуться назад на n-ном шаге.

$$F_a = \sum\limits_{n=1}^{\infty} f_a(n)$$
 - вероятность возврата назад в a

Определение 4.13. a - возвратное состояние, если $F_a = 1$

Определение 4.14. a - нулевое состояние, если $p_{aa}(n) \to 0$

Теорема 4.9. Критерий возвратности

$$a$$
 - возвратное \iff $(*) = P_a = \sum_{i=1}^{\infty} p_{aa}(n)$ расходится

И если a не возвратное, то $F_a = \frac{P_a}{1+P_a}$

Лемма. $c_n \geqslant 0$ и $\sum_{n=0}^{\infty} c_n = +\infty$. Тогда $\lim_{x \to 1^{-}} \sum_{n=0}^{\infty} c_n x^n = +\infty$

Доказательство. Берём
$$n$$
, т.ч. $\sum_{k=0}^{n} c_k > A$, а $\sum_{k=1}^{n} \to_{x \to 1-} \sum_{n=0}^{n} c_k$. Тогда $\sum_{k=0}^{n} c_k x^k > A-1$

при х близких к 1

Доказательство. Теоремы

Давайте считать, что $p_{aa}(0) = 1$ и $f_a(0) = 0$

$$\mathcal{F}(z) = \sum_{n=0}^{\infty} f_a(n) z^n$$
, сходится при $|z| \leqslant 1$ $\mathcal{P}(z) = \sum_{n=0}^{\infty} p_{aa}(n) z^n$, сходится при $|z| < 1$

$$\mathcal{P}(z) = \sum_{n=0}^{\infty} p_{aa}(n)z^n$$
, сходится при $|z| < 1$

$$p_{aa}(n) = \sum_{k=0}^n f_a(k) p_{aa}(n-k)$$
 - верно при $n\geqslant 1$

Тогда $\mathcal{P}(z) = \mathcal{F}(z)\mathcal{P}(z)$ - почти верное равенство, надо ещё подкорректировать при z^0 . Получим $\mathcal{P}(z) = \mathcal{F}(z)\mathcal{P}(z) + 1 \implies \mathcal{F}(z) = \frac{\mathcal{P}(z) - 1}{\mathcal{P}(z)}$. Давайте устремим $z \to 1$

$$\underbrace{\lim_{z \to 1^{-}} \mathcal{F}(z)}_{=F_{a}} = \lim_{z \to 1^{-}} \frac{\mathcal{P}(z) - 1}{\mathcal{P}(z)} \stackrel{\text{если (*)}}{=} \stackrel{\text{сходится}}{=} \frac{P_{a}}{P_{a} + 1}.$$

A если расходится, то смотрим на $\underbrace{(1-\mathcal{F}(z))}_{\to 1-F_a}\underbrace{\mathcal{P}(z)}_{\to 1+P_a}=1$. Отсюда получаем, что $F_a=1$

Cледствие. Если a не возвратное $\implies a$ - нулевое

Теорема 4.10. Теорема солидарности

а и в сообщающиеся состояния

Тогда они возвратны/не возвратны (нулевые/не нулевые) одновременно

Доказательство. a и b сообщающиеся, значит $\exists j, k \in \mathbb{N} : p_{ab}(j) > 0$ и $p_{ba}(k) > 0$

$$p_{aa}(n+j+k) \geqslant p_{ab}(j)p_{bb}(n)p_{ba}(k) \text{ M } \sum_{n=1}^{\infty} p_{aa}(n+j+k) \geqslant p_{ab}(j)p_{ba}(k) \sum_{n=1}^{\infty} p_{bb}(n)$$

Отсюда всё следует, потому что:

Если $p_{aa}(n+j+k) \rightarrow 0$, то $p_{bb}(n) \rightarrow 0$

Теорема 4.11. ЗБЧ для цепей Маркова

 $\varepsilon > 0$ и цепь удовлетворяет условию теоремы Маркова, π - стационарное распределение Тогда

1.
$$P\left(\left|\frac{\nu_a(n)}{n} - \pi(a)\right| \geqslant \varepsilon\right) \to 0$$

2.
$$P\left(\left|\frac{\nu_{ab}(n)}{n} - \pi(a)p_{ab}\right| \geqslant \varepsilon\right) \to 0$$

3десь $\nu_a(n)$ - количество значений $\xi_1,\ldots,\xi_n,$ равных a

 $u_{ab}(n)$ - количество пар ab на соседних позициях

Доказательство. Пусть $\eta_k = \begin{cases} 1, & \text{если } \xi_k = a \\ 0, & \text{иначе} \end{cases}$

$$ilde{\eta_k} = egin{cases} 1, & \text{если } \xi_k = a \text{ и } \xi_{k+1} = b \\ 0, & \text{иначе} \end{cases}$$

Тогда
$$\nu_a(n) = \eta_1 + \ldots + \eta_n$$
 и $\nu_{ab}(n) = \tilde{\eta_1} + \ldots + \tilde{\eta_n}$ Посмотрим на $\mathbb{E}\eta_k = P(\xi_k = a) = \sum_{y \in Y} \pi_0(y) \underbrace{p_{ya}(k)}_{\to \pi(a)} \to \pi(a)$

Значит
$$\mathbb{E}^{\frac{\nu_a(n)}{n}} = \frac{1}{n} \sum_{n=1}^n \mathbb{E} \eta_k \to \pi(a)$$

По аналогии считаем для второй ситуации:

$$\mathbb{E}\tilde{\eta_k} = P(\xi_k = a, \xi_{k+1} = b) = \sum_{y \in Y} \pi_0(y) \underbrace{p_{ya}}_{\to \pi(a)} (k) p_{ab} \to \pi(a) p_{ab}$$

$$\mathbb{E}^{\frac{\eta_{ab}(n)}{n}} = \frac{1}{n} \sum_{k=1}^{n} \mathbb{E} \tilde{\eta_k}$$

Пишем Чебышёва:
$$P\left(\left|\frac{\nu_a(n)}{n} - \mathbb{E}\frac{\nu_a(n)}{n}\right| \geqslant \varepsilon\right) \leqslant \frac{\mathbb{D}\left(\frac{\nu_a(n)}{n}\right)}{\varepsilon^2} = \frac{\mathbb{D}\nu_a(n)}{\varepsilon^2 n^2}$$

$$\mathbb{D}\nu_a(n) = \mathbb{D}(\sum_{k=1}^n \eta_k) = \underbrace{\sum_{k=1}^n \mathbb{D}\eta_k}_{\leq n} + 2 \underbrace{\sum_{i < j} cov(\eta_i, \eta_j)}_{\leq n}$$

Давайте как-то оценим ковариацию:

$$cov(\xi_i, \xi_j) = \mathbb{E}(\eta_i, \eta_j) - \mathbb{E}\eta_i \mathbb{E}\eta_j$$

Здесь
$$\mathbb{E}(\eta_i \eta_j) = P(\xi_i = a, \xi_j = a) = \sum_{y \in Y} \pi_0(y) \underbrace{p_{ya}(i)}_{=\pi(a) + \mathcal{O}(\lambda^i)} \underbrace{p_{aa}(j-i)}_{\pi(a) + \mathcal{O}(\lambda^j)} = \pi^2(a) + \mathcal{O}(\lambda^i) + \mathcal{O}(\lambda^{j-i}) + \mathcal{O}(\lambda^{j-i})$$

 $\mathcal{O}(\lambda^i)$

$$\mathbb{E}\eta_i = P(\xi_i = a) = \sum_{y \in Y} \pi_0(y) \underbrace{p_{ya}(i)}_{\pi(a) + \mathcal{O}(\lambda^i)} = \pi(a) + \mathcal{O}(\lambda^i)$$

Мы поняли, что $cov(\eta_i,\eta_j)=\mathcal{O}(\lambda^i)+\mathcal{O}(\lambda^{j-i})$ и эти ковариации надо просуммировать

$$\sum_{i < j} cov(\eta_i, \eta_j) = \sum_{i < j} (\mathcal{O}(\lambda^i) + \mathcal{O}(\lambda^{j-i})) = \mathcal{O}(n)$$

Осталось заметить, что
$$\left\{ \left| \frac{\nu_a(n)}{n} - \pi(a) \right| \geqslant \varepsilon \right\} \subset \left\{ \left| \frac{\nu_a(n)}{n} - \mathbb{E} \frac{\nu_a(n)}{n} \right| \geqslant \frac{\varepsilon}{2} \right\}.$$

Мы поностью доказали первый пункт, во втором аналогично оценивается дисперсия

4.4. Случайные блуждания

Теорема 4.12. Рассмотрим блуждание по прямой

Блуждание возвратно $\iff p = \frac{1}{2}$

Доказательство. Возвратность $\iff \sum_{n=1}^{\infty} p_{00}(n) = +\infty$

$$p_{00}(2n-1) = 0$$

$$p_{00}(2n) = p^n (1-p)^n \binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}} (p(1-p))^n$$

Если $p \neq \frac{1}{2}$, то 4p(1-1p) < 1 и $p_{00}(2n) \leqslant C(4p(1-p))^n$ - сходящаяся геометрическая прогрессия

Если
$$p=\frac{1}{2},$$
 то $p_{00}(n)\sim\frac{1}{\sqrt{\pi n}}\implies$ ряд расходится

Замечание. Симметричное блуждание по \mathbb{Z} . Возьмём η_k независимые одинаково распределённые случайные величины, т.ч. $P(\eta_k = a) = P(\eta_k = -a)$ и $\xi_n = \eta_1 + \ldots + \eta_n$

Доказательство. Если η_1 имеет матожидание, то блуждание возвратно

Доказательство. G - производящая функция для η_1 . То есть $G(z) = \sum_{k \in \mathbb{Z}} P(\eta_1 = k) z^k$

 $G_{\xi_n}(z) = (G(z))^n$. Нас интересует $p_{00}(n) = P(\xi_n = 0)$ - коэффициент при z^0 в G_{ξ_n} - подставить 0 в ряд Лорана не можем. Зато умеем считать вычет:

$$p_{00}(n) = \frac{1}{2\pi i} \int_{|z|=1} \frac{G^n(z)}{z} dz$$

$$\sum_{n=0}^{\infty} p_{00}(n)x^n = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{G^n(z)x^n}{z} dz \stackrel{?}{=} \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{1}{z} \sum_{n=0}^{\infty} x^n G^n(z) dz = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{dt}{1-xG(e^{it})} = \frac{1}{\pi} \int_{0}^{\pi} \frac{dt}{1-xG(e^{it})} \stackrel{*}{=} \frac{1}{1-xG(e^{it})}$$

$$\frac{1}{\pi} \int_0^{\pi} \frac{dt}{1 - x + o(xt)} \geqslant \frac{1}{\pi} \int_0^{\pi} \frac{dt}{1 - x + xt} = \frac{1}{\pi} \frac{\ln(1 - x + xt)}{x} \bigg|_{t=0}^{t=\pi} \to +\infty$$

$$(*)\,:\,G(1+s)=G(1)+G'(1)\cdot s+o(s)=1+o(s).$$
 Тогда $G(e^{it})=1+o(e^{it}-1)=1+o(t)$

Замечание. Все состояния нулевые

$$\underbrace{p_{00}(n)}_{?:\to 0} = \frac{1}{2\pi i} \int_{|z|=1}^{\int \frac{G^n(z)}{z}} dz \to \frac{1}{2\pi i} \int_{|z|=1}^{\int \frac{\lim_{n\to\infty} G^n(z)}{z}} dz$$

$$|G(z)| = \left| \sum_{n \in \mathbb{Z}} P(\eta = n) z^n \right| \le \sum_{n \in \mathbb{Z}} P(\eta = n) |z|^n = \sum_{n \in \mathbb{Z}} P(\eta = n) = 1$$

$$\left|\sum P(\eta=n)e^{int}\right| = \sum P(\eta=n)$$

Если $P(\eta=n)>0$ и $P(\eta=k)>0$, то $\arg e^{int}=\arg e^{ikt}$. То есть $nt=kt+2\pi m\implies t=2\pi\frac{m}{n-k}\in\pi\mathbb{Q}$ - счётное множество. Значит множество точек, в которых знак нестрогий - счётно.

Значит $G^n(z) \to 0$ почти везде

Теорема 4.13. Теорема Пойя о возвращении

Рассматриваем решётку \mathbb{Z}^d , вероятность перейти в соседние узлы $\frac{1}{2d}$, то есть аналог случайного блуждания на прямой

Такое блуждание возвратно $\iff d \leqslant 2$

Доказательство. 1. d = 1 обсуждали

2. d=2. По критерию возвратности, нам достаточно доказать, что $\sum_{n=1}^{\infty} p_{00}(n) = +\infty$

 $p_{00}(n) = 0$, если n нечётное.

Повёрнем оси на 45°. Исходные оси (x, y), а повёрнутые (x', y')

To есть
$$P(x'=x'+1,y'=y'+1) = P(x=x+1) = \frac{1}{4} = P(x'=x'+1) \cdot P(y'=y'+1)$$

$$P(x' = x' + 1) = P(x = x + 1) + P(y = y - 1) = \frac{1}{2}$$

$$P(y' = y + 1) = \frac{1}{2}$$

То есть блуждание проекций на оси x' и y' независимы. Значит $p_{00}(n) = \left(\binom{2n}{n} \cdot \frac{1}{2^{2n}}\right)^2 \sim \left(\frac{1}{\sqrt{\pi n}}\right)^2 = \frac{1}{\pi n}$ - а такой ряд сходится

3. d = 3

Если n нечётно, то всё ещё $p_{00}(n) = 0$

По каждой координате мы делаем одинаковое число шагов в обоих направлениях:

$$p_{00}(2n) = \sum_{i+j \leqslant n} {2n \choose i,i,j,j,n-i-j,n-i-j} \cdot \frac{1}{6^{2n}} = \sum_{i+j \leqslant n} \frac{(2n)!}{(i!j!(n-i-j)!)^2} \cdot \frac{1}{6^{2n}} = {2n \choose n} \sum_{i+j \leqslant n} \left(\frac{n!}{i!j!(n-i-j)!} \right)^2 \cdot \frac{1}{6^{2n}} = \stackrel{*}{\leqslant} \frac{{2n \choose n}}{\frac{{2n \choose n}}{6^{2n}}} \cdot 3^n \cdot \max \left(\frac{n}{i,j,n-i-j} \right)$$

При этом
$$\sum_{i+j \le n} \left(\frac{n!}{i!j!(n-i-j)!} \right) = (1+1+1)^n = 3^n \implies \sum_{i+j \le n} \left(\frac{n!}{i!j!(n-i-j)!} \right)^2 \le \max \binom{n}{i!j!(n-i-j)!} \cdot \sum_{i+j \le n} \left(\frac{n!}{i!j!(n-i-j)!} \right) \sim (*)$$

Осталось разобраться с максимумом: $\max \sim 3^n \cdot \frac{3\sqrt{3}}{2\pi n}$ - упражнение

$$(*) \sim \frac{3\sqrt{3}}{2(\pi n)^{\frac{3}{2}}} \implies$$
 ряд сходится

4. Что делать с размерностью ≥ 4. Выберем первые 3 координаты и будем следить что происодит с проекцией на эти координаты. Если мы двигаемся по ним - происходит смещение. Если по другим, то мы стоим на месте. Эти остановки не бывают бесконечно долгими, то есть получили блуждание по 6 направлениям.

То есть проекция возвращается назад с вероятностью < 1, а значит и глобальное тоже не возвратное

Замечание. Случайное блуждание с отталкивающим экраном

Есть блуждание по прямой и где-то стоит отталкивающий экран. То есть если мы врезались в стенку, то отскочили от неё с вероятностью 1

Замечание. Случайное блуждание с поглащающим экраном

Есть блуждание по прямой, где-то стоит экран, попав в него, мы попадаем в петлю, из которой не выбираемся

Пример. Задача о разорении

A монет у первого, B монет в второго

Это случайное блуждание с поглащающими экранами. Блуждание по прямой, поглащающие экраны в точках -A и B. Между ними мы смещаемся с вероятностями p и q=1-p

 $\beta_k(x)$ - вероятность оказаться в B через k шагов, если сейчас наша фишка находится в x

Переходы:
$$x \xrightarrow{p} x + 1$$
, $x \xleftarrow{q} x - 1$

То есть
$$\beta_k(x) = p\beta_{k-1}(x+1) + q\beta_{k-1}(x-1)$$

A ещё
$$\beta_k(x) \leqslant \beta_{k+1}(x) \leqslant 1$$

Пусть
$$\beta(x) = \lim_{k \to \infty} \beta_k(x)$$

Тогда
$$\beta(x)=p\beta(x+1)+q\beta(x-1)$$
 - рекуррента. А ещё $\beta(B)=1$ и $\beta(-A)=0$

Общее решение $pt^2-t+q=0,$ здесь корни 1 и $\frac{q}{p}$

Тогда
$$\beta(x) = a + b \cdot \left(\frac{q}{p}\right)^x$$

$$\beta(-A) = a + b \left(\frac{q}{p}\right)^{-A} \implies a = -b \left(\frac{q}{p}\right)^{-A}$$

$$\beta(B) = a + b \left(\frac{q}{p}\right)^B = b \left(\frac{q}{p}\right)^B - b \left(\frac{q}{p}\right)^{-A}$$
, откуда a и b выражаются

4.5. Процесс восстановления

Определение 4.15. ξ_1, ξ_2, \ldots - неотрицательные, одинаково распределённые независимые случайные величины

$$S_0 = 0, S_n = \xi_1 + \xi_2 + \ldots + \xi_n$$

 ξ_i - время работы прибора i, после его поломки, его мнгновенно меняют на следующий

 $\Phi(t) = P(S_n \leqslant t)$ - функция распределения для S_n

 $\nu(t)$ - количество приборов, использованных на момент времени t. То есть $\nu(t)=n,$ если $S_{n-1}\leqslant t < S_n$

$$P(\nu(t) = n) = P(S_{n-1} \le t < S_n) = \Phi_{n-1}(t) - \Phi_n(t)$$

Функция восстановления $\mathcal{N}(t) = \mathbb{E}\nu(t)$

Теорема 4.14. $\mathcal{N}(t) = \sum_{n=1}^{\infty} \Phi_n(t)$, если ряд в правой части сходится

Доказательство. $\mathcal{N}(t) = \mathbb{E}\nu(t) = \sum_{n=1}^{\infty} nP(\nu(t)=n) = \sum_{n=1}^{\infty} n(\Phi_{n-1}(t)-\Phi_n(t))$ - нужно понять, что это правая часть в утвеждении теоремы

Смотрим на частичную сумму: $\sum_{n=1}^{m} n(\Phi_{n-1} - \Phi_n) = (\Phi_0 - \Phi_1) + 2(\Phi_1 - \Phi_2) + \ldots + m(\Phi_{m-1} - \Phi_m) = \Phi_0 + \Phi_1 + \ldots + \Phi_{m-1} + \underbrace{m\Phi_m}_{\stackrel{?}{\to} 0}$

Если ряд $\sum_{n=1}^{\infty} \Phi_n(t)$ сходится, тогда $\underbrace{\Phi_n + \Phi_{n+1} + \ldots + \Phi_{2n}}_{\geqslant n\Phi_{2n}} \to 0$, а ещё $\Phi_{n+1} \leqslant \Phi_n$. А значит $\Phi_n = o\left(\frac{1}{n}\right)$

Дальше все ξ_n будут целозначные

Замечание.
$$\Phi_n(t) = \sum\limits_{k \leq t} P(S_n = k)$$

$$\mathcal{N}(t) = \sum_{n=1}^{\infty} \Phi_n(t) = \sum_{n=1}^{\infty} \sum_{k \leqslant t} P(S_n = k) = \sum_{k \leqslant t} \underbrace{\sum_{n=1}^{\infty} P(S_n = k)}_{=q_k}$$

Пример. Прибор либо работает единицу времени с вероятностью p, либо мнгновенно ломается с вероятностью q=1-p. Считаем, что 0

$$P(S_n = k) = \underbrace{\binom{n}{k}}_{\leqslant n^k} p^k q^{n-k} \leqslant q^n \left(\frac{np}{q}\right)^k$$

Тогда
$$q_k = \sum_{n=1}^{\infty} P(S_n = k) \leqslant \sum_{n=1}^{\infty} q^n \left(\frac{np}{q}\right)^k = \frac{q}{1-q} \left(\frac{np}{q}\right)^k = n^k \left(\frac{p}{q}\right)^{k-1} < +\infty$$

Теорема 4.15. Если $P(\xi_1 = 0) < 1$, то $\mathcal{N}(t)$ конечно

Доказательство. $\{\xi_1=0\}=\bigcap_{m=1}^{\infty}\{\xi_1\leqslant\frac{1}{m}\}\implies P(\xi_1=0)=\lim_{m\to\infty}P(\xi_1\leqslant\frac{1}{m})\implies \exists\, m:\ q=P(\xi_1\leqslant\frac{1}{m})<1$ - потому что предел <1

$$ilde{\xi_k} = \begin{cases} 0, & \text{если } \xi_k \leqslant \frac{1}{m} \text{ - это с вероятностью } q \\ 1, & \text{если } \xi_k > \frac{1}{m} \end{cases}$$

Поэтому из примера $\tilde{\mathcal{N}}(t)$ конечно

$$\tilde{\xi_k} \leqslant m\xi_k \implies \tilde{S_n} \leqslant mS_n \implies P(\tilde{S_n} \leqslant t) \geqslant P(S_n \leqslant \frac{t}{m}) \implies \tilde{\Phi_n}(t) \geqslant \Phi_n\left(\frac{t}{m}\right)$$

Значит
$$\mathcal{N}\left(\frac{t}{m}\right) = \sum_{n=1}^{\infty} \Phi_n\left(\frac{t}{m}\right) \leqslant \sum_{n=1}^{\infty} \tilde{\Phi_n}(t) = \tilde{\mathcal{N}}(t) < +\infty \implies \mathcal{N}(t)$$
 конечна при всех t

Определение 4.16. ξ имеет решётчатое распределение с шагом $h \geqslant 0$, если $\xi(\Omega) \subset a + h\mathbb{Z}$ для некоторого $a \in \mathbb{R}$, а для больших h это неверно

Замечание. Рассмотрим целочисленную случайную величину с шагом решётки 1.

Тогда $|G_{\xi}(z)| < 1$, если $|z| \leqslant 1$ и $z \neq 1$

$$|G_{\xi}(z)| = \left| \sum_{n=0}^{\infty} P(\xi = n) z^n \right| \le \sum_{n=0}^{\infty} P(\xi = n) |z^n| \le \sum_{n=0}^{\infty} P(\xi = n) = 1$$

Правое неравенство обращается в равенство, если |z| = 1

Левое неравенство обращается в равенство, если модуль суммы равен сумме модулей, то есть все z имеют один и тот же аргумент $\Longrightarrow z=e^{it}$ и $z^n=z^{int}$. Тогда $nt-mt=2\pi k \Longrightarrow n-m=\frac{2\pi}{t}\cdot k<\frac{2\pi}{t}\mathbb{Z}$, а так как $0< t<2\pi$, то мы получили решётку с h>1

Теорема 4.16. Теорема восстановления

$$\mathcal{N}(t+s) - \mathcal{N}(t) \to_{t\to\infty} \frac{S}{\mathbb{E}\xi_1}$$

Если:

- 1. ξ имеет нерешетчатое распределение
- 2. ξ имеет решетчатое распределение с шагом h и S=kh, где $k\in\mathbb{N}$

Доказательство. Доказываем лишь для целозначных случайных величин ξ_k , тогда можем считать, то h=1

Тогда достаточно доказать, что
$$\underbrace{\mathcal{N}(t+1)}_{=\sum\limits_{k < t+1} q_k} - \underbrace{\mathcal{N}(t)}_{=\sum\limits_{k < t} q_k} \to \frac{1}{\mathbb{E}\xi_1}$$

To есть нам надо доказать, что $q_k \to_{k \to \infty} \frac{1}{\mathbb{E}\xi_1}$

$$Q(z)=\sum_{k=0}^{\infty}q_kz^k$$
. Поймём, что $Q(z)=rac{1}{1-G(z)},$ где $G(z)$ - производящая функция для ξ_1

$$Q(z) = \sum_{k=0}^{\infty} q_k z^k = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} P(S_n = k) z^k = \sum_{n=0}^{\infty} \underbrace{\sum_{k=0}^{\infty} P(S_n = k) z^k}_{$$
производящая функция для S_n

при $|z| \leqslant 1$ и $z \neq 1$

Лемма. $q_n - q_{n-1} \to 0$

Доказательство. Производящая функция для $q_n - q_{n-1} = (1-z)Q(z) = \frac{1-z}{1-G(z)}$

Значит
$$q_n - q_{n-1} = \frac{1}{2\pi i} \int\limits_{|z|=r} \underbrace{\frac{1-z}{1-G(z)}}_{\text{непрерывна в }|z| \leqslant 1} \underbrace{\frac{dz}{z^{n+1}}} = \frac{1}{2\pi i} \int\limits_{|z|=1}^{1-z} \frac{1-z}{1-G(z)} \frac{dz}{z^{n+1}} = \frac{1}{2\pi} \int\limits_{0}^{2\pi} \underbrace{\frac{1-e^{it}}{1-G(e^{it})}}_{\text{непрерывна, ограничена}} e^{-int} dt$$

лемма Римана-Лебега

Лемма.
$$\sum_{k=0}^{n}q_{n-k}r_{k}=1,$$
 где $r_{k}=\sum_{j=k+1}^{\infty}P(\xi_{1}=j)$

Доказательство. $Q(z)^{\frac{1-G(z)}{1-z}} = \frac{1}{1-z}$

Посмотрим на коэффициенты при z^n в левой части равенства - это свёртка. То есть достаточно понять, что r_k появляются из $\frac{1-G(z)}{1-z}$

$$\frac{1-G(z)}{1-z} = \frac{G(1)-G(z)}{1-z} = \sum_{n=0}^{\infty} \frac{P(\xi_1 = n)(1-z^n)}{1-z} = \sum_{n=1}^{\infty} P(\xi_1 = n) \cdot (1+z+z^2+\ldots+z^{n-1}) = \sum_{k=0}^{\infty} r_k z^k \qquad \Box$$

Следствие. $q_n \leqslant \frac{1}{r_0}$

Выберем сходящуюся подпоследовательность $q_{k_m} \to_{m \to \infty} s \implies q_{k_m \pm l} \to_{m \to \infty} s$

Мы знаем, что
$$1=\sum\limits_{k=0}^{n}q_{n-k}r_{k}\geqslant\sum\limits_{k=0}^{N}q_{n-k}r_{k}\rightarrow s\sum\limits_{k=0}^{N}r_{k}\implies 1\geqslant s\sum\limits_{k=0}^{N}r_{k}\rightarrow s\mathbb{E}\xi_{1}\implies \frac{1}{\mathbb{E}\xi_{1}}\geqslant s$$

- 1. Если $\mathbb{E}\xi_1 = +\infty$, то $\sum_{k=1}^{\infty} r_k = \mathbb{E}\xi_1 = +\infty \implies \sum_{k=0}^{N} r_k$ сколь угодно большая, тогда s=0 Можно считать, что $s=\overline{\lim}q_k$, а ещё $q_k\geqslant 0 \implies \underline{\lim}q_k\geqslant 0 \implies \lim =0$
- 2. Если $\mathbb{E}\xi_1<+\infty$, тогда $\sum\limits_{k=1}^{\infty}r_k=\mathbb{E}\xi_1<+\infty\implies r_k\to 0\implies r_k$ ограничены, $r_k\leqslant M$

$$1 = \sum_{k=0}^{n} q_{n-k} r_k = \sum_{k=0}^{N} q_{n-k} r_k + \underbrace{\sum_{k=N+1}^{n} q_{n-k} r_k}_{M \sum_{k=N+1}^{n} r_k < \varepsilon M} < \varepsilon M + \sum_{k=0}^{N} q_{n-k} r_k \to_{n=k_m} \varepsilon M + s \sum_{k=0}^{N} r_k \leqslant \varepsilon M + \underbrace{\sum_{k=0}^{N} q_{n-k} r_k}_{M \sum_{k=N+1}^{n} r_k < \varepsilon M}$$

$$s\mathbb{E}\xi_1 \implies 1 \leqslant s\mathbb{E}\xi_1 \implies \underline{\lim} \geqslant \underline{\lim}_{\xi_1}$$

А ещё $\sum\limits_{k=0}^N q_{n-k}r_k \to s\sum\limits_{k=0}^N r_k \implies 1\geqslant s\sum\limits_{k=0}^N r_k \to s\mathbb{E}\xi_1 \implies \frac{1}{\mathbb{E}\xi_1}\geqslant s$ - получили неравенство и на верхрний предел

Credcmeue. $rac{\mathcal{N}(t)}{t}
ightarrow rac{1}{\mathbb{E}\xi_1}$

Доказательство. Теорема Штольца

Замечание. Парадокс времени восстановления

$$P(\xi_{\nu(t)} > x) \geqslant P(\xi_1 > x)$$