

Filière SMI S3

Cours d'électronique Numérique

Chapitre 3: Circuits Combinatoires

Pr. A. LAHRECH

Année 2019-2020

1

Circuits Combinatoires

Filière SMI S3

Introduction

Demi-Additionneur/Additionneur complet

Demi-soustracteur/Soustracteur complet

Comparateur binaire

Multiplexeur/ Démultiplexeur

Encodeur / Décodeur

FPK Filière SMI S3

Circuit Combinatoire

Un circuit combinatoire est un circuit dont l'état des sorties dépend uniquement de la combinaison d'état des entrées.

La conception d'un circuit combinatoire passes par les étapes suivantes

- ♣ Lecture et analyse du cahier des charges et définition des entres/sorties
- ♣ Ecriture sous forme canonique ou représentation par table de vérité
- ♣ Simplification des différentes sorties
- ♣ Synthèse ou portes logiques et réalisation du logigramme

3

Circuits Combinatoires

Filière SMI S3

demi additionneur (Half-Adder)

Un demi additionneur est un circuit combinatoire qui permet de réaliser l'addition de deux bits figurés par les variables E1 et E2. Le résultat de l'addition est la variable S et éventuellement une retenue R (Carry).

Pour réaliser le schéma logique de ce circuit on doit dresser sa table de vérité.

En binaire l'addition sur un seul bit se fait de la manière suivante :

$$\begin{cases}
0+0=00 \\
0+1=1+0=01 \\
1+1=10
\end{cases}$$

FPK Filière SMI S3

demi additionneur (Half-Adder)

La table de vérité associée :

E ₁	E_2	R (MSB)	S(LSB)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Equation booléenne des sorties

Les équations booléennes qui accompagnent cette table de vérité sont :

$$R = E_1 E_2$$
 \Rightarrow opérateur ET

$$S = \overline{E}_1 E_2 + E_1 \overline{E}_2 = E_1 \oplus E_2$$

⇒ opérateur OU Exclusif

Logigramme (Schéma logique) d'un demi additionneur

5

Circuits Combinatoires

Filière SMI S3

demi additionneur (Half-Adder)

Schéma logique à l'aide des portes NAND

Limitations

Un demi-additionneur ne peut réaliser l'addition de deux nombres à plusieurs bits. Pour éliminer cette difficulté, il faut un circuit à trois entrées : c'est un additionneur complet

FPK Filière SMI S3

additionneur complet (Full Adder)

Pour effectuer une addition de deux nombres binaires de n bits, on additionne successivement les bits du même poids en tenant compte de la retenue de l'addition précédente comme le montre l'exemple suivant :

Il faut donc concevoir un additionneur complet qui permet de réaliser l'addition des bits a_n et b_n en plus de la retenue r_{n-1} de l'addition précédente.

7

Circuits Combinatoires

FPK

Filière SMI S3

additionneur complet à un bit

L'additionneur complet à un bit possède 3 entrées deux sorties :

Avec:

 r_{n-1} : retenue entrante

 r_n : retenue sortante

 S_n : somme des bits a_n et b_n

Réalise l'addition des bits a_n et b_n en prenant en compte la retenue d'entrée r_{n-1} et en conservant la retenue de sortie r_n

FPK Filière SMI

additionneur complet à un bit

Table de vérité associée :

a _n	b _n	r _{n-1}	r _n	S _n
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Tables de Karnaugh

Table de la variable S_n

S_n		$a_n b_n$			
		00	01	11	10
r _{n-1}	0	0	1	0	1
	1	1	0	1	0

Table de la variable r_n

r _n		a _n b _n			
		00	01	11	10
r _{n-1}	0	0	0	1	0
	1	0	1		

9

Circuits Combinatoires

Filière SMI S3

additionneur complet à un bit

Equation booléenne des sorties

À partir des tables de Karnaugh précédentes nous obtenons les équations booléennes suivantes

$$S_n = \overline{a}_n \overline{b}_n r_{n-1} + \overline{a}_n b_n \overline{r}_{n-1} + a_n \overline{b}_n \overline{r}_{n-1} + a_n b_n r_{n-1}$$

$$r_n = \overline{a}_n b_n r_{n-1} + a_n \overline{b}_n r_{n-1} + a_n b_n \overline{r}_{n-1} + a_n b_n r_{n-1}$$

La simplification des équations de sortie donne :

$$S_{n} = \overline{a}_{n} (\overline{b}_{n} r_{n-1} + b_{n} \overline{r}_{n-1}) + a_{n} (\overline{b}_{n} \overline{r}_{n-1} + b_{n} r_{n-1})$$

$$S_{n} = \overline{a}_{n} (b_{n} \oplus r_{n-1}) + a_{n} (\overline{b}_{n} \oplus r_{n-1}) = a_{n} \oplus b_{n} \oplus r_{n-1}$$

$$r_{n} = r_{n-1} (\overline{a}_{n} b_{n} + a_{n} \overline{b}_{n}) + a_{n} b_{n} (r_{n-1} + \overline{r}_{n-1}) = r_{n-1} (a_{n} \oplus b_{n}) + a_{n} b_{n}$$

La sortie S_n est réalisée par la mise en cascade de deux opérateurs OU exclusif La sortie r_n nécessite les opérateurs : OU exclusif, OU et ET.

FPK Filière SMI S3

additionneur complet à un bit

Logigramme d'un Additionneur Complet à un bit

Exercice: Réaliser un additionneur complet à un bit en utilisant deux demi-additionneurs

Circuits Combinatoires

11

FPK

Filière SMI S3

additionneur complet à un bit

Réalisation d'un additionneur complet à un bit à l'aide de deux demi-additionneurs :

$$r_n = a_n b_n + r_{n-1} (a_n \oplus b_n)$$

$$S_n = a_n \oplus b_n \oplus r_{n-1}$$

Si on pose : $x = a_n \oplus b_n$ et $y = a_n b_n$

On obtient : $r_n = y + r_{n-1}.x$ et $S_n = x \oplus r_{n-1}$

x et y sont les sorties du premier demi-additionneur ayant comme entrées a_n et b_n

Si on pose : $z = x \oplus r_{n-1}$ et $T = r_{n-1}.x$

On obtient : $r_n = y + T$ et $S_n = z$

z et T sont les sorties du deuxième demi-additionneur ayant comme entrées x et $\mathbf{r}_{\text{n-1}}$

FPK Filière SMI S3

additionneur complet à un bit

Réalisation d'un additionneur complet à un bit à l'aide de deux demi-additionneurs :

Circuits Combinatoires

Filière SMI S3

Additionneur binaire à quatre bits

Un additionneur à 4 bits est un circuit qui permet de faire l'addition de deux nombres binaire A et B défini par 4 bits chacun : A=(a₂a₂a₁a₀) et B=(b₂b₂b₁b₀)

Le calcul de la somme nécessite donc quatre additionneurs complets

Réalisation sous ISIS

Réaliser sous ISIS un additionneur complet 4 bits à base des additionneurs complets 1 bits et relever sa table de vérité.

FPK Filière SMI S3

additionneur complet avec des circuits intégrés

Exemple de circuit intégré : l'additionneur 4 bits 74HC283

Brochage du circuit intégré 74HC283

Symbole logique du circuit 74HC283

15

Réaliser sous ISIS un additionneur complet 4 bits à base du circuit intégré 7483 puis tester le montage.

Circuits Combinatoires

FPK

Filière SMI S3

additionneur complet avec des circuits intégrés

Schéma logique du circuit intégré 74HC283

FPK Filière SMI S3

demi soustracteur

Un demi soustracteur effectue la différence $D=E_2-E_1$ de 2 bits ${\bf E_1}$ et ${\bf E_2}$ avec éventuellement, un report R

La table de vérité associée :

$\mathbf{E_1}$	E ₂	D	R
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	0

Equation booléenne des sorties

Les équations booléennes qui accompagnent cette table de vérité sont :

$$D = E_1 \overline{E}_2 - \overline{E}_1 E_2 = E_1 \oplus E_2$$

$$R = E_1 \overline{E}_2$$

17

Circuits Combinatoires

Filière SMI S3

Logigramme d'un demi-soustracteur

soustracteur complet à un bit (Full Subtractor)

Les variables de sortie D et R_n correspondent au résultat de la différence des trois variables d'entrée : $E_2 - (E_1 + R_{n-1})$, la variable de sortie R_n étant toujours un éventuel report;

FPK Filière SMI S3

soustracteur complet à un bit (Full Subtractor)

La table de vérité associée :

$\mathbf{E_1}$	$\mathbf{E_2}$	R_{n-1}	D	R _n
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

Tables de Karnaugh

Table de la variable S_n

D		E ₁ E ₂			
		00	01	11	10
R _{n-1}	0	0	1	0	1
	1	1	0	1	0

Table de la variable r_n

R_n		E ₁ E ₂			
		00	01	11	10
R _{n-1}	0	0	0	0	1
	1	1	0	1	1

19

Circuits Combinatoires

Filière SMI S3

soustracteur complet à un bit (Full Subtractor)

Equation booléenne des sorties

Les équations booléennes qui accompagnent la table de vérité du soustracteur complet sont :

$$D = \left(E_1 \overline{E}_2 + \overline{E}_1 E_2\right) \overline{R}_{n-1} + \left(\overline{E}_1 \overline{E}_2 + E_1 E_2\right) R_{n-1}$$

et

$$R_n = E_1 \overline{E}_2 + \left(\overline{E}_1 \overline{E}_2 + E_1 E_2\right) R_{n-1}$$

Soit encore:

$$D = E_1 \oplus E_2 \oplus R_{n-1}$$

$$R_n = E_1 \overline{E}_2 + \overline{(E_1 \oplus E_2)}.R_{n-1}$$

PK Filière SMI S3

soustracteur complet à un bit (Full Subtractor)

Réalisation d'un soustracteur complet à l'aide de deux demi-soustracteurs

21

Circuits Combinatoires

FPK

Filière SMI S3

Comparateur binaire

Un comparateur binaire est un circuit combinatoire qui permet de comparer deux mots binaires généralement notés A et B.

Il possède 3 sorties qui indiquent le résultat de la comparaison : • A < B

Les deux mots A et B doivent être codés de la même manière.

FPK Filière SMI S3

© Comparateur binaire à un seul bit

Table de vérité du comparateur à un seul bit :

En	trées	Sorties		
Α	В	S_s : $A>B$	S_e : $A=B$	<i>S_i: A<b< i=""></b<></i>
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Equation booléenne des sorties

$$S_{S} = A.\overline{B}$$

$$S_{i} = \overline{A}.B$$

$$S_{e} = \overline{A}\overline{B} + AB = \overline{A \oplus B} = \overline{S_{S} + S_{i}}$$

Logigramme du comparateur à un seul bit

Circuits Combinatoires

Filière SMI S3

Comparateur de 2 bits

Il permet de faire la comparaison entre deux nombres $A = (a_1 a_0)$ et $B = (b_1 b_0)$ chacun sur deux bits.

La démarche de comparaison est la suivante :

a_1,b_1	a_{0}, b_{0}	A > B	A = B	A < B
$a_1 > b_1$	×	1	0	0
$a_1 < b_1$	×	0	0	1
$a_1 = b_1$	$a_1 > b_1$	1	0	0
$a_1 = b_1$	$a_0 < b_0$	0	0	1
$a_1 = b_1$	$a_0 = b_0$	0	1	0

FPK Filière SMI S3

@ Comparateur de 2 bits (suite)

En se référant à la table de vérité suivante, on obtient les équations logiques des sorties

$$S_e = \left(\overline{a_1 \oplus b_1}\right)\left(\overline{a_0 \oplus b_0}\right)$$

$$S_S = a_1 \overline{b_1} + a_0 \overline{b_0} \left(\overline{a_1 \oplus b_1} \right)$$

$$S_i = \overline{a}_1 b_1 + \overline{a}_0 b_0 \left(\overline{a_1 \oplus b}_1 \right)$$

a ₁	\mathbf{a}_0	b ₁	\mathbf{b}_0	S _s	S _e	Si
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Circuits Combinatoires

Filière SMI S3

Comparateur 4 bits avec des circuits intégrés

Exemple de circuit intégré : le comparateur de 4 bits 74HC85

Brochage du circuit intégré 74HC283

Symbole logique du circuit 74HC283

26

Ce circuit dispose de 3 entrées notées A = B, A > B et A < B qui autorisent la mise en cascade de plusieurs circuits comparateurs du même type.

On peut ainsi comparer des nombres de 8, 12, 16 bits

FPK Filière SMI S3

♣ Schéma logique du comparateur à circuit intégrés : 74HC85

27

Circuits Combinatoires

Filière SMI S3

Comparateur 8 bits

En mettant en série deux comparateurs 7485, on peut comparer deux nombres de

Le premier circuit compare les poids faibles de A avec le poids faibles de B. Le résultat de cette comparaison est transmis aux entrées A < B, A = B et A > B du deuxième circuit.

FPK Filière SMI S3

Multiplexeur (Mux)

Un multiplexeur agit comme un interrupteur à pôle multiples. Il sélectionne une entrée choisie parmi Les *N* du circuit pour la faire apparaître à la sortie.

La sélection de l'entrée se fait par des lignes d'adressages (ou de sélection) qui répondent à un code binaire.

Un multiplexeur à N entrées de données exigerait n entrées de sélection avec

Ils existent des multiplexeurs à 2 entrées de données , 4 entrées de données , 8 entrées de données , 16 entrées de données , etc.

Circuits Combinatoires

FPK

Filière SMI S3

Multiplexeur à deux entrées de données

C'est un multiplexeur à deux entrée de données, donc à une entrée de sélection C

Table de vérité associée :

 $\begin{array}{c|cccc}
C & E_0 & E_1 & S \\
0 & & & E_0 \\
1 & & & E_1
\end{array}$

L'équation logique associée :

$$S = E_0 \overline{C} + E_1 C$$

- **↓** Lorsque C = 0 \Rightarrow $S = E_0$ et ceci quelle que soit l'entrée E1
- **↓** Lorsque C = 1 \Rightarrow $S = E_1$ et ceci quelle que soit l'entrée Eo

FPK Filière SMI S3

Multiplexeur à quatre entrées de données

C'est un multiplexeur à quatre entrées de données, donc à deux entrées de sélection.

Table de vérité associée :

Entrées o	le selection	Entrée sélectionnée
C ₁	C ₀	S
0	0	E ₀
0	1	E ₁
1	0	E ₂
1	1	E ₃

L'équation logique associée :

$$S = \overline{C_1}\overline{C_0}E_0 + \overline{C_1}C_0E_1 + C_1\overline{C_0}E_2 + C_1C_0E_3$$

31

Circuits Combinatoires

Filière SMI S3

Schéma logique du multiplexeur à 4 entrées de données

FPK Filière SMI S3

Multiplexeur 8 bits vers1

C'est un multiplexeur à 8 entrées de données, donc à 3 entrées de sélections

Table de vérité associée :

C ₂	C ₁	C ₀	S
0	0	0	E ₀
0	0	1	E ₁
0	1	0	E ₂
0	1	1	E ₃
1	0	0	E ₄
1	0	1	E ₅
1	1	0	E ₀ E ₁ E ₂ E ₃ E ₄ E ₅ E ₆ E ₇
1	1	1	E ₇

$$S = \overline{C}_2 \overline{C}_1 \overline{C}_0 E_0 + \overline{C}_2 \overline{C}_1 C_0 E_1 + \overline{C}_2 C_1 \overline{C}_0 E_2 + \overline{C}_2 C_1 C_0 E_3$$
$$+ C_2 \overline{C}_1 \overline{C}_0 E_4 + C_2 \overline{C}_1 C_0 E_5 + C_2 C_1 \overline{C}_0 E_6 + C_2 C_1 C_0 E_7$$

33

Circuits Combinatoires

FPK

Filière SMI S3

Multiplexeur 8 vers 1 à circuits intégrés : 74HC151

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION		
4, 3, 2, 1, 15, 14, 13, 12	I ₀ to I ₇	multiplexer inputs		
5	Y	multiplexer output		
6	Y	complementary multiplexer output		
7	Ē	enable input (active LOW)		
8	GND	ground (0 V)		
11, 10, 9	S ₀ , S ₁ , S ₂	select inputs		
16	V _{CC}	positive supply voltage		

Brochage et symbole du circuit intégré 74HC151

EN est une entrée supplémentaire dite de validation, elle permet :

- ♣ lorsqu'elle est mise à l'état o, de faire apparaître à la sortie l'état de la l'entrée correspondant à l'adresse sélectionnée;
- ♣ lorsqu'elle est mise à l'état 1, d'imposer un zéro à la sortie quelle que soit l'entrée sélectionnée.

FPK Filière SMI S3

⊕ Schéma logique du Multiplexeur à circuit intégré : 74HC151

35

Circuits Combinatoires

FPK

Filière SMI S3

Multiplexeur 8 vers 1 à circuits intégrés : 74HC151

Réaliser la fonction logique spécifiée dans le tableau ci-dessous en utilisant uniquement un multiplexeur 8 vers 1 à base du circuit 74HC151 .

C ₁	C ₀	S
0	0	0
0	1	1
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	0
	0 0 1 1 0	0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0

Réaliser ce schéma sous Isis et vérifier sa table de vérité

$$S = \overline{C}_2 \overline{C}_1 C_0 + \overline{C}_2 C_1 C_0 + C_2 \overline{C}_1 C_0 + C_2 \overline{C}_1 \overline{C}_0$$

FPK Filière SMI S3

Démultiplexeurs (DEMUX)

Le démultiplexeur permet de distribuer l'information présente à l'entrée vers l'une des 2ⁿ sorties. La sélection de la sortie se fait à l'aide de n lignes d'adressage.

Démultiplexeurs 1 vers 2 (DEMUX 1 vers 2)

Table de vérité associée :

_	
D	0
0	D
	0

$$S_0 = D\overline{C}$$
$$S_1 = DC$$

Les équations logique associée aux sorties sont :

Schéma logique du DEMUX à deux sortie

37

Circuits Combinatoires

Filière SMI S3

Démultiplexeurs 1 vers 4 (DEMUX 1 vers 4)

C'est un démultiplexeur à 4 sorties de données donc à deux entrées d'adressages.

Table de vérité associée :

C ₁	C ₀	S ₃	S ₂	S ₁	S ₀
0	0	0	0	0	D
0	1	0	0	D	0
1	0	0	D	0	0
1	1	D	0	0	0

$$\begin{vmatrix} S_0 = \overline{C_1} \overline{C_0} D \\ S_1 = \overline{C_1} C_0 D \end{vmatrix} \qquad \begin{vmatrix} S_2 = C_1 \overline{C_0} D \\ S_3 = C_1 C_0 D \end{vmatrix}$$

- ♣ la combinaison $C_1C_0 = 00$ permet de sélectionner la sortie S_0 ; l'entrée D est orientée vers la sortie S_0 .
- ♣ la combinaison C1C0=(01) permet de sélectionner la sortie S1; l'entrée est orientée vers la sortie S1. 38

♣ etc.

FPK Filière SMI S3

Schéma logique du démultiplexeurs 1 vers 4

<u>Application</u>: compléter le chronogramme de la sortie S_3 :

39

Circuits Combinatoires

Filière SMI S3

Les Décodeurs

Un décodeur n vers N est un circuit possédant n entrées et $N = 2^n$ sorties. Il active la sortie dont le numéro est donné en binaire sur ses entrées. Deux sorties ne peuvent donc être à l'état 1 en même temps.

$$\overline{A} \, \overline{B} \, \overline{C} \quad \Rightarrow \quad S_0 = 1$$

$$\overline{A} \, \overline{B} \, C \quad \Rightarrow \quad S_1 = 1$$

$$\vdots$$

$$ABC \quad \Rightarrow \quad S_7 = 1$$

Remarque: Certains décodeurs présentent une ou plusieurs entrées de validation; par exemple, une entrée de validation au niveau 1 permet au décodeur de fonctionner normalement; si elle est au niveau 0 le décodeur est bloqué au niveau 0 (toutes les sorties sont à l'état 0)

FPK Filière SMI S3

Décodeur binaire 2 vers 4

Aux deux variables d'entrée E_o, E_1 , ce décodeur fait correspondre quatre variables de sortie S_o , S_1 , S_2 , S_3

Sa table de vérité est la suivante :

В	Α	S ₀	S ₁	S ₂	S ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

A cette table on associe les équations logiques :

$$\overline{A}\overline{B}$$
 \Rightarrow $S_0 = 1$
 $\overline{A}B$ \Rightarrow $S_1 = 1$
 $A\overline{B}$ \Rightarrow $S_2 = 1$
 AB \Rightarrow $S_3 = 1$

41

Circuits Combinatoires

FPK

Filière SMI S3

Décodeur à trois entrées binaires (3 vers 8)

Aux trois variables d'entrée A,B,C ce décodeur fait correspondre 8 variables de sortie $\rm S_o$, $\rm S_1$, $\rm S_2$, $\rm S_3$,S $_4$, $\rm S_5$, $\rm S_6$, $\rm S_7$

$$S_{0} = \overline{A} \, \overline{B} \, \overline{C}$$

$$S_{1} = \overline{A} \, \overline{B} \, C$$

$$S_{2} = \overline{A} \, B \, \overline{C}$$

$$S_{3} = \overline{A} \, B \, C$$

$$S_{3} = \overline{A} \, B \, C$$

$$S_{4} = A \, \overline{B} \, \overline{C}$$

$$S_{5} = A \, \overline{B} \, \overline{C}$$

$$S_{6} = A \, \overline{B} \, \overline{C}$$

$$S_{7} = A \, B \, \overline{C}$$

$$S_{7} = A \, B \, \overline{C}$$

Sa table de vérité est la suivante :

A	В	С	S0	S1	S2	S3	S4	S5	S6	S7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

FPK Filière SMI S3

Décodeur DCB-afficheur à sept segments

Ce type de décodeur permet de convertir un code BCD 4 bits à l'entrée pour obtenir à la sortie un code permettant de représenter dix chiffres (de 0 à 9) et des lettres de l'alphabet. Ces symboles sont dessinés au moyen de sept segments lumineux qui sont des diodes électroluminescentes.

Exemple : pour afficher le chiffre $\bf 6$ (selon les indications de la table d'affichage) il faut éteindre les segments $\bf a$ et $\bf b$, les autres étant allumés.

Circuits Combinatoires

FPK

Filière SMI S3

Décodeur DCB-afficheur à sept segments (2)

Pour établir le schéma logique, la table de vérité est écrite en affectant le niveau 1 à chaque segment allumé, le niveau 0 à chaque segment éteint, d'où la table de vérité pour chacun des segments.

Chiffre decimal		Enti C		Ą		a		Sorti d	_	g		Afficheur 7-segment
0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	1	1	0	0	0	0	:
2	0	0	1	0	1	1	0	1	1	0	1	5
3	0	0	1	1	1	1	1	1	0	0	1	3
4	0	1	0	0	0	1	1	0	0	1	1	ų
5	0	1	0	1	1	0	1	1	0	1	1	Ġ
6	0	1	1	0	0	0	1	1	1	1	1	á
7	0	1	1	1	1	1	1	0	0	0	0	ו י
8	1	0	0	0	1	1	1	1	1	1	1	8
9	1	0	0	1	1	1	1	1	0	1	1	9

FPK Filière SMI S3

Décodeur DCB-afficheur à sept segments (3)

Équations logiques associée :

Pour écrire les équations logiques de ce décodeur, il faut construire les tables de Karnaugh correspondant à tous les segments. Il y en a donc sept. Dans ces tables, les 0 étant moins nombreux que les 1, il est préférable d'établir les équations correspondant à l'extinction des segments.

Table de Karnaugh du segment \boldsymbol{b}

b		BA									
		00	01	11	10						
	00	1	1	1	1						
DC	01	1	0	1	0						
	11	×	×	×	×						
	10	1	1	×	×						

$$\overline{b} = A\overline{B}C + \overline{A}BC$$

45

Circuits Combinatoires

Filière SMI S3

Décodeur DCB-afficheur à sept segments (4)

Logigramme du segment b

Elément d'un décodeur 7 segments commandant l'affichage du segment b

FPK Filière SMI S3

Décodeur DCB-afficheur à sept segments (5)

Équations logiques associée au décodeur DCB 7 segments :

$$\overline{a} = A\overline{B}\overline{C}\overline{D} + \overline{A}C$$

$$\overline{b} = A\overline{B}C + \overline{A}BC$$

$$\overline{C} = \overline{A}B\overline{C}$$

$$\overline{d} = \overline{A}\overline{B}C + ABC + A\overline{B}\overline{C}$$

$$\overline{e} = A + \overline{B}C$$

$$\overline{f} = A\overline{C}\overline{D} + AB + B\overline{C}$$

$$\overline{g} = \overline{B}\,\overline{C}\,\overline{D} + ABC$$

Circuits Combinatoires

Filière SMI S3

Exemple

On considère un afficheur sept segments:

Un chiffre décimal est fourni à l'afficheur sous son code DCB (quatre bits $E_3E_2E_1E_0$). On désigne par a,b,c,d,e,f,g les sept fonctions logiques valant 0 lorsque le segment correspondant est allumé, 1 sinon.

- ♣ Concevoir un circuit logique commandant le segment f à partir des $E_3E_2E_1E_0$ et de leurs compléments en n'utilisant que des portes NAND.
- ♣ Réaliser le schéma sous ISIS et tester le montage.

Questions?