COMPREHENSIVE EXAM IN ALGEBRAIC NUMBER THEORY (FALL 2013)

Recall that the Minkowski bound is

$$N(\mathfrak{a}) \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta_K|^{1/2}.$$

- 1. Let K be the cubic field generated by a root of $x^3 + 2x 1$. Determine the following data associated to K:
 - (a) its **discriminant**;
 - (b) the **ring of integers**;
 - (c) the number of **real and complex embeddings**;
 - (d) the isomorphism class of its **unit group** (your answer should look like, e.g., $\mathbb{Z}^2 \times \mathbb{Z}/(6)$; you do not need to find the actual units);
 - (e) the list of ramified primes;
 - (f) the splitting types of the ideals (2), (3), (5), (7);
 - (g) whether or not K is **Galois** over \mathbb{Q} ; and if not, the Galois group of its Galois closure (i.e., the splitting field of $x^3 + 2x 1$);
 - (h) (bonus) the **the class group**;
 - (i) (bonus) the **proportion of primes** which have the splitting types you found above.
- 2. (a) Define the p-adic integers \mathbb{Z}_p .
 - (b) (bonus) Give an alternative definition of the p-adic integers \mathbb{Z}_p . (further bonus) Prove that these definitions are equivalent.
 - (c) Let p = 7. Determine which of $\frac{1}{3}$, 7, $\frac{1}{7}$, $\sqrt{2}$, and $\sqrt{5}$ are 7-adic integers. For those that are, compute the 7-adic expansion to at least three decimal places. Note that one of the two square roots is in \mathbb{Z}_7 ; give a detailed proof of this, without quoting Hensel's lemma. For the others, a very brief explanation is enough.
- 3. (a) Determine, with proof, the class group of $\mathbb{Q}(\sqrt{-5})$.
 - (b) Is $\mathbb{Q}(\sqrt{100000001})$ a principal ideal domain?
- 4. (a) Determine the discriminant of a quadratic field $\mathbb{Q}(\sqrt{D})$, for a general D.
 - (b) Let ℓ be an odd prime. Then it is known that the discriminant of the **cyclotomic field** $K = Q(\zeta_{\ell})$ is equal to $\pm \ell^{\ell-2}$, and also that $(\ell) = (1 \zeta_{\ell})^{\ell-1}$ as ideals of \mathcal{O}_K . What fact about the splitting of prime ideals in \mathcal{O}_K is reflected in both of these facts?
 - (c) Prove that $\mathbb{Q}(\zeta_{\ell})$ contains a unique quadratic subfield, and determine what it is.
 - (d) (bonus) Subject to knowing the field is unique, determine what it is in a completely different way.