BEST AVAILABLE COPY

PY 28, 4, 2004 **Rec'd PCT/PTO** 25 SEP 2005

許 10/551509 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 4月 3 日

RECEIVED 2 7 MAY 2004

PCT

出 願 番 Application Number: 特願2003-100742

WIPO

[ST. 10/C]:

[JP2003-100742]

出 Applicant(s):

人 シャープ株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 3月22日

【書類名】

特許願

【整理番号】

03J00587

【提出日】

平成15年 4月 3日

【あて先】

特許庁長官 殿

【国際特許分類】

G11B 7/09

G11B 7/125

G11B 7/13

【発明者】

【住所又は居所】

大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

渡邉 由紀夫

【発明者】

【住所又は居所】

大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

上山 徹男

【特許出願人】

【識別番号】

000005049

【氏名又は名称】

シャープ株式会社

【代理人】

【識別番号】

100080034

【弁理士】

【氏名又は名称】

原 謙三

【電話番号】

06-6351-4384

【選任した代理人】

【識別番号】

100113701

【弁理士】

【氏名又は名称】 木島 隆一

【選任した代理人】

100116241 【識別番号】

【弁理士】

【氏名又は名称】 金子 一郎

【手数料の表示】

003229 【予納台帳番号】

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0208489

【プルーフの要否】

要

【発明の名称】 光ピックアップ

【特許請求の範囲】

【請求項1】

第1の波長の光ビームと第2の波長の光ビームとを発生するための1パッケージ化された光源と、上記光源から出射した光ビームをメインビームと2つのサブビームとに分割する3ビーム化グレーティングと、分割された3ビームを光ディスクに集光する対物レンズと、3ビームのそれぞれの反射光からプッシュプル信号を検出する光検出器とを備え、光ディスクに対して3ビームによるトラッキングを行う光ピックアップにおいて、

上記3ビーム化グレーティングは、上記第1の波長の光ビームと第2の波長の 光ビームとにおける各光ビームに対して部分的な位相シフトを生じさせるパター ンを付与すべく、各光ビームの通過領域には回折溝における凹凸のピッチが部分 的にずれた領域を有するとともに、

上記の位相シフトを生じさせるパターンは、上記波長の異なる各光ビームのいずれに対しても、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定されていることを特徴とする光ピックアップ。

【請求項2】

前記3ビーム化グレーティングにおけるトラッキング信号検出に寄与する、前記第1の波長の光ビームの通過領域が第2の波長の光ビームの通過領域における内部に存在している一方、

上記3ビーム化グレーティングにおける位相シフトを生じさせるパターンは、 第1の位相シフトパターンと第2の位相シフトパターンとがトラックとほぼ平行 に形成されるとともに、

上記第1の位相シフトパターンはトラッキング信号検出に寄与する、第1の波長の光ビームの通過領域及び第2の波長の光ビームの通過領域における両通過領域の一部を含むように配置され、上記第2の位相シフトパターンは第2の波長の光ビームの通過領域の一部のみを含むように配置されていることを特徴とする請求項1記載の光ピックアップ。

【請求項3】

前記3ビーム化グレーティングにおける、前記第1の波長の光ビームに対して位相シフトを生じさせるパターンと、前記第2の波長の光ビームに対して位相シフトを生じさせるパターンとは、いずれも、上記3ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して片側に形成されていることを特徴とする請求項2記載の光ピックアップ

【請求項4】

前記3ビーム化グレーティングにおける、前記第1の波長の光ビームに対して 位相シフトを生じさせるパターンは、上記3ビーム化グレーティングを通過する 光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対し て片側に形成されている一方、

前記第2の波長の光ビームに対して位相シフトを生じさせるパターンは、上記3ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して両側に形成されていることを特徴とする請求項2記載の光ピックアップ。

【請求項5】

前記3ビーム化グレーティングは、第1の波長の光ビームと第2の波長の光ビームとの各トラッキング信号検出に寄与する領域が重ならないか又は一部のみ重なるように配置されていることを特徴とする請求項1記載の光ピックアップ。

【請求項6】

前記3ビーム化グレーティングにおける、前記第1の波長の光ビームに対して位相シフトを生じさせるパターンと、前記第2の波長の光ビームに対して位相シフトを生じさせるパターンとは、互いのトラッキング信号検出に影響しないビーム径内にそれぞれ形成されていることを特徴とする請求項5に記載の光ピックアップ。

【請求項7】

前記3ビーム化グレーティングを通過する第1の波長の光ビームにおける略中 心を通り、かつ光ディスクのトラック方向に略平行な第1境界線と、上記3ビー ム化グレーティングを通過する第2の波長の光ビームにおける略中心を通り、かつ光ディスクのトラック方向に略平行な第2境界線との間における位相シフトを生じさせるパターンが、3ビーム化グレーティング上の他の領域のパターンと異なることを特徴とする請求項5に記載の光ピックアップ。

【請求項8】

前記3ビーム化グレーティングにおける、前記光ディスクのトラック方向に略 垂直な凹凸を有する第1のグレーティングパターンと、上記第1のグレーティン グパターンに対して凹凸のピッチがずれて形成されている第2のグレーティング パターンとは、略等間隔で交互に配置されていることを特徴とする請求項7記載 の光ピックアップ。

【請求項9】

前記第1のグレーティングパターンと第2のグレーティングパターンとは、前記第1境界線と第2境界線との間にのみ形成されていることを特徴とする請求項7記載の光ピックアップ。

【請求項10】

前記第1境界線と第2境界線とは一致していることを特徴とする請求項7記載の光ピックアップ。

【請求項11】

前記3ビーム化グレーティングは、集積化ホログラムレーザユニット内に組み込まれていることを特徴とする請求項2~10のいずれか1項に記載の光ピックアップ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、光ディスク等の情報記録媒体に対して光学的に情報を記録再生する 光ピックアップに関するものである。特に、波長の異なる複数の光源を持つ光ピックアップのトラッキングサーボにおいて、トラッキング誤差信号に発生するオフセットを、容易にかつ低コストで補正するものに関する。

[0002]

【従来の技術】

近年、光ディスクは多量の情報信号を高密度で記録することができるため、オーディオ、ビデオ、コンピュータ等の多くの分野において利用が進められている

[0003]

上記光ディスク等の情報記録媒体においては、ミクロン単位で記録された情報信号を再生するために情報トラックに対して光ビームを正確にトラッキングさせる必要がある。上記トラッキングのためのトラッキング誤差信号(TES:Tracking Error Signal)の検出方法は、種々の方法が知られている。

[0004]

また、光ディスクには、赤外レーザを用いるCD系のディスクと赤色レーザを 用いるDVD系のディスクとが商品化されているとともに、最近では、青色レー ザを用いる高密度ディスクも提案されている。すなわち、各光ディスクは情報の 記録密度やディスク内の構造が異なるため、それぞれのディスクへの情報の記録 及び再生には異なる波長の光が用いられる。

[0005]

最近では、光ディスク装置の中には、CD系のディスクとDVD系のディスクとの両方の記録・再生に対応した光ピックアップが搭載されているものがある。

[0006]

例えば、特許文献1においては、図23に示すように、DVD系及びCD系の両方に対応できる光ピックアップを小型化するために、1パッケージ内に2波長半導体レーザを備えた光学系が提案されている。

[0007]

上記光ピックアップにおいては、1パッケージ化された多波長半導体レーザからなる光源 $101a\cdot101b$ から発せられた波長の異なる光ビームにより、同一の光学系を用いて複数種類の光ディスクにおける情報の記録及び再生が行われる。光路上には2つの3ビーム用回折格子 $112\cdot113$ が配置されており、波長 $\lambda1\cdot\lambda2$ の光ビームは両方の3ビーム用回折格子 $112\cdot113$ を通過するが、一方の回折格子は、一方の波長に対してだけ機能するように溝深さが設定さ

れている。例えば、波長 λ 1 の光に対して 3 ビームとして機能させるときには、 その溝深さを波長 λ 2 の整数倍になるように設定する。それにより、この回折格 子によって、波長 λ 1 の光は回折光を発生せず、略通過する。

[0008]

また、3ビーム法では±1次光の光量の違いを利用してトラック検出を行うため、0次光と±1次光とが光ディスク上において所定の位置に配置される必要がある。そのため、それぞれの回折格子の溝方向は、光ピックアップの組立時に正確に調整される必要がある。

[0009]

このような構成とすることによって、いずれか一方のトラック検出光を悪化させることなく、種類の異なる光ディスクに対して良好な情報の記録及び再生を行うことができる。

[0010]

ところで、3ビームを用いるトラック検出において、組立時に3ビーム用回折格子の回転調整を必要としない方法(以下、「位相シフトDPP法」と呼ぶ。)が本出願人から出願されており、特許文献2として公開されている。

[0011]

この位相シフトDPP法は、3ビームを用いる差動プッシュプル法(DPP: Differential Push Pull法)を発展させたトラック検出法である。通常のDPP 法においては、3ビーム用回折格子によって発生したメインビームのプッシュプル信号とサブビームのプッシュプル信号との差をとることによって、レンズシフトによるオフセットを補正する。

[0012]

サブビームの反射光量の差を比較する3ビーム法では、追記型ディスク等の場合、記録前後で反射光量変化によるオフセットが生じてしまうが、DPP法では、同様の原因によるオフセットは小さい。したがって、DPP法は光ディスクへの記録を行う場合にはより適したトラック検出法である。しかしながら、この方式ではオフセット成分を打ち消すように、3ビーム用回折格子によって発生したメインビーム及びサブビームにおける光ディスク上での位置を、1/2ピッチず

れるように回折格子の正確な調整が必要となる。また、トラックピッチの異なる 複数種類の光ディスクを1つの光ピックアップで再生する場合には問題となる。

[0013]

上記のような問題を解決するために、位相シフトDPP法では、サブビームの プッシュプル信号に寄与する光ビームの領域に、位相差が異なる2つの領域が、 略同じ面積となるように3ビーム用回折格子の溝パターンを形成している。以下 に、この方法について説明する。

[0014]

例えば、図24(a)に示すように、半導体レーザ201から出たレーザ光をコリメータレンズ202により平行光に変換し、グレーティング203によってメインビーム230、サブビーム(+1次光)231、及びサブビーム(-1次光)232に分割する。ビームスプリッタ204を通過した後、対物レンズ205により光ディスク206のトラック261上に集光させ、反射光を対物レンズ205を介してビームスプリッタ204で反射させ、集光レンズ207で光検出器208(208A,208B,208C)に導く。

[0015]

メインビーム 2 3 0 及びサブビーム 2 3 1 · 2 3 2 の反射光のファーフィールドパターンは、図 2 5 に示すように、それぞれトラック方向に相当する分割線を有する 2 分割光検出器 2 0 8 A · 2 0 8 B · 2 0 8 Cにて受光される。そして、各 2 分割光検出器 2 0 8 A · 2 0 8 B · 2 0 8 Cからの差信号すなわちプッシュプル信号 P P 2 3 0 · 2 3 1 · 2 3 2 を得る。

[0016]

ここで、図24(a)に示すように、光ビームの中心を原点とし、光ディスクのラジアル(半径)方向を x 方向、それに直交するトラック方向を y 方向とする x y 座標系を設定する。グレーティング203において、図24(b)に示すように、例えば第1象限におけるトラック溝の周期構造の位相差が180°異なっている場合、このグレーティング203によって回折されたサブビーム231・232においては、第1象限の部分だけ180°の位相差が発生する。このとき、サブビーム231・232を用いたプッシュプル信号PP231・PP232

は、図26(a)に示すように、位相差が加わらないメインビームのプッシュプル信号PP230に比べて、振幅が略0になる。これは、トラックの位置に関係なく、プッシュプル信号が検出されないので、サブビーム231・232をメインビーム230と同じトラック上に配置しても、又は異なるトラック上に配置しても略同じ信号になる。

[0017]

一方、対物レンズシフトやディスクの傾きによるトラッキング誤差信号(TES)のオフセットに対しては、図26(b)に示すように、プッシュプル信号PP230とプッシュプル信号PP231(又はプッシュプル信号PP232)とはそれぞれ光量に応じて Δ p及び Δ p'だけ同じ側(同相)にオフセットが発生する。したがって、

PP234=PP230-k (PP231+PP232)

 $= P P 2 3 0 - k \cdot P P 2 3 3$

[0018]

これにより、サブビーム231・232のプッシュプル信号PP233は溝深さに関係なく、振幅が0になる。すなわち、トラック上のどの位置にあっても振幅が0であるので、3ビームの位置調整(回折格子等の回転調整)が不要となる。このため、ピックアップの組立調整を大幅に簡略化することができる。

[0019]

また、ホログラムレーザユニットを用いた場合、特に半導体レーザ光源の近傍 に位相シフト回折格子を配置した場合には、実質的なサブビームの通過領域とメ インビームの通過領域とが回折格子上でずれるため、2つのサブビームに共通の 最適位相シフトを付加することができないという問題があるが、ある光ディスク のピッチや深さに最適な位相シフトパターンについては、この特許文献2の中で 提案されている。

[0020]

【特許文献1】

特開2002-342956号公報(平成14年11月29日公開)

[0021]

【特許文献2】

特開2001-250250号公報(平成13年9月14日公開)

[0022]

【発明が解決しようとする課題】

しかしながら、上記従来方式のように、複数光源を持つ光ピックアップにおいてDVD系及びCD系のいずれに対しても3ビーム法によるトラック検出を行う場合には、各光ディスクのピッチに最適になるように各グレーティングを別々に調整することが必要となる。そのため、光ピックアップの低コスト化や簡素化、小型化には適さない。

[0023]

また、上記特許文献 2 に示す位相シフトグレーティングを用いる方法においては、位相シフトを付加する領域は、単一光源の光ビームに対しての最適化設計された位相シフトパターンである。このため、複数の光源を持つ光ピックアップにおいて、1 つの位相シフトグレーティングを開口数の異なる複数の光ビームに用いる場合や、グレーティング上で波長によってビーム位置が変わってしまう場合には、一方のサブビームのプッシュプル信号が十分に打ち消されないため、特性が悪化してしまうという問題点を有している。

[0024]

本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、複数の異なる光源を同一パッケージ内に有する光ピックアップにおいて、DVD系及びCD系等のいずれの光ディスクに対しても3ビームでトラック検出を行う場合

に、低コストで実現でき、しかも組立調整の簡略化及びピックアップの簡素化を 実現し得る光ピックアップを提供することにある。

[0025]

【課題を解決するための手段】

本発明の光ピックアップは、上記課題を解決するために、第1の波長の光ビームと第2の波長の光ビームとを発生するための1パッケージ化された光源と、上記光源から出射した光ビームをメインビームと2つのサブビームとに分割する3ビーム化グレーティングと、分割された3ビームを光ディスクに集光する対物レンズと、3ビームのそれぞれの反射光からプッシュプル信号を検出する光検出器とを備え、光ディスクに対して3ビームによるトラッキングを行う光ピックアップにおいて、上記3ビーム化グレーティングは、上記第1の波長の光ビームと第2の波長の光ビームとにおける各光ビームに対して部分的な位相シフトを生じさせるパターンを付与すべく、各光ビームの通過領域には回折溝における凹凸のピッチが部分的にずれた領域を有するとともに、上記の位相シフトを生じさせるパターンは、上記波長の異なる各光ビームのいずれに対しても、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定されていることを特徴としている。

[0026]

上記の発明によれば、3ビーム化グレーティングは、上記第1の波長の光ビームと第2の波長の光ビームとにおける各光ビームに対して部分的な位相シフトを生じさせるパターンを付与すべく、各光ビームの通過領域には回折溝における凹凸のピッチが部分的にずれた領域を有する。また、上記の位相シフトを生じさせるパターンは、上記波長の異なる各光ビームのいずれに対しても、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定されている。

[0027]

すなわち、本発明では、サブビームにおけるプッシュプル信号の振幅を略打ち 消すように設定されている位相シフトを生じさせるパターンは、各光ビームの通 過領域に、回折溝における凹凸のピッチが部分的にずれた領域を有して形成され ている。これによって、第1の波長の光ビームを照射したときには、この第1の 波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能である一方、第2の波長の光ビームを照射したときには、この第2の波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能となり、また、そのように設定されている。

[0028]

したがって、異なる波長の光ビームに対して共通の1個の3ビーム化グレーティングによって、3ビーム法によるトラック検出を行い、かつ容易にレンズシフト等によるオフセット成分を打ち消すことができる。

[0029]

この結果、複数の異なる光源を同一パッケージ内に有する光ピックアップにおいて、DVD系及びCD系等のいずれの光ディスクに対しても3ビームでトラック検出を行う場合に、低コストで実現でき、しかも組立調整の簡略化及びピックアップの簡素化を実現し得る光ピックアップを提供することができる。

[0030]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングにおけるトラッキング信号検出に寄与する、前記第1 の波長の光ビームの通過領域が第2の波長の光ビームの通過領域における内部に存在している一方、上記3 ビーム化グレーティングにおける位相シフトを生じさせるパターンは、第1の位相シフトパターンと第2の位相シフトパターンとがトラックと平行に形成されるとともに、上記第1の位相シフトパターンはトラッキング信号検出に寄与する、第1の波長の光ビームの通過領域及び第2の波長の光ビームの通過領域における両通過領域の一部を含むように配置され、上記第2の位相シフトパターンは第2の波長の光ビームの通過領域の一部のみを含むように配置されていることを特徴としている。

上記の発明によれば、3ビーム化グレーティングにおける位相シフトを生じさ

せるパターンは、第1の位相シフトパターンと第2の位相シフトパターンとがトラックと平行に形成されるとともに、上記第1の位相シフトパターンはトラッキング信号検出に寄与する、第1の波長の光ビームの通過領域及び第2の波長の光ビームの通過領域における両通過領域の一部を含むように配置され、上記第2の位相シフトパターンは第2の波長の光ビームの通過領域の一部のみを含むように配置されている。

[0031]

すなわち、3ビーム化グレーティングにおけるトラッキング信号検出に寄与する、前記第1の波長の光ビームの通過領域が第2の波長の光ビームの通過領域における内部に存在している場合には、上記構成のように、位相シフトを生じさせるパターンを形成する。

[0032]

この結果、波長の異なる複数の光源が1パッケージ化された光ピックアップを 用いて、位相シフトDPP法によるトラック検出を行う場合において、波長によって開口数の異なる場合、又は異なる規格の光ビームを用いる場合に、確実にサブビームのプッシュプル信号振幅を抑制することができる。

[0033]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングにおける、前記第 1 の波長の光ビームに対して位相シフトを生じさせるパターンと、前記第 2 の波長の光ビームに対して位相シフトを生じさせるパターンとは、いずれも、上記 3 ビーム化グレーティングを通過する 光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して片側に形成されていることを特徴としている。

[0034]

上記の発明によれば、3ビーム化グレーティングにおいては、第1の波長の光ビームに対して位相シフトを生じさせるパターンと、第2の波長の光ビームに対して位相シフトを生じさせるパターンとは、いずれも、3ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して片側に形成されている。

[0035]

したがって、3ビーム化グレーティングの片側のみに、第1の波長の光ビームと第2の波長の光ビームとの両方に対して位相シフトを生じさせるパターンを形成するので、組立工程の簡素化及び光ピックアップの低コスト化を図ることができる。

[0036]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングにおける、前記第1の波長の光ビームに対して位相シフトを生じさせるパターンは、上記3 ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して片側に形成されている一方、前記第2の波長の光ビームに対して位相シフトを生じさせるパターンは、上記3 ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して両側に形成されていることを特徴としている。

[0037]

上記の発明によれば、第1の波長の光ビームに対して位相シフトを生じさせるパターンは、上記3ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して片側に形成されている一方、前記第2の波長の光ビームに対して位相シフトを生じさせるパターンは、上記3ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して両側に形成されている。

[0038]

したがって、例えば、トラックピッチの大きな光ディスクを使用する場合やトラッキング信号検出に寄与する、第1の波長の光ビームと第2の波長の光ビームとの通過領域が略重なってその差が少ない場合には、本発明のように3ビーム化グレーティングの両側に、第1の波長の光ビームと第2の波長の光ビームとの両方に対して位相シフトを生じさせるパターンを形成することにより、確実にサブビームのプッシュプル信号振幅を抑制することができる。

[0039]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングは、第1の波長の光ビームと第2の波長の光ビームと 0各トラッキング信号検出に寄与する領域が重ならないか又は一部のみ重なるように配置されていることを特徴としている。

[0040]

上記の発明によれば、3ビーム化グレーティングは、第1の波長の光ビームと 第2の波長の光ビームとの各トラッキング信号検出に寄与する領域が重ならない か又は一部のみ重なるように配置されている。

[0041]

これによっても、各サブビームの通過領域に回折溝における凹凸のピッチが部分的にずれた領域を有するとともに、位相シフトを生じさせるパターンが、波長の異なる各光ビームのいずれに対しても、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定されていることによって、第1の波長の光ビームを照射したときには、この第1の波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能である一方、第2の波長の光ビームを照射したときには、この第2の波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能となる。

[0042]

この結果、異なる波長の光ビームに対して共通の1個の3ビーム化グレーティングにより、3ビーム法によるトラック検出を行い、かつ容易にレンズシフト等によるオフセット成分を打ち消すことができる。

[0043]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングにおける、前記第 1 の波長の光ビームに対して位相シフトを生じさせるパターンと、前記第 2 の波長の光ビームに対して位相シフトを生じさせるパターンとは、互いのトラッキング信号検出に影響しないビーム径内にそれぞれ形成されていることを特徴としている。

[0044]

上記の発明によれば、3ビーム化グレーティングにおける、第1の波長の光ビームに対して位相シフトを生じさせるパターンと、第2の波長の光ビームに対して位相シフトを生じさせるパターンとは、互いのトラッキング信号検出に影響しないビーム径内にそれぞれ形成されている。

[0045]

この結果、例えば、波長の異なる複数の光源を持つホログラムレーザユニット等の集積化ピックアップにおいて、光源から出射された光ビームが3ビーム化グレーティング上で通過する位置がずれている場合においても、サブビームのプッシュプル信号振幅を抑制することができる。

[0046]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングを通過する第1の波長の光ビームにおける略中心を通り、かつ光ディスクのトラック方向に略平行な第1境界線と、上記3ビーム化グレーティングを通過する第2の波長の光ビームにおける略中心を通り、かつ光ディスクのトラック方向に略平行な第2境界線との間における位相シフトを生じさせるパターンが、3 ビーム化グレーティング上の他の領域のパターンと異なることを特徴としている。

[0047]

上記の発明によれば、3ビーム化グレーティングを通過する第1の波長の光ビームにおける左外側半分と第2の波長の光ビームにおける右外側半分とに対しては、少なくとも両者は重ならないので、第1の波長の光ビームにおけるサブビームに対して位相シフトを生じさせるパターンと第2の波長の光ビームにおけるサブビームに対して位相シフトを生じさせるパターンとを互いに確保して、サブビームのプッシュプル信号振幅を抑制することができる。

[0048]

この結果、異なる規格の光ディスクを用いる場合、また、光ピックアップの光学パラメータが変化した場合、組立誤差によって光軸方向に3ビーム化グレーティングの位置がずれた場合、トラッキング誤差信号(TES)を光ビームの一部で検出する場合等でも、サブビームのプッシュプル信号振幅を抑制することがで

[0054]

上記の発明によれば、第1のグレーティングパターンと第2のグレーティングパターンとは、前記第1境界線と第2境界線との間にのみ形成されている。しかし、この場合でも、各サブビーム通過領域内において互いに第1の波長の光ビームと第2の波長の光ビームとが区別された部分において、凹凸のピッチがずれている部分を確実に確保することが可能であり、サブビームのプッシュプル信号振幅を抑制することができる。

[0055]

この結果、位相シフトを生じさせるパターンは第1境界線と第2境界線との間にのみ形成すればよいので、製造工程の簡素化及び光ピックアップの低コスト化を図ることができる。

[0056]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 第1境界線と第2境界線とは一致していることを特徴としている。

[0057]

上記の発明によれば、第1境界線と第2境界線とは一致しているので、波長の異なる光源の配置の仕方により、異なる位置から出射した光ビームの中心が3ビーム化グレーティングの中心を通り、y軸に平行な直と同一の直線上を通過する場合に、サブビームのプッシュプル信号振幅を抑制することができる。

[0058]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記3ビーム化グレーティングは、集積化ホログラムレーザユニット内に組み込まれていることを特徴としている。

[0059]

上記の発明によれば、3ビーム化グレーティングは、集積化ホログラムレーザユニット内に組み込まれているので、3ビーム化グレーティングと集積化ホログラムレーザユニットのホログラム素子等との組み合わせにより、波長の異なる複数の光源を持つ集積化ホログラムレーザユニットの集積化光ピックアップにおいて、光源から出射された光ビームが3ビーム化グレーティング上で通過する位置

きる。

[0049]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3ビーム化グレーティングにおける、前記光ディスクのトラック方向に略垂直な 凹凸を有する第1のグレーティングパターンと、上記第1のグレーティングパターンに対して凹凸のピッチがずれて形成されている第2のグレーティングパターンとは、略等間隔で交互に配置されていることを特徴としている。

[0050]

上記の発明によれば、サブビームに対して位相シフトを生じさせるパターンと位相シフトを生じさせないパターンとが交互に略等間隔で配置されていることになるので、各サブビーム通過領域内において、第1の波長の光ビームを照射したときには、この第1の波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能である一方、第2の波長の光ビームを照射したときには、この第2の波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能となる。

[0051]

このため、凹凸のピッチがずれている部分を確実に確保することができる。したがって、サブビームのプッシュプル信号振幅を抑制することができる。

[0052]

特に、異なる規格の光ディスクを用いる場合、また、光ピックアップの光学パラメータが変化した場合、組立誤差によって光軸方向に3ビーム化グレーティングの位置がずれた場合、トラッキング誤差信号(TES)を光ビームの一部で検出する場合等でも、同様の模様が形成されるので、特性の変化を少なくして、サブビームのプッシュプル信号振幅を抑制することができる。

[0053]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 第1のグレーティングパターンと第2のグレーティングパターンとは、前記第1 境界線と第2境界線との間にのみ形成されていることを特徴としている。 がずれている場合においても、サブビームのプッシュプル信号振幅を抑制することができる。

[0060]

【発明の実施の形態】

[実施の形態1]

本発明の実施の一形態について図1ないし図11に基づいて説明すれば、以下 の通りである。

[0061]

本実施の形態の光ピックアップとしてのピックアップ装置は、図2(a)(b)に示すように、第1の波長としての波長 λ1の光ビームと第2の波長としての波長 λ2の光ビームとの2種類の光ビームを発生するための1パッケージ化された光源1と、この光源1から出射した光ビームをメインビームと2つのサブビームとに分割する3ビーム化グレーティングとしてのグレーティング3と、分割された3ビームを光ディスク6に集光する対物レンズ5と、3ビームのそれぞれの反射光からプッシュプル信号を検出する光検出器としての光検出器8とを備えており、3ビームによるトラッキングを行うようになっている。

[0062]

すなわち、上記光源1は、二波長半導体レーザ1a・1bを備えており、二波 長半導体レーザ1aは波長 λ 2の光ビームを出力する一方、二波長半導体レーザ 1bは波長 λ 1の光ビームを出力するようになっている。なお、これら波長 λ 1 ・ λ 2は互いに異なる波長である。また、上記グレーティング 3 は透明の回折格 子であり、その表面は溝が形成されて凹凸面となっている。さらに、光検出器 8 は、3 ビームのそれぞれの反射光からプッシュプル信号を検出するために、3 つ の 2 分割光検出器 8 A・8 B・8 Cを備えている。

[0063]

上記のピックアップ装置では、二波長半導体レーザ1 a・1 bから出たそれぞれの波長 λ 2 又は波長 λ 1 のレーザ光をコリメータレンズ 2 により平行光に変換し、グレーティング 3 により、メインビーム 3 0、サブビーム (+1 次光) 3 1、サブビーム (-1 次光) 3 2 に分割する。

[0064]

次いで、ビームスプリッタ4を通過した光を対物レンズ5の前に設置された開口制御素子11を通して、対物レンズ5により光ディスク6のトラック61上に集光する。すなわち、図2(b)に示すように、二波長半導体レーザ1bから出た波長 λ 1のレーザ光は、開口制御素子11を通るときに、通過領域が絞られるようになっている。

[0065]

次いで、光ディスク6からの反射光を、対物レンズ5を介してビームスプリッタ4にて反射させ、集光レンズ7にて、光検出器8に導く。メインビーム30、サブビーム(+1次光)31及びサブビーム(-1次光)32の反射光のファーフィールドパターンはそれぞれトラック方向に相当する分割線を有する上記光検出器8の2分割光検出器8A・8B・8Cからの差信号すなわちプッシュプル信号PP30・PP31・PP32を得る。

[0066]

上記開口制御素子11は、各種の光ディスク6で規定される所定の開口数にするための素子であり、光ビームが通過する領域の外周部に、CD系で用いる波長 λ 1の光ビームは通過させず、DVD系で用いる波長 λ 2の光ビームを通過させる波長選択性の透過フィルタとしての機能を有している。

[0067]

したがって、図3に示すように、内側の円及び外側の円が、それぞれ開口制御素子11を通過した後の、波長λ1の光ビームのビーム径、及び波長λ2の光ビームのビーム径となる。

[0068]

ここで、本実施の形態においては、3ビームを生成する回折格子であるグレーティング3の溝部の構造に特徴を有しており、これについて、図1 (a) (b) に基づいて説明する。

[0069]

最初に、本実施の形態では、組立時に3ビーム用回折格子であるグレーティン

グ3の回転調整を必要としない方法(以下、「位相シフトDPP法」と呼ぶ。) を採用している。

[0070]

この位相シフトDPP法は、3ビームを用いる差動プッシュプル法(DPP: Differential Push Pull法)を発展させたトラック検出法である。通常のDPP 法においては、3ビーム用回折格子によって発生したメインビーム30のプッシュプル信号とサブビーム31・32のプッシュプル信号との差をとることによって、レンズシフトによるオフセットを補正する。具体的には、オフセット成分を打ち消すように補正する。

[0071]

しかし、通常のDPP法では、オフセット成分を打ち消すようにするために、 3ビーム用回折格子によって発生したメインビーム及びサブビームの光ディスク 上での位置を、1/2ピッチずれるように回折格子の正確な調整が必要となるの で、トラックピッチの異なる複数種類の光ディスクを1つの光ピックアップで再 生する場合等には問題となる。

[0072]

そこで、この問題を解決するために、位相シフトDPP法では、サブビームの プッシュプル信号に寄与する光ビームの領域に、位相差が異なる2つの領域が、 略同じ面積となるように3ビーム用回折格子の溝パターンを形成するようになっ ている。

[0073]

しかし、従来の位相シフトDPP法では、位相シフトを付加する領域は、単一 光源の光ビームに対しての最適化設計された位相シフトパターンである。このた め、複数の光源を持つ光ピックアップにおいて、1つの位相シフトグレーティン グを開口数の異なる複数の光ビームに用いる場合や、グレーティング上で波長に よってビーム位置が変わってしまう場合には、一方のサブビームのプッシュプル 信号PPが十分に打ち消されないため、特性が悪化してしまうという問題点を有 していた。

[0074]

そこで、本実施の形態のピックアップ装置では、以下の構成を採用している。

[0075]

まず、図1 (a) に示すように、グレーティング 3 において光ビームが通過する領域の中心を原点として、光ディスク 6 の半径方向に相当するラジアル方向を x 方向、トラック方向を y 方向とする x y 座標系を設定する。ここでは、 y 軸に対して右側の領域に、かつ y 軸に平行に、互いに異なるグレーティングパターンとなる第 1 のグレーティングパターンである領域 1 のグレーティングパターンである

[0076]

上記第1のグレーティングパターンである領域A…は、図1 (b) に示すように、グレーティング3の凹凸溝がトラック方向(y軸方向)に対して垂直に形成されている。一方、第2のグレーティングパターンである領域B…は、グレーティング3の凹凸溝ピッチは領域Aと同じであるが、格子溝が1/2ピッチだけずれた構成となっている。すなわち、領域Aと領域Bとでは、パターン溝である凸部のランドと凹部のグルーブとが反転した領域となっている。このような構成とすることによって、領域Aと領域Bとでは、位相差が180度異なった領域が形成できる。したがって、位相差を付加しない領域を領域Aとした場合、位相差が180度付加された領域は領域Bとなる。

[0077]

本実施の形態では、第2のグレーティングパターンを持つ領域B1は、波長 λ 1の光ビーム及び波長 λ 2の光ビームがともに通過する領域に形成され、同じく第2のグレーティングパターンを持つ他の一つの領域B2が波長 λ 2の光ビームだけが通過する領域に形成されている。

[0078]

上記グレーティング3を通過した光ビームは、図2 (a) (b) に示すように、メインビーム30とサブビーム31・32とに分割される。このとき、光源1から出射した波長 \ 1 及び波長 \ 2 の各光ビームにおいては、グレーティング3上で通過する領域Bの面積と場所とが異なるため、対物レンズ5により光ディスク6上に集光したサブビーム31・32のスポットは波長 \ 1 及び波長 \ 2 の光

ビームによってそれぞれ異なる形状となる。また、波長の違いによって回折角度が異なり、サブビーム31・32のスポットは、波長 λ 1の光ビームの方が、メインビーム30のスポットから離れた位置に形成される。

[0079]

このとき、サブビーム31・32を用いたプッシュプル信号PP31・PP3 2は、位相差が加わらないメインビーム30のプッシュプル信号PP30に比べて、振幅が略0になる。

[0080]

ここで、上記のサブビーム31・32のプッシュプル信号PP31・PP32 が発生しない、つまり振幅0となる原理について説明する。

[0081]

図4に示すように、対物レンズ5により周期構造をもつトラック61に集光された光ビームである例えばサブビーム31は、0次回折光31aと±1次回折光31b・31cとに分かれて反射され、その重なり合う領域 n1・n2で互いに干渉して対物レンズ5の瞳上で回折パターンつまりプッシュプルパターンが生じる。

[0082]

本実施の形態のグレーティング3を用いた場合には、図1 (a) (b) に示す 位相差の加わった領域B1の部分の影響により、各反射回折光において、グレーティング3上でハッチング位置に対応する部分の位相が、他の領域に比べて180度シフトすることになる。

[0083]

したがって、例えば、ビーム径の小さな波長 λ 1 の光ビームが光ディスク 6 で 反射して対物レンズ 5 に入射する場合には、図 5 (a) に示すように、回折光が 重なる領域、すなわち、光ビームのオフトラックによって明暗が生じる領域であるプッシュプル信号領域 n 1 においては、0 次光において領域 B 1 を通過することにより位相差の加わった部分と 1 次回折光において領域 A を通過した部分とが 重ね合わさった領域(同図におけるハッチング部分) C 1 におけるプッシュプル信号振幅の位相は、プッシュプル信号領域 n 1 において、同図に示すハッチング

のない部分C2のプッシュプル信号振幅の位相と、丁度、逆位相となる。

[0084]

ここで、プッシュプル信号振幅における位相の異なる領域が、プッシュプル信号領域 n 1 の略半分となるように領域 B 1 を設定すれば、プッシュプル信号領域 n 1 の領域だけを考えたとき、オフトラックの状態に関わらず、常に明暗が逆に なる領域が略等しくなり、全体を加算すると最終的にはプッシュプル成分が検出されない。

[0085]

一方、ビーム径の大きな波長 λ 2の光ビームに対しては、光ディスク6で反射して対物レンズ5に入射するビームは、図5(b)に示すように、プッシュプル信号領域n1において、180度の位相差が加わった部分は2つの離れた領域に形成される。この時、グレーティング3上の領域B1による位相ずれの部分C3と領域B2による位相ずれの部分C4との和(ハッチング部分の和)が位相シフトの影響を受けない領域C5と略等しくなるように領域B2の領域を設定すれば、上記ビーム径の小さな波長 λ 1の光ビームの場合と同様、オフトラック状態に関わらず常に明暗が逆になる領域が略等しくなり、最終的にはプッシュプル成分が検出されない。

[0086]

また、例えばトラックピッチ等の光ディスク6の仕様が変わった場合には、プッシュプルパターンが変化する。この場合でも、ピッチの変更によるプッシュプルパターンの形状の変化に合わせて、領域B1で与えることができる位相差では足りない分を補うように、グレーティング3上の波長 λ2の光ビームしか通過しない領域に、領域B2の領域を適切に設定する。

[0087]

例えば、トラックピッチの大きな光ディスク6に対しては、グレーティング3 上での位相シフト領域B2を、図6に示す位相シフト領域B3のように設定する

[0088]

この場合においては、対物レンズ5上で得られるプッシュプルパターンは、図

7に示すような形状となり、プッシュプル信号領域 n 1 において、位相差の付加された領域 (ハッチング部分) と位相差の付加されていない領域 (ハッチングなしの部分) とが略同じ面積となり、プッシュプル信号振幅が略 0 となる。

[0089]

また、グレーティング3上で位相シフトを与える領域は、図8に示すように、 隣接していてもよい。この場合、グレーティング3上ではトラッキング信号検出 に寄与する、波長 λ 1 の光ビームの領域及び波長 λ 2 の光ビームの領域の両方が 通過する部分と、波長 λ 2 の光ビームだけが通過する領域にそれぞれ領域B4及 び領域B5 の位相シフト部分が形成されている。

[0090]

したがって、グレーティング3全体としては、2つの位相シフトのない領域A・Aの部分と1つの位相シフトのある領域Bの部分とからなる。

[0091]

この場合、図9(a)(b)に示すように、波長 λ 1の光ビーム及び波長 λ 2 の光ビームに対するプッシュプル信号領域 n1・n2において、位相が付加されたハッチング部分と位相が付加されない部分との領域が略同じになり、プッシュプル信号振幅が略0となる。

[0092]

なお、本実施の形態においては、グレーティング3上の領域において y 軸に対して右側部分に位相シフト部分が付加される場合について説明したが、必ずしもこれに限らず、y軸よりも左側の領域に y 軸に対称に同様の形状が付加された場合にも当然同じ効果が得られる。

[0093]

また、図10に示すように、グレーティング3上での位相シフトの領域は、 y 軸に対して右側と左側との領域の両方に形成していてもよい。この場合の波長 λ 2 の光ビームによるプッシュプルパターンは、図11に示すようになる。ここで、プッシュプル信号領域 n 1 における領域 C 6 · C 8 は、それぞれサブビーム 3 1 · 3 2 の + 1 次回折光と 0 次回折光とにおける位相シフトによるものであり、この場合もハッチング部分とそれ以外の部分との面積が略等しくなる。

[0094]

[0095]

[0096]

すなわち、本実施の形態では、サブビーム 3 1 · 3 2 におけるプッシュプル信号の振幅を略打ち消すように設定されている位相シフトを生じさせるパターンは、各光ビームの通過領域に、回折溝における凹凸のピッチが部分的にずれた領域を有して形成されている。これによって、波長 λ 1 の光ビームを照射したときには、この波長 λ 1 の光ビームの通過領域内のみにおいて、サブビーム 3 1 · 3 2 におけるプッシュプル信号の振幅を略打ち消すように設定することが可能である一方、波長 λ 2 の光ビームを照射したときには、この波長 λ 2 の光ビームの通過領域内のみにおいて、サブビーム 3 1 · 3 2 におけるプッシュプル信号の振幅を略打ち消すように設定することが可能となり、また、そのように設定されている

[0097]

したがって、異なる波長の光ビームに対して共通の1個のグレーティング3に よって、3ビーム法によるトラック検出を行い、かつ容易にレンズシフト等によ るオフセット成分を打ち消すことができる。

[0098]

この結果、複数の異なる光源1を同一パッケージ内に有するピックアップ装置において、DVD系及びCD系等のいずれの光ディスク6に対しても3ビームでトラック検出を行う場合に、低コストで実現でき、しかも組立調整の簡略化及びピックアップの簡素化を実現し得るピックアップ装置を提供することができる。

[0099]

また、本実施の形態のピックアップ装置では、グレーティング3における位相シフトを生じさせるパターンは、第1の位相シフトパターンと第2の位相シフトパターンとがトラックと平行に形成されるとともに、第1の位相シフトパターンはトラッキング信号検出に寄与する、波長 \(\lambda\) 1の光ビームの通過領域及び波長 \(\lambda\) 2の光ビームの通過領域における両通過領域の一部を含むように配置され、第2の位相シフトパターンは波長 \(\lambda\) 2の光ビームの通過領域の一部のみを含むように配置されている。

[0100]

すなわち、3ビーム化グレーティングにおけるトラッキング信号検出に寄与する、波長λ1の光ビームの通過領域が波長λ2の光ビームの通過領域における内部に存在している場合には、上記構成のように、位相シフトを生じさせるパターンを形成する。

[0101]

この結果、波長の異なる複数の二波長半導体レーザ1 a・1 b が 1 パッケージ 化されたピックアップ装置を用いて、位相シフトDPP法によるトラック検出を 行う場合において、波長によって開口数の異なる場合、又は異なる規格の光ビームを用いる場合に、確実にサブビームのプッシュプル信号振幅を抑制することが できる。

[0102]

また、本実施の形態のピックアップ装置では、グレーティング3においては、 波長 λ 1の光ビームに対して位相シフトを生じさせるパターンと、波長 λ 2の光 ビームに対して位相シフトを生じさせるパターンとは、いずれも、グレーティン グ3を通過する光ビームの中心を通り、かつ光ディスク6のトラック方向に略平 行な境界線に対して片側に形成されている。

[0103]

したがって、グレーティング3の片側のみに、波長 λ 1の光ビームと波長 λ 2 の光ビームとの両方に対して位相シフトを生じさせるパターンを形成するので、組立工程の簡素化及び光ピックアップの低コスト化を図ることができる。

[0104]

また、本実施の形態のピックアップ装置では、波長 λ 1 の光ビームに対して位相シフトを生じさせるパターンは、グレーティング 3 を通過する光ビームの中心を通り、かつ光ディスク 6 のトラック方向に略平行な境界線に対して片側に形成されている一方、波長 λ 2 の光ビームに対して位相シフトを生じさせるパターンは、グレーティング 3 を通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して両側に形成することが可能である。

[0105]

したがって、例えば、トラックピッチの大きな光ディスク6を使用する場合やトラッキング信号検出に寄与する、波長 λ 1 の光ビームと波長 λ 2 の光ビームとの通過領域が略重なってその差が少ない場合には、本実施の形態のように位相シフトを生じさせるパターンを形成することにより、確実にサブビームのプッシュプル信号振幅を抑制することができる。

[0106]

〔実施の形態2〕

本発明の他の実施の形態について図12ないし図17に基づいて説明すれば、 以下の通りである。なお、本実施の形態で述べる以外の構成は、前記実施の形態 1と同じである。したがって、説明の便宜上、前記の実施の形態1の図面に示し た部材と同一の機能を有する部材については、同一の符号を付し、その説明を省 略する。

[0107]

本実施の形態の光ピックアップとしてのピックアップ装置では、図12に示すように、光源1に1パッケージ内に設置された前記二波長半導体レーザ1a・1

b、3ビーム用グレーティングとしてのグレーティング3、サーボ信号生成のためのビーム偏向ホログラム及び光検出器を集積化したホログラムレーザユニットに適用した場合について説明する。

[0108]

同図に示すように、二波長半導体レーザ1 a・1 bを含む光源1から出射した 光ビームは、グレーティング3にて0次のメインビーム30と±1次のサブビー ム31・32との3ビームに分割され、ホログラム素子9の0次回折光が、コリ メートレンズ2、開口制御素子11、及び対物レンズ5を介して光ディスク6上 に集光される。そして、その戻り光は、ホログラム素子9により回折されて、光 検出器である受光素子10に導かれる。

[0109]

ここで、ホログラム素子9は、図13に示すように、上記光ディスク6のラジアル方向に対応するx方向に延びる分割線9gと、この分割線9gの中心から光ディスク6のラジアル方向と直交するy方向、つまり光ディスク6のトラック方向に対応する方向に延びる分割線9hとにより、3つの分割領域9a・9b・9cに分割され、これら各分割領域9a・9b・9cに対応して、別個の格子が形成されている。

[0110]

一方、受光素子10は、フォーカス用2分割受光領域10a・10bとトラッキング用受光領域10c・10d・10e・10f・10g・10hとからなる

[0111]

ビーム偏向ホログラムによる光の集光点は、波長によって変化するが、その変化分を考慮して受光素子10の大きさを決定することにより、異なる波長に対して共通とすることができる。

[0112]

上記の二波長半導体レーザ1 a・1 b からなる発光素子である光源1、上記グレーティング3の光回折素子、反射光を光記録媒体である前記光ディスク6のトラック方向と略一致する分割線9 h で分割して受光するホログラム素子9及び受

光素子10からなる光検出系は、図14に示すように、1つのパッケージに集積 化されている。

[0113]

合焦状態の時に、図13に示すように、ホログラム素子9の分割領域9aで回 折されたメインビーム30が、分割線10y上にビームP1を形成し、分割領域 9b・9cで回折されたメインビーム30が、それぞれトラッキング用受光領域 10c・10d上にビームP2・P3を形成する。

[0114]

また、分割領域9 a で回折された±1次のサブビーム31・32は、それぞれフォーカス用2分割受光領域10 a・10 bの外側にビームP4・P5を形成し、分割領域9 b・9 c で回折された±1次のサブビーム31・32は、それぞれトラッキング用受光領域10 e・10 f上にビームP6・P7を形成し、トラッキング用受光領域10 g・10 h上にビームP8・P9を形成する。

[0115]

フォーカス用 2 分割受光領域 1 0 a \cdot 1 0 b 及びトラッキング用受光領域 1 0 c \sim 1 0 b の出力信号を、それぞれ 1 a \sim 1 b とすると、フォーカス誤差信号 F E S は、シングルナイフエッジ法により、

(Ia-Ib)

の演算で求められる。また、トラッキング誤差信号TESは、

TES= (Ic-Id) -k ((If-Ih) + (Ie-Ig)) により求める。

[0116]

ここで、トラッキング誤差信号TESo(Ic-Id)はメインビーム30oプッシュプル信号、(If-Ih)、(Ie-Ig)はそれぞれ ± 1 次光のサブビーム $31\cdot 32o$ プッシュプル信号である。

[0117]

上記ホログラムレーザユニットにおいては、3ビーム用のグレーティング3は 光ビームが広がっていく位置に設置することになるが、二波長半導体レーザ1a ・1bの発光点がずれているため、実施の形態1の場合とは異なり、波長の異な る光ビームの中心位置は、図15に示すように、グレーティング3上でずれた位置を通過する。

[0118]

このグレーティング3上でのずれ量は、グレーティング3の光軸方向の位置やそれぞれの二波長半導体レーザ1a・1bの位置によって異なり、ずれ量がビーム径に対して無視できる程度に小さい場合は、前記実施の形態1をもつグレーティングパターンでもそれぞれの波長の光に対して適切な位相シフトを与えることができるが、ずれ量が比較的大きな場合は、それを考慮した適切な設計が必要となる。

[0119]

これを考慮した位相差分布について図16に示す。

[0120]

すなわち、本実施の形態のグレーティングパターンにおいては、複数の第1のグレーティングパターンの領域Aと第2のグレーティングパターンの領域Bとからなる。このとき、第2のグレーティングパターンの領域Bは、ビーム径が大きな光ビームに対して適切な位相差が与えられるように設定された領域B9と、ビーム径の小さな光ビームに対して適切な位相差が与えられるように設定されたパターンの領域B10とからなり、かつ二つの光ビームにおいて、情報の記録、再生に用いられるビーム径の領域が重ならない部分にそれぞれの位相シフトパターンが形成されている。

[0121]

ここで、プッシュプルパターンの異なる光ディスク 6 に対しても対応できるように、領域B 9 及び領域B 1 0 は、複数の領域から形成されていてもよい。

[0122]

また、前記実施の形態1と異なるのは、プッシュプル信号PPを光ビームの半分の光、つまりホログラム素子9の分割領域9b・9cのみの光を用いている点である。

[0123]

図13において、例えば復路にあるホログラム素子9の分割領域9b・9cに

入射する光を第1象限及び第2象限とすると、この第1象限及び第2象限の光出 力の減算でのみプッシュプル信号振幅を打ち消して0にする必要がある。

[0124]

ホログラムレーザユニットにおいては、光源1とグレーティング3との距離が 短いため、実質的に対物レンズ5に入射するサブビーム31・32は、図17に 示すように、ホログラム素子9上で、メインビーム30とずれた部分の光ビーム を利用することになる。

[0125]

このホログラム素子9上でのずれ量は、グレーティング3やホログラム素子9の光軸方向の位置によって異なるが、小型に集積化したホログラムレーザユニット等においては、比較的大きな値になる。ずれ量がビーム径に対して無視できる程度に小さい場合は、光軸中心に位相差分布を与えれば、±1次光に同じ位相分布が加わると見なせるが、このずれ量が比較的大きな場合においては、適切な位相シフトパターンの設計が必要となる。

[0126]

本実施の形態に示した、 y 軸方向に一様な位相シフト領域を持つグレーティングパターンは、このような場合には特に有効である。

[0127]

このように、本実施の形態のピックアップ装置では、グレーティング3は、波長 λ 1の光ビームと波長 λ 2の光ビームとの各トラッキング信号検出に寄与する領域が重ならないか又は一部のみ重なるように配置されている。

[0128]

これによっても、各サブビーム $31\cdot32$ の通過領域に回折溝における凹凸のピッチが部分的にずれた領域を有するとともに、位相シフトを生じさせるパターンが、波長の異なる各光ビームのいずれに対しても、サブビーム $31\cdot32$ におけるプッシュプル信号の振幅を略打ち消すように設定されていることによって、波長 $\lambda1$ の光ビームを照射したときには、この波長 $\lambda1$ の光ビームの通過領域内のみにおいて、サブビーム $31\cdot32$ におけるプッシュプル信号の振幅を略打ち消すように設定することが可能である一方、波長 $\lambda2$ の光ビームを照射したとき

には、この波長λ2の光ビームの通過領域内のみにおいて、サブビーム31・3 2におけるプッシュプル信号の振幅を略打ち消すように設定することが可能とな る。

[0129]

この結果、波長 λ 1 の光ビームと波長 λ 2 の光ビームとに区別される領域が形成されるので、異なる波長の光ビームに対して共通の1個のグレーティング3により、3 ビーム法によるトラック検出を行い、かつ容易にレンズシフト等によるオフセット成分を打ち消すことができる。

[0130]

また、本実施の形態のピックアップ装置では、グレーティング3における、波 長 λ 1の光ビームに対して位相シフトを生じさせるパターンと、波長 λ 2の光ビームに対して位相シフトを生じさせるパターンとは、互いのトラッキング信号検 出に影響しないビーム径内にそれぞれ形成されている。

[0131]

この結果、例えば、波長の異なる複数の二波長半導体レーザ1 a・1 bを持つ ホログラムレーザユニット等の集積化ピックアップにおいて、二波長半導体レー ザ1 a・1 bから出射された光ビームがグレーティング 3 上で通過する位置がず れている場合においても、サブビーム 3 1・3 2 のプッシュプル信号振幅を抑制 することができる。

[0132]

また、本実施の形態のピックアップ装置では、グレーティング3は、集積化ホログラムレーザユニット内に組み込まれているので、グレーティング3と集積化ホログラムレーザユニットのホログラム素子9等との組み合わせにより、波長の異なる複数の二波長半導体レーザ1 a・1 bを持つ集積化ホログラムレーザユニットの集積化光ピックアップにおいて、二波長半導体レーザ1 a・1 bから出射された光ビームにおける、グレーティング3上で通過する位置がずれている場合においても、サブビーム31・32のプッシュプル信号振幅を抑制することができる。

[0133]

〔実施の形態3〕

本発明の他の実施の形態について、図18ないし図22に基づいて説明すれば、以下の通りである。なお、本実施の形態で述べる以外の構成は、前記実施の形態1及び実施の形態2と同じである。したがって、説明の便宜上、前記の実施の形態1及び実施の形態2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。

[0134]

本実施の形態の光ピックアップとしてのピックアップ装置の構成は、前記実施の形態2に示したものと同じであるが、異なるピッチの光ディスク6へ与える位相差の精度及び、グレーティング3の光軸方向へのずれに対する位相差の精度を向上させたものである。

[0135]

前述したように、CD系、及びDVD系の光ディスク6にはそれぞれいくつかの種類があり、同じピックアップ装置を用いて異なる規格の光ディスク6の記録及び再生をすることが要求されている。

[0136]

プッシュプルパターンは、光ディスク6のピッチやピックアップ装置の光学系の倍率等によって変化するため、グレーティング3に形成する位相シフトパターンは、それらを考慮して最適設計を行わなければならない。

[0137]

前記実施の形態1で示したような y軸に平行な複数の位相シフト領域を持つパターンの場合、最適化設計することにより2種或いは3種類の光ディスク6に対応したグレーティング3を作製することが可能であるが、このグレーティング3を搭載するピックアップ装置の光学パラメータが変更になった場合等に特性が変化する。

[0138]

このような問題を改善する方法として、図18に示すような位相シフトパターンが考えられる。このパターンによるサブビーム31・32のプッシュプルパターンは、図19に示すようなものとなる。プッシュプル信号領域n1では、サブ

ビーム31の0次回折光と+1次回折光とが干渉し、図に示すような複数の位相 が異なる領域が現れる。

[0139]

領域A2では、0次回折光と+1次回折光とのそれぞれの180度位相シフト した領域が重なる部分であり、そのプッシュプル信号振幅の位相は0次回折光と +1次回折光とにおいて位相シフトのない領域が重なりあった領域A1でのプッ シュプル信号振幅と同位相になる。

[0140]

一方、領域B1及び領域B2では、0次回折光又は+1次回折光の位相シフトした領域と+1次回折光又は0次回折光の位相シフトのない領域とが重なっているため、そのプッシュプル信号振幅の位相は、領域A1・A2と逆位相となる。

[0141]

また、プッシュプル信号振幅の位相が互いに逆である領域Aと領域Bとの面積が略同じになるため、全体としてプッシュプル信号領域 n 1 のプッシュプル信号 振幅は 0 となる。

[0142]

しかしながら、このパターンは一つの波長に対してのみに設計されたパターンであり、前記実施の形態2でのピックアップ装置のように、二波長半導体レーザ1 a・1 b から出射された光ビームが3 ビーム用のグレーティング3 上でずれる場合には図のパターンによって最適な位相シフトパターンを与えることができない。本実施の形態のピックアップ装置は、このような場合に有効な位相シフトパターンを与えるものである。

[0143]

本実施の形態のグレーティングパターンは、図20に示すように、第1のグレーティングパターンの領域Aと第2のグレーティングパターンの領域Bとが略等間隔で交互に形成された縞状の位相シフトパターンが、それぞれの光ビームの中心が通過する部分を通り、かつ y 軸に平行な直線L2・L3を境界として変化することを特徴とする。

[0144]

同図に示すパターンを用いた時、光ビームの中心がずれた波長 λ 1 及び波長 λ 2 のサブビーム 3 1 · 3 2 のプッシュプルパターンにおいて、図 1 9 に示すものと同様な位相シフトの領域が現れるため、サブビーム 3 1 · 3 2 のプッシュプル信号振幅を 0 とすることができる。

[0145]

また、異なるピッチを持つ光ディスク6に対しての場合、又は光学系の倍率等のようにピックアップ装置の光学パラメータが変化した場合、また、3ビーム用のグレーティング3における設置位置によるビーム径の変化した時でも、同様の模様が形成されるため、特性の変化は少なく、よって、汎用性、及びピックアップ装置の量産性の向上を図ることができる。

[0146]

また、位相シフトの周期が細かくなると、プッシュプル信号領域 n 1 ・ n 2 において位相の異なる領域の面積の誤差が小さくなるため、さらに特性は向上する

[0147]

また、本実施の形態においては、境界線である直線L2と直線L3との間の位相シフトパターンとそれ以外の領域の位相シフトパターンとの形状が異なっていればよく、例えば図21に示すような位相シフトパターンを持ったものでもよい。このグレーティング3において、位相シフトパターンは境界線である直線L2と直線L3との間にのみ形成される。

[0148]

また、波長の異なる2つの二波長半導体レーザ1 a・1 bの配置の仕方により、図22に示すように、異なる位置の二波長半導体レーザ1 a・1 bから出射した光ビームの中心がグレーティング3の中心を通り、y軸に平行な直線L1と同一の直線上を通過する場合には、図18に示したグレーティング3のパターンによって波長λ1及び波長λ2の光ビームに対するサブビーム31・32のプッシュプルパターンが、図19と同様な模様となる。したがって、上記二波長半導体レーザ1 a・1 bの配置の場合には、このグレーティング3によっても二波長半導体レーザ1 a・1 bの位置ずれに対応することができる。

[0149]

このように、本実施の形態のピックアップ装置では、グレーティング3を通過する波長 λ 1の光ビームにおける略中心を通り、かつ光ディスク6のトラック方向に略平行な第1境界線と、グレーティング3を通過する波長 λ 2の光ビームにおける略中心を通り、かつ光ディスク6のトラック方向に略平行な第2境界線との間における位相シフトを生じさせるパターンが、グレーティング3上の他の領域のパターンと異なる。

[0150]

これにより、グレーティング3を通過する波長 λ 1 の光ビームにおける左外側半分と波長 λ 2 の光ビームにおける右外側半分とに対しては、少なくとも両者は重ならないので、波長 λ 1 の光ビームにおけるサブビーム λ 3 1 · 3 2 に対して位相シフトを生じさせるパターンと波長 λ 2 の光ビームにおけるサブビーム λ 3 1 · 3 2 に対して位相シフトを生じさせるパターンとを互いに確保して、サブビーム λ 3 1 · 3 2 のプッシュプル信号振幅を抑制することができる。

[0151]

この結果、異なる規格の光ディスク6を用いる場合、また、ピックアップ装置の光学パラメータが変化した場合、組立誤差によって光軸方向にグレーティング3の位置がずれた場合、トラッキング誤差信号(TES)を光ビームの一部で検出する場合等でも、サブビーム31・32のプッシュプル信号振幅を抑制することができる。

[0152]

また、本実施の形態のピックアップ装置では、サブビーム $31 \cdot 32$ に対して位相シフトを生じさせるパターンと位相シフトを生じさせないパターンとが交互に略等間隔で配置されていることになるので、各サブビーム $31 \cdot 32$ の通過領域内において、波長 $\lambda 1$ の光ビームを照射したときには、この波長 $\lambda 1$ の光ビームの通過領域内のみにおいて、サブビーム $31 \cdot 32$ におけるプッシュプル信号の振幅を略打ち消すように設定することが可能である一方、波長 $\lambda 2$ の光ビームを照射したときには、この波長 $\lambda 2$ の光ビームの通過領域内のみにおいて、サブビーム $31 \cdot 32$ におけるプッシュプル信号の振幅を略打ち消すように設定する

[0153]

このため、互いに波長 λ 1 の光ビームと波長 λ 2 の光ビームとが区別された部分において、凹凸のピッチがずれている部分を確実に確保することができる。したがって、サブビーム 3 1 · 3 2 のプッシュプル信号振幅を抑制することができる。

[0154]

特に、異なる規格の光ディスク6を用いる場合、また、ピックアップ装置の光 学パラメータが変化した場合、組立誤差によって光軸方向にグレーティング3の 位置がずれた場合、トラッキング誤差信号(TES)を光ビームの一部で検出す る場合等でも、同様の模様が形成されるので、特性の変化を少なくして、サブビ ーム31・32のプッシュプル信号振幅を抑制することができる。

[0155]

また、本実施の形態のピックアップ装置では、第1のグレーティングパターンと第2のグレーティングパターンとは、第1境界線である直線L2と第2境界線である直線L3との間にのみ形成されている。しかし、この場合でも、各サブビーム31・32通過領域内において互いに波長 λ 1 の光ビームと波長 λ 2 の光ビームとが区別された部分において、凹凸のピッチがずれている部分を確実に確保することが可能であり、サブビーム31・32のプッシュプル信号振幅を抑制することができる。

[0156]

この結果、位相シフトを生じさせるパターンは直線L2と直線L3との間にの み形成すればよいので、製造工程の簡素化及びピックアップ装置の低コスト化を 図ることができる。

[0157]

また、本実施の形態のピックアップ装置では直線L2と直線L3とを一致させた直線L1とすることができる。このため、波長の異なる二波長半導体レーザ1 a·1bの配置の仕方により、異なる位置から出射した光ビームの中心がグレーティング3の中心を通り、 y軸に平行な直と同一の直線上を通過する場合に、サブ

ビーム31・32のプッシュプル信号振幅を抑制することができる。

[0158]

なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。

[0159]

【発明の効果】

本発明の光ピックアップは、以上のように、3ビーム化グレーティングは、上記第1の波長の光ビームと第2の波長の光ビームとにおける各光ビームに対して部分的な位相シフトを生じさせるパターンを付与すべく、各光ビームの通過領域には回折溝における凹凸のピッチが部分的にずれた領域を有するとともに、上記の位相シフトを生じさせるパターンは、上記波長の異なる各光ビームのいずれに対しても、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定されているものである。

[0160]

それゆえ、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定されている位相シフトを生じさせるパターンは、各光ビームの通過領域に、回折溝における凹凸のピッチが部分的にずれた領域を有して形成されている。これによって、第1の波長の光ビームを照射したときには、この第1の波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能である一方、第2の波長の光ビームを照射したときには、この第2の波長の光ビームの通過領域内のみにおいて、サブビームにおけるプッシュプル信号の振幅を略打ち消すように設定することが可能となり、また、そのように設定されている。

[0161]

したがって、異なる波長の光ビームに対して共通の1個の3ビーム化グレーティングによって、3ビーム法によるトラック検出を行い、かつ容易にレンズシフト等によるオフセット成分を打ち消すことができる。

[0162]

この結果、複数の異なる光源を同一パッケージ内に有する光ピックアップにおいて、DVD系及びCD系等のいずれの光ディスクに対しても3ビームでトラック検出を行う場合に、低コストで実現でき、しかも組立調整の簡略化及びピックアップの簡素化を実現し得る光ピックアップを提供することができるという効果を奏する。

[0163]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記前記3ビーム化グレーティングにおけるトラッキング信号検出に寄与する、前記第1の波長の光ビームの通過領域が第2の波長の光ビームの通過領域における内部に存在している一方、上記3ビーム化グレーティングにおける位相シフトを生じさせるパターンは、第1の位相シフトパターンと第2の位相シフトパターンとがトラックと平行に形成されるとともに、上記第1の位相シフトパターンはトラッキング信号検出に寄与する、第1の波長の光ビームの通過領域及び第2の波長の光ビームの通過領域における両通過領域の一部を含むように配置され、上記第2の位相シフトパターンは第2の波長の光ビームの通過領域の一部のみを含むように配置されているものである。

[0164]

それゆえ、3ビーム化グレーティングにおけるトラッキング信号検出に寄与する、前記第1の波長の光ビームの通過領域が第2の波長の光ビームの通過領域における内部に存在している場合には、上記構成のように、位相シフトを生じさせるパターンを形成する。

[0165]

この結果、波長の異なる複数の光源が1パッケージ化された光ピックアップを 用いて、位相シフトDPP法によるトラック検出を行う場合において、波長によって開口数の異なる場合、又は異なる規格の光ビームを用いる場合に、確実にサブビームのプッシュプル信号振幅を抑制することができるという効果を奏する。

[0166]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記

3ビーム化グレーティングにおける、前記第1の波長の光ビームに対して位相シフトを生じさせるパターンと、前記第2の波長の光ビームに対して位相シフトを生じさせるパターンとは、いずれも、上記3ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して片側に形成されているものである。

[0167]

それゆえ、3ビーム化グレーティングの片側のみに、第1の波長の光ビームと 第2の波長の光ビームとの両方に対して位相シフトを生じさせるパターンを形成 するので、組立工程の簡素化及び光ピックアップの低コスト化を図ることができ るという効果を奏する。

[0168]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングにおける、前記第 1 の波長の光ビームに対して位相シフトを生じさせるパターンは、上記 3 ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して片側に形成されている一方、前記第 2 の波長の光ビームに対して位相シフトを生じさせるパターンは、上記 3 ビーム化グレーティングを通過する光ビームの中心を通り、かつ光ディスクのトラック方向に略平行な境界線に対して両側に形成されているものである。

[0169]

それゆえ、例えば、トラックピッチの大きな光ディスクを使用する場合やトラッキング信号検出に寄与する、第1の波長の光ビームと第2の波長の光ビームとの通過領域が略重なってその差が少ない場合には、本発明のように3ビーム化グレーティングの両側に、第1の波長の光ビームと第2の波長の光ビームとの両方に対して位相シフトを生じさせるパターンを形成することにより、確実にサブビームのプッシュプル信号振幅を抑制することができるという効果を奏する。

[0170]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3ビーム化グレーティングは、第1の波長の光ビームと第2の波長の光ビームと の各トラッキング信号検出に寄与する領域が重ならないか又は一部のみ重なるように配置されているものである。

[0171]

それゆえ、これによっても、確実に、異なる波長の光ビームに対して共通の1個の3ビーム化グレーティングにより、3ビーム法によるトラック検出を行い、かつ容易にレンズシフト等によるオフセット成分を打ち消すことができるという効果を奏する。

[0172]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングにおける、前記第 1 の波長の光ビームに対して位相シフトを生じさせるパターンと、前記第 2 の波長の光ビームに対して位相シフトを生じさせるパターンとは、互いのトラッキング信号検出に影響しないビーム径内 にそれぞれ形成されているものである。

[0173]

それゆえ、例えば、波長の異なる複数の光源を持つホログラムレーザユニット 等の集積化ピックアップにおいて、光源から出射された光ビームが3ビーム化グ レーティング上で通過する位置がずれている場合においても、サブビームのプッ シュプル信号振幅を抑制することができるという効果を奏する。

[0174]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3 ビーム化グレーティングを通過する第 1 の波長の光ビームにおける略中心を通り、かつ光ディスクのトラック方向に略平行な第 1 境界線と、上記 3 ビーム化グレーティングを通過する第 2 の波長の光ビームにおける略中心を通り、かつ光ディスクのトラック方向に略平行な第 2 境界線との間における位相シフトを生じさせるパターンが、 3 ビーム化グレーティング上の他の領域のパターンと異なるものである。

[0175]

それゆえ、3ビーム化グレーティングを通過する第1の波長の光ビームにおける左外側半分と第2の波長の光ビームにおける右外側半分とに対しては、少なく

とも両者は重ならないので、第1の波長の光ビームにおけるサブビームに対して 位相シフトを生じさせるパターンと第2の波長の光ビームにおけるサブビームに 対して位相シフトを生じさせるパターンとを互いに確保して、サブビームのプッ シュプル信号振幅を抑制することができる。

[0176]

この結果、異なる規格の光ディスクを用いる場合、また、光ピックアップの光 学パラメータが変化した場合、組立誤差によって光軸方向に3ビーム化グレーティングの位置がずれた場合、トラッキング誤差信号(TES)を光ビームの一部 で検出する場合等でも、サブビームのプッシュプル信号振幅を抑制することがで きるという効果を奏する。

[0177]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3ビーム化グレーティングにおける、前記光ディスクのトラック方向に略垂直な 凹凸を有する第1のグレーティングパターンと、上記第1のグレーティングパターンに対して凹凸のピッチがずれて形成されている第2のグレーティングパターンとは、略等間隔で交互に配置されているものである。

[0178]

それゆえ、サブビームに対して位相シフトを生じさせるパターンと位相シフトを生じさせないパターンとが交互に略等間隔で配置されていることになるので、各サブビーム通過領域内において、凹凸のピッチがずれている部分を確実に確保することができる。したがって、サブビームのプッシュプル信号振幅を抑制することができる。

[0179]

特に、異なる規格の光ディスクを用いる場合、また、光ピックアップの光学パラメータが変化した場合、組立誤差によって光軸方向に3ビーム化グレーティングの位置がずれた場合、トラッキング誤差信号(TES)を光ビームの一部で検出する場合等でも、同様の模様が形成されるので、特性の変化を少なくして、サブビームのプッシュプル信号振幅を抑制することができるという効果を奏する。

[0180]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 第1のグレーティングパターンと第2のグレーティングパターンとは、前記第1 境界線と第2境界線との間にのみ形成されているものである。

[0181]

それゆえ、この場合でも、各サブビーム通過領域内において、凹凸のピッチが ずれている部分を確実に確保することが可能であり、サブビームのプッシュプル 信号振幅を抑制することができる。

[0182]

この結果、位相シフトを生じさせるパターンは第1境界線と第2境界線との間にのみ形成すればよいので、製造工程の簡素化及び光ピックアップの低コスト化を図ることができるという効果を奏する。

[0183]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 第1境界線と第2境界線とは一致しているものである。

[0184]

それゆえ、波長の異なる光源の配置の仕方により、異なる位置から出射した光ビームの中心が3ビーム化グレーティングの中心を通り、y軸に平行な直と同一の直線上を通過する場合に、サブビームのプッシュプル信号振幅を抑制することができるという効果を奏する。

[0185]

また、本発明の光ピックアップは、上記記載の光ピックアップにおいて、前記 3ビーム化グレーティングは、集積化ホログラムレーザユニット内に組み込まれ ているものである。

[0186]

それゆえ、3ビーム化グレーティングと集積化ホログラムレーザユニットのホログラム素子等との組み合わせにより、波長の異なる複数の光源を持つ集積化ホログラムレーザユニットの集積化光ピックアップにおいて、光源から出射された光ビームが3ビーム化グレーティング上で通過する位置がずれている場合においても、サブビームのプッシュプル信号振幅を抑制することができるという効果を

【図面の簡単な説明】

【図1】

(a) は本発明におけるピックアップ装置の実施の一形態を示すものであり、 位相シフトパターンが形成されたグレーティングの構成を示す平面図である一方 、(b) は (a) に示された領域Bを拡大して示す平面図である。

【図2】

(a) は上記ピックアップ装置の光学系において、二波長半導体レーザ1aにて波長 λ 2を出力する場合を示す概略構成図であり、(b) は上記ピックアップ装置の光学系において、二波長半導体レーザ1bにて波長 λ 1を出力する場合を示す概略構成図である。

【図3】

上記ピックアップ装置における開口制御素子を通過後の波長 λ 1 及び波長 λ 2 のビーム径を示す平面図である。

【図4】

(a) は上記ピックアップ装置のサブビームにおける光ディスクからの反射ビームの回折パターンを示す断面図であり、(b) は上記サブビームにおける光ディスクからの反射ビームの対物レンズでの回折パターンを示す平面図である。

【図5】

(a) (b) は、サブビームによる光ディスクからの反射ビームの対物レンズ でのプッシュプルパターンを示す平面図である。

【図6】

他の位相シフトパターンが形成されたグレーティングの構成を示す平面図である。

【図7】

上記グレーティングの場合における、サブビームによる光ディスクからの反射 ビームの対物レンズでのプッシュプルパターンを示す平面図である。

【図8】

さらに他の位相シフトパターンが形成されたグレーティングの構成を示す平面

図である。

【図9】

(a) (b) は、上記グレーティングの場合における、サブビームによる光ディスクからの反射ビームの対物レンズでのプッシュプルパターンを示す平面図である。

【図10】

さらに他の位相シフトパターンが形成されたグレーティングの構成を示す平面 図である。

【図11】

上記グレーティングの場合における、サブビームによる光ディスクからの反射ビームの対物レンズでのプッシュプルパターンを示す平面図である。

【図12】

本発明におけるピックアップ装置の他の実施の形態を示すものであり、光学系 を示す概略構成図である。

【図13】

上記ピックアップ装置におけるホログラム素子及び受光素子の構造を示す平面 図である。

【図14】

上記ホログラム素子及び受光素子を集積化したピックアップ装置の概略構成を 示す断面図である。

【図15】

上記ピックアップ装置におけるグレーティング上での波長 λ 1 の光ビームのビーム径及び波長 λ 2 の光ビームのビーム径を示す平面図である。

【図16】

上記ピックアップ装置において、位相シフトパターンが形成されたグレーティングの構成を示す平面図である。

【図17】

上記集積化されたピックアップ装置におけるホログラム素子上でのメインビーム及びサブビームの通過する位置を示す平面図である。

【図18】

本発明におけるピックアップ装置のさらに他の実施の形態を示すものであり、 3ビーム用回折格子の位相シフトパターンを示す平面図である。

【図19】

上記3ビーム用回折格子を用いた場合のサブビームのプッシュプルパターンを 示す平面図である。

【図20】

上記3ビーム用回折格子を用いた場合の他の位相シフトパターンを示す平面図である。

【図21】

上記3ビーム用回折格子を用いた場合のさらに他の位相シフトパターンを示す 平面図である。

【図22】

上記3ビーム用回折格子を用いた場合のさらに他の位相シフトパターンを示す 平面図である。

【図23】

従来のピックアップ装置を示す概略構成図である。

【図24】

(a) は、従来の他のピックアップ装置を示す概略構成図、(b) は上記ピックアップ装置のグレーティングを示す平面図である。

【図25】

上記ピックアップ装置におけるプッシュプル信号検出原理を示すブロック図で ある。

【図26】

(a) は、上記ピックアップ装置におけるメインビーム及びサブビームのそれ ぞれのプッシュプル信号を示す波形図、(b) は上記ピックアップ装置において 対物レンズがシフトした場合のプッシュプル信号を示す波形図である。

【符号の説明】

1 光源

- 2 コリメータレンズ
- 3 グレーティング
- 4 ビームスプリッタ
- 5 対物レンズ
- 6 光ディスク
- 7 集光レンズ
- 8 光検出器
- 9 ホログラム素子
- 10 受光素子
- 11 開口制御素子
- 30 メインビーム
- 31 サブビーム(+1次光)
- 31a サブビームの 0次反射回折光
- 31b サブビームの+1次回折光
- 31c サブビームの-1次回折光
- 32 サブビーム(-1次光)
- 61 トラック
- A 1 領域
- B 1 領域
- B 2 領域
- L1 直線
- L2 直線(第1境界線)
- L3 直線(第1境界線)
- λ1 波長(第1の波長)
- λ2 波長(第2の波長)

【図3】

【図4】

出証特2004-3023370

【図6】

格子溝が1/2ピッチ ずれている領域(ハッチング部分)

【図7】

【図8】

格子溝が1/2ピッチ ずれている領域(ハッチング部分)

【図9】

【図10】

【図11】

【図13】

【図15】

グレーティング上でのビーム径

格子溝が1/2ピッチ ずれている領域B(ハッチング部分)

【図17】

【図18】

【図19】

[図20]

【図21】

【図25】

対物レンズがシフトした場合のプッシュプル信号

【要約】

【課題】 複数の異なる光源を同一パッケージ内に有する光ピックアップにおいて、DVD系及びCD系等のいずれの光ディスクに対しても3ビームでトラック検出を行う場合に、低コストで実現でき、しかも組立調整の簡略化及びピックアップの簡素化を実現し得る光ピックアップを提供する。

【選択図】 図1

特願2003-100742

出願人履歴情報

識別番号

[000005049]

1. 変更年月日 [変更理由]

1990年 8月29日

住所

新規登録 大阪府大阪市阿倍野区長池町22番22号

氏 名

シャープ株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.