given by

$$(v_1^*,\ldots,v_n^*,u_1,\ldots,u_n)\mapsto \sum_{\sigma\in\mathfrak{S}_n}v_{\sigma(1)}^*(u_1)\cdots v_{\sigma(n)}^*(u_n).$$

Note that the expression on the right-hand side is "almost" the determinant $\det(v_j^*(u_i))$, except that the sign $\operatorname{sgn}(\sigma)$ is missing (where $\operatorname{sgn}(\sigma)$ is the signature of the permutation σ ; that is, the parity of the number of transpositions into which σ can be factored). Such an expression is called a *permanent*.

It can be verified that this expression is symmetric w.r.t. the u_i 's and also w.r.t. the v_j^* . For any fixed $(v_1^*, \ldots, v_n^*) \in (E^*)^n$, we get a symmetric multilinear map

$$l_{v_1^*,\dots,v_n^*}: (u_1,\dots,u_n) \mapsto \sum_{\sigma \in \mathfrak{S}_n} v_{\sigma(1)}^*(u_1) \cdots v_{\sigma(n)}^*(u_n)$$

from E^n to K. The map $l_{v_1^*,\dots,v_n^*}$ extends uniquely to a linear map $L_{v_1^*,\dots,v_n^*} \colon S^n(E) \to K$ making the following diagram commute:

$$E^{n} \xrightarrow{\iota_{\odot}} S^{n}(E)$$

$$\downarrow^{L_{v_{1}^{*},...,v_{n}^{*}}} \qquad \qquad \downarrow^{K}.$$

We also have the symmetric multilinear map

$$(v_1^*, \dots, v_n^*) \mapsto L_{v_1^*, \dots, v_n^*}$$

from $(E^*)^n$ to $\text{Hom}(S^n(E), K)$, which extends to a linear map L from $S^n(E^*)$ to $\text{Hom}(S^n(E), K)$ making the following diagram commute:

$$(E^*)^n \xrightarrow{\iota_{\odot^*}} S^n(E^*)$$

$$\downarrow^L$$

$$\operatorname{Hom}(S^n(E), K)$$

However, in view of the isomorphism

$$\operatorname{Hom}(U \otimes V, W) \cong \operatorname{Hom}(U, \operatorname{Hom}(V, W)),$$

with $U = S^n(E^*)$, $V = S^n(E)$ and W = K, we can view L as a linear map

$$L \colon S^n(E^*) \otimes S^n(E) \longrightarrow K$$

which by Proposition 33.8 corresponds to a bilinear map

$$\langle -, - \rangle \colon S^n(E^*) \times S^n(E) \longrightarrow K.$$
 (*)