#importing libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline

#loading datasets

regions = pd.read_csv('/content/noc_regions.csv')
athlete = pd.read_csv('/content/athlete_events.csv')

athlete.head()

		ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	
(0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Baskı
	1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	London	
	2	2	Gunnar Nielsen	М	24 N	ИсИ	McN	Nanmark	DEN	1920	1020	Summar	Antwernen	For

regions.head()

	NOC	region	notes
0	AFG	Afahanistan	NaN

#join the dataframes

athlete_df = athlete.merge(regions, how = 'left', on = 'NOC') athlete_df.head()

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	§
0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Bask
1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	London	
2	3	Gunnar Nielsen	М	<i>7</i> ⊿ ∩	MaM	MaM	Nonmark	DEN	1920	1920	Summar	∆ntwarnan	For

athlete_df.shape

(271116, 17)

athlete_df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 271116 entries, 0 to 271115 Data columns (total 17 columns): # Column Non-Null Count Dtype

___ ____

⁰ ID 271116 non-null int64

¹ Name 271116 non-null object

² Sex 271116 non-null object

³ Age 261642 non-null float64

⁴ Height 210945 non-null float64

⁵ Weight 208241 non-null float64

⁶ Team 271116 non-null object

⁷ NOC 271116 non-null object

- 8 Games 271116 non-null object
- 9 Year 271116 non-null int64
- 10 Season 271116 non-null object
- 11 City 271116 non-null object
- 12 Sport 271116 non-null object
- 13 Event 271116 non-null object
- 14 Medal 39783 non-null object
- 15 region 270746 non-null object
- 16 notes 5039 non-null object

dtypes: float64(3), int64(2), object(12)

memory usage: 37.2+ MB

athlete_df.describe()

	ID	Age	Height	Weight	Year
count	271116.000000	261642.000000	210945.000000	208241.000000	271116.000000
mean	68248.954396	25.556898	175.338970	70.702393	1978.378480
std	39022.286345	6.393561	10.518462	14.348020	29.877632
min	1.000000	10.000000	127.000000	25.000000	1896.000000
25%	34643.000000	21.000000	168.000000	60.000000	1960.000000
50%	68205.000000	24.000000	175.000000	70.000000	1988.000000
75 %	102097.250000	28.000000	183.000000	79.000000	2002.000000
max	135571.000000	97.000000	226.000000	214.000000	2016.000000

#total null values in each column

athlete_df.isnull().sum()

ID 0 Name 0 Sex 0 Age 9474 Height 60171

62875 Weight Team 0 NOC 0 Games 0 Year 0 Season 0 City 0 Sport 0 Event 0 231333 Medal region 370 266077 notes dtype: int64

#details about india

athlete_df.query('Team == "India"').head(10)

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport
505	281	S. Abdul Hamid	М	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	Amsterdam	Athletics
506	281	S. Abdul Hamid	М	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	Amsterdam	Athletics
895	512	Shiny Kurisingal Abraham- Wilson	F	19.0	167.0	53.0	India	IND	1984 Summer	1984	Summer	Los Angeles	Athletics
		Shiny							1004				

#top 10 participating countries

```
top_10_countries = athlete_df.Team.value_counts().sort_values(ascending = False).head(10) top_10_countries
```

United States 17847 France 11988 Great Britain 11404 Italy 10260 9326 Germany Canada 9279 8289 Japan Sweden 8052 7513 Australia 6547 Hungary Name: Team, dtype: int64

#plot for top 10 participating countries

```
plt.figure(figsize = (12,6))
plt.title('Participation by Country')
sns.barplot(x = top_10_countries.index, y = top_10_countries, palette = 'Set1')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fca563a1350>

Participation by Country

#age distribution of athletes

```
plt.figure(figsize = (12,6))
plt.title('Age distribution of Athletes')
plt.xlabel = ('Age')
plt.ylabel = ('Number of Athletes')
plt.hist(athlete_df.Age, bins = np.arange(10,80,2), color = 'orange', edgecolor = 'white');
```


#winter olympic sports

winter_sports = athlete_df[athlete_df.Season == 'Winter'].Sport.unique()
winter_sports

array(['Speed Skating', 'Cross Country Skiing', 'Ice Hockey', 'Biathlon',

```
'Alpine Skiing', 'Luge', 'Bobsleigh', 'Figure Skating',
           'Nordic Combined', 'Freestyle Skiing', 'Ski Jumping', 'Curling',
           'Snowboarding', 'Short Track Speed Skating', 'Skeleton',
           'Military Ski Patrol', 'Alpinism'], dtype=object)
#summer olympic sports
summer_sports = athlete_df[athlete_df.Season == 'Summer'].Sport.unique()
summer_sports
      array(['Basketball', 'Judo', 'Football', 'Tug-Of-War', 'Athletics',
           'Swimming', 'Badminton', 'Sailing', 'Gymnastics',
           'Art Competitions', 'Handball', 'Weightlifting', 'Wrestling',
           'Water Polo', 'Hockey', 'Rowing', 'Fencing', 'Equestrianism',
           'Shooting', 'Boxing', 'Taekwondo', 'Cycling', 'Diving', 'Canoeing',
           'Tennis', 'Modern Pentathlon', 'Golf', 'Softball', 'Archery',
           'Volleyball', 'Synchronized Swimming', 'Table Tennis', 'Baseball',
           'Rhythmic Gymnastics', 'Rugby Sevens', 'Trampolining',
           'Beach Volleyball', 'Triathlon', 'Rugby', 'Lacrosse', 'Polo',
           'Cricket', 'Ice Hockey', 'Racquets', 'Motorboating', 'Croquet',
           'Figure Skating', 'Jeu De Paume', 'Roque', 'Basque Pelota',
           'Alpinism', 'Aeronautics'], dtype=object)
#male and female athletes
gender_counts = athlete_df.Sex.value counts()
gender counts
      M 196594
       F 74522
      Name: Sex, dtype: int64
#pie plot for male and female athletes
plt.figure(figsize = (12,6))
plt.title('Gender Distribution')
plt.pie(gender counts, labels = gender counts.index, autopct ='%1.1f%%', startangle =150);
```

Gender Distribution

#total medals

athlete_df.Medal.value_counts()

Gold 13372 Bronze 13295 Silver 13116

Name: Medal, dtype: int64

#filtering female athletes

women_olympics = athlete_df[(athlete_df.Sex == 'F') & (athlete_df.Season == 'Summer')]
women_olympics

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	
26	8	Cornelia "Cor" Aalten (- Strannood)	F	18.0	168.0	NaN	Netherlands	NED	1932 Summer	1932	Summer	Los Angeles	Athletics	, Wom€
27	8	Cornelia "Cor" Aalten (- Strannood)	F	18.0	168.0	NaN	Netherlands	NED	1932 Summer	1932	Summer	Los Angeles	Athletics	Wom 100
32	13	Minna Maarit Aalto	F	30.0	159.0	55.5	Finland	FIN	1996 Summer	1996	Summer	Atlanta	Sailing	V niW
33	13	Minna Maarit Aalto	F	34.0	159.0	55.5	Finland	FIN	2000 Summer	2000	Summer	Sydney	Sailing	∨ niW
79	21	Ragnhild Margrethe Aamodt	F	27.0	163.0	NaN	Norway	NOR	2008 Summer	2008	Summer	Beijing	Handball	- V -
271080	135553	Galina Ivanovna Zybina (-	F	33.0	168.0	80.0	Soviet Union	URS	1964 Summer	1964	Summer	Tokyo	Athletics	, V

#women participation in each olympics

```
sns.set(style = "darkgrid")
plt.figure(figsize = (20,8))
sns.countplot(x = 'Year', data = women_olympics, palette = "Spectral")
plt.title('Women Participation')
```

С→

Text(0.5, 1.0, 'Women Participation')

#top 5 countries with maximum gold medals

gold_medals = athlete_df[(athlete_df.Medal == 'Gold')]
gold_medals.region.value_counts().reset_index(name = 'Medal').head()

	index	Medal
0	USA	2638
1	Russia	1599
2	Germany	1301
3	UK	678
4	Italy	575

#bar graph for top 5 countries with maximum gold medals

```
total_gold_medals = gold_medals.region.value_counts().reset_index(name = 'Medal').head(5)
g = sns.catplot(x = "index", y = "Medal",data = total_gold_medals, kind = "bar", palette = "Spectral")
g.set_xlabels("Top 5 Countries")
g.set_ylabels("Number of Medals")
plt.title('Gold Medals per Country')
```

Text(0.5, 1.0, 'Gold Medals per Country')

#recent olympic event year

max_year = athlete_df.Year.max()
print(max_year)

2016

#top 10 countries with highest gold medals at rio olympucs 2016

team_names = athlete_df[(athlete_df.Year == max_year) & (athlete_df.Medal == 'Gold')].Team team_names.value_counts().head(10)

United States 137 Great Britain 64 Russia 50 Germany 47 China 44 Brazil 34 Australia 23 Argentina 21 France 20 17 Japan

Name: Team, dtype: int64