Herramientas Computacionales 2016661

Ecuaciones Diferenciales Ordinarias

Ricardo Amézquita

Departamento de Física Universidad Nacional de Colombia Sede Bogotá

Problema a resolver

Partiendo de:

$$\frac{dy}{dt} = f(y,t)$$

y dada una condición inicial:

$$y\left(t_{0}\right)=y_{0}$$

Encontrar:

Problema típico

¿Cual es la posición X(t) de un vehículo si en t=0 se encuentra en la posición X_0 y su velocidad está dada por la función V(t)?

Método de Euler

Expandiendo en series de Taylor, se tiene que:

$$y(t + \Delta t) = y(t) + \Delta t y'(t) + O(\Delta t^{2}) = y(t) + \Delta t f(y, t) + O(\Delta t^{2})$$

Haciendo los siguientes cambio de notación:

$$y(t_{0}) = y_{0} f(y_{0}; t_{0}) = f_{0} y(t) = y(t_{0} + \Delta t n) = y_{n} f(y_{n}; t_{n}) = f_{n} y(t + \Delta t) = y(t_{0} + \Delta t (n + 1)) = y_{n+1} f(y_{n+1}; t_{n+1}) = f_{n+1} t_{0} + \Delta t n = t_{n}$$

Dado que: $t + \Delta t = t_0 + \Delta t \, n + \Delta t = t_0 + (n+1) \, \Delta t$, la expansión de Taylor se puede reescribir como:

$$y_{n+1} = y_n + \Delta t \, f_n + O\left(\Delta t^2\right)$$

Ejemplo

Resuelva la ecuación:

$$\frac{dy}{dx} = -xy$$

con y(0) = 1.

Х	h f (x, y)	Euler	$y(x) = exp\left(-x^2/2\right)^1$
0	0	1.000000	1
0.1	-0.0100000	1.000000	0.995012
0.2	-0.0198000	0.990000	0.980199
0.3	-0.0291960	0.970200	0.955997
0.4	-0.0376438	0.941094	0.923116
0.5	-0.0451725	0.903450	0.882497
0.6	-0.0514967	0.858278	0.835270
0.7	-0.0564747	0.806781	0.782705
0.8	-0.0600245	0.750306	0.726149
0.9	-0.0621254	0.690282	0.666977
1.0	-0.0628157	0.628157	0.606531

¹Solución exacta

Error en el método de Euler

Si se tienen en cuenta términos de orden 2 el método de Euler se puede escribir como:

$$y(t_0 + \Delta t) = y(t_0) + \Delta t f'(t_0) + \frac{f'(t_0) \Delta t^2}{2}$$

Si se reduce a la mitad Δt , el término de error se reduce una cuarta parte

Método del punto medio

Como caso general, una ecuación diferencial ordinaria se puede resolver como:

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t) dt$$

Si se utiliza el método del punto medio para resolver la integral, esto se puede escribir como:

$$y(t_{n+1}) = y(t_n) + \Delta t f\left(y(t_n), t_0 + \frac{\Delta t}{2}\right) + \frac{f''(y(t_n), t_0 + \frac{\Delta t}{2})}{6} \frac{\Delta t^3}{4} + \dots$$

Si se reduce a la mitad Δt , el término de error se reduce una octava parte.

- (□) (@) (분) (분) 분 (이익)

Método de Euler Mejorado²

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} \frac{dy}{dt} dt$$

$$= y(t_n) + \int_{t_n}^{t_{n+1}} f(y(t), t) dt$$

$$\simeq y(t_n) + \frac{\Delta t}{2} (f(y(t_n), t_n) + f(y(t_{n+1}), t_{n+1}))$$

$$= y(t_n) + \frac{\Delta t}{2} (f(y_n, t_n) + f(y_{n+1}, t_{n+1}))$$
(1)

Donde se utilizó la regla del trapecio para la segunda integral

²También conocido como método de Heun

Al remplazar y_{n+1} por su aproximación de Euler en la ecuación 1 se llega a:

$$y(t_{n+1}) \simeq y(t_n) + \frac{h}{2}(f(y_n, t_n) + f(y_n + \Delta t f(y_n, t_n), t_{n+1}))$$

lo cual se puede reescribir como:

$$y_{n+1} \simeq y_n + \frac{h}{2} \left(f_n + \tilde{f}_{n+1} \right)$$

donde:

$$\tilde{f}_{n+1} = f\left(y_n + h f_n, t_{n+1}\right)$$

Método de Runge-Kutta

$$\frac{dy}{dt} = f(y,t)$$

$$k_{1} = \Delta t f(t_{n}, y_{n})$$

$$k_{2} = \Delta t f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = \Delta t f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = \Delta t f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + k_{3}\right)$$

$$y_{n+1} = y_{n} + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6}$$

Método de Runge-Kutta para 2 ecuaciones acopladas

$$\frac{dx}{dt} = f(x, y, t) \qquad \frac{dy}{dt} = g(x, y, t)$$

$$k_{x1} = \Delta t f(t_n, x_n, y_n) \qquad k_{y1} = \Delta t g(t_n, x_n, y_n)$$

$$k_{x2} = \Delta t f\left(t_n + \frac{\Delta t}{2}, x_n + \frac{k_{x1}}{2}, y_n + \frac{k_{y1}}{2}\right) \qquad k_{y2} = \Delta t g\left(t_n + \frac{\Delta t}{2}, x_n + \frac{k_{x1}}{2}, y_n + \frac{k_{y1}}{2}\right)$$

$$k_{x3} = \Delta t f\left(t_n + \frac{\Delta t}{2}, x_n + \frac{k_{x2}}{2}, y_n + \frac{k_{y2}}{2}\right) \qquad k_{y3} = \Delta t g\left(t_n + \frac{\Delta t}{2}, x_n + \frac{k_{x2}}{2}, y_n + \frac{k_{y2}}{2}\right)$$

$$k_{x4} = \Delta t f\left(t_n + \frac{\Delta t}{2}, x_n + k_{x3}, y_n + k_{y3}\right) \qquad k_{y4} = \Delta t g\left(t_n + \frac{\Delta t}{2}, x_n + k_{x3}, y_n + k_{y3}\right)$$

$$x_{n+1} = x_n + \frac{k_{x1}}{6} + \frac{k_{x2}}{3} + \frac{k_{x3}}{3} + \frac{k_{x4}}{6}$$

$$y_{n+1} = y_n + \frac{k_{y1}}{6} + \frac{k_{y2}}{3} + \frac{k_{y3}}{6}$$

Sistema masa resorte

Un sistema masa resorte se puede describir con la siguiente ecuación diferencial,

$$m\frac{d^2x}{dt^2} = -kx$$

si se define $v = \frac{dx}{dt}$, el problema se puede representar como el siguiente sistema de ecuaciones diferenciales acopladas de primer orden:

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = -\frac{kx}{m}$$

que puede solucionarse utilizando un método numérico si se tienen en cuenta las condiciones iniciales para x y v.

Ver ejemplo.py

4 D > 4 B > 4 B > 3 B + 9 Q P

Ecuación exacta del péndulo simple

Un péndulo simple se puede describir con la siguiente ecuación diferencial,

$$L\frac{d^2\theta}{dt^2} + g \sin\theta = 0 (2)$$

Si se define $\omega=\theta'$, la ecuación 2 se puede escribir como el siguiente sistema de ecuaciones diferenciales acopladas de primer orden:

$$\frac{d\theta}{dt} = \omega$$

$$\frac{d\omega}{dt} = -\frac{g}{L}\sin\theta$$

que puede solucionarse utilizando un método numérico si se tienen en cuenta las condiciones iniciales para θ y ω .

→ロト →団 → → 重 → → 重 → りへで

Ejercicio

- Resolver la ecuación exacta del péndulo simple por el método de Runge-Kutta
- ② Buscar como se usa la función de scipy odeint y utilizarla para resolver el problema de 3 cuerpos para el sol la tierra y la luna. Haga gráficas de las orbitas resultantes.