Proiectare logică

Curs 5

Analiza circuitelor logice combinaționale. Circuite SSI și MSI. Proiectare cu SSI și MSI

Cristian Vancea

https://users.utcluj.ro/~vcristian/PL.html

Cuprins

- Circuite logice combinaționale (CLC)
- Analiza CLC
- Circuite SSI (Small Scale Integration) uzuale
- Proiectare CLC cu circuite SSI
- Circuite MSI (Medium Scale Integration) uzuale
- Proiectare CLC cu circuite MSI

Definiție – circuitele logice combinaționale (CLC) sunt automate finite de ordin 0: ieșirile depind numai de variabilele de intrare.

Analiza CLC

- Se determină funcționalitatea unui circuit dat urmărind transformările aplicate variabilelor de intrare.
- **Definiție** numărul de niveluri logice este numărul maxim de porți logice prin care se propagă semnalul de la o variabilă de intrare până la ieșire; se numerotează de la ieșire spre intrare.

Analiza CLC

Se determină dacă un circuit este CLC prin absența legăturilor inverse.

Algoritmul de determinare a legăturilor inverse

- Se numerotează crescător porțile care au ca intrări numai variabile de intrare.
- Se continuă numerotarea porților care au ca intrări variabile de intrare și/sau ieșiri ale porților deja numerotate.
- Dacă la final există cel puțin o poartă nenumerotată înseamnă că există legături inverse și circuitul nu este CLC.

Sinteza CLC

- Etape:
 - 1. Enunțul problemei
 - 2. Definirea funcțiilor
 - 3. Minimizarea funcțiilor
 - 4. Desenarea schemei circuitului
- Există mai multe metode de implementare în funcție de complexitatea circuitelor folosite.

Circuite SSI (Small Scale Integration) uzuale

• SSI au până la 50 tranzistoare integrate – Exemple:

SAU (OR)
$$x_1 x_0 \mid y$$

 $y = x_1 + x_0$ 0 0 0 0 0 0 1 1 1 1 1 1 1

SAU-EXCLUSIV (XOR)				
$y = x_1 \oplus x_0$	$x_1 x_0$	у		
$y - x_1 \oplus x_0$	0 0	0		
χ_0	0 1	1		
x_0 y	1 0	1		
	1 1	0		

\$I-NU (NAND)
$$x_1 x_0 \mid y$$
 $y = \overline{x_1 \cdot x_0} \quad 0 \quad 0 \quad 1$
 $x_0 \quad y \quad 0 \quad 1 \quad 1$
 $x_1 \quad y \quad 0 \quad 1 \quad 1$
 $x_1 \quad y \quad 0 \quad 1 \quad 1$

COINCIDENȚĂ	$x_1 x_0$	у
(XNOR)	0 0	1
$y = x_1 \odot x_0$	0 1	0
$y - x_1 \cup x_0$	1 0	0
x_1 y	1 1	1

Sinteza funcțiilor booleene cu circuite SSI

- Se creează schema logică folosind porțile fundamentale în conformitate cu:
 - Expresia funcției
 - Forma Canonică Conjunctivă
 - Forma Canonică Disjunctivă
 - Forma Disjunctivă Minimă
 - Forma Conjunctivă Minimă
 - Expresii echivalente obținute aplicând axiomele și proprietățile algebrei booleene
- Variațiuni:
 - Implementare numai cu porți ŞI-NU
 - Implementare numai cu porți SAU-NU

Sinteza funcțiilor booleene cu ŞI-NU

Se aduce funcția la FDM, se aplică dubla negație și De Morgan

Ex:
$$n = 4$$
 $f = \sum (1,3,5,7,8,9,12,13)$

x_3x_2 x_1x_0	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	1	0	0
10	1	1	0	0

Sinteza funcțiilor booleene cu SAU-NU

Se aduce funcția la FCM, se aplică dubla negație și De Morgan

Ex:
$$n = 4$$
 $f = \sum (1,3,5,7,8,9,12,13)$

x_3x_2 x_1x_0	00	01	11	10
00	0	1	1	0
01	9	1	1	0
11	1	1	0	0
10	1	1	0	0

$$f \stackrel{\text{FCM}}{\Longrightarrow} (x_3 + x_0) \cdot (\overline{x_3} + \overline{x_1}) \stackrel{\circ}{=} \overline{(x_3 + x_0) \cdot (\overline{x_3} + \overline{x_1})} \stackrel{\circ}{=} \overline{x_3 + x_0} + \overline{x_3} + \overline{x_1} =$$

$$\overline{x} = \overline{x + x} = \overline{x + 0}$$

$$= \overline{x_3 + x_0} + \overline{x_3 + x_3} + \overline{x_1 + 0}$$

Circuite MSI (Medium Scale Integration) uzuale

- MSI au până la 500 tranzistoare integrate.
- Implementează funcții standard mai complexe => expresia logică de implementat trebuie adaptată la aceste funcții.

Circuite MSI uzuale – Convertoare de cod

- Realizează conversia de la un cod binar la altul.
- Se aplică un cod pe intrare și se obține un alt cod la ieșire.
- Sunt utile la comunicarea între 2 sisteme care codifică informația diferit.

Circuite MSI uzuale – Convertoare de cod

 y_1

Convertor Gray → BCD (8421)

x_3	x_2	x_1	x_0	$ y_3 $	y_2	y_1	y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

D (0421)							
	x_3x_2 x_1x_0	00	01	11	10		
	00	0	0	0	0		
<i>y</i> ₃ :	01	0	0	0	0		
	11	1	1	1	1		
	10	1	1	1	1		
	-						

	$v_3 = x_3 \leftarrow$				
	x_3x_2 x_1x_0	00	01	11	10
	00	0	0	1	1
•	01	1	1	0	0
	11 /	0	0	1	1
	10 /	1	1	0	0

	x_3x_2 x_1x_0	00	01	11	10
	00	0	0	0	0
<i>y</i> ₂ :	01	1	1	1	1
	11 /	0	0	0	0
	10/	1	1	1	1

$$y_{2} = \overline{x_{3}} \cdot x_{2} + x_{3} \cdot \overline{x_{2}} = x_{3} \oplus x_{2}$$

$$x_{3}x_{2} \xrightarrow{x_{1}x_{0}} 00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 0 \quad \boxed{1} \quad 0 \quad \boxed{1}$$

$$y_{0} : 01 \quad \boxed{1} \quad 0 \quad \boxed{1} \quad 0$$

$$11 \quad 0 \quad \boxed{1} \quad 0 \quad \boxed{1}$$

$$10 \quad \boxed{1} \quad 0 \quad \boxed{1} \quad 0$$

$$y_{1} = \overline{x_{3}} \cdot \overline{x_{2}} \cdot x_{1} + \overline{x_{3}} \cdot x_{2} \cdot \overline{x_{1}} + x_{3} \cdot x_{2} \cdot \overline{x_{1}} + \overline{x_{3}} \cdot \overline{x_{2}} \cdot \overline{x_{1}} =$$

$$= \overline{x_{3}} \cdot (\overline{x_{2}} \cdot x_{1} + x_{2} \cdot \overline{x_{1}}) + x_{3} \cdot (x_{2} \cdot x_{1} + \overline{x_{2}} \cdot \overline{x_{1}}) =$$

$$= \overline{x_{3}} \cdot (x_{2} \oplus x_{1}) + x_{3} \cdot \overline{(x_{2} \oplus x_{1})} = x_{3} \oplus x_{2} \oplus x_{1}$$

$$y_{0} = \overline{x_{3}} \cdot \overline{x_{2}} \cdot \overline{x_{1}} \cdot x_{0} + \cdots = x_{3} \oplus x_{2} \oplus x_{1} \oplus x_{0}$$

$$\xrightarrow{13}$$

Circuite MSI uzuale – Convertoare de cod

Convertor Gray → BCD (8421)

$$y_3 = x_3$$
 $y_2 = x_3 \oplus x_2$ Generalizare n biti $y_{n-1} = x_{n-1}$ $y_i = x_3 \oplus x_2 \oplus x_1$ $y_i = x_{n-1} \oplus x_{n-2} \oplus \cdots \oplus x_i, i = \overline{0, n-2}$ $y_i = x_{n-1} \oplus x_{n-2} \oplus \cdots \oplus x_i, i = \overline{0, n-2}$

Convertor BCD (8421) → Gray

Formula generală pentru n biți după minimizare: $\begin{array}{c} y_{n-1} = x_{n-1} \\ y_i = x_i \bigoplus x_{i+1}, \ i = \overline{0.n-2} \end{array}$

Ex:
$$n = 4$$

 $y_3 = x_3$
 $y_2 = x_2 \oplus x_3$
 $y_1 = x_1 \oplus x_2$
 $y_0 = x_0 \oplus x_1$

Circuite MSI uzuale - Codificatoare

- La activarea unei intrări se generează codul binar corespunzător la ieșire.
- O intrare este considerată activă când are valoarea 0 (logică negativă).
- Codificator prioritar: intrările au priorități prestabilite; dacă mai multe intrări sunt active ieșirea va avea codul intrării cu prioritatea cea mai mare.

Dacă e codificator prioritar atunci prioritatea crește începând de la intrarea 0 la 9.

Circuite MSI uzuale – Decodificatoare (DCD)

- În prezența unui cod binar pe intrare se activează ieșirea corespunzătoare.
- leşirile sunt active pe 0 (logică negativă).
- Pentru n biţi de intrare numărul de ieşiri este $m \leq 2^n$.

Ex: n = 3 m = 8

Observație:

Implementează la ieșire toți mintermii negați (maxtermi).

Circuite MSI uzuale – Multiplexoare (MUX)

- Datele de la una din intrări sunt trecute la ieșirea care este unică.
- Selecția se face pe baza unui cod dat de semnalele de selecție.
- Pentru m biți de selecție numărul de intrări este $n=2^m$.

$$y = x_k$$
, $k = s_{m-1} \times 2^{m-1} + s_{m-2} \times 2^{m-2} + \dots + s_0 \times 2^0$ (nr. de combinație)

$s^{x_0x_1}$	00	01	11	10
0	0	0	1	1
1	0	1	1	0

 $y = x_0 \cdot \overline{s} + x_1 \cdot s$

 P_0 , P_1 = mintermi de variabila s

Circuite MSI uzuale – Multiplexoare (MUX)

Obs₁: Implementează SAU peste mintermii de s_1 , s_0 pentru care $x_i = 1$.

FCD pentru $f(s_1, s_0)$

Obs₂: În funcție de valorile 0 sau 1 pe intrările x_i se activează/dezactivează mintermi de s_1 , $s_0 => y$ = diverse funcții de variabilele s_1 și s_0 .

Circuite MSI uzuale – Multiplexoare (MUX)

- Există MUX 2:1, 4:1, 8:1, 16:1, 32:1, 64:1, etc.
- Pot prezenta suplimentar ieșirea negată și un semnal de activare (Enable).
- Cele cu număr mare de intrări se pot realiza prin cascadarea celor cu număr mai mic de intrări.

Ex₂: **MUX 8:1** obținut prin cascadare X_0 **MUX** X_1 MUX S_2 $X_3 S_1 S_0$ 19

Circuite MSI uzuale – Demultiplexoare (DMUX)

- Datele de la intrarea (unică) sunt trecute la una din ieșirile selectate.
- Selecția se face pe baza unui cod dat de semnalele de selecție.
- Pentru m biți de selecție numărul de ieșiri este $n=2^m$.

$$y_k = \begin{cases} x, k = s_{m-1} \times 2^{m-1} + s_{m-2} \times 2^{m-2} + \dots + s_0 \times 2^0 \text{ (nr. de combinație)} \\ 0, \text{ altfel} \end{cases}$$

$$y_0 = x \cdot \overline{s_1} \cdot \overline{s_0} = x \cdot P_0$$

$$y_1 = x \cdot \overline{s_1} \cdot s_0 = x \cdot P_1$$

$$y_2 = x \cdot s_1 \cdot \overline{s_0} = x \cdot P_2$$

$$y_3 = x \cdot s_1 \cdot s_0 = x \cdot P_3$$

implementează la ieșire toți mintermii de s_1^{20} și s_0 .

Circuite MSI uzuale – Demultiplexoare (DMUX)

- Există DMUX 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, etc.
- Cele cu număr mare de ieșiri se pot realiza prin cascadarea celor cu număr mai mic de ieșiri.

Ex₁: **DMUX 1:4** obținut prin cascadare

Ex₂: **DMUX 1:8** obținut prin cascadare

Circuite MSI uzuale – Comparatoare numerice

• Determină la ieșire relația de mărime dintre 2 numere aplicate pe intrare.

Ex: n = 1 – Comparator pe 1 bit

Circuite MSI uzuale – Comparatoare numerice

 Comparatoarele pe mai mulți biți se pot realiza din comparatoare pe mai puțini biți și porți logice.

Ex: n=2 – Comparator pe 2 biţi realizat prin cascadare

Circuite MSI uzuale – Comparatoare numerice

 Comparatoarele pe mai mulți biți se pot realiza din comparatoare pe mai puțini biți și porți logice.

Ex: n = 3 – Comparator pe 3 biţi realizat prin cascadare

Obs: Prin cascadare se poate genera treptat pentru orice număr de biți.

Circuite MSI uzuale – Detectoare/generatoare de paritate

- Sunt utilizate la detecţia erorilor de transmisie.
- Paritate pară/impară = numărul de biți de 1 ai unui cuvânt transmis trebuie să fie par/impar.
- Generator generează 1 bit astfel încât concatenat la cuvântul de transmis să se respecte paritatea utilizată. Rezultatul concatenării se transmite pe canalul de comunicație.
- Detector semnalează dacă valorile primite la destinație codifică un cuvânt corect sau eronat din punct de vedere al parității.
- Sunt construite din porți XOR. Observație:

$$x_0 \oplus x_1 \oplus \cdots \oplus x_{n-1} = \begin{cases} 0, (x_0, x_1, \dots, x_{n-1}) \text{ conține un număr par de 1} \\ 1, (x_0, x_1, \dots, x_{n-1}) \text{ conține un număr impar de 1} \end{cases}$$

Circuite MSI uzuale - Detectoare/generatoare de paritate

 Pentru un număr mai mare de biți aceste unități se pot realiza prin cascadare de unități XOR.

Generator pe n biți realizat pin cascadare

$$p = \begin{cases} 0, \text{ paritate pară} \\ 1, \text{ paritate impară} \\ x_{n-1} \end{cases} \qquad x_{n-2} \qquad x_1 \qquad x_0 \end{cases}$$

• Se va transmite cuvântul: $yx_{n-1}x_{n-2} \dots x_1x_0$.

Detector pe n + 1 biţi realizat pin cascadare

Paritate pară

$$e = \begin{cases} 1, \text{eroare} \\ 0, \text{corect} \end{cases}$$

Paritate impară

$$e = \begin{cases} 0, \text{eroare} \\ 1, \text{corect} \end{cases}$$

Circuite MSI uzuale – Sumatoare/Scăzătoare

Realizează adunarea/scăderea în baza 2.

Semisumator/semiscăzător pe 1 bit

• Realizează suma/diferența pe 1 bit fără a ține cont de bitul de transport (carry)/împrumut (borrow).

Semisumator: a + b

Semiscăzător: a-b

Circuite MSI uzuale – Sumatoare/Scăzătoare

Sumator/Scăzător (complet) pe 1 bit

• Realizează suma/diferența pe 1 bit ținând cont de bitul de transport (carry)/împrumut (borrow).

Sumator: $a + b + c_{in}$

 $c_{out} = (b \cdot c_{in}) + (a \cdot c_{in}) + (a \cdot b)$ $s = a \oplus b \oplus c_{in}$ (nr. impar de 1 pe a, b, c_{in}) Scăzător: $a - b - b_{in}$

 $b_{out} = (\bar{a} \cdot b_{in}) + (\bar{a} \cdot b) + (b \cdot b_{in})$ b, c_{in}) $d = a \oplus b \oplus b_{in}$ (nr. impar de 1 pe a, b, b_{in})

Circuite MSI uzuale – Sumatoare/Scăzătoare

 Pentru un număr mai mare de biți aceste unități se pot realiza prin cascadare de unități pe 1 bit.

Sumator pe n biți realizat pin cascadare

Scăzător pe n biți realizat pin cascadare

Arithmetic-Logic Unit

Circuite MSI uzuale - Unități Aritmetico-Logice (UAL/ALU)

- Realizează următoarele tipuri de operații pe operanzi cu 1 sau mai mulți biți:
 - Operații aritmetice: adunare, scădere, incrementare, decrementare, comparare.
 - Operații logice: ŞI, SAU, NOT, ŞI-NU, SAU-NU, XOR, XNOR.

- Opcode cod binar care specifică operația de efectuat => până la 2^m operații
- Status set de biţi care oferă informaţii despre operanzi sau rezultat: is-zero, =, >, <, depăşire, paritate

• Operațiile pe mai mulți biți se pot se pot realiza prin cascadare de unități UAL de dimensiuni mai mici.

Sinteza funcțiilor booleene cu circuite MSI

- Nu este necesar pasul de minimizare. Funcțiile se aduc la forma canonică.
- Circuit universal = implementează toți termenii canonici de variabilele sale.
- Obs₁: Decodificatorul (DCD) implementează toți termenii canonici ai variabilelor de intrare => circuit universal.
- Obs₂: Multiplexorul (MUX) și Demultiplexorul (DMUX) implementează toți termenii canonici ai variabilelor de selecție => circuit universal.

Sinteza funcțiilor booleene cu DCD

• DCD implementează la ieșire toți mintermii negați.

• Obs: Dacă se aplică ȘI-NU peste un subset de ieșiri se obține (aplicând De Morgan) o formă canonică disjunctivă (FCD) ce include mintermii asociați.

$$\overline{y_{i1} \cdot y_{i2} \cdot \dots \cdot y_{ik}} = \overline{P_{i1}} \cdot \overline{P_{i2}} \cdot \dots \cdot \overline{P_{ik}} = P_{i1} + P_{i2} + \dots + P_{ik}$$

Sinteza funcțiilor booleene cu DCD

 Obs: Pentru a implementa o funcție scrisă în forma canonică disjunctivă (FCD) este suficient să se aplice ȘI-NU peste ieșirile DCD corespunzătoare mintermilor funcției.

Sinteza funcțiilor booleene cu MUX

- Obs: MUX implementează forma canonică disjunctivă (FCD) care conține mintermii semnalelor de selecție în conjuncție \$I cu intrările x_i .
- Metoda: O funcție de n variabile se poate implementa cu un MUX având n-1 variabile de selecție. Funcția se aduce în forma canonică disjunctivă (FCD). Se scoate factor comun fiecare minterm generat de cele n-1 variabile și termenul care se obține în conjuncție ȘI cu fiecare minterm va fi valoarea semnalului x_i asociat mintermului respectiv.

Sinteza funcțiilor booleene cu MUX

Ex:
$$n = 3$$
 $f = (a_0 \cdot a_1) + (a_0 \cdot \overline{a_1}) + (a_1 \cdot \overline{a_2}) \stackrel{\text{FCD}}{\Longrightarrow} \sum (1,2,3,5,7)$

- Se scrie funcția în forma canonica disjunctivă (FCD).
- Se aleg 2 variabile a_1 , a_0 ca intrări de selecție ale MUX și se scot factor comun mintermii asociați acestora.

Sinteza funcțiilor booleene cu MUX

Metoda de rezolvare grafică cu Diagramă Karnaugh

$$\operatorname{Ex}_1: n = 3 \ f = (a_0 \cdot a_1) + (a_0 \cdot \overline{a_1}) + (a_1 \cdot \overline{a_2}) \stackrel{\operatorname{FCD}}{\Longrightarrow} \Sigma(1,2,3,5,7)$$

• Se realizează Diagrama Karnaugh în care se grupează celulele pentru care cele 2 intrări de selecție a_1 , a_0 sunt identice.

a_2 a_1 a_0	00	01	11	10
0	0		1	1
1	0	1	1	0

- Rezultatul fiecărei grupări reprezintă intrarea în MUX corespunzătoare numărului de combinație dat de selecțiile a_1 , a_0 .
- Rezultatul fiecărei grupări se calculează astfel:
 - Dacă gruparea conține valori identice atunci rezultatul este valoarea respectivă.
 - Dacă gruparea conține valori distincte atunci se calculează în funcție de celula care conține valoarea 1 astfel:
 - Dacă celula corespunde lui $a_2 = 0$ atunci rezultatul este $\overline{a_2}$.
 - Dacă celula corespunde $a_2 = 1$ atunci rezultatul este a_2 .

Sinteza funcțiilor booleene cu MUX

Metoda de rezolvare grafică cu Diagramă Karnaugh

$$\operatorname{Ex}_1: n = 3 \ f = (a_0 \cdot a_1) + (a_0 \cdot \overline{a_1}) + (a_1 \cdot \overline{a_2}) \stackrel{\operatorname{FCD}}{\Longrightarrow} \Sigma(1,2,3,5,7)$$

$a_1 a_0$	00	01	11	10
0	0	1	1	1
1	0	1	1	0

• Rezultatul fiecărei grupări reprezintă intrarea în MUX corespunzătoare numărului de combinație dat de selecțiile a_1 , a_0 .

Obs: Intrările de date x_i ale MUX vor avea valorile 0, 1 sau $\overline{a_2}$, după caz.

Sinteza funcțiilor booleene cu MUX

Metoda de rezolvare grafică cu Diagramă Karnaugh

$$\operatorname{Ex}_{2}$$
: $n = 4$ $f = \sum (0,1,2,3,6,9,11,12,14)$

• Celulele se grupează după a_2 , a_1 , a_0 care vor fi intrări de selecție în MUX.

Obs: Intrările de date x_i ale MUX vor avea valorile 0, 1, a_3 sau $\overline{a_3}$, după caz.

Sinteza funcțiilor booleene cu MUX

Avantaje:

- Se utilizează un circuit pentru întreaga funcție.
- O singură variabilă trebuie să fie disponibilă atât negată cât și nenegată.

Dezavantaje:

- Numărul variabilelor funcției este limitat de numărul intrărilor de selecție.
- Nu se pretează la implementarea unor funcții foarte simple.