A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 3ED

Bookmark

Show all steps: ON

Problem

If $\alpha = \sqrt[4]{2}$ is a real fourth root of 2, then the four fourth roots of 2 are $\pm \alpha$ and $\pm i\alpha$. Explain parts 1–6, briefly but carefully:

$$i \notin \mathbb{Q}(\alpha)$$
; hence $[\mathbb{Q}(\alpha, i) : \mathbb{Q}(\alpha)] = 2$.

Step-by-step solution

Step 1 of 2

The objective is to show that $i \notin \mathbb{Q}(\sqrt[4]{2})$ and hence $\left[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}(\sqrt[4]{2})\right] = 2$.

Comment

Step 2 of 2

Because $\mathbb{Q}(\sqrt[4]{2})$ is a subfield of the reals and so $i \notin \mathbb{Q}(\sqrt[4]{2})$.

Hence $x^2 + 1$ is irreducible over $\mathbb{Q}(\sqrt[4]{2})$.

So
$$, \left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\left(\sqrt[4]{2}\right)\right]$$
 is at least $\ 2$.

But i is a root of $x^2 + 1 \in \mathbb{Q}(\sqrt[4]{2})[X]$, so the degree of $\mathbb{Q}(\sqrt[4]{2},i)$ over $\mathbb{Q}(\sqrt[4]{2})$ is at most 2, and therefore is exactly 2.

Hence
$$, \left[\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}(\sqrt[4]{2}) \right] = 2.$$

Comment