

AMENDMENTS TO THE CLAIMS

21 – 37 (canceled)

38 (currently amended). Method of eliciting an IgA response in a mammal comprising administering orally to the mammal animal a composition comprising a nucleic acid operatively encoding an antigen complexed with or entrapped within liposomes formed from liposome forming components comprising

- a) at least one cationic compound
- b) zwitterionic phospholipid consisting of one or two compounds having the general formula II

in which R³ and R⁴ are the same or different and are a group of the formula CH₃(CH₂)_e(CH=CH-CH₂)_g- in which f is 0 to 6, each of e and g + 3f are 0 to 23 and e + g is in the range 12 to 23;

R⁷ is a C₁₋₈ alkanediyl group;

Y is -O- or a bond;

X² is N, P or S;

m is 3 when X² is N or P and is 2 when X² is S; and

the groups R⁸ are the same or different and are selected from the group consisting of hydrogen, C₁₋₈ alkyl, C₆₋₁₁ aryl or aralkyl, or two or three of the groups

R⁸ together with X² form a saturated or unsaturated heterocyclic group having 5 to 7 ring atoms;

in which at least 25% by mole of the individual liposome forming components have a transition temperature of more than 40°C,

wherein the molar ratio of cationic compound to zwitterionic phospholipid is in the range 1:1 to 1:10,

whereby an IgA response to the said antigen is generated.

39 (previously presented). A method according to claim 38 in which the cationic compound has the general formula I,

in which R¹ and R² are the same or different and are a group of the formula CH₃(CH₂)_a(CH=CH-CH₂)_b(CH₂)_c(CO)_d- in which b is 0 to 6, a and c are each selected from 0-23 and (a + c + 3b) is in the range 12-23 and d is 0 or 1;

R⁵ is a bond or a C₁₋₈ alkanediyl group;

X¹ is N, P or S;

n is 3 where X¹ is N or P and is 2 where X¹ is S; and

the groups R⁶ are the same or different and are selected from the group consisting of hydrogen, C₁₋₈ alkyl, C₆₋₁₂ aryl and aralkyl, or two or three of the groups R⁶ together with X¹ form a saturated or unsaturated heterocyclic group having 5 to 7 ring atoms.

40 (previously presented). A method according to claim 39 in which R¹ is the same as R² and R³ is the same as R⁴.

41 (previously presented). A method according to claim 40 in which R¹ and R² represent a different group to R³ and R⁴.

42 (previously presented). A method according to claim 40 in which R¹ and R² represent a different group to R³ and R⁴, in which in R¹ and R², b is 1, and in which (a + c) is in the range 10 to 20.

43 (previously presented). A method according to claim 38 in which the liposome forming materials comprise two zwitterionic phospholipids in each of which Y is O, X² is N, and the groups R⁸ of the first phospholipid are all hydrogen and the groups R⁸ of the second phospholipid are all C₁₋₁₄ alkyl, and R⁷ is (CH₂)_h in which h is 2 or 3.

44 (previously presented). A method according to claim 43 in which the groups R³ and R⁴ of the said first phospholipid are the same and each is a group in which f is 1 and (e + g) is in the range 10 to 20.

45 (currently amended). A method according to claim 44 in which in the groups R³ and R⁴ of the said second phospholipid are the same and each is a group in which f is 0 and e+ g is in the range 15 to 23.

46 (previously presented). A method according to claim 45 in which the said second zwitterionic phospholipid is selected from the group consisting of distearoylphosphatidylcholine, distearoylphosphatidylethanolamine, diplamitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine.

47 (previously presented). A method according to claim 38 in which the cationic compound is cholesterol-3 β - N-(dimethyaminoethyl) carbamate.

48 (previously presented). A method according to claim 38 in which the nucleic acid is entrapped within the liposomes.

49 (previously presented). A method according to claim 38 in which the mammal is a human.

50 (previously presented). A method according to claim 38 in which in the groups R³ and R⁴ of at least one phospholipid are the same.

51 (previously presented). A method according to claim 50 in which the mammal is a human.

52 (previously presented). A method according to claim 51 in which at least 50% by mole of the individual liposome forming components have a transition temperature of more than 40°C.

53 (previously presented). A method according to claim 50 in which there are two phospholipid compounds and the groups R³ and R⁴ in each phospholipid are the same.

54 (previously presented). A method according to claim 38 in which at least 50% by mole of the individual liposome forming components have a transition temperature of more than 40°C.

55 (previously presented). A method according to claim 39 in which in the groups R³ and R⁴ of at least one phospholipid are the same.

56 (previously presented). A method according to claim 55 in which the mammal is a human.

57 (previously presented). A method according to claim 55 in which there are two phospholipid compounds and the groups R³ and R⁴ in each phospholipid are the same.