Uy Nguyen

Experiment-1

Algorithms

Heap S

556,852

712,780

869,980

Algorithms	Input Type	#comparisons	Comments			
Heap S	random	258470	Valid as having	gO(NlogN)-(5-	6 digits)	
Merge S	random	120414	Valid as having	g O(NlogN)-(5-	6 digits)	
Quick S (fp)	random		Valid as having			
QuickS(rp)	random		Valid as having			
Selection S	random	49995000	Valid as having	gO(N^2)-(8-9	digits)	
Experiment-2	2					
Size of input		100	500	1000	5000	10,000
Algorithms	Selection S	4,950	124,750	499,500	12,497,500	49,995,000
Size of input		100	500	1000	5000	10,000
Algorithms	Merge S	538	3,874	8,664	55,229	120,336
Cina of immed		100	500	1000	5000	10.000
Size of input Algorithms	Quick S (fp)	100 481	500 3,232	7,254	5000 47,775	10,000 112,479
Algoritimis	Quicks (ip)	401	3,232	7,254	47,775	112,479
Size of input		100	500	1000	5000	10,000
Algorithms	Quick S (rp)	620	3,347	7,184	50,844	111,197
Size of input		100	500	1000	5000	10,000
Algorithms	Heap S	1,264	8,544	19,182	119,286	258,204
Cize of input		20,000	25 000	30,000		
Size of input Algorithms	Selection S	20,000	25,000 312 487 500	449,985,000		
Agontiinis	octections	133,330,000	012,407,000	443,303,000		
Size of input		20,000	25,000	30,000		
Algorithms	Merge S	260,932	334,104	408,619		
Size of input		20,000	25,000	30,000		
Algorithms	Quick S (fp)	227,173	281,972	348,359		
Cian of innu-		20.000	05.000	20.000		
Size of input	Quick S (rp)	20,000	25,000 338,596	30,000		
Algorithms	Quick S (rp)	227,687	338,396	384,035		
Size of input		20,000	25,000	30,000		
At a data	11	550,050	740 700	20,000		

Selection Sort

Theoretical Time Complexity: $O(n^2)$

Analysis: The growth is quadratic, matching the theoretical $O(n^2)$.

Each 10× increase in input size results in ~100× increase in time,

which is characteristic of quadratic growth.

Conclusion: Experimental results perfectly match the theoretical expectation.

Quick Sort-fp

Theoretical Average Time Complexity: O(n log n)

Analysis: Similar growth to Merge Sort, confirming n log n performance in average cases.

Slight variations may be due to pivot selection, but trends align with theory.

Conclusion: Results match expected average-case performance of Quick Sort.

Heap Sort

Theoretical Time Complexity: O(n log n)

Analysis: Shows n log n trend, but higher constants than Merge or Quick Sort.

It has complex data structure.

Conclusion: While it follows the expected growth rate.

The overhead leads to slower actual performance, consistent with expectations.

Quick Sort-rp

Theoretical Average Time Complexity: O(n log n)

Analysis: Also exhibits n log n behavior.

Performs similarly or slightly better at larger inputs than Quick S (fp), suggesting that randomized pivot improves performance slightly by avoiding worst-case scenarios.

Conclusion: Results align well with theoretical expectations.

Merge Sort

Theoretical Time Complexity: O(n log n)

Analysis: Growing is significantly better than Selection Sort. From 100 to 1000 (10xinput) results in ~16x increase, and from 1000 to 10000 (another 10x) yields ~ 13x increase. This aligns well with nlogn complexity.

Conclusion: Experimental results are consistent with the theoretical complexity.