Hausaufgabe 8

Aufgabe 46

a)

Da A eine obere Dreiecksmatrix ist, folgt sofort $\chi_A = \det(XE_n - A) = (X - c)^n$. Damit ist $m_c(A) = n$. Ferner ist $g_c(A) = n - \operatorname{rk}(A - cE_n)$. Es gilt $(A - cE_n)_{i,j} = 1$ für $i \in [1, n-1], j = i+1$. Insbesondere ist also $(A - cE_n)_{-,n} = 0$ während die restlichen Spalten l.u. sind. Folglich ist rk $A - cE_n = n-1$ und damit $g_c(A) = 1$.

Nach VL ist A genau dann diagonalisierbar, wenn χ_A in Linearfaktoren zerfällt und für alle Eigenwerte λ von A stets $g_{\lambda}(A) = m_{\lambda}(A)$ gilt. Wir haben jedoch $g_c(A) = 1$ und $m_c(A) = n$. Es folgt, dass für $n \neq 1$, also auch $n \geq 2$ die Matrix A nicht diagonalisierbar ist.

b)

Wenn A diagonalisierbar ist, existieren $P \in GL_n(K)$, $D \in K^{n \times n}$ sodass $P^{-1}AP = D$, wobei D eine Diagonalmatrix ist. Nach VL ist dann $f(A) = PXP^{-1}$ wobei $(X)_{i,j} = \delta_{i,j}f(D_{i,j})$ ist. Insbesondere ist also f(A) ähnlich zu der Diagonalmatrix X, ist also ebenfalls diagonalisierbar.

Aufgabe 47

Seien also $A, B \in K^{n \times n}$ trigonalisierbar mit AB = BA. Sei weiter λ EW von $A, v \in \text{Eig}_{\lambda}(A)$. Es gilt:

$$ABv = BAv = B\lambda v = \lambda Bv \implies Bv \in \operatorname{Eig}_{\lambda}(A)$$

Somit ist $\operatorname{Eig}_{\lambda}(A)$ *B*-invariant. Man betrachte nun $\varphi' := \varphi_B|_{\operatorname{Eig}_{\lambda}(A)}^{\operatorname{Eig}_{\lambda}(A)}$, also φ_B eingeschränkt auf den Eigenraum von A zu λ .

Da B trigonalisierbar ist, zerfällt nach VL χ_B in Linearfaktoren. Ferner gilt:

$$\chi_B = \chi_{\varphi_B} \quad \text{und} \quad \chi_{\varphi'} \mid \chi_{\varphi_B}$$

Da dim $\operatorname{Eig}_{\lambda}(A) > 0$, ist also $\chi_{\varphi'}$ nicht trivial und es existiert ein EW μ von φ' . Damit folgt jedoch sofort, dass für ein $v \in \operatorname{Eig}_{\mu}(\varphi')$ gilt, dass $v \in \operatorname{Source} \varphi' = \operatorname{Eig}_{\lambda}(A)$. Ferner haben wir nun durch

$$\operatorname{Eig}_{\mu}(\varphi') \le \operatorname{Eig}_{\mu}(\varphi_B) = \operatorname{Eig}_{\mu}(B)$$
 dass $Av = \lambda v \wedge Bv = \mu v$

Also haben A und B einen gemeinsamen EV.

Nun lässt sich analog zum Beweis aus der VL zeigen, dass A und B zsm. trigonalisierbar sind:

Seien λ EW von A, μ EW von B sodass $0 \neq v \in \text{Eig}_{\lambda}(A) \cap \text{Eig}_{\mu}(B)$. Dann ist $\langle v \rangle$ sowohl A-, als auch B-invariant. Sei also $s := (v, s_2, \cdots, s_n)$ eine ergänzte Basis von $K^{n \times 1}$.

Nun haben wir:

$$M_{s,s}(\varphi_A) = \begin{pmatrix} \lambda & * \\ 0 & C_1 \end{pmatrix}$$
 $M_{s,s}(\varphi_B) = \begin{pmatrix} \mu & * \\ 0 & C_2 \end{pmatrix}$

und es gilt C_1, C_2 trigonalisierbar mit $C_1C_2 = C_2C_1$, also den gleichen Vorraussetzungen wie A und B. Wir können also nach dem gleichen Argument für C_1 und C_2 vorgehen (bspw. mit Induktion). Nach endlich vielen Schritten folgt analog zum Beweis aus der VL, dass $T \in GL_{n-1}(K)$ existiert, sodass $T^{-1}C_1T$ und $T^{-1}C_2T$ beide obere Δ -Matrizen sind. Dann folgt:

$$\left(\frac{1 \mid 0}{0 \mid T^{-1}}\right) \left(\frac{\lambda \mid *}{0 \mid C_1}\right) \left(\frac{1 \mid 0}{0 \mid T}\right) \quad \text{und} \quad \left(\frac{1 \mid 0}{0 \mid T^{-1}}\right) \left(\frac{\mu \mid *}{0 \mid C_2}\right) \left(\frac{1 \mid 0}{0 \mid T}\right)$$

haben beide obere Δ -Form. Folglich sind $M_{s,s}(\varphi_A)$ und $M_{s,s}(\varphi_B)$ zusammen trigonalisierbar, also auch A und B.