(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 March 2001 (15.03.2001)

PCT

(10) International Publication Number WO 01/17353 A1

- (51) International Patent Classification⁷: C07D 498/04
- A01N 43/90,
- (21) International Application Number: PCT/EP00/08661
- (22) International Filing Date:

5 September 2000 (05.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1643/99

7 September 1999 (07.09.1999) CH

- (71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): GLOCK, Jutta [DE/CH]; Rifeldweg 6, CH-4322 Mumpf (CH).

- (74) Agent: WERNER, Bastian; Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

[Continued on next page]

(54) Title: HERBICIDAL COMPOSITION

$$R_{35} \longrightarrow R_{35} \longrightarrow R_{35} \longrightarrow R_{34} \longrightarrow R_{35} \longrightarrow R$$

(57) Abstract: A selectively herbicidal composition for controlling grasses and weeds in crops of useful plants, comprising a) a herbicidally effective amount of a compound of formula (I), b) an amount, which is effective for antagonism of the herbicide, of a compound of formula (IIa) or of formula (IIb) or of formula (IIc) or of formula (IId) or of formula (IIe) wherein the substituents R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, n, m, R₂₈, R₂₉, R₃₀, R₃₁, R₃₂, o, p, G₂, R₃₃, R₃₄, R₃₅, R₃₆, R₃₇ and R₃₈ are as defined in claim 1.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/17353 PCT/EP00/08661

-1-

Herbicidal composition

The present invention relates to new selectively herbicidal compositions for controlling grasses and weeds in crops of useful plants, especially in crops of cereals, maize and sorghum, which compositions comprise a herbicide and a safener (counter-agent, antidote) and protect the useful plants, but not the weeds, against the phytotoxic action of the herbicide, and also to the use of the compositions for controlling weeds in crops of useful plants.

When using herbicides, the cultivated plants may also suffer considerable damage, depending on, for example, the amount of herbicide and the method of application, the species of cultivated plant, the nature of the soil and climatic conditions, for example hours of daylight, temperature and amounts of rainfall. In order to deal with that and similar problems, various substances have already been proposed as safeners, which are capable of antagonising the harmful effect of the herbicide on the cultivated plant, that is to say are capable of protecting the cultivated plant, without appreciably impairing the herbicidal action on the weeds to be controlled. It has been found that the proposed safeners often act very specifically both with respect to the cultivated plants and with respect to the herbicide, and in some cases also in dependence on the method of application, that is to say, a particular safener is often suitable only for a particular cultivated plant and a specific class of herbicidal substance or a particular herbicide. For example, WO 96/21652 and WO 99/47525 disclose compounds that protect the cultivated plants from the phytotoxic action of herbicides such as, for example, 3-hydroxy-4-aryl-5-oxopyrazoline derivatives.

It has now been found that compounds of formula IIa

્રિ

$$\begin{array}{c} \text{COOR}_{22} \\ \text{H}_{3}\text{C} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{R}_{25} \\ \text{OO} \\ \text{CI} \\ \text{ON} \\$$

are suitable for protecting cultivated plants from the phytotoxic action of a particular class of specific, substituted 3-hydroxy-4-aryl-5-oxopyrazoline herbicides.

Accordingly, a selectively herbicidal composition is proposed according to the invention which, in addition to customary inert formulation assistants, for example carriers, solvents and wetting agents, comprises as active ingredient a mixture of

a) a herbicidally effective amount of a herbicide of formula I

$$R_{5}$$
 N CH_{3} (I) ,

wherein R₁ and R₃ are, each independently of the other, ethyl, haloethyl, ethynyl, C₁- or C₂alkoxy, C₁- or C₂-haloalkoxy, C₁- or C₂-alkylcarbonyl or C₁- or C₂-hydroxyalkyl; R_4 and R_5 together are a group Z_2 -CR₁₄(R₁₅)-CR₁₆(R₁₇)-O-CR₁₈(R₁₉)-CR₂₀(R₂₁)- (Z₂); R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, R₁₉, R₂₀ and R₂₁ are, each independently of the others, hydrogen, halogen, C₁-C₄alkyl or C₁-C₄haloalkyl, wherein an alkylene ring may be fused or spiro-bound to the carbon atoms of the group Z2, which alkylene ring, together with the carbon atoms of the group Z2, to which it is bonded, contains from 2 to 6 carbon atoms and may be interrupted by oxygen, or the alkylene ring bridges at least one ring atom of the group Z2; G is hydrogen, $-C(X_1)-R_{30}$, $-C(X_2)-X_3-R_{31}$, $-C(X_4)-NR_{32}(R_{33})$, $-S(O)_2-R_{34}$, $-P(X_5)R_{35}R_{36}$, -CH₂-X₆-R₃₇ or an alkali metal, alkaline earth metal, sulfonium or ammonium cation; X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are, each independently of the others, oxygen or sulfur; R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , R_{36} and R_{37} are, each independently of the others, hydrogen, C₁-C₁₀alkyl, C₁-C₁₀haloalkyl, C₁-C₁₀cyanoalkyl, C₁-C₁₀nitroalkyl, C₁-C₁₀aminoalkyl, C₂-C₅alkenyl, C2-C5haloalkenyl, C3-C8cycloalkyl, C1-C5alkylamino-C1-C5alkyl, di(C1-C5alkyl)amino-C₁-C₅alkyl, C₃-C₇cycloalkyl-C₁-C₅alkyl, C₁-C₅alkyl, C₃-C₅alkyl, C₃-C₅alkyl, C_3 - C_5 alkynyloxy- C_1 - C_5 alkyl, C_1 - C_5 alkylthio- C_1 - C_5 alkyl, C_1 - C_5 - C_5 alkyl, C_1 - C_5 alkylsulfonyl-C₁-C₅alkyl, C₂-C₈alkylideneaminooxy-C₁-C₅alkyl, C₁-C₅alkyl, C₁-C₅alkyl, C₁-C₅alkoxycarbonyl-C₁-C₅alkyl, C₁-C₅alkylaminocarbonyl-C₁-C₅alkyl, di(C₁-C₅alkyl)aminocarbonyl-C₁-C₅alkyl, C₁-C₅alkylcarbonylamino-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-(C₁-C₅alkyl)amino-C₁-C₅alkyl, tri(C₁- or C₂-alkyl)silyl-C₁-C₅alkyl, phenyl, heteroaryl, phenyl-C₁-C₅alkyl, heteroaryl-C1-C5alkyl, phenoxy-C1-C5alkyl or heteroaryloxy-C1-C5alkyl, wherein the aforementioned aromatic rings may be substituted by halogen, nitro, cyano, amino, di(C₁-C₄alkyl)amino, hydroxy, methoxy, ethoxy, methylthio, ethylthio, formyl, acetyl, propionyl, carboxyl, C1-C5alkoxycarbonyl or by C1- or C2-haloalkyl; R₃₄, R₃₅ and R₃₆ are, in addition, C₁-C₁₀alkoxy, C₁-C₁₀haloalkoxy, C₁-C₅alkylamino, di(C₁-C₅alkyl)amino, benzyloxy or phenoxy, wherein the aromatic rings of the last two substituents

may be substituted by halogen, nitro, cyano, amino, dimethylamino, hydroxy, methoxy, ethoxy, methylthio, ethylthio, formyl, acetyl, propionyl, carboxyl, C_1 - C_5 alkoxycarbonyl or by C_1 - or C_2 -haloalkyl; and

R₃₇ is, in addition, C₁-C₁₀alkylcarbonyl,

or a salt or diastereoisomer of a compound of formula I, and

b) an amount, which is effective for antagonism of the herbicide, of a safener of formula IIa

wherein

 R_{22} is hydrogen, or an alkali metal, alkaline earth metal, sulfonium or ammonium cation, or ethyl,

or of formula IIb

wherein

R₂₃ is hydrogen, or an alkali metal, alkaline earth metal, sulfonium or ammonium cation, or ethyl,

or of formula IIc

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

wherein R_{24} and R_{25} are, each independently of the other, hydrogen, C_1 - C_6 alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl;

 R_{26} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 haloalkoxy; or the radicals R_{26} are, each independently of the other(s), hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 haloalkoxy;

 R_{27} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkoxycarbonyl or nitro; or the radicals R_{27} are, each independently of the other, hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 alkoxycarbonyl or nitro;

n is 0, 1, 2 or 3; and m is 1 or 2, or of formula IId

wherein

R₂₈ is hydrogen, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, C₃-C₈cycloalkyl, phenyl, phenyl-C₁-C₆alkyl or heteroaryl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, hydroxy, carboxyl, formyl, carbonamide or by sulfonamide;

R₂₉ is hydrogen, C₁-C₆alkyl or C₁-C₄haloalkyl;

R₃₀ is hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, cyano, nitro, formyl or carboxyl; or the radicals R₃₀ are, each independently of the other, hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, cyano, nitro, formyl or carboxyl;

R₃₁ is hydrogen, C₁-C₆alkyl or C₁-C₄haloalkyl;

 R_{32} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, cyano, nitro, formyl or carboxyl; or the radicals R_{32} are, each independently of the other, hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, cyano, nitro, formyl or carboxyl; and

o and p are, each independently of the other, 0, 1 or 2, or of formula lie

$$R_{36}$$
 R_{35}
 R_{36}
 R_{36}
 R_{37}
 R_{38}
 R_{33}
 R_{33}
 R_{34}
 R_{34}
 R_{34}
 R_{35}
 R_{34}
 R_{35}
 R_{34}
 R_{35}
 R_{34}
 R_{35}
 R_{34}
 R_{35}
 R_{35}
 R_{36}
 R_{37}
 R_{38}
 R_{33}
 R_{33}
(IIIe),

wherein

 G_2 is hydrogen, formyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenylcarbonyl, C_2 - C_6 alkynylcarbonyl, C_1 - C_6 alkylcarbonyl, C_3 - C_6 cycloalkylcarbonyl, phenyl- C_1 - C_6 alkylcarbonyl, phenylcarbonyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkenylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

 R_{33} is hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, formyl, C_1 - C_6 alkyl-carbonyl, C_2 - C_6 alkenylcarbonyl, C_1 - C_6 alkynylcarbonyl, C_1 - C_6 alkoxycarbonyl, $(C_1$ - C_6 alkylthio)-carbonyl, C_3 - C_8 cycloalkylcarbonyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkenylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

R₃₄ is hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₃-C₈cycloalkyl, formyl, C₁-C₆alkylcarbonyl, C₂-C₆alkynylcarbonyl, C₁-C₆alkoxycarbonyl, (C₁-C₆alkylthio)-carbonyl, C₃-C₈cycloalkylcarbonyl, C₁-C₆alkylsulfonyl, C₂-C₆alkenylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

 R_{35} , R_{36} , R_{37} and R_{38} are, each independently of the others, hydrogen, halogen, amino, C_1 - C_3 alkylamino, di(C_1 - C_3 alkyl)amino, hydroxy, cyano, nitro, formyl, carboxyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkyl, C_1 - C_6 alkylyl, C_2 - C_6 -alkenyl or C_2 - C_6 alkynyl; or

WO 01/17353 PCT/EP00/08661

-7-

R₃₈ and R₃₃, together with the ring atoms to which they are bonded, form a five- or six-membered saturated or unsaturated ring that contains up to 2 identical or different hetero atoms selected from the group oxygen, sulfur and nitrogen and that may be interrupted by a -C(O)- radical.

Depending on the substituents R_1 , R_3 , R_4 , R_5 and G, the compounds of formula I may be in the form of geometric and/or optical isomers and isomeric mixtures (atropisomers) and, when G is hydrogen, a metal ion equivalent, a sulfonium cation or an ammonium cation, in the form of tautomers and tautomeric mixtures.

The present invention also includes the salts that the compounds of formula I may form with acids. Suitable acids for the formation of acid addition salts are both organic and inorganic acids. Examples of such acids are hydrochloric acid, hydrobromic acid, nitric acid, phosphoric acids, sulfuric acid, acetic acid, propionic acid, butyric acid, valeric acid, oxalic acid, malonic acid, fumaric acid, organic sulfonic acids, lactic acid, tartaric acid, citric acid and salicylic acid.

The compounds of formula I wherein G is hydrogen can, because of their acidity, readily be converted, in the presence of bases (proton acceptors), into the corresponding salts (wherein G is, for example, a metal ion equivalent or an ammonium cation), as described, for example, in EP-A-0 508 126. Any conventional proton acceptor can be used as the base. The salts are, for example, alkali metal salts, e.g. sodium and potassium salts; alkaline earth metal salts, e.g. calcium and magnesium salts; ammonium salts, that is to say unsubstituted ammonium salts and mono- or poly-substituted ammonium salts, e.g. triethylammonium and methylammonium salts, or are salts with other organic bases or other cations, e.g. sulfonium cations. Sulfonium cations are, for example, tri(C₁-C₄alkyl)sulfonium cations, which can be obtained from the corresponding alkali metal salts, for example by salt conversion, for example using a cation exchanger.

Among the alkali metal and alkaline earth metal hydroxides used as salt formers, emphasis is to be given to, for example, the hydroxides of lithium, sodium, potassium, magnesium or calcium, but especially those of sodium and potassium. Suitable salt formers are described, for example, in WO 97/41112.

Examples of suitable amines for ammonium salt formation that come into consideration are ammonia as well as primary, secondary and tertiary C₁-C₁8alkylamines, C₁-C₄hydroxyalkylamines and C2-C4alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methyl-ethylamine, methyl-isopropylamine, methylhexylamine, methyl-nonylamine, methyl-pentadecylamine, methyl-octadecylamine, ethylbutylamine, ethyl-heptylamine, ethyl-octylamine, hexyl-octylamine, hexyl-octylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-namylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, npropanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2amine, dibutenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-secbutylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, N-methylmorpholine, thiomorpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary aryl amines, for example anilines, methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylenediamines, benzidines, naphthylamines and o-, m- and p-chloroanilines; but especially triethylamine, isopropylamine and diisopropylamine.

In the above definitions, halogen is to be understood as fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine.

The alkyl groups occurring in the substituent definitions are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl, and the pentyl, hexyl, heptyl, octyl, nonyl and decyl isomers.

Haloalkyl groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkyl is, for example, fluoromethyl, difluoromethyl, difluorochloromethyl, trifluoromethyl, chloromethyl, dichlorofluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2-dichloroethyl, 2,2,2-trichloroethyl or pentafluoroethyl, preferably trichloromethyl, difluoromethyl, difluorochloromethyl, trifluoromethyl or dichlorofluoromethyl.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tertbutoxy, or a pentyloxy or hexyloxy isomer, preferably methoxy, ethoxy or n-propoxy.

Haloalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy or 2,2,2-trichloroethoxy.

There may be mentioned as examples of alkenyl radicals vinyl, allyl, methallyl, 1-methylvinyl, but-2-en-1-yl, pentenyl and 2-hexenyl; preferably alkenyl radicals having a chain length of from 2 to 6 carbon atoms.

There may be mentioned as examples of alkynyl radicals ethynyl, propargyl, 1-methyl-propargyl, 3-butynyl, but-2-yn-1-yl, 2-methylbut-3-yn-2-yl, but-3-yn-2-yl, 1-pentynyl, pent-4-yn-1-yl and 2-hexynyl; preferably alkynyl radicals having a chain length of from 2 to 6 carbon atoms.

Suitable haloalkenyl radicals include alkenyl groups substituted one or more times by halogen, halogen being in particular bromine or iodine and especially fluorine or chlorine, for example 2- and 3-fluoropropenyl, 2- and 3-chloropropenyl, 2- and 3-bromopropenyl, 2,2-difluoro-1-methylvinyl, 2,3,3-trifluoropropenyl, 3,3,3-trifluoropropenyl, 2,3,3-trichloropropenyl, 4,4,4-trifluorobut-2-en-1-yl and 4,4,4-trichlorobut-2-en-1-yl. Preferred alkenyl radicals substituted once, twice or three times by halogen are those having a chain length of from 2 to 5 carbon atoms. The alkenyl groups may be substituted by halogen at saturated or unsaturated carbon atoms.

Alkenyloxy is, for example, allyloxy, methallyloxy or but-2-en-1-vloxy.

Alkynyloxy is, for example, propargyloxy or 1-methylpropargyloxy.

Alkoxyalkyl groups have preferably from 2 to 10 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, n-propoxymethyl, n-propoxymethyl, isopropoxymethyl or isopropoxyethyl.

Suitable cycloalkyl substituents contain from 3 to 8 carbon atoms and are, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.

Alkylcarbonyl is especially acetyl or propionyl.

Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl or a butoxycarbonyl, pentyloxycarbonyl or hexyloxycarbonyl isomer, preferably methoxycarbonyl or ethoxycarbonyl.

Phenyl *per se* or as part of a substituent, for example phenoxyalkyl or benzyloxy, may be in substituted form, in which case the substituents may, as desired, be in the ortho-, meta-and/or para-position. Preferred positions for the substituents are the ortho- and para-position to the ring attachment point. Phenyl substituents are, for example, halogen, C₁- or C₂-haloalkyl, hydroxy, C₁- or C₂-alkoxy, C₁-C₅alkoxycarbonyl, C₁- or C₂alkylthio, formyl, acetyl, propionyl, carboxyl, nitro, cyano, amino or dimethylamino.

Alkylthio groups preferably have a chain length of from 1 to 5 carbon atoms. Alkylthio is, for example, methylthio, ethylthio, propylthio, butylthio, pentylthio or hexylthio, or a branched isomer thereof, but is preferably methylthio or ethylthio.

Alkylsulfoxy is, for example, methylsulfoxy, ethylsulfoxy, n-propylsulfoxy, isopropylsulfoxy, n-butylsulfoxy, isobutylsulfoxy, sec-butylsulfoxy or tert-butylsulfoxy, preferably methylsulfoxy or ethylsulfoxy.

Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl, preferably methylsulfonyl or ethylsulfonyl.

Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or a butyl- or pentyl-amine isomer.

Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propyl-methylamino, dibutylamino or diisopropylamino.

Alkylthioalkyl is, for example, methylthiomethyl, methylthioethyl, ethylthioethyl, ethylthioethyl, n-propylthiomethyl, n-propylthioethyl, isopropylthiomethyl or isopropylthioethyl.

Hydroxyalkyl is, for example, hydroxymethyl, 2-hydroxyethyl or 3-hydroxypropyl.

Cyanoalkyl is, for example, cyanomethyl, cyanoeth-1-yl or cyanopropyl.

Aminoalkyl is, for example, aminomethyl, aminoethyl, aminoeth-1-yl or aminopropyl.

Nitroalkyl is, for example, nitromethyl, 2-nitroethyl or 3-nitropropyl.

Alkylideneaminooxy-alkyl radicals are oxime ether substituents, for example having the

Carbonamide and sulfonamide radicals, for example in the definition of R_{28} , have the structures -C(O)NH₂ and -S(O)₂NH₂, respectively.

Heteroaryl radicals *per se* or as part of a substituent, for example heteroaryloxy-alkyl, are usually 5- or 6-membered aromatic heterocycles that contain preferably from 1 to 3 hetero atoms, such as N, S and/or O. Examples of suitable heteroaryl radicals are pyridyl, pyrimidyl, thienyl, triazinyl, thiazolyl, triazolyl, thiadiazolyl, imidazolyl, oxazolyl, isoxazolyl, pyrazinyl, furyl, pyrazolyl, benzoxazolyl, benzothiazolyl, quinoxalyl, indolyl and quinolyl. Those heteroaromatic radicals may, in addition, be substituted, for example by halogen, C₁-or C₂-haloalkyl, hydroxy, C₁- or C₂-alkoxy, C₁- or C₂alkylthio, formyl, acetyl, propionyl, carboxyl, C₁-C₅alkoxycarbonyl, amino, dimethylamino, nitro or by cyano.

Meanings corresponding to those given hereinbefore can also be ascribed to the substituents in composite definitions, such as, for example alkylamino-alkyl, dialkylamino-alkyl, cycloalkyl-alkyl, alkenyloxy-alkyl, alkynyloxy-alkyl, alkylsulfoxy-alkyl, alkylsulfoxy-alkyl, alkylaminocarbonyl-alkyl, dialkylaminocarbonyl-alkyl, dialkylaminocarbonyl-alkyl, alkoxycarbonyl-alkyl, alkylaminocarbonyl-alkyl, alkylaminocarbonyl-alkyl

alkyl, alkylcarbonylamino-alkyl, alkylcarbonyl(alkyl)-amino-alkyl, phenyl-alkyl and heteroaryl-alkyl.

Compounds of formula I wherein an alkylene ring may be fused or spiro-bound to the group Z_2 , which alkylene ring, together with the carbon atoms of the group Z_2 , contains from 2 to 6 carbon atoms, have, for example, the following structure

$$H_3C$$
 R_3
 G
(spiro-linked) or
$$R_3$$
 G
(fused).

Compounds of formula I wherein in the group Z_2 an alkylene ring bridges at least one ring atom of the group Z_2 have, for example, the following structure

In the definitions for cyanoalkyl, alkylcarbonyl, alkylcarbonylamino and alkoxycarbonyl, the carbon atom of the cyano or carbonyl is not included in the lower and upper limits given for the number of carbons in each particular case.

The compounds of formula I, except for those derivatives wherein G is $-CH_{2}-X_{8}-R_{37}$, are known from WO 99/47525 and can be prepared analogously to the methods described therein and in EP-A-0 508 126.

The compounds of formula IIa are known from DE-A-3 939 503, those of formula IIb from DE-A-4 331 448, those of formula IIc from WO 99/16744, those of formula IId from WO 00/30447 and those of formula IIe from WO 00/00020.

The compounds of formula la

wherein R_1 , R_3 , R_4 , R_5 , R_{37} and X_6 are as defined for formula I, are new and are therefore also included in the present invention.

The compounds of formula la can be prepared using processes known *per se*, for example by converting a compound of formula lb

$$R_{4}$$
 O
 R_{4}
 O
 CH_{3}
 O
 $(Ib),$

in an inert solvent, for example an aromatic hydrocarbon, e.g. benzene, toluene or a xylene; a chlorinated hydrocarbon, e.g. dichloromethane or chlorobenzene; a ketone, e.g. acetone or 2-butanone; a nitrile, e.g. acetonitrile or propionitrile; an ether, e.g. diethyl ether, tert-butylmethyl ether or di-n-propyl ether; an ester, e.g. ethyl acetate; an amide, e.g. N,N-dimethylformamide or N-methylpyrrolidone (NMP); a sulfoxide, e.g. dimethyl sulfoxide (DMSO) or a sulfone, e.g. sulfolane, in the presence of a base, for example an alkylamine, e.g. triethylamine or diisopropylethylamine; an alicyclic or aromatic amine, e.g. 1,4-diazabicyclo[2.2.2]octane (DABCO) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or pyridine; a carbonate, e.g. sodium or potassium carbonate, or sodium or potassium bicarbonate, into the corresponding salt of formula Ic

$$R_{5}$$
 N CH_{3} (Ic),

wherein the radicals R_1 , R_3 , R_4 and R_5 in the compounds of formulae Ib and Ic are as defined for formula I and G_0 is an alkali metal, alkaline earth metal, ammonium or sulfonium cation, depending on the base used, and then reacting the compound of formula Ic with a compound of formula III

$$R_{37}$$
- X_6 - CH_2 - Y (III),

wherein R_{37} and X_6 are as defined for formula I and Y is a leaving group, for example halogen, e.g. chlorine, bromine or iodine, at temperatures of from -20°C to reflux temperature, preferably at from 0°C to the reflux temperature of the solvent used.

The Example that follows illustrates the preparation of compounds of formula la.

Example P1: Preparation of

0.753 g of pivalic acid chloromethyl ester is added to 0.75 g of sodium iodide dissolved in 20 ml of acetone, and the reaction mixture is stirred overnight at 25°C. The reaction mixture is cooled to 5°C; 1.58 g of 8-(2,6-diethyl-4-methylphenyl)tetrahydropyrazolo[1,2-d][1,4,5]-oxadiazepine-7,9-dione and 0.69 g of potassium carbonate are added and the reaction mixture is stirred first for one hour at 5°C and then for 24 hours at 25°C. The resulting reaction mixture is filtered and the filtrate is concentrated by evaporation under reduced

pressure. The residue is dissolved in 100 ml of ethyl acetate, washed with water until neutral, dried over sodium sulfate and concentrated by evaporation.

The preferred compounds of formula la listed in Table 1 below are prepared in an analogous manner.

Table 1: Compounds of formula la

Comp. No.	R ₁	R ₃	-X ₆ -R ₃₇	Phys. data
1.001	-C₂H₅	-C₂H₅	-O-C(O)C(CH ₃) ₃	¹ H-NMR (300 MHz,
				CDCl ₃): 6.90 ppm (s, 2H);
				5.20 ppm (s, 2H); 4.10
			·	ppm (m, 2H); 3.85 ppm
				(m, 2H); 3.80 ppm (s, 4H);
				2.80 ppm (s, 3H); 2.50
				ppm (m, 4H); 1.15 ppm (t,
				6H); 1.15 ppm (s, 9H).
1.002	-C ₂ H ₅	-C₂H₅	-S-CH₃	
1.003	-C ₂ H ₅	-C₂H₅	-O-CH₃	
1.004	-C₂H ₅	-C≡CH	-O-CH₃	
1.005	-C ₂ H ₅	-OCH₃	-O-CH ₃	
1.006	-C ₂ H ₅	-C₂H₅	-O-C ₂ H ₅	
1.007	-C₂H₅	-C ₂ H ₅	-O-(CH ₂) ₂ -O-CH ₃	
1.008	-C₂H₅	-C≡CH	-O-C₂H₅	
1.009	-C ₂ H ₅	-C ₂ H ₅	-S-CH₃	
1.010	-C₂H₅	-C ₂ H ₅	-O-C(O)-C(CH ₃) ₃	

Herbicides of formula I that are preferred for the composition according to the invention are those wherein R_1 and R_3 are, each independently of the other, ethyl, haloethyl, ethynyl, C_1 - or C_2 -alkoxy or C_1 - or C_2 -haloalkoxy.

In a further group of preferred compounds of formula I, R_4 and R_5 together form a group Z_2 -CR₁₄(R₁₅)-CR₁₆(R₁₇)-O-CR₁₈(R₁₉)-CR₂₀(R₂₁)- (Z_2), wherein R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, R₁₉, R₂₀ and R₂₁ are hydrogen.

Preference is given also to those compounds of formula I wherein G is hydrogen, $-C(X_1)$ - R_{30} , $-C(X_2)-X_3-R_{31}$, $-C(X_4)-NR_{32}(R_{33})$, $-S(O)_2-R_{34}$, $-P(X_5)R_{35}R_{36}$, $-CH_2-X_6-R_{37}$ or an alkali metal, alkaline earth metal, sulfonium or ammonium cation; X1, X2, X3, X4, X5 and X6 are, each independently of the others, oxygen or sulfur; R₃₀, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅, R₃₆ and R₃₇ are, each independently of the others, hydrogen, C1-C8alkyl, C1-C8haloalkyl, C1-C8cyanoalkyl, C₁-C₈nitroalkyl, C₁-C₈aminoalkyl, C₂-C₅alkenyl, C₂-C₅haloalkenyl, C₃-C₈cycloalkyl, C₁-C₅alkylamino-C₁-C₂alkyl, di(C₁-C₅alkyl)amino-C₁-C₂alkyl, C₃-C₇cycloalkyl-C₁-C₂alkyl, C₁-C₄alkoxy-C₁-C₄alkyl, C₂-C₄alkenyloxy-C₁-C₄alkyl, C₃-C₄alkynyloxy-C₁-C₄alkyl, C₁-C₄alkylthio-C₁-C4alkyl, C1-C2alkylsulfoxy-C1-C2alkyl, C1-C2alkylsulfonyl-C1-C2alkyl, C2-C₈alkylideneaminooxy-C₁-C₂alkyl, C₁-C₅alkylcarbonyl-C₁-C₂alkyl, C₁-C₅alkoxycarbonyl-C₁-C₂alkyl, C₁-C₅alkylaminocarbonyl-C₁-C₂alkyl, di(C₁-C₄alkyl)aminocarbonyl-C₁-C₂alkyl, C₁- C_5 alkylcarbonylamino- C_1 - C_2 alkyl, C_1 - C_2 alkylcarbonyl-(C_1 - C_3 alkyl)-amino- C_1 - C_2 alkyl, tri(C_1 - or C2-alkyl)silyl-C1-C3alkyl, phenyl, heteroaryl, phenyl-C1-C2alkyl, heteroaryl-C1-C2alkyl, phenoxy-C₁-C₂alkyl or heteroaryloxy-C₁-C₂alkyl; R₃₄, R₃₅ and R₃₆ are, in addition, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₃alkylamino, di(C₁-C₃alkyl)amino, benzyloxy or phenoxy, wherein the aromatic rings of the last two substituents may be substituted by halogen, nitro, cyano, amino, dimethylamino, hydroxy, methoxy, ethoxy, methylthio, ethylthio, formyl, acetyl, propionyl, carboxyl, C1-C5alkoxycarbonyl or by C1- or C2-haloalkyl; and R_{37} is, in addition, C_1 - C_8 alkylcarbonyl.

Among those, special preference is given to those compounds wherein G is hydrogen, $-C(X_1)-R_{30}$, $-C(X_2)-X_3-R_{31}$, $-C(X_4)-NR_{32}(R_{33})$, $-S(O)_2-R_{34}$, $-P(X_5)R_{35}R_{36}$, $-CH_2-X_6-R_{37}$ or an alkali metal, alkaline earth metal, sulfonium or ammonium cation; X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are, each independently of the others, oxygen or sulfur; R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , R_{38} and R_{37} are, each independently of the others, hydrogen, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, C_2 - C_5 alkenyl, C_2 - C_5 haloalkenyl, C_3 - C_8 cycloalkyl, C_3 - C_7 cycloalkyl- C_1 - C_2 alkyl, C_1 - C_4 alkoxy- C_1 - C_4 alkyl,

phenyl, heteroaryl, phenyl- C_1 - C_2 alkyl, heteroaryl- C_1 - C_2 alkyl, phenoxy- C_1 - C_2 alkyl or heteroaryloxy- C_1 - C_2 alkyl; R_{34} , R_{35} and R_{36} are, in addition, C_1 - C_6 alkoxy, C_1 - C_3 alkylamino or di(C_1 - C_3 alkyl)amino; and R_{37} is, in addition, C_1 - C_8 alkylcarbonyl.

Preference is also given to those compounds of formula I wherein G is -CH₂- X_6 - R_{37} and X_6 and R_{37} are as defined for formula I.

Preference is likewise given to compounds of formula I wherein R_1 or R_3 is, or R_1 and R_3 are, each independently of the other C_1 - or C_2 -haloalkoxy or C_1 - or C_2 -hydroxyalkyl.

Preference is also given to compounds of formula I wherein G is -C(X_1)-R₃₀, -C(X_2)-X₃-R₃₁, -C(X_4)-NR₃₂(R_{33}), -S(O)₂-R₃₄ or -P(X_5)R₃₅R₃₆;

 X_1 , X_2 , X_3 , X_4 and X_5 are, each independently of the others, oxygen or sulfur; R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} and R_{36} are, each independently of the others, C_1 - C_{10} cyanoalkyl, C_1 - C_{10} nitroalkyl, C_1 - C_{10} aminoalkyl, C_1 - C_5 alkylamino- C_1 - C_5 alkyl, di(C_1 - C_5 alkyl)amino- C_1 - C_5 -alkyl, C_3 - C_7 cycloalkyl- C_1 - C_5 alkyl, C_3 - C_5 alkenyloxy- C_1 - C_5 alkyl, C_3 - C_5 alkylyloxy- C_1 - C_5 alkyl, C_1 - $C_$

 R_{34} , R_{35} and R_{36} are, in addition, C_1 - C_{10} alkoxy, C_1 - C_{10} haloalkoxy, C_1 - C_5 alkylamino, di(C_1 - C_5 -alkyl)amino, benzyloxy or phenoxy, wherein the aromatic rings of the last two substituents may be substituted by halogen, nitro, cyano, amino, dimethylamino, hydroxy, methoxy, ethoxy, methylthio, ethylthio, formyl, acetyl, propionyl, carboxyl, C_1 - C_5 alkoxycarbonyl or by C_1 - or C_2 -haloalkyl.

Preferred selectively herbicidal compositions are those which comprise as active ingredient a mixture of a) a herbicidally effective amount of a herbicide of formula I, wherein

 R_1 , R_3 , R_4 , R_5 and G are as defined for formula I, and b) an amount, which is effective for antagonism of the herbicide, of a safener of formula IIa, wherein

R₂₂ is as defined for formula IIa,

or of formula Ilb, wherein

R₂₃ is as defined for formula llb,

or of formula IIc, wherein

 R_{24} and R_{25} are, each independently of the other, hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl;

R₂₆ is halogen, C₁-C₄alkyl or C₁-C₄haloalkyl;

R₂₇ is halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkoxycarbonyl or nitro;

n is 0, 1, 2 or 3; and m is 1 or 2.

Safeners of formula IIa preferred for the composition according to the invention are those wherein R_{22} is hydrogen or an alkali metal, alkaline earth metal, sulfonium or ammonium cation.

Safeners of formulae IIa and IIb preferred for the composition according to the invention are those wherein R₂₂ and R₂₃ are ethyl and are referred to hereinafter as safeners of formulae IIa₁ and IIb₁ (Biological Examples). They are known under the names mefenpyr-ethyl (compound no. IIa₁) and isoxadifen-ethyl (compound no. IIb₁) (ISO proposed names).

Safeners of formula IId preferred for the composition according to the invention are those wherein R₂₈ is hydrogen, C₁-C₆alkyl, C₃-C₈cycloalkyl or phenyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, hydroxy, carboxyl, formyl, carbonamide or by sulfonamide; R₂₉ is hydrogen; R₃₀ is hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, cyano, nitro or formyl; or the radicals R₃₀ are, each independently of the other, hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, cyano, nitro or formyl; R₃₁ is hydrogen; R₃₂ is hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, cyano, nitro or formyl; or the radicals R₃₂ are, each independently of the other, hydrogen, halogen,

 C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, cyano, nitro or formyl; and o and p are, each independently of the other, 0, 1 or 2.

Safeners of formula IId that are especially preferred for the composition according to the invention are:

2-methoxy-N-[4-(2-methoxybenzoylsulfamoyl)phenyl]acetamide;

N-[4-(2-methoxybenzoylsulfamoyl)phenyl]cyclopropanecarboxamide;

N-[4-(2-methoxybenzoylsulfamoyl)phenyl]cyclobutanecarboxamide;

N-[4-(2-chlorobenzoylsulfamoyl)phenyl]cyclopropanecarboxamide;

N-[4-(2-chlorobenzoylsulfamoyl)phenyl]acetamide;

N-[4-(2-trifluoromethoxybenzoylsulfamoyl)phenyl]acetamide;

N-[4-(2-trifluoromethylbenzoylsulfamoyl)phenyl]cyclopropanecarboxamide;

N-[4-(2-trifluoromethoxybenzoylsulfamoyl)phenyl]cyclopropanecarboxamide;

N-[4-(2-trifluoromethoxybenzoylsulfamoyl)phenyl]cyclobutanecarboxamide; and

N-[4-(2-trifluoromethylbenzoylsulfamoyl)phenyl]acetamide.

Safeners of formula lle preferred for the composition according to the invention are those wherein G₂ is hydrogen, formyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenylcarbonyl, C₂-C₆alkynylcarbonyl, C₁-C₆alkoxycarbonyl, (C₁-C₆alkylthio)carbonyl, C₃-C₈cycloalkylcarbonyl, phenyl-C₁-C₆alkylcarbonyl or phenylcarbonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl; R₃₃ is hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, formyl, C₁-C₆alkylcarbonyl or C₁-C₆alkoxycarbonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

 R_{34} is hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, formyl, C_1 - C_6 alkylcarbonyl or C_1 - C_6 -alkoxycarbonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

 R_{35} , R_{36} , R_{37} and R_{38} are, each independently of the others, hydrogen, halogen, cyano, nitro, formyl, carboxyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; or R_{38} and R_{33} , together with the ring atoms to which they are bonded, form a five- or six-membered saturated or unsaturated ring that contains up to 2 identical or different hetero atoms selected from the group oxygen, sulfur and nitrogen and that may be interrupted by a -C(O)- radical.

Among those, special preference is given to those compounds wherein G_2 is hydrogen, formyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenylcarbonyl, C_2 - C_6 alkynylcarbonyl, C_1 - C_6 alkoxycarbonyl, (C_1 - C_6 alkylthio)carbonyl, C_3 - C_6 cycloalkylcarbonyl or phenylcarbonyl; R_{33} is hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, formyl, C_1 - C_6 alkylcarbonyl; C_1 - C_6 alkoxycarbonyl;

R₃₄ is hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, formyl, C₁-C₆alkylcarbonyl or C₁-C₆-alkoxycarbonyl;

R₃₅, R₃₆, R₃₇ and R₃₈ are, each independently of the others, hydrogen, halogen, cyano, nitro, formyl, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy or C₁-C₆haloalkoxy; or R₃₈ and R₃₃, together with the ring atoms to which they are bonded, form a five- or six-membered saturated or unsaturated ring that contains up to 2 identical or different hetero atoms selected from the group oxygen, sulfur and nitrogen and that may be interrupted by a -C(O)- radical.

Safeners of formula IIe that are especially preferred for the composition according to the invention are:

```
4-hydroxy-1-methyl-3-(1H-tetrazole-5-carbonyl)-1H-quinolin-2-one:
```

1-ethyl-4-hydroxy-3-(1H-tetrazole-5-carbonyl)-1H-quinolin-2-one;

6-hydroxy-5-(1H-tetrazole-5-carbonyl)-1,2-dihydro-pyrrolo[3,2,1-H]quinolin-4-one:

3-(1-acetyl-1H-tetrazole-5-carbonyl)-4-hydroxy-1-methyl-1H-quinolin-2-one:

6-chloro-4-hydroxy-1-methyl-3-(1H-tetrazole-5-carbonyl)-1H-quinolin-2-one;

6-fluoro-4-hydroxy-1-methyl-3-(1H-tetrazole-5-carbonyl)-1H-quinolin-2-one:

4-hydroxy-1,6-dimethyl-3-(1H-tetrazole-5-carbonyl)-1H-quinolin-2-one;

4-hydroxy-6-methoxy-1-methyl-3-(1H-tetrazole-5-carbonyl)-1H-quinolin-2-one;

1-methyl-2-oxo-3-(1H-tetrazole-5-carbonyl)-1,2-dihydroquinolin-4-yl acetate; and

1-methyl-2-oxo-3-(1H-tetrazole-5-carbonyl)-1,2-dihydroquinolin-4-yl 2,2-dimethyl-propionate.

The invention relates also to a method for the selective control of weeds in crops of useful plants, which method comprises treating the useful plants, their seeds or seedlings or the crop area thereof with, simultaneously or separately,

- a) a herbicidally effective amount of a herbicide of formula I,
- b) an amount, which is effective for antagonism of the herbicide, of a safener of formula II and, optionally,

WO 01/17353 PCT/EP00/08661

- 21 -

c) an additive comprising an oil of vegetable origin or an alkylated derivative thereof, or a mineral oil or a mixture thereof.

Cultivated plants that may be protected against the harmful effect of the above-mentioned herbicides by means of the safeners of formula II are especially cereals, maize and sorghum.

Crops are to be understood as including those that have been made tolerant to herbicides or classes of herbicides by means of conventional breeding or genetic engineering methods, for example IMI Maize, Poast Protected Maize (Sethoxydim tolerance), Liberty Link Maize, B.t./Liberty Link Maize, IMI/Liberty Link Maize, IMI/Liberty Link Maize, Roundup Ready Maize and Roundup Ready/B.t. Maize.

The weeds to be controlled may be both monocots and dicots, for example Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

Crop areas are areas of land on which the cultivated plants are already growing or in which the seeds of those cultivated plants have been sown, and also areas of land on which it is intended to grow those cultivated plants.

A safener of formula II may, depending on the intended purpose, be used to pre-treat the seed material of the cultivated plant (dressing the seed or the seedlings) or may be incorporated into the soil before or after sowing. It may, however, also be applied, alone or together with the herbicide and, optionally, the oil additive, after the emergence of the plants. The treatment of the plants or seed with the safener can therefore, in principle, be effected independently of the time at which the herbicide is applied. The treatment of the plant can, however, also be carried out by applying the herbicide and the safener simultaneously (for example in the form of a tank mixture). The rate of application of the safener in relation to the herbicide depends largely on the method of application. In the case of field treatment, which is effected either using a tank mixture with a combination of the safener and the herbicide or by the separate application of the safener and the herbicide, the ratio of herbicide to safener is generally from 1:100 to 100:1, preferably from 1:10 to 10:1, and especially from 1:5 to 5:1.

In the case of field treatment, from 0.001 to 5.0 kg safener/ha, preferably from 0.001 to 0.5 kg safener/ha, are generally applied.

The rate of application of herbicide is generally from 0.001 to 2 kg/ha, but preferably from 0.005 to 0.5 kg/ha.

In addition to the conventional formulation adjuvants, oil additives c) may be introduced as additives into the spray tank (as a tank mixture), besides surfactants and salts. In the composition according to the invention, the amounts of oil additive employed are generally from 0.01 to 2 % based on the spray mixture. The oil additive can, for example, be added to the spray tank in the desired concentration after the spray mixture has been prepared. Suitable oil additives include emulsifiable oil concentrates of mineral oils or, especially, of vegetable oils.

Preferred vegetable oil concentrates comprise, for example, the following 4 components (A) from 20 to 90 % by weight of alkyl esters of higher fatty acids (C_4 - C_{22}), (B) from 4 to 40 % by weight of anionic or non-ionic surfactants, (C) from 2 to 20 % by weight of higher fatty acids (C_{10} - C_{20}), and (D) up to 140 % by weight, based on the total amount of components (A) to (C), of hydrocarbons.

Especially preferred oil additives c) comprise alkyl esters of higher fatty acids (C_8 - C_{22}), especially the C_1 - C_4 alkyl ester derivatives of C_{12} - C_{18} fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9). The application and action of the oil additives can be improved by combining them with surface-active substances, for example anionic surfactants (B). Examples of suitable anionic surfactants are listed in WO 97/34485 on pages 7 and 8.

Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof. The concentration of the surface-active substances based on the total additive is generally from 1 to 30 % by weight.

Preferred higher fatty acids (C) have from 12 to 18 carbon atoms.

The addition of an organic solvent (D) to the oil additive/surfactant/fatty acid mixture can, furthermore, bring about a further increase in action. Suitable solvents (D) are, for example,

WO 01/17353 PCT/EP00/08661

aromatic solvents, e.g. Solvesso® (ESSO) or Aromatic Solvent® (Exxon Corporation) types. The concentration of those solvents can be from 10 to 80 %, by weight, of the total weight.

- 23 -

Such oil additives are described, for example, in US-A-4 834 908. They are especially preferred for the composition according to the invention. An especially preferred oil additive is known under the name MERGE®.

The compositions according to the invention are suitable for all methods of application that are customary in agriculture, for example pre-emergence application, post-emergence application and seed dressing. In the case of seed dressing, from 0.001 to 10 g of safener/kg of seed, preferably from 0.05 to 2 g of safener/kg of seed, are generally applied. When the safener is applied in liquid form shortly before sowing, with swelling of the seed, safener solutions are advantageously used that comprise the active ingredient in a concentration of from 1 to 10 000 ppm, preferably from 100 to 1000 ppm.

For application, the safeners of formula II or combinations of those safeners with the herbicides of formula I and, optionally the oil additives are advantageously processed, together with the adjuvants conventionally employed in formulation technology, into formulations, for example into emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microcapsules. Such formulations are described, for example, in WO 97/34485, on pages 9 to 13. The formulations are prepared in known manner, for example by intimately mixing and/or grinding the active ingredients with liquid or solid formulation adjuvants, for example solvents or solid carriers. Furthermore, surface-active compounds (surfactants) may also be used in preparation of the formulations. Solvents and solid carriers that are suitable for that purpose are mentioned, for example, in WO 97/34485 on page 6.

Suitable surface-active compounds are, depending on the nature of the active ingredient of formula I being formulated, non-ionic, cationic and/or anionic surfactants and mixtures of surfactants having good emulsifying, dispersing and wetting properties. Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, in WO 97/34485 on pages 7 and 8.

Furthermore, the surfactants customarily employed in formulation technology, which are described, *inter alia*, in "Mc Cutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81, are also suitable for preparation of the herbicidal compositions according to the invention.

The herbicidal formulations generally comprise from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of active ingredient mixture comprising a compound of formula I together with a compound of formula II, from 0.01 to 2 % by weight of oil additive, from 1 to 99.9 % by weight of a solid or liquid formulation adjuvant and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further ingredients such as stabilisers, for example vegetable oils or epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and tackifiers, as well as fertilisers or other active ingredients. There are various suitable methods and techniques for using the safeners of formula II or compositions comprising them for protecting cultivated plants against the harmful effects of herbicides of formula I; the following are examples:

i) Seed dressing

- a) Dressing the seeds with a wettable powder formulation of a compound of formula II by shaking in a vessel until the formulation is uniformly distributed over the seed surface (dry dressing). Approximately from 1 to 500 g of compound of formula II (from 4 g to 2 kg of wettable powder) are used per 100 kg of seed.
- b) Dressing the seeds with an emulsifiable concentrate of a compound of formula II according to method a) (wet dressing).
- c) Dressing by immersing the seed in a liquid formulation comprising from 100 to 1000 ppm of a compound of formula II for from 1 to 72 hours and, if desired, subsequently drying the seeds (immersion dressing).

Dressing the seed or treating the germinated seedlings are naturally the preferred methods of application because the treatment with the active ingredient is directed wholly at the

target crop. Generally from 1 to 1000 g of antidote, preferably from 5 to 250 g of antidote, are used per 100 kg of seed, although, depending on the method employed, which also allows the addition of other active ingredients or micronutrients, amounts that exceed or fall short of the specified concentration limits may be employed (repeat dressing).

ii) Application in the form of a tank mixture

A liquid formulation of a mixture of antidote and herbicide (ratio of the one to the other from 10:1 to 1:100) is used, the rate of application of herbicide being from 0.005 to 5.0 kg per hectare. Such a tank mixture is applied before or after sowing.

iii) Application in the seed furrow

The compound of formula II is introduced into the open, sown seed furrow in the form of an emulsifiable concentrate, a wettable powder or granules and, after the seed furrow has been covered, the herbicide is applied pre-emergence in the normal manner.

iv) Controlled release of the active ingredient

The compound of formula II is applied in solution to granulated mineral carriers or polymerised granules (urea-formaldehyde) and dried. If desired, a coating may be applied (coated granules) which enables the active ingredient to be released in metered amounts over a predetermined period of time.

Preferred formulations have especially the following composition (% = percent by weight; 'active ingredient mixture' denotes the mixture of the compound of formula I with the compound of formula II)

Emulsifiable concentrates:

active ingredient mixture:

1 to 90 %, preferably 5 to 20 %

surface-active agent:

1 to 30 %, preferably 10 to 20 %

liquid carrier:

5 to 94 %, preferably 70 to 85 %

Dusts:

active ingredient mixture:

0.1 to 10 %, preferably 0.1 to 5 %

solid carrier:

99.9 to 90 %, preferably 99.9 to 99 %

Suspension concentrates:

active ingredient mixture:

5 to 75 %, preferably 10 to 50 %

water:

94 to 24 %, preferably 88 to 30 %

surface-active agent:

1 to 40 %, preferably 2 to 30 %

Wettable powders:

WO 01/17353 PCT/EP00/08661

- 26 -

active ingredient mixture:

0.5 to 90 %, preferably 1 to 80 %

surface-active agent:

0.5 to 20 %, preferably 1 to 15 %

solid carrier:

5 to 95 %, preferably 15 to 90 %

Granules:

active ingredient mixture:

0.1 to 30 %, preferably 0.1 to 15 %

solid carrier:

99.5 to 70 %, preferably 97 to 85 %

The Examples that follow illustrate the invention further. They do not limit the invention.

Formulation Examples for mixtures of herbicides of formula I and safeners of formula II (% = percent by weight) F1. Emulsifiable concentrates a) b) c) d) active ingredient mixture 5 % 10 % 25 % 50 % calcium dodecylbenzenesulfonate 6 % 8 % 6 % 8 % castor oil polyethylene glycol ether 4 % - 4 % 4 % (36 mol of ethylene oxide) octylphenoxypolyethylene glycol ether - 4 % - 2 % (7-8 mol of ethylene oxide) cyclohexanone 10 % 20 % aromatic C ₉ -C ₁₂ hydrocarbon mixture 85 % 78 % 55 % 16 % Emulsions of any desired concentration can be prepared from such concentrates by dilution with water. F2. Solutions a) b) c) d)					
(% = percent by weight)			•		
F1. Emulsifiable concentrates	a)	b)	c)	d)	
active ingredient mixture	5 %	10 %	25 %	50 %	
calcium dodecylbenzenesulfonate	6 %	8 %	6 %	8 %	
castor oil polyethylene glycol ether	4 %	-	4 %	4 %	
(36 mol of ethylene oxide)					
octylphenoxypolyethylene glycol ether	-	4 %	-	2 %	
(7-8 mol of ethylene oxide)					
cyclohexanone	-	-	10 %	20 %	
aromatic C ₉ -C ₁₂ hydrocarbon mixture	85 %	78 %	55 %	16 %	
Emulsions of any desired concentration	can be pre	pared from su	ich concentra	ites by dilution	
with water.					
F2. Solutions	a)	b)	c)	d)	
active ingredient mixture	5 %	10 %	50 %	90 %	
1-methoxy-3-(3-methoxy-					
propoxy)-propane	-	20 %	20 %	-	
polyethylene glycol (mol. wt. 400)	20 %	10 %	-	-	
N-methyl-2-pyrrolidone	-	•	30 %	10 %	
aromatic C ₉ -C ₁₂ hydrocarbon mixture	75 %	60 %	•	-	

The solutions are suitable for application in the form of micro-drops.

-	27	-
---	----	---

F3. Wettable powders	a)	b)	c)	d)
active ingredient mixture	5 %	25 %	50 %	80 %
sodium lignosulfonate	4 %	-	3 %	-
sodium lauryl sulfate	2 %	3 %	-	4 %
sodium diisobutylnaphthalenesulfonate	•	6 %	5 %	6 %
octylphenoxypolyethylene glycol ether	•	1 %	2 %	•
(7-8 mol of ethylene oxide)				
highly dispersed silicic acid	1 %	3 %	5 %	10 %
kaolin	88 %	62 %	35 %	-

The active ingredient is mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.

a)	b)	c)
0.1 %	5 %	15 %
0.9 %	2 %	2 %
99.0 %	93 %	83 %
	0.1 % 0.9 %	0.1 % 5 % 0.9 % 2 %

(Æ 0.1 - 1 mm)

WO 01/17353

for example CaCO₃ or SiO₂

The active ingredient is dissolved in methylene chloride, the solution is sprayed onto the carrier, and the solvent is subsequently evaporated off *in vacuo*.

F5. Coated granules	a)	b)	c)
active ingredient mixture	0.1 %	5 %	15 %
polyethylene glycol (mol. wt. 200)	1.0 %	2 %	3 %
highly dispersed silicic acid	0.9 %	1 %	2 %
inorganic carrier material	98.0 %	92 %	80 %

(Æ 0.1 - 1 mm)

for example CaCO₃ or SiO₂

The finely ground active ingredient is uniformly applied, in a mixer, to the carrier material moistened with polyethylene glycol, yielding non-dusty coated granules.

- 28 -

F6. Extruder granules	a)	b)	c)	d)
active ingredient mixture	0.1 %	3 %	5 %	15 %
sodium lignosulfonate	1.5 %	2 %	3 %	4 %
carboxymethylcellulose	1.4 %	2 %	2 %	2 %
kaolin	97.0 %	93 %	90 %	79 %

The active ingredient is mixed with the adjuvants, and the mixture is ground, moistened with water, extruded and then dried in a stream of air.

F7. Dusts	a)	b)	c)
active ingredient mixture	0.1 %	1 %	5 %
talcum	39.9 %	49 %	35 %
kaolin	60.0 %	50 %	60 %

Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

F8. Suspension concentrates	a)	b)	c)	d)
active ingredient mixture	3 %	10 %	25 %	50 %
ethylene glycol	5 %	5 %	5 %	5 %
nonylphenoxypolyethylene glycol ether	-	1 %	2 %	-
(15 mol of ethylene oxide)				
sodium lignosulfonate	3 %	3 %	4 %	5 %
carboxymethylcellulose	1 %	1 %	1 %	1 %
37 % aqueous formaldehyde solution	0.2 %	0.2 %	0.2 %	0.2 %
silicone oil emulsion	0.8 %	0.8 %	0.8 %	0.8 %
water	87 %	79 %	62 %	38 %

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

It is often more practical to formulate the active ingredient of formula I and the mixing partner of formula II separately and then, shortly before application, to bring them together in the applicator in the desired mixing ratio in the form of a "tank mixture" in water.

The ability of the safeners of formula II to protect cultivated plants from the phytotoxic action of herbicides of formula I is illustrated in the following Examples.

Biological Examples

Examples B1, B2 and B3: Post-emergence applications of mixtures of a herbicide of formula I, wherein R_1 and R_3 are $-C_2H_5$; R_4 and R_5 together form a group Z_2 $-CR_{14}(R_{15})$ - $CR_{16}(R_{17})$ -O- $CR_{18}(R_{19})$ - $CR_{20}(R_{21})$ - (Z_2) , wherein R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} and R_{21} are hydrogen; and G is either hydrogen (= herbicide no. I_1) or $(CH_3)_3CC(O)$ - (= herbicide no. I_2), with a safener of formula IIa, wherein R_{22} is ethyl (= safener no. IIa₁), or of formula IIb, wherein R_{23} is ethyl (= safener no. IIb₁); to wheat and barley, together with 3 different weeds.

The test plants are grown in pots under greenhouse conditions until a post-application stage. A standard soil is used as the cultivation substrate. At a post-emergence stage, the herbicides, both alone and in admixture with safeners, are applied to the test plants or to cultivated plants of which the seeds were dressed with safeners. Application is carried out using an emulsion prepared from a 25 % emulsifiable concentrate (Example F1, b)) of the test substances using 500 I of water/ha. The rates of application are matched to the optimum dosages determined under field or greenhouse conditions. Evaluation of the tests is carried out after 9, 10, 20 and 24 days (100 % action = complete destruction; 0 % action = no phytotoxic action). The results obtained show that the safener used can significantly reduce the damage caused to the cultivated plants by the herbicide of formula I.

Examples of the action of the composition according to the invention are given in Tables B1, B2 and B3.

Table B1: Post-emergence application of herbicide no I₁, alone and in combination with safener no. IIa₁, to summer wheat, hard wheat and Lolium rigidum; evaluation 9 and 20

days after application.

days alter applica		7					
Plant	Evaluation		Herbicide no	. l ₁		Herbicide no	. I ₁
	[days]		[a.i. g/ha]			.[a.i. g/ha]	
i	-9				500	250	125
						+	
						safener no. I	la ₁
						[a.i. g/ha]	
		250	125	60	125	60	30
summer wheat	9	60	60	60	20	10	10
hard wheat	9	60	60	55	10	5	5
summer wheat	20	50	40	20	15	5	0
hard wheat	20	45	30	20	10	0	0
Lolium rigidum	20	100	100	95	100	95	95

<u>Table B2:</u> Post-emergence application of herbicide no. l₁ at concentrations of 125, 60, 30 and 15 g a.i./ha, alone and in combination with safener no. lla₁ and llb₁ at 30, 15, 8 and 4 g a.i./ha, to winter wheat and winter barley, and also Agrostis spica-venti, Alopecurus

myosuroides and Lolium rigidum; evaluation 10 days after application.

Plant	Herbicide no. I ₁ [a.i. g/ha]				Herbicide no. I ₁ [a.i. g/ha]				Herbicide no. I ₁ [a.i. g/ha]			
1					125	60	30	15	125	60	30	15
							-		_	+		
					S	afener		a ₁	safener no. Ilb ₁			
ł					[a.i. g/ha]				[a.i. g/ha]			
	125	60	30	15	30	15	8	4	30	15	8	4
winter wheat	20	10	5	0	0	0	0	0	10	5	0	0
winter barley	0	0	0	0	0	0	0	0	0	0	0	o
Agrostis sp.	80	80	70	70	80	80	7 0	60	80	80	70	70
Alopecurus m.	90	80	80	50	90	90	80	60	90	80	80	70
Lolium r.	80	60	60	60	80	80	70	60	80	80	70	60

Table B3: Post-emergence application of herbicide no. I₂ at concentrations of 125, 60, 30 and 15 g a.i./ha, alone and in combination with safener no. Ila₁ and Ilb₁ at 30, 15, 8 and 4 g a.i./ha, to winter wheat and winter barley, and also Agrostis spica-venti, Alopecurus myosuroides and Lolium rigidum: evaluation 10 days and 24 days after application

myosuroides and Lollotti rigidum; evaluation 10 days and 24 days after application.													
Plant	Evaluation	He	Herbicide no. l ₂			Herbicide no. I₂			. l ₂	Herbicide no. l₂			
	[days]		[a.i. g	y/ha]			[a.i. ç	g/ha]		[a.i. g/ha]			
]				125	60	30	15	125	60	30	15
		l				}		•			4	-	
						sa	fener	no. I	ia,	saf	ener	no. I	llb ₁
							[a.i. ç	g/ha]			[a.i. ç	g/ha)	
		125	60	30	15	30	15	. 8	4	30	15	8	4
winter wheat	10	30	20	10	0	0	0	0	0	20	10	0	0
winter barley	10	10	0	0	0	0	0	0	0	0	0	0	0
Agrostis sp.	10	90	80	70	60	90	80	80	70	80	80	70	60
Alopecurus m.	10	90	80	80	60	90	80	70	40	90	80	60	50
Lolium r.	10	80	80	70	70	80	80	70	70	80	80	70	70
winter wheat	24	0	0	0	0	0	0	0	0	0	0	0	0
winter barley	24	0	0	0	0	0	0	0	0	0	0	0	0

The same results are obtained when the active ingredient mixture is formulated according to the other Formulation Examples mentioned above.

What is claimed is:

- 1. A selectively herbicidal composition which, in addition to customary inert formulation assistants, comprises as active ingredient a mixture of
- a) a herbicidally effective amount of a compound of formula I

$$R_{5}$$
 N CH_{3} (I) ,

wherein

R₁ and R₃ are, each independently of the other, ethyl, haloethyl, ethynyl, C₁- or C₂-alkoxy, C_1 - or C_2 -haloalkoxy, C_1 - or C_2 -alkylcarbonyl or C_1 - or C_2 -hydroxyalkyl; R_4 and R_5 together are a group Z_2 -CR₁₄(R₁₅)-CR₁₆(R₁₇)-O-CR₁₈(R₁₉)-CR₂₀(R₂₁)- (Z₂); R_{14} , R_{15} , R_{16} , R_{17} , R_{18} , R_{19} , R_{20} and R_{21} are, each independently of the others, hydrogen, halogen, C₁-C₄alkyl or C₁-C₄haloalkyl, wherein an alkylene ring may be fused or spiro-bound to the carbon atoms of the group Z2, which alkylene ring, together with the carbon atoms of the group Z2, to which it is bonded, contains from 2 to 6 carbon atoms and may be interrupted by oxygen, or the alkylene ring bridges at least one ring atom of the group Z2; G is hydrogen, $-C(X_1)-R_{30}$, $-C(X_2)-X_3-R_{31}$, $-C(X_4)-NR_{32}(R_{33})$, $-S(O)_2-R_{34}$, $-P(X_5)R_{35}R_{36}$, -CH₂-X₆-R₃₇ or an alkali metal, alkaline earth metal, sulfonium or ammonium cation; X₁, X₂, X₃, X₄, X₅ and X₆ are, each independently of the others, oxygen or sulfur; R₃₀, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅, R₃₆ and R₃₇ are, each independently of the others, hydrogen, C₁-C₁₀alkyl, C₁-C₁₀haloalkyl, C₁-C₁₀cyanoalkyl, C₁-C₁₀nitroalkyl, C₁-C₁₀aminoalkyl, C₂-C₅alkenyl, C2-C5haloalkenyl, C3-C8cycloalkyl, C1-C5alkylamino-C1-C5alkyl, di(C1-C5alkyl)amino-C₁-C₅alkyl, C₃-C₇cycloalkyl-C₁-C₅alkyl, C₁-C₅alkoxy-C₁-C₅alkyl, C₃-C₅alkenyloxy-C₁-C₅alkyl, alkylsulfonyl-C₁-C₅alkyl, C₂-C₈alkylideneaminooxy-C₁-C₅alkyl, C₁-C₅alkyl, C₁-C₅alkyl, C₁-C₅alkoxycarbonyl-C₁-C₅alkyl, C₁-C₅alkylaminocarbonyl-C₁-C₅alkyl, di(C₁-C₅alkyl)aminocarbonyl-C₁-C₅alkyl, C₁-C₅alkylcarbonylamino-C₁-C₅alkyl, C₁-C₅alkylcarbonyl-(C₁-C₅alkyl)-amino-C₁-C₅alkyl, tri(C₁- or C₂-alkyl)silyl-C₁-C₅alkyl, phenyl, heteroaryl, phenyl-C₁-C₅alkyl, heteroaryl-C1-C5alkyl, phenoxy-C1-C5alkyl or heteroaryloxy-C1-C5alkyl, wherein the

afore-mentioned aromatic rings may be substituted by halogen, nitro, cyano, amino, $di(C_1-C_4alkyl)$ amino, hydroxy, methoxy, ethoxy, methylthio, ethylthio, formyl, acetyl, propionyl, carboxyl, $C_1-C_5alkoxyc$ arbonyl or by C_1 - or C_2 -haloalkyl;

 R_{34} , R_{35} and R_{36} are, in addition, C_1 - C_{10} alkoxy, C_1 - C_{10} haloalkoxy, C_1 - C_5 alkylamino, di(C_1 - C_5 -alkyl)amino, benzyloxy or phenoxy, wherein the aromatic rings of the last two substituents may be substituted by halogen, nitro, cyano, amino, dimethylamino, hydroxy, methoxy, ethoxy, methylthio, ethylthio, formyl, acetyl, propionyl, carboxyl, C_1 - C_5 alkoxycarbonyl or by C_1 - or C_2 -haloalkyl; and

R₃₇ is, in addition, C₁-C₁₀alkylcarbonyl,

or a salt or diastereoisomer of a compound of formula I, and

b) an amount, which is effective for antagonism of the herbicide, of a safener of formula IIa

wherein

 R_{22} is hydrogen, or an alkali metal, alkaline earth metal, sulfonium or ammonium cation, or ethyl,

or of formula llb

wherein

R₂₃ is hydrogen, or an alkali metal, alkaline earth metal, sulfonium or ammonium cation, or ethyl,

or of formula IIc

$$R_{24} \xrightarrow{N} R_{25} \xrightarrow{(R_{26})_{n}} (H_{27})_{m}$$
 (IIc),

wherein

 R_{24} and R_{25} are, each independently of the other, hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl;

 R_{26} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 haloalkoxy; or the radicals R_{26} are, each independently of the other(s), hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_6 haloalkyl or C_1 - C_6 haloalkoxy;

 R_{27} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 alkoxycarbonyl or nitro; or the radicals R_{27} are, each independently of the other, hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 -alkoxycarbonyl or nitro;

n is 0, 1, 2 or 3; and

m is 1 or 2,

or of formula IId

$$(R_{30})_0$$
 $(R_{30})_0$
 $(R_{31})_p$
 $(R_{32})_p$

wherein

R₂₈ is hydrogen, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, C₃-C₈cycloalkyl, phenyl, phenyl-C₁-C₆alkyl or heteroaryl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, hydroxy, carboxyl, formyl, carbonamide or by sulfonamide;

R₂₉ is hydrogen, C₁-C₆alkyl or C₁-C₄haloalkyl;

 R_{30} is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, cyano, nitro, formyl or carboxyl; or the radicals R_{30} are, each independently of the

other, hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl-sulfonyl, cyano, nitro, formyl or carboxyl;

R₃₁ is hydrogen, C₁-C₆alkyl or C₁-C₄haloalkyl;

R₃₂ is hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, cyano, nitro, formyl or carboxyl; or the radicals R₃₂ are, each independently of the other, hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, cyano, nitro, formyl or carboxyl; and o and p are, each independently of the other, 0, 1 or 2.

or of formula lle

wherein

 G_2 is hydrogen, formyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenylcarbonyl, C_2 - C_6 alkynylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylthio)carbonyl, C_3 - C_8 cycloalkylcarbonyl, phenyl- C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkenylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

 R_{33} is hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, formyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenylcarbonyl, C_1 - C_6 alkynylcarbonyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkenylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

 R_{34} is hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, formyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenylcarbonyl, C_1 - C_6 alkynylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenylsulfonyl or phenylsulfonyl, wherein the afore-mentioned hydrocarbon radicals may be substituted by halogen, cyano, nitro, amino, methoxy, ethoxy or by phenyl;

R₃₅, R₃₆, R₃₇ and R₃₈ are, each independently of the others, hydrogen, halogen, amino, C₁-C₃alkylamino, di(C₁-C₃alkyl)amino, hydroxy, cyano, nitro, formyl, carboxyl, C₁-C₆alkoxy,

 C_1 - C_6 haloalkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 -alkenyl or C_2 - C_6 alkynyl; or

R₃₈ and R₃₃, together with the ring atoms to which they are bonded, form a five- or six-membered saturated or unsaturated ring that contains up to 2 identical or different hetero atoms selected from the group oxygen, sulfur and nitrogen and that may be interrupted by a -C(O)- radical:

- 2. A composition according to claim 1, which comprises as active ingredient a mixture of
- a) a herbicidally effective amount of a herbicide of formula I, wherein

R₁, R₃, R₄, R₅ and G are as defined in claim 1, and

b) an amount, which is effective for antagonism of the herbicide, of a safener of formula IIa, wherein

R₂₂ is as defined in claim 1 for formula IIa,

or of formula 11b, wherein

R₂₃ is as defined in claim 1 for formula llb,

or of formula IIc, wherein

R₂₄ and R₂₅ are, each independently of the other, hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆-akynyl or C₃-C₆cycloalkyl;

R₂₆ is halogen, C₁-C₄alkyl or C₁-C₄haloalkyl;

R₂₇ is halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkoxycarbonyl or nitro;

n is 0, 1, 2 or 3; and

m is 1 or 2.

- 3. A composition according to claim 1, wherein R_1 and R_3 in the compounds of formula I are, each independently of the other, ethyl, haloethyl, ethynyl, C_1 or C_2 -alkoxy or C_1 or C_2 -haloalkoxy.
- 4. A composition according to claim 1, wherein R_4 and R_5 in the compounds of formula I together form a group Z_2 -CR₁₄(R₁₅)-CR₁₆(R₁₇)-O-CR₁₈(R₁₉)-CR₂₀(R₂₁)- (Z₂), wherein R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, R₁₉, R₂₀ and R₂₁ are hydrogen.
- 5. A composition according to claim 1, wherein G in the compounds of formula I is hydrogen, $-C(X_1)-R_{30}$, $-C(X_2)-X_3-R_{31}$, $-C(X_4)-NR_{32}(R_{33})$, $-S(O)_2-R_{34}$, $-P(X_5)R_{35}R_{36}$, $-CH_2-X_6-R_{37}$

or an alkali metal, alkaline earth metal, sulfonium or ammonium cation; X1, X2, X3, X4, X5 and X₆ are, each independently of the others, oxygen or sulfur; R₃₀, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅, R₃₆ and R₃₇ are, each independently of the others, hydrogen, C₁-C₈alkyl, C₁-C₈haloalkyl, C₁-C₈cyanoalkyl, C₁-C₈nitroalkyl, C₁-C₈aminoalkyl, C₂-C₅alkenyl, C₂-C₅haloalkenyl, C₃-C₈cycloalkyl, C₁-C₅alkylamino-C₁-C₂alkyl, di(C₁-C₅alkyl)amino-C₁-C₂alkyl, C₃-C₇cycloalkyl-C₁-C2alkyl, C1-C4alkyl, C2-C4alkyl, C2-C4alkenyloxy-C1-C4alkyl, C3-C4alkynyloxy-C1-C4alkyl, C1-C4alkyl, C C4alkylthio-C1-C4alkyl, C1-C2alkylsulfoxy-C1-C2alkyl, C1-C2alkyl, C1-C2alkyl, C2-C₀alkylideneaminooxy-C₁-C₂alkyl, C₁-C₅alkylcarbonyl-C₁-C₂alkyl, C₁-C₅alkoxycarbonyl-C₁-C2alkyl, C1-C5alkylaminocarbonyl-C1-C2alkyl, di(C1-C4alkyl)aminocarbonyl-C1-C2alkyl, C1-C5alkylcarbonylamino-C1-C2alkyl, C1-C2alkylcarbonyl-(C1-C3alkyl)-amino-C1-C2alkyl, tri(C1- or C2-alkyl)silyl-C1-C3alkyl, phenyl, heteroaryl, phenyl-C1-C2alkyl, heteroaryl-C1-C2alkyl, phenoxy-C₁-C₂alkyl or heteroaryloxy-C₁-C₂alkyl; R₃₄, R₃₅ and R₃₆ are, in addition, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₃alkylamino, di(C₁-C₃alkyl)amino, benzyloxy or phenoxy, wherein the aromatic rings of the last two substituents may be substituted by halogen, nitro, cyano, amino, dimethylamino, hydroxy, methoxy, ethoxy, methylthio, ethylthio, formyl, acetyl, propionyl, carboxyl, C1-C5alkoxycarbonyl or by C1- or C2-haloalkyl; and R₃₇ is, in addition, C₁-C₈alkylcarbonyl.

6. A composition according to claim 5, wherein G is hydrogen, $-C(X_1)-R_{30}$, $-C(X_2)-X_3-R_{31}$, $-C(X_4)-NR_{32}(R_{33})$, $-S(O)_2-R_{34}$, $-P(X_5)R_{35}R_{36}$, $-CH_2-X_6-R_{37}$ or an alkali metal, alkaline earth metal, sulfonium or ammonium cation; X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are, each independently of the others, oxygen or sulfur; R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , R_{36} and R_{37} are, each independently of the others, hydrogen, C_1-C_8 alkyl, C_1-C_8 haloalkyl, C_2-C_5 alkenyl, C_2-C_5 haloalkenyl, C_3-C_8- cycloalkyl, C_3-C_7 cycloalkyl- C_1-C_2 alkyl, C_1-C_4 alkoxy- C_1-C_4 alkyl, phenyl, heteroaryl, phenyl- C_1-C_2 alkyl, heteroaryl- C_1-C_2 alkyl, phenoxy- C_1-C_2 alkyl or heteroaryloxy- C_1-C_2 alkyl; R_{34} , R_{35} and R_{36} are, in addition, C_1-C_6 alkoxy, C_1-C_3 alkylamino or di(C_1-C_3 alkyl)amino; and R_{37} is, in addition, C_1-C_8 alkylcarbonyl.

7. A compound of formula la

WO 01/17353

$$R_{4}$$
 N
 CH_{3}
 CH_{3}

wherein R₁, R₃, R₄, R₅, R₃₇ and X₆ are as defined in claim 1.

- 8. A method of selectively controlling weeds and grasses in crops of useful plants, which comprises treating the useful plants, their seeds or seedlings or the crop area thereof with, simultaneously or separately, a) a herbicidally effective amount of a herbicide of formula I, b) an amount, which is effective for antagonism of the herbicide, of a safener of formula II and, optionally, c) an additive comprising an oil of vegetable origin or an alkylated derivative thereof, or a mineral oil or a mixture thereof.
- 9. A method according to claim 8, which comprises treating crops of useful plants or crop areas for crops of useful plants with from 0.001 to 2 kg/ha of a herbicide of formula I and an amount of from 0.001 to 0.5 kg/ha of a safener of formula II.
- 10. A method according to claim 8, wherein the crops of useful plants are cereals, maize and sorghum.
- 11. A composition according to claim 1, which also comprises, in addition to the formulation adjuvants, an oil additive in the form of a vegetable oil concentrate consisting of the 4 components (A) from 20 to 90 % by weight of an alkyl ester of a higher fatty acid (C_4 - C_{22}), (B) from 4 to 40 % by weight of an anionic surfactant, (C) from 2 to 20 % by weight of a higher fatty acid (C_{10} - C_{20}), and (D) up to 140 % by weight, based on the total amount of components (A) to (C), of a hydrocarbon.
- 12. A composition according to claim 11, wherein (A) is a C_1 - C_4 alkyl ester of a C_{12} - C_{18} fatty acid, (B) is an anionic surfactant of the dodecylbenzylsulfonate type, (C) is a C_{12} - C_{18} fatty acid, and (D) is an aromatic hydrocarbon.

INTERNATIONAL SEARCH REPORT

Inten nad Application No PCT/EP 00/08661

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A01N43/90 C07D498/04 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A01N C07D IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, PAJ, EPO-Internal, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to daim No. P,X WO 99 47525 A (NOVARTIS ERFIND VERWALT 1-6,8-12 GMBH; MUEHLEBACH MICHEL (CH); GLOCK JUTTA) 23 September 1999 (1999-09-23) cited in the application page 1 -page 2 page 19 -page 22 page 33; table 11 P,X WO 00 47585 A (NOVARTIS ERFIND VERWALT 1-6,8-12 GMBH ; MUEHLEBACH MICHEL (CH); GLOCK JUTTA) 17 August 2000 (2000-08-17) page 1 -page 2 page 19 -page 22 page 33; table 11

· ·			
Further documents are listed in the continuation of box C.	Patent family members are listed in annex.		
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filling date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family 		
Date of the actual completion of the international search 17 January 2001	Date of mailing of the International search report 09/02/2001		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer . Lamers, W		

INTERNATIONAL SEARCH REFORE

Inter: nal Application No
PCT/EP 00/08661

PCT/EP 00/08661							
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT							
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.				
A	WO 96 21652 A (CIBA GEIGY AG; BOEGER MANFRED (DE); MAIENFISCH PETER (CH); CEDERBA) 18 July 1996 (1996-07-18) cited in the application page 1 -page 2 page 17, paragraph 4 -page 20		1-12				
A	WO 98 13361 A (SZCZEPANSKI HENRY ;CIBA GEIGY AG (CH); TOBLER HANS (CH); FOERY WER) 2 April 1998 (1998-04-02) page 34, paragraph 5 - paragraph 6 page 37		1-12				
A	WO 96 11574 A (CIBA GEIGY AG ;GLOCK JUTTA (CH); HUDETZ MANFRED (US); KERBER ELMAR) 25 April 1996 (1996-04-25) page 1 -page 4		1-12				
	·		·				

INTERNATIONAL DEGREES AND COL

...rormation on patent family members

Inter. Inal Application No PCT/EP 00/08661

				1	
Patent document cited in search report		Publication date	Patent fami member(s)		Publication date
WO 9947525	A	23-09-1999		999 A 217 A	11-10-1999 27-12-2000
WO 0047585	A	17-08-2000	AU 2623	399 A	29-08-2000
WO 9621652	A	18-07-1996	BR 9600 CA 2210 CN 1175 EP .0804 JP 10512 TR 960	396 A 088 A 286 A 248 A 422 A 248 T 702 A 243 A	31-07-1996 27-01-1998 18-07-1996 04-03-1998 05-11-1997 24-11-1998 21-08-1996 19-08-1996
WO 9813361	A	02-04-1998		097 A 543 A	17-04-1998 21-07-1999
WO 9611574	A	25-04-1996	BR 9509 CA 2199 EP 0786 JP 10507 PL 319	937 A	06-05-1996 30-12-1997 25-04-1996 06-08-1997 14-07-1998 21-07-1997 10-07-1996