Wednesday Warm Up: Unit 5: Momentum II

Prof. Jordan C. Hanson

November 6, 2024

1 Memory Bank

- $v = r\omega$... Relationship between tangential velocity and angular velocity.
- $\omega = 2\pi f = 2\pi/T$... Relationship between angular velocity (ω) , frequency (f), and period (T).
- $\vec{p} = m\vec{v}$... Definition of momentum.
- $\vec{F}_{\mathrm{Net}} = \frac{d\vec{p}}{dt}$... Force and momentum
- Let M be the total mass of a system, and let m_j and \vec{r}_j (j=1,...,N) be the masses and positions of the constituent parts of the system. The position of the center of mass is

$$\vec{r}_{\rm CM} = \frac{1}{M} \sum_{j=1}^{N} m_j \vec{r}_j$$
 (1)

 \bullet The momentum of the center of mass $\vec{P}_{\rm CM}$ is

$$\vec{P}_{\rm CM} = \sum_{j=1}^{N} \vec{p}_j \tag{2}$$

• The net external force on a system obeys

$$\vec{F} = \frac{d\vec{P}_{\rm CM}}{dt} \tag{3}$$

2 Momentum II

1. Consider Fig. 1, in which a single planet orbits a star located at the origin at t=0. Let the star have mass M, the planet have mass m, and let the distance between them be r. Let the ratio of the masses be $\mu=m/M$. (a) Show that the center of mass is given by

$$\vec{r}_{\rm CM} = \left(\frac{\mu}{\mu + 1}\right) \vec{r} \tag{4}$$

(b) Show that $\vec{r} = 0$ in the limit that $\mu \ll 1$.

2. Where is the center of mass if the star and the planet have the same mass?

- 3. Assume there is no *net*, *external* force on the system. The center of mass will
 - A: Accelerate
 - B: Decelerate
 - C: Remain stationary
 - D: Remain at constant velocity
- 4. Given the answer to the previous exercise, what do you conclude about the orbits of the star and planet?

Figure 1: A planet orbits a star.