The ILL Publication Matcher (PUMA)

FILL2030 WP3

Summary

- Objectives of the PUMA project
- Data workflow
- Next steps

Project objectives

Data retrieval and exploitation

- Development of business intelligence tool for ILL
 - Provide information on who really uses ILL data (not just experimental team)
 - Where to look for new users?
 - Analyse scientific trends
 - Initially designed for the management, aim to support scientists too
- Match publications to experimental data
 - Provide insights on science done and its outcome
 - Challenge to do this in absence of DOIs
- Build corpus of publications and proposals
 - Documents related to ILL or neutron scattering
- Develop tool to analyse publications and match to proposals
 - Data mining and Comparison algorithms

Data workflow: Data Sources

Publication and Proposal retrieval

- Obtain comprehensive corpus of documents related to neutron scattering
- Three Data sources
 - Web of science
 - ILL Proposal Database
 - Joint ILL/ESRF library
- Full Text not provided by Web of Science
 Use publisher APIs (Elsevier, APS)

 - Use resolver system to determine publisher download URL

Data workflow: Puma Corpus Creator

Data workflow: Document

Data workflow: Document

Data provided by the data sources

Data- source	Technique	Instrument	Laboratory	Person	Formula	File	Journal	Keyword
WOS			YES	YES		YES*	YES	YES
ILL	YES	YES	YES	YES	YES	YES		
Library		YES	YES	YES		YES*	YES	YES

Data workflow: Data mining

Retrieve missing data from documents

- Extract from full text of :
 - Instruments
 - DOIs
 - Proposals code
 - Chemical formulae
 - Images
- Simplest algorithms use pattern matching
- Most advanced algorithms use artificial intelligence technics

Data workflow: Data mining

Enhanced document metadata

Data- source	Technic	Instrument	Laboratory	Person	Formula	File	Journal	Keyword
WOS	YES	YES	YES	YES	YES	YES*	YES	YES
ILL	YES	YES	YES	YES	YES	YES		
Library	YES	YES	YES	YES	YES	YES*	YES	YES*

Data workflow: Matching

Matcher program: a big data program

- Retrieve links between publications on proposals in absence of DOI
- ~65k Publications & ~19k Proposals
 - >1 billion publication-proposal pairs
 - · Document comparisons take several weeks on single core
- Design software and algorithms to handle this amount of data
 - Parallel processing platform: Apache Spark
 - Deduplicate documents and persons to reduce load
 - ~1 hour to perform matching analysis

Data workflow: Matching

Data used for matching

Data workflow: Matching

Scoring, optimisation, ranking

- Obtain a number of candidate matches for a particular document
 - Each candidate has different similarities and scores
- Use human validated set of matches to optimise/weight combined scores
 - Produces global score and ranking of each candidate
- >95% confidence that true match is in top 5 candidates
 - Top candidates presented to user for human validation

Data workflow: Data analysis

Data analysis

Puma BI statistics from publications and matched documents

- Impact factor of publications using ILL data
 - Determine collaborative impact
- Communities
 - Who used the data
 - Potential new users
- Matches provide new information
 - Analyse delay between experiment and publication
 - Impact of reactor operational days on publications
 - Difference between experimental team and publication authors

Next steps

- Continue developing BI tools: statistics and data visualisation
 - Detect teams of authors (impact measure)
 - Detect publications without ILL authors
 - Journal evolutions
- Need to reach full potential of the tool
 - several thousand matches required to obtain statistical significant results
- Collaborative development
 - Open source project (Github repositories)
 - ESRF recruiting to develop Puma
 - In discussion with CERN (similar objectives/requirements)

Further ideas

- Technical improvements to matcher
 - Add matching algorithms
 - Improve trend analysis
- PDF drag and drop and real time analysis
 - Improve workflow for a scientist to produce matches
- Import/analyse supplementary materials
 - DOIs and other information not in principal article
- Try AI algorithms to improve scoring

