Question Number 1									
	7								
./q.png									

Solution. Steps

- a) First we will find message and cipher text pair using getPair() function from Utils.py file
- b) Then we will select pairs of α and β masks form the Linear Approximation Table where

$$abs(Lat[\alpha][\beta]) >= 4 \tag{1}$$

c) For each pair of mask, we will find the values of counters \mathcal{T}_0 and \mathcal{T}_1

d) Then we use Value of LHS (max from counter T_0 and T_1) to get corresponding equation as follows

$$(\alpha \cdot K_0) \oplus (\beta \cdot K_1) = LHS \tag{2}$$

where LHS is as follows:

$$LHS = \begin{cases} 1 & \text{if } T_1 > T_0 \\ 0 & \text{if } T_1 < T_0 \end{cases}$$

e) Then we will get 8 eqution with 8 variables as follows

	K_0				K_1			
K_{00}	K_{01}	K_{02}	K_{03}	K_{10}	K_{11}	K_{12}	K_{13}	

f) Using solver() function we are eliminating key space upto it resize to 1

g) And finally we get our key as

$$K_0 = 15$$

$$K_1 = 2$$

All this process is automated by the python file SypherOOA.py. (Change Oracle path mention in main() function)