Computational Methods for Finance Week 2: Mathematical Model II

Yang Yue

University of Westminster

October 2023

Learning Outcomes

At the end of this lecture you will be able to

- Understand Itô's lemma and its connections with Wiener and generalised Wiener processes.
- Apply Itô's lemma.

Review

A Generalised Wiener Process

A Wiener Process has a draft rate of zero and a variance rate of one (that is, $var(\Delta z) = 1 \times$ time interval used). By contrast, a generalised Wiener process, x, has a drift rate of a and a variance rate of b^2 . Such a process is given by the following equation:

$$dx = a dt + b dz$$

$$= a dt + b \epsilon \sqrt{dt}.$$
(1)

A discrete version of this process is given by

$$\Delta x = a \Delta t + b \Delta z$$

$$= a \Delta t + b \epsilon \sqrt{\Delta t}.$$
(2)

Review

A Generalised Wiener Process

$$E(\Delta x) = E(a \Delta t + b \epsilon \sqrt{\Delta t}) = E(a \Delta t) = a \Delta t, \tag{3}$$

and

$$var(\Delta x) = var(a \Delta t + b \epsilon \sqrt{\Delta t}) = var(b \epsilon \sqrt{\Delta t}) = b^2 \Delta t.$$
 (4)

Both of which imply that $\Delta x \sim N(a \Delta t, b^2 \Delta t)$.

A Process for Stock Price
 Consider the following expected price processes:

Time Period	P_A	P_B	R_A	R_B
1	100	100	NA	NA
2	110	110	10%	10%
3	120	121	9.1%	10%
4	130	133	8.3%	10%

Which process do you think is more appropriate?

- A Process for Stock Price Regarding stock A and B:
 - The process underlying Stock A is a generalised Wiener process (constant drift rate and constant variance).
 - The process underlying Stock B is more appropriate. Investors normally expect a constant percentage return rather than constant profits (cash flows).
 - Return is expected drift divided by the stock price.

- A Process for Stock Price
 - If the variance rate of stock B price is 0, then,

$$dS = \mu S dt, \text{ or } \frac{dS}{S} = \mu dt.$$
 (5)

This means that the percentage increase in stock price is constant.

- Does it remind you something?
- The rate of return is constant.
- Integrating between time 0 and time T, we obtain

$$S_T = S_0 e^{\mu t}, \tag{6}$$

where S_0 and S_T are the stock prices at time 0 and time T, respectively.

- Variance is also allowed to vary with the stock price.
- Specifically, stock prices are assumed to follow the Itô process (aka Geometric Brownian Motion):

$$\frac{dS}{S} = \mu \, dt + \sigma \, dz, \text{ or } dS = \underbrace{\mu \, S}_{\mathsf{a}(\mathsf{S})} \, dt + \underbrace{\sigma \, S}_{\mathsf{b}(\mathsf{S})} \, dz. \tag{7}$$

A Process for Stock Price
 A discrete-time version of the above process is given by

$$\frac{\Delta S}{S} = \mu \, \Delta t + \sigma \, \epsilon \, \sqrt{\Delta t},\tag{8}$$

where

$$E(\frac{\Delta S}{S}) = \mu \, \Delta t \, and \, var(\frac{\Delta S}{S}) = \sigma \, \Delta t, \tag{9}$$

imply that

$$\frac{\Delta S}{S} \sim N(\mu \Delta t, \sigma^2 \Delta t)$$

.

Itô's Lemma
 Assuming that x follows the Itô process

$$dx = a(x, t)dt + b(x, t)dz, (10)$$

where a and b are functions of x and t, then Itô's lemma enables us to express a function of x, denoted by G, as an alternative Itô process. This alternative process is given by the following expression:

$$dG = \left(\frac{\partial G}{\partial x}a + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}b^2\right)dt + \frac{\partial G}{\partial x}bdz,\tag{11}$$

where dz is the same Wiener process as considered previously.

- Itô's Lemma
 - It follows that G also follows an Itô process.
 - Why?
 - Drift rate:

$$\frac{\partial G}{\partial x}a + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}b^2$$

• Variance rate:

$$(\frac{\partial G}{\partial x})^2 b^2$$

.

Itô's Lemma

Example

Consider the following *logarithmic* transformation of stock prices:

$$G = In S$$

. Associated partial differentials are given by

$$\frac{\partial G}{\partial S} = \frac{1}{S}, \ \frac{\partial^2 G}{\partial S} = -\frac{1}{S^2}, \ \frac{\partial G}{\partial t} = 0$$

. Therefore,

$$dG = (\mu - \frac{\sigma^2}{2})dt + \sigma dz$$

. Therefore, logarithmic stock prices follow a generalised Wiener process (as a and b do not depend on S or t).

Mean? Variance?

Itô's Lemma

Example

It follows that ΔG has a normal distribution with a mean of

$$\mu - \frac{\sigma^2}{2}$$
,

and a variance of,

$$\sigma^2 \Delta t$$
.

Moreover, if Δt equals T then:

$$\ln S_T - \ln S \sim N((\mu - \frac{\sigma^2}{2})T, \sigma^2 T),$$

$$\Rightarrow$$
 In $S_T \sim N(InS + (\mu - \frac{\sigma^2}{2})T, \sigma^2 T)$

. Thus, stock prices have a *log-normal distribution*.

Summary of Week 2

- Continuous-time Stochastic Process:
 Wiener, generalised Wiener, and Itô processes.
- Transforming Stochastic Processes: Itô's lemma with an application.

Reading

• Chapter 14, Hull (2015)