Ayush Agrawal

■ ayushagrawal26@ucla.edu | 🔰 +1 (424) 430-5322 | 🚱 ayushagrawal149.github.io | in https://www.linkedin.com/in/ayush145agrawal/

EDUCATION _

University of California, Los Angeles

California, USA

Master of Science in Mechanical Engineering, specializing in Robotics and Controls

Sept 2024 - March 2026

• Recipient of the prestigious Narotam Sekhsaria Foundation PG Scholarship given to 15 students across India

2024

Indian Institute of Technology (IIT) Bombay

Mumbai, India

Bachelor of Technology in Mechanical Engineering with minors in Controls Engineering; GPA: 9.37/10.0 July 2017- June 2021

- Conferred with the MITACS Globalink Research Fellowship for conducting research at the University of Toronto 2020
- Awarded advanced performance (AP) grade (1 of 80) for exemplary performance in course on Strength of Materials 2019

TECHNICAL SKILLS

Programming C++ (Object Oriented Programming), Python, MATLAB, Maple, Git, Excel VBA

Robotics ROS 1/2, Gazebo, Simulink, MATLAB - Robotics Toolbox, MATLAB - Control Systems Toolbox
Software CarMaker 8.1, SolidWorks, ABAQUS, Jira, Confluence, LaTex, AutoCAD, Autodesk Fusion 360
Relevant Coursework Automatic Control, Computer Vision, Optimization, CNC Machining, Dynamics of Machines

Professional Experience

Jaguar Land Rover TBSI Pvt. Ltd. | Motion Controls Engineer

Bangalore, India

Active Ride Functionality | Dept. of Chassis & Motion Controls Systems | Publication

August 2021 - August 2024

Active ride functionality is a vehicle ride enhancement algorithm designed to deliver superior comfort than JLR's adaptive dampers

- Spearheaded the **model-based design of optimal controllers** to reduce road-induced vibrations in Range Rover by **38.6**%
- Tuned MPC to limit actuation power consumption to 0.08% of battery capacity for 30-minute-long WLTP test cycle
- Designed Kalman Filter for state-estimation of heave velocity, pitch, and roll angle signals with max RMS error = 0.11
- Responsible for maintaining the Git repository for the active ride functions, including LQR, MPC, and H-infinity algorithms
- Assessed the controller's performance in the presence of noise, delays, and 5% actuation bandwidth in Carmaker + Simulink

Crash Pulse Prediction | Dept. of Structural Integration

August 2021 - July 2022

- Developed a physics engine to simulate vehicle crash kinematics with 92% accuracy in 4 minutes compared to 8-hour FEA
- Delivered the engine as a MATLAB application to save 20% workdays in CAD model development of Panthera's body-in-white
- Utilized the app to estimate the crashworthiness of Lucid Air, BMW iX, Mercedes EQS to set the benchmark for JLR's EMA

AI & Robotics Technology Park | Robot Programming & Controls Intern | Publication Bangalore, India Formation control of differential-drive robot with input saturation and constraints on formation size May 2021 - August 2021

• Developed a novel path tracking controller ensuring 99.18% tracking accuracy and smooth saturation of robot's speed limits

- Extended the tracking controller as a scalable formation control framework for navigating goods inside a warehouse
- Verified the stability of control framework for a formation of n = 5 Turtle bot 3 through simulations in ROS2/Gazebo

University of Toronto | Mitacs Globalink Research Intern | Report

Toronto, Canada

Seismic response of vertical post-tensioned connection for modular steel buildings (MSBs)

April 2020 - August 2020

- Modeled and simulated the novel vertical post-tensioned connection using Finite Element Analysis in ABAQUS for assessing
 the self-centering properties and 30% higher energy dissipation capabilities compared to welded steel structures
- Reported hysteresis and seismic capabilities of vertical post-tensioned connection with 91% accuracy relative to experiments
- Researched contact models and fracture criteria in ABAQUS to achieve 99.75% accuracy in the frictional dissipation model

KEY AUTOMATION PROJECTS

Control design of ABB-IRB 1600 - 6-DoF Robotic Manipulator | Report

Jan 2020 - April 2020

- Modelled the dynamics of 6-DoF robotic manipulator with spherical joint using DH parameters in MATLAB robotics toolbox
- Implemented Independent Joint Control with 1% tracking error for end-effector path planned using quintic polynomials
- Reduced tracking error to **0%** using **Joint Space Inverse Dynamics Controller** even with 5% error in gravity load estimation

Image Creating Robotic Arm | Certificate | Report

May 2018 - July 2018

- Designed a 2-link manipulator in SolidWorks and determined the requisite torque capacity for servo motor using FEA
- Assembled the manipulator using Aluminium brackets and double-axle servo motors with base mounted on plywood
- Deployed Canny Edge Detection algorithm to convert an input RGB image to bit-Matrix for planning end-effector's path
- Determined the joint space trajectory using Inverse Dynamics and programmed Arduino with PD control to trace the edges