Marissa Palamara ASEN 3128 Spring 2021

Nomenclature

 $\mathbf{V}_{B}^{E}=$ velocity in intertial frame written in body coordinate system

Thate system
$$\mathbf{F}_{B}^{aero} = X\mathbf{e}_{x} + Y\mathbf{e}_{y} + Z\mathbf{e}_{z} = [X;Y;Z]$$

$$\mathbf{M}_{B}^{aero} = \mathbf{G}_{B}^{aero} = L\mathbf{e}_{x} + M\mathbf{e}_{y} + N\mathbf{e}_{z} = [L;M;N]$$

$$\mathbf{V}_{B}^{E} = u^{E}\mathbf{e}_{x} + v^{E}\mathbf{e}_{y} + w^{E}\mathbf{e}_{z} = [u^{E};v^{E};w^{E}]$$

$$V_{g} = |\mathbf{V}_{B}^{E}| = \mathbf{V}_{E}^{E} = \sqrt{(u^{E})^{2} + (v^{E})^{2} + (w^{E})^{2}}$$

$$\omega_{B}^{E} = p^{E}\mathbf{e}_{x} + q^{E}\mathbf{e}_{y} + r^{E}\mathbf{e}_{z} = [p;q;r]$$

Four Control Surfaces

Rudder: $+\delta_r = \text{towards} - y = \text{negative moment } \& \text{ positive}$

Elevator: $+\delta_e = \text{down} = \text{negative moment } \& \text{ negative}$

Aileron: $+\delta_a = \text{right (+y) down} = \text{negative moment}$

Throttle: $+\delta_t = \text{no moment, positive force.}$

Wind

Background Wind: $V^E = V + W$ Wind Angles:

$$V = |\mathbf{\tilde{V}}_B|$$

 $a = \arctan \frac{w}{u}, \beta = \arcsin \frac{v}{V}$

 $u = V \cos \beta \cos \alpha, v = V \sin \beta, w = V \cos \beta \sin \alpha$

 $\alpha = \text{angle of attack}, \beta = \text{sideslip angle}$

Euler Angles

 $R_E^B(\phi,\theta,\psi)=R_{v2}^B(\phi)R_{v1}^{v2}(\theta)R_E^{v1}(\psi)$ Body to Inertial Frame Transformation:

 $\begin{aligned} \mathbf{p}_{B} &= R_{E}^{B} \mathbf{p}_{E} \rightarrow \mathbf{p}_{E} = R_{B}^{E} \mathbf{p}_{B} \\ R_{B}^{E} &= (R_{E}^{B})^{T} \\ \mathbf{Stability Frame:} \ \ \mathbf{p}_{s} &= R_{B}^{s} \mathbf{p}_{B} \end{aligned}$

$$R_B^s(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

Wind Frame: $\mathbf{p}_w = R_s^w(\alpha)\mathbf{p}_s$

$$R_B^w(\alpha, \beta) = R_s^w(\beta) R_B^s(\alpha) = \begin{pmatrix} \cos \beta \cos \alpha & \sin \beta & \cos \beta \sin \alpha \\ -\sin \beta \cos \alpha & \cos \beta & -\sin \beta \sin \alpha \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

$$R_w^B(\alpha, \beta) = (R_B^w)^T(\alpha, \beta)$$

Wind Triangle

Wind Triangle

Kinematics and Dynamics

Name	Description
x_E	Intertial x (North) position
y_E	Interial y (East) position
z_E	Inertial z (Down) position
$\left egin{array}{c} \phi \ \theta \end{array} \right $	Roll Angle
	Pitch Angle
$\mid \psi$	Yaw Angle
u^E	Inertial Velocity along \hat{i}_B
v^E	Inertial Velocity along \hat{j}_B
w^E	Inertial Velocity along \hat{k}_B
p	Angular Velocity along \hat{i}_B (Roll rate)
q	Angular Velocity along \hat{j}_B (Pitch rate)
r	Angular Velocity along \hat{k}_B (Yaw rate)