

Advanced Modulation Formats

[EENGM0003]

Dr. Shuangyi Yan
Dr. George T. Kanellos
[shuangyi.yan@bristol.ac.uk]

Background

Coherent detection had been intensively researched before 90s.

- Improve system sensitivity of optical transmission systems
 EDFA technology make WDM system with direct detection a big success.
- -CWDM to DWDM, transmission capacity experienced great growth.

Current deployed DWDM systems: Bitrate/ch: up to 100Gbit/s

Channel space: 50GHz Channel number: 160ch (C+L band).

Optical Networks

Background -Limitation of DWDM with direct

- Limitation bandwidth in fiber: C+L band
- Channel bandwidths increase with high baud rate signal.
- Dispersion, CD, PMD effect get severe for high bit rate signals.

Available Optical Capacity per Fiber

✓ Total bandwidth of EDFA gain: 4THz

✓ Spectral Efficiency: >10bit/s/Hz

✓ Total capacity: 40Tbit/s/Fiber in a few years Courtesy of R.-J. Essiambre and R. W. Tkach **Optical Networks**

Two key enabling technologies

- Advanced modulation formats:
 - Encoding data on other dimensions, such as phase, polarization, not just intensity
 - Improve spectrum efficiency
- Coherent detection
 - Full information of optical fields
- Digital Signal Processing
 - DSP based linear and nonlinear compensation
 - CD
 - PMD, Distortion
 - Pulse shaping or Spectrum squeezing

Advanced modulation formats + Digital Signal Pro

- Free space or Deepspace (between satellites)
- Optical Fiber

Optical Networks

Transmitter-Optical Intensity modulator

Bias at Quad point:

$$E_{out} = E_{in}(t) * \cos(\frac{\Delta \varphi_{MZM}(t)}{2})$$

$$= E_{in}(t) * \cos(\frac{u(t)}{2Vpi}\pi)$$

Optical Networks

Transmitter-Optical Phase modulator

Bias at null Point, Intensity Modulator can be used for binary phase modulation

$$E_{out} = E_{in}(t) * \cos(\frac{\Delta \varphi_{MZM}(t)}{2}) = E_{in}(t) * \cos(\frac{u(t)}{2Vpi}\pi)$$

Null point

Optical Networks

Phase skip occurs when driven signal cross Null point

Transmitter-IQ modulator

Chrical Mermolks

Multi-Phase Modulation

Voltage	Symbol	
1+ j 0	00	
0 + j	01	
-1+ j 0	10	
0 - j	11	

Constellation map

 $(a_k + jb_k)$ is plotted on I(real)-Q(imaginary) plane

data		a _k	b _k
00	п/4	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
01	3п /4	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
11	5п /4	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
10	7п /4	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$

Example of constellations

Constellation diagram

For High-order modulation, a symbol represent several bit information.

$$\{b_{1k}, b_{2k}, \bullet \bullet \bullet, b_{mk}\} \longrightarrow b_k$$

M bit information need 2^M status

Optical Networks

Quadrature Amplitude Modulation(Q

Polarization Multiplexing

Single Polarization Signal

QPSK : 1 Baud = 2 Bits 16QAM: 1 Baud = 4 Bits 64QAM: 1 Baud = 8 Bits

Dual Polarization Signal

DP-64QAM : 1 Baud = 16 Bits

Receiver -90° Hybrid

$$I_1 = R|E_1|^2 = \frac{1}{4}R(E_s^2 + E_{LO}^2 + 2E_sE_{LO}\cos((\omega_s - \omega_{LO})t + \varphi_s(t) + \varphi_{LO}(t)))$$

$$I_3 = R|E_3|^2 = \frac{1}{4}R(E_s^2 + E_{LO}^2 - 2E_sE_{LO}\cos((\omega_s - \omega_{LO})t + \varphi_s(t) + \varphi_{LO}(t)))$$

$$I_1 - I_3 = E_s E_{LO} \cos((\omega_s - \omega_{LO})t + \varphi_s(t) + \varphi_{LO}(t)))$$
 — I signal

$$I_2 - I_4 = E_S E_{LO} \sin((\omega_S - \omega_{LO})t + \varphi_S(t) + \varphi_{LO}(t)))$$
 — Q signal

Phase-Diversity Receiver

Homodyne Synchronous detection

- □ Polarization Diversity and Polarization De-multiplexing
- □ Adaptive electronic distortion equalization
- □ Digital signal processing

Optical Networks

Phase-diversity Receiver

Homodyne Synchronous detection

- □ Polarization Diversity and Polarization De-multiplexing
- □ adaptive electronic distortion equalization
- ☐ digital signal processing

Optical Networks

Receiver -typical impairments

Optical Networks

Transmitter-Optical Modulation Format

4.2(pol-Mux)

16QAM

Electrical and Electronic Engineering

Optical Networks

Alternative Solution

- Optical Orthogonal Frequency Division Multiplexing

Orthogonal Carriers

• The OFDM carriers are orthogonal, their frequencies being fs, 2fs, 3fs,...

$$\frac{2}{T} \int_{KT}^{(k+1)T} \sin(mf_s t) \cdot \sin(nf_s t) \cdot dt = \begin{cases} 1, & \text{if } m=n \\ 0, & \text{if } m\neq n \end{cases}$$

- Complex exponentials of limited duration used in practice
 - Their duration equals OFDM's symbol time(T)
- The orthogonality is met if: fs=1/T

Optical Orthogonal Frequency Division Multiplexing Basic Principles

Time Domain (Sine wave within symbol period, zero elsewhere)

Frequency
Domain
(Sinx/x function,
peak at subcarrier
frequency)

Overlayed Subcarrier Spectra

O-OFDM Principles

 The subcarriers of the O-OFDM signal can be modulated in phase and amplitude

OFDM Transmission Concept

- Main idea: split data stream into N parallel streams of reduced data rate and transmit each on a separate subcarrier
- When the subcarriers have appropriate spacing to satisfy orthogonality, their spectra will overlap.

Optical Networks
Optical Networks
Engineering

Generation of OFDM signals

Simple OFDM Generation

Digital OFDM generation

IDFT(IFFT):

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \cdot e^{j\left(\frac{2\pi}{N}\right)nk} (n = 0, 1, ..., N-1)$$

Principle of OFDM system

Simplified OFDM System Block Diagram

OFDM Symbols & Subcarriers

OFDM Symbols & Subcarriers

Real world view

Detection of OFDM signals with FFT (DFT)

Optical Networks

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-\int \left(\frac{2\pi}{N}\right)nk} (k = 0, 1, ..., N-1)$$

O-OFDM Transmitter and Receiver

CP (Cyclic Prefix) Overhead

- A cyclic prefix is required to prevent power leakage from neighboring OFDM symbols
 - Chromatic dispersion and PMD cause the subcarriers to drift relatively to each other.
- With cyclic prefix the OFDM symbol is extended by copy-pasting the beginning of the symbol to the end (or vice versa)

Adjacent Symbol Interference (ASI) Symbol Smearing Due to Channel

Cyclic Prefix Inserted in Guard Interval to Suppress Adja Channelsity of **Interference**

Symbol Guard Intervals Filled With Cyclic Prefix

Modulation of an O-OFDM signal

- Realization of Optical OFDM with IQ MZM
 - Two DACs are used to convert the real and imaginary part of the OFDM signal from the digital to the analogue domain.
 - Subsequently an optical IQ MZM is used to directly modulate the complex OFDM signal into the optical carrier.

Demodulation of an O-OFDM signal

- Demodulation of Optical OFDM with IQ Mixer
- In this implementation down-conversion is performed by an electrical IQ mixer
- In essence this implementation is the reverse of the transmitter using the electrical IQ mixer

Summary

- Advanced modulation formats
 - QAM
 - OFDM
- Coherent detection technologies
- Digital signal processing