INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Date	_FN/AN, Time: 3 Hr	s., Full Marks	_50_, Deptt	Mathematics
No. of Students81, End Autumn Semester Examination2012-13				
Sub. No	MA41007	Sub. Name	Functional Analy	ysis4 th _ Yr. Integ.
M.Sc./ Ist yr. M.Sc.(2Yr.) & 3 rd Yr. CS (Elective).				

Instruction : Attempt any FIVE Questions

- 1(a) Discuss the cannonical mapping (embedding) of a vector space X into its 2^{nd} algebraic dual.
- (b) Let X be an n-dimensional vector space with $\{e_1, e_2, ..., e_n\}$ as basis. Find its algebraic dual basis $\{f_1, f_2, ..., f_n\}$ and show that dim $X^* = \dim X$, where X^* denote algebraic dual of X.
- (c) Prove that a finite dimensional vector space is algebraically reflexive.
- 2(a) Prove that the dual space of l^1 is l^{∞} .
- (b) If X is a normed space and dim $X = \infty$, show that the dual space X' is not identical with its algebraic dual X'.
- (c) Determine the null space of the operator $T: \mathbb{R}^3 \to \mathbb{R}^2$ represented by $\begin{bmatrix} 1 & 3 & 2 \\ -2 & 1 & 0 \end{bmatrix}$.
- - (b) Show that every subset of a separable inner product space is separable.
 - (c) Let X be an IPS and $Y \neq \phi$ be a complete subspace of X and $x \in X$ fixed. Then prove that the vector x y is orthogonal to Y, where $y \in Y$.
- 4(a) State and prove Bessel's inequality (in case of IPS)
- (b) Let (e_k) be an orthogonal sequence in an IPS X. Show that for any $x, y \in X$, $\sum_{k=1}^{\infty} \left| \left\langle x, e_k \right\rangle \left\langle y, e_k \right\rangle \right| \leq \|x\| \|y\|$

(p.r.o.)

- (c) Define the Hilbert Adjoint operator T^* of a bounded linear operator $T: H_1 \to H_2$ where H_1, H_2 are Hilbert spaces. Prove that T^* exists, unique & $\|T^*\| = \|T\|$.
- 5(a) Prove that: Let H_1 , H_2 be Hilbert spaces and $h: H_1 \times H_2 \to K$ be a bounded sequilinear form. Then h has a representation $h(x, y) = \langle Sx, y \rangle$ where is $S: H_1 \to H_2$ is a bounded linear operator, S is uniquely determined by h and has norm ||S|| = ||h||.
- (b) Let $T: C^n \to C^n$ be a linear operator. A basis of C^n is given. Let T is represented by means of a square matrix A of order n. Find the matrix representation of Hilbert adjoint operator T^* in terms of matrix A.
- (c) Show that if $T: H \to H$ is a bounded self adjoint linear operator, so is T^n , where n is a positive integer.
- 6(a) State Uniform Boundedness Theorem. Using this theorem, prove that the normed space X of all polynomials with norm defined by, $||x|| = \max_{j} |\alpha_{j}|$, $(\alpha_{0}, \alpha_{1}, ...$ the coefficients of x) is not a complete normed space.
- (b) Show that $T = \mathbb{R}^2 \to \mathbb{R}$ defined by $(\xi_1, \xi_2) \to \xi_1$ is open. Is the mapping $\mathbb{R}^2 \to \mathbb{R}^2$ given by $(\xi_1, \xi_2) \to (\xi_1, 0)$ an open mapping?
- (c) Let X = C[0,1] and $T = D(T) \to X$ such that $Tx(t) = \frac{dx}{dt}$. Is T closed? bounded? where D(T) denote the subspace of functions $x \in X$ which has continuous derivatives.