Probability Theory

IV Kolmogorov Extension, 0-1 law

Seongho, Joo

August 7, 2025

Seoul National University

i.i.d Random Variables

A sequence $\{X_n\}_{n=1}^\infty$ of random variables $X_n:(\Omega,\mathcal{F},\mathbb{P})\to (S,\mathcal{B})$ if all the X_n are independent, and $\mu_{X_n}=\mu_{X_1}\forall\mathbb{N}$

Goal: Construct Infinite i.i.d sequences. For the finite case, it's not difficult.

i.i.d Random Variables

A sequence $\{X_n\}_{n=1}^\infty$ of random variables $X_n:(\Omega,\mathcal{F},\mathbb{P})\to (S,\mathcal{B})$ if all the X_n are independent, and $\mu_{X_n}=\mu_{X_1}\forall\mathbb{N}$

Goal: Construct Infinite i.i.d sequences. For the finite case, it's not difficult.

Lemma 1

Let μ_1, \ldots, μ_N be probability measures on $(S_1, \mathcal{B}_1), \ldots, (S_N, \mathcal{B}_N)$. Deinfe

$$\Omega = S_1 \times \cdots \times S_N, \ \mathcal{F} = \mathcal{B}_1 \otimes \cdots \otimes \mathcal{B}_N, \ \mathbb{P} = \mu_1 \otimes \cdots \otimes \mu_N$$

Then the random variables $X_n:\Omega\to S_n, X_n=\pi_n(x)=x_n$ are independent, and $\mu_{X_n}=\mu_n$

Kolmogorov's Extension Theorem

Setup: Want a probability measure on (Say) $\mathbb{R}^{\mathbb{N}} = \{(x_n)_{n=1}^{\infty} : x_n \in \mathbb{R} \forall n \in \mathbb{N}\}$ To take advantage of compactness results, we replace \mathbb{R} with [0,1]. $Q:=[0,1]^{\mathbb{N}}$

Definition 1

 ${\it Q}$ is given the topology of *pointwise convergence*:

$$x^1=(x^1_n)_{n=1}^\infty, x^2, \dots x^k \in Q \text{ converge to } x \in Q \text{ if and only if } x^k_n \to x_n \ \forall n \in \mathbb{N}.$$

Kolmogorov's Extension Theorem

Setup: Want a probability measure on (Say) $\mathbb{R}^{\mathbb{N}} = \{(x_n)_{n=1}^{\infty} : x_n \in \mathbb{R} \forall n \in \mathbb{N}\}$ To take advantage of compactness results, we replace \mathbb{R} with [0,1]. $Q := [0,1]^{\mathbb{N}}$

Definition 1

 ${\it Q}$ is given the topology of *pointwise convergence*:

$$x^1=(x^1_n)_{n=1}^\infty, x^2, \dots x^k \in Q \text{ converge to } x \in Q \text{ if and only if } x^k_n \to x_n \ \forall n \in \mathbb{N}.$$

Theorem 1 (Tychonoff)

Q is (sequentially) compact. If $(x^m)_{m=1}^\infty$ is a sequence in Q, it has a convergent subsequence $(x^{m_k})_{k=1}^\infty$.

Corollary 1 (Finite Intersection Property)

If
$$K_m\subseteq Q$$
 are closed subsets s.t. $\bigcap_{i=1}^m K_i\neq\emptyset\ \forall m\in\mathbb{N}$, then $\bigcap_{i=1}^\infty K_i\neq\emptyset$

Regular Borel Measures

If Ω is a (locally compact Hausdorff) topological space, a measure μ on $\mathcal{B}(\Omega)$ is called

- $\quad \blacksquare \ \, \textit{outer-regular} \ \, \text{if} \ \, \mu(B) = \inf\{\mu(V): B \subseteq V, V \text{ open } \}$
- inner-regular if $\mu(B) = \sup\{\mu(K) : K \subseteq B, k \text{ compact }\}$

A Borel measure μ is a **Radon measure** if it is locally finite: $\mu(K) < \infty \ \forall K \subseteq \Omega$ compact, and it is both outer- and inner-regular.

Theorem 2

All finite (e.g. probability) Borel measures on \mathbb{R}^d are Radon measures.

Regular Borel Measures

If Ω is a (locally compact Hausdorff) topological space, a measure μ on $\mathcal{B}(\Omega)$ is called

- lacksquare outer-regular if $\mu(B) = \inf\{\mu(V) : B \subseteq V, V \text{ open }\}$
- inner-regular if $\mu(B) = \sup\{\mu(K) : K \subseteq B, k \text{ compact }\}$

A Borel measure μ is a **Radon measure** if it is locally finite: $\mu(K) < \infty \ \forall K \subseteq \Omega$ compact, and it is both outer- and inner-regular.

Theorem 2

All finite (e.g. probability) Borel measures on \mathbb{R}^d are Radon measures.

Proof. Define

$$\mathcal{F}:=\left\{B\in\mathcal{B}\left(\mathbb{R}^{d}\right)\mid\forall\varepsilon>0\;\exists\;\text{open}\;V,\;\text{closed}\;C\;\text{s.t.}\;C\subseteq B\subseteq V,\mu(V\setminus C)<\varepsilon\right\}.$$

We will show that $\mathcal{F}=\mathcal{B}\left(\mathsf{r}^d\right)$. This suffices:

We can find $V_n \supseteq B$ s.t. $\mu(V_n \setminus B) < \frac{1}{n}$. In addition, we can find closed C_n s.t. $\mu(B) - \mu(C_n) < \frac{1}{n}$,

$$\mu(B) = \sup \{ \mu(C) \, | \, C \subseteq B, C \text{ closed } \}$$

Also,
$$\bar{B}^d(0,n) \underset{n \to \infty}{\uparrow} \mathbb{R}^d$$
,
$$\therefore \bar{B}^d(0,n) \cap C \uparrow C \implies \mu(\bar{B}^d(0,n) \cap C) \to \mu(C).$$

Proof Cont.

We will show that \mathcal{F} is a σ -field containing all closed sets.

- $\mathcal F$ is contains all closed sets: Let C be closed. Fix $\varepsilon>0$, let $C_\varepsilon\bigcup_{x\in C}B(x,\varepsilon)$, C_ε is open and $C_\varepsilon\downarrow C$ as $\varepsilon\downarrow 0$ (in general, $C_\varepsilon\downarrow \bar C$).
- $\begin{array}{l} \bullet \ \, \mathcal{F} \text{ is an algebra. Clearly, } \emptyset \in \mathcal{F} \text{ since } \emptyset \subseteq \emptyset \subseteq \emptyset \quad \mu(\emptyset \setminus \emptyset) = 0. \\ \text{If } A \in \mathcal{F}, \text{ find } C \subseteq A \subseteq V \text{ with } \mu(V \setminus C) < \varepsilon. \\ V^c \subseteq A^c \subseteq C^c. \ \, C^c \setminus V^c = C^c \cap (V^c)^c = C^c \cap V = V \setminus C. \\ \therefore \mu(C^c \setminus V^c) = \mu(V \setminus C) < \varepsilon. \end{array}$
- $\mathcal F$ is closed under countable disjoint union. Take disjoint $\{A_n\}\in\mathcal F$, find $C_n\subseteq A_n\subseteq V_n$ with $\mu(V_n\setminus C_n)<\frac{\varepsilon}{2^{n+1}}$ Fix $n\in\mathbb N$, let $D_n=C_1\cup\dots\cup C_N$ which is closed and $V=\bigcup_{n=1}^\infty V_n$ which is open. Then, $D_n\subseteq \bigcup_{n=1}^\infty A_n\subseteq V$

$$\mu(V \setminus D_N) \le \sum_{n=1}^{\infty} \mu(V_n \setminus D_N) \le \sum_{n=1}^{N} \underbrace{\mu(V_n \setminus C_n)}_{<\varepsilon/2^{n+1}} + \sum_{n=N+1}^{\infty} \underbrace{\mu(V_n)}_{<\mu(A_n)+\varepsilon/2^{n+1}}$$
$$\le \frac{\varepsilon}{2} + \sum_{n=N+1}^{\infty} \mu(A_n)$$

Now let $N \to \infty$, this shows that \mathcal{F} is closed under countable disjoint union.

Kolmogorov Extension Theorem

Theorem 3 (Kolmogorov)

Let ν_n be a probability measure on $([0,1]^n,\mathcal{B}([0,1]^n))$, and suppose these measures satisfy the following consistency condition:

$$\nu_{n+1}(B \times [0,1]) = \nu_n(B), \quad \forall B \in \mathcal{B}([0,1]^n)$$

Then, there exists a unique probability measure $\mathbb P$ on $(Q,\mathcal B(Q))$ such that

$$\mathbb{P}(B \times Q) = \nu_n(B), \quad \forall B \in \mathcal{B}([0,1]^n)$$

Special Case: $\nu_n = \mu_1 \otimes \cdots \otimes \mu_n$, μ_j is a Borel probability measure on [0,1] $\nu_{n+1} = \mu_1 \otimes \cdots \otimes \mu_{n+1} = \nu_n \otimes \mu_{n+1}$ $\nu_{n+1}(B \times [0,1]) = \nu_n \otimes \mu_{n+1}(B \times [0,1]) = \nu_n(B)\mu_{n+1}([0,1]) = \nu_n(B)$

Kolmogorov Extension Theorem

Corollary 2

Consider $(\mathbb{R},\mathcal{B}(\mathbb{R}), \pi_n : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ the projection $\pi_n((x_k)_{k=1}^{\infty}) = x_n \ \mathcal{B}_n := \sigma\{\pi_k : k \leq n\}, \ \mathcal{B} := \sigma(\mathcal{B}_n : n \in \mathbb{N})$

Let u_n be Borel probabiliy measure on \mathbb{R}^n such that

$$\nu_{n+1}(B \times \mathbb{R}) = \nu_n(B) \quad \forall B \in \mathcal{B}(\mathbb{R}^n)$$

Then $\exists !$ probability measure \mathbb{P} on $(\mathbb{R}^{\mathbb{N}},\mathcal{B})$ s.t.

$$\mathbb{P}(B \times \mathbb{R}^{\mathbb{N}}) = \nu_n(B) \quad \forall B \in \mathcal{B} \in \mathcal{B}(\mathbb{R}^n)$$

Corollary 3

Let μ_n be Borel probability measures on \mathbb{R} . There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sequence $X_n: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ of independent random variables, such that

$$\mu_{X_n} = \mu_n \quad \forall n \in \mathbb{N}$$

Proof. Take $\Omega = \mathbb{R}^{\mathbb{N}}$, $\mathcal{F} = \sigma\{\pi_n : n \in \mathbb{N}\}$. Define $\nu_n = \mu_1 \otimes \cdots \otimes \mu_n$. Then $\nu_{n+1}(B \times \mathbb{R}) = \nu_n(B)$.

Proof of Theorem 3

Set
$$\mathcal{B}_n=\{B\times Q: B\in\mathcal{B}([0,1]^n)\}=\sigma\{\pi_1,\dots,\pi_n\}$$
, where $\pi_k:Q\to[0,1],\pi_k((x_n)_{n=1}^\infty)=x_k$ Let $\mathcal{A}:=\bigcup_{n\geq 1}\mathcal{B}_n$, not that \mathcal{A} is an algebra. Also if $C\subseteq Q$ is closed, let $B_n=\pi_1\times\dots\times\pi_n(C)\subseteq[0,1]^n$, closed. Then $C=\bigcap_{n=1}^\infty(\pi_1\times\dots\pi_n)^{-1}(B_n)\implies C\in\sigma\{\pi_n:n\in\mathbb{N}\}=\sigma(\mathcal{A})$ $\Longrightarrow \mathcal{B}(Q)=\sigma(\mathcal{A})$

Now, define : $\mathbb{P}(A \times Q) := \nu_n(A) \quad \forall A \in \mathcal{A}$ (†). Using the consistency condition, we see that \mathbb{P} is a <u>finitely-additive measure on \mathcal{A} .</u> Thus is suffices to show that \mathbb{P} is a premeasure on $\overline{\mathcal{A}}$. Then is extends to a measure $\overline{\mathbb{P}}$ on $\overline{\mathcal{A}}$. Set $\mathbb{P} := \overline{\mathbb{P}}|_{\sigma,A=\mathcal{B}(Q)}$. Then † will hold for all $A \in \sigma(\mathcal{A})$.

Proof of Theorem 3

Set
$$\mathcal{B}_n=\{B\times Q: B\in\mathcal{B}([0,1]^n)\}=\sigma\{\pi_1,\dots,\pi_n\}$$
, where $\pi_k:Q\to[0,1],\pi_k((x_n)_{n=1}^\infty)=x_k$ Let $\mathcal{A}:=\bigcup_{n\geq 1}\mathcal{B}_n$, not that \mathcal{A} is an algebra. Also if $C\subseteq Q$ is closed, let $B_n=\pi_1\times\dots\times\pi_n(C)\subseteq[0,1]^n$, closed. Then $C=\bigcap_{n=1}^\infty(\pi_1\times\dots\pi_n)^{-1}(B_n)\implies C\in\sigma\{\pi_n:n\in\mathbb{N}\}=\sigma(\mathcal{A})$ $\Longrightarrow \mathcal{B}(Q)=\sigma(\mathcal{A})$

Now, define : $\mathbb{P}(A \times Q) := \nu_n(A) \quad \forall A \in \mathcal{A} \ (\dagger).$

Using the consistency condition, we see that $\mathbb P$ is a finitely-additive measure on $\mathcal A.$

Thus is suffices to show that \mathbb{P} is a premeasure on \mathcal{A} . Then is extends to a measure $\overline{\mathbb{P}}$ on $\overline{\mathcal{A}}$. Set $\mathbb{P} := \overline{\mathbb{P}}|_{\sigma \mathcal{A} = \mathcal{B}(O)}$. Then \dagger will hold for all $A \in \sigma(\mathcal{A})$.

Thus, suffice to show $\mathbb{P}(A_n) \downarrow 0$ whenever $A_n \downarrow \emptyset, A_n \in \mathcal{A}$.

We will prove the contraposition: if $B_n \in \mathcal{A}, B_n \downarrow 0$, and $\inf_n \mathbb{P}(B_n) = \varepsilon > 0$, then $B := \bigcap_n B_n \neq \emptyset$

Proof of Theorem 3

Claim: Suffices to assume $B_n \in \mathcal{B}_n$.

 $B_n \in \mathcal{A} = \bigcup_n \mathcal{B}_n \implies B_n \in \mathcal{B}_{m_n}$ We can define a new sequence (\tilde{B}_k) so that $\tilde{B}_k \in \mathcal{B}_k$ by spreading out the (B_n) . The new sequence also \tilde{B}_k also satisfy $\inf_k \mathbb{P}(\tilde{B}_k) = \varepsilon$, $\bigcap_k \tilde{B}_k = \bigcap_n B_n$.

So, we can set $B_n = B'_n \times Q$, $B'_n \in \mathcal{B}([0,1]^n)$. By regularity, find compact $K'_n \subseteq B'_n$ such that $\nu_n(B'_n \setminus K'_n) < \varepsilon/2^{n+1} \implies \mathbb{P}(B_n \setminus K_n) < \varepsilon/2^{n+1}$.

Thus,
$$\mathbb{P}(B_n \setminus \bigcap_{i=1}^n K_i) = \mathbb{P}(\bigcup_{i=1}^n (B_n \setminus K_i)) \leq \sum_{i=1}^n \mathbb{P}(B_n \setminus K_i) \leq \sum_{i=1}^n \mathbb{P}(B_i \setminus K_i) < \sum_{i=1}^n \frac{\varepsilon}{2^{i+1}} < \frac{\varepsilon}{2}.$$

But we assumed $\inf_n \mathbb{P}(B_n) = \varepsilon > 0$. Thus

$$\mathbb{P}(\bigcap_{i=1}^{n} K_i) = \mathbb{P}(B_n) - \mathbb{P}(B_n \setminus \bigcap_{i=1}^{n} K_i) > \varepsilon - \frac{\varepsilon}{2} > 0$$

 $\Longrightarrow \bigcap_{i=1}^n K_i \neq \emptyset, \forall n \text{ and } \bigcap_{i=1}^\infty K_i \neq \emptyset$ by the finite intersection property for the closed K_i

$$\implies \bigcap_{i=1}^{\infty} B_i \neq \emptyset$$

Let $\{X_n\}_{n=1}^\infty$ be a sequence of random variabels defiend on a common probability space $(\Omega,\mathcal{F},\mathbb{P})$. The **tail** σ -field τ of there r.v's is

$$\tau := \bigcap_{n=1}^{\infty} \sigma(X_n, x_{n+1}, X_{n+2}, \dots)$$

Example: $\{\lim_{n\to\infty} X_n \text{ exists }\} \in \tau$

Let $S_n = X_1 + \cdots + X_n$. $\{\lim_{n \to \infty} S_n \text{ exists }\} \in \tau$

Let $\{X_n\}_{n=1}^\infty$ be a sequence of random variabels defiend on a common probability space $(\Omega,\mathcal{F},\mathbb{P})$. The **tail** σ -field τ of there r.v's is

$$\tau := \bigcap_{n=1}^{\infty} \sigma(X_n, x_{n+1}, X_{n+2}, \dots)$$

Example: $\{\lim_{n\to\infty} X_n \text{ exists }\} \in \tau$

Let $S_n = X_1 + \cdots + X_n$. $\{\lim_{n \to \infty} S_n \text{ exists }\} \in \tau$

Theorem 4 (Kolmogorov's 0-1 Law)

If $\{X_n\}_{n=1}^\infty$ are independent random variables on a probability space $(\Omega,\mathcal{F},\mathbb{P})$, then for any tail event $E\in \tau(X_n:n\in\mathbb{N}),\ \mathbb{P}(E)=0$ or 1.

Let $\{X_n\}_{n=1}^\infty$ be independent rv's . Define $S_n=X_1+\cdots+X_n$. Let $b_n\in(0,\infty)$ s.t. $b_n\uparrow\infty$ as $n\uparrow\infty$. Note that

$$\{\lim_{n\to\infty}\frac{S_n}{b_n}=c\}\in\tau(X_n:n\ge 1)$$
 \Longrightarrow $\mathbb{P}(S_n/b_n\to c)=0$ or $1.$

Question: What kind of random variables are τ -measurable?

Let $\{X_n\}_{n=1}^\infty$ be independent rv's . Define $S_n=X_1+\cdots+X_n$. Let $b_n\in(0,\infty)$ s.t. $b_n\uparrow\infty$ as $n\uparrow\infty$. Note that

$$\{\lim_{n\to\infty}\frac{S_n}{b_n}=c\}\in\tau(X_n:n\geq 1)$$
 $\Longrightarrow \mathbb{P}(S_n/b_n\to c)=0 \text{ or } 1.$

Question: What kind of random variables are τ -measurable?

Proposition 1

Let $\{X_n\}_{n=1}^\infty$ be random variables. Let $\varepsilon>0$. if Y is $\sigma(X_1,X_2,\dots)$ -measurables and bounded, there is some $N\in\mathbb{N}$ and a Borel function $F:\mathbb{R}^n\to\mathbb{R}$ s.t.

$$\mathbb{E}[|Y - F(X_1, \dots X_N)|] < \varepsilon$$

au-measurable function

So, if Y is τ -measurable, it is $\sigma(X_n,X_{n+1},\dots)$ -measurable $\forall n.$ This suggests that Y is a "function of nothing". If $\{X_n\}_{n=1}^\infty$ are independent, this is rigorous.

Proposition 2

Let $\{X_n\}_{n=1}^\infty$ be independent. If Y is a $\bar{\mathbb{R}}$ -valued random variables that is tail-measurable, then $\exists c \in \bar{\mathbb{R}}$ s.t. Y=c a.s.