An Accessible Introduction to the Chaotic Nature of the Complex Exponential Map

Project 1 presentation

Jacob Rider

Georgia State University

Table of contents

1. Introduction

The Complex Exponential Map

2. Main Results

Overview

Hyperbolic Geometry

Arbitrary Sets of the Exponential Map

3. Conclusion

Chaos

References

Intro

The Complex Exponential Map

The complex exponential map is defined by the following equations:

$$f(z) = e^{z}; z \in \mathbb{C} \Rightarrow z = x + iy; x, y \in \mathbb{R}, i = \sqrt{-1}$$

$$f^{n}(z_{0}) = z_{n} = e^{z_{n-1}} \text{ and } f^{-n}(z_{n}) = z_{0}$$

$$e^{z} = e^{x+iy} = e^{x} \cdot (\cos(y) + i \cdot \sin(y))$$

Main Results

Deep Breath

The following theorems describe the main results of the paper:

Theorem 1.1 (Orbits of the complex exponential map). Each of the following sets is dense in the complex plane:

- the set of starting values z₀ whose orbit (defined by (1.1)) diverges to ∞;
- 2. the set of starting values z₀ whose orbit forms a dense subset of the plane;
- 3. the set of periodic points; i.e., starting values z_0 such that $z_{n+k}=z_n$ for some k>0 and all $n\geq 0$.

Theorem 1.2 (The exponential map is chaotic). The complex exponential map $f: \mathbb{C} \to \mathbb{C}$; $z \mapsto e^z$ is chaotic in the sense of Devaney.

Definition 2.1 (Devaney chaos). Let $X \subset \mathbb{C}$ be infinite, and let $f: X \to X$ be continuous. We say that f is *chaotic* (in the sense of Devaney) if the following two conditions are satisfied.

- 1. The set of periodic points of f is dense in X.
- The function f is topologically transitive; that is, for all open sets U, V ⊂ C that intersect X, there is a point z ∈ U ∩ X and n ≥ 0 such that fⁿ(z) ∈ V.

The following diagram shows the proof structure of the paper written by Shen and Rempe-Gillen (2015):

Pick's Theorem: Introduction of the Hyperbolic Metric

Theorem 3.3 (Pick's theorem). For every simply connected domain $U \subsetneq \mathbb{C}$, there exists a unique conformal metric $\rho_U(z)|dz|$ on U, called the hyperbolic metric, such that the following hold:

- ρ_D(z) = ²/_{1-|z|²} for all z ∈ D;
- if f: U → V is holomorphic, then f does not increase hyperbolic distance; i.e.,

$$\|\mathbf{D}f(z)\|_U^V := |f'(z)| \cdot \frac{\rho_V(f(z))}{\rho_U(z)} \leq 1;$$

- for any z ∈ U and any f as above, we have ||Df(z)||_U^V = 1 if and only if f is a conformal isomorphism between U and V;
- 4. if $U \subseteq V$, then $\rho_U(z) > \rho_V(z)$ for all $z \in U$.

(b) The slit plane $\mathbb{C} \setminus (-\infty, 0]$

Purpose: establishes the concept of a hyperbolic metric.

Main idea: an alternative notion of distance based on a restricted domain (e.g. Arc length on a sphere).

Notation:

 $||Df(\zeta_n)|| \Rightarrow$ Hyperbolic Distance $\rho_U(z) \Rightarrow$ Hyperbolic Density

Example:
$$\rho_{\mathbb{C}\backslash [0,\infty)}(z) = \frac{1}{2|z|\sin(\arg(z)/2)}$$

Theorem 4.1: Density of the Escaping Set

Theorem 4.1 (Density of the escaping set). The set I(f), consisting of those points z_0 whose f-orbits converge to infinity, is a dense subset of the complex plane \mathbb{C} .

[Paraphrased proof]: " \mathbb{R} ⊂ I(f), so if $\exists n \in \mathbb{N}$ s/t $f^n(z) \in \mathbb{R}$ then $z \in I(f)$. It is necessary to define the slit plane, $U := \mathbb{C} \setminus [0, \infty)$. The proof assumes (by contradiction) that \exists a small disk, D s/t $D \cap I(f) = \emptyset$. Since there are no escaping points in D, this implies that $f^n(D)$ has a finite accumulation point (the smallest point of a sequence such that every point after it is contained in an arbitrarily small disk around the finite accumulation point). Lemma 4.2 shows that all finite accumulation points (w_n) must lie on the interval $[0,\infty)$. Let z_0 be the smallest accumulation point of (w_n) s/t $w_{n_k} \to z_0$. Recall: since $w_{n_k} = e^{w_{n_{k-1}}} \to log|w_{n_k}| = Re(w_{n_{k-1}})$. A contradiction is reached since: $log|w_{n_k}| = Re(w_{n_{k-1}}) \to log|z_0| < z_0$. Therefore z_0 is not the smallest accumulation point of (w_n) and thus $D \cap I(f) \neq \emptyset$."

I.e. Escaping points (points that diverge to ∞ over the exponential map) are scattered densely over the complex plane.

Lemma 4.2: Expansion of the Hyperbolic Metric

Lemma 4.2 (The exponential map expands the hyperbolic metric). The complex exponential map f locally expands the hyperbolic metric of $U := \mathbb{C} \setminus [0, \infty)$. That is, $\|\mathbb{D}f(\zeta)\|_U^U > 1$ for all $\zeta \in f^{-1}(U)$.

Moreover, suppose that $(\zeta_n)_{n\geq 0}$ is a sequence with $\zeta_n\in f^{-1}(U)$ for all n and $\|\mathbb{D}f(\zeta_n)\|_U^U\to 1$ as $n\to\infty$. Then $\min(|\zeta_n|,\operatorname{Arg}(\zeta_n))\to 0$ as $n\to\infty$.

[Paraphrased proof]: "Let the polar form of a complex variable be written as: $\zeta = re^{i\theta}$ s/t $0 < \theta < 2\pi$, then $\omega = f(\zeta) = e^{re^{i\theta}} = e^{r(\cos(\theta) + i\sin(\theta)}$. Using the formula for hyperbolic derivative:

$$\begin{split} ||Df(\zeta)|| &= |f'(\zeta)| \cdot \frac{\rho_U(f(\zeta))}{\rho_U(\zeta)}, \text{ where } \rho_U(f(\zeta)) = \frac{1}{2|\zeta| \sin(\frac{\sigma r g(\zeta)}{2})} \Rightarrow \\ ||Df(\zeta)|| &= |f'(\zeta)| \cdot \frac{2|\zeta| \sin(.5 \cdot a r g(\zeta))}{2|e'|\sin(.5 \cdot a r g(e^\zeta))} = \frac{r \cdot \sin(.5 \cdot \theta)}{\sin(.5 \cdot a r g(e^\zeta))} \frac{1}{(1)} \frac{r \cdot \sin(.5 \cdot \theta)}{\sin(.5 \cdot r \cdot \sin(\theta))} \Rightarrow \\ \frac{r \cdot \sin(.5 \cdot \theta)}{\sin(.5 \cdot r \cdot \sin(\theta))} &\geq \frac{r \cdot \sin(.5 \cdot \theta)}{|sr(\theta)|} = \frac{2 \cdot \sin(.5 \cdot \theta)}{|sin(\theta)|} \frac{1}{(3)} \frac{1}{\cos(.5 \cdot \theta)} > 1 \end{split}$$

- (1) $\theta \in (0, 2\pi) \Rightarrow arg(e^{\zeta}) \equiv r \cdot \sin(\theta) (mod 2\pi) \Rightarrow |\sin(.5 \cdot arg(e^{\zeta}))| = |\sin(.5r \cdot \sin(\theta))|$
- (2) $\forall x \in \mathbb{R}, |\sin(x)| \le |x|$
- (3) $\sin(2x) = 2 \cdot \sin(x) \cdot \cos(x)$

$$\therefore \forall \zeta_n \text{ s/t } ||Df(\zeta_n)|| \to 1, |cos(\tfrac{\theta_n}{2}| \to 1 \Rightarrow \theta_n \to 0. \text{ This shows that } ||Df(\zeta_n)|| \to 1 \Leftrightarrow \zeta_n \to \mathbb{R}"$$

I.e. The set of finite accumulation points of the inverse map is a subset of the positive real numbers.

Section 5: Theorems and Informal Translations

Theorem 5.1 (Topological transitivity). If U, V are nonempty and open, then there exists $n \ge 0$ such that $f^{\kappa}(U) \cap V \ne \emptyset$.

Observation 5.2 (Expansion along escaping orbits). Let $z_0 \in I(f)$, and define $z_n := f^n(z_0)$ for $n \ge 1$. Then $\operatorname{Re} z_n \to \infty$ and $|(f^n)'(z_0)| \to \infty$ as $n \to \infty$.

Proposition 5.3 (Small disks blow up). Let $z_0 \in I(f)$. For $n \ge 1$, set $z_n := f^n(z_0)$ and consider the disk D_n of radius 2π centered at z_n ; i.e. $D_n := D_{2n}(z_n)$. Then there are $n_0 \in \mathbb{N}$ and a sequence $(\phi_n)_{n\ge n_0}$ of holomorphic maps $\phi_n : D_n \to \mathbb{C}$ with the following properties:

- 1. $\phi_n(z_n) = z_0$,
- 2. $f^n(\phi_n(z)) = z \text{ for all } z \in D_n$,
- 3. $\sup_{z \in D_n} |\phi_n'(z)| \to 0 \text{ as } n \to \infty$, and
- 4. $\operatorname{diam}(\phi(D_n)) \to 0 \text{ as } n \to \infty.$

Observation 5.4 (Images of large disks). Let K be any nonempty compact subset of the punctured plane $\mathbb{C}\setminus\{0\}$. Then there is $\rho > 0$ with the following property. Suppose that D is a disk of radius 2π , centered at a point ξ having real part at least ρ . Then $K \subset f^2(D)$.

Corollary 5.5 (Open sets spread everywhere). Let $K \subset \mathbb{C} \setminus \{0\}$ be compact, and let $U \subset \mathbb{C}$ be open and nonempty. Then there is some $N \in \mathbb{N}$ such that $K \subset f^n(U)$ for all $n \geq N$.

⇒ 5.1: Formal definition of topological transitivity.

 \Rightarrow 5.2: Points in the escaping set diverge to ∞

 \Rightarrow 5.3: Defines the inverse map, ϕ_n , so any disk of radius 2π shrinks under this map.

 \Rightarrow 5.4: The twice-iterated image of any disk of radius 2π centered at ρ covers any bounded set.

⇒ 5.5: The image of any arbitrary disk covers any bounded set of the plane.

Conclusion

5.6: Dense Orbits

Corollary 5.6 (Dense orbits). The set T of all points $z_0 \in \mathbb{C}$ with dense orbits under the exponential map is uncountable and dense in \mathbb{C} .

[Paraphrased proof]: "The proof relies on the Baire category theorem which states that every countable intersection of open and dense subsets of $\mathbb C$ is dense and uncountable. Let U be some arbitrary open set. Then the inverse orbit of U is defined as: $\mathbb O^-(U):=\bigcup_{n\geq 0}f^{-n}(U)$. Theorem 5.1 implies that $\mathbb O^-(U)$ is a dense open subset of $\mathbb C$. Let $\mathbb D_\mathbb Q$ define the set of all open disks with rational centers and radii. Thus an element, z, has a dense orbit iff $\exists n\in \mathbb N$ s/t $f^n(z)\in \mathbb D_\mathbb Q$. So the set of all points with dense orbits can be defined as:

$$\tau = \bigcap_{U \in \mathbb{D}_{\mathbb{Q}}} \mathbb{O}^-(U)$$

Since the set, $\mathbb Q$ is countable $\Rightarrow \mathbb D_{\mathbb Q}$ is countable $\Rightarrow \tau$ is a countable intersection of open and dense sets $\Rightarrow \tau$ is uncountable and dense in $\mathbb C$."

Conclusion: Topological Transitivity and Chaos

Definition 2.1 (Devaney chaos). Let $X \subset \mathbb{C}$ be infinite, and let $f: X \to X$ be continuous. We say that f is *chaotic* (in the sense of Devaney) if the following two conditions are satisfied.

- 1. The set of periodic points of f is dense in X.
- 2. The function f is topologically transitive; that is, for all open sets $U, V \subset \mathbb{C}$ that intersect X, there is a point $z \in U \cap X$ and $n \ge 0$ such that $f^n(z) \in V$.

References

Paper Sources

- Shen, Zhaiming, and Lasse Rempe-Gillen. "The exponential map is chaotic: an invitation to transcendental dynamics." The American Mathematical Monthly 122.10 (2015): 919-940.
- 2. Beck, Matthias, et al. A first course in complex analysis.

 Department of Mathematics, San Francisco State University, (2002).

Image sources

- 1. http://isohedral.ca
- 2. https://i.stack.imgur.com/g2vWx.png
- http://what-when-how.com/computer-graphics-and-geometric-modeling/chaos-and-fractals-special-computer-graphics-part-1/
- 4. M.C. Escher : Circle Limit IV (from original paper)

Questions?