

Politechnika Wrocławska

Wydział Matematyki

Kierunek studiów: Matematyka

Specjalność: Matematyka teoretyczna

Praca dyplomowa – licencjacka

TYTUŁ PRACY DYPLOMOWEJ

Imię i nazwisko dyplomanta

słowa kluczowe: tutaj podajemy najważniejsze słowa kluczowe (łącznie nie powinny być dłuższe niż 150 znaków).

krótkie streszczenie:

Tutaj piszemy krótkie streszczenie pracy (nie powinno być dłuższe niż 530 znaków).

Opiekun pracy	· . *		
dyplomowej	Tytuł/stopień naukowy/imię i nazwisko	ocena	podpis

Do celów archiwalnych pracę dyplomową zakwalifikowano do:*

- a) kategorii A (akta wieczyste)
- b) kategorii BE 50 (po 50 latach podlegające ekspertyzie)

pieczątka wydziałowa

Wrocław, rok 2019

^{*} niepotrzebne skreślić

Faculty of Pure and Applied Mathematics

Field of study: Mathematics

Specialty: Theoretical Mathematics

Bachelor's Thesis

TYTUŁ PRACY DYPLOMOWEJ W JĘZYKU ANGIELSKIM

Imię i nazwisko dyplomanta

keywords:

tutaj podajemy najważniejsze słowa kluczowe w języku angielskim (łącznie nie powinny być dłuższe niż 150 znaków)

short summary:

Tutaj piszemy krótkie streszczenie pracy w języku angielskim (nie powinno być dłuższe niż 530 znaków).

Supervisor	dr inż. Dawid Huczek		
	Title/degree/name and surname	grade	signature

For the purposes of archival thesis qualified to:*

- a) category A (perpetual files)
- b) category BE 50 (subject to expertise after 50 years)

stamp of the faculty

 $^{*\} delete\ as\ appropriate$

Spis treści

W	$ar{s}$ stęp	3
1		5
	1.1 Podrozdział pierwszy	5 6
2	Twierdzenie o rozszerzaniu odwzorowań chaotycznych w sensie Devaney'a	7
3	Definicje, lematy, twierdzenia, przykłady i wnioski	9
P	odsumowanie	11
D	odatek	13
B	ibliografia	14

Wstęp

We wstępie zapowiadamy, o czym będzie praca. Próbujemy zachęcić czytelnika do dalszej lektury, np. krótko informując, dlaczego wybraliśmy właśnie ten temat i co nas w nim zainteresowało.

Rozdział 1

Rozdział pierwszy

Tabela 1.1 przedstawia przykładową tabelę. Do tworzenia tabeli służą m.in. środowiska tabular oraz table. Istnieje możliwość numeracji dwustopniowej, gdzie pierwsza cyfra oznacza numer rozdziału, a druga – kolejny numer tabeli w tym rozdziałe. Tytuł powinien znajdować się centralnie nad tabelą, 12 pkt odstępu od tekstu zasadniczego nad i pod tabelą wraz z tytułem. Jeśli tabela jest cytowana – należy podać centralnie pod tabelą źródło jej pochodzenia, np. opracowanie własne, opracowano na podstawie danych z GUS.

Tabela 1.1: Podstawowa Tabela

Państwo	PKB (w milionach USD)	Stopa bezrobocia
Stany Zjednoczone	75 278 049	4,60%
Chiny	11 218 281	$4{,}10\%$
Japonia	$4\ 938\ 644$	$3{,}10\%$
Niemcy	3 466 639	$6{,}00\%$
Wielka Brytania	2 629 188	$4,\!60\%$

Źródło: opracowanie własne

Do cytowania używamy komendy cite. W nawiasie klamrowym podajemy klucz, którego użyliśmy w pliku bibliografia.bib. Przykład: [?] lub [?, chap. 2].

1.1 Podrozdział pierwszy

Tabela 1.2: Podstawowa Tabela

PKB (w milionach USD)	Stopa bezrobocia
75 278 049	4,60%
11 218 281	$4{,}10\%$
$4\ 938\ 644$	$3{,}10\%$
3 466 639	$6{,}00\%$
$2\ 629\ 188$	$4{,}60\%$
	75 278 049 11 218 281 4 938 644 3 466 639

Źródło: opracowanie własne

1.2 Podrozdział drugi

Rysunki do pracy dyplomowej należy wstawiać w sposób podobny do wstawiania tabel, z zasadniczą różnicą polegającą na tym, że podpis powinno umieszczać się centralnie pod rysunkiem, a nie powyżej niego. Numeracja i sposób cytowania pozostają bez zmian, przy czym tabele i rysunki nie mają numeracji wspólnej, np. po Tabeli 1.2 występuje Rysunek 1.1 (o ile jest to pierwszy rysunek rozdziału pierwszego), a nie Rysunek 1.3.

Rysunek 1.1: Podstawowy Rysunek

Definicje: orbita, orbita okresowa RODZAJE CHAOSU (Devaneya, Li Yorka) niezmienniczosc zbioru ze wzgledu na odwzorowanie

Rozdział 2

Twierdzenie o rozszerzaniu odwzorowań chaotycznych w sensie Devaney'a

Twierdzenie 2.1 (O rozszerzaniu). Niech (X, ρ) będzie zwartą przestrzenią metryczną bez punktów izolowanych, oraz niech $f \in C(X)$ będzie odwzorowaniem chaotycznym w sensie Devaney'a. Wówczas odwzorowanie f można rozszerzyć do odwzorowania $F \in C_{\triangle}(X \times I)$ (to znaczy tak, że f jest odwzorowaniem bazowym dla F) w taki sposób, że:

- (i) F jest również chaotyczne w sensie Devaney'a,
- (ii) F ma taką samą entropię topologiczną jak f,
- (iii) zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze ze względu na F.

[1]

Na potrzeby dowodu wprowadźmy pojęcia odległości między odwzorowaniami. Niech (M,σ) będzie zwartą przestrzenią metryczną, rozważmy odwzorowania $h,k\in C(M)$. Odległość między nimi zdefiniujmy jako $\max_{m\in M}\sigma(h(m),k(m))$ i oznaczmy ją jako $d_1(h,k)$. Odległość między odwzorowaniami trójkątnymi definiujemy wówczas następująco: Niech (X,ρ) i (Y,τ) będą zwartymi przestrzeniami metrycznymi a $F(x,y)=(f(x),g_x(y))$ i $\Phi(x,y)=(\phi(x),\psi_x(y))$ trójkątnymi odwzorowaniami należącymi do $C_{\triangle}(X\times Y)$. Odległość definiujemy wówczas jako

$$d_2(F, \Phi) = \max_{(x, y \in X \times Y)} \max \{ \rho(f(x), \phi(x)), \tau(g_x(y), \psi_x(y)) \}$$
$$= \max \{ d_1(f, \phi), \max_{x \in X} d_1(g_x, \psi_x) \}$$

kontynuowac

Lemat 2.2. Niech (X, ρ) będzie zwartą przestrzenią metryczną bez punktów izolowanych. Każda okresowa orbita P_0 odwzorowania $f \in C(X)$ jest nigdziegęstym domkniętym podzbiorem X.

Dowód twierdzenia o rozszerzaniu. Odwzorowanie f jest chaotyczne w sensie Devaney'a, zatem spełnia warunek (2), czyli ma gęsty zbiór punktów okresowych, w szczególności istnieje orbita okresowa. Możemy zatem ustalić okresową orbitę P_0 odwzorowania f. Z lematu 2.2 mamy, że P_0 jest nigdziegęstym, domkniętym podzbiorem X.

Rozważmy zbiór \mathcal{F} wszystkich odwzorowań $F = (f, g_x)$ ze zbioru $C_{\triangle}(X \times I)$ spełniających następujące warunki:

- 1. Odwzorowanie bazowe f spełnia założenia twierdzenia 2.1.
- 2. $\forall_{x \in X}$ odwzorowanie g_x jest niemalejące i krańce przedziału I pozostawia niezmienione.
- 3. $\forall_{x \in P_0} g_x$ jest identycznością

Warunek 1 implikuje, że dla każdego odwzorowania z \mathcal{F} zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze, czyli $\forall_{F \in \mathcal{F}}$ zachodzi warunek (iii) twierdzenia 2.1.

Rozdział 3

Definicje, lematy, twierdzenia, przykłady i wnioski

Definicje, lematy, twierdzenia, przykłady i wnioski piszemy w pracy tak:

Definicja 3.1 (Martyngał). Tu piszemy treść definicji martyngału.

Lemat 3.2. Tu piszemy treść lematu.

Podsumowanie

Podsumowanie w pracach matematycznych nie jest obligatoryjne. Warto jednak na zakończenie krótko napisać, co udało nam się zrobić w pracy, a czasem także o tym, czego nie udało się zrobić.

Dodatek

Dodatek w pracach matematycznych również nie jest wymagany. Można w nim przedstawić np. jakiś dłuższy dowód, który z pewnych przyczyn pominęliśmy we właściwej części pracy lub (np. w przypadku prac statystycznych) umieścić dane, które analizowaliśmy.

Bibliografia

[1] Balibrea, F., Snoha, L. Topological entropy of devaney chaotic maps. *Topology* and its Applications 133, 3 (2003), 225–239.