Learning objectives:

- 1. Understand the fundamental theorem of calculus.
- 2. Apply the fundamental theorem to find derivatives of certain functions.
- 3. Apply the fundamental theorem to compute definite integrals.

Fundamental theorem of calculus I.

Let f be continuous on [a, b] and define the function g by

$$g(x) = \int_a^x f(t) dt$$
, $a \le x \le b$.

Then

- 1. g is continuous on [a, b].
- 2. g is differentiable on (a, b).
- 3. g'(x) = f(x).

Example 1. Find the derivative of the function $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

Example 2. Find the derivative of the function $g(x) = \int_1^{x^4} \sec t \, dt$.

Example 3. Find the derivative of the function $\int_{x}^{0} \sqrt{1 + \sec t} \, dt$.

Example 4. Find the derivative of the function $\int_{\cos x}^{\sin x} \sqrt{1 - s^2} \, ds$, $0 \le x \le \pi/2$. Use it to compute the given integral in terms of x.

Fundamental theorem of calculus II.

If f is continuous on [a, b], then

$$\int_a^b f(x) \, dx = F(b) - F(a) \;,$$

where F is any antiderivative of f.

Example 5. Evaluate the integral $\int_{-2}^{1} x^3 dx$.

Example 6. Find the area under the parabola $y = x^2$ from x = 0 to x = 1.

Example 7. Find the area under the cosine curve from x = 0 to x = b, where $0 \le b \le \pi/2$.

Example 8. What is wrong with the following calculation?

$$\int_{-1}^{2} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \Big|_{-1}^{2} = -\frac{1}{2} - \frac{-1}{-1} = -\frac{3}{2}.$$