Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

https://est711.github.io/

Sumário

Intervalo de Confiança

Intervalo de Confiança para a Diferença de Médias

Intervalo de Confiança para a Diferença de Proporção

Discutiremos inicialmente, dois casos. O primeiro baseado no Teorema Central do Limite. O segundo iremos assumir que a amostra aleatória provém de uma distribuição normal. Seja X_1,\ldots,X_n uma a.a. de uma distribuição dependendo de um parâmetro θ . Seja θ_0 o valor verdadeiro do parâmetro desconhecido θ . Seja T uma estatística para θ_0 satisfazendo a seguinte convergência em distribuição

$$\sqrt{n}(T-\theta_0) \stackrel{D}{\to} N(0,\sigma_T^2) \qquad (\star)$$

Em que σ_T^2 é a variância assintótica de $\sqrt{n}T$. Para nossos propósitos iniciais suponha que σ_T^2 é conhecido (geralmente ele é desconhecido)

Seja X_1,\ldots,X_n uma a.a. de uma distribuição dependendo de um parâmetro θ . Seja θ_0 o valor verdadeiro do parâmetro desconhecido θ . Seja T uma estatística para θ_0 satisfazendo a seguinte convergência em distribuição

$$\sqrt{n}(T-\theta_0) \stackrel{D}{\to} N(0,\sigma_T^2) \qquad (\star)$$

Em que σ_T^2 é a variância assintótica de $\sqrt{n}T$. Para nossos propósitos iniciais suponha que σ_T^2 é conhecido (geralmente ele é desconhecido)

De (\star) , temos que

$$\frac{\sqrt{\textit{n}(\textit{T}-\theta_0)}}{\sigma_{\textit{T}}} \stackrel{\textit{D}}{\rightarrow} \textit{N}(0,1)$$

Seja z_{α} o quantil α da distribuição normal padrão. Ou seja, se $Z \sim N(0,1)$, então $P(Z < z_{\alpha}) = \alpha$.

Como

$$\frac{\sqrt{n}(T-\theta_0)}{\sigma_T} \stackrel{D}{\to} N(0,1),$$

Temos que

$$P(-z_{1-\frac{\alpha}{2}} < \frac{\sqrt{n}(T-\theta_0)}{\sigma_T} < z_{1-\frac{\alpha}{2}}) \approx 1-\alpha$$

$$P(-z_{(1-\frac{\alpha}{2})} < \frac{\sqrt{n}(T-\theta_0)}{\sigma_T} < z_{(1-\frac{\alpha}{2})}) \approx 1 - \alpha$$

$$\Rightarrow P(T - \frac{\sigma_T z_{(1-\frac{\alpha}{2})}}{\sqrt{n}} < \theta_0 < T + \frac{\sigma_T z_{(1-\frac{\alpha}{2})}}{\sqrt{n}}) \approx 1 - \alpha$$

Notem que o intervalo

$$\left(T - \frac{\sigma_T Z_{(1-\frac{\alpha}{2})}}{\sqrt{n}}; T + \frac{\sigma_T Z_{(1-\frac{\alpha}{2})}}{\sqrt{n}}\right)$$

depende de T e, portanto, é um intervalo aleatório. Com isso, temos que o intervalo aleatório acima contém o valor θ_0 com probabilidade $1-\alpha$ aproximadamente.

Seja t o valor observado de T. Então, o intervalo

$$\left(t - \frac{\sigma_T Z_{(1-\frac{\alpha}{2})}}{\sqrt{n}}; t + \frac{\sigma_T Z_{(1-\frac{\alpha}{2})}}{\sqrt{n}}\right) \qquad (\star\star)$$

contém ou não o valor de θ_0 . Podemos pensar nisso como um experimento Bernoulli com probabilidade de sucesso p, sendo a probabilidade do intervalo conter o valor verdadeiro.

Seja t o valor observado de T. Então, o intervalo

$$\left(t - \frac{\sigma_T Z_{\left(1 - \frac{\alpha}{2}\right)}}{\sqrt{n}}; t + \frac{\sigma_T Z_{\left(1 - \frac{\alpha}{2}\right)}}{\sqrt{n}}\right) \qquad (\star\star)$$

contém ou não o valor de θ_0 . Podemos pensar nisso como um experimento Bernoulli com probabilidade de sucesso p, sendo a probabilidade do intervalo conter o valor verdadeiro.

Em geral, a probabilidade de sucesso é, aproximadamente, $1 - \alpha$. O intervalo (**) é chamado de intervalo de confiança para θ_0 . E,

- $(1-\alpha)\%$ é a confiança;
- ullet α é conhecido como nível de significância.

De acordo com o slide anterior, podemos escrever:

$$extit{Li(t)} = t - rac{\sigma_T Z_{(1-rac{lpha}{2})}}{\sqrt{n}} \ extit{Ls(t)} = t + rac{\sigma_T Z_{(1-rac{lpha}{2})}}{\sqrt{n}} \ extit{}$$

$$P_{ heta_0}\Big(Li(t) \leq heta_0 \leq Ls(t)\Big) = egin{cases} 0, & ext{se} & heta_0
otin \Big(Li(t); Ls(t)\Big) \ 1, & ext{se} & heta_0
otin \Big(Li(t); Ls(t)\Big) \end{cases}$$

Na prática não conhecemos σ_T . Seja S_T um estimador consistente para σ_T . Então, temos que

$$\frac{\sqrt{n}(T - \theta_0)}{S_T} = \left(\frac{\sigma_T}{S_T}\right) \frac{\sqrt{n}(T - \theta_0)}{\sigma_T} \xrightarrow[]{D} N(0, 1).$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Teorema de Slutsky
$$\stackrel{P}{\to} 1 \qquad \stackrel{D}{\to} N(0, 1)$$

Na prática não conhecemos σ_T . Seja S_T um estimador consistente para σ_T . Então, temos que

$$\frac{\sqrt{n}(T - \theta_0)}{S_T} = \left(\frac{\sigma_T}{S_T}\right) \frac{\sqrt{n}(T - \theta_0)}{\sigma_T} \xrightarrow[]{D} N(0, 1).$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Teorema de Slutsky
$$\xrightarrow{P} 1 \xrightarrow{D} N(0, 1)$$

Com isso, obtemos que o intervalo

$$\left(T - \frac{S_T z_{(1-\frac{\alpha}{2})}}{\sqrt{n}}; T + \frac{S_T z_{(1-\frac{\alpha}{2})}}{\sqrt{n}}\right)$$

conterá θ_0 com probabilidade $1-\alpha$, aproximadamente.

Se t e s_t são os valores observados de T e S_T , respectivamente, então

$$\left(t-rac{s_T z_{(1-rac{lpha}{2})}}{\sqrt{n}};t+rac{s_T z_{(1-rac{lpha}{2})}}{\sqrt{n}}
ight)$$

é um intervalo de confiança $(1-\alpha)\%$ aproximadamente para θ_0 . Em que $\frac{s_T}{\sqrt{n}}$ é chamado de erro padrão de T.

Exemplo: Intervalo de Confiança para Média

Seja X_1,\ldots,X_n uma amostra aleatória de uma distribuição com média μ e variância σ^2 (ambos conhecidos). Seja \bar{X} e S^2 a média amostral e a variância amostral, respectivamente. Pelo TCL,

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \stackrel{D}{\to} N(0,1).$$

Além disso, S^2 é um estimador consistente para σ^2 , então S é um estimador consistente para σ . Pelo teorema de Slutsky,

$$\frac{\sqrt{n}(\bar{X}-\mu)}{S} \stackrel{D}{\to} N(0,1)$$

Então,

$$\left(\bar{x} - \frac{1,96s}{\sqrt{n}}; \bar{x} + \frac{1,96s}{\sqrt{n}}\right)$$

é um intervalo de confiança de 95%, aproximadamente, para a média μ , em que \bar{x} e s são os valores observados de \bar{X} e s.

Exemplo: Intervalo de Confiança para p

Seja X_1,\ldots,X_n uma amostra aleatória de uma distribuição Bernoulli com parâmetro de sucesso $p\in(0,1)$. Seja $\hat{p}=\sum_{i=1}^n\frac{X_i}{n}$ a proporção de sucessos, considerando $P(X_i=1)=p$ e $P(X_i=0)=1-p$. Pelo TCL,

$$\sqrt{n}(\hat{p}-p)\stackrel{D}{\rightarrow} N(0,p(1-p)),$$

ou, equivalentemente,

$$\frac{\sqrt{\textit{n}(\hat{p}-\textit{p})}}{\sqrt{\textit{p}(1-\textit{p})}} \overset{\textit{D}}{\rightarrow} \textit{N}(0,1).$$

Como \hat{p} é consistente para p, temos que

$$\frac{\sqrt{n}(\hat{p}-p)}{\sqrt{\hat{p}(1-\hat{p})}} \overset{D}{\to} N(0,1).$$

Com isso,

$$\left(\hat{p} - \frac{z_{(1-\frac{\alpha}{2})}\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}; \hat{p} + \frac{z_{(1-\frac{\alpha}{2})}\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right)$$

é um intervalo de confiança $(1-\alpha)\%$ assintótico.

Outra forma de fazer é utilizar o método delta para encontrar uma função g tal que $p(1-p)[g'(p)]^2=k$ (constante). Segue que,

$$g^{'}(p)=rac{\sqrt{k}}{\sqrt{p(1-p)}}, ext{ fazendo } k=1, ext{ temos},$$
 $g^{'}(p)=rac{1}{\sqrt{p(1-p)}}$

Para 🏠

Um intervalo de confiança $(1-\alpha)\%$ assintótico para p pode ser obtido utilizando a seguinte convergência em distribuição:

$$2\sqrt{n}(\arcsin\sqrt{\hat{p}} - \arcsin\sqrt{p}) \stackrel{D}{\rightarrow} N(0,1)$$

Escreva o intervalo de confiança explicitamente!

Exemplo: Intervalo de Confiança para μ sob Normalidade

Seja X_1, \ldots, X_n uma amostra aleatória da distribuição $N(\mu, \sigma^2)$, com μ e σ^2 desconhecidos. Seja \bar{X} e S^2 a média e a variância amostral, respectivamente. Então,

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem distribuição t de student com $n\!-\!1$ graus de liberdade, ver teorema 3.6.1 do livro do Hogg, página 214 e 215 da oitava edição.

Seja $t_{\alpha,n-1}$ o quantil α de uma distribuição t de student com n-1 graus de liberdade, ou seja, $P(T < t_{\alpha,n-1}) = \alpha$, em que $T \sim t$ -student(n-1). Então,

$$P(\bar{x} - t_{(1-\frac{\alpha}{2})} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{(1-\frac{\alpha}{2})} \frac{s}{\sqrt{n}}) = 1 - \alpha$$

Para 🕋

• Exercícios da seção 4.2: 7, 8, 9, 15, 18, 21.

Intervalo de Confiança para a Diferença de Médias

Seja X_1, \ldots, X_{n_1} e Y_1, \ldots, Y_{n_2} duas amostras aleatórias da distribuição de X e Y, respectivamente, em que X e Y são v.a.'s com $E(X) = \mu_1$, $Var(X) = \sigma_1^2$, $E(Y) = \mu_2$ e $Var(Y) = \sigma_2^2$. Suponha independência das amostras. Estamos interessados em construir um intervalo de confiança para $\Delta = \mu_1 - \mu_2$.

https://est711.github.io/

Seja $ar{X}=rac{\displaystyle\sum_{i=1}^{I}X_{i}}{n_{1}}$ e $ar{Y}=rac{\displaystyle\sum_{i=1}^{I}Y_{i}}{n_{2}}$. Então, $ar{\Delta}=ar{X}-ar{Y}$ é um estimador não viesado para Δ . Seja $n=n_{1}+n_{2}$, assuma que $\dfrac{n_{1}}{n}
ightarrow \lambda_{1}>0$ e que $\dfrac{n_{2}}{n}
ightarrow \lambda_{2}>0$, com $\lambda_{1}+\lambda_{2}=1$. Pelo Teorema Central do Limite,

$$\sqrt{n_1}(\bar{X}-\mu_1)\stackrel{D}{\to} N(0,\sigma_1^2).$$

Segue que,

$$\sqrt{n}(\bar{X}-\mu_1)=\sqrt{\frac{n}{n_1}}\sqrt{n_1}(\bar{X}-\mu_1)\stackrel{D}{\rightarrow} N(0,\frac{\sigma_1^2}{\lambda_1}).$$

Seja $\bar{X}=\frac{\displaystyle\sum_{i=1}^{n_2} X_i}{n_1}$ e $\bar{Y}=\frac{\displaystyle\sum_{i=1}^{n_2} Y_i}{n_2}$. Então, $\bar{\Delta}=\bar{X}-\bar{Y}$ é um estimador não viesado para Δ . Seja $n=n_1+n_2$, assuma que $\frac{n_1}{n}\to\lambda_1>0$ e que $\frac{n_2}{n}\to\lambda_2>0$, com $\lambda_1+\lambda_2=1$. Pelo Teorema Central do Limite,

$$\sqrt{n_1}(\bar{X}-\mu_1)\stackrel{D}{\to} N(0,\sigma_1^2).$$

Segue que,

$$\sqrt{n}(\bar{X}-\mu_1)=\sqrt{\frac{n}{n_1}}\sqrt{n_1}(\bar{X}-\mu_1)\stackrel{D}{\rightarrow} N(0,\frac{\sigma_1^2}{\lambda_1}).$$

Usamos o fato de
$$\sqrt{\frac{n}{n_1}} \xrightarrow[n \to \infty]{} \sqrt{\frac{1}{\lambda_1}}$$
 e $\sqrt{n_1}(\bar{X} - \mu_1) \xrightarrow{D} N(0, \sigma_1^2)$.

Da mesma forma,

$$\sqrt{n}(\bar{Y}-\mu_2)\stackrel{D}{\rightarrow} N(0,\frac{\sigma_2^2}{\lambda_2}).$$

Note que,

$$\sqrt{n}[\bar{X} - \bar{Y} - (\mu_1 - \mu_2)] = \sqrt{n}(\bar{X} - \mu_1) - \sqrt{n}(\bar{Y} - \mu_2)$$

$$\stackrel{D}{\rightarrow} N(0, \frac{\sigma_1^2}{\lambda_1} + \frac{\sigma_2^2}{\lambda_2})$$

Logo,

$$\frac{\sqrt{\textit{n}}(\bar{X} - \bar{Y} - \Delta)}{\sqrt{\frac{\sigma_1^2}{\lambda_1} + \frac{\sigma_2^2}{\lambda_2}}} \overset{\textit{D}}{\rightarrow} \textit{N}(0, 1)$$

$$\frac{\sqrt{n}(\bar{X} - \bar{Y} - \Delta)}{\sqrt{\frac{\sigma_1^2}{\lambda_1} + \frac{\sigma_2^2}{\lambda_2}}} \xrightarrow{D} N(0, 1)$$

$$\Rightarrow \frac{\sqrt{n}(\bar{X} - \bar{Y} - \Delta)}{\sqrt{\frac{\sigma_1^2}{\frac{n_1}{n}} + \frac{\sigma_2^2}{\frac{n_2}{n}}}} = \frac{(\bar{X} - \bar{Y} - \Delta)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \xrightarrow{D} N(0, 1)$$

Substituindo
$$\sigma_1^2$$
 e σ_2^2 por $S_1^2 = \frac{1}{n_1-1}\sum_{i=1}^n(X_1-\bar{X})$ e $S_2^2 =$

$$\frac{1}{n_2-1}\sum_{i=1}^{n}(Y_1-\bar{Y})$$
, respectivamente, temos que,

$$\frac{(\bar{X} - \bar{Y} - \Delta)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \stackrel{D}{\rightarrow} N(0, 1)$$

pois S_1^2 e S_2^2 são consistentes para σ_1^2 e σ_2^2 , respectivamente.

Logo, temos que um intervalo de confiança $(1-\alpha)100\%$, assintótico para Δ fica dado por,

$$\left(\bar{x}-\bar{y}-z_{(1-\frac{\alpha}{2})}\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}; \bar{x}-\bar{y}+z_{(1-\frac{\alpha}{2})}\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}\right)$$

Assuma as mesmas condições anteriores. Adicionalmente, suponha que $X_i \sim$ Bernoulli $(p_1), i=1,\ldots,n_1$ e $Y_j \sim$ Bernoulli $(p_2), j=1,\ldots,n_2$. Defina $\hat{p}_1 = \frac{\sum X_i}{n_1}$ e $\hat{p}_2 = \frac{\sum Y_j}{n_2}$. Segue que,

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \xrightarrow{D} N(0, 1)$$

$$\iff \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} \xrightarrow{D} N(0, 1)$$
Teorema de Slutsky

Com isso, um intervalo de confiança $(1 - \alpha)100\%$, assintótico para $p_1 - p_2$ fica dado por,

$$\left(\hat{p}_{1}-\hat{p}_{2}\mp z_{(1-rac{lpha}{2})}\sqrt{rac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}}+rac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}
ight)$$

Para 🕋

• Exercícios da seção 4.2: 25 ao 27.

Referências I

Hogg, RV, J McKean e AT Craig (2019). Introduction to Mathematical Statistics.