COMPARISON OF DIFFERENT MACHINE LEARNING ALGORITHMS

TEAM: EAST BU

AKASH, BHAVANA, KARTHIK MADHUHASA

COMPARISON TABLE - TYPE

Algorithm	Туре
Linear Regression	Supervised Learning
Logistic Regression	Supervised Learning
SVM	Supervised Learning
K-means	Unsupervised Learning
Naïve Bayes	Supervised Learning
Decision Tree	Supervised Learning
Random Forest	Supervised Learning

Supervised Learning: A **supervised learning** algorithm analyzes the **training** data and produces an inferred function, which can be used for mapping new examples

Unsupervised Learning: **Unsupervised learning** is a type of **machine learning** algorithm used to draw inferences from datasets consisting of input data without labeled responses

COMPARISON TABLE - APPLICATION

Algorithm	Application
Linear Regression	Regression
Logistic Regression	Classification
SVM	Both Classification and Regression
K-means	Clustering
Naïve Bayes	Both Classification and Regression
Decision Tree	Both Classification and Regression
Random Forest	Both Classification and Regression

Regression: The output is usually a numerical value. Eg: Predicting height of a person given weight and age

Classification: The output is the name of the class to which the data-point belong. Eg: Yes or No

Clustering: It is similar to classification but with no labels.

Eg: Clustering different groups of people

COMPARISON TABLE – ADVANTAGES AND DISADVANTAGES

Algorithm	Advantages	Disadvantages
Linear Regression	Easy to implement and understand	Efficiency is very low as most of the problem are non-linear in nature
Logistic Regression	Easy to scale up the model	The performance reduces with increased decision boundaries
SVM	High Accuracy, Mainly used in NLP	Selecting the kernel is difficult. High- Dimensional spaces difficult to visualize, Memory intensive
K-means	Faster Computation	Difficult to predict the value of K Initial centroid can affect the accuracy
Naïve Bayes	It works well with small datasets	It assumes features to be independent Unbalanced dataset leads to poorer accuracy.
Decision Tree	Good visualization	Need to build the tree each time new examples comes
Random Forest	Fast and highly scalable . Does not overfit	Its very complex and time consuming

DIABETES DATASET

PREDICT THE OUTCOME, WHETHER THE PATIENT IS DIABETIC OR NOT BASED ON THEIR AGE, BMI, INSULIN LEVEL, NO. OF PREGNANCIES AND SO ON

ALGORITHMS : RA (MEAN, STD)

• LOGISTIC REGRESSION : 0.769515 (0.048411)

• K – MEANS : 0.726555 (0.061821)

• DECISION TREES : 0.700427 (0.063340)

• NAÏVE BAYES : 0.755178 (0.042766)

• SVM : 0.651025 (0.072141)

THANK YOU