Another (useful) tool for limits ($\limsup a_n$ & $\liminf_{n\to\infty} a_n$)

• For sequences which do **not** converge, there are two useful notions which sometimes can substitute for the non-existence of limit: the *limit superior* (or, supremum) and the *limit inferior* (or, infimum)

For the **unified** treatment of **these** concepts (regardless of whether (a_n) is bounded or unbounded), we need to extend the definitions of $\sup S$ & $\inf S$ for a non-empty set $S \subset \mathbb{R}$: Remind that $\sup S$ is defined (to be a **real** number) only when S has an upper bound.

Def. Let $S \subset \mathbb{R}$ with $S \neq \emptyset$. We say that $\sup S = \infty$ if S has no upper bound. Similarly, we say that $\inf S = -\infty$ if S has no lower bound.

Eg. It is clear that $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ has no upper bound. & has no lower bound. $\therefore \sup \mathbb{Z} = \infty$ & $\inf \mathbb{Z} = -\infty$

Warning: The statement that $\sup S = \infty$ does **not mean** that $\sup S$ is equal to the "extended number" ∞ [Note: ∞ is **not** a real number]. The notation $\sup S = \infty$ is just a shorthand way of saying that the non-empty set S has no upper bound.

Def. Let (a_n) be a sequence of real numbers. For each fixed $n \geq 1$,

$$\text{we let} \ \ M_n \coloneqq \sup \left\{ a_n, \ a_{n+1}, \ a_{n+2}, \cdots \right\} = \sup_{k \geq n} \{a_k\} \ \ \stackrel{\text{shortly}}{=} \ \sup_{k \geq n} a_k.$$

$$\text{i.e., } \ M_{\scriptscriptstyle 1} = \sup \left\{ a_{\scriptscriptstyle 1}, \ a_{\scriptscriptstyle 2}, \ a_{\scriptscriptstyle 3}, \cdots \right\}, \\ M_{\scriptscriptstyle 2} = \sup \left\{ a_{\scriptscriptstyle 2}, \ a_{\scriptscriptstyle 3}, \ a_{\scriptscriptstyle 4}, \cdots \right\}, \\ M_{\scriptscriptstyle 3} = \sup \left\{ a_{\scriptscriptstyle 3}, \ a_{\scriptscriptstyle 4}, \ a_{\scriptscriptstyle 5}, \cdots \right\}, \\ \cdots$$

Obviously, $M_1 \geq M_2 \geq M_3 \geq \cdots$: i.e., $M_n \downarrow \ \ (\text{as} \ \ n \to \infty)$

Hence,

either
$$\lim_{n \to \infty} M_n$$
 exists or $\lim_{n \to \infty} M_n = -\infty$ or ∞ (if (a_n) is unbounded above)

We define $\lim_{n \to \infty} M_n$ (always exists, but could be $\pm \infty$) as the limit superior:

$$\limsup_{n \to \infty} a_n \coloneqq \lim_{n \to \infty} M_n \bigg(= \limsup_{n \to \infty} a_k \bigg) \ \bigg(\overset{\text{see Cf} \ \text{below}}{=} \ \inf_{n \ge 1} \{ \sup_{k \ge n} a_k \} \bigg)$$

Cf: Seen that: (a_n) is \downarrow & bounded below $\Rightarrow \lim_{n\to\infty} a_n$ exists & $\lim_{n\to\infty} a_n = \inf\{a_n : n\in N\}$

Alternative notations: $\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} a_n = \overline{\lim} \ a_n = \overline{\lim} \ a_n$

Eg. (i) $a_n = (-1)^n$ (which is bounded above)

For every
$$n, \ M_n=1$$
 . So $\lim_{n\to\infty}M_n=1$ $\therefore \lim\sup a_n=1$

(ii)
$$(a_n) = \{1, -1, 1, -2, 1, -3, 1, -4, \dots\}$$
 (which is bounded above)

For every
$$\ n, \ M_{\scriptscriptstyle n}=1$$
 . So $\lim_{n\to\infty}M_{\scriptscriptstyle n}=1$ $\therefore \ \limsup a_{\scriptscriptstyle n}=1$

(iii)
$$a_n = -n$$
 i.e., $(a_n)_1^{\infty} = \{-1, -2, -3, -4, \cdots\}$ (which is bounded above)

For every
$$n$$
, $M_n = \sup\{-n, -n-1, -n-2, \dots\} = -n$

$$\therefore \lim_{n \to \infty} M_n = \lim_{n \to \infty} (-n) = -\infty \qquad \therefore \lim \sup a_n = -\infty$$

(iv)
$$a_n = n$$
 i.e., $(a_n)_1^{\infty} = \{1, 2, 3, 4, \cdots\}$ (which is not bounded above)

$$M_n = \sup \left\{ n, \ n+1, \ \cdots \right\} = \infty \left(\leftarrow (a_n) : \text{not bdd above} \right) \quad \therefore \quad \lim_{n \to \infty} M_n = \infty \quad \therefore \quad \limsup a_n = \infty$$

Note: Changing a finite number of terms of the given sequence (a_n) does not change $\limsup a_n$

$$\text{Eg. } (a_{\scriptscriptstyle n}) = \left\{10^{\scriptscriptstyle 100}, \ \ 10^{\scriptscriptstyle 200}, \ \ 1, \ \ -1, \ \ 1, \ \ -1, \ \ 1, \ \ -1, \ \ \cdots\right\} \\ \hspace{0.5cm} \rightarrow \hspace{0.5cm} \limsup a_{\scriptscriptstyle n} = 1 \quad \left(\text{cf. } \sup a_{\scriptscriptstyle n} = 10^{\scriptscriptstyle 200}\right) \right\} \\ \hspace{0.5cm} = \left\{10^{\scriptscriptstyle 100}, \ \ 10^{\scriptscriptstyle 200}, \ \ 1, \ \ -1, \ \ 1, \ \ -1, \ \ 1, \ \ -1, \ \ \cdots\right\}$$

Theorem

If (a_n) is convergent, then $\limsup a_n = \lim_{n \to \infty} a_n$

Pf. Let $L = \lim_{n \to \infty} a_n$. Then given $\varepsilon > 0$, $a_n \approx L$ for $n \gg 1$.

i.e., given $\varepsilon > 0$, $L - \varepsilon < a_n < L + \varepsilon$ for every $n \ge \text{(some) } N$

Thus if $n \ge N$ then

 $L+\varepsilon$ is an upper bound for the set $\{a_n, a_{n+1}, a_{n+2}, \cdots\}$

But it is clear that $L-\varepsilon < \sup\{a_n, a_{n+1}, a_{n+2}, \cdots\} = M_n$ for $n \ge N$

So, given $\varepsilon > 0$, $L - \varepsilon < M_n = \sup \{a_n, a_{n+1}, a_{n+2}, \cdots\} \le L + \varepsilon$ for $n \ge N$ Hence

$$\lim_{n \to \infty} M_n = L \qquad \qquad \therefore \quad \limsup a_n = L$$

Def. Let (a_n) be a sequence of real numbers. For each fixed $n(\ge 1)$,

$$\text{we let} \quad m_n \coloneqq \inf \left\{ a_n, \ a_{n+1}, \ a_{n+2}, \cdots \right\} = \inf_{k \ge n} \left\{ a_k \right\} \ \stackrel{\text{shortly}}{=} \ \inf_{k \ge n} a_k.$$

i.e.,
$$m_1 = \inf \{a_1, a_2, a_3, \cdots\}, m_2 = \inf \{a_2, a_3, a_4, \cdots\}, m_3 = \inf \{a_3, a_4, a_5, \cdots\}, \cdots\}$$

Obviously, $m_1 \leq m_2 \leq m_3 \leq \cdots$: i.e., $m_n \uparrow$ (as $n \to \infty$)

Hence.

either $\lim_{n\to\infty} m_n$ exists or $\lim_{n\to\infty} m_n = \infty$ or $-\infty (\text{if } (a_n) \text{ is unbounded below})$

We define $\lim_{n\to\infty} m_n$ (always exists, but could be $\pm\infty$) as the limit inferior:

$$\liminf_{n\to\infty} a_n := \lim_{n\to\infty} m_n \left(= \liminf_{n\to\infty} a_k \right) \ \left(\stackrel{\text{see Cf below}}{=} \ \sup_{n\geq 1} \{\inf_{k\geq n} a_k \} \right)$$

Cf: Seen that: (a_n) is \uparrow & bounded above $\Rightarrow \lim_{n \to \infty} a_n$ exists & $\lim_{n \to \infty} a_n = \sup\{a_n : n \in N\}$

Alternative notations: $\liminf_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$

Eg. (i) $a_n = (-1)^n$ (which is bounded below)

For every n, $m_n = -1$. So $\lim_{n \to \infty} m_n = -1$ \therefore $\liminf_{n \to \infty} a_n = -1$

(ii) $a_n = n$ (which is bounded below)

For every n, $m_n = \inf \{n, n+1, n+2, \dots\} = n$ $\therefore \lim_{n \to \infty} m_n = \lim_{n \to \infty} n = \infty$

 \therefore liminf $a_n = \infty$

(iii) $(a_n) = \{-1, -2, -3, -4, \cdots\}$ (which is not bounded below)

For $\forall n, \quad m_n = -\infty \left(\leftarrow (a_n) : \text{not bounded below} \right)$ $\therefore \lim_{n \to \infty} m_n = -\infty$ $\therefore \lim_{n \to \infty} \inf a_n = -\infty$

Note: Changing a finite number of terms of the given sequence (a_n) does not change $\liminf a_n$ Ex (easy) $a_n \leq b_n$ for $n \gg 1$ $\Rightarrow \limsup_{n \to \infty} a_n \leq \limsup_{n \to \infty} b_n$ and $\liminf_{n \to \infty} a_n \leq \liminf_{n \to \infty} b_n$

Theorem.

If (a_n) is convergent, then $\liminf a_n = \lim_{n \to \infty} a_n$

Pf. Essentially the same as the proof of $\limsup a_n = \lim_{n \to \infty} a_n$.

Theorem.

If (a_n) is a sequence of real numbers, then

$$\liminf a_n \le \limsup a_n$$

Pf. Recall that $\liminf a_n = \lim_{n \to \infty} m_n$ and $\limsup a_n = \lim_{n \to \infty} M_n$,

$$\text{ where } \ m_{\scriptscriptstyle n} \coloneqq \inf \left\{ a_{\scriptscriptstyle n}, \ a_{\scriptscriptstyle n+1}, \ a_{\scriptscriptstyle n+2}, \cdots \right\} \ \text{ and } \ M_{\scriptscriptstyle n} \coloneqq \sup \left\{ a_{\scriptscriptstyle n}, \ a_{\scriptscriptstyle n+1}, \ a_{\scriptscriptstyle n+2}, \cdots \right\}.$$

Assume first that (a_n) is bounded.

Then, obviously, $m_n \leq M_n$

So by LLT, $\lim_{n\to\infty} m_n \leq \lim_{n\to\infty} M_n$ since both the (finite) limits exist.

That is, $\liminf a_n \leq \limsup a_n$

On the other hand,

 $\begin{array}{ll} \text{if} \ \ (a_n) \ \ \text{is not bounded above, then} \ \ \lim\sup a_n = \infty \,; \\ \text{so trivially} \ \ \lim\inf a_n \ \le \ \ \lim\sup a_n \ \ \text{holds} \end{array}$

If (a_n) is not bounded below, then $\liminf a_n = -\infty$; so trivially $\liminf a_n \leq \limsup a_n$ holds

***** Theorem

Let (a_n) be any sequence of real numbers.

If $\limsup a_n = \liminf a_n = L$ (& $L \in \mathbb{R}$), then (a_n) converges (to L)

Pf. Suppose $\limsup a_n = \liminf a_n = L$ --- (\odot)

Observe that

$$\begin{split} \inf_{k \geq n} \{a_k\} & \leq & a_n & \leq \sup_{k \geq n} \{a_k\} & \text{for every } n \\ \downarrow & & \downarrow & \text{as } n \to \infty \\ \lim\inf_{k \geq n} \{a_k\} & = L = & \lim\sup_{k \geq n} \{a_k\} & \left(\leftarrow (\odot) \right) \end{split}$$

Thus $\lim_{n\to\infty} a_n = L$ by Sandwich Principle

An important consequence.

Let (a_n) be any sequence of real numbers.

- (i) If $\limsup a_n = \liminf a_n (\in \mathbb{R})$, then (a_n) converges.
- (ii) If $\limsup a_n \neq \liminf a_n$, then (a_n) diverges.

Pf. (i) Previous theorem

If (a_n) converges, then we have seen in earlier two theorems that

$$\lim \sup a_n = \lim_{n \to \infty} a_n = \lim \inf a_n \qquad //$$

Summary: Let (a_n) be a (bounded or unbounded) sequence.

$$\limsup a_n = \overline{\lim_{n \to \infty}} \, a_n \Big(= \overline{\lim} \, a_n \Big) \stackrel{\text{def}}{=} \lim_{n \to \infty} \left(\sup_{k \ge n} a_k \right) \stackrel{\text{or}}{=} \inf_{n \ge 1} \{ \sup_{k \ge n} a_k \} = \lim_{n \to \infty} M_n$$

$$\liminf \, a_n = \varliminf_{n \to \infty} a_n \left(= \varliminf a_n \right)^{\operatorname{def}} = \lim_{n \to \infty} \left(\inf_{k \ge n} a_k \right)^{\operatorname{or}} = \sup_{n \ge 1} \{\inf_{k \ge n} a_k \} = \lim_{n \to \infty} m_n$$

where $M_n := \sup\{a_n, a_{n+1}, a_{n+2}, \cdots\}$ and $m_n := \inf\{a_n, a_{n+1}, a_{n+2}, \cdots\}$

$$\odot \quad -\infty \leq \varliminf_{n \to \infty} a_n \leq \varlimsup_{n \to \infty} a_n \leq \infty$$

Theorem (important) [key properties of $\overline{\lim}_{n\to\infty} a_n = M$]

Let (a_n) be a **bounded** sequence. Then

(i)
$$\overline{\lim}_{n \to \infty} a_n = M \implies \exists$$
 a subsequence (a_{n_k}) of (a_n) such that $\lim_{n \to \infty} a_{n_k} = M$

(ii)
$$M' > \overline{\lim}_{n \to \infty} a_n \implies M' > a_n \text{ for } n \gg 1 \text{ (say for } \forall n \geq (\text{some})N \text{)}$$

(i.e.,
$$M' \leq a_n$$
 (& $M' < a_n$) for only (at most) finitely many n)

(iii)
$$M'' < \overline{\lim}_{n \to \infty} a_n \Rightarrow M'' < a_n$$
 for infinitely many $n \in (i)$: why?]

Pf . (i) Recall that
$$\ \overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} M_n, \quad \text{ where } M_n = \sup_{k > n} a_k$$

In particular, $M_1=\sup_{k>1}a_k\stackrel{\text{i.e.}}{=}\sup\left\{a_1,a_2,\cdots\right\}$. Then by the definition of supremum,

$$\exists \, n_{\!\scriptscriptstyle 1} \in \mathbb{N} \quad \text{such that} \quad M_{\!\scriptscriptstyle 1} - 1 < a_{\!\scriptscriptstyle n_{\!\scriptscriptstyle 1}} \leq M_{\!\scriptscriptstyle 1}$$

Applying the same argument to $M_{n_{\!\scriptscriptstyle 1}+1} = \sup \left\{ a_{n_{\!\scriptscriptstyle 1}+1}, a_{n_{\!\scriptscriptstyle 1}+2}, \cdots \right\}$ shows

$$\exists \, n_2 \, \big(\geq n_1 + 1 > n_1 \big) \ \, \text{such that} \ \, M_{n_1 + 1} - \frac{1}{2} < a_{n_2} \leq M_{n_1 + 1}$$

Continue this process to get a sequence of integers $n_1 < n_2 < n_3 < \cdots$ such that

By Squeeze principle, we conclude that $\lim_{k \to \infty} a_{n_k} = M$.

$$\begin{array}{lll} \text{(ii)} & \text{Let } \overline{\lim_{n \to \infty}} \, a_n < M' & \text{i.e., } \lim_{n \to \infty} \left(\sup_{k \ge n} a_k \right) < M' \\ & \stackrel{\text{SLT}}{\Rightarrow} & \sup_{k \ge n} a_k < M' & \text{for } n \gg 1 & \text{(say for } n \ge N \,) \\ & \Rightarrow & \sup_{k > N} a_k < M' & \Rightarrow & a_k < M' & \text{for } \forall k \ge N \\ \end{array}$$

(iii) [another indirect proof] Let $\limsup_{n \to \infty} a_n = M > M''$.

If the conclusion were false, then $\ a_n>M''$ holds for at most finitely many $\ n$; which clearly says that $\ \exists\,N\in\mathbb{N}$ such that $\ a_n\le M''$ for all $\ n\ge N$.

This would imply $\sup_{n \geq N} \left\{ a_n \right\} \coloneqq M_N \leq M''$. Taking limits gives

$$\lim_{N\to\infty} M_N\left(=\lim_{N\to\infty}\sup a_N\right) \leq M'' \text{ (by LLT) ; contradiction to the hypothesis } \lim_{n\to\infty}\sup a_n = M > M''$$

Proposition $(\Leftarrow (ii))$.

$$\overline{\lim_{n \to \infty}} \, a_n < M' \ \Rightarrow \ M'$$
 is not a cluster point of (a_n)

Pf. Choose K so that $\varlimsup_{n \to \infty} a_n < K < M'$. Then by (ii)

$$a_{\scriptscriptstyle n} < K \quad \text{for} \ n \gg 1 \quad \text{(i.e.,} \ \ \exists N \in \mathbb{N} \quad \text{such that} \quad a_{\scriptscriptstyle n} < K \quad \text{for} \ \ n \geq N \, \text{)}$$

Let $\varepsilon = M' - K(>0)$. Then $a_n \approx M'$ for only (at most) finitely many n

 \therefore M' is not a cluster point of (a_n)

Cor. (important) [another way of understanding $\overline{\lim}_{n \to \infty} a_n$]

Let (a_n) be a bounded sequence. Then

$$\overline{\lim_{n\to\infty}} a_n = \text{ the largest cluster point of } (a_n)$$

That is,

- (i) \exists a subsequence (a_{n_k}) of (a_n) such that $\lim_{k \to \infty} a_{n_k} = \overline{\lim_{n \to \infty}} \, a_n$ (by Theorem –(i))
- (ii) C is any cluster point of $(a_n) \Rightarrow C \leq \overline{\lim} a_n$ (by Proposition)
- $[\,(\mathrm{ii})' \quad C \quad \text{is the limit of any convergent subsequence of} \quad (a_n) \quad \Rightarrow \quad C \leq \varlimsup_{n \to \infty} a_n \,]$

Another pf of Cor:

- (i) \exists a subsequence (a_{n_k}) of (a_n) such that $\lim_{k\to\infty}a_{n_k}=\overline{\lim}_{n\to\infty}a_n$ (by Theorem –(i))
- (ii)' C is the limit of any convergent subsequence of $(a_n) \Rightarrow C \leq \overline{\lim}_{n \to \infty} a_n$

To show (ii)' holds, we let (a_{n_i}) be a convergent subsequence of (a_n) , with $\lim_{i\to\infty}a_{n_i}=C$

Note that $a_{\scriptscriptstyle n_i} \leq M_{\scriptscriptstyle n_i} = \sup \left\{ a_{\scriptscriptstyle n_i}, a_{\scriptscriptstyle n_{i+1}}, a_{\scriptscriptstyle n_{i+2}}, \cdots \right\}$

so that by LLT

$$C = \lim_{i \to \infty} a_{n_i} \leq \lim_{i \to \infty} M_{n_i} = \overline{\lim}_{n \to \infty} a_n \left(\leftarrow \lim_{n \to \infty} M_{n} = \overline{\lim}_{n \to \infty} a_n \text{ plus Subsequence theorem} \right)$$

Theorem. Let (a_n) be a bounded sequence. Then

- (i) $\lim_{n\to\infty} a_n = m \quad \Rightarrow \quad \exists \quad \text{a subsequence} \quad (a_{n_k}) \quad \text{of} \quad (a_n) \quad \text{such that} \quad \lim_{k\to\infty} a_{n_k} = m$
- (ii) $\varliminf_{n\to\infty} a_n > m' \ \Rightarrow \ a_n > m'$ for $n\gg 1$ (say for $\forall n \geq (\mathrm{some})N$)
- (iii) $\lim_{n \to \infty} a_n < m'' \implies a_n < m''$ for infinitely many n
- Pf. Apply previous theorem to $(-a_n)$

Cor. (important) Let (a_n) be a bounded sequence. Then

$$\lim_{n\to\infty} a_n =$$
 the smallest cluster point of (a_n)

That is,

- (i) \exists a subsequence (a_{n_k}) of $(a_{\scriptscriptstyle n})$ such that $\lim_{k\to\infty}a_{n_k}=\varliminf_{n\to\infty}a_n$
- $(\mbox{ii}) \quad c \quad \mbox{is any cluster point of} \quad (a_n) \quad \Rightarrow \quad c \geq \underline{\varliminf} \ a_n$
- $[\,(\mathrm{ii})' \quad c \quad \text{is the limit of any convergent subsequence of} \quad (a_n) \quad \Rightarrow \quad c \geq \varliminf_{n \to \infty} a_n \,]$

Two widely used popular results:

Ex 1. Let $\{a_n\}$ & $\{b_n\}$ be two bounded sequences in \mathbb{R} . Show that

$$\overline{\lim}_{n\to\infty}(a_n+b_n)\leq\overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n$$

Pf. For each $m \ge n$, we have

$$a_m + b_m \le \sup\{a_k : k \ge n\} + \sup\{b_k : k \ge n\}$$

$$\therefore \sup\{a_m + b_m : m \ge n\} \Big[= \sup\{a_k + b_k : k \ge n\} \Big] \le \sup\{a_k : k \ge n\} + \sup\{b_k : k \ge n\}$$

Taking $n \to \infty \implies$

$$\lim_{n\to\infty} \bigl(\sup\{a_k+b_k:k\geq n\}\bigr) \leq \lim_{n\to\infty} \bigl(\sup\{a_k:k\geq n\}\bigr) + \lim_{n\to\infty} \bigl(\sup\{b_k:k\geq n\}\bigr)$$

Therefore,
$$\overline{\lim}_{n\to\infty}(a_n+b_n) \le \overline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$$

Note: Obviously,

$$\overline{\lim}_{n\to\infty} (Cb_n) = C\overline{\lim}_{n\to\infty} b_n$$
 for any sequence $\{b_n\}$ and any real number C

Ex 2. Let $\{a_n\}$ & $\{b_n\}$ be two sequences with $b_n > 0$ for all $n \in \mathbb{N}$.

Assume further that $\lim_{n\to\infty} a_n$ exists with $\lim_{n\to\infty} a_n \neq 0$. Then show that

$$\overline{\lim}_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n) \cdot \overline{\lim}_{n\to\infty} b_n$$

Pf. Let $\lim a_n =: A \neq 0$ and let $\varepsilon > 0$ be given. Then

$$\exists N \in \mathbb{N}$$
 such that $A - \varepsilon < a_n < A + \varepsilon$ for $n \ge N$

Since $b_n > 0(\forall n)$, it follows that

$$(A-\varepsilon)b_n < a_nb_n < (A+\varepsilon)b_n \text{ for } n \ge N$$

Taking $\lim \implies$

$$(A-\varepsilon)\overline{\lim_{n\to\infty}}b_n\leq\overline{\lim_{n\to\infty}}(a_nb_n)\leq(A+\varepsilon)\overline{\lim_{n\to\infty}}b_n\quad \left[\leftarrow LLT\right]$$

Finally letting $\varepsilon \to 0$ \Rightarrow

$$A\overline{\lim}_{n\to\infty}b_n \leq \overline{\lim}_{n\to\infty}(a_nb_n)\leq A\overline{\lim}_{n\to\infty}b_n$$

$$A\overline{\lim_{n\to\infty}}b_n \leq \overline{\lim_{n\to\infty}}(a_nb_n) \leq A\overline{\lim_{n\to\infty}}b_n$$

$$\therefore \overline{\lim_{n\to\infty}}(a_nb_n) = A\overline{\lim_{n\to\infty}}b_n = \lim_{n\to\infty}a_n \cdot \overline{\lim_{n\to\infty}}b_n$$

Application: Prove
$$\overline{\lim_{n\to\infty}} \sqrt[n]{n \mid a_n \mid} = \overline{\lim_{n\to\infty}} \sqrt[n]{\mid a_n \mid}$$

Pf. It is well-known that $\lim \sqrt[n]{n} = 1$

$$\therefore \quad \overline{\lim}_{n \to \infty} \sqrt[n]{n \mid a_n \mid} = \lim_{n \to \infty} \sqrt[n]{n} \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$$

• Alternative way of understanding the radius of convergence of a given power series:

Proposition [seen before]. (lim sup - version of SLT)

Let $\{a_n\}$ be a bounded sequence. Then

$$\lim_{n\to\infty}\sup a_{\scriptscriptstyle n}=M>M'\quad \Rightarrow\quad a_{\scriptscriptstyle n}>M'\quad \text{for infinitely many}\quad n$$

Theorem. (Generalized n-th root test; often called **n-th root test**)

Suppose
$$\overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|} = M$$
. Then

$$M < 1 \implies \sum a_n \text{ conv (absolutely)}$$

$$M > 1 \implies \sum a_n$$
 diverges

If M=1, the test fails and there is no conclusion

Pf. Case 1. M < 1

Choose a number M' so that M < M' < 1. Then

$$\begin{split} & \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} \Big(= \lim_{n \to \infty} \sup \Big\{ \sqrt[n]{|a_n|}, ^{n+1} \sqrt[n]{|a_{n+1}|}, \cdots \Big\} \Big) = M < M' \\ & \Rightarrow \sup \Big\{ \sqrt[n]{|a_n|}, ^{n+1} \sqrt[n]{|a_{n+1}|}, \cdots \Big\} < M' \quad \text{ for } n \gg 1, \text{ say for } n \geq N \\ & \Rightarrow |a_n| < (M')^n \quad \text{ for } n \geq N \end{split}$$

$$\sum_{N}^{\infty} (M')^n \quad \text{converges since} \quad M' < 1 \qquad \quad \therefore \quad \sum_{N}^{\infty} |\ a_n \ | \quad \text{conv} \quad \text{(by the Comparison thm)}$$

$$\therefore \sum_{n=0}^{\infty} |a_n|$$
 converges (by Tail-convergence Thm)

Case 2. M > 1

Theorem (Cauchy-Hadamard theorem: a consequence of the Generalized n-th root test)

Let $\sum_{n=0}^{\infty}a_nx^n$ be a given power series, and let $\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}=M$ $(0\leq M\leq\infty)$ is possible). Then

$$\sum_{n=0}^{\infty} a_n x^n \quad \begin{cases} \text{conv (absolutely)} & \text{if } |x| < \frac{1}{M} \\ \text{div} & \text{if } |x| > \frac{1}{M} \end{cases}$$

As a consequence,

$$R$$
 (= the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$) = $\frac{1}{M}$ = $\frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$

Pf Assume $0 < M < \infty$ (The case M = 0 or ∞ : Home Study)

$$\text{Since} \ \sqrt[n]{|a_n x^n|} = \mid x \mid \sqrt[n]{|a_n|} \ , \quad \text{we have} \quad \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n x^n|} = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} \cdot \mid x \mid = M \mid x \mid$$

Applying the Generalized n-th root test to $\sum_{n=0}^{\infty} a_n x^n$ gives

$$\sum_{n=0}^{\infty} a_n x^n \quad \begin{cases} \text{conv (absolutely)} & \text{if } M \mid x \mid < 1 \\ \text{div} & \text{if } M \mid x \mid > 1 \end{cases}$$