南亞塑膠工業股份有限公司 塑膠第三事業部

硬管重量管制率製程優化

報告人:丁誌儀 2022年5月24日

執行摘要

- 一、硬管製程以重量管制率(硬管實際重量與最小厚度之重量比值)作為原料成本管制標準,以最小厚度換算,最佳狀況是100%;廠探討如何降低重量管制率(降低成品厚度),以降低用料成本,經設備及製程改善後,重量管制率由103.04%降至102.46%,因人工無法隨時調整成品厚度,難再有效降低。
- 二、重量管制率由人工調整遇到瓶頸,擬導入AI做智慧控制,由製程生產經驗及統計 手法將硬管32項製程變數,篩選出引取機、供料機及押出機轉速3項關鍵變數, 並開發AI重量管制率預測模型,找出製程最佳條件,進行生產線即時智慧控制, 取代人工調整,有效降低重量管制率。
- 三、專案目標:降低小口徑重量管制率0.6%,由102.46%降至101.86%。
- 四、投資費用:23,200千元

硬管小口徑改善後追蹤至2021年,重量管制率由102.46%降至102.19%,降低0.27%,減少用料11.54頓/月,年效益5,568千元,回收年限:4.1年。

持續優化小口徑重量管制率由102.19%降至目標101.86%,預估年效益6,753千元;並横向展開至硬管中、大口徑,預估年效益11,577千元。

報告內容

- 一、硬管製程說明
- 二、改善動機
- 三、AI模型開發歷程
- 四、上線應用
- 五、執行成果與效益
- 六、後續工作規劃

一、製程說明

(一)硬管製造流程:

- 1. 押出機將原料混煉膠化後擠出模具,經過真空冷卻水槽冷卻成型。
- 2. 引取機以馬達傳動履帶引導管子前進,切斷機依規格長度裁切成品。
- 3. 成品秤重後,放口機將成品端口加熱放口,並進行包裝。

(二)成品重要指標:包括成本指標為重量管制率,品質指標為厚度。

成本指標	管制標準
重量管制率	100%~105%
	$(1, 137g \sim 1, 194g)$

以 3	/4"V	V答	為	例
	T	V 5	my	レコー

品質指標	管制標準		
出口 原 庇	2. 7 ^{+0.6} ₋₀ mm		
成品厚度	(2.7mm~3.3mm)		

一、製程說明

(三)成品秤重系統圖示:

荷重單元

秤重系統由3組荷重單元組成,成品秤重後之重量信號,傳送至秤重轉換器進行運算。

秤重轉換器及顯示螢幕

秤重轉換器運算後,即時顯示成品重量,並 自動換算為重量管制率,同時上傳至即時生產 管理系統。

二、改善動機

(一)改善緣由:

- 1. 硬管小口徑重量管制率2004年為103.04%,透過集中監控系統、自動秤重、模具真圓度、配合粉自循環等製程改善,2011年降至102.51%,下降0.53%, 2016年再降至102.46%,僅下降0.05%,靠人工調整難以再降低。
- 2. 運用AI技術進行重量管制率調降優化,收集硬管製程參數進行分析,找出影響重量關鍵因子,建立預測模型,找出製程最佳條件,自動回饋作線上智慧控制,降低重量管制率。

二、改善動機

(二)生產線數據分析:

進行重量管制率數據分析,重量管制率平均值102.46%,最高103.73%與最低101.18%變化幅度達2.55%,擬運用AI技術進行製程優化,提升製程穩定性,以縮小變化範圍,並有效降低重量管制率。

- 1. 硬管小口徑共25條生產線,每條生產線總計收集押出系統、冷卻水槽、引取機及秤重系統等32個製程變數之數據。
- 2. 各機台製程變數透過可程式控制器(PLC),將數據資料上傳至即時生產管理系統,提供 AI模型進行分析應用。
- 3. AI模型運算後,將最佳條件經由可程式控制器(PLC)回饋至生產線,進行線上智慧控制。

(二)執行重點

數據收集

- 1. 透過即時生產管理系統(RTPMS)收集製程數據。
- 2. 透過人員抽檢收集厚度量測數據。

數據前處理

將收集數據進行前處理,使訓練資料更易於模型學習, 提高模型準確度。

變數篩選

透過演算法評估各變數影響力,保留重要關鍵變數,以精簡訓練資料,增進模型學習效率。

建模評估

以各種演算法建立多個模型進行學習,並透過各項指標評估最佳模型。

模型驗證

收集數據進行模型驗證,確認模型的可信度。

項次	石 口	製程變數	數據量	(萬筆)
	· · · · · · · · · · · · · · · · · · ·	(個)	處理前	處理後
1	RTPMS製程參數及秤重數據	32	5, 700	4, 990
2	厚度量測數據	1	1.5	1.5

- 1. 收集小口徑25台機台、每台32個製程變數、30天的時間共5,700萬筆生產數據,經刪除 異常值及停開車期間數據,剩下4,990萬筆數據,將80%作為訓練資料,20%作為驗證資料 進行後續建模評估。
- 2. 收集15,000筆厚度量測數據,監控重量管制率調降時,成品厚度仍可符合CNS品質規範。

(一)精簡資料:機台參數-重量管制率

			 324	個製程變	數 —		_		<	32個	製程變數—		<u> </u>
支號	變數 筆數	押出機 轉速	供料機轉速	引取機轉速	•••	重量 管制率	資料取平均值	變數支號	押出機轉速 平均值	供料機轉速 平均值	引取機轉速 平均值		重量 管制率
	1	43.5	29. 0	960	•••	尚未秤重		1	43.50	29. 02	960.12	•••	102. 23%
1	2	43. 5	29.0	960	•••	尚未秤重	以3/4"W管為例	2	43.50	29. 15	960. 15	:	102. 21%
1		•	•	:	•••	•	每支約可	3	43.50	29. 11	960. 23	•••	102.19%
	20	43. 5	29. 1	961	•••	102. 23%	收集20筆 	4	43.50	29. 13	960. 21	•••	102. 20%
	1	43.5	29. 1	961	•••	尚未秤重		5	43.50	29. 12	960.19	••	102. 20%
2	2	43.5	29. 1	961	•••	尚未秤重		6	43.50	29.11	960. 20	•	102. 20%
	•		•		•			•					•

因每支成品(3/4"W管)生產時間約20秒會產生約20筆製程數據,但重量管制率只有1筆數據,因此將每支硬管產生之製程數據取平均值,使每支成品的重量管制率只對應至1筆製程數據,精簡資料以利後續模型訓練。

(二)資料標準化

32個製程變數因單位及數值大小不同,為避免數值大小差異影響模型準確度,以極小極大手法(Min Max Scaler)進行數據標準化,讓數據在同一基準下進行建模,以提高模型準確度。

Min Max Scaler 公式: $X^* = \frac{X - min}{max - min}$

X:製程變數 max:最大值 min:最小差

模型係數分析

排名	製程變數	模型係數(a _i)
1	引取機轉速	-6.25597
2	供料機轉速	5. 11223
3	押出機轉速	1. 65721
4	押出機扭力	0. 08436
5	套筒第三區溫度	0.07524
6	套筒第五區溫度	0.00568
		:
32	押出機齒輪箱溫度	0.00000

→表示變數對重量管制率影響程度

係數絕對值大:影響程度高

正值:與重量管制率為正相關

負值:與重量管制率為負相關

模型係數為0之變數,經製程人員確認,對於重量管制率影響程度低,故予以剔除。

- 1. 利用Lasso演算法計算出模型係數,判斷製程變數對重量管制率的影響程度,將不顯著之變數予以刪除,簡化模型分析的複雜度,以降低不確定性,最終篩選出引取機轉速、供料機轉速、押出機轉速、押出機轉速、押出機扭力、套筒第三區溫度及第五區溫度6個製程變數。
- 2. 依生產經驗判斷,套筒溫度無法即時回饋控制,押出機扭力為不可調控變數,最終篩選引取機、 供料機及押出機轉速3個變數,作為後續模型學習使用。

MAPE: 越趨近於0越準確 RMSE: 越趨近於0越準確 R²: 越趨近於1越準確

由於重量管制率屬於連續性數值資料,因此採用常見的四種迴歸演算法進行比較,結果以XGBoost所建之模型平均絕對百分比誤差MAPE 0.24%與均方根誤差RMSE 3.09最低,決定係數 R^2 0.93最高,因此選定此模型進行後續驗證是否適用於重量管制率之預測。

採用2019年6月份製程數據進行模型驗證,驗證結果XGBoost模型之平均絕對百分比誤差 MAPE 0.26%,與建模時0.24%相當,判斷可進行後續上線應用。

(一) AI智慧控制-程式架構

- 1. 使用Python建置智慧控制程式,由即時生產管理系統擷取關鍵變數及建立條件組合,產生製程條件供AI模型進行運算。
- 2. 經AI模型進行製程條件運算後,輸出最佳製程條件回饋至機台進行自動控制。
- 3. 成品再由秤重系統將重量管制率之數據,納入AI模型進行驗證並持續優化,以降低重量管制率。

出機轉速/供料機轉速 引取機轉速

(二) AI智慧控制-建置操作條件組合

操作條件組合(11,737組)

標	淮	拇	作	佟	件
775	-	1 亦	11	ルホ	11

規格	變數名稱	標準操作範圍 (rpm)	最小 調整刻度 (rpm)	調整級距 (個)
	押出機轉速	42.5 ~ 44.5	0.2	11
3/4" W管	供料機轉速	28. 2 ~ 31. 2	0.3	11
	引取機轉速	912 ~ 1008	1.0	97

_					
升 速	44. 5/31. 2 912	44. 5/31. 2 913	44. 5/31. 2 914	•••	44. 5/31. 2 1008
押	44. 3/30. 9 912	44. 3/30. 9 913	44. 3/30. 9 914	•••	44. 3/30. 9 1008
出機、	44. 1/30. 6 912	44. 1/30. 6 913	44. 1/30. 6 914	•••	44. 1/30. 6 1008
式供料料	43. 9/30. 3 912	43. 9/30. 3 913	43. 9/30. 3 914	•••	43. 9/30. 3 1008
機轉速	43. 7/30. 0 912	43. 7/30. 0 913	43. 7/30. 0 914	•••	43. 7/30. 0 1008
	:	:	:	:	:
降地	42. 5/28. 2 912	42. 5/28. 2 913	42. 5/28. 2 914	•••	42. 5/28. 2 1008
	《	3	取機轉速		小 本

- 1. 為使AI智慧控制能於標準操作範圍內找出最佳製程條件,避免偏離操作範圍引起製程異常, 須透過AI控制程式產生操作條件組合。
- 2.以3/4"W管為例,每個關鍵變數之標準操作範圍,設定最小調整刻度建立操作條件組合,如押出機轉速調整級距有11個、供料機轉速11個、引取機轉速97個,三項變數形成11,737組,供AI模組算出最佳製程條件,再供機台自動控制生產。

(押出機轉速11個 X 供料機轉速11個 X 引取機轉速97個 = 11,737組)

(三)AI智慧控制-建立製程條件最小調整範圍

操作條件組合(11,737組)

真除农在條件及里里官制平							
變數名稱	製程條件	重量管制率					
押出機轉速	44. 1		-				
供料機轉速	30.6	102. 39%					
引取機轉速	913						

安欧制织从从口丢具筑划家

		4217 71 121	11 12 12 (11)	,	
升 速	44. 5/31. 2 912	44. 5/31. 2 913	44. 5/31. 2 914	:	44.5/31.2 1,008
	44. 3/30. 9 912	44. 3/30. 9 913	44. 3/30. 9 914	::	44. 3/30. 9 1, 008
押 出 機	44. 1/30. 6 912	44. 1/30. 6 913(102. 39%)	44. 1/30. 6 914	::	44.1/30.6 1,008
、 供 料	43. 9/30. 3 912	43. 9/30. 3 913	43. 9/30. 3 914	::	43. 9/30. 3 1, 008
料機轉速	43. 7/30. 0 912	43. 7/30. 0 913	43. 7/30. 0 914	::	43.7/30.0 1,008
速	i:	:			:
降/	42. 5/28. 2 912	42. 5/28. 2 913	42. 5/28. 2 914	•••	42. 5/28. 2 1, 008
	降速	3	取機轉速		

- 1. 為確保製程穩定,必須先設定一個最小調整範圍,給AI去做逐步控制。
- 2. 依實際的製程條件及重量管制率,在操作條件組合中,由程式找出該條件相鄰的範圍共9個製程條件,供AI模型去預測相鄰條件的重量管制率。

(四) AI智慧控制-製程條件最佳化

操作條件組合(3/4" W管)

4	4. 5/31. 2 912	44. 5/31. 2 913	44. 5/31. 2 914		44. 5/31. 2 1, 008		重量管	制率預測值	組合
4	4. 3/30. 9 912	44. 3/30. 9 913	44. 3/30. 9 914		44. 3/30. 9 1, 008	AI模型 預測	102.54%	102.44%	102.42%
4	4. 1/30. 6 912	44. 1/30. 6 913(102. 39%)	44. 1/30. 6 914		44. 1/30. 6 1, 008	演算	102.45%	(預測值)	(預測值)
4	3. 9/30. 3 912	43. 9/30. 3 913	43. 9/30. 3 914		43. 9/30. 3 1, 008	<u>i</u>	(預測值)	(實際值)	(預測值)
4	3. 7/30. 0 912	43. 7/30. 0 913	43. 7/30. 0 914		43. 7/30. 0 1, 008		102.37%	102.25%	102.19%
	:	÷	:	:	:		(預測值)	(預測值)	(預測值)
4	2. 5/28. 2 912	42. 5/28. 2 913	42. 5/28. 2 914	•••	42. 5/28. 2 1, 008				

- 1. 將已取得之最小調整範圍內9個條件匯入AI模型,以XGBoost進行演算,除實際值外,另外產生8個相鄰操作條件之重量管制率預測值組合。
- 2. 依預測結果,預測值最小(102.19%)就是目前的最佳操作條件,AI系統會將此條件回饋至機台進行 自動控制,並持續進行製程條件最佳化。

(五)硬管重量智慧控制-線上控制即時畫面

- 1. 改善前:人工調整時,硬管重量變化大,重量標準差4.83g,穩定性較差。
- 2. 改善後:啟動AI智慧控制,自動調整製程條件,同時進行多變數自動控制,即時調整引取機、供料機及押出機轉速,使成品重量趨於穩定,重量標準差下降至1. 98g,AI智慧控制持續運作,使生產條件維持最佳狀態。

(六)重量管制率線上控制結果

透過硬管重量管制率線上智慧控制後,提高製程之精度與準度,使成品重量管制率短時間趨於穩定,硬管重量管制率平均值由102.46%降至102.19%,下降0.27%,標準差由0.4%降至0.17%,下降0.23%。

五、執行成果與效益

(一)成本指標:重量管制率

- 1. 硬管小口徑系統優化完成後,重量管制率由102. 46%降低至102. 19%,降低0. 27%。
- 2.以2021年小口徑規格產量4,275噸/月計算,重量管制率下降,減少用料11.54噸/月,實際年效益5,568千元。

(二)品質指標:成品厚度

經重量管制率優化系統自動控制後,3/4"W管平均厚度由2.80mm降至2.78mm,標準差由0.022mm降至0.012mm,提升製程控制之精度及準度。

六、後續工作規劃

(一)持續優化小口徑重量管制率,預計由102.19%續降至目標值101.86%, 再下降0.33%;為使AI預測模型更精準,已再增設線上配合粉假比重 分析儀及成品厚度測厚儀,收集相關數據中,建立預測模型納入智慧 控制,預定2022/12/31完成。

(二)横向展開推動至硬管中、大口徑,目標重量管制率各調降0.5%,中口徑由102.29%降至101.79%,大口徑由102.34%降至101.84%。

六、後續工作規劃

(三)後續工作預定完成日期及效益分析如下:

項次	項目名稱	原料節省 (噸/月)	預定完成日期	年效益 (千元)
1	硬管小口徑重量管制率再優化	14	2022/12/31	6, 753
2	硬管中口徑重量管制率優化	15	2023/06/30	7, 236
3	硬管大口徑重量管制率優化	9	2023/12/31	4, 341
4	能源智慧控制系統		2022/07/31	3, 346
5	螺桿套筒壽命預測		2022/12/31	986
合計		22, 662		

- 1. 規劃硬管小口徑重量管制率再優化至101. 86%,預定於2022/12/31前完成、年效益6,753千元,中口徑預定於2023/6/30前完成、年效益7,236千元,大口徑預定於2023/12/31前完成、年效益4,341千元;硬管大、中、小口徑重量管制率優化,共計年效益18,330千元。
- 2. 另外能源智慧控制系統預定於2022/7/31前完成、年效益3,346千元,螺桿套筒壽命預測預定於2022/12/31前完成、年效益986千元。
- 3. 全部項目完成後,硬管合計年效益22,662千元。

報告完畢恭請指導