Let k be an arbitrary field and k(t) be a simple transcendental extension. We hope to understand intermediate extensions $k \subset L \subset k(t)$. To state Lüroth's theorem, we need a definition and a lemma:

Lemma 1. If $f \in k(t)[x]$ is nonzero, f can be uniquely written

$$\frac{P(t,x)}{Q(t)}$$

in such a way that Q(t) and P(t,x) have no common factors in the UFD k[t,x], and Q is monic.

Proof. First, write

$$f = \frac{p_0(t)}{q_0(t)} + \frac{p_1(t)}{q_1(t)}x + \ldots + \frac{p_n(t)}{q_n(t)}x^n.$$

Then, we can note that

$$f = \frac{\sum_{i=0}^{n} q_0(t) \cdot \dots \cdot q_i(t) \cdot \dots \cdot q_n(t) p_i(t) x^i}{q_0(t) \cdot \dots \cdot q_n(t)}.$$

Now we have expressed f as a fraction of polynomials in k[t,x]. Since k[t,x] is a UFD, we can write the fraction in a reduced form. The reduced form is unique if we further multiply both numerator and denominator by a constant term such that the denominator is monic.

Definition 1. Let $u \in k(t)[x]$. By the previous lemma, there exists unique P, Q, where Q is monic, such that

$$u = \frac{P(t, x)}{Q(t)}.$$

We define the **height of** u to be the number

$$\max (\deg_t(P), \deg_t(Q))$$
.

We first go through some lemmas before stating Lüroth's theorem.

Lemma 2. If $f \in k(t)[x]$ $(f = \frac{P(t,x)}{Q(t)})$ is monic in x,

$$ht(f) = deg_t(P(t, x)).$$

Furthermore, we have that P(t, x) is not divisible by any non-unit of k[t].

Proof. First, write

$$f(x) = \frac{p_n(t)x^n + \ldots + p_0(t)}{Q(t)}.$$

Because f is monic, $p_n(t) = Q(t)$, implying $\deg_t(P) \ge \deg_t(Q)$. A restatement of the second conclusion of the theorem is that $\gcd(p_0, p_1, \dots, p_n) = 1$. Since the expression above is assumed to be a reduced fraction, no factor of Q also divides all p_i simultaneously. This means

$$\gcd(Q, p_0, p_1, \dots, p_n) = 1.$$

But $Q = p_n$ implies

$$\gcd(p_0, p_1, \dots, p_n) = 1.$$

Corollary 1. If $f, g \in k(t)[x] - \{0\}$, are monic in x,

$$ht(f \cdot g) = ht(f) + ht(g).$$

Proof. We have $f \cdot g$ is monic in x. If $f = \frac{P}{Q}$ and $g = \frac{P'}{Q'}$,

$$f \cdot g = \frac{P \cdot P'}{Q \cdot Q'}.$$

This fraction is in a reduced form and $Q \cdot Q'$ is monic. Hence

$$ht(f \cdot g) = \deg_t(P \cdot P') = \deg_t(P) + \deg_t(P') = ht(f) + ht(g)$$

by the lemma.

Lemma 3. Let $u \in k(t) \setminus k$. There exists $u' \in k(t) \setminus k$ such that k(u') = k(u) where $u' = \frac{P'}{Q'}$, $\deg_t(P) > \deg_t(Q)$, and P', Q' are monic.

Proof. First, we know $u = \frac{P}{Q}$ by Lemma . If $\deg_t(Q) < \deg_t(P)$, we can just multiply u by a constant to achieve the desired u'. Otherwise, we can select $\beta \in k$ such that $\deg(P + \beta Q) < \deg(Q)$. We can write

$$u' = \alpha * \frac{Q}{P + \beta Q}$$

where α is chosen so that the resulting fraction has monic numerator and denominator. Note that Q and $P + \beta Q$ do not have common factors. In either case, note $u \in k(u')$ and $u' \in k(u)$, so k(u) = k(u').

Lemma 4. Given $u = \frac{P(t)}{Q(t)} \in k(t) - k$, verify that t is a root of $P(x) - uQ(x) \in k(u)[x]$. Show further that if $\deg_t(P) > \deg_t(Q)$, and P is monic, then the above polynomial is monic.

Proof. The first assertion is just

$$P(t) - \frac{P(t)}{Q(t)}Q(t) = 0.$$

The second claim is just because the leading coefficient of P(x) - uQ(x) is equal to that of P(x) if $\deg_t(P) > \deg_t(Q)$.

We would like to prove the following theorem:

Theorem 1. (Lüroth's Theorem) Let k be an arbitrary field. If k(t) is a simple transcendental extension of k, and

$$k \subset L \subset k(t)$$
.

is an arbitrary intermediate field extension $L \neq k$, then L is also a simple transcendental extension over k, generated by an element $u \in k(t)$ of minimal possible height. We further have $[L:k] = \operatorname{ht}(u)$.

The proof requires some steps. Given u an element of minimal height in L-k, we write

$$u = \frac{P(t)}{Q(t)}$$

using Lemma , and denote the height of u by $n \in \mathbb{Z}$. By Lemma , we can assume that $\deg(P) > \deg(Q)$ and P is monic.

Lemma 5. For any $f \in L[x]$, ht(f) is either 0 or is at least n. P(x) - uQ(x) is either irreducible in L[x] or is divisible by a non-unit element of k[x].

Proof. We also show that $P(x) - u \cdot Q(x)$ has height n. By Lemma , we can construct $f' = \frac{P'}{Q'}$ such that both numerator and denominator are monic with

$$\deg_t(P') > \deg_t(Q').$$

By construction of u, $\operatorname{ht}(f') \ge \operatorname{ht}(u) = n$ or $\operatorname{ht}(f') = 0$. The conclusion is given by $\operatorname{ht}(f) = \operatorname{ht}(f')$. We calculate

 $\operatorname{ht}\left(P(x) - \frac{P(t)}{Q(t)}Q(x)\right) = \operatorname{ht}\left(\frac{P(x)Q(t) - P(t)Q(x)}{Q(t)}\right).$

Note that Q(t) does not share a factor with P(x)Q(t) - P(t)Q(x), for then it would share a factor with P(t)Q(x). Because k[t,x] is a UFD, this would mean Q(t) shares a factor with P(t). In particular, the expression in the height above is the fraction expression used in the definition of height. The height is thus

$$\max(\deg_t(P(x)Q(t) - P(t)Q(x)), \deg_t(Q(t)) = \max(\deg_t(P(t), \deg_t(Q(t))))$$

because $\deg(P) > \deg(Q)$. The second conclusion is from the fact that if P(x) - uQ(x) = s(t,x)w(t,x) for $s, w \in L[x]$, we can assume s, w are monic in x since P(x) - uQ(x) is. Corollary 1 says that $\operatorname{ht}(s) + \operatorname{ht}(w) = \operatorname{ht}(P(x) - uQ(x)) = n$. Hence one of $\operatorname{ht}(s), \operatorname{ht}(w)$ is 0 and one of them is n.

Lemma 6. If P(x) - uQ(x) is divisible in L[x] by an element in k[x], then this element must divide both P(x) and Q(x). Deduce that this element must be a unit.

Proof. The second claim immediately follows from the first because we assume $\frac{P}{Q}$ is a reduced fraction. To prove the first claim, if P - uQ is divisible by an element $s(x) \in k[x]$ in L[x], we have there exists $w(x,t) \in L[x]$ such that

$$s(x)w(x,t) = P(x) - uQ(x).$$

In L, we can extend $\{1, u\}$ to a basis for L as a k-vector space using Zorn's lemma. Say

$$L=k\oplus k\cdot u\oplus W.$$

for complementary k-vector subspace $W \subset L$. Denote the L coefficients for P, Q, w, s by P_i, Q_i, w_i, s_i respectively (in the first two cases they are coefficients in k) and

$$w_i(t) = a_i + b_i u + c_i(t)$$

for $w_i(t) \in L$, $a_i, b_i \in k$, and $c_i(t) \in W$. Then for all $i, s(x) \cdot w(x, t) = P(x) - uQ(x)$ gives

$$\sum_{j+k=i} s_j (a_k + b_k u + c_k(t)) = P_i - uQ_i.$$

By linear independence,

$$s(x) \cdot (a_0 + a_1 x + \ldots + a_{\deg_x(w)}) = P$$

and

$$s(x)\cdot(b_0+b_1x+\ldots+b_{\deg_x(w)}x^{\deg_x(w)})=Q.$$

Finally, we can prove Lüroth's theorem as follows. P(x) - uQ(x) is an irreducible polynomial with t as a root. This implies that P(x) - uQ(x) is a minimal polynomial of t over L and k(u). In particular,

$$[L:k] = [k(u):k] = \deg(P(x)).$$

Hence, we have [L:k(u)]=1 and L=k(u).

3