Intro to Real Analysis HW #8

Ozaner Hansha

April 16, 2021

Problem 1

Solution: Suppose, for contradiction, that f is not uniformly continuous on A. Then there would exist some $\epsilon_0 > 0$ and sequences whose elements $x_k, y_k \in A$ such that:

$$\lim_{k \to \infty} |x_k - y_k| = 0 \land (\forall k \in \mathbb{N}) |f(x_k) - f(x_y)| \ge \epsilon_0$$

Now note that since A is is closed and bounded, there is a convergent subsequence x_{k_i} of x_k such that:

$$\lim_{i \to \infty} x_{k_i} = x \in A$$

Moreover, since $x_k - y_k \to 0$ as $k \to \infty$, it follows that:

$$\lim_{i \to \infty} y_{k_i} = \lim_{i \to \infty} (x_{k_i} - (x_{k_i} - y_{k_i})) = \lim_{i \to \infty} x_{k_i} - \lim_{i \to \infty} x_{k_i} - y_{k_i} = x$$

so y_{k_i} also converges to x. And since f is continuous on A, we have:

$$\lim_{i \to \infty} |f(x_{k_i}) - f(y_{k_i})| = |\lim_{i \to \infty} f(x_{k_i}) \lim_{i \to \infty} -f(y_{k_i})| = |f(x) - f(y)| = 0$$

But this contradictions what we stated previously, namely:

$$|f(x_k) - f(x_y)| \ge \epsilon_0$$

Thus, f must be uniformly continuous.

Problem 2

Solution: if $f(1/2) \neq 0$ then, since [0,1] is compact, there is some neighborhood of points N around 1/2 such that each $x \in N$ satisfies $f(x) \neq 0$. Thus 1/2 is an accumulation point of D.

Problem 3

Solution: If f(0) = 0 or f(1) = 1 then we are done. Otherwise, define g(x) = f(x) - x. Certainly g is continuous as it is the difference of two continuous functions. Now note the following:

$$0 < f(0) \qquad \qquad (f(0) = 0 \text{ case already considered})$$

$$< f(0) - 0$$

$$< g(0) \qquad \qquad (\text{def. of } g)$$

$$1 > f(1) \qquad \qquad (f(1) = 1 \text{ case already considered})$$

$$0 > f(1) - 1$$

$$> g(1) \qquad \qquad (\text{def. of } g)$$

And so we have that g(1) < 0 < g(0), and so by the intermediate value theorem, there must be some $x \in [0,1]$ such that g(x) = 0 which is equivalent to:

$$g(x) = 0$$

$$f(x) - x = 0$$

$$f(x) = x$$
(def. of g)

And so there is some $x \in [0,1]$ such that f(x) = x.

Problem 4

Solution: Recall that a compact subset E of \mathbb{R} is one that is both bounded, and closed. Since E is bounded, the supremum $\sup(E) = a$ must exist. This means there is a sequence $x_n \in E$ such that $x_n \to a$, since the supremum of a set lies either in it, or on its boundary. And since E is closed, that $a \in E$, meaning $a = \sup(E) \in E$.

Problem 5

Solution: A Cauchy sequence has a limit, and so $x_k \to x$. Next note that x is an accumulation point of E since each $x_k \in E$. Since E is closed, that accumulation point $x \in E$.