Практика использования и наиболее полезные конструкции языка Rust

Содержание

1	Ресуры по языку Rust	1
2	Установка Rust	1
3	Вводные замечания	2
4	Начало работы 4.1 Первая программа на Rust	3
C	писок литературы	4
C	писок листингов	4

1. Ресуры по языку Rust

```
https://www.rust-lang.org/tools
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/rust-by-example/
```

2. Установка Rust

Установить Rust проще всего с помощью утилиты rustup — это установщик языка и менеджер версий. Для операционной системы Windows можно скачать rustup-init.exe со страницы проекта https://www.rust-lang.org/learn/get-started

Установить Rust на Linux можно так

```
$ curl https://sh.rustup.rs -sSf | bash
...
Current installation options:

default host triple: x86_64-unknown-linux-gnu
default toolchain: stable (default)
profile: default
modify PATH variable: yes

1) Proceed with installation (default)
2) Customize installation
3) Cancel installation
>1
info: profile set to 'default'
```

```
info: default host triple is x86_64-unknown-linux-gnu info: syncing channel updates for 'stable-x86_64-unknown-linux-gnu' ...
```

Rust часто обновляется и чтобы получить последнюю версию, можно воспользоваться командной rustup update.

Собрать проект и обновить его зависимости можно с помощью утилиты cargo

```
cargo build # build your project
cargo run # cargo run
cargo test # test project
cargo doc # build documentation for your project
cargo publish # publish a libarary to crates.io
```

To есть cargo знает, как превратить Rust-код в исполняемый бинарный файл, а также может управлять процессом загрузки и компиляции проектных зависимостей.

3. Вводные замечания

Система владения устанавливает время жизни каждого значения, что делает ненужным сборку мусора в ядре языка и обеспечивает надежные, но вместе с тем гибкие интерфейсы для управления такими ресурсами, как сокеты и описатели файлов. Передеча (move) позволяет передавать значение от одного владельца другому, а заимствование (borrowing) – использовать значение временно, не изменяя владельца.

Rust — типобезопасный язык. Но что понимается под типобезопасностью? Ниже приведено определение «неопределенного поведения» из стандарта языка С 1999 года, известного под названием «С99»: неопределнное поведение — это поведение, являющееся следствием использования непереносимой или некорректной программной конструкции либо некорректных данных, для которого в настоящем Международном стандарте нет никаких требований.

Рассмотрим следующую программу на С

```
int main(int argc, char **argv) {
    // объявление одноэлементного массива беззнаковых длинных целых чисел
    unsigned long a[1];
    // обращение к 4-ому элементу массива; индекс, нарушает границу диапазона
    a[3] = 0x7ffff7b36cebUL;
    return 0;
}
```

Эта программа обращается к элементу за концом массива а, поэтому согласно С99 ее *поведение не определно*, т.е. она может делать все что угодно. «Неопределенная» операция не просто возвращает неопределнный результат, она дает программе карт-бланш на *произвольное выполнение*(!).

С99 предоставляет компилятору такое право, чтобы он мог генерировать более быстрый код. Чем возлагать на компилятор ответственность за обнаружение и обработку странного поведения вроде выхода за конец массива, стандарт предполагает, что программист должен позаботиться о том, чтобы такие ситуации никогда не возникали.

Если программа написана так, что ни на каком пути выполнения *неопределенное выполнение невозможно*, то будем говорить, что программа *корректна* (well defined).

Если встроенные в язык проверки *гарантируют корректность программы*, то будем называть язык *типобизопасным* (type safe).

Тщательно напсанная программа на С или С++ может оказаться типобезопасной, но ни С, ни С++ не является типобезопасным языком: в приведенном выше примере нет ошибок типизации, и тем не менее она демонстрирует неопределенное поведение. С другой стороны, Python – типобезопасный язык, его интерпретатор тратит время на обнаружение выхода за границы массива и обрабатывает его лучше, чем компилятор С.

4. Начало работы

Создать проект на Rust можно командной cargo new color

```
$ cargo new hello # создать проект hello
$ tree
hello/
  Cargo.toml
  src/
   main.rs
$ cd hello
$ cargo run # запустить проект
  Compiling hello v0.1.0 (/home/kosyachenko/Projects/GARBAGE/rust_projects/hello)
Finished dev [unoptimized + debuginfo] target(s) in 0.42s
Running 'target/debug/hello'
Hello, world!
# Дерево проекта изменилось
$ tree
Cargo.lock # apmedakm
Cargo.toml
src/
  main.rs
target/ # apmeφaκm
  CACHEDIR. TAG
  debug/
    build
    deps/
     hello-27...
     hello-27...d
    examples/
    hello
    hello.d
    incremental/
      hello-imy.../
        s-ghim...
```

В основном каталоге имеется файл Cargo.toml, содержащий описание метаданных проекта, таких как имя проекта, его версия и его зависимости. Исходный код попадает в директорию src.

Выполнение команды cargo run привело также к добавлению к проекту новых файлов. Теперь у нас в основном каталоге проекта есть файл Cargo.lock и каталог target. В Cargo.lock указываются конкретные номера версий всех зависимостей, чтобы будущие сборки составлялись точно также, как и эта, пока содержимое Cargo.toml не изменится.

4.1. Первая программа на Rust

Нужно как обычно с помощью cargo new hello создать новый проект. Перейти в созданную директорию проекта и в файле main.rs директории src написать следущее

./src/main.rs

```
fn greet_world() {
    println!("Hello, world!");
    let southern_germany = "Germany";
    let japan = "Japan";
    let regions = [southern_germany, japan];

    for region in regions.iter() {
        println!("{}", &region);
    }
}

fn main() {
    greet_world();
}
```

Восклицательный знак свидетельствует об использовании *макроса*. Для операции присваивания в Rust, которую правильнее было бы называть *привязкой переменной*, используется ключевое слово let. Поддержка Unicode предоставляется самим языком.

Для *литералов массива* используются *квадратные скобки*. Для возврата итератора метод iter() может присутствовать во многих типах. Амперсанд «заимствует» region так, чтобы доступ предоставлялся *только для чтения*.

Строки ганатировано получают кодировку UTF-8.

Список литературы

1. *Кольцов Д.М.* Си на примерах. Практика, практика и только практика. – СПб.: Наука и Техника, 2019. - 288 с.

Листинги