MA504: Real Analysis Notes

Xi Tan (tan19@purdue.edu)

July 30, 2013

Contents

1	\mathbf{The}	1	5
	1.1	Introduction	5
		1.1.1 Definitions	5
2	Bas	ic Topology	7
	2.1	Finite, Countable, and Uncountable Sets	7
		2.1.1 Definitions	7
		2.1.2 Theorems	8
	2.2	Metric Spaces	9
		2.2.1 Definitions	9
		2.2.2 Theorems	0
	2.3		1
		-	1
			2
	2.4	Perfect Sets	2
			2
	2.5		.3
			3
			.3
3	Nur	merical Sequences and Series 1	4
	3.1	•	4
		~ ·	4
			4
	3.2		5
		-	5
			5
	3.3		6
	0.0	J - 1	6
			6
	3.4		7
	J. 1	11	7
			7
	3.5		8

		3.5.1 Theorems
	3.6	Series
		3.6.1 Definitions
		3.6.2 Theorems
	3.7	Series of Nonnegative Terms
		3.7.1 Theorems
	3.8	The Number e
	0.0	3.8.1 Definitions
		3.8.2 Theorems
	3.9	The Root and Ratio Tests
	0.0	3.9.1 Theorems
	3 10	Power Series
	3.10	3.10.1 Definitions
	0.11	
	3.11	Summation by Parts
	0.10	3.11.1 Theorems
	3.12	Absolute Convergence
		3.12.1 Definitions
		3.12.2 Theorems
	3.13	Addition and Multiplication of Series
		3.13.1 Definitions
		3.13.2 Theorems
	3.14	Rearrangements
		3.14.1 Definitions
		3.14.2 Theorems
	~	
4		tinuity 24
	4.1	Limits of Functions
		4.1.1 Definitions
		4.1.2 Theorems
	4.2	Continuous Functions
		4.2.1 Definitions
		4.2.2 Theorems
	4.3	Continuity and Compactness
		4.3.1 Definitions
		4.3.2 Theorems
	4.4	Continuity and Connectedness
		4.4.1 Theorems
	4.5	Discontinuities
		4.5.1 Definitions
	4.6	Monotonic Functions
		4.6.1 Definitions
		4.6.2 Theorems
	4.7	Infinite Limits and Limits at Infinity
		4.7.1 Definitions
		4.7.2 Theorems

5	Diff	erentiation	29
	5.1	The Derivative of a Real Function	29
		5.1.1 Definitions	29
		5.1.2 Theorems	29
	5.2	Mean Value Theorems	30
		5.2.1 Definitions	30
		5.2.2 Theorems	30
	5.3	The Continuity of Derivatives	31
		5.3.1 Theorems	31
	5.4	L'Hospital's Rule	31
		5.4.1 Theorems	31
	5.5	Derivatives of Higher Order	31
		5.5.1 Definitions	31
	5.6	Taylor's Theorem	32
	0.0	5.6.1 Theorems	32
	5.7	Differentiation of Vector-valued Functions	32
	٠.,	5.7.1 Theorems	32
			-
6	The	Riemann-Stieltjes Integral	33
	6.1	Definition and Existence of the Integral	33
		6.1.1 Definitions	33
		6.1.2 Theorems	33
	6.2	Properties of the Integral	34
		6.2.1 Definitions	34
		6.2.2 Theorems	34
	6.3	Integration and Differentiation	35
		6.3.1 Theorems	35
7	Soci	uences and Series of Functions	37
•	7.1	Discussion of Main Problem	37
	1.1	7.1.1 Definitions	37
	7.2	Uniform Convergence	37
	1.4	7.2.1 Definitions	37
		7.2.2 Theorems	38
	7.3	Uniform Convergence and Continuity	38
	1.0	7.3.1 Definitions	38
		7.3.2 Theorems	38
	7.4		39
	1.4	Uniform Convergence and Integration	39
	7 5	7.4.1 Theorems	
	7.5	Uniform Convergence and Differentiation	40
	76		40
	7.6	Equicontinuous Families of Functions	40
		7.6.1 Definitions	40
	77	7.6.2 Theorems	40
	7.7	The Stone-Weierstrass Theorem	41

8	Some Special Functions	42
9	Functions of Several Variables	43
	9.1 The Contraction Principle	43
	9.1.1 Definitions	43
	9.1.2 Theorems	43
10	Exercises	44
	10.1 Concept Questions	44

The Real and Complex Number Systems

1.1 Introduction

1.1.1 Definitions

Definition 1.1.1 If A is any set (whose elements may be numbers or any other objects), we write $x \in A$ to indicate that x is a member (or an element) of A. If x is not a member of A, we write: $x \notin A$.

Definition 1.1.2 Through tout Chap. 1, the set of all rational numbers will be denoted by Q.

Definition 1.1.3 Suppose S is an ordered set, $E \subset S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- (i) α is an upper bound of E.
- (ii) If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the *least upper bound* of E [that there is at most one such α is clear from (ii)] or the *supremum* of E, and we write

$$\alpha = \sup E$$
.

The *greatest lower bound*, or infimum, of a set E which is bounded below is defined in the same manner: The statement

$$\alpha = \inf E$$

means that α is a lower bound of E and that no β with $\beta > \alpha$ is a lower bound of E.

Definition 1.1.4 The extended real number system consists of the real field R and two symbols, $+\infty$ and $-\infty$. We preserve the original order in R, and define

$$-\infty < x < +\infty$$

for every $x \in R$.

Basic Topology

2.1 Finite, Countable, and Uncountable Sets

2.1.1 Definitions

Definition 2.1.1 Consider two sets A and B, whose elements may be any objects whatsoever, and suppose that with each element x of A there is associated, in some manner, an element of B, which we denote by f(x). Then f is said to be a function from A to B (or a mapping of A into B). The set A is called the domain of f (we also say f is defined on A), and the elements f(x) are called the values of f. The set of all values of f is called the range of f.

Definition 2.1.2 Let A and B be two sets and let f be a mapping of A into B. If $E \subset A$, f(E) is defined to be the set of all elements f(x), for $x \in E$. We call f(E) the *image* of E under f. In this notation, f(A) is the range of f. It is clear that $f(A) \subset B$. If f(A) = B, we say that f maps f(A) = B (Note that, according to this usage, *onto* is more specific that f(A) = B.

Definition 2.1.3 If $E \subset B$, $f^{-1}(E)$ denotes the set of all $x \in A$ such that $f(x) \in E$. We call $f^{-1}(E)$ the *inverse image* of E under f. If $y \in B$, $f^{-1}(y)$ is the set of all $x \in A$ such that f(x) = y. If, for each $y \in B$, $f^{-1}(y)$ consists of at most one element of A, then f is said to be a 1-1 (*one-to-one*) mapping of A into B. This may also be expressed as follows. f is a 1-1 mapping of A into B provided that $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2, x_1 \in A, x_2 \in A$.

E is not necessarily a subset of f(A)

Definition 2.1.4 If there exists a 1-1 mapping of A onto B, we say that A and B can be put in 1-1 correspondence, or that A and B have the same cardinal number, or, briefly, that A and B are equivalent, and we write $A \sim B$. This relation clearly has the following properties:

It is reflexive: $A \sim A$

It is symmetric: If $A \sim B$, then $B \sim A$

It is transitive: If $A \sim B$ and $B \sim C$, then $A \sim C$

Any relation with theses three properties is called an *equivalence relation*.

Definition 2.1.5 For any positive integer n, let J_n be the set whose elements are the integers $1, 2, \dots, n$; let J be the set consisting of all positive integers. For any set A, we say:

- (a) A is *finite* if $A \sim J_n$ for some n (the empty set is also considered to be finite).
- (b) A is *infinite* if A is not finite.
- (c) A is *countable* if $A \sim J$.
- (d) A is *uncountable* if A is neither finite nor countable.
- (e) A is at most countable if A is finite or countable.

Countable sets are sometimes called *enumerable* or *denumerable*.

Definition 2.1.6 By a *sequence*, we mean a function f defined on the set J of all positive integers. If $f(n) = x_n$, for $n \in J$, it is customary to denote the sequence f by the symbol $\{x_n\}$, or sometimes by x_1, x_2, x_3, \cdots . The values of f, that is, the elements x_n , are called the *terms* of the sequence. If A is a set and if $x_n \in A$ for all $n \in J$, then $\{x_n\}$ is said to be a *sequence in* A, or a *sequence of elements of* A.

Definition 2.1.7 Let A and Ω be sets, and suppose that with each element α of A there is associated a subset of Ω which we denote by E_{α} . The set whose elements are the sets E_{α} will be denoted by $\{E_{\alpha}\}$. Instead of speaking of sets of sets, we shall sometimes speak of a collection of sets, or a family of sets. The *union* of the sets E_{α} is defined to be the set S such that $x \in S$ if and only if $x \in E_{\alpha}$ for at least one $\alpha \in A$. We use the notation

$$S = \bigcup_{\alpha \in A} E_{\alpha}.$$

The *intersection* of the sets E_{α} is defined to be the set P such that $x \in P$ if and only if $x \in E_{\alpha}$ for every $\alpha \in A$. We use the notation

$$P = \bigcap_{\alpha \in A} E_{\alpha}.$$

2.1.2 Theorems

Theorem 2.1.1 A is infinite if and only if A is equivalent to one of its proper subsets.

Theorem 2.1.2 Every infinite subset of a countable set A is countable.

Theorem 2.1.3 Let $\{E_n\}$, $n=1,2,3,\cdots$, be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n.$$

Then S is countable.

Theorem 2.1.4 Let A be a countable set, and let B_n be the set of all n-tuples (a_1, \dots, a_n) , where $a_k \in A(k = 1, \dots, n)$, and the elements a_1, \dots, a_n need not be distinct. Then B_n is countable.

Corollary 2.1.1 The set of all rational numbers is countable.

Theorem 2.1.5 Let A be the set of all sequences whose elements are the digits 0 and 1. This set A is uncountable.

2.2 Metric Spaces

2.2.1 Definitions

Definition 2.2.1 A set X, whose elements we shall call *points*, is said to be a *metric space* if with any two points p and q of X there is associated a real number d(p,q), called the *distance* from p to q, such that

- (a) d(p,q) > 0 if $p \neq q$; d(p,q) = 0;
- (b) d(p,q) = d(q,p);
- (c) $d(p,q) \le d(p,r) + d(r,q)$, for any $r \in X$.

Any function with these three properties is called a *distance function*, or a *metric*.

Definition 2.2.2

- (a) By the *segment* (a,b) we mean the set of all real numbers x such that a < x < b.
- (b) By the *interval* [a, b] we mean the set of all real numbers x such that $a \le x < b$.
- (c) Occasionally we shall also encounter "half-open intervals" [a,b) and (a,b]; the first consist of all x such that $a \le x < b$, the second of all x such that a < x < b.
- (d) If $a_i < b_i$ for $i = 1, \dots, k$, the set of all points $\mathbf{x} = (x_1, \dots, x_k)$ in \mathbb{R}^k whose coordinates satisfy the inequalities $a_i \le x_i \le b_i (1 \le i \le k)$ is called a k-cell.
- (e) If $\mathbf{x} \in R^k$ and r > 0, the *open* (or *closed*) *ball* B with center at \mathbf{x} and radius r is defined to be the set of all $y \in R^k$ such that $|\mathbf{y} \mathbf{x}| < r$ (or $|\mathbf{y} \mathbf{x}| < r$).

Definition 2.2.3 We call a set $E \subset \mathbb{R}^k$ convex if

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in E$$

whenever $\mathbf{x} \in E$, $\mathbf{y} \in E$, and $0 < \lambda < 1$.

Definition 2.2.4 Let X be a metric space. All points and sets mentioned below are understood to be elements and subsets of X.

- (a) A neighborhood of p is a set $N_r(p)$ consisting of all q such that d(p,q) < r, for some r > 0. The number r is called the radius of $N_r(p)$.
- (b) A point p is a *limit point* of the set E if *every* neighborhood of p contains a point $q \neq p$ such that $q \in E$.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an *isolated point* of E.
- (d) E is *closed* if every limit point of E is a point of E.
- (e) A point p is an *interior* point of E if there is a neighborhood N of p such that $N \subset E$.
- (f) E is *open* if every point of E is an interior point of E.
- (g) The *complement* of E (denoted by E^c) is the set of all points $p \in X$ such that $p \notin E$.
- (h) E is *perfect* if E is closed and if every point of E is a limit point of E.
- (i) E is bounded if there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- (j) E is *dense* in X if every point of X is a limit point of E, or a point of E (or both).

Definition 2.2.5 If X is a metric space, if $E \subset X$, and if E' denotes the set of all limit points of E in X, then the *closure* of E is the set $\bar{E} = E \cup E'$.

2.2.2 Theorems

Theorem 2.2.1

- (a) Balls are convex.
- (b) K-cells are convex.

Theorem 2.2.2 Every neighborhood is an open set.

Theorem 2.2.3 If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

An equivalent definition: There exsits a neighborhood of

p such that the only element in E it contains is p itself.

Corollary 2.2.1 A finite point set has no limit points.

Theorem 2.2.4 Let $\{E_n\}$ be a (finite or infinite) collection of sets E_n . Then

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}^{c}\right).$$

Theorem 2.2.5 A set F is closed if and only if its complement is open.

Theorem 2.2.6

- (a) For any collection $\{G_n\}$ of open sets, $\bigcup_n G_n$ is open.
- (b) For any collection $\{F_n\}$ of closed sets, $\bigcap_n F_n$ is closed.
- (c) For any finite collection G_1, \dots, G_n of open sets, $\bigcap_{i=1}^n G_i$ is open.
- (d) For any finite collection F_1, \dots, F_n of closed sets, $\bigcup_{i=1}^n F_i$ is closed.

Theorem 2.2.7 If X is a metric space and $E \subset X$, then

- (a) \bar{E} is closed,
- (b) $E = \bar{E}$ if and only if E is closed,
- (c) $\bar{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

By (a) and (c), \bar{E} is the smallest closed subset of X that contains E,

Theorem 2.2.8 Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then $y \in \overline{E}$. Hence $y \in E$ if E is closed.

Theorem 2.2.9 Suppose $Y \subset X$. A subset E of Y is open relative to Y is and ony if $E = Y \cap G$ for some open subset G of X.

2.3 Compact Sets

2.3.1 Definitions

Definition 2.3.1 By an *open cover* of a set E in a metric space X we mean a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition 2.3.2 A subset K of a metric space X is said to be *compact* if every open cover of K contains a *finite* subcover.

It is clear that every finite set is compact.

2.3.2 Theorems

Theorem 2.3.1 Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact relative to Y.

Theorem 2.3.2 Compact subsets of metric spaces are closed.

Theorem 2.3.3 Cloased subsets of compact sets are compact.

Theorem 2.3.4 If F is closed and K is compact, the $nF \cap K$ is compact.

Theorem 2.3.5 If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\cap K_{\alpha}$ is nonempty.

Theorem 2.3.6 If E is an infinite subset of a compact set K, then E has a limit point in K.

Theorem 2.3.7 If $\{I_n\}$ is a sequence of intervals in R^1 , such that $I_n \supset I_{n+1}$ $(n=1,2,3,\cdots)$, then $\bigcap_{n=1}^{\infty} I_n$ is not empty.

Theorem 2.3.8 Let k be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_{n+1}$ $(n = 1, 2, 3, \cdots)$, then $\bigcap_{n=1}^{i} nftyI_n$ is not empty.

Theorem 2.3.9 Every k-cell is compact.

Theorem 2.3.10 If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

Theorem 2.3.11 Every bounded infinite subset of R^k has a limit point in R^k .

2.4 Perfect Sets

2.4.1 Theorems

Theorem 2.4.1 Let P be a nonempty perfect set in \mathbb{R}^k . Then P is uncountable.

Corollary 2.4.1 Every interval [a, b] (a < b) is uncountable. In particular, the set of all real numbers is uncountable.

Every metric space X is an open subset of itself, and is a closed subset of itself.

2.5 Connected Sets

2.5.1 Definitions

Definition 2.5.1 Two subsets A and B of a metric space X are said to be *separated* if both $A \cap \bar{B}$ and $\bar{A} \cap B$ are empty, i.e., if no point of Alies in the closure of B and no point of Blies in the closure of A. A set $E \subset X$ is siad to be *connected* if E is *not* a union of two nonempty separated sets.

2.5.2 Theorems

Theorem 2.5.1 A subset E of the ral line R^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.

Separated sets are of course disjoint, but disjoint sets need not be sparated.

Numerical Sequences and Series

3.1 Convergent Sequences

3.1.1 **Definitions**

Definition 3.1.1 A sequence $\{p_n\}$ in a metric space X is said to *converge* if If $\{p_n\}$ does not there is a point $p \in X$ with the following property: For every $\epsilon > 0$ there is an integer N such that $n \geq N$ implies that $d(p_n, p) < \epsilon$. (Here d denotes the distance in X.)

converge, it is said to *diverge*.

Definition 3.1.2 The sequence $\{p_n\}$ is said to be *bounded* if its range is bounded.

3.1.2Thorems

Theorem 3.1.1 Let $\{p_n\}$ be a sequence in a metric space X.

- (a) $\{p_n\}$ converges to $p \in X$ if and only if every neighborhood of p contains p_n for all but finitely many n.
- (b) If $p \in X, p' \in X$, and if $\{p_n\}$ converges to p and to p', then p' = p.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- (d) If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E A point p is such that $p = \lim_{n \to \infty} p_n$

Theorem 3.1.2 Suppose $\{s_n\}, \{t_n\}$ are complex sequences, and $\lim_{n\to\infty} \{s_n\} =$ s and $\lim\{t_n\}=t$. Then,

- (a) $\lim_{n\to\infty} (s_n + t_n) = s + t;$
- (b) $\lim_{n\to\infty} (cs_n) = cs$, $\lim_{n\to\infty} (c+s_n) = c+s$, for all number c;

a limit point there is a sequence $\{p_n\}$ of distinct points of Econverging to p.

- (c) $\lim s_n t_n = st$;
- (d) $\lim \frac{1}{s_n} = \frac{1}{s}$, provided $s_n \neq 0 (n = 1, 2, 3, \dots)$, and $s \neq 0$.

Theorem 3.1.3

(a) Suppose $\mathbf{x}_n \in R^k (n = 1, 2, 3, \dots)$ and

$$\mathbf{x}_n = (\alpha_{1,n}, \cdots, \alpha_{k,n})$$

Then $\{\mathbf{x}_n\}$ converges to $\mathbf{x} = (\alpha_1, \dots, \alpha_k)$ if and only if

$$\lim_{n \to \infty} \alpha_{j,n} = \alpha_j.$$

(b) Suppose $\{\mathbf{x}_n\}$, $\{\mathbf{y}_n\}$ are sequences in R^k , $\{\beta_n\}$ is a sequence of real numbers, and $\mathbf{x}_n \to \mathbf{x}, \mathbf{y}_n \to \mathbf{y}, \beta_n \to \beta$. Then

$$\lim_{n\to\infty}(\mathbf{x}_n+\mathbf{y}_n)=\mathbf{x}+\mathbf{y}, \lim_{n\to\infty}(\mathbf{x}_n\cdot\mathbf{y}_n)=\mathbf{x}\cdot\mathbf{y}, \lim_{n\to\infty}\beta_n\mathbf{x}_n=\beta\mathbf{x}.$$

3.2 Subsequences

3.2.1 Definitions

Definition 3.2.1 Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers, such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence $\{p_{n_i}\}$ is called a *subsequence* of $\{p_n\}$. If $\{p_{n_i}\}$ converges, its limit is called a *subsequential limit* of $\{p_n\}$.

3.2.2 Theorems

Theorem 3.2.1 $\{p_n\}$ converges to p if and only if every subsequence of $\{p_n\}$ converges to p.

Theorem 3.2.2

- (a) If $\{p_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}$ converges to a point of X.
- (b) Every bounded sequence in \mathbb{R}^k contains a convergent subsequence.

Theorem 3.2.3 The subsequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.

3.3 Cauchy Sequences

3.3.1 Definitions

Definition 3.3.1 A sequence $\{p_n\}$ in a metric space X is said to be a *Cauchy sequence* if for every $\epsilon > 0$ there is an integer N such that $d(p_n, p_m) < \epsilon$ if $n \geq N$ and $m \geq N$.

Definition 3.3.2 Let E be a nonempty subset of a metric space X, and let S be the set of all real numbers of the form d(p,q), with $p \in E$ and $q \in E$. The sup of S is called the *diameter* of E.

If $\{p_n\}$ is a sequence in X and if E_N consists of the points $p_N, p_{N+1}, p_{N+2}, \cdots$, it is clear from the two preceding definitions that $\{p_n\}$ is a Cauchy sequence if and only if

$$\lim_{N\to\infty} \operatorname{diam} E_N = 0.$$

Definition 3.3.3 A metric space in which every Cauchy sequence converges is said to be *complete*.

Definition 3.3.4 A sequence $\{s_n\}$ of real numbers is said to be

- (a) monotonically increasing if $s_n \leq s_{n+1} (n = 1, 2, 3, \cdots);$
- (b) monotonically decreasing if $s_n \ge s_{n+1} (n = 1, 2, 3, \cdots);$

3.3.2 Theorems

Theorem 3.3.1

(a) If \bar{E} is the closure of a set E in a metric space X, then

diam
$$\bar{E} = \text{diam } E$$
.

(b) If K_n is a sequence of compact sets in X such that $K_n \supset K_{n+1}(n = 1, 2, 3, \cdots)$ and if

$$\lim_{n\to\infty} \operatorname{diam} K_n = 0,$$

then $\bigcap_{1}^{\infty} K_n$ consists of exactly one point.

Theorem 3.3.2

- (a) In any metric space X, every convergent sequence is a Cauchy sequence.
- (b) If X is a compact metric space and if $\{p_n\}$ is a Cauchy sequence in X, then $\{p_n\}$ converges to some point of X.
- (c) in \mathbb{R}^k , every Cauchy sequence converges.

The fact that a sequence converges in \mathbb{R}^k if and only it is a Cauchy sequence is usually called the *Cauchy criterion* for convergence.

This theorem says that all compact metric spaces and all Euclidean spaces are complete. It implies also that every closed subset of E of a complete metric space X is complete.

Theorem 3.3.3 Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if it is bounded.

3.4 Upper and Lower Limits

3.4.1 Definitions

Definition 3.4.1 Let $\{s_n\}$ be a sequence of real numbers with the following property: For every real M there is an interger N such that $n \geq N$ implies $s_n \geq M$. We then write

$$s_n \to +\infty$$
.

Similarly, if for every real M there is an integer N such that $n \geq N$ implies $s_n \leq M$, we write

$$s_n \to -\infty$$
.

Definition 3.4.2 Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of numbers x (in the extended real number system) such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set E contains all subsequential limits as defined in Definition 3.2.1, plus possibly the numbers $+\infty, -\infty$.

We now recall Definition 1.1.3 and 1.1.4 and put

$$s^* = \sup E$$
,

$$s_* = \inf E$$
.

The numbers s^*, s_* are called the *upper* and *lower limits* of $\{s_n\}$; we use the notation

$$\limsup_{n \to \infty} s_n = s^*, \quad \liminf_{n \to \infty} s_n = s_*$$

3.4.2 Theorems

Theorem 3.4.1 Let $\{s_n\}$ be a sequence of real numbers. Let E and s^* have the same meaning as in Definition 3.4.2. Then s^* has the following two properties:

- (a) $s^* \in E$
- (b) If $x > s^*$, there is an integer N such that $n \ge N$ implies $s_n < x$.

Moreover, s^* is the only number with the properties (a) and (b). Of course, an analogous result is true for s_* .

Theorem 3.4.2 If $s_n \leq t_n$ for $n \geq N$, where N is fixed, then

$$\liminf_{n \to \infty} s_n \le \liminf_{n \to \infty} t_n,$$

$$\limsup_{n \to \infty} s_n \le \limsup_{n \to \infty} t_n,$$

3.5 Some Special Sequences

3.5.1 Theorems

Theorem 3.5.1

- (a) If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
- (b) If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.
- (c) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- (d) If p > 0 and α is real, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.
- (e) If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

3.6 Series

3.6.1 Definitions

Definition 3.6.1 Given a sequence $\{a_n\}$, we use the notation

$$\sum_{n=p}^{q} a_n \quad (p \le q)$$

to denote the sum $a_p + a_{p+1} + \cdots + a_q$. With $\{a_n\}$ we associate a sequence $\{s_n\}$, where

$$s_n = \sum_{k=1}^n a_k.$$

For $\{s_n\}$ we also use the symbolic expression

$$a_1 + a_2 + a_3 + \cdots$$

or, more concisely,

$$\sum_{n=1}^{\infty} a_n.$$

The above symbol we call an *infinite series*, or just a *series*. The numbers $\{s_n\}$ are called the *partial sums* of the series. If $\{s_n\}$ converges to s, we say that the series *converges*, and write

$$\sum_{n=1}^{\infty} a_n = s.$$

The number s is called the sum of the series; but it should be clearly understood that s is the limit of a sequence of sums, and is not obtained simply by addition. If $\{s_n\}$ diverges, the series is said to diverge.

3.6.2 Theorems

Theorem 3.6.1 $\sum a_n$ converges if and only if for every $\epsilon > 0$ there is an integer N such that

$$|\sum_{k=m}^{m} a_k| \le \epsilon$$

if $m \ge n \ge N$.

Theorem 3.6.2 If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 3.6.3 A series of nonnegative terms converges if and only if its partial sums form a bounded sequence.

Theorem 3.6.4

- (a) If $|a_n| \leq c_n$ for $n \geq N_0$, where N_0 is some fixed integer, and if $\sum c_n$ converges, then $\sum a_n$ converges.
- (b) If $a_n \ge d_n \ge 0$ for $n \ge N_0$, and if $\sum d_n$ diverges, then $\sum a_n$ diverges.

3.7 Series of Nonnegative Terms

3.7.1 Theorems

Theorem 3.7.1 If $0 \le x < 1$, then

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

If $x \geq 1$, the series diverges.

Theorem 3.7.2 Suppose $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \cdots$$

converges.

Theorem 3.7.3 $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Theorem 3.7.4 If p > 1,

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$

converges; if $p \leq 1$, the series diverges.

3.8 The Number e

3.8.1 Definitions

Definition 3.8.1

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

3.8.2 Theorems

Theorem 3.8.1

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Theorem 3.8.2 e is irrational.

3.9 The Root and Ratio Tests

3.9.1 Theorems

Theorem 3.9.1 (Root Test) Given $\sum a_n$, put $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Then

- (a) if $\alpha < 1$, $\sum a_n$ converges;
- (b) if $\alpha > 1$, $\sum a_n$ diverges;
- (c) if $\alpha = 1$, the test gives no information.

Theorem 3.9.2 (Ratio Test) The series $\sum a_n$

- (a) converges if $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$,
- (b) diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge n_0$, where n_0 is some fixed integer.

Theorem 3.9.3 For any sequence $\{c_n\}$ of positive numbers,

$$\liminf_{n\to\infty}\frac{c_{n+1}}{c_n}\leq \liminf_{n\to\infty}\sqrt[n]{c_n},$$

$$\limsup_{n\to\infty} \sqrt[n]{c_n} \leq \limsup_{n\to\infty} \frac{c_{n+1}}{c_n}.$$

3.10 Power Series

3.10.1 Definitions

Definition 3.10.1 Given a sequence $\{c_n\}$ of complex numbers, the series

$$\sum_{n=0}^{\infty} c_n z^n$$

is called a *power series*. The numbers $\{c_n\}$ are called the *coefficients* of the series; z is a complex number.

3.10.2 Theorems

Theorem 3.10.1 Given the power series $\sum c_n z^n$, put

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|c_n|}, \quad R = \frac{1}{\alpha}.$$

(if $\alpha = 0, R = +\infty$; if $\alpha = +\infty, R = 0$.) Then $\sum c_n z^n$ converges if |z| < R, and diverges if |z| > R.

3.11 Summation by Parts

3.11.1 Theorems

Theorem 3.11.1 Given two sequences $\{a_n\}, \{b_n\}$, put

$$A_n = \sum_{k=0}^n a_k$$

if $n \geq 0$; put $A_{-1} = 0$. Then, if $0 \leq p \leq q$, we have

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

Theorem 3.11.2 Suppose

- (a) the partial sums A_n of $\sum a_n$ form a bounded sequences;
- (b) $b_0 \ge b_1 \ge b_2 \ge \cdots;$
- (c) $\lim_{n\to\infty} b_n = 0$.

Theorem 3.11.3 Suppose

(a)
$$|c_1| \ge |c_2| \ge |c_3| \ge \cdots$$
;

- (b) $c_{2m-1} \ge 0, c_{2m} \le 0 \ (m = 1, 2, 3, \cdots);$
- (c) $\lim_{n\to\infty} c_n = 0$.

Then $\sum c_n$ converges.

Theorem 3.11.4 Suppose the radius of convergence of $\sum c_n z^n$ is 1, and suppose $c_0 \ge c_1 \ge c_2 \ge \cdots$, $\lim_{n\to\infty} c_n = 0$. Then $\sum c_n z^n$ converges at every point on the circle |z| = 1, except possibly at z = 1.

3.12 Absolute Convergence

3.12.1 Definitions

Definition 3.12.1 The series $\sum a_n$ is said to *converge absolutely* if the series $\sum |a_n|$ converges.

Definition 3.12.2 If $\sum a_n$ converges, but $\sum |a_n|$ diverges, we say that $\sum a_n$ converges *nonabsolutely*.

3.12.2 Theorems

Theorem 3.12.1 If $\sum a_n$ converges absolutely, then $\sum a_n$ converges.

3.13 Addition and Multiplication of Series

3.13.1 Definitions

Definition 3.13.1 Given $\sum a_n$ and $\sum b_n$, we put

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} \quad (n = 0, 1, 2, \cdots)$$

and call $\sum c_n$ the *product* of the two given series.

3.13.2 Theorems

Theorem 3.13.1 If $\sum a_n = A$, and $\sum b_n = B$, then $\sum (a_n + b_n) = A + B$, and $\sum ca_n = cA$, for any fixed c.

Theorem 3.13.2 Suppose

- (a) $\sum_{n=0}^{\infty} a_n$ converges absolutely,
- (b) $\sum_{n=0}^{\infty} a_n = A,$
- (c) $\sum_{n=0}^{\infty} b_n = B,$
- (d) $c_n = \sum_{k=0}^n a_k b_{n-k}$ $(n = 0, 1, 2, \cdots).$

Then

$$\sum_{n=0}^{\infty} c_n = AB.$$

That is, the product of two convergent series converges, and to the right value, if at least one of the two series converges absolutely.

Theorem 3.13.3 If the series $\sum a_n$, $\sum b_n$, $\sum c_n$ converge to A, B, C, and $c_n = a_0b_n + \cdots + a_nb_0$ then C = AB.

3.14 Rearrangements

3.14.1 Definitions

Definition 3.14.1 Let $\{k_n\}$, $n = 1, 2, 3, \dots$, be a sequence in which every positive integer appears once and only once (that is, $\{k_n\}$ is a 1-1 function from J onto J, in the notation of Definition 2.1.2). Putting

$$a'_n = a_{k_n} \quad (n = 1, 2, 3, \cdots),$$

we say that $\sum a'_n$ is a rearrangement of $\sum a_n$.

3.14.2 Theorems

Theorem 3.14.1 Let $\sum a_n$ be a series of real numbers which converges, but not absolutely. Suppose

$$-\infty \le \alpha \le \beta \le \infty$$
.

Then there exist a rearrangement $\sum a'_m$ with partial sums s'_n such that

$$\liminf_{n\to\infty} s_n' = \alpha, \quad \limsup_{n\to\infty} s_n' = \beta.$$

Theorem 3.14.2 If $\sum a_n$ is a series of complex numbers which converges absolutely, then every rearrangement of $\sum a_n$ converges, and they all converges to the same sum.

Continuity

4.1 Limits of Functions

4.1.1 Definitions

Definition 4.1.1 Let X and Y be metric spaces; suppose $E \subset X$, f maps E into Y, and p is a limit point of E. We write $f(x) \to q$ as $x \to p$, or

$$\lim_{x \to p} f(x) = q$$

The definition does not say anything about f(p).

if there is a point $q \in Y$ with the following property: For every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x), q) < \epsilon$$

for all points $x \in E$ for which

$$0 < d_X(x, p) < \delta$$
.

4.1.2 Theorems

Theorem 4.1.1 Let X, Y, E, f, and p be as in Definition 4.1.1. Then

$$\lim_{x \to p} f(x) = q$$

if and only if

$$\lim_{n \to \infty} f(p_n) = q$$

for every sequence $\{p_n\}$ in E such that

$$p_n \neq p$$
, $\lim_{n \to \infty} p_n = p$.

Corollary 4.1.1 If f has a limit at p, this limit is unique.

Theorem 4.1.2 Suppose $E \subset X$, a metric space, p is a limit point of E, f and g are complex functions on E, and

$$\lim_{x \to p} f(x) = A, \ \lim_{x \to p} g(x) = B.$$

Then

- (a) $\lim_{x\to p} (f+g)(x) = A+B;$
- (b) $\lim_{x\to p} (fg)(x) = AB;$
- (c) $\lim_{x\to p} \left(\frac{f}{g}\right)(x) = \frac{A}{B}$, if $B \neq 0$.

4.2 Continuous Functions

4.2.1 Definitions

Definition 4.2.1 Suppose X and Y are metric spaces, $E \subset X$, $p \in E$, and f maps E into Y. Then f is said to be *continuous at* p if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$\delta_Y(f(x), f(p)) < \epsilon$$

for all points $x \in E$ for which $d_X(x, p) < \delta$.

4.2.2 Theorems

Theorem 4.2.1 In the situation given in Definition 4.2.1, assume also that \underline{p} is a limit point of E. Then f is continuous at p if and only if $\lim_{x\to p} f(x) = \overline{f(p)}$.

Theorem 4.2.2 Suppose X, Y, Z are metric spaces, $E \subset X$, f maps E into Y, g maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

$$h(x) = g(f(x)) \quad (x \in E).$$

If f is continuous at a point $p \in E$ and if g is continuous at the point f(p), then h is continuous at p.

Theorem 4.2.3 A mapping f of a metric space X into a metric space Y is onctinuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.

Corollary 4.2.1 A mapping f of a metric space X into a metric space Y is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set C in Y.

Theorem 4.2.4 Let f and g be complex <u>continuous</u> functions on a metric space X. Then f + g, fg, and f/g are <u>continuous</u> on X.

Theorem 4.2.5

If p is an isolated point of E, then every function f which has E as its domain of defintion is continuous at p.

(a) Let f_1, \dots, f_k be real functions on a metric space X, and let \mathbf{f} be the mapping of X into R^k defined by

$$\mathbf{f}(x) = (f_1(x), \dots, f_k(x)) \ (x \in X);$$

then **f** is continuous if and only if each of the functions f_1, \dots, f_k is continuous.

(b) if **f** and **g** are continuous mappings of X into R^k , then $\mathbf{f} + \mathbf{g}$ and $\mathbf{f} \cdot \mathbf{g}$ are continuous on X.

4.3 Continuity and Compactness

4.3.1 Definitions

Definition 4.3.1 A mapping \mathbf{f} of a set E into R^k is said to be *bounded* if there is a real number M such that $|\mathbf{f}(x)| \leq M$ for all $x \in E$.

Definition 4.3.2 Let f be a mapping of a metric space X into a metric space Y. We say that f is *uniformly continuous* on X if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$d_Y(f(p), f(q)) < \epsilon$$

for all p and q in X for which $d_X(p,q) < \delta$.

4.3.2 Theorems

Theorem 4.3.1 Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Theorem 4.3.2 If \mathbf{f} is a continuous mapping of a compact metric space X into R^k , then $\mathbf{f}(X)$ is closed and bounded. Thus, \mathbf{f} is bounded.

Theorem 4.3.3 Suppose f is a continuous real function on a compact metric space X, and

$$M = \sup_{p \in X} f(p), \quad m = \inf_{p \in X} f(p).$$

Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

Theorem 4.3.4 Suppose f is a continuous 1-1 mapping of a compact metric space X onto a metric space Y. Then the inverse mapping f^{-1} defined on Y by

This is to say, f attains its maximum (at p) and its minimum (at q).

$$f^{-1}(f(x)) = x \ (x \in X)$$

is a continuous mapping of Y onto X.

Theorem 4.3.5 Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X.

Theorem 4.3.6 Let E be a noncompact set in R^1 . Then

- (a) there exists a continuous function on E which is not bounded;
- (b) there exists a continuous and bounded function on E which has no maximum. If, in addition, E is bounded, then
- (c) there exists a continuous function on E which is not uniformly continuous.

4.4 Continuity and Connectedness

4.4.1 Theorems

Theorem 4.4.1 If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then f(E) is connected.

Theorem 4.4.2 Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a point $x \in (a, b)$ such that f(x) = c.

4.5 Discontinuities

4.5.1 Definitions

Definition 4.5.1 Let f be defined on (a,b). Consider any point x such that $a \le x < b$. We write

$$f(x+) = q$$

if $f(t_n) \to q$ as $n \to \infty$, for all sequences $\{t_n\}$ in (x, b) such that $t_n \to x$. To obtain the definition of f(x-), for $a < x \le b$, we restrict ourselves to sequences $\{t_n\}$ in (a, x). It is clear that any point x of (a, b), $\lim_{t \to x} f(t)$ exists if and only if

$$f(x+) = f(x-) = \lim_{t \to x} f(t).$$

Definition 4.5.2 Let f be defined on (a,b). If f is discontinuous at a point x, and if f(x+) and f(x-) exist, then f is said to have a discontinuity of the *first kind*, or a *simple discontinuity* at x. Otherwise the discontinuity is said to be of the *second kind*.

4.6 Monotonic Functions

4.6.1 Definitions

Definition 4.6.1 Let f be real on (a,b). Then f is said to be *monotonically increasing* on (a,b) if a < x < y < b implies $f(x) \le f(y)$. If the last inequality is reversed, we obtain the definition of a *monotonically decreasing* function. The class of monotonic functions consists of both the increasing and the deceasing functions.

There are two ways in which a function can have a simple discontinuity: either $f(x+) \neq f(x-)$, in which case the value f(x) is immaterial, or $f(x+) = f(x-) \neq f(x)$.

4.6.2 Theorems

Theorem 4.6.1 Let f be monotonically increasing on (a, b). Then f(x+) and f(x-) exist at every point of x of (a, b). More precisely,

$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$

Furthermore, if a < x < y < b, then

$$f(x+) \le f(y-).$$

Analogous results evidently hod for monotonically decreasing functions.

Corollary 4.6.1 Monotonic functions have no discontinuities of the second kind.

Compare with Corollary 5.3.1

Theorem 4.6.2 Let f be monotonic on (a,b). Then the set of points of (a,b) at which f is discontinuous is at most countable.

4.7 Infinite Limits and Limits at Infinity

4.7.1 Definitions

Definition 4.7.1 For any real c, the set of real numbers x such that x > c is called a neighborhood of $+\infty$ and is written $(c, +\infty)$. Similarly, the set $(-\infty, c)$ is a neighborhood of $-\infty$.

Definition 4.7.2 Let f be a real function defined on $E \subset R$. We say that

$$f(t) \to A \text{ as } t \to x$$

where A and x are in the extended real number system, if for every neighborhood U of A there is a neighborhood V of x such that $V \cap E$ is not empty, and such that $f(t) \in U$ for all $t \in V \cap E, t \neq x$.

4.7.2 Theorems

Theorem 4.7.1 Let f and g be defined on $E \subset R$. Suppose

$$f(t) \to A$$
, $g(t) \to B$ as $t \to x$.

Then

- (a) $f(t) \to A'$ implies A' = A.
- (b) $(f+g)(t) \to A+B$,
- (c) $(fg)(t) \to AB$,
- (d) $(f/g)(t) \to A/B$,

provided the right member of (b), (c), and (d) are defined.

Differentiation

5.1 The Derivative of a Real Function

5.1.1 Definitions

Definition 5.1.1 Let f be defined (and real-valued) on [a,b]. For any $x \in [a,b]$ form the quotient

$$\phi(t) = \frac{f(t) - f(x)}{t - x} (a < t < b, t \neq x),$$

and define

$$f'(x) = \lim_{t \to x} \phi(t),$$

provided this limit exists in accordance with Definition 4.1.1. We thus associate with the function f a function f' whose domain is the set of points x at which the limit exists; f' is called the *derivative* of f. If f' is defined at a point x, we say that f is *differentiable* at x. If f' is defined at every point of a set $E \subset [a, b]$, we say that f is differentiable on E.

5.1.2 Theorems

Theorem 5.1.1 Let f be defined on [a,b]. If f is differentiable at a point $x \in [a,b]$, then f is continuous at x.

Theorem 5.1.2 Suppose f and g are defined on [a,b] and are differentiable at a point $x \in [a,b]$. Then f+g,fg, and f/g are differentiable at x, and

- (a) (f+g)'(x) = f'(x) + g'(x);
- (b) (fg)'(x) = f'(x)g(x) + f(x)g'(x);

(c)
$$(\frac{f}{g})'(x) = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}$$

In (c), we assume of course that $g(x) \neq 0$.

Prove by using the fact that limit of a product is the product of limits.

Theorem 5.1.3 Suppose f is continuous on [a,b], f'(x) exists at some point $x \in [a,b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If

$$h(t) = g(f(t)) \quad (a \le t \le b),$$

then h is differentiable at x, and

$$h'(x) = g'(f(x))f'(x).$$

5.2 Mean Value Theorems

5.2.1 Definitions

Definition 5.2.1 Let f be a real function defined on a metric space X. We say that f has a *local maximum* at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \leq f(p)$ for all $q \in X$ with $d(p,q) < \delta$.

5.2.2 Theorems

Theorem 5.2.1 Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x) = 0.

Prove by showing the left-hand right-hand derivatives

Theorem 5.2.2 If f and g are continuous real functions on [a,b] which are differentiable in (a,b), then there is a point $x \in (a,b)$ at which

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x).$$

Note that differentiability is not required at the endpoints.

Theorem 5.2.3 If f is a real continuous function on [a,b] which is differentiable in (a,b), then there is a point $x \in (a,b)$ at which

$$f(b) - f(a) = (b - a)f'(x).$$

Theorem 5.2.4 Suppose f is differentiable in (a, b).

- (a) If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is monotonically increasing.
- (b) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
- (c) If $f'(x) \leq 0$ for all $x \in (a,b)$, then f is monotonically decreasing.

5.3 The Continuity of Derivatives

5.3.1 Theorems

Theorem 5.3.1 Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

Corollary 5.3.1 If f is differentiable on [a, b], then f' cannot have any simple discontinuities on [a, b].

Compare with Corollary 4.6.1

5.4 L'Hospital's Rule

5.4.1 Theorems

Theorem 5.4.1 Suppose f and g are real and differentiable in (a,b), and $g'(x) \neq 0$ for all $x \in (a,b)$, where $-\infty \leq a < b \leq +\infty$. Suppose

$$\frac{f'(x)}{g(x)} \to A \ as \ x \to a.$$

If

$$f(x) \to 0$$
 and $g(x) \to 0$ as $x \to a$,

or if

$$g(x) \to +\infty \ as \ x \to a,$$

then

$$\frac{f(x)}{g(x)} \to A \ as \ x \to a.$$

5.5 Derivatives of Higher Order

5.5.1 Definitions

Definition 5.5.1 If f has a derivative f' on an interval, and if f' is itself differentiable, we denote the derivative of f' b f'' and call f'' the second derivative of f. Continuing in this manner, we obtain functions

$$f, f', f'', f^{(3)}, \cdots, f^{(n)},$$

each of which is the derivative of the preceding one. $f^{(n)}$ is called the *n*th derivative, or the derivative of order n, of f.

5.6 Taylor's Theorem

5.6.1 Theorems

Theorem 5.6.1 Suppose f is a real function on [a,b], n is a positive integer, $f^{(n-1)}$ is continuous on [a,b], $f^{(n)}(t)$ exists for every $t \in (a,b)$. Let α,β be distinct points of [a,b], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k.$$

Then there exists a point x between α and β such that

$$f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n.$$

5.7 Differentiation of Vector-valued Functions

5.7.1 Theorems

Theorem 5.7.1 Suppose \mathbf{f} is a continuous mapping of [a,b] into R^k and \mathbf{f} is differentiable in (a,b). Then there exists $x \in (a,b)$ such that

$$|\mathbf{f}(b) - \mathbf{f}(a)| \le (b - a)|\mathbf{f}'(x)|.$$

The Riemann-Stieltjes Integral

6.1 Definition and Existence of the Integral

6.1.1 Definitions

Definition 6.1.1 We say that the partition P* is a *refinement* of P if $P* \supset P$ (that is, if every point of P is a point of P*). Given two partitions, P_1 and P_2 , we say that P* is their *common refinement* if $P* = P_1 \cup P_2$.

6.1.2 Theorems

Theorem 6.1.1 If P^* is a refinement of P, then

$$L(P, f, \alpha) \le L(P^*, f, \alpha)$$

and

$$U(P^*, f, \alpha) \le U(P, f, \alpha).$$

Theorem 6.1.2 $\underline{\int_a^b} f d\alpha \leq \overline{\int_a^b} f d\alpha$

Theorem 6.1.3 $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$ there exists a partition P such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$
.

Theorem 6.1.4

(a) If Theorem 6.1.3 holds for some P and some ϵ , then Theorem 6.1.3 holds (with the same ϵ) for every refinement of P.

(b) If Theorem 6.1.3 holds for $P=\{x_0,\cdots,x_n\}$ and if s_i,t_i are arbitrary points in $[x_{i-1},x_i]$, then

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon.$$

(c) If $f \in \mathcal{R}(\alpha)$ and the hypotheses of (b) hold, then

$$\left|\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i - \int_a^b f d\alpha\right| < \epsilon.$$

Theorem 6.1.5 If f is continuous on [a, b] then $f \in \mathcal{R}(\alpha)$ on [a, b].

Theorem 6.1.6 If f is monotonic on [a, b], and if α is continuous on [a, b], then $f \in \mathcal{R}(\alpha)$. (We still assume, of course, that α is monotonic.)

Theorem 6.1.7 Suppose f is bonded on [a, b], f has only finitely many points of discontinuity on [a, b], and α is continuous at every point at which f is discontinuous. Then $f \in \mathcal{R}(\alpha)$.

Theorem 6.1.8 Suppose $f \in \mathcal{R}(\alpha)$ on [a,b], $m \leq f \leq M$, ϕ is continuous on [m,M], and $h(x) = \phi(f(x))$ on [a,b]. Then $h \in \mathcal{R}(\alpha)$ on [a,b].

6.2 Properties of the Integral

6.2.1 Definitions

Definition 6.2.1 The *unit step function* I is defined by

$$I(x) = \begin{cases} 0 & (x \le 0) \\ 1 & (x > 0) \end{cases}$$

6.2.2 Theorems

Theorem 6.2.1 If $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ on [a, b], then

- (a) $fg \in \mathcal{R}(\alpha)$;
- (b) $|f| \in \mathcal{R}(\alpha)$ and $\left| \int_a^b f d\alpha \right| \le \int_a^b |f| d\alpha$.

Theorem 6.2.2 If a < s < b, f is bounded on [a, b], f is continuous at s, and $\alpha(x) = I(x - s)$, then

$$\int_{a}^{b} f d\alpha = f(s).$$

Theorem 6.2.3 Suppose $c_n \ge 0$ for $1, 2, 3, \dots, \sum c_n$ converges, $\{s_n\}$ is a sequence of distinct points in (a, b), and

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n).$$

Let f be continuous on [a, b]. Then

$$\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n).$$

Theorem 6.2.4 Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b]. Let f be a bounded real function on [a, b]. Then $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$. In that case,

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx.$$

Theorem 6.2.5 Suppose ϕ is a strictly increasing continuous function that maps an interval [A, B] onto [a, b]. Suppose α is monotonnically increasing on [a, b] and $f \in \mathcal{R}(\alpha)$ on [a, b]. Define β and g on [A, B] by

$$\beta(y) = \alpha(\phi(y)), \ g(y) = f(\phi(y)).$$

Then $g \in \mathcal{R}(\beta)$ and

$$\int_{A}^{B} g d\beta = \int_{a}^{b} f d\alpha.$$

6.3 Integration and Differentiation

6.3.1 Theorems

Theorem 6.3.1 Let $f \in \mathcal{R}$ on [a, b]. For $a \leq x \leq b$, put

$$F(x) = \int_{a}^{x} f(t)dt.$$

Then F is continuous on [a, b]; furthermore, if f is continuous at a point x_0 of [a, b], then F is differentiable at x_0 , and

$$F'(x_0) = f(x_0).$$

Theorem 6.3.2 If $f \in \mathcal{R}$ on [a,b] and if there is a differentiable function F on [a,b] such that F'=f, then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Theorem 6.3.3 Suppose F and G are differentiable functions on $[a,b], F'=f\in\mathcal{R},$ and $G'=g\in\mathcal{R}.$ Then

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx.$$

Sequences and Series of Functions

7.1 Discussion of Main Problem

7.1.1 Definitions

Definition 7.1.1 Suppose $\{f_n\}$, $n = 1, 2, 3, \dots$, is a sequence of functions defined on a set E, and suppose that the sequence of numbers $\{f_n(x) \text{ converges for every } x \in E$. We can then define a function f by

$$f(x) = \lim_{n \to \infty} f_n(x) \quad (x \in E).$$

Under these circumstances we say that $\{f_n\}$ converges on E and that f is the *limit*, or the *limit function*, of $\{f_n\}$. Sometimes we shall use a more descriptive terminology and shall say that " $\{f_n\}$ converges to f pointwise on E" if the above holds. Similarly, if $\sum f_n(x)$ converges for every $x \in E$, and if we define

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (x \in E),$$

the function f is called the *sum* of the series $\sum f_n$.

7.2 Uniform Convergence

7.2.1 Definitions

Definition 7.2.1 We say that a sequence of functions $\{f_n\}$, $n=1,2,3,\cdots$, converges *uniformly* on E to a function f if for every $\epsilon > 0$ there is an integer N such that $n \geq N$ implies

$$|f_n(x) - f(x)| < \epsilon$$

for all $x \in E$.

7.2.2 Theorems

Theorem 7.2.1 Suppose K is compact, and

- (a) $\{f_n\}$ is a sequence of continuous functions on K,
- (b) $\{f_n\}$ converges pointwise to a continuous function f on K,
- (c) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K, n = 1, 2, 3, \dots$

Then $f_n \to f$ uniformly on K.

Theorem 7.2.2 Supose

$$\lim_{n \to \infty} f_n(x) = f(x) \quad (x \in E).$$

Put

$$M_n = \sup_{x \in E} |f_n(x) - f(x)|.$$

Then $f_n \to f$ uniformly on E if and only if $M_n \to 0$ as $n \to \infty$.

Theorem 7.2.3 Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose

$$|f_n(x)| \le M_n \quad (x \in E, n = 1, 2, 3, \cdots).$$

Then $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

7.3 Uniform Convergence and Continuity

7.3.1 Definitions

Definition 7.3.1 If X is a metric space, $\mathcal{C}(X)$ will denote the set of all complexvalued, continuous, bounded functions with domain X. We associate with each $f \in \mathcal{C}(X)$ its supreme norm

$$||f|| = \sup_{x \in X} |f(x)|.$$

We also define the distance between $f \in \mathcal{C}(X)$ and $g \in \mathcal{C}(X)$ to be ||f - g||.

7.3.2 Theorems

Theorem 7.3.1 Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that

$$\lim_{t \in x} f_n(t) = A_n \ (n = 1, 2, 3, \cdots).$$

Then $\{A_n\}$ converges, and

$$\lim_{t \in x} f(t) = \lim_{n \to \infty} A_n.$$

In other words, the conclusion is that

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$$

Theorem 7.3.2 If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then f is continuous on E.

Theorem 7.3.3 Suppose K is compact, and

- (a) $\{f_n\}$ is a sequence of continuous functions on K,
- (b) $\{f_n\}$ converges pointwise to a continuous function f on K,
- (c) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K, n = 1, 2, 3, \dots$

Then $f_n \to f$ uniformly on K.

Theorem 7.3.4 The above metric makes C(X) into a complete metric space.

7.4 Uniform Convergence and Integration

7.4.1 Theorems

Theorem 7.4.1 Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a,b], for $n=1,2,3,\cdots$, and suppose $f_n \to f$ uniformly on [a,b]. Then $f \in \mathcal{R}(\alpha)$ on [a,b], and

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha.$$

(The existence of the limit is part of the conclusion.)

Corollary 7.4.1 If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \quad (a \le x \le b),$$

the series converging uniformly on [a, b], then

$$\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n} d\alpha.$$

In other words, the series may be integrated term by term.

7.5 Uniform Convergence and Differentiation

7.5.1 Theorems

Theorem 7.5.1 Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x) \quad (a \le x \le b).$$

Theorem 7.5.2 There exists a real continuous function on the real line which is nowhere differentiable.

7.6 Equicontinuous Families of Functions

7.6.1 Definitions

Definition 7.6.1 Let $\{f_n\}$ be a sequence of functions defined on a set E. We say that $\{f_n\}$ is *pointwise bounded* on E if the sequence $\{f_n(x)\}$ is bounded for every $x \in E$, that is, if there exists a finite-valued function ϕ defined on E such that

$$|f_n(x)| < \phi(x) \quad (x \in E, n = 1, 2, 3, \cdots).$$

We say that $\{f_n\}$ is *uniformly bounded* on E if there exists a number M such that

$$|f_n(x)| < M \ (x \in E, n = 1, 2, 3, \cdots).$$

Definition 7.6.2 A family \mathcal{F} of complex functions f defined on a set E in a metric space X is said to be *equicontinuous* on E if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon$$

whenever $d(x,y) < \delta, x \in E, y \in E, \text{ and } f \in \mathcal{F}.$

7.6.2 Theorems

Theorem 7.6.1 If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}\}$ converges for every x in E.

Theorem 7.6.2 If K is a compact metric space, if $f_n \in \mathcal{C}(K)$ for $n = 1, 2, 3, \dots$, and if $\{f_n\}$ converges uniformly on K, then $\{f_n\}$ is equicontinuous on K.

Theorem 7.6.3 If K is compact, if $f_n \in \mathcal{C}(K)$ for $n = 1, 2, 3, \dots$, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then

- (a) $\{f_n\}$ is uniformly bounded on K,
- (b) $\{f_n\}$ contains a uniformly convergent subsequence.

7.7 The Stone-Weierstrass Theorem

7.7.1 Theorems

Theorem 7.7.1 If f is a continuous complex function on [a, b], there exists a sequence of polynomials P_n such that

$$\lim_{n \to \infty} P_n(x) = f(x)$$

uniformly on [a,b]. If f is real, the P_n may be taken real.

Corollary 7.7.1 For every interval [-a, a] there is a sequence of real polynomials P_n such that $P_n(0) = 0$ and such that

$$\lim_{n\to\infty} P_n(x) = |x|$$

uniformly on [-a, a].

Some Special Functions

Functions of Several Variables

9.1 The Contraction Principle

9.1.1 Definitions

Definition 9.1.1 Let X be a metric space, with metric d. If ϕ maps X into X and if there is a number c < 1 such that

$$d(\phi(x), \phi(y)) \le c \ d(x, y)$$

for all $x, y \in X$, then ϕ is said to be a <u>contraction</u> of X into X.

9.1.2 Theorems

Theorem 9.1.1 If X is a complete metric space, and if ϕ is a contraction of X into X, then there exists one and only one $x \in X$ such that $\phi(x) = x$.

If f is a contraction mapping then it is also a continuous mapping. The reverse is not true.

Exercises

10.1 Concept Questions

Problem 10.1.1 A sequence $\{a_n\}$ converges if and only if it is bounded. - FALSE. $\{sin(n)\}$ is bounded but not convergent. However, if a sequence converges, then it is bounded. See Theorem 3.1.1