Analýza clusterů pomocí χ^2 testu Zápočtová práce z A0B01PSI, ČVUT FEL

Jonáš Amrich

2013

1 Úvod

Pro svou zápočtovou práci jsem si vybral problém, se kterým jsem se setkal v jiném projektu na ČVUT. Cílem je identifikace clusterů v daném vektorovém prostoru. Jednou z možností, která není příliš výpočetně náročná a kterou můžeme vyvrátit existenci clusterů v prostoru, je analýza vzájemných vzdáleností (pairwise distances) jednotlivých bodů. V případě, že prostor obsahuje clustery, rozdělení vzájemných vzdáleností by mělo být směsí dvou rozdělení - *inter* clusterových a *intra* clusterových vzdáleností. V opačném případě, kdy body v prostoru netvoří clustery, předpokládáme, že je rozdělení vzájemných vzdáleností normální.

2 Data

Mým datasetem jsou vzájemné vzdálenosti vektorů, které byly vytvořeny pomocí nástroje word2vec [1]. Dataset "99k" obsahuje cca 99 tisíc vektorů slov v 600 dimenzích, které byly natrénovány pomocí anglické wikipedie [2]. Pro účely testu diskretizuji rozdělení vzdáleností do 50, respektive 100 disjunktních tříd. Vzhledem k množství dat jsem z těchto tříd pro test použil jen ty třídy, jejichž teoretická četnost přesahovala 10⁸ (v grafu znázorněno žlutým pruhem).

3 Test

X - rozdělení vzájemných vzdáleností $\mu_X \doteq 5.947$

 $\sigma_X \doteq 1.091$

N - normální rozdělení

 $N = N(\mu_X, \sigma_X^2)$

 H_0 : Vzájemné vzdálenosti mají normální rozdělení na hladině významnosti 5 %

 $T_{50} = 592417157$

 $T_{100} = 371\,332\,014$

χ^2 test, 50 tříd

	8	9	 19	20	
N	0.023	0.038	 0.037	0.022	1
X	64074592	192428527	 85435352	54499482	4 894 512 330
teoretická četnost	112 932 410	188 413 183	 182 259 731	108521033	4 894 512 330
příspěvek k χ^2	21 137 301	85 572	 51437365	26 891 819	592 417 157

$$\chi^2$$
test, 100 tříd

	19	20	 36	37	
N	0.024	0.029	 0.028	0.023	1
X	117469475	168066472	 78797567	61 423 024	4894512330
teoretická četnost	117482714	143 118 546	 139 366 843	114 023 788	4894512330
příspěvek k χ^2	1	4 348 835	 26 323 601	24 265 466	371 332 014

$$q_{\chi^2(50)}(95) = 67.50$$

 $q_{\chi^2(50)}(99.95) = 89.56$

$$q_{\chi^2(100)}(95) = 124.34$$

 $q_{\chi^2(100)}(99.95) = 153.16$

$$\begin{split} T_{50} &> q_{\chi^2(50)}(99.95) > q_{\chi^2(50)}(95) \\ T_{100} &> q_{\chi^2(100)}(99.95) > q_{\chi^2(100)}(95) \end{split}$$

Už při pohledu na graf je vidět, že testovací statistika bude řádově převyšovat jak 95 %, tak 99.95 % kvantil χ^2 rozdělení, hypotézu tedy zamítáme.

4 Zdrojové kódy

Všechny zdrojové kódy jsou k dispozici v mém repozitáři na GitHubu [3], potřebná data na [4].

5 Reference

- [1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
- [2] http://dumps.wikimedia.org/enwiki//20121101/.
- [3] http://github.com/JonasAmrich/psi-chi-squared.
- [4] http://media.jonasamrich.com/cvut/3/enwiki-99k-pd.zip.

Histogram vzájemných vzdáleností, 100 tříd

