

Issued in: July 2000 Serial No: 00/3

FERTILISER RECOMMENDATIONS FOR MATURE TEA

This Advisory Circular replaces the following Circulars issued on the use of fertiliser and dolomite for mature tea.

Circula No	ar Serial No	al Month of Subject Issue	
F4	04/71	June 1971	Economising on Fertilisers
F5	10/72	May 1972	Urea as a fertiliser for tea
F 10	04/94	June 1994	Fertiliser recommendations for mature tea
F 11	08/85	June 1985	Fertiliser applications based on potential yield
F 12	03/89	January 1989	Dolomite application for tea soils
F 13	03/93	October 1993	Kieserite-fortified mature tea mixture
F 14	14/94	December 1994	Pre- and post-prune fertiliser mixtures
F 15	05/94	June 1994	Foliar application of zinc sulphate for mature tea
M 4	02/93	April 1993	Spraying of potassium sulphate for drought

1 Introduction

Balanced nutrition plays a key role in the maintenance of tea plantations. The cost of fertiliser application varies from 6 to 12% of the total cost of production. Hence, cost-effective investment in fertiliser is necessary to manage a plantation as a commercially viable enterprise.

The response of the tea plant to NPK fertilisers is influenced by several factors such as climate, soil, plant and cultural practices. These factors vary widely between tea growing regions and therefore the plant response to fertiliser is different in different tea growing regions. In the present fertiliser recommendations for mature tea, regional differences have been taken into consideration in order to optimise productivity and profitability of the land.

2.0 Amelioration of soil pH in mature tea fields

The maintenance of suitable soil pH levels is an important practice in soil fertility management.

2.1 Correction of soil pH with dolomitic limestone

Application of dolomitic limestone is recommended to maintain soil pH between 4.5 and 5.5.

The soil pH should be checked prior to every prune, and the rates of dolomite indicated below should be applied depending on pH level, preferably a few weeks before pruning.

Soil pH	Dolomite (kg/ha)		
Below 3.9	2500		
From 3.9 up to 4.2	2000		
From 4.2 up to 4.5	1500		
Above 4.5	1000		

2.1.1 Specifications

The dolomitic limestone must have a minimum of 18% MgO, and approximately 100% of particles passing through 30 mesh, and 40 to 60% of particles passing through 100 mesh.

3 Plant Response to ground applied nutrients

The optimum range of N, P and K nutrients (kg/ha/yr) required by seedling and VP teas for maximum yield response in different tea growing regions are given in Table 1.

Table 1 - N, P and K requirements for seedling and VP tea in different tea growing regions

	Up country	Mid-country	Low country	Uva
Seedling tea	a			
N	90 - 220	90 - 180	90 - 140	90 - 220
P ₂ O ₅	25	25	25	25
K₂O	70	70	50	70 - 100
VP tea				
N	270 - 400	270 - 400	270 - 400	270 - 400
P ₂ O ₅	35	35	35	35
K₂O	100 - 140	100 - 140	100	140

3.1 Basal mixtures

To supply the required nutrients, three basal mixtures have been formulated separately for seedling and VP tea. The designation of each mixture identifies the type of tea and the region.

3.1.1 Designation

ST/UM	(Seedling tea mixture for up and mid-country
ST/LC	-	Seedling tea mixture for low country
ST/UVA	-	Seedling tea mixture for Uva
VP/UM		Mature VP tea mixture for up and mid-country
VP/LC	-	Mature VP tea mixture for low country
VP/UVA	1-	Mature VP tea mixture for Uva

3.1.2 Composition

Seedling tea mixtures:

		ST/UM	ST/LC	ST/UVA
Urea ERP	parts parts	196 (90 N) 87 (25 P ₂ O ₅)	196 (90 N) 86 (25 P ₂ O ₅)	196 (90 N) 89 (25 P ₂ O ₅₎
MOP	parts	117 (70 K ₂ O)	83 (50 K ₂ O)	150 (90 K ₂ O) 435

The seedling tea mixtures contain approximately:

The boodaining tou	Instance contains approximately
ST/UM 400	22.5% N, 6.2% P ₂ O ₅ and 17.6% K ₂ O
ST/LC 365	24.7% N, 6.7% P ₂ O ₅ and 13.6% K ₂ O
ST/UVA 435	20.7% N, 5.8% P ₂ O ₅ and 20.7% K ₂ O

VP tea mixtures:

		VP/UM	VP/LC	VP/UVA
Urea ERP MOP	parts	587 (270 N) 123 (35 P ₂ O ₅) 200 (120 K ₂ O) 910	587 (270 N) 126 (35 P ₂ O ₅) <u>167</u> (100 K ₂ O) 880	587 (270 N) 125 (35 P ₂ O ₅) 233 (140 K ₂ O) 945

The VP mixtures contain approximately:

VP/UM 910	29.7% N, 3.9% P ₂ O ₅ and 13.2% K ₂ O
VP/LC 880	30.7% N, 4.1% P ₂ O ₅ and 11.4% K ₂ O
VP/UVA 945	28.6% N, 3.8% P ₂ O ₅ and 14.8% K ₂ O

3.2 Fertiliser applications based on "potential yield"

Calculation of annual N-fertiliser requirement for a given tea field is based on "potential yield". The annual potential yield may be defined as the highest yield achieved in the particular year of the pruning cycle, based on the immediate past three cycles.

The application of fertiliser to mature seedling or VP fields should be based on such calculated potential yields. The method of calculation of potential yield for every 12-month period from prune is given below:

Tabulate the annual yield data of each field (kg made tea per ha per year) over the previous 3 cycles (15 years, if the cycle has 5 years). However, if data is not available for three cycles, the data of the past two cycles may be used.

An example is given in Table 2.

Table 2 - Yield record of 12-month periods from pruning (kg made tea/ha/yr)

Year after prune

Cycle	<u>1st</u>	<u>2nd</u>	3rd	4th	5th
1st	1037	2053	1941	<u>1708</u>	<u>926</u>
2nd	884	1893	1826	1573	866
3rd	990	<u>2140</u>	2090	1650	895

The highest achieved yield (potential yield) for a given year in the cycle is underlined. These are 1037, 2140, 2090, 1708 and 926 for the 1st, 2nd, 3rd, 4th, 5th year, respectively.

Select the N-level corresponding to each of the potential yields from Table 3.

Table 3 - Annual requirement of nitrogen for the potential yield

Potential yield (kg made tea per ha per year)	Requirement of nitrogen (kg N per ha per year)
Less than 900	90
900-1300	140
1300-1500	160
1500-1700	180
1700-1900	200
1900-2000	220
2000-2500	270
2500-3000	320
3000-3500	
Above 3500	400
3000-3500	360

The quantity of nitrogen to be applied in the respective years is therefore:

	1st 12 months	2nd 12 months	3rd 12 months	4th 12 months	5th 12 months
Potential yield	1037	2140	2090	1708	926
N to be applied (kg per ha per year)	140	270	270	200	140

Once the quantity of nitrogen per ha per year is determined for each field, the quantity per application is calculated according to the number of applications that is practically possible. The number of applications should be determined on the basis of the agro-climatic conditions, as well as on the cropping pattern of the relevant region.

3.3 Quantity of nutrients, basal mixture and urea, application frequencies and dosages

The quantities of nutrients required, inclusive of the basal mixture and urea, and the applicable frequencies and dosages corresponding to the potential yield category for seedling and VP teas, are given in Tables 4 and 5.

3.4 Foliar and other ground fertiliser applications

Foliar applications of fertiliser for mature tea should be made with knapsack sprayers.

3.4.1 Zinc sulphate

Zinc sulphate is recommended at the rate of 6 and 11 kg per ha per year, for fields yielding less than, and above, 2000 made tea kg per ha per year, respectively. This should be done in four applications, i.e. 1.5 and 2.75 kg in 400 l of water per ha per application. Zinc sulphate should be applied within 7 – 14 days after ground fertiliser application.

3.4.2 Other nutrients

If deficiency symptoms of nitrogen (general yellowing) are observed, apply 2 to 4% of urea. Apply 8 to 16 kg of urea per ha in 400 l of water, as and when necessary.

If deficiency symptoms of manganese (interveinal chlorosis and reddish brown necrotic spots on leaf blade) are observed, test the soil pH. If it is above 5.5, apply 2% manganese sulphate until symptoms disappear, preferably at 3 to 4 week intervals. In addition, withhold the scheduled application of dolomite.

3.4.3 Epsom salt and kieserite for correcting magnesium deficiency

When magnesium deficiency symptoms are observed, spray commercial Epsom salt initially, at the rate of 48 kg per ha per year in four applications, at intervals of three months.

Commercial Epsom salt, zinc sulphate and urea can be mixed together and applied as a single foliar spray, when required. The quantity of urea and Epsom salt could be adjusted depending on the severity of deficiency symptoms. However, do not exceed 5% total salt concentration in the final spray solution.

(N.B. Zinc sulphate and Epsom salt are both salts.)

After application of the above, test the soil for Mg content. If it is below the critical level (60 ppm), apply kieserite at the rate of 125 kg per ha per year by mixing with basal NPK mixture or with urea in situ.

Table 4 - Rates of application (kg/ha) of basal mixture/urea for seedling tea.

Region	Potential yield (kg/ha/yr)	Recommended quantity of N : P ₂ O ₅ : K ₂ O	Quantity and source of N	No. of applications and quantity per application (kg/ha)
Up	1. < 900	90 : 25 : 70	90 kg N as ST/UM	2 x 200 kg ST/UM
Country	2. 900 - 1300	140 : 25 : 70	90 kg N as ST/UM & 50 kg N as urea	2 x 200 kg ST/UM 1 x 110 kg urea
	3. 1300 - 1500	160 : 25 : 70	90 kg N as ST/UM & 70 kg N as urea	2 x 200 kg ST/UM 1 x 150 kg urea
	4. 1500 - 1700	180 : 25 : 70	90 kg N as ST/UM & 90 kg N as urea (2 applications possible with care)	2 x 200 kg ST/UM 1 x 200 kg urea
	5. 1700 - 1900	200 : 25 : 70	90 kg N as ST/UM & 110 kg N as urea	2 x 200 kg ST/UM 1 x 110 & 1 x 130 kg urea
	6. Above 1900	220 : 25 : 70	90 kg N as ST/UM & 130 kg N as urea	(50 and 60 kg N respectively)
				2 x 200 kg ST/UM 2 x 140 kg urea
Mid- country (Wet Zone)	Same as 1 to 4 above			
Low Country	1. < 900	90 : 25 : 50	90 kg N as ST/LC	2 x 180 kg ST/LC
	2. Above 900	140 : 25 : 50	90 kg N as ST/LC & 50 kg N as urea	2 x 180 kg ST/LC 1 x 110 kg urea
Uva	1. < 900	90 : 25 : 90	90 kg N as ST/UVA	2 x 220 kg ST/UVA
	2. 900 - 1300	140 : 25 : 90	90 kg N as ST/UVA & 50 kg N as urea	2 x 220 kg ST/UVA 1 x 110 kg urea
	3. 1300 - 1500	160 : 25 : 90	90 kg N as ST/UVA & 70 kg N as urea	2 x 220 kg ST/UVA 1 x 150 kg urea
	4. 1500 - 1700	180 : 25 : 90	90 kg N as ST/UVA & 90 kg N as urea (2 applications possible with care)	2 x 220 kg ST/UVA 1 x 200 kg urea
	5. 1700 - 1900	200 : 25 : 90	90 kg N as ST/UVA & 110 kg N as urea	2 x 220 kg ST/UVA 1 x 110 & 1 x 130 kg urea (50 and 60 kg N respectively)
	6. Above 1900	220 : 25 : 90	90 kg N as ST/UVA & 130 kg N as urea	2 x 220 kg ST/UVA 2 x 140 kg urea

Table 5 - Rates of application (kg/ha) of basal mixture/urea for mature VP.

Region	Potential yield (kg/ha/yr)	Recommended quantity of N : P ₂ O ₅ : K ₂ O	Quantity and source of N	No. of applications and quantity per application (kg/ha)
Up country	1. 2000 - 2500	270 : 35 : 120	270 kg N as VP/UM	4 x 230 kg VP/UM
	2. 2500 - 3000	320 : 35 : 120	270 kg N as VP/UM & 50 kg N as urea	4 x 230 kg VP/UM 1 x 110 kg urea
	3. 3000 - 3500	360 : 35 : 120	270 kg N as VP/UM & 90 kg N as urea (2 applications possible with care)	4 x 230 kg VP/UM 1 x 200 kg urea
	4. Above 3500	400 : 35 : 120	270 kg N as VP/UM & 130 kg N as urea	4 x 230 kg VP/UM 2 x 140 kg urea
Mid-country (Wet Zone)	Same as 1 to 4 above			
Low Country	1. 2000 - 2500	270 : 35 : 100	270 kg N as VP/LC	3 x 290 kg VP/LC
	2. 2500 - 3000	320 : 35 : 100	270 kg N as VP/LC & 50 kg N as urea	3 x 290 kg VP/LC 1 x 110 kg urea
	3. 3000 - 3500	360 : 35 : 100	270 kg N as VP/LC & 90 kg N as urea (2 applications possible with care)	3 x 290 kg VP/LC 1 x 200 kg urea
	4. Above 3500	400 : 35 : 100	270 kg N as VP/LC & 130 kg N as urea	3 x 290 kg VP/LC 2 x 140 kg urea
Uva	1. 2000 - 2500	270 : 35 : 140	270 kg N as VP/UVA	3 x 315 kg VP/UVA
	2. 2500 - 3000	320 : 35 : 140	270 kg N as VP/UVA & 50 kg N as urea	3 x 315 kg VP/UVA 1 x 110 kg urea
	3. 3000 - 3500	360 : 35 : 140	270 kg N as VP/UVA & 90 kg N as urea (2 applications	3 x 315 kg VP/UVA 1 x 200 kg urea
	4. Above 3500	400 : 35 : 140	possible with care) 270 kg N as VP/UVA & 130 kg N as urea	3 x 315 kg VP/UVA 2 x 140 kg urea

- Note: 1. For fields yielding below 2000 kg per ha per year, the nitrogen level may be reduced proportionately.
 - 2. The quantity per application may be adjusted to suit the seasonal variation in yield as well as age from pruning.

 3. Where the bulk is large, the number of applications may be increased.

 4. Urea could be bulked with the basal mixture.

3.4.4 Soil application of boron

When symptoms of boron deficiency are observed in shade trees, borate (borax) is recommended at the rate of 4.5 kg per ha per year. Borate should be mixed with basal NPK mixture or urea *in situ*.

3.4.5 Sulphate of potash to mitigate drought effects

Sulphate of potash is recommended for mature tea, to be applied prior to an anticipated drought and in areas that are prone to frequent drought damage.

A 2% solution of sulphate of potash (i.e. 8 kg in 400 I of water) is recommended at fortnightly intervals, commencing at least a month prior to the onset of the dry period. Spray immediately after harvesting to ensure proper deposition on the mature foliage. Urea (2%) may be included in the spray solution to increase the efficiency of potassium absorption.

Zinc sulphate should not be mixed with sulphate of potash in the spray solution.

The Tea Research Institute of Sri Lanka Talawakelle

Copyright - The Tea Research Institute of Sri Lanka © 2000

COPYRIGHT

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or information storage and retrieval, without permission in writing from the Director, The Tea Research Institute of Sri Lanka.