Single Neuron Training

Youngtaek Hong, PhD

Artificial Neuron

sigma

Activation

Feed forward

Feed forward

Feed forward

Gradient Descendent Method

Gradient Descendent Method

How to control E by adjusting w

How to control E by adjusting b

Neuron class

```
[1] import tensorflow as tf
[2] class Neuron(object):
       def __init__(self, w, b):
         self.w = tf.Variable(w, name='weight')
        self.b = tf.Variable(b, name='bias')
         self.output = 0
         self.input = tf.placeholder(tf.float32, shape=[1], name="input")
         self.target = tf.placeholder(tf.float32, shape=[1], name="output")
     # Linear function = identity function
       def getActivation(self, x):
         return x
       def getActivationGradient(self, x):
         return 1.0
       def propBackWard(self):
         Ir = 0.01
         grad = (self.output - self.target) * 1.0 * self.getActivationGradient(self.output)
         self.w = self.w - (|r * grad * self.input)
         self.b = self.b - (lr * grad * 1.0)
         return self.feedforward()
       def feedforward(self):
         sigma = self.w * self.input + self.b
         self.output = self.getActivation(sigma)
         return self.output
```

Neuron class

```
[3] my_neuron = Neuron(w = 2.0, b = 1.0)
    x = [1.0]
    y = [4.0]
[4] with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
       print (sess.run(my_neuron.feedforward(),
                       feed_dict={my_neuron.input: x,
                                  my_neuron.target:y}))
       for i in range(150):
         print (sess.run(my_neuron.propBackWard(),
                         feed_dict={my_neuron.input: x,
                                    my_neuron.target:y}))
        print (sess.run([my_neuron.w, my_neuron.b],
                         feed_dict={my_neuron.input: x,
                                    my_neuron.target:y}))
```

```
[3.]
[3.02]
[array([2.01], dtype=float32), array([1.01], dtype=float32)]
[3.0396]
[array([2.0198], dtype=float32), array([1.0198], dtype=float32)]
[3.0588078]
[array([2.029404], dtype=float32), array([1.0294039], dtype=float32)]
[3.0776315]
[array([2.0388157], dtype=float32), array([1.0388159], dtype=float32)]
[3.0960789]
[array([2.0480394], dtype=float32), array([1.0480396], dtype=float32)]
[3.1141572]
[array([2.0570786], dtype=float32), array([1.0570787], dtype=float32)]
[3.131874]
[array([2,065937], dtype=float32), array([1,0659372], dtype=float32)]
[3.1492367]
[array([2.0746183], dtype=float32), array([1.0746185], dtype=float32)]
[3.1662521]
[array([2,083126], dtype=float32), array([1,0831261], dtype=float32)]
[3.9465704]
[array([2.4732854], dtype=float32), array([1.4732851], dtype=float32)]
[3.947639]
[array([2.4738197], dtype=float32), array([1.4738194], dtype=float32)]
[3.9486861]
[array([2.4743433], dtype=float32), array([1.474343], dtype=float32)]
[3.9497125]
[array([2.4748564], dtype=float32), array([1.4748561], dtype=float32)]
[3.9507182]
[array([2.4753592], dtype=float32), array([1.475359], dtype=float32)]
```

Activation functions

Name	Plot +	Equation +	Derivative (with respect to <i>x</i>)		Order of continuity +
Identity			get activition gradient (X) return (get Activation (x)). ((1-getActivation	(a))
Binary step		$f(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x eq 0 \ ? & ext{for } x = 0 \end{array} ight.$	{0,1}	C^{-1}
Logistic (a.k.a. Sigmoid or Soft step)		$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$ [1]	f'(x) = f(x)(1-f(x))	(0,1)	C^{∞}
TanH		$f(x)= anh(x)=rac{\left(e^x-e^{-x} ight)}{\left(e^x+e^{-x} ight)}$	$f'(x)=1-f(x)^2$	(-1,1)	C^{∞}
ArcTan		$f(x) = an^{-1}(x)$	$f'(x) = \frac{1}{x^2+1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	C^{∞}
ArSinH		$f(x)=\sinh^{-1}(x)=\ln\Bigl(x+\sqrt{x^2+1}\Bigr)$	$f'(x) = \frac{1}{\sqrt{x^2+1}}$	$(-\infty,\infty)$	C^{∞}
ElliotSig ^{[8][9][10]} Softsign ^{[11][12]}		$f(x) = \frac{x}{1+ x }$	$f'(x)=\frac{1}{(1+ x)^2}$	(-1,1)	C^1
Inverse square root unit (ISRU) ^[13]		$f(x) = rac{x}{\sqrt{1 + lpha x^2}}$	$f'(x) = \left(rac{1}{\sqrt{1+lpha x^2}} ight)^3$	$\left(-\frac{1}{\sqrt{\alpha}},\frac{1}{\sqrt{\alpha}}\right)$	C^{∞}
Inverse square root linear unit (ISRLU) ^[13]			$f'(x) = \left\{ egin{array}{ll} \left(rac{1}{\sqrt{1+lpha x^2}} ight)^3 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$\left(-rac{1}{\sqrt{lpha}},\infty ight)$	C^2
Square Nonlinearity (SQNL) ^[10]		$f(x) = egin{cases} 1 & : x > 2.0 \ x - rac{x^2}{4} & : 0 \le x \le 2.0 \ x + rac{x^2}{4} & : -2.0 \le x < 0 \ -1 & : x < -2.0 \end{cases}$	$f'(x)=1\mp\frac{x}{2}$	(-1,1)	C^2
Rectified linear unit (ReLU) ^[14]		$f(x) = \left\{egin{array}{ll} 0 & ext{for } x \leq 0 \ x & ext{for } x > 0 \end{array} ight.$	$f'(x) = egin{cases} 0 & ext{for } x \leq 0 \ 1 & ext{for } x > 0 \end{cases}$	$[0,\infty)$	C^0