Hg.

Two types of Hapaxomers

Internal Palindromic Type II enzymes

– e.g., Sfi I

G G C C N N N N'N G G C C C C G G N'N N N N C C G G

• Outside Cutters (Type IIS)

- e.g., Sap I

G C T C T T C N'N N N C G A G A A G N N N N'

САВИИИ СТВ САВИИИ В А

В GG АТЭИНИНИНИНИНИНИ CC ТАСИНИНИНИНИНИНИНИ ИМИНИНИНИНИНИНИНСАТСС ИМИНИНИНИНИНИНИСТАСС

Figs 2A-B

FIG. 3

•
94.82 94.82 97.60 99.53 99.29 98.63
p (0+1) Sap 84.67 90.31 98.37 90.38 96.68 93.37
5 56.72 5 66.72 4 61.98 2 86.71 5 65.93 7 70.83
Sft (0-2) Sgf I/Pme I 98.91 97.45 99.70 98.14 100.00 93.52 100.00 98.55 100.00 97.17
Sfi 1 (0+1) 96.72 97.94 100.00 99.98 100.00
Sf 1 (0) 85.93 87.02 99.35 99.46 99.46
Sap 1 (0) 56.72 61.98 86.71 65.93 70.83

Hs_Fna Mgc E coli C elegans S cerevisiae Arabidopsis

7+	Cı	utters	
	\sim	111013	

Enzymes	Recognition Sequence	HsFna	MGC	Ec	Ce	Sc	At
Aarl	CACCTGCNNNNNNNN	7142	5355				1138
Abel	CC^TCA_GC not available	7970	5836	141	90	374	1833
Ascl	GG^CGCG_CC	515	336	152	10	13	26
AsiSI	GCG_AT^CGC	108	62	207	39	29	178
BbvCl	CC^TCA_GC	7970	5836	141	90	374	1833
CciNI	GC^GGCC_GC	1444	823	19	33	31	97
Cpol	CG^GWC_CG	1119	781	347			 ''
Cspl	CG^GWC_CG	1119	781	347	 	 	
CspBI	GC^GGCC_GC not available	1444	823	19	33	31	97
Fsel	GG CCGG^CC	1139	740	5	9	10	70
Mabl	A^CCWGG T		1 10			 	 '''
MchAl	GC^GGCC_GC not available	1444	823	19	33	31	97
Mlu11061	RGGWCCY not available				-		"-
Notl	GC^GGCC GC	1444	823	19	33	31	97
Paci	TTA_AT^TAA	708	395	66	8	213	138
Pf1271	RG^GWC_CY not available			-33			100
PpuMI	RG^GWC_CY		l	1	·	 	
PpuXI	RG^GWC_CY					<u> </u>	
Psp5II	RG^GWC_CY					 	-
PspPPI	RG^GWC_CY					 	
Rsrli	CG^GWC_CG	1119	781	347			
Rsr2l	CG^GWC_CG	1119	781	347			
SanDI	GG^GWC_CC		-	-		 	
Sapl	GCTCTTCN^NNN_	7260	4785	584	1296	1362	8870
Sbfl	CC_TGCA^GG	2591	1802	60	13	66	251
Sdal	CC_TGCA^GG	2591	1802	60	13	66	251
Sdil	GGCCN_NNN^NGGCC not available	2214	1634	28	18.	54	121
SexAI	A^CCWGG_T						· -
Sfil	GGCCN_NNN*NGGCC	2214	1634	28	18	54	121
Sgfl	GCG_AT^CGC	108	62	207	39	29	178
SgrAl	CR^CCGG_YG						
Sse2321	CG^CCGG_CG not available	708	448	29	43	23	446
Sse1825I	GG^GWC_CC not available						
Sse83871	CC_TGCA^GG	2591	1802	60	13	66	251
\$\$ 0 86471	AG^GWC_CT not available						
VpaK32I	GCTCTTCN^NNN_ not available	7260	4785	584	1296	1362	8870
· · · · · · · · · · · · · · · · · · ·	Six Cutters						

Enzymes	Recognition Sequence	HsFna	MGC	Ec	Ce	Sc	At
Nrui	TCG^CGA	830	607	1070	558	507	2422
Spll	C^GTAC_G	701	449	498	263	549	1705
SnaBl	TAC^GTA	1080	621	435	165	885	2164
Pvul	CG_AT^CG	842	512	1000	705	537	3078
Mlui	A^CGCG_T	1049	1019	976	295	337	1824
Bgi	GCCN_NNN*NGGC	8827	6868	1333	469	750	2576
Ear I	CTCTTCN*NNN			- 1000	1.00	- 	2070
BsrGl	TGTACA	6683	4551	442	760	1583	5450
Xmnl	GAANNANTTC	8401	5850	1167	1652	2911	12141
Sall	G^TCGA_C	1515	944	463	792	856	3616
BamHI	G^GATC C	6426	4305	438	1047	1238	6782
Kpnl	G_GTAC^C	4098	2755	442	305	1317	2992
EcoRI	G^AATT_C	6536	4132	470	1346	2466	8244
Xhol	C^TCGA G	3651	2402	156	800	737	7092
EcoRV	GAT^ATC	3789	2435	1378	919	2289	8419
	AAA^TTT	7484	5167	1008	1049	3843	8078
Dral	TTT^AAA	8455	6243	967	494	3018	6778

7+ Blunt Cutters

Enzymes	Recognition Sequence	HsFna	MGC	Ec	Ce	Sc	At
BstRZ246I	ATTT^AAAT	1204	648	55	38	379	317
BstSWI	ATTT^AAAT	1204	648	55	38	379	317
MspSWI	ATTT*AAAT	1204	648	55	38	379	317
Mssl	GTTT*AAAC	297	173	71	9	152	490
Pmel	GTTT*AAAC	297	173	71	9	152	490
Smil	ATTT^AAAT	1204	648	55	38	379	317
Swal	ATTT^AAAT	1204	648	55	38	379	317
Srfl	GCCC^GGGC	1433	887	40	11	11	30

Hs_Fna 15740 entries
Mgc 12585 entries
Ec 4290 entries
Ce 3305 entries
Sc 6360 entries
At 27289 entries

<u>ه</u>ر

Interrupted Palindromes

How to make Sft I "one way"

Methylases

– Bgl I, not Sfi I sites, in Αυγερήν

Vectors

G C C N N N N N G G C C G G N N N N N C C G

- Lethal genes in stuffer fragments

PCR interrupted Palindrome Cloning Pathway

PCR Interrupted Palindrome Cloning Pathway 1A

PCR Interrupted Palindrome Cloning Pathway 2A

PCR Interrupted Palindrome Cloning Pathway 1B drug1 **^** RecA coated oligos **000**^B drug1 M. Hae III + SAM drug1 Wizard Bgl I cut Acceptor drug2 DOWN Vector

Bgl I, Ligase

drug1

drug2

PCR Interrupted Palindrome Cloning Pathway 2B drug1 A 000 RecA coated oligos **000**^B drug1 M. SfiI + SAM drug1

Bgl I cut

Acceptor

Vector

Sfi I, Ligase

drug2

Wizard

Donor Vector

drug1

drug2

....

	7	s that ca	KEs that can make <i>3fi</i> I one-way
1	3'3b Overhang	Restriction Enzyme	Recognition Sequence
(CNG	Fmul	G GNC^C
)	CNG	PssI	RG GNC^CY
•	CWG	Psp031	G_GWC^C
	GNC	BthCI	G_CNG^C
	GSC	Taul	G_CSG^C
	NNN	AlwNI	CAG_NNN^CTG
	NNN	BgII	GCCN_NNN^NGGC
	NNN	BsiYI	CCNN_NNN^NNGG
\bigcirc	NNN	BstAPI	GCAN_NNN^NTGC
	NNN	Dralli	CAC_NNN^GTG
	NNN	MwoI	GCNN_NNN^NNGC
	NNN	PfIMI	CCAN_NNN^NTGG
	NNN	RleAI	CCCACANNNNNNNN NNN NNN NNN NNN NNN NNN N
j	NNN	Sfil	GGCCN_NNN^NGGCC

Outside Cutters (Type IIS)

Sap I

How to make Sap I "one way"

Methylases

 Orientation of sites in vector backbone in tology Vector and in Acceptal Vector

Lethal genes in stuffer fragments

- Ear I, not Sap I sites, in Acceptal

Vectors

G C T C T T C N^N N N C G A G A A G N N N N N

C T C T T C N^N N N G A G A A G N N N N N

Key Advantage of Sap I

- Only three bases per exchange site left in Acceptor Vector

Two Enzyme Approach

infrequent cutter of human cDNAs, two base 3' overhang

G C G A T'C G C C G C'T A G C G Pme I—
cutter, blunt end cutter
G T T T^A A A C
C A A A^T T T G

infrequent

O Two Enzyme Approach

Two Enzyme Cloning Pathway with PCR Entry

N-terminal SgfI site can allow Nterminal fusions OR NO fusion

NAAGGAGCGATGG

- - RBS -

Kozak--

VAAGGAGCGATCGCCATG KEQG1yAlaIleAlaMet

C-terminal Pme I site allows termination (+1AA) or C-terminal fusions

NNNGTTTAAACN

XaaValTer

NNNGTTTATCN with EcoRV

XaaValTyr

NNNGTTTCCAN with Ball, etc.

XaaValSer

Coexpression Variation

N-terminal Pac I--SgfI fusion site NAAGGANTATCGCCATGG KEQG1yleuIleAlaMet

C-terminal Pme I--Swa I fusion site

XaaValTer

N-terminal Pac I--SgfI fusion site

NAAGGAMMAATICCCCATGG

--RBS-

Kozak--

C-terminal Pme I--Swa I fusion site

XaaValTer

ends religate with T4 DNA ligase Sfi I cuts in ligase buffer, and cut

uc lig i=N₀Mx10³ ends/ml for non-identical $j=j\lambda(MW\lambda/MW)^{3/2}$ ends/ml cohesive termini

i=total concentration of DNA termini j=effective concentration of one end of a DNA molecule in the immediate neighborhood of the other end of the same molecule

Note: Sft I cut at 50°C; ligase at 22°C

Luciferase Expression in 3 Hosts

Luciferase Expression in 3 Hosts at 25°C

 \bigcirc

Luciferase Expression in 3 Hosts at 25°C

