Geometric Interpretation
$g(x) = f(x) b$ $f_{\chi}(a, b) = g'(a) = slope of fangent fo g(x) = f(x, b)$ $slope is$ $f_{\chi}(a, b) = f(x) f(x) f(x) f(x) f(x) f(x) f(x) f(x)$
for $f_{y}(a,b) = h'(b) = slope of tangent to$ $h(y) = f(a,b) \text{ at } y = b$
take slice at x=a, parallel to the yz-(our linate plane,
plane,
plare,
Plare,
plare,

Implicit differentiation
Implicit differentiation Z is a function of x by $X^3 + y^3 + z^3 + xyz + xy = 1$ find partial $3x^2 + 0 + 3z^2 + xy = 4$ $3x^2 + 0 + 3z^2 + xy = 4$ $3x^2 + 0 + 3z^2 + xy = 6$
$\mathcal{Z}_{x}(3z^{2}+xy)=-3x^{2}-yz-y$
$\frac{dz}{dx} = \frac{-3x^2 - yz - y}{3z^2 + xy}$

the control of the second second

The same transmitted to the same transmitted transmitted to the same transmitted transmitted transmitted transmitted transmitt

The second secon

The same of the sa

The state of the s

Functions with more than two variables.
w= f(x1) in xn)
$\frac{\partial w}{\partial x_{1}} = \frac{\partial f}{\partial x_{2}}$
Example X2eY2+Z
$\frac{\partial A}{\partial x} = \frac{\partial A}{\partial x} = \frac{\sqrt{2} + Z}{\sqrt{2}}$
$\partial \times$
$\frac{\partial f}{\partial t} = x^2 \lambda y e^{x^2 + z}$
0 \(\)
$\frac{\delta f}{\delta z} = x^2 e^{x^2 + z}$

Higher derivatives $(f_X)_{X=} f_{XX} = \int_{X} (\frac{\partial f}{\partial x}) = \int_{X^2}^{2f}$ $(f_X)_{y} = f_{xy} = \frac{\partial x}{\partial x} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial x}{\partial y \partial x} = \frac{\partial x}{\partial y \partial x} = \frac{\partial x}{\partial x \partial y}$ $(f_X)_{y} = f_{xy} = \frac{\partial x}{\partial x} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial x \partial y}$ $(f_X)_{y} = f_{xy} = \frac{\partial x}{\partial x} (\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial x \partial y}$ $(f_X)_{y} = f_{xy} = \frac{\partial x}{\partial x} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial x \partial y}$ $(fy)_y = f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$ e_{x} , $f(x)y = X s n(y) + y e^{X}$ $f_{x} = sin(y) + ye^{x}$ $f_{y} = x cos(y) + e^{x}$ Pax= yex fyy= - xs.ng $f_{xy} = cos(y) + e^{x}$ $f_{yx} = cos(y) + e^{x}$ fxy=fyx Not always the case.

Clair aut's Theorem
Let U = ECX) y) (x-a)2+ (y-b)2 < r2 }
which is the open disk of radius r centered at (asb),
If f(x)y) is a real valued function defined
on T such that fry and fry both exist
and are continuous on U then fxy=fxx
on U_{\bullet}