(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-24223

(P2001-24223A)

(43)公開日 平成13年1月26日(2001.1.26)

(51)Int.Cl.' H 0 1 L 33/00 識別配号

FI H01L 33/00 テーマコード(参考)

C 5F041

E

審査請求 未請求 請求項の数4 〇L (全 6 頁)

(21)出願番号

特願平11-195657

(22)出願日

平成11年7月9日(1999.7.9)

(71)出願人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72)発明者 森田 大介

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

Fターム(参考) 5F041 AA03 AA14 AA40 CA04 CA05

CA34 CA40 CA57 CA65 CA74

(54) 【発明の名称】 窒化物半導体発光ダイオード

(57)【要約】

【課題】 オーミック接触の低下やクラックの発生を考慮しつつ、自己吸収を防止して光取り出し効率を向上させ、発光ビーク波長が370nm以下の発光出力の良好な窒化物半導体素子を提供することである。

【解決手段】 活性層が、発光ビーク波長が370nm 以下の窒化物半導体層からなり、n電極と接するn型コンタクト層が、A1。 Ga_{1-1} N(0 < a < 0 、 1)を含んでなり、p電極と接するp型コンタクト層が、A1。 Ga_{1-1} N(0 < b < 0 、 1)を含んでなる。

【特許請求の範囲】

【請求項1】 基板上に、少なくともn型窒化物半導体 層、活性層、及びp型窒化物半導体層を有する窒化物半 導体素子において、

活性層が、発光ピーク波長が370mm以下の窒化物半 導体層からなり、

n型窒化物半導体層として、n電極と接するn型コンタ クト層が、Al.Ga₁₋₁N(0<a<0.1)を含んで

クト層が、Al, Ga,-, N (0 < b < 0.1)を含んで なることを特徴とする窒化物半導体素子。

【請求項2】 前記p型コンタクト層が、p型不純物を 1×10¹0¹1×10¹1/cm¹含有してなることを特 徴とする請求項1に記載の窒化物半導体素子。

【請求項3】 前記n型コンタクト層が、n型不純物を 1×10''~1×10''/cm'含有してなることを特 徴とする請求項1に記載の窒化物半導体素子。

【請求項4】 前記活性層とn型コンタクト層との間 1の窒化物半導体層を有し、更に、前記活性層とp型コ ンタクト層との間に、AlaGa, aN(0<d<0.

4)を含んでなる第2の窒化物半導体層を有することを 特徴とする請求項1~3のいずれか1項に記載の窒化物 半導体素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、発光ダイオード (LED)、レーザダイオード(LD)、太陽電池、光 センサーなどの発光素子、受光素子に使用される窒化物 30 て、n電極と接するn型コンタクト層が、Al。Ga, 。, 半導体素子(InxAlvGa1-x-vN、0≦X、0≦Y、X +Y≦1)に関し、特に、発光ピーク波長が370nm 以下の紫外領域に発光する窒化物半導体素子に関する。 [0.0002]

【従来の技術】近年、紫外LEDが実用可能となってい る。例えば、応用物理、第68巻、第2号(199 9)、p152~p155には、サファイア基板上に、 GaNバッファ層、n型GaNコンタクト層、n型Al GaNクラッド層、アンドープInGaNの活性層(I n組成はほとんどゼロ)、p型AIGaNクラッド層、 p型GaNコンタクト層が積層されてなる窒化物半導体 素子が記載されている。そして、この紫外LEDは、-定条件下で、発光ピークが371nmの場合には発光出 力が5mWであるのに対して、発光波長をこれより短波 長にしたときにはn型及びp型コンタクト層がGaNで あるために自己吸収がおとり、発光出力が急激に低くな ることが記載されている。更に、この発光出力の低下を 防止し、発振波長の短波長化を可能とするためには、n 型及びp型コンタクト層を、AIGaNとすることで自 己吸収を防止できることが示唆されている。

[0003]

【発明が解決しようとする課題】しかしながら、単に、 自己吸収を十分に防止できる程度に、コンタクト層をA 1を含むA1GaNで成長させると、電極とのオーミッ ク接触が得られ難くなる。更に、クラッド層は、活性層 のキャリアを閉じ込めるためにA1を含んでなるA1G aNからなるため、Alを含むp型クラッド層上にAl を含むp型コンタクト層を成長させると、又は、A1を 含むn型コンタクト層上にAlを含むn型クラッド層を p型窒化物半導体層として、p電極と接するp型コンタ 10 成長させると、n型クラッド層やp型コンタクト層にク ラックが入り易い傾向がある。このように、従来のGa Nからなるn及びp型コンタクト層を、AIGaNとし て成長させると、コンタクト層での自己吸収を防止する ことができるものの、上記のようにオーミック接触の低 下やクラックの発生などで発光出力を十分に向上させに くしょ

2

【0004】そこで、本発明の目的は、オーミック接触 の低下やクラックの発生を考慮しつつ、自己吸収を防止 して光取り出し効率を向上させ、発光ピーク波長が37 に、Al。Ga1.。N(0<e<0.3)を含んでなる第 20 0nm以下の発光出力の良好な窒化物半導体素子を提供 することである。

[0005]

【課題を解決するための手段】即ち、本発明は、下記 (1)~(4)の構成により本発明の目的を達成すると とができる。

- (1) 基板上に、少なくともn型窒化物半導体層、活 性層、及びp型窒化物半導体層を有する窒化物半導体素 子において、活性層が、発光ピーク波長が370ヵm以 下の窒化物半導体層からなり、n型窒化物半導体層とし N(0<a<0.1)を含んでなり、p型窒化物半導体 層として、p電極と接するp型コンタクト層が、Al。 Ga_{1-b}N(0<b<0.1)を含んでなることを特徴 とする窒化物半導体素子。
- (2) 前記p型コンタクト層が、p型不純物を1×1 01°~1×10'1/cm'含有してなることを特徴とす る前記(1)に記載の窒化物半導体素子。
- (3) 前記n型コンタクト層が、n型不純物を1×1 0¹⁷~1×10¹ / c m³含有してなることを特徴とす 40 る前記(1)に記載の窒化物半導体素子。
 - (4) 前記活性層とn型コンタクト層との間に、A1 。Ga₁₋。N(0<e<0.3)を含んでなる第1の窒化 物半導体層を有し、更に、前記活性層とp型コンタクト 層との間に、AlaGa1-aN(0<d<0.4)を含ん でなる第2の窒化物半導体層を有することを特徴とする 前記(1)~(3)のいずれか1項に記載の窒化物半導 体素子。

【0006】つまり、本発明は、n型及びp型コンタク ト層を、特定のAl組成比を有するAlGaNとするこ 50 とにより、良好なオーミック接触及びクラック発生の防 止と共に、コンタクト層での自己吸収を防止でき、発光 ピーク波長が370nm以下の発光出力の良好な窒化物 半導体累子を提供できる。本発明者は、自己吸収の防止 と共に、オーミック接触やクラック発生の防止も考慮し て種々検討の結果、コンタクト層をAIGaNとし、且 つ、特定のAI組成比とすることで、オーミック接触や クラック発生の防止と共に、自己吸収を防止でき、発光 出力を向上させることを達成している。また、発光ビー ク波長が370nmより長波長であっても、370nm 以下の発光もあるので、コンタクト層をAIGaNとす 10 ーク波長が370mm以下の窒化物半導体素子が記載さ ると自己吸収を防止でき、発光出力の向上が可能とな る。しかし、発光ピーク波長が370nm以下の場合に は、n型及びp型コンタクト層を上記のように特定のA 1組成比のAIGaNとすると、より顕著な効果を得る ことができる。

【0007】更に、本発明は、Alを含んでなるp型コ ンタクト層が、p型不純物濃度が、1×1018~1×1 0¹¹/cm¹、好ましくは5×10¹⁸~5×10¹⁸/c m'であると、オーミック接触を維持しつつ、発光出力 タクト層のAI組成比と、p型不純物濃度とを特定して 組み合わせると、オーミック接触及びクラック防止、発 光出力の向上の点でより好ましい。

【0008】更に、本発明は、Alを含んでなるn型コ ンタクト層が、n型不純物濃度が、1×10¹⁷~1×1 O¹*/cm*、好ましくはl×lO¹*~l×lO¹*/c m³、あると、オーミック接触を維持し、発光出力を向 上させる点で好ましい。とのように、n型コンタクト層 のAl組成比と、n型不純物濃度とを特定して組み合わ せると、p型コンタクト層の場合と同様に、オーミック 接触及びクラック防止、発光出力の向上の点で好まし

【0009】更に、本発明は、前記活性層とn型コンタ クト層との間に、Al.Ga...N(0<e<0.3)を 含んでなる第1の窒化物半導体層を有し、更に、前記活 性層とp型コンタクト層との間に、AlaGalaN(0 <d<0.4)を含んでなる第2の窒化物半導体層を有 すると、活性層へのキャリアの閉じ込めを良好にでき、 発光出力向上の点で好ましい。更に、第1の窒化物半導 体層及び第2の窒化物半導体層のそれぞれのA1組成比 40 を上記範囲とし、前記のコンタクト層のAI組成比及び 不純物濃度とを組み合わせると、クラック発生の防止、 オーミック接触を良好にでき、発光出力の向上の点で好 ましい。前記第1の窒化物半導体層及び第2の窒化物半 導体層は、クラッド層としての機能を有するので、本発 明においては、以下、第1の窒化物半導体層をn型クラ ッド層、第2の窒化物半導体層をp型クラッド層とす る。しかし、これに限定されるものではない。

[0010]

【発明の実施の形態】以下に、図1を用いて本発明を更 50 ンタクト層7の膜厚は、特に限定されないが、0.03

に詳細に説明する。図1は、本発明の一実施の形態であ る窒化物半導体素子の模式的断面図である。図1には、 基板 I 上に、バッファ層 2、 A I 。G a 1- 。N (0 < a < 0.1)を含んでなるn型コンタクト層3、A1。Ga 1-eN (0 < e < 0.3) を含んでなるn型クラッド層 4、 In, Ga_{1-f}N (0≤f<0.1)の活性層5、A l_dGa_{1-d}N(0<d<0.4)を含んでなるp型クラ ッド層6、Al, Ga1., N(0<b<0. I)を含んで なるp型コンタクト層7を積層成長させてなり、発光ビ れている。そして、n型コンタクト層3にはn電極が、 p型コンタクト層7にはp電極がそれぞれ形成されてい る。まず、本発明のn型コンタクト層 3 及び p型コンタ クト層7について記載する。

【0011】[n型コンタクト層3]本発明において、 n型コンタクト層3としては、少なくともA1.Ga1.. N(0 < a < 0, 1, 好ましくは0, 01 < a < 0, 05)を含んでなる窒化物半導体層である。A 1組成比が 上記範囲であると、自己吸収の防止と共に、結晶性とオ を向上させる点で好ましい。このように、前記p型コン 20 ーミック接触の点で好ましい。更に前記n型コンタクト 層3は、n型不純物を1×10¹⁷~1×10¹⁹/c m³、好ましくは1×10'°~1×10'°/cm°の濃度 で含有していると、オーミック接触の維持、クラック発 生の防止、結晶性の維持の点で好ましい。このようにn 型コンタクト層を構成するA1組成比とn型不純物濃度 を組み合わせると、自己吸収を防止できると共に、オー ミック接触やクラック防止の点で好ましい。n型不純物 としては、特に限定されないが、例えば、Si、Ge等 が挙げられ、好ましくはSiである。n型コンタクト層 3の膜厚は、特に限定されないが、0.1~20µmが 好ましく、より好ましくは $1\sim10\,\mu\,m$ である。膜厚が この範囲であると、界面付近(例えばn型クラッド層と の界面付近)の結晶性(下地として)と抵抗率の低下の 点で好ましい。

> 【0012】[p型コンタクト層7]本発明において、 p型コンタクト層7としては、少なくともAl。Gal.。 N(0<b<0.1、好ましくは0.01<b<0.0 5)を含んでなる窒化物半導体層である。A 1組成比が 上記範囲であると、n型コンタクト層の場合と同様に自 己吸収の防止と共に、結晶性とオーミック接触の点で好 ましい。更に、前記p型コンタクト層7は、p型不純物 を1×10¹⁸~1×10¹¹/cm¹、好ましくは5×1 0¹%~5×10²%/cm³の濃度で含有していると、オ ーミック接触、クラック発生の防止、結晶性、パルク抵 抗の点で好ましい。このようにp型コンタクト層を構成 するAl組成比とn型不純物濃度を組み合わせると、自 己吸収を防止できると共に、オーミック接触やクラック 防止の点で好ましい。p型不純物としては、特に限定さ れないが、例えば好ましくはMgが挙げられる。p型コ

 $\sim 0.5 \mu \text{ m}$ が好ましく、より好ましくは $0.1 \sim 0.$ 15μmである。膜厚がこの範囲であると、理由は定か ではないが、光の取り出し効率及び発光出力の点で好ま しい。

【0013】上記のようにn型及びp型コンタクト層の Al組成比を特定すること、更にはAl組成比に加えて 不純物濃度を特定して組み合わせると、発光出力の向上 の点で好ましい。

【0014】更に、以下に素子を構成するその他の各層 について説明する。

[基板1] 本発明において、基板1としては、サファイ アC面、R面又はA面を主面とするサファイア、その 他、スピネル (MgAl,O,) のような絶縁性の基板の 他、SiC(6H、4H、3Cを含む)、Si、Zn O、GaAs、GaN等の半導体基板を用いることがで きる。

【0015】[バッファ層2]本発明において、バッフ ァ層2としては、Ga。Al...N(但しgは0<g≦1 の範囲である。) からなる窒化物半導体であり、好まし なり、より好ましくはGaNからなるバッファ層2が挙 げられる。バッファ層2の膜厚は、0.002~0.5 μ m、好ましくは0.005~0.2 μ m、更に好まし くは0.01~0.02μmの範囲に調整する。バッフ ァ層2の膜厚が上記範囲であると、窒化物半導体の結晶 モフォロジーが良好となり、バッファ層2上に成長させ る窒化物半導体の結晶性が改善される。バッファ層2の 成長温度は、200~900℃であり、好ましくは40 0~800℃の範囲に調整する。成長温度が上記範囲で バッファ層2上に成長させる窒化物半導体の結晶性を良 好にでき好ましい。また、このような低温で成長させる バッファ層2は、基板の種類、成長方法等によっては省 略してもよい。

【0016】[n型コンタクト層3]上記のn型不純物 含有のAIGaNを含んでなる窒化物半導体である。

【0017】[n型クラッド層4]本発明において、n 型クラッド層4としては、活性層5のバンドギャップエ ネルギーより大きくなる組成であり、活性層5へのキャ ましい組成としては、Al.Ga,...N(0<e<0. 3、好ましくは0.1<e<0.2)のものが挙げられ る。n型クラッド層が、このようなAIGaNからなる と、活性層へのキャリアの閉じ込めの点で好ましい。n 型クラッド層の膜厚は、特に限定されないが、好ましく は $0.01\sim0.1\mu m$ であり、より好ましくは0.03~0.06μmである。n型クラッド層のn型不純物 濃度は、特に限定されないが、好ましくは1×1011~ 1×10'°/cm'であり、より好ましくは1×10'° ~1×10¹ / c m³ である。不純物濃度がこの範囲で あると、抵抗率及び結晶性の点で好ましい。

【0018】 n型クラッド層は、上記のような単一層の 他に、多層膜層(超格子構造を含む)とすることもでき る。多層膜層の場合は、上記のAl。Ga1-。Nと、それ よりバンドギャップエネルギーの小さい窒化物半導体層 とからなる多層膜層であればよいが、例えばバンドギャ ップエネルギーの小さい層としては、In,Ga,-,N $(0 \le h < 1)$, $A l_1 G a_{1-1} N (0 \le j < 1, e >$ j) が挙げられる。多層膜層を形成する各層の膜厚は、 10 特に限定されないが、超格子構造の場合は、一層の膜厚 が100オングストローム以下、好ましくは70オング ストローム以下、より好ましくは10~40オングスト ロームと、超格子構造を形成しない単一層の場合は、上 記の組成からなる層とすることができる。また、n型ク ラッド層がバンドギャップエネルギーの大きい層と、バ ンドギャップエネルギーの小さい層からなる多層膜層で ある場合、バンドギャップエネルギーの大きい層及び小 さい層の少なくともいずれか一方にn型不純物をドープ させてもよい。また、バンドギャップエネルギーの大き くはAlの割合が小さい組成ほど結晶性の改善が顕著と 20 い層及び小さい層の両方にドープする場合は、ドーブ量 は同一でも異なってもよい。

【0019】 [活性層5] 本発明において、活性層5と しては、発光ピーク波長が370nm以下となるような 組成の窒化物半導体が挙げられる。好ましくは In,G a₁₋₁N(0≤f<0.1)の窒化物半導体が挙げられ る。活性層の1n組成比は、発光ピーク波長が短波長と なるに従いIn組成比を小さくしていくが、In組成比 はほとんどゼロに近くなる。活性層の膜厚としては、特 に限定されないが、量子効果の得られる程度の膜厚が挙 あると良好な多結晶となり、この多結晶が種結晶として 30 げられ、例えば好ましくは0.001~0.01μmで あり、より好ましくは $0.003\sim0.007\mu m$ であ る。膜厚が上記範囲であると発光出力の点で好ましい。 また、活性層は、上記のような単一量子井戸構造の他 に、上記In,Ga,,Nを井戸層として、この井戸層よ りバンドギャップエネルギーが大きい組成からなる障壁 層とからなる多重量子井戸構造としてもよい。また、活 性層には、不純物をドープしてもよい。

【0020】また、活性層のIn組成比の調整として は、、発光ピーク波長が370nm以下となるln組成 リアの閉じ込めが可能であれば特に限定されないが、好 40 比であれば特に限定されず、具体的な値としては、例え ば下記の理論値の計算式から求められる値を近似的な値 として挙げることができる。しかし、実際に発光させて 得られる波長は、量子井戸構造をとる量子準位が形成さ れるため、波長のエネルギー(Ελ)がInGaNのバ ンドギャップエネルギー(Eg)よりも大きくなり、計 算式などから求められる発光波長より、短波長側へシフ トする傾向がある。

[0021] [理論値の計算式]

Eg = (1-x) 3.40+1.95x-Bx(1-x)

٥

()

Eg:InGaN井戸層のバンドギャップエネルギー 2: Inの組成比

3. 40 (eV): GaNのバンドギャップエネルギー 1. 95 (eV): InNのバンドギャップエネルギー B:ボーイングパラメーターを示し、1~6eVとす る。このようにボーイングパラメータが変動するのは、 最近の研究では、SIMS分析などから、従来は結晶に 歪みがないと仮定して1eVとされていたが、In組成 比の割合や膜厚が薄い場合等により歪みの生じる程度が 10 異なり、1eV以上となることが明らかとなってきてい るためである。

【0022】[p型クラッド層6]本発明において、p 型クラッド層6としては、活性層5のバンドギャップエ ネルギーより大きくなる組成であり、活性層5へのキャ リアの閉じ込めができるものであれば特に限定されない が、好ましくは、AlaGa1-aN(0<d<0.4、好 ましくは0.15<d<0.3)のものが挙げられる。 p型クラッド層が、このようなAIGaNからなると、 ラッド層の膜厚は、特に限定されないが、好ましくは $0.01\sim0.15\mu$ mであり、より好ましくは0.04~0.08μmである。p型クラッド層のp型不純物 濃度は、特に限定されないが、好ましくは1×101℃ 1×10²¹/cm³であり、より好ましくは1×10¹⁹ ~5×10¹⁰/cm²である。p型不純物濃度が上記範 囲であると、結晶性を低下させることなくバルク抵抗を 低下させる点で好ましい。

【0023】p型クラッド層は、上記のような単一層の 他に、多層膜層(超格子構造を含む)とすることもでき 30 ーニングを行う。 る。多層膜層の場合は、上記のAlaGa1-aNと、それ よりバンドギャップエネルギーの小さい窒化物半導体層 とからなる多層膜層であればよいが、例えばバンドギャ ップエネルギーの小さい層としては、n型クラット層の 場合と同様に、In,Ga1-,N(0≦h<1)、Al, Ga₁₋₁N(0≤j<1、e>j)が挙げられる。多層 膜層を形成する各層の膜厚は、特に限定されないが、超 格子構造の場合は、一層の膜厚が100オングストロー ム以下、好ましくは70オングストローム以下、より好 ましくは10~40オングストロームと、超格子構造を 40 形成しない単一層の場合は、上記の組成からなる層とす ることができる。また、p型クラッド層がバンドギャッ プエネルギーの大きい層と、バンドギャップエネルギー の小さい層からなる多層膜層である場合、バンドギャッ プエネルギーの大きい層及び小さい層の少なくともいず れか一方にp型不純物をドープさせてもよい。また、バ ンドギャップエネルギーの大きい層及び小さい層の両方 にドープする場合は、ドープ重は同一でも異なってもよ Ļ١,

【0024】[p型コンタクト層7]上記のp型不純物 50 【0033】(p型クラッド層6)次に水素雰囲気中、

含有のAIGaNを含んでなる窒化物半導体である。

【0025】また、本発明において、p電極及びn電極 は、種々のものを用いることができ、公知の電極材料等 から適宜選択して用いる。電極としての具体例は、後述 の実施例に記載されているものが挙げられる。また、本 発明は、 累子構造の一実施の形態として図1を挙げて説 明したが、発光ピーク波長が370mm以下で、n型コ ンタクト層及びp型コンタクト層が共に特定のA1組成 比のA1GaNであれば本発明の効果を得ることがで き、図1以外に、静電耐圧、順方向電圧、寿命特性等の 素子特性の向上のために、その他の層を形成してもよ

【0026】また、本発明の素子は、p側層をp型化し て低抵抗とするために、アニーリング処理を行ってい る。アニーリング処理としては、特許第2540791 号に記載されているように、気相成長法により、p型不 純物がドープされた窒化ガリウム系化合物半導体を成長 させた後、実質的に水素を含まない雰囲気中、400℃ 以上の温度で熱処理を行い、p型不純物がドープされた 活性層へのキャリアの閉じ込めの点で好ましい。p型ク 20 窒化ガリウム系化合物半導体から水素を出すことにより p型にする方法が挙げられる。

[0027]

【実施例】以下に、本発明の一実施の形態である実施例 を挙げて本発明を更に詳細に説明する。しかし、本発明 はこれに限定されない。

【0028】[実施例1]実施例1は、図1の窒化物半 導体素子を作製する。

(基板1) サファイア (C面) よりなる基板1を、反応 容器内において水素雰囲気中、1050℃で表面のクリ

【0029】(バッファ層2)続いて、水素雰囲気中、 510℃で、アンモニアとTMG(トリメチルガリウ ム)を用い、基板1上にGaNよりなるバッファ層2を 約200オングストロームの膜厚で成長させる。

【0030】(n型コンタクト層3)次に1050℃で TMG、TMA(トリメチルアルミニウム)、アンモニ ア、シラン (SiH.) を用い、Siを5×1018/c m³ドープしたn型Alo.o.Gao.o.Nよりなるn型コ ンタクト層3を4μmの膜厚で成長させる。

【0031】(n型クラッド層4)次に1050℃でT MG、TMA、アンモニア、シランを用い、Siを5× 10¹⁷/cm³ドープしたn型Alo.18Gao.s2Nより なるn型クラッド層4を400オングストロームの膜厚 で形成する。

【0032】(活性層5)次に窒素雰囲気中、700℃ でTMI、TMG、アンモニアを用い、アンドープIn GaNよりなる活性層を55オングストロームの膜厚で 成長させる。In組成比は、測定不可能な程度に微量 (ほとんどゼロ)である。

TMG、TMA、アンモニア、Cp₂Mg (シクロペンタジェニルマグネシウム) を用い、Mgを 1×10¹⁰/cm³ドープしたAlonGaonNよりな るp型クラッド層6を600オングストロームの膜厚で 成長させる。

[0034] (p型コンタクト層7) 続いて、TMG. TMA、アンモニア、Cp,Mgで、Mgを1×1010 /cm³ドープしたAl。。。Ga。。。Nよりなるp型コ ンタクト層7を0.12μmの膜厚で成長させる。

応容器内において、700℃でアニーリングを行い、p 型層をさらに低抵抗化した後、ウェーハを反応容器から 取り出し、最上層のp型コンタクト層7の表面に所定の 形状のマスクを形成し、RIE(反応性イオンエッチン グ)装置でp型コンタクト層側からエッチングを行い、 図1に示すようにn型コンタクト層3の表面を露出させ

【0036】エッチング後、最上層にあるp型コンタク ト層7のほぼ全面に膜厚200オングストロームのNi とAuを含む透光性のp電極8と、そのp電極8の上に 20 2・・・バッファ層 ボンディング用のAuよりなるpパッド電極10を0. 2 μ m の 膜厚で形成する。 一方エッチングにより 露出さ せたn型コンタクト層3の表面にはWとAlを含むn電 極9を形成する。最後にp電極8の表面を保護するため にSiOzよりなる絶縁膜を形成した後、ウェーハをス クライブにより分離して350μm角のLΕD素子とす

【0037】とのLED素子は順方向電圧20mAにお*

*いて、発光ピーク波長が370nmを示し、Vfは3. 8 V 出力は1.2 m W である。実施例1のLEDの光 取り出し効率は、従来のn型及びp型コンタクト層がA 1を含んでいないものに対してほぼ1.5倍となる。 [0038]

【発明の効果】本発明は、上記のように、n型及びp型 コンタクト層のA1組成比を特定してなるA1GaNと することで、オーミック接触の低下やクラックの発生を 考慮しつつ。自己吸収を防止して光取り出し効率を向上 【0035】成長終了後、窒素雰囲気中、ウェーハを反 10 させ、370nm以下の発光出力の良好な窒化物半導体 素子を提供することができる。更に本発明は、n型及び p型コンタクト層のMg濃度や、特定のクラッド層との 組み合わせにより、さらに良好な効果を得ることができ

【図面の簡単な説明】

【図1】図1は、本発明の一実施の形態であるLEDの 模式的断面図である。

【符号の説明】

1 · · · 基板

3 · · · n型コンタクト層

4··・n型クラッド層

5・・・活性層

6 · · · p型クラッド層

7··・p型コンタクト層

8 · · · p 電極

9 · · · n 電極

10・・・パッド電極

[図1]

