

RNN: recurrent neural networks (part 1)

Time (order) matters: sequence (longitudinal) data

Filippo Biscarini Senior Scientist CNR, Milan (Italy) Nelson Nazzicari Senior scientist CREA, Lodi (Italy)

Sequence data problems

Sequence data problems - examples

Sequence data problems - examples

Sequence models - data representation

Pattern (entity) recognition problem

x: in the impenetrable forest there are populations of *Panthera leo* and *Loxodonta africana*

\/	
У	

output representations:

- vector of 1's and 0's (wild scientific animal names or not)
- start and end position of animal names
- ...

Sequence models - data representation

input representation

x: statisticians are beautiful human beings

x<1>

x<2>

x<3>

x<42

x<5

Vocabulary

are beautiful beings human statisticians

OHE: one-hot encoding

Sequence models - data representation

Pattern (entity) recognition problem

x: in the impenetrable forest there are populations of *Panthera leo* and *Loxodonta africana*

Vocabulary / dictionary

a
Aarhus
...
africana
are
...
Leo
...
Panthera
...
Wagyu
...
zebra
...
Zürich

- ex. 10,000 words
- OHE: one-hot encoding ("T" 1-hot 10,000-long vectors)
- supervised learning of a function f(x) that maps x→y

Building a NN model for sequence data

From dense NNs to RNNs

Filippo Biscarini Senior Scientist CNR, Milan (Italy) Nelson Nazzicari Senior scientist CREA, Lodi (Italy)

A neural network model for word recognition

- text data + vocabulary → data representation (sequence of 1-hot-encoded vectors and labels)
- **objective**: find (approximate) function that maps OHE vectors to labels $(x \rightarrow y)$
- y = f(x)
- which neural network architecture? Shall we try a dense neural network?

Let's try a standard (dense) neural network

T = 13 words, 3 hidden layers (u: units), one output layer (13 labels)

Let's try a standard (dense) neural network

T = 13 words, 3 hidden layers (u: units), one output layer (13 labels)

Won't work!

- inputs, outputs can have different lengths in different sentences (examples) [zero-padding may circumvent, but suboptimal representation]
- doesn't transfer learning along the sequence!
- the number of parameters to learn quickly explodes!
 → [(vocabulary size x T (max sentence length) x n. of nodes x n. of layers]

similar to CNN, we would like learning to generalize from one part of the image (sequence) to other parts of the image (sequence)

Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN)

- words (sequences) are analysed sequentially, from left to right (or from top to bottom etc.)
- each time, the transformed information from the previous word/sequence
 (activation values) is passed on to the next word/sequence → transferring
 learning along the sequence!
- weakness: only previous information is used!

(e.g. "In this project, Panthera leo samples are used"

"In this project, <u>Panthera Corporation</u> is the leading partner")

[bidirectional RNNs (BRNNs) offer a solution to this problem]

Simple unidirectional RNN

 The different sets of parameters (Waa, Wax, Wya, ba, by) are shared along the sequence [IMPORTANT!]

Simple RNN: forward propagation

$$egin{aligned} & a^{< t>} = g\left(W_{aa} \cdot a^{< t-1>} + W_{ax} \cdot x^{< t>} + b_a
ight) \ & \hat{y}^{< t>} = g\left(W_{ya} \cdot a^{< t>} + b_y
ight) \end{aligned}$$

- $a^{<0>}$ and $x^{<1>} \rightarrow a^{<1>}$ and $\hat{y}^{<1>}$ $a^{<1>}$ and $x^{<2>} \rightarrow a^{<2>}$ and $\hat{y}^{<2>}$ $a^{<2>}$ and $x^{<3>} \rightarrow a^{<3>}$ and $\hat{y}^{<3>}$
- and so on ...

- **Tanh** or **Relu** for the activation layer
- Sigmoid or softmax for the output laver
- W_{aa} W_{ax} W_{va}: model coefficients
- **b**_a **b**_v: bias terms

Simple RNN: let's work out the dimensions

$$a_{(u,1)}^{< t>} = g\left(W_{aa(u,u)} \cdot a_{(u,1)}^{< t-1>} + W_{ax(u,m)} \cdot x_{(m,1)}^{< t>} + b_{a(u,1)}
ight)$$

$$\hat{y}_{(1,1)}^{< t>} = \sigma\left(W_{ya(1,u)} \cdot a_{(u,1)}^{< t>} + b_{y(1,1)}
ight)$$

- **u**: **n. of units** (nodes) in the layer
- m: n. of features (vocabulary size)
- Wax(u,m): u nodes, m features
- Waa(u,u): input a(u,1) * u "new" nodes (from initialization onward)
- sigmoid activation: binary classification (name / no-name)
- for multiclass, softmax would be used, and y_hat would have dimensions (c,1), with c = n. of classes

Back to the future!

Back propagation for RNNs

Filippo Biscarini Senior Scientist CNR, Milan (Italy) Nelson Nazzicari Senior scientist CREA, Lodi (Italy)

RNN: forward and back propagation

RNN: forward and back propagation

This is **forward propagation**: with **data** and **parameters (weights/coefficients)** we go through the network and obtain **predictions**

How do we calculate the weights of the model?

RNN: loss function

$$\mathcal{L}^{< t>}\left(\hat{y}^{< t>}, y^{< t>}
ight) =$$

$$\mathcal{L}(\hat{y},y) = \sum_{t=1}^{Ty} \mathcal{L}^{< t>} \left(\hat{y}^{< t>}, y^{< t>}
ight)$$

← loss for single word (position)

← loss for the whole sequence (sentence)

RNN: backpropagation through time

- with loss functions and their partial derivatives (with respect to model coefficients), we can
 move through the network and update the coefficients (~ gradient descent)
- "Backpropagation through time": algorithm to solve RNNs (from right to left, over decreasing time indices "t", kind of backwards in time)

Architects at work

Different RNN architectures

Filippo Biscarini Senior Scientist CNR, Milan (Italy) Nelson Nazzicari Senior scientist CREA, Lodi (Italy)

RNNs: input / output

So far:

- simple unidirectional RNN
- input and output: same type, same dimension (Tx = Ty)

RNN: many-to-many architecture

- e.g. entity recognition
- (as) many inputs
 (words/sequences) are
 mapped to (as) many
 outputs (e.g. labels)

RNN: many-to-one architecture

- e.g. text classification: reviewer report (input text) classified as accept, minor revisions, major revisions, reject (categories)
- many inputs (words in the reviewer report) are mapped to one output (category)

e.g. "The research problem is very important and was treated fine by the researches. The objective is clear and conclusions are supported by the results and methods used. Indeed no one has dealt with this matter before. So, it's a novelty. The figures are great also the tables."

RNN: one-to-many architecture

- e.g. sequence generation: input the musical genre (one integer) to generate a song (sequence of notes)
- one input

 (integer/string) is
 mapped to many
 outputs (the sequence of notes in the song)
- generated notes at "t-1", together with a<t-1> are input of layer "t"

RNN: many-to-many* architecture

 $\mathbf{x}^{<\mathsf{Tx}>}$

- e.g. machine translation: input sequence Tx ≠ output sequence Ty (Italian text → English text)
- encoder: RNN that processes the input text
- decoder: RNN that processes the translation

RNN - lab 1

- simple RNN
- RNN for forecasting

- → day4_code02 RNN-1 architectures.ipynb (up to embeddings (included))
- → day5_code02 RNN-2 time series data.ipynb (first part - up to END OF LIGHT DEMO PART (excluded))

