Probability Theory I Assignment 7

Claire He

October 21, 2022

Exercise 1

Let \mathcal{C} be a monotone class and a field. Since it is a field, it is closed under complementation and finite union or intersections. Since it is monotone class, it is closed under increasing countable unions and countably decreasing intersections.

- $\varnothing \in \mathcal{C}$ since \mathcal{C} is a field.
- \mathcal{C} is closed under complementation from \mathcal{C} being a field.
- Now let's take $(A_n) \in \mathcal{C}^{\mathbb{N}}$. Define $B_n = \bigcup_{k=1}^n A_k$ for $n \in \mathbb{N}$. Since \mathcal{C} is a field, $B_n \in \mathcal{C}$ as finite union of elements of \mathcal{C} , and moreover (B_n) defines an increasing sequence. Since \mathcal{C} is a monotone class, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{C}$. Now this writes also $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^n A_k = \bigcup_{k=1}^{\infty} A_k \in \mathcal{C}$ as required for a σ -field.

Exercise 2

Now let \mathcal{C} be a π -system and a λ -system. Since it is a π -system it is closed under finite intersections and as a λ -system, $\Omega \in \mathcal{C}$, it is closed under countable increasing unions and monotone differences.

- $\emptyset = \Omega \backslash \Omega \in \mathcal{C}$ since $\Omega \in \mathcal{C}$
- Want to show \mathcal{C} is closed under complementation. Take $A \in \mathcal{C}$, then $A \subset \Omega$ and $A^c = \Omega \setminus A \in \mathcal{C}$ by property of λ -systems.
- Now let's take $(A_n) \in \mathcal{C}^{\mathbb{N}}$. By the previous assertion, note that for n, $A_n^c \in \mathcal{C}$. Define $B_n = \bigcup_{k=1}^n A_k$. Since \mathcal{C} is a λ -system, $B_n^c = \bigcap_{k=1}^n A_k^c \in \mathcal{C}$ as finite intersections of elements of \mathcal{C} . By complementation again, $B_n \in \mathcal{C}$. As before, (B_n) defines an increasing sequence. Since \mathcal{C} is closed under countable increasing unions, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{C}$. Now this writes also $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^n A_k = \bigcup_{k=1}^{\infty} A_k \in \mathcal{C}$ as required for a σ -field.

Exercise 3

Suppose $\mathcal{I}, \mathcal{J} \subset \mathcal{F}$ are two π -systems on (Ω, \mathcal{F}, P) . Following the hint, for $I \in \mathcal{I}$, let's consider $\pi_1 : H \mapsto P(I \cap H)$ and $\pi_2 : H \mapsto P(I) \cdot P(H)$ measures on \mathcal{J} . We need to check they are indeed measures.

- $\pi_1(\varnothing) = P(\varnothing \cap I) = P(\varnothing) = 0$ and $\pi_2(\varnothing) = P(\varnothing) \cdot P(I) = 0$
- Let $A_1, A_2, \dots \in \mathcal{J}$ pairwise disjoint,

$$\begin{array}{lcl} \pi_1(\bigcup_{n\in\mathbb{N}}A_n) & = & P(I\cap\bigcup_{n\in\mathbb{N}}A_n) \\ \\ & = & P(\bigcup_{n\in\mathbb{N}}A_n\cap I) \\ \\ & = & \sum_{n\in\mathbb{N}}P(A_n\cap I) \ \text{ since P is a measure} \\ \\ & = & \sum_{n\in\mathbb{N}}\pi_1(A_n) \end{array}$$

Similarly,

$$\begin{array}{lcl} \pi_2(\bigcup_{n\in\mathbb{N}}A_n) & = & P(I)\cdot P(\bigcup_{n\in\mathbb{N}}A_n) \\ \\ & = & P(I)\cdot \sum_{n\in\mathbb{N}}P(A_n) \ \text{ since P is a measure} \\ \\ & = & \sum_{n\in\mathbb{N}}P(A_n)\cdot P(I) \\ \\ & = & \sum_{n\in\mathbb{N}}\pi_2(A_n) \end{array}$$

So π_1 and π_2 are measures on \mathcal{J} .

By determination of measures, if $\pi_1 = \pi_2$ on \mathcal{J} , since it is a π -system, then $\pi_1 = \pi_2$ on $\sigma(\mathcal{J})$. Indeed, for any $H \in \mathcal{J}$,

$$\pi_1(H) = P(I \cap H)$$
 independence of \mathcal{I}, \mathcal{J}
= $P(I) \cdot P(H)$
= $\pi_2(H)$

In particular, this yields that \mathcal{I} and $\sigma(\mathcal{J})$ are independent.

Now fix $H \in \sigma(\mathcal{J})$ and consider the measures $\tilde{\pi}_1 : I \mapsto P(I \cap H)$ and $\tilde{\pi}_2 : I \mapsto P(I) \cdot P(H)$ on \mathcal{I} , we show similarly that the measures coincide on \mathcal{I} hence by determination of measure on $\sigma(\mathcal{I})$. Indeed, for any $I \in \mathcal{I}$,

$$\begin{array}{lcl} \tilde{\pi}_1(I) & = & P(I \cap H) & \text{independence of } \mathcal{I}, \sigma(\mathcal{J}) \\ & = & P(I) \cdot P(H) \\ & = & \tilde{\pi}_2(I) \end{array}$$

In particular this means that $\sigma(\mathcal{I})$ and $\sigma(\mathcal{J})$ are independent.

Exercise 4

Assignment 7