TDNMF 算法损失函数:

$$\min_{W,H} ||Y - WH^T||_F^2 + \lambda_1 (||W||_F^2 + ||H||_F^2) + \lambda_2 ||W - T||_F^2 + \lambda_3 \sum_{i,p=1}^n ||h_i - h_q||^2 C_{ip}$$
(1)

s. t, $W \ge 0$, $H \ge 0$

推导思路 1: 梯度下降法

推守心的 1: 你	
首先,我们考虑无约束条件 ————————————————————————————————————	
$\min_{W,H} Y - WH^T _F^2 + \lambda_1 (W _F^2 + H _F^2) + \lambda_2 W - T _F^2 + \lambda_3 \sum_{i,p=1}^n h_i - h_q ^2 C_{ip}$	(2)
通过"梯度下降法"求迭代更新公式:	
$LF = \ Y - WH'\ _F^2 + \lambda_1(\ W\ _F^2 + \ H\ _F^2) + \lambda_2\ W - T\ _F^2 + \lambda_3 \sum_{i,p=1}^n \ h_i - h_q\ ^2 C_{ip}$	
$= Tr[(Y - WH')(Y - WH')'] + \lambda_1 \{Tr(WW') + Tr(HH')\} +$	
$\lambda_2 Tr[(W-T)(W-T)'] + \lambda_3 Tr(H^T LH)$	
$= Tr(YY^T) - 2Tr(YHW') + Tr(WH'HW') + \lambda_1 Tr(WW') +$	(3)
$\lambda_1 Tr(HH') + \lambda_2 Tr(WW') - 2\lambda_2 Tr(WT') + \lambda_2 Tr(TT') + \lambda_3 Tr(H^T LH)$	(3)
下面开始求梯度:	
$\frac{\partial LF}{\partial W} = -2YH + 2WH'H + 2(\lambda_1 + \lambda_2)W - 2\lambda_2T$	
$= 2((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T))$	(4)
$\frac{\partial LF}{\partial H} = 2\left((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH)\right)$	(5)
下面开始使用梯度下降法:	
$W_{ik} \leftarrow W_{ik} - \eta \frac{\partial LF}{\partial W}$	
$\leftarrow W_{ik} + 2\eta \left\{ \left(YH + \lambda_2 T \right)_{ik} - \left(WH'H + (\lambda_1 + \lambda_2)W \right)_{ik} \right\}$	(6)
公式(6)是无约束情况,而我们真正需要的是有约束($W \ge 0, H \ge 0$)的情况,这里我们	j
可以令 $\eta = \frac{w_{ik}}{2\left(WH^{'}H + (\lambda_1 + \lambda_2)W\right)_{ik}}$,便可使其满足约束条件($W \ge 0$, $H \ge 0$)。因此,我们可	,
得:	
$W_{ik} \leftarrow \frac{(YH + \lambda_2 T)_{ik}}{(WH'H + (\lambda_1 + \lambda_2)W)_{ik}} W_{ik}$	(7)
同理可得:	
$H_{ik} \leftarrow \frac{\left(Y^TW + \lambda_3 CH\right)_{ik}}{\left(HW'W + \lambda_1 H + \lambda_3 DH\right)_{ik}} H_{ik}$	(8)

推导思路 2: 拉格朗日函数法

利用 KKT 互补松弛条件实施非负约束。(1) 式的拉格朗日函数为:

$LF = \ Y - WH'\ _F^2 + \lambda_1(\ W\ _F^2 + \ H\ _F^2) + \lambda_2\ W - T\ _F^2 + \lambda_3 \sum_{i,p=1}^n \ h_i - h_q\ ^2 C_{ip}$	
$+ Tr(\Lambda_1 W') + Tr(\Lambda_2 H')$	
$= Tr[(Y - WH')(Y - WH')'] + \lambda_1 \{Tr(WW') + Tr(HH')\} +$	
$\lambda_2 Tr[(W-T)(W-T)'] + \lambda_3 Tr(H^T L H) + Tr(\Lambda_1 W') + Tr(\Lambda_2 H')$	
$= Tr(YY^{T}) - 2Tr(YHW') + Tr(WH'HW') + \lambda_{1}Tr(WW') +$	
$\lambda_1 Tr(HH') + \lambda_2 Tr(WW') - 2\lambda_2 Tr(WT') + \lambda_2 Tr(TT') + \lambda_3 Tr(H^T LH) +$	(9)
$Tr(\Lambda_1 W') + Tr(\Lambda_2 H')$	

我们有下面的 KKT 条件

$\Lambda_1 \odot W = 0$	(10)
$\Lambda_2 \odot H = 0$	(11)

接下来,我们对公式(9)求导可得:

 及 1 次	
$\frac{\partial LF}{\partial W} = -2YH + 2WH'H + 2(\lambda_1 + \lambda_2)W - 2\lambda_2T + \Lambda_1$	
$= 2((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T)) + \Lambda_1$	(12)
同理可得:	
$\frac{\partial LF}{\partial H} = 2((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH)) + \Lambda_2$	(13)
令(12)和(13)为 0,可得:	
$\Lambda_1 = -2\big((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T)\big)$	(14)
$\Lambda_2 = -2((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH))$	(15)
公式(14)(15)与(10)(11)相结合得:	
$((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T)) \odot W = 0$	(16)
$((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH)) \odot H = 0$	(17)
因此,我们可以得到更新公式:	
$W_{ik} \leftarrow \frac{(YH + \lambda_2 T)_{ik}}{(WH'H + (\lambda_1 + \lambda_2)W)_{ik}} W_{ik}$	(18)
$H_{ik} \leftarrow \frac{\left(Y^TW + \lambda_3 CH\right)_{ik}}{\left(HW'W + \lambda_1 H + \lambda_3 DH\right)_{ik}} H_{ik}$	(19)