Title

D. Zack Garza

Sunday 13th September, 2020

Contents

1	Sunday, September 13			
	1.1	1.a	1	
	1.2	3.a	2	

$oldsymbol{1}$ | Sunday, September 13

1.1 1.a

Proof.

 $A \implies B$:

- Suppose $\{a_n\}$ is not bounded above.
- Then any $k \in \mathbb{N}$ is not an upper bound for $\{a_n\}$.
- So choose a subsequence $a_{n_k} > k$, then by order-limit laws,

$$a_{n_k} > k \implies \liminf_{k \to \infty} a_{n_k} > \liminf_{k \to \infty} k = \infty.$$

Note that $\lim_{n \to \infty} a_n$ need not exist, but $\lim_{n \to \infty} a_n$ always exist.

Proof.

 $A \Longrightarrow B$:

- Suppose $\{a_n\}$ is bounded by M, so $a_n < M$ for all $n \in \mathbb{N}$.
- Then if $\{a_{n_k}\}$ is a subsequence, we have $a_{n_k} \in \{a_n\}$, so $a_{n_k} < M$ for all $k \in \mathbb{N}$.
- But then

$$a_{n_k} < M \implies \limsup_{k \to \infty} a_{n_k} \le M,$$

• Now just note that if $\lim_{k \to \infty} a_{n_k}$ exists,

$$\lim_{k \to \infty} a_{n_k} \limsup_{k \to \infty} a_{n_k} \le M,$$

so no subsequence can converge to infinity.

1.2 3.a

- Proof (Using definition (i)). Suppose $|x_n| \leq M$ for every n. Let $\{x_{n_k}\}$ be an arbitrary subsequence, then since $x_{n_k} \in \{x_n\}$ for all k, $|x_{n_k}| \leq M$ for all k.
 - By order-limit laws,

$$|x_{n_k}| \le M \implies \inf_k |x_{n_k}| \le M.$$

since the