REDES BAYESIANAS CAP 14 (14.1 - 14.3)

Parcialmente adaptado de http://aima.eecs.berkeley.edu

Resumo

- Sintaxe
- Semântica
- Distribuições parametrizadas

Redes Bayesianas

- Notação gráfica simples para asserções de independência condicional, e portanto para uma especificação compacta de distribuições conjuntas totais
- Sintaxe:
 - um conjunto de nós, um por variável
 - um grafo acíclico dirigido (arco ≈ "influencia directamente")
 - uma distribuição condicional para cada nó dados os seus pais:

$$\mathbf{P}(X_i \mid Parents(X_i))$$

 No caso mais simples, distribuição condicional representada como uma tabela de probabilidade condicionada (CPT) especificando a distribuição de X_i para cada combinação de valores dos pais

 A topologia da rede representa asserções de independência condicional:

- Weather é independente das outras variáveis
- Toothache e Catch são condicionalmente independentes dado Cavity

- Estou no trabalho, o vizinho John telefona-me para dizer que o meu alarme está a tocar, mas a vizinha Mary não telefona. Ocasionalmente dispara por causa de pequenos tremores de terra. A minha casa esta a ser assaltada?
- Variáveis: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- Topologia da rede reflecte conhecimento "causal":
 - Um assaltante pode fazer disparar o alarme
 - Um tremor de terra pode fazer disparar o alarme
 - O alarme pode fazer com que a Mary telefone
 - O alarme pode fazer com que o John telefone

Roubos e terramotos afectam diretamente a probabilidade do alarme tocar

O Facto de John e Mary telefonarem só depende diretamente do alarme.

P(**E**)

.002

Burglary

Ou seja, a rede representa as nossas crenças que eles não se apercebem de quaisquer roubos ou terramotos diretamente, e não verificam antes de ligar!

Earthquake

As probabilid conjunto pote circunstância alta; John con telefone; hum energia, etc. alarme; John con telefone; hum energia, etc.

As probabilidades resumem um conjunto potencialmente infinito de circunstâncias (Mary ouve música alta; John confunde o alarme com o telefone; humidade, falta de energia, etc. podem interferir com alarme; John e Mary não estão em casa, etc.)

Preguiça e ignorância!

MaryCalls

A	P(M A)
T	.70
	.01

Representação compacta

- Cada linha numa CPT contém a probabilidade condicional de cada valor do nó para cada combinação de valores dos pais.
- Uma CPT para X_i Booleana com k pais Booleanos requer 2^k linhas para as combinações de valores dos pais
- Cada linha requer um número p para X_i =true (o número para X_i =false é simplesmente 1-p)

- Se cada variável não tem mais de k pais, a rede precisa no total de $O(n \cdot 2^k)$ números
- I.e., cresce linearmente com n, vs. $O(2^n)$ para a distribuição conjunta total
- Para a rede do assaltante, 1+1+4+2+2=10 números (vs. $2^5-1=31$)

Semântica

- Duas formas equivalentes:
 - Semântica global (ou numérica): interpretar as redes como uma representação da distribuição de probabilidade conjunta
 - Indica como construir uma rede
 - Semântica local (ou topológica): interpretar as redes como uma representação de uma coleção de declarações de independência condicional
 - Indica como fazer inferências com uma rede

Semântica Global

 Semântica global define a distribuição conjunta total como o produto distribuições condicionais locais:

$$\mathbf{P}(X_1, ..., X_n) = \prod_{i=1..n} \mathbf{P}(X_i \mid Parents(X_i))$$

- Nesta situação dizemos que a distribuição P é compatível com a rede
 G.
- E.g.

$$P(j \land m \land a \land \neg b \land \neg e) =$$

= $P(j|a) P(m|a) P(a|\neg b, \neg e) P(\neg b) P(\neg e) =$
= $0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.00063$

Semântica Local

 Semântica local (topológica): cada nó é condicionalmente independente dos seus não-descendentes, dado os seus pais

Para todo o nó X assume-se que

$$P(X|Z_{1j},...,Z_{nj},U_{1},...,U_{m}) = P(X|U_{1},...,U_{m})$$

Conclui-se que: Semântica Local ⇔ Semântica Global

Cobertura de Markov

 Cada nó é condicionalmente independente de todos os outros dada a sua cobertura de Markov (Markov blanket): pais + filhos + pais dos filhos

• Seja $W_1,...,W_p$ um qualquer conjunto de nós da rede, disjunto da cobertura de Markov de X. Tem-se:

$$P(X|W_1,...,W_p,U_1,...,U_m,Y_1,...,Y_n,Z_{1j},...,Z_{nj}) = P(X|U_1,...,U_m,Y_1,...,Y_n,Z_{1j},...,Z_{nj})$$

Construção de Redes Bayesianas

- 1. Escolher uma ordenação das variáveis $X_1, ..., X_n$
- 2. Para i=1 até n
 - 1. Adicionar X_i à rede
 - Escolher de entre X_l , ..., X_{i-1} um conjunto minimal de pais para X_i tal que $\mathbf{P}(X_i \mid Parents(X_i)) = \mathbf{P}(X_i \mid X_l, ..., X_{i-1})$ e acrescentar ligações de cada pai para X_i
 - 3. Escrever a tabela de probabilidade condicional (CPT) para $P(X_i | Parents(X_i))$
- Esta escolha de pais garante a semântica global:
- $\mathbf{P}(X_1,...,X_n) = \prod_{i=1..n} \mathbf{P}(X_i \mid X_1,...,X_{i-1})$ (regra da cadeia) = $\prod_{i=1..n} \mathbf{P}(X_i \mid Parents(X_i))$ (por construção)

Suponhamos a seguinte ordenação M, J, A, B, E

Se a Mary tiver telefonado, isso provavelmente significa que o alarme disparou, o que tornaria mais provável que John também tivesse telefonado...

• P(J|M) = P(J)?

Suponhamos a seguinte ordenação M, J, A, B, E

• P(J|M) = P(J)? Não

Suponhamos a seguinte ordenação M, J, A, B, E

Claramente que se ambos tiverem telefonado, é mais provável que o alarme tenha disparado do que se apenas um deles tiver telefonado...

- P(J|M) = P(J)? Não
- P(A|J,M) = P(A|J)? P(A|J,M) = P(A)?

Suponhamos a seguinte ordenação M, J, A, B, E

- P(J|M) = P(J)? Não
- P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? Não

Suponhamos a seguinte ordenação M, J, A, B, E

Se soubermos o estado do alarme, então os telefonemas não acrescentam nada em relação ao roubo...
Apenas precisamos do alarme...

- P(J|M) = P(J)? Não
- P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? Não
- P(B|A,J,M) = P(B|A)?
- P(B|A,J,M) = P(B)?

Suponhamos a seguinte ordenação M, J, A, B, E

- P(J|M) = P(J)? Não
- P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? Não
- P(B|A,J,M) = P(B|A)? Sim
- P(B|A,J,M) = P(B)? Não

Suponhamos a seguinte ordenação M, J, A, B, E

- P(J|M) = P(J)? Não
- P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? Não
- P(B|A,J,M) = P(B|A)? Sim
- P(B|A,J,M) = P(B)? Não
- P(E|B,A,J,M) = P(E|A)?
- P(E|B,A,J,M) = P(E|A,B)?

Se o alarme tiver disparado, é mais provável que tenha havido um tremor de terra. Mas se soubermos que houve um roubo, então isso explica o alarme, e a probabilidade de ter havido um tremor de terra é mais baixa...

Suponhamos a seguinte ordenação M, J, A, B, E

- P(J|M) = P(J)? Não
- P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? Não
- P(B|A,J,M) = P(B|A)? Sim
- P(B|A,J,M) = P(B)? Não
- P(E|B,A,J,M) = P(E|A)? Não
- P(E|B,A,J,M) = P(E|A,B)? Sim

- Decidir sobre independência condicional é difícil nas direções não causais: modelos causais e independência condicional parecem ser inatos nos humanos!
- Determinação de probabilidades condicionais é difícil nas direções não causais.
 - Na rede Bayesiana da esquerda será necessário determinar a probabilidade condicional e.g. de *Earthquake* dado *Alarm* e *Burglary*, que não é fácil nem natural...
- Rede (esquerda) é menos compacta do que a inicial (direita). Necessários
 - Esquerda: 1 + 2 + 4 + 2 + 4 = 13 valores
 - Direita: 1 + 1 + 4 + 2 + 2 = 10 valores

- À direita, uma muito má ordenação das variáveis.
 - Requer a especificação de 31 valores (vs. 13 da da esquerda e 10 da do meio)
- As três redes representam a mesma distribuição conjunta de probabilidade.
- No entanto, apenas a do meio expressa todas as independências condicionais, levando a uma representação mais compacta.

Exemplo: diagnóstico de avarias

- Evidência inicial evidência: carro não pega
- Variáveis observáveis (verde), variáveis "avarias" (laranja)
- Variáveis ocultas (cinzento) garantem estrutura esparsa, reduzem parâmetros

Exemplo: seguro do carro

Distribuições condicionais compactas

- CPT cresce exponencialmente com o numero de pais
- CPT fica infinita com pai ou filho tomando valores contínuos
- Solução: distribuições canónicas que são definidas de forma compacta
- Nos determinísticos são o caso mais simples:
 - X = f(Parents(X)) para alguma função f
- E.g., funções Booleanas
 - NorthAmerican ⇔ Canadian V US V Mexican
- E.g., relações numéricas entre variáveis continuas
 - $\partial Level/\partial t = inflow + precipitation outflow evaporation$

Distribuições condicionais compactas

- Distribuições Noisy-OR modelam múltiplas causas que não interagem
- 1. Pais $U_1,...,U_k$ incluem todas as causas (pode-se adicionar nó)
- 2. Probabilidade de falha independentes q_i para cada causa isoladamente

$$P(X|U_1,...,U_j,\neg U_{j+1},...,\neg U_k) = 1 - \prod_{i=1..j} q_i$$

Constipação	Gripe	Malária	P(Febre)	P(¬Febre)
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	0.02=0.2×0.1
Т	F	F	0.4	0.6
Т	F	Т	0.94	0.06=0.6×0.1
Т	Т	F	0.88	0.12=0.6×0.2
Т	Т	Т	0.988	0.012=0.6×0.2×0.1

Número de parâmetros linear no número de pais

Redes Híbridas (discretas + contínuas)

• Discretas (*Subsidy*? e *Buys*?); contínuas (*Harvest* e *Cost*)

- Opção 1: discretização erros podem ser grandes, CPTs grandes
- Opção 2: famílias canónicas com numero finito de parâmetros
 - Variável contínua, pais discretos+contínuos (e.g., Cost)
 - Variável discreta, pais contínuos (e.g., Buys?)

Variáveis filho contínuas

- Necessária uma função de densidade condicional para cada variável filho dados pais contínuos, para cada possível atribuição de pais discretos
- Mais habitual é o modelo linear Gaussiano, e.g.,:

$$P(Cost = c \mid Harvest = h, Subsidy? = true)$$

$$= N(a_t h + b_t, \sigma_t)(c)$$

$$= \frac{1}{\sigma_t \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2\right)$$

- Média Cost varia linearmente com Harvest, variância fixa
- Variação linear não é razoável para todo o domínio mas funciona bem se os valores prováveis de *Harvest* estiverem limitados

Variáveis filho contínuas

- Rede só com variáveis contínuas com distribuição Linear Gaussiana (LG)
 - distribuição conjunta tem distribuição Gaussiana multivariada
- Rede discreta+contínua LG é uma rede Gaussiana condicional, i.e., uma Gaussiana multivariada para todas as variaveis contínuas, para cada combinação de valores de variáveis discretas

Variáveis discretas com pais contínuos

Probabilidade de Buys? dado Cost deve ser um limiar "suave":

Distribuição Probit utiliza integral de uma Gaussiana:

$$\Phi(x) = \int_{-\infty}^{x} N(0,1)(x)$$

$$P(Buys? = true \mid Cost = c) = \Phi((-c + \mu) / \sigma)$$

$$P(Buys? = false \mid Cost = c) = 1 - \Phi((-c + \mu) / \sigma) = \Phi((c - \mu) / \sigma)$$

 Em que μ é o local onde ocorre o limiar e σ um parâmetro que controla a largura do limiar.

Porquê a probit

- 1. Tem a forma correcta
- 2. Pode ser entendida como um limiar cuja localização esta sujeita a ruído

Variável discreta (cont.)

Distribuição Sigmoide (ou logit) também utilizada em redes neuronais:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + \exp\left(-2\frac{-c + \mu}{\sigma}\right)}$$

Sigmoide tem forma semelhante a da probit mas com caudas maiores

Sumário

- Redes de Bayes são uma representação natural para independência condicional (induzidas causalmente)
- Topologia + CPTs = representação compacta de distribuição conjunta
- Geralmente fácil de construir por (não)peritos
- Distribuições canónicas (e.g., noisy-OR) = representação compacta de CPTs
- Variáveis continuas ⇒ distribuições parametrizadas (e.g., Gaussiana linear)