Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA

Corso di Laurea in Informatica

Ultimo Tango a Mountain View

Tesi di laurea triennale

Relate	ore	
Prof.	Gilberto	Filè

 ${\it Laure and o}$ Tommaso Padovan

Anno Accademico 2015-2016

xxxx frase fica

— xxxx autore

Dedicato a \dots xxxx

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecentoventi ore, dal laureando Tommaso Padovan presso l'azienda Vic srl. Gli obbiettivi da raggiungere erano principalmente la progettazione e la codifica di un prototipo di applicazione in grado di sfruttare gli innovativi dispositivi Tango di Google per produrre scansioni tridimensionali degli oggetti inquadrati.

In primo luogo era richiesto lo studio delle soluzioni *OpenSource* già presenti nel mercato, al fine di massimizzare il riuso. In secondo luogo era richiesta l'ideazione e la progettazione di una applicazione in grado di registrare ed eleborare i dati catturati dai sensori del *tablet* utilizzando le *API Tango* offerte da *Google*. Il terzo obbiettivo era la progettazione e codifica di una applicazione dotata di una interfaccia grafica minimale, ma capace di ricostruire gli oggetti inquadrati ed inviare i dati, in formato *Point Cloud* (.pcd), ad un Server. In ultimo luogo era richiesto lo sviluppo dell'applicazione lato Server allo scopo di effettuare ottimizzazioni sui *Point Cloud* ed il calcolo del volume. Tali operazioni sono state realizzate lato Server in quanto sarebbero troppo onerose per un dispositivo mobile.

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Gilberto Filè, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

 $\it Ho\ desiderio\ di\ ringraziare\ poi\ i\ miei\ amici\ per\ tutti\ i\ bellissimi\ anni\ passati\ insieme\ e\ le\ mille\ avventure\ vissute.$

Padova, Sept 2016

Tommaso Padovan

Indice

1	Intr	roduzione	1
	1.1	L'azienda	1
	1.2	L'idea	1
	1.3	Organizzazione del testo	2
2	Pro	cessi e metodologie	3
	2.1	Processo sviluppo prodotto	3
3	Des	crizione dello stage	5
	3.1	Introduzione al progetto	5
	3.2	Analisi preventiva dei rischi	5
		3.2.1 Rischi generali	5
	3.3	Requisiti e obiettivi	6
	3.4	Pianificazione	6
4	Ana	alisi dei requisiti	7
	4.1	Casi d'uso	7
	4.2	Tracciamento dei requisiti	8
5	Pro	gettazione e codifica	11
	5.1	Tecnologie e strumenti	11
	5.2	Ciclo di vita del software	11
	5.3	Progettazione	11
	5.4	Design Pattern utilizzati	11
	5.5	Codifica	11
6	Ver	ifica e validazione	13
7	Con	nclusioni	15
	7.1	Consuntivo finale	15
	7.2	Raggiungimento degli obiettivi	15
	7.3	Conoscenze acquisite	15
	7.4	Valutazione personale	15
A	App	f oendice $f A$	17
p;	blica	errafia	91

Elenco delle figure

Elenco delle tabelle	
4.1 Tabella del tracciamento dei requisti funzionali	9

4.3 Tabella del tracciamento dei requisiti di vincolo

Introduzione

xxxx Introduzione al contesto applicativo.

Esempio di utilizzo di un termine nel glossario Application Program Interface (API).

Esempio di citazione in linea site:agile-manifesto

Esempio di citazione nel pie' di pagina citazione¹

1.1 L'azienda

VIC è stata fondata da Alessio Bisutti che, dopo aver sviluppato una lunga esperienza nel campo ispettivo, ha deciso di costituire una società in grado di offrire ai propri clienti un servizio professionale, chiaro ed affidabile, appoggiandosi sulle nuove tecnologie. VIC iniziò a Venezia 7 anni fa come piccola società di ispezione locale ed ora il gruppo VIC è uno dei più grandi attori del mercato globale.

Fin dall'inizio, l'obiettivo principale di VIC è stata la riduzione del tempo tra ispezione e reporting al cliente. Ora l'obiettivo è raggiunto, perché VIC sta fornendo ai suoi clienti tutti i risultati e le informazioni importanti in tempo reale, senza alcun ritardo, grazie agli investimenti fatti nel campo della tecnologia e delle applicazioni mobile. VIC è la prima ed unica azienda in campo ispettivo ad offrire un'ampia gamma di servizi tecnologici a completa disposizione dei propri clienti.

1.2 L'idea

Mansioni come determinare la corretta forma, peso, quantità e dimensioni degli oggetti da ispezionare sono tra le più importanti per i controlli effettuati dall'azienda. Gli ispettori possono scattare molte fotografie, prendere appunti e sfruttare la loro esperienza per fornire stime accurate; si è manifestata però la necessità di affiancare queste ultime a dei dati quanto più possibile oggettivi e rapidi da ottenere.

 $^{^1}$ womak:lean-thinking.

Da qui nasce l'idea di fornire agli ispettori uno strumento informatico in grado di effettuare queste stime. Grazie alla ricostruzione computerizzata resa disponibile dai *Tango device* sarà possibile non solo visualizzare su uno schermo il modello 3D del soggetto della ispezione, ma anche ottenere ulteriori vantaggi come:

- * Avere una stima del volume e quindi del peso della materia prima.
- * Confrontare l'oggetto con un modello idea, permettendo così un rapido controllo eventuali di danni o deformazioni.

1.3 Organizzazione del testo

XXXX

```
Il secondo capitolo descrive ...
```

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce \dots

Il quinto capitolo approfondisce ...

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- *per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[{\rm g}]};$
- * i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere *corsivo*.

Processi e metodologie

xxxx Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

XXXX

Descrizione dello stage

xxxx Breve introduzione al capitolo

3.1 Introduzione al progetto

Data la natura innovativa del progetto è stato necessario produrre diversi prototipi ed effettuare l'Analisi dei Rischi e lo Studio di Fattibilità in diverse fasi.

Questo approccio è stato estremamente utile per far emergere rischi dovuti sia alla non piena maturità delle API, sia ai limiti fisici del dispositivo in dotazione.

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

3.2.1 Rischi generali

1. Immaturità di API/librerie/documentazione

Probabilità: Alta. Gravità: Media.

Descrizione: Le tecnologie adottate sono innovative e tuttora in fase di sviluppo, molte sono ancora segnalate come "Sperimentali e soggette a cambiamenti". Per questo le librerie usate potrebbero rivelarsi instabili o potrebbero mancare di adeguata documentazione.

Contromisure: Iscrizione ai vari canali di segnalazione e supporto offerti da Google per gli sviluppatori, sviluppo di piccoli esempi giocattolo per testare le funzionalità offerte dalle API da cui è stata generata della documentazione interna.

2. Limiti fisici del dispositivo

Probabilità: Alta. Gravità: Media.

Descrizione: Il dispositivo è dotato di sensori infrarossi e sfrutta la riflessione della luce per determinare la distanza dei punti che è in grado di individuare. Superfici

riflettenti o molto scure possono compromettere la qualità della misurazione, allo stesso modo situazioni di illuminazione scarsa o assente.

Contromisure: Accurata analisi della documentazione fornita dal produttore¹, test preventivi nelle situazioni critiche utilizzando una semplice applicazione di prova fornita da $Google^2$.

3.2.2 Rischi specifici

3. Difficoltà nel Motion Tracking

Probabilità: .

Gravità: .

Descrizione: .

Contromisure: .

4.

Probabilità: .

Gravità: .

Descrizione: .

Contromisure: .

3.3 Requisiti e obiettivi

3.4 Pianificazione

¹site: https://developers.google.com/tango/overview/depth-perception.

²site: https://github.com/googlesamples/tango-examples-java/tree/master/java'point'cloud'example.

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

figura 4.1: Use Case - UCO: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'I-DE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = functionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia $2\,$

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Bibliografia

Riferimenti bibliografici Siti Web consultati