

Fonte da imagem: https://cutt.ly/D4jVvQY

Sistema Binário

OBJETIVOS

- → Compreender os conceitos do que seria a aritmética computacional:
 - Representação de números;
 - Conversões entre bases.
- → Como trabalhar com a aritmética não decimal ou aritmética binária;
- → Aritmética Octal, Hexadecimal, Divisão e Multiplicação.
- → Representação Numérica:
 - Binário mais significativo e menos significativo;
 - Forma dos complementos de 1 e de 2 de um número binário;
 - Conhecer os números fracionários na arquitetura de computadores;
 - Ser capaz de realizar a representação numérica computacional;
- → Ponto Fixo e Ponto Flutuante.

Sistema Binário – ALGUNS CONCEITOS IMPORTANTES

- → A estrutura da **Linguagem Humana** permite a junção de elementos necessários à sua comunicação, como o "ABC" e os números decimais de 0 à 9.
- → O menor elemento da linguagem humana é o "caractere", no computador é o "dígito binário", bit, 0 e 1.
- → Para os sistemas compreenderem os caracteres da linguagem humana, a linguagem computacional precisa ser traduzida por compiladores da leitura de alto nível para a leitura de baixo nível em conjunto de bits, o qual chamamos de código de representação de caracteres de base 2.

Sistema Binário – ALGUNS CONCEITOS IMPORTANTES

- → Cada **conjunto de** *bits de* **base 2** nos sistemas computacionais representaram um determinado conjunto de **caracteres**, **símbolos** e **expoente**, assim:
 - 4 bits por caractere deverão ser codificados 16 símbolos diferentes ou 2⁴;
 - 5 bits por caractere deverão ser codificados 32 símbolos diferentes ou 25;
 - 6 bits por caractere deverão ser codificados 64 símbolos diferentes ou 26;
 - 7 bits por caractere deverão ser codificados 128 símbolos diferentes ou 2⁷;
 - 8 bits por caractere deverão ser codificados 256 símbolos diferentes ou 28;
 - 9 bits por caractere deverão ser codificados 512 símbolos diferentes ou 29, etc.
- O *Byte*, assim como a representação de caracteres procuram definir grupos ordenado de 8 *bits* não importando seu tamanho ao **armazenamento e transferência** dos dados.

IMPORTANTE: O termo caractere é muito empregado para fins comerciais (propaganda, apresentações a pessoas não familiarizadas com a computação), enquanto que o termo *Byte* é empregado na linguagem técnica dos profissionais da área de tecnologia.

Sistema Binário – ALGUNS CONCEITOS IMPORTANTES

- → Os valores de medição nesses sistemas são as potências de "base 2" medidos em Bytes no momento de representar a nomenclatura pela letra "B" em maiúscula:
 - 1 Byte = 8 bits;
 - 1 kilobyte (KB ou KBytes) = 1024 Bytes ou 2¹⁰;
 - 1 megabyte (MB ou MBytes) = 1024 Kilobytes ou2²⁰;
 - 1 gigabyte (GB ou GBytes) = 1024 Megabytes ou 2³⁰...
- → Na transmissão de dados entre os dispositivos usa-se medições relacionadas aos bits e não aos Bytes, representado pela letra "b" em minúsculo:
 - 1 kilobit (Kb ou Kbit) = 1024 bits;
 - 1 megabit (Mb ou Mbit) = 1024 kilobits;
 - 1 gigabit (Gb ou Gbit) = 1024 megabits;
 - 1 terabit (Tb ou Tbit) = 1024 gigabits ...

Sistema Binário – ALGUNS CONCEITOS IMPORTANTES

Mas qual seria o motivo?

- As medições em *bits* servem para informar o **volume de dados em transmissões**, indicando a quantidade de *bits* transmitidos em um egundo, assim se um dispositivo é capaz de trabalhar a uma velocidade de 54 *meguntos* por segundo, sua representação será **54 Mb/s**, com "**M**" en maiú a por mais alguna exem los:
 - 1 Kb/s = 1 kilobit por egundo;
 - 1 Mb/s = 1 megabit polysegundo;
 - 1 **G**b/s = 1 gigabit por segul do, e sul vament.
- → O sistema computacional interpreta 1 kilobit = 1.024 bits, 1 megabit = 1.048.576 bits, 1 gigabit = 1.073.741.824 bits...
- \rightarrow Já, os fabricantes de discos rígidos, comercialmente, o 1 kilobit = 1.000 bits, 1 megabit
- = 1.000.000 bits, 1 gigabit = 1.000.000.000 bits para facilitar a nomenclatura do produto...

Sistema Binário – ALGUNS CONCEITOS IMPORTANTES

Devido ao impasse nessas terminologias e abreviações, a International Electrotechnical Commission (IEC) estipulou que as medições em 1024 Bytes e seus múltiplos (potência de 2) fossem usados para a leitura binária.

Sistema Binário

PALAVRA

- → Na linguagem humana a **palavra** é definida pelo número de caracteres para armazenar as variáveis e construir conjuntos de palavras convencional, **por exemplo**:
 - A palavra "computador" possui 10 caracteres;
 - A frase "Mauro Aparecido" possui 15 caracteres, contando o espaço.
- → Nos sistemas aritmético eletrônicos (binário) o conceito de palavra é usado como um valor fixo e constante ao dado que será processado, assim:
 - © No armazenamento das unidades digitais considera-se como medida válida um tamanho **mínimo igual a um 1** *Byte*, necessário para formular uma "Palavra".
 - © Já análise do tamanho da palavra é analisado pela CPU, que processa os valores representados por uma quantidade "X" de bits igual à uma palavra, a partir de 8 bits para poder indicar a capacidade de processamento do sistema.

Sistema Binário – ALGUNS CONCEITOS IMPORTANTES

Comparações:

Linguagem humana X dos computadores.

Computadores	Humanos
Bit	Caractere
Byte e Caractere	Palavra
Palavra	Frases
Registro	Textos
Arquivo	Livros
Banco de Dados	Grupo de Livros

Sistema Binário

Bases e Sistemas de Numeração

A quantidade de dígitos numéricos em um sistema é chamado de "base", onde:

- \bigcirc No sistema **decimal (humano) a base é 10 ou b₁₀ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)**;
- O No sistema binário a base é 2 ou b₂ (0 e 1);
- Temos mais alguns sistemas dentro da leitura computacional, mas estudaremos mais adiante:
 - Octal => base 8 ou b₈
 - \emptyset Hexadecimal => base 16 ou b₁₆.

Por definição: O sistema de numeração são formados por conjuntos de símbolos, que ao serem utilizados representam as quantidades e as regras que definem suas formas das representações.

Sistema Binário - Bases e Sistemas de Numeração

EXEMPLOS DE CONVERSÃO PARA A BASE 10

Base 10 (decimal):

$$\odot 4325_{10} = 5 * 10^{0} + 2 * 10^{1} + 3 * 10^{2} + 4 * 10^{3} = 4325_{10}$$

Base 2 (binária):

$$\odot$$
 1011₂ = 1 * 2⁰ + 1 * 2¹ + 0 * 2² + 1 * 2³ = 1 + 2 + 0 + 8 = 11₁₀

Base 8 (octal):

$$\odot 3621_8 = 1 * 8^0 + 2 * 8^1 + 6 * 8^2 + 3 * 8^3 = 1937_{10}$$

Base 16 (hexadecimal):

$$\odot$$
 231A₁₆ = A * 16⁰ + 1 * 16¹ 3 * 16² + 2 * 16³ = **8986**₁₀

Sistema Binário - Bases e Sistemas de Numeração — Sistema Posicional

Em um **Sistema Posicional**, <u>humano ou computacional</u>, cada número está representado por "**N**", maiúsculo, ou "**n**", minúsculo, onde esses valores que dependem de sua **posição**.

Para encontrar esse valor usa-se a fórmula " $N = n * b^n$ ".

Onde:

- → A simbologia "^" é o expoente da base "b" representado por b^;
- → O "n" minúsculo indica a posição e também o símbolo do numeral de base 10 (unidade, dezena, centena, milhar, ...);

Exemplo:

- → Uma base decimal contendo três dígitos, por exemplo (678)₁₀, teremos três expoente a partir do expoente "0" representada pela simbologia b^ (b⁰, b¹ e b²).
- → Para a resultante "N", maiúsculo, usa-se a seguinte **fórmula**:

$$N = ((n_1 * b^{\wedge}) + (n_2 * b^{\wedge}) + (n_3 * b^{\wedge}) + (n_4 * b^{\wedge}) + (n_5 * b^{\wedge}) + ...)$$

Sistema Binário - Bases e Sistemas de Numeração - Sistema Posicional

CALMA, a aplicação da fórmula apresentada é simples na prática.

Sistema Binário - Bases e Sistemas de Numeração — Sistema Posicional

Por exemplo ⇒ Calcular o decimal 2459₁₀, onde a leitura deverá ser feita da direita para a esquerda:

- → O digito 9 representa a unidade, seu expoente é "0" e sua posição é "1";
- → O digito 5 representa a dezena, seu expoente é "1" e sua posição é "2";
- → O dígito 4 representa a centena, seu expoente é "2" e sua posição é "3";
- → O digito 2 representa o milhar, seu expoente é "3" e sua posição é "4".

b ⁿ (exponente da base "b")	10 ³	10 ²	10 ¹	10 ⁰
Posição do Número	4	3	2	1
Símbolo do Número	2	4	5	9

Fonte: Adaptada pelo autor (2023)

Mas como montar a fórmula do valor apresentado.

Sistema Binário - Bases e Sistemas de Numeração - Sistema Posicional

A equação do valor "2459" usando a fórmula " $N = n * b^n$ " é fácil:

$$2459 = 2 * 10^3 + 4 * 10^2 + 5 * 10^1 + 9 * 10^0$$

- → Usando a fórmula N = n * b^ para o cálculo.
- → O sentido de cálculo deverá ser da esquerda para direita.
- → Vamos usar para o cálculo o número (56992)₁₀.
- → Cálculo detalhado:

$$N = 5 * 10^4 + 6 * 10^3 + 9 * 10^2 + 9 * 10^1 + 2 * 10^0 =$$

$$N = 5 * 10000 + 6 * 1000 + 9 * 100 + 9 * 10 + 2 * 1 =$$

$$N = 50000 + 6000 + 900 + 90 + 2 =$$

$$N = (56992)_{10}$$

Sistema Binário - Bases e Sistemas de Numeração — Sistema Posicional

Para uma melhor fixação do *Sistema Posicional*, vamos detalhar o número **56992**₁₀, e verificar algumas de suas propriedades:

- \odot A base 10 ou b_{10} , indica que se trata de um decimal;
- © O primeiro algarismo, 2, no número 56992, simboliza a unidade;
- © O segundo algarismo, 9, no número 56992, simboliza as dezenas;
- © O terceiro algarismo, 9, no número 56992, simboliza as centenas
- © O quarto algarismo, 6, no número 56992, que simboliza o milhar.
- © O quinto algarismo, 5, no número 56992, que simboliza o milhão.

Então:

- → Um **Sistema Posicional** usa um mesmo símbolo, podendo assumir valores diferentes dependendo de sua posição.
- → Para saber-se o **valor** de qualquer **número** usando o Sistema Posicional, é necessário conhecer o **valor da posição** de cada símbolo.

Sistema Binário - Bases e Sistemas de Numeração - Sistema Posicional

Como exemplo vamos calcular o expoente no decimal (345)₁₀:

- © A **posição** número é feita da direita para a esquerda com início em um.
- © O símbolo indica o valor real do número também com início da direita para esquerda.
- ☼ A base "b" determina se o cálculo será de base 10, 2, 8 ou 16.

Calculo do expoente:

- → O valor da unidade da posição n no símbolo 5 é 0 de base 10 ou 10° = unidade = 5;
- → A dezena da posição n no símbolo 4 é 1 de base 10 ou 10¹ = dezena = 40;
- \rightarrow A centena da posição **n** no símbolo **3** é **2** de base 10 ou **10**² = **centena** = **300**.

TABELA PARA CONVERSÃO – (345) ₁₀					
Expoente da base (b ₁₀)	2	1	0		
Posições	3	2	1		
Símbolos	3	4	5		
Valor Posicional = N = n * b^ 300 40 5					

Sistema Binário - Bases e Sistemas de Numeração - Sistema Posicional

Uso **detalhado e prático** da fórmula ao preenchimento da tabela apresentada e calcular o valor do numeral decimal **(5613)**₁₀:

Sentido de Leitura / Base	Da direita para esquerda / Base 10 → (5613) ₁₀				
Expoente da base \rightarrow b^n	3 2 1 0				
Posição do número	4	3	2	1	
Símbolo do número → "n"	5	6	1	3	
Valor Posicional → N = n * b^	` '	N= 6 * (10 ²) N= 6 * 100 N= 600	N= 1 * (10 ¹) N= 1 * 10 N= 10	N= 3 * (10°) N= 3 * 1 N= 3	

- © Com o uso de tabela os cálculos deveram ser individuais.
- \odot Somando os valores encontrados temos: 5000 + 600 + 10 + 3 = (5613)₁₀.
- © É provável **que nunca será necessário efetuar todos esses cálculos** para concluir que o número decimal (5613)₁₀ é igual a ele mesmo.

Sistema Binário - Bases e Sistemas de Numeração — **Sistema Posicional**

Treino de Conversão 1 para o decimal (44678)₁₀:

Sentido de Leitura / Base	Da direita para esquerda / Base 10 → (44678) ₁₀			
Expoente da base → b ⁿ				
Posição do número				
Símbolo do número → n				
Valor Posicional → N = n * b^				

Sistema Binário - Bases e Sistemas de Numeração — **Sistema Posicional**

Treino de Conversão 2: Encontrar a base 10 do binário (11010)₂:

Sentido de Leitura / Base	Da direita para esquerda / Base 2 → (11010) ₂			
Expoente da base → b ⁿ				
Posição do número				
Símbolo do número → n				
Valor Posicional → N = n * b^				

Sistema Binário - Bases e Sistemas de Numeração — **Sistema Posicional**

Treino de Conversão 3: Encontrar a base 10 do octal (47271)₈:

Sentido de Leitura / Base	Da direita para esquerda / Base 8 → (47271) ₈			
Expoente da base → b ⁿ				
Posição do número				
Símbolo do número → n				
Valor Posicional → N = n * b^				

Sistema Binário - Bases e Sistemas de Numeração — **Sistema Posicional**

Treino de Conversão 4: Encontrar a base 10 do hexadecimal (D54A)₁₆:

Sentido de Leitura / Base	Da direita para esquerda / Base 16 → (D54A) ₁₆				
Expoente da base → b ⁿ					
Posição do número					
Símbolo do número → n					
Valor Posicional → N = n * b^					

Sistema Binário - Bases e Sistemas de Numeração

Agora que conhecemos algumas das notações binárias mais usadas, precisamos calcular sem o uso da fórmula e sem o uso de uma calculadora binária?

Antes, vamos facilitar a leitura e estudar a equivalência entre bases decimal, binária, octal e hexadecimal.

Sistema Binário - Bases e Sistemas de Numeração — **Tabela de Bases de 0 à 31**

	TABELA DE CONVERSÃO DE BASES Do valor "0" ao valor "15" ⇒ Parte 1					NVERSÃO DE o valor "31" =	
Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16	Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0	16	10000	20	10
1	001	1	1	17	10001	21	11
2	010	2	2	18	10010	22	12
3	011	3	3	19	10011	23	13
4	100	4	4	20	10100	24	14
5	101	5	5	21	10101	25	15
6	110	6	6	22	10110	27	16
7	111	7	7	23	10111	27	17
8	1000	10	8	24	11000	30	18
9	1001	11	9	25	11001	31	19
10	1010	12	Α	26	11010	32	1A
11	1011	13	В	27	11011	33	1B
12	1100	14	С	28	11100	34	1C
13	1101	15	D	29	11101	35	1D
14	1110	16	E	30	11110	36	1E
15	1111	17	F	31	11111	37	1F

Sistema Binário - Bases e Sistemas de Numeração

Os sistemas **octais** e **hexadecimais** são formados pelas combinações de suas subdivisões, onde:

- → Octais Subdivisões de 3 em 3 bits;
- → **Hexadecimais** Subdivisões de 4 em 4 *bits*.

O cálculo das bases 8 e 16 a representação binária possui duas formas, pelo uso de uma tabela de conversões entre bases, **por exemplo**:

		raite 1
Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
000	0	0
001	1	1
010	2	2
011	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	10	8
1001	11	9
1010	12	Α
1011	13	В
1100	14	С
1101	15	D
1110	16	E
1111	17	F
	Base 2 000 001 010 011 100 101 110 111 1000 1001 1010 1011 1100 1101 1110	Base 2 Base 8 000 0 001 1 010 2 011 3 100 4 101 5 110 6 111 7 1000 10 1001 11 1010 12 1011 13 1100 14 1101 15 1110 16

Sistema Binário - Bases e Sistemas de Numeração

- © Entendendo: Calcular a base 8 e 16 do binário (111000101011)₂ usando a tabela de conversões:
- \rightarrow (111|000|101|011)₂ para Base 8 = (7053)₈
- \rightarrow (1110|0010|1011)₂ para Base 16 = (E2B)₁₆
- \rightarrow (00|1100|1111|0000)₂ = base 16 = (CF0)₁₆

IMPORTANTE ⇒ Todo o zero à esquerda do binário poderá ser desconsiderado no resultado FINAL.

		The state of the s	The Control of the Control
Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 1 ⇒ Calcular a base 8 e base 16 do binário

(111010011110)₂ usando a tabela de conversões:

- \rightarrow (111|010|011|110)₂ para Base 8 = (XX)₈
- \rightarrow (1110|1001|1110)₂ para Base 16 = (XX)₁₆

IMPORTANTE ⇒ Todo o zero a esquerda do binário poderá ser desconsiderado no resultado FINAL.

100 700 100 00			
Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 2 \Rightarrow Calcular a base 2 para do valor (2307)₈

usando a tabela de conversões:

Dica: iniciar a leitura da direita para esquerda.

 \rightarrow (2307)₈ para Base 2 = (XX)₂

IMPORTANTE ⇒ Todo o zero à esquerda do binário poderá ser desconsiderado no resultado FINAL.

		Value 13 -	
Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 3 \Rightarrow Calcular a base 2 e 16 dos valores (35763)₈ e

(38793)₈, usando a tabela de conversões:

$$= (35763)_8$$
 para **Base 2 = (XX)**₂

$$= (XX)_2 = (35763)_8$$

$$= (XX)_2 = para Base 16 = (XX)_{16}$$

 \Rightarrow Calcular a base 2 e 16 do **octal** (38793):

$$= (38793)_8$$
 para Base 2 = $(XX)_2$

$$= (XX)_2 = (38793)_8$$

$$= (XX)_2 = para Base 16 = (XX)_{16}$$

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 4 \Rightarrow Calcular a base 2 e 16 dos valores (567)₈ e (675012)₈, usando a tabela de conversões:

- $-(567)_8$ para $(XX)_2$
- $= (XX)_2 \text{ para } (XX)_{16}$
- $-(675012)_8$ para $(XX)_2$
- $= (XX)_2 para (XX)_{16}$

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 5 ⇒ Encontrar o valor de base 8 do binário

(011110011001111)₂, usando a tabela de conversões:

 $(011110011001111)_2$ para = $(XX)_8$

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Cálculos binários, octais e hexadecimais sem o uso da Tabela.

- 1. Passar o binário (101101)₂ para a base 10;
- 2. Iniciar a leitura do valor da esquerda para a direita **ou da** direita para esquerda se achar mais fácil;
- 3. Usar a tabela de conversões do professor para encontrar o expoente (^, p − 1), o

símbolo (n) e a posição (p).

4. Iniciando o cálculo:

$$\Rightarrow$$
 N = n * b^

Sentido de Leitura / Base	Da direita para esquerda / Base $10 \rightarrow (5613)_{10}$			
Expoente da base \rightarrow b^n	3	2	1	0
Posição do número	4	3	2	1
Símbolo do número $ ightarrow$ "n"	5	6	1	3
Valor Posicional → N = n * b^	N= 5 * (10 ³) N= 5 * 1000 N= 5000	N= 6 * (10 ²) N= 6 * 100 N= 600	, ,	N= 3 * (10°) N= 3 * 1 N= 3

$$\Rightarrow$$
 N = 1 * b⁵ + 0 * b⁴ + 1 * b³ + 1 * b² + 0 * b¹ + 1 * b⁰ =

$$\Rightarrow$$
 N = 1 * 2⁵ + 0 * 2⁴ + 1 * 2³ + 1 * 2² + 0 * 2¹ + 1 * 2⁰ =

$$\Rightarrow$$
 N = 32 + 0 + 8 + 4 + 0 + 1 =

$$\Rightarrow$$
 N = (101101)₂ = (45)₁₀

Sistema Binário - Bases e Sistemas de Numeração

Treino 6 \Rightarrow Passar o valor $(10011101)_2$ para a base 10:

- 1. $(10011101)_2 = (XX)_{10}$
- 2. O resultado em conversões sempre será de base 10.
- 3. A fórmula para encontrar o expoente é p (posição) 1.
- **4.** $\mathbf{n} = \mathbf{8}$ **posições**, o expoente sempre terá seu início em 0 ou \mathbf{b}^0 , e para este treino terminará no expoente 7 ou \mathbf{b}^7 .
- N = n * b[^]
- -N=
- -N=
- $N = (XX)_{10}$
- $(10011101)_2 = (XX)_{10}$

Sistema Binário - Bases e Sistemas de Numeração

Treino 7 \Rightarrow Passar o valor (1101111101)₂ para a base 10:

- 1. $(1101111101)_2 = (XX)_{10}$
- 2. O resultado em conversões sempre será de base 10.
- 3. A fórmula para encontrar o expoente é p (posição) 1.
- **4.** $\mathbf{n} = \mathbf{9}$ **posições**, o expoente sempre terá seu início em 0 ou \mathbf{b}^0 , e para este treino terminará no expoente 9 ou \mathbf{b}^9 .
- N = n * b[^]
- -N=
- -N=
- -N=XX
- $(1101111101)_2 = (XX)_{10}$

Sistema Binário - Bases e Sistemas de Numeração

Cálculos binário, octal e hexa com o uso da Tabela.

- \rightarrow Passar o valor (27)₈ para a base 10:
- $(27)_8 = (?)_{10}$
- base = 8 e n = 2 posições, portanto:
- 2 * 8¹ + 7 * 8⁰ =
- 16 + 7 =
- $-(23)_{10}$
- $(27)_8 = (23)_{10}$
- $-(27)_8 = (23)_{10} = (010111)_2$

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 8 \Rightarrow Passar o valor (357)₈ para a base 10, 2 e 16 usando a tabela:

Passando b₈ para b₁₀:

- © Os expoentes estão entre 0 e 2.

$$\odot$$
 (357)₈ = (XX)₁₀

$$\odot$$
 XX = (XX)₁₀

$$\odot$$
 (XX)₂ = (XX)₁₆ =

$$(357)_8 = (XX)_{10} = (XX)_2 = (XX)_{16}$$

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Exemplos de cálculos binário, octal e hexa.

- \rightarrow Passar o valor (2A5)₁₆ para a base 10:
- $(2A5)_{16} = (XX)_{10}$
- base = 16 e n = 3 posições, portanto:

$$-$$
 2 * 16² + A=10 * 16¹ + 5 * 16⁰ =

$$-$$
 512 + 160 + 5 =

- $(677)_{10}$
- $(2A5)_{16} = (677)_{10}$

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 9 \Rightarrow Passar o valor (C3D4)₁₆ para a base 10:

- $(C3D4)_{16} = (XX)_{10}$
- base = 16 e n = 4, portanto:
- N=
- -N=
- $N = (XX)_{10}$
- $N = (C3D4)_{16} = (XX)_{10}$

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Cálculos binário, octal e hexa usando DIVISÕES.

→ A ideia é em passar a **base decimal** para a **base binária** através de sucessivas divisões:

```
(25)<sub>10</sub> = (XX)<sub>2</sub>
25: 2 = 12 (resto 1);
12: 2 = 6 (resto 0);
6: 2 = 3 (resto 0);
3: 2 = 1 (resto 1).
```

Resultado = $(11001)_2$

Entendo o cálculo:

- Em 25: 2 o resultado é 12 com resto 1.
- Em 12: 2 o resultado é 6 com resto 0.
- Em 6: 2 o resultado é 3 com resto 0.
- Em 3: 2 o resultado = 1 com resto = 1.
- **Resultante** é igual a $(25)_{10} = (11001)_2$

Logo, o valor do binário será o **resultado** da última divisão mais os **restos** de todas divisões **de baixo para cima**.

Sistema Binário - Bases e Sistemas de Numeração

Treino 10 ⇒ Passar a **base 10** para **base 2** usando sucessivas divisões:

```
(340)<sub>10</sub> = (XX)<sub>2</sub>
340: 2 = 170 (resto X);
170: 2 = 85 (resto X);
85: 2 = 42 (resto X);
42: 2 = 21 (resto X);
21: 2 = 10 (resto X);
10: 2 = 5 (resto X);
5: 2 = 2 (resto X);
2: 2 = X (resto X)
```

O valor do binário será o **resultado** da última divisão mais os **restos** de todas divisões **de baixo para cima**.

- Resultado = $(XX)_2$

Sistema Binário - Bases e Sistemas de Numeração

Cálculos binário, octal e hexa.

→ Passar uma **base 10** para a **base 8** usando sucessivas divisões:

$$- (3964)_{10} = (XX)_8$$

$$-495:8=61 \text{ (resto 7)}$$

O valor do binário será o **resultado** da última divisão mais

os **restos** de todas divisões **de baixo para cima**.

Sistema Binário - Bases e Sistemas de Numeração

Treino 11 ⇒ Passar a **base 10** para **base 8** usando sucessivas divisões:

$$- (2459)_{10} = (XX)_8$$

$$-$$
 2459 : 8 = 307 (resto X)

$$-$$
 307 : 8 = 38 (resto X)

$$- 38:8 = X (resto X)$$

O valor do binário será o **resultado** da última divisão mais os **restos** de todas divisões **de baixo** para cima.

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Exemplos de cálculos binário, octal e hexa.

- → Passar uma **base 10** para **base 16** usando sucessivas divisões:
- $(2574)_{10} = (XX)_{16}$
- 2574 : 16 = 160 (resto 14)
- 160 : 16 = 10 (resto 0)
- Resultado = $(A0E)_{16}$

O valor do binário será o **resultado** da última divisão mais os **restos** de todas divisões **de baixo para cima**.

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Sistema Binário - Bases e Sistemas de Numeração

Treino 12 ⇒ Passar a **base 10** para **base 16** por sucessivas divisões:

$$- (35679)_{10} = (XX)_{16}$$

$$-$$
 2229 : 16 = 139 (resto X)

$$-$$
 139 : 16 = X (resto X)

- Resultado =
$$(XX)_{16}$$

O valor do binário será o **resultado** da última divisão mais os **restos** das demais divisões, onde:

10 = A, 12 = C, 2 = 2 (valores da tabelados).

Decimal Base 10	Binário Base 2	Octal (3 bits) Base 8	Hex. (4 bits) Base 16
0	000	0	0
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Sistema Binário

Resumo dos Conceitos

- → O menor **elemento** disponível de uma linguagem humana é o caractere (abcde[...] e os valores de 0 a 9) .
- → A menor unidade de informação armazenável é o bit binário com apenas dois valores 0
 e 1.
- → A menor unidade de informação na linguagem humana é o "caractere".
- → O computador usa a leitura *bit* a *bit* codificadas em **grupos ordenados de** *bits*.
- → Qualquer caractere armazenado em um sistema de computação deverá ser convertido em um conjunto de bits, que recebe o nome de "código de representação de caracteres".
- → Cada sistema necessita definir a quantidade de bits necessários a sua codificação.
- → A organização de cada conjunto de bits irão gerar a representação de um determinado caractere, por exemplo:

Sistema Binário – Resumo dos Conceitos

- © A representação de caracteres de **cindo bits por caractere ou 2**⁵ serão **codificados 32 símbolos diferentes**, seis bits ou 2⁶ serão codificados 64 símbolos diferentes, e assim por diante com 2⁷, 2⁸, 2⁹, 2¹⁰, 2¹¹ [...].
- → O byte define também o menor tamanho de uma "palavra" no computador, e considerado o elemento de referência para a construção e funcionamento dos dispositivos de armazenamento e dos processos de transferência de dados entre periféricos, a UCP e a MP.
- → Os principais códigos de representação de caracteres utilizam grupos de 08 bits por caractere para que esses caracteres se tornem semelhantes as palavras.
- → O termo caractere costuma ser mais empregado para fins comerciais, e o byte para a linguagem técnica.
- → Em um sistema de computação, os números podem ser representados com conjuntos de 32 bits ou 4 bytes de dados para cada número.

Sistema Binário – Resumo dos Conceitos

- → Os computadores são máquinas binárias e suas indicações numéricas referem-se a potência de 2;
- → A potência de 10 se refere ao sistema métrico dos humanos;
- → O "K" representa 1.024 unidades ou 210;
- \rightarrow O "**M**" ou mega, representa 1.048.576 (1024K) unidades = 1024 * 1024 ou 2^{10} * 2^{10} = 2^{20} ;
- \rightarrow O "**G**" ou giga, representa 1.073.741.824 (1.048.576K) unidades = $2^{10} * 2^{10} * 2^{10} = 2^{30}$, por exemplo:
 - © 512 Kbytes corresponde a um valor de 512 * 1024 = 524.288 bytes;
 - © 32 *Mbytes,* trinta e dois mega caracteres, corresponde a 32 * 1024 *1024 = 33.554.432 caracteres;
 - © 2 *Gbytes* corresponde a 2 * 1024³ = 2.147.483.648 *bytes*.

Sistema Binário – Resumo dos Conceitos

- → O conceito de "palavra" seria um conjunto de bits que estão relacionados ao armazenamento e a transferências de informações entre a UCP e a MP com relação ao processamento de dados pelo sistema de processamento e controle.
- → A forma mais empregada a representação numérica é chamada de **notação decimal**, onde os algarismos de um número assumem valores diferentes, que dependem de sua posição relativa no número, por exemplo, no número "2378907" temos 7 posições: "2", "3", "7", "8", "9", "0" e "7".
- → A quantidade de algarismos disponíveis em um dado sistema de numeração é chamada de "base", que serve para contarmos grandezas maiores, indicando a noção de grupamento dessas bases.
- → Sistema de dez algarismos, chamamos **de base 10** (0...9), dois algarismos de **base 2** (0 e 1), oito algarismos de **base 8** (0...7), dezesseis algarismos de **base 16** (0...9 e A...F).

Bibliografia Básica

TANENBAUM, A. S. Organização estruturada de computadores. 6. ed. São Paulo: Pearson Prentice Hall, 2013 (e-book).

MONTEIRO, M. A. Introdução à organização de computadores. 4. ed. Rio de Janeiro: LTC, 2002.

STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 5. ed. São Paulo: Prentice-Hall, 2002.

Bibliografia Complementar

CORRÊA, A. G. D. [org.]. Organização e arquitetura de computadores. São Paulo: Pearson Education do Brasil, 2016 (e-book).

DELGADO, J.; RIBEIRO, C. Arquitetura de computadores. 5. ed. Rio de Janeiro: LTC, 2017 (e-book).

PAIXÃO, R. R. Arquitetura de computadores - PCs. São Paulo: Érica, 2014 (e-book).

WEBER, R. F. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012 (e-book).

WIDMER, N. S.; MOSS, G. L.; TOCCI, R. J. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo: Pearson Education do Brasil, 2018 (e-book).

Conteúdo elaborado por:

Prof. Ms. Celso Candido celsoc@unicid.edu.br

OneDrive: https://cutt.ly/Alunos_Unicid_Aulas

Fim da Apresentação