It is $\forall X \in M_{n,p}(R)$, choose $v_0 \in R^p$, $\forall R=1,T$, $v_R=\frac{Xv_{R-1}}{\ Xv_{R-1}\ }$, $v_R=\frac{Xv_R}{\ X^Tv_R\ }$ v_{R-1}
Let's show that under good assimptions. $(V_R)_{R\geq 1}$ converges (up to a factor) to the leading right singular rector of X, i.e. let's show that under good assimptions, $(V_R)_{R\geq 1}$ converges (up to a factor) to an eigen vector of $A=X^TX$ associated to det's show $(V_R)_{R\geq 1}$ ($V_R)_{R\geq 1}$ ($V_R)_{R\geq 1}$) det's show $(V_R)_{R\geq 1}$ ($V_R)_{R\geq 1}$ ($V_R)_{R\geq 1}$) kading left
) outs show \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
dets show $(U_R)_{R\geq 1}$ $(U_R)_{R\geq$
Took number 1
Out initial $X \in \mathcal{H}_{0,p}(R)$, so $A = X^TX \in \mathcal{H}_{p,p}(R)$ and is symptric (because $A^T = (X^TX)^T = X^TX = A)$) A is diagonalizable, so let $Sp(A) = f_0 \lambda_1$, $\lambda_1 \lambda_2 + \lambda_3 \lambda_4 + \lambda_4 \lambda_4 + \lambda_4 \lambda_4 + \lambda_5 \lambda_5 + \lambda_4 \lambda_4 \lambda_5 + \lambda_5 \lambda_5 + \lambda_4 \lambda_5 \lambda_5 + \lambda_4 \lambda_5 \lambda_5 + \lambda_4 \lambda_5 \lambda_5 + \lambda_5 \lambda_5 \lambda_5 + \lambda_4 \lambda_5 \lambda_5 + \lambda_5 \lambda_5 \lambda_5 \lambda_5 + \lambda_5 \lambda_5 \lambda_5 \lambda_5 \lambda_5 \lambda_5 \lambda_5 \lambda_5 \lambda_5 \lambda_5$
triangulary inequality and $\forall i=1, p-1, \mathcal{A} $
e see that $\forall R \geq 2$, $\forall R = (A^T)^R$ up and A^T is sumpting as like a like attenual leaves $C(A^T)$ and
nd we do the same method as begins to show that $ u_R - A_R^R c_N v_N - V_N _{R \to \infty} 0$ (we just adapt the proof number 1)