

Binned clustered algorithm

UCLouvain - Louvain-la-Neuve, Belgium

Maxime Lagrange

Binned clustered algorithm: event reconstruction

A binned clustering algorithm to detect high-Z material using cosmic muons, 2013 [INST 8 P10013

• Finding **POCA** points, but account for measurement errors on hit position σ_{hi} .

$$E_x = \sum_{i=1}^{3} \frac{(h_i - (\nu_x + k_{x,upper} \cdot t))^2}{\sigma_{h_i}^2} + \sum_{i=4}^{6} \frac{(h_i - (\nu_x + k_{x,lower} \cdot t))^2}{\sigma_{h_i}^2}$$

- E_x is minimized using MINUIT.
- If all **hits** have the **same** σ_{hi} , equivalent to POCA algo.

Binned clustered algorithm: metric

• For each **pair of POCA within** a given **voxel**, one computes:

$$m_{ij} = ||POCA_i - POCA_j||$$
 (1) $ilde{m_{ij}} = rac{m_{ij}}{(heta_i p_i) \cdot (heta_j p_j)}$ (2)

The distribution of m_{ij} depends on the voxel density:

low density (wood)

high density (copper)

Binned clustered algorithm: logic

Initialisation:

- Only **keep** events with $\Delta\theta$ < $\Delta\theta$ < $\Delta\theta$ ₊.
- Only **keep** the *n* highest $\Delta\theta$ events in each voxel

Scan:

- For each **voxel**:
 - o if # POCA points > n min per vox
 - For each pair of POCA point:
 - Compute m_{ii} from (2)
 - Append $f(m_{ij})$ to the voxel distribution \mathcal{D}
 - else:
 - voxel final score is set to 0

End of the scan:

- For each voxel:
 - \circ Compute the final voxel score as $g(\mathcal{D})$
 - Replace all 0 scores by max(final scores)*

Binned clustered algorithm: parameters

Parameter	Use momentum	Scattering angle cuts	Metric	Score extraction	Event filtering
Description	Use momentum or not?	keep events with $\Delta \Theta_{_} \leq \Delta \Theta \leq \Delta \Theta_{+}$	which value to append to ${\cal D}$	final score computed as $oldsymbol{g}(\mathcal{D})$	keep events with n largest $\Delta heta$
Symbol		$\Delta heta_{ extsf{.}}, \Delta heta_{ extsf{+}}$	f(m _{ij})	g(D)	n
Options	True / False	[0.1, 10] deg	$ln(m_{ij})$, $sqrt(m_{ij})$, $log(m_{ij})$, m_{ij}	median, mean, quartile, std	depends on acquisition time
In the paper	True	NO	ln(m _{ij})	median	n = 50 (for 150k tracks)
Muograph variable	use_p	dtheta_range	metric_method	score_method	n_max_per_voxel