CS 330: Network Applications & Protocols

Introduction to Computer Networks & the Internet

Galin Zhelezov
Department of Physical Sciences
York College of Pennsylvania

Introduction

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Packet switching, circuit switching, network structure
- Delay, loss, throughput in networks
- Protocol layers, service models
- Networks under attack: security
- History

What is the Internet?

- Millions of connected computing devices:
 - hosts = end systems
 - running network apps

- wireless links
 wired links
- Communication links
 - Fiber, copper, radio, satellite
 - transmission rate: bandwidth
- Packet switches: forward packets (chunks of data)
 - routers and switches

"Fun" Internet Appliances

Web-enabled toaster + weather forecaster

Tweet-a-watt: monitor energy use

Internet refrigerator

Slingbox: watch, control cable TV remotely

Internet phones

What is the Internet: The Nuts and Bolts

- Internet: "network of networks"
 - Interconnected ISPs
- Protocols control sending, receiving of messages
 - e.g. TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What is the Internet: A Service View

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games,
 e-commerce, social networks, etc.
- Provides programming interface to applications
 - Hooks that allow sending and receiving applications to "connect" to Internet
 - Provides service options, analogous to postal service

What is a Protocol?

- Human protocols:
 - "What time is it?"
 - "I have a question"
 - Introductions
- Specific messages are sent
- Specific actions taken when messages received, or other events

Network protocols:

- Machines rather than humans
- All communication activity on Internet governed by protocols

Protocols defined: format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What is a Protocol?

A human protocol and a computer network protocol:

Introduction

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Packet switching, circuit switching, network structure
- Delay, loss, throughput in networks
- Protocol layers, service models
- Networks under attack: security
- History

A Closer Look at Network Structure

Network edge:

- Hosts: clients and servers
- Servers are often located in data centers
- Access networks, physical media: wired, wireless communication links
 - Access networks connect devices at edge to the first router on the network

Network core:

- Interconnected routers
- Network of networks

Access Networks and Physical Media

- Question: How do different systems connect to an edge router?
 - Residential access networks
 - Institutional access networks (school, company)
 - Mobile access networks
- Must keep in mind:
 - Bandwidth (bits per second) of access network?
 - Is the bandwidth shared or dedicated?

Access Network: Digital Subscriber Line (DSL)

- Use existing telephone line to central office DSLAM
 - Data over DSL phone line goes to Internet
 - Voice over DSL phone line goes to telephone network
- Less than 2.5 Mbps upstream transmission rate (typically < 1 Mbps)
- Less than 24 Mbps downstream transmission rate (typically < 10 Mbps)

Access Network: Cable Network

 Use frequency division multiplexing: different channels transmitted in different frequency bands

Access Network: Cable Network

HFC: hybrid fiber coax

Asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate

Network of cable, fiber attaches homes to ISP router

- Homes share access network to cable headend
- Unlike DSL, which has dedicated access to central office

Access Network: Home Network

Enterprise Access Networks (Ethernet)

- Typically used in companies, universities, etc.
 - 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
 - Today, end systems typically connect into Ethernet switch

Wireless Access Networks

 Shared wireless access network connects end system to router via base station a.k.a. "access point"

Wireless LANs:

- Within building (100 ft)
- 802.11a/b/g/n (WiFi): 11, 54 Mbps transmission rate

Wide-area Wireless Access:

- Provided by telco (cellular) operator, 10's km
- Between 1 and 10 Mbps
- 3G, 4G: LTE

Host: Sending Packets of Data

Host sending function:

- Takes application message
- Breaks into smaller chunks, known as packets, of length *L* bits
- Transmits packet into access network at transmission rate *R*
 - Link transmission rate (a.k.a. link capacity, a.k.a. link bandwidth)

Packet time needed to

Transmission = transmit L-bit

Delay packet into link = $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Physical Media

- Bit: propagates between transmitter/receiver pairs
- Physical link: what lies between transmitter & receiver
- Guided media: signals propagate in solid media: copper, fiber, coax
- Unguided media: Signals propagate freely (e.g. radio)

Twisted Pair:

- Two insulated copper wires
 - Category 5: 100 Mbps,1 Gbps Ethernet
 - Category 6: 10Gbps

Physical Media: Coax, Fiber

Coaxial cable:

- Two concentric copper conductors
- Bidirectional
- Broadband
 - Multiple channels on cable
 - HFC

- Fiber optic cable:
- Glass fiber carrying light pulses, each pulse is a bit
- High-speed operation:
 - High-speed point-to-point transmission (10's-100's Gbps transmission rate)
- Low error rate:
 - Repeaters can be spaced far apart
 - Immune to electromagnetic noise

Physical Media: Radio

- Signal carried in electromagnetic spectrum
- No physical "wire"
- Bidirectional
- Propagation environment effects:
 - Reflection
 - Obstruction by objects
 - Interference

- Radio link types:
- Terrestrial microwave (up to 45 Mbps channels)
- LAN (e.g. WiFi)
 - 11Mbps, 54 Mbps
- Wide-area (e.g. cellular)
 - 4G cellular: ~ 10 Mbps
- Satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - Geosynchronous satellites (270 ms end-to-end delay)
 - Low-earth orbit satellites