Definition 1. For any set of positive naturals A, let $S(A) = \{\text{prime } p : \exists a \in A \text{ s.t. } p|a\}$ be its **prime shadow**

Consider the following statements:

- i A is infinite and S(A) is finite
- ii $\exists a, b \in S$ such that a|b and $a \neq b$.
- iii There exist infinitely many pairs $a, b \in A$ with $a \neq b$ such that a|b.
- iv $\exists a_1, a_2, \ldots \in A \text{ with } a_1 | a_2 | a_3 | \cdots$
- v There exists a finite subset B of A such that $\forall a \in A \setminus B \exists a_1, a_2, \ldots \in A \text{ with } a|a_1|a_2|a_3| \cdots$

We will succesively prove that i implies ii, iii, iv, and finally v.

Lemma 2. i \Longrightarrow ii

Proof. Since S(A) is finite, we can express S(A) as $\{p_1, p_2, \ldots, p_n\}$. Every element in A can be expressed as $p_1^{e_1}p_2^{e_2}\cdots p_n^{e_n}$ for some nonnegative integers e_1, \ldots, e_n . Let $f: A \to \mathbb{N}^n$ take an element a to the n-tuple (e_1, e_2, \ldots, e_n) such that $a = p_1^{e_1} \cdots p_n^{e_n}$. Then for $1 \le i \le n$ let $f_i(a)$ be the i-coordinate of f(a).

We will prove $i \Longrightarrow ii$ by induction on the size of S(A). As a base case, if |S(A)| = 1 then every element of A is a power of p_1 . In that case, for any pair (a,b), either a|b or b|a.

Now assume that for any infinite set B with prime shadow of size n-1 there exists a pair $b_1, b_2 \in B$ such that $b_1|b_2$. Suppose to the contrary that there does not exists a pair (a, b) such that a|b. Then for all pairs (a, b) there must exist an i such that $f_i(a) > f_i(b)$. Now fix $x \in A$. For all $a \in A$ there is an i with $f_i(a) < f_i(x)$. By the pigeonhole principle, there must be some j such that for infinitely many $a \in A$, $f_j(a) < f_j(x)$. Again by the pigeonhole principle we know that for some $e < f_j(x)$ there are infinitely many $a \in A$ such that $f_j(a) = e$.

Let

$$B = \left\{ \prod_{i \neq j} p_i^{f_i(a)} : a \in A \text{ s.t. } f_j(a) = e \right\}$$

We have $S(B) = S(A) \setminus \{p_j\}$, and B is infinite, therefore there exists a pair $b_1, b_2 \in B$ such that $b_1|b_2$. Then $b_1p_j^e$ and $b_2p_j^e$ are elements of A and $b_1p_j^e|b_2p_j^e$. Thus we have completed the induction.

As a side note, the above proof can be used to show that only finitely many numbers a in A are not part of a pair $a, b \in A$ such that either a|b or b|a. But this is stronger than we need.

Lemma 3. i \Longrightarrow iii

Proof. We will prove that for any natural k there exist $a_1, \ldots, a_k \in A$ with $a_1|a_2|\cdots|a_k$ by inducting on k. Lemma 2 gives us the base case with k=2. So, assume that the statement is true for k-1. If we consider the set

$$D = \left\{ \mathbf{a} = (a_1, \dots, a_{k-1}) \in A^{k-1} : a_1 | a_2 | \dots | a_{k-1} \right\}$$

If this where finite, then we can take the set

$$A' = \{a \in A : \neg \exists \mathbf{d} \in D, 0 \le i \le k - 1 \text{ s.t. } d_i = a\}$$

This is still an infinite set if D is finite. But then our inductive hypothesis gives us a tuple $(d_1, d_2, \ldots, d_{k-1}) \in D^{k-1}$ with $d_1 | \cdots | d_{k-1}$, contradicting the definition of D. Therefore D must be infinite.

Now, consider the set

$$B = \{ a \in A : \exists \mathbf{d} \in D \text{ s.t. } d_{k-1} = a \}$$

We want to show that B is infinite, so suppose to the contrary that B is finite. Then B has a maximum element b_m . But then $D \subseteq \{1, \ldots, b_m\}^{k-1}$, which would mean that D is finite, even though we proved it was infinite. Therefore, B must be infinite.

Then lemma 2 guarantees us a pair $b_1, b_2 \in B$ such that $b_1|b_2$. Then there are some a_1, \ldots, a_{k-1} such that $a_1|\cdots|a_{k-2}|a_{k-1}=b_1$. Then we have the k-tuple $(a_1, \ldots, a_{k-2}, b_1, b_2)$ with $a_1|\cdots|a_{k-2}|b_1|b_2$, so we have completed the induction.

That means that there must be an infinite chain of divisibility in A because we showed that there is no maximum length for a chain of divisibility.

Theorem 4. If A is an infinite subset of \mathbb{N}_+ that has a finite prime shadow, then for cofinitely many $a \in A$, there exist a_1, a_2, a_3, \ldots all in A with $a_1 = a$ such that for all i > 0, $a_i | a_{i+1}$. Informally, if A is an infinite subset of \mathbb{N}_+ with finite prime shadow, then cofinitely many elements of A are part of an infinite ascending chain of divisibility.

Proof. Let B be the set of elements that are not are not part of an infinite chain of divisibility.

$$B = \left\{ a : \neg \exists (a_1, a_2, \ldots) \in A^{\mathbb{N}} \text{ s.t. } a|a_1|a_2| \cdots \right\}$$

Suppose B is infinite. Then lemma 3 tells us that there exists an infinite chain of divisibility in B. But that contradicts the definition of B, so B must be finite.

Corollary 5. There are infinitely many primes

Proof. Start with $a_1 = 2$. Then iteratively define a_i as

$$1 + \prod_{n=1}^{i-1} a_i$$

Then for all i, j, a_i and a_j are relatively prime. Then let $A = \{a_i : i \in \mathbb{N}\}$. This is an infinite set that has no infinite chain of divisibility, therefore S(A) cannot be finite. Thus there must be infinitely many primes.