

Lecture 18: Ensemble Learning Basics & Random Forests

Recap

- Decision Tree
- Gini Impurity
- DT Pruning

Wisdom of the Crowds

A game of guessing?

- •How many candies in the jar?
- •How to get the most correct answer?
- •No answer is correct, some answers are useful
- Especially if averaged over a group

The wisdom of crowds

- "Under the right circumstances, groups are remarkably intelligent, and are often smarter than the smartest people in them"
- Using a Group for better decision
 - Diverse background
 - Independent decision by each individual
 - Good method for aggregation

A NEW YORK TIMES BUSINESS BESTSELLER

"As entertaining and thought-provoking as The Tipping Point by Malcolm Gladwell. . . . The Wisdom of Crowds ranges far and wide." —The Boston Globe

THE WISDOM OF CROWDS

JAMES SUROWIECKI

WITH A NEW AFTERWORD BY THE AUTHOR

Ensemble Learning

Ensemble Learning

Multiple ML model used together for prediction

Bagging Parallel

Boosting

Sequential

Majority Voting/Averaging models

- High variance from single model
- •How about using multiple models?
 - •Will it reduce variance?

Not if data is correlated

A second look at K-Fold CV

- Most data is repeated across folds
- •IID from one record to next.
- Highly correlated from one fold to another

Solution: Bagging

- Bagging = Bootstrapping + Aggregation
- Bootstrapping: Sampling with Replacement

Solution: Bagging (Contd.)

•Aggregation = Combining classifiers

Random Forest

Random Forest hyperparameters

- Decision Tree hyper params
 - •Criteria = gini/entropy
 - •Max tree depth, Max leaf nodes
 - •Min samples in split, Min samples in leaf
- Bagging hyperparams: Bootstrap Y/N
- Random Forest hyper params
 - Number of trees (n_estimators)
 - Max samples per tree
 - Max features per tree

Random Forest advantages

- Feature correlation does not matter
- Feature distribution does not matter
- No need to scale data
- Works well even when data is missing
- Overcomes the problem of overfitting
- Not very expensive
- Flexible and high accuracy

Imbalanced data

Accuracy metric and Imbalanced dataset

- A dataset has 98% majority class and 2% minority class
- A model was developed and it gave accuracy of 0.9499
- •Is it a good model?

Oversampling minority class

Synthetic Minority Oversampling Technique: SMOTE

SMOTE (Continued)

Uses KNN on minority class

SMOTE (Continued)

- kNN SMOTE
- DBSMOTE: Uses DBSCAN clustering algorithm for SMOTE

Undersampling majority class

- Random Undersampling
- Tomek Links

Combined oversampling and undersampling

SMOTE Tomek

Handling Imbalanced dataset in Random Forest

- Class weight
 - Reciprocal of proportion of records per class
 - Balanced default value
 - Balanced sub sample each tree gets sub samples based on class weight

Let us look at all of this in lab

