Máster Universitario en Ingeniería Informática

INTELIGENCIA COMPUTACIONAL

TRABAJO TEÓRICO

Aplicación de la lógica difusa a la identificación forense

UNIVERSIDAD DE GRANADA

Carlos Morales Aguilera Carlos Santiago Sánchez Muñoz

30 de noviembre de 2020

$\mathbf{\acute{I}ndice}$

1.	. Resumen										
2.	Introducción	2									
3.	Estado del arte	3									
4.	Modelo										
	4.1. Superposición de cráneo-cara	3									
	4.1.1. Métrica de distancia	6									
	4.2. Decisión										
	4.2.1. Evaluación de criterios										
	4.2.2. Evaluación SFO (Skull-face Overlay)										
	4.2.3. Evaluación CFS (Craniofacial superimposition)										
	4.3. Experimentos realizados	11									
	4.3.1. Experimento 1: Correspondencia de puntos de referencia con incer-										
	tidumbre	12									
		13									
	10.2. Experimento 2. Elevanetas artasas 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	10									
5 .	Resultados	14									
6.	Conclusiones										
	6.1. Próximas vías de desarrollo y mejoras										
	6.2. Conclusión final										
7.	Bibliografía	15									

1. Resumen

A lo largo de la historia se han acontecido numerosas técnicas de investigación y estudio del cuerpo humano en la medicina forense con el objetivo de investigar causas de la muerte, situación, lugar y hora exacta. Sin embargo, uno de los principales problemas en este campo de investigación es la identificación de individuos a partir de un esqueleto, el cual resulta ser siempre el último recurso en este campo.

El principal problema consiste en que el esqueleto de por sí no proporciona una información exacta u objetiva que permita identificar a un determinado individuo, tal y como pueden hacerlo otros elementos como el ADN, por lo que este recurso suele presentarse como el último recurso ya que existen otros métodos más fáciles y exactos de identificación de un cadáver.

Además, dentro del campo de investigación, pese a haber llegado a enfoques que obtienen resultados considerables, no llegan a presentar un modelo realmente fiel a la anatomía humana ya que no se considera un factor tan importante como es el tejido humano, el cual ocupa un espacio, y es algo impreciso, ya que no se trata de un factor que se pueda medir de forma exacta.

Por lo tanto se propone la lógica difusa mediante la superposición de imágenes como una solución alternativa a la par que fiable, capaz de reconocer individuos mediante la morfología de un cráneo y su correspondencia mediante visualización por computadores con fotografías de personas, considerando conjuntos difusos y representación de este tejido previamente mencionado.

¿Entonces puede mejorar este enfoque al previamente recogido en enfoques como el existente *RCGA*? A continuación veremos como se desarrolla esta idea, de que factores se compone y como puede resultar en una mejora de cara al reconocimiento de personas mediante un análisis craneal.

2. Introducción

Algunos científicos datan el comienzo de la ciencia o medicina forense ("tribunal abierto. en latín) en el 275 A.C., donde se encuentra la historia de el Rey de Siracusa, Arquímedes y la corona de plata, donde se determinó la *Ley de Arquímedes* sobre los volúmenes. Esto dió lugar a una ciencia en la que se investigaban las causas de un delito en base a unas pruebas no evidentes mediante análisis.

Otros historiadores datan sus inicios en 1302, al realizarse la primera autopsia en Bolonia, cuando el Dr. Bartolomeo da Varignana examinó los cuerpos de personas fallecidas en circunstancias sospechas y con causa de muerte no determinada. Sin embargo, las técnicas eran limitadas y los resultados distan mucho de los obtenidos en la actualidad.

Tras esta primera autopsia empezó a crecer un nuevo campo de investigación dando lugar a lo que hoy en día se conoce como la ciencia forense. Surgieron entonces numerosas técnicas y herramientas que mejoraban los resultados, conclusiones y precisión obtenidas, como el microscopio en 1590 o la detección de envenenamientos en 1831 mediante pruebas químicas.

No fue hasta el año 2000 que los avances tecnológicos no entraron en este campo, ya que hasta entonces tomaron lugar numerosas ciencias como la química, biología o física entre otras, pero campos más novedosos como la informática empezaron a tener su repercusión en este ámbito recientemente. Desde entonces han surgido nuevas técnicas como el Análisis de conducción cruzada, Análisis estocástico o la Antiesteganografía. Sin embargo estas

aplicaciones están más relacionadas con los datos que con el reconocimiento forense en sí.

Entonces la pregunta que se plantea es: ¿Sería posible mejorar el reconocimiento de cadáveres aplicando métodos de inteligencia artificial? La respuesta evidentemente es sí, mediante diferentes metodologías, dando lugar a numerosas ramas de estudio, pero no en todas ellas se obtiene la misma información, ya que en todos los casos se pueden obtener datos objetivos y específicos, por lo que entonces se llega a un punto muerto donde si las técnicas previas no son útiles, no habría forma de determinar la correspondencia de un cadáver con una persona.

En este punto toma lugar la Lógica Difusa, donde mediante técnicas de correspondencia de puntos morfológicos y superposición craneofacial, pretende resolver la identificación y asignación de características de un individio y el análisis de correspondencia morfológica.

3. Estado del arte

4. Modelo

El principal objetivo a la hora de diseñar un modelo que sea capaz de realizar la función deseada, es detectar los factores que determinan su funcionamiento. Para ello hay que proporcionar un modelo que sea capaz de proporcionar un sistema que incorpore el modelado de la imprecisión relacionada con el espesor entre puntos de referencia del cráneo y la cara al método de superposición original.

A continuación se deben estudiar las correspondencias entre cráneo y cara, para poder obtener la información e imprecisión del problema. Por lo tanto se pueden distinguir tres fases dentro del proceso:

- · Fase 1: Adquisición y procesamiento de los materiales.
- · Fase 2: Superposición de cráneo-cara.
- · Fase 3: Decisión.

Al igual que en todos los estudios, este trabajo se centrará en el análisis de la segunda y tercera fase, ya que la primera consiste en una preparación de datos e información que no están relacionados en sí con el tema del trabajo.

4.1. Superposición de cráneo-cara

Los primeros enfoques se basan en la superposición de una calavera modelada mediante tecnología 3D sobre una cara en una fotografía, minimizando la distancia entre pares de puntos de referencia tratando la imprecisión [ICDS09, ICDS11, ICD12] debida a la localización exacta de dichos puntos de referencia [CGMG+13]. El proceso de minimización involucra la búsqueda de proyecciones espefícicas del modelo 3D que reduce las distancia entre puntos de referencia lo máximo posible. Sin embargo, no se considera el espesor de la piel como un elemento de cara a dicho análisis, por lo que no es una aproximación del todo fiel al problema planteado [Campomanes].

Tras descubrir este problema, se propone un modelo que utiliza una capa de suavizado que imita el espesor de una piel utilizando para ello la teoría de conjuntos difusos [Zad96]. Este modelo utiliza las tecnologías previas pero a su vez considera las relaciones espaciales entre los diferentes puntos de referencia.

El primer enfoque trata de construir un modelo donde el centro es el punto de referencia craneal con un grado de pertenencia de cero, a partir de este punto se calculan los valores max, min y mean, en los tres ejes dimensionales. Este punto central se representa en el modelo como una esfera 3D con origen en el punto céntrico definido anteriormente.

Imagen 1: Superposición de puntos de referencia y distancias [ICDS11]

Esta incertidumbre tal y como se puede observar se representa mediante una matriz 3D, y estas dimensiones representadas a su vez por conjuntos difusos λ_{B_x} , $\lambda_{B_y}y\lambda_{B_z}$. Los cuales son definidos a partir del centro c con su dimensión correspondiente.

Imagen 2: Representación gráfica de una dimensión del conjunto difuso [Campomanes]

Para ello se utiliza además una función de pertenencia que sigue el siguiente formato $\lambda_{B_{xyz}} = \lambda_{B_x} \cdot \lambda_{B_y} \cdot \lambda_{B_z}$, donde B_p es:

Este enfoque sin embargo resulta no ser correcto ya que da lugar a soluciones incorrectas teniendo en cuenta la anatomía humana, tal y como se puede ver en la siguiente figura:

Por lo tanto a continuación se plantea una variante para resolver este problema, sustituyendo en el modelo 3D la esfera por un cono que represente el volumen, utilizando para ello el punto de referencia como vértice del cono. Esto se puede observar en la Imagen 3. Con este nuevo enfoque se reduce el área donde se puede encontrar el punto de referencia.

A partir de este punto se asume un grado de perpendicularidad definido entre los puntos de referencia craneal y facial, como la mayorñia de estudios sobre suavizado de tejidos hacen [SS08i,SS08ii]. Por lo tanto se plantea un vector normal a la superficie del modelo 3D de la calavera para cada punto donde cada componente es el punto en cada dimensión para cada punto de referencia referencia.

Se define entonces el vector normal como $\overrightarrow{v}=(x_n,y_n,z_n)$. Por otro lado se define la magnitud de \overrightarrow{v} como $||\overrightarrow{v}||=\sqrt{x_n^2+y_n^2+z_n^2}$. El vector unitario de \overrightarrow{v} se define entonces de la manera:

$$\tilde{B}_p = \begin{cases} 1 - \frac{|p-c+mean|}{max - mean}, & if & c-max \le p < c-mean \\ 1 - \frac{|p-c+mean|}{mean - min}, & if & c-mean \le p \le c-min \\ 1 - \frac{|p-c-mean|}{mean - min}, & if & c+min \le p \le c+mean \\ 1 - \frac{|p-c-mean|}{max - mean}, & if & c+mean < p \le c+max \\ 0, & otherwise \end{cases}$$

Imagen 3: Puntos de referencia inconsistentes respecto a la anatomía humana [Campomanes

$$\overrightarrow{u} = (\frac{x_n}{||\overrightarrow{v}||}, \frac{y_n}{||\overrightarrow{v}||}, \frac{z_n}{||\overrightarrow{v}||}) = (u_x, u_y, u_z)$$

 $\overrightarrow{u} = (\frac{x_n}{||\overrightarrow{v}||}, \frac{y_n}{||\overrightarrow{v}||}, \frac{z_n}{||\overrightarrow{v}||}) = (u_x, u_y, u_z)$ Nuevamente estas coordenadas \overrightarrow{u} son multiplicadas por el min, max y mean con el objetivo de determinar los puntos de referencia faciales. Aun así, como la correspondencia de un par de puntos de referencia no siempre es perpendicular, se aplican diferentes angulos de inclinación al vector unitario \overrightarrow{u} para determinar el volumen en el que se debe ubicar el punto de referencia facial. Este punto se puede encontrar rotando el volumen del punto (cono) 3D en los ejes X, Y y Z [HB97].

Tras tener en cuenta las consideraciones previas se presenta ahora las nuevas fórmulas de distancias de suavizado de tejidos:

$$\tilde{B}_p = \begin{cases} 1 - \frac{|p-c+u \cdot mean|}{u(max - mean)}, & if & c-u \cdot max \leq p \leq c-u \cdot mean \\ 1 - \frac{|p-c+u \cdot mean|}{u(mean - min)}, & if & c-u \cdot mean \leq p \leq c-u \cdot min \\ 1 - \frac{|p-c-u \cdot mean|}{u(mean - min)}, & if & c+u \cdot min \leq p \leq c+u \cdot mean \\ 1 - \frac{|p-c-u \cdot mean|}{u(max - mean)}, & if & c+u \cdot mean$$

Esto da lugar a un nuevo modelo del conjunto difuso:

Imagen 4: Representación gráfica de una dimensión del conjunto difuso en el nuevo enfoque [Campomanes]

4.1.1. Métrica de distancia

El enfoque introducido previamente plantea trabajar con un conjunto difuso para cada punto de referencia craneal. Mientras que estos puntos de referencia son puntos exactos y precisos, los puntos de referencia faciales pueden ser ubicados de forma precisa o imprecisa, por lo que se pueden tener puntos de referencia exactos o imprecisos a la vez.

El modelo trata de minimizar todas las distancias entre cada par de puntos de referencia correspondientes, teniendo en cuenta que los puntos craneales se representan mediante conjuntos difusos y los puntos faciales se representan mediante conjuntos difusos o puntos exactos. Por lo tanto se deben definir dos tipos de distancias, entre conjunto difusos y entre conjunto difuso y punto exacto.

Al tratarse de un escenario en el que se tienen en cuenta diferentes dimensiones, se ha estimado que se deben tomar métricas basadas en la geometría, por lo que se propone utilizar siempre la distancia Euclídea entre dos puntos en el espacio R^2 . Se entiende un punto exacto como un subconjunto de conjunto difuso.

Tras analizar diferentes métricas, se concluye con que la distancia que se toma para calcular las distancias entre diferentes puntos es la Mean weighted distance. Se definen entonces:

- ontees. $\begin{array}{l} \cdot \text{ Distancia entre conjuntos difusos: } d'(x,B) = \frac{\sum_y d(x,y) \cdot B(y)}{\sum_y B(y)} \\ \cdot \cdot \text{ Distancia entre punto y conj. difuso: } d''(A,B) = \frac{\sum_x \sum_y d(x,y) t[A(x),B(y)]}{\sum_x \sum_y t[A(x),B(y)]} \\ \cdot \cdot \text{ Función fitness } \textit{Fuzzy Mean Error: } \textit{FME} = \frac{\sum_{i=1}^{Ncrisp} (d'(x_i,f(C^i))) + \sum_{j=1}^{Nfuzzy} (d''(F^j,f(C^j)))}{N} \\ \end{array}$

A partir de esta función de fitness se definen:

- · Ncrisp: Número de puntos de referencia 2D ubicados de forma precisa.
- · Nfuzzy: Número de puntos de referencia 2D ubicados de forma impresida y definidos como conjuntos difusos 2D.
 - \cdot N: Número total de puntos de referencia.
- $\cdot C^i$. Conjuntos difusos que modelan cada punto de referencia craneal en 3D considerando la distancia del tejido suavizado y el punto de referencia facial en 3D denominado como i o j.

 $f(C^i), f(C^j)$: Conjuntos difusos de puntos imprecisos 2D de los puntos de referencia facial.

Sin embargo, se plantea también una alternativa donde se considera que no existen puntos precisos sino números difusos, en los que se varía el planteamiento significativamente. En este nuevo planteamiento se utiliza el métodos basado en α -cortes. Se define un conjunto difuso en el conjunto α -corte como:

$$(A*B)_{\alpha} = A_{\alpha}*B_{\alpha}$$

para cada $\alpha \in (0,1]$ donde A_{α} denota el α -corte de A.

Para estos casos de denomina la distancia media como Fuzzy Mean Distance, la cual es un númerbo difuso donde los α -cortes son los valores de pertenencia, esta distancia se denota de la forma:

$$D_{FMD} = \frac{\bigcup_{\alpha \in (0,1]} \sum_{i=1}^{N} D(F^i, f(C^i))_{\alpha}}{N}$$

 $D_{FMD} = \frac{\cup_{\alpha \in (0,1]} \sum_{i=1}^{N} D(F^i, f(C^i))_{\alpha}}{N}$ Por lo tanto, el número obtenido se aplica a la función de fitness de la forma:

$$FME = \frac{\sum_{\alpha_{min}}^{\alpha_{max}} \alpha \cdot D_{FMD}(\alpha)}{\sum_{\alpha_{min}}^{\alpha_{max}} D_{FMD}(\alpha)}$$

4.2. Decisión

Se debe definir una serie de métodos, instrucciones o herramientas que permitan obtener una decisión en base a lo estudiado previamente y que determine si finalmente un cráneo corresponde a una determinada persona mediante su fotografía. Para ello se define un grado de soporte basado en la consistencia de la correspondencia entre la cara y el cráneo, pero que a su vez evidentemente es influenciado por los materiales usados. La confianza de la técnica dependerá de la cantidad de fotografías, poses, etc [FHS08].

Esta decisión se guía por diferentes criterios que estudian la relación anatómica entre cráneo y cara[Campomanes]:

- · Análisis de la consistencia anatómica de las curvas morfológicas del cráneo y la cara.
- · Evaluación de la consistencia anatómica por correspondencia posicional. Por ejemplo, si la posición relativa de los ojos en un cráneo se corresponden con la posición relativa en la cara de la fotografía.
 - · Localización linear y comparación para analizar la consistencia anatómica.
- · Evaluación de la consistencia del espesor del tejido suavizado entre los puntos de referencia craneales y faciales.

Por lo tanto, teniendo en cuenta los criterios previamente explicados, se consideran que existen determinadas fuentes de incertidumbre que deben ser evaluadas:

- · Calidad de los huesos: La calidad del esqueleto es importante ya que la condición, su estado y el paso del tiempo son factores que afectan directamente en la confianza de la evaluación.
- · Calidad de la imagen: La incertidumbre respecto a la localización de los puntos de referencia en una imagen se pueden ver afectados por la calidad de la misma. Se deben considerar variaciones de las sombras, luces, resolución, enfoque o incluso la pose y ángulo de la persona.
- · Precisión de la superposición cráneo-cara: Como se explicó en el punto anterior, se ha de obtener la mejor superposición posible, y esta se ve afectada por incertidumbre.
 - · Aspectos morfológicos de la persona, como la edad, sexo o índice de masa.
- · Precisión del método automático que modela la relación espacial y morfológica: El método escogido puede variar, por lo que la elección es importante de cara a

Imagen 5: Diferentes criterios de evaluación [Campomanes]

reducir una posible incertidumbre.

Por lo tanto el modelo final debe consistir en tres niveles [Campomanes]:

- · Level 1: Evaluación CFS (Craniofacial superimposition)
- · Level 2: Evaluación SFO (Skull-face Overlay)
- · Level 3: Evaluación de criterios.

4.2.1. Evaluación de criterios

Para evaluar los diferentes criterios definidos anteriormente, se definen diferentes métodos de visión por computador y técnicas de agregación:

1. Modelado de la consistencia anatómica de los contornos facial y craneal.

Mediante técnicas de CV se deben extraer los contornos y ubicar la correspondencia entre las curvas del contorno del cráneo con las de la fotografía, y posteriormente se optimizan estas superposiciones obtenidas. Si se obtienen contornos que se cruzan, se puede determinar que esta característica es anatómicamente imposible.

2. Medir la posición relativa de dos regiones para estudiar la consistencia anatómica

El objetivo consiste en medir la posición rlativa de una región del cráneo frente a la región en la cara y determinar el grado de consistencia anatómica de esa posición relativa. Esto se obtiene trasladando a planos 2D donde las relaciones se pueden observar con mayor facilidad, teniendo en cuenta dos ejes. Se puede determinar si una región se encuentra en alguna dirección respecto a la otra o incluso si se encuentra contenida.

Esto se puede realizar mediante el uso de funciones de grado de pertenencia difusas, con grados comprendidos entre [0,1] para cada relación.

3. Modelado de la consistencia anatómica por localización linear y comparación.

Se deben determinar los puntos de referencia 3D y trazar las líneas en modelos 2D para el cráneo y la fotografía utilizando la transformación de la etapa de la superposición craneal. A partir de este punto se analizan características como el paralelismo de las líneas,

la similitud de longitudes y otros factores que determinan que son similares ambos modelos de cráneo y cara.

Imagen 6: Ejemplo segmentación de contorno de una barbilla [Campomanes]

En CV este tipo de criterior se establece con valores comprendidos entre [0,1], para ello se aplican diversos métodos, pero el principal problema que encuentran estos métodos es que no consideran factores como la edad o el BMI [ARP07, KS10], los cuales aportan incertidumbre. Por lo tanto se utilizan para este estudio la representación mediante conjuntos difusos tal y como se pueden ver a continuación:

Imagen 7: Conjuntos difusos de edad y BMI [Campomanes]

4. Modelado de la consistencia anatómica de una posición de dos regiones óseas.

Desde el punto de vista de VC la implementación consiste en proyectar las diferentes regiones 3D en planos 2D haciendo uso de la superposición craneofacial, y entonces comprobar si las regiones están situadas en la misma región de la imagen. Teniendo en cuenta los materiales, las regiones de la fotografía poderían resultar menos precisas, y se hace por lo tanto el cálculo de un cierto grado de superimposición, y se comprueba la pertenencia de la región dentro de la área que cubre dicho grado.

4.2.2. Evaluación SFO (Skull-face Overlay)

En este nivel el problema consiste en determinar la correspondencia en un SFO de cada una de los puntos de referencia correspondientes, teniendo en cuenta la incertidumbre asociada. Por lo tanto para definir la función de agregación se definen los siguientes subniveles:

Nivel 2.1: Función de agregación para combinar evaluaciones de calidad de material y perfil biológico.

Se consideran los factores de la calidad de la foto en la región PQ_m , la calidad del cráneo en la región BQ_m y la variabilidad biológica del perfil del individuo respecto a los criterios BP_m , es decir, el modo en el que el perfil biológico afecta al grado de confianza de cada criterio, mediante conjuntos difusos. En estos conjuntos difusos se engloban factores como la edad, el sexo o el BMI.

Estos factores descritos además son independientes, por lo que una mala calidad del cráneo no se puede compensar mediante una gran calidad de la fotografía. Por lo tanto, con el objetivo de tener una función que tenga en cuenta las necesidades descritas se utilizan las funciones de *mínimo*, *producto* y *media aritmética*. Se puede definir entonces la función de agregación como:

$$O_{Level2.1}(PQ_m, BQ_m, BP_m) = \{min, prod, mean\}$$

Nivel 2.2: Función de agregación para combinar el grado de correspondencia y el valor de incertidumbre del nivel 2.1.

A la información obtenida anteriormente se deben añadir las fuentes de incertidumbre con el grado de correspondencia de las regiones del cráneo y la cara. Esto se plantea definiendo que la puntuación total no puede encontrarse por encima o debajo de ninguna de las entradas. El valor agregado se comporta como el orden de un valor representativo de todas las entradas. No todas las entradas sin embargo tienen la misma contribución, por lo que se necesita una función de pesos que no sea simétrica.

Para esta labor se utilizan las funciones de Weighted Arithmetic Mean y Weighted Geometric Mean. Los pesos se establecen con la valoración de un experto. Por lo tanto esta función se define como:

$$O_{Level2,2}(C_m, Output_Level2,1) = \{wam, wgm\}$$

Nivel 2.3: Función de agregación para combinar el poder de identificación el grado del nivel 2.2.

El último paso consiste en obtener el grado de evaluación del SFO. Esta función debe no ser simétrica, ya que el poder de identificación de una región refleja la contribución relativa de cada entrada a la respectiva salida, es decir, el grado de evaluación SFO.

Para ello se utilizan dos tipos de funciones de agregación, con pesos los cuales se obtiene a partir de un conjunto de datos de forma realista, y con integrales difusas como funciones de agregación.

Las integrarles difusas combinan los datos proporcionados por diversas fuentes de información de acuerdo con una medida difusa, la cual representa el conocimiento de estas fuentes de información. Se utiliza la integral de Choquet y Sugeno [MA09] y la λ -measure de Sugeno para determinar la medida difusa. Esta medida es una función sobre valores reales definida sobre un universo de discurso con rango [0,1].

La medida difusa determina lo bueno que es cada subconjunto de información para evaluar una determinada hipótesis. Esta da una confianza en la hipótesis y determina como medir esta confianza, en este caso el poder de identificación de cada región facial. Se define entonces la medida difusa como g y g_{λ} es una λ -medida de Sugeno si existe un λ >-1 que permita:

$$g_{\lambda}(A \cup B) = g_{\lambda}(A) + g_{\lambda}(B) + \lambda g_{\lambda}(A)\mu(B)$$

Una vez determinado el λ , la integral difusa se puede calcular.

```
· Integral discreta de Choquet: C_g(x) = \sum_{i=1}^n [x_{(i)} - x_{(i-1)}]g(H_{(i)})
```

· Integral de Sugeno: $S_g(x) = max_{i=1,...,n}min(x_{(i)}, g(H_{(i)}))$

Por lo tanto, se define el nivel 2.3 como:

$$O_{Level2,3}(Output_{Level2,2_i}, Power_ID(W_i)) = \{wam, wgm, choq, sug\}$$

4.2.3. Evaluación CFS (Craniofacial superimposition)

En este punto del framework, solo queda reunir la información obtenida en los niveles previos de los grados de correspondencia de los diferentes SFOs, correspondientes a diferentes zonas, y se debe producir un único grado de correspondencia CFS.

Esta tarea se ha estudiado en numerosos estudios [ASM94, YIMS95], por lo que para el sistema de decisión de soporte que se plantea se podría unitizar un único grado para poder ser capaces de ordenar un conjunto de candidatos de acuerdo a este valor, o en su llugar proveer un grado de correspondencia CFS con un grado de confianza como valor de correspondencia.

En este caso se evaluarían también la calidad y precisión de los SFOs que se consideran. Pero actualmente no se ha llegado a este punto por lo que se considera únicamente un único valor CFS, asumiendo que el SFO óptimo ha sido obtenido en la segunda etapa de todo el sistema.

La función resultante define la agregación de diferentes regiones, utilizando la información de los diferentes grados SFOs obtenidos para un mismo caso CFS de la forma:

$$Agg_Nreg = \frac{\sum_{n=1}^{N} (D_SFO_n \cdot Nreg_n)}{\sum_{n=1}^{N} Nreg_n}$$

Imagen 8: Esquema jerárquico del sistema de decisión de soporte [Campomanes]

4.3. Experimentos realizados

En este apartado nos centraremos únicamente en los experimentos que involucran la utilización de la lógica difusa de todos los experimentos realizados. Se distinguen entonces dos experimentos que tratan el modelado de la correspondencia de puntos de referencia con incertidumbre y el estudio de las distancias difusas. Ambos experimentos tienen lugar conn 18 casos de SFO que corresponden a nueve casos de personas reales que vivas de España e Italia.

Los modelos 3D de los cráneos de estos nueve individuos y las fotografías fueron almacenados utilizando el software $Face2Skull^TM$. Además se compara la propuesta frente a los enfoques RCGA y CCGA-2 del estado del arte.

4.3.1. Experimento 1: Correspondencia de puntos de referencia con incertidumbre

.

Los parámetros de configuración utilizados para probar el algoritmos son los obtenidos por los mejores resultados de [ICDS09] y [ICD12], respectivamente. Estas propuestas calculan la distancia entre un punto de referencia craneal y su correspondiente facial mediante la función de fitness y la función de distancia que obtiene los mejores resultados en procesos estocásticos.

Se realizaron 30 ejecuciones de manera independiente para cada instancia del problema para comparar la robustez de los métodos y evitar cualquier parcialidad.

Case, pose	$_{ m pl}$	il	CCGA	RCGA	RCGA-s	RCGA-c-0	RCGA-c-10	RCGA-c-30	RCGA-c-45
1,f	7	7	4.565	2.750	2.727	4.116	4.330	3.078	3.164
1,l	5	4	16.588	7.406	6.938	7.400	6.693	5.788	5.828
2,f	8	5	4.906	3.690	3.486	3.823	4.212	3.337	3.331
2,1	3	2	8.299	8.605	8.871	8.871	8.871	5.286	3.688
3,f	8	7	3.815	3.629	3.664	6.594	6.594	3.007	2.941
3,1	4	4	9.367	10.643	10.815	11.073	11.073	7.604	7.001
$_{4,f}$	7	6	4.635	3.647	3.505	3.356	3.356	3.223	3.045
4,1	4	3	14.027	14.327	13.494	13.847	13.847	12.446	12.171
5,f	10	6	2.996	2.436	2.453	2.204	2.406	2.641	2.600
5,1	5	4	8.545	6.865	6.097	6.846	6.846	3.715	2.825
6,f	8	7	4.654	3.784	3.644	2.618	3.076	2.878	2.921
6,1	3	4	16.486	12.959	11.665	2.204	11.126	11.009	10.626
7 ,f	10	5	4.253	3.639	3.617	4.695	4.695	4.100	3.714
7,1	5	4	10.212	12.663	10.909	9.649	9.649	9.729	10.345
8,f	9	6	5.269	4.409	3.579	3.492	3.492	2.856	2.882
8,1	4	4	6.840	8.555	7.812	19.935	19.935	6.262	5.412
9,f	10	4	6.174	5.541	5.757	6.660	6.660	5.071	4.887
9,1	3	5	10.210	11.701	11.700	19.852	19.852	10.391	9.509
Average (mm)			7.778	6.976	6.548	7.759	8.416	5.585	5.281

Imagen 9: Tabla de resultados del modelo frente al estado del arte, tras 30 ejecuciones para los 9 casos donde f=frontal y l=lateral [Campomanes]

Como se puede observar, los modelos que utilizan como región 3D el modelo del cono (c-angulo) son los que obtienen por norma general los mejores resultados, e incluso los del modelo esférico (s) obtienen resultados prometedores frente a los resultados obtenidos por los enfoques descritos en el estado del arte.

Además, se han utilizado cuatro variantes del enfoque cónico, en los que se consideran cuatro amplitudes diferentes del ángulo del cono, considerando que el que mejor resultados ha obtenido es el modelo con $\pm 45^{\circ}$.

Imagen 10: Las imágenes a y c corresponden al enfoque RCGA-c-45 mientras que las imágenes e y g corresponden al enfoque RCGA clásico [Campomanes]

4.3.2. Experimento 2: Distancias difusas

Previamente se mencionaba la utilización de **Weighted Mean distance**, pero esta elección consiste en una elección arbitraria, y se pretende demostrar en este experimento, donde se toman los mismos parámetros y ejemplos que en el anterior, solo que únicamente se ejecuta el modelo *RCGA-c-45*. La siguiente tabla representa el error (en mm) y desviación obtenidos para cada caso de estudio igual que en el ejemplo anterior.

Case, pose	pl	il	Weighted Mean	Nearest Point	Nearest Point E1	Nearest Point E2	Mean α-cuts (Nearest point)	Mean α-cuts (Sym. mean)	Mean α -cuts (Hausdorff)	Rosenfeld
1,f	7	7	3.17 ± 0.31	3.28 ± 0.65	2.97 ± 0.81	2.07 ± 0.87	2.51 ± 1.00	1.98 ± 0.89	3.03 ± 0.53	3.04 ± 0.91
1,1	5	4	$\boldsymbol{5.83 {\pm} 2.59}$	6.68 ± 2.84	8.13 ± 3.25	7.63 ± 3.24	7.73 ± 3.17	7.78 ± 3.14	7.42 ± 3.85	9.39 ± 1.47
2,f	8	5	$3.33 {\pm} 0.45$	3.18 ± 1.42	$3.14{\pm}1.88$	$\bf 2.15 \!\pm\! 0.42$	2.45 ± 1.12	$3.27{\pm}1.78$	$4.24{\pm}1.18$	3.90 ± 0.36
2,1	3	2	$3.69 {\pm} 0.23$	9.25 ± 2.14	$8.24{\pm}1.90$	8.19 ± 2.76	7.64 ± 2.22	6.52 ± 2.71	$6.48 {\pm} 2.62$	$8.57{\pm}2.78$
3,f	8	7	$2.94{\pm}0.23$	4.81 ± 0.69	$4.55{\pm}0.56$	4.46 ± 0.56	4.35 ± 0.65	4.17 ± 0.67	$3.66{\pm}0.65$	$4.64 {\pm} 0.77$
3,1	4	4	7.00 ± 0.09	7.20 ± 0.56	7.35 ± 0.81	$6.94 {\pm} 0.39$	7.05 ± 0.51	6.98 ± 0.37	$7.54 {\pm} 0.59$	9.59 ± 1.50
4,f	7	6	$3.05 {\pm} 0.06$	4.24 ± 0.18	3.90 ± 0.27	3.90 ± 0.34	4.17 ± 0.40	3.67 ± 0.30	4.10 ± 0.13	4.46 ± 0.67
4,1	4	3	$12.17 {\pm} 2.83$	11.64 ± 2.71	11.95 ± 2.90	11.93 ± 2.94	$\bf 10.83 \!\pm\! 2.51$	11.38 ± 2.66	12.01 ± 2.08	12.65 ± 2.92
5,f	10	6	$\boldsymbol{2.60 {\pm} 0.13}$	5.21 ± 0.65	5.14 ± 0.84	5.34 ± 0.71	5.26 ± 0.66	4.12 ± 0.33	$4.42 {\pm} 0.46$	7.77 ± 1.66
5,1	5	4	$2.83 {\pm} 0.15$	5.15 ± 2.33	5.05 ± 2.07	5.69 ± 2.14	6.14 ± 2.15	4.49 ± 1.71	$6.85{\pm}2.60$	$8.57{\pm}2.28$
6,f	8	7	$\boldsymbol{2.92 {\pm} 0.12}$	$4.98 {\pm} 0.37$	3.78 ± 0.74	$3.98 {\pm} 0.88$	3.70 ± 0.54	3.23 ± 0.53	$3.97 {\pm} 0.57$	$2.93 {\pm} 0.88$
6,1	3	4	10.63 ± 3.02	12.64 ± 3.69	11.19 ± 4.10	11.88 ± 3.24	$9.89 {\pm} 2.74$	10.41 ± 3.35	12.05 ± 2.46	11.34 ± 2.38
7,f	10	5	3.71 ± 0.17	$3.93\!\pm\!1.64$	$4.42 {\pm} 2.12$	4.12 ± 2.06	3.50 ± 1.77	3.19 ± 0.81	5.05 ± 0.64	5.33 ± 1.09
7,1	5	4	10.35 ± 1.97	10.96 ± 1.21	$10.48 {\pm} 1.15$	10.36 ± 0.88	$9.91 {\pm} 0.93$	10.20 ± 0.89	10.95 ± 0.90	10.85 ± 1.33
8,f	9	6	$2.88 {\pm} 0.24$	4.35 ± 0.49	4.21 ± 0.46	4.39 ± 0.40	4.36 ± 0.21	4.43 ± 0.33	$3.56{\pm}0.16$	5.85 ± 1.35
8,1	4	4	$5.41 {\pm} 0.15$	$8.64 {\pm} 1.96$	$8.19{\pm}1.76$	9.15 ± 1.55	8.10 ± 1.77	6.87 ± 1.70	$7.40{\pm}1.85$	10.60 ± 1.93
9,f	10	4	$4.89 {\pm} 0.15$	5.72 ± 0.44	5.79 ± 0.33	5.74 ± 0.36	5.61 ± 0.40	5.19 ± 0.34	$\bf 4.54 {\pm} 0.25$	5.25 ± 0.72
9,1	3	5	$9.51 {\pm} 0.69$	11.68 ± 2.84	11.02 ± 2.19	$11.22{\pm}1.98$	11.41 ± 2.06	$10.22{\pm}1.15$	10.53 ± 1.23	13.26 ± 2.31
Average			5.38	6.86	6.64	6.62	6.37	6.01	6.54	7.67

Imagen 11: Tabla de resultados de las diferentes distancias obtenidas, tras 30 ejecuciones para los 9 casos donde f=frontal y l=lateral [Campomanes]

Si bien es cierto que se obtienen resultados similares y según el caso es más oportuno utilizar una distancia u otra, en la fila final se puede observar un promedio de los resultados donde se indica claramente que la medida de distancia que mejor funciona en este problema de forma general es la Weighted Mean Distance.

5. Resultados

6. Conclusiones

Tras comprender el nuevo enfoque propuesto haciendo uso de la lógica difusa, y comprender la importancia que se posee en los tejidos respecto al análisis craneofacial, podemos responder a la pregunta realizada en la introducción: ¿Entonces puede mejorar este enfoque al previamente recogido en enfoques como el existente RCGA?

La respuesta a esta pregunta es sí, estos enfoques pese a ser una buena aproximación no consideraban factores como el espesor de la piel humana, y el tejido que la compone, el cual ocupa un espacio dentro de la anatomía del cuerpo humano. Este nuevo modelo presenta esta nueva consideración la cual garantiza una mayor fidelidad al cuerpo humano, y esto se traduce también en mejores resultados como se ha podido observar.

El interés de utilizar la lógica difusa en este problema radica en la importancia de tratar un cuerpo humano de la forma más fiel a la anatomía del mismo, y esto introduce factores que no son exactos, y que producen incertidumbre, ya que todos los cuerpos no poseen las mismas características, y factores como la edad, el BMI o incluso la etnia pueden hacer variar determinadas condiciones del aspecto de una persona. Por ello la lógica difusa cobra un gran papel de cara a desempeñar la función de determinar las posibles aproximaciones entre un cráneo real y una cara de una fotografía, estableciendo las normas necesarias para poder hacer correspondencias válidas y fieles.

Realmente es un problema no ha llegado a su fin, ya que en los numerosos artículos se ha podido observar que existen una serie de mejoras pendientes, como el trabajar con cráneos reales en lugar de modelos 3D, o tratar quizás con casos que presenten anomalías, como puede ser el caso de una persona con alguna deformación, por lo tanto se introducen a continuación las próximas vías de desarrollo que consideramos y posibles mejoras sobre el mismo.

6.1. Próximas vías de desarrollo y mejoras

Realmente el cuerpo humana no sigue un patrón determinado, por lo que dentro de que se examinen valores como la edad o el BMI, quizás no sea suficiente para determinados casos donde las personas poseen condiciones especiales, las cuales se mencionan y se aportan posibles enfoques que mejoren el modelo actual:

- · Personas con alguna deformidad craneal: Bien puede ser una persona con una determinada enfermedad desde el nacimiento, cuyo cráneo no sigue la anatomía humana, sino que posee una forma distinta debido a algún tipo de deformidad de la misma. Sería interesante en estos casos realizar algún uso de la lógica difusa que permita tener en cuenta un grado de deformidad para poder establecer la ubicación de estos puntos de referencia y actuar de forma similar al modelo actual.
- · Personas con problemas de peso: Si bien se considera mediante lógica difusa el factor del BMI, hay determinados casos en los que el modelo quizás pueda no resultar lo suficientemente preciso, ya que personas con problemas de peso como puede ser una obesidad mórbida no poseen las mismas referencias que una persona con un BMI adecuado, la grasa acumulada en el cuerpo podría resultar en un obstáculo definiendo una distancia aún mayor entre los puntos de referencia faciales y craneales. Un posible planteamiento sería utilizar la lógica difusa igual que se ha utilizado en este modelo para los tejidos, pero teniendo en cuenta que los factores varían y la información es considerablemente diferente.
 - · Personas con lesiones: Una lesión craneal si bien podría suponer a simple vista una

forma más rápida de identificar un cuerpo, sin embargo, en el problema tratado, suponemos que se poseen fotografías de los individuos previa a la lesión y se posee un cráneo con una lesión que impide identificar con tanta precisión los puntos de referencia o carece de algunos. Una posible solución sería permitir una reconstrucción aproximada mediante tecnologías de modelado 3D y visión por computador.

6.2. Conclusión final

Se puede concluir finalmente con que aunque los modelos del estado del arte obtienen unos buenos resultados, el empleo de la lógica difusa permite afinar estos resultados, y obtener modelos más realistas en base a la anatomía del cuerpo humano, por lo que su introducción no sólo es una mejora del modelo actual, sino que abre un amplio abanico de posibilidades a futuras mejoras y campos de estudio.

En definitiva, consideramos que la lógica difusa realmente es una herramienta muy útil para este problema y mejora las soluciones previas a la misma.

7. Bibliografía

- [ICD12] O. Ibánez, O. Cordón, and S. Damas. A cooperative coevolutionary approach dealing with the skull-face overlay uncertainty in forensic identification by craniofacial superimposition. *Soft Computing*, 2012.
- [ICDS09] O. Ibánez, O. Cordón, and S. Damas, and J. Santamaría. An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification. *Information Science*, 2009.
- [ICDS11] O. Ibánez, O. Cordón, and S. Damas, and J. Santamaría. Modeling the skull-face overlay uncertainty using fuzzy sets. *IEEE Transactions Fuzzy Systems*, 2011.
- [CGMG+13] M. Cummaudo, M. Guerzoni, L. Marasciuolo, D. Gibelli, A. Cigada, Z. Obertovà, Z. Ratnayake, P. Poppa, P. Gabriel, S. Ritz-Timme, et al. Pitfalls at the root of facial assessment on photographs: a quantitative study of accuracy in positioning facial landmarks. *Internatinal Journal of Legal Medicine*, 2013.
- [Zad96] L. A. Zadeh. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lofti A. Zadeh, volume 6 of Advances in fuzzy systems: applications and theory. World Scientific, River Edge, NJ, 1996.
- [SS08i] C. N. Stephan and E. K. Simpson. Facial soft tissue depths in craniofacial identification (part i): an analytical review of the published adult data. *Journal of Forensic Science*, 2008.
- [SS08ii] C. N. Stephan and E. K. Simpson. Facial soft tissue depths in craniofacial identification (part ii): an analytical review of the published sub-adult data. *Journal of Forensic Science*, 2008.
- [HB97] D. Hearn and M. P. Baker. *Computer graphics. C version*. Prentice-Hall, Upper Saddle River, NJ, 2nd edition, 1997.

- [FHS08] T. W. Fenton, A. N. Heard, and N. J. Sauer. Skull-photo superimposition and border deaths: Identification through exclusion and the failure to exclude. *Journal of Forensic Science*, 2008.
- [ARP07] A. M. Albert, K. Ricanek, and E. Patterson. A review of the literature on the aging adult skull and face: Implications for forensic science research and applications. *Forensic Science International*, 2007.
- [KS10] D. M. Kahn and R. B. Shaw. Overview of current thoughts on facial volume and aging. *Facial Plastic Surgery*, 2010.
- [ASM94] D. Austin-Smith and W. R. Maples. The reliability of skull/photograph superimposition in individual identification. *Journal of Forensic Science*, 1994.
- [YIMS95] M. Yoshino, K. Imaizumi, S. Miyasaka, and S. Seta. Evaluation of anatomical consistency in craniofacial superimposition images. *Forensic Science International*, 1995.
- [JJPP03] John Jason Payne-James. History and development of forensic medicine and pathology. *Healthcare in police custody*, 2003.
- [MA09] Muhammad Ayub. Choquet and Sugeno integrals. *Blekinge Institute of Technology*, 2009.