

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* Bipolar: both electrons and holes contribute to conduction

- * Bipolar: both electrons and holes contribute to conduction
- * Junction: device includes two *p-n* junctions (as opposed to a "point-contact" transistor, the first transistor)

- Bipolar: both electrons and holes contribute to conduction
- * Junction: device includes two *p-n* junctions (as opposed to a "point-contact" transistor, the first transistor)
- * Transistor: "transfer resistor"

 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

 (http://amasci.com/amateur/trshort.html)

- Bipolar: both electrons and holes contribute to conduction
- * Junction: device includes two *p-n* junctions (as opposed to a "point-contact" transistor, the first transistor)
- * Transistor: "transfer resistor"

 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

 (http://amasci.com/amateur/trshort.html)
- * invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.

- * Bipolar: both electrons and holes contribute to conduction
- * Junction: device includes two *p-n* junctions (as opposed to a "point-contact" transistor, the first transistor)
- * Transistor: "transfer resistor"

 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

 (http://amasci.com/amateur/trshort.html)
- * invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
- * BJT is still used extensively, and anyone interested in electronics must have at least a working knowledge of this device.

- Bipolar: both electrons and holes contribute to conduction
- * Junction: device includes two *p-n* junctions (as opposed to a "point-contact" transistor, the first transistor)
- * Transistor: "transfer resistor"

 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

 (http://amasci.com/amateur/trshort.html)
- * invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
- * BJT is still used extensively, and anyone interested in electronics must have at least a working knowledge of this device.
- * "A BJT is two diodes connected back-to-back."

- * Bipolar: both electrons and holes contribute to conduction
- * Junction: device includes two *p-n* junctions (as opposed to a "point-contact" transistor, the first transistor)
- * Transistor: "transfer resistor"

 When Bell Labs had an informal contest to name their new invention, one engineer pointed out that it acts like a resistor, but a resistor where the voltage is transferred across the device to control the resulting current.

 (http://amasci.com/amateur/trshort.html)
- * invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.
- * BJT is still used extensively, and anyone interested in electronics must have at least a working knowledge of this device.
- "A BJT is two diodes connected back-to-back."
 WRONG! Let us see why.

Consider a pnp BJT in the following circuit:

Consider a pnp BJT in the following circuit:

If the transistor is replaced with two diodes connected back-to-back, we get

Consider a pnp BJT in the following circuit:

If the transistor is replaced with two diodes connected back-to-back, we get

Assuming $V_{on} = 0.7 V$ for D1, we get

$$I_1 = \frac{5 V - 0.7 V}{R_1} = 4.3 \text{ mA}$$

$$I_2 = 0$$
 (since D2 is reverse biased), and $I_3 \approx I_1 = 4.3$ mA.

Using a more realistic equivalent circuit for the BJT, we obtain,

Using a more realistic equivalent circuit for the BJT, we obtain,

We now get,

$$H_1 = rac{5 \ V - 0.7 \ V}{R_1} = 4.3 \ \text{mA} \ ext{(as before)}$$

Using a more realistic equivalent circuit for the BJT, we obtain,

We now get,

$$I_1=rac{5~V-0.7~V}{R_1}=4.3~\text{mA}$$
 (as before), $I_2=lpha I_1pprox 4.3~\text{mA}$ (since $lphapprox 1$ for a typical BJT), and

Using a more realistic equivalent circuit for the BJT, we obtain,

We now get,

$$\begin{split} I_1 &= \frac{5~V-0.7~V}{R_1} = 4.3~\text{mA (as before),} \\ I_2 &= \alpha I_1 \approx 4.3~\text{mA (since }\alpha \approx 1~\text{for a typical BJT), and} \\ I_3 &= I_1 - I_2 = (1-\alpha)~I_1 \approx 0~\text{A}. \end{split}$$

Using a more realistic equivalent circuit for the BJT, we obtain,

We now get,

$$I_1 = \frac{5 V - 0.7 V}{R_1} = 4.3 \text{ mA (as before)},$$

$$I_2=\alpha I_1 \approx$$
 4.3 mA (since $\alpha \approx 1$ for a typical BJT), and

$$I_3 = I_1 - I_2 = (1 - \alpha) I_1 \approx 0 A.$$

The values of I_2 and I_3 are dramatically different than the ones obtained earlier, viz., $I_2 \approx 0$, $I_3 \approx 4.3 \, \text{mA}$.

Using a more realistic equivalent circuit for the BJT, we obtain,

We now get,

$$I_1 = \frac{5 \ V - 0.7 \ V}{R_1} = 4.3 \ \text{mA} \ \text{(as before)},$$

$$I_2=\alpha I_1 \approx$$
 4.3 mA (since $\alpha \approx 1$ for a typical BJT), and

$$I_3 = I_1 - I_2 = (1 - \alpha) I_1 \approx 0 A.$$

The values of I_2 and I_3 are dramatically different than the ones obtained earlier, viz., $I_2 \approx 0$, $I_3 \approx 4.3$ mA.

Conclusion: A BJT is NOT the same as two diodes connected back-to-back (although it does have two p-n junctions).

What is wrong with the two-diode model of a BJT?

What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are "far apart."

What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are "far apart."

* However, in a BJT, exactly the opposite is true. For a higher performance, the base region is made as short as possible, and the two diodes cannot be treated as independent devices.

What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction between the two diodes, which may be expected if they are "far apart."

* However, in a BJT, exactly the opposite is true. For a higher performance, the base region is made as short as possible, and the two diodes cannot be treated as independent devices.

* Later, we will look at the "Ebers-Moll model" of a BJT, which is a fairly accurate representation of the transistor action.

- * In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.
 - For a pnp transistor, $V_{EB} > 0$ V, and $V_{CB} < 0$ V.
 - For an npn transistor, $V_{BE}>0\,$ V, and $V_{BC}<0\,$ V.

- * In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.
 - For a pnp transistor, $V_{EB} > 0$ V, and $V_{CB} < 0$ V.
 - For an npn transistor, $V_{BE} > 0$ V, and $V_{BC} < 0$ V.
- * Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V_{\odot}

- * In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.
 - For a pnp transistor, $V_{EB} > 0$ V, and $V_{CB} < 0$ V.
 - For an *npn* transistor, $V_{BE} > 0$ V, and $V_{BC} < 0$ V.
- st Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V.
- * The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.

- * In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.
 - For a pnp transistor, $V_{EB} > 0$ V, and $V_{CB} < 0$ V.
 - For an npn transistor, $V_{BE} > 0$ V, and $V_{BC} < 0$ V.
- st Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V.
- * The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.
- * The symbol for a BJT includes an arrow for the emitter terminal, its direction indicating the current direction when the transistor is in active mode.

- * In the active mode of a BJT, the B-E junction is under forward bias, and the B-C junction is under reverse bias.
 - For a pnp transistor, $V_{EB} > 0$ V, and $V_{CB} < 0$ V.
 - For an npn transistor, $V_{BE} > 0$ V, and $V_{BC} < 0$ V.
- st Since the B-E junction is under forward bias, the voltage (magnitude) is typically 0.6 to 0.75 V.
- * The B-C voltage can be several Volts (or even hundreds of Volts), and is limited by the breakdown voltage of the B-C junction.
- * The symbol for a BJT includes an arrow for the emitter terminal, its direction indicating the current direction when the transistor is in active mode.
- * Analog circuits, including amplifiers, are generally designed to ensure that the BJTs are operating in the active mode.

* In the active mode, $\emph{I}_{\emph{C}}=\alpha\emph{I}_{\emph{E}},~\alpha\approx 1$ (slightly less than 1).

- * In the active mode, $\emph{I}_{\emph{C}}=\alpha\emph{I}_{\emph{E}},~\alpha\approx 1$ (slightly less than 1).
- * $I_B = I_E I_C = I_E (1 \alpha)$.

- * In the active mode, $I_C = \alpha I_E$, $\alpha \approx 1$ (slightly less than 1).
- * $I_B = I_E I_C = I_E (1 \alpha)$.
- * The ratio I_C/I_B is defined as the current gain β of the transistor.

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha} \,.$$

- * In the active mode, $I_C = \alpha I_E$, $\alpha \approx 1$ (slightly less than 1).
- * $I_B = I_E I_C = I_E (1 \alpha)$.
- * The ratio I_C/I_B is defined as the current gain β of the transistor.

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha} \,.$$

* β is a function of *I_C* and temperature. However, we will generally treat it as a constant, a useful approximation to simplify things and still get a good insight.

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$$

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$$

α	β
0.9	9
0.95	19
0.99	99
0.995	199

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$$

α	β
0.9	9
0.95	19
0.99	99
0.995	199

* β increases substantially as $\alpha \to 1$.

BJT in active mode

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$$

α	β
0.9	9
0.95	19
0.99	99
0.995	199

- * β increases substantially as $\alpha \to 1$.
- * Transistors are generally designed to get a high value of β (typically 100 to 250, but can be as high as 2000 for "super- β " transistors).

BJT in active mode

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha}$$

α	β
0.9	9
0.95	19
0.99	99
0.995	199

- * β increases substantially as $\alpha \to 1$.
- * Transistors are generally designed to get a high value of β (typically 100 to 250, but can be as high as 2000 for "super- β " transistors).
- * A large $\beta \Rightarrow I_B \ll I_C$ or I_E when the transistor is in the active mode.

Assume the BJT to be in the active mode \Rightarrow $V_{BE}=$ 0.7 V and $I_{C}=\alpha I_{E}=\beta I_{B}.$

Assume the BJT to be in the active mode \Rightarrow $V_{BE}=0.7~V$ and $I_{C}=\alpha I_{E}=\beta I_{B}$.

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 V - 0.7 V}{100 \text{ k}} = 13 \ \mu A$$

Assume the BJT to be in the active mode \Rightarrow $V_{BE}=0.7~V$ and $I_{C}=\alpha I_{E}=\beta I_{B}$.

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 V - 0.7 V}{100 \text{ k}} = 13 \ \mu A.$$

$$I_C = \beta \times I_B = 100 \times 13 \,\mu A = 1.3 \,\mathrm{m} A.$$

Assume the BJT to be in the active mode $\Rightarrow V_{BE} = 0.7 \ V$ and $I_C = \alpha I_E = \beta I_B$.

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 V - 0.7 V}{100 \text{ k}} = 13 \ \mu A.$$

$$I_C = \beta \times I_B = 100 \times 13 \,\mu A = 1.3 \,\mathrm{m} A.$$

$$V_C = V_{CC} - I_C R_C = 10 V - 1.3 \,\mathrm{mA} \times 1 \,\mathrm{k} = 8.7 \,V.$$

Assume the BJT to be in the active mode $\Rightarrow V_{BE} = 0.7 \ V$ and $I_C = \alpha I_E = \beta I_B$.

$$I_B = rac{V_{BB} - V_{BE}}{R_B} = rac{2 \ V - 0.7 \ V}{100 \ k} = 13 \ \mu A.$$

$$I_C = \beta \times I_B = 100 \times 13 \,\mu A = 1.3 \,\text{m} A.$$

$$V_C = V_{CC} - I_C R_C = 10 V - 1.3 \text{ mA} \times 1 \text{ k} = 8.7 V.$$

Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.

Assume the BJT to be in the active mode $\Rightarrow V_{BE} = 0.7 \ V$ and $I_C = \alpha I_E = \beta I_B$.

$$I_B = rac{V_{BB} - V_{BE}}{R_B} = rac{2 \ V - 0.7 \ V}{100 \ k} = 13 \ \mu A.$$

$$I_C = \beta \times I_B = 100 \times 13 \,\mu A = 1.3 \,\mathrm{m} A.$$

$$V_C = V_{CC} - I_C R_C = 10 V - 1.3 \text{ mA} \times 1 \text{ k} = 8.7 V.$$

Let us check whether our assumption of active mode is correct. We need to check whether the B-C junction is under reverse bias.

$$V_{BC} = V_B - V_C = 0.7 V - 8.7 V = -8.0 V$$

i.e., the B-C junction is indeed under reverse bias.

What happens if R_B is changed from 100 k to 10 k?

What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7~V$, and $I_C = \beta\,I_B$.

A simple BJT circuit: continued

What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7 \ V$, and $I_C = \beta I_B$.

$$I_B = rac{V_{BB} - V_{BE}}{R_B} = rac{2 \ V - 0.7 \ V}{10 \ k} = 130 \ \mu A$$

A simple BJT circuit: continued

What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7 \ V$, and $I_C = \beta I_B$.

$$I_B = rac{V_{BB} - V_{BE}}{R_B} = rac{2 \ V - 0.7 \ V}{10 \ k} = 130 \ \mu A
ightarrow I_C = eta imes I_B = 100 imes 130 \ \mu A = 13 \ mA.$$

What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7 \ V$, and $I_C = \beta I_B$.

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 V - 0.7 V}{10 \text{ k}} = 130 \ \mu A \rightarrow I_C = \beta \times I_B = 100 \times 130 \ \mu A = 13 \text{ mA}.$$

$$V_C = V_{CC} - I_C R_C = 10 \ V - 13 \ \text{mA} \times 1 \ \text{k} = -3 \ V$$

A simple BJT circuit: continued

What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7~V$, and $I_C = \beta I_B$.

$$\begin{split} I_B &= \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \ V - 0.7 \ V}{10 \ k} = 130 \ \mu A \rightarrow I_C = \beta \times I_B = 100 \times 130 \ \mu A = 13 \ mA. \\ V_C &= V_{CC} - I_C R_C = 10 \ V - 13 \ mA \times 1 \ k = -3 \ V \end{split}$$

$$\rightarrow V_{BC} = V_B - V_C = 0.7 V - (-3) V = 3.7 V.$$

What happens if R_B is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have $V_{BE} \approx 0.7~V$, and $I_C = \beta I_B$.

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{2 \ V - 0.7 \ V}{10 \ k} = 130 \ \mu A \rightarrow I_C = \beta \times I_B = 100 \times 130 \ \mu A = 13 \ mA.$$

$$V_C = V_{CC} - I_C R_C = 10 V - 13 \text{ mA} \times 1 \text{ k} = -3 V$$

$$\rightarrow V_{BC} = V_B - V_C = 0.7 V - (-3) V = 3.7 V.$$

 V_{BC} is not only positive, it is huge!

ightarrow The BJT cannot be in the active mode, and we need to take another look at the circuit.

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

The two α 's, α_F (forward α) and α_R (reverse α) are generally quite different.

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

The two α 's, α_F (forward α) and α_R (reverse α) are generally quite different.

Typically, $\alpha_F > 0.98$, and α_R is in the range from 0.02 to 0.5.

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

The two α 's, α_F (forward α) and α_R (reverse α) are generally quite different.

Typically, $\alpha_F > 0.98$, and α_R is in the range from 0.02 to 0.5.

The corresponding current gains (β_F and β_R) differ significantly, since $\beta = \alpha/(1-\alpha)$.

Active mode ("forward" active mode): B-E in f.b. B-C in r.b.

Reverse active mode: B-E in r.b. B-C in f.b.

In the reverse active mode, emitter \leftrightarrow collector. (However, we continue to refer to the terminals with their original names.)

The two α 's, α_F (forward α) and α_R (reverse α) are generally quite different.

Typically, $\alpha_F > 0.98$, and α_R is in the range from 0.02 to 0.5.

The corresponding current gains (β_F and β_R) differ significantly, since $\beta = \alpha/(1-\alpha)$.

In amplifiers, the BJT is biased in the forward active mode (simply called the "active mode") in order to make use of the higher value of β in that mode.

M.B. Patil, IIT Bombay

The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

The currents I'_{F} and I'_{C} are given by the Shockley diode equation:

$$I_E' = I_{ES} \, \left[\exp \left(rac{V_{EB}}{V_T}
ight) - 1
ight], \quad I_C' = I_{CS} \, \left[\exp \left(rac{V_{CB}}{V_T}
ight) - 1
ight].$$

The Ebers-Moll model combines the forward and reverse operations of a BJT in a single comprehensive model.

The currents $I'_{\mathcal{E}}$ and $I'_{\mathcal{C}}$ are given by the Shockley diode equation:

$$I_E' = I_{ES} \left[\exp\left(\frac{V_{EB}}{V_T}\right) - 1 \right], \quad I_C' = I_{CS} \left[\exp\left(\frac{V_{CB}}{V_T}\right) - 1 \right].$$

Mode	B-E	B-C	
Forward active	forward	reverse	$I'_E \gg I'_C$
Reverse active	reverse	forward	$I_C' \gg I_E'$
Saturation	forward	forward	I'_E and I'_C are comparable.
Cut-off	reverse	reverse	I'_E and I'_C are negligibe.

pnp transistor

$$I_{\text{E}}^{\prime} = I_{\text{ES}} \; [\text{exp}(V_{\text{EB}}/V_{\text{T}}) - 1]$$

$$I_{C}^{\prime} = I_{CS} \ [exp(V_{CB}/V_{T}) - 1]$$

npn transistor

$$I_{\text{E}}^{\prime} = I_{\text{ES}} \ [\text{exp}(V_{\text{BE}}/V_{\text{T}}) - 1]$$

$$I_C' = I_{CS} \left[exp(V_{BC}/V_T) - 1 \right]$$

pnp transistor

$$I_{E}' = I_{ES} \left[exp(V_{EB}/V_{T}) - 1 \right]$$

$$I_{\text{C}}' = I_{\text{CS}} \; [\text{exp}(V_{\text{CB}}/V_{\text{T}}) - 1]$$

npn transistor

$$I_{\text{E}}^{\prime} = I_{\text{ES}} \; [\text{exp}(V_{\text{BE}}/V_{\text{T}}) - 1]$$

$$I_{C}^{\prime} = I_{CS} \; [exp(V_{BC}/V_{T}) - 1]$$

Ebers-Moll model in active mode

$$I_{\text{E}}^{\prime} = I_{\text{ES}} \ [\text{exp}(V_{\text{EB}}/V_{\text{T}}) - 1]$$

$$I_{\text{C}}' = I_{\text{CS}} \ [\text{exp}(V_{\text{CB}}/V_{\text{T}}) - 1]$$

$$I_{\mathsf{C}} = \alpha_{\mathsf{F}} I_{\mathsf{E}} = \beta_{\mathsf{F}} I_{\mathsf{B}}$$

npn transistor

$$I_{\text{E}}^{\prime} = I_{\text{ES}} \; [\text{exp}(V_{\text{BE}}/V_{\text{T}}) - 1]$$

$$I_C' = I_{CS} \ [exp(V_{BC}/V_T) - 1]$$

$$I_C = \alpha_F I_E = \beta_F I_B$$

* Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,

- * Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,
 - I_C versus V_{CB} for different values of I_E

- * Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,
 - I_C versus V_{CB} for different values of I_E
 - I_C versus V_{CE} for different values of V_{BE}

- * Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,
 - I_C versus V_{CB} for different values of I_E
 - I_C versus V_{CE} for different values of V_{BE}
 - I_C versus V_{CE} for different values of I_B

- * Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,
 - I_C versus V_{CB} for different values of I_E
 - I_C versus V_{CE} for different values of V_{BE}
 - I_C versus V_{CE} for different values of I_B
- * The I-V relationship for a BJT is not a single curve but a "family" of curves or "characteristics."

- * Since BJT is a three-terminal device, its behaviour can be described in many different ways, e.g.,
 - I_C versus V_{CB} for different values of I_E
 - I_C versus V_{CE} for different values of V_{BE}
 - I_C versus V_{CE} for different values of I_B
- * The I-V relationship for a BJT is not a single curve but a "family" of curves or "characteristics."
- * The I_C - V_{CE} characteristics for different I_B values are useful in understanding amplifier biasing.

$$\alpha_{\mathsf{F}} = \mathsf{0.99} \rightarrow \beta_{\mathsf{F}} = \frac{\alpha_{\mathsf{F}}}{1 - \alpha_{\mathsf{F}}} = \mathsf{99}$$

$$\alpha_{\mathsf{R}} = \mathsf{0.5} \to \beta_{\mathsf{R}} = \frac{\alpha_{\mathsf{R}}}{1 - \alpha_{\mathsf{R}}} = 1$$

$$I_{ES}=1\times 10^{-14}\,\text{A}$$

$$I_{CS}=2\times 10^{-14}\,\text{A}$$

$$\alpha_{\mathsf{F}} = 0.99 \to \beta_{\mathsf{F}} = \frac{\alpha_{\mathsf{F}}}{1 - \alpha_{\mathsf{F}}} = 99$$
$$\alpha_{\mathsf{R}} = 0.5 \to \beta_{\mathsf{R}} = \frac{\alpha_{\mathsf{R}}}{1 - \alpha_{\mathsf{R}}} = 1$$

$$I_{\text{ES}} = 1 \times 10^{-14} \, \text{A}$$

$$I_{CS}=2\times 10^{-14}\,\text{A}$$

$$I_{\text{E}}' = I_{\text{ES}} \; [\text{exp}(V_{\text{BE}}/V_{\text{T}}) - 1]$$

$$I_{C}^{\prime} = I_{CS} \ [exp(V_{BC}/V_{T}) - 1]$$

$$\rm I_C = \alpha_F \, I_E = \beta_F \, I_B \, in$$
 active mode

$$\alpha_{\mathsf{F}} = 0.99 \to \beta_{\mathsf{F}} = \frac{\alpha_{\mathsf{F}}}{1 - \alpha_{\mathsf{F}}} = 99$$

$$\alpha_{\mathsf{R}} = 0.5 \to \beta_{\mathsf{R}} = \frac{\alpha_{\mathsf{R}}}{1 - \alpha_{\mathsf{R}}} = 1$$

$$I_{\text{ES}}=1 imes10^{-14}\,\text{A}$$

$$I_{CS}=2\times 10^{-14}\,\text{A}$$

$$I_{\text{E}}' = I_{\text{ES}} \ [\text{exp}(V_{\text{BE}}/V_{\text{T}}) - 1]$$

$$I_C' = I_{CS} \; [\text{exp}(V_{BC}/V_T) - 1]$$

$$I_{\rm C} = \alpha_{\rm F} \, I_{\rm E} = \beta_{\rm F} \, I_{\rm B} \, {\rm in} \, \, {\rm active \; mode}$$

- * linear region: B-E under forward bias, B-C under reverse bias, $I_C = \beta_E I_B$
- * saturation region: B-E under forward bias, B-C under forward bias, $I_C < \beta_E I_B$

$$\alpha_{\mathsf{F}} = 0.99 \to \beta_{\mathsf{F}} = \frac{\alpha_{\mathsf{F}}}{1 - \alpha_{\mathsf{F}}} = 99$$

$$\alpha_{\mathsf{R}} = 0.5 \to \beta_{\mathsf{R}} = \frac{\alpha_{\mathsf{R}}}{1 - \alpha_{\mathsf{R}}} = 1$$

$$I_{\text{ES}} = 1 \times 10^{-14} \, \text{A}$$

$$I_{CS} = 2 \times 10^{-14} \, A$$

$$I_C' = I_{CS} \ [\text{exp}(V_{BC}/V_T) - 1]$$

$$\rm I_C = \alpha_F \, I_E = \beta_F \, I_B \, in$$
 active mode

- * linear region: B-E under forward bias, B-C under reverse bias, $I_C = \beta_E I_B$
- * saturation region: B-E under forward bias, B-C under forward bias, $I_C < \beta_E I_B$

 $I_{CS} = 2 \times 10^{-14} \, A$

- * linear region: B-E under forward bias, B-C under reverse bias, $I_C = \beta_E I_B$
- * saturation region: B-E under forward bias, B-C under forward bias, $I_C < \beta_F I_B$

 $I_C = \alpha_E I_E = \beta_E I_B$ in active mode

We are now in a position to explain what happens when R_B is decreased from $100\,\mathrm{k}$ to $10\,\mathrm{k}$ in the above circuit.

We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 \ V}{R_B}$ for the two values of R_B .

We are now in a position to explain what happens when R_B is decreased from $100\,\mathrm{k}$ to $10\,\mathrm{k}$ in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 \ V}{R_B}$ for the two values of R_B .

We are now in a position to explain what happens when R_B is decreased from $100 \, \mathrm{k}$ to $10 \, \mathrm{k}$ in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 V}{R_B}$ for the two values of R_B .

In addition to the BJT $I_C - V_{CE}$ curve, the circuit variables must also satisfy the constraint, $V_{CC} = V_{CE} + I_C R_C$, a straight line in the $I_C - V_{CE}$ plane.

We are now in a position to explain what happens when R_B is decreased from $100 \, \mathrm{k}$ to $10 \, \mathrm{k}$ in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 V}{R_B}$ for the two values of R_B .

In addition to the BJT $I_C - V_{CE}$ curve, the circuit variables must also satisfy the constraint, $V_{CC} = V_{CE} + I_C R_C$, a straight line in the $I_C - V_{CE}$ plane.

We are now in a position to explain what happens when R_B is decreased from 100 k to 10 k in the above circuit.

Let us plot $I_C - V_{CE}$ curves for $I_B \approx \frac{V_{BB} - 0.7 \text{ V}}{R_B}$ for the two values of R_B .

In addition to the BJT $I_C - V_{CE}$ curve, the circuit variables must also satisfy the constraint, $V_{CC} = V_{CE} + I_C R_C$, a straight line in the $I_C - V_{CE}$ plane.

The intersection of the load line and the BJT characteristics gives the solution for the circuit. For $R_B=10~{\rm k}$, note that the BJT operates in the saturation region, leading to $V_{CE}\approx 0.2~V$, and $I_C=9.8~{\rm mA}$.

$$V_{EB} - V_{EE} + I_E R_E = 0$$

$$V_{EB}-V_{EE}+I_ER_E=0 \rightarrow I_ER_E=5-0.7$$

$$V_{EB} - V_{EE} + I_E R_E = 0 \rightarrow I_E R_E = 5 - 0.7 \rightarrow R_E = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k}.$$

Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2$ mA, and $V_{BC} = 1$ V ($\alpha \approx 1$).

$$V_{EB} - V_{EE} + I_E R_E = 0 \rightarrow I_E R_E = 5 - 0.7 \rightarrow R_E = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k}.$$

 $V_{BC} + I_C R_C - V_{CC} = 0$

Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2$ mA, and $V_{BC} = 1$ V ($\alpha \approx 1$).

$$V_{EB} - V_{EE} + I_E R_E = 0 \rightarrow I_E R_E = 5 - 0.7 \rightarrow R_E = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k}.$$

 $V_{BC} + I_C R_C - V_{CC} = 0 \rightarrow I_C R_C = V_{CC} - V_{BC}.$

Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2 \, \text{mA}$, and $V_{BC} = 1 \, \text{V} \, (\alpha \approx 1)$.

$$V_{EB} - V_{EE} + I_E R_E = 0 \rightarrow I_E R_E = 5 - 0.7 \rightarrow R_E = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k}.$$

$$V_{BC} + I_C R_C - V_{CC} = 0 \quad \rightarrow \quad I_C R_C = V_{CC} - V_{BC}.$$

Since $\alpha \approx 1$, $I_C \approx I_E$

Assuming the transistor to be operating in the active region, find R_E and R_C to obtain $I_E = 2$ mA, and $V_{BC} = 1$ V ($\alpha \approx 1$).

$$V_{EB} - V_{EE} + I_E R_E = 0 \rightarrow I_E R_E = 5 - 0.7 \rightarrow R_E = \frac{4.3 \text{ V}}{2 \text{ mA}} = 2.15 \text{ k}.$$

$$V_{BC} + I_C R_C - V_{CC} = 0 \ \rightarrow \ I_C R_C = V_{CC} - V_{BC}. \label{eq:constraint}$$

Since
$$\alpha \approx 1$$
, $I_C \approx I_E \rightarrow I_E R_C \approx 5 - 1 \rightarrow R_C = \frac{4 \text{ V}}{2 \text{ mA}} = 2 \text{ k}$.