Introduction to Networks, Links

6 November 2024 Lecture 1

Slides Credits: Steve Zdancewic (UPenn)

Topics for Today

- What is a network?
 - Connectivity
 - Efficient Resource Sharing
 - Functionality
 - Performance

Four Networks

Requirement: Connectivity

- Goal of a network is to get information from one place to another
 - Source
 - Destination
 - Nodes or Hosts

Specified by an address

Network paths

Connectivity: Direct Links

Connectivity: Switched Networks

Connectivity: Internetworks

So Far

- What is a network?
 - Connectivity
 - Efficient Resource Sharing
 - Functionality
 - Performance

Resource Sharing: Multiplexing

- How can multiple hosts share the network if they want to use it at the same time?
 - Sharing links
 - Sharing switches

Multiplexing: STDM & FDM

Synchronous Time-division Multiplexing (STDM)

- "Time sharing"
- Divide time into equal sized quanta
- Round-robin

Frequency-division Multiplexing (FDM)

- Transmit all flows at different frequencies
- Radio or Television

Limitations:

- Wasted resources
- Maximum # flows can't be changed

Icon from https://freesvg.org, Batman image TM and © DC Comics

Statistical Multiplexing

Data partitioned into packets

Routing decision made per packet

Better resource usage than STDM

So Far

- What is a network?
 - Connectivity
 - Efficient Resource Sharing
 - Functionality
 - Performance

Functionality

- Different applications require different services
- Principle: The end-to-end argument

Functionality & Dealing with Failure

Bit or burst errors

Performance Metrics

Bandwidth (throughput)

- Number of bits that can be transmitted over the network in a period of time.
- Measured in bits/sec
- Pedantically, this is bit rate
- Bandwidth is in Hz

Latency (delay)

- How long it takes 1 bit to propagate from one end of the network to the other.
- Measured in seconds

Round Trip Time (RTT)

 How long it takes for 1 bit to get from one end of the network to the other and back

Performance: Delay x Bandwidth

 Delay x Bandwidth determines the number of bits that can be "in flight".

 For efficient resource usage: keep the pipe full.

Short Packets (All in Flight)

Image Credits: By Misbahul Munir, ID, In the Kids and Toys (line) Collection and By Elizabeth Trejo, In the Public Transit Collection from The Noun Project

Large Packets (Arriving while Sending)

Image Credits: By Misbahul Munir, ID, In the Kids and Toys (line) Collection and By Elizabeth Trejo, In the Public Transit Collection from The Noun Project

Conclusion

- What is a network?
 - Connectivity
 - Efficient Resource Sharing
 - Functionality
 - Performance

The Big Picture

2nd Level

3rd Level

4th Level

5th Level

