2021年春季学期 管理学院统计系回归分析期末考试 授课教师:杨亚宁

1. (20分)为了研究汽车汽油销售量与汽油税率的关系,一项研究对2001年美国51个州或地区的数据集fuel2001进行了回归分析。该数据的变量包括Fuel (人均汽油销售量,单位:加仑)、Tax 位1000美元)、Miles (国有公路长度,单位英里)。下面是R软件的部分输出结果汇总 (含截距项,但下述结果中没有列出):

| Coefficients:  | Estimate      |            | $\sim$      | ome + Miles, data = fuel2001) |
|----------------|---------------|------------|-------------|-------------------------------|
| (Intercept)    | Louinate      | Std. Error | t value     | Pr(> t )                      |
| Tax            | -4.200        | 2 100      | -           | 7                             |
| Drivers        | 0.535         | 2.100      | <u>a</u>    | ა.0460                        |
| Income         |               | <u>2</u>   | 3.898       | 0.0003                        |
|                | <u> </u>      | 2.205      | -3.236      | 0.0020                        |
| Miles          | 0.462         | 0.187      | <u>(4</u> ) | <u></u>                       |
| Residual stand | dard error: 6 | 7 17       |             |                               |
| Multiple R-Sq  | mared: 0.47   | 4          |             |                               |

- (a) 请填写①-®处的数字(其中⑤处填写大于还是小于0.05, ⑥为F 检验的值, ⑦ 和⑧处为F 检验的两个自由度)。 (b) 试解释Tax的回归系数估计值 -4.2 的含义。
- 2. (15分)上题的部分回归诊断图如下。左图中标出了残差绝对值最大的3个异常点: WY (Wyoming, 怀俄明), AK (Alaska,阿拉斯加) 和 HI (Hawaii, 夏威夷); 右图标出了Cook距离最大的三个州或地区: AK, DC (Washington DC, 华盛顿特区) 和 WY。



- (a) 从残差图(左图)来看,线性模型的高斯-马尔可夫(Gauss-Markov) 假设是否满足?如果你认为满足,说明理由;如果不满足,你拟采取什么措施?
- (b) 左图表明HI和AK的人均汽油销售量偏低,右图表明AK是高影响点,而HI不是,为什么?
- (c) 根据右图所标的DC的位置,说明DC的自变量和响应变量各有什么特点, 在左图中它大概在哪个位置(边缘还是中间、上方还是下方)?



3. (20分) 假设独立样本 $(x_i,y_i) \in R^2, i=1,...,n$  满足下述模型

$$y = f(x) + \epsilon, \epsilon \sim (0, \sigma^2), \quad f(x) = \begin{cases} a, & \text{若} x \leq t \\ a + b(x - t), & \text{若} x > t \end{cases}$$

假设 t 已知,且 $x_1 \le ... \le x_m \le t < x_{m+1} \le ... \le x_n$ 。

- (a) 基于 t 之后的数据  $(x_i, y_i), i = m + 1, ..., n$ ,求出 b 的LS估计  $\widetilde{b}$  及其方差。
- (b) 写出所有数据  $(x_i, y_i)$ , i=1,...,n 满足的矩阵-向量形式的线性模型  $\mathbf{y}=X\boldsymbol{\beta}+\epsilon$ , 特别地
- (c) 基于上述模型, 求解 b 的LS估计  $\hat{b}$  及其方差, 简单解释为什么它们与 t 之前的数据有关。
- (20分) 假设数据  $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$  满足如下线性回归模型

$$y_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \epsilon_i, \quad \epsilon_i, \ i = 1, ..., n \text{ iid } \sim (0, \sigma^2),$$

其中  $x_i$  为  $p \times 1$  自变量,其第一个元素为1. 设  $\hat{\beta}$  为  $\beta$  的最小二乘估计。

- (a) 假设对某个  $1 \le i \le n$ ,  $\mathbf{x}_i = \bar{\mathbf{x}}$ , 其中  $\bar{\mathbf{x}} = \sum_{j=1}^n \mathbf{x}_j/n$ 为自变量的样本平均值。 证明拟合值
- (b) 假设  $\mathbf{x}_i$  作为设计阵X的行向量共出现了m次  $(m \geq 1)$ ,假设 $X_{(-i)}^{\top}X_{(-i)}$ 可逆,其中 $X_{(-i)}$ 是 删除X第i行后的矩阵,则 杠杆值  $h_{ii} < 1/m$ 。
- (25分) 假设模型

$$\mathbf{y}_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1} = \sum_{j=1}^{p} \mathbf{x}_{j}\beta_{j} + \epsilon, \ \epsilon \sim (\mathbf{0}, \sigma^{2}I_{n}),$$

其中  $\boldsymbol{\beta} = (\beta_1, ..., \beta_p)^{\top}$  为回归系数, 设计阵  $X = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_p)$  满足条件  $X^{\top}X = I_p$ 

- (a) 基于数据y和X, 求  $\beta_j$  的最小二乘估计  $\hat{\beta}_j$  及其方差。
- (b) 对任一下标集合  $A \subseteq \Omega = \{1, 2, ..., p\}$ , 定义

$$\begin{cases}
\widetilde{\mathbf{y}}^{(A)} = \begin{cases}
\sum_{j \in A} \mathbf{x}_j \widehat{\beta}_j, & \text{ if } A \neq \phi \text{ (DE)} \\
\mathbf{0}, & \text{ if } A = \phi
\end{cases}$$

 $\int \underbrace{\widetilde{\mathbf{y}}^{(A)} = \left\{ \begin{array}{l} \sum_{j \in A} \mathbf{x}_j \widehat{\beta}_j, & \ddot{A} \neq \phi \text{ (空集)} \\ \mathbf{0}, & \ddot{A} A = \phi \end{array} \right\}}_{\mathbf{H}$  其均方误差定义为  $m(A) = E||\widetilde{\mathbf{y}}^{(A)} - X\boldsymbol{\beta}||^2$ 。证明:  $m(A) = |A|\sigma^2 + \sum_{j \notin A} \beta_j^2$ , 其中 |A| 为

- (c) 证明如果  $||\beta||^2 \le \sigma^2$ , 则对任何 $A \subseteq \Omega$  有  $m(\phi) \le m(A) \le m(\Omega)$ .
- (d) 令  $\widehat{m}(A) = (2|A|-p)\widehat{\sigma}^2 + \sum_{j\notin A} \widehat{\beta}_j^2$ , 其中  $\widehat{\sigma}^2 = \mathbf{y}^\top (I_n XX^\top)\mathbf{y}/(n-p)$ , 证明  $\widehat{m}(A)$ 是
- (e) 最优子集  $A_{opt}$  是  $\Omega$  所有  $2^p$  个子集中使得 $\widehat{m}(A)$  达到最小的子集。试设计一种算法,只需 搜索至多p+1个子集即可求出最优子集 $A_{opt}$ 。