

Mastering MicroBlaze

Lab Book

Open Vivado and Create a new project

Click Next

Enter a location and project name

Select project type as RTL Project and check Do Not Specify Sources at this

time.

Select your development board – I will be using the SP701. But ANY 7 Series / UltraScale (+) board with a LED connected to the IO should work.

Click Finish

The open project should look as below

Click Create Block Design and leave the name unchanged

The Block Diagram should look as below

Click on the + in the block diagram and type in MicroBlaze

From the board tab select and drag the DDR3 onto the block diagram

Run the Block Automation and configure 32KB of local memory and no

cache

The result of the block automation should be as below

Run the Connection Automation to connect in the DDR3

Drag and drop the reset port onto the diagram, select the port properties to determine its polarity

Re Customize the MIG and set the System Reset Polarity for Active High

Add in a AXI Timer

Run the Connection Automation

Select the PWM Pin and make it external

From the board menu drag and drop the UART onto the diagram

Run the connection automation

Validate the design = No errors or critical warnings should appear

Create an HDL Wrapper

Let Vivado manage the wrapper

Synthesize the design

Once synthesis completes open the synthesized view

In the IO Ports view assign the PWM output to a pin connected to the LED

Save the constraints

Generate the bitstream – if you see an out-of-date warning click yes

Once the bit stream is completed, export the hardware definition to Vitis

Export the Hardware with the bitstream

Leave the file name and location unchanged

Click Finish

From the tools menu select Launch Vitis IDE

Select the workspace – this is where all the SW files and projects will be contained

Once Vitis is Open, from the menu screen select Create-Application Project

Click Next

Select the XSA just exported from Vivado

Enter a project name

Leave the domain unchanged

Select the Hello World Application

This will create a new application which prints hello world, we will use this to double check the correctness of the Vivado design. Click the Hammer to

build the App

In the Assistant window select Debug, Launch on Hardware

This will program the FPGA and download the application, halting it for execution at the first line.

Single step through the code and observe the output in a terminal window

```
115200 (configured by bootrom/bsp)
          ps7 uart
 46
                                                                      COM14 - PuTTY
     #include <stdio.h>
                                                                     Hello World
 49 #include "platform.h"
                                                                     Successfully ran Hello World application
     #include "xil printf.h"
 51
 52
 53⊖ int main()
         init platform();
 57
         print("Hello World\n\r");
 58
         print("Successfully ran Hello World application");
         cleanup platform():
 60
         return 0:
61 }
 62
📮 Console 💢 📮 Vitis Serial Terminal 🕡 Executables 🗓 Debug Shell 📗 Vitis Loc
                                                                                                                                                                     onsole
                                                                                                                                                                     rget 3
Build Console [application, Debug]
                                                                                                                                                                       Stop
'Finished building: ../src/platform.c'
                                                                                                                                                                     : 55
'Building target: application.elf'
                                                                                                                                                                     rget 3
'Invoking: MicroBlaze gcc linker'
mb-gcc -Wl,-T -Wl,../src/lscript.ld -LC:/hdl clients/mastering mich
'Finished building target: application.elf'
                                                                                                                                               print("Hello World\n\r");
                                                                                                                                       xsct% Info: MicroBlaze #0 (target 3)
```


Replace the code in the hello world application with that in the Git Repo, rebuild the code and download it to the development board.

```
u8 NoOfCvcles:
        u8 Div:
        u8 Value;
        u32 HighTime;
        u64 WaitCount:
        int Status;
        float DivF;
        init_platform();
        print("Mastering MicroBlaze\n\r");
        XTmrCtr Initialize(&TimerCounterInst, TMRCTR DEVICE ID);
        XTmrCtr PwmDisable(&TimerCounterInst);
        Div = DUTYCYCLE DIVISOR;
        Period = PWM PERIOD;
        HighTime = PWM PERIOD * (Div/10);
        DutyCycle = XTmrCtr PwmConfigure(&TimerCounterInst, Period, HighTime);
        xil_printf("PWM Configured for Duty Cycle = %d\r\n", DutyCycle);
        /* Enable PWM */
        XTmrCtr PwmEnable(&TimerCounterInst);
             print("Select a Brightness between 0 and 9\n\r");
             /* Read an input value from the console. */
             Value = inbyte();
             Div = Value - 0x30;
             DivF = (float) Div /10;
             HighTime = PWM PERIOD * DivF;
             XTmrCtr PwmDisable(&TimerCounterInst);
             DutyCycle = XTmrCtr PwmConfigure(&TimerCounterInst, Period, HighTime);
             XTmrCtr PwmEnable(&TimerCounterInst):
        cleanup platform();
113 }
```


In a terminal window change the PWM to the LED and see the intensity change

```
COM14 - PuTTY
Mastering MicroBlaze
Select a Brightness between 0 and 9
```


www.adiuvoengineering.com

adam@adiuvoengineering.com