Context-Free Languages

Theory of Computation

CISC 603, Spring 2020, Daqing Yun

Recall

- Theorem: For every finite automaton $M=(Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular
- It would be much more convenient if we could just write (a(|b)) * instead of building the abstract syntax tree manually with repeat, choose, and concatenate
- We wanna build a (programming) language parser that can understand certain patterns/rules and automatically transform raw syntax into Abstract Syntax Trees (ASTs)

Language Grammars

- Generate a language parser that can "understand" certain patterns/rules and automatically transform raw syntax into ASTs
- Language grammar A set of rules describing accepted languages

Why?

- Context-free grammars (CFGs) are used to describe the syntax of essentially *every* modern programming language
- Every modern complier uses CFG concepts to parse programs
 - Not to forget their important role in describing natural languages
 - Useful for nested structures, e.g., parentheses in programming languages
- And Document Type Definitions are really CFG's

Using Grammar Rules to Define a Language

- Regular languages and FAs are too simple for many purposes
 - Using context-free grammars allows us to describe more interesting languages
 - Much high-level programming language syntax can be expressed with context-free grammars
 - Context-free grammars with a very simple form provide another way to describe the regular languages
- We will study how derivations can be related to the structure of the string being derived

Informal Comments

- A *context-free grammar* is a notation for describing languages
- It is more powerful than finite automata or RegEx's, but still cannot define all possible languages
- Useful for nested structures, e.g., parentheses in programming languages

Informal Comments (cont'd.)

- Basic idea is to use "variables" to stand for sets of strings (i.e., languages)
- These variables are defined *recursively*, in terms of one another
- Recursive rules ("productions") involve only concatenation
- Alternative rules for a variable allow union

Using Grammar Rules to Define a Language (cont'd.)

- A grammar is a set of rules, usually simpler than those of English, by which strings in a language can be generated
- Consider the language $L = \{a^n b^n \mid n \ge 0\}$, defined using the *recursive* definition:
 - $-\Lambda \in L$
 - For every S ∈ L, aSb ∈ L
- Think of S as a variable representing an arbitrary element, and write these rules as S -> Λ S -> aSb
 (In the process of obtaining an element of L, S can be replaced by either string)

Using Grammar Rules to Define a Language (cont'd.)

- If α and β are strings, and α contains at least one occurrence of S, then $\alpha => \beta$ means that β is obtained from α in one step, by using one of the two rules to replace a single occurrence of S by either Λ or aSb
- For example, we could write:
 - $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$ to describe a *derivation* of the string aaabbb
- We can simplify the rules by using the | symbol to mean "or", so that the rules become $S \rightarrow \Lambda \mid aSb$

Example: CFG for $\{0^n1^n \mid n \ge 1\}$

• Productions:

$$S -> 01$$

 $S -> 0S1$

- Basis: 01 is in the language
- Induction: if w is in the language, then so is 0w1

CFG Formalism

- Terminals = symbols of the alphabet of the language being defined
- Variables = nonterminals = a finite set of other symbols, each of which represents a language
- Start symbol = the variable whose language is the one being defined

Context-Free Grammars: Definitions and More Examples

- Definition: A *context-free grammar* (CFG) is a 4-tuple $G=(V, \Sigma, S, P)$, where V and Σ are disjoint finite sets, $S \in V$, and P is a finite set of formulas of the form
 - $A \rightarrow \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$
 - Elements of Σ are terminal symbols, or terminals, and elements of V are variables, or nonterminals
 - S is the start variable, and elements of P are grammar rules, or productions
 - We use -> for productions in a grammar and => for a step in a derivation
 - The notations $\alpha = n \beta$ and $\alpha = n \beta$ refer to *n* steps and zero or more steps, respectively

Example: Formal CFG

- Here is a formal CFG for $\{0^n1^n \mid n \ge 1\}$
- Terminals = $\{0, 1\}$
- Variables = $\{S\}$
- Start symbol = S
- Productions =

$$S -> 01$$

$$S \rightarrow 0S1$$

Context-Free Grammars: Definitions and More Examples (cont'd.)

- We will sometimes write $=>_G$ to indicate a derivation in a particular grammar G
- $\alpha => \beta$ means that there are strings α_1 , α_2 , and γ in $(V \cup \Sigma)^*$ and a production $A -> \gamma$ in P such that $\alpha = \alpha_1 A \alpha_2$ and $\beta = \alpha_1 \gamma \alpha_2$
 - This is a single step in a derivation
- What makes the grammar *context-free* is that the *production* above, with left side A, can be applied wherever A occurs in the string (irrespective of the context; i.e., regardless of what α_1 and α_2 are)

Derivations – Intuition

- We *derive* strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions
 - That is, the "productions for *A*" are those that have *A* on the left side of the −>

Derivations – Formalism

- We say $\alpha A\beta => \alpha \gamma \beta$ if $A -> \gamma$ is a production
- Example: S -> 01; S -> 0S1
- S=>0S)=>00SD1 => 000111

Iterated Derivation

- =>* means "zero or more derivation steps"
- Basis: $\alpha = > * \alpha$ for any string α
- Induction: if $\alpha => * \beta$ and $\beta => \gamma$, then $\alpha => * \gamma$

Example: Iterated Derivation

- *S* -> 01; *S* -> 0*S*1
- S => 0S1 => 00S11 => 000111
- So *S* =>* *S*; *S* =>* 0S1; *S* =>* 00S11; *S* =>* 000111

Sentential Forms

- Any string of variables and/or terminals derived from the start symbol is called a *sentential form*
- Formally, α is a sentential form iff $S = > * \alpha$

Language of a Grammar

- If G is a CFG, then L(G), the language of G, is $\{w \mid S => * w\}$
 - Note: w must be a terminal string, S is the start symbol
- Example: G has productions $S \rightarrow \varepsilon$ and $S \rightarrow 0S1$
- $L(G) = \{0^n 1^n \mid n \ge 0\}$

Note: ε is a legitimate right side

Context-Free Languages

- A language that is defined by some CFG is called a *context-free language*
- There are CFL's that are not regular languages, such as the example just given
- But not all languages are CFL's
- Intuitively: CFL's can count two things, not three

BNF Notation

- Grammars for programming languages are often written in BNF (*Backus-Naur Form*)
- Variables are words in < . . . >
 - Example: <statement>
- Terminals are often multicharacter strings indicated by boldface or underline
 - Example: while or WHILE

BNF Notation (cont'd.)

- Symbol : := is often used for ->
- Symbol | is used for "or"
 - A shorthand for a list of productions with the same left side
- Example:
 - $S \rightarrow 0S1 + 01$ is shorthand for $S \rightarrow 0S1$ and $S \rightarrow 01$

BNF Notation – Kleene Closure

- Symbol . . . is used for "one or more"
- Example:
 - < digit> := 0|1|2|3|4|5|6|7|8|9
 - <unsigned integer>::=<digit>...
 - Note: that's not exactly the * of RegEx's
- Translation: replace α ... with a new variable A and productions $A \rightarrow A\alpha \mid \alpha$

Example: Kleene Closure

- Grammar for unsigned integers can be
 replaced by Note that : := is often used for ->
 - U ::= D...
 - U -> UD | D
 - D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

BNF Notation: Optional Elements

- Surround one or more symbols by [...] to make them optional
- Example:
 - <statement>::=if<condition>then
 <statement>[;else<statement>]
- Translation: replace $[\alpha]$ by a new variable A with productions $A \rightarrow \alpha \mid \varepsilon$
- Example: grammar for if-then-else can be replaced by

$$A \rightarrow ;eS \mid \varepsilon$$

BNF Notation – Grouping

- Use {...} to surround a sequence of symbols that need to be treated as a unit
 - Typically, they are followed by a ... for "one or more"
- Example:
 - <statement list>::=<statement>
 [{;<statement>}...]

Translation: Grouping

- You may, if you wish, create a new variable A for $\{\alpha\}$
- One production for A is $A \rightarrow \alpha$
- Use A in place of $\{\alpha\}$

Example: Grouping

```
L - > S[\{; S\}...]
L->S[A...]
A->; S
L->SB
B->A...|\epsilon
A->; S
L->SB
B \rightarrow C \mid \varepsilon
C \rightarrow AC \mid A
A->; S
```

A stands for {;S}

B stands for [A...] (zero or more A's)

C stands for A...

Derivation Trees and Ambiguity

- So far we've been interested in *what* strings a CFG generates
- It is also useful to consider *how* a string is generated by a CFG
- A *derivation* may provide information about the structure of a string, and if a string has several possible derivations, one may be more appropriate than another
- We can draw trees to represent derivations

Leftmost and Rightmost Derivations

- Derivations allow us to replace any of the variables in a string
- Leads to many different derivations of the same string
- By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these "distinctions without a difference"

Leftmost Derivations

- Say $wA\alpha =>_{lm} w\beta\alpha$ if w is a string of terminals only and $A -> \beta$ is a production
- Also, $\alpha = > *_{lm} \beta$ if α becomes β by a sequence of 0 or more $=>_{lm}$ steps

A derivation in a context-free grammar is a leftmost derivation (LMD) if, at each step, a production is applied to the leftmost variable-occurrence in the current string. A rightmost derivation (RMD) is defined similarly.

Example: Leftmost Derivations

• Balanced-parentheses grammar:

$$S \rightarrow SS + (S) + ()$$

- $S =>_{lm} SS =>_{lm} (S)S =>_{lm} (())S =>_{lm} (())()$
- Thus, $S = > *_{lm}(())()$
- S => SS => S() => (S)() => (())() is a derivation, but not a leftmost derivation

Rightmost Derivations

- Say $\alpha Aw = >_{rm} \alpha \beta w$ if w is a string of terminals only and $A > \beta$ is a production
- Also, $\alpha = > *_{rm} \beta$ if α becomes β by a sequence of 0 or more $= >_{rm}$ steps

Example: Rightmost Derivations

• Balanced-parentheses grammar:

$$S \rightarrow SS + (S) + ()$$

- $S = >_{rm} SS = >_{rm} S() = >_{rm} (S)() = >_{rm} (())()$
- Thus, $S = > \star_{rm} (())()$
- S => SS => SSS => S()S => ()()S => ()()() is neither a rightmost nor a leftmost derivation

Thanks!

Questions?