Let $D^{n} = (R^{n}_{+}, d\lambda_{+})$ (agrangian $(d\lambda_{1D}=0)$ that has a ylindrical end over Legendrian sphere $\Lambda^{n} \in T$. Then I convex surface & EXIR 5.1. (1) \mathcal{E}' graphical over $\mathcal{E}_{\times}\{0\}$, $\mathcal{E}' \wedge \partial_{t}$ (2) $\mathcal{E}' = \mathcal{E}_{\times}\{0\}$ in $nbh \wedge g \Gamma$ (3) lift $\tilde{D} = \mathcal{E}' g D$ is Legendrian in \mathcal{E}_{\times}/R .

houghts · What is the contact form on T? I here by from the notation of previous section. Let (R,d) be Liouville with Liouville UF X A DR. Then let's look at $\lambda n(d\lambda)^{n-1} | \partial R$. $O \neq i_{\chi} (d\lambda)^{n} \partial R = n i_{\chi} d\lambda n(d\lambda)^{n-1} | \partial R = n \lambda n(d\lambda)^{n-1}$. V

The symplectic structure of the cylindrical end is: $N=([c,\infty]\times T,d(e^s\lambda_{IP}))$ where $\Gamma=\{\infty\}\times P$.

· Why is cylindrical end with Legendrian sphere lagrangian? Legendrian means $\lambda_{1\Lambda} = 0$ and $\Lambda_{15} h^{-1}$ dimensional. $(c,\infty) \times \Lambda_{15} \log (c,\infty) \times \Lambda_{15} \log (c,\infty) \times \Lambda_{15} = 0$.

d(es) = es(ds) + d). Let 4, 12 & 11. Then (ds 1) (v1, v2) = 0, d) (v1, v2) = 0. If $V \in T \setminus then M(\partial_s, V) = 0$, $(ds \land \lambda)(\partial_s, V) = 0$. V· Why is $(c, \infty) \times \Lambda$ (egendrian in R + x/R? The contact form is $dt + \lambda$, $dt + \lambda \mid (c, \infty) \times \Lambda = 0$. Proof Let DIV the lift of Dover subset UCD. Set DIDON: = DON. Let p E DD' where D'=DIN.

Set DIDON: = DON. Let p & DD' where D'= D\N. Let $g \in D'$. Let \mathcal{F} path from p to g. Then define $D_{11g3} = (-\int_{\mathcal{F}} \lambda_{1} g)$. · Why is $S_{p}\lambda$ well defined, independent of P^{2} , let $(X_{p}^{2n}\lambda)$ symplectic $D^{2}=X$ Lagrangian. Let P loop. $\{0,1\}^{2}=D$. Then $S_{1}\lambda=0$? This can be reduced to: given D'a disk, I a closed form. Then
In I depends on endpts only. True since I is exact. V · Why D Legendrian? How does a tangent vector in D look like? It is $-\lambda(v)\partial_t + v$ where $v \in TD$. $(\lambda + dt) (-\lambda(v)\partial_t + v) = 0$ V So we have constructed D s.t. (3) holds. Can we extend the lifting to \mathcal{E} ?

D is weath by flow of some VF $g\partial_t$ where $g\in C^{\infty}D$.

Extend g to \mathcal{E} . \square