Statistics 330 - Final Exam

Total marks: 75.

- 1. Let X_1 and X_2 be independent poisson random variables with $E(X_1) = \lambda$ and $E(X_2) = 5\lambda$.
 - (a) Find $P(X_1 + X_2 = m)$ for any positive integer m. [4]
 - (b) Assuming that for $Y = [X_1|X_1 + X_2 = m]$, $P(Y = k) = P(X_1 = k|X_1 + X_2 = m)$. Identify the distribution of Y. [4]
- 2. Let X be a continuous random variable with the cdf given by

$$F_X(x) = \begin{cases} 1 & 1 \le x \\ x^2 & 0 \le x < 1 \\ 0 & x < 0, \end{cases}$$

- (a) find the pdf of X and show that it is a pdf. [3]
- (b) Identify the pdf of X obtained in (a). [2]
- 3. Let X be a continuous random variable with the pdf given by

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the cdf of X. [2]
- (b) Find the pdf of $Y = F_X(u)$, where $F_X(\cdot)$ is the cdf of X obtained in (a). [3]
- 4. Let X be a discrete random variable with the pmf P(X = x) > 0 on the set of non-negative integers $\{0, 1, 2,\}$.
 - (a) Show that the cdf $F_X(x)$ is a non-decreasing function. [5]
 - (b) Prove the following identity. [4]

$$E(X) = \sum_{n=0}^{\infty} P(X > n).$$

5. Let X_1, X_2, X_3 be independent and identically distributed N(0, 1) random variables. Then define Y_1, Y_2 and Y_3 as

Har - W .

$$X_1 = Y_1 \cos(Y_2) \sin(Y_3)$$

$$X_2 = Y_1 \sin(Y_2) \sin(Y_3)$$

$$X_3 = Y_1 \cos(Y_3)$$

where $0 \le Y_1 < \infty, 0 \le Y_2 < 2\pi$ and $0 \le Y_3 \le \pi$. Then, show that Y_1, Y_2 and Y_3 are mutually independent. [10]

6. Let $X_1, ..., X_{50}$ be a random sample of size 50 from N(0, 1). Assume that the moment generating function for a random variable W with distribution $N(\mu, \sigma^2)$ is given by

$$(1) M_W(t) = e^{\mu t + \sigma^2 \frac{t^2}{2}}.$$

Then, (a) without finding the pdf, find the mgf of $Z = 5X_1 + 3X_2 - \frac{1}{9}X_{10}$ and (b) compare it with the mgf given in equation (1) to identify the distribution of Z. [5+3]

7. Let $X_1,...,X_n$ be a random sample from truncated exponential distribution with the pdf

$$f_X(x) = \begin{cases} e^{-(x-\theta)} & x > \theta \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the maximum likelihood estimator of θ (say $T_1(\underline{X})$). [5]
- (b) Find a method of moment estimator of θ (say $T_2(\underline{X})$). [3]
- (c) Evaluate $B_{T_1}(\theta)$, $B_{T_2}(\theta)$ and $var(T_1(\underline{X}))$ where, $B_T(\theta) = E(T) \theta$. [6]
- 8. Let $X_1,...,X_n$ be a random sample from $\Gamma(\alpha,\lambda)$, where α is known.
 - (a) Find the maximum likelihood estimator of $\theta = \frac{1}{\lambda}$ (say $T(\underline{X})$). [3]
 - (b) Find the exact distribution of $T(\underline{X})$. [3]
 - (c) Assuming n is large, find the approximate distribution of $T(\underline{X})$. [10]

Formula Sheet

1. Let $X \sim N(0,1)$, then

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} & -\infty < x < \infty \\ 0 & otherwise. \end{cases}$$

2. Let $X \sim Beta(\alpha, \beta)$, then

$$f_X(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & 0 < x < 1\\ 0 & otherwise. \end{cases}$$

3. Let $X \sim \Gamma(\alpha, \lambda)$, then

$$f_X(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & 0 < x < \infty \\ 0 & otherwise. \end{cases}$$

4. Let $X \sim Poi(\lambda)$, then

$$P(X=x) = \frac{\lambda^x}{x!}e^{-\lambda}$$
 for $x=0,1,2,...$ and zero elsewhere.

5. Let $X \sim Bin(n, p)$, then

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for $k = 0, 1, 2, ..., n$ and zero elsewhere.

6. Some properties of $\Gamma(\cdot)$:

- (a) $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$, for any positive real number α .
- (b) $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- (c) $\Gamma(0) = \Gamma(1) = 1$.
- (d) $\Gamma(k+1) = k!$, for any positive integer k.

7. Determinant of a 3×3 matrix:

Let
$$J = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 then, $det(J) = |J| = a \cdot \left| \begin{pmatrix} e & f \\ h & i \end{pmatrix} \right| - b \cdot \left| \begin{pmatrix} d & f \\ g & i \end{pmatrix} \right| + c \cdot \left| \begin{pmatrix} d & e \\ g & h \end{pmatrix} \right|$

8. A function $g(\cdot)$ is said to be **non-decreasing** if $g(b) \geq g(a)$ whenever b > a.

9. Let $X_1,...,X_n$ be a random sample such that the pdf of $X_i \sim f(x)$ for i=1,...,n, then the k-th order statistics is denoted by $X_{(k)}$. The pdf of $Y=X_{(k)}$ is given by

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)! (n-k)!} (F(x))^{k-1} f(x) (1 - F(x))^{n-k}$$

for $1 \leq k \leq n$. The joint pdf of $Y = (X_{(i)}, X_{(j)})$ for i < j, is given by

$$f_Y(u,v) = \frac{n!}{(i-1)! (j-1-i)! (n-j)!} (F(u))^{i-1} f(u) (F(v) - F(u))^{j-1-i} f(v) (1 - F(v))^{n-j}.$$

- 10. Central Limit Theorem: Let $Z_1, ..., Z_n$ be identically distributed random variables with $E(Z_1) = \mu$ and $var(Z_1) = \sigma^2$, then for large values of n, the distribution of $\frac{\sqrt{n}(\bar{Z}-\mu)}{\sigma}$ can be approximated by N(0,1).
- 10. **Delta Method**: If Y is a random variable such that $\sqrt{n}(Y \mu) \sim N(0, \sigma^2)$, then for any one-to-one function $g(\cdot)$, $\sqrt{n}(g(Y) g(\mu)) \sim N(0, (g'(\mu))^2 \sigma^2)$.
- 11. Let $X_1, ..., X_m$ be a random sample from
- (a) $Poi(\lambda)$, then $\sum_{i=1}^{m} X_i \sim Poi(m\lambda)$.
- (b) Bin(k, p), then $\sum_{i=1}^{m} X_i \sim Bin(mk, p)$.
- (c) $\Gamma(\alpha, \lambda)$, then $\sum_{i=1}^{m} X_i \sim \Gamma(m\alpha, \lambda)$.
- 12. Trigonometric relations:
- (a) $\frac{d}{dx}sin(x) = cos(x)$
- (b) $\frac{d}{dx}cos(x) = -sin(x)$
- (c) $sin^2(x) + cos^2(x) = 1$.