MODULE 1 / UNIT 9 HIDDEN MARKOV MODELS

Outline

- Graphical models
- Markov process
- Hidden Markov Models (HMM)
- Forward-backward algorithm
- Viterbi algorithm

Graphical Models 101

- Marriage between probability theory and graph theory
- An effective tool to represent complex structure of dependence/independence between random variable
- Vertex: a random variable
- Edge: dependency between random variables

An example graphical model


```
Is H \perp P? (marginal independence)
Is H \perp P \mid S? (conditional independence)
```

An example probability distribution

	Н	Pr(<i>H</i>)
0	Low	0.3
1	High	0.7

	S		Н	Pr(<i>S H</i>)
0	Cloudy	0	Low	0.7
1	High	0	Low	0.3
0	Cloudy	1	High	0.1
1	High	1	High	0.9

	P		S	Pr(<i>P S</i>)
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

The full joint distribution

	Н	Pr(<i>H</i>)
0	Low	0.3
1	High	0.7

Н	S	P	Pr(<i>H,S,P</i>)
0	0	0	0.105
0	0	1	0.105
0	1	0	0.009
0	1	1	0.081
1	0	0	0.035
1	0	1	0.035
1	1	0	0.063
1	1	1	0.567

	S		Н	Pr(<i>S H</i>)
0	Cloudy	0	Low	0.7
1	High	0	Low	0.3
0	Cloudy	1	High	0.1
1	High	1	High	0.9

	P		S	Pr(<i>P S</i>)
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

Conditional distribution

Is $H \perp P \mid S$?

Н	P	S	Pr(<i>H,P S</i>)
0	0	0	0.3750
0	1	0	0.3750
1	0	0	0.1250
1	1	0	0.1250
0	0	1	0.0125
0	1	1	0.1125
1	0	1	0.0875
1	1	1	0.7875

	Н		S	Pr(<i>H S</i>)
0	Low	0	Cloudy	0.750
1	High	0	Cloudy	0.250
0	Low	1	Sunny	0.125
1	High	1	Sunny	0.875

	P		S	Pr(<i>P S</i>)
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

H and P are conditionally independent given S

- H and P does not have direct path in the graph
- All paths from H to P are connected through S
- In such cases, conditioning on S separates H and P

More conditional independence

Pr(A, C, D, E|B) = Pr(A|B) Pr(C|B) Pr(D|B) Pr(E|B)

Markov blanket

 Markov blanket ∂A for node A is a set of nodes composed of A's parents, children, and the other parents of its children.

 Fact : Node A is conditionally independent given its Markov blanket ∂A.

$$A \perp (U - A - \partial A) \mid \partial A$$

https://en.wikipedia.org/wiki/Markov_blanket

Markov process

Markov process: mathematical representation

$$\pi = \left(egin{array}{ll} \Pr(q_1 = S_1 = {\sf Sunny}) \ \Pr(q_1 = S_2 = {\sf Cloudy}) \ \Pr(q_1 = S_3 = {\sf Rainy}) \end{array}
ight) = \left(egin{array}{ll} 0.7 \ 0.2 \ 0.1 \end{array}
ight)$$
 $A_{ij} = \Pr(q_{t+1} = S_j | q_t = S_i)$
 $A = \left(egin{array}{ll} 0.5 & 0.3 & 0.2 \ 0.4 & 0.3 & 0.3 \ 0.1 & 0.5 & 0.4 \end{array}
ight)$

Markov process: example questions

What is the chance of rain in day 2?

• If it rains today, what is the chance of rain on the day after tomorrow?

What is the stationary distribution when T

Markov process: example questions

What is the chance of rain in day 2?

$$Pr(q_2 = S_3) = (A^T \pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day

after tomorrow?
$$\Pr(q_3 = S_3 | q_1 = S_3) = \begin{bmatrix} (A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}_3 = 0.33$$

What is the stationary distribution when t is very large?

$$\mathbf{p} = A^T \mathbf{p}$$
 $p = (0.346, 0.359, 0.295)^T$

Markov process dependencies

If it rains today, what is the chance of rain on the day

after tomorrow?
$$\Pr(q_3 = S_3 | q_1 = S_3) = \left[(A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right]_3 = 0.33$$

 If it has rained for the past 3 days in a row, what is the chance of rain on the day after tomorrow?

Markov process dependencies

• If it rains today, what is the chance of rain on the day after tomorrow?

Pr
$$(q_3 = S_3 | q_1 = S_3) = \begin{bmatrix} (A^T)^2 & 0 \\ 0 \\ 1 \end{bmatrix}_3 = 0.33$$

• If it has rained for the past 3 days in a row, what is the chance of rain on the day after tomorrow?

$$\Pr(q_5 = S_3 | q_1 = q_2 = q_3 = S_3) = \Pr(q_5 = S_3 | q_3 = S_3) = 0.33$$

Hidden Markov Models (HMMs)

 A graphical model composed of hidden states and observed data.

The hidden states follow a Markov process

 The distribution of observed data depends only on the hidden state.

An example of HMM

Hidden states:

- HIGH
- LOW

Observed data

- Sunny
- Cloudy
- Rainy

Mathematical representation of the example

• States
$$S = \{S_1, S_2\} = (\mathsf{HIGH}, \mathsf{LOW})$$

- Observed Data $O = \{O_1, O_2, O_3\} = (SUNNY, CLOUDY, RAINY)$
- Initial States $\pi_i = \Pr(q_1 = S_i)$, $\pi = \{0.7, 0.3\}$
- Transition $A_{ij} = \Pr(q_{t+1} = S_j | q_t = S_i)$

$$A = \left(\begin{array}{cc} 0.8 & 0.2\\ 0.4 & 0.6 \end{array}\right)$$

• Emission $B_{ij}=b_{q_t}(o_t)=b_{S_i}(O_j)=\Pr(o_t=O_j|q_t=S_i)$

$$B = \left(\begin{array}{ccc} 0.88 & 0.10 & 0.02 \\ 0.10 & 0.60 & 0.30 \end{array}\right)$$

Marginal probabilities

What is the chance of rain in the day 4?

$$\begin{cases}
\Pr(q_4 = S_1) \\
\Pr(q_4 = S_2)
\end{cases} = (A^T)^3 \pi = \begin{pmatrix} 0.669 \\
0.331
\end{pmatrix}$$

$$\begin{pmatrix}
\Pr(o_4 = O_1) \\
\Pr(o_4 = O_2) \\
\Pr(o_4 = O_3)
\end{pmatrix} = B^T (A^T)^3 \pi = \begin{pmatrix} 0.621 \\
0.266 \\
0.233
\end{pmatrix}$$

Conditional probabilities

• If the observation was (SUNNY, SUNNY, CLOUDY, RAINY, RAINY) = $(O_1, O_1, O_2, O_3, O_3)$ from day 1 to day 5, what is the distribution of the hidden states on each day?

$$\Pr(q_i|o_1, o_2, o_3, o_4, o_5; \lambda = (\pi, A, B))$$

$$(1 \le i \le 5)$$

Most likely states

If the observation was
 (SUNNY, SUNNY, CLOUDY, RAINY, RAINY) = (O₁, O₁, O₂, O₃, O₃)
 from day 1 to day 5, what is the most likely combinations of
 the hidden states?

$$\arg \max_{(q_1,...,q_5)} \Pr(q_1,...,q_5|o_1,...,o_5; \lambda = (\pi, A, B))$$

Finding MLE states

Enumerating a possible state

Enumerating all possible states

q ₁₁₁	q_2	q_3	Pr(q)	Pr(o ₁ q ₁)	Pr(o ₂ q ₂)	Pr(o ₃ q ₃)	Pr(q,o)
Н	Н	Н	.448	.88	.02	.10	.0008
Н	Н	L	.112	.88	.02	.60	.0012
Н	L	Н	.056	.88	.30	.10	.0015
н	L	L	.084	.88	.30	.60	.0133
L	Н	Н	.096	.10	.02	.10	<.0001
L	Н	L	.024	.10	.02	.60	<.0001
L	L	Н	.072	.10	.30	.10	.0002
L	L	L	.108	.10	.30	.60	.0019

Brute-force calculation of MLE states

 Enumerating all possible combination of states takes O(2^T).

Is this reasonable fast or too slow? Why?

Is there a way to reduce the time complexity? How?