In the claims:

1. (currently amended): A process for the preparation of furopyrroles of the general formula

$$A^3$$
 O (I), comprising

(a) heating a compound of the formula

$$A^3$$
 OH (II) under microwave irradiation optionally in the presence of an inert

solvent,

wherein A^1 and A^2 are C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_5 - C_8 cycloalkenyl, aryl or heteroaryl,

 A^3 is hydrogen, C_1 - C_{18} alkyl, cyanomethyl, Ar^3 , - $CR^{30}R^{31}$ - $(CH_2)_m$ - Ar^3 or Y- R^{32} , wherein R^{30} and R^{31} independently of each other stand for hydrogen or C_1 - C_4 alkyl, or phenyl which can be substituted up to three times with C_1 - C_4 alkyl,

 Ar^3 stands for aryl, C_5 - C_8 cycloalkyl, C_5 - C_8 cycloalkenyl or heteroaryl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4,

R is C_1 - C_{18} alkyl, in particular C_4 - C_4 alkyl, aryl, in particular phenyl, or aralkyl, in particular benzyl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen,

Y is -C(O)-, -C(O)O-, -C(O)NH-, $-SO_2NH$ - or $-SO_2$ - and R^{32} is C_1 - C_{18} alkyl, Ar^3 , or aralkyl.

2. (currently amended): The process according to claim 1, comprising in addition

reacting a compound of formula I with a primary amine of the formula A4-NH2 (IV), wherein a

DPP of formula
$$A^3 - N - A^4$$
 formula III is obtained,

wherein A⁴ is C₁-C₁₈alkyl or Ar³, wherein Ar³, A¹, A² and A³ are defined as in claim 1.

3. **(original):** The process according to claim 1, wherein the compound of the formula 1, wherein A³ is different from a hydrogen atom, is obtained by reacting a compound of the formula

the meanings as given in claim 1 and X is a leaving group.

4. (currently amended): The process according to any of claims 1 to 3 claim 1, wherein A¹ and A² are radicals of the formula

$$R^1$$
, R^1 , R^2 , R^3 , wherein

 R^1 and R^2 are independently of each other hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkylmercapto, C_1 - C_{18} alkylamino, C_1 - C_{18} alkoxycarbonyl, C_1 - C_{18} alkylaminocarbonyl, -CN, -NO₂, trifluoromethyl, C_5 - C_8 cycloalkyl, -C=N-

(C₁-C₁₈alkyl), phenyl,
$$_{\text{-C=N}}$$
 \mathbb{R}^{3} , imidazolyl, pyrrazolyl, triazolyl,

piperazinyl, pyrrolyl, oxazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, morpholinyl, piperidinyl or pyrrolidinyl, -CONX 5 X 6 , -C(O)OX 7 or -SO $_2$ X 9 ; wherein X 5 and X 6 are hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{5-10}$ -cycloalkyl or C $_{6-10}$ -aryl, X 7 is hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{5-10}$ -cycloalkyl or C $_{6-10}$ -aryl, X 9 is hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{5-10}$ -cycloalkyl, C $_{7-10}$ -aralkyl, C $_{6-10}$ -aryl or -NX 10 X 11 , wherein X 10 and X 11 are hydrogen, linear or branched C $_{1-10}$ -alkyl, C $_{7-10}$ -aralkyl or C $_{6-10}$ -aryl,

G is $-CH_{2}$ -, $-CH(CH_{3})$ -, $-C(CH_{3})_{2}$ -, -CH=N-, -N=N-, -O-, -S-, $-SO_{2}$ -, $-SO_{2}$ NH-, -CONH- or $-NR^{7}$ -,

 R^3 and R^4 are independently of each other hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_{18} alkoxy or -CN, R^5 and R^6 are independently of each other hydrogen, halogen or C_1 - C_6 alkyl, and R^7 is hydrogen or C_1 - C_6 alkyl;

or A1 and A2 are radicals of the formula

$$R^{25}$$
 R^{26}
 R^{25}
 R^{26}
 R^{26}
 R^{27}
 R^{21}
 R^{21}
 R^{23}
 R^{21}
 R^{22}
 R^{23}
 R^{22}
 R^{22}

$$R^{21}$$
 R^{22}
 R^{23}
 R^{21}
 R^{23}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{26}
 R^{27}
 R^{21}
 R^{26}
 R^{26}
 R^{27}
 R^{21}
 R^{26}
 R^{26}
 R^{27}
 R^{27}
 R^{28}
 R^{29}
 R^{21}
 R^{21}
 R^{22}
 R^{22}
 R^{23}
 R^{24}

wherein R^{21} , R^{22} , R^{23} , R^{25} and R^{26} are independently of each other hydrogen, C_1 - C_8 alkyl, a hydroxyl group, a mercapto group, C_1 - C_8 alkoxy, C_1 - C_8 alkylthio, halogen, halo- C_1 - C_8 alkyl, a cyano group, an aldehyde group, a ketone group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group or a siloxanyl group and R^{24} is a C_1 - C_8 alkyl group.

5. (original): The process according to claim 4, wherein A¹ and A² are radicals of the formula

$$- \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} }^{R^1} , \quad \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} }^{N} , \quad - \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} }^{N} \quad \text{or} \quad$$

$$G$$
 R^4 R^3

wherein R¹ and R² are independently of each other hydrogen, chloro, bromo, C₁-C₄alkyl, C₁-C₆alkoxy, C₁-C₆alkylamino, phenyl or CN,

G is -O-, -NR 7 -, -N=N- or -SO $_2$ - ,

R³ and R⁴ are hydrogen, and

R⁷ is hydrogen, methyl or ethyl.

6. (currently amended): The process according to claim 4-or 5, wherein A³ is cyanomethyl, C₁-C₂alkyl-such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, n-hexyl, n-heptyl, n-octyl, 1,1,3,3-tetramethylbutyl-and 2-ethylhexyl, Y-R³² wherein Y is -C(O)- and R³² is

$$R^{40}$$
, wherein R^{40} is C_1 - C_4 alkyl, -O- C_1 - C_4 alkyl, or -S- C_1 - C_4 alkyl, or

-(CH₂)_m-Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.

7. (currently amended): The process according to any of claims 4 to 6 claim 4, wherein A4 is

which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen or phenyl.

8. (currently amended): The process according to any of claims 1 to 7 claim 1, wherein the starting compound of formula (II)

$$A^{1}$$
 $CO_{2}R$ OH A^{3} OH A^{2} (III)

is obtained by reacting a compound of formula (VIII) with an acyl halide A² -COX:

wherein R, A¹ and A² have the same meaning as given in claim 1, A³ is aryl, and X is halogen.__, preferably chlorine.

9. **(original):** The process according to claim 8, wherein the compound of formula (VIII) is obtained by reacting a compound of formula (IIb) with an amine A³ -NH₂:

wherein R and A¹ have the same meaning as given in claim 1 and A³ is aryl

10. (currently amended): The process according to claim 8—or—9, wherein A²—COX is benzoyl chloride and A³-NH₂ is aniline.

11. (currently amended): A process for the preparation of a DPP of general formula:

reacting a compound of formula (VIII) with a nitrile A²-CN, preferably benzonitril:

$$A^3$$
 A^1
 CO_2R
 N
 CO_2R
 CO_2

wherein A¹, A² and A³ have the meanings as given in claim 1.

12. (original): A DPP of general formula (III)

wherein A¹, A² and A³ have the meanings as given in claim 1.

- 13. (new): A process according to claim 1, wherein R is C_1 - C_4 alkyl, phenyl, or benzyl, which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, or halogen.
- 14. (new): A process according to claim 5, wherein A^3 is cyanomethyl, C_1 - C_8 alkyl, Y- R^{32} wherein Y is -C(O)- and R^{32} is

——
$$\mathbb{R}^{40}$$
 , wherein \mathbb{R}^{40} is C_1 - C_4 alkyl, -O- C_1 - C_4 alkyl, or -S- C_1 - C_4 alkyl, or

-(CH_2)_m-Ar wherein m is 1 and Ar is a group of the formula

which can be substituted one to three times with C₁-C₈alkyl, C₁-C₈alkoxy, halogen or phenyl.