Gang Huang

March 16, 2022

East Model is an example of kinetically constrained Ising model.

East model is a 1-D system of spins on lattice. For site i, $n_i = 0$ or 1. No static interactions between spins. (Palmer 1984; Jaeckle, Eisinger 1991; Eisinger, Jaeckle 1993; Faggionato, Martinelli, Roberto, and Toninelli 2012) Boundary condition: PBC (Sollich,2003).

A given spin may only flip if the neighboring spin to the right is up, with an acceptance ratio \emph{A} ,

$$A = \begin{cases} e^{-\beta}, \text{ for } 01 \to 11\\ 1, \text{ for } 11 \to 01. \end{cases}$$
 (1)

East model shows glassy dynamics. (Pitts and Andersen, 2001) Auto-correlation function

$$C(t) = \frac{\langle \delta n_i(t) \delta n_i(0) \rangle}{\langle \delta n_i(0)^2 \rangle} = \frac{\langle n_i(t) n_i(0) \rangle - c^2}{c - c^2} = \frac{\langle \delta n_i(t) \delta n_i(0) \rangle}{c(1 - c)}.$$
 (2)

 $\langle \cdots \rangle$: Average for the equilibrium state; n_i : occupation number of site i; $c = \langle n_i \rangle$; $\langle n_i(t)^2 \rangle = \langle n_i(t) \rangle$.

Relation between β and c

Denote $c = \langle n_i \rangle_{eq}$ (Eisinger and Jaeckle, 1991),

$$c = \frac{e^{-\beta}}{1 + e^{-\beta}} \Rightarrow \beta = \ln \frac{c}{1 - c} \text{ for } c < 1/2.$$
 (3)

(Wu Jianlan, 2004, JPC)

Theoretical and MC simulation (total steps: 3000) values of and c for given β 's.

β	c (Theo.)	c(N = 32)	c(N = 64)	c(N = 128)	c(N = 256)
0.08	0.4800		0.4797	0.4800	0.4803
0.40	0.4013		0.4027	0.4006	0.4012
0.85	0.2994		0.2998	0.2992	0.3005
1.39	0.1994		0.2046	0.2034	0.2033
2.00	0.1192		0.1492	0.1576	0.1539
2.20	0.0997		0.1450	0.1487	0.1520

Q: Why is the values of c obtained by the Monte Carlo simulation too large at high β ? A: Because the system does not reach equilibrium!

To make sure we have calculated the c(t) of equilibrated chain

Q2: How to make sure the system is in equilibrium?

A2: We set

total steps = INT[
$$N_{\text{step}}(1+\beta)^2$$
], (4)

where $N_{\text{step}} = 3000$.

Then, for higher β , the total number of MC steps will be larger! The data for analyzing: the last $N_{\text{step}} \cdot \alpha = 3000 \times 0.8 = 2400$ steps.

Theoretical and MC simulation (total steps: 3000) values of and c for given β 's.

β	c (Theo.)	c(N = 32)	c(N = 64)	c(N = 128)	c(N = 256)
0.08	0.4800		0.4797		
0.40	0.4013		0.4027		
0.85	0.2994		0.2998		
1.39	0.1994		0.2046		
2.00	0.1192		0.0959		
2.20	0.0997		0.0803		

For high β , the fluctuation of c is large! As β increase, we need longer trajectory to make sure the c from simulated data reaches the theoretical value. 3000 is too small for $\beta=2.2$.

00000

To make sure we have calculated the c(t) of equilibrated chain(2)

Q3: Besides using long trajectory, how to know that the system is in equilibrium? A3: We need longer trajectory for analyzing data. $3000 \rightarrow 10000$.

Theoretical and MC simulation (total steps: 10000) values of and c for given β 's.

β	c (Theo.)	c(N = 32)	c(N = 64)	c(N = 128)
0.08	0.4800	0.4798	0.4801	0.4799
0.40	0.4013	0.4014	0.4009	0.4012
0.85	0.2994	0.2999	0.2999	0.2998
1.39	0.1994	0.1983	0.2006	0.1993
2.00	0.1192	0.1117	0.1194	0.1214
2.20	0.0997	0.1074	0.0981	0.1030

Conclusion: The total steps (10000) is large enough for high β (eg., $\beta = 2.2$)!

MC Move Scheme for 1-dimensional East model

- *N* randomly chosen sites update one by one. Each update is labeled by index (time) i, $i = 1, 2, \cdots$. At each step i, we record the configuration.
- We only calculated the correlation function at the time (i) in the set $\{1,2,3,5,7,11,17,25,38,\cdots\}$, $\mathsf{INT}((3/2)^n)$, for $n=0,1,2,3,\cdots$. Therefore, the data of C(t): C(0), C(1), C(2), C(3), C(5), C(7), \cdots .

C(t) for 1-dimensional East model

C(t) from MC simulations of finite 1D East model (PBC) and from **Eisinger and Jaeckle (1993)** (semi-infinite chain).

C(t) for 1-dimensional East model

Compare C(t) of N=32 and 64 for different concentrations c. From MC simulations of finite 1D East model (PBC).

C(t) for 1-dimensional East model

Compare C(t) of N=64 and 128 for different concentrations c. From MC simulations of finite 1D East model (PBC).

Exact C(t) for 1-dimensional East model

Exact C(t) (solid lines) from numerical results for finite chains (Eisinger and Jaeckle, 1991).

β -dependence of C(t) (semi-log plot)

t-dependence and β -dependence of C(t)

β -dependence of C(t) (semi-log plot)

t-dependence and β -dependence of C(t)

β -dependence of C(t) (semi-log plot)

C(t) for c=0.2(green) and c=0.4(blue) in our simulations are agree with the simulation results in Pitts, Young and Andersen,2000.

ightarrow For c < 0.5, our MC simulations are correct! Question: Why we can not generate c > 0.5 in the MC simulations?

dependence of C(t) (semi-log plot): Test 1

J-E (EMA) theory provides an excellent fit to the data at higher c and fits short time data well at lower c's, but ultimately fails because the EMA correlator dost not decay to 0 for c<0.5

Kawasaki (MCA) theory is less accurate at all c's, predicting relaxation that is too rapid at short times at all c's and then predicting a failure to relax to 0 at long times for low c's. (Pitts, Young, and Andersen,2000)

(Left) C(t) for different c's in our simulations and (Right) the simulation results in **Pitts, Young and Andersen, 2000**, **EJ** (solid), and **Kawasaki** (dotted).

β -dependence of relaxation time τ

 β -dependence of C(t). N=128.

c-dependence of relaxation time τ

c-dependence of C(t). N = 128.

For C(t): Test the program

The relaxation of C(t) for 1D East chain with blocking boundary (N=9) is slower than that with PBC. While, C(500)=0.06 in **Jaeckle1991**. We get different values C(500)=0.25, Why? (Here we use N=9 for this blocking boundary. The result also different from that in **Jaeckle1991**.)

Concepts: Definition of the East model

- There are no static interactions between spins, but there is an energy difference between the spin up and spin down states for each spin: $\Delta E = E_1 E_{-1}$.
- The energy difference $\Delta E/T$ determines c (c is the equilibrium concentration of up spins at any temperature). ΔE is a constant in the East model, so the energy difference can be written as 1/T, or β .
- β is the ratio of energy difference $\Delta E = 1$ and $k_B T = T$.
- The thermodynamic state is specified by a single state variable c.
- c is also the probability that any particular spin is up.

Concepts: Facilitating set

- In each model, for each site i there is a set of f neighboring sites S(i) s.t. the spin on site i can flip only if all the spins on the sites S(i) are up.
- Facilitating set S(i) of site i for the East model: spin i + 1.

A simplifying case

Definitions:

- The **state** Γ of a system of N spins is specified by n_1, \dots, n_N ;
- The possible transitions of the system are those in which a single spin flips;
- The flip rate for spin i depends on the state of spin i + 1.

Assumptions:

- The spins are statistically independent at equilibrium;
- All sites have the same distribution function for the occupation number, ie, $\forall i, t = \infty, p(n_i = 0) = 1 c, p(n_i = 1) = c;$
- $\rho_0(\Gamma) = \prod_{i=1}^N p(n_i)$.

For C(t):

1D East Model

- $\phi(t) = \frac{\langle \delta n_i(t) \delta n_i(0) \rangle}{c(1-c)}$ (Eisinger and Jaeckle, 1991, where $\sigma_i = \pm 1$).
- $C(t) = \frac{\langle \delta n_i(t) \delta n_i(0) \rangle}{\langle \delta n_i(0) \rangle}$. What is the difference between C(t) and $\phi(t)$? $C(t) = \phi(t)$. $(n_i = 0 \text{ or } 1)$
- C(t) can also be written as $\frac{P(s_i(t=1)|s_i(t=1))-c}{1-c}$.
- $c = \langle n_i \rangle = 0.9, 0.8$ (CHECK THIS PROBLEM! ?)
- At low T, c is small (Sollich 2003).
- For $N \to \infty$, all boundary conditions (free BC, blocking BC (JCP, 113,8671) and PBC) gives the same result of C(t)! (Pitts, Young, Andersen, 2000, JCP, 113,8671)

The up-spin persistence function $P_1(t)$

- In [0, t], s_{i-1} has been up a fraction m of the time, and the evolution of s_i has been that (evolution) of a single spin over time mt.
- P(m,t): The distribution of m for a given t by P(m;t). What's does P(m,t) mean? A: There are two possible answers. (1) Perform one MC simulation, spin s_{i-1} , $i=0,\cdots,N-1$, has been up m_i times. The distribution of m_i is $P_{\text{space}}(m;t)$; (2) Perform X times simulations, for site i, the spin s_{i-1} have m_X times up state. The distribution of m_X is $P_{\text{time}}(m;t)$. (Sollich 2003).
- Question: Is the $P_{\text{time}}(m; t)$ identical to $P_{\text{space}}(m; t)$? Answer and prove.

Theoretical object: to derive an equation of C(t) (kinetic theory of C(t))

In general,

$$\frac{dC(t)}{dt} + \omega C(t) + \omega^{-1} \int_0^t d\tau M^{irr}(t-\tau) \frac{dC(\tau)}{d\tau} = 0,$$
 (5)

where $\omega=k(0),\ k(t)=-\frac{dC(t)}{dt},\ M^{\rm irr}$ is irreducible memory function. (Pitts, Andersen 2000)

In MCT, assume that

$$M^{irr}(t) = \sum_{n} a_n(c) [C(t)]^n. \tag{6}$$

Some approximations:

- $M_{\rm K}^{\rm irr}(t) = c(1-c)[C(t)]^2$ (Kawasaki1995)
- $M_{\rm E,I}^{\rm irr}(t) = c(1-c)C(t)$ (Eisinger and Jaeckle 1993)
- diagrammatic representations of the irreducible memory function \rightarrow obtained the irreducible memory kernel from a set of irreducible diagrams: $M^{\rm irr} = c(1-c)C(t)$ for (c < 0.5) (Pitts, Young, Andersen, J. Chem. Phys. 2000, 113, 8671) (Pitts and Andersen, 2001)
- A matrix formalism defined in the complete dynamic phase space (Wu, Cao, J. Phys. Chem. B 2004, 108, 6796).

More about C(t): Detailed balance

Let the state
$$\alpha=(s_1,s_2,\cdots,s_N)$$
. In equilibrium, $\frac{\partial P_{\alpha}(t)}{\partial t}=0\Rightarrow P_{\alpha}(t)W_{\alpha\to\beta}=P_{\beta}(t)W_{\beta\to\alpha}$, where

- $P_{\alpha}(t)$ is the probability of the chain being in state α .
- From detailed balance, $W_{a \to b} = \mathrm{e}^{-\beta}; \; W_{b \to a} = 1 \Rightarrow P_b(t)/P_a(t) = \mathrm{e}^{-\beta}$ (see Figure).

Two states of the 1-D finite East model with N sites.

More about C(t): Detailed balance condition (In general)

We now restrict attention to systems for which there is a stationary distribution function $\rho_0(\Gamma)$ s.t. the transition probabilities obey the DBC (Pitts and Andersen, 2001):

$$W(\Gamma', \Gamma)\rho_0(\Gamma) = W(\Gamma, \Gamma')\rho_0(\Gamma'). \tag{7}$$