Predicting IBM Employee Attrition Python Jupyter Notebook

Part 1 - Feature Engineering and Selection

A. Import Libraries and Data Set, and Inspect Data Set

Import numpy and pandas.

```
In [1]: import numpy as np
import pandas as pd
```

Import data visualization libraries and set %matplotlib inline.

```
In [2]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Import IBM Employee Churn / Attrition comma-separated (CSV) file into a Pandas dataframe called churn.

```
In [3]: churn = pd.read_csv('../data/ibm_hr_emp_churn.csv', sep=',')
```

Create copy of churn dataframe for exploratory data analysis and feature engineering.

```
In [4]: churn1 = churn.copy()
```

View first five rows of churn dataframe.

In [5]: churn1.head()

Out[5]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life S	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life S	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2		
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life S	
4	27	No	Travel_Rarely	591	Research & Development	2	1		
5 rows × 35 columns									
4	←								

Obtain number of rows and columns in churn dataframe.

In [6]: churn1.shape

Out[6]: (1470, 35)

View structure of churn dataframe.

In [7]: churn1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
                             1470 non-null int64
Age
Attrition
                            1470 non-null object
                            1470 non-null object
BusinessTravel
                            1470 non-null int64
DailyRate
Department
                            1470 non-null object
                            1470 non-null int64
DistanceFromHome
                            1470 non-null int64
Education
                            1470 non-null object
EducationField
EmployeeCount
                            1470 non-null int64
EmployeeNumber
                            1470 non-null int64
EnvironmentSatisfaction
                            1470 non-null int64
Gender
                            1470 non-null object
                            1470 non-null int64
HourlyRate
                            1470 non-null int64
JobInvolvement
JobLevel
                            1470 non-null int64
JobRole
                            1470 non-null object
JobSatisfaction
                            1470 non-null int64
                            1470 non-null object
MaritalStatus
MonthlyIncome
                            1470 non-null int64
MonthlyRate
                            1470 non-null int64
NumCompaniesWorked
                            1470 non-null int64
Over18
                            1470 non-null object
                            1470 non-null object
OverTime
PercentSalaryHike
                            1470 non-null int64
PerformanceRating
                            1470 non-null int64
RelationshipSatisfaction
                            1470 non-null int64
StandardHours
                            1470 non-null int64
StockOptionLevel
                            1470 non-null int64
TotalWorkingYears
                            1470 non-null int64
TrainingTimesLastYear
                            1470 non-null int64
WorkLifeBalance
                            1470 non-null int64
YearsAtCompany
                            1470 non-null int64
YearsInCurrentRole
                            1470 non-null int64
YearsSinceLastPromotion
                            1470 non-null int64
YearsWithCurrManager
                             1470 non-null int64
dtypes: int64(26), object(9)
```

dtypes: int64(26), object(9)
memory usage: 402.0+ KB

Check for presence of missing values for all features.

```
In [8]: | churn1.isnull().sum()
Out[8]: Age
                                      0
         Attrition
                                      0
         BusinessTravel
                                      0
                                      0
         DailyRate
         Department
                                      0
         DistanceFromHome
                                      0
         Education
                                      0
         EducationField
                                      0
         EmployeeCount
         EmployeeNumber
         EnvironmentSatisfaction
                                      0
         Gender
                                      0
         HourlyRate
                                      0
         JobInvolvement
                                      0
         JobLevel
                                      0
         JobRole
                                      0
                                      0
         JobSatisfaction
         MaritalStatus
                                      0
        MonthlyIncome
                                      0
        MonthlyRate
                                      0
         NumCompaniesWorked
                                      0
         Over18
                                      0
         OverTime
                                      0
         PercentSalaryHike
                                      0
         PerformanceRating
                                      0
         RelationshipSatisfaction
         StandardHours
         StockOptionLevel
                                      0
                                      0
         TotalWorkingYears
         TrainingTimesLastYear
                                      0
        WorkLifeBalance
                                      0
         YearsAtCompany
         YearsInCurrentRole
         YearsSinceLastPromotion
                                      0
         YearsWithCurrManager
```

B. Explore and Engineer Categorical Features

Gather summary statistics for categorical features.

dtype: int64

```
In [9]: churn1.describe(include=['object'])
```

Out[9]:

	Attrition	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus	0/
count	1470	1470	1470	1470	1470	1470	1470	
unique	2	3	3	6	2	9	3	
top	No	Travel_Rarely	Research & Development	Life Sciences	Male	Sales Executive	Married	
freq	1233	1043	961	606	882	326	673	
4								•

Obtain value counts for Attrition variable.

```
In [10]: churn1.Attrition.value_counts()
```

Out[10]: No 1233 Yes 237

Name: Attrition, dtype: int64

Generate Churn dummy variable by mapping Attrition categories to 0 or 1. (0 = No, 1 = Yes)

Out[11]: 0 1233 1 237

Name: Churn, dtype: int64

Obtain value counts for BusinessTravel variable.

```
In [12]: churn1.BusinessTravel.value_counts()
```

Out[12]: Travel_Rarely 1043 Travel_Frequently 277 Non-Travel 150

Name: BusinessTravel, dtype: int64

Convert BusinessTravel to numeric BusTravLevel (Business Travel Level) variable. (0 = Non-Travel, 1 = Travel_Rarely, 2 = Travel_Frequently)

```
In [13]: churn1['BusTravLevel'] = churn1.BusinessTravel.map({'Travel_Rarely':1, 'Travel_From the churn1.BusTravLevel.value_counts()
```

Out[13]: 1 1043 2 277 0 150

Name: BusTravLevel, dtype: int64

Obtain value counts and employee churn probabilities for each Department.

Create Department dummy variables and add it to churn dataframe.

```
In [15]: dept_dummies = pd.get_dummies(churn1.Department).drop('Research & Development', a
    dept_dummies = dept_dummies.rename(columns={'Human Resources':'HR_Dept', 'Sales':
        churn2 = pd.concat([churn1, dept_dummies], axis=1)
        churn2.head()
```

Out[15]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life S	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life S	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2		
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life S	
4	27	No	Travel_Rarely	591	Research & Development	2	1		
5 rows × 39 columns									
4								•	

Obtain value counts and employee churn probabilities for each Education Field.

```
In [16]: churn2.groupby('EducationField').Churn.agg(['count', 'mean']).sort_values('mean',
```

Out[16]:

	count	mean
EducationField		
Human Resources	27	0.259259
Technical Degree	132	0.242424
Marketing	159	0.220126
Life Sciences	606	0.146865
Medical	464	0.135776
Other	82	0.134146

Create Education Field dummy variables and add it to churn dataframe.

Out[17]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life S
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life S
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life S
4	27	No	Travel_Rarely	591	Research & Development	2	1	

5 rows × 44 columns

Obtain value counts for Gender variable.

```
In [18]: churn3.Gender.value_counts()
```

Out[18]: Male 882 Female 588

Name: Gender, dtype: int64

Generate Gender_Dum dummy variable by mapping Gender categories to 0 or 1. (0 = Male, 1 = Female)

Obtain value counts and employee churn probabilities for each Job Role.

```
In [20]: churn3.groupby('JobRole').Churn.agg(['count', 'mean']).sort_values('mean', ascend
Out[20]:
```

	count	mean
JobRole		
Sales Representative	83	0.397590
Laboratory Technician	259	0.239382
Human Resources	52	0.230769
Sales Executive	326	0.174847
Research Scientist	292	0.160959
Manufacturing Director	145	0.068966
Healthcare Representative	131	0.068702
Manager	102	0.049020
Research Director	80	0.025000

Create Job Role dummy variables and add it to churn dataframe.

Out[21]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life S	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life S	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2		
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life S	
4	27	No	Travel_Rarely	591	Research & Development	2	1		
5 r	5 rows × 53 columns								
4								>	

Obtain value counts and employee churn probabilities for each Marital Status.

```
In [22]: churn4.groupby('MaritalStatus').Churn.agg(['count', 'mean']).sort_values('mean',
```

Out[22]:

	count	mean
MaritalStatus		
Single	470	0.255319
Married	673	0.124814
Divorced	327	0.100917

Create Marital Status dummy variables and add it to churn dataframe.

```
marital dummies = pd.get dummies(churn4.MaritalStatus).drop('Married', axis=1)
churn5 = pd.concat([churn4, marital dummies], axis=1)
churn5.head()
```

Out[23]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educati	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life S	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life S	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2		
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life S	
4	27	No	Travel_Rarely	591	Research & Development	2	1		
5 r	5 rows × 55 columns								

Obtain value counts for Over18 variable.

```
In [24]:
        churn5.0ver18.value counts()
```

Out[24]: Y 1470

Name: Over18, dtype: int64

Obtain value counts for OverTime variable.

```
In [25]: churn5.OverTime.value_counts()
```

Out[25]: No 1054 416 Yes

Name: OverTime, dtype: int64

Generate Overtime_Dum dummy variable by mapping OverTime categories to 0 or 1. (0 = No, 1 = Yes

```
In [26]:
        churn5['Overtime_Dum'] = churn5.OverTime.map({'No':0, 'Yes':1})
         churn5.Overtime Dum.value counts()
```

Out[26]: 0 1054 416

Name: Overtime_Dum, dtype: int64

Drop unengineered or unnecessary categorical features from churn dataframe.

```
In [27]: churn_eng_cat = churn5.drop(['Attrition', 'BusinessTravel', 'Department', 'Educat
                                      'Over18', 'OverTime'], axis=1)
```

Obtain number of rows and columns in churn dataframe with engineered categorical features and unengineered numerical features.

```
In [28]:
        churn_eng_cat.shape
Out[28]: (1470, 47)
```

View structure of churn dataframe with engineered categorical features and unengineered numerical features.

In [29]: churn_eng_cat.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 47 columns):
                             1470 non-null int64
Age
DailyRate
                             1470 non-null int64
DistanceFromHome
                             1470 non-null int64
Education
                             1470 non-null int64
EmployeeCount
                             1470 non-null int64
EmployeeNumber
                             1470 non-null int64
EnvironmentSatisfaction
                             1470 non-null int64
HourlyRate
                             1470 non-null int64
JobInvolvement
                             1470 non-null int64
JobLevel
                             1470 non-null int64
JobSatisfaction
                             1470 non-null int64
MonthlyIncome
                             1470 non-null int64
MonthlyRate
                             1470 non-null int64
NumCompaniesWorked
                             1470 non-null int64
PercentSalaryHike
                             1470 non-null int64
PerformanceRating
                             1470 non-null int64
RelationshipSatisfaction
                             1470 non-null int64
StandardHours
                             1470 non-null int64
StockOptionLevel
                             1470 non-null int64
TotalWorkingYears
                             1470 non-null int64
TrainingTimesLastYear
                             1470 non-null int64
WorkLifeBalance
                             1470 non-null int64
YearsAtCompany
                             1470 non-null int64
YearsInCurrentRole
                             1470 non-null int64
YearsSinceLastPromotion
                             1470 non-null int64
YearsWithCurrManager
                             1470 non-null int64
Churn
                             1470 non-null int64
BusTravLevel
                             1470 non-null int64
HR Dept
                             1470 non-null uint8
Sales Dept
                             1470 non-null uint8
HR Major
                             1470 non-null uint8
Market Major
                             1470 non-null uint8
Med Major
                             1470 non-null uint8
Other Major
                             1470 non-null uint8
Tech Major
                             1470 non-null uint8
Gender Dum
                             1470 non-null int64
HC Rep
                             1470 non-null uint8
HR
                             1470 non-null uint8
Lab Tech
                             1470 non-null uint8
Mgr
                             1470 non-null uint8
Manuf Dir
                             1470 non-null uint8
Research Dir
                             1470 non-null uint8
Research Sci
                             1470 non-null uint8
Sales Rep
                             1470 non-null uint8
Divorced
                             1470 non-null uint8
Single
                             1470 non-null uint8
Overtime Dum
                             1470 non-null int64
dtypes: int64(30), uint8(17)
memory usage: 369.0 KB
```

localhost:8888/notebooks/Div Acad DS60/capstone-project/assignments/Predicting IBM Employee Attrition Part 1 Feature Engineering Select... 12/22

C. Explore and Engineer Numerical Features

Drop unnecessary numerical features from churn dataframe.

```
churn6 = churn eng cat.drop(['EmployeeCount', 'EmployeeNumber', 'StandardHours'],
In [30]:
```

Remap ordered numerical features so that lowest level is 0 instead of 1.

```
In [31]:
         churn6['Education'] = churn6.Education.map({1:0, 2:1, 3:2, 4:3, 5:4})
         churn6['EnvironmentSatisfaction'] = churn6.EnvironmentSatisfaction.map({1:0, 2:1,
         churn6['JobInvolvement'] = churn6.JobInvolvement.map({1:0, 2:1, 3:2, 4:3})
         churn6['JobLevel'] = churn6.JobLevel.map({1:0, 2:1, 3:2, 4:3, 5:4})
         churn6['JobSatisfaction'] = churn6.JobSatisfaction.map({1:0, 2:1, 3:2, 4:3})
         churn6['PerformanceRating'] = churn6.PerformanceRating.map({1:0, 2:1, 3:2, 4:3})
         churn6['RelationshipSatisfaction'] = churn6.RelationshipSatisfaction.map({1:0, 2:
         churn6['WorkLifeBalance'] = churn6.WorkLifeBalance.map({1:0, 2:1, 3:2, 4:3})
```

Extract numerical features from churn dataframe to see correlation matrix between features.

```
In [32]:
         num_features = ['Age', 'DailyRate', 'DistanceFromHome', 'Education', 'Environment
                         'JobLevel', 'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'Nu
                         'PerformanceRating', 'RelationshipSatisfaction', 'StockOptionLeve
                         'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsS
         churn_num_feat = churn6[num_features]
```

Check the number of numerical features.

```
churn_num_feat.shape
In [33]:
Out[33]: (1470, 23)
```

View correlation matrix for numerical features.

```
In [34]: | plt.figure(figsize=(15, 15))
         sns.heatmap(churn num feat.corr(), annot=True, fmt=".2f");
```


D. Feature Selection

Convert numerical feature data into numpy array and scale data to determine optimal number of features to include in predictive model.

```
In [35]: from sklearn import decomposition
         from sklearn.preprocessing import scale
         from sklearn.decomposition import PCA
```

```
In [36]:
         churn num feat np = churn num feat.values
         churn num feat np scaled = scale(churn num feat np)
```

C:\Users\kyrma\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\util s\validation.py:475: DataConversionWarning: Data with input dtype int64 was con verted to float64 by the scale function. warnings.warn(msg, DataConversionWarning)

Create covariance matrix for 23 numerical features.

```
covar matrix = PCA(n components=23)
In [37]:
```

Calculate variance ratios.

```
covar matrix.fit(churn num feat np scaled)
In [38]:
         variance = covar matrix.explained variance ratio
         var = np.cumsum(np.round(variance, decimals=3)*100)
         var
Out[38]: array([20.2, 28.2, 35.8, 41. , 45.7, 50.3, 54.9, 59.4, 63.8, 68.1, 72.3,
                76.4, 80.3, 84.2, 88., 91.3, 93.7, 96., 97.2, 98.2, 99.1, 99.7,
                99.9])
```

Determine the optimum number of features to include in predictive model.

```
plt.ylabel('Percent of Variance Explained')
In [39]:
         plt.xlabel('Number of Features')
         plt.title('Principle Components Analysis')
         plt.ylim(0, 100.5)
         plt.style.context('seaborn-whitegrid')
         plt.plot(var);
```


 According to the principle components analysis graph, I should include ten features in my predictive model, which explains 68.1 percent of the variance. Therefore, I decided to include only ten features into my model. That way, I can minimize my model's bias and variance, reduce the risk of overfitting, and maximize model parsimony.

Define X and y for feature selection.

dtype='object')

```
X = churn6.drop(['Churn'], axis=1)
In [40]:
         y = churn6['Churn']
```

Select features by assessing their importance using random forest classifier method.

```
In [41]:
         # Feature Selection: Embedded Method
         from sklearn.ensemble import RandomForestClassifier
         rfc model = RandomForestClassifier(random state=1)
         rfc_model.fit(X, y)
         rfc_feature_imp = pd.DataFrame(rfc_model.feature_importances_, index=X.columns, c
         rfc_feat_imp_10 = rfc_feature_imp.sort_values('importance', ascending=False).head
         rfc feat imp 10
         C:\Users\kyrma\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\ense
         mble\weight boosting.py:29: DeprecationWarning: numpy.core.umath tests is an in
         ternal NumPy module and should not be imported. It will be removed in a future
         NumPy release.
           from numpy.core.umath tests import inner1d
Out[41]: Index(['MonthlyIncome', 'TotalWorkingYears', 'DailyRate', 'DistanceFromHome',
                 'Age', 'Overtime_Dum', 'HourlyRate', 'MonthlyRate', 'YearsAtCompany',
                'NumCompaniesWorked'],
```

Plot random forest classifier method feature importances by descending order.

rfc_feature_imp.sort_values('importance', ascending=False).plot(kind='bar', figsi

Select features with filter method that removes all low-variance features.

```
In [43]: # Feature Selection: Filter Method
         from sklearn.feature selection import VarianceThreshold, f regression, SelectKBes
         # Find all features with more than 90% variance in values.
         threshold = 0.90
         vt = VarianceThreshold().fit(X)
         # Find feature names.
         feat var threshold = X.columns[vt.variances > threshold * (1-threshold)]
         # Select the top 10.
         feat_var_threshold[0:10]
Out[43]: Index(['Age', 'DailyRate', 'DistanceFromHome', 'Education',
                 'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel',
                 'JobSatisfaction', 'MonthlyIncome'],
               dtype='object')
```

Filter for features selected by random forest classifier method but were not selected by filter method.

```
In [44]: set(rfc feat imp 10) - set(feat var threshold[0:10])
Out[44]: {'MonthlyRate',
          'NumCompaniesWorked',
          'Overtime_Dum',
           'TotalWorkingYears',
           'YearsAtCompany'}
```

Filter for features selected by filter method that removes all low-variance features but were not selected by random forest classifier method.

```
set(feat var threshold[0:10]) - set(rfc feat imp 10)
In [45]:
Out[45]: {'Education',
           'EnvironmentSatisfaction',
           'JobInvolvement',
           'JobLevel',
           'JobSatisfaction'}
```

Select features based on univariate statistical tests.

```
In [46]: # Feature Selection: Filter Method
         X scored = SelectKBest(score func=f regression, k='all').fit(X, y)
         feature scoring = pd.DataFrame({'feature': X.columns, 'score': X scored.scores })
         feat scored 10 = feature scoring.sort values('score', ascending=False).head(10)['
         feat scored 10
Out[46]: array(['Overtime_Dum', 'Single', 'TotalWorkingYears', 'JobLevel',
                'YearsInCurrentRole', 'MonthlyIncome', 'Age', 'Sales_Rep',
                'YearsWithCurrManager', 'StockOptionLevel'], dtype=object)
```

Select features by eliminating them recursively via wrapper method.

```
In [47]: # Feature Selection: Wrapper Method
         from sklearn.linear model import LogisticRegression
         # Select 10 features by using recursive feature elimination (RFE) with logistic re
         from sklearn.feature selection import RFE
         rfe = RFE(LogisticRegression(), 10)
         rfe.fit(X, y)
         feature rfe scoring = pd.DataFrame({'feature': X.columns, 'score': rfe.ranking })
         feat rfe 10 = feature rfe scoring[feature rfe scoring['score'] == 1]['feature'].v
         feat_rfe_10
Out[47]: array(['JobInvolvement', 'BusTravLevel', 'HR_Major', 'Tech_Major', 'HR',
                'Lab_Tech', 'Research_Dir', 'Sales_Rep', 'Single', 'Overtime_Dum'],
```

Select features by assessing their importance using XGBoost classifier method.

dtype=object)

```
In [48]:
         import xgboost as xgb
         xgb model = xgb.XGBClassifier(n estimators=500, random state=1)
         xgb model.fit(X, y)
         xgb feature imp = pd.DataFrame(xgb model.feature importances , index=X.columns, c
         xgb feat imp 10 = xgb feature imp.sort values('importance', ascending=False).head
         xgb_feat_imp_10
Out[48]: Index(['JobLevel', 'Overtime_Dum', 'StockOptionLevel', 'Sales_Dept', 'Single',
                 'EnvironmentSatisfaction', 'Age', 'Sales Rep', 'Lab Tech',
                'JobSatisfaction'],
               dtype='object')
```

Plot XGBoost classifier feature importances by descending order.

xgb_feature_imp.sort_values('importance', ascending=False).plot(kind='bar', figsi

Gather unique features from all five feature selection methods.

```
In [50]: features = np.hstack([feat var threshold[0:10], rfc feat imp 10, feat scored 10,
         features = np.unique(features)
         print('Final features set:\n')
         for f in features:
             print("\t-{}".format(f))
```

Final features set:

```
-Age
-BusTravLevel
-DailyRate
-DistanceFromHome
-Education
-EnvironmentSatisfaction
-HR
-HR Major
-HourlyRate
-JobInvolvement
-JobLevel
-JobSatisfaction
-Lab Tech
-MonthlyIncome
-MonthlyRate
-NumCompaniesWorked
-Overtime Dum
-Research Dir
-Sales Dept
-Sales Rep
-Single
-StockOptionLevel
-Tech Major
-TotalWorkingYears
-YearsAtCompany
-YearsInCurrentRole
```

-YearsWithCurrManager

 Based off the above unique and selected features from these five feature selection methods. numerical feature correlation matrix heatmap, and business logic / domain knowledge, I have decided to include only these ten features to build the machine learning models: Age, BusTravLevel, DistanceFromHome, EnvironmentSatisfaction, JobInvolvement, MonthlyIncome, Overtime Dum, Sales Rep, Single, and StockOptionLevel.

Create churn / attrition modeling data by selecting target feature and predictor features for modeling.

```
modeling_cols = ['Churn', 'Age', 'BusTravLevel', 'DistanceFromHome', 'Environment
In [51]:
                           'MonthlyIncome', 'Overtime_Dum', 'Sales_Rep', 'Single', 'StockOp
         churn model = churn6[modeling cols]
```

Obtain value counts and employee churn probabilities for Overtime Dum (Overtime dummy) variable, a categorical feature that highly impacts likelihood of employee to churn.

```
churn_model.groupby('Overtime_Dum').Churn.agg(['count', 'mean']).sort_values('mea
In [52]:
Out[52]:
                        count
                                 mean
          Overtime_Dum
                          416 0.305288
                         1054 0.104364
                     0
```

Generate histogram for Monthly Income, a numerical feature that highly impacts likelihood of employee to churn.

```
In [53]:
         churn_model.boxplot(column='MonthlyIncome', by='Churn', showmeans=True);
```


Export finalized churn modeling dataframe to CSV file.

```
In [54]:
         churn model.to csv('../data/churn modeling data.csv', sep=',', index=False)
```

Save finalized churn modeling dataframe to pickle file for subsequent classification model notebooks.

```
churn_model.to_pickle('../data/churn_modeling_data.pickle')
In [55]:
```