全国大学生嵌入式芯片与系统设计竞赛 应用赛道选题指南模板

选题年份: 2023年第六届

企业名称: 意法半导体(中国)投资有限公司

	正业石物: 总亿十分体(中国)仅页有限公司				
一、	一、命题情况介绍				
1、赛	1.1 企业介绍	意法半导体公司(ST)为半导体垂直整合制造商(IDM),总部设立于瑞士 日内瓦,全球员工总数约 50,000 人,其中包含 9,000 多名研发人员,在全球 设立 80 多个营销办事处,拥有 14 个制造基地。 我们是半导体技术的创新者和创造者,我们与客户和合作伙伴一起研发产 品,开发解决方案和生态系统,帮助他们应对应用挑战和机遇,支持建设一个 更可持续的世界。 我们是半导体解决方案的创造者。在全世界每天使用的数十亿个电子产品 中,我们的半导体解决方案无处不在。 意法半导体主张"科技引领智能生活"(life.augmented)。			
	1.2	本赛题要求参赛队基于 ST 新产品平台,设计并实现一个符合 ST 战略市场			
题	赛题	具有创意及应用价值的嵌入式系统作品。			
介绍	方向				
	1.3 奖励 内容	除大赛组委会统一的奖励外,			
2、参赛技术及平台介	2.1 技术 要绍	基于 32 位 Arm® Cortex®内核的 STM32 系列微控制器和微处理器,可以获得一整套完整软件工具的支持。 ST 推荐使用 STM32Cube 嵌入式软件和开发工具可提高开发速度。工欲善其事,必先利其器,简洁高效的工具,使得 STM32 的开发不仅仅是一项任务,更是一种艺术体验。 更多信息,欢迎到 STM32 MCU 开发者社区(STM32 MCU Developer Zone - 意法半导体 STMicroelectronics: https://www.st.com/content/st_com/zh/stm32-mcu-developer-zone.html)获取相关软件工具,STM32 开发者人员所需资源均汇聚于此。			

ST 推荐使用并提供以下列表中的开发板进行项目开发,应围绕以下 STM32 开发板展开设计,充分发挥开发板的功能和性能,可添加外设模块实现系统功能,如显示器,传感器,NFC 板卡及广和通通信模组等实现系统功能。

除了 ST 指定下列开发板之外,学生也可选以 STM32MP1, STM32WB, STM32C0 /G0/G4/L4/U5/F7/H7 系列芯片为主控的自制板卡及第三方开发板等。

/ GU/ G4/ L4/ U5/ F1/ 用1 余列心月	· 的目前似下及第二刀刀及似守。
开发板套件型号,产品概述及设计 资源	其他相关信息
STM32MP135F-DK	资源链接将在3月7日后ST官网更新;
P-NUCLEO-IHM03	
NUCLEO-H7A3ZI-Q	
NUCLEO-H723ZG	
STM32H7B3I-DK	
STM32F723E-DISCO	
STM32F746G-DISCO	
STM32F769I-DISCO	
NUCLEO-G474RE	
B-G474E-DPOW1	
NUCLEO-G071RB	
NUCLEO-C031C6	
NUCLEO-U575ZI-Q	
NUCLEO-WB55RG	
B-L475E-IOTO1A	
NUCLEO-L476RG	
STM32L4P5G-DK	
STM32L4R9I-DISCO	
NUCLEO-L4R5ZI	
X-NUCLEO-NFC08A1	X-CUBE-NFC6 软件扩展; STSW-ST25R-L
A NOCEEO WI COOK!	IB; 可搭配 Nucleo-MCU 开发;
	Quick_Start_Guide.pdf; UM2960; UM2
X-NUCLEO-NFC07A1	961; X-CUBE-NFC7 软件扩展; 可搭配 N
	ucleo-MCU 开发;
X-NUCLEO-OUTO2A1	X-CUBE-OUT2 的工业数字输出软件扩
	展;可搭配 Nucleo-MCU 开发;
STEVAL-IFP029V1	STEVAL-IFP029V1 评估板的图形用户界
	<u>面</u> ; 需搭配 STMCU/MPU 开发;
STEVAL-MKI192V1	需搭配 STMCU/MPU 开发;
STEVAL-MKI197V1	需搭配 STMCU/MPU 开发;
SPC582B-DISP	仅用于汽车选题方向
NUCLEO-L412KB	
NUCLEO-L412RB-P	此类开发板将支持广和通赛道,由广和
NUCLEO-L432KC	通安排开发板的寄送。
NUCLEO-L433RC-P	
NUCLEO-L452RE	

2.3套件介绍

NUCLEO-L452RE-P

二、命题情况介绍

人工智能(AI)是一套能够为计算单元赋予功能的硬件和软件系统,在人 类观察者看来,这些功能似乎模仿了人类的认知能力。

得益于 ST 全新的人工智能(AI)解决方案,您现在可以使用 STM32 微控制器组合映射并运行预训练的人工神经网络(ANN),在 STM32 微控制器和应用处理器上运行边缘 AI 应用程序。ST 的先进传感器包含机器学习核心、有限状态机(FSM)和先进的数字功能,可为连接的 STM32 或应用中央系统提供从超低功耗状态过渡到高性能、高精度 AI 功能的能力。

本选题的主要围绕嵌入式人工智能应用领域开发相关项目,建议应用领域包括但不限于:

- 预测性维护,建议通过 NanoEdge AI Studio 和 STM32Cube. AI 工具链 实施机器学习和神经网络,从而实现预测性维护的机器学习和深度学习 算法,例如电机、风机、泵、压缩机、齿轮箱故障(不平衡、摩擦、冲击、泄露)检测,工业断路器老化预测,电池电量故障检测,管道流量检测等;
- 高效驱动,异常监控,针对以上工业中的执行机构,提出更高效的驱控 曲线以减轻能源的消耗。监控设备的各项参数,如电压,电流等,在遇 到异常情况下能够预警和上报;
- 计算机视觉应用,建议通过 STM32Cube. AI 工具实现图像分类和目标检测,例如视觉瑕疵检测,烟雾、火灾检测,药片检测,农业植物病虫害识别,字符和数字识别等。

更多关于 STM32 AI 解决方案,欢迎访问:人工智能 | STMCU 中文官网和 STM32 AI | STMicroelectronics

更多关于工业自动化驱控方案,欢迎访问: <u>自动化 | ST 意法半导体</u>和<u>线上</u> 学堂 | ST 意法半导体

项目建议:

- 推荐组合 ST 传感器+MCU 开发板的形式进行开发
- 推荐使用 NanoEdge AI Studio 和 STM32Cube. AI 工具链
- 推荐使用 TouchGFX 图形设计和代码生成工具

选方 1 嵌式工能题向 1 入人智能

建

议

选

题

方

向

	TT (1)
	开发
	更多关于电机控制生态资源欢迎访问: 电机控制总览及相关资源 STMCU 中文
	官网; 电机控制 - ST 意法半导体 (21ic. com)
・1年 日石	要特定的嵌入式设计来管理较高的处理负载和具有丰富人机界面(HMI)的复
选题 方向	杂应用。本选题使用 MPU 开发一个系统,可参考但不限于以下应用方向:
/J □J 4	● 家电/工业/医疗等领域的图形显示/人机交互界面
MPU 的命	• 家用/工业网关
	● IoT 边缘计算相关
题	● 工业控制
/2	● 电力行业集中器/DTU/TTU 等
	更多关于 MPU 生态资源欢迎访问: MPU - 意法半导体 STMicroelectronics
	万物互联是互联世界的下一个进化阶段。随着信息网络的不断发展,未来
	社会将是一个万物互联的时代,小到每一滴水,每一度电、大到一间工厂、一
	座城市,都将实现全场景万物智联的愿景。 本选题的主要围绕物联网应用领域开发相关项目,建议应用领域包括但不
	本远越的主妄国统初联网应用领域并及相关项目,建议应用领域包括但个 限于:
	● 智能家居,如智能门锁,智能家居控制等
	 健康医疗,如运动健康检测等
选题	智慧城市,如楼宇自动化控制,智能远程抄表等
方向	智慧农业,如机械远程控制,牲畜健康管理等
5	● 智慧工业,工业 4.0 链接
IoT	● 个人消费电子,可穿戴产品,NFC 无线充电
	项目建议:
	• 推荐组合 ST 传感器+MCU 开发板, NFC 产品+MCU 开发板的形式进行开发
	● 推荐使用 NanoEdge AI Studio 和 STM32Cube. AI 工具链
	• 推荐使用 TouchGFX 图形设计和代码生成工具
	● 推荐使用 STM32U5, STM32WB 及 STM32L4 产品开发
	● 针对上述应用加入配对 参数设置 身份校验功能 更名光工工程就接供太资源或证法词 CTMO2 工程 財源
	更多关于无线链接生态资源欢迎访问: <u>STM32 无线射频能力 STMCU 中文官网</u> 随着智能手机的普及和车载通信技术的快速发展,将智能手机接入汽车的
选题	应用为车主带来了全新的用户体验。本选题可基于汽车级单片机 SPC582B +
方向	ST25D NFC 动态标签或 ST25R NFC 读卡器进行汽车 NFC 应用开发,例如: NFC
6	汽车智能钥匙,NFC 座椅参数配置等。
汽车	备注:上述其他选题亦可结合 NFC 标签或读卡器
选题	参赛学生可以根据 RT-Thread 提供的技术平台设计一个应用场景,该场景
远越 方向	需运用深度学习算法,集合若干个感知数据,结合典型行业业务场景,如医疗、
7	交通、安防、社区、物流、生产、智慧城市等领域。
ST-R	赛题要求:
TT 联合	硬件平台必须采用 ART-Pi STM32H750XBH6 开发板,
赛题	软件平台必须使用 RT-Thread 操作系统,采用 RT-Thread Studio 进行编

程并采用 RT-AK,建议采用 NanoEdge AI Studio 和 STM32Cube. AI 工具链设计 开发相关创意应用作品,

即作品中必须使用 ART-Pi STM32H750XBH6 开发板、RT-Thread OS, STM32 Cube AI +RT-Thread AI Toolkit.

本赛题更多相关资源请查看并咨询 RT-Thread 选题指南。

ST-嵌入式大赛官方交流 QQ 群: 1030896759

• 生态资源:

官网: ST官网; STM32中文官网;

论坛: ST 中文论坛 (stmicroelectronics.cn); ST Community 全球论坛

社区: STM32 MCU 开发者社区; ST 意法半导体 PDSA

课程: STM32 B 站线上课程; STM32 英文线上课程

Wiki: ST MCU Wiki; ST MPU Wiki Github: STMicroelectronics

• 技术支持:

STM32 MCU 中文技术支持邮箱: mcu. china@st. com

STM32 MPU 中文技术支持邮箱: mpu. china@st. com

ST 中文论坛届时会开启嵌入式大赛专题问答板块,针对 ST 赛道的技术问题进 行解答: ST 中文论坛 (stmicroelectronics.cn)

• 设计资源:

ST 推荐使用 STM32Cube 嵌入式软件和开发工具可提高开发速度。底层驱动、 硬件抽象层以及 RTOS、USB、TCP/IP、图形栈等中间件是快速高效应用开发不 可或缺的一部分。通过在一个库中集成了底层与中间件软件,并提供了能为应 用生成初始化代码的配置工具,全面的 STM32Cube 软件工具为嵌入式软件开发 人员提供了新的开发机会。

NFC 开发资源:

ST25 NFC 动态标签开发流程与设计资源

ST25R NFC 读卡器开发流程与设计资源

STM32 GUI 图形设计资源: STM32 GUI; GUI 图形用户界面 | STMCU 中文官网

功能安全: STM32 功能安全垂直应用 | STMCU 中文官网

信息安全: 垂直应用 | STMCU 中文官网

工具下载:

2, 技 术 支 持

其他

资源

GUI: TouchGFX 图形设计和代码生成工具 AI: NanoEdge AI; STM32CubeAI; Azure: X-CUBE-AZUR STM32Cube: STM32Cube Ecosystem: STM32CubeMX; STM32CubeIDE; STM32CubeProgrammer; STM32CubeMonitor; STM32CubeMCU and MPU package; STM32Cube Expansion Motor Control: ST-MC-SUITE; X-CUBE-MCSDK Digital Power: X-CUBE-DPOWER eDesignSuite STM32 Embedded Software ST Offer **Customers Applications** Linux Distribution/Android CONFO **3** 🗅 1> Board Support Package Azure RTOS U-Boot Linux kernel OP-TEE TF-A Arm® Cortex®-M Arm® Cortex®-A Partners Offer Open-source and third-party embedded software 丛 ORY EMBEDDED ud Micro 9C6 SEGGER HCC Qt 00 timesys TEConcept bootlin Linaro 建议建立完整的项目设计文件,项目代码及相关项目说明文件等,可公开可共 代码 享,优秀项目作品在大赛结束后,可展示在 ST 意法半导体中文论坛 开源 (stmicroelectronics.cn). 本赛道所提供的开发板将以学生提前支付押金的方式申请,参赛队伍需提 交初赛项目成果,经ST内部委员会评审通过后,将退还全部开发板押金, 金额请参考: eStore- STMicroelectronics。 3, 申请开发板时需提供嵌入式大赛参赛队伍名称及队伍 ID。 其 每支队伍仅能申请一块包含 ST 主控芯片的开发板,可同时申请 ST 传感器 他 和NFC开发板。 申请 每支队伍申请开发板总数上限为3,包括1块 MCU/MPU 开发板+2块不同型 号的传感器或 NFC 开发板。 ST 开发板数量有限, ST 将根据队伍的项目简介经过 ST 内部委员会评审后, 安排寄送。(此审核与是否报名成功无关,仅涉及是否寄送开发板。) 申请链接如下,申请开放时间自3月7日起至报名截止日期: https: //c.51diantang.com/columndetal?id=832f6a64ca954b339da30feef67b5627