PRACTICAL SELECTION AND DESIGN GUIDE; FOR GAS LIQUID SEPARATOR WITH OPTIMIZATION

mvshah027@yahoo.com

By Manish V. Shah

Before starting Separator Design, we should be aware of..

ENGINEERING DATA BOOK

FPS VERSION Volumes I & II Sections 1-26

1

Specification for Oil and Gas Separators

2

API SPECIFICATION 12J (SPEC 12J) SEVENTH EDITION, OCTOBER 1, 1989

Before starting Separator Design, we should be aware of..

LIQUID/LIQUID AND GAS/LIQUID/LIQUID SEPARATORS TYPE SELECTION AND DESIGN RULES

SULZER

3

DEP 31.22.05.12-Gen.

January 2008 (DEP Circular 17/08 has been incorporated)

Sulzer Chemtech

4

Gas/Liquid Separation Technology

Gas Liquid Separator Selection Guide

Sulzer

Separator type and orientation depends on

- ✓ Gas volumetric rate; & Gas to liquid volumetric ratio
- Slug volume
- Operating pressure and allowable pressure drop
- ✓ Turndown
- ✓ Feed source
- ✓ Separation efficiency required @ downstream unit
- ✓ Liquid property, fouling, viscous, solids etc..
- ✓ Space and head room available
- Offshore / Onshore application

DEP: Vertical Vs Horizontal:

ORIENTATION

For gas/liquid separation, a vertical vessel should normally be selected for the following reasons:

- a smaller plan area is required (critical on offshore platforms);
- easier solids removal;
- liquid removal efficiency does not vary with liquid level (area in vessel available for gas flow remains constant);
- vessel volume is generally smaller.

However, a horizontal vessel should be chosen if:

- large liquid slugs have to be accommodated;
- head room is restricted;
- a low downward liquid velocity is required (for de-gassing purposes or for foam breakdown).

High gas rate: Vertical type * High liquid rate: Horizontal type

Quiz 1 : - Compressor KO DRUM

	Pressure , KPag	Gas rate, kg/hr	Liquid rate kg/hr	Gas Density kg/m3	Liquid Density kg/m3
Case 1	9000	1,55,000	1000	100	1000
Case 2	4000	1,00,000	2500	66	1000
Case 3	6000	60,000	2700	66	700
Case 4	3000	40,000	3000	30	1000

- 1) Which internal can be used for above service?
- a) No internal
- b) Mist mat
- c) Vane pack

Quiz 1: - Compressor KO DRUM

	Pressure , KPag	Gas rate, kg/hr	Liquid rate kg/hr	Gas Density kg/m3	Liquid Density kg/m3
Case 1	9000	1,55,000	1000	100	1000
Case 2	4000	1,00,000	2500	66	1000
Case 3	6000	60,000	2700	66	700
Case 4	3000	40,000	3000	30	1000

40,000 / 1,55,000 = ~ 26%

- 1) Which internal can be used for above service?
- a) No internal
- b) Mist mat
- c) Vane pack

Quiz 2: - Production separator with heavy waxy oil and little solids.

- 1) Which internal can be used for above service?
- a) No internal
- b) Mist mat
- c) Vane pack

	Gravity separators/ knockout drums	Baffles/louvers	Vane packs – simple vanes	Vane packs – with drainage channels	Axial Cyclone separators	Knitted mesh mist eliminators	Candles/ fiber beds
Separation mechanism	Gravitational deposition	Inertial interception	Inertial interception	Inertial interception	Inertial interception	Inertial/direct interception	Direct interception/ diffusional deposition
Gas handling capacity	Low	High	High	High	Very high	Moderate	Low
Turndown capacity	Very high	30 %	30 %-50 %	30 %-50 %	30 % Higher with preconditioner	25 %	Very high
Efficiency	Low except for large droplet sizes	Low except for large droplet sizes	High down to approx. 25 µm	High down to approx. 25 µm	High down to approx. 10 µm	Very high down to 3-5 µm	Very high at sub-micron droplet sizes
Liquid load capacity	Very high	Very high	Moderate	High	High	Moderate	Low
Solids handling capability	Very high	Very high	Moderate	Low	Moderate-high	Low	Very low
Liquid viscosity	Suitable for high viscosity	Suitable for high viscosity	Suitable for high viscosities/waxes	Prone to fouling with high liquid viscosities/waxes	Suitable for high viscosities/waxes	Prone to fouling with high liquid viscosities/waxes	Unsuitable for high liquid viscosities
Pressure drop	Very low	Very low	Low	Low	Moderate	Low	High

Table A: Summary of relative performance characteristics for mist elimination

Three principles used to achieve physical separation of gas and liquids or solids are momentum (impact / centrifugal), gravity settling, and coalescing

Almost all mist elimination equipment falls into one of four general classes:

- ► Knitted wire mesh pads (DEMISTER® mist eliminators)
- ▶ Vane assemblies (FLEXICHEVRON® mist eliminators)
- ► Fiberbed candles and panels (FLEXIFIBER® mist eliminators)
- ▶ Cyclone assemblies

DEMISTER® Mist Eliminators

When the vessel size is not set by the mist eliminator (such as is normally the case for distillation towers, steam drums, or evaporators), the practical starting point is often the knitted wire mesh pad type. DEMISTER knitted mesh mist eliminators provide high separation efficiency at the lowest installed cost.

FLEXIFIBER® mist eliminator type IC-SRF.

KOCH-OTTO YORK® DEMISTER® mist eliminator style 709 in stainless steel.

Cyclone mist eliminator assembly with mounting deck and liquid drain piping for a vertical vessel.

Picture courtesy of CDS Separation Technology.

KOCH

FLEXICHEVRON® Mist Eliminators

When the vessel size is set by the mist eliminator, then the benefits of high capacity FLEXICHEVRON mist eliminators could be the most cost effective overall solution.

The fouling resistant FLEXICHEVRON mist eliminator often offers the best solution if the mist contains solid particulates; viscous, sticky liquids; or if large slugs of liquid occur.

FLEXIFIBER® Mist Eliminators

FLEXIFIBER mist eliminators are the only type that can effectively remove submicron size particles.

12

KOCH

Table 1. Selection Guide - Common Mist Elimination Equipment

	Knitted Mesh	Vane	Fiberbed	Cyclone
Cost	1	2-3	10	3-5
Gas Capacity	5	6-15	1	15-20
Liquid Capacity	5	10	1	10
Particle Size (micron)	3-10	10-40	< 0.1	7-10
Pressure Drop, WC	< 25 mm (1")	<10-90 mm (0.4" - 3.5")	50-500 mm (2" - 20")	200-240 mm (8" - 14")
Solid Handling	3	10	1	8

Relative scale based on 1 as the lowest. Others are scaled.

Table 1: Performance comparison of the various G/L separators

						\								
	VKO	нко	VW	HW	VV1	VV2	HV	SMS	svs	SMSM	CT	CS	VRMC	FS
Gas handling														
max. capacity (λ)	В	В	С	С	D	D	D	E	E	E	E	E	E	С
turndown (max/min flow)	∞	00	2	2	3	3	3	10	4	10	2	3	2	00
Liquid removal efficiency														
overall, %	90	90	> 98	> 98	> 96	> 96	> 96	> 98	> 96	> 99	> 96	> 99	> 93	50-80
with respect to fine mist	Α	Α	E	Е	С	С	С	E	D	F	В	D	В	E
flooding above λ _{max} (Y/N)	N	N	Y	Υ	*	*	*	N	N	N	N	N	Y	Y
Liquid handling capacity														
as slugs	D	Е	D	Е	Α	D	Е	D	D	D	D	D	В	-
as droplets (Q _{L,max})	D	D	D	D	В	С	С	D	D	D	D	D	В	В
Fouling tolerance														
sand	E	Е	В	В	**	**	**	В	С	В	E	С	С	В
sticky material	Е	Е	Α	Α	**	**	**	Α	С	Α	Е	С	С	Α
Pressure drop	Α	Α	В	В	В	В	В	С	С	С	D	D	D	***

high

very high

A = very low B = low

C = moderate

.. : Infinite

* : if double-pocket vanepack: N; for a single-pocket vanepack or in case of straight vanes: Y

** : if double-pocket vanepack: A, if single-pocket vanepack: B; if straight vanes: C

*** : depending or the degree of fouling, ranging from C to E

VKO	Vertical knock-out drum (3.1)
HKO	Horizontal knock-out drum (3.2)
VW	Vertical wiremesh demister (3.3)
HW	Horizontal wiremesh demister (3.4)
VV1	Vertical in-line separator with vane pack (3.9.5)
VV2	Vertical two-stage separator with vane pack (3.5.6)
HV	Horizontal vane-type demister (3.6)
SMS	Schoepentoeter-mistmat-swirldeck separator (3.7)

svs	Schoepentoeter-vane pack-swirldeck separator (3.7)
SMSM	Schoepentoeter-mistmat-swirldeck-mistmat separator (3.7)
CT	Cyclone with tangential inlet (conventional cyclone) (3.8)
CS	Cyclone with straight inlet and swirler ("Gasunie" cyclone) (3.9)

VRMC Vertical separator with reversed-flow multicyclone bundle (conventional

DEP

multicyclone) (3.10)

FS Filter separator (3.13)

VERTICAL KNOCK-OUT DRUM

(Figure 3.1)

Selection criteria

Application:

- bulk separation of gas and liquid.

Characteristics:

- unlimited turndown;
- high slug handling capacity;
- liquid removal efficiency typically 90 %;
 Warning: poor removal efficiency of liquid from mist
- very low pressure drop;
- insensitive to fouling.

Recommended use:

- vessels where internals have to be kept to a minimum (e.g. flare knock-out drums);
- fouling service e.g. wax, sand, asphaltenes;
- foaming service.

Non-recommended use:

where efficient demisting of gas is required.

Typical process applications:

- vent and flare stack knockout drums;
- production separator;
- bulk separator (e.g. upstream of gas coolers);
- flash vessel.

DEP

VERTICAL WIREMESH DEMISTER

(Figures 3.3 and 3.4)

Selection criteria

Application:

demisting of gas.

Characteristics:

- high turndown ratio (factor 4);
- high slug handling capacity;
- liquid removal efficiency > 98 %;
- sensitive to fouling;
- low pressure drop.

FIG. 7-12 Mesh Pad Separation Performance

Droplet removal efficiency:	99–99.5% removal of 3–10 micron droplets. Higher removal efficiency is for denser, thicker pads and/or smaller wire/co-knit fiber diameter.
Gas capacity, K, ft/sec	0.22–0.39. Generally, the lower capacities correspond to the mesh pad designs with the highest droplet removal efficiencies.

Recommended use:

- for demisting service with a moderate liquid load in form of droplets;
- where slug handling capacity may be required.
- for compressor suction scrubbers, in non-fouling service, provided that precautions are taken to prevent the disengagement of loose wire cuttings.

Non-recommended use:

- fouling service (wax, asphaltenes, sand, hydrates)
- for viscous liquids where de-gassing requirement determines vessel diameter

Typical process applications:

- production/test separator (non-fouling, moderate GOR);
- inlet/outlet scrubbers for glycol contactors;
- inlet scrubbers for gas export pipelines;
- for small diameter and/or low pressure vessels, where extra costs of e.g. vane or SMS internals cannot be justified.

DEP

16

Types: Selection criteria

FIG. 7-16 Typical Vane Pack Separation Performance

(bends).

Droplet 99% removal of droplets greater than removal 10-40 microns. Higher removal

efficiency:

Horizontal flow: 0.9-1.0 Gas capacity, K, ft/sec

Vertical up-flow: 0.4-0.5 The higher capacities are generally associated with pocketed vane designs.

efficiency is for thicker packs, with

closer vane spacings and more passes

VERTICAL VANE-TYPE DEMISTER

- IN-LINE SEPARATOR WITH HORIZONTAL FLOW VANE PACK (Figure 3.6a)
- TWO-STAGE SEPARATOR WITH VERTICAL FLOW VANE PACK (Figure 3.6c)

Application:

demisting of gas.

DEP

Characteristics:

- liquid removal efficiency > 96 %;
- moderate turndown ratio (factor 3):
- suitable for slightly fouling service (straight or single-pocket vanes only)
- not suitable for pressures above 70 bar;
- robust design:
- sensitive to liquid slugs (in-line separator cannot handle slugs at all).

Recommended use:

- typically for demisting service;
- in-line separator to be used only with relatively low flow parameter ($\phi_{\text{feed}} < 0.01$);
- two-stage separator to be used if \$\phi_{feed} ≥ 0.01;
- attractive for slightly fouling service (straight or single-pocket vanes only);
- may be used where demister mats may become plugged, e.g. waxy crudes, sulphur recovery units.

Non-recommended use:

- heavy fouling service (heavy wax, asphaltenes, sand, hydrates);
- for viscous liquids where de-gassing requirement determines vessel diameter;
- the in-line vertical flow vane pack separator shall not be used where liquid slugging may occur or where $\phi_{food} \ge 0.01$:
- if pressure exceeds 70 bar, due to the consequent sharp decline in liquid removal efficiency and insufficient turndown.

Typical process applications:

- demisting vessels with slightly fouling service.
- compressor suction scrubbers where vane packs are preferred to demister mats since their construction is more robust. In view of the limited separation efficiency of vanepacks, this application should be limited to operating pressures well below 50 bar.

Quiz 1: - Compressor KO DRUM

	Pressure , KPag	Gas rate, kg/hr	Liquid rate kg/hr	Gas Density kg/m3	Liquid Density kg/m3
Case 1	9000	1,55,000	1000	100	1000
Case 2	4000	1,00,000	2500	66	1000
Case 3	6000	60,000	2700	66	700
Case 4	3000	40,000	3000	30	1000

40,000 / 1,55,000 = ~ 26%

- 1) Which internal can be used for above service?
- a) No internal X carries mist to compressor
- b) Mist mat
- c) Vane pack X 26 < 30 50 % turndown Pressure > 50 bar

Quiz 2: - Production separator with heavy waxy oil and little solids.

- 1) Which internal can be used for above service?
- a) No internal Best option
- b) Mist mat X It can block easily.
- c) Vane pack, only if to reduce vessel size with moderate fouling

Gas Liquid Separator Design Guide

Two phase separator design is divided in following sections.

- ✓ Vessel Diameter
- Vessel Height
- Gas space height
- ✓ Liquid space height
- Nozzle sizing

SEPARATOR DIAMETER CALCULATION

Simplified Sauder-Brown equation:

$$U_T = K \left(\frac{\rho_L - \rho_V}{\rho_V} \right)^{\frac{1}{2}}$$

Gas velocity $< U_T$

Gas velocity < Particle terminal fallir

K = empirical constant for separator sizing, m/sec

 ρ_V = gas phase density, kg/m³

 $\rho_{\rm L}$ = liquid phase density, droplet or particle, kg/m³

SEPARATOR DIAMETER CALCULATION

Simplified Sauder-Brown equation:

$$U_T = K \left(\frac{\rho_L - \rho_V}{\rho_V} \right)^{\frac{1}{2}}$$

Gas velocity $< U_T$

Gravity Settling

Stoke's Law, Intermediate Law & Newton's Law Particle size and Reynolds Number

A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|AAAEAGAEAFAGAFAGAHA

Vertical Two-Phase Separator Sizing (Imperial Units)

SEP-V-2P, Rev. 0 (Edmonton modified version of Worley WS-CA-PR-008, Rev. 3, 12-Feb-03)
Verification of SEP-V-2P Rev0.pdf (Verification of Edmonton modified version)

SEP-V-2P VERTICAL TWO-PHASE SEPARATOR SIZING SI & IMPERIAL UNITS

Spreadsheet Authors: Spreadsheet Custodian: Jeff Gornall / Gord Godwin

Bob Chomyc

Calculation worksheet

CAUTION

PRIOR TO USING THIS PROGRAM, PLEASE MAKE SURE THAT YOU UNDERSTAND HOW IT WORKS, THAT YOU HAVE READ THE "INSTRUCTIONS" AND "NOTES" WORKSHEETS AND THAT YOU HAVE A WORKING KNOWLEDGE OF EXCEL.

THIS IS A READ ONLY FILE. COPY IT TO YOUR OWN DIRECTORY AND RENAME IT PRIOR TO USING IT.

ALWAYS CHECK YOUR RESULTS FOR "REASONABLENESS".

IF YOU HAVE ANY QUESTIONS, COMMENTS OR SUGGESTIONS PLEASE CONTACT BOB CHOMYC @ 5357. YOU MAY ALSO CONTACT JEFF GORNALL (5487) OR GORD GODWIN (5495) REGARDING ANY QUESTIONS.

Separator Type	K (m/s)	K (ft/s)	
Separators with mesh pad demisters (1) ^a	0.067 - 0.12	0.22 - 0.39	
Vane Pack (vertical upflow) ^a	0.12 - 0.15	0.4 - 0.5	
Wet Steam ^b	0.076	0.249	
Most Vapours under Vacuum b	0.061	0.200	
Adjustment of K Factor for Op	per. Pressure (kPa(a))	% of Design °	
0 - 100 (2)		100	
500		94	
1000		90	
2000		85	
4000		80	
8000		75	

Notes GPSA 11 & 12+

Instructions

- 9 Select "Y" or "N" in cell M29 to include or omit a demister pad from the design, respectively.
- Select "Y" or "N" in cell AD29 to include or omit the volume of the vessel bottom head, respectively. Select "E" or "H" in cell AD30 for semi-ellipsoidal heads or hemispherical heads, respectively. Note: If selected, the vessel head volume is included in the residence time from the bottom of the vessel to the NLL (cell M41). If omitted, the vessel head volume is ignored and the residence time is calculated from the bottom tan line (BTL) to the NLL. Including or omitting the volume of the vessel head in the calculation sheet will not affect the sizing or final dimensions of the vessel or the controllability of the level. It only affects the time required to drain the vessel from NLL, thus the default selection is "N".

LIST OF MODIFICATIONS FROM WS-CA-PR-008 REV. 3

This spreadsheet calculation, SEP-V-2P, has been created by modifying Worley Standard Calculation WS-CA-PR-008 Rev. 3, and adding Cover, Instructions, Notes, and Basis sheets. A validation document is available for the Worley calculation above and is titled "Verification of WS-CA-PR-008.pdf". Calculations WS-CA-PR-008 and SEP-V-2P are closely aligned with the Worley Offshore Design Guide, Gas-Liquid Separator Sizing, WS-DG-PR-011, Rev. 0, 23-Jun-03.

To create SEP-V-2P, the following modifications, excluding general formatting, were made from the original calculation WS-CA-PR-008:

- a) "Oil rate" and "Water rate" inputs have been combined into a "Liquid rate" input.
- b) "Temperature" & "Pressure" inputs have been added as reference information for the actual volume flows & densities.
- c) "Oil density" and "Water density" inputs have been combined into a "Liquid density" input.
- d) The "Standard Conditions" MACRO has been corrected to show a pressure of 14.7 psia.
- e) The "K Values" MACRO has been modified to refer the user to the "Notes" worksheet.
- f) The "Slug capacity required" input has been changed from a volume to a time basis.
- g) The "Instructions" MACRO on the Imperial worksheet was corrected to call up the text box. The text box in both worksheets was updated to reference the correct input cells in the "Ht Above Inlet Specified Minimums Table"
- h) The "Demister Y/N" input (cell M29) has been unlocked to allow user selection and Height above Inlet cell T28 has been locked to protect the formula.
- i) Data input cells have been merged to make them user friendly and less error prone.
- j) "Include head volume (Y/N)" and "Head geometry (E/H)" inputs and functions have been added.
- k) A "Residence time (bottom to NLL)" calculation cell has been added.
- I) The worksheet title has been modified to provide control for the Edmonton version and to identify its origin.
- m) In "Nozzles" section revised the "Required velocity" label to "Maximum velocity". Also, for the user entered nozzle diameters, revised the term "Min." to "Selected" or "Sel.".
- n) The "Inlet to TTL Specified Minimums Table" has been renamed to "Ht Above Inlet Specified Minimums Table". Within the table, the wording has been changed to "w/ Demister" and "w/o Demister" to standardize terminology.

Collect following data from Heat & Mass balance.

- ✓ Gas and liquid mass rate (kg/hr)
- ✓ Gas and liquid mass density (kg/m3)
- Operating pressure and temperature
- ✓ Liquid viscosity and gas molecular weight
- ✓ Tip: If liquid has two phases, then use density of light phase. This will give safe design.

 ho_G and ho_L are the densities of the gas and liquid phase respectively (kg/m³). If two immiscible liquids are present in the feed and the flow rate of the lower density liquid is at least 5 % vol. of the total liquid flow rate, then the density of the lighter liquid shall be used in the above formula.

Process Data Input

Vertical Two-Phase Separator Sizing (Imperial Units)

SEP-V-2P, Rev. 0 (Edmonton modified version of Worley WS-CA-PR-008, Rev. 3, 12-Feb-03)
Verification of SEP-V-2P Rev0.pdf (Verification of Edmonton modified version)

Temperature	=	32	°C	Pressure	=	4827	kPag
Liquid rate	=	40,000.0	kg/hr	Liquid density	=	737.6	kg/m ³
Vapour rate Standard Conditions	=	120,000.0	kg/hr	Vapour density	=	55	kg/m ³
Vapour molecular weight	=	22.0		Liquid vol. rate	=	54.2	m ³ /hr
Vapour std. volume rate	=	129,166.0	std. m³/hr	Vapour vol. rate	=	2181.8	m ³ /hr
Vapour vol. rate (Q)	=	0.606	m ^o /s	Liquid vol. rate (Q _I)	=	0.015	m ³ /s
K Factor K	=	0.095	m/s	Mixture (inlet) density (Q _m)	=	71.55	kg/m ³
Max. allowable velocity (V _{max})	=	0.33	m/s	$SQRT(\rho_L-\rho_g/\rho_g)$	=	3.52	
Diameter for vapour handling	=	1518.5	mm	Required vapour area (A _{min})	=	1.8	m ²
Slug capacity required	=	1.33	mins	Actual K (based on diameter used)	=	0.095	m/s
Manual override of diameter	=	1520	mm	Diameter used	=	1520	mm
Vessel cross section	=	1.815	m ²				
L_							

APPENDIX IV DESIGN MARGINS FOR SEPARATOR DESIGN

To determine the highest envisaged gas and liquid load for vessel design, design margins (surge factors) are required:

The design margins shall be supplied by the Principal.

Typical values are:

IN EXPLORATION AND PRODUCTION APPLICATIONS:

1.	Offshore service	Design margin
	Separator handling natural-flowing production from: a) Direct Vertical Access (DVA) wells on their own platform b) another platform or well jacket in shallow water	1.2 1.3
	c) another platform or well in deep water	1.4
	Separator handling gas lifted production from:	
	a) DVA wells on their own platform	1.4
	 b) Wells on another platform, or well jacket 	1.5
	c) Subsea wells	1.5
2.	Onshore service DEP	
	Separator handling natural flowing production, or gas plant inlet separator in:	
	a) flat or low rolling country	1.2
	b) hilly country	1.3
	Separator handling gas lifted production in:	
	a) flat or low rolling country	1.4
	b) hilly country	1.5

IN REFINERIES AND CHEMICAL PLANTS:

The design margin ranges typically from 1.15 to 1.25.

Following cases to be checked for separator sizing

- Highest Volumetric Gas rate
- Highest Volumetric Liquid rate
- Lowest pressure case for higher volume
- Highest pressure case for difficult separation
- Lowest liquid density case for difficult separation

Selection of K value

- Type of internal
- Service
- Downstream requirement for gas quality
- Pressure correction
- Orientation correction
- Liquid loading correction

Typical K Factors For Vendor Internals in Vertical Separators

Internal	K Factor (m/s)
None	0.05
Mist Mat WP	0.1
Vane Pack	0.25
Cyclones	0.3

K values for demisters should be reduced for increasing pressure (Ref 3), and GPSA (ref 2) gives an approximate reduction of 0.03 for every 7 bar increase above 7 barg.

Adjustment of K Factor for Pressure

Pressure, psig	Percent of Design Value		
Atmospheric	100		
150	90		
300 GP	SA 85		
600	80		
1,150	75		

Typical Values of K for Vertical Separators

Heigh	ıt, feet			K, ft/sec
	5	GPS	ξΔ.	0.12 - 0.24
10 or	taller			0.18 - 0.35
* 1		1 1/1		1

^{*} assumes vessel is equipped with a wire-mesh mist extractor

0.037 - 0.073 m/sec 0.055 - 0.107 m/sec

SELECTING K FOR HORIZONTAL VESSEL

$$K_{HOR} = K \left(\frac{L}{3}\right)^{0.56}$$
 WP
$$Axial Velocity_{max} = K_{HOR} \sqrt{\frac{(\rho_l - \rho_v)}{\rho_v}}$$

Where, Axial Velocity_{max} = Maximum allowable superficial axial vapour velocity, m/s

K = Empirical constant (m/s) per section 2.1

K HOR = Adjusted constant (m/s) for horizontal separators

 $\rho_{\rm I}$ = Density of liquid phase (kg/m³)

 ρ_v = Density of vapour phase (kg/m³)

L = Separator length (m)

Values of K for Horizontal Separators

Length, ft	t	K, ft/sec
10	0004	0.40 - 0.50
Other	GPSA	$K_{10} \left(\frac{L}{10}\right)^{0.56}$

^{*} assumes vessel is equipped with a wire-mesh mist extractor

SELECTING K BASED ON TYPE, SERVICE AND OPERATING PRESSURE

Separator Type	K (m/s)	K (ft/s)
Separators with mesh pad demisters (1) ^a	0.067 - 0.12	0.22 - 0.39
Vane Pack (vertical upflow) ^a	0.12 - 0.15	0.4 - 0.5
Wet Steam ^b	0.076	0.249
Most Vapours under Vacuum ^b	0.061	0.200
Adjustment of K Factor for Op	per. Pressure (kPa(a))	% of Design ^c
0 - 100 (2)		100
500		94
1000	CED V 2D Day 0	90
2000	SEP-V-2P, Rev. 0	85
4000		80
8000		75

- 1) The classic Otto York K-factor is 0.35 ft/s (0.107 m/s). Typical vertical separator designs should therefore be calculated with values from the upper end of the range shown. Values in the lower end of the range can be used when additional conservatism is required.
- 2) At low operating pressure (5 20 kPa(a)), DP is often the overriding consideration instead of demisting diameter.
- 3) Typically, use half of the above K-factors for sizing of vertical separators without wire demisters.
- 4) For glycol and amine solutions, multiply K by 0.6 0.8 [or use a value toward the low end of the above range].
- 5) For compressor suction scrubbers and expander inlet separators multiply by 0.7 0.8 [or use a value toward the low end of the above range].
- 6) Lieberman suggests, from observation, that for a mesh pad demister to work properly it should apparently have a K value of at least 0.15 0.20 ft/s [0.046 0.061 m/s] for the vapours to strike the demister's fibers with enough force "to encourage the droplets to coalesce".

SELECTING K BASED ON LIQUID LOADING

Derate the mist extractor K factor and use this reduced K value in Eq 7-8 to determine the vessel diameter. Guidelines as to determination of the appropriate deration factor are not well defined. A relatively low liquid loading application with steady flow, a low inlet velocity and a good inlet device should require minimal deration of the extractor K factor, i.e. deration factor approximately equal to 1. On the other hand, an application with significant liquid volumes, unsteady flow, high velocity inlet and a simple diverter plate inlet device may require a deration factor of 0.5. Normally, it would be more economic to improve the inlet flow condition/device than to significantly oversize the vessel relative to the mist extractor requirements.

SULZER K VALUES

Equipment Type		K-Value		
			m/s	ft/s
Gravity			0.07	0.23
Sulzer Me simple pr		on –	0.13 – 0.17	0.42 - 0.56
Sulzer Me		on – les with drainage channels	0.15 – 0.45	0.49 – 1.46
Sulzer Kn Mist Elimi			0.08 – 0.107	0.26 – 0.35
Sulzer Kn Mist Elimi		KR	0.08 – 0.15	0.26 - 0.49
Shell SMS	S, SMSM		0.25	0.82

	Mellachevron – Sulzer K Values Mellachevron – Complex profiles with drainage channels					
Туре	C – profile	Z - profile	C or Z - profile with large vane spacing	Complex profile - inte- gral drainage channel	Z-profile with drainage hooks	Z-profile with large vane spacing
Profile		**	<i>>>></i>		 ✓	₩
Flow Direction	Vertical	Vertical	Vertical	Vertical or horizontal	Horizontal	Horizontal
Installation	No housing	No housing	No housing	Housing and drainage system required.	Housing and drainage system required.	Housing and drainage system required.
Gas handling capacity (K-values)	0.17 m/s	0.14 m/s	0.14 – 0.17 m/s	0.17 – 0.45 m/s	0.30 m/s	0.30 m/s
Turndown capability	≈ 30 - 50 %	≈ 30 - 50 %	≈ 30 - 50 %	≈ 30 - 50 %	≈ 30 - 50 %	≈ 30 - 50 %
Efficiency	Medium down to ≈ 30 – 40 μ	Medium – High down to ≈ 25 µ	Low – Medium down to ≈ 30 – 50 µ	High down to ≈ 10 – 15 µ	Medium down to ≈ 25 – 30 μ	Low – Medium down to ≈ 35 – 40 µ
Liquid load capacity	Moderate	Moderate	High	Moderate to High	High	Very High
Solids handling capability	Moderate to High	Moderate	High	Low	Low	Low to Moderate
Liquid viscosity	Suitable for high viscosities/waxes	Suitable for high viscosities/waxes	Very suitable for high viscosities/waxes	Prone to fouling with high viscosities/waxes	Prone to fouling with viscosities/waxes	Suitable for high viscosities/waxes
Typical applications	Vacuum, general use, fouling service	Desalination, general use, fouling service	As for C and Z profiles but high fouling / low pressure drop services	Debottlenecking, off- shore, clean services, gas & steam processing	Horizontal scrubbers	As for C and Z profiles but high fouling / low pressure drop services
Pressure drop	Very low	Low	Very low	Moderate	Low	Low

lable C: Sulzer Mellachevron Mist Eliminator Styles

PRACTICAL SELECTION AND DESIGN GUIDE

Appendix F

Fabian, et al. Demystifying the Selection of Mist Eliminators - Part 1, Chemical Engineering, November 1993.

EFFECT OF PRESSURE ON THE ALLOWABLE K FACTOR		IMPI	FEATURES OF TRADITIONAL IMPINGEMENT-TYPE MIST ELIMINATORS						
Absolute pressure, kPa	K factor, % of design value	Eliminator type	DEMISTER*	FLEXICHEVRON®	FLEXIFIBER®				
5‡ 20‡	60-100 60-100	Cost	Lowest	2-3 times wire-mesh unit	Highest				
50	100	Efficiency	100% (for droplets) larger than 3-10 µm)	100% (for mists >20-40 mm	Up tp 99% (for <3 µm)				
100 500	100 94	Pressure drop	< 25 mm H ₂ 0	< 15 mm H ₂ 0	100-300 mm H ₂ 0				
1,000	90 85	Gas Capacity	Very good	Up to twice that of a wire-mesh unit	Lowest				
4,000	80	Liquid Capacity	Good	Best	Lowest				
8,000	75	Solids	Good	Best	Soluble particles with sprays only				
often the overriding of instead of capacity.	DkPa), pressure drop is design consideration,	S	EP-V-2P, Rev.	0					

GPSA

The K capacity factor for mesh pads is often derated for higher pressure operation, Fig. 7-13. All factors being equal, this is normally due to the reduction in surface tension of the liquid phase that occurs with increasing pressure.

PRACTICAL SELECTION AND DESIGN GUIDE

Table VIII.1 Variation of the physical properties of a C₆ mixture, and its effect on (relative) maximum droplet size and gas handling capacity of an open separator

Pressure	;	Gas density	Surface	$(\sigma/\rho_g)^{0.6}$.		MILAR O K
			tension	(relative to prop- erties at 20 bar)	10	K
20		18.7	28.9	1.0		0.07
40		39.6	22.0	0.54	(0.052
60		60.7	16.4	0.35	(0.042
80	/	84.7	11.7	0.23	V (0.034
100		108.4	8.1	0.16		0.028

Temperature	=	32	°C	Pressure	=	4827	kPag
Liquid rate	=	40,000.0	kg/hr	Liquid density	=	737.6	kg/m ³
Vapour rate Standard Conditions	=	120,000.0	kg/hr	Vapour density	=	55	kg/m ³
Vapour molecular weight	=	22.0		Liquid vol. rate	=	54.2	m ³ /hr
Vapour std. volume rate	=	129,166.0	std. m ³ /hr	Vapour vol. rate	=	2181.8	m³/hr
Vapour vol. rate (Q)	=	0.606	m ³ /s	Liquid vol. rate (Q _I)	=	0.015	m³/s
K Factor K	=(0.095	m/s	Mixture (inlet) density (Q _m)	=	71.55	kg/m ³
Max. allowable velocity (V _{max})	=	0.33	m/s	$SQRT(\rho_L-\rho_g/\rho_g)$	=	3.52	
Diameter for vapour handling	=	1518.5	mm	Required vapour area (A _{min})	=	1.8	m ²
Slug capacity required	=	1.33	mins	Actual K (based on diameter used)	=	0.095	m/s
Manual override of diameter	=	1520	mm	Diameter used	=	1520	mm
Vessel cross section	=	1.815	m ²				

Enter K value based on type of internal, service, pressure liquid loading and orientation.

Run all cases as mentioned earlier.

Arrive biggest separator Diameter for vapour & liquid loadings.

Weight / Space / Cost Optimisation

For following cases

- High gas rate
- High design / operating pressure
- Exotic / Expensive MOC
- Low liquid with clean service
- Space constraint (Offshore platform)

Use vane pack / cyclone Internal; to reduce size of the separator; and thus weight & cost of the separator.

GAS Height Calculation depends on:

- 1) With / without Internals
- 2) Type of Internals (distance between internal and feed pipe)
- 3) Type of feed device (distance between HHL & feed pipe and distance between internal & feed pipe)
- 4) Mist / Foaming service ??

Liquid Height Calculation:

- 1) Check liquid discharge is on
 - Level Control OR
 - On Off Control between high & low level
- (do not use spread-sheet <u>defaults</u>, one can go badly wrong)
- 2) Find surge volume / time
- 3) Degassing service ??

Liquid Height Calculation:

- 4) Check P & ID for number of levels, alarms and trips number of instruments installed
- 5) Find type of level measurement Magnetic type, radar, differential pressure

Different types of instruments has different minimum distance requirements

Liquid Height Calculation:

6) Most important liquid control & hold-up volume is based on (A) service (Production separator, KO drum, flash drum) and (B) downstream equipment requirement, i.e.

Feed to pump

Feed to vessel / column

Feed to exchanger

Liquid Height Calculation:

7) Check P & I D for other nozzles; i.e., size & locations for PSV, manhole etc.. This can effect vessel height.

GP	SA
-----------	----

Typical Retention Times for Gas/Liquid Separator

Application	Retention Time, minutes
Natural Gas – Condensate separation	2 – 4
Fractionator Feed Tank	10 – 15
Reflux Accumulator	5 – 10
Fractionation Column Sump	2
Amine Flash Tank	5 – 10
Refrigeration Surge Tank	5
Refrigeration Economizer	3
Heat Medium Oil Surge Tank	5 – 10

FIG. 7-21 API 12J Retention Times for Gas-Oil Separators

Oil Gravity	Liquid Retention Time, min
> 35	1
20 - 35	1 to 2
10 – 20	2 to 4

Service		Holdup Time, min. (NLL - LLL)	Surge Time, min. (NLL - HLL)
A. Unit Feed Drum		10	5
B. Separators			
1. Feed to column		5	3
2. Feed to other drum or tar	ıkage		
a. With pump or through e	xchanger	5	2
b. Without pump		2	1
3. Feed to fired heater		10	3
C. Reflux or Product Accur	nulator		
1. Reflux only		3	2
Reflux and product (1)		3+	2+
D. Column Bottoms			
1. Feed to another column		5	2
Feed to other drum or tar	ıkage		
a. With pump or through e	xchanger	5	2
b. Without pump		2	1
3. Feed to fired reboiler (2)		5 - 8	2 - 4
E. Compressor Suction/Inte			
— 1. 3 min. from HLL (alarm) to		own	
2. 10 min. from bottom tange			
F. Fuel Gas Knockout Drun			
 1. 20 ft. slug in the incoming 	fuel gas line bety	veen NLL and high level shu	ıtdown
G. Flare Knockout Drum			
1. 20 to 30 min. to HLL			
Adjustment of Holdup/Surg	je Times for Per	sonnel and Instrumentati	ion (Option Factor
A. Personnel			
a. Experienced			1.0
b. Trained			1.2
c. Inexperienced	LL SED	P-V-2P, Rev. 0	1.5
B. Instrumentation		-v-ZE, Rev. 0	

a. Well Instrumented

c. Poorly Instrumented

b. Standard Instrumentation

1.0

1.2

Source: Monnery & Svrcek, Successfully Specify Three-Phase Separators, Chemical Engineering Progress - Sept 1994.

_ 1) Based on reflux (3 min.) plus appropriate holdup time of overhead product, as per B. 1 - 3.

²⁾ Based on reboiler vapour expressed as liquid (3 min.) plus appropriate holdup time for the bottoms product, as per D. 1 & 2.

SURGE

SURGE

SURGE

HOLDUP

HOLDUP

HOLDUP

LIQUID LEVELS DEFINITION

NLL	Normal Liquid Level
	Liquid level maintained by controls during operation
HLL	High Liquid Level
	First liquid level above NLL to trigger an alarm
HHLL	High High Liquid Level
	Second liquid level above NLL to trigger a shutdown
LLL	Low Liquid Level
	First liquid level below NLL to trigger an alarm
LLLL	Low Low Liquid Level
	Second liquid level below NLL to trigger a shutdown
Hold-up time	Time to fill separator from empty to NLL at design
(Residence Time)	liquid feed rate.
Surge Time	Time to fill separator from NLL to HLL at design
	liquid feed rate.

Table 3. Low liquid level height.								
Vessel diamete		Vertical LLL						
	< 300 psia	> 300 psia						
≤ 4 ft	15 in.	6 in.	9 in.					
6ft	15 in.	6 in.	10 in.					
8ft	15 in.	6 in.	11 in.					
10 ft	6 in.	6 in.	12 in.					
12 ft	6 in.	6 in.	13 in.					
16 ft	6 in.	6 in.	15 in.					

Table 5. L/D rati	o guidelines.
Vessel Operating Pressure (psig)	L/D
0 < P ≤ 250 250 < P ≤ 500	1.5-3.0 3.0-4.0
500 < P	4.0-6.0

Typical <u>vertical separator</u> L/D ratios are normally in the 2–4 range.

Typical L/D ratios for horizontal separators normally fall in the range of 2.5–5.

Note 1: For a Test Separator, the residence times are minimised (typically 1.5 minutes between LAL and LAH). This to avoid separation of oil and water in the vessel and enable more accurate water cut measurement of the mixed oil/water stream in the liquid outlet line.

The ratio of the calculated diameter to calculated height should be reviewed. This is generally kept in the range 3 to 5.

Calculate Total height, and check surge volume% & L/D ratio, otherwise increase diameter or liquid (vessel) height.

Momentum Limit Inlet Nozzle

The diameter of the gas outlet nozzle, deshould normally be taken equal to that of the

In High Vacuum Units this criterion may result in a high outlet velocity, leading to a pressure

drop which is too high. In that case the gas outlet nozzle shall be sized such that the

The diameter of the liquid outlet nozzle, d3 shall be chosen such that the liquid velocity

does not exceed 1 m/s. The minimum diameter is 0.05 m (2 in). The nozzle shall be

pressure drop requirements between column and downstream system are met.

equipped with a vortex breaker in accordance with Standard Drawing S 10.010.

Design

outlet pipe, but the following criterion shall be satisfied:

Proprietary internal on inlet nozzle

Vapour Outlet Nozzle

Liquid Outlet Nozzle

GAS OUTLET NOZZLE

 $\rho_{\rm G} v_{\rm G, out}^2 \le 4500$

LIQUID OUTLET NOZZLE

No internal

Half-open pipe

WP For New Max. Momentum, $\rho_M V_M^2 =$

1000 kg/(m·s²)

1500 kg/(m·s²)

Max. Momentum, $\rho_M V_M^2 =$

Typical Max. Momentum,

 $\rho_{\rm M}V_{\rm M}^2 = 6000 \text{ kg/(m·s}^2).$ (Vendor to advise)

Max. Momentum, $\rho_v V_v^2 = 3750$

DFP

Momentum Limit

 $kg/(m\cdot s^2)$

[Pa]

Velocity Limit

Max. Velocity, 1 m/s

If no inlet device is used:

DEP

[Pa]

[kg/m³]

[m/s]

[Pa]

[Pa]

[Pa]

[m/s]

 $\rho_{\rm m} v_{\rm min}^2 \le 1400$ where:

 $\rho_{\mbox{\scriptsize m}}$ is the mean density of the mixture in the feed pipe

FEED INLET NOZZLE

 $\rho_{\rm m} v_{\rm m in}^2 \le 2100$

 $\rho_{\rm m} v^2_{\rm m in} \le 8000$

 $\Delta p_{sch} = 0.08 \cdot \rho_m v_{min}^2$

 $\rho_{m} = (M_{G} + M_{I})/(Q_{G} + Q_{I})$

 $v_{m,in} = (Q_G + Q_L)/(\pi d_1^2 / 4)$

a half-open pipe is used as inlet device:

If a Schoepentoeter is used as inlet device:

To prevent erosion: DEP For

and $v_{\text{m.in}}$ is the velocity of the mixture in the inlet nozzle

The pressure drop across the Schoepentoeter approximates to:

In High Vacuum Units or in any other unit or separator where the in

high because of the low gas density, the use of a Schoepentoeter

debottlenecking

mandatory. The following velocity limits shall also be satisfied:

The internal nozzle diameter, d₁ may be taken equal to that of the momentum criterion (dependent on the inlet device, if any) shall be s

- To prevent choking or damage due to vibrations:

 $v_{Gin} \le 70$

 $V_{G in} \le 0.8 V_{sonic G}$

Inlet Nozzle type is selected on following criteria

- Gas & Liquid loadings and ratio
- Separation quality required by inlet device
- To maintain reasonable ratio of vessel dia. to inlet pipe dia.
- Vessel Height can be reduced by providing proprietary device

Nozzles:							
Inlet Device		O No I	nlet Device	○ Half-open Pipe	Propr	rietary Device	!
$\rho_{\rm m}{\sf V_{\rm m}}^2$	=	6000		Min. ID mm	=	294	mm
Maximum velocity	=	9.16	m/s	Selected inlet d	iameter =	483	mm
Vapour Outlet Nozzle							
$\rho_{\rm v}{\rm V_{\rm v}}^2$	=	3750		Min. ID	=	306	mm
Maximum velocity	=	8.26	m/s	Sel. vap. outlet o	diam. =	330.2	mm
Liquid Outlet Nozzle							
Maximum velocity	=	1	m/s	Min. ID	=	138.5	mm
				Sel. liquid outlet	diam. =	146.3	mm

Check sizing of all nozzles for different cases.

Nozzles sizing case is **NOT** same as Vessel governing case.

Gas and liquid outlet nozzle's governing case are generally different.

UK CEng, FIChemE mvshah027@yahoo.com

Selection Check list

Select Separator type and orientation based on following criteria

- Gas volumetric rate & Gas to liquid volumetric ratio
- Slug volume
- Operating pressure and allowable pressure drop
- Turndown
- Feed source
- Separation efficiency required @ downstream unit
- Liquid property, fouling, viscous, solids etc..
- Space and head room available / Offshore / onshore application

Do's & Don't

- a) Do not use vane pack for high turndown (< 30% design flow)
- b) Do not use wire or knitted mesh for fouling service
- c) Do not use vane pack above 50 bar operating pressure
- d) Vertical flow vane pack is not suitable for slug service.
- ✓ Is feed gas requires de-foaming?
- ✓ Is liquid feed requires degassing?
- ✓ Is liquid heating required to prevent wax deposition?
- ✓ Is solid handling required for this service?

Design Check list

- If liquid has two phases, then use density of light phase to calculate vessel diameter. This will give safe design.
- Apply flow margin based on service

Following cases to be checked for separator and nozzles sizing

- Highest Volumetric Gas rate
- Highest Volumetric Liquid rate
- Lowest pressure case for higher volume
- Highest pressure case for difficult separation
- Lowest liquid density case for difficult separation

Select of K value based on following criteria

- ✓ Type of internal
- ✓ Service
- ✓ Downstream requirement for gas quality
- ✓ Pressure correction

Prepared By Manish Shah: Lead Process Engineer: mvshah027@yahoo.com

- ✓ Orientation correction
- ✓ Liquid loading correction

Liquid Height Calculation:

1) Check liquid discharge is on Level Control OR On Off Control between high & low level.

(do not use spread-sheet defaults, one can go badly wrong)

- 2) Find surge volume / time
- 3) Degassing service ?? (more holding time)
- 4) Check P & ID for number of levels, alarms and trips number of instruments installed
- 5) Find type of level measurement, Magnetic type, radar, differential pressure

Different types of instruments has different minimum distance requirements

- 6) Most important liquid control & hold-up volume is based on (A) service (separator, KO drum, flash drum) and (B) downstream equipment requirement, i.e.
- a) Feed to pump, b) Feed to vessel / column or c) Feed to exchanger
- 7) Check P & I D for other nozzles; i.e., size & locations for PSV, manhole etc.. This can affect vessel height.
 - ✓ Check L/D ratio based on orientation
 - ✓ Check layout for footprint and head room availability
 - ✓ Check API 12 J before preparing process data sheet.
 - Check possibility of Weight / Space / Cost Optimisation by using vane pack / cyclone Internal for following cases
 - High gas rate
 - High design / operating pressure
 - Exotic / Expensive MOC
 - Low liquid with clean service
 - Space constraint (Offshore platform)