import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import warnings
warnings.filterwarnings('ignore')

In [3]:

titanic=pd.read_csv("C:/Users/sweta/Downloads/Titanic.csv")

In [4]:

titanic.head(7)

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	
4										>	

```
In [5]:

titanic.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
d+vn	os: float64/2) int64(5) obj	oc+(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

```
In [6]: ▶
```

titanic.shape

Out[6]:

(891, 12)

In [7]: ▶

titanic.describe()

Out[7]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Exploratory Data Analysis

In [8]:

```
titanic.isnull().sum()
```

Out[8]:

PassengerId 0 Survived 0 **Pclass** 0 Name 0 Sex 0 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2

dtype: int64

In [9]:

```
titanic.dropna(subset='Embarked',inplace=True)
```

```
In [10]:
```

```
titanic.isnull().sum()
```

Out[10]:

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 **Embarked** 0 dtype: int64

H

In [11]:

sns.distplot(titanic.Age)

Out[11]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [12]:

titanic.Age.mean()

Out[12]:

29.64209269662921

In [13]:

```
sns.set_style('darkgrid')
sns.countplot(x=titanic.Survived)
```

Out[13]:

<AxesSubplot:xlabel='Survived', ylabel='count'>

In [14]:

```
plt.figure(figsize=(10,5))
sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Sex',data=titanic)
```

Out[14]:

<AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [15]: ▶
```

```
plt.figure(figsize=(10,5))
sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Pclass',data=titanic)
```

Out[15]:

<AxesSubplot:xlabel='Survived', ylabel='count'>


```
In [16]:
titanic.Survived.value_counts()
```

Out[16]:

0 5491 340

Name: Survived, dtype: int64

```
In [17]:
```

titanic.columns

Out[17]:

In [18]:

sns.countplot(x=titanic.Pclass)

Out[18]:

<AxesSubplot:xlabel='Pclass', ylabel='count'>

In [19]:

sns.countplot(x=titanic.Sex)

Out[19]:

<AxesSubplot:xlabel='Sex', ylabel='count'>

In [20]: ▶

```
plt.hist(titanic.Age,color="purple")
```

Out[20]:

In [21]:

sns.distplot(titanic.Age,color="green")

Out[21]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [22]: ▶

titanic.SibSp.value_counts()

Out[22]:

0 606

1 209

2 28

4 18

3 16

8755

Name: SibSp, dtype: int64

In [23]: ▶

sns.countplot(x=titanic.SibSp)

Out[23]:

<AxesSubplot:xlabel='SibSp', ylabel='count'>

In [24]:

titanic.Parch.value_counts()

Out[24]:

0 676

118
 80

5 5

3 5

4 4

6 1

Name: Parch, dtype: int64

In [25]: ▶

```
sns.countplot(x=titanic.Parch)
```

Out[25]:

<AxesSubplot:xlabel='Parch', ylabel='count'>

In [26]: ▶

```
plt.figure(figsize=(10,5))
plt.xlabel("Fare")
sns.distplot(titanic.Fare,color="red")
```

Out[26]:

<AxesSubplot:xlabel='Fare', ylabel='Density'>

In [27]:

```
plt.figure(figsize=(11,6))
sns.histplot(x=titanic.Fare)
```

Out[27]:

<AxesSubplot:xlabel='Fare', ylabel='Count'>


```
In [28]:

plt.figure(figsize=(11,6))
sns.boxplot(x='Pclass',y='Age',data=titanic)
```

Out[28]:

<AxesSubplot:xlabel='Pclass', ylabel='Age'>


```
In [29]:
```

round(titanic.groupby("Pclass")["Age"].mean())

Out[29]:

Pclass

1 38.0

2 30.0

3 25.0

Name: Age, dtype: float64

```
In [30]:
```

titanic.loc[(titanic['Pclass']==1) & (titanic['Age'].isnull()), 'Age']=38

```
In [31]:
```

titanic.loc[(titanic['Pclass']==2) & (titanic['Age'].isnull()),'Age']=30

```
In [32]: ▶
```

titanic.loc[(titanic['Pclass']==3) & (titanic['Age'].isnull()), 'Age']=25

H In [33]:

```
titanic.Age.isnull().sum()
```

Out[33]:

0

H In [34]:

```
titanic.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	PassengerId	889 non-null	int64
1	Survived	889 non-null	int64
2	Pclass	889 non-null	int64
3	Name	889 non-null	object
4	Sex	889 non-null	object
5	Age	889 non-null	float64
6	SibSp	889 non-null	int64
7	Parch	889 non-null	int64
8	Ticket	889 non-null	object
9	Fare	889 non-null	float64
10	Cabin	202 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), ob	ject(5)

memory usage: 90.3+ KB

In [35]: H

```
sns.distplot(titanic.Age)
```

Out[35]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [36]:

titanic.Cabin.isna().sum()/titanic.shape[0]*100 # Approx 77% data is missing in Cabin, so b

Out[36]:

77.27784026996626

In [37]:

titanic.drop('Cabin',axis=1,inplace=True)

In [38]:

titanic.drop(['Name','Ticket'],axis=1,inplace=True) # Also dropping Name and Ticket as they

In [39]: ▶

titanic.head()

Out[39]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.0	1	0	7.2500	S
1	2	1	1	female	38.0	1	0	71.2833	С
2	3	1	3	female	26.0	0	0	7.9250	S
3	4	1	1	female	35.0	1	0	53.1000	S
4	5	0	3	male	35.0	0	0	8.0500	S

In [40]:

dummies=pd.get_dummies(titanic[['Sex','Embarked']],drop_first=True)

In [41]: ▶

titanic=pd.concat([titanic,dummies],axis=1)

```
In [42]:
titanic.head()
```

Out[42]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Sex_male
0	1	0	3	male	22.0	1	0	7.2500	S	1
1	2	1	1	female	38.0	1	0	71.2833	С	0
2	3	1	3	female	26.0	0	0	7.9250	S	0
3	4	1	1	female	35.0	1	0	53.1000	S	0
4	5	0	3	male	35.0	0	0	8.0500	S	1

Out[44]:

	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embarked_S
0	0	3	22.0	1	0	7.2500	1	0	1
1	1	1	38.0	1	0	71.2833	0	0	0
2	1	3	26.0	0	0	7.9250	0	0	1
3	1	1	35.0	1	0	53.1000	0	0	1
4	0	3	35.0	0	0	8.0500	1	0	1

Building a Logistic Regression Model

```
In [45]:

x=titanic.drop('Survived',axis=1)
y=titanic['Survived']

In [46]:

from sklearn.model_selection import train_test_split
```

```
In [47]:
                                                                                            H
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=10)
In [48]:
x_train.shape,y_train.shape,x_test.shape,y_test.shape
Out[48]:
((622, 8), (622,), (267, 8), (267,))
In [49]:
                                                                                            H
from sklearn.linear_model import LogisticRegression
In [50]:
logmodel=LogisticRegression()
logmodel.fit(x_train,y_train)
Out[50]:
LogisticRegression()
In [51]:
                                                                                            H
pred_y=logmodel.predict(x_test)
In [52]:
                                                                                            H
from sklearn.metrics import confusion_matrix
In [53]:
accuracy=confusion_matrix(y_test,pred_y)
In [54]:
                                                                                            H
accuracy
Out[54]:
array([[150, 19],
       [ 33, 65]], dtype=int64)
In [55]:
                                                                                            H
from sklearn.metrics import accuracy_score
```

In [56]:

```
accuracy=accuracy_score(y_test,pred_y)
accuracy
```

Out[56]:

0.8052434456928839

In [57]: ▶

```
res=y_test-pred_y
```

In [58]:

```
plt.xlabel("errors",fontsize=17)
plt.ylabel("Density",fontsize=17)
sns.distplot(res,rug=True,color='green')
```

Out[58]:

<AxesSubplot:xlabel='Survived', ylabel='Density'>

In []: ▶