

SME0822 Análise Multivariada e Aprendizado Não-Supervisionado

Aula 4c: Inferência sobre a média

Prof. Cibele Russo

cibele@icmc.usp.br

http://www.icmc.usp.br/~cibele

Baseado em Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Prentice Hall.

Sejam X_1,\ldots,X_n vetores que representam uma amostra aleatória de uma distribuição $N_p(\underline{\mu},\Sigma)$. A função densidade de probabilidade conjunta de X_1,\ldots,X_n é dada por

$$f(x_1, \dots, x_n) = \prod_{j=1}^n \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left\{-\frac{(x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu})}{2}\right\}$$
$$= \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp\sum_{j=1}^n \left\{-\frac{(x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu})}{2}\right\}.$$

Resultado

Seja $A_{k imes k}$ uma matriz simétrica e $\underline{x}_{k imes 1}$ um vetor

$$\bullet \ \underline{\boldsymbol{x}}^{\top} A \underline{\boldsymbol{x}} = tr(\underline{\boldsymbol{x}}^{\top} A \underline{\boldsymbol{x}}) = tr(A \underline{\boldsymbol{x}} \underline{\boldsymbol{x}}^{\top})$$

• $tr(A) = \sum_{i=1}^{k} \lambda_i$, com λ_i autovalores de A para $i = 1, \dots, k$.

$$\begin{split} &\sum_{j=1}^n \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ \Sigma^{-1} (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \\ \operatorname{tr} \left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \end{split}$$

$$\begin{split} &\sum_{j=1}^n \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ \Sigma^{-1} (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \\ &\operatorname{tr} \left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \end{split}$$

$$\begin{split} &\sum_{j=1}^n \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ \Sigma^{-1} (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \\ &\operatorname{tr} \left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \end{split}$$

$$\begin{split} &\sum_{j=1}^n \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ (x_j - \underline{\mu})^\top \Sigma^{-1} (x_j - \underline{\mu}) \right\} = \\ &\sum_{j=1}^n \operatorname{tr} \left\{ \Sigma^{-1} (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \\ &\operatorname{tr} \left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \end{split}$$

$$\operatorname{tr}\left\{\Sigma^{-1}\sum_{j=1}^{n}(x_{j}-\underline{\mu})(x_{j}-\underline{\mu})^{\top}\right\} = \\ \operatorname{tr}\left\{\Sigma^{-1}\sum_{j=1}^{n}(x_{j}-\overline{x}+\overline{x}-\underline{\mu})(x_{j}-\overline{x}+\overline{x}-\underline{\mu})^{\top}\right\} = \\$$

(após alguns cálculos - exercício)

$$\operatorname{tr}\left\{\Sigma^{-1}\left[\sum_{j=1}^n(x_j-\overline{x})(x_j-\overline{x})^\top+n(\overline{x}-\underline{\mu})(\overline{x}-\underline{\mu})^\top\right]\right\}.$$

$$\operatorname{tr}\left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \\ \operatorname{tr}\left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \overline{x} + \overline{x} - \underline{\mu}) (x_j - \overline{x} + \overline{x} - \underline{\mu})^\top \right\} =$$

(após alguns cálculos - exercício)

$$\operatorname{tr}\left\{\Sigma^{-1}\left[\sum_{j=1}^n(x_j-\overline{x})(x_j-\overline{x})^\top+n(\overline{x}-\underline{\mu})(\overline{x}-\underline{\mu})^\top\right]\right\}$$

$$\operatorname{tr}\left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \underline{\mu}) (x_j - \underline{\mu})^\top \right\} = \\ \operatorname{tr}\left\{ \Sigma^{-1} \sum_{j=1}^n (x_j - \overline{x} + \overline{x} - \underline{\mu}) (x_j - \overline{x} + \overline{x} - \underline{\mu})^\top \right\} =$$

(após alguns cálculos - exercício)

$$\operatorname{tr}\left\{\Sigma^{-1}\left[\sum_{j=1}^n(x_j-\overline{x})(x_j-\overline{x})^\top+n(\overline{x}-\underline{\mu})(\overline{x}-\underline{\mu})^\top\right]\right\}.$$

Reescrevemos então a função densidade de probabilidade agora como função de verossimilhança:

$$L(\underline{\mu}, \Sigma | x_1, \dots, x_n) = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \times \exp \left\{ -\text{tr} \left\{ \sum_{j=1}^n (x_j - \overline{x}) (x_j - \overline{x})^\top + n(\overline{x} - \underline{\mu}) (\overline{x} - \underline{\mu})^\top \right] \right\} / 2 \right\}$$

e então, obtemos o logaritmo da verossimilhança:

$$\begin{split} \log \ L(\underline{\mu}, \Sigma | \underline{x}_1, \dots, \underline{x}_n) &= -\frac{np}{2} \log(2\pi) - \frac{n}{2} \log |\Sigma| \\ - \mathrm{tr} \left\{ \Sigma^{-1} \left[\sum_{j=1}^n (\underline{x}_j - \overline{\underline{x}}) (\underline{x}_j - \overline{\underline{x}})^\top + n(\overline{\underline{x}} - \underline{\mu}) (\overline{\underline{x}} - \underline{\mu})^\top \right] \right\} / 2. \end{split}$$

Resultado

Os estimadores de máxima verossimilhança de $\underline{\mu}$ e Σ são dados por

$$\hat{\underline{\mu}} = \overline{X} \quad \mathbf{e} \quad \hat{\Sigma}_{MV} = \frac{1}{n} \sum_{j=1}^{n} (\underline{X}_{j} - \overline{\underline{X}}) (\underline{X}_{j} - \overline{\underline{X}})^{\top}.$$

As estimativas de máxima verossimilhança (após observar a amostra) de $\underline{\mu}$ e Σ são dados por

$$\hat{\mu} = \overline{x} \quad e \quad \hat{\Sigma}_{MV} = \frac{1}{n} \sum_{j=1}^{n} (\underline{x}_{j} - \overline{\underline{x}}) (\underline{x}_{j} - \overline{\underline{x}})^{\top}$$

Prova em Johnson (2007, p. 172).

Note que, como já mostramos, $\hat{\Sigma}_{\text{MV}}$ é viesado para estimar Σ . Assim, em muitas aplicações consideramos o estimador não viesado para Σ :

$$\hat{\Sigma} = S = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \overline{X}) (X_j - \overline{X})^{\top}$$

Distribuição amostral de $\overline{\underline{X}}$ e S

Seja $\underbrace{X}_1,\dots,\underbrace{X}_n$ uma amostra aleatória de uma distribuição $N_p(\underline{\mu},\Sigma)$ e

$$\hat{\underline{\mu}} = \overline{\underline{X}} \quad \mathbf{e} \quad \hat{\Sigma} = S = \frac{1}{n-1} \sum_{j=1}^n (\underline{X}_j - \overline{\underline{X}}) (\underline{X}_j - \overline{\underline{X}})^\top.$$

Temos o seguinte

Resultado

- $\bullet \ \overline{X} \sim N_p\left(\underline{\mu}, \frac{\Sigma}{n}\right).$
- $(n-1)S \sim Wishart(n-1).$
- **3** \overline{X} e S são independentes.

Distribuição amostral de \overline{X} e S

Obs: A distribuição Wishart é uma generalização da distribuição Gama, e é definida como a soma de produtos de normais multivariadas independentes de média $\underline{0}$ e variância Σ : Em outras palavras, seja

$$W = \sum_{j=1}^n \tilde{Z}_j \tilde{Z}_j^\top \text{ com } \tilde{Z}_j \overset{i.i.d}{\sim} N(\underline{0}, \Sigma),$$

Então

$$W \sim Wishart(\Sigma, n)$$
.

A distribuição assintótica de \overline{X}

Teorema do Limite Central

Seja $\underline{\mathfrak{X}}_1,\ldots,\underline{\mathfrak{X}}_n$ uma amostra aleatória de uma distribuição qualquer p-variada com $\mathsf{E}(\underline{\mathfrak{X}}_i)=\underline{\mu}$ e $\mathsf{Var}(\underline{\mathfrak{X}}_i)=\Sigma$, para $i=1,\ldots,n$ e Σ positiva definida.

Então, para n suficientemente grande e n>>p, temos

$$\sqrt{n}(\overline{X} - \underline{\mu}) \sim N_p(\underline{0}, \Sigma)$$

e ainda

$$n(\overline{X} - \underline{\mu})^{\top} S^{-1}(\overline{X} - \underline{\mu}) \sim \chi_p^2.$$

Seja $\underline{X}_1,\dots,\underline{X}_n$ uma amostra aleatória de uma distribuição normal p-variada com vetor de médias $\underline{\mu}$ e matriz de variâncias e covariâncias Σ . Sejam $\overline{\underline{X}}$ e S o vetor de médias amostrais e a matriz de variâncias e covariâncias amostrais.

Queremos avaliar se

$$H_0: \underline{\mu} = \underline{\mu}_0 \text{ contra}$$

 $H_1: \underline{\mu} \neq \underline{\mu}_0,$

Relembramos o resultado anterior

Resultado

- $\bullet \ \overline{X} \sim N_p \left(\underbrace{\mu}_{\sim}, \frac{\Sigma}{n} \right).$
- $(n-1)S \sim Wishart(n-1).$
- **3** \overline{X} e S são independentes.

Além disso, sob H_0 ,

$$T^2 = \sqrt{n}(\overline{\underline{X}} - \underline{\mu}_0)^\top \left(\frac{(n-1)S}{n-1}^{-1}\right) \sqrt{n}(\overline{\underline{X}} - \underline{\mu}_0) \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$

A quantidade

$$T^{2} = n(\overline{X} - \underline{\mu}_{0})^{\top} S^{-1}(\overline{X} - \underline{\mu}_{0}) \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$

é conhecida como a Estatística T^2 de Hotelling.

Assim, rejeitamos H_0 a um nível de significância lpha se

$$T_{obs}^2 = n(\overline{\underline{X}} - \underline{\mu}_0)^{\top} S^{-1}(\overline{\underline{X}} - \underline{\mu}_0) > \frac{(n-1)p}{n-p} \ q_{F_{p,n-p,\alpha}}$$

em que $q_{F_{p,n-p,\alpha}}$ é o quantil $\alpha-$ superior de uma distribuição $F_{p,n-p}.$

Propriedade de T^2

Seja $\underline{\mathcal{X}}_1,\dots,\underline{\mathcal{X}}_n$ uma amostra aleatória de uma distribuição normal p-variada com vetor de médias $\underline{\mu}_X$ e matriz de variâncias e covariâncias Σ_X .

Seja $\underline{Y}_i = C\underline{X}_i + \underline{d}$, com C uma matriz não singular fixa e \underline{d} um vetor fixo.

Temos que
$$\mathsf{E}(\underline{Y}_i) = C\underline{\mu}_X + \underline{d}, \, \mathsf{Var}(\underline{Y}_i) = C\Sigma_X C^\top.$$

Além disso, $\overline{\underline{Y}} = C\overline{\underline{X}} + \underline{d}$ e $S_Y = CS_xC^{\top}$ (exercício).

Propriedade de T^2

É possível mostrar que a estatística T^2 para avaliar

$$H_0: \underline{\mu} = \underline{\mu}_0 \text{ contra}$$

 $H_1: \underline{\mu} \neq \underline{\mu}_0,$

 $\acute{\mathrm{e}}$ equivalente à estatística T^2 para avaliar

$$H_0: C\underline{\mu} + \underline{d} = C\underline{\mu}_0 + \underline{d} \text{ contra}$$

$$H_1: C\underline{\mu} + \underline{d} \neq C\underline{\mu}_0 + \underline{d},$$