Architecture des ordinateurs

Université de Tours

Département informatique de Blois

Examen 2019 - Durée : 1h30 (une feuille A4 manuscrite autorisée, calculatrice fournie)

*

Question de cours (4 pts : (2+2))

15 minutes

Les questions suivantes sont indépendantes.

- 1. Sur l'opérateur booléen ↓ Nor :
 - (a) On rappelle que l'opérateur $x \downarrow y = \neg(x \lor y)$. Montrer que $\{\downarrow\}$ forme un système complet de connecteurs.
 - (b) Montrer que $x \uparrow y = [(x \downarrow x) \downarrow (y \downarrow y)] \downarrow [(x \downarrow x) \downarrow (y \downarrow y)]$. Où \uparrow désigne l'opérateur Nand tel que $x \uparrow y = \neg (x \land y)$.
- 2. Rappeler la pyramide de hiérarchie mémoire. Dans quelle catégorie de la pyramide se trouve l'accumulateur de l'UAL? Expliquer en quelques lignes son utilité.

Problème 1 : Algorithme CORDIC (7 pts : 1 + (1.5 + 2) + (2 + 0.5))

 $40\ minutes$

L'algorithme CORDIC (COordinate Rotation Digital Computer) est très utilisé dans les micro-processeurs et les calculatrices pour le calcul des fonctions trigonométriques sin, cos et tan.

Soit un angle $\theta \in [0, \pi/2[$, on considère un vecteur de coordonnées $v_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$. Le principe de l'algorithme CORDIC est d'appliquer une rotation de ce vecteur à chaque itération i jusqu'à converger vers l'angle θ désiré. Pour $n \to +\infty$, on obtient $x_n = \cos(\theta)$ et $y_n = \sin(\theta)$.

L'équation de récurrence du vecteur est donnée par la relation :

$$v_{i+1} = \begin{pmatrix} x_{i+1} \\ y_{i+1} \end{pmatrix} = \frac{1}{\sqrt{1 + 2^{-2i}}} \times \begin{pmatrix} x_i - \sigma_i 2^{-i} y_i \\ x_i \sigma_i 2^{-i} + y_i \end{pmatrix}$$

où:

•
$$x_0 = 1$$

•
$$z_{i+1} = z_i - \sigma_i \varepsilon_i$$

•
$$y_0 = 0$$

•
$$\varepsilon_i = \arctan(2^{-i})$$

•
$$z_0 = \theta$$

•
$$\sigma_i = \operatorname{sgn}(z_i)$$
 où $\operatorname{sgn}(x)$ désigne le signe de x .

Ces formules supposent de pouvoir calculer plusieurs éléments complexes, notamment les valeurs de $\arctan(x)$ ou de $\frac{1}{\sqrt{1+x}}$. C'est ce qui va nous occuper dans la partie suivante.

Approximation des valeurs $\arctan(x)$ et $\frac{1}{\sqrt{1+x}}$

- 1. Justifier pourquoi pour des petites valeurs de x, on peut dire que $\arctan(x) \approx x$. Pourquoi cette proprité est intéressante ici ? Pouvez-vous donner une approximation polynomiale plus précise ?
- 2. Sur le calcul de 2^{-i} .
 - (a) Quel opérateur d'arithmétique binaire, combiné à une division, permet de calculer facilement la valeur flottante 2^{-i} ?
 - (b) Calculer la valeur IEEE 754 de 2^{-i} pour tout $i \ge 1$.
- 3. On souhaite donner une approximation de la valeur de $\frac{1}{\sqrt{1+a}}$, pour tout $a \in \mathbb{R}^+$, à l'aide de l'algorithme de Newton.
 - (a) On se propose d'utiliser la fonction $f(x) = \frac{1}{x^2} 1 a$ pour l'algorithme de Newton appliqué au calcul de $\frac{1}{\sqrt{1+a}}$. Justifier ce choix.
 - (b) Donner l'itération de Newton x_{n+1} pour la fonction f proposée question 3. (a). Appliquer l'algorithme pour n=1 avec $x_0=\frac{1}{2}$.
 - (c) On applique l'algorithme de Newton au calcul de $\frac{1}{\sqrt{1+2}}$. Au rang n=4 la valeur retournée est de 0.5773502692.

Comparer cette valeur avec celle donnée par la calculatrice. Sans le démontrer, la rapidité de convergence de l'algorithme vous semble d'ordre logarithmique, linéaire ou quadratique ?

Codage de la valeur cos(1) en IEEE 754

On souhaite coder la valeur $\cos(1)$ sur un Half precision selon la norme IEEE 754. Pour rappel, un Half est représenté par :

• 1 bit de signe

ullet 10 bits de mantisse M

• 5 bits d'exposant E

• Le biais associé ε vaut 15.

On applique CORDIC pour $\theta = 1$ et n = 25. L'algorithme retourne $\cos(1) \approx \frac{5403}{10000} = 0.54030$.

- 1. Coder la valeur $\frac{5403}{10000}$ sous le format Half precision de la norme IEEE 754. On gardera la forme fractionnaire pour l'application de l'algorithme du calcul de la partie flottante.
- 2. La valeur $\frac{5403}{10000}$ peut-elle être représentée dans un half sans faire d'erreur ? Justifier.
- 3. Bonus (1pt) : Comparer la valeur donnée par l'algorithme avec celle de la calculatrice. Que pouvez-vous dire sur la rapidité de convergence de l'algorithme CORDIC ?

Problème 2 : Assembleur (5 pts : 2 + 3)

20 minutes

On souhaite ici programmer l'algorithme de la conjecture de Syracuse en Assembleur MIPS. Soit $N \in \mathbb{N}^*$, la suite de Syracuse $(S_n)_{n \in \mathbb{N}}$ est définie telle que :

$$\begin{cases} \mathcal{S}_0 = N \\ \mathcal{S}_{n+1} = \frac{\mathcal{S}_n}{2} & \text{Si } \mathcal{S}_n \text{ est pair} \\ \mathcal{S}_{n+1} = 3 \times \mathcal{S}_n + 1 & \text{Si } \mathcal{S}_n \text{ est impair} \end{cases}$$

La conjecture établie que $\forall N \in \mathbb{N}^*, \exists k \in \mathbb{N} | \mathcal{S}_k = 1$, c'est-à-dire que pour tout nombre N de départ, la suite converge vers la valeur 1 à partir d'un certain rang k.

Le but de cet exercice est de déterminer le plus petit rang k où la suite $S_k = 1$.

- 1. Écrire la forme linéaire (c'est-à-dire le pseudo-code assembleur) de algorithme de calcul du plus petit rang k tel que $S_k = 1$ pour un nombre N de départ.
- 2. Compléter le programme en assembleur MIPS syracuse.asm donné en annexe qui calcule le plus petit rang k tel que $S_k = 1$.

On donne en annexe les mnémoniques communs utilisés en MIPS. On suppose que N est contenu dans le registre t0 et qu'on dispose de la routine d'impression print_int et print_string.

 \mathbf{Ex} : Si N=5, le programme affichera "k=5".

Problème 3 : Clé de Parité (4 pts : 1.5 + 1 + 1.5)

15 minutes

On souhaite représenter le circuit séquentiel permettant de calculer la clé de parité d'une séquence binaire $\langle x_n...x_2x_1\rangle$. Pour se faire, on représente chaque bit x_i par une variable d'entrée e qui vaut 1 si x_i vaut 1 et 0 sinon.

On note $c^{(i)}$ la clé de parité résultante pour la sous-séquence $\langle x_{i-1}...x_1 \rangle$.

La clé de parité $c^{(i+1)}$ est alors donnée par la table de vérité ci-dessous :

$c^{(i)}$	e	$c^{(i+1)}$
0	0	0
0	1	1
1	0	1
1	1	0

- 1. Dessiner l'automate de Moore associée à la table de vérité de $c^{(i+1)}$.
- 2. Donner l'équation booléene de la variable $c^{(i+1)}$.
- 3. Dessiner le circuit séquentiel de $c^{(i+1)}$.

Annexes

Programme assembleur MIPS: Problème 2

```
##
# @author N°étudiant ...
# File_name : syracuse.asm
# Description : Calcul du premier rang k tel que \mathcal{S}_k=1 où (\mathcal{S}_n)
                 est la suite de Syracuse.
##
### Data section (Vous pouvez déclarer ici d'autres données et constantes) ###
RANG
      : .asciiz "k = "
### Text section ###
.text
.globl _main_
### Début du programme (à compléter) ###
_main_ :
     li $t0, N # \mathcal{S}_0=N (à définir)
      ## TO DO ##
### Sorti du programme ###
```

```
### Sorti du programme ###
fin :
    li $v0, 10
    syscall

## Routines d'impression ##
# print_int et print_string impriment le contenu du registre $a0
##
print_int :
    li $v0, 1
    syscall
    jr $ra
```

```
print_string :
    li $v0, 4
    syscall
    jr $ra
```

Mnémoniques communs MIPS : Problème 2

Soient les registres $r_{i \in \{0,1,2\}}$, le registre CO correspondant au compteur ordinal.

- li \$r0, n effectue $r_0 \leftarrow n$.
- 1b \$r0, n(\$r1) effectue $r_0 \leftarrow RAM[r_1 + n]$.
- sb \$r0, n(\$r1) effectue $RAM[\$r_1 + n] \leftarrow \r_0 .
- move \$r0, \$r1 effectue $\$r_0 \leftarrow \r_1 .
- Opérations logiques et arithmétiques. Avec $Op \in \{and, or, xor, sll, srl, add, sub, mul, div\}$.

```
Op $r0, $r1, $r2 effectue $r_0 \leftarrow Op(\$r_1,\$r_2), et Op $r0, $r1, n effectue $r_0 \leftarrow Op(\$r_1,n).
```

- j label effectue $CO \leftarrow RAM[label]$
- Branchement conditionnel. Avec Op ∈ {beq, bne, blt, ble, bgt, bge}.
 - o beq \$r0, \$r1, label effectue \$CO $\leftarrow RAM[label]$ si et seulement si \$r_0 = \$r_1, sinon, le programme se poursuit séquentiellement. (bne pour \$r_0 \neq \$r_1\$).
 - o blt \$r0, \$r1, label effectue \$CO $\leftarrow RAM[label]$ si et seulement si \$r_0 < \$r_1, sinon, le programme se poursuit séquentiellement. (ble est utilisée pour la relation \leq).
 - o bgt \$r0, \$r1, label effectue \$CO $\leftarrow RAM[label]$ si et seulement si \$r_0 > \$r_1, sinon, le programme se poursuit séquentiellement. (bge est utilisée pour la relation \geq).

Ces opérations sont aussi valables pour la signature Op \$r0, n, label. Dans ce cas, \$r_1 est substitué par $n \in \mathbb{Z}$. La sémantique de l'opération de branchement est conservée.