B. Fourier Transform Pair:

The function $X(\Omega)$ defined by Eq. (6.23) is called the *Fourier transform* of x[n], and Eq. (6.26) defines the *inverse Fourier transform* of $X(\Omega)$. Symbolically they are denoted by

$$X(\Omega) = \mathcal{F}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$
(6.27)

$$x[n] = \mathcal{F}^{-1}\{X(\Omega)\} = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega \qquad (6.28)$$

and we say that x[n] and $X(\Omega)$ form a Fourier transform pair denoted by

$$x[n] \longleftrightarrow X(\Omega) \tag{6.29}$$

Equations (6.27) and (6.28) are the discrete-time counterparts of Eqs. (5.31) and (5.32).

C. Fourier Spectra:

The Fourier transform $X(\Omega)$ of x[n] is, in general, complex and can be expressed as

$$X(\Omega) = |X(\Omega)|e^{j\phi(\Omega)} \tag{6.30}$$

As in continuous time, the Fourier transform $X(\Omega)$ of a nonperiodic sequence x[n] is the frequency-domain specification of x[n] and is referred to as the *spectrum* (or *Fourier spectrum*) of x[n]. The quantity $|X(\Omega)|$ is called the *magnitude spectrum* of x[n], and $\phi(\Omega)$ is called the *phase spectrum* of x[n]. Furthermore, if x[n] is real, the amplitude spectrum $|X(\Omega)|$ is an even function and the phase spectrum $\phi(\Omega)$ is an odd function of Ω .

D. Convergence of $X(\Omega)$:

Just as in the case of continuous time, the sufficient condition for the convergence of $X(\Omega)$ is that x[n] is absolutely summable, that is,

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty \tag{6.31}$$

E. Connection between the Fourier Transform and the z-Transform:

Equation (6.27) defines the Fourier transform of x[n] as

$$X(\Omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j\Omega n}$$
 (6.32)

The z-transform of x[n], as defined in Eq. (4.3), is given by

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$
 (6.33)

Comparing Eqs. (6.32) and (6.33), we see that if the ROC of X(z) contains the unit circle, then the Fourier transform $X(\Omega)$ of x[n] equals X(z) evaluated on the unit circle, that is,

$$X(\Omega) = X(z)|_{z=e^{j\Omega}} \tag{6.34}$$

Note that since the summation in Eq. (6.33) is denoted by X(z), then the summation in Eq. (6.32) may be denoted as $X(e^{j\Omega})$. Thus, in the remainder of this book, both $X(\Omega)$

Table 6-1. Properties of the Fourier Transform

Table 6-1. Properties of the Fourier Transform		
Property	Sequence	Fourier transform
	x[n]	$X(\Omega)$
	$x_1[n]$	$X_1(\Omega)$
	$x_2[n]$	$X_2(\Omega)$
Periodicity	x[n]	$X(\Omega+2\pi)=X(\Omega)$
Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1X_1(\Omega) + a_2X_2(\Omega)$
Time shifting	$x[n-n_0]$	$e^{-j\Omega n_0}X(\Omega)$
Frequency shifting	$e^{j\Omega_0 n}x[n]$	$X(\Omega-\Omega_0)$
Conjugation	$x^*[n]$	$X^*(-\Omega)$
Time reversal	x[-n]	$X(-\Omega)$
Time scaling	$x_{(m)}[n] = \begin{cases} x[n/m] & \text{if } n = km \\ 0 & \text{if } n \neq km \end{cases}$	$X(m\Omega)$
Frequency differentiation	nx[n]	$j\frac{dX(\Omega)}{d\Omega}$
First difference	x[n]-x[n-1]	$(1-e^{-j\Omega})X(\Omega)$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\pi X(0)\delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}X(\Omega)$
		$ \Omega \leq \pi$
Convolution	$x_1[n] * x_2[n]$	$X_1(\Omega)X_2(\Omega)$
Multiplication	$x_1[n]x_2[n]$	$\frac{1}{2\pi}X_1(\Omega)\otimes X_2(\Omega)$
Real sequence	$x[n] = x_e[n] + x_o[n]$	$X(\Omega) = A(\Omega) + jB(\Omega)$
		$X(-\Omega) = X^*(\Omega)$
Even component	$x_e[n]$	$Re\{X(\Omega)\} = A(\Omega)$
Odd component Parseval's relations	$x_o[n]$	$j\operatorname{Im}\{X(\Omega)\}=jB(\Omega)$
	$\sum_{n=-\infty}^{\infty} x_1[n]x_2[n] = \frac{1}{2\pi} \int_{2\pi} X_1(\Omega)X_2(-1)$	Ω) $d\Omega$
	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(\Omega) ^2 d\Omega$	2

x[n]	$X(\Omega)$	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\Omega n_0}$	
x[n] = 1	$2\pi\delta(\Omega), \Omega \leq \pi$	
$e^{j\Omega_0 n}$	$2\pi\delta(\Omega-\Omega_0), \Omega , \Omega_0 \le \pi$	
$\cos\Omega_0 n$	$\pi[\delta(\Omega-\Omega_{_0})+\delta(\Omega+\Omega_{_0})], \Omega , \Omega_{_0} \leq\pi$	
$\sin\Omega_0 n$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \leq\pi$	
u[n]	$\pi \delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}, \Omega \leq \pi$	
-u[-n-1]	$-\pi\delta(\Omega)+\frac{1}{1-e^{-j\Omega}}, \Omega \leq \pi$	
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}$	
$-a^nu[-n-1], a >1$	$\frac{1}{1-ae^{-j\Omega}}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{\left(1-ae^{-j\Omega}\right)^2}$	
$a^{ n }, a < 1$ $\frac{1 - a^2}{1 - 2a\cos\Omega + a^2}$		
$x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases}$	$\frac{\sin\left[\Omega\left(N_1+\frac{1}{2}\right)\right]}{\sin(\Omega/2)}$	
$\frac{\sin Wn}{\pi n}, 0 < W < \pi$	$X(\Omega) = \begin{cases} 1 & 0 \le \Omega \le W \\ 0 & W < \Omega \le \pi \end{cases}$	
$\sum_{k=-\infty}^{\infty} \delta[n-kN_0]$	$\Omega_0 \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_0), \Omega_0 = \frac{2\pi}{N_0}$	

Table 6-2. Common Fourier Transform Pairs

6.5 THE FREQUENCY RESPONSE OF DISCRETE-TIME LTI SYSTEMS

A. Frequency Response:

In Sec. 2.6 we showed that the output y[n] of a discrete-time LTI system equals the convolution of the input x[n] with the impulse response h[n]; that is,

$$y[n] = x[n] * h[n]$$
 (6.67)

Applying the convolution property (6.58), we obtain

$$Y(\Omega) = X(\Omega)H(\Omega) \tag{6.68}$$