

Student Number:

u				

Mathematical Sciences Institute

EXAMINATION: Final examination — June 2022

MATH 3345/6215

Exam Duration: 180 minutes. **Reading Time:** 0 minutes.

Materials Permitted In The Exam Venue:

• None.

Materials To Be Supplied To Students:

• None.

Instructions To Students:

- You must justify all your answers, except where stated otherwise.
- Standard notation:
 - If p is a prime number, then \mathbb{F}_p denotes $\mathbb{Z}/p\mathbb{Z}$.
 - ζ_n denotes the complex number $e^{2\pi i/n} = \cos(2\pi/n) + i\sin(2\pi/n)$
 - S_n denotes the group of permutations of the set $\{1, \ldots, n\}$.

Q1 Q2		Q3	Q4	Q5	Q6
32	20	15	15	10	10

Total / 102

Question 1 32 pts

Give examples of the following, or if no example exists, state that. In either case, briefly justify your answer.

- (a) A ring homomorphism $\mathbb{F}_3 \to \mathbb{C}$.
- (b) An extension of $\mathbb{Q}(i)$ of degree 123.
- (c) An irreducible polynomial of degree 4 over \mathbb{F}_2 .
- (d) A separable extension which is not normal.
- (e) A normal extension which is not separable.
- (f) An irreducible cubic polynomial over \mathbb{F}_7 with Galois group S_3 .
- (g) An irreducible polynomial of degree 4 in $\mathbb{Q}[x]$ which has a non-constructible real root.
- (h) A polynomial $f(x) \in \mathbb{Q}[x]$ with Galois group S_7 .

Question 2 20 pts

Let E/F denote an extension of degree 2. Let p denote the characteristic of F.

- (a) Prove that if $p \neq 2$, then $E = F(\sqrt{a})$ for some element $a \in F$.
- (b) Now assume p = 2. Is it *sometimes*, *always*, or *never* the case that $E = F(\sqrt{a})$ for some element $a \in F$? (Don't forget to justify your answer.)
- (c) Give an example of an extension E/\mathbb{Q} which is not a radical extension but which is contained in an iterated radical extension. (Recall that an extension E/F is *radical* if $E = F(\alpha)$, for some $\alpha \in E$ with the property that there is an integer $n \ge 1$ such that $\alpha^n \in F$ and that E/F is *iterated radical* if is a tower of radical extensions.)
- (d) Give an example of an extension E/\mathbb{Q} which is radical but not contained in a Galois extension with abelian Galois group.

Question 3 15 pts

(a) Let F be a field. Let $f(x) \in F[x]$ be an irreducible separable polynomial of degree n. Define the Galois group $G_{f(x)}$ in terms of field automorphisms and explain how it can be viewed as a subgroup of S_n .

- (b) State the definition of a transitive subgroup of S_n , and prove that $G_{f(x)}$ is indeed a transitive subgroup of S_n .
- (c) Give an example of an integer n and a subgroup G of S_n such that |G| is a multiple of n but such that G cannot occur as the Galois group of any irreducible polynomial of degree n over any field F.

Question 4 15 pts

Let p be a prime number, and let $n \ge 2$ be an integer. Consider the following three rings with p^n elements: $\mathbb{Z}/p^n\mathbb{Z}$, $(\mathbb{F}_p)^n$, and \mathbb{F}_{p^n} . (We restrict to $n \ge 2$, because when n = 1, they are all the same.)

- (a) Which of the three are isomorphic as rings?
- (b) Which of the three are isomorphic as groups?
- (c) Which of the three are vector spaces (and over which fields)? Which of these are isomorphic as vector spaces?

Don't forget to justify your answers.

Question 5 10 pts

Determine the Galois group $G = \operatorname{Gal}(\mathbb{Q}(\zeta_{16})/\mathbb{Q})$. Draw a diagram of the subgroups of G and the corresponding diagram of subfields of $\mathbb{Q}(\zeta_{16})$, making clear which subgroup corresponds to which field. For each of the subfields, find a generator (over \mathbb{Q}). Determine which subfields are normal and which are conjugate to which others.

Question 6 10 pts

Dirichlet's theorem in number theory states that for any two relatively prime integers a, n, there exist infinitely many prime numbers p such that $p \equiv a \mod n$. Using this theorem (or otherwise), prove that every finite cyclic group occurs as the Galois group of some finite Galois extension E of \mathbb{Q} .

MATH 3345/6215, Page 7 of 7