Smart Module SIMT 1502

Hardware Version: V1.2 Software Version: CB03_8909_V4.4_20160901

Manufacturer

SHANGHAI SIMCOM LIMITED

Building A,SIM Technology Building,No.633, Jinzhong Road, Changning District

Expert Importers: Datalogic Srl

Address: Via San Vitalino 13 – 40012 Lippo di Calderara di Reno

This device is restricted to indoor operation only in the band 5150 - 5350 MHz. (Only for devices that support 802.11 5 GHz functions)

This device is restricted to indoor use only when operating in the 5150 to 5350 MHz frequency range.

mnz irequeire	y range.						
	AT	BE	BG	HR	CY	CZ	DK
	EE	FI	FR	DE	EL	HU	IE
	IT	LV	LT	LU	MT	NL	PL
	PT	RO	SK	SI	ES	SE	UK

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Please notice that if the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains FCC ID: UDV-20170406" any similar wording that expresses the same meaning may be used.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20cm between the radiator & your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

The module is limited to OEM installation ONLY.

The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install module.

The module is limited to installation in mobile application;

A separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and difference antenna configurations.

There is requirement that the grantee provide guidance to the host manufacturer for compliance with Part 15B requirements.

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

(1) the device for operation in the band 5150-5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;

(2)the maximum antenna gain permitted for devices in the bands 5250-5350 MHz and 5470-5725 MHz shall comply with the e.i.r.p. limit; and (3)the maximum antenna gain permitted for devices in the band 5725-5850 MHz shall comply with the e.i.r.p. limits specified for point-to-point and non point-to-point operation as appropriate.

(4) Users should also be advised that high-power radars are allocated as primary users (i.e. priority users) of the bands 5250-5350 MHz and 5650-5850 MHz and that these radars could cause interference and/or damage to LE-LAN devices.

- (i) les dispositifs fonctionnant dans la bande 5 150-5 250 MHz sont réservés uniquement pour uneutilisation à l'intérieur afin de réduire les risques de brouillage préjudiciable aux systèmes de satellites mobiles utilisant les mêmes canaux;
- (ii) le gain maximal d'antenne permis pour les dispositifs utilisant les bandes 5 250-5 350 MHz et5 470-5 725 MHz doit se conformer à la limite de p.i.r.e.;
- (iii) le gain maximal d'antenne permis (pour les dispositifs utilisant la bande 5 725-5 850 MHz) doit se conformer à la limite de p.i.r.e. spécifiée pour l'exploitation point à point et non point à point, selon le cas.
- (iiii) De plus, les utilisateurs devraient aussi être avisés que les utilisateurs de radars de haute puissancesont désignés utilisateurs principaux (c.-à-d., qu'ils ont la priorité) pour les bandes 5 250-5 350 MHz et 5 650-5 850 MHz et que ces radars pourraient causer du brouillage et/ou des dommages aux dispositifs LAN-EL.

5. 1G	. / .	5150-5250 (36, 40, 44, 48)	/	/
5. 8G	5725-5875 (149, 153, 157, 161, 165)	5725-5850 (149, 153, 157, 16 1, 165)	5725-5850 (149, 153, 15 7, 161, 165)	5725-5850 (149, 153, 157, 161, 165)

Contents

1	Introd	duction	6
	1.1	Documentation overview	6
	1.2	Key features	6
		1.2.1 Feature introduction	6
		1.2.2 Summary of features	6
	1.3	Block diagram	8
	1.4	Terms and acronyms	9
2	Interf	face Definitions	12
	2.1	Interface configuration	12
	2.2	Pin definitions	13
3	Electi	trical Specifications	18
	3.1	Operating conditions	18
	3.2	Current test report	19
4		lication Interface Specifications	
	4.1		
	4.2		
	4.3		
	4.4		
	4.5	Camera interface	
	4.6	• •	
	4.7		
	4.8	SD interface	
	4.9	Sensors interface	
	4.10		
	4.11	·	
	4.12		
		4.12.1 UART	
		4.12.2 I2C	28
		/L 1/1 / 1 - \$/101	20

	4.13	Othe	er interface	29
		4.13.1	Camera flash Signal	29
		4.13.2	PM_VIB_DRV_N Signal	29
		4.13.3	VCOIN Signal	29
		4.13.4	RF Signal input port	30
5	Mech	anical S	Specification	31
	5.1	Overv	<i>r</i> iew	31
	5.2	SIMT	1502 specifications	31
		5.2.1	SIMT1502 from factor	31
		5.2.2	SIMT1502 PCB details	32
	5.3	System	n BTB connector specifications	33
		5.3.1	BTB connector	33
6	RF S _I	pecifica	tion	34
	6.1	R&D	parameters	33
		6.1.1	SIMT1502's BT&WIFI	33
		6.1.2	SIMT1502 WiFi bands and bandwidth	35
		6.1.3	SIMT1502 WiFi transmission type and supported Modulation	36
		6.1.4	SIMT1502 BT frequency and channels	36
		6.1.5	SIMT1502 BT transmission type and supported Modulation	36
		6.1.6	About how the co-existance between WLAN and BT is managed	36
		7 De	claration of Conformity (DoC)	34

1 Introduction

1.1 Documentation overview

This document describes electrical specifications, RF specifications, function interface, mechanical information and testing conclusions of the SIMT1502. With the help of this document, the users can easily and quickly use SIMT1502 on their own applications.

1.2 Key features

1.2.1 Feature introduction

SIMT1502 is a very powerful baseband module with 124 pins interface. As a baseband module for Smartphone/Music player-enabled devices and applications/camera phones/Multimedia phones/many other terminals, SIMT1502 supports Data-service and many peripheral equipment, which can be supported by Qualcomm's ® MSM8909 platform.

1.2.2 Summary of features

SIMT1502 features are listed on the following table (**Table1-1**)

Table1-1 SIMT1502 features

Feature	Capability				
Processors					
Processors	■ Qualcomm's® MSM8909:Quad-ARM® Cortex TM -A7				
	application processors up to 1GHz + 512KB L2 cache				
	■ Modem system: QDSP6 v5 core at up to 691MHz				
	768 kB L2 caches				
	■ RPM system :Cortex-M3 for the RPM				
Memory support					
System memory via EBI	■ 1x LPDDR3 SDRAM: 2GB SDRAM + 16GB EMMC;				
	32-bit wide; up to 533 MHz				
External memory via SDC1	■ eMMC v4.5/SD flash devices				
Multimedia					
Display interfaces	One				
■ MIPI_DSI	■ 4-lane – 1.5 Gbps per lane; WVGA, up to HD(720p), 60fps				
General display features	■ Color depth – 24-bit pp(RGB888)				
	■ Panel types – Most MIPI DSI compliant panels supported;				
Camera interfaces	■ Two; 1.5 Gbps per lane				
■ Number of CSIs	■ 2-lane MIPI_CSI0; supports CMOS and CCD sensors				
■ Primary (CSI0)	Up to 8MP sensors				
■ Secondary (CSI1)	■ 1-lane MIPI_CSI1; webcam support 5MP				
■ Configurations supported	■ I2C controls				

Video applications parformance	■Encode: H 264 DD/MD						
Video applications performance	■Encode: H.264 BP/MP – HD(720p),30 fps						
	MPEG-4 SP/H.263P0 –WVGA, 30 fps VP8 – WVGA, 30 fps						
	■ Encode: H.264 BP/MP/HP – 1080p, 30 fps						
	MPEG-4 SP/ASP – 1080p, 30 fps						
	DivX 4x/5x/6x - 1080p, 30 fps						
	H.263 P0 – WVGA, 30 fps						
	VP8 – 1080p, 30 fps						
	(HEVC) H.265 MP 8 bit–1080p, 30 fps						
Graphics	■ Adreno TM 304; up to 400 MHz 3D graphics accelerator						
Audio							
Codec	Integrated within the MSM8909 device						
■ Low-power audio	■ Low power audio for mp3 and AAC playback; surround sound						
■ Voice codec support	■ Versatile – many audio playback & voice modes; encoders for audio; many concurrency modes						
■ Audio codec support	■ G711; Raw PCM; QCELP; EVRC, -B, -WB; AMR-NB, -WB; GSM-EFR, -FR, -HR;						
■ Enhanced audio	■ MP3; AAC+, eAAC; AMR-NB, -WB, G.711, WMA 9/10 Pro						
Synthesizer	■ Dolby Digital Plus and DTS-HD surround						
S ynthesizer	Fluence TM Noise Cancellation:						
	QAudioFX/Qconcert/QEnsemble;						
	128-voice polyphony wavetable						
Audio inputs	■ Up to 3 analog microphones, with integrated MIC bias						
Audio outputs	■ Four outputs: Earpiece Mono AB						
	Headphones Stereo AB						
	Speaker 800mW CLASS-D						
Connectivity							
BLSP ports	6,4 at 4-bits each, 2 at 2-bits each; multiplexed serial interface functions						
■ UART	■ Yes – two ports up to 4 Mbps						
■ I2C	■ Yes – cameras, sensors, NFC, SMB charger, etc.						
SPI (master only)	Yes – cameras, sensors, etc.						
USB interface	■ One USB 2.0 high-speed						
Secure digital interfaces	■ Up to two ports, both dual-voltage						
	■ One 8-bit and one 4-bit						
	■ SD 3.0; SD/MMC card; eMMC v4.5						
Wireless connectivity	With WCN3660B						
■ WLAN	■ WCN3660B: 802.11 a/b/g/n, 2.4G and 5G						
■ Bluetooth	■ BT 4.0 LE and earlier						
Touch screen support	■ Capacitive panels via external IC (I2C, SPI, & interrupts)						
Temperature							
Operating Temperature Storage Temperature	-10 to 60°C						
	-30 to 80°C						

1.3 Block diagram

Figure 1-2 SIMT 1502 functional block diagram

8

1.4 Terms and acronyms

Table1-2 Terms and acronyms

Term	Definition
ADC	Analog-to-digital converter
AGC	Automatic gain control
AVS	Adaptive voltage scaling
BER	Bit error rate
BNSP	Bare nanoscale packaging
bps	Bits per second
BT	Bluetooth
CA	Carrier aggregation
CDMA	Code division multiple access
CRC	Cyclic redundancy code
CSI	Camera serial interface
CTP	Capacitive touch panel
DAC	Digital-to-analog converter
DBHSPA	Dual-band HSPA
DC-HSPA+	Dual-carrier HSPA+
DCUPA	Dual-carrier HSPA
DDR	Double data rate
DMB	Digital mobile broadcast
DRM	Digital Rights Management
DSI	Display serial interface
DSP	Digital signal processor
EBI	External bus interface
EDGE	Enhanced data rates for GSM evolution
EDR	Enhanced data rate
ETB	Embedded trace buffer
QDSS	Embedded trace macrocell
EV-DO	Evolution data optimized
FDD	Frequency division duplex
GNSS	Global navigation satellite system
GPIO	General-purpose input/output
GPRS	General packet radio services
GPS	Global positioning system
GPU	Graphics processing unit
GRFC	Generic RF controller
GSM	Global system for mobile communications
HDCP	High-bandwidth digital content protection
HSDPA	High-speed downlink packet access
HSIC	High-speed inter-chip
HSPA+	High-speed packet access

Table1-2 Terms and acronyms (cont.)

Term	Definition	
HSUPA	High-speed uplink packet access	
I2C	Inter-integrated circuit	
I2S	Inter-IC sound	
ISP	Image signal processing	
JTAG	Joint Test Action Group (ANSI/ICEEE Std. 1149.1-1990)	
kbps	kilobits per second	
LCD	Liquid crystal display	
LPA	Low-power audio	
LPASS	Low-power audio subsystem	
LPDDR	Low-power DDR	
LSB	Defines whether the LSB is the least significant bit or least significant byte. All instances of LSB used in this manual are assumed to be LSByte, unless otherwise specified.	
LTE	Long term evolution	
MBP	Mobile broadcast platform	
MDM	Mobile data modem	
MIPI	Mobile industry processor interface	
MPM	Modem power management	
MSB Defines whether the MSB is the most significant bit or most sign byte. All instances of MSB used in this manual are assumed to b MSByte, unless otherwise specified.		
MTP	Modem test platform	
NSP	Nanoscale package	
PA	Power amplifier	
PCM	Pulse-coded modulation	
PI	Power in	
PDM	Pulse-density modulation	
PM	Power management	
PNSP	Package-on-package nanoscale package	
PO	Power out	
PVS	Process voltage scaling	
RBDS	Radio broadcast data system	
RDS	Radio data system	
RLP	Radio link protocol	
RPM	Resource power manager	
SBI	Serial bus interface	
SD	Secure digital	
SDC	Secure digital controller	
SEE	Secure Execution Environment	
SFS	Secure file system	
SIM	Subscriber identity module	
SMT	Surface mount technology	
SPI	Serial peripheral interface	

Table1-2 Terms and acronyms (cont.)

Term	Definition
SPMI	System power management interface
sps	Symbols per second (or samples per second)
SPSS	Smart peripheral subsystem
SSBI	Single-wire SBI
SVS	Static voltage scaling
TAP	Test access port
TBD	To be discussed
TCXO	Temperature-compensated crystal oscillator
TDD	Time division duplexing
TSIF	Transport stream interface
UART	Universal asynchronous receiver transmitter
UICC	Universal integrated circuit card
UMTS	Universal mobile telecommunications system
USB	Universal serial bus
USIM	UMTS subscriber identity module
WCDMA	Wideband code division multiple access
WCN	Wireless connectivity network
WLAN	Wireless local area network
WTR	Wafer-scale RF transceiver
XO	Crystal oscillator
ZIF	Zero intermediate frequency

2 Interface Definitions

Interface configuration 2.1 TOP BTB CON PIN30 PIN93 PIN124 PIN92 BAT_THERN VBUS_USBIN 126125BOTTON PWR_ON 127128PIN63

PIN31

Figure 2-1 Interface configuration

12

2.2 Pin definitions

Table2-1 SIMT1502 Pin definitions

		Default		Pad	characteristics					
Pin#	Pad name	Default EVB	GPIO	VDD	Туре	Functional description				
1	NC									
2	GND									
3	SCAM_RST_N	SCAM_RST_N	GPIO_28*	Р3	DO; B-PD:nppukp	Configurable I/O; Sub Camera reset				
4	SCAM_MCLK	SCAM_MCLK	GPIO_27	Р3	DO; B-PD:nppukp	Configurable I/O; Sub camera clock				
5	MIPI_CSI1_LANE0_P	MIPI_CSI1_LANE0_P		-	AI, AO	MIPI camera serial interface1 lane0 –positive				
6	MIPI_CSI1_LANE0_M	MIPI_CSI1_LANE0_M		-	AI, AO	MIPI camera serial interface1 lane0–negative				
7	MIPI_CSI1_CLK_P	MIPI_CSI1_CLK_P	MIPI	-	AI	MIPI camera serial interface1 clock –positive				
8	MIPI_CSI1_CLK_M	MIPI_CSI1_CLK_M		-	AI	MIPI camera serial interface1 clock–negative				
9	MIC3_IN_P	MIC3_IN_P		-	AI	Microphone 3 input, single-ended				
10	MIC2_IN_P	MIC3_IN_P		-	AI	Microphone 2 input, single-ended				
11	HS_DET	HS_DET		-	DI	Headset detection				
12	SPKR_DRV_M	SPKR_DRV_M		-	AO	Speaker driver output, M				
13	SPKR_DRV_P	SPKR_DRV_P		-	AO	Speaker driver output, P				
14	EARO_M	EARO_M	Audio	-	AO	Earpiece amplifier output, differential minus				
15	EARO_P	EARO_P	(only)	-	AO	Earpiece amplifier output, differential plus				
16	MIC_GND	MIC_GND		=	-	-				
17	MIC1_IN	MIC1_IN		ı	AI	Microphone1 input, single-ended				
18	MIC_BIAS1	MIC_BIAS1		-	AO	Mic Bias output voltage				
19	HPH_R	HPH_R		-	AO	Headphone right output				
20	HPH_REF	HPH_REF		-	AI	Headphone driver amplifier ground reference				
21	HPH_L	HPH_L		-	AO	Headphone left output				
22	GPIO_14	BQ_I2C_SDA	GPIO_14	Р3	B; B-PD:nppukp	Configurable I/O; SPI or I2C BLSP#4				
23	GPIO_15	BQ_I2C_SCL	GPIO_15	P3	DO; B-PD:nppukp	Configurable I/O; SPI or I2C BLSP#4				
24	UART1_CTS_N	UART1_CTS_N	GPIO_6	P3	B; B-PD:nppukp	Configurable I/O; UART, SPI, or I2C BLSP#1				
25	UART1_RFR_N	UART1_RFR_N	GPIO_7	Р3	B; B-PD:nppukp	Configurable I/O; UART, SPI, or I2C BLSP#1				
26	UART1_TX	UART1_TX	GPIO_4	Р3	B; B-PD:nppukp	Configurable I/O; UART, SPI, BLSP#1				
27	UART1_RX	UART1_RX	GPIO_5*	Р3	B; B-PD:nppukp	Configurable I/O; UART, SPI, BLSP#1				
28	UART2_CTS_N/SDA	SE4500_ILL /N5600_AIM_ON	GPIO_111*	P3	DO; B-PD:nppukp	Configurable I/O; UART, SPI or I2C BLSP#2				

29	UART2_CTS_N/SCL	SE955_TRIGGER	GPIO_112*	P3	DO;	Configurable I/O;
30	NC	/N5600_ILL	GI 10_112		B-PD:nppukp	UART, SPI or I2C BLSP#2
-		WHEN DE DE			A.Y.	2.40 XVIEL : 1
31	WIFI_BT_RF	WIFI_BT_RF	-	-	AI	2.4G WIFI signal
32	GND					
33	TS_IN_N	TS_IN_N	GPIO_13*	Р3	DI; B-PD:nppukp	Configurable I/O; Touch screen interrupt
34	TS_I2C_SDA	TS_I2C_SDA	GPIO_18	Р3	B; B-PD:nppukp	Configurable I/O; Touch screen I2C
35	TS_I2C_SCL	TS_I2C_SCL	GPIO_19	P3	DO; B-PD:nppukp	Configurable I/O; Touch screen I2C
36	TS_RST_N	TS_RST_N	GPIO_12*	Р3	DO; B-PD:nppukp	Configurable I/O; Touch screen reset
37	SD_CARD_DET_N	MIPI_SW_EN	GPIO_38*	Р3	DO; B-PD:nppukp	Configurable I/O; Secure digital card detection
38	UART2_TX	UART2_TX	GPIO_20*	Р3	B; B-PD:nppukp	Configurable I/O; UART,SPI BLSP#2
39	UART2_RX	UART2_RX	GPIO_21*	P3	B; B-PD:nppukp	Configurable I/O; UART,SPI BLSP#2
40	KYPD_SNS0	KYPD_SNS0	GPIO_90*	Р3	DI; B-PD:nppukp	Keypad sense bit 0; Configurable I/O
41	KYPD_SNS1	KYPD_SNS1	GPIO_91*	Р3	DI; B-PD:nppukp	Keypad sense bit 1; Configurable I/O
42	KYPD_SNS2	/ KYPD_INT	GPIO_92*	Р3	DI; B-PD:nppukp	Keypad sense bit 2; Configurable I/O
43	GND					
44	USB_DM	USB_DM	USB	-	AI, AO	USB data – minus
45	USB_DP	USB_DP	USB	-	AI, AO	USB data – plus
46	GND					
47	AUDIO_PA_EN	OTG_PSEL	GPIO_22	Р3	DO; B-PD:nppukp	Configurable I/O
48	GPIO23	RS232_UART_SEL	GPIO_23	Р3	DO; B-PD:nppukp	Configurable I/O
49	MI2S_WS	SE955_CTS /N5600_PWR	GPIO_0	Р3	DI; B-PD:nppukp	Configurable I/O; SPI; MI2S #2 word select (L/R)
50	MI2S_SCK	SE955_RFR /N5600_RST	GPIO_1	Р3	DI; B-PD:nppukp	Configurable I/O; SPI; MI2S #2 bit clock
51	MI2S_D0	RS232_EN	GPIO_2	P3	DO; B-PD:nppukp	Configurable I/O; SPI; MI2S #2 serial data channel 0
52	MI2S_D1	USB_RST /GP_OUT	GPIO_3	Р3	DI; B-PD:nppukp	Configurable I/O; SPI; MI2S #2 serial data channel 1
53	ACCEL_INT1	SE955_UART_SEL	GPIO_16	Р3	DO; B-PD:nppukp	Configurable I/O; Accelerometer interrupt 1
54	SDC2_CMD	SDC2_CMD		P2	BH-PD:nppukp	Secure digital controller 2 command
55	SDC2_DATA_0	SDC2_DATA_0		P2	BH-PD:nppukp	Secure digital controller 2 data bit 0
56	SDC2_DATA_1	SDC2_DATA_1	SD	P2	BH-PD:nppukp	Secure digital controller 2 data bit 1
57	SDC2_DATA_2	SDC2_DATA_2	(only)	P2	BH-PD:nppukp	Secure digital controller 2 data bit 2
58	SDC2_DATA_3	SDC2_DATA_3		P2	BH-PD:nppukp	Secure digital controller 2 data bit 3
59	SDC2_CLK	SDC2_CLK		P2	BH-NP:pdpukp	Secure digital controller 2 clock
60	MI2S_2_MCLK	SCAN_KEY	GPIO_98*	P3	DI; B-PD:nppukp	Configurable I/O
61	VREG_L11_2P95V	VREG_L11_SDC	POWER	-	PO	PMIC output for SDC (only)

62	GND					
63	GPIO_29	CAM_I2C_SDA	GPIO_29	Р3	В;	Camera I2C SDA (only)
03	G110_27	CAM_IZC_SDA	O1 10_29	13	B-PD:nppukp	Camera 12C SDA (UIIIy)
64	GPIO_30	CAM_I2C_SCL	GPIO_30	P3	DO; B-PD:nppukp	Camera I2C SCL (only)
65	UIM2_PRESENT	KYPD_EN	GPIO_52	Р3	DO; B-PD:nppukp	Configurable I/O;
66						
67						
68						
69	NC					
70						
71						
72 73	CND					
74	GND					
75	NC					
76	PM_KYPD_PWR_N	PM_KYPD_PWR_N	PMU CTR	_	DI	Power on key (only)
77	PM_VIB_DRV_N	PM_VIB_DRV_N	PMU CTR	-	PO	Vibration motor
78	TICD TIC ID		USB	_	AI	driver output control USB OTG ID
/8	USB_HS_ID	USB_HS_ID_MAIN	USD	-	Al	Configurable I/O;
79	PMU_MPP_2_PWM	PWM_OUT	PMU CTR	-	DO	LED current sink; LCM PWM
80	GND					
81	PMU_GPIO01	NFC_ENABLE	PMU GPIO1	-	DO-Z;DI	Configurable GPIO;
82	PM_RESIN_N	PM_RESIN_N	PMU CTR	-	DI	PMIC reset (only)
83	PMU_GPIO02	NFC_1P8V_EN	PMU GPIO2	-	DO-Z;DI	Configurable GPIO;
84	VREF_BAT_THERM	VREF_BAT_THERM	PMU CTR	-	AO	Reference voltage for battery thermistor
85	VREG_L12_2P95V	VREG_L12_SDC	POWER	-	PO	PMIC output for SDC (only)
86	GPIO_24	LCD_TE0	GPIO_24	Р3	DI; B-PD:nppukp	Configurable I/O
87	VBUS_USBIN	VBUS_USBIN	POWER		PI	USB Voltage
88	VBAT	VBATT	BAT SNS		AI	Battery SNS
89	VCOIN	VCOIN	POWER		AI;AO	RTC
90	BAT_THERM	BAT_THERM	-		AI	Battery therm monitor
91	GND	T	T	Τ		
92	VBAT/VPH	VPH_PWR	POWER			SYS Power
93	NC					
94	NC					
95	GND	T			T	MIPI display serial interface0
96	MIPI_DSI0_CLK_P	MIPI_DSI0_CLK_P			AO	clock – positive
97	MIPI_DSI0_CLK_M	MIPI_DSI0_CLK_M			AO	MIPI display serial interface 0 clock – negative
98	MIPI_DSI0_LANE3_P	MIPI_DSI0_LANE3_P	MIPI		AI, AO	MIPI display serial interface 0 lane 3 – positive
99	MIPI_DSI0_ LANE3_M	MIPI_DSI0_ LANE3_M			AI, AO	MIPI display serial interface 0 lane 3 – negative
100	MIPI_DSI0_ LANE 2_P	MIPI_DSI0_ LANE 2_P			AI, AO	MIPI display serial interface 0 lane 2 – positive
101	MIPI_DSI0_ LANE2_M	MIPI_DSI0_ LANE2_M			AI, AO	MIPI display serial interface 0 lane 2 – negative

102	MIPI_DSI0_ LANE1_P	MIPI_DSI0_ LANE1_P		AI, AO	MIPI display serial interface 0 lane 1 – positive
103	MIPI_DSI0_ LANE1_M	MIPI_DSI0_ LANE1_M		AI, AO	MIPI display serial interface 0 lane 1 – negative
104	MIPI_DSI0_ LANE0_P	MIPI_DSI0_ LANE0_P	MIPI	AI, AO	MIPI display serial interface 0 lane 0 – positive
105	MIPI_DSI0_ LANE0_M	MIPI_DSI0_ LANE0_M		AI, AO	MIPI display serial interface 0 lane 0 – negative
106	GPIO_8	LCD_RST_N	GPIO_8	DO; B-PD:nppukp	Configurable I/O
107	VREG_L17_2P85V	VREG_L17_2P85V	POWER	PO	PMIC output
108	GPIO_9	CAM_FLASH_EN	GPIO_9	DO; B-PD:nppukp	General-purpose wakeup
109	VREG_L6_1P8V	VREG_L6_1P8V	POWER	PO	PMIC output
110	CCI_I2C_SDA	I2C_SDA	GPIO_10	B; B-PD:nppukp	Configurable I/O; I2C
111	CCI_I2C_SCL	I2C_SCL	GPIO_11*	DO; B-PD:nppukp	Configurable I/O; I2C
112	MCAM_RST_N	MCAM_RST_N	GPIO_35*	DO; B-PD:nppukp	Configurable I/O; Main Camera reset;
113	MCAM_STANDBY_N	MCAM_STANDBY_N	GPIO_34*	DO; B-PD:nppukp	Configurable I/O; Main Camera standby
114	GND				
115	MIPI_CSI0_LANE1_M	MIPI_CSI0_LANE1_M		AI, AO	MIPI camera serial interface 0 lane 1 – negative
116	MIPI_CSI0_ LANE1_P	MIPI_CSI0_ LANE1_P		AI, AO	MIPI camera serial interface 0 lane 1 – positive
117	MIPI_CSI0_ LANE2_P	MIPI_CSI0_ LANE2_P		AI, AO	MIPI camera serial interface 0 lane 2 – positive
118	MIPI_CSI0_ LANE2_M	MIPI_CSI0_ LANE2_M	MIPI	AI, AO	MIPI camera serial interface 0 lane 2 – negative
119	MIPI_CSI0_CLK_M	MIPI_CSI0_CLK_M		AI	MIPI camera serial interface 0 CLK – negative
120	MIPI_CSI0_CLK_P	MIPI_CSI0_CLK_P		AI	MIPI camera serial interface 0 CLK – positive
121	GPIO_33	SCAM_PWDN	GPIO_33	DO; B-PD:nppukp	Sub Camera PWND
122	MCAM_MCLK	MCAM_MCLK	GPIO_26	DO; B-PD:nppukp	Main Camera clock
123	GND			GND	GND
124	VBAT/VPH	VPH_PWR	POWER		SYS Power

Table2-2 SIMT1502 BTB connector pin definitions

IUDI	ible 2 Sivilie 02 bib connector pin definitions						
Pin#	Pad name	Default	GPIO Pad characteristics		Eurotional description		
PIII#	Pau name	EVB	EVB Voltage Type		Туре	Functional description	
1	GND						
2	GPIO_25	USB_SW_EN	GPIO_25*	Р3	DO; B-PD:nppukp	Configurable I/O	
3	NC						
4	NC						
5	GPIO_31	/ TC358746_RST	GPIO_31*	Р3	DO; B-PD:nppukp	Configurable I/O	
6	GPIO_32	REFCLK	GPIO_32	Р3	DO; B-PD:nppukp	Configurable I/O	
7	GPIO_36	CHG_INT	GPIO_36*	Р3	DI; B-PD:nppukp	Configurable I/O	
8	GPIO_58	GYRO_INT_EN	GPIO_58*	Р3	DO; B-PD:nppukp	Configurable I/O	

9	GPIO_93	OTG_EN	GPIO_93	Р3	DO; BB-PD:nppukp	Configurable I/O
10	GPIO_94	ALSP_INT_N	GPIO_94*	Р3	DI; BB-PD:nppukp	Configurable I/O
11	GPIO_95	CHG_EN	GPIO_95*	Р3	DO; BB-PD:nppukp	Configurable I/O
12	GPIO_96	VBUS_OTG_EN	GPIO_96*	Р3	DO; BB-PD:nppukp	Configurable I/O
13	GPIO_97	NFC_DWL_REQ	GPIO_97*	Р3	DI; B-PD:nppukp	Configurable I/O
14	GPIO_110	NFC_INT_N	GPIO_110*	Р3	DI; B-PD:nppukp	Configurable I/O
15	GPIO_65	MAG_RESET	GPIO_65*	Р3	DI; B-PD:nppukp	Configurable I/O
16	GND					
17	GND					
18	GND					
19	GND					
20	GND					
21	GND					
22	GND					
23	GND					
24	GND					
25	GND					
26	GND					
27	GND					
28	GND					
29	GND					
30	GND					

NOTE:I/O p	parameter definitions			
Symbol				
*	General purpose wakeup			
AI	Analog input			
AO	Analog output			
В	Bidirectional digital with CMOS input			
CSI	Supply voltage for MIPI_CSI circuits and I/Os; tied to VDD_MIPI_CSI (1.8 V only)			
DI	Digital input(CMOS)			
DO	Digital output(CMOS)			
DSI	Supply voltage for MIPI_DSI I/Os; tied to VDD_QFPROM_PRG (1.8 V only)			
Н	High-voltage tolerant			
KP	Contains an internal weak keeper device (keepers cannot drive external buses)			
NP	Contains no internal pull			
PD	Contains an internal pulldown device			
PU	Contains an internal pullup device			
PI	Power input			
PO	Power output			
V_G	Selectable supply for GPIO circuits; options include: VIN0: 3.6 V VIN1: 3.075 V VIN2: 1.2 V VIN3: 1.8 V			
V_INT	Internally generated voltage supply voltage for some power on circuits			
Z	High-impedance (high-Z) output			

3 Electrical Specifications

3.1 Operating conditions

	Min	Typ ²	Max	Unit	
Power-supply volt					
VDD_P2					
	SDC2 pads low voltage	1.67	1.8	1.93	V
	SDC2 pads high voltage	2.75	2.95	3.04	٧
VDD_P3	Power for pad group 3 – most I/O pads	1.67	1.8	1.93	٧

1.8 V digital I/O characteristics (P3):

VDD_P3→GPIOs

	Parameter	Comments	Min	Max	Unit			
GPIO (P3)								
V _{IH}	High-level input voltage	CMOS/Schmitt	0.65 * V _{DD_Px}	_	٧			
V _{IL}	Low-level input voltage	CMOS/Schmitt	-	0.35 * V _{DD_Px}	٧			
V _{OH}	High-level output voltage	CMOS, at rated drive strength1	V _{DD_Px} - 0.45		٧			
V _{OL}	Low-level output voltage	CMOS, at rated drive strength ³	-	0.45	٧			
R _P	Pull resistance ²	Pullup and pulldown	55	390	kΩ			
R _K	Keeper resistance ⁵		30	150	kΩ			
I _{IH}	Input high leakage current ³	No pulidown	-	1	μA			
I _{IL}	Input low leakage current ⁴	No pullup	-1	-	μA			
V _{SHYS}	Schmitt hysteresis voltage		100	-	mV			
C _{I/O}	I/O capacitance		-	5	pF			

Dual-voltage 1.8 V/2.95 V digital I/O characteristics :

VDD_P2→SDC2

	Parameter	Comments	Min	Max	Unit			
Common to dual-voltage pads 1.8 V/2.95 V								
R _P	Pull resistance	Pullup and pulldown	10	100	kΩ			
R _K	Keeper resistance		10	100	kΩ			
V_{SHYS}	Schmitt hysteresis voltage		100	-	m∨			
CI/O	IO capacitance		-	5	pF			
Commo	n to SDC2 pad at 2.95 V only	<i>'</i> .						
I _{IH}	Input high leakage current	No pulldown	-	10	μА			
I _{IL}	Input low leakage current	No pullup	-10	-	μA			
Commo	n to SDC2 pad at 1.8 V only							
I _{IH}	Input high leakage current	No pulldown	-	2	μА			
I _{IL}	Input low leakage current	No pullup	-2	-	μА			

SDC2 p	ads at 2.95 V only		•		
V_{IH}	High-level input voltage	CMOS/Schmitt	0.625 * V _{DD_Px}	V _{DD_Px} + 0.3	٧
V _{IL}	Low-level input voltage	CMOS/Schmitt	-0.3	0.25 * V _{DD_Px}	٧
V_{OH}	High-level output voltage	CMOS, at rated drive strength	0.75 * V _{DD_Px}	V _{DD_Px}	٧
V _{OL}	Low-level output voltage	CMOS, at rated drive strength	0	0.125 * V _{DD_Px}	٧
SDC2 p	ads at 1.8 V only				
V_{IH}	High-level input voltage	CMOS/Schmitt	1.27	2	٧
V_{IL}	Low-level input voltage	CMOS/Schmitt	-0.3	0.58	٧
V_{OH}	High-level output voltage	CMOS, at rated drive strength	1.4		٧
V _{OL}	Low-level output voltage	CMOS, at rated drive strength	0	0.45	٧

3.2 Current test report

This Current test report based on the EVB board, Vbat=3.8V. All values are typical unless otherwise specified.

- 1. During suspend (Airplane mode, no UIM, system in sleep mode): 2.9mA.
- 2. During suspend (WIFI wake up, BT off, system in sleep mode): 3.0mA.
- 3. Module power off (Do not remove the battery): 75uA(Without Vcoin); 250uA(With Vcoin).

4 Application Interface Specifications

4.1 Power interface

The power supply of SIMT1502 comes from PM8909. See **Table4-1**

Table4-1 Power source description

Signal Pin#		Direction		Voltage(V)		Current(mA)
Signal	F111#	PI/PO	Min	Тур	Max	Max
VREG_L11_2P95V	61	PO	1.75	2.95	3.337	600
VREG_L12_2P95V	85	PO	1.75	1.8/2.95	3.337	50
VREG_L17_2P85V	107	PO	1.75	2.85	3.337	420
VREG_L6_1P8V	109	PO	1.75	1.8	3.337	200

Signal	Pin#	Direction PI/PO	Functions
VBAT_SNS	88	PI	Battery SNS
VBAT/VPH	92	PI/PO	SYS Power
VBAT/VPH	124	PI/PO	SYS Power

VBAT means battery, VPH means SYS Power. If you use the SIMT1502's internal charging management, they are the same function and they must be connected together. If you use external charging management, PIN88 is Battery only and PIN92/124 is VPH only. You can see it in SIMT1502_HW_compatibility design of the modification.pdf document.

4.2 PMIC GPIO and MPP interface

SIMT1502 have two PMIC GPIO interface and one PMIC Multipurpose interface. See **Table4-2**.

Table 4-2 PMIC GPIO and MPP interface description

GPIO/MPP	Pin#	Functions
PMU_GPIO01	81	RFCLK1_EN
PMU_GPIO02	83	RFCLK2_EN
PMU_MPP_2_PWM	79	PWM output

Two GPIOs are available. Some likely GPIO applications, which are described elsewhere: clock outputs; external current driver control; external LDO, SMPS, or power gate controls; status bit; XO controller input; and level translator.

One MPP are available. MPP can be configured as PWM, and MPP can be configured as analog output buffers.

4.3 USB interface

SIMT1502 contains a USB interface which support On-The-Go. It is compliant with the USB2.0 specification. The USB2.0 specification requires hosts to support all three USB speeds, low-speed (1.5Mbps), full-speed (12Mbps) and high-speed (480Mbps).

See **Table4-3** and **Figure4-1** for more details.

Table4-3 USB interface description

Signal	Pin#	Description	Direction
USB_DM	44	USB 2.0 serial data minus	AI/ A O
USB_DP	45	USB 2.0 serial data plus	AI/ A O
USB_HS_ID	78	USB OTG ID	AI
VBUS_USBIN	87	USB_IN	POWER

Figure 4-1 USB application diagram

4.4 Audio interface

- ☐ Codec integrated within PMU
- ☐ No SLIMBUS
- ☐ No digital mic support
- ☐ Audio inputs: Up to three analog microphones, with integrated mic bias;
- ☐ Audio output : Headphones with headset detection; Differential earpiece; Differential loud speaker driver; Single-ended line output

See **Table4-4** and **Figure4-2** for more details.

Table4-4 Audio interface description

Signal	Pin#	Description	Direction
Signai	FIII#	Description	AI/ A O
MIC3_IN	9	Microphone 3 input, single-ended	AI
MIC2_IN	10	Microphone 2 input, single-ended	AI
HS_DET	11	Headset detection	AI
SPKR_DRV_M	12	Speaker driver output, minus	AO
SPKR_DRV_P	13	Speaker driver output, plus	AO
EARO_M	14	Earpiece amplifier output, differential minus	AO
EARO_P	15	Earpiece amplifier output, differential plus	AO
MIC_GND	16	GND	GND
MIC1_IN	17	Microphone 1 input, single-ended	AI
MIC_BIAS	18	Microphone bias output voltage	AO
HPH_R	19	Headphone right output	AO
HPH_REF	20	Headphone driver amplifier ground reference	AI
HPH_L	21	Headphone left output	AO

Figure 4-2 Audio application diagram

4.5 Camera interface

SIMT1502 contains two camera interface. Primary camera interface use 2-lane MIPI_CSI0, supports CMOS and CCD sensors, up to 8MP sensors. Secondary camera interface use 1-lane MIPI_CSI1, and 1.5Gbps per lane. Both are controlled by I2C bus. See **Table4-5** and **Figure4-3**for more details.

Table4-5 Camera interface description

Signal	Pin#	Description	Direction AI/AO
SCAM_RST_N	3	Camera0 (front camera) reset	DO
SCAM_MCLK1	4	Camera0 master clock 1	DO
MIPI_CSI1_LN0_P	5	MIPI camera serial interface 1 lane 0 – positive	AI ,A O
MIPI_CSI1_LN0_N	6	MIPI camera serial interface 1 lane 0 – negative	AI, AO

MIPI_CSI1_CLK_P	7	MIPI camera serial interface 1 clock – positive	AI
MIPI_CSI1_CLK_N	8	MIPI camera serial interface 1 clock – negative	AI
CAM_PWDN	121	Camera0 PWDN	DO
CAM_I2C_SDA	63	Camera I2C,SDA	В
CAM_I2C_SCL	64	Camera I2C,SCL	DO
CAM1_RST_N	112	Camera 1 (rear camera) reset	DO
CAM1_STANDBY_N	113	Camera 1 (rear camera) standby	DO
MIPI_CSI0_LN1_N	115	MIPI camera serial interface 0 clock – negative	AI ,A O
MIPI_CSI0_LN1_P	116	MIPI camera serial interface 0 clock – positive	AI ,A O
MIPI_CSI0_LN2_P	117	MIPI camera serial interface 0 lane 2 – positive	AI ,A O
MIPI_CSI0_LN2_N	118	MIPI camera serial interface 0 lane 2 – negative	AI ,A O
MIPI_CSI0_CLK_N	119	MIPI camera serial interface 0 clock – negative	AI
MIPI_CSI0_CLK_P	120	MIPI camera serial interface 0 clock – positive	AI
CAM_MCLK0	122	Camera1 master clock 0	DO

Figure 4-3 CSI application diagram

Normally, camera need 2.85V and 1.8V voltage, we can use external LDO to replace VREG_L6_1P8 and VERG_L17_2P85.At the same time, if the rear camera have AF function, another external LDO is necessary.

4.6 Display interface

SIMT1502 contains one display interface. The interface use MIPI display serial interface, support up to four lanes. Support for the resolution of WVGA, qHD and 720p LCM..

The backlight circuit is not contained in SIMT1502, which must be designed in external circuit. See **Table4-6** and **Figure4-4** for more details.

Table4-6 Display interface description

Signal	Pin#	n# Description	Direction
Signal	F111#	Description	AI/AO
DSI_LCD_TE0	86	LCD data write sync signal	DO
PMU_MPP3_WM	79	PWM	DO
MIPI_DSI_CLK_P	96	MIPI display serial interface 0 clock – positive	AO
MIPI_DSI_CLK_N	97	MIPI display serial interface 0 clock – negative	AO
MIPI_DSI_LN3_P	98	MIPI display serial interface 0 lane 3 – positive	AI ,A O
MIPI_DSI_LN3_N	99	MIPI display serial interface 0 lane 3 –negative	AI ,A O
MIPI_DSI_LN2_P	100	MIPI display serial interface 0 lane 2 – positive	AI ,A O
MIPI_DSI_LN2_N	101	MIPI display serial interface 0 lane 2 – negative	AI ,A O
MIPI_DSI_LN1_P	102	MIPI display serial interface 0 lane 1 – positive	AI ,A O
MIPI_DSI_LN1_N	103	MIPI display serial interface 0 lane 1 – negative	AI ,A O
MIPI_DSI_LN0_P	104	MIPI display serial interface 0 lane 0 – positive	AI ,A O
MIPI_DSI_LN0_N	105	MIPI display serial interface 0 lane 0 – negative	AI ,A O
LCD_ID	106	LCD ID pin	DI
DSI_RST_N	108	General-purpose wakeup	DO

Figure 4-4 Display application diagram

4.7 CTP interface

SIMT1502 contains one CTP interface, the panel is controlled by I2C bus. See **Table4-7** and **Figure4-5** for more details.

Table4-7 CTP interface description

Signal	Pin#	Description	Direction
Signai	Γ 111#	Description	AI/AO
TS_INT_N	33	Touchscreen interrupt	DI
TS_I2C_SDA	34	Touchscreen I2C,SDA	В
TS_I2C_SCL	35	Touchscreen I2C,SCL	DO
TS_RST_N	36	Touchscreen reset	DO

4.8 SD interface

SIMT1502 contains a SD interface, the clock output up to 200MHz,need support 1.8/2.95V dual-voltage. If SD connector have detect pin, the hot plug function can be done. See **Table4-8** and **Figure4-6** for more details.

Table4-8 SD interface description

Signal	Pin#	Description	Direction
Gignai	1 11111	Description	AI/ A O
SD_CARD_DETN	37	Secure digital card detection	DI
SDC2_CMD	54	Secure digital controller 2 command	AI,AO
SDC2_DATA_0	55	Secure digital controller 2 data bit 0	AI,AO
SDC2_DATA_1	56	Secure digital controller 2 data bit 1	AI,AO
SDC2_DATA_2	57	Secure digital controller 2 data bit 2	AI,AO
SDC2_DATA_3	58	Secure digital controller 2 data bit 3	AI,AO
SDC2_CLK	59	Secure digital controller 2 clock	AI,AO

Figure 4-6 SD interface application diagram

4.9 Sensors interface

SIMT1502 support many sensors via I2C bus, the circuit structure is similar to camera interface. SIMT1502 does not contain necessary pull_up resistors internal, which must be designed in external circuit.

4.10 Side keys interface

SIMT1502 contains a few keys interfaces, which can be used as functional side keys. KYPD_SNS0,KYPD_SNS1and KYPD_SNS2 can compose matrix keyboard, also can be used as normal configurable GPIO.

See **Table4-9** for more details.

Table4-9 Side keys interface description

Signal	Pin#	Description	Direction
2-8			DI/DO
KYPD_SNS0	40	Keypad sense bit 0	DI
KYPD_SNS1	41	Keypad sense bit 1	DI
KYPD_SNS2	42	Keypad sense bit 2	DI
PM_KYPD_PWR_N	76	Power on key	DI
PM_RESIN_N	82	PMIC reset input	DI

4.11 Battery connector interface

SIMT1502 must be provided voltage by external voltage source.

See **Table4-10** for more details.

Table4-10 Battery connector description

Signal	Pin#	Description	Direction
Signal	F 111#	Description	AI/AO
BAT_THERM	90	Battery therm monitor	AI
VBATT	88/92/124(No External Charging IC)	Battery positive supply	AI
VBATT	88 (With External Charging IC)	Battery positive supply	AI
GND	2/32/43/46/62/73/80/91/95/	Ground	
GND	114/123/125/126/127/128	Ground	-

4.12 I2C, UART and SPI interface

4.12.1 UART

SIMT1502 contains two groups UART_DM .The UART_DM is used to support high-speed UART operation up to 4 Mbps for debug and system log. UART only supports Slow_IrDA. See **Table4-11** and **Figure4-7** for more details:

Table4-11 UART interface description

Signal	Pin#	Description	Direction I/O
GPIO_4	26	UART1 TX	О
GPIO_5	27	UART1 RX	I
GPIO_6	24	UART1 CTS_N	I
GPIO_7	25	UART1 RTS_N	O
GPIO_20	38	UART2 TX	О
GPIO_21	39	UART2 RX	I
GPIO_111	28	UART2 CTS_N	I
GPIO_112	29	UART2 RTS_N	O

Figure 4-7 UART application diagram

4.12.2 I2C

SIMT1502 contains two groups special functional and four groups configurable I2C, which multiplexed with UART function. I2C pins use GPIOs configured as open-drain outputs; the pull-up resistor(2.2K) must be provided by external circuit(1.8V).

High speed mode I2C running at 3.4 MHz.

See Table4-12

Table4-12 I2C interface description

Cianal	Pin#	Description	Direction
Signal	F111#		AI/AO
TS_I2C_SDA	34	Touchscreen/ SENSORS I2C,SDA	В
TS_I2C_SCL	35	Touchscreen/ SENSORS I2C,SCL	DO
CCI_I2C_SDA	63	Camera I2C,SDA	В
CCI_I2C_SCL	64	Camera I2C,SCL	DO

The rest of I2C interface is multiplexed with UART function.

See **Table4-13** for more details.

Table 4-13 I2C interface alternate function description

Signal	Pin#	Alternate	e function
GPIO_6	24	UART2 CTS_N/GP	BLSP#1_I2C_SDA_B
GPIO_7	25	UART2 RTS_N/GP	BLSP#1_I2C_SCL_B
GPIO_111	28	UART2 CTS_N/GP	BLSP#2_I2C_SDA_B
GPIO_112	29	UART2 RTS_N/GP	BLSP#2_I2C_SCL_B
GPIO_14	22	SPI4 CS_N/GP	BLSP4#_I2C_SDA_B
GPIO_15	23	SPI4 CLK/GP	BLSP4#_I2C_SCL_B
GPIO_10	110	SPI6 CS_N/GP	BLSP6#_I2C_SDA_B
GPIO_11	111	SPI6 CLK/GP	BLSP6#_I2C_SCL_B

4.12.2 **SPI**

SIMT1502 contains three groups configurable SPI, which multiplexed with UART/I2C function. But, SIMT1502 only be used for master device.

See Table4-14

Table 4-14 SPI interface alternate function description

Signal	Pin#	Description	Direction
			I/O
GPIO_4	26	SPI1 MOSI	O
GPIO_5	27	SPI1 MISO	I
GPIO_6	24	SPI1 CS_N	O
GPIO_7	25	SPI1 CLK	O
GPIO_20	38	SPI2 MOSI	O
GPIO_21	39	SPI2 MISO	I
GPIO_111	28	SPI2 CS_N	O
GPIO_112	29	SPI2 CLK	O
GPIO_0	49	SPI3 MOSI	O
GPIO_1	50	SPI3 MISO	I
GPIO_2	51	SPI3 CS_N	O
GPIO_3	52	SPI3 CLK	O

4.13 Other interface

4.13.1 Camera flash Signal

These camera flash signal provide flash and torch mode enable. The FLASH_NOW trigger the camera flash into torch mode. The FLASH_EN enable the camera flash to flash mode.

4.13.2 PM_VIB_DRV_N Signal

The PM_VIB_DRV_N is used to control vibration intensity. The vibration driver is a programmable voltage output that is referenced to VDD; when off, its output voltage is VDD. The motor is connected between VDD and the PM_VIB_DRV_N pin.

See Table4-15

Table4-15 PM_VIB_DRV_N Signal

Cianal	Pin#	Description	Direction
Signal	F111#	Description	I/O
PM VIB DRV N	77	Vibration motor driver output control	PO

4.13.3 VCOIN Signal

VCOIN requires either a lithium manganese dioxide rechargeable coin cell or a keep-alive capacitor, so that the appropriate oscillator and real-time clock circuits continue to run when the phone is off.

See Table4-16

Table4-16 VCOIN Signal

Cional	Din#	Description	Direction
Signal	Pin#	Description	I/O

VCOIN	89	Sense input or charge output	AI,AO

4.13.4 RF Signal input port

SIMT1502 contains four RF signal input port: BT/WIFI.

See **Table4-16** and **Figure4-8** for more details:

Table4-17 RF Signal input port

Cianal	Pin#	Description	Direction
Signal	PIII#		I/O
RF_IN_2	30	5G_WIFI	AI,AO
WIFI BT RF	31	BT/WIFI	AI,AO

If you want to use 5G_WIFI, you must use the RF Cable Line (IPX-3) connect the RF base, which close to BTB connect on SIMT1502.See **Figure4-8** for more details

Figure 4-8 5G_WIFI: Red part

5 Mechanical Specification

5.1 Overview

This specification defines a small form factor module for systems in which a Stamp hole package add-in module can not be used due to mechanical system design constraints. The specification defines a smaller module based on a single 124-pin Leadless Chip Carriers encapsulation for system interfaces by card edge type. The specification also defines the Stamp hole package system.

5.2 SIMT1502 specifications

There is Stamp hole package add-in SIMT1502 size.

For purposes of the drawings in this specification, the following notes apply:

- ☐ All dimensions are in millimeters, unless otherwise specified.
- \Box All dimensions tolerances are ± 0.15 mm, unless otherwise specified.
- ☐ Dimensions marked with an asterisk (*) are overall envelope dimensions and include space allowances for insulation to comply with regulatory and safety requirements.
- ☐ Insulating material shall not interfere with or obstruct mounting holes or grounding pads.

5.2.1 SIMT1502 from factor

The SIMT1502 form factor is specified by **Figure5-1**.

The figure illustrates a module example application. The hatched area shown in this figure represents the available component volume for the SIMT1502's circuitry.

Figure 5-1 SIMT1502 form factor

5.2.2 SIMT1502 PCB details

The following figures (**Figure5-2**) provide the printed circuit board (PCB) details required to fabricate the PCB. The PCB for this application is expected to be 1.2 mm thick. The steel net thickness is 0.12mm (**Figure5-3**).

Figure 5-2 SIMT 1502 Pads

The dimension tolerance is ± 0.005 mm (± 0.2 mil).

Figure 5-3 SIMT 1502 Steel net

The dimension tolerance is ± 0.005 mm (± 0.2 mil).

5.3 System BTB connector specifications

The SIMT1502 have a BTB connector In order to more GPIO interface

5.3.1 BTB connector

The BTB connector is 30-pin card edge type connector. Detailed dimensions should be obtained from the connector manufacturer. **Figure5-4** shows the BTB connector. We use AXE530127 as socket and AXE630127 as header.

Figure 5-4 BTB connector

6 RF Specification

6.1 R&D parameters

All measurements are taken at module RF I/O pins (pin 31 for BT/WIFI and RF connector for 5G_WIFI) with IQ2015. All typical performance specifications are based on operation at room temperature (\pm 25°C) using default parameter settings and nominal supply voltages, such as VBAT = 3.8V.

6.1.1 SIMT1502's BT&WIFI Table6-1 BT&WIFI (For CE)

Item	specifications
BT	TX Power<10dBm
BLE	TX Power<5dBm
WIFI	TX Power<22dBm

The sensitivity of 5G WiFi CH36 have separate standards as follow **Table6-2 CH36**.

Table6-2 CH36

802.11a	6 M	<-83dB
002.11a	54M	<-68dB
	MCS0-HT20	<-83dB
802.11n	MCS7-HT20	<-66dB
802.1111	MCS0-HT40	<-83dB
	MCS7-HT40	<-64dB

6.1.2 SIMT1502 WiFi bands and bandwidth

The SIMT1502 WiFi bands and bandwidth is specified by Table6-3 and Table6-4.

2.4GHz WiFi only support 20MHz channels bandwidth.

5GHz WiFi can support both 20MHz and 40MHz channels bandwidth.

Table6-3 2.4G WiFi channels

Channel	Frequency(MHz)
CHAN1	2412

CHAN2	2417
CHAN3	2422
CHAN4	2427
CHAN5	2432
CHAN6	2437
CHAN7	2442
CHAN8	2447
CHAN9	2452
CHAN10	2457
CHAN11	2462
CHAN12	2467
CHAN13	2472

Table6-4 5G WiFi channels

20MHz		40MHz	
Channel	Frequency	Channel	Frequency
CHAN36	5180	CHAN38	5190
CHAN40	5200	CHAN42	5210
CHAN44	5220	CHAN46	5230
CHAN48	5240	CHAN50	5250
CHAN52	5260	CHAN54	5270
CHAN56	5280	CHAN58	5290
CHAN60	5300	CHAN62	5310
CHAN64	5320	CHAN102	5510
CHAN100	5500	CHAN106	5530
CHAN104	5520	CHAN110	5550
CHAN108	5540	CHAN114	5570
CHAN112	5560	CHAN118	5590
CHAN116	5580	CHAN122	5610
CHAN120	5600	CHAN126	5630
CHAN124	5620	CHAN130	5650
CHAN128	5640	CHAN134	5670
CHAN132	5660	CHAN138	5690
CHAN136	5680	CHAN142	5710
CHAN140	5700	CHAN151	5755
CHAN144	5720	CHAN155	5775
CHAN149	5745	CHAN159	5795
CHAN153	5765	CHAN163	5815
CHAN157	5785		
CHAN161	5805		
CHAN165	5825		

6.1.3 SIMT1502 WiFi transmission type and supported Modulation

The SIMT1502 WiFi transmission type and supported Modulation is specified by **Table6-5.**

Table6-5 WiFi transmission type and supported Modulation

	Data Rate(Mbps)	Modulation Format
	1Mbps(DSSS)	DBPSK
802.11B	2Mbps(DSSS)	DQPSK
802.11B	5.5Mbps(CCK)	DQPSK
	11Mbps(CCK)	DQPSK
	6Mbps(OFDM)	BPSK
	9Mbps(OFDM)	BPSK
	12Mbps(OFDM)	QPSK
802.11A / G	18Mbps(OFDM)	QPSK
802.11A/G	24Mbps(OFDM)	16QAM
	36Mbps(OFDM)	16QAM
	48Mbps(OFDM)	64QAM
	54Mbps(OFDM)	64QAM
	6.5Mbps(MCS0)	BPSK
	13Mbps(MCS1)	QPSK
	19.5Mbps(MCS2)	QPSK
802.11N	26Mbps(MCS3)	16QAM
(HT20)	39Mbps(MCS4)	16QAM
	52Mbps(MCS5)	64QAM
	58.5Mbps(MCS6)	64QAM
	65Mbps(MCS7)	64QAM
	13.5Mbps(MCS0)	BPSK
	27Mbps(MCS1)	QPSK
	40.5Mbps(MCS2)	QPSK
802.11N	54Mbps(MCS3)	16QAM
(HT40)	81Mbps(MCS4)	16QAM
	108Mbps(MCS5)	64QAM
	121.5Mbps(MCS6)	64QAM
	135Mbps(MCS7)	64QAM

6.1.4 SIMT1502 BT frequency and channels

The SIMT1502 BT operating frequency is 2400MHz-2483.5MHz.The channel in BT2.0 is CH0-CH79, and the channel in BT4.0 is CH1-CH39.

6.1.5 SIMT1502 BT transmission type and supported Modulation

SIMT1502 can support standard Bluetooth FHSS in BR/EDR and BLE. And the supported modulation of BT as following:GFSK, Pi/4DPSK, 8DPSK, the supported modulation of BLE is GFSK.

6.1.6 About how the co-existance between WLAN and BT is managed

2.4G and BT works as TDD. But 5G and BT could work at the same time. But FTM can't test this scenario. If you want to verify BTC, you will need to test throughput or at least mission mode RF performance.

7 Declaration of Conformity (DoC)

is in conformity with the relevant Union harmonization legislation:

Radio Equipment directive: 2014 / 53 / EU

with reference to the following standards applied:

EN 301 489-1 V2.2.0 (2017-03);
EN 301 489-17 V3.2.0 (2017-03)
EN 55032:2015+AC:2016-07
EN 61000-4-2:2009
EN 61000-4-3:2006+A1:2008+A2:2010
EN 300 328 V2.1.1 (2016-11)
EN 301 893 V2.1.1 (2017-05);
EN 62311:2008
EN 60950-1:2006+A11:2009+A1:2010+A12:2011+A2:2013