Branch of Physics that deals with concepts of heat and temperature including inter – conversion of heat to another form.

11. THERMODYNAMICS

System

Energy and mass can be exchanged

OPEN

Only energy can be exchanged

ISOLATEDNothing
is exchanged

A body of matter or radiation confined in spaced walls with definite permeabilities separated from surrounding.

Equilibrium in Thermodynamics

- (1) When the temperature difference between two bodies becomes zero then they are said to be in thermal Equilibrium.
- (2) When all mechanical forces within the system are balanced to have zero acceleration, system is in mechanical equilibrium.
- (3) When no chemical reaction occur within reactants of system, then it is in chemical equilibrium.
- (4) System is in thermodynamic equilibrium if all three equilibrium are attained.

ZEROTH LAW OF THERMODYNAMICS

Before Thermal Equilibrium

After Thermal Equilibrium

Body A Temperature = Body C Temperature = Body B Temperature

If two bodies A and B are individually in thermal equilibrium with third body C, then A and B will also be in thermal equilibrium with each other.

Surrounding /

Surroundings

System ←Boundary

Everything external to the system is known as Surrounding.

Types of Systems

- (1) In closed system, only energy transfer is possible rather than mass.
- (2) In open system, both energy and mass transfer is possible.
- (3) In isolated systems, both energy and mass transfer is not possible.

THERMODYNAMIC PROCESS /

It is a process in which the thermodynamic state of a system is changed

Isothermal Process

Temperature, T = constant

(1) W = nRTln
$$\left(\frac{V_2}{V_1}\right)$$
 = nRTln $\left(\frac{P_1}{P_2}\right)$

(2) W = 2.303 nRT log
$$\left(\frac{V_2}{V_1}\right)$$
 = 2.303 nRT log $\left(\frac{P_1}{P_2}\right)$

(3) For isothermal process, $\Delta U = 0$, So, $\Delta Q = \Delta W$

Adiabatic Process

(1) W =
$$\frac{P_1 V_1 - P_2 V_2}{\gamma - 1}$$

γ – adiabatic constant

- (2) $\Delta Q = O$ for this process
- $(3) \pm \Delta w = \mp \Delta U$

FIRST LAW OF THERMODYNAMICS/

If the energy (ΔQ) supplied to System goes in partly to increase the internal energy of system (ΔU) and rest in work done (ΔW).

 $\Delta Q = \Delta U + \Delta W$ to the system

- (1) Heat (Q) Energy transfer from a thermodynamic system = $nC\Delta T$
- (2) ΔU Energy associated with internal configuration = nC, ΔT environment. $\Delta Q = \Delta U + \Delta W$
- (3) Area under P V graph gives work done W = ${}_{1}^{2}$ P.dv

- (1) Volume, V = Constant
- (2) Work done, $\Delta W = 0$
- (3) $\Delta Q = \Delta U + \Delta W$ so, $\Delta Q = \Delta U$

Point function and state function /

- (I) Function whose value depends on initial and final state of system is point function.
- (ii) Function whose value depends on thermodynamic process is called state Function.

Polytropic Process

- (1) PVⁿ = Const; n = polytropic index
- (2) If n = o, isobaric process
- (3) If n = 1, isothermal process
- (4) If n = y, Adiabatic process
- (5) If $n = \infty$, isochoric process

SECOND LAW OF THERMODYNAMICS

Kelvin - Planck's statement:

"No process is possible, whose sole result is absorption of heat from reservoir and the complete conversion of heat into work"

Clausius Statement:

"No process is possible , whose sole result is the transfer of heat from a colder object to hotter object"