Algorytm Euklidesa

Najmniejsza wspólna wielokrotność NWW dwóch liczb naturalnych a i b, to najmniejsza z liczb naturalnych, które są podzielne przez a i przez b. Oznaczana jest jako NWW(a, b).

Największy wspólny dzielnik NWD dwóch liczb naturalnych a i b, to największa z liczb naturalnych, które są podzielne przez a i przez b. Oznaczany jest jako NWD(a, b).

Między NWW a NWD zachodzi związek:

$$NWW = \frac{a \cdot b}{NWD(a, b)}$$

NWD można wyznaczyć obliczając wszystkie kolejne dzielniki i wybierając największy, wspólny dla obu liczb. Jest to jednak metoda pracochłonna i w praktyce stosuje się algorytm Euklidesa, który może być zrealizowany na dwa sposoby – pierwszy (szybszy) wykorzystujący dzielenie z resztą, a drugi (wolniejszy) odejmowanie.

Przykład

Zaprojektuj algorytm wyznaczający NWD i wykorzystujący dzielenie z resztą. Zadanie wykonaj w formie listy kroków oraz schematu blokowego. Sporządź specyfikację algorytmu. Sprawdź działanie algorytmu dla $\alpha=49$ i b=84.

Specyfikacja:

Dane:

a, b, r – liczby naturalne większe od zera

Wynik:

NWD(a,b) – liczba naturalna

Lista kroków:

- 1. Wczytaj dwie liczby naturalne a i b większe od zera.
- 2. Dopóki b > 0, powtarzaj wyznaczanie reszty r z dzielenia całkowitego a przez b, po czym jako nową dzielną a przyjmij liczbę b, a w charakterze nowego dzielnika b przyjmij liczbę r.
- 3. Wypisz NWD(a, b) jako liczbę a.

Uwaga:

Na schematach blokowych operację uzyskiwania reszty z dzielenia całkowitego oznacza się jako "mod" lub symbolem "%", czyli $r = a \mod b$ lub r = a % b.

Testowanie algorytmu na przykładowych liczbach

а		b		СС	r
49	:	84	=	0	49
84	:	49	=	1	35
49	:	35	=	1	14
35	:	14	=	2	7
14	:	7	=	2	0
7	:	0			STOP

Uwaga:

$$a = cc \cdot b + r$$

Schemat blokowy algorytmu Euklidesa

