The exam is closed book; students are permitted to prepare one 8.5×11 page of formulas, notes, etc. that can be used during the exam. A calculator is permitted but not necessary for the exam. Do 4 out of the 5 problems (10 points each, 40 points total). Clearly indicate the problem that you are omitting; if it is not clear, then the first 4 problems will be graded.

Problem 1. (10 points) Let X_1, \ldots, X_n be independent identically distributed random variables each with probability mass function

$$P(X = x|p) = \begin{cases} p(1-p)^x & \text{if } x \text{ is a nonnegative integer} \\ 0 & \text{otherwise} \end{cases},$$

and let p be a random variable with a beta prior distribution which has probability density function

$$\pi(p) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} & \text{if } 0$$

and mean $E[p] = \frac{\alpha}{\alpha + \beta}$. Assume α and β are known and fixed.

(a - 7 pts) Let $Y = \sum_{i=1}^{n} X_i$. Find the posterior distribution of p given that Y = y.

(b - 3 pts) Find the Bayes estimator of p.

(a) Since X_1, \ldots, X_n are independent geometric random variables representing the number of failures before a success, $\sum_{i=1}^{n} X_i$ is a negative binomial random variable with pmf $f(y|p) \propto p^n (1-p)^y$.

$$\pi(\rho|y) \propto f(y|\rho)\pi(\rho)$$

$$\propto \rho^{n}(1-\rho)^{\sum x_{i}} \rho^{d-1}(1-\rho)^{\beta-1}$$

$$= \rho^{n+d-1}(1-\rho)^{\sum x_{i}+\beta-1}, o < \rho < 1$$

$$= \rho^{(1-\rho)} (\sum x_{i}+\beta-1)$$

$$= \rho^{(1-\rho)} (\sum x_{i}+\beta-1)$$

$$= \rho^{(1-\rho)} (\sum x_{i}+\beta-1)$$

$$= \rho^{1}(1-\rho)^{2} (\sum x_{i}+\beta-1)$$

$$=$$

Problem 2. (10 points) Suppose that X_1, \ldots, X_n are independent identically distributed (iid) random variables each with probability density function $f(x) = \lambda x^{-\lambda-1} I_{(1,\infty)}(x)$ where $\lambda > 0$.

(a - 3 pts) Show that $\frac{1}{n} \sum_{i=1}^{n} \ln X_i$ is an unbiased estimator of $\frac{1}{\lambda}$.

(b - 4 pts) Calculate the Cramér-Rao Lower Bound for the variance of an unbiased estimator of $\frac{1}{\lambda}$.

(c - 3 pts) Does $\frac{1}{n}\sum_{i=1}^{n}\ln X_{i}$ attain the Cramér-Rao Lower Bound? Show work to justify your answer.

(Hint: If X is a random variable with pdf or pmf of the form $f(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$, then

$$\mathbb{E}\left[w'(\theta)t(X)\right] = -\frac{d}{d\theta}\left\{\ln c(\theta)\right\} \text{ and } \operatorname{Var}\left[w'(\theta)t(X)\right] = -\frac{d^2}{d\theta^2}\left\{\ln c(\theta)\right\} - \mathbb{E}\left[w''(\theta)t(X)\right].\right)$$

(a)
$$X_i$$
 has a pdf in the form $f(x) = \left(\frac{1}{x}I_{(i,\sigma)}(x)\right) \cdot \lambda \cdot e_{\omega(\lambda) \cdot t(x)}$
= $h(x) \cdot c(\lambda) \cdot e$

So
$$E\left[\frac{1}{2\pi}\left[-\lambda\right]\cdot\ln\lambda\right] = -\frac{1}{2\pi}\left[\ln\lambda\right] \Rightarrow E\left[-\ln\lambda\right] = -\frac{1}{2\pi}\left[\ln\lambda\right] = \frac{1}{2\pi}$$

(b)
$$\ln f(x|\lambda) = \ln \lambda - (\lambda+1) \ln x$$

$$E[(\sharp_{h}^{L}(x|\lambda))]^{2}] = E[(|h|X-\frac{1}{\lambda})] = 000(0)$$

$$= (\sharp_{h}^{L}(x|\lambda))]^{2} = (-\frac{1}{\lambda^{2}})^{2}$$

$$= (-\frac{1}{$$

(c) Yes,
$$V_{\alpha r} \left[\frac{1}{\sqrt{2}} \ln X_{r} \right] = \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \left[\ln X_{r} \right] = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right] = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}$$

Problem 3. (10 points) Let X_1, \ldots, X_n be a random sample from a population with parameter θ . Suppose that W is an unbiased estimator of θ and T is a sufficient statistic for θ , where both W and T are functions of X_1, \ldots, X_n .

(a - 1 pt) Let $\phi(T) = E[W|T]$. Is $\phi(T)$ a statistic?

(b - 4 pts) Prove that $\phi(T)$ is an unbiased estimator of θ .

(c - 5 pts) Prove that $Var[\phi(T)] \leq Var[W]$ for all θ .

(a) Yes, since T is sufficient,
$$\phi(T)$$
 does not depend on Θ .

Problem 4. (10 points) Suppose X_1, \ldots, X_n are independent identically distributed Bernoulli random variables each with probability mass function

$$f(x) = \begin{cases} p^x (1-p)^{1-x} & \text{for } x = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

where 0 .

(a - 5 pts) Find a complete statistic which is sufficient for p. Justify your answer.

(b - 5 pts) Assume $n \ge 2$. Find the UMVUE of p^2 . Justify your answer.

(a)
$$X_i$$
 has the form of an exponential family since $t(x)$ such that $f(x) = I_{\{0,1\}}(x)$ $(1-p)$ $(\frac{p}{1-p})^x = I_{\{0,1\}}(x)$ $(1-p)$ $e^{-x \ln(\frac{p}{1-p})}$.

Thus, $\frac{2}{j=1} + (X_j) = \frac{2}{j} \times X_j$ is sufficient for p .

Since $p \in (0,1)$ contains an open subset of \mathbb{R}^1 , $\frac{2}{j} \times X_j$ is complete.

(b) First, we need an embiased estimator for p^2 .

Since X_1 and X_2 are independent and $E[X_1] = E[X_2] = p$,

 $E[X_1X_2] = E[X_1] E[X_2] = p^2$.

Then since $\frac{2}{j} \times X_j$ is complete and sufficient,

 $E[X_1X_2] = E[X_1] E[X_2] = p^2$.

To compute it, let $\phi(t) = E[X_1X_2] \frac{2}{j} \times x_j + t = p(X_1X_2 = 1) \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \times x_j + t = p(X_1 = 1) \frac{2}{j} \frac{2}{j} \times x_j + t$

Problem 5. (10 points) Suppose X_1 and X_2 are independent identically distributed normal random variables each with probability density function $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$ where μ and σ^2 are unknown, and suppose that the experimenter is interested in testing $H_0: \mu = 0$ versus $H_1: \mu \neq 0$ where $\Theta = \left\{ (\mu, \sigma^2): \mu \in (-\infty, \infty) \text{ and } \sigma^2 \in (0, \infty) \right\}$.

(a - 3 pts) Compute the likelihood ratio
$$\lambda(x_1, x_2) = \frac{\sup\limits_{(\mu, \sigma^2) \in \Theta_0} L(\mu, \sigma^2; x_1, x_2)}{\sup\limits_{(\mu, \sigma^2) \in \Theta} L(\mu, \sigma^2; x_1, x_2)}.$$

(b - 3 pts) Show that the likelihood ratio test has a critical region of the form $\left\{(x_1, x_2) : \frac{|\bar{x}|}{s} \ge K\right\}$ where $\bar{x} = \frac{x_1 + x_2}{2}$ and $s^2 = (x_1 - \bar{x})^2 + (x_2 - \bar{x})^2$.

(c-3 pts) Find the value of K (to at least 2 decimal places) such that the test in part (a) has size 0.05.

(d - 1 pt) If the observed data is $x_1 = 50$ and $x_2 = 60$, do we reject H_0 in the likelihood ratio test of $H_0: \mu = 0$ versus $H_1: \mu \neq 0$ with size 0.05?

Use the standard normal and/or
$$t$$
 tables attached to this exam as needed.

(a) $L(\mu_1, \sigma^2) = \prod_{i=1}^{n} f(x_i) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2\pi}L(x_1-\mu)^2 + (x_2-\mu)^2}$

Assuming the $\mu = 0$ is true, max $L(0, \sigma^2) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2\pi}L(x_1-\mu)^2 + (x_2-\mu)^2}$

where $\sigma^2 = \frac{x_1^2 + x_2^2}{2}$ since $\tilde{\chi}(\sigma^2) = L(0, \sigma^2) = -\ln(2\pi) - \ln(6^2) - \frac{1}{26\pi}L(x_1^2 + x_2^2) = 0$

Also, max $L(\mu_1, \sigma^2) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2\pi}L^2(x_1^2 + x_2^2)}$

where $\tilde{\sigma}^2 = \frac{x_1^2 + x_2^2}{2}$

where $\tilde{\sigma}^2 = \frac{x_1^2 + x_2^2}{2}$
 $\tilde{\sigma}^2 = \frac{x_1^$

$$\lambda(x_{1},x_{2}) \text{ is small} \Longrightarrow \frac{|\overline{x}|}{|\overline{s}|} = \frac{1}{1+4\left(\frac{|\overline{x}|}{|\overline{s}|}\right)^{2}}$$

$$\lambda(x_{1},x_{2}) \text{ is small} \Longrightarrow \frac{|\overline{x}|}{|\overline{s}|} \text{ is large}$$

$$80 \text{ the rejection region has the form } \frac{1}{|\overline{s}|} (x_{1},x_{2}) : \frac{|\overline{x}|}{|\overline{s}|} \ge K^{2}_{3}.$$

$$(c) \text{ If } \mu = 0, \text{ then } \overline{X}$$

$$\sqrt{S^{2}/2} \sim t_{2-1=1} \text{ so}$$

$$1 + distributed for a single of the second of the secon$$