# STAT1005 Foundations of Data Science

## Lecture (9): Classification & Logistic regression

Yuanhua Huang (黃渊華)

Office: Rm 1-05E, 1/F, JCBIR, 5 Sassoon Road (Medical Campus)

Q&A contact hours: Wed 3-5pm

Email: yuanhua@hku.hk | Web: <a href="https://web.hku.hk/~yuanhua">https://web.hku.hk/~yuanhua</a>

Nov 8, 2021





## Objectives today

- 1. Logistic regression
  - i. Sigmoid / logit function
  - ii. Gradient based optimization
  - iii. Feature selection
- 2. Evaluation of classification performance
  - i. Generalization, test set, and cross-validation
  - ii. Confusion matrix, scoring metrices, and ROC curve
- 3. More classification methods
  - i. Quick introduction to Naïve Bayes
- Wiki: <a href="https://en.wikipedia.org/wiki/Logistic\_regression">https://en.wikipedia.org/wiki/Logistic\_regression</a>
- Scikit learn: <a href="https://scikit-learn.org/stable/modules/linear\_model.html#logistic-regression">https://scikit-learn.org/stable/modules/linear\_model.html#logistic-regression</a>
- Notebooks: <a href="https://github.com/huangyh09/foundation-data-science/">https://github.com/huangyh09/foundation-data-science/</a>

#### Data classification or data clustering

- Classification techniques: essential part of machine learning and data mining applications.
- Large proportion of data analysis problems are classification (60-80%)
   "In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known."

https://en.wikipedia.org/wiki/Statistical\_classification

- Lots of classification solutions available: k-means, SVM, deep neural networks, random forests;
- But, Logistic Regression is a common and efficient regression method for solving classification problems.

#### Binary classification

Given a set of features (predictors) of a subject, the aim is to classify it into two categories (binary).

#### Examples

- Email filtering: is this email a spam?
  - o {mass email, advertising business, commercial photos, senders, ... } { Yes, No }
- Admission: will an applicant be admitted to the prestigious Master of Data Science at HKU?
  - o {Bachelor reputation, GPA, research experience, projects, English, ... } { Yes, No }
- Skin lesion detection: does this image come from a skin cancer?
  - o {Colour values of 256 x 256 pixels, ... } { Yes, No }

#### 1.1 Linear classifier | Example with two-dimensional data



In a two-class linear classifier, we learn a function

 $F(x_1, x_2 | \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2$ that represents how aligned the instance is with y = 1.

- $\mathbf{w} = (w_0, w_1, w_2)$  are parameters of the classifier that we learn from data.
- To do classification of an input x:  $(x_1, x_2) \rightarrow (y = 1)$  if  $F(x_1, x_2 | \mathbf{w}) > 0$

#### 1.1 Linear classifier | Example with two-dimensional data



We have a linear classifier via function

$$F(x_1, x_2 | \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2$$

To do classification of an input x:  $(x_1, x_2) \rightarrow (y = 1)$  if  $F(x_1, x_2 | \mathbf{w}) > 0$ 

The decision boundary here is  $F(x_1, x_2) = w_0 + w_1x_1 + w_2x_2 = 0$ 

## 1.1 Linear classifier | Multi-dimensional predictors

- For *p* dimensional predictors (*p*>2), we still can have linear classifier. This boundary will be a hyperplane.
- Now, we rewrite in a vector form:

$$\mathbf{x} = (1, x_1, \dots, x_p), \mathbf{w} = (w_0, w_1, \dots, w_p)$$

The decision boundary here is  $F(\mathbf{x}|\mathbf{w}) = \mathbf{x}^{\mathsf{T}}\mathbf{w} = w_0 + w_1x_1 + \dots + w_px_p = 0$ 

To do classification of an input x:  $(x_1, x_2, ..., x_p) \rightarrow (y = 1)$  if  $F(\mathbf{x}|\mathbf{w}) > 0$ 



#### 1.1 Linear classifier | Probabilistic prediction

We have defined a linear classifier of an input x:

$$(x_1, x_2, ..., x_p) \rightarrow (y = 1) \text{ if } F(\mathbf{x}|\mathbf{w}) = \mathbf{x}^{\mathsf{T}}\mathbf{w} > 0$$

- Now we want to have a probabilistic outcome:  $P(y = 1 | x_1, x_2, ..., x_p)$
- We could simply try

$$P(y = 1 | x_1, x_2, ..., x_p) = w_0 + w_1 x_1 + ... + w_p x_p$$

but it is stupid! The range is  $[-\infty, +\infty]$ , not valid for probability ranging [0, 1]

Instead, what we will do is

$$P(y = 1 \mid \mathbf{x}) = f(w_0 + w_1 x_1 + \dots + w_p x_p) = f(\mathbf{x}^\mathsf{T} \mathbf{w})$$

- Function f() must return value between 0 and 1; It squashes the real line.
- Furthermore, the fact that probabilities sum to one means

$$P(y = 0 \mid \mathbf{x}) = 1 - f(\mathbf{x}^{\mathsf{T}}\mathbf{w})$$

## 1.1 Linear classifier | Logistic function (sigmoid function)

- We need a function that returns probabilities (i.e., stays between 0 and 1).
- The logistic function provides this

$$P: f(z) = \sigma(z) \equiv \frac{1}{1 + \exp(-z)}$$

It has a "sigmoid" shape (i.e., S-like shape)



As z goes from  $-\infty$  to  $+\infty$ , so f goes from 0 to 1, a "squashing function".

$$Z = 0: \sigma(z) = 0.50$$
  
 $Z = 1: \sigma(z) = 0.73$   
 $Z = -1: \sigma(z) = 0.27$   
 $Z = 2: \sigma(z) = 0.88$ 

#### Classification: $P = \sigma(z) > 0.5$ : $(x_1, x_2, ..., x_p) \rightarrow (y = 1)$

#### 1.1 Linear classifier | Logistic function & logit function

- Odds ratio between A (positive) and B (negative) events: P / (1-P)
- Logit function: z = log(P/(1-P)) = log(odds ratio)
- Z increases by dz means odds increases by exp(dz)
- Logit function is the inverse function of logistic function





## 1.1 Linear classifier | Linear weights

- Linear weights + logistic squashing function == logistic regression.
- We model the probability of positive class as

$$P(y = 1|x) = \sigma(\mathbf{x}^{\mathsf{T}}\mathbf{w}) = \sigma(w_0 + w_1x_1 + \dots + w_px_p)$$

•  $\sigma(z) = 0.5$  when z = 0. Hence the decision boundary is given by  $\mathbf{x}^\mathsf{T} \mathbf{w} = 0$ .

Decision boundary is a p-1 hyperplane for a p dimensional problem.

Colab Notebook: <a href="https://bit.ly/3kcisoU">https://bit.ly/3kcisoU</a>



## 1.2 Fitting logistic regression | likelihood function

- How do we determine whether we have achieved a good decision hyperplane?
- Can we use least squares, which has analytical solution?
  - $SSE = \sum_{i=1}^{n} (y_i \mathbf{x}^\mathsf{T} \mathbf{w})^2$
  - Not good in general, observed y is categorical (0 or 1) not numerical
- Another option: maximum likelihood (next slides)





Green: logistic regression (maximum likelihood);

Purple: least-squares regression;

Least squares method is sensitive to outliers, more common in X space.

#### 1.2 Fitting logistic regression | likelihood function

- Assume data is independent and identically distributed.
- ► Call the data set  $D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)\}$
- The likelihood is

$$p(D|\mathbf{w}) = \prod_{i=1}^{n} p(y = y_i|\mathbf{x}_i, \mathbf{w})$$

$$= \prod_{i=1}^{n} p(y = 1|\mathbf{x}_i, \mathbf{w})^{y_i} (1 - p(y = 1|\mathbf{x}_i, \mathbf{w}))^{1-y_i}$$

▶ Hence the log likelihood  $L(\mathbf{w}) = \log p(D|\mathbf{w})$  is given by

$$L(\mathbf{w}) = \sum_{i=1}^{n} y_i \log \sigma(\mathbf{w}^{\top} \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^{\top} \mathbf{x}_i))$$

#### Likelihood:

describes the joint probability of the observed data as a function of the parameters of the chosen statistical model

## 1.2 Fitting logistic regression | maximum likelihood

- It turns out that the log likelihood function has a unique optimum (given sufficient training examples). It is convex.
- How to maximize? Necessary condition: all partial derivatives are 0.

$$\frac{\partial L(w_0, w_1, \dots, w_p)}{\partial w_i} = 0 \text{ for any dimension } i$$

- No closed-form solution is available for the optimum values of the parameters  $\widehat{\mathbf{w}} = (\widehat{w}_0, \widehat{w}_1, ..., \widehat{w}_p)$
- Rather, we need numerical procedures to find these estimates of the parameters

## 1.2 Fitting logistic regression | gradient descent method

Actually, optimising the likelihood function is the general structure for learning algorithms

- Define the task: classification, discriminative
- Decide on the model structure: logistic regression model
- Decide on the score function: log likelihood
- Decide on optimization/search method to optimize the score function: numerical optimization routine. Note we have several choices here, gradient descent and its many variants (stochastic gradient descent, BFGS).



Illustration of gradient descent on a series of <u>level sets</u>. X are the parameter values, indexed by updating steps

## 1.3 Example | Diabetes diagnosis (PIMA Indians Diabetes)

- Diabetes is a chronic (long-lasting) health condition: body can't turn food (sugar) to energy, because either can't make enough or can't use insulin.
- > ~700,000 individuals in Hong Kong (~10%) suffers from this disease.
- Can we diagnostically predict if this condition exists or not from easy-to-access measurements?

#### Example dataset (acknowledge to PIMA Indians Diabetes Database)

- 768 female individuals at least 21 years old of Pima Indian heritage;
- 8 medical predictor (independent) variables and 1 target (dependent) variable;
- Independent variables include their age, BMI, insulin level, glucose and so on.

#### 1.3 Example | Diabetes diagnosis as a classification task

#### Diabetes diagnosis as a classification problem

Given the input variables

 $X = \{Pregnancies, Glucose, BP, Skin, Insulin, BMI, Pedigree, Age\}$ Should we classify (diagnose) the person to "having diabetes" (y)?

| pi | pima.head() |         |    |      |         |      |          |     |          |
|----|-------------|---------|----|------|---------|------|----------|-----|----------|
|    | pregnant    | glucose | bp | skin | insulin | bmi  | pedigree | age | diabetes |
| 0  | 6           | 148     | 72 | 35   | 0       | 33.6 | 0.627    | 50  | 1        |
| 1  | 1           | 85      | 66 | 29   | 0       | 26.6 | 0.351    | 31  | 0        |
| 2  | 8           | 183     | 64 | 0    | 0       | 23.3 | 0.672    | 32  | 1        |
| 3  | 1           | 89      | 66 | 23   | 94      | 28.1 | 0.167    | 21  | 0        |
| 4  | 0           | 137     | 40 | 35   | 168     | 43.1 | 2.288    | 33  | 1        |

Aim: to build a model and fit to the observed data, so able to predict the output for a new person with values of input variables

#### 1.3 Example | Diabetes diagnosis as a classification task

Logistic regression and the parameters:

$$P = \sigma(w_0 + w_1 * \text{Pregnacies} + w_2 * \text{Glucose} + w_3 * BP + w_4 * \text{Skin} + w_5 * \text{BMI} + w_6 * \text{Pedigree} + w_7 * \text{Age})$$

Fit parameters by maximizing likelihood function over training data.

Maximized value of
Log Liklihood = -277.93

LLR p-value = 6.246e-38 (~ 0)

(equivalent to the F-statistic in a linear regression model and its p-value)

| <pre>log_reg.summary()</pre> |         |           |           |                      |           |                |           |  |
|------------------------------|---------|-----------|-----------|----------------------|-----------|----------------|-----------|--|
|                              |         | Logit     | Regressio | n Results            | •         |                |           |  |
| Dep. Variable:               |         |           | diabetes  | No. Obs              | s:        | 576            |           |  |
| Model:                       |         |           | Logit     | Df                   | Residual  | s:             | 567       |  |
| Method:                      |         |           | MLE       |                      | Df Mode   | el:            | 8         |  |
| Date:                        |         | Sun, 07 N | lov 2021  | Pseu                 | do R-squ  | ı <b>.:</b> 0. | 0.2600    |  |
| Time:                        |         | ,         | 0:36:00   | Log-                 | Likelihoo | <b>d:</b> -2   | -277.93   |  |
| converged:                   |         |           | True      | <b>LL-Null:</b> -375 |           |                | 75.58     |  |
| Covariance Type:             |         | nonrobust |           | LLR p-value:         |           | e: 6.246       | 6.246e-38 |  |
|                              | coef    | std err   | z         | P> z                 | [0.025    | 0.975]         |           |  |
| const                        | -8.4218 | 0.822     | -10.240   | 0.000                | -10.034   | -6.810         |           |  |
| pregnant                     | 0.0869  | 0.036     | 2.448     | 0.014                | 0.017     | 0.157          |           |  |
| glucose                      | 0.0332  | 0.004     | 7.802     | 0.000                | 0.025     | 0.042          |           |  |
| bp                           | -0.0112 | 0.006     | -1.815    | 0.070                | -0.023    | 0.001          |           |  |
|                              |         | 0.000     | 0.728     | 0.466                | -0.010    | 0.022          |           |  |
| skin                         | 0.0059  | 0.008     | 0.726     | 0.400                | -0.010    | 0.022          |           |  |
| insulin                      | -0.0010 | 0.008     | -1.011    | 0.312                | -0.003    | 0.001          |           |  |
|                              |         |           |           |                      |           |                |           |  |
| insulin                      | -0.0010 | 0.001     | -1.011    | 0.312                | -0.003    | 0.001          |           |  |

# 1.4 Model diagnosis | Compare linear & logistic regressions

|                                             | Linear regression                                                                                                     | Logistic regression                                                                                          | Comments         |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------|
| Objective function for parameter estimation | Sum of squares $S(\alpha, \beta_{1,}, \beta_p)$ to minimize; Closed-form solution for parameters                      | Likelihood function $L(\alpha, \beta_{1,}\beta_p)$ to maximize;  Numerical solutions using numerical solvers | On training data |
| Significance check of individual parameters | p-value                                                                                                               | p-value                                                                                                      | On training data |
| Goodness-of-fit statistics                  | <ul> <li>- Adjust R<sup>2</sup></li> <li>- Fisher statistic and its p-value</li> <li>- Error ( = SRE/mean)</li> </ul> | <ul><li>Log-likelihood value<br/>and its p-value</li><li>Prediction accuracy</li></ul>                       | On training data |
| Performance on test data                    | - Error ( = SRE/mean)                                                                                                 | - Prediction accuracy                                                                                        | On test data     |
|                                             |                                                                                                                       |                                                                                                              |                  |

#### 1.4 Model diagnosis | feature selection in logistic regression

Fitted model with all the 8 input variables

- Severable variables have p-values > 5% (too large), which mean that they are not significant (given the presence in the model of other variables)
- By removing such redundancy, one may improve the model prediction performance on test data (new data)

| Logit Regression Results |                  |                   |           |  |  |  |  |
|--------------------------|------------------|-------------------|-----------|--|--|--|--|
| Dep. Variable:           | diabetes         | No. Observations: | 576       |  |  |  |  |
| Model:                   | Logit            | Df Residuals:     | 567       |  |  |  |  |
| Method:                  | MLE              | Df Model:         | 8         |  |  |  |  |
| Date:                    | Sun, 07 Nov 2021 | Pseudo R-squ.:    | 0.2600    |  |  |  |  |
| Time:                    | 10:36:00         | Log-Likelihood:   | -277.93   |  |  |  |  |
| converged:               | True             | LL-Null:          | -375.58   |  |  |  |  |
| Covariance Type:         | nonrobust        | LLR p-value:      | 6.246e-38 |  |  |  |  |

|          | coef    | std err | z       | P> z  | [0.025  | 0.975] |
|----------|---------|---------|---------|-------|---------|--------|
| const    | -8.4218 | 0.822   | -10.240 | 0.000 | -10.034 | -6.810 |
| pregnant | 0.0869  | 0.036   | 2.448   | 0.014 | 0.017   | 0.157  |
| glucose  | 0.0332  | 0.004   | 7.802   | 0.000 | 0.025   | 0.042  |
| bp       | -0.0112 | 0.006   | -1.815  | 0.070 | -0.023  | 0.001  |
| skin     | 0.0059  | 0.008   | 0.728   | 0.466 | -0.010  | 0.022  |
| insulin  | -0.0010 | 0.001   | -1.011  | 0.312 | -0.003  | 0.001  |
| bmi      | 0.0880  | 0.017   | 5.103   | 0.000 | 0.054   | 0.122  |
| pedigree | 0.8935  | 0.342   | 2.613   | 0.009 | 0.223   | 1.564  |
| age      | 0.0220  | 0.011   | 2.049   | 0.040 | 0.001   | 0.043  |
|          |         |         |         |       |         |        |

# 1.4 Model diagnosis | "Skin" removed

Accuracy is calculated on 25% instances as test test

| Model           | log-L   | Accuracy on test data | Comments |
|-----------------|---------|-----------------------|----------|
| Full model      | -277.93 | 80.2%                 |          |
| skin<br>removed | -278.20 | 80.7%                 | better   |

Can we further improve the model?

|           | Logit Regression Results |           |           |                   |              |         |           |  |
|-----------|--------------------------|-----------|-----------|-------------------|--------------|---------|-----------|--|
| Dep. Va   | ariable:                 |           | label     | No. Observations: |              | 576     |           |  |
| Model:    |                          | Logit     |           | Df Residuals:     |              | 568     |           |  |
| N         | lethod:                  |           | MLE       | Df Model:         |              | 7       |           |  |
|           | Date:                    | Sun, 07 N | ov 2021   | Pseudo R-squ.:    |              | 0.2593  |           |  |
|           | Time:                    | 1         | 7:37:02   | Log-l             | ikelihood:   | -278.20 |           |  |
| conv      | verged:                  |           | True      |                   | LL-Null:     | -375.58 |           |  |
| Covarianc | Covariance Type:         |           | nonrobust |                   | LLR p-value: |         | 1.472e-38 |  |
|           | coef                     | std err   | _         | D- I-I            | [0.025       | 0.9751  |           |  |
|           | coei                     | sta err   | Z         | P> z              | [0.025       | 0.975]  |           |  |
| const     | -8.4226                  | 0.823     | -10.240   | 0.000             | -10.035      | -6.810  |           |  |
| pregnant  | 0.0881                   | 0.035     | 2.491     | 0.013             | 0.019        | 0.157   |           |  |
| glucose   | 0.0327                   | 0.004     | 7.823     | 0.000             | 0.025        | 0.041   |           |  |
| bp        | -0.0104                  | 0.006     | -1.714    | 0.087             | -0.022       | 0.001   |           |  |
| insulin   | -0.0007                  | 0.001     | -0.775    | 0.438             | -0.003       | 0.001   |           |  |
| bmi       | 0.0921                   | 0.016     | 5.621     | 0.000             | 0.060        | 0.124   |           |  |
| pedigree  | 0.9124                   | 0.342     | 2.668     | 0.008             | 0.242        | 1.583   |           |  |
| age       | 0.0207                   | 0.011     | 1.961     | 0.050             | 9.63e-06     | 0.041   |           |  |

#### 1.4 Model diagnosis | "Skin" and "Insulin" removed

Accuracy is calculated on 25% instances as test test

| Model                  | log-L   | Accuracy on test data | Comments                                 |
|------------------------|---------|-----------------------|------------------------------------------|
| Full model             | -277.93 | 80.2%                 |                                          |
| skin<br>removed        | -278.20 | 80.7%                 | better                                   |
| skin & insulin removed | -278.50 | 79.7%                 | Test<br>performance<br>slightly<br>worse |

Despite a small decrease in prediction performance, the 3rd model. It has all its variables being significant with acceptable p-values.

This is the preferred and recommended model

Colab Notebook:

https://bit.ly/3ES8AIX

| Logit Regression Results |                  |                   |           |  |  |  |  |
|--------------------------|------------------|-------------------|-----------|--|--|--|--|
| Dep. Variable:           | label            | No. Observations: | 576       |  |  |  |  |
| Model:                   | Logit            | Df Residuals:     | 569       |  |  |  |  |
| Method:                  | MLE              | Df Model:         | 6         |  |  |  |  |
| Date:                    | Sun, 07 Nov 2021 | Pseudo R-squ.:    | 0.2585    |  |  |  |  |
| Time:                    | 17:39:20         | Log-Likelihood:   | -278.50   |  |  |  |  |
| converged:               | True             | LL-Null:          | -375.58   |  |  |  |  |
| Covariance Type:         | nonrobust        | LLR p-value:      | 3.304e-39 |  |  |  |  |

| coef    | std err                                                    | z                                                                                              | P> z                                                                                                                                  | [0.025                                                                                                                                                                                                                                                                                                         | 0.975]                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -8.3490 | 0.815                                                      | -10.247                                                                                        | 0.000                                                                                                                                 | -9.946                                                                                                                                                                                                                                                                                                         | -6.752                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0886  | 0.035                                                      | 2.510                                                                                          | 0.012                                                                                                                                 | 0.019                                                                                                                                                                                                                                                                                                          | 0.158                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0317  | 0.004                                                      | 8.011                                                                                          | 0.000                                                                                                                                 | 0.024                                                                                                                                                                                                                                                                                                          | 0.039                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.0105 | 0.006                                                      | -1.736                                                                                         | 0.083                                                                                                                                 | -0.022                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0909  | 0.016                                                      | 5.594                                                                                          | 0.000                                                                                                                                 | 0.059                                                                                                                                                                                                                                                                                                          | 0.123                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.8810  | 0.340                                                      | 2.593                                                                                          | 0.010                                                                                                                                 | 0.215                                                                                                                                                                                                                                                                                                          | 1.547                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0219  | 0.010                                                      | 2.091                                                                                          | 0.037                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                          | 0.042                                                                                                                                                                                                                                                                                                                                                                                    |
|         | -8.3490<br>0.0886<br>0.0317<br>-0.0105<br>0.0909<br>0.8810 | -8.3490 0.815<br>0.0886 0.035<br>0.0317 0.004<br>-0.0105 0.006<br>0.0909 0.016<br>0.8810 0.340 | -8.3490 0.815 -10.247<br>0.0886 0.035 2.510<br>0.0317 0.004 8.011<br>-0.0105 0.006 -1.736<br>0.0909 0.016 5.594<br>0.8810 0.340 2.593 | -8.3490       0.815       -10.247       0.000         0.0886       0.035       2.510       0.012         0.0317       0.004       8.011       0.000         -0.0105       0.006       -1.736       0.083         0.0909       0.016       5.594       0.000         0.8810       0.340       2.593       0.010 | -8.3490       0.815       -10.247       0.000       -9.946         0.0886       0.035       2.510       0.012       0.019         0.0317       0.004       8.011       0.000       0.024         -0.0105       0.006       -1.736       0.083       -0.022         0.0909       0.016       5.594       0.000       0.059         0.8810       0.340       2.593       0.010       0.215 |

Part 2: Performance evaluation

## 2.1 Generalization | Training & future data

- Training data:  $\{x_i, y_i\}$ 
  - Data used to train the model
- Future data:  $\{x_i, ?\}$ 
  - Examples that our classifier has never seen before
- We care more on the errors in future data



#### 2.1 Generalization | Evaluation on test data set

- Ideally, future data may be collected when classifier is trained, to evaluate the model performance and generalization
- Generally, collecting new data is costly. We could consider splitting the collected data into training and test data sets.
  - For example, 75% instances for training, and 25% instance for testing & evaluating the model performance
  - Ensure that the test data is not touched during training
  - Shuffle the data before splitting them to avoid bias

#### 2.1 Generalization | Cross-validation

- When the collected data size is not big, the test set (e.g., 25%) may be too few to report the performance. Better to use all of them to evaluate the model.
- Cross-validation (with k-fold, e.g., 5-fold)
  - Alternately use subset (1/K of the full data) as test data set
  - Repeating K times, so as all data points are used for test
  - Combining all folds to have an overall evaluation

3, 5, or 10 folds are commonly used.

**Leave-one-out**: n-fold; n is the number instances.

The more folds, the larger the training set, but more computing time required.



#### 2.2 Performance metrics | Example on diabetes



Scatter plot of actual response v.s. predicted response

If P>0.5: predict to be positive outcome

- Performance on test data
   75% 25% train-test split
   576 -192 share
- Two type of errors:
   actual = 1 & predicted = 0
   actual = 0 & predicted = 1
- Two type of correctness:
   actual = predicted = 0
   actual = predicted = 1

## 2.2 Performance metrics | confusion matrix & score metrics

- ightharpoonup True positive rate (Power, Sensitivity, Hit rate, Recall):  $TPR = \frac{TP}{TP+FN} = \frac{36}{36+26}$
- ightharpoonup True negative rate (Specificity, 1-FPR):  $TNR = \frac{TN}{TN+FP} = \frac{118}{118+12}$
- ➤ Precision (Positive Predictive Value; 1- false discovery rate):

$$Precision = \frac{TP}{TP + FP} = 1 - FDR = \frac{36}{36 + 12}$$

Accuracy: (TP + TN) / all samples = (36+118) / (36+118+12+26)



#### 2.2 Performance metrics | Choice of metrics

- Is sensitivity (true positive rate) or specificity (true negative rate) alone good enough to evaluate models (or thresholds)?
  - What if a model predict everything as positive --> perfect sensitivity
  - What if a model predict everything as negative --> perfect specificity
- Is accuracy alone good enough to evaluate models (or thresholds)?
  - Generally, yes. It balances both sensitive and specificity
  - However, when samples are imbalanced, accuracy can be biased.
  - If we predict all sample as non-diabetes, accuracy=130 / (130 + 62) = 67.7%
- When is precision desired? To control false discoveries.
- How to set a reasonable threshold to balance sensitivity and specificity?

## 2.2 Performance metrics | ROC Curve & AUC

- How to set a reasonable threshold to balance sensitivity and specificity?
  - Calculate sensitivity and specificity at each potential threshold
- We can also plot out the curve between specificity (usually 1 specificity as x-axis) and sensitivity, when varying thresholds. This curve is called receiver operating characteristic (ROC) curve.
- Area Under the Curve (AUC) can be used as a summary metric of ROC curve.



Perfect ROC: towards the top left corner Random ROC: along the diagonal

The larger the AUC, the better the performance.

Different threshold, different balance in sensitivity and specificity.

Colab Notebook: <a href="https://bit.ly/3EUhEgo">https://bit.ly/3EUhEgo</a>

Part 3: Naïve Bayes (quick introduction)

## 3 Bayesian model | Bayes' theorem

In logistic regression, we defined the predicted probability as

$$p(y = 1|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{x}^{\mathsf{T}}\mathbf{w})$$

• We can also calculate with Bayes' theorem  $p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y=1) \ p(y=1)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y=1) \ p(y=1)}{\sum_{t \in [0,1]} p(\mathbf{x}|y=t) \ p(y=t)}$ 



$$p(\mathbf{x}|y=0), \qquad p(\mathbf{x}|y=1)$$

• Prior: p(y = 1) and p(y = 0)



Bayes' theorem - probability **chain rule**  $p(\mathbf{x}, y = 1) = p(y = 1|\mathbf{x}) p(\mathbf{x})$ =  $p(\mathbf{x}|y = 1) p(y = 1)$ 

## 3 Bayesian model | Naïve Bayes

Bayes' theorem

$$p(y = 1|\mathbf{x}) = \frac{p(\mathbf{x}|y = 1) \ p(y = 1)}{\sum_{t \in \{0,1\}} p(\mathbf{x}|y = t) \ p(y = t)}$$

- Prior p(y = 1) is generally set manually. If no information, we set p(y = 0) = p(y = 1) = 0.5
- The difficult part is estimating the high dimensional distributions.
- A naïve assumption: dimensions are independent in each class, so we can approximate the distribution via each dimension separately.



$$p(\mathbf{x}|y=t) = \prod_{j=1}^{p} p(x_j|y=t)$$

## 3 Bayesian model | Naïve Bayes - density estimation

- With the conditional independence assumption, the modelling fitting is only about density estimation of single dimensional data
- Although the independence assumption is strong, Naïve Bayes actually works well in general.

#### Common density estimation

- Recall the methods for density estimation in earlier lectures from Dr Lau.
- Gaussian distribution (normal distribution)

• 
$$X \sim N(\mu, \sigma^2)$$
.  $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$ ;  $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu})^2$ 

Kernel-based methods (like the histogram curve)

Classification rule:  $p(y = 1|\mathbf{x}) > 0.5 \rightarrow (y = 1)$ 

## 3 Bayesian model | Diabetes example





Colab Notebook: https://bit.ly/3EUhEgo

We used normal distribution to approximate the density: not always good, e.g., non-negative values.

Consider other distributions, e.g., log-normal, or transformation of the data, e.g., log transform.

## Summary

- 1. Logistic regression
  - i. Sigmoid / logit function
  - ii. Gradient based optimization
  - iii. Feature selection
- 2. Evaluation of classification performance
  - i. Generalization, test set, and cross-validation
  - ii. Confusion matrix, scoring metrices, and ROC curve
- 3. More classification methods
  - i. Quick introduction to Naïve Bayes

#### Resources & Acknowledgement

- IPython Notebook for this lecture note:
  - On Moodle
  - Also: <a href="https://github.com/huangyh09/foundation-data-science/">https://github.com/huangyh09/foundation-data-science/</a>

#### Other reference resources with acknowledgement:

Chapter 5, Bruces & Gedeck, Practical Statistics for Data Science

#### Inspiring future study | Neural network in one slide



$$y_{l} = f(z_{l})$$

$$z_{l} = \sum_{k \in H2} w_{kl} y_{k}$$

$$y_k = f(z_k)$$

$$z_k = \sum_{j \in H1} w_{jk} y_j$$

$$y_j = f(z_j)$$
  
 $z_j = \sum_{i \in \text{Input}} w_{ij} x_i$ 

Activation function is critical. Examples:

- Rectified linear unit (ReLU) f(z) = max(0, z)
- Sigmoid function
- Hyperbolic tangent function
- Identical (not commonly used)



https://scikit-learn.org/stable/modules/neural\_networks\_supervised.html LeCun, Bengio and Hinton, Deep learning, Nature (2015). https://doi.org/10.1038/nature14539 Online toy example: http://playground.tensorflow.org

# Inspiring future study | More examples & methods



## Inspiring future study | Beginning of an exciting path



## Inspiring future study | More readings

- Blei & Smyth, <u>Science and Data Science</u>, PNAS (2017).
- Domingos, <u>A Few Useful Things to Know about Machine Learning</u>

#### Practical books

- Bruces & Gedeck, <u>Practical Statistics for Data Science</u>, 2020 (2nd Edition).
- Raschka and Mirjalili, <u>Python Machine Learning</u> (E-book available at HKU lib)

Advanced books (some parts are intuitive, but some are more mathematical)

- Bishop, <u>Pattern Recognition and Machine Learning (2006)</u>. Free <u>online PDF</u> thanks to the author and Microsoft research.
- Murphy, <u>Probabilistic Machine Learning: An Introduction (2021)</u>. Free online PDF thanks to the author.

## Thank you for your attention!

Please help provide your feedbacks to this course!