Симетрична група

Сайт: <u>learn.fmi.uni-sofia.bg</u> Разпечатано от: Мартин Попов

Курс: Алгебра 2, поток 1, летен семестър 2021/2022 Дата: Thursday, 24 March 2022, 21:24

Книга: Симетрична група

Съдържание

1. Определение и свойства

- 1.1. S(М) е група
- 1.2. Некомутативност
- 1.3. Брой на елементите
- 1.4. Пресмятания в Sn

2. Цикли в Sn

- 2.1. Примери 2.1
- 2.2. Свойства
- 2.3. Независими цикли
- 2.4. Теорема основна
- 2.5. Примери 2.2
- 2.6. Примери 2.3
- 2.7. Примери 2.4

3. Ред на елемент и спрягане

- 3.1. Ред и степен на цикъл
- 3.2. Ред на елемент на Sn
- 3.3. Циклична структура на елемент
- 3.4. Примери 3.1
- 3.5. Спрегнати елементи
- 3.6. Примери 3.2

4. Транспозиции

- 4.1. Пример
- 4.2. Теорема
- 4.3. Четност на елемент
- 4.4. Свойства
- 4.5. четност и инверсии
- 4.6. Алтернативна подгрупа

1. Определение и свойства

Нека M е непразно множество. Нека с S(M) се означи множеството от всички биективни изображения в множеството $M \neq \emptyset$.

$$S(M) = \{ arphi \mid arphi : M o M, arphi$$
 — биекция $\}$

Множеството от биекциите ще се разглежда с операцията композиция на изображения о:

$$arphi \circ \psi(x) = arphi(\psi(x)) \ , \ orall x \in M.$$

За всяко непразно множество M е изпълнено, че множеството $S(M) = \{ \varphi \mid \varphi : M \to M, \varphi - \mathsf{б}_{\mathsf{И}} \mathsf{e}_{\mathsf{K}} \mathsf{u}_{\mathsf{H}} \}$, съставено от всички биекции на M, разглеждано с операцията композиция на изображения, е група, която се нарича симетрична група на M.

1.1. S(M) е група

Твърдение 1. За всяко непразно множество M е изпълнено, че множеството, съставено от всички биекции на M, разглеждано с операцията композиция на изображения, е група, която се нарича симетрична група на M.

$$S(M) = \{ \varphi \mid \varphi : M \to M, \varphi$$
 – биекция $\}$

Доказателство:

За композицията на изображения са в сила свойствата:

- Композицията е **бинарна операция** за множеството S(M):
- $\varphi \circ \psi$ е инекция, защото ако $x \neq y$ са различни елементи от множеството M, тогава $\psi(x) \neq \psi(y)$, откъдето се получава и $\varphi(\psi(x)) \neq \varphi(\psi(y)) \; \psi, \varphi$ са биекции),
- $arphi\circ\psi$ е *сюрекция*, защото ако $z\in M$ е произволен елемент, arphi е биекция и съществува елемент $y\in M$, за който е изпълнено z=arphi(y). Тъй като и ψ е биекция, затова съществува елемент $x\in M$, за който $y=\psi(x)$, откъдето получаваме $arphi\circ\psi(x)=arphi(\psi(x))=arphi(y)=z$.

По този начин се получава, че $\varphi \circ \psi$ е биекция на множеството M и принадлежи на S(M) и доказахме, че композицията е **бинарна** операция за множеството S(M).

• **Асоциативността** на композицията на изображения е в сила за произволни изображения $\varphi,\ \psi,\ au$ на множеството M. Нека $x\in M$ е произволен елемент и е изпълнено:

$$\varphi \circ (\psi \circ \tau)(x) = \varphi(\psi \circ \tau)(x) = \varphi(\psi(\tau(x)))$$
$$(\varphi \circ \psi) \circ \tau)(x) = (\varphi \circ \psi)(\tau(x)) = \varphi(\psi(\tau(x)))$$

$$\Rightarrow (\varphi \circ \psi) \circ \tau = \varphi \circ (\psi \circ \tau)$$

- Изображението $u\partial$ ентитет $\mathrm{id}: M \to M$, за което е изпълнено $\mathrm{id}(x) = x, \forall x \in M$ е **неутрален елемент**, относно операцията композиция, защото $\varphi \circ \mathrm{id} = \varphi = \mathrm{id} \circ \varphi$.
- Ако изображението φ е биективно изображение, тогава е известно че съществува неговото **обратно изображение** φ^{-1} и е изпълнено $\varphi \circ \varphi^{-1} = \mathrm{id} = \varphi^{-1} \circ \varphi$.

Получихме, че множеството S(M) от всички биекции на даено множество M, разглеждано относно операцията композиция на изображения удовлетворява условията от определението за група $(S(M), \circ)$. Тази група се нарича **симетрична група** за множеството M и обикновено се бележи с S(M), а в случая когато множеството M е крайно с n елемента групата се бележи S_n и се нарича симетрична група от степен n.

<u>Забележка :</u> Понякога композицията на изображения ще я записваме с "." вместо с \circ .

1.2. Некомутативност

Да си отговорим на един основен въпрос:

"Абелева ли е групата S(M)?"

- Случай 1- множество M има само един елемент, ако $M = \{a\}$ (|M| = 1, тогава всяко биективно изображение $\varphi: M \to M$ изпълнява $\varphi(a) = a$ и поради това $\varphi = \mathrm{id}$, $|S_1| = 1$ и групата S_1 е Абелева.
- Случай 2- когато |M|=2, например $M=\{a,b\}$, да разгледаме биективното изображение $\, \varphi:M o M$, което е различно от идентитета . Единствената възможност е $\, \varphi$ да действа по следния начин $\, \varphi(a)=b, \quad \varphi(b)=a$. Получава се, че всички елементи на групата са $\{ \mathrm{id}, \varphi \} = S(M) = S_2$. Непосредствено проверяваме, че е изпълнено $\, \varphi^2 = \varphi \circ \varphi = \mathrm{id} \,$ и групата $\, S_2$ е Абелева. Поточно казано, групата $\, S_2$ е циклична група от ред 2, която се поражда от елемента $\, \varphi$.
- Случай 3, когато множеството има повече от два елемента се разглежда в следната теорема.

Теорема 1.

Ако е изпълнено |M|>2 , тогава групата $\,S(M)\,$ не е комутативна (не е Абелева).

Доказателство:

Нека $a,\ b,\ c$ са три различни елемента от множеството. Да разгледаме следните две изображения на M:

$$arphi(a)=b$$
 , $\ arphi(b)=a$ и $arphi(x)=x$ за всяко $x
eq a, x
eq b$ $\psi(b)=c$, $\ \psi(c)=b$ и $\psi(y)=y$ за всяко $y
eq b, y
eq c$

Пресмятаме по какъв начин действа $\varphi \circ \psi$:

$$egin{aligned} arphi \circ \psi(a) &= arphi(\psi(a)) = arphi(a) = b, \ & arphi \circ \psi(b) = arphi(\psi(b)) = arphi(c) = c, \ & arphi \circ \psi(c) = arphi(\psi(c)) = arphi(b) = a, \ & arphi \circ \psi(x) = arphi(\psi(x)) = arphi(x) = x, \ orall x
otin x, \{x
eq a, x
eq b, x
eq c \} \end{aligned}$$

Аналогично, за $\psi \circ \varphi$ получаваме:

$$\psi \circ \varphi(a) = \psi(\varphi(a)) = \psi(b) = c,$$
 $\psi \circ \varphi(b) = \psi(\varphi(b)) = \psi(a) = a,$ $\psi \circ \varphi(c) = \psi(\varphi(c)) = \psi(c) = b,$ $\psi \circ \varphi(x) = \psi(\varphi(x)) = \psi(x) = x, \ \forall x, \{x \neq a, x \neq b, x \neq c\}$

Получихме, че $\psi \circ \varphi \neq \varphi \circ \psi$, откъдето се установява, че групата S(M) е некомутативна, когато |M|>2, и в частност S_n не е Абелева за $n\geq 3$.

1.3. Брой на елементите

Нека множеството M е крайно и има n елемнта. Можем да номерираме тези числа и да считаме, че $M=\{1,2,\dots,n\}$ и ще изразяваме по какъв начин елементите на S_n действат върху номерата на елементите. По този начин всяка една биекция φ от симетричната група може да се напише еднозначно по следния начин:

$$arphi = \left(egin{array}{cccc} 1 & 2 & \ldots & n \ i_1 & i_2 & \ldots & i_n \end{array}
ight),$$

където
$$\,arphi(1)=i_1$$
 , $\,arphi(2)=i_2,\ldots$, $\,\,arphi(n)=i_n$.

Елементът $\, \varphi \,$ е биекция върху $M = \{1,2,\ldots,n\}$ и затова числата i_1,i_2,\ldots,i_n са различни помежду си и представляват пермутация на $1,2,\ldots,n$. По този начин получаваме, че

$$|S_n| = n!$$

Много често елементите на симетричната група ще ги наричаме пермутации.

Например всички елементи (всички пермутации)от S_3 са $\{\mathrm{id}, \varphi_1, \dots, \varphi_5\}$, където

$$\mathrm{id} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ \varphi_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$arphi_2 = \left(egin{matrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{matrix}
ight), \; arphi_3 = \left(egin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{matrix}
ight),$$

$$arphi_4 = \left(egin{array}{ccc} 1 & 2 & 3 \ 3 & 1 & 2 \end{array}
ight), \; arphi_5 = \left(egin{array}{ccc} 1 & 2 & 3 \ 3 & 2 & 1 \end{array}
ight),$$

1.4. Пресмятания в Sn

Ето как се извършват основните пресмятанията в симетричната групата:

ПРИМЕР:

Нека са дадени елементите:

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}, \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}.$$

• <u>Композиция на две изображения</u> $\varphi \circ \psi$ - първо се записват двата реда от ψ и третия ред дава образите на елементите от втория ред при действие на φ

$$arphi \circ \psi = egin{pmatrix} 1 & 2 & 3 & 4 & 5 \ 3 & 5 & 2 & 1 & 4 \ 5 & 3 & 4 & 2 & 1 \end{pmatrix} = egin{pmatrix} 1 & 2 & 3 & 4 & 5 \ 5 & 3 & 4 & 2 & 1 \end{pmatrix}$$

• <u>Намиране на обратен елемент</u> - разменят се двата реда на пермутацията и стълбовете се подреждат спрямо числата в новополучения първи ред

$$arphi^{-1} = \left(egin{matrix} 1 & 2 & 3 & 4 & 5 \ 4 & 1 & 5 & 2 & 3 \end{matrix}
ight), \psi^{-1} = \left(egin{matrix} 1 & 2 & 3 & 4 & 5 \ 4 & 3 & 1 & 5 & 2 \end{matrix}
ight).$$

• <u>Повдигане на степен</u> k на елемент от S_n - на първия ред се записват числата $1, \ldots, n$, и се попълват още k реда, до получаване на общо k+1 реда. Всеки ред след първия се получава, прилагайки пермутацията върху числата от предишния ред. Междинните редове се махат и накрая се вземат само първи и последен ред.

$$\psi^3 = egin{pmatrix} 1 & 2 & 3 & 4 & 5 \ 3 & 5 & 2 & 1 & 4 \ 2 & 4 & 5 & 3 & 1 \ 5 & 1 & 4 & 2 & 3 \end{pmatrix} = egin{pmatrix} 1 & 2 & 3 & 4 & 5 \ 5 & 1 & 4 & 2 & 3 \end{pmatrix}$$

2. Цикли в Sn

В много приложения, на само в математиката, се използват елементи от симетричната група за да се описват конкретни биекции на множества и най-често тези елементи са представят като произведение на цикли.

Определение: Нека i_1, i_2, \ldots, i_k са различни числа от $1, \ldots, n$. Нека ψ е елемент от групата S_n , който задава биективно изображение на множеството M, действащо по следния начин

$$\psi(i_1) = i_2, \ \psi(i_2) = i_3, \dots, \psi(i_{k-1}) = i_k, \psi(i_k) = i_1,$$

и всички останали елементи x на неподвижни (изпълнено е $\psi(x)=x$). Тогава ψ се нарича μ икъл с θ ължина μ и се записва по следния начин $\psi=(i_1,i_2,\ldots,i_k)$.

Действието на цикъла $\psi = (i_1, i_2, \dots, i_k)$ можем да изобразим графично по следния начин.

Определение: Цикъл с дължина 2 се наричат транспозиция.

Пример: Всички елементи от S_3 , които са различни от идентитета са цикли с дължина 2 или 3.

$$(2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \ (1,2) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \ (1,3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$(1,2,3)=egin{pmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \end{pmatrix}, \ (1,3,2)=egin{pmatrix} 1 & 2 & 3 \ 3 & 1 & 2 \end{pmatrix}.$$

Получихме, че в S_3 има 3 транспозиции и 2 тройни цикъла.

$$S_3 = \{id, (1,2), (1,3), (1,4), (1,2,3), (1,3,2)\}$$

Естествено, в по-големите симетрични групи не всички елементи се представят като произведение на независими цикли,

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right) = (1,2) \circ (3,4), \ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right) = (1,3) \circ (2,4),$$

но въпреки това тези елементи се представят като композиция на цикли.

2.1. Примери 2.1

Пример 1: Да разгледаме следния елемент от S_6

$$\varphi = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 4 & 5 & 3 & 1 & 2
\end{pmatrix}$$

Разглеждайки действието на елемента, виждаме, че това е цикъл с дължина 6.

Този елемент може да се запише по няколко различни начини $\varphi=(1,6,2,4,3,5)=(3,5,1,6,2,4)$. Може ли и по други начини да се запише елемента φ ?

Пример 2: Обратният елемент на цикъла $\varphi = (1,6,2,4,3,5)$ от предния пример също е цикъл с дължина 6:

Разглеждайки действието на елемента $\,arphi^{-1}=(1,6,2,4,3,5)^{-1}$, виждаме, че $\,arphi^{-1}$ също е цикъл , който може да се получи от изходния, като запишем числата в обратен ред $\,arphi^{-1}=(1,5,3,4,2,6)=(3,5,1,6,2,4)$.

Пример 3: Нека разгледаме φ^2 , където φ е пермутацията от предишните примери. Елементът действа по следния начин:

и виждаме, че това е пермутация, която не е цикъл, но е композиция на два цикъла с дължини 3.

$$arphi^2 = \left(egin{matrix} 1 & 2 & 3 & 4 & 5 & 6 \ 6 & 4 & 5 & 3 & 1 & 2 \end{matrix}
ight)^2 = \left(egin{matrix} 1 & 2 & 3 & 4 & 5 & 6 \ 2 & 3 & 1 & 5 & 6 & 4 \end{matrix}
ight) = (1,2,3) \circ (4,5,6)$$

2.2. Свойства

Свойство 1.

Ако една пермутация ψ е цикъл с дължина k, тогава ψ може да се изпише по k различни начина като цикъл.

Ясно е, че цикъла $\psi=(i_1,i_2,\ldots,i_k)$ може да се запише като "започва" например от i_2 и се получава $\psi=(i_2,i_3,\ldots,i_k,i_1)$ или можем да запишем цикъла, като "започващ" от i_s ще получим

$$\psi=(i_s,i_{s+1},\ldots,i_k,i_1,\ldots,i_{s-1})$$

Получаваме, че всеки цикъл с дължина k може да започне да се изписва от кой да е от неговите k елемента (например i_s) и след това ги подреждаме в съответния ред и след i_k се записва i_1 , защото $\psi(i_k)=i_1$.

Свойство 2:

Всички пермутации от S_n , които са цикъл с дължина k са $\binom{n}{k}$. (k-1)! броя.

От елементите $1,2,\ldots,n$ могат да се изберат k конкретни елемента i_1,\ldots,i_k по $C_n^k=\binom{n}{k}$ начина. От избраните елементи i_1,\ldots,i_k можем да получим k! пермутации, които могат да се изпишат като цикли. Но тъй като, всеки такъв цикъл може да се запише по k различни начини, затова броя на различните цикли, които можем да получим от избраните числа са $(k-1)!=\frac{k!}{k}$ и окончателно получаваме, че всички пермутации на S_n , които са цикъл с дължина k са $\binom{n}{k}$. $(k-1)!=C_n^k$. $(k-1)!=\frac{V_n^k}{k}$ броя.

Свойство 3:

Обратния елемент на цикъла $\psi=(i_1,i_2,\ldots,i_k)$ с дължина k е цикъл със същата дължина $\psi^{-1}=(i_k,i_{k-1},\ldots,i_1)$.

В това лесно можем да се убедим ако разгледаме, схемите, по които действат φ и за да получим φ^{-1} обръщаме посоката на стрелките върху схемата :

2.3. Независими цикли

Определение:

Два цикъла $\varphi=(i_1,i_2,\ldots,i_k)$ и $\psi=(j_1,j_2,\ldots,j_s)$ се наричат независими, ако множествата $\{i_1,i_2,\ldots,i_k\}$ и $\{j_1,j_2,\ldots,j_s\}$ нямат общи елементи

$$\{i_1, i_2, \dots, i_k\} \cap \{j_1, j_2, \dots, j_s\} = \emptyset.$$

Не е трудно да се установи и в общия случай, че всеки два независими цикъла комутират.

Твърдение:

Ако $\,arphi=(i_1,i_2,\ldots,i_k)\,$ и $\,\psi=(j_1,j_2,\ldots,j_s)\,$ са независими цикли , тогава те комутират $\,arphi\circ\psi=\psi\circarphi\,$.

Ако
$$\{i_1,i_2,\ldots,i_k\}\cap\{j_1,j_2,\ldots,j_s\}=\emptyset$$
 \Rightarrow
$$\Rightarrow (i_1,i_2,\ldots,i_k)\circ(j_1,j_2,\ldots,j_s)=(j_1,j_2,\ldots,j_s)\circ(i_1,i_2,\ldots,i_k).$$

Доказателство:

Нека да разгледаме по какъв начин действат φ и ψ върху елементите на множествата $K=\{i_1,i_2,\ldots,i_k\}$, $L=\{j_1,j_2,\ldots,j_s\}$ и $T=\{1,2,\ldots,n\}\setminus (K\cup L)$. Изпълнено е:

За $arphi=(i_1,i_2,\ldots,i_k)$	$egin{aligned} arphi(i) \in K, \ orall i \in K = \{i_1, i_2, \ldots, i_k\} \ arphi(x) = x, \ orall x \in L \cup T \end{aligned}$
За $\psi=(j_1,j_2,\ldots,j_s)$	$egin{aligned} \psi(j) \in L, \ orall j \in L = \{j_1, j_2, \ldots, j_s\} \ \psi(y) = y, \ orall y \in K \cup T \end{aligned}$

Тогава лесно се установява, че

$$arphi \circ \psi(z) = \psi \circ arphi(z) = \left\{ egin{array}{ll} arphi(z), & ext{sa } z \in K \ \psi(z), & ext{sa } z \in L \ z, & ext{sa } z \in T \end{array}
ight. .$$

2.4. Теорема - основна

Теорема:

Всеки елемент φ от групата S_n , който е различен от идентитета, може да се представи като произведение на независими цикли

$$arphi=(i_1^{(1)},\ldots,i_{k_1}^{(1)})\circ(i_1^{(2)},\ldots,i_{k_2}^{(2)})\circ\ldots\circ(i_1^{(p)},\ldots,i_{k_n}^{(p)}),$$
 3a $p\geq 1,$

(числата $i_1^{(1)},\ldots,i_{k_1}^{(1)}$, $i_1^{(2)},\ldots,i_{k_2}^{(2)},\ldots$, $i_1^{(p)},\ldots,i_{k_p}^{(p)}$ са различни помежду си и $k_1\geq 2,\ldots,k_p\geq 2$.)

Това представяне на елемента φ като произведение на независими цикли $\,$ е единствено с точност до реда на множителлите.

Доказателство:

<u>Съществуване</u> : За всеки елемент arphi
eq id съществува представяне като независими цикли.

Нека $\varphi \neq id$ е елемент от групата S_n и да бележим с M_{φ} множеството от числата, които се разместват под действието на пермутацията φ и нека m_{φ} е броят на числата, които φ размества

$$M_{arphi}=\{\ i\mid arphi(i)
eq i\}\subset \{1,2,\ldots,n\}$$
 и $m_{arphi}=|M_{arphi}|.$

Доказателството се извършва с индукция по m_{φ} :

- Не е възможно да е изпълнено $m_{\varphi}=1$, защото *ако допуснем*, че $M_{\varphi}=\{a\}$, само от начина на определяне на M_{φ} получаваме $b=\varphi(a)\neq a$ и виждаме, че е изпълнено $\varphi(b)\neq b$, защото φ е биективно изображение. По този начин се получава, че $b\in M_{\varphi}$, откъдето би следвало, че M_{φ} трябва да има поне два различни елемента, но това е в противоречие с $m_{\varphi}=1$
- ullet Нека $m_{arphi}=2$ и $M_{arphi}=\{a,b\}$, тогава е изпълнено:

$$a
eq arphi(a)\in M_arphi$$
 и $b
eq arphi(b)\in M_arphi.$

Единствената възможност е $\ b=arphi(a)$ и a=arphi(b) и получаваме, че $\ arphi=(a,b)$ - т.е. $\ arphi$ е цикъл с дължина 2.

- ullet Нека k>2 и да допуснем, че твърдението от теоремата е в сила за всички биекции $\psi\in S_n$, за които е $m_\psi\le k-1$.
- Нека φ е елемент на групата S_{n} , за който е изпълнено $m_{\varphi}=k$. Вземаме произволен елемент $i_{1}\in M_{\varphi}$, който се променя под действиието на това изображение $\varphi(i_{1})\neq i_{1}$. Тогава :
 - \circ Построяваме безкрайна редица от числа i_1,i_2,\ldots , по следното правило $i_{s+1}=arphi(i_s)$ за всяко число $s=1,2,\ldots$ Тъй като $arphi\in S_n$ затова всяко от тези числа е от множеството $M_arphi\subset\{1,\ldots,n\}$;
 - $\circ~$ В така построената редица има повторения на числа и ако вземем две равни числа в нея $~i_s=i_t$, тогава :

$$i_s = i_t \Rightarrow arphi(i_{s-1}) = arphi(i_{t-1})$$

и от биективността на изображението получаваме че и предните числа също са били равни $i_{s-1}=i_{t-1}$. Поради тази причина, първото число, което се повтаря в редицата i_1,i_2,\ldots е числото i_1 ;

 $\circ~$ Нека първото повторение на ~числото $~i_1$ е $~i_{r+1}=i_1$. По ~този начин се получената редица добива вида

$$i_1,\ldots,i_r,i_1,\ldots,i_r,\ldots$$

откъдето установяваме че върху числата i_1,\ldots,i_r изображението φ действа по същия начин, както цикъла $\tau=(i_1,\ldots,i_r)$, който има дължина r;

 \circ Разглеждаме изображението $arphi_1= au^{-1}\circarphi$. За произволен елемен i_t от редицата, която получихме преди малко, пресмятаме

$$\varphi_1(i_t) = \tau^{-1}(\varphi(i_t)) = \tau^{-1}(i_{t+1}) = i_t.$$

Следователно всички елементи от редицата i_1,\dots,i_r остават неподвижни под действието на φ_1 , откъдето се получава $M_{\varphi_1}=M_{\varphi}\backslash\{i_1,\dots,i_r\}$;

 \circ След като установихме, че $m_{arphi_1} < m_{arphi} = k$, можем да приложим индукционното предположение към изображението $arphi_1$ и да го представим като произведение на независими цикли:

$$arphi_1 = (j_1^{(1)}, \ldots, j_{k_1}^{(1)}) \circ \ldots \circ (j_1^{(p)}, \ldots, j_{k_p}^{(p)});$$

 \circ Тогава за φ се получава, че

$$arphi= au\circarphi=(i_1,\ldots,i_r)\circ(j_1^{(1)},\ldots,j_{k_1}^{(1)})\circ\ldots\circ(j_1^{(p)},\ldots,j_{k_n}^{(p)})$$

И това е представяне на φ като произведение на независими цикли

• По този начин се убедихме, че всеки елемент от S_n , който е различен от идентитета може да се представи поне по един начин като произведение на независими цикли. Редът на даказване на тази част от теоремата е точно такъв, по който се търсят тези цикли при конкретно зададени пермутации от S_n .

<u>Единственост:</u> Единственост на представянето като произведение на независими цикли с точност до реда на множителите. Нека да вземем две изразявания като произведения на независими цикли на един и същи елемен от $\varphi \in S_n$

$$arphi = (i_1^{(1)}, \dots, i_{k_1}^{(1)}) \circ \dots \circ (i_1^{(s)}, \dots, i_{k_s}^{(s)}) \ arphi = (j_1^{(1)}, \dots, j_{l_1}^{(1)}) \circ \dots \circ (j_1^{(m)}, \dots, j_{l_m}^{(m)})$$

Всяко число от множеството $M_1=\{i_1^{(1)},\ldots,i_{k_1}^{(1)},\ldots,i_1^{(s)},\ldots,i_{k_s}^{(s)}\}$ се размества от изображението φ и затова е изпълнено $M_1=M_\varphi$. Аналогично се получава за $M_2=\{j_1^{(1)},\ldots,j_{l_1}^{(1)},\ldots,j_{l_m}^{(m)}\}$. Следователно

$$M_{arphi} = \{i_1^{(1)}, \dots, i_{k_*}^{(1)}, \dots, i_1^{(s)}, \dots, i_{k_*}^{(s)}\} = \{j_1^{(1)}, \dots, j_{l_*}^{(1)}, \dots, j_{l_*}^{(m)}, \dots, j_{l_*}^{(m)}\}$$

Нека да вземем едно число $t_1\in M_{\varphi}$, то участва в M_1 и се намира само в един цикъл от първия запис на изображението φ . Тъй като циклите от този запис са независими и комутират, можем да разместим местата им и без ограничение на общостта считаме, че елемента t_1 е от първия цикъл $(i_1^{(1)},\ldots,i_{k_1}^{(1)})$, но цикъла има множество различни записа, започвайки от различни елементи затова ще приемем, че $t_1=i_1^{(1)}$. Аналогично, без ограничение на общността можем да считаме, че $t_1=j_1^{(1)}$. Тогава е изпълнено

$$egin{aligned} t_2 &= i_2^{(1)} = arphi(i_1^{(1)}) = arphi(t_1) = arphi(j_1^{(1)}) = j_2^{(1)} \ & \dots \ & t_{p+1} = i_{p+1}^{(1)} = arphi(i_p^{(1)}) = arphi(t_p) = arphi(j_p^{(1)}) = j_{p+1}^{(1)} \ \end{aligned}, orall p \in (N)$$

По този начин се получи, че първите цикли в двата записа съвпадат

$$k_1 = l_1$$
 и $(i_1^{(1)}, \dots, i_{k_1}^{(1)}) = (j_1^{(1)}, \dots, j_{l_1}^{(1)})$

Тези еднакви цикли можем да ги премахнем и да остане равенство, което има с по един множител по-малко от двете страни

$$(i_1^{(2)},\ldots,i_{k_2}^{(2)})\circ\ldots\circ(i_1^{(s)},\ldots,i_{k_r}^{(s)})=(j_1^{(2)},\ldots,j_{l_2}^{(2)})\circ\ldots\circ(j_1^{(m)},\ldots,j_{l_r}^{(m)}).$$

Като повторим тази процедура няколко пъти ще получим:

- -броя на циклите в двата записа на arphi е едно и също число m=s ,
- след пренареждане, всеки цикъл от първия запис съвпада със съответния цикъл от втория запис.

2.5. Примери 2.2

Пример:

Да се представи елементът $arphi \in S_{12}$ като произведение на независими цикли.

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 7 & 2 & 11 & 1 & 8 & 4 & 10 & 6 & 12 & 3 & 9 \end{pmatrix}.$$

Използва се начина на построяване на първия цикъл от доказателството на теоремата.

- Определяне на цикъл: Вземаме, един елемент, който се размества от цикъла например 1, след това образа му, който е 5, след това неговия образ, който е 1. Получихме първоначалния елемент, което показва, че този цикъл е (1,5).
- *Получаване на следващ цикъл*: Вземаме друг елемент, различен от вече намерените, който се размества от φ например 2, след това намираме последователните образи

• Следващ цикъл: Започваме със 6

$$6$$
 $6 \rightarrow \varphi(6) = 8$
 $8 \rightarrow \varphi(8) = 10$
 $10 \rightarrow \varphi(10) = 12$
 $12 \rightarrow \varphi(12) = 9$
 $9 \rightarrow \varphi(9) = 6$
Получава се цикъла $(6,8,10,12,9)$

Няма други разместващи се от arphi елементи, които са различни от вече определените цикли и така окончателно се получава

$$\varphi = (1,5) \circ (2,7,4,11,3) \circ (6,8,10,12,9).$$

Ако бяхме започнали от друг елемент, например 12 щяхме да получим:

Получаваме $\varphi=(12,9,6,8,10)\circ(5,1)\circ(11,3,2,7,4)$ Това също е представяне като произведение на независими цикли и разликата е само в реда на множителите, защото циклите от двете представяния са равни пожеду си (12,9,6,8,10)=(6,8,10,12,9), (1,5)=(5,1) и (11,3,2,7,4)=(2,7,4,11,3).

2.6. Примери 2.3

Пример:

Да се представи елементът ψ като произведение на независими цикли.

Елементът 7 остава неподвижен под действието на ψ и той няма да участва в окончателния запис, а всички останали числа трябва да участват в точно един от независимите цикли. Получаваме последователно

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(1,5,8,10,12,9,6)	(2,4,11,3)	

От това получаваме $\psi = (1,5,8,10,12,9,6) \circ (2,4,11,3)$.

2.7. Примери 2.4

Пример

Да се представи като произведение на независими цикли елемента

 $arphi=(3,5,7,1)\circ(2,3,4,5)\circ(4,6,1,7,2)$. Изображението arphi е композиция на зависимите цикли $\psi_1=(3,5,7,1)$, $\psi_2=(2,3,4,5)$ и $\psi_3=(4,6,1,7,2)$. Пресмятаме образите на числата под действието на $arphi=\psi_1\circ\psi_2\circ\psi_3$:

По този начин се получава

$$\varphi = (3, 5, 7, 1) \circ (2, 3, 4, 5) \circ (4, 6, 1, 7, 2) = (2, 7, 5) \circ (3, 4, 6)$$

Пример:

Елементът $\varphi=(1,3,5,7,9)\circ(2,5,8)\circ(1,4,6,9,3)\circ(6,2)$ да се представи като произведение на независими цикли. Както в предния пример φ е композиция на зависими цикли и нека $\ \psi_1=(1,3,5,7,9)$, $\ \psi_2=(2,5,8)$, $\ \psi_3=(1,4,6,9,3)$ и $\ \psi_4=(6,2)$. Пресмятаме за $\ \varphi=\psi_1\circ\psi_2\circ\psi_3\circ\psi_4$:

Получихме, че елементът $arphi\,$ е цикъл с дължина 9.

3. Ред на елемент и спрягане

Представянето на елемент като произведение на независими цикли ни помага да пресмятаме по-лесно редовете на елементите, и да правим изводи за степените на елемент от симетричната група. Освен това, чрез това представяне, лесно се определя кога два елемента в групата са спрегнати, както и кои са всички спрегнати елементи на фиксиран елемент.

3.1. Ред и степен на цикъл

Свойство 1:

Нека $\varphi=(i_1,i_2,\ldots,i_k)$ е цикъл с дължина k.

Тогава:

а) редът на елемента е $k = \operatorname{ord}(\varphi)$;

б) елемента
$$arphi^s$$
 има ред $\dfrac{k}{(k,s)}=\operatorname{ord}(arphi^s)$

Построявааме редицата от последователни образи на елемента i_1 при действието на цикъла $arphi, arphi^2, \dots, arphi^s, \dots$

$$j_1 = i_1, \ j_2 = \varphi(i_1), \ j_3 = \varphi^2(i_1) = \varphi(j_2), \dots, \ j_{s+1} = \varphi^s(i_1) = \varphi(j_s), \dots$$

От схемата на $arphi=(i_1,i_2,\ldots,i_k)$, лесно се вижда, че е изпълнено

$$j_1=i_1$$

$$j_2=i_2=arphi(j_1)=arphi(i_1);$$

$$j_k = i_k = \varphi(j_{k-1}) = \varphi^{k-1}(i_k)$$

$$j_{k+1}=i_1=arphi(j_k)=arphi^k(i_1)$$

$$j_{k+2} = i_2 = arphi(j_{k+1}) = arphi^{k+1}(i_1)$$

В така получената редица, след $\,$ елемента $j_k=i_k\,$ числата започват да се повтарят отначало.

а) Свойството следва от факта, че редицата $j_1, j_2, \ldots, j_s, \ldots$ е переодична с период k

$$\varphi^k(j_s) = \varphi^k(\varphi^{s-1}(i_1)) = \varphi^{s+k-1}(i_1) = j_{s+k} = \varphi^{s-1} \circ \varphi^k(i_1) = \varphi^{s-1}(i_1) = j_s$$

Откъдето можем да докажем и формално, че редът на цикъл с дължина k е равен на $k=\operatorname{ord}(arphi)$

б) Получава се, като се приложи следното основно свойство за ред на елементи

Ако елементът g от мултипликативна група G има ред $k=\operatorname{ord}(g)$, тогава g^s има ред $\operatorname{ord}(g^s)=\dfrac{k}{(k...s)}$.

Ако се използва редицата, построена в доказателството, лесно може да се реши следната задача.

Нека $\,arphi=(i_1,i_2,\ldots,i_k)\,$ е цикъл с дължина $\,k\,$ и естественото числото $\,s\,$ не е взаимно просто с $\,k.$ Тогава $\,arphi^s\,$ се представя като произведение на d независими цикъла, всеки с дължина p, където d=(k,s) е най-големия общ делител и $p=\dfrac{k}{(k,s)} < k = \operatorname{ord}(\varphi^s)$.

3.2. Ред на елемент на Sn

Теорема:

Ако елементът $\,arphi=\sigma_1\circ\ldots\circ\sigma_r\,$ се представя като произведение на независимите цикли σ_1,\ldots,σ_r , които са с дължина $k_1=\operatorname{ord}(\sigma_1),\ldots,k_r=\operatorname{ord}(\sigma_r)$, тогава редът на $\,arphi$ е най-малкото общо кратно на редовете на участващите цикли:

$$\operatorname{ord}(\varphi) = \operatorname{ord}(\sigma_1 \circ \ldots \circ \sigma_r) = \operatorname{HOK}(k_1, \ldots, k_r)$$

Доказателство:

Елементът $\varphi = \sigma_1 \circ \ldots \circ \sigma_r$ е представен като произведение на независими цикли и те комутират и затова степените на елемента се пресмятат по следния начин

$$arphi^s = \sigma_1^s \circ \ldots \circ \sigma_r^s$$

Ясно е, че σ_i^s и σ_j^s разместват различни числа, когато $i \neq j$. От това получаваме, че е изпълнено $\varphi^s = id$ тогава и само тогава когато за всеки един множител е изпълнено $\sigma_i^s = \mathrm{id}, \forall i \in \{1,\dots,r\}.$

По този начин се получава, че е необходимо $s|k_i, orall i \in \{1,\dots,r\}$.

От това се получава, че най-малкото число, което изпълнява това условие е ${
m HOK}(k_1,\ldots,k_r)$ и следователно е изпълнено

$$\operatorname{ord}(\varphi) = \operatorname{ord}(\sigma_1 \circ \ldots \circ \sigma_r) = \operatorname{HOK}(k_1, \ldots, k_r).$$

Примери:

Редът на елемента $(1, 2, 3, 4) \circ (5, 6, 7, 8, 9, 10)$ е HOK(4, 6) = 12.

В групата S_7 най-високия ред на елемент е 12 и се достига от елементи от вида $(i_1,i_2,i_3)\circ(i_4,i_5,i_6,i_7)$.

3.3. Циклична структура на елемент

Определение:

Нека елементът $\varphi \in S_n$ да е представен като произведение на независими цикли и с m_s да бележим броя на циклите от това представяне, които имат дължина s, а с m_1 да бележим броя на неподвижните точки под действието на φ . Тогава вектора (m_1, m_2, \ldots, m_n) се нарича *циклична структура* на елемента φ .

Ако елементът $arphi \in S_n$ има циклична структура (m_1, m_2, \dots, m_n) , тогава са изпълнени равенствата:

- $m_1 + m_{\varphi} = n$ -сумата от броя на неподвижните и броя на подвижните точки е n общия брой точки в множеството;
- $1.m_1 + 2.m_2 + \ldots + n.m_n = n$ получава се като пресметнем общо колко елемента има записани във всички цикли.

3.4. Примери 3.1

Пример:

Да разгледаме елемента $arphi = (1,2) \circ (4,5,6) \circ (7,8) \in S_8$.

- ullet елемента има циклична структура (1,2,1,0,0,0,0,0) и е изпълнено, че 1.1+2.2+3.1=8 .
- ullet Редът на елемента е $\operatorname{ord}(arphi) = \operatorname{HOK}(2,3,2) = 6$.
- Втората степен на елемента е $\varphi^2=(1,2)^2\circ (4,5,6)^2\circ (7,8)^2=\mathrm{id}\circ (4,6,5)\circ\mathrm{id}$ и има циклична структура (5,0,1,0,0,0,0,0) и е от ред 3.
- Третата степен на елемента е $\varphi^3=(1,2)^3\circ (4,5,6)^3\circ (7,8)^3=(1,2)\circ \mathrm{id}\circ (7,8)$ има циклична структура (4,2,0,0,0,0,0,0) и е от ред 2.

Пример:

Всеки елементот S_3 , който е различен от идентитета е цикъл с дължина 2 или 3, и затова възможните циклични структури на елементите c_3

За симетричната група

S_3

		ред на елемента	брой
циклична	елемент		елементи
структура		елемента	от този тип
(3, 0, 0)	id	1	1
(1, 1, 0)	(x, y)	2	3
(0, 0, 1)	(x, y, z)	3	2

Пример:

Да определим каква може да бъде цикличната структура на елементите от S_4 .

Ако елемент е цикъл, дължината на този цикъл може да бъде 2, 3 или 4. Ако елемента е произведение на два независими цикли, единствената възможност е и двата да са от ред 2. По този начин получаваме:

За симетричната група S_4

циклична		non ua	брой
структура	елемент	ред на елемента	елементи
структура		enewenia	от този тип
(4,0,0,0)	id	1	1
(2,1,0,0)	(x, y)	2	6
(1, 0, 1, 0)	(x, y, z)	3	8
(0, 0, 0, 1)	(x,y,z,t)	4	6
(0,2,0,0)	$(x,y)\circ(z,t)$	2	3

3.5. Спрегнати елементи

Определение:

Ако g и h са елементи в мултипликативно записана група G, тогава елементът $t = hgh^{-1}$ се нарича cnperham на g, като спрягането е извършено чрез елемента h.

Теорема

a) Ако се спрегне цикъл $\sigma=(i_1,\ldots,i_k)$, който има дължина k се получава пак цикъл с дължина k

$$\psi \circ \sigma \circ \psi^{-1} = (\psi(i_1), \ldots, \psi(i_k))$$
.

б) Ако един елемент е записан като произведение на цикли

$$arphi = (i_1^{(1)}, \dots, i_{k_1}^{(1)}) \circ \dots \circ (i_1^{(p)}, \dots, i_{k_n}^{(p)}),$$

тогава всеки спрегнат с него има същата циклична структура и е изпълнено

$$\psi\circarphi\circ\psi^{-1}=\left(\psi(i_1^{(1)}),\ldots,\psi(i_{k_1}^{(1)})
ight)\circ\ldots\circ\left(\psi(i_1^{(p)}),\ldots,\psi(i_{k_p}^{(p)})
ight),$$

в) Два елемента са спрегнати, тогава и само тогава когато имат еднаква циклична структура.

Доказателство:

а) Нека да разгледаме действието на елемента

$$\psi \circ \sigma \circ \psi^{-1} = (\psi(i_1), \ldots, \psi(i_k))$$

$$\psi(i_1) \xrightarrow{\psi^{-1}} i_1 \xrightarrow{\sigma} i_2 \xrightarrow{\psi} \psi(i_2) \quad \Rightarrow \quad \psi \circ \sigma \circ \psi^{-1}(\psi(i_1)) = \psi(i_2) \\ \dots \quad \dots \quad \dots \\ \psi(i_s) \xrightarrow{\psi^{-1}} i_s \xrightarrow{\sigma} i_{s+1} \xrightarrow{\psi} \psi(i_{s+1}) \quad \Rightarrow \quad \psi \circ \sigma \circ \psi^{-1}(\psi(i_s)) = \psi(i_{s+1}) \\ \dots \quad \dots \quad \dots \\ \psi(i_k) \xrightarrow{\psi^{-1}} \sigma \xrightarrow{\psi} \psi(i_1) \quad \Rightarrow \quad \psi \circ \sigma \circ \psi^{-1}(\psi(i_k)) = \psi(i_1) \\ \psi(j) \xrightarrow{\psi^{-1}} j \xrightarrow{\sigma} j \xrightarrow{\psi} \psi(j) \quad \Rightarrow \quad \psi \circ \sigma \circ \psi^{-1}(\psi(j)) = \psi(j), \\ \text{за произволен елемент} \qquad j \notin \{i_1, \dots, i_k\}$$

Елементът, който получихме, действа кото цикъл $(\psi(i_1), \dots, \psi(i_k))$.

б) Ако $arphi = \sigma_1 \circ \ldots \circ \sigma_r$, тогава по принцип е изпълнено следното равенство

$$\psi \circ \varphi \circ \psi^{-1} = \psi \circ \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_r \circ \psi^{-1} =$$

$$=(\psi\circ\sigma_1\circ\psi^{-1})\circ(\psi\circ\sigma_2\circ\psi^{-1})\circ\ldots\circ(\psi\circ\sigma_r\circ\psi^{-1})$$

Към това равенство, ако приложим полученото в подточка а) ще получим търсеното тъждество

$$\psi\circ\varphi\circ\psi^{-1}=\left(\psi(i_1^{(1)}),\ldots,\psi(i_{k_1}^{(1)})\right)\circ\ldots\circ\left(\psi(i_1^{(p)}),\ldots,\psi(i_{k_p}^{(p)})\right),$$

в) В подточка б) установихме, че когато спрегнем една пермутация от S_n ще получим пак елемент от S_{n} , който има същата циклична структура.

Ако имаме два елемента с еднаква циклична структура, и да подредим циклите с равни дължини един под друг, имаме

$$arphi_1 = (i_1^{(1)}, \dots, i_{k_1}^{(1)}) \circ \dots \circ (i_1^{(p)}, \dots, i_{k_p}^{(p)}) \ arphi_2 = (j_1^{(1)}, \dots, j_{k_1}^{(1)}) \circ \dots \circ (j_1^{(p)}, \dots, j_{k_n}^{(p)})$$

Построяваме елемент au по следния начин

В този запис, числата x_1,\dots,x_t са неподвижните числа, под действието на φ_1 , аналогично y_1,\dots,y_t са неподвижните числа под действието н а φ_1 . От доказаното в предишната точка е ясно, че $\tau\circ\varphi_1\circ\tau=\varphi_2$.

3.6. Примери 3.2

Пример:

Нека да разгледаме пермутациите $\varphi=(2,4)(3,5,8)(7,6)$ и $\tau=\begin{pmatrix}1&2&3&4&5&6&7&8\\4&5&7&8&2&1&3&6\end{pmatrix}$. Да намерим спрегнатия елемент $\psi=\tau\varphi\tau^{-1}$. Цикличната структура на φ е (1,2,1,0,0,0,0,0) и търсеният спрегнат елемент — ще има същата циклична структура. Спрегнатия на цикъла (2,4) е (5,8) и се получава, като на мястото на 2 и на 4 пишем образите им под действие на τ . Аналогично, спрягайки (7,6) получаваме (3,1), а спрегнатият на (3,5,8) е (7,2,6). Окончателно получаваме (5,8)(7,2,6)(3,1).

Пример:

Нека да определим дали $\varphi=(2,4)(3,5,8)(7,6)$ и $au=\begin{pmatrix}1&2&3&4&5&6&7&8\\4&5&7&8&2&1&3&6\end{pmatrix}$. от предишната задача са спрегнати помежду си.

За да се определи това трябва и двата елемента да са представени като произведение на независими цикли и да се види дали имат еднаква циклична снтруктура.

Представяме като независими цикли $\tau = (1, 4, 8, 6)(2, 5)(3, 7)$.

arphi има циклична структура (1,2,1,0,0,0,0,0)

au има циклична структура (0,2,0,1,0,0,0,0)

Следователно, елементите не са спрегнати.

Пример:

Елементите $\varphi=(2,4)(3,5,8)(7,6)$ и $\psi=(1,8,6)(3,5)(2,7)$ са спрегнати и да се намерят различни елементи, чрез които може да се извърши това спрягане. Подреждаме циклите с еднаква дължина един под друг и получаваме елемент, чрез който е извършено спрятгане, ако променим подредбата, получаваме друг елемент.

Колко са всички различни елементи, чрез които може да се извърши това спрягане?

4. Транспозиции

Да си припомним, че цикъл с дължина 2 се нарича транспозиция. Транспозицията a,b разменя числата a и b и всички останали числа остават неподвижни. Ясно е, че транспозицията е биекция, която на степен 2 дава идентитета $(a,b)^2=\mathrm{id}$ и обратното изображение на една транспозиция е същата транспозиция $(a,b)^{-1}=(a,b)$

Нека да разгледаме следния пример:

Пример:

Искаме да получим действието на цикъла (1,2,3,4) чрез последователно разместване на две числа. Например

По този начин получаваме равенството $(1,2,3,4)=(1,4).\,(1,3).\,(1,2)$ Забележка: Композицията на транспозициите е означена с точка, вместо със " \circ " .

Твърдение:

всеки елемент от $S_n\,$ може да се представи като произведение на транспозиции.

Доказателство:

За всяка транспозиция е изпълнено $(a,b)^2=\mathrm{id}$, следователно идентитета се представя като произведение на транспозиции.

Ако една пермутация е цикъл $\sigma=(i_1,\ldots,i_k)$, тогава от схемата се вижда, че е изпълнено равенството. $\sigma=(i_1,i_2).\ (i_1,i_3).\ldots.\ (i_1,i_k)$

Тъй като всеки неединичен елемент от може да се представи като произведение на цикли а от горното раветнство получихме, че всеки цикъл може да се представи като произведение на транспозиции, от там следва че всеки елемент е произведение на транспозиции.

4.1. Пример

Пример

Преди получихме равенството (1,2,3,4)=(1,4). (1,3). (1,2). Ако се използва друг запис на цикъла, например (2,3,4,1) може да се получи (1,2,3,4)=(2,3). (2,4). (2,1).

Не е трудно да се установи, че е изпълнено също и

$$(1,2,3,4) = (2,3).(2,4).(2,1).(2,3).(2,1).(3,4).(3,2)$$

Получихме, че цикълът (1,2,3,4) може да се представи като композиция на транспозиции и то не само по един начин.

От последния пример установяваме, че всеки от елементите на симетричната група може да се представи по най- различни начини като произведение натранспозиции, както и че в представянията може да има по различен брой множители.

4.2. Теорема

Теорема:

ако идентитета е представен като произведение на транспозиции, то в това произведение има четен брой множители

Доказателство:

Ще използваме следните равенства, които лесно се проверяват:

Ако $a,\ b,\ c$ и x са произволни числа, тогава в сила са следните равенства за транспозиции

$$\begin{aligned} &(b,c)(a,x) = (a,x)(b,c) \\ &(a,b)(a,x) = (b,x)(a,b) = (a,x,b) \\ &(b,x)(a,x) = (a,x)(a,b) = (a,b,x) \\ &(a,x)(a,x) = \mathrm{id} = (u,v).\,(u,v) \end{aligned}$$

Нека е изпълнено равенството $\mathrm{id}=\tau_1.\,\tau_2.\,\ldots\,\tau_{s-1}.\,\tau_s$, където τ_1,\ldots,τ_s са транспозиции. Избираме си елемент x който участва в записа на тези транспозиции и се опитваме да променим транспозициите в равенството, така че да премахнем елемента x от него.

Започваме от транспозициите au_{s-1}, au_s и преминаваме през всеки две съседни транспозиции au_{r-1}, au_r , докато завършим със $au_1. au_2.$

За транспозиции au_{r-1} и au_r . Ако x не участва в записа транспозиция au_r , нищо не променяме. Ако числото x участва в записа транспозиция $au_r = (a,x)$, тогава правим следните замени:

- ако au_{r-1} и au_r нямат общи елементи, тогава разменяме местата на транспозициите;
- ако двете транспозиции имат общ елемент, който е различен от x, прилагаме равенството (a,b)(a,x)=(b,x)(a,b) и вече във втората от двете транспозиции не участва x;
- ако двете транспозиции имат общ елемент, равен на x, прилагаме (b,x)(a,x)=(a,x)(a,b) и пак е изпълнено, че във втората транспозиция няма x;
- ако двете транспозиции са равни заместваме, използваме, че тяхната композиция е идентитета и ги махаме от равенството. По този начин броя на транспозициите намалява с 2.

След като свършим и направим всички промени, получаваме, че x може да участва единствено в записа на транспозицията au_1 .

Ако допуснем, че x участва единствено в $au_1=(a,x)$, ще получим противоречие, защото това означа, че x отива в a, при действието на тази композиция на транспозиции. Противоречие, защото композицията е равна на идентитета.

Следователно в новия запис не участва елемента x. Броя на транспозициите в новия запис е намалял с числото 2.t, където t показва колко пъти сме използвали равенството $(a,x)(a,x)=\mathrm{id}$.

Продължаваме по този начин да намаляваме елементите, участващи в записа на транспозициите и едновременно с това да намаляваме броя на транспозициите <u>с четно число</u>. Накрая ще достигнем до момент, в който няма да останат елементи, с които да со записани транспозициите и транспозициите ще се свършат .т.е. остават 0 на брой.

По този начин получихме, че първоначалния брй на транспозициите е бил четно число.

4.3. Четност на елемент

Твърдение:

Ако произволен елемент от

 S_n се представя като произведение на k транспозиции, а друг път като произведение на s транспозиции, тогава числата s и k имат еднаква четност.

$$s \equiv k \pmod{2}$$
.

Доказателство:

Нека елемента φ се задава по два начина като произведения на транспозиции $\varphi= au_1.\dots. au_k$ и $\varphi=\sigma_1.\dots.\sigma_s$. Получава се

id =
$$\tau_1 \dots \tau_k \cdot (\sigma_1 \dots \sigma_s)^{-1} =$$

= $\tau_1 \dots \tau_k \cdot \sigma_s \dots \sigma_1$

Идентитета е представен като произведение на s+k транспозиции, прилагайки предното твърдение, получаваме че s+k е четно число.

Следователно числата s и k имат еднаква четност.

Определение:

Една пермутация от S_n се нарича **четна**, ако може да се предсатви като произведение на четен брой транспозиции и **нечетна**, ако се представя като произведение на нечетен брой транспозиции.

От доказаното равенство $(i_1,\ldots,i_k)=(i_1,i_2).(i_1,i_3).\ldots.(i_1,i_k)$, следва че един цикъл с дължина k е четен елемент от групата S_n точно когато числото k е нечетно число.

Пример:

Да видим от какви четности са елементите от S_4

$$\mathrm{id}$$
 четен (x,y) нечетен (x,y,z) четен (x,y,z,t) нечетен $(x,y)\circ(z,t)$ четен

4.4. Свойства

Използвайки определението, лесно се вижда, че е изпълнено.

Свойство:

Ако φ и $\ \psi$ са произволни елементи от $S_{n \iota}$ тогава е изпълнено:

$$arphi$$
 четен и ψ четен \Rightarrow $arphi \circ \psi$ четен $arphi$ четен и ψ нечетен \Rightarrow $arphi \circ \psi$ нечетен $arphi$ нечетен

Свойство:

Елементът φ е четен $\Leftrightarrow \varphi^{-1}$ е четен.

Свойство:

Нека $\,arphi$ и $\psi= au\circarphi\circ au^{-1}\,\,$ са спрегнати елементи. Тогава: $\,arphi$ е четен $\,\Leftrightarrow\psi$ е четен.

Пример:

Да се определи четността на елемента

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 7 & 2 & 11 & 1 & 8 & 4 & 10 & 6 & 12 & 3 & 9 \end{pmatrix}.$$

Представяме елемента като произведение на независими цикли

 $\varphi=(1,5)(2,7,4,11,3)(6,8,10,12,9)$. Първия цикъл е нечетна пермутация, другите два са четни пермутации и се получава, че φ е нечетен елемент.

4.5. четност и инверсии

Друг начин за намиране на четността на елемент от S_n е да се пресмята броя на инверсиите на пермутацията i_1, i_2, \dots, i_n , която представлява втория ред в записа на този елемент

$$arphi=egin{pmatrix}1&2&\ldots&n\ i_1&i_2&\ldots&i_n\end{pmatrix},$$
 кьдето $i_1=arphi(1),\ i_2=arphi(2),\ldots,i_n=arphi(n).$

Да разгледаме елемент ψ , който е композиция на φ и една транспозиция. Ясно е, че елементите φ и ψ имат различна четност.

$$\psi=arphi\circ(k,s)=\left(egin{array}{ccccccc} 1 & \ldots & k & \ldots & s & \ldots & n \ i_1 & \ldots & i_s & \ldots & i_k & \ldots & i_n \end{array}
ight),$$

Втория ред на ψ може да се получи, като разменим местата на числата i_k и i_s във втория ред на записа на φ .

В ЛИНЕЙНАТА АЛГЕБРА дефинирахме четност на пермутеция, като четността на броя на инверсиите. Едно от основните свойства тогава беше, че като разменим местата на два елемента в една пермутация, тогава се сменя четността. От това следва, че пермутациите, които формират втория ред на φ и на ψ са от различна четност.

Знаем, че пермутацията $1, 2, \ldots, n$ няма инверсии и е четна пермутация, както и идентитета, като елемент от S_n е четен елемент. От това получаваме свойството:

Свойство:

Елементът $\varphi = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}, \;$ е четен елемент тогава и само тогава когато пермутацията $\;i_1,i_2,\dots,i_n\;$ съдържа четен брой инверсии.

Пример:

Пермутацията 5, 7, 2, 11, 1, 8, 4, 10, 6, 12, 3, 9 от елемента

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 7 & 2 & 11 & 1 & 8 & 4 & 10 & 6 & 12 & 3 & 9 \end{pmatrix},$$

разглеждан в предишния пример съдържа 27 инверсии и по този начин пак можем да получим, че елементът е нечетен.

4.6. Алтернативна подгрупа

Всички елементи от S_n разделяме на две подмножества

- четни елементи $A_n = \{ arphi \in S_n | \; arphi \;$ четен $\};$
- нечетни елементи $B_n = \{ arphi \in S_n | \ arphi \$ нечетен $\};$

Изпълнено е, че $A_n\cap B_n=\emptyset$ и $A_n\cup B_n=S_n$.

Освен това, ясно е че:

$$(1,2) \circ \varphi \in A_n \quad \Leftrightarrow \quad \varphi \in B_n \\ (1,2) \circ \varphi \in B_n \quad \Leftrightarrow \quad \varphi \in A_n$$

откъдето получаваме, че когато n>1, множествата A_n и B_n имат по равен брой елементи:

$$|A_n| = |B_n| = \frac{n!}{2}.$$

Определение:

Всички четни елементи от S_n образуват подгрупа A_n , която се нарича алтернативна група от степен n.

Забележка: От свойството, че ако един елемент е четен, то и неговите спрегнати са четни следва че алтернативната група е $\frac{1}{2}$ нормална $\frac{1}{2}$ подгрупа на $\frac{1}{2}$ на $\frac{1}{2}$

Елементите от B_n не образуват подгрупа, защото ако φ нечетен и ψ нечетен следва, че $\varphi \circ \psi$ е четен елемент.