Matemática Discreta

12^a AULA

Universidade de Aveiro 2012/2013

http://moodle.ua.pt

Matemática Discreta

Substituição de variáveis

Substituição de termos

Unificação de conjuntos de expressões

Algoritmo de unificação

Referências e bibliografia

Substituição de variáveis

Notação

- VAR = {v : v variável individual };
- *CONST* = {*c* : *c* constante };
- $TERM = \{t : t \text{ termo }\}.$

Observação: *CONST* ∪ *VAR* ⊂ *TERM*.

Matemática Discreta

Substituição de variáveis

Substituição de variáveis

Definição (de substituição de variáveis)

Uma substituição é uma função $\varphi_V: VAR \to TERM$ tal que, sendo $U_{\varphi} = \{v \in VAR : \varphi_V(v) \neq v\}$ e supondo que $U_{\varphi} = \{v_1, v_2, \dots, v_n\}$, podemos descrever a função φ_V através do conjunto

$$\{t_1/v_1, t_2/v_2, \ldots, t_n/v_n\},\$$

onde $t_i = \varphi_V(v_i) \neq v_i$, para i = 1, 2, ..., n. ε denota a substituição identidade ou vazia.

Este modo de descrever φ_V leva-nos com algum abuso de linguagem a escrever $\varphi_V = \{t_1/v_1, \dots, t_n/v_n\}$ para indicar que

- se $v_i \in U_{\varphi}$, então $\varphi_V(v_i) = t_i$;
- se $v_i \notin U_{\varphi}$, então $\varphi_V(v_i) = v_i$.

Exemplos

Seguem-se dois exemplos de substituições.

- 1) $\varphi_V = \{ f(z)/x, x/z \}$
 - $U_{\varphi} = \{x, z\};$
 - $\varphi_V(x) = f(z)$;
 - $\varphi_V(z) = x$.
- 2) $\delta_V = \{a/x, g(y)/y, f(g(x))/z\}$
 - $U_{\delta} = \{x, y, z\};$
 - $\delta_V(x) = a$;
 - $\delta_V(y) = g(y)$;
 - $\delta_V(z) = f(g(x)).$

Matemática Discreta

Substituição de termos

Substituição de termos

Definição (de substituição de termos)

Seja $\Theta_V = \{\Theta_V(v_1)/v_1, \dots, \Theta_V(v_n)/v_n\}$ uma substituição. Θ_V induz uma função $\Theta_T : TERM \to TERM$, definida recursivamente por:

- **1.** se $t_i \in VAR$, então $\Theta_T(t_i) = \Theta_V(t_i)$;
- **2.** se $t_i \in CONST$, então $\Theta_T(t_i) = t_i$;
- **3.** se $t_i \notin VAR \cup CONST$, ou seja, se t_i é um termo da forma $f(t_{i_1}, \ldots, t_{i_k})$ onde f é um símbolo de função com k argumentos, então

$$\Theta_{\mathcal{T}}(f(t_{i_1},\ldots,t_{i_k}))=f(\Theta_{\mathcal{T}}(t_{i_1}),\ldots,\Theta_{\mathcal{T}}(t_{i_k})).$$

Substituição de termos

Exemplo

Considerando o termo

$$t = s(x, f(y, u), h(x, z))$$

e a substituição

$$\Theta_V = \{ f(x, z) / x, g(y, f(x, y)) / y, h(x, y) / z, v / u \},$$

onde s, f, g e h são símbolos de função e x, y, z e u são símbolos de variáveis, obtém-se:

```
\Theta_{T}(t) = s(\Theta_{T}(x), \Theta_{T}(f(y, u)), \Theta_{T}(h(x, z))) 

= s(\Theta_{T}(x), f(\Theta_{T}(y), \Theta_{T}(u)), h(\Theta_{T}(x), \Theta_{T}(z))) 

= s(\Theta_{V}(x), f(\Theta_{V}(y), \Theta_{V}(u)), h(\Theta_{V}(x), \Theta_{V}(z))) 

= s(f(x, z), f(g(y, f(x, y)), v), h(f(x, z), h(x, y))).
```

Matemática Discreta

└Substituição de termos

Concretização de uma expressão

Definição (de concretização de uma expressão)

Dada uma substituição $\Theta = \{\Theta_V(v_1)/v_1, \ldots, \Theta_V(v_n)/v_n\}$ e uma expressão E, designa-se por concretização (ou exemplo) de E e denota-se por $E\Theta$, a expressão que se obtém de E substituindo, simultaneamente, cada ocorrência da variável v_i por $t_i = \Theta_V(v_i)$.

Observação: se W é um conjunto de expressões, então $W\Theta = \{E\Theta : E \in W\}.$

Exemplo: Para $\Theta = \{a/x, f(b)/y, c/z\}$ e E = F(x, y, g(z)), obtém-se

$$E\Theta = F(\Theta_T(x), \Theta_T(y), \Theta_T(g(z)))$$

$$= F(\Theta_V(x), \Theta_V(y), g(\Theta_V(z)))$$

$$= F(a, f(b), g(c)).$$

Composição de substituições

Definição (de composição de substituições)

Sejam θ_V e λ_V substituições de variáveis. Então a composição de θ_V após λ_V define-se como sendo

$$\theta_V \Delta \lambda_V = \theta_T \circ \lambda_V$$

onde o símbolo o denota a composição usual de funções.

De acordo com esta definição, dadas as substituições θ_V e λ_V , a sua composição $\theta_V \Delta \lambda_V$ descreve-se esquematicamente pelo diagrama λ_V θ_V

Matemática Discreta

Substituição de termos

Exemplo

Considerando as substituições $\theta = \{f(y)/x, z/y\}$ e $\lambda = \{a/x, g(x)/y, y/z\}$, vamos determinar $\theta_V \Delta \lambda_V$.

$$\theta_{V} \Delta \lambda_{V} = \theta_{T} \circ \lambda_{V}$$

$$= \{\theta_{T}(\lambda_{V}(x))/x, \theta_{T}(\lambda_{V}(y))/y, \theta_{T}(\lambda_{V}(z))/z\}$$

$$= \{\theta_{T}(a)/x, \theta_{T}(g(x))/y, \theta_{T}(y)/z\}$$

$$= \{a/x, g(\theta_{V}(x))/y, \theta_{V}(y)/z\}$$

$$= \{a/x, g(f(y))/y, z/z\}$$

$$= \{a/x, g(f(y))/y\}$$

Unificação

Definição (de substituição unificadora)

Uma substituição Θ diz-se unificadora (ou unificador) para o conjunto de expressões $W = \{E_1, \dots, E_p\}$ se $W\Theta = \{E\Theta\}$, tal que $E\Theta = E_1\Theta = \dots = E_p\Theta$.

Definição (de conjunto unificável)

O conjunto de expressões diz-se unificável se existe uma substituição unificadora (um unificador) para ele.

Exemplo: O conjunto $W = \{P(a, y), P(x, f(b))\}$ é unificável, uma vez que admite o unificador $\Theta = \{a/x, f(b)/y\}$. Com efeito,

```
\begin{aligned}
\{E\Theta\} &= \{P(\Theta_T(a), \Theta_T(y)), P(\Theta_T(x), \Theta_T(f(b)))\} \\
&= \{P(a, f(b))\}.
\end{aligned}
```

Matemática Discreta

Unificação de conjuntos de expressões

Unificador mais geral

Definição (de unificador mais geral)

Um unificador σ para um conjunto de expressões $W = \{E_1, \dots, E_p\}$ diz-se um unificador mais geral se qualquer que seja o unificador θ para o conjunto de expressões W existe uma substituição λ tal que $\theta = \sigma \Delta \lambda$.

Ideia base do algoritmo de unificação:

- Dadas duas expressões verificar se são idênticas:
- Caso não sejam idênticas, identificar as diferenças para se tentar a unificação.

Conjunto das diferenças

Definição (de conjunto das diferenças)

Designa-se por conjunto das diferenças, D, de um conjunto de expressões, $W \neq \emptyset$, o conjunto que se obtém da seguinte forma:

- determina-se o primeiro símbolo (a contar da esquerda), no qual nem todas as expressões em W têm exactamente esse símbolo;
- retira-se de cada expressão em W a subexpressão que começa com o símbolo determinado no item 1 e que ocupa essa posição.

```
Exemplo: Sendo W = \{P(x, f(y)), P(x, a), P(x, g(u, y))\}, obtém-se D = \{f(y), a, g(u, y)\}.
```

Matemática Discreta

Algoritmo de unificação

- Input: W (conjunto de expressões);
 - a) k := 0; $W_k := W$; $\sigma_k := \varepsilon$;
 - b) Se W_k é singular, então STOP senão determinar o conjunto de diferenças D_k ;
 - c) **Se** existem v_k e t_k em D_k tais que v_k é uma variável que não ocorre em t_k , **então** saltar para d) **senão** STOP (W não é unificável);
 - d) $\sigma_{k+1} := \{t_k/v_k\} \circ \sigma_k$; $W_{k+1} := W_k\{t_k/v_k\}$; k := k+1 e voltar a b);
- Output: σ_k (unificador mais geral para W).

Exemplo de aplicação do algoritmo de unificação

Vamos determinar um unificador para o conjunto de expressões $W = \{P(a, x, f(g(y))), P(z, f(z), f(u))\}.$

- 1. Fazer k := 0; $W_0 := W$; $\sigma_0 = \varepsilon$;
- 2. Uma vez que W_0 não é um conjunto singular, pelo que σ_0 não é um unificador para W, determinamos $D_0 = \{a, z\}$;

3.
$$\sigma_1 = {\sigma_1(v_0)/v_0} \circ \varepsilon = {a/z};$$

$$W_1 = W_0 \{t_o/v_0\}$$

$$= {P(a, x, f(g(y))), P(z, f(z), f(u))} \{a/z\}$$

4. Uma vez que W_1 não é um conjunto singular, determinamos $D_1 = \{x, f(a)\};$ 5. . . .

 $= \{P(a, x, f(g(y))), P(a, f(a), f(u))\}\$

Matemática Discreta

Referências e bibliografia

Referências e bibliografia I

D. M. Cardoso, P. Carvalho, *Noções de Lógica Matemática*, Universidade de Aveiro, 2007 (disponível na página da disciplina).