K-Adapter(arxiv 2020.10)

2020年11月20日 19:44

文章的主要动机:

- (1) 将特定领域的知识在不改变模型参数的情况下,融入一些稳定的预训练模型(BERT,ROBERTa).
- (2) 为不同领域的知识单独创建一个Adapter,作者认为如果将所有的知识不分类输入,会导致无法评估特定的知识对模型的有效性(个人不太认同这个观点,混合的知识输入对于知识的迁移以及交叉领域可能有用)。

Model	Knowledge Source	Objective	BERT fixed in training?	Continual knowl- edge infusion?
ERNIE (Zhang et al., 2019)	Wikipedia, WikiData	entity linking	N	N
LIBERT (Lauscher et al., 2019)	WordNet	synonym word prediction, hyponym-hypernym prediction	from scratch	N
SenseBERT (Levine et al., 2019)	WordNet	word-supersense prediction	from scratch	N
KnowBERT (Peters et al., 2019)	Wordnet, Wikipedia, CrossWikis	entity linking , hypernym link- ing	N	N
WKLM (Xiong et al., 2020)	WikiPedia, WikiData	replaced entity detection	N	N
BERT-MK (He et al., 2019)	Unified Medical Lan- guage System	discriminate between real and fake facts	N	N
K-Adapter (this work)	Wikipedia, Wikidata, dependency parser	predication prediction, depen- dency relation prediction	Y	Y

模型总体结构(传统的多任务学习和K-adapter的对比)

下面是KIA的总体结构图

实验 (重点)

- (1) ROBERTa(large)作为实验的基础模型,设置KIA的Transformer layer层N=2,下层Projection layer的隐变量H=768,Multi-head=12,上层projection layer H=1024,Transformer的H也是768.
- (2) FACTUAL ADAPTER

事实知识的apapter训练方式:从T-REX中抽取了一个子集T-REX-rc,抛弃包含人名的50个实体对,收集了430个关系和5.5M个句子。然后输入句子,使用实体关系分类的方式训练adapter

(3) LINGUISTIC ADAPTER

使用Standford Parser在Book Corpus上构建1M个依存关系句子,训练任务是预测父节点的token