QUANTUM MECHANICS

A Quick Guide

Huan Q. Bui

Colby College

PHYSICS & MATHEMATICS Statistics

Class of 2021

June 5, 2019

Preface

Greetings,

Quantum Mechanics, A Quick Guide to... is my reading notes from Shankar's *Principles of Quantum Mechanics, Second Edition*. Additional material will come from my class notes and my comments/interpretations/solutions. Enjoy!

Contents

	Preface	1
1	Mathematical Introduction 1.1 Linear Vector Spaces	4 4 5
2	Review of Classical Mechanics	7
3	All is Not Well with Classical Mechanics	8
4	The Postulates –a General Discussion	9
5	Simple Problems in One Dimension	10
6	The Classical Limit	11
7	The Harmonic Oscillator	12
8	The Path Integral Formulation of Quantum Theory	13
9	The Heisenberg Uncertainty Relation	14
10	Systems with N Degrees of Freedom	15
11	Symmetries and Their Consequences	16
12	Rotational Invariance and Angular Momentum	17
13	The Hydrogen Atom	18
14	Spin	19
15	Additional of Angular Momentum	20
16	Variational and WKB Methods	21
17	Time-Independent Perturbation Theory	22
18	Time-Dependent Perturbation Theory	23
19	Scattering Theory	24
20	The Dirac Equation	25
21	Path Integrals–II	26

22	Selected Problems and Solutions	27
	22.1 Mathematical Introduction	27
	22.2 Review of Classical Mechanics	28
	22.3 All is Not Well with Classical Mechanics	29
	22.4 The Postulates –a General Discussion	30
	22.5 Simple Problems in One Dimension	31
	22.6 The Classical Limit	32
	22.7 The Harmonic Oscillator	33
	22.8 The Path Integral Formulation of Quantum Theory	34
	22.9 The Heisenberg Uncertainty Relation	35
	22.10Systems with N Degrees of Freedom	36
	22.11Symmetries and Their Consequences	37
	22.12Rotational Invariance and Angular Momentum	38
	22.13The Hydrogen Atom	39
	22.14Spin	40
	22.15Additional of Angular Momentum	41
	22.16 Variational and WKB Methods	42
	22.17Time-Independent Perturbation Theory	43
	22.18Time-Dependent Perturbation Theory	44
	22.19Scattering Theory	45
	22.20The Dirac Equation	46
	22.21Path Integrals–II	47

1 Mathematical Introduction

1.1 Linear Vector Spaces

We should familiar with defining characteristics of linear vector spaces at this point. Here are some important definitions/theorems again:

Definition 1.1. A linear vector space V is a collection of objects called *vectors* for which there exists

- 1. A definite rule for summing, and
- 2. A definite rule for scaling, with the following features:
 - Closed under addition: for $x, y \in \mathbf{V}, x + y \in \mathbf{V}$.
 - Closed under scalar multiplication: $x \in \mathbf{V}$, then $ax \in \mathbf{V}$ for some scalar a.
 - Scalar multiplication is distributive.
 - Scalar multiplication is associative.
 - Addition is commutative.
 - Addition is associative.
 - There exists a (unique) null element in V.
 - There exists a (unique) additive inverse.

Vector spaces are defined over some field. The field can be real numbers, complex numbers, or it can also be finite. As for good practice, we will begin to label vectors with Dirac bra-ket notation. So, for instance, $|v\rangle \in \mathbf{V}$ denotes vector $v \in \mathbf{V}$. Basic manipulations of these vectors are intuitive:

- 1. $|0\rangle$ is unique, and is the null element.
- 2. $0|V\rangle = |0\rangle$.
- 3. $|-V\rangle = -|V\rangle$.
- 4. $|-V\rangle$ is a unique additive inverse of $|V\rangle$.

The reasons for choosing to use the Dirac notation will become clear later on. Another important basic concept is *linear (in)dependence*. Of course, there are a number of equivalent statement for linear independence. We shall just give one here:

Definition 1.2. A set of vectors is said to be linearly independent if the only linear relation

$$\sum_{i=1}^{n} a_i |i\rangle = |0\rangle \tag{1}$$

is the trivial one where the components $a_i = 0$ for any i.

The next two basic concepts are dimension and basis.

Definition 1.3. A vector space V has dimension n if it can accommodate a maximum of n linearly independent vectors. We denote this n-dimensional vector space as V^n .

We can show that

Theorem 1.1. Any vector $|v\rangle \in \mathbf{V}^n$ can be written (uniquely) as a linear combination of any n linearly independent vectors.

Definition 1.4. A set of n linearly independent vectors in a n-dimensional space is called a *basis*. So if $|1\rangle, \ldots, |n\rangle$ form a basis for \mathbf{V}^n , then any $|v\rangle \in \mathbf{V}$ can be written uniquely as

$$|v\rangle = \sum_{i=1}^{n} a_i |i\rangle. \tag{2}$$

It is nice to remember the following:

$$\left| \text{Linear Independence} = \text{Basis} + \text{Span} \right| \tag{3}$$

When a collection of vectors span a vector space \mathbf{V} , it just means that any $|v\rangle \in \mathbf{V}$ can be written as a linear combination of (some of) these vectors.

The algebra of linear combinations is quite intuitive. If $|v\rangle = \sum_i a_i |i\rangle$ and $|w\rangle = \sum_i b_i |i\rangle$ then

- 1. $|v+w\rangle = \sum_{i} (a_i + b_i) |i\rangle$.
- 2. $c|v\rangle = c\sum_{i} a_{i}|i\rangle = \sum_{i} ca_{i}|i\rangle$.

A linear algebra text will of course provide a much better coverage of these topics.

1.2 Inner Product Spaces

A generalization of the familiar dot product is the *inner product* or the *scalar product*. An inner product between two vectors $|v\rangle$ and $|w\rangle$ is denoted $\langle v|w|v|w\rangle$. An inner product has to satisfy the following properties:

- 1. Conjugate symmetry (or skew-symmetry): $\langle v|w\rangle = \langle w|v\rangle^*$.
- 2. Positive semi-definiteness: $\langle v|v\rangle \geq 0$.
- 3. Linearity in ket: $\langle v|aw + bz \rangle = a \langle v|w \rangle + b \langle v|z \rangle$.
- 4. Conjugate-linearity in bra: $\langle av + bz|w \rangle = \bar{a} \langle v|w \rangle + \bar{b} \langle z|w \rangle$.

Definition 1.5. An inner product space is a vector space with an inner product.

Definition 1.6. $\langle v|w\rangle = 0 \iff |v\rangle \perp |w\rangle$.

Definition 1.7. The *norm* (or length) of $|v\rangle$ is defined as

$$||v|| = \sqrt{\langle v|v\rangle}. (4)$$

Unit vectors have unit norm. Unit vectors are said to be normalized.

Definition 1.8. A set of basis vectors all of unit norm, which are pairwise orthogonal will be called an *orthonormal basis* or ONB.

Let
$$|v\rangle = \sum_i a_i |i\rangle$$
 and $|w\rangle = \sum_i b_i |j\rangle$, then

$$\langle v|w\rangle = \sum_{i} a_i^* b_i \langle i|j\rangle.$$
 (5)

2 Review of Classical Mechanics

3 All is Not Well with Classical Mechanics

4 The Postulates –a General Discussion

5 Simple Problems in One Dimension

6 The Classical Limit

7 The Harmonic Oscillator

8 The Path Integral Formulation of Quantum Theory

9 The Heisenberg Uncertainty Relation

10 Systems with N Degrees of Freedom

11 Symmetries and Their Consequences

12 Rotational Invariance and Angular Momentum

13 The Hydrogen Atom

14 Spin

15 Additional of Angular Momentum

16 Variational and WKB Methods

17 Time-Independent Perturbation Theory

18 Time-Dependent Perturbation Theory

19 Scattering Theory

20 The Dirac Equation

21 Path Integrals–II

- 22 Selected Problems and Solutions
- 22.1 Mathematical Introduction

22.2 Review of Classical Mechanics

22.3 All is Not Well with Classical Mechanics

22.4 The Postulates –a General Discussion

22.5 Simple Problems in One Dimension

22.6 The Classical Limit

22.7 The Harmonic Oscillator

22.8 The Path Integral Formulation of Quantum Theory

22.9 The Heisenberg Uncertainty Relation

22.10 Systems with N Degrees of Freedom

22.11 Symmetries and Their Consequences

22.12 Rotational Invariance and Angular Momentum

22.13 The Hydrogen Atom

22.14 Spin

22.15 Additional of Angular Momentum

22.16 Variational and WKB Methods

${\bf 22.17} \quad {\bf Time\text{\bf -} Independent \ Perturbation \ Theory}$

22.18 Time-Dependent Perturbation Theory

22.19 Scattering Theory

22.20 The Dirac Equation

22.21 Path Integrals–II