第6章 运算方法和运算部件

作业: 习题 3、4、5、6、7 补充题目(复习第一章的内容):

考虑下列 C 语言程序代码:

```
int i =65535;
short si = (short)i;
int j = si;
```

假定上述程序段在某 32 位机器上执行, sizeof (int)=4, 则变量 i、si 和 j 的值分别是多少? 为什么?

【分析解答】

在一台 32 位机器上执行上述代码段时, i 为 32 位补码表示的定点整数, 第 2 行要求强行将一个 32 位带符号数截断为 16 位带符号整数, 65535 的 32 位补码表示为 0000 FFFFH, 截断为 16 位后变成 FFFFH, 它是—1 的 16 位补码表示, 因此 si 的值是—1。再将该 16 位带符号整数扩展为 32 位时,就变成了 FFFF FFFFH, 它是—1 的 32 位补码表示, 因此 j 的值也为—1。也就是说, i 的值原来为 65535, 经过截断、再扩展后, 其值变成了—1。

3. 考虑以下 C 语言程序代码:

```
int func1 (unsigned word)
{
    return (int) (( word <<24) >> 24);
}
int func2 (unsigned word)
{
    return ( (int) word <<24 ) >> 24;
}
```

假设在一个 32 位机器上执行这些函数, sizeof (int)=4。说明函数 func1 和 func2 的功能, 并填写表 6.2,给出对表中"异常"数据的说明。

W		func	1(w)	func2(w)		
机器数	值	机器数	值	机器数	值	
	127					
	128					
	255					
	256					

表 6.2 题 3 用表

【分析解答】

函数 func1 的功能是把无符号数高 24 位清零 (左移 24 位再逻辑右移 24 位),结果一定是正的带符号整数;而函数 func2 的功能是把无符号数的高 24 位都变成和第 25 位一样,因为左移 24 位后左边第一位变为原来的第 25 位,然后进行算术右移,高位补符号,即高 24 位都变成和原来第 25 位相同。

根据程序执行的结果填表如下表,表中机器数用十六进制表示。

W		func1	(w)	func2(w)		
机器数	值	机器数	值	机器数	值	
0000007FH	127	0000007FH	+127	000007FH	+127	
00000080Н	128	00000080Н	+128	FFFFFF80H	-128	
000000FFH	255	000000FFH	+255	FFFFFFFH	-1	
00000100H	256	00000000Н	0	00000000Н	0	

题 3 中填入结果后的表

因为逻辑左移和算术左移的结果完全相同,所以,函数 func1 和 func2 中第一步左移 24 位得到的结果完全相同,所不同的是右移 24 位后的结果不同。

上述表中,加粗数据是一些"异常"结果。当 w=128 和 255 时,第 25 位正好是 1,因此函数 func2 执行的结果为一个负数,出现了"异常"。当 w=256 时,低 8 位为 00,高 24 位为非 0 值,左移 24 位后使得有效数字被移出,因而发生了"溢出",使得出现了"异常"结果 0。

4. 填写表 6.3, 注意对比无符号数和带符号整数的乘法结果, 以及截断操作前、后的结果。

模式	2	(3	7	x×y(截断ī	前)	x×y(有	战断后)
	机器数	值	机器数	值	机器数	值	机器数	值
无符号数	110		010					
二进制补码	110		010					
无符号数	001		111					
二进制补码	001		111					
无符号数	111		111					
二进制补码	111		111					

表 6.3 题 4 用表

【分析解答】

根据无符号数乘法运算和补码乘法运算算法,填写表 6.3 后得到下表。

题 4 中填入结果后的表

模式	X		у		x×y(截断前)		x×y(截断后)	
	机器数	值	机器数	值	机器数	值	机器数	值

无符号数	110	6	010	2	001100	12	100	4
二进制补码	110	-2	010	+2	111100	-4	100	-4
无符号数	001	1	111	7	000111	7	111	7
二进制补码	001	+1	111	-1	111111	-1	111	-1
无符号数	111	7	111	7	110001	49	001	1
二进制补码	111	-1	111	-1	000001	+1	001	+1

对上表中结果分析如下:

- ① 对于两个相同的机器数,作为无符号数进行乘法运算和作为带符号整数进行乘法运算,因为其所用的乘法算法不同,所以,乘积的机器数可能不同。但是,从表中看出,截断后的乘积是一样的,也即不同的仅是乘积中的高 n 位,而低 n 位完全一样。
- ② 对于 n 位乘法运算,无论是无符号数乘法还是带符号整数乘法,若截取 2n 位乘积的低 n 位作为最终的乘积,则都有可能结果溢出,即 n 位数字无法表示正确的乘积。虽然表中给出的带符号整数乘积截断后都没有发生溢出,但实际上还是存在溢出的情况,例如,011×011=001001,截断后 011×011=001,显然截断后的结果发生了溢出。
- ③ 表中加粗的地方是截断后发生溢出的情况。可以看出,对于无符号整数乘法,若乘积中高 n 位为全 0,则截断后的低 n 位乘积不发生溢出,否则溢出;对于带符号整数乘法,若高 n 位中的每一位都等于低 n 位中的第一位,则截断后的低 n 位乘积不发生溢出,否则溢出。
- 5. 以下是两段 C 语言代码,函数 arith()是直接用 C 语言写的,而 optarith()是对 arith()函数以某个确定的 M 和 N 编译生成的机器代码反编译生成的。根据 optarith(),可以推断函数 arith() 中 M 和 N 的值各是多少?

```
if ( y < 0 ) y+= 3;
y>>=2;
return x+y;
```

【分析解答】

}

对反编译结果进行分析,可知:对于 x,指令机器代码中有一条"x 左移 4 位"指令,即: x=16x,然后有一条"减法"指令,即 x=16x-x=15x,根据源程序知 M=15;对于 y,有一条"y 右移 2 位"指令,即 y=y/4,根据源程序知 N=4。但是,当 y<0 时,对于有些 y,执行 y>>2 后的值并不等于 y/4。例如,当 y=-1 时,在反编译函数 optarith 中执行 y>>2 时,因为-1 的机器数为全 1,左移两位后还是全 1,也即-1>>2=-1,结果为-1;而原函数 arith中执行 y/4 时,因为-1/4=0,得到结果为 0。

对于带符号整数来说,采用算术右移时,高位补符号,低位移出。因此,当符号位为 0 时,与无符号整数相同,采用移位方式和直接相除得到的商完全一样。当符号位为 1 时,若低位移出的是非全 0,则说明不能整除。例如,对于-3/2,假定补码位数为 4,则进行算术右移操作 1101>>1=1110.1B(小数点后面部分移出)后得到的商为-2,而精确商是-1.5,即整数商应为-1。显然,算术右移后得到的商比精确商少了 0.5,相当于朝-∞方向进行了舍入,而不是朝零方向舍入。因此,这种情况下,移位得到的商与直接相除得到的商不一样,需要进行校正。

校正的方法是,对于带符号整数 x,若 x<0,则在右移前,先将 x 加上偏移量(2^k-1),然后再右移 k 位。例如,上述函数 optarith 中,在执行 y>>2 之前加了一条语句 "if (y<0) y+=3;",以对 y 进行校正。

6. 设 $A_4\sim A_1$ 和 $B_4\sim B_1$ 分别是 4 位加法器的两组输入, C_0 为低位来的进位。当加法器分别 采用串行进位和先行进位时,写出 4 个进位 $C_4\sim C_1$ 的逻辑表达式。

【分析解答】

串行进位: $C_1=A_1C_0+B_1C_0+A_1B_1$

 $C_2 = A_2C_1 + B_2C_1 + A_2B_2$

 $C_3 = A_3C_2 + B_3C_2 + A_3B_3$

 $C_4 = A_4C_3 + B_4C_3 + A_4B_4$

并行进位: C₁=A₁B₁+(A₁+B₁)C₀

 $C_2 = A_2B_2 + (A_2 + B_2)A_1B_1 + (A_2 + B_2)(A_1 + B_1)C_0$

 $C_3 = A_3B_3 + (A_3 + B_3)A_2B_2 + (A_3 + B_3)(A_2 + B_2)A_1B_1 + (A_3 + B_3)(A_2 + B_2)(A_1 + B_1)C_0$

 $C_4 = A_4B_4 + (A_4 + B_4)A_3B_3 + (A_4 + B_4)(A_3 + B_3)A_2B_2 + (A_4 + B_4)(A_3 + B_3)(A_2 + B_2)A_1B_1 + (A_4 + B_4)(A_3 + B_3)(A_2 + B_2)(A_1 + B_1)C_0$

- 7. 请按如下要求计算,并把结果还原成真值。
 - (1) $\mathcal{C}[x]_{*}=0101, [y]_{*}=1101, \ \vec{x}[x+y]_{*}, [x-y]_{*}$
 - (2) 设 $[x]_{\mathbb{R}} = 0101$ 、 $[y]_{\mathbb{R}} = 1101$,用原码一位乘法计算 $[x \times y]_{\mathbb{R}}$ 。
 - (3) 设 $[x]_{*}=0101$ 、 $[y]_{*}=1101$,用 MBA(基 4 布斯)乘法计算 $[x\times y]_{*}$ 。
 - (4) 设 $[x]_{\mathbb{R}} = 0101$ 、 $[y]_{\mathbb{R}} = 1101$,用不恢复余数法计算 $[x/y]_{\mathbb{R}}$ 的商和余数。
 - (5) 设 $[x]_{*}=0101$ 、 $[y]_{*}=1101$,用不恢复余数法计算 $[x/y]_{*}$ 的商和余数。

【分析解答】

(1) $[x]_{*}=0.101B$, $[y]_{*}=1.101B$, $[-y]_{*}=0.011B$.

 $[x+y]_{*}=[x]_{*}+[y]_{*}=0$ 101B + 1 101B =(1)0 010B,因此,x+y=2。

两个不同符号数相加,结果一定不会溢出。验证: x=+101B=5, y=-011B=-3, x+y=2。

 $[x-y]_{\mbox{\tiny{$\psi$}}}=[x]_{\mbox{\tiny{$\psi$}}}+[-y]_{\mbox{\tiny{$\psi$}}}=0\ 101B+0\ 011B=(0)1\ 000B$,因此,x-y=-8。

两个正数相加结果为负,发生了溢出。验证: 5-(-3)=8>最大可表示数 7, 故溢出。

(2) $[x]_{\mathbb{R}} = 0$ 101B, $[y]_{\mathbb{R}} = 1$ 101B。将符号和数值部分分开处理。

乘积的符号为 0 ⊕ 1=1,数值部分采用无符号数乘法算法计算 101×101 的乘积。

原码一位乘法过程描述如下:初始部分积为0,在乘积寄存器前增加一个进位位。每次循环首先根据乘数寄存器中最低位决定+X还是+0,然后将得到的新进位、新部分积和乘数寄存器中的部分乘数一起逻辑右移一位。共循环3次,最终得到一个8位无符号数表示的乘积10011001B。

符号位为 1, 因此, $[x \times y]_{\mathbb{R}} = 10011001$, 因此, $x \times y = -25$ 。

若结果取 4 位原码 1 001,则因为乘积数值部分高 3 位为 0011,是一个非 0 数,所以,结果溢出。验证: 4 位原码的表示范围为-7~+7,显然乘积-25 不在其范围内,结果应该溢出。

(3) $[x]_{*}=0.101B$, $[-x]_{*}=1.011B$, $[y]_{*}=1.101B$.

采用 MBA 算法时,符号和数值部分一起参加运算,在乘数后面添 0,初始部分积 为 0, 并在部分积前加一位符号位 0。每次循环先根据乘积寄存器中最低 3 位决定执行 +X、+2X、-X、-2X、还是+0操作,然后将得到的新的部分积和乘数寄存器中的部分 乘数一起算术右移两位。-X 和-2X 分别采用+ $[-x]_*$ 和+2 $[-x]_*$ 的方式进行。共循环 3 次。 最终得到一个8位补码表示的乘积11110001B。

C	P	Y	Y_{-1}	说明
0	0 0 0 0	1 1 0 1	0	$P_0 = 0$
+0	0101			$y_1y_0y_{-1} = 010, +X$
0	0101			C, P 和 Y 同时右移两位
0	0001	0 1 1 1	0	得_ <i>P</i> 1
+1	1 0 1 1			$y_3y_2y_1 = 110, -X$
1	1 1 0 0			C, P 和 Y 同时右移一位
1	1111	0001		得 <i>P</i> 2

 $[x \times y]_{**} = 1111\ 0001$,因此, $x \times y = -15$ 。

(4) $[x]_{\mathbb{R}} = 0$ 101B, $[y]_{\mathbb{R}} = 1$ 101B。将符号和数值部分分开处理。

将符号和数值部分分开处理。商的符号为0⊕1=1,数值部分采用无符号数除法算 法计算 101B 和 101B 的商和余数。无符号数不恢复余数除法过程描述如下:初始中间 余数为00001010, 其中,最高位为添加的符号位,用于判断余数是否大于等于0;最 后一位 0 为第一次上的商,该位商只是用于判断结果是否溢出,不包含在最终的商中。 因为结果肯定不溢出, 所以该位商可以直接上 0, 并先做一次-Y 操作得到第一次中间余 数,然后进入循环。每次循环首先将中间余数和商一起左移一位,然后根据上一次上的 商(或余数的符号)决定执行+Y还是-Y操作,以得到新的中间余数,最后根据中间余 数的符号确定上商为0还是1。-Y采用+[-y]*的方式进行。整个循环内执行的要点是"正、 1、减;负、0、加"。共循环 3 次。最终得到一个 3 位无符号数表示的商 0001 和余数 0000, 其中第一位商0必须去掉,添上符号位后得到最终的商的原码表示为1001,余数的原 码表示为 0 000。因此, x/y 的商为-1, 余数为 0。

余数寄存器 R	余数/商寄存器 Q	说明
0 000	101	开始 R ₀ =X
+1 011		$R_1 = X - Y$
1 011	101 0	$R_1 < 0$,故 $q_3 = 0$,没有溢出
0 111	010 🗆	$2R_1$ (R 和 Q 同时左移,空出一位商)
+0 101		$R_2 = 2R_1 + Y$
1 100	0 1 0 0	$R_2 < 0$, $y = 0$
1 000	100 🗆	$2R_2$ (R 和 Q 同时左移,空出一位商)

+ 0	1 0 1		$R_3 = 2R_2 + Y$
1	101	1000	$R_3 < 0$,则 $q_1 = 0$
1	0 1 1	000 🗆	$2R_3$ (R 和 Q 同时左移,空出一位商)
+ 0	1 0 1		$R_4 = 2R_3 - Y$
0	0 0 0	0 0 0 1	$R_4 > 0$,则 $q_0 = 1$

商的最高位为 0,说明没有溢出,商的数值部分为 001。所以, $[x/y]_{\mathbb{R}}=1$ 001 (最高位为符号位),余数为 0。

(5) $[x]_{*} = 0$ 101B, $[y]_{*} = 1$ 101B。将符号和数值部分分开处理。

补码不恢复余数除法过程描述如下:初始中间余数为00000101,整个循环内执行的要点是"同、1、减;异、0、加"。共循环3次。最终得到一个3位无符号数表示的商0001和余数0000,其中第一位商0必须去掉,添上符号位后得到最终的商的原码表示为1001,余数的原码表示为0000。因此,x/y的商为-1,余数为0。

余数寄存器 R 余数/商寄存器 Q 说 明

0 0 0 0	0 1 0 1	开始 R ₀ = X
+1101		被除数和除数异号,做加法
1101	0101	同、1、减
1010	1 0 1 1	$2R_1$ (R 和 Q 同时左移,空出一位商)
+0011		$R_2 = 2R_1 - Y$
1 1 0 1	1 0 1 1	同、1、减
1011	0 1 1 1	$2R_2$ (R 和 Q 同时左移,空出一位商)
+0011		$R_3 = 2R_2 - Y$
1110	0 1 1 1	同、1、减
1100	1 1 1 1	$2R_3$ (R 和 Q 同时左移,空出一位商)
+0011		$R_4 = 2R_3 - Y$
1 1 1 1	1 1 1 1	同、1、减
1111	1111	$2R_4$ (R 和 Q 同时左移,空出一位商)
0 0 1 1	_	$R_5 = 2R_3 - Y$
0 0 1 0	1110	异、0、加(最高位商1去掉)

商的修正:最后一次 Q 寄存器左移一位,将最高位 q_n 移出,最低位置商 q_0 =0。若被除数与除数同号, Q 中就是真正的商;否则,将 Q 中商的末位加 1。故商为 1110+1=1111B。

余数的修正: 若余数符号同被除数符号,则不需修正; 否则,按下列规则进行修正: 当被除数和除数符号相同时,最后余数加除数; 否则,最后余数减除数。故余数为0010B。

商的为 1111 (-1), 余数为 0010 (2)。验证:"除数×商+余数= 被除数"进行验证,得

 $(-3)\times(-1)+2=5$ °