

F840814916

8

0000 1000

AND Operations

A logical bit-by-bit operation with two operands that calculates a 1 only if there is a 1 in both operands.

$$11 \quad X3 = X10' \times 11$$

OR Operations

A logical bit-by-bit operation with two operands that calculates a 1 only if there is a 1 in either operands.

$$11 \times 9 = \times 10 + \times 11$$

Branch to a labeled instruction if a condition is true – Otherwise, continue sequentially

CBZ register, L1

- if (register == 0) branch to instruction labeled L1;

- Example: CBZ X9, Else

CBNZ register, L1

- if (register != 0) branch to instruction labeled L1;

Example: CBNZ X9, Else

B L1

branch unconditionally to instruction labeled L1;

- Example: B Exit

	Signed numbers		Unsigned rumbers	
Comparison	Instruction	CC Test	Instruction	CC Test
-	B.EQ	Z=1	B.EQ	Z=1
- myth	B.NE	Z=O	B.NE /	Z=0
<	B.LT	N!=V	B.L0 /	C=0
S	B.LE	~(Z=0 & N=V)	B.LS	~(Z=0 & C=1)
>	B.GT	(Z=0 & N=V)	BAHI	(Z=0 & C=1)
<u> </u>	B.GE	N=V	B.HS	C=1

CONDITIONAL CBZ XO, LI

SUB X2, X3, X5

SUB X2, X3, X5

L1: EXIT

Convert the following C++ code to LEGv8 Assembly code. Assume the variables f, g, h, i, and j correspond to five registers X19, X20, X21, X22, and X19, X20, X21, X22, X23 X23.

$$f = (g + h) - (i + j);$$

11 x9 = 9+4 X0 X9, X20, X21 ADD 11 110= 1+3 X10, X22, X23 11 x9=(9+W-(1+)) x9 ADD X19, X9, X10 2013 (++1) - (N+9)= XIP XZV X21 X22 XLZ 30

If statement

Convert the following C++ code to LEGv8 Assembly code. Assume the variables a and b correspond to registers X22 and X23.

EXIT:

$$ADDIT X22, X23$$

Check $a < = b$
 $ADDIT X22, A22, #1$
 $A = a + 1$