

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

2

BLANK PAGE

••	 •••••
••	 •••••
••	••••••
••	•••••
••	••••••
••	•••••
••	
••	••••••
••	•••••
••	

4

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4]

	3	The parame	etric eq	uations	of a	a curve	aı
--	---	------------	----------	---------	------	---------	----

$$x = 3 - \cos 2\theta, \quad y = 2\theta + \sin 2\theta,$$
for $0 < \theta < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} = \cot \theta$.

[5]

4	Solve	the e	quation

$\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$	
Give your answers correct to 3 decimal places.	[6]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

5	(a)	By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly two roots in the interval $0 < x < \pi$. [2]
	(b)	The sequence of values given by the iterative formula
		$x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$
		with initial value $x_1 = 2$, converges to one of these roots.
		Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

Express $\sqrt{6}\cos\theta + 3\sin\theta$ in the form $R\cos(\theta - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places.

•••••	
•••••	
•••••	
•••••	
••••	
•••••	
••••	
•••••	•••••
•••••	••••••
•••••	
•••••	
••••	
•••••	
•••••	
••••	
•••••	
•••••	
•••••	
•••••	

7 (a)	Verify that $-1 + \sqrt{5}i$ is a root of the equation $2x^3 + x^2 + 6x - 18 = 0$.	[3]

11

(b)	Find the other roots of this equation.	[4]

8	The coordinates (x, y) of a general point of a curve satisfy the differential equation
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]

••••••
,
••••••
•••••
•••••

9	Let $f(x) =$	$8 + 5x + 12x^2$	
,		$\frac{(1-x)(2+3x)^2}{(1-x)(2+3x)^2}$	

	Express $f(x)$ in partial fractions. [5]
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

15

Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and in	[5]

10

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

(a)	Find the exact coordinates of M .	[5]

17

(of e.
•	
•	
•	
•	
•	
•	
•	
•	

11 Two lines have equations $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$, where a is a

intersection.

19

	iven instead that the acute angle between the directions of the two lines is \cos^- vo possible values of a .	$(\frac{1}{6})$, find the
•••		•••••
••		
•••		•••••
••		•••••
٠.		
••		••••••
٠.		••••••
•		
•••		
•••		•••••
•••		••••••

20

Additional Page

must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.