MATH 6280 Assignment 5
DUE TBD SKOUFRANIS

Question 1. Let μ and ν be finite measures on a measurable space (X, \mathcal{A}) . Prove that there exists a measurable function $f: X \to [0, 1]$ such that

$$\int_A f \, d\mu = \int_A 1 - f \, d\nu$$

for all $A \in \mathcal{A}$.

Question 2. Let μ and ν be σ -finite measures on a measurable space (X, \mathcal{A}) . Prove that if $\nu \ll \mu$ and $f: X \to \mathbb{C}$ is measurable, then f is integrable with respect to ν if and only if $f\frac{d\nu}{d\mu}$ is integrable with respect to μ . Furthermore, prove that if f is integrable with respect to ν then

$$\int_X f \, d\nu = \int_X f \frac{d\nu}{d\mu} \, d\mu.$$

Question 3. Let μ , ν , and ρ be σ -finite measures on a measurable space (X, \mathcal{A}) such that $\nu \ll \mu$ and $\rho \ll \nu$. Prove that $\rho \ll \mu$ and that $\frac{d\rho}{d\mu} = \frac{d\rho}{d\nu} \frac{d\nu}{d\mu}$ almost everywhere.

Question 4. Let μ_1 and μ_2 be two finite measures on a measurable space (X, \mathcal{A}) . Consider the finite signed measure $\nu = \mu_1 - \mu_2$. Prove that if $|\nu|(X) = \mu_1(X) + \mu_2(X)$, then $\nu_+ = \mu_1$ and $\nu_- = \mu_2$.

Question 5. Let μ be a finite Borel measure on (a,b] and let $F:[a,b]\to\mathbb{R}$ defined by $F(x)=\mu((a,x])$ be the cumulative distribution function of μ .

- a) Prove that if $\mu \perp \lambda$, then F is singular on [a, b].
- b) Prove that if F is singular, on [a, b], then $\mu \perp \lambda$.

Question 6. Let (X, \mathcal{A}) be a measurable space. A complex measure is a function $\nu : \mathcal{A} \to \mathbb{C}$ such that

- $\nu(\emptyset) = 0$, and
- if $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ are pairwise disjoint, then $\nu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \nu(A_n)$ with the sum converging absolutely.
- a) Prove that if ν is a complex measure, then there exists finite measures μ_1, μ_2, μ_3 , and μ_4 such that

$$\nu = \mu_1 - \mu_2 + i\mu_3 - i\mu_4.$$

b) Prove that if ν is a complex measure on (X, \mathcal{A}) then there exists finite measure μ (denoted $|\nu|$) and a measurable function $\varphi: X \to \mathbb{C}$ such that $|\varphi(x)| = 1$ for all $x \in X$ and

$$\nu(A) = \int_{A} \varphi \, d\mu$$

for all $A \in \mathcal{A}$. (Hint: Consider $\sum_{k=1}^{4} \mu_k$ but note this is not necessarily μ .)

c) Prove that, in part b), the measure μ is unique and that φ is unique upto sets of μ -measure zero.