# Graduate Certificate Mechanical Engineering





education for the real world

#### **Graduate Programs**

Mechanical Engineering at Concordia is known to offer world-class research programs. At the graduate level, it currently addresses the educational needs of the professional, and of career and research-oriented engineers through the M.Eng., M.A.Sc. and Ph.D. programs. In general, these existing programs are designed for engineers who wish to follow a graduate studies program on a full or part-time basis and are willing to do their studies over a comparatively longer time period.

The Certificate program is intended for engineers with experience, who wish to strengthen their knowledge in a specific area. The Certificate program enables these professionals to acquire their education in a shorter time period than the already existing Graduate programs. The program consists of fifteen (15) credits, selected within a specialization readily recognized by the profession. The potential clientele includes working engineers, as well as post-graduates who would like to broaden their knowledge in a specific area of specialization over a shorter time period.

# The Graduate Certificate in Mechanical Engineering

The Mechanical Engineering Department offers a Graduate Certificate in Mechanical Engineering for qualified university graduates who wish to obtain expertise in the following disciplines:

- Aerospace
- Composite Materials
- Controls and Automation
- Theoretical and Computational Fluid Dynamics
- Manufacturing Systems

The Graduate Certificate program can be completed in one to two years. Students in the Certificate program with high standing in their Bachelor program and whose academic records satisfy the requirements for Good Standing in the Master's program in Mechanical Engineering (please refer to the Graduate Calendar), may apply for transfer to the Master's program.



#### **Admission Requirements**

Applicants to the programme must hold a Bachelor's degree in engineering with good standing. The School of Graduate Studies committee will determine the acceptability of an applicant for admission to the program and may require the applicant to do specific remedial course work to meet the program requirements.

#### **Requirements for Completion**

 Credits: A fully qualified candidate is required to complete a minimum of fifteen (15) credits in one of the fields of concentration listed below.

#### 2. Courses:

- Minimum of nine (9) credits of core courses, from within one area of concentration.
- Maximum of six (6) credits of electives, chosen from the elective courses listed in the Graduate Calendar, or from core courses of any other area of concentration.
- **3. Good Standing:** Students who have completed at least two (2) courses will be assessed in June of each year. To be permitted to continue, students must have a cumulative grade point average (CGPA) of at least 2.75.
- Graduation: To be eligible to graduate, students must have obtained a cumulative grade point average (CGPA) of at least 2.75.



#### Courses

All courses are three (3) credits. The core courses in each of the different areas of concentration are:

#### Aerospace: MECH 609

| MECH 612        | Aerodynamics (*)                    |
|-----------------|-------------------------------------|
| MECH 616        | Gas Turbine Design (*)              |
| <b>MECH 617</b> | Turbomachinery and Propulsion (*)   |
| MECH 623        | Helicopter Flight Dynamics          |
| MECH 624        | Operational Performance of Aircraft |
|                 |                                     |

ENGR 620 Fluid Mechanics
ENGR 642 Standards, Regulations and Certification
ENGR 644 Materials Engineering for Aerospace

Flight Control Systems

ENGR 646 Avionic Navigation Systems

#### **Composite Materials:**

**MECH 644** 

| MECH 650 | Advanced Materials                        |
|----------|-------------------------------------------|
| MECH 652 | Manufacturing of Composites (*)           |
| MECH 658 | Mechanical Behaviour of Polymer Composite |
|          | Materials (*)                             |
|          |                                           |

Stress Analysis in Mechanical Design

MECH 660 Testing and Evaluation of Polymer Composite Materials and Structures

#### **Controls and Automation:**

| MECH 002 | Design of industrial Control Systems (*)    |
|----------|---------------------------------------------|
| MECH 606 | Analysis and Design of Hydraulic Control    |
|          | Systems (*)                                 |
| MECH 608 | Fuel Control Systems for Combustion Engines |
| MECH 609 | Flight Control Systems                      |
| MECH 662 | Microprocessors and Applications (*)        |

ENGR 618 Digital Control of Dynamic Systems
ENGR 641 Robotic Manipulators I : Mechanics (\*)

ENGR 646 Avionic Navigation Systems

## Theoretical and Computational Fluid Dynamics:

ENGR 620 Fluid Mechanics

ENGR 625 Finite Difference Method in Computational

Fluid Dynamics



| ENGR 626 | Finite Element Method in Computational Fluid |                         |
|----------|----------------------------------------------|-------------------------|
|          |                                              | Dynamics                |
| N        | MECH 610                                     | Kinetic Theory of Gases |

MECH 610 Kinetic Theory of Gases MECH 611 Gas Dynamics (\*) MECH 612 Aerodynamics (\*)

#### **Manufacturing Systems:**

| MECH 642 | Metal Machining and Surface Technology        |
|----------|-----------------------------------------------|
| MECH 643 | Introduction to Tribology (Wear, Friction and |
|          | Lubrication)                                  |
| MECH 646 | Advanced Concepts in Quality Improvement (*)  |
| MECH 651 | Mechanical Forming of Metals (*)              |
| ENGR 645 | System Reliability                            |

ENGR 671 Engineering Systems and Cost Analysis ENCS 619 Fuzzy Sets and Fuzzy Logic

(\*) Some graduate courses are content-equivalent with specified undergraduate courses. The students who have completed the undergraduate courses cannot register in equivalent graduate courses. Refer to the course description where these courses are marked with (\*).

### For application material, please contact:

The Graduate Program Secretary
Mechanical Engineering Department
Concordia University
1455, de Maisonneuve West, H-549
Montreal, QC., Canada H3G-1M8
Fax: (514) 848-3175 Tel.: (514)-848-3131
E-Mail: grad.pro@me.concordia.ca

Web: www.concordia.ca

