Tasty Bites: Machine Learning Solution

Liam Haney

Project Goals

Request:

- Predict which recipes will lead to high traffic
- Correctly predict high traffic recipes 80% of the time

Solution:

• Create predictive model using provided data

Provided Data

947 entries with information across 8 columns

- 1 unique identifier column
- 1 target variable column
- 6 feature columns
- Some entries missing data

```
RangeIndex: 947 entries, 0 to 946
Data columns (total 8 columns):
    Column
                  Non-Null Count
                                 Dtvpe
    recipe
                  947 non-null
                                 int64
    calories
                  895 non-null
                                 float64
                  895 non-null
                                 float64
    carbohydrate
     sugar
                  895 non-null
                                 float64
    protein
                  895 non-null
                                 float64
    category
                  947 non-null
                                 object
    servings
                  947 non-null
                                 object
    high_traffic 574 non-null
                                 object
dtypes: float64(4), int64(1), object(3)
memory usage: 59.3+ KB
None
```

Data Cleaning

892 entries across 8 columns

- Removed 55 entries
 - 52 missing numeric data in 4 columns
 - 3 ambiguous 'servings' ("as a snack")
- Consolidated extra food grouping, 'Chicken Breast', with 'Chicken'
- Converted to correct data types e.g.
 'high_traffic' is now True or False

```
Int64Index: 892 entries, 1 to 946
Data columns (total 8 columns):
     Column
                   Non-Null Count
                                  Dtype
     recipe
                                   int64
                   892 non-null
     calories
                   892 non-null
                                   float64
     carbohydrate
                  892 non-null
                                   float64
                                   float64
     sugar
                  892 non-null
     protein
                  892 non-null
                                   float64
     category
                   892 non-null
                                   category
     servings
                                   int64
                   892 non-null
     high_traffic
                  892 non-null
                                   bool
dtypes: bool(1), category(1), float64(4),
int64(2)
memory usage: 50.9 KB
```


Similarly insignificant results for logarithmic correlation

Model Development

To reach goal

• Binary classification model that correctly predicts 80% of high traffic recipes

Chosen models

- Logistic Regression Model (Baseline)
- Random Forest Classifier

Logistic Regression Model

Less complex, readily captures simple relationships

Random Forest Classifier

More complex and adaptable

Model Evaluation

Evaluation

- Accuracy: baseline correctness, (note class imbalance >60% True)
 - 0 100%
- Recall: percent of high traffic recipes that were correctly identified
 - 0 100%
- ROC AUC: True vs. False Positive rate at various classification thresholds
 - 0.5 1.0
 - Random guessing to perfect predictions

Model Comparison

Metric	Logistic Regression	Random Forest
Accuracy	74.6%	75.4%
Recall	81.3%	81.9%
ROC AUC	0.730	0.738

Business Application

Key Performance Indicator (KPI)

- Recall of 81.9% exceeds requested 80%
- Implement model, compare results of model predictions vs. manual recipe selection
- Dashboard application

Current model can be improved with some clarification and additional feature data

Moving Forward

Additional Data Collection

- Missing data: 52 entries across 4 columns, can be corrected?
- 'Time to make', 'Cost per serving', 'Ingredients', perhaps relevant?

Generate New Features

- 'category': kept as 10 provided food groupings, values not exclusive and should probably be split
- 'high_traffic': alter threshold to identify only most important features/change to regression problem

Thank you

Keep in touch!

Phone: 123-123-1234

Email: email@email.com