

TUGAS AKHIR - EC234801

Perancangan Sistem Kontrol Motor Kursi Roda Secara Nirkabel Berbasis ESP32

I Putu Haris Setiadi Ekatama

NRP 0721 19 4000 0046

Dosen Pembimbing

Dr. Eko Mulyanto Yuniarno, S.T., M.T.

NIP 19680601 199512 1 009

NIP -

2023

Program Studi Strata 1 (S1) Teknik Komputer

Departemen Teknik Komputer
Fakultas Fakultas Teknologi Elektro dan Informatika Cerdas
Institut Teknologi Sepuluh Nopember
Surabaya

TUGAS AKHIR - EC234801

Perancangan Sistem Kontrol Motor Kursi Roda Secara Nirkabel Berbasis ESP32

I Putu Haris Setiadi Ekatama

NRP 0721 19 4000 0046

Dosen Pembimbing

Dr. Eko Mulyanto Yuniarno, S.T., M.T.

NIP 19680601 199512 1 009

NIP -

Program Studi Strata 1 (S1) Teknik Komputer

Departemen Teknik Komputer
Fakultas Fakultas Teknologi Elektro dan Informatika Cerdas
Institut Teknologi Sepuluh Nopember
Surabaya
2023

FINAL PROJECT - EC234801

Designing a Wireless Control System for Wheelchair Motors Based on ESP32

I Putu Haris Setiadi Ekatama

NRP 0721 19 4000 0046

Advisor

Dr. Eko Mulyanto Yuniarno, S.T., M.T.

NIP 19680601 199512 1 009

NIP -

Undergraduate Study Program of Computer Engineering

Department of Computer Engineering

Faculty of Faculty of Intelligent Electrical and Informatics Technology

Sepuluh Nopember Institute of Technology

Surabaya

2023

LEMBAR PENGESAHAN

Perancangan Sistem Kontrol Motor Kursi Roda Secara Nirkabel Berbasis ESP32

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat
memperoleh gelar Sarjana Teknik pada
Program Studi S-1 Teknik Komputer
Departemen Teknik Komputer
Fakultas Fakultas Teknologi Elektro dan Informatika Cerdas
Institut Teknologi Sepuluh Nopember

Oleh: **I Putu Haris Setiadi Ekatama** NRP. 0721 19 4000 0046

Disetujui oleh Tim Penguji Tugas Akhir:

Dr. Eko Mulyanto Yuniarno, S.T., M.T. NIP: 19680601 199512 1 009	(Pembimbing I)
- NIP: -	(Pembimbing II)
 NIP: -	(Penguji I)
 NIP: -	(Penguji II)
 NIP: -	(Penguji III)

Mengetahui, Kepala Departemen Teknik Komputer FTEIC - ITS

<u>Dr. Supeno Mardi Susiki Nugroho, S.T., M.T..</u> <u>NIP. 19700313 199512 1 001</u>

> SURABAYA Desember, 2023

APPROVAL SHEET

Designing a Wireless Control System for Wheelchair Motors Based on ESP32

FINAL PROJECT

Submitted to fulfill one of the requirements
for obtaining a degree Bachelor of Engineering at
Undergraduate Study Program of Computer Engineering
Department of Computer Engineering
Faculty of Faculty of Intelligent Electrical and Informatics Technology
Sepuluh Nopember Institute of Technology

By: I Putu Haris Setiadi Ekatama NRP. 0721 19 4000 0046

Approved by Final Project Examiner Team:

Dr. Eko Mulyanto Yuniarno, S.T., M.T. NIP: 19680601 199512 1 009	(Advisor I)
- NIP: -	(Co-Advisor II)
 NIP: -	(Examiner I)
NII	
- .	(Examiner II)
NIP: -	
	(Examiner III)
NIP: -	

Acknowledged,
Head of Computer Engineering Department F-ELECTICS - ITS

Dr. Supeno Mardi Susiki Nugroho, S.T., M.T..

NIP. 19700313 199512 1 001

SURABAYA December, 2023

PERNYATAAN ORISINALITAS

Yang bertanda tangan dibawah ini:

Nama Mahasiswa / NRP : I Putu Haris Setiadi Ekatama / 0721 19 4000 0046

Departemen : Teknik Komputer

Dosen Pembimbing / NIP : Dr. Eko Mulyanto Yuniarno, S.T., M.T. / 19680601 199512 1

009

Dengan ini menyatakan bahwa Tugas Akhir dengan judul "Perancangan Sistem Kontrol Motor Kursi Roda Secara Nirkabel Berbasis ESP32" adalah hasil karya sendiri, berfsifat orisinal, dan ditulis dengan mengikuti kaidah penulisan ilmiah.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia menerima sanksi sesuai dengan ketentuan yang berlaku di Institut Teknologi Sepuluh Nopember.

Surabaya, December 2023

Mengetahui

Dosen Pembimbing Mahasiswa

Dr. Eko Mulyanto Yuniarno, S.T., M.T.

I Putu Haris Setiadi Ekatama
NIP. 19680601 199512 1 009

NRP. 0721 19 4000 0046

STATEMENT OF ORIGINALITY

The undersigned below:

Name of student / NRP : I Putu Haris Setiadi Ekatama / 0721 19 4000 0046

Department : Computer Engineering

Advisor / NIP : Dr. Eko Mulyanto Yuniarno, S.T., M.T. / 19680601 199512 1

009

Hereby declared that the Final Project with the title of "Designing a Wireless Control System for Wheelchair Motors Based on ESP32" is the result of my own work, is original, and is written by following the rules of scientific writing.

If in future there is a discrepancy with this statement, then I am willing to accept sanctions in accordance with provisions that apply at Sepuluh Nopember Institute of Technology.

Surabaya, December 2023

Acknowledged

Advisor Student

Dr. Eko Mulyanto Yuniarno, S.T., M.T.

I Putu Haris Setiadi Ekatama
NIP. 19680601 199512 1 009

NRP. 0721 19 4000 0046

ABSTRAK

Nama Mahasiswa : I Putu Haris Setiadi Ekatama

Judul Tugas Akhir : Perancangan Sistem Kontrol Motor Kursi Roda Secara Nirkabel Berba-

sis ESP32

Pembimbing : 1. Dr. Eko Mulyanto Yuniarno, S.T., M.T.

2. -

Pada penelitian ini kami mengajukan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Kata Kunci: Roket, Anti-gravitasi, Energi, Angkasa.

ABSTRACT

Name : I Putu Haris Setiadi Ekatama

Title : Designing a Wireless Control System for Wheelchair Motors Based on ESP32

Advisors: 1. Dr. Eko Mulyanto Yuniarno, S.T., M.T.

2. -

In this research, we proposed Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords: Rocket, Anti-gravity, Energy, Space.

KATA PENGANTAR

Puji dan syukur kehadirat Tuhan Yang Maha Esa, atas segala rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan penelitian ini yang berjudul Prediksi Jumlah Kalori Yang Terbakar Saat Olahraga *Pull-Up* Berbasis CNN Dengan Menggunakan Jetson Nano.

Penelitian ini disusun dalam rangka pemenuhan Tugas Akhir sebagai syarat kelulusan Mahasiswa ITS. Oleh karena itu, penulis mengucapkan banyak terima kasih kepada

- 1. Bapak Dr.Supeno Mardi Susiko Nugroho, ST.,MT, selaku Kepala Departemen Teknik Komputer, Fakultas Elektro dan Informatika Cerdas, Institut Teknologi Sepuluh Nopember
- 2. Bapak Dr. Eko Mulyanto Yuniarno, S.T., M.T. selaku Dosen Pembimbing telah memberikan arahan selama pengerjaan tugas akhir ini
- 3. Bapak Arief Kurniawan, S.T., M.T selaku dosen penguji I dan Ibu Dr. Susi Juniastuti, S.T., M.Eng selaku dosen penguji II yang telah memberikan saran dan revisi agar pengerjaan Buku Tugas Akhir ini dapat menjadi lebih baik
- 4. Bapak-Ibu dosen pengajar Departemen Teknik Komputer, atas ilmu dan pengajaran yang telah diberikan kepada penulis selama ini
- 5. Farel Jevon, S.T., Paschalis Seto Wicaksono, S.T., Felix Titus Setiawan, S.T., dan I Gusti Komang Agung Wiguna, S.T. yang telah memberikan inspirasi sehingga penelitian ini dilaksanakan
- 6. I Putu Krisna Erlangga, Muh. Khaeral Azzam, Moh. Iqbal Fatchurozi, Batrisyia Zahrani Ananto, Evandrew Reynald Collin, Dimas Triananda Murti Putra, Ruky Augusta Gautama, Muh. Rezky Firdaus Irwan, Raka Zein Akbar, Priansa Putra Jaya Wardana dan teman teman lab B300 lainnya yang telah menemani setiap kegiatan penelitian
- 7. Teman teman Departemen Teknik Komputer

Akhir kata, semoga penelitian ini dapat memberikan manfaat kepada banyak pihak, penulis menyadari jika skripsi ini masih belum sempurna, dikarenakan keterbatasan ilmu yang dimiliki. Untuk itu penulis mengharapkan saran dan kritik yang bersifat membangun kepada penulis untuk menuai hasil yang lebih baik lagi.

Surabaya, Desember 2023

I Putu Haris Setiadi Ekatama

DAFTAR ISI

A]	BSTR	AK		j
\mathbf{A}	BSTR	ACT		iii
K	ATA I	PENGA	NTAR	v
D	AFTA	R ISI		vii
D	AFTA	R GAN	MBAR	ix
D	AFTA	R TAB	EL	хi
1	PEN	IDAHU	LUAN	1
	1.1	Latar 1	Belakang	1
	1.2	Perma	salahan	2
	1.3	Tujuai	n	2
	1.4	Batasa	an Masalah	2
	1.5	Manfa	nat	2
2	TIN	JAUAN	N PUSTAKA	3
	2.1	Peneli	tian Terdahulu	3
		2.1.1	Kontrol Kursi Roda Menggunakan Sinyal Suara Melalui Bluetooth	3
		2.1.2	Rancang Bangun Kursi Roda Elektrik Dengan Sistem Kontrol <i>Joystick</i> Dan <i>Smartphone</i> Android	3
		2.1.3	Wheelchair Control Using Bluetooth-Based Electromyography Signals	3
		2.1.4	Prototipe Kursi Roda Elektrik Dengan Kendali Joystick dan Smartphone	4
		2.1.5	Penelitian Terdahulu 5	4
	2.2	Teori/	Konsep Dasar	4
		2.2.1	Convolutional Neural Network (CNN)	4
		2.2.2	NVIDIA® Jetson Nano TM	6
3	ME'	TODOI	L OGI	7
	3.1	Deskr	ipsi Sistem	7
		3 1 1	Estimasi Pose	8

RI	OGR	AFI PF	NULIS	19
D A	AFTA	R PUST	ГАКА	17
	5.2	Saran		15
	5.1	Kesim	pulan	15
5	PEN	NUTUP		15
	4.2	Evalua	si Pengujian	13
	4.1	Skenar	rio Pengujian	13
4	PEN	IGUJIA	N DAN ANALISIS	13
		3.2.1	Hardware dan Software yang digunakan	11
	3.2	Implen	nentasi Alat	11
		3.1.5	Kontrol Navigasi	10
		3.1.4	Memecahkan Paket Data	10
		3.1.3	Paket Data	10
		3.1.2	Klasifikasi Pose	9

DAFTAR GAMBAR

2.1	Arsitektur pada Convolutional Neural Network	4
2.2	Aktivasi ReLU	5
2.3	Max Pooling	5
2.4	Proses Flattening	6
2.5	Perangkat Jetson Nano	6
3.1	Blok Diagram Penelitian	7
3.2	Contoh citra yang telah diestimasi pose	9
3.3	Klasifikasi untuk perintah maju	9

DAFTAR TABEL

3.1	Tabel titik <i>keypoints</i> yang relevan pada tahap estimasi pose	8
3.2	Kode instruksi dari hasil klasifikasi	10
4.1	Hasil Pengukuran Energi dan Kecepatan	13

BABI

PENDAHULUAN

1.1 Latar Belakang

Menurut Kamus Besar Bahasa Indonesia, lumpuh merupakan melemahnya fungsi anggota badan sehingga tidak bertenaga atau tidak dapat digerakkan lagi sebagaimana mestinya (Daring, 2016). Otot beserta tulang, saraf, serta jaringan penghubung antara otot, tulang dan saraf memiliki peran yang penting dalam mengendalikan gerak tubuh manusia. Apabila salah satu jaringan mengalami gangguan makan akan terjadi kelumpulan, baik kelumpuhan sementara maupun kelumpuhan permanen.

Terdapat beberapa kondisi yang dapat mengakibatkan kelumpuhan, seperti penyakit stroke yang dapat menyebabkan kelumpuhan pada salah satu sisi wajah, lengan serta tungkai, *Bell's Palsy* yang dapat menyebabkan kelumpuhan pada salah satu sisi wajah tanpa disertai kelumpuhan pada anggota tubuh yang lain, cedera otak yang dapat memicu kelumpuhan pada setiap bagian tubuh sesuai bagian otak yang rusak, polio yang menyebabkan kelumpuhan pada lengan, tungkai, serta otot pernapasan, dan masih banyak kondisi yang menyebabkan kelumpuhan (Pansawira, 2022).

Seseorang yang mengalami kelumpuhan sering kali mengalami permasalahan dalam hal mobilitas sehari-hari. Mereka memerlukan alat tambahan untuk dapat beraktivitas sehari-hari, salah satunya adalah kursi roda. Hingga saat ini sudah terdapat kursi roda elektrik yang dikendalikan dengan menggunakan *joystick* (Choi et al., 2019). Akan tetapi penggunaan *joystick* belum dapat menjawab permasalahan dari seseorang yang mengalami kelumpuhan. Karena bagi orang yang mengalami kelumpuhan pada bagian lengan akan kekusahan dalam mengendalikan kursi roda elektrik berjenis ini.

Dalam menghadapi permasalahan kelumpuhan, sangat penting untuk mencari solusi yang dapat meningkatkan kemandirian para penderita. Salah satu pendekatan yang menjanjikan adalah memanfaatkan teknologi canggih, seperti visi komputer yang dapat diintegrasikan dengan sistem tertanam. Dengan menggabungkan kedua teknologi ini, diharapkan dapat diciptakan solusi inovatif yang memungkinkan para penderita kelumpuhan untuk tetap dapat bermobilitas secara mandiri.

Visi komputer merupakan bidang keilmuan yang memungkinkan komputer dapat "melihat" (Tian et al., 2020). Teknologi ini menggunakan kamera untuk mengidentifikasi, melacak, hingga mengukur target untuk pemrosesan citra lebih lanjut. Visi komputer memberikan kemampuan untuk mengenali dan memahami lingkungan sekitar. Sedangkan sistem tertanam dapat diatur secara personal untuk memenuhi kebutuhan spesifik sesuai dengan permasalahan yang dihadapi.

Integrasi teknologi ini dapat menjadi solusi inovatif terhadap permasalahan yang dihadapi. Dalam rangka mengatasi tantangan ini, penelitian akan difokuskan pada pengembangan kontroler motor yang dapat secara optimal berinteraksi dengan teknologi visi komputer. Pemilihan ESP32 sebagai mikrokontroler utama menjadi langkah strategis, karena kemampuannya dalam

mengatur dengan presisi kerja motor. Tidak hanya berfungsi sebagai kontroler motor, ESP32 juga akan berperan sebagai perangkat penerima data dari komputer yang dilengkapi dengan teknologi visi komputer. Melalui integrasi ini, diharapkan bahwa kontroler motor dapat beroperasi secara sinergis dengan informasi yang diterima dari komputer dan menciptakan sebuah sistem yang efisien dan responsif.

1.2 Permasalahan

Berdasarkan hal yang telah dipaparkan pada latar belakang, untuk dapat mengatur kerja motor dari kursi roda yang terintegrasi dengan teknologi visi komputer maka diperlukan kontroler yang dapat digunakan sebagai perantara antara keduanya.

1.3 Tujuan

Tujuan dari tugas akhir ini adalah untuk mengembangkan kontroler motor kursi roda yang dapat terintegrasi dengan teknologi visi komputer.

1.4 Batasan Masalah

Untuk memfokuskan permasalahan yang diangkat maka dilakukan pembatasan masalah. Batasan-batasan masalah tersebut diantaranya:

- 1. Mikrokontroler yang digunakan adalah ESP32 Devkit V1.
- 2. Laptop atau Jetson Nano digunakan sebagai pengolah data visi komputer.
- 3. Pengiriman data visi komputer ke ESP32 menggunakan WiFi maupun Bluetooth.
- 4. Pengujian yang dilakukan adalah membandingkan tingkat delay pengiriman data dari laptop atau Jetson Nano ke ESP32 yang menggunakan WiFi dengan yang menggunakan Bluetooth, serta membandingkan performa FPS dari laptop maupun Jetson Nano dalam menjalankan sistem visi komputer.

1.5 Manfaat

Manfaat dari penelitian ini adalah untuk memungkinkan teknologi visi komputer agar dapat mengontrol gerak dari kursi roda. Sehingga para pengembang dapat mengembangkan model dari *machine learning* mereka untuk diaplikasikan sebagai kontrol kursi roda.

BAB II TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

2.1.1 Kontrol Kursi Roda Menggunakan Sinyal Suara Melalui Bluetooth

Pada tahun 2023 telah dilakukan penelitian yang berjudul Kontrol Kursi Roda Menggunakan Sinyal Suara Melalui Bluetooth oleh Arief Wisaksono, Rachmad Aditya Pratama, dan Hindarto hindarto dari Departemen Teknik Elektro, Fakultas Sains dan Teknologi Universitas Muhammadiyah Sidoarjo (Wisaksono, Pratama, et al., 2023).

Pada penelitian ini dapat disimpulkan bahwa pengujian koneksi Bluetooth dan Android dapat berjalan secara optimal. Sehingga input dari Android bisa terkirim ke rangkaian Arduino Uno. Hasil pengujian koneksi memiliki waktu delay selama 4 detik hingga 6 detik. Pengujian baterai 12 Volt memiliki deviasi sebesar 0,43 serta akurasi sebesar 96,7%. Hal ini disebabkan karena hasil dari pengukuran lebih besar daripada tegangan yang diperlukan. Akan tetapi hal tersebut tidak mempengaruhi sistem kerja alat karena tegangan 12 Volt merupakan tegangan minimum alat.

2.1.2 Rancang Bangun Kursi Roda Elektrik Dengan Sistem Kontrol *Joystick* Dan *Smartphone* Android

Pada tahun 2023 telah dilakukan penelitian yang berjudul Rancang Bangun Kursi Roda Elektrik Dengan Sistem Kontrol *Joystick* dan *Smartphone* Android oleh Bayu Ahityanto Wicaksono dari Program Studi Diploma IV Rekayasa Perancangan Mekanik, Sekolah Vokasi Universitas Diponegoro (Wicaksono, 2023).

Pada penelitian ini didapatkan kesimpulan bahwa kursi roda konvensional yang dijadikan kursi roda elektrik berhasil dijalankan dengan kecepatan maksimal 2 km/h sesuai perencanaan. Kursi roda elektrik dapat dikontrol dengan *joystick* maupun dari aplikasi yang berada di *smart-phone* android. Kursi roda elektrik dapat berjalan dengan beban maksimal 80 kg. Terdapat beberapa saran dari penulis seperti menambahkan sandaran kepala agar pengguna lebih nyaman di kursi roda elektrik, serta pembuatan sistem aplikasi untuk pengguna *smartphone* dari Apple.

2.1.3 Wheelchair Control Using Bluetooth-Based Electromyography Signals

Telah dilakukan penelitian yang berjudul *Wheelchair Control Using Bluetooth-Based Electromyography Signals* oleh Yoga Eko Prasetyo dari Program Studi Teknik Elektro dan Hindarto Hindarto dari Program Studi Informatika Universitas Muhammadiyah Sidoarjo (Prasetyo & Hindarto, n.d.).

Pada penelitian ini didapatkan kesimpulan bahwa durasi tunggu dari bluetooth master dengan bluetooth slave sebesar 4 detik hingga 5 detik. Pengujian sensor elektromiografi dapat berjalan dengan normal dan menghasilkan nilai yang berbeda ketika otot berkontraksi maupun relaksasi.

2.1.4 Prototipe Kursi Roda Elektrik Dengan Kendali *Joystick* dan *Smart-phone*

Pada tahun 2019 telah dilakukan penelitian yang berjudul Prototipe Kursi Roda Elektrik Dengan Kendali *Joystick* dan *Smartphone* oleh Andy Sadewa Junior dan Fatchul Arifin dari Program Studi Teknik Elektronika, Fakultas Teknik Universitas Negeri Yogyakarta (Junior & Arifin, 2019).

Pada penelitian ini didapatkan kesimpulan bahwa total *error* yang dihasilkan dari pengujian tegangan motor kiri dan kanan adalah sebesar 0,144% dan rata-rata *error* yang didapatkan adalah sebesar 0,024% pada keseluruhan pengujian yang dilakukan. Pada pengujian bluetooth didapatkan kesimpulan bahwa jangkauan pengiriman optimal dari bluetooth apabila tidak ada penghalang adalah sebesar 1 meter hingga 10 meter.

2.1.5 Penelitian Terdahulu 5

2.2 Teori/Konsep Dasar

2.2.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) telah mencapai hasil yang luar biasa selama beberapa dekade terakhir dalam berbagai bidang yang terkait dengan pengenalan pola, mulai dari pemrosesan gambar hingga pengenalan suara. Aspek paling bermanfaat dari CNN adalah mengurangi jumlah parameter dalam Artificial Neural Network. Pencapaian ini telah membantu banyak peneliti dan pengembang dalam mengembangkan model yang lebih besar guna mengatasi tugas-tugas yang kompleks yang tidak mungkin untuk diselesaikan dengan menggunakan Artificial Neural Network klasik. Aspek penting dari CNN adalah untuk mendapatkan fitur-fitur abstrak ketika input menyebar menuju lapisan-lapisan yang lebih dalam (Albawi et al., 2017).

Arsitektur pada CNN terdiri dari tiga bagian, yaitu input, *feature learning*, dan *classification*. *Feature Learning* terdiri dari dua buah *convolution layer* dan dua buah *pooling layer*. Pada *classification* terdiri dari dua *hidden layer* dan satu *output layer*. Arsitektur CNN dapat digambarkan seperti pada Gambar 2.1.

Gambar 2.1: Arsitektur pada Convolutional Neural Network

Input CNN merupakan array tiga dimensi dengan ukuran seperti pada Persamaan 2.1. Apabila input merupakan suatu citra maka citra tersebut harus diubah menjadi array dua dimensi.

$$Baris * Kolom * Depth$$
 (2.1)

Convolution Layer digunakan untuk menyaring (filter) matriks dari citra input. Zero Padding akan diperlukan untuk mempertahankan ukuran matriks dari citra (Dwitama, 2019). Ukuran kernel yang digunakan pada layer konvolusi adalah 3×3 dan 5×5. Output dari lapisan konvolusi ini akan digunakan sebagai input pada Pooling Layer (Hakim et al., 2018). Apabila output dari Convolution Layer bernilai negatif maka akan dilakukan perhitungan tambahan berupa aktifasi ReLU. Fungsi aktivasi ReLU akan nilai matriks yang bernilai negatif menjadi nol. Contoh penerapan dari aktivasi ReLU dapat dilihat pada Gambar 2.2.

Gambar 2.2: Aktivasi ReLU

Pooling Layer digunakan untuk mengurangi jumlah parameter ketika ukuran citra terlalu besar dengan cara mengurangi dimensi setiap fitur. Karena ukuran citra menjadi lebih kecil maka proses *feature map* akan menjadi lebih cepat (Hakim et al., 2018). *Max Pooling* dilakukan dengan cara mengambil nilai dengan elemen terbesar sesuai dengan ukuran filter. Sebagai contoh pada Gambar 2.3 merupakan *max pooling* dengan filter 2 × 2 dengan *stride* sebesar 2.

Gambar 2.3: Max Pooling

Flatten merupakan suatu proses dimana hasil dari *Feature Learning* diubah menjadi vektor yang selanjutnya akan menjadi input pada proses klasifikasi dengan arsitektur *fully connected layer*. Flatten digunakan untuk mengubah matriks menjadi vektor dengan menyesuaikan sesuai format *input* pada *neural network layer*. Flatten dapat digambarkan seperti pada Gambar 2.4.

Gambar 2.4: Proses Flattening

2.2.2 NVIDIA® Jetson NanoTM

Gambar 2.5: Perangkat Jetson Nano

NVIDIA® Jetson Nano™ Developer Kit adalah komputer kecil dan kuat yang dapat digunakan untuk menjalankan beberapa *neural network* secara paralel untuk berbagai penerapan seperti klasifikasi gambar, deteksi objek, segmentasi, dan pemrosesan ucapan. Semuanya dikemas dalam platform yang mudah digunakan dan hanya membutuhkan daya 5 watt (Developer, 2023).

Perangkat ini memiliki pin *input* serta *output* yang berlimpah, mulai dari GPIO hingga pin CSI. Jumlah pin yang berlimpah ini sangat memudahkan para pengembang dalam menghubungkan berbagai perangkat tambahan seperti sensor untuk keperluan pengembangan aplikasi *Artificial Intelligence*. NVIDIA® Jetson NanoTM Developer Kit juga didukung dengan NVIDIA JetPack yang mencakup berbagai perangkat lunak seperti Sistem Operasi Linux, cuDNN, NVIDIA CUDA, TensorRT, dan juga *Board Support Package* (BSP) yang digunakan untuk keperluan *Deep Learning* serta visi komputer.

BAB III METODOLOGI

Penelitian ini dilaksanakan sesuai dengan desain sistem berikut ini beserta implementasinya. Desain sistem merupakan konsep dari pembuatan dan perencangan infrastruktur dan kemudian diwujudkan dalam bentuk blok-blok alur yang harus dikerjakan.

3.1 Deskripsi Sistem

Tugas akhir ini merupakan penelitian yang mengintegrasikan teknologi visi komputer agar dapat mengontrol gerak kursi roda. Secara umum penelitian kali ini akan menggunakan desain sistem sesuai dengan Gambar 3.1.

Gambar 3.1: Blok Diagram Penelitian

3.1.1 Estimasi Pose

Deteksi pose merupakan suatu proses yang melibatkan penggunaan bahasa pemrograman Python bersama dengan *library* OpenCV dan *framework* Mediapipe. Dalam konteks ini, Mediapipe berperan penting dalam mendapatkan informasi titik-titik *landmark* yang signifikan pada objek yang diidentifikasi. *Landmark* ini kemudian menjadi dasar untuk membentuk suatu representasi visual yang memvisualisasikan pose tersebut. Proses selanjutnya melibatkan penghubungan titik-titik *landmark* yang telah ditentukan, di mana garis-garis dibuat untuk menggambarkan relasi spasial antar titik-titik tersebut. Dengan demikian, prosedur ini tidak hanya mengandalkan Mediapipe sebagai *framework* utama, tetapi juga memanfaatkan OpenCV sebagai alat bantu untuk analisis citra dan manipulasi visual yang diperlukan dalam deteksi pose.

Pada penelitian kali ini akan memanfaatkan teknologi *hand pose* dari Mediapipe untuk mengontrol gerak kursi roda. Terdapat beberapa titik *keypoints* yang akan digunakan pada estimasi pose ini. Titik *keypoints* yang akan digunakan pada estimasi pose ini dapat dilihat pada Tabel 3.1.

Tabel 3.1: Tabel titik *keypoints* yang relevan pada tahap estimasi pose

Nomor Keypoint	Nama Keypoint
0	Pergelangan Tangan
1	CMC Ibu Jari
2	MPM Ibu Jari
3	IP Ibu Jari
4	TIP Ibu Jari
5	MCP Telunjuk
6	PIP Telunjuk
7	DIP Telunjuk
8	TIP Telunjuk
9	MCP Jari Tengah
10	PIP Jari Tengah
11	DIP Jari Tengah
12	TIP Jari Tengah
13	MCP Jari Manis
14	PIP Jari Manis
15	DIP Jari Manis
16	TIP Jari Manis
17	MCP Kelingking
18	PIP Kelingking
19	DIP Kelingking
20	TIP Kelingking

Setiap titik *landmark* yang terdapat pada peraga akan diwarnai dengan warna yang unik untuk membedakan setiap jarinya. Secara spesifik, warna yang diberikan pada setiap titik *landmark* mencerminkan asosiasi dengan jari tertentu, sehingga menciptakan representasi visual yang lebih terperinci dan informatif. Untuk memberikan gambaran yang lebih konkret maka berikut ini contoh citra yang telah diestimasi pose yang dapat dilihat pada Gambar 3.2.

Gambar 3.2: Contoh citra yang telah diestimasi pose

3.1.2 Klasifikasi Pose

Setelah proses estimasi pose tangan selsai, maka langkah selanjutnya ada mengelom-pokkan citra-citra hasil estimasi menjadi suatu dataset. Dataset ini akan memiliki 5 kelas berbeda yang masing-masing merepresentasikan perintah untuk maju, mundur, bergerak ke kanan, bergerak ke kiri, dan berhenti. Kelas ini mewakili perintah dasar untuk menggerakkan kursi roda.

Untuk meningkatkan kinerja dan akurasi maka dataset ini kemudian akan melewati proses training menggunakan algoritma Convolutional Neural Network (CNN). Penggunaan CNN dalam training dataset diharapkan dapat menghasilkan model yang mampu mengenali pola dan fitur yang kompleks, sehingga memungkinkan sistem untuk merespon dengan tepat terhadap variasi perintah yang mungkin diberikan oleh peraga. Hasil dari model prediksi yang telah dibuat dapat dilihat pada Gambar 3.3.

Gambar 3.3: Klasifikasi untuk perintah maju

3.1.3 Paket Data

Untuk dapat menggerakkan kursi roda maka perlu mengirimkan perintah ke kontroler kursi roda. Pada tahap klasifikasi pose telah didapatkan perintah dasar untuk menggerakkan kursi roda, seperti maju, mundur, kanan, kiri, maupun stop. Perintah ini kemudian akan digabungkan dengan kecepatan maksimal menjadi satu *command* atau paket data seperti yang dilihat pada Persamaan 3.1.

$$Arah(char), Kecepatan(integer)$$
 (3.1)

Variabel arah memiliki tipe data *char* yang akan menentukan gerak dari motor kursi roda, serta variabel kecepatan memiliki tipe data integer yang akan menentukan kecepatan maksimal dari kursi roda. Untuk memperkecil ukuran data maka kode instruksi untuk menentukan arah gerak menggunakan satu huruf untuk mewakili setiap gerakan. Kode instruksi dapat dilihat pada Tabel 3.2.

Tabel 3.2. Node instruction dati hash krashikasi	Tabel 3.2:	Kode instruksi	dari hasil	klasifikasi
--	------------	----------------	------------	-------------

Klasifikasi Pose	Kode Instruksi
Kiri	A
Maju	В
Stop	С
Mundur	D
Kanan	Е

Setelah kedua variabel tersebut digabungkan maka akan dikirim secara nirkabel, baik menggunakan Bluetooth maupun WiFi dari laptop atau Jetson Nano ke ESP32.

3.1.4 Memecahkan Paket Data

Paket data yang telah dikirimkan melalui laptop maupun Jetson Nano akan diterima oleh ESP32 menggunakan Bluetooth maupun WiFi. Saat diterima oleh ESP32, data tersebut akan menjalani serangkaian proses yang melibatkan pemecahan paket data dan penyesuaian sesuai dengan variabel yang telah ditentukan sebelumnya. Pemecahan paket data ini memungkinkan ESP32 untuk mendekomposisi informasi yang terkandung dalam setiap paket dan memastikan bahwa setiap variabel terpisah dengan akurat. Dengan demikian proses ini akan mengorganisir dan menyusun kembali informasi serta memastikan bahwa setiap variabel telah benar sesuai dengan nama variabel dan tipe data yang disediakan.

3.1.5 Kontrol Navigasi

Kedua variabel yang didapatkan dari pemecahan paket data akan diproses pada ESP32. Variabel arah akan berperan untuk menentukan arah gerak dari motor, sedangkan variabel kecepatan akan digunakan untuk menetapkan kecepatan maksimal dari pergerakan motor tersebut. Terdapat serangkaian logika *if* berantai pada kontrol navigasi, dimana empat variabel dir akan menentukan arah putaran motor. Selain itu, nilai PWM maksimal dikonfigurasi dengan menggunakan variabel kecepatan sehingga pengguna dapat menyesuaikan kecepatan maksimal motor yang pengguna inginkan. Dengan demikian pada tahap ini ESP32 dapat secara efektif memproses data yang diterima melalui sistem nirkabel dan menghasilkan instruksi kontrol yang sesuai untuk menggerakkan kursi roda dengan arah dan kecepatan yang diinginkan.

3.2 Implementasi Alat

Pada penelitian ini dikembangkan suatu alat kontrol yang dapat menerima perintah melalui perangkat lain seperti laptop maupun Jetson Nano secara nirkabel. Pada sub bab ini akan dijabarkan implementasi dari alat yang dikembangkan pada penelitian ini.

3.2.1 Hardware dan Software yang digunakan

Alat diimplementasikan dengan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Program 3.1: Program perhitungan bilangan prima.

```
def apakahBilanganPrima(nilai):
    if nilai > 1:
        for i in range(2,nilai):
            if (nilai % i) == 0:
                return False
        else:
        return True
    else:
    return False
```

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae

risus porta vehicula.

BAB IV PENGUJIAN DAN ANALISIS

Pada penelitian ini dipaparkan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

4.1 Skenario Pengujian

Pengujian dilakukan dengan Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

4.2 Evaluasi Pengujian

Dari pengujian yang Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Tabel 4.1: Hasil Pengukuran Energi dan Kecepatan

Energi	Jarak Tempuh	Kecepatan
10 J	1000 M	200 M/s

20 J	2000 M	400 M/s
30 J	4000 M	800 M/s
40 J	8000 M	1600 M/s

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil pengujian yang Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. sebagai berikut:

- 1. Pembuatan Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.
- 2. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa.
- 3. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.

5.2 Saran

Untuk pengembangan lebih lanjut pada Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. antara lain:

- 1. Memperbaiki Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.
- 2. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa.
- 3. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.

DAFTAR PUSTAKA

- Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186
- Choi, J. H., Chung, Y., & Oh, S. (2019). Motion control of joystick interfaced electric wheelchair for improvement of safety and riding comfort. *Mechatronics*, *59*, 104–114.
- Daring, K. (2016). Kbbi vi daring. https://kbbi.kemdikbud.go.id/entri/lumpuh
- Developer, N. (2023). https://developer.nvidia.com/embedded/jetson-nano-developer-kit
- Dwitama, A. P. J. (2019). *Klasifikasi tingkat retakan pada bangunan berbasis citra menggunakan metode convolution neural network* [Doctoral dissertation, Universitas Mataram].
- Hakim, R. F., et al. (2018). Penerapan deep learning menggunakan convolutional neural network untuk klasifikasi citra wayang punakawan.
- Junior, A. S., & Arifin, F. (2019). Prototipe kursi roda elektrik dengan kendali joystick dan smartphone. *Elinvo (Electronics, Informatics, and Vocational Education)*, 4(1), 62–68.
- Pansawira, P. (2022, April). Kelumpuhan gejala, penyebab, dan mengobati alodokter. https://www.alodokter.com/kelumpuhan#:~:text=Kondisi%20ini%20dapat%20disebabkan%20oleh,Penanganan%20kelumpuhan%20tergantung%20pada%20penyebabnya.
- Prasetyo, Y. E., & Hindarto, H. (n.d.). Wheelchair control using bluetooth-based electromyography signals [kontrol kursi roda menggunakan sinyal elektromiografi berbasis bluetooth].
- Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation —a review. *Information Processing in Agriculture*, 7(1), 1–19. https://doi.org/https://doi.org/10.1016/j.inpa.2019.09.006
- Wicaksono, B. A. (2023). Rancang bangun kursi roda elektrik dengan sistem kontrol joystick dan smartphone android [Doctoral dissertation, Universitas Diponegoro].
- Wisaksono, A., Pratama, R. A., et al. (2023). Kontrol kursi roda menggunakan sinyal suara melelui bluetooth. *Prosiding Seminar Nasional Penelitian dan Pengabdian Kepada Masyarakat*, 1(1), 26–30.

BIOGRAFI PENULIS

I Putu Haris Setiadi Ekatama, lahir pada Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

