[Advanced Power Flow Capstone Project B팀]

2024학년도 1학기 전기공학전공 자기설계학점

전기공학전공 202110999 박수민 융합전자공학전공 201910906 이학민

Introduction

전력 계통을 관리하는데 필요한 전력 조류 계산 프로그램의 기초를 직접 구현하여 계통을 구성하는 각 모선의 전압, 전류, 전력의 분포와 선로에 흐르는 전력을 파악

Jacobi Method를 이용하여 임의의 모선 개수에 대해 전력 조류 계산이 가능한 MATLAB 프로그램 개발

전력공학, 수치해석 등 전공 지식 이해도 및 MATLAB 프로그래밍 능력 향상, 팀별, 단체 세미나를 통한 협동심 증대

Algorithm Flow Chart

- 1 Read Excel Raw Data
- 2 Automatic Set of the Bus Type & Initial Value
- 3 Calculate Y Bus Matrix
- 4 Calculate Unknown Value of Each Bus
- 5 Bus Type Switching & Recalculation

Main Code

```
if exist(line file, 'file')
      % Advanced Power Flow Capstone Project Team B (Jacobi Method)
                                                                                                          disp([line_file ' 파일을 정상적으로 읽었습니다.']);
      % Main Code
                                                                                               34
                                                                                               35
                                                                                                      else
       clear; clc;
                                                                                                          disp('파일을 정상적으로 불러올 수 없어 프로그램을 종료합니다.');
                                                                                               36
                                                                                               37
       format short
                                                                                               38
                                                                                               39
                                                                                                      % ITERATION = input('Iteration Limit : ');
       fprintf('<2024-1학기 전기공학전공 자기설계학점 : Advanced Power Flow 캡스톤 프로젝트>\n');
                                                                                                                             % [Iteration-1] of Repeat
                                                                                                      ITERATION = 10000;
       fprintf('[융합전자공학과 201910906 이학민]\n\n');
                                                                                               41
10
                                                                                                      % thd = input("\nThreshold Value of Approximate Relative Error[%] : ");
                                                                                               42
      % import Bus Data File
11 [-]
                                                                                               43
                                                                                                      thd = 0.00000001;
                                                                                                                              % Percent[%]
      % bus file = 'example6.10 bus.xlsx';
                                                                                               44
      % bus file = 'example6.38 bus.xlsx';
                                                                                               45
                                                                                                      % Initialize Values
      % bus file = 'ieee5bus bus.xlsx';
                                                                                                      [SIZE, V, Delta, P, Q, P G, Q G, P L, Q L, Q Gmax, Q Gmin, Bus Type, Switch Sig] = Init Value(bus file, ITERATION);
      bus_file = 'ieee9bus_bus.xlsx';
15
                                                                                               47
      % bus file = 'ieee14bus bus.xlsx';
                                                                                               48
                                                                                                      % Set Line Data (Combination of TL & TR data)
      % bus_file = 'ieee30bus_bus.xlsx';
17
                                                                                               49
                                                                                                      [raw_L_data, L_data] = import_L_Data(line_file, SIZE);
18
19
      if exist(bus_file, 'file')
                                                                                               51
          disp([bus_file ' 파일을 정상적으로 읽었습니다.']);
                                                                                                      % Y matrix Calculation
20
                                                                                               52
                                                                                                      [Y,Ybus] = Y Mat Calc(SIZE,L data);
21
       else
22
          disp('파일을 정상적으로 불러올 수 없어 프로그램을 종료합니다.');
                                                                                               53
23
                                                                                               54
                                                                                                      % Unknowns Calculation (Jacobi Method)
       end
24
                                                                                               55
                                                                                                      [V,Delta,P,Q,Bus_Type,P_G,P_L,Q_G,Q_L,Q_Gmax,Q_Gmin,i,err_V,Switch_Sig] ...
      % import Line Data File
                                                                                                          = Unknowns_Calc(SIZE,ITERATION,thd,Y,V,Delta,Bus_Type,P,Q,P_G,P_L,Q_G,Q_L,Q_Gmax,Q_Gmin,Switch_Sig);
                                                                                               56
      % line file = 'example6.10 line.xlsx';
                                                                                               57
      % line_file = 'example6.38_line.xlsx';
                                                                                                      % Print Results
      % line file = 'ieee5bus line.xlsx';
                                                                                                      [BusOutputData,LineOutputData] = Prt Result(i,ITERATION,SIZE,Y,err V,V,Delta,P G,Q G,P L,Q L,raw L data);
      line file = 'ieee9bus line.xlsx';
                                                                                               60
      % line file = 'ieee14bus line.xlsx';
                                                                                               61
                                                                                                      % Export Results to Excel File
      % line_file = 'ieee30bus_line.xlsx';
                                                                                                      export Result(Ybus,BusOutputData,LineOutputData);
```

Read Excel Raw Data

```
% import Bus Data File
% bus file = 'example6.10 bus.xlsx';
% bus_file = 'example6.38_bus.xlsx';
% bus file = 'ieee5bus bus.xlsx';
bus file = 'ieee9bus bus.xlsx';
% bus file = 'ieee14bus bus.xlsx';
% bus_file = 'ieee30bus_bus.xlsx';
% import Line Data File
% line file = 'example6.10 line.xlsx';
% line_file = 'example6.38_line.xlsx';
% line file = 'ieee5bus line.xlsx';
line file = 'ieee9bus line.xlsx';
% line file = 'ieee14bus line.xlsx';
% line file = 'ieee30bus line.xlsx';
% Initialize Values
[SIZE, V, Delta, P_G, Q_G, P_L, Q_L, Q_Gmax, Q_Gmin, P, Q, Bus_Type, Switch_Sig] = Init_Value(bus_file, ITERATION);
% Set Line Data (Combination of TL & TR data)
[L_Mat,L_data] = import_L_Data(line_file,SIZE);
```

<5모선(1) - 교재 EX 6.10>

Bus data)

	A	В	С	D	E	F	G	Н	-1	J
1	Bus Num	Bus Type	V	Delta	Pg	Qg	PL	QL	Q_Gmax	Q_Gmin
2	1		1	0			0	0		
3	2				0	0	8	2.8		
4	3		1.05	0	5.2	0	0.8	0.4	4	-2.8
5	4				0	0	0	0		
6	5				0	0	0	0		

Line data)

	А	В	C	D	E	F	G	Н	1
1	Line Num	from	to	R	Х	G	В	maxMVA	TAP
2	1	2	4	0.009	0.1	0	1.72	12	0
3	2	2	5	0.0045	0.05	0	0.88	12	0
4	3	4	5	0.00225	0.025	0	0.44	12	0
5	4	1	5	0.0015	0.02	0	0	6	1
6	5	3	4	0.00075	0.01	0	0	10	1

Main code 내에서 Excel 파일을 읽어 Initial Value 지정, Line data 설정

Bus Type Setting

```
BusType_Init.m × +
      % BusType Initialization
2
      function [raw B data] = BusType Init(raw B data, SIZE)
 5 白
          for i = 1:SIZE
             if isnan(raw_B_data(i,3)) && isnan(raw_B_data(i,4)) % PQ Bus
                 raw B data(i,3) = 1.0; % V
                 raw B data(i,4) = 0; % Phase
10
                 raw B data(i,9) = 0; raw B data(i,10) = 0; % Q G limit
11
              elseif ~(isnan(raw_B_data(i,9)) || isnan(raw_B_data(i,10)))
                                                                       % PV Bus
12
13
                 raw B data(i,2) = 1; % Bus Type
14
                 raw B data(i,4) = 0;
                                      % Phase
15
16
                    % Slack Bus
17
                 raw B data(1,2) = 0;
                                      % Bus Type
18
                 raw B data(i,5) = 0;
                                      % P G
19
                 raw B data(i,6) = 0; % Q G
                 raw_B_data(i,9) = 0; raw_B_data(i,10) = 0; % Q G limit
20
21
              end
22
          end
23
24
      end
```

[모선 종류 구분 기준]

PQ Bus(2): 모선의 전압과 위상의 크기가 입력되어 있지 않을 때

PV Bus(1) : 모선의 Q_G limit이 입력되어 있을 때

Slack bus(0): 위의 두 가지 경우에 해당하지 않을 때

[모선 종류에 따른 초기화]

PQ Bus : V=1.0, δ =0, Q_G 의 max, min =0 으로 설정

PV Bus : $\delta = 0$ 으로 설정

Slack Bus : P_G , Q_G 의 limit을 모두 0으로 설정

Y Bus Matrix

- Node Voltage Method based on KCL
- Network Equation : YV = I
- Y is called "Y bus Matrix"
- I: Bus로 주입되는 전류
- N x N bus admittance matrix (symmetric)
 - Diagonal elements
 - : $Y_{kk} = sum \ of \ Y \ connected \ to \ bus \ k \ (k = 1, 2, \dots, N)$
 - Off-diagonal elements
 - : $Y_{kn} = -$ (sum of Y connected between buses k and n) $(k \neq n)$

0.0000 + 0.0000i

2.6783 - 28.4590i

0.0000 + 0.0000i

-0.8928 + 9.9197i

-1.7855 + 19.8393i

0.0000 + 0.0000i

0.0000 + 0.0000i

7.4580 - 99.4406i

-7.4580 + 99.4406i

0.0000 + 0.0000i

5

-3.7290 + 49.7203i

-1.7855 + 19.8393i

-3.5711 + 39.6786i

9.0856e+00 - 1.0858e+02i

0.0000 + 0.0000i

0.0000 + 0.0000i

-0.8928 + 9.9197i

-7.4580 + 99.4406i

-3.5711 + 39.6786i

1.1922e+01 - 1.4796e+02i

% Y matrix Calculation

5x5 complex double

일치!

3.7290 - 49.7203i

0.0000 + 0.0000i

0.0000 + 0.0000i

0.0000 + 0.0000i

-3.7290 + 49.7203i

Power Flow Calculation Module

```
% Unknowns Calculation using Jacobi Method
       function [V,Delta,P,Q,Bus_Type,P_G,P_L,Q_G,Q_L,Q_Gmax,Q_Gmin,i,err_V,Switch_Sig] ...
           = Unknowns_Calc(SIZE, ITERATION, thd, Y, V, Delta, Bus_Type, P, Q, P_G, P_L, Q_G, Q_L, Q_Gmax, Q_Gmin, Switch_Sig)
           Recal = 0;
           for i = 1:ITERATION
               if i == ITERATION
                   break;
12
13
               for k = 1:SIZE
                                  % Bus1 ~ Bus(SIZE)
                   [V,Delta,P,Q,P_G,P_L,Q_G,Q_L,Bus_Type,Switch_Sig] ...
                  = Total_Bus_Calc(i,k,SIZE,Y,V,Delta,P,Q,P_G,P_L,Q_G,Q_L,Q_Gmax,Q_Gmin,Bus_Type,Switch_Sig);
18
19
               err V = Error Calc(SIZE, ITERATION, i, V);
              STOP = STOP_SIGNAL(i,err_V,thd);
20
21
22
              if STOP == 1
                                      % STOP signal이 발생하면 Slack Bus의 P,Q를 계산
                   for k = 1:SIZE
24
                      if Bus_Type(k,i+1) == 0
25
                          [P,Q,P_G,Q_G] = Slack_Bus_Calc(SIZE,k,i,Y,V,Delta,P,Q,P_G,Q_G,P_L,Q_L);
                       end
27
                   end
29 🖹
                                          % O G limit 벗어날 시 PO Bus 전환 계산
                      if Bus_Type(k,i+1) == 1 & (Q_G(k,i+1) < Q_Gmin(k,1) │ Q_G(k,i+1) > Q_Gmax(k,1)) % PV Bus에만 적용, 최종 결과의 Q_G 수렴 여부를 판단
30
31
                          Recal = 1:
32 =
                          for n = 1:ITERATION
33
                              if Q_G(k,n) < Q_Gmin(k,1) % Bus별 Q_G의 min limit 미만 최초 위치를 찾음
34
                                  Switch_Sig(k,n-1) = 1;
                                  Bus Type(k,n-1:ITERATION) = 3; % Load Bus로 전환
```

```
38
                              elseif Q_G(k,n) > Q_Gmax(k,1) % Bus별 Q_G의 max limit 초과 최초 위치를 찾음
39
                                  Switch_Sig(k,n-1) = 2;
40
                                  Bus Type(k,n-1:ITERATION) = 3; % Load Bus로 전환
41
                                  break;
42
                              end
45
46
47
48
49
50
           if Recal == 1
51
52
               for i = 1:ITERATION
                                      % 바뀐 Bus Type으로 재계산
53
54
                   if i == ITERATION
55
                      break;
                   end
57
58 E
                   for k = 1:SIZE
                                      % Bus1 ~ Bus(SIZE)
59
                      [V,Delta,P,Q,P_G,P_L,Q_G,Q_L,Bus_Type,Switch_Sig] ...
60
                          = Total_Bus_Calc(i,k,SIZE,Y,V,Delta,P,Q,P_G,P_L,Q_G,Q_L,Q_Gmax,Q_Gmin,Bus_Type,Switch_Sig);
61
                   end
62
                   err_V = Error_Calc(SIZE, ITERATION, i, V);
63
64
                   STOP2 = STOP_SIGNAL(i,err_V,thd);
65
                   if STOP2 == 1
                                           % STOP signal이 발생하면 Slack Bus의 P,Q를 계산
66
67 E
                       for k = 1:SIZE
                          if Bus Type(k,i+1) == 0
68
69
                              [P,Q,P_G,Q_G] = Slack_Bus_Calc(SIZE,k,i,Y,V,Delta,P,Q,P_G,Q_G,P_L,Q_L);
70
71
                       end
72
                      break;
73
74
75
```

- 1. 근사 상대 백분율 오차에 따른 정지 신호 생성
- 2. Slack Bus의 P, Q 계산
- 3. PV Bus의 Q_G limit 초과 시 Bus Type Switching 후 처음부터 재계산

Unknowns Calculation for each bus (iterations)

```
function [V,Delta,P,Q,P G,P L,Q G,Q L,Bus Type,Switch Sig] ...
                   = Total_Bus_Calc(i,k,SIZE,Y,V,Delta,P,Q,P_G,P_L,Q_G,Q_L,Q_Gmax,Q_Gmin,Bus_Type,Switch_Sig)
4
           switch Bus Type(k,i)
               case 0 % For Slack Bus (Swing)
                  V(k,i+1) = V(k,i); % V = 1R0 (초기 설정)을 계속 유지
                  Delta(k,i+1) = Delta(k,i+1);
10
                  P_G(k,i+1) = P_G(k,i);
11
                  Q_G(k,i+1) = Q_G(k,i);
12
                  P_L(k,i+1) = P_L(k,i);
13
                  Q L(k,i+1) = Q L(k,i);
14
                  P(k,i+1) = P_G(k,i+1) - P_L(k,i+1);
15
                  Q(k,i+1) = Q_G(k,i+1) - Q_L(k,i+1);
16
17
               case 1 % For PV Bus (Gen)
                  [Q,Q,G,Q,L] = PV_Q_Calc(k,i,Y,V,Delta,Q,G,Q,L,Q,SIZE);
18
19
                  P G(k,i+1) = P G(k,i);
20
                  P_L(k,i+1) = P_L(k,i);
21
                  P(k,i+1) = P G(k,i+1) - P L(k,i+1);
22
23
                   [Delta,V] = PV_Bus_Calc(SIZE,k,i,Y,V,Delta,P,Q);
24
25
               case 2 % For PQ Bus (Load)
26
                   P G(k,i+1) = P G(k,i);
27
                  P_L(k,i+1) = P_L(k,i);
28
                  Q G(k,i+1) = Q G(k,i);
29
                  Q_L(k,i+1) = Q_L(k,i);
30
                  P(k,i+1) = P_G(k,i+1) - P_L(k,i+1);
31
                   Q(k,i+1) = Q_G(k,i+1) - Q_L(k,i+1);
32
33
                   [V,Delta] = PQ_Bus_Calc(SIZE,k,i,Y,V,Delta,P,Q);
```

<u>+</u> 9	x10000 doub	le								
	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	
2	1.6300	1.6300	1.6300	1.6300	1.6300	1.6300	1.6300	1.6300	1.6300	1.63
3	0.8500	0.8500	0.8500	0.8500	0.8500	0.8500	0.8500	0.8500	0.8500	0.85
4	0	0	0	0	0	0	0	0	0	
5	-1.2500	-1.2500	-1.2500	-1.2500	-1.2500	-1.2500	-1.2500	-1.2500	-1.2500	-1.25
5	-0.9000	-0.9000	-0.9000	-0.9000	-0.9000	-0.9000	-0.9000	-0.9000	-0.9000	-0.90
7	0	0	0	0	0	0	0	0	0	
3	-1	-1	-1	-1	-1	-1	-1	-1	-1	
9	0	0	0	0	0	0	0	0	0	
	Q ×									
9	0x10000 doub	le								
	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	
2	0	0.4100	0.2016	0.2959	0.1350	0.1894	0.0964	0.1293	0.0770	0.0
3	0	0.4373	0.0746	0.1411	-0.0324	0.0211	-0.0748	-0.0406	-0.0946	-0.0
4	0	0	0	0	0	0	0	0	0	
5	-0.5000	-0.5000	-0.5000	-0.5000	-0.5000	-0.5000	-0.5000	-0.5000	-0.5000	-0.5
6	-0.3000	-0.3000	-0.3000	-0.3000	-0.3000	-0.3000	-0.3000	-0.3000	-0.3000	-0.3
7	0	0	0	0	0	0	0	0	0	
9	-0.3500 0 V ×	-0.3500 0	-0.3500 0	-0.3500 0	-0.3500 0	-0.3500 0	-0.3500 0	-0.3500 0	-0.3500 0	-0.3
9	0 V × 2 0x10000 doub	0 le	0	0	0	0	0	0	0	
9	0 V × 2 0x10000 double	0 le 2	_	4		6	7	8	9	10
9 9	0 V X 0x10000 doubl 1 1.0400	0 le 2 1.0400	3 1.0400	4 1.0400	5 1.0400	6 1.0400	7 1.0400	8 1.0400	9 1.0400	10 1.0
9 9	0 V × 2 0x10000 double 1 1.0400 1.0250	0 le 2 1.0400 1.0250	3 1.0400 1.0250	4 1.0400 1.0250	5 1.0400 1.0250	6 1.0400 1.0250	7 1.0400 1.0250	8 1.0400 1.0250	9 1.0400 1.0250	10 1.0 1.0
9 9	0 V X 0x10000 doubl 1 1.0400	0 le 2 1.0400 1.0250 1.0250	3 1.0400 1.0250 1.0250	4 1.0400 1.0250 1.0250	5 1.0400 1.0250 1.0250	6 1.0400 1.0250 1.0250	7 1.0400 1.0250 1.0250	8 1.0400 1.0250 1.0250	9 1.0400 1.0250 1.0250	10 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 0x10000 double 1 1.0400 1.0250 1.0250	0 le 2 1.0400 1.0250 1.0250 1.0218	3 1.0400 1.0250 1.0250 1.0109	4 1.0400 1.0250 1.0250 1.0234	5 1.0400 1.0250 1.0250 1.0179	6 1.0400 1.0250 1.0250 1.0250	7 1.0400 1.0250 1.0250 1.0220	8 1.0400 1.0250 1.0250 1.0259	9 1.0400 1.0250 1.0250 1.0243	10 1.0 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 0x10000 double 1 1.0400 1.0250 1.0250	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718	3 1.0400 1.0250 1.0250 1.0109 0.9930	4 1.0400 1.0250 1.0250 1.0234 0.9817	5 1.0400 1.0250 1.0250 1.0179 0.9944	6 1.0400 1.0250 1.0250 1.0250 0.9886	7 1.0400 1.0250 1.0250 1.0220 0.9958	8 1.0400 1.0250 1.0250 1.0259 0.9925	9 1.0400 1.0250 1.0250 1.0243 0.9966	10 1.0 1.0 1.0 1.0 0.9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 0x10000 double 1 1.0400 1.0250 1.0250	0 le 2 1.0400 1.0250 1.0250 1.0218	3 1.0400 1.0250 1.0250 1.0109	4 1.0400 1.0250 1.0250 1.0234	5 1.0400 1.0250 1.0250 1.0179	6 1.0400 1.0250 1.0250 1.0250 0.9886 1.0052	7 1.0400 1.0250 1.0250 1.0220	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130	10 1.0 1.0 1.0 1.0 0.9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 0x10000 double 1 1.0400 1.0250 1.0250 1	1.0400 1.0250 1.0250 1.0218 0.9718 0.9846	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175	6 1.0400 1.0250 1.0250 1.0250 0.9886 1.0052 1.0240	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236	10 1.0 1.0 1.0 0.9 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1.0250 1	1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074	1.0400 1.0250 1.0250 1.0234 0.9817	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103	6 1.0400 1.0250 1.0250 1.0250 0.9886 1.0052	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130	10 1.0 1.0 1.0 0.9 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1 1 1 1	1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152	10 1.0 1.0 1.0 0.9 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152	10 1.0 1.0 1.0 0.9 1.0 1.0
9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1.0250 1 1 1 1 1 Delta X	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179	0 4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303	10 1.0 1.0 1.0 0.9 1.0 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1 1 1 1 1 1 Delta X	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152	10 1.0 1.0 1.0 0.9 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1.0250 1 1 1 1 1 Delta X	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le 2	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179	0 4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117 1.0249	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303	1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1.0250 1 1 1 1 Delta X 2x10000 doub	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le 2 0	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179	0 4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117 1.0249	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303	10 1.0 1.0 1.0 0.9 1.0 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1 1 1 1 1 1 1 Delta X 2x10000 doub 1 0	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le 2 0 5.5384	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117 1.0249	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303	10 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2x10000 double 1 1.0400 1.0250 1.0250 1 1 1 1 1 Delta X 2x10000 doub 1	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le 2 0 5.5384 2.7144	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280 4 0 6.4794 2.8208	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117 1.0249 5 0 6.4345 2.7761	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284 7 0 6.9134 2.8313	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303	10 1.0 1.0 1.0 0.9 1.0 1.0 1.0 7.44 2.9- -2.75
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le 2 0 5.5384 2.7144 -0.1027	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179 3 0 5.5269 2.6325 -2.0805	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280 4 0 6.4794 2.8208 -2.0375	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117 1.0249 5 0 6.4345 2.7761 -2.6860 -4.8626	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304 6 0 6.9314 2.8324 -2.6208	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284 7 0 6.9134 2.8313 -2.8256	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315 8 0 7.2078 2.8721 -2.7708	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303	10 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 7.44 2.9- -2.74 -5.0-
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le 2 0 5.5384 2.7144 -0.1027 -3.9546	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179 3 0 5.5269 2.6325 -2.0805 -3.9190	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280 4 0 6.4794 2.8208 -2.0375 -4.9751	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117 1.0249 5 0 6.4345 2.7761 -2.6860 -4.8626 -4.2510	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304 6 0 6.9314 2.8324 -2.6208 -5.1638 -4.6788	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284 7 0 6.9134 2.8313 -2.8256 -5.0679	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315 8 0 7.2078 2.8721 -2.7708 -5.1279	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303 9 0 7.2112 2.8953 -2.8261 -5.0566	10 1.0 1.0 1.0 0.9 1.0 1.0 1.0
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 V X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 le 2 1.0400 1.0250 1.0250 1.0218 0.9718 0.9846 1.0176 0.9867 1.0220 le 2 0 5.5384 2.7144 -0.1027 -3.9546 -3.0834	3 1.0400 1.0250 1.0250 1.0109 0.9930 1.0074 1.0103 1.0066 1.0179 3 0 5.5269 2.6325 -2.0805 -3.9190 -3.0666	4 1.0400 1.0250 1.0250 1.0234 0.9817 0.9981 1.0217 1.0005 1.0280 4 0 6.4794 2.8208 -2.0375 -4.9751 -4.3314	5 1.0400 1.0250 1.0250 1.0179 0.9944 1.0103 1.0175 1.0117 1.0249 5 0 6.4345 2.7761 -2.6860 -4.8626	6 1.0400 1.0250 1.0250 0.9886 1.0052 1.0240 1.0078 1.0304 6 0 6.9314 2.8324 -2.6208 -5.1638	7 1.0400 1.0250 1.0250 1.0220 0.9958 1.0120 1.0215 1.0140 1.0284 7 0 6.9134 2.8313 -2.8256 -5.0679 -4.5986	8 1.0400 1.0250 1.0250 1.0259 0.9925 1.0092 1.0251 1.0117 1.0315 8 0 7.2078 2.8721 -2.7708 -5.1279 -4.7326	9 1.0400 1.0250 1.0250 1.0243 0.9966 1.0130 1.0236 1.0152 1.0303 9 0 7.2112 2.8953 -2.8261 -5.0566 -4.6673	10 1.0 1.0 1.0 0.9 1.0 1.0 1.0 7.4 2.9 -2.7 -5.0 -4.6

PQ(Load) Bus

- For Load Bus(PQ Bus)
 - To computes V_k and δ_k

$$S_{\!\!k} = \left. V_{\!\!k} I_{\!\!k}^* \to I_{\!\!k}^* = \frac{S_{\!\!k}}{V_{\!\!k}} = \frac{P_{\!\!k} + jQ_{\!\!k}}{V_{\!\!k}} \to I_{\!\!k} = \frac{P_{\!\!k} - jQ_{\!\!k}}{V_{\!\!k}^*}$$

$$YV = I$$

$$\begin{split} V_k(i+1) &= V_k \angle \delta_k(i+1) \\ &= \frac{1}{Y_{kk}} \left[\frac{P_k - jQ_k}{V_k^*(i)} - \sum_{n=1}^{k-1} Y_{kn} \, V_n(\sum_{i} 1) - \sum_{n=k+1}^{N} Y_{kn} \, V_n(i) \right] \end{split}$$

```
% PQ(Load) Bus Calculation
       function [V,Delta] = PQ Bus Calc(SIZE,k,i,Y,V,Delta,P,Q)
           I k = (P(k,i)-sqrt(-1)*Q(k,i)) / (V(k,i)*exp(-sqrt(-1)*Delta(k,i)*(pi/180)));
           Sum YV 1 = 0;
           Sum YV 2 = 0;
           for n = 1:k-1
10 =
11
               Sum_{V_1} = Sum_{V_1} + Y(k,n) * (V(n,i)*exp(sqrt(-1)*Delta(n,i)*(pi/180)));
12
           end
13
14 🗀
           for n = k+1:SIZE
15
               Sum YV 2 = Sum YV 2 + Y(k,n) * (V(n,i)*exp(sqrt(-1)*Delta(n,i)*(pi/180)));
16
           end
17
           V_k = (1/Y(k,k)) * (I_k - Sum_YV_1 - Sum_YV_2);  % k모선의 i번째 iteration 값 계산
18
           V(k,i+1) = sqrt(power(real(V_k),2) + power(imag(V_k),2));
19
           Delta(k,i+1) = atan(imag(V k) / real(V k)) * (180/pi);
20
21
22
           % Recalculation
23
           I_k = (P(k,i)-sqrt(-1)*Q(k,i)) / (V(k,i+1)*exp(-sqrt(-1)*Delta(k,i+1)*(pi/180)));
           V_k = (1/Y(k,k)) * (I_k - Sum_YV_1 - Sum_YV_2);
           V(k,i+1) = sqrt(power(real(V k),2) + power(imag(V k),2));
           Delta(k,i+1) = atan(imag(V k) / real(V k)) * (180/pi);
```


Input Data : P, Q Output Data : V, δ

PV(Gen) Bus

11

12

13

14

```
    For Voltage-controlled Bus(PV Bus)
```

- To computes Q_k and δ_k YV = I

 \checkmark If $Q_{\it G}$ violates its limit, cannot maintain voltage $V_{\it k}(i+1) = V_{\it k} \angle \, \delta_{\it k}(i+1)$

$$Q_{k} = V_{k}(i) \sum_{n=1}^{N} Y_{kn} V_{n}(i) \sin \left[\delta_{k}(i) - \delta_{n}(i) - \theta_{kn}\right]$$

```
= \frac{1}{Y_{kk}} \left[ \frac{P_k - jQ_k}{V_k(i)} - \sum_{n=1}^{k-1} Y_{kn} V_n(\sum_{i} V_n) - \sum_{n=k+1}^{N} Y_{kn} V_n(i) \right]
```

2

10

15 16 17

18 19 20

Update Q

```
% PV(Gen) Bus Calculation
function [Delta,V] = PV_Bus_Calc(SIZE,k,i,Y,V,Delta,P,Q)
    I_k = (P(k,i)-sqrt(-1)*Q(k,i+1)) / (V(k,i)*exp(-sqrt(-1)*Delta(k,i)*(pi/180)));
    Sum YV 1 = 0;
    Sum_YV_2 = 0;
    for n = 1:k-1
        Sum_{V_1} = Sum_{V_1} + Y(k,n) * (V(n,i)*exp(sqrt(-1)*Delta(n,i)*(pi/180)));
    for n = k+1:SIZE
        Sum_{V_2} = Sum_{V_2} + Y(k,n) * (V(n,i)*exp(sqrt(-1)*Delta(n,i)*(pi/180)));
    V_k = (1/Y(k,k)) * (I_k - Sum_YV_1 - Sum_YV_2); % k모선의 i번째 iteration 값 계산
    Delta(k,i+1) = atan(imag(V_k) / real(V_k)) * (180/pi);
    V(k,i+1) = V(k,i); % V value never change if it's PV Bus
```

lacksquare Update δ

Input Data : P, V

Output Data : Q, δ

Slack(Swing) Bus

```
% Slack(Swing) Bus Calculation
     function [P,Q,P_G,Q_G] = Slack_Bus_Calc(SIZE,k,i,Y,V,Delta,P,Q,P_G,Q_G,P_L,Q_L)
         for n = 1:SIZE
             P(k,i+1) = P(k,i+1) + V(k,1)*abs(Y(1,n))*V(n,i+1)*cos((Delta(n,i+1)+angle(Y(1,n))*(180/pi))*(pi/180))
          end
         for n = 1:SIZE
             Q(k,i+1) = Q(k,i+1) + V(k,1)*abs(Y(1,n))*V(n,i+1)*sin((Delta(n,i+1)+angle(Y(1,n))*(180/pi))*(pi/180))
11
         end
12
         Q(k,i+1) = -Q(k,i+1);
13
14
         P_G(k,i+1) = P(k,i+1) - P_L(k,i+1);
15
         Q G(k,i+1) = Q(k,i+1) - Q L(k,i+1);
```

Update P, Q

Input Data : V, δ Output Data : P, Q

- For Swing Bus(Slack Bus)
 - No iterations are needed to computes P_1 and Q_1 for swing bus

$$P_1 = \ V_1 \sum_{n=1}^{N} Y_{1n} \, V_n \cos(\delta_1 - \delta_n - \theta_{1n}) = \sum_{n=1}^{N} Y_{1n} \, V_n \cos(\delta_n + \theta_{1n})$$

$$Q_1 = V_1 \sum_{n=1}^{N} Y_{1n} V_n \sin(\delta_1 - \delta_n - \theta_{1n}) = -\sum_{n=1}^{N} Y_{1n} V_n \sin(\delta_n + \theta_{1n})$$

- 최종적으로 구해진 V, δ 의 값을 대입하여 P, Q를 계산할 수 있음.

Bus Type Switching

```
35
               case 3 % For PV -> PQ Bus (for keep voltage value)
                                                                                   % PV->PO Bus Calculation
36
                   P_G(k,i+1) = P_G(k,i);
                                                                             3 🖃
                                                                                   function [V,Delta] = PV2PQ Bus Calc(SIZE,k,i,Y,V,Delta,P,Q)
37
                   P L(k,i+1) = P L(k,i);
                                                                              4
                   0 L(k,i+1) = 0 L(k,i);
38
                                                                                       I k = (P(k,i)-sqrt(-1)*Q(k,i)) / (V(k,i)*exp(-sqrt(-1)*Delta(k,i)*(pi/180)));
39
                    P(k,i+1) = P G(k,i+1) - P L(k,i+1);
40
                                                                             7
                                                                                       Sum YV 1 = 0;
41
                   if Switch Sig(k,i) == 1
                                                                                       Sum YV 2 = 0;
                        Q G(k,i) = Q Gmin(k,1);
                        Q(k,i) = Q G(k,i) - Q L(k,i);
                                                                             10 🗀
                                                                                       for n = 1:k-1
                        Q G(k,i+1) = Q G(k,i);
                                                                                           Sum YV 1 = Sum YV 1 + Y(k,n) * (V(n,i)*exp(sqrt(-1)*Delta(n,i)*(pi/180)));
                                                                             11
                        Q(k,i+1) = Q G(k,i+1) - Q L(k,i+1);
45
                                                                             12
                                                                                       end
                                                                             13
46
                                                                                       for n = k+1:SIZE
                                                                             14 🗐
                   elseif Switch Sig(k,i) == 2
                                                                             15
                                                                                           Sum YV 2 = Sum YV 2 + Y(k,n) * (V(n,i)*exp(sqrt(-1)*Delta(n,i)*(pi/180)));
                        0 G(k,i) = 0 Gmax(k,1);
                                                                             16
                                                                                       end
                        Q(k,i) = Q G(k,i) - Q L(k,i);
                                                                            17
                        Q G(k,i+1) = Q G(k,i);
50
                                                                                       V_k = (1/Y(k,k)) * (I_k - Sum_YV_1 - Sum_YV_2); % k모선의 i번째 iteration 값 계산
                                                                             18
                        Q(k,i+1) = Q G(k,i+1) - Q L(k,i+1);
51
                                                                             19
                                                                                       Delta(k,i+1) = atan(imag(V k) / real(V k)) * (180/pi);
52
                                                                                       V(k,i+1) = V(k,i); % 원래 PV Bus였으면 PQ Bus로 전환되었다고해도 전압은 유지되어야 함.
                                                                             20
53
                    else
                                                                             21
54
                        0 G(k,i+1) = 0 G(k,i);
                                                                             22
                                                                                       % Recalculation
55
                        O(k,i+1) = O G(k,i+1) - O L(k,i+1);
                                                                             23
                                                                                       I k = (P(k,i)-sqrt(-1)*Q(k,i)) / (V(k,i+1)*exp(-sqrt(-1)*Delta(k,i+1)*(pi/180)));
                                                                             24
                                                                                       V_k = (1/Y(k,k)) * (I_k - Sum_YV_1 - Sum_YV_2);
56
                    end
                                                                             25
                                                                                       Delta(k,i+1) = atan(imag(V k) / real(V k)) * (180/pi);
57
                                                                             26
58
                    [V,Delta] = PV2PQ Bus Calc(SIZE,k,i,Y,V,Delta,P,Q);
                                                                             27
                                                                                   end
59
           end
```

Line Flow Calculation

$$S_{Zn} = V_n * (V_n^* - V_k^*) * Y_{nk}$$
 $S_{Yn} = V_k * V_k^* * y_{kn}$
 $S_{Zr} = V_k * (V_k^* - V_n^*) * Y_{kn}$ $S_{Yr} = V_n * V_n^* * y_{nk}$

$$S_{nor} = S_{Zn} + S_{Yn}$$
 $S_{rev} = S_{Zr} + S_{Yr}$


```
% Line Flow Calculation
       function LineOutputData = Line_Flow_Calc(L_Mat,i,V,Delta,Y)
            L_Mat = repelem(L_Mat,2,1);
            [rows,~] = size(L Mat);
           LineOutputData = zeros(rows,6);
                                               % Line Flow Data
            LineOutputData(:,1) = L_Mat(:,1);
            for j = 1:rows
                                      % Bus to Bus
               if mod(j,2) == 0
                    LineOutputData(j,2) = L_Mat(j,3);
                    LineOutputData(j,3) = L_Mat(j,2);
17
                    LineOutputData(j,2) = L_Mat(j,2);
18
                    LineOutputData(j,3) = L_Mat(j,3);
19
20
            end
21
22
           V_{\text{vector}} = V(:,i+1) \cdot * \exp(Delta(:,i+1)*(sqrt(-1)*(pi/180)));
23
24 =
                              % P, Q, S
            for j = 1:rows
25
26
               E = (V_vector(LineOutputData(j,2)) - V_vector(LineOutputData(j,3))); % Vs - Vr
27
               I = conj(-1*Y(LineOutputData(j,2),LineOutputData(j,3)))*conj(E);
28
               S = V \text{ vector}(\text{LineOutputData}(j,2))*I + V \text{ vector}(\text{LineOutputData}(j,2))*conj(V \text{ vector}(\text{LineOutputData}(j,2))*(L Mat(j,6)+L Mat(j,7)*sqrt(-1))/2);
29
30
               LineOutputData(j,4) = real(S);
31
               LineOutputData(j,5) = imag(S);
32
                LineOutputData(j,6) = abs(S);
33
34
```

Example 6.10 (교재 예제)

Bus-to-Bus	R′ per unit	X' per unit	G' per unit	B' per unit	Maximum MVA per unit
2–4	0.0090	0.100	0	1.72	12.0
2–5	0.0045	0.050	0	0.88	12.0
4–5	0.00225	0.025	0	0.44	12.0

TABLE 6.2 Line input data for Example 6.9

Bus-to-Bus	R per unit	X per unit	G _c per unit	B _m per unit	Maximum MVA per unit	Maximum TAP Setting per unit
1–5 3–4	0.00150 0.00075	0.02 0.01	0	0	6.0 10.0	

Bus	Input Data	Unknowns
1	$V_1 = 1.0, \delta_1 = 0$	P ₁ , Q ₁
2	$P_2 = P_{G2} - P_{L2} = -8$	V_2 , δ_2
3	$Q_2 = Q_{G2} - Q_{L2} = -2.8$ $V_3 = 1.05$ $P_3 = P_{G3} - P_{L3} = 4.4$	Q_3 , δ_4
4	$P_4 = 0, Q_4 = 0$	V_4 , δ_4
5	$P_5 = 0$, $Q_5 = 0$	V_5 , δ_5

TABLE 6.4

Input data and unknowns for Example 6.9

Example 6.10 (교재 예제)

<Bus Output Data for the Power System>

		Voltage Magnitude(p.u.)										
 1	I	1.0000	ı	0.0000	ı	3.9484	ı	1.1428	I	0.0000	ı	0.0000
 2		0.8338	ı	-22.4064	I	0.0000	I	0.0000	I	8.0000	I	2.8000
3	I	1.0500	I	-0.5973	I	5.2000	I	3.3748	I	0.8000	I	0.4000
4	I	1.0193	I	-2.8340	I	0.0000	I	0.0000	I	0.0000	I	0.0000
5	I	0.9743	I			0.0000			I	0.0000	I	0.0000
 		TOTAL	-			9.1484	1	4.5176	1	8.8000	1	3.2000

<Line Output Data for the Power System>

Line#	 	Bus t	o Bus		Р		Q		S
1	 I	2	4		-2.9184		-1.3911		3.2330
1	- 1	4	2	1	3.0368	1	1.2154	1	3.2710
2	- 1	2	5	1	-5.0816	1	-1.4089	1	5.2733
2	- 1	5	2	1	5.2566	1	2.6302	1	5.8779
3	- 1	4	5	1	1.3440	1	1.5035	1	2.0167
3	- 1	5	4	1	-1.3336	1	-1.8253	1	2.2606
4	- 1	1	5	1	3.9484	1	1.1428	1	4.1105
4	- 1	5	1		-3.9230	1	-0.8049	1	4.0048
5	1	3	4	1	4.4000	1	2.9748	1	5.3113
5	-1	4	3	-1	-4.3808	- 1	-2.7189	- 1	5.1560

	Voltage Phase Generation				Load			
	Magnitude	Ang		QG	PL	QL		
Bus#	(per unit)	(degr	ees) (per unit)	(per unit)	(per unit)	(per unit)		
1	1.000	0.0	000 3.948	1.144	0.000	0.000		
2	0.834	-22.4	407 0.000	0.000	8.000	2.800		
3	1.050	-0.		3.376	0.800	0.400		
2 3 4 5	1.019	-2.8		0.000	0.000	0.000		
5	0.974		548 0.000	0.000	0.000	0.000		
		TOT	AL 9.148	4.516	8.800	3.200		
Line	# Bus	s to Bus	Р	Q		S		
1	2	4	-2.920	-1.392		3.232		
	4	2	3.036	1.216		3.272 5.272		
2	2	5 2 5	-5.080	-1.408				
	5	2	5.256	2.632	5.876			
3	4		1.344	1.504		2.016		
	5	4	-1.332	-1.824 		2.260		
Tra	n.# B	us to Bus	s P	۵		S		
1		1 5	3.948	1.144		4.112		
		5 1	-3.924	-0.804		4.004		
2	2	3 4	4.400	2.976		5.312		
		4 3	-4.380	-2.720		5.156		
TABLE 6.8 Transformer output data for the power system given in Example 6.9								

Example 6.38 (교재 예제)

```
<Bus Output Data for the Power System>
 Bus# | Voltage Magnitude(p.u.) | Phase Angle(Deg) | P_G(p.u.) | Q_G(p.u.) | P_L(p.u.) | Q_L(p.u.)
                              0.0000
             1.0000
                                      | 1.8000 | 1.0301
                                                           0.0000
                      | -11.3469 | 0.0000 | 0.0000 | 1.8000 | 0.6000
           0.9149
                                        | 1.8000 | 1.0301 | 1.8000 | 0.6000
<Line Output Data for the Power System>
  Line#
       Bus to Bus
                 2 | 1.8000 |
                                         1.0301
                                                       2.0739
      | 2 1 | -1.8000 |
                                        -0.6000
                                                       1.8974
```

IEEE 5 Bus

Bus Num	Bus Type	V	Delta	Pg	Qg	PL	QL	Q_Gmax	Q_Gmin
1		1.06	0			0	0		
2		1		0.4	0.3	0.2	0.1	9	-9
3				0	0	0.45	0.15		
4				0	0	0.4	0.05		
5				0	0	0.6	0.1		

Bus Data

Line Num	from	to	R	Χ	G	В	maxMVA	TAP
1	1	2	0.02	0.06	0	0	0.8	0
2	1	3	0.08	0.24	0	0.025	0.3	0
3	2	3	0.06	0.25	0	0.02	0.2	0
4	2	4	0.06	0.18	0	0.02	0.2	0
5	2	5	0.04	0.12	0	0.015	0.6	0
6	3	4	0.01	0.03	0	0.01	0.1	0
7	4	5	0.08	0.24	0	0.025	0.1	0

Line Data

<Bus Output Data for the Power System>

Bus#	<u> </u>	Voltage Magnitude(p.		e Angle(Deg)		_		_		_		_
1	 I	1.0600	ı	0.0000	I	1.3122	ı	0.9734	I	0.0000	I	0.0000
2	I	1.0000	ı	-2.0066	I	0.4000	I	-0.4974	I	0.2000	I	0.1000
3	I	0.9833	I	-4.8137	I	0.0000	I	0.0000	I	0.4500	I	0.1500
4	 I	0.9801	I	-5.0757	I	0.0000	ı	0.0000	I	0.4000	I	0.0500
5	 I	0.9687	I	-5.7467	I	0.0000	ı	0.0000	I	0.6000	I	0.1000
		TOTAL -			I	1.7122	ı	0.4760	I	1.6500	I	0.4000

<Line Output Data for the Power System>

Line#		Bus t	o Bus		P	<u> </u>	Q	 	S
1		1	2		0.8780		0.7782		1.1732
1	- 1	2	1	- 1	-0.8535	1	-0.7047	1	1.1068
2	- 1	1	3	- 1	0.4342	1	0.1952	1	0.4760
2	- 1	3	1	- 1	-0.4177	1	-0.1717	1	0.4516
3	- 1	2	3	- 1	0.1983	1	0.0138	1	0.1988
3	- 1	3	2	- 1	-0.1960	1	-0.0235	1	0.1974
4	- 1	2	4	- 1	0.2978	1	0.0088	1	0.2980
4	- 1	4	2	- 1	-0.2925	- 1	-0.0124	1	0.2927
5	- 1	2	5	- 1	0.5573	- 1	0.0846	1	0.5637
5	- 1	5	2	- 1	-0.5445	1	-0.0609	1	0.5479
6	- 1	3	4	- 1	0.1636	1	0.0452	1	0.1697
6	- 1	4	3	- 1	-0.1633	1	-0.0539	1	0.1720
7	- 1	4	5	- 1	0.0558	1	0.0164	1	0.0581
7	I	5	4	I	-0.0555	I	-0.0391	I	0.0679

IEEE 9 Bus

Bus Num	Bus Type	V	Delta	Pg	Qg	PL	QL	Q_Gmax	Q_Gmin
1		1.04	0			0	0		
2		1.025		1.63	0	0	0	3	-3
3		1.025		0.85	0	0	0	3	-3
4				0	0	0	0		
5				0	0	1.25	0.5		
6				0	0	0.9	0.3		
7				0	0	0	0		
8				0	0	1	0.35		
9				0	0	0	0		

Bus Data

Line Num	from	to	R	Χ	G	В	maxMVA	TAP
1	1	4	0	0.0576	0	0	0	1
2	4	6	0.017	0.092	0	0.158	0	0
3	6	9	0.039	0.17	0	0.358	0	0
4	3	9	0	0.0586	0	0	0	1
5	9	8	0.0119	0.1008	0	0.209	0	0
6	8	7	0.0085	0.072	0	0.149	0	0
7	7	2	0	0.0625	0	0	0	1
8	7	5	0.032	0.161	0	0.306	0	0
9	5	4	0.01	0.085	0	0.176	0	0

Line Data

IEEE 9 Bus

From To MW[pu] Mvar[pu] MVA[pu] Line Loss[pu] 1 4 0.720 0.270 0.769 0.000 4 1 -0.720 -0.239 0.759 0.000 4 6 0.308 0.010 0.309 0.000 6 4 -0.307 -0.165 0.348 0.002 6 9 -0.593 -0.135 0.609 0.000 9 6 0.607 -0.181 0.633 0.013 3 9 0.849 -0.109 0.856 0.000 9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.764 0.005 7 8 0.764 -0.008 0.764 0.000 2 7 1.629	Bu	ıs	Pow	er at Bus & Line	Flow	
1 4 0.720 0.270 0.769 0.000 4 1 -0.720 -0.239 0.759 0.000 4 6 0.308 0.010 0.309 0.000 6 4 -0.307 -0.165 0.348 0.002 6 9 -0.593 -0.135 0.609 0.000 9 6 0.607 -0.181 0.633 0.013 3 9 0.849 -0.109 0.856 0.000 9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 7 5 0.865 -0.084 0.869						Line Loss[pu]
4 6 0.308 0.010 0.309 0.000 6 4 -0.307 -0.165 0.348 0.002 6 9 -0.593 -0.135 0.609 0.000 9 6 0.607 -0.181 0.633 0.013 3 9 0.849 -0.109 0.856 0.000 9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	1	4	0.720	0.270	-	0.000
6 4 -0.307 -0.165 0.348 0.002 6 9 -0.593 -0.135 0.609 0.000 9 6 0.607 -0.181 0.633 0.013 3 9 0.849 -0.109 0.856 0.000 9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	4	1	-0.720	-0.239	0.759	0.000
6 9 -0.593 -0.135 0.609 0,000 9 6 0.607 -0.181 0.633 0.013 3 9 0.849 -0.109 0.856 0.000 9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	4	6	0.308	0.010	0.309	0.000
9 6 0.607 -0.181 0.633 0.013 3 9 0.849 -0.109 0.856 0.000 9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	6	4	-0.307	-0.165	0.348	0.002
3 9 0.849 -0.109 0.856 0.000 9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	6	9	-0.593	-0.135	0.609	0.000
9 3 -0.849 0.150 0.862 0.000 9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	9	6	0.607	-0.181	0.633	0.013
9 8 0.242 0.031 0.244 0.000 8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	3	9	0.849	-0.109	0.856	0.000
8 9 -0.241 -0.243 0.342 0.001 8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	9	3	-0.849	0.150	0.862	0.000
8 7 -0.759 -0.107 0.767 0.000 7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	9	8	0.242	0.031	0.244	0.000
7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	8	9	-0.241	-0.243	0.342	0.001
7 8 0.764 -0.008 0.764 0.005 7 2 -1.629 0.092 1.632 0.000 2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	8	7	-0.759	-0.107	0.767	0.000
2 7 1.629 0.066 1.631 0.000 7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	7	8	0.764	-0.008	0.764	0.005
7 5 0.865 -0.084 0.869 0.000 5 7 -0.842 -0.113 0.849 0.023	7	2	-1.629	0.092	0 01.632	0.000
5 7 -0.842 -0.113 0.849 0.023	2	7	1.629	0.066	1.631	000000000000000000000000000000000000000
	7	5	0.865	-0.084	0.869	0.000
5 4 -0.408 -0.387 00 -0.567 0 0 0 0 0 0 0 0	5	7	-0.842	-0.113	0.849	0000.023 00
3 -0.400 -0.500	5	4	-0.408	-0.387	0.562	0.000
4 5 0.411 0.229 0.470 0 0.003	4	5	0.411	0.229	0.470	0.003

<b115 th="" €<=""><th>utnut Data</th><th>for the Power Sy</th><th>vstem</th><th>1></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></b115>	utnut Data	for the Power Sy	vstem	1>								
VDUS O	исрис раса	TOT the rower by	yscen									
Bus#	Voltage	Magnitude(p.u.)	Ph	nase Angle(Deg)	I	P_G(p.u.)	I	Q_G(p.u.)	I	P_L(p.u.)	1	Q_L(p.u.)
1	1	1.0400	ı	0.0000	ı	0.7164	ı	0.2705	I	0.0000	ı	0.0000
2	ı	1.0250	l	9.2800	ı	1.6300	ı	0.0665	ı	0.0000	1	0.0000
3	1	1.0250		4.6647	ı	0.8500	ı	-0.1086	ı	0.0000	1	0.0000
4	I	1.0258	I	-2.2168	ı	0.0000	ī	0.0000	ī	0.0000	1	0.0000
5	1	0.9956	I	-3.9888	ı	0.0000	ı	0.0000	I	1.2500	1	0.5000
6	1	1.0127		-3.6874	I	0.0000	ı	0.0000	ı	0.9000	1	0.3000
7	I	1.0258		3.7197	ı	0.0000	ı	0.0000	I	0.0000	1	0.0000
8	1	1.0159	I	0.7275	ı	0.0000	ı	0.0000	ı	1.0000	ı	0.3500
9	ı	1.0324	Ι	1.9667	ı	0.0000	ı	0.0000	ī	0.0000	ı	0.0000
		TOTAL	-		1	3.1964	1	0.2284	1	3.1500	1	1.1500

<Line Output Data for the Power System>

Line#	I	Bus t	o Bus	 	P	I	Q	l	S
1	1	1	4		0.7164		0.2705		0.7658
1	1	4	1	- 1	-0.7164	1	-0.2392	1	0.7553
2	1	4	6	- 1	0.3070	1	0.0103	1	0.3072
2	1	6	4	- 1	-0.3054	1	-0.1654	1	0.3473
3	1	6	9	- 1	-0.5946	1	-0.1346	1	0.6097
3	1	9	6	- 1	0.6082	1	-0.1807	1	0.6345
4	1	3	9	1	0.8500	1	-0.1086	1	0.8569
4	1	9	3	1	-0.8500	1	0.1496	1	0.8631
5	- 1	9	8	- 1	0.2418	1	0.0312	1	0.2438
5	1	8	9	- 1	-0.2410	1	-0.2430	1	0.3422
6	- 1	8	7	- 1	-0.7590	1	-0.1070	1	0.7666
6	1	7	8	- 1	0.7638	1	-0.0080	1	0.7638
7	1	7	2	- 1	-1.6300	1	0.0918	1	1.6326
7	1	2	7	1	1.6300	1	0.0665	1	1.6314
8	1	7	5	1	0.8662	1	-0.0838	1	0.8702
8	1	5	7	- 1	-0.8432	1	-0.1131	1	0.8508
9	1	5	4	- 1	-0.4068	1	-0.3869	1	0.5614
9	-1	4	5	-1	0.4094	- 1	0.2289	- 1	0.4690

IEEE 14 Bus

Bus Num	Bus Type	V	Delta	Pg	Qg	PL	QL	Q_Gmax	Q_Gmin
1		1.06	0			0	0		
2		1.045		0.4	0.424	0.217	0.127	0.5	-0.4
3		1.01		0	0.234	0.942	0.19	0.4	0
4				0	0	0.478	0.039		
5				0	0	0.076	0.016		
6		1.07		0	0.122	0.112	0.075	0.24	-0.06
7				0	0	0	0		
8		1.09		0	0.174	0	0	0.24	-0.06
9				0	0	0.295	0.166		
10				0	0	0.09	0.058		
11				0	0	0.035	0.018		
12				0	0	0.061	0.016		
13				0	0	0.135	0.058		
14				0	0	0.149	0.05		

Bus Data

TAP	maxMVA	В	G	Χ	R	to	from	Line Num
0	0	0.0528	0	0.05917	0.01938	2	1	1
0	0	0.0492	0	0.22304	0.05403	5	1	2
0	0	0.0438	0	0.19797	0.04699	3	2	3
0	0	0.034	0	0.17632	0.05811	4	2	4
0	0	0.0346	0	0.17388	0.05695	5	2	5
0	0	0.0128	0	0.17103	0.06701	4	3	6
0	0	0.0001	0	0.04211	0.01335	5	4	7
0.978	0	0	0	0.20912	0	7	4	8
0.969	0	0	0	0.55618	0	9	4	9
0.932	0	0	0	0.25202	0	6	5	10
0	0	0.0001	0	0.1989	0.09498	11	6	11
0	0	0.0001	0	0.25581	0.12291	12	6	12
0	0	0.0001	0	0.13027	0.06615	13	6	13
0	0	0.0001	0	0.17615	0.0001	8	7	14
0	0	0.0001	0	0.11001	0.0001	9	7	15
0	0	0.0001	0	0.0845	0.03181	10	9	16
0	0	0.0001	0	0.27038	0.12711	14	9	17
0	0	0.0001	0	0.19207	0.08205	11	10	18
0	0	0.0001	0	0.19988	0.22092	13	12	19
0	0	0.0001	0	0.34802	0.17093	14	13	20

Line Data

<Bus Output Data for the Power System>

IEEE 14 Bus

Bus	#	Voltage Magnitude(p.u.)	ı	Phase Angle(Deg)	 	P_G(p.u.)	1	Q_G(p.u.)	I	P_L(p.u.)		Q_L(p.u.)
1	ı	1.0600	I	0.0000	I	2.2255	I	-0.2051	I	0.0000	ı	0.0000
2	ı	1.0450	I	-4.7514	I	0.4000	ı	0.3095	I	0.2170	I	0.1270
3	ı	1.0100	I	-12.3143	I	0.0000	I	0.2129	I	0.9420	I	0.1900
4	ı	1.0241	I	-9.8924	I	0.0000	I	0.0000	I	0.4780	I	0.0390
5	ا	1.0322	I	-8.4888	I	0.0000	I	0.0000	I	0.0760	I	0.0160
6	ı	1.0700	I	-13.6122	ı	0.0000	I	0.2400	ı	0.1120	I	0.0750
7	ı	1.0435	I	-12.7779	I	0.0000	I	0.0000	I	0.0000	I	0.0000
8		1.0900	I	-12.7791	ı	0.0000	I	0.2400	ı	0.0000	I	0.0000
9	ı	1.0258	1	-14.2921	I	0.0000	ı	0.0000	ı	0.2950	I	0.1660
10	ı	1.0259	I	-14.4528	ı	0.0000	ı	0.0000	I	0.0900	I	0.0580
11	ı	1.0440	I	-14.1477	I	0.0000	ı	0.0000	I	0.0350	I	0.0180
12		1.0530	ı	-14.4875	I	0.0000	ı	0.0000	I	0.0610	I	0.0160
		1.0459		-14.5391								
		1.0162	Ī	-15.4336	ī	0.0000	Ī	0.0000	ī	0.1490	Ī	
		TOTAL										0.8130

ightharpoonup 6,8번 PV Bus의 Q_G 수렴값이 최대값을 벗어나 PQ Bus로 전환되었음.

IEEE 14 Bus

	Bus	Pow	er at Bus & Line	Flow	
From	To	MW[pu]	Mvar[pu]	MVA[pu]	Line Loss[pu]
1	2	1.464	-0.149	1.471	
2	1	-1.426	0.263	1,450	-0.037
1	5	0.707	0.010	0.707	
5	1	-0.683	0.089	0.688	-0.024
2	3	0.676	0.065	0.680	
3	2	-0.657	0.018	0.657	-0.020
2	4	0.516	-0.026	0.517	
4	2	-0.502	0.069	0.506	-0.014
2	5	0.379	-0.037	0.381	
5	2	-0.372	0.060	0.377	-0.008
3	4	-0.226	0.007	0.226	
4	3	0.229	0.001	0.229	0.003
4	5	-0.587	-0.002	0.587	
5	4	0.592	0.016	0.592	0.004
4	7	0.245	-0.043	0.249	
7	4	-0.245	0.055	0.251	0.000
4	9	0.138	0.039	0.143	
9	4	-0.138	-0.028	0.140	0.000
5	6	0.387	-0.136	0.410	
6	5	-0.387	0.176	0.425	0.000
6	11	0.109	0.133	0.172	
11	6	-0.106	-0.128	0.167	-0.002
6	12	0.085	0.037	0.093	
12	6	-0.084	-0.035	0.091	-0.001
6	13	0.198	0.123	0.233	
13	6	-0.194	-0.417	0.227	-0.003
7	8	0.000	-0:326	0.326	
8	7	0.000	0.344	0.344	0.000
7	9	0.246	0.271	0,366	0 4 0 0 0
9	7	-0.246	-0.257	0.355	0,000
9	10	0.020	0.049	0.053	00000
10	9	0.020	0.049	0.053	0.000
9	14	0.069	-0.022	0,072	000000
14	9	0-0.068	0 0.024	0 0 0.0/20 0	° ° -0'001
10	11	-0.070	-0.107	⊕ 0 <u>0</u> 128 ⊕ .	000000
11	10	00001	0.110	0 0 0 131 0 0	0.001
12	13	0.023	0.019	0.030	000000
13	10012000	0.023	00001900	0.0300 0	0.000
13	100000000000000000000000000000000000000	0000000	0 0.0780 0	0 0 0114 0 0	0 0 0 0 0
14	0 00 0 13 00	-0.081	0 0 60,074 0 6	0.109	-0.002

<line out<="" th=""><th>put :</th><th>Data fo</th><th>or the</th><th>Power</th><th>System></th><th></th><th></th><th></th><th></th></line>	put :	Data fo	or the	Power	System>				
Line#	 	Bus t	to Bus		P	1	Q	1	S
1		1	2		1.4989		-0.1876	 	1.5106
1	- 1	2	1	- 1	-1.4598	1	0.2487	1	1.4808
2	- 1	1	5		0.7265	1	-0.0176	1	0.7268
2	- 1	5	1	- 1	-0.7012	1	0.0685	1	0.7045
3	- 1	2	3	- 1	0.7162	1	0.0372	1	0.7172
3	- 1	3	2		-0.6940	1	0.0102	1	0.6940
4	- 1	2	4	- 1	0.5347	1	-0.0466	1	0.5367
4	- 1	4	2	- 1	-0.5194	1	0.0565	1	0.5225
5	- 1	2	5		0.3919	1	-0.0569	1	0.3960
5	- 1	5	2		-0.3838	1	0.0442	1	0.3864
6	- 1	3	4		-0.2480	1	0.0127	1	0.2484
6	- 1	4	3	- 1	0.2521	1	-0.0156	1	0.2526
7	- 1	4	5		-0.6129	1	0.0062	1	0.6129
7	- 1	5	4		0.6176	1	0.0087	1	0.6177
8	- 1	4	7		0.2573	1	-0.0887	1	0.2721
8	- 1	7	4	- 1	-0.2573	1	0.1034	1	0.2773
9	- 1	4	9		0.1449	1	0.0025	1	0.1449
9	- 1	9	4		-0.1449	1	0.0086	1	0.1452
10	- 1	5	6		0.3913	1	-0.1375	1	0.4148
10	- 1	6	5	- 1	-0.3913	1	0.1782	1	0.4300
11	- 1	6	11		0.0972	1	0.0936	1	0.1349
11	- 1	11	6		-0.0957	1	-0.0905	1	0.1317
12	- 1	6	12		0.0827	1	0.0319	1	0.0886
12	- 1	12	6		-0.0818	1	-0.0303	1	0.0872
13	- 1	6	13		0.1909	1	0.1022	1	0.2165
13	- 1	13	6		-0.1882	1	-0.0970	1	0.2117
14	- 1	7	8		-0.0000	1	-0.2753	1	0.2753
14	- 1	8	7		0.0000	1	0.2874	1	0.2874
15	- 1	7	9	1	0.2573	1	0.1718	- 1	0.3094
15	- 1	9	7	- 1	-0.2573	1	-0.1622	- 1	0.3042
16	- 1	9	10	- 1	0.0300	1	-0.0131	- 1	0.0327
16	- 1	10	9	- 1	-0.0300	1	0.0130	- 1	0.0327
17	- 1	9	14	1	0.0772	1	0.0007	- 1	0.0772
17	- 1	14	9	- 1	-0.0764	1	0.0007	- 1	0.0764
18	- 1	10	11	- 1	-0.0600	1	-0.0710	- 1	0.0930
18	- 1	11	10	- 1	0.0607	1	0.0725	- 1	0.0946
19	- 1	12	13	- 1	0.0208	1	0.0143	- 1	0.0253
19	- 1	13	12	- 1	-0.0207	1	-0.0143	- 1	0.0251
20	- 1	13	14	1	0.0739		0.0533	- 1	0.0911
20	- 1	14	13	1	-0.0726	- 1	-0.0507	1	0.0885

IEEE 14 Bus

계산 결과가 실제 결과값과 다소 차이가 있음을 확인

Transformer Tap 값이 반영되지 않아 생긴 차이로 추정

IEEE 30 Bus

IEEE 30 Bus

Bus Num	Bus Type	٧	Delta	Pg	Qg	PL		Q_Gmax	Q_Gmin
1		1.06	0			0	0		
2		1.04313		0.4	0.5	0.217	0.127	9	-9
3				0	0	0.024	0.012		
4				0	0	0.076	0.016		
5		1.011		0	0.3685	0.942	0.19	9	-9
6				0	0	0	0		
7				0	0	0.228	0.109		
8		1.01		0	0.3714	0.3	0.3	9	-9
9				0	0	0	0		
10				0	0	0.058	0.02		
11		1.082		0	0.1617	0	0	9	-9
12				0	0	0.112	0.075		
13		1.071		0	0.1062	0	0	9	-9
14				0	0	0.062	0.016		
15				0	0	0.082	0.025		
16				0	0	0.035	0.018		
17				0	0	0.09	0.058		
18				0	0	0.032	0.009		
19				0	0	0.095	0.034		
20				0	0	0.022	0.007		
21				0	0	0.175	0.112		
22				0	0	0	0		
23				0	0	0.032	0.016		
24				0	0	0.087	0.067		
25				0	0	0	0		
26				0	0	0.035	0.023		
27				0	0	0	0		
28				0	0	0	0		
29				0	0	0.024	0.009		
30				0	0	0.106	0.019		

Line Num	from	to	R	Х	G	В	maxMVA.	TAP
1	1	2	0.0192	0.0575	0	0.0528	0	0
2	1	3	0.0452	0.165	0	0.0408	0	0
3	2	4	0.057	0.174	0	0.0368	0	0
4	2	5	0.0472	0.198	0	0.0418	0	0
5	2	6	0.0581	0.176	0	0.0374	0	0
6	3	4	0.0132	0.0379	0	0.0084	0	0
7	4	6	0.0119	0.0414	0	0.009	0	0
8	5	7	0.046	0.116	0	0.0204	0	0
9	6	7	0.0267	0.082	0	0.017	0	0
10	6	8	0.012	0.042	0	0.009	0	0
11	6	28	0.0169	0.0599	0	0.013	0	0
12	8	28	0.0636	0.2	0	0.0428	0	0
13	9	10	0.0001	0.11	0	0.0001	0	0
14	9	11	0.0001	0.208	0	0.0001	0	0
15	10	17	0.0324	0.0845	0	0.0001	0	0
16	10	20	0.0936	0.209	0	0.0001	0	0
17	10	21	0.0348	0.0749	0	0.0001	0	0
18	10	22	0.0727	0.15	0	0.0001	0	0
19	12	13	0.0001	0.14	0	0.0001	0	0
20	12	14	0.123	0.256	0	0.0001	0	0
21	12	15	0.0662	0.13	0	0.0001	0	0
22	12	16	0.0945	0.199	0	0.0001	0	0
23	14	15	0.221	0.2	0	0.0001	0	0
24	15	18	0.107	0.219	0	0.0001	0	0
25	15	23	0.1	0.202	0	0.0001	0	0
26	16	17	0.0524	0.192	0	0.0001	0	0
27	18	19	0.0639			0.0001	0	
28	19		0.034			0.0001	0	0
29	21	22	0.0116			0.0001	0	
30	22	24	0.115			0.0001	0	
31	23	24	0.132	0.27	0	0.0001	0	
32	24	25	0.189			0.0001	0	0
33	25	26	0.254			0.0001	0	0
34	25	27	0.109			0.0001	0	
35	27	29	0.22	0.415		0.0001	0	0
36	27	30	0.32			0.0001	0	
37	29	30	0.24		0	0.0001	0	0
38	4	12	0			0		
39	27	28	0			0	0	0.968
40	6		0			0	0	
41	6	9	0	0.208	0	0	0	0.978

Bus Data Line Data

IEEE 30 Bus

<Bus Output Data for the Power System>

	Magnitude(p.u.)			_	_	_	_	16	l	1.0078	 	-15.9944		0.0000	0.0000		0.0350		0.0180
1	1.0600	I	0.0000	2.6110	-0.1942	0.0000	0.0000	17	1	0.9980	1	-16.2403	- 1	0.0000	0.0000	I	0.0900	I	0.0580
2	1.0431	l	-5.3461	0.4000	0.4573	0.2170	0.1270	18	I	0.9893	I	-17.0619		0.0000	•		0.0320		0.0090
3	1.0249	I	-7.5847	0.0000	0.0000	0.0240	0.0120	19	1	0.9849	1	-17.2005	1	0.0000	0.0000	1	0.0950	1	0.0340
4	1.0170	I			0.0000		0.0160	20	ı	0.9881		-16.9608		0.0000	0.0000		0.0220		0.0070
5	1.0110	I	-14.1515	0.0000	0.3730	0.9420	0.1900	21	I	0.9878	I	-16.4660	I	0.0000	0.0000		0.1750	ı	0.1120
6	1.0113	I	-11.0591	0.0000	0.0000	0.0000	0.0000	22	l	0.9883	I	-16.4452		0.0000	0.0000		0.0000		0.0000
7	1.0034	I	-12.8549	0.0000	0.0000	0.2280	0.1090	23	l	0.9867	I	-16.7615		0.0000	0.0000		0.0320		0.0160
8	1.0100	l	-11.7906		0.3444		0.3000	24		0.9746	I	-16.7653		0.0000	0.0000		0.0870		0.0670
9	1.0239	I	-14.2797	0.0000	0.0000	0.0000	0.0000	25	1	0.9749	1	-16.3948	- 1	0.0000	0.0000	I	0.0000	I	0.0000
10	1.0012	I	-15.9983	0.0000	0.0000	0.0580	0.0200	26	I	0.9565	I	-16.8538		0.0000			0.0350		0.0230
11	1.0820	I	-14.2812	0.0000	0.3019	0.0000	0.0000	27	Ι	0.9840	I	-15.8768		0.0000	0.0000		0.0000	ı	0.0000
12	1.0262	I	-15.5487		0.0000	0.1120	0.0750	28	l	1.0069	I	-11.6746		0.0000	-		0.0000		0.0000
13	1.0710	I	-15.5505	0.0000	0.3425	0.0000	0.0000	29	I	0.9633	I	-17.2100		0.0000	0.0000		0.0240		0.0090
14	1.0088	 	-16.4634	0.0000	0.0000	0.0620	0.0160	30	I	0.9514	I	-18.1693		0.0000	0.0000		0.1060		0.0190
15	1.0023		-16.4791	0.0000	0.0000	0.0820	0.0250			TOTAL			1	3.0110	1.6250	I	2.8340	I	1.2620
	·						-												

IEEE 30 Bus

<Line Output Data for the Power System>

Line#	ı	Bus	to Bus	l	P		Q		S
1	1	1	2	ı	1.7305	I	-0.2129	I	1.7436
1	- 1	2	1	- 1	-1.6788	1	0.3094	- 1	1.7070
2	- 1	1	3		0.8805	1	0.0187	- 1	0.8807
2	- 1	3	1	- 1	-0.8492	1	0.0510	- 1	0.8508
3	- 1	2	4	- 1	0.4349	1	0.0092	- 1	0.4350
3	- 1	4	2	- 1	-0.4250	1	-0.0179	- 1	0.4254
4	- 1	2	5		0.8238	1	0.0129	- 1	0.8239
4	- 1	5	2	- 1	-0.7943	1	0.0667	- 1	0.7971
5	- 1	2	6	- 1	0.6030	1	-0.0013	- 1	0.6030
5	- 1	6	2		-0.5836	1	0.0207	- 1	0.5839
6	- 1	3	4	- 1	0.8252	1	-0.0630	- 1	0.8276
6	- 1	4	3	- 1	-0.8166	1	0.0790	- 1	0.8205
7	- 1	4	6		0.7252	1	-0.0641	- 1	0.7280
7	- 1	6	4		-0.7191	1	0.0761	- 1	0.7231
8	- 1	5	7	- 1	-0.1477	1	0.1162	- 1	0.1879
8	- 1	7	5		0.1494	1	-0.1326	- 1	0.1998
9	- 1	6	7	- 1	0.3812	1	-0.0292	- 1	0.3823
9	- 1	7	6		-0.3774	1	0.0236	- 1	0.3781
10	- 1	6	8		0.2962	1	-0.0548	- 1	0.3012
10	- 1	8	6	- 1	-0.2951	1	0.0493	- 1	0.2992
11	- 1	6	28	- 1	0.1889	1	0.0153	- 1	0.1895
11	- 1	28	6	- 1	-0.1883	1	-0.0265	- 1	0.1901
12	- 1	8	28		-0.0049	1	-0.0049	- 1	0.0069
12	- 1	28	8		0.0049	1	-0.0386	- 1	0.0389
13	- 1	9	10	- 1	0.2797	1	0.2160	- 1	0.3534
13	- 1	10	9	-	-0.2797	- 1	-0.2030	- 1	0.3456
14	- 1	9	11	-	0.0000	1	-0.2858	1	0.2858
14	- 1	11	9	- 1	0.0000	1	0.3019	- 1	0.3019
15	-1	10	17	- 1	0.0562	1	0.0163	1	0.0585
15	-1	17	10	1	-0.0561	I	-0.0161	I	0.0584

16	- 1	10	20	T	0.0898	- 1	0.0228	ı	0.0926
16	1	20	10	1	-0.0890		-0.0211		0.0914
17	1	10	21	1	0.1570		0.1058		0.1893
17	1	21	10	1	-0.1557		-0.1032		0.1868
18	1	10	22	1	0.0755		0.0497		0.0904
18	1	22	10	1	-0.0750		-0.0485	1	0.0893
19	1	12	13	1	0.0000		-0.3283		0.3283
19	1	13	12	1	0.0000		0.3425		0.3425
20	1	12	14	1	0.0798		0.0318		0.0859
20	1	14	12	1	-0.0790	- 1	-0.0301		0.0845
21	- 1	12	15	1	0.1787	- 1	0.0986		0.2041
21	- 1	15	12	1	-0.1761	- 1	-0.0936		0.1994
22	- 1	12	16	1	0.0698	- 1	0.0619		0.0933
22	1	16	12	1	-0.0691	- 1	-0.0604		0.0917
23	- 1	14	15	1	0.0170	- 1	0.0141		0.0221
23	- 1	15	14	1	-0.0169	- 1	-0.0141		0.0220
24	- 1	15	18	1	0.0608	- 1	0.0300		0.0678
24	- 1	18	15	1	-0.0603	- 1	-0.0291		0.0670
25	- 1	15	23	1	0.0502	- 1	0.0526		0.0727
25	- 1	23	15	1	-0.0497	- 1	-0.0517		0.0717
26	- 1	16	17	1	0.0341	- 1	0.0424		0.0543
26	- 1	17	16	1	-0.0339	- 1	-0.0419		0.0539
27	- 1	18	19	1	0.0283	- 1	0.0201		0.0347
27	- 1	19	18	1	-0.0282	- 1	-0.0201		0.0346
28	- 1	19	20	1	-0.0668	- 1	-0.0139		0.0682
28	- 1	20	19	1	0.0670	- 1	0.0141		0.0684
29	- 1	21	22	1	-0.0193		-0.0088	- 1	0.0212
29	- 1	22	21	1	0.0193	- 1	0.0087		0.0212
30	- 1	22	24	1	0.0557		0.0398		0.0684
30	- 1	24	22	1	-0.0551		-0.0390		0.0675
31	- 1	23	24	1	0.0177		0.0357		0.0398
31	- 1	24	23	1	-0.0175		-0.0353		0.0394
32	- 1	24	25	1	-0.0144		0.0074	- 1	0.0162
32	- 1	25	24	1	0.0145		-0.0074		0.0162
33	- 1	25	26	1	0.0355		0.0236		0.0426
33	- 1	26	25	1	-0.0350		-0.0230		0.0419
34	- 1	25	27		-0.0500		-0.0163		0.0525
34	- 1	27	25	1	0.0503	- 1	0.0168		0.0530
35	1	27	29	1	0.0620	1	0.0167		0.0642
35	1	29	27	1	-0.0611	- 1	-0.0150		0.0629
36	1	27	30	1	0.0710	- 1	0.0168	1	0.0730
36	1	30	27	1	-0.0693	- 1	-0.0136		0.0706
37	1	29	30	1	0.0371	1	0.0060		0.0376
37	1	30	29	1	-0.0367	1	-0.0054		0.0371
38	1	4	12	1	0.4404	1	-0.0129		0.4406
38	1	12	4	1	-0.4404	1	0.0610	- 1	0.4446
39	1	27	28	1	-0.1833	1	-0.0503	- 1	0.1901
39	1	28	27	1	0.1833	1	0.0651	1	0.1945
40	- 1	6	10	1	0.1568	1	0.0253	- 1	0.1588
40	- 1	10	6	1	-0.1568	1	-0.0116	- 1	0.1572
41	- 1	6	9	1	0.2797	1	-0.0534	- 1	0.2848
41	- 1	9	6	1	-0.2797	- 1	0.0699	- 1	0.2883

Table 4 - Source and line power comparison of IEEE 30-bus system

IEEE 30 Bus

Bus		P	SS/E	PSCAD				
bus	•	P [pu]	Q [pu]	P [pu]	Q [pu]			
1		2.609	-0.168	2.6070	-0.1530			
2		0.400	0.500	0.3992	0.5167			
5		0.000	0.369	0.0025	0.3868			
8		0.000	0.371	-0.0000	0.4047			
11		0.000	0.162	0.0004	0.1662			
13		0.000	0.106	0.0009	0.1111			
From Bus	То							
	Bus							
1	2	1.732	-0.2130	1.7320	-0.2098			
1	3	0.846	-0.0240	0.8442	-0.0128			
2	4	0.426	0.0470	0.4253	0.0589			
2	5	0.824	0.0180	0.8239	0.0142			
2	6	0.603	0.0050	0.6026	0.0169			
3	4	0.813	-0.0360	0.8116	-0.0408			
4	6	0.715	-0.1760	0.7128	-0.1745			
5	7	0.148	-0.1330	0.1469	-0.1465			
6	7	0.377	-0.0300	0.3749	-0.0375			
6	8	0.296	-0.0810	0.2947	-0.0990			
6	28	0.186	0.0110	0.1861	0.0112			
8	28	0.005	-0.0040	0.0052	-0.0045			
9	10	0.277	0.0590	0.2776	0.0567			
9	11	0.000	0.1620	0.0004	0.1662			
10	17	0.053	0.0440	0.0531	0.0428			
10	20	0.090	0.0370 0.0900		0.0362			
10	21	0.157	0.0980	0.1574	0.0980			
10	22	0.076	0.0450	0.0754	0.0450			

12	13	0.000	0.1060	0.0009	0.1111
12	14	0.078	0.0220	0.0779	0.0227
12	15	0.177	0.0640	0.1771	0.0648
12	16	0.072	0.0340	0.0721	0.0335
14	15	0.016	0.0060	0.0159	0.0067
15	18	0.060	0.0160	0.0590	0.0157
15	23	0.050	0.0290	0.0503	0.0296
16	17	0.037	0.0140	0.0370	0.0154
18	19	0.028	0.0060	0.0279	0.0067
19	20	0.067	0.0280	0.0671	0.0273
21	22	0.018	0.0140	0.0176	0.0138
22	24	0.057	0.0310	0.0573	0.0306
23	24	0.018	0.0120	0.0183	0.0136
24	25	0.012	-0.0200	0.0116	-0.0214
25	26	0.035	0.0230	0.0350	0.0230
25	27	0.048	0.0040	0.0473	0.0025
27	29	0.061	0.0150	0.0610	0.0150
27	30	0.071	0.0170	0.0709	0.0175
29	30	0.037	0.0050	0.0367	0.0054

MATLAB 콘솔 창 출력 결과

<2024-1학기 전기공학전공 자기설계학점 : Advanced Power Flow 캡스톤 프로젝트> [융합전자공학과 201910906 이학민]

ieee5bus_bus.xlsx 파일을 정상적으로 읽었습니다. ieee5bus line.xlsx 파일을 정상적으로 읽었습니다.

Iteration Limit: 1000

Threshold Value of Approximate Relative Error[%] : 0.0000001

[Bus Data]

Bus Num	Bus Type	Λ	Delta	P_G	Q_G	P_L	Q_L	Q_Gmax	Q_Gmin
 1.0000	0	1.0600	0	0	0	0	0	0	0
2.0000	1.0000	1.0000	0	0.4000	0.3000	0.2000	0.1000	9.0000	-9.0000
3.0000	2.0000	1.0000	0	0	0	0.4500	0.1500	0	0
4.0000	2.0000	1.0000	0	0	0	0.4000	0.0500	0	0
5.0000	2.0000	1.0000	0	0	0	0.6000	0.1000	0	0

[Transmission Line Data]

Lin	ne Num	from	to	Rpu	Xpu	Gpu	Bpu	maxMVA	TAP
1	.0000	1.0000	2.0000	0.0200	0.0600	0	0	0.8000	0
						_	-		
	.0000	1.0000	3.0000	0.0800	0.2400	0	0.0250	0.3000	0
3.	.0000	2.0000	3.0000	0.0600	0.2500	0	0.0200	0.2000	0
4.	.0000	2.0000	4.0000	0.0600	0.1800	0	0.0200	0.2000	0
5.	.0000	2.0000	5.0000	0.0400	0.1200	0	0.0150	0.6000	0
6.	.0000	3.0000	4.0000	0.0100	0.0300	0	0.0100	0.1000	0
7.	.0000	4.0000	5.0000	0.0800	0.2400	0	0.0250	0.1000	0

[Y Bus Matrix]

6.2500 -18.7375i -5.0000 +15.0000i -1.2500 + 3.7500i 0.0000 + 0.0000i 0.0000 + 0.0000i -5.0000 +15.0000i 10.0744 -31.2546i -0.9077 + 3.7821i -1.6667 + 5.0000i -2.5000 + 7.5000i -1.2500 + 3.7500i -0.9077 + 3.7821i 12.1577 -37.5046i -10.0000 +30.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -1.6667 + 5.0000i -10.0000 +30.0000i 12.9167 -38.7225i -1.2500 + 3.7500i 0.0000 + 0.0000i -2.5000 + 7.5000i 0.0000 + 0.0000i -1.2500 + 3.7500i 3.7500 -11.2300i

<Final Approximate Percent Relative Error>

omm W/Bug1) - 0 00000000000000

err_V(Bus1) = 0.0000000000[%]

err_V(Bus2) = 0.00000000000[%] err V(Bus3) = 0.0000000931[%]

err V(Bus4) = 0.0000000904[%]

err V(Bus5) = 0.0000000446[%]

<Bus Output Data for the Power System>

Bus#	I	Voltage	Magnitude(p.u.)	Pl	hase Angle(Deg)	1	P_G(p.u.)	I	Q_G(p.u.)	ı	P_L(p.u.)	I	Q_L(p.u.)
1	I		1.0600	ı	0.0000	I	1.3122	I	0.9734	I	0.0000	I	0.0000
2	I		1.0000		-2.0066	I	0.4000	I	-0.4974	I	0.2000	I	0.1000
3	ı		0.9833	1	-4.8137	I	0.0000	I	0.0000	I	0.4500	I	0.1500
4	I		0.9801	ı	-5.0757	I	0.0000	I	0.0000	I	0.4000	I	0.0500
5	ı		0.9687	ı	-5.7467	I	0.0000	I	0.0000	I	0.6000	I	0.1000
			TOTAL	_		1	1.7122	ı	0.4760	1	1.6500	ı	0.4000

<Line Output Data for the Power System>

Line#	I	Bus t	o Bus	<u> </u>	P	I	Q	I	S
1	 	1	2		0.8780		0.7782		1.1732
1	- 1	2	1	1	-0.8535	1	-0.7047	1	1.1068
2	1	1	3		0.4342	1	0.1952	1	0.4760
2	- 1	3	1	1	-0.4177	1	-0.1717	1	0.4516
3	- 1	2	3	1	0.1983	1	0.0138	1	0.1988
3	- 1	3	2	1	-0.1960	1	-0.0235	1	0.1974
4	- 1	2	4	1	0.2978	1	0.0088	1	0.2980
4	- 1	4	2	1	-0.2925	1	-0.0124	1	0.2927
5	- 1	2	5	1	0.5573	1	0.0846	1	0.5637
5	- 1	5	2	1	-0.5445	1	-0.0609	1	0.5479
6	- 1	3	4	1	0.1636	1	0.0452	1	0.1697
6	- 1	4	3	1	-0.1633	1	-0.0539	1	0.1720
7	- 1	4	5	1	0.0558	1	0.0164	1	0.0581
7	- 1	5	4	1	-0.0555	1	-0.0391	1	0.0679

x모선의 n번째 iteration 결과(x,n) / (0,0)을 눌러 종료 : 4,30

<4모선의 30번째 iteration 결과>

Voltage Magnitude(p.u.) | Phase Angle(Deg) | P(p.u.) | Q(p.u.) 0.9803 | -4.9445 | -0.4000 | -0.0500

D 0+0i 0-17.3611i 0+0i 0+0i 0+17.3611i 0+0i 0+0i 0+0i 0+0i 2 0+0i 0-16i 0+0i 0+0i 0+0i 0+0i 0+16i 0+0i 0+0i 3 0+0i 0-17.0648i 0+0i 0+0i 0+0i 0+0i 0+17.0648i 0+0i 0+0i 4 0+17.3611i 0+0i |-1.36519+11.6041i|-1.94219+10.5107i|0+0i 0+0i 0+0i 3.30738-39.3089i 0+0i 5 0+0i 0+0i 0+0i -1.36519+11.6041i 2.55279-17.3382i 0+0i -1.1876+5.97513i 0+0i 0+0i 6 0+0i 0+0i 0+0i -1.94219+10.5107i 0+0i 3.2242-15.8409i 0+0i 0+0i -1.28201+5.58824i 7 0+0i 0+16i 0+0i -1.1876+5.97513i 0+0i 0+0i 2.80473-35.4456i -1.61712+13.698i 0+0i 8 0+0i 0+0i 0+0i 0+0i 0+0i 0+0i -1.61712+13.698i 2.77221-23.3032i -1.15509+9.78427i 9 0+0i 0+17.0648i 0+0i 0+0i -1.28201+5.58824i 0+0i -1.15509+9.78427 2.4371-32.1539i 0+0i

Export Result to Excel File

2 3 =

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

```
% Export Ybus, Bus/Line Output data to Excel file
function export Result(Ybus, BusOutputData, LineOutputData)
    result file = 'Power Flow Result.xlsx';
   if exist(result file, 'file')
        delete(result file);
                                                                               11
    end
    % Y Bus Matrix
    writematrix(Ybus, 'Power Flow Result.xlsx', 'sheet', 'Y Bus Matrix');
    % Bus Output Data
    headers = {'Bus#','Voltage Magnitude(p.u.)','Phase Angle(Deg)','P_G(p.u.)','Q_G(p.u.)','P_L(p.u.)','Q_L(p.u.)'};
    BusData = [headers; num2cell(BusOutputData)];
    writecell(BusData, 'Power_Flow_Result.xlsx', 'sheet', 'Bus Output Data');
    % Line Output Data
    headers = {'Line#', 'from', 'to', 'P', 'Q', 'S'};
    LineData = [headers; num2cell(LineOutputData)];
    writecell(LineData, 'Power_Flow_Result.xlsx', 'sheet', 'Line Output Data');
end
```

	Α	В	С	D	Е	F	G
1		Voltage Magnitude(p.u.)	Phase Angle(Deg)	P_G(p.u.)	Q_G(p.u.)	P_L(p.u.)	Q_L(p.u.)
2	1	1.04	0	0.71641043	0.270459208	0	0
3	2	1.025	9.280003346	1.63	0.066536586	0	0
4	3	1.025	4.664749223	0.85	-0.108597101	0	0
5	4	1.025788395	-2.216788471	0	0	0	0
6	5	0.995630861	-3.988806446	0	0	1.25	0.5
7	6	1.012654326	-3.687397357	0	0	0.9	0.3
8	7	1.025769373	3.719699124	0	0	0	0
9	8	1.015882584	0.727533959	0	0	1	0.35
10	9	1.03235295	1.966714065	0	0	0	0

ВС S Line# from to P 0.716410433 0.270459208 0.765762425 -0.716410433 -0.239231227 0.755298278 0.307036797 0.010300044 0.307209514 -0.305372727 -0.165433629 0.347305036 -0.594627289 -0.134566366 0.609663612 0.608165774 -0.180748357 0.634456915 0.849999969 -0.108597101 0.856909142 -0.849999969 0.149553281 0.863056273 10 0.24183416 0.03119508 0.243837843 11 -0.240954194 -0.242958221 0.342180684 12 7 -0.759045848 -0.107041771 0.766556287 13 7 8 0.763798685 -0.007973315 0.763840301 14 7 2 -1.629999971 0.0917815 1.632581927 15 1.629999971 0.066536586 1.631357417 16 7 5 0.866201246 -0.083808181 0.870246178 17 5 7 -0.843201538 -0.113127531 0.850756529 18 -0.386872464 0.561386948 -0.406798479 5 0.409373622 0.228931186 0.469037579

임의 모선의 n번째 Iteration 결과 출력

```
62
         % x모선의 n번째 iteration 결과
         values = input('\nx모선의 n번째 iteration 결과(x,n) / (0,0)을 눌러 종료 : ', 's');
63
64
         % 쉼표를 기준으로 입력 문자열을 분리
65
         split_values = strsplit(values, ',');
66
                                                              전공 수업의 보조 자료로써 활용 가능할 것으로 기대함.
         x = str2double(split_values{1});
67
         n = str2double(split_values{2});
68
69
         if x == 0 & n == 0
70
            fprintf('프로그램을 종료합니다.\n');
71
         elseif (x<1 | x>SIZE) | (n<0 | n>i)
72
            fprintf('정보를 잘못 입력하였습니다. 프로그램을 종료합니다.\n');
73
74
         else
            fprintf('\n<%d모선의 %d번째 iteration 결과>\n',x,n);
75
            fprintf('Voltage Magnitude(p.u.) | Phase Angle(Deg) | P(p.u.) | Q(p.u.)\n');
76
77
            fprintf('%15.4f
                                %11.4f
                                                         \%7.4f\n',V(x,n+1),Delta(x,n+1),P_G(x,n+1)-P_L(x,n+1),Q_G(x,n+1)-Q_L(x,n+1));
                                               %7.4f
78
         end
79
      end
                                                   x모선의 n번째 iteration 결과(x,n) / (0,0)을 눌러 종료 : 5,10
                                                   <5모선의 10번째 iteration 결과>
                                                   Voltage Magnitude(p.u.) | Phase Angle(Deg) |
                                                                                                   P(p.u.)
                                                                                                                 Q(p.u.)
                                                                                                   -1.2500
                                                                                                                 -0.5000
                                                            0.9970
                                                                                  -4.9890
```

개선 가능한 사항

알고리즘을 최적화하여 코드의 가독성을 높이고, 시간 복잡도 및 공간 복잡도를 개선할 수 있음.

Transformer Tap을 고려하고 전력 계통 고장 계산을 수행하도록 코드를 추가할 수 있음

Jacobi Method는 수렴 속도가 느린 방법이기 때문에 추후 코드 효율성을 개선할 때다른 수치해석 기법 (Gauss-Seidel, Newton-Raphson)을 적용할 수 있음.

자기 성장에 대한 평가

전력공학, 수치해석 등 전력 조류 계산을 위한 이론의 이해도가 크게 향상되었음.

<u>전력조류계산 이론</u>

MATLAB 활용 능력

MATLAB의 활용하여 복잡한 알고리즘을 설계하는 과정에서 코딩 능력이 향상되었고, 상대방이 이해할 수 있도록 설계 의도를 명확히 기술하는 방법을 익힘.

팀별 세미나와 통합 세미나를 통해 서로 피드백을 주고 받으며 협업 능력을 강화하고 동일 전공자 간의 친목을 다질 수 있었음.

향후계획

1 Jacobi Method 알고리즘 최적화 및 코드 가독성 개선

2 Gauss-Seidel 또는 Newton-Raphson 기법 추가 개발

- 3 <대한전기학회 전력기술부문회 추계학술대회 전력조류계산 관련 SW경진대회> 출전 (https://www.kiee.or.kr/board/?_0000_method=view&ncode=a002&num=2519&page=1)
- 4 상명대학교 전기공학과 졸업발표회(ECC)에서 자기설계학점 내용에 대한 발표 예정

Q&A

감사합니다!