in Machine learning >
Choss-Entropy mostly used as cost Punction in training the classifier
<u>d</u>
Come From Information theory (Claude Shannon) &
in theorem s
to transfer I bit of information — Uncertainty divide by 2
eg, if weather 50% Rainy
Rainy if sand 1 bit it divide uncontaining by
So there's two options, now there's just on
& mean: it send you in I bit of useful info even if it
eg, what if there's 8 States of Weether equally likely
(Sunry, Cloudy, Rainy)
Ulhan Station Sand You reformation it dilledo you uncertaint

information \Rightarrow it divide your uncertainty by factor of $8=2^{\circ}=2^{\circ}$

Meaning 3 bits are the actual useful information

it's easy to calculate # useful bits = log (uncertainty)
Reduction)

$$=\log(8)$$

eg, what if probability not equally likely

if $A \to A$ Rainy $A \to A$ This mean your uncertainty drop By Factor of $A \to A$

98 Notes: Uncertainty Reduction = inverse of probability of event

80 #USeful bits =
$$log(uncertainty) = log(\frac{1}{p}) = -log(p)$$

if
$$\beta$$
 = 1.33

When the sum of t

Not so much Useful ~ as I am already 75%.

Sure that's Sunmy Before you till me

=> Note / # useful bits / can be translated also as / # well in Po. /

what the average of useful information?

(3) All there's 75% it's sunny fit's send (0.41) useful info also there's 25%. it's Rainy fit's send (2) useful info.

& # allg info = 0.75 (0.41) + 0.25(2) = 0.81 bits = - plog(p) - p(og(p))

= Entropy => nice Measure of Uncertain Events are

Entopy = $H(\vec{P}) = -I$ $p \log(p) = how much on any information you get <math>\longrightarrow$ when you sample event from distribute \vec{P}

= how unpredictable the probability distribution

Cross Entropy = one message length (that actually sent)

0.35 log₂(0.35) + ... + 0.01 log₂(0.01)

2.23 bits

But also 2.23 on any are useful

Meaning we predicted 25% Summy

Very Whoney assumption/predication

ncertainty Red - 5#bots

distribution
q = predicted distribution

$$1/2^2 = 25\%$$
 $1/2^2 = 25\%$ $1/2^3 = 12.5\%$ $1/2^3 = 12.5\%$ $1/2^3 = 12.5\%$ $1/2^3 = 12.5\%$ $1/2^3 = 12.5\%$

go Our predicated probability =

= -2 P, log_(9,)

& Cross Entropy = H(P.9)

Notes: _iP Cross Entropy = Entropy -> very efficient _ if Cross Entropy >>> Entropy >>> Make very wrong Assumption

- CRoss Entropy - Entropy = Relative Entropy

= Kull back leibler divergence

= KL Divergence

OR Better :

Cross Entropy = Entropy + KL Diverger

OR 8

 $D_{1}(P | Q) = H(P | Q) - H(P)$

Cross Entropy as Cast Function &

Since it's One hot Grooding

then Gross Enlingly (05s) = $-\log(0.25)$ or it predicated 1 = 0.005 = 0

Vif it predicated "O" => Loss = 1