

Metodi matematici per l'Informatica *Modulo 8.2 – Cardinalità (parte II)*

Docente: Pietro Cenciarelli

Cosa è l'infinito?

Richard Dedekind (1888)

"Un insieme si dice infinito se è equipotente ad una sua parte propria; nel caso opposto si dice finito."

"Immaginiamo un albergo con infinite stanze..."

David Hilbert (1862 – 1943)

Alberghi transfiniti (🏂)

che succede quando un albergo transfinito è **pieno** e...

...si presenta un nuovo ospite?

ovvero:
$$|\omega| = |\omega+1|$$

Alberghi transfiniti (🍑 🍑)

che succede quando un albergo transfinito è pieno e...

...si presentano ω nuovi ospiti?

ovvero:
$$|\omega| = |\omega + \omega|$$

E 'l naufragar...

$$|\omega| = |\omega+1| = |\omega+\omega| = |\omega+\omega+\omega| = ... |\omega^2| ...$$

ma allora gli infiniti sono tutti uguali?!

chiamiamo 2^{ω} l'insieme dei sottoinsiemi di ω

ovvero:

 $\{\{0\}, \{1,4,100\}, \{2,4,6,8...\}, \{\}, \omega...\}$

supponiamo che $|\omega|=|2^{\omega}|$

supponiamo che $|\omega| = |2^{\omega}|$

ora prendiamo la diagonale

essa rappresenta un insieme {0, 2, 3, ...}

ora prendiamone il complemento

esso rappresenta un insieme {1, ...} che però...

... non può comparire nella tabella!

conclusione

$$|\omega| < |2^{\omega}|$$

...e allora?

Buddha Shakyamuni (~ 500 a.C.)

"Onorato dal Mondo, questi mondi sono infiniti e sconfinati. Il loro numero è al di là di ogni calcolo e supera il potere dell'immaginazione." (Sutra del Loto – IV.5)

Cosa vuol dire che una funzione è *calcolabile* ?

Che esiste un *procedimento effettivo* per calcolarla

Procedimento effettivo di calcolo

Alan M. Turing (1912 – 1954)

(~ 1930)

Alonzo Church (1903 – 1995)

Tutto ciò che è calcolabile è " - calcolabile"

Quante sono le macchine di Turing?

C1,0,1,C2		C1,1,L,C2
C1,1,R,C1		C2,0,L,C3
C2,0,R,C3	_	C2,1,L,C3
C2,1,L,C2	<	C3,0,1,C3
C3,0,R,C4		C3,1,L,C4
C3,1,0,C3		C4,0,1,C4
C4,0,R,C4		C4,1,R,C5

$$f(x,y) = x + y \qquad \qquad f(x) = 2x$$

Quante sono le maccine di Turing?

Quante sono le funzioni?

Dunque, esistono funzioni matematicamente ben definite ma...

... NON CALCOLABILI!

Emil Post (1897 – 1954)

a	b	ca	a	abc
ab	ca	a	ab	c

abcaabc abcaabc

Emil Post (1897 – 1954)

Emil Post (1897 – 1954)

•

•

•

Emil Post (1897 – 1954)