Problem Set 3: Due Monday, February 5

Problem 1:	Write both	the converse a	and contrapo	ositive of each	of the fo	ollowing s	statements (no need	to
argue whethe	er any of the	them are true	or false). In	each case, ge	t rid of a	ll occurre	ences of not	in the fi	nal
result.									
o If a c 7 or	d = 2 + b =	$n \cdot 4a > 7$							

a. If $a \in \mathbb{Z}$ and $a \ge 2$, then 4a > 7.

b. If $x, y \in \mathbb{R}$ and $x^4 + y^4 = 1$, then $x^2 + y^2 \le 2$.

c. If $a \in \mathbb{Z}$ and there exists $m \in \mathbb{Z}$ with a = 10m, then there exists $m \in \mathbb{Z}$ with a = 5m.

Problem 2: Consider the following statement:

If $a \in \mathbb{Z}$ and 3a + 5 is even, then a is odd.

- a. Write down the contrapositive of the given statement.
- b. Show that the original statement is true by proving that the contrapositive is true.

Problem 3: Let $A = \{e^x : x \in \mathbb{R}\}.$

- a. Write a description of A by carving it out of a set using a property with a "there exists" quantifier.
- b. Find another way to describe A by carving it out of a set using a property without any quantifiers. Briefly explain why your set is equal (no need to give a formal proof).

Problem 4: Let $A = \{12n - 7 : n \in \mathbb{Z}\}$ and let $B = \{4n + 1 : n \in \mathbb{Z}\}.$

a. Show that $B \not\subset A$.

b. Fill in the blanks below with appropriate phrases so that the result is a correct proof of the statement that $A \subseteq B$.

Let $a \in A$ be arbitrary. By definition of A, we can _____. Now notice that a =____. Since \subseteq $\in \mathbb{Z}$, we conclude that $a \in B$. Since $a \in A$ was arbitrary, the result follows.

Problem 5: Let $A = \{x^2 + 5 : x \in \mathbb{R}\}$ and let $B = \{x \in \mathbb{R} : x \geq 5\}$. In this problem, we show that A = Bby doing a double containment proof.

a. Prove that $A \subseteq B$.

b. Fill in the blanks below with appropriate phrases so that the result is a correct proof of the statement that $B \subseteq A$.

Let $y \in B$ be arbitrary. By definition of B, we know ______. Now notice that _____> 0 so ______ $\in \mathbb{R}$, and that _____ = y, so $y \in A$. Since $y \in B$ was arbitrary, the result follows.