Задача 13. Реализовать функции из задач 5 и 6 с помощью мультиплексора (в базисе &, V , ' , MUX(2), MUX(3)).

5.27. 1101 1010 1101 0010

6.27. {3,6,7,11,12,13,14,15}

Реализовать функцию посредством мультиплексора M(3) $f(x,y,z,t) = 1101\ 1010\ 1101\ 0010 =$

Х	у	Z	t	f	Конъюнкты для разложения
0	0	0	0	1	f(000t) x'y'z'
0	0	0	1	1	f(000t) = 1
0	0	1	0	0	F(001t) x'y'z
0	0	1	1	1	F(001t)=t
0	1	0	0	1	F(010t) x'yz'
0	1	0	1	0	F(010t) = t'
0	1	1	0	1	F(011t) x'yz F(011t) = t'
0	1	1	1	0	
1	0	0	0	1	f(100t) x'yz
1	0	0	1	1	f(100t) = 1
1	0	1	0	0	F(101t) x'yz'
1	0	1	1	1	F(101t)=t
1	1	0	0	0	F(110t) xyz' F(110t) = 0
1	1	0	1	0	
1	1	1	0	1	F(111t) xyz F(111t) = t'
1	1	1	1	0	

 $f(x,y,z,t) = 1101\ 1010\ 1101\ 0010 = f(000t)\ x'y'z'\ V\ f(001t)\ x'y'z\ V\ f(010t)\ x'yz'\ V\ f(100t)$

 $\{3,6,7,11,12,13,14,15\}$ Реализовать функцию посредством мультиплексора M(3) $f(x,y,z,t)=\{3,6,7,11,12,13,14,15\}==$

х	у	Z	t	f	Конъюнкты для разложения
0	0	0	0	0	f(000t) x'y'z' f(000t) = 0
0	0	0	1	0	
0	0	1	0	0	F(001t) x'y'z F(001t)=t
0	0	1	1	1	1 (0011)=1
0	1	0	0	0	F(010t) x'yz' F(010t) = 0
0	1	0	1	0	(0100) = 0
0	1	1	0	1	F(011t) x'yz F(011t) = 1
0	1	1	1	1	
1	0	0	0	0	f(100t) x'yz f(100t) = 0
1	0	0	1	0	
1	0	1	0	0	F(101t) x'yz' F(101t)=t
1	0	1	1	1	1 (1011)=1
1	1	0	0	1	F(110t) xyz' F(110t) = 1
1	1	0	1	1	1 (1109 – 1
1	1	1	0	1	F(111t) xyz F(111t) = 1
1	1	1	1	1	

14.27. {11,12,13,14,28,29,30,31}.

Построить простую непересекающуюся декомпозицию функции f(x1,x2,x3,x4,x5) = f1(x1,x2,x3,f2(x4,x5)) и реализовать ее с помощью мультиплексора.
Простая непересекающаяся декомпозиция функции f(x1,...,xn) есть ее представление

в виде **Теорема 1.**f(X) =Простая непересекающаяся декомпозиция для $\phi(Y, \psi(Z))$ f(X) = (Y, (Z)) при некоторых ϕ , ψ .

функции f(X) существует тогда и только тогда, когда всякая функция у ее

Y-**Теорема 2**.компоненты есть либо 0, либо 1, либо Функция f(X) допускает простую непересекающуюся $\psi(Z)$, либо $\neg \psi(Z)$. декомпозицию тогда и

только тогда, когда функция f имеет в Z-компоненте не более двух различных функций. f= $\{11,12,13,14,28,29,30,31\}$. f(x1,x2,x3,x4,x5) = f1(x1,x2,f2(x3,x4,x5)) 11 = 01011, 12 = 01100, 13 = 01101, 14 = 01110, 28 = 11100, 29 = 11101, 30 = 11110, 31 = 11111

	x4,x5				
x1,x2,x3	00	01	10	11	
000	0	0	0	0	f(000,x4,x5) = 0
001	0	0	0	0	f(001,x4,x5)= 0
010	0	0	0	1	$f(010,x4,x5) = \psi(x4, x5)$
011	1	1	1	0	$f(011,x4,x5) = -\psi(x4, x5)$
100	0	0	0	0	f(100,x4,x5)= 0
101	0	0	0	0	f(101,x4,x5)= 0
110	0	0	0	0	f(110,x4,x5)= 0
111	1	1	1	1	f(111,x4,x5)= 1
	h1	h2	h1	h1	

Способ 1: по теореме 1 т.к. в правом столбце толькопростая непересекающаяся

декомпозиция 0, 1, ψ и $\neg \psi$, то f допускает $\psi(x4, x5) = (0001) = x4 + x5$

