UMA205: Introduction to Algebraic Structures

Naman Mishra

January 2024

Contents

Theorem 0.1 (Multinomial theorem). Let $n, k \in \mathbb{N}$ and x_1, \ldots, x_k be indeterminates. Then

$$\sum_{\substack{0 \le a_1, \dots, a_k \le n \\ a_1 + \dots + a_k = n}} \binom{n}{a_1, \dots, a_k} x_1^{a_1} \dots x_k^{a_k} = (x_1 + \dots + x_k)^n$$

Lecture 09: Mon 23 Jan '24 Lecture 10: Wed 24 Jan '24

Proof.

Example.

$$\binom{1/2}{n} = \frac{(1/2)(-1/2)\dots(1/2-n+1)}{n}$$
$$= \frac{(-1)^{n-1}(2n-3)!!}{2^n n!}$$

Definition 0.2. A weak composition of $n \in \mathbb{N}$ is a sequence $(a_i)_{i=1}^k$ where $a_i \in \mathbb{N}$ and $a_1 + \cdots + a_k = n$. If each $a_i > 0$, then it is called a *(strict) composition*.

Example. For n = 3, its strict compositions are (1, 1, 1), (1, 2), (2, 1) and (3).

Proposition 0.3. The number of weak compositions of n into k parts is $\binom{n+k-1}{k-1}$.

Proof.

Corollary 0.4. The number of compositions of n into k parts is $\binom{n-1}{k-1}$.

Proof. Each box must get at least one ball, so use proposition 0.3 with $n \mapsto n - k$.

Corollary 0.5. The total number of compositions is 2^{n-1} .

Proof.
$$\sum_{k=1}^{n} {n-1 \choose k-1} = \sum_{k=0}^{n-1} {n-1 \choose k} = 2^{n-1}.$$

Definition 0.6 (Partitions). An *(integer) partition* of $n \in \mathbb{N}$ is a sequence $\lambda = (\lambda_1, \dots, \lambda_k)$ of weakly decreasing positive integers which sum to n. We write $\lambda \vdash n$. Each λ_i is called a *part* and the number of parts is called the *length*, denoted $\ell(\lambda)$. We write p(n) for the number of partitions of n.

Example. The partitions of 5 are (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1) and (1,1,1,1,1). Thus p(5)=7.

Proposition 0.7. The number of partitions of n into exactly (resp. at most) k parts is the same as the number of partitions of n with largest part exactly (resp. at most) k.

Definition 0.8. The *Young/Ferrers diagram* of a partition is a left-justified array of boxes with λ_i boxes in the *i*th row.

Example. The Young diagrams of (4,1) and (3,2) are

Definition 0.9 (Conjugate). The *conjugate* of a partition λ , denoted λ' , is the partition whose Young diagram is the transpose of that of λ . That is,

$$\lambda_i' = \#\{j \in \mathbb{N} : \lambda_j \ge i\}$$

Proof of proposition 0.7. If λ has length k, then λ' has largest part k. \square

Theorem 0.10. The number of self-conjugate partitions of n is equal to the number of partitions of n into distinct odd parts.

Proof.

Theorem 0.11 (Euler). The number of partitions of n into odd parts is equal to the number of partitions of n into distinct parts.

Fact 0.12 (Hardy-Ramanujan Formula).

$$p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}$$

Definition 0.13. A set partition of [n] is a collection of pairwise disjoint non-empty subsets/blocks whose union is [n]. The number of set partitions of [n] into k (non-empty) blocks is called the Stirling number of the second kind and denoted $\binom{n}{k}$, read "n set k".

Example. The set partitions of [3] are 123, 12|3, 13|2, 1|23 and 1|2|3.

We define, by convention, $\binom{n}{0} = \delta_{n,0}$ and $\binom{n}{k} = 0$ for k > n.

We immediately have that $\binom{n}{1} = \binom{n}{n} = 1$ for $n \neq 0$. We enumerate some '24 more values below.

Lecture 11: Mon 29 Jan

Table 1: Stirling numbers of the second kind

Proposition 0.14. For
$$1 \le k \le n$$
, $\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$

Proof. We split the partitions into two cases:

(i) The partition contains $\{n\}$ as a singleton. There are $\binom{n-1}{k-1}$ such partitions.

(ii) n belongs to some other block. There are $\binom{n-1}{k}$ ways to partition the remaining elements, and k ways to choose which block n belongs to.

Proposition 0.15. The number of surjections from [n] to [k] is $k! {n \brace k}$.

Proof. Any surjection is determined by a sequence (p_1, p_2, \ldots, p_k) of preimages of $1, 2, \ldots, k$ respectively. These are simply permutations of k blocks of [n].

Corollary 0.16. For all $n \in \mathbb{N}$,

$$\sum_{j=0}^{n} {n \brace j} x^{\underline{j}} = x^n$$

Proof. For $x \in \mathbb{N}$, the RHS counts functions from [n] to [x]. We split these functions by the size of the image.

For functions of image size j, there are $\binom{n}{j}$ ways to choose the image, and $j!\binom{n}{j}$ ways to choose the preimage. But $\binom{n}{j}j!$ is precisely $n^{\underline{j}}$.

Thus both sides agree at infinitely many points, and so they are equal. \Box

Definition 0.17 (Bell numbers). The number of set partitions of [n] is called the nth Bell number, denoted $B_n := \sum_{k=0}^n {n \brace k}$.

Exercise 0.18. Prove that $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$.

Solution. Let b_k be the number of partitions of [n+1] with n+1 in a block of size k+1. Then $b_k = \binom{n}{k} B_{n-k}$. This gives the desired result by the re-indexing $k \mapsto n-k$.

Though this seems like a recurrence, it is not (for this course). By "recurrence" we will mean a recurrence relation dependent upon at most M previous terms, for some fixed M.

0.1 Permutations as Cycles

Let S_n be the set of all permutations of [n]. Recall that any permutation $\pi \in S_n$ can be written as a product of cycles. A useful convention is to skip cycles of length 1. Thus we write $\sigma = 6754132$ as (1635)(27). This allows us to consider π as just a product (under composition) of permutations which are cyclic on some subset of [n]. E.g. $\pi = (1635) \circ (27)$, where (27) for example is the permutation which swaps 2 and 7 and fixes everything else.

Lemma 0.19. Let $\sigma \in S_n$ and $j \in [n]$. Then there exists an $i \in \mathbb{N}^*$ such that $\sigma^i(j) = j$.

Proof. Consider the sequence $(\sigma(j), \ldots, \sigma^n(j))$. If any of these are equal to j, we are done. Otherwise, by the pigeonhole principle, there exist k < l such that $\sigma^k(j) = \sigma^l(j)$. Then $\sigma^{l-k}(j) = j$ (since σ is a bijection).

Corollary 0.20. Let $\sigma \in S_n$. Then $\sigma^{n!} = id$.

Proof. By the lemma, for each $j \in [n]$, there exists an $i_j \in [n]$ such that $\sigma^{i_j}(j) = j$. Since $i_j \mid n!$ for all j, we have $\sigma^{n!}(j) = j$ for all j.

Notation. We will write cyclic decompositions of permutations as follows:

- Each cycle has its smallest element first.
- Cycles are written in increasing order of their smallest elements.

Definition 0.21. The *cycle type* of a permutation σ , denoted type(σ), is the partition formed by arranging its cycle lengths in weakly decreasing order.

Definition 0.22. The number of permutations in S_n with k cycles is called the (unsigned) Stirling number of the first kind, denoted $\begin{bmatrix} n \\ k \end{bmatrix}$.