(1) すべての n について $a_n \geqq 2$ であるような数列 $\{a_n\}$ が与えられたとして数列 $\{x_n\}$ に関する漸化式

(A)
$$x_{n+2} - a_{n+1}x_{n+1} + x_n = 0$$
 $(n = 0, 1, 2, \dots)$

を考える.このとき,自然数 m を一つ決めて固定すれば,漸化式 (A) を満たし, $x_0=0$, $x_m=1$ であるような数列 $\{x_n\}$ がただ一つ存在することを示せ.また, この数列について $0< x_n<1$ $(n=1,2,\cdots,m-1)$ が成り立つことを示せ.ただし m は 3 以上とする.

(2) 数列 $\{a_n\}$ と正の定数 b が与えられ,すべての n について $a_n\geqq 1+b$ が成り立つと仮定して,数列 $\{y_n\}$ に関する漸化式

(B)
$$y_{n+2} - a_{n+1}y_{n+1} + by_n = 0$$
 $(n = 0, 1, 2, \cdots)$

を考える.このとき,自然数 m を一つ決めて固定すれば,漸化式 (B) を満たし, $y_0=0$, $y_m=1$ であるような数列 $\{y_n\}$ がただ一つ存在して $0< y_n<1$ $(n=1,2,\cdots,m-1)$ が成り立つことを示せ.ただし m は 3 以上とする.

c を 2 より大きな定数として,すべての n について $a_n \ge c$ が成り立つと仮定する. このとき,c から決まる m によらない正の定数 r で r<1 を満たすものが存在し, (1) で得られた数列 $\{x_n\}$ は $x_n< r^{m-n}\ (n=1,2,\cdots,m-1)$ を満たすことを示せ.