Fundamentals of Machine Learning (Fall 2022)

Homework #1 (80 Pts, Due date: Sep 21, 2022)

Student ID
Name
(1) Given n training samples, $x_1, x_2,, x_n \in \mathbb{R}$, we want to find a constant w_0 that minimizes the following error function.
$E(w_0) = \frac{1}{n} \sum_{i=1}^{n} (x_i - w_0)^2$
Assume that we have five training samples $(n = 5)$ such that $x_1 = 1, x_2 = 3, x_3 = 4, x_4 = 5, x_5 = 9$.
(a) [10 pts] Calculate the optimal w_0 using an analytical solution.
Answer:
(b) [10 pts] Explain the meaning of the optimal solution in terms of normal distribution $\mathcal{N}(\mu, \sigma^2)$.
Answer:

(2) We provide all template code and datasets in Python. Write your code to implement linear regression. You need to install NumPy and Matplotlib libraries.
(a) [5 pts] Implement the util function "add_bias" in 'models/LinearRegression.py.' You should add a column of ones for bias after the last column of the input matrix.
Note: Fill in your code (EDIT HERE part). You also have to submit your code to i-campus.
Answer:
(b) [5 pts] Implement the training function "numerical_solution" in 'models/LinearRegression.py' using the batch gradient descent method. The error function is defined as follows:
$\widehat{y_i} = w_0 + \sum_j w_j x_{ij}$
$E(\mathbf{w}) = \frac{1}{2n} \sum_{i} (y_i - \widehat{y}_i)^2$, where n is the number of samples.
Note: Fill in your code (EDIT HERE part). You also have to submit your code to i-campus.
Answer:

(c) [10 pts] Implement training function "numerical_solution" in 'models/LinearRegression.py' using the mini- oatch stochastic gradient descent method. The error function is defined as follows:
$E(w) = \frac{1}{2 \mathcal{B} } \sum_i (y_i - \widehat{y_i})^2$, where $ \mathcal{B} $ is the number of the minibatch samples.
Note: Fill in your code (EDIT HERE part). You also have to submit your code to i-campus.
Answer:
(d) [10 pts] Implement the training function "analytical_solution" in 'models/LinearRegression.py' using the normal equation.
Note: Fill in your code (EDIT HERE part). You also have to submit your code to i-campus.
Answer:

- (3) Evaluate your code using two datasets, "Wave" and "Diabetes."
- (a) [10 pts] After training your model on the "Diabetes" dataset, fill the blank using the following metrics.

RMSE =
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y^{(i)} - f(x^{(i)}))^2}$$

Write your opinion briefly on two solutions, the analytical solution and the gradient descent method. (Hyperparameter for gradient: Epoch = 10,000, Batch size = 32, learning rate = 0.01, optimizer='SGD')

Answer: Fill the blank in the table.

	w_0	<i>w</i> ₁	w_2	RMSE
Initial value	0.0	0.0	0.0	168.7240
Gradient Descent				
Analytic solution				

(b) [10 pts] For the "Wave" dataset, draw the plots by adjusting learning rates, where the other hyperparameters are the same as (a). For each plot, the x-axis is # of iterations, and the y-axis is the error value. Try at least five different learning rates.

Answer:	

(c) [10 pts] For the "Wave" dataset, draw the plots by adjusting batch sizes, where the other hyperparameters are the same as (a). For each plot, the x-axis is # of iterations, and the y-axis is the error value. Try at least five different values.