AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A fluoropolymer containing acid/acid salt groups and having -CF₂H groups at polymer chain terminals,

wherein said acid/acid salt groups are sulfonic acid groups, $-SO_2NR^1R^2$, $-SO_3NR^3R^4R^5R^6$, $-SO_3M^1_{1/L}$, phosphoric acid groups, $-PO_3(NR^7R^8R^9R^{10})_2$ and/or $-PO_3M^2_{2/L}$, in the formula R^1 represents H or $M^6_{1/L}$, R^2 represents H, $M^7_{1/L}$, an alkyl group or a sulfonyl-containing group, R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms, M^1 , M^2 , M^6 and M^7 are the same or different and each represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table.

2. (original): The fluoropolymer according to Claim 1,

said fluoropolymer being one obtained by subjecting a fluoropolymer precursor containing acid/acid salt groups and having –CF₂COOX groups at polymer chain terminals, in the formula X represents H, NR¹¹R¹²R¹³R¹⁴ or M⁴_{1/L}; R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M⁴ represents a metal having a valence of L, said metal having a valence of L being as defined

above, to heat treatment by which said -CF₂COOX groups can be converted to -CF₂H groups, X being as defined above.

- 3. (currently amended): The fluoropolymer according to Claim 1-or 2, wherein said acid/acid salt groups are sulfonic acid groups, -SO₃NR³R⁴R⁵R⁶ and/or -SO₃M¹_{1/L}, R³, R⁴, R⁵, R⁶ and M¹ being as defined above.
- 4. (currently amended): The method of producing the fluoropolymer according to any one of Claims 1 to 3Claim 1, by subjecting a fluoropolymer precursor containing acid/acid salt groups and having –CF₂COOX groups at polymer chain terminals, in the formula X represents H, NR¹¹R¹²R¹³R¹⁴ or M⁴_{1/L}; R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M⁴ represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table, to heat treatment for the conversion of said CF₂COOX groups to –CF₂H groups, X being as defined above,

wherein said fluoropolymer precursor is one obtained by polymerizing a perhalovinyl ether derivative represented by the general formula (I):

$$CF_2 = CF - O - (CF_2 CFY^1 - O)_n - (CFY^2)_m - SO_2 Z$$
 (I)

wherein Y^1 represents F, Cl or a perfluoroalkyl group, n represents an integer of 0 to 3, the n atoms/groups of Y^1 are the same or different, Y^2 represents F or Cl, m represents an integer of 1 to 5, the m atoms of Y^2 are the same or different and Z represents F, Cl, Br, I, $-OM_{1/L}^5$ or

-ONR¹⁵R¹⁶R¹⁷R¹⁸; M⁵ represents a metal having a valence of L and the metal having a valence of L is as defined above, and R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms,

when the group $-SO_2Z$ in the general formula (I) is not said acid/acid salt group but is a group convertible to such acid/acid salt group, said fluoropolymer precursor is one subjected to a conversion treatment, after the above-mentioned polymerization, for the conversion of said group $-SO_2Z$ to the above-mentioned acid/acid salt group, and

said heat treatment comprises heating said fluoropolymer precursor at 120 to 400°C.

- 5. (original): The method of producing a fluoropolymer according to Claim 4, wherein the heat treatment comprises heating the fluoropolymer precursor at 120 to 200°C in the presence of water or an organic solvent having compatibility with water.
- 6. (original): The method of producing a fluoropolymer according to Claim 5, wherein the organic solvent having compatibility with water is an organic liquid having a boiling point exceeding 100°C but not exceeding 300°C.
- 7. (currently amended): The method of producing a fluoropolymer according to any one of Claims 4 to 6Claim 4,

wherein the fluoropolymer precursor is an at least binary copolymer obtained by polymerizing the perhalovinyl ether derivative and a monomer copolymerizable with said perhalovinyl ether derivative.

Preliminary Amendment Based on PCT/JP2004/018885

8. (currently amended): The method of producing a fluoropolymer according to any one of Claims 4 to 7Claim 4,

wherein Y^2 is F, n is 0 or 1 and m is 2 or 3.

9. (currently amended): The method of producing a fluoropolymer according to any one of Claims 4 to 8Claim 4,

wherein the fluoropolymer precursor constitutes a powder, dispersion, solution or membrane-shaped molding.

- 10. (original): The method of producing a fluoropolymer according to Claim 9, wherein the fluoropolymer precursor constitutes a membrane-shaped molding.
- 11. (currently amended): An electrolyte membrane comprising the fluoropolymer according to any one of Claims 1 to 3Claim 1.
- 12. (currently amended): An immobilized active substance material comprising the fluoropolymer according to any one of Claims 1 to 3Claim 1 and an active substance.
 - 13. (original): The immobilized active substance material according to Claim 12, wherein the active substance is a catalyst.
 - 14. (original): The immobilized active substance material according to Claim 13,

Preliminary Amendment Based on PCT/JP2004/018885

wherein the catalyst is a platinum-containing metal.

- 15. (currently amended): A membrane-electrode assembly comprising the immobilized active substance material according to Claim 13 or 14.
- 16. (original): A solid polymer electrolyte fuel cell comprising the membraneelectrode assembly according to Claim 15.
- 17. (original): A solid polymer electrolyte fuel cell comprising the electrolyte membrane according to Claim 11.