WEITAO WANG

A16 Scaife Hall, 4805 Frew St, Pittsburgh, PA, 15213 Email: weitaowa@andrew.cmu.edu

Website: https://sites.google.com/view/wtwang/

ACADEMIC POSITIONS

Carnegie Mellon University

Oct. 2023 - Present Advisor: Rebecca E. Taylor

- Postdoctoral researcher

EDUCATION

Carnegie Mellon University

Aug. 2019 - Sept. 2023

- Ph.D., Mechanical Engineering

Advisor: Rebecca E. Taylor, Xi Ren

• Thesis: Cell membrane engineering with structural DNA nanotechnology

• Committee: Rebecca E. Taylor, Xi Ren, Markus Deserno, Philip LeDuc

University of Notre Dame

Jan. 2018 - May. 2019

- M.S., Mechanical Engineering

Advisor: Zhangli Peng

• Thesis: Coarse-grained molecular simulations of erythrocyte membrane skeleton

Shanghai Jiao Tong University

Sept. 2013 - Jun. 2017

- B.S., Mechanical Engineering

HONORS AND AWARDS

Philip and Marsha Dowd Fellowship (2022)

Mechanical Engineering Collaborative Fellowship (2019, 2020)

Department Fellowship (2018)

Honor Degree, Bachelor (2017)

National Scholarship (2014, 2015)

Carnegie Mellon University Carnegie Mellon University University of Notre Dame Shanghai Jiao Tong University Shanghai Jiao Tong University

PUBLICATIONS

- 1. **Wang, W.**, Ren, X., & Taylor, R. E.* Selective formation of a molecular barrier at impaired glycocalyx using DNA origami. (*In preparation*)
 - We show that DNA origami can be programmed to target endothelium where the glycocalyx is injured, thereby restoring a physical barrier capable of modulating molecule permeability and subsequent cellular uptake through steric hindrance and electrostatic interactions.
- 2. **Wang, W.**, Taylor, R. E.* Observation of DNA origami-cell membrane interactions using scanning ion conductance microscopy. (*In preparation*)
 - We utilize scanning ion conductance microscopy to visualize the surface topology of DNA origamiattached cell membranes. We find that the DNA origami-induced endocytic pits appear to exhibit cooperative behavior.
- 3. Wang, W., Ren, X., & Taylor, R. E.* DNA origami assembly on cell surface induces membrane heterogeneity and phase separation. $(In\ preparation)$
 - We show that higher order DNA origami assemblies trigger membrane phase separation and cytoskeleton reorganization, resulting in significant heterogeneity in membrane biophysical properties. It indicates the transmembrane coupling of cell membrane-attached DNA nanostructures and the cytoskeleton.

- 4. Wang, W., Chopra, B., Walawalkar V., Liang, Z., Adams, R., Deserno, M., Ren, X., & Taylor, R. E.* (2024) Cell-surface binding of DNA nanostructures for enhanced intracellular and intranuclear delivery. (preprint on bioRxiv, accepted by ACS Appl. Matter. Interfaces) [Link]
 - This work demonstrates a strategy to rapidly and significantly enhance the intracellular and intranuclear delivery of DNA nanostructures within a 0.5 hour timeframe, by attaching them to lipid membranes via cholesterol tags or to cell-surface glycocalyx via click chemistry.
- 5. Wang, W., Haynes, P., Ren, X.*, & Taylor, R. E.* (2023) Synthetic cell armor made of DNA origami. *Nano Letters* 23, 15, 7076–7085 [Link] [Nature Research Highlights] [News Feature (video)]
 - This work demonstrates a modular approach to build tunable nanoshells by assembling DNA nanorods on living cell membranes. The nanoshell modulates the biophysical properties of the plasma membrane and protects the cell from mechanical stressors.
- 6. Xing, Y., Yerneni, S. S., **Wang, W.**, Taylor, R. E.* & Ren, X.* (2022). Engineering pro-angiogenic biomaterials via chemoselective extracellular vesicle immobilization. *Biomaterials* 281:121357. [Link]
- 7. Wijesekara, P., Liu, Y., **Wang, W.**, Johnston, E. K., Sullivan, M. L., Taylor, R. E.*, & Ren, X.* (2021). Accessing and Assessing the Cell-Surface Glycocalyx Using DNA Origami. *Nano Letters* 21, 11, 4765–4773. [Link]
 - This work presents a functional measure of the glycocalyx integrity by leveraging the accessibility of DNA origami to cell membranes.
- 8. Liu, Y., Wijesekara, P., Kumar, S., **Wang, W.**, Ren, X.*, & Taylor, R. E.* (2021). The effects of overhang placement and multivalency on cell labeling by DNA origami. *Nanoscale* 13(14), 6819-6828. [Link]
- 9. Wang, W., Arias, D. S., Deserno, M., Ren, X.*, & Taylor, R. E.* (2020). Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. *APL Bioengineering* 4(4), 041507. [Link] [Featured Article]
 - This review introduces the basics of structural DNA nanotechnology, the structure and biophysics of cell plasma membranes, and emerging applications at their interface.

CONFERENCES AND SEMINARS

- 1. Wang, W., Ren, X., & Taylor, R. E. Synthetic condensates of DNA origami induce membrane heterogeneity and phase separation. 68th Biophysical Society Annual Meeting, Pennsylvania, PA, Feb, 2024.
- Wang, W., Chopra, B., Walawalkar V., Liang, Z., Adams, R., Deserno, M., Ren, X., & Taylor, R.
 E. Membrane and glycocalyx tethering of DNA nanostructures for enhanced uptake. 20th Annual Conference on the Foundations of Nanoscience, Snowbird, UT, Apr, 2023.
- 3. Wang, W., Hayes, P. R., Ren, X. & Taylor, R. E. A DNA origami nanoshell stabilizes cellular membranes. 19th Annual Conference on the Foundations of Nanoscience, virtual, Apr, 2022.
- 4. Wang, W., Ren, X. & Taylor, R. E. A DNA nanoshell for encapsulation and protection for cells. *Carnegie Mellon Forum on Biomedical Engineering*, virtual, Sept, 2021.
- 5. Liu, Y., Wijesekara, P., Wang, W., Ren, X. & Taylor, R. E. The Effects of Overhang Placement and Multivalency on Cell Labeling by DNA Origami. 18th Annual Conference on the Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO Oral Presentation). pp. 25, 2021.
- 6. Beltrán, S., Wang W., McGaughey, A., LeDuc, P. R. & Taylor, R. E. DNA Nanostructures for Mechanosensation. *Society of Engineering Science*, Saint Louis, MO, Oct, 2019.

PATENTS

• Taylor, R., Ren, X. and Wang, W. "Modular DNA nanoshells for cell encapsulation and ruggedization" Intellectual Property Disclosure no. 2023-063 Provisional application date: 2022/09/06

INVITED TALKS AND WORKSHOP PRESENTATIONS

Molecular machines made of DNA, guest lecturer invited by Prof. Tzahi Cohen-Karni for Bionanotechnology: Princes and Applications, Carnegie Mellon University, Pittsburgh, PA, Nov, 2023

TEACHING EXPERIENCE

- 24703 Numerical Methods in Engineering, Teaching Assistant, Carnegie Mellon University, Spring, 2023
- 24261 Mechanics I: 2D Design, Teaching Assistant, Carnegie Mellon University, Fall, 2022
- AME20241 Solid Mechanics, Teaching Assistant, University of Notre Dame, Spring, 2019 and Fall, 2018

MENTORING EXPERIENCE

- Peter Sauer (undergraduate). Biological Sciences and Statistics/Machine Learning, Carnegie Mellon University, May 2022-Dec. 2022
- Bhavya Chopra (master). Biomedical Engineering, Carnegie Mellon University, Jun. 2022-present

REFERENCES

Rebecca E. Taylor

Associate Professor

Mechanical Engineering

Carnegie Mellon University

Email: bex@andrew.cmu.edu

Xi Ren

Associate Professor

Biomedical Engineering

Carnegie Mellon University

Email: xir@andrew.cmu.edu

Markus Deserno

Professor

Physics

Carnegie Mellon University

Email: deserno@andrew.cmu.edu