Lecture 12: Summary

Joachim Gudmundsson

comp2007 - Overview I

- Graphs
 - Definitions and properties
 - Graph traversal
 - Applications: min-link path, bipartitness...
- Greedy algorithms
 - Greedy technique
 - Standard correctness proof: exchange argument
 - Applications: Scheduling, MST, Dijkstra (incl. properties)

comp2007 - Overview II

- Divide-and-Conquer algorithms
 - General technique: break, solve and combine
 - Recursion: How to state and solve a recursion
 - Standard correctness proof: Induction
 - Applications: Mergesort, Inversions,
- Sweepline algorithms
 - General technique: "imaginary" sweep line, process event points
 - Standard correctness proof:
 - Changes only at event points
 - Maintain invariant
 - Applications: Convex hull, segment intersection

comp2007 - Overview III

- Dynamic programming
 - General technique: break, solve, combine
 - Define states
 - State recursion
 - Correctness proof: Induction
 - Applications: Knapsack, weighted scheduling, RNA, Bellman-Ford,...
- Flow networks
 - Properties of flow network: max flow, min cut, integer lemma,...
 - General technique: reduce to a flow network
 - Correctness proof: Solution for X ⇔ Solution for FN
 - Applications: matching, edge-disjoint paths, circulation,...

comp2007 - Overview IV

- Complexity
 - Polynomial-time reductions!
 - Classes: P, NP, NP-complete, NP-hard
 - How to prove that a problem belongs to P/NP/NP-complete
 - Understand the NP-complete problems in lecture 10.
- Coping with hardness
 - Understand the basic concepts:
 - Exponential time algorithms
 - Restricted instances
 - Approximation algorithms

Lecture 2: Graphs

- Definitions
- Representations
- Graph traversal:
 - Breadth First Search (incl. layers)
 - Depth First Search
- Applications: bipartiteness, min-link paths,

3.1 Basic Definitions

- Graphs (directed/undirected)
- Tree (rooted/unrooted)
- Path (simple), connectivity, cycle...

Trees

Definition: An undirected graph is a tree if it is connected and does not contain a cycle.

Number of edges in a tree?

Theorem: Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Graph traversal: Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

 $S \subset L_1 \subset L_2 \subset \infty \subset L_{n-1}$

BFS algorithm.

- $L_0 = \{ s \}.$
- $-L_1 = all neighbors of L_0.$
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem: For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

BFS applied to Shortest paths

The shortest path between two nodes u,v in a graph G, is the path with the minimum number of edges that connects u and v (if it exists).

Compute the shortest paths from a given node s to all other nodes using BFS.

BFS applied to bipartiteness

Lemma: If a graph G is bipartite, it cannot contain an odd length cycle.

Lemma: Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

l**l)** Page 11

Lecture 3: Greedy algorithms

Greedy algorithms

A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum.

Greedy

Examples of problems that can be solved using a greedy approach:

- Interval scheduling/partitioning
- Scheduling to minimize lateness
- Shortest path
- Minimum spanning trees

Interval Scheduling

- Interval scheduling.
 - Input: Set of n jobs. Each job i starts at time s_i and finishes at time f_i.
 - Two jobs are compatible if they don't overlap in time.
 - Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it is compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n. 
 / jobs selected 
 A \leftarrow \varnothing 
 for j = 1 to n { 
   if (job j compatible with A) 
        A \leftarrow A \cup {j} 
 } 
 return A
```

Implementation. O(n log n).

- Remember job j* that was added last to A.
- Job j is compatible with A if $s_i \ge f_{i*}$.

Greedy algorithms: Analysis

- 1. Define your solution X and an optimal solution OPT.
- 2. Compare solutions. If $X\neq OPT$ then they must differ in a specific way.
- 3. Exchange Pieces. Transform OPT by exchanging some piece of OPT for some piece of X.
- 4. Iterate. Argue correctness.

Interval Scheduling: Analysis

- Theorem: Greedy algorithm [Earliest finish time] is optimal.
- Proof: (by contradiction)
 - Assume greedy is not optimal, and let's see what happens.
 - Let i_1 , i_2 , ... i_k denote the set of jobs selected by greedy.
 - Let J_1 , J_2 , ... J_m denote the set of jobs in an optimal solution with $i_1 = J_1$, $i_2 = J_2$, ..., $i_r = J_r$ for the largest possible value of r.

Interval Scheduling: Analysis

- Theorem: Greedy algorithm [Earliest finish time] is optimal.
- Proof: (by contradiction)
 - Assume greedy is not optimal, and let's see what happens.
 - Let i_1 , i_2 , ... i_k denote the set of jobs selected by greedy.
 - Let J_1 , J_2 , ... J_m denote the set of jobs in an optimal solution with $i_1 = J_1$, $i_2 = J_2$, ..., $i_r = J_r$ for the largest possible value of r.

solution still feasible and optimal, but contradicts maximality of r.

Interval Scheduling: Analysis

- Theorem: Greedy algorithm [Earliest finish time] is optimal.
- Proof: (by contradiction)
 - Assume greedy is not optimal, and let's see what happens.
 - Let i_1 , i_2 , ... i_k denote the set of jobs selected by greedy.
 - Let J_1 , J_2 , ... J_m denote the set of jobs in an optimal solution with $i_1 = J_1$, $i_2 = J_2$, ..., $i_r = J_r$ for the largest possible value of r.

Greedy Analysis Strategies

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Minimum Spanning Tree

Minimum spanning tree (MST). Given a connected graph G = (V, E) with real-valued edge weights c_e, an MST is a subset of the edges T

E such that T is a spanning tree whose sum of edge weights is minimized.

- Cayley's Theorem. There are n^{n-2} spanning trees of K_n .

can't solve by brute force

MST properties

- Simplifying assumption. All edge costs c_e are distinct.
- Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.
- Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

f is not in the MST

Prim's Algorithm

- Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
 - Initialize S = any node.
 - Apply cut property to S.
 - Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S.

Summary: Greedy algorithms

A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum.

Problems

- Interval scheduling/partitioning
- Scheduling: minimize lateness
- Minimum spanning tree (Prim's algorithm)
- Shortest path in graphs (Dijkstra's algorithms)

– ...

Lecture 4: Divide & Conquer

Divide-and-Conquer

The divide-and-conquer strategy solves a problem by:

- 1. Breaking it into subproblems that are themselves smaller instances of the same type of the original problem.
 - 2. Recursively solving these subproblems.
 - 3. Appropriately combining (merging) their answers.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Mergesort

- Mergesort.
 - Divide array into two halves.
 - Recursively sort each half.
 - Merge two halves to make sorted whole.

Jon von Neumann (1945)

	A	I		G	0	R	I	T	Н	M	I S	3		
A		L	G	0	R	ı		I	T	Н	M	s	divide	O(1)
A		G	L	0	R	ı		Н	I	M	S	T	sort	2T(n/2)
	A	G		Н	I	L	M	0	R	S	i I	•	merge	O(n)

- Merging. Combine two pre-sorted lists into a sorted whole.
- How to merge efficiently?
 - Linear number of comparisons.
 - Use temporary array.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

Counting Inversions: Divide-and-Conquer

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.
 - Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

5 blue-blue inversions

8 green-green inversions

9 blue-green inversions

Total =
$$5 + 8 + 9 = 22$$
.

Combine: ???

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where \boldsymbol{a}_i and \boldsymbol{a}_i are in different halves.
- Merge two sorted halves into sorted whole.

5 blue-blue inversions

8 green-green inversions

16

2

23

2

25

How many blue-green inversions?

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_i are in different halves.
- Merge two sorted halves into sorted whole.

13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

Time: $T(n) = 2T(n/2) + O(n) = O(n \log n)$

Proof by unrolling

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + cn & \text{otherwise} \end{cases}$$
sorting both halves merging

1 (of size n) \rightarrow cn 2 (of size n/2) \rightarrow cn 4 (of size n/4) \rightarrow cn log₂n 2^k (of size $n/2^k$) \rightarrow cn $n (of size 1) \rightarrow cn$

A Useful Recurrence Relation

- **Definition:** T(n) = number of comparisons to mergesort an input of size n.
- Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

- Solution: $T(n) = O(n \log_2 n)$.

The master method

The master method applies to recurrences of the form

$$T(n) = a \cdot T(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

$T(n) = a \cdot T(n/b) + f(n)$ size n **Branching factor** cost f(n) <a>a size n/b cost $a \cdot f(n/b)$ size (n/b^2) cost $a_{l}^{2} \cdot f(n/b^{2})$ height log_b n size 1 cost w·T(1)

Summary: Divide-and-Conquer

- Algorithm:

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Complexity analysis: Master theorem

Correctness: Induction

Problems

- Merge Sort
- Closest pair
- Multiplication

Lecture 5:
Sweepline technique
(and computational geometry)

Design technique

- Simulate sweeping a vertical line from left to right across the plane.
- Events: Discrete points in "time" when sweep line status needs to be updated.
- Sweep line status: Store information along with the sweep line.
- Maintain invariant: At any point in time, to the left of sweep line everything is clean, i.e., properly processed.

Page 50

Design technique

- Simulate sweeping a vertical line from left to right across the plane.
- Events: Discrete points in "time" when sweep line status needs to be updated.
- Sweep line status: Store information along with the sweep line.
- Maintain invariant: At any point in time, to the left of sweep line everything is clean, i.e., properly processed.

```
Algorithm Generic_Plane_Sweep:

Initialize sweep line status S at time x=-∞

Store initial events in event queue Q, a priority queue ordered by x-coordinate while Q ≠ Ø

// extract next event e:
e = Q.extractMin();
// handle event:
Update sweep line status
Discover new upcoming events and insert them into Q
```

Plane sweep algorithm: intersection detection

Plane sweep (general method):

- 1. Sweep the input from left to right and stop at event points
- 2. Maintain invariant (status and "cleanliness")
- 3. At each event point restore invariant

Event points?

end points of the segments

Invariant:

- The order of the segments along the sweep line
- No intersections to the left of the sweepline

 $s_2 \ s_1 \ s_3 \ s_4$

Algorithm - detection

Every endpoint is an event point \Rightarrow 2n event points

Insert segment s

Add s to T: $O(\log n)$

Check neighbours: $2 \times O(\log n)$

Delete segment s

Remove s from T: $O(\log n)$

Check new neighbours: $2 \times O(\log n)$

Total: O(n log n)

Convex hull - sweep line approach

Idea: Maintain hull while adding the points one by one, from left to right ⇔ sweep the point from left to right

Convex hull - sweep line approach

Event points: Input points

Invariant: Valid hull to the left of sweepline

Summary: Sweepline

Sweepline.

- Define event points.
- Define an invariant.
- Prove invariant.
- Correctness: Usually follows immediately from invariant.

- Problems

- Segment intersection
- Convex hull

— ...

Lectures 6-7: Dynamic Programming

Dynamic programming

- 1. Define subproblems.
- 2. Write a recurrence (include base cases).
- 3. Prove that the recurrence is correct. Usually case-by-case. May require an induction proof, but usually easy to prove.
- 4. Prove the algorithm evaluates the recurrence.
- 5. Prove the algorithm is correct.

Weighted Interval Scheduling

- Weighted interval scheduling problem.
 - Job j starts at s_i , finishes at f_i , and has weight or value v_i .
 - Two jobs compatible if they don't overlap.
 - Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. **Def.** p(j) = largest index <math>i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Step 1: Define subproblems

OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

Step 2: Find recurrences

- Case 1: OPT selects job j.
 - can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \max \{v_j + OPT(p(j)), OPT(j-1)\}$$
Case 1 Case 2

Step 3: Solve the base cases

$$OPT(0) = 0$$

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Done...more or less

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Step 1: Define subproblems

```
OPT(i, w) = max profit with subset of items 1, ..., i with weight limit w.
```

Step 2: Find recurrences

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = $w w_i$
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

If
$$w_i > w$$

$$OPT(i,w) = OPT (i-1,w)$$
otherwise
$$OPT(i,w) = \max \{ v_i + OPT (i-1,w-w_i), OPT(i-1,w) \}$$

Recap: Dynamic Programming - Step 3

Step 3: Solve the base cases

$$OPT(0, w) = 0$$

$$OPT(i,w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1,w) & \text{if } i > 0 \text{ and } w_i > w \\ \max\{OPT(i-1,w), v_i + OPT(i-1,w-w_i)\} & \text{otherwise} \end{cases}$$

Done...more or less

Knapsack Problem: Running Time

- Running time: $\Theta(nW)$.
 - Not polynomial in input size!
 - "Pseudo-polynomial."
 - Decision version of Knapsack is NP-complete. [Lecture 10]

Shortest Paths

- Shortest path problem. Given a directed graph G = (V, E), with edge weights c_{vw} , find shortest path from node s to node t.

allow negative weights

Shortest Paths: Dynamic Programming

Step 1: OPT(i, v) = length of shortest v-t path P using at most i edges.

Step 2:

Case 1: P uses at most i-1 edges.

• OPT(i, v) = OPT(i-1, v)

Case 2: P uses exactly i edges.

• if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i-1 edges

Step 3: OPT(0,t) = 0 and OPT(0,
$$v\neq t$$
) = ∞

$$OPT(i,v) = \begin{cases} 0 & \text{if } i=0 \text{ and } v=t \\ \infty & \text{if } i=0 \text{ and } v\neq t \\ \min\{OPT(i-1,v), \min [OPT(i-1,w)+c_{vw}] \} & \text{otherwise} \\ (v,w) \in E \end{cases}$$

The Universit

Dynamic Programming Summary I

3 steps:

- 1. Defining subproblems
- 2. Finding recurrences
- 3. Solving the base cases

Dynamic Programming Summary

- 1D dynamic programming

- Weighted interval scheduling
- Segmented Least Squares
- Maximum-sum contiguous subarray
- Longest increasing subsequence

- 2D dynamic programming

Knapsack

Dynamic programming over intervals

RNA Secondary Structure

Lectures 8-9: Flow networks

Minimum Cut Problem

Flow network

- Abstraction for material flowing through the edges.
- -G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.

The University of Sydney

Page 74

Flows

- Definition: An s-t flow is a function that satisfies:
 - For each $e \in E$:
 - For each $v \in V \{s, t\}$:

 $0 \le f(e) \le c(e)$

$$\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

(capacity)

(conservation)

Definition: The value of a flow f is:

$$v(f) = \sum_{e} f(e) .$$

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Cuts

Definitions:

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
- The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Cuts

Definitions:

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
- The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Flows and Cuts

- Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s. $\sum f(e) - \sum f(e) = v(f)$

e out of A e in to A15 10 8 8 S 10 15 0 10 15 11 Value = 6 + 0 + 8 - 1 + 1130 = 24 The University of Sydney

Ford-Fulkerson

```
Ford-Fulkerson(G,s,t) {
   foreach e ∈ E
       f(e) ← 0
   G<sub>f</sub> ← residual graph

while (there exists augmenting path P in G<sub>f</sub>) {
   f ← Augment(f,P)
      update G<sub>f</sub>
   }
   return f
Augment(f,P) {
   b ← bottleneck(f,P)
```

```
Augment(f,P) {
   b ← bottleneck(P,f)
   foreach e = (u,v) ∈ P {
      if e is a forward edge then
          increase f(e) in G by b
      else (e is a backward edge)
          decrease f(e) in G by b
   }
   return f
}
```

Residual Graph

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e).

- Residual edge.
 - "Undo" flow sent.
 - $e = (u, v) \text{ and } e^{R} = (v, u).$
 - Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

- Residual graph: $G_f = (V, E_f)$.
 - Residual edges with positive residual capacity.
 - $E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\}.$

For Fulkerson

```
b ← bottleneck(P,f)
foreach e =(u,v) ∈ P {
   if e is a forward edge then
      increase f(e) in G by b
   else (e is a backward edge)
      decrease f(e) in G by b
}
return f
}
```

Ford-Fulkerson Algorithm

Flow value = 0

Ford-Fulkerson Algorithm

Flow value = 8

Max-Flow Min-Cut Theorem

- Augmenting path theorem: Flow f is a max flow if and only if there are no augmenting paths in the residual graph.
- Max-flow min-cut theorem: The value of the max flow is equal to the value of the min cut. [Ford-Fulkerson 1956]
- Integrality. If all capacities are integers then every flow value f(e) and every residual capacities $c_f(e)$ remains an integer throughout the algorithm.

Running Time

Notation:
$$C = \sum_{e \text{ out}} c(e)$$

Observation: C is an upper bound on the maximum flow.

Theorem. Ford-Fulkerson runs in O(Cm) time.

Theorem. The scaling max-flow algorithm finds a max flow O(m² log C) time.

Bipartite Matching

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a max cardinality matching.

max matching

1-1', 2-2', 3-3', 5-5'

The University of Sydney

R

Bipartite Matching

Max flow formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign unit capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Page 88

Bipartite Matching: Proof of Correctness

Theorem: Max cardinality matching in $G \Leftrightarrow \text{value of max flow in } G'$.

Proof: \Rightarrow

- Assume max matching M has cardinality k.
- Consider a flow f that sends 1 unit along each of the k paths, defined by the edges in M.
- f is a flow, and it has value k.

Bipartite Matching: Proof of Correctness

Theorem: Max cardinality matching in $G \Leftrightarrow \text{value of max flow in } G'$.

Proof: ←

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral so f(e) is 0 or 1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: consider cut $(L \cup s, R \cup t)$

G

Disjoint path problem:

Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Definition: Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem:

Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Definition: Two paths are edge-disjoint if they have no edge in common.

Max flow formulation: assign unit capacity to every edge.

Max flow formulation: assign unit capacity to every edge.

Theorem: Max number edge-disjoint s-t paths equals max flow value.

Proof: \Rightarrow

- Suppose there are k edge-disjoint paths P_1, \ldots, P_k .
- Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
- Since paths are edge-disjoint, f is a flow of value k.

Max flow formulation: assign unit capacity to every edge.

Theorem: Max number edge-disjoint s-t paths equals max flow value.

Proof: ←

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

Summary: Flow networks

Properties

- Max-flow min-cut theorem
- Integer lemma
- **–** ...

Ford-Fulkerson's algorithm

- Problems

- Max flow
- Min cut
- Matching
- Disjoint edge paths

- ...

Lecture 10: NP and Computational Intractability

NP-Hard

Polynomial-Time Reduction

Suppose we could solve problem Y in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y, denoted $X \leq_P Y$, if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to an oracle that solves problem Y.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

- 1. Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
- 2. Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Reduction By Simple Equivalence

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Class NP-hard

Class NP-complete: A problem in NP such that every problem in NP polynomially reduces to it.

Class NP-hard:

A decision problem such that every problem in NP polynomially reduces to it.

not necessarily in NP

Summary

Polynomial time reductions

```
3-SAT \leq_p DIR HAMILTONIAN CYCLE \leq_p HAMILTONIAN CYCLE \leq_p TSP
```

 $3-SAT \leq_p INDEPENDENT-SET \leq_p VERTEX-COVER \leq_p SET-COVER$

Complexity classes:

P: Decision problems for which there is a poly-time algorithm.

NP: Decision problems for which there is a poly-time certifier.

NP-complete: A problem in NP such that every problem in NP polynomial reduces to it.

NP-hard: A problem such that every problem in NP polynomial reduces to it.

Lots of problems are NP-complete
 See https://www.nada.kth.se/~viggo/wwwcompendium/

Lecture 11: Coping with hardness

Coping With NP-Completeness

Question: What should I do if I need to solve an NP-complete problem?

Answer: Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
 - Approximation algorithms
 - Randomized algorithms
- Solve problem in polynomial time.
 - Exact exponential time algorithms
- Solve arbitrary instances of the problem.
 - Solve restricted classes of instances
 - Parametrized algorithms

Finding Small Vertex Covers: Algorithm

Theorem: Vertex cover can be solved in O(2^k kn) time.

This is fine as long as k is (a small) constant.

What if k is not a small constant?

Independent Set on Trees

INDEPENDENT-SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

Problem: Given a tree, find a maximum IS.

Theorem:

INDEPENDENT-SET on trees can be solved in O(n) time.

Approximation algorithms: Load Balancing

Input: m identical machines; n jobs, job j has processing time t_i.

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Definition: Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Example: $J(1) = \{A,E,H,I\}, J(2) = \{B,D,G\}, J(3) = \{C,F,J\}$

Definition: The makespan is the maximum load on any machine $L = \max_i L_i$.

Load balancing: Assign each job to a machine to minimize makespan.

How far off can the schedule be from optimal?

Is there an approximation guarantee?

An approximation algorithm for a minimization problem requires an approximation guarantee:

- Approximation ratio $\leq c$
- Approximation solution $\leq c \cdot \text{value of optimal solution}$

Load Balancing: List Scheduling Analysis

Theorem: [Graham, 1966]

Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L*.

Summary

NP-complete problems show up in many applications. There are different approaches to cope with it:

- Approximation algorithms
- Restricted cases (trees, bipartite graphs, small solution...)
- Randomized algorithms
- •

Each approach has its pros and cons.

Please remember to fill in the unit of study evaluation

http://sydney.edu.au/itl/surveys/complete/ What was good? What was bad?

Thanks for taking the class!

Good luck on the exam!