Roll No.

2K5-AS-2

December-2016 Applied Mathematics-I

Time: 3 hrs.]

[M.M.: 100

Note:-

1. Part 'A' may be attempted in first 6 pages of Answer Sheet.

भाग के के सभी उत्तर, उत्तर-पुरितका के प्रथम छः पृथ्वें में ही करने हैं।

2. Part 'B' in rest of the Sheets of Answer Sheet.

भाग 'ख' के उत्तर, उत्तर-पुस्तिका के अगले शेष पृष्ठों में लिखिये।

3. Answers may be given in English or Hindi. प्रश्नों के उत्तर अंग्रेजी अथवा हिन्दी में दीजिये।

Part 'A'

माग क

- Attempt any ten questions:- 10×2=20
 किन्हीं दस प्रश्नों के उत्तर दीजिए:-
 - (i) If A is a square matrix such that |A^T|=4, write the value of |A⁻¹|.

 वर्ग मैट्रिक्स A के लिये |A^T|=4 है | |A⁻¹| का मान ज्ञात कीजिये।

G-1510

(P.T.O.)

- If A is a square matrix of order 3 such that (ii)कोटि 3 के वर्ग मैद्रिक्स A के लिये |A|=2 है $|adj_A|$
- (iii) Write the value of $x \to 2$ $\frac{\sin(x-2)}{3x-6}$.

 $\lim_{x \to 2} \frac{\sin(x-2)}{3x-6}$. का मान ज्ञात कीजिये।

- (iv) Find $\frac{d}{dx}(\sin x^{\circ})$. $\frac{d}{d\mathbf{v}}(\sin \mathbf{x}^{\circ})$ को ज्ञात कीजिये।
- (v) If \vec{a} and \vec{b} represent diagonals of a parallelogram such that $\vec{a} \times \vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$, find the area of the parallelogram. एक समान्तर चतुर्भुज के विकर्ण वं तथा b हैं और $\vec{a} \times \vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ हैं, तो समान्तर चतुर्भुज का क्षेत्रफल ज्ञात कीजिये।
- (vi) If x < 0, find $\frac{d}{dx}(3x+|x|)$.

यदि x<0 है, तो $\frac{d}{dx}(3x+|x|)$ को ज्ञात कीजिये।

(vii) If $\vec{a} = 2\hat{i} - 3\hat{j} + \lambda \hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} + 2\hat{k}$ are orthogonal vectors, find λ .

2K5-AS-2

यदि $\vec{a}=2\hat{i}-3\hat{j}+\lambda\hat{k}$ तथा $\vec{b}=\hat{i}+3\hat{j}+2\hat{k}$ आर्थोगोनल है, तो λ को ज्ञात कीजिये।

- (viii) If the area of the circle $x^2+y^2-6x+8y-24=0$ is $k\pi$ square units, find the value of k.

 वृत $x^2+y^2-6x+8y-24=0$ का क्षेत्रफल $k\pi$ है। k का अव भाग ज्ञात कीजिये।
- (ix) If the lengths of latusrecta of the parabolas $x^2=12y$ and $y^2=-kx$, k>0 are equal, find k. परवलयों $x^2=12y$ तथा $y^2=-kx$ के नाभिलम्ब एक बराबर हैं तथा k>0 है, तो k को ज्ञात कीजिये।
- (x) Find the area of the triangle formed by the line 3x+4y=12 with the coordinate axes. निदेशांक अक्षों तथा रेखा 3x+4y=12 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिये।
- (xi) If \vec{a} is a unit vector such that $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$, find $|\vec{x}|$. $\vec{x} = \vec{a} \cdot (\vec{x} + \vec{a}) = 15$, find $|\vec{x}| \cdot (\vec{x} + \vec{a}) = 15$ है, $|\vec{x}|$ को ज्ञात कीजिये।
- (xii) Find the length of the latusrectum of the ellipse $16x^2+9y^2=144$.

 दीर्घवृत $16x^2+9y^2=144$ के नामिलम्ब की लम्बाई ज्ञात कीजिये।
- (xiii) Find the eccentricity of the hyperbola $9x^2-16y^2=144$.

⊨2 अतिपरचलय 9x²=16y²=144 की उत्केन्द्रता _{कात} कीजिये ।

(xiv) Write the equation $\sqrt{3}x + y = 12 = 0$ in the normal form and hence the values of α and (iv) $\sqrt{3}x + y - 12 = 0$ को लम्बस्य में व्यक्त कर. α तथा p के मान ज्ञात कीजिये।

Attempt any five questions:-2 5×4=20 किन्हीं पाँच प्रश्नों के उत्तर दीजिए :-

(i) If $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find k so that $A^2=8A+kI$.

यदि $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ तथा $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ हैं, तो k का

मान ज्ञात कीजिये, जबकि A²=8A+kI.

- (ii) Evaluate :-हल कीजिये :- $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & a & a^2 \end{vmatrix}$
- (iii) If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 3, |\vec{b}| = 2 \text{ and } \vec{a}.\vec{b} = 6, \text{ find } |\vec{a} + \vec{b}| \text{ and }$ $|\vec{a} - \vec{b}|$.

C+ a - b-C

सिंदिशों बे तथा \vec{b} के लिये $|\vec{a}|=3, |\vec{b}|=2$ तथा $\vec{a}.\vec{b}=6$ है, तो $|\vec{a}+\vec{b}|$ एवं $|\vec{a}-\vec{b}|$ को ज्ञात कीजिये।

(iv) Show that the product of perpendiculars on the line $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ from the points $(\pm\sqrt{a^2-b^2},0)$ is b^2 .

सिद्ध कीजिये कि बिन्दुओं $(\pm \sqrt{a^2-b^2},0)$ से रेखा $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ पर डाले गये लम्बवतों का गुणनफल b^2 है ?

(v) Evaluate:-

$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$

$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$
 का मान ज्ञात कीजि

 $\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$ का मान ज्ञात कीजिये।

- (vi) If $x^y = e^{x-y}$, prove that :- $x^y = e^{x-y}$ के लिये सिद्ध कीजिये :- $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$
- (vii) Find the equation of the circle of radius 10 units whose two diameters are 2x+y=6 and

3x + 2y = 4.

Mark Market

(6) 2N\$ AS-2 10 इकाई जिल्ला के उस चुत का समीकाल 10 इकाई जिल्ला के उस चुत का समीकाल कीजिये जिसके हो ह्यास 2x+y=6 श्रया 3x*2y=4 81

(viii) If 2x+y+p=0 is a focal chord of the parabola y²=8x, find the value of p. Also, write the length of the latusrectum and the coordinates

of its end-points. यदि परवलय $y^2 = -8x$ की फोकल जीवा $2x + y + p \ge 0$ 1 है, तो p का मान ज्ञात कीजिये। नामिलम्ब की लम्बाई तथा उसके सिरों के निदेशांक ज्ञात कीजिये।

Part 'B' भाग 'ख'

Attempt any 3 questions :- 3×20=60 किन्हीं तीन प्रश्नों के उत्तर दीजिए:-

3 (a) If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I_2 = 0$ and hence, find A-1.

> $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ के लिये सिद्ध कीजिये; $A^{2}-5A+7I_{2}=0$ तद्नुसार A^{-1} को ज्ञात कीजिये।

Show that:

(b) Show that:

$$|1+a^2-b^2| = 2ab -2b$$
 $|2ab |1-a^2+b^2| = 2a$
 $|2b |-2a |1-a^2-b^2|$

(a) If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular

vectors of equal magnitude, prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with vectors \vec{a} , \vec{b} and \vec{c} Also find $|\vec{a} + \vec{b} + \vec{c}|$.

समान माप के तीन परस्पर लम्बवत् सदिश a, b, c के लिये सिद्ध कीजिये $\vec{a} + \vec{b} + \vec{c}$, सिदशों \vec{a} , \vec{b} तथा \vec{c} पर समान रूप से अवनत हैं । $|\vec{a} + \vec{b} + \vec{c}|$ को भी ज्ञात कीजिये।

If \vec{p} and \vec{q} are unit vectors forming an angle (b) of 30°, find the area of the parallelogram having $\vec{a} = \vec{p} + 2\vec{q}$ and $\vec{b} = 2\vec{p} + \vec{q}$ as its diagonals.

इकाई सिंदेश \vec{p} व \vec{q} के बीच 30° का कोण है; तो $\vec{a} = \vec{p} + 2\vec{q}$ एवं $\vec{b} = 2\vec{p} + \vec{q}$ विकर्णों से बने समान्तर चतुर्भुज का क्षेत्रफल ज्ञात कीजिये।

5 (a) Evaluate the following limits: अर्थ के अर्थ के

मान झात क्लाजय :-
$$\lim_{(i)} \lim_{x \to \sqrt{2}} \frac{\sqrt{3+2x} - (\sqrt{2}+1)}{x^2 - 2}$$

(ii)
$$\lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1}$$

(b) If $x \sin (a+y)+\sin a \cos (a+y)=0$, prove

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\sin^2(a+y)}{\sin a}$$

- 6 (a) If $x^m y^{n}=(x+y)^{m+n}$, prove that :- $x^m y^{n}=(x+y)^{m+n} \text{ के लिये सिद्ध कीजिये :-}$ $\frac{dy}{dx} = \frac{y}{x}$
 - (b) Find the equation of the ellipse if its foci are (±2, 0) and the length of the latusrectum is

$$\frac{10}{3}$$
. $(ae, 0)$ $ae = 2$

 $(\pm 2, 0)$ नामियों तथा $\frac{10}{3}$ लम्बाई के नामिलम्ब के दीर्घवृत का समीकरण ज्ञात कीजिये।

Find the equation of the hyperbola whose (a)

foci are (8,3), (9,3) and recentricity is $\frac{4}{3}\frac{dy}{dy}$ (8,3) तथा (0,3) नाभियों तथा $\frac{4}{3}$ उत्केन्द्रता के

- अतिपरवलय का समीकरण ज्ञात कीजिये।
- Prove that the lengths of perpendiculars from (b) points P (m², 2m), Q (mn, m+n) and R (n², 2n) to the line x $\cos^2\theta + y \sin\theta$ $\cos\theta + \sin^2\theta = 0$ are in G.P.

सिद्ध की जिये कि रेखा $x \cos^2\theta + y \sin\theta$ $\cos\theta + \sin^2\theta = 0$ पर बिन्दुओं P (m², 2m), $Q\left(mn,m+n\right)$ तथा $R\left(n^{2},2n\right)$ से डाले गये अभिलम्बों की लम्बाई गु० श्रे० में है।