* KALKULUS Penerapan Turunan

ROBI SOBIRIN, M.Si

Tangerang, 11 Mei 2018

Universitas Multimedia Nusantara

Tujuan Pembelajaran

Mahasiswa mampu menghitung penerapan turunan berupa fungsi naik, fungsi turun, dan nilai ekstrim.

Pokok Bahasan

- Nilai ekstrim.
- Fungsi naik.
- Fungsi turun.

Nilai Maksimum dan Minimum

Fungsi f mempunyai maksimum mutlak (maksimum global) di c jika $f(c) \ge f(x)$ untuk semua x di D, dengan D adalah daerah asal f. Bilangan f(c) disebut nilai maksimum f pada D.

Secara serupa, f mempunyai minimum mutlak di c jika $f(c) \le f(x)$ untuk semua x di D dan f(c) disebut nilai minimum f pada D.

Nilai maksimum dan minimum f disebut nilai ekstrim f.

Maksimum dan Minimum Lokal

Fungsi f mempunyai maksimum lokal (maksimum relatif) di c jika $f(c) \ge f(x)$ bilamana x dekat c. [Ini berarti bahwa $f(c) \ge f(x)$ untuk semua x di dalam suatu selang terbuka yang mengandung c]. Secara serupa, f mempunyai minimum lokal di c jika $f(c) \le f(x)$ bilamana x dekat c.

Nilai Maksimum dan Minimum

Tentukan (jika ada) nilai ekstrim (lokal dan mutlak) dari fungsi-fungsi berikut.

(a)
$$f(x) = \cos x$$

(b)
$$f(x) = x^2$$

(c)
$$f(x) = x^3$$

(d)
$$f(x) = 8 - 3x, x \ge 1$$

a.
$$f(x) = cosx$$

b. $f(x) = x^2$

c.
$$f(x) = x^3$$

d.
$$f(x) = 8 - 3x$$

Teorema Nilai Ekstrim dan Fermat

Teorema Nilai Ekstrim. Jika f kontinu pada selang [a,b], maka f mencapai nilai maksimum mutlak f(c) dan nilai minimum mutlak f(d) pada suatu bilangan c dan d dalam [a,b].

Teorema Fermat. Jika f mempunyai maksimum atau minimum di c dan jika f'(c) ada, maka f'(c) = 0.

Bilangan Kritis

Bilangan kritis dari suatu fungsi f adalah suatu bilangan c di dalam daerah asal f sedemikian sehingga f'(c) = 0 atau f'(c) tidak ada.

Jika f mempunyai maksimum atau minimum lokal di c maka c adalah bilangan kritis f.

1. Carilah nilai maksimum mutlak dan minimum mutlak pada selang yang diberikan.

(a)
$$f(x) = 2x^3 + 3x^2 + 4$$
, $[-2,1]$

(b)
$$f(x) = x - 2 \cos x$$
, $[-\pi, \pi]$

2. Perlihatkan bahwa 5 adalah bilangan kritis dari fungsi $g(x) = 2 + (x-5)^3$ namun g tidak mempunyai ekstrim lokal pada 5.

Fungsi Naik dan Fungsi Turun

Andaikan c adalah bilangan kritis dari fungsi kontinu f.

- (a) Jika f' berubah dari positif ke negatif pada c, maka f mempunyai maksimum lokal pada c.
- (b) Jika f' berubah dari negatif ke positif pada c, maka f mempunyai minimum lokal pada c.
- (c) Jika f' tidak berubah tanda pada c, maka f tidak mempunyai maksimum atau minimum lokal pada c.

Fungsi Naik dan Fungsi Turun

Diberikan fungsi $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$.

- (a) Tentukan selang di mana fungsi *f* naik dan di mana dia turun.
- (b) Carilah nilai minimum atau nilai maksimum lokalnya.

Latihan

Tentukan daerah asal, selang fungsi naik, selang fungsi turun, selang kecekungan dan titik balik

1.
$$f(x) = 3x^2 - 3x + 1$$

2.
$$f(x) = x^3 - 6x^2 + 9x + 1$$

3.
$$f(x) = 4 - 12x - 3x^2$$

4.
$$f(x) = \frac{4}{x-1}$$

5.
$$f(x) = x + \frac{1}{x}$$

Terima Kasih