A flexible approach to time-to-event data analysis using case-base sampling

Jesse Islam July 11, 2019

Motivating example

Meet Justin

Popular methods in time-to-event analysis

Motivating example

- Meet Justin
 - Age: 56

Popular methods in time-to-event analysis

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate

Popular methods in time-to-event analysis

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

 In disease etiology, we tend to make use of the proportional hazards hypothesis

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models
 - Breslow estimator

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models
 - Breslow estimator

Motivations for a new method

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models
 - Breslow estimator

Motivations for a new method

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models
 - Breslow estimator

Motivations for a new method

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models
 - Breslow estimator

Motivations for a new method

Motivating example

- Meet Justin
 - Age: 56
 - Worried about his Prostate
 - What is Carol's two year risk for death by Prostate Cancer?

Popular methods in time-to-event analysis

- In disease etiology, we tend to make use of the proportional hazards hypothesis
 - Cox Regression
- When we want the absolute risk:
 - Parametric models
 - Breslow estimator

Motivations for a new method

ERSPC Data

■ ~150 000 men ages 55-69

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

ERSPC Data

■ ~150 000 men ages 55-69

• First start: 1991

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

ERSPC Data

■ ~150 000 men ages 55-69

• First start: 1991

■ End: 2006

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

ERSPC Data

■ ~150 000 men ages 55-69

• First start: 1991

■ End: 2006

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

ERSPC Data

■ ~150 000 men ages 55-69

• First start: 1991

■ End: 2006

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

ERSPC Data

■ ~150 000 men ages 55-69

• First start: 1991

■ End: 2006

The European Randomized Study of Screening for Prostate Cancer – Prostate Cancer Mortality at 13 Years of Follow-up

Fritz H. Schröder¹, Jonas Hugosson², Monique J. Roobol¹, Teuvo L.J. Tammela³, Marco Zappa⁴, Vera Nelen⁵, Maciej Kwiatkowski^{6,7}, Marcos Lujan^{8,9}, Lissa Määttänen¹⁰, Hans Lilja^{11,12,13}, Louis J. Denis¹⁴, Franz Recker⁶, Alvaro Paez^{15,16}, Chris H. Bangma¹, Sigrid Carlsson^{2,11}, Donella Puliti⁴, Arnauld Villers¹⁷, Xavier Rebillard¹⁸, Matti Hakama^{10,19}, Ulf-Hakan Stenman²⁰, Paula Kujala²¹, Kimmo Taari²², Gunnar Aus²³, Andreas Huber²⁴, Theo van der Kwast²⁵, Ron H.N. van Schaik R²⁶, Harry J. de Koning²⁷, Sue M. Moss²⁸, Anssi Auvinen¹⁹, and for the ERSPC Investigators

Casebase Overview

1. Clever sampling.

Caseba<u>se</u>

Casebase Overview

- 1. Clever sampling.
- 2. Indirectly deals with censoring.

Casebase Overview

- 1. Clever sampling.
- 2. Indirectly deals with censoring.
- 3. Allows a parametric fit using logistic regression.

Casebase Overview

- 1. Clever sampling.
- 2. Indirectly deals with censoring.
- 3. Allows a parametric fit using logistic regression.
- Casebase is parametric, and allows different parametric fits by incorporation of the time component.

Casebase Overview

- 1. Clever sampling.
- 2. Indirectly deals with censoring.
- 3. Allows a parametric fit using logistic regression.
 - Casebase is parametric, and allows different parametric fits by incorporation of the time component.
 - Package contains an implementation for generating population-time plots.

Casebase: Hazard fits

Casebase: Parametric families

We can now fit models of the form:

$$log(h(t; \alpha, \beta)) = g(t; \alpha) + \beta X$$

Casebase: Parametric models

Exponential: $g(t; \alpha)$ is equal to a constant

Gompertz:
$$g(t; \alpha) = \alpha t$$

casebase::fitSmoothHazard(status ~ time + var)

Casebase: Hazard fits

Casebase: Parametric families

We can now fit models of the form:

$$log(h(t; \alpha, \beta)) = g(t; \alpha) + \beta X$$

• By changing the function $g(t; \alpha)$, we can model different parametric families easily:

Casebase: Parametric models

Exponential: $g(t; \alpha)$ is equal to a constant

Gompertz:
$$g(t; \alpha) = \alpha t$$

casebase::fitSmoothHazard(status ~ time + var)

ERSPC Hazard

ERSPC Hazard

```
wModel<-fitSmoothHazard(DeadOfPrCa ~
log(Follow.Up.Time) +
ScrArm, data=ERSPC, ratio = 100)
call:
glm(formula = formula, family = binomial, data = sampleData)
Deviance Residuals:
             10 Median
   Min
                              30
                                     Max
-0.2678 -0.1715 -0.1347 -0.0908 4.5127
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  -9.44715 0.15750 -59.984 <2e-16 ***
log(Follow.up.Time) 1.07406 0.08237 13.039 <2e-16 ***
ScrArm1
                  -0.22362
                             0.08859 -2.524 0.0116 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Absolute Risk

Absolute Risk

• we have a bunch of different parametric Hazard models now.

Casebase: Absolute Risk comparison

Absolute Risk

Absolute Risk

- we have a bunch of different parametric Hazard models now.
- to get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

Casebase: Absolute Risk comparison

Estimated Cumulative Incidence (risk) With No Screening

Absolute Risk

Absolute Risk

- we have a bunch of different parametric Hazard models now.
- to get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

Lets use the weibull hazard

Casebase: Absolute Risk comparison

Estimated Cumulative Incidence (risk) With No Screening

Competing Risks

Competing Risks

Current methods:

Competing Risks: Data

)	Status	ftime
ALL	2	0.67

Competing Risks

Competing Risks

- Current methods:
- Fine-Gray

Competing Risks: Data

 $\frac{\mathsf{D} \qquad \mathsf{Status} \qquad \mathsf{ftime}}{\mathsf{ALL}} \qquad \qquad 2 \qquad 0.67$

Competing Risks

Competing Risks

- Current methods:
- Fine-Gray
- Kaplan-Meier

Competing Risks: Data

D	Status	ftime
ALL	2	0.67

Competing Risks

- Current methods:
- Fine-Gray
- Kaplan-Meier
- Proposed method:

D	Status	ftime
4LL	2	0.67

Competing Risks

- Current methods:
- Fine-Gray
- Kaplan-Meier
- Proposed method:
- Case-Base

D	Status	ftime
ALL	2	0.67

Competing Risks

- Current methods:
- Fine-Gray
- Kaplan-Meier
- Proposed method:
- Case-Base

Competing Risks: Data

Two diseases:

)	Status	ftime
4LL	2	0.67

Competing Risks

- Current methods:
- Fine-Gray
- Kaplan-Meier
- Proposed method:
- Case-Base

- Two diseases:
- Lymphoblastic leukemia (ALL)

D	Status	ftime
ALL	2	0.67

Competing Risks

- Current methods:
- Fine-Gray
- Kaplan-Meier
- Proposed method:
- Case-Base

- Two diseases:
- Lymphoblastic leukemia (ALL)
- Myeloblastic leukemia (AML)

D	Status	ftime
ALL	2	0.67

Competing Risks

- Current methods:
- Fine-Gray
- Kaplan-Meier
- Proposed method:
- Case-Base

- Two diseases:
- Lymphoblastic leukemia (ALL)
- Myeloblastic leukemia (AML)
- Contains a competing event.

D	Status	ftime
ALL	2	0.67

Summary

 CaseBase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them

References

Summary

- CaseBase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:

References

Summary

- CaseBase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
- Population-Time plots

References

Summary

- CaseBase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
- Population-Time plots
- Hazard functions

References

Summary

- CaseBase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
- Population-Time plots
- Hazard functions
- Absolute Risk

References

Summary

- CaseBase sampling implicitly incorporates censoring and permits the use of GLMs and the tools associated with them
- The casebase package contains tools to generate:
- Population-Time plots
- Hazard functions
- Absolute Risk
- Casebase can deal with competing risks.

References

cumulative incidence function for the Cox model

add casebase curve with legend

```
lines(wRisk[,1], wRisk[,2], type = "l", col = "blue") legend("bottomright", legend = c("semi-parametric (Cox)", "parametric (casebase)"), col = c("red", "blue"), lty = c(1, 1), bg = "gray90")
```