

高清多媒体接口(HDMI)EDID 规范详解

与测试常见问题分析 第1部分:规范详解

中国电子技术标准化研究院 2018年10月

前言

EDID 即 Extended Display Identification Data (扩展显示标识数据),是一种 VESA 标准数据格式,其中包含有关监视器及其性能的参数,包括供应商信息、最大图像大小、颜色设置、厂商预设置、频率范围的限制以及显示器名和序列号的字符串。在数字接口交互中应用广泛。

本报告针对 HDMI 1.4b、HDMI 2.0版本的 EDID,详解了其编写规则,并结合示例 EDID解析了其内容和含义;在此基础上讨论了 HDMI 认证规范对于 EDID的测试要求;并结合实际测试案例列举了常见的 EDID编写错误。希望通过我们梳理过往测试数据和经验,给 HDMI 厂商提供更多的参考。

此报告为《高清多媒体接口(HDMI)EDID规范详解与测试常见问题分析》的第1部分:规范详解。

版权声明:本报告涉及的 HDMI 相关的资料,不涉及 HDMI Forum未披露信息或独属于 HDMI 采纳者的信息。如需转载或引用,请注明出处。

报告编制人员

阮向远 董桂官 周阳翔 贾博文 刘鑫楠 曹新凤

联系方式:

Email: donggg@cesi.cn

TEL: 010-64102361-22

Mobile: 18612118407

http://www.cesi.cn

https://www.simplaylabs.com/

高清多媒体接口(HDMI)EDID 规范详解与测试常见问题分析 第1部分:规范详解

1 引言

1.1 术语与定义

为了方便阅读和理解,针对本文中出现的英文缩写等定义如下:

HDMI

即 High-Definition Multimedia Interface, 高清晰度多媒体接口, 是一种数字化音视频接口技术,适合影像传输的专用型数字化接口。

EDID

即 E-EDID,是有 VESA 定义的标准数据格式,包含有关监视器及其性能的参数,包括供应商信息、最大图像大小、颜色设置、厂商预设置、频率范围的限制以及显示器名和序列号的字符串等。

注:EDID 即 Extended Display Identification Data, E-EDID 即 Enhanced Extended Display Identification Data,对应于 EDID 发展历程中的先后版本,因当前使用 E-EDID 且技术向前兼容,故本报告不区分使用 EDID 和 E-EDID。

- Source 指 HDMI 交互中的源端,有时候也写作 Host Device,例如机顶盒等。
- Sink 指 HDMI 交互中的终端,有时候也写作 Display Device,例如显示器等。

VESA

即 Video Electronics Standards Association,视频电子标准协会是由代表来自世界各地的、享有投票权利的 140 多家成员公司的董事会领导的非盈利国际组织,总部设立于加利福尼亚州的 Milpitas,自 1989 年创立以来,一直致力于制订并推广显示相关标准。

CEA

即 Consumer Electronics Association,美国消费电子协会(CEA)由 1000 多家会员企业组成,各会员企业的经营涉及音频、视频、通信、信息技术、多媒体产品等领域。

1.2 EDID 的发展

EDID 是 VESA 定义的标准数据格式。早期,显卡没有标准办法简单获取到显示器的性能参数,一些 VGA 应用时使用部分管脚传输显示器性能信息,但这不是标准的、统一的。

VESA 在 1994 年提出了标准《 DDC standard version 1》,被视为 EDID v1.0 版本;此后 1996 年提出了标准《EDID standard version 2》,即 EDID v1.1 版本;1997 年提出了标准《EDID standard version 3》,即 EDID v1.2 和 v2.0 版本;2000 年提出了标准《E-EDID Standard Release A, v1.0》,即 EDID v1.3 版本;2006 年提出了标准《E-EDID Standard Release A, v2.0》,即 EDID v1.4 版本。本报告针对 EDID v1.4 版本讨论。

发布时间	版本号	规范名称
1994年8月	v1.0	DDC standard version 1
1996年4月	v1.1	EDID standard version 2
1997年	v1.2, v2.0	EDID standard version 3
2000年2月	v1.3(v2.0 停用)	E-EDID Standard Release A, v1.0
2006年9月	v1.4	E-EDID Standard Release A, v2.0

1.3 DisplayID

DisplayID 是 VESA 定义的用以替代 EDID 的数据格式,2007 年规范最初发布,目前已经到 v2.0 版本。EDID 因其已有的数据定义格式,一定程度上已经落后于当前更高清晰度数据传输(尤其是 VR/AR 应用)的需要。DisplayID 向下兼容 EDID。

发布时间	版本号	规范名称
2007年12月	_	一 (规范最初发布)
2009年3月	v1.1	_
2011年8月	v1.2	_
2013年6月	v1.3	Display Identification (DisplayID) Standard
		Version 1.3
2017年11月	V2.0	VESA DisplayID Standard Version 2.0

HDMI 使用 EDID, 故本报告不更多涉及 DisplayID。

2 HDMI1.4b 的 EDID 规范详解

以如下 EDID 为例,说明 HDMI1.4b 的 EDID 内容及其编写规范,其中使用不同颜色字体或不同颜色背景色以区分开不同的 block。

Block 0

		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	00:	00	FF	FF	FF	FF	FF	FF	00	34	A 9	0A	C 3	01	01	01	01
	10:	00	14	01	03	80	00	00	78	0A	DA	FF	A3	58	4A	A2	29
	20:	17	49	4B	20	00	00	01	01	01	01	01	01	01	01	01	01
	30:	01	01	01	01	01	01	8C	0A	D0	8A	20	EO	2D	10	10	3E
	40:	96	00	C4	8E	21	00	00	18	00	00	00	FE	00	44	69	73
	50:	63	72	69	70	74	6F	72	64	65	6C	00	00	00	FC	00	50
	60:	61	6E	61	73	6F	6E	69	63	54	56	31	0A	00	00	00	FD
	70:	00	17	3D	0F	44	0F	00	0A	20	20	20	20	20	20	01	8D
/								В	lock	1							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	00:	02	03	17	71	4B	03	02	01	04	11	12	13	06	07	1 5	16
	10:	66	03	0C	00	10	00	80	8C	0A	D0	A8	20	EO	2D	10	10
	20:	3E	96	00	ВА	88	21	00	00	18	8C	0A	D0	8A	20	E 0	2D
	30:	10	10	3E	96	00	0B	88	21	00	00	18	00	00	00	00	00
	40:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	50:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	60:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	70:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	42

2.1 Block0 内容详解

(1) Header Information 头信息 (厂商信息、EDID 版本等)

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
00:	00	FF	FF	FF	FF	FF	FF	00	34	A9	0A	C 3	01	01	01	01
10:	00	14	01	03												

包含 20Bytes,前 8 个 Bytes 固定写 00FFFFFFFFFF00h; 9-10 两个 Bytes 写厂商名字,包含三个字母,需要参照微软定义的 PNP ID(http://www.uefi.org/pnp_id_list); 11-12 两个 Byte 写 Product Code; 13-16 四个 Bytes 写序列号; 17Byte 写出厂周; 18Byte

写年份;最后两个 Byte 是 EDID 版本,一般填写 0103,表示 Version1 Revision3。

位置			描述	备注		
Hex	Hex	Dec				
08	0C	12	Manufacturer Name	Example = CEA		
09	A1	161	using EISA ID	Example - CEA		
0A	00	0		Used to differentiate		
0B	00	0	Product Code	between different models from the same manufacturer.		
0C	00	0		Optional.The serial number can		
0D	00	0	Serial Number	also be stored in a separate		
0E	00	0	Serial Nulliber	descriptorblock (see Section		
0F	00	0		A.2.17).		
10	00	0	Week of Manufacture	If this field is unused, the value should be set to 0. If the next field is used for Model Year, then FFH should be set.		
11	0C	12	Year of Manufacture/ Model Year	Example = 2002		

(2) Basic Display Parameters and Features 基本显示参数(数字/模拟接口、屏幕尺寸、格式支持等)

共 5Bytes, 第1个 Byte 是视频输入参数信息:

	V	ideo input pai	rameters bitmap		
		Bit 7=1	Digital input. If set, the following bit definitions apply:		
		Bits 6–4	Bit depth: 000=undefined, 001=6, 010=8, 011=10, 100=12, 101=14, 110=16 bits per color, 111=reserved		
		Bits 3–0	Video interface: 0000=undefined, 0001=HDMIa, 0010=HDMIb, 0100=MDDI, 0101=DisplayPort		
		Bit 7=0	Analog input. If clear, the following bit definitions apply:		
Byte				Bits 6–5	Video white and sync levels, relative to blank: 00=+0.7/-0.3 V; 01=+0.714/-0.286 V; 10=+1.0/-0.4 V; 11=+0.7/0 V
		Bit 4	Blank-to-black setup (pedestal) expected		
		Bit 3	Separate sync supported		
		Bit 2	Composite sync (on HSync) supported		
		Bit 1	Sync on green supported		
		Bit 0	VSync pulse must be serrated when composite or sync-on-green is used.		

第 2/3 个 Bytes 填写纵向、横向屏幕尺寸,单位 cm,前投影机可以填写 0000h,第 4 个 Byte 填写 Gamma 值(约定俗称的,显示器 Gamma 一般是 2.2),最后一个 Byte 是 Supported Feature 信息:

	Supported feat	ures bitmap
	Bit 7	DPMS standby supported
	Bit 6	DPMS suspend supported
Byte	Bit 5	DPMS active-off supported
	Bits 4–3	Display type (digital): 00 = RGB 4:4:4; 01 = RGB 4:4:4 + YCrCb 4:4:4; 10 = RGB 4:4:4 + YCrCb 4:2:2; 11 = RGB 4:4:4 + YCrCb 4:4:4 + YCrCb 4:2:2
	Bits 4–3	Display type (analog): 00 = Monochrome or Grayscale; 01 = RGB color; 10 = Non-RGB color; 11 = Undefined

高清多媒体接口(HDMI)EDID 规范详解与测试常见问题分析 第1部分:规范详解

Bit 2	Standard sRGB colour space. Bytes 25–34 must contain sRGB standard values.
Bit 1	Preferred timing mode specified in descriptor block 1. For EDID 1.3+ the preferred timing mode is always in the first Detailed Timing Descriptor. In that case, this bit specifies whether the preferred timing mode includes native pixel format and refresh rate.
Bit 0	Continuous timings with GTF or CVT

(3)色度信息

共 10Bytes, 定义内容如下:

位置 Hex	示例 Hex	数据 Dec	描述		备注
19	0D	13	Red/Green Lov	w Bits	Bits 1~0 of RxRyGxGy = 00001101
1A	C9	201	Blue/Green Lov	w Bits	Bits 1~0 of BxByWxWy = 00001101
1B	A0	160	Red-x		Bits 9~2 of 10-bit value 0.625 = 10100000
1C	57	87	Red-y		Bits 9~2 of 10-bit value 0.340 = 01010111
1D	47	71	Green-x		Bits 9~2 of 10-bit value 0.280 = 01000111
1E	98	152	Green-y		Bits 9~2 of 10-bit value 0.595 = 10011000
1F	27	39	Blue-x		Bits 9~2 of 10-bit value 0.155 = 00100111
20	12	18	Blue-y		Bits 9~2 of 10-bit value 0.070 = 00010010
21	48	72	White-x		Bits 9~2 of 10-bit value 0.283 = 01001000
22	4C	76	White-y		Bits 9~2 of 10-bit value 0.298 = 01001100
Note—This data	a based on	a CRT Dis	play with a white po	oint of ~93	300 o K (X =0.283; Y = 0.298)

(4) Established Timings (VESA 定义的电脑使用 Timings)

共计 3Bytes , 至少支持 $640\times480P60Hz$, 也就是第 1 个 Byte 的第 3 个 Bit , 所以常见的 200000h 就是只支持 $640\times480P60Hz$ 。

位置	示例数据		描述	备注
Hex	Hex	Dec		
23	20	32	Established Timing 1	640x480 @ 60Hz
24	00	0	Established Timing 2	
25	00	0	Manufacturer's Timing	

每个 Byte 中的数据对应关系如下:

	Bit 7	720×400 @ 70 Hz (VGA)
Duto 1	Bit 6	720×400 @ 88 Hz (XGA)
Byte1	Bit 5	640×480 @ 60 Hz (VGA)
	Bit 4	640×480 @ 67 Hz (Apple Macintosh II)

	Bit 3	640×480 @ 72 Hz
	Bit 2	640×480 @ 75 Hz
	Bit 1	800×600 @ 56 Hz
	Bit 0	800×600 @ 60 Hz
	Bit 7	800×600 @ 72 Hz
	Bit 6	800×600 @ 75 Hz
	Bit 5	832×624 @ 75 Hz (Apple Macintosh II)
Duto 2	Bit 4	1024×768 @ 87 Hz, interlaced (1024×768i)
Byte2	Bit 3	1024×768 @ 60 Hz
	Bit 2	1024×768 @ 72 Hz
	Bit 1	1024×768 @ 75 Hz
	Bit 0	1280×1024 @ 75 Hz
Pyto3	Bit 7	1152x870 @ 75 Hz (Apple Macintosh II)
Byte3	Bits 6-0	Other manufacturer-specific display modes

(5) Standard Timings (01 为填充,未定义 Timing)

(6) Detailed Timing Descriptor Block

拆分为 4 组 Block: First Detailed Timing Descriptor, Second Detailed Timing Descriptor, First Monitor Descriptor (Monitor Name), and Second Monitor Descriptor (Monitor Range)。

● First Detailed Timing Descriptor: 共计 18Bytes,前 17Bytes 描述 Timing 信息,最后一个 Byte 是 Flag; (例如 Flag 18h 表示: Non-interlaced, normal display no stereo, digital separate, V. and H. sync polarity is negative)。

注: Data Type 标志位的意义,参见 VESA E-EDID 标准的 3.10.3,如下:

Monitor Data Descriptor Tag 数据						
FFh	Monitor S/N	If < 13 bytes then terminate with ASCII code 0Ah and pad field with ASCII code				
	(ASCII)	20h. Data shall be sequence such that 1st byte = 1st character etc.				

Data Tag	Monitor Descriptor 数据	格式
	ASCII Data	If < 13 bytes then terminate with ASCII code 0Ah and pad field with ASCII code
FEh	String	20h. Data shall be sequence such that 1st byte = 1st character etc.
		Byte 5 : Min. Vertical rate (for interlace this refers to field rate) Binary coded rate in Hz., integer only Byte 6: Max. Vertical rate (for interlace this refers to field rate) Binary coded rate in Hz., integer only Byte 7 : Min. Horizontal in kHz, integer only, binary coded Byte 8: Max. Horizontal in kHz, integer only, binary coded
		Byte 9: Max. Supported Pixel Clock (as defined by the display manufacturer) Binary coded clock rate in MHz / 10 e.g. 130MHz is 0Dh Note: Maximum Pixels Clock values that are not a multiple of 10MHz should be rounded up to a multiple of 10MHz e.g. 108MHz is 0Bh Secondary timing formula support Bytes 10 – 17 are used to indicate support for a secondary timing formula. Byte 10 00h = No secondary timing formula supported (Support for default GTF
FDh	Monitor Range Limits	indicated in feature byte – Table 3.11) 02h = Secondary GTF curve supported All other values = Reserved for future timing formula definitions If Byte 10 = 00h No secondary timing formula supported, the following applies: Byte 11: Set = 0Ah. Byte 12-17: Set = 20h. If Byte 10 = 02h Secondary GTF supported, the following applies: The standard Generalized Timing Formula with modified C, M, K and J parameters is used for a secondary timing curve. For definition of these GTF parameters, see the VESA GTF standard. Byte 11: Reserved Set = 00h Byte 12: Start frequency for secondary curve, Hor. freq./2 [kHz]
		Byte 13 : C*2 0= <c=<127< th=""></c=<127<>
		Byte 14 and 15 : M (LSB) 0= <m=<65535< td=""></m=<65535<>
		Byte 16 : K 0= <k=<255< td=""></k=<255<>
		Byte 17: J*2 0= <j=<127< td=""></j=<127<>
FCh	Monitor Name (ASCII)	If < 13 bytes then terminate with ASCII code 0Ah and pad field with ASCII code 20h. Note: Intent of this field is to provide a meaningful name to the user

Data Tag	Monitor Descriptor 数据	格式
		Note: Chromaticity data to be coded as Section 3.7
		Note: Gamma data to be coded as Section 3.7
		Byte 5 : White point index number (binary)
		Byte 6 : White low bits
		Byte 7 : White_x
		Byte 8 : White_y
		Byte 9 : White Gamma
FBh	Color Point	Byte 10 : White point index number (binary)
		Byte 11 : White low bits
		Byte 12 : White_x
		Byte 13 : White_y
		Byte 14 : White Gamma
		Byte 15 : Set = 0Ah
		Byte 16 - 17 : Set = 20h
		Note: An index number of 00h indicates that no color point data follows
		Note: Data format as Section 3.9
		Bytes 5 & 6 : Standard Timing Identification 9
		Bytes 7 & 8 : Standard Timing Identification 10
	Standard	Bytes 9 & 10 : Standard Timing Identification 11
FAh	Timing	Bytes 11 & 12 : Standard Timing Identification 12
	Identifiers	Bytes 13 & 14 : Standard Timing Identification 13
		Bytes 15 & 16 : Standard Timing Identification 14
		Byte 17 : Set = 0Ah
		Note: It is permissible to redefine more than one detailed timing block as Standard
		Timing Identifiers.
		Note: Descriptors with data type tags in this range are defined by the monitor
00-	Manufacturer	manufacturers and are not specified by VESA. Questions regarding interpretation
0Fh	Specified	should be directed to the monitor manufacturer.
0711	- Pooliiou	Note: EDID structure Version 1 Revision 1 reserved only tags 00h & 01h for
		manufacturer specific use

- Second Detailed Timing Descriptor:共计 18Bytes,前 17Bytes 描述 Timing 信息, 最后一个 Byte 是 Flag;例如示例 EDID 的 Second Detailed Timing Descriptor, 4B 位写 FEh,表示 ASCII 数据。
- First Monitor Descriptor (Monitor Name): 共计 18Bytes,前三个 Bytes 是 Flag, 填写 000000h 表示这个 Block 被用作 Descriptor 第 4 个 Byte 是描述 Data Type Tag; 第 5 个 Byte 是 Flag,填写 00h 表示这个 Block 被用作 Descriptor 剩下的是 Monitor Name,用 ASCII 码,最多 13 个 Bytes,如果不到 13Bytes,用 0Ah结尾,20h填充剩余的 Byte。
- Second Monitor Descriptor (Monitor Range) 共计 18Bytes 前三个 Bytes 是 Flag , 填写 000000h 表示这个 Block 被用作 Descriptor 第 4 个 Byte 是描述 Data Type Tag ,

填写 FDh 表示剩余的 13Bytes 包含 Monitor Range limits; 第 5 个 Byte 是 Flag,填写 00h 表示这个 Block 被用作 Descriptor;接下来 5 个 Bytes 用来写最大/最小横向/纵向频率、最高像素时钟 (the minimum and maximum parameters for horizontal and vertical frequencies, and maximum pixel clock);接下来一个 Byte 是 Tag,填写 00h 表示没有 secondary timing formula;最后的 7Bytes,取决于上一个 Byte的 Tag,当为 00h时,用 0Ah 开头,20h填充剩余的 Byte。

(7) Extension Flag and Checksum

0	1 2	3 4	5 6	7 8	9 A	В	С	D	E	F
70:									01	8D

总计 2Bytes ,第一个 Byte 是 Extension Flag ,01h 表示有一个 128Bytes 的 Block , 注意当要两个 Extension 时,应该再加一个 Block Map Extension,也就是总计 4Block。

位置	示例	リ数据	描述	备注				
Hex	Hex	Dec	JAKE	ELI Falls				
7 E	01	1	Extension Flag	Number of 128 bytes blocks to follw				
7F	C3	195	Checksum	Block 0 sum (address 00h~7Eh) = 1B3Dh				

2.2 Extension Block 内容详解(以 Block1 为例)

(1)综述

Block1 如果是 CEA Extension Version1 的整体内容如下表所示:

Byte #		数值	描述	格式			
0		02h	Tag (02h)				
1		01h	Revision Number				
2			Byte number offset d where 18-byte descriptors begin (typically Detailed Timing	d = offset for the byte following the reserved data block. If no data is provided in the reserved data block,			
			Descriptors)	then d =4. If no detailed timing descriptions are provided then d =0.			
3			Reserved	Set to 00h			
4			Start reserved data block	This section was previously reserved for 8 byte-timing descriptors, but is currently a reserved data block.			
<i>d</i> -1			End of reserved data block.				
d	Start of 18-byte descriptors (typically Detailed Timing Descriptors)			See Section 3.10.2 VESA E-EDID Standard.			
d+(18*n)-1			End of 18-byte descriptors where n is the number of descriptors included				
d+(18*n)		00h	Beginning of Padding				
126		00h	End of Padding				
127			Checksum	xxh = This byte should be programmed such that a one-byte checksum (add all bytes together and modulus 256) of the entire 128 byte block equals "00h".			

CEA Extension Version1的 Header是:

位置	示例	ij数据	描述	备注
Hex	Hex	Dec	Julies	HIL
80	02	2	Tag per CEA-861	Number of 128 bytes blocks to follw
81	01	1	01h per CEA-861	Block 0 sum (address 00h~7Eh) = 1B3Dh
82	04	4	04h per CEA-861	Number of 128 bytes blocks to follw
83	00	0	00h per CEA-861	Block 0 sum (address 00h~7Eh) = 1B3Dh

之后依次写 Third Detailed Timing Descriptor 等内容。

Version3 包含 Version1&2 的所有能力,同时提供了使用"CEA Short Video Description"标明 CEA 格式、使用"CEA Short Audio Description"标明支持的 Advaced Audio、以及标明 speaker configuration。实际上,目前都参照 Version3,下面详细说 Version3。

(2) Block 1 CEA Extension Header (前4个 Bytes)

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
00:	02	03	17	71												

总计 4Bytes:

第1个Byte 是 VESA给 CEA的指定Tag,写02h;

第2个Byte是Revision Number(CEA-861 formerly required the revision number to be set to 01h, for CEA-861-A it was 02h, and for CEA-861-B it was 03h; however, this is no longer required in CEA-861-D, where only 03h is used.) "所以目前都写 03h;

第 3 个 Byte 是 Byte Number Offset , 表征跟着 Reserved Data Block 后面何处开始 Detailed Timing Data (d= offset for the byte following the reserved data block. If no data is provided in the reserved data block, then d=4. If no detailed timing descriptions are provided then d=0.);

第 4 个 Byte 比较特殊: CEA-861 要求填写 00h, 也就是 CEA Extension Version1, 见 CEA861-D 的 7.3 章及 Table 25; CEA-861-A 要求也就是 CEA Extension Version2 参见 7.4 章及 Table 26; 因为现在基本都使用 CEA-861-D, 也就是 CEA Extension Version3, 所以下面重点就 Version3 做说明。

Byte #	数值	描述	格式
0	02h	Tag (02h)	
1	03h	Revision Number	
2		Byte number offset d where 18 byte descriptors begin (typically Detailed Timing Descriptors)	d = offset for the byte following the reserved data block. If no data is provided in the reserved data block, then d=4. If d=0, then no detailed timing descriptors are provided and no data is provided in the reserved data block
3		Total number of Detailed Timing Descriptors describing native formats in entire E-EDID structure. Also, indication of underscan support, audio support, and support of YCBCR is included	bit 7 (underscan) = 1 if DTV monitor underscans IT video formats by default. bit 6 (audio) = 1 if sink device supports basic audio bit 5 (YCBCR 4:4:4) = 1 if sink device supports YCBCR 4:4:4 in addition to RGB bit 4 (YCBCR 4:2:2) = 1 if sink device supports YCBCR 4:2:2 in addition to RGB lower 4 bits = total number of native DTDs
4 d -1		Start of data block collection End of data block collection.	This section was previously reserved for 8 byte timing descriptors14 but is currently used for CEA Data Block Collection
d		Start of 18-byte detailed timing descriptors	used for CEA Data Block Collection
d +(18*n)-1		End of 18-byte detailed timing descriptors where n is the number of descriptors included	
d +(18*n)	00h	Beginning of Padding	
126	00h	End of Padding	
127		Checksum	xxh = This byte should be programmed such that a one-byte checksum (add all bytes together) of the entire 128 byte block equals "00h".

可以看到第 4 个 Byte,前 4 个 bit 如上定义,后 4 个 bit,标称 EDID 中定义 Native Format 的 DTDs 的数量,如果写 0 代表 EDID 不提供该部分信息或者样机不支持 Native Format,一般情况下该数量为 1, CRT 可能用 2: P 和 I。

(3) CEA Data Block Collection (从第4个 Byte 开始, 到第d-1个 Byte, 共计d-4个 Byte(注:第1个 Byte即 00位置的 Byte,下同))

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
00:					4B	03	02	01	04	11	12	13	06	07	15	16
10:	66	03	0C	00	10	00	80									

格式如下:

	Byte#	Bits 5-7	Bits 0-4							
	1	Video Tag	length=total number of video bytes following							
\/idaa		Code	this byte (L ₁)							
Video Data	2	CEA Short	Video Descriptor 1							
Block	3	CEA Short	CEA Short Video Descriptor 2							
Diook										
	1+L ₁	CEA Short Video Descriptor L ₁								
	2+L ₁	Audio Tag	length=total number of audio bytes following							
		Code	this byte (L ₂)							
	3+L ₁	100 000 00								
	4+L ₁	CEA Short	CEA Short Audio Descriptor 1							
Audio	5+L ₁	an and a second								
Data										
Block										
	L ₁ +L ₂	12.01								
	1+L ₁ +L ₂	CEA Short Audio Descriptor L ₂ /3								
	2+L ₁ +L ₂									
	3+L ₁ +L ₂	Speaker	length=total number of speaker allocation							
Speaker		Allocation	bytes following this byte (L ₃ =3)							
Allocation	4.11	Tag Code	anting Data Black Dayland (2 hytes)							
Block	4+L ₁ +L ₂ 5+L ₁ +L ₂	Speaker All	ocation Data Block Payload (3 bytes)							
DIOCK	$6+L_1+L_2$	-								
	$7+L_1+L_2$	Vendor	length=total number of vendor specific bytes							
	7 1 1 1 1 2	Specific	following this byte (L ₄)							
Vendor		Tag Code	Tollowing this byte (L4)							
Specific	8+L ₁ +L ₂		27 - 27 - 107 - 120 - 102 - 102 - 103 - 103 - 103 - 103							
Data	9+L ₁ +L ₂		Registration Identifier (least significant byte							
Block	10+L ₁ +L ₂	first)								
		Vendor Spe	cific Data Block Payload (L ₄ -3 bytes)							
		Total Specific Book (a floor (a floor)								

第一个 Byte 前 3 个 bit 是 Tag ,后 5 个 Bit 标称这个 Block 的长度(不包含这个 Tag):

			bits								
Byte#	7	6	5	4	3	2	1	0			
1		Tag Code		Length of following data block payload (in bytes)							

其中 Tag Code 定义如下:

Codes	Type of Data Block
0	Reserved
4	Audio Data Block (includes one or more Short Audio
1	Descriptors)
2	Video Data Block (includes one or more Short Video
2	Descriptors)
3	Vendor Specific Data Block

Codes	Type of Data Block
4	Speaker Allocation Data Block
5	VESA DTC Data Block
6	Reserved
7	Use Extended Tag

如果使用了 Tag Code 为 7,也就是使用 Extended Tag 时, Data Block 的第二个 Byte 包含 Extended Tag,第一个 Byte 中的后 5个 bit 不需要包含第二个 Byte。

		bits											
Byte#	7	6	5	4	3	2	1	0					
2				Extended	Tag Code								

其中 Extended Tag Code 定义如下:

Extended Ta Codes	g	Type of Data Block						
0		Video Capability Data Block						
1		Vendor-Specific Video Data Block						
2		Reserved for VESA Video Display Device Information Data Block						
3		Reserved for VESA Video Data Block						
4		Reserved for HDMI Video Data Block						
5		Colorimetry Data Block						
615		Reserved for video-related blocks						
16		CEA Miscellaneous Audio Fields						
17		Vendor-Specific Audio Data Block						
18		Reserved for HDMI Audio Data Block						
193 <mark>1</mark>		Reserved for audio-related blocks						
32255		Reserved for general						

Video Data Block

									y				
	A					bit	s						
Byte#		7	6	5	4			3	2	_1	1	0	
1	N	ative			Vid	eo I	den	tification	n Code				J

注意其中第一个 bit 的 Native 标志位,可以不标出 Native 分辨率,如果标出,建议参照 Block0 中的 First Detailed Timing Descriptor,也就是设备经常解出来标识为 Preferred Native Descriptor 1的分辨率格式。另外,一般只有一个 Native 标出。

Audio Data Block

如果只支持 Basic Audio ,可以不写 Short Audio Descriptor。每个 Short Audio Descriptor 是 3Bytes 总共有 31 个 Bytes 所以最多填写 10 个 Short Audio Descriptors。 Audio Format 总共有 16 种,第一个 Short Audio Descriptor 必须是 001;2-8 号参照 Table35,9-15 号参照 Table36。

可以不写。Audio Format Code 定义如下:

Codes	Audio Format Description
0	Reserved
1	Linear PCM (e.g., IEC 60958)
2	AC-3
3	MPEG1 (Layers 1 & 2)
4	MP3 (MPEG1 Layer 3)
5	MPEG2 (multichannel)
6	AAC

Codes	Audio Format Description
7	DTS
8	ATRAC
9	One Bit Audio
10	Dolby Digital +
11	DTS-HD
12	MAT (MLP)
13	DST
14	WMA Pro
15	Reserved for audio format 15

Audio Code = 1 (LPCM) 时的 CEA Short Audio Descriptor 定义如下:

				bi	ts				
Byte#	7	6	5	4	3	2	1	0	
1	F17=0	/	Audio Format	Code=000	Max Number of channels - 1				
2	F27=0	192 kHz	176.4 kHz	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHz	
3	F37=0	F36=0	F35=0	F34=0	F33=0	24 bit	20 bit	16 bit	

Audio Code = 2至8 时的 CEA Short Audio Descriptor 定义如下:

	Byte#	7	6	6 5 4 3 2		2	1	0						
	1	F17=0			Audio Format	Max N	umber of ch	annels - 1						
	2	F27=0	192	kHz	176.4 kHz	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHz				
7	3			Maximum bit rate divided by 8 kHz										

Audio Code = 9至 15 时的 CEA Short Audio Descriptor 定义如下:

						bits								
Byte#		7	6			5	4			3	2	,	1	0
1	F1	7=0		/	Audic	Format	Code=	=000)1		Max Number of channels - 1			
2	F2	7=0	192 k	Hz	176	i.4 kHz	96 kł	Ηz	88	.2 kHz	48 kHz	44.1	kHz	32 kHz
3		[Default = 0, unless Defined by Audio Codec Vendor]F36=0												

Speaker Allocation Data Block

总计 3Bytes。如果在上一个 Audio Data Block 中包含了多声道,就必须有 Speaker Allocation Data Block;即便没有且只支持 Basic Audio,也建议写这个 Block。

可以不写。定义如下:

				bi	its			
Byte#	7	6	5	4	3	2	1	0
1	F17=0	RLC/RRC	FLC/FRC	RC	RL/RR	FC	LFE	FL/FR
2	F27=0	F26=0	F25=0	F24=0	F23=0	F22=0	F21=0	F20=0
3	F37=0	F36=0	F35=0	F34=0	F33=0	F32=0	F31=0	F30=0

Vender Specific Data Block (VSDB) 详见 2.3 节。

Colorimetry Data Block

总计 4Bytes,第4个 Byte 留给后续定义的 Gamut-Related Metadata,目前不使用。可以不写。定义如下:

		bits												
Byte#	7	6	5	4	3	2	1	0						
1		Tag Code		Le	Length of following data block (in bytes) (03h)									
2		Extended Tag Code (05h)												
3	F37=0	F36=0	F35=0	F34=0	F33=0	F32=0	xvYCC ₇₀₉	xvYCC ₆₀₁						
4	F47=0	F46=0	F45=0	F44=0	F43=0	MD2	MD1	MD0						

Video Capbility Data Block

总计 3Bytes , 用于表征 SINK 的 overscan/underscan 能力及支持情况。可以不写。定义如下:

Byte#	7 6 5		4	3	2	1	0					
1	Та	g Code(07	h)	Length of following data block (in bytes) (02h)								
2	Extended Tag Code (00h)											
3	F37=0	QS	S PT1	S PT0	S IT1	S ITO	S CE1	S CE0				

其中第 3 个 Byte 定义如下:

F37	Future Use, all Zeros	QS	Quantization Range Selectable (Applies to RGB only)	S_PT1	S_PT0	PT Overscan/ underscan behavior (Applies to the preferred video format)	S_IT1	S_ITO	IT Overscan/ underscan behavior (Applies to IT video formats)		S_CE0	CE Overscan/ underscan behavior (Applies to CE video formats)
0		0	No Data	0	0	No Data (refer to S_CE or S_IT fields)	0	0	IT video formats not supported	0	0	CE video formats not supported
1 Selectable (via AVI Q)				0	1	Always Overscanned	0	1	Always Overscanned	0	1	Always Overscanned
				1	0	Always Underscanned	1	0	Always Underscanned	1	0	Always Underscanned
				1	1	Supports both over- and underscan	1	1	Supports both over- and underscan	1	1	Supports both over- and underscan

每个 Descriptor 是 18Bytes,示例的这个总共 36Bytes,也就是包含两个 Detailed Timing Descriptor。

再比如这一组 EDID , 定义了 4 个 Detailed Timing Descriptor,74.25MHz 和 27MHz 各两组。

因为在 Block0 中已经定义了两个 Timing , 所以这里的两个 Timing Descriptor 就顺着叫 Third Detailed Timing Descriptor、Fourth Detailed Timing Descriptor。下面的表中数据和示例 EDID 不同,仅供参考。填写可参照 CEA861-D 的 Table 69。

位置	示	列数据	描述	备注
Hex	Hex	Dec	JHAL	H/T
84	1	1	Pixel Clock	74.25 MHz
85	1D	29	FIXEL CIOCK	
86	0	0	H Active	1280 pixels
87	72	114	H Blanking	370 pixels
88	51	81	H Active: H Blanking	
89	D0	208	V Active	720 lines
8A	1E	30	V Blanking	30 lines
8B	20	32	V Active: V Blanking	
8C	6E	110	H Sync Offset	110 pixels
8D	28	40	H Sync Pulse Width	40 pixels
8E	55	85	VS Offset: VS Pulse	
02	33	00	Width	
			HS Offset: HS Pulse	
8F	0	0	Width: VS Offset: VS	
			Pulse Width	
90	20	32	H Image Size	800 mm (lower 8 bits)
91	C2	194	V Image Size	450 mm (lower 8 bits)
92	31	49	H&V Image Size	Upper 4 bits of H Size;
32	31	43	Tiav iiilage oize	Upper 4 bits of V Size
93	0	0	H Border	0 pixels
94	0	0	V Border	0 lines
				Non-interlaced, normal display no
95	1E	30	Flags	stereo, digital separate, H and V sync
				polarity is positive

NOTE—Some addresses above contain 'composite' bytes representing high and/or low order bits or "nibbles" (4 bits of an 8-bit byte). Please refer to section 3.10.2 of the VESA E-EDID standard for details on these fields.

注意:上表的数据不对应示例 EDID,仅供参考。

位置	示任	列数据	144.772		4-14					
Hex	Hex	Dec	描述		备注					
96	8C	140	D: 101		0714					
97	0A	10	Pixel Cloc	K	27Mhz					
98	A0	160	H Active		1440 pixels					
99	14	20	H Blanking	9	276 pixels					
9A	51	81	H Active: H Blanking							
9B	F0	240	V Active		240 lines					
9C	16	22	V Blanking	3	22 lines					
9D	0	0	V Active: V Bla	nking						
9E	26	38	H Sync Offs	et	38 pixels					
9F	7C	124	H Sync Pulse \	Nidth	124 pixels					
A0	43	67	VS Offset: VS Width	Pulse						
A1	0	0	HS Offset: HS Width: VS Offse Pulse Widt	et: VS						
A2	58	88	H Image Siz	ze	600 mm (lower 8 bits)					
A3	C2	194	V Image Siz	ze	450 mm (lower 8 bits)					
A4	21	33	H&V Image S	Size	Upper 4 bits of H Size; Upper 4 bits of V Size					
A5	0	0	H Border		0 lines					
A6	0	0	V Border		0 pixels					
A7	98	152	Flags		Interlaced, normal display no stereo, digital separate, V. and H. sync polarity is negative,					

NOTE—Some addresses above contain 'composite' bytes representing high and/or low order bits or "nibbles" (4 bits of an 8-bit byte). Please refer to section 3.10.2 of the VESA E-EDID standard for details on these fields.

注意:上表的数据不对应示例 EDID, 仅供参考。

(5) Descriptor Defined by Manufacturer

接着最后一个 Timing Descriptor 写 , 厂商自己定义一些内容写进去。可以不写。

		9		
位置	位置示例数据		描述	备注
Hex	Hex	Dec	JEAN	H / T
A8	00	0	Flag	
A9	00	0	Flag	
AA	00	0	Reserved	
AB	01	1	Data Type 01-0F	
AD	52	82	R	
AE	45	69	E	
AF	56	86	V	
B0	31	49	1	
B1	2E	46		
B2	30	48	0	
B3	30	48	0	
B4	0A	10		
B5	00	0		
B6	00	0		
B7	00	0		
B8	00	0		
B9	00	0		

注意:上表的数据不对应示例 EDID,仅供参考。

(6) Monitor Serial Number

厂商为了便利可以写入序列号,可以不写。

, 1-3/33 1	~ 1 3 3	7, 3, 7, 7, 7,									
位置 Hex	示 Hex	列数据 Dec	描述		备注						
BA	00	0			Flag = 0000h when block used as						
BB	00	0	Flag		descriptor						
ВС	00	0	Flag(Reserved	d)	Flag = 00h when block used as descriptor						
BD	FF	255	Serial Nimber T	Refer to VESA E-EDID standard section 3.10.3 for tag definition							
BE	00	0	Flag								
BF	39	57			9						
C0	39	57			9						
C1	46	70			F						
C2	43	67			С						
C3	35	53			5						
C4	30	48	A COUL		0						
C5	30	48	ASCII serial num data	iber [0						
C6	30	48	uata		0						
C7	31	49			1						
C8	0A	10		Ī	ASCII Line Feed						
C9	20	32			Padding (ASCII space)						
CA	20	32			Padding (ASCII space)						
СВ	20	32			Padding (ASCII space)						

注意:上表的数据不对应示例 EDID,仅供参考。

(7) Residual Byte Padding and Check Sum

使用 00h 填充。

最后一个 Byte 填写 Check Sum。

2.3 HDMI1.4b 的 VSDB (H14b VSDB)

e# 7		6	5	4	3	2	1	0				
Ver	dor-sp	oecific tag coo	le (=3)			Length (=I	N)					
		24-hi	IFFF Rec	istration I	dentifier (0x000C03)							
-		2,0		significant								
	A B											
		С					D	Г				
Supp _A		DC_ 48bit	DC_ 36bit	DC_ DC_ Rsvd Rsvd DVI_ Dual								
			M	ax_TMDS	Clock							
Latency_ Latency_ Fields_ Present Latency_ Fields_ Present Latency_ Fields_ Present Rsvd (0) CNC3 CNC2 CNC1 CNC0 CNC2 CNC1 CNC0 CNC3 CNC2 CNC1 CNC3 CNC3												
				Video_Late	ency							
				Audio_Late	ency							
			Interla	ced_Video	_Latency	0						
			Interla	ced_Audio	_Latency							
3D_pr ent		3D_Multi_pre	sent									
	HDMI	_VIC_LEN		HDML_3D_LEN								
(if HDI	MI_VIC	_LEN > 0)		HDMI_VIC_1								
				HDMI_VIO	C_M							
(if 3D	Multi, r	present = 01	or 10)									
				tructure_A	LL_158							
			3D_S	Structure_/	ALL_70							
(if 3D_	Multi_p	present = 10)										
	600		31	D_MASK_	158							
			3	D_MASK_	70							
		2D_VIC_ords	3D_Stru	cture_1								
		d(0) ***										
	2	2D_VIC_orde	er_L	Î		3D_Stru	cture_L					
N				Reserved	(O)**							

^{*} The position of these bytes will depend upon the values of Latency_Fields_Present, I_Latency_Fields_Present and HDMI_Video_present.

^{**} No additional bytes are necessary but if present, they shall be zero.

^{***} The bytes with 3D_Detail_X and Reserved(0) are present only for some values of 3D_Structure_X. See below for details

第 1 个 Byte: Length 至少是 5,最多 31;接下来三个 Byte 是 IEEE 分配给 HDMI 的 固定数值: 030C00h; 随后 2 个 Byte 是物理地址。以上是至少包含的信息,后续内容为 Extension Field。

第6个Byte 是 Support_AI、Deepcolor、DVI dual-link 支持情况。

第7个 Byte 是 Max-TMDS-Clock,最高时钟是这个数值×5MHz;当支持 165MHz 以上或者 Deepcolor或者 DVI dual-link 时,此处必须写数值。

第 8 个 Byte 包含 Latency_Fields_Present 、 I_Latency_Fields_Present 、 HDMI_Video_Present 、 Content Type 情况; Latency_Fields_Present 、 I_Latency_Fields_Present 参照 HDMI SPEC1.4b 的 8.9 章 ,Latency_Fields_Present 为 0 则 I_Latency_Fields_Present 必须为 0; HDMI_Video_Present 情况如下:

- HDMI_Video_present [1bit] If set (=1) then additional video format capabilities are described by using the fields starting after the Latency area. This consists of 4 parts with the order described below:
 - 1 byte containing the 3D_present flag and other flags
 - 1 byte with length fields HDMI VIC LEN and HDMI 3D LEN
 - zero or more bytes for information about HDMI_VIC formats supported (length of this field is indicated by HDMI_VIC_LEN).
 - zero or more bytes for information about 3D formats supported (length of this field is indicated by HDMI_3D_LEN) which are optionally composed of 3D_Structure_ALL_15...0, 3D_MASK_15...0, 2D_VIC_order_X, 3D_Structure_X and 3D_Detail_X field.

Content Type, 一般只支持 Graphics(text), 不支持 Photo、Cinema、Game。

CNC3-0	Content Type	Description
CNC0	Graphics (text)	Set (=1) if the sink device can pass the pixel data without filtering and analog reconstruction because adjacent pixels are completely independent and should not interact.
CNC1	Photo	Set (=1) if the sink device has specific processing for still pictures.
CNC2	Cinema	Set (=1) if the sink device has specific processing for cinema content, e.g. film tone reproduction.
CNC3	Game	Set (=1) if the sink device has a specific processing mode with low Audio and Video latency.

第9-12的4个Byte 写Video_Latency、Audio_Latency、Interlaced_Video_Latency、Interlaced_Audio_Latency ; 如果 I_Latency_Fields_Present=0 , 则 Interlaced_Video_Latency、Interlaced_Audio_Latency对应的而两个Byte不出现。接下来的1个Byte是3D_Present(1bit)、3D_Multi_Present(2bit)、Image_Size(2bit)的情况。

- 3D_present [1bit] This bit indicates 3D support by the HDMI Sink, including the mandatory formats. If set (=1), an HDMI Sink supports the 3D video formats that are mandatory formats, plus any additional formats indicated by combining the indications in both:
 - 3D_Structure_ALL_15...0 (if 3D_Multi_present = 01), or 3D_Structure_ALL_15...0 and 3D_MASK_15...0 (if 3D_Multi_present = 10); and
 - 2D_VIC_order_X, 3D_Structure_X and 3D_Detail_X (if these fields are present according to the HDMI_3D_LEN calculation).

- 3D_Multi_present [2bit]
 - If 3D_Multi_present = 00
 - 3D_Structure_ALL_15...0 and 3D_MASK_15...0 fields are not present.
 - If 3D_Multi_present = 01,
 - 3D_Structure_ALL_15...0 is present and assigns 3D formats to all of the VICs listed in the first 16 entries in the EDID. 3D_MASK_15...0 is not present.
 - If 3D Multi present = 10,
 - 3D_Structure_ALL_15...0 and 3D_MASK_15...0 are present and assign 3D formats to some of the VICs listed in the first 16 entries in the EDID.
 - If 3D_Multi_present = 11

Reserved for future use.

Note: 3D_Structure_ALL_15...0 and 3D_MASK_15...0 are not present.

Image_Size [1]	Image_Size [0]	Description
0	0	No additional information
0	1	Values in the Image Size area indicate correct aspect ratio but the sizes are not guaranteed to be correct.
1	0	Values in the Image Size area indicate correct sizes which are rounded to the nearest 1 centimeter (cm).
1	1	Values in the Image Size area indicate correct sizes in divided by 5 format, which are rounded to the nearest 5 centimeter (cm). This mode is used only if the real horizontal size is larger than 255cm. (Example; in the case of 150 inch 16:9 panel, the real horizontal size is 332.1cm and the value 0x42 is applied in the 'Max Horizontal Image Size' area. (332.1 div $5 = 66.4 \rightarrow 66 = 0x42$) And the value 0x25 is applied in the 'Max Vertical Image Size' area (186.8 div $5 = 37.36 \rightarrow 37 = 0x25$))

接下来的 1 个 Byte 是 HDMI_VIC_LEN (3bit)和 HDMI_3D_LEN (5bit),前者表征后续的 HDMI_VIC_1 至 HDMI_VIC_M 的 Byte 数 (0-7),后者表征后续的 3D 能力所有内容的 Byte 数 (0-31)。

当 HDMI_VIC_LEN > 0 时,下面开始写 HDMI_VIC_X,每个占据 1 个 Byte 范围 0-255。

	HDMI_VIC	Description	Pixel frequency (MHz)				
	0x00	Reserved	-				
3	0x01	4K x 2K 29.97, 30 Hz	29 7.000 296.703				
	0x02	4K x 2K 25Hz	297.000				
	0x03	4K x 2K 23.98, 24 Hz	297.000 296.703				
	0x04	4K x 2K 24 Hz (SMPTE)	297.000				
	0x050xFF	Reserved	-				

接下来写 3D_Structure_All, 占据 2 个 Byte, 写明 SINK 支持的 3D 格式:

Bit	Meaning
3D_Structure_ALL_0	Sink supports "Frame packing" 3D formats.
3D_Structure_ALL_15	Reserved (0)
3D_Structure_ALL_6	Sink supports "Top-and-Bottom" 3D formats
3D_Structure_ALL_7	Reserved (0)
3D_Structure_ALL_8	Sink supports "Side-by-Side(Half) with horizontal sub-sampling" 3D formats
3D_Structure_ALL_915	Reserved (0)

再接下来写 3D_MASK_15...0 数据,占据 2 个 Byte,写 SINK 支持的 VIC; 再接下来写 2D_VIC_order_X(4bits)、3D_Structure_X(4bits)、3D_Detail_X(4bits)。 可以不在后面再加多余的 Byte,但是如果有,应该填0。

(1)第一个示例 EDID 的 HDMI-VSDB 解析

第 1 个 Byte 写的是 66h, 也就是 01100110, 前三个 bit 是 011, 说明是 VSDB, 后面的 00110 说明包含 6 个 Bytes。 2-4 的三个 Bytes 是分配给 HDMI 的标志位,必须是 030C00h; 之后 2 个 Byte 是物理地址,例如三个口,分别写 1000/2000/3000。

一般 EDID 测试出来,第一个 Byte 是 65h,也就是后面有 5 个 Bytes;示例这个写的 是 66h,最后的 80h,也就是 10000000,指的是支持 Support_AI,不支持 Deepcolor。

(2) 第二个示例 EDID 的 block 01 解析

如上为示例二 EDID 的 block01 内容,对这个 block 内容解析:

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
00:	02	03	26	F2												

第1个Byte 是 VESA 给 CEA 的指定 Tag 写 02h 第2个Byte 是 Revision Number:

03h;第3个Byte 是 Byte Number Offset: 26h;第4个Byte 是 F2h,即11110010, 表示支持 DTV monitor underscan IT formats by default,支持 Basic Audio,支持 YC444/YC422,有2个Native Format;

第 5 个 Byte 是 4Bh 即 01001011, 表示后面是 VDB, 有 10 个 Bytes,接下来的 10 个 Bytes 写了 10 个 VIC 编号的 CEA 分辨率格式;

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
10:	29	09	07	07	11	17	50	51	07	00						

到 10 位的 Byte 是 29h 即 00101001, 表示后面是 ADB, 有 9 个 Bytes, 接下来的 9 个 Bytes 写了 PCM/AC-3/Dolby+的音频信息;

接下来的 1A 位的 Byte 是 83h,表示后面写的是 Speaker Allocation Data Block,有 3 个 Bytes 接下来的 3 个 Bytes 写了支持左右声道的两声道 如前文所说,支持 Basic Audio 时建议写 SADB 内容。

第 1 个 Byte 示例中写的是 67h,也就是 01100111,前三个 bit 是 011,说明是 VSDB,后面的 00111 说明包含 7 个 Bytes。 2-4 的三个 Bytes 是分配给 HDMI 的标志位,必须是 030C00h;之后 2 个 Byte 是物理地址,例如三个口,分别写 1000/2000/3000;随后一个 Byte 是 B8h 即 10111000,表示支持 Support_AI,支持 36bit/30bit Deepcolor,支持 YC444_Deepcolor;再随后一个 Byte 是 2D 即 00101101,表示最高时钟是 225MHz。

再之后是四组 DTD, 描述了 27MHz 和 74.25MHz 的各两组 DTD。

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
60:															00	00
70:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	B4

最后填 0,最后一个 Byte 是 checksum。

3 HDMI2.0 的 EDID 详述

3.1 HDMI2.0 EDID 相比于 HDMI1.4b EDID 的主要变化

(1) CEA Data Block Collection 的主要变化

Extended Tag Codes	Type of Data Block
0	Video Capability Data Block
1	Vendor-Specific Video Data Block
2	VESA Display Device Data Block [81]
3	VESA Video Timing Block Extension
4	Reserved for HDMI Video Data Block
5	Colorimetry Data Block
612	Reserved for video-related blocks
13	Video Format Preference Data Block
14	YCBCR 4:2:0 Video Data Block
15	YCBCR 4:2:0 Capability Map Data Block
16	Reserved for CEA Miscellaneous Audio Fields
17	Vendor-Specific Audio Data Block
18	Reserved for HDMI Audio Data Block
1931	Reserved for audio-related blocks
32	InfoFrame Data Block (includes one or more Short InfoFrame Descriptors)
33255	Reserved

● 新增加了:

- IFDB (InfoFrame Data Block);
- Y420VDB (YC420 Video Data Block);
- YC420CMDB (YC420 Capability Map Data Block);
- VFPDB (Video Format Preference Data Block);

● 定义了:

- VSVDB (Vendor-Specific Video Data Block);
- VSADB (Vendor-Specific Audio Data Block) ;

● 更新了:

■ VDB(Video Data Block), ADB(Audio Data Block), ASDB(Speaker Allocation Data Block)、CDB(Colorimetry Data Block)、VCDB(Video Capability Data Block) 等的写法。

(2) Video Data Block 的主要变化

1.4b 只用到 128VIC, HDMI2.0 进一步拓展,可以使用到 256VIC,其中 VIC=65 至 127 及 VIC=193 至 255,使用全部 8 个 bit 表示 VIC 编号。

详细的 VIC 编号及其对应格式,见附录一。

VIC=1至64的 Short Video Descriptor 定义如下:

		bits										
Byte#	7	6	5	4	3	2	1	0				
1	Native	ve Video Identification Code										

VIC=65 至 127、193 至 255 的 Short Video Descriptor 定义如下:

					bits						
Byte#	7	6	5	4	3	2	1	0			
1		Video Identification Code									

(3) Audio Data Block 的主要变化

定义了 Audio Format Code=14即 WMA Pro的 CEA Short Audio Descriptor写法:

					bits					
Byte#	7	6	5	4	3	2	1	0		
1	F17=0	F	Audio Format	Code=111	0	Max Number of channels - 1				
2	F27=0	F26=0	F25=0	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHz		
3		Reserved Profile								

定义了 Audio Format Code=15 时 Audio Coding Extension Type Code 的写法:

						bits				
Byte	#	7	6	6 5 4 3 2 1						
1		F17=0		Audio Format Code=1111 Max Number of change						
2		F27=0	F26 =0	F25=0	96 kHz	88.2 kHz	48 kHz	44.1 kHz	32 kHz	
3			Audio Coding Extension Type Code 1024 TL 960 TL							

(4) Speaker Allocation Data Block 的主要变化

定义了新的写法,扩展到更多声道。

				bits												
Byte#	7	7		6	5			4	3		2		1			0
1	FLVV/	FRW	RLC	/RRC	FLC/F	RC	R	C	RL/R	R	FC		LFE		FL	/FR
2	F27	7=0	F20	6=0	F25=	=O	F24	4=0	F23=	0	FCH		TC		FLH	/FRH
3	F37	7=0	F ₃ (6=0	F35=	=0	F34	4=0	F33=	0	F32=0) F	31=	0	F3	0=0

(5) VSDB 的主要变化

见 3.2 条。

(6) Colorimetry Data Block 的主要变化

定义了新的写法,扩展了更多的色度标准,包括 BT2020 等。

					bit	S						
Byte	#	7	6	6 5 4 3 2 1 0								
1		Ta	ng Code (0x	Code (0x07) Length of following data block (in bytes) (0x03)								
2				Ext	ended Tag	Code (0x05)						
3		BT2020RG	BT2020YC	BT2020cYC	AdobeRG	AdobeYCC6	sYCC601	xvYCC709	xvYCC601			
4		F47=0	F46=0	F45=0	F44=0	MD3	MD2	MD1	MD0			

(7) Video Capability Data Block 的主要变化

定义了 VCDB 新的写法,使用了第3个 Byte 的第一个 bit。

					bits			
Byte#	7	6	5	4	3	2	1	0
1	Tag Code (0x07) Length of following data block (in byte							(0x02)
2				Extended	Tag Code	(0x00)		
3	QY	QS	S_PT1	S_PT0	S_IT1	S_IT0	S_CE1	S_CE0

(8) Vendor-Specific Video Data Block

定义了 VSVDB 的写法,按照下表编写:

		bits												
Byte#	7	6	5	4	3	2	1	0						
1	Ta	g Code (0x	07)	Len	gth (L) = nı	umber of byte	es following t	this byte						
2		Extended Tag Code (0x11)												
3	IEEE OUI third two hex digits													
4			IE	EEE OUI se	econd two h	nex digits								
5				IEEE OUI	first two he	x digits								
6 through	Vendor-Specific Video Data Block Payload (L-4 bytes)													
L+1	veridor-Specific video Data Block Fayload (L-4 bytes)													

(9) Vendor-Specific Audio Data Block

定义了 VSADB 的写法,按照下表编写:

					bits								
Byte#	7	6	5	4	3	2	1	0					
1	Tag	Tag Code (0x07) Length (L) = number of bytes following this byte											
2				Extended	Tag Code	(0x11)							
3				IEEE OUI 1	third two he	ex digits							
4			IE	EEE OUI se	econd two h	nex digits							
5				IEEE OUI	first two he	x digits							
6 through		Ve	endor-Spec	cific Audio	Data Block	Payload (L-4	4 bvtes)						
L+1						, , , , , , , , , , , , , , , , , , , ,	,,,,						

(10) InfoFrame Data Block

新增加了 IFDB, 最多 27Bytes 内容, 按照下表编写:

								bits						
Byte#	7	6	6		5	4		3		2	1		0	
1	Tag	g Cod	e (0x	07)			L	ength (L	_a) :	= # of bytes	followin	g this I	yte	
2						Exten	ded	Tag Co	de	(0x20)				
through L _b +4		Extended Tag Code (0x20) InfoFrame Processing Descriptor												
L _b +5					(optio	nal) Sh	ort	InfoFrar	ne	Descriptor(s	;)			
through L _a +1			(opti	onal)	Shor	t Vend	or-	specific	In	foFrame De	scripto	r(s)		

IFDB 需要以 Table43 定义的 Data Block Header Byte 开始,加上 Tag Code 07h 及该 block 长度标志位;其中 InfoFrame Processing Descriptor 按照下表编写:

				Ві	ts			
Byte#	7	6	5	4	3	2	1	0
1	Lengtl	h (Lb) = # c	f bytes	F14=0	F13=0	F12=0	F11=0	F10=0
	follow	ving the nex	kt byte					
2		Number	of additional	VSIFs that	can be rece	eived simult	aneously.	

(11) YC420 Video Data Block

新增加了 Y420VDB, 用于标识仅支持 YCC4:2:0 格式(该格式不支持 RGB、YCC4:4:4、YCC4:2:2), 按照下表编写:

					bits									
Byte#	7	6	5	4	3	2	1	0						
1	Ta	Tag Code (0x07) Length (L) = number of bytes following this byte												
2		Extended Tag Code (0x0E)												
3 through L+1		Extended Tag Code (0x0E) YC _B C _R 4:2:0-only SVDs (L-1 bytes)												

(12) YC420 Capability Map Data Block

新增加了YC420CMDB ,用于标称已经写在VDB中 ,支持RGB或YCC4:4:4或YCC4:2:2 且 支 持 YCC4:2:0 的 格 式 , 这 个 block 不 标 注 该 格 式 除 了 YC420 以 外 RGB/YCC4:4:4/YCC4:2:2 的支持情况 ,按照下表编写:

					bits								
Byte#	7	6	5	4	3	2	1	0					
1	Та	Tag Code (0x07) Length (L) = number of bytes following this byte											
2		Extended Tag Code (0x0F) Extended Tag Code (0x0F)											
through L+1		Extended Tag Code (0x0F) YC _B C _R 4:2:0 Capability Bit Map (L-1 bytes)											

(13) Video Format Preference Data Block

新增加了 VFPDB,用于按照优先级标称 SINK 推荐的格式,特别适用于当推荐格式写在 YC420 VDB 的情况,按照下表编写:

1 10120	 - 42113	170 1 32	*** 1 -2	20110 3								
						bi	ts					
Byte#	7	6		5	4		3	2	1		0	
1	Tag	g Code ()x07)		Le	ength ((L) = nı	umber of by	tes follov	ving th	is byte	
2					Extende	ed Tag	Code	(0x0D)				
3					Short \	Video	Refere	nce 1				
4					Short \	Video	Refere	nce 2				
5					Short \	Video	Refere	nce 3				
L+1					Short \	√ideo l	Refere	nce N				

3.2 HDMI 2.0 的 VSDB (HF-VSDB)

Byte \ Bit #	7	6	5	4	3	2	1	0						
0	Vendor 9	Specific Tag C	ode (=3)	2	22	Length (=N)								
1			IEE	E OUI, Third	Octet (0	0xD8)								
2			IEE	E OUI, Secor	nd Octet (0)x5D)								
3		IEEE OUI, First Octet (0xC4)												
4		Version (=1)												
5			N	1ax_TMDS_C	haracter_Rat	:e								
6	SCDC_ Present	RR_ Capable	Rsvd(0)	Rsvd(0)	LTE_340Mcsc _scramble	Independent _view	Dual_View	3D_OSD_ Disparity						
7	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	Rsvd(0)	DC_48bit _420	DC_36bit _420	DC_30bit _420						
N				Reserv	red(0)*									

^{*} No additional bytes are necessary but if present, they shall be zero.

第1个Byte: Length 至少是5,最多31;接下来三个Byte是IEEE分配给HDMI的固定数值:D85DC4h;随后1个Byte是物理地址。以上是至少包含的信息,后续内容为Extension Field;

第 6 个 Byte 是 Max-TMDS-Character_Rate, 当 Sink 不支持超过 340Mcsc 时,此处写 0;当超过 340Mcsc 时,此处按照实际情况写;

第 7 个 Byte 是标称支持 SCDC、RR_Capable (支持开始 SCDC Read Reuqust)、LTE_340Mcsc_scramble、Independent_View、Dual_View、3D_OSD_Disparity 的支持情况,写 1 表示支持。当 SCDC_Present 写 0 时,RR_Capable 和 LTE_340Mcsc_scramble 必须写 0;

第 8 个 Byte 除保留以外,用于标称 YC420 的 Deepcolor 支持情况,后三个 bit 分别对应 48bit、36bit、30bit 的 Deepcolor,写 1 表示支持。

可以不在后面再加多余的 Byte, 但是如果有, 应该填 0。

3.3 一台电视的 1.4 EDID 和 2.0 EDID 示例

以一台 HDMI 2.0 的电视为例子, 手动切换 EDID1.4 和 2.0。

		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
(00:	00	FF	FF	FF	FF	FF	FF	00	63	18	4A	00	01	00	00	00
-	10:	06	1C	01	03	80	73	41	78	0A	CF	74	A 3	57	4C	В0	23
-	20:	09	48	4C	21	08	00	81	80	45	40	61	40	95	00	01	01
()	30:	01	01	01	01	01	01	02	3A	80	18	71	38	2D	40	58	2C
4	40:	45	00	C4	8E	21	00	00	1E	66	21	50	B0	51	00	1B	30
E	50:	40	70	36	00	C4	8E	21	00	00	1E	00	00	00	FC	00	0A
(60:	20	20	20	20	20	20	20	20	20	20	20	20	00	00	00	FD
-	70:	00	32	4B	1E	50	17	00	0A	20	20	20	20	20	20	01	E 6

Block 0

		0	1	2	3	4	5	6	7	8	9	A	В	5	D	E	F
C	0:	02	03	3C	F 2	4F	01	03	04	05	07	90	12	13	14	16	1F
1	LO:	60	61	65	6 6	2C	09	07	07	11	17	50	51	07	00	3D	07
2	20:	C0	83	01	00	00	6E	03	0C	00	10	00	B8	3C	20	80	80
(1)	30:	01	02	03	04	E3	0F	00	78	E 3	06	05	01	01	1D	00	ВС
4	10:	52	D0	1E	20	В8	28	55	40	C4	8E	21	00	00	1E	01	1D
5	0:	80	D0	72	1C	16	20	10	2C	25	80	C4	8E	21	00	00	9E
6	50:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
7	70:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	DD

Block 1

如上图所示, 1.4 的 EDID 部分在 Block 1 中留有不少空白 (填 0)。

从下图所示,当电视调节到 EDID2.0 的时候,Block0 的信息发生了变化,其中主要变化就是最大时钟频率。1.4 的时钟频率上限是 297Mhz,而 2.0 是 1.4 的两倍大小。可以达到 594Mhz。EDID 信息如下:

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
00:	00	FF	FF	FF	FF	FF	FF	00	63	18	4A	00	01	00	00	00
10:	06	1C	01	03	80	7A	46	78	0A	CF	74	A 3	57	4C	В0	23
20:	09	48	4C	21	08	00	81	80	45	40	61	40	95	00	01	01

	01															
40:	8A	00	C 4	8E	21	00	00	1E	02	34	80	18	71	38	2D	40
50:	58	2C	45	00	C 4	8E	21	00	00	1E	00	00	00	FC	00	0A
60:	20	20	20	20	20	20	20	20	20	20	20	20	00	00	00	FD
70:	00	32	4B	1E	50	17	00	0A	20	20	20	20	20	20	01	E 6

Block 0

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
00	02	03	54	F2	59	05	84	03	01	12	13	14	16	07	90	1F
10	5D	5F	60	61	62	64	65	66	5E	63	02	06	11	15	2C	09
20	07	07	11	17	50	51	07	00	3D	07	C0	83	01	00	00	6E
30	03	0C	00	10	00	B8	3C	20	80	80	01	02	03	04	67	D8
40	5D	C4	01	78	88	03	E 3	05	C 3	01	E 5	0F	00	60	06	00
50	E3	06	05	01	8C	0A	D0	8A	20	E0	2D	10	10	3E	96	00
60	C4	8E	21	00	00	18	8C	0A	A0	14	51	F0	16	00	26	7C
70	43	00	C4	8E	21	00	00	98	00	00	00	00	00	00	00	DD

Block 1

参考文献

[1]Consumer Electronics Association, CEA-861-D 'A DTV Profile for Uncompressed High Speed Digital Interfaces';

[2]Video Electronics Standards Association, E-EDID Standard 'VESA Enhanced Extended Display Identification Data Standard';

[3]HDMI-Forum, 'High-Definition Multimedia Interface Specification Version 1.4b';

[4]http://www.uefi.org/pnp_id_list

[5]https://en.wikipedia.org/wiki/Native_resolution

附录一: VIC 编号对应格式

VIC	Formats	Field Rate	VIC	Formats	Field Rate	VIC	Formats	Field Rate	VIC	Formats	Field Rate
1	640x480p	59.94Hz/60Hz	28	2 880x288p	50Hz	55	720(1440)x576i	200Hz	82	1680x720p	50Hz
2	720x480p	59.94Hz/60Hz	29	1440x576p	50Hz	56	720x480p	239.76/240Hz	83	1680x720p	59.94Hz/60Hz
3	720x480p	59.94Hz/60Hz	30	1440x576p	50Hz	57	720x480p	239.76/240Hz	84	1680x720p	100Hz
4	1280x720p	59.94Hz/60Hz	31	1920x1 080 p	50Hz	58	720(1440)x480i	239.76/240Hz	85	1680x720p	119.88/120Hz
5	1920x1080i	59.94Hz/60Hz	32	1920x 1080 p	23.98Hz/24Hz	59	720(1440)x480i	239.76/240Hz	86	2560x1080p	23.98Hz/24Hz
6	720(1440)x480i	59.94 Hz/6 0Hz	33	1920x1080p	25Hz	60	1280 x720p	23.98 Hz/24H z	87	2560x1080p	25Hz
7	720(1440)x480i	59.94 Hz/ 60Hz	34	1920x1080p	29.9 7 Hz/3 0 Hz	61	12 80x720p	25Hz	88	2560x1080p	29.97Hz/30Hz
8	720(1440)x240p	59.94 <mark>Hz/</mark> 60Hz	35	2880x480p	59.94Hz/60Hz	62	128 0x720p	29.97Hz/30Hz	89	2560x1080p	50Hz
9	720(1440)x240p	59.94 Hz/ 60Hz	36	2880x480p	59.94Hz/60Hz	63	1920x1080p	119.88/ 120H z	90	2560x1080p	59.94Hz/60Hz
10	2880x480i	59.94 Hz/ 60Hz	37	2880x576p	50Hz	64	1920x108 0 p	100Hz	91	2560x1080p	100Hz
11	2880x480i	59.94 Hz/6 0Hz	38	2880x576p	50Hz	65	12 80x720p	23.98H z/24H z	92	2560x1080p	119.88/120Hz
12	2880x240p	59.94Hz/60Hz	39	1920x1080i (1250 total)	50Hz	66	1280x720p	25Hz	93	3840x2160p	23.98Hz/24Hz
13	2880x240p	59.94Hz/60Hz	40	1920x108 0 i	100Hz	67	1280x720p	29.97Hz/30Hz	94	3840x2160p	25Hz
14	1440x480p	59.94Hz/60Hz	41	1280x720p	100Hz	68	1280x720p	50Hz	95	3840x2160p	29.97Hz/30Hz
15	1440x480p	59.94Hz/60Hz	42	720x576p	100Hz	69	1280x720p	59.94Hz/60Hz	96	3840x2160p	50Hz
16	1920x1080p	59.94Hz/60Hz	43	720 x576p	100Hz	70	1280x720p	100Hz	97	3840x2160p	59.94Hz/60Hz
17	720x576p	50Hz	44	720(1440)x576i	100Hz	71	1280x720p	119.88/120Hz	98	4096x2160p	23.98Hz/24Hz
18	720x576p	50Hz	45	720(1440)x576i	100Hz	72	1920x1080p	23.98Hz/24Hz	99	4096x2160p	25Hz

高清多媒体接口(HDMI)EDID 规范详解与测试常见问题分析 第1部分:规范详解

VIC	Formats	Fie	ld Rate	VIC	Formats	Field Rate	VIC	Formats	Field Rate	VIC		Formats	Field Rate
19	1280x720p	50Hz		46	1920x1080i	119.88/120Hz	73	1920x1080p	25 Hz	100	4	096x2160p	29.97Hz/30Hz
20	1920x1080i	50Hz		47	1280 x720p	119.88/120Hz	74	1920x1080p	29.97Hz/30Hz	101	4	096x2160p	50Hz
21	720(1440)x576i	50Hz		48	720x480p	119.88/120Hz	75	1920 x1080p	50Hz	102	4	096x2160p	59.94Hz/60Hz
22	720(1440)x576i	50Hz		49	720x480p	119.88/120Hz	76	1920x1080p	59.94Hz/60Hz	103	38	840x2160p	23.98Hz/24Hz
23	720(1440)x288p	50Hz		50	720(1440) x480 i	119.88/120Hz	77	1920x1080p	100Hz	104	38	840x2160p	25Hz
24	720(1440)x288p	50Hz		51	720(1440)x480i	119.88/120Hz	78	1920x1080p	119.88/120Hz	105	38	840x2160p	29.97Hz/30Hz
25	2880x576i	50Hz		52	720x 576 p	200Hz	79	1680x720p	23.98Hz/24Hz	106	38	840x2160p	50Hz
26	2880x576i	50Hz		53	720x576p	200Hz	80	168 0x720p	25Hz	107	38	840x2160p	59.94Hz/60Hz
27	2880x288p	50Hz		54	720(1440)x576i	200 Hz	81	16 80x720p	29.97Hz/30Hz	108-25	55 待	定	

附录二:北京 HDMI ATC 简介

北京 HDMI ATC 简介

北京 HDMI 授权实验室(Authorized Testing Center,简称 CESI ATC)是由 CESI Tech

与 Silicon Image 公司合作共同建立的,主要用于验证 HDMI/HDCP 产品的标准一致性,

为客户提供相关认证测试服务。HDMI 授权信息请见:

http://www.hdmi.org/manufacturer/authorized test centers.aspx http://www.simplaylabs.com/manufacturers/test center locations.aspx

CESI 中国电子技术标准化研究院相关情况请见: http://www.cesi.cn

Authorized Test Centers

France

China - Beijing
Silicon Image, Inc.*

Korea

Japan - Osaka

Taiwan - Hsinchu
Silicon Image, Inc.*

● 北京联系方式

联系人:董桂官 <u>donggg@cesi.cn</u> 周阳翔 <u>zhouyx@cesi.cn</u> 阮向远 <u>ruanxy@cesi.cn</u> 电话: 010-64102361 转 22, 18612118407(董桂官), 13520964887(周阳翔), 18600143012(阮向远)

地址:北京亦庄经济技术开发区同济南路8号(100176)

● 深圳联系方式

联系人:谢斌斌 xiebb@nels.org.cn

电话:15994711370

地址:深圳市高新技术产业园区中区高新中一道9号软件大厦5F(3#4#5#电梯)

● 广州联系方式

联系人:郭广环 guogh@cesi-gz.org.cn

电话: 020-8199-3368 转 805, 18011739416

地址:广州市黄埔区茅岗路828号大院10号楼一至二层,510799

