Modelo de predicción de demanda de gas natural por subsector industrial

Construcción y análisis de Modelos

Contenido

- Objetivo
- Consideraciones para el modelo
- Modelos
 - Minería de datos
 - ARIMA
- Siguientes pasos

Objetivo

Objetivo

- Construir un modelo de predicción de demanda de gas natural para el sector industrial por subramo
- Las variables sugeridas en el modelo son:
 - Demanda histórica gas natural (millones de ft cúbicos)
 - Precio gas natural (USD/MMBtu)
 - Precio combustóleo (USD/MMBtu)
 - PIB (miles de millones de pesos)
- El modelo exitoso será el que tenga el menor error de predicción
- Se usó el modelo del IMP como benchmark

Consideraciones

Consideraciones

- Los subsectores industriales considerados después del análisis y homologación de cuatro fuentes de información son:
 - Industria Alimentaria
 - Fabricación de pulpa, papel y cartón
 - Productos a base de minerales no metálicos
 - Cerveza y malta
 - Metales básicos
 - Productos metálicos, equipo eléctrico y de transporte
 - Productos de minerales no metálicos
 - Química
 - Resto
 - Textil
- Período datos históricos (reales): 2005-2015
- Período modelo de IMP: 2005-2030
- Los modelos se realizaron en el lenguaje R

Estructura base de datos de entrada

Año	Categoría unificada (subramo)	Precio industrial de gas natural (PEMEX)	Precio de combustóleo (PEMEX)	PIB	Factores de eficiencia
XXX	XXX	XXX	XXX	XXX	XXX
XXX	XXX	XXX	XXX	XXX	XXX

Modelos

Ventajas de desarrollar los modelos

- Contar con un modelo con poder predictivo que permita generar analíticamente las prospectivas de demanda
- Contar un modelo propio que no sea una caja negra
- Contar con un modelo flexible:
 - Posibilidad de agregar más períodos de tiempo
 - Posibilidad de cambiar granularidad
 - Posibilidad de agregar variables nuevas
 - Posibilidad de replicarlo para cualquier otro tipo de energía
- Contar con varios modelos y posibilidad de compararlos para seleccionar el mejor

Planteamiento

- Modelo de series de tiempo
- 2 enfoques:
 - 1. Estadístico: Modelos ARIMA (p,d,q), i.e. autoregressive integrated moving average

Ventajas: funciona bien con pocos datos.

Desventajas: paramétrico, supuestos, conocimiento.

2. Minería de datos/Machine learning: regresión lineal múltiple, máquina de soporte, red neuronal.

Ventajas: muchos datos, variedad de algoritmos.

Desventajas: caja negra, mal uso.

Demanda por sector

Demanda de gas natural por subsector industrial

Boxplot

Boxplot de variables estandarizadas

Minería de datos

Proceso Modelo Minería de Datos

Proceso:

- 1. Visualizar la serie y estandarizar los datos
- 2. Análisis descriptivo
- 3. Reorganizar los datos
- 4. Construir el modelo de Minería de datos
- 5. Predecir
- 6. Evaluar

Proceso Modelo Minería de Datos

Proceso:

- 1. Visualizar la serie y estandarizar los datos
- 2. Análisis descriptivo
- 3. Reorganizar los datos
- 4. Construir el modelo de Minería de datos
- 5. Predecir
- 6. Evaluar

Demanda sector Químico (estandarizada)

Serie temporal demanda gas natural

Histograma sector Químico

Histograma de demanda

Demanda sector Químico

Relación entre demanda pasada y actual

Boxplot

Boxplot de variables estandarizadas en subsector

Scatterplot por par de variables

Correlaciones por par de variables

Matriz de correlaciones y scatterplots para todas las variables

Proceso Modelo Minería de Datos

Proceso:

- 1. Visualizar la serie y estandarizar los datos
- 2. Análisis descriptivo
- 3. Pruebas para reorganizar los datos
- 4. Construir el modelo de Minería de datos
- 5. Predecir
- 6. Evaluar

Proceso Modelo Minería de Datos

Proceso:

- 1. Visualizar la serie y estandarizar los datos
- 2. Análisis descriptivo
- 3. Pruebas para reorganizar los datos
- 4. Construir el modelo de Minería de datos
- 5. Predecir
- 6. Evaluar

Modelo y variables importantes

Resultados del modelo

Modelo: regresión lineal múltiple

Prueba de hipótesis t sobre los coeficientes:

- Demanda.lag
- Precio gas
- Precio gas.lagged
- Precio combustóleo
- Precio combustóleo lagged
- PIB
- PIB.lagged

Resultados

Error 2006 - 2015: 0.3

Error 2016 - 2030: 0.58

Error 2006 - 2030: 0.88

ARIMA

Proceso Modelo ARIMA

Proceso:

- 1. Visualizar la serie y estandarizar los datos
- 2. Hacerla estacionaria
- 3. Analizar ACF/PACF
- 4. Construir el modelo ARIMA
- 5. Predecir
- 6. Evaluar

Resultados

Error TOTAL 2006-2030: 1.63

i.e. 2X modelo de minería

Predicciones más allá del período dado

Los dos modelos

Siguientes pasos

¿Qué sigue?

- Refinar modelo
- Comparativa de modelos: pros y contras
- Selección de mejor modelo
- Montar modelos en Power BI

Gracias