IDENTIFICATION DES IONS DANS LES SOLUTIONS AQUEUSES

I) PRINCIOE DE RECAINNAISSANCE DES IONS :

Pour mettre en évidence la présence d'ions dans des solutions, on réalise des réactions de **précipitation**.

Pour réaliser les tests on doit suivre les étapes suivantes :

- ✓ On verse une petite quantité de solution contenant l'ion à tester dans un tube à essai.
- ✓ On rajoute ensuite quelques gouttes du réactif (solution détecteur) dans le tube à essai.
- ✓ On observe alors la couleur du précipité obtenu.

Remarque: on appelle « précipité » un solide qui apparaît dans un liquide homogène. Lorsqu'un précipité apparaît on appelle cela une « précipitation ».

II) COULEUR DES IONS :

Certains ions colorent les solutions aqueuses, donnant ainsi une indication de leurs présences.

ion	Fer II	Cuivre	Fer III	Zinc	Chlorure
	Fe ²⁺	Cu ²⁺	Fe ³⁺	Zn ²⁺	Cl ⁻
couleur	verte	bleue	rouille	incolore	incolore

Mohamed LAHLALI

identification des ions

III) IDENTIFICATION DES IONS METALLIQUES:

1) Identification des ions Fe²⁺, Fe³⁺, Cu²⁺:

a) Expérience:

On verse quelques gouttes de soude (hydroxyde de sodium) de formule chimique (Na⁺ + HO⁻) dans des tubes à essai contenant les ions **Fe**²⁺, **Fe**³⁺, **Cu**²⁺:

b) Observation:

On observe la formation d'un précipité de couleur :

- ✓ bleue dans le tube (1).
- ✓ Verte dans le tube (2).
- ✓ Marron (oronge, couleur de la rouille) dans le tube (3).

c) Interprétation:

✓ Le précipité bleu est l'hydroxyde de cuivre de formule chimique Cu(OH)₂, qui confirme la présence des ions de cuivre (Cu²+). L'hydroxyde de cuivre se produit après la réaction des ions de cuivre Cu²+ et les ions d'hydroxyde HO⁻. L'équation de la réaction est :

Cu
$$^{2+}$$
 + 2 OH $^{-}$ \rightarrow Cu(OH) $_{2}$

✓ Le précipité vert est **l'hydroxyde de fer II** de formule chimique **Fe(OH)**₂, qui confirme la présence des ions de fer II (**Fe**²⁺). L'hydroxyde de fer II se produit après la réaction des ions de fer II Fe²⁺ et les ions d'hydroxyde HO⁻. L'équation de la réaction est :

Fe
$$^{2+}$$
 + 2 OH $^{-}$ \rightarrow Fe(OH) $_{2}$

✓ Le précipité marron est **l'hydroxyde de fer III** de formule chimique **Fe(OH)**₃, qui confirme la présence des ions de fer III (**Fe**³⁺). L'hydroxyde de fer III se produit après la réaction des ions de fer III Fe³⁺ et les ions d'hydroxyde HO⁻. L'équation de la réaction est :

Fe
$$^{3+}$$
 + 3 OH $^{-}$ \rightarrow Fe(OH) $_{3}$ 2) Identification des ions Al $^{3+}$ et Zn $^{2+}$:

a) Expérience:

On verse quelques gouttes de soude (hydroxyde de sodium) de formule chimique (Na⁺ + HO⁻) dans des tubes à essai contenant les ions **Al**³⁺ et **Zn**²⁺:

b) Observation:

On observe la formation d'un précipité de couleur :

- ✓ blanc dans le tube (1).
- ✓ Blanc dans le tube (2).

c) Interprétation:

✓ Le précipité blanc (tube 1) est l'hydroxyde d'aluminium de formule chimique Al(OH)₃ qui confirme la présence des ions d'aluminium (Al³⁺).

L'hydroxyde de d'aluminium se produit après la réaction des ions d'aluminium Al³⁺ et les ions d'hydroxyde HO⁻. L'équation de la réaction est :

Al
$$^{3+}$$
 + 3 OH $^{-}$ \rightarrow Al(OH)₃

✓ Le précipité blanc (tube 2) est l'hydroxyde de zinc de formule chimique Zn(OH)₂, qui confirme la présence des ions de zinc Zn²⁺. L'hydroxyde de zinc se produit après la réaction des ions de zinc (Zn²⁺) et les ions d'hydroxyde HO⁻.L'équation de la réaction est :

Zn
$$^{2+}$$
 + 2 OH $^{-}$ \rightarrow Zn(OH) $_{2}$ REMARQUE :

- ✓ L'ion d'hydroxyde HO⁻ est appelé ion détecteur des ions Fe²⁺, Fe³⁺. Cu²⁺. Al³⁺ et Zn²⁺.
- ✓ L'hydroxyde de zinc est soluble dans un excès de la soude et dans un excès d'ammoniac.
- ✓ L'hydroxyde d'aluminium est soluble dans un excès de la soude et non soluble dans un excès d'ammoniac.

IV) IDENTIFICATION DES IONS DE CHLORURE CI":

a) Expérience:

On verse quelques gouttes de nitrate d'argent de formule chimique (Ag⁺ + NO₃⁻) dans des tubes à essai contenant les ions de chlorure Cl⁻:

b) Observation:

On observe la formation d'un précipité de couleur blanche qui noircie à l'abri de la lumière.

c) Interprétation :

Le précipité blanc qui noircie à l'exposition de la lumiére est le chlorure d'argent de formule chimique AgCl, qui confirme la présence des ions de chlorure Cl⁻.

Le chlorure d'argent se produit après la réaction des ions de chlorure Cl⁻ et les ions d'argent Ag⁺. L'équation de la réaction est :

Mohamed LAHLALI

identification des ions

Remarque:

L'ion d'argent Ag⁺ est appelé ion détecteur des ions Cl⁻.

V) CONCLUSION GENERAL:

ion	réactif	précipité		Equation de	
		Formule et couleur	nom	précipitation	
Cuivre Cu ²⁺	La soude	Cu(OH) ₂ bleu	Hydroxyde de cuivre	Cu ²⁺ + 2OH ⁻ → C <u>u(OH)</u> ₂	
Fer II Fe ²⁺		Fe(OH) ₂ vert	Hydroxyde de fer II	Fe ²⁺ + 2OH ⁻ → F <u>e(OH</u>) ₂	
Fer III Fe ³⁺		Fe(OH)₃ marron	Hydroxyde de fer III	Fe ³⁺ + 3OH - → F <u>e(OH)</u> ₃	
Aluminium Al ³⁺	_	Al(OH) ₃ blanc	Hydroxyde d'aluminium	Al ³⁺ + 3OH ⁻ → A <u>l(OH</u>) ₃	
Zinc Zn ²⁺		Zn(OH)₂ blanc	Hydroxyde de zinc	$Zn^{2+} + 2OH^{-} \rightarrow Z\underline{n(OH)_2}$	
Chlorure Cl ⁻	Nitrate d'argent	AgCI Blanc noircie à l'abri de la lumière	Chlorure d'argent	Ag ⁺ + Cl ⁻ → <u>AgCl</u>	