MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

MAE5776

- Estatísticas descritivas multivariadas: Rp, Rpxp, Rnxn
- Inferência sobre μ∈ ℝ^p:

Caso de Uma Única População

O problema de Comparações Múltiplas

Caso de Duas Populações: Amostras pareadas e Amostras Independentes

- ⇒ Caso de Duas ou Mais Populações (MANOVA):
- ✓ Delineamento Completamente Aleatorizado (DCA) com Um Fator em G níveis

$$\int_{\mathbb{R}^{n}} \mathbb{R}^{n} \int_{\mathbb{R}^{n}} \mathbb{R}^{n$$

Teste de $H0:\mu_g=\mu$ sob Observações Independentes, Np e Homocedasticidade: Há diferentes estatísticas de teste (lambda de Wilks, Pillai, Roy).

- DCA Fatorial
- DCA Hierárquico
- Delineamento Aleatorizado em Blocos

MANOVA: Delineamento Completamente Aleatorizado com Um Único Fator

```
T18
        T12
                  Trat
   Τ6
  1.48 2.81 3.56
                      2
  1.04 2.07 2.81
  1.48 2.52 3.41
  1.04 1.93 2.89
  1.80 2.15 3.20
  1.50 2.70 3.75
23 1.80 2.15 3.90
24 1.20 2.25 3.30
  1.78 2.96 4.00
26 1.48 2.81 3.85
27 1.33 2.52 3.84
28 1.03 2.07 2.96
29 1.65 3.00 3.98
30 1.50 2.85 3.75
  1.65 3.00 4.05
46 1.20 2.70 3.90
  1.35 2.55 3.67
48 1.20 2.70 3.60
```

MANOVA.RM do R

Considere os seguintes dados de um Delineamento Completmente Aleatorizado com 1 Fator Tratamento em 4 níveis (Trat=1, Trat=2, Trat=3 e Trat=4)

p=3 variáveis (medidas repetidas de O2): T6, T12 e T18

```
Y<sub>48×(3+1)</sub>
3 variáveis resposta quantitativas e 1 categórica (identificando grupo)
```

Τ6 T12 T18 Trat 1.48 2.81 3.56 1.04 2.07 2.81 1.48 2.52 3.41 1.04 1.93 2.89 1 1.80 2.15 3.20 1.50 2.70 3.75 23 1.80 2.15 3.90 24 1.20 2.25 3.30 25 1.78 2.96 4.00 3 26 1.48 2.81 3.85 4 3 27 1.33 2.52 3.84 28 1.03 2.07 2.96 29 1.65 3.00 3.98 30 1.50 2.85 3.75 4 45 1.65 3.00 4.05 46 1.20 2.70 3.90 4 47 1.35 2.55 3.67 3 48 1.20 2.70 3.60

Matrizes de Covariância

```
Т6
             T12
                  T18
Trat=1
      0.02 -0.02 0.00
Т6
    -0.02 0.09 0.00
Т12
T18
    0.00 0.00 0.08
Trat=2
        Т6
            T12
                 T18
Т6
      0.04 0.04 0.04
      0.04 0.07 0.06
T12
T18
      0.04 0.06 0.11
Trat=3
        T6 T12
                T18
Т6
      0.04 0.01 0.05
Т12
    0.01 0.11 0.01
T18
      0.05 0.01 0.07
        T6 T12
                 T18
Trat=4
      0.05 0.02 0.06
Τ6
Т12
      0.02 0.06 0.05
      0.06 0.05 0.12
T18
```

ScT6T12T18T60.040.010.03T120.010.080.03T180.030.030.09

Box's M-test:

Chi-Sq=34.61, df = 18, p-value = 0.01058

α=1% ⇒ Não há
evidência para a
rejeição da hipótese
de Homocedasticidade

	Т6	T12	T18	Trat
1	1.48	2.81	3.56	1
2	1.04	2.07	2.81	2
3	1.48	2.52	3.41	1
4	1.04	1.93	2.89	2
5	1.80	2.15	3.20	1
6	1.50	2.70	3.75	2
•••				
23	1.80	2.15	3.90	1
24	1.20	2.25	3.30	2
25	1.78	2.96	4.00	3
26	1.48	2.81	3.85	4
27	1.33	2.52	3.84	3
28	1.03	2.07	2.96	4
29	1.65	3.00	3.98	3
30	1.50	2.85	3.75	4
45	1.65	3.00	4.05	3
46	1.20	2.70	3.90	4
47	1.35	2.55	3.67	3
48	1.20	2.70	3.60	4

$H_0: \mu_g = \mu_{3\times 1}, \quad g = 1, ..., 4$

Atenção à decomposição imposta à Matriz de Covariância

SST = SSB + SSW

Tabela de MANOVA:

FV	no.gl	SQP	С			
Trat	4-1	SSB T6 T12 T18		T12 0.53 1.0 8 1.63		Fonte de Variação ENTRE grupos
Resídu	o 48-4	SSW T6 T12 T18	0.55	T12 0.55 3.66 1.24	1.24	Fonte de Variação DENTRO de grupos
Total	48-1	SST T6 T12		T12 1.08 4.74		_

T18 2.51 2.87 6.67

	Estat. a	approxF :	numDf	denDf	Pr(>F)	
Pillai	0.7651	5.0206	9	132	8.062e-06	***
Wilks	0.3807	5.5401	9	102.37	3.354e-06	***
HotelLawley	1.2444	5.6229	9	122	1.742e-06	***
Roy	0.7004	10.273	3	44	3.013e-05	* * *

Concl. ?

```
Т6
        Т12
             т18
                  Trat.
  1.48 2.81 3.56
  1.04 2.07 2.81
  1.48 2.52 3.41
  1.04 1.93 2.89
  1.80 2.15 3.20
                     1
  1.50 2.70 3.75
23 1.80 2.15 3.90
                     1
24 1.20 2.25 3.30
25 1.78 2.96 4.00
26 1.48 2.81 3.85
27 1.33 2.52 3.84
28 1.03 2.07 2.96
                     3
29 1.65 3.00 3.98
30 1.50 2.85 3.75
45 1.65 3.00 4.05
46 1.20 2.70 3.90
47 1.35 2.55 3.67
48 1.20 2.70 3.60
```

Modelo estrutural e distribucional adotado:

 $Y_{ig \ 3\times 1} = \mu_g + e_{ig}; \quad e_{ig} \sim N_3(\mu_g; \Sigma)$

$$= \mu + \tau_g + e_{ig}; \quad \sum_{g=1}^4 \tau_g = 0 \qquad \begin{array}{c} \text{Parametrização} \\ \text{de desvios} \end{array}$$

$$= \begin{cases} \mu_1 + e_{i1} & \text{Parametrização} \\ \mu_1 + \tau_g + e_{ig}; & g = 2, 3, 4 \text{ casela de referência} \end{cases}$$

Estimativas: T6 T12 T18 (Intercept) 1.6183333 2.434166667 3.5266667
$$\hat{\mu}_1$$
 Referência: Trat=1 Trat=2 0.0375000 0.365000000 0.5025000 $\hat{\tau}_g$; $g=2,3,4$ Trat=4 -0.2241667 0.135833333 0.1500000

Comparações Múltiplas

Intervalos de Confiança de Bonferroni (correção por variável)

			_	~ -	
г		Li	Ls	Conclusão	1
Т6	[2-1]	-0.52	-0.08	$\mu_{21} < \mu_{11}$	
	[3-1]	-0.18	0.26	$\mu_{31} = \mu_{11}$	K=6
	[4-1]	-0.44	0.00	$\mu_{41} = \mu_{11}$	
	[3-2]	0.11	0.55	$\mu_{31} > \mu_{21}$	compa
	[4-2]	-0.15	0.29	$\mu_{41} = \mu_{21}$	rações
	[4-3]	-0.48	-0.04	μ_{41} < μ_{31}	
					:
Т12	[2-1]	-0.33	0.32	$\mu_{22} = \mu_{12}$	
	[3-1]	0.04	0.69	$\mu_{32} > \mu_{12}$	
	[4-1]	-0.19	0.46	$\mu_{42} = \mu_{12}$	K=6
	[3-2]	0.04	0.69	$\mu_{32} > \mu_{22}$	
	[4-2]	-0.19	0.47	$\mu_{42} = \mu_{22}$	
	[4-3]	-0.55	0.10	$\mu_{42} = \mu_{32}$	
					:
T18	[2-1]	-0.45	0.24	$\mu_{23} = \mu_{13}$	
	[3-1]	0.16	0.85	$\mu_{33} > \mu_{13}$	
	[4-1]	-0.20	0.50	$\mu_{43} = \mu_{13}$	K=6
	[3-2]	0.26	0.95	$\mu_{33} > \mu_{23}$	

[4-2] -0.09 0.60 $\mu_{43} = \mu_{23}$

[4-3] $-0.70 -0.01 \quad \mu_{43} < \mu_{33}$

$$ICB(\mu_{gj} - \mu_{hj}) a (1 - \alpha)100\% = (\overline{Y}_{gj} - \overline{Y}_{hj}) \pm t_{n-G} (\alpha / 2K) \sqrt{V(\overline{Y}_{gj} - \overline{Y}_{hj})} \left(\frac{1}{n_g} + \frac{1}{n_h}\right) \frac{E_{jj}}{n - G}$$

MANOVA - Fontes de Variação

Dados simulados: Delineamento com População Estratificada em Muitos Grupos (G=15) e p=2

$$Y_{n \times p}; Y_{ig} \sim N_p(\mu_g; \Sigma)$$

⇒ Delineamento com um Fator (Grupo, Tratamento) em 15 níveis

$$SST = SSB + SSW$$

SSB: Fonte de Variabilidade Entre grupos (elipse maior)

SSW: Fonte de Variabilidade Dentro de grupos (elipses menores) Em geral, sob homoceadticidade

Situação ideal:

- Efeito de Tratamento: SSB>SSW
- Poder da análise Multivariada:
 altas covariâncias e de sinais
 opostos nos componentes de variação SSB e SSW

$$Y_{n \times p}$$
; $n = n_1 + ... + n_G$

$$Y_{ig\ p\times 1}=\mu_g+e_{ig};$$

$$Y_{n \times p}; \quad n = n_1 + ... + n_G$$
 $Y_{ig p \times 1} = \mu_g + e_{ig}; \qquad Y_{n \times p} = X_{n \times G} \beta_{G \times p} + e_{n \times p}$

$$\mathbf{Y}_{n imes p} = egin{pmatrix} Y_{11} & Y_{12} & Y_{1p} \ Y_{21} & Y_{22} & Y_{2p} \ \cdots & \cdots & \cdots \ Y_{n1} & Y_{n2} & Y_{np} \ \end{pmatrix};$$

$$e_{n \times p} = \begin{pmatrix} e_{11} & e_{12} & & e_{1p} \\ e_{21} & e_{22} & & e_{2p} \\ \dots & \dots & \dots \\ e_{n1} & e_{n2} & & e_{np} \end{pmatrix}.$$
 Parametrização parametrização

$$\boldsymbol{X}_{n\times G} = \begin{pmatrix} 1_{n_1} & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1_{n_2} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1_{n_G} \end{pmatrix}; \qquad \boldsymbol{\beta}_{G\times p} = \begin{pmatrix} \mu_{11} & \mu_{12} & \mu_{1p} \\ \mu_{21} & \mu_{22} & \mu_{2p} \\ \vdots & \ddots & \ddots & \vdots \\ \mu_{G1} & \mu_{G2} & \mu_{Gp} \end{pmatrix};$$

$$\boldsymbol{\beta}_{G \times p} = \begin{pmatrix} \mu_{11} & \mu_{12} & \mu_{1p} \\ \mu_{21} & \mu_{22} & \mu_{2p} \\ \dots & \dots & \dots \\ \mu_{G1} & \mu_{G2} & \mu_{Gp} \end{pmatrix};$$

Parametrização de desvios

$$X_{n \times G} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 0 & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & 1 \\ \dots & \dots & \dots & \dots \\ 1 & -1 & -1 & -1 \end{pmatrix};$$

$$\boldsymbol{X}_{n\times G} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 0 & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & 1 \\ \dots & \dots & \dots & \dots \\ 1 & -1 & -1 & -1 \end{pmatrix}; \qquad \boldsymbol{\beta}_{G\times p} = \begin{pmatrix} \mu_{.1} & \mu_{.2} & \mu_{.p} \\ \tau_{11} & \tau_{12} & \tau_{1p} \\ \dots & \dots & \dots \\ \tau_{(G-1)1} & \tau_{(G-1)2} & \tau_{(G-1)p} \end{pmatrix};$$

$$Y_{n \times p} = X_{n \times G} \beta_{G \times p} + e_{n \times p}$$

Estimadores de Mínimos Quadrados e de MVS

$$\hat{\beta} = (XX)^{-1}XY \qquad \hat{Y} = X\hat{\beta} = X(XX)^{-1}XY = PY$$

$$\hat{e} = Y - \hat{Y} = \left(I_n - X\left(X'X\right)^{-1}X'\right)Y = \left(I_n - P\right)Y \qquad \hat{e}'\hat{e} / n = \hat{\Sigma} = S$$

$$P = X(X'X)^{-1}X'$$

$$Y_{n \times p} = X_{n \times G} \beta_{G \times p} + e_{n \times p}$$

Teste de Hipóteses Gerais

$$H_0: C_{c \times G} \beta_{G \times p} U_{p \times u} = 0$$

 $C_{c imes G}$: define contrastes entre as médias de grupos

 $U_{{\scriptscriptstyle p} imes u}$: define contrastes entre as médias das variáveis

Estatísticas de Teste: Wilks, Pillai, Lawley-Hotelling, Roy

Lambda de Wilks :
$$\lambda = \frac{|E|}{|H + E|}$$

Considerar os autovalores e autovetores de : $(H - \lambda E)l = 0$

$$H = \left(C\hat{\beta}U\right)'\left[C(XX)^{-1}C'\right]^{-1}C\hat{\beta}U \qquad E = \left(YU\right)'\left[I - X(XX)^{-1}X'\right]^{-1}YU$$

$$Y_{n \times p} = X_{n \times G} \beta_{G \times p} + e_{n \times p}$$

Teste de Hipóteses Gerais $H_0: C_{c \times G} \beta_{G \times v} U_{v \times u} = 0$

Exemplo: Considere um DCA balanceado e a parametrização de médias. Os seguintes **Contrastes Ortogonais** podem ser definidos (para comporem as linhas da matriz C): $C'_{l_1}C_{l_2}=0$

Estrutura Geral de Análise de Dados

(Goos and Gilmour, 2012)

MANOVA – Diferentes Delineamentos

- Estrutura da Resposta: dados quantitativos multivariados (~N_p)
- Estrutura das Unidades Amostrais: Observações independentes

Amostra aleatória simples de tamanho *n* de uma população sob estudo

Como os Tratamentos foram aleatorizados às unidades amostrais?

- ✓ Delineamento Completamente Aleatorizado (DCA) Delineamento Aleatorizado em Blocos Completos (DABC)
- Estrutura dos Tratamentos:
 - ✓ Delineamento com Um Único Fator (em G níveis) Delineamento Fatorial Cruzado (mais de um Fator) Delineamneto Fatorial Hierarquico

Delineamento Fatorial

Dados O2:

DCA com 1 Fator em 4 níveis → DCA Fatorial 2x2: Dois Fatores, cada um em dois níveis

	т6	T12	T18	Trat
1	1.48	2.81	3.56	1
2	1.04	2.07	2.81	2
3	1.48	2.52	3.41	1
4	1.04	1.93	2.89	2
5	1.80	2.15	3.20	1
6	1.50	2.70	3.75	2
23	1.80	2.15	3.90	1
24	1.20	2.25	3.30	2
25	1.78	2.96	4.00	3
26	1.48	2.81	3.85	4
27	1.33	2.52	3.84	3
28	1.03	2.07	2.96	4
29	1.65	3.00	3.98	3
30	1.50	2.85	3.75	4
45	1.65	3.00	4.05	3
46	1.20	2.70	3.90	4
47	1.35	2.55	3.67	3
48	1.20	2.70	3.60	4

	Subj	(Grup	Staph) T6	T12	T18
1	1	P		1.48	2.81	3.56
2	2	P	0	1.04	2.07	2.81
3	3	P	1	1.48	2.52	3.41
4	4	Р	0	1.04	1.93	2.89
21	21	P	1	1.50	2.85	3.12
22	22	P	0	1.65	2.70	3.40
23	23	P	1	1.80	2.15	3.90
24	24	P	0	1.20	2.25	3.30
25	25	V	1	1.78	2.96	4.00
26	26	V	0	1.48	2.81	3.85
27	27	V	1	1.33	2.52	3.84
28	28	V	0	1.03	2.07	2.96
45	45	V	1	1.65	3.00	4.05
46	46	V	0	1.20	2.70	3.90
47	47	V	1	1.35	2.55	3.67
48	48	V	0	1.20	2.70	3.60

Estrutura de Dados

Dados: Medidas Repetidas no formato "wide"

```
Alternativa de
                               análise: MANOVA
> library(reshape2)
> dat.wide <- dcast(dat.long, Subj +</pre>
Grup + Staph~ Time, value.var="02")
> dat.wide
   Subj
         Grup Staph
                            12
                                  18
                   1 1.48 2.81 3.56
                   0 1.04 2.07 2.81
3
                   1 1.48 2.52 3.41
4
                   0 1.04 1.93 2.89
21
     21
                   1 1.50 2.85 3.12
22
     22
                   0 1.65 2.70 3.40
23
     23
                   1 1.80 2.15 3.90
     24
                   0 1.20 2.25 3.30
2.4
25
     25
                   1 1.78 2.96 4.00
26
     26
                   0 1.48 2.81 3.85
27
     27
                   1 1.33 2.52 3.84
28
     28
                   0 1.03 2.07 2.96
            V
                   1 1.65 3.00 4.05
4.5
     45
     46
                   0 1.20 2.70 3.90
46
47
     47
                   1 1.35 2.55 3.67
                   0 1.20 2.70 3.60
48
     48
            V
```

Dados: Medidas Repetidas no formato "long" Altarn

								IPr	_
>	· li	br	ar	y (MANO\	/A.RM)		an	ວາກລຸ ລາ:	tiva de Modelo nistos
>	da	ıt.	loi	ng<-o2d	cons		lina	allSe:	Ma Ve
>	da	ıt.	loi	ng			16	ares ,	1 ^{vio} dela
>	da	ıt.	101	ng	:			0 /	n_{Stos}
			02	Staph	Time	Grup	Subj		3
1		1.	48	1	6	Р	1		
2		2.	81	1	12	Р	1		
3		3.	56	1	18	Р	1		
4		1.	04	0	6	Р	2		
5	1	2.	07	0	12	Р	2		
6	;	2.	81	0	18	Р	2		
6	7	1.	80	1	6	Р	23		
6	8	2.	15	1	12	Р	23		
		3.	90	1	18	Р	23		
		1.		0	6	Р	24		
	1		25	0	12	Р			
	2		30	0	18	Р			
	3		78	1	6	V			
	4		96	1	12	V			
		4.		1	18	V	25		
		1.		0	6	V	26		
		2.		0	12		26		
7	8	3.	85	0	18	V	26		
	39			1	6	V			
	40			1	12	V			
	41			1	18		47		
	42			0	6	V			
	43			0	12	V			
1	44	3.	60	0	18	V	48		
- 1					1	1			1

Dados: Medidas Repetidas no formato "wide"

```
> library(reshape2)
> dat.wide <- dcast(dat.long, Subj +</pre>
Grup + Staph~ Time, value.var="02")
> dat.wide
   Subj Grup Staph
                  1 1.48 2.81 3.56
1
                  0 1.04 2.07 2.81
                  1 1.48 2.52 3.41
                  0 1.04 1.93 2.89
     21
21
                  1 1.50 2.85 3.12
22
     22
                  0 1.65 2.70 3.40
     23
23
                  0 1.20 2.25 3.30
2.4
     24
     25
                  1 1.78 2.96 4.00
25
     26
26
                  0 1.48 2.81 3.85
27
                  1 1.33 2.52 3.84
     27 I
     28
                  0 1.03 2.07 2.96
28
45
     45 I
                  1 1.65 3.00 4.05
     46
46
                  0 1.20 2.70 3.90
                  1 1.35 2.55 3.67
47
     47
                  0 1.20 2.70 3.60
48
     48
```

Delineamento Fatorial 2x2,

OU

Um Fator em 4 níveis

Entendendo a estrutura dos dados:

Estrutura de aleatorização das unidades amostrais (experimentais) aos fatores: Delineamento Completamente Aleatorizado

Estrutura dos Fatores (Tratamentos): Fatorial Cruzado (4 Tratamentos no total: 2 fatores, cada um em 2 níveis)

Delineamento balanceado: n=12 unidades experimentais em cada Tratamento (combinação dos fatores)

p=3 respostas avaliadas em cada sujeito (medidas repetidas de O2)

Dados O2:

DCA Fatorial 2x2

```
> library(reshape2)
> dat.wide <- dcast(dat.long, Subj +</pre>
Grup + Staph~ Time, value.var="02")
> dat.wide
  Subj Grup Staph
                          12
                 1 1.48 2.81 3.56
1
                 0 1.04 2.07 2.81
3
                 1 1.48 2.52 3.41
                 0 1.04 1.93 2.89
    21
21
                 1 1.50 2.85 3.12
22
    22
                 0 1.65 2.70 3.40
2.3
    23
                 1 1.80 2.15 3.90
2.4
    2.4
                 0 1.20 2.25 3.30
25
    25
                 1 1.78 2.96 4.00
26
    26
              0 1.48 2.81 3.85
27
    27
              1 1.33 2.52 3.84
2.8
    28
                 0 1.03 2.07 2.96
45
    45
                 1 1.65 3.00 4.05
46
              0 1.20 2.70 3.90
    46 V
47
    47
                 1 1.35 2.55 3.67
48
    48
                 0 1.20 2.70 3.60
```

```
Centróides
     Τ6
              T12
                       T18
Total 1.497500 2.558333 3.664375
Grup T6
              T12
                       T18
     1.470
              2.432083 3.475833
     1.525
              2.684583 3.852917
Staph T6
              T12
                       T18
     1.357917 2.500000 3.550833
     1.637083 2.616667 3.777917
G*S
     Т6
              Т12
                       Т18
     1.618333 2.434167 3.526667
     1.321667 2.430000 3.425000
     1.655833 2.799167 4.029167
     1.394167 2.570000 3.676667
```

- Ajuste de modelos MANOVA sob Delineamento Fatorial Cruzado!

Delineamento Fatorial Efeito de Interação entre Fatores Dados O2:

DCA Fatorial 2x2

Delineamento Fatorial

Um estudo tem como objetivo avaliar as condições de fabricação de um filme plástico. Três variáveis resposta (Y1, Y2 e Y3) foram observadas sob dois níveis (baixo e alto) dos fatores F1 e F2.

Dados do Arquivo EXH

					Maq2 F2		
			Baixo			Alto	
Maq1	F1	Y1	Y2	Y3	Y1	Y2	Y3
		6,5	9,5	4,4	6,9	9,1	5,7
		6,2	9,9	6,4	7,2	10	2
Baixo		5,8	9,6	3	6,9	9,9	3,9
		6,5	9,6	4,1	6,1	9,5	1,9
		6,5	9,2	0,8	6,3	9,4	5,7
		6,7	9,1	2,8	7,1	9,2	8,4
		6,6	9,3	4,1	7	8,8	5,2
Alto		7,2	8,3	3,8	7,2	9,7	6,9
		7,1	8,4	1,6	7,5	10,1	2,7
		6,8	8,5	3,4	7,6	9,2	1,9

⇒ Realizar uma análise de Variância Multivariada destes dados.

de grupo.

Delineamento Fatorial - ANOVA

$$y_{ijk} = \mu_{jk} + e_{ijk} = \mu + \tau_j + \beta_k + \gamma_{jk}^{\text{Ef. principal de F2}} \text{Resíduo}$$

Resposta da observação i avaliada no nível j do fator 1 e nível k do fator 2

Restrições de identificabilidade $\sum_{i=1}^{a} \tau_{j} = 0, \sum_{k=1}^{b} \beta_{k} = 0, \sum_{i=1}^{a} \gamma_{jk} = 0, \sum_{k=1}^{b} \gamma_{jk} = 0$

"Identidade útil" para obtenção das Somas de Quadrados e dos estimadores dos efeitos de interesse:

$$y_{ijk} = \overline{y} + (\overline{y}_{j.} - \overline{y}) + (\overline{y}_{j.} - \overline{y}) + (\overline{y}_{j.} - \overline{y}) + (\overline{y}_{jk} - \overline{y}_{j.} - \overline{y}_{j.} + \overline{y}) + (y_{ijk} - \overline{y}_{jk})$$

$$SQ_F1 \qquad SQ_F2 \qquad SQ_F1*F2 \qquad SQ_Residual$$

Caso Multivariado ⇒ formulação para o vetor de resposta p-dimensional.

Delineamento Completamente

estrutura Fatorial de Grupos (G≈<u>axb) e r</u> réplicas (balanceado)

Tabela de MANOVA Aleatorizado com estrutura E

F.V.

g.l.

Matriz de SSCP

Fator 1

$$HF1 = \sum_{i=1}^{a} br \left(\overline{Y}_{j.} - \overline{Y} \right) \left(\overline{Y}_{j.} - \overline{Y} \right)'$$

Fator 2

$$HF2 = \sum_{k=1}^{b} ar \left(\overline{Y}_{.k} - \overline{Y} \right) \left(\overline{Y}_{.k} - \overline{Y} \right)'$$

Interação (a-1)(b-1)

$$HInt = \sum_{i=1}^{a} \sum_{k=1}^{b} r \left(\overline{Y}_{jk} - \overline{Y}_{j.} - \overline{Y}_{.k} + \overline{Y} \right) \left(\overline{Y}_{jk} - \overline{Y}_{j.} - \overline{Y}_{.k} + \overline{Y} \right)'$$

Resíduo **ab(r-1)**

$$E = \sum_{j=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{r} (Y_{ijk} - \overline{Y}_{jk}) (Y_{ijk} - \overline{Y}_{jk})'$$

TOTAL

$$HF1 + HF2 + HInt + E = \sum_{j=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{r} (Y_{ijk} - \overline{Y}) (Y_{ijk} - \overline{Y})'$$

Tabela de MANOVA

F.V.

Estatística Multivariada

Distribuição (Bartlet)

Interação

$$\Lambda^*_{Int} = \frac{\left| E \right|}{\left| HInt + E \right|}$$

$$-\left(ab(r-1) - \frac{p+1-(a-1)(b-1)}{2}\right) \ln \Lambda_{lnt}^* \sim \chi_{(a-1)(b-1)p}^2$$

Fator 1

$$\Lambda_{F1}^* = \frac{|E|}{|HF1 + E|}$$

$$-\left(ab(r-1) - \frac{p+1-(a-1)}{2}\right) \ln \Lambda_{F1}^* \sim \chi_{(a-1)p}^2$$

Fator 2

$$\Lambda_{F2}^* = \frac{|E|}{|HF2 + E|}$$

$$-\left(ab(r-1) - \frac{p+1-(b-1)}{2}\right) \ln \Lambda_{F2}^* \sim \chi_{(b-1)p}^2$$

Testar a interação com os efeitos principais no modelo!

Testar os efeitos principais somente sob inexistência de interação (modelo aditivo)!

Delineamento Fatorial

Dados O2:

DCA Fatorial 2x2

```
Df Pillai approx F num Df den Df Pr(>F)
        1 0.36121 7.9165
                               3
                                    42 0.0002686 ***
Grup
Staph 1 0.36152 7.9270 3 42 0.0002660 ***
Grup:Staph 1 0.10131 1.5782 3 42 0.2088765
Residuals 44
Conclusão: Não há evidência para efeito de interação significante
Modelo Reduzido (sem a interação)
        Df Pillai approx F num Df den Df Pr(>F)
         1 0.33988 7.3798 3 43 0.0004280 ***
Grup
         1 0.36086 8.0927 3
Staph
                                   43 0.0002194 ***
Residuals 45
```

```
      Grup
      X6
      X12
      X18

      1
      P 1.470
      2.432083
      3.475833

      2
      V 1.525
      2.684583
      3.852917
```

```
      Staph
      X6
      X12
      X18

      1
      0 1.357917 2.500000 3.550833

      2
      1 1.637083 2.616667 3.777917
```

Realize comparações múltiplas para estudar os efeitos principais dos fatores

Delineamento Aleatorizado em Blocos Completos

Considere os dados de fabricação de um filme plástico: três variáveis (Y1, Y2 e Y3) foram observadas sob dois níveis (baixo e alto) de regulação das Máquinas Maq1 e Maq2. Os materiais de filme plástico estão blocados de acordo com o fornecedor.

-	Maq1 Maq2		Baixo	Ва	ixo	Alto			Baixo	A	lto	Alto		Estrutura dos tratamentos: Fatorial 2x2
_	Bloco	Y1	Y2	Y3	Y1	Y2	Y3	Y1	Y2	Y3	Y1	Y2	Y3	—
	1	6,5	9,5	4,4	6,9	9,1	5,7	6,7	9,1	2,8	7,1	9,2	8,4	Estrutura de aleatorização das
	2	6,2	9,9	6,4	7,2	10	2	6,6	9,3	4,1	7	8,8	5,2	aleatoriza
	3	5,8	9,6	3	6,9	9,9	3,9	7,2	8,3	3,8	7,2	9,7	6,9	unidades amostrais aos amostrais é
	4	6,5	9,6	4,1	6,1	9,5	1,9	7,1	8,4	1,6	7,5	10,1	2,7	amostrais é tratamentos é
-	5	6,5	9,2	0,8	6,3	9,4	5,7	6,8	8,5	3,4	7,6	9,2	1,9	tratamentos e restrita a Blocos.

⇒ Considere que as unidades amostrais (total de 20) estão

Blocadas, de tal forma que há 5 blocos de 4 observações (homogêneas).

Dentro de cada bloco os 4 tratamentos foram aleatorizados às observações.

Note que NÃO há replicas dentro dos níveis do fator Bloco.

Delineamento Aleatorizado em Blocos Completos - ANOVA Ef. principal de Trat $y_{gk} = \mu + \tau_g + \beta_k + e_{gk}$

$$y_{gk} = \mu + \tau_g + \beta_k + e_{gk}$$

Resposta da observação avaliada no nível g do Fator de interesse e no nível k do Fator Bloco (não há réplica)

Restrições de identificabilidade dos parâmetros

$$\sum_{g=1}^{G} \tau_g = 0, \sum_{k=1}^{b} \beta_k = 0$$

"Identidade útil" para obtenção das Somas de Quadrados e dos

estimadores dos efeitos de interesse:
$$y_{gk} = \overline{y} + (\overline{y}_{g.} - \overline{y}) + (\overline{y}_{.k} - \overline{y}) + (y_{gk} - \overline{y}_{g.} - \overline{y}_{.k} + \overline{y})$$
 estimadores dos efeitos de interesse:
$$y_{gk} = \overline{y} + (\overline{y}_{g.} - \overline{y}) + (\overline{y}_{.k} - \overline{y}) + (y_{gk} - \overline{y}_{g.} - \overline{y}_{.k} + \overline{y})$$
 SQ_F1 SQ_F2 SQ_Residual

Caso Multivariado ⇒ formilação para o vetor de resposta p-dimensional.

Tabela de MANOVA Delineamento Aleatorizado em Blocos Completos

F.V.	g.l.	Matriz de SSCP
Fator	G-1	$HF1 = \sum_{g=1}^{G} b \left(\overline{Y}_{g} - \overline{Y} \right) \left(\overline{Y}_{g} - \overline{Y} \right)'$
Bloco	b-1	$HF2 = \sum_{k=1}^{b} G\left(\overline{Y}_{.k} - \overline{Y}\right) \left(\overline{Y}_{.k} - \overline{Y}\right)'$
Resíduo	(G-1)(b-1)	$E = \sum_{g=1}^{G} \sum_{k=1}^{b} \left(Y_{gk} - \overline{Y}_{g.} - \overline{Y}_{.k} + \overline{Y} \right) \left(Y_{gk} - \overline{Y}_{g.} - \overline{Y}_{.k} + \overline{Y} \right)'$
TOTAL	Gb-1	$HF1 + HF2 + E = \sum_{g=1}^{G} \sum_{k=1}^{b} (Y_{gk} - \overline{Y})(Y_{gk} - \overline{Y})'$

Delineamento Hierárquico (Nested)

Considere o seguinte experimento em que as notas dos alunos foram avaliadas segundo Escola e Método de Ensino (A, B, C e D)

	Esco	ola 1			Escola	a 2		Estrutura
Método A		Métod	do B	Méto	Método C		lo D	hierárquica dos fatores
Nota1	Nota2	Nota1	Nota2	Nota1	Nota2	Nota1	Nota2	
7.6	8.2	9.2	9.2	5.6	10.0	6.2	8.8	DCA: atribuição aleatória dos aleatória dos
5.9	7.7	4.3	4.3	7.7	6.9	4.9	4.8	atribulção dos
•••	•••		•••		• • •	•••	•••	aleatória dos estudantes às estudantes as
4.8	6.5	9.0	9.0	5.8	7.8	8.8	7.3	estudantes de sula salas de aula

Estrutura de Tratamentos: há dois fatores hierárquicos Método(Escola).

O fator Método de Ensino está definido DENTRO do fator Escola.

Delineamento Hierárquico (Nested) - ANOVA

Efeitos Fixos dos Fatores

$$y_{ijk} = \mu + \tau_j + \beta_{k(j)} + e_{ijk}$$

Resposta da observação i avaliada no nível k do Fator 2 dentro do nível j do Fator 1

Restrições de identificabilidade dos parâmetros

$$\sum_{j=1}^{a} \tau_{j} = 0, \sum_{k=1}^{b} \beta_{k(j)} = 0$$

"Identidade útil" para obtenção das Somas de Quadrados e dos

estimadores dos efeitos de interesse:

$$y_{ijk} = \overline{y} + (\overline{y}_{j.} - \overline{y}) + (\overline{y}_{jk} - \overline{y}_{j.}) + (y_{ijk} - \overline{y}_{jk})$$

$$SQ_F1 \qquad SQ_F2 \text{ Gas Somas de Quadrado estimadores dos efeitos de interesse:}$$

$$\frac{\text{Ef. de F2 dentro de F1: \'e a soma}}{\text{Ef. de F2 e da interação}}$$

$$\frac{\text{Ef. de F2 e da interação}}{\text{Residuo}}$$

$$\text{Residuo}$$

$$\text{SQ_F1} \qquad \text{SQ_F2(F1)} \qquad \text{SQ_Residual}$$

Caso Multivariado ⇒ descrever os resultados para o vetor de resposta p-dimensional.

Tabela de MANOVA Delineamento Hierárquico ("Nested")

Fonte de Variação	Número de g.l.	Matriz de SQPC
F 1	a-1	$H_{F1_{p\times p}} = \sum_{j=1}^{a} a \left(\overline{Y}_{j} - \overline{Y}\right) \left(\overline{Y}_{j} - \overline{Y}\right)'$
F2(F1)	a(b-1)	$H_{F2(F1)_{p \times p}} = \sum_{j=1}^{4} \sum_{k=1}^{4} r \left(\overline{Y}_{jk} - \overline{Y}_{j} \right) \left(\overline{Y}_{jk} - \overline{Y}_{j} \right)'$
Resíduo	ab(r-1)	$E_{p \times p} = \sum_{j=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{r} (Y_{ijk} - \overline{Y}_{jk}) (Y_{ijk} - \overline{Y}_{jk})$
Total	abr-1	$\sum_{j=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{r} \left(Y_{ijk} - \overline{Y} \right) \left(Y_{ijk} - \overline{Y} \right)'$

Modelos MANOVA pense nas possíveis

Decomposições (Identidades) úteis para a construção das SQPC matriz de hobservações y nxp

Modelo de um único fator:
$$y_{ig} = \overline{y} + (\overline{y}_g - \overline{y}) + (y_{ig} - \overline{y}_g)$$
 $T = H + E$

Fatorial Cruzado:
$$y_{ijk} = \overline{y} + (\overline{y}_{j.} - \overline{y}) + (\overline{y}_{.k} - \overline{y}) + (\overline{y}_{jk} - \overline{y}_{j.} - \overline{y}_{.k} + \overline{y}) + (y_{ijk} - \overline{y}_{jk})$$

T=H1+H2+H1*H2+E

O efeito de F2 dentro de F1 é a soma do efeito principal de F1 e do efeito de interação

Fatorial Hierárquico:
$$y_{ijk} = \overline{y} + (\overline{y}_{j.} - \overline{y}) + (\overline{y}_{jk} - \overline{y}_{j.}) + (y_{ijk} - \overline{y}_{jk})$$
 T=H1+H2(H1)+E

O ef. de interação entre Bloco (F2) • e F1 é o resíduo (**modelo aditivo**)

Modelo com fator Bloco:
$$y_{jk} = \overline{y} + (\overline{y}_{j.} - \overline{y}) + (\overline{y}_{.k} - \overline{y}) + (y_{jk} - \overline{y}_{j.} - \overline{y}_{.k} + \overline{y})$$

T=H1+Bloco+E

Modelos MANOVA Decomposição da Matriz Y_{nxp}

ASCA: ANOVA-Simultaneous Component Analysis (Smilde et al., 2005)

Modelo de um único fator: (p=1) $y_{ig} = \overline{y} + (\overline{y}_{g} - \overline{y}) + (y_{ig} - \overline{y}_{g})$

Para p>1:
$$Y_{ig p \times 1} \neq \overline{Y}_{p \times 1} + (\overline{Y}_g - \overline{Y})_{p \times 1} + (Y_{ig} - \overline{Y}_g)_{p \times 1}$$

$$Y_{n \times p}$$
; $n = \sum_{g=1}^{G} n_g$

 $Y_{n \times p}; \quad n = \sum_{i=1}^{G} n_g$ Decomposição de y devido de grupos.à estrutura de grupos.

$$Y_{n \times p} = M_{n \times p} + T_{n \times p} + E_{n \times p}$$

Matriz de Médias

Componente da variabilidade ENTRE grupos

Componente da variabilidade DENTRO de grupos

Exemplo

Duas variáveis avaliadas em unidades amostrais submetidas a 3 tratamentos

T1		T2		Т3	
Y11	Y12	Y21	Y22	Y31	Y32
9	3	0	4	3	8
6	2	2	0	1	9
9	7			2	7
8	4	1	2	2	8

Média geral = (4,5)

Dependendo do problema, pode haver interesse na análise multivariada, não de Y mas do componente T de Y, ou do componente E de Y (E: resíduo ou resposta Y normalizada)

Pense, por ex., no componente T definindo Multicentros do estudo. Pode haver interesse no efeito de Centros nos dados (usar T) ou mesmo em eliminar este efeito dos dados (usar E)!

P-Integração de Bancos de Dados

-Ver mix-Omics_R

$$Y_{n \times p}; \quad n = \sum_{g=1}^{G} n_g$$

$$Y_{n \times p} = M_{n \times p}$$

 $T_{n \times p}$ + $E_{n \times p}$

Realizar análises (redução de dimensionalidade) nos componentes da decomposição de Y

Ex.: Obter "componentes principais" de T (ou mesmo de E)