Did you?

- Print & read Course Outline?
- Read Assignment 1?
 - Part 1 is Due before your lab tomorrow!
- Read 1st Chapter of your Textbook??
 - Observe a Reading List is now posted
 - Do the self-check exercises from textbook?

Building Java ProgramsChapter 1

Introduction to Java Programming

Building Java ProgramsChapter 2

Data & Expressions

Check reading list – Now includes Chapter 2!

Comments

- comment: A note written in source code by the programmer to describe or clarify the code.
 - Comments are not executed when your program runs.
- Syntax:

```
// comment text, on one line
    or,
/* comment text; may span multiple lines */
```

• Examples:

```
// This is a one-line comment.
/* This is a very long
   multi-line comment. */
```

Using comments

- Where to place comments:
 - at the top of each file (a "comment header")
 - at the start of every method (seen later)
 - to explain complex pieces of code
- Comments are useful for:
 - Understanding larger, more complex programs.
 - Multiple programmers working together, who must understand each other's code.

Comments example

```
/* Suzy Student, CS 101, Fall 2019
   This program prints lyrics about ... something. */
public class BaWitDaBa {
    public static void main(String[] args) {
        // first verse
        System.out.println("Bawitdaba");
        System.out.println("da bang a dang diggy diggy");
        System.out.println();
        // second verse
        System.out.println("diggy said the boogy");
        System.out.println("said up jump the boogy");
```

Data and Expressions

Declaring and Assigning

```
public class AssigningValues {
  public static void main(String[] args) {
                                                    Assigns a
    int firstValue = 17;
                                                      value
    int secondValue = 2;
    System.out.println("The value is: " + firstValue);
    firstValue = 523;
                                Sets up a memory
                                                  alue);
    System.out.println("The val
                                  location to hold
    firstValue = secondValue;
                                    the value
    System.out.println("The val
                                                  alue);
    System.out.println("The other value is: " + secon
                                                        Doing Math
    firstValue = secondValue *5;
    System.out.println("The value is: " + firstValue),
    firstValue = firstValue +1;
    System.out.println("The value is: " + firstValue);
                                                    Interesting
                                                      Math !!
```

Java's Primitive Types

We usually use four kinds (types) of values:

- -int A positive or negative integer (32-bit)
 -double A "double-precision" floating-point value (64-bit).
 A real number -- has a fractional part (e.g., 3.141592654).
 -boolean A 1-bit value: true or false.

 (actually stored in a 32-bit int)

 -char A UNICODE text character (16-bit).
 - byte 8-bit integer,
 - -short 16-bit integer,
 - long 64-bit integer,
 - -float 32-bit floating-point.

Memory and Declaration


```
int xAxis;
double median = 7.1;
```

Your Turn

```
public static void main(String[] args) {
  int currentYear = 2006;
  int lastyear = currentYear - 1;
  int that Y = 1943;
  int tempYear;
  System.out.println("I think there is a world market for");
  System.out.print(" maybe ");
  System.out.println("five computers.");
  System.out.println(" By Thomas Watson");
  System.out.print(" In the year, thatYear");
  System.out.println(" Or was it" + thatYear);
  tempYear = currentYear - thatYear;
  System.out.print(" In any case it was tempYear or ");
  System.out.printl/
  tempYear = lasty I think there is a world market for
  System.out.print
                      maybe five computers.
                       In the year, that Year Or was it 1943 in the Year or 63 ago Arther Last year that was only 62 ago
```

Evaluating Expressions

Computations occur in a specific order, one at a time

default Java rule : evaluate left-to-right:

- BUT: Every operator has a precedence that may override
 - Operators with a "higher" precedence always execute before those with "lower" precedence.

Operator Precedence

Operator Kind	Examples
unary sign modifiers	+3, -12
binary multiplicative	7*3, 2/5, 9%4
binary additive	1+2, 3-4

Example: 29 - 7 * 3

Simple Left to Right: 22 * 3 = 66

Using Precedence: 29 - 21 = 8

Precedence Examples

• Evaluate:

Try again:

```
public class VariableTester {
    public static void main ( String[] args ) {
        int perhaps, maybe;
        int niceValue = 4;
        perhaps = niceValue++;
        maybe = -17 \% niceValue;
        System.out.println("perhaps: " + perhaps);
        System.out.println("maybe: " + maybe);
```

perhaps: 4 maybe: -2

Assignment 1 Discussion

Computing Concepts

 Computers execute simple instructions known as machine code. Examples:

```
"ADD 1 to value x"

"MOVE value y to location z"

"IF t = 0, then jump to instruction I"
```

- Computers only know about numbers—integer values (e.g., 1, -2, etc.), floating-point values (e.g., 3.1415), addresses of memory and instructions.
- Even machine instructions are represented as numbers.

Computer Counting: What is a hit?

- Bina it
- 8 bits = 1 byte
- 1024 bytes = 1 kilo byte (Kbyte)

$$= 2x2x2x2x2x2x2x2x2x2 bytes$$
$$= 2^{10} bytes$$

Computer Counting: Powers of 2

$$\bullet 2^{10} = 1024 = 1K \text{ (Kilo)}$$

Not to be confused with:

$$10^3 = 1000 = 1$$
K

 \bullet 2²⁰ = 1,048,576 = 1M (Mega)

$$10^6 = 1,000000 = 1M$$

 \bullet 2³⁰ = 1,073,741,824 = 1G (Giga)

$$10^6 = 1,000,000,000 = 1G$$

 \bullet 2⁴⁰ = 1,099,511,627,776 = 1T (Tera)

$$10^9 = 1,000,000,000,000 = 1T$$