Problem Statement

P[1..m] is an input list of n points on xy-plane. Assume that all n points have distinct x-coordinates and distinct y-coordinates. Let $p_{\rm L}$ and $p_{\rm R}$ denote the leftmost and points of P, respectively. The task is to find the polygon Q with P as its vertex set such that the following conditions are satisfied.

- 1. The upper vertex chain of Q is x-monotone (increasing) from p_L to p_R .
- 2. The lower vertex chain of Q is x-monotone (decreasing) from $p_{\rm R}$ to $p_{\rm L}$.
- 3. Perimeter of Q is minimum.

Algorithm

Say the *n* points are $x_1, x_2, ..., x_n$. Let's assume them to be ordered by their *x*-coordinates i.e. x_1 is the leftmost and x_n is the rightmost.

Figure 1: Path (x_{n-1}, x_n)

Lemma 1. The segment (x_{n-1}, x_n) will be contained in the polygon Q.

Proof. Suppose the segment (x_{n-1}, x_n) is not contained in Q. This means that the polygon must have a portion like this - $x_i...x_{n-1}...x_j...x_n$. However we know that both x_i and x_j have smaller coordinates than x_{n-1} which means that the portion is not x-monotone, which is a contradiction.

Now let's frame this problem as finding a path from x_n back to itself such that the initially we strictly travel left to x_1 and then we strictly travel right to x_n . One possible question that might arise is - **Why should we expect the path to be non-crisscrossing?**. We will answer this later. For now assume that the result is a normal polygon.

From lemma 1, it suffices to find the length of the minimal path going from x_n strictly to the left upto x_1 - leaving out x_{n-1} - and then from x_1 strictly to the right upto x_{n-1} and add it to the distance between x_n and x_{n-1} .

We now make the following observations:

- 1. Any acceptable path from x_n to x_{n-1} must start with a first edge (x_n, x_k) for some k < n-1.
- 2. Since we must visit all points, and since from x_k we can only continue to the left, all the points $x_{k+1}, x_{k+2}, ..., x_{n-1}$ must necessarily be visited on the way from left to right (and in this order). So, necessarily our path ends with $x_{k+1} \longrightarrow x_{k+2} \longrightarrow ... \longrightarrow x_{n-1}$.

Figure 2: These paths must be visited on the return journey.

So far we have figured out that an acceptable path from x_n to x_{n-1} has the form

$$x_{n} \longrightarrow x_{k} \longrightarrow ??? \longrightarrow x_{k+1} \longrightarrow x_{k+2} \longrightarrow ... \longrightarrow x_{n-1}.$$

where $\longrightarrow x_k \longrightarrow ??? \longrightarrow x_{k+1}$ is in itself an acceptable path (satisfying all the constraints) from x_k to x_{k+1} with k < n-1.

If we want to minimize the length of path from x_n to x_{n-1} , we must also minimize the length of the path from x_k to x_{k+1} (which is the same as the length of the acceptable path from x_{k+1} to x_k).

For any i > 1 let l(i) denote the length of the acceptable minimum length path from x_i to x_{i-1} . The preceding arguments imply that :

$$l(n) = d(x_n, x_k) + l(k+1) + \sum_{m=k+1}^{n-2} d(x_m, x_{m+1})$$

For some k < n we have :

$$l(n) = \min_{1 < i < n} \left[d(x_n, x_{i-1}) + l(i) + \sum_{m=k+1}^{n-2} d(x_m, x_{m+1}) \right]$$

The exact same reasoning also applies on such paths for any 2 i.e we have obtained the recursion :

$$l(p) = \min_{1 < i < p} \left[d(x_{p}, x_{i-1}) + l(i) + \sum_{m=k+1}^{p-2} d(x_{m}, x_{m+1}) \right]$$

And $l(2) = d(x_2, x_1)$. We can use this recursion to successively calculate l(p) for p = 2, ..., n, then the required length for all sets of points would be:

$$l(n) + d(x_{\rm n}, x_{\rm n-1})$$

How to construct the path?

To construct the optimal path satisfying the constraint we only need to store the value of i that optimizes l(p) for all values of p. From this we can find the neighbour of x_n and then the neighbour of that neighbour and so on.

Why would the resulting path be a polygon?

Now coming back to the assumption. It is actually very easy to see that for any path that consists of criss crossing edges we can construct a shorter path without having crossing edges. This is a direct consequence of the triangle inequality.

Consider an example where the paths AB and CD in the above polygon are replaced by AD and BC. Also, note that Q is the intersection AD and BC in the new polygon.

By triangle inequality BQ + AQ in the second polygon must be greater than AB in the first polygon.

Also, CQ + DQ in the second polygon must be grater than CD in the first polygon.

Figure 3: Polygon 1

Figure 4: Polygon 2

The first polygon must have smaller total path length than the second polygon.

Therefore, we can say that the result of the algorithm will always be a polygon.

Time and Space Complexities

1. The time complexity is $\mathcal{O}(n^2)$.

<u>Justification</u> - It can be seen that for each value of p > 2 we have to take the minimum of p-2 terms. Also, note that the value of $\sum_{m=k+1}^{p-2} d(x_m, x_{m+1})$ can be calculated in $\mathcal{O}(1)$ time after a pre-processing that takes $\mathcal{O}(n^2)$ time. Therefore the required time complexity calculate will take the form $\sum_i (i-2)$ which will lead to a an overall time complexity of $\mathcal{O}(n^2)$.

2. The space complexity is also $\mathcal{O}(n)$.

<u>Justification</u> - As explained in the previous section, we need to store the value of i that optimizes l(p) for all values of p, where $2 . Therefore, we require <math>\mathcal{O}(n)$ space.