```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
dataset=pd.read_csv("car_crashes.csv")
dataset
    total speeding alcohol not distracted
                                                no previous ins premium
0
     18.8
              7.332
                        5.640
                                        18.048
                                                      15.040
                                                                    784.55
     18.1
              7.421
                        4.525
                                        16.290
                                                      17.014
                                                                   1053.48
1
2
     18.6
              6.510
                        5.208
                                        15.624
                                                      17.856
                                                                   899.47
3
     22.4
              4.032
                                        21.056
                                                      21,280
                                                                    827.34
                        5.824
     12.0
              4.200
                        3.360
                                        10.920
                                                      10.680
                                                                    878.41
                                        10.744
5
     13.6
              5.032
                        3.808
                                                      12.920
                                                                   835.50
     10.8
              4.968
                                                                  1068.73
6
                        3.888
                                         9.396
                                                       8.856
                                        14.094
                                                      16.038
                                                                   1137.87
7
     16.2
              6.156
                        4.860
      5.9
              2.006
                                         5.900
                                                                   1273.89
8
                        1.593
                                                       5.900
9
     17.9
              3.759
                        5.191
                                        16.468
                                                      16.826
                                                                   1160.13
                                                      14.508
                                                                    913.15
10
     15.6
              2.964
                        3.900
                                        14.820
11
     17.5
              9.450
                        7.175
                                        14.350
                                                      15.225
                                                                    861.18
12
     15.3
              5.508
                        4.437
                                        13.005
                                                      14.994
                                                                    641.96
13
     12.8
              4.608
                        4.352
                                        12.032
                                                      12.288
                                                                    803.11
14
     14.5
              3.625
                        4.205
                                        13.775
                                                      13.775
                                                                    710.46
15
     15.7
              2.669
                        3.925
                                        15.229
                                                      13.659
                                                                    649.06
16
     17.8
              4.806
                        4.272
                                        13.706
                                                      15.130
                                                                    780.45
17
     21.4
              4.066
                        4.922
                                        16.692
                                                      16.264
                                                                    872.51
18
     20.5
                                        14.965
                                                      20.090
                                                                   1281.55
              7.175
                        6.765
```

19	15.1	5.738	4.530	13.137	12.684	661.88
20	12.5	4.250	4.000	8.875	12.375	1048.78
21	8.2	1.886	2.870	7.134	6.560	1011.14
22	14.1	3.384	3.948	13.395	10.857	1110.61
23	9.6	2.208	2.784	8.448	8.448	777.18
24	17.6	2.640	5.456	1.760	17.600	896.07
25	16.1	6.923	5.474	14.812	13.524	790.32
26	21.4	8.346	9.416	17.976	18.190	816.21
27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38

45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95
47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8	4.968	4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 34 34 34 34 34 34 34 34 34 34 34	ins_losse 145.6 133.3 110.3 142.3 165.6 139.9 167.6 151.4 136.6 144.1 142.8 120.9 82.7 139.1 108.9 114.4 133.8 137.1 194.7 196.5 152.2 133.3 155.7 144.8 85.1 144.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 120.2 159.8 159.	es abbrev 98 AL 93 AK 93 AR 95 AR 96 CA 91 CO 92 CT 48 DE 95 DC 18 FL 96 BA 97 ID 15 IL 98 IS 98 KY 98 KS 13 KY 98 MA 97 MB 98 MA 99 MB 91 NV 91 NV 91 NV 91 NY 93 NC				

```
35
        133.52
                    0H
                    0K
36
        178.86
37
        104.61
                    0R
38
        153.86
                    PA
39
        148.58
                    RI
        116.29
40
                    SC
         96.87
41
                    SD
42
        155.57
                    TN
43
        156.83
                    TX
44
        109.48
                    UT
45
        109.61
                    VT
46
        153.72
                    VA
47
        111.62
                    WA
48
        152.56
                    WV
49
        106.62
                    WI
50
        122.04
                    WY
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):
                      Non-Null Count
#
     Column
                                       Dtype
- - -
     _ _ _ _ _ _
 0
                      51 non-null
     total
                                       float64
1
     speeding
                      51 non-null
                                       float64
 2
     alcohol
                      51 non-null
                                       float64
 3
     not distracted
                      51 non-null
                                       float64
 4
     no previous
                      51 non-null
                                       float64
 5
                      51 non-null
                                       float64
     ins_premium
 6
     ins losses
                      51 non-null
                                       float64
7
     abbrev
                      51 non-null
                                       object
dtypes: float64(7), object(1)
memory usage: 3.3+ KB
dataset.head(8)
          speeding
                     alcohol
                               not distracted no previous
                                                              ins premium
   total
0
    18.8
             7.332
                       5.640
                                       18.048
                                                     15.040
                                                                   784.55
1
    18.1
              7.421
                       4.525
                                       16.290
                                                     17.014
                                                                  1053.48
2
    18.6
             6.510
                       5.208
                                       15.624
                                                     17.856
                                                                   899.47
3
    22.4
             4.032
                       5.824
                                       21.056
                                                     21.280
                                                                   827.34
    12.0
             4.200
                       3.360
                                       10.920
                                                     10.680
                                                                   878.41
5
    13.6
             5.032
                       3.808
                                       10.744
                                                     12.920
                                                                   835.50
```

_	10.0	4 000	2 000	0.200	0.056	1000 7
6	10.8	4.968	3.888	9.396	8.856	1068.7
7	16.2	6.156	4.860	14.094	16.038	1137.87
	ins_loss	es abbrev				
0	145.	08 AL				
1	133.	93 AK				
2	110.	35 AZ				
3	142.	39 AR				
4	165.	63 CA				
5	139.	91 CO				
6	167.					
7	151.					
sns	.scatter	plot(x="t	otal",y="sp	eeding",data=dat	aset)	
<a>	kes: xlab	el='total	', ylabel='s	speeding'>		

Inference: from the plot we can say that as the total increases speeding is decreases

```
sns.pairplot(dataset)
plt.title("Pairplot of Car Crashes Dataset")
plt.show()
```


Inference: The pairplot provides a quick overview of the relationships between numeric variables in the dataset. It helps identify potential correlations or patterns.

```
sns.distplot(dataset["total"], bins=20, kde=True)
plt.title("Histogram of Total Number of Accidents")
plt.xlabel("Total Accidents")
```

```
plt.ylabel("Frequency")
plt.show()
```

<ipython-input-24-c2887f4da83f>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(dataset["total"], bins=20, kde=True)

Inference: The histogram shows the distribution of total accidents. Most states have a relatively low number of accidents, with a few outliers with significantly higher accident counts.

```
sns.boxplot(x="speeding", y="total", data=dataset)
plt.title("Boxplot of Speeding vs. Total Accidents")
plt.xlabel("Speeding (Yes/No)")
plt.ylabel("Total Accidents")
plt.show()
```

Boxplot of Speeding vs. Total Accidents

Inference: The boxplot illustrates the relationship between speeding (yes/no) and the total number of accidents. It indicates that states with higher speeding rates tend to have a higher median total number of accidents.

```
sns.barplot(x="alcohol", y="total", data=dataset, ci=None)
plt.title("Barplot of Alcohol Involvement vs. Total Accidents")
plt.xlabel("Alcohol Involvement (Yes/No)")
plt.ylabel("Total Accidents")
plt.show()
```

<ipython-input-19-e9d4c62a021d>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(x="alcohol", y="total", data=dataset, ci=None)

Inference: The heatmap displays the correlation between numeric variables in the dataset. Positive correlations are shown in warmer colors, while negative correlations are in cooler colors. It helps identify potential relationships between variables.

sns.lineplot(x="alcohol",y="speeding",data=dataset)
plt.title("LINEPLOT")

Text(0.5, 1.0, 'LINEPLOT')

Inference: The line plot comparing "Alcohol" and "Speeding" incidents in car crashes shows that alcohol with higher value have higher speeding value.

sns.jointplot(x="total",y="speeding",data=dataset)
plt.title("JOINT")

Text(0.5, 1.0, 'JOINT PLOT')

INFERENCE :States with a higher rate of "Speeding" incidents tend to have a wider range of total accidents, as indicated by the larger interquartile range (IQR) and the presence of outliers.