Engenharia de Software

Processos de Desenvolvimento

Luís Morgado

Instituto Superior de Engenharia de Lisboa Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores

Processo de Desenvolvimento

- Desenvolvimento de um sistema
 - Processo de geração de ordem (organização do sistema)
 - Requer conhecimento
 - Do problema a resolver
 - Da solução a concretizar
- Será possível obter o conhecimento necessário todo à partida?
 - No caso geral a resposta é negativa, devido à complexidade dos problemas e das respectivas soluções
- Será viável construir a solução com conhecimento incompleto e eventualmente incorrecto?
 - Sem conhecimento completo e correcto da solução a produzir não é possível garantir que cumpre os objectivos definidos
 - O efeito é ineficiência e falta de qualidade no trabalho realizado

Risco de Desenvolvimento

Conhecimento incompleto tem como consequência incerteza, a qual implica elevado risco de desenvolvimento. Para reduzir a incerteza é necessário aumentar o conhecimento, em particular acerca da adequação da solução produzida aos objectivos pretendidos, no entanto, esse conhecimento só é possível de obter quando existe uma versão concreta da solução para poder ser avaliada

Num processo linear, uma versão concreta da solução só é produzida na fase final do projecto, mantendo o risco de desenvolvimento elevado durante um longo período de tempo

Como reduzir o risco à medida que o projecto evolui?

Redução de incerteza —— Aumento do conhecimento

Modelo em Cascata Revisto

Realização de Protótipos

- Realização de protótipos intercalares
- O objectivo é tentar reduzir o risco de desenvolvimento
 - Envolvimento dos utilizadores
 - Verificação de viabilidade
 - Convergência progressiva para a solução pretendida

Modelo de Prototipagem

Baseia-se na construção de **versões simplificadas**, ou de partes **limitadas** do sistema, as quais podem ser analisadas **previamente** antes da produção de uma versão final

Modelo de Prototipagem

Objectivo:

- Identificar requisitos do problema
- Reduzir a incerteza de desenvolvimento (e o risco associado)

Os protótipos podem variar em:

- Dimensão: limitados vs. abrangentes
- Funcionalidade: funcionalidades limitadas vs. conjunto alargado de funcionalidades

O que fazer com o protótipo:

- Refiná-lo até a obtenção do produto final
- Tomá-lo como ponto de partida para o desenvolvimento convencional

Alguns problemas:

- O cliente vê o que parece ser uma versão operacional do software,
 desconhecendo que a estrutura interna é em muitos aspectos provisória
- São feitos compromissos iniciais no sentido de obter um protótipo rapidamente, o que pode levar a opções de implementação que mais tarde se revelam problemáticas

Modelo Linear

- Ênfase no planeamento antes da construção
- Escalonamento linear das tarefas
 - Facilidade de gestão
 - Facilidade de comunicação
- Separação clara entre actividades
 - Concepção / Construção
- Assume-se que o desenvolvimento de software é um processo linear, previsível
- Mudança é considerada um factor perturbador

Características do Desenvolvimento de Software

Volatilidade

- Produção e alteração de software não implica processos industriais de grande inércia
- Muito depende da criatividade de quem o realiza
- Esforço reside essencialmente na concepção
 - Requer criatividade e conhecimento
- Processos criativos
 - Não lineares
 - Difícil previsibilidade
 - Difícil planeamento

Processo de Desenvolvimento

As actividades de um processo de desenvolvimento podem encadear-se ciclicamente de modo a aumentar progressivamente o conhecimento da solução a produzir para atingir o objectivo definido, através de diferentes iterações de concretização da solução, num *processo iterativo guiado por conhecimento*, onde o conhecimento obtido em cada iteração alimenta a iteração seguinte

Modelo Adaptativo

- Abordagem alternativa ao modelo linear para desenvolvimento de software
- Aceitação do imprevisto e da mudança
- Adaptação à mudança
- Ênfase nas pessoas e na sua capacidade de resolução de problemas

Modelo de Desenvolvimento Cíclico

As diferentes fases e actividades de desenvolvimento são realizadas em diferentes ciclos (iterações), com aumento sucessivo do conhecimento obtido e da funcionalidade das versões produzidas, até à convergência para a versão final

Desenvolvimento Cíclico

Organização geral

 O desenvolvimento cíclico é organizado com base nos seguintes conceitos principais:

Fase

 O conceito de fase no modelo de desenvolvimento cíclico refere-se às diferentes etapas de desenvolvimento de um projecto, tendo cada fase um âmbito de actividade específico, nomeadamente, análise, concepção, construção, verificação

Iteração

 Conjunto de actividades que têm como propósito a produção de uma versão incremental da solução

Actividade

 Conjunto de acções relacionadas que têm um propósito específico no âmbito da solução a desenvolver, por exemplo, análise de requisitos, concepção da arquitectura, construção do código, verificação da solução

Desenvolvimento Cíclico

Fase
Não são equivalentes

Cores representam tipos de actividade diferentes

Processo iterativo

As diferentes actividades são realizadas em cada iteração com ênfases variáveis

Desenvolvimento Cíclico

Vantagens

- Envolvimento dos utilizadores pode começar numa fase precoce
 - Versões incrementais da solução
 - Permite obter informação dos utilizadores sobre a solução produzida
- Versões frequentes permitem detectar e resolver rapidamente problemas não antecipados
- Permite a focagem em diferentes áreas de especialização consoante a versão

O desenvolvimento incremental iterativo é um modelo de desenvolvimento cíclico orientado para a produção de versões incrementais da solução, com a repetição das mesmas etapas, organizadas em iterações, até que o resultado pretendido seja obtido

- Análise
- Concepção
- Construção
- Verificação

Foco:

- Produção de Valor
- Redução de Risco

Risco de Desenvolvimento

O desenvolvimento incremental iterativo possibilita a obtenção de conhecimento de forma incremental ao longo da realização de um projecto, reduzindo progressivamente a incerteza e, consequentemente, o risco, até à concretização da versão final da solução

[Boehm, 2000]

Exemplo: Rational Unified Process (RUP)

- Resultou da fusão de vários métodos de desenvolvimento de software
 - OMT (James Rumbaugh, 1991)
 - OOSE (Ivar Jacobson, 1992)
 - Booch Method (Grady Booch, 1993)
- Criado pela Rational Software
- Meta-processo que pode ser concretizado de diferentes formas
- Serviu de base para processos mais recentes

Copyright 2005-2006 Scott W. Ambler

Rational Unified Process (RUP)

- Principais características
 - Incremental e iterativo
 - Desenvolvimento progressivo
 - Desenvolvimento cíclico
 - Guiado por casos de utilização
 - Centrado na arquitectura
 - Focado na redução do risco
 - Risco de desenvolvimento explicitamente reconhecido
 - Ênfase nos aspectos desconhecidos da solução a desenvolver (redução da incerteza)

Rational Unified Process (RUP)

Principais aspectos de organização do processo

Desenvolvimento cíclico

Principais conceitos

Rational Unified Process (RUP)

Fases de desenvolvimento

Inception: Understand what to build

- Vision, high-level requirements, business case
- Not detailed requirements

Elaboration: Understand how to build it

- Baseline architecture, most requirements detailed
- Not detailed design

Construction: Build the product

Working product, system test complete

Transition: Validate solution

Stakeholder acceptance

Rational Unified Process (RUP)

Iterações incrementais

[Rational, 2003]

Rational Unified Process (RUP)

Fluxos de Trabalho (Workflows) e Modelos

[Rational, 2003]

Apesar do desenvolvimento incremental iterativo apresentar características relevantes para lidar com aspectos como a incerteza e a redução do tempo de desenvolvimento, também pode apresentar limitações, nomeadamente, quando os sistemas a produzir disponibilizam funcionalidades críticas para os seus utilizadores, individuais ou organizações, na produção dos quais o foco não é tanto a rapidez mas o controlo do desenvolvimento

Para identificar as características do processo de desenvolvimento mais adequadas a diferentes tipos de aplicações, é possível definir duas dimensões principais de avaliação: o *nível de formalidade* (rigor do processo e documentação produzida) e o **tipo de processo**, *cascata ou iterativo*

[Kruchten, 2003]

Para o desenvolvimento de sistemas de elevada complexidade ou com requisitos estritos, como sistemas críticos, por exemplo sistemas militares, os níveis de formalidade devem ser altos e a evolução das várias fases deve ser mais controlada, ou seja, com uma organização mais próxima da linear, em cascata

[Kruchten, 2003]

Para o desenvolvimento de sistemas em contextos de grande incerteza e em que o tempo de desenvolvimento é importante, níveis de formalidade mais baixos e um carácter incremental e iterativo são mais adequados, podendo o nível de formalidade aumentar em função da complexidade e do nível de criticidade da solução a produzir

[Kruchten, 2003]

Bibliografia

[Pressman, 2003]

R. Pressman, Software Engineering: a Practitioner's Approach, McGraw-Hill, 2003.

[Weaver, 1948]

W. Weaver, Science and Complexity, American Scientist, 36: 536, 1948.

[Hitchins, 1992]

D. Hitchins, Putting Systems to Work, John Wiley, 1992.

[Boehm, 2000]

B. Boehm, Software Cost Estimation with COCOMO II, 2000.

[DAUP, 2001]

Systems Engineering Fundamentals. Defense Acquisition University Press, 2001