

MODULE 129

Exercices				
Chapitre	Dépannage	Durée : 100'		
Sujet	Utilisation des outils de base pour dépanner un réseau utilisation du simulateur CISCO Packet Tracer Notion de routage			
Objectif(s)	A la fin des exercices, l'élève doit être capable de :			
	Utiliser des outils de base			
	 Diagnostiquer et dépanner des montages virtuels simple 	oles		

129_06_11_dépannage (schéma : 129_06_11_depannage.pkt)

Diagnostiquer le montage suivant et en déduire le(s) problème(s) pour correction. Aidez-vous des outils de base tels que ping.

129_06_12_dépannage

Dans une console cmd, tapez la commande ipconfig /all. Analyser l'affichage et répondre aux questions :

- 1. Quelle adresse IP a votre machine?
- 2. Quel masque a votre machine?
- 3. Quelles sont les adresses des serveurs DHCP et DNS?

129_06_13_dépannage (schéma : 129_06_13_depannage.pkt)

On vous demande de corriger le(s) problème(s) du montage suivant (cf. 129_06_13_depannage.pkt). Le schéma fourni est juste et fait référence. Le PC0 et PC1 peuvent se «pinger », mais ils n'y arrivent pas avec le PC2

Dans la vie réelle, quelles commandes permettent de savoir par où et jusqu'où sont transmis les paquets ?

Testez ces commandes depuis la console du PCO.

MODULE 129

129_06_14_dépannage

En fonction des copies d'écran du routeur ci-dessous :

- > Expliquer le contenu de cette table de routage.
- > Donner le schéma équivalent.

```
Router#sho ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is 157.26.174.10 to network 0.0.0.0

C 157.26.0.0/16 is directly connected, Serial2/0

C 172.30.0.0/16 is directly connected, FastEthernet0/0

S* 0.0.0.0/0 [1/0] via 157.26.174.10

Router#
```

Router#sho ip inter	face brief		
Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/0	172.30.1.1	YES manual up	up
FastEthernet1/0	unassigned	YES unset administrative	ely down down
Serial2/0	157.26.174.11	YES manual up	up
Serial3/0	unassigned	YES unset administrative	ely down down
FastEthernet4/0	unassigned	YES unset administrative	ely down down
FastEthernet5/0	unassigned	YES unset administrative	ely down down
Serial9/0 Router#	unassigned	YES unset administrative	ely down down

129_06_15_dépannage (schéma : 129_06_15_depannage.pkt)

Vous n'arrivez pas à « pinger » depuis le PC0 le PC2 et réciproquement. Que faites-vous ?

129_06_16_dépannage (schéma : 129_06_16_depannage.pkt)

En fonction du schéma suivant :

Vous effectuez deux mesures depuis le PCO en direction du PC2. Vous observez les résultats suivants : (Vous n'avez fait aucune autre manœuvre !)

Première mesure.

```
PC>ping 172.16.1.10

Pinging 172.16.1.10 with 32 bytes of data:

Reply from 172.16.1.10: bytes=32 time=1ms TTL=126

Ping statistics for 172.16.1.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 1ms, Average = 1ms
```

5 minutes après, deuxième mesure.

```
PC>ping 172.16.1.10

Pinging 172.16.1.10 with 32 bytes of data:

Reply from 172.16.1.10: bytes=32 time=1ms TTL=125
Reply from 172.16.1.10: bytes=32 time=0ms TTL=125
Reply from 172.16.1.10: bytes=32 time=11ms TTL=125
Reply from 172.16.1.10: bytes=32 time=0ms TTL=125
Ping statistics for 172.16.1.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 11ms, Average = 3ms
```

Qu'observez-vous? Donner une explication. Quelle utilitaire peut vous aider?

MODULE 129

129_06_17_dépannage (schéma: 129_06_17_depannage.pkt)

En vous référant au schéma. Le routeur R0 est serveur DHCP. Mais les PC0 et PC1 reçoivent le message suivant : DHCP request failed. On vous demande de corriger la situation. (Le service DHCP du routeur est juste).