EXERCICES: ESPACES VECTORIELS DE DIMENSION FINIE

1 Familles libres, génératrices, bases

1.1 Familles de fonctions

Montrer que les familles de fonctions suivantes sont libres.

1. La famille de fonctions f_0, f_1, \ldots, f_n définies sur \mathbb{R} par :

$$\forall k \in [0, n] \quad \forall x \in \mathbb{R} \quad f_k(x) = x^k$$

2. La famille $f_{\alpha_1}, \ldots, f_{\alpha_n}$ où $\alpha_1, \ldots, \alpha_n \in \mathbb{R}_+$ sont deux à deux distincts et :

$$\forall k \in [1, n] \quad \forall x \in \mathbb{R} \quad f_{\alpha_k}(x) = \cos(\alpha_k x)$$

3. La famille de fonctions f_0, f_1, \dots, f_n définies par :

$$\forall k \in [0, n] \quad \forall x \in \mathbb{R} \quad f_k(x) = \sin^k x$$

4. La famille $f_{\alpha_1}, \ldots, f_{\alpha_n}$ où $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ sont deux à deux distincts et :

$$\forall k \in [1, n] \quad \forall x \in \mathbb{R} \quad f_{\alpha_k}(x) = e^{i\alpha_k x}$$

5. La famille $f_{\alpha_1}, \ldots, f_{\alpha_n}$ où $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ sont deux à deux distincts et :

$$\forall k \in [1, n] \quad \forall x \in \mathbb{R} \quad f_{\alpha_k}(x) = |x - \alpha_k|$$

1.2 Changement de base

Dans \mathbb{R}^3 , on considère les trois vecteurs u=(1,1,-1), v=(-1,1,1) et w=(1,-1,1).

- 1. Montrer que u, v, w forme une base de \mathbb{R}^3 .
- 2. Donner les coordonnées de (2,1,3) dans cette base.

1.3 Modification d'une famille libre

Soit E un \mathbb{K} -espace vectoriel et x_1, \ldots, x_n une famille libre de n vecteurs. On se donne n scalaires $\lambda_1, \ldots, \lambda_n$ et on pose :

$$y = \sum_{k=1}^{n} \lambda_k x_k$$

Pour tout $i \in [1, n]$ on pose $y_i = x_i + y$. Donner une condition nécessaire et suffisante sur les λ_k pour que la famille y_1, \ldots, y_n soit libre.

1.4 Base de $\mathbb{R}_n[X]$ sans racines

Donner une condition nécessaire et suffisante sur $n \in \mathbb{N}$ pour que $\mathbb{R}_n[X]$ admette une base formée de polynômes sans racines réelles.

2 Dimension d'un espace vectoriel

2.1 Dimension

Soit A et B deux sous-espaces vectoriels de dimension 3 de \mathbb{R}^5 . Montrer que $A \cap B \neq \{0\}$.

2.2 Supplémentaire commun

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, et A et B deux sous-espaces vectoriels de E de même dimension r. Le but de cet exercice est de montrer que A et B ont un supplémentaire commun dans E.

- 1. Montrer le résultat lorsque n = r + 1.
- 2. Plus généralement, montrer que si le résultat est vrai si dim $A = \dim B = r + 1$, alors il est vrai si dim $A = \dim B = r$.
- 3. Conclure.

2.3 Centre de $\mathcal{L}(E)$

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Le but de cet exercice est de montrer que le centre de $\mathcal{L}(E)$, c'est à dire l'ensemble des endomorphismes qui commutent avec tous les endomorphismes est l'ensemble des homothéties.

- 1. Montrer que les homothéties sont dans le centre de $\mathcal{L}(E)$.
- 2. Soit u un endomorphisme de E tel que :

$$\forall x \in E \quad \exists \lambda \in \mathbb{K} \quad u(x) = \lambda x$$

Montrer que u est une homothétie.

- 3. Soit u un endomorphisme de E qui commute avec toutes les applications linéaires.
 - (a) Soit $x \in E$. En considérant une symétrie par rapport à $\mathbb{K}x$, montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$.
 - (b) Conclure.

3 Applications linéaires, théorème du rang

3.1 Sur $\mathbb{K}[X]$

Soit φ l'application de $\mathbb{K}[X]$ dans $\mathbb{K}[X]$ définie par

$$\forall P \in \mathbb{K}[X] \quad \varphi(P) = P(X+1) + P(X-1) - 2P(X)$$

- 1. Calculer $\deg [\varphi(P)]$ en fonction de $\deg P$.
- 2. Quel est le noyau de φ ?
- 3. Montrer que φ est surjective.

3.2 Polynômes d'interpolation de Hermite

Soit n réels deux à deux distincts $\alpha_1, \ldots, \alpha_n$ et $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}[X]$ de degré strictement inférieur à 2n tel que :

$$\forall k \in [1, n] \quad P(\alpha_k) = a_k \text{ et } P'(\alpha_k) = b_k$$

3.3 Noyau et image en somme directe

Soit E un \mathbb{K} -espace vectoriel de dimension finie et f un endomorphisme de E. Montrer que :

$$(E = \operatorname{Im} f \oplus \operatorname{Ker} f) \iff (\operatorname{Im} f = \operatorname{Im} f^2)$$

Cette équivalence est-elle vraie en dimension infinie?

3.4 Rang d'une somme d'applications linéaires

Soit E et F deux \mathbb{K} -espace vectoriel de dimension finie, f et g deux applications linéaires de E dans F.

1. Montrer que :

$$|\operatorname{rg} f - \operatorname{rg} g| \leq \operatorname{rg}(f+g) \leq \operatorname{rg} f + \operatorname{rg} g$$

2. On suppose dans cette question que E = F. Montrer que si $f \circ g = 0$ et f + g est inversible, alors $\operatorname{rg} f + \operatorname{rg} g = \dim E$.

3.5 Dimension du noyau et composition

Soit E, F et G trois \mathbb{K} -espaces vectoriels de dimensions finies, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. En considérant la restriction de f à Ker $g \circ f$, montrer que :

$$\dim \operatorname{Ker} g \circ f \leqslant \dim \operatorname{Ker} g + \dim \operatorname{Ker} f$$

3.6 Endomorphisme f tel que $f^2 = 0$

Soit E un \mathbb{K} -espace vectoriel de dimension 4 et $f \in \mathcal{L}(E)$ tel que $f^2 = 0$. Montrer que rg $f \leq 2$.

3.7 Factorisation

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$. Montrer qu'il existe $h\in\mathcal{L}(E)$ tel que $f=h\circ g$ si et seulement si $\operatorname{Ker} g\subset\operatorname{Ker} f$.