

Chương 02

Bài 6.

VECTO & CÁC PHÉP TOÁN TRONG KHÔNG GIAN

1. Khái niệm vectơ trong không gian; hai vectơ cùng phương, cùng hướng, bằng nhau; vectơ-không.

💃 Định nghĩa:

- » Vecto trong không gian là một đoạn thẳng có hướng.
- » Độ dài của vecto là khoảng cách giữa điểm đầu và điểm cuối của vecto. Kí hiệu: $|\vec{a}|$.
- » $Gi\acute{a}$ của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó.

 » Hai vecto $\ref{cùng}$ $\ref{phương}$ nếu giá của chúng song song hoặc trùng nhau.

 » Hai vecto $\ref{bằng}$ \ref{nhau} nếu chúng có cùng độ dài và cùng hướng. Nếu hai vecto \ref{a} , \ref{b} bằng nhau thì ta viết là $\ref{a} = \ref{b}$.

 » Hai vecto $\ref{dối}$ \ref{nhau} nếu chúng có cùng độ dài và ngược hướng. Vecto đối của \ref{a} được kí hiệu là $-\ref{a}$.
- » Vecto không có điểm đầu và điểm cuối trùng nhau, kí hiệu là $\vec{0}$.

Quy ước vecto-không có độ dài bằng 0 và cùng phương, cùng hướng với mọi vecto.

Chú ý

- » Kí hiệu \overrightarrow{AB} chỉ vecto có điểm đầu A, điểm cuối B.
- » Nếu không cần chỉ rõ điểm đầu và điểm cuối thì vectơ còn được kí hiệu là $\vec{u}, \vec{v}, \vec{x}, \vec{y}, \dots$

2. Tổng và hiệu của hai vectơ

🜊 Định nghĩa tổng hai vectơ:

Trong không gian, cho hai vectơ \vec{a}, \vec{b} . Lấy một điểm A tùy ý.

Vẽ $\overrightarrow{AB} = \vec{a}, \overrightarrow{BC} = \vec{b}$. Vecto \overrightarrow{AC} là **tổng của hai vecto** \vec{a}, \vec{b} .

- Ký hiệu là $\vec{a} + \vec{b}$.
- Phép lấy tổng của hai vecto còn được gọi là phép cộng vecto.

- Nhận xét: Phép cộng vectơ trong không gian cũng có các tính chất như phép cộng vectơ trong mặt phẳng.
 - » Tính chất giao hoán: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
 - » Tính chất kết hợp: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$.
 - » Với mọi vecto \vec{a} , ta luôn có: $\vec{a} + \vec{0} = \vec{0} + \vec{a}$.

Chú ý

» Từ tính chất kết hợp, ta xác định được tổng ba vecto \vec{a} ; \vec{b} ; \vec{c} là $\vec{a} + \vec{b} + \vec{c} = (\vec{a} + \vec{b}) + \vec{c}$.

Định nghĩa hiệu hai vectơ:

Trong không gian, cho hai vecto \vec{a}, \vec{b} .

- Hiệu của hai vecto \vec{a} ; \vec{b} là vecto $\vec{a} + (-\vec{b})$.
- Kí hiệu là $\vec{a} \vec{b}$.
- Phép lấy hiệu của hai vecto còn được gọi là phép trừ vecto.

[®] Các quy tắc

✓ Quy tắc ba điểm và quy tắc hình bình hành:

- » Với ba điểm A, B, C bất kì, ta có $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (Quy tắc ba điểm phép cộng).
- » Nếu ABCD là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ (Quy tắc hình bình hành).

✓ Quy tắc hình hộp:

» Nếu ABCD. A'B'C'D' là hình hộp thì $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} = \overrightarrow{AC'}$.

✓ Quy tắc hiệu:

» Với ba điểm A, B, C bất kì, ta có $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$.

3. Tích của một số với một vectơ

Định nghĩa:

Trong không gian, cho số $k \neq 0$ và vecto $\vec{a} \neq \vec{0}$.

- Tích của số k với vecto \vec{a} là một vecto.
- Ký hiệu là *k* a.
- Phép lấy tích của một số với một vecto được gọi là *phép nhân một số với một vecto*.
 - » Cùng hướng với \vec{a} nếu k > 0,
 - » Ngược hướng với \vec{a} nếu k < 0
 - » Có độ dài bằng |k|. $|\vec{a}|$.

4. Tích vô hướng của hai vectơ

Góc giữa hai vectơ trong không gian

Trong không gian, cho \vec{u} và \vec{v} là hai vectơ khác $\vec{0}$.

- Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho $\overrightarrow{AB} = \overrightarrow{u}, \overrightarrow{AC} = \overrightarrow{v}$. Ta gọi \overrightarrow{BAC} là góc giữa hai vecto \overrightarrow{u} và \overrightarrow{v} .
- Kí hiệu là (\vec{u}, \vec{v}) .

Tích vô hướng hai vectơ

Trong không gian, cho \vec{u} và \vec{v} là hai vecto khác $\vec{0}$.

- Tích vô hướng của hai vecto \vec{u} và \vec{v} là một số
- Kí hiệu là $\vec{u} \cdot \vec{v}$.

Được xác định bởi công thức: $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos(\vec{u}, \vec{v})$

Chú ý

- » Trong trường hợp $\vec{u} = \vec{0}$ hoặc $\vec{v} = \vec{0}$, ta quy ước $\vec{u} \cdot \vec{v} = 0$.
- » $\vec{u} \cdot \vec{u} = \vec{u}^2 = |\vec{u}|^2$; $\vec{u}^2 \ge 0$, $\vec{u}^2 = 0 \Leftrightarrow \vec{u} = \vec{0}$
- » Với hai vecto \vec{u} , \vec{v} khác $\vec{0}$, ta có $\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$.
- » Với hai vecto \vec{u} , \vec{v} khác $\vec{0}$, ta có $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$.

Các dạng bài tập

Pang 1. Sử dụng các định nghĩa

Phương pháp

- » Vecto trong không gian là một đoạn thẳng có hướng.
- » Độ dài của vecto là khoảng cách giữa điểm đầu và điểm cuối của vecto. Kí hiệu: |a|.
- » *Giá* của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó.

 \vec{a}

- » Hai vecto *cùng phương* nếu giá của chúng song song hoặc trùng nhau.
- \vec{a}
- » Hai vecto $\frac{\mathbf{bang nhau}}{\mathbf{bang nhau}}$ nếu chúng có cùng độ dài và cùng hướng. Nếu hai vecto \vec{a} , \vec{b} bằng nhau thì ta viết là $\vec{a} = \vec{b}$.
- \vec{a}
- » Hai vecto đối nhau nếu chúng có cùng độ dài và ngược hướng. Vecto đối của \vec{a} được kí hiệu là $-\vec{a}$.
- \vec{a}
- » Vecto không có điểm đầu và điểm cuối trùng nhau, kí hiệu là $\vec{0}$.

Quy ước vecto-không có độ dài bằng 0 và cùng phương, cùng hướng với mọi vecto.

Ví dụ 1.1.

Cho hình hộp ABCD. A'B'C'D'.

Trong các vecto khác $\vec{0}$, có điểm đầu và điểm cuối là các đỉnh của hình hộp. Hãy chỉ ra những vecto:

- (1) Cùng phương với vecto \overrightarrow{AB} ;
- (2) Bằng vector \overrightarrow{AB} ;
- (3) Ngược hướng với vecto \overrightarrow{AA} .

> a	Lòi	giải
المضا	LUI	Sim

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	

Ví dụ 1.2.

Cho hình chóp đều S.ABCD có cạnh đáy a và đường cao h. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD và O, H lần lượt là tâm của các hình vuông ABCD, MNPQ.

Tính độ dài các vecto \overrightarrow{MN} , \overrightarrow{MP} , \overrightarrow{MS} theo a và h.

≥ Loi giai	

Dạng 2. Tổng và hiệu của hai vectơ

Phương pháp

** Các quy tắc:

- ✓ Quy tắc ba điểm và quy tắc hình bình hành:
 - » Với ba điểm A, B, C bất kì, ta có $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (Quy tắc ba điểm phép cộng).
 - » Nếu ABCD là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ (Quy tắc hình bình hành).

✓ Quy tắc hình hộp:

» Nếu ABCD. A'B'C'D' là hình hộp thì $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} = \overrightarrow{AC'}$.

✓ Quy tắc hiệu:

» Với ba điểm A, B, C bất kì, ta có $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$.

Ví dụ 2.1.

Cho hình lập phương ABCD. A'B'C'D' có cạnh bằng 2. Tìm độ dài của các vecto sau:

$$(1) \vec{a} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'};$$

$$(2) \vec{b} = \overrightarrow{BC} - \overrightarrow{BA} + \overrightarrow{C'}A$$

🔈 Lời giải	

Ví du 2.2.

Cho tứ diện \overrightarrow{ABCD} . Chứng minh $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$.

> Lời giải	

Ví dụ 2.3.	
Cho hình hộp $ABCD$. $EFGH$. Chứng minh rằng $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{GH} + \overrightarrow{GB} = \overrightarrow{0}$.	
≥ Lời giải	
Ví dụ 2.4.	
Một chất điểm chịu tác động bởi 3 lực $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ có chung điểm đặt A và có giá vuông góc nhau từng đôi một. Biết cường độ của các lực $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ lần lượt là $10N$, $8N$ và $5N$. Xác định hợp lực của 3 lực và tính cường độ của hợp lực (làm tròn kết quả đến hàng đơn vị).	
🔈 Lời giải	

Pang 3. Tích của một số với một vectơ

Trong không gian, cho số $k \neq 0$ và vecto $\vec{a} \neq \vec{0}$.

- Tích của số k với vecto \vec{a} là một vecto. Ký hiệu là $k\vec{a}$. Có độ dài bằng |k|. $|\vec{a}|$.
 - » Cùng hướng với \vec{a} nếu k > 0,
- » Ngược hướng với \vec{a} nếu k < 0
- * Với hai vecto \vec{a} và \vec{b} bất kì, với mọi số h và k, ta luôn có

$$(\mathbf{1}) k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

$$(2) (h+k)\vec{a} = h\vec{a} + k\vec{a}$$

$$(3) h(k\vec{a}) = (hk)\vec{a}$$

$$(4)\ 1 \cdot \vec{a} = \vec{a}$$

$$(5)(-1) \cdot \vec{a} = -\vec{a}$$

- (6) Hai vecto \vec{a} và \vec{b} ($\vec{b} \neq \vec{0}$) cùng phương khi và chỉ khi có số k sao cho $\vec{a} = k\vec{b}$.
- (7) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số $k \neq 0$ để $\overrightarrow{AB} = k\overrightarrow{AC}$..
- ** Hệ quả:
 - (1) I là trung điểm của đoạn thẳng $AB \Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0} \Leftrightarrow 2\overrightarrow{OI} = \overrightarrow{OA} + \overrightarrow{OB}$, với mọi điểm O.
 - (2) G là trọng tâm $\triangle ABC \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$, với mọi điểm O.

Ví dụ 3.1.

Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD và O là trung điểm đoạn thẳng AG. Chứng minh rằng:

> Lòi giải

$$(\mathbf{1})\ 3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \vec{0};$$

(2)
$$3\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 6\overrightarrow{MO}$$
 (*M* là điểm bất kì trong không gian).

•••
•••
•••
•••
•••
•••
,
•••
 •••
 •••
•••

Ví dụ 3.2.

Cho hình hộp ABCD.A'B'C'D'. Giả sử điểm M thuộc AC, điểm N thuộc DC' và $\overrightarrow{AM} = x\overrightarrow{AC}, \overrightarrow{DN} = y\overrightarrow{DC'}$

- (1) Biểu diễn các vecto $\overrightarrow{BD'}$, \overrightarrow{MN} theo $\overrightarrow{BA} = \vec{a}$, $\overrightarrow{BC} = \vec{b}$, $\overrightarrow{BB'} = \vec{c}$.;
- (2) Tìm x và y sao cho MN//BD', khi đó tính tỉ số $\frac{MN}{BD'}$.

≥ Loi giai

Pang 4. Tích vô hướng và góc của hai vectơ

Phương pháp

** Góc giữa hai vecto:

Trong không gian, cho \vec{u} và \vec{v} là hai vecto khác $\vec{0}$.

Lấy một điểm A bất kì, Gọi B và C là hai điểm sao cho $\overrightarrow{AB} = \overrightarrow{u}, \overrightarrow{AC} = \overrightarrow{v}$. Ta gọi \widehat{BAC} là góc giữa hai vecto \overrightarrow{u} và \overrightarrow{v} . Kí hiệu là $(\overrightarrow{u}, \overrightarrow{v})$.

** Tích vô hướng hai vecto:

Trong không gian, cho \vec{u} và \vec{v} là hai vecto khác $\vec{0}$.

- Tích vô hướng của hai vecto \vec{u} và \vec{v} là một số. Kí hiệu là $\vec{u} \cdot \vec{v}$. Được xác định bởi công thức: $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos(\vec{u}, \vec{v})$
- *** Chú ý:
 - $(1) 0^{\circ} \le (\vec{u}, \vec{v}) \le 180^{\circ}$
 - (2) Nếu $(\vec{u}, \vec{v}) = 90^{\circ}$ thì ta nói \vec{u} và \vec{v} vuông góc với nhau, kí hiệu $\vec{u} \perp \vec{v}$.
 - (3) Khi \vec{u} và \vec{v} cùng hướng thì $(\vec{u}, \vec{v}) = 0^{\circ}$.
 - (4) Khi \vec{u} và \vec{v} ngược hướng thì $(\vec{u}, \vec{v}) = 180^{\circ}$.
 - (5) $\vec{u} \cdot \vec{u} = \vec{u}^2 = |\vec{u}|^2$; $\vec{u}^2 \ge 0$, $\vec{u}^2 = 0 \Leftrightarrow \vec{u} = \vec{0}$

Ví dụ 4.1.

Cho hình lập phương ABCD. A'B'C'D'. Xác định các góc:

 $(\mathbf{1})$ $(\overrightarrow{AB}, \overrightarrow{A'D'})$

(2) $(\overrightarrow{AB}, \overrightarrow{A'C'})$

(3) $(\overrightarrow{AB}, \overrightarrow{D'C'})$

(4) $(\overrightarrow{AD}, \overrightarrow{C'B'})$

> Lời giải			

Ví dụ 4.2. Cho tứ diện đều \overrightarrow{ABCD} có H là trung điểm của \overrightarrow{AB} . Hãy tính góc giữa các cặp vecto (1) \overrightarrow{AB} và \overrightarrow{BC} (2) \overrightarrow{CH} và \overrightarrow{AC}

	(I) AD Va DC	(Z) CH Va AC	
	> Lòi	giải	
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			
•••••			
Ví dı	ų 4.3 .		
Cho	tứ diệnABCDcó AC và BD cùng vuông gó	c với AB. Gọi I, J lần lượt là trung điểm	
	hai cạnh AB , CD . Chứng minh rằng $IJ \perp AE$		
	> Lòi	giải	
	>> Lời	giải	
	≥ Lời	giải	
	≥ Lời	giải	
	≿ Lời	giải	
	> Lòi	giải	
	> Lòi	giải	
	≿ Lời	giải	
	≥ Lời	giải	
	≿ Lời		