CC0323: Elementos de Cálculo

Michael Souza

michael@ufc.br

O que é uma derivada?

Interpretações

- 1. Geométrica
- 2. Aproximativa
- 3. Variacional

Norma de um vetor

A norma de um vetor $x=(x_1,x_2,\ldots,x_n)$ no espaço euclidiano \mathbb{R}^n é dada por:

$$\|x\| = \sqrt{\sum_{i=1}^n x_i^2}$$

Exemplo:

Em \mathbb{R}^2 , para x=(3,4), temos $\|x\|=\sqrt{3^2+4^2}=5$.

Em \mathbb{R} , a norma é dada por $\|x\|=|x|$ (módulo).

Distância Norma-Induzida

Toda norma em \mathbb{R}^n induz uma métrica, que é a distância entre dois pontos x e y dada por:

$$d(x,y) = \|x - y\|$$

Exemplo:

Em \mathbb{R}^2 , a distância entre $x=(x_1,x_2)$ e $y=(y_1,y_2)$ é dada por:

$$d(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$$

Para x=(3,4) e y=(1,3), temos $d(x,y)=\sqrt{(3-1)^2+(4-3)^2}=\sqrt{5}$.

Sequências e Limites

Sequência de números reais

Uma sequência de números reais é uma função $a:\mathbb{N} o\mathbb{R}$, onde $n\in\mathbb{N}$ e $a(k)\in\mathbb{R}$.

Exemplo:

A sequência gerada por a(k)=1/k é dada por $\{1,1/2,1/3,1/4,\ldots\}$.

Limite

Dizemos que a sequência a(k) converge para o número real L se, para todo $\epsilon>0$, existe um número natural k_0 tal que $|a(k)-L|<\epsilon$ para todo $k\geq k_0$.

Escrevemos de modo abreviado:

$$\lim_{k o\infty}a(k)=L \ ext{ ou } \ a_k o L$$

Exemplo:

A sequência $a_k=1/k$ converge para L=0.

Teorema

Uma sequência convergente tem um único limite.

Prova: Por contradição, suponha que $a_k \to L$ e $a_k \to M$. Então, para $\epsilon = |L-M|/2$, existem k_1 e k_2 tais que $|a_k-L|<\epsilon$ e $|a_k-M|<\epsilon$ para $k \ge k_1$ e $k \ge k_2$, respectivamente.

Neste caso, para $k>\max\{k_1,k_2\}$, devemos ter

$$\epsilon=rac{|L-M|}{2}=rac{|L-a_k+a_k-M|}{2}\leqrac{|a_k-L|+|a_k-M|}{2}<rac{\epsilon+\epsilon}{2}=\epsilon.$$

Mas isto é obviamente impossível.

Teorema

Toda sequência convergente é limitada.

Prova: Se $a_k o L$, então existe k_0 tal que $|a_k-L|<1$ para $k \ge k_0$. Assim, para $k \ge k_0$, temos $|a_k|=|a_k-L+L|\le |a_k-L|+|L|<1+|L|$. Portanto, $|a_k|<1+|L|$ para $k \ge k_0$.

Agora, tome $M=\max\{|a_1|,|a_2|,\ldots,|a_{k_0-1}|,1+|L|\}$. Então, $|a_k|\leq M$ para todo $k\in\mathbb{N}$ e, portanto, a sequência é limitada.

Supremo

Seja $A\subset\mathbb{R}$ um conjunto não vazio e limitado superiormente. O número real L é o **supremo** de A, denotado por $L=\sup\{A\}$, se:

- 1. L é um limitante superior de A;
- 2. Para todo $\epsilon > 0$, existe $a \in A$ tal que $L \epsilon < a \leq L$.

Exemplo:

a.
$$\sup\{1 - 1/n\} = 1$$

b.
$$\sup\{\cos(x)\}=1$$

De modo análogo, podemos definir o conceito de **ínfimo** de um conjunto $A\subset \mathbb{R}.$

Ínfimo

Seja $A\subset\mathbb{R}$ um conjunto não vazio e limitado inferiormente. O número real L é o **ínfimo** de A, denotado por $L=\inf\{A\}$, se:

- 1. L é um limitante inferior de A;
- 2. Para todo $\epsilon > 0$, existe $a \in A$ tal que $L \le a < L + \epsilon$.

Exemplo:

a.
$$\inf\{1 - 1/n\} = 0$$

$$b. \inf\{\cos(x)\} = -1$$

Teorema

Toda sequência monótona limitada em $\mathbb R$ é convergente.

Prova: Seja a_k uma sequência monótona crescente e limitada. Então, existe $L=\sup\{a_k\}$. Dado $\epsilon>0$, existe k_0 tal que $L-\epsilon< a_{k_0}\leq L$. Como a_k é crescente, temos $L-\epsilon< a_k\leq L$ para $k\geq k_0$. Portanto, $a_k\to L$.

Diferenciabilidade

O cálculo diferencial é baseado na ideia de aproximar uma função qualquer $f:\mathbb{R}^n o \mathbb{R}^m$ por uma função afim \mathcal{F} .

Função Afim

Uma função $\mathcal{F}:\mathbb{R}^n o\mathbb{R}^m$ é afim se existe uma matriz $A\in\mathbb{R}^{m imes n}$ e um vetor $b\in\mathbb{R}^m$ tais que:

$$\mathcal{F}(x) = Ax + b, \;\; x \in \mathbb{R}^n$$

Desejamos encontrar a melhor aproximação afim ${\mathcal F}$ para f em um ponto x_0 .

Primeiro, impomos a condição natural de que $\mathcal{F}(x_0)=f(x_0)$ e obtemos

$$\mathcal{F}(x_0) = Ax_0 + b = f(x_0) \Rightarrow b = f(x_0) - Ax_0$$

Pela linearidade de A, temos que

$$\mathcal{F}(x) + b = Ax + f(x_0) - Ax_0 = A(x - x_0) + f(x_0)$$

Agora, exigimos que $\mathcal{F}(x)$ se aproxime de f(x) mais rápido que x se aproxima de x_0

$$\lim_{x o x_0}rac{\|f(x)-\mathcal{F}(x)\|}{\|x-x_0\|}=0$$

Função Diferenciável

Uma função $f:\mathbb{R}^n o\mathbb{R}^m$ é diferenciável em $x_0\in\mathbb{R}^n$ se existe uma matriz $A\in\mathbb{R}^{m imes n}$ tal que:

$$\lim_{x o x_0}rac{\|f(x)-\mathcal{F}(x)\|}{\|x-x_0\|}=\lim_{x o x_0}rac{\|f(x)-(A(x-x_0)-f(x_0))\|}{\|x-x_0\|}=0$$

Além disso, uma função é dita diferenciável em um conjunto $D\subset\mathbb{R}^n$ se é diferenciável em todo ponto de D.

Em uma função diferenciável $f:\mathbb{R} o\mathbb{R}$, temos

$$egin{aligned} 0 &= \lim_{x o x_0} rac{|f(x) - (A(x - x_0) - f(x_0))|}{|x - x_0|} \ &= \lim_{x o x_0} rac{|f(x) - f(x_0) - A(x - x_0)|}{|x - x_0|} \ &= \lim_{x o x_0} \left| rac{f(x) - f(x_0)}{x - x_0} - A rac{x - x_0}{x - x_0}
ight| \ &= \lim_{x o x_0} \left| rac{f(x) - f(x_0)}{x - x_0} - A
ight| \ &= \lim_{x o x_0} \left| rac{f(x) - f(x_0)}{x - x_0} - A
ight| \end{aligned}$$

Exemplo:

Em \mathbb{R} , se $\mathcal{F}(x)=ax+b$ aproxima f(x) em x_0 , então quando $x o x_0$ temos

$$f(x)pprox A(x-x_0)+b=f'(x_0)(x-x_0)+f(x_0)$$

Vetor Gradiente

Quando $f:\mathbb{R}^n \to \mathbb{R}$, a derivada de f em $u \in \mathbb{R}^n$ é um vetor coluna chamado de **vetor gradiente** de f em u e é denotado por $\nabla f(u)$.

O vetor gradiente é dado por:

$$abla f(u) = iggl[rac{\partial f}{\partial x_1}(u) \quad rac{\partial f}{\partial x_2}(u) \quad \cdots \quad rac{\partial f}{\partial x_n}(u) iggr],$$

onde

$$rac{\partial f}{\partial x_i}(u) = \lim_{h o 0} rac{f(u+he_i)-f(u)}{h},$$

onde e_i é o i-ésimo vetor da base canônica de \mathbb{R}^n e $h \in \mathbb{R}$.

Exemplo:

a) Considere a função $f(x,y)=x^2+y^2$. O vetor gradiente de f é dado por:

$$abla f(x,y) = egin{bmatrix} rac{\partial f}{\partial x}(x,y) & rac{\partial f}{\partial y}(x,y) \end{bmatrix} = egin{bmatrix} 2x & 2y \end{bmatrix}$$

b) Considere a função $f(x,y)=x^2+2xy^3+y^2$. O vetor gradiente de f em (3,4) é dado por:

$$abla f(x,y) = egin{bmatrix} rac{\partial f}{\partial x}(x,y) & rac{\partial f}{\partial y}(3,4) \end{bmatrix} = [2x+2y^3 & 6xy^2+2y]$$

Agora, tomando (x,y)=(3,4), temos $\nabla f(3,4)=[134\quad 296]$.

Matriz Hessiana

Se $f:\mathbb{R}^n \to \mathbb{R}$ é diferenciável em x_0 , então a matriz jacobiana de ∇f é chamada de matriz hessiana de f em x_0 e é denotada por $\nabla^2 f(x_0)$.

A matriz hessiana é dada por:

$$abla^2 f(x_0) = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2}(x_0) & rac{\partial^2 f}{\partial x_1 \partial x_2}(x_0) & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n}(x_0) \ rac{\partial^2 f}{\partial x_2 \partial x_1}(x_0) & rac{\partial^2 f}{\partial x_2^2}(x_0) & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n}(x_0) \ dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_n \partial x_1}(x_0) & rac{\partial^2 f}{\partial x_n \partial x_2}(x_0) & \cdots & rac{\partial^2 f}{\partial x_n^2}(x_0) \end{bmatrix}$$

Exemplo:

a) Considere a função $f(x,y)=x^2+y^2$. A matriz hessiana de f é dada por:

$$abla^2 f(x,y) = egin{bmatrix} rac{\partial^2 f}{\partial x^2}(x,y) & rac{\partial^2 f}{\partial x \partial y}(x,y) \ rac{\partial^2 f}{\partial y \partial x}(x,y) & rac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix} = egin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}$$

b) Considere a função $f(x,y)=x^3+3xy+2y^3$. A matriz hessiana de f é dada por:

$$abla^2 f(x,y) = egin{bmatrix} rac{\partial^2 f}{\partial x^2}(x,y) & rac{\partial^2 f}{\partial y \partial x}(x,y) \ rac{\partial^2 f}{\partial y \partial x}(x,y) & rac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix} = egin{bmatrix} 6x & 3 \ 3 & 12y \end{bmatrix}$$

Em
$$(x,y)=(1,2)$$
 temos $abla^2 f(1,2)=egin{bmatrix} 6 & 3 \ 3 & 24 \end{bmatrix}$.

Teorema de Clairaut

Se $f:\mathbb{R}^n o\mathbb{R}$ é diferenciável em u, então

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(u) = \frac{\partial^2 f}{\partial x_j \partial x_i}(u)$$

para todo $i, j = 1, 2, \dots, n$.

Ou seja, a matriz hessiana de f de uma função diferenciável é simétrica.

Alexis Claude Clairaut (1713-1765)

Vimos que a aproximação afim de $f:\mathbb{R}^n o\mathbb{R}^m$ em $u\in\mathbb{R}^n$ é dada por:

$$F(x)pprox f'(u)(x-u)+f(u)$$

Esta aproximação tem as seguintes propriedades:

1.
$$F(u) = f(u)$$
;

2.
$$F'(u) = \frac{\partial F}{\partial x}(u) = f'(u)$$
;

O que obteremos se impusermos $F^{\prime\prime}(u)=f^{\prime\prime}(u)$?

Como F''(u) é afim (polinômio do 1º grau), teremos F''(u)=0. ${\mathfrak Q}$

Mas e se *aumentarmos o grau* de F?

Vamos supor que $F(x)=ax^2+bx+c$ é um polinômio de grau 2 e impor que, para $u\in\mathbb{R}$ fixado, temos:

1.
$$F(u) = f(u)$$
;

2.
$$F'(u) = \frac{\partial F}{\partial x}(u) = f'(u)$$
;

3.
$$F''(u)=rac{\partial^2 F}{\partial x^2}(u)=f''(u)$$
;

Quais são as variáveis deste sistema?

Estes sistema é linear ou não-linear?

Temos quantas equações e quantas variáveis?

Este sistema é determinado ou indeterminado?

A solução deste sistema é dada por

$$F(x) = f(u) + f'(u)(x-u) + rac{1}{2}f''(u)(x-u)^2$$

Verifique se esta afirmação é verdadeira. 👺

De modo geral, o sistema dado por

$$egin{cases} F(u) = f(u) \ F'(u) = f'(u) \ \cdots \ F^{(k)}(u) = f^{(k)}(u) \end{cases}$$

com $F(x)=a_0+a_1x+a_kx^k$ sempre terá solução dada por um *Polinômio de Taylor*.

Polinômio de Taylor

O polinômio de Taylor de ordem k de uma função $f:\mathbb{R} o \mathbb{R}$ em $u \in \mathbb{R}$ é dado por:

$$F_k(x) = f(u) + f'(u)(x-u) + rac{1}{2!}f''(u)(x-u)^2 + \cdots + rac{1}{k!}f^{(k)}(u)(x-u)^k$$

Podemos definir o polinômio de Taylor para funções de várias variáveis.

Nesta disciplina de otimização, estaremos interessados em funções $f:\mathbb{R}^n \to \mathbb{R}$ e aproximações de ordem 2.

Por quê? 👺

Polinômio de Taylor de ordem 2

O polinômio de Taylor de ordem 2 de uma função $f:\mathbb{R}^n o \mathbb{R}$ em $u \in \mathbb{R}^n$ é dado por:

$$F(x)=f(u)+
abla f(u)(x-u)+rac{1}{2}(x-u)^T
abla^2 f(u)(x-u)$$

Exemplos:

a) Considerando a função $f(x,y)=3x^5+2xy+y^2$, calcule o polinômio de Taylor de ordem 2 de f em (1,2).

Resto da Série de Taylor

Dada uma função $f:\mathbb{R} o \mathbb{R}$ e seu polinômio de Taylor de grau k, F_k , no ponto $u \in \mathbb{R}$, definimos o resto de F_k por

$$r_k(x) = f(x) - F_k(x).$$

Estimando a magnitude do resto

Como o polinônio de Taylor é uma aproximação local (em torno de u), uma pergunta de interesse é sobre a magnitude do resto.

Teorema

Se todas as derivadas de $f:\mathbb{R} o \mathbb{R}$ em u formam um conjunto limitado, então

$$\lim_{x o u} r_k(x) = 0.$$

Observação

Isto significa que, na vizinhança de u, f pode ser "substituída" por F_k .

Prova

Primeiro, vamos provar que

$$\lim_{x o u}|f(x)-F_\infty(x)|=0.$$

Note que

$$egin{aligned} \lim_{x o u}|f(x)-F_\infty(x)|&=\lim_{x o u}\left|f(x)-\left(f(u)+f'(u)(x-u)+rac{f''(u)}{2}(x-u)^2+\ldots
ight)
ight|\ &=\lim_{x o u}\left|f'(u)(x-u)+rac{f''(u)}{2}(x-u)^2+\ldots
ight|\end{aligned}$$

Uma vez que $\{f'(u), f''(u), \ldots, \}$ é um conjunto limitado, podemos considerar M tal que $|f^{(i)}(u)/i!| \leq M$ para todo i. Logo,

$$egin{aligned} \lim_{x o u} |f(x) - F_{\infty}(x)| & \leq \lim_{x o u} \left| f'(u)(x-u) + rac{f''(u)}{2}(x-u)^2 + \ldots
ight| \ & \leq \lim_{x o u} \left| f'(u)(x-u)
ight| + \lim_{x o u} \left| rac{f''(u)}{2}(x-u)^2
ight| + \ldots \ & \leq \lim_{x o u} M|x-u| + \lim_{x o u} M|x-u|^2 + \ldots \ & \leq M \left(\lim_{x o u} |x-u| + \lim_{x o u} |x-u|^2 + \ldots
ight) \ & = 0. \end{aligned}$$

Por isso, uma vez que

$$r_k(x) = f(x) - F_k(x),$$

podemos escrever

$$egin{align} \lim_{x o u}|r_k(x)|&=\lim_{x o u}|F_\infty(x)-F_k(x)|\ &=\lim_{x o u}\left|rac{f^{k+1}(u)}{(k+1)!}(x-u)^{k+1}+rac{f^{k+2}(u)}{(k+2)!}(x-u)^{k+2}+\ldots
ight| \end{aligned}$$

E, novamente pela limitação das derivadas,

$$\lim_{x o u}|r_k(x)|=0\Rightarrow \lim_{x o u}r_k(x)=0.$$

Observação: Este teorema nos diz que, na vizinhança de u, f pode ser substituída por F_k , pois o resíduo $r_k(x)$ tende a zero quando x tende a u.

Agora, vamos estimar *quão rápido* $r_k(x)$ *tende a zero*. Uma forma de fazer isso é considerar o limite

$$\lim_{x o u}rac{r_k(x)}{g(x)}$$

para alguma função g(x).

Se a função g(x) for a zero mais rápido que $r_k(x)$, então o limite será infinito, se for mais devagar, o limite será zero.

Se encontrarmos uma função g(x) que **converge na mesma magnitude que** $r_k(x)$, **então o limite será um número finito.**

Teorema

Na vizinhança de u, o resíduo $r_k(x)$ é da ordem (mesma magnitude) de $(x-u)^{k+1}$. Ou seja,

$$\lim_{x o u}rac{r_k(x)}{(x-u)^{k+1}}=rac{f^{(k+1)}(u)}{(k+1)!}= ext{constante}.$$

Prova

A prova é direta, pois

$$rac{r_k(x)}{(x-u)^{k+1}} = rac{f^{(k+1)}(x)}{(k+1)!} + rac{f^{(k+2)}(x)}{(k+2)!}(x-u) + \ldots$$

Agora, tomando o limite e considerando que as derivadas são limitadas, temos

$$\lim_{x o u}rac{r_k(x)}{(x-u)^{k+1}}=rac{f^{(k+1)}(u)}{(k+1)!}.$$

Perguntas?