Course Agenda

Module 1: Explore fundamentals of Artificial Intelligence

- Introduction to Artificial Intelligence
- Artificial Intelligence in Microsoft Azure

Module 2: Explore fundamentals of machine learning

- Introduction to Machine Learning
- Azure Machine Learning

Module 3: Explore fundamentals of computer vision

- Computer Vision Concepts
- Creating Computer Vision solutions in Azure

Module 4: Explore fundamentals natural language processing

- Introduction to Natural Language Processing
- Building Natural Language Solutions in Azure

Module 1:

Explore Fundamentals of Artificial Intelligence

- Lesson 1: Introduction to Artificial Intelligence
- Lesson 2: Artificial Intelligence in Microsoft Azure

What is Artificial Intelligence?

Software that imitates human capabilities

- Predicting outcomes and recognizing patterns based on historic data
- · Recognizing abnormal events and making decisions
- Interpreting visual input
- Understanding language, and engaging in conversations
- Extracting information from sources to gain knowledge

Common Artificial Intelligence Workloads

1010{}	Machine Learning	Predictive models based on data and statistics – the foundation for AI
	Anomaly Detection	Systems that detect unusual patterns or events, enabling pre-emptive action
	Computer Vision	Applications that interpret visual input from cameras, images, or videos
	Natural Language Processing	Applications that can interpret written or spoken language, and engage in dialogs with human users
	Knowledge Mining	Extract information from data sources to create a searchable knowledge store

Principles of Responsible Al

		Challenge or Risk	Example
	Fairness	Bias can affect results	A loan-approval model discriminates by gender due to bias in the data with which it was trained
	Reliability & Safety	Errors may cause harm	An autonomous vehicle experiences a system failure and causes a collision
Q	Privacy & Security	Data could be exposed	A medical diagnostic bot is trained using sensitive patient data, which is stored insecurely
	Inclusiveness	Solutions may not work for everyone	A predictive app provides no audio output for visually impaired users
	Transparency	Users must trust a complex system	An Al-based financial tool makes investment recommendations - what are they based on?
	Accountability	Who's liable for Al-driven decisions?	An innocent person is convicted of a crime based on evidence from facial recognition – who's responsible?

Azure Basics

Scalable, reliable cloud platform

- Data storage
- Compute
- Services

Al Services in Microsoft Azure

Azure Machine Learning

A platform for training, deploying, and managing machine learning models

Cognitive Services

A suite of services with four main pillars: Vision, Speech, Language, Decision

Azure Bot Service

A cloud-based platform for developing and managing conversational bots

Azure Cognitive Search

Data extraction, enrichment, and indexing for intelligent search and knowledge mining

Module 2:

Explore Fundamentals of Machine Learning

- Lesson 1: Introduction to Machine Learning
- Lesson 2: Azure Machine Learning

What is Machine Learning?

Creating predictive models by finding relationships in data

- A botanist collects some samples of flowers
- 2. Each sample has a set of *features* (characteristics) and a *label* (the species)
- 3. An algorithm is used to find the relationship between the features and the label
- 4. The result is a *model* that encapsulates those relationships
- 5. The model can predict the label of a new sample based on its features

Types of Machine Learning

Machine Learning Supervised Machine Learning Unsupervised Machine Learning Training data includes known labels Training data is unlabeled Classification Regression Label is a numeric value Label is a categorization (or *class*)

Predict the number of bike rentals based on day, season, and weather

Predict whether a patient is at-risk for diabetes based on clinical measurements

Vehicles with similar emissions and fuel efficiency characteristics are separated into clusters

Regression

	X X	So y
	56	115
ng	61	126
Training	67	137
Trä	72	140
	76	152
	82	156
	54	114
on	62	129
lati	68	130
Validation	74	152
	80	154
	80	154

Classification

		y
	[4,2,3.2,10]	0
Training	[6,3,1.7,12]	1
rair	[5,2,3.5,11]	0
	[4,1,2.9,10]	0
	[7,4,2.1,11]	1
	[3,1,2.8,10]	0
ion	[7,3,1.8,11]	1
dat	[4,8,2.5,10]	0
Validation	[4,1,3,1,11]	1

Clustering

		\$ \$3
))	6	3
ÿ	5	3
	2	3
*	1	3
	3	8
	4	8

Model Training and Validation

- 1. Split the data into a *training* set and a *validation* set
- 2. Apply an algorithm to *fit* the training data to a model
- 3. The trained model encapsulates the relationships in the data
- 4. Use the model to generate predictions from the validation data
- Use evaluation metrics to compare predicted vs actual labels (supervised) or measure cluster separation (unsupervised)
- 6. Repeat...

What is Azure Machine Learning?

A cloud-based platform for machine learning

Automated Machine Learning

Supply the data and desired *supervised* model type, and let Azure Machine Learning find the best model

Azure Machine Learning Designer

Visual tool for creating a machine learning pipeline

- 1. Use a *training pipeline* to train and evaluate a model
- 2. Create an *inference pipeline* to predict labels from new data
- 3. Deploy the inference pipeline as a *service* for apps to use

Module 3:

Explore Fundamentals of Computer Vision

- Lesson 1: Computer Vision concepts
- Lesson 2: Creating Computer Vision solutions in Azure

What is Computer Vision?

Applications of Computer Vision

Image Classification

Object Detection

Semantic Segmentation

Image Analysis

Face Detection & Recognition

Optical Character Recognition

Computer Vision Services in Azure

Computer Vision	 Image analysis – automated captioning and tagging Common object detection Face detection Smart cropping Optical character recognition
Custom Vision	Custom image classificationCustom object detection
Face	Face detection and analysis
Form Recognizer	Data extraction from forms, invoices, and other documents

Image Analysis with the Computer Vision Service

- Pre-trained computer vision model
- Object detection for over 10,000 predefined classes
- Image description and tag generation
- Face detection and analysis
- Content moderation
- Text detection and OCR

Caption: a group of people walking on a sidewalk

Tags: building, jeans, street, outdoor, jacket, city, person

Ratings: Adult: False, Racy: False, Gore: False

Training Models with the *Custom Vision* Service

Image Classification

Object Detection

Detecting Faces with the *Face* Service

Anyone can use the Face service to detect:

- · Blur
- Exposure
- · Glasses
- · Head pose
- Noise
- Occlusion

Only Managed Microsoft customers can access facial recognition capabilities:

- Similarity matching
- · Identity verification

Reading Text with the Computer Vision Service

- Detect the location of text:
 - Printed
 - Handwritten
- Options for quick text extraction from images, or asynchronous analysis of larger scanned documents

Analyzing Forms with the Form Recognizer Service

- Extract information from scanned forms in image or PDF format
 - Use the pre-trained models for common document types
 - Train a custom model using your own forms
- Models perform semantic recognition of form fields – not just text extraction

Northwind	i iladois
555-123-4567	
2/17/2020 13:07	7
1 Apple	\$0.90
2 Orange	\$1.60
Sub-Total	\$2.50
	\$0.25
Tax	44

Module 4:

Explore Fundamentals of Natural Language Processing

- Lesson 1: Introduction to natural language processing
- Lesson 2: Building natural language solutions in Azure

What is Natural Language Processing?

Text analysis and entity recognition

Sentiment analysis

Speech recognition and synthesis

Machine translation

Semantic language modeling

What is Conversational AI?

- · A solution that enables a dialog between an AI agent and a human
- Generically, conversational AI agents are known as bots
- · Bots can engage over multiple *channels*:
 - · Web chat interfaces
 - Email
 - · Social media platforms
 - Voice

Natural Language Processing and Conversational AI in Azure

Language	 Language detection Key phrase extraction Entity detection Sentiment analysis Question answering Conversational language understanding
Speech	Text to speechSpeech to textSpeech translation
Translator	Text translation
Azure Bot Service	Platform for conversational AI

Analyzing Text

I had a wonderful vacation in France.

- Predominant Language: English
- Sentiment: 88% (positive)
- Key Phrases: "wonderful vacation"
- Entities: France

Speech Recognition and Synthesis

Use the *speech-to-text* capabilities of the **Speech** service to transcribe audible speech to text

Use the *text-to-speech* capabilities of the **Speech** service to generate audible speech from text

Translation

Conversational Language Understanding

Question Answering

- Define a *knowledge base* of question and answer pairs:
 - · By entering questions and answers
 - From an existing FAQ document
 - · By using built-in *chit-chat*
- The knowledge base is consumed by client applications and bots

Azure Bot Service

Create bots using multiple tools:

- Power Virtual Agents
- Bot Framework Composer
- Bot Framework SDK

Use the Azure Bot Service to publish bots in the cloud and Integrate with cognitive services

Users interact with bots through multiple channels such as:

- Web chat
- Email
- Telephone