Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 6

Abgabe auf Moodle bis zum 18. Dezember

Die obere Halbebene ist $\mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$. Darauf operiert $\operatorname{SL}(2,\mathbb{R})$ und insbesondere die Modulgruppe $\Gamma = \operatorname{SL}(2,\mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Die Eisensteinreihen als Funktion von $\tau \in \mathbb{H}$ sind

$$G_k(\tau) = G_k(\mathbb{Z} \oplus \mathbb{Z}\tau) = \sum_{0 \neq (c,d) \in \mathbb{Z}^2} (c + d\tau)^{-k}.$$

Die besten vier Aufgaben werden gewertet.

24. Aufgabe: (2+2=4 Punkte)

- (a) Zu jedem $a \in \mathbb{H}$ existiert eine nichttriviale holomorphe elliptische Modulform in $[\Gamma, 12]$, die in a eine Nullstelle besitzt.
- (b) Sei $f \in [\Gamma, k]$ eine holomorphe elliptische Modulform ohne Nullstellen in \mathbb{H} . Zeigen Sie, dass f ein Vielfaches einer Potenz der Diskriminante Δ ist. Das bedeutet k ist ein Vielfaches von 12 und es gibt $c \in \mathbb{C}$ mit $f = c\Delta^{k/12}$.
- **25.** Aufgabe: (3+1+2=6 Punkte) Sei $\widetilde{\Gamma} \subseteq \Gamma$ die Untergruppe von Γ erzeugt durch

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 und $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- (a) Für jedes $z \in \mathbb{H}$ gibt es $M \in \widetilde{\Gamma}$ sodass Mz im abgeschlossenen Fundamentalbereich $\overline{\mathcal{F}}$ liegt.
- (b) Sei $A \in \Gamma$ beliebig und sei $\tau \in \mathcal{F}$ ein innerer Punkt des Fundamentalbereichs. Dann gibt es $M \in \widetilde{\Gamma}$ sodass $MA\tau \in \overline{\mathcal{F}}$.
- (c) Zeigen Sie $MA \in \{\pm E_2\}$ und folgern Sie daraus $\Gamma = \widetilde{\Gamma}$.

Hinweis zu a): Modifizieren Sie den entsprechenden Beweis aus Abschnitt 9.7 im Skript. Bemerkung: $(ST)^3 = S^2 = -E_2$ operiert trivial auf der oberen Halbebene.

26. Aufgabe: (4 Punkte) Sei Δ eine endliche Gruppe und $\chi:\Delta\to\mathbb{C}^\times$ ein nichttrivialer Gruppenhomomorphismus. Zeigen Sie

$$\sum_{d \in \Delta} \chi(d) = 0 \ .$$

27. Aufgabe: (4 Punkte) Für eine Funktion $f: \mathbb{H} \to \mathbb{C}$ und eine Matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL(2, \mathbb{R})$ definieren wir eine Funktion

$$f|_k M : \mathbb{H} \to \mathbb{C}$$
 , $z \mapsto (cz+d)^{-k} f(M\langle z \rangle)$.

Zeigen Sie $(f|_k M)|_k N = f|_k (MN)$ für Matrizen M und N in $\mathrm{SL}(2,\mathbb{R})$.

- **28.** Aufgabe: (1+1+2=4 Punkte) Für ganzes $N \geq 1$ seien $\frac{1}{N}W = \{z \in \mathbb{C} \mid Nz \in W\}$ die N-Teilungspunkte eines elliptisches Periodengitters $W = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$.
 - (a) Die volle Modulgruppe operiert auf $\frac{1}{N}W$ durch Möbiustransformationen.
 - (b) Die Hauptkongruenzgruppe $\Gamma[N]$ operiert trivial auf $\frac{1}{N}W/W.$
 - (c) Die Operation von $\Gamma/\Gamma[2]$ auf $\frac{1}{2}W$ permutiert die Werte $\{e_1, e_2, e_3\}$ und definiert dadurch einen Isomorphismus $\Gamma/\Gamma[2] \cong \mathcal{S}_3$ in die symmetrische Gruppe \mathcal{S}_3 .