ME2106系列 PFM DC/DC升压恒流白光LED驱动器

ME2106系列 芯片是针对LED应用设

计的PFM 控制模式的开关型DC/DC 升压恒流芯片,通过外接电阻可使输出电流值恒定在0mA~500mA。

ME2106 可以给一个、多个并联或多 并两串LED 恒流供电。由于内部集成了限 压保护模块,使得芯片在短开负载或不接 负载的情况下不会烧毁芯片和外围电路。

ME2106 可以通过外部电阻调节输出 2.5V~6.0V可调的稳定电压。

ME2106 电路采用了高性能的参考电压电路结构,在实际的生产中引入修正技术,保证了输出电压的高输出精度及低温度漂移。

用涂

- · 给大功率白光LED灯提供能源;
- 恒流源:
- 恒压源,用于单、双节电池供电设备的电源部分:

特点

- 0.8V 极低的启动电压(Iout=1mA 时);
- $0\sim500$ mA 输出电流范围可调(由外接电阻调节),或由外围电阻调节2.5 $V\sim6$.0V恒定输出电压;
- 输出电流精度±10%;
- 低输出电流温度漂移: ±100ppm/℃;
- 仅需电感、电容、肖特基二极管、调节电阻等少量外部元器件;
- 效率高达82%:
- 封装尺寸: SOT89-5;

选型指南

引脚排列图

引脚号	符号	引脚描述		
SOT89-5	10.2	21かは日本で		
1	IFB	电流反馈端		
2	Vout	输出电压监测,内部电路供电引脚		
3	CE	使能端		
4	LX	开关引脚		
5	GND	接地引脚		

功能块框图

极限参数

参数		符号	极限值	单位
输入电压		V_{IN}	0.3~10	V
Lx 脚开关电压		V_{LX}	0.3~Vout+0.3	V
CE 脚电压		V_{CE}	0.3~Vout+0.3	V
IFB 脚输入电压		V_{IFB}	0.3~Vout+0.3	V
Lx 脚输出电流		I_{LX}	1.5	Α
允许的最 大功耗	T=25℃ SOT89-5	Pd	0.5	W
最大工作结温		T _{max}	150	$^{\circ}\mathbb{C}$
工作温度		T_{Opr}	-20~+85	$^{\circ}\mathbb{C}$
存贮温度		T_{stg}	-40~+125	$^{\circ}\mathbb{C}$
焊接温度和时间		T _{solder}	260℃, 10s	

推荐工作条件

参数	最小	推荐	最大	单位
输入电压范围	0.8		Vout	V
电感值	10	22	100	μH
输入电容值	0	≥22		μF
输出电容值*	47	100	220	μF
工作环境温度	-20		85	$^{\circ}\mathbb{C}$

^{*:} 建议使用钽电容以减小输出电压的开关纹波。

主要参数及工作特性

(缺省测试条件: V_{IN} =2.5V, V_{CE} = V_{OUT} =3.3V,R=33 Ω , T_A =25℃。特殊说明除外)

符号 含义		Military Rela	数值			34.0
		测试条件	最小	典型	最大	- 単位
V _{IFB}	反馈电压	I _{OUT} =100mA				mV
V _{start}	启动电压	I _{OUT} =1mA, V _{IN} : 0→2V		0.8	0.9	V
V_{hold}	保持电压	I _{OUT} =1mA, V _{IN} : 2→0V	0.6	0.7		V
I _{DD2} * ⁵	静态功耗	LX 端悬空, V _{CE} =V _{IFB} =V _{OUT} =3.3V		36		μA
I_{LX}	开关管合闸电流	V_{LX} =0.4 V , V_{IFB} =0	700			mA
I _{LXleak}	开关管漏电流	$V_{OUT}=V_{LX}=V_{IFB}=6V$			1	μΑ
I _{leak}	CE 端为 "L" 时芯片 漏(OUT 端)电流	V _{OUT} =3.3V, V _{CE} =0, LX, IFB 悬空		<0.1	0.5	μA
Fosc	振荡频率	V _{IFB} =0	370	420	470	kHz
Maxdty	占空比	On(V _{LX} "L")side	70	75	80	%
η	效率	I _{OUT} =250mA		82		%
V _{CEH}	CE 端高输入电压	V _{CE} : 0→2V (逐渐缓慢升高至芯片工作)	0.6	0.9		V
V_{CEL}	CE 端低输入电压	V _{CE} : 0→2V (逐渐缓慢下降至芯片不工作)		0.3	0.6	V
I _{OM}	最大输出驱动能力	$V_{IFB} = 0$, $V_{OUT} = 3.3V$		500		mA

注意:

- 1、Diode: 肖特基二极管(正向压降: 0.3V, 0.3A), 如1N5817,1N5819,1N5822
- 2、电感: 22uH(R<0.5)
- 3、电容: 100uF(钽电容)
- 4、V_{IFB} (SET)是芯片设定的反馈电压,是该表格第一个参数,例如100mV、200mV等。
- 5、I_{DD2} 是指芯片的纯静态功耗,也就是芯片本身在没有动态损耗的情况下消耗的功耗,也是芯片最小损耗的功耗。

典型应用图

(1) 输出恒定电流(恒流源)应用

(A) 驱动一颗1W 白光LED

(B) 驱动两串多并小功率白光LED

(2) 注意事项:

在紧靠芯片的 OUT 端口须接上一个 104 电容

封装尺寸

封装类型 SOT-89-5 每盘数量	1000只	尺寸单位	mm
--------------------	-------	------	----

