Enthalpy

1. (a) The propane gas in the tank is used as a fuel in the factory. The equation for its combustion is:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(1)$$
 $\Delta H = -2220 \text{ kJ mol}^{-1}$

Calculate the amount of heat energy, in kJ, produced during the combustion of 30.0 kg of propane gas.

(b)	(i)	Explain what is meant by the term average bond enthalpy.	
			(3)

(2)

(ii) Use the average bond enthalpy data below to calculate a value for the molar enthalpy change for the following reaction.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

Bond	C–C	С–Н	O=O	C=O	Н–О
Average bond enthalpy/kJ mol ⁻¹	348	412	496	743	463

(3)

			iii) The value obtained in (b)(ii) is different change of combustion of propane gas g	
(2)				
) marks)	(To			
		$n, \Delta H_f^{\Theta}$	Define the term standard enthalpy of formation	(a)
		•••••		
		••••••		
(3)				
	formation of liquid	ard enthalpy of	Use the data in the table to calculate the standard nethylbenzene, $\mathrm{C_7H_8}$	(b)
$H_8(1)$	$H_2(g)$	C(s)	Substance	
3909	-286	-394	d enthalpy of combustion, $\Delta H_c^{\Theta}/\text{kJ mol}^{-1}$	Standa
			$7C(s) + 4H_2(g) \rightarrow C_7H_8(l)$	
H ₈ (1)	H ₂ (g)	C(s)	Substance $Substance$ $nthalpy of combustion, \Delta H_c^{\Theta}/kJ \ mol^{-1}$	met

(c) An experiment was carried out to determine a value for the enthalpy of combustion of liquid methylbenzene using the apparatus shown in the diagram.

Burning 2.5 g of methylbenzene caused the temperature of 250 g of water to rise by 60°C. Use this information to calculate a value for the enthalpy of combustion of methylbenzene, C_7H_8

(The specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$. Ignore the heat capacity of the container.)	
	(4)

(d) A 25.0 cm³ sample of 2.00 mol dm⁻³ hydrochloric acid was mixed with 50.0 cm³ of a 1.00 mol dm⁻³ solution of sodium hydroxide. Both solutions were initially at 18.0°C.

After mixing, the temperature of the final solution was 26.5°C.

Use this information to calculate a value for the standard enthalpy change for the following reaction.

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

In your calculation, assume that the density of the final solution is 1.00 g cm⁻³ and that its specific heat capacity is the same as that of water. (Ignore the heat capacity of the container.)

•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

	(e)	Give one reason why than your answer to pa		to part (d) h	nas a much s	maller exper	rimental erro	r
							(Total	(1) 15 marks)
3.	(a)	Define the term standa	ard enthalpy	of combusti	ion, ΔH_c^{Θ}			
	41)							(3)
	(b)	Use the mean bond en calculate a value for the are in the gaseous state	ne standard e	enthalpy of c				s
-	Bond		C == C	С—С	С—Н	O == O	O == C	О—Н
N	Aean bo	ond enthalpy/ kJ mol ⁻¹	612	348	412	496	743	463
	н—	H H H 	<u>1</u> 0=0	3	o=c=	O +	3 H— O-	— н
	(c)	State why the standard	l enthalpy of	f formation,	$\Delta H_{\mathrm{f}}^{\Theta}$, of oxy	ygen is zero.		(3)

(d) Use the data from the table below to calculate a more accurate value for the standard enthalpy of combustion of propene.

Compound	$C_3H_6(g)$	CO ₂ (g)	$H_2O(g)$
Standard enthalpy of formation, $\Delta H_{\rm f}^{\Theta}/\text{ kJ mol}^-$	+20	-394	-242

				••••••
				(3)
				(3)
(e)	Explain why your answer to part (b) is a land.	ess accurate value	than your answer	to part
			((2) Total 12 marks)
Belov	v are some standard enthalpy changes incl	uding the standard	enthalpy of comb	ustion of

4. nitroglycerine, C₃H₅N₃O₉

Standard enthalpy of formation is defined using the term standard state. What does the (a) term standard state mean?

(b)	Use the standard enthalpy changes given above to calculate the standard enthalpy of formation of nitroglycerine.	
		(4)
(c)	Calculate the enthalpy change for the following decomposition of nitroglycerine.	(4)
	$C_3H_5N_3O_9(l) \rightarrow 3CO_2(g) + \frac{5}{2}H_2O(g) + \frac{3}{2}N_2(g) + \frac{1}{4}O_2(g)$	
(d)	Suggest one reason why the reaction in part (c) occurs rather than combustion when a bomb containing nitroglycerine explodes on impact.	(3)
		(1)
(e)	An alternative reaction for the combustion of hydrogen, leading to liquid water, is given below.	
	$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$ $\Delta H^{\Theta} = -286 \text{ kJ mol}^{-1}$	
	Calculate the enthalpy change for the process $H_2O(1) \rightarrow H_2O(g)$ and explain the sign of ΔH in your answer.	
	Calculation	
	Explanation for sign of ΔH	
	(Total 12 n	(2) narks)

(c) Calculate the heat energy evolved by the reaction in this experiment assuming that all the energy evolved is used to heat only the 50.0 g of water in the mixture. (Specific heat capacity of water is 4.18 J g ⁻¹ K ⁻¹) (d) Calculate the heat energy change for the reaction per mole of zinc reacted.	(a)	Write an equation for the reaction between silver nitrate and zinc.
(c) Calculate the heat energy evolved by the reaction in this experiment assuming that all the energy evolved is used to heat only the 50.0 g of water in the mixture. (Specific heat capacity of water is 4.18 J g ⁻¹ K ⁻¹)	(b)	Calculate the number of moles of silver nitrate used in the experiment.
the energy evolved is used to heat only the 50.0 g of water in the mixture. (Specific heat capacity of water is 4.18 J g ⁻¹ K ⁻¹)		
(d) Calculate the heat energy change for the reaction per mole of zinc reacted.	(c)	
(d) Calculate the heat energy change for the reaction per mole of zinc reacted.		
	(d)	Calculate the heat energy change for the reaction per mole of zinc reacted.
		Explain why the experimental value for the heat energy evolved in this experiment is