

L5- 1

A λ -calculus with Let-blocks (continued)

Arvind Laboratory for Computer Science M.I.T.

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

L5-2 Arvind

Outline

- The λ_{let} Calculus
- Some properties of the λ_{let} Calculus

September 18, 2002

L5-3 rvind

λ-calculus with Letrec

```
E ::= x \mid \lambda x.E \mid E E
                     | Cond (E, E, E)
                      | PF_k(E_1,...,E_k)
                      | CN<sub>0</sub>
                     |CN_k(E_1,...,E_k)| |CN_k(SE_1,...,SE_k)  not in
                      | let S in E
                                                                   terms
            PF_1 ::= negate \mid not \mid ... \mid Prj_1 \mid Prj_2 \mid ...
            PF_2 ::= + | ...
            CN₀ ::= Number | Boolean
            CN_2 ::= cons \mid ...
             Statements
                 S ::= \varepsilon \mid x = E \mid S; S
             Variables on the LHS in a let expression must be
            pairwise distinct
September 18, 2002
                              http://www.csg.lcs.mit.edu/6.827
```

L5-4

Let-block Statements

"; " is associative and commutative

$$\begin{array}{ll} S_1 \; ; \; S_2 & \equiv S_2 \; ; \; S_1 \\ S_1 \; ; \; (S_2 \; ; \; S_3) & \equiv (S_1 \; ; \; S_2 \;) \; ; \; S_3 \\ \\ \epsilon \; ; \; S & \equiv \mathcal{S} \\ \textit{let} \; \epsilon \; \textit{in} \; \mathsf{E} & \equiv \mathsf{E} \end{array}$$

September 18, 2002

L5-5 Arvind

Free Variables of an Expression

```
FV(x) = \{x\}
FV(E_1 E_2) = FV(E_1) \cup FV(E_2)
FV(\lambda x.E) = FV(E) - \{x\}
FV(let S in E) = FVS(S) \cup FV(E) - BVS(S)
FVS(\epsilon) = \{\}
FVS(x = E; S) = FV(E) \cup FVS(S)
BVS(\epsilon) = \{\}
BVS(\epsilon) = \{\}
BVS(x = E; S) = \{x\} \cup BVS(S)
```

September 18, 2002

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

```
α - Renaming (to avoid free variable capture)
          Assuming t is a new variable, rename x to t:
             λx.e
                         \equiv \lambda t.(e[t/x])
             let x = e ; S in e_0
                         \equiv let \dot{t} = e[t/x]; S[t/x] in e_0[t/x]
         where [t/x] is defined as follows:
       x[t/x]
                      = t
       y[t/x]
                      = y
                                      if x \neq y
       (E_1 E_2)[t/x] = (E_1[t/x] E_2[t/x])
       (\lambda x.E)[t/x] = \lambda x.E
       (\lambda y.E)[t/x]
                     = \Re y. E[t/x] if x \neq y
       (let S in E)[t/x]
                                              if x ∉ FV(let S in E)
               =?
                       (let S in E)
                       (let S[t/x] in E[t/x]) if x \in FV(let S in E)
       ε[t/x]
       (y = E)[t/x] =
                               (y = E[t/x])
       (S_1; S_2)[t/x] = ?
                              (S_1[t/x]; S_2[t/x])
```

Primitive Functions and Datastructures

L5-7 Arvind

δ-rules

$$+(\underline{n},\underline{m}) \rightarrow \underline{n+m}$$

Cond-rules

$$\begin{array}{ll} \text{Cond}(\mathsf{True},\ e_1,\,e_2) & \to e_1? \\ \mathsf{Cond}(\mathsf{False},\,e_1,\,e_2) & \to e_2 \end{array}$$

Data-structures

$$\begin{array}{c} \mathsf{CN_k}(\mathsf{e_1}, \dots, \mathsf{e_k}\,) & \to \\ & \textit{let}\,\,\mathsf{t_1} = \mathsf{e_1};\, \dots\,;\, \mathsf{t_k} = \mathsf{e_k} \\ & \textit{in} \ \ \underline{\mathsf{CN_k}}(\mathsf{t_1}, \dots, \mathsf{t_k}\,) \\ \mathsf{Prj_i}(\underline{\mathsf{CN_k}}(\mathsf{a_1}, \dots, \mathsf{a_k}\,)) & \to \mathsf{a_i} \end{array}$$

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

-

The β -rule

The normal β -rule

$$(\lambda x.e) e_a \rightarrow e [e_a/x]$$

is replaced the following β -rule

(
$$\lambda x.e$$
) $e_a \rightarrow \Re t t = e_a \text{ in } e[t/x]$
where t is a new variable

and the Instantiation rules which are used to refer to the value of a variable

September 18, 2002

L5-9 Arvind

Values and Simple Expressions

Values

V ::=
$$\lambda x.E \mid CN_0 \mid \underline{CN_k}(SE_1,...,SE_k)$$

Simple expressions

$$SE ::= x | V$$

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

Contexts for Expressions

A context is an expression (or statement) with a "hole" such that if an expression is plugged in the hole the context becomes a legitimate expression:

Statement Context for an expression

$$SC[] ::= x = C[] | SC[]; S | S; SC[]$$

September 18, 2002

L5-11 Arvind

λ_{let} Instantiation Rules

A free variable in an expression can be instantiated by a *simple expression*

Instantiation rule 1

$$(\textit{let} \ x = a \ ; \ S \ \textit{in} \ C[x]) \rightarrow (\textit{let} \ x = a \ ; \ S \ \textit{in} \ C'[a])$$

simple expression

free occurrence of x in some context C renamed C[] to avoid freevariable capture

Instantiation rule 2

$$(x = a ; SC[x]) \rightarrow (x = a ; SC'[a])$$

Instantiation rule 3

$$x = a$$
 $\rightarrow x = C'[C[x]]$ where $a = C[x]$

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

Lifting Rules: Motivation

let

$$f = let S_1 in \lambda x.e_1$$

 $y = f a$
in
 $((let S_2 in \lambda x.e_2) e_3)$

How do we juxtapose

$$(\lambda x.e_1)$$
 a or $(\lambda x.e_2)$ e_3

September 18, 2002

L5-13 Arvind

Lifting Rules

($let\ S'\ in\ e'$) is the α ? $renamed\ (let\ S\ in\ e)$ to avoid name conflicts in the following rules:

$$\begin{array}{lll} x = \textit{let S in e} & \rightarrow & x = e'; \, S' \\ & \textit{let S}_1 \; \textit{in (let S in e)} \; \rightarrow & \textit{let S}_1; \, S' \; \textit{in e'} \\ & (\textit{let S in e)} \; e_1 & \rightarrow & \textit{let S' in e'} \; e_1 \\ & \text{Cond((let S in e), e}_1, e}_2) \\ & \rightarrow & \textit{let S' in Cond(e', e}_1, e}_2) \\ & & \rightarrow & \textit{let S' in Cond(e', e}_1, e}_2) \\ & & \rightarrow & \textit{let S' in PF}_k(e_1, ..., e', ..., e}_k) \\ & & \rightarrow & \textit{let S' in PF}_k(e_1, ..., e', ..., e}_k) \end{array}$$

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

Outline

- The λ_{let} Calculus √
- Some properties of the λ_{let} Calculus \leftarrow

September 18, 2002

L5-15 Arvind

Confluenence and Letrecs

```
odd
       = \lambdan.Cond(n=0, False, even (n-1))
                                                           (M)
even = \lambdan.Cond(n=0, True, odd (n-1))
substitute for even (n-1) in M
odd
       = \lambdan.Cond(n=0, False,
              Cond(n-1 = 0, True, odd ((n-1)-1)))
                                                           (M_1)
even = \lambdan.Cond(n=0, True, odd (n-1))
substitute for odd (n-1) in M
       = \lambdan.Cond(n=0, False, even (n-1))
                                                           (M_2)
odd
even = \lambda n.Cond(n=0, True,
              Cond( n-1 = 0 , False, even ((n-1)-1)))
```

Can odd in M_1 and M_2 be reduced to the same expression?

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

λ versus λ_{let} Calculus

Terms of the λ_{let} calculus can be translated into terms of the λ calculus by systematically eliminating the let blocks. Let T be such a translation.

Suppose $e woheadrightarrow e_1$ in λ_{let} then does there exist a reduction such that $T[[e]] woheadrightarrow T[[e_1]]$ in λ ?

September 18, 2002

L5-17 Arvind

Instantaneous Information

"Instantaneous information" (info) of a term is defined as a (finite) trees

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

Reduction and Info

Terms can be compared by their Info value

$$\begin{array}{lll} \bot & \leq & t & \textit{(bottom)} \\ t & \leq & t & \textit{(reflexive)} \\ CN_k(v_1,...,v_i,...,v_k) & \leq CN_k(v_1,...,v_i,...,v_k) \\ & \textit{if} & v_i \leq \mathcal{N}_i' \end{array}$$

Proposition Reduction is monotonic wrt Info: If $e \rightarrow e_1$ then Info[e] \leq Info[e₁].

Proposition Confluence wrt Info: If $e \rightarrow e_1$ and $e \rightarrow e_2$ then $\exists e_3 \text{ s.t. } e_1 \rightarrow e_3 \text{ and Info}[e_2] \leq \text{Info}[e_3].$

September 18, 2002

L5-19 Arvind

Print: Unwinding of a term

Print : $E \rightarrow \{T_P\}$

Unwind a term as much as possible using the following instantiation rule (Inst):

(let x = v; S in C[x]) \rightarrow ?(let x = v; S in C[v]) and keep track of all the unwindings

Print[e] = {Info[e₁] | e \rightarrow e₁ using the Inst rule}? Terms with infinite unwindings lead to infinite sets.

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

Garbage Collection

Let-blocks often contain bindings that are not reachable from the return expression, e.g.,

$$let x = e in 5$$

Such bindings can be deleted without affecting the "meaning" of the term.

September 18, 2002

L5-21 Arvind

Unrestricted Instantiation

 λ_{let} instantiation rules allow only values & variables to be substituted. Let λ_0 be a calculus that permits substitution of arbitrary expressions:

Unrestricted Instantiation Rules of λ_0

```
 \begin{array}{ll} let \ x = e; \ S \ \textit{in} \ C[x] & \rightarrow let \ x = e; \ S \ \textit{in} \ C'[e] \\ (x = e; \ SC[x]) & \rightarrow (x = e; \ SC'[e]) \\ x = e & \rightarrow x = C'[e] & \text{where} \ e \equiv C[x] \end{array}
```

Is λ_0 more expressive than λ_{let} ?

September 18, 2002

http://www.csg.lcs.mit.edu/6.827

Semantic Equivalence

- What does it mean to say that two terms are equivalent?
- Do any of the following equalities imply semantic equivalence of e₁ and e₂

Syntactic equality of α -convertability: $e_1 = e_2$

Print equality: $Print(e_1) = Print(e_2)$

No observable difference in any context:

September 18, 2002

