Homework 2 Solutions

Introduction to Quantum Information Science Ryan Zhou (rz3974)

1. More fun with matrices.

a) The 2×2 unitary matrix is straightforward:

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

b) A 4×4 unitary matrix satisfying the constraints is below:

$$\begin{pmatrix}
0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & 0
\end{pmatrix}.$$

c) Let $A = \begin{pmatrix} 0 & c & e \\ a & 0 & f \\ b & d & 0 \end{pmatrix}$ be a 3×3 unitary matrix with only diagonal 0 Since A is unitary,

 $A^{H}A = I$. We then have the equations

$$|a|^2 + |b|^2 = 1$$

$$|c|^2 + |d|^2 = 1$$

$$|e|^2 + |f|^2 = 1$$

$$\overline{b}d = b\overline{d} = 0$$

$$\overline{c}e = c\overline{e} = 0.$$

Then one of each pair (a, f), (b, d), (c, e) must be 0. This implies that there exist non-diagonal entries in A that are 0, a contradiction. Thus, no such matrix A can exist.

2. Single Qubit Quantum Circuits.

- a) $SHZH |0\rangle = SHZ |+\rangle = SH |-\rangle = S |1\rangle = i |1\rangle = |1\rangle$. If we measure in the $|0\rangle, |1\rangle$ basis, $P[|0\rangle] = 0$, $P[|1\rangle] = 1$.
- **b)** $HYZR_{\pi/4}|0\rangle = HYZ|+\rangle = HY|-\rangle = H(iXZ|-\rangle) = H(iX|+\rangle) = H(i|+\rangle) = H|+\rangle = |0\rangle$. If we measure in the $|+\rangle, |-\rangle$ basis, $P[|+\rangle] = \frac{1}{2}$, $P[|-\rangle] = \frac{1}{2}$.
- c) $HT |+\rangle = H(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} e^{i\pi/4} |1\rangle) = \frac{1}{\sqrt{2}} |+\rangle + \frac{1}{\sqrt{2}} e^{i\pi/4} |-\rangle.$

d)
$$TZT \mid + \rangle = TZ(\frac{1}{\sqrt{2}} \mid 0 \rangle + \frac{1}{\sqrt{2}} e^{i\pi/4} \mid 1 \rangle) = T(\frac{1}{\sqrt{2}} \mid 0 \rangle - \frac{1}{\sqrt{2}} e^{i\pi/4} \mid 1 \rangle) = \frac{1}{\sqrt{2}} \mid 0 \rangle - \frac{1}{\sqrt{2}} e^{i\pi/2} \mid 1 \rangle.$$

3. Miscellaneous.

- a) Intuitively, $|0\rangle + |+\rangle$ is the superposition of the $|0\rangle$ and $|+\rangle$ states. Let $|\phi\rangle = |0\rangle + |1\rangle$. Note that $\langle \phi | \phi \rangle = 2 + \sqrt{2}$. Then $|\psi\rangle = \frac{1}{\sqrt{2+\sqrt{2}}} |\phi\rangle$.
- **b)** $H|\psi\rangle = \frac{1}{\sqrt{2+\sqrt{2}}}H(|0\rangle + |+\rangle) = \frac{1}{\sqrt{2+\sqrt{2}}}(|+\rangle + |0\rangle) = |\psi\rangle$. Then $|\psi\rangle$ is an eigenstate of the H gate with $\lambda = 1$.
- c) There are 8 different states reachable from $|0\rangle$ with H and S:

$$\begin{split} |0\rangle & H \, |0\rangle = |+\rangle \\ SH \, |0\rangle = |i\rangle & HSH \, |0\rangle = H \, |i\rangle = \frac{|+\rangle + i \, |-\rangle}{\sqrt{2}} \\ S^2H \, |0\rangle = |-\rangle & HS^2H \, |0\rangle = H \, |-\rangle = |1\rangle \\ s^3H \, |0\rangle = |-i\rangle & HS^3H \, |0\rangle = H \, |-i\rangle = \frac{|+\rangle - i \, |-\rangle}{\sqrt{2}}. \end{split}$$

4. Distinguishability of states.

a) Consider the quantum circuit:

$$|\psi\rangle$$
 — $R_{\pi/8}$ —

If $|\psi\rangle = |0\rangle$, $R_{\pi/8} |\psi\rangle = \cos\left(\frac{\pi}{8}\right) |0\rangle + \sin\left(\frac{\pi}{8}\right) |1\rangle$, so probability of failure is $\sin^2\left(\pi/8\right)$. If $|\psi\rangle = |+\rangle$, $R_{\pi/8} |\psi\rangle = \cos\left(\frac{3\pi}{8}\right) |0\rangle + \sin\left(\frac{3\pi}{8}\right) |1\rangle$, so probability of failure is $\cos^2\left(3\pi/8\right) = \sin^2\left(\pi/8\right)$. Then overall probability of failure is $\sin^2\left(\frac{\pi}{8}\right)$.

Extra Credit: Suppose that we rotate by some angle $\epsilon \in [0, \frac{\pi}{4}]$. If $|\psi\rangle = |0\rangle$, $R_{\epsilon} |\psi\rangle = \cos \epsilon |0\rangle + \sin \epsilon |1\rangle$, and if $|\psi\rangle = |+\rangle$, $R_{\epsilon} |\psi\rangle = \cos (\frac{\pi}{4} + \epsilon) |0\rangle + \sin (\frac{\pi}{4} + \epsilon) |1\rangle$. Then the overall probability of failure $p_f = \sin^2(\epsilon) + \cos^2(\frac{\pi}{4} + \epsilon)$. The first derivative of this is $p_f' = 2\sin(\epsilon)\cos(\epsilon) - 2\sin(\frac{\pi}{4} + \epsilon)\cos(\frac{\pi}{4} + \epsilon) = 0$. Rearranging and converting the sin to $\cos(\frac{\pi}{2} - \epsilon)\cos(\epsilon) = \cos(\frac{\pi}{4} - \epsilon)\cos(\frac{\pi}{4} + \epsilon)$. Then either

$$\frac{\pi}{2} - \epsilon = \frac{\pi}{4} - \epsilon, \quad \epsilon = \frac{\pi}{4} + \epsilon,$$

or

$$\frac{\pi}{2} - \epsilon = \frac{\pi}{4} + \epsilon, \quad \epsilon = \frac{\pi}{4} - \epsilon.$$

The first case is impossible, but in the second case we find that optimally $\epsilon = \frac{\pi}{8}$.

b) The probability of failure is equal to the probability of getting $|0\rangle$ and measuring 1 plus the probability of getting $|+\rangle$ and measuring 0. Then $P[\text{failure}] = \frac{1}{2}0 + \frac{1}{2}\frac{1}{2} = \frac{1}{4}$.