

Scaling Attributed Network Embedding to Massive Graphs

by: R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. Bhowmick

Basic data analytics is easy.

Target attribute

Graph data analytics is more powerful.

Graph data analytics is powerful but difficult.

	Single table data analytics	Attributed graph data analytics		
Tools	dmlc XGBoost + leavin	Deep graph neural network		
Difficulty	* *	****		
Req. Skill level				

We present Practical Attributed Network Embedding (PANE).

Attributed graph data analytics

Embedding vector data analytics

Performance of PANE

Effective

Accuracy (F1):

up to +17.2%

Compared to SOTA
Neural Network methods

Computing all embeddings on a HUGE graph with 59m nodes, 0.98b edges, 2k attributes

Single-server:

~ 12 hours

<u>Efficient</u>

Applications of PANE

Link Prediction

Attribute Inference

Node Classification

PANE is based on mostly novel database technologies (with a bit of machine learning flavor).

1 PANE measures Node-Attribute affinity via random walks.

2 PANE computes embeddings with joint matrix factorization.

PANE makes full use of multi-core parallel computation.

Types of Random Walks in PANE

Forward: node-to-attribute

Backward: attribute-to-node

Forward Random Walks

- Forward random walk from node u:
 - Start from u
 - At each step, stop with α probability
 - After stopping at a node v, pick an attribute r with probability $\propto w(v,r)$

Intuition: it samples an attribute r
 from the vicinity of u

Node-Attribute Affinity

Node-attribute affinity:

 $\mathbf{F}[u,r] = \text{normalized}$ probability that a forward random walk from u samples rin the end

Backward RW & Attribute-Node Affinity

- Backward random walk from attribute r
 - Randomly pick a node s with probability proportional to the weight of (s, r)
 - Start a random walk from s
 - At each step, stop with α probability
 - Let v be the stopping point of the walk

Attribute-node affinity

 $\mathbf{B}[r, v] \leftarrow \text{normalized random walk}$ probability from attribute r to node v

Node-to-Node affinity is derived.

$$p(u,v) = \sum_{r \in R} \mathbf{F}[u,r] \cdot \mathbf{B}[r,v]$$

This saves a LOT of space: $O(n^2) \rightarrow O(nd)$, $d \ll n$

Embedding Matrices in PANE

- We construct
 - two embedding matrices \mathbf{X}_f and \mathbf{X}_b for the nodes, and
 - one embedding matrix Y for attributes
- Optimization objective:
 - $\mathbf{X}_f \cdot \mathbf{Y}^{\mathsf{T}} \approx \mathbf{F}$, to capture node-attribute affinity
 - $\mathbf{Y} \cdot \mathbf{X}_b^{\mathsf{T}} \approx \mathbf{B}$, to capture attribute-node affinity

Solving the optimization program

- Jointly factorize F and B to obtain X_f , X_b , and Y
 - Formulate the joint factorization as a least square problem
 - Solve it using gradient descent
 - Use randomized SVD to obtain a good initial solution
- Time complexity: O(mdt + ndkt)
 - *k* is the embedding size
 - t is the number of iterations
 (t = 5 in our experiments)

Greedy Initialization + SGD

$$\mathbf{F} \approx \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^{\mathrm{T}}$$

- $\mathbf{U} \cdot \mathbf{\Sigma}, \mathbf{Y} = \mathbf{V}$
- □ **V**=**Y** is unitary
- $\mathbf{P} \mathbf{Y}^{\mathrm{T}} \cdot \mathbf{Y} = \mathbf{I}$
- $\mathbf{D} \mathbf{X}_b = \mathbf{X}_b \mathbf{Y}^{\mathrm{T}} \mathbf{Y} = \mathbf{B} \cdot \mathbf{Y}$

Greedy initialization of embeddings via randomized SVD and the unitary property

Update \mathbf{X}_f , \mathbf{X}_b via SGD; Update \mathbf{Y} via SGD;

Only a few iterations are needed!

3

PANE is fully parallelized on multi-core computers.

Explained in Section 4 of our paper.

Experiments: 8 Datasets

Name	# of nodes	# of edges	# of distinct attributes	# of attributes per node	# of distinct labels
Cora	2.7k	5.4k	1.4k	18.2	7
Citeseer	3.3k	4.7k	3.7k	31.9	6
Facebook	4k	88.2k	1.3k	8.3	193
Pubmed	19.7k	44.3k	0.5k	50.2	3
Flickr	7.6k	479.5k	12.1k	24.0	9
Google+	107.6k	13.7M	15.9k	2793.7	468
TWeibo	2.3M	50.7M	1.7k	7.3	8
MAG	59.3M	978.2M	2.0k	7.3	100

Experiments: 10 Competitors

• Default embedding dimensionality: k = 128

6 neural-network-based methods

STNE [KDD 2018]

🗅 ARGA [IJCAI 2018]

LQANR [IJCAI 2019]

CAN [WSDM 2019]

□ DGI [ICLR 2019]

GATNE [KDD 2019]

3 factorization-based methods

TADW [IJCAI 2015]

BANE [ICDM 2018]

NRP [VLDB 2020]

1 other method

PRRE [CIKM 2018]

Results: Node Classification

- Percentage of nodes used for training: 10% ~ 90%
- PANE vs. SOTA: improvements of 3.4%-17.2% in terms of F1 measure

THANK YOU

PANE

Joint matrix factorization

Scaling Attributed Network Embedding to Massive Graphs

by: R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. Bhowmick

Code: https://github.com/AnryYang/PANE