Índice general

1.	Intr	oducción	4
	1.1.	Posibles Sistemas Optomecánicos	4
		1.1.1. Espejos Suspendidos	4
		1.1.2. Microresonadores	4
		1.1.3. Objetos Suspendidos o Levitados	5
		1.1.4. Cristales Optomecánicos	5
	1.2.	Efectos Optomecánicos	5
		1.2.1. Enfriamiento Optomecánico	6
	1.3.	Aplicaciones	8
	1.4.	Enfriamiento Optomecánico con Parámetros Dependientes del	
		Tiempo	8
2.	Osc	ilador Armónico Dependiente del Tiempo	10
	2.1.	Teoría de Floquet	10
		2.1.1. Propiedades Básicas	11
		2.1.2. Estabilidad para Ecuaciones de Segundo Orden	12
		2.1.3. Estabilidad de las Soluciones de Floquet para la Ecuación	
		de Hill	13
		2.1.4. Solución para Oscilaciones Pequeñas	14
	2.2.	Estados de Floquet en Mecánica Cuántica	14
	2.3.	Oscilador Armónico Dependiente del Tiempo: Solución Mediante	
		Formalismo de Floquet	15
3.		riamiento Optomecánico Dependiente del Tiempo: Caso de	
		ilador Armónico Dependiente del Tiempo	18
	3.1.	Hamiltoniano para Enfriamiento Optomecánico con Parámetros	
		Dependientes del Tiempo	18
	3.2.	Disipación en Sistemas Optomecánicos	20
	3.3.		21
		3.3.1. Solución Explícita para Pequeñas Oscilaciones	22
		3.3.2. Base de Decaimiento	23
	3.4.	Enfriamiento Laser	24
	3.5.	Análisis Numérico	25
4.	Enf	riamiento Optomecánico Dependiente del Tiempo: Modelo	
	Mei	orado de Disipación Aplicado a Cavidad	28

5 .	Enfriamiento Optomecánico Dependiente del Tiempo: Caso de			
	Cavidad con Frecuencia Dependiente del Tiempo			
	5.1.	Ecuación de Onda para el Potencial Vectorial en una Cavidad		
		con Espejo Móvil	31	
	5.2.	Transformación al Marco de Referencia Desplazado	36	
6.	Objetivos Futuros			
	6.1.	Objetivos y Calendarización	41	

Objetivo General

Si la frecuencia natural de un oscilador armónico mecánico con fricción, acoplado a una cavidad de Fabry-Perot es una función periódica del tiempo, el modelo de disipación usado debe tomar en cuenta esta dependencia; en general esto no se hace. Durante el primer año de doctorado se encontró que, si en este caso, se emplea un formalismo de disipación que toma en cuenta la dependencia temporal de la frecuencia natural, se obtiene una predicción cualitativa y cuantitativamente distinta para la temperatura final del oscilador mecánico que si no se toma en cuenta. Este resultado justifica la sospecha de que en el caso de un sistema optomecánico, en donde el oscilador mecánico también es un espejo semitransparente, el cambio de la frecuencia natural de los modos de la cavidad debe ser tomado en cuenta en el modelo de perdida de fotones a través de los espejos. El objetivo de la tesis es investigar esta posibilidad y sus posibles efectos en enfriamiento de sistemas optomecánicos y manipulación de su estado cuántico.

Capítulo 1

Introducción

La optomecánica es el estudio de la interacción entre elementos ópticos y elementos mecánicos. En este capítulo se dará una breve introducción al tipo de sistemas y de efectos que se consideran parte de la optomecánica.

1.1. Posibles Sistemas Optomecánicos

Existen muchas implementaciones posibles de acoplamientos entre elementos ópticos y elementos mecánicos [1]. En esta sección se detallan algunos de estos.

1.1.1. Espejos Suspendidos

Consisten de cavidades ópticas donde uno o más de los espejos pueden cambiar de posición y así alterar la longitud de la cavidad. La primera realización experimental de este tipo de sistemas se debe a los primeros esfuerzos para detectar ondas gravitacionales [2]. El sistema consiste en un interferómetro con los espejos montados en masas suspendidas, a manera que una onda gravitacional, al interactuar con las masas cambiaría la posición de los espejos y así la longitud de camino óptico. El propósito de suspender las masas no es crear un sistema optomecánico, sin embargo, fue necesario estudiar las fluctuaciones ocasionadas por la interacción entre la luz y las masas [3]. Experimentos en este tipo de sistemas han demostrado varios efectos, entre ellos el enfriamiento mediante presión de radiación [4]. También es posible utilizar este tipo de sistemas para estudiar el entrelazamiento cuántico[5] al acoplar dos cavidades al mismo espejo y así lograr entrelazamiento entre los modos de ambos campos.

1.1.2. Microresonadores

Otro tipo posible de sistema optomecánico son los microresonador o microcavidades. En este tipo de sistemas, es posible confinar a la luz a viajar en modos whispering gallery, los cuales implican que la luz es guiada a lo largo del perímetro del resonador, el cual puede tener forma esférica, circular, o toroidal[6]. Si el resonador vibra, esto puede alterar el camino óptico de la luz y se logra un acoplamiento entre el resonador macroscópico y la luz atrapada en el. Es posible fabricar resonadores de este tipo con un factor de calidad de 10⁶, este factor es

igual a 2π veces el número de oscilaciones requeridas para que la energía almacenada en el resonador decaiga a $\frac{1}{e}$ de su valor inicial. Debido a su tamaño, es posible obtener acoplamiento fuerte entre sistemas cuánticos y el resonador, el cual es un objeto macroscópico [7].

1.1.3. Objetos Suspendidos o Levitados

En este tipo de sistemas, se considera una cavidad óptica rígida donde se coloca un objeto mecánico dentro de la cavidad. Este esquema permite el acoplamiento de objetos mecánicos de tamaños inferiores a la longitud de onda de la luz [1], como por ejemplo una membrana dieléctrica de SI_3N_4 de $1mm \times 1mm \times 50nm$ de dimensión[8]. En ese caso, se puede observar que parámetros de la cavidad como la sintonización y la finesa dependen del desplazamiento de la membrana. Otra posibilidad consiste en un nano cable de carbón, de aproximadamente 10^9 átomos, el cual se coloca dentro de una micro cavidad de Fabri-Perot. Así mismo, se han realizado experimentos donde se levita una gota de Helio líquido dentro de la cavidad[9]. Las propiedades de la cavidad cambian no solo dependiendo de la posición del objeto, sino también de sus modos vibracionales[10].

1.1.4. Cristales Optomecánicos

Este tipo de sistema es más reciente que los demás y se basa en redes cristalinas donde se logra acoplar fotones y fonones. En uno de los primeros experimentos se fabricó una nano viga de silicio [11]. El sistema consiste en una nano viga con agujeros espaciados de manera regular, lo cual forma una red. Se introduce un defecto mediante una reducción cuadrática en la constante de red, de manera simétrica respecto al centro de la viga. Esto genera un potencial efectivo para los modos ópticos y uno análogo para los modos mecánicos. Las vibraciones ocasionan un cierto desplazamiento en la estructura lo cual afecta el potencial efectivo para los modos ópticos y se obtiene el acoplamiento. Una implementación reciente de este tipo de sistemas involucra usar redes cristalinas semi periódicas de diamante para implementar el resonador[12].

1.2. Efectos Optomecánicos

En esta sección se da un pequeño resumen de los efectos más conocidos y utilizados resultantes de la interacción optomecánica. Frecuentemente estos efectos se deben a la interacción entre la presión de radiación que la luz incidente aplica sobre los elemento mecánicos y la reacción retardada de la cavidad a los cambios en su longitud o el equivalente en cavidades de otras geometrías. Algunos de estos efectos son:

■ Efecto de Resorte Óptico (optical spring effect) La presión de radiación depende de la posición del objeto, por lo que esta cambia cuando el objeto se mueve. En particular, en el caso de cavidades con espejos suspendidos, la presión de radiación afecta la constante del resorte ya que genera un desplazamiento en la resonancia de la frecuencia mecánica, el cual se puede utilizar para aumentar o disminuir la frecuencia natural del resorte. [13]

- Bi-Estabilidad Óptica (optical bi-stability) La presión de radiación puede desplazar al objeto mecánico y se espera que se llegue a una posición de equilibrio. Sin embargo, la dependencia del potencial efectivo sobre la posición es no lineal, lo cual lleva a que se generen dos posiciones de equilibrio. Para una presión lo suficientemente fuerte, este efecto se borra y se llega a una posición altamente estable[14].
- Enfriamiento Optomecánico Este es el efecto en el que se basa este trabajo así que se describe en mayor detalle.

1.2.1. Enfriamiento Optomecánico

En esta sección se da una breve explicación de la causa del enfriamiento optomecánico y la razón de que este sea un efecto puramente cuántico. La derivación se basa en la encontrada en [15] y requiere un teorema que se presenta sin demostración. Primero se define la Densidad de Potencia Espectral como

$$S_{hh}(\omega) = \lim_{\tau \to \infty} \frac{1}{\tau} \langle h_{\tau}^*(\omega) h_{\tau}(\omega) \rangle, \tag{1.1}$$

para h(t) una variable compleja cuyas propiedades estadísticas son independientes del tiempo. $h_{\tau}(\omega)$ es la transformada de Fourier tomada entre $\frac{-\tau}{2} < t < \frac{\tau}{2}$

Teorema de Wiener-Khinchin: Sea h(t) una variable compleja cuyas propiedades estadísticas son estacionarias, entonces

$$S_{hh}(\omega) = \int_{-\infty}^{\infty} d\tau e^{i\omega\tau} \langle h^*(t+\tau)h(t)\rangle_{t=0} = \int_{-\infty}^{\infty} d\omega' \langle h^*(-\omega)h(\omega')\rangle$$
 (1.2)

El teorema es la primera igualdad y la segunda resulta de las propiedades de la transformada de Fourier. En el caso clásico la Densidad de Potencia Espectral es simétrica respecto a la frecuencia. Sin embargo, en el caso de operadores esto no es necesariamente cierto. Debido a que, en general, no se puede asegurar que para un operador Hermitiano $\hat{O}(t)$ se tenga $[\hat{O}(t), \hat{O}(t+\tau)] = 0$. Se sigue entonces que no se puede asegurar $S_{OO}(\omega) = S_{OO}(-\omega)$. El hecho de que un operador no necesariamente conmuta consigo mismo a distintos tiempos rompe la simetría. Se estudia ahora el caso específico de un oscilador armónico cuántico que está acoplado a un baño térmico mediante un término de tipo

$$V(t) = qF(t) \tag{1.3}$$

donde F(t) es la fuerza ejercida por el baño, la cual conmuta con q. Se desea obtener la probabilidad de que el oscilador armónico pase de un estado inicial $|\Psi(t)\rangle$ a un estado final ortogonal $|\Psi_f(t)\rangle$. Se trabaja en el cuadro de interacción por simplicidad. En este caso la amplitud de transición $A_{if}(t)$ está dada por

$$A_{if}(t) = \langle \Psi_f(t) | U_0 U_I | \Psi(0) \rangle = e^{\frac{-iE_f t}{hbar}} \langle \Psi_f(t) | \Psi_I(t) \rangle, \qquad (1.4)$$

donde

$$U_0 = e^{\frac{-iH_0t}{\hbar}} \tag{1.5}$$

$$U_I = e^{\frac{-iVt}{\hbar}} \tag{1.6}$$

 H_0 es el Hamiltoniano del oscilador armónico con frecuencia Ω y V(t) es la interacción. Utilizando teoría de perturbación a primer orden, y asumiendo que la interacción es débil y por lo tanto los estados del baño y del oscilador armónico se mantienen separables, se llega a que la amplitud de transición para pasar de un estado n a un estado n+1 en el oscilador, dado que el baño inicia en algún estado n y que la interacción lo deje en un estado n es

$$A_{if}(t) = \frac{x_{zp}\sqrt{n+1}}{i\hbar} \int_0^t d\tau_1 e^{i\Omega\tau_1} \left\langle k | F(\tau_1) | j \right\rangle, \tag{1.7}$$

donde $F_I(t)$ es la fuerza en el cuadro de interacción y x_{zp} es la amplitud mínima del oscilador. La probabilidad de transición se obtiene al sumar sobre todos los posibles estados finales del baño y resulta

$$P_{n\to n+1} = \frac{x_{zp}^2(n+1)}{\hbar^2} \int \int_0^t d\tau_1 d\tau_2 e^{i\Omega(\tau_2 - \tau_1)} \langle F_I(\tau_1) F_I(\tau_2) \rangle, \tag{1.8}$$

donde se ha utilizado que F(t) es Hermitiana y que los modos del baño son completos. Se utilizan dos cambios de variable $\tau_1 = t' + \tau$ y $\tau_2 = t'$ para hacer más evidente la relación con (1.2).

$$P_{n \to n+1} = \frac{x_{zp}^2(n+1)}{\hbar^2} \int_0^t \int_{-t'}^{t-t'} dt' d\tau e^{i\Omega\tau} \langle F_I(t'+\tau) F_I(t') \rangle. \tag{1.9}$$

Si la integración se realiza con tiempos mucho más largos que los tiempos de auto-correlación del baño, los límites de la segunda integral se pueden aproximar por $\pm\infty$ y se llega a que

$$P_{n \to n+1} = \frac{x_{zp}^2(n+1)}{\hbar^2} t S_{FF}(-\Omega). \tag{1.10}$$

Si se deriva respecto a t se obtiene la taza de transición

$$\gamma_{n \to n+1} = \frac{x_{zp}^2(n+1)}{\hbar^2} S_{FF}(-\Omega),$$
(1.11)

y un cálculo análogo permite encontrar la taza de transición para $n \to n-1$ y esta resulta ser

$$\gamma_{n \to n-1} = \frac{x_{zp}^2 n}{\hbar^2} S_{FF}(\Omega). \tag{1.12}$$

Las transiciones que aumentan el número de excitaciones dependen de la parte negativa del espectro S_{FF} mientras que las transiciones hacia abajo dependen de la parte positiva. De esta forma se espera que si se puede controlar el espectro de la fuerza ejercida por el baño se puede controlar que tipo de transición es dominante.

1.3. Aplicaciones

Existen muchas aplicaciones posibles para los efectos y sistemas utilizados en optomecánica. Este trabajo se concentra principalmente en enfriamiento optomecánico, sin embargo algunas otras posibles aplicaciones son:

- Estabilización Láser Al utilizar una cavidad de tipo cristal optomecánico doble (zipper cavity en inglés) como base para un láser, se puede obtener un dispositivo tal que su frecuencia, en especial la sensibilidad de está a ruido térmico, se puede estabilizar optomecánicamente[16].
- Memoria Optomecánica Se puede crear un sistema de memoria utilizando una cavidad optomecánica compuesta por una guía de ondas y un resonador mecánico ligeramente torcido a manera de tener dos configuraciones posibles, arriba y abajo. Esto lleva a que se genere un potencial de doble pozo asimétrico para el resonador y, con la ayuda de un láser para excitar el sistema y de otro para enfriarlo, es posible realizar un proceso controlado donde se decide en que pozo queda el resonador. Estos dos estados corresponden a 0 y 1 y el sistema no requiere energía para mantenerse en la configuración final, generando un sistema de memoria estable [17].
- Magnetometría Al acoplar un material magnetostrictivo al resonador mecánico de una cavidad optomecánica se pueden excitar los eigenmodos del resonador mecánico al aplicar un campo magnético. De esta forma, la presencia del campo magnético se puede leer en el comportamiento del campo de luz dentro de la cavidad. Esto permite tener un sensor de campos magnéticos de alta precisión que funciona a temperatura ambiente [18].
- Redes Cuánticas La optomecánica permite realizar el mapeo de los estados de un campo de luz a los modos vibracionales de un oscilador mecánico [19]. Este tipo de transferencia de información es clave en la formación de redes de información cuánticas.[20]
- Detección de Cáncer Los Microtúbulos son una parte clave de la estructura de una célula y se ha estudiado si su interacción con campos electromagnéticos externos puede ser un tratamiento viable para el cáncer[21]. El estudio de las propiedades vibracionales de estas estructuras es clave para esto y se ha propuesto un montaje experimental para realizar estas mediciones mediante un acoplamiento optomecánico[22].

1.4. Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Este trabajo se enfoca en el enfriamiento optomecánico con parámetros dependientes del tiempo. Uno de los métodos empleados en la búsqueda por mejorar el enfriamiento de un oscilador mecánico acoplado a una cavidad es utilizar un oscilador mecánico cuya frecuencia natural sea función del tiempo [23]. Esta dependencia modifica el cuasi espectro de energía del sistema[24]. En el formalismo empleado en [23] esto no se toma en cuenta, el efecto de la dependencia temporal sobre la disipación se modela mediante coeficientes con dependencia

temporal que se introducen de manera ad-hoc. Sin embargo, [24] muestra que este no es el enfoque óptimo, así que realizó un trabajo que sí toma en cuenta los efectos de la dependencia temporal de la frecuencia natural del oscilador durante la derivación de la temperatura final que se espera del sistema [25] y esta queda codificada en los operadores tanto del Hamiltoniano como de los términos de disipación e interacción. Los resultados de este trabajo muestras diferencias cuantitativas y cualitativas en el comportamiento de la temperatura del oscilador mecánico, lo cual motiva la pregunta ¿Qué sucede al tomar en cuenta la dependencia temporal de la frecuencia natural de la cavidad?

En esta propuesta se explican los pasos que se siguen para modelar este tipo de sistemas en términos generales y luego se explica como se obtiene la temperatura final del sistema. Finalmente se propone aplicar este formalismo a un sistema donde se toma en cuenta la dependencia temporal de la frecuencia de la cavidad. Se discute la teoría de los sistemas cuánticos abiertos, del oscilador mecánico dependiente del tiempo, y el enfriamiento optomecánico dependiente del tiempo.

Capítulo 2

Oscilador Armónico Dependiente del Tiempo

Antes de proceder a enfriamiento optomecánico es importante saber como modelar de manera cuántica un oscilador armónico con frecuencia natural dependiente del tiempo. Para resolver este problema, se utiliza la teoría de Floquet [26] y se busca una expresión para el Hamiltoniano del sistema expresada en términos de operadores de Floquet, los cuales se definirán más adelante.

2.1. Teoría de Floquet

Se desea resolver una ecuación diferencial que involucra coeficientes con dependencia temporal, tal como

$$x' = A(t)x, (2.1)$$

donde la función A(t) es periódica con periodicidad τ . En este caso el teorema de Floquet[26] dice que la solución no necesariamente es periódica pero debe tener la forma

$$x(t) = e^{\mu t} p(t). \tag{2.2}$$

Los valores μ se conocen como los exponentes característicos o de Floquet y la función p(t) es periódica con período τ , es decir el mismo periodo que el coeficiente en la ecuación diferencial. Los coeficientes μ son, en general, complejos. Claramente, el hecho de que la solución tenga la forma (2.2) puede llevar a que la solución diverja con el tiempo, por lo que se desea entender el criterio de estabilidad para este tipo de soluciones. Antes de esto, es necesario establecer algunas definiciones y propiedades, las cuales se presentan sin demostración debido a que no son el enfoque principal de este trabajo. Si el lector se encuentra interesado, el tratamiento se encuentra con mayor detalle en las notas de las cuales surge la sección siguiente [26].

2.1.1. Propiedades Básicas

Sea la ecuación (2.1) en n dimensiones. Esto es, se piensa en x como un vector de n dimensiones y en A(t) como una matriz de $n \times n$. En este caso, si la ecuación tiene n soluciones $x_1, x_2, ..., x_n$, se define la **matriz fundamental** como la matriz formada utilizando las soluciones como columnas, siempre y cuando estas sean linealmente independientes

$$X(t) = [[x_1][x_2]...[x_n]], (2.3)$$

Si $X(t_0) = I$ la matriz se conoce como la **matriz fundamental principal**. Se tiene que

Lema: Si X(t) es una matriz fundamental, también lo es X(t)C para cualquier matriz constante y no singular C.

Y que

Lema: Sea W(t), el Wronskiano de X(t), también el determinante de X(t), entonces:

$$W(t) = W(t_0)e^{\int_{t_0}^t tr[A(s)]ds}.$$
 (2.4)

Se tiene entonces un teorema

Teorema: Sea A(t) una matriz con periodicidad τ . Si X(t) es una matriz fundamental entonces $X(t+\tau)$ también lo es y existe una única matriz constante no singular B tal que:

i)
$$X(t+\tau) = X(t)B \quad \forall t$$
,
ii) $det(B) = e^{\int_0^t tr[A(s)]ds}$.

Si se toma X(0) = I entonces $B = X(\tau)$. Con esto se pueden definir los **multi-plicadores característicos**, los cuales son los valores propios de la matriz B, y se denominan con la letra ρ . Estos cumplen que

$$\rho_1 = e^{\mu_1 \tau}, \quad \rho_2 = e^{\mu_2 \tau}, ..., \rho_n = e^{\mu_n \tau},$$
(2.5)

donde los valores μ son los exponentes de Floquet definidos anteriormente. Se cumplen cuatro propiedades:

1) Los multiplicadores característicos de $B = X(\tau)$ cumplen que

$$det(B) = \rho_1 \rho_2 ... \rho_n = e^{\int_0^T tr[A(s)]ds}.$$
 (2.6)

2) Trivialmente, como la traza es la suma de los valores propios

$$Tr[B] = \rho_1 + \rho_2 + \dots + \rho_n.$$
 (2.7)

3) Los multiplicadores característicos no son únicos, va que

$$e^{\mu\tau} = e^{(\mu + \frac{2\pi i}{\tau})\tau}. (2.8)$$

4) Los multiplicadores característicos son una propiedad de la ecuación (2.1) y no dependen de la elección de matriz fundamental.

Con estas propiedades, se puede pasar a analizar la estabilidad de las soluciones para el caso específico de ecuaciones de segundo orden.

2.1.2. Estabilidad para Ecuaciones de Segundo Orden

Si se piensa en una ecuación diferencial de segundo orden del tipo

$$\ddot{x} + a(t)x = 0, (2.9)$$

donde a(t) tiene periodo τ . Si se toma $x_1=x$ y $x_2=\dot{x}$, la ecuación puede re-escribirse como

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a(t) & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \tag{2.10}$$

si se toma la condición inicial [$\frac{1}{0}$], se obtiene una solución de la forma

$$\begin{bmatrix} x_1^1(t) \\ x_1^1(t) \end{bmatrix}, \tag{2.11}$$

y para la condición inicial [$\frac{0}{1}$], se obtiene una solución de la forma

$$\begin{bmatrix} x_1^2(t) \\ x_1^2(t) \end{bmatrix}, \tag{2.12}$$

esto permite generar la matriz ${\cal B}$

$$B = \begin{bmatrix} x_1^1(\tau) & x_1^2(\tau) \\ x_1^1(\tau) & x_1^2(\tau) \end{bmatrix}, \tag{2.13}$$

lo cual permite calcular los multiplicadores característicos, ya que

$$\rho_1 \rho_2 = e^{\int_0^\tau Tr[A(s)]ds} = e^0 = 1, \tag{2.14}$$

у

$$2\phi = \rho_1 + \rho_2 = Tr[B] = x_1^1(\tau) + x_1^{(2)}(\tau). \tag{2.15}$$

Esto permite obtener la ecuación

$$\rho = \phi \pm \sqrt{\phi^2 - 1},\tag{2.16}$$

o en términos de μ

$$cosh(\mu_1 \tau) = \phi. \tag{2.17}$$

Esto lleva a analizar cinco situaciones distintas.

Caso $-1 < \phi < 1$: En este caso, para algún valor σ se tiene que $\phi = cos(\sigma \tau)$ por lo que:

$$\rho = \phi \pm \sqrt{\phi^2 - 1},$$

$$= \cos(\sigma \tau) \pm i \operatorname{sen}(\sigma \tau),$$

$$= e^{\pm i \sigma \tau}.$$

lo cual lleva a una solución general de tipo:

$$x(t) = c_1 Re(e^{i\sigma t}p(t)) + c_2 Im(e^{i\sigma t}p(t)),$$
 (2.18)

la cual es estable y pseudo periódica.

Caso $1 < \phi$: en este caso $\rho > 1$ y como $\rho_1 = \frac{1}{\rho_2}$, tenemos que $\mu_1 = -\mu_2$. Por esto, la solución es de la forma:

$$x(t) = c_1 e^{\mu_1 t} p_1(t) + c_2 e^{\mu_2 t} p_2(t)$$
(2.19)

donde las funciones p(t) son periódicas con periodo τ . La solución es inestable. Caso $\phi < -1$: en este caso se tiene una solución del tipo:

$$x(t) = c_1 e^{\gamma_1 t} q_1(t) + c_2 e^{-\gamma_2 t} q_2(t), \tag{2.20}$$

donde las funciones q(t) tienen periodo 2τ y los coeficientes $\gamma = \mu + \frac{i\pi}{\tau}$. La solución de nuevo es inestable.

Caso $\phi = -1$: para este caso también se tiene una solución inestable, de la forma:

$$x(t) = (c_1 + tc_2)q_1(t) + c_2q_2(t)$$
(2.21)

de nuevo la funciones q(t) tienen periodo 2τ .

Caso $\phi = 1$:

para este caso también se tiene una solución inestable, de la forma:

$$x(t) = (c_1 + tc_2)p_1(t) + c_2p_2(t)$$
(2.22)

de nuevo la funciones p(t) tienen periodo τ .

Es muy importante notar que en estos dos últimos casos, esta forma de la solución solo es correcta si la matriz B tiene un solo eigenvector linealmente independiente. Si este no es el caso, la solución tiene la forma usual con las funciones p(t) o q(t), estos dos casos marcan el límite entre la estabilidad y la inestabilidad en este problema. Finalmente, se verá como estos criterios aplican a una ecuación que será relevante más adelante, la ecuación de Hill.

2.1.3. Estabilidad de las Soluciones de Floquet para la Ecuación de Hill

La ecuación de Hill es una ecuación diferencial de segundo orden con coeficientes dependientes del tiempo de forma periódica[26]

$$\ddot{x}(t) + (\delta + \epsilon b(t))x = 0, \tag{2.23}$$

nuevamente, la función b(t) tiene periodo τ y se considera que δ y ϵ son constantes reales. Para el caso $\epsilon=0$ claramente la ecuación se reduce al oscilador armónico usual y las soluciones son estables. Sin embargo, para ciertos valores de δ puede encontrarse la región donde la solución aún es periódica, esto se puede resolver para los casos $\phi=\pm 1$, donde ϕ es la función definida en la sección (2.1.2), de forma que se tiene soluciones estables y periódicas para los casos

$$\delta = (2m\frac{\pi}{\tau})^2,\tag{2.24}$$

que corresponde a $\phi = 1$ y

$$\delta = ((2m+1)\frac{\pi}{\tau})^2, \tag{2.25}$$

que corresponde a $\phi=-1$. Estos valores representan la frontera de la región de soluciones estables, las cuales corresponden a periodo de τ y 2τ respectivamente. A continuación se buscaran soluciones en esta región para el caso donde $\epsilon\ll 1$.

2.1.4. Solución para Oscilaciones Pequeñas

Se estudia un ejemplo cuyos resultados se utilizan más adelante. Se toma como función periódica una función constante más una pequeña perturbación periódica. Se emplea el ejemplo de que esta función sea la frecuencia natural de un oscilador armónico.

$$\nu(t) = \nu_0 + \epsilon \cos(2\omega t),\tag{2.26}$$

donde $\epsilon \ll \nu_0$ y ν_0 es la frecuencia natural promedio. Esto lleva a una ecuación de oscilador armónico

$$\ddot{x} + (\nu_0^2 + 2\epsilon\nu_0 \cos(2\omega t))x = 0, \tag{2.27}$$

la cual es un caso particular de la ecuación de Mathieu [?]. A fin de tener la ecuación en la forma estándar hacemos $t'=\omega t$ y $\epsilon'=\frac{2\epsilon\nu_0}{\omega^2}$ y

$$\frac{\nu_0^2}{\omega^2} = n^2 \tag{2.28}$$

con $n \in \mathbb{Z}^+$ ya que como se vio esto es necesario para tener soluciones estables[26]. Bajo estas restricciones, tenemos que las soluciones para (2.26) son, a primer orden en ϵ y para n=1

$$f(t) = e^{i\omega t} + \frac{\epsilon}{16}e^{3i\omega t}, \qquad (2.29)$$

y su complejo conjugado es f(-t).

2.2. Estados de Floquet en Mecánica Cuántica

Utilizaremos los resultados obtenidos en la sección anterior para estudiar Hamiltonianos con un parámetro con una dependencia periódica en el tiempo

$$H(t) = H(t+\tau). \tag{2.30}$$

El hecho de que el Hamiltoniano sea simétrico respecto a (ciertas) traslaciones en el tiempo, permite el uso del formalismo de Floquet [27]. Se asume que la dependencia temporal puede ser vista como una perturbación sobre un Hamiltoniano original

$$H(x,t) = H_0(x) + V(x,t)$$
 $V(x,t) = V(x,t+\tau)$. (2.31)

Se utiliza que el Hamiltoniano no perturbado posee un conjunto completo de eigenfuciones $\{\phi_n\}$ con valores propios correspondientes E_n . La ecuación de Schrödinger tiene la forma

$$-i\hbar\dot{\Psi}(x,t) = H(x,t)\Psi(x,t). \tag{2.32}$$

El problema cumple con las condiciones necesarias para utilizar una solución del tipo visto en la sección anterior

$$\Psi_n(x,t) = e^{\left(\frac{-i}{\hbar}\mu_n t\right)} \Phi_n(x,t). \tag{2.33}$$

Como se mencionó en la sección anterior, μ en general es un número complejo, lo cual puede llevar a soluciones inestables. En este caso $\Phi_n(x,t)$ es la función que contiene la periodicidad en el tiempo. Sustituir la solución en la ecuación (2.32) genera una ecuación para las funciones periódicas

$$H(x,t)\Phi_n(x,t) = E_n\Phi_n(x,t). \tag{2.34}$$

Antes de buscar formas explícitas para estos estados, es necesario resolver el problema clásico correspondiente a este sistema. La razón para esto se verá más adelante, y se debe sencillamente a que estas soluciones clásicas juegan un papel clave en las expresiones explícitas para los estados y operadores involucrados en la solución del problema cuántico.

2.3. Oscilador Armónico Dependiente del Tiempo: Solución Mediante Formalismo de Floquet

En el caso clásico [24] se tiene, para un oscilador armónico unidimensional con frecuencia dependiente del tiempo y el cual experimenta una fuerza disipadora dependiente de la velocidad, que la posición cumple

$$\ddot{x} + \gamma \dot{x} + \frac{k(t)}{m}x = 0 \tag{2.35}$$

Se asume que la función k(t) es periódica con periodo T. Si se utiliza la sustitución $x=ye^{-\frac{\gamma t}{2}},$ se llega a la ecuación

$$\ddot{y} + (\frac{k(t)}{m} - \frac{\gamma^2}{4})y = 0 \tag{2.36}$$

El teorema de Floquet para ecuaciones de segundo orden con coeficientes dependientes del tiempo [24] asegura que esta ecuación tiene dos soluciones

$$f_1(t) = e^{i\mu t}\Phi(t), \quad f_2(t) = f_1(-t),$$
 (2.37)

Recordando que la función Φ debe tener la misma periodicidad que k(t). En el caso de un Hamiltoniano con dependencia temporal como la de (2.30), existe un conjunto completo de soluciones [28]

$$|\Psi_{\alpha}(t)\rangle = e^{-i\mu_{\alpha}t} |\Phi_{\alpha}t\rangle, \qquad |\Phi_{\alpha}(t)\rangle = |\Phi_{\alpha}(t+\tau)\rangle, \qquad (2.38)$$

Estas soluciones tienen la forma explícita[29]

$$\Psi_{\alpha}(x,t) = \left(\frac{\sqrt{m/\pi\hbar}}{2^{\alpha}n!f_{1}^{0}(t)}\right)^{\frac{1}{2}} \left(\frac{f_{1}^{0}(t)}{f_{2}^{0}(t)}\right)^{\frac{\alpha}{2}} H_{\alpha}\left(x\sqrt{\frac{m}{\hbar f_{1}^{0}(t)f_{2}^{0}(t)}}\right) e^{\left(ix^{2}\frac{f_{1}^{0}(t)}{2f_{2}^{0}(t)}\right)}$$
(2.39)

donde el superíndice cero indica que se toma el límite donde γ tiende a cero. Sin embargo, estas soluciones se comportan de manera análoga a los estados de la base de Fock bajo la acción de los operadores de Floquet, los cuales pueden expresarse en términos de los operadores de momento y posición usuales en mecánica cuántica

$$\Gamma(t) = \frac{1}{2i} (\hat{x} \dot{f}_1^0(t) \sqrt{\frac{2}{\hbar m}} - \hat{p} f_1^0(t) \sqrt{\frac{\hbar}{2m}}). \tag{2.40}$$

Así como su complejo conjugado. Su acción sobre la base de Floquet queda definida por

$$\Gamma(t) |\Psi_{\alpha}(x,t)\rangle = \sqrt{\alpha} |\Psi_{\alpha-1}(x,t)\rangle,$$

$$\Gamma^{\dagger}(t) |\Psi_{\alpha}(x,t)\rangle = \sqrt{\alpha+1} |\Psi_{\alpha+1}(x,t)\rangle.$$

Es importante notar que estos operadores dependen explícitamente del tiempo. Es conveniente entender el origen de estos operadores.

Sea un Hamiltoniano usual de oscilador armónico, con la excepción de que la frecuencia natural del oscilador es una función periódica del tiempo

$$H = \frac{1}{2m}p^2 + \frac{1}{2}k(t)q^2. \tag{2.41}$$

Este lleva a la ecuación de movimiento usual

$$m\ddot{q}(t) + k(t)q(t) = 0,$$
 (2.42)

para el operador q(t). Lo que se busca es una transformación unitaria que lleve este problema al problema usual del oscilador armónico en mecánica cuántica. Se trabaja en el cuadro de Heisenberg [30], tal que

$$\tilde{q}(t) = U^{-1}(t)q(t)U(t),$$
(2.43)

$$\tilde{p}(t) = U^{-1}(t)p(t)U(t).$$
 (2.44)

Y donde entonces el nuevo Hamiltoniano queda dado por

$$\tilde{H} = H + U^{-1}i\dot{U}. \tag{2.45}$$

Para la transformación se elige

$$U = e^{-i\chi(t)q^2(t)}, (2.46)$$

donde

$$\chi(t) = \frac{m}{4} (\frac{\dot{f}}{f} + \frac{\dot{f}^*}{f^*}) \tag{2.47}$$

Las funciones f son las soluciones al problema clásico correspondiente al Hamiltoniano (2.41) el cual tiene dos soluciones linealmente independientes, pero una es la compleja conjugada de la otra. Estas soluciones corresponden a las funciones f_1^0 y f_2^0 vistas en la sección anterior. Bajo esta transformación

$$\tilde{q}(t) = q(t), \tag{2.48}$$

$$\tilde{p}(t) = p(t) - 2\chi(t)q(t).$$
 (2.49)

Se puede escribir el Hamiltoniano en las nuevas coordenadas tomando en cuenta que $\ddot{f}=-k(t)f$

$$H = \frac{1}{2m}\tilde{p}^2 + \frac{\chi(t)}{m}(\{\tilde{q}, \tilde{p}\}) + \frac{mW^2}{|f|^2}k(t)\tilde{q}^2, \tag{2.50}$$

donde W es el Wronskiano

$$W = \frac{1}{2i}(\dot{f}(t)f^*(t) - f(t)\dot{f}^*(t)). \tag{2.51}$$

Para eliminar el término cruzado se utiliza una segunda transformación unitaria

$$U_2(t) = e^{\frac{i}{4}(\{\tilde{q}, \tilde{p}\})ln|f|^2}.$$
(2.52)

Al aplicar esta transformación a las variables \tilde{q} y \tilde{p} se obtienen las variables finales Q y P las cuales son

$$Q = U_2^{-1} \tilde{q} U_2 = \frac{\tilde{q}}{|f|} = \frac{1}{|f|} q, \tag{2.53}$$

$$P = U_2^{-1}\tilde{p}U_2 = |f|\tilde{p} = |f|(p - 2\chi q), \tag{2.54}$$

El Hamiltoniano se reescribe en estas nuevas variables y se obtiene

$$\tilde{H} = \frac{1}{|f(t)|^2} \left(\frac{1}{2m} P^2(t) + \frac{1}{2} m W^2 Q^2(t)\right). \tag{2.55}$$

Este Hamiltoniano es, salvo por un coeficiente general dependiente del tiempo, el Hamiltoniano usual de oscilador armónico y se puede resolver por medio de operadores de escalera

$$\Gamma = \sqrt{\frac{mW}{2}}Q + i\sqrt{\frac{1}{2mW}}P. \tag{2.56}$$

La expresión (2.40) se obtiene expresando los operadores en las coordenadas usuales, no en las transformadas. Es de mas utilidad expresar este Hamiltoniano en términos de estos operadores $\Gamma(t)$. Se obtiene

$$\tilde{H} = \frac{W}{|f(t)|^2} (\Gamma^{\dagger}(t)\Gamma(t) + \frac{1}{2}). \tag{2.57}$$

Con esto establecido se puede proceder a establecer un Hamiltoniano para enfriamiento optomecánico con parámetros dependientes del tiempo.

Capítulo 3

Enfriamiento Optomecánico Dependiente del Tiempo: Caso de Oscilador Armónico Dependiente del Tiempo

En este capítulo se da un breve resumen del trabajo realizado en [31] y en [25]. Se muestra que cuando se toma en cuenta una dependencia temporal en la frecuencia de un oscilador armónico mecánico acoplado a una cavidad de Fabry-Perot se llega a cambios cuantitativos y cualitativos en el enfriamiento del mismo siempre y cuando se utilice un modelo de disipación que incorpore esta dependencia. Esto motiva el trabajo que inicia en el capítulo siguiente.

3.1. Hamiltoniano para Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Se estudia un sistema compuesto por una cavidad óptica de Fabry-Perot donde uno de los dos espejos se encuentra acoplado a un oscilador armónico mecánico, lo cual le permite moverse. La frecuencia natural del oscilador mecánico es una función periódica del tiempo. Se asume que el oscilador interactúa únicamente con un modo de la cavidad con frecuencia ω_{cav} , dicho modo se encuentra forzado por un láser. Se asume que el marco de referencia rota con la frecuencia del láser de forzamiento. Se modela el sistema mediante el siguiente Hamiltoniano [23]

$$H(t) = H_{cav} + H_{mec}(t) + H_{rad} + H_{laser}.$$
(3.1)

En donde

$$H_{cav} = -\hbar \delta a^{\dagger} a, \tag{3.2}$$

$$H_{mec}(t) = \frac{p^2}{2m} + \frac{1}{2}m\nu^2(t)x^2,$$
(3.3)

$$H_{rad} = -\hbar g a^{\dagger} a x, \tag{3.4}$$

$$H_{laser} = \hbar \frac{\Omega}{2} (a^{\dagger} + a), \tag{3.5}$$

en este caso, $\delta = \omega_{laser} - \omega_{cav}$ representa la diferencia de frecuencias entre el láser de forzamiento y la cavidad y $\hbar g$ representa la fuerza de radiación que un fotón ejerce sobre el oscilador mecánico sin modulación. El término H_{rad} modela una interacción simple entre los fotones y el espejo. Dado que en este caso la longitud de la cavidad no es fija, la frecuencia de la cavidad debe tener una dependencia en la coordenada x. Una derivación completa de este término puede encontrarse en la referencia [1]. Por (2.55), se modela al oscilador mecánico utilizando operadores de Floquet

$$H_{mec}(t) = \hbar \frac{W}{|f(t)|^2} (\Gamma^{\dagger} \Gamma + \frac{1}{2}). \tag{3.6}$$

Recordando la definición de los operadores de Floquet (2.40), se puede invertir la relación en términos de los operadores x y p y sustituir el resultado en el Hamiltoniano de interacción, lo cual produce un nuevo Hamiltoniano de interacción[31]

$$H(t)_{rad} = 2ig\sqrt{\frac{\hbar^3}{2m}}a^{\dagger}a[\gamma_{+}(t)\Gamma(t) + \gamma_{-}(t)\Gamma^{\dagger}(t)]$$
 (3.7)

donde

$$\gamma(t)_{+} = \frac{i}{4} \sqrt{\frac{2}{m\hbar^{3}}} \frac{f(t)^{*}}{(\dot{f}(t)f(t)^{*} - \dot{f}(t)^{*}f(t))}, \tag{3.8}$$

$$\gamma(t)_{-} = \frac{i}{4} \sqrt{\frac{2}{m\hbar^3}} \frac{f(t)}{(\dot{f}(t)f(t)^* - \dot{f}(t)^* f(t))},$$
(3.9)

con esto, el Hamiltoniano final es el siguiente

$$H(t) = -\hbar \delta a^{\dagger} a + \frac{W}{|f(t)|^2} (\Gamma^{\dagger} \Gamma + \frac{1}{2}) + g' a^{\dagger} a [\gamma_{+}(t) \Gamma(t) + \gamma_{-}(t) \Gamma^{\dagger}(t)] + \hbar \frac{\Omega}{2} (a^{\dagger} + a),$$

$$(3.10)$$

donde

$$g' = g\sqrt{\frac{\hbar^3}{2m}}. (3.11)$$

Sin embargo el Hamiltoniano no es suficiente, se utiliza el formalismo de ecuaciones maestras a fin de modelar la disipación. Se utiliza un modelo de disipación que incorpora los operadores de Floquet y por ende la dependencia temporal del oscilador durante todo el proceso de derivación.

3.2. Disipación en Sistemas Optomecánicos

Las ecuaciones maestras modelan la evolución temporal de un sistema donde puede haber intercambios de energía con el medio ambiente, al cual se le
conoce usualmente como reservorio térmico. En este caso se desea modelar un
oscilador armónico mecánico que puede intercambiar energía con el campo electromagnético dentro de una cavidad. Se toma en cuenta que la cavidad pierde
fotones al exterior. Para una derivación de este tipo de ecuaciones, el lector puede consultar[32]. La ecuación es muy similar a la ecuación de Liouville, ya que se
estudia la evolución temporal de la matriz densidad del sistema. Normalmente
este tipo de ecuaciones requieren de dos aproximaciones. La aproximación de
Born donde se asume que la interacción es lo suficientemente débil como para
descartar términos de mayor a segundo orden en la misma y la aproximación de
Markov, donde se asume que el reservorio térmico no cambia su estado debido
a su interacción con el resto del sistema y de esta forma no actúa como un tipo
de memoria para este[33]. Estas ecuaciones tienen la forma general

$$\dot{\rho} = \frac{1}{i\hbar} [H, \rho] + L\rho, \tag{3.12}$$

donde ρ es la matriz densidad del sistema, H es el Hamiltoniano que modela el sistema sin tomar en cuenta intercambios de energía con un reservorio y L es el superoperador de Lindblad, el cual codifica el efecto de la parte abierta del sistema, es decir la parte del sistema que puede interaccionar con el medio ambiente y causar intercambios de energía.

Se busca modelar las interacciones entre un oscilador armónico mecánico y un campo electromagnético de un modo el cual actúa como baño térmico. El campo electromagnético puede perder fotones al medio ambiente. Esto corresponde a dos términos de Lindblad. Debido a que los Hamiltonianos para el campo dentro de la cavidad y para el oscilador armónico mecánico tienen la misma forma algebraica y sus operadores siguen las mismas reglas de conmutación los términos de Lindblad tienen formas idénticas. Estos son [34]

$$L_{a}\rho = -\frac{\kappa}{2}(n_{p}+1)[a^{\dagger}a\rho + \rho a^{\dagger}a - 2a\rho a^{\dagger}]$$

$$-\frac{\kappa}{2}(n_{p})[aa^{\dagger}\rho + \rho aa^{\dagger} - 2a^{\dagger}\rho a].$$
(3.13)

Y

$$L_{\Gamma}\rho = -\frac{\gamma}{2}(n_m + 1)[\Gamma^{\dagger}\Gamma\rho + \rho\Gamma^{\dagger}\Gamma - 2\Gamma\rho\Gamma^{\dagger}]$$

$$-\frac{\gamma}{2}(n_m)[\Gamma\Gamma^{\dagger}\rho + \rho\Gamma\Gamma^{\dagger} - 2\Gamma^{\dagger}\rho\Gamma].$$
(3.14)

tal que

$$\dot{\rho} = \frac{1}{i\hbar} [H, \rho] + L_{\Gamma} \rho + L_a \rho \tag{3.15}$$

Esta ecuación es uno de los resultados presentados en [25]. En este caso κ es el coeficiente de disipación dentro de la cavidad y γ es el coeficiente de disipación para el oscilador armónico mecánico. En estudios anteriores de este tipo de sistemas la dependencia temporal de la frecuencia se incorporaba mediante este

coeficiente de manera ad-hoc [23], sin embargo el emplear operadores de Floquet toma en cuenta los efectos de la aproximación de Markov sobre el quasi espectro de energía del sistema[24]. n_p y n_m son los números de excitaciones térmicas fotónicas y mecánicas y a y a^{\dagger} son los operadores de escalera usuales para el oscilador armónico, mientras que Γ y Γ^{\dagger} son los operadores de Floquet.

3.3. Transformación Mediante Operador de Desplazamiento

Para poder proceder es necesario eliminar los términos de tercer orden en operadores, ya que estos son no-lineales y causan dificultades. Esto se logra mediante una transformación unitaria. Se utiliza la transformación

$$U_{a,\Gamma} = e^{(\alpha(t)a^{\dagger} - \alpha(t)^*a)} e^{(\beta(t)\Gamma^{\dagger} - \beta(t)^*\Gamma)}, \tag{3.16}$$

Tanto α como β dependen del tiempo, está dependencia no se escribirá de forma explícita a futuro por brevedad. Bajo la transformación, el operador densidad es

$$\rho' = U_{a,\Gamma}^{\dagger} \rho U_{a,\Gamma}. \tag{3.17}$$

Se puede despejar en términos de ρ , aprovechando que la transformación es unitaria

$$\rho = U_{a,\Gamma} \rho' U_{a,\Gamma}^{\dagger}, \tag{3.18}$$

y derivando respecto al tiempo

$$\dot{\rho} = L\rho = \frac{d}{dt}(U_{a,\Gamma}\rho'U_{a,\Gamma}^{\dagger}). \tag{3.19}$$

En este caso, L representa el operador de Liouville. Esto permite obtener una ecuación maestra para ρ .

$$U_{a,\Gamma}(\dot{\rho}')U_{a,\Gamma}^{\dagger} = L[U_{a,\Gamma}\rho'U_{a,\Gamma}^{\dagger}] - \dot{U}_{a,\Gamma}\rho'U_{a,\Gamma}^{\dagger} - U_{a,\Gamma}\rho'\dot{U}_{a,\Gamma}^{\dagger}$$
(3.20)

$$\dot{\rho} = U_{a,\Gamma}^{\dagger} L[U_{a,\Gamma} \rho' U_{a,\Gamma}^{\dagger}] U_{a,\Gamma} - U_{a,\Gamma}^{\dagger} \dot{U}_{a,\Gamma} \rho' - \rho' \dot{U}_{a,\Gamma}^{\dagger} U_{a,\Gamma}. \tag{3.21}$$

Esta transformación se emplea de nuevo y con más detalle en el capítulo siguiente. En el caso donde α y β cumplen con las ecuaciones

$$\dot{\alpha} = \alpha(-\frac{A}{2} + i(\delta + g'(\gamma_-(t)\beta^* + \gamma_+(t)\beta)) - i\frac{\Omega}{2},\tag{3.22}$$

$$\dot{\beta} = \beta(-\frac{\gamma}{2} - i\frac{W}{|f(t)|^2}) + ig'|\alpha|^2\gamma_+(t), \tag{3.23}$$

el Hamiltoniano resulta

$$H' = -\hbar\delta' a^{\dagger} a + \frac{W}{|f(t)|^2} \Gamma \Gamma^{\dagger} - \hbar g' [(a^{\dagger} a + \alpha a^{\dagger} + \alpha^* a)(\gamma_{-}(t) \Gamma^{\dagger} + \gamma_{+}(t) \Gamma)] + i\hbar(\beta^* \dot{\Gamma} - \beta \dot{\Gamma}^{\dagger}),$$

donde se ha hecho el cambio $\delta' = \delta + g'(\beta + \beta^*)$. Con esto se obtiene la ecuación maestra para el enfriamiento optomecánico con un oscilador con frecuencia dependiente del tiempo, en el marco de referencia desplazado

$$\dot{\rho} = \frac{1}{i\hbar} [H', \rho] + L_a \rho + L_\Gamma \rho + |\beta|^2 (Re[C])\rho, \tag{3.24}$$

donde

$$C = [\dot{\Gamma}^{\dagger}, \Gamma] \tag{3.25}$$

3.3.1. Solución Explícita para Pequeñas Oscilaciones

Con una solución para el caso de una frecuencia como en(2.26) en mano, podemos calcular soluciones explícitas para todos los términos que se han obtenido. Estos resultan ser[31]

$$C(t) = i\left[1 - \frac{\epsilon}{16}e^{-2i\omega t} - \frac{6\epsilon}{16}e^{2i\omega t}\right].$$
 (3.26)

Los coeficientes γ_{\pm} son

$$\gamma_{\pm} = \frac{1}{\omega} e^{\mp i\omega t},\tag{3.27}$$

se hace lo mismo para el factor global en el Hamiltoniano de oscilador armónico en operadores de Floquet

$$\frac{W}{|f|^2} = \omega. (3.28)$$

Y se puede obtener expresiones explícitas para los coeficientes $\alpha(t)$ y $\beta(t)$ en la transformación al marco desplazado

$$\dot{\alpha} = \alpha \left(-\frac{A}{2} + i(\delta + g'(e^{i\omega t}\beta^* + e^{-i\omega t}\beta))\right) - i\frac{\Omega}{2},\tag{3.29}$$

$$\dot{\beta} = \beta(-\frac{\gamma}{2} - i2\omega) + ig'|\alpha|^2 e^{i\omega t}, \tag{3.30}$$

asumiendo que α y β lleguen a su estado estacionario de manera suficientemente rápida se puede tomar $\dot{\alpha}(t) = \dot{\beta}(t) = 0$ y se trabaja en el régimen de acoplamiento débil por lo que coeficientes de orden mayor a cero en g' se desprecian. Esto lleva a

$$0 = \alpha(-\frac{A}{2} + i\delta) - i\frac{\Omega}{2},\tag{3.31}$$

$$0 = \beta(-\frac{\gamma}{2} - i2\omega),\tag{3.32}$$

cuya solución es trivial

$$\alpha_0 = \frac{\Omega}{2\delta - iA},\tag{3.33}$$

$$\beta_0 = 0. \tag{3.34}$$

El subíndice 0 muestra que las soluciones son válidas a orden cero en el acoplamiento. Bajo estás condiciones el Hamiltoniano resulta

$$H(t) = -\hbar \delta a^{\dagger} a + \hbar \omega \Gamma^{\dagger} \Gamma$$

$$-\hbar g' (a^{\dagger} a + \alpha_0 a^{\dagger} + \alpha_0^* a) (\gamma_-(t) \Gamma^{\dagger} + \gamma_+(t) \Gamma).$$
(3.35)

Se trabaja en el régimen donde $|\alpha_0| \gg 1$ [23], por lo que el término $a^{\dagger}a$ se puede despreciar y se llega a un Hamiltoniano simplificado

$$H(t) = -\hbar \delta a^{\dagger} a + \hbar \omega \Gamma^{\dagger} \Gamma$$

$$+ \frac{\hbar g'}{\omega} (\alpha_0 a^{\dagger} + \alpha_0^* a) (e^{i\omega t} \Gamma^{\dagger} + e^{-i\omega t} \Gamma)$$
(3.36)

Este Hamiltoniano genera la ecuación maestra (3.15)

$$\dot{\rho} = \frac{1}{i\hbar} [H, \rho] + L_a \rho + L_{\Gamma} \rho, \tag{3.37}$$

3.3.2. Base de Decaimiento

En el caso de ecuaciones maestras correspondientes a un Hamiltoniano de tipo oscilador armónico, una de las posibles soluciones es mediante la base de decaimiento[34]. Esta solución es particularmente conveniente puesto que más adelante será necesario tomar trazas sobre todos los grados de libertad de la cavidad, lo cual resulta relativamente sencillo en esta base.

$$\rho_{\lambda}(a, a^{\dagger}) =: f(aa^{\dagger}) : a^{l}. \tag{3.38}$$

Los :: denotan ordenamiento normal, lo cual puede requerir el desarrollo en serie de la función f. Se puede expresar a^l en la base de número como

$$\sum_{n=0}^{\infty} C_n^l |n\rangle \langle n+l|, \qquad (3.39)$$

Es importante notar que L no es necesariamente auto-adjunto, por lo que no se puede garantizar que sus funciones propias formen una base completa del espacio ni que sus valores propios sean reales. En el caso de este tipo de operadores existen dos tipos de vectores propios[28], izquierdos y derechos

$$L\rho = \lambda \rho,$$

$$\check{\rho}L = \lambda \check{\rho}.$$

Los estados que se obtienen al aplicar el súper-operador por la derecha se conocen también como estados duales, se denotan por $\check{\rho}$. También es importante notar que los vectores que se obtienen al aplicar por la izquierda y por la derecha no son simplemente complejos conjugados uno del otro, se conocen como duales y son ortogonales los unos a otros bajo un producto definido mediante la traza[34], sin embargo sus valores propios son iguales. Los vectores obtenidos no forman necesariamente una base del espacio de operadores.

$$Tr[\check{\rho}_{\lambda}\rho_{\lambda'}] = \delta_{\lambda'\lambda}.\tag{3.40}$$

Esto se puede emplear para obtener las constantes de la expansión

$$\rho(0) = \sum_{\lambda} \check{c}_{\lambda} \rho_{\lambda}, \tag{3.41}$$

donde

$$\check{c}_{\lambda} = Tr[\check{\rho}_{\lambda}\rho(0)]. \tag{3.42}$$

A partir de este se llega a la solución para los estados izquierdos ρ_n^l , los cuales corren sobre dos índices discretos y corresponden a los valores propios [34]

$$\lambda_n^l = -\kappa [n + \frac{|l|}{2}],\tag{3.43}$$

los cuales cumplen con las condiciones

$$n = 0, 1, 2..., l = 0, \pm 1, \pm 2, ...$$
 (3.44)

y estos estados son

$$a^{\dagger l} \frac{(-1)^n}{(\nu+1)^{l+1}} : L_n^l \left[\frac{a^{\dagger} a}{\nu+1} \right] e^{-\left[\frac{a^{\dagger} a}{\nu+1}\right]} : \quad l \ge 0, \tag{3.45}$$

$$\frac{(-1)^n}{(\nu+1)^{|l|+1}}: L_n^{|l|} \left[\frac{a^{\dagger}a}{\nu+1}\right] e^{-\left[\frac{a^{\dagger}a}{\nu+1}\right]}: a^{|l|} \quad l \le 0, \tag{3.46}$$

donde L_n^l son los polinomios asociados de Laguerre. Es importante notar que esto se obtiene en el cuadro de interacción, por lo que los eigenvalores fuera de este cuadro son

$$\lambda_n^l = -\kappa \left[n + \frac{|l|}{2}\right] + i\omega n, \tag{3.47}$$

Es importante notar que los valores

3.4. Enfriamiento Laser

El enfoque es en un régimen de parámetros donde la temperatura del oscilador mecánico varía de forma mucho más lenta que las perdidas de la cavidad y que la frecuencia mecánica. Esto requiere que $\chi^2 |\alpha|^2 \ll (\frac{\kappa}{\omega_m})$. Se utilizan operadores de proyección P y Q se utilizan para proyectar la ecuación (3.37) al subespacio P que corresponde al estado estacionario del sistema y al resto del espacio, respectivamente. Para una derivación más detallada, ver [35].

$$P\rho = Tr_c[\rho] \otimes \rho^0, \tag{3.48}$$

$$Q\rho = (1 - P)\rho. \tag{3.49}$$

Donde ρ^0 es el estado inicial del baño térmico. El proceso de expandir la proporción entre escalas de tiempo rápidas y lentas lleva a una ecuación cerrada para el operador densidad del sistema en el subespacio P

$$P\dot{\rho} = PL_2P + [PL_1^+Q \int_0^\infty dt' e^{(i\omega_m + L_0)t'} QL_1^- P\rho + HC]$$
 (3.50)

donde

$$L_1^+ = -i\frac{g'}{\omega}[(\alpha_0 a^{\dagger} + \alpha_0^* a)e^{i\omega t}\Gamma^{\dagger}, \rho]$$
(3.51)

$$L_1^- = -i\frac{g'}{\omega}[(\alpha_0 a^{\dagger} + \alpha_0^* a)e^{-i\omega t}\Gamma, \rho]$$
(3.52)

se traza sobre los estados de la cavidad

$$Tr_{c}[PL_{1}^{+}Q\int_{0}^{\infty}dt'e^{(i\omega_{m}+L_{0})t'}QL_{1}^{-}P\rho]$$

$$\approx -\frac{(g'_{m})^{2}}{2}[G(\omega_{m},n_{c})[\Gamma^{\dagger},\Gamma\mu] - [G^{*}(-\omega_{m},n_{c})[\Gamma^{\dagger},\mu\Gamma]$$
(3.53)

con $g_m'=2\chi |\alpha|$ y $\mu=P\rho.$ Las cuadraturas de la cavidad son

$$G(\nu, n_p) = \int_0^\infty dt e^{i\nu(t)t} Tr_c[X_c e^{L_c t} X_c \rho_{st}], \qquad (3.54)$$

con

$$X = \frac{a+a^{\dagger}}{\sqrt{2}\alpha_0}. (3.55)$$

El número promedio de excitaciones queda dado por

$$\langle m \rangle = \frac{A_+}{A_- - A_+}$$
 (3.56)

donde A_- y A_+ son los coeficientes de enfriamiento y calentamiento y están dados por

$$A_{\pm\nu}(n_p) = g^2 Real(G(\mp\nu, n_p)). \tag{3.57}$$

donde A_{+} representa calentamiento A_{-} enfriamiento.

3.5. Análisis Numérico

Se utiliza el desarrollo en serie de potencia de (3.54) hasta primer orden en ϵ para realizar cálculos numéricos. Se asume que la cavidad se encuentra a temperatura cero $(n_p=0)$. Los eigenvalores de la cavidad se denotan por λ_c . El resultado de la traza en (3.54) es fácil de calcular y queda calcular la integral.

$$G(\nu,0) = \int_0^\infty dt e^{(i\nu(t) + \lambda_c)t} Tr[]$$
(3.58)

$$= \int_0^\infty e^{i\nu_0 + \epsilon \cos(2\omega t)t + \lambda_c t} Tr[...] dt, \qquad (3.59)$$

$$= \int_0^\infty e^{i\nu_0 t + \lambda_c t} e^{i\epsilon\cos(2\omega t)t} Tr[...] dt, \qquad (3.60)$$

$$\approx \int_0^\infty e^{i\nu_0 t + \lambda_c t} (1 + i\epsilon \cos(2\omega t)t) Tr[...] dt, \qquad (3.61)$$

$$= \int_0^\infty e^{i\nu_0 t + \lambda_c t} Tr[\dots] dt \tag{3.62}$$

$$+ i\epsilon \int_0^\infty \cos(2\omega t) t e^{i\nu_0 t + \lambda_C t} Tr[...] dt.$$
 (3.63)

Es importante notar que el desarrollo en serie es posible ya que la parte real de λ_c es negativa, lo cual evita que la integral diverja. Esto lleva a la expresión usual para 3.54 más un término proporcional a ϵ que contiene el efecto de la dependencia temporal de la frecuencia

$$\frac{\chi^2}{-k+2i(\delta+\nu_0)} + i\epsilon \frac{(-k+i(\nu_0+\delta))^2 - 4\omega^2}{(-k+i(\nu_0+\delta)^2 + 4\omega^2)^2},$$
 (3.64)

donde $\chi = g \ y \ E_0 = g \sqrt{\frac{\hbar}{2m\nu_0}}$.

La parte real de esta expresión no es fácil de obtener de manera analítica, pero se puede analizar numéricamente de forma extremadamente sencilla. A fin de que sea válida la aproximación adiabática, las variaciones de la frecuencia natural del oscilador deben ser mucho menores que la frecuencia promedio, lo que implica soluciones con $\omega \ll \nu_0$ y $1 \ll n$.

Tomando como ejemplo un valor inicial de $\epsilon = \frac{\nu_0}{10}$ y debido a 2.28 se tiene la condición $\epsilon = \frac{n^2}{5}$. Dado que se desea que n sea grande se elige $n = \sqrt{\frac{\nu_0}{2}}$ redondeada al entero más cercano.

El cálculo numérico de (3.64) utiliza la proporción entre la frecuencia promedio nu_0 y el desfazamiento δ en el rango $\frac{\nu_0}{\delta} \in [-2,2]$ como variable dependiente. Se obtiene

Como se observa en la figura 3.1 claramente se obtiene un mínimo más pequeño de excitaciones posibles y un corrimiento en el punto donde se espera encontrar este mínimo. Esto correspondería a un mayor enfriamiento del espejo, pero no en los parámetros donde se esperaría encontrar sin la corrección.

Figura 3.1: Comparación entre predicciones con y sin el término ϵ La línea puntuada representa la predicción sin dependencia temporal y la línea sólida representa la predicción con el término adicional. Se utiliza $\kappa \ll \nu_0$

Capítulo 4

Enfriamiento Optomecánico Dependiente del Tiempo: Modelo Mejorado de Disipación Aplicado a Cavidad

En el capítulo anterior se demostró el profundo efecto que puede tener el considerar una dependencia temporal en la frecuencia natural del oscilador armónico. Este resultado motiva investigar el efecto de dependencias temporales en otros parámetros del sistema. Usualmente, durante las derivaciones para este tipo de sistemas, se asume que la cavidad cuenta con únicamente un modo, el cual tiene frecuencia constante ω_c . La frecuencia de resonancia de una cavidad de Fabry-Perot, asumiendo que su interior se encuentre en el vacío, está dada por

$$\omega_c = \frac{nc}{2L},\tag{4.1}$$

donde c es la velocidad de la luz en el vacío, n es algún entero y L es la longitud de la cavidad. Al emplear un montaje optomecánico como el que se lleva a los resultados del capítulo anterior, L deja de ser constante. Si el oscilador mecánico tiene oscilaciones en torno a un punto de equilibrio dadas por $x_m(t)$ y se toma a l_0 como la longitud promedio de la cavidad, la longitud de la cavidad como función del tiempo está dada por

$$L(t) = l_0 + x_m(t) (4.2)$$

lo cual lleva a la frecuencia

$$\nu(t) = \frac{nc}{2l_0 + 2X_m(t)},\tag{4.3}$$

$$\approx \frac{nc}{2l_0} - \frac{ncX_m(t)}{4l_0^2},\tag{4.4}$$

$$= \frac{nc}{2l_0} - \frac{nc}{2l_0} (\frac{X_m(t)}{l_0}), \tag{4.5}$$

$$=\omega_0 + \epsilon \omega_0 C(t), \tag{4.6}$$

$$=\omega_0(1+\epsilon C(t)). \tag{4.7}$$

donde la expresión se deja en primer orden del parámetro de perturbación $\epsilon = \frac{x_m}{l_0}$ y la dependencia temporal de la amplitud queda contenida en C(t), la cual también contiene un cambio de signo por simplicidad. Claramente la frecuencia natural de la cavidad es una función del tiempo, sin embargo esto tiende a no tomarse en cuenta en la literatura. Como primera aproximación a este problema, consideramos la idea de modificar la disipación de la cavidad, dada por el término ya visto

$$L_{a}\rho = -\frac{\kappa}{2}(n_{p}+1)[a^{\dagger}a\rho + \rho a^{\dagger}a - 2a\rho a^{\dagger}]$$

$$-\frac{\kappa}{2}(n_{p})[aa^{\dagger}\rho + \rho aa^{\dagger} - 2a^{\dagger}\rho a].$$

$$(4.8)$$

el cual corresponde a una frecuencia natural constante. Cuando se realiza la transformación unitaria de los operadores de desplazamiento, se está tomando como estado de temperatura 0 a un estado coherente, es decir

$$|\beta(t)\rangle_D = e^{(\beta(t)b^{\dagger} - \beta(t)^*b)} |0\rangle.$$
 (4.9)

Esto quiere decir que al enfriar al oscilador armónico mecánico a una temperatura mínima el estado que se obtiene es muy cercano, en el marco de desplazamiento a $|0\rangle_D$, lo cual es muy cercano a un estado coherente en el marco de referencia inicial. Suponemos entonces que el oscilador armónico mecánico tiende a un estado de tipo

$$|\beta\rangle + \epsilon |T\rangle \tag{4.10}$$

es decir un estado coherente más una pequeña perturbación procedente de ruido térmico. Proponemos emplear la frecuencia de este estado coherente para determinar la dependencia temporal de la frecuencia de la cavidad. Si el oscilador armónico mecánico se mueve de forma

$$x_m(t) = l_0 - x\cos(\omega_\beta t) \tag{4.11}$$

se tiene que la frecuencia de la cavidad es

$$\nu_c(t) = \nu_0 + \epsilon \cos(\omega_\beta t), \tag{4.12}$$

lo cual permite el uso de operadores de Floquet directamente en la disipación

$$L_{\Gamma}\rho = -\frac{\kappa}{2}(n_c + 1)[\Gamma^{\dagger}\Gamma\rho + \rho\Gamma^{\dagger}\Gamma - 2\Gamma\rho\Gamma^{\dagger}]$$

$$-\frac{\kappa}{2}(n_c)[\Gamma\Gamma^{\dagger}\rho + \rho\Gamma\Gamma^{\dagger} - 2\Gamma^{\dagger}\rho\Gamma].$$
(4.13)

Este modelo de disipación debe de ser más correcto, ya que si toma en cuenta que aún cuando se logra enfriamiento del oscilador mecánico, este se continúa moviendo y el largo de la cavidad nunca es constante. Sin embargo, insertar estos operadores en el Hamiltoniano es complicado, ya que estos operadores no son compatibles con los operadores utilizados para modelar la cavidad. Esto se debe a que los operadores de Floquet se expresan en términos de los operadores de posición y momento de un oscilador con frecuencia natural dependiente del tiempo, mientras que los operadores b y b^{\dagger} corresponden a un oscilador sin esta dependencia. Si se toma la aproximación de asumir que la frecuencia de la cavidad como su frecuencia promedio y se hace el cambio a operadores de Floquet en el Hamiltoniano, se obtiene un término de la forma

$$a^{\dagger}a = C_1(\nu_0, \omega_{\beta})\Gamma^{\dagger}\Gamma + C_2(\nu_0, \omega_{\beta})\Gamma\Gamma + C_3(\nu_0, \omega_{\beta})\Gamma^{\dagger}\Gamma^{\dagger} + C_4(\nu_0, \omega_{\beta})\Gamma\Gamma \quad (4.14)$$

donde los coeficientes C dependen de las dos frecuencias y de la forma específica de las soluciones f(t). El tratar de esta forma la dependencia temporal de la cavidad presenta complejidad añadida. Esto señala la necesidad de intentar introducir los operadores de Floquet al Hamiltoniano en primeros principios, después de lo cual estos surgirán de manera natural en la disipación.

Capítulo 5

Enfriamiento Optomecánico Dependiente del Tiempo: Caso de Cavidad con Frecuencia Dependiente del Tiempo

En este capítulo se presenta una derivación tentativa para re-escribir el Hamiltoniano original presentado en [36]. En este caso se trabaja con el enfoque de que la frecuencia natural de la cavidad depende del tiempo. Si se pide que dicha dependencia temporal sea periódica se tiene un sistema de oscilador armónico donde la frecuencia natural es una función periódica del tiempo. Esto permite el uso de los operadores de Floquet. Primero se presenta la derivación original del Hamiltoniano a fin de aclarar el procedimiento.

5.1. Ecuación de Onda para el Potencial Vectorial en una Cavidad con Espejo Móvil

El potencial vectorial A(x,t) dentro de la cavidad se define en la región $0 \le x \le q(t)$ donde q(t) es la posición del espejo Esta coordenada es estrictamente no negativa y se toma el potencial V(q) que siente el espejo como una barrera infinita en q=0. El potencial vectorial cumple la ecuación de onda con c=1

$$\frac{\partial^2 A(x,t)}{\partial x^2} = \frac{\partial^2 A(x,t)}{\partial t^2},\tag{5.1}$$

con condiciones a la frontera que dependen del tiempo debido a la posición del espejo

$$A(0,t) = A(q(t),t) = 0. (5.2)$$

Adicionalmente q(t) cumple la ecuación

$$m\ddot{q} = -\frac{\partial V(q)}{\partial q} + \frac{1}{2} \left(\frac{\partial A(x,t)}{\partial x}\right)^2 |_{x=q(t)}.$$
 (5.3)

El segundo término del lado derecho es la presión de radiación que siente el espejo en su marco de referencia en reposo. La dinámica del sistema queda especificada por estas tres ecuaciones. Se define un juego de coordenadas generalizadas Q_k

$$Q_k \equiv \sqrt{\frac{2}{q(t)}} \int_0^{q(t)} dx A(x, t) \sin(\frac{k\pi x}{q(t)}). \tag{5.4}$$

Esta expansión equivale a los distintos modos determinados por la posición instantánea del espejo. Uno de los principales objetivos siguientes para este trabajo es buscar otra expansión que permita integrar el formalismo de Floquet desde este punto. Como los modos son un conjunto de funciones completo, se tiene que

$$A(x,t) = \sum_{k=1}^{\infty} Q_k(t) \sqrt{\frac{2}{q(t)}} sin(\frac{k\pi x}{q(t)}).$$
 (5.5)

Se puede sustituir esta expresión para A(x,t) en (5.1),(5.3), (5.2) y se obtiene dos ecuaciones

$$\ddot{Q}_k = -\omega_k^2 Q_k + 2\frac{\dot{q}}{q} \sum_j g_{kj} \dot{Q}_j + \frac{\ddot{q}q - \dot{q}^2}{q^2} \sum_j g_{kj} Q_j$$
 (5.6)

$$+\frac{\dot{q}^2}{q^2}\sum_{j,l}g_{jk}g_{jl}Ql,$$

$$m\ddot{q} = -\frac{\partial V(q)}{\partial q} + \frac{1}{q} \sum_{k,j} (-1)^{k+j} \omega_k \omega_j Q_k Q_j.$$
 (5.7)

Las frecuencias ω_k están dadas por

$$\omega_k(q) = \frac{k\pi}{q},\tag{5.8}$$

y los coeficientes g_{kj}

$$(-1)^{k+j} \frac{2kj}{j^2 - k^2}, k \neq j$$

$$g_{kj} = \begin{cases} 0, k = j. \end{cases}$$
(5.9)

(5.10)

Estas ecuaciones son consecuencia de las ecuaciones de Euler-Lagrange del Lagrangiano

$$L(q, \dot{q}, Q_k, \dot{Q}_k) = \frac{1}{2} \sum_{k} [\dot{Q}_k^2 - \omega_k^2(q) Q_k^2] + \frac{1}{2} m \dot{q}^2 - V(q)$$

$$+ \frac{\dot{q}}{q} \sum_{j,k} g_{kj} \dot{Q}_k Q_j + \frac{\dot{q}^2}{2q^2} \sum_{j,k,l} g_{kj} g_{kl} Q_l Q_j,$$
(5.11)

de donde sigue el Hamiltoniano (5.12) de manera directa.

$$H = \frac{1}{2m}(p + \frac{g}{q}PQ)^2 + V(q) + \frac{1}{2}[P^2 + \nu^2(t)Q^2]. \tag{5.12}$$

Los operadores p y q corresponden al oscilador mecánico y P y Q al campo dentro de la cavidad. g es una constante. En el trabajo original la dependencia de la frecuencia es sobre la variable q y no precisamente t. Se pide que la frecuencia $\nu(t)$ tenga una dependencia temporal periódica. El teorema de Floquet permite obtener las soluciones de la ecuación

$$\ddot{Q} + \nu^2(t)Q = 0, (5.13)$$

y se les llama f(t) y $f(t)^*$. De acuerdo con [24] los operadores de Floquet se pueden expresar como

$$\Gamma(t) = \frac{1}{2i} \left(Q \sqrt{\frac{2m}{\hbar}} \dot{f}(t) - P \sqrt{\frac{2}{m\hbar}} f(t) \right)$$
 (5.14)

У

$$\Gamma(t)^{\dagger} = \frac{-1}{2i} \left(Q \sqrt{\frac{2m}{\hbar}} \dot{f}^*(t) - P \sqrt{\frac{2}{m\hbar}} f^*(t) \right). \tag{5.15}$$

A futuro se omite la dependencia temporal de los operadores Γ al darse por entendida. Se puede invertir el sistema de ecuaciones y obtener

$$Q = \frac{b^*\Gamma - b\Gamma^{\dagger}}{(b^*a - a^*b)},\tag{5.16}$$

$$P = \frac{a^*\Gamma - a\Gamma^{\dagger}}{(b^*a - a^*b)}.$$
 (5.17)

donde

$$a = \frac{1}{2i} \sqrt{\frac{2m}{\hbar}} \dot{f}(t), \tag{5.18}$$

$$b = \frac{1}{2i}\sqrt{\frac{2}{m\hbar}}f(t). \tag{5.19}$$

Esto se sustituye en el término PQ del Hamiltoniano y se obtiene

$$H = \frac{1}{2m}(p+g\gamma)^2 + v(q) + \frac{1}{2}[P^2 + \nu^2(t)Q^2], \tag{5.20}$$

donde

$$\gamma = \frac{\hbar^2}{W^2 q} [ab^* \Gamma^{\dagger} \Gamma + a^* b \Gamma \Gamma^{\dagger} - a^* b^* \Gamma \Gamma - ab \Gamma^{\dagger} \Gamma^{\dagger}]$$
 (5.21)

con

$$W = \frac{\dot{f}(t)f^*(t) - \dot{f}^*(t)f(t)}{2i}.$$
 (5.22)

Esto contrasta con la aproximación realizada en el trabajo original donde los operadores de creación y aniquilación de la cavidad se expanden en una serie de potencias para aproximar la dependencia de estos sobre el operador q del oscilador mecánico. En este procedimiento se asume $q = l_o + x_m$. Se hace la aproximación de tomar al término γ en el punto promedio $q = l_0$

Para simplificar con el primer término del Hamiltoniano se emplea la transformación unitaria dada por el operador

$$T = e^{\frac{ix_m\gamma}{\hbar}}. (5.23)$$

Bajo esta transformación

$$T^{\dagger}pT = p - \gamma,$$

 $T^{\dagger}p^{2}T = p^{2} - 2p\gamma,$
 $T^{\dagger}\gamma T = \gamma,$

por lo que, despreciando el término γ^2 por ser del orden de $\frac{1}{l^2}$

$$\frac{1}{2m}(p+g\gamma)^2 \approx \frac{p^2}{2m}. (5.24)$$

Se conoce que, expresados en operadores de Floquet, los operadores P y Q corresponden a un Hamiltoniano con la forma funcional de un oscilador armónico cuántico usual. Por esto, queda aplicar la transformación al término $\Gamma^{\dagger}\Gamma$. Cortando a primer orden en ϵ

$$\begin{split} e^{\frac{-ix\gamma_0}{\hbar}}\Gamma^{\dagger}\Gamma e^{\frac{ix_m\gamma_0}{\hbar}} &= \Gamma^{\dagger}\Gamma + \frac{ix_m}{\hbar}[\Gamma^{\dagger}\Gamma,\gamma_0], \\ &= \Gamma^{\dagger}\Gamma + \frac{2i\hbar x_m}{W^2l_0}(a^*b\Gamma^{\dagger}\Gamma + a^*b^*\Gamma\Gamma - ab\Gamma^{\dagger}\Gamma^{\dagger}), \\ &\approx \Gamma^{\dagger}\Gamma + \frac{2i\hbar x_m}{W^2l_0}a^*b\Gamma^{\dagger}\Gamma, \\ &= \Gamma^{\dagger}\Gamma - \frac{i\dot{f}^*(t)f(t)}{W^2l_0}x_m\Gamma^{\dagger}\Gamma, \end{split}$$

de esta forma la constante de proporcionalidad de la presión de radiación es una cantidad dependiente del tiempo bajo este enfoque. Esto contrasta con la definición usual $F=\frac{\omega_0\hbar}{l_0}$. Solo se trabaja con los operadores de número al estar en una aproximación de un solo modo. Tomando en cuenta el factor de amplitud global para el Hamiltoniano de oscilador armónico con frecuencia natural dependiente del tiempo $\frac{W}{|f(t)|^2}$ se obtiene

$$H_{cav} = \frac{\hbar W}{|f(t)|^2} \Gamma^{\dagger} \Gamma - \frac{\hbar i \dot{f}^*(t) f(t)}{|f(t)|^2 W l_0} x \Gamma^{\dagger} \Gamma, \tag{5.25}$$

lo cual lleva a identificar el nuevo coeficiente de fuerza ${\cal F}$ el cual es ahora una función del tiempo

$$F(t) = \frac{\hbar i \dot{f}^*(t) f(t)}{|f(t)|^2 W l_0},$$
(5.26)

y a un Hamiltoniano para un oscilador optomecánico de la forma

$$H = \hbar \omega b^{\dagger} b + \hbar \frac{W}{|f(t)|^2} \Gamma^{\dagger} \Gamma - F(t) x_m \Gamma^{\dagger} \Gamma, \qquad (5.27)$$

pero x_m es el operador de posición del espejo, el cual se puede expresar en términos de los operadores de creación y aniquilación del oscilador armónico mecánico

$$H = \hbar \omega b^{\dagger} b + \hbar \frac{W}{|f(t)|^2} \Gamma^{\dagger} \Gamma - g(t) \Gamma^{\dagger} \Gamma(b^{\dagger} + b), \tag{5.28}$$

donde g es una función del tiempo que modula la fuerza de la interacción y está dada por

$$g(t) = \sqrt{\frac{\hbar}{2m\omega}}F(t). \tag{5.29}$$

A este Hamiltoniano se le agrega un término correspondiente a un láser de forzamiento

$$H_{laser} = \hbar \frac{\Omega}{2} (\Gamma^{\dagger} + \Gamma). \tag{5.30}$$

Y lleva a un Hamiltoniano completo

$$H = \hbar \omega b^{\dagger} b + \hbar \frac{W}{|f(t)|^2} \Gamma^{\dagger} \Gamma - g(t) \Gamma^{\dagger} \Gamma (b^{\dagger} + b) + \hbar \frac{\Omega}{2} (\Gamma^{\dagger} + \Gamma). \tag{5.31}$$

Este Hamiltoniano asume que el cambio en la longitud de la cavidad es lo suficientemente lento para que el campo dentro de la misma se mantenga en un solo modo y asume que este modo corresponde a un movimiento periódico del oscilador mecánico. El siguiente paso en el proyecto es encontrar la solución para el comportamiento de $x_m(t)$ para así poder determinar la frecuencia natural de la cavidad y la forma explícita de los operadores de Floquet.

La ecuación maestra que corresponde a este Hamiltoniano toma en cuenta los intercambios de energía del sistema con el ambiente, tanto la pérdida de fotones de la cavidad como la re-termalización del oscilador mecánico. Esta es [23]

$$\dot{\rho} = \frac{1}{i\hbar}[H, \rho] + L_b \rho + L_{\Gamma} \rho \tag{5.32}$$

Los términos L representan los intercambios de energía con el ambiente. Corresponden al oscilador mecánico y a la cavidad respectivamente. De forma explícita

$$L_b \rho = -\frac{\gamma}{2} (n_m + 1) [b^{\dagger} b \rho + \rho b^{\dagger} b - 2b \rho b^{\dagger}]$$

$$-\frac{\gamma}{2} (n_m) [b b^{\dagger} \rho + \rho b b^{\dagger} - 2b^{\dagger} \rho b].$$
(5.33)

$$L_{\Gamma}\rho = -\frac{\kappa}{2}(n_c + 1)[\Gamma^{\dagger}\Gamma\rho + \rho\Gamma^{\dagger}\Gamma - 2\Gamma\rho\Gamma^{\dagger}]$$

$$-\frac{\kappa}{2}(n_c)[\Gamma\Gamma^{\dagger}\rho + \rho\Gamma\Gamma^{\dagger} - 2\Gamma^{\dagger}\rho\Gamma].$$
(5.34)

 n_m y n_c representan el número promedio de excitaciones térmicas y γ y κ modelan la pérdida de energía ante el ambiente.

Esta derivación lleva a un resultado interesante, sin embargo existen problemas de compatibilidad con las ecuaciones originales en [36]. El problema se refiere a si exigir que q realice un movimiento periódico y que Q por ende cumpla la ecuación de Floquet es consistente con (5.6). De no ser así, el siguiente paso es buscar una expansión para los modos Q que sí sea compatible con los operadores de Floquet.

5.2. Transformación al Marco de Referencia Desplazado

Esta transformación se utiliza para eliminar términos de orden tercero en operadores en la ecuación (5.32). La transformación es unitaria y se genera mediante el operador

$$U_{b,\Gamma} = U_b U_{\Gamma} = e^{(\beta b^{\dagger} - \beta^* b)} e^{(\alpha \Gamma^{\dagger} - \alpha^* \Gamma)}.$$
 (5.35)

 α y β son coeficientes complejos dependientes del tiempo que se elijen de manera conveniente para simplificar la ecuación maestra. Se busca una ecuación para la matriz densidad no transformada [31]. Bajo la transformación la matriz densidad es

$$\rho' = U_{b,\Gamma}^{\dagger} \rho U_{b,\Gamma}. \tag{5.36}$$

Se puede despejar en términos de ρ , utilizando el hecho de que la transformación es unitaria

$$\rho = U_{b,\Gamma} \rho' U_{b,\Gamma}^{\dagger}, \tag{5.37}$$

y derivando respecto al tiempo

$$\dot{\rho} = L\rho = \frac{d}{dt}(U_{b,\Gamma}\rho'U_{b,\Gamma}^{\dagger}). \tag{5.38}$$

En este caso, L representa el operador de Liouville. Esto permite obtener una ecuación maestra para ρ' .

$$U_{b,\Gamma}(\dot{\rho'})U_{b,\Gamma}^{\dagger} = L[U_{b,\Gamma}\rho'U_{b,\Gamma}^{\dagger}] - \dot{U}_{b,\Gamma}\rho'U_{b,\Gamma}^{\dagger} - U_{b,\Gamma}\rho'\dot{U}_{b,\Gamma}^{\dagger}$$

$$(5.39)$$

$$\dot{\rho} = U_{b,\Gamma}^{\dagger} L[U_{b,\Gamma} \rho' U_{b,\Gamma}^{\dagger}] U_{b,\Gamma} - U_{b,\Gamma}^{\dagger} \dot{U}_{b,\Gamma} \rho' - \rho' \dot{U}_{b,\Gamma}^{\dagger} U_{b,\Gamma}. \tag{5.40}$$

A partir de este punto, se omiten los sub-índices de las transformaciones y la ' para la matriz densidad. La transformación afecta a los distintos operadores presentes en el Hamiltoniano de la siguiente forma

$$U^{\dagger}bU = b + \beta, \tag{5.41}$$

$$U^{\dagger}\Gamma U = \Gamma + \alpha, \tag{5.42}$$

$$U^{\dagger}b^{\dagger}bU = b^{\dagger}b + \alpha^*b + \alpha b^{\dagger} + |\beta|^2, \tag{5.43}$$

$$U^{\dagger}\Gamma^{\dagger}\Gamma U = \Gamma^{\dagger}\Gamma + \alpha^*\Gamma + \alpha\Gamma^{\dagger} + |\alpha|^2. \tag{5.44}$$

Los conjugados Hermitianos se obtienen de manera trivial. Utilizar operadores con dependencia temporal explícita añade complejidad adicional a este procedimiento debido a las derivadas temporales del operador U. El procedimiento completo puede encontrarse en [31]. Se obtiene

$$\dot{U}_b = \dot{\beta}b^{\dagger}U_b - U_b\dot{\beta}^*b - \frac{1}{2}(\dot{\beta}\beta^* + \dot{\beta}^*\beta)U_b, \tag{5.45}$$

$$\dot{U}_b^{\dagger} = -\,\dot{\beta}b^{\dagger}U_b^{\dagger} + U_b^{\dagger}\dot{\beta}^*b - \frac{1}{2}(\dot{\beta}\beta^* + \dot{\beta}^*\beta)U_b^{\dagger}. \tag{5.46}$$

El caso de U_{Γ} es más complejo, pero el procedimiento es equivalente. Se obtiene

$$\dot{U}_{\Gamma} = (\dot{\alpha}\Gamma^{\dagger} + \alpha\dot{\Gamma}^{\dagger})U_{\Gamma} - U_{\Gamma}(\dot{\alpha}^{*}\Gamma + \alpha^{*}\dot{\Gamma}) + (\alpha^{*})^{2}C_{--}(t)U_{\Gamma} - \frac{1}{2}(\dot{\alpha}\alpha^{*} + \dot{\alpha}^{*}\alpha)U_{\Gamma},$$
(5.47)

$$\dot{U}_{\Gamma}^{\dagger} = -\left(\dot{\alpha}\Gamma^{\dagger} + \alpha\dot{\Gamma}^{\dagger}\right)U_{\Gamma}^{\dagger} + U_{\Gamma}^{\dagger}(\dot{\alpha}^{*}\Gamma + \alpha^{*}\dot{\Gamma}) - (\alpha)^{2}C_{++}(t)U_{\Gamma}^{\dagger} - \frac{1}{2}(\dot{\alpha}\alpha^{*} + \dot{\alpha}^{*}\alpha)U_{\Gamma}^{\dagger}. \tag{5.48}$$

Finalmente se debe calcular las transformaciones de las derivadas temporales de los operadores Γ

$$U^{\dagger}\dot{\Gamma}U = \dot{\Gamma} + \alpha C_{-+}(t) - \alpha^* C_{--}(t), \tag{5.49}$$

$$U^{\dagger}\dot{\Gamma}^{\dagger}U = \dot{\Gamma}^{\dagger} - \alpha^* C_{+-}(t) + \alpha C_{++}(t). \tag{5.50}$$

Los coeficientes C(t) surgen debido a que los operadores Γ no necesariamente conmutan con sus derivadas temporales

$$\begin{split} C_{++}(t) = & [\dot{\Gamma}^\dagger, \Gamma^\dagger], \\ C_{+-}(t) = & [\dot{\Gamma}^\dagger, \Gamma], \\ C_{-+}(t) = & [\dot{\Gamma}, \Gamma^\dagger], \\ C_{--}(t) = & [\dot{\Gamma}, \Gamma]. \end{split}$$

Falta únicamente calcular los términos de la ecuación maestra que corresponden a estas derivadas temporales

$$U_b^{\dagger} \dot{U}_b \rho + U_{\Gamma}^{\dagger} \dot{U}_{\Gamma} \rho + \rho \dot{U}_b^{\dagger} U_b + \rho \dot{U}_{\Gamma}^{\dagger} U_{\Gamma}, \tag{5.51}$$

los cuales resultan ser

$$U_{\Gamma}^{\dagger}\dot{U}_{\Gamma}\rho = \left[(\dot{\alpha}\Gamma^{\dagger} + \alpha\dot{\Gamma}^{\dagger} - \dot{\alpha}^{*}\Gamma - \alpha^{*}\dot{\Gamma}) \right]$$

$$- |\alpha|^{2}C_{+-} + (\alpha)^{2}C_{++} + (\alpha^{*})^{2}C_{--} - \frac{1}{2}|\dot{\alpha^{2}}| + \dot{\alpha}^{*}\alpha]\rho,$$

$$(5.52)$$

$$\rho \dot{U}_{\Gamma}^{\dagger} U_{\Gamma} = \rho [(-\dot{\alpha} \Gamma^{\dagger} - \alpha \dot{\Gamma}^{\dagger} + \dot{\alpha}^{*} \Gamma + \alpha^{*} \dot{\Gamma})$$

$$+ |\alpha|^{2} C_{-+} - (\alpha)^{2} C_{++} - (\alpha^{*})^{2} C_{--} - \frac{1}{2} |\dot{\alpha^{2}}| + \dot{\alpha} \alpha^{*}],$$
(5.53)

$$U_{\Gamma}^{\dagger}\dot{U}_{\Gamma}\rho + \rho\dot{U}_{\Gamma}^{\dagger}U_{\Gamma} = [\rho, (\alpha^*\dot{\Gamma} - \alpha\dot{\Gamma}^{\dagger})] + [\rho, (\dot{\alpha}^*\Gamma - \dot{\alpha}\Gamma^{\dagger})]$$

$$+ |\alpha|^2 (C_{-+} - C_{+-}).$$

$$(5.54)$$

$$(5.55)$$

Los términos que involucran un conmutador con la matriz densidad se consideran parte del Hamiltoniano. El procedimiento para los términos U_b es el mismo pero resulta más sencillo

$$U_b^{\dagger} \dot{U}_b \rho + \rho \dot{U}_b^{\dagger} U_b = [\rho, (\dot{\beta}^* b - \dot{\beta} b^{\dagger})]. \tag{5.56}$$

El Hamiltoniano queda entonces dado por

$$H'_{mec} = \hbar\omega(b^{\dagger}b + \beta b^{\dagger} + \beta^*b + |\beta|^2), \tag{5.57}$$

$$H'_{cav} = \hbar \frac{W}{|f(t)|^2} (\Gamma^{\dagger} \Gamma + \alpha \Gamma^{\dagger} + \alpha^* \Gamma + |\alpha|^2), \tag{5.58}$$

$$H'_{rad} = -\hbar g(t)[(\Gamma^{\dagger}\Gamma + \alpha\Gamma^{\dagger} + \alpha^{*}\Gamma + |\alpha|^{2})((b^{\dagger} + \beta^{*}) + (b + \beta))], \qquad (5.59)$$

$$B' = \frac{\hbar\Omega}{2} (\Gamma^{\dagger} + \Gamma + \alpha + \alpha^*). \tag{5.60}$$

Más términos adicionales generados por la transformación debido a sus derivadas temporales

$$H_T = (\alpha^* \dot{\Gamma} - \alpha \dot{\Gamma}^\dagger) + (\dot{\alpha}^* \Gamma - \dot{\alpha} \Gamma^\dagger) + (\dot{\beta}^* b - \dot{\beta} b^\dagger), \tag{5.61}$$

y debido a los términos de Lindblad

$$U^{\dagger}[L_a U \rho U^{\dagger}]U + U^{\dagger}[L_{\Gamma} U \rho U^{\dagger}]U, \tag{5.62}$$

se generan términos adicionales para el Hamiltoniano mientras que los términos de Lindblad mantienen su forma original

$$U^{\dagger}[L_b U \rho U^{\dagger}] U = L_b \rho + [\beta b^{\dagger} - \beta^* b, \rho], \tag{5.63}$$

$$U^{\dagger}[L_{\Gamma}U\rho U^{\dagger}]U = L_{\Gamma}\rho + [\alpha\Gamma^{\dagger} - \alpha^{*}\Gamma, \rho]. \tag{5.64}$$

La transformación de los términos Lindblad resulta en Hamiltoniano efectivo adicional

$$H_L = -\frac{\gamma}{2}(\beta b^{\dagger} + \beta^* b) - \frac{\kappa}{2}(\alpha \Gamma^{\dagger} + \alpha^* \Gamma). \tag{5.65}$$

A fin de simplificar el Hamiltoniano, es necesario agrupar todos los términos a primer orden en operadores

$$b(\omega\beta - g(t)|\alpha|^2 + i\dot{\beta}^* + i\frac{\gamma}{2}\beta), \tag{5.66}$$

$$\Gamma(\frac{W\alpha}{|f|^2} - g(t)\alpha(\beta^* + \beta) + \frac{\Omega}{2} - i\dot{\alpha} - i\frac{\kappa}{2}\alpha), \tag{5.67}$$

y sus conjugados Hermitianos. Para anular estos términos es necesario que se cumpla el sistema de ecuaciones diferenciales

$$\dot{\beta} = -i\omega\beta^* + ig(t)|\alpha|^2 - \frac{\gamma}{2}\beta,\tag{5.68}$$

$$\dot{\alpha} = -i\frac{W}{|f|^2}\alpha^* + ig(t)\alpha(\beta + \beta^*) - i\frac{\Omega}{2} - \frac{\kappa}{2}\alpha^*.$$
 (5.69)

Debido a la forma de la frecuencia elegida, la función f(t) que figura en los operadores Γ es

$$f(t) = e^{i\omega t} + \frac{\epsilon}{16}e^{3i\omega t} \tag{5.70}$$

por lo que si se desprecian términos de corrección menores a epsilon

$$\dot{\Gamma}(t) = i\omega\Gamma(t),\tag{5.71}$$

$$\dot{\Gamma}^{\dagger}(t) = -i\omega\Gamma^{\dagger}(t), \tag{5.72}$$

y estos términos deben incluirse en las ecuaciones para α y β

$$\dot{\beta} = -i\omega\beta^* + ig(t)|\alpha|^2 - \frac{\gamma}{2}\beta,\tag{5.73}$$

$$\dot{\alpha} = -i\frac{W}{|f|^2}\alpha^* + ig(t)\alpha(\beta + \beta^*) - i\frac{\Omega}{2} - \frac{\kappa}{2}\alpha^* + \omega\alpha^*.$$
 (5.74)

El caso de interés es el caso estacionario $\dot{\alpha} = \dot{\beta} = 0$. Se trabaja el límite de acoplamiento pequeño y se limita el análisis a orden 0 en el parámetro de acoplamiento g(t)

$$0 = -i\omega\beta^* - \frac{\gamma}{2}\beta,\tag{5.75}$$

$$0 = -i\frac{W}{|f|^2}\alpha^* - i\frac{\Omega}{2} - \frac{\kappa}{2}\alpha^* + \omega\alpha^*. \tag{5.76}$$

dada la expresión para f(t) se tiene

$$\frac{W}{|f(t)|^2} = \omega,\tag{5.77}$$

se llega a la solución, a orden 0 en acoplamiento

$$\beta_0 = 0, \tag{5.78}$$

$$\beta_0 = 0, \qquad (5.78)$$

$$\alpha_0 = \frac{\Omega}{-i\kappa - 2\omega(1-i)}. \qquad (5.79)$$

lo cual resulta en el Hamiltoniano transformado

$$H = \hbar \omega b^{\dagger} b + \hbar \omega \Gamma^{\dagger} \Gamma - \hbar g(t) [(\alpha \Gamma^{\dagger} + \alpha^{*} \Gamma)(b^{\dagger} + b)]$$
 (5.80)

donde se ha despreciado el término $\Gamma^\dagger\Gamma$ en la interacción ya que en este régimen $|\alpha|\gg 1$ y es despreciable respecto a los otros dos términos. De esta forma se tiene un nuevo Hamiltoniano para interacción optomecánica donde se modela que la intensidad de la interacción optomecánica es una función del tiempo.

Capítulo 6

Objetivos Futuros

A partir del Hamiltoniano (3.36) es posible estudiar un sistema de gran importancia tomando en cuenta su dependencia temporal inherente, la cual se no se toma en cuenta en el Hamiltoniano usual[3]. A partir de este punto se proponen tres objetivos para realizar un estudio más completo de este sistema bajo este nuevo enfoque. En todos los casos se espera obtener expresiones analíticas y resultados numéricos para la temperatura final del oscilador mecánico bajo la aproximación adiabática.

6.1. Objetivos y Calendarización

- 1. Llegar a una expresión para la temperatura final del espejo bajo la aproximación adiabática y compararla con la expresión usual que se obtiene al no considerar una dependencia temporal explícita para la frecuencia natural de la cavidad en la disipación. Esto requiere deducir desde primeros principios la ecuación maestra que contiene los coeficientes de enfriamiento y calentamiento correspondientes al oscilador mecánico así como resolver el movimiento del oscilador armónico mecánico.
- 2. Estudiar el sistema en un régimen distinto al establecido en los capítulos anteriores. Si no se puede tomar la interacción a orden cero durante la transformación al marco desplazado esto cambia el coeficiente α y lo convierte en una función del tiempo.
- 3. Estudiar el sistema cuando el parámetro ϵ debe tomarse en cuenta hasta segundo orden. Este cambio lleva a que incluso el factor global del Hamiltoniano para el campo dentro de la cavidad sea una función del tiempo, lo que lleva a estudiar el efecto sobre el oscilador de interactuar con un campo cuya frecuencia natural oscila en el tiempo.

Se asume que cada uno de estos objetivos, junto con trabajo de redacción y revisión bibliográfica adicional, sea realizable dentro de un semestre de trabajo. Esto implicaría un último semestre únicamente dedicado a redacción a fin de elaborar la tesis doctoral en tiempo y forma, así como un artículo de investigación a ser publicado en una revista internacional.

Bibliografía

- [1] Thomas J. Kippenberg, Thomas Marquardt, Markus Aspelmeyer. Cavity optomechanics. *Review of Modern Physics*, 2013.
- [2] Alex Abramovici, William E. Althouse, et al. Ligo: The laser interferometer gravitational-wave observatory. *Science*, 1992.
- [3] Carlton M. Caves. Quantum-mechanical radiation-pressure fluctuations in an interferometer. *Physical Review Letters*, 1980.
- [4] Thomas Corbitt, Christopher Wipf, et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mk. *Physical Review Letters*, 2007.
- [5] Zhi Xin Chen. Entanglement dynamics in double-cavity optomechanical systems. *Optics Express*, 2017.
- [6] Kerry J. Vahala. Optical microcavities. Nature, 2003.
- [7] E. Verhagen, et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. *Nature*, 2012.
- [8] J. C. Sankey, et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system. *Nature Physics*, 2010.
- [9] L. Childress. Cavity optomechanics in a levitated helium drop. ar-Xiv:1708.01803, 2017.
- [10] Ivan Favero, et al. Fluctuating nanomechanical system in a high finesse optical microcavity. *Optics Express*, 2009.
- [11] Matt Eichenfield. Optomechanical crystals. Nature, 2009.
- [12] Michael J. Burek. Diamond optomechanical crystals. Optica, 2016.
- [13] V. B. Braginsky. Pondermotive effects of electromagnetic radiation. Soviet Physics JEPT, 1968.
- [14] A. Dorsel. Optical bistability and mirror confinement induced by radiation pressure. *Physical Review Letters*, 1983.
- [15] Warwick P. Bowen , Gerard G. Milburn. Quantum Optomechanics. CRC Press, 2016.
- [16] Thiago P. Mayer Alegre. Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability. *Optics Express*, 2010.

- [17] Mahmood Bagheri. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. *Nature Nanotechnology*, 2011.
- [18] S. Forstner. Cavity optomechanical magnetometer. *Physical Review Letters*, 2012.
- [19] Jing Zhang. Quantum-state transfer from light to macroscopic oscillators. $Physical\ Review\ A,\ 2003.$
- [20] H.J. Kimble. The quantum internet. Nautre, 2008.
- [21] Elion D. Kirson et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. *Proceedings of the National Academy of Science*, 2007.
- [22] V. Salari et al. Optomechanical proposal for monitoring microtubule mechanical vibrations. *Physical Review E*, 2017.
- [23] Marc Bienert, Pablo Barberis-Blostein. Optomechanical laser cooling with mechanical modulation. *Physical Review Letters A*, 2015.
- [24] Sigmund Kohler, Thomas Dittrich†, Peter Hänggi. Floquet-markov description of the parametrically driven, dissipative harmonic quantum oscillator. Phys. Rev. E55, 30 Sep 1998.
- [25] Pablo Yanes-Thomas , Pablo Barberis-Blostein. Optomechanical cooling with time dependent parameters. *TBD*, 2017.
- [26] M. Ward. Supplement: Floquet Theory and the Mathieu's Equation.
- [27] W.Domcke, P. Hänggi, D. Tannor. Driven Quantum Systems. Special Issue: Chemical Physics, Vol. 217, 1997.
- [28] Stephen Barnett, Stig Stenholm. Spectral decomposition of the lindblad operator. *Journal of Modern Optics*, 2000.
- [29] Lowell S. Brown. Quantum motion in a paul trap. Physical Review Letters, 1991.
- [30] J. J. Sakurai, Jim Napolitano. Modern Quantum Mechanics. Pearson, 2013.
- [31] Pablo Enrique Yanes Thomas. Enfriamiento optomecánico dependiente del tiempo. Master's thesis, UNAM, 2015.
- [32] Peter Zoller. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Science and Business Media, 2004.
- [33] Howard Carmichael. An Open Systems Approach to Quantum Optics. Springer-Verlag, 1993.
- [34] Hans-Jurgen Briegel, Berthold-Georg Englert. Quantum optical master equations: The use of damping bases. *PHYSICAL REVIEW A*, 1993.

- [35] I. Wilson-Rae, N. Nooshi. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. *Physical Review Letters*, 2007.
- [36] C. K. Law. Interaction between a moving mirror and radiation pressure: A hamiltonian formulation. *Physical Review A*, 1995.