- > Introduzione
 - → energia potenziale elettrica
- > Potenziale elettrico
 - → esempi
- > Relazione tra campo e potenziale elettrico
- > Elettrostatica

Gettys II

Ricordiamo la relazione generale fra *energia potenziale*, *lavoro* e *forza conservativa*:

$$\vec{F}(x,y,z) \iff U(x,y,z)$$

$$\Delta U = U_f - U_i = -L(\vec{r}_i, \vec{r}_f) = -\int_{\vec{r}_i}^{\vec{r}_f} \vec{F} \cdot d\vec{r}; \quad \oint \vec{F} \cdot d\vec{r} = 0$$

$$\overrightarrow{F} = -\overrightarrow{\nabla}U \quad \left(F_x = -\frac{\partial U}{\partial x}; \ F_y = -\frac{\partial U}{\partial y}; \ F_z = -\frac{\partial U}{\partial z}\right)$$

Energia potenziale elettrica:

- → il <u>campo elettrico</u> è conservativo;
- → il campo elettrico è funzione della posizione;
- → il lavoro fatto dalla forza elettrica da un punto all'altro dipende solo dalla posizione iniziale e finale e non dal percorso;
- → l'energia meccanica si conserva;
- → è quindi possibile scrivere l'energia potenziale elettrica.

Il lavoro infinitesimo dL svolto dal campo elettrico su una carica q_0 varia l'energia potenziale dU del sistema carica-campo:

$$dU = -dL = -q_0 \, \vec{E} \cdot d\vec{s}$$

La variazione di energia potenziale del sistema carica-campo è:

$$\Delta U = U_B - U_A = -q_0 \int_A^B \vec{E} \cdot d\vec{s}$$

Calcoliamo il lavoro del campo elettrico quando una particella di prova di carica q_0 viene spostata nel campo di una carica puntiforme q fissata che genera il campo.

La variazione di energia potenziale è uguale al lavoro, cambiato di segno, fatto dalla forza conservativa: r^{B}

 $\Delta U = -L = -\int_{A}^{B} \vec{F}_{e} \cdot d\vec{l} = -q_{0} \int_{A}^{B} \vec{E} \cdot d\vec{l}$

Lo spostamento lungo una traiettoria di forma arbitraria lo si può sempre vedere come una somma di piccoli archi (lungo i quali il lavoro infinitesimo è nullo: dL=0) e di piccoli segmenti radiali

$$\vec{E} = E \,\hat{r}; \quad \vec{E} \cdot d\vec{l} = k_e \frac{q}{r^2} \hat{r} \cdot d\vec{l}; \quad \vec{r} \cdot d\vec{l} = dl \cos \theta = dr$$

$$L = q_0 \int_A^B \vec{E} \cdot d\vec{l} = q_0 \int_{r_A}^{r_B} k_e \frac{q}{r^2} dr = k_e q_0 q \left[-\frac{1}{r} \right]_{r_A}^{r_B} = k_e q_0 q \left[\frac{1}{r_A} - \frac{1}{r_B} \right]$$

$$\Rightarrow U_B - U_A = k_e \, q \, q_0 \left[\frac{1}{r_B} - \frac{1}{r_A} \right]$$

Questa quantità dipende <u>solo</u> dalla posizione iniziale e finale (in particolare dalle coordinate radiali) e <u>non dal cammino</u>.

Fissando la posizione di partenza all'infinito ($r_A \rightarrow \infty$) e ponendo lì il valore di riferimento (nullo) dell'energia potenziale si ha:

$$U_B = \frac{k_e \, q \, q_0}{r_B}; \quad U(r) = \frac{k_e \, q \, q_0}{r}$$

Se <u>più cariche puntiformi</u> generassero il campo, l'energia potenziale sarebbe la somma dei singoli contributi (i campi si sommano vettorialmente, ma il lavoro è uno scalare)

$$U(r) = -\int_{\infty}^{r} \vec{F} \cdot d\vec{l} \qquad U = \sum_{i} U_{i} = q_{0} k_{e} \sum_{i} \frac{q_{i}}{r_{i}}$$

A volte si definisce l'energia potenziale elettrica come il lavoro compiuto (da un agente esterno) \underline{contro} la forza elettrica, quando la particella carica di prova viene portata dall'infinito ad una distanza r dalla carica fissata.

- > Introduzione
 - → energia potenziale elettrica
- > Potenziale elettrico
 - *→* esempi
- > Relazione tra campo e potenziale elettrico
- > Elettrostatica

Gettys II

Il potenziale elettrico V sta all'energia potenziale U come il campo \boldsymbol{E} sta alla forza \boldsymbol{F} :

$$\vec{E} = \frac{\vec{F}}{q_0} \qquad \qquad \qquad \qquad \qquad V = \frac{U}{q_0}$$

Definizione: il potenziale elettrico generato da una carica in un punto è uguale all'energia potenziale per unità di carica di una carica di prova q_0 che si trova in quel punto.

- → È uno <u>scalare</u>.
- → Unità di misura: Volt 1 V = 1 J/C

[unità di misura del campo elettrico: V / m]

La differenza di potenziale è:
$$\Delta V = rac{\Delta U}{q_0} = -\int_A^B ec{E} \cdot dec{s}$$

Il potenziale è <u>definito a meno di una costante additiva</u>.

Il riferimento dipende dal sistema. In caso in cui il potenziale è nullo all'infinito:

$$\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s}$$
 $V(\infty) = 0 \Rightarrow V_P = -\int_\infty^P \vec{E} \cdot d\vec{s}$

Il potenziale può essere visto anche come il lavoro per unità di carica necessario per portare una particella di prova dall'infinito ad un punto *P* arbitrario.

- \rightarrow Per una carica puntiforme: $V=k_e \frac{q}{r}$
- ightarrow Per più cariche puntiformi occorre fare la <u>somma algebrica dei potenziali</u> generati dalle singole particelle: $V=k_e\sum_i rac{q_i}{r_i}$

- > Introduzione
 - → energia potenziale elettrica
- > Potenziale elettrico
 - → esempi
- > Relazione tra campo e potenziale elettrico
- > Elettrostatica

Gettys II

Coppia di cariche:

$$U = q_1 V_2 = q_2 V_1 = k_e \frac{q_1 q_2}{r_{12}} \qquad q_1 r_{12} q_2$$

L'energia potenziale presenta solo un termine per coppia.

Se le cariche hanno segni concordi, l'energia potenziale è *positiva* (le due cariche si possono allontanare all'infinito). Se le cariche sono discordi, l'energia potenziale è *negativa* (le cariche si attraggono: moto confinato).

Tre cariche:

$$U_{\text{tot}} = k_e \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

L'energia associata a tre o più cariche puntiformi si calcola sommando algebricamente le energie potenziali di ogni coppia (contata una sola volta).

 \rightarrow Per una particella di prova nel campo di altre particelle, l'energia potenziale di q_o (non del sistema) è: $U_{q_0}=k_eq_0\,\Sigma_i\,q_i/r_i$

Campo elettrico uniforme:

È analogo al caso del campo gravitazionale (forza peso). La differenza di energia potenziale è pari al lavoro fatto dalla forza elettrica per unità di carica cambiato di segno:

$$\Delta U_{BA} = U_B - U_A = -L_{\text{campo_A} \to B} = -\int_A^B \vec{F}_e \cdot d\vec{s} = -q_0 \int_A^B \vec{E} \cdot d\vec{s}$$

$$\Delta V_{BA} = \frac{\Delta U_{BA}}{q_0} = -\int_A^B \vec{E} \cdot d\vec{s} = -\vec{E} \cdot \int_A^B d\vec{s} = -\vec{E} \cdot \Delta \vec{r}$$

Muoversi da B a C (o comunque in ogni cammino perpendicolare al campo) non porta a variazioni di potenziale: *le superfici perpendicolari al campo elettrico sono equipotenziali*.

L'unico cammino che fa variare il potenziale è quello *lungo* il campo elettrico (analogo all'energia potenziale della forza peso): $\Delta V = -Ed$

Dipolo in un campo elettrico uniforme:

Un dipolo è costituito da due cariche uguali e opposte, che si trovano ad una distanza fissata 2a.

$$V(x) = -Ex + V_0$$

Figura 3.17 Esempio 3.11: L'energia potenziale di un dipolo in un campo uniforme, $\vec{E} = E \hat{j}$.

$$x_{+} = x_{0} + a \cos \theta \Rightarrow U_{+} = q \left[-E(x_{0} + a \cos \theta) + V_{0} \right]$$

 $x_{-} = x_{0} - a \cos \theta \Rightarrow U_{-} = -q \left[-E(x_{0} - a \cos \theta) + V_{0} \right]$
 $U_{\text{tot}} = U_{\text{int}} + U_{+} + U_{-} = -2aqE\cos \theta = -pE\cos \theta$

Energia potenziale elettrica di un dipolo in campo uniforme:

$$U = -\vec{p} \cdot \vec{E}$$

- > Introduzione
 - → energia potenziale elettrica
- > Potenziale elettrico
 - → esempi
- Relazione tra campo e potenziale elettrico
- > Elettrostatica

Gettys II

Relazioni generale fra campo elettrico e potenziale: $\vec{E}(x,y,z) \iff V(x,y,z)$

$$V(x,y,z) \Rightarrow \vec{E}(x,y,z)$$
 differenziale e locale

$$\vec{E} = -\vec{\nabla}V$$
derivata direzionale (gradiente)

$$\vec{E} = -\left(\frac{\partial V}{\partial x}\hat{i} + \frac{\partial V}{\partial y}\hat{j} + \frac{\partial V}{\partial z}\hat{k}\right)$$

$$E_x = -\frac{\partial V}{\partial x}; \ E_y = -\frac{\partial V}{\partial y}; \ E_z = -\frac{\partial V}{\partial z}$$

$$\vec{E}(x,y,z) \, \Rightarrow \, V(x,y,z) \, \bullet \hspace{1cm} \text{integrale e "globale"}$$

Variazione di potenziale è pari all'integrale di linea del campo elettrico fra i punti A e B.

$$\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s} \qquad dV = -\vec{E} \cdot d\vec{s}$$

perciò:

$$\Delta V_{AA} = -\int_A^A \vec{E} \cdot d\vec{s} = 0 \ \Rightarrow \ \oint \vec{E} \cdot d\vec{s} = 0 \quad \begin{array}{c} \text{Circuitazione del campo} \\ \text{elettrico è sempre nulla!} \end{array}$$

- > Introduzione
 - → energia potenziale elettrica
- > Potenziale elettrico
 - *→* esempi
- > Relazione tra campo e potenziale elettrico
- > Elettrostatica

Gettys II

Elettrostatica: linee di campo e superfici equipotenziali

$$\vec{E}_t = -\frac{\partial V}{\partial t}$$

$$\vec{E}_r = -\frac{\partial V}{\partial r}$$

Le <u>superfici equipotenziali</u> sono quelle perpendicolari alle linee di campo.

→ Lungo di esse la differenza di potenziale non cambia perché l'integrale di linea è nullo.

superfici equipotenziali

linee di campo

Esempio: un *conduttore*, all'equilibrio, si trova tutto allo stesso potenziale.

- ⇒ siccome le superfici esterne dei conduttori sono equipotenziali, i campi elettrici sono perpendicolari alle superfici esterne dei conduttori;
- ⇒ all'interno di un conduttore il campo elettrico è nullo.

Esempi vari

Dinamica di cariche in campi elettrici e gravitazionali Cariche puntiformi e campi

Moto di cariche in campo elettrico uniforme

Consideriamo una carica +q di massa m in una regione di campo elettrico uniforme, diretto verso l'alto (y). Con quale carica il corpo rimane in equilibrio?

Se tale carica viene lanciata con velocità iniziale v_0 , essa percorre un moto parabolico.

Moto di cariche in campo elettrico uniforme

Consideriamo ora l'effetto combinato della forza elettrica e di quella gravitazionale.

Supponiamo che una carica +q di massa m si trovi in una regione di campo elettrico uniforme, diretto verso l'alto (y). Essa viene lanciata con velocità iniziale v_0 inclinata di un angolo rispetto all'asse x. Studiarne il moto.

$$m\vec{a} = \sum_{i} \vec{F}_{i} = q\vec{E} + m\vec{g}$$

$$\Rightarrow a = \left(\frac{qE}{m} - g\right)\hat{j} = a_{0}\hat{j}$$

→ moto uniformemente accelerato (2D)

$$\begin{cases} v_y = v_0 \sin \theta + \left(\frac{qE}{m} - g\right)t \\ v_x = v_0 \cos \theta \end{cases}$$

$$\begin{cases} v_y = v_0 \sin \theta + \left(\frac{qE}{m} - g\right)t & \begin{cases} y = (v_0 \sin \theta)t + \frac{1}{2}\left(\frac{qE}{m} - g\right)t^2 \\ v_x = v_0 \cos \theta & \end{cases}$$

Moto di cariche in campo elettrico uniforme

$$\int y = (v_0 \sin \theta) t + \frac{1}{2} \left(\frac{qE}{m} - g \right) t^2$$
$$x = (v_0 \cos \theta) t$$

Moto uniformemente accelerato in 2D (moto del proiettile)

Se la carica q ha massa trascurabile (nel senso che $mg \ll qE$) e parte da orizzontale (θ = 0), a che altezza rispetto a x colpisce uno schermo a distanza d?

$$d = v_0 t^* \implies t^* = \frac{d}{v_0}$$

$$d = v_0 t^* \Rightarrow t^* = \frac{d}{v_0}$$
 $h = \frac{1}{2} \left(\frac{qE}{m} - g \right) \left(\frac{d}{v_0} \right)^2 \simeq \frac{1}{2} \frac{q}{m} \frac{d^2}{v_0^2} E$

Cariche puntiformi e filo

In presenza del campo gravitazionale terrestre, due fili di massa trascurabile e lunghi ognuno I pendono dallo stesso chiodo. All'estremità di ogni filo è attaccata una pallina di massa m. Ad ognuna delle due palline viene data la stessa carica elettrica e i due fili all'equilibrio formano tra loro un angolo di θ .

Quanto vale la carica q di ognuna delle palline?

Facendo il conto delle forze su una delle due palline (data la **simmetria** del problema, l'altra pallina si comporterà in modo analogo):

$$\begin{cases} 0 = ma_y = \sum F_y = T\cos\frac{\theta}{2} - mg \Rightarrow T\cos\frac{\theta}{2} = mg \\ 0 = ma_x = \sum F_x = -T\sin\frac{\theta}{2} + \frac{k_e q^2}{\left(2l\sin\frac{\theta}{2}\right)^2} \Rightarrow T\sin\frac{\theta}{2} = \frac{k_e q^2}{\left(2l\sin\frac{\theta}{2}\right)^2} \end{cases}$$

da cui, dividendo membro: $\tan\frac{\theta}{2}=\frac{k_eq^2}{mg\left(2l\sin\frac{\theta}{2}\right)^2} \Rightarrow q=2l\sin\frac{\theta}{2}\sqrt{\frac{mg}{k_e}\tan\frac{\theta}{2}}$

Cariche puntiformi e campo

Tre cariche positive ed una negativa, uguali in modulo e pari a q l'una, sono poste ai vertici di un quadrato di lato L.

→ calcolare il modulo del campo elettrico e il potenziale al centro del quadrato.

Soluzione

Le cariche di segno uguale su vertici opposti (2 e 4) danno origine a due campi nel centro del quadrato uguali in modulo e direzione, ma opposti in verso [quindi i due contributi si annullano mutuamente]. La carica negativa -q (1) e la positiva +q a lei opposta in diagonale (3) originano due campi E_1 e E_2 nel centro del quadrato che hanno la stessa direzione. La somma di tali contributi determina direttamente il modulo. Per il potenziale si sommano algebricamente i quattro potenziali.

$$|\vec{E}| = |\vec{E}_1| + |\vec{E}_3| = \frac{k_e q}{\left(L/\sqrt{2}\right)^2} + \frac{k_e q}{\left(L/\sqrt{2}\right)^2} = \frac{4k_e q}{L^2}$$

$$V = \frac{k_e q}{L/\sqrt{2}} + \frac{k_e q}{L/\sqrt{2}} + \frac{k_e q}{L/\sqrt{2}} / \frac{k_e q}{L/\sqrt{2}} = 4\frac{k_e q}{L\sqrt{2}}$$

Cariche puntiformi e campo

Tre cariche positive ed una negativa, uguali in modulo e pari a q l'una, sono poste ai vertici di un quadrato di lato L.

- → calcolare il modulo della forza agente sulla carica negativa;
- → calcolare campo e potenziale in quel punto in sua assenza.

Soluzione

La forza su 1 si trova calcolando il modulo del campo complessivo generato dalle altre tre cariche (ottenuto sommando vettorialmente i campi generati dalle singole cariche) come se la carica negativa non ci fosse. La carica 3 genera un campo orientato lungo la diagonale; le cariche 2 e 4 generano campi le cui componenti trasversali si elidono mutuamente mentre la componente diagonale è uguale e si somma in maniera costruttiva. Perciò la risultante del campo elettrico generato da 2-3-4 è anch'essa diretta lungo la diagonale:

$$|\vec{E}| = \left| \frac{k_e q}{(L\sqrt{2})^2} + 2\frac{k_e q}{L^2} \cos \frac{\pi}{4} \right| = \frac{k_e q}{L^2} \left(\frac{1}{2} + \sqrt{2} \right)$$

Il potenziale elettrico vale:
$$V=rac{k_eq}{L\sqrt{2}}+2rac{k_eq}{L}=rac{k_eq}{L}\Big(rac{\sqrt{2}}{2}+2\Big)$$

La forza su una carica negativa in tall punto è attrattiva, lungo

la diagonale e di modulo:
$$|\vec{F}|=|q\vec{E}|=rac{k_eq^2}{L^2}ig(rac{1}{2}+\sqrt{2}ig)$$

