Föreläsning 1 Gränsvärden: Definition och räkneregler

Arvid Karlgren

2023-01-16

Innehåll

1	Kursens mål	2
2	Gränsvärden	3
	2.1 Definition	. 3
	2.1.1 Exempel	. 4
	2.2 Räkneregler	. 4

1 Kursens mål

Kursen kommer att hantera följande områden:

- 1. Kontinuitet
- 2. Gränsvärden
- 3. Derivata
- 4. Funktionsundersökning
- 5. Primitiva funktioner
- 6. Integraler

2 Gränsvärden

2.1 Definition

Gränsvärden handlar om hur en funktion ser ut (vilka värden den antar) när x närmar sig olika värden. Det finns två typer av gränsvärden.

- Nära (men ej i) en punkt $a \in x$.
- För obegränsat stora positiva eller negativa $x \in \mathbb{R}$.

Gränsvärden betecknas med \rightarrow , till exempel $x \rightarrow a$ ("x går mot a").

Figur 1 visar några fall där den exakta definitionen av gränsvärden spelar stor roll.

Figure 1: Olika fall för gränsvärden.

Utifrån figur 1 vill vi, utifrån definitionen för gränsvärden, kunna säga följande:

- $f(x) \to A$ då $x \to x_1$, $(x_1 \notin D_f)$, skrivs $\lim_{x \to x_1} f(x) = A$
- $f(x) \rightarrow A \text{ då } x \rightarrow x_2, (x_2 \in D_f, f(x_2) = B).$
- $f(x) \rightarrow A \text{ då } x \rightarrow x_3, (x_3 \in D_f, f(x_3) = A).$
- f(x) saknar gränsvärden då $x \to x_4$ eller $x \to x_5$, skrivs $\lim_{x \to x_4} f(x) \not\equiv$
 - Däremot:

$$\lim_{x \to x_{4}^{-}} = A \quad \text{(Vänstergränsvärde, från vänster)}$$

$$\lim_{x \to x_{4}^{-}} = B \quad \text{(Högergränsvärde, från höger)}$$

 $\lim_{x\to x_4^+} = B \quad \text{(H\"{o}gergr\"{a}nsv\"{a}rde, fr\"{a}n h\"{o}ger)}$

- $f(x) \to \infty \text{ då } x \to x_6$
- f(x) saknar gränsvärde då $x \to x_7$
- $f(x) \to A \text{ då } x \to \infty$
- f(x) saknar gränsvärde då $x \to -\infty$

$\underline{x \to a}$

Definition:

Gränsvärdet för $x \to a$ blir A, dvs. $\lim_{x \to a} = A$ om det till varje $\epsilon < 0$ finns ett $\delta < 0$ sådant att $|f(x) - A| < \epsilon$ om $x \in D_f$ och $0 < |x - a| < \delta$ (se figur 2 nedan).

Figure 2: Definition av $x \to a$.

$\underline{x \to \infty}$

Definition:

Gränsvärdet för $x \to \infty$ blir A om det till varje $\epsilon < 0$ finns ett ω sådant att $|f(x) - A| < \epsilon$ om $x \in D_f$ och $x > \omega$. **OBS!** krav finns på D_f , se boken.

2.1.1 Exempel

Visa att $\sqrt{x} \to \sqrt{a}$ då $x \to a$ och a > 0. Låt $\epsilon > 0$. Vi ska hitta passande δ .

$$|\sqrt{x} - \sqrt{a}| = \left| \frac{x - a}{\sqrt{x} + \sqrt{a}} \right| \le \left| \frac{x - a}{\sqrt{a}} \right|$$

2.2 Räkneregler