

Lecture No. 03

By- CHANDAN SIR

TOPICS TO BE COVERED **01** HA FA

02 QUESTION PRACTICE

03 HS FS

04 QUESTION PRACTICE

05 DISCUSSION

Combinational Circuit

→ A circuit without memory or Jeedback.

on present state of input.

La static circuit

Ex. A D O/P

Combinational Circuit

Designing of Combinational circuit

- ✓ Step 1: Find the number of ilps and ops.
- 1 Stepa: Write the truth table.
- Step3: Write the Logical expression
- Step4: Minimization -
- Step 5: Hardware Implementation.

HALF ADDER

Two bit adder are known as half adder.

HALF ADDER

Step 1: Number of inputs and olps.

By

HALF ADDER

Step 2: Truth Table

Sum = AB+AB
= A \ B
Carry- A.BV

A	В	Sum	Carry
0	0	0	0
0	1	1 ~	0
1	0	1-	0
1	1	0	1

HALF ADDER

Step 3: Logical expression

$$sum = \overline{AB} + A\overline{B} = A \oplus B$$
$$carry = AB$$

Step 4: Minimization

Already minimized

HALF ADDER

Step 5: Handware Implementation

By NAND GATE

NOTE

By NAME GATE

Full adder

corry sum (
$$\alpha rry sum$$
) βurn

FULL ADDER

Three bit adder are known as full adder

Step 1:

majority high hogic

C.			0
×	\mathbf{o}	n	
JU		U.	4.

Becimul.	A	В	С	Sum	Carry
0→	0	0	0	0	0
	0	0	1	1	0
2>	0	1	0	1	0
3→	0	1	1	0	1
4	1	0	0	J	0
5->	1	0	1	0	1
6->	1	1	0	0	1 -
7>>	1	1	1	1	1 '

FULL ADDER

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= (\overline{AB} + \overline{AB})C + \overline{AB}(\overline{C} + C)$$

$$= (\overline{ABB})C + \overline{AB}$$

Step 4 :-> Minimization

FULL ADDER

Step 5:

BY MAND GATE

Full ADDER

(9) NOR GATE

minimum

H.W.

HALF SUBTRACTOR :->

Two bit subtractor

HALF SUBTRACTOR :->

Steps: Aiff = AB+AB
= ABB

Borrow = AB

Stepa.

A	B	श्रींस	Boww
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Step4 Minimization.

Step 5: Hardware Implementation

BY NAND GATE :->

HW. By NOR = ?

A
$$\overline{A+B} = \overline{A}(A+B) = \overline{A}B$$
 $\overline{A+B} = \overline{A}(A+B) = \overline{A}B$
 $\overline{A+B} = \overline{A}(A+B) = \overline{A}B$

