

Miljø og Bæredygtighed Modul 2 til 4

6. februar, 2024 Anders Damgaard (Adam@dtu.dk)

Introduktion til Massestrømsanalyse

Indhold – Modul 2 til 4

Modul	Indhold	Opgaver	Læsestof og hjemmearbejde
2	 Introduktion, formål og anvendelse af MFA Terminologi, begreber og definitioner Introduktion til Afleveringsopgave – Fase 1 	1.1 til 1.4 Arb. med Afleveringsopgave	Kap. 1 Introduction pp.1-28 Afleveringsopgave Fase 1
3	 Kort introduktion til MFA software: STAN Praktiske opgaver MFA Arbejde m. Afleveringsopgave – Fase 1 	2.1 til 2.4 Arb. m. afleveringsopgave.	Kap. 2 Methodology of MFA pp. 35-53
4	 Arbejde m. Afleveringsopgave – Fase 1 Gennemgang af regler for plagiering 	Arb. m. afleveringsopgave.	

Læringsmål

Efter gennemgang af modul 2 til 4, skal de studerende kunne:

- Forstå grundprincippet i MFA som metode samt kende til anvendelsesmuligheder i forbindelse med miljøforvaltning, ressource og affaldshåndtering
- Udføre MFA på simple systemer dvs. udføre en systemanalyse, designe og definere processer, flows og beholdninger for et afgrænset system
- Kende til programmet STAN

Massestrømsanalyse

- Modul 2
- 1. Introduktion, formål og anvendelse

Hvad er MFA?

- Værktøj til systematisk vurdering af materiale- og stofstrømme og beholdninger inden for et system afgrænset i tid og sted
- Følger et stofs livscyklus fra kilde (ex. mine), gennem processer og beholdninger til endelig slutsted (dræn)
- Overblik over vigtige puljer, udledninger, akkumulering, udtømning af ressourcer, mm.
- Bygger på loven om massebevarelse og udføres ved at opstille massebalancer (definerer input, output, beholdninger for processer)
- Input = output ± ændring i beholdning

Hvor anvendes MFA?

- Miljøforvaltning og miljøteknologi
- Ressourceforvaltning
- Affaldshåndtering
- Industriel økologi og design
- Anvendes på systemer af forskellig skala (menneske, tekniske anlæg, industri, by, region, national, global)
- Eksempler:
 - Masseopgørelser (metaller (Cd, Cu, Pb), miljøfremmede stoffer (dioxiner, CFCer), næringsstoffer (N, P, organisk stof), materialer (papir, plast, glas, drikkevand)

Hvor anvendes MFA?

MFA kan bruges i forbindelse med beslutningstagning, men må oftest kobles med analyse af:

- Miljøeffekter i form af LCA
- Risikovurdering
- Energistrømme
- Økonomiske forhold
- Socioøkonomiske forhold
- Fysisk planlægning

slido

Hvilket materiale forbruger vi mest af? Diskuter med din sideperson og skriv et/flere svar

Større massestrømme samt akkumulering i moderne samfund
 Material Flows and Stocks for Selected Activities of Modern Man

	Input,	Output, t/(c.yr)			Stock,
Activity	t/(c.yr)	Sewage	Off Gas	Solid Residues	t/Capita
To nourish ^a	5.7	0.9	4.7	0.1	< 0.1
To clean ^b	60	60	0	0.02	0.1
To reside ^c	10	0	7.6	1	100 + 1
To transport ^d	10	0	6	1.6	160 + 2
Total	86	61	19	2.7	260 + 3

Note: The most outstanding and unprecedented feature of today's economies is the very large stock of material that has accumulated in private households.⁶⁵

Ref: Brunner & Rechberger 2016

Hurtig vækst i ressourceforbruget

Source: Brunner & Rechberger 2004

12

Økonomisk vækst er stærkt koblet med ressourceforbrug

• **EU – strategy for resources**: Absolute decoupling of the environmental impact through the use of resources and the economic growth until 2030

6 Februar 2024 DTU Sustain Introduktion til Massestrømsanalyse

14

DK: afkobling mellem BNP og forbrug målt ved forskellige miljøparametre

15

Figur 5.3: Udviklingen i Danmarks bruttonationalprodukt (BNP) pr. indbygger sammenholdt med forskellige miljøparametre. Alle parametre er angivet pr. indbygger og omregnet til indekstal med indeks 100 = 1990 (for affald dog indeks 100 = 1994). Kilde: Danmarks Statistik 2009 (bearbejdet af DMU).

Note: Bunkring dækker over skibes og flys køb af brændstof i udlandet.

• En stadig større del af verdens befolkning bor i byer

Urbanisation

Introduktion til Massestrømsanalyse

16

6 Februar 2024 DTU Sustain

< 30 No data

• Hurtigt voksende byer – akkumulering af materialer

Source: Daxbeck et al. 1996 (updated)

17

• Sammensætning af den antropogene materialebeholdning

6 Februar 2024 DTU Sustain Introduktion til Massestrømsanalyse

18

Kraftig vækst i akkumuleringen af materialer i den urbane beholdning
 Lange opholdstider; > 100 år

6 Februar 2024 DTU Sustain Introduktion til Massestrømsanalyse

19

• Den urbane stofbeholdning er en potentiel ressource for fremtiden (ex. kobber)

 Den naturlige globale beholdning af kobber vs. den antropogene beholdning: ikke ligevægt

Ref: Ukendt

• De antropogene massestrømme overstiger de naturlige massestrømme

Cadmium i 1980'erne: Flows 1000 tons/år, stocks 1000 tons

• Produkters sammensætning bliver mere komplekse

• Produkters sammensætning bliver mere komplekse

Intel circuit board

Source: Wäger 2007

• Emissioner fra produkter overstiger emissioner fra produktion

Zinc flow through an advanced electroplating plant

26

Dræn og grænser for vækst

Capacity [million km³]

Earth 1.100.000
Atmosphere 4.200
Hydrosphere 1.400
"Lithosphere" 500
"Pedosphere" 0,3

After: Adam Nieman www.visions-of-science.co.uk

"Lithosphere": whole surface of the earth within 1 km depth

"Pedosphere": ice-free land surface within 2 m depth

TU Vienna, AWS 2005

27

Dræn og grænser for vækst

Ref: U.S. National Climate Assessment (2014).

	2021	2022	2023
CO ₂ - December	416.67	418.99	421.86

senest værdi 426.21ppm (dags måling) som opdateret 5 februar 2024

https://www.co2.earth/

Dræn og grænser for vækst

Eksempler:

- Carbon globale klimaforandringer
- CFCs nedbrydning af ozonlaget
- DDT persistens i jord og følgende akkumulering I fødekæden
- Pb som additiv i brændstof diffus udledning og dispersion af bly til miljøet
- Plutonium endelig lagring af radioaktivt affald

slido

Med din sideperson diskuter andre grænser og dræn for vores liv på Jorden

Opsummering

Illustreret ved MFA har vi set:

- Større massestrømme samt akkumulering i moderne samfund
- Hurtig vækst i ressourceforbruget
- Økonomisk vækst er stærkt koblet med ressourceforbrug
- Den urbane stofbeholdning vokser og er en potentiel ressource
- for fremtiden
- De antropogene massestrømme overstiger de naturlige
- massestrømme
- Primær lineær massestrømme marginal cirkulær økonomi
- Produkters sammensætning bliver mere komplekse
- Vi har set at der er grænser for vækst

PAUSE, efter Kahoot!!!!

www.kahoot.it

6 Februar 2024 DTU Sustain Introduktion til Massestrømsanalyse

32

Massestrømsanalyse

Modul 2

2. Terminologi, begreber og definitioner

MFA

- Massestrømsanalyse (Material flow analysis MFA) er en systematisk metode til at beskrive, undersøge og evaluere stofomsætningen (metabolismen) i et antropogent eller naturligt system
- MFA anvendes til vurdering af massestrømme og beholdninger i komplekse systemer afgrænset i tid og sted
- MFA definerer termer og procedure til at udføre massebalancer på systemer 5 fundamentale termer:
 - System
 - Proces
 - Materiale
 - Stof
 - Strøm/flux

Terminologi anvendt i MFA

- Masse (material)
- Stof (substance)
- Materiale (good)
- Proces (process)
- System (system)
- Systemafgræsning (system boundaries)
- Strøm (flow)
- Beholdning/lager/pulje (stock)
- Massestrømsanalyse (material flow analysis, MFA)
- Stofstrømsanalyse (substance flow analysis, SFA)
- Balance (balance, balance of goods and materials)
- Input-output-analyse (input-output-analysis)

Terminologi anvendt i MFA

- Overførselsfunktion (transfer function)
- Overførselskoefficient (transfer coefficient kx,j)
- Masseopgørelse (materials accounting)
- Aktivitet (activity)
- Antroposfæren (anthroposphere)
- Antropogen stofstrøm (anthropogenic substance flow)
- Geologisk stofstrøm (geogenic substance flow)
- Regional stofstrøm (regional substance flow)
- Kilde (source)
- Dræn (sink)
- Slutdræn (final sink)

Masse: stof og materialer

- I MFA dækker masse (material) over både stof (substance) og materialer (goods)
- Et stof er ethvert kemisk grundstof eller kemisk forbindelse bestående af samme grundstoffer. Alle stoffer er karakteriseret ved en enhed, og er identiske og homogene i opbygning (ex. N, C, Cu, CO2, CH4)
- Et materiale er defineret som enheder af stoffer (med negativ, neutral eller positiv økonomisk værdi) (ex. drikkevand, brændstof, affald, slam)

Stof vs. Masse

Proces

- En proces (masse per tid) er defineret som transport (transporting), omsætning (transforming), eller lagring (storing) af masse i systemet. Naturlige eller antropogene.
- Processer:
 - En bys, et menneskes eller et dyrs stofomsætning (metabolisme)
 - Stofomsætning i en industri eller teknologi
 - En aktivitet i en sfære (ex. atmosfæren, hydrosfæren, eller i jorden)
 - En service (ex. indsamling af affald)

Processer og under-processer

Ref Brunner & Rechberger 2016

Beholdning/lager

- En beholdning er den totale masse af et materiale lageret i en proces. Naturlige eller antropogene. Et lager kan øges, mindskes eller være i ligevægt (steady state)
- En beholdning beskrives ved en masse af lagret materiale og en rate for ændringen i beholdningen
- Ved ligevægt er opholdstiden i en beholdning lig beholdningen (masse) divideret med stofstrømmen (masse per tid)

Stock
Rate of change

Stock

Stock

Strømme og fluxe

- Strøm (flow) (masse per tid)
- Flux (masse per tid per enhed). Fluxe er specifikke strømme
- Forbinder processer I systemet (input og output flows/fluxes)
- Strømme ind og ud af systemet kaldes import og export flows/fluxes

Strømme og fluxe

Examples of Flows and Fluxes

	System	Cross Section	Numerical Value of Cross Section	Flow	Flux
Paper consumption	Switzerland	Swiss population	7.3 million	1.8 million t paper/yeara	246 kg paper/ (c·yr)
Waste treatment	MSW incinerator	grate	50 m ²	15 t MSW/h	300 kg MSW/(m ² ·h)
Emission of SO ₂	Switzerland	area of state	42,000 km ²	30,000 t SO ₂ / year ^a	0.7 g SO_2 / $(\text{m}^2 \cdot \text{year})$
Total deposition of nitrogen	Vienna	area of city	415 km ²	1,400 t N/year ¹²⁹	3.4 g N/ (m²-year)
^a In 2000.					

Brunner & Rechberger 2004

Overførselskoefficienter

- Overførselskoefficienter (transfer coef.) beskriver fordelingen af en inputstrøm til forskellige outputstrømme
- Defineres for hvert output flow fra en proces summen af output flows er 1

 k_I = number of input flows k_O = number of output flows

Brunner & Rechberger 2004

Overførselskoefficienter

• Eksempel: MFA/SFA for et affaldsforbrændingsanlæg

Brunner & Rechberger 2004

System og systemafgrænsning

- Et system består af stofstrømme, processer, beholdninger i et afgrænset system
- Systemets grænser er defineret i tid og rum/sted og er afhængig af formål og tilgængelige data
- Ofte anvendes en tidsperiode på et år
- Den stedlige afgrænsning kan være et geografisk område (en nation, en region, en by, en fabrik) eller en mere virtuel afgræsning (et affaldshåndteringssystem, en gennemsnitshusholdning)
- Ofte er en afgrænsning i den 3. dimension også nødvendig (ex. 10 km over jordens overflade)

Symboler anvendt i MFA

6 Februar 2024 DTU Sustain Introduktion til Massestrømsanalyse

47

MFA illustration af termer

Brunner & Rechberger 2004

Aktiviteter

- En aktivitet består af alle processer, stof- og materialestrømme og beholdninger, der er nødvendige for at dække et bestemt menneskeligt behov
- Eksempler:
 - At ernære; alle P og S/M til at producere, forarbejde, distribuere, og forbruge fødevarer (faste og flydende)
 - At rense; alle P og S/M til rense/rengøre, separere unødvendige stoffer fra nødvendige
 - At bo og arbejde; alle P og S/M til at bygge, drive og vedligeholde boliger og arbejdspladser
 - At transportere og kommunikere; alle P og S/M udviklet til at transportere energi, materialer, personer og information

Eksempel på en aktivitet

At ernære:

Note: Required goods to operate the processes (energy, machinery, tools, etc.) are omitted

Brunner & Rechberger 2004

Antroposfæren og miljøet

Antroposfæren:

- den menneskeskabte sfære (også kaldet teknosfæren)
- indbefatter alle menneskedrevet processer
- udgør et kompleks system af strømme af energi, materialer og informationer

Metabolisme

- Metabolisme:
- Et systems metabolisme indbefatter overførsel, lagring, og omsætning af materiale indenfor systemet samt udveksling af materialer med det omgivende miljø
- Anvendes i forbindelse med processer i både den naturlige og menneskeskabte sfære

Procedure for udførsel af MFA

Eksempler på massestrømsanalyser udført i Danmark

- 4-nitrotoluen (2004)
- Lead (2000)
- Chromium (2002)
- Chlorinated aliphatics (1998)
- Dioxins (2003)
- Copper (1996)
- Brominated flame retardants (1999)
- Mercury (2001)
- Cadmium (1980,1993, 2000)
- Recordinol (2004)
- Glycolether (2003)
- Aluminium (1999)
- Phosphor (2016)

Pause, efter Kahoot!!!!