

SCADE Suite Libraries Manual

CONTACTS

Legal Contact

Ansys France 15 place Georges Pompidou 78180 Montigny-le-Bretonneux FRANCE

Phone: +33 1 30 60 15 00 Fax: +33 1 30 64 19 42

Technical Support

Ansys France Parc Avenue, 9 rue Michel Labrousse 31100 Toulouse FRANCE Phone: +33 5 34 60 90 50

Fax: +33 5 34 60 90 41

Submit questions to Ansys SCADE Products Technical Support at scade-support@ansys.com.

Contact one of our Sales representatives at scade-sales@ansys.com.

Direct general questions about SCADE products to scade-info@ansys.com.

Discover latest news on our products at www.ansys.com/products/embedded-software.

LEGAL INFORMATION

Copyrights © 2024 ANSYS, Inc. All rights reserved. Ansys, SCADE, SCADE Suite, SCADE Display, SCADE Architect, SCADE LifeCycle, SCADE Test, and Twin Builder are trademarks or registered trademarks of ANSYS, Inc. or its subsidiaries in the U.S. or other countries. SCADE Suite Libraries Manual – Published April 2024.

All other trademarks and tradenames contained herein are the property of their respective owners.

TERMS OF USE

Important! Read carefully before starting this software and referring to its user documentation. This publication, as well as the software it describes, is distributed as part of the SCADE user documentation under license and may be used or copied only in accordance with the terms and conditions of the Software License Agreement (SLA) accepted during SCADE product installation. Except as permitted by the SLA, the content of this publication cannot be reproduced, stored, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior permission of Ansys. Any existing artwork or images that you may want to reuse in your projects may be protected under copyright law. The unauthorized use of such material into your own work may constitute a violation of Ansys copyrights. If needed, make sure you obtain the written permission from Ansys. By starting the software you expressly agree to the following conditions:

- **Property**: This software is and remains the exclusive property of Ansys. It cannot be copied or distributed without written authorization from Ansys. Ansys retains title and ownership of the software.
- Warranty: The software is provided, as is, without warranty of any kind. Ansys does not guarantee the use, or the results from the use, of this software. All risk associated with usage results and performance is assumed by you the user.

DOCUMENTATION DISCLAIMER

The content of SCADE products user documentation is distributed for informational use only, is subject to change without notice, and should not be construed as a commitment by Ansys. Although every precaution has been taken to prepare this manual, Ansys assumes no responsibility or liability for any errors that may be contained in this book or any damages resulting from the use of the information contained herein.

THIRD-PARTY LEGAL INFO

The Legal Notice (PDF) about third-party software can be found under the help folder of the SCADE installation.

Shipping date: 29/04/24 Revision: SC-LM-24 - DOC/rev/14637-04

Libraries Manual Overview

This manual provides basic descriptions of all libraries delivered with your SCADE Suite installation. The content covers all libraries compatible with SCADE Suite projects.

- <u>"Fundamentals about Libraries"</u>
- Chapter 2: "Library libdigital"
- Chapter 3: <u>"Library libimpl"</u>
- Chapter 4: <u>"Library liblinear"</u>
- Chapter 5: <u>"Library libmath"</u>
- Chapter 6: "Library libmathext"
- Chapter 7: "Library libpwlinear"
- Chapter 8: "Library libsmlk"
- Chapter 9: <u>"Library libverif"</u>

"Index"

RELATED DOCUMENTS

SCADE Suite User Manual

TYPOGRAPHICAL CONVENTIONS

Bold	GUI buttons, options, tabs, radio buttons, drop-down lists, window titles, panels.
Italics	Path for menu selection from main menu bar or in contextual menus, new technical concepts or words, references to product manuals.
Courier New	Code extracts, constant or variable names, file names, directory path, or typed text.
Title Case	Names of application components, menus.
UPPERCASE	File formats

Libraries Manual Overview

1.	Fundamentals about Libraries	1-1
	Libraries and SCADE Suite Design Activities	1 - 2
	Libraries and Model Implementation	1 - 3
	Libraries and Simulink Modeling Activities	1 - 4
	Libraries and Formal Verification Activities	1 - 5
2.	Library libdigital	2 - 7
	Digital Operators	2 - 8
	Boolean Vector to Int8	2 - 8
	Boolean Vector to Int16	2 - 9
	Boolean Vector to Int32	2 - 9
	Boolean Vector to Int64	2 - 10
	Boolean Vector to Uint8	2 - 10
	Boolean Vector to Uint16	2 - 11
	Boolean Vector to Uint32	2 - 11
	Boolean Vector to Uint64	2 - 12
	Count-Down	2 - 12
	Either Edge	2 - 13
	EntryDetect	2 - 13
	Falling Edge	2 - 14
	Falling Edge (Re-Trigger)	2 - 14
	Falling Edge (without Re-Trigger)	2 - 15
	Flip-Flop JK	2 - 16
	Flip-Flop Priority to Reset	2 - 17
	Flip-Flop Priority to Set	2 - 18
	Inactive Cycles	2 - 19
	Inactive Time	2 - 19
	Integer to Boolean Vector	2 - 20

	Relay	2 - 20
	Rising Edge	2 - 21
	Rising Edge (Re-Trigger)	2 - 22
	Rising Edge (without Re-Trigger)	2 - 22
	Toggle	2 - 23
	Trigger (Either)	2 - 23
	Trigger (Fall)	2 - 24
	Trigger (Rise)	2 - 24
	Truth Table Operators	2 - 25
	Truth Table	2 - 25
	Truth Table (Exhaustive)	2 - 26
	Truth Table (Index)	2 - 26
3.	Library libimpl	3 - 27
	Arithmetic Operators	3 - 29
	Integer Division (Ceiling Rounding)	3 - 30
	Integer Division (Fix Rounding)	3 - 30
	Integer Division (Floor Rounding)	3 - 31
	Integer Division (Saturation)	3 - 31
	Integer Multiplication	3 - 32
	Integer Multiplication (Int16)	3 - 32
	Integer Multiplication (Uint16)	3 - 33
	Integer Multiplication (Int32)	3 - 33
	Integer Multiplication (Uint32)	3 - 33
	Integer Multiplication (Saturation)	3 - 34
	Integer Negation (Saturation)	3 - 34
	Integer Subtraction (Saturation)	3 - 35
	Integer Sum (Saturation)	3 - 35
	Comparison Operators	3 - 36
	Strictly Less Than	3 - 36

	Less Than or Equal	3 - 37
	Equal	3 - 37
	Different	3 - 38
	Strictly Greater Than	3 - 38
	Greater Than or Equal	3 - 39
	Bitshift and Bitwise Operators	3 - 40
	Bit Clear	3 - 40
	Bit Set	3 - 41
	Decrease LSB	3 - 41
	Extract Bit Range	3 - 42
	Increase LSB to Ceiling	3 - 42
	Increase LSB to Fix	3 - 43
	Increase LSB to Floor	3 - 43
	Shift Left	3 - 44
	Shift Right	3 - 44
4.	Library liblinear	4 - 45
	Filter and Transfer Function Operators	4 - 46
	Discrete Filter (Numerator scalar, Denominator deg. 1)	4 - 47
	Discrete Filter (Numerator scalar, Denominator deg. 1 normalized)	4 - 47
	Discrete Filter (Numerator scalar, Denominator deg. 2)	4 - 48
	Discrete Filter (Numerator scalar, Denominator deg. 2 normalized)	4 - 48
	Discrete Filter (Numerator scalar, Denominator deg. Ds)	4 - 49
	Discrete Filter (Numerator scalar, Denominator deg. Ds normalized)	4 - 50
	Discrete Filter (Numerator deg. 1, Denominator deg. 1)	4 - 51
	Discrete Filter (Numerator deg. 1, Denominator deg. 1 normalized)	4 - 51
	Discrete Filter (Numerator deg. 1, Denominator deg. 2)	4 - 52
	Discrete Filter (Numerator deg. 1, Denominator deg. 2 normalized)	4 - 52
	Discrete Filter (Numerator deg. Ns, Denominator deg. Ds)	4 - 53
	Discrete Filter (Numerator deg. Ns, Denominator deg. Ds normalized)	4 - 54

Discrete Filter (Numerator deg. Ns, Denominator deg. Ns)	4 - 55
Discrete Filter (Numerator deg. Ns, Denominator deg. Ns normalized)	4 - 56
Transfer Function (Numerator scalar, Denominator deg. 1)	4 - 56
Transfer Function (Numerator scalar, Denominator deg. 2)	4 - 57
Transfer Function (Numerator scalar, Denominator deg. Ds)	4 - 57
Transfer Function (Numerator deg. 1, Denominator deg. 2)	4 - 58
Transfer Function (Numerator deg. Ns, Denominator deg. Ds)	4 - 58
Linear Function Operators	4 - 59
Backlash	4 - 59
Derivative	4 - 60
Detect (Change)	4 - 60
Detect (Decrease)	4 - 61
Detect (Fall Negative)	4 - 61
Detect (Fall Non-Positive)	4 - 62
Detect (Increase)	4 - 62
Detect (Rise Non-Negative)	4 - 63
Detect (Rise Positive)	4 - 63
Filter (First Order Loop)	4 - 64
Gain	4 - 64
Hit Crossing (Either Direction)	4 - 65
Hit Crossing (Falling Direction)	4 - 65
Hit Crossing (Rising Direction)	4 - 66
Integrator (Backward)	4 - 66
Integrator (Forward)	4 - 67
Integrator (Trapezoidal)	4 - 68
Mean Cycle (2 values)	4 - 69
Mean Cycle (3 values)	4 - 69
Memory	4 - 70
Memory (Basic)	4 - 70

_	Library librath	
5.	Library libmath	5 - 71
	Arithmetic Operators	5 - 73
	Absolute Value	5 - 73
	Maximum (2 inputs)	5 - 74
	Maximum (3 inputs)	5 - 74
	Mean (2 inputs)	5 - 75
	Mean (3 inputs)	5 - 75
	Minimum (2 inputs)	5 - 76
	Minimum (3 inputs)	5 - 76
	Mod	5 - 77
	Polynomial	5 - 77
	Sign	5 - 78
	Conversion Operators	5 - 79
	Boolean to Float32	5 - 79
	Boolean to Float64	5 - 80
	Boolean to Int8	5 - 80
	Boolean to Int16	5 - 81
	Boolean to Int32	5 - 81
	Boolean to Int64	5 - 82
	Boolean to Uint8	5 - 82
	Boolean to Uint16	5 - 83
	Boolean to Uint32	5 - 83
	Boolean to Uint64	5 - 84
	Integer to Boolean	5 - 84
	Octet to Uint8	5 - 85
	Real to Boolean	5 - 85
	Rounding Function	5 - 86
	Rounding to Ceiling Function	5 - 86
	Rounding to Floor Function	5 - 87

Interval Operators	5 - 88
In Range (In-In)	5 - 88
In Range (In-Out)	5 - 89
In Range (Out-In)	5 - 89
In Range (Out-Out)	5 - 90
Vector and Matrix Operators	5 - 91
BuildArray	5 - 91
Determinant of Square Matrix (2x2)	5 - 92
Determinant of Square Matrix (3x3)	5 - 92
Determinant of Square Matrix (4x4)	5 - 93
Inverse of Square Matrix (2x2)	5 - 93
Inverse of Square Matrix (3x3)	5 - 94
Inverse of Square Matrix (4x4)	5 - 94
Matrix Addition	5 - 95
Matrix Difference	5 - 95
Matrix Product	5 - 96
Matrix Product by Vector	5 - 96
Scalar Product	5 - 97
Selector	5 - 97
Vector Addition	5 - 98
Vector Difference	5 - 98
Vector Product by Matrix	5 - 99
Library libmathext	6 - 101
Trigonometric and Power-Based Functions	6 - 102
Advanced Mathematical Operators	6 - 103
Integer Power for Integers	6 - 103
Integer Power for Reals	6 - 104
Inverse	6 - 104
Real Power for Reals	6 - 105

6.

	Square	6 - 105
	Conversion Operators	6 - 106
	Cartesian to Polar	6 - 106
	Cartesian to Spherical	6 - 107
	Celsius to Fahrenheit	6 - 107
	Degrees to Radians	6 - 108
	Fahrenheit to Celsius	6 - 108
	Polar to Cartesian	6 - 109
	Radians to Degrees	6 - 109
	Spherical to Cartesian	6 - 110
7 .	Library libpwlinear	7 - 111
	Piecewise Linear Functions	7 - 112
	CheckSlope	7 - 112
	Clock Counter	7 - 113
	Counter	7 - 113
	Dead Band (Asymmetrical)	7 - 114
	Dead Band (Symmetrical)	7 - 114
	Hysteresis (Falling)	7 - 115
	Hysteresis (Rising)	7 - 115
	Limiter (Asymmetrical)	7 - 116
	Limiter (Symmetrical)	7 - 116
	MaxReset	7 - 117
	MinReset	7 - 117
	Pre-load (Asymmetrical)	7 - 118
	Pre-load (Symmetrical)	7 - 118
	Quantizer	7 - 119
	Rate Limiter	7 - 119
	Look-Up Table Operators	7 - 120
	Interpolation 1D	7 - 120

	Interpolation 1D (Floor)	7 - 121
	Interpolation 2D	7 - 121
	Interpolation 2D (Floor)	7 - 122
	LUT 1D	7 - 122
	LUT 1D (Value above)	7 - 123
	LUT 1D (Value below)	7 - 124
	LUT 1D (Nearest value)	7 - 125
	LUT 2D	7 - 126
	LUT 2D (Value above)	7 - 127
	LUT 2D (Value below)	7 - 128
	LUT 2D (Nearest value)	7 - 129
	LUT 3D	7 - 130
	LUT 3D (Nearest value)	7 - 131
	Pre-LUT	7 - 132
	Pre-LUT (Direct)	7 - 132
3.	Library libsmlk	8 - 133
	Discrete Filter Operators	8 - 135
	Discrete Filter	8 - 135
	Discrete Filter (Normalized)	8 - 135
	Discrete-Time Integrator Operators	8 - 136
	Discrete-Time Integrator (Backward)	8 - 136
	Discrete-Time Integrator (Forward)	8 - 137
	Discrete-Time Integrator (Trapezoidal)	8 - 138
	Transfer Function (First Order)	8 - 139
	Transfer Function (Lead or Lag)	8 - 139
	Transfer Function (Real Zero)	8 - 140
	Arithmetic Operators	8 - 141
	Bias	8 - 141
	Inverse (int/int32)	8 - 142

Maximum (Resettable)	8 - 142
Minimum (Resettable)	8 - 143
Modulo (int/int32)	8 - 143
Modulo (real/float)	8 - 144
Polynomial	8 - 144
Remainder (real/float)	8 - 145
Sign (int/int32)	8 - 145
Time Operators	8 - 146
Decrement Time to Zero (int/int32)	8 - 146
Decrement Time to Zero (real/float)	8 - 147
Decrement to Zero	8 - 147
Sample Time (all math operations)	8 - 148
Unit Delay Enabled	8 - 149
Unit Delay Enabled (Init)	8 - 149
Unit Delay Enabled Resettable	8 - 150
Unit Delay Enabled Resettable (Init)	8 - 150
Unit Delay (Init)	8 - 151
Unit Delay Resettable	8 - 151
Unit Delay Resettable (Init)	8 - 152
Bitwise Logical Operators	8 - 153
Bit Clear	8 - 153
Bit Set	8 - 154
Bitwise AND	8 - 154
Bitwise Nand	8 - 155
Bitwise Nor	8 - 155
Bitwise NOT	8 - 156
Bitwise OR	8 - 156
Bitwise Exclusive OR	8 - 157
Bitwise Shift	8 - 157
Bitwise Shift Left	8 - 158

DIL I OLIGIBLE	
Bitwise Shift Right	8 - 158
Extract Bit Range	8 - 159
Conversion and Transformation Operators	8 - 160
Boolean to Boolean	8 - 160
Cartesian to Polar	8 - 161
Cartesian to Spherical	8 - 161
Celsius to Fahrenheit	8 - 162
Degrees to Radians	8 - 162
Enumeration to Integer	8 - 163
Fahrenheit to Celsius	8 - 163
Integer to Boolean	8 - 164
Integer to Enumeration	8 - 164
Polar to Cartesian	8 - 165
Radians to Degrees	8 - 165
Real to Boolean	8 - 166
Scalar to Boolean	8 - 166
Spherical to Cartesian	8 - 167
Flip-Flop Operators	8 - 168
Clock	8 - 168
DLatch	8 - 168
Flip-Flop D	8 - 169
Flip-Flop JK	8 - 169
Flip-Flop SR	8 - 170
Logical Operators	8 - 171
AND	8 - 171
Compare (all operations)	8 - 172
Compare Enumeration	8 - 173
Detect Change	8 - 174
Detect Decrease	8 - 174
Detect Falling Edge (negative)	8 - 175

Detect Falling Edge (non-positive)	8 - 175
Detect Increase	8 - 176
Detect Rising Edge (non-negative)	8 - 176
Detect Rising Edge (positive)	8 - 177
In Range (In-In)	8 - 177
In Range (In-Out)	8 - 178
In Range (Out-In)	8 - 178
In Range (Out-Out)	8 - 179
NOT	8 - 179
OR	8 - 180
Model Verification Operators	8 - 181
Assertion	8 - 181
Assertion (Inverse)	8 - 182
Check Bounds	8 - 182
Check Bounds (Extended)	8 - 183
Check Gap	8 - 183
Check Gap (Extended)	8 - 184
Check Gradient	8 - 184
Check Gradient (Extended)	8 - 185
Check Lower Bound	8 - 185
Check Lower Bound (Extended)	8 - 186
Check Upper Bound	8 - 186
Check Upper Bound (Extended)	8 - 187
Signal Routing Operators	8 - 188
If Then Else	8 - 188
Ignore First Input	8 - 189
Merge (2 inputs)	8 - 189
Merge (3 inputs)	8 - 190
Switch	8 - 190
Switch (GTT)	8 - 191

Switch (NEZ)	8 - 191
Switch Enumeration	8 - 192
Switch Enumeration (GTT)	8 - 192
Subsystem Operators	8 - 193
Trigger Either Edge	8 - 193
Trigger Either Edge (Extended)	8 - 194
Trigger Falling Edge	8 - 194
Trigger Falling Edge (Extended)	8 - 195
Trigger Rising Edge	8 - 195
Trigger Rising Edge (Extended)	8 - 196
Signal Generator Operators	8 - 197
Clock Generator	8 - 197
Ground (Boolean)	8 - 197
Ground (int/int32)	8 - 198
Ground (real/float)	8 - 198
Discontinuity Operators	8 - 199
Backlash	8 - 199
Dead Zone Dynamic	8 - 200
Rate Limiter	8 - 200
Rate Limiter Dynamic	8 - 201
Relay	8 - 201
Saturate Dynamic	8 - 202
Wrap To Zero	8 - 202
LUT, Pre-LUT and Interpolation Operators	8 - 203
LUT 1D	8 - 203
Pre-LUT2	8 - 204
Pre-LUT2 (Direct)	8 - 204
Interpolation1D2	8 - 205
Interpolation1D (Floor)	8 - 205

	Interpolation2D2	8 - 206
	Interpolation2D (Floor)	8 - 206
	Miscellaneous Operators	8 - 207
	Border Crossing Detection	8 - 207
	Counter (limited)	8 - 207
	Entry Detection	8 - 208
	Identity	8 - 208
	Inactive Cycles	8 - 209
	Inactive Time	8 - 209
	Quantizer	8 - 210
	Unit Delay (Helper)	8 - 210
	Width (Matrix)	8 - 211
	Width (Scalar)	8 - 211
	Width (Vector)	8 - 212
9.	Library libverif	9 - 213
	After Nth Tick	9 - 213
	Always After First Condition	9 - 214
	At Least N Ticks	9 - 215
	Has Never Been True	9 - 216
	Implies	9 - 217
	Implies Within N Ticks	9 - 218
IND	DEX	219

1 / Fundamentals about Libraries

This manual provides an exhaustive description of each SCADE Suite library with detailed operator description and important information. The most widely used functions or filters necessary when modeling applications are provided in SCADE Suite libraries.

- "Libraries and SCADE Suite Design Activities"
- <u>"Libraries and Model Implementation"</u>
- <u>"Libraries and Simulink Modeling Activities"</u>
- "Libraries and Formal Verification Activities"

The content of this manual is divided into chapters describing each library:

- libdigital
- <u>liblinear</u>
- libmathext
- libsmlk

• <u>libimpl</u>

- <u>libmath</u>
- <u>libpwlinear</u>
- libverif

For each library operator, any differences related to the library version in use in SCADE Suite projects are reported. For basic instructions or tips about SCADE Suite library management, please consult <u>"Managing Libraries"</u> on page 113 in *SCADE Suite User Manual*.

Libraries and SCADE Suite Design Activities

The libraries listed below are intended to facilitate design work. All the libraries distributed with SCADE Suite provide a set of operators which are commonly used in model design.

WHAT IS THE GENERIC FUNCTION OF OPERATORS IN FACH LIBRARY?

- libdigital contains digital operators that handle Boolean data (e.g., falling and rising edges, flip-flops, truth tables). Read details in <u>"Library libdigital"</u>.
- liblinear contains operators that compute linear functions or filters like derivative, gain, memories, or integrators. Read details in <u>"Library liblinear"</u>.
- **libmath** contains basic mathematical operators (*e.g.*, absolute value, rounding, mean, maximum) and operators for vectors and matrices. Read details in <u>"Library libmath"</u>.
- **libmathext** contains operators that compute trigonometric functions and power-based functions. Read details in <u>"Library libmathext"</u>.
- libpwlinear contains operators that compute piecewise linear functions or filters (clock counter, counter, dead bands, hysteresis, rate limiter, etc.) and look-up tables. Read details in <u>"Library libpwlinear"</u>.

WHAT IS THE GENERAL PURPOSE OF SCADE SUITE LIBRARIES?

SCADE Suite includes an extensive set of libraries with functions commonly used in software development. All SCADE Suite libraries can be modified and enriched. Users can also create, share, and reuse their own libraries between projects.

Note

Library functions are expressed in Scade language when it makes sense. Some are in C code, meaning they may be platform-dependent as libimpl and libmathext.

WHAT CAN I USE THEM FOR?

Most libraries contain mathematical functions and are highly generic. They can be useful in any application developed with SCADE Suite. Other libraries support more specific activities in SCADE Suite model-based design environment. For instance, libverif is needed to perform formal verification on SCADE Suite models.

WHERE CAN I FIND THEM IN MY DISTRIBUTION?

The set of libraries distributed with SCADE Suite is located in the following directory: <SCADESuiteInstallDirectory>\libraries

DISCLAIMER

Although every precaution has been taken when developing and testing the libraries, Ansys assumes no responsibility or liability for any errors that may be contained in the models or any damages resulting from the use of the libraries. If the libraries are used in a qualified / certified context, all documentation, verification, and validation activities requested by the Safety standard must be performed by the end user.

Libraries and Model Implementation

SCADE Suite models are independent from the target. Indeed, the implementation choice for Scade data types is made only when code is being built. If data types are different and known at model level, the implementation size of integers is needed; the libimpl library provides many possible implementations for integer types and functions.

WHAT IS THE GENERIC FUNCTION OF OPERATORS IN THIS LIBRARY?

 libimpl contains all standard integer operators (arithmetic, comparison, logical (bitwise, left/right shifting), time operators, type conversion, etc.) and types (unsigned and signed 8, 16, and 32 bits integers). For details, see <u>"Library libimpl"</u>.

Note

This library can easily be customized for specific target: The types are defined in the following header files: libimpl.h and macro_libimpl.h. The definitions of macro functions are contained in the macro_libimpl.h file. For SCADE Suite Simulator, conversion functions are defined in the libimpl.c file.

Libraries and Simulink Modeling Activities

When importing Simulink models into SCADE Suite, Simulink blocks are mapped, depending on their purpose, to Scade nodes using libsmlk, libmath, libdigital, liblinear, libpwlinear or libmathext libraries.

The *libsmlk* library is dedicated to support the correct translation of Simulink models into SCADE Suite models.

Note

The libsmlk library is available only if SCADE Suite Simulink® Importer is installed.

WHAT IS THE GENERIC FUNCTION OF OPERATORS IN THIS LIBRARY?

 libsmlk contains operators designed to reproduce the behavior of Simulink blocks with respect to SCADE Suite formalism. For details, see <u>"Library</u> libsmlk".

Libraries and Formal Verification Activities

Formal verification allows designers to check the correctness of their design. In SCADE Suite, Design Verifier enables extended debugging, non-regression proof and property verification without having to write verification tests.

The *libverif* library is dedicated to the formal verification of SCADE Suite models. It provides you with a set of library operators that are useful for expressing the properties to be verified in your models.

Note

The libverif library is available only if Design Verifier is installed.

WHAT IS THE GENERIC FUNCTION OF OPERATORS IN THIS LIBRARY?

 libverif contains verification operators designed to help you express properties (implies, etc.). Such operators are expressed as regular Scade nodes. For details, see <u>"Library libverif"</u>.

2 / Library libdigital

This library contains digital operators that handle Boolean data and a countdown counter. You can read the technical description of the library components by package:

- <u>"Digital Operators"</u> in digital package
- <u>"Truth Table Operators"</u> in truthtables package

Access the description of library operators in alphabetical order:

"Boolean Vector to Int8"

"Boolean Vector to Int16"

"Boolean Vector to Int32"

"Boolean Vector to Int64"

"Boolean Vector to Uint8"

"Boolean Vector to Uint16"

"Boolean Vector to Uint32"

<u>"Boolean Vector to Uint64"</u>

<u>"Count-Down"</u>

<u>"Either Edge"</u>

<u>"EntryDetect"</u>

"Falling Edge"

"Falling Edge (Re-Trigger)"

"Falling Edge (without Re-Trigger)"

"Flip-Flop JK"

"Flip-Flop Priority to Reset"

"Flip-Flop Priority to Set"

"Inactive Cycles"

"Inactive Time"

"Integer to Boolean Vector"

"Relay"

"Rising Edge"

"Rising Edge (Re-Trigger)"

"Rising Edge (without Re-Trigger)"

<u>"Toggle"</u>

"Trigger (Either)"

"Trigger (Fall)"

"Trigger (Rise)"

<u>"Truth Table"</u>

"Truth Table (Exhaustive)"

"Truth Table (Index)"

Digital Operators

Read the description of the following operators:

<u>"Boolean Vector to Int8"</u> <u>"Flip-Flop JK"</u>

<u>"Boolean Vector to Int16"</u> <u>"Flip-Flop Priority to Reset"</u>

<u>"Boolean Vector to Int32"</u> <u>"Flip-Flop Priority to Set"</u>

<u>"Boolean Vector to Int64"</u> <u>"Inactive Cycles"</u>

<u>"Boolean Vector to Uint8"</u> <u>"Inactive Time"</u>

"Boolean Vector to Uint16" "Integer to Boolean Vector"

<u>"Boolean Vector to Uint32"</u> <u>"Relay"</u>

<u>"Boolean Vector to Uint64"</u> <u>"Rising Edge"</u>

<u>"Count-Down"</u> <u>"Rising Edge (Re-Trigger)"</u>

<u>"Either Edge"</u> <u>"Rising Edge (without Re-Trigger)"</u>

<u>"EntryDetect"</u> <u>"Toggle"</u>

<u>"Falling Edge"</u> <u>"Trigger (Either)"</u>

<u>"Falling Edge (Re-Trigger)"</u> <u>"Trigger (Fall)"</u>

<u>"Falling Edge (without Re-Trigger)"</u> <u>"Trigger (Rise)"</u>

Boolean Vector to Int8

Symbol 2.1:

BV digital::BoolVect2Int8<<2>> Out

SCADE name	BoolVect2Int8
Package	digital
Function	Outputs the integer value computed from a vector of booleans BV interpreted as its Boolean representation.
Size parameters	Nbool
Inputs	BV: bool ^Nbool
Outputs	Out: int8
Comment	BV[0] is the highest bit, i.e., (BoolVect2Int([true,false])=2.

Boolean Vector to Int16

SCADE name	BoolVect2Int16
Package	digital
Function	Outputs the integer value computed from a vector of booleans BV interpreted as its Boolean representation.
Size parameters	Nbool
Inputs	BV: bool ^Nbool
Outputs	Out: int16
Comment	BV[0] is the highest bit, i.e., (BoolVect2Int([true,false])=2.

Boolean Vector to Int32

SCADE name	BoolVect2Int32
Package	digital
Function	Outputs the integer value computed from a vector of booleans BV interpreted as its Boolean representation.
Size parameters	Nbool
Inputs	BV: bool ^Nbool
Outputs	Out: int32
Comment	BV[0] is the highest bit, i.e., (BoolVect2Int([true,false])=2.

Boolean Vector to Int64

SCADE name	BoolVect2Int64
Package	digital
Function	Outputs the integer value computed from a vector of booleans BV interpreted as its Boolean representation.
Size parameters	Nbool
Inputs	BV: bool ^Nbool
Outputs	Out: int64
Comment	BV[0] is the highest bit, i.e., (BoolVect2Int([true,false])=2.

Boolean Vector to Uint8

SCADE name	BoolVect2Uint8
Package	digital
Function	Outputs the integer value computed from a vector of booleans BV interpreted as its Boolean representation.
Size parameters	Nbool
Inputs	BV: bool ^Nbool
Outputs	Out: uint8
Comment	BV[0] is the highest bit, i.e., (BoolVect2Int([true,false])=2.

Boolean Vector to Uint16

SCADE name	BoolVect2Uint16		
Package	ligital		
Function	Outputs the integer value computed from a vector of booleans BV interpreted as its Boolean representation.		
Size parameters	Size parameters Nbool		
Inputs	BV: bool ^Nbool		
Outputs	Out: uint16		
Comment	BV[0] is the highest bit, i.e., (BoolVect2Int([true,false])=2.		

Boolean Vector to Uint32

Symbol 2.7:

SCADE name	BoolVect2Uint32	
Package	ligital	
Function	utputs the integer value computed from a vector of booleans BV interpreted as its Boolean epresentation.	
Size parameters	Nbool	
Inputs	BV: bool ^Nbool	
Outputs	put: uint32	
Comment	BV[0] is the highest bit, <i>i.e.</i> , (BoolVect2Int([true,false])=2.	

Boolean Vector to Uint64

SCADE name	BoolVect2Uint64		
Package	digital		
Function	Outputs the integer value computed from a vector of booleans BV interpreted as its Boolean epresentation.		
Size parameters	ers Nbool		
Inputs	BV: bool ^Nbool		
Outputs	Out: uint64		
Comment	BV[0] is the highest bit, i.e., (BoolVect2Int([true,false])=2.		

Count-Down

Symbol 2.9:

SCADE name	count_down		
Package	ligital		
Function	eturns input N when Reset is true, otherwise, decrements the output by one at each cycle.		
Inputs	Reset: bool and N: 'T		
Outputs	cpt: 'T where 'T integer		
Comment	The count_down function does not "stop" at value 0; it decrements the count at each step, until Reset is true, even if the count is negative.		

Either Edge

Symbol 2.10:

SCADE name	EitherEdge		
Package	igital		
Function	etects all edges, rising or falling (i.e., true to false, and false to true transitions).		
Inputs	EE_Input: bool		
Outputs	EE_Output: bool		
Comment	Output is true during transition clock cycle. Output is initialized to false.		

EntryDetect

Symbol 2.11:

SCADE name	EntryDetect	
Package	ligital	
Function	etects entry into a range based on two Boolean inputs: one input indicates whether the gnal is outside the border and the other one whether the signal is at the border.	
Inputs	Outside: bool and OnTheBorder: bool	
Outputs	Entry: bool	

Falling Edge

Symbol 2.12:

SCADE name	FallingEdge		
Package	ligital		
Function	Detects a falling edge (i.e., true to false transition of Boolean input).		
Inputs	FE_Input: bool		
Outputs	FE_Output: bool		
Comment	Output is true during transition clock cycle. Output is initialized to false.		

Falling Edge (Re-Trigger)

Symbol 2.13:

SCADE name	FallingEdgeRetrigger		
Package	igital		
Function	Detects a falling edge (i.e., true to false transition of Boolean input).		
Inputs	FER_Input: bool		
Hidden inputs	NumberOfCycle:int		
Outputs	FER_Output: bool		
Comment	The output becomes true as soon as the transition is detected and remains unchanged during NumberOfCycle. Output is initialized to false. If another falling edge occurs while the output is true, it is detected.		

Falling Edge (without Re-Trigger)

Symbol 2.14:

SCADE name	allingEdgeNoRetrigger		
Package	tal		
Function	etects a falling edge (i.e., true to false transition of Boolean input).		
Inputs	ENR_Input: bool		
Hidden inputs	NumberOfCycle: 'T		
Outputs	FENR_Output: bool		
Comment	The output becomes true as soon as the transition is detected and remains unchange during NumberOfCycle. Output is initialized to false. If another falling edge occurs w the output is true, it is not detected.		

Flip-Flop JK

Symbol 2.15:

SCADE name	lipFlopJK		
Package	gital		
Function	asic JK flip-flop of Boolean values. See <u>Table 2.1</u> below.		
Inputs	et and Reset: bool		
Hidden inputs	Init: bool		
Outputs	FFJK_Output: bool		
Comment	t the first step, the Output takes the same value as Init, regardless of the values of Set and leset.		

Table 2.1: FlipFlopJK functional description

Set	Reset	FFJK_Output
false	false	FFJK_Output -1 (memorization)
false	true	false
true	false	true
true	true	not FFJK_Output -1 (memorization)

Flip-Flop Priority to Reset

Symbol 2.16:

SCADE name	FlipFlopReset
Package	digital
Function	Basic flip-flop of Boolean values with priority for reset. See <u>Table 2.2</u> below.
Inputs	Set and Reset: bool
Hidden inputs	Init: bool
Outputs	FFR_Output: bool
KCG pragma	Operator expansion
Comment	At the first step, the Output takes the same value as Init, regardless of the values of Set and Reset.

 Table 2.2: FlipFlopReset functional description

Set	Reset	FFR_Output
false	false	FFR_Output -1 (memorization)
false	true	false
true	false	true
true	true	false

Flip-Flop Priority to Set

Symbol 2.17:

SCADE name	FlipFlopSet
Package	digital
Function	Basic flip-flop of Boolean values with priority for set. See <u>Table 2.3</u> below.
Inputs	Set and Reset: bool
Hidden inputs	Init: bool
Outputs	FFS_Output: bool
KCG pragma	Operator expansion
Comment	At the first step, the Output takes the same value as Init, regardless of the values of Set and Reset.

 Table 2.3: FlipFlopSet functional description

Set	Reset	FFS_Output
false	false	FFS_Output -1 (memorization)
false	true	false
true	false	true
true	true	true

Inactive Cycles

SCADE name	InactiveCycles
Package	digital
Function	Gives the number of cycles since last time Cond was true. Each time Cond is true, the counter is reset to 0.
Inputs	Cond: bool
Outputs	DeltaCycles: int32

Inactive Time

SCADE name	InactiveTime
Package	digital
Function	Gives the time since last time Cond was true. Each time Cond is true, the counter is reset to 0.0. The TimeCycle input gives the length of a cycle.
Inputs	Cond: bool
Hidden inputs	TimeCycle: 'T where 'T is numeric
Outputs	DeltaT: 'T where 'T is numeric

Integer to Boolean Vector

Symbol 2.20: Int2Bool\vect<<3>>

SCADE name	Int2BoolVect
Package	digital
Function	Outputs a vector of booleans BV that is the boolean representation of the integer input, modulo 2^Nbool.
Size parameters	Nbool
Inputs	In: 'T where 'T is integer
Outputs	BV: bool ^Nbool
Comment	BV[0] is the highest bit, e.g., (Int2BoolVect<<2>>)([true,false])=2.

Relay

Symbol 2.21:

SCADE name	Relay
Package	digital
Function	Basic relay that generates discontinuous output values based on input.
Inputs	Input1: 'T where 'T is numeric
Hidden inputs	UpperLimit_On: 'T and LowerLimit_Off: 'T where 'T is numeric OutputWhenOn: 'T and OutputWhenOff: 'T where 'T is numeric
Outputs	Output1: 'T where 'T is numeric
Comment	 Initially, the relay is off. UpperLimit_On >= LowerLimit_Off. when off (i.e., output = OutputWhenOff), relay remains off unless the input reaches or exceeds the UpperLimit_On (i.e., input >= UpperLimit_On) when on (i.e., output = OutputWhenOn), relay remains on unless the input reaches or drops below LowerLimit_Off (i.e., input <= LowerLimit_Off).

Rising Edge

Symbol 2.22:

SCADE name	RisingEdge
Package	digital
Function	Detects a rising edge (i.e., false to true transition of Boolean input).
Inputs	RE_Input: bool
Outputs	RE_Output: bool
Comment	The output is true during the transition clock cycle. Output is initialized to false.

Rising Edge (Re-Trigger)

Symbol 2.23:

SCADE name	RisingEdgeRetrigger
Package	digital
Function	Detects a rising edge (i.e., false to true transition of Boolean input).
Inputs	RER_Input: bool
Hidden inputs	NumberOfCycle: 'T where 'T is integer
Outputs	RER_Output: bool
Comment	The output becomes true as soon as transition is detected and remains unchanged during NumberOfCycle. If another rising edge occurs while the output is true, it is detected. Output is initialized to false.

Rising Edge (without Re-Trigger)

Symbol 2.24:

SCADE name	RisingEdgeNoRetrigger
Package	digital
Function	Detects a rising edge (i.e., false to true transition of Boolean input).
Inputs	RENR_Input: b00l
Hidden inputs	NumberOfCycle: 'T where 'T is integer
Outputs	RENR_Output: bool
Comment	The output is set to true as soon as transition is detected and remains unchanged during NumberOfCycle. If another rising edge occurs while the output is true, it is not detected. Output is initialized to false.

Toggle

Symbol 2.25:

SCADE name	Toggle
Package	digital
Function	Stores the input value into On and Off states. When the input is true, On is true and Off is false. When the input is false, On is false and Off is true.
Inputs	T_Input: bool
Outputs	T_On and T_Off: bool
KCG pragma	Operator expansion
Comment	T_On always equals NOT T_Off.

Trigger (Either)

Symbol 2.26:

SCADE name	TriggerEither
Package	digital
Function	 Output is true if any of the following conditions is true: Input is 0 and was greater than 0 at previous cycle Input lower than 0 and was greater than 0 at previous cycle Input is lower than 0 and was equal to 0 on previous cycle, and Output was not already true at previous cycle Input is 0 and was lower than 0 at previous cycle Input greater than 0 and was lower than 0 at previous cycle Input is greater than 0 and was equal to 0 on previous cycle, and Output was not already true at previous cycle
Inputs	Input: 'T where 'T is numeric
Outputs	Output: bool

Trigger (Fall)

Symbol 2.27:

SCADE name	TriggerFall
Package	digital
Function	 Output is true if any of the following conditions is true: Input is 0 and was greater than 0 at previous cycle Input lower than 0 and was greater than 0 at previous cycle Input is lower than 0 and was equal to 0 on previous cycle, and Output was not already true at previous cycle
Inputs	Input: 'T where 'T is numeric
Outputs	Output: bool

Trigger (Rise)

Symbol 2.28:

SCADE name	TriggerRise
Package	digital
Function	Output is true if any of the following conditions is true: Input is 0 and was lower than 0 at previous cycle Input greater than 0 and was lower than 0 at previous cycle Input is greater than 0 and was equal to 0 on previous cycle, and Output was not already true at previous cycle
Inputs	Input: 'T where 'T is numeric
Outputs	Output: bool

Truth Table Operators

Read the description of the following operators:

- "Truth Table"
- "Truth Table (Exhaustive)"
- "Truth Table (Index)"

TYPES

This package of library operators includes the following type definition:

ThruthTableValues = enum {T, F, X}

Truth Table

Symbol 2.29:

SCADE name	TruthTable
Package	truthtables
Function	Implements a truth table. Outputs the element from ResultValues that corresponds to the first line of Ttable that matches Conditions.
Size parameters	Ncond and Nlines
Inputs	Conditions: bool ^Ncond ResultValues: 'T ^(Nlines + 1) Ttable: TruthTableValues ^Ncond ^Nlines
Outputs	Result: 'T
Comment	ResultValues[Nlines] is produced when no line matches. Element 'T' from Ttable matches true, 'F' matches false, 'X' matches both.

Truth Table (Exhaustive)

Symbol 2.30:

SCADE name	TruthTableExh
Package	truthtables
Function	Outputs the element fom ResultValues indexed exhaustively by the integer value computed from a vector of booleans BV interpreted as its boolean representation.
Size parameters	Nbool and Nres
Inputs	BV: bool ^Nbool ResultValues: 'T ^Nres
Outputs	Result: 'T
Comment	BV[0] is the highest bit. It is assumed that Nres = 2^Nbool. An "assume" in the operator checks that constraint.

Truth Table (Index)

Symbol 2.31:

SCADE name	TruthTableIdx
Package	truthtables
Function	Implements a truth table. Outputs the index of the first line of ${\tt Ttable}$ of ${\tt Nlines}$ lines that matches Conditions.
Size parameters	Ncond and Nlines
Inputs	Conditions: bool ^Ncond Ttable: TruthTableValues ^Ncond ^Nlines
Outputs	LineIdx: int16
Comment	Index Nlines is produced when no line matches. Element 'T' from Ttable matches true, 'F' matches false, 'X' matches both.

3 / Library libimpl

This library contains types and operators that support sized integers.

The libimpl library contains the following packages:

- **impl**: to handle operators that support all sized integer types defined in libimpl. These are called polymorphic operators.
- impls: to handle operators that are the monomorphic specializations of the polymorphic operators from package impl.

As there is no additional cost in memory or execution time using polymorphic operators, it is simpler to use the operators from the **impl** package. In case, users need monomorphic operators from **impls**, it is possible.

The impls_arithmetic, impls_comp, and impls_bitwise packages contain specializations for types int8, uint8, int16, uint16, int32, and uint32 of the polymorphic operators. These operators (more than 150) are named from the name of the polymorphic operator suffixed by 1 or 2 type identifier corresponding to the specialization.

Design Verifier and Implementation

The current version of Design Verifier for SCADE 6 does not support operators from libimpl (considered as any imported operators).

- <u>"Arithmetic Operators"</u>
- "Comparison Operators"
- <u>"Bitshift and Bitwise Operators"</u>

Access the description of library operators in alphabetical order:

"Equal" "Integer Multiplication (Int32)" "Integer Multiplication (Uint32)"

<u>"Extract Bit Range"</u> <u>"Integer Multiplication (Saturation)"</u>

"Greater Than or Equal" "Integer Negation (Saturation)"

"Increase LSB to Ceiling" "Integer Subtraction (Saturation)"

<u>"Increase LSB to Fix"</u> <u>"Integer Sum (Saturation)"</u>

<u>"Increase LSB to Floor"</u> <u>"Less Than or Equal"</u>

"Integer Division (Ceiling Rounding)" "Strictly Greater Than" "Integer Division (Fix Rounding)" "Strictly Less Than"

<u>"Integer Division (Floor Rounding)"</u> <u>"Shift Left"</u> <u>"Integer Division (Saturation)"</u> <u>"Shift Right"</u>

OVERFLOW

Overflow means that the result of an operation is too large in absolute value to be represented in the type of the result. The result is wrapped with respect to the type, meaning that the result of the operation is computed modulo the largest possible value for the type plus 1, namely, mod(max_type + 1). For example, the subtraction operation defined as iSub(<value=2>, <value=3>) overflows if the type of the result is uint8. Saturation is one method for preventing overflows, but saturation operators are less efficient. Saturating an operation may also lead to unexpected results such as instability of the model, etc. Any libimpl operator that can overflow has a saturated version to allow you to choose between versions.

Arithmetic Operators

The **libimpl** library contains all basic mathematical operators such as summation, subtraction, multiplication, division, modulo or unary minus, that allow handling sized integer data.

Note

For backward compatibility, all arithmetic operators defined in this library have as argument the following types: 'T1 and 'T2. Mixing signed and unsigned types is not supported. 'T1 and 'T2 must be of the same type.

For all operators, they can be int8, uint8, int16, uint16, int32, uint32.

Read the description of the following operators:

"Integer Division (Ceiling Rounding)"

"Integer Division (Fix Rounding)"

"Integer Division (Floor Rounding)"

"Integer Division (Saturation)"

"Integer Multiplication"

"Integer Multiplication (Int16)"

"Integer Multiplication (Uint16)"

"Integer Multiplication (Int32)"

"Integer Multiplication (Uint32)"

"Integer Multiplication (Saturation)"

"Integer Negation (Saturation)"

"Integer Subtraction (Saturation)"

"Integer Sum (Saturation)"

Integer Division (Ceiling Rounding)

Symbol 3.1:

SCADE name	iDivCeil
Function	Computes the division of integer inputs with ceiling rounding (Out1 = RoundCeil (In1/In2). Rounding always to upper integer value.
Inputs	In1: 'T1 and In2: 'T2, with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T1
Caution	Overflow if second operand is 0.

Integer Division (Fix Rounding)

Symbol 3.2:

SCADE name	iDivFix
Function	Computes the division of integer inputs with rounding toward zero (Out1 = (In1/In2).
Inputs	In1: 'T1 and In2: 'T2 , with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T1
Caution	Overflow if second operand is 0.

Integer Division (Floor Rounding)

SCADE name	iDivFloor
Function	Computes the division of integer inputs with floor rounding (Out1 = RoundFloor (In1/In2). Rounding always to lower integer value.
Inputs	In1: 'T1 and In2: 'T2, with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T1
Caution	Overflow if second operand is 0.

Integer Division (Saturation)

SCADE name	iDivSat
Function	Computes the division of integer inputs with saturation to avoid overflow. Implicit rounding is rounding toward zero (usual C integer division operation). (Out1 = (In1/In2) unless Out1 > max_int, then Out1 = max_int).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T1

Integer Multiplication

Symbol 3.5:

SCADE name	iMul
Function	Computes the multiplication of two integer inputs.
Inputs	In1: 'T1 and In2: 'T2, with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T2
Caution	Can overflow

Integer Multiplication (Int16)

Symbol 3.6:

SCADE name	iMul16
Function	Computes the multiplication of two int8 inputs and converts its output into int16.
Inputs	In1: 'T1 and In2: 'T2 , with 'T1 = 'T2 = int8
Outputs	Out1: imported int16

Integer Multiplication (Uint16)

Symbol 3.7:

SCADE name	iMul16U
Function	Computes the multiplication of two uint8 inputs and converts its output into uint16.
Inputs	In1: 'T1 and In2: 'T2 , with 'T1 = 'T2 = uint8
Outputs	Out1: imported uint16

Integer Multiplication (Int32)

Symbol 3.8:

SCADE name	iMul32
Function	Computes the multiplication of two int16 inputs and converts its output into int32.
Inputs	In1: 'T1 and In2: 'T2 , with 'T1 = 'T2 = int16
Outputs	Out1: imported int32

Integer Multiplication (Uint32)

Symbol 3.9:

SCADE name	iMul32U
Function	Computes the multiplication of two uint16 inputs and converts its output into uint32.
Inputs	In1: 'T1 and In2: 'T2 , with 'T1 = 'T2 = uint16
Outputs	Out1: imported uint32

Integer Multiplication (Saturation)

SCADE name	iMulSat
Function	Computes the saturated multiplication of two integer inputs to avoid overflows (if Out1 > max_int, then Out1 = max_int; if Out1 < min_int, then Out1 = min_int).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T1
Caution	If the operation overflows relatively to the input type (size and signed/unsigned), the result is the max of the type. If it overflows below the lower limit, the result is the min of the type.

Integer Negation (Saturation)

Symbol 3.11: - _____

SCADE name	iNegSat
TELINCTION	Computes the saturated negative of an integer input (if Out1 > max_int, then Out1 = max_int).
Inputs	In1: 'T1 , with 'T1 = int8, int16, or int32
Outputs	Out1: 'T1
Caution	Implemented only for signed types int8, int16 and int32. iNegSat(min_type) is saturated to max_type, the largest possible value for the type.

Integer Subtraction (Saturation)

Symbol 3.12:

SCADE name	iSubSat
Function	Subtracts an integer input from another with saturation (if Out1 > max_int, then Out1 = max_int; if Out1 < min_int, then Out1 = min_int).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T1
Caution	If the operation overflows relatively to the input type (size and signed/unsigned), the result is the max of the type. If it overflows below the lower limit, the result is the min of the type.

Integer Sum (Saturation)

Symbol 3.13:

SCADE name	iSumSat
Function	Computes the addition of two integer inputs with saturation (if Out1 > max_int, then Out1 = max_int; if Out1 < min_int, then Out1 = min_int).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 = 'T2 and 'T1, 'T2 as int8, int16, int32, uint8, uint16, or uint32 type
Outputs	Out1: 'T1
Caution	If the operation overflows relatively to the input type (size and signed/unsigned), the result is the max of the type. If it overflows below the lower limit, the result is the min of the type.

Comparison Operators

All comparison operators defined in this library have as argument the following types: 'T1 and 'T2. This allows mixing types of different sizes, but does not support mixing signed and unsigned types. Types 'T1 and 'T2 can be any type from int8, int16, int32, or any type from uint8, uint16, uint32.

Mixing different size of implementation types is allowed for efficiency reason: avoiding a cast in SCADE models to make the types match may save an intermediate variable in comparison to the implicit cast performed in C code.

Read the description of the following operators:

<u>"Strictly Less Than"</u> <u>"Different"</u>

<u>"Less Than or Equal"</u> <u>"Strictly Greater Than"</u>

<u>"Equal"</u> <u>"Greater Than or Equal"</u>

Strictly Less Than

Symbol 3.14:

SCADE name	iLess
Function	Compares two integer inputs to check whether the second one is strictly less than the first one and returns the corresponding Boolean data (if ln1 < ln2, then Out1 = true, else Out1 = false).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 and 'T2 equal to any type from (int8, int16, int32) or 'T1 and 'T2 equal to any type from (uint8, uint16, uint32)
Outputs	Out1: bool

Less Than or Equal

Symbol 3.15:

SCADE name	iLessEq
Function	Compares two integer inputs to check whether the second one is less than or equal to the first one and returns the corresponding Boolean data (if In1 <= In2, then Out1 = true, else Out1 = false).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 and 'T2 equal to any type from (int8, int16, int32) or 'T1 and 'T2 equal to any type from (uint8, uint16, uint32)
Outputs	Out1: bool

Equal

Symbol 3.16:

SCADE name	iEqual
Function	Compares equality between two integer inputs and returns the corresponding Boolean data (if In1 = In2, then Output = true, else output = false).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 and 'T2 equal to any type from (int8, int16, int32) or 'T1 and 'T2 equal to any type from (uint8, uint16, uint32)
Outputs	Out1: bool

Different

Symbol 3.17:

SCADE name	iDifferent
TELINCTION	Compares difference between two integer inputs and returns the corresponding Boolean data (if In1 != In2, then Output = true, else output = false).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 and 'T2 equal to any type from $\{int8, int16, int32\}$ or 'T1 and 'T2 equal to any type from $\{int8, int16, int32\}$
Outputs	Out1: bool

Strictly Greater Than

Symbol 3.18:

SCADE name	iGreater
Function	Compares two integer inputs to check whether the second one is strictly greater than the first one and returns the corresponding Boolean data (if In1 > In2, then Out1 = true, else Out1 = false).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 and 'T2 equal to any type from (int8, int16, int32) or 'T1 and 'T2 equal to any type from (uint8, uint16, uint32)
Outputs	Out1: bool

Greater Than or Equal

Symbol 3.19:

SCADE name	iGreaterEq
Function	Compares two integer inputs to check whether the second one is greater than or equal to the first one and returns the corresponding Boolean data (if In1 >= In2, then Out1 = true, else Out1 = false).
Inputs	In1: 'T1 and In2: 'T2, with 'T1 and 'T2 equal to any type from (int8, int16, int32) or 'T1 and 'T2 equal to any type from (uint8, uint16, uint32)
Outputs	Out1: bool

Bitshift and Bitwise Operators

All bitshift and bitwise operators defined in this library can have their first operand of any type from int8, uint8, int16, uint16, int32, or uint32. The second operand is a hidden parameter of type 'T2. It can be either:

1 Type "int" that is not an "implemented type". The objective is to use only literals and not variables of type int. A direct value can be set as a parameter from the graphical symbol.

Example: iShiftRight(_L1, 2). This literal value is interpreted as the type of the first operand, that is, implementation casts it to the type of the first operand. No overflow check is performed on this cast.

2 Same type as the first operand.

Read the description of the following operators:

<u>"Bit Clear"</u> <u>"Extract Bit Range"</u> <u>"Increase LSB to Floor"</u>

<u>"Bit Set"</u> <u>"Increase LSB to Ceiling"</u> <u>"Shift Left"</u> <u>"Decrease LSB"</u> <u>"Increase LSB to Fix"</u> <u>"Shift Right"</u>

Bit Clear

Symbol 3.20:

SCADE name	BitClear
Function	Returns the input where the bit at position Index was set to 0
Inputs	Input: 'T where 'T is unsigned
Hidden inputs	Index: 'T where 'T is unsigned
Outputs	Output: 'T where 'T is unsigned

Bit Set

Symbol 3.21:

SCADE name	BitSet
Function	Returns the input where the bit at position Index was set to 1
Inputs	Input: 'T where 'T is unsigned
Hidden inputs	Index: 'T where 'T is unsigned
Outputs	Output: 'T where 'T is unsigned

Decrease LSB

Symbol 3.22:

SCADE name	iDecLsb
Function	Computes a multiplication by a power of 2 (implemented as a logical bit shift to the left). Same behavior as <u>"Shift Left"</u> .
Inputs	In1: 'T1 , with 'T1 = int8, int16, int32, uint8, uint16 or uint32
Hidden inputs	Shift:uint8
Outputs	Out1: 'T1
Caution	Overflow if one of the bits shifted outside the binary representation of the type has value 1. Used for decreasing the scale of fixed-point data flow $(e.g., from lsb - 2 to lsb - 4)$ corresponds to a multiplication by a power of 2, implemented by a shift left.

Extract Bit Range

Symbol 3.23:

SCADE name	ExtractBitRange
Function	Takes the bits of Input from index Start to index End and returns a value that has exactly those bits (filling the beginning with zeros)
Inputs	Input: uint32
Hidden inputs	Start: uint32 End: uint32
Outputs	Output: uint32

Increase LSB to Ceiling

Symbol 3.24:

SCADE name	iIncLsbCeil
Function	Computes a division by a power of 2 (implemented as a logical bit shift to the right) with rounding toward ceiling.
Inputs	In1: 'T1 , with 'T1 = int8, int16, int32, uint8, uint16 or uint32
Hidden inputs	Shift:uint8
Outputs	Out1: 'T1
Caution	Used for increasing the scale of fixed-point data flow (e.g., from lsb -4 to lsb -2) corresponds to a division by a power of 2, implemented by a shift right.

Increase LSB to Fix

Symbol 3.25:

SCADE name	ilncLsbFix
Function	Computes a division by a power of 2 (implemented as a logical bit shift to the right) with rounding toward zero.
Inputs	In1: 'T1 , with 'T1 = int8, int16, int32, uint8, uint16, or uint32
Hidden inputs	Shift:uint8
Outputs	Out1: 'T1
Caution	Used for increasing the scale of fixed-point data flow (e.g., from lsb -4 to lsb -2) corresponds to a division by a power of 2, implemented by a shift right.

Increase LSB to Floor

Symbol 3.26:

SCADE name	ilncLsbFloor
Function	Computes a division by a power of 2 (implemented as a logical bit shift to the right) with rounding toward floor. Same operator behavior as "Shift Right".
Inputs	In1: 'T1 , with 'T1 = int8, int16, int32, uint8, uint16, or uint32
Hidden inputs	Shift:uint8
Outputs	Out1: 'T1
Caution	Used for increasing the scale of fixed-point data flow (e.g., from lsb -4 to lsb -2) corresponds to a division by a power of 2, implemented by a shift right.

Shift Left

Symbol 3.27:

SCADE name	iShiftLeft
Function	A logical bit shift to the left.
Inputs	In1: 'T1 , with 'T1 = int8, int16, int32, uint8, uint16, or uint32
Hidden inputs	Shift:uint8
Outputs	Out1: 'T1

Shift Right

Symbol 3.28:

SCADE name	iShiftRight
Function	A logical bit shift to the right.
Inputs	In1: 'T1 , with 'T1 = int8, int16, int32, uint8, uint16, or uint32
Hidden inputs	Shift:uint8
Outputs	Out1: 'T1
	Corresponds to an arithmetic division rounded to floor with no underflow check. Result of division can be rounded in different ways using other operators like <u>"Increase LSB to Ceiling"</u> , <u>"Increase LSB to Fix"</u> , or <u>"Increase LSB to Floor"</u> .

4 / Library liblinear

This library contains operators that compute linear functions, discrete filters, or discrete transfer functions. You can read the technical description of the library components by package:

- <u>"Filter and Transfer Function Operators"</u> in **filters** package
- <u>"Linear Function Operators"</u> in linear package

"Discrete Filter (Numerator deg. Ns, Denominator deg. Ds)"

Access the description of library operators in alphabetical order:

"Backlash" "Discrete Filter (Numerator deg. Ns, Denominator deg. Ds normalized)" "Derivative" "Discrete Filter (Numerator deg. Ns, Denominator deg. Ns)" "Detect (Change)" "Discrete Filter (Numerator deg. Ns, Denominator deg. Ns normalized)" "Detect (Decrease)" "Filter (First Order Loop)" "Detect (Fall Negative)" "Gain" "Detect (Fall Non-Positive)" "Hit Crossing (Either Direction)" "Detect (Increase)" "Hit Crossing (Falling Direction)" "Detect (Rise Non-Negative)" "Hit Crossing (Rising Direction)" "Detect (Rise Positive)" "Integrator (Backward)" "Discrete Filter (Numerator scalar, Denominator deg. 1)" "Integrator (Forward)" "Integrator (Trapezoidal)" "Discrete Filter (Numerator scalar, Denominator deg. 1 normalized)" "Mean Cycle (2 values)" "Discrete Filter (Numerator scalar, Denominator deg. 2)" "Mean Cycle (3 values)" "Discrete Filter (Numerator scalar, Denominator deg. 2 normalized)" "Discrete Filter (Numerator scalar, Denominator deg. Ds)" "Memory" "Discrete Filter (Numerator scalar, Denominator deg. Ds normalized)" "Memory (Basic)" "Discrete Filter (Numerator deg. 1, Denominator deg. 1)" "Transfer Function (Numerator scalar, Denominator deg. 1)" "Discrete Filter (Numerator deg. 1, Denominator deg. 1 normalized)" "Transfer Function (Numerator scalar, Denominator deg. 2)" "Discrete Filter (Numerator deg. 1, Denominator deg. 2)" "Transfer Function (Numerator scalar, Denominator deg. Ds)" "Discrete Filter (Numerator deg. 1, Denominator deg. 2 normalized)" "Transfer Function (Numerator deg. 1, Denominator deg. 2)"

"Transfer Function (Numerator deg. Ns, Denominator deg. Ds)"

Filter and Transfer Function Operators

Read the description of the following operators:

- "Discrete Filter (Numerator scalar, Denominator deg. 1)"
- "Discrete Filter (Numerator scalar, Denominator deg. 1 normalized)"
- "Discrete Filter (Numerator scalar, Denominator deg. 2)"
- "Discrete Filter (Numerator scalar, Denominator deg. 2 normalized)"
- "Discrete Filter (Numerator scalar, Denominator deg. Ds)"
- "Discrete Filter (Numerator scalar, Denominator deg. Ds normalized)"
- "Discrete Filter (Numerator deg. 1, Denominator deg. 1)"
- "Discrete Filter (Numerator deg. 1, Denominator deg. 1 normalized)"
- "Discrete Filter (Numerator deg. 1, Denominator deg. 2)"
- "Discrete Filter (Numerator deg. 1, Denominator deg. 2 normalized)"
- "Discrete Filter (Numerator deg. Ns, Denominator deg. Ds)"
- "Discrete Filter (Numerator deg. Ns, Denominator deg. Ds normalized)"
- "Discrete Filter (Numerator deg. Ns, Denominator deg. Ns)"
- "Discrete Filter (Numerator deg. Ns. Denominator deg. Ns normalized)"
- "Transfer Function (Numerator scalar, Denominator deg. 1)"
- "Transfer Function (Numerator scalar, Denominator deg. 2)"
- "Transfer Function (Numerator scalar, Denominator deg. Ds)"
- "Transfer Function (Numerator deg. 1, Denominator deg. 2)"
- "Transfer Function (Numerator deg. Ns, Denominator deg. Ds)"

Discrete Filter (Numerator scalar, Denominator deg. 1)

Symbol 4.1:

SCADE name	Filter01
Package	filters
Function	Discrete filter expressed as a Z-transform function: Num / (Den[0] + Den[1]*z^-1) Optimization of FilterND when numerator order is 0 and denominator order is 1.
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T Den: 'T ^2 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = (Num*InX)/Den[0].

Discrete Filter (Numerator scalar, Denominator deg. 1 normalized)

Symbol 4.2:

SCADE name	Filter01Norm
Package	filters
Function	Normalized discrete filter expressed as a Z-transform function: $Num / (1 + Den*z^-1)$ Optimization of FilterND when numerator order is 0 and denominator order is 1.
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T Den: 'T where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = Num*InX.

Discrete Filter (Numerator scalar, Denominator deg. 2)

SCADE name	Filter02
Package	filters
Function	Discrete filter expressed as a Z-transform function:
	$Num / (Den[0] + Den[1]*z^-1 + Den[2]*z^-2)$
	Optimization of FilterND when numerator order is 0 and denominator order is 2.
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T and Den: 'T ^3 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = (Num*InX)/Den[0].

Discrete Filter (Numerator scalar, Denominator deg. 2 normalized)

SCADE name	Filter02Norm
Package	filters
Function	Normalized discrete filter expressed as a Z-transform function: Num / (1 + Den[0]*z^-1 + Den[1]*z^-2) Optimization of FilterND when numerator order is 0 and denominator order is 2.
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T and Den: 'T ^2 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = Num*InX.

Discrete Filter (Numerator scalar, Denominator deg. Ds)

SCADE name	Filter0D
Package	filters
Function	Discrete filter expressed as a Z-transform function:
	Num / $(Den[0] + Den[1]*z^-1 + + Den[Ds - 1]*z^-(Ds - 1))$ Optimization of FilterND when numerator order is 0 and denominator order is Ds - 1.
Size parameters	Ds is denominator's array size (Ds > 2)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T and Den: 'T ^Ds where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = (Num*InX)/Den[0].

Discrete Filter (Numerator scalar, Denominator deg. Ds normalized)

Symbol 4.6:

SCADE name	Filter0DNorm
Package	filters
	Normalized discrete filter expressed as a Z-transform function:
Function	Num / (1 + Den[0]*z^-1 + + Den[Ds - 1]*z^-(Ds-2)) Optimization of FilterND when numerator order is 0 and denominator order is Ds.
Size parameters	Ds is denominator's array size (Ds > 2)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T and Den: 'T ^Ds where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = Num*InX.

Discrete Filter (Numerator deg. 1, Denominator deg. 1)

Symbol 4.7:

SCADE name	Filter11
Package	filters
Function	Discrete filter expressed as a Z-transform function:
	(Num[0] + Num[1]*z^-1) / (Den[0] + Den[1]*z^-1)
	Optimization of FilterND when numerator order is 1 and denominator order is 1.
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^2 and Den: 'T ^2 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = (Num*InX)/Den[0].

Discrete Filter (Numerator deg. 1, Denominator deg. 1 normalized)

Symbol 4.8:

SCADE name	Filter11Norm
Package	filters
Function	Normalized discrete filter expressed as a Z-transform function:
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^2 and Den: 'T where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = Num*InX.

Discrete Filter (Numerator deg. 1, Denominator deg. 2)

SCADE name	Filter12
Package	filters
Function	Discrete filter expressed as a Z-transform function:
	$(Num[0] + Num[1]*z^-1) / (Den[0] + Den[1]*z^-1 + Den[2]*z^-2)$
	Optimization of FilterND when numerator order is 1 and denominator order is 2.
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^2 and Den: 'T ^3 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = (Num*InX)/Den[0].

Discrete Filter (Numerator deg. 1, Denominator deg. 2 normalized)

SCADE name	Filter12Norm
Package	filters
Function	Normalized discrete filter expressed as a Z-transform function:
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^2 and Den: 'T ^2 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = Num*InX.

Discrete Filter (Numerator deg. Ns, Denominator deg. Ds)

SCADE name	FilterND
Package	filters
Function	Discrete filter expressed as a Z-transform function:
Size parameters	\mathtt{Ns} is the numerator array size and \mathtt{Ds} is the denominator array size (Ds > Ns > 1)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^Ns and Den: 'T ^Ds where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = (Num*InX)/Den[0].

Discrete Filter (Numerator deg. Ns, Denominator deg. Ds normalized)

Symbol 4.12:
$$\frac{Num[0]+...+Num[Ns-1]z^{-(Ns-1)-1}}{1+Den[0]\cdot z^{-s}+...+Den[Ds-1]z^{-Ds}}$$

$$\times \times$$

SCADE name	FilterNDNorm
Package	filters
Function	Normalized discrete filter expressed as a Z-transform function:
Size parameters	\mathtt{Ns} is the numerator array size and \mathtt{Ds} is the denominator array size (Ds => Ns > 1)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^Ns and Den: 'T ^Ds where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = Num*InX.

Discrete Filter (Numerator deg. Ns, Denominator deg. Ns)

Symbol 4.13:
$$\frac{Num[0] + ... + Num[Ns - 1] x^{-(N-1)}}{Den[0] + ... + Den[Ns - 1] x^{-(N-1)}}$$

SCADE name	FilterNN
Package	filters
Function	Discrete filter expressed as a Z-transform function: (Num[0] + Num[1]*z^-1 ++ Num[Ns - 1]*z^-(Ns - 1)) / (Den[0] + Den[1]*z^-1 + + Den[Ns - 1]*z^-(Ns - 1))
Size parameters	Ns is numerator's and denominator's array size (Ns > 1)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^Ns and Den: 'T ^Ns where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = (Num*InX)/Den[0].

Discrete Filter (Numerator deg. Ns, Denominator deg. Ns normalized)

$$-\frac{Num[0] + ... + Num[Ns - 1]x^{-(Ns-1)}}{1 + Den[0] + ... + Den[Ns - 2]x^{-(Ns-1)}}$$
×

SCADE name	FilterNNNorm
Package	filters
Function	Normalized discrete filter expressed as a Z-transform function:
Size parameters	Ns is numerator's array size and Ns - 1 is denominator's array size (Ns > 1)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^Ns and Den: 'T ^(Ns - 1) where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = Num*InX.

Transfer Function (Numerator scalar, Denominator deg. 1)

SCADE name	TransferFcn01
Package	filters
Function	Discrete transfer function expressed as a Z-transform function:
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T and Den: 'T ^2 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = 0.

Transfer Function (Numerator scalar, Denominator deg. 2)

SCADE name	TransferFcn02
Package	filters
Function	Discrete transfer function expressed as a Z-transform function:
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T and Den: 'T ^3 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = 0.

Transfer Function (Numerator scalar, Denominator deg. Ds)

SCADE name	TransferFcn0D
Package	filters
Function	Discrete transfer function expressed as a Z-transform function:
Size parameters	Ds is denominator's array size (Ds > 2)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T and Den: 'T ^Ds where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = 0.

Transfer Function (Numerator deg. 1, Denominator deg. 2)

Symbol 4.18:
$$\frac{Num[0].z + Num[1]}{Den[0].z^{2} + Den[1].z + Den[2]}$$

SCADE name	TransferFcn12
Package	filters
	Discrete transfer function expressed as a Z-transform function:
Function	(Num[0]*z + Num[1]) / (Den[0]*z^2 + Den[1]*z + Den[2]) Optimization of TransferFcnND when numerator order is 1 and the denominator order is 2.
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^2 and Den: 'T ^3 where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = 0.

Transfer Function (Numerator deg. Ns, Denominator deg. Ds)

Symbol 4.19:
$$-\frac{Num[0].x^{N-1} + ... + Num[Ns - 1]}{Den[0].x^{D-1} + ... + Den[Ds - 1]} \times \times$$

SCADE name	TransferFcnND
Package	filters
	Discrete transfer function expressed as a Z-transform function:
Function	
Size parameters	Ns is the numerator array size and Ds is the denominator array size (Ds > Ns > 1)
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^Ns and Den: 'T ^Ds where 'T is float
Outputs	Out: 'T where 'T is float
Comment	At first tick, Out = 0.

Linear Function Operators

Read the description of the following operators:

"Backlash" "Detect (Rise Non-Negative)" "Integrator (Backward)" "Derivative" "Detect (Rise Positive)" "Integrator (Forward)" "Detect (Change)" "Filter (First Order Loop)" "Integrator (Trapezoidal)" "Detect (Decrease)" "Gain" "Mean Cycle (2 values)" "Detect (Fall Negative)" "Hit Crossing (Either Direction)" "Mean Cycle (3 values)" "Detect (Fall Non-Positive)" "Hit Crossing (Falling Direction)" "Memory" "Detect (Increase)" "Memory (Basic)" "Hit Crossing (Rising Direction)"

Backlash

Symbol 4.20:

SCADE name	Backlash
Package	linear
Function	The behavior is as follows: if the input was decreasing before and is now increasing, the output remains constant until it has crossed deadband_width, and then it increases at the same rhythm as the input. And vice versa.
Inputs	input: 'T where 'T is float
Hidden inputs	deadband_width: 'T and initial_output: 'T where 'T is float
Outputs	output: 'T where 'T is float

Derivative

SCADE name	Derivative
Package	linear
	Computes a simple approximation of the input derivative:
Function	Output(0)=0.0
	Output(k)=(u(k)-u(k-1))/TimeCycle
Inputs	บ: 'T where 'T is float
Hidden inputs	TimeCycle: 'T where 'T is float
Outputs	Derivative: 'T where 'T is float
Caution	Very sensitive to noise

Detect (Change)

SCADE name	DetectChange
Package	linear
Function	The output is true if the value of the input is different from that of previous cycle
Inputs	Input: 'T where 'T is numeric
Hidden inputs	Init: 'T where 'T is numeric
Outputs	Output: bool

Detect (Decrease)

SCADE name	DetectDecrease
Package	linear
Function	The output is true if the value of the input is strictly lower than that of previous cycle
Inputs	Input: 'T where 'T is numeric
Hidden inputs	Init: 'T where 'T is numeric
Outputs	Output: bool

Detect (Fall Negative)

Symbol 4.24:

SCADE name	DetectFallNegative
Package	linear
Function	The output is true if the input is negative and was non-negative on previous cycle
Inputs	Input: 'T where 'T is numeric
Outputs	Output: bool

Detect (Fall Non-Positive)

Symbol 4.25:

SCADE name	DetectFallNonPositive
Package	linear
Function	The output is true if the input is non-positive and was positive on previous cycle
Inputs	Input: 'T where 'T is numeric
Outputs	Output: bool

Detect (Increase)

Symbol 4.26:

SCADE name	DetectIncrease
Package	linear
Function	The output is true if the value of the input is strictly greater than that of previous cycle
Inputs	Input: 'T where 'T is numeric
Hidden inputs	Init: 'T where 'T is numeric
Outputs	Output: bool

Detect (Rise Non-Negative)

SCADE name	DetectRiseNonNegative
Package	linear
Function	The output is true if the input is non-negative and was negative on previous cycle
Inputs	Input: 'T where 'T is numeric
Outputs	Output: bool

Detect (Rise Positive)

SCADE name	DetectRisePositive
Package	linear
Function	The output is true if the input is positive and was non-positive on previous cycle
Inputs	Input: 'T where 'T is numeric
Outputs	Output: bool

Filter (First Order Loop)

Symbol 4.29:

SCADE name	Filter1stOrderLoop
Package	linear
Function	Creates a customizable first order filter working on two cycles. At initialization, output equals Init. After initialization, output equals K1*Input(k)-k2*Output_R(k-1) where k stands for the current cycle.
Inputs	F10L_Input: 'T where 'T is numeric
Hidden inputs	K1: 'T - K2: 'T - Init: 'T where 'T is numeric
Outputs	F10L_Output: 'T where 'T is numeric
KCG pragma	Operator expansion
Comment	Filter created using transfer function: K1/(1+k2*z ⁻¹).

Gain

Symbol 4.30:

SCADE name	Gain
Package	linear
TELINCTION	Computes the value of an input multiplied by a set gain value. G_Output equals G_Input multiplied by Gain.
Inputs	G_Input: 'T
Hidden inputs	Gain: 'T
KCG pragma	Operator expansion
Outputs	G_Output: 'T where 'T is numeric

Hit Crossing (Either Direction)

Symbol 4.31:

SCADE name	HitCrossingEither
Package	linear
Function	Detects crossing of a specified value by a signal from either direction. Output is true when the input reaches the offset by growing or decreasing.
Inputs	HCE_Input: 'T
Hidden inputs	Offset: 'T where 'T is numeric
Outputs	HCE _Output: bool

Hit Crossing (Falling Direction)

Symbol 4.32:

SCADE name	HitCrossingFalling
Package	linear
Function	Detects crossing of a specified value by a falling signal. Output is true when the input reaches the offset by decreasing.
Inputs	HCF_Input: 'T
Hidden inputs	Offset: 'T where 'T is numeric
Outputs	HCF_Output: bool

Hit Crossing (Rising Direction)

SCADE name	HitCrossingRising
Package	linear
Function	Detects crossing of a specified value by a rising signal. Output is true when the input reaches the offset by growing.
Inputs	HCR_Input: 'T where 'T is numeric
Hidden inputs	Offset: 'T where 'T is numeric
Outputs	HCR _Output: bool

Integrator (Backward)

Symbol 4.34:

SCADE name	IntegralBackward
Package	linear
Function	Backward Euler discrete-time integrator. Computes the integral of Input using the backward rule. If the integral is outside of the <code>]LowLimit</code> , <code>Highlimit[</code> range, it is saturated to this range. If saturation is active, the <code>Saturation</code> output is <code>true</code> .
Inputs	Input: 'T where 'T is numeric
Hidden inputs	Reset: bool - HighLimit: 'T (upper bound of integral) - LowLimit: 'T (lower bound of integral) init: 'T - deltaT: 'T where 'T is numeric
Outputs	Output: 'T and Saturation: bool where 'T is numeric

Integrator (Forward)

Symbol 4.35:

SCADE name	IntegralForward
Package	linear
Function	Forward Euler discrete-time integrator. The IntegralForward operator computes the integral of Input using the forward rule. If the integral is outside of the <code>]LowLimit</code> , <code>HighLimit[</code> range, it is saturated to this range. If saturation is active, the <code>Saturation</code> output is <code>true</code> .
Inputs	Input: 'T where 'T is numeric and Reset: bool
Hidden inputs	HighLimit: 'T (upper bound of integral)- LowLimit: 'T (lower bound of integral) init: 'T - deltaT: 'T where 'T is numeric where 'T is numeric
Outputs	Output: 'T and Saturation: bool where 'T is numeric

Integrator (Trapezoidal)

Symbol 4.36:

SCADE name	IntegralTrapezoid
Package	linear
Function	Trapezoidal discrete-time integrator. The IntegralTrapezoid operator computes the integral of Input using the trapezoid rule. If the integral is outside of the <code>]LowLimit</code> , <code>HighLimit[</code> range, it is saturated to this range. If saturation is active, the <code>Saturation</code> output is <code>true</code> .
Inputs	Input: 'T where 'T is numeric and Reset: bool
Hidden inputs	HighLimit: 'T (upper bound of integral) - LowLimit: 'T (lower bound of integral) init: 'T - deltaT: 'T where 'T is numeric
Outputs	Output: 'T and Saturation: bool where 'T is numeric
Comment	Forward integrator $y(k) = y(k-1) + T/2 * (u(k) + u(k-1))$. Output is limited to the range [LowLimit, HighLimit]. Output is reset to zero at first cycle and when reset is true.

Mean Cycle (2 values)

SCADE name	MeanCycle2
Package	linear
	Computes the mean of two iterative values of the signal input.
Function	MeanOn2Step (0) = $\frac{(U(0) + U(0))}{2,0}$
	MeanOn2Step (k) = $\frac{\left(U(k) + U(k-1)\right)}{2,0}$
Inputs	U: 'T where 'T is float
Outputs	MeanOn2Step: 'T where 'T is float

Mean Cycle (3 values)

$$\frac{|(k) + |(k-1) + |(k-2)|}{3}$$

SCADE name	MeanCycle3
Package	linear
Function	Computes the mean of three iterative values of the signal input. MeanOn3Steps (0) = $\frac{\left(U(0) + U(0) + U(0)\right)}{3,0}$ MeanOn3Steps (1) = $\frac{\left(U(1) + U(0) + U(0)\right)}{3,0}$ MeanOn3Steps (k) = $\frac{\left(U(k) + U(k-1) + U(k-2)\right)}{3,0}$
Inputs	U: 'T where 'T is float
Outputs	MeanOn2Step: 'T where 'T is float

Memory

Symbol 4.39:

SCADE name	Memory
Package	linear
Function	Stores a value with resettable initial value. If Reset is true, then Out = InitVal , else if MemCond is true, Out = Input, else Out equals last stored value.
Inputs	M_Input: 'T where 'T numeric
Hidden inputs	R (Reset): bool - M (MemCond): bool - I (InitVal): 'T where 'T numeric
Outputs	Out: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Initialization condition overcomes memorization condition. For any value of MemCond, if Reset is true, Output equals InitVal.

Memory (Basic)

Symbol 4.40:

SCADE name	MemoryBasic
Package	linear
Function	Stores a value without resetting memory to its initial value. If Write condition is true, then Out = Input, else Out equals last output. Initial value is set to Init.
Inputs	BM_Input: 'T where 'T numeric
Hidden inputs	Init: 'T where 'T numeric and Write: bool
Outputs	Memorized: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	At initialization, if Write equals false, the output value and the memory equal Init. Init and BM_Input are often linked to the same source.

5 / Library libmath

This library contains basic mathematical operators and mathematical operations on vectors and matrices. You can read the technical description of the library components by package:

- <u>"Arithmetic Operators"</u> in math package
- "Conversion Operators" in math package
- <u>"Interval Operators"</u> in math package
- <u>"Vector and Matrix Operators"</u> in vect package

Access the description of library operators in alphabetical order:

"Absolute Value""Matrix Addition""Boolean to Float32""Matrix Difference""Boolean to Float64""Matrix Product"

"Boolean to Int8"

"Boolean to Int16"

"Boolean to Int16"

"Boolean to Int32"

"Boolean to Int64"

"Boolean to Uint8"

"Boolean to Uint16"

"Boolean to Uint16"

"Boolean to Uint16"

"Minimum (2 inputs)"

"Minimum (2 inputs)"

"Minimum (3 inputs)"

<u>"Boolean to Uint16"</u> <u>"Mod"</u>

"In Range (In-In)" "Rounding to Ceiling Function" "Rounding to Floor Function"

"In Range (Out-In)" "Scalar Product"

<u>"In Range (Out-Out)"</u> <u>"Selector"</u> <u>"Integer to Boolean"</u> <u>"Sign"</u>

<u>"Inverse of Square Matrix (2x2)"</u> <u>"Vector Addition"</u> <u>"Inverse of Square Matrix (3x3)"</u> <u>"Vector Difference"</u>

"Inverse of Square Matrix (4x4)" "Vector Product by Matrix"

Arithmetic Operators

The library contains several basic arithmetic operators that allow to handle integer or real values.

Read the description of the following operators:

"Absolute Value"

"Maximum (2 inputs)"

"Maximum (3 inputs)"

"Mean (3 inputs)"

"Mean (2 inputs)"

"Minimum (2 inputs)"

"Minimum (3 inputs)"

"Mod"

<u>"Polynomial"</u>

<u>"Sign"</u>

Absolute Value

Symbol 5.1:

SCADE name	Abs
Package	math
Function	Computes the absolute value of real or integer values.
Inputs	A_Input: 'T where 'T float
Outputs	A_Output: 'T where 'T float
KCG pragma	Operator expansion
Comment	If the input is positive or null then the output is equal to the input, else the output is equal to the opposite of input.

Maximum (2 inputs)

Symbol 5.2:

SCADE name	Max
Package	math
Function	Returns the maximum output from two real or integer values (if In1 >= In2, return In1, else return In2).
Inputs	I1 and I2: 'T where 'T numeric
Outputs	Ma_Output: 'T where 'T numeric
KCG pragma	Operator expansion

Maximum (3 inputs)

Symbol 5.3:

SCADE name	Max3
Package	math
Function	Returns the maximum output from three real or integer values (if $In1 >= In2$ AND $In1 >= In3$, return $In1$, else if $In2 >= In3$, return $In2$, else return $In3$).
Inputs	I1, I2, and I3: 'T where 'T numeric
Outputs	Ma3_Output: 'T where 'T numeric

Mean (2 inputs)

Symbol 5.4:

SCADE name	Mean
Package	math
Function	Computes the mean of two real inputs. (I1 + I2) / 2.0
Inputs	I1 and I2: 'T where 'T numeric
Outputs	Me_output: 'T where 'T numeric
KCG pragma	Operator expansion

Mean (3 inputs)

Symbol 5.5:

SCADE name	Mean3
Package	math
Function	Computes the mean of three real inputs. (I1 + I2 + I3) / 3.0
Inputs	I1 and I2: 'T where 'T numeric
Outputs	Me3_output: 'T where 'T numeric
KCG pragma	Operator expansion

Minimum (2 inputs)

Symbol 5.6:

SCADE name	Min
Package	math
Function	Returns the minimum output from two real or integer values (if In1 <= In2, return In1, else return In2).
Inputs	I1 and I2: 'T where 'T numeric
Outputs	Mi_Output: 'T where 'T numeric
KCG pragma	Operator expansion

Minimum (3 inputs)

Symbol 5.7:

SCADE name	Min3
Package	math
Function	Returns the minimum output from three real or integer values (if In1 <= In2 AND In1 <= In3, return In1, else if In2 <= In3, return In2, else return In3).
Inputs	I1, I2, and I3: 'T where 'T numeric
Outputs	Mi3_Output: 'T where 'T numeric

Mod

Symbol 5.8:

SCADE name	Mod
Package	math
Function	Computes the modulo function. If the divisor (modulus) is strictly equal to 0, a default value is returned instead.
Inputs	value: 'T where 'T numeric modulus: 'T where 'T numeric
Outputs	remain: 'T where 'T numeric

Polynomial

Symbol 5.9:

SCADE name	Polynomial
Package	math
Function	If C is the list $[C_{(N-1)}, C_{(N-2)},, C_0]$, the operator computes the following: $C_{(N-1)} \cdot X^{(N-1)} + C_{(N-2)} \cdot X^{(N-2)} + + C_0$
Inputs	x: 'T
Hidden inputs	C: 'T ^N where 'T numeric
Outputs	Y: 'T where 'T numeric

Sign

Symbol 5.10:

SCADE name	Sign
Package	math
Function	Extracts the sign (+ or -) of a real input and returns a real value from set {-1.0, 0.0, 1.0} based on the sign of the input. If input is positive, then output is equal to 1. If input is negative, then output is equal to -1. If input is 0, then output is equal to 0.
Inputs	S_Input: 'T where 'T numeric
Outputs	S_Output: 'T where 'T numeric
Caution	Relies on a strict equality between real numbers for the 0.0 value.

Conversion Operators

The **libmath** library contains operators that allow to convert some input values or round real numbers.

Read the description of the following operators:

"Boolean to Float32""Boolean to Uint8""Real to Boolean""Boolean to Float64""Boolean to Uint16""Rounding Function""Boolean to Int8""Boolean to Uint32""Rounding to Ceiling Function""Boolean to Int16""Boolean to Uint64""Rounding to Floor Function"

"Boolean to Int32" "Integer to Boolean"
"Boolean to Int64" "Octet to Uint8"

Boolean to Float32

Symbol 5.11:
$$-BTR_Input t = 1.0 BTR_Output - f = 0.0 TR_Output$$

SCADE name	BoolToFloat32
Package	math
Function	Converts a Boolean value into a real value. When the input is true, the output is equal to 1.0, otherwise it is equal to 0.0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: float32
KCG pragma	Operator expansion

Boolean to Float64

SCADE name	BoolToFloat64
Package	math
Function	Converts a Boolean value into a real value. When the input is true, the output is equal to 1.0, otherwise it is equal to 0.0.
Inputs	BTR_Input: bool
Outputs	BTR_Output: float64
KCG pragma	Operator expansion

Boolean to Int8

Symbol 5.13:
$$-\frac{1}{\text{BTI_Input}} \quad \frac{1}{f = 0} \quad \text{BTI_Output}$$

SCADE name	BoolToInt8
Package	math
Function	Converts a Boolean input into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: int8
KCG pragma	Operator expansion

Boolean to Int16

Symbol 5.14:
$$-BTI_{Input} \quad t = 1 \atop f = 0 BTI_{Output}$$

SCADE name	BoolToInt16
Package	math
Function	Converts a Boolean value into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: b00l
Outputs	BTI_Output: int16
KCG pragma	Operator expansion

Boolean to Int32

Symbol 5.15:
$$-\frac{1}{\text{BTI_Input}} \quad \frac{1}{f = 0} \quad \text{BTI_Output}$$

SCADE name	BoolToInt32
Package	math
Function	Converts a Boolean value into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: int32
KCG pragma	Operator expansion

Boolean to Int64

Symbol 5.16:
$$-BTI_{Input} \quad t = 1 \atop f = 0 BTI_{Output}$$

SCADE name	BoolToInt64
Package	math
Function	Converts a Boolean value into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: int64
KCG pragma	Operator expansion

Boolean to Uint8

SCADE name	BoolToUint8
Package	math
Function	Converts a Boolean value into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: uint8
KCG pragma	Operator expansion

Boolean to Uint16

Symbol 5.18:
$$-\frac{t}{f} = 0$$
 BTI_Output

SCADE name	BoolToUint16
Package	math
Function	Converts a Boolean value into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: uint16
KCG pragma	Operator expansion

Boolean to Uint32

Symbol 5.19:
$$-\frac{1}{\text{BTI_Input}} \quad \frac{1}{f = 0} \quad \text{BTI_Output}$$

SCADE name	BoolToUint32
Package	math
Function	Converts a Boolean value into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: uint32
KCG pragma	Operator expansion

Boolean to Uint64

Symbol 5.20:
$$-BTI_{Input} \quad t = 1 \atop f = 0 BTI_{Output}$$

SCADE name	BoolToUint64
Package	math
Function	Converts a Boolean value into an integer value. When the input is true, the output is equal to 1, otherwise the output is equal to 0.
Inputs	BTI_Input: bool
Outputs	BTI_Output: uint64
KCG pragma	Operator expansion

Integer to Boolean

Symbol 5.21:

SCADE name	IntToBool
Package	math
Function	Converts an integer value into a Boolean value. When the input is 0, the output is equal to false, otherwise the output is equal to true.
Inputs	ITB_Input: 'T where 'T is integer
Outputs	ITB_Output: bool
KCG pragma	Operator expansion

Octet to Uint8

Symbol 5.22:

SCADE	OctetToUint8
Package	math
Function	Interprets 8 bits (Boolean inputs) as an unsigned integer value between 0 and 255.
Inputs	b1, b2, b3, b4, b5, b6, b7, and b8: bool
Outputs	OTI_Output: uint8

Real to Boolean

Symbol 5.23:

SCADE name	RealToBool
Package	math
Function	Converts a real value into a Boolean value. When the input is 0.0, the output is equal to false, otherwise the output is equal to true.
Inputs	RTB_Input: 'T where 'T is float
Outputs	RTB_Output: bool
KCG pragma	Operator expansion
Caution	Relies on a strict equality between real numbers.

Rounding Function

Symbol 5.24:

SCADE name	Round
Package	math
Function	Rounds a real input. R_Output = x when R_Input [x-0.5, x+0.5 [
Inputs	R_Input: 'T where 'T is float
Outputs	R_Output: int32

Rounding to Ceiling Function

Symbol 5.25:

SCADE name	RoundCeil
Package	math
Function	Rounds a real input up to the next integer value. RC_Output = x when R_Input]x-1, x]
Inputs	RC_Input: 'T where 'T is float
Outputs	RC_Output: int32

Rounding to Floor Function

Symbol 5.26:

SCADE name	RoundFloor
Package	math
Function	Rounds a real input down to the next integer value. RF_Output = x when R_Input [x, x+1[
Inputs	RF_Input: 'T where 'T is float
Outputs	RF_Output: int32

Interval Operators

The **libmath** library contains operators that allow to compute various types of intervals between input values.

Read the description of the following operators:

"In Range (In-In)"
"In Range (In-Out)"
"In Range (Out-Out)"

In Range (In-In)

Symbol 5.27:

SCADE name	InRangeInIn
Package	math
Function	Returns a true output if the input belongs to the [A, B] range; otherwise it is false.
Inputs	IRII_Input: 'T where 'T numeric
Hidden inputs	A: 'T (lower border) and B: 'T (upper border) where 'T numeric
Outputs	IRII_Output: bool
KCG pragma	Operator expansion

In Range (In-Out)

Symbol 5.28:

SCADE name	InRangeInOut
Package	math
Function	Returns a true output if the input belongs to the [A , B [range; otherwise it is false.
Inputs	IRIO_Input: 'T where 'T numeric
inputs	Value in the [-MaximumValue ; MaximumValue] range.
Hidden inputs	A: 'T (lower border) and B: 'T (upper border) where 'T numeric
Outputs	IRIO_Output: bool
KCG pragma	Operator expansion

In Range (Out-In)

Symbol 5.29:

SCADE name	InRangeOutIn
Package	math
Function	Returns a true output if the input belongs to the] A , B] range; otherwise it is false.
Inputs	IROI_Input: 'T where 'T numeric
Hidden inputs	A: 'T (lower border) and B: 'T (upper border) where 'T numeric
Outputs	IROI_Output: bool
KCG pragma	Operator expansion

In Range (Out-Out)

Symbol 5.30:

SCADE name	InRangeOutOut
Package	math
Function	Returns a true output if the input belongs to the] A , B [range; otherwise it is false.
Inputs	IROO_Input: 'T where 'T numeric
Hidden inputs	A: 'T (lower border) and B: 'T (upper border) where 'T numeric
Outputs	IROO_Output: bool
KCG pragma	Operator expansion

Vector and Matrix Operators

The **libmath** library contains several basic operators that allow to handle vectors or matrices.

Read the description of the following operators:

"BuildArray"

"Determinant of Square Matrix (2x2)"

"Determinant of Square Matrix (3x3)"

"Determinant of Square Matrix (4x4)"

"Inverse of Square Matrix (2x2)"

"Inverse of Square Matrix (3x3)"

"Inverse of Square Matrix (4x4)"

"Matrix Addition"

"Matrix Difference"

"Matrix Product"

"Matrix Product by Vector"

"Scalar Product"

"Selector"

"Vector Addition"

"Vector Difference"

"Vector Product by Matrix"

BuildArray

Symbol 5.31:

SCADE name	BuildArray
Package	vect
Function	Builds an array of values where the first value is StartValue and every other value is "Increment"-higher than the previous one. For instance: if StartValue is 4.5 and Increment is 0.5, the array is [4.5, 5.0, 5.5, 6.0].
Hidden inputs	StartValue: 'T where 'T numeric Increment: 'T where 'T numeric
Outputs	Output: 'T ^N where 'T numeric

Determinant of Square Matrix (2x2)

Symbol 5.32: -A vect::Det2x2 De

SCADE name	Det2x2
Package	vect
Function	Computes the determinant of a square matrix of type 'T^2^2
Inputs	A: 'T ^2^2
Outputs	Det: 'T where 'T numeric

Determinant of Square Matrix (3x3)

Symbol 5.33: -A vect::Det3x3 Det

SCADE name	Det3x3
Package	vect
Function	Computes the determinant of a square matrix of type 'T^3^3
Inputs	A: 'T ^3^3
Outputs	Det: 'T where 'T numeric

Determinant of Square Matrix (4x4)

Symbol 5.34:

SCADE name	Det4x4
Package	vect
Function	Computes the determinant of a square matrix of type 'T^4^4
Inputs	A: 'T ^4^4
Outputs	Det: 'T where 'T numeric

Inverse of Square Matrix (2x2)

Symbol 5.35:

SCADE name	lnv2x2
Package	vect
Function	Inverses a square matrix of type 'T^2^2
Inputs	A: 'T^2^2 where 'T is float
Hidden Inputs	Epsilon: 'T where 'T is float
Outputs	InvA: 'T ^2^2 where 'T is float Error: bool
Comment	Error output is set to true when the determinant of the matrix is lower or equal to Epsilon input. It is assumed that Epsilon is a positive value.

Inverse of Square Matrix (3x3)

Symbol 5.36:

SCADE name	Inv3x3
Package	vect
Function	Inverses a square matrix of type 'T^3^3
Inputs	A: 'T^3^3 where 'T is float
Hidden Inputs	Epsilon: 'T where 'T is float
Outputs	InvA: 'T ^3^3 where 'T is float Error: bool
Comment	Error output is set to true when the determinant of the matrix is lower or equal to Epsilon input. It is assumed that Epsilon is a positive value.

Inverse of Square Matrix (4x4)

Symbol 5.37:

SCADE name	Inv4x4
Package	vect
Function	Inverses a square matrix of type 'T^4^4
Inputs	A: 'T^4^4 where 'T is float
Hidden Inputs	Epsilon: 'T where 'T is float
Outputs	InvA: 'T ^3^3 where 'T is float Error: bool
Comment	Error output is set to true when the determinant of the matrix is lower or equal to Epsilon input. It is assumed that Epsilon is a positive value.

Matrix Addition

Symbol 5.38:

SCADE name	MatAdd
Package	vect
Function	Computes the sum of two matrices of type 'T^n^m
Size parameters	m and n
Inputs	A: 'T ^n^m B: 'T ^n^m where 'T numeric
Outputs	C: 'T ^n^m

Matrix Difference

Symbol 5.39:

SCADE name	MatSub
Package	vect
Function	Computes the difference of two matrices of type 'T^n^m
Size parameters	m and n
Unnuts	A: 'T ^n^m B: 'T ^n^m where 'T numeric
Outputs	C: 'T ^n^m

Matrix Product

Symbol 5.40:

1 Mat Prod <<2, 2, 3>>

SCADE name	MatProd		
Package	vect		
Function	Computes the matrix product A*B, matrixes (m,n) implemented as 'T^n^m		
Size parameters	m, n, and p		
Inputs	A: 'T ^n^m B: 'T ^p^n where 'T numeric		
Outputs	C: 'T ^p^m		

Matrix Product by Vector

Symbol 5.41:

SCADE name	MatVectProd	
Package	vect	
Function	Computes the product of a matrix by a vector, matrix (m,n) implemented as 'T^n^m	
Size parameters	m and n	
Unnuts	A: 'T ^n^m V: 'T ^n where 'T numeric	
Outputs	R: 'T ^m	

Scalar Product

Symbol 5.42:

SCADE name	ScalProd			
Package	vect			
Function	Computes the scalar product of vectors V and W:			
diction	SP = V[0]*W[0]++V[N-1]*W[N-1]			
Size parameters	n			
Inputs	v: 'T ^n			
pats	w: 'T ^n where 'T numeric			
Outputs	SP: 'T			
KCG pragma	Operator expansion			

Selector

Symbol 5.43:

SCADE name	Selector
Package	vect
Function	Takes an array Input of size SrcSize and outputs an array of size DstSize where the contents are the elements of the input array at the indices given by Indices. If any of the Indices is outside of the range, the value Default is set in the output array instead.
Inputs	Input: 'T ^SrcSize where 'T numeric Indices: 'I where 'I integer
Hidden inputs	Default: 'T where 'T numeric
Outputs	Output: 'T ^DstSize where 'T numeric

Vector Addition

Symbol 5.44:

SCADE name	VectAdd			
Package	vect			
Function	Computes the addition of two vectors of type 'T^n			
Size parameters	n			
Unnuts	บ: 'T ^n V: 'T ^n where 'T numeric			
Outputs	w: 'T ^n			

Vector Difference

Symbol 5.45:

SCADE name	VectSub			
Package	vect			
Function	Computes the difference of two vectors of type 'T^n			
Size parameters	s n			
Unnuts	บ: 'T ^n V: 'T ^n where 'T numeric			
Outputs	w: 'T ^n			

Vector Product by Matrix

Symbol 5.46:

SCADE name	VectMatProd			
Package	vect			
Function	Computes the product of a vector by a matrix, matrix (m,n) implemented as 'T^n^m			
Size parameters	m and n			
Unputs	v: 'T ^m A: 'T ^n^m where 'T numeric			
Outputs	R: 'T ^n			

6 / Library libmathext

This library contains trigonometric functions, power-based functions, as well as some advanced functions. All C macro functions necessary for this library are defined in macro_libmathext32.h and macro_libmathext64.h files located under SCADE/libraries/SC65/libmathext.

Note

Depending on the target compiler, you must modify this file.

- <u>"Trigonometric and Power-Based Functions"</u>
- <u>"Advanced Mathematical Operators"</u>
- "Conversion Operators"

Trigonometric and Power-Based Functions

All operators corresponding to these functions are provided for a single output.

Symbol 6.1:

SCADE name	See below				
Package	mathext				
	<mathfunction></mathfunction>	SCADE name	<mathfunction></mathfunction>	SCADE name	
	cos (x)	CosR	atan2 (x)	Atan2R	
	sin (x)	SinR	acosh (x)	AcoshR	
	tan (x)	TanR	asinh (x)	AsinhR	
	cosh (x)	CoshR	atanh (x)	AtanhR	
Function	sinh (x)	SinhR	In (x)	LnR	
	tanh (x)	TanhR	e ^x	ExpR	
	acos (x)	AcosR	log (x)	LogR	
	asin (x)	AsinR	\sqrt{x}	SqrtR	
	atan (x)	AtanR	10 ^x	TenPowR	
		HypotR	(sin(x), cos(x))	SinCosR	
lanuto	Input1: 'T				
Inputs	Input1 and Input2: 'T for Atan2R HypotR_I1 and HypotR_I2: 'T for HypotR where 'T is float				
	Output1: 'T				
Outputs	Output1 and Output2: 'T for SinCosR				
	HypotR_O: 'T for HypotR where 'T is float				
Comment	Behavior may vary depending on compiler math libraries.				

Advanced Mathematical Operators

The **libmath** library contains advanced mathematical functions that allow to handle integer and/or real values.

Read the description of the following operators:

"Integer Power for Integers"

"Real Power for Reals"

"Integer Power for Reals"

"Square"

"Inverse"

Integer Power for Integers

Symbol 6.2:

SCADE name	PowerI	
Package	mathext	
Function	P_Ouput equals P_Input powered to Power.	
HJENENGENCIES	C macro defined in macro_libmathext32.h and macro_libmathext64.h files under SCADE/libraries/SC65/libmathext	
Inputs	P_Input: int32 and Power: int32	
Outputs	P_Output: int32	

Integer Power for Reals

Symbol 6.3:

SCADE name	PowerR		
Package	mathext		
Function	P_Ouput equals P_Input powered to Power.		
Hijehendendies	C macro defined in macro_libmathext32.h and macro_libmathext64.h files under SCADE/libraries/SC65/libmathext		
Inputs	P_Input: 'T and Power: int32 where 'T is float		
Outputs	P_Output: 'T where 'T is float		

Inverse

Symbol 6.4:

SCADE name	Inv	
Package	nathext	
Function	Computes the reciprocal of a real or int number to return a real output	
Inputs	Inv_In: 'T where 'T is float	
Outputs	Inv_Out: 'T where 'T is float	
Caution	If Inv_In equals 0, division by zero.	

Real Power for Reals

Symbol 6.5:

SCADE name	PowerRR
Package	mathext
Function	P_Ouput equals P_Input powered to Power, Power being a real. It is assumed that: "P_Input > 0" or "(P_Input == 0 && Power > 0)"
Dependencies	C macro defined in macro_libmathext32.h and macro_libmathext64.h files under SCADE/libraries/SC65/libmathext
Inputs	P_Input: 'T and Power: 'T where 'T is float
Outputs	P_Output: 'T where 'T is float
Comment	According to compiler and function. SCADE simulator checks that P_input is strictly positive, or if null that Power is strictly positive. If it is not the case (i.e., P_input is negative), SCADE Simulator raises an exception.

Square

Symbol 6.6:

SCADE name	Square
Package	mathext
Function	Computes the square value of real or integer numbers.
Inputs	Square_In: 'T where 'T numeric
Outputs	Square_Out: 'T

Conversion Operators

The **libmathext** library contains conversion functions.

Read the description of the following operators:

<u>"Cartesian to Polar"</u> <u>"Fahrenheit to Celsius"</u>

<u>"Cartesian to Spherical"</u> <u>"Polar to Cartesian"</u>

<u>"Celsius to Fahrenheit"</u> <u>"Radians to Degrees"</u>

<u>"Degrees to Radians"</u> <u>"Spherical to Cartesian"</u>

Cartesian to Polar

Symbol 6.7:

SCADE name	CartesianToPolar
Package	libmathext
Function	Conversion from Cartesian coordinates (x,y) into polar coordinates
Inputs	x: 'T and y: 'T where 'T is float
Outputs	r: 'T and theta: 'T where 'T is float
KCG pragma	Operator expansion

Cartesian to Spherical

Symbol 6.8:

SCADE name	CartesianToSpherical
Package	libmathext
Function	Conversion from Cartesian coordinates (x,y,z) into spherical coordinates
Inputs	x: 'T , y: 'T, and z: 'T where 'T is float
Outputs	r: 'T, theta: 'T, and phi: 'T where 'T is float
KCG pragma	Operator expansion

Celsius to Fahrenheit

Symbol 6.9:

SCADE name	CelsiusToFahrenheit
Package	libmathext
Function	Conversion from Celsius degrees to Fahrenheit degrees
Inputs	Celsius: 'T where 'T is float
Outputs	Fahrenheit: 'T where 'T is float
KCG pragma	Operator expansion

Degrees to Radians

Symbol 6.10: - Degrees D2R Radians

SCADE name	DegreesToRadians
Package	libmathext
Function	Conversion from degrees to radians
Inputs	Degrees: 'T where 'T is float
Outputs	Radians: 'T where 'T is float
KCG pragma	Operator expansion

Fahrenheit to Celsius

Symbol 6.11: - Fabreshelt F2C Celcius

SCADE name	FahrenheitToCelsius
Package	libmathext
Function	Conversion from Fahrenheit degrees to Celsius degrees
Inputs	Fahrenheit: 'T where 'T is float
Outputs	Celsius: 'T where 'T is float
KCG pragma	Operator expansion

Polar to Cartesian

Symbol 6.12:

SCADE name	PolarToCartesian
Package	libmathext
Function	Conversion from polar coordinates (r,e) into Cartesian coordinates
Inputs	r: 'T and theta: 'T where 'T is float
Outputs	x: 'T and y: 'T where 'T is float
KCG pragma	Operator expansion

Radians to Degrees

Symbol 6.13:

SCADE name	RadiansToDegrees
Package	libmathext
Function	Conversion from radians to degrees
Inputs	Radians: 'T where 'T is float
Outputs	Degrees: 'T where 'T is float
KCG pragma	Operator expansion

Spherical to Cartesian

SCADE name	SphericalToCartesian
Package	libmathext
Function	Conversion from spherical coordinates $(r_{,\theta}, \phi)$ into Cartesian coordinates
Inputs	r: 'T, theta: 'T, and phi: 'T where 'T is float
Outputs	x: 'T, y: 'T, and z: 'T where 'T is float
KCG pragma	Operator expansion

7 / Library libpwlinear

This library contains operators that compute piecewise linear functions and LookUp Table operations. You can read the technical description of the library components by package:

- <u>"Piecewise Linear Functions"</u> in **pwlinear** package
- <u>"Look-Up Table Operators"</u> in lut package

Access the description of library operators in alphabetical order:

"CheckSlope"

"Clock Counter"

<u>"Counter"</u>

"Dead Band (Asymmetrical)"

"Dead Band (Symmetrical)"

"Hysteresis (Falling)"

"Hysteresis (Rising)"

"Interpolation 1D"

"Interpolation 1D (Floor)"

"Interpolation 2D"

"Interpolation 2D (Floor)"

"Limiter (Asymmetrical)"

"Limiter (Symmetrical)"

"LUT 1D"

"LUT 1D (Value above)"

"LUT 1D (Value below)"

"LUT 1D (Nearest value)"

"LUT 2D"

"LUT 2D (Value above)"

"LUT 2D (Value below)"

"LUT 2D (Nearest value)"

<u>"LUT 3D"</u>

"LUT 3D (Nearest value)"

<u>"MaxReset"</u>

"MinReset"

<u>"Pre-load (Asymmetrical)"</u>

"Pre-load (Symmetrical)"

"Pre-LUT"

"Pre-LUT (Direct)"

"Quantizer"

"Rate Limiter"

Piecewise Linear Functions

The **libpwlinear** library contains several basic operators that compute piecewise linear functions.

Read the description of the following operators:

<u>"CheckSlope"</u> <u>"Hysteresis (Falling)"</u> <u>"MinReset"</u>

<u>"Dead Band (Asymmetrical)"</u> <u>"Limiter (Symmetrical)"</u> <u>"Quantizer"</u>
<u>"Dead Band (Symmetrical)"</u> <u>"MaxReset"</u> <u>"Rate Limiter"</u>

CheckSlope

Symbol 7.1:

SCADE name	CheckSlope
Package	pwlinear
Function	Returns true at first cycle if the difference between the value of Input and that of previous cycle is greater than Max (in absolute value)
Inputs	Input: 'T where 'T numeric
Hidden inputs	Max: T where 'T numeric
Outputs	Output: bool

Clock Counter

Symbol 7.2:

SCADE name	ClockCounter
Package	pwlinear
Function	Basic counter. Increments the output by one at each cycle. At initialization, or if Reset equals true, output is set to 0.
Inputs	Reset: bool
Outputs	Count: int32

Counter

Symbol 7.3:

SCADE name	Counter
Package	pwlinear
Function	The output increments at each cycle by Incr. At initialization or if Reset equals true, the output is set to 0.
Inputs	Incr: 'T where 'T numeric
Hidden inputs	Reset: bool
Outputs	Count: 'T where 'T numeric

Dead Band (Asymmetrical)

Symbol 7.4:

SCADE name	DeadBandUnSymmetrical
Package	pwlinear
Function	Asymmetrical deadband. Keeps output equal to 0.0 as long as input is in [lower tolerance, upper tolerance] range. When input reaches either limit, output is equal to input minus corresponding limit.
Inputs	DBUS_Input: 'T where 'T numeric
Hidden inputs	LowTol: 'T and HiTol: 'T where 'T numeric
Outputs	DBUS_Output: 'T where 'T numeric
Comment	For a correct behavior, Hitol must be larger than LowTol.

Dead Band (Symmetrical)

Symbol 7.5:

SCADE name	DeadBandSymmetrical
Package	pwlinear
Function	Basic symmetrical deadband. Keeps output equal to 0.0 as long as input is within [-Tolerance, +Tolerance] range. Before the lower bound, output is equal to the input plus the tolerance; after the higher bound, it is equal to input minus tolerance.
Inputs	DBS_Input: 'T where 'T numeric
Hidden inputs	Tolerance: 'T where 'T numeric
Outputs	DBS_Output: 'T where 'T numeric
Comment	For a correct behavior, Tolerance must be positive.

Hysteresis (Falling)

Symbol 7.6:

SCADE name	FallingHysteresis
Package	pwlinear
Function	Detects with hystererisis if the input is above a threshold. Returns a Boolean value (if FH_Input < LL, then output is true, else if FH_Input > UL, then output is false, else output equals previous output).
Inputs	LL (Lower limit), UL (Upper limit), and FH_Input: 'T where 'T numeric
Hidden inputs	Init: bool
Outputs	FH_Output: bool
Comment	On first step, output equals Init if (LL <= FH_Input <= UL). For a correct behavior, UL must be larger than LL.

Hysteresis (Rising)

Symbol 7.7:

SCADE name	RisingHysteresis
Package	pwlinear
Function	Detects with hysteresis if the input is below a threshold. Returns a Boolean value (if A > UL, then output is true, else if A < LL, then output is false, else output equals previous output).
Inputs	A, UL (Upper limit), and LL (Lower limit): 'T where 'T numeric
Hidden inputs	Init: bool
Outputs	s: bool
Comment	On first step, output equals Init if (LL <= A <= UL). For a correct behavior, UL must be larger than LL.

Limiter (Asymmetrical)

Symbol 7.8:

SCADE name	LimiterUnSymmetrical
Package	pwlinear
Function	Asymmetrical limiting band with specified upper and lower limits, not necessarily including 0. If the input is lower than L, the output is L; if the input is greater than H, the output is H; otherwise the output is equal to the input.
Inputs	LUS_Input: 'T where 'T numeric
Hidden inputs	Lowlimit: 'T and HighLimit: 'T where 'T numeric
Outputs	LUS_Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	For a correct behavior, HighLimit must be larger than LowLimit.

Limiter (Symmetrical)

Symbol 7.9:

SCADE name	LimiterSymmetrical
Package	pwlinear
Function	Basic symmetrical limiting band for some arbitrary values, not necessarily 0. Let's call L the value (origin - tolerance) and U the value (origin + tolerance). If the input is lower than L, the output is L; if the input is greater than U, the output is U; if not output is equal to the input.
Inputs	LS_Input: 'T where 'T numeric
Hidden inputs	BandOrigin: 'T and Tolerance: 'T where 'T numeric
Outputs	LS_Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	For a correct behavior, Tolerance should be positive.

MaxReset

Symbol 7.10:

SCADE name	MaxReset
Package	pwlinear
Function	When Reset is true and before Init, Output is set to Init. Whenever Input is greater than the previous Output, Output is set to Input.
Inputs	Input: 'T where 'T numeric Reset: bool
Hidden inputs	Init: 'T where 'T numeric
Outputs	Output: 'T where 'T numeric

MinReset

Symbol 7.11:

SCADE name	MinReset
Package	pwlinear
Function	When Reset is true and before Init, Output is set to Init. Whenever Input is lower than the previous Output, Output is set to Input.
Inputs	Input: 'T where 'T numeric Reset: bool
Hidden inputs	Init: 'T where 'T numeric
Outputs	Output: 'T where 'T numeric

Pre-load (Asymmetrical)

Symbol 7.12:

SCADE name	PreLoadUnSymmetrical
Package	pwlinear
Function	Asymmetrical preload with specified offset when negative or positive, and slope. The output is equal to (input*Slope)+PosOffset if the input is positive or zero, otherwise equal to (input*Slope)+NegOffset if the input is negative.
Inputs	PLUS_Input: 'T where 'T numeric
Hidden inputs	NegOffset: 'T, PosOffset: 'T, and Slope: 'T
Outputs	PLUS_Output: 'T where 'T numeric
KCG pragma	Operator expansion

Pre-load (Symmetrical)

Symbol 7.13:

SCADE name	PreLoadSymmetrical
Package	pwlinear
Function	Basic symmetrical preload with specified offset and slope. The output is equal to (input*slope) + offset if the input is strictly positive, otherwise the output is equal to (input * slope) - offset.
Inputs	PLS_Input: 'T where 'T numeric
Hidden inputs	Offset: 'T and Slope: 'T where 'T numeric
Outputs	PLS_Output: 'T where 'T numeric

Quantizer

Symbol 7.14:

SCADE name	Quantizer
Package	pwlinear
	Basic quantizer based on specified interval.
Function	Discretizes the input at a specified interval and produces a stair-step output. Q_Output = Interval* Round (Q_Input/ Interval)
Inputs	Q_Input: 'T where 'T is float
Hidden inputs	Interval: 'T where 'T is float
Outputs	Q_Output: 'T where 'T is float
Comment	For a correct behavior, Interval must never be strictly positive. If Interval equals 0, there is a division by 0.

Rate Limiter

Symbol 7.15:

SCADE name	RateLimiter
Package	pwlinear
Function	Limits the first derivative of the input signal. The output does not change faster than the specified limit. Let's call Rate the derivative ((RL_Input-pre(RL_Output))/DeltaT. If Rate > Rising, then output equals (Rising* DeltaT + pre(RL_Output)), else if Rate < Falling, then output equals (Falling* DeltaT + pre(RL_Output)), otherwise, output equals input.
Inputs	RL_Input: 'T where 'T is float
Hidden inputs	Rising: 'T (Rising slew rate), Falling: 'T (Falling slew rate), and deltaT: 'T where 'T is float
Outputs	RL_Output: 'T where 'T is float
Comment	For a correct behavior, deltaT must be strictly positive. If it equals 0, there is a division by 0.

Look-Up Table Operators

The **libpwlinear** library contains several basic operators that compute Look-Up Table (LUT) operations.

Read the description of the following operators:

"Interpolation 1D" "LUT 1D (Value below)" "LUT 3D"

"Interpolation 1D (Floor)" "LUT 1D (Nearest value)" "LUT 3D (Nearest value)"

"Interpolation 2D" "LUT 2D" "Pre-LUT"

"Interpolation 2D (Floor)" "LUT 2D (Value above)" "Pre-LUT (Direct)"

<u>"LUT 1D"</u> <u>"LUT 2D (Value below)"</u>

<u>"LUT 1D (Value above)"</u> <u>"LUT 2D (Nearest value)"</u>

Interpolation 1D

Symbol 7.16:

SCADE name	Interp1D
Package	lut
Function	Uses the pre-calculated index and interval fraction from the PreLut function to interpolate output value from <xs> points set as vector Y.</xs>
Size parameters	Xs
Inputs	IdxX: LutIndex = {k:int32, f:'T} where 'T is float
Hidden inputs	y: 'T ^Xs where 'T is float
Outputs	Outy: 'T where 'T is float

Interpolation 1D (Floor)

Symbol 7.17:

SCADE name	Interp1DFloor
Package	lut
Function	Uses the calculated index and interval fraction from the PreLut function to return corresponding output value to nearest and below y element from vector Y of size <xs>. If no value is found then the nearest is returned.</xs>
Size parameters	Xs
Inputs	IdxX: LutIndex = {k:int32, f:'T} where 'T is float
Hidden inputs	y: 'T ^Xs where 'T is float
Outputs	Outy: 'T where 'T is float

Interpolation 2D

Symbol 7.18:

SCADE name	Interp2D
Package	lut
Function	Uses two precalculated indices and interval fractions from the PreLut function to interpolate output value from <xs>*<ys> points set as array Z.</ys></xs>
Size parameters	Xs and Ys
Inputs	IdxX: LutIndex = {k:int32, f:'T} and IdxY: LutIndex = {k:int32, f:'T}
Hidden inputs	z: 'T ^Ys^Xs where 'T is float
Outputs	Out Z: 'T where 'T is float

Interpolation 2D (Floor)

Symbol 7.19:

SCADE name	Interp2DFloor
Package	lut
Function	Uses two precalculated indices and interval fractions from the PreLut function to interpolate output value from <xs>*<ys> points set as array Z.</ys></xs>
Size parameters	Xs and Ys
Inputs	$IdxX$: LutIndex = {k:int32, f:'T} and $IdxY$: LutIndex = {k:int32, f:'T}
Hidden inputs	z: 'T ^Ys^Xs where 'T is float
Outputs	Out Z: 'T where 'T is float

LUT 1D

Symbol 7.20:

SCADE name	Lut1D
Package	lut
Function	Performs piecewise linear interpolation to approximate $y = f(x)$ with <xs> points set as vectors X and Y. X values must increase strictly monotonically. For out-of-bounds input, Extrapol parameter allows linear extrapolation, otherwise end-point values are output.</xs>
Size parameters	Xs
Inputs	InX: 'T where 'T is float
Hidden inputs	X: 'T ^Xs, Y: 'T ^Xs, and Extrapol: bool where 'T is float
Outputs	Outy: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.
KCG pragma	Operator expansion

LUT 1D (Value above)

Symbol 7.21:

SCADE name	Lut1DCeil
Package	lut
Function	Returns the output value corresponding to nearest and above x element from <xs> points set as vectors X and Y. If no value is found then the nearest is returned. X values must increase strictly monotonically.</xs>
Size parameters	Xs
Inputs	Inx: 'T where 'T is float
Hidden inputs	x: 'T ^Xs and y: 'T ^Xs where 'T is float
Outputs	Outy: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.

LUT 1D (Value below)

Symbol 7.22:

SCADE name	Lut1DFloor
Package	lut
Function	Returns the output value corresponding to nearest and below x element from <xs> points set as vectors X and Y. If no value is found then the nearest is returned. X values must increase strictly monotonically.</xs>
Size parameters	Xs
Inputs	InX: 'T where 'T is float
Hidden inputs	x: 'T ^Xs and y: 'T ^Xs where 'T is float
Outputs	Outy: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.

LUT 1D (Nearest value)

Symbol 7.23:

SCADE name	Lut1DNearest
Package	lut
Function	Returns the output value corresponding to nearest x element from <xs> points set as vectors X and Y. X values must increase strictly monotonically.</xs>
Size parameters	Xs
Inputs	InX: 'T where 'T is float
Hidden inputs	х: 'T ^Xs and y: 'T ^Xs where 'T is float
Outputs	Outy: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.

LUT 2D

Symbol 7.24:

SCADE name	Lut2D
Package	lut
Function	Performs piecewise linear interpolation to approximate $z = f(x,y)$ with $<$ Xs>, $<$ Ys> points set as vectors X, Y, and $<$ Xs>* $<$ Ys> points set as array Z. X and Y values must increase strictly monotonically. For out-of-bounds inputs, Extrapol parameter allows linear extrapolation, otherwise the end-point values are output.
Size parameters	Xs and Ys
Inputs	Inx: 'T and Iny: 'T where 'T is float
Hidden inputs	X: 'T^Xs, Y: 'T^Ys, z: 'T^Ys^Xs, Extrapol: bool where 'T is float
Outputs	Out Z: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.
KCG pragma	Operator expansion

LUT 2D (Value above)

Symbol 7.25:

SCADE name	Lut2DCeil
Package	lut
Function	Returns output value corresponding to nearest and above x and y elements from <xs>, <ys> points set as vectors X, Y, and <xs>*<ys> points set as array Z. If no value is found then the nearest is returned. X and Y values must increase strictly monotonically.</ys></xs></ys></xs>
Size parameters	Xs and Ys
Inputs	Inx: 'T and Iny: 'T where 'T is float
Hidden inputs	x: 'T ^Xs, y: 'T ^Ys, and z: 'T ^Ys^Xs where 'T is float
Outputs	Out Z: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.

LUT 2D (Value below)

Symbol 7.26:

SCADE name	Lut2DFloor
Package	lut
Function	Returns output value corresponding to nearest and below x and y elements from <xs>, <ys> points set as vectors X, Y, and <xs>*<ys> points set as array Z. If no value is found then the nearest is returned. X and Y values must increase strictly monotonically.</ys></xs></ys></xs>
Size parameters	Xs and Ys
Inputs	Inx: 'T and Iny: 'T where 'T is float
Hidden inputs	x: 'T ^Xs, y: 'T ^Ys, and z: 'T ^Ys^Xs where 'T is float
Outputs	Out Z: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.

LUT 2D (Nearest value)

Symbol 7.27:

SCADE name	Lut2DNearest
Package	lut
Function	Returns output value corresponding to nearest x and y elements from <xs>, <ys> points set as vectors X, Y, and <xs>*<ys> points set as array Z. X and Y values must increase strictly monotonically.</ys></xs></ys></xs>
Size parameters	Xs and Ys
Inputs	Inx: 'T and Iny: 'T where 'T is float
Hidden inputs	x: 'T ^Xs, y: 'T ^Ys, and z: 'T ^Ys^Xs where 'T is float
Outputs	Out Z: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case increase strictly monotonically.

LUT 3D

Symbol 7.28:

SCADE name	Lut3D
Package	lut
Function	Performs piecewise linear interpolation to approximate $w = f(x,y,z)$ with $<$ Xs>, $<$ Ys>, $<$ Zs> points set as vectors X, Y, Z, and $<$ Xs>* $<$ Ys>* $<$ Zs> points set as array W. X, Y, and Z values must increase strictly monotonically. For out-of-bounds inputs, Extrapol parameter allows linear extrapolation, otherwise the end-point values are output.
Size parameters	Xs, Ys, and Zs
Inputs	InX: 'T, InY: 'T, and Inz: 'T where 'T is float
Hidden inputs	X: 'T ^Xs, Y: 'T ^Ys, Z: 'T ^Zs, W: 'T ^Zs^Ys^Xs, and Extrapol: bool where 'T is float
Outputs	OutW: 'T where 'T is float
KCG pragma	Operator expansion

LUT 3D (Nearest value)

SCADE name	Lut3DNearest
Package	lut
Function	Returns output value corresponding to nearest x, y, z elements from $<$ Xs $>$, $<$ Ys $>$, and $<$ Zs $>$ points set as vectors X, Y, Z, and $<$ Xs $>$ * $<$ Ys $>$ * $<$ Zs $>$ points set as array W. X, Y, and Z values must increase strictly monotonically.
Size parameters	Xs, Ys, and Zs
Inputs	InX: 'T, InY: 'T, and Inz: 'T where 'T is float
Hidden inputs	x: 'T ^Xs, y: 'T ^Ys, z: 'T ^Zs, and w: 'T ^Zs^Ys^Xs where 'T is float
Outputs	OutW: 'T where 'T is float
Comment	An "assume" assertion in all LutXXX operators checks that the X vector in 1D case, and X and Y vectors in 2D case, and X, Y, and Z vectors in 3D case increase strictly monotonically.

Pre-LUT

Symbol 7.30:

SCADE name	PreLut
Package	lut
Function	Performs index search and interval fraction calculation from vector X for input InX. X values must increase strictly monotonically. For out-of-bounds input, the computation of interval fraction corresponds to linear extrapolation or to end-point values depending on parameter Extrapol.
Size parameters	Xs
Inputs	InX: 'T where 'T is float
Hidden inputs	X: 'T ^Xs and Extrapol: bool where 'T is float
Outputs	Out: LutIndex = {k:'T, f:int32} where 'T is float

Pre-LUT (Direct)

Symbol 7.31:

SCADE name	PreLutDirect
Package	lut
Function	Performs index search and interval fraction calculation for input InX when X points are evenly spaced. X points are defined by the first point (Orig), interval between 2 points (step), number of elements (NbElem). For out-of-bounds input, computation of interval fraction corresponds to linear extrapolation or to end-point values depending on parameter Extrapol.
Inputs	InX: 'T where 'T is float
Hidden inputs	Orig: 'T, Step: 'T, NbElem: int32, and Extrapol: bool where 'T is float
Outputs	OutIndex: LutIndex = {k:int32, f:'T} where 'T is float

8 / Library libsmlk

This library contains operators designed to reproduce the behavior of Simulink blocks with respect to SCADE formalism when translating Simulink models.

- "Discrete Filter Operators"
- <u>"Discrete-Time Integrator Operators"</u>
- <u>"Arithmetic Operators"</u>
- <u>"Time Operators"</u>
- "Bitwise Logical Operators"
- "Conversion and Transformation Operators"
- <u>"Flip-Flop Operators"</u>
- <u>"Logical Operators"</u>
- "Model Verification Operators"
- "Signal Routing Operators"
- <u>"Subsystem Operators"</u>
- "Signal Generator Operators"
- "Discontinuity Operators"
- <u>"LUT, Pre-LUT and Interpolation Operators"</u>
- <u>"Miscellaneous Operators"</u>

Access the description of library operators in alphabetical order:

"Assertion (Inverse)" "Detect Increase" "NOT" "Backlash" "Detect Rising Edge (non-negative)" "OR"

Bias"

"Detect Rising Edge (positive)"

"Bit Clear"

"Bit Set"

"Discrete Filter"

"Discrete Filter (Normalized)"

"Pre-LUT2"

"Pre-LUT2"

"Pre-LUT2"

"Pre-LUT2 (Direct)"

"Bitwise AND" "Discrete-Time Integrator (Backward)" "Quantizer" "Quantizer" "Radians to Degrees" "Rate Limiter"

"Bitwise Not"

"Bitwise OR"

"Bitwise Shift"

"Enumeration to Integer"

"Bitwise Shift Left"

"Enumeration to Celsius"

"Enumeration to Celsius"

"Real to Boolean"

"Relay"

"Relay"

"Remainder (real/float)"

"Bitwise Shift Right"

"Bitwise Shift Right"

"Boolean to Boolean"

"Flip-Flop JK"

"Border Crossing Detection"

"Flip-Flop SR"

"Sample Time (all math operations)"

"Saturate Dynamic"

"Scalar to Boolean"

"Scalar to Boolean"

"Border Crossing Detection" "Flip-Flop SR" "Sign (int/int32)" "Sign (int/int32)" "Sign (int/int32)" "Spherical to Cartesian to Spherical" "Ground (int/int32)" "Switch" "Switc

"Check Bounds (Extended)"

"Check Gap"

"Ignore First Input"

"Switch (GTT)"

"Switch (NEZ)"

"Switch (NEZ)"

"Switch Enumeration"

"Switch Enumeration"

"Check Gap" "Ignore First Input" "Switch Enumeration (GTT)"

"Check Gap (Extended)" "Inactive Cycles" "Transfer Function (First Order)"

"Check Gradient" "Inactive Time" "Transfer Function (Lead or Lag)"

"Check Gradient (Extended)" "Integer to Boolean" "Transfer Function (Real Zero)"

"Check Lower Bound" "Integer to Enumeration"

"Trigger Either Edge"

"Check Lower Bound (Extended)"

"In Range (In-In)"

"Trigger Either Edge"

"Trigger Either Edge (Extended)"

"Check Upper Bound" "In Range (In-Out)" "Trigger Falling Edge" "Trigger Falling Edge"

"Clock" "In Range (Out-Out)" "Trigger Failing Edge (Extended)" "Trigger Rising Edge"

"Clock Generator" "Interpolation1D2" "Trigger Rising Edge (Extended)"
"Compare (all operations)" "Interpolation1D (Floor)" "Unit Delay (Helper)"
"Compare Enumeration" "Interpolation2D2"

"Compare Enumeration" "Interpolation2D2" "Unit Delay Enabled"
"Counter (limited)" "Interpolation2D (Floor)" "Unit Delay Enabled (Init)"

"Dead Zone Dynamic" "Inverse (int/int32)" "Unit Delay Enabled (Init)"

"Decrement Time to Zero (int/int32)"

"LUTI D"

"Unit Delay Enabled Resettable"

"Unit Delay Enabled Resettable (Init)"

"Decrement Time to Zero (real/float)" "Maximum (Resettable)" "Unit Delay (Init)" "Unit Delay (Init)" "Unit Delay (Init)" "Unit Delay Resettable" "Unit Delay Resettable (Init)" "Unit Delay Re

"Detect Change" "Minimum (Resettable)" "Width (Matrix)" "Width (Matrix)"

"Detect Decrease" "Modulo (int/int32)" "Wrap To Zero" "Wrap To Zero"

Discrete Filter Operators

Read the description of the following operators:

"Discrete Filter"

"Discrete Filter (Normalized)"

Discrete Filter

SCADE names	FilterNDVect
Package	smlk
Function	Vectorized version of filters::FilterND (see <u>"Filter and Transfer Function Operators"</u>).
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T ^Ns^Vect and Den: 'T ^Ds where 'T is float
Outputs	Out: 'T ^Vect where 'T is float

Discrete Filter (Normalized)

SCADE names	FilterNDVectNorm
Package	smlk
Function	Vectorized version of filters::FilterNDNorm (see <u>"Filter and Transfer Function Operators"</u>).
Inputs	In: 'T where 'T is float
Hidden inputs	Num: 'T^Ns^Vect and Den: 'T^Ds where 'T is float
Outputs	Out: 'T^Vect where 'T is float

Discrete-Time Integrator Operators

Read the description of the following operators:

"Discrete-Time Integrator (Backward)"

"Transfer Function (First Order)"

"Discrete-Time Integrator (Forward)"

"Transfer Function (Lead or Lag)"

"Discrete-Time Integrator (Trapezoidal)"

"Transfer Function (Real Zero)"

Discrete-Time Integrator (Backward)

Symbol 8.3:

SCADE names	Several backward types are available in the library: DtiBwdLimRst; DtiBwdLimRstE; DtiBwdLimRstF; DtiBwdLimRstL; DtiBwdLimRstN; DtiBwdLimRstR; DtiBwdLimSRstF; DtiBwdLimSRstE; DtiBwdLimSRstF; DtiBwdLimSRstR; DtiBwdRst; DtiBwdRstE; DtiBwdRstF; DtiBwdRstR;
	Naming convention:
	Bwd indicates Backward Euler Integrator method
	Lim indicates operators with limits on outputs
	S indicates saturared operators RstF indicates falling external reset
	RstR for rising external reset, RstE for either external reset, RstN for none, RstL for external reset level with type inferred for second reset input as int32 or 'T where 'T is float, and Rst for external reset level with type inferred for second reset input as bool.
Package	dti
Function	Signal discrete-time integration or accumulation based on Backward Euler method.
Immusto	Input: 'T where 'T is float
Inputs	Reset: 'T or bool (except DtiBwdRstN, DtiBwdLimRstN, DtiBwdLimSRstN)
Hidden inputs	init: 'T and deltaT: 'T
Hidden inputs	HighLimit: 'T and LowLimit: 'T where 'T is float
Outputs	Output: 'T where 'T is float
	Saturation: int32 (for saturated operators)
KCG pragma	Operator expansion of DtiBwdRstN only

Discrete-Time Integrator (Forward)

	Several forward types are available in the library:
	DtiFwdLimRst; DtiFwdLimRstE; DtiFwdLimRstF; DtiFwdLimRstL; DtiFwdLimRstN; DtiFwdLimSRst; DtiFwdLimSRst; DtiFwdLimSRstF; DtiFwdLimSRstF; DtiFwdLimSRstL; DtiFwdLimSRstN; DtiFwdLimSRstR; DtiFwdRstE; DtiFwdRstF; DtiFwdRstL; DtiFwdRstN; DtiFwdRstR
	Naming convention:
SCADE name	Fwd indicates Forward Euler Integrator method
	Lim indicates operators with limits on outputs
	S indicates saturared operators
	RstF indicates falling external reset, RstR for rising external reset, RstE for either external reset, RstN for none, RstL for external reset level with type inferred for second reset input as int32 or 'T, and Rst for external reset level with type inferred for second reset input as bool.
Package	dti
Function	Signal discrete-time integration or accumulation based on Forward Euler method.
Dependencies	n/a
Inputs	Input: 'T where 'T is float Reset: 'T or bool (except DtiFwdRstN, DtiFwdLimRstN, DtiFwdLimSRstN)
Hidden inputs	init: 'T and deltaT: 'T HighLimit: 'T and LowLimit: 'T where 'T is float
Outputs	Output: 'T where 'T is float Saturation: int32 (for saturated operators)

Discrete-Time Integrator (Trapezoidal)

SCADE name	Several trapezoidal types are available in the library: DtiTpzLimRst; DtiTpzLimRstE; DtiTpzLimRstF; DtiTpzLimRstL; DtiTpzLimSRstN; DtiTpzLimSRstR; DtiTpzLimSRst; DtiTpzLimSRstE; DtiTpzLimSRstF; DtiTpzLimSRstL; DtiTpzLimSRstN; DtiTpzLimSRstR; DtiTpzRst; DtiTpzRstE; DtiTpzRstF; DtiTpzRstL; DtiTpzRstN; DtiTpzRstR Naming convention: Tpz indicates Trapezoidal Integrator method Lim indicates operators with limits on outputs S indicates saturared operators RstF indicates falling external reset, RstR for rising external reset, RstE for either external reset, RstN for none, RstL for external reset level with type inferred for second reset input as bool.
Package	dti
Function	Signal discrete-time integration or accumulation based on Trapezoidal method.
Inputs	Input: 'T where 'T is float Reset: 'T or bool (except DtiTpzRstN, DtiTpzLimRstN, DtiTpzLimSRstN)
Hidden inputs	init: 'T and deltaT: 'T HighLimit: 'T and LowLimit: 'T where 'T is float
Outputs	Output: 'T where 'T is float Saturation: int32 (for saturated operators)

Transfer Function (First Order)

Symbol 8.6:

SCADE name	TransferFcnFirstOrder
Package	smlk
Function	Discrete-time first order transfer function.
Inputs	Input: 'T Pole: 'T where 'T is float
Hidden inputs	IC: 'T where 'T is float
Outputs	Output: 'T where 'T is float

Transfer Function (Lead or Lag)

Symbol 8.7:

SCADE name	TransferFcnLeadOrLag
Package	smlk
Function	Discrete-time lead or lag compensator.
Inputs	Input: 'T where 'T is float
Hidden inputs	Pole: 'T Zero: 'T IC_Input: 'T IC_Output: 'T where 'T is float
Outputs	Output: 'T where 'T is float

Transfer Function (Real Zero)

Symbol 8.8:

SCADE name	TransferFcnRealZero
Package	smlk
Function	Discrete-time transfer function that has real zero and no pole.
Inputs	Input: 'T where 'T is float
Hidden inputs	Zero: 'T IC: 'T where 'T is float
Outputs	Output: 'T where 'T is float

Arithmetic Operators

Read the description of the following operators:

<u>"Bias"</u>

"Inverse (int/int32)"

"Maximum (Resettable)"

"Minimum (Resettable)"

"Modulo (int/int32)"

"Modulo (real/float)"

<u>"Polynomial"</u>

"Remainder (real/float)"

"Sign (int/int32)"

Bias

Symbol 8.9:

SCADE name	Bias
Package	smlk
Function	Adds bias to the input.
Inputs	Input: 'T
Hidden inputs	Bias: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion

Inverse (int/int32)

SCADE name	Invi
Package	smlk
Function	Returns the inverse of an integer input.
Inputs	Inv_I1: int32
Outputs	Inv_01: int32
KCG pragma	Operator expansion

Maximum (Resettable)

Symbol 8.11:

SCADE name	MaxReset
Package	smlk
Function	Outputs the maximum of all past inputs. State can be reset.
Inputs	Input: 'T Reset: 'T
Hidden inputs	IC: 'T2
Outputs	Output: 'T where 'T numeric

Minimum (Resettable)

Symbol 8.12:

SCADE name	MinReset
Package	smlk
Function	Outputs the minimum of all past inputs. State can be reset.
Inputs	Input: 'T Reset: 'T
Hidden inputs	IC: 'T2
Outputs	Output: 'T where 'T numeric

Modulo (int/int32)

Symbol 8.13:

SCADE name	ModI
Package	smlk
Function	Computes the modulus of two integer inputs.
Inputs	ModI_I1: int32 and ModI_I2: int32
Outputs	ModI_O: int32

Modulo (real/float)

SCADE name	ModR
Package	smlk
Function	Computes the modulus of two real/float inputs.
Inputs	ModR_I1: 'T and ModR_I2: 'T where 'T is float
Outputs	ModR_0: 'T where 'T is float

Polynomial

Symbol 8.15:

SCADE name	Polynomial < <n>></n>
Package	smlk
Function	Performs the evaluation of polynomial coefficients on input values.
Inputs	x: 'T where 'T is numeric
Hidden inputs	C: 'T ^N where 'T is numeric
Outputs	Y: 'T where 'T is numeric
KCG pragma	Operator expansion

Remainder (real/float)

Symbol 8.16:

SCADE name	RemR
Package	smlk
Function	Computes the remainder of a division.
Inputs	RemR_O: 'T and RemR_I2: 'T where 'T is float
Outputs	RemR_O: 'T where 'T is float

Sign (int/int32)

Symbol 8.17:

SCADE name	SignInt
Package	smlk
Function	Returns an integer sign value based on the value of a numeric input.
Inputs	S_Input: 'T where 'T numeric
Outputs	S_Output: int32

Time Operators

Read the description of the following operators:

"Decrement Time to Zero (int/int32)"

"Decrement Time to Zero (real/float)"

"Decrement to Zero"

"Sample Time (all math operations)"

"Unit Delay Enabled"

"Unit Delay Enabled (Init)"

"Unit Delay Enabled Resettable"

"Unit Delay Enabled Resettable (Init)"

"Unit Delay (Init)"

"Unit Delay Resettable"

"Unit Delay Resettable (Init)"

Decrement Time to Zero (int/int32)

SCADE name	DecrementTimeToZerol
Package	smlk
Function	Decreases real-world value of signal by sample time, but only to zero.
Inputs	Input: 'T where 'T is integer
Hidden inputs	Ts: float64
Outputs	Output: int32
KCG pragma	Operator expansion

Decrement Time to Zero (real/float)

Symbol 8.19: - hptt max(U - Ts, 0) that

SCADE name	DecrementTimeToZeroR
Package	smlk
Function	Decreases real-world value of signal by sample time, but only to zero.
Inputs	Input: 'T where 'T is float
Hidden inputs	Ts: 'T where 'T is float
Outputs	Output: 'T where 'T is float
KCG pragma	Operator expansion

Decrement to Zero

Symbol 8.20: - hprt min(U - 1, 0) orput

SCADE name	DecrementToZero
Package	smlk
Function	Decreases real-world value of signal by sample time, but only to zero.
Inputs	Input: 'T
Outputs	Output: 'T where 'T numeric

Sample Time (all math operations)

SCADE name	Several operations on sample time are available in the library: Addition: SampleTimeAdd Division: SampleTimeDiv Inverse: SampleTimeInv Multiplication: SampleTimeMult Subtraction: SampleTimeSub
Package	smlk
Function	Computes operations involving sample time.
Inputs	For SampleTimeAdd, SampleTimeMult, SampleTimeSub: Input: 'T where 'T is numeric For SampleTimeInv Input: 'T where 'T is float For SampleTimeDiv: Input: 'T where 'T is float
Hidden inputs	For SampleTimeAdd, SampleTimeMult, SampleTimeSub: w: 'T dT: 'T For SampleTimeDiv: w: 'T dT: 'T For SampleTimeInv: w: 'U dT: 'U where 'U is float
Outputs	Output: 'T where 'T numeric Output: 'T (for SampleTimeDiv) or 'U (for SampleTimeInv) where 'T and 'U are float
KCG pragma	Operator expansion

Unit Delay Enabled

Symbol 8.22:

SCADE name	UDEnabled
Package	smlk
Function	Delays input signal by one tick when Enable input is on, otherwise holds the current state and outputs that value.
Inputs	Input: 'T Enable: 'T1
Hidden inputs	IC: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Needed for graphical layout purposes of initial condition (IC) input.

Unit Delay Enabled (Init)

Symbol 8.23:

SCADE name	UDEnabledInit
Package	smlk
Function	Delays input signal by one tick when Enable input is on, otherwise holds the current state and outputs that value.
Inputs	Input: 'T, Enable: 'T1, and IC: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Initial condition (IC) input is not an hidden input.

Unit Delay Enabled Resettable

Symbol 8.24:

SCADE name	UDEnabledReset
Package	smlk
Function	Delays input signal by one tick when Enable input is on, otherwise holds the current state and outputs that value. State can be reset based on reset input.
Inputs	Input: 'T, Enable: 'T1, and Reset: 'T2
Hidden inputs	IC: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Needed for graphical layout purposes of initial condition (IC) input.

Unit Delay Enabled Resettable (Init)

Symbol 8.25:

SCADE name	UDEnabledResetInit
Package	smlk
Function	Delays input signal by one tick when Enable input is on, otherwise holds the current state and outputs that value. State can be reset based on reset input.
Inputs	Input: 'T, Enable: 'T1, Reset: 'T2, and IC: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Initial condition (IC) input is not an hidden input.

Unit Delay (Init)

Symbol 8.26:

SCADE name	UDInit
Package	smlk
Function	Delays input signal by one tick.
Inputs	Input: 'T IC: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Initial condition (IC) input is not an hidden input.

Unit Delay Resettable

Symbol 8.27:

SCADE name	UDReset
Package	smlk
Function	Delays input signal by one tick. State can be reset based on reset input.
Inputs	Input: 'T Reset: 'T1
Hidden inputs	IC: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Needed for graphical layout purposes of initial condition (IC) input.

Unit Delay Resettable (Init)

Symbol 8.28:

SCADE name	UDResetInit
Package	smlk
Function	Delays input signal by one tick. State can be reset based on reset input.
Inputs	Input: 'T Reset: 'T1 IC: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	Initial condition (IC) input is not an hidden input.

Bitwise Logical Operators

Read the description of the following operators:

"Bit Clear""Bitwise Nor""Bitwise Shift""Bit Set""Bitwise NOT""Bitwise Shift Left""Bitwise AND""Bitwise OR""Bitwise Shift Right""Bitwise Nand""Bitwise Exclusive OR""Extract Bit Range"

Bit Clear

Symbol 8.29:

SCADE name	BitClear (imported function)
Package	bits
Function	Sets specified bit of input value to false.
Inputs	Input: int32
Hidden inputs	Index: int32
Outputs	Output: int32

Bit Set

Symbol 8.30:

SCADE name	BitSet (imported function)
Package	bits
Function	Sets specified bit of input value to true.
Inputs	Input: int32
Hidden inputs	Index: int32
Outputs	Output: int32

Bitwise AND

Symbol 8.31:

SCADE name	BitwiseAnd
Package	bits
Function	Performs a bitwise logical operation AND.
Inputs	Input1: int32
Hidden inputs	Operand2: int32
Outputs	Output1: int32

Bitwise Nand

Symbol 8.32:

SCADE name	BitwiseNand
Package	bits
Function	Performs a bitwise logical operation NOT AND.
Inputs	Input1: int32
Hidden inputs	Operand2: int32
Outputs	Output1: int32

Bitwise Nor

Symbol 8.33:

SCADE name	BitwiseNor
Package	bits
Function	Performs a bitwise logical operation NOT OR.
Inputs	Input1: int32
Hidden inputs	Operand2: int32
Outputs	Output1: int32

Bitwise NOT

Symbol 8.34:

SCADE name	BitwiseNot
Package	bits
Function	Performs a bitwise logical operation NOT.
Inputs	Input1: int32
Outputs	Output1: int32

Bitwise OR

Symbol 8.35:

SCADE name	BitwiseOr
Package	bits
Function	Performs a bitwise logical operation OR.
Inputs	Input1: int32
Hidden inputs	Operand2: int32
Outputs	Output1: int32

Bitwise Exclusive OR

Symbol 8.36:

SCADE name	BitwiseXor
Package	bits
Function	Performs a bitwise exclusive logical operation OR.
Inputs	Input1: int32
Hidden inputs	Operand2: int32
Outputs	Output1: int32

Bitwise Shift

Symbol 8.37:

SCADE name	BitwiseShift
Package	bits
Function	Shifts a specified number of bits.
Inputs	Input1: int32
Hidden inputs	BitShiftRight: int32
Outputs	Output1: int32

Bitwise Shift Left

Symbol 8.38:

SCADE name	BitwiseShiftLeft
Package	bits
Function	Shifts left a specified number of bits.
Inputs	Input1: int32
Hidden inputs	Operand2: int32
Outputs	Output1: int32

Bitwise Shift Right

Symbol 8.39:

SCADE name	BitwiseShiftRight
Package	bits
Function	Shifts right a specified number of bits.
Inputs	Input1: int32
Hidden inputs	Operand2: int32
Outputs	Output1: int32

Extract Bit Range

Symbol 8.40:

SCADE name	ExtractBitRange (imported function)
Package	bits
Function	Outputs a selection of contiguous bits from the input signal.
Inputs	Input: int32
Hidden inputs	Start: int32 End: int32
Outputs	Output: int32

Conversion and Transformation Operators

Read the description of the following operators:

"Boolean to Boolean"

"Cartesian to Polar"

"Cartesian to Spherical"

"Celsius to Fahrenheit"

"Degrees to Radians"

<u>"Enumeration to Integer"</u>

"Fahrenheit to Celsius"

"Integer to Boolean"

"Integer to Enumeration"

"Polar to Cartesian"

"Radians to Degrees"

"Real to Boolean"

"Scalar to Boolean"

"Spherical to Cartesian"

Boolean to Boolean

Symbol 8.41:

SCADE name	BoolToBool (specialization of ScalarToBool)
Package	smlkutils
Function	Conversion of scalar values into Boolean values.
Inputs	In1: bool
Outputs	Out1: bool
KCG pragma	Operator expansion

Cartesian to Polar

Symbol 8.42:

SCADE name	Cartesian2Polar
Package	conv
Function	Transformation from cartesian to polar coordinates.
Inputs	x: 'T y: 'T where 'T is float
Outputs	r: 'T theta: 'T where 'T is float
KCG pragma	Operator expansion

Cartesian to Spherical

Symbol 8.43:

SCADE name	Cartesian2Spherical
Package	conv
Function	Transformation from cartesian to spherical coordinates.
Inputs	x: 'T y: 'T z: 'T where 'T is float
Outputs	r: 'T theta: 'T phi: 'T where 'T is float
KCG pragma	Operator expansion

Celsius to Fahrenheit

Symbol 8.44: - Celsius C2F Fabreshell

SCADE name	Celsius2Fahrenheit
Package	conv
Function	Conversion from Celsius degrees to Fahrenheit degrees.
Inputs	Celsius: 'T where 'T is float
Outputs	Fahrenheit: 'T where 'T is float
KCG pragma	Operator expansion

Degrees to Radians

Symbol 8.45: — Degrees D2R Radians

SCADE name	Degrees2Radians
Package	conv
Function	Conversion from degrees to radians.
Inputs	Degrees: 'T where 'T is float
Outputs	Radians: 'T where 'T is float
KCG pragma	Operator expansion

Enumeration to Integer

Symbol 8.46:

SCADE name	Enum2Int
Package	conv
Function	Conversion of an enumerated type to its underlying integer value.
Inputs	Input1: 'T
Outputs	Output1: int32
Comment	Specialization operators shall be provided by users.

Fahrenheit to Celsius

Symbol 8.47:

SCADE name	Fahrenheit2Celsius
Package	conv
Function	Conversion from Fahrenheit degrees to Celsius degrees.
Inputs	Fahrenheit: 'T where 'T is float
Outputs	Celsius: 'T where 'T is float
KCG pragma	Operator expansion

Integer to Boolean

Symbol 8.48:

SCADE name	IntToBool (specialization of ScalarToBool)
Package	smlkutils
Function	Conversion of scalar values into Boolean values.
Inputs	In1: 'T where 'T is integer
Outputs	Out1: bool
KCG pragma	Operator expansion

Integer to Enumeration

Symbol 8.49:

SCADE name	Int2Enum
Package	conv
Function	Conversion of an integer value to the corresponding enumerated value if any, or to Default otherwise.
Inputs	Input1: int32
Hidden inputs	Default: 'T
Outputs	Output1: 'T
Comment	Specialization operators shall be provided by users.

Polar to Cartesian

Symbol 8.50:

SCADE name	Polar2Cartesian
Package	conv
Function	Transformation from polar to cartesian coordinates.
Inputs	r: 'T theta: 'T where 'T is float
Outputs	x: 'T y: 'T where 'T is float
KCG pragma	Operator expansion

Radians to Degrees

Symbol 8.51:

SCADE name	Radians2Degrees
Package	conv
Function	Conversion from radians to degrees.
Inputs	Radians: 'T where 'T is float
Outputs	Degrees: 'T where 'T is float
KCG pragma	Operator expansion

Real to Boolean

Symbol 8.52:

SCADE name	RealToBool (specialization of ScalarToBool)
Package	smlkutils
Function	Conversion of scalar values into Boolean values.
Inputs	In1: 'T where 'T is float
Outputs	Out1: bool
KCG pragma	Operator expansion

Scalar to Boolean

Symbol 8.53:

SCADE name	ScalarToBool (specialized operator)
Package	smlkutils
Function	Conversion of scalar values into Boolean values.
Inputs	In1: 'T where 'T is float
Outputs	Out1: bool

Spherical to Cartesian

SCADE name	Spherical2Cartesian Spheri
Package	conv
Function	Transformation from spherical to cartesian coordinates.
Inputs	r: 'T, theta: 'T, and phi: 'T where 'T is float
Outputs	x: 'T , y: 'T, and z: 'T where 'T is float
KCG pragma	Operator expansion

Flip-Flop Operators

Read the description of the following operators:

"Clock"

"Flip-Flop JK"

"DLatch"

"Flip-Flop SR"

"Flip-Flop D"

Clock

Symbol 8.55:

SCADE name	Clock
Package	smlk
Function	Boolean output toggles at each tick.
Outputs	Output1: bool

DLatch

Symbol 8.56:

SCADE name	DLatch
Package	flipflop
Function	Latches the data input when the clock input is true.
Inputs	D: bool and C: bool
Outputs	Q: bool and notQ: bool
Comment	Output Q equals input D if the input C changes its value. Output notQ is equal to (not Q).

Flip-Flop D

Symbol 8.57:

SCADE name	FlipFlopD
Package	flipflop
Function	Basic D flip-flop of Boolean values.
Inputs	D: bool, Clk: bool, and notClr: bool
Outputs	Q: bool and notQ: bool
Comment	Output Q is equal to Input D if there is a rising edge on input Clk and if the notClr input is true, otherwise Output Q is false. Output notQ is equal to (not Q).

Flip-Flop JK

Symbol 8.58:

SCADE name	FlipFlopJK
Package	flipflop
Function	Basic JK flip-flop of Boolean values.
Inputs	J: bool, C1k: bool, and K: bool
Hidden inputs	IC: bool
Outputs	Q: bool and notQ: bool
Comment	On falling edge of Clk input, the following computation is done: • if not J and not K, Qn = Qn-1 • if not J and K, Qn = false • if J and not K, Qn = true • if J and K, Qn = not Qn-1 Otherwise, Qn = Qn-1 Output notQ is equal to (not Q).

Flip-Flop SR

Symbol 8.59:

SCADE name	FlipFlopSR	
Package	flipflop	
Function	Basic Set-Reset flip-flop of Boolean values.	
Inputs	S: bool and R: bool	
Hidden inputs	IC: bool	
Outputs	Q: bool and notQ: bool	
Comment	On falling edge of Clk input, the following computation is done: if not S and not R, Qn = Qn-1 if not S and R, Qn = false if S and not R, Qn = true if S and R, Qn = false Output notQ = if (R and notR) false else (not Qn).	

Logical Operators

Read the description of the following operators:

<u>"AND"</u> <u>"Detect Rising Edge (non-negative)"</u>

<u>"Compare (all operations)"</u> <u>"Detect Rising Edge (positive)"</u>

"Compare Enumeration" "In Range (In-In)"

<u>"Detect Change"</u>

"Detect <u>Decrease"</u>

"In Range (In-Out)"

"In Range (Out-In)"

"Detect Falling Edge (negative)"

"In Range (Out-Out)"

"Detect Falling Edge (non-positive)" "NOT"

<u>"Detect Increase"</u>

AND

Symbol 8.60:

SCADE name	AndNum
Package	smlk
Function	Performs logical AND operation with numeric inputs.
Inputs	And_I1 and And_I2: 'T where 'T numeric
Outputs	And_0: bool
KCG pragma	Operator expansion

Compare (all operations)

1	-		

	Several comparison operations are available in the library:
	• Equal: Equal
	Greater or equal: GreaterEqual
SCADE name	Greater than: GreaterThan
	Less or equal: LessEqual
	Less than: LessThan
	Not equal: NotEqual
Package	стр
Function	Compares a signal to a specified constant.
Inputs	Input: 'T
Hidden inputs	Value: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

Compare Enumeration

Symbol 8.62:

(EnumGE)

SCADE name	Several comparison operations are available in the library: Greater or equal: EnumGE Greater than: EnumGT Less or equal: EnumLE Less than: EnumLT
Package	cmp
Function	Comparison of enumerated values to their conversion into integers (using smlk::EnumToInt specialization)
Inputs	Input1: 'T Input2: 'T
Outputs	Output1: bool
Comment	cmp::EnumLT: Output1 = smlk::EnumToInt(Input1) < smlk::EnumToInt(Input2) cmp::EnumLE: Output1 = smlk::EnumToInt(Input1) <= smlk::EnumToInt(Input2) cmp::EnumGT: Output1 = smlk::EnumToInt(Input1) > smlk::EnumToInt(Input2) cmp::EnumGE: Output1 = smlk::EnumToInt(Input1) >= smlk::EnumToInt(Input2)

Detect Change

SCADE name	DetectChange
Package	smlk
Function	Detects if the input value has changed with respect to previous step.
Inputs	Input: 'T
Hidden inputs	IC: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

Detect Decrease

Symbol 8.64:

SCADE name	DetectDecrease
Package	smlk
Function	Detects decrease in signal value.
Inputs	Input: 'T
Hidden inputs	IC: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

Detect Falling Edge (negative)

SCADE name	DetectFallNeg
Package	smlk
Function	Detects falling edge when signal value decreases to strictly negative value and its previous value was non-negative.
Inputs	Input: 'T
Hidden inputs	IC: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

Detect Falling Edge (non-positive)

Symbol 8.66: - uprtU <= 0 & NOT U / z <= 0 ortpr

SCADE name	DetectFallNonPos
Package	smlk
Function	Detects falling edge when signal value decreases to non-positive value and its previous value was strictly positive.
Inputs	Input: 'T
Hidden inputs	IC: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

Detect Increase

SCADE name	DetectIncrease
Package	smlk
Function	Detects increase in signal value.
Inputs	Input: 'T
Hidden inputs	IC: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

Detect Rising Edge (non-negative)

Symbol 8.68:

SCADE name	DetectRiseNonNeg
Package	smlk
Function	Detects rising edge when signal value increases to non-negative value and its previous value was strictly negative.
Inputs	Input: 'T
Hidden inputs	IC: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

Detect Rising Edge (positive)

SCADE name	DetectRisePositive
Package	smlk
Function	Detects rising edge when signal value increases to strictly positive value and its previous value was non-positive.
Inputs	Input: 'T
Hidden inputs	IC: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

In Range (In-In)

SCADE name	InRangeInIn
Package	smlk
Function	Returns a true output if the input belongs to the [A, B] range; otherwise it is false.
	в: 'Т
Inputs	Input: 'T
	A: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

In Range (In-Out)

Symbol 8.71:

SCADE name	InRangeInOut
Package	smlk
Function	Returns a true output if the input belongs to the [A, B[range; otherwise it is false.
Inputs	B: 'T Input: 'T A: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

In Range (Out-In)

Symbol 8.72:

SCADE name	InRangelOutIn
Package	smlk
Function	Returns a true output if the input belongs to the]A , B] range; otherwise it is false.
Inputs	B: 'T Input: 'T A: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

In Range (Out-Out)

Symbol 8.73:

SCADE name	InRangeOutOut
Package	smlk
Function	Returns a true output if the input belongs to the]A , B[range; otherwise it is false.
Inputs	B: 'T Input: 'T A: 'T where 'T numeric
Outputs	Output: bool
KCG pragma	Operator expansion

NOT

Symbol 8.74:

SCADE name	NotNum
Package	smlk
Function	Performs logical NOT operation with numeric inputs.
Inputs	Not_I1 and Not_I2: 'T where 'T numeric
Outputs	Not_O: bool
KCG pragma	Operator expansion

OR

SCADE name	OrNum
Package	smlk
Function	Performs logical OR operation with numeric inputs.
Inputs	Or_I1 and Or_I2: 'T where 'T numeric
Outputs	Or_0: bool
KCG pragma	Operator expansion

Model Verification Operators

Read the description of the following operators:

<u>"Assertion"</u> <u>"Check Gradient"</u>

<u>"Assertion (Inverse)"</u> <u>"Check Gradient (Extended)"</u>

<u>"Check Bounds"</u> <u>"Check Lower Bound"</u>

"Check Bounds (Extended)" "Check Lower Bound (Extended)"

"Check Gap" "Check Upper Bound"

<u>"Check Gap (Extended)"</u> <u>"Check Upper Bound (Extended)"</u>

Assertion

Symbol 8.76:

SCADE name	Assertion
Package	chk
Function	Checks whether signal is nonzero.
Inputs	Input: 'T
Outputs	none
KCG pragma	Operator expansion

Assertion (Inverse)

Symbol 8.77:

SCADE name	AssertionInv
Package	chk
Function	Checks whether signal is zero.
Inputs	Input: 'T
Outputs	none
KCG pragma	Operator expansion

Check Bounds

Symbol 8.78:

SCADE name	CheckBounds
Package	chk
Function	Checks that an input is strictly lower than Min and strictly higher than Max.
Inputs	Input: 'T
Hidden inputs	Max: 'T and Min: 'T where 'T numeric MaxOpen: b00l MinOpen: b00l
Outputs	none
KCG pragma	Operator expansion

Check Bounds (Extended)

Symbol 8.79:

SCADE name	CheckBoundsEx
Package	chk
Function	Checks that an input is strictly lower than Min and strictly higher than Max and returns test results.
Inputs	Input: 'T
Hidden inputs	Max: 'T and Min: 'T where 'T numeric MaxOpen: bool MinOpen: bool
Outputs	Output: bool

Check Gap

Symbol 8.80:

SCADE name	CheckGap
Package	chk
Function	Checks that an input is strictly higher than Min and strictly lower than Max.
Inputs	Input: 'T
Hidden inputs	Max: 'T and Min: 'T where 'T numeric MaxOpen: bool MinOpen: bool
Outputs	none
KCG pragma	Operator expansion

Check Gap (Extended)

Symbol 8.81:

SCADE name	CheckGapEx
Package	chk
Function	Checks that an input is strictly higher than Min and strictly lower than Max and returns test results.
Inputs	Input: 'T
Hidden inputs	Max: 'T and Min: 'T where 'T numeric MaxOpen: bool MinOpen: bool
Outputs	Output: bool

Check Gradient

Symbol 8.82:

SCADE name	CheckGradient
Package	chk
Function	Checks that the expression Input - fby(Input;1;0) is strictly lower than Max.
Inputs	Input: 'T
Hidden inputs	Max: 'T where 'T numeric
Outputs	none
KCG pragma	Operator expansion

Check Gradient (Extended)

Symbol 8.83:

SCADE name	CheckGradientEx
Package	chk
Function	Checks that the expression Input - fby(Input;1;0) is strictly lower than Max and returns test results.
Inputs	Input: 'T
Hidden inputs	Max: 'T where 'T numeric
Outputs	Output: bool

Check Lower Bound

Symbol 8.84:

SCADE name	CheckLowerBound
Package	chk
Function	Checks that an input is strictly higher than Min.
Inputs	Input: 'T
Hidden inputs	Min: 'T where 'T numeric MinOpen: bool
Outputs	none
KCG pragma	Operator expansion

Check Lower Bound (Extended)

Symbol 8.85:

SCADE name	CheckLowerBoundEx
Package	chk
Function	Checks that an input is strictly higher than Min and returns test results.
Inputs	Input: 'T
Hidden inputs	Min: 'T where 'T numeric MinOpen: bool
Outputs	Output: bool

Check Upper Bound

Symbol 8.86:

SCADE name	CheckUpperBound
Package	chk
Function	Checks that an input is strictly lower than Max.
Inputs	Input: 'T
Hidden inputs	Max: 'T where 'T numeric MaxOpen: b00
Outputs	none
KCG pragma	Operator expansion

Check Upper Bound (Extended)

Symbol 8.87:

SCADE name	CheckUpperBoundEx
Package	chk
Function	Checks that an input is strictly lower than Max and eturns test results.
Inputs	Input: 'T
Hidden inputs	Max: 'T where 'T numeric MaxOpen: b00
Outputs	Output: bool

Signal Routing Operators

Read the description of the following operators:

<u>"If Then Else"</u> <u>"Merge (3 inputs)"</u> <u>"Switch (NEZ)"</u>

<u>"Ignore First Input"</u> <u>"Switch"</u> <u>"Switch Enumeration"</u>

<u>"Merge (2 inputs)"</u> <u>"Switch (GTT)"</u> <u>"Switch Enumeration (GTT)"</u>

If Then Else

Symbol 8.88:

SCADE name	IfThenElse
Package	smlk
Function	Switches output between the first and third input based on the criteria applied to the value of the second input when Boolean (if I2 >= threshold, then O=I1, else O=I3).
Inputs	Switch_I1: 'T Switch_I2: bool Switch_I3: 'T where 'T numeric
Outputs	Switch_O: 'T
KCG pragma	Operator expansion

Ignore First Input

Symbol 8.89:

SCADE name	IgnoreFirst
Package	smlk
Function	Connects the first input to a terminator and returns the second input to the output.
Inputs	Input1: 'T Input2: 'T1
Outputs	Output: 'T1
KCG pragma	Operator expansion

Merge (2 inputs)

Symbol 8.90:

SCADE name	Merge2
Package	smlk
Function	Merges two inputs into one output based on the Boolean conditions specified as hidden inputs.
Inputs	I1 and I2: 'T where 'T numeric
Hidden inputs	InitVal: 'T C1 and C2: bool
Outputs	o: 'T

Merge (3 inputs)

Symbol 8.91:

SCADE name	Merge3
Package	smlk
Function	Merges three inputs into one output based on the Boolean conditions specified as hidden inputs.
Inputs	I1, I2 and I3: 'T where 'T numeric
Hidden inputs	InitVal: 'T C1, C2 and C3: bool
Outputs	o: 'T

Switch

Symbol 8.92:

SCADE name	Switch
Package	smlk
Function	Switches output between the first and the third input based on criteria applied to the value of the second input (if I2 >= threshold, then O=I1, else O=I3).
Inputs	Switch_I1: 'T Switch_I2: 'T2 where 'T2 is numeric Switch_I3: 'T
Hidden inputs	Switch_HI: 'T2 (threshold value) where 'T2 is numeric
Outputs	Switch_O: 'T
KCG pragma	Operator expansion

Switch (GTT)

Symbol 8.93:

SCADE name	SwitchGTT
Package	smlk
Function	Switches output between the first and the third input based on criteria applied to the value of the second input (if I2 > threshold, then O=I1, else O=I3).
Inputs	Switch_I1: 'T Switch_I2: 'T2 where 'T2 is numeric Switch_I3: 'T
Hidden inputs	Switch_HI: 'T2 (threshold value) where 'T2 is numeric
Outputs	Switch_O: 'T
KCG pragma	Operator expansion

Switch (NEZ)

Symbol 8.94:

SCADE name	SwitchNEZ
Package	smlk
Function	Switches output between the first and the third input based on criteria applied to the value of the second input (if I2 not equal to 0, then O=I1, else O=I3).
Inputs	Switch_I1: 'T Switch_I2: 'T2 where 'T2 is numeric Switch_I3: 'T
Outputs	Switch_O: 'T
KCG pragma	Operator expansion

Switch Enumeration

Symbol 8.95:

SCADE name	SwitchEnum
Package	smlk
Function	Switches output between the first and the third input based on criteria applied to the value of the second input (if $I2 \ge threshold$, then $O=I1$, else $O=I3$).
Inputs	Switch_I1: 'T, Switch_I2: 'T2, and Switch_I3: 'T
Hidden inputs	Switch_HI: 'T2 (threshold value)
Outputs	Switch_O: 'T
KCG pragma	Operator expansion

Switch Enumeration (GTT)

Symbol 8.96:

SCADE name	SwitchGTTEnum
Package	smlk
Function	Switches output between the first and the third input based on criteria applied to the value of the second input (if I2 > threshold, then O=I1, else O=I3).
Inputs	Switch_I1: 'T, Switch_I2: 'T2, and Switch_I3: 'T
Hidden inputs	Switch_HI: 'T2 (threshold value)
Outputs	Switch_O: 'T
KCG pragma	Operator expansion

Subsystem Operators

Read the description of the following operators:

<u>"Trigger Either Edge"</u> <u>"Trigger Falling Edge (Extended)"</u>

<u>"Trigger Either Edge (Extended)"</u> <u>"Trigger Rising Edge"</u>

<u>"Trigger Falling Edge"</u> <u>"Trigger Rising Edge (Extended)"</u>

Trigger Either Edge

Symbol 8.97:

SCADE name	TriggerEither
Package	smlk
Function	Detects rising or falling edge (compared to zero) of an input.
Inputs	TE_I: 'T where 'T numeric
Outputs	TE_O: bool
KCG pragma	Operator expansion

Trigger Either Edge (Extended)

Symbol 8.98:

SCADE name	TriggerEitherEx
Package	smlk
Function	Detects rising or falling edge (compared to zero) of an input.
Inputs	TE_I: 'T where 'T numeric
Outputs	TE_O: bool and TE_O2: int8
Comment	An additional output indicates the kind of edge that is activated (-1 for falling, 1 for rising, and 0 for no edge).

Trigger Falling Edge

Symbol 8.99:

SCADE name	TriggerFall
Package	smlk
Function	Detects falling edge (compared to zero) of an integer input.
Inputs	TF_I: 'T where 'T numeric
Outputs	TF_O: bool
KCG pragma	Operator expansion

Trigger Falling Edge (Extended)

Symbol 8.100:

SCADE name	TriggerFallEx
Package	smlk
Function	Detects falling edge (compared to zero) of a real/float input.
Inputs	TF_I: 'T where 'T numeric
Outputs	TF_O: bool TF_O2: int8
Comment	An additional output indicates if the edge is activated (-1 for falling or 0 for no edge).

Trigger Rising Edge

Symbol 8.101:

SCADE name	TriggerRise
Package	smlk
Function	Detects rising edge (compared to zero) of an integer input.
Inputs	TR_I: 'T where 'T numeric
Outputs	TR_O: bool
KCG pragma	Operator expansion

Trigger Rising Edge (Extended)

Symbol 8.102:

SCADE name	TriggerRiseEx
Package	smlk
Function	Detects rising edge (compared to zero) of a real/float input.
Inputs	TR_I: 'T where 'T numeric
Outputs	TR_O: bool TR_O2: int8
Comment	An additional output indicates if the edge is activated (1 for rising or 0 for no edge).

Signal Generator Operators

Read the description of the following operators:

"Clock Generator"

"Ground (int/int32)"

"Ground (Boolean)"

"Ground (real/float)"

Clock Generator

Symbol 8.103:

SCADE name	ClockGen
Package	smlk
Function	Generates a Boolean clock signal based on two hidden integer inputs.
Inputs	None
Hidden inputs	Period: int32 and Offset: int32
Outputs	Clock: bool

Ground (Boolean)

Symbol 8.104: ___

SCADE name	GroundB
Package	smlk
Function	Generates a Boolean output set as false.
Inputs	None
Outputs	GB_Out: bool
KCG pragma	Operator expansion

Ground (int/int32)

Symbol 8.105:

SCADE name	Groundl
Package	smlk
Function	Generates an integer output set to 0 .
Inputs	None
Outputs	GI_Out: int32
KCG pragma	Operator expansion

Ground (real/float)

Symbol 8.106: _____

SCADE name	GroundR
Package	smlk
Function	Generates a real/float64 output set to 0.0 .
Inputs	None
Outputs	GR_Out: float64
KCG pragma	Operator expansion

Discontinuity Operators

Read the description of the following operators:

<u>"Backlash"</u> <u>"Relay"</u>

<u>"Dead Zone Dynamic"</u> <u>"Saturate Dynamic"</u>

<u>"Rate Limiter"</u> <u>"Wrap To Zero"</u>

"Rate Limiter Dynamic"

Backlash

Symbol 8.107:

SCADE name	Backlash
Package	smlk
Function	Returns a change in output equal to a change in input with a deadband in direction changes.
Inputs	input: 'T where 'T is float
Hidden inputs	deadband_width: 'T and initial_output: 'T where 'T is float
Outputs	output: 'T where 'T is float

Dead Zone Dynamic

Symbol 8.108:

SCADE name	DeadZoneDynamic
Package	smlk
Function	Keeps the output equal to 0.0 as long as the input is within the [lower tolerance, upper tolerance] range. When the input reaches beyond one limit, the output is equal to the input minus the limit.
Inputs	HiTol: 'T, Input: 'T, and LoTol: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion

Rate Limiter

Symbol 8.109:

SCADE name	RateLimiter
Package	smlk
Function	Limits the first derivative of the input signal. The output does not change faster than the specified limit.
Inputs	input: 'T where 'T is float
Hidden inputs	RisingSlewLimit: 'T, FallingSlewLimit: 'T, TimeStep: 'T, and InitialOutput: 'T where 'T is float
Outputs	output: 'T where 'T is float

Rate Limiter Dynamic

Symbol 8.110:

SCADE name	RateLimiterDynamic
Package	smlk
Function	Limits the first derivative of the signal passing through. The output does not change faster than the specified limit.
Inputs	Rising: 'T, Input: 'T, and Falling: 'T where 'T is float
Hidden inputs	deltaT: 'T where 'T is float
Outputs	Output: 'T where 'T is float
KCG pragma	Operator expansion
Comment	Let us call Rate the derivative ((RL_Input-pre(RL_Output))/DeltaT. If Rate > Rising, then RL_Output equals (Rising* DeltaT + pre(RL_Output)) If Rate < Falling, then RL_Output equals (Falling* DeltaT + pre(RL_Output)) Otherwise, RL_Output=RL_Input.

Relay

Symbol 8.111:

SCADE name	Relay
Package	smlk
Function	Basic relay that generates discontinuous output values based on input.
Inputs	Input1: 'T where 'T numeric
Hidden inputs	SwitchOn: 'T and SwitchOff: 'T OutputOn: 'T and OutputOff: 'T
Outputs	Output1: 'T

Saturate Dynamic

Symbol 8.112:

SCADE name	SaturateDynamic
Package	smlk
Function	If the input is lower than a lower limit, the output is the lower limit; if the input is greater than a higher limit, the output is the higher limit; otherwise the output is equal to the input.
Inputs	HighLimit: 'T, Input: 'T, and LowLimit: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion
Comment	If Input is lower than LowLimit, Output is equal to LowLimit; if Input is greater than HighLimit, Output is equal to HighLimit; otherwise Output is equal to Input.

Wrap To Zero

Symbol 8.113:

SCADE name	WrapToZero
Package	smlk
Function	Sets the output to zero if the input is above threshold.
Inputs	Input: 'T
Hidden inputs	Threshold: 'T
Outputs	Output: 'T where 'T numeric
KCG pragma	Operator expansion

LUT, Pre-LUT and Interpolation Operators

Read the description of the following operators:

<u>"LUT 1D"</u> <u>"Interpolation1D (Floor)"</u>

<u>"Pre-LUT2"</u> <u>"Interpolation2D2"</u>

"Pre-LUT2 (Direct)" "Interpolation2D (Floor)"

"Interpolation1D2"

Note

The Pre-Look-up and Interpolation operators from the lut package use a structured type, LutIndex. These operators map directly to Simulink blocks until release R2006a. From release R2006b, these Simulink operators output the index and factor in two outputs instead of a structure. The following operators are used in SCADE Suite Gateway for Simulink to map directly Simulink blocks.

LUT 1D

Symbol 8.114:

SCADE name	Lut1D
Package	smlk
Size parameters	Xs
Inputs	InX: 'T where 'T is float x: 'T^Xs and y: 'T^Xs
Hidden inputs	Extrapol: b00
Outputs	Outy: 'T where 'T is float
KCG pragma	Operator expansion

Pre-LUT2

Symbol 8.115:

SCADE name	PreLut2
Package	smlk
Function	See introductory note above
Size parameters	Xs
Inputs	Inx: 'T where 'T float
Hidden inputs	X: 'T ^Xs where 'T float Extrapol: bool
Outputs	k: int32 f: 'T where 'T is float

Pre-LUT2 (Direct)

Symbol 8.116:

SCADE name	PreLutDirect2
Package	smlk
Function	See introductory note above
Inputs	Inx: 'T where 'T is float
Hidden inputs	Orig: 'T Step: 'T NbElem: int32 Extrapol: bool where 'T is float
Outputs	k: int32 f: 'T where 'T is float

Interpolation1D2

Symbol 8.117:

SCADE name	Interp1D2
Package	smlk
Function	See introductory note above
Size parameters	Xs
Inputs	k: int32 f: 'T where 'T is float
Hidden inputs	Y: 'T^Xs where 'T is float
Outputs	Outy: 'T where 'T is float

Interpolation1D (Floor)

Symbol 8.118:

SCADE name	Interp1DFloor2
Package	smlk
Function	See introductory note above
Size parameters	Xs
Inputs	k: int32 f: 'T where 'T is float
Hidden inputs	Y: 'T ^Xs where 'T is float
Outputs	Out Y: 'T where 'T is float

Interpolation2D2

Symbol 8.119:

SCADE name	Interp2D2
Package	smlk
Function	See introductory note above
Size parameters	Xs and Ys
Inputs	k1: int32, f1: 'F, k2: int32, and f2: 'F where 'F is float
Hidden inputs	z: 'F^Ys^Xs where 'F is float
Outputs	Outz: 'F where 'F is float

Interpolation2D (Floor)

Symbol 8.120:

SCADE name	Interp2DFloor2
Package	smlk
Function	See introductory note above
Size parameters	Xs and Ys
Inputs	k1: int32, f1: 'T, k2: int32, and f2: 'T where 'T is float
Hidden inputs	z: 'T ^Ys^Xs where 'T is float
Outputs	Outz: 'T where 'T is float

Miscellaneous Operators

Read the description of the following operators:

<u>"Border Crossing Detection"</u> <u>"Inactive Cycles"</u> <u>"Width (Matrix)"</u>
<u>"Counter (limited)"</u> <u>"Inactive Time"</u> <u>"Width (Scalar)"</u>

<u>"Entry Detection"</u> <u>"Quantizer"</u> "Width (Vector)"

<u>"Identity"</u> <u>"Unit Delay (Helper)"</u>

Border Crossing Detection

Symbol 8.121: Out like Border Cross Detect Bor

SCADE name	BorderCrossDetect
Package	smlk
Function	Detects border crossing based on two Boolean inputs: one input indicates whether the signal is outside the border and the other one whether the signal is at the border.
Inputs	Outside: bool and OnTheBorder: bool
Outputs	BorderCross: bool

Counter (limited)

Symbol 8.122:

SCADE name	CounterLimited
Package	smlk
Function	Counts from zero to a specified limit, then wraps.
Hidden inputs	Limit: int32
Outputs	Output: int32

Entry Detection

Symbol 8.123:

SCADE name	EntryDetect
Package	smlk
Function	Detects entry into a range based on two Boolean inputs: one input indicates whether the signal is outside the border and the other one whether the signal is at the border.
Inputs	Outside: bool and OnTheBorder: bool
Outputs	BorderCross: b00l

Identity

Symbol 8.124:

SCADE name	ldt
Package	smlk
Function	Passes signal through (Output=Input)
Inputs	Idt_In: 'T where 'T is numeric
Outputs	Idt_Out: 'T
KCG pragma	Operator expansion

Inactive Cycles

SCADE name	InactiveCycles
Package	smlk
Function	Counter that increments an integer output in steps equal to a hidden integer value when Boolean input is false, else it returns a constant equal to its hidden value.
Inputs	Cond: b00l
Hidden inputs	NbCycles: 'T where 'T is integer
Outputs	DeltaCycles: 'T where 'T is integer

Inactive Time

Symbol 8.126:

SCADE name	InactiveTime
Package	smlk
Function	Counter that increments a real /float output in steps equal to the hidden value when the Boolean input is false, else it returns a constant equal to its hidden value.
Inputs	Cond: bool
Hidden inputs	DTInit: 'T where 'T is numeric
Outputs	DeltaT: 'T where 'T is numeric

Quantizer

Symbol 8.127:

SCADE name	Quantizer
Package	smlk
Function	Basic quantizer based on specified interval. Discretizes the input at a specified interval and produces a stair-step output.
Inputs	Input: 'T where 'T is float
Hidden inputs	Bits: int32, Umin and Umax: 'T where 'T is float OutputNegativeValues: bool
Outputs	Output: int32

Unit Delay (Helper)

Symbol 8.128:

SCADE name	UnitDelayHelper
Package	smlk
Function	Performs a unit delay based on init value.
Inputs	Input: 'T
Hidden inputs	x0: 'T
Outputs	Output: 'T
KCG pragma	Operator expansion

Width (Matrix)

Symbol 8.129:

SCADE name	WidthMat
Package	smlk
Function	Outputs the number of elements from the input matrix.
Size parameters	N1 and N2
Inputs	In1: 'T ^N1^N2 where 'T numeric
Outputs	Out1: int32
KCG pragma	Operator expansion
Comment	Simulink block Width mapped to operators WidthScal, WidthVect, or WidthMat depending on the kind of block input.

Width (Scalar)

Symbol 8.130:

SCADE name	WidthScal
Package	smlk
Function	Outputs the number of elements from the input scalar, i.e. value 1.
Inputs	In1: 'T where 'T numeric
Outputs	Out1: int32
KCG pragma	Operator expansion
Comment	Simulink block Width mapped to operators WidthScal, WidthVect, or WidthMat depending on the kind of block input.

Width (Vector)

Symbol 8.131:

SCADE name	WidthVect
Package	smlk
Function	Outputs the number of elements from the input vector.
Size parameters	N
Inputs	In1: 'T ^N where 'T numeric
Outputs	Out1: int32
KCG pragma	Operator expansion
Comment	Simulink block Width mapped to operators WidthScal, WidthVect, or WidthMat depending on the kind of block input.

9 / Library libverif

This library contains operators designed to help expressing verification properties. Such operators are expressed as regular SCADE nodes. The timing diagram of each operator is provided when it applies.

Access the description of library operators in alphabetical order:

"After Nth Tick"

"Always After First Condition"

"At Least N Ticks"

"Has Never Been True"

"Implies"

"Implies Within N Ticks"

After Nth Tick

Symbol 9.1:

SCADE name	AfterNthTick
Function	Used to express that the output equals the input, except for the first N cycles during which the output is true (i.e., input on the first N cycles is ignored).
Size parameters	N specifies the number of cycles
Inputs	Input1: bool
Outputs	Output1: bool
Comment	Check the operator timing diagram below.

Timing	Cycle	1	2		10	11	12
Diagram	Output1 (N=10 ticks)	true	true	true	true	Input1	Input1

Always After First Condition

Symbol 9.2:

SCADE name	AlwaysAfterFirstCond
Function	Used to express that the output equals the input once a condition is true. Before that and since the initial cycle, the output is true.
Inputs	Input1: bool and Cond: bool
Outputs	Output1: bool
Comment	Check the operator timing diagram below.

Timing	Cycle	1	2	3	4	5	6
Diagram	Cond	false	false	true	*	*	*
	Output1	true	true	Input1	Input1	Input1	Input1

At Least N Ticks

Symbol 9.3:

SCADE name	AtLeastNTicks
Function	Used to express that the output equals the input as soon as the input is true for N cycles. Before this N th cycle, the output is false.
Inputs	Input1: bool
Hidden inputs	N: int32
Outputs	Output1: bool
Comment	Check the operator timing diagram below.

Timing Diagram	Cycle (N)	1	2		5	6	
	Input1	true	true	true	true	*	*
	Output1	false	false	false	Input1	Input1	Input1

Has Never Been True

Symbol 9.4:

SCADE name	HasNeverBeenTrue
Function	Used to express that the output becomes false as soon as its input becomes true for the first time. After this cycle, the output remains false.
Inputs	Input1: bool
Outputs	Output1: bool
KCG pragma	Operator expansion
Comment	Check the operator timing diagram below.

Timing	Cycle	1	2	3	4	5	
Diagram	Input1	false	false	true	true	*	*
	Output1	true	true	false	false	*	*

Implies

Symbol 9.5:

SCADE name	Implies
Function	Implements the "implies" logical operator. "If A is true, then B is true": Not(A) or B.
Inputs	A: bool and B: bool
Outputs	C: bool
KCG pragma	Operator expansion
Comment	Check the operator timing diagram below.

_	Α	В	С
Truth	false	false	true
Table	false	true	true
	true	false	false
	true	true	true

Implies Within N Ticks

Symbol 9.6:

SCADE name	ImpliesWithinNTick
Function	Output equal to "Input1 implies Input2" as soon as Input1 is true for "N" ticks.
Inputs	Input1: bool and Input2: bool
Hidden inputs	ท: int32
Outputs	Output1: bool

Timing	Cycle (N)	1	2	3	4	5	6	
	N=3	*	*	*	*	*		*
Diagram	Input1	false	false	true	true	true	true	false
- 3 ·	Input2	*	*	*	*	false	true	*
	Output1	true	true	true	true	false	true	true

A	maximum (reset) 142	BitClear
Absolute value	minimum (reset) 143	libimpl operator 40
libmath 73	modulo (int) 143	BitSet
Advanced arithmetic (libraries)	modulo (real) 144	libimpl operator 41
See list 103	polynomial 144	Bitshift on sized integer
integer power for integers 103	remainder (real) 145	(libraries)
integer power for reals 104	sign (int) 145	See list 40
inverse 104	Assertion	decrease LSB 41
real power for reals 105	libsmlk operator 181	increase LSB to ceiling 42
square 105	Assertion (inv)	increase LSB to fix 43
AfterNthTick	libsmlk operator 182	increase LSB to floor 43
libverif 213	Asymmetrical dead band	shift left 44
AlwaysAfterFirstCond	libpwlinear 114	shift right 44
libverif 214	Asymmetrical limiter	Bitwise AND
AND (numeric)	libpwlinear 116	libsmlk operator 154
libsmlk operator 171	Asymmetrical pre-load	Bitwise logic from Simulink
Arithmetic (libraries)	libpwlinear 118	(libraries)
See list 73	AtLeastNTicks	See list 153
absolute value 73	libverif 215	AND 154
maximum (2 inputs) 74	В	bit clear 153
maximum (3 inputs) 74		bit set 154
mean (2 inputs) 75	Backlash	extract bit range 159
mean (3 inputs) 75	liblinear operator 59	Nand 155
minimum (2 inputs) 76	libsmlk operator 199	Nor 155
minimum (3 inputs) 76	Backward integrator	NOT 156
modulo 77	liblinear operator 66	OR 156
polynomial 77	Basic memory	shift 157
sign 78	liblinear operator 70	shift left 158
Arithmetic from Simulink	Bias	shift right 158
(libraries)	libsmlk operator 141	XOR 157
See list 141	Bit clear	Bitwise logic on sized integer
bias 141	libsmlk operator 153	(libraries)
inverse (int) 142	Bit set	See list 40
111VG13G (1111) 142	libsmlk operator 154	Bitwise Nand

libsmlk operator 155	libsmlk operator 182	real to Boolean 85
Bitwise Nor	Check gap	rounding function 86
libsmlk operator 155	libsmlk operator 183	rounding to ceil function 86
Bitwise NOT	Check gradient	rounding to floor function 87
libsmlk operator 156	libsmlk operator 184	spherical to cartesian 110
Bitwise OR	Check lower bound	Conversion from Simulink
libsmlk operator 156	libsmlk operator 185	(libraries)
Bitwise shift	Check slope	See list 160
libsmlk operator 157	libpwlinear 112	Boolean to Boolean 160
Bitwise shift left	Check upper bound	Celsius to Fahrenheit 162
libsmlk operator 158	libsmlk operator 186	degrees to radians 162
Bitwise shift right	Clock	Fahrenheit to Celsius 163
libsmlk operator 158	libsmlk operator 168	integer to Boolean 164
Bitwise XOR	Clock counter	radians to degrees 165 real to Boolean 166
libsmlk operator 157	libpwlinear 113	scalar to Boolean 166
Boolean to Boolean	Clock generator	Count-down
libsmlk operator 160	libsmlk operator 197	libdigital operator 12
Border crossing detection	Compare (enumeration)	Counter
libsmlk operator 207	libsmlk operator 173	libpwlinear 113
BuildArray	Compare (numeric)	Counter (limited)
libmath operator 91	libsmlk operator 172	libsmlk operator 207
C	Comparison operators	iibsitiik operator 207
Contocion to malon	in libimpl 36	D
Cartesian to polar	Conversion (libraries)	Dead zone dynamic
librally appratur 1/1	See list 79	libsmlk operator 200
libsmlk operator 161	cartesian to polar 106	Decrease LSB
Cartesian to spherical	cartesian to spherical 107	libimpl operator 41
libmathext operator 107	Celsius to Fahrenheit 107	Decrement time to zero (int)
libsmlk operator 161 Celsius to Fahrenheit	degrees to radians 108	libsmlk operator 146
	Fahrenheit to Celsius 108	Decrement time to zero (real)
libmathext operator 107 libsmlk operator 162	integer to Boolean 84	libsmlk operator 147
Check bounds	polar to cartesian 109	Decrement to zero
CHECK DUUHUS	radians to degrees 109	libsmlk operator 147

Degrees to radians	Detect rising edge (to positive)	libsmlk operator 135
libmathext operator 108	libsmlk operator 177	Discrete filter (normalized)
libsmlk operator 162	Different (integers)	libsmlk operator 135
Derivative	libimpl operator 38	Discrete-time integrator
liblinear operator 60	Digital operators (libraries)	(backward)
Detect (change)	See list 8	libsmlk operator 136
liblinear operator 60	count-down 12	Discrete-time integrator
Detect (decrease)	either edge 13	(forward)
liblinear operator 61	falling edge 14	libsmlk operator 137
Detect (fall negative)	falling edge (no re-trigger) 15	Discrete-time integrator
liblinear operator 61	falling edge (re-trigger) 14	(trapeze)
Detect (fall non positive)	flip-flop (reset priority) 17	libsmlk operator 138
liblinear operator 62	flip-flop (set priority) 18	Discrete-time integrators
Detect (increase)	flip-flop JK 16	(libraries)
liblinear operator 62	inactive cycles 19	See list 136
Detect (rise non negative)	integer to Boolean vector 20	transfer function (first order) 139
liblinear operator 63	rising edge 21	DLatch
Detect (rise positive)	rising edge (no re-trigger) 22	libsmlk operator 168
liblinear operator 63	rising edge (re-trigger) 22	
Detect change (numeric)	toggle 23	E
libsmlk operator 174	trigger (either) 23	Either edge
Detect decrease (numeric)	trigger (fall) 24	libdigital operator 13
libsmlk operator 174	trigger (rise) 24	Entry detection
Detect falling edge (to	Discontinuity from Simulink (libraries)	libsmlk operator 208
negative)	See list 199	Enumeration to Integer
libsmlk operator 175	backlash 199	libsmlk operatorConversion
Detect falling edge (to non-	dead zone dynamic 200	from Simulink (libraries)
positive)	rate limiter 200	enumeration to integer 163
libsmlk operator 175	rate limiter dynamic 201	Equal (integers)
Detect increase (numeric)	relay 201	libimpl operator 37
libsmlk operator 176	saturate dynamic 202	Extract bit range
Detect rising edge	wrap to zero 202	libsmlk operator 159
libsmlk operator 176	Discrete filter	ExtractBitRange

libimpi operator 42	libsmik operator 169	ignore first input
F	Flip-flop SR	libsmlk operator 189
-	libsmlk operator 170	Implies
Fahrenheit to Celsius	Forward integrator	libverif 217
libmathext operator 108	liblinear operator 67	ImpliesWithinNTick
libsmlk operator 163	G	libverif 218
Falling edge		In range (In-In)
libdigital operator 14	Gain	libmath 88
Falling edge (no re-trigger)	liblinear operator 64	libsmlk operator 177
libdigital operator 15	Greater than or equal	In range (In-Out)
Falling edge (re-trigger)	(integers)	libmath 89
libdigital operator 14	libimpl operator 39	libsmlk operator 178
Falling hysteresis	Ground (bool)	In range (Out-In)
libpwlinear 115	libsmlk operator 197	libmath 89
Filter (first order loop)	Ground (int)	libsmlk operator 178
liblinear operator 64	libsmlk operator 198	In range (Out-Out)
Filter functions (libraries)	Ground (real)	libmath 90
See list 46	libsmlk operator 198	libsmlk operator 179
Flip-flop (reset priority)	Н	Inactive cycles
libdigital operator 17	HasNeverBeenTrue	libsmlk operator 209
Flip-flop (set priority)	libverif 216	Inactive time
libdigital operator 18	Hit crossing (either direction)	libsmlk operator 209
Flip-flop D	liblinear operator 65	InactiveCycles
libsmlk operator 169	Hit crossing (falling direction)	libdigital operator 19
Flip-flop from Simulink	liblinear operator 65	Increase LSB to ceiling
(libraries)	Hit crossing (rising direction)	libimpl operator 42
See list 168	liblinear operator 66	Increase LSB to fix
clock 168	institucial operator of	libimpl operator 43
DLatch 168	I	Increase LSB to floor
flip-flop D 169	Identity	libimpl operator 43
flip-flop JK 169	libsmlk operator 208	Integer division (ceiling
flip-flop SR 170	if then else	rounding)
Flip-flop JK	libsmlk operator 188	libimpl operator 30
libdigital operator 16	·	

Integer division (fix rounding)	Integer to Boolean vector	In range (Out-Out) 90
libimpl operator 30	libdigital operator 20	Inverse
Integer division (floor	Integer to enumeration	libmathext 104
rounding)	libsmlk operatorConversion	Inverse (int)
libimpl operator 31	from Simulink (libraries)	libsmlk operator 142
Integer division (saturated)	integer to enumeration 164	1
libimpl operator 31	Interpolation 1D	L
Integer multiplication	libpwlinear 120	Less than or equal (integers)
libimpl operator 32	Interpolation 1D (floor)	libimpl operator 37
Integer multiplication (int16)	libpwlinear 121	libdigital
libimpl operator 32	Interpolation 2D	See list of operators 7
Integer multiplication (int32)	libpwlinear 121	digital operators 8
libimpl operator 33	Interpolation 2D (floor)	truth table operators 25
Integer multiplication	libpwlinear 122	libimpl (sied integer)
(saturated)	Interpolation from Simulink	saturation operators 28
libimpl operator 34	(libraries)	libimpl (sized integer)
Integer multiplication (uint16)	See list 203	See list of operators 27
libimpl operator 33	interpolation1D (floor) 205	arithmetic operators 29
Integer multiplication (uint32)	interpolation1D2 205	bitshift operators 40
libimpl operator 33	interpolation2D (Floor) 206	bitwise logic operators 40
Integer negation (saturated)	interpolation2D2 206	comparison operators 36
libimpl operator 34	Interpolation1D (floor)	liblinear
Integer power (for integers)	libsmlk operator 205	See list of operators 45
	Interpolation1D2	discrete filters 46
libmathext 103	libsmlk operator 205	linear functions 59
Integer power (for reals)	Interpolation2D (Floor)	transfer functions 46
libmathext 104	libsmlk operator 206	libmath
Integer subtraction (saturated)	Interpolation2D2	See list of operators 71
libimpl operator 35	libsmlk operator 206	arithmetic operators 73
Integer sum (saturated)	Interval calculus (libraries)	conversion operators 79
libimpl operator 35	See list 88	interval operators 88
Integer to Boolean	In range (In-In) 88	matrix and vector operators 9°
libmath 84	In range (In-Out) 89	libmathext
libsmlk operator 164	In range (Out-In) 89	See list of operators 101
	- J- (· · · · · · · · · · · · · · · ·	•

advanced arithmetic interpolation from discontinuity operators 199 Simulink 203 operators 103 discrete-time integrators 136 interval calculus 88 power function operators 102 flip-flop operators 168 trigonometric function linear functions 59 interpolation operators 203 operators 102 logical operation from logical operators 171 libpwlinear Simulink 171 LUT and Pre-LUT operators 203 See list of operators 111 LUT (piecewise) 120 miscellaneous operators 207 LUT and Pre-LUT from LUT operators 120 model verification Simulink 203 piecewise linear functions 112 operators 181 miscellaneous from Libraries signal generator operators 197 Simulink 207 libdigital 7 signal routing operators 188 model verification from libimpl 27 subsystem operators 193 Simulink 181 liblinear 45 time operators 146 piecewise linear functions 112 libmath 71 transformation operators 160 power functions 102 libmathext 101 libverif signal generator from libpwlinear 111 See list of operators 213 Simulink 197 libsmlk 133 Linear functions (libraries) signal routing from libverif 213 Simulink 188 See list 59 Library operators Simulink discrete-time backlash 59 integrators 136 advanced arithmetic 103 backward integrator 66 sized integer arithmetic 29 arithmetic from Simulink 141 basic memory 70 basic arithmetic 73 sized integer comparison 36 derivative 60 subsystem from Simulink 193 basic vector/matrix calculus 91 detect (change) 60 time operators (Simulink) 146 bitshift (sized integer) 40 detect (decrease) 61 bitwise logic (Simulink) 153 transfer functions 46 detect (fall negative) 61 transformation (Simulink) 160 bitwise logic (sized integer) 40 detect (fall non positive) 62 trigonometric functions 102 conversion 79 detect (increase) 62 conversion (Simulink) 160 truth table operators 25 detect (rise non negative) 63 libsmlk digital operators 8 detect (rise positive) 63 discontinuity from See list of operators 133 filter (first order loop) 64 Simulink 199 arithmetic operators 141 forward integrator 67 discrete filters 46 bitwise logical operators 153 gain 64 flip-flop from Simulink 168 conversion operators 160 hit crossing (either integer comparison 36 direction) 65

hit crossing (falling	LUT 1D (below)	LUT 2D (below) 128
direction) 65	libpwlinear 124	LUT 2D (nearest) 129
hit crossing (rising direction) 66	LUT 1D (nearest)	LUT 3D 130
mean cycle (2 values) 69	libpwlinear 125	LUT 3D (nearest) 131
mean cycle (3 values) 69	LUT 2D	Pre-LUT 132
memory 70	libpwlinear 126	Pre-LUT (direct) 132
trapeze integrator 68	LUT 2D (above)	M
Logical operations from	libpwlinear 127	
Simulink (libraries)	LUT 2D (below)	Matrix product
See list 171	libpwlinear 128	libmath 95, 96
AND (numeric) 171	LUT 2D (nearest)	Matrix product by vector
compare 172	libpwlinear 129	libmath 96
compare enumerated 173	LUT 3D	Max reset
detect change 174	libpwlinear 130	libpwlinear 117
detect decrease 174	LUT 3D (nearest)	Maximum (2 inputs)
detect falling edge (to	libpwlinear 131	libmath 74
negative) 175	LUT and Pre-LUT from Simulink	Maximum (3 inputs)
detect falling edge (to non- positive) 175	(libraries)	libmath 74
detect increase 176	See list 203	Maximum (reset)
detect rising edge (to non-	LUT 1D 203	libsmlk operator 142
negative) 176	Pre-LUT2 204	Mean (2 inputs)
detect rising edge (to	Pre-LUT2 (direct) 204	libmath 75
positive) 177	LUT operations (libraries)	Mean (3 inputs)
in range (In-In) 177	See list 120	libmath 75
in range (In-Out) 178	interpolation 1D 120	Mean cycle (2 values)
in range (Out-In) 178	interpolation 1D (floor) 121	liblinear operator 69
in range (Out-Out) 179	interpolation 2D 121	Mean cycle (3 values)
NOT 179	interpolation 2D (floor) 122	liblinear operator 69
OR 180	LUT 1D 122	Memory
LUT 1D	LUT 1D (above) 123	liblinear operator 70
libpwlinear 122	LUT 1D (below) 124	Merge (2 inputs)
libsmlk operator 203	LUT 1D (nearest) 125	libsmlk operator 189
LUT 1D (above)	LUT 2D 126	Merge (3 inputs)
libpwlinear 123	LUT 2D (above) 127	libsmlk operator 190

Minimum (2 inputs)	P	libsmlk operator 204
libmath 76 Minimum (3 inputs) libmath 76 Minimum (reset) libsmlk operator 143 Model verification from Simulink (libraries) See list 181 assertion 181 assertion (inv) 182 check bounds 182 check gap 183 check gradient 184 check lower bound 185 check upper bound 186 Modulo libmath 77 libsmlk operator 143 Modulo (real) libsmlk operator 144	Piecewise linear functions (libraries) See list 112 asymmetrical dead band 114 asymmetrical limiter 116 asymmetrical pre-load 118 check slope 112 clock counter 113 counter 113 falling hysteresis 115 max reset 117 quantizer 119 rate limiter 119 rising hysteresis 115 symmetrical dead band 114 symmetrical limiter 116 symmetrical pre-load 118 Polar to cartesian libmathext operator 109	Quantizer libpwlinear 119 libsmlk operator 210 R Radians to degrees libmathext operator 109 libsmlk operator 165 Rate limiter libpwlinear 119 libsmlk operator 200 Rate limiter dynamic libsmlk operator 201 Real power (for reals) libmathext 105 Real to Boolean libmath 85 libsmlk operator 166
N NOT (numeric) libsmlk operator 179 O OR (numeric) libsmlk operator 180 Overflow check decrease LSB operator 41 Overflow detection in libimpl 28	libsmlk operator 165 Polynomial libmath 77 libsmlk operator 144 Power functions (libraries) See list 102 Pre-LUT libpwlinear 132 Pre-LUT (direct) libpwlinear 132 Pre-LUT2 libsmlk operator 204 Pre-LUT2 (direct)	Relay libsmlk operator 201 Remainder (real) libsmlk operator 145 Rising edge libdigital operator 21 Rising edge (no re-trigger) libdigital operator 22 Rising edge (re-trigger) libdigital operator 22 Rising hysteresis libpwlinear 115 Rounding function

libmath 86	Signal routing from Simulink	less than or equal 37
Rounding to ceil function	(libraries)	strictly greater than 38
libmath 86	See list 188	strictly less than 36
Rounding to floor function	if then else 188	Spherical to cartesian
libmath 87	ignore first input 189	libmathext operator 110
Sample time (math operations) libsmlk operator 148 Saturate dynamic libsmlk operator 202 Saturation operators and overflows 28 Scalar product libmath 97	merge (2 inputs) 189 merge (3 inputs) 190 switch 190 switch (GTT) 191 switch (NEZ) 191 switch enumeration 192 switch enumeration (GTT) 192 Sized integer arithmetic (libraries) See list 29	libsmlk operator 167 Square libmathext 105 Strictly greater than (integers libimpl operator 38 Strictly less than (integers) libimpl operator 36 Subsystem from Simulink (libraries) See list 193
Scalar to Boolean	division (ceiling rounding) 30 division (fix rounding) 30	trigger either edge 193
libsmlk operator 166 Selector libmath operator 97 Shift left libimpl operator 44	division (floor rounding) 31 division (saturated) 31 multiplication 32 multiplication (int16) 32	trigger falling edge 194 trigger rising edge 195 Switch libsmlk operator 190 Switch (GTT)
Shift right libimpl operator 44 Sign libmath 78 Sign (int) libsmlk operator 145 Signal generator from Simulink	multiplication (int32) 33 multiplication (saturated) 34 multiplication (uint16) 33 multiplication (uint32) 33 negation (saturated) 34 subtraction (saturated) 35 sum (saturated) 35	libsmlk operator 191 Switch (NEZ) libsmlk operator 191 Switch enumeration libsmlk operator 192 Switch enumeration (GTT)
(libraries) See list 197 clock generator 197 ground (bool) 197 ground (int) 198 ground (real) 198	Sized integer comparison (libraries) See list 36 different 38 equal 37 greater than or equal 39	libsmlk operator 192 Symmetrical dead band libpwlinear 114 Symmetrical limiter libpwlinear 116 Symmetrical pre-load

libpwlinear 118	spherical to cartesian 167	V
Т	Trapeze integrator liblinear operator 68	Vector addition
Time operators from Simulink (libraries)	Trigger (either) libdigital operator 23	libmath 98 Vector calculus (libraries)
See list 146 decrement time to zero (int) 146 decrement time to zero (real) 147 decrement to zero 147 sample time 148 unit delay 151 unit delay (reset) 151,152 unit delay enabled 149	Trigger (fall) libdigital operator 24 Trigger (rise) libdigital operator 24 Trigger either edge libsmlk operator 193 Trigger falling edge libsmlk operator 194 Trigger rising edge	vector addition 98 vector difference 98 Vector difference libmath 98 Vector product by matrix libmath 99 Vector/matrix calculus (libraries) See list 91 matrix product 95, 96
unit delay enabled (reset) 150 Timing diagram 213, 214, 215, 216, 217	libsmlk operator 195 Trigonometric functions (libraries)	matrix product by vector 96 scalar product 97 vector by matrix 99
Toggle libdigital operator 23	See list 102 Truth table operators (libraries)	Verification operators (libraries)
Transfer function (first order) libsmlk operator 139	See list 25	AfterNthTick 213 AlwaysAfterFirstCond 214
Transfer function (lead or lag) libsmlk operator 139 Transfer function (real zero) libsmlk operator 140	Unit delay libsmlk operator 151 Unit delay (Helper)	AtLeastNTicks 215 HasNeverBeenTrue 216 Implies 217 ImpliesWithinNTick 218
Transfer functions (libraries) See list 46	libsmlk operator 210 Unit delay (reset)	W
Transformation from Simulink (libraries) See list 160 cartesian to polar 161 cartesian to spherical 161	libsmlk operator 151, 152 Unit delay enabled libsmlk operator 149 Unit delay enabled (reset) libsmlk operator 150	Width (matrix) Iibsmlk operator 211 Width (scalar) Iibsmlk operator 211 Width (vector)
polar to cartesian 165		libsmlk operator 212

Wrap to zero

libsmlk operator 202