Support Vector Machines

Widest Street Approach

What rule would use this decision boundary?

Vector perpendicular to decision boundary

Position vector of element to classify

Our decision rule!

Minimize

$$\left\lceil rac{1}{n} \sum_{i=1}^n \max \left(0, 1 - y_i(w \cdot x_i - b)
ight)
ight
ceil + \lambda \|w\|^2.$$

Linearly Inseparable?

Transform into a higher dimension! Dot products of the vectors still apply

Susceptible to overfitting

<u>https://youtu.be/_PwhiWxHK8o?t=40m43s</u> - failing to linearly separate

https://youtu.be/_PwhiWxHK8o?t=44m51s - works in a higher dimension

In general, it's a separating hyperplane

Works only with two categories

Non probabilistic binary linear classifier

Text and hypertext classification

Image classification

Biology - classifying proteins

Not hotdog!

Stochastic Gradient Descent

Modifies Scaling Gradient Descent

The loss function depends on every data point and you have to calculate on every iteration

Stochastic gradient descent utilizes a terrible estimator in lieu of this, which only sort of works because you make it random