Měření trojfázového jalového výkonu

Ondřej Šika

Obsah

1	Zadání	3
2	Teoretický úvod2.1 Definice trojfázového výkonu2.2 Fázorový diagram výkonů	9
3	Schéma zapojení 3.1 Měření třemi wattmetry	4 4 4
4	Postup měření	5
5	Naměřené a vypočítané hodnoty 5.1 Příklady výpočtů	5 ()
6	Grafy 6.1 Závislost jalového výkonu na napětí(tři wattmetry) 6.2 Závislost jalového výkonu na napětí (dva wattmetry) 6.3 Závislost jalového výkonu na napětí (obě metody) 6.4 Fázorový diagram výkonů	77 77 88 99 10
7	Závěr	11

1 Zadání

- 1. Změřte trojfázový jalový výkon třemi a dvěma wattmetry. Z naměřených hodnot vyneste grafické závislosti Q=f(U).
- 2. Z naměřených hodnot napětí a proudu vypočítejte hodnotu zdánlivého výkonu S a činného výkonu P.
- 3. Sestrojte fázorový diagram výkonů z hodnot S a Q (pro hodnotu U=400V) ve správném měřítku.
- 4. Grafické závislosti získané oběma metodami zakreslete do společného grafu.
- 5. V závěru porovnejte obě metody měření jalového výkonu a porovnejte velikosti P, Q, S.

2 Teoretický úvod

2.1 Definice trojfázového výkonu

Jalový výkon se říká části výkonu, která se obvodem přelévá tam a zpět (a způsobuje v části periody zápornou hodnotu okamžitého výkonu). Je způsoben tím, že elektrická energie v jedné části periody v kondenzátoru vytváří elektrické pole, resp. v cívce magnetické pole, v druhé části periody pak tato pole zanikají a stejnou energii vracejí do obvodu.

Trojfázový výkon je obecně definován součtem výkonů j jednotlivých fázích.

$$S = S_U + S_V + S_W$$

Trojfázový jalový výkon vychází z tohoto vztahu.

$$Q = S_U * \cos\varphi_U + S_V * \cos\varphi_V + S_W * \cos\varphi_W$$

2.2 Fázorový diagram výkonů

3 Schéma zapojení

3.1 Měření třemi wattmetry

3.2 Měření dvěma wattmetry

4 Postup měření

První měření proveď te pomocí tří wattmetrů. Po kontrole zapojení připojte zdroj proměnného napětí (booster, indukční regulátor) a nastavte první hodnotu napětí. Odečtěte potřebné hodnoty a zapište je do připravené tabulky. Tímto způsobem postupujte pro všechny zadané hodnoty napětí.

Poté přepojte přístroje pro měření pomocí dvou wattmetrů. Po připojení boosteru postupujte stejným způsobem jako v prvním případě, měřené hodnoty zapisujte do tabulky naměřených hodnot.

Po skončení měření nejprve snižte hodnotu napájecího napětí z boosteru na nulu a poté odpojte zdroj od sítě.

5 Naměřené a vypočítané hodnoty

5.1 Příklady výpočtů

$$I = \frac{I_1 + I_2 + I_3}{3}$$

$$Q = Q_1 + Q_2$$

$$Q = Q_1 + Q_2 + Q_3$$

$$S = U * I$$

$$sin\varphi = \frac{Q}{S}$$

$$P = U * I * cos\varphi$$

5.2 Tabulka hodnot

5.2.1 Tabulka hodnot pro měření třemi wattmetry

U	I_1	I_2	I_3	Q_1	Q_2	Q_3	Q	S	$sin\varphi$	$cos\varphi$	Р
[V]	[A]	[A]	[A]	[VAr]	[VAr]	[VAr]	[VAr]	[VA]	[-]	[-]	[W]
380	1.2	1.3	1.2	450	455	452	1357	1406	0,965	0,261	367
350	1	1.05	1.1	375	380	378	1133	1102,5	1,027	-	-
340	0.8	0.9	0.86	300	305	302	907	870,4	1,042	-	-
320	0.7	0.7	0.8	262	267	263	792	704	1,125	-	-
300	0.6	0.65	0.6	210	215	213	638	555	1,149	-	-
270	0.55	0.56	0.86	165	162	168	495	531,9	0,930	0,365	194
250	0.45	0.52	0.5	135	133	137	405	367,5	1,102	-	-
220	0.45	0.46	0.46	97	97.5	95	289,5	301,4	0,960	0,278	83
200	0.4	0.43	0.41	75	72	178	325	248	1,310	-	-
180	0.35	0.36	0.39	60	61	59	180	198	0,909	0,416	82
150	0.29	0.3	0.28	37	38	36	111	130,5	0,850	0,525	68

5.2.2 Tabulka hodnot pro měření dvěmi wattmetry

U	I_1	I_2	I_3	Q_1	Q_2	Q	S	$sin\varphi$	$cos\varphi$	P
[V]	[A]	[A]	[A]	[VAr]	[VAr]	[VAr]	[VA]	[-]	[-]	[W]
380	1.2	1.12	1.13	397.5	397	1191	1311	0,909	0,416	546
350	0.95	0.96	0.95	337.5	337	1011	1001	1,010	-	-
340	0.9	0.89	0.9	307.5	307.6	922	914	1,008	-	-
320	0.75	0.76	0.77	240	240.3	720	729	0,987	0,157	115
300	0.7	0.76	0.77	240	240.3	720	669	1,076	-	-
270	0.6	0.61	0.59	202.5	202.3	607	486	1,249	_	-
250	0.54	0.53	0.55	135	136	406	405	1,003	-	-
220	0.45	0.46	0.44	97.5	97.6	292	297	0,985	0,170	50
200	0.41	0.4	0.39	75	75	225	240	0,937	0,347	83
180	0.34	0.35	0.33	60	61	181	183	0,988	0,150	27
150	0.28	0.29	0.27	37.5	37.5	112	126	0,892	0,450	56

6 Grafy

6.1 Závislost jalového výkonu na napětí(tři wattmetry)

6.2 Závislost jalového výkonu na napětí (dva wattmetry)

6.3 Závislost jalového výkonu na napětí (obě metody)

6.4 Fázorový diagram výkonů

7 Závěr

Metody jsou přibližně stejné. Nepřesným měřením jsem získaly sin x větší než 1. Proto jsme některé hodnoty nemohly dopočítat.