Classification

Injung Kim
Handong Global University

Agenda

- Bayesian Theorem
- k-Nearest Neighbor
- Linear Classifiers
- Support Vector Machines
- Q&A

Regression

- Regression: estimating the relationships among variables.
 - Techniques for modeling and analyzing several variables focusing on the relationship between a dependent variable and independent variables (or 'predictors').
 - Ex) Predicting variables from other variables (bankrupt prediction, sales prediction, object coordinate estimation, ...)

Classification

- The act of taking in raw data and taking an action based on the category of the data.
 - Input: a data (event, object, observation, …) that belongs to one of predefined categories
 - Output: category of the input event

Classification

Classes (hidden)

$$\omega_i \in \{\omega_1, \omega_2, \dots, \omega_n\}$$

- Input
 - Observation, feature vector (or sequence)

$$X = (x_1, x_2, \dots, x_d)$$

- Goal: Finding ω_i to which X belongs
 - Without any information: $\omega^* = argmax_{\omega}P(\omega)$
 - \square $P(\omega)$ is called prior probability
 - Given an observation $X : \omega^* = argmax_{\omega}P(\omega|X)$
 - \square $P(\omega|X)$ is called posterior probability

Bayesian Classifier

- How to find the class that is likely to have generated the input pattern?
 - Select ω_i that maximizes $P(\omega_i|X)$ ω_i : class or hidden var, X: observation
 - Theoretically optimum classifier
- However, it's difficult to know $P(\omega_i|X)$ for each class
- → Bayes' theorem

posterior prob.
$$\longrightarrow P(\omega|X) = \frac{P(\omega \cap X)}{P(X)}$$
likelihood $\longrightarrow \frac{P(X|\omega)P(\omega)}{P(X)} \longleftarrow$ prior prob. $\longrightarrow P(X)$ evidence

Bayesian Classifier

A classifiers that selects ω* such that

$$\omega^* = \arg\max_{\omega} P(\omega \mid X) \qquad posterior \ prob.$$

$$= \arg\max_{\omega} \frac{P(X \mid \omega)P(\omega)}{P(X)} \qquad P(X) \text{ is independent from } \omega$$

$$= \arg\max_{\omega} P(X \mid \omega)P(\omega) \qquad prior \ prob.$$

Bayesian Classifier

- Prior probability $P(\omega)$
 - Measure the frequencies of classes
 - Estimate the distributions of classes by models
 - Assume $P(\omega)$'s are same for all ω 's. → ignore
 - Heuristically designed constraints
 Ex) Smoothness assumption
- Likelihood $P(X|\omega)$
 - Estimated by a generative model (e.g. Gaussian)
- Cf. Discriminative models estimate $P(\omega|X)$ directly

Gaussian Model

Assume each class has Gaussian distribution

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

$$P(X \mid \omega) = \frac{1}{(2\pi)^{d/2} |\Sigma_{\omega}|^{1/2}} \exp\left[-\frac{(X - \mu_{\omega})^{T} \sum_{\omega}^{-1} (X - \mu_{\omega})}{2}\right]$$

Discriminant Function

- Discriminant function of a class ω
 - Classification rule: select ω whose $g_{\omega}(X)$ is the maximum

$$g_{\omega}(X) \equiv \ln P(X \mid \omega) P(\omega)$$

$$= -\frac{(X - \mu_{\omega})^{T} \sum_{\omega}^{-1} (X - \mu_{\omega})}{2} - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \sum_{\omega} \right| + \ln P(\omega)$$

- Usually, $P(\cdot)$ are assumed to be same
- Three cases
 - Case 1: $\Sigma_{\omega} = \sigma^2 I$
 - Case 2: Σ_{ω} 's are same for all classes \rightarrow linear classifier
 - Case 3: each class has an arbitrary Σ_{ω}
- → linear classifier
- → quadratic classifier

Linear Discriminant Function

$$g_{\omega}(X) = -\frac{(X - \mu_{\omega})^{T} \sum_{\omega}^{-1} (X - \mu_{\omega})}{2} - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \sum_{\omega} \right| + \ln P(\omega)$$
same for all classes

$$g_{\omega}(X) = -\frac{(X - \mu_{\omega})^2}{2\sigma} + \ln P(\omega)$$

$$= -\frac{1}{2\sigma^2} \left[X^T X - 2\mu_{\omega}^T X + \mu_{\omega}^T \mu_{\omega} \right] + \ln P(\omega)$$

$$g_{\omega}(X) = \frac{1}{\sigma^2} \mu_{\omega}^T (X) - \frac{1}{2\sigma^2} \mu_{\omega}^T \mu_{\omega} + \ln P(\omega)$$

Linear
Discriminant
Function

LDF with Euclidian Distance

Select the class with the nearest mean from the input pattern

Feature Space

Linear Discriminant Function

• Case 2: Σ_{ω} 's are same for all classes

$$g_{\omega}(X) = -\frac{(X - \mu_{\omega})^T \sum_{\omega}^{-1} (X - \mu_{\omega})}{2} - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \sum_{\omega} \right| + \ln P(\omega)$$

$$= -\frac{(X - \mu_{\omega})^T \sum_{\omega}^{-1} (X - \mu_{\omega})}{2} + \ln P(\omega)$$

$$= g_{\omega}(X) = -\frac{(X - \mu_{\omega})^T \sum_{\omega}^{-1} (X - \mu_{\omega})}{2} + \ln P(\omega)$$

$$= -\frac{(X - \mu_{\omega})^T \sum_{\omega}^{-1} (X - \mu_{\omega})}{2} + \ln P(\omega)$$
Linear Discriminant Function

* $(X-\mu_{\omega})^T\Sigma^{-1}(X-\mu\omega)$ is called Mahalanobis Distance

Quadratic Discriminant Function

• Case 3: each class has an arbitrary Σ_{ω}

$$g_{\omega}(X) = -\frac{(X - \mu_{\omega})^T \sum_{\omega}^{-1} (X - \mu_{\omega})}{2} - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \sum_{\omega} \right| + \ln P(\omega)$$
all classes

$$g_{\omega}(X) = \frac{(X \sum_{\omega}^{-1} X)}{2} + \sum_{\omega}^{-1} X - \frac{1}{2} \mu_{\omega}^{T} \sum_{\omega}^{-1} \mu_{\omega} - \frac{1}{2} \ln |\Sigma_{\omega}| + \ln P(\omega)$$

Quadratic
Discriminant
Function

Agenda

- Bayesian Theorem
- k-Nearest Neighbor
- Linear Classifiers
- Support Vector Machines
- Q&A

k-Nearest Neighbor Algorithm

- A non-parametric method used for classification and regression.
 - The input consists of the k closest training examples in the feature space.
 - Classification: the input object is classified by a plurality vote of its neighbors
 - Regression: the output is the average of the values of k nearest neighbors.

K-NN Classifier

■ Approximate $P(\omega_j|X)$ by distribution of classes around X

$$P(\omega_j|X) \approx \frac{N_j}{\sum_j N_j} = \frac{N_j}{k}$$

- ω_i : classes, N_i : # of class-j samples among neighbors
- \blacksquare k controls the size of neighborhood (typically, 1, 3 or 5)

k-Nearest Neighbor Algorithm

$$R^* \ \leq \ R_{k ext{NN}} \ \leq \ R^* \left(2 - rac{MR^*}{M-1}
ight)$$

- R*: Bayesian error rate (optimum)
- M: # of classes
- Limitations
 - Relies on distance metric
 - Not applicable to a large volume of data
- Combined with metric learning
 - Deep learning + k-NN → one-shot learning

K-NN using scikit-learn

- Import packages import numpy as np import sklearn as sk
- Load dataset from sklearn.datasets import load_iris

iris_dataset = load_iris()

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
```

iris_dataset.data., iris_dataset.target, random_state=0)

k-Nearest Neighbor Regression

- k-NN regression
 - Find k-nearest neighbors
 - Prediction = average value of the neighbors

K-NN using scikit-learn

- Create and train kNN classifier from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train,y_train)
- Apply to new samples

- Evaluate
 - print("Accuracy = {}".format(knn.score(X_test, y_test)))

Numpy Functions: reshape()

- Creating a 1D array
 - a = np.arange(0, 20)
 - print("a.shape = ", a.shape)
 a.shape = (20,)
 - print(a)
 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
- reshape()
 - \bullet b = np.reshape(a, (4, 5))
 - print("b.shape = ", b.shape)
 b.shape = (4, 5)
 - print(b)
 [[0 1 2 3 4] [5 6 7 8 9] [10 11 12 13 14] [15 16 17 18 19]]

Numpy Functions: expand_dims()

- expand_dims()
 - parameter axis specifies the new axis
 - # the new dimension becomes axis 0
 - c = np.expand_dims(a, axis = 0)
 - print("c.shape = ", c.shape)
 c.shape = (1, 20)
 - print(c)
 [[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]]
 - # the new dimension becomes axis 1
 - d = np.expand_dims(a, axis = 1)
 - print("d.shape = ", d.shape)
 d.shape = (20, 1)
 - print(d)
 [[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
 [14] [15] [16] [17] [18] [19]]

Numpy Functions: squeeze()

- squeeze() removes single dimensional entries
 - print("c.shape = ", c.shape)
 c.shape = (1, 20)
 - \blacksquare f = np.squeeze(c)
 - print("f.shape = ", f.shape)
 f.shape = (20,)
 - print(f)
 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
 - print("d.shape = ", d.shape)
 d.shape = (20, 1)
 - g = np.squeeze(d)
 - print("g.shape = ", g.shape)
 g.shape = (20,)
 - print(g)
 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

Agenda

- Bayesian Theorem
- k-Nearest Neighbor
- Linear Classifiers
- Support Vector Machines
- Q&A

Linear Classifier

- Binary classification
 - class +1 if $f(x) = \sum_{i} w_{i}x_{i} + b = w_{1}x_{1} + \dots + w_{n}x_{n} + b > 0$
 - class -1 if $f(x) = \sum_i w_i x_i + b = w_1 x_1 + \dots + w_n x_n + b < 0$
 - \square *n*: feature dim.
 - $\square W = (w_i | 1 \le i \le n)$: model parameters
 - Class boundary $(f(x) = \sum_i w_i x_i + b = 0)$ is hyperplane

Linear Classifier

- Multi-class classification
 - Each class j has a discriminant function $f_i(x)$

$$\hat{y} = argmax_j [f_j(x)] = argmax_j \left[\sum_i w_{ij} x_i + b_j \right]$$

- \square N: # of features, C: # of classes
- $\square W = (w_{ij} | 1 \le i \le N, 1 \le j \le C)$: model parameters
- Class boundaries $(f_j(x) = f_k(x))$ are hyperplanes.

Parameter Estimation

- Logistic regression
- Linear Discriminant Function
- Linear SVM

Logistic Regression

■
$$Logistic(x) = Sigmoid(x) = \frac{1}{1 + \exp(-x)}$$

- Discrimination function
 - $f_j(x) = logistic(\sum_i w_{ji} x_i + b_j)$ $f_i(x) \text{ has range } [0,1]$

- Parameter estimation
 - $W^* = argmin_W L(\hat{Y}, Y; W)$
 - $L(\cdot)$: a loss function such as cross entropy or MSE

Loss Functions

Mean squared error

$$E_{MSE} = \frac{1}{2} \frac{\sum_{N} (\hat{y}_t - y_t)^2}{N}$$

- Cross entropy (with softmax activation)
 - Softmax activation: $\hat{y}_t = \frac{\exp(net_t)}{\sum_t \exp(net_t)}$

$$E_{CE} = -\sum_{N} y_t \log(\hat{y}_t)$$

 $y_i \in \{0,1\}$: label (only $y_{true} = 1$)

Gradient-based Learning

- lacktriangle Given current weights W, the gradient gives a direction in which increases the error most rapidly
 - Gradient of E(W) with respect to weight

$$\frac{\nabla E(W)}{\nabla W} = (\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_i}, \dots, \frac{\partial E}{\partial w_M})$$

Update rule

$$W^{t+1} = W^t - \eta \cdot \frac{\nabla E(W)}{\nabla W^t}$$

LogisticRegression in scikit-learn

- Import LogisticRegression
 - from sklearn.linear_model import LogisticRegression
- Instance creation and training
 - logi_reg = LogisticRegression().fit(X_train,y_train)
- Checking coefficients and intercept
 - print("logi_reg.coef_: ", logi_reg.coef_) # W
 - print("logi_reg.intercept_:", logi_reg.intercept_) # b
- Applying to new data
 - y_pred = logi_reg.predict(X_test)

Support Vector Machines

- Search for the boundary that separates classes with maximum margin
 - Linear SVM
 - C-SVM (SVM with soft margin)
 - Nonlinear SVM (SVM with kernel)

Agenda

- Bayesian Theorem
- k-Nearest Neighbor
- Linear Classifiers
- Support Vector Machines
- Q&A

Support Vector Machines

- Search for the boundary that separates classes with maximum margin
 - Linear SVM
 - C-SVM (SVM with soft margin)
 - Nonlinear SVM (SVM with kernel)

Linear SVM

- Search for $W = argmin_W |W|_2^2$ s.t.
 - $WX_i + b \ge +1$ for $y_i = +1$
 - $WX_i + b \le -1$ for $y_i = -1$
 - $\rightarrow y_i(WX_i + b) 1 \ge 0$ combines the two conditions
- Loss function

$$L_p = \frac{1}{2} |W|_2^2 - \sum_{i=1}^l \alpha_i y_i (WX_i + b) + \sum_{i=1}^l \alpha_i$$

- $\alpha_i \geq 0$'s are Lagrange multipliers
- Dual formulation
 - Minimizing L_P subject to $\frac{\partial L_P}{\partial \alpha_i} = 0$, $\alpha_i \ge 0$
 - Maximizing L_P subject to $\frac{\partial L_P}{\partial W} = 0$, $\frac{\partial L_P}{\partial b} = 0$, $\alpha_i \ge 0$

Linear SVM

Substitute
$$\frac{\partial L_p}{\partial W} = 0$$
, $\frac{\partial L_p}{\partial b} = 0$ into L_p

$$L_D = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j X_i \cdot X_j$$

- Find α_i 's that maximize L_D .
 - $\square X_i$'s with $\alpha_i > 0$ are called support vectors
- Discriminant function: $WX_j + b = \sum_{i=1}^{l} \alpha_i y_i X_i \cdot X_j + b$

Linear SVM with Soft Margin (C-SVM)

- $W^* = argmin_W \left\{ \left[\frac{|W|^2}{2} + C(\sum_i \xi_i) \right] \right\} \text{ s.t. }$
 - $\square WX_i + b \ge +1 \xi_i$ for $y_i = +1$
 - $\square WX_i + b \le -1 + \xi_i$ for $y_i = -1$
- Equivalent to

$$y_i(X_iW + b) - 1 + \xi_i \ge 0$$

Primal formulation

$$L_p = \frac{1}{2}|W|^2 + C\sum_{i=1}^{l} \xi_i - \sum_{\{i=1\}}^{l} \alpha_i \{y_i (X_iW + b) - 1 + \xi_i\} - \sum_{i} \mu_i \xi_i$$

SVM with Kernel

Nonlinear SVM

- Transforms input feature to higher dimensional space using nonlinear kernel functions
- Samples are better separated in higher-dimensional space

Nonlinear SVM

■ Transform X to high dimension space through a nonlinear transform $\phi(\cdot)$

	Loss function	Discriminant function
Linear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j X_i \cdot X_j$	$WX + b$ $= \sum_{i=1}^{l} \alpha_i y_i X_i \cdot X + b$
Nonlinear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(X_i) \phi(X_j)$	$W\phi(X) + b$ $= \sum_{i} \alpha_{i} y_{i} \phi(X_{i}) \phi(X) + b$

It is hard to find appropriate high-dimensional transform $\phi(\cdot)$

Nonlinear SVM - Kernel Trick

- Replace $\phi(X_i)\phi(X_j)$ by $K(X_i,X_j)$
 - We don't need to know $\phi(\cdot)$
 - $K(X_i, X_j)$ eliminates computation in high-dimensional space.

	Loss function	Discriminant function
Linear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j X_i \cdot X_j$	$WX + b$ $= \sum_{i=1}^{l} \alpha_i y_i X_i \cdot X + b$
Nonlinear SVM	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(X_i) \phi(X_j)$	$W\phi(X) + b$ $= \sum_{i} \alpha_{i} y_{i} \phi(X_{i}) \phi(X) + b$
Nonlinear SVM (kernel)	$L_D = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{K}(\mathbf{X}_i, \mathbf{X}_j)$	$W\phi(X) + b$ $= \sum_{i} \alpha_{i} y_{i} K(X_{i}, X) + b$

Popular Kernels for SVM

Polynomial kernel

$$k(\mathbf{x_i}, \mathbf{x_j}) = (\mathbf{x_i} \cdot \mathbf{x_j} + 1)^d$$

Gaussian kernel

$$k(x,y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

RBF kernel

$$k(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\gamma ||\mathbf{x_i} - \mathbf{x_j}||^2)$$

SVM in scikit-learn

- SVM classifiers in scikit-learn
 - SVC
 - NuSVC (νSVC)
 - LinearSVC
 - Example

```
from sklearn import svm # import X = [[0, 0], [1, 1]] # input data y = [0, 1] # target label clf = svm.SVC(gamma='scale') # create SVC clf.fit(X, y) # train clf.predict([[2., 2.]]) # predict
```

- Reference
 - https://scikit-learn.org/stable/modules/svm.html

- Penalty parameter C of the error term (default: 1)
 - Too small C: underfitting
 - Too high C: overfitting

- Kernel coefficient gamma for 'rbf', 'poly' and 'sigmoid'.
 - Too small: underfitting
 - Too large: overfitting

scikit-learning gamma options

- 'auto': 1/n_features
 - 'scale': 1/(n_feature * X.var()) X.var(): variance of X

■ C – gamma grid

Handling Unbalanced Datasets

Assign heavier weights to the class with less sample

References

- https://machinelearningmastery.com/tactics-to-combatimbalanced-classes-in-your-machine-learning-dataset/
- https://shiring.github.io/machine_learning/2017/04/02/unbal anced
- https://www.datascience.com/blog/imbalanced-data
- Support Vector Regression
 - https://www.saedsayad.com/support_vector_machine_reg.h
 tm

Thank you for your attention!

