Exercise 3.4. Suppose $D(p) = p' : \mathcal{L}(\mathcal{P}_3(\mathbb{R})) \to \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$. Find a basis of $\mathcal{L}(\mathcal{P}_3(\mathbb{R}))$ and a basis of $\mathcal{L}(\mathcal{P}_2(\mathbb{R}))$, such that $\mathcal{M}(D)$ about these basis is:

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Proof. Consider $x, x^2, x^3, 1$ the basis of $\mathcal{P}_3(\mathbb{R})$ and $1, x, 2x^2$.

Exercise 3.5. Suppose V and W are finite and $T \in \mathcal{L}(V, W)$. Show that there are basis of V and W respectively, such that $\mathcal{M}(T, \text{those basis})$ is all zero except 1 at k, k $(1 \le k \le \dim \operatorname{range} T)$.

Proof. Consider the basis w_0, \dots, w_{k-1} of range T and the basis w_0, \dots, w_{m-1} of W which expands from w_0, \dots, w_{k-1} . Then there must be v_0, \dots, v_{k-1} such that $Tv_i = w_i$ for all $0 \le i < k$, we know v_0, \dots, v_{k-1} is linear independent since w_0, \dots, w_{k-1} is linear independent, so we can expand it to a basis of V, say v_0, \dots, v_{n-1} .

We claim that $\mathcal{M}(T, v_0, \dots, v_{n-1}, w_0, \dots, w_{m-1})$ is a matrix with all zero but 1 at k, k $(1 \leq k < \operatorname{range} T)$. For any $\lambda_0 v_0 + \dots + \lambda_{n-1} v_{n-1} \in V$, we have $T(\lambda_0 v_0 + \dots + \lambda_{n-1} v_{n-1}) = \lambda_0 w_0 + \dots + \lambda_{k-1} w_{k-1}$, note that all v_i where $i \geq k$ disappear, since they maps to 0. Therefore $\mathcal{M}(T)$ is all zero but 1 at k, k (since $\lambda_i w_i$ in the last equation).

Exercise 3.6. Show that $-^T: F^{m,n} \to F^{n,m}$ is a linear mapping.

Exercise 3.7. Show that $(AB)^T = B^T A^T$.

Proof. Suppose A is a $m \times n$ matrix and B is a $n \times p$ matrix, then for any $i \in [1, m]$ and $j \in [1, p]$, we have $(AB)_{i,j}^T = (AB)_{j,i} = \sum_{r=1}^n A_{j,r} B_{r,i} = \sum_{r=1}^n B_{i,r}^T A_{r,j}^T = (B^T A^T)_{i,j}$.

Exercise 3.8. Let A a $m \times n$ matrix, show that the rank of A is $1 \iff$ there is $c_0, \dots, c_{m-1} \in F^m$ and $d_0, \dots, d_{n-1} \in F^n$ such that $A_{j,k} = c_j d_k$ for all $j = 0, \dots, m-1$ and $k = 0, \dots, n-1$.

Proof. The right hand side is actually the external product of vectors, that is vw^T .

- (\Rightarrow) is easy since we can use the theorem that any $m \times n$ matrix A can be expressed by CR where C is a $m \times r$ matrix, R is a $r \times n$ matrix, r is the rank of A. In this case, r = 1, so C and R are just vectors.
- (\Leftarrow) is also easy since other column is a scalar multiple of the first column, therefore the rank of A is 1.

Exercise 3.9. Let $T \in \mathcal{L}(V)$, u_0, \dots, u_{n-1} and v_0, \dots, v_{n-1} are the bases of V, show that the following statements are equivalent:

- 1. T is injective
- 2. The columns of $\mathcal{M}(T)$ is linear independent
- 3. The columns of $\mathcal{M}(T)$ spans $F^{n,1}$
- 4. The lines of $\mathcal{M}(T)$ is linear independent
- 5. The lines of $\mathcal{M}(T)$ spans $F^{1,n}$

Proof. (2), (3) are obviously equivalent and (4), (5) too.

Although I want to make an arrow loop, but the arrow between (1) and (4), (5) is too hard, so I will show that $(1) \iff (2)$, (3) and (2), $(3) \iff (4)$, (5).

- (\Rightarrow) Let $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1} = [0, \dots, 0]$, then $T(\lambda_0 u_0 + \cdots + \lambda_{n-1} u_{n-1}) = 0$, so λ_i are 0 since T is injective, which means null $T = \{0\}$. (\Leftarrow) For any $T(\lambda_0 u_0 + \cdots + \lambda_{n-1} u_{n-1}) = 0$, we have the linear combination of v_i is 0 where the coefficients come from $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1}$ (w_i are the columns of $\mathcal{M}(T)$), therefore the coefficients are all 0 since v_i is linear independent, thus $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1} = 0$, which means λ_i are all 0 since w_i is linear independent.
- For any matrix, its line rank is equal to its column rank, so columns independent \iff lines independent.