1. Razlaga pojmov

 $Graf\ G$ je množica točk v prostoru in povezav med temi točkami. Označimo ga z G=(V,E), kjer je V(G) množica točk in E(G) množica povezav grafa G. Odprta okolica ali soseščina N vozlišča v je množica vozlišč, ki je sosedna vozlišču v, torej $N(v)=\{u\in V:uv\in E\}$. $Kartezični\ produkt\ grafov\ G_1=(V_1,E_1)\ in\ G_2=(V_2,E_2)$ je graf $G=G_1\square G_2$, ki ima množico točk $V(G)=V_1\times V_2$ in množico povezav E(G), kjer je $(u,v)(x,y)\in E(G)$, če je u=x in $vy\in E(G_2)$ ali $ux\in E(G_1)$ in v=y. $Dominantna\ množica\ D\subseteq V(G)$ grafa G je takšna množica, da ima vsako vozlišče grafa, ki ni v $D\ (v\in V(G)\setminus D)$, soseda v D. Z drugimi besedami, vsako vozlišče $v\in V(G)$ je ali element množice D ali pa je sosednje kakemu vozlišču, ki pripada množici D.

Dominantno število $\gamma(G)$ je moč najmanjše dominantne množice grafa G.

Množica S je totalno dominantna, če je N(S) = V(G), kar pomeni, da je vsako vozlišče iz V(G) sosednje vozlišču iz množice S.

Z γ_t označujemo totalno dominantno število, ki predstavlja velikost najmanjše totalno dominantne množice.

Podmnožica $S \subset V(G)$ je γ_t -set, če je to totalno dominantna množica grafa G, z močjo $\gamma_t(G)$.

Naj bo G = (V, E) graf in $f : V \to P(\{1, 2, ..., k\})$ funkcija, ki vsakemu vozlišču iz V priredi množico barv iz $\{1, 2, ..., k\}$. Če za vsak $v \in V$ za katerega je $f(v) = \emptyset$ velja $\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$ potem f imenujemo k-mavrična dominantna funkcija grafa G, krajše kRDF funkcija. $Te\check{zo}\ \omega(f)$ funkcije f, definiramo z $\omega(f) = \sum_{v \in V} |f(v)|$. Najmanjša vrednost mavrične dominantne funkcije grafa G se imenuje k-mavrično dominanto število, in jo označimo z $\gamma_{rk}(g)$.

Za graf G je k-mavrično totalno dominantna funkcija f, krajše kRTDF, k-mavrična dominantna funkcija s pogojem, da podgraf grafa G, ki ga določa množica $\{v \in V(G) \mid f(v) \neq \emptyset\}$ nima izoliranih vozlišč. Teža funkcije kRTDF je $\omega(f) = \sum_{v \in V} |f(v)|$. Za dan graf G, imenujemo težo najmanjše kRTDF funkcije k-mavrično totalno dominantno število, in jo označimo z $\gamma_{rkt}(G)$.

2. Dani Problem

1. Najdi funkcijo b(k), da za $k \ge 3$, za katero je dana neenakost ozka:

$$(1) b(k) \cdot \gamma_t \geqq \gamma_{krt}(G).$$

Z drugimi besedami, najdi $b(k) = \inf_{G} \frac{\gamma_{krt}(G)}{\gamma_{t}(G)}$.

2. Najdi funkcijo a(k), da za $k \ge 3$, za katero je dana neenakost ozka:

(2)
$$\gamma_{krt}(G) \ge a(k) \cdot \gamma_{kr}(G).$$

Z drugimi besedami, najdi $a(k) = \sup_G \frac{\gamma_{krt}(G)}{\gamma_{kr}(G)}$

3. Neenakosti, dokazane v pdfju

Total k-Rainbow domination numbers in graphs

3.1. Izrek 2. Naj bo $k \geq 2, k \in \mathbb{N}$ in G povezani graf stopnje $n \leq k$. Potem:

(3)
$$\gamma_t(G) \leq \gamma_{trk}(G) \leq k \cdot \gamma_t(G).$$

Zanima nas le zgornja meja neenakosti, saj je to rešitev prvega zastavljenega problema.

Dokaz. Naj bo
$$S$$
 $\gamma_t(G)$ set in definiramo $g:V(G)\to 2^{[k]}$, kjer $g(x)=\{1,2,\ldots,k\}$ za $x\in S$ in $g(x)=\emptyset$ za $x\in V(G)\backslash S$. Torej je g kRTFD za G in $\gamma_{trk}(G)\leqq \omega(g)=k\cdot\gamma_t(G)$

Enakost je dosežena natanko tedaj, ko ima G $\gamma_{trk}(G)$ funkcijo, f, da je za $\forall v \in V(G)$ ali $f(v) = \{1, 2, \dots, k\}$ ali $f(v) = \emptyset$.