National University of Computer and Emerging Sciences, Lahore Campus

THE STATE OF THE S	Course: Program: Duration: Paper Date: Section:	Statistical Pattern Recog & Learning MS(Computer Science) 60 Minutes 10-Nov-16 ALL
BIMI & B.	Exam:	Midterm-2

Course Code: CS 557
Semester: Fall 2016
Total Marks: 20
Weight 15%
Page(s): 4
Roll No:

Instruction/Notes:

- 1. This is an open book, open notes exam.
- 2. Sharing of calculators, books and notes is strictly not allowed.
- 3. In case of any ambiguity make a reasonable assumption.
- 4. Solve in the space provided. You can ask for extra sheets if needed.

Good Luck!

QUESTION 1 (Marks 5)

Suppose we are designing a system for regression on two input variables, x_1 , x_2 . Derive the normal equation for the weight w_0 if we use mean square error as the optimization criterion and the following expression for making predictions o for the output variable:

$$0 = x_2x_1w_0 + x_1w_1 + x_2^2w_2$$

Roll Number:	
OUFSTION 2	(Marks: 5)

Suppose we have four points **w**,**x**,**y**,**z**. The following table shows the pairwise similarity of the 4 points. You have to apply agglomerative clustering using complete link clustering to this data and draw the final dendogram. No marks will be given if no working or iterations are shown.

	w	x	у	Z
w	10	2	1	3
X	2	10	5	0
У	1	5	10	4
Z	3	0	4	10

Roll Number:	
OUESTION 3	(Marks: 5

The following table shows the pairwise Euclidean distance of 5 points. All the 5 points (named **a,b,c,d,e**) lie in a 50 dimensional space. You have to find a mapping of all these points in 1 dimensional space that preserves the distances perfectly. Use any method you like. Show all working/reasoning.

	а	b	С	d	е
а	0	1	2	0	2
b	1	0	3	1	3
С	2	3	0	2	0
d	0	1	2	0	2
е	2	3	0	2	0

QUESTION 4

(Marks 2+2+1)

Suppose we have the following data (one dimensional): 10,12,12,13,13,13,13,14,14,14

- a. The Naive density estimate at x=13.2 for h=2 is ______
- b. Suppose the density is given by (for some constant c):

$$p(x) = \frac{1}{c} \sum_{t=1}^{N} k(\frac{x - x^{t}}{h}) \text{ and } k(x) = \begin{cases} 2 \text{ if } |x| = 0\\ 1 \text{ if } |x| < 3\\ 0 \text{ otherwise} \end{cases}$$

The density at x = 12.2 for h=2 is ______

The density at x = 13.2 for h=1 is ______

c. If the label of the first 5 points is +1 and last five points is -1, then what is the classification of the point 12.6 when using 5 nearest neighbor algorithm.