

Contents

Chapter	: 1 Probability Space												1
1.1	Motivation of using measure theory		 										1
1.2	Introduction		 										1

Chapter 1 Probability Space

Note Pre-requisite is Real Analysis chapter 2: Measure Theory.

1.1 Motivation of using measure theory

1.2 Introduction

Definition 1.1 (Probability triple)

A **probability triple** is $(\Omega, \mathcal{F}, \mathbb{P})$ where:

- The sample space Ω is any non-empty set.
- The σ -algebra \mathcal{F} of Ω .
- The **probability measure** $\mathbb{P}: \mathcal{F} \to [0,1]$ is a measure defined on (Ω, \mathcal{F}) s.t. $\mathbb{P}(\Omega) = 1$.

Remark $\mathbb{P}(\emptyset) = 0$ is redundant for the definition of probability measure, but necessary for the definition of measure.

Corollary 1.1

- \bullet \mathcal{F} is closed under the countable intersections.
- $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$.
- (Monotonicity) $\mathbb{P}(A) \leq \mathbb{P}(B)$ whenever $A \subseteq B$.
- (Principle of inclusion-exclusion) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- (Subadditivity) For a countable collection $\{A_i\} \subseteq \mathcal{F}$, $\mathbb{P}(\bigcup_i A_i) \leq \sum_i \mathbb{P}(A_i)$.

 \mathbb{C}

Theorem 1.1

Let

- \bullet Ω be a finite or countable non-empty set.
- $p:\Omega \to [0,1]$ be ab function satisfying $\sum_{\omega \in \Omega} p(\omega) = 1$,

then there is a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathcal{F} = \mathbb{P}(\Omega)$, and for $A \in \mathcal{F}$, $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$.