Terminación, solidez y completitud de los Tableaux

Sesión 21

Edgar Andrade, PhD

Última revisión: Marzo de 2020

Departmento de Matemáticas Aplicadas y Ciencias de la Computación

Presentación

En esta sesión estudiaremos:

- 1. Demostración de la terminación del algoritmo de construcción de los tableaux
- 2. Solidez y completitud de los tableaux

Contenido

1 Terminación de los tableaux

2 Solidez y completitud

Terminación de los tableaux

El procedimiento de construcción de tableaux finaliza, y cuando lo hace, todas las hojas están marcadas o bien con \odot o bien con \times .

Terminación de los tableaux

El procedimiento de construcción de tableaux finaliza, y cuando lo hace, todas las hojas están marcadas o bien con \odot o bien con \times .

Sea S un conjunto de fórmulas.

Definimos b(S) como la cantidad de instancias de operadores binarios en todas las fórmulas de S.

Sea S un conjunto de fórmulas.

Definimos b(S) como la cantidad de instancias de operadores binarios en todas las fórmulas de S.

Ejemplo:
$$S = \{p, \neg (p \lor \neg q), \neg r \lor q\}$$
 $b(S) = 2$

Sea S un conjunto de fórmulas.

Definimos b(S) como la cantidad de instancias de operadores binarios en todas las fórmulas de S.

Sea S un conjunto de fórmulas.

Definimos b(S) como la cantidad de instancias de operadores binarios en todas las fórmulas de S.

Ejemplo:
$$S = \{p, \neg (p \lor \neg q), \neg r \lor q\}$$
 $(S) = 3$

Sea S un conjunto de fórmulas.

Definimos b(S) como la cantidad de instancias de operadores binarios en todas las fórmulas de S.

Definimos
$$W(S) = 3b(S) + n(S)$$

Sea S un conjunto de fórmulas.

Definimos b(S) como la cantidad de instancias de operadores binarios en todas las fórmulas de S.

Definimos
$$W(S) = 3b(S) + n(S)$$

Ejemplo:
$$S = \{p, \neg (p \lor \neg q), \neg r \lor q\}$$

$$W(S) = 3 \times 2 + 3 = 9$$

Lema

Lema: Sea τ un tableau de una fórmula A, sea $\mathcal{B} = \{n_0, n_1, \ldots\}$ una rama de τ (es decir, un camino sin bifurcaciones que comienza desde n_0 , la raiz de τ , y tal que n_i es padre de n_{i+1} $(i=1,2,\ldots)$), y sean S_0,S_1,\ldots los conjuntos de fórmulas que etiquetan a n_0, n_1,\ldots , respectivamente. Se tiene que si i < j, entonces $W(S_i) > W(S_j)$.

$$W(S_0)=11$$

$$\{(p \lor q) \land (\neg p \lor \neg q)\} \quad n_0 \quad S_0$$

$$| \qquad \qquad | \qquad \qquad |$$

$$\{p \lor q, \neg p \lor \neg q\} \quad n_1 \quad S_1$$

$$| \qquad \qquad | \qquad \qquad |$$

$$\{p \lor q, \neg p, \neg q\} \quad n_2 \quad S_2$$

$$| \qquad \qquad | \qquad \qquad |$$

$$\{p, \neg p, \neg q\} \quad \{q, \neg p, \neg q\} \quad n_3 \quad S_3$$

$$| \qquad \qquad | \qquad \qquad |$$

$$\times \qquad \times$$

$$W(S_0) = 11 > W(S_1) = 8$$

$$W(S_0) = 11 > W(S_1) = 8 > W(S_2) = 5$$

$$W(S_0) = 11 > W(S_1) = 8 > W(S_2) = 5 > W(S_3) = 2$$

Sea A una fórmula y supongamos por contradicción que la construcción de uno de sus tableaux, digamos au, no termina.

Sea A una fórmula y supongamos por contradicción que la construcción de uno de sus tableaux, digamos τ , no termina. Entonces τ tiene una rama infinita $\mathcal{B} = \{n_0, n_1, \ldots\}$.

Sea A una fórmula y supongamos por contradicción que la construcción de uno de sus tableaux, digamos τ , no termina. Entonces τ tiene una rama infinita $\mathcal{B} = \{n_0, n_1, \ldots\}$. Sean S_0, S_1, \ldots los conjuntos de fórmulas que etiquetan a n_0, n_1, \ldots , respectivamente y sea $\mathcal{T} = \{W(S_0), W(S_1), \ldots\}$.

Sea A una fórmula y supongamos por contradicción que la construcción de uno de sus tableaux, digamos τ , no termina. Entonces τ tiene una rama infinita $\mathcal{B} = \{n_0, n_1, \ldots\}$. Sean S_0, S_1, \ldots los conjuntos de fórmulas que etiquetan a n_0, n_1, \ldots , respectivamente y sea $T = \{W(S_0), W(S_1), \ldots\}$. Observe que, por el lema, T es infinito, pues $W(S_i) \neq W(S_j)$ si $i \neq j$.

Sea A una fórmula y supongamos por contradicción que la construcción de uno de sus tableaux, digamos τ , no termina. Entonces τ tiene una rama infinita $\mathcal{B} = \{n_0, n_1, \ldots\}$. Sean S_0, S_1, \ldots los conjuntos de fórmulas que etiquetan a n_0, n_1, \ldots , respectivamente y sea $T = \{W(S_0), W(S_1), \ldots\}$. Observe que, por el lema, T es infinito, pues $W(S_i) \neq W(S_j)$ si $i \neq j$.

También por el lema, se tiene que $W(S_0)$ es una cota superior de T.

Sea A una fórmula y supongamos por contradicción que la construcción de uno de sus tableaux, digamos au, no termina.

Entonces τ tiene una rama infinita $\mathcal{B} = \{n_0, n_1, \ldots\}$.

Sean S_0, S_1, \ldots los conjuntos de fórmulas que etiquetan a $n_0, n_1, \ldots,$ respectivamente y sea $T = \{W(S_0), W(S_1), \ldots\}$.

Observe que, por el lema, T es infinito, pues $W(S_i) \neq W(S_j)$ si $i \neq j$.

También por el lema, se tiene que $W(S_0)$ es una cota superior de T.

Como T es un subconjunto de $\mathbb N$ y está acotado superiormente, entonces T es finito. Contradicción $(\to \leftarrow)$.

Sea A una fórmula y supongamos por contradicción que la construcción de uno de sus tableaux, digamos τ , no termina. Entonces τ tiene una rama infinita $\mathcal{B} = \{n_0, n_1, \ldots\}$.

Sean S_0, S_1, \ldots los conjuntos de fórmulas que etiquetan a n_0 , n_1, \ldots , respectivamente y sea $T = \{W(S_0), W(S_1), \ldots\}$.

Observe que, por el lema, T es infinito, pues $W(S_i) \neq W(S_j)$ si $i \neq j$.

También por el lema, se tiene que $W(S_0)$ es una cota superior de T.

Como T es un subconjunto de $\mathbb N$ y está acotado superiormente, entonces T es finito. Contradicción $(\to \leftarrow)$. Se sigue que todo tableaux de A es un árbol finito.

Lema: Sea τ un tableau de una fórmula A, sea $\mathcal{B} = \{n_0, n_1, \ldots\}$ una rama de τ (es decir, un camino sin bifurcaciones que comienza desde n_0 , la raiz de τ , y tal que n_i es padre de n_{i+1} $(i=1,2,\ldots)$), y sean S_0,S_1,\ldots los conjuntos de fórmulas que etiquetan a n_0, n_1,\ldots , respectivamente. Se tiene que si i < j, entonces $W(S_i) > W(S_j)$.

Lema: Sea τ un tableau de una fórmula A, sea $\mathcal{B} = \{n_0, n_1, \ldots\}$ una rama de τ (es decir, un camino sin bifurcaciones que comienza desde n_0 , la raiz de τ , y tal que n_i es padre de n_{i+1} ($i=1,2,\ldots$)), y sean S_0,S_1,\ldots los conjuntos de fórmulas que etiquetan a n_0, n_1,\ldots , respectivamente. Se tiene que si i < j, entonces $W(S_i) > W(S_j)$.

Debemos examinar cómo se extiende el árbol de acuerdo al algoritmo.

El lugar del algoritmo de construcción de tableaux que controla cómo se extiende el árbol es:

El lugar del algoritmo de construcción de tableaux que controla cómo se extiende el árbol es:

Suponga que el algoritmo está considerando una hoja sin marcar h, cuyo conjunto correspondiente de fórmulas es $U_0 \cup \{\phi\}$, en donde ϕ es una fórmula que no es un literal.

Suponga que el algoritmo está considerando una hoja sin marcar h, cuyo conjunto correspondiente de fórmulas es $U_0 \cup \{\phi\}$, en donde ϕ es una fórmula que no es un literal.

 ϕ es una fórmula o bien de tipo α o bien de tipo β .

Suponga que el algoritmo está considerando una hoja sin marcar h, cuyo conjunto correspondiente de fórmulas es $U_0 \cup \{\phi\}$, en donde ϕ es una fórmula que no es un literal.

 ϕ es una fórmula o bien de tipo α o bien de tipo β .

Suponga ϕ es una fórmula de tipo α , digamos $A_1 \wedge A_2$. Entonces el algoritmo crea un hijo de h, llamémoslo h', con el conjunto de fórmulas $U_0 \cup \{A_1, A_2\}$.

En este caso, debemos ver que $W(U_0 \cup \{\phi\}) > W(U_0 \cup \{A_1, A_2\})$.

En este caso, debemos ver que $W(U_0 \cup \{\phi\}) > W(U_0 \cup \{A_1, A_2\})$.

Pero esto es cierto, ya que

$$W(U_0 \cup \{\phi\}) = W(U_0 \cup \{A_1 \land A_2\})$$

$$= W(U_0) + W(\{A_1 \land A_2\})$$

$$= W(U_0) + 3 + W(\{A_1\}) + W(\{A_2\})$$

$$> W(U_0) + W(\{A_1\}) + W(\{A_2\})$$

$$= W(U_0 \cup \{A_1, A_2\})$$

Así pues, debemos demostrar, con respecto a las fórmulas α , que:

- a. $W(\{(\neg \neg A)\} \cup U_0) > W(\{A\} \cup U_0)$
- b. $W(\{(A_1 \land A_2)\} \cup U_0) > W(\{A_1, A_2\} \cup U_0)$
- c. $W(\{\neg(A_1 \lor A_2)\} \cup U_0) > W(\{\neg A_1, \neg A_2\} \cup U_0)$
- d. $W(\{\neg(A_1 \to A_2)\} \cup U_0) > W(\{A_1, \neg A_2\} \cup U_0)$

Así pues, debemos demostrar, con respecto a las fórmulas α , que:

a.
$$W(\{(\neg \neg A)\} \cup U_0) > W(\{A\} \cup U_0)$$

b.
$$W(\{(A_1 \land A_2)\} \cup U_0) > W(\{A_1, A_2\} \cup U_0)$$

c.
$$W(\{\neg(A_1 \lor A_2)\} \cup U_0) > W(\{\neg A_1, \neg A_2\} \cup U_0)$$

d.
$$W(\{\neg(A_1 \to A_2)\} \cup U_0) > W(\{A_1, \neg A_2\} \cup U_0)$$

 \dots y, con respecto a las fórmulas β , que:

a.
$$W(\{\neg (B_1 \land B_2)\} \cup U_0) > W(\{\neg B_i\} \cup U_0)$$
, con $i = 1, 2$

b.
$$W(\{B_1 \vee B_2\} \cup U_0) > W(\{B_i\} \cup U_0)$$
, con $i = 1, 2$

c.
$$W(\{B_1 \to B_2\} \cup U_0) > W(\{\neg B_1\} \cup U_0)$$

Contenido

1 Terminación de los tableaux

2 Solidez y completitud

Teorema

Sea A una fórmula.

A es satisfacible sii cualquier tableaux de A es abierto.

Teorema

Sea A una fórmula.

A es satisfacible sii cualquier tableaux de A es abierto.

A demostrar:

- 1. Propiedad sobre las hojas de un tableaux (ya terminado).
- 2. Si cualquier tableaux de *A* es cerrado, entonces *A* es insatisfacible.
- 3. Si cualquier tableaux de *A* es abierto, entonces *A* es satisfacible.

Propiedad sobre las hojas del tableaux (ya terminado)

1. Observe que las hojas de un tableau τ son conjuntos de literales, y que estos conjuntos están marcados con \odot si no contienen un par complementario, o con \times si sí contienen un par complementario.

Propiedad sobre las hojas del tableaux (ya terminado)

- 1. Observe que las hojas de un tableau τ son conjuntos de literales, y que estos conjuntos están marcados con \odot si no contienen un par complementario, o con \times si sí contienen un par complementario.
- 2. Vamos a demostrar que si una hoja h de τ está marcada con \odot , entonces su conjunto correspondiente de fórmulas es satisfacible; y si h está marcada con \times , entonces es insatisfacible.

Propiedad sobre las hojas del tableaux (ya terminado)

- 1. Observe que las hojas de un tableau τ son conjuntos de literales, y que estos conjuntos están marcados con \odot si no contienen un par complementario, o con \times si sí contienen un par complementario.
- 2. Vamos a demostrar que si una hoja h de τ está marcada con \odot , entonces su conjunto correspondiente de fórmulas es satisfacible; y si h está marcada con \times , entonces es insatisfacible.
- 3. Proposición: Sea $S = \{\ell_1, \dots, \ell_n\}$ un conjunto que contiene únicamente literales.
 - ${\cal S}$ es satisfacible sii ${\cal S}$ no contiene un par complementario de literales

 \Rightarrow) Vamos a demostrar por contrapositiva. Supongamos que S contiene un par complementario de literales. Sin pérdida de generalidad digamos que $\{p, \neg p\} \subseteq S$. Debemos ver que S es insatisfacible.

 \Rightarrow) Vamos a demostrar por contrapositiva. Supongamos que S contiene un par complementario de literales. Sin pérdida de generalidad digamos que $\{p, \neg p\} \subseteq S$. Debemos ver que S es insatisfacible.

Sea I una interpretación arbitraria. Vamos a demostrar que existe $A \in S$ tal que $V_I(A) = 0$. Tenemos dos casos:

 \Rightarrow) Vamos a demostrar por contrapositiva. Supongamos que S contiene un par complementario de literales. Sin pérdida de generalidad digamos que $\{p, \neg p\} \subseteq S$. Debemos ver que S es insatisfacible.

Sea I una interpretación arbitraria. Vamos a demostrar que existe $A \in S$ tal que $V_I(A) = 0$. Tenemos dos casos:

Caso 1: $V_I(p) = 0$. Entonces sea A = p y por lo tanto $A \in S$ y $V_I(A) = 0$.

 \Rightarrow) Vamos a demostrar por contrapositiva. Supongamos que S contiene un par complementario de literales. Sin pérdida de generalidad digamos que $\{p, \neg p\} \subseteq S$. Debemos ver que S es insatisfacible.

Sea I una interpretación arbitraria. Vamos a demostrar que existe $A \in S$ tal que $V_I(A) = 0$. Tenemos dos casos:

Caso 1:
$$V_I(p) = 0$$
. Entonces sea $A = p$ y por lo tanto $A \in S$ y $V_I(A) = 0$.
Caso 2: $V_I(p) = 1$. Entonces sea $A = \neg p$ y por lo tanto $A \in S$ y $V_I(A) = 1 - V_I(p) = 1 - 1 = 0$.

 \Rightarrow) Vamos a demostrar por contrapositiva. Supongamos que S contiene un par complementario de literales. Sin pérdida de generalidad digamos que $\{p, \neg p\} \subseteq S$. Debemos ver que S es insatisfacible.

Sea I una interpretación arbitraria. Vamos a demostrar que existe $A \in S$ tal que $V_I(A) = 0$. Tenemos dos casos:

Caso 1:
$$V_I(p)=0$$
. Entonces sea $A=p$ y por lo tanto $A\in S$ y $V_I(A)=0$. Caso 2: $V_I(p)=1$. Entonces sea $A=\neg p$ y por lo tanto $A\in S$ y $V_I(A)=1-V_I(p)=1-1=0$.

En cualquier caso, existe $A \in S$ tal que $V_I(A) = 0$, y como I es arbitraria, S es insatisfacible. Por lo tanto, si S es satisfacible, S no contiene un par complementario de literales.

 \Leftarrow) Supongamos que S no contiene un par complementario de literales. Debemos ver que S es satisfacible, es decir, debemos construir una interpretación I tal que $V_I(\ell_i)=1$ para todo $\ell_i\in S$. Definimos la siguiente interpretación:

 \Leftarrow) Supongamos que S no contiene un par complementario de literales. Debemos ver que S es satisfacible, es decir, debemos construir una interpretación I tal que $V_I(\ell_i)=1$ para todo $\ell_i\in S$. Definimos la siguiente interpretación:

Sea
$$a$$
 un átomo. Entonces $I(a) = \begin{cases} 1, & \text{si } a \in S \\ 0, & \text{si } \neg a \in S \end{cases}$

 \Leftarrow) Supongamos que S no contiene un par complementario de literales. Debemos ver que S es satisfacible, es decir, debemos construir una interpretación I tal que $V_I(\ell_i)=1$ para todo $\ell_i\in S$. Definimos la siguiente interpretación:

Sea
$$a$$
 un átomo. Entonces $I(a)=\begin{cases} 1, & \text{si } a\in S\\ 0, & \text{si } \neg a\in S \end{cases}$ Ej: Sea $S=\{p,\neg q,r\}$. Entonces $I(p)=1$, $I(q)=0$, $I(r)=1$.

Vamos a demostrar que $V_I(\ell_i)=1$ para todo $\ell_i\in S$. Sea $\ell_i\in S$ arbitraria y observe que sólo tenemos dos casos:

Vamos a demostrar que $V_I(\ell_i)=1$ para todo $\ell_i\in S$. Sea $\ell_i\in S$ arbitraria y observe que sólo tenemos dos casos:

Caso 1: ℓ_i es un átomo a. Entonces $V_I(\ell_i) = I(a) = 1$.

Vamos a demostrar que $V_I(\ell_i) = 1$ para todo $\ell_i \in S$. Sea $\ell_i \in S$ arbitraria y observe que sólo tenemos dos casos:

Caso 1:
$$\ell_i$$
 es un átomo a . Entonces $V_I(\ell_i) = I(a) = 1$.

Caso 2:
$$\ell_i$$
 es $\neg a$ para algún átomo a . Entonces

$$V_I(\ell_i) = V_I(\neg a) = 1 - V_I(a) = 1 - I(a) = 1 - 0 = 1.$$

Vamos a demostrar que $V_I(\ell_i)=1$ para todo $\ell_i\in S$. Sea $\ell_i\in S$ arbitraria y observe que sólo tenemos dos casos:

Caso 1: ℓ_i es un átomo a. Entonces $V_I(\ell_i) = I(a) = 1$.

Caso 2: ℓ_i es $\neg a$ para algún átomo a. Entonces

$$V_I(\ell_i) = V_I(\neg a) = 1 - V_I(a) = 1 - I(a) = 1 - 0 = 1.$$

En cualquier caso, $V_I(a)=1$. Como ℓ_i es arbitraria, entonces $V_I(\ell_i)=1$ para todo $\ell_i\in S$. Por lo tanto, S es satisfacible.

Teorema

Sea A una fórmula.

A es satisfacible sii cualquier tableaux de A es abierto.

A demostrar:

- 1. Propiedad sobre las hojas de un tableaux (ya terminado).
- 2. Si cualquier tableaux de *A* es cerrado, entonces *A* es insatisfacible.
- 3. Si cualquier tableaux de *A* es abierto, entonces *A* es satisfacible.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE SOLIDEZ: Si τ es cerrado, entonces A es insatisfacible.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE SOLIDEZ: Si au es cerrado, entonces A es insatisfacible.

IDEA DE LA DEMOSTRACIÓN:

1. au es cerrado sii todas sus hojas están marcadas con imes.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE SOLIDEZ: Si au es cerrado, entonces A es insatisfacible.

IDEA DE LA DEMOSTRACIÓN:

- 1. au es cerrado sii todas sus hojas están marcadas con imes.
- 2. Por la propiedad sobre las hojas, au es cerrado sii todas sus hojas están etiquetadas con conjuntos insatisfacibles de literales.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE SOLIDEZ: Si au es cerrado, entonces A es insatisfacible.

IDEA DE LA DEMOSTRACIÓN:

- 1. au es cerrado sii todas sus hojas están marcadas con imes.
- 2. Por la propiedad sobre las hojas, au es cerrado sii todas sus hojas están etiquetadas con conjuntos insatisfacibles de literales.
- 3. Si todas las hojas de un árbol están etiquetadas con conjuntos insatisfacibles de literales, entonces la raíz del árbol está etiquetada con un conjunto insatisfacible.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE SOLIDEZ: Si au es cerrado, entonces A es insatisfacible.

IDEA DE LA DEMOSTRACIÓN:

- 1. au es cerrado sii todas sus hojas están marcadas con imes.
- 2. Por la propiedad sobre las hojas, au es cerrado sii todas sus hojas están etiquetadas con conjuntos insatisfacibles de literales.
- 3. Si todas las hojas de un árbol están etiquetadas con conjuntos insatisfacibles de literales, entonces la raíz del árbol está etiquetada con un conjunto insatisfacible.
- 4. El conjunto que etiqueta la raíz de τ es $\{A\}$. Por lo tanto, A es insatisfacible.

Lema

El paso clave en la demostración es el tercero:

LEMA: Si todas las hojas de un árbol están etiquetadas con conjuntos insatisfacibles de literales, entonces la raíz del árbol está etiquetada con un conjunto insatisfacible.

Lema

El paso clave en la demostración es el tercero:

Lema: Si todas las hojas de un árbol están etiquetadas con conjuntos insatisfacibles de literales, entonces la raíz del árbol está etiquetada con un conjunto insatisfacible.

Demostraremos:

 Si n' es el único hijo de n, y n' está etiquetada con un conjunto insatisfacible, entonces n está etiquetado con un conjunto insatisfacible.

Lema

El paso clave en la demostración es el tercero:

LEMA: Si todas las hojas de un árbol están etiquetadas con conjuntos insatisfacibles de literales, entonces la raíz del árbol está etiquetada con un conjunto insatisfacible.

Demostraremos:

- Si n' es el único hijo de n, y n' está etiquetada con un conjunto insatisfacible, entonces n está etiquetado con un conjunto insatisfacible.
- II. Si n_1 y n_2 son los únicos hijos de n, y n_1 y n_2 están etiquetados con conjuntos insatisfacibles, entonces n está etiquetado con un conjunto insatisfacible.

Si n' es el único hijo de n, y n' está etiquetada con un conjunto insatisfacible, entonces n está etiquetado con un conjunto insatisfacible.

Si n' es el único hijo de n, y n' está etiquetada con un conjunto insatisfacible, entonces n está etiquetado con un conjunto insatisfacible.

En este caso, n' se obtiene por alguna regla α .

Si n' es el único hijo de n, y n' está etiquetada con un conjunto insatisfacible, entonces n está etiquetado con un conjunto insatisfacible.

En este caso, n' se obtiene por alguna regla α .

Digamos que el conjunto de fórmulas correspondiente a n es $U_0 \cup \{A_1 \land A_2\}$ y el correspondiente a n' es $U_0 \cup \{A_1, A_2\}$.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible.

Por lo tanto,

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible. Sea I una interpretación arbitraria.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible. Sea I una interpretación arbitraria. Entonces existe $\phi \in U_0 \cup \{A_1, A_2\}$ tal que $V_I(\phi) = 0$.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible. Sea I una interpretación arbitraria. Entonces existe $\phi \in U_0 \cup \{A_1, A_2\}$ tal que $V_I(\phi) = 0$. Tenemos sólo tres casos:

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible. Sea I una interpretación arbitraria. Entonces existe $\phi \in U_0 \cup \{A_1, A_2\}$ tal que $V_I(\phi) = 0$. Tenemos sólo tres casos:

Caso 1:
$$\phi \in U_0$$
. Sea $\psi = \phi$. Observe que $\psi \in U_0$, luego $\psi \in U_0 \cup \{A_1 \wedge A_2\}$ y es tal que $V_I(\psi) = V_I(\phi) = 0$.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible. Sea I una interpretación arbitraria. Entonces existe $\phi \in U_0 \cup \{A_1, A_2\}$ tal que $V_I(\phi) = 0$. Tenemos sólo tres casos:

Caso 1:
$$\phi \in U_0$$
. Sea $\psi = \phi$. Observe que $\psi \in U_0$, luego $\psi \in U_0 \cup \{A_1 \wedge A_2\}$ y es tal que $V_I(\psi) = V_I(\phi) = 0$.

Caso 2:
$$\phi$$
 es A_1 . Entonces, como $V_I(\phi)=0$, $V_I(A_1 \wedge A_2)=0$. Sea $\psi=A_1 \wedge A_2$. Observe que $\psi\in U_0\cup\{A_1 \wedge A_2\}$ y es tal que $V_I(\psi)=0$.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible. Sea I una interpretación arbitraria. Entonces existe $\phi \in U_0 \cup \{A_1, A_2\}$ tal que $V_I(\phi) = 0$. Tenemos sólo tres casos:

Caso 1:
$$\phi \in U_0$$
. Sea $\psi = \phi$. Observe que $\psi \in U_0$, luego $\psi \in U_0 \cup \{A_1 \wedge A_2\}$ y es tal que $V_I(\psi) = V_I(\phi) = 0$.

Caso 2:
$$\phi$$
 es A_1 . Entonces, como $V_I(\phi)=0$, $V_I(A_1 \wedge A_2)=0$. Sea $\psi=A_1 \wedge A_2$. Observe que $\psi\in U_0\cup\{A_1 \wedge A_2\}$ y es tal que $V_I(\psi)=0$.

Caso 3: Similar al anterior.

Supongamos que $U_0 \cup \{A_1, A_2\}$ es insatisfacible.

Sea I una interpretación arbitraria. Entonces existe $\phi \in U_0 \cup \{A_1, A_2\}$ tal que $V_I(\phi) = 0$. Tenemos sólo tres casos:

- Caso 1: $\phi \in U_0$. Sea $\psi = \phi$. Observe que $\psi \in U_0$, luego $\psi \in U_0 \cup \{A_1 \wedge A_2\}$ y es tal que $V_I(\psi) = V_I(\phi) = 0$.
- Caso 2: ϕ es A_1 . Entonces, como $V_I(\phi)=0$, $V_I(A_1 \wedge A_2)=0$. Sea $\psi=A_1 \wedge A_2$. Observe que $\psi\in U_0\cup\{A_1 \wedge A_2\}$ y es tal que $V_I(\psi)=0$.
- Caso 3: Similar al anterior.

En cualquier caso, existe $\psi \in U_0 \cup \{A_1 \land A_2\}$ tal que $V_I(\psi) = 0$.

Algo similar ocurre con los casos:

El conjunto de fórmulas correspondiente a n es $U_0 \cup \{\neg\neg(A)\}$ y el correspondiente a n' es $U_0 \cup \{A\}$.

El conjunto de fórmulas correspondiente a n es $U_0 \cup \{\neg(A_1 \lor A_2)\}$ y el correspondiente a n' es $U_0 \cup \{\neg A_1, \neg A_2\}$.

El conjunto de fórmulas correspondiente a n es $U_0 \cup \{\neg(A_1 \to A_2)\}$ y el correspondiente a n' es $U_0 \cup \{A_1, \neg A_2\}$.

Si n_1 y n_2 son los únicos hijos de n, y n_1 y n_2 están etiquetados con conjuntos insatisfacibles, entonces n está etiquetado con un conjunto insatisfacible.

Si n_1 y n_2 son los únicos hijos de n, y n_1 y n_2 están etiquetados con conjuntos insatisfacibles, entonces n está etiquetado con un conjunto insatisfacible.

En este caso, n_1 y n_2 se obtienen por alguna regla β .

Si n_1 y n_2 son los únicos hijos de n, y n_1 y n_2 están etiquetados con conjuntos insatisfacibles, entonces n está etiquetado con un conjunto insatisfacible.

En este caso, n_1 y n_2 se obtienen por alguna regla β .

Digamos que el conjunto de fórmulas correspondiente a n es $U_0 \cup \{B_1 \vee B_2\}$, el correspondiente a n_1 es $U_0 \cup \{B_1\}$ y el correspondiente a n_1 es $U_0 \cup \{B_2\}$.

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles.

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles.

Por lo tanto,

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles.

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles.

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles. Sea I una interpretación arbitraria. De las hipótesis que hemos asumido se sigue que sólo hay dos casos:

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles. Sea I una interpretación arbitraria. De las hipótesis que hemos asumido se sigue que sólo hay dos casos:

Caso 1: Existe $\phi \in U_0$ tal que $V_I(\phi) = 0$. Sea $\psi = \phi$. Observe que $\psi \in U_0$, luego $\psi \in U_0 \cup \{B_1 \vee B_2\}$ y es tal que $V_I(\psi) = V_I(\phi) = 0$.

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles. Sea I una interpretación arbitraria. De las hipótesis que hemos asumido se sigue que sólo hay dos casos:

- Caso 1: Existe $\phi \in U_0$ tal que $V_I(\phi) = 0$. Sea $\psi = \phi$. Observe que $\psi \in U_0$, luego $\psi \in U_0 \cup \{B_1 \vee B_2\}$ y es tal que $V_I(\psi) = V_I(\phi) = 0$.
- Caso 2: No existe $\phi \in U_0$ tal que $V_I(\phi) = 0$. Entonces $V_I(B_1) = 0$ y $V_I(B_2) = 0$. Luego $V_I(B_1 \vee B_2) = 0$. Sea $\psi = B_1 \vee B_2$. Observe que $\psi \in U_0 \cup \{B_1 \vee B_2\}$ y es tal que $V_I(\psi) = 0$.

Supongamos que $U_0 \cup \{B_1\}$ y $U_0 \cup \{B_2\}$ son insatisfacibles. Sea I una interpretación arbitraria. De las hipótesis que hemos asumido se sigue que sólo hay dos casos:

Caso 1: Existe $\phi \in U_0$ tal que $V_I(\phi) = 0$. Sea $\psi = \phi$. Observe que $\psi \in U_0$, luego $\psi \in U_0 \cup \{B_1 \vee B_2\}$ y es tal que $V_I(\psi) = V_I(\phi) = 0$.

Caso 2: No existe $\phi \in U_0$ tal que $V_I(\phi) = 0$. Entonces $V_I(B_1) = 0$ y

 $V_I(B_2)=0$. Luego $V_I(B_1\vee B_2)=0$. Sea $\psi=B_1\vee B_2$. Observe que $\psi\in U_0\cup\{B_1\vee B_2\}$ y es tal que $V_I(\psi)=0$. En cualquier caso, existe $\psi\in U_0\cup\{B_1\vee B_2\}$ tal que $V_I(\psi)=0$. Como I es arbitraria, entonces para toda interpretación I existe $\psi\in U_0\cup\{B_1\vee B_2\}$ tal que $V_I(\psi)=0$. Por lo tanto, $U_0\cup\{B_1\vee B_2\}$ es insatisfacible.

Algo similar ocurre con los casos:

El conjunto de fórmulas correspondiente a n es $U_0 \cup \{B_1 \rightarrow B_2\}$, el correspondiente a n_1 es $U_0 \cup \{\neg B_1\}$ y el correspondiente a n_1 es $U_0 \cup \{B_2\}$.

El conjunto de fórmulas correspondiente a n es $U_0 \cup \{\neg(B_1 \land B_2)\}$, el correspondiente a n_1 es $U_0 \cup \{\neg B_1\}$ y el correspondiente a n_1 es $U_0 \cup \{\neg B_2\}$.

Teorema

Sea A una fórmula.

A es satisfacible sii cualquier tableaux de A es abierto.

A demostrar:

- 1. Propiedad sobre las hojas de un tableaux (ya terminado).
- 2. Si cualquier tableaux de A es cerrado, entonces A es insatisfacible.
- 3. Si cualquier tableaux de *A* es abierto, entonces *A* es satisfacible.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE COMPLETITUD: Si τ es abierto, entonces A es satisfacible.

IDEA DE LA DEMOSTRACIÓN:

1. τ es abierto sii alguna de sus hojas, digamos h, está marcada con \odot .

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE COMPLETITUD: Si τ es abierto, entonces A es satisfacible.

IDEA DE LA DEMOSTRACIÓN:

- 1. τ es abierto sii alguna de sus hojas, digamos h, está marcada con \odot .
- 2. Si h está marcada con \odot , entonces está etiquetada con un conjunto satisfacible de literales.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE COMPLETITUD: Si τ es abierto, entonces A es satisfacible.

IDEA DE LA DEMOSTRACIÓN:

- 1. τ es abierto sii alguna de sus hojas, digamos h, está marcada con \odot .
- 2. Si h está marcada con \odot , entonces está etiquetada con un conjunto satisfacible de literales.
- Si alguna hoja de un árbol está etiquetada con un conjunto satisfacible de literales, entonces la raíz del árbol está etiquetada con un conjunto satisfacible.

Sea A una fórmula y τ uno de sus tableaux.

TEOREMA DE COMPLETITUD: Si τ es abierto, entonces A es satisfacible.

IDEA DE LA DEMOSTRACIÓN:

- 1. τ es abierto sii alguna de sus hojas, digamos h, está marcada con \odot .
- 2. Si *h* está marcada con ⊙, entonces está etiquetada con un conjunto satisfacible de literales.
- 3. Si alguna hoja de un árbol está etiquetada con un conjunto satisfacible de literales, entonces la raíz del árbol está etiquetada con un conjunto satisfacible.
- 4. El conjunto que etiqueta la raíz de τ es $\{A\}$. Por lo tanto, A es satisfacible.

Fin de la sesión 10

En esta sesión usted ha aprendido a:

- 1. Demostrar que el algoritmo de construcción de tableaux termina.
- 2. Demostrar que el tableaux de una fórmula es abierto sii la fórmula es satisfacible.