LCC

Análise

• Funções vetoriais

Curvas e caminhos, limite e continuidade, derivada, integral definido

[Ver páginas 1 a 38, slides "Capítulo 2 - Funções vetoriais"]

1. Esboce a curva definida por cada uma das seguintes funções vetoriais:

(a)
$$\mathbf{r}(t) = (2 + t, 1 - 2t), t \in \mathbb{R}$$
;

(c)
$$\mathbf{r}(t) = (t, 2t^2), t \in [-1, 2];$$

(b)
$$\mathbf{r}(t) = (3 \operatorname{sen} t, 3 \cos t), t \in [0, \pi];$$

(d)
$$\mathbf{r}(t) = (2\cos t, \sin t), t \in [0, 2\pi].$$

2. Determine uma parametrização (função vetoral) para a a curva de equação

(a)
$$y = x^4 + x$$
, em \mathbb{R}^2 .

(b)
$$x^2 + y^2 = 16$$
 no plano $z = 0$, em \mathbb{R}^3 .

3. Determine
$$\lim_{t\to 0^+}\mathbf{r}(t)=(\sqrt{t+1},\mathrm{e}^t,1/t).$$

4. Determine
$$\int \mathbf{r}(t) dt$$
 para $\mathbf{r}(t) = (\cos t, t, 2e^t)$, $t \in \mathbb{R}$.

- **5.** Considere que a posição de uma partícula em movimento no espaço é dada, em cada instante $t \in [0,2]$, por $\mathbf{r}(t) = (t^3, t^2, t+1)$. Determine
 - (a) a posição inicial da partícula.
 - (b) o vetor velocidade e o vetor aceleração em cada instante t.
 - (c) a velocidade escalar e o versor tangente no instante t=1.

Data limite para o envio da resolução: 24h de 20 de abril.