Distribuição Normal

É totalmente definida por dois parâmetros: a média (μ) e a variância (σ^2).

Notação: seja X uma variável aleatória que segue uma distribuição normal com média μ e variância σ^2 , $X \sim N(\mu, \sigma^2)$.

Normal Padrão (ou Gaussiana): é a distribuição normal com $\mu = 0$ e $\sigma^2 = 1$. A variável aleatória que segue uma distribuição normal padrão (ou gaussiana) é, usualmente, denotada por Z. Desta forma, $Z \sim N(0, 1)$.

Teorema: Se uma variável aleatória X é normalmente distribuída, com média μ e variância σ^2 , isto é, $X \sim N(\mu, \sigma^2)$, então $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$.

OBS: com o teorema acima pode-se transformar qualquer variável aleatória normal em uma variável normal padrão. Vantagem: utilizar a tabela da normal (que serve apenas para a normal padrão) para qualquer variável normal.

Densidade da Distribuição Normal

Teorema: Sejam $X_1, X_2, ..., X_n$, n variáveis aleatórias independentes e normalmente distribuídas, sendo que $X_i \sim N(\mu_i, \sigma_i^2)$, para i = 1, 2, ..., n. Sejam $a_i \in \mathbb{R}$, números reais e Y uma combinação linear (ou soma com as X_i multiplicadas pelas a_i) dos X_i , isto é,

$$Y=a_1X_1+a_2X_2+\cdots+a_nX_n$$
, então a variável Y também é normalmente distribuída

com média

$$\begin{split} &\mu_Y = a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n \\ &\text{e variância} \\ &\sigma_Y^2 = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2. \\ &\text{Ou seja, } Y \sim N(\sum_{i=1}^n a_i \mu_i \,,\, \sum_{i=1}^n a_i^2 \sigma_i^2). \end{split}$$

Fazer os exemplos 79 até 81, páginas 204 até 208.

Teste de Hipótese

Definição: Uma hipótese estatística é uma afirmação ou conjectura acerca do(s) parâmetro(s) da distribuição de probabilidades de uma característica da população ou de uma variável aleatória. Em geral temos 2 hipóteses sendo testadas: H_0 , hipótese nula que é a afirmação que fazemos; e H_1 , hipótese alternativa que refuta a H_0 .

Fazer os exemplos 82 até 84, páginas 223 até 224.

Definição: Um teste de uma hipótese estatística é um procedimento, ou regra de decisão, que nos possibilita decidir por rejeitar, ou não, a hipótese formulada, H_0 , com base na informação obtida na amostra.

Fazer o exemplo 85, página 224.

Definição: A região crítica, RC, também chamada de região de rejeição, é o conjunto de valores assumidos pela variável aleatória ou estatística de teste para os quais a hipótese nula é rejeitada.

OBS: classificação do teste de hipótese quanto à região crítica:

- (i) teste unilateral à esquerda, $RC = \{x \in \mathbb{R} | x < x_1\}$, onde x_1 é denominado valor crítico;
- (ii) teste unilateral à direita, $RC = \{x \in \mathbb{R} | x > x_1\}$, onde x_1 é denominado valor crítico;
- (iii) teste bilateral, $RC = \{x \in \mathbb{R} | x < x_1 \text{ ou } x > x_2\}$, onde x_1 e x_2 são os valores críticos.

OBS: erros que podem ser cometidos em um teste de hipótese: erro tipo I e o erro tipo II.

Definição: O erro de tipo I consiste em rejeitarmos a hipótese nula, H_0 , sendo essa verdadeira.

Definição: O erro de tipo II consiste em não rejeitarmos (aceitarmos) a hipótese nula, H_0 , sendo essa falsa.

Decisão	Realidade			
	H_0 é verdadeira	H_0 é falsa		
Rejeita H_0	Erro tipo I	Não há erro		
	$P(erro\ tipo\ I) = \alpha$	$P(acertar) = \alpha = 1 - \beta$		
Não	Não há erro	Erro tipo II		
rejeita H_0	$P(acertar) = \beta = 1 - \alpha$	$P(erro\ tipo\ II) = \beta$		

Definição: A probabilidade de cometermos o erro de tipo I é chamada de nível de significância, sendo denotada por $\alpha = P[erro\ tipo\ I] =$ α . Assim. $P[rejeitar H_0|H_0 \in verdadeira].$

Definição: A probabilidade de cometermos o erro de tipo II é denotada por β . Assim, $\beta = P[erro tipo II] =$ $P[n\tilde{a}o\ rejeitar\ H_0|H_0\ \acute{e}\ falsa].$

OBS: o poder de um teste é a probabilidade de rejeitar H_0 quando ela é, de fato, falsa. É o caso de acertar com probabilidade $1 - \beta$.

Ver o exemplo na seção 1.2, página 226.

Procedimento (do teste de hipótese estatística):

1. Enunciar a hipótese H_0 a ser testada e a hipótese alternativa H_1 ;

- 2. Fixar o nível de significância do teste (α) e determinar a estatística de teste que será usada para testar a hipótese H_0 ;
- 3. Determinar a região crítica do teste (definindo se é unilateral a esquerda, à direita ou bilateral);
- Determinar o valor da estatística de teste, utilizando os dados obtidos e a estatística de teste determinada em (2);
- 5. Conclusões (conclusão estatística e conclusão prática).

OBS: n é o tamanho da amostra.

Teste Z: testa se a média populacional, μ , de uma amostra aleatória X_i , $i=1,2,\ldots,n$, é igual a um valor fixado μ_0 .

$$H_0$$
: $\mu = \mu_0$

Onde $X \sim N(\mu, \sigma^2)$, sendo a variância, σ^2 , conhecida. A estatística de teste é dada por

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{\bar{n}}}} \sim N(0,1).$$

Isto é, Z segue uma normal padrão (gaussiana).

Fazer os exemplos 86 até 88, páginas 229 até 232.

Teste t para 1 média: testa se a média populacional, μ , de uma amostra aleatória X_i , $i=1,2,\ldots,n$, é igual a um valor fixado μ_0 .

$$H_0: \mu = \mu_0$$

Onde $X \sim N(\mu, \sigma^2)$, sendo a variância, σ^2 , desconhecida. A estatística de teste é dada por

$$T = \frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim t(\nu).$$

Dizemos que T sege uma distribuição t de student com $\nu=n-1$ graus de liberdade.

Fazer os exemplos 89 até 91, páginas 236 até 239.

Teste t para 2 médias: testa se as médias populacionais, μ_1 e μ_2 , de 2 amostras aleatórias X_{1i} , $i=1,2,\ldots,n_1$, e X_{2j} , $j=1,2,\ldots,n_2$, são iguais.

$$H_0$$
: $\mu_1 = \mu_2$

Onde $X_1 \sim N(\mu_1, \sigma_1^{\ 2})$ e $X_2 \sim N(\mu_2, \sigma_2^{\ 2})$, sendo as variâncias $\sigma_1^{\ 2} = \sigma_2^{\ 2} = \sigma^2$, desconhecida. A estatística de teste é dada por

$$T = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{S_c^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t(\nu).$$

Onde, $S_c^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$, é a variância estimada combinada das duas variâncias amostrais.

Dizemos que T sege uma distribuição t de student com $\nu=n_1+n_2-2$ graus de liberdade.

Fazer os exemplos 92 até 94, páginas 242 até 246.

OBS: Tabela de Contingência é a tabela construída, em geral, para estudar a distribuição conjunta de duas variáveis qualitativas, mas também podem ser quantitativas. Considere duas variáveis X_1 e X_2 com X_1 e X_2 níveis, respectivamente.

v	X_2				
X_1	Nível 1	Nível 2	:	Nível k_2	Total
Nível 1	n_{11}	n_{12}		n_{1k_2}	n_{1*}
Nível 2	n_{21}	n_{22}	•••	n_{2k_2}	n_{2*}
			•••		
Nível k_1	$n_{k_1 1}$	$n_{k_1 2}$		$n_{k_1 k_2}$	n_{k_1*}
Total	n_{*1}	n_{*2}	•••	n_{*k_2}	n

Onde,

 n_{ij} representa o número de ocorrências do i-ésimo nível da variável X_1 e do j-ésimo nível da variável X_2 ;

$$\begin{split} n_{i*} &= \sum_{j=1}^{k_2} n_{ij}; \\ n_{*j} &= \sum_{i=1}^{k_1} n_{ij}; \\ n &= \sum_{j=1}^{k_2} n_{*j} = \sum_{i=1}^{k_1} n_{i*} = \sum_{j=1}^{k_2} \sum_{i=1}^{k_1} n_{ij}. \end{split}$$

Teste qui-quadrado para independência: testa se as variáveis X_1 e X_2 são independentes.

 H_0 : X_1 e X_2 são independentes

A estatística de teste é dada por

$$\chi_{cal}^2 = \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \frac{\left(F_{oij} - F_{eij}\right)^2}{F_{eij}} \sim \chi_{\nu}^2, \quad \text{sendo} \quad \nu = (k_1 - 1)(k_2 - 1), \text{ o grau de liberdade.}$$

Sendo,

 $F_{o_{ii}}$ é a frequência observada;

 $F_{e\,ij}$ é a frequência esperada e dada por $F_{e\,ij}=rac{n_{i*}n_{*j}}{n}.$

Fazer os exemplos 95 até 97, páginas 250 até 259.

OBS: Tabelas utilizadas:

- 1. Tabela Normal Padrão, página 193;
- 2. Tabela t de Student, página 234;
- 3. Tabela qui-quadrada, página 249.