Definition Examples Bibliography

Matroids: equivalent definitions, examples

Coman Florin-Alexandru

April 4, 2015

Table of contents

- Definition
 - Definition
- 2 Examples
 - Uniform Matroid
 - Partition Matroid
 - Linear Matroid
 - Graphic Matroid
- Bibliography

Matroids

Definition - Matroid

A matroid $M=(S,\mathcal{I})$ is a finite ground set S together with a collection of sets $\mathcal{I}\subseteq 2^S$, known as the independent sets, satisfying the following axioms:

- (I_1) If $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$.
- (I_2) If $I, J \in \mathcal{I}$ and |J| > |I|, then there exists an element $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$.

Uniform Matroid

One trivial example of a matroid $M = (E, \mathcal{I})$ is a **uniform** matroid in which

$$\mathcal{I} = \{ X \subseteq E : |X| \le k \},\$$

for a given k. It is usually denoted as $U_{k,n}$ where |E| = n. A base is any set of cardinality k (unless k > |E| in which case the only base is |E|).

A free matroid is one in which all sets are independent; it is $U_{n,n}$.

Partition Matroid

Another example is the **partition matroid** in which E is partitioned into (disjoint) sets $E_1, E_2, ..., E_l$ and

$$\mathcal{I} = \{X \subseteq E : |X \cap E_i| \le k_i \text{ for all } i = 1, ..., I\},$$

for some given parameters $k_1, ..., K_l$. As an exercise, let us check that (I_2) is satisfied. If $X, Y \in \mathcal{I}$ and |Y| > |X|, there must exist i such that $|Y \cap E_i| > |X \cap E_i|$ and this means that adding any element e in $E_i \cap (Y \subseteq X)$ to X will maintain independence.

Observe that M would not be a matroid if the sets E_i were not disjoint. For example, if $E_1=\{1,2\}$ and $E_2=\{2,3\}$ with $k_1=1$ and $k_2=1$ then both $Y=\{1,3\}$ and $X=\{2\}$ have at most one element of each E_i , but one can't find an element of Y to add to X.

Linear Matroid

Linear matroids (or representable matroids) are defined from a matrix A, and this is where the term matroid comes from. Let E denote the index set of the columns of A. For a subset X of E, let A_X denote the submatrix of A consisting only of those columns indexed by X. Now, define

$$\mathcal{I} = \{X \subseteq E : rank(A_X) = |X|\},\$$

i.e. a set X is independent if the corresponding columns are linearly independent. A base B corresponds to a linearly independent set of columns of cardinality rank(A).

Matching Matroid

Here is an example of something that is not a matroid. Take a graph G = (V, E), and let $\mathcal{I} = \{F \subseteq E : F \text{ is a matching}\}$. This is not a matroid since (I_2) is not necessarily satisfied $((I_1)$ is satisfied, however). Consider, for example, a graph on 4 vertices and let $X = \{(2,3)\}$ and $Y = \{(1,2),(3,4)\}$. Both X and Y are matchings, but one cannot add an edge of Y to X and still have a matching.

There is, however, another matroid associated with matchings in a (general, not necessarily bipartite) graph G = (V, E), but this time the ground set of M corresponds to V. In the **matching matroid**, $\mathcal{I} = \{S \subseteq V : S \text{ is covered by some matching } M\}$. In this definition, the matching does not need to cover precisely S; other vertices can be covered as well.

Graphic Matroid

A very important class of matroids in combinatorial optimization is the class of **graphic matroids** (also called cycle matroids). Given a graph G = (V, E), we define independent sets to be those subsets of edges which are forests, i.e. do not contain any cycles. This is called the graphic matroid $M = (E, \mathcal{I})$, or M(G).

 (I_1) is clearly satisfied. To check (I_2) , first notice that if F is a forest then the number of connected components of the graph (V,F) is given by K(V,F)=|V||F|. Therefore, if X and Y are 2 forests and |Y|>|X| then K(V,Y)< K(V,X) and therefore there must exist an edge of $Y\subseteq X$ which connects two different connected components of X; adding this edge to X results in a larger forest. This shows (I_2) .

Bibliography I

- Michel X. Goemans, Lecture notes on matroid optimization, Combinatorial Optimization Course, Massachusetts Institute of Technology, 2009
- [2] Michel X. Goemans, Lecture 8: Matroids Advanced Combinatorial Optimization, Massachusetts Institute of Technology, 2009