

Mathématiques

Classe: BAC

Chapitre: Primitive

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1 **(5)** 36 min

6 pt

- 1) Soit u la fonction définie sur $]0,\pi[$ par : $u(x) = 2\cos x 1$. Dresser le tableau de variation de u.
- 2) Soit f la fonction définie sur]-3,1[par : $f(x) = \frac{1}{\sqrt{-x^2 2x + 3}}$ et soit C_f sa courbe représentative.
 - a) Dresser le tableau de variation de f.
 - b) Tracer C_f (unité graphique 2cm).
- 3) Soit g la restriction de f à l'intervalle [-1,1].
 - a) Montrer que g réalise une bijection de $\begin{bmatrix} -1,1 \end{bmatrix}$ sur un intervalle J que l'on précisera.
 - b) Calculer $g^{-1}(x)$ pour tout $x \in J$.
- 4) Soit F la primitive de f sur]-3,1[qui s'annule en 0 et G la fonction définie sur $]0,\pi[$ par: G(x) = (f o u)(x)
 - a) Montrer que G est dérivable sur $]0,\pi[$ et calculer G'(x) pour tout $x \in]0,\pi[$.
 - b) Calculer $G\left(\frac{\pi}{3}\right)$, en déduire que pour tout $x \in \left]0, \pi\right[$, on a : $G(x) = \frac{\pi}{3} x$.
 - c) Calculer F(-1) et $F(\sqrt{2}-1)$.

Exercice 2

(5) 36 min 4 pt

Soit f la fonction définie par $f(x) = \frac{1}{x^2 - 4x + 5}$ et soit C_f sa courbe représentative.

1)

- a) Déterminer le domaine de définition de f.
- b) Montrer que la droite d'équation x = 2 est un axe de symétrie de C_f .
- 2) Soit F la primitive de f sur \mathbb{R} qui s'annule en 2 et soit C sa courbe représentative. Pour tout $x \in \mathbb{R}$, on pose : G(x) = F(4-x) + F(x).
 - a) Montrer que G est dérivable sur \mathbb{R} et calculer G'(x) pour tout $x \in \mathbb{R}$.
 - b) Montrer que le point I(2,0) est un centre de symétrie de C.
- 3) Soit la fonction H définie sur $\left| \frac{-\pi}{2}, \frac{\pi}{2} \right|$ par $H(x) = F(2 + \tan x)$.
 - a) Montrer que H est dérivable sur $\left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$ par H'(x) pour tout $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$.
 - b) En déduire que H(x) = x puis calculer F(1).

6 pt

Soit la fonction h définie sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par $h(x) = \tan x$.

1)

- a) Montrer que la fonction h admet une fonction réciproque h^{-1} définie sur un intervalle J que l'on déterminera.
- b) Montrer que h^{-1} est dérivable sur \mathbb{R} et calculer $(h^{-1})'(x)$ pour tout $x \in \mathbb{R}$.
- 2) Soit g la restriction h^{-1} à l'intervalle $]0,+\infty[$ et soit u la fonction définie sur $]0,+\infty[$ par $u(x)=g(x)+g\left(\frac{1}{x}\right)$.
 - a) Montrer que u est dérivable sur $]0,+\infty[$ et calculer, u'(x) pour tout $x \in]0,+\infty[$.
 - b) En déduire que pour tout $x \in \left]0, +\infty\right[$ on a : $g(x) + g\left(\frac{1}{x}\right) = \frac{\pi}{2}$
- 3) Soit la fonction v définie sur $[0,+\infty[$ par v(x)=x-g(x).
 - a) Calculer v'(x) pour tout $x \in [0, +\infty[$.
 - b) Calculer v(0) et v'(0).
- 4) Soit f la fonction définie sur \mathbb{R} par : $\begin{cases} f(x) = 2x + 1 \sqrt{1 + x^2} & \text{si } x \le 0 \\ f(x) = x \frac{\pi}{2} + g\left(\frac{1}{x}\right) & \text{si } x > 0 \end{cases}$ et soit $\left(C_f\right)$ sa

courbe.

- a) Montrer que f est continue en 0.
- b) Etudier la dérivabilité de f en 0.
- c) Interpréter le résultat graphiquement.

5)

- a) Etudier les branches infinies de (C_f) .
- b) Dresser le tableau de variation de f.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000