CSC165H1 Problem Set 4

Xiaoyu Zhou, Yichen Xu

March 29, 2019

1. Printing multiples

(a) Proof.

From Fact 2, we can know that $\frac{n}{i} \leq \left\lceil \frac{n}{i} \right\rceil \leq \frac{n}{i} + 1$. So, $\sum_{i=1}^{n} \frac{n}{i} \leq \sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \leq \sum_{i=1}^{n} \left(\frac{n}{i} + 1 \right)$. From Fact 1. we can know that $\exists c_1, c_2, n_0 \in \mathbb{R}^+, n \in \mathbb{N}, n \geq n_0 \Rightarrow c_1 \log n \leq \sum_{i=1}^{n} \frac{1}{i} \leq c_2 \log n$.

We want to prove that $\sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \in \Theta(n * \log n)$, which is $\exists a, b, n_1 \in \mathbb{R}^+$, $n \in \mathbb{N}$, $n \geq n_1 \Rightarrow a(n \log n) \leq \sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \leq b(n \log n)$. Let $a = c_1$, $b = c_2 + 1$, $n_1 = \max(n_0, 10)$. Let $n \in \mathbb{N}$. Assume $n \geq n_1$. We want to

Let $a = c_1$, $b = c_2 + 1$, $n_1 = \max(n_0, 10)$. Let $n \in \mathbb{N}$. Assume $n \ge n_1$. We want to prove that $a(n \log n) \le \sum_{i=1}^n \left\lceil \frac{n}{i} \right\rceil \le b(n \log n)$. Let's divide the proof in two parts.

Part 1: Proof $a(n*\log n) \le \sum_{i=1}^{n} \lceil \frac{n}{i} \rceil$.

$$\sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \ge \sum_{i=1}^{n} \frac{n}{i}$$

$$= n * \sum_{i=1}^{n} \frac{1}{i}$$

$$\ge (c_1 \log n) * n$$

$$= c_1(n * \log n)$$

$$= a(n * \log n)$$
(1)

Part 2: Proof $\sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \le b(n * \log n)$

$$\sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \leq \sum_{i=1}^{n} \left(\frac{n}{i} + 1 \right)$$

$$= \sum_{i=1}^{n} \frac{n}{i} + \sum_{i=1}^{n} 1$$

$$= n \sum_{i=1}^{n} \frac{1}{i} + n$$

$$\leq n(c_2 \log n) + n$$

$$\leq n(c_2 \log n) + n \log n \text{ (since } n = \max(n_0, 10), n \geq 10, so \log n \geq 1)$$

$$= (c_2 + 1)(n \log n)$$

$$= b(n \log n)$$
(2)

So,
$$a(n \log n) \le \sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \le b(n \log n)$$
.
So, $\sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \in \Theta(n \log n)$

 $\lim_{i=1}^{n} \sum_{i=1}^{n} \left[\frac{n}{n} \right]$

(b) For loop 2, there are $\lceil \frac{n}{d} \rceil$ iterations, and every iterations takes constant time (since the runtime doesn't depend on the input size).

So, the runtime of loop 2 is $\lceil \frac{n}{d} \rceil$.

For loop 1, there are n iterations, and every ieration takes $\lceil \frac{n}{d} \rceil$ time.

So the runtime of loop 1 is $\sum_{d=1}^{n} \left\lceil \frac{n}{d} \right\rceil$.

From part (a), we can know that $\sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \in \Theta(n \log n)$. So the runtime of loop 1 is $\Theta(n \log n)$.

Since there are no extra steps besides loop 1 in **print-multiples**, the total runtime of **print-multiples** is $\Theta(n \log n)$

(c) For loop 2, from the part(b), we can know its runtime is $\lceil \frac{n}{d} \rceil$.

For loop 3, there are d iterations and every iterations takes constant time (since the runtime doesn't depend on the input size). So the runtime of loop 3 is d.

For loop 1, we know the if statement will execute only when d is a multiple of 5. So, when $d \in \{1*5, 2*5, ..., \left\lfloor \frac{n}{5} \right\rfloor *5\}$, which is d = 5i, where $i \in \{1, 2, ..., \left\lfloor \frac{n}{5} \right\rfloor \}$, the if statement will execute. So the total runtime of loop 1 is the sum of loop 2

and loop 3, which is $\sum_{i=1}^{\left\lfloor \frac{n}{5} \right\rfloor} 5i + \sum_{d=1}^{n} \left\lceil \frac{n}{d} \right\rceil$.

Since there are no extra steps besides loop 1 in **print-multiples2**, the total run-

time of **print-multiples2** is $\sum_{i=1}^{\left\lfloor \frac{n}{5} \right\rfloor} 5i + \sum_{d=1}^{n} \left\lceil \frac{n}{d} \right\rceil$.

$$\sum_{i=1}^{\left\lfloor \frac{n}{5} \right\rfloor} 5i = 5 \sum_{i=1}^{\left\lfloor \frac{n}{5} \right\rfloor} i$$

$$= \frac{\left\lfloor \frac{n}{5} \right\rfloor * \left(\left\lfloor \frac{n}{5} \right\rfloor + 1 \right)}{2} \in \Theta(n^2)$$
(3)

Also, from part (a), we know that $\sum_{i=1}^{n} \left\lceil \frac{n}{i} \right\rceil \in \Theta(n \log n)$.

So, the total runtime of **print-multiples2** is $\Theta(n \log n) + \Theta(n^2)$, which is $\Theta(n^2)$.

2. Varying running times, input families, and worst-case analysis

(a) Proof.

The input family whose runtime is (2^n) is the list whose length is n and every element is oven, except for the last one. For example, lst = [2, 2, ..., 2, 1].

For the first n-1 items, lst[i]%2 == 0 is always true until i = n-1. So if statement will run execute n-2 times and every time takes constant time. So the runtime for if statement is n-2.

When i = n - 1, the iterations run n - 2 times. So $j = 2^{n-2}$. And at this time, lst[i]%2 == 0 is false. So the else statement will excuse.

So for loop 2, there will be 2^{n-2} iterations and every iteration takes 1 step. So the runtime of loop 2 is 2^{n-2} .

After loop 2, i will be $2(n-1) \ge n$. So the Loop 1 will stop.

Thus, the runtime of loop 1 is the sum of if and else statement, which is $(n-2) + 2^{n-2}$.

Since there is 1 extra steps in **alg** except loop 1, the total running time of **alg** is $t(n-2) + 2^{n-2} + 1$, which is $\Theta(2^n)$

(b) Proof.

An input family whose running time is $\Theta(\log n \times 2^{\sqrt{n}})$ is a list of size n whose first $\lceil \sqrt{n} \rceil$ items are even, then the rest are odd.

So for the first $\lceil \sqrt{n} \rceil - 1$ iterations of loop 1, lst[i]%2 == 0 is always true.

After $\lceil \sqrt{n} \rceil - 1$ iterations, $i = \lceil \sqrt{n} \rceil, j = 2^{\lceil \sqrt{n} \rceil - 1}$. And then, all elements are even, so lst[i]%2 == 0 is false.

So for Loop 2, there will be $2^{\lceil \sqrt{n} \rceil - 1}$ iterations, and every iteration take 1 step. And Loop 1 will stop until i.

Let i_k be the value of i after k iterations of else step. $i_k = 2^k * \sqrt{n}$. So when $k > \frac{1}{2} \log n$, the loop will stop.

So the if statement executes $\lceil \sqrt{n} \rceil - 1$ times and every time has 1 step. And the else statement executes $\lceil \frac{1}{2} \log n \rceil$ time and every time costs $2^{\lceil \sqrt{n} \rceil - 1}$ step.

Thus, the runtime of loop 1 is $\lceil \sqrt{n} \rceil - 1 + \lceil \frac{1}{2} \log n \rceil * 2^{\lceil \sqrt{n} \rceil - 1}$.

Except the loop 1, **alg** has a constant step (since they are independent with the input size). So the total run time of **alg** is $\lceil \sqrt{n} \rceil - 1 + \lceil \frac{1}{2} \log n \rceil * 2^{\lceil \sqrt{n} \rceil - 1} + 1$,

which is $\Theta(\log n * 2^{\sqrt{n}})$

(c) Proof.

In the worst case, we want the loop 2 executes as much as possible. We can know that the larger j is, the more executing time that loop 2 have.

When else statement runs 1 time and in order to get a larger j, if statement runs n-2 times. So, j will be 2^{n-2} and the runtime of if statement is n-2. So, loop 2 will run 2^{n-2} times. Also, every iterations takes constant time (since the runtime doesn't depend on the input size). So the runtime of loop 2 is 2^{n-2} , which means that the runtime of else statement is 2^{n-2} . Thus the total runtime of alg is $(n-2) + 2^{n-2}$

When else statement runs 2 times and in order to get a larger j, if statement runs $\left\lfloor \frac{n-1}{2} \right\rfloor - 1$ times. So, j will be $2^{\left\lfloor \frac{n-1}{2} \right\rfloor - 1}$ and the runtime of if statement is $\left\lfloor \frac{n-1}{2} \right\rfloor - 1$. So, loop 2 will run $2^{\left\lfloor \frac{n-1}{2} \right\rfloor - 1}$ times. Also, every iterations takes constant time (since the runtime doesn't depend on the input size). So the runtime of loop 2 is $2^{\left\lfloor \frac{n-1}{2} \right\rfloor - 1}$. And else statement runs twice, so the runtime of else statement is $2 * 2^{\left\lfloor \frac{n-1}{2} \right\rfloor - 1}$, which is $2^{\left\lfloor \frac{n-1}{2} \right\rfloor}$. Thus the total runtime of **alg** is $\left\lfloor \frac{n-1}{2} \right\rfloor - 1 + 2^{\left\lfloor \frac{n-1}{2} \right\rfloor}$. We can find that $n - 2 + 2^{n-2} \ge \left\lfloor \frac{n-1}{2} \right\rfloor - 1 + 2^{\left\lfloor \frac{n-1}{2} \right\rfloor}$. Thus, we can know that the larger j is, the more runtime is. SO, when id statement executes n - 2 times, else

So, the total runtime of the worst case of alg is $n-2+2^{n-2}$, which is $\mathcal{O}(2^n)$.

3. Rearrangements, best-case analysis

(a) i. $\forall n \in \mathbb{N}, BC_{func}(n) \leq f(n)$ $\iff \forall n \in \mathbb{N}, \min\{\text{running time of executing } func(x) | x \in \mathcal{I}n\} \leq f(n)$ $\iff \forall n \in \mathbb{N}, \exists x \in \mathcal{I}n, \text{ running time of executing } func(n) \leq f(n)$

statement executes 1 time, the runtime of alg will be the largest.

ii. $\forall n \in \mathbb{N}, BC_{func}(n) \geq f(n)$ $\iff \forall n \in \mathbb{N}, \min\{\text{running time of executing } func(x) | x \in \mathcal{I}n\} \geq f(n)$ $\iff \forall n \in \mathbb{N}, \forall x \in \mathcal{I}n, \text{ running time of executing } func(x) \geq f(n)$

(b) Part 1. Upper bound

Let lst be the list with length n. And all the elements of lst are 1. Since every element are equal, so loop 2 and loop 3 will never execute. So for loop 1, there are n-2 iterations, and every iteration takes 1 step (since they are independent with input size). So the total runtime is n-2, which is $\mathcal{O}(n)$

Part 2. Lower bound

For a list which length is n, no matter what happen, Loop 1 has n-2 iteration. And in the best case, the running time is minimum when Loop 2 and Loop 3 do not executed. And that will happen when the elements are all the same.

So there are at least n-2 iterations will occur, and each iteration takes 1 step.

This gives us a lower bound on the number of steps as $n-2 \in \Omega(n)$

In conclusion, the best-case running time of rearrange is $\Theta(n)$