

Рис. 1.1

1.5. Две частицы, 1 и 2, движутся с постоянными скоростями \mathbf{v}_1 и \mathbf{v}_2 . Их радиусы-векторы в начальный момент равны \mathbf{r}_1 и \mathbf{r}_2 . При каком соотношении между этими четырьмя векторами час-

тицы испытают столкновение друг с другом?

- 1.6. Корабль движется по экватору на восток со скоростью $v_0 = 30$ км/ч. С юго-востока под углом $\phi = 60^\circ$ к экватору дует ветер со скоростью v = 15 км/ч. Найти скорость v' ветра относительно корабля и угол ϕ' между экватором и направлением ветра в системе отсчета, связанной с кораблем.
- 1.8. От бакена, который находится на середине широкой реки, отошли две лодки, A и B. Обе лодки стали двигаться по взаимно перпендикулярным прямым: лодка A вдоль реки, а лодка B поперек. Удалившись на одинаковое расстояние от бакена, лодки вернулись затем обратно. Найти отношение времен движения лодок τ_A/τ_B , если скорость каждой лодки относительно воды в $\eta = 1,2$ раза больше скорости течения.
- **1.9.** Лодка движется относительно воды со скоростью, в n=2,0 раза меньшей скорости течения реки. Под каким углом к направлению течения лодка должна держать курс, чтобы ее снесло течением как можно меньше?
- **1.11.** Два шарика бросили одновременно из одной точки в горизонтальном направлении в противоположные стороны со скоростями $v_1 = 3.0$ м/с и $v_2 = 4.0$ м/с. Найти расстояние между шариками в момент, когда их скорости окажутся взаимно перпендикулярными.
- 1.12. Три точки находятся в вершинах равностороннего треугольника со стороной a. Они начинают одновременно двигаться с постоянной по модулю скоростью v, причем первая точка все время держит курс на вторую, вторая на третью, третья на первую. Через сколько времени точки встретятся?

- **1.16.** Две частицы движутся с постоянными скоростями v_1 и v_2 по двум взаимно перпендикулярным прямым к точке их пересечения O. В момент t=0 частицы находились на расстояниях l_1 и l_2 от точки O. Через сколько времени после этого расстояние между частицами станет наименьшим? Чему оно равно?
- 1.17. Из пункта A, находящегося на шоссе (рис. 1.2), необходимо за кратчайшее время попасть на машине в пункт B, расположенный в поле на расстоянии l от шоссе. На каком расстоянии от точки D следует свернуть с шоссе, если скорость машины по полю в η раз меньше ее скорости по шоссе?

Рис. 1.2

Рис. 1.3

- **1.20.** Радиус-вектор частицы меняется со временем t по закону $\mathbf{r} = \mathbf{b}t$ (1 αt), где \mathbf{b} постоянный вектор, α положительная постоянная. Найти:
 - а) скорость и ускорение частицы как функции t;
- б) время, через которое частица вернется в исходную точку, и пройденный при этом путь.
- **1.22.** Частица движется в положительном направлении оси X так, что ее скорость меняется по закону $v = \alpha \sqrt{x}$, где α положительная постоянная. В момент t = 0 частица находилась в точке x = 0. Найти:
 - а) ее скорость и ускорение как функции времени;
- б) среднюю скорость за время, в течение которого она пройдет первые s метров пути.
- **1.23.** Точка движется, замедляясь, по прямой с ускорением, модуль которого зависит от ее скорости v как $a = \alpha \sqrt{v}$, где α постоянная. В начальный момент скорость точки равна v_0 . Какой путь она пройдет до остановки и за какое время?