COMP3121 Assignment 2 - Question 1

1) In this question, we have two positive integers – M and n and we are required to find \mathbf{M}^n using only $O(\log(n))$ many multiplications.

We can employ the use of binary to help simplify our method, specifically writing our n in binary i.e.

$$n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_m}$$
 where
$$k_1 > k_2 > \dots > k_m$$
 and
$$k_1 = \lfloor \log_2(n) \rfloor$$

Once we have that, we can then rewrite M^n as $M^n = M^{2^{k_1}} * M^{2^{k_2}} * ... * M^{2^{k_m}}$. This essentially means that we work out M^{2^k} for all k where $2^k \le n$. This can be seen to involve at most $\lfloor log_2(n) \rfloor$ multiplications. By computing all of m^{2^j} for all $1 \le j \le \lfloor \log_2(n) \rfloor$ this will require at most $\lfloor log_2(n) \rfloor$ multiplications. This can be done by repeated squaring where the number of digits within n is proportional to $\log_2(n)$ multiplications at most. Put more simply, as an example if we had 5^{17} , we can convert 17 into binary which would be 10001, then by reading from right to left (or from the least-significant bit to most-significant bit) we would find that it would be:

$$5^{17} = 5^{10001}$$

$$= 5^{(1*2^4 + 0*2^3 + 0*2^2 + 0*2^1 + 1*2^0)}$$

$$= 5^{1*2^4} * 5^{0*2^3} * 5^{0*2^2} * 5^{0*2^1} * 5^{1*2^0}$$

$$= 5^{2^4} * 1 * 1 * 1 * 5^{2^0}$$

$$= 5^{16} * 5^1$$

These final values to be multiplied are referred to as the successive squares (16 and 1) and we needed at most 4 "squarings" (as we know that the left-most digit is in the 2^4 position and the right-most number is just 5 as $5^{2^0} = 5^1 = 5$ hence we do not need to include that as a "squaring"). Intuitively, from above we recognise that the number of multiplications required would be at most m bits required to represent our exponent and hence would be a maximum of m-1 multiplications. Putting it all together, the number of bits required to represent our positive integer n would be: $1 + \lfloor \log_2(n) \rfloor$. Note, however, that in most cases it is simply enough to find the number of bits from doing $\lfloor \log_2(n) \rfloor$ and then computing the required multiplications from there. In summation, this would lead to an overall maximum of $O(\log(n))$ multiplications, as required.

End of Solution