

Hotel Cancellations

Predicting hotel booking cancellations to decrease uncertainty and optimize revenue

Lauma Ustupa | Ironhack

Ever heard of overbooking?

The Data

Resort Hotel in Algarve, Portugal

Booking transactional data

Period Jul 2015 - Aug 2017

Shape (39 665, 32)

Main features:

Guest:

- Country
- Market Segment/ Distribution Channel/ Customer Type
- Repeated Guest/ Previous Cancellations/ Not Cancelled

Booking:

- Arrival Date
- Stay in Week/ Weekend Nights
- Number of Adults/ Children/ Infants
- Booked & Assigned Room Type
- Number of Booking Changes/ Days in Waiting List
- Average Daily Rate/ Deposit Type
- Lead Time (days since booking was made)
- Services: Meal, Parking, Special requests

Target:

Is Cancelled: Yes/No

Cancellation Ratio Over Time-

Bookings vs Cancellation Ratio per Customer Type

CancRatio

95%

of hotel bookings come from transient segment (individual, non-group)

51%

of these bookings are being cancelled

Cancellation Ratio vs Previous Cancellations

Booking Changes vs Cancellation Ratio

Building ML Model

Prediction of bookings likely to be cancelled

Steps

Feature selection
& feature
engineering,
OHE

Selecting best performing models

Tuning
hyperparameters

Result Analysis

Model Selection

• Selecting best performing models (using Cross Validation with Kfold)

Model	Accuracy	Precision
Logistic Regression	0,775	0,707
Gausian Naive Bayes	0,568	0,373
Decision Tree	0,760	0,566
SVM	0,722	0,000
Random Forest	0,813	0,727
Gradient Boosting Classifier	0,806	0,734
XG Boost	0,806	0,733

Minimize the number of false positives

Tuning Hyperparameters

- Using Grid Search Cross Validation (CV = 5)
- Best performing parameters per model:

Random Forest	Gradient Boosting	XG Boost
N estimators: 50 Max Depth: 15 Max Features: 10 Class Weight: balanced	N estimators: 100 Max Depth: 15 Max Features: 10	N estimators: 100 Max Depth: 15 Max Features: 5 Scale pos Weight: 2.59
Accuracy: 0.802	Accuracy: 0.812	Accuracy: 0.793
Accuracy: 0.806 Precision: 0.624	Accuracy: 0.822 Precision: 0.732	Accuracy: 0.809 Precision: 0.638

Test data

Result Analysis: Confusion Matrix

Gradient Boosting Classifier

Result Analysis: Feature Importances

Gradient Boosting Classifier

Lead Time
ADR
Deposit Type

Cancellation Ratio vs Lead Time

Cancellation Ratio vs ADR

Cancellation Ratio vs Deposit Type

Conclusion & further exploration

- Better decisions on bookings to accept or reject (if bookings on request/in waitlist)
- Calculate **Hotel Net Demand** = Total demand Bookings likely to be cancelled
 - Indication of how many rooms to **oversell** (use probability to identify bookings most likely to be cancelled)
- Continuous **Model Improvement**: daily reports on booking status to evaluate the predictions and adjust the model based on results
- Build a model to predict **cancellation ratio per day** by aggregating booking data per each day of the year

Thank you!