Problem Set: Local Search

Course: CSE422 Artificial Intelligence

Instructor: Ipshita Bonhi Upoma

Problem Setups

1. For six cities, the matrix is given by:

[[0 39 65 53 56 41] [39 0 35 36 32 36] [65 35 0 80 28 56] [53 36 80 0 40 63] [56 32 28 40 0 46] [41 36 56 63 46 0]]

I would like to visit all cities, traveling the minimum distance.

2. I have ten courses to select from. The work-load/per week and the expected marks for each course is given below. I would like to find the set of courses so my expected marks are maximum and the work-load per week does not exceed 50 hours.

Course	Work-load per week	Expected Marks
1	7	72
2	16	68
3	12	90
4	7	54
5	16	73
6	3	44
7	16	64

8	4	38
9	4	18
10	19	94

3. Graph Description:

- Vertices: 7 vertices named A, B, C, D, E, F, G.
- Edges: Connections between the vertices are as follows:
 - o A is connected to B, C, and D.
 - o B is connected to A, C, E, and F.
 - o C is connected to A, B, and G.
 - o D is connected to A, E, and G.
 - o E is connected to B, D, F.
 - o F is connected to B, E, G.
 - o G is connected to C, D, F.

Goal: The goal is to color the graph using the minimum number of colors such that no two adjacent vertices share the same color.

4. Graph Description:

- Vertices: 8 vertices named V1, V2, V3, V4, V5, V6, V7, V8.
- Edges:
 - V1 connected to V2, V3, V4
 - o V2 connected to V3, V5
 - V3 connected to V4. V6
 - V4 connected to V7
 - V5 connected to V6, V8
 - V6 connected to V7, V8
 - V7 connected to V8

Objective: Divide the vertices into two groups such that the number of edges between the two groups is maximized.

5. Problem Description:

- Assets: There are 5 different assets available for investment, each with its own expected return.
- Budget: The total amount available for investment is \$50,000.

Asset Details:

- Asset 1: Expected return = 6%
- Asset 2: Expected return = 4%
- Asset 3: Expected return = 8%
- Asset 4: Expected return = 3%

Asset 5: Expected return = 7%

Constraints:

- Investment Limits: No single asset should contain more than 40% of the total investment.
- Diversification: At least 3 different assets must be included in the portfolio.

Objective: Maximize the expected return of the portfolio while adhering to the investment limits and diversification requirements.

6. Problem Description:

- Jobs: There are 10 jobs to be scheduled, each with different processing times.
- Machines: There are 3 machines available to process these jobs.
- Processing Times: Each job has a specific processing time, which is the same on any machine.

Job Details:

- Job 1: Processing time = 4 units
- Job 2: Processing time = 1 unit
- Job 3: Processing time = 8 units
- Job 4: Processing time = 5 units
- Job 5: Processing time = 3 units
- Job 6: Processing time = 6 units
- Job 7: Processing time = 2 units
- Job 8: Processing time = 7 units
- Job 9: Processing time = 9 units
- Job 10: Processing time = 3 units

Objective: Minimize the total time (makespan) to complete all jobs, where makespan is the time at which the last job finishes.

Questions:

For the each of the above problem setups:

- a. Encode the problems. (This means structuring the problem representation, defining the neighborhood. Examples given in lecture notes)
- b. Using Hill Climbing algorithm up to two iterations find the optimal solution. Using the idea of the evaluation function for this problem, explain the problems with the Hill-Climbing algorithm.
- c. Using the problem scenario, explain First-choice hill-climbing, Stochastic hill climbing and random restart hill climbing algorithm.
- d. Let T=100, $\alpha=.5$ and the change of temperature at each iteration be described by $T(k)=T_0^k\alpha^k$ using, simulated annealing up to 3 iterations, find the optimal solution.

Explain the significance of the change of temperature in simulated annealing using this

- problem as an example. What will happen if the temperature is increasing at each iteration of simulated annealing.
- e. Using the Genetic algorithm up to 1 iteration, find the optimal solution.
- f. What will happen if all the chromosomes in the initial population are the same? Explain why mutation is helpful in finding a better solution. Use the problem scenario as an example.