1534 AUTOMATON

5.223 lex_between

DESCRIPTION	LINKS	AUTOMATON
		AUTUMATUM

Origin [95]

Constraint lex_between(LOWER_BOUND, VECTOR, UPPER_BOUND)

Synonym between.

Arguments LOWER_BOUND : collection(var-int)

VECTOR : collection(var-dvar)
UPPER_BOUND : collection(var-int)

Restrictions required(LOWER_BOUND, var)

 $\underline{\mathtt{required}}(\mathtt{VECTOR},\mathtt{var})$

required(UPPER_BOUND, var)
|LOWER_BOUND| = |VECTOR|

|LUWER_BOUND| = |VECTOR| |UPPER_BOUND| = |VECTOR|

lex_lesseq(LOWER_BOUND, VECTOR)

lex_lesseq(VECTOR, UPPER_BOUND)

Purpose

The vector VECTOR is lexicographically greater than or equal to the fixed vector LOWER_BOUND and lexicographically smaller than or equal to the fixed vector UPPER_BOUND.

Example

```
(\langle 5, 2, 3, 9 \rangle, \langle 5, 2, 6, 2 \rangle, \langle 5, 2, 6, 3 \rangle)
```

The lex_between constraint holds since:

- The vector VECTOR = $\langle 5,2,6,2 \rangle$ is greater than or equal to the vector LOWER_BOUND = $\langle 5,2,3,9 \rangle$.
- The vector VECTOR = $\langle 5,2,6,2\rangle$ is less than or equal to the vector UPPER_BOUND = $\langle 5,2,6,3\rangle.$

Typical

```
\begin{split} |\texttt{LOWER\_BOUND}| &> 1 \\ \textbf{lex\_lesseq}(\texttt{LOWER\_BOUND}, \texttt{UPPER\_BOUND}) \end{split}
```

Symmetries

- LOWER_BOUND.var can be decreased.
- UPPER_BOUND.var can be increased.

Arg. properties

Suffix-contractible wrt. LOWER_BOUND, VECTOR and UPPER_BOUND (remove items from same position).

20030820 1535

Usage

This constraint does usually not occur explicitly in practice. However it shows up indirectly in the context of the <code>lex_chain_less</code> and the <code>lex_chain_lesseq</code> constraints: in order to have a complete filtering algorithm for the <code>lex_chain_less</code> and the <code>lex_chain_lesseq</code> constraints one has to come up with a complete filtering algorithm for the <code>lex_between</code> constraint. The reason is that the <code>lex_chain_less</code> as well as the <code>lex_chain_lesseq</code> constraints both compute feasible lower and upper bounds for each vector they mention. Therefore one ends up with a <code>lex_between</code> constraint for each vector of the <code>lex_chain_less</code> and <code>lex_chain_lesseq</code> constraints.

Algorithm [95].

be expressed as the conjunction ${\tt lex_lesseq}({\tt LOWER_BOUND}, {\tt VECTORS})$ \land

lex_lesseq(VECTORS, UPPER_BOUND).

Systems lexChainEq in Choco, lex_chain in SICStus.

See also common keyword: lex_chain_greater, lex_chain_greatereq, lex_chain_less,

lex_chain_lesseq, lex_greater, lex_greatereq, lex_less(lexicographic order).

part of system of constraints: lex_lesseq.

Keywords characteristic of a constraint: vector, automaton, automaton without counters,

reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint, system of constraints.

filtering: arc-consistency.

symmetry: symmetry, lexicographic order.

1536 AUTOMATON

Automaton

Figure 5.495 depicts the automaton associated with the lex_between constraint. Let L_i , V_i and U_i respectively be the var attributes of the i^{th} items of the LOWER_BOUND, the VECTOR and the UPPER_BOUND collections. To each triple (L_i, V_i, U_i) corresponds a signature variable S_i as well as the following signature constraint:

$$\begin{split} (\mathbf{L}_i < \mathbf{V}_i) \wedge (\mathbf{V}_i < \mathbf{U}_i) &\Leftrightarrow S_i = 0 \wedge \\ (\mathbf{L}_i < \mathbf{V}_i) \wedge (\mathbf{V}_i = \mathbf{U}_i) &\Leftrightarrow S_i = 1 \wedge \\ (\mathbf{L}_i < \mathbf{V}_i) \wedge (\mathbf{V}_i > \mathbf{U}_i) &\Leftrightarrow S_i = 2 \wedge \\ (\mathbf{L}_i = \mathbf{V}_i) \wedge (\mathbf{V}_i < \mathbf{U}_i) &\Leftrightarrow S_i = 3 \wedge \\ (\mathbf{L}_i = \mathbf{V}_i) \wedge (\mathbf{V}_i = \mathbf{U}_i) &\Leftrightarrow S_i = 4 \wedge \\ (\mathbf{L}_i = \mathbf{V}_i) \wedge (\mathbf{V}_i > \mathbf{U}_i) &\Leftrightarrow S_i = 5 \wedge \\ (\mathbf{L}_i > \mathbf{V}_i) \wedge (\mathbf{V}_i < \mathbf{U}_i) &\Leftrightarrow S_i = 6 \wedge \\ (\mathbf{L}_i > \mathbf{V}_i) \wedge (\mathbf{V}_i = \mathbf{U}_i) &\Leftrightarrow S_i = 7 \wedge \\ (\mathbf{L}_i > \mathbf{V}_i) \wedge (\mathbf{V}_i > \mathbf{U}_i) &\Leftrightarrow S_i = 8. \end{split}$$

Figure 5.495: Automaton of the lex_between constraint

20030820 1537

Figure 5.496: Hypergraph of the reformulation corresponding to the automaton of the lex_between constraint (since all states of the automaton are accepting there is no restriction on the last variable \mathcal{Q}_n)