Bases de Datos

Traducción de Diagramas Entidad-Relación a esquemas relacionales

De modelo Entidad-Relación a modelo relacional

```
modelo relacional: tablas
esquema de relación en DER → tabla de BD
```

- cómo son los esquemas de modelo relacional
- 2. restricciones de integridad

Diagrama para BD universitaria

Diseño de una BD relacional

Un buen DER :D

Almacenar toda la información en una sola relación resulta en redundancia

Ej.: dos estudiantes con el mismo instructor

Necesidad de valores nulos

Ej.: representar un estudiante sin supervisor

Notación de tablas

Notación del modelo relacional

Ej.: En la Universidad tenenos instructores y cada uno tiene identificador, nombre, nombre de departamento y salario.... A1, A2, ..., An son atributos. R = (A1, A2, ..., An) es un esquema de relación

Ej.: Instructor = (ID, name, dept_name, salary)

Dominio de los atributos

```
conjunto de valores permitidos para cada atributo (rango, o tipo) tienen que ser atómicos (para poder hacer consultas)
```

El valor *null*

El valor especial *null* es un miembro de todo dominio, significa que el valor es desconocido o no existe Si para una tupla no tenemos el valor de un atributo por algún motivo, podemos poner *null* como valor para ese atributo.

Relaciones

```
relación r: tabla r
- columnas D1, D2, ... Dn
- filas: elemento t ∈ r:
cada fila es una tupla
Ej.: persona \subseteq string x integer x integer.
   tupla: ("Jorge Pérez", 51, 18003567)
```

Notación de relaciones

```
relación: tabla
- columnas D1, D2, ... Dn
- filas: elemento t \in r:
cada fila es una tupla
                           nombres de relaciones
Ej.: persona \subseteq string x integer x in
                           con minúscula, nombres
                           de esquema con
   tupla: ("Jorge Pérez", 51, 18003
                           mayúscula
```

Ejemplo de relación en un modelo relacional

Terminología

informal	formal
tabla	relación
encabezado de columna	atributo
valores posibles en una columna	dominio
fila	tupla
definición de tabla	esquema de relación
tabla poblada	estado de la relación

Definición de BD relacional

conjunto de esquemas de relación

- definimos los conceptos del problema mediante esquemas de relación,
- definimos los datos como tablas asociadas a esos esquemas,
- 3. podemos poblar las tablas, consultarlas y alterarlas.

Claves Slbrschtz cap 2.3.

Superclaves

Sea K ⊆ R , R esquema de relación; K es una superclave de R si los valores para K son suficientes para identificar una tupla única en cada posible relación r(R) Ej.: instructor(ID, name, dept name, salary) {ID} e {ID, name} son superclaves de instructor.

Claves candidatas y claves primarias

```
K es clave candidata, si K es mínima:
  para todo atributo de K, si se lo
  quito, K deja de ser superclave
Ejemplo: {ID} clave candidata de instructor
¡Atención! No confundir clave candidata
con superclave de cardinalidad mínima
```

Claves candidatas y claves primarias

Una de las claves candidatas es elegida para ser la clave primaria

```
Restricción de clave foránea (o de integridad referencial): el valor en una relación debe aparecer en otra.
```

Ejemplo:

instructor(ID, name, dept name, salary)

department(dept name, building, budget)

El valor de dept name en instructor debe aparecer en department

En otras palabras:

Los valores de uno o más atributos en una tupla de la relación referenciante aparecen en uno o más atributos de una tupla en la relación referenciada.

En otras palabras:

Los atributos referenciados en la relación referenciada suelen formar una clave primaria del esquema de la relación referenciada.

En otras palabras:
Generalizando aún más: los atributos
referenciados de la relación referenciada
suelen formar una clave candidata del
esquema de la relación referenciada.

Notación

```
relación: r, s, u, r1, r2, ...
esquema de relación: R, S, U, R1, R2, ...
Sea t \in r, r(R), A \in R, t[A] es el
valor de t en A.
Sea t \in r, r(R), t[i] es el valor de t
en el atributo i-ésimo de R.
```

Traducción de DER a tablas Slbrschtz cap 2.9.

Principio básico

Para cada conjunto de entidades y para cada conjunto de relaciones de la BD hay una única tabla, con el nombre del conjunto de entidades o del conjunto de relaciones correspondiente Cada tabla tiene varias columnas, cada una de las cuales tiene un nombre único

Reglas de traducción de DER a tablas

necesitamos:

- Para cada entidad (CE) y relación (CR) hay un esquema relacional único
- Identificar claves primarias
- Identificar claves foráneas

Una entidad (CE) fuerte sin atributos compuestos ni multi-valorados se traduce a un esquema relacional con los mismos atributos La clave primaria del CE se convierte en la clave primaria del esquema relacional. Bases de Datos 2022

Peguerinos

Vigo

Entidad fuerte, atributos simples

67,789,901

96.396.396

calle-cliente

López

Valdivieso

Mayor

Goya

número-préstamo

Bases de Datos 2022

Entidad débil, atributos simples

Entidad débil, atributos simples

Atributos compuestos

Se crea un atributo separado para cada uno de los atributos componentes

 no se crea una columna separada para el propio atributo compuesto

Atributos compuestos

Atributos compuestos

biblioteca(<u>nombre</u>, calle, número, ciudad)

Atributos compuestos

Se crea un atributo separado para cada uno de los atributos componentes

 no se crea una columna separada para el propio atributo compuesto

... o sí!

redundancia pero legibilidad y eficiencia

Atributos compuestos

Se crea un atributo separado para cada uno de los atributos componentes

 no se crea una columna separada para el propio atributo compuesto

... o sí!

redundancia pero legibilidad y eficiencia

También están los nombres de columna!!!

Los atributos suelen ser columnas, pero... Para un atributo multivalorado se crea una tabla nueva, con una columna que tiene la **clave primaria** del conjunto de entidades o conjunto de relaciones del que es atributo

libro(título, <u>ISBN</u>, editorial, edición) libro-autor(<u>ISBN</u>, <u>autor</u>)

libro(título, <u>ISBN</u>, editorial, edición)

libro-autor(<u>ISBN, autor</u>)

Con restricción de

integridad referencial

For libro-autor foreign key ISBN

references libro

Relación (CR)

Relación (CR)

id-cliente	número-préstamo
01.928.374	P-11
01.928.374	P-23
24.466.880	P-93
32.112.312	P-17
33.557.799	P-16
55.555.555	P-14
67.789.901	P-15
96.396.396	P-17

Relaciones varios a varios

Representamos una relación (CR) varios a varios con un esquema con atributos para las claves primarias de las dos entidades (CE) y los atributos simples de la relación

 la clave primaria es la unión de las claves primarias de las entidades

Relaciones varios a varios

Relaciones varios a varios

instructor(<u>ID</u>, name, salary, dept_name)

For instructor foreign key dept_name references department

Relaciones uno a varios

Una relación (CR) varios a uno se representa agregando atributos extra en la entidad (CE) del lado varios, con la clave primaria del lado uno.

Relaciones uno a varios

- La clave primaria de la relación es la clave primaria de la entidad del lado varios.
- Se crea una restricción de clave foránea de la relación que referencia a la clave primaria de la entidad del lado varios.

Relaciones uno a varios (observación)

Si la participación es parcial en el lado varios, aplicar la regla anterior puede resultar en valores nulos. Esto sucede cuando a una entidad del CE del lado varios no le corresponde ninguna entidad del CE del lado uno.

Relaciones uno a uno

Una relación (CR) uno a uno se representa agregando al esquema de una de las entidades la clave primaria de la otra

Relaciones uno a uno

- La clave primaria de la relación puede ser la de cualquiera de las entidades
- Se crea restricción de clave foránea que referencia la clave primaria de la entidad que no se tomó de base para crear el esquema

Relaciones uno a uno

Bases de Datos 2022

Relaciones uno a uno

sección(ID, sec_id, semestre, año)

For sección foreign key ID references curso

Sutilezas de representación

(que no vamos a ver ahora)

- Generalización
- Agregación

Restricciones de integridad

Para qué sirven las restricciones de integridad

asegurar que los usuarios (autorizados) no puedan modificar la base de datos de forma que se pierda la consistencia

Cómo son las restricciones de integridad

predicados arbitrarios

¡complicados de verificar!

en la práctica, sólo restricciones verificables con poca sobrecarga

Cómo son las restricciones de integridad

predicados arbitrarios

;complicados de verificar!

en la práctica, sólo res verificables con poca sol

Veremos las de SQL y luego pensaremos también en términos de restricciones para otros problemas Bases de Datos 2022

Tipos de restricciones

- Al modelo entidad-relación
 - Claves (Slbrschtz cap 2.3)
 - Relaciones (cap 2.2) (aridad, total, parcial)
- Dominios (cap 6.1)
- Integridad referencial (cap 6.2)
- Aserciones (asertos) (cap 6.3)
- Disparadores (triggers) (cap 6.4)
- Dependencia funcional (cap 7)
- Seguridad (cap 6.5 a 6.7)

Propiedades de relacions como restricciones

¿Cómo podemos pensar las reglas de transformación a tablas de las relaciones en términos de restricciones?

Propiedades de relacions como restricciones

¿Cómo podemos pensar las reglas de transformación a tablas de las relaciones en términos de restricciones?

- relación total, relación parcial
- Uno a muchos, muchos a muchos

Restricciones sobre dominios

```
create domain número-cuenta char(10)
constraint
comprobación-número-cuenta-nulo
check(value not null)
```

Restricciones de integridad referencial

Tratan de que las diferentes tablas mantengan las referencias que tenemos en el Diagrama Entidad - Relación

Restricciones de integridad referencial

Restricciones de integridad referencial

libro(título, <u>ISBN</u>, editorial, edición)

libro-autor(<u>ISBN</u>, <u>autor</u>)

Con restricción de

integridad referencial

For libro-autor foreign key ISBN

references libro

Qué pasa cuando modifico la BD?

Aserciones

menor que la suma de los saldos de sus cuentas. create assertion restricción-suma check (not exists (select * from sucursal where (select sum(importe) from préstamo where préstamo.nombre-sucursal = sucursal.nombre-sucursal) >= (select sum (importe) from cuenta where préstamo.nombre-sucursal = sucursal.nombre-sucursal)))

La suma de los importes de los préstamos de cada sucursal debe ser

Disparadores

modelo evento-condición-acción

- 1. evento que causa
- 2. comprobación del disparador
- condición que se debe cumplir para ejecutar el disparador
- 4. acciones que ejecuta el disparador

Disparadores

```
create trigger descubierto after update on cuenta
referencing new row as nfila
for each row
when nfila.saldo < 0
begin atomic
    insert into prestatario
        (select nombre-cliente, número-cuenta
        from impositor
        where nfila.número-cuenta = impositor.número-cuenta);
    insert into préstamo values
       (nfila.número-cuenta, nfila.nombre-sucursal, – nfila.saldo)
    update cuenta set saldo = 0
        where cuenta.número-cuenta = nfila.número-cuenta
end
```

Seguridad

De lectura, de escritura, de borrado… Privilegios, autorizaciones, vistas Cifrado y autenticación

Dependencia funcional

Más adelante!

Y cuando no hay reglas?

/THANKS!

/DO YOU HAVE ANY QUESTIONS?

youremail@freepik.com +91 620 421 838 yourwebsite.com

曲

> Please keep this slide for attribution

