

# IIC 2433 Minería de Datos

https://github.com/marcelomendoza/IIC2433

Cierre de la clase 1 – Preprocesamiento de datos y PCA

#### Preprocesamiento de datos:

¿Cuál técnica usaré para codificar variables nominales?

¿Cuál técnica usaré para codificar variables ordinales?

¿Cuál función de distancia o similitud debo usar si tengo datos en alta dimensionalidad?

#### PCA:

¿Qué ocurre con la varianza acumulada en la medida que aumento el número de Componentes principales?

¿Cómo determino el número de componentes que necesito para capturar el x% de la varianza de un dataset?

# - TSNE y UMAP -

#### Clase 2 – t-SNE y UMAP

#### Objetivos de la clase

- Reconocer las técnicas de visualización de datos t-SNE y UMAP.
- Comprender cómo funcionan estas técnicas.
- Distinguir entre una técnica de visualización y una de reducción de dimensionalidad.

#### Resultado de aprendizaje

Aplicar una tećnica de reducción de dimensionalidad y una de visualización a un dataset identificando diferencias y similitudes entre ellas.

#### Plan

- Sesión 1: clase convencional.
- Sesión 2: clase activa, resolverán un desafío en clases (actividad formativa en equipo).

Objetivo: Proyectar los datos a 2D o 3D para visualización.

Idea: Convertir distancias (Euclideanas) a probabilidades condicionales.

$$p_{j|i} = \frac{\exp\left(-\|x_i - x_j\|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / 2\sigma_i^2\right)}$$
 Vecindario (parametrizable)

Definimos una proyección:  $q_{j|i} = \frac{\exp\left(-\|y_i - y_j\|^2\right)}{\sum_{k \neq i} \exp\left(-\|y_i - y_k\|^2\right)}$ 

Notar que:  $p_{i|i} = q_{i|i} = 0$ .

Visualización que **preserva** distancias del espacio original **D-dimensional** Bidimensional

Hacemos lo mismo en un espacio de menor dimensionalidad (proyección):

probabilidad 
$$q_{j|i} = \frac{\exp\left(-\|y_i - y_j\|^2\right)}{\sum_{k \neq i} \exp\left(-\|y_i - y_k\|^2\right)}$$



### probabilidad



¿Cómo mido cuanto se parece el espacio original al proyectado?

Voy a comparar las distribuciones de probabilidad P y Q.

#### Divergencia de Kullback-Leibler:

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

La divergencia es menor en la medida que ambas distribuciones son más parecidas.



Principio (navaja de Ockham o principio de parsimonia)

"El modelo más simple es también el modelo más plausible"



Principio (navaja de Ockham o principio de parsimonia)

"El modelo más simple es también el modelo más plausible"



Una medida de complejidad: Entropía (basada en familias de objetos)

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}.$$

Principio (navaja de Ockham o principio de parsimonia)

"El modelo más simple es también el modelo más plausible"



Una medida de complejidad: Entropía (basada en familias de objetos)

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}.$$

Explicación: entropía como medida de información.

Lanzamos una moneda 4 veces. Posibles estados del ejercicio:  $2 \cdot 2 \cdot 2 \cdot 2$ 



estados 
$$\log_2(16) = 4 \qquad \qquad \text{Bits para codificar los estados}$$
 ej. CSSC

Principio (navaja de Ockham o principio de parsimonia)

"El modelo más simple es también el modelo más plausible"



Una medida de complejidad: Entropía (basada en familias de objetos)

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}.$$

Explicación: entropía como medida de información.

Lanzamos una moneda 4 veces. Posibles estados del ejercicio:  $2 \cdot 2 \cdot 2 \cdot 2$ 



estados

Probabilidad de un resultado  $\log_2(16) = 4$  — Bits para codificar los estados en particular: ej. CSSC

P=1/#estados — 
$$-\log_2(1/16) = 4$$

Si los eventos no son equiprobables, debemos promediar:

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}.$$

Información codificada en el espacio original

Volvamos a SNE:

El usuario define:  $Perp(P_i) = 2^{H(P_i)}$ 

Me da el # de estados promedio (vecinos de cada punto)

lo cual permite determinar  $\sigma_i$  (internamente).

Es decir, el usuario define la complejidad de la proyección, la cual es modelada en sigma!!!



 $\sigma = 1$ 

Menos pares  $_{_{_{a}}-x^{2}/8}$ 



 $\sigma = 2$ 

13

Más pares

- Debemos calibrar el parámetro perplejidad.
- El parámetro nos indica la complejidad de la proyección:

mayor perplejidad → menor parsimonia

- Mayor perplejidad → mayor p → más vecinos → mayor sigma

Nota: En rigor usaremos una versión simétrica de SNE denominada t-SNE (reemplaza KL por Jensen-Shannon).

## Uniform Manifold Approximation and Projection (UMAP)

Idea básica: UMAP calcula un grafo que representa los vecindarios, luego aprende un embedding a partir del grafo.



### Uniform Manifold Approximation and Projection (UMAP)

#### UMAP paramétrico



De esta forma, UMAP disminuye la dependencia de la técnica en relación con el parámetro de perplejidad.