Office Hours!

Instructor:

Administration

Peter M. Garfield, garfield@math.ucsb.edu

Office Hours:

Mondays 2–3PM Tuesdays 10:30-11:30AM Thursdays 1–2PM or by appointment

Office:

South Hall 6510

© 2017 Daryl Cooper, Peter M. Garfield

 $\log(y)$ is how many tens you multiply together to get y.

$$10^{\log(y)} = y$$

$$\log\left(10^a\right) = a$$

$$10^a \times 10^b = 10^{a+b}$$

$$\log(x \times y) = \log(x) + \log(y)$$

$$(10^a)^p = 10^{ap}$$

$$\log(a^{p}) = p \log(a)$$

Each of these pairs of equalities says one thing!

 $\log(y)$ is how many tens you multiply together to get y.

 $\log_2(y)$ is how many twos you multiply together to get y.

So $2^3 = 8$ means the same thing as $\log_2(8) = 3$

Examples:

$$\log_2(16) = 4$$
 because $2^4 = 16$
 $\log_2(32) = 5$ because $2^5 = 32$
 $\log_2(1/8) = -3$ because $2^{-3} = 1/8$

The five laws of logs work for any base b exactly the same way except...

$$b^{\log_{b}(y)} = y$$

$$\log_{\mathbf{b}}(\mathbf{b}^a) = a$$

Summary & Examples

Important bases:

- log₂ is used extensively in computer science
- $\ln = \log_e$ is used everywhere (the natural \log) ($e \approx 2.718$) $\log_e(y) = x$ means $e^x = y$ $\log_e(y)$ is how many e's you multiply to get y. Read as: " $\log \log_e(y)$ base e of y equals x."

Examples:

$$\log_3(81) = A = 0 B = 1 C = 2 D = 3 E = 4 E$$

$$\log_{5}(25) = A = 0 B = 1 C = 2 D = 3 E = 4 C$$

Simplify
$$\ln\left(\left(e^{3x}\times e^y\right)^2\right)$$

$$A = 6x + y$$
 $B = 2x + 2y$ $C = 3x + 2y$ $D = 6x + 2y$ $E = 6xy$ D

Teaser: e is special because the derivative of e^x is e^x whatever that

Review Question #1

If the price of an airplane ticket is \$300, then the airline sells 2,000 tickets. For each dollar the airline increases the price, it sells 10 fewer tickets.

(1) If the price is \$400, how many tickets does the airline sell?

$$A = 2000 \quad B = 1000 \quad C = 3000 \quad D = 1990 \quad E = 2400 \quad B$$

(2) If the price is \$(300 + n), how many tickets does the airline sell?

A=
$$2000 - n$$
 B= $2000 + 10n$ C= $2000 - 10n$ D= $2000/n$

(3) If the price is x, how many tickets does the airline sell?

A=
$$2000 + 10x$$
 B= $2000 - 10x$ C= $5000 - 10x$
D= $1000 + 10x$ C

A square contains a circle which touches all four sides of the square. Express the area of the part of the square outside the circle in terms of the radius of the circle.

A = I have an answer

B = I know what to do

C = I am thinking

D = I do not know where to start

Answer?

The side of the square is 2R, so the square has area $(2R)^2 = 4R^2$.

The area of the circle is πR^2 .

The shaded area is $4R^2 - \pi R^2$ or $(4 - \pi)R^2$.

A=got it B=close C=not so close

Review Question #4

A bottle with DRINK ME written on it contains 50% pure water and 50% magicerium. Alice wishes to add some of this to 7 liters of pure water to obtain a brew which is 20% magicerium and the rest pure water. How many liters should she take from the bottle labelled DRINK ME?

$$A = 7$$
 $B = 14$ $C = 14/3$ $D = 7/3$ $E = 20$

Short Review Questions

(1) What is the slope of the line 2y - 3x = 5?

$$A = 3$$
 $B = -3$ $C = 2/3$ $D = 3/2$ $E = -3/2$ $D = 3/2$

What is the x-coordinate of the point where the lines

$$y + x = 5 \qquad \text{and} \qquad y = 3x - 2$$

intersect?

$$A = -1/3$$
 $B = 1/3$ $C = 3/4$ $D = 7/4$ D

(3) Solve $\frac{2^x}{2^{2x}} = 5$.

$$\begin{array}{c} A = \log(5)/\log(2/3) \quad B = \log(5)/(\log(2) - \log(3)) \\ C = \log(5)/(\log(2) + 2\log(3)) \quad D = \log(5)/(\log(2) - 2\log(3)) \\ \hline D \end{array}$$