MULTIPLE CORRECT (OBJECTIVE QUESTIONS) EXERCISE - II

1. If $\int e^{3x} \cos 4x \, dx = e^{3x} (A \sin 4x + B \cos 4x) + c then :$

(C)
$$3A = 4B$$

(D)
$$4B + 3A = 1$$

2.
$$\int \frac{dx}{5 + 4\cos x} = I \tan^{-1} \left(m \tan \frac{x}{2} \right) + C \text{ then}$$

(A)
$$I=2/3$$
 (B) $m=1/3$ (C) $I=1/3$ (D) $m=2/3$

(C)
$$I = 1/3$$

(D)
$$m = 2/$$

3.
$$\int \frac{x^2 + \cos^2 x}{1 + x^2} \operatorname{cosec}^2 x \, dx \text{ is equal to :}$$

(A)
$$\cot x - \cot^{-1} x + c$$
 (B) $c - \cot x + \cot^{-1} x$

(C)
$$-\tan^{-1} x - \frac{\csc x}{\sec x} + c$$
 (D) $-e^{\ln \tan^{-1} x} - \cot x + c$

4.
$$\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$$
 is equal to

(A)
$$\cot^{-1}(\cot^2 x) + c$$

(B)
$$-\cot^{-1}(\tan^2 x) + c$$

(C)
$$tan^{-1} (tan^2 x) +$$

(A)
$$\cot^{-1}(\cot^2 x) + c$$
 (B) $-\cot^{-1}(\tan^2 x) + c$ (C) $\tan^{-1}(\tan^2 x) + c$ (D) $-\tan^{-1}(\cos 2x) + c$

5.
$$\int \frac{dx}{\sqrt{x-x^2}}$$
 equal is :

(A)
$$2 \sin^{-1} \sqrt{x} + e^{-1}$$

(A)
$$2 \sin^{-1} \sqrt{x} + c$$
 (B) $\sin^{-1} (2x - 1) + c$

(C) c - 2
$$\cos^{-1}$$
 (2x - 1) (D) $\cos^{-1} 2\sqrt{x-x^2} + c$

(D)
$$\cos^{-1} 2\sqrt{x-x^2} + c$$

6.
$$\int \frac{\ell n \left(\frac{x-1}{x+1} \right)}{x^2 - 1} dx equal$$

(A)
$$\frac{1}{2} \ln^2 \frac{x-1}{x+1} + c$$

(A)
$$\frac{1}{2} \ln^2 \frac{x-1}{x+1} + c$$
 (B) $\frac{1}{4} \ln^2 \frac{x-1}{x+1} + c$

(C)
$$\frac{1}{2} \ln^2 \frac{x+1}{x-1} + c$$

(C)
$$\frac{1}{2} \ln^2 \frac{x+1}{x-1} + c$$
 (D) $\frac{1}{4} \ln^2 \frac{x+1}{x-1} + c$

7.
$$\int \frac{\ln(\tan x)}{\sin x \cos x} dx$$
 equal:

(A)
$$\frac{1}{2} \ln^2 (\cot x) + c$$
 (B) $\frac{1}{2} \ln^2 (\sec x) + c$

(B)
$$\frac{1}{2} \ell n^2 (\sec x) + c$$

(C)
$$\frac{1}{2} \ell n^2 (\sin x \sec x) + c$$

(D)
$$\frac{1}{2} \ln^2 (\cos x \csc x) + c$$

8.
$$\int \frac{(x-1)dx}{x^2\sqrt{2x^2-2x+1}}$$
 is equal to $\frac{\sqrt{f(x)}}{g(x)}$ + c then

(A)
$$f(x) = 2x^2 - 2x + 1$$
 (B) $g(x) = x + 1$

(B)
$$g(x) = x + 1$$

$$(C) g(x) = x$$

(D)
$$f(x) = \sqrt{2x^2 - 2x}$$

9. The value of the integral
$$\int \frac{\ln(x+1) - \ln x}{x(x+1)} dx$$
 is

(A)
$$-\frac{1}{2} [\ln (x + 1)]^2 - \frac{1}{2} (\ln x)^2 + \ln(x + 1) \ln x + c$$

(B)
$$-[\{\ell n (x + 1)\}]^2 - (\ell n x)^2] + \ell n(x + 1) \cdot \ell n x + c$$

(C)
$$-\frac{1}{2} \left[\ln (1 + 1/x) \right]^2 + c$$
 (D) None of these