<u>Dashboard</u> / My courses / <u>CS204</u> / <u>General</u> / <u>Mid Semester Online Part 2 (8 March 2022)</u>		
Started on	Tuesday, 8 March 2022, 10:48 AM	
State	Finished	
Completed on	Tuesday, 8 March 2022, 11:27 AM	
Time taken	38 mins 32 secs	
Question 1		
Complete		
Marked out of 3.00		

Let R and S be two relations with the following schema R (P, Q, R1, R2, R3) S (P, Q, S1, S2) Where {P, Q} is the key for both schemas. Which of the following queries are equivalent? I. $\prod_{p} (R \bowtie S)$ II. $\prod_{p} (R) \bowtie \prod_{p} (S)$ III. $\prod_{p} (\prod_{p,Q} (R) \cap \prod_{p,Q} (S))$ IV. $\prod_{p} (\prod_{p,Q} (R) - (\prod_{p,Q} (R) - \prod_{p,Q} (S))$ I and III only

I, II and III only

- I, III and IV only
- II, III and IV only
- III and IV only

Question 2	
Complete	
Marked out of 3.00	

If we apply the following relational algebra query in the given relation A. Then, how many tuples will be there in the answer.

 π $_{A1.col1}$ (sigma $_{A1.col2>A2.col2}$ (p $_{A1}$ A × p $_{A2}$ A))

Α

A.col1	A.col2
'a'	4
'r'	7
'e'	9
'q'	10
'u'	5
'w'	8
'u'	2

- 0 8
- 0 4
- 6
- O 5
- O 7

manage

name manage

- 'A' 'E'
- 'B' 'C'
- 'C' 'G'
- 'D' 'E'
- 'F' 'E'
- 'E' 'G'

Emp

name street city

- 'A' 'x'
- 'B' 'y' 2
- 'C' 'z' 3
- 'D' 'x' 1
- 'E' 'x' 4
- 'F' 'y' 2
- 'G' 'z' 3

 $\pi_{manage,manage}$ ($\sigma_{manage,manage=emp2.name}$ (($\sigma_{emp1.name} \neq emp2.name \land emp1.street = emp2.street \land emp1.city=emp2.city}$ (ρ_{emp1} (emp) × ρ_{emp2} (emp))) × manage))

How many tuples will be there in the output of the above query?

- 1
- 0 4
- None of the mentioned
- 0 2
- O 3

 $\bigcirc \quad \pi_{\mathsf{A2}}(\sigma_{(\mathsf{F1}\vee\mathsf{F2})}(r))$

	ma comeder on the fact (o major 2022). Attempt for the
Question 4	
Complete	
Marked out of 3.00	
Select the relational algebra expression which mat attributes in r with $A1 \subset A2$ and $F1$, $F2$ are Boolean	sches with the relational algebra expression $\pi_{A1}(\pi_{A2}(\sigma_{F1}(\sigma_{F2}(r))))$, where A1, A2 are sets of a expressions based on the attributes in r ?
\bigcirc $\pi_{A2}(\sigma_{(F1\Lambda F2)}(r))$	
$ \bigcap_{MA1} \pi_{A1}(\sigma_{(F1AF2)}(r)) $	
$\bigcirc \ \pi_{A1}(\sigma_{(F1\veeF2)}(r))$	

manage

name manage

- 'A' 'E'
- 'B' 'C'
- 'C' 'G'
- 'D' 'E'
- 'F' 'E'
- 'E' 'G'

Emp

name street city

- 'A' 'x' 1
- 'B' 'y' 2
- 'C' 'z' 3
- 'D' 'x' 1
- 'E' 'x' 4
- 'F' 'y' 2
- 'G' 'z' 3

 $\pi_{manage.name}$ ($\sigma_{emp1.city = emp2.city \land manage.manage=emp2.name}$ (($\sigma_{emp1.name = manage.name}$ (σ_{emp1} (emp) × manage)) × σ_{emp2} (emp))) Output of the above query will include the following names,

- A, C, D only
- O C only
- A, C only
- A only
- O A, D only

```
Question 6
Complete
Marked out of 3.00
```

Student

StID StName Major Age 2 'Smith' 'cs' 23 3 'Anil' 'ee' 21 4 'Amit' 'cs' 21 5 'Aakash' 'ee' 24

'Pahal' 'ece'

'ece'

22

23

'Vikas'

Course

6

Course_code Course_name Credit

'CS401'	'DC'	3
'CS204'	'DBMS'	3
'CS301'	'CN'	3
'IT101'	'CP'	3

Student_course

2, 5, 6, 7 only

```
StID Course_code
3
      'CS301'
4
      'CS401'
5
      'IT101'
3
      'CS401'
2
      'CS204'
4
      'CS301'
5
      'CS204'
4
      'IT101'
3
       'CS204'
5
      'CS301'
2
       'IT101'
4
       'CS204'
3
       'IT101'
\pi StID (Student) - (Student_course \div \pi Course_code (Course))
Output of the above query will include the following StID,
 2, 3, 5, 7 only
 6 only
```

- 3, 4, 5, 6 only
- 3, 4, 5, 6, 7 only
- 2, 4, 5, 6 only

employee

empld empName empAge

1	'AB'	25
2	'CD'	23
3	'EF'	31
4	'QW'	27
5	'BD'	30
6	'AD'	32
7	'EQ'	26

dependent

depld eld depName depAge

1	1	'ab'	29
2	1	'bd'	12
3	2	'eq'	15
4	3	'qr'	33
5	3	'tr'	30
6	4	'rt'	13
7	6	'we'	36
8	7	'ut'	35

 $\pi_{empld} \ (\sigma_{empld=eld} \ (employee \times \rho_A \ (\pi_{depld, eld, depName, depAge} \ (dependent) - \pi_{d1.depld, d1.eld, d1.depName, d1.depAge} \ (\sigma_{d1.depAge} \times \rho_{d2} \ (dependent))))))$

The above query will give the following employee ids.

- 11, 2
- O 2
- 0 2, 4
- 3

2	22/22, 4:03 PM	Mid Se
	Question 8 Complete Marked out of 3.00	
	Consider the following relation,	
	R	
	Name Number	
	Amit 2	
	Akash 4	
	Arif 3	
	Akhil 5	
	$\pi_{r1.Number, r2.Name}$ ($\sigma_{r1.Number}$ > $\sigma_{r2.Number}$ ((ρ_{r1} (R)) × In the output of the above query the missing numl	
	Number 4 and 5 only	
	O Number 3 only	
	O Number 2 and 3 only	
	O Number 5 only	
	Number 2 only	

22/22, 4:03 PM	Mid Semester Online Part 2 (8 March 2022): Attempt review
Question 9	
Complete	
Marked out of 4.00	
Consider the following relation,	
R	
Name Number	
Amit 2 Akash 4	
Arif 3	
Akhil 5	
π $_{r1.Number,\ r2.Name}$ (0 $_{r1.Number}$ < $_{r2.Number}$ ((p $_{r1}$ (R)) ×	$(\rho_{r2}(R))))$
The output of the above query will include the follo	wing names,
Amit, Akash, Arif	
Same, Addit, Atti	
Akash, Arif, Akhil	
Only Amit	
Only Akhil	
Only Akhil	
Akash and Arif	
Question 10	
Complete	
Marked out of 3.00	
The relation studings (studid name sex) keeps the	information about the students. The relation enroll (<u>studId, courseId</u>) gives which student
	that every course is taken by at least one male and at least one female student. What does
the following relational algebra expression represer	
${\textstyle \textstyle \bigcap_{courseld}}(({\textstyle \bigcap_{studld}}(\sigma_{sex="female"}(studlnfo)) \times {\textstyle \bigcap_{courseld}}(e)}$	nroll))–enroll)
 Courses in which a proper subset of female students 	udents are enrolled.

None of the mentioned

Ourses in which only male students are enrolled.

Ourses in which all the female students are enrolled.

```
Question 11
Complete
Marked out of 4.00
```

employee

empld empName empAge

1	'AB'	25
2	'CD'	23
3	'EF'	31
4	'QW'	27
5	'BD'	30
6	'AD'	32
7	'EQ'	26

dependent

depld eld depName depAge

1	1	'ab'	29
2	1	'bd'	12
3	2	'eq'	15
4	3	'qr'	33
5	3	'tr'	30
6	4	'rt'	13
7	6	'we'	36
8	7	'ut'	35

 $\pi_{empld} \text{ (employee)} - \pi_{empld} \text{ (} \sigma_{employee.empld} \text{ = dependent.eld} \land \text{ employee.empAge} \land \text{depAge} \text{ (employee} \times \text{dependent))}$

The above query will give the following employee ids.

- 0 1, 3, 5
- 0 2, 4, 5
- 0 1, 4, 6
- 6, 7
- 0 2, 3, 4

manage

name manage

- 'A' 'E'
- 'B' 'C'
- 'C' 'G'
- 'D' 'E'
- 'F' 'E'
- 'E' 'G'

Emp

name street city

- 'A' 'x' 1
- 'B' 'y' 2
- 'C' 'z' 3
- 'D' 'x' 1
- 'E' 'x' 4
- 'F' 'y' 2
- 'G' 'z' 3

 $\sigma_{manage.manage=emp2.name} \ (\ (\ \sigma_{emp1.name=manage.name} \ (\rho_{emp1} \ (emp) \ \times \ manage)) \ \times \ \rho_{emp2} \ (emp))$

How many tuples will be there in the output of the above query?

- O 5
- 0 6
- O 7
- None of the mentioned
- 4

Question 13
Complete
Marked out of 4.00

Consider the following relations,

manage

name manage

- 'A' 'E'
- 'B' 'C'
- 'C' 'G'
- 'D' 'E'
- 'F' 'E'
- 'E' 'G'

Emp

name street city

- 'A' 'x' 1
- 'B' 'y' 2
- 'C' 'z' 3
- 'D' 'x' 1
- 'E' 'x' 4
- 'F' 'y' 2
- 'G' 'z' 3

 $\pi_{emp1.name} \ (\sigma_{manage.manage=emp2.name \ \land \ emp1.street \ = \ emp2.street} \ (\ (\ \sigma_{emp1.name \ = \ manage.name} \ (\rho_{emp1} \ (emp) \times manage)) \times \rho_{emp2} \ (emp))))$ Output of the above query will include the following names,

- B, F, C only
- A, C, D only
- A, B, D, G only
- C only
- A, B, D, E, F only

employee

empld empName empAge

1	'AB'	25
2	'CD'	23
3	'EF'	31
4	'QW'	27
5	'BD'	30
6	'AD'	32
7	'EQ'	26

dependent

depld eld depName depAge

1	1	'ab'	29
2	1	'bd'	12
3	2	'eq'	15
4	3	'qr'	33
5	3	'tr'	30
6	4	'rt'	13
7	6	'we'	36
8	7	'ut'	35

 $\pi_{\text{ depId, eId, depName, depAge}} \left(\text{dependent} \right) - \pi_{\text{ d1.depId, d1.eId, d1.depName, d1.depAge}} \left(\sigma_{\text{ d1.depAge}} \right) + \sigma_{\text{ d2.depAge}} \left(\sigma_{\text d1.depAge} \right) + \sigma_{\text{ d2.depAge}} \left(\sigma_{\text d1.depAge} \right) + \sigma_{\text d2.depAge} \left(\sigma_{\text d1.depAge} \right) + \sigma_{\text d2.depAg$

How many number of tuples will be there in the output of the above query?

	2

5

4

O 3

1

◄ Mid Semester Online Part 1 (8 March 2022)

Jump to...

Quiz3 (Section 2) ►