Таблица подстановок для некоторых видов
неопределенных интегралов

	Вид интеграла	Вид подстановки
1. Интегралы от элементарных дробей:	1). $\int \frac{dx}{ax+b}$	t = ax + b.
	$2). \int \frac{dx}{(ax+b)^m}$	t = ax + b.
	$3). \int \frac{Mx+N}{ax^2+bx+c} dx$	
	$4). \int \frac{Mx+N}{\left(ax^2+bx+c\right)^n} dx$	$\int \frac{du}{(u^2+s)^n} = \frac{u}{s(2n-2)(u^2+s)^{n-1}} + \frac{2n-3}{s(2n-2)} \int \frac{du}{(u^2+s)^{n-1}}.$
2. Интегралы от	Знаменатель разлагается	
рациональных дробей:	лишь на: 1) неповторяющиеся множи-	O(r) A R
дробей.	тели первой степени; 2) множители первой степе-	$\frac{Q(x)}{P(x)} = \frac{A}{x-a} + \frac{B}{(x-b)} + \dots$
	ни, среди которых есть повторяющиеся; 3) неповторяющиеся множи-	$\frac{Q(x)}{P(x)} = \frac{A_1}{x - a} + \frac{A_2}{(x - a)^2} + \dots + \frac{A_{\alpha}}{(x - a)^{\alpha}} + \dots + \frac{B_1}{(x - b)} + \frac{B_2}{(x - b)^2} + \dots + \frac{B_{\beta}}{(x - b)^{\beta}} + \dots$
	тели второй степени и, возможно, множители первой степени;	$\frac{Q(x)}{P(x)} = \frac{A}{x - a} + \frac{B}{(x - b)} + \frac{Mx + N}{x^2 + px + q} + \frac{Rx + S}{x^2 + rx + s} + \frac{Rx + S}{x^2 + rx + s}$
	4) повторяющиеся множители второй степени.	$\frac{Q(x)}{P(x)} = \frac{M_1 x + N_1}{x^2 + px + q} + \frac{M_2 x + N_2}{(x^2 + px + q)^2} + \dots + \frac{R_1 x + S_1}{x^2 + rx + s} + \frac{R_2 x + S_2}{(x^2 + rx + s)^2} + \dots$
3.Интегралы от тригонометриче ских функций:	1). $\int R(\sin x, \cos x) dx$	$t = tg \frac{x}{2}$, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2dt}{1+t^2}$.
	$2). \int R(\sin x, \cos x) dx$	t = sinx, dt = cosxdx.
	(соs нечетн)	t = cosx, dt = -sinxdx.
	3). $\int R(\sin x, \cos x) dx$	$i = \cos x$, $\alpha i = -\sin x \alpha x$.
	(sin нечетн)	
	4). $\int R(\sin x, \cos x) dx$ (sin u cos четн)	$t = tgx$, $\cos x = \frac{1}{\sqrt{1+t^2}}$, $\sin x = \frac{t}{\sqrt{1+t^2}}$, $dx = \frac{dt}{1+t^2}$.
	5). $\int \cos mx \cos nx dx$	$\frac{1}{2} \left[\cos(m+n)x + \cos(m-n)x \right]$
	6). $\int \sin mx \cos nx dx$	$\frac{1}{2} \left[\sin(m+n)x + \sin(m-n)x \right]$
	7). $\int \sin mx \sin nx dx$	$\frac{1}{2} \Big[-\cos(m+n)x + \cos(m-n)x \Big]$
	8). $\int \sin^m x \cos^n x dx$:	
	тили n – нечет. полож.	за t принимаем другую функцию.
	цел. число m+ n – чет. отриц. цел.	
	число	t=tgx.
	m и n – чет. неотриц.	$\sin^2 x = \frac{1 - \cos 2x}{2}, \cos^2 x = \frac{1 + \cos 2x}{2}.$
	числа	2 2

4. Интегралы от иррациональных функций:	1). $\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$ где n-	$\frac{ax+b}{cx+d} = t^n; \ x = \frac{t^n - b}{a - ct^n}; dx = \left(\frac{t^n - b}{a - ct^n}\right)' dt;$
47	нат. число	
	$2). x^m (a + bx^n)^p dx:$	
	р – целое число	$t = \sqrt[\lambda]{x}$, где λ - общий знаменатель m и n
	$\frac{m+1}{n}$ - целое число	$t = \sqrt[s]{a + bx^n}$, где s — знаменатель числа p .
	$\frac{m+1}{n}+p$ - целое число	$t = \sqrt[s]{\frac{a + bx^n}{x^n}}$, где s – знаменатель числа p .
	3). $\int R(x, \sqrt{ax^2 + bx + c}) dx$:	
	$\int R(u, \sqrt{m^2 - u^2}) du$	$u = m \sin t$ или $u = m \cos t$,
	$\int R(u, \sqrt{m^2 + u^2}) du$	u = mtgt или $u = mctgt$,
	$\int R(u, \sqrt{u^2 - m^2}) du$	$u = \frac{m}{\sin t}$ или $u = \frac{m}{\cos t}$
	4). $\int R(x, \sqrt{ax^2 + bx + c}) dx$:	
	если а>0	$\sqrt{ax^2 + bx + c} = t \pm x\sqrt{a}$
	если a<0 и c>0	$\sqrt{ax^2 + bx + c} = tx \pm \sqrt{c}$
	если а<0	$\sqrt{ax^2 + bx + c} = t(x - x_1)$

<u>Несколько примеров интегралов, не выражающихся через</u> <u>элементарные функции.</u>

К таким интегралам относится интеграл вида $\int R(x, \sqrt{P(x)}) dx$, где P(x)- многочлен степени выше второй. Эти интегралы называются эллиптическими.

Если степень многочлена P(x) выше четвертой, то интеграл называется ультраэллиптическим.

Если все — таки интеграл такого вида выражается через элементарные функции, то он называется **псевдоэллиптическим.**

Не могут быть выражены через элементарные функции следующие интегралы:

- 1) $\int e^{-x^2} dx$ интеграл Пуассона (Симеон Дени Пуассон французский математик (1781-1840))
- 2) $\int \sin x^2 dx$; $\int \cos x^2 dx$ интегралы Френеля (Жан Огюстен Френель французский ученый (1788-1827) теория волновой оптики и др.)
 - 3) $\int \frac{dx}{\ln x}$ интегральный логарифм
 - 4) $\int \frac{e^x}{x} dx$ приводится к интегральному логарифму
 - 5) $\int \frac{\sin x}{x} dx \text{интегральный синус}$
 - 6) $\int \frac{\cos x}{x} dx \text{интегральный косинус}$