

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 - 2019/2020

What to Do with Missing Data?

Missing data is everywhere

In almost any research you perform, or any data analysis, there is the potential for missing or incomplete data.

Missing data is everywhere

$$D = \begin{bmatrix} 0.9 & \cdots & ? \\ \vdots & \ddots & \vdots \\ ? & \cdots & 0.1 \end{bmatrix} \begin{array}{c} 1 \\ \cdots \\ 17 \end{array}$$

Two samples including missing data

	Sample 1	Sample 2
cg00583535	NA	0.317394283
cg18788664	1	0.192024985
cg08123444	0.532659205	0.867010408
cg17185060	0.774338632	0.70392815
cg04541368	0.079894678	0.659468157
cg25923609	0.109138594	0.600225461
cg06795768	0.04605561	0.870753578
cg19336198	0.713845623	0.707326444
cg05851505	NA	0.981375746
cg20912770	0.039837473	0.0646352
cg09190051	1	0.336904134
cg01986767	NA	NA
cg01561259	0.133410152	0.113869472
cg12373208	NA	0.04628476
cg24280645	0.163157983	0.088281769
cg00388871	0.239179168	0.308942014
cg09923107	0.091227524	0.121433558

Categories of missingness

- Failure in:
 - Responding to a question (in surveys)
 - Equipment (Sensors), Recording Mechanisms
 - Data entry

•

Missing at Random (MAR)

Missing Completely at Random (MCAR)

Missing Not at Random (MNAR)

The probability that a value is missing depends only on observed values.

the missingness cannot be predicted from any other variables or sets of variables

Categories of missingness

Missing at Random (MAR)

Missing Completely at Random (MCAR)

Missing Not at Random (MNAR)

The probability that a value is missing depends only on observed values.

- Lab tubes that broke
- Forms that got lost
- Interviewer forgot to ask

The missingness cannot be predicted from any other variables or sets of variables

Missing at random (MAR)

• Assumption in Missing At Random (MAR): The probability that a value is missing depends only on observed values. The missing data occurred randomly but that the pattern of missing data can be predicted from the existing data.

Two other types of missing data: When the missingness cannot be predicted from any other variables or sets of variables, we called **MCAR** (Missing Completely At Random). **MNAR**: missing NOT at random.

Package/library in R

- 'Amelia': Bootstrap + EM
- 'mice': Multivariate Imputation using Chained Equations
- 'mi': Multiple Imputation using an approximate Bayesian framework

- 1) Diagnostics of the models
- 2) Provides graphics to visualize missing data patterns
- 3) Provides degree of sampling uncertainty
- 4) Applicable for both numerical and categorical data

Example: a biological assay development

Heatmap representation of metagene projection of most variably methylated probes in 450K methylation array data (samples, n=225).

Correlation between Sequenom and 450K Methylation array's signatures (17 probes).

Missing data in sequenom assay

Example of addressing missing data

Example of addressing missing data

Pre-processing step

Input csv file with missing

output csv file – completed data

The origin of missing

• Due to the failure during the quality control steps of a technique (i.e., bisulphite conversion, test PCR, and multiplex PCR stages), missing values appear in a number of probes for each individual sample. Therefore, the input dataset includes incomplete data for a number of probes.

How to visualise missing?

Sequnom Gold Cohort with Missing Probes (blue colour)

Heatmap representation of 103 samples including missing. Blue colour is showing missing for number of features.

Pie chart: percentage of missing for each feature

Missing Fraction in samples - 17 features (probes)

Illustration by histogram

Number of Missing Probes in 103 Sequenom Gold Cohort

Illustration in tabular format

Fraction of missing for each individual feature

cg00583535	0.165048544
cg18788664	0.048543689
cg08123444	0.038834951
cg17185060	0.000000000
cg04541368	0.077669903
cg25923609	0.009708738
cg06795768	0.155339806
cg19336198	0.009708738
cg05851505	0.077669903
cg20912770	0.038834951
cg09190051	0.00000000
cg01986767	0.242718447
cg01561259	0.00000000
cg12373208	0.019417476
cg24280645	0.00000000
cg00388871	0.00000000
cg09923107	0.135922330
	cg18788664 cg08123444 cg17185060 cg04541368 cg25923609 cg06795768 cg19336198 cg05851505 cg20912770 cg09190051 cg01986767 cg01561259 cg12373208 cg24280645 cg00388871

What to do with missing features?

$$D = \begin{bmatrix} 0.9 & \cdots & ? \\ \vdots & \ddots & \vdots \\ ? & \cdots & 0.1 \end{bmatrix}$$
 Feature 1 Feature 17

$$D = \{D_{obs}, D_{mis}\}$$

Missing feature is unobserved but do "exist" in <u>a specific metaphysical sense</u>

This means by repeating the technique (by which original data has been collected) on this sample it might be observed.

Multiple Imputation Modelling and Diagnostics

What is multiple imputation?

• This statistical technique (algorithm) takes the incomplete dataset (i.e., including missing data) and returns m imputed datasets with no missing values.

m is a user-selected parameter

Multiple imputation

• Each missing feature is imputed (filled in) with a set of m>1 plausible values which reflect the uncertainty about the missing feature.

Multiple imputation modelling techniques

Multivariate Imputation by Chained Equations (MICE)

Bootstrapped Expectation-Maximisation (BEM)

Multiple Imputation using an approximate Bayesian framework (MI)

Multiple imputation modelling techniques

 Bootstrapped Expectation-Maximisation (BEM)

Visualising BEM vs. MICE using scatter plot

Multiple Imputation Modelling: BEM vs. MICE

Impact of a method (BEM or MICE)

Using different multiple imputation methods may affect the final results (e.g., classification results)

BEM		Reference subgroup			
		WNT	SHH	Grp 3	Grp 4
Predicted Subgroup	WNT	22	0	0	0
	SHH	0	23	0	0
	Grp 3	0	0	23	0
	Grp 4	0	0	0	28
	NC+	2	4	1	0
	Total	24	27	24	28

	MICE	Reference subgroup			
		WNT	SHH	Grp 3	Grp 4
Predicted Subgroup	WNT	22	0	0	0
	SHH	0	22	0	0
	Grp 3	0	1	23	0
	Grp 4	0	0	0	28
	NC	2	5	0	0
	Total	24	28	23	28

Summarising the performance of a classification algorithm using a "confusion matrix". A matrix (table) shows the discrepancy between predicted and reference subgroup.

*NC: Non-classifiable

Efficiency of Multiple Imputation

Efficiency of an estimate based on m imputation is approximately:

$$(1+\frac{\gamma}{m})^{-1}$$

Where γ is the fraction of missing information for the quality being estimated.

¹⁾ Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys . J. Wiley & Sons, New York.

²⁾ Schafer, Joseph L. and Maren K. Olsen. 1998. Wultiple imputation for multivariate missing-data problems: A data analyst's perspective." Multivariate Behavioral Research 33(4):545-571.

Efficiency of m imputations for 17 probes

Feature #	missing fraction	Efficiency of m imputation per feature	Average of efficiency (12 feature)
1	0.165048544	0.991815118	0.995782732
2	0.048543689	0.997578693	m=20
3	0.038834951	0.998062016	
4	0	-	
5	0.077669903	0.996131528	
6	0.009708738	0.999514799	
7	0.155339806	0.992292871	
8	0.009708738	0.999514799	
9	0.077669903	0.996131528	
10	0.038834951	0.998062016	
11	0	-	
12	0.242718447	0.988009592	
13	0	-	
14	0.019417476	0.999030068	
15	0	-	
16	0	-	
17	0.13592233	0.993249759	