$marketing_mix$

March 30, 2025

```
[1]: import pandas as pd

df = pd.read_csv('marketing_data.csv')
    df.isnull().sum()
    df.info()
    # df.columns
    df.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	ID	2240 non-null	int64
1	Year_Birth	2240 non-null	int64
2	Education	2240 non-null	object
3	Marital_Status	2240 non-null	object
4	Income	2216 non-null	object
5	Kidhome	2240 non-null	int64
6	Teenhome	2240 non-null	int64
7	Dt_Customer	2240 non-null	object
8	Recency	2240 non-null	int64
9	MntWines	2240 non-null	int64
10	MntFruits	2240 non-null	int64
11	${ t MntMeatProducts}$	2240 non-null	int64
12	${ t MntFishProducts}$	2240 non-null	int64
13	${ t MntSweetProducts}$	2240 non-null	int64
14	${\tt MntGoldProds}$	2240 non-null	int64
15	NumDealsPurchases	2240 non-null	int64
16	NumWebPurchases	2240 non-null	int64
17	${\tt NumCatalogPurchases}$	2240 non-null	int64
18	NumStorePurchases	2240 non-null	int64
19	${\tt NumWebVisitsMonth}$	2240 non-null	int64
20	AcceptedCmp3	2240 non-null	int64
21	AcceptedCmp4	2240 non-null	int64
22	AcceptedCmp5	2240 non-null	int64
23	AcceptedCmp1	2240 non-null	int64
24	AcceptedCmp2	2240 non-null	int64

```
26
         Complain
                                2240 non-null
                                                 int64
         Country
                                2240 non-null
     27
                                                 object
    dtypes: int64(23), object(5)
    memory usage: 490.1+ KB
[1]:
               Year Birth
                              Education Marital Status
                                                              Income
                                                                        Kidhome
                      1970
                            Graduation
                                               Divorced
                                                         $84,835.00
     0
         1826
                                                                              0
     1
            1
                      1961
                            Graduation
                                                 Single
                                                          $57,091.00
        10476
                                                Married
     2
                      1958
                            Graduation
                                                         $67,267.00
                                                                              0
     3
         1386
                      1967
                            Graduation
                                               Together
                                                          $32,474.00
                                                                              1
     4
                      1989
                            Graduation
                                                          $21,474.00
         5371
                                                 Single
                                                                              1
                                Recency
        Teenhome Dt_Customer
                                         MntWines
                                                       NumStorePurchases
     0
                0
                      6/16/14
                                               189
                                                                         7
     1
                0
                      6/15/14
                                      0
                                               464
     2
                1
                      5/13/14
                                      0
                                               134
                                                                         5
                                                                         2
     3
                1
                      5/11/14
                                      0
                                                10
     4
                0
                       4/8/14
                                      0
                                                 6
                                                                         2
        NumWebVisitsMonth
                            AcceptedCmp3
                                           AcceptedCmp4
                                                          AcceptedCmp5
                                                                          AcceptedCmp1
     0
                                        0
                                                                      0
                                                                                      0
                         5
                                        0
                                                        0
                                                                      0
                                                                                      0
     1
     2
                         2
                                        0
                                                        0
                                                                      0
                                                                                      0
     3
                         7
                                        0
                                                                      0
                                                                                      0
                                                        0
     4
                         7
                                         1
                                                        0
                                                                       0
                                                                                      0
                                  Complain
        AcceptedCmp2
                       Response
                                             Country
     0
                                                  SP
     1
                    1
                               1
                                         0
                                                  CA
     2
                    0
                                         0
                                                  US
                               0
     3
                    0
                               0
                                         0
                                                 AUS
                                                  SP
                    0
                               1
                                         0
     [5 rows x 28 columns]
[2]: print(df[' Income '].head(10))
     # did this to test my visual observation that there were spaces in this column_
      →name
    0
          $84,835.00
    1
          $57,091.00
    2
          $67,267.00
    3
          $32,474.00
    4
          $21,474.00
```

int64

2240 non-null

Response

25

5

6

7

\$71,691.00

\$63,564.00

\$44,931.00

```
$65,324.00
    9
    Name: Income, dtype: object
[3]: ## 1. After importing the data, examine variables such as Dt Customer and
     → Income to verify their accurate importation.
     print(df.columns.tolist()) # to take a look at the column names in case there
      →are a little different to how the assignment refers to them
    ['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income ', 'Kidhome',
    'Teenhome', 'Dt_Customer', 'Recency', 'MntWines', 'MntFruits',
    'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds',
    'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases',
    'NumStorePurchases', 'NumWebVisitsMonth', 'AcceptedCmp3', 'AcceptedCmp4',
    'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2', 'Response', 'Complain',
    'Country']
[4]: # I notice there is a space in income
     df.columns = df.columns.str.strip() # may as well address this issue with all_
      → the column names
     print(df.columns.tolist()) # print to check and see if it's corrected.
     # the list of columns is small enough to visually check the rest of them for
      similar issues. If it was a really large dataset, I would proactively strip
      →them all. If there were any unnecessary special characters in the column
      ⇔names I would get rid of those too but I don't see any here.
    ['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome',
    'Teenhome', 'Dt_Customer', 'Recency', 'MntWines', 'MntFruits',
    'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds',
    'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases',
    'NumStorePurchases', 'NumWebVisitsMonth', 'AcceptedCmp3', 'AcceptedCmp4',
    'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2', 'Response', 'Complain',
    'Country']
[5]: print(df['Dt_Customer']) # I want to look at the date data and see the dtype.
    0
             6/16/14
    1
             6/15/14
    2
             5/13/14
    3
             5/11/14
              4/8/14
    2235
              3/7/13
    2236
             1/22/13
    2237
             12/3/12
    2238
            11/29/12
    2239
              9/1/12
```

\$65,324.00

8

```
Name: Dt_Customer, Length: 2240, dtype: object
[6]: # This data is not in the correct datetime format (as also we learn from .infou
      → the datatype is an object) so I need to convert it.
[7]: df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%m/%d/%y') # I__
      had to play around with this format which I learned is to match the current
      → format, before changing to datetime format.
     print(df['Dt Customer'].head()) # to see if it works
        2014-06-16
        2014-06-15
    1
        2014-05-13
        2014-05-11
        2014-04-08
    Name: Dt_Customer, dtype: datetime64[ns]
[8]: ## 2. There are missing income values for some customers. Conduct missing value,
      ⇔imputation, considering that customers with similar education and marital ⊔
      status tend to have comparable yearly incomes, on average. It may be
      →necessary to cleanse the data before proceeding. Specifically, scrutinize
      •the categories of education and marital status for data cleaning.
     print(df['Income'].head(10)) # first see what the data looks like
    0
         $84,835.00
    1
         $57,091.00
    2
         $67,267.00
         $32,474.00
    3
    4
         $21,474.00
    5
         $71,691.00
    6
         $63,564.00
    7
         $44,931.00
    8
         $65,324.00
    9
         $65,324.00
    Name: Income, dtype: object
[9]: # convert income to numeric
     df['Income'] = df['Income'].replace({'\$': '', ',': ''}, regex=True).
     →astype(float) # get rid of dollar signs, commas and spaces and replace with
     →nothing (empty string)
     # check to see if it worked
     print(df['Income'].head())
    0
         84835.0
    1
         57091.0
    2
         67267.0
         32474.0
    3
```

```
21474.0
     Name: Income, dtype: float64
[10]: print("Missing Income values:", df['Income'].isnull().sum()) # just to find out_
       ⇔the number of null values
     Missing Income values: 24
[11]: # so if I want to fill in the missing income values with the mean of what would
       be similar education and marital status, I want to take a look at that data
       ofirst and see if anything needs to be cleaned up before I start working with
      \hookrightarrow it.
     print(df['Education'].unique())
     print(df['Marital_Status'].unique())
     ['Graduation' 'PhD' '2n Cycle' 'Master' 'Basic']
     ['Divorced' 'Single' 'Married' 'Together' 'Widow' 'YOLO' 'Alone' 'Absurd']
[12]: # some of the oddball answers for marital status could be a problem so checking.
      see how frequent they are and if I need to do anything with them
     print(df['Marital_Status'].value_counts())
     Marital_Status
     Married
                 864
     Together
                 580
     Single
                 480
     Divorced
                 232
     Widow
                  77
     Alone
     YOLO
                   2
     Absurd
                   2
     Name: count, dtype: int64
[13]: # decided to group the marital status oddball entries in with "single"
     df['Marital_Status'] = df['Marital_Status'].replace({'Alone': 'Single', 'YOLO':
      # see if it worked
     print(df['Marital_Status'].value_counts())
     Marital Status
     Married
                 864
     Together
                 580
     Single
                 487
     Divorced
                 232
     Widow
                  77
     Name: count, dtype: int64
```

[14]:

```
group_means = df.groupby(['Education', 'Marital_Status'])['Income'].mean().

Ground(2) # this shows the mean income by marital status in each education_
Group and rounds the number to two decimal points.

print(group_means) # to see what it looks like
```

Marital_Status	
Divorced	49395.13
Married	46201.10
Single	53673.94
Together	44736.41
Widow	51392.20
Divorced	9548.00
Married	21960.50
Single	18238.67
Together	21240.07
Widow	22123.00
Divorced	54526.04
Married	50800.26
Single	51365.63
Together	55758.48
Widow	54976.66
Divorced	50331.95
Married	53286.03
Single	53787.14
Together	52109.01
Widow	58401.55
Divorced	53096.62
Married	58138.03
Single	53039.67
Together	56041.42
Widow	60288.08
	Divorced Married Single Together Widow Divorced Single Together Widow Divorced Married Single Together Widow Divorced Married Single Together

Name: Income, dtype: float64

```
# Went with pandas groupby because that's how we learned it in class (and it's_{\sqcup}
       ⇔less lines of code):
      group_mean = df.groupby(['Education', 'Marital_Status'])['Income'].
       ⇔transform('mean')
      # Use fillna() to fill missing values with the corresponding group mean
      df['Income'] = df['Income'].fillna(group_mean)
      # in case there are still missing values, just use the overall mean value for
       \hookrightarrow income
      df['Income'] = df['Income'].fillna(df['Income'].mean())
      print("Remaining missing Income values:", df['Income'].isnull().sum())
     Remaining missing Income values: 0
[16]: # 3. Create variables to represent the total number of children, age, and total
       spending. Derive the total purchases from the number of transactions across
      ⇔the three channels.
      # make new column for all children
      df['Total_Children'] = df['Kidhome'] + df['Teenhome']
      # get the age of the children (using 2014 because that's what the Dt_customer_
       ⇔dates are from
      df['Age'] = 2014 - df['Year Birth']
      df.columns # check if it worked
[16]: Index(['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome',
             'Teenhome', 'Dt_Customer', 'Recency', 'MntWines', 'MntFruits',
             'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts',
             'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases',
             'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth',
             'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1',
             'AcceptedCmp2', 'Response', 'Complain', 'Country', 'Total Children',
             'Age'],
            dtype='object')
[17]: # add a column for total spending
      df['Total_Spending'] = (df['MntWines'] + df['MntFruits'] +

→df['MntMeatProducts'] +
                              df['MntFishProducts'] + df['MntSweetProducts'] +

       # for the number of transactions accross the three chanels
      df['Total Purchases'] = (df['NumWebPurchases'] + df['NumCatalogPurchases'] +

→df['NumStorePurchases'])
      # check if it makes sense
```

```
Total_Children Age Total_Spending Total_Purchases
0
                0
                     44
                                    1190
                                                        14
1
                0
                     53
                                     577
                                                        17
2
                                     251
                                                        10
                1
                     56
3
                2
                    47
                                      11
                                                         3
4
                1
                    25
                                      91
                                                         6
5
                    56
                0
                                    1192
                                                        16
6
                0
                    60
                                    1215
                                                        27
7
                    47
                1
                                      96
                                                         6
8
                1
                     60
                                     544
                                                        17
9
                     60
                                     544
                                                        17
                1
```

```
[18]: # 4. Generate box plots and histograms to gain insights into the distributions.
       →and identify outliers. Implement outlier treatment as needed.
      import matplotlib.pyplot as plt
      # Histogram and Boxplot for Age
      plt.figure(figsize=(12, 5))
      # Histogram
      plt.subplot(1, 2, 1)
      plt.hist(df['Age'], bins=20, color='skyblue', edgecolor='black')
      plt.title("Histogram of Age")
      plt.xlabel("Age")
      plt.ylabel("Frequency")
      # Box Plot
      plt.subplot(1, 2, 2)
      plt.boxplot(df['Age'], vert=False)
      plt.title("Boxplot of Age")
      plt.xlabel("Age")
      plt.tight_layout()
      plt.show()
```



```
⇔the distribution
      from scipy.stats.mstats import winsorize
      df['winsorized_age'] = winsorize(df['Age'], limits=[0.05, 0.05])
      # check if it worked
      print(df['winsorized_age'].head())
     0
          44
     1
          53
     2
          56
     3
          47
          26
     4
     Name: winsorized_age, dtype: int64
[20]: ## visually see how this looks now after winsorizing the data for the outliers
      import matplotlib.pyplot as plt
      plt.figure(figsize=(12, 5))
      # Histogram for original Age
      plt.subplot(1, 2, 1)
      plt.hist(df['Age'], bins=20, color='skyblue', edgecolor='black')
      plt.title("Original Age Distribution")
      plt.xlabel("Age")
      plt.ylabel("Frequency")
      # Histogram for winsorized Age
      plt.subplot(1, 2, 2)
```

[19]: | ## the outliers in age are really skewing the data. will use winsorize to fix

plt.hist(df['winsorized_age'], bins=20, color='lightgreen', edgecolor='black')

plt.title("Winsorized Age Distribution")

```
plt.xlabel("Age")
plt.ylabel("Frequency")

plt.tight_layout()
plt.show()
```



```
[21]: # 5. Apply ordinal and one-hot encoding based on the various types of categorical variables.

## define the order for education
education_order = ['Basic', '2n Cycle', 'Graduation', 'Master', 'PhD']
education_mapping = {level: i for i, level in enumerate(education_order)}

## create an ordinal column for Education
df['education_ordinal'] = df['Education'].map(education_mapping)

# I researched this ordinal function and found it in python but also learned I_U could have used scikit OrdinalEncoder as well

print(df[['Education', 'education_ordinal']].head(20)) # had to print out more_U checause the first .head() was all the same in the first 5 and thought maybe_U checause in the first 5 and thought maybe_U checau
```

```
Education
                 education_ordinal
0
    Graduation
    Graduation
                                  2
1
    Graduation
                                  2
2
3
    Graduation
                                  2
4
                                  2
    Graduation
5
           PhD
                                  4
6
      2n Cycle
                                  1
7
                                  2
    Graduation
8
           PhD
                                  4
9
           PhD
                                  4
10
      2n Cycle
```

```
PhD
                                     4
     12
     13 Graduation
                                     2
     14 Graduation
                                     2
                                     2
     15 Graduation
     16 Graduation
                                     2
     17
                PhD
                                     4
     18
           2n Cycle
                                     1
     19
             Master
[22]: # use one hot encoding for marital status
      # this will create new columns for each unique value in the column for
       Marital Status and assign it a boolea 1 or 0 in the row to associate that
       →row with having that unique value (1) or not (0).
      df = pd.get_dummies(df, columns=['Marital Status'], prefix='Marital') # prefix_\( \)
       is parameter that could be set to anything to indicate where it came from
       ⇔and keep it consistent.
      print(df.columns) # check if it worked
     Index(['ID', 'Year_Birth', 'Education', 'Income', 'Kidhome', 'Teenhome',
            'Dt Customer', 'Recency', 'MntWines', 'MntFruits', 'MntMeatProducts',
            'MntFishProducts', 'MntSweetProducts', 'MntGoldProds',
            'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases',
            'NumStorePurchases', 'NumWebVisitsMonth', 'AcceptedCmp3',
            'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2',
            'Response', 'Complain', 'Country', 'Total_Children', 'Age',
            'Total_Spending', 'Total_Purchases', 'winsorized_age',
            'education_ordinal', 'Marital_Divorced', 'Marital_Married',
            'Marital_Single', 'Marital_Together', 'Marital_Widow'],
           dtype='object')
[23]: # 6. Generate a heatmap to illustrate the correlation between different pairs
      ⇔of variables.
      ## considering the upcoming steps in the assignment, I will look at the \Box
       scorrelation between age and store purchases vs. web purchases
      import seaborn as sns
      import matplotlib.pyplot as plt
      ## define which columns I want to look at for correlation
      cols_to_correlate = ['Age', 'NumStorePurchases', 'NumWebPurchases']
      ## compute the correlation
      corr_subset = df[cols_to_correlate].corr()
      ## set up matplotlib figure
      plt.figure(figsize=(10, 8))
      ## use seaborn for the heatmap using parameters I picked out on the seaborn
      sns.heatmap(corr_subset, annot=True, cmap='coolwarm', fmt=".2f")
      plt.title("Correlation of Age to purchasing in store or on web")
```

3

11

Master

plt.show()


```
[25]: # 7. Test the following hypotheses:

## 7A Older individuals may not possess the same level of technological

proficiency and may, therefore, lean toward traditional in-store shopping

preferences.

## 7B Customers with children likely experience time constraints, making

online shopping a more convenient option.

## 7C Sales at physical stores may face the risk of cannibalization by

alternative distribution channels.

## 7D Does the United States significantly outperform the rest of the world

in total purchase volumes?
```

```
plt.show()

# Scatter plot: Age vs Online Purchases
plt.figure(figsize=(6, 4))
sns.scatterplot(data=df, x='Age', y='NumWebPurchases')
plt.title("Age vs Online Purchases")
plt.xlabel("Age")
plt.ylabel("Number of Online Purchases")
plt.show()

# Print correlation coefficients
corr_instore = df['Age'].corr(df['NumStorePurchases'])
corr_web = df['Age'].corr(df['NumWebPurchases'])
print("Correlation (Age vs In-Store Purchases):", round(corr_instore, 2))
print("Correlation (Age vs Online Purchases):", round(corr_web, 2))
```

Age vs In-Store Purchases

Correlation (Age vs In-Store Purchases): 0.14 Correlation (Age vs Online Purchases): 0.15

t-statistic: 6.470077671069668 p-value: 1.2944790125372907e-10

```
[28]: ## Output shows that the p-value is significantly lower than the t-stat so the hypothesis is rejected. It is not true that older people will purhase in the store more often than they will purchase online.
```

t-statistic: -3.541893836382714 p-value: 0.0004108102700005601

- [30]: ## output shows the p-value significantly lower than .05 and the negative_\(\text{\top}\) \(\text{\top}\) t-stat indicates that the opposite might be true, so we reject the\(\text{\top}\) \(\text{\top}\) hypothesis that people with children are more likely to purchase online than\(\text{\top}\) \(\text{\top}\) in the store.
- [31]: ## 7C Hypothesis: Sales at physical stores may face the risk of

 cannibalization by alternative distribution channels.

 ## Check if there a negative relationship between in store sales and online

 sales using Pearson correlation from scipy

 from scipy.stats import pearsonr

 corr_coef, p_value = pearsonr(df['NumStorePurchases'], df['NumWebPurchases'])

 print("Pearson correlation coefficient:", corr_coef)

 print("p-value:", p_value)

Pearson correlation coefficient: 0.502713413299732 p-value: 8.962802398081327e-144

- [32]: ## output shows a p-value near zero with the perason correlation coefficient of output shows a p-value near zero with the perason correlation coefficient of output shows a statistically significant relationship between in store and onlines sales.

 ## but it is not what the hypothesis posits. It is the opposite; as online of sales increase, so does in store sales. Hypothesis is rejected.
- [33]: ## 7D Hypothesis: Does the United States significantly outperform the rest of → the world in total purchase volumes?

US customers: 109 Non-US customers: 2131 Total all sales: 28083 Total US Sales: 1473

t-statistic: 1.4681953545474953 p-value: 0.1446759042957516

[35]: ## t-stat at 1.47 suggesting that the difference between the groups (US and all_ \cup the others) is 1.47 standard errors away from zerp.

```
## p-value at .145 the probability of the null hypothesis is 14.5% which is too high to accept the hypothesis.

## The hypothesis is rejected that the US has significantly higher sales than the rest of the countries as a whole.
```

8. Use appropriate visualization to help analyze the following:

8A Identify the top-performing products and those with the lowest revenue.

8B Examine if there is a correlation between customers' age and the acceptance rate of the last campaign.

8C Determine the country with the highest number of customers who accepted the last campaign.

8D Investigate if there is a discernible pattern in the number of children at home and the total expenditure.

8E Analyze the educational background of customers who lodged complaints in the last two years.

```
[37]: ## 8A Identify the top-performing products and those with the lowest revenue.
     import matplotlib.pyplot as plt
     import pandas as pd
     import seaborn as sns
     # Sum total spending for each product category
     product_cols = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', |
      total revenue = df[product cols].sum().sort values(ascending=False)
     # Plot a bar chart
     sns.barplot(x=total_revenue.index, y=total_revenue.values,
                 hue=total_revenue.index, palette='viridis', dodge=False)
     plt.legend([], [], frameon=False)
     plt.title("Total Revenue by Product Category")
     plt.xlabel("Product Category")
     plt.ylabel("Total Revenue")
     plt.xticks(rotation=45)
     plt.show()
```



```
print("Point-biserial correlation coefficient:", round(corr_coef, 2))
print("p-value:", p_val)
```


Point-biserial correlation coefficient: -0.02 p-value: 0.3186088501422738

```
dindicates that there is no linear relationship between age and acceptance of
the last campaign.

## the correlation is essentially zero and the p-value > than .05 so no trend
with age and the ad campaign

[40]: ## 8C Determine the country with the highest number of customers who accepted
the last campaign
## filter dataset to only include those who accepted the campaign
accepted_campaign_df = df[df['Response'] == 1]
## group by country and count
country_counts = accepted_campaign_df.groupby('Country').size().
Greset_index(name='Count')
country_counts = country_counts.sort_values(by='Count', ascending=False)
print(country_counts)
```

[39]: | ## point bisarial correlation coefficient at -0.02 wit a p-value of .32

Country Count
SP 176

```
5
       SA
               52
1
       CA
               38
0
      AUS
               23
2
      GER
               17
3
      IND
               13
7
       US
               13
4
       ME
                2
```

Campaign Acceptance by Country

plt.show()


```
print(complaints_by_education)

# Plot the results using seaborn
plt.figure(figsize=(8, 6))
sns.barplot(x='Education', y='Count', data=complaints_by_education,
______hue='Education', palette='viridis', dodge=False)
plt.legend([], [], frameon=False)
plt.title("Number of Complaints by Educational Background")
plt.xlabel("Education Level")
plt.ylabel("Number of Complaints")
plt.xticks(rotation=45)
plt.show()
```

	Education	Count
0	${\tt Graduation}$	14
1	2n Cycle	4
2	Master	2
3	PhD	1

Education Level

[45]: $\# \# \text{ output shows that the higher the education level, the less likely a customer}_{ \hookrightarrow is \ to \ complain }$