Implementacja języka zapytań oparta na drzewach rozbioru

(Implementation of a query language based on partition trees)

Damian Górski

Praca inżynierska

Promotor: dr Wiktor Zychla

Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki

30czerwca $2017\ r.$

Damian Górs	ski
	(adres zameldowania)
	(adres korespondencyjny)
PESEL:	
e-mail:	
Wydział Mar	tematyki i Informatyki
stacjonarne s	studia I stopnia
kierunek:	informatyka
nr alhumu.	273212

Oświadczenie o autorskim wykonaniu pracy dyplomowej

Niniejszym oświadczam, że złożoną do oceny pracę zatytułowaną *Implementacja języka zapytań oparta na drzewach rozbioru* wykonałem/am samodzielnie pod kierunkiem promotora, dr Wiktora Zychli. Oświadczam, że powyższe dane są zgodne ze stanem faktycznym i znane mi są przepisy ustawy z dn. 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (tekst jednolity: Dz. U. z 2006 r. nr 90, poz. 637, z późniejszymi zmianami) oraz że treść pracy dyplomowej przedstawionej do obrony, zawarta na przekazanym nośniku elektronicznym, jest identyczna z jej wersją drukowaną.

Wrocław, 30 czerwca 2017 r.

(czytelny podpis)

Tutaj coś będzie.	Streszczenie	
Something goes here.		

Spis treści

1.	Pre	liminaria	7
	1.1.	Słowo o IEnumerable <t> i IQueryable<t></t></t>	7
	1.2.	Language INtegrated Query	8
	1.3.	Drzewa wyrażeń IQueryable	9
	1.4.	re-linq i QueryModel	10
2.	Pro	ces budowy zapytania	13
	2.1.	Sekcja	13
3.	Test	ty jakości i wydajności	15
	3.1.	Sekcja	15
4.	Pod	sumowanie	17
Bi	bliog	grafia	19
Do	odatl	κi	21
	A	Instrukcja obsługi	21

Rozdział 1.

Preliminaria

W celu zrozumienia mechanizmu budowy zapytania SQL-owego, trzeba najpierw zrozumieć sposób działania języka LINQ, który jest punktem wejścia, oraz struktury drzewa rozbioru składniowiowego, będącym przedmiotem translacji LINQ-to-SQL. Zakładam, że czytelnikowi znane są podstawowe pojęcia związane z programowaniem obiektowym, takie jak metoda, kolekcja, dziedziczenie, typ generyczny. W niniejszym rozdziale poruszone zostaną następujące tematy:

- Sposób przetrzymywania kolekcji wyliczalnych w .NET-cie.
- Opis i motywacja powstania języka zapytań LINQ.
- Struktura drzewa wyrażeń IQueryable, i dlaczego takie drzewa są trudne do odwiedzania w celu zrealizowania zadania LINQ-to-SQL.
- Biblioteka re-linq uproszczająca powyższe drzewa, obiekty QueryModel.

1.1. Słowo o IEnumerable<T> i IQueryable<T>

We frameworku .NET wszystkie kolekcje, które możemy wyliczyć (a takie nas interesują, bo pracujemy z relacyjną bazą danych), implementują interfejs IEnumerable<T>, gdzie T jest typem obiektu, który jest przetrzymywany w kolekcji. Ten interfejs definiuje metodę GetEnumerator(), który zwraca obiekt typu IEnumerator<T>, który ma właściwość Current oraz metodę MoveNext(), pozwalając na przejście po uporządkowanym ciągu obiektów typu T oraz określenie obecnej pozycji. Korzystając z tych dwóch informacji, jesteśmy w stanie rozszerzyć IEnumerable<T> o metody takie jak wyznaczenie długości, filtrowanie kolekcji, łączenie dwóch kolekcji ze sobą, mapowanie funkcji na wszystkie obiekty znajdujące się w kolekcji. Dokładna lista metod rozszerzających IEnumerable<T> jest dostępna w oficjalnej dokumentacji MSDN.

Rozszerzeniem IEnumerable<T> jest interfejs IQueryable<T>, który de facto implementuje IEnumerable<T>. Zasadniczą różnicą między tymi dwoma interfejsami jest to, że w momencie wywołania ciągu metod rozszerzających IEnumerable<T>, każda z tych metod jest wywoływana jedna po drugiej, co może obciążyć moc obliczeniową procesora. Natomiast kolekcja IQueryable<T> jest świadoma, że nie musi wykonywać tych metod od razu, tylko przetrzymuje je w postaci drzewa wyrażeń (o wyrażeniach w następnej sekcji), które dopiero przy wywołaniu metody wyliczającej elementy z kolekcji zostaje wykonane w całości w efektywny sposób. Takie rozwiązanie jest idealne dla kolekcji, które łączą się z zewnętrzną bazą danych, aby istniała możliwość wybrania danych za pomocą jednego dużego zapytania SQL-owego.

1.2. Language INtegrated Query

Programiści na codzień pracują z danymi w różnych formach - zapisanych w plikach XML i JSON, przetrzymywanych w bazie danych, czy też po prostu z kolekcjami obiektów. Nie jest sztuką zauważyć, że trudnością dla programisty będzie odnalezienie się w projekcie, który korzysta z wielu źródeł danych, ponieważ wybranie danych z każdego z nich wymaga znajomości metod używania tych źródeł. To dało do myślenia architektom z Microsoftu, którzy "postanowili uogólnić problem [wyboru danych] i dodać możliwość wykonywania zapytań w sposób kompatybilny ze wszystkimi źródłami danych, nie tylko relacyjnymi i XML-owymi. Rozwiązanie to nazwali Language INtegrated Query" [1], i zostało bardzo ciepło przyjęte przez programistów .NET. Zapytanie LINQ jest automatycznie tłumaczone do docelowego języka zapytań, którego programista C# lub VB nie musi znać - a więc jest w stanie wybierać dane z niemal każdego źródła z użyciem tej samej składni.

Poniżej zostało przedstawione przykładowe zapytanie LINQ, które wybiera imiona i nazwiska osób z kolekcji pracowników, którzy zarabiają więcej niż 3000 złotych, posortowane alfabetycznie po nazwiskach:

```
var linqQuery =
  from e in db.Employees
  where e.Salary > 3000.0
  orderby e.LastName
  select new
{
    FirstName = e.FirstName,
    LastName = e.LastName
};
```

Takie zapytanie można również zapisać za pomocą metod z użyciem wyrażeń lambda (powyższe zapytanie jest tłumaczone przez kompilator do poniższego):

```
var linqQuery2 = db.Employees
.Where(e => e.Salary > 3000.0)
.OrderBy(e => e.LastName)
.Select(e => new
{
    FirstName = e.FirstName,
    LastName = e.LastName
});
```

Pisząc zapytanie LINQ, tak naprawdę wykonywane są metody na kolekcjach IEnumerable<T>, z którymi była okazja zapoznać się w trakcie czytania sekcji traktującej o kolekcjach, które implementują ten interfejs. Każde z tych zapytań zwraca kolekcję IEnumerable<T> (w przypadku danych wybieranych z zewnętrznego źródła - IQueryable<T>), gdzie T jest typem anonimowym zawierającym dwie właściwości FirstName i LastName. Tą kolekcję można w łatwy sposób przerzutować na dowolną kolekcję używając odpowiedniej metody (na przykład .ToList() albo .ToArray()). Przykłady bardziej skomplikowanych zapytań można znaleźć w folderze Thesis.Relinq.Tests w plikach z rozszerzeniem .cs zawierających klasy testujące system, który stanowi załącznik do tej pracy.

1.3. Drzewa wyrażeń IQueryable

Wynikiem zapytania LINQ jest obiekt, który implementuje interfejs IQueryable. Poniższy fragment kodu pochodzi z biblioteki .NET i pokazuje sposób, w jaki IQueryable rozszerza IEnumerable:

```
public interface IQueryable : IEnumerable
{
    Type ElementType { get; }
    Expression Expression { get; }
    IQueryProvider Provider { get; }
}
```

Pierwsza właściwość zawiera oczywiście typ obiektów, których kolekcja jest wynikiem zapytania. Trzecia właściwość to instancja klasy, który implementuje interfejs IQueryProvider. Dostarczenie takiej implementacji jest zadaniem programisty, i o tym traktuje następna część rodziału. Natomiast przedmiotem tej sekcji jest właściwość druga, o tajemniczym typie Expression.

Prawdziwym "zapytaniem" ukrytym pod interfejsem IQueryable jest obiekt Expression, który reprezentuje wejściowe zapytanie LINQ jako drzewo operatorów i metod, które zostały w tym zapytaniu użyte [2]. Po głębszej analizie kodu źródłowego biblioteki .NET okazuje się, że IQueryable jest tak naprawdę mechanizmem wykorzystującym metody typowe dla kolekcji do budowania drzewa rozbioru

składniowego w postaci obiektu Expression, który (wraz z ElementType) jest wykorzystywany przez Provider do wykonania zapytania.

W tym momencie może się wydawać, że mamy wszystko - wystarczy zaimplementować IQueryProvider w taki sposób, by tłumaczył drzewa Expression na zapytanie do języka, który nas interesuje. Po dłuższej analizie tych drzew okazuje się, że są one bardzo niewygodnym modelem do odwiedzania. TODO.

1.4. re-ling i QueryModel

W sekcji traktującej o drzewach wyrażeń Expression można zobaczyć, że ze względu na skomplikowaną strukturę tych drzew, budowa docelowego zapytania może być (i jest) trudna. W związku z tym, alternatywnym rozwiązaniem jest biblioteka re-linq, która tłumaczy drzewa wyrażeń IQueryable na tytułowe abstrakcyjne drzewa składniowe, a dokładniej - na obiekty QueryModel, które o wiele bardziej przypominają oryginalne zapytanie LINQ. Jest ono rozbite na cztery właściwości:

- SelectClause zawiera wyrażenie określające element, który jest wybierany w zapytaniu LINQ.
- MainFromClause określa główne źródło, z którego wybierane są informacje (w przypadku zapytań SQL - pierwsza tabela z części FROM).
- BodyClauses TODO.
- ResultOperators TODO.

Biblioteka re-linq, poza przekształceniem obiektów Expression na QueryModel, pozwala również na znaczne uproszczenie implementacji IQueryProvider, udostępniając interfejs QueryableBase, po którym dziedziczy klasa budująca zapytanie docelowe. Klasa ta musi posiadać metodę CreateQueryProvider, która zwraca obiekt typu IQueryProvider wykorzystywany przez IQueryable. Takim obiektem jest oferany przez re-linq DefaultQueryProvider, który jest budowany z trzech argumentów: typu docelowego implementującego IQueryable, obiektu QueryParser dokonującego translacji drzewa Expression do obiektu QueryModel (istnieje możliwość napisania własnego tłumacza, ale autor pracy korzysta z domyślnego, który został dostarczony razem z biblioteką), oraz własnej implementacji interfejsu IQueryExecutor (patrz: Thesis.Relinq/PsqlQueryable.cs). Taka implementacja powinna posiadać trzy metody:

- IEnumerable<T> ExecuteCollection<T>(QueryModel queryModel),
- T ExecuteScalar<T>(QueryModel queryModel),
- T ExecuteSingle<T>(QueryModel queryModel, bool defaultWhenEmpty).

Wybór wywoływanej przez IQueryExecutor metody zależy od oczekiwanego wyniku zapytania (cała kolekcja, skalar, pojedynczy element z kolekcji). W rezultacie, pisząc zapytanie LINQ, dostajemy obiekt w pełni implementujący IQueryable, na którym wywołanie metody wyciągającej wynik z bazy danych zwróci wynik jednej z powyższych trzech metod. Teraz jedyne, co nas dzieli od oczekiwanego rezultatu, jest ich implementacja, która przechodząc przez drzewo QueryModel buduje zapytanie, wykonuje je korzystając z zewnętrznej biblioteki łączącą się z bazą danych PostgreSQL, konwertuje wynik zapytania do oczekiwanego typu i go zwraca.

Sposobem budowy zapytania na podstawie obiektu QueryModel jest implementacja wzorca projektowego Odwiedzający (Visitor), którego zadaniem jest przejście przez wnętrze tego obiektu. Biblioteka re-linq oczywiście udostępnia bazowe klasy abstrakcyjne, które wystarczy przeciążyć w celu wykonania tego zadania, i o tym poświęcony został następny rozdział niniejszej pracy. Przy okazji warto jeszcze wspomnieć, że biblioteka re-linq jest na tyle potężnym narzędziem, że na jej użycie zdecydowali się nawet autorzy NHibernate oraz Entity Framework 7, które są najpopularniejszymi bibliotekami ORM w .NET.

Rozdział 2.

Proces budowy zapytania

Tutaj coś będzie jak złapię wenę.

2.1. Sekcja

Tutaj też.

Rozdział 3.

Testy jakości i wydajności

Tutaj coś będzie jak złapię wenę.

3.1. Sekcja

Tutaj też.

Rozdział 4.

Podsumowanie

Tutaj coś będzie jak złapię wenę.

Bibliografia

- [1] Don Box, Anders Hejlsberg, LINQ: .NET Language-Integrated Query, 2007.
- [2] Matt Warren, LINQ: Building an IQueryable Provider, 2007.
- [3] Fabian Schmied, re-linq: A General Purpose LINQ Foundation, 2009.
- [4] Markus Giegl, re-linq | ishing the Pain: Using re-linq to Implement a Powerful LINQ Provider on the Example of NHibernate, 2010.
- [5] The PostgreSQL Global Development Group, Documentation, 1996-2017.

Dodatek A

Instrukcja obsługi

Tutaj coś będzie jak złapię wenę.