MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

RÉPUBLIQUE DE COTE D'IVOIRE UNION-DISCIPLINE-TRAVAIL

Année : 2017– 2018 N°......

THÈSE

Présentée en vue de l'obtention du

DIPLÔME D'ÉTAT DE DOCTEUR EN PHARMACIE

Par

MELESS DJEDJRO FRANCK RENAUD

(INTERNE TITULAIRE DES HOPITAUX DE COTE D'IVOIRE)

CARACTÉRISATION DES EAUX DE BAIGNADE EN OCÉAN ATLANTIQUE : cas de la plage de Vridi et Port- bouët centre (Abidjan-Côte d'Ivoire)

Soutenue publiquement le 2018

COMPOSITION DU JURY:

Président de jury : Monsieur KOUADIO KOUAKOU LUC, Professeur Titulaire

Directeur : Monsieur AMIN N'CHO CHRISTOPHE, Maître de conférences agrégé

Assesseurs : Madame SANGARÉ-TIGORI BÉATRICE, Maître de conférences agrégé

: Madame KOUASSI AGBESSI THÉRÈSE, Maître assistante

ADMINISTRATION ET PERSONNEL ENSEIGNANT DE L'UFR SCIENCES PHARMACEUTIQUES ET BIOLOGIQUES

I. HONORARIAT

Directeurs/Doyens Honoraires : Professeur RAMBAUD André

Professeur FOURASTE Isabelle

Professeur BAMBA Moriféré

Professeur YAPO Abbé †

Professeur MALAN Kla Anglade

Professeur KONE Moussa †

Professeur ATINDEHOU Eugène

II. <u>ADMINISTRATION</u>

Directeur Professeur KONE-BAMBA Diénéba

Sous-Directeur Chargé de la Pédagogie Professeur IRIE-N'GUESSAN Amenan

Sous-Directeur Chargé de la Recherche Professeur Ag DEMBELE Bamory

Secrétaire Principal Madame NADO-AKPRO Marie Josette

Documentaliste Monsieur N'GNIMMIEN Koffi Lambert

Intendant Monsieur GAHE Alphonse

Responsable de la Scolarité Madame DJEDJE Yolande

III. PERSONNEL ENSEIGNANT PERMANENT

1. PROFESSEURS TITULAIRES

M	. ABROGOUA Danho Pascal	Pharmacie	Clinique
---	-------------------------	-----------	----------

Mmes AKE Michèle Chimie Analytique, Bromatologie

ATTOUNGBRE HAUHOUOT M.L. Biochimie et Biologie Moléculaire

M. DANO Djédjé Sébastien Toxicologie

INWOLEY Kokou André Immunologie

Mme KONE BAMBA Diéneba Pharmacognosie

M. KOUADIO Kouakou Luc Hydrologie, Santé Publique

Mme KOUAKOU-SIRANSY Gisèle Pharmacologie

M. MALAN Kla Anglade Chimie Ana., contrôle de qualité

> MENAN Eby Ignace Parasitologie - Mycologie

Biochimie et Biologie Moléculaire MONNET Dagui

Mme SAWADOGO Duni Hématologie

M. YAVO William Parasitologie - Mycologie

2. MAITRES DE CONFERENCES AGREGES

M. **AHIBOH Hugues** Biochimie et Biologie moléculaire

Mme AKE-EDJEME N'guessan Angèle Biochimie et Biologie moléculaire

M. AMARI Antoine Serge G. Législation

> AMIN N'Cho Christophe Chimie analytique **BONY François Nicaise** Chimie Analytique DALLY Laba Ismael Pharmacie Galénique

DEMBELE Bamory Immunologie

DJOHAN Vincent Parasitologie - Mycologie

GBASSI K. Gildas Chimie Physique Générale

Mme IRIE-N'GUESSAN Amenan Pharmacologie

M. **KOFFI** Angely Armand Pharmacie Galénique

Mme KOUAKOU-SACKOU Julie Santé Publique M. **KOUASSI** Dinard Hématologie

OGA Agbaya Stéphane Santé publique et Economie de la santé

OUASSA Timothée Bactériologie - Virologie

OUATTARA Mahama Chimie organique, Chimie thérapeutique

Mmes POLNEAU-VALLEE Sandrine Mathématiques - Statistiques

SANGARE TIGORI Béatrice Toxicologie

M. YAPI Ange Désiré Chimie organique, chimie thérapeutique

ZINZENDORF Nanga Yessé Bactériologie - Virologie

LOUKOU Yao Guillaume

Bactériologie - Virologie

3. MAITRES ASSISTANTS

M. ADJAMBRI Adia Eusebé Hématologie

ADJOUNGOUA Attoli Léopold Pharmacognosie

Mmes ABOLI-AFFI Mihessé Roseline Immunologie

AKA ANY-GRAH Armelle Adjoua S. Pharmacie Galénique

ALLA-HOUNSA Annita Emeline Sante Publique

M ANGORA Kpongbo Etienne Parasitologie - Mycologie

Mmes AYE-YAYO Mireille Hématologie

BAMBA-SANGARE Mahawa Biologie Générale

BARRO-KIKI Pulchérie Parasitologie - Mycologie

M. CABLAN Mian N'Ddey Asher Bactériologie - Virologie

CLAON Jean Stéphane Santé Publique

Mmes DIAKITE Aïssata Toxicologie

FOFIE N'Guessan Bra Yvette Pharmacognosie

M. KASSI Kondo Fulgence Parasitologie - Mycologie

Mme KONAN-ATTIA Akissi Régine Santé publique

M. KONAN Konan Jean Louis Biochimie et Biologie moléculaire

Mmes KONATE Abibatou Parasitologie - Mycologie

KOUASSI-AGBESSI Thérèse Bactériologie-Virologie

M. MANDA Pierre Toxicologie

N'GUESSAN Alain Pharmacie Galénique

Mme VANGA ABO Henriette Parasitologie - Mycologie

M. YAYO Sagou Eric Biochimie et Biologie moléculaire

4. ASSISTANTS

M. ADIKO Aimé Cézaire Immunologie

AMICHIA Attoumou Magloire Pharmacologie

Mmes AKOUBET-OUAYOGODE Aminata Pharmacognosie

ALLOUKOU-BOKA Paule-Mireille Législation

APETE Sandrine Bactériologie - Virologie

BEDIAKON-GOKPEYA Mariette Santé publique

BLAO-N'GUESSAN Amoin Rebecca J. Hématologie

M. BROU Amani Germain Chimie Analytique

BROU N'Guessan Aimé Pharmacie clinique

COULIBALY Songuigama Chimie organique, chimie thérapeutique

M. DJADJI Ayoman Thierry Lenoir Pharmacologie

DJATCHI Richmond Anderson Bactériologie - Virologie

Mmes DONOU-N'DRAMAN Aha Emma Hématologie

DOTIA Tiepordan Agathe Bactériologie - Virologie

M. EFFO Kouakou Etienne Pharmacologie

Mme KABLAN-KASSI Hermance Hématologie

M. KABRAN Tano Kouadio Mathieu Immunologie

KACOU Alain Chimie organique, chimie thérapeutique

KAMENAN Boua Alexis Thierry Pharmacologie

KOFFI Kouamé Santé publique

KONAN Jean Fréjus Biophysique

Mme KONE Fatoumata Biochimie et Biologie moléculaire

M. KOUAHO Avi Kadio Tanguy Chimie organique, chimie thérapeutique

KOUAKOU Sylvain Landry Pharmacologie

KOUAME Dénis Rodrigue Immunologie

KOUAME Jérôme Santé publique

KPAIBE Sawa Andre Philippe Chimie Analytique

Mme KRIZO Gouhonon Anne-Aymonde Bactériologie - Virologie

M. LATHRO Joseph Serge Bactériologie - Virologie

MIEZAN Jean Sébastien Parasitologie - Mycologie

N'GBE Jean Verdier Toxicologie

N'GUESSAN Déto Ursul Jean-Paul Chimie organique, chimie thérapeutique

Mmes N'GUESSAN Kakwokpo Clémence Pharmacie Galénique

N'GUESSAN-AMONKOU Anne Cynthia Législation

ODOH Alida Edwige Pharmacognosie

SIBLI-KOFFI Akissi Joëlle Biochimie et Biologie moléculaire

SICA-DIAKITE Amelanh Chimie organique, chimie thérapeutique

TANOH-BEDIA Valérie Parasitologie - Mycologie

M. TRE Eric Serge Chimie Analytique

Mme TUO Awa Pharmacie Galénique

M. YAPO Assi Vincent De Paul Biologie Générale

Mme YAPO-YAO Carine Mireille Biochimie

5. CHARGES DE RECHERCHE

Mme ADIKO N'dri Marcelline Pharmacognosie

OUATTARA N'gnôh Djénéba Santé publique

6. ATTACHE DE RECHERCHE

M. LIA Gnahoré José Arthur Pharmacie Galénique

7. IN MEMORIUM

Feu KONE Moussa Professeur Titulaire
Feu YAPO Abbé Etienne Professeur Titulaire

Feu COMOE Léopold Maître de Conférences Agrégé

Feu GUEU Kaman Maître Assistant

Feu ALLADOUM Nambelbaye Assistant
Feu COULIBALY Sabali Assistant
Feu TRAORE Moussa Assistant
Feu YAPO Achou Pascal Assistant

IV. ENSEIGNANTS VACATAIRES

1. PROFESSEURS

M. DIAINE Charles Biophysique

OYETOLA Samuel Chimie Minérale

2. MAITRES DE CONFERENCES

M. KOUAKOU Tanoh Hilaire Botanique et Cryptogamie

YAO N'Dri Athanase Pathologie Médicale

3. MAITRE-ASSISTANT

M. KONKON N'Dri Gilles Botanique, Cryptogamie

4. NON UNIVERSITAIRES

MM. AHOUSSI Daniel Ferdinand Secourisme

COULIBALY Gon Activité sportive

DEMPAH Anoh Joseph Zoologie

GOUEPO Evariste Techniques officinales

Mme KEI-BOGUINARD Isabelle Gestion

MM KOFFI ALEXIS Anglais

KOUA Amian Hygiène

KOUASSI Ambroise Management

N'GOZAN Marc Secourisme

KONAN Kouacou Diététique

Mme PAYNE Marie Santé Publique

COMPOSITION DES DEPARTEMENTS DE L'UFR SCIENCES PHARMACEUTIQUES ET BIOLOGIQUES

I. BACTERIOLOGIE-VIROLOGIE

Professeur LOUKOU Yao Guillaume Maître de Conférences Agrégé

Chef de département

Professeurs OUASSA Timothée Maître de Conférences Agrégé

ZINZENDORF Nanga Yessé Maître de Conférences Agrégé

Docteurs CABLAN Mian N'Dédey Asher Maître-Assistant

KOUASSI AGBESSI Thérèse Maître-Assistant

APETE Sandrine Assistante

DJATCHI Richmond Anderson Assistant

DOTIA Tiepordan Agathe Assistante

KRIZO Gouhonon Anne-Aymonde Assistante

LATHRO Joseph Serge Assistant

II. <u>BIOCHIMIE, BIOLOGIE MOLECULAIRE, BIOLOGIE DE LA</u> REPRODUCTION ET PATHOLOGIE MEDICALE

Professeur MONNET Dagui Professeur Titulaire

Chef de Département

Professeurs HAUHOUOT ép. ATTOUNGBRE M.L. Professeur Titulaire

AHIBOH Hugues Maître de Conférences Agrégé

AKE-EDJEME N'Guessan Angèle Maître de Conférences Agrégé

Docteurs KONAN Konan Jean Louis Maître-Assistant

YAYO Sagou Eric Maître-Assistant

KONE Fatoumata Assistante
SIBLI-KOFFI Akissi Joëlle Assistante
YAPO-YAO Carine Mireille Assistante

III. BIOLOGIE GENERALE, HEMATOLOGIE ET IMMUNOLOGIE

Professeur SAWADOGO Duni Professeur Titulaire

Chef du Département

Professeurs INWOLEY Kokou André Professeur Titulaire

DEMBELE Bamory Maître de Conférences Agrégé

KOUASSI Dinard Maître de Conférences Agrégé

Docteurs ABOLI-AFFI Mihessé Roseline Maitre-Assistant

ADJAMBRI Adia Eusebé Maitre-Assistant

AYE-YAYO Mireille Maitre-Assistant

BAMBA-SANGARE Mahawa Maitre-Assistant

ADIKO Aimé Cézaire Assistant

DONOU-N'DRAMAN Aha Emma Assistante

KABLAN-KASSI Hermance Assistante

KABRAN Tano K. Mathieu Assistant

KOUAME Dénis Rodrigue Assistant

N'GUESSAN-BLAO A. Rebecca S. Assistante

YAPO Assi Vincent De Paul Assistant

IV. <u>CHIMIE ANALYTIQUE, CHIMIE MINERALE ET GENERALE,</u>

TECHNOLOGIE ALIMENTAIRE

Professeur MALAN Kla Anglade Professeur Titulaire

Chef de Département

Professeurs AKE Michèle Professeur Titulaire

AMIN N'Cho Christophe Maître de Conférences Agrégé

BONY Nicaise François Maître de Conférences Agrégé

GBASSI Komenan Gildas Maître de Conférences Agrégé

Docteurs BROU Amani Germain Assistant

KPAIBE Sawa Andre Philippe Assistant

TRE Eric Serge Assistant

V. CHIMIE ORGANIQUE ET CHIMIE THERAPEUTIQUE

Professeur OUATTARA Mahama Maître de Conférences Agrégé

Chef de Département

Professeur YAPI Ange Désiré Maître de Conférences Agrégé

Docteur COULIBALY Songuigama Assistant

KACOU Alain Assistant

KOUAHO Avi Kadio Tanguy Assistant
N'GUESSAN Déto Ursul Jean-Paul Assistant
SICA-DIAKITE Amelanh Assistante

VI. PARASITOLOGIE, MYCOLOGIE, BIOLOGIE ANIMALE ET ZOOLOGIE

Professeur MENAN Eby Ignace H. Professeur Titulaire

Chef de Département

Professeurs YAVO William Professeur Titulaire

DJOHAN Vincent Maître de Conférences Agrégé

Docteurs ANGORA Kpongbo Etienne Maître-Assistant

BARRO KIKI Pulchérie Maître-Assistant
KASSI Kondo Fulgence Maître-Assistant
KONATE Abibatou Maître-Assistant

VANGA ABO Henriette Maître-Assistant

MIEZAN Jean Sébastien Assistant
TANOH-BEDIA Valérie Assistante

VII. PHARMACIE GALENIQUE, BIOPHARMACIE, COSMETOLOGIE, GESTION ET LEGISLATION PHARMACEUTIQUE

Professeur KOFFI Armand A. Maître de Conférences Agrégé

Chef de Département

Professeurs AMARI Antoine Serge G. Maître de Conférences Agrégé

DALLY Laba Ismaël Maître de Conférences Agrégé

Docteurs AKA ANY-GRAH Armelle A.S. Maître-Assistant

N'GUESSAN Alain Maître-Assistant

ALLOUKOU-BOKA P.-Mireille Assistante

LIA Gnahoré José Arthur Attaché de recherche

NGUESSAN Kakwokpo Clémence Assistante N'GUESSAN-AMONKOU A. Cynthia Assistante TUO Awa Assistante

VIII. <u>PHARMACOGNOSIE, BOTANIQUE, BIOLOGIE VEGETALE, CRYPTOGAMIE,</u>

Professeur KONE BAMBA Diénéba Professeur Titulaire

Chef de Département

Docteurs ADJOUGOUA Attoli Léopold Maître-Assistant

FOFIE N'Guessan Bra Yvette Maître-Assistant

ADIKO N'dri Marcelline Chargée de recherche

AKOUBET-OUAYOGODE Aminata Assistante

ODOH Alida Edwige Assistante

IX. PHARMACOLOGIE, PHARMACIE CLINIQUE ET

THERAPEUTIQUE ET PHYSIOLOGIE HUMAINE

Professeurs ABROGOUA Danho Pascal Professeur Titulaire

Chef de Département

KOUAKOU SIRANSY N'doua G. Professeur Titulaire

IRIE N'GUESSAN Amenan G. Maître de Conférences Agrégé

Docteurs AMICHIA Attoumou M Assistant

BROU N'Guessan Aimé Assistant

DJADJI Ayoman Thierry Lenoir Assistant

EFFO Kouakou Etienne Assistant

KAMENAN Boua Alexis Assistant

KOUAKOU Sylvain Landry Assistant

X. PHYSIQUE, BIOPHYSIQUE, MATHEMATIQUES, STATISTIQUES ET INFORMATIQUE

Professeur POLNEAU-VALLEE Sandrine Maître de Conférences Agrégé

Chef de Département

Docteur KONAN Jean-Fréjus Assistant

XI. <u>SANTE PUBLIQUE, HYDROLOGIE ET TOXICOLOGIE</u>

Professeur KOUADIO Kouakou Luc Professeur Titulaire

Chef de département

DANO Djédjé Sébastien Professeur Titulaire

OGA Agbaya Stéphane Maître de Conférences Agrégé KOUAKOU-SACKOU J. Maître de Conférences Agrégé

SANGARE-TIGORI B. Maître de Conférences Agrégé

Docteurs CLAON Jean Stéphane Maître-Assistant

MANDA Pierre Maître-Assistant

DIAKITE Aissata Maître-Assistante

HOUNSA-ALLA Annita Emeline Maître-Assistante

KONAN-ATTIA Akissi Régine Maître-Assistante

OUATTARA N'gnôh Djénéba Chargée de Recherche

BEDIAKON-GOKPEYA Mariette Assistante

KOFFI Kouamé Assistant

NGBE Jean Verdier Assistant

DÉDICACES

Je dédie ce modestetravail

au DIEU

Le trèsHaut,le trèsGrand, LeClément,L'Omniscient,l'Omnipoten

t, le Tout Puissant, letrès miséricordieux

D'avoir permisàcetravaild'arriver àson terme.

❖Àmon père MELEDJE MELESS JOACHIM

Que la grâce soit rendue à Dieu de m'avoir donné un père de ton rang, affectueux, généreux, attentionné, toujours soucieux du bien-être de ses enfants.

Père le chemin fut long, parsemé par de nombreuses embuches mais nous y sommes arrivés ensemble grâce à tes nombreuses prières et conseils. J'ai l'honneur aujourd'hui de te montrer toute ma gratitude et mon énorme respect. Merci pour tes nombreux sacrifices tant moraux, financiers que physiques.

L'amour

quetuasportéàtesenfants, la dignité, l'éducation et le sens de l'honneur nous servent de modèle à jamais. Je prie que le Dieu tout puissant te garde longtemps auprès de nous.

❖À ma mère AGBANDJILI DJOUA ELISABETH

Toutes ces années d'études depuis la maternelle jusqu'à ce bénédictions.Tes journepouvaientêtrepourmoiunsuccèssanstes enfantsauronttoujours besoin de tesbénédictions.Après nousavoir donnésnaissance, tunous as aimés, éduqués, dor lot és toutennous apprenantbonté, modestie, tolérance et l'amour du prochain. Sois sûre mère que les leçonsdispenséesontété bienapprises.Jesouhaite quetoutes les mamans soient commetoia finque la paix puis se régner dans le monde entier.

Soit Fier de toi, parce que ce travail est le fruit de tes nombreuses consécrations en hommage à tous tes sacrifices, la consolation à tes angoisses après tant d'années d'attentes.

Enfin! Le chemin a été long mais voici un petit point d'aboutissement. Tes efforts ont payé et le rêve d'hier est devenu aujourd'hui réalité : être pharmacien. Ce travail t'est dédié avec tout mon amour et je prie que le Dieu tout puissant te garde longtemps auprès de nous.

À MES FRÈRES ET SŒURS

Merci de l'appui que vous m'avez apporté tout le long de mon parcours scolaire

Merci d'avoir prié pour moi et d'avoir été si aimables avec moi.

À PAPA BEN LOW ET SA FEMME

Vous m'avez toujours pris comme votre enfant.

Merci de m'avoir accordé votre soutien en me donnant un toit, un confort dans le cadre de mon cursus universitaire.

Votre sens de générosité, d'amour, de gaieté ne cessera d'illuminer ma vie.

À TOUTE LA GRANDE FAMILLE DJOBO LAEL

Merci pour tout votre soutien. J'ai toujours été accueilli avec joie et gaieté chaque fois que nous nous réunissons. Je suis reconnaissant à Dieu pour votre soutien et amour. Puisse Dieu vous donner santé, bonheur et longévité.

À MA CHÉRIE GOUANOU RUTH D EMMANUELLA

Merci pour ton soutien et ton amour. Tu n'as cessé de croire en moi quand j'avais des doutes tu m'as toujours encouragé et soutenu.

Je te suis reconnaissant pour ton amour et tes conseils.

Puisse Dieu nous donner longue vie pour profiter pleinement de notre amour. Je t'aime énormément.

À MES AMIS DE LA PHARMA 34

Merci à la PHARMA 34 pour tous ces beaux moments passés sur la faculté. C'est maintenant que la famille aura son vrai sens.

Un remerciement spécial à BOMISSO, BORIS, KOHI, et aux membres DE LA BZG à la tête le président YAPI et son vice-président BEDI, sans oublier mon binôme adoré MELEDJE. Pour moi vous n'êtes plus des amis, mais des frères. En dehors de ce diplôme vous êtes pour moi le plus beau cadeau que j'ai reçu sur cette faculté. Merci pour ces bons moments. Je tiens également à remercier la femme de Bagnan Franck pour son aide au cours de la rédaction de ma thèse.

Que Dieu vous bénisse mes frères

À MES FILLEULES GISÈLE ET AMANDINE

Merci pour le respect que vous m'accordez pour chacun des moments que nous partageons ensemble. Je n'aurais jamais imaginé rencontrer des personnes qui m'estiment, me font confiance, m'admirent, m'aiment à ce point en venant sur cette faculté. Veuillez recevoir ici mon entière gratitude et ma reconnaissance. Puisse Dieu vous bénir pour que vous puissiez terminer en bonne santé et de la plus belle des manières vos cursus sur la faculté.

AU PERSONNEL DU SERVICE DU LABORATOIRE DES EAUX ET ALIMENTS DE L'INHP

Un merci spécial à monsieur DEGNY et monsieur ALPHONSE pour votre collaboration surtout pour vos conseils et votre disponibilité tout au long de ce travail.

Vous avez été pour moi des guides, des encadreurs et ce travail est le fruit de votre engagement.

Je vous suis reconnaissant pour tout.

À LA PHARMACIE FEZAN, PHARMACIE 7 LYS, LA GRANDE PHARMACIE DES DEUX PLATEAUX ET LA PHARMACIE ST MOÏSE

Dr NENIN, Dr FADIGA, Dr PIOT et Dr KOUAMÉ pharmacien titulaire respectif des pharmacies FEZAN, 7 LYS, DES DEUX PLATEAUX ET ST MOISE. Merci docteurs pour votre confiance en ma personne.

Vous êtes pour moi, des mères, des pères, des repères et des modèles à suivre. Je remercie DIEU de vous avoir mis sur mon chemin.

- Au personnel de la pharmacie

Merci pour vos prières. Que Dieu veille sur vous et vous bénisse.

À NOS MAITRES ET JUGES

À NOTRE MAÎTRE ET PRESIDENT DE JURY

Monsieur le Professeur KOUADIO KOUAKOU LUC

- ➤ Professeur Titulaire d'Hydrologie et de Santé Publique à l'UFR des Sciences Pharmaceutiques et Biologiques ;
- ➤ Chef du laboratoire d'hygiène et du service de contrôle des eaux l'Institut National d'Hygiène Publique ;
- ➤ Responsable du Diplôme d'Étude Universitaire d'Homéopathie à l'UFR Sciences Pharmaceutiques et Biologiques ;
- ➤ Responsable du DESS d'Hygiène alimentaire à l'UFR Sciences Pharmaceutiques et Biologiques
- ➤ Responsable du Master Professionnel de Santé Publique à l'UFR Sciences Pharmaceutiques et Biologiques

CHER MAÎTRE,

NOUS AVONS ÉTÉ IMPRESSIONNÉS PAR VOS QUALITÉS HUMAINES ET VOTRE ABNÉGATION AU TRAVAIL. VOTRE DISPONIBILITÉ ET L'INTÉRÊT QUE VOUS PORTEZ À VOS ÉTUDIANTS FONT DE VOUS UNE SOURCE DE SAGESSE À LAQUELLE TOUT ÉTUDIANT DOIT S'ABREUVER. VOUS NOUS AVEZ FAIT AINSI L'HONNEUR D'ACCEPTER DE PRÉSIDER NOTRE JURY DE THÈSE ET CELAEN DÉPIT DE VOS OCCUPATIONS. C'EST UN HONNEUR POUR NOUS DE VOUS AVOIR DANS NOTRE JURY. QUE DIEU VOUS BÉNISSE!

À NOTRE MAÎTRE ET DIRECTEUR DE THÈSE

Monsieur le Professeur AMIN N'CHO CHRISTOPHE

- ➤ Maître de Conférences Agrégé en Chimie Analytique, Bromatologie à l'Université Félix Houphouët-Boigny
- ➤ Chef de service adjoint du laboratoire d'hygiène de l'Institut National d'Hygiène publique
- ➤ Ancien Interne des Hôpitaux d'Abidjan
- Docteur en pharmacie diplômé de l'Université de Cocody
- Docteur des sciences pharmaceutiques et biologiques de l'Université de Montpellier 1
- ➤ Titulaire du DESS option Contrôle Qualité des médicaments, aliments et produits cosmétiques, du DEA en conception, réalisation, valorisation du médicament issu de la pharmacopée africaine option Chimie Analytique, du DEA option Chimie des matériaux, du CES de biochimie clinique, du CES d'hématologie-biologie, du CES d'immunologie générale et médicale, de la Maîtrise professionnalisée option santé publique de l'Université Félix Houphouët-Boigny
- ➤ Membre de la Société Ouest Africaine de Chimie (SOACHIM) et de la Société Pharmaceutique de Côte d'Ivoire (SOPHACI)

CHER MAÎTRE,

VOUS AVEZ ACCEPTÉ MALGRÉ VOS MULTIPLES CHARGES D'ASSURER L'ENCADREMENT DE CETTE THÈSE. TOUT AU LONG DE CE TRAVAIL NOUS AVONS PU APPRÉCIER NON SEULEMENT VOTRE ARDEUR AU TRAVAIL, MAIS AUSSI ET SURTOUT VOTRE DISPONIBILITÉ, VOTRE SIMPLICITÉ ET VOTRE BIENVEILLANCE. TRAVAILLER SOUS VOTRE DIRECTION FUT TRÈS ENRICHISSANT. PUISSE CE TRAVAIL VOUS RENDE HOMMAGE.

À NOTRE MAÎTRE ET JUGE

Madame le professeur SANGARE-TIGORI BEATRICE

- Professeur en Toxicologie (UFR des Sciences Pharmaceutiques et Biologiques de l'Université Félix Houphouët-Boigny)
- > Docteur en pharmacie
- > Titulaire d'un Doctorat (PhD) en Toxicologie
- ➤ Experte en Toxicologie et Produits Pharmaceutiques près des Tribunaux de Côte d'Ivoire
- Pharmacien analyste au Laboratoire National de Santé Publique (LNSP)
- ➤ Titulaire du Diplôme d'Etudes Approfondies (DEA) de Valorisation de la Pharmacopée Africaine (UFR des Sciences Pharmaceutiques et Biologiques de l'Université Félix Houphouët-Boigny)
- ➤ Titulaire du DESS de Toxicologie (UFR des Sciences Pharmaceutiques et Biologiques de l'Université Félix Houphouët-Boigny)
- Membre de la Société Savante Pharmaceutique de Côte d'Ivoire (SOPHACI).
- ➤ Membre de la Société Ivoirienne de Toxicologie (SITOX)
- ➤ Membre de la Société Française de Toxicologie (SFT)
- ➤ Membre du Bureau National d'Ordre des Pharmaciens de Côte d'Ivoire (Conseil central 3)

CHER MAÎTRE,

EN ACCEPTANT DE SIÉGER AU SEIN DE CE JURY, VOUS CONFIRMEZ VOTRE CARACTÈRE D'HUMILITÉ, DE DISPONIBILITÉ ET SIMPLICITÉ. NOUS AVONS EU LE PRIVILÈGE DE BÉNÉFICIER DE VOS QUALITÉS D'ENSEIGNANT AU COURS DE NOTRE CURSUS UNIVERSITAIRE.

NOUS VOUS PRIONS DE BIEN VOULOIR ACCEPTER, À TRAVERS CES MOTS L'EXPRESSION DE NOTRE PROFONDE GRATITUDE.

À NOTRE MAÎTRE ET JUGE

Madame le Docteur KOUASSI-AGBESSI THERESE

- > Docteur en pharmacie
- ➤ Maître-assistante au département de bactériologie virologie, à l'UFR Sciences Pharmaceutiques et Biologiques
- ➤ Pharmacien biologiste (CES biochimie clinique, CES hématologie, CES parasitologie-mycologie, CES bactériologie-virologie)
- > Titulaire du DEA de biologie humaine tropicale option bactériologievirologie
- Responsable de l'unité de biologie à l'INHP (Institut national d'hygiène publique)
- > 1er prix d'infectiologie en 1992
- Lauréat du concours d'internat (1989-1990)

CHEZ MAÎTRE,

MERCI D'AVOIR ACCEPTÉ DE PARTICIPER AU JURY DE CETTE THÈSE.

NOUS AVONS EU DE L'ADMIRATION POUR VOS QUALITÉS DE PÉDAGOGIQUES; ET VOTRE PRÉSENCE DANS CE JURY EST POUR NOUS UN TRÈS GRAND HONNEUR. NOUS VOUS EN SOMMES INFINIMENT RECONNAISSANTS. PUISSE DIEU VOUS BÉNIR!

ABRÉVIATION – ACRONYME-SIGLE

ASR Anaérobies Sulfito-Réducteurs

BCYE Buffered Charcoal Yeast Extract

BEA Bile Esculine Azide

°C Degré Celsius

CT Coliformes Totaux

CTh Coliformes Thermotolérants

DHT Degré Hydrotimétrique Total

EDTA Acide Ethylène Diamine Tétra acétique

GAL \(\beta\)- Galactosidase

GPS Global Position System

GLUC ß- Glucuronidase

HAP Hydrocarbures Aromatiques Polycycliques

CLHP Chromatographie Liquide à Haute Performance

INHP Institut National d'Hygiène Publique

LD Limite de Détection

LQ Limite de Quantification

ND Non Détecté

OMS Organisation Mondiale de la Santé

PCB Polychlorobiphenyls

PED Pays En Développement

pH Potentiel Hydrogène

TAC Titre Alcalimétrique Complet

TCBS Thiosulfate Citrate Bille Saccharose

TSN Tryptone Sulfite Néomycine

UCV Unités de Couleur Vraie

UFC Unités Formatrices de Colonies

UNICEF Fonds des Nations Unies pour l'Enfance

UNT Unité Néphélométrique de Turbidité

YGC Yeast Bile Esculine

SOMMAIRE

DÉDICACES	XIV
ABRÉVIATION – ACRONYME-SIGLE	XXIII
SOMMAIRE	XXV
LISTE DES TABLEAUX	XXVII
LISTE DES FIGURES	VIII
INTRODUCTION	1
PREMIERE PARTIE. ÉTUDEBIBLIOGRAPHIQUE	4
I- GENERALITES SUR LES EAUX	5
I-1- Cycle de l'eau	5
I-2- Eaux de surface	5
I-3- Les eaux souterraines	7
I-4- Présentation du littoral ivoirien	8
I-5- Eaux de loisir	9
II- LES EAUX DE BAIGNADE	10
II-1- Baignades	10
II-2- Pollution des eaux de baignades	10
II-3- Risques sanitaires liés à la baignade dans les eaux polluée	es17
II-4- Contrôle qualité des eaux de baignade	18
DEUXIEME PARTIE. ÉTUDE EXPÉRIMENTALE	30
I- MATÉRIEL ET MÉTHODES	31
I-1- Type et cadre de l'étude	31
I-2- Matériel	31

I-3- Méthodes	33
II- RÉSULTATS ET DISCUSSION	54
II-1- Résultats	54
II-2- Discussion	72
CONCLUSION	77
RECOMMANDATIONS ET PERSPECTIVES	78
REFERENCES BIBLIOGRAPHIQUES	81
TABLE DES MATIÈRES	91
ANNEXES	97

LISTE DES TABLEAUX

Tableau I : source physico chimique de pollution des eaux
Tableau II : Microorganismes rencontrés dans l'eau de baignade17
Tableau III : Microorganismes et pathologies associées
Tableau IV : Recommandations concernant les eaux de baignade25
Tableau V : Normes françaises de qualité relative aux eaux de baignade (extrait
de l'annexe 1 du décret n° 81-324 du 7 avril 1981 modifié par le décret n° 91-
980 du 20 septembre 1991
Tableau VI : Normes de qualité de base pour les eaux de surface ordinaires (AR
du 4/11/1987) [65]
Tableau VII : les réactifs utilisés pour la chimie
Tableau VIII : Paramètres organoleptique et physico-chimique de la mer de
VRIDI de Décembre à Avril56
Tableau IX : Paramètres organoleptique et physico-chimique de la mer de Port
Bouët centre de Décembre à avril57
Tableau X: Valeurs pour comparaison de deux moyennes par le Test t Student
65
Tableau XI: Valeurs pour comparaison de deux moyennes par le test de Mann
Whitney66
Tableau XII : Paramètres microbiologiques de l'eau de mer de VRIDI et PORT
BOUET centre67
Tableau XIII : Valeurs des métaux lourds analysés des eaux de baignade en
merde Vridi et Port Bouët centre68
Tableau XIV : Valeurs des HAP analysés des eaux de baignade en mer de Vridi
et Port Bouët centre68
Tableau XV : Valeurs des pesticides analysés des eaux de baignade en mer de
Vridi et Port Bouët centre70

LISTE DES FIGURES

FIGURE 1- cycle de l'eau6
FIGURE 2-Une vue du littoral Ivoirien9
FIGURE 3-sources de pollution maritime
FIGURE 4-Vue de la plage de Vridi
FIGURE 5-Vue de la plage de Port Bouët centre
FIGURE 6-Évolution de la de la coloration des eaux de baignade Vridi et Port
Bouët centre en fonction du temps59
FIGURE 7-Évolution du Fer des eaux de baignade de Vridi et Port Bouet centre
en fonction du temps59
FIGURE 8-Évolution de la turbidité de Vridi et port Bouët centre en fonction du
temps60
FIGURE 9-Évolution de la conductivité et de la dureté des eaux de baignade de
Vridi et port Bouët centre en fonction du temps60
FIGURE 10-Évolution des nitrites des eaux de baignade de Vridi et port Bouët
centre en fonction du temps61
FIGURE 11-Évolution du pH des eaux de baignade de Vridi et port Bouët
centre en fonction du temps61
FIGURE 12-Évolution des chlorures des eaux de baignade de Vridi et port
Bouët centre en fonction du temps61
FIGURE 13-Évolution du phosphore des eaux de baignade de Vridi et port
Bouët centre en fonction du temps62
FIGURE 14-Évolution du phosphate des eaux de baignade de Vridi et Port
Bouët centre en fonction du temps62
FIGURE 15-Évolution des nitrates des eaux de baignade de Vridi et port Bouët
centre en fonction du temps62
FIGURE 16-Évolution de l'ammonium des eaux de baignade de Vridi et port
Bouët centre en fonction du temps63

FIGURE 17-Évolution des silices des eaux de baignade de Vridi et port Bouët
centre en fonction du temps63
FIGURE 18-Évolution de l'aluminium des eaux de baignade de Vridi et port
Bouët centre en fonction du temps63
FIGURE 19-Évolution du soufre des eaux de baignade de Vridi et port Bouët
centre en fonction du temps64
FIGURE 20-Chromatogramme des HAP de la mer de vridi69
FIGURE 21-Chromatogramme des HAP de la mer de port bouet centre69
FIGURE 22-Chromatogramme des pesticides recherchés des eaux de baignade
de Vridi71
FIGURE 23-Chromatogramme des pesticides recherchés des eaux de baignade
de Port Bouët centre71

INTRODUCTION

Les ressources en eau occupent 70 % de la surface de la terre [1]. L'eau est la substance la plus distribuée sur notre planète. Cependant, 97,5 % de cette quantité se trouve sous forme d'eau salée et 2,5 % sous forme d'eau douce [2]. Elle joue un rôle important dans l'économie [3]. En effet, elle est utilisée dans diverses domaines à savoir le transport maritime, la consommation, l'agriculture (l'irrigation des sols), dans l'industrie (le refroidissement des centrales thermoélectriques) et les loisirs aquatiques dont la baignade [4,5].

La baignade est toute partie des eaux de surface aménagée en vue d'accueillir du public [4,6]. Il existe diverses catégories de baignades qui sont : les baignades en eau douce ou intérieures (eau douce : rivière, lac, étang) et les baignades en eau de mer, océan ou littorales [4,7]. La baignade est très bénéfique pour la santé. Cependant, elle peut présenter un certain nombre de dangers [6] parmi lesquels les dangers physiques (blessure), les dangers liés au soleil et à la température de l'air et de l'eau (coups de soleil), les dangers liés aux organismes aquatiques potentiellement dangereux (organismes venimeux) et les dangers liés à la qualité des eaux (agents microbiologiques et agents chimiques) [8]. Ces dangers microbiologiques et chimiques peuvent être dus à des polluants d'origines anthropiques ou naturelles (érosion des sols, précipitation, évaporation, ruissellement des eaux fluviales) [9-11].

La Côte d'Ivoire dispose de nombreux atouts rendant possibles différent sorte de tourismes balnéaires. En plus des 550 km de littoral, elle est le seul pays africain à bénéficier de 300.000 hectares de plan d'eau lagunaire offrant les possibilités de sports nautiques et lacustre [12]. Elle regorge d'une pléiade de plages comme celle de Port Bouët et Vridi [12] qui sont d'une grande fréquentation. Ces plages sont victimes de pollution car il existe de nombreux foyers de pollution aussi bien au niveau des eaux de surface que des eaux souterraines dans les localités telles qu'Abidjan [13-22].

À l'égard de certains pays comme le Canada, les États Unies, l'Algérie [23,24], la Côte d'Ivoire ne dispose pas de règlementation en matière d'eau de baignade. C'est ainsi que notre étude a eu pour objectif de caractériser ces eaux de baignades en vue de connaître les risques encourus par les populations qui s'y baignent.

Les objectifs spécifiques étaient de :

- Situer géographiquement les plages de Port Bouët centre et Vridi
- Déterminer la composition organoleptique et physico-chimique de l'eau de mer,
- Dénombrer les germes indicateurs de pollution fécale,
- Rechercher et quantifier les hydrocarbures aromatiques polyinsaturés, les métaux lourds et les pesticides,

Le document rédigé comprend deux parties. La première partie est consacrée à la revue de la littérature sur les eaux de surface et les eaux de loisirs. La seconde partie de type expérimentale décrit le matériel et les méthodes utilisés pour effectuer les analyses, les résultats obtenus et la discussion suivie d'une conclusion générale et des recommandations.

CARACTÉRISATION DES EAUX DE BAIGNADE EN OCÉAN ATLANTIQUE : cas de la plage de Vridi et Port-bouët centre (Abidjan-Côte d'Ivoire)							

Première partie : ÉTUDEBIBLIOGRAPHIQUE

I-GÉNÉRALITÉS SUR LES EAUX

I-1-Cycle de l'eau

L'eau est un fluide sans cesse en mouvement qui passe d'un réservoir à l'autre par l'intermédiaire de nombreux mécanismes : l'évaporation qui constitue le point de départ du cycle, la transpiration des végétaux, la condensation, les précipitations pluviales, le ruissellement, l'infiltration et les écoulements superficiels et souterrains [25] (FIGURE 1). Le moteur de ce cycle est le soleil, ou plus exactement l'énergie solaire qu'il dégage. En effet, c'est cette dernière qui entraîne les changements d'état de l'eau : la formation et la fonte des glaces, ou encore l'évaporation de l'eau dans l'atmosphère [26,27].

I-2-Eaux de surface

I-2-1-Origine

Les eaux de surface englobent toutes les eaux circulantes ou stockées à la surface des continents. Elles ont pour origine, soit des nappes souterraines, soit les eaux de ruissellement. Elles sont constituées par l'eau de pluie récoltée, l'eau des rivières, lacs et étangs, et l'eau de mer [28].

Source : [25]

FIGURE 1 - cycle de l'eau

I-2-2-Caractéristiques générales

La composition chimique des eaux de surface dépend de la nature des terrains rencontrés durant leurs parcours. Au cours de son cheminement, l'eau dissout les différents éléments constitutifs des terrains. En revanche, sa teneur en gaz dissous (oxygène, azote, gaz carbonique) dépend des échanges à l'interface eau-atmosphère et de l'activité métabolique des organismes aquatiques [29].

Elles sont caractérisées par ;

- La présence de gaz dissous, en particulier l'oxygène ;
- ➤ Une concentration importante des matières en suspension, tout au moins pour les eaux courantes. Ces matières en suspension sont très diverses, allant des particules colloïdales aux éléments figurés entraînés par les rivières en cas d'augmentation importante du débit ;

- La présence de matières organiques d'origine naturelle provenant du métabolisme, puis de la décomposition post mortem des organismes végétaux ou animaux vivant à la surface du bassin versant ou dans la rivière;
- La présence de plancton : les eaux de surface sont parfois le siège d'un développement important de phytoplancton (algues...) et de zooplancton, surtout dans les cas d'eutrophisation. Certains de ces organismes peuvent sécréter des produits sapides et odorants ou des toxines;
- Des variations journalières (différence de température, d'ensoleillement) ou saisonnières : variations climatiques (température, précipitations, fonte des neiges), de végétation (chute des feuilles). Elles peuvent être aléatoires : pluies soudaines, orages, pollutions accidentelles [30].

I-3-Les eaux souterraines

I-3-1-Origine

Les eaux souterraines sont constituées par la fraction des précipitations atmosphériques principalement de l'eau de pluie qui se sont infiltrées dans le sol pour former des nappes souterraines [28]. Ces nappes sont contenues dans des terrains réservoirs appelés aquifères. Il existe deux types de nappes [29] :

- Les nappes libres ou phréatiques elles sont suffisamment proches de la surface pour être accessible par puits. Elles sont alors alimentées directement par l'infiltration des eaux de pluie.
- les nappes captives elles sont emprisonnées entre deux couches de terrains imperméables ; les nappes de ce type sont les plus fréquentes et généralement les plus profondes.

I-3-2-Caractéristiques générales

Les eaux souterraines ont toujours été une source importante d'approvisionnement en eau potable pour les populations [31].

La nature géologique du terrain a une influence déterminante sur la composition chimique de l'eau retenue. À tout instant, l'eau est en contact avec le sol dans lequel elle stagne ou circule : il s'établit un équilibre entre la composition du terrain et celle de l'eau. Les eaux circulant dans un sous-sol sablonneux ou granitique sont acides et peu minéralisées. Les eaux circulant dans des sols calcaires sont bicarbonatées calciques et présentent souvent une dureté élevée. On notera en particulier une bonne pureté bactériologique, une faible turbidité, une température et une composition chimique constante, l'absence presque générale d'oxygène provoquant la présence d'éléments réduits indésirables [29].

I-4-Présentation du littoral ivoirien

La Côte d'Ivoire est limitée à l'est par le Ghana, au nord par le Burkina Faso et le Mali, à l'ouest par la Guinée et le Libéria et au sud par le golfe de guinée [32]. Le golfe de guinée est une partie de l'océan Atlantique qui s'étend sur la côte occidentale d'Afrique depuis le cap des Palmes (frontière du Libéria et de la Côte d'Ivoire), jusqu'au cap Lopez (au Gabon) [33] (FIGURE 2).

La Côte d'Ivoire dispose d'un littoral couvrant une superficie de 23 253 km² soit 7% de la superficie de la Côte d'Ivoire (322 462 km²). Ce littoral est délimité par les Latitudes 4° et 5°30 Nord et Longitudes 2°25 et 7°30 Ouest. Il est limité au Nord par la côtière à l'Ouest d'Abidjan et à l'Est par la route de Noé contournant la ville d'Alépé) [34]. Ce littoral ivoirien de 566 km de long regorge de nombreux sites exploités à des fins récréatives notamment pour les eaux de loisir dont la baignade.

Source : [34]

FIGURE 2-Une vue du littoral Ivoirien

I-5-EAUX DE LOISIR

I-5-1-Définitions

Les eaux de loisir sont des eaux utilisées à des fins récréatives notamment pour des activités sportives et ludiques tels que le surf, le canoë, la planche à voile, et le ski nautique [4]. Au premier rang de ces sports figure la natation. Au-delà de sa fonction récréative, elle joue un rôle social important car elle peut être pratiquée à tous les âges de la vie. Elle ne nécessite pas de conditions physiques particulières. Mais, au contraire, elle peut être recommandée aux personnes souffrant d'handicap et aux femmes enceintes, voire aux bébés. Elle se résume comme une activité accessible au plus grand nombre [4].

I-5-2-Classification

Les sites où se pratiquent les activités de loisirs peuvent être classés en deux catégories, les piscines qui sont traitées et les baignades qui sont naturelles [4].

II-LES EAUX DE BAIGNADE

II-1-Baignades

Les sites naturels, regroupés sous le terme générique de baignades, peuvent faire l'objet d'aménagements particuliers en vue d'accueillir du public, mais l'eau n'y est pas traitée. La qualité de l'eau est assurée par la qualité initiale du milieu naturel et le renouvellement constant de l'eau au niveau des zones de baignades. Ils se répartissent eux- mêmes en deux sous-groupes :

- Les baignades en eau de mer, qui s'agrémentent souvent de plages très fréquentées ; la qualité de l'eau et des plages dépend en dehors des rejets de polluants et de la fréquentation, des phénomènes de marée dont l'amplitude varie suivant la région littorale et le moment de l'année ;
- Les baignades en eau douce, qui présentent une grande variété de sites comme les rivières, les torrents, les retenues naturelles (lacs) ou artificielles (étangs, gravières, barrages-réservoirs) [4]. Diverses formes de pollutions affectent les eaux de loisirs et peuvent entrainer des risques pour les baigneurs[4].

II-2-Pollution des eaux de baignades

La mer et plus particulièrement le littoral, apparaît comme le réceptacle de tous les polluants d'origine tellurique ou marine [35]. La pollution marine est l'introduction par l'Homme, directement ou indirectement, de substances ou d'énergies dans le milieu marin, estuaires compris, et qui a pour conséquence ou est susceptible d'engendrer des effets nuisibles tels qu'ils porteraient atteinte aux ressources vivantes et à la vie marine, mettraient la santé humaine en danger, gêneraient les activités marines, telles que la pêche et autre utilisation légitime de la mer (FIGURE 3).

Il existe trois types de pollution :

- ➤ Pollution physique: une couleur ou un trouble donné par des matières en suspension, une élévation locale de température par les rejets d'eau de refroidissement (centrale électronucléaires).
- ➤ Pollution chimique: produits chimiques en solution, changeant les caractères de l'eau (acides, bases...) ou directement toxiques pour les organismes (pesticides d'origine agricole...).
- > Pollution microbiologique

Ses conséquences portent sur la pêche, la pisciculture et conchyliculture, le tourisme (qualité des eaux de baignade).

Source: [35] FIGURE 3-sources de pollution maritime

II-2-1-Pollution physico chimique

II-2.1.1. La pollution industrielle

Les industries exercent des activités susceptibles d'engendrer une dégradation de la qualité des écosystèmes. Cette pollution industrielle est générée par les effluents industriels (Tableau I) et les divers produits toxiques utilisés. Les effluents, avec ou sans traitement, sont déversés dans la mer, dans les rivières ou sur les sols [36]. Ces effluents polluent l'eau de surface par le transfert des polluants, tels que les métaux lourds et colorants [37]. L'exploitation de l'or contribue à la pollution de l'eau par le mercure et le cyanure conduisant ainsi à la pollution de l'eau et du sol avec des risques sanitaires [9]. En dehors de la pollution des eaux par l'utilisation des goudrons pour les revêtements routiers, par l'exploitation de l'or et autres gisements de mines (diamant, bauxite, rutile etc.), il existe l'exploitation du pétrole par les industries pétrolières [38] qui contribuent à la pollution des eaux par des polluants toxiques (hydrocarbures aromatiques polycycliques (HAP). Toutes les eaux usées industrielles peuvent être responsables d'un déséquilibre écologique irréversible ainsi que de l'eutrophisation des eaux de milieu récepteur [39].

La plupart des industries de la Côte-d'Ivoire sont localisées dans la zone côtière, essentiellement autour d'Abidjan, où elles contribuent de façon sensible à accroître les charges en polluants. Ces industries produisent des déchets de composition semblable aux effluents domestiques ou sont, pour le moins passibles d'un traitement biologique. On compte en fait plusieurs brasseries, usines de mise en bouteille du vin, industries de boissons non alcoolisés, une raffinerie d'huile de palme, une conserverie de légumes, un abattoir et une raffinerie de pétrole [40].

II-2.1.2. La pollution due aux activités agricoles

L'intensification des réseaux de surveillance, de la qualité des eaux de surface montre qu'en de nombreuses régions du monde à agriculture intensive, les masses d'eau présentent des contaminations significatives par des produits phytosanitaires. Ainsi, l'Institut français de l'environnement dans sa synthèse de l'état de pollution des eaux de 1997que plus de 95 % des eaux de surface ayant fait l'objet d'une surveillance ont présenté une contamination significative par les pesticides à un moment de l'année [41].

La pollution agricole est due surtout à l'utilisation intensive et abusive des engrais (chimiques et organiques) et pesticides.

II-2.1.3.La pollution par les activités maritimes

La navigation maritime et les installations portuaires sont les principaux responsables de la pollution par les hydrocarbures (HC) aussi bien au voisinage des côtes qu'en haute mer. Cette pollution peut être soit accidentelle (accidents maritimes, marées noires, etc.) ou intentionnelle (dégazage des pétroliers en haute mer, nettoyage des cuves de navires) [42].

II-2.1.4. La Pollution due aux activités de pêche

L'augmentation de la population mondiale a entraîné corrélativement une plus grande demande en protéines, notamment animales. Les pêcheurs pour accroitre le rendement procèdent à des techniques prohibées de pêche telles que l'implantation des Acadjas, l'utilisation des pesticides et des engrais [9].

II-2.1.5.La pollution domestique

En dehors de la pollution des eaux par les hydrocarbures, les plastiques (micro ou macro plastiques) sont une source de pollution des eaux [9].

Ce sont d'abord tous les débris solides qui s'accumulent le long des laisses de hautes mers: bouteille, sacs et autres récipients en matière plastique, bois, débris de filets (Tableau I). Ces déchets proviennent de décharges, autorisées ou non, de l'abandon de débris sur la plage par les baigneurs et du déversement à partir de navire (commerce et plaisance). Ces objets constituent surtout une nuisance visuelle qui déprécie l'attrait d'une plage. Les déchets liquides et solides issus des activités domestiques constituent une grande source de pollution des eaux de surface.

II-2.1.6.La pollution radioactive

La pollution radioactive se trouve au niveau des rejets des centrales électronucléaires et des centres de traitement des déchets [35]. Cette pollution peut être transportée par des organismes planctoniques ou par des poissons ayant concentré des éléments radioactifs.

II-2.1.7.La pollution hospitalière

Il s'agit de produits toxiques liés à la radiologie, aux laboratoires d'analyses et aux médicaments inutilisés.

Tableau I : source physico chimique de pollution des eaux [9].

types-de-polluant₅¤	Д		elements-polluants¤	3
				3
dechets-solides¤	Ħ		ordures·ménagères,·eaux·usées·excréta¤	
engrais-chimiques,- organiques,- pesticides-intensifs¤		ц	insecticides·et·pesticides·organochlorés,· herbicides,¤	3
espèces-végétales, engrais-et-pesticide¤	Д		acadjas, pesticides organochlores¤	3
Effluentsindustriels. et.divers.produits. toxiques,.gisements. de.mines¤	Д		Matières·organiques·naturelles,·produits· industriels·de·synthèse·métaux·lourds,· solvant,·graisse·et·colorants¤	3
Déchets·liquides·et· solides·hospitaliers·¤	ц		Produits·toxiques·liés·à·la·radiologie,·aux· laboratoires·d'analyses,·déchets·liés·aux· dentistes,·les·médicaments·inutilisés,·les· thermomètres·cassés·etc.·¤	3
	dechets·solides¤ engrais·chimiques,· organiques,· pesticides·intensifs¤ espèces·végétales,· engrais·et·pesticide¤ Effluents··industriels· et·divers·produits· toxiques,·gisements· de·mines¤ Déchets·liquides·et·	dechets-solides¤ ¤ engrais-chimiques,- organiques,- pesticides-intensifs¤ espèces-végétales,- engrais-et-pesticide¤ ¤ Effluentsindustriels- et-divers-produits- toxiques,-gisements- de-mines¤ ¤ Déchets-liquides-et-	dechets·solides¤ ¤ engrais·chimiques,· organiques,· pesticides·intensifs¤ ¤ espèces·végétales,· engrais·et·pesticide¤ ¤ Effluents··industriels· et·divers·produits· toxiques,·gisements· de·mines¤ ¤ Déchets·liquides·et·	dechets-solides¤ ¤ ordures-ménagères,-eaux-usées-excréta¤ engrais-chimiques,- organiques,- pesticides-intensifs¤ ¤ herbicides,¤ espèces-végétales,- engrais-et-pesticide¤ ¤ acadjas,-pesticides-organochlores¤ Effluentsindustriels- et-divers-produits- toxiques,-gisements- de-mines¤ ¤ solvant,-graisse-et-colorants¤ Produits-toxiques-liés-à-la-radiologie,-aux- laboratoires-d'analyses,-déchets-liés-aux- dentistes,-les-médicaments-inutilisés,-les-

II-2-2-La pollution microbiologique

II-2.2.1.Les sources de contamination

Il existe deux principales sources de contamination microbiologique des eaux de baignade. Il s'agit de la pollution par les baigneurs et celles des intrants divers.

II-2.2.2.La Pollution par les baigneurs

La contamination interbaigneurs représente la principale cause des infections et épidémies déclarées dans le contexte des eaux récréatives. Elle représente 90% selon les études de Craun et al. [43]. Elle a pour origine les agents pathogènes rejetés naturellement ou accidentellement avec les déchets fécaux ou non-fécaux des baigneurs sains ou malades (vomissements, salive, mucus, desquamation de la peau, poils, cheveux) dont la fréquence d'émission est plus importante pour les enfants en bas âge. La quantité moyenne de rejets de selle par baigneur a ainsi été estimée à 140 mg [44]. Les enfants rejettent entre 10 mg et 10 g et les adultes entre 0,1 et 100 mg. Ces baigneurs contaminés peuvent donc être à l'origine d'une forte contamination des eaux de baignade [45] et être responsables d'épidémies de grande ampleur selon la fréquentation de la baignade [43].

II-2.2.3.La Pollution par les intrants divers

Les sources de pollution microbiologique sont issues notamment de mauvais raccordements d'habitations aux réseaux d'assainissement, de débordements des réseaux d'eaux usées, de rejets de station d'épuration d'eaux résiduaires, des déjections d'animaux et du ruissellement sur les sols lors des pluies importantes. Quelques m3 d'eaux usées sont suffisants pour polluer toute une plage, et le ruissellement du à quelques millimètres de pluie produit le même effet après le lessivage des surfaces urbaines [46].

II-2.2.4.Les différents types de germes

Les eaux usées domestiques (eaux vanne, eaux domestiques) urbaines contiennent une multitude d'agent pathogènes excrétés par la voie intestinale ou urinaires et susceptible de déclencher des maladies transmissibles [47].

Parmi tous les microorganismes couramment rencontrés dans les eaux usées urbaines, il est important de distinguer leurs origines, ainsi que les pathologies qu'ils sont susceptibles d'engendrer. En se basant sur ces deux critères, nous pouvons définir trois catégories de germes :

- Les germes d'origine tellurique non pathogènes et non infectieux, entraînés par les eaux de ruissellement.
- Les germes d'origine fécale, humaine ou animale, le plus fréquemment non pathogènes, qui regroupent principalement des bactéries, et sont couramment utilisés comme germes témoins de contamination fécale.
- Les germes pathogènes parmi lesquels distinguons certaines bactéries, les virus et les parasites (Tableau II).

Tableau II : Microorganismes rencontrés dans l'eau de baignade

microorganismes	origine
champignons	
dermatophytes	peau(squames)
levures	peau et
moisissures	muqueuse
bacteries	peau,lesions
staphylocoques	cutanees ,
streptocoques	muqueuses
pseudomonas	muqueuses
aeruginosa salmonelles	region peri anal
legionnelles	eau
virus	
papillomavirus,	
enterovirus	peau muqueuse
protozoaires amibes	
cryptosporidies giardia	
lamblia	tellurique

II-3-Les Risques sanitaires liés à la baignade dans les eaux polluées

La baignade dans les eaux naturelles peut entraîner un contact plus ou moins intense avec des germes pathogènes qui peuvent être présents dans l'eau en faible ou grande quantité. Les pathologies associées à ces germes concernent la sphère O.R.L, l'appareil digestif, les yeux et la peau. Les agents pathogènes présents dans les eaux naturelles sont responsables de ces diverses maladies dont les plus fréquentes sont répertoriées dans le (Tableau III).

Le risque encourut par le baigneur dépend de plusieurs facteurs :

- du niveau de contamination de l'eau,
- de l'état de santé du baigneur,
- des modalités de la baignade (durée, immersion de la tête...)

Tableau III: Microorganismes et pathologies associées

		cutanees	orl	digestives	diverses
		mycoses			
		herpes			
		circines			
champignons	dermatophytes	eczema			
		candidoses(
	levures	ongles)			
			infection du		
			conduit		
		infections	auditif		
	moisissures	des orteils	externe		
		furoncles,			
bacteries	staphylocoques	impetigo			conjonctivite
			rhinite		
			angine otite		
	streptocoques	impetigo	pharyngite		
	pseudomonas aeruginosa	dermite	otite		
	salmonelles			diarrhee	
					affections
	legionnelles				respiratoires
	papillomavirus				
virus	enterovirus			diarrhee	
protozoaires	amibes cryptosporidies			diarrhee	a a

II-4-Contrôle qualité des eaux de baignade

II-4-1-Contrôle microbiologique

II-4.1.1.Les méthodes de recherches des germes

II-4-1-1-1Les coliformes

Ils existent 3 méthodes pour la recherche des coliformes [48] :

- -les méthodes classiques
- -les méthodes enzymatiques
- -les méthodes moléculaires

II-4-1-1-1-Les méthodes classiques

> Technique de fermentation à tubes multiples

La technique d'énumération des coliformes par des moyens de la fermentation à tubes multiples (MTF) a été utilisée plus de 80 ans comme méthode de surveillance de la qualité de l'eau. La méthode consiste à inoculer une série de tubes avec des dilutions décimales appropriées de l'échantillon d'eau. La production de gaz, la formation d'acide ou la croissance abondante dans les éprouvettes après 48 heures d'incubation constitue une réaction présomptive positive. Tous les tubes avec une réaction présomptive positive sont ensuite soumis à un test de confirmation. La formation de gaz dans un bouillon de bile de lactose vert brillant à tout moment dans les 48 h à 35 degré Celsius constitue un test de confirmation positif. Les résultats de la technique MTF sont exprimés en termes du nombre le plus probable (NPP) de micro-organismes présents. Ce nombre est une estimation statistique du nombre moyen de coliformes dans l'échantillon. En conséquence, cette technique offre une approche semi-quantitative de dénombrement des coliformes [48].

> Technique de filtre à membrane

Cette méthode consiste à filtrer un échantillon d'eau sur un filtre stérile avec une taille de pores de 0,45 mm qui retient des bactéries. Incuber ce filtre sur un milieu sélectif et énumérer des colonies typiques [48].

II-4-1-1-2-Les méthodes enzymatiques

L'ajout de substrats fluorogènes et chromogènes aux milieux de culture (agar et milieux liquides) pour détecter l'activité enzymatique des coliformes totaux et Escherichia coli ont augmenté la sensibilité et la rapidité de la classique méthode d'estimation de la contamination microbienne [48].

II-4-1-1-3-Les méthodes moléculaires

Des méthodes moléculaires ont été développées pour augmenter la rapidité de l'analyse. Ils sont capables d'atteindre un haut degré de sensibilité et de spécificité sans la nécessité d'une culture et d'une étape de confirmation. En conséquence, certains de ces méthodes permettent la détection de cultures spécifiques de bactéries cultivables ou non cultivables en quelques heures, au lieu des jours requis avec les méthodes traditionnelles [48].

II-4-1-1-2-Les virus

La détection et le dénombrement des virus sont réalisés par culture de cellules humaines ou animales. La culture cellulaire est une technique qui permet de ne détecter que les particules virales infectieuses. La culture cellulaire est une méthode sensible, spécifique et quantitative.

Elle est à l'heure actuelle la méthode de référence de détection des virus dans l'eau, les aliments et l'environnement car c'est la seule méthode qui permet d'affirmer le caractère infectieux des particules virales [48].

II-4-1-1-3-Les cryptosporidies et champignons

Les méthodes d'analyses utilisées pour l'identification et le dénombrement des cryptosporidies sont l'immunofluorescence directe (oocystes) et la polymérase Chain réaction PCR (génome) [50]. Les méthodes d'identification et de dénombrement des champignons peuvent être également réalisées par une méthode spectrale (spectrophotométrie Infrarouge) et par l'utilisation de milieux de culture artificiels (Sabouraud-Chloramphénicol, dermatophytes...) [51].

II-4.1.2. Les germes recherches pour le contrôle de la qualité de l'eau

Les analyses microbiologiques de l'eau de mer n'ont pas pour but de recenser toutes les espèces microbiologiques présentes dans le milieu, mais uniquement celles qui sont soit susceptibles d'être pathogènes ; soit celles qui les accompagnent et qui par leur présence indiquent une contamination fécale. Ce qui est beaucoup plus pratiqué car plus facile [52].

En effet, il est impossible de baser la surveillance de la qualité de l'eau sur la détection des germes pathogènes eux-mêmes pour de multiples raisons :

- la très grande diversité des micro-organismes pathogènes qui peuvent être présents dans l'eau (virus, bactéries, protozoaires,...) [53] ;
- la faible abondance de chaque espèce de pathogène (nécessité de concentrer de grands volumes d'eau pour les détecter)
- et enfin, l'absence de méthodes standardisées et rapides pour la détection de tous ces micro-organismes pathogènes.

L'évaluation de la qualité microbiologique des eaux de baignade, portent donc sur la recherche des germes indicateurs de pollution de l'eau. Leur présence dans l'eau correspond à une contamination d'origine fécale plus ou moins forte en fonction des concentrations relevées.

II-4-1-2-1-Les bactéries

Les bactéries indicatrices de contamination n'ont pas nécessairement par euxmêmes un caractère pathogène mais, leur présence indique l'existence d'une contamination par des matières fécales. Leur concentration est une indication du niveau de risque de présence de microorganismes. Sept (07) critères sont définit pour qu'une espèce bactérienne soit dite indicatrice de pollution fécale :

- -Appartenir à la flore intestinale des personnes en bonne santé
- -Avoir pour seul habitat le milieu intestinal
- -Être absente chez les autres espèces animales et présentes chez l'homme
- Être plus abondantes que les pathogènes, facile à détecter et à dénombrer
- Être plus résistante dans le milieu extérieur que les pathogènes
- -Ne proliférer dans l'environnement

Aucun groupe de microorganisme ne remplit entièrement toutes ces exigences. Seuls 4 groupes de bactéries les vérifient en partie. Ce sont :

- les coliformes
- les entérocoques
- les clostridies
- les Pseudomonas

Il existe deux sortes de coliformes.

II-4-1-2-1-1-Les Coliformes totaux (CT)

Le groupe des CT est définit comme l'ensemble des bactéries aérobies et anaérobies facultatives gram-, non sporulantes, en forme de bâtonnet, qui sont capables de se multiplier en présence de sels biliaires ou d'autres agents de surface ayant des propriétés équivalentes et de fermenter le lactose avec production d'acide et de gaz en 48 heures à 35-37°C. La pertinence de ce groupe comme indicateur est aujourd'hui fortement contestée du fait que toutes les espèces inclues dans les CT ne sont pas spécifiques de la flore intestinale des animaux à sang chaud. En effet, certaines espèces sont d'origine tellurique ou aquatique et sont capables de se développer dans l'environnement aquatique [54]. Il s'agit des Citrobacter, des Enterobacteret des Klebsiella.

II-4-1-2-1-2-Les Coliformes thermotolérents (CTT)

Les Coliformes thermotolérents constituent un sous-groupe des CT capables de se développer à 44 °C. Les CF sont considérés comme plus appropriés que les CT comme indicateurs de contamination fécale. Ce groupe est majoritairement constitué des *Escherichia coli* [54].

II-4-1-2-1-3-Les entérocoques

Les entérocoques sont des bacilles Gram+, se présentant sous formes de courtes chaînes associées présentes dans l'intestin grêle de l'homme et des animaux à sang chaud. Ce sont des indicateurs de pollution fécale car plus résistants aux désinfectants usuels que les coliformes. Ils se caractérisent par leur aptitude à répondre aux critères suivants :

Croissance à des températures variant de 10 à 45°C, résistance à 60°C pendant 30 minutes, croissance en présence d'une concentration de 6,5 % de chlorure de sodium et à un pH de 9, et aptitude à réduire le bleu de méthylène à 0,1% [55,56].

Les entérocoques sont considérés comme les meilleurs indicateurs disponibles de la qualité des eaux marines à vocation récréative [57]. Leur détection signale la contamination fécale de l'eau et de ce fait, la présence possible de bactéries, virus ou protozoaires fécaux pathogènes.

Principe

L'Azide de sodium provoque l'inhibition des bactéries contaminantes Gram négatif. Les sels biliaires empêchent la croissance des bactéries Gram positif.

Les Entérocoques dans la gélose hydrolysent l'esculine en esculétine. Ce dernier composé, (enlevez la virgule) forme un complexe noir en présence des ions ferriques apportés par le citrate de fer.

II-4-1-2-1-4-Les clostridies sulfito-réductrices (SRC)

Les bactéries anaérobies strictes Gram positif et sporulées réduisent les sulfites en sulfure d'hydrogène. La plus caractéristique est Clostridium perfringens, seule espèce exclusivement fécale et seule pathogène du groupe. Ces spores sont résistantes aux stress environnemental, peuvent survivre plus longtemps dans l'eau et résister à la désinfection quand la concentration en désinfectant et le pH ou la durée de contact ne sont pas satisfaisants. Leur persistance dans l'eau désinfectée peut être un signe de défaut dans le traitement ou la pollution fécale ancienne.

Principe

Il s'agit d'une réaction de réduction du sulfite de sodium, sulfure d'hydrogène (H₂S) avec production de sulfure de fer qui se manifeste par l'apparition d'un halo noir autour des colonies.

Les bactéries ASR ou les Clostridiumsulfito-réducteurs voire les Clostridium perfringens sont des micro-organismes capables de sporuler. Ces spores résistent à un chauffage de 15 minutes à (75±5) °C. Elles sont capables de se développer à 37±1°C en 44±4heures en anaérobiose sur un milieu gélosé contenant des sels de fer.

Au Canada et dans certains pays développés, des recommandations concernant la qualité des eaux de baignade ont été établies. Elles sont consignées dans le (Tableau IV)[23].

Tableau IV: Recommandations concernant les eaux de baignade

Pays ou organisation	Indicateur d'eaux marines	Paramètres et recommandations
		Moyenne géométrique de la concentration :35/100 mLConcentration maximale dans un seul échantillon b
U.S. EPAa	Entérocoques	:104/100 mL
		95e centile/100 mL:
OMS		A : ≤40
Entérocoques		B:41-200
intestinaux		C: 201-500
	Entérocoques intestinaux	D:>500
		95e centile/100 mL:
		Excellente: 100/100 Ml
		Bonne : 200/100
		90e centile/100 mL:
Union européenne	Entérocoques intestinaux	Acceptable: 185/100 mL
		95e centile/100 mL:
		Excellente : 250/100 MI
		Bonne : 500/100
		90e centile/100 mL:
	Escherichia. coli	Acceptable : 500/100 mL

II-4-2-Contrôle physico-chimique

Les paramètres physico-chimiques classiques sont recherchés selon plusieurs méthodes d'analyse :

II-4.2.1.Électrochimie pour le pH

Le pH des systèmes aqueux mesure l'équilibre acido-basique atteint par différents composés en solution. Il représente la concentration en ions H_3O^+ (hydronium) [58] selon cette formule $\mathbf{pH} = -\log H_3O^+$

L'échelle du pH varie entre 0 et 14. Un pH inférieur à 6,5 est dit acide et basique lorsqu'il est supérieur à 8,5.

Le principe de la mesure électrométrique du pH à l'aide d'un pH-mètre est basé sur la différence de potentiel existant entre une électrode de verre et une électrode de référence (calomel – chlorure de potassium saturé) laquelle différence de potentielle est liée à la présence d'ions hydrogènes [H⁺] dans le milieu [59].

II-4.2.2.Détermination de la Turbidité

La détermination de la turbidité se fait par la méthode néphélométrie. Elle consiste à mesurer la lumière diffusée formant un angle de 90° avec la lumière incidente [60]

II-4.2.3.La conductivité

La conductivité d'une solution est la mesure de la capacité des ions à transporter le courant électrique. Ce passage du courant électrique s'effectue par la migration des ions dans un champ électrique produit par un courant alternatif. Un courant alternatif est utilisé pour atténuer la perturbation causée par la polarisation des électrodes résultant du passage d'un courant électrique. Les électrolytes peuvent être considérés comme des conducteurs métalliques et ils obéissent à la loi d'Ohm. En appliquant une force électromotrice constante entre les électrodes, la variation de l'intensité de courant est inversement proportionnelle à la résistance de la solution [61].

II-4.2.4.La colorimétrie

Les analyses wagtech sont basées sur la mesure de l'intensité des couleurs absorbées par un échantillon auquel des réactifs ont été ajoutés par rapport à un échantillon non traité (blanc) par un photomètre wagtech. Dans un colorimètre, un faisceau de lumière blanche passe à travers un filtre optique qui ne transmet qu'une certaine bande de longueur d'onde lumineuse au photo détecteur, au

niveau duquel elle est alors mesurée. La différence entre la quantité de lumière colorée transmise par un échantillon incolore (le "blanc") et la quantité de lumière colorée transmise par un échantillon coloré correspond à l'analyse de la quantité de lumière colorée absorbée par l'échantillon. Les photomètres wagtech calculent les résultats du test avant de les afficher directement en milligrammes par litre (mg/l) du facteur de test, en comparant la quantité de lumière absorbée aux données d'étalonnage programmées dans l'instrument [62].

II-4.2.5.Méthodes chromatographiques

La Chromatographie liquide est une technique séparative d'analyse basée sur la distribution de substances contenues dans un échantillon (soluté) entre deux phases : une phase stationnaire fixe solide ou liquide et une phase mobile φm liquide (fluide). Les pesticides, les hydrocarbures aromatiques polycycliques sont déterminés par méthodes chromatographiques [63].

II-4.2.6.Méthodes spectrométriques

Ils mettent en jeu l'interaction des radiations électromagnétiques avec la matière se traduisant par absorption ou émission de photons. Les métaux peuvent être analysés par spectrophotométrie d'absorption atomique ou par spectrophotométrie d'émission atomique [64]. Les valeurs limites des paramètres physico chimiques sont consignées dans le (Tableau V) et (Tableau VI).

Tableau V : Normes françaises de qualité relative aux eaux de baignade (extrait de l'annexe 1 du décret n° 81-324 du 7 avril 1981 modifié par le décret n° 91-980 du 20 septembre 1991

parametre physico chimiques	valeur guide G	valeur imperative I
ph		6 a 9
coloration		pas de changement anormal de la couleur
huiles minerales	inferieur ou egale a 0,3	pas de film visible a la surface de l eau et absence dodeur
substances tensio actives reagissant au bleu de methylene mg/ ml(lauryl-sulfate)	0,3	pas de mousse persistance
phenols		aucune odeur specifique
transparence	2	1
oxygene dissous	80 a 120	
residus goudronneux et		
matieres flottantes	absence	

*G : Le nombre guide G caractérise une bonne qualité de la zone de baignade vers laquelle il faut tendre.

* I : Le nombre impératif I constitue la limite au-delà de laquelle la zone de baignade est considérée comme étant de mauvaise qualité.

Tableau VI : Normes de qualité de base pour les eaux de surface ordinaires (AR du 4/11/1987) [65]

	_	
ph	Degre c	6 a 9
temperature	Degre c	25
	porcentage de	
oxygene dissous	saturation	50
NH4+		2
phosphore total	mg/ml	1
chlorures	mg/ml	250
sulfates	mg/ml	150
HAP	ng/ml	100
pesticides		
organochlores		
totaux	ng/ml	30
pesticides		
organochlores par		
substance	ng/ml	10
cadmium total	mg/ml	0,001
chrome total	mg/ml	0,05
plomb total	mg/ml	0,05
mercure total	mg/ml	0,0005
zinc	mg/ml	0,3
cuivre total	mg/ml	0,05
nickel total	mg/ml	0,05
arsenic	mg/ml	0,05
cyanure totaux	mg/ml	0,05
hydrocarbure		
aromatique		
monocyclique	ug/ml	2

CARACTÉRISATION DES EAUX DE BAIGNADE EN OCÉAN ATLANTIQUE : cas de la plage de Vridi et Port-bouët centre (Abidjan-Côte d'Ivoire)

Deuxième partie : ÉTUDE EXPÉRIMENTALE

I-MATÉRIEL ET MÉTHODES

I-1-Type et cadre de l'étude

Ce travail est une étude analytique réalisée dans le sud de la Côte d'Ivoire dans la région des lagunes sur les eaux de baignade en mer à Vridi et Port Bouët centre. Les analyses ont été réalisées pour les paramètres physico-chimiques classiques et microbiologiques à l'antenne de l'Institut National Hygiène Publique (INHP) d'Abidjan puis les HAP, les pesticides et les métaux lourds au Laboratoire National d'Appui au Développement Agricole (LANADA) à Abidjan.

I-2-Matériel

I-2-1-Appareillage

L'appareillage est constitué de :

- Un chromatographe liquide (SHIMADZU)
- Spectrophotomètre ICP-OES (Perkin Elmer)
- pH-mètre à sonde (HACH HQ 11d-France),
- Turbidimètre (HACH 2100Q IS),
- Conductimètre à sonde (HACH HQ 14 d-France),
- Bain marie (THERMOSTATIC BATH)
- Photomètre wagtech 7100
- Rampe de filtration (SCHOTT DURAN)
- verrerie de laboratoire
- Autoclaves de paillasse,
- burette graduée
- GPS (GARMIN ETATS UNIS)

I-2-2-Réactifs

Les réactifs utilisés sont de qualité analytique. Ils sont constitués de réactifs de chimie et de microbiologie.

Réactifs de chimie :

Les réactifs de chimie utilisés sont de marque wagtech. Ils sont consignés dans le (Tableau VII):

Tableau VII : les réactifs utilisés pour la chimie

reactifs	parametres recherches
pastilles Nitratest, poudre Nitratest et pastille Nitricol	nitrates et nitrites
pastilles Ammonia N°1 et Ammonia N°2	ammonium
pastille Iron. HR	fer
pastilles Aluminium N° 1 et Aluminium N° 2	aluminium
pastilles de Manganèse N°1 et N°2	manganese
pastilles Hardicol N°1 et N°2	durete totale
pastilles Fluorure N°1 et N°2	fluorures
pastille Alkaphot	alcalinite
pastille Acidifying CD et la pastille Chloridol	chlorures
pastille SulphateTurb	sulfates
pastille Potassium K	potassium
pastilles phosphate HR et Phosphate SR	phosphates
pastilles Calcicol N°1 et Calcicol N°2	calcium
pastilles magnecol	magnesium
pastilles siica PR, silica n 1, silica n2	silice et silicate
dechlor et zinc	zinc
permanganate de potassium, acide sulfurique et	
oxalate de sodium	matiere organique

Réactifs de microbiologie :

Les réactifs de microbiologie sont constitués des milieux de culture Rapid'E coli 2 Agar (Bio 3 Rad France), BEA (Bio Rad France), gélose TSN (Bio Rad France), EPT (eau peptonée tamponée), Pseudosel, EPA (eau peptonée alcaline), YGC (yeast glucose chloramphénicol).

I-3-Méthodes

I-3-1-Géolocalisation des zones de prélèvements : repérages par GPS

Mode opératoire du GPS

Le GPS, Global Position System (en anglais) ou Système de Positionnement Global, est un appareil qui permet de déterminer les coordonnées spatiales d'un objet ou de se repérer dans l'espace géographique. Adapté aux travaux de terrain, il a été utilisé pour le repérage du site.

L'appareil est d'abord mis sous tension et ensuite placé sur ou près de la cible avec l'écran face au ciel. Pour déterminer la position d'un objet, il lui faut capter le signal d'au moins trois satellites. En situation de bonnes conditions atmosphériques ou le ciel est très dégagé, il peut capter un grand nombre de satellites et cela ne fait qu'affiner la précision des coordonnées de l'objet. Une fois les satellites captés, l'appareil détermine la longitude et la latitude pour un repérage en Degré.

I-3-2- Méthodes de prélèvement, Transport et Conservation des échantillons

I-3.2.1.Échantillonnage

L'échantillonnage était constitué des échantillons provenant des eaux de baignade en mer dans deux quartiers de la commune de Port Bouët (Port Bouët centre et Vridi).L'échantillonnage s'est fait au cours de cinq campagnes bien distinctes : décembre 2017, janvier, février, mars et avril 2018. Le nombre d'échantillons par campagne était constitué de :

Un (1) échantillon de 1000 ml pour les analyses physicochimiques ;

Un (1) échantillon de 1000 ml pour la recherche des vibrio ;

Un (1) échantillon de 500 ml pour les autres analyses microbiologiques ;

Un (1) échantillon de 1000 mL pour les analyses des métaux lourds, des pesticides et des hydrocarbures aromatiques polyinsaturés (HAP) uniquement dans le mois de Décembre.

I-3.2.2.Prélèvement, Transport et Conservation des échantillons

Les prélèvements ont été réalisés selon les recommandations de l'OMS/PNUE [66]. Les échantillons d'eau étaient rangés dans une glacière en vue de les emmener au laboratoire tout en respectant la chaine de froid assurée par des accumulateurs de glace. Les échantillons prélevés étaient transportés à l'abri de la lumière à une température allant de 4°C à 8°C. Les échantillons prélevés pour la recherche de vibrio avaient été mis dans une glacière sans accumulateurs de glace. Ils ont été acheminés au laboratoire le plus rapidement possible c'est-àdire dans les 4 heures qui suivaient le prélèvement pour les différentes analyses.

Avant la détermination des paramètres physicochimiques classiques, les échantillons sont disposés sur la paillasse le temps que leur température revienne à la température ambiante.

I-3-3- Analyses des échantillons

I-3.3.1. Analyses organoleptiques et physicochimiques

I-3-3-1-1Analyse des paramètres organoleptiques

Les caractères organoleptiques constituent les facteurs d'alerte pour une pollution sans présenter à coup sûr un risque pour la santé. Les paramètres organoleptiques analysés dans notre étude sont la couleur et la turbidité.

I-3-3-1-1-1 Mesure de la Couleur

La couleur de l'eau est liée à la présence de substances organiques, de métaux comme le fer, le manganèse ou de rejets industriels [67].

La détermination de la couleur repose sur le principe de comparateur de couleur. La couleur est évaluée par simple observation visuelle. Elle est mesurée par comparaison visuelle avec une série de solutions standards.

I-3-3-1-1-2 Détermination de la Turbidité

Mode opératoire

- 1. Rincer le flacon avec environ 10 ml de l'échantillon d'eau, boucher le flacon avec le capuchon à vis et retourner le flacon plusieurs fois. Verser l'échantillon utilisé et répéter la procédure de rinçage deux ou trois fois.
- 2. Remplir le flacon rincé avec l'échantillon jusqu'au repère indiqué sur le flacon. Boucher le flacon avec le bouchon à vis fourni.
- 3. Essuyer le flacon avec un chiffon doux ou pelucheux fourni. Vérifier que l'extérieur du flacon est sec, propre et dépourvu de tâches.
- 4. Appliquer une fine couche d'huile de silicone (fournie) sur le flacon de d'échantillon. Essuyer avec un chiffon doux pour obtenir une répartition homogène sur toute la surface du flacon.
- 5. Placer le flacon dans la cuve échantillon et aligner le repère du flacon sur le repère du mesureur.
- 6. Pousser sur le flacon jusqu'à ce qu'il soit bien placé.
- 7. Obstruer le flacon avec le capuchon pare-lumière.
- 8. Allumer le mesureur en appuyant sur ON/OFF et attendre quelques secondes pour lire la valeur affichée sur l'écran de l'appareil (valeur en UNT)

I-3-3-1-2 Analyse physico-chimique

I-3-3-1-2-1 Mesure du pH

Mode Opératoire

- 1- -Rincer l'électrode avec de l'eau distillée. Si l'électrode pH est desséchée, la tremper durant 30 minutes dans une solution de KCl 2M 4M.
 - 2- Allumer le pH-mètre.
 - 3- Étalonner le pH-mètre avec une solution d'étalonnage de pH= 4 et pH=7
- 4- Plonger l'électrode dans l'échantillon. La membrane de verre doit être totalement immergée. Agiter légèrement l'électrode pour homogénéiser le milieu.

Attendre que la mesure se stabilise et procéder à la lecture directement sur l'affichage digital de l'appareil

I-3-3-1-2-2 Détermination de la conductivité

✓ Mode Opératoire

1-Rincer la cellule à l'eau distillée.

Afin d'éviter une dilution ou une contamination, rincer la cellule avec la solution de mesure.

- 2- Appuyer sur ON pour allumer l'appareil.
- 3- Étalonner l'appareil.
- 4- Plonger la cellule dans l'échantillon en s'assurant que les deux anneaux en acier sont immergés (Ne Pas retirer la protection en plastique jaune). Remuer légèrement à l'aide de la cellule.
- 5- Attendre que la mesure soit stabilisée et procéder à la lecture

I-3-3-1-2-3. Mesure de la température

La température est mesurée sur le terrain à l'aide d'un appareil de mesure de température qu'on plonge dans un échantillon d'eau prélevé. Le résultat est lu directement sur l'écran de l'appareil en degré Celsius (°C).

I-3-3-1-2-4. Dosage de l'Ammonium (NH4+)

✓ Mode Opératoire

- 1- Remplir un tube jusqu'à 10 mL de l'échantillon;
- 2- Ajouter une pastille « Ammonia $N^{\circ}1$ » et une pastille « Ammonia $N^{\circ}2$ », écraser et remuer pour dissoudre ;
- 3- Attendre 10 minutes pour permettre le développement complet de la couleur;
- 4- Sélectionner Phot 62 pour mesurer l'ammonium en milligramme par litre d'eau (mg/L NH₄⁺)
- 5- Lecture du résultat à 640 nm.
- 6- Le résultat s'affiche en mg/L NH₄⁺.

I-3-3-1-2-5. Dosage des Nitrites (NO₂-)

✓ Mode Opératoire

- 1- Remplir un tube jusqu'à 10 mL de l'échantillon à analyser;
- 2- Ajouter une pastille « Nitricol », écraser et remuer pour dissoudre ;
- 3- Attendre 10 minutes pour permettre le développement de la couleur ;
- 4- Sélectionner Phot 64 pour mesurer les nitrites en milligramme par litre d'eau (mg/L NO_2^-);
- 5- Lire le résultat à la longueur d'onde de 520 nm.

I-3-3-1-2-6. Dosage des Nitrates (NO₃-)

✓ Mode Opératoire

- 1- Prélever 20 mL d'échantillon dans le tube Nitratest;
- 2- Ajouter une cuillère de poudre Nitratest et une pastille Nitratest, ne pas écraser la pastille. Fermer le tube avec le capuchon et agiter pendant une minute;
- 3- Attendre une autre minute puis remuer le tube trois ou quatre fois pour permettre la floculation. Attendre encore deux minutes ou jusqu'à l'obtention d'une solution claire;
- 4- Enlever le capuchon et nettoyer le haut du tube avec un papier propre. Transférer le contenu de cette solution claire dans une éprouvette ronde, jusqu'au trait 10 ml;
- 5- Ajouter une pastille Nitricol, écraser et remuer pour dissoudre;
- 6- Attendre 10 minutes jusqu'au développement complet de la couleur;
- 7- Sélectionner la longue d'onde 570 nm du photomètre;
- 8- Lire le résultat qui s'affiche en milligramme de nitrates par litre d'eau (mg/L NO₃-).

I-3-3-1-2-7. Dosage des Chlorures (Cl-) et du Sodium (Na+)

✓ Mode Opératoire

- 1- Remplir le tube jusqu'à 10 mL de l'échantillon.
- 2- Ajouter une pastille « Acidifying CD », écraser et remuer pour dissoudre.
- 3- Ajouter une pastille « Chloridol », laisser la pastille se dissoudre pendant 2 minutes. Écraser ensuite toutes particules restantes (Une solution nuageuse indique la présence de chlorure).
- 4- Sélectionner Phot 46.
- 5- Lire le résultat à la longueur d'onde de 520 nm.

- 6- Le résultat s'affiche en milligramme de Chlorure par litre d'eau (mg/L Cl)
- 7- Aller à la concentration en mg/L
- 8- de Chlorure de sodium (NaCl)
- 9- Déduire la concentration de sodium par un calcul ([Na] = [NaCl]-[Cl])

I-3-3-1-2-8. Dosage du Fer (Fe)

✓ Mode Opératoire

- 1- Remplir le tube de 10 mL de l'échantillon à analyser.
- 2- Ajouter une pastille « Iron HR », écraser et remuer pour dissoudre.
- 3- Attendre une minute pour permettre le développement de la couleur.
- 4- Sélectionner Phot 19.
- 5- Lire le résultat à la longueur d'onde de 520 nm.
- 6- Le résultat s'affiche en milligramme de fer par litre d'eau (mg/L Fe).

I-3-3-1-2-9. Dosage du Manganèse (Mn)

✓ Mode Opératoire

- 1- Dans un tube, introduire 10 ml d'eau à analyser.
- 2- Ajouter une pastille de manganèse N°1, écraser et remuer pour dissoudre.
- 3- Ajouter une pastille de manganèse N°2, écraser et remuer pour dissoudre.
- 4- Fermer le tube et attendre 20 minutes pour permettre le développement de la couleur.
- 5- Sélectionner Phot 20.
- 6- Lire le résultat par rapport à une longueur d'onde de 640 nm.
- 7- Le résultat s'affiche en milligramme de manganèse par litre d'eau (mg/L Mn).

I-3-3-1-2-10. Dosage des Fluorures (F-)

Le dosage des fluorures s'effectue de la façon suivante:

1- Remplir le tube jusqu'à 10 mL de l'échantillon.

- 2- Ajouter une pastille « Fluorure N°1 », écraser et remuer pour dissoudre.
- 3- Ajouter une pastille « Fluorure N°2 », écraser et remuer pour dissoudre.
- 4- Attendre 5 minutes pour permettre le développement complet de la couleur.
- 5- Sélectionner Phot 14.
- 6- Lire le résultat qui s'affiche en milligramme de fluorure par litre d'eau (mg/L F).

I-3-3-1-2-11. Dosage de l'Aluminium (Al)

✓ Mode Opératoire

- 1- Prélever 10 mL de l'échantillon dans un tube ;
- 2- Ajouter une pastille « Aluminium N°1 », écraser et remuer pour dissoudre ;
- 3- Ajouter une pastille « Aluminium N°2 », écraser et remuer doucement pour dissoudre. Éviter d'agir vigoureusement ;
- 4- Attendre 5 minutes pour permettre le développement complet de la couleur.
- 5- Sélectionner Phot 3;
- 6- Lire le résultat par rapport à une longueur d'onde de 520 nm;
- 7- Le résultat s'affiche en milligramme d'Aluminium par litre d'eau (mg/L Al.)

I-3-3-1-2-12. Dosage des minéraux (Calcium, Potassium, Magnésium), des Sulfates, Phosphates, silice, silicate, soufre et zinc.

✓ Procédure de dosage du calcium

- 1- Filtrer l'échantillon pour obtenir une solution claire.
- 2- Remplir le tube jusqu'à 10 mL de l'échantillon
- 3- Ajouter une pastille « Calcicol N°1 », écraser et remuer pour dissoudre.
- 4- Ajouter une pastille « Calcicol N°2 », écraser et remuer pour dissoudre.

- 5- Attendre 2 minutes pour permettre le développement complet de la couleur.
- 6- Sélectionner Phot 60.
- 7- Lire le résultat qui s'affiche en mg/L Ca.

✓ Procédure de dosage du potassium

- 1- Remplir le tube jusqu'à 10 mL de l'échantillon.
- 2- Ajouter une pastille « Potassium », écraser et remuer pour dissoudre.
- 3- Sélectionner Phot 30.
- 4- Lire le résultat qui s'affiche en mg/L K.

✓ Procédure de dosage du magnésium

- 1- Remplir le tube jusqu'à 10 mL de l'échantillon.
- 2- Ajouter une pastille « Magnecol », écraser et remuer pour dissoudre.
- 3- Attendre 5 minutes pour permettre à la couleur de se développer et à la turbidité de se dissiper.
- 4- Sélectionner Phot 21.
- 5- Lire le résultat s'affiche en mg/L Mg.

✓ Procédure de dosage des sulfates et soufre

- 1- Remplir le tube jusqu'à 10 mL de l'échantillon.
- 2- Ajouter une pastille « Sulphate Tub », écraser et remuer pour dissoudre.
- 3- Une solution nuageuse indique la présence de sulfate.
- 4- Attendre 5 minutes puis mélanger encore pour assurer l'homogénéité.
- 5- Sélectionner Phot 32.
- 6- Lire le résultat qui s'affiche en mg/L SO₄.

✓ Procédure de dosage des phosphates

1- Remplir le tube jusqu'à 10 mL de l'échantillon

- 2- Ajouter une pastille « Phosphate SR », écraser et remuer pour dissoudre.
- 3- Ajouter une pastille « Phosphate HR », écraser et remuer pour dissoudre.
- 4- Attendre 10 minutes pour permettre le développement complet de la couleur.
- 5- Sélectionner Phot 29.
- 6- Lire le résultat qui s'affiche en mg/L PO₄.

✓ Procédure de dosage des silices et silicates

- 1- Remplir le tube jusqu'à 10 mL de l'échantillon
- 2- Ajouter une pastille « Silica PR », écraser et remuer pour dissoudre.
- 3- Ajouter une pastille « Silica N 1 », écraser et remuer pour dissoudre.
- 4- Ajouter une pastille « Silica N 2 », écraser et remuer pour dissoudre
- 5 Attendre 5minutes pour permettre le développement complet de la couleur.
- 6- Sélectionner Phot 56.
- 7- Lire le résultat qui s'affiche en mg/L SIO2.

✓ Procédure de dosage du zinc

- 1. Remplir le tube jusqu'à 10 mL de l'échantillon
- 2. Ajouter une pastille «zinc», écraser et remuer pour dissoudre.
- 3. Ajouter une pastille «Dechlor », écraser et remuer pour dissoudre.
- 4. Attendre 5 minutes pour permettre le développement complet de la couleur.
- 5. Sélectionner Phot 35.
- 6. Lire le résultat qui s'affiche en mg/L Zinc.

I-3-3-1-2-13. Détermination du Titre Alcalimétrique Complet (TAC) et bicarbonate

✓ Mode Opératoire

- 1- Remplir le tube jusqu'à 10 mL de l'échantillon.
- 2- Ajouter une pastille « Alkaphot », écraser et remuer pour dissoudre totalement la pastille.
- 3- Attendre une minute et mélanger encore.
- 4- Sélectionner Phot 2.
- 5- Lire le résultat qui s'affiche en mg/L CaCO₃.

I-3-3-1-2-14. Détermination du Degré Hydrotimétrique Total (DHT)

✓ . Mode Opératoire

- 1- Filtrer l'échantillon pour obtenir une solution claire.
- 2- Remplir le tube jusqu'à 10 mL de l'échantillon.
- 3- Ajouter une pastille « Hardicol $N^{\circ}1$ », écraser et remuer pour dissoudre.
- 4- Ajouter une pastille « Hardicol N°2 », écraser et remuer pour dissoudre.
- 5- Attendre 5 minutes pour permettre le développement de la couleur.
- 6- Sélectionner Phot 15.
- 7- Lire le résultat qui s'affiche en mg/L CaCO₃.

Remarque:

0<DHT<10°F : eau très douce

10°F<DHT<20°F : eau douce

20°F<DHT<30°F : eau moyennement dure

30°F<DHT<40°F : eau dure

DHT>40°F : eau très dure

I-3-3-1-2-15 Détermination de la matière organique

Mode opératoire

- 1. Transférer 25 ml de l'échantillon dans un tube à essai et y ajouter 5 ml d'acide sulfurique 2 puis mélanger
- 2. Placer le tube dans un bain d'eau bouillante pendant $10 \min + ou 2 \min$
- 3. Ajouter 5 ml de la solution de permanganate de potassium 1 et démarrer le chronomètre
- 4. Après $10 \min + ou 15$ s ajouter 5 ml de la solution d oxalate de sodium et attendre que la solution se décolore
- 5. Titrer la solution avec PP1 jusqu'à une coloration rose pâle persistante pendant 30 s puis noter le volume V1 DE PP1 consommé
- 6. Effectuer parallèlement la détermination du volume V0 d'un blanc (eau distillée) avec PP1
- 7. Conserver la solution (de l'essai à blanc) titrée pour l'étalonnage de la solution PP1 décrit comme suite:
- 8. Ajouter 5 ml delà solution d oxalate de sodium a la solution titrée conservée
- 9. Réchauffer si nécessaire, à environ 80 degré Celsius puis titrer avec le PP1 jusqu'à l'apparition d'une coloration rose pâle persistante pendant 30 s puis noter le volume V2 DE PP1 consommé.

I-3.3.2. Analyse des pesticides

Les pesticides ont été analysés par chromatographie liquide de haute performance en utilisant comme phase mobile un mélange eau-acétonitrile en mode gradient. Les pesticides ont été analysés au cours de la première campagne celle de Décembre.

✓ Protocole opératoire

1- Prélever 10 mL de l'échantillon

- 2- Activer la colonne C18 avec 10 mL de Méthanol
- 3- Ensuite 10 mL d'eau distillée
- 4- Faire passer les 10 mL de l'échantillon sur la colonne C18
- 5- Assécher la colonne pendant 30 minutes
- 6- Décrocher les pesticides avec 5 mL de méthanol
- 7- Récupérer dans un Vial pour l'injection au HPLC.

✓ Conditions analytiques

Débit de la phase mobile : 0,5 mL/min

Durée de l'analyse : 56 mn

Détection : 205 nm

Température du four : 40°c

Phase mobile : Eau (pompe B) – Acétonitrile (pompe A) en mode gradient

Temps (min) Pompe B (%) Pompe A (%)

0.01 75 25

40,00 40 60

47,00 0 100

55,00 0 100

56,0 Fin des analyses

✓ Liste des pesticides recherchés

- Désisopropylatratzine
- Metamitron
- Désethylatrazine
- Fénuron
- Crimidine
- Aldicarbe
- Métoxuron
- Monuron
- Cyanazine

- Méthabenzthiazuron
- Chlortoluron
- Monolinuron
- Métazaclor
- Chlorpropham
- Parathion-méthyl
- Chlorfenvinphos
- Vinclozolin
- Parathion-éthyl

I-3.3.3. Analyse des HAP

Les HAP ont été analysés par chromatographie liquide haute performance en utilisant comme phase mobile un mélange eau-acétonitrile en mode d'élution isocratique. Les HAP ont été recherchés au cours de la première campagne.

✓ Mode opératoire

- 1- Prélever 250 mL de l'échantillon
- 2- Activer la colonne C18 avec successivement 10 mL de méthanol et 10 mL d'eau distillée
- 3- Faire passer les 250 mL de l'échantillon sur la colonne C18
- 4- Assécher la colonne pendant 30 minutes
- 5- Décrocher les HAP avec 5 mL de méthanol
- 6- Récupérer dans un Vial pour l'injection au HPLC.

✓ Conditions analytiques

Phase mobile : Acétonitrile - Eau, v/v

Débit : 0.5 mL/min

Température du four : 40°c

Détection: 280 nm

Durée de l'analyse : 10 mn

I-3.3.4. Analyse des métaux lourds

Les métaux lourds ont été analysés par spectrométrie d'émission atomique (ICP-AES) dont la source est un plasma généré par couplage inductif selon la norme ISO 11885 : 2009. Un balayage des métaux lourds a été réalisé. Ils ont été recherchés au cours de la première campagne.

La spectroscopie d'émission atomique avec plasma couplé par induction (ICP-AES) est une technique d'analyse multi-élémentaire à fort potentiel. L'analyse par ICP-AES mesure les radiations émises par les atomes excités ou ionisés. Le rayonnement émis est spécifique d'un élément donné et son intensité est proportionnelle à sa concentration. Pour être excité, l'échantillon est nébulisé sous argon puis injecté dans une torche plasma où l'application d'un champ issu d'un générateur radio fréquence permet la création d'un plasma. Les températures atteintes par le plasma sont de l'ordre de 5000 à 10000 °K [68].

✓ Conditions d'analyse

Les eaux sont préalablement filtrées et acidifiées. Dans les cas d'échantillons contenant des matières en suspension ou pour des sédiments une mise en solution est nécessaire.

I-3.3.5. Analyse microbiologique

I-3-3-5-1. Description de la méthode par la membrane filtrante

La méthode par la membrane filtrante est la plus utilisée au laboratoire et nécessite un appareil de filtration constitué :

- D'un entonnoir cylindrique recevant le liquide ;

- D'un poste de filtration en acier fritté sur lequel la membrane filtrante sera posée ;
- D'un flacon à vide destiné à recueillir le filtrat et relié à une pompe à eau ou pompe à vide.

Les membranes filtrantes utilisées pour la filtration sont généralement en ester de cellulose et d'une porosité de 0,45µm.

✓ Procédure de la membrane filtrante

Activités préopératoires :

- Stériliser l'unité de filtration (le poste de filtration et l'entonnoir cylindrique) de préférence par flambage soit à l'alcool ou à l'aide d'un camping gaz ;
- Étiqueter les milieux de culture en fonction du numéro des échantillons ;
- Sécher les milieux de cultures pour ramener leur température à 37°C;
- Allumer le feu du bec Bunsen favorisant un environnement stérile;

o Filtration:

- 1- Ouvrir les robinets des postes de filtration (seuls les robinets des postes de filtration à utiliser sont ouverts);
- 2- Porter la membrane sur le poste de filtration et placer l'entonnoir cylindrique;
- 3- Prélever 100mL de l'échantillon d'eau à analyser et transvaser dans l'entonnoir;
- 4- Ouvrir le robinet servant à faire le vide pour permettre la filtration ;
- 5- Ôter l'entonnoir cylindrique pour retirer la membrane du poste de filtration avec une paire de pinces stérilisée à nouveau puis porter la membrane sur un milieu correspondant pour la recherche d'une bactérie donnée;

6- Incuber les milieux ainsi cultivés aux températures correspondantes

pendant 18 heures à 24 heures;

7- À la fin du temps d'incubation, procéder à la lecture du milieu pour

dénombrement les bactéries :

8- Si nécessaire, confirmer les résultats de la culture par des tests de

confirmation.

L'analyse microbiologique a porté sur :

- La recherche et le dénombrement des coliformes totaux, thermotolérants

et streptocoques fécaux;

La recherche et le dénombrement des germes anaérobies sulfito réducteurs

(ASR)

I-3-3-5-2. Les coliformes totaux et thermotolérants

Mode opératoire

1 Filtration sur une membrane une prise d'essai (100mL) de l'échantillon

d'eau soigneusement homogénéisée à analyser. La membrane est ensuite placée

à la surface de la gélose Rapid'E coli 2;

2 Incubation durant 24 à 48 heures à une température de 37°C;

3 Dénombrement des colonies :

Bleues: coliformes totaux

Violettes : coliformes thermotolérants (*E. coli*)

I-3-3-5-3. Dénombrement des streptocoques fécaux

La culture des streptocoques s'est faite sur la gélose BEA (Bile-Esculine-Azide

de sodium).

Mode opératoire

- 1 Filtrer sur une membrane une prise d'essai (100mL) de l'échantillon d'eau soigneusement homogénéisée à analyser. La membrane est ensuite placée à la surface de la gélose BEA
- 2 Incuber durant 24 heures à une température de 37°C
- 3 Dénombrer les colonies entourées d'un halo noir

I-3-3-5-4. Recherche des spores de micro- organismes anaérobies sulfito-réducteurs (ASR) par filtration sur membrane

Mode opératoire

- Sélectionner les spores bactériennes dans l'échantillon par un chauffage au bain-marie à 75±5°C pendant 15 minutes, pour que les cellules végétatives soient détruites.
- Filtration de 100 ml d'échantillon à travers une membrane filtrante stérile de pores de 0,45 μm pour que les spores de bactéries soient retenues à l'intérieur de la membrane filtrante.
- 3 Dépôt de la membrane à l'envers sur un milieu de culture spécialement sélectif (gélose Tryptone Sulfite Néomycine: milieu TSN).

L'anaérobiose est créée par une seconde couche de ce milieu sur la membrane.

4 Incubation des boîtes à 37±1°C pendant 44±4 heures.

Dénombrement des spores de micro-organismes ASR

Durant l'incubation, il y a réduction du sulfite de sodium, sulfure d'hydrogène (H₂S) et donc production de sulfure de fer se manifestant par un halo noir autour des colonies. Seul ce type de colonie est compté.

I-3-3-5-5. Dénombrement des vibrio

Mode opératoire

- 1 Filtration de 1000 ml d'échantillon à travers une membrane filtrante stérile dont les pores présentent une dimension de 0,45 μm.
- 2 Placer les membranes enroulées dans de l'eau peptonée alcaline
- 3 Incuber pendant 16 h à 37°C
- 4 les vibrio se situent en surface (surnageant est un film blanchâtre à la surface)
- 5 Ensemencement sur milieu TCBS
- 6 Les colonies plates, lisses et de couleur jaune ou verte sont dénombrées.

I-3-3-5-6. Dénombrement des salmonelles

Mode opératoire

- 1 Filtrer 250 ml d'eau
- Faire le pré-enrichissement en eau peptonée tamponnée à 37 °C pendant 18 à 24 heures
- Mettre 0,1 ml de subculture à l'aide d'une pipette stérile dans du bouillon de Rappaport de Vassiliadis contenu dans chaque tube à vis stérile,
- 4 Incuber à l'étuve à 42°C pendant un temps de 18 à 24 heures.
- 5 Ensemencer sur géloses SS et Hektoen par technique de stries d'épuisement à partir du bouillon d'enrichissement
- 6 Incubation à l'étuve 37°C pendant 18 à 24 heures
- Après 24 heures, les colonies isolées sur les géloses présentant les caractéristiques macroscopiques des salmonelles (colonies incolores à centre noir sur SS et colonies verdâtre ou bleuâtres à centre noir sur Hektoen)
- 7 Portoir réduit de le Minor est utilisé pour l'identification biochimique

I-3-3-5-7. Dénombrement des pseudomonas

Mode opératoire

- 1 Filtrer 100 ml d'eau
- 2 Placer les membranes dans le milieu pseudosel ou cetrimide
- 3 Après 18 à 24 heures dénombrer les colonies suspectes bleu vert

I-3-3-5-8. Dénombrement des levures et moisissures

Mode opératoire

- 1 Filtrer 100 ml d'eau
- 2 Placer les membranes sur le milieu YGC
- 3 après 24 à 48 heures dénombrer les colonies
- 4 Grosses colonies blanchâtres muqueuses : levures
- 5 Grosses colonies duveteuses : moisissures

I-3-3-5-9. Dénombrement des staphylocoques

Mode opératoire

- 1 Filtrer 100 ml d'eau
- 2 Placer les membranes sur le milieu Baird Parker
- 3 Incuber 24 à 48 heures à 37°c
- 4 lecture des colonies noires entourées d'un halo translucide et d'un halo transparent
- 5 Coloration de gram (Cocci gram positif en amas ou en diplocoques)
- 6 Ensemencements des milieux Chapman mannitée, du bouillon cœur cervelle la gélose à ADN et la gelose ordinaire
- 7 Les staphylocoques sont mannitol positif, staphylocoagulase libre, DNA, catalase et thermonuclease positive.

I-3-3-5-10. Dénombrement des légionnelles Mode opératoire

- 1 Traiter l'eau pour la débarrasser des bactéries interférentes
- 2 Filtrer 100 ml de l'échantillon
- 3 Placer le filtre sur deux milieux (milieux BCYE avec L cysteine et sans cysteine)
- 4 Dénombrer les colonies blanchâtres qui pousseraient sur le milieu BCYE avec L cysteine.

I-3-4-Les méthodes d analyse statistique

L'analyse statistique regroupe l'analyse descriptive permettant de présenter les données observées sous forme de tableau ou de graphique facilitant ainsi la lecture et la compréhension et l'analyse inductive. Les logiciels utilisé pour le traitement de nos données était Excel, analysis toolPak. La comparaison des moyennes s'est faite par le Test t Student et de mann Whitney.

II-RÉSULTATS ET DISCUSSION

II-1-Résultats

Les résultats de la présente étude seront présentés en six volets :

- > Réalisation du positionnement des zones de baignade par repérage GPS
- L'analyse des paramètres organoleptiques et physico-chimiques
- L'analyse des paramètres bactériologiques
- La recherche des métaux lourds
- ➤ La recherche de pesticides
- ➤ La recherche des HAP

II-1-1-Géolocalisation des zones de baignade

Les coordonnées géographiques des zones de prélèvement sont ; Au niveau de la mer de Vridi une longitude de 05°15,145' et une latitude de 004°00,085'(FIGURE 4) puis au niveau de Port Bouëtcentre une longitude de 05°14,427'et une latitude de 003°54,555'(FIGURE 5).

FIGURE 4-Vue de la plage de Vridi

FIGURE 5-Vue de la plage de Port Bouët centre

II-1-2- Analyse des paramètres organoleptiques et physico chimiques

II-1.2.1.Analyse des paramètres organoleptiques et physico chimique de la mer de Vridi

Les paramètres organoleptiques analysés ont été la turbidité et la couleur. La couleur était inférieure à 15 UCV en dehors du mois de janvier ou elle était plus élevée. La turbidité quant à elle était supérieure à 5 UNT (Tableau VIII). La conductivité variait de 42,9 mS/cm (mois de Décembre) à 52,7mS/cm (mois de Mars), avec une moyenne de 48,34 mS/cm. La dureté moyenne était de 6400. La température moyenne enregistrée durant notre étude était de 29,36°C, avec un minimum au mois de février et un maximum au mois de Décembre. En moyenne, le pH enregistré lors de notre étude était de 7,27 avec un minimum de 6,25 obtenu pendant le mois de Février et un maximum de 8,34 obtenu au mois d'Avril (Tableau VIII).

Tableau VIII : Paramètres organoleptiques et physico-chimiques de la mer de VRIDI de Décembre à Avril

Paramètres physico-chimiques	Decembre	Janvier	Fevrier	Mars	Avril	Moyenne	Ecart type	Min	Max
couleur (UCV)	10	35	10	14	10	15,8	10,87	10	35
turbidite (UNT)	7,86	15,9	7,53	9,54	4,44	9,054	4,25	4,44	15,9
Conductivité (ms/cm)	42,9	47,3	49,3	52,7	49,5	48,34	3,60	42,9	52,7
Température (°C)	31,1	28,3	27,3	30,6	29,5	29,36	1,58	27,3	31,1
рН	6,69	7,05	6,25	8,02	8,34	7,27	0,88	6,25	8,34
Nitrates (mg/L)	0,94	0,28	1,4	0,32	0,06	0,6	0,55	0,06	1,4
Nitrites (mg/L)	0,04	0,02	0,01	0,01	0,03	0,022	0,01	0,01	0,04
Ammonium (mg/L)	1,22	2,45	0,96	4,2	5,3	2,826	1,88	0,96	5,3
Chlorure (mg/L)	4200	4000	2350	2300	3600	3290	907,19	2300	4200
DHT (°F)	5500	5500	5000	8000	8000	6400	1474,79	5000	8000
TAC (mg/L)	110	115	110	115	310	152	88,36	110	310
Fer	0,1	1,55	0,15	0,05	0,05	0,38	0,66	0,05	1,55
Manganese	0,001	0,001	0,002	0	0,001	0,001	0,00	0	0,002
Aluminium	0,04	0,01	0,01	0,01	0,01	0,016	0,01	0,01	0,04
Fluorure (mg/L)	5,1	9,5	14	2,9	3,5	7	4,69	2,9	14
Zinc	0,25	0,12	0,01	0,21	0,1	0,138	0,09	0,01	0,25
sulfate	138	155	142	136	160	146,2	10,69	136	160
sodium	2600	2600	2600	1500	2400	2340	477,49	1500	2600
Potassium (mg/L)	420	280	1100	460	270	506	342,46	270	1100
Phosphore (mg/L)	1,4	1,1	0,9	1,4	11,3	3,22	4,52	0,9	11,3
Magnésium (mg/L)	9000	5500	2000	6000	5000	5500	2500,00	2000	9000
Calcium (mg/L)	1000	1600	400	1600	2000	1320	626,10	400	2000
Phosphates	4,3	3,2	2,7	4,1	34,1	9,68	13,67	2,7	34,1
bicarbonate	65	65	65	70	180	89	50,92	65	180
Soufre	46	54	48	46	50	48,8	3,35	46	54
Silice (mg/L)	3	1,8	2,5	17,5	1,8	5,32	6,83	1,8	17,5
Silicates	6	3,9	6	37	3,9	11,36	14,37	3,9	37
Matiere organique	2,43	4,33	2,51	4,17	4,17	3,522	0,96	2,43	4,33

II-1.2.2.Analyse des paramètres organoleptiques et physico chimiques de la mer de Port Bouët centre

La coloration était pratiquement identique au cours des différentes campagnes. La turbidité quant à elle était légèrement élevée. La conductivité variait entre 41,7 ms/cm (mois de Décembre) et 53,3mS/cm (mois de Mars), avec une moyenne de 48,24 mS/cm. La dureté moyenne était de 6800. La température moyenne enregistrée durant notre étude était de 29,36°C, avec un minimum au mois de février et un maximum au mois de décembre. Le pH moyen enregistré

était de 8,01 ; avec un minimum de 7,56 obtenu pendant le mois de Février et un maximum de 8,42 obtenu au mois de Janvier(Tableau IX).

Tableau IX : Paramètres organoleptiques et physico-chimiques de la mer de Port Bouët centre de Décembre à Avril

Paramètres physico-chimiques	decembre	janvier	fevrier	mars	avril	moyenne	S	min	max
couleur (ucv)	10	10	15	10	15	12	2,74	10	15
turbidite (UNT)	6,59	2,53	5,04	3,87	8,21	5,248	2,23	2,53	8,21
Conductivité (ms/cm)	41,7	47,3	50,1	53,3	48,8	48,24	4,27	41,7	53,3
Température (°C)	31,1	30,1	27,4	30,2	30,3	29,82	1,41	27,4	31,1
рН	7,82	8,42	7,56	8,13	8,16	8,018	0,33	7,56	8,42
Nitrates (mg/L)	1,36	1,32	0,36	0,78	0,2	0,804	0,53	0,2	1,36
Nitrites (mg/L)	0,05	0,03	0,02	0	0,03	0,026	0,02	0	0,05
Ammonium (mg/L)	0,9	2,15	12,6	1,24	4,6	4,298	4,86	0,9	12,6
Chlorure (mg/L)	4400	4000	2850	3200	3400	3570	624,10	2850	4400
DHT (°F)	3500	7000	8500	8500	6500	6800	2049,39	3500	8500
TAC (mg/L)	90	120	115	100	245	134	63,19	90	245
Fer (mg/L)	0,1	0,1	0,2	0,01	0,25	0,132	0,09	0,01	0,25
Manganèse (mg/L)	0	0,001	0,001	0	0	0,0004	0,00	0	0,001
Aluminium (mg/L)	0,03	0,01	0,05	0,01	0,02	0,024	0,02	0,01	0,05
Fluorure (mg/L)	4,6	4,2	5,2	1,6	6,6	4,44	1,83	1,6	6,6
Zinc (mg/L)	0,15	0,09	0,01	0	0,1	0,07	0,06	0	0,15
Sulfate (mg/L)	145	155	136	150	170	151,2	12,64	136	170
Sodium (mg/L)	3000	2800	2800	2200	2000	2560	433,59	2000	3000
Potassium (mg/L)	480	300	520	480	280	412	112,78	280	520
Phosphore (mg/L)	1,2	0,6	0,8	0,6	4,5	1,54	1,67	0,6	4,5
Magnésium (mg/L)	6500	5500	7000	6000	4200	5840	1073,78	4200	7000
Calcium (mg/L)	800	1200	1800	2000	2600	1680	701,43	800	2600
Phosphates	3,6	1,7	2,4	1,7	13,5	4,58	5,05	1,7	13,5
bicarbonate	55	70	70	60	150	81	39,12	55	150
Soufre	50	54	46	50	55	51	3,61	46	55
Silice (mg/L)	2,5	1,6	37	12,5	2,2	11,16	15,13	1,6	37
Silicates	6	3,4	7	27,5	4,7	9,72	10,03	3,4	27,5
Matiere organique	2,08	5	2,4	3,82	4,86	3,632	1,35	2,08	5

II-1.2.3.Évolution globale des paramètres en fonction de la période

La couleur des eaux de baignade de Vridi semblerait être plus élevée que celle de port Bouët centre avec un pic observé au mois de janvier (FIGURE 6). Il en était de même pour le Fer (FIGURE 7) et la turbidité. La turbidité dans la zone de Vridi semblerait être plus perceptible que dans la zone de Port Bouëtcentre (FIGURE 8).

Les conductivités des deux zones de baignade se chevauchaient. Elles évoluaient pratiquement dans le même sens que la dureté observée dans la zone de Port Bouët centre (FIGURE 9). Les nitrites, le pH, les chlorures, les phosphores et les phosphates évoluaient pratiquement dans le même sens dans les deux zones (FIGURE 10), (FIGURE 11) et (FIGURE 12). Ces différentes concentrations (les nitrites, le pH, les chlorures) paraitraient plus élevées dans la zone de Port Bouët centre tandis que celle des phosphores et phosphate semblaient être plus élevées dans la zone de Vridi (FIGURE 13) et (FIGURE 14). Le nitrate présentait un pic remarquable au mois de février dans la zone de Vridi (FIGURE 15) tandis que l'ammonium, le silice et l'aluminium présentaient un pic remarquable dans la zone de Port Bouët centre (FIGURE 16), (FIGURE 17), (FIGURE 18). Il en était diffèrent pour le soufre qui présentaient un pic au mois de janvier dans les deux zones (FIGURE 19).

FIGURE 6-Évolution de la de la coloration des eaux de baignade Vridi et Port Bouët centre en fonction du temps

FIGURE 7-Évolution du Fer des eaux de baignade de Vridi et Port Bouet centre en fonction du temps

FIGURE 8-Évolution de la turbidité de Vridi et port Bouët centre en fonction du temps

FIGURE 9-Évolution de la conductivité et de la dureté des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 10-Évolution des nitrites des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 11-Évolution du pH des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 12-Évolution des chlorures des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 13-Évolution du phosphore des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 14-Évolution du phosphate des eaux de baignade de Vridi et Port Bouët centre en fonction du temps

FIGURE 15-Évolution des nitrates des eaux de baignade de Vridi et port Bouët en fonction du temps

FIGURE 16-Évolution de l'ammonium des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 17-Évolution des silices des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 18-Évolution de l'aluminium des eaux de baignade de Vridi et port Bouët centre en fonction du temps

FIGURE 19--Évolution du soufre des eaux de baignade de Vridi et port Bouët centre en fonction du temps

II-1.2.4.Comparaison de l'analyse physico chimique

L'égalité des moyennes de chacun des paramètres mesurés avait été faite avec le Test t Student (Tableau X). Les autres paramètres à savoir la couleur, le pH, le fer, le phosphore, le phosphate et l'ammonium ne répondent pas aux conditions d'application du test t Student d'où l'application d'un test non paramétrique de Mann Whitney (Tableau XI).

 $\label{eq:total comparation de deux moyennes par le Test t} \\ Student$

Variables	Moyenne 1	Variance 1	Moyenne 2	Variance 2	FOBS	FTHEO	Т
turbidite (UNT)	9,054	18,03528	5,248	4,97602	3,62443881	6,388	1,58682196
Température (°C)	29,36	2,488	29,82	1,987	1,2521389	6,388	-0,4349019
Nitrates (mg/L)	0,6	0,307	0,804	0,28448	1,07916198	6,388	-0,53050579
Chlorure (mg/L)	3290	823000	3570	389500	2,11296534	6,388	-0,5085658
TAC (mg/L)	152	7807,5	134	3992,5	1,95554164	6,388	0,33140686
Aluminium (mg/L)	0,016	0,00018	0,024	0,00028	1,5555556	6,388	-0,74600385
Sulfate (mg/L)	146,2	114,2	151,2	159,7	1,39842382	6,388	-0,60423236
Sodium (mg/L)	2340	228000	2560	188000	1,21276596	6,388	-0,68219104
Manganèse (mg/L)	0,001	0,0000005	0,0004	0,0000003	1,66666667	6,388	1,34164079
Magnésium (mg/L)	5500	6250000	5840	1153000	5,4206418	6,388	-0,24992232
Calcium (mg/L)	1320	392000	1680	492000	1,25510204	6,388	-0,76578413
bicarbonate	89	2592,5	81	1530	1,69444444	6,388	0,24919519
Soufre	48,8	11,2	51	13	1,16071429	6,388	-0,89442719
Silice (mg/L)	5,32	46,617	11,16	229,043	4,91329343	6,388	-0,70348682
Silicates	11,36	206,543	9,72	100,627	2,05256045	6,388	0,18714768
Matiere organique	3,522	0,92732	3,632	1,83532	1,97916577	6,388	-0,13236115
Conductivité (ms/cm)	48,34	12,988	48,24	18,258	1,40575916	6,388	0,03577938
Nitrites (mg/L)	0,022	0,00017	0,026	0,00033	1,94117647	6,388	-0,35777088
DHT (°F)	6400	2175000	6800	4200000	1,93103448	6,388	-0,31684721
Zinc (mg/L)	0,138	0,00897	0,07	0,00405	2,21481481	6,388	1,19188243

Valeur lue dans la table=2,306 à 08 degré de liberté au risque 0,05

F theorique=F0,95 (4,4)=6,388

- (1)=Vridi
- (2)=port Bouët centre

Tableau XI: Valeurs pour comparaison de deux moyennes par le test de Mann Whitney

Variables	RA	RB	MA	MB	m (nA,NB;0,05)
couleur (UCV)	27,5	27,5	12,5	12,5	2
рН	21	34	19	6	2
Fer (mg/ml)	27	28	13	12	2
Fluorure (mg/L)	30	25	10	15	2
Potassium (mg/L)	24,5	30,5	15,5	9,5	2
Phosphore (mg/L)	34	21	6	19	2
Phosphates (mg/ml)	34	21	6	19	2
Ammonium (mg/L)	27	28	13	12	2

MA = nA*nB+nA (nA+1)/2-RA

Mb=nA*nB+nB(nB+1)/2-RB

RA= somme des rangs occupés par les valeurs dans la zone de Vridi

RB= somme des rangs occupés par les valeurs dans la zone de Port Bouët centre

Ainsi, en examinant les résultats obtenus, il n'y avait aucune différence significative entre la zone de Vridi et Port Bouët centre.

II-1-3-Analyse microbiologique

La concentration maximale en coliformes totaux pour les deux zones de baignades était respectivement de 3500 CT/ 100 ml (mois de janvier) et 2300 CT/ 100 ml (pour les mois de février et mars) dans les eaux de baignade de vridi et celle de Port Bouët centre. Celle des Escherichia coli variait de 0 EC/ 100 ml (pour les mois de février et de mars) à 28 EC/ 100 ml (pour le mois d'Avril) dans la zone de Vridi tandis que dans la zone de Port Bouët centre elle demeurait constante (200 EC/100 ml) de janvier à mars puis diminuaient. Les entérocoques étaient absents au cours des campagnes de février et mars dans la zone de Vridi (Tableau XII).

Tableau XII : Paramètres microbiologiques de l'eau de mer de VRIDI et PORT BOUËT centre

			/RIDI			PORT BOUE	Trentre				
Décembre	lanvier			Δvril	MOYENNE			Février	Mars	Δvril	MOYENNE
						2017					GEOMETRIQUE
12H40	12H35	11H50	11H40	10H50		13H02	13H24	12H30	12H15	11H42	
15H00	14H37	15H15	14H00	13H23		15H00	14H37	15H15	14H00	13H23	
>150	3500	500	500	28	>935,6	>150	1100	2300	2300	25	>1175
>150	3500	500	500	28	>935,6	>150	1100	2300	2300	25	>1175
>150	700	0	0	28	>175,6	>150	200	200	200	25	>155
>150	2500	0	0	>150	>560	>150	1400	1100	1100	32	>756,4
0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0,6	3	0	0	0	4	1,4
9	0	0	0	2	2,2	12	0	0	0	2	2,8
0	0	0	0	0	0	0	0	0	0	0	0
						-	-			-	0
	~	-	-		,	-	-	-	-	-	7
	-					-					3
0	0	0	0	0	0	0	0	0	0	0	0
						_		_			
		Vridi				Pe	ort Boue	t centre	2		
		Vridi 95 e ce	ntile	90 c	entile		ort Bouë 5 e cent		90 ce	ntile	
	15H00 >150 >150 >150 >150 >150 0 1	2017 2018 12H40 12H35 15H00 14H37 >150 3500 >150 3500 >150 700 >150 2500 0 0 1 1 9 0 0 0 0 0 0 0 0 0 12 0 3 0	Décembre 2017 Janvier 2018 Février 2018 12H40 12H35 11H50 15H00 14H37 15H15 >150 3500 500 >150 700 0 >150 700 0 >150 2500 0 0 0 0 1 1 1 9 0 0 0 0 0 0 0 0 0 0 0 12 0 0 3 0 0 0 0 0	2017 2018 2018 2018 12H40 12H35 11H50 11H40 15H00 14H37 15H15 14H00 >150 3500 500 500 >150 3500 500 500 >150 700 0 0 >150 700 0 0 >150 2500 0 0 0 0 0 0 1 1 1 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 3 0 0 0 0 0 0 0	Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 12H40 12H35 11H50 11H40 10H50 15H00 14H37 15H15 14H00 13H23 >150 3500 500 500 28 >150 3500 500 500 28 >150 700 0 0 28 >150 2500 0 0 0 28 >150 2500 0 0 0 0 0 150 0	Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE 12H40 12H35 11H50 11H40 10H50 13H23 15H00 14H37 15H15 14H00 13H23 >150 3500 500 500 28 >935,6 >150 3500 500 500 28 >935,6 >150 700 0 0 28 >175,6 >150 2500 0 0 >150 >560 0 0 0 0 0 0 150 2500 0 0 0 0 0 0 0 0 0 0 150 2500 0 0 0 0 0 0 0 0 0 0 11 1 1 0 0 0 12 0 0 0 0 0	Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 32018 MOYENNE GEOMETRIQUE Décembre 2017 12H40 12H35 11H50 11H40 10H50 13H02 15H00 14H37 15H15 14H00 13H23 15H00 >150 3500 500 500 28 >935,6 >150 >150 3500 500 500 28 >935,6 >150 >150 700 0 0 28 >175,6 >150 >150 2500 0 0 0 0 0 150 >150 2500 0 0 0 0 0 0 0 0 150 0	Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE Décembre 2017 Janvier 2018 12H40 12H35 11H50 11H40 10H50 13H02 13H24 15H00 14H37 15H15 14H00 13H23 15H00 14H37 >150 3500 500 500 28 >935,6 >150 1100 >150 3500 500 500 28 >935,6 >150 1100 >150 700 0 0 28 >175,6 >150 200 >150 2500 0 0 28 >175,6 >150 1400 0 0 0 0 0 0 0 0 0 >150 2500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE Décembre 2017 Janvier 2018 Février 2017 12H40 12H35 11H50 11H40 10H50 13H02 13H24 12H30 15H00 14H37 15H15 14H00 13H23 15H00 14H37 15H15 >150 3500 500 500 28 >935,6 >150 1100 2300 >150 3500 500 500 28 >935,6 >150 1100 2300 >150 700 0 0 28 >175,6 >150 200 200 >150 2500 0</td> <td>Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE Décembre 2017 Janvier 2018 Février 2018 Mars 2018 12H40 12H35 11H50 11H40 10H50 13H02 13H24 12H30 12H15 15H00 14H37 15H15 14H00 13H23 15H00 14H37 15H15 14H00 >150 3500 500 500 28 >935,6 >150 1100 2300 2300 >150 700 0 0 28 >935,6 >150 1100 2300 2300 >150 700 0 0 28 >175,6 >150 1100 2300 2300 >150 2500 0</td> <td>Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 12H40 12H35 11H50 11H40 10H50 13H02 13H24 12H30 12H15 11H42 15H00 14H37 15H15 14H00 13H23 15H00 14H37 15H15 14H00 13H23 >150 3500 500 500 28 >935,6 >150 1100 2300 2300 25 >150 3500 500 500 28 >935,6 >150 1100 2300 2300 25 >150 700 0 0 28 >175,6 >150 1100 2300 2300 25 >150 2500 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0</td>	Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE Décembre 2017 Janvier 2018 Février 2017 12H40 12H35 11H50 11H40 10H50 13H02 13H24 12H30 15H00 14H37 15H15 14H00 13H23 15H00 14H37 15H15 >150 3500 500 500 28 >935,6 >150 1100 2300 >150 3500 500 500 28 >935,6 >150 1100 2300 >150 700 0 0 28 >175,6 >150 200 200 >150 2500 0	Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE Décembre 2017 Janvier 2018 Février 2018 Mars 2018 12H40 12H35 11H50 11H40 10H50 13H02 13H24 12H30 12H15 15H00 14H37 15H15 14H00 13H23 15H00 14H37 15H15 14H00 >150 3500 500 500 28 >935,6 >150 1100 2300 2300 >150 700 0 0 28 >935,6 >150 1100 2300 2300 >150 700 0 0 28 >175,6 >150 1100 2300 2300 >150 2500 0	Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 MOYENNE GEOMETRIQUE Décembre 2017 Janvier 2018 Février 2018 Mars 2018 Avril 2018 12H40 12H35 11H50 11H40 10H50 13H02 13H24 12H30 12H15 11H42 15H00 14H37 15H15 14H00 13H23 15H00 14H37 15H15 14H00 13H23 >150 3500 500 500 28 >935,6 >150 1100 2300 2300 25 >150 3500 500 500 28 >935,6 >150 1100 2300 2300 25 >150 700 0 0 28 >175,6 >150 1100 2300 2300 25 >150 2500 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

>200

II-1-4- Recherche de métaux lourds

>480

>590

Les métaux lourds analysés donnaient des valeurs pour la plupart inferieur à la limite de quantification en dehors de l'Arsenic et du fer qui étaient à un taux élevé (Tableau XIII).

EC/100ml

>200

Tableau XIII : Valeurs des métaux lourds analysés des eaux de baignade en merde Vridi et Port Bouët centre

		D . D		
metaux	Vridi	Port Bouet centre	Limite de quantification	Normes
Zn (ug/l)	30,9	24,8	50	300
Pb (ug/l)	4,67	4,25	5	50
Cr (ug/I)	20,8	17,6	5	50
Ni (ug/l)	5,35	4,97	1,1	50
Cd (ug/l)	<0,5	<0,5	0,5	5
Mo (ug/l)	0,471	0,304	50	
Cu (ug/I)	10,2	8,79	0,003	50
Mn (ug/l)	30,8	20,9	50	
Co (ug/I)	1,24	1,17	50	
Se (ug/l)	<10	<10	10	
Sb (ug/l)	0,289	0,118	10	
Hg (ug/l)	0,026	0,019		1
Sr (ug/l)	11,79	9,77	50	
As (ug/I)	6390	5660	5	50
Fe(ug/I)	6600	5580	50	
Al (ug/l)	1,24	1,17	10	

II-1-5-.Recherche des HAP

Tableau XIV : Valeurs des HAP analysés des eaux de baignade en mer de Vridi et Port Bouët centre

HAPs recherchés	Vridi	Port Bouët centre
Fluoranthène	0,14	0,12
Pyrène	7,73	0,34
Benzo(k) fluoranthène	0,5	0,19
Benzo(a) pyrene	0,28	0,11
Indéno(1,2,3-cd) pyrilène	0,13	0,11
Benzo(g,h,i)pyrilène	0,44	0,26
Benzo(a) anthracène	0,02	0,51
Benzo(b) fluoranthène	0,46	0,13
Somme des HAPs	9,7	1,76
Hydrocarbures totaux	17,95	38,35

FIGURE 20-Chromatogramme des HAP de la mer de vridi

FIGURE 21-Chromatogramme des HAP de la mer de port Bouët centre

II-1-6-Recherche des pesticides

Il y a la présence de quelques pesticides dans ces eaux de baignade.

Tableau XV : Valeurs des pesticides analysés des eaux de baignade en mer de Vridi et Port Bouët centre

		Con	centration (ug/l)
Pesticides recherchés			Vridi	Port Bouët centre
Organophosphorés		Chlorpropham	N D	N D
		Parathion-méthyl	0,003	N D
		chlorfenvinphos	N D	N D
		Vinclozolin	N D	N D
		parathion-éthyl	N D	N D
		Profenofos	N D	N D
		Chlorpyrifos éthyl	N D	N D
		Paraquart	N D	N D
Organochlorés		Metolachlore	N D	N D
		Endosulfan	N D	N D
Herbides dérivés de l urée et hé	térocycles azotés + carbamate+ triazines	2,4 D	N D	N D
		Glyphosate	N D	N D
		Fénuron	N D	N D
		Aldicarb	0,002	0,001
		Métoxuron	N D	N D
		Monuron	N D	N D
		Méthabenzthiazuron	N D	N D
		Chlortoluron	N D	N D
		Monolinuron	N D	0,009
		Isoproturon	0,019	N D
		Diuron	N D	N D
		Métobromuron	N D	N D
		Métazachlor	N D	N D
		Buturon	N D	N D
		Linuron	N D	N D
		Simazine	0,001	0,017
		Cyanazine	N D	N D
		Atrazine	N D	N D
		Propazine	N D	N D
		Terbuthylazine	N D	N D
		Prometryn	N D	N D
		Terbutryn	N D	N D
Pyréthrénoides		Cyperméthrine	N D	N D
		Lambda cyhalothrine	N D	N D
Somme des pesticides			0,025	0,027

FIGURE 22-Chromatogramme des pesticides recherchés Vridi

FIGURE 23-Chromatogramme des pesticides recherchés Port Bouët centre

II-2-Discussion

II-2-1- Contrôle microbiologiques des eaux de baignade de Vridi et Port Bouët centre

Les résultats microbiologiques des eaux de baignade de Vridi et Port Bouët centre ont été comparés aux normes algérienne, canadienne, européenne; à celle de l'Agence américaine de protection de l'environnement (US EPA) et à celle de l'OMS. Les coliformes totaux et les Escherichia étaient conformes à la norme algérienne car inferieure aux valeurs limites qui sont de 10000 CF/ 100 ml et 2000 EC/ 100 ml.

La concentration en entérocoques variait de 0 EF/ 100 ml (les mois de février et mars) à 2500 EF/ 100 ml (le mois de janvier) dans les eaux de baignade de Vridi. Dans celle de Port Bouët centre, elle variait de 32 EF/100 ml (mois d'avril) à 1400 EF/ 100 ml (le mois de janvier). Ces valeurs sont supérieures à la valeur guide qui est de (100 EF/ 100 ml) fixée par les normes algériennes [24]. Il faut aussi signaler que la Concentration en entérocoques était non conforme aux recommandations au sujet de la qualité des eaux utilisées à des fins récréatives au Canada et aux États Unis car supérieure à la concentration maximale dans un seul échantillon (> 70 entérocoques/100 ml pour le Canada, 104 entérocoques/100 ml pour les États Unis) et à la moyenne géométrique (35 EF/100 ml) [23] (Tableau XII). La Concentration en entérocoques dans les deux zones était également non conforme aux normes européennes et à celles de l'OMS (Tableau IV) car les 90 et 95 centiles étaient supérieurs aux valeurs de la classe D (eau de qualité insuffisante) (Tableau XII).

Cependant, du point de vue bactériologique, ces eaux sont de qualité acceptable au vue des normes algériennes pour la baignade car les concentrations étaient comprises entre les valeurs guides et impératives. Comparativement aux normes

canadiennes, US EPA, OMS, européenne ces eaux sont de qualité insuffisante pour la baignade.

Au vue de la norme canadienne, les entérocoques sont considérés comme meilleurs indicateurs disponibles de la qualité des eaux marines à vocation récréative [57,69]. Leur détection signale la contamination fécale de l'eau et de ce fait, la présence possible de bactéries, virus ou protozoaires fécaux pathogènes [23]. Ce qui pourrait justifier la présence de pseudomonas et de champignons au cours du mois de décembre et d'avril. La présence d'entérocoques pourrait indiquer un défaut d'assainissement du milieu lié au péril fécal car les entérocoques ne sont pas présents normalement dans les eaux non polluées et sont généralement considérés comme incapables de se développer dans les eaux récréatives [70]. L'absence de germes au cours des campagnes de février et mars dans la zone de Vridi pourrait se justifier tout d'abord par l'absence de baigneurs au cours des deux dernières campagnes car ils seraient la source principale d'apport de germes dans le milieu mais aussi par plusieurs phénomènes.

En effet, le devenir des bactéries entériques dans l'eau de mer est conditionné par un certain nombre de paramètres propre au milieu à savoir :

- -l'absorption et la sédimentation : les bactéries ont tendance à être adsorbées sur des particules en suspension. Elles se déposent et s'accumulent dans le sédiment du fond marin [71];
- -la dispersion et la dilution : ces deux phénomènes se produisent lors du déversement d'un rejet urbain dans la mer. Les bactéries fécales et surtout les coliformes disparaissent assez rapidement du milieu marin et ce phénomène s'accentue avec la distance du point d'émission. Il montre que la quasi-totalité des bactéries d'égout sont détruites après deux heures de suspension dans l'eau de mer. Il s'agit là aussi de facteurs réductionnels n'ayant aucune action bactéricide [72];

- la température de l'eau : celle-ci affecte la croissance bactérienne. En effet, une température élevée de l'eau a pour effet de limiter le temps de survie des bactéries entériques. Cependant, la température n'a pas un effet microbicide puisqu'elle ne fait que ralentir, retarder voire inhiber certaines réactions biochimiques. [73];
- la salinité : la salinité a un effet nocif sur la survie des bactéries entériques. Son augmentation ayant pour effet de diminuer leur taux de survie en créant un choc osmotique qui modifie la structure de la membrane et les capacités de transport. Cependant, la salinité n'est pas un facteur bactéricide mais, elle joue un rôle sélectif [71,74];
- le pH: bien que son action sur la survie des bactéries semble être moins efficace que les autres facteurs puisque dans les eaux marines le pH ne connait pas de grandes variations. Il semble exister un pH optimum de survie (5 pour la persistance d'E. coli dans l'eau de mer) [73].

De plus, il faut rajouter à ces facteurs physico-chimiques, des facteurs biologiques qui peuvent influer sur le temps de survie des entérobactéries dans l'eau de mer :

- -les prédateurs : il s'agit essentiellement de ciliés, flagellés et de crustacés. Les bactéries entériques sont des proies pour de nombreux organismes de tailles diverses [73] et vivant à des profondeurs différentes.
- -la compétition (vitale) entre les différentes espèces microbiennes : il est reconnu qu'il existe une concurrence vitale entre les nombreuses populations microbiennes se trouvant dans l'eau de mer, qui rappelons-le est un milieu salé, dilué, pauvre et dépourvu de qualités nutritives, sauf dans certaines zones. Les espèces marines autochtones ou celles qui se sont adaptées à la vie marine sont majoritaires. Les espèces allochtones (les bactéries entériques) sont soumises aux conditions défavorables mais non bactéricides du milieu (salinité, température).

II-2-2-Contrôle physico chimique des eaux de baignade de Vridi et Port Bouët centre

Sur le plan physico-chimique, La conductivité de ces deux eaux traduisent une forte minéralisation, puisque la conductivité des eaux marines doit être comprise entre 10000 et 30000 µS/cm (soit 10 à 30mS/cm) [75]. La turbidité semblait être plus perceptible à Vridi par rapport à Port Bouët centre mais cette différence n'était pas significative. La couleur dans les deux zones était conforme aux normes sur les eaux potables en dehors du mois de janvier ou elle était plus élevée dans la zone de Vridi. Cette élévation pourrait se justifier par les teneurs élevées en fer en ce mois. La présence du Fer s'expliquerait en outre par une pluie dans la journée du 14 janvier 2018 jour du prélèvement avec lessivage des sols.

En moyenne, le pH enregistré lors de notre étude de 7,27 pour la zone de Vridi et 8,01 dans la zone de Port Bouët centre. Les valeurs obtenues sont des valeurs normales puisque le pH de l'eau de mer varie entre 6,5 et 9 (Tableau V).

Les nitrates et nitrites étaient identiques dans les deux zones. Leurs concentrations en nitrate étaient inférieures à la valeur normative dans les eaux naturelles qui est 10 mg/l [76]. Ces eaux étudiées n'étaient donc pas assujetties à un risque de pollution par les nitrates. Quant à l'ammonium et le phosphore, ils étaient supérieurs à la norme de qualité de base pour les eaux de surface ordinaires (2 mg/l pour l'ammonium et 1 mg/l pour le phosphore) [65]. Ce taux signe une pollution de ces eaux par les effluents urbains. La concentration en phosphate dans la zone de Vridi était largement supérieure à la concentration en orthophosphate retrouvée dans les eaux superficielles de l'Oued Moulouya, une ville marocaine [77]. Cette disponibilité des orthophosphates peut être expliquée par les rejets urbains des agglomérations avoisinantes et le relargage du phosphore piégé en grande quantité dans les sédiments [77].

II-2-3-. Pesticides, HAP et métaux lourds

Les concentrations en métaux lourds étaient inferieurs pour la plupart à la limite de quantification et à la norme de qualité de base pour les eaux de surface ordinaires sauf ceux de l'arsenic et du fer qui étaient très supérieurs. Ces taux élevés pourraient être dût à la présence d'une variété d'industries le long des plages. On note également la présence d'herbicides, d'insecticides et d'hydrocarbure aromatique qui pourrait être due à l'utilisation de pesticides par les populations pour l'entretien de leur culture et aussi par la présence d'industries pétrolières[34,78].

CONCLUSION

Au terme de cette étude dont le but était de caractériser les eaux de baignade en mer des localités de Vridi et Port Bouët centre au moyen des paramètres microbiologiques et physico-chimiques.

La stratégie adoptée était de :

- Localiser le site par repérage GPS;
- Réaliser l'analyse des paramètres physico-chimiques classiques et microbiologiques ;
- Rechercher les HAP, les métaux lourds et les pesticides.

La mer de Vridi est localisée selon une longitude de 05°15,145' et une latitude de 004°00,085'puis celle de Port Bouët centre une longitude de 05°14,427'et une latitude de 003°54,555. Ces deux eaux de baignades sont de qualité acceptable pour la baignade au vue des normes algériennes. Comparativement aux normes canadiennes, US EPA, OMS, européennes, ces eaux sont de qualité insuffisante pour la baignade. Sur le plan physico-chimique, ces eaux de baignade étaient caractérisées par un pH moyen allant de la neutralité à l'alcalinité, par une forte minéralisation (48,34 à 48,8 mS/cm), des teneuses élevées en ammonium et en phosphore, des concentrations normales en nitrate, par la présence de HAP, des métaux lourds et des pesticides.

Les eaux de baignade en mer de Port Bouët centre et Vridi sont globalement de qualité satisfaisante au vue de la norme algérienne, mais de qualité insuffisante au vue des normes canadiennes, US-PA, OMS et Européenne.

.

contro	(Abidjan-Côte d'Ivoire)
RECOMMANDATI	ONS ET PERSPECTIVI

RECOMMANDATIONS

La qualité des eaux de baignade, représentant un atout économique majeur, doit être une préoccupation pour les autorités concernées et pour les populations. Ainsi, un certain nombre de points doivent être améliorés, voire mis en place :

- nettoyage des plages;
- mise en place d'infrastructures sanitaires (douches, ...) le long des plages ;
- surveillance continue de la qualité des eaux de baignade ;
- meilleure gestion des déchets industriels ;
- communication pour un changement de comportement des baigneurs ;
- installation des postes de contrôle pour informer les baigneurs.

PERSPECTIVES

- Réaliser une surveillance sanitaire mensuelle des eaux de baignades en mer fréquentées et étendre les études à toutes les eaux de surface utilisées comme eau de baignade en Côte d'Ivoire.
- Établir des normes nationales en matière d'eaux de baignade en mer.

REFERENCES BIBLIOGRAPHIQUES

- [1] Gleick PH, Palaniappan M. Peak water limits to freshwater withdrawal and use. Proc Natl Acad Sci. 2010;107(25):11155–62.
- [2] Morel J. Les ressources en eau sur Terre: origine, utilisation et perspectives dans le contexte du changement climatique—un tour d'horizon de la littérature. 2007.
- [3] 04 Eau Aspects économiques [Internet]. Les cahiers du DD outil complet. [Visité le 21/06/2018]. En ligne : http://les.cahiers-developpement-durable.be/vivre/04-eau-aspects-economiques.
- [4] Festy B, Hartemann P, Ledrans M, Levallois P, Payment P, Tricard D. Qualité de l'eau. Environ Santé Publique-Fond Prat. 2003;333–68.
- [5] De lambilly R, Le guern B, Ronin CH. Le transport maritime. 1989.
- [6] L'Afsset A. Risques sanitaires liés aux baignades artificielles.
- [7] Larbaigt G. Une meilleure connaissance des risques sanitaires liés à la baignade Incidence sur la réglementation et la prévention. Rev Sci Eau. 1989;2(2):295.
- [8] Organization WH. Guidelines for safe recreational water environments. Volume 1, Coastal and fresh waters. 2003 [Visité le 16/06/2018]; En ligne: http://apps.who.int/iris/handle/10665/42591.
- [9] Adjagodo A, Tchibozo MAD, Ahouangnivo NK, Lawani R. Flow of pollutants linked to anthropic activities and risks on worldwide surface water resource (literature review). Larhyss j issn 1112-3680. 2016;(28):7–23.
- [10] Sadat AW, n'goran EBZ, Siaka S, Parinet B. Intérêt de l'analyse multidimensionnelle pour l'évaluation de la qualité physico-chimique de l'eau d'un système lacustre tropical: cas des lacs de Yamoussoukro (Côte d'Ivoire). J Appl Biosci. 2011;38:2573–85.

- [11] Environnement littoral et marin, édition 2011 [Publications, références, 2011]: Observation et statistiques [Internet]. [Visite le 25/05/18].En ligne :http://webcache.googleusercontent.com/search?Q=cache:Sc9EuFs3E2sJ:www.statistiques.developpementdurable.gouv.fr/publications/p/1811/1097/environne ment-littoral-marin.
- [12] Rezo-Ivoire .net | La référence culturelle de la Côte d'Ivoire [Internet]. [Visitele18/02/18].En ligne :

http://www.rezoivoire.net/cotedivoire/patrimoine/272/les-plus-belles-plages-de-cote-d-ivoire.html#.woohfimz7iu.

- [13]. Ahoussi KE, Oga YMS, Koffi YB, Kouassi AM, Soro N, Biemi J. Caractérisation hydrogéochimique et microbiologique des ressources en eau du site d'un Centre d'Enfouissement Technique (CET) de Côte d'Ivoire: cas du CET de Kossihouen dans le District d'Abidjan (Côte d'Ivoire). Int J Biol Chem Sci. 2011;5():2524–42.
- [14] Ahoussi KE, Soro N, Soro G, Oga MS, Zadé S. Caractérisation de la qualité physicochimique et bactériologique des eaux de puits de la ville d'Abidjan (Côte d'Ivoire). Afr Geosci Rev. 2009;16(3):199–211.
- [15] Ahoussi E, Soro N, Koffi BY, Soro G, Biemi J. Origine de la minéralisation des eaux des aquifères discontinus sous couvert forestier de la zone Sud de la Côte d'Ivoire: cas de la région d'Abidjan-Agboville. Int J Biol Chem Sci. 2010;4(3).
- [16] Soro N, Ouattara L, Dongo K, Kouadio EK, Ahoussi EK, Soro G, et al. Déchets municipaux dans le District d'Abidjan en Côte d'Ivoire: sources potentielles de pollution des eaux souterraines. Int J Biol Chem Sci. 2010;4(6).
- [17] Ahoussi KE, Koffi YB, Kouassi AM, Soro G, Biemi J. Étude hydrochimique et microbiologique des eaux de source de l'ouest montagneux de

- la Côte d'Ivoire: Cas du village de Mangouin-Yrongouin (souspréfecture de Biankouman). J Appl Biosci. 2013;63(1):4703–4719.
- [18] Adidjatou O, Alassane M, Theodor D, Howélé O, Séraphin K. Étude de la qualité des eaux de consommation dans la localité de N'Zianouan s/p de Tiassalé et des quartiers précaires de trois communes du District d'Abidjan (Koumassi, Treichville, Attécoubé). J Appl Biosci. 102:9708–15.
- [19] Eblin S, Sombo A, Soro G, Aka N, Kambire O, Soro N. Hydrochimie des eaux de surface de la région d'Adiaké (sud-est côtier de la Côte d'Ivoire). J Appl Biosci. 2014 Apr 16;75(1):6259.
- [20] Abou T, Ernest AK, Natchia A, Adama T. Niveau de contamination par les pesticides des eaux des lagunes aghien et potou (sud-est de la côte d'ivoire). Int J Pure Appl Biosci. 2015;3(4):312–22.
- [21] Orou RK, Soro G, Soro DT, Fossou RMN, Onetie OZ, Ahoussi EK, et al. Variation saisonnière de la qualité physico-chimique des eaux souterraines des aquifères d'altérites du département d'Agboville (Sud-Est de la Côte d'Ivoire). Eur Sci J ESJ. 2016;12(17).
- [22] Ernest AK, Nagnin S, Gbombélé S, Théophile L, Solange OM, Pacôme ZS. Groundwater Pollution in Africans Biggest Towns: Case of the Town of Abidjan (Côte d'Ivoire). Editor Advis Board E. 2005;20(2):302–16.
- [23] Groupe de travail fédéral-provincial-territorial sur la qualité des eaux à usage récréatif (Canada), Canada, Santé Canada, Canada, Bureau de l'eau de l'air et des changements climatiques. Recommandations au sujet de la qualité des eaux utilisées à des fins récréatives au Canada [Internet]. Ottawa: Santé Canada; 2012 [Visite le 3/04/18]. En ligne:http://epe.lac-bac.gc.ca/100/201/301/liste_hebdomadaire/2012/electronique/w12-44-U-F.html/collections/collection 2012/sc-hc/H129-15-2012-fra.pdf

[24] Qualité requise des eaux de baignade (extrait de l'annexe du décret exécutif n°93-164 du 10 juillet 1993 - Recherche Google [Internet]. [Visite le 3/06/18].

Availablefrom:https://www.google.com/search?Q=Qualit%C3%A9+requise.

- [25] Graham S, Parkinson C, Chahine M. The Water Cycle. NASA Earth Obs. 2010.
- [26] Kira F. Earth's water cycle. New York: Tara funk. 2008.
- [27] Penman HL. The water cycle. Sci Am. 1970;223(3):98–109.
- [28] Lanoix JN, Roy ML. Manuel du technicien sanitaire. Genève: Organisation mondiale de la santé; 1976.
- [29] Les eaux souterraines, potabilité, eaux minérales et eaux de sources [Internet]. [Visite le 16/06/18]. En ligne: https://www.suezwaterhandbook.fr/eau-et-generalites/quelles-eaux-a-traiter-pourquoi/les-eaux-naturelles/les-eaux-souterraines.
- [30] Les eaux de surface, potabilité [Internet]. [Visite le 25/02/18] En ligne: https://www.suezwaterhandbook.fr/eau-et-generalites/quelles-eaux-a-traiter-pourquoi/les-eaux-naturelles/les-eaux-de-surface.
- [31] Conseil des académies canadiennes. Comité d'experts sur les eaux souterraines, Québec Province. Bureau d'audiences publiques sur l'environnement. La gestion durable des eaux souterraines au Canada points saillants du rapport. 2009;16.
- [32] Avenard JM. Le milieu naturel de la Côte d'Ivoire. Vol. 1. IRD Editions; 1971.
- [33] Kipré P. Sur la périodisation de l'histoire de l'Afrique de l'Ouest: le Golfe de Guinée. Afr Hist. 2004;2(1):85–96.

- [34] Tape JB. Géographie humaine du littoral ivoirien. Universite FELIX HOUPHOUET-BOIGNY Abidjan. 2015 2016.
- [35] Pollution littorale [Internet]. [Visite le 26/02/18].En ligne : https://www.u-picardie.fr/beauchamp/cours.qge/pol-litt/pol-litt.htm.
- [36] Bawa ML, Djaneye-Boundjou G, Boukari Y. Caractérisation de deux effluents industriels au Togo: étude d'impact sur l'environnement. Afrique Science, 02. 2005;57 68.
- [37] Voegborlo RB, Matsuyama A, Adimado AA, Akagi H. Determination of methylmercury in marine and freshwater fish in Ghana using a combined technique of dithizone extraction and gas—liquid chromatography with electron capture detection. Food Chem. 2011;124(3):1244–8.
- [38] Omo-Irabor OO, Olobaniyi SB, Oduyemi K, Akunna J. Surface and groundwater water quality assessment using multivariate analytical methods: A case study of the Western Niger Delta, Nigeria. Phys Chem Earth Parts ABC. 2008;33(8):666–73.
- [39] Belghyti D, El Guamri Y, Ztit G, Ouahidi M, Joti M, Harchrass A, et al. Caractérisation physico-chimique des eaux usées d'abattoir en vue de la mise en oeuvre d'un traitement adéquat : cas de Kénitra au Maroc. Afr Sci Rev Int Sci Technol [Internet]. 2010 Nov 9 [cited 2018 Feb 28];5(2). Available from: http://www.ajol.info/index.php/afsci/article/view/61730.
- [40] Colcanap M, Dufour P. L'assainissement de la ville d'Abidjan : évaluation, recommandations, propositions d'alternatives : rapport d'expertise octobre 1981-janvier 1982.
- [41] Voltz, Marc, Louchart, Xavier. Les facteurs-clés de transfert des produits phytosanitaires vers les eaux de surface. Ingénieries Numéro Spécial «Phytosanitaires: tr ansfert, diagnostic et solutions correctives. 2001;p-45.

- [42] Environnement littoral et marin, édition 2011.
- [43] Craun* GF, Calderon RL, Craun MF. Outbreaks associated with recreational water in the United States. Int J Environ Health Res. 2005;15(4):243–62.
- [44] Gerba CP. Assessment of enteric pathogen shedding by bathers during recreational activity and its impact on water quality. Quant Microbiol. 2000;2(1):55–68.
- [45] Bell A, Guasparini R, Meeds D, Mathias RG, Farley JD. A swimming pool-associated outbreak of Cryptosporidiosis in British Columbia. Can J Public Health Rev Can Sante Publique. 1993;84(5):334–7.
- [46] Laplace D, Rovera A, Guivarch JY, Giannetti S. Gestion de l'assainissement et qualité des eaux de baignade à Marseille. Cah Assoc Sci Eur Pour Eau Santé. 2009;14(1):39–44.
- [47] Dubreil J. Réflexion sur la notion d'indicateur de risque sanitaire lies au rejet d'eaux usées en milieu littoral. [rennes]; 2000.
- [48] Rompré A, Servais P, Baudart J, De-Roubin M-R, Laurent P. Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods. 2002;49(1):31–54.
- [49] Hamza IA, Jurzik L, Wilhelm M, Uberla K. Detection and quantification of human bocavirus in river water. J Gen Virol. 2009 Nov 1;90(11):2634–7.
- [50] Adeline T. Evaluation de l'état de viabilité et d'infectiosité de trois microorganismes pathogènes pour l'Homme (bactérie: Campylobacter, virus: Adenovirus et parasite: Cryptosporidium) détectés dans des échantillons d'eaux destinées à des fins alimentaires. 'Université de LORRAINE; 2012.

- [51] Lecellier A. Détection, caractérisation et identification des moisissures par spectroscopie vibrationnelle infrarouge et Raman. Reims; 2013.
- [52] Rodier J. L'analyse de l'eau: eaux naturelles, eaux residuaires, eau de mer: chimie, physico-chimie, microbiologie, biologie, interpretation des resultats. Paris: Dunod; 2005.
- [53] Prescott L-M, Harley J, Klein D-A. Microbiologie. 2ème édition. Bruxelles: De Boeck; 2003. 1137 p.
- [54] Servais P, Billen G, Tamara GA, George I, Goncalvez A, Thibert S. La contamination microbienne des eaux du bassin de la Seine. Eau Seine Normandie Programme PIREN-SEINE. 2009.
- [55] Eaton AD, American Public Health Association, American Water Works Association, Water Pollution Control Federation, editors. Standard methods for the examination of water and wastewater. 21. Ed., centennial ed. Washington, DC: American Public Health Assoc; 2005.
- [56] Bartram J, Rees G. Monitoring Bathing Water. E FN SPON. 2000.
- [57] Prüss A. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol. 1998 Feb;27(1):1–9.
- [58] Villaroel J. Manual práctico para la interpretación de análisis de suelos en laboratorio. 1988.
- [59] Vin O international de la vigne et du. Recueil des méthodes internationales d'analyse des boissons spiritueuses, des alcools et de la fraction aromatique des boissons. Office international de la vigne et du vin; 1994.
- [60] Manuel pratique d'analyse de l'eau. Natl Health Found. 2013;150.

- [61] Détermination de la conductivité : méthode électrométrique, MA. 115 Cond. 1.1, rév. 1, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques, 2015, 9 p.
- [62] Photomètre Pooltest 3 Compact | Palintest [Internet]. [visité le 17/06/18]. Availablefrom:https://www.palintest.com/fr/produits/poolteest-3-photom%C3%a8tre.
- [63] Hayes WJ. Pesticides Studied in Man [Internet]. Williams & Wilkins; 1982. Available from: https://books.google.ci/books?Id=mwdl9vckbdyc
- [64] Lamathe J. Methode d'elution selective pour l'extraction des metaux lourds de l'eau de mer sur resine chelatante: A selective method of elution for the extraction of heavy metals from sea waters on a chelating resin. Anal Chim Acta. 1979;104(2):307–17.
- [65] Juliette DV, Marianne S, Catherine Y. Qualité physico-chimique et chimique des eaux de surface: cadre général. Institut Bruxellois pour la Gestion de l'Environnement. Obs Données Environ. 16.
- [66] OMS/PNUE. Recommandations pour la surveillance sanitaire des zones côtières à usage récréatif et des zones conchylicoles. Recommandations générales. 1995;
- [67] Directives de qualité pour l'eau de boisson Volume 1. | Base documentaire | BDSP [Internet]. [Visité le 3/04/18].En ligne : http://www.bdsp.ehesp.fr/Base/77434/.
- [68] Dean JR. Practical inductively coupled plasma spectroscopy. Hoboken, NJ: Wiley; 2005. 184 p. (Analytical techniques in the sciences).
- [69] Wade TJ, Pai N, Eisenberg JN, Colford Jr JM. Do US Environmental Protection Agency water quality guidelines for recreational waters prevent

- gastrointestinal illness? A systematic review and meta-analysis. Environ Health Perspect. 2003;111(8):1102.
- [70] Ashbolt NJ, Grabow WO, Snozzi M. 13 Indicators of microbial water quality. 2001.
- [71] Carlucci AF, Pramer D. Factors affecting the survival of bacteria in sea water. Appl Microbiol. 1959;7(6):388–92.
- [72] Zobell CE, Oppenheimer CH. Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J Bacteriol. 1950;60(6):771.
- [73] Gourmelon M. Étude de la lumière visible comme facteur limitant de la survie d'Escherichia coli en milieu marin. Université de Rennes; 1995.
- [74] Brisou J. La pollution microbienne, virale et parasitaire des eaux littorales et ses conséquences pour la santé publique. Bull World Health Organ. 1968;38(1):79.
- [75] Rodier J, Bazin C, Broutin JP. L'analyse de l'eau: eaux naturelles, eaux résiduaires et de mer: chimie, physico-chimie, microbiologie, biologie, interprétation des résultats. Dunod; 1996.
- [76] Eau et rivières de Bretagne : Les normes [Internet]. [Visité le 6/07/18]. En ligne: http://www.eau-et-rivieres.asso.fr/index.php?92/511.
- [77] Makhoukh M, Sbaa M, Berrahou A, Van clooster M. Contribution à l'étude physico-chimique des eaux superficielles de l'oued moulouya. larhyss. 2011 decembre;9:149–69.
- [78] Robin M, Hauhouot C. Les risques naturels côtiers en Côte d'Ivoire. Cah Nantais. 1999;(51):169–83.

TABLE DES MATIÈRES

DÉDICACES	XIV
ABRÉVIATION – ACRONYME-SIGLE	XXIII
SOMMAIRE	XXV
LISTE DES TABLEAUX	XXVII
LISTE DES FIGURES	VIII
INTRODUCTION	1
PREMIERE PARTIE. ÉTUDEBIBLIOGRAPHIQUE	4
I- GENERALITES SUR LES EAUX	5
I-1- Cycle de l'eau	5
I-2- Eaux de surface	5
I-2-1- Origine	5
I-2-2- Caractéristiques générales	6
I-3- Les eaux souterraines	7
I-3-1- Origine	7
I-3-2- Caractéristiques générales	8
I-4- Présentation du littoral ivoirien	8
I-5- Eaux de loisirs	9
I-5-1- Définitions	9
I-5-2- Classification	9
II- LES EAUX DE BAIGNADE	10
II-1- Baignades	10
II-2- Pollution des eaux de baignades	10

II-2-1- Pollution physico chimique	12
II-2.1.1. Pollution industriel	12
II-2.1.2. Pollution due aux activités agricoles	13
II-2.1.3. La pollution par les activités maritimes	13
II-2.1.4. Pollution due aux activités de pêche	13
II-2.1.5. La pollution domestique	13
II-2.1.6. La pollution radioactive	14
II-2.1.7. La pollution hospitalière	14
II-2-2- La pollution microbiologique	15
II-2.2.1. Les sources de contamination	15
II-2.2.2. Pollution par les baigneurs	15
II-2.2.3. Pollution par les intrants divers	15
II-2.2.4. Les différents types de germes	16
II-3- Risques sanitaires liés à la baignade dans les eaux polluées	17
II-4- Contrôle qualité des eaux de baignade	18
II-4-1- Contrôle microbiologique	18
II-4.1.1. Les méthodes de recherches des germes	18
II-4-1-1 Les coliformes	18
II-4-1-1-1 -Les méthodes classiques	19
II-4-1-1-2 -Les méthodes enzymatiques	20
II-4-1-1-3 -Les méthodes moléculaires	20
II-4-1-1-2 Les virus	20
II-4-1-1-3 Les cryptosporidies et champignons	21

II-4.1.2. Les germes recherches pour le controle de la qualité de l'éau
21
II-4-1-2-1 Les bactéries
II-4-1-2-1-1 -Coliformes totaux (CT)22
II-4-1-2-1-2 -Coliformes thermotolérents (CTT)23
II-4-1-2-1-3 -Les entérocoques23
II-4-1-2-1-4 -Les clostridies sulfito-réductrices (SRC)24
II-4-2- Contrôle physico-chimique25
II-4.2.1. Électrochimie pour le pH25
II-4.2.2. Détermination de la Turbidité26
II-4.2.3. La conductivité26
II-4.2.4. La colorimétrie26
II-4.2.5. Méthodes chromatographiques27
II-4.2.6. Méthodes spectrométriques27
DEUXIEME PARTIE. ÉTUDE EXPÉRIMENTALE30
I- MATÉRIEL ET MÉTHODES31
I-1- Type et cadre de l'étude31
I-2- Matériel31
I-2-1- Appareillage31
I-2-2- Réactifs
I-3- Méthodes
I-3-1- Géolocalisation des zones de prélèvements : repérages par GPS 33
I-3-2- Méthodes de prélèvement, Transport et Conservation des
échantillons33

I-3.2.1. Échantillonnage33					
I-3.2.2. Prélèvement, Transport et Conservation des échantillons34					
I-3-3- Analyses des échantillons					
I-3.3.1. Analyses organoleptiques et physicochimiques	34				
I-3-3-1-1 Analyse des paramètres organoleptiques34					
I-3-3-1-1 Mesure de la Couleur34					
I-3-3-1-1-2 Détermination de la Turbidité35					
I-3-3-1-2 Analyse physico-chimique	36				
I-3-3-1-2-1 Mesure du pH	36				
I-3-3-1-2-2 Détermination de la conductivité	36				
I-3-3-1-2-3. Mesure de la température	37				
I-3-3-1-2-4 . Dosage de l'Ammonium (NH4 ⁺)	37				
I-3-3-1-2-5. Dosage des Nitrites (NO ₂)	37				
I-3-3-1-2-6. Dosage des Nitrates (NO ₃ ⁻)	38				
I-3-3-1-2-7. Dosage des Chlorures (Cl ⁻) et du Sodium (Na ⁺) :	38				
I-3-3-1-2-8. Dosage du Fer (Fe)	39				
I-3-3-1-2-9 . Dosage du Manganèse (Mn)	39				
I-3-3-1-2-10 . Dosage des Fluorures (F ⁻)	39				
I-3-3-1-2-11 . Dosage de l'Aluminium (Al)	40				
I-3-3-1-2-12. Dosage des minéraux (Calcium, Potassium	m,				
Magnésium), des Sulfates, Phosphates, silice, silicate, soufre	et				
zinc	40				
I-3-3-1-2-13. Détermination du Titre Alcalimétrique Comp					
(TAC) et bicarbonate	43				

I-3-3-1-2-14. Détermination du Degré Hydrotimétrique Tota
(DHT) 43
I-3-3-1-2-15 Détermination de la matière organique44
I-3.3.2. Analyse des pesticides4
I-3.3.3. Analyse des HAP40
I-3.3.4. Analyse des métaux lourds4
I-3.3.5. Analyse microbiologique
I-3-3-5-1 . Description de la méthode par la membrane filtrante 4
I-3-3-5-2. Les coliformes totaux et thermotolérants49
I-3-3-5-3. Dénombrement des streptocoques fécaux49
I-3-3-5-4. Recherche des spores de micro- organisme
anaérobies sulfito-réducteurs (ASR) par filtration sur membrane50
I-3-3-5-5. Dénombrement des vibrio5
I-3-3-5-6. Dénombrement des salmonelles5
I-3-3-5-7. Dénombrement des pseudomonas52
I-3-3-5-8. Dénombrement des levures et moisissures52
I-3-3-5-9. Dénombrement des staphylocoques52
I-3-3-5-10. Dénombrement des légionnelles53
I-3-4- Les méthodes d analyse statistique53
II- RÉSULTATS ET DISCUSSION
II-1- Résultats54
II-1-1- Géolocalisation des zones de baignade54
II-1-2- Analyse des paramètres organoleptiques et physico chimiques .55

II-1.2.1. Analyse des paramètres organoleptiques et physico chimique
de la mer de Vridi55
II-1.2.2. Analyse des paramètres organoleptiques et physico chimique
de la mer de Port Bouët centre56
II-1.2.3. Évolution globale des paramètres en fonction de la période 58
II-1.2.4. Comparaison de l'analyse physico chimique64
II-1-3- Analyse microbiologique66
II-1-4- Recherche de métaux lourds67
II-1-5Recherche des HAP68
II-1-6- Recherche des pesticides70
II-2- Discussion
II-2-1- Contrôle microbiologiques des eaux de baignade de Vridi et Port
Bouët centre72
II-2-2- Contrôle physico chimique des eaux de baignade de Vridi et Port
Bouët centre75
II-2-3- Pesticides, HAP et métaux lourds76
CONCLUSION77
RECOMMANDATIONS ET PERSPECTIVES
REFERENCES BIBLIOGRAPHIQUES81
TABLE DES MATIÈRES91
ANNEXES97

ANNEXES

Annexe 1 : Qualité requise des eaux de baignade (extrait de l'annexe du décret exécutif n°93-164 du 10 juillet 1993

Les germes indicateurs	Valeurs guides (VG)	Valeurs limites obligatoires (VL)	Méthodes d'analyse ou d'insp
			Norme NF EN ISO 9308-2 ou NF T 90-413 Filtration
			sur membrane et culture sur milieu approprié (gélose
			lactosée au tergitol, gélose d'endo, bouillon au
			teepol 0,4%,); repiquage et identification des
			colonies suspectes. Ou - Fermentation en
			tubes multiples. Repiquage des tubes positifs sur
			milieu de confirmation. Dénombrement selon NPP
			(nombre le plus probable).
Coliformes totaux /100 ml			Température d'incubation adaptée à la recherche des
	500	10000	CT.
			Norme Afnor T 90-433. NF EN ISO 9308-2 Filtration
			sur membrane et culture sur milieu approprié (gélose
			lactosée au tergitol, gélose endo, bouillon,);
			repiquage et identification des colonies suspectes.
			Ou - Fermentation en tubes multiples. Repiquage des
			tubes positifs sur milieu de confirmation.
Coliformes fécaux /100 ml	100	2000	Dénombrement selon NPP (nombre le plus
			Norme Afnor T 90-411. NF EN ISO 7899-1 Méthode
			de Litsky. Dénombrement selon NPP Ou Filtration
Streptocoques /100 ml	100		sur membrane. Culture sur milieu approprié

RÉSUMÉ

Les eaux de baignade regroupent toutes les eaux où l'activité de baignade est autorisée, c'est - à-dire, aussi bien la baignade en eau douce (rivières, lacs et plans d'eau naturels, barrages.) que la baignade en mer. La présente étude concerne les eaux marines de baignade de Vridi et de Port Bouët centre. Le but de cette étude était de caractériser ces eaux de baignades.

La méthodologie a consisté à réaliser cinq campagnes de prélèvement d'échantillons de ces eaux dans les mois de décembre, janvier, février, mars et avril 2018. Sur ces échantillons, les paramètres physico-chimiques classiques ont été déterminés par méthodes électrochimiques et photométriques, les métaux lourds par spectrométrie atomique, les pesticides et les hydrocarbures aromatiques polycycliques (HAP) par chromatographie liquide. L'analyse microbiologique a été réalisée par la technique de filtration sur membrane.

Les résultats ont montré que les eaux de baignades de Port Bouët centre et Vridi étaient caractérisées par un pH allant de la neutralité à l'alcalinité avec une forte minéralisation et la présence d'ammonium et de phosphore. Les HAP, les métaux lourds et les pesticides avaient été également retrouvés dans ces eaux de baignade.

En conclusion, les eaux de baignade de Vridi et Port Bouët centre sont de qualité acceptable au vue des normes Algériennes mais de qualité insuffisante au vue des normes canadiennes, US- EPA, OMS et Européenne. Il convient aux autorités de prendre des mesures pour assurer la protection et l'amélioration continue de la qualité de ces eaux afin de préserver la santé de la population riveraine et touristique ou interdire la baignade dans ces eaux.

Mots clés: Eaux de baignade, Physicochimie, Microbiologie, Métaux lourds, Pesticides, Hydrocarbures Aromatiques Polycycliques.