Directed Graphical Models: Bayesian Networks

Probabilistic Graphical Models

Tavassolipour

Slides from Dr. Soleymani's PGM course, Sharif University of Technology

Basics

Multivariate distributions with large number of variables

- Independency assumptions are useful
 - □ Independence and conditional independence relationships simplify representation and alleviate inference complexities

Conditional and marginal independence

▶ *X* and *Y* are **conditionally independent** given *Z* if:

$$X \perp Y|Z$$

$$P(X,Y|Z) = P(X|Z)P(Y|Z) \longleftrightarrow P(X|Y,Z) = P(X|Z)$$
$$P(Y|X,Z) = P(Y|Z)$$

▶ X and Y are marginal independent if:

$$X \perp Y \mid \emptyset$$
 $P(X,Y) = P(X)P(Y)$ \longleftrightarrow $P(X\mid Y) = P(X)$ $P(Y\mid X) = P(Y)$

Example

- Random variables:
 - Course difficulty
 - Quality of recommendation letter
 - Intelligence
 - Grade
 - SAT score

Example

Intelligence

Difficulty

P(D=t) 0.65

SAT

I	P(S=1 I)	
f	0.1	
t	0.7	

Grade

Letter

I	D	P(G I,D)		
		G=1	G=2	G=3
f	f	0.3	0.4	0.3
f	t	0.05	0.25	0.7
t	f	0.9	0.08	0.02
t	t	0.5	0.3	0.2

G	P(L=t G)
1	0.9
2	0.5
3	0.05

Continuous example: Linear regression

Continuous variables example

Linear Gaussian

Missing edges

Chain Rule

Missing edges imply conditional independencies.

The more the sparse DAG, the more conditional independencies.

Compact representation

A BN for a Boolean variables with <u>k Boolean parents</u>

Factorization & independence

Let G be a graph over X_1, \dots, X_n , distribution P factorizes over G if:

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$$

Basic structures

 $\rightarrow X \perp Y | Z$

 $X \perp Y|Z$

 $X \perp Y$

Explaining away

Explaining away

▶ When we condition on Z are X and Y are independent?

$$P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)$$

- lacksquare X and Y are marginally independent but given Z they are conditionally dependent
- ▶ This is called explaining away
- Two coins example

D-separation

Let A, B, C denote three disjoint sets of nodes, A is **d-separated** from B by C then $A \perp B \mid C$

▶ A is **d-separated** from B by C if all undirected paths between A and B are **blocked** by C

Undirected path blocking

▶ Head-to-tail at a node $Z \in C$

▶ Tail-to-tail at a node $Z \in C$

▶ Head-to-head (i.e., v-structure) at a node Z ($Z \notin C$ & none of its descendants are in C)

Undirected path blocking

In all trails (undirected paths) between A and B:

- A node in the path is in C and the path at the node do not meet head-to-head.
- Or a head-to-head node in the path, and neither the node, nor any of its descendants, is in C

D-separation: example

Markov Blanket in Bayesian Network

- A variable is <u>conditionally independent of all other</u> <u>variables given its Markov blanket</u>
- Markov blanket of a node:
 - All parents
 - Children
 - Co-parents of children

D-Separation: soundness & completeness

- **Soundness**: Any conditional independence properties that we can derive from G should hold for the probability distribution that factorize over G
 - ▶ **Theorem**: If P factorizes over G, and d-sep_G(X, Y|Z) then P satisfies $X \perp Y$ |Z

Weak completeness:

- For almost all distributions P that factorize over G, if $X \perp Y | Z$ in P then X and Y are d-separated given Z in the graph G
 - There can be independencies in P that are not found by conditional independence properties of G

I-equivalence

Definition: Two graphs G_1 and G_2 over a set of variables are I-equivalent if $I(G_1) = I(G_2)$

Most graphs have many I-equivalent variants

I-map

- $I(G) = \{(X \perp Y|Z) : d\text{-sepG}(X,Y|Z)\}$
- $I(G) \subseteq I(P)$

Minimal I-map

- When more independence relations exist in the graph
 - → sparser representation (fewer parameters)
 - → more informative or intuitive representation
- We want a graph that captures as much of the structure (conditional independence relations) in P as possible
- ▶ G is a **minimal I-map** for P if it is an I-map for P, and also the removal of each edge from G renders it not an I-map.

Minimal I-map

The fact that G is a minimal I-map for P is far from a guarantee that G captures the independence structure in P

Perfect map of a distribution P

Minimal I-map of P

Minimal I-map of P

Perfect map

- ▶ Theorem: not every distribution has a perfect map as a DAG.
 - A distribution P with the independencies $I(P) = \{A \perp C | \{B, D\}, \ B \perp D | \{A, C\}\}$ cannot be represented by any Bayesian network.

Bayesian networks: summary

- ▶ Bayesian network is a pair (G, CPDs) where G is a DAG and CPDs can be used to find a joint distribution P that factorizes over G
 - ▶ Each CPD is the conditional distribution $P(X_i|Pa(X_i))$ associated to the graph node X_i .
- We can show "causality", "generative schemes", "asymmetric influences", etc., between variables via a Bayesian network
- We can find conditional independencies from the graph structure via d-separation criteria.

Reference

D. Koller and N. Friedman, "Probabilistic Graphical Models: Principles and Techniques", MIT Press, 2009 [Chapter 3].