CÁC ỨNG DỤNG CỦA PHÉP TÍNH VI PHÂN TRONG HÌNH HỌC

ỨNG DUNG TRONG HÌNH HOC §1.

Tiếp tuyến của một đường tại một điểm 1.1.

1.1.1. Điểm chính quy, điểm kì di

- Cho f(x,y)=0 có đồ thị L. Điểm $M_{\mathcal{O}}(x_o,y_o)\in L$ được gọi là:
- + Điểm chính quy nếu: $f'_x(x_o, y_o)^2 + f'_y(x_o, y_o)^2 \neq 0$
- + Điểm kì di nếu:

$$\begin{cases} f_x'(x_o, y_o) = 0\\ f_y'(x_o, y_o) = 0 \end{cases}$$

- Cho (L) dạng tham số: $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ và $M_{\mathcal{O}}(x_o(t_o), y_o(t_o))$ là điểm chính quy nếu tồn tại $\begin{cases} x_t'(t_o) \\ y_t'(t_o) \end{cases}$

1.1.2. Các công thức

* Tiếp tuyến tại điểm $M_{\mathrm{O}}\left(x_{o},y_{o}\right)$ là điểm chính quy $(d_1): f_x'(x - x_o) + f_y'(y - y_o) = 0$

$$(d_2): \frac{x - x(t_o)}{x'_t(t_o)} = \frac{y - y(t_o)}{y'_t(t_o)}$$

$$(d_3):$$
 Nếu $y=f(x)$ thì $y=y_o+f^\prime(x_o).(x-x_o)$

* Pháp tuyến tại
$$M_{\rm O}\left(x_o,y_o\right)$$
 chính quy $(n_1): \frac{x-x_o}{f_x'(M_{\rm O})} = \frac{y-yo}{f_y'(M_{\rm O})}$

$$(n_2): x'(t_o)(x - x(t_o)) + y'(t_o)(y - y(t_o)) = 0$$

1.2. Đô cong của đường cong

1.2.1. Khái niệm

Cho L là:

- Đường cong không tư giao nhau (Jordan)
- Có tiếp tuyến tại mọi điểm
- Chọn một chiều chạy trên L làm chiều dương
- Trên tiếp tuyến của L chọn một hướng tương ứng hướng dương của $L \Rightarrow$ " tiếp tuyến dương "

1.2.2. Công thức tính

1. Dạng:
$$y = f(x)$$
 thì: $C(M) = \frac{|y''|}{(1 + y'^2)^{3/2}}$

2. Dạng tham số:
$$\begin{cases} x=x(t) \\ y=y(t) \end{cases}$$
 thì:
$$C(M)=\frac{\begin{vmatrix} x' & y' \\ x'' & y'' \end{vmatrix}}{(x^2+y^2)^{3/2}}$$

3. Dạng tọa độ cực $r=r(\varphi)$ Có: $\begin{cases} x=r(\varphi).\cos\varphi \\ y=r(\varphi).\sin\varphi \end{cases} \Rightarrow \begin{cases} x'=r'(\varphi).\cos\varphi-r(\varphi).\sin\varphi \\ y'=r(\varphi).\sin\varphi+r'(\varphi).\cos\varphi \end{cases}$ Khi đó: $C(M)=\frac{|r^2+2r'^2-r.r''|}{(r^2+r'^2)^{\frac{3}{2}}}$

Bài tập: Tính độ cong của các hàm sau:

Bài tập 1.1
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (a > 0) \ tại \ một \ diễm \ bất \ kì.$$

Bài tập 1.2
$$y = -x^3 \ tai \ x = \frac{1}{2}$$

Bài tập 1.3 $r = a.e^{ba}$ (a, b > 0) tại điểm bất kì.

Bài tập 1.4 (2015-2)
$$\begin{cases} x = t^2 - 1 \\ y = t^3 \end{cases}$$
 tại $M(0, 1)$

Giải

1.
$$\begin{cases} x' = a(t - \cos t) \\ y' = a \sin t \end{cases} \Rightarrow \begin{cases} x'' = a \sin t \\ y' = a \cos t \end{cases}$$
$$\Rightarrow C = \frac{|x'.y'' - x''.y'|}{(x'^2 + y'^2)^{\frac{3}{2}}} = \frac{|\cos t - 1|}{2\sqrt{2}a(1 - \cos t)^{\frac{3}{2}}} = \frac{1}{|4a.\sin\frac{t}{2}|}$$

Xác định tại những điểm ứng với $t \neq 0$

2.
$$y = -x^3 \operatorname{có} y' = -3x^2; y" = -6x$$

$$C(M) = \frac{\left|y''\left(\frac{1}{2}\right)\right|^{\frac{3}{2}}}{\left[1 + y'\left(\frac{1}{2}\right)\right]^{\frac{3}{2}}} = \frac{\left|-3\right|}{\left[1 + \frac{9}{16}\right]^{\frac{3}{2}}} = \frac{192}{125}$$

3.
$$r' = a.b.e^{bq}$$
; $r'' = ab^2.e^{bq} \Rightarrow C = \frac{1}{\sqrt{1+b^2}.r}$

4.
$$\begin{cases} x' = 2t \\ y' = 3t^2 \end{cases} \Rightarrow \begin{cases} x'' = 2 \\ y'' = 6t \end{cases} \Rightarrow M(0,1) \Leftrightarrow t_0 = 1$$
$$C = \frac{|x'.y'' - y'.x''|}{(x'^2 + y'^2)^{\frac{3}{2}}} = \frac{|2.6 - 3.2|}{(2^2 + 3^2)^t frac32} = \frac{6}{\sqrt{13^3}}$$

$1.3.~~{ m Hình}$ bao của họ đường cong phụ thuộc tham số

1.3.1. Đinh nghĩa

Định nghĩa 1.1 Cho đường cong L phụ thuộc một hay nhiều tham số. Nếu mỗi đường cong họ (L) đều tiếp xúc và đường cong (E) tại một điểm nào đó trên E và ngược lại, tại mỗi điểm thuộc E đều tồn tại 1 đường cong họ (L) tiếp xúc (E) tại điểm đó thì (E) được gọi là hình bao của họ đường cong (L).

1.3.2. Quy tắc tìm

Định lý 1.1 Cho họ đường cong F(x,y,c) = 0 với c là tham số. Nếu họ đường cong này không có điểm kì dị thì đường bao được xác đinh bằng hệ sau:

$$\begin{cases} F(x, y, c) = 0 \\ F'_c(x, y, c) = 0 \end{cases}$$

Chú ý 1.1 Nếu các đường thẳng F(x,y,c)=0 có điểm kì di thì hệ bao gồm phương trình (E) - hình bao và quỹ tích của các điểm kì di.

$$\begin{aligned} & \textbf{Vi dụ 1.1} \ (L): \quad (y-c)^2 = (x-c)^3 \\ & \Leftrightarrow \left\{ \begin{array}{l} F(x,y,c) = (x-c)^3 - (y-c)^2 = 0 \\ F_c'(x,y,c) = 3(x-c)^2 - 2(y-c) = 0 \end{array} \right. \\ & (2) \Leftrightarrow (y-c) = \frac{3}{2}(x-c)^2 \ thay \ vào \ (1) \ ta \ có: \end{array}$$

$$(x-c)^3 - \frac{9}{4}(x-c)^4 = 0 \Leftrightarrow (x-c)^3 \cdot \left[1 - \frac{9}{4}(x-c)\right] = 0$$

$$\Leftrightarrow \left\{ \begin{array}{l} x=c \\ y=c \end{array} \right. \ \ ho\mbox{\'{a}}c \left\{ \begin{array}{l} x=c+\frac{9}{4} \\ y=c+\frac{8}{27} \end{array} \right.$$

 $Mà y = x \ là \ quỹ tích của các điểm kỳ dị của họ (L).$

Vậy phương trình hình bao là: $x - y = \frac{4}{27}$.

$$\begin{array}{ll} \textbf{V\'i dụ 1.2} \ (L): & c.x^2 + c^2.y = 1 \ (\textit{Nhận x\'et: } c \neq 0 \\ \begin{cases} F(x,y,c) = c.x^2 + c^2.y - 1 = 0 \\ F'_c(x,y,c) = x^2 + 2c.y = 0 \end{cases} \\ \Leftrightarrow x^2 = -2cy \\ \end{array}$$

 $\begin{aligned} & \text{Ví dụ 1.2 } (L): & c.x^2 + c^2.y = 1 \ (Nhận \ xét: c \neq 0) \\ & \begin{cases} F(x,y,c) = c.x^2 + c^2.y - 1 = 0 \\ F'_c(x,y,c) = x^2 + 2c.y = 0 \end{cases} & \Leftrightarrow x^2 = -2cy \\ Xét \begin{cases} F'_x(x,y,c) = 0 \\ F'_y(x,y,c) = 0 \end{cases} & \Leftrightarrow \begin{cases} 2cx = 0 \\ c^2 = 0 \end{cases} \Rightarrow c = x = 0 \ \text{là những điểm kì dị nhưng } x = c = 0 \notin (L) \Rightarrow (L) \ \text{không chứa} \end{aligned}$ điểm kì di.

Giải hệ
$$\begin{cases} F(x,y,c) = 0 \\ F'_c(x,y,c) = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{2}{c} \\ y = \frac{-1}{c^2} \end{cases} \Rightarrow y = \frac{-x^2}{4}$$

Vây đường bao là $y=\frac{-x^2}{4}$ trừ điểm $O\left(0,0\right).$

Bài tập 1.5 (20152 - 1) Tìm hình bao của họ đường cong

$$(L_c)$$
 $y = \frac{x}{c} + \frac{1}{c} + c^2$ (tham $s\hat{o}$ c)

Bài tập 1.6 (20162 - 1) Tìm hình bao của họ đường cong

$$x^2 + y^2 - x\cos\alpha - y\sin\alpha - 2 = 0$$

Bài tập 1.7 (20142 - 3) Tìm hình bao của họ đường cong

$$2x\cos\alpha + y\sin\alpha = 1$$

Bài tập 1.8 (20142 - 5) Tìm tập các điểm kì dị của họ (L_c)

$$(x+c)^2 = (y-c)^3$$

Bài tập 1.9 Xét họ quỹ đạo của viên đạn bắn từ một khẩu pháo với vận tốc v_o , phụ thuộc góc bắn α . Hãy tìm phương trình hình bao của họ quỹ đạo của viên đạn.

Giải

5.
$$(L_c)$$
: $y = \frac{x}{c} + \frac{1}{c} + c^2$ $(c \neq 0)$

$$F(x, y, c) = \frac{x}{c} - y + \frac{1}{c} + c^2$$

$$Xét hệ \begin{cases} F'_x = \frac{1}{c} \neq 0 \\ F'_y = -1 \neq 0 \end{cases} \Rightarrow \text{Không có điểm kì dị}$$

$$\begin{cases} F_c'(x,y,c) = 0 \\ F(x,y,c) = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{-x}{c^2} + 2c = 0 \\ \frac{x}{c} - y + \frac{1}{c} + c^2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2c^3 \\ y = 3c^2 + 1 \end{cases}$$

$$\Rightarrow \sqrt[3]{\frac{x}{2}} - \sqrt{\frac{y-1}{3}} = 0 \text{ là phương trình đường bao.}$$

6.
$$x^2 + y^2 - x \cos \alpha - y \sin \alpha - 2 = 0$$

$$F'_{\alpha}(a, y, \alpha) = x \cdot \sin \alpha - y \cos \alpha$$

$$\begin{cases} F(x,y,\alpha) = 0 & (1) \\ F'_{\alpha}(a,y,\alpha) = 0 & (2) \end{cases} \Leftrightarrow \begin{cases} (2) \Rightarrow x = y \tan \alpha \\ (1) \Rightarrow x^2 + x^2 \tan^2 \alpha - x \cos \alpha - x \tan \alpha \sin \alpha - 2 = 0 \end{cases}$$

$$\Leftrightarrow x^{2} (1 + \tan \alpha) - x \cos \alpha - x \frac{1 - \cos^{2} \alpha}{\cos \alpha} - 2 = 0$$

$$\Leftrightarrow x^2 \frac{1}{\cos^2 \alpha} - \frac{x}{\cos \alpha} - 2 = 0$$

$$\Leftrightarrow \left(\frac{x}{\cos \alpha} + 1\right) \left(\frac{x}{\cos \alpha} - 2\right) = 0 \Leftrightarrow \begin{bmatrix} x = \frac{1}{2}\cos \alpha & \text{và} & y = -\sin \alpha \\ x = 2\cos \alpha & \text{và} & y = 2\sin \alpha \end{bmatrix}$$

$$\Leftrightarrow \left[\begin{array}{c} x^2+y^2=1\\ x^2+y^2=4 \end{array}\right]$$
 là phương trình hình bao

$$\begin{cases} F_x'(a, y, \alpha) = 0 \\ F_y'(a, y, \alpha) = 0 \end{cases} \Leftrightarrow \begin{cases} 2x - \cos \alpha = 0 \\ 2y - \sin \alpha = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2}\cos \alpha \\ y = \frac{1}{2}\sin \alpha \end{cases}$$

hay $x^2 + y^2 = \frac{1}{4}$ là tập các điểm kì dị.

7. Ta có
$$\begin{cases} F(x, y, \alpha) = 2x \cos \alpha + y \sin \alpha - 1 & (1) \\ F'_{\alpha}(x, y, \alpha) = -2x \sin \alpha + y \cos \alpha & (2) \end{cases}$$

$$\text{X\'et} \left\{ \begin{array}{l} F(x,y,\alpha) = 0 \\ F'_{\alpha}(x,y,\alpha) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} (2) \quad y = 2x \tan \alpha \\ (1) \Rightarrow 2x \cdot \cos \alpha + 2x \tan \alpha \sin \alpha - 1 = 0 \end{array} \right.$$

$$\Leftrightarrow 2x\cos^2\alpha + 2x\sin^2\alpha - \cos\alpha = 0$$

$$\Leftrightarrow 2x = \cos \alpha \Leftrightarrow \begin{cases} x = \frac{1}{2}\cos \alpha \\ y = \sin \alpha \end{cases}$$

 $\Rightarrow (2x)^2 + y^2 = 1$ là phương trình hình bao.

8.
$$F(x,y,c) = (x+c)^2 - (y-c)^3$$

$$\begin{cases} F_x'(x,y,c) = 0 \\ F_y'(x,y,c) = 0 \end{cases} \Leftrightarrow \begin{cases} 2\left(x+c\right) = 0 \\ -3\left(x+c\right)^2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -c \\ y = c \end{cases} \Rightarrow y = -x \text{ là quỹ tích các điểm kì dị.}$$

9.
$$\begin{cases} x = v_{o}.t.\cos\alpha \\ y = -\frac{1}{2}gt^{2} + v_{o}.t.\sin\alpha \end{cases} \Rightarrow y = x.\tan\alpha - \frac{g}{2.v_{o}^{2}.\cos^{2}\alpha}.x^{2}$$

Đặt
$$c = \tan \alpha \Rightarrow y = c.x - \frac{g}{2.v_0^2} (1 + c^2) x^2$$

Lấy đạo hàm hai vế theo c suy ra $c = \frac{v_o^2}{gx}$

Thay vào phương trình: $y = \frac{v_{\rm o}^2}{2g} - \frac{g}{2v_{\rm o}^2}x^2$. Đây là phương trình bao quỹ đạo của viên đạn.

ỨNG DUNG TRONG KHÔNG GIAN § 2.

2.1. Hàm vecto

Cho I là một khoảng trong \mathbb{R} . Ánh xa

$$\begin{array}{ccc} I & \to & \mathbb{R}^3 \\ t & \mapsto & \mathbf{r}(t) = (x(t), y(t), z(t)) \in \mathbb{R}^3 \end{array}$$

được gọi là một hàm vectơ với biến t

$$\overrightarrow{\mathbf{r}}(t) = x(t)\overrightarrow{\mathbf{i}} + y(t)\overrightarrow{\mathbf{j}} + z(t)\overrightarrow{\mathbf{k}}$$

Giới hạn của hàm vectơ

 $\overrightarrow{\mathbf{a}}$ được gọi là giới hạn của $\overrightarrow{\mathbf{r}}(t)$ khi $t \to t_{\mathrm{o}}$ nếu

$$\lim_{t \to t_0} \left| \overrightarrow{\mathbf{r}}(t) - \overrightarrow{\mathbf{a}} \right| = 0$$

kí hiệu $\lim_{t \to t_0} \overrightarrow{\mathbf{r}}(t) = \overrightarrow{\mathbf{a}}$

Đạo hàm của hàm vecto

Kí hiệu $\overrightarrow{\mathbf{r}}'(t)$ hay $\frac{d\overrightarrow{\mathbf{r}}(t)}{dt}$

$$\overrightarrow{\mathbf{r}}'(t_{o}) = \lim_{t \to t_{o}} \frac{\overrightarrow{\mathbf{r}}'(t) - \overrightarrow{\mathbf{r}}'(t_{o})}{t - t_{o}} = (x'(t_{o}), y'(t_{o}), z'(t_{o}))$$

 $\mathbf{\hat{Y}}$ nghĩa: $\overrightarrow{\mathbf{r}}'(t_{\rm o})$ là vectơ chỉ phương của tiếp tuyến đường tốc đồ của hàm $\begin{cases}
x = x(t) \\
y = y(t) \\
z = z(t)
\end{cases}$ tại $t = t_{\rm o}$

Nếu x(t), y(t), z(t) khả vi tại t_0 thì $\overrightarrow{\mathbf{r}}'(t)$ khả vi tại t_0

Ví dụ 2.1 Cho $\overrightarrow{p} = (x_1(t), y_1(t), z_1(t))$ và $\overrightarrow{q} = (x_2(t), y_2(t), z_2(t))$. Ta có

$$\overrightarrow{p} \cdot \overrightarrow{q} = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$

$$\overrightarrow{p} \wedge \overrightarrow{q} = \begin{pmatrix} y_1 & z_1 \\ y_2 & z_2 \end{pmatrix}, \begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$

Chứng minh:

Ta có:

$$\frac{d}{dt}\left[\overrightarrow{p}.\overrightarrow{q}\right] = \overrightarrow{p}.\frac{dp}{dt} + \overrightarrow{q}.\frac{dq}{dt} \quad \text{và} \quad \frac{d}{dt}\left[\overrightarrow{p}\wedge\overrightarrow{q}\right] = \overrightarrow{p}\wedge\frac{dq}{dt} + \frac{dp}{dt}\wedge\overrightarrow{p}$$

Phương trình tiếp tuyến và pháp diện của đường cong 2.2.

Cho đường cong : $\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$ và $M_{\rm O}\left(x_0, y_0, z_0\right)$ là điểm chính quy

1. Phương trình tiếp tuyến tại M: (d):
$$\frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)}$$

2. Pháp diện tại M là mặt phẳng vuông góc với tiếp tuyến d
 tại M_0 chứa mọi pháp tuyến của L tại M_0 (P) $x'(t_0)(x-x_0) + y'(t_0)(y-y_0) + z'(t_0)(z-z_0) = 0$

3. Đô cong:

$$C = \frac{\left(\begin{vmatrix} x' & y' \\ x'' & y'' \end{vmatrix}^2 + \begin{vmatrix} y' & z' \\ y'' & z'' \end{vmatrix}^2 + \begin{vmatrix} z' & x' \\ z'' & x'' \end{vmatrix}^2\right)^{\frac{1}{2}}}{\left[(x'')^2 + (y'')^2 + (z'')^2\right]^{\frac{3}{2}}}$$

Pháp tuyến và tiếp diện của mặt cong 2.3.

Cho mặt cong S: f(x, y, z) = 0 tại $M(x_0; y_0; z_0)$

Mặt phẳng tiếp diện: chứa mọi tiếp tuyến của S tại M_0

Pháp tuyến: đường thẳng qua M_0 và cùng hướng $\overrightarrow{n} = (f_x', f_y', f_z')$

Phương trình pháp tuyến tại M
$$(d'): \frac{x-x_0}{f_x'(M)} = \frac{y-y_0}{f_y'(M)} = \frac{z-z_0}{f_z'(M)}$$

Phương trình tiếp diên tai M

$$(P'): f'_x(M)(x-x_0) + f'_y(M)(y-y_0) + f'_z(M)(z-z_0) = 0$$

Chú ý 2.1 Nếu mặt S: z = z(x,y) thì mặt phẳng pháp diện có phương trình là:

$$f'_x(M)(x-x_0) + f'_y(M)(y-y_0) = z - z_0$$

Tiếp tuyến và pháp diện cho đường cong là giao của hai mặt phẳng

Cho L; $\begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$ pháp diện của g thì $\overrightarrow{n_f} \wedge \overrightarrow{n_g}$: pháp tuyến của mặt phẳng pháp diện của f và $\overrightarrow{n_g}$: pháp tuyến của mặt phẳng pháp diện của g thì $\overrightarrow{n_f} \wedge \overrightarrow{n_g}$: vecto chỉ phương của L

PTTQ:
$$\begin{cases} f'_x(M)(x - x_0) + f'_y(M)(y - y_0) + f'_z(M)(z - z_0) = 0 \\ g'_x(M)(x - x_0) + g'_y(M)(y - y_0) + g'_z(M)(z - z_0) = 0 \end{cases}$$
PTCT:
$$\frac{x - x_0}{\begin{vmatrix} f'_y(M) & f'_z(M) \\ g'_y(M) & g'_z(M) \end{vmatrix}} = \frac{x - x_0}{\begin{vmatrix} f'_z(M) & f'_x(M) \\ g'_z(M) & g'_x(M) \end{vmatrix}} = \frac{x - x_0}{\begin{vmatrix} f'_x(M) & f'_y(M) \\ g'_x(M) & g'_y(M) \end{vmatrix}}$$

Bài tập 2.1 (20152-1) Viết phương trình tiếp diện của mặt cong (S): $x^2 + 2y^3 - yz = 0$ tại M(1,1,3)

Bài tập 2.2 (20152-3) Tim pháp diện của đường cong $\begin{cases} x = t^3 \\ y = t^2 + 1 \end{cases}$ tại A(1; 1; -1) z = 2t + 1

Bài tập 2.3 (20152-3) Tìm tiếp tuyến của đường cong (L): $\begin{cases} x^2 + y + z^2 = 3 \\ x + y^2 - z^2 = 1 \end{cases}$ tại M(1,1,1)

Bài tập 2.4 (20124-1) Tìm tiếp tuyến và pháp diện của đường cong (L)

$$\begin{cases} x = 2\cos t \\ y = \sin t & tai \quad t = \pi \\ z = 2\sin t + 3 \end{cases}$$

Bài tập 2.5 (20142-3) Tính độ cong của (L): $\begin{cases} x = 2\cos t \\ y = 2\sin t & tai \ t = 0 \\ z = 3t + 1 \end{cases}$