

Core Workshop 8: Artificial Neural Network

OVERVIEW

- A Simple Linear Classifier
 - One Classifier Is Not Enough
 - Neuron & Activation Function
- Feedforward Signal & Matrix Multiplication
- Backpropagation of Loss
 - Matrix Multiplication Again
 - Update Weights by Gradient Descent
- Input / Output & Initial Weights
- NumPy Code Example

A SIMPLE LINEAR CLASSIFIER

A SIMPLE LINEAR CLASSIFIER

A SIMPLE LINEAR CLASSIFIER

Linear Perceptron

ONE CLASSIFIER IS NOT ENOUGH

NEURONS, NATURAL COMPUTING MACHINE

NEURONS, NATURAL COMPUTING MACHINE

Human Brain

100 billion

dendrite terminals

Fruit Fly

100,000

Nematode Worm

302

NEURONS, NATURAL COMPUTING MACHINE

ACTIVATION FUNCTION

ACTIVATION FUNCTION

ACTIVATION FUNCTION

$$y = \frac{1}{1 + e^{-x}}$$

ARTIFICIAL NEURON input aSum inputs sigmoid output yinput bfunction a + b + cy(x)input C

ARTIFICIAL NEURON NETWORK

ARTIFICIAL NEURON NETWORK

UNIVERSAL APPROXIMATION THEOREM

inputs

Neural networks can represent a wide variety of interesting functions when given appropriate weights.

It is capable of approximating any continuous functions between two Euclidean spaces, as long as having enough depths and nodes.

ARTIFICIAL NEURON

$$y = sigmoid(a \cdot w_a + b \cdot w_b + c \cdot w_c)$$

$$sigmoid = \frac{1}{1 + e^{-x}}$$

EXAMPLE - FEEDFORWARD SIGNAL

EXAMPLE - FEEDFORWARD SIGNAL

EXAMPLE - FEEDFORWARD SIGNAL

USING MATRIX MULTIPLICATION

$$X = W \cdot I$$
$$O = sigmoid(X)$$

$o_{k} = \frac{1}{1 - \sum_{j=1}^{3} (w_{j,k} \cdot \frac{1}{1 + e^{-\sum_{i=1}^{3} (w_{i,j} \cdot x_{i})}})}$

BACKPROPAGATION OF LOSS

BACKPROPAGATION OF LOSS

Node Loss = (actual - real)²
$$e_{2,k} = (t_k - o_k)^2$$

$$e_{1,1} = e_{2,1} * \frac{w_{1,1}}{w_{1,1} + w_{2,1}} + e_{2,2} * \frac{w_{1,2}}{w_{1,2}}$$

BACKPROPAGATION OF LOSS

MATRIX MULTIPLICATION AGAIN

$$e_h = \begin{pmatrix} \frac{w_{1,1}}{w_{1,1} + w_{2,1}} & \frac{w_{1,2}}{w_{1,2} + w_{2,2}} \\ \frac{w_{2,1}}{w_{1,1} + w_{2,1}} & \frac{w_{2,2}}{w_{1,2} + w_{2,2}} \end{pmatrix} \cdot \begin{pmatrix} e_{o,1} \\ e_{o,2} \end{pmatrix}$$

$$e_h = \begin{pmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{pmatrix} \cdot \begin{pmatrix} e_{o,1} \\ e_{o,2} \end{pmatrix} = w^T \cdot e_o$$

$$\begin{split} &\frac{\partial E}{\partial w_{j,k}} = \frac{\partial (t_k - o_k)^2}{\partial w_{j,k}} = \frac{\partial (t_k - o_k)^2}{\partial o_k} \cdot \frac{\partial o_k}{\partial w_{j,k}} = -2(t_k - o_k) \cdot \frac{\partial o_k}{\partial w_{j,k}} \\ &= -2(t_k - o_k) \cdot \frac{\partial sigmoid(\sum_j w_{j,k} \cdot o_j)}{\partial w_{j,k}} \\ &= -2(t_k - o_k) \cdot sigmoid(\sum_j w_{j,k} \cdot o_j) \left(1 - sigmoid(\sum_j w_{j,k} \cdot o_j)\right) \cdot \frac{\partial (\sum_j w_{j,k} \cdot o_j)}{\partial w_{j,k}} \\ &= -2(t_k - o_k) \cdot sigmoid(\sum_j w_{j,k} \cdot o_j) \left(1 - sigmoid(\sum_j w_{j,k} \cdot o_j)\right) \cdot o_j \end{split}$$

$$\Delta w_{j,k} = -\alpha \cdot \frac{\partial E}{\partial w_{j,k}} = -\alpha \cdot (-E_k \cdot o_k (1 - o_k) \cdot o_j^T)$$

INPUT / OUTPUT & INITIAL WEIGHTS

$$-2(t_k - o_k) \cdot sigmoid(\sum_j w_{j,k} \cdot o_j) (1 - sigmoid(\sum_j w_{j,k} \cdot o_j)) \cdot o_j$$

Input/Output 0~1

Initial Weights $\frac{-1}{\sqrt{n}} \sim \frac{1}{\sqrt{n}}$

n = number of nodes in target layer

* Break Symmetry: never set initial weights to the same constant value, especially no zero.

CODE EXAMPLE - NUMPY

THANK YOU!

References:

Rashid, Tariq. *Make your own neural network*. CreateSpace Independent Publishing Platform, 2016.