시계열자료분석팀

5팀

김규범 김민지 김준서 안세현 정희철

INDEX

- 1. ARIMA
- 2. SARIMA
- 3. ARFIMA
- 4. 이분산 시계열모형
 - 5. ARMAX
 - 6. VAR
- 7. 시계열의 교차겸증

수식

ARIMA(p,d,q)

- p: AR모형의 차수
- g: MA모형의 차수
- d: 차분의 차수

자기회귀누적이동평균과정

d차 차분된 $(1 - B)^d X_t$ 가 정상 과정 ARMA(p,q)를 따를 때자기회귀누적이동평균과정 ARIMA(p,d,q)를 따른다고 함

3 SARIMA

승법 SARIMA 모형

승법 SARIMA모형

- 1 비계절적인 요소까지 고려하는 모형
- 2 ARIMA모형을 따르는 오차항
- 3 모수의 절약성

주기 D = 12의 경우

	month 1	month 2		month 12
Year 1	<i>Y</i> ₁	<i>Y</i> ₂		Y ₁₂
Year 2	Y ₁₃	Y_{14}		Y ₂₄
ŧ	: 1	:	:	i I
Year r	$Y_{1+12(r-1)}$	$Y_{2+12(r-1)}$		$Y_{12+12(r-1)}$

승법 SARIMA 모형

SARIMA(p,d,q) \times (P,D,Q)

$$\Phi(B^{12})Y_t = \Theta(B^{12})U_t$$

$$\phi(B)\Phi(B^{12})Y_t = \Theta(B^{12})\Theta(B)Z_t$$

$$\phi(B)\Phi(B^{12})(1-B)^d(1-B^{12})^DY_t = \Theta(B^{12})\Theta(B)Z_t$$

3 SARIMA

순수 SARIMA 모형

순수 SARIMA 모형의 특징

1

계절성만 반영된 모형, 과거 시점의 오차항을 이용하여 관측값을 설명 $(Z_t \sim WN(0, \sigma^2))$ 2

비계절적인 요소는 전혀 고려하지 않기 때문에 사용이 제한적 순수 SARIMA 모형

$\overline{SARIMA(0,0,0)x(P,D,Q)_s}$

$$\Phi(B^s)(1 - B^s)^D X_t = \Theta(B^s) Z_t$$

$$\Phi(B^s) = 1 - \Phi_1 B^s - \Phi_2 B^{2s} - \dots - \Phi_P B^{Ps}$$

$$\Theta(B^s) = 1 - \Theta_1 B^s - \Theta_2 B^{2s} - \dots - \Theta_Q B^{Qs}$$

$$Z_t \sim WN(0, \sigma^2)$$

P: 과거 관측치의 개수

D: 계절차분 횟수

Q: 과거 오차항의 개수

3 ARFIMA

ARFIMA 모형

ARFIMA 필요성

정수의 차분을 시행할 경우 과거의 관측치를 빼기 때문에 장기 기억 분석이 불가능

실수 차원의 차분을 통해 메모리를 최대한 보존

3 ARFIMA

ARFIMA 모형

ARFIMA 필요성

TARFIMA 노성병

ARIMA모형에서 **차분의 차수**를 ACF가 매우 천천히 감소 양의 정수가 아닌 **실수**까지 허용해주어

시계열이 가진 장기기억(long term memory)을 보존해주는 모형

3 ARFIMA

ARFIMA 모형

ARFIMA

ARFIMA 모형: ARIMA(p,d,q)

ARIMA 모형에 차분 계수가 정수가 아닌 실수 정상성을 만족하기 위한 조건: d가 0보다 크고 0.5보다 작다 ARCH 모형

ARCH 모형

ARCH(p)

$$\begin{split} Z_t \sim & iidN(0,1) \;,\; \varepsilon_t = \; \sigma_t Z_t \\ \sigma_t^2 = \; \alpha_0 + \; \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 = \; \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \dots + \alpha_p \varepsilon_{t-p}^2 \\ (\alpha_0 > 0, \alpha_j \geq 0, j = 1, 2, \dots, p) \end{split}$$

t시점의 오차항의 변동성을 p시점 전까지의 오차항의 제곱으로 설명 σ_t^2 은 $E(\varepsilon_t^2 | \varepsilon_{t-1}^2, ...)$ 로 표현할 수 있는 조건부 분산

4 이분산 시계열 모형

GARCH 모형

GARCH 모형

GARCH(p,q)

$$\begin{split} Z_t \sim & iidN(0,1) \;, \; \; \varepsilon_t = \; \sigma_t Z_t \\ \sigma_t^2 = \; \alpha_0 \; + \; \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 \; + \; \sum_{j=1}^q \beta_j \sigma_{t-j}^2 \\ & = \; \alpha_0 \; + \; \alpha_1 \varepsilon_{t-1}^2 \; + \; \alpha_2 \varepsilon_{t-2}^2 \; + \cdots \; + \; \alpha_p \varepsilon_{t-p}^2 \; + \; \beta_1 \sigma_{t-1}^2 \; + \cdots \; + \; \beta_q \sigma_{t-q}^2 \\ & (\alpha_0 > 0, \alpha_i \geq 0, \beta_i \geq 0) \end{split}$$

t시점의 오차항의 변동성을 p시점 이전의 오차항들의 제곱과 q시점 이전의 변동성으로 설명하는 모형

5 ARMAX

정의

ARMAX

기존의 ARMA모형에 외부요인(eXogenous)을 추가한 모형

$$\phi(B)Y_t = \theta(B)Z_t + \beta X_t$$

특징

 Y_t 와 X_t 의 관측값 수는 일치해야 함 외부요인은 연속형 변수일 수도, 범주형 변수일 수도 있음

Ex) 주가 예측에 날씨 데이터 사용

어 정의

ARIMAX

ARMAX모형에 차분을 포함한 모형

$$\phi(B)(1-B)^{d}Y_{t} = \theta(B)Z_{t} + \beta^{T}\underline{X}$$

SARIMAX

ARIMAX모형에 계절성을 고려한 모형

$$\phi(B)\Phi(B^s)(1-B)^d(1-B^s)^D Y_t = \theta(B)\Theta(B^s)Z_t + \beta^T X_t$$

6 VAR모형

어 정의

VAR (Vector Auto Regressive)

현재 관측값을 자기 자신의 과거 관측값과 다른 변수의 과거 관측값으로 설명하는 모형

$$VAR(1) = \begin{pmatrix} X_t \\ Y_t \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{pmatrix} \begin{pmatrix} X_{t-1} \\ Y_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix}$$

특징

일변량 자기회귀모형을 다변량 자기회귀모형으로 확장시킨 형태 경제학 분야에서 많이 쓰임

Ex) 과거수출액과 과거 환율로 현재의 수출액 설명

종류

Blocked Time Series CV

동일한 사이즈의 윈도우 내에서 일정한 비율로 train과 test set을 나누는 방식

〈예시〉

Dataset: [1,2,3,4,5]

- 1. 모든 train:test의 비율은 2:1
- 2. train:test의 사이즈는 동일하게 유지

Training: [1,2] Test: [3] / Training: [2,3] Test: [4] / Training: [3,4] Test: [5]

종류

Time Series CV

이전에 사용한 train, test set을 모두 train set으로 다시 활용하는 방식

〈예시〉

Dataset: [1,2,3,4,5]

Training: [1] Test: [2]

Training: [1,2] Test: [3]

Training: [1,2,3] Test: [4]

Training: [1,2,3,4] Test: [5]