Quantum U-channels on S-spaces

Priyabrata Bag, Azad Rohilla* and Harsh Trivedi

Abstract. If the symmetry, (an operator J satisfying $J=J^*=J^{-1}$) which defines the Krein space, is replaced by a (not necessarily self-adjoint) unitary, then we have the notion of an S-space which was introduced by Szafraniec. In this paper, we consider S-spaces and study the structure of completely U-positive maps between the algebras of bounded linear operators. We first give a Stinespring-type representation for a completely U-positive map. On the other hand, we introduce Choi U-matrix of a linear map and establish the equivalence of the Kraus U-decompositions and Choi U-matrices. Then we study properties of nilpotent completely U-positive maps. We develop the U-PPT criterion for separability of quantum U-states and discuss the entanglement breaking condition of quantum U-channels and explore U-PPT squared conjecture. Finally, we give concrete examples of completely U-positive maps and examples of $3 \otimes 3$ quantum U-states which are U-entangled and U-separable.

Mathematics Subject Classification (2010). Primary 46E22; Secondary 46L05, 46L08, 47B50, 81T05, 81P45.

Keywords. Completely positive maps, Krein space, Quantum channels, Choi decomposition, Stinespring decomposition, S-space.

1. Introduction

The Gelfand-Naimark-Segal (GNS) construction for a given state on a C^* -algebra provides us a representation of the C^* -algebra on a Hilbert space and a generating vector. A linear map τ from a C^* -algebra \mathcal{B} to a C^* -algebra \mathcal{C} is said to be completely positive (CP) if $\sum_{i,j=1}^n c_j^* \tau(b_j^* b_i) c_i \geq 0$ whenever $b_1, b_2, \ldots, b_n \in \mathcal{B}$; $c_1, c_2, \ldots, c_n \in \mathcal{C}$ and $n \in \mathbb{N}$. Stinespring's theorem (cf. [18, Theorem 1]), which characterizes operator-valued completely positive maps, is a generalization of the GNS construction. Choi decomposition (cf. [6]) for completely positive maps is a pioneering work in Matrix Analysis.

^{*}corresponding author.

Dirac [10] and Pauli [14] were among the pioneers to explore the quantum field theory using Krein spaces, defined below. For our study, we require the following important definitions:

Definition 1.1. Assume $(\mathcal{K}, \langle \cdot, \cdot \rangle)$ to be a Hilbert space and J to be a symmetry, that is, $J = J^* = J^{-1}$. Define a map $[\cdot, \cdot] : \mathcal{K} \times \mathcal{K} \to \mathbb{C}$ by

$$[x,y]_J := \langle Jx,y \rangle \text{ for all } x,y \in \mathcal{K}.$$
 (1.1)

The tuple (K, J) is called a Krein space (cf. [3]).

Definition 1.2. For each $V \in B(\mathcal{K})$, there exists an operator $V^{\natural} := JV^*J \in B(\mathcal{K})$ such that

$$[Vx, y]_J = \langle JVx, y \rangle = \langle x, V^*Jy \rangle = \langle x, J^*JV^*Jy \rangle$$
$$= \langle Jx, JV^*Jy \rangle = \langle Jx, V^{\natural}y \rangle = [x, V^{\natural}y]_J.$$

The operator V^{\natural} is called the J-adjoint of V.

In the definition of the Krein space, if we replace the symmetry J by a (not necessarily self-adjoint) unitary U, then we arrive at the following generalized notion due to Szafraniec [19]:

Definition 1.3. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space and let U be a unitary on \mathcal{H} , that is, $U^* = U^{-1}$. Then we can define a sesquilinear form by

$$[x, y]_U := \langle x, Uy \rangle \text{ for all } x, y \in \mathcal{H}.$$
 (1.2)

In this case, we call (\mathcal{H}, U) as an S-space.

The following definition is given by Phillipp, Szafraniec and Trunk, see [15, Definition 3.1]:

Definition 1.4. For each $V \in B(\mathcal{H})$, there exists an operator $V^{\#} := UV^*U^* \in B(\mathcal{H})$ such that

$$\begin{split} [x,Vy]_U &= \langle x,UVy \rangle = \langle V^*U^*x,y \rangle = \langle U^*UV^*U^*x,y \rangle \\ &= \langle UV^*U^*x,Uy \rangle = [V^\#x,y]_U. \end{split}$$

The operator $V^{\#}$ is called the U-adjoint of V.

Phillipp, Szafraniec and Trunk [15] investigated invariant subspaces of self-adjoint operators in Krein spaces by using results obtained through a detailed analysis of S-spaces. Recently, in [16], Felipe-Sosa and Felipe introduced and analyzed the notions of state and quantum channel on spaces equipped with an indefinite metric in terms of a symmetry J. This study was further taken up by Heo, in [11], where equivalence of Choi J-matrices and Kraus J-decompositions was obtained and applications to J-PPT criterion and J-PPT squared conjuncture were discussed. The notion of completely U-positive maps was studied by Dey and Trivedi in [8, 9]. Motivated by these inspiring works, in this paper, we develop structure theory of quantum U-channels and its applications to the entanglement breaking.

The plan of the paper is as follows: In Section 2, we give Stinespring-type representation for a completely U-positive map. In Section 3, Choi U-matrix is introduced and the equivalence of Kraus U-decompositions and Choi U-matrices is established. In Section 4, some properties of nilpotent U-CP maps are discussed. In Sections 5 and 6, we develop U-PPT criterion for separability of quantum U-states and discuss the entanglement breaking condition of quantum U-channels and explore U-PPT squared conjecture. Finally, in Section 7, we give concrete examples of completely U-positive maps and examples of $3 \otimes 3$ quantum U-states which are U-entangled and U-separable.

1.1. Background and notations

Let (\mathcal{H}, U) be an S-space. Then, \mathcal{H}^n is the direct sum of n-copies of the Hilbert space \mathcal{H} , and we denote by (\mathcal{H}^n, U^n) the S-space with the indefinite inner-product

$$[\mathbf{h}, \mathbf{k}]_{U^n} = \langle \mathbf{h}, U^n \mathbf{k} \rangle = \sum_{j=1}^n \langle h_j, U k_j \rangle = \sum_{j=1}^n [h_j, k_j]_U$$
 (1.3)

where $U^n = \operatorname{diag}(U, U, \dots, U) \in M_n(B(\mathcal{H}))$ and $\mathbf{h} = (h_1, \dots, h_n), \mathbf{k} = (k_1, \dots, k_n) \in \mathcal{H}^n$.

Definition 1.5. Let (\mathcal{H}, U) be an S-space with the indefinite inner-product $[\cdot, \cdot]_U$. We denote by $B(\mathcal{H})^{U+}$ the set of all U-positive linear operator V on \mathcal{H} , that is,

$$0 \leq [Vh, h]_U := \langle Vh, Uh \rangle = \langle U^*Vh, h \rangle, \text{ for all } h \in \mathcal{H}.$$

Hence V is U-positive if and only if U^*V is positive with respect to the usual inner product $\langle \cdot, \cdot \rangle$.

Definition 1.6. Let (\mathcal{H}_i, U_i) (i = 1, 2) be an S-space with the indefinite innerproduct $[\cdot, \cdot]_{U_i}$. Let $\phi : B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ be a linear map. Then ϕ is called (U_1, U_2) -Hermitian if $\phi(U_1V^*U_1^*) = U_2\phi(V^*)U_2^*$ for $V \in B(\mathcal{H}_1)$. We say that a (U_1, U_2) -Hermitian linear map ϕ is

- 1. (U_1, U_2) -positive if $\phi(B(\mathcal{H}_1)^{U+}) \subset B(\mathcal{H}_2)^{U+}$, that is, if $V \in (B(\mathcal{H}_1))^{U+}$ (or V is U_1 -positive), then $\phi(V)$ is U_2 -positive. In simple words, if U_1^*V is positive with respect to the usual inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_1}$, then $U_2^*\phi(V)$ is positive with respect to the usual inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_2}$.
- 2. completely (U_1, U_2) -positive or (U_1, U_2) -CP if for each $l \in \mathbb{N}$ the l-fold amplification $\phi^l : I_l \otimes \phi : M_l(\mathbb{C}) \otimes B(\mathcal{H}_1) \to M_l(\mathbb{C}) \otimes B(\mathcal{H}_2)$ defined by

$$\phi^l([V_{ij}]) = [\phi(V_{ij})], \quad for \quad [V_{ij}] \in M_l(B(\mathcal{H}_1))$$

satisfies

$$\phi^l(M_l(B(\mathcal{H}_1))^{U+}) \subset M_l(B(\mathcal{H}_2))^{U+},$$

that is, if $V = [V_{ij}]_{i,j} \in M_l(B(\mathcal{H}_1))^{U+}$ (i.e., V is U_1^l -positive), then $\phi^l(V)$ is U_2^l -positive. Here $M_l(B(\mathcal{H}_i))^{U+} = B(\mathcal{H}_i^l)^{U+}$ is the set of all U_i^l -positive linear operators on S-spaces (\mathcal{H}_i^l, U_i^l) , and $U_i^l = diag(U, U, \dots, U) \in M_l(B(\mathcal{H}_i))$ for i = 1, 2.

3. U-positive (and completely U-positive (U-CP))if $\mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}$ and $U_1 = U_2 = U$ and it is (U_1, U_2) -positive (and (U_1, U_2) -CP, respectively).

2. Completely U-positive and completely U-co-positive maps

Our main objective in this section is to obtain Stinespring-type theorem for completely U-positive maps. Let (\mathcal{H}_i, U_i) (i = 1, 2) be an S-space with the indefinite inner product $[\cdot, \cdot]_{U_i}$. Suppose $\phi : B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ is a linear map. Define a linear map ψ from $B(\mathcal{H}_1)$ to $B(\mathcal{H}_2)$ by $\psi(X) := U_2\phi(U_1^*X)$ where $X \in B(\mathcal{H}_1)$. For any $l \in \mathbb{N}$ and $V = [V_{ij}] \in M_l(B(\mathcal{H}_1))$, we obtain

$$\psi^{l}(V) = [\psi(V_{ij})]_{i,j} = [U_{2}\phi(U_{1}^{*}V_{ij})]_{i,j} = \begin{pmatrix} U_{2}\phi(U_{1}^{*}V_{11}) & \cdots & U_{2}\phi(U_{1}^{*}V_{1l}) \\ \vdots & \ddots & \vdots \\ U_{2}\phi(U_{1}^{*}V_{l1}) & \cdots & U_{2}\phi(U_{1}^{*}V_{ll}) \end{pmatrix}$$

$$= \begin{pmatrix} U_{2} & 0 \\ \vdots & \ddots & \vdots \\ 0 & U_{2} \end{pmatrix} \begin{pmatrix} \phi(U_{1}^{*}V_{11}) & \cdots & \phi(U_{1}^{*}V_{ll}) \\ \vdots & \ddots & \vdots \\ \phi(U_{1}^{*}V_{l1}) & \cdots & \phi(U_{1}^{*}V_{ll}) \end{pmatrix} = U_{2}^{l}\phi^{l}(U_{1}^{l^{*}}V).$$

Similarly, we can easily show that $\phi^l(V) = U_2^{l^*} \psi(U_1^l V)$ where $\phi(V_{ij}) = U_2^* \psi(U_1 V_{ij})$.

The following result is a generalization of [16, Theorem 20] and [11, Proposition 2.2] in the setting of S-spaces:

Proposition 2.1. Let (\mathcal{H}_i, U_i) (i = 1, 2) be an S-space with the indefinite inner product $[\cdot, \cdot]_{U_i}$. Suppose $\phi : B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ is a linear map, then ϕ is CP if and only if the corresponding linear map ψ from $B(\mathcal{H}_1)$ to $B(\mathcal{H}_2)$ defined by $\psi(X) := U_2\phi(U_1^*X)$ is (U_1, U_2) -CP, where $X \in B(\mathcal{H}_1)$.

Proof. Let ϕ be a linear map from $B(\mathcal{H}_1)$ to $B(\mathcal{H}_2)$. First assume that ϕ is CP. We have to prove that ψ is (U_1, U_2) -CP. For this purpose, let $V = [V_{ij}] \in M_l(B(\mathcal{H}_1))^{U^+}$, that is, $U_l^{l^*}V \in M_l(B(\mathcal{H}_1))$ is positive, that is,

$$0 \leq [V\mathbf{h}, \mathbf{h}]_{U_{*}^{l}} = \langle V\mathbf{h}, U_{1}^{l}\mathbf{h} \rangle = \langle U_{1}^{l^{*}}V\mathbf{h}, \mathbf{h} \rangle,$$

where $\mathbf{h} \in \mathcal{H}^l$. Consider

$$\begin{aligned} [\psi^l(V)\mathbf{h}', \mathbf{h}']_{U_2^l} &= \langle \psi^l(V)\mathbf{h}', U_2^l\mathbf{h}' \rangle = \langle U_2^{l^*}\psi^l(V)\mathbf{h}', \mathbf{h}' \rangle \\ &= \langle U_2^l\phi^l(U_1^{l^*}V)\mathbf{h}', U_2^l\mathbf{h}' \rangle = \langle \phi^l(U_1^{l^*}V)\mathbf{h}', \mathbf{h}' \rangle > 0, \end{aligned}$$

where $\mathbf{h}' \in \mathcal{H}^l$. Therefore $\langle U_2^{l^*} \psi^l(V) \mathbf{h}', \mathbf{h}' \rangle \geq 0$, that is, $U_2^{l^*} \psi^l(V)$ is positive. This proves that $\psi(V)$ is U_2 -positive. Thus ψ is (U_1, U_2) -CP.

Conversely, suppose that ψ is (U_1, U_2) -CP. Since $\psi(\cdot) = U_2 \phi(U_1^* \cdot)$, we get $\phi(U_1^* \cdot) = U_2^* \psi(\cdot)$. Therefore $\phi(\cdot) = U_2^* \psi(U_1 \cdot)$. Let $V = [V_{ij}] \in M_l(B(\mathcal{H}_1))^+$, then we have to show that $\phi^l(V) = [\phi(V_{ij})] \in M_l(B(\mathcal{H}_2))^+$. Now

$$0 \le \langle V\mathbf{h}, \mathbf{h} \rangle = \langle U_1^l V\mathbf{h}, U_1^l \mathbf{h} \rangle = [U_1^l V\mathbf{h}, \mathbf{h}]_{U_1^l},$$

where $\mathbf{h} \in \mathcal{H}^l$, it means, $U_1^l V \in M_l(B(\mathcal{H}_1))^{U+}$. Therefore

$$\begin{split} \langle \phi^l(V)\mathbf{h}',\mathbf{h}'\rangle &= \langle U_2^{l^*}\psi(U_1^lV)\mathbf{h}',\mathbf{h}'\rangle = \langle \psi(U_1^lV)\mathbf{h}',U_2^l\mathbf{h}'\rangle \\ &= [\psi(U_1^lV)\mathbf{h}',\mathbf{h}']_{U_2^l} \geq 0, \end{split}$$

where $\mathbf{h}' \in \mathcal{H}^l$ and the last inequality follows from the fact that $U_1^l V \in M_l(B(\mathcal{H}_1))^{U+}$ and hence ψ is (U_1, U_2) -CP.

Theorem 2.2. Let (\mathcal{H}_i, U_i) (i = 1, 2) be an S-space. Assume that a linear map ψ from $B(\mathcal{H}_1)$ to $B(\mathcal{H}_2)$ defined by $\psi(V) := U_2\phi(U_1^*V)$ for all $V \in B(\mathcal{H}_1)$ is (U_1, U_2) -CP. Then there exist an S-space (\mathcal{H}, U) , a *-representation π of $B(\mathcal{H}_1)$ on the Hilbert space \mathcal{H} and a bounded linear operator $R: \mathcal{H}_2 \to \mathcal{H}$ such that

$$\psi(V) = R^{\#}\pi(V)R$$

where $U = \pi(U_1)$, and $R^{\#} := U_2 R^* U^*$. Moreover, if $\psi(U_1) = U_2$, then $R^* R = I_{\mathcal{H}_2}$.

Proof. Suppose a linear map ψ is (U_1, U_2) -CP. Then with the help of Proposition 2.1, we get that ϕ defined by $\phi(V) = U_2^* \psi(U_1 V)$ is CP. Then using Stinespring's theorem [18, Theorem 1], there exist a Hilbert space \mathcal{H} , a representation (a unital *-homomorphism) π of $B(\mathcal{H}_1)$ on the Hilbert space \mathcal{H} and a bounded linear operator $R: \mathcal{H}_2 \to \mathcal{H}$, such that $\phi(V) = R^* \pi(V) R$ for every $V \in B(\mathcal{H}_1)$.

Let $U = \pi(U_1) \in B(\mathcal{H})$, where U is a fundamental unitary, that is, $U^* = U^{-1}$, so that (\mathcal{H}, U) becomes an S-space. Define $R^{\#} := U_2 R^* U^*$, then

$$\psi(V) = U_2 \phi(U_1^* V) = U_2 R^* \pi(U_1^* V) R = U_2 R^* U^* \pi(V) R = R^\# \pi(V) R.$$

Furthermore, if $\psi(U_1) = U_2$, then

$$U_2 = \psi(U_1) = U_2 \phi(U_1^* U_1) = U_2 R^* \pi(U_1^* U_1) R = U_2 R^* R,$$

hence $R^*R = I_{\mathcal{H}_2}$.

Theorem 2.3. Suppose $\phi: B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ is a linear map. If ϕ satisfies the following conditions for all $V \in B(\mathcal{H}_1)$:

$$\phi(U_1^*V) = U_2^*\phi(V) \quad and \quad \phi(U_1V) = U_2\phi(V),$$

then ϕ is a CP map if and only if ϕ is (U_1, U_2) -CP.

Proof. First assume ϕ to be a CP map. Let $V = [V_{ij}] \in M_l(B(\mathcal{H}_1))^{U+}$. Observe that

$$\phi^{l}(U_{1}^{l^{*}}V) = [\phi(U_{1}^{*}V_{ij})]_{i,j} = \begin{pmatrix} \phi(U_{1}^{*}V_{11}) & \cdots & \phi(U_{1}^{*}V_{1l}) \\ \vdots & \ddots & \vdots \\ \phi(U_{1}^{*}V_{l1}) & \cdots & \phi(U_{1}^{*}V_{ll}) \end{pmatrix}$$

$$= \begin{pmatrix} U_{2}^{*} & 0 \\ & \ddots & \\ 0 & & U_{2}^{*} \end{pmatrix} \begin{pmatrix} \phi(V_{11}) & \cdots & \phi(V_{ll}) \\ \vdots & \ddots & \vdots \\ \phi(V_{l1}) & \cdots & \phi(V_{ll}) \end{pmatrix} = U_{2}^{l^{*}}\phi^{l}(V).$$

Similarly, we obtain $\phi^l(U_1^lV) = U_2^l\phi^l(V)$. Now consider

$$\begin{split} [\phi^l(V)\mathbf{h}',\mathbf{h}']_{U_2^l} &= \langle \phi^l(V)\mathbf{h}', U_2^l\mathbf{h}' \rangle = \langle U_2^{l^*}\phi^l(V)\mathbf{h}',\mathbf{h}' \rangle \\ &= \langle \phi^l(U_1^{l^*}V)\mathbf{h}',\mathbf{h}' \rangle \geq 0, \end{split}$$

where $\mathbf{h}' \in \mathcal{H}_2^l$. Therefore $\langle U_2^{l^*} \phi^l(V) \mathbf{h}', \mathbf{h}' \rangle \geq 0$, that is, $U_2^{l^*} \phi^l(V)$ is positive with respect to the usual inner product $\langle \cdot, \cdot \rangle$. This proves that $\phi(V)$ is U_2 -positive. Thus ϕ is (U_1, U_2) -CP.

Conversely, suppose that ϕ is (U_1, U_2) -CP. Let $V = [V_{ij}] \in M_l(B(\mathcal{H}_1))^+$. Then we have to show that $\phi^l(V) = [\phi(V_{ij})] \in M_l(B(\mathcal{H}_2))^+$. Since

$$0 \le \langle V\mathbf{h}, \mathbf{h} \rangle = \langle U_1^l V\mathbf{h}, U_1^l \mathbf{h} \rangle = [U_1^l V\mathbf{h}, \mathbf{h}]_{U_1^l},$$

where $\mathbf{h} \in \mathcal{H}^l$, it means $U_1^l V \in M_l(B(\mathcal{H}_1))^{U+}$. Then

$$\begin{split} \langle \phi^l(V)\mathbf{h}', \mathbf{h}' \rangle &= \langle U_2^l \phi(V)\mathbf{h}', U_2^l \mathbf{h}' \rangle = \langle \phi(U_1^l V)\mathbf{h}', U_2^l \mathbf{h}' \rangle \\ &= [\phi(U_1^l V)\mathbf{h}', \mathbf{h}']_{U_2^l} \geq 0, \end{split}$$

where $\mathbf{h}' \in \mathcal{H}^l$ and the last inequality follows from the fact that $U_1^l V \in M_l(B(\mathcal{H}_1))^{U+}$ and ϕ is (U_1, U_2) -CP.

Remark 2.4. In particular, if $\mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}$ and $U_1 = U_2 = U$, and if a linear map $\phi : B(\mathcal{H}) \to B(\mathcal{H})$ satisfies $\phi(U^*V) = U^*\phi(V)$ and $\phi(UV) = U\phi(V)$ for all $V \in B(\mathcal{H}_1)$, then ϕ is CP if and only if ϕ is U-CP.

Definition 2.5. Let (\mathcal{H}_i, U_i) (i = 1, 2) be an S-space. Assume that ψ is a linear map from $B(\mathcal{H}_1)$ to $B(\mathcal{H}_2)$. Then

- 1. for each $l \in \mathbb{N}$, ψ is l- (U_1, U_2) -co-positive if $\tau_l \otimes \psi : M_l(\mathbb{C}) \otimes B(\mathcal{H}_1) \to M_l(\mathbb{C}) \otimes B(\mathcal{H}_2)$ is $(I_l \otimes U_1, I_l \otimes U_2)$ -positive where τ_l is the transpose map on $M_l(\mathbb{C})$.
- 2. ψ is completely (U_1, U_2) -co-positive if it is l- (U_1, U_2) -co-positive for each $l \in \mathbb{N}$.
- 3. ψ is (U_1, U_2) -positive partial transpose $((U_1, U_2)$ -PPT) if it is (U_1, U_2) -CP and completely (U_1, U_2) -co-positive.
- 4. In particular, if $\mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}$ and $U_1 = U_2 = U$, then we simply call it completely U-co-positive (and U-positive partial transpose (U-PPT)) if it is completely (U_1, U_2) -co-positive (and (U_1, U_2) -positive partial transpose, respectively).

Proposition 2.6. Let (\mathcal{H}_i, U_i) (i = 1, 2) be an S-space. Suppose $\phi : B(\mathcal{H}_1) \to B(\mathcal{H}_2)$ is a linear map, then ϕ is completely co-positive if and only if the corresponding linear map ψ from $B(\mathcal{H}_1)$ to $B(\mathcal{H}_2)$ defined by $\psi(X) := U_2\phi(U_1^*X)$ is completely (U_1, U_2) -co-positive, where $X \in B(\mathcal{H}_1)$.

Proof. Let $V = [V_{ij}] \in M_l(\mathbb{C}) \otimes B(\mathcal{H}_1)$ be such that $(I_l \otimes U_1^*)V \geq 0$. Then

$$(\tau_{l} \otimes \psi)(V) = \begin{pmatrix} \psi(V_{11}) & \cdots & \psi(V_{l1}) \\ \vdots & \ddots & \vdots \\ \psi(V_{1l}) & \cdots & \psi(V_{ll}) \end{pmatrix} = \begin{pmatrix} U_{2}\phi(U_{1}^{*}V_{11}) & \cdots & U_{2}\phi(U_{1}^{*}V_{l1}) \\ \vdots & \ddots & \vdots \\ U_{2}\phi(U_{1}^{*}V_{1l}) & \cdots & U_{2}\phi(U_{1}^{*}V_{ll}) \end{pmatrix}$$

$$= \begin{pmatrix} U_2 & 0 \\ & \ddots \\ 0 & U_2 \end{pmatrix} \begin{pmatrix} \phi(U_1^*V_{11}) & \cdots & \phi(U_1^*V_{l1}) \\ \vdots & \ddots & \vdots \\ \phi(U_1^*V_{1l}) & \cdots & \phi(U_1^*V_{ll}) \end{pmatrix}$$
$$= (I_l \otimes U_2)(\tau_l \otimes \phi)(I_l \otimes U_1^*)V.$$

Hence $(I_l \otimes U_2^*)(\tau_l \otimes \psi)(V)$ is positive as ϕ is completely co-positive map. Conversely, for any $V = [V_{ij}] \in M_l(B(\mathcal{H}_1))$, we have

$$0 \leq \langle V\mathbf{h}, \mathbf{h} \rangle = \langle U_1^l V\mathbf{h}, U_1^l \mathbf{h} \rangle = [U_1^l V\mathbf{h}, \mathbf{h}]_{U_1^l},$$

where $\mathbf{h} \in \mathcal{H}^l$, it means $U_1^l V \in M_l(B(\mathcal{H}_1))^{U+}$. We obtain

$$(\tau_{l} \otimes \phi)(V) = \begin{pmatrix} \phi(V_{11}) & \cdots & \phi(V_{l1}) \\ \vdots & \ddots & \vdots \\ \phi(V_{1l}) & \cdots & \phi(V_{ll}) \end{pmatrix} = \begin{pmatrix} U_{2}^{*}\psi(U_{1}V_{11}) & \cdots & U_{2}^{*}\psi(U_{1}V_{l1}) \\ \vdots & \ddots & \vdots \\ U_{2}^{*}\psi(U_{1}V_{1l}) & \cdots & U_{2}^{*}\psi(U_{1}V_{ll}) \end{pmatrix}$$

$$= \begin{pmatrix} U_{2}^{*} & 0 \\ \vdots & \ddots & \vdots \\ U_{2}^{*}\psi(U_{1}V_{1l}) & \cdots & \psi(U_{1}V_{l1}) \\ \vdots & \ddots & \vdots \\ \psi(U_{1}V_{1l}) & \cdots & \psi(U_{1}V_{ll}) \end{pmatrix}$$

$$= U_{2}^{l^{*}}(\tau_{l} \otimes \psi)(U_{1}^{l}V).$$

Therefore $(\tau_l \otimes \phi)(V) = U_2^{l^*}(\tau_l \otimes \psi)(U_1^l V)$. Since $U_1^l V \in M_l(B(\mathcal{H}_1))^{U+}$ and ψ is completely (U_1, U_2) -co-positive, ϕ is co-positive.

3. Kraus U-decomposition and Choi U-matrix

In this section, we derive Kraus U-decomposition and Choi U-matrix and establish their relation with the completely U-positive maps. Let $M_m(\mathbb{C})$ denote the set of all $m \times m$ -complex matrices. Kraus proved that $\phi: M_m(\mathbb{C}) \to M_n(\mathbb{C})$ is a CP map if and only if

$$\phi(V) = \sum_{i=1}^{l} R_i^* V R_i, \tag{3.1}$$

where $V = [V_{ij}]_{i,j} \in M_m(\mathbb{C})$ and for each $i, R_i \in M_{m,n}(\mathbb{C})$. The expression in above equation is called a Kraus decomposition.

Denote $M_A := M_m(\mathbb{C})$ and $M_B := M_n(\mathbb{C})$. Let U_A and U_B be the fundamental unitaries in M_A and M_B , respectively. Define a linear map $\psi : M_A \to M_B$ by

$$\psi(V) := \sum_{i=1}^{l} R_i^{\#_{A,B}} V R_i, \tag{3.2}$$

where $R_i^{\#_{A,B}}=U_BR_i^*U_A^*$. Then ψ is (U_A,U_B) -CP. Indeed, for any $k\in\mathbb{N}$, take a $U_A^{k^*}$ -positive matrix $V=[V_{ij}]\in M_k(M_A)^{U^+}$. Since $V=[V_{ij}]\in$

 $M_k(M_A)^{U+}, U_A^{k^*}V \in M_k(M_A)^+, \text{ that is,}$

$$U_A^{k^*} V = \begin{pmatrix} U_A^* & 0 \\ & \ddots & \\ 0 & U_A^* \end{pmatrix} \begin{pmatrix} V_{11} & \cdots & V_{1k} \\ \vdots & \ddots & \vdots \\ V_{k1} & \cdots & V_{kk} \end{pmatrix}$$
$$= \begin{pmatrix} U_A^* V_{11} & \cdots & U_A^* V_{1k} \\ \vdots & \ddots & \vdots \\ U_A^* V_{k1} & \cdots & U_A^* V_{kk} \end{pmatrix} \in M_k(M_A)^+.$$

Consider

$$\psi^{k}(V) = \psi^{k} \begin{pmatrix} V_{11} & \cdots & V_{1k} \\ \vdots & \ddots & \vdots \\ V_{k1} & \cdots & V_{kk} \end{pmatrix} = \begin{pmatrix} \psi(V_{11}) & \cdots & \psi(V_{1k}) \\ \vdots & \ddots & \vdots \\ \psi(V_{k1}) & \cdots & \psi(V_{kk}) \end{pmatrix}$$

$$= \sum_{i=1}^{l} \begin{pmatrix} R_{i}^{\#_{A,B}} V_{11} R_{i} & \cdots & R_{i}^{\#_{A,B}} V_{1k} R_{i} \\ \vdots & \ddots & \vdots \\ R_{i}^{\#_{A,B}} V_{k1} R_{i} & \cdots & R_{i}^{\#_{A,B}} V_{kk} R_{i} \end{pmatrix}$$

$$= \sum_{i=1}^{l} \begin{pmatrix} U_{B} R_{i}^{*} U_{A}^{*} V_{11} R_{i} & \cdots & U_{B} R_{i}^{*} U_{A}^{*} V_{1k} R_{i} \\ \vdots & \ddots & \vdots \\ U_{B} R_{i}^{*} U_{A}^{*} V_{k1} R_{i} & \cdots & U_{B} R_{i}^{*} U_{A}^{*} V_{kk} R_{i} \end{pmatrix}$$

$$= \sum_{i=1}^{l} \begin{pmatrix} U_{B} & 0 \\ \vdots & \ddots & \vdots \\ U_{B} R_{i}^{*} U_{A}^{*} V_{k1} R_{i} & \cdots & U_{B} R_{i}^{*} U_{A}^{*} V_{kk} R_{i} \end{pmatrix}$$

$$= \sum_{i=1}^{l} \begin{pmatrix} U_{B} & 0 \\ \vdots & \ddots & \vdots \\ U_{B} R_{i}^{*} U_{A}^{*} V_{k1} R_{i} & \cdots & U_{B} R_{i}^{*} U_{A}^{*} V_{kk} R_{i} \end{pmatrix}$$

$$= U_{B}^{k} \sum_{i=1}^{l} \begin{pmatrix} R_{i}^{*} & 0 \\ \vdots & \ddots & \vdots \\ 0 & R_{i}^{*} \end{pmatrix} U_{A}^{k*} V \begin{pmatrix} R_{i} & 0 \\ \vdots & \ddots & \vdots \\ 0 & R_{i} \end{pmatrix},$$

and since $U_A^{k^*}V \in M_k(M_A)^+$, by using the Kraus decomposition

$$\sum_{i=1}^{l} R_i^{*^k} U_A^{k^*} V R_i^k \in M_k(M_A)^+,$$

we obtain $U_B^{k^*}\psi^k(V) \geq 0$. Hence $\psi^k(V)$ is a U_B -positive matrix, that is, ψ is (U_A, U_B) -CP map.

Theorem 3.1. Let U_A and U_B be the fundamental unitaries in M_A and M_B , respectively. A linear map $\psi: M_A \to M_B$ is a (U_A, U_B) -CP map if and only if it has a decomposition of the form (3.2).

Proof. Assume that ψ is a (U_A, U_B) -CP map. Since a linear map $\phi: M_A \to M_B$ defined by $\phi(V) = U_B^* \psi(U_A V)$ is CP, ϕ has a Kraus decomposition, that is,

$$\phi(V) = \sum_{i=1}^{l} R_i^* V R_i,$$

where $V \in M_m(\mathbb{C})$ and for each $i, R_i \in M_{m,n}(\mathbb{C})$. Thus we have

$$\psi(V) = U_B \phi(U_A^* V) = U_B \sum_{i=1}^l R_i^* U_A^* V R_i = \sum_{i=1}^l U_B R_i^* U_A^* V R_i = \sum_{i=1}^l R_i^\# V R_i.$$

Therefore ψ is a (U_A, U_B) -CP map if and only if ψ has the expression $\psi(V) = \sum_{i=1}^{l} R_i^{\#} V R_i$, we call ψ has a Kraus U-decomposition in this case.

Suppose $\{e_{ij} \mid 1 \leq i, j \leq m\}$ are the matrix units of $M_m(\mathbb{C})$. We observe that $D = [U_A e_{ij}]_{1 \leq i,j \leq m}$ is $I_m \otimes U_A$ -positive. Indeed,

$$(I_m \otimes U_A^*)D = \begin{pmatrix} U_A^* & 0 \\ & \ddots & \\ 0 & & U_A^* \end{pmatrix} \begin{pmatrix} U_A e_{11} & \cdots & U_A e_{1m} \\ \vdots & \ddots & \vdots \\ U_A e_{m1} & \cdots & U_A e_{mm} \end{pmatrix}$$
$$= \begin{pmatrix} e_{11} & \cdots & e_{1m} \\ \vdots & \ddots & \vdots \\ e_{m1} & \cdots & e_{mm} \end{pmatrix} \in M_{m^2}^+(\mathbb{C}).$$

It implies from the above proposition that $[\psi(U_A e_{ij})]_{1 \leq i,j \leq m}$ is $I_m \otimes U_{B-positive}$.

Theorem 3.2. Let $\psi: M_A \to M_B$ be a linear map. Then ψ is (U_A, U_B) -CP if and only if $[U_B^* \psi(U_A e_{ij})]_{1 \leq i,j \leq m}$ is positive.

Proof. The proof directly follows from [6, Theorem 2].

Let $\phi: M_m(\mathbb{C}) \to M_n(\mathbb{C})$ be a linear map. Choi [6] defined $C_{\phi} = \sum_{i,j=1}^m e_{ij} \otimes \phi(e_{ij})$, called the *Choi matrix*, and proved that it is positive if and only if ϕ is a CP map.

Definition 3.3. Let $\psi: M_m(\mathbb{C}) \to M_n(\mathbb{C})$ be a linear map. We define $C_{\psi}^U := \sum_{i,j=1}^m e_{ij} \otimes \psi(U_A e_{ij})$. The matrix C_{ψ}^U is called the Choi U-matrix.

Theorem 3.4. Let U_A and U_B be the fundamental unitaries in M_A and M_B , respectively, where $M_A = M_m(\mathbb{C})$ and $M_B = M_n(\mathbb{C})$. Then a linear map $\psi: M_A \to M_B$ is a (U_A, U_B) -CP map if and only if C_{ψ}^U is $I_A \otimes U_B$ -positive in $M_A \otimes M_B$.

Proof. Let $\phi: M_A \to M_B$ be the linear map defined by $\phi(V) := U_B^* \psi(U_A V)$ where $V \in M_A$. Then by Proposition 2.1, ϕ is CP if and only if ψ is a (U_A, U_B) -CP map. It is known from [6] that ϕ is CP if and only if C_{ϕ} is positive semi-definite. Since, for any $\mathbf{h}, \mathbf{h}' \in \mathbb{C}^{mn}$, we have

$$[C_{\psi}^{U}\mathbf{h},\mathbf{h}']_{U_{B}^{m}} = \langle C_{\psi}^{U}\mathbf{h}, U_{B}^{m}\mathbf{h}' \rangle = \langle U_{B}^{m^{*}}C_{\psi}^{U}\mathbf{h}, \mathbf{h}' \rangle$$

$$= \langle \begin{pmatrix} U_{B}^{*}\psi(U_{A}e_{11}) & \cdots & U_{B}^{*}\psi(U_{A}e_{1m}) \\ \vdots & \ddots & \vdots \\ U_{B}^{*}\psi(U_{A}e_{m1}) & \cdots & U_{B}^{*}\psi(U_{A}e_{mm}) \end{pmatrix} \mathbf{h}, \mathbf{h}' \rangle$$

$$= \langle \begin{pmatrix} \phi(e_{11}) & \cdots & \phi(e_{1m}) \\ \vdots & \ddots & \vdots \\ \phi(e_{1m}) & \cdots & \phi(e_{mm}) \end{pmatrix} \mathbf{h}, \mathbf{h}' \rangle$$
$$= \langle C_{\phi} \mathbf{h}, \mathbf{h}' \rangle,$$

that is, C_{ϕ} is positive if and only if C_{ψ}^{U} is $I_{A} \otimes U_{B}$ -positive in $M_{A} \otimes M_{B}$, which completes the proof.

4. Nilpotent *U*-CP maps

Nilpotent CP maps were studied by Bhat and Mallick in [2]. Let \mathcal{H} be a finite dimensional Hilbert space and $\phi: B(\mathcal{H}) \to B(\mathcal{H})$ be a CP map. Suppose ϕ is a nilpotent map of order p, that is, $\phi^p = 0$ and $\phi^{p-1} \neq 0$. Define $\mathcal{H}_1 := \ker (\phi(U))$ and $\mathcal{H}_k := \ker (\phi^k(U)) \ominus \ker (\phi^{k-1}(U))$, where $2 \leq k \leq p$. Then $\bigcap_{k=1}^p \mathcal{H}_k = \emptyset$ and $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_p$. Let $b_i := \dim (\mathcal{H}_i)$ for $1 \leq i \leq p$. Then (b_1, b_2, \ldots, b_p) is called the CP nilpotent type of ϕ . In this section, we introduce U-CP nilpotent type of U-CP maps.

Proposition 4.1. Let \mathcal{H} be a finite dimensional Hilbert space and (\mathcal{H}, U) be an S-space with the indefinite inner product $[\cdot, \cdot]_U$. Suppose $\phi : B(\mathcal{H}) \to B(\mathcal{H})$ is a CP map, then the corresponding linear map ψ from $B(\mathcal{H})$ to $B(\mathcal{H})$ defined by $\psi(X) := U\phi(U^*X)$ is U-CP, with the Kraus U-decomposition $\psi(X) = \sum_{i=1}^l R_i^\# X R_i$, where $X \in B(\mathcal{H})$ and $R_i^\# = U R_i^* U^*$ for each $1 \le i \le l$. Then

- 1. $\ker (\psi(U)) = \bigcap_{i=1}^{l} \ker (UR_i),$
- 2. For U-positive X, $\psi(X) = 0$ if and only if $ran(X) \subseteq \bigcap_{i=1}^{l} \ker (R_i^* U^*)$,
- 3. $\{h \in \mathcal{H} \mid \psi(|Uh\rangle\langle h|) = 0\} = \bigcap_{i=1}^{l} \ker(R_i^* U^*),$
- 4. $ran(\psi(U)) = \overline{span}\{UR_i^*h \mid h \in \mathcal{H}, \ 1 \le i \le l\}.$

Proof. (1) Consider

$$\ker (\psi(U)) = \{h \in \mathcal{H} \mid \psi(U)h = 0\}$$

$$= \{h \in \mathcal{H} \mid \sum_{i=1}^{l} R_i^{\#} U R_i h = 0\}$$

$$= \{h \in \mathcal{H} \mid \sum_{i=1}^{l} [R_i^{\#} U R_i h, h]_U = 0\}$$

$$= \{h \in \mathcal{H} \mid \sum_{i=1}^{l} [U R_i h, R_i h]_U = 0\}$$

$$= \{h \in \mathcal{H} \mid \sum_{i=1}^{l} \langle U R_i h, U R_i h \rangle = 0\}$$

$$= \{h \in \mathcal{H} \mid \sum_{i=1}^{l} ||U R_i h||^2 = 0\}$$

$$= \{h \in \mathcal{H} \mid U R_i h = 0, \text{ for each } 1 \leq i \leq l\}$$

$$= \bigcap_{i=1}^{l} \ker (UR_i).$$

(2) Suppose $\psi(X) = U\phi(U^*X) = 0$ where X is U-positive. It follows that $\phi(U^*X) = 0$, and since ϕ is a CP map, using the Kraus decomposition, we obtain $\sum_{i=1}^{l} R_i^* U^* X R_i = 0$. As X is U-positive (U^*X is positive), we get $R_i^* U^* X R_i = 0$ for each i. Note that $R_i^* (U^*X)^{\frac{1}{2}} = 0$. It implies that $R_i^* U^* X = 0$. Let $h_1 \in \operatorname{ran}(X)$, then there exists $h_2 \in \mathcal{H}$ such that $X(h_2) = h_1$. Now by applying $R_i^* U^*$ on both the sides, we get $R_i^* U^* h_1 = 0$ for each i. Hence $\operatorname{ran}(X) \subseteq \cap_{i=1}^l \ker(R_i^* U^*)$.

Conversely, let $\operatorname{ran}(X) \subseteq \cap_{i=1}^{l} \ker(R_i^* U^*)$, then $\psi(X) = \sum_{i=1}^{l} R_i^{\#} X R_i = \sum_{i=1}^{l} U R_i^* U^* X R_i = 0$.

- (3) One can easily see that $|Uh\rangle\langle h|$ is U-positive. Indeed, $U^*|Uh\rangle\langle h| = |h\rangle\langle h| \geq 0$. Also, we have $\psi(|Uh\rangle\langle h|) = 0$, and $\operatorname{ran}(|Uh\rangle\langle h|) = \mathbb{C}h$, therefore it directly follows from (2) that $\{h \in \mathcal{H} \mid \psi(|Uh\rangle\langle h|) = 0\} = \cap_{i=1}^{l} \ker(R_i^*U^*)$.
- (4) Let $h_1 \in \operatorname{ran}(\psi(U)) = \operatorname{ran}(\sum_{i=1}^{l} R_i^{\#} U R_i) = \operatorname{ran}(\sum_{i=1}^{l} U R_i^* R_i)$. Then $\sum_{i=1}^{l} U R_i^* R_i h_2 = h_1$ for some $h_2 \in \mathcal{H}$. Therefore $h_1 \in \overline{span}\{U R_i^* h \mid h \in \mathcal{H}, \ 1 \leq i \leq l\}$. Hence $\operatorname{ran}(\psi(U)) \subseteq \overline{span}\{U R_i^* h \mid h \in \mathcal{H}, \ 1 \leq i \leq l\}$.

Conversely, let $h \in \overline{span}\{UR_i^*h \mid h \in \mathcal{H}, 1 \leq i \leq l\}$. Then $h = \sum_{i=1}^{l} \alpha_i UR_i^*h_i$ where $\alpha_i \in \mathbb{C}$, $h_i \in \mathcal{H}$. We have to show that $h \in \operatorname{ran}(\psi(U)) = \operatorname{ran}(U\sum_{i=1}^{l} R_i^*R_i)$. It is equivalent to show that $h \in \ker\left(\sum_{i=1}^{l} R_i^*R_iU^*\right)^{\perp}$, that is, $\langle h, h' \rangle_{\mathcal{H}} = 0$ for all $h' \in \ker\left(\sum_{i=1}^{l} R_i^*R_iU^*\right)$.

Consider $h' \in \ker \left(\sum_{i=1}^{l} R_i^* R_i U^*\right)$, then we have

$$0 = \sum_{i=1}^{l} [R_i^* R_i U^* h', h']_{U^*} = \sum_{i=1}^{l} \langle R_i^* R_i U^* h', U^* h' \rangle.$$

It follows that $R_iU^*h'=0$ for each i. Observe that

$$\langle h, h' \rangle = \sum_{i=1}^{l} \alpha_i \langle U R_i^* h_i, h' \rangle = \sum_{i=1}^{l} \alpha_i \langle h_i, R_i U^* h' \rangle = 0,$$

which proves that $ran(\psi(U)) = \overline{span}\{UR_i^*h \mid h \in \mathcal{H}, 1 \leq i \leq l\}.$

Proposition 4.2. Let (\mathcal{H}, U) be an S-space with the indefinite inner product $[\cdot, \cdot]_U$. Suppose $\phi : B(\mathcal{H}) \to B(\mathcal{H})$ is a CP map, then the corresponding linear map ψ from $B(\mathcal{H})$ to $B(\mathcal{H})$ defined by $\psi(X) := U\phi(U^*X)$ is U-CP, with the Kraus U-decomposition $\psi(X) = \sum_{i=1}^l R_i^\# X R_i$, where $X \in B(\mathcal{H})$ and $R_i^\# = U R_i^* U^*$ for each $1 \le i \le l$. Then the followings are equivalent:

- 1. $\psi^p(X) = 0$ for all $X \in B(\mathcal{H})$;
- 2. $R_{i_1}R_{i_2}\cdots R_{i_p} = 0$ for all i_1, i_2, \dots, i_p .

Proof. (1) \implies (2): Let us assume for each $X \in B(\mathcal{H})$, we have

$$0 = \psi^{p}(X) = \sum_{i_{1}, i_{2}, \dots, i_{p} = 1}^{l} R_{i_{p}, \dots, i_{1}}^{\#} X R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}},$$

where $R_{i_p,\ldots,i_1}^\#=UR_{i_p}^*R_{i_{p-1}}^*\cdots R_{i_1}^*U^*.$ Therefore

$$0 = \psi^p(I) = \sum_{i_1, i_2, \dots, i_p = 1}^{l} R_{i_p, \dots, i_1}^{\#} R_{i_1} R_{i_2} \cdots R_{i_p}.$$

Now observe that

$$\{h \in \mathcal{H} \mid \sum_{i_1, i_2, \dots, i_p = 1}^{l} R_{i_p, \dots, i_1}^{\#} R_{i_1} R_{i_2} \cdots R_{i_p} h = 0\}$$

$$= \{h \in \mathcal{H} \mid \sum_{i_1, i_2, \dots, i_p = 1}^{l} [R_{i_p, \dots, i_1}^{\#} R_{i_1} R_{i_2} \cdots R_{i_p} h, h]_U = 0\}$$

$$= \{h \in \mathcal{H} \mid \sum_{i_1, i_2, \dots, i_p = 1}^{l} [R_{i_1} R_{i_2} \cdots R_{i_p} h, R_{i_1} R_{i_2} \cdots R_{i_p} h]_U = 0\},$$

which concludes the desired equality (2).

$$(2) \implies (1)$$
: Trivial.

Suppose ψ is a U-CP map from $B(\mathcal{H})$ to $B(\mathcal{H})$ defined by $\psi(X) = U\phi(U^*X)$. Let ψ be a nilpotent map of order p. Define $\mathcal{K}_1 := \ker(\psi(U))$ and $\mathcal{K}_k := \ker(\psi^k(U)) \ominus \ker(\psi^{k-1}(U))$, where $2 \le k \le p$. Then $\bigcap_{k=1}^p \mathcal{K}_k = \emptyset$ and $\mathcal{H} = \mathcal{K}_1 \oplus \mathcal{K}_2 \oplus \cdots \oplus \mathcal{K}_p$.

Definition 4.3. Let $c_i := \dim(\mathcal{K}_i)$ for $1 \le i \le p$. Then (c_1, c_2, \dots, c_p) is called the *U*-CP nilpotent type of ψ .

5. Quantum U-channels and quantum U-states

The U-states and the quantum U-channel, which are the S-space versions of the states and quantum channel, respectively, are introduced in this section. Together, we introduce U-separable and U-entangled states and present the U-PPT criterion for U-separability of U-states.

Definition 5.1. Let $\phi: M_A \to M_B$ be a linear map and U_A and U_B be the fundamental unitaries in M_A and M_B , respectively. Then

- 1. ϕ is a quantum channel if it is CP and trace preserving, that is, $Tr(\phi(V)) = Tr(V)$ where $V \in M_A$.
- 2. a linear map ψ from $B(\mathcal{H}_1)$ to $B(\mathcal{H}_2)$ defined by $\psi(V) := U_2\phi(U_1^*V)$ is a quantum (U_A, U_B) -channel if it is (U_A, U_B) -CP and trace preserving.

Remark 5.2. It is well known that ϕ is a quantum channel if and only if there exist $m \times n$ -matrices R_1, \ldots, R_l such that

$$\phi(V) = \sum_{i=1}^{l} R_i^* V R_i \quad and \quad \sum_{i=1}^{l} R_i R_i^* = I$$

where $V \in M_A$. Indeed, if ϕ is a quantum channel, then it is a CP map and trace preserving. Therefore by Kraus decomposition (3.1), there exist

 $m \times n$ -matrices R_1, \ldots, R_l such that $\phi(V) = \sum_{i=1}^l R_i^* V R_i$, and if ϕ is a trace preserving map, then $\phi^*(V) = \sum_{i=1}^l R_i V R_i^*$ is unital $(Tr(X) = \langle I_X, X \rangle = Tr(\phi(X)) = \langle I_X, \phi(X) \rangle = \langle \phi^*(I_X), X \rangle)$ which implies $\sum_{i=1}^l R_i R_i^* = I$.

Similarly, if ψ is a quantum (U_A, U_B) -channel, then by Kraus U-decomposition (3.2) we have $\psi(V) = \sum_{i=1}^l R_i^{\#_{A,B}} V R_i$, where $R_i^{\#_{A,B}} = U_B R_i^* U_A^*$. Since ψ is trace preserving, it means ψ^* is unital and we obtain $I_B = \psi^*(I_A) = \sum_{i=1}^l R_i R_i^{\#_{A,B}}$. Moreover,

$$\sum_{i} R_{i} U_{B}^{*} R_{i}^{\#_{A,B}} = R_{i} U_{B}^{*} U_{B} R_{i}^{*} U_{A}^{*} = U_{A}^{*}.$$

A quantum state $\rho \in M_n(\mathbb{C})$ is a positive semi-definite matrix with $\text{Tr}(\rho) = 1$.

Definition 5.3. Let U be a fundamental unitary in $M_n(\mathbb{C})$, then a matrix $\rho \in M_n(\mathbb{C})$ is called a quantum U-state if the following conditions hold:

- 1. ρ is U-positive, that is, $U^*\rho$ is positive and
- 2. $Tr(U^*\rho) = 1$.

Example 5.4. Let U be a fundamental unitary in $M_l(\mathbb{C})$, where $l \in \mathbb{N}$. Define $\rho \in M_l(\mathbb{C})$ as $\rho = |Ue\rangle\langle e|$ where $e \in \mathbb{C}^l$ with ||e|| = 1. Then

$$U^*\rho = U^*|Ue\rangle\langle e| = |U^*Ue\rangle\langle e| = |e\rangle\langle e|.$$

It follows that $U^*\rho$ is positive and also note that $Tr(U^*\rho) = Tr(|e\rangle\langle e|) = \langle e, e \rangle = 1$. Hence ρ is a quantum U-state.

Proposition 5.5. A quantum (U_A, U_B) -channel $\psi : M_A \to M_B$ maps quantum U_A -states into quantum U_B -states.

Proof. Let V be a quantum U_A -state, that is, V is U_A -positive and $\text{Tr}(U_A^*V) = 1$. Since ψ is a quantum (U_A, U_B) -channel, we have

$$\psi(V) = \sum_{i=1}^{l} R_i^{\#_{A,B}} V R_i = \sum_{i=1}^{l} U_B R_i^* U_A^* V R_i,$$

for some $m \times n$ -matrices R_1, \ldots, R_l . Since V is U_A -positive, we have $U_A^* V \ge 0$. Therefore $U_B^* \psi(V) = \sum_{i=1}^l R_i^* U_A^* V R_i \ge 0$, that is, $\psi(V)$ is U_B -positive. Furthermore, we obtain

$$\operatorname{Tr}(U_B^*\psi(V)) = \operatorname{Tr}(\sum_{i=1}^l R_i^* U_A^* V R_i) = \operatorname{Tr}(\sum_{i=1}^l U_A^* V R_i R_i^*) = \operatorname{Tr}(U_A^* V \sum_{i=1}^l R_i R_i^*)$$
$$= \operatorname{Tr}(U_A^* V) = 1,$$

which proves that $\psi(V)$ is a quantum U_B -state.

A bipartite quantum state $\rho \in M_A \otimes M_B$ is a product state if $\rho = \rho_A \otimes \rho_B$ with $\rho_A \in M_A^+$ and $\rho_B \in M_B^+$ and is separable if it is a convex combination of product states. Moreover, it is entangled if it is not separable. We define $\tau := t \otimes \operatorname{id} : M_A \otimes M_B \to M_A \otimes M_B$ where t is the transpose on M_A . We call the τ map the partial transpose or the blockwise transpose and a bipartite

quantum state ρ is positive partial transpose (PPT) if $\rho^{\tau} := t \otimes id(\rho)$ is positive. The positive partial transpose criterion says that if ρ is separable, then ρ is positive partial transpose.

Definition 5.6. Let U_A and U_B be the fundamental unitaries in M_A and M_B , respectively. Let $U_A \otimes U_B$ be the fundamental unitary in $M_A \otimes M_B$ and $\rho \in M_A \otimes M_B$ be a bipartite quantum $U_A \otimes U_B$ -state. Then

- 1. ρ is a product $U_A \otimes U_B$ -state if $\rho = \rho_A \otimes \rho_B$ where $\rho_A \in M_A^{U+}$ and $\rho_B \in M_B^{U+}$.
- 2. ρ is $U_A \otimes U_B$ -separable if it is a convex combination of product $U_A \otimes U_B$ -states.
- 3. ρ is $U_A \otimes U_B$ -entangled if it is not $U_A \otimes U_B$ -separable.
- 4. ρ is $U_A \otimes U_B$ -positive partial transpose if the partial transpose ρ^{τ} is $U_A^t \otimes U_B$ -positive, that is, $(\overline{U}_A \otimes U_B^*)(\rho^{\tau})$ is positive.

Proposition 5.7. If a bipartite quantum $U_A \otimes U_B$ -state $\rho \in M_A \otimes M_B$ is $U_A \otimes U_B$ -separable, then ρ is $U_A \otimes U_B$ -positive partial transpose.

Proof. Consider that ρ is $U_A \otimes U_B$ -separable, it means we can write it as a convex combination of product $U_A \otimes U_B$ -states, that is,

$$\rho = \sum_{i=1}^{l} p_i(U_A \otimes U_B)(|z_i\rangle\langle z_i|) = \sum_{i=1}^{l} p_i(U_A \otimes U_B)(|x_i\rangle \otimes |y_i\rangle)(\langle x_i| \otimes \langle y_i|)$$

$$= \sum_{i=1}^{l} p_i(U_A \otimes U_B)(|x_i\rangle\langle x_i| \otimes |y_i\rangle\langle y_i|) = \sum_{i=1}^{l} p_iU_A(|x_i\rangle\langle x_i|) \otimes U_B(|y_i\rangle\langle y_i|),$$

with $\sum_{i=1}^{l} p_i = 1$, and $|z_i\rangle = |x_i\rangle \otimes |y_i\rangle \in M_A \otimes M_B$. Since $(U_A(|x_i\rangle\langle x_i|))^t = |\overline{x_i}\rangle\langle \overline{x_i}|\overline{U_A^*}$, we obtain

$$\rho^{\tau} = t \otimes \mathrm{id}(\rho) = \sum_{i=1}^{l} p_i |\overline{x_i}\rangle \langle \overline{x_i} | \overline{U_A^*} \otimes U_B(|y_i\rangle \langle y_i|).$$

Since $\overline{U_A}|\overline{x_i}\rangle\langle\overline{x_i}|\overline{U_A^*}$ is a positive matrix in M_A , $(\overline{U}_A\otimes U_B^*)(\rho^{\tau})$ is positive. \square

6. U-entanglement breaking maps

In this section, we consider the special class of quantum channels which can be simulated by a classical channel in the following sense: The sender makes a measurement on the input state ρ , and send the outcome k via a classical channel to the receiver who then prepares an agreed upon state R_k . Such channels can be written in the form

$$\phi(\rho) = \sum_{k} R_k \operatorname{Tr}(E_k \rho),$$

where each R_k is a *density matrix* (density matrices, also called density operators, which conceptually take the role of the state vectors, that is, R_k is a

positive semi-definite matrix with $\operatorname{Tr}(R_k) = 1$) and the E_k form a positive operator valued measure ($\{E_k\}_k$ form a positive operator valued measure means for each k, E_k is positive semi-definite and $\sum_k E_k = id_A$). We call this the "Holevo form" because it was introduced by Holevo in [13]. In this context, it is natural to consider the class of channels which break entanglement.

Definition 6.1. Let $\phi: M_A \to M_B$ be a quantum channel. If $(id_n \otimes \phi)(S)$ is always separable for all bipartite quantum states $S \in M_n(\mathbb{C}) \otimes M_A$, then we call it an entanglement breaking map.

Let U_A and U_B be the fundamental unitaries in M_A and M_B , respectively. The family $\{F_k\}_k$ is a U_A -positive operator valued measure if each F_kU_A is positive semi-definite and $\sum_k F_kU_A = id_A$ (or $\sum_k F_k = U_A^*$) and D is called U_A -density matrix if D is a U_A -positive semi-definite matrix, that is, U_A^*D is positive semi-definite matrix with $\text{Tr}(U_A^*D) = 1$.

Definition 6.2. Let $\psi: M_A \to M_B$ be a (U_A, U_B) -quantum channel.

- 1. ψ is said to be (U_A, U_B) -entanglement breaking if $(id_n \otimes \psi)(S)$ is $I_n \otimes U_B$ -separable for any $I_n \otimes U_A$ -density matrix $S \in M_n(\mathbb{C}) \otimes M_A$.
- 2. ψ is in (U_A, U_B) -Holevo form if it can be expressed as

$$\psi(\rho) = \sum_{k} D_k \operatorname{Tr}(F_k \rho),$$

where D_k is a U_B -density matrix, that is, $U_B^*D_k$ is positive semi-definite matrix and $Tr(U_B^*D_k) = 1$ and F_k is a U_A -positive operator valued measure in M_A , that is F_kU_A is positive semi-definite and $\sum_k F_kU_A = id_A$.

Theorem 6.3. Let $\psi: M_A \to M_B$ be a (U_A, U_B) -quantum channel. Then the following statements are equivalent:

- 1. ψ is (U_A, U_B) -entanglement breaking;
- 2. ψ is in (U_A, U_B) -Holevo form .

Proof. (1) \Longrightarrow (2) : Suppose ψ is (U_A, U_B) -entanglement breaking. The map ϕ given by $\phi(V) = U_B^* \psi(U_A V)$ is a quantum channel and we have for each $n \in \mathbb{N}$,

$$id_n \otimes \phi = id_n \otimes (U_B^* \psi(U_A)) = (I_n \otimes U_B^*)(id_n \otimes \psi)(I_n \otimes U_A). \tag{6.1}$$

Let $S \in M_n(\mathbb{C}) \otimes M_A$ be a density matrix. One can easily verify that $(I_n \otimes U_A)S$ is a $(I_n \otimes U_A)$ -density matrix, that is, $(I_n \otimes U_A^*)(I_n \otimes U_A)S$ is positive and $\operatorname{Tr}((I_n \otimes U_A^*)(I_n \otimes U_A)S) = 1$ which trivially hold as $(I_n \otimes U_A^*)(I_n \otimes U_A)S = S$. Since $(id_n \otimes \psi)(I_n \otimes U_A)S$ is $(I_n \otimes U_B)$ -separable, $(id_n \otimes \phi)(S)$ is separable. This implies that ϕ is an entanglement breaking map. Now using [12, Theorem 4], we can write ϕ in the Holevo form, that is,

$$\phi(\rho) = \sum_{k} R_k \operatorname{Tr}(E_k \rho),$$

where each R_k is a density matrix and $\{E_k\}_k$ is a positive operator valued measure with $\sum_k E_k = id_A$. Observe that

$$\psi(\rho) = U_B \phi(U_A^* \rho) = \sum_k U_B R_k \operatorname{Tr}(E_k U_A^* \rho) = \sum_k D_k \operatorname{Tr}(F_k \rho),$$

where $D_k := U_B R_k$ and $F_k := E_k U_A^*$. Note that D_k is a U_B -density matrix since $U_B^* D_k = U_B^* U_B R_k = R_k$ and R_k is already a density matrix in M_B and also $\{F_k\}_k$ is a U_A -positive operator valued measure in M_A as $E_k U_A^* U_A = E_k$ is positive semi-definite and $\sum_k E_k U_A^* U_A = i d_A$.

(2) \Longrightarrow (1): Assume that ψ has the (U_A, U_B) -Holevo form, it means $\psi(\rho) = \sum_k D_k \text{Tr}(F_k \rho)$, where D_k is a U_B -density matrix and $\{F_k\}_k$ is a U_A -positive operator valued measure in M_A . Define ϕ by $\phi(\rho) = U_B^* \psi(U_A \rho)$, where $\rho \in M_A$. We obtain

$$\phi(\rho) = U_B^* \psi(U_A \rho) = U_B^* \psi(U_A \rho) = U_B^* \sum_k D_k \text{Tr}(F_k U_A \rho)$$
$$= \sum_k U_B^* D_k \text{Tr}(F_k U_A \rho).$$

Since D_k is a U_B -density matrix and $\{F_k\}_k$ is a U_A -positive operator valued measure in M_A , ϕ has a Holevo form and by [12, Theorem 4] ϕ is an entanglement breaking map and hence Equation (6.1) implies that ψ is a (U_A, U_B) -entanglement breaking map.

Remark 6.4. Let $\phi, \psi: M_A \to M_B$ be linear maps such that $\psi(\rho) = U_B \phi(U_A^* \rho)$, where $\rho \in M_A$. As we know ϕ is positive if and only if ψ is a (U_A, U_B) -positive map. Suppose ϕ is a quantum channel, that is, ψ is a (U_A, U_B) -quantum channel. Note that $\theta \circ \phi$ is a CP map for any CP map $\theta: M_B \to M_C$ if and only if $\omega \circ \psi$ is (U_A, U_C) -CP for any (U_B, U_C) -CP $\omega: M_B \to M_C$. Therefore, it follows from Theorem 6.3 that ϕ is an entanglement breaking map if and only if ψ is a (U_A, U_B) -entanglement breaking map.

7. Examples of fundamental unitary and U-CP maps

In this section, we provide concrete examples of completely U-positive maps and examples of $3\otimes 3$ quantum U-states which are U-entangled and U-separable. It is easy to observe that the 2×2 identity matrix I and the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -\iota \\ \iota & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

form a basis for $M_2(\mathbb{C})$. That is, for any $A \in M_2(\mathbb{C})$, we have $A = aI + b\sigma_x + c\sigma_y + d\sigma_z$ where $a, b, c, d \in \mathbb{C}$. Any fundamental unitary on the 2-dimensional complex S-space has the form

$$U = \begin{pmatrix} a & b \\ -e^{\iota\phi}\overline{b} & e^{\iota\phi}\overline{a} \end{pmatrix} \tag{7.1}$$

where $\phi \in \mathbb{R}$ and $a, b \in \mathbb{C}$ such that $|a|^2 + |b|^2 = 1$. For example, if we choose a = 1 and b = 0, then we have the unitary

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{\iota \phi} \end{pmatrix}$$

which is called a Phase Gate (see [17]) that represents a rotation about the z-axis by an angle ϕ on the Bloch sphere.

If we define an S-space with respect to the fundamental unitary U as in (7.1), then $U^*A = aU^* + b\sigma_x^U + c\sigma_y^U + d\sigma_z^U$, where $\sigma_x^U = U^*\sigma_x$, $\sigma_y^U = U^*\sigma_y$, and $\sigma_z^U = U^*\sigma_z$, and we call these matrices U-Pauli matrices.

Let $U_1 = \begin{pmatrix} 1 & 0 \\ 0 & \iota \end{pmatrix}$ and $U_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ be two unitaries which are not symmetries, where U_1 is the Phase gate for $\phi = \frac{\pi}{2}$.

1. Consider the S-space (\mathbb{C}^2, U_1) . For any $A \in M_2(\mathbb{C})$, we have

$$U_1^*A = \begin{bmatrix} a\begin{pmatrix} 1 & 0 \\ 0 & -\iota \end{pmatrix} - \iota b\begin{pmatrix} 0 & \iota \\ 1 & 0 \end{pmatrix} - \iota c\begin{pmatrix} 0 & 1 \\ \iota & 0 \end{pmatrix} + d\begin{pmatrix} 1 & 0 \\ 0 & \iota \end{bmatrix} \end{bmatrix}$$

and

$$(U_1^*A)^* = \left[\overline{a} \begin{pmatrix} 1 & 0 \\ 0 & \iota \end{pmatrix} + \overline{b} \begin{pmatrix} 0 & \iota \\ 1 & 0 \end{pmatrix} + \overline{c} \begin{pmatrix} 0 & 1 \\ \iota & 0 \end{pmatrix} + \overline{d} \begin{pmatrix} 1 & 0 \\ 0 & -\iota \end{pmatrix} \right].$$

Comparing U_1^*A and $(U_1^*A)^*$, one may easily find out that A is U_1 -self adjoint if and only if $a = \overline{d}$, $-\iota c = \overline{c}$ and $-\iota b = \overline{b}$, that is, A has the form

$$A = \begin{pmatrix} a+d & b-\iota c \\ b+\iota c & a-d \end{pmatrix} = \begin{pmatrix} a+\overline{a} & b+\overline{c} \\ b-\overline{c} & a-\overline{a} \end{pmatrix} = \begin{pmatrix} 2\Re(a) & b+\overline{c} \\ b-\overline{c} & 2\iota\Im(a) \end{pmatrix}$$

and U_1^*A has the form

$$U_1^*A = \begin{pmatrix} a+d & b-\iota c \\ c-\iota b & -\iota (a-d) \end{pmatrix} = \begin{pmatrix} a+\overline{a} & b+\overline{c} \\ c+\overline{b} & \iota (a-\overline{a}) \end{pmatrix} = \begin{pmatrix} 2\Re(a) & b+\overline{c} \\ c+\overline{b} & 2\Im(a) \end{pmatrix}$$

where $a,b,c\in\mathbb{C}$. Further, U_1^*A is positive, that is, A is U_1 -positive if and only if

$$0 \leq \Re(a) \quad \text{and} \quad 4\Re(a)\Im(a) \geq (b+\overline{c})(\overline{b}+c)$$

Also, U_1^*A is a quantum state, that is, A is a quantum U_1 -state if and only if

$$\Re(a) + \Im(a) = \frac{1}{2}.$$

In particular, if $a = \frac{1}{2} \in \mathbb{R}$, b = t and c = -t for all $t \ge 0$, then all the above relations are trivially satisfied. In other words, for $t \ge 0$,

$$A = \rho_t = \begin{pmatrix} 1 & 0 \\ 2t & 0 \end{pmatrix}$$

provides a one parameter family of quantum U_1 -states in $M_2(\mathbb{C})$. Similarly, the following provides a one parameter family of quantum $U_1 \otimes U_1$ -states

$$\frac{1}{16} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2t & 0 & 0 & 0 \\ 2t & 0 & 0 & 0 \\ 4t^2 & 0 & 0 & 0 \end{pmatrix},$$

where $t \geq 0$.

Since $M_2(\mathbb{C})$ is a unital *-algebra, any *-homomorphism π from $M_2(\mathbb{C})$ into $M_2(\mathbb{C})$ has the form $\pi(A) = W^*AW$ for some unitary matrix $W \in M_2(\mathbb{C})$. If ϕ is a U_1 -CP map defined on $M_2(\mathbb{C})$, then by Theorem 2.2 there exist a *-homomorphism π on $M_2(\mathbb{C})$ and a matrix $V \in M_2(\mathbb{C})$ such that

$$\phi(A) = V^{\#}\pi(A)V,$$

where $V^{\#} = U_1 V^* U_1^*$. For example, if we consider $V = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ and a unitary $W = \begin{pmatrix} \gamma & 0 \\ 0 & \delta \end{pmatrix}$, then we get U_1 -CP ϕ in the following form:

$$\begin{split} \phi(A) &= V^{\#}\pi(A)V = (U_1V^*U_1^*)(W^*AW)V = \begin{pmatrix} \overline{\alpha} & 0 \\ 0 & \overline{\beta} \end{pmatrix} \begin{pmatrix} a_{11} & \overline{\gamma}a_{12}\delta \\ \overline{\delta}a_{21}\gamma & a_{22} \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \\ &= \begin{pmatrix} \overline{\alpha}\alpha a_{11} & \overline{\alpha}\overline{\gamma}\delta\beta a_{12} \\ \overline{\beta}\overline{\delta}\gamma\alpha a_{21} & \overline{\beta}\beta a_{22} \end{pmatrix}, \end{split}$$

where $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C})$. Furthermore, if $|\alpha| = |\beta| = 1$, then $\phi(A)$ is of the form

$$\phi(A) = \begin{pmatrix} a_{11} & \overline{\alpha \gamma} \delta \beta a_{12} \\ \overline{\beta \delta} \gamma \alpha a_{21} & a_{22} \end{pmatrix}.$$

2. Consider the S-space (\mathbb{C}^2, U_2) . For any $A \in M_2(\mathbb{C})$, we obtain

$$U_2^*A = \frac{1}{\sqrt{2}} \left[a \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} - \iota c \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} + d \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} \right].$$

Comparing U_2^*A and $(U_2^*A)^*$, one may easily find out that A is U_2 -self adjoint if and only if b and d are reals and $c = -\iota \overline{a}$, that is, A has the form

$$\begin{pmatrix} a+d & -\overline{a}+b \\ \overline{a}+b & a-d \end{pmatrix}$$

where $a \in \mathbb{C}$ and $b, d \in \mathbb{R}$. Further, U_2^*A is positive, that is, A is U_2 -positive if and only if

$$-(b+d) \le 2\Re(a)$$
 and $b^2 + d^2 \le 2((\Re(a))^2 - (\Im(a))^2)$.

Also, U_2^*A is a quantum state, that is, A is a quantum U_2 -state if and only if

$$\Re(a) = \frac{\sqrt{2}}{4}, \quad -(b+d) \le \frac{\sqrt{2}}{2} \quad \text{and} \quad b^2 + d^2 \le \frac{1}{4} - 2(\Im(a))^2.$$

In particular, if $a = \sqrt{2}/4 \in \mathbb{R}$ and b = d = t/4, with $-\sqrt{2} \le t \le \sqrt{2}$, then all the above relations are trivially satisfied. In other words, for $-\sqrt{2} \le t \le \sqrt{2}$,

$$\rho_t = \frac{1}{4} \begin{pmatrix} t + \sqrt{2} & t - \sqrt{2} \\ t + \sqrt{2} & -t + \sqrt{2} \end{pmatrix}$$

provides a one parameter family of quantum U_2 -states in $M_2(\mathbb{C})$. Similarly, the following provides a one parameter family of quantum $U_2 \otimes U_2$ -states

$$\frac{1}{16} \begin{pmatrix} t^2 + 2\sqrt{2}t + 2 & t^2 - 2 & t^2 - 2\sqrt{2}t + 2 \\ t^2 + 2\sqrt{2}t + 2 & -t^2 + 2 & t^2 - 2 & -t^2 + 2\sqrt{2}t - 2 \\ t^2 + 2\sqrt{2}t + 2 & t^2 - 2 & -t^2 + 2\sqrt{2}t - 2 \\ t^2 + 2\sqrt{2}t + 2 & -t^2 + 2 & -t^2 + 2 & t^2 - 2\sqrt{2}t + 2 \end{pmatrix},$$

where $-\sqrt{2} \le t \le \sqrt{2}$.

Also, similar to the earlier example, we get any U_2 -CP map ϕ in the following form:

$$\begin{split} \phi(A) &= V^{\#}\pi(A)V = (U_{2}V^{*}U_{2}^{*})(W^{*}AW)V \\ &= \frac{1}{2} \begin{pmatrix} \overline{\alpha} + \overline{\beta} & \overline{\alpha} - \overline{\beta} \\ \overline{\alpha} - \overline{\beta} & \overline{\alpha} + \overline{\beta} \end{pmatrix} \begin{pmatrix} a_{11} & \overline{\gamma}a_{12}\delta \\ \overline{\delta}a_{21}\gamma & a_{22} \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} (\overline{\alpha} + \overline{\beta})\alpha a_{11} + (\overline{\alpha} - \overline{\beta})\overline{\delta}\gamma\alpha a_{21} & (\overline{\alpha} + \overline{\beta})\overline{\gamma}\delta\beta a_{12} + (\overline{\alpha} - \overline{\beta})\beta a_{22} \\ (\overline{\alpha} - \overline{\beta})\alpha a_{11} + (\overline{\alpha} + \overline{\beta})\overline{\delta}\gamma\alpha a_{21} & (\overline{\alpha} - \overline{\beta})\overline{\gamma}\delta\beta a_{12} + (\overline{\alpha} + \overline{\beta})\beta a_{22} \end{pmatrix}, \end{split}$$

where $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C})$. Also if $|\alpha| = |\beta| = 1$, then $\phi(A)$ is of the form

$$\phi(A) = \frac{1}{2} \begin{pmatrix} (1 + \overline{\beta}\alpha)a_{11} + (1 - \overline{\beta}\alpha)\overline{\delta}\gamma a_{21} & (\overline{\alpha}\beta + 1)\overline{\gamma}\delta a_{12} + (\overline{\alpha}\beta - 1)a_{22} \\ (1 - \overline{\beta}\alpha)a_{11} + (1 + \overline{\beta}\alpha)\overline{\delta}\gamma a_{21} & (\overline{\alpha}\beta - 1)\overline{\gamma}\delta a_{12} + (\overline{\alpha}\beta + 1)a_{22} \end{pmatrix}.$$

3. Let \mathbb{C}^3 be a 3-dimensional S-space with an indefinite metric induced by U_3 , where $U_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$. It is easy to observe that the matrices

$$\mu_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mu_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mu_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\mu_4 = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mu_5 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mu_6 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\mu_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \end{pmatrix}, \quad \mu_8 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}, \quad \mu_9 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

form a basis for $M_3(\mathbb{C})$. Thus, for any $A \in M_3(\mathbb{C})$, we have $A = \sum_{i=1}^9 a_i \mu_i$, where $a_i \in \mathbb{C}$. Then, we get

$$A = \begin{pmatrix} a_1 - a_4 & a_2 - a_5 & a_3 - a_6 \\ a_1 + a_4 & a_2 + a_5 & a_3 + a_6 \\ a_7\sqrt{2} & a_8\sqrt{2} & a_9\sqrt{2} \end{pmatrix}.$$
 (7.2)

Since

$$U_3^* A = \sqrt{2} \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{pmatrix},$$

after comparing U_3^*A and $(U_3^*A)^*$, one may easily find out that A is U_3 -self adjoint if and only if a_1 , a_5 and a_9 are reals and $a_2 = \overline{a_4}$, $a_3 = \overline{a_7}$ and $a_6 = \overline{a_8}$, that is, U_3^*A has the form

$$U_3^* A = \sqrt{2} \begin{pmatrix} a_1 & a_2 & a_3 \\ \overline{a_2} & a_5 & a_6 \\ \overline{a_3} & \overline{a_6} & a_9 \end{pmatrix}.$$

Further, U_3^*A is positive, that is, A is U_3 -positive if and only if the following conditions hold:

$$a_1 \ge 0,\tag{7.3}$$

$$a_1 a_5 - |a_2|^2 \ge 0 (7.4)$$

and
$$a_1 a_5 a_9 - a_1 |a_6|^2 - |a_2|^2 a_9 - |a_3|^2 a_5 + 2\Re(a_2 \overline{a_3} a_6) \ge 0.$$
 (7.5)

Also, U_3^*A is a quantum state, that is, A is a quantum U_3 -state if and only if

$$a_1 + a_5 + a_9 = \frac{1}{\sqrt{2}}.$$

In particular, if we choose $a_i = \frac{1}{3\sqrt{2}}$ in (7.2), then the matrix A =

$$\frac{1}{3} \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 1 & 1 & 1 \end{pmatrix}$$
 is a U_3 -state, where

$$U_3^*A = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Using this example we give the following quantum separable $U_3 \otimes U_3$ -state:

In [7], Choi gave the following entangled state which has positive partial transpose:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Consider

$$C := \frac{2}{21} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Note that

One may easily check that

$$A = (U_3 \otimes U_3)C = \frac{1}{21} \begin{pmatrix} 2 & -3 & 0 & -\frac{3}{2} & 2 & 0 & 0 & 0 & 2\\ 0 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & -2\sqrt{2} & \sqrt{2} & -\sqrt{2} & 0\\ 0 & -1 & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0\\ 2 & 3 & 0 & \frac{3}{2} & 2 & 0 & 0 & 0 & 2\\ 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 2\sqrt{2} & \sqrt{2} & \sqrt{2} & 0\\ 0 & 0 & \sqrt{2} & 0 & 0 & -\sqrt{2} & 2\sqrt{2} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & \sqrt{2} & 0 & 0 & \sqrt{2} & 2\sqrt{2} & \frac{1}{\sqrt{2}} & 0\\ 2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 \end{pmatrix}$$

is a $U_3 \otimes U_3$ -entangled state.

Acknowledgement

Azad Rohilla thanks Harsh Trivedi for a research visit during February-March 2024 at The LNM Institute of Information Technology. Harsh Trivedi is supported by MATRICS-SERB Research Grant, File No: MTR/2021/000286, by SERB, Department of Science & Technology (DST), Government of India. Harsh Trivedi acknowledges the DST-FIST program (Govt. of India) FIST - No. SR/FST/MS-I/2018/24.

References

- [1] J.-P. Antoine and S. Ōta, Unbounded GNS representations of a *-algebra in a Kreĭn space, Lett. Math. Phys. 18 (1989), no. 4, 267–274.
- [2] B. V. R. Bhat and N. Mallick, Nilpotent completely positive maps, Positivity, 2014, 18, pp.567-577.
- [3] J. Bognár, Indefinite inner product spaces, Springer-Verlag, New York-Heidelberg, 1974, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78.
- [4] P. J. M. Bongaarts, Maxwell's equations in axiomatic quantum field theory. I. Field tensor and potentials, J. Mathematical Phys. 18 (1977), no. 7, 1510–1516.
- [5] H.-J. Borchers, On the structure of the algebra of field operators. II, Comm. Math. Phys. 1 (1965), 49–56.
- [6] M. D. Choi, Completely positive linear maps on complex matrices, Linear algebra and its applications. 1975 Jun 1; 10(3):285-90.
- [7] M. D. Choi and R. V. Kadison, Positive linear maps in Operator Algebras and Applications Kingston, 1980, Proc. Sympos. Pure Math, 1980.
- [8] S. Dey and H. Trivedi, KSGNS construction for τ-maps on S-modules and κ-families, Oper. Matrices 11 (2017), no. 3, 679–696.
- [9] S. Dey and H. Trivedi, Bures Distance and Transition Probability for α-CPD-Kernels, Complex Anal. Oper. Theory 13, 2171–2190 (2019).
- [10] P. A. M. Dirac, The physical interpretation of quantum mechanics, Proc. Roy. Soc. London. Ser. A. 180 (1942), 1–40.

- [11] J. Heo, Quantum J-channels on Krein spaces. (English summary) Quantum Inf. Process. 22 (2023), no. 1, Paper No. 16, 18 pp.
- [12] M. Horodecki, P. W. Shor, and M. B. Ruskai, Entanglement breaking channels Reviews in Mathematical Physics 15, no. 06 (2003): 629-641.
- [13] A. S. Holevo, Coding Theorems for Quantum Channels, Russian Math. Surveys 53, 1295–1331 (1999).
- [14] W. Pauli, On Dirac's new method of field quantization, Rev. Modern Phys. 15 (1943), 175–207.
- [15] F. Philipp, F. H. Szafraniec, and C. Trunk, Selfadjoint operators in S-spaces, J. Funct. Anal. 260 (2011), no. 4, 1045–1059.
- [16] F.-S. Raúl; F. Raúl, J-states and quantum channels between indefinite metric spaces. (English summary) Quantum Inf. Process., 21 (2022), no. 4, Paper No. 139, 32 pp.
- [17] E. G. Rieffel and P. H. Wolfgang, Quantum computing: A gentle introduction, MIT press, 2011.
- [18] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216.
- [19] F. H. Szafraniec, Two-sided weighted shifts are 'almost Krein' normal, Spectral theory in inner product spaces and applications, Oper. Theory Adv. Appl., vol. 188, Birkhäuser Verlag, Basel, 2009, pp. 245–250.

Priyabrata Bag

Department of Mathematics, School of Science, Gandhi Institute of Technology and Management (Deemed-to-be University), Doddaballapur Taluk, Bengaluru, Karnataka 561203, INDIA

e-mail: pbag@gitam.edu, priyabrata.bag@gmail.com

Azad Rohilla*

Centre for Mathematical and Financial Computing, Department of Mathematics, The LNM Institute of Information Technology, Rupa ki Nangal, Post-Sumel, Via-Jamdoli Jaipur-302031, (Rajasthan) INDIA

e-mail: 18pmt005@lnmiit.ac.in, azadrohilla23@gmail.com

Harsh Trivedi

Centre for Mathematical and Financial Computing, Department of Mathematics, The LNM Institute of Information Technology, Rupa ki Nangal, Post-Sumel, Via-Jamdoli Jaipur-302031, (Rajasthan) INDIA

e-mail: harsh.trivedi@lnmiit.ac.in, trivediharsh26@gmail.com