

MNUM

Fármaco Cinética

Grupo 30

Francisco Renato Barbosa Pires - up201908044

Tiago Filipe Lima Rocha – up201406679

Vasco David Antunes Pereira Gomes - up201906617

Fármaco Cinética, uma introdução

Os modelos farmacocinéticos permitem estudar, simular e fazer previsões da resposta do organismo a diferentes dosagens e formas de administração de fármacos.

Um fármaco entra no organismo por administração oral, intracutânea, intravenosa ou por inalação. Após a administração o fármaco é distribuído aos órgãos e tecidos através do plasma sanguíneo. A concentração da substância no plasma deve ser suficientemente grande para produzir uma resposta do organismo, mas ao mesmo tempo não deve ultrapassar níveis que gerem toxicidade. Como não é clinicamente possível medir a concentração da substância nos órgãos e tecidos usa-se a concentração plasmática considerando que esta tem uma relação linear com a concentração do fármaco no local de ação.

Figura 1: Representação esquemática da distribuição de um fármaco no organismo

Modelo Bicompartimental

Outra abordagem, dita bicompartimental, considera dois grandes compartimentos: o compartimento central que representa o meio pelo qual o fármaco entra no organismo (incluindo as vias de administração e de incorporação gastrointestinal, transdermal ou pulmonar) e, o segundo compartimento representado pelo plasma sanguíneo (ver fig. 3).

O modelo bicompartimental resulta de um balanço mássico nos dois compartimentos que se traduz pelo seguinte sistema de equações diferenciais de 1º ordem:

$$\left\{ egin{aligned} rac{dm_i}{dt} &= D(t) - K_a M_i \ rac{dm_p}{dt} &= K_a M_i - K_{et} m_p \end{aligned}
ight.$$

em que:

- m_i é a massa de fármaco presente no compartimento central (mg), o
 índice i diferencia as vias de administração,
- m_n é a massa de fármaco no compartimento plasmático (mg);
- K_a é a constante cinética de absorção (min⁻¹);
- K_{et} é a constante cinética de eliminação total (min⁻¹)
- D(t) é a dose administrada como função do tempo (mg min-1)
- t o tempo decorrido (na unidades conveniente)

Função de Administração

A função temporal de administração, designada acima por D(t), tem uma forma que varia muito com o tipo de administração.

A toma periódica de comprimidos resulta numa função em dente de serra. Frequentemente, o tipo de fármaco condiciona a forma (a função) de administração. No caso da lercanidipina, a administração é por via oral com uma toma de 1 comprimido de 20mg de 12 em 12 horas, sendo caracterizada por:

$$D(t) = \frac{5}{3} \cdot t \mod 20$$

Em termos práticos a função representa a dosagem de medicamento aplicada ao longo do tempo, esta aumenta mediante a absorção do fármaco pelo organismo, com o decorrer do tempo até este desaparecer, altura em que se procede à nova tomada:

A concentração plasmática de fármaco aumenta, sempre oscilando, até um valor máximo onde permanece com uma forma mais ou menos sinusoidal, até que após a última toma começa a descer até ser nula.

Aproximadamente a partir da 6ª toma o valor da concentração do fármaco no sangue atinge um máximo e a partir da última toma leva cerca de 74 horas para a concentração plasmática da substância atingir 1mg e 108 horas para ser 0.1mg.

Estudo da Concentração de Lercanidipina no Plasma Sanguíneo

Consoante as características do fármaco, foi realizado uma modelação numérica do comportamento temporal da sua concentração no plasma sanguíneo, usando o modelo bicompartimental.

Deste modo, o primeiro passo foi o cálculo da constante cinética de absorção (K_a) . A constante de absorção é calculada para cada fármaco de acordo com a equação não linear:

$$K_a e^{-K_a t_{max}} - K_{\rho} e^{-K_e t_{max}} = 0$$

em que:

 t_{max} é o instante (min) depois da administração, em que ocorre a concentração plasmática máxima (dado fornecido pelos laboratórios farmacêuticos).

Assim, através do método de Newton, é possível atualizar o valor de uma variável x(ka) segundo um valor anterior que é guardado numa outra variável x0, bem como os valores da função e da sua derivada, isto até se atingir uma precisão pretendida (estar muito próxima de 0).

Deste modo utilizando este método o valor calculado para a constante cinética de absorção foi 0.9375888864591262.

Seguidamente usou-se os métodos de Euler e Runge-Kutta para estudar a variação da massa de fármaco no sangue, mediante as equações fornecidas pelo sistema de equações diferenciais do modelo bicompartimental.

A figura abaixo representa a evolução da concentração do fármaco em 96 horas. A linha azul representa o método Runge-Kutta 2, a vermelha o Runge-Kutta 4 com passos muito mais pequenos (na ordem dos 10⁻⁴), a linha verde representa o Runge-Kutta 4 com passos de uma hora e a laranja representa a abordagem com o método de Euler.

Todas as abordagens utilizadas apresentam resultados muito semelhantes, e em grande escala, isto é, ao final de 1 ano, torna-se difícil distinguir uns dos outros.

Não obstante, para cenários macro, isto é, períodos mais curtos, o método Runge-Kutta 4 tem, em geral, um comportamento mais próximo da realidade, pois a sua margem de erro é um pouco menor, excepto no caso do pós última toma. Após a última toma o método de Euler apresenta ter uma maior aproximação à realidade.

Resultados

Após um período de tempo longo, o gráfico que relaciona a concentração de fármaco em relação ao tempo assemelha-se a uma função *step*, mas na realidade não o é, pois os valores oscilam entre 158.05mg e 135.31mg. Esta observação é importante pois demonstra uma certa constância em relação à concentração do medicamento no plasma sanguíneo.

Ao ter um panorama mais macro da toma do medicamento, por exemplo num período de 7 dias, é mais fácil ver as oscilações da concentração de Lercanidipina no sangue. A partir da 6ª dosagem, é possível verificar que o valor da concentração de fármaco já estabilizou.

Conclusão

Em termos da eficiência computacional da implementação informática pode-se concluir que, para qualquer das abordagens utilizadas, o tempo de cálculo é extremamente rápido (na ordem dos 2 a 4 segundos), sendo que para intervalos de tempo mais longos o método de Runge-Kutta demora um pouco mais, mas nada de significativo, a não ser que o passo utilizado neste método seja muito pequeno. Nesse caso, o método de Euler torna-se 3 a 4 vezes mais eficiente.

Quanto à qualidade dos resultados em si, atendendo a que foram usados 3 métodos distintos para a obtenção dos mesmo (Euler, Runge-Kutta 2 e Runge-Kutta 4), e dada a falta de disparidade entre eles, é possível dizer que os dados demonstram fidedignidade. Foram também usadas várias casas decimais em todos os cálculos, por forma a reduzir o erro por arredondamentos.