Math 114 Problem Set 5

Lev Kruglyak

October 25, 2022

Problem 1. Suppose f is a complex measurable function on X, μ is a positive measure on X, and

$$\varphi(p) = \int_X |f|^p d\mu = ||f||_p^p \quad (0$$

Let $E = \{p : \varphi(p) < \infty\}$, assuming $||f||_{\infty} > 0$. Find a function f such that E = [1, 2).

We'll find such a function in two steps. First, consider the function $f_1 = 1/\sqrt{x}$ on $X = [2, \infty)$. Then assuming $p \neq 2$,

$$\varphi_{f_1}(p) = \int_2^\infty \frac{1}{\sqrt{x^p}} dx \le \lim_{x \to \infty} \frac{x^{1-p/2}}{1-p/2} = \begin{cases} \infty & p > 2, \\ 0 & p < 2. \end{cases}$$

For p=2, we have $\varphi_{f_1}(p)=\int_2^\infty \frac{1}{x}\ dx=\infty$. So $E_{f_1}=(0,2)$. Next, consider the function

$$f_2(x) = \frac{1}{x \log^2 x}$$
, with $\varphi_{f_2}(1) = \int_2^\infty \frac{1}{x \log^2 x} dx < \infty$.

Then for any p > 1, we have

$$\varphi_{f_2}(p) = \int_2^\infty \frac{1}{x^p \log^{2p} x} \, dx < \infty \quad \text{since} \quad \frac{1}{x^p \log^{2p} x} < \frac{1}{x \log^2 x}.$$

However for any p < 1, Wolfram Alpha tells us the integral diverges, so $E_{f_2} = [1, \infty)$. Finally, let's add these two functions to get $f = f_1 + f_2$. We claim that $E_f = E_{f_1} \cap E_{f_2} = [1, 2)$. To first show that $E_{f_1} \cap E_{f_2} \subset E_f$, suppose $p \in E_{f_1} \cap E_{f_2}$. Then

$$||f||_p = ||f_1 + f_2||_p \le ||f_1||_p + ||f_2||_p < \infty.$$

Similarly if $p \in E_f$, then

$$||f_1||_p, ||f_2||_p \le ||f_1 + f_2||_p = ||f||_p < \infty$$

so $E_f \subset E_{f_1} \cap E_{f_2}$ and so $E_f = [1, 2)$ as desired.

Problem 2. Assume, in addition to the hypotheses of the previous exercise that

$$\mu(X) = 1.$$

- (a) Prove that $||f||_r \le ||f||_s$ if $1 \le r < s \le \infty$.
- (b) Under what condition does it happen that $1 \le r < s \le \infty$ and $||f||_r = ||f||_s < \infty$?
- (c) Prove that $L^r(\mu) \supset L^s(\mu)$ if $1 \le r < s$. Under what conditions do these two spaces contain the same functions?
- (d) Assume that $||f||_r < \infty$ fo some r > 0, and prove that

$$\lim_{p \to 0} ||f||_p = \exp \int_X \log |f| \ d\mu.$$

Assume WLOG that all functions are nonnegative. We'll begin by proving a generalization of Hölder's inequality.

Claim. Let $a, b, c \ge 1$ satisfy $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$. Then for any functions f, g, we have $||fg||_c \le ||f||_a ||f||_b$.

Proof. Let $f' = f^c$ and $g' = g^c$. Since $\frac{1}{a/c} + \frac{1}{b/c} = 1$, we can apply Hölder's inequality to get

$$||f'g'||_1 \le ||f'||_{a/c} ||g'||_{b/c}.$$

However recall that $||f||_{ab} = ||f^a||_b^{1/a}$. We can use this identity to get

$$||f'g'||_1 = ||(f'g')^{1/c}||_c^c = ||fg||_c^c \le ||f'||_{a/c} ||g'||_{b/c} = ||f||_a^c ||g||_b^c$$

$$\implies ||fg||_c \le ||f||_a ||g||_b,$$

which is what we were trying to prove. Furthermore, equality only happens when $(f')^{a/c} = f^a$ and $(g')^{b/c} = g^b$ are linearly dependent almost everywhere.

(a) Since r < s, let $q \ge 1$ be such that $\frac{1}{r} = \frac{1}{s} + \frac{1}{q}$. Letting g(x) = 1, it then follows from the generalized Hölder inequality that

$$||f||_r = ||f \cdot 1||_r \le ||f||_s ||1||_q = ||f||_s \cdot \mu(X)^{1/q} = ||f||_s.$$

- (b) Suppose $||f||_s = ||f||_r$. Then the generalized Hölder inequality and the proof of the previous part tell us that $||f||^s$ and 1 are linearly dependent. This means that f is a constant function almost everywhere.
- (c) By (a), it follows that $L^r(\mu) \supset L^s(\mu)$ since $||f||_r \leq ||f||_s$. We claim that they are equal if and only if X contains no sequence of disjoint sets of positive measure.

Suppose first that such a sequence exists, say A_k . We have $\sum_k \mu(A_k) \leq 1$ by disjointness of A_k , and so we must have $\mu(A_k) \to 0$. Let us choose a sequence k_n such that $\mu(E_{k_n}) \leq 2^{-n}$, and define

$$f = \sum_{n=1}^{\infty} \mu(E_{k_n})^{-1/s} \chi_{E_{k_n}}.$$

Monotone convergence then implies that

$$\int |f|^s d\mu = \sum_{n=1}^{\infty} 1 = \infty \implies f \notin L^s(\mu).$$

Yet since 0 < 1 - r/s < 1, we get

$$\int_X |f|^r d\mu = \sum_{n=1}^{\infty} \mu(E_{k_n})^{1-r/s} \le \sum_{n=1}^{\infty} \left(\frac{1}{2^{1-r/s}}\right)^n < \infty.$$

Thus $f \in L^r(\mu)$. We can do a similar argument to get the edge case $s = \infty$.

Next, assume that there does not exist such a sequence. For any measurable function f, the sequence of sets $E_{\ell} = \{x \in X : f(x) \in [\ell, \ell+1)\}$ for any integer $\ell \in \mathbb{Z}$ is a sequence of disjoint measurable sets. So only a finite number of these can have positive measure. But this shows that the function is bounded, and since $\mu(X) = 1$, we have $f \in L^p(\mu)$ for all p.

(d) Since $||f||_p \ge 0$ decreases as $p \to 0$, the limit $\lim_{p\to 0} ||f||_p$ exists. Now recall that for $x \ge 0$, we have $\log x \le (x^p - 1)/p$. In particular $\int \log |f|$ is bounded by $(||f||_r^r - 1)/r$. Letting $p < \min(1, r)$ we can look at the functions

$$g_p(x) = |f(x)| - 1 - \frac{|f(x)|^p - 1}{p}$$

is positive. By monotone convergence, we get

$$\lim_{p \to 0} \int_X g_p \ d\mu = \int_X |f| - 1 - \log|f| \ d\mu \implies \lim_{p \to 0} \exp\left(\int_X \frac{|f|^p - 1}{p}\right) = \exp\left(\int_X \log|f|\right).$$

Finally, since $\log x \le x - 1$, we can conclude

$$||f||_p = \exp\left(\frac{1}{p}\log\left(\int_X |f|^p d\mu\right)\right) \le \exp\left(\int_X \frac{|f|^p - 1}{p} d\mu\right).$$

As $p \to 0$, we get $\lim_{p \to 0} ||f||_p \le \exp(\int_X \log |f|)$.

To prove the reverse inequality, we can assume that |f| > 0. Applying Jensen's inequality on the convex function $-\log x$, we get

$$-\log \int_X |f|^p d\mu \le -\int_X \log |f|^p d\mu \implies \log \int_X |f|^p d\mu \ge \int_X \log |f|^p d\mu.$$

If we exponentiate both sides and raise to the 1/pth power gives

$$||f||_p \ge \exp\left(\frac{1}{p} \int_X \log|f|^p d\mu\right) = \exp\left(\int_X \log|f| d\mu\right).$$

As before, when we take the limit as $p \to 0$, we get $\lim_{p \to \infty} ||f||_p \ge \exp(\int_X \log |f| \ d\mu)$. Thus we can conclude

$$\lim_{p \to \infty} \|f\|_p = \exp\left(\int_X \log|f| \ d\mu\right).$$