Homework 3. Tableau Proof. Resolution.

Submit your solution in PDF file and Latex source file to blackboard by **05:00pm Mon, Oct 10**.

- 1. (15) For Definition 6.2, write the following information in the order they occur in the definition
 - For each concept defined by this definition, write its name and parameters (if there is any),

Defined Concepts:

- 1) Tableau Proof (Parameters are α and Σ)
- 2) Provable (Parameter is Σ)
- 3) $\Sigma \vdash \alpha$ (Parameters are α and Σ)
- For each concept used in this definition, write its name and arguments (if there is any), and

Used Concepts:

- 1) Proposition (Argument is α)
- 2) Or
- 3) Tableau (Argument is Σ)
- 4) Root Entry (Argument is $F\alpha$)
- 5) Contradictory (Argument is Tableau)
- 6) Contradictory (Argument is path)
- 7) If
- 8) And
- 9) Proof(tableau proof) (Arguments are α and Σ)
- Write meta variables in the definition.

Meta Variables:

 α and Σ

2. (15) For Definition 8.4, write the following information in the order they occur in the definition

• For each concept defined by this definition, write its name and parameters (if there is any),

Defined Concepts:

- 1) Deduction (Parameters are C and S)
- 2) Proof (Parameters are C and S)
- 3) Provable (Parameters are C and S)
- 4) $S \vdash_R C$ (Parameters are C and S)
- 5) Refutation (Parameter is S)
- 6) Refutable (Parameter is S)
- 7) $S \vdash_R \square$ (Parameters are S and \square)
- For each concept used in this definition, write its name and arguments (if there is any), and

Used Concepts:

- 1) Formula (Argument is S)
- 2) Clauses (Argument is C)
- 3) Or
- 4) Resolvent (Arguments are C_i, C_j, C_k)
- 5) If
- 6) There is
- 7) Deduction
- 8) Deduction (Arguments are \square and S)
- 9) If
- 10 There is
- 11) Deduction
- Write meta variables in the definition.

Meta Variables:

$$C_i, C_i, C_k, \mathsf{C}, \mathsf{S}$$

3. (15) i) Find the definition of assignment from Chapter 8. Write the definition below.

Answer:

An assignment A is a consistent set of literals, i.e., one not containing both p and $\neg p$ for any propositional letter p.

ii) Write the definition of another concept, whose name contains "assignment", that was defined before (see L04).

Answer:

A truth assignment A is a function that assigns to each propositional letter A a unique truth value $A(A) \in \{T, F\}$

iii) Is it precise for us to understand *truth assignment* as the combination of the English meaning of truth and the definition of *assignment* in i)? Why?

Answer:

NO

Reason: According to the definition of assignment in i) and the English meaning of truth, it means that the consistent set of literals should be assigned with a truth value T. Whereas truth assignment means assigning T of F to the literals.

4. (15) i) Write the result of applying the definition of *satisfiable* (see Section 2.3 of L04).

$$\{\{\neg A\}, \{A, \neg B\}, \{B\}\}.$$

Answer:

- 1) The given formula is $\{\{\neg A\}, \{A, \neg B\}, \{B\}\}.$
- 2) We now need to check if the given formula is satisfiable using the definition of satisfiable.
- 3) The satisfiablity rule states that the assignment \mathcal{A} satisfies $S \mathcal{A} \models S$ iff $\forall C \in S$, $C \cap \mathcal{A} \neq \emptyset$
- 4) The given formula has the following clauses.

$$C_1 = \{ \neg A \}$$

$$C_2 = \{A, \neg B\}$$

$$C_3 = \{B\}$$

- 5) We now check the given formula with different assignments available.
- 6) Case i:

Consider the assignment $A = \{A, B\}$

$$C_1 \cap A = \{\neg A\} \cap \{A, B\} = \emptyset$$

 $A = \{A, B\}$ cannot be the assignment as the satisfiability criteria for C_1 is not satisfied.

7) Case ii:

Consider the assignment $A = {\neg A, B}$

$$C_1 \cap A = \{\neg A\} \cap \{\neg A, B\} = \{\neg A\}$$

$$C_2 \cap A = \{A, \neg B\} \cap \{\neg A, B\} = \emptyset$$

 $\mathcal{A} = \{ \neg A, B \}$ cannot be the assignment as the satisfiability criteria for C_2 is not satisfied.

8) Case iii:

Consider the assignment $A = \{A, \neg B\}$

$$C_1 \cap A = \{ \neg A \} \cap \{ A, \neg B \} = \emptyset$$

 $\mathcal{A} = \{A, \neg B\}$ cannot be the assignment as the satisfiability criteria for C_1 is not satisfied.

9) Case iv:

Consider the assignment $A = {\neg A, \neg B}$

$$C_1 \cap A = \{\neg A\} \cap \{\neg A, \neg B\} = \{\neg A\}$$

$$C_2 \cap A = \{A, \neg B\} \cap \{\neg A, \neg B\} = \{\neg B\}$$

$$C_3 \cap A = \{B\} \cap \{\neg A, \neg B\} = \emptyset$$

 $A = \{\neg A, \neg B\}$ cannot be the assignment as the satisfiability criteria for C_3 is not satisfied.

10) We have tried with all possible cases of assignment but the given formula $S = \{\{\neg A\}, \{A, \neg B\}, \{B\}\}\}$. is not satisfiable.

ii) According to the result above, is the formula satisfiable? If yes, give an assignment satisfying it.

Answer:

- 1) NO. With the above result, we can confirm that the formula $\{\{\neg A\}, \{A, \neg B\}, \{B\}\}$ is not satisfiable.
- 2) As the formula is not satisfiable, there will be no assignment satisfying it.
- 5. (20) Find a resolution tree refutation of the following formula:

$$\{\{A, \neg B, C\}, \{B, C\}, \{\neg A, C\}, \{B, \neg C\}, \{\neg B\}\}.$$

Answer:

6. (20) Prove that if the formula $S = \{C_1, C_2\}$ is satisfiable and C is the resolvent of C_1 and C_2 , then C is satisfiable. Use our proof methodologies and format. Do not copy the proof in the book.

Answer:

- 1) Let C_1 and C_2 be two clauses.
- 2) C be the resolvent of C_1 and C_2
- 3) Since C is the resolvent of C_1 and C_2 , we can write $C_1 = \{l\} \cup C_1'$ and $C_2 = \{\bar{l}\} \cup C_2'$ and $C = C_1' \cup C_2'$.
- 4) Since C_1 and C_2 are satisfiable, there exists an assignment \mathcal{A} such that $\mathcal{A} \cap C_1 \neq \emptyset$ and $\mathcal{A} \cap C_2 \neq \emptyset$. [According to the definition of satisfiable]

- 5) Since A is an assignment, it should either contain l or \bar{l} but not both. In this scenario, two cases occur. [According to the definition of Assignment]
- 6) Case i: A contains l.

Since $l \in \mathcal{A}$, $\bar{l} \notin \mathcal{A}$

Thus we can say that $A \models C_2'$. [Because A and C_2' doesn't contain \bar{l} and $C_2' \cap A \neq \emptyset$]. Now we can say that $A \models C$. [Because $A \models C_2'$ and $C \models C_1' \cup C_2'$ which implies $C \cap A \neq \emptyset$].

7) Case ii: A contains \bar{l} .

Since $\bar{l} \in \mathcal{A}$, $l \notin \mathcal{A}$

Thus we can say that $\mathcal{A} \models C_1'$. [Because \mathcal{A} and C_1' doesn't contain l and $C_1' \cap \mathcal{A} \neq \emptyset$]. Now we can say that $\mathcal{A} \models C$. [Because $\mathcal{A} \models C_1'$ and $C \models C_1' \cup C_2'$ which implies $C \cap \mathcal{A} \neq \emptyset$].

8) From cases i and ii, we can say that C is satisfiable from S which has an assignment A. Therefore G the formula $G = \{C_1, C_2\}$ is satisfiable and G is the resolvent of G and G, then G is satisfiable.