

Printed Page: 1 of 2 Subject Code: KEE401

Roll No:

(SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours

Note: I. Attempt all Sections If require any missing data, then choose suitably:

Total Marks: 100

SECTION A

l	Attempt all questions in brief.	10 = 20
Q no		[co]
a	Identify the value of x in the expression $(56 \text{ IA})_{16} = (x)_8$.	1
b	Perform the subtraction (101101-100110)2 using 2's complement method.	+
C.	Compare serial adder and parallel adder	12
d	What is difference between combinational and sequential circuits.	12
e	The content of 4 bit register is initially 1101. The register is sifted six time to right with the serial input being 101101. What is the content of the register after sixth shift?	3
f	If in an edge triggered JK flip flop, J=1, K=1 and Q=1, when the clock pulse goes HIGH, what would be the next sate of Q.	3
g	Define critical race and non-critical race conditions.	4
h	Differentiate synchronous and asynchronous sequential circuits.	4
1	Write the advantage and disadvantages of TTL and CMOS logic family	5
ī	Explain fan-ın and fan-out in logic families.	5

SECTION B

2.	Attempt any three of the following: 10*3	= 30
Qı		CO
а	Simplify the following Boolean function using K-map and also draw the simplified logic circuit using basic logic gates: $f(A, B, C, D) = \sum_{m} (0.1.5, 6.12, 13, 14) + d(2, 4)$	1
ь	Implement the function $Y(A,B,C,D) = \sum_{m} (0,1,2,5,8,13,14)$ using 8.1 multiplexer. Consider A, B, C as the select lines.	2
c	Differentiate between synchronous and asynchronous counters. Design a 2	3
d	An asynchronous sequential circuit with two excitation function with two feedback loop is given as $Y_1 = xy_1 + \overline{x}y_2$; $Y_2 = x\overline{y}_1 + \overline{x}y_2$ (1) Draw the logic diagram of the circuit.	4
<u>-</u>	Differentiate RAM and ROM Explain various types of ROM	5

SECTION C

3. Attempt any one part of the following:

10*1 = 10

		CO	l
Q no	Question bit Hamming	1	1
а	Explain Error detecting and Error correcting codes. A seven-bit Hamming code coming out of a transmission line is 1000010. What was the original code transmitted? Consider the even parity check.	1	
b	Express the design of Ex-OR gate with the help of (i) NAND gates only and (ii) NOR gates only		}

Printed Page: 2 of 2 Subject Code: KEE401

Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

4.	A	ttempt any one part of the following:	
	Q no	Ouestion 10*1 =	
	a.		co
		Explain the design of a Full adder, with its truth table and Boolean expression.	2
	b.	Design a Binary Code to Gray code Converter, Also show its truth table	
		Boolean expression and logic diagram	2

5, A	ttempt any one part of the following:	10
Q no.	Question	co
a.	Discuss the Race around condition of JK flip flop. How JK flip-flop can be used as T flip-flop, Explain the design procedure.	3
b.	Analyze RS flip -flop using NAND-NAND logic and obtain its characteristic equation and excitation table. Explain how will you convert it in D Flip-flop.	3

) по	ttempt any one part of the following: 10*1 =	= 10
	Question	co
ı.	Implement the circuit defined by the following transition table with a NOR SR Latch. Also show the implementation with NAND SR latch	4
	y 00 01 11 10	- 1
	0 0 0 1	
	1 0 00 (1)	
) .	Write the design procedure for clocked sequential circuits and implement the following state diagram.	t 4
	80	
	1/0	
	1/0 01 10 0/1	
	0/0	
		- 1
	1/0	l

7A	ttempt any one part of the following:	
Q no.	Question 10*	= 10
	Explain PLA and PAL. Implement the given Boolean function with a PLA. $Y_1(A,B,C) = \sum_{m} (4,5,7); Y_2(A,B,C) = \sum_{m} (3,5,7)$	1 1
b.	Construct the following logic gates from NMOS and PMOS logic Families (i) NAND (ii) NOR	5