Master 1 de Physique Fondamentale Magistère de Physique Fondamentale (Mag2) 2018-2019

Cours d'Optique (troisième partie)

J. LEYGNIER

INTERFÉRENCES EN LUMIERE MONOCHROMATIQUE
ONDES QUASI-MONOCHROMATIQUES
INTERFÉRENCES ET COHÉRENCE TEMPORELLE
INTERFÉRENCES ET COHÉRENCE SPATIALE

Table des matières

5	INT	TERFÉRENCES EN LUMIERE MONOCHROMATIQUE	123
	5.1	Chemins optiques et surfaces d'onde	124
	5.2	Forme générale des interférences en lumière monochromatique	126
6	on	DES QUASI-MONOCHROMATIQUES	129
	6.1	Mécanismes microscopiques de l'émission lumineuse	130
	6.2	Source macroscopique : modèle de l'enveloppe lentement variable	131
	6.3	Signal analytique d'une onde quasi-monochromatique	
		6.3.1 Définitions	
		6.3.2 Exemples, généralisation	
	6.4	Grandeurs énergétiques - Rayonnement stationnaire	
	6.5	Capteurs optiques	
	6.6	Synthèse	
	6.7	Annexes	
		6.7.1 Dipôle oscillant amorti, détail des calculs	
		6.7.2 Limites aux courtes durées : impulsion gaussienne brève	
		6.7.3 Rayonnement stationnaire; discussion des temps caractéristiques	139
7	INT	TERFÉRENCES ET COHÉRENCE TEMPORELLE	141
	7.1	Interférences en lumière quasi-monochromatique	
	7.2	Degré complexe de cohérence temporelle	
		7.2.1 Définitions	142
		7.2.2 Application à une onde 'modèle de l'enveloppe lentement variable'	143
		7.2.3 Application à une impulsion 'dipôle amorti'	144
		7.2.4 Trains d'onde microscopiques et onde macroscopique résultante	145
	7.3	Propriétés générales des interférences	
		7.3.1 Forme générale de l'intensité	
		7.3.2 Visibilité des franges d'interférences. Mesure du temps de cohérence	
		7.3.3 Exemple de mesure du temps de cohérence d'un rayonnement	
	7.4	Spectre des fréquences d'un rayonnement	
	1.4		
		7.4.2 Interprétation physique	
		7.4.3 Largeur spectrale	
		7.4.4 Caractérisation spectroscopique de la matière	
		7.4.5 Lien avec le modèle de l'enveloppe lentement variable	
	7.5	Exemples d'applications	
		7.5.1 Interférogramme pour une source de lumière blanche	152
		7.5.2 Tomographie par cohérence optique	
		7.5.3 Spectrométrie par transformée de Fourier	153
	7.6	Cohérence temporelle, aspect quantique	
	7.7	Cohérence de polarisation	
	7.8	Cohérence temporelle - synthèse	
	7.9	Annexes	
	1.0	7.9.1 Spectre pour le rayonnement du dipole amorti	
		7.9.2 Eléments de démonstration du théorème de Wiener-Khintchine	
		7.9.2 Elements de demonstration du théorème de Wiener-Kinntchine	101
8	TNIT	TERFÉRENCES ET COHÉRENCE SPATIALE	163
G		Interféromètre éclairé par une source étendue	164
	8.1	•	
		8.1.1 Discussion générale	
		8.1.2 Exemple : miroir de Lloyd éclairé par une source étendue	
	8.2	Interférences non localisées	
		8.2.1 Théorème de Van Cittert-Zernike	
		8.2.2 Notion de cohérence spatiale	170

	8.2.3	Cohérence spatiale et cohérence temporelle	171		
	8.2.4	Exemple d'application : interféromètre stellaire de Michelson	171		
	8.2.5	Distance transversale de corrélation. Aire de cohérence	172		
8.3	Interfé	rences localisées	173		
	8.3.1	Condition de localisation - forme de l'intensité	173		
	8.3.2	Interférences localisées de deuxième espèce : lame à faces parallèles			
	8.3.3	Interférences localisées de première espèce : coin d'air	176		
8.4	Exemp	ples de dispositifs interférentiels	179		
	8.4.1	Dispositifs à division du front d'onde	179		
	8.4.2	Dispositifs à division d'amplitude	180		
	8.4.3	Synthèse	182		
8.5	Annexes				
	8.5.1	Théorème de Van Cittert-Zernike, autre méthode de calcul	183		
	8.5.2	Cohérence spatiale et cohérence temporelle	185		
	8.5.3	Interféromètre de Michelson : schémas optiques équivalents	186		
	8.5.4	Différence de marche pour les rayons réfléchis sur une lame à faces parallèles	187		
	8.5.5	Surface de localisation pour les interférences localisées du coin d'air	188		
	8.5.6	Différence de marche sur la surface de localisation du coin d'air	190		
	8.5.7	Source étendue : caractère stationnaire des interférences localisées	190		
	8.5.8	Notion de cohérence spatiale : interprétation physique complémentaire	192		

Chapitre 5

INTERFÉRENCES EN LUMIERE MONOCHROMATIQUE

Introduction

Les études de diffraction ou de propagation d'une onde dans des milieux anisotropes ont été abordées pour des ondes monochromatiques émises par des sources ponctuelles. Cette situation 'idéale' ne correspond bien sûr pas à la réalité, et certaines expériences ne peuvent pas être comprises en considérant une description aussi schématique de la source de lumière. On va montrer que la forme des interférences lumineuses est très sensible aux caractéristiques de la source, y compris à ses propriétés microscopiques et quantiques qui pourront ainsi être mesurées. Pour bien décrire tout cela, on rappelera dans un premier temps les propriétés des interférences produites à partir d'une source monochromatique ponctuelle (Chapitre -V-) puis on étudiera les changements apparaissant avec une source 'quasi-monochromatique' ponctuelle (Chapitre -VI- et -VII-) ou avec une source monochromatique étendue (Chapitre -VIII-).

Onde modèle (Approche classique de l'onde macroscopique)

Onde monochromatique
$$s(t) = A \cos(2\pi\nu_0 t + \psi) \text{ de } t = -\infty \text{ à } +\infty$$

S ponctuelle -> onde sphérique

l'onde réelle se rapproche de l'onde modèle 'si elle possède une bonne cohérence'.

Source réelle :

- émet des photons, en grand nombre,
 à des instants aléatoires;
 - l'onde macroscopique observée est la superposition des photons.
 - extension spatiale non nulle

Onde monochromatique

temps

La cohérence d'une onde réelle se mesure par la forme des interférences qu'elle permet d'obtenir. On commencera par rappeler les propriétés générales des interférences produites par une source de cohérence parfaite, c'est à dire une source ponctuelle monochromatique.

5.1 Chemins optiques et surfaces d'onde

Ce paragraphe reprend des notions générales sur la variation de la phase d'une onde lors de sa propagation dans l'espace, reliée au chemin optique mesuré le long d'un rayon lumineux (Cf Chapitre -I-3 Notion de chemin optique -Applications).

Soit une onde monochromatique de longueur d'onde dans le vide λ_0 . A t fixé, sa phase en tout point M est notée $\varphi(M)$.

Soient les points M_1 , M'_1 , M_2 et M'_2 définis sur le graphe. Ils sont situés soit sur un même rayon lumineux, soit sur une même surface d'onde.

Les propriété de la phase (constante sur une surface d'onde) et de sa variation le long d'un rayon (Cf Chap

-I- 1.3.1) permettent d'écrire :

$$\begin{cases} \varphi(M_1) &= \varphi(M_2) \text{ (points situés sur la même surface d'onde } (\Sigma)) \\ \varphi(M_1') &= \varphi(M_2') \\ \varphi(M_1') - \varphi(M_1) &= -\frac{2\pi}{\lambda_0} [M_1 M_1']_{(R_1)} + p_1 \ \pi \text{ (points situés sur le même rayon)} \\ \varphi(M_2') - \varphi(M_2) &= -\frac{2\pi}{\lambda_0} [M_2 M_2']_{(R_2)} + p_2 \ \pi \end{cases}$$

En supposant des déphasages localisés identiques sur les deux rayons $(p_1 = p_2)$, il vient :

$$[M_1 M_1']_{(R_1)} = [M_2 M_2']_{(R_2)}$$

Cette relation très générale va être appliquée pour analyser trois exemples qui permettront d'aborder très simplement la discussion physique de nombreux dispositifs optiques. Exemple 1.

Hyp. : le système optique forme l'image géométrique S' du point source S

Propriétés:

- tout rayon émis par S puis traversant le système optique passe ensuite par S'.
- l'onde sphérique émise par S est transformée en une onde sphérique de centre S'.
- les surfaces d'onde (Σ) et (Σ') sont des sphères de centres S et S'.
- par construction des points M_1, M_2, M'_1 et M'_2 , on a $[M_1M_1']_{(R_1)} = [M_2M_2']_{(R_2)}$

Si SM_1 , SM_2 , $M_1'S'$ et $M_2'S'$ tendent vers 0, on déduit :

 $[SS']_{(R_1)} = [SS']_{(R_2)}, \text{ les chemins optiques } [SS'] \text{ sont \'egaux quelques soient les rayons lumineux } (R_1) \text{ et } (R_2)$ suivis pour relier S à son image géométrique S'.

Exemple 2: montage avec une source dans le plan focal objet d'une lentille (L).

(L) transmet une onde plane de direction de propaga-

tion $\vec{u} = \frac{\overrightarrow{SO}}{||\overrightarrow{SO}||}$. Soient M_1' sur (R_1) et N_2' sur (R_2) . On veut évaluer $\varphi(N_2') - \varphi(M_1')$

La surface d'onde (Σ') passant par M'_1 est le plan $\perp \vec{u}$. Soit H son intersection avec (R_2) , on a $\varphi(H) = \varphi(M'_1)$.

$$\begin{split} \varphi(N_2') - \varphi(M_1') &= \varphi(N_2') - \varphi(H) \\ &= -\frac{2\pi}{\lambda_0} [HN_2']_{(R_2)} \\ &= -\frac{2\pi}{\lambda_0} \int_H^{N_2'} n & \underbrace{ds}_{\text{suivant } (R_2)} \\ &= \underset{\text{orientation positive dans le sens de prop. lumière}}{\text{dans le sens de prop. lumière}} \\ &= -\frac{2\pi}{\lambda_0} \; n \; \overline{HN_2'} \end{split}$$

$$\overline{HN_2'} = \overrightarrow{M_1'N_2'} \cdot \overrightarrow{u}$$

Ce résultat permet d'exprimer $\varphi(N_2') - \varphi(M_1')$ en fonction des coordonnées de S, M_1', N_2' . Il sera utilisé dans la modélisation de la quasi-totalité des expériences impliquant des interférences.

Exemple 3: observation dans le plan focal image d'une lentille (L).

Hyp : deux sources ponctuelles S_1' , S_2' émettent des ondes sphériques de phases à l'origine $\varphi(S_1')$ et $\varphi(S_2')$

Propriété : parmi tous les rayons émis par ces sources, les deux partant dans la direction $\overrightarrow{u'} = \frac{\overrightarrow{OM}}{||\overrightarrow{OM}||}$ se superposent en M dans le plan focal image de (L), avec les phases $\varphi_1(M)$ et $\varphi_2(M)$ vérifiant :

$$\varphi_2(M) - \varphi_1(M) = \varphi(S_2') - \varphi(S_1') - \frac{2\pi}{\lambda_0} ([S_2'M]_{(R_2)} - [S_1'M]_{(R_1)})$$

Soit K la projection de S_1' sur le rayon (R_2) . Les trajets des rayons entre $S_1'M$ et KM sont symétriques de ceux des rayons SM_1' et SH sur l'exemple précédent donc $[S_1'M]_{(R_1)} = [KM]_{(R_2)}$ et $[S_2'M]_{(R_2)} - [S_1'M]_{(R_1)} = [S_2'K]_{(R_2)} = n \ \overline{S_2'K}$.

avec ici :

$$\overline{S_2'K} = \overline{S_2'S_1'} \cdot \overrightarrow{u'}$$

Cette proriété sera utilisable pour l'analyse physique de nombreux interféromètres à deux ondes.

5.2 Forme générale des interférences en lumière monochromatique

Le raisonnement général s'appuyera sur le montage appelé 'bilentilles de Billet'.

Hypothèses:

- source ponctuelle monochromatique S
- deux demi-lentilles (L_1) , (L_2) décalées dans un S même plan, $f_1 = f_2$, centres optiques O_1 , O_2 .

- S_1 , S_2 : images géométriques de S par (L_1) , (L_2) . Un rayon quelconque passant par S puis (L_1) passe ensuite par S_1 .

Définitions:

Lumière passant par (L_1) , (L_2) : voies (1) et (2) de l'interféromètre. Champ d'interférences: l'ensemble des points recevant de la lumière à la fois par les voies (1) et (2).

Soit un point M du champ d'interférences où arrivent les amplitudes complexes A_1 et A_2 . Il a été montré au Chapitre -I- 3.2 qu'elles sont reliées à l'amplitude complexe émise par la source par :

$$\mathcal{A}_{1} = \alpha_{1} \mathcal{A}_{s} \exp -i \frac{2\pi}{\lambda_{0}} [SM]_{1} \exp i \epsilon_{1}$$

$$\mathcal{A}_{2} = \alpha_{2} \mathcal{A}_{s} \exp -i \frac{2\pi}{\lambda_{0}} [SM]_{2} \exp i \epsilon_{2}$$

avec:

 $*\alpha_1, \alpha_2$ réels positifs : atténuation de l'onde entre S et M

* $\epsilon_1=p_1$ π , $\epsilon_2=p_2$ π : déphasages localisés sur les rayons reliant S à M On pose $\mathcal{A}_2=\alpha\mathcal{A}_1\exp i$ $\Delta\varphi$ avec

$$\left\{ \begin{array}{lcl} \alpha & = & \alpha_2/\alpha_1 \text{ réel positif} \\ \Delta \varphi & = & -\frac{2\pi}{\lambda_0}([SM]_2 - [SM]_1) + \epsilon_2 - \epsilon_1 \end{array} \right. \text{ (différence de phase des deux ondes au niveau de } M)$$

On note
$$I_1 = \mathcal{A}_1 \mathcal{A}_1^*$$
, $I_2 = \mathcal{A}_2 \mathcal{A}_2^*$, d'où $I_2 = |\alpha \mathcal{A}_1|^2 = \alpha^2 I_1$ et $I_1 I_2 = \alpha^2 I_1^2 \Leftrightarrow \sqrt{I_1 I_2} = \alpha I_1$.

Ces ondes proviennent d'une même source ponctuelle monochromatique donc elles sont cohérentes et

$$I(M) = (\mathcal{A}_1 + \mathcal{A}_2)(\mathcal{A}_1 + \mathcal{A}_2)^*$$

$$= I_1 + I_2 + \mathcal{A}_1 \mathcal{A}_2^* + \mathcal{A}_1^* \mathcal{A}_2$$

$$= I_1 + I_2 + \underbrace{\alpha \mathcal{A}_1 \mathcal{A}_1^*}_{\alpha I_1 = \sqrt{I_1 I_2}} \exp{-i \Delta \varphi} + C.C.$$

$$= I_1 + I_2 + 2\sqrt{I_1 I_2} \cos{\Delta \varphi}$$

Avec une source ponctuelle et monochromatique : le point M situé sur le champ d'interférences reçoit l'intensité correspondnt à l'expression générale :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \cos\left(-\frac{2\pi}{\lambda_0}([SM]_2 - [SM]_1) + \epsilon_2 - \epsilon_1\right)$$

Cette expression générale de l'intensité conduit à prédire la formes géométrique des interférences observées. Pour beaucoup de montages, les rayons émis par S passent tous par un point S_1 (voie (1)) ou S_2 (voie (2)) avant d'atteindre M par une propagation rectiligne S_1M , S_2M . Ces points S_1 et S_2 sont appelés 'sources secondaires', ce sont généralement les images géométriques de S par les voies (1) ou (2). Dans ce cas :

$$[SM]_2 - [SM]_1 = [SS_2]_2 + [S_2M]_2 - [SS_1]_1 - [S_1M]_1$$

= $[SS_2]_2 - [SS_1]_1 + n(S_2M - S_1M)$

 $[SS_2]_2$ est indépendant du rayon suivi entre S et S_2 . Si on le calcule suivant le rayon qui ensuite atteindra M, sa valeur reste la même quelle que soit la position de M.

On en déduit que dans l'expression ci-dessus, $[SS_2]_2 - [SS_1]_1$ possède une valeur indépendante de la position de M et notée $\frac{\lambda_0}{2\pi}C$.

On a alors

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \cos\left(-\frac{2\pi n}{\lambda_0}(S_2M - S_1M) - C + \epsilon_2 - \epsilon_1\right)$$

I(M) passe d'un maximum au maximum suivant pour un déplacement de M ou une modification du montage tels que $S_2M - S_1M$ ait varié de $\frac{\lambda_0}{n}$. Mesurer des variations d'intensité permet de mettre en évidence de très petites variations de longueur.

Les 'franges d'interférences' sont les zones de l'espace où $I(M) = \text{cte} \Leftrightarrow (S_2M - S_1M) = \text{cte}$.

Propriété mathématique : ces points M sont sur des hyperboles de foyers S_1 et S_2 .

Conséquences:

- *écran d'observation $(E)\perp S_1S_2$: les franges d'interférences sont des anneaux.
- * écran d'observation (E) // S_1S_2 : les franges d'interférences sont des arcs d'hyperboles généralement assimilables à des franges rectilignes équidistantes.

Remarque : l'exemple 3 du §5.1 permet de montrer qu'on a aussi ces géométries des franges avec (E) placé après S_1 et S_2 dans le plan focal image d'une lentille.

Chapitre 6

ONDES QUASI-MONOCHROMATIQUES

Introduction

Après n'avoir considéré dans les chapitres précédents que des sources de lumière parfaitement monochromatiques (champ électrique $\vec{E} = \vec{E_0} \cos \omega t$ pour t de $-\infty$ à $+\infty$), on va maintenant décrire des sources réelles, constituées généralement de nombreux émetteurs non corrélés, de fréquences multiples, produisant de la lumière pendant des durées finies. L'onde résultante est décrite par le formalisme des ondes quasimonochromatiques, qui reste simple à condition de négliger sa structure vectorielle pour la décrire par sa vibration lumineuse s(t) (approximation scalaire), et de ne pas traiter les détails de la diffraction (utilisation d'ondes planes ou sphériques).

6.1 Mécanismes microscopiques de l'émission lumineuse

Les sources de lumière auxquelles on a affaire sont de plusieurs types :

- dans une lampe à incandescence, la lumière est émise par un solide porté à haute température ; la répartition des fréquences du rayonnement dépend de la température du matériau comme pour le rayonnement du corps noir.
- dans les lampes à décharge comme dans les lasers, des photons d'énergie $h\nu=E_2-E_1$ sont émis lors de la désexcitation d'un atome (d'une molécule) entre deux niveaux d'énergie discrets E_2 et E_1 , constituant un rayonnement quasi-monochromatique. C'est à ce mécanisme qu'on s'intéressera par la suite.

Soit un atome modélisé par un système à deux niveaux d'énergie E_1 (niveau fondamental) et E_2 . Il est porté à l'instant t_0 sur le niveau excité d'énergie E_2 et de durée de vie τ_0 . Il revient sur le niveau 1 à un instant $t > t_0$ en émettant un photon d'énergie $h\nu = E_2 - E_1$. Le temps moyen passé sur 2 vaut τ_0 , mais certains atomes y restent beaucoup moins longtemps et d'autres beaucoup plus.

Pour un groupe d'atomes identiques portés sur le niveau E_2 à t_0 , la mécanique quantique prévoit que le rayonnement émis possède les mêmes propriétés physiques que celui produit par un dipôle oscillant amorti (fréquence ν_0 , oscillation après $t=t_0$ avec un amortissement de temps caractéristique $2\tau_0$) ¹.

^{1.} modèle de l'électron élastiquement lié, Cf Cohen-Tannoudji, Diu, Laloë, p 1308

L'onde rayonnée par ce dipôle possède la vibration lumineuse :

$$\begin{cases} s(t) = A \exp{-\frac{t-t_0}{2\tau_0}} \cos{2\pi\nu_0(t-t_0)} & \text{pour } t \ge t_0 \\ s(t) = 0 & \text{sinon} \end{cases}$$

 $\nu_0=\frac{E_2-E_1}{h}$ est de l'ordre de 5 10^{14} Hz pour un rayonnement visible et τ_0 vaut entre 10^{-9} à 10^{-3} s suivant le système. L'amplitude $A\exp-\frac{t-t_0}{2\tau_0}$ varie lentement à l'échelle de la période d'oscillation $T_0=\frac{1}{\nu_0}$ donc ce rayonnement est quasi-sinusoïdal de pseudo-période T_0 .

Cette modélisation du rayonnement d'un groupe d'atomes identiques est appelé 'train d'onde'. C'est une manière de représenter classiquement l'émission lumineuse par désexcitation d'atomes. Celui présenté ici est un train d'onde quasi-sinusoïdal amorti exponentiellement.

6.2 Source macroscopique : modèle de l'enveloppe lentement variable

Les atomes d'une lampe à décharge sont excités à des instant t_0 aléatoires donc émettent sans aucune corrélation entre eux. Dans un amplificateur laser, l'émission est partiellement corrélée. Dans les deux cas, l'onde lumineuse macroscopique observée correspond à la superposition d'un très grand nombre de trains d'ondes, par exemple de type $A \exp{-\frac{t-t_0}{2\tau_0}} \cos{2\pi\nu_0(t-t_0)}$, commençant à des instants t_0 aléatoires. 2

Cette superposition donne une onde résultante dont la forme peut être très différente de celle des trains d'onde individuels ³.

Source de lumière : émission de photons à des instants aléatoires

Description microscopique classique (trains d'onde)

 $\begin{array}{c} T_0 \\ \hline \\ T_t \end{array}$

On justifiera par la suite que l'onde macroscopique résultante possède les mêmes propriétés physiques qu'une onde de vibration lumineuse

$$s(t) = A(t) \cos(2\pi\nu_0 t + \psi(t))$$

où A(t) et $\psi(t)$ sont des fonctions réelles quasi-constantes à l'échelle de T_0 mais présentant des variations aléatoires à des échelles de temps grandes devant T_0 . Cette description constitue le modèle de l'enveloppe lentement variable. La pseudo-période de ce signal est T_0 , on dit que cette onde est **quasi-monochromatique**.

^{2.} De plus, si les atomes sont en mouvement, un observateur placé dans le référentiel du laboratoire reçoit des fréquences légèrement différentes de ν_0 à cause du décalage Doppler (Cf cours laser).

^{3.} Il est impossible de décrire l'amplitude et l'instant d'émission de chaque train d'onde. L'objectif est de trouver quels paramètres physiques accessibles expérimentalement permettent de décrire correctement l'état du système macroscopique. La démarche est analogue à celle suivie en thermodynamique : on introduit pour décrire le système macroscopique des variables d'état (pression, température, potentiel chimique) qui le définissent même sans connaître les caractéristiques microscopiques (vitesse, position) de chaque atome.

Dans ces conditions, à un instant t voisin de t_i arbitraire, l'onde 'ressemble' à une onde monochromatique de vibration lumineuse $s(t) = A(t_i) \cos{(2\pi\nu_0 t + \psi(t_i))}$. A un autre instant t_i' , elle ressemble à une autre onde monochromatique $s(t) = A(t_i') \cos{(2\pi\nu_0 t + \psi(t_i'))}$ qui peut être très différente de la première si $|t_i' - t_i|$ est supérieur à un temps caractéristique τ_c qu'on appellera pour l'instant sans plus le préciser le temps caractéristique des variations de A(t) ou $\psi(t)$.

Propriétés : le caractère aléatoire à l'échelle de τ_c pour les variations temporelles de A(t) ou $\psi(t)$ se traduit mathématiquement par la propriété suivante : lorsque le décalage temporel τ est grand devant τ_c , on a

$$\frac{1}{T} \int_{t-T/2}^{t+T/2} A(t') \cos(2\pi\nu_0 t' + \psi(t')) A(t'-\tau) \cos(2\pi\nu_0 (t'-\tau) + \psi(t'-\tau)) dt' = 0$$

pour toute valeur de $T\gg \tau_c$ et quelque soit t. Cela s'interprète physiquement en disant que les vibrations lumineuses s(t) et $s(t-\tau)$ sont parfaitement décorrélées lorsque $\tau\gg\tau_c$.

Remarque : tout comme le train d'onde, la vibration lumineuse n'a pas directement un sens physique en soi ; c'est un intermédiaire mathématique dont l'introduction permettra de relier entres elles les différentes propriétés physiques mesurées pour le rayonnement, et d'en déduire certaines propriétés quantiques des émetteurs de lumière.

6.3 Signal analytique d'une onde quasi-monochromatique

6.3.1 Définitions

Soit une onde quasi-monochromatique de vibration lumineuse s(t). On peut écrire mathématiquement :

$$s(t) = \overline{\mathcal{F}} \circ \mathcal{F}_{[s(t)]}$$

$$s(t) = \int_{-\infty}^{+\infty} \mathcal{F}_{[s(t)]}(\nu) \exp i2\pi\nu t \ d\nu$$

$$s(t) = \int_{0}^{+\infty} \mathcal{F}_{[s(t)]}(\nu) \exp i2\pi\nu t \ d\nu + \int_{-\infty}^{0} \mathcal{F}_{[s(t)]}(\nu') \exp i2\pi\nu' t \ d\nu'$$

Le second terme se transforme en :

changement de variable
$$\nu' \to \nu = -\nu'$$
:
$$\int_0^{+\infty} \mathcal{F}_{[s(t)]}(-\nu) \exp i2\pi(-\nu)t \ d\nu$$
propriété $\mathcal{F}_{[s(t)]}(-\nu) = \overline{\mathcal{F}}_{[s(t)]}(\nu)$:
$$\int_0^{+\infty} \overline{\mathcal{F}}_{[s(t)]}(\nu) \exp -i2\pi\nu t \ d\nu$$

$$= \left(\int_0^{+\infty} \mathcal{F}_{[s(t)]}(\nu) \exp i2\pi\nu t \ d\nu\right)^*$$

Ce second terme est le conjugué du premier d'où :

$$s(t) = 2 \Re \left[\int_0^{+\infty} \mathcal{F}_{[s(t)]}(\nu) \exp i2\pi\nu t \ d\nu \right]$$

On introduit la quantité $C(\nu)$ définie par :

$$\left\{ \begin{array}{lcl} \mathcal{C}(\nu) & = & 2 \; \mathcal{F}_{[s(t)]}(\nu) & \text{pour } \nu \geq 0 \\ \mathcal{C}(\nu) & = & 0 & \text{pour } \nu < 0 \end{array} \right.$$

et on définit le signal analytique $\mathcal{S}(t)$ de l'onde par :

$$S(t) = \int_{-\infty}^{+\infty} C(\nu) \exp i2\pi\nu t \ d\nu$$
$$= \overline{\mathcal{F}}_{[C(\nu)]}(t)$$

Il vient:

$$s(t) = \Re e[S(t)]$$

Le signal analytique ainsi défini pour une onde quasi-monochromatique aura les mêmes utilisations que la représentation complexe pour une onde monochromatique.

L'écriture $S(t) = \int_{-\infty}^{+\infty} C(\nu) \exp i2\pi\nu t \, d\nu$ permet d'interpréter une onde quasi-monochromatique quelconque ⁴ comme une superposition d'ondes monochromatiques de fréquences ν possédant chacune le poids $C(\nu)$ dans la sommation (amplitude et phase puisque ce nombre est complexe). $C(\nu)$ est appelé **l'amplitude spectrale** de l'onde.

Cette décomposition a un réel sens physique. Dans un matériau, l'indice optique n varie légèrement avec ν , entraînant par exemple les conséquences suivantes :

- un prisme de petit angle A dévie la lumière d'un angle $D = (n-1)A^5$. Les composantes spectrales d'une impulsion sortiront du prisme avec des directions d'autant plus différentes que l'impulsion est brève. Cet effet est significatif pour des impulsions sub-picosecondes.
- une impulsion lumineuse s(t) traverse une fibre optique. Chacune des composantes spectrales $\mathcal{C}(\nu)$ exp $i2\pi\nu t$ se propage à une vitesse $\frac{c_0}{n(\nu)}$ un peu différente. Cette modélisation permet d'interpréter quantitativement comment l'impulsion se déforme dans la fibre, on observe en général un élargissement temporel qui limite de manière très significative la quantité d'informations transportée dans la fibre sous forme d'impulsions successives.

Remarques:

- Une onde strictement monochromatique est sinusoïdale de type $A\cos 2\pi\nu_0 t$ pour t de $-\infty$ à $+\infty$. On a

$$s(t) = A \cos(2\pi\nu_0 t + \psi) \quad \text{pour } t \text{ de } -\infty \text{ à } +\infty$$

$$= \frac{A}{2} \left(\exp i(2\pi\nu_0 t + \psi) + \exp -i(2\pi\nu_0 t + \psi) \right)$$

$$\mathcal{F}_{[s(t)]}(\nu) = \frac{A}{2} \left(\exp i\psi \ \delta_{\nu-\nu_0} + \exp -i\psi \ \delta_{\nu+\nu_0} \right)$$

$$\mathcal{C}(\nu) = A \exp i\psi \ \delta_{\nu-\nu_0}$$

$$\mathcal{S}(t) = \overline{\mathcal{F}}_{[\mathcal{C}(\nu)]}(t) = A \exp i\psi \ \exp 2i\pi\nu_0 t$$

Le signal analytique d'une onde monochromatique correspond à sa représentation complexe.

- Une onde quasi-monochromatique n'est pas une onde sinusoïdale de type $A\cos 2\pi\nu_0 t$. Son amplitude spectrale fait intervenir une certaine gamme de fréquences ν voisines de ν_0 . Ceci ne permet pas de définir une représentation complexe $A\exp i2\pi\nu_0 t$ ou une amplitude complexe comme on le fait dans le cas d'une onde monochromatique.
- En tout point M sont définis la vibration lumineuse s(M,t) et le signal analytique $\mathcal{S}(M,t)$. On ne fera apparaître les variables d'espace que lorsque ce sera indispensable.

^{4.} Par exemple une impulsion lumineuse, voir paragraphe suivant.

^{5.} Cf TD 2 exercice -I-

6.3.2 Exemples, généralisation

* Impulsion gaussienne

$$s(t) = \underbrace{A \exp{-\pi (\frac{t}{\tau_0})^2}}_{\text{variation avec}} \underbrace{\cos{2\pi\nu_0 t}}_{\text{terme oscillant,}}$$
 terme oscillant, période $T_0 = \frac{1}{\nu_0}$

On suppose $\tau_0 \gg \frac{1}{\nu_0}$ donc s(t) oscille rapidement entre les deux enveloppes $\pm A \exp{-\pi(\frac{t}{\tau_0})^2}$.

Chaque enveloppe est réduite d'un facteur $\exp -\pi = 0,04$ quand t passe de 0 à $\pm \tau_0$ donc la durée pendant laquelle l'enveloppe est au dessus de 4 % de son maximum vaut $2\tau_0$. On peut choisir ce critère pour la durée caractéristique de l'impulsion.

On veut déterminer l'amplitude spectrale $C(\nu)$.

$$s(t) = \frac{A}{2} \exp{-\pi \left(\frac{t}{\tau_0}\right)^2} \exp{-i2\pi\nu_0 t} + \frac{A}{2} \exp{-\pi \left(\frac{t}{\tau_0}\right)^2} \exp{i2\pi\nu_0 t}$$

$$\mathcal{F}_{[s(t)]}(\nu) = \frac{A\tau_0}{2} \left(\underbrace{\exp{-\pi\tau_0^2(\nu + \nu_0)^2}}_{\text{centr\'e sur } -\nu_0,} + \underbrace{\exp{-\pi\tau_0^2(\nu - \nu_0)^2}}_{\text{centr\'e sur } \nu_0,} \right)$$

$$\operatorname{centr\'e sur } \nu_0,$$

$$\operatorname{largeur totale \grave{a} mi-hauteur}$$

$$\Delta\nu = \sqrt{\frac{4\ln 2}{\pi}} \frac{1}{\tau_0}$$

On représente $2\mathcal{F}_{[s(t)]}(\nu)$ et la fonction $\mathcal{C}(\nu)$ correspondante (traits épais).

L'hypothèse $\tau_0 \gg \frac{1}{\nu_0}$ entraı̂ne $\Delta \nu \ll \nu_0$. Les deux termes constituant $\mathcal{F}_{[s(t)]}(\nu)$ sont des pics bien séparés avec :

- le terme (1) a pour $\nu>0$ des valeurs négligeables qu'on pourra remplacer par zéro.
- le terme (2) est très proche de zéro pour $\nu < 0$.

Dans ces conditions, l'amplitude spectrale $\mathcal{C}(\nu)$ s'identifie avec une bonne précision au terme (2) :

$$C(\nu) \simeq A\tau_0 \exp{-\pi\tau_0^2(\nu - \nu_0)^2}$$
 pour ν de $-\infty$ à $+\infty$

Le signal analytique $S(t) = \overline{\mathcal{F}}_{[C(\nu)]}(t)$ vaut alors

$$S(t) = A \exp{-\pi (\frac{t}{\tau_0})^2} \exp{i2\pi\nu_0 t}$$

Remarques:

- dans la pratique, la condition $\Delta \nu \ll \nu_0 \Leftrightarrow \tau_0 \gg T_0$ est toujours valable sauf pour des impulsions laser de durée inférieure à 10 femtosecondes (Cf §6.7.2) et pour de la lumière blanche.
- si l'enveloppe de s(t) varie avec le temps caractéristique τ_0 , alors $\mathcal{C}(\nu)$ est un pic de largeur $\Delta\nu$ de l'ordre de $\frac{1}{\tau_0}$ autour de ν_0 . Cette propriété est générale, conséquence de la relation de type transformée de Fourier

entre s(t) et $C(\nu)$.

* Onde monochromatique

La vibration lumineuse $s(t) = A \cos 2\pi \nu_0 t$ d'une onde monochromatique correspond au cas précédent avec une enveloppe infiniment large (τ_0 infini).

 $S(t) = A \exp 2i\pi\nu_0 t$ pour $t de -\infty$ à $+\infty$, correspondant à la représentation complexe de l'onde

$$C(\nu) = \mathcal{F}_{[S(t)]}(\nu) = A \delta_{\nu-\nu_0}$$
 (onde contenant une seule fréquence)

* Généralisation

A la vibration lumineuse $s(t) = A(t)\cos(2\pi\nu_0 t + \psi(t))$, on pourra associer directement le signal analytique $\mathcal{S}(t) = A(t)\exp i\psi(t) \exp i2\pi\nu_0 t$ lorsque le temps caractéristique des variations de A(t) et $\psi(t)$ est grand devant $1/\nu_0$. On en déduira l'amplitude spectrale correspondante $\mathcal{C}(\nu) = \mathcal{F}_{[\mathcal{S}(t)]}(\nu)$ pour $\nu \geq 0$ et $\mathcal{C}(\nu) = 0$ pour $\nu < 0$.

* Exemple : fluorescence d'atomes excités par un laser femtoseconde.

Des atomes sont portés sur le niveau 2 à t=0 par une impulsion laser femtoseconde (quelques 10^{-15} s). Ce système produit un rayonnement macroscopique correspondant à celui d'un dipôle exponentiellement amorti. Le détail du calcul est développé en annexe 6.7.1.

$$\begin{cases} s(t) = A \exp{-\frac{t}{2\tau_0}} \cos{2\pi\nu_0 t} & \text{pour } t \ge 0 \\ s(t) = 0 & \text{pour } t < 0 \end{cases}$$

Pour $\tau_0 \gg \frac{1}{\nu_0}$, on en déduit directement le signal analytique

$$\begin{cases} S(t) = A \exp{-\frac{t}{2\tau_0}} \exp{i2\pi\nu_0 t} & \text{pour } t \ge 0\\ S(t) = 0 & \text{pour } t < 0 \end{cases}$$

et l'amplitude spectrale :

$$\begin{array}{lcl} \mathcal{C}(\nu) & = & 0 \ \ \text{par d\'efinition pour } \nu < 0 \\ \\ \mathcal{C}(\nu) & = & \mathcal{F}_{[\mathcal{S}(t)]}(\nu) = \frac{A}{i2\pi(\nu - \nu_0) + \frac{1}{2\tau_0}} \ \ \text{pour } \nu \geq 0 \\ \end{array}$$

ce qui permet d'écrire ce rayonnement exponentiellement amorti comme une superposition d'ondes monochromatiques, $s(t) = \Re e\{\int_0^{+\infty} \mathcal{C}(\nu) \exp i2\pi\nu t \ d\nu\}$.

 $|\mathcal{C}(\nu)|$ vaut respectivement $2A\tau_0$ et $0.15\times 2A\tau_0$ pour $\nu=\nu_0$ et $\nu=\nu_0\pm\frac{1}{2\tau_0}$ donc les fréquences ν sont qualitativement dans l'intervalle $[\nu_0-\frac{1}{2\tau_0},\nu_0+\frac{1}{2\tau_0}]$.

6.4 Grandeurs énergétiques - Rayonnement stationnaire

On s'intéresse à une onde plane se propageant suivant Oz, on va évaluer son écriture et l'intensité associée dans le cadre de plusieurs descriptions.

- * Onde plane monochromatique
- approche scalaire, description par la vibration lumineuse s(z,t).

$$s(z,t) = A\cos(\omega t - kz + \psi) = \frac{Ae^{i(-kz+\psi)}e^{i\omega t} + C.C.}{2} = \underbrace{\frac{Ae^{i\omega t}}{Ae^{i\omega t}} + C.C.}_{S(z,t)}$$
L'intensité lumineuse est définie par $I = \mathcal{A}\mathcal{A}^* = \mathcal{S}\mathcal{S}^* = A^2$.

– approche vectorielle, description par le champ électrique $\vec{E}(z,t)$:

hyp : polarisation rectiligne,
$$\vec{E}(z,t)=E_0\cos(\omega t-kz+\psi)$$
 $\vec{e_x}$. intensité $I=\frac{1}{2\mu_0c}E_0^2$

Les deux approches sont équivalentes pour $A = \frac{E_0}{\sqrt{2\mu_0c}}$, relation qui permet d'attribuer un sens physique à l'amplitude de la vibration lumineuse.

* Cas d'une onde quasi-monochromatique

On simplifie l'écriture en se plaçant en z = 0.

Vibration lumineuse : forme générale $s(t) = A(t)\cos(2\pi\nu_0 t + \psi(t))$ avec A(t) et $\psi(t)$ variables à l'échelle de $\tau_c \gg T_0$.

Signal analytique : $S(t) = A(t) \exp i\psi(t) \exp i2\pi\nu_0 t$.

Dans ce cas où A(t) varie au cours du temps, on définit l'intensité instantanée par :

$$I_i(t) = A^2(t) = \mathcal{S}(t) \mathcal{S}^*(t)$$

Propriété : lien avec la valeur moyenne de $s^2(t)$ sur une période T_0 de l'onde :

$$\begin{split} _{T_0=\frac{1}{\nu_0}}&=&\frac{1}{T_0}\int_{t-T_0/2}^{t+T_0/2}A^2(t')\cos^2(2\pi\nu_0t'+\psi(t'))\;dt'\\ &=&\det\varphi\;\text{constants sur le domaine d'intégration}\;T_0\ll\tau_c.\\ &=&\frac{A^2(t)}{2}=\frac{I_i(t)}{2} \end{split}$$

donc $I_i(t) = <2 \ s^2(t)>_{T_0}$.

L'énergie traversant entre t et t+dt une surface $S\perp \vec{e}_z$ en z=0 vaut :

$$d\mathcal{E} = S I_i(t) dt$$

Pour une impulsion lumineuse de durée finie, l'énergie totale $\mathcal E$ est celle traversant le plan z=0 entre $t=-\infty$ et $t=+\infty$:

$$\mathcal{E} = S \int_{t=-\infty}^{t=+\infty} I_i(t) \ dt$$

Son énergie par unité de surface d'onde est appelée **lumination** de l'impulsion, notée Λ et définie par $\Lambda = \int_{-\infty}^{+\infty} I_i(t) \ dt$.

Si l'onde existe de $t=-\infty$ à $t=+\infty$, \mathcal{E} et Λ deviennent infinies et on doit caractériser l'onde autrement. Les fluctuations aléatoires de A(t) entraînent des variations de $I_i(t)$. Si leur valeur moyenne sur un intervalle long devant τ_c est indépendante de cet intervalle, on dit que le rayonnement est stationnaire et on définit son **intensité moyenne** par l'écriture mathématique :

$$I = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} I_i(t) dt \equiv \langle I_i(t) \rangle$$

Autres formulations : $I = \langle 2 \ s^2(t) \rangle = \langle A^2(t) \rangle = \langle S(t) \ S^*(t) \rangle = \langle |S(t)|^2 \rangle$.

La discussion des quantités mesurables pour un rayonnement non stationnaire est menée en annexe §6.7.3.

6.5 Capteurs optiques

Un capteur optique est sensible à l'énergie lumineuse traversant sa surface d'entrée. Il est caractérisé par le mécanisme physique de l'interaction lumière-matière utilisée pour convertir l'énergie lumineuse en signal et par la durée T_d de la mesure. Cette durée est fonction de beaucoup de paramètres à discuter au cas par cas : entre autres, elle doit être assez longue pour que le signal soit mesurable à l'échelle macroscopique et séparable du bruit, elle doit prendre en compte le temps de transfert de l'information vers le lieu de son stockage, etc. Dans tous les cas, T_d est très grand devant la période optique T_0 . Un capteur ne pourra pas mesurer correctement un phénomène physique de durée caractéristique inférieure ou comparable à T_d .

Les capteurs sont des sujets d'étude en soi, on donne ici seulement quelques exemples.

6.6 Synthèse 137

T_d min.	type de capteur optique	principe physique
10^{-11} s	caméra à balayage de fente	semiconducteur, passage d'un e ⁻ en bande de conduction
10^{-10} s	photodiode rapide, CCD	idem
$10^{-9}, 10^{-8} \text{ s}$	photomultiplicateur	effet photoélectrique dans un métal
$> 10^{-3} \text{ s}$	plaque photographique	réaction photochimique
$10^{-1} { m s}$	œil	conduction induite par photoexcitation
1 s	bolomètres	mesure d'un échauffement

Pour les capteurs CCD comme pour beaucoup d'autres, la rapidité et le taux de répétition de la mesure sont limités par le temps de l'électronique de lecture et de remise à zéro des pixels (de petits volumes de semi-conducteurs couplés à des micro-condensateurs où s'accumulent les électrons passés en bande de conduction), temps bien supérieur au temps de photoexcitation.

Pour une plaque photographique, la réaction photochimique correspond au déplacement d'une lacune électronique à l'intérieur d'une nanoparticule d'halogénure d'argent, qui permettra plus tard lors de la réaction chimique avec le révélateur d'amorcer un processus de formation de microparticules d'argent. Le temps d'exposition de 10^{-3} à 1 s est celui nécessaire pour obtenir le contraste voulu entre les zones claires ou sombres du négatif.

Pour une cellule de la rétine, l'interaction provoque l'isomérisation d'une molécule (basculement d'un radical) qui la fait passer d'un état isolant à un état conducteur, en typiquement 10^{-12} s. Le temps caractéristique de 0.05 s (cadence des images d'un film) est celui nécessaire pour qu'un nombre suffisant de molécules ait interagi avec des photons afin que la superposition des courants microscopiques forme un influx nerveux macroscopique interprétable par le cerveau sans confusion avec les images précédentes.

6.6 Synthèse

Onde monochromatique

 $s(t) = A \cos(2\pi\nu_0 t + \psi)$ Distribution des fréquences $\delta_{\nu-\nu_0}$

Repr. complexe $S(t) = A \exp i\psi \exp 2i\pi\nu_0 t$

Intensité instantanée $I_i = A^2$ Intensité $I = A^2$ Onde quasi monochromatique

$$s(t) = A(t) \cos(2\pi\nu_0 t + \psi(t))$$

Amplitude spectrale $C(\nu) = \mathcal{F}_{[S(t)]}(\nu)$

Signal analytique $S(t) = \int_{-\infty}^{+\infty} C(\nu) \exp i2\pi\nu t \ d\nu$ L'onde s'interprète mathématiquement comme une superposition d'ondes monochromatiques. A certaines conditions (Cf §6.7.1), on a

$$S(t) = A(t) \exp i\psi(t) \exp 2i\pi\nu_0 t$$

Intensité instantanée $I_i = A^2(t) = \mathcal{S}(t)\mathcal{S}^*(t)$ Onde stationnaire : intensité moyenne $I = \langle I_i \rangle$

6.7 Annexes

6.7.1 Dipôle oscillant amorti, détail des calculs

Le signal analytique est calculé pour l'onde rayonnée par un dipôle amorti ⁶ :

$$\begin{cases} s(t) = A \exp{-\frac{t}{2\tau_0}} \cos{2\pi\nu_0 t} & \text{pour } t \ge 0, \text{ avec } \tau_0 \gg \frac{1}{\nu_0} \\ s(t) = 0 & \text{pour } t < 0 \end{cases}$$

On calcule $\mathcal{F}_{[s(t)]}(\nu)$.

$$\mathcal{F}_{[s(t)]}(\nu) = \int_{-\infty}^{+\infty} s(t) \exp{-i2\pi\nu t} dt$$

$$= \int_{0}^{+\infty} A \exp{-\frac{t}{2\tau_{0}}} \frac{\exp{i2\pi\nu_{0}t} + \exp{-i2\pi\nu_{0}t}}{2} \exp{-i2\pi\nu t} dt$$

$$= \frac{A}{2} \left(\int_{0}^{+\infty} \exp{-\frac{t}{2\tau_{0}}} \exp{-i2\pi(\nu + \nu_{0})t} + \int_{0}^{+\infty} \exp{-\frac{t}{2\tau_{0}}} \exp{-i2\pi(\nu - \nu_{0})t} \right)$$

$$= \frac{A}{2} \left(\frac{1}{i2\pi(\nu - \nu_{0}) + \frac{1}{2\tau_{0}}} + \frac{1}{i2\pi(\nu + \nu_{0}) + \frac{1}{2\tau_{0}}} \right)$$

La fonction $\left|\frac{1}{i2\pi(\nu-\nu_0)+\frac{1}{2\tau_0}}\right| = \left|\frac{2\tau_0}{1+i4\tau_0\pi(\nu-\nu_0)}\right| = \frac{2\tau_0}{\sqrt{1+16\pi^2\tau_0^2(\nu-\nu_0)^2}}$ est un pic centré sur $\nu=\nu_0$. On calcule la largeur totale à mi-hauteur $\Delta\nu$ en écrivant que l'amplitude est réduite de moitié lorsque ν passe de ν_0 à $\nu_0 \pm \Delta\nu/2$:

$$\sqrt{1 + 16\pi^2 \tau_0^2 (\nu_0 \pm \Delta \nu / 2 - \nu_0)^2} = 2$$

$$\Leftrightarrow 1 + 16\pi^2 \tau_0^2 (\nu_0 \pm \Delta \nu / 2 - \nu_0)^2 = 4$$

$$\Leftrightarrow (\frac{\Delta \nu}{2})^2 = \frac{3}{16\pi^2 \tau_0^2}$$

$$\Leftrightarrow \Delta \nu = \frac{\sqrt{3}}{2\pi \tau_0}$$

Par hypothèse, $\tau_0 \gg \frac{1}{\nu_0}$ donc $\Delta \nu \ll \nu_0$. La fonction $|\mathcal{F}_{[s(t)]}(\nu)|$ est alors constituée de deux pics centrés sur $-\nu_0$ et $+\nu_0$. La relation $\Delta \nu \ll \nu_0$ fait que celui centré sur $-\nu_0$ a des valeurs négligeables pour $\nu > 0$ et celui centré sur $+\nu_0$ a des valeurs négligeables pour $\nu < 0$. Avec ces approximations, l'amplitude spectrale $\mathcal{C}(\nu)$ s'écrit

$$\mathcal{C}(\nu) = \begin{cases} \text{pour } \nu \geq 0 : & 2 \; \mathcal{F}_{[s(t)]}(\nu) \simeq \frac{A}{i2\pi(\nu - \nu_0) + \frac{1}{2\tau_0}} \\ \text{l'autre terme a des valeurs négligeables pour } \nu \geq 0 \\ \text{pour } \nu < 0 : & 0 \simeq \frac{A}{i2\pi(\nu - \nu_0) + \frac{1}{2\tau_0}} \\ \text{ce terme a des valeurs négligeables pour } \nu < 0 \end{cases}$$

qui se note globalement $C(\nu) \simeq \frac{A}{i2\pi(\nu-\nu_0)+\frac{1}{2\tau_0}}$ pour ν de $-\infty$ à $+\infty$. On en déduit le signal analytique

$$S(t) = \overline{\mathcal{F}}_{[\mathcal{C}(\nu)]}(t)$$

$$\simeq A \exp{-\frac{t}{2\tau_0}} \exp{i2\pi\nu_0 t} \text{ si } \Delta\nu \ll \nu_0$$

^{6.} réalisation physique : tous les atomes sont portés sur le niveau 2 à t=0 par une impulsion laser femtoseconde.

6.7 Annexes 139

6.7.2 Limites aux courtes durées : impulsion gaussienne brève

On considère une impulsion laser de vibration lumineuse $s(t) = A \exp{-\pi(\frac{t}{\tau_0})^2} \cos{(2\pi\nu_0 t)}$. On évalue la durée de l'impulsion en la fixant arbitrairement comme sa largeur totale à $\frac{A}{\pi}$. Elle vaut $2\tau_0$. On cherche qualitativement jusqu'à quelle valeur minimale de τ_0 l'approximation consistant à écrire le signal analytique sous la forme $S(t) = A \exp{-\pi(\frac{t}{\tau_0})^2} \exp{i(2\pi\nu_0 t)}$ reste justifiée.

On a $\mathcal{F}_{[s(t)]}(\nu) = \frac{A}{2}\tau_0 \exp{-\pi\tau_0^2(\nu - \nu_0)^2} + \frac{A}{2}\tau_0 \exp{-\pi\tau_0^2(\nu + \nu_0)^2}$. Les pics constituant $|\mathcal{F}_{[s(t)]}(\nu)|$ ont une largeur totale à mi-hauteur $\Delta\nu = \sqrt{\frac{4\ln 2}{\pi}}\frac{1}{\tau_0}$ qui n'est pas significative par rapport à ν_0 pour τ_0 supérieur à typiquement 10 fs (voir graphes ci-dessous). Pour $\Delta\nu \ll \nu_0$, $\mathcal{C}(\nu) = A\tau_0 \exp{-\pi\tau_0^2(\nu - \nu_0)^2}$ et $\mathcal{S}(t) = A\exp{-\pi(\frac{t}{\tau_0})^2} \exp{i(2\pi\nu_0 t)}$.

6.7.3 Rayonnement stationnaire; discussion des temps caractéristiques

Le capteur délivre un signal proportionnel à l'énergie lumineuse reçue pendant une durée T_d autour de l'instant t donc à l'énergie :

$$\int_{t-T_d/2}^{t+T_d/2} I_i(t') \ dt'$$

énergie par unité de surface d'onde entrant dans le capteur entre $t-T_d/2$ et $t+T_d/2$

ou à la puissance :

$$\underbrace{\frac{1}{T_d} \int_{t-T_d/2}^{t+T_d/2} I_i(t') \ dt'}_{\text{intensit\'e instantan\'ee}}$$
moyenn\'ee entre $t-T_d/2$ et $t+T_d/2$

Si l'onde est une impulsion lumineuse entièrement contenue dans l'intervalle $t - T_d/2$, $t - T_d/2$, le capteur délivre un signal proportionnel à :

$$\Lambda = \int_{-\infty}^{+\infty} I_i(t) \ dt \qquad [\text{J} \cdot \text{m}^{-2}]$$

Cette quantité est l'énergie totale de l'onde par unité de surface d'onde, appelée par définition lumination de l'impulsion.

Pour une onde de durée supérieure à T_d , le capteur délivre à un facteur près le signal :

$$\Sigma_i(t) = \frac{1}{T_d} \int_{t-T_d/2}^{t+T_d/2} I_i(t') dt' \text{ avec } I_i(t') = A^2(t')$$

L'intégrale $\Sigma_i(t)$ se simplifie selon la valeur de T_d comparée au temps τ_c caractéristique des variations de l'amplitude A(t) de l'onde. On distingue deux situations particulières :

- (a) pour $T_d \ll \tau_c$, $I_i(t') = A^2(t')$ est constante pendant la mesure. Le signal $\Sigma_i(t)$ est proportionnel à $A^2(t)$ donc le capteur permet de suivre l'évolution temporelle de l'amplitude de l'onde.
- (b) pour $T_d \gg \tau_c$, l'intégrale $\Sigma_i(t) = \frac{1}{T_d} \int_{t-T_d/2}^{t+T_d/2} A^2(t') dt'$ réalise sur la durée T_d une valeur moyenne $\langle A^2(t) \rangle_{T_d}$ des fluctuations aléatoires de $A^2(t)$.

Soit un rayonnement de durée suffisamment longue par rapport à T_d pour être considérée comme infinie. Si $A^2(t) >_{T_d}$ donc Σ_i sont quasi-indépendants du temps, il s'agit par définition d'un rayonnement stationnaire. Son intensité moyenne est définie par :

$$I = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} I_i(t) dt$$
 notée $\langle I_i(t) \rangle$

On a les relations

$$I = \langle 2 s^{2}(t) \rangle = \langle A^{2}(t) \rangle = \langle S(t) S^{*}(t) \rangle = \langle |S(t)|^{2} \rangle$$

Le signal Σ_i mesuré sur $T_d \gg \tau_c$ est proportionnel à l'intensité moyenne du rayonnement stationnaire.

Le caractère stationnaire ou pas d'un rayonnement est par conséquent lié à la dynamique du capteur optique utilisé pour la mesure.

Le temps τ_c caractéristique des variations de l'amplitude A(t) ou de la phase $\psi(t)$ de l'onde macroscopique joue un rôle important, on l'appellera 'temps de cohérence' de l'onde. L'objet du chapitre suivant est de décrire comment mesurer τ_c dans des expériences d'interférences, afin de le relier aux caractéristiques microscopiques quantiques de l'émission des photons.

Chapitre 7

INTERFÉRENCES ET COHÉRENCE TEMPORELLE

Le temps de cohérence d'une onde quasi-monochromatique est accessible expérimentalement dans les expériences d'interférences à deux ondes. On va décrire comment, de manière à le définir plus précisément puis à le relier aux caractéristiques microscopiques des émetteurs de lumière.

7.1 Interférences en lumière quasi-monochromatique

La source S est ponctuelle quasimonochromatique et stationnaire, de signal analytique $\mathcal{S}(t)$.

Elle éclaire un interféromètre à deux ondes.

A l'instant t', M reçoit deux ondes émises par S aux instants $t' - \frac{[SM]_1}{c_0}$ et $t' - \frac{[SM]_2}{c_0}$, atténuées de facteurs α_1 et α_2 . Le signal analytique résultant s'écrit $\underbrace{\alpha_1}_{\mathcal{S}_1(t')} \underbrace{\mathcal{S}(t' - \frac{[SM]_1}{c_0})}_{\mathcal{S}_2(t')} + \underbrace{\alpha_2}_{\mathcal{S}_2(t')} \underbrace{\mathcal{S}(t' - \frac{[SM]_2}{c_0})}_{\mathcal{S}_2(t')}$ d'où l'intensité :

$$I(M) = \langle (S_1(t') + S_2(t')) (S_1(t') + S_2(t'))^* \rangle$$

$$= \langle S_1(t') S_1^*(t') \rangle + \langle S_2(t') S_2^*(t') \rangle + \langle S_1(t') S_2^*(t') \rangle + \langle S_2(t') S_1^*(t') \rangle$$

$$= I_1 + I_2 + 2 \Re \{ \langle S_1(t') S_2^*(t') \rangle \}$$

avec $<\mathcal{S}_1(t')$ $\mathcal{S}_2^*(t')>=<\alpha_1$ $\mathcal{S}(t'-\frac{[SM]_1}{c_0})$ α_2^* $\mathcal{S}^*(t'-\frac{[SM]_2}{c_0})>$. On note $t=t'-\frac{[SM]_1}{c_0}$ et $t-\tau=t'-\frac{[SM]_2}{c_0}\Leftrightarrow \tau=\frac{[SM]_2-[SM]_1}{c_0}$. τ correspond au décalage temporel entre les ondes arrivant en M par la voie (2) ou la voie (1). On note $\Delta(S,M)=[SM]_2-[SM]_1$ la "différence de marche" des ondes 2 et 1 en M.

Synthèse : pour une source ponctuelle quasi-monochromatique stationnaire de signal analytique S(t), on a les interférences :

$$I(M) = I_1 + I_2 + 2 \Re \{\alpha_1 \alpha_2^* < S(t) S^*(t-\tau) > \} \text{ avec } \tau = \frac{[SM]_2 - [SM]_1}{c_0}$$

Rem : $\langle S(t) | S^*(t-\tau) \rangle$ contient de l'information sur la comparaison de S(t) avec elle même décalée temporellement de τ . C'est cette propriété qui va permettre d'utiliser les interférences pour analyser finement S(t).

7.2 Degré complexe de cohérence temporelle

7.2.1 Définitions

On définit la fonction complexe de cohérence temporelle d'une onde stationnaire par :

$$\Gamma(\tau) = \langle \mathcal{S}(t) | \mathcal{S}^*(t-\tau) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \mathcal{S}(t) | \mathcal{S}^*(t-\tau) | dt$$

Propriétés:

* $\Gamma(0)$ correspond à l'intensité moyenne I_0 de l'onde.

* la forme intégrale de $\Gamma(\tau)$ justifie la propriété $\Gamma(-\tau) = \Gamma^*(\tau)$.

Le degré complexe de cohérence temporelle est défini par :

$$\gamma(\tau) = \frac{\Gamma(\tau)}{\Gamma(0)} = \frac{\langle \mathcal{S}(t) \, \mathcal{S}^*(t-\tau) \rangle}{I_0}$$

Propriétés : $\gamma(0) = 1$ et $\gamma(-\tau) = \gamma^*(\tau)$

Cas particuliers:

 $\Gamma(\tau)$ et $\gamma(\tau)$ ont été définis pour des ondes stationnaires donc de durée infinie. Ces fonctions réalisent une moyenne sur une durée infinie qui serait nulle pour une impulsion de durée finie. On définit alors :

- la fonction de cohérence temporelle d'une impulsion :

$$\Gamma'(\tau) = \int_{-\infty}^{+\infty} \mathcal{S}(t) \, \mathcal{S}^*(t-\tau) \, dt$$

notée également $\langle S(t) S^*(t-\tau) \rangle$ par abus de langage. ¹

L'expression de $\Gamma'(0)$ correspond à la lumination Λ_0 de l'impulsion (l'énergie totale par unité de surface d'onde).

- le degré complexe de cohérence temporelle d'une impulsion :

$$\gamma'(\tau) = \frac{\Gamma'(\tau)}{\Gamma'(0)}$$

7.2.2 Application à une onde 'modèle de l'enveloppe lentement variable'

Les fonctions $\Gamma(\tau)$ ou $\gamma(\tau)$ apparaissent dans I(M), on précise leur forme pour $\mathcal{S}(t) = A(t) \exp i\psi(t) \exp i2\pi\nu_0 t$ $(t \text{ de } -\infty \text{ à } +\infty)$, avec A(t) et $\psi(t)$ variant aléatoirement à l'échelle de $\tau_c \gg T_0 = \frac{1}{\nu_0}$. On a :

$$\gamma(\tau) = \frac{1}{I_0} < (A(t) \exp i\psi(t) \exp(i2\pi\nu_0 t)) \quad (A(t-\tau) \exp -i\psi(t-\tau) \exp(-i2\pi\nu_0 (t-\tau))) >$$

$$= \underbrace{\exp i2\pi\nu_0 \tau}_{\text{terme de module 1}}$$
terme de module 1
varie en fonction de τ
avec la période T_0

$$\text{terme de module égal à } |\gamma(\tau)|$$
et d'argument noté $\epsilon(\tau)$.
ne contient que des quantités
variant lentement à l'échelle de T_0

Le terme de droite peut s'écrire $|\gamma(\tau)| \exp i \epsilon(\tau)$. On peut alors écrire $\gamma(\tau)$ sous la forme générale :

$$\gamma(\tau) = \underbrace{|\gamma(\tau)| \exp i \ \epsilon(\tau)}_{\text{varie lentement}} \quad \underbrace{\exp i 2\pi\nu_0\tau}_{\text{oscille avec la période } T_0}$$

Propriétés :

- Pour $\tau \ll \tau_c$, $A(t-\tau) \exp i\psi(t-\tau) \simeq A(t) \exp i\psi(t)$ parce que A et ψ n'ont pas le temps de varier beaucoup entre $t-\tau$ et t, donc

$$\gamma(\tau) \simeq \exp i2\pi\nu_0\tau \frac{\langle A(t)\exp i\psi(t)|A(t)\exp -i\psi(t)\rangle}{I_0}$$

= $\exp i2\pi\nu_0\tau$

^{1.} Autant que le critère de durée finie, c'est la convergence de cette intégrale qui fait qu'on doit utiliser $\Gamma'(\tau)$ au lieu de $\Gamma(\tau)$.

avec en particulier

$$\lim_{\tau \to 0} |\gamma(\tau)| = 1 \qquad \text{et} \qquad \lim_{\tau \to 0} \epsilon(\tau) = 0$$

- Pour $\tau \gg \tau_c$, $A(t) \exp i\psi(t)$ a eu le temps de se déformer aléatoirement par rapport à $A(t-\tau) \exp i\psi(t-\tau)$ donc leur produit est en moyenne nul :

$$\lim_{\tau \to \infty} \gamma(\tau) = 0$$

- On a $\gamma(-\tau) = \gamma^*(\tau)$ donc $|\gamma(-\tau)| = |\gamma(\tau)|$, cette fonction est paire.

Pour une onde quasi-monochromatique de fréquence ν_0 , l'expérience montre que $|\gamma(\tau)|$ varie comme indiqué ci-contre :

Interprétation physique : $|\gamma(\tau)|$ commence à décroitre significativement lorsque $A(t-\tau)$ et $\psi(t-\tau)$ deviennent très différents de A(t) et $\psi(t)$. Le temps caractéristique de cette décroissance correspond au temps caractéristique τ_c des variations de A(t) et $\psi(t)$. Par définition, on fixe la valeur de τ_c par $|\gamma(\tau_c)| = 0, 5$ et on l'appelera "temps de cohérence" de l'onde.

Remarque : une onde monochromatique correspond à A et ψ constants donc à τ_c infini. On a donc $\gamma(\tau) = \exp i2\pi\nu_0\tau$ quel que soit τ .

7.2.3 Application à une impulsion 'dipôle amorti'

$$\begin{cases} S(t) = A \exp{-\frac{t}{2\tau_0}} \exp{i2\pi\nu_0 t} & \text{pour } t \ge 0\\ S(t) = 0 & \text{pour } t < 0 \end{cases}$$

On calcule $\Gamma'(\tau)$, pour le cas $\tau \geq 0$.

 $S(t-\tau) = 0$ pour $t < \tau$ donc S(t) $S^*(t-\tau) = 0$ pour $t < \tau$ et

$$\Gamma'(\tau) = \int_{\tau}^{+\infty} A \exp{-\frac{t}{2\tau_0}} \exp{i2\pi\nu_0 t} \quad A \exp{-\frac{(t-\tau)}{2\tau_0}} \exp{-i2\pi\nu_0 (t-\tau)} dt$$

$$= A^2 \exp{i2\pi\nu_0 \tau} \int_{\tau}^{+\infty} \exp{-\frac{2t-\tau}{2\tau_0}} dt$$

$$= A^2 \exp{i2\pi\nu_0 \tau} \frac{2\tau_0}{2} \left[-\exp{-\frac{2t-\tau}{2\tau_0}} \right]_{\tau}^{+\infty}$$

$$= A^2 \tau_0 \exp{-\frac{\tau}{2\tau_0}} \exp{i2\pi\nu_0 \tau}$$

Pour $\tau < 0$, la propriété $\Gamma'(-\tau) = {\Gamma'}^*(\tau)$ permet d'écrire :

$$\Gamma'(\tau) = \left(\Gamma'(-\tau)\right)^* = \left(A^2 \tau_0 \exp{-\frac{(-\tau)}{2\tau_0}} \exp{i2\pi\nu_0(-\tau)}\right)^*$$

d'où une expression valable pour τ positif ou négatif :

$$\Gamma'(\tau) = A^2 \tau_0 \exp{-\frac{|\tau|}{2\tau_0}} \exp{i2\pi\nu_0\tau}$$

On déduit le degré complexe de cohérence temporelle : $\gamma'(\tau) = \frac{\Gamma'(\tau)}{\Gamma'(0)} = \exp{-\frac{|\tau|}{2\tau_0}} \exp{i2\pi\nu_0\tau}$ qui vérifie bien $\gamma'(0) = 1$.

Par définition, $|\gamma'(\tau)| = \frac{1}{2}$ pour $\tau = \tau_c$ d'où le temps de cohérence $\tau_c = 2\tau_0 \ln 2 \simeq \tau_0$. On constate qu'il contient de l'information sur le système à deux niveaux représentant les atomes.

7.2.4 Trains d'onde microscopiques et onde macroscopique résultante

Soit l'impulsion macroscopique de signal analytique $S(t) = \sum_{k=1}^{r} S_k(t)$

p trains d'onde microscopiques identiques émis à des instants t_k aléatoires (p grand)

Pour le train d'onde k: on note $\Gamma'_k(\tau) = \langle S_k(t) S_k^*(t-\tau) \rangle$. C'est une intégrale de $-\infty$ à $+\infty$ donc sa valeur est indépendante de t_k , la même pour tous les trains d'onde.

Pour l'impulsion résultante, la fonction de cohérence temporelle s'écrit :

$$\Gamma'(\tau) = \langle \mathcal{S}(t) \, \mathcal{S}^*(t-\tau) \rangle$$

$$= \langle \left[\sum_{k=1}^p \mathcal{S}_k(t) \right] \left[\sum_{k=1}^p \mathcal{S}_k^*(t-\tau) \right] \rangle$$

$$= \sum_{k=1}^p \langle \mathcal{S}_k(t) \, \mathcal{S}_k^*(t-\tau) \rangle + \sum_{k=1}^p \langle \mathcal{S}_k(t) \, \underbrace{\left(\sum_{k' \neq k}^p \mathcal{S}_{k'}^*(t-\tau) \right)}_{\text{aucune corrélation avec } \mathcal{S}_k(t) \text{ émis à } t_k} \rangle$$

Il reste:

$$\Gamma'(\tau) = p \Gamma'_k(\tau)$$

$$\gamma'(\tau) = \frac{p \Gamma'_k(\tau)}{p \Gamma'_k(0)} = \gamma'_k(\tau)$$

Conséquence : mesurer $\gamma'(\tau)$ pour une onde macroscopique donne la valeur $\gamma'_k(\tau)$ pour le train d'onde associé donc une information sur ce qui constitue ce rayonnement à l'échelle microscopique.

Le résultat précédent se généralise pour un rayonnement stationnaire (durée infinie, nombre infini de trains d'onde identiques), avec $\gamma(\tau) = \gamma'_k(\tau)$.

Application : on étudiera en TD comment à partir de I(M) déduire $\gamma(\tau)$ pour l'onde macroscopique et donc $\gamma_k'(\tau)$ pour le train d'onde. La forme de $\gamma_k'(\tau)$ permettra d'identifier celle du train d'onde modélisant correctement ce système à l'échelle microscopique.

7.3 Propriétés générales des interférences

7.3.1 Forme générale de l'intensité

Un interféromètre superpose en M deux rayons issus d'une même source, avec la différence de marche $\Delta(M) = [SM]_2 - [SM]_1$ et le décalage temporel $\tau = \frac{\Delta(M)}{c_0}$. L'ensemble des points M recevant de la lumière à la fois par les voies 1 et 2 est appelé le champ d'interférences. On reprend l'expression de l'intensité lumineuse établie au §7.1 :

$$I(M) = I_1 + I_2 + 2 \Re e \left\{ \alpha_1 \alpha_2^* \underbrace{\langle \mathcal{S}(t) \mathcal{S}^*(t-\tau) \rangle}_{\Gamma(\tau)} \right\} \quad \text{avec } \tau = \frac{[SM]_2 - [SM]_1}{c_0}$$

Notations:

*
$$I_0 = < S(t) S^*(t) >$$

* $\gamma(\tau) = \frac{\Gamma(\tau)}{I_0}$

* $\alpha_1 = |\alpha_1| \exp i\epsilon_1$ et $\alpha_2 = |\alpha_2| \exp i\epsilon_2$ pour tenir compte des éventuels déphasages localisés liés au montage expérimental.

*
$$I_1 = <\alpha_1 \alpha_1^* \ \mathcal{S}(t) \ \mathcal{S}^*(t)> = \ |\alpha_1|^2 I_0 \ \Leftrightarrow \ |\alpha_1| = \sqrt{\frac{I_1}{I_0}}.$$
 De même, $|\alpha_2| = \sqrt{\frac{I_2}{I_0}}.$

d'où:

$$\alpha_{1}\alpha_{2}^{*} \Gamma(\tau) = \alpha_{1}\alpha_{2}^{*} I_{0} \gamma(\tau)$$

$$= \underbrace{|\alpha_{1}| |\alpha_{2}| I_{0}}_{\sqrt{I_{1}I_{2}}} \exp i(\epsilon_{1} - \epsilon_{2}) \gamma(\tau)$$

Pour une source ponctuelle quasi-monochromatique et stationnaire S, l'intensité au point M du champ d'interférences s'écrit :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \Re \{\exp i(\epsilon_1 - \epsilon_2) \ \gamma(\tau)\} \text{ avec } \tau = \frac{[SM]_2 - [SM]_1}{c_0}$$

Si la source ponctuelle est monochromatique, $\gamma(\tau) = \exp 2i\pi\nu_0\tau$ et

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(2\pi\nu_0\tau + \epsilon_1 - \epsilon_2)$$

Par analogie, une source émettant une impulsion lumineuse produit en M la lumination :

$$\Lambda(M) = \Lambda_1(M) + \Lambda_2(M) + 2 \sqrt{\Lambda_1 \Lambda_2} \Re \{ \exp i(\epsilon_1 - \epsilon_2) \gamma'(\tau) \}$$

7.3.2 Visibilité des franges d'interférences. Mesure du temps de cohérence

La valeur de l'intensité mesurée en fonction de τ ou de la position de M est appelée 'interférogramme'.

Soit une source stationnaire quasi-monochromatique. On a montré au §7.2.2 que d'une manière générale $\gamma(\tau) = |\gamma(\tau)| \exp i (2\pi\nu_0\tau + \epsilon(\tau))$ d'où :

$$\begin{split} I(\tau) &= I_1 + I_2 + 2\sqrt{I_1I_2} \,\,\Re e \,\,\left\{\gamma(\tau) \exp i(\epsilon_1 - \epsilon_2)\right\} \\ &= I_1 + I_2 + 2\,\,\sqrt{I_1I_2} \,\,\times \underbrace{\left|\gamma(\tau)\right|}_{\text{variations}} &\times \underbrace{\cos\left(2\pi\nu_0\tau + \epsilon_1 - \epsilon_2 + \epsilon(\tau)\right)}_{\text{variations}} \\ &\quad \text{à l'échelle de τ_c} &\quad \text{à l'échelle de $T_0 = 1/\nu_0 \ll \tau_c$} \end{split}$$

Au voisinage du point M ou quand la géométrie de l'interféromètre est modifiée, les variations de τ font osciller l'intensité entre les enveloppes :

$$\begin{array}{rcl} I_{min}(\tau) & = & I_1 + I_2 - 2 \ \sqrt{I_1 I_2} \ |\gamma(\tau)| \\ \mathrm{et} & I_{max}(\tau) & = & I_1 + I_2 + 2 \ \sqrt{I_1 I_2} \ |\gamma(\tau)| \end{array}$$

Pour
$$\tau = 0$$
, $\gamma(\tau) = 1$ donc $I_{min}(0) = (\sqrt{I_1} - \sqrt{I_2})^2$ et $I_{max}(0) = (\sqrt{I_1} + \sqrt{I_2})^2$.

La visibilité (ou le contraste) des franges d'interférences au voisinage de M est définie par

$$\begin{array}{rcl} V(\tau) & = & \frac{I_{max}(\tau) - I_{min}(\tau)}{I_{max}(\tau) + I_{min}(\tau)} \\ \\ \text{et vaut} & V(\tau) & = & \frac{2\sqrt{I_1I_2}}{I_1 + I_2} \; |\gamma(\tau)| \end{array}$$

Cas particulier : $V(\tau) = |\gamma(\tau)|$ lorsque $I_2 = I_1$.

Graphe pour $\epsilon_1 - \epsilon_2 = 0$ et $\epsilon(\tau) = 0$

Application à la mesure de τ_c : pour $I_1=I_2$, la visibilité est supérieure à 0,5 pour les points tels que $-\tau_c < \tau < \tau_c$. D'autre part, on passe d'une frange à la suivante pour τ variant de $T_0=\frac{1}{\nu_0}$. Le nombre de franges de visibilité supérieure à 0,5 est donc égal à $\frac{2\tau_c}{T_0}=2\tau_c\nu_0$, sa mesure sur l'interférogramme donne la valeur du temps de cohérence τ_c de la radiation émise par la source.

Remarque : $I(M) \ge I_1 + I_2$ correspond à des interférences constructives (destructives dans le cas contraire). Exemple : un interférogramme en lumière blanche présente très peu de franges, le temps de cohérence associé est très court.

7.3.3 Exemple de mesure du temps de cohérence d'un rayonnement

Justification plus détaillée : les points O_1 et O_2 sont sur une même surface d'onde de l'onde plane produite par S au foyer de (L_1) donc $[SO_1] = [SO_2]$. D'autre part, une onde sphérique émise par M produirait en O_1 une onde plane dont le plan d'onde passant par O_1 couperait le rayon (2) au point H, projection orthogonale de O_1 sur le rayon (2), avec donc $[MO_1] = [MH]$.

Le schéma ci-contre représente dans l'espace le voisinage des trous d'Young. Les égalités $[SO_1] = [SO_2]$ et $[O_1M] = [HM]$ permettent de simplifier le calcul de la différence de marche en :

$$\begin{split} [SM]_2 - [SM]_1 &= [SO_2] + [O_2H] + [HM] \\ &- [SO_1] - [O_1M] \\ &= \overline{O_2H} \\ &= \overline{O_2O_1} \cdot \frac{\overline{\Omega_2M}}{\Omega_2M} \end{split}$$

avec $\overrightarrow{O_2O_1}(s,0,0)$ et $\frac{\overrightarrow{\Omega_2M}}{\Omega_2M}(\frac{s}{f_2},\frac{y}{f_2},1)$. On obtient

$$[SM]_2 - [SM]_1 = \frac{s x}{f_2}$$

La différence $[SM]_2 - [SM]_1$ est indépendante de la coordonnée y de M. Cette fonction est à symétrie de translation dans le plan F'_2xy .

$$F_2'xy$$
.

On a donc $\tau = \frac{\Delta}{c_0} = \frac{s \ x}{f_2c_0}$

Ce dispositif n'introduit pas de déphasages localisés, $\epsilon_1=\epsilon_2=0$. Pour $I_2\simeq I_1$, l'intensité en M s'écrit :

$$I(x,y) = 2 I_1 \left(1 + |\gamma(\frac{sx}{f_2 c_0})| \cos 2\pi \nu_0 \frac{sx}{f_2 c_0} \right)$$
$$= 2 I_1 \left(1 + |\gamma(\frac{sx}{f_2 c_0})| \cos 2\pi \frac{x}{\Delta i} \right)$$

On observe des franges lumineuses parallèles à Oy avec l'interfrange $\Delta i = \frac{f_2 c_0}{\nu_0 s}$.

On a $V(\tau_c) = |\gamma(\tau_c)| = \frac{1}{2}$ donc la visibilité est supérieure à 0,5 pour les points tels que $|\tau| < \tau_c \Leftrightarrow |x| < \tau_c \frac{f_2 c_0}{s}$. L'écart entre deux franges successives valant Δi , le nombre de franges de visibilité supérieure à 0,5 est approximativement $\frac{2\tau_c f_2 c_0}{\Delta i \ s} = \frac{\frac{2\tau_c f_2 c_0}{f_2 c_0}}{\frac{f_2 c_0}{\nu_0 s}} = 2\tau_c \nu_0$. Expérimentalement, le décompte de ces franges conduit à la mesure du temps de cohérence τ_c du rayonnement.

Remarque : dans la pratique, les mesures quantitatives sont réalisées avec un interféromètre de Michelson ou des appareils analogues plutôt qu'avec un dispositif des trous d'Young pour des raisons de cohérence spatiale qui seront développées dans le chapitre suivant.

7.4 Spectre des fréquences d'un rayonnement

7.4.1 Théorème de Wiener-Khintchine

Soit un rayonnement stationnaire d'amplitude spectrale $C(\nu)$ et d'intensité I_0 . On définit :

- la densité spectrale d'intensité : $\mathcal{D}(\nu) = \mathcal{C}(\nu)$ $\mathcal{C}^*(\nu)$.
- le spectre des fréquences du rayonnement : $J(\nu) = \frac{\mathcal{D}(\nu)}{I_0}$

Le théorème de Wiener-Khintchine (Cf démontration en annexe §7.9.2) relie ces caractérisations de l'onde à celles introduites au §7.2 par :

$$\Gamma(\tau) = \overline{\mathcal{F}}_{[\mathcal{D}(\nu)]}(\tau) \quad \Leftrightarrow \quad \mathcal{D}(\nu) = \mathcal{F}_{[\Gamma(\tau)]}(\nu)$$

En divisant par I_0 , il vient :

$$\gamma(\tau) = \overline{\mathcal{F}}_{[J(\nu)]}(\tau) \quad \Leftrightarrow \quad J(\nu) = \mathcal{F}_{[\gamma(\tau)]}(\nu)$$

- * Propriétés :
- \circ $J(\nu)$ et $\mathcal{D}(\nu)$ sont réels
- $\circ \quad \mathcal{C}(\nu) = 0 \text{ pour } \nu \le 0 \text{ donc } \mathcal{D}(\nu) = 0 \text{ et } J(\nu) = 0 \text{ pour } \nu \le 0.$
- $\circ \quad \int_{-\infty}^{+\infty} J(\nu) \ d\nu = \int_{-\infty}^{+\infty} J(\nu) \ \exp(i2\pi\nu \times 0) \ d\nu = \overline{\mathcal{F}}_{[J(\nu)]}(0) = \gamma(0) = 1 \ (\text{Cf formulaire})$
- $\circ \int_{-\infty}^{+\infty} \mathcal{D}(\nu) \ d\nu = I_0 \int_{-\infty}^{+\infty} J(\nu) \ d\nu = I_0$

Remarque: on transpose ces notions pour une impulsion lumineuse:

$$J(\nu) = \frac{\mathcal{D}(\nu)}{\Lambda_0}, \ \gamma'(\tau) = \overline{\mathcal{F}}_{[J(\nu)]}(\tau), \ J(\nu) = \mathcal{F}_{[\gamma'(\tau)]}(\nu).$$

7.4.2 Interprétation physique

Une source ponctuelle éclaire un interféromètre avec $\epsilon_2 = \epsilon_1 = 0$ et $\alpha_1 \simeq \alpha_2$ noté α .

* On suppose la source monochromatique de fréquence ν . L'intensité associée à ces photons est notée I_{ν} . Le point M reçoit deux ondes décalées de τ et de même intensité α^2 I_{ν} donc la forme générale de I(M) s'écrit ici :

$$I(M) = \alpha^2 I_{\nu} + \alpha^2 I_{\nu} + 2 \sqrt{\alpha^2 I_{\nu} \alpha^2 I_{\nu}} \cos 2\pi\nu\tau$$
$$= 2\alpha^2 I_{\nu} (1 + \cos 2\pi\nu\tau)$$

* La source est maintenant supposée quasi-monochromatique de spectre $J(\nu)$ et d'intensité I_0 . Le théorème de Wiener-Khintchine établit $\gamma(\tau) = \int J(\nu) \exp 2i\pi\nu\tau \ d\nu$. La forme générale de I(M) s'écrit ici :

$$I(M) = \alpha^{2} I_{0} + \alpha^{2} I_{0} + 2 \alpha^{2} I_{0} \Re \left\{ \gamma(\tau) \right\}$$

$$= 2\alpha^{2} I_{0} \left(\underbrace{1}_{J(\nu) \ d\nu} + \Re \left\{ \underbrace{\int \underbrace{J(\nu)}_{\text{r\'eel}} (\cos 2\pi\nu\tau + i \sin 2\pi\nu\tau) \ d\nu}_{\text{r\'eel}} \right\} \right)$$

$$= \int 2\alpha^{2} (I_{0}J(\nu) \ d\nu) \ (1 + \cos 2\pi\nu\tau)$$

La figure d'interférences mesurée pour une source quasi-monochromatique s'interprète comme la superposition de celles mesurées pour des sources monochromatiques de fréquences dans un intervalle $[\nu, \nu + d\nu]$ très étroit et d'intensité $I_0J(\nu)$ $d\nu$.

Au niveau macroscopique, une onde quasi-monochromatique d'intensité I_0 est formée de photons dont les fréquences sont réparties sur un certain intervalle. La quantité $I_0J(\nu)$ $d\nu$ est la fraction de l'intensité I_0 associée aux photons de l'intervalle étroit $[\nu, \nu + d\nu]$.

Au niveau microscopique, $J(\nu)$ $d\nu$ est la probabilité pour qu'un photon émis par un atome de la source le soit avec une fréquence dans l'intervalle $[\nu, \nu + d\nu]$.

Le spectre $J(\nu)$ traduit donc :

- la quantité physique qu'on mesure avec un spectroscope (décomposition en fréquences du rayonnement par un prisme ou un réseau)
- la répartition statistique des fréquences des photons
- la répartition statistique pour l'observable énergie

La démarche est analogue à celle suivie en mécanique quantique défissant la position ou le vecteur d'onde de l'objet quantique 'électron' en terme de probabilité de présence dans une intervalle.

La relation clé de ce chapitre est le théorème de Wiener-Khintchine, $J(\nu) = \mathcal{F}_{[\gamma(\tau)]}(\nu)$ qui relie $J(\nu)$, observable physique mesurable par un spectromètre, et $\gamma(\tau)$, autre observable mesurable à partir d'un interférogramme. Les quantités $\mathcal{S}(t)$ et $\mathcal{C}(\nu)$ sont des intermédiaires mathématiques introduits pour modéliser un système de photons de manière à établir le lien entre les observables.

7.4.3 Largeur spectrale

L'excitation d'atomes par un laser femtoseconde produit le rayonnement $S(t) = A \exp{-\frac{t}{2\tau_0}} \exp{i2\pi\nu_0 t}$ pour t > 0.

On a calculé (Chap. VI 3.2) son amplitude spectrale $C(\nu) = \frac{A}{i2\pi(\nu-\nu_0)+\frac{1}{2\tau_0}}$, d'où la densité spectrale d'intensité :

$$\mathcal{D}(\nu) = \mathcal{C}(\nu) \, \mathcal{C}^*(\nu)$$

$$= \frac{A^2}{(2\pi(\nu - \nu_0))^2 + (\frac{1}{2\tau_0})^2}$$

$$= \frac{4\tau_0^2 A^2}{1 + 4\pi^2 4\tau_0^2 (\nu - \nu_0)^2} \text{ pour } \nu \ge 0 \text{ et } 0 \text{ pour } \nu < 0$$

La lumination de l'impulsion vaut $\Lambda_0 = \int_{-\infty}^{+\infty} \mathcal{S}(t) \, \mathcal{S}^*(t) \, dt = \int_0^{+\infty} A^2 \exp{-2\frac{t}{2\tau_0}} \, dt = A^2\tau_0$ d'où le spectre des fréquences :

$$J(\nu) = \frac{\mathcal{D}(\nu)}{\Lambda_0} = \frac{4\tau_0}{1 + 16\pi^2 \tau_0^2 (\nu - \nu_0)^2}$$

Cette fonction est une lorentzienne centrée sur ν_0 de largeur totale à mi-hauteur $\Delta \nu$ telle que

$$J(\nu_0 \pm \Delta \nu/2) = J(\nu_0)/2 \ \Leftrightarrow \ \Delta \nu \ = \ \frac{1}{2\pi \tau_0}$$

 $\Delta \nu$ est par définition la largeur spectrale du rayonnement.

Commentaires physiques:

Si tous les atomes sont décrits par le même système à deux niveaux, la radiation devrait être monochromatique $\nu_0 = \frac{E_2 - E_1}{h}$.

Cependant, ces niveaux ont une durée de vie finie et donc d'après l'incertitude de Heisenberg une certaine largeur en énergie. L'énergie du photon émis peut donc s'écarter légèrement de $h\nu_0$, comme décrit par $J(\nu)$.

Généralisation:

Le temps de cohérence d'un rayonnement est la demi-largeur à mi-hauteur de la courbe $|\gamma(\tau)|$ (enveloppe de l'interférogramme). La largeur spectrale $\Delta\nu$ est la largeur totale à mi-hauteur du spectre des fréquences $J(\nu)$.

Le théorème de Wiener-Khintchine indique que les quantités $\gamma(\tau)$ et $J(\nu)$ sont reliées par transformée de Fourier donc d'une manière générale, le produit de leurs largeurs est de l'ordre de 1, c'est-à-dire $(2\tau_c)\times\Delta\nu\simeq 1$. Conséquences :

- Le temps de cohérence est d'autant plus long que le spectre est étroit, et inversement.
- Une onde monochromatique a un spectre de largeur tendant vers 0.

7.4.4 Caractérisation spectroscopique de la matière

Un interféromètre éclairé par une source ponctuelle forme un interférogramme $I(\tau)$

Ses oscillations donnent $\gamma(\tau)$ (Cf TD 12) pour le rayonnement macroscopique donc $\gamma'(\tau)$ pour les émetteurs microscopiques. Ce dernier permet par identification de préciser la forme des trains d'onde à utiliser pour modéliser l'émission de cette source.

L'utilisation du théorème de Wiener-Khintchine donne le spectre $J(\nu)$ des fréquences (fréquence centrale $\nu_0 = \frac{E_2 - E_1}{h}$, largeur, forme) donc la probabilité pour qu'un échantillon microscopique d'atomes émette un photon de fréquence dans $[\nu, \nu + d\nu]$.

Des interféromètres de Michelson permettent des déplacements du miroir mobile jusqu'à 4 m (Technique développée au LAC dans les années 70) pouvant identifier les valeurs de ν_0 même si plusieurs milliers de fréquences distinctes sont émises simultanément par la source.

Chaque valeur ν_0 est la signature très précise d'une molécule (Exemple : détection résolue de $C^{12}O_2$ et $C^{14}O_2$ pour suivre la diffusion des résidus de combustion d'énergie fossile).

Le spectre donne aussi des informations sur la température, la pression, les interactions physiques de la source avec son entourage (autres atomes, champ magnétique, champ électrique, Cf cours lasers).

Toutes ces informations peuvent être obtenues sur des sources dans le laboratoire mais aussi à moyenne distance (atmosphère) ou longue distance (espace).

7.4.5 Lien avec le modèle de l'enveloppe lentement variable

La superposition d'une onde avec elle-même décalée du temps τ fait apparaître des franges d'interférences. L'expérience montre que leur visibilité est maximale pour $\tau \ll \tau_c$ et tend vers 0 pour τ grand. Une valeur élevée de cette visibilité s'interprète en disant que les ondes à t et $t-\tau$ "se ressemblent" ou que l'onde se déforme peu entre $t-\tau$ et t. Inversement, une visibilité faible pour $\tau \gg \tau_c$ montre que l'onde se déforme suffisamment entre $t-\tau$ et t pour avoir $< S(t)S^*(t-\tau) > \simeq 0$. Ces considérations sont introduites dans le modèle de l'enveloppe lentement variable en posant que A(t) et $\psi(t)$ varient peu à l'échelle de τ_c mais évoluent aléatoirement sur des temps nettement plus longs.

7.5 Exemples d'applications

7.5.1 Interférogramme pour une source de lumière blanche

longueur d'onde : λ répartie sur $[0, 4 \ 10^{-6}; 0, 65 \ 10^{-6}]$ m

fréquence : $\nu \in [4, 6 \ 10^{14}; 7, 5 \ 10^{14}] \ \mathrm{Hz}$

fréquence moyenne : $\nu_0=6~10^{14}$ Hz. largeur spectrale : $\Delta\nu\approx2~10^{14}$ Hz. période : $T_0=\frac{1}{\nu_0}=1,6~10^{-15}$ s.

temps de cohérence $\tau_c \simeq \frac{1}{2 \Delta \nu} = 2,5 \ 10^{-15} \text{ s.}$

nombre de franges de visibilité supérieure à $0.5: \frac{2\tau_c}{T_0} = 3$ franges.

On en déduit les caractéristiques de l'interférogramme obtenu pour cette source avec un interféromètre de Michelson :

Pour un interféromètre de Michelson, $\tau = \frac{2(OO_2 - OO_1)}{c_0}$. Les 3 franges de visibilité supérieure à 0,5 sont balayées pour τ passant de de $-\tau_c$ à $+\tau_c$ donc pour $OO_2 - OO_1$ allant de $-\frac{c_o\tau_c}{2}$ à $\frac{c_o\tau_c}{2}$ (le miroir mobile se déplaçant de 0,4 μ m de part et d'autre de sa position donnant $OO_2 = OO_1$).

Inversement, l'observation de franges montre que $OO_2 = OO_1$ à 0,4 μ m près. Cette propriété est à la base de mesures de positions ou de longueurs très précises. On peut aussi vérifier qu'une pièce, par exemple une lentille, est identique à un modèle.

7.5.2 Tomographie par cohérence optique

Cette technique d'imagerie optique à 3 dimensions a été inventée en 1990 (MIT, Boston). De nombreux développements sont encore en cours. Elle s'applique en particulier à des objets biologiques pas trop opaques.

Stage M2 Lasers et Matière Delphine SACCHET 06-07

Sujet de thèse : optimisation de l'optique et de l'électronique de la mesure pour augmenter la cadence d'acquisition -> imagerie résolue en temps (battement du cœur d'un tétard, division de cellules) avec une résolution de l'ordre du micromètre dans les 3 directions. Cette technologie est désormais utilisée dans les services ophtalmologie des hopitaux.

7.5.3 Spectrométrie par transformée de Fourier

Objectif de la spectrométrie

La lumière émise par un système atomique ou moléculaire, par un plasma ou par un solide, constitue une signature optique du système émetteur : mesurer le spectre de cette lumière permet dans de nombreux cas d'identifier la nature chimique de la source.

Cette méthode d'analyse fonctionne si la source de lumière est dans le laboratoire, mais aussi lorsqu'elle se situe à moyenne ou à longue distance (atmosphère terrestre, source spatiale).

Le spectre de l'onde reçue est sensible à certains paramètres physiques de la source (température, vitesse, pression, caractère solide ou liquide, état de charge, etc.). Le décalage en fréquence par effet Doppler permet par exemple la mesure de la vitesse relative des corps célestes.

La mesure du spectre d'un rayonnement a de très nombreuses applications technologiques ou scientifiques. Elle nécessite un spectromètre à prisme ou à réseau, lorsqu'une basse résolution est suffisante. Une technique beaucoup plus performante repose sur l'utilisation du théorème de Wiener-Khintchine; c'est la spectrométrie par transformée de Fourier, méthode utilisant un interféromètre de Michelson ² et qui va être présentée au paragraphe suivant. Une troisième famille de dispositifs utilise les interférences à ondes multiples conduisant à de grandes sensibilités sur des écarts ou des variations de fréquences, mais sans mesures de leurs valeurs absolues. Ce sont les interféromètres de type Fabry-Perot, non abordés dans ce document.

^{2.} C'est dans la pratique l'outil le mieux adapté pour des raisons de cohérence spatiale développées au chapitre suivant.

Interféromètre de Michelson

Une source ponctuelle S placée au foyer d'une lentille forme un faisceau parallèle, qui est séparé en deux parties égales par une lame semi-réfléchissante (lame séparatrice). Les deux sous-faisceaux se réfléchissent respectivement sur les miroirs plans M_1 et M_2 avant de revenir vers la séparatrice puis de se recombiner en un point M. Lorsque les miroirs vus par la source sont parfaitement perpendiculaires à l'axe de la lentille (L_2) (positions apparentes des miroirs parallèles entres elles donc positions réelles perpendiculaires), les deux rayons se recombinent au point focal de la lentille située sur l'axe de sortie. Le miroir M_2 est mobile parallèlement à lui-même.

On considère les rayons vus par le point M, en développant les rayons lumineux par symétrie par rapport aux miroirs et/ou à la séparatrice. Tout se passe comme si la lumière obtenue en M provenait de deux sources parfaitement identiques mais situées en deux points S_1 et S_2 décalés sur l'axe de (L_2)

En notant $e = \overline{O_1'O_2}$ la distance entre les deux miroirs vus parallèles, on a

$$\Delta(M) = [SM]_2 - [SM]_1 = [S_2M] - [S_1M] = 2e$$

Les rayons issus de la même source peuvent interférer pour produire en M l'intensité

$$I(M) = 2I_0 \left(1 + \Re e \ \gamma(\frac{\Delta(M)}{c_0}) \right)$$

sachant que $\gamma(\tau) = \overline{\mathcal{F}}_{[J(\nu)]}(\tau)$. Le point M est fixe et on enregistre l'intensité en fonction de la position du miroir mobile, donc du paramètre $\tau = \frac{\Delta(e)}{c_0} = \frac{2e}{c_0}$. L'objectif est de déterminer suffisamment d'informations sur $\gamma(\frac{\Delta(e)}{c_0})$ pour en déduire le spectre $J(\nu)$ des fréquences du rayonnement comme expliqué ci-dessus.

Mesure d'un spectre

L'enregistrement de l'intensité au point M en fonction de $e = \overline{O_1'O_2}$ est appelé interférogramme $I(\tau)$, avec $\tau = \frac{2e}{c_0}$. Il est réalisé pour τ variant de 0 à une quantité τ_{max} limitée par la mécanique de l'interféromètre, pour en déduire

$$\Re e \ \gamma(\tau) = \frac{I(e)}{2I_0} - 1$$
$$= \gamma_r(\tau)$$

La relation $\gamma(-\tau) = \gamma^*(\tau)$ fait que $\gamma_r(\tau)$ est une fonction paire.

On suppose dans un premier temps que τ_{max} est infini (en pratique, c'est suffisant d'avoir $\tau_{max} \gg \tau_c$). On montre comment déduire $J(\nu)$, connaissant $\gamma_r(\tau)$ mais pas $\gamma(\tau)$.

A partir de $\gamma_r(e) = \frac{\gamma(\tau) + \gamma^*(\tau)}{2}$, on calcule

$$\mathcal{F}_{\left[\gamma_{r}(\tau)\right]}(\nu) = \frac{1}{2}\mathcal{F}_{\left[\gamma(\tau)\right]}(\nu) + \frac{1}{2}\int_{-\infty}^{+\infty} \gamma^{*}(\tau) \exp{-i2\pi\nu\tau} \ d\tau$$

$$= \frac{1}{2}\mathcal{F}_{\left[\gamma(\tau)\right]}(\nu) + \frac{1}{2}\left\{\int_{-\infty}^{+\infty} \gamma(\tau) \exp{-i2\pi(-\nu)\tau} \ d\tau\right\}^{*}$$

$$= \frac{J(\nu) + J^{*}(-\nu)}{2}$$

Le spectre $J(\nu)$ est nul pour $\nu < 0$. On déduit que pour $\nu > 0$, $J^*(-\nu) = 0$ et $J(\nu) = 2\mathcal{F}_{\left[\gamma_r(\tau)\right]}(\nu)$. Les propriétés du spectre font donc qu'il est suffisant de connaître $\gamma_r(\tau)$ pour le calculer par une transformée de Fourier.

Dans la pratique, τ_{max} est fini, ce qui revient à mesurer une partie seulement de $\gamma_r(\tau)$, notée

$$\gamma_r(\tau) \operatorname{rect}_{\tau_{max}}(\tau)$$

On calcule

$$J^{\tau_{max}}(\nu) = 2 \mathcal{F}_{[\gamma_r^{\tau_{max}}(\tau)]}(\nu)$$

$$= 2 \mathcal{F}_{[\gamma_r(\tau)]} * \tau_{max} \operatorname{sinc}(\tau_{max}\nu)$$

$$= J(\nu) * \tau_{max} \operatorname{sinc}(\tau_{max}\nu)$$

Comme illustré ci-contre, la fonction $J^{\tau_{max}}(\nu)$ est déformée par rapport à $J(\nu)$ à cause du produit de convolution par $\tau_{max} \mathrm{sinc}(\tau_{max}\nu)$ qui est un pic de largeur approximative $1/\tau_{max}$. Cette fonction n'est pas exactement un spectre, dans la mesure où elle est parfois négative. Cependant, ses pics ont la même position que ceux de $J(\nu)$, tant que l'écart entre les pics est supérieur à $1/\tau_{max}$. On illustre de cette manière comment la longueur finie de l'interférogramme limite la résolution de la mesure (il existe deux raies aux fréquences ν_4 et ν_5 mais elles n'apparaissent pas distinctement sur le spectre mesuré parce que leur écart est inférieur à $1/\tau_{max}$).

7.6 Cohérence temporelle, aspect quantique

* Exemple 1

Hypothèses:

- Une source émet une lumière de spectre étroit autour de ν_0 donc $\tau_c \simeq \frac{1}{2\Delta\nu}$ est grand.
- On mesure un interférogramme $I(\tau)$ pour des valeurs de τ petites devant τ_c

Lorsque $\tau \ll \tau_c$, on a montré au 2.2 que $\gamma(\tau) = \exp i2\pi\nu_0\tau$ donc $I(\tau) = 2I_0 \ (1 + \cos 2\pi\nu_0\tau)$.

La lumière réelle est une superposition chaotique de photons mais l'interférogramme a la même forme que si l'onde était strictement monochromatique. Les propriétés de l'onde réelle ressemblent suffisamment à celles d'une onde monochromatique pour la modéliser par $s(t) = A\cos(2\pi\nu_0 t + \psi)$. On dit que l'onde possède une bonne cohérence temporelle, c'est la conséquence directe du caractère étroit de son spectre $J(\nu)$.

* Exemple 2

L'interféromère mesure $I(\tau)$ pour des valeurs de τ comparables à τ_c . La visibilité des franges décroit, avec τ_c mesuré par la relation $V(\tau_c) = 0, 5$ (hyp $I_1 = I_2$). On va discuter ce que représente τ_c à l'échelle des photons.

Si on atténue à l'extrème l'intensité lumineuse, la source émet des photons uniques traversant l'interféromètre les uns après les autres. L'expérience montre que la probabilité de détecter un photon en M présente des oscillations³. Le fait que le photon puisse être observé en M à un intant t après être passé par une voie ou à l'instant $t-\tau$ après être passé par l'autre voie produit des oscillations dans sa probabilité de présence, on dit que le photon interfère avec lui-même.

La disparition des interférences lorsqu'on superpose un photon à lui-même trop décalé dans le temps $(\tau \gg \tau_c)$ donne une mesure de l'extension temporelle de sa fonction d'onde, c'est l'interprétation quantique du temps de cohérence.

* Cohérence d'une source contenant plusieurs raies spectrales

hypothèse : les deux raies ont la même largeur spectrale $\Delta \nu$.

$$J(\nu) = a \Big(\operatorname{rect}_{\Delta\nu}(\nu - \nu_1) + \operatorname{rect}_{\Delta\nu}(\nu - \nu_2) \Big)$$

On doit avoir $\int J(\nu) \ d\nu = 1$ d'où $a = \frac{1}{2\Delta\nu}$.

On peut montrer (cf fin TD 12) que ce rayonnement a une bonne cohérence temporelle si $\Delta \nu$ est étroit. Plus généralement, une onde contenant des fréquences réparties autour de valeurs discrètes $\nu_1, \nu_2, \cdots, \nu_n$ correspond bien à une superposition de n ondes monochromatiques si chacune des composantes spectrales est très étroite.

7.7 Cohérence de polarisation

On aborde ici une notion indépendante de la cohérence temporelle appelée 'cohérence de polarisation'. Elle intervient dans des interféromètres utilisant pour séparer ou recombiner les faisceaux des voies (1) et (2) certaines propriétés de polarisation.

On considère une source de lumière naturelle. L'onde vectorielle émise possède le champ électrique.

$$\begin{cases} E_x(S,t) = E_{0x} \cos(\omega t + \psi_x) \\ E_y(S,t) = E_{0y} \cos(\omega t + \psi_y) \end{cases}$$

^{3.} P. Grangier, G. Roger, A. Aspect, Europhys. Lett. 1 p 173 1986, Institut d'Optique d'Orsay

Par définition d'une lumière naturelle, les phases relatives et les amplitudes de deux composantes orthogonales du champ électrique varient indépendamment au cours du temps. Il n'y a aucune corrélation temporelle entre elles ce qui se traduit par $\langle E_x(S,t) E_y(S,t-\tau) \rangle = 0$ quel que soit τ .

Pour commencer, on étudie les franges d'interférences obtenues par un dispositif de trous d'Young pour lequel on place un polariseur devant chaque trou.

Les polariseurs P_1 , P_2 de directions passantes \vec{e}_x , \vec{e}_y sont disposés au niveau de O_1 et O_2

Au niveau de M, on a le champ électrique

$$\vec{E}(M,t) = \alpha_1 \ E_x(S,t - \frac{[SM]_1}{c_0}) \ \vec{e}_x + \alpha_2 \ E_y(S,t - \frac{[SM]_2}{c_0}) \ \vec{e}_y$$

et l'intensité

$$\begin{split} I &= \frac{1}{\mu_0} \frac{1}{c} < \left(\vec{E}(M, t) \cdot \vec{E}(M, t) \right) > \\ &= I_1 + I_2 + \frac{2\alpha_1 \alpha_2}{\mu_0 c} < E_x(S, t - \frac{[SM]_1}{c_0}) \ E_y(S, t - \frac{[SM]_2}{c_0}) > \ (\vec{e}_x \cdot \vec{e}_y) \end{split}$$

Les interférences viendraient du troisième terme. Celui-ci est nul pour deux raisons : parce que $\vec{e}_x \cdot \vec{e}_y = 0$ mais aussi à cause de la propriété $\langle E_x(S,t) E_y(S,t-\tau) \rangle = 0$ caractérisant une source de lumière naturelle.

On ajoute un polariseur P_3 de direction passante $\vec{u} = \frac{\vec{e}_x + \vec{e}_y}{2}$ entre les trous et M. P_3 transmet la projection des champs incidents sur \vec{u} .

Le champ et l'intensité en M s'écrivent

$$\begin{split} \vec{E}(M) &= \left(\alpha_1 \ E_x(S, t - \frac{[SM]_1}{c_0}) \ (\vec{e_x} \cdot \vec{u}) + \alpha_2 \ E_y(S, t - \frac{[SM]_2}{c_0}) \ (\vec{e_y} \cdot \vec{u})\right) \ \vec{u} \\ I &= I_1 + I_2 + \frac{2\alpha_1\alpha_2}{\mu_0c} < E_x(S, t - \frac{[SM]_1}{c_0}) \ E_y(S, t - \frac{[SM]_2}{c_0}) > \ (\vec{e_x} \cdot \vec{u}) \times (\vec{e_y} \cdot \vec{u}) \end{split}$$

On retrouve comme précédemment $\langle E_x(S, t - \frac{[SM]_1}{c_0}) E_y(S, t - \frac{[SM]_2}{c_0}) \rangle = 0$, et il ne se forme pas d'interférences.

* Cohérence de polarisation

On ajoute avant les trous un polariseur P_0 de direction passante \vec{u}_0 . L'onde transmise par P_0 possède une polarisation rectiligne avec un champ électrique de la forme $E_0 \cos(\omega t + \psi) \vec{u}_0$. Les champs électriques des ondes transmises par les trous sont de la forme

$$\left\{ \begin{array}{lcl} E_1(t) & = & E_0 \ (\vec{e}_x \cdot \vec{u}_0) \ \cos(\omega t + \psi) \ \vec{e}_x \\ E_2(t) & = & E_0 \ (\vec{e}_y \cdot \vec{u}_0) \ \cos(\omega t + \psi) \ \vec{e}_y \end{array} \right.$$

Ils ont désormais la même phase. Le terme $\langle E_x(S,t-\frac{[SM]_1}{c_0}) E_y(S,t-\frac{[SM]_2}{c_0}) \rangle$ est proportionnel à la fonction de cohérence temporelle de l'onde émise par P_0 et n'est plus uniformément nul pour τ petit ou comparable à τ_c . On observe des franges d'interférences. L'ajout de P_0 a rétabli la cohérence de polarisation entre les deux ondes vectorielles interférant en M.

7.8 Cohérence temporelle - synthèse

Source de lumière : émission de photons à des instants aléatoires

Description microscopique classique (trains d'onde)

Modélisation de l'onde macroscopique résultante

Expériences d'interférences : un interféromètre éclairé par une source ponctuelle forme un interférogramme $I(\tau)$

- $\rightarrow \gamma(\tau)$ du rayonnement macroscopique
- $\rightarrow \gamma(\tau)$ des émetteurs microscopiques
- $\rightarrow \tau_c$
- \rightarrow caractérise la cohérence temporelle du rayonnement (temps de cohérence élevé \Leftrightarrow rayonnement de bonne cohérence temporelle \Leftrightarrow bonne modélisation par une onde monochromatique)

↓ Théorème de Wiener-Khintchine

Spectre $J(\nu)$ des fréquences \rightarrow décomposition en fréquences du rayonnement macroscopique \rightarrow probabilité pour qu'un échantillon microscopique d'atomes émette un photon de fréquence dans $[\nu, \nu + d\nu]$

largeur spectrale $\Delta \nu$, avec $(2\tau_c) \times \Delta \nu \simeq 1$ (bonne cohérence temporelle \Leftrightarrow spectre étroit \Leftrightarrow interférogramme large)

Propriétés des atomes émetteurs

- écarts des niveaux d'énergie
- \rightarrow identification chimique
- propriétés physiques

(vitesse produisant un décalage Doppler)

- déplacement des niveaux d'énergie par interaction de l'atome avec son environnement (autres atomes, champs)
- mesures locales, à moyenne (atmosphère) ou longue distance (espace)

Conclusion

Les interférences donnent à l'échelle macroscopique une observation de phénomènes d'origine quantique. L'observable intensité correspond au module au carré du signal analytique, on dit qu'elle est quadratique. Dans une expériences d'interférences, on visualise l'intensité de la superposition de deux ondes identiques mais décalées temporellement, avec un terme $\langle S(t) S^*(t-\tau) \rangle$. Ce terme traduit la comparaisone de S(t)

avec la même fonction décalée de τ ce qui donne des informations sur la forme de $\mathcal{S}(t)$ y compris à des échelles temporelles bien trop courtes pour être mesurées directement par un détecteur. Pour τ , un décalage d'une demi-période se traduit par une forte variation d'intensité, donc cette technique permet de mesurer facilement de très petits décalages temporels ou de très petites variations de longueurs sur le bras d'un interféromètre. Comme le paramètre physique auquel on est sensible est $\nu\tau$, les expériences sont également sensibles à de très petites variations de la fréquence.

7.9 Annexes

7.9.1 Spectre pour le rayonnement du dipole amorti

On revient sur l'impulsion produite par le rayonnement du dipôle amorti

$$\begin{cases} \mathcal{S}(t) = A \exp{-\frac{t}{2\tau_0}} \exp{i2\pi\nu_0 t} & \text{pour } t \ge 0\\ \mathcal{S}(t) = 0 & \text{pour } t < 0 \end{cases}$$

On a calculé l'amplitude spectrale du signal analytique

$$C(\nu) = \frac{2\tau_0 A}{1 + i4\pi\tau_0(\nu - \nu_0)}$$
 pour $\nu \ge 0$ et $C(\nu) = 0$ sinon

La densité spectrale vaut alors

$$\mathcal{D}(\nu) = \mathcal{C}(\nu)\mathcal{C}^*(\nu)$$

$$= \frac{2\tau_0 A}{1 + i4\pi\tau_0(\nu - \nu_0)} \frac{2\tau_0 A}{1 - i4\pi\tau_0(\nu - \nu_0)}$$

$$= \frac{\tau_0 A^2 \times 2 \times (2\tau_0)}{1 + 4\pi^2 (2\tau_0)^2 (\nu - \nu_0)^2} \quad \text{pour } \nu \ge 0 \text{ et } 0 \text{ pour } \nu < 0$$

L'intégrale $\int \mathcal{D}(\nu) \ d\nu$ correspond à sa transformée de Fourier prise en 0. La transformée de Fourier de $\frac{2\tau}{1+4\pi^2\tau^2x^2}$ vaut $e^{-|u|/\tau}$, formule qu'on utilise en identifiant $\tau=2\tau_0$. Il vient

$$\int \mathcal{D}(\nu) \ d\nu = A^2 \tau_0$$
d'où $J(\nu) = \frac{\mathcal{D}(\nu)}{\int \mathcal{D}(\nu) \ d\nu} = \frac{4\tau_0}{1 + 16\pi^2 \tau_0^2 (\nu - \nu_0)^2}$

La densité spectrale normalisée du rayonnement émis par le dipôle amorti est une lorentzienne, de largeur totale à mi-hauteur $\Delta\nu$, avec

$$1 + 16\pi^{2}\tau_{0}^{2}(\nu_{0} \pm \frac{\Delta\nu}{2} - \nu_{0})^{2} = 2$$

$$\Leftrightarrow \frac{\Delta\nu}{2} = \frac{1}{4\pi\tau_{0}}$$

$$\Leftrightarrow \Delta\nu = \frac{1}{2\pi\tau_{0}}$$

La largeur $\Delta \nu$ est par définition la largeur spectrale du rayonnement quasi-monochromatique.

On vérifie que la densité spectrale normalisée correspond bien à la transformée de Fourier du degré complexe de cohérence. Pour ce rayonnement, on a calculé au au §7.2.3

$$\gamma'(\tau) = \exp{-\frac{|\tau|}{2\tau_0}} \exp{i2\pi\nu_0\tau}$$

qui correspond au temps de cohérence $\tau_c = 2\tau_0 \ln 2$. On vérifie que

$$\mathcal{F}_{[\gamma(\tau)]}(\nu) = \mathcal{F}_{\left[\exp{-\frac{|\tau|}{2\tau_0}}\right]}(\nu - \nu_0)$$

$$= \frac{2(2\tau_0)}{1 + 4\pi^2(2\tau_0)^2(\nu - \nu_0)^2}$$

$$= J(\nu)$$

7.9 Annexes 161

Les résultats sont cohérents. On les schématise ci-dessous :

7.9.2 Eléments de démonstration du théorème de Wiener-Khintchine

Soit une onde stationnaire de signal analytique S(t), que l'on tronque entre les instants $-\frac{T}{2}$ et $+\frac{T}{2}$ pour constituer une impulsion $S_T(t) = S(t)$ rect $_T(t)$. L'amplitude spectrale de l'onde tronquée est notée $C_T(\nu)$, avec la relation $S_T(t) = \overline{\mathcal{F}}_{[C_T(\nu)]}(t)$. On écrit la fonction de cohérence temporelle $\Gamma'(\tau)$ pour cette impulsion

$$\Gamma'(\tau) = \int_{-\infty}^{+\infty} S_T(t) \, S_T^*(t-\tau) \, dt$$

$$\text{avec} \quad S_T(t) = \int_{-\infty}^{+\infty} C_T(\nu) \exp i2\pi\nu t \, d\nu$$

$$\text{et} \quad S_T^*(t-\tau) = \int_{-\infty}^{+\infty} C_T^*(\nu') \exp -i2\pi\nu' (t-\tau) \, d\nu'$$

$$\text{donc} \quad \Gamma'(\tau) = \int_{-\infty}^{+\infty} dt \, \int_{-\infty}^{+\infty} C_T(\nu) \exp i2\pi\nu t \, d\nu \, \int_{-\infty}^{+\infty} C_T^*(\nu') \exp -i2\pi\nu' (t-\tau) \, d\nu'$$

$$= \int_{-\infty}^{+\infty} d\nu \, C_T(\nu) \, \int_{-\infty}^{+\infty} d\nu' \, \exp(i2\pi\nu'\tau) \, C_T^*(\nu') \, \int_{-\infty}^{+\infty} dt \, \exp i2\pi(\nu-\nu')t$$

avec $\int_{-\infty}^{+\infty} dt \exp i2\pi(\nu - \nu')t = \delta_{(\nu - \nu')}$ et $\int_{-\infty}^{+\infty} d\nu' \exp(i2\pi\nu'\tau) \ \mathcal{C}_T^*(\nu') \ \delta_{(\nu - \nu')} = \exp(i2\pi\nu\tau) \ \mathcal{C}_T^*(\nu)$ donc

$$\Gamma'(\tau) = \int_{-\infty}^{+\infty} C_T(\nu) C_T^*(\nu) \exp(i2\pi\nu\tau) d\nu$$

La densité spectrale d'intensité de l'impulsion est définie par $\mathcal{D}_T(\nu) = \mathcal{C}_T(\nu)$ $\mathcal{C}_T^*(\nu)$. Elle vérifie :

$$\Gamma'(\tau) = \overline{\mathcal{F}}_{[\mathcal{D}_T(\nu)]}(\tau) \quad \Leftrightarrow \quad \mathcal{D}_T(\nu) = \mathcal{F}_{[\Gamma'(\tau)]}(\nu)$$

La démonstration faite précédemment pour une impulsion s'étend à un rayonnement stationnaire de signal analytique S(t) et d'amplitude spectrale $C(\nu) = \mathcal{F}_{[S(t)]}(\nu)$. La densité spectrale d'intensité définie par $\mathcal{D}(\nu) = \mathcal{C}(\nu)$ $C^*(\nu)$ est reliée à la fonction de cohérence temporelle $\Gamma(\tau)$ du rayonnement par

$$\Gamma(\tau) = \overline{\mathcal{F}}_{[\mathcal{D}(\nu)]}(\tau) \quad \Leftrightarrow \quad \mathcal{D}(\nu) = \mathcal{F}_{[\Gamma(\tau)]}(\nu)$$

La justification mathématique de ce résultat constitue le théorème de Wiener-Khintchine.

INTERFÉRENCES	\mathbf{ET}	COHÉ	RENC	E TEN	1PORI	ELLE

162

Chapitre 8

INTERFÉRENCES ET COHÉRENCE SPATIALE

Dans le chapitre précédent, on a montré que la production d'interférences permet de vérifier dans quelle mesure l'onde émise par une source est correctement décrite par une onde monochromatique. La baisse de visibilité des franges d'interférences est la conséquence d'une moins bonne cohérence temporelle de la radiation. Jusqu'à présent, tous les montages interférométriques étudiés étaient éclairés par une source ponctuelle. Ce point est important parce qu'on va montrer que le fait d'augmenter l'extension spatiale de la source de lumière contribue également à réduire la visibilité des franges d'interférences. Il s'agit d'un effet appelé "cohérence spatiale", qui va être décrit dans ce chapitre.

8.1 Interféromètre éclairé par une source étendue

Discussion générale 8.1.1

Hypothèses:

- source étendue composée de différents points élémentaires S_k deux S_k distincts sont incohérents entre eux.
 S_k émet l'intensité I_k même spectre $J(\nu)$ et même degré complexe de co-- source étendue composée de différents points élémen-

 - hérence temporelle $\gamma_k(\tau)$ pour tous les S_k .

M reçoit à t depuis S_k les deux ondes $|\alpha_1| \exp i\epsilon_1 \mathcal{S}(S_k, t - \frac{[S_k M]_1}{c_0})$ et $|\alpha_2| \exp i\epsilon_2 \mathcal{S}(S_k, t - \frac{[S_k M]_2}{c_0})$. La cohérence temporelle de S_k est supposée assez bonne pour avoir $\gamma_k(\tau) = \exp 2i\pi\nu_0\tau_k$ donc

$$I_{S_k}(M) = |\alpha_1|^2 I_k + |\alpha_2|^2 I_k + 2 |\alpha_1| |\alpha_2| I_k \Re \left\{ \exp i(\epsilon_1 - \epsilon_2) \exp 2i\pi\nu_0 \tau_k \right\}$$

avec $\tau_k = \frac{[S_k M]_2 - [S_k M]_1}{c_0}$ fonction de la position de S_k sur la source étendue.

L'intensité totale en M vaut $I(M) = \sum_k I_{S_k}(M)$. On va évaluer cette somme :

* contribution des points S_k émettant au niveau de l'élément de surface dX dY centré sur P(X,Y). On suppose cette surface assez petite pour avoir

$$au_k = rac{[S_k M]_2 - [S_k M]_1}{c_0} \simeq rac{[PM]_2 - [PM]_1}{c_0} \quad \text{not\'e} \quad rac{\Delta(P, M)}{c_0}$$

On définit la **luminance** $\mathcal{L}(X,Y)$ de cette zone de la source par

$$\mathcal{L}(X,Y) \ dX \ dY = \sum_{\text{sources } S_k \text{ sur } dX \ dY \\ \text{autour de } P(X,Y)} I_k$$

Ces sources produisent en M l'intensité

$$\left(\underbrace{\sum_{\substack{S_k \text{ sur } dX \ dY \\ \text{autour de } P(X,Y)}} I_k\right)}_{\mathcal{L}(X,Y) \ dX \ dY} \left(\underbrace{|\alpha_1|^2 + |\alpha_2|^2 + 2 \ |\alpha_1| \ |\alpha_2| \ \Re e\left\{\exp i(\epsilon_1 - \epsilon_2) \ \exp 2i\pi\nu_0 \frac{\Delta(P,M)}{c_0}\right\}}_{\text{identique pour tous les } S_k \text{ considérés}}\right)$$

* contributions de tous les points P de la source.

On intègre la quantité précédente pour l'ensemble des points P(X,Y) de la source étendue, sachant que $\frac{\Delta(P,M)}{c_0}$ est fonction de X, Y.

$$I(M) = \underbrace{\frac{|\alpha_{1}|^{2} \int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY}_{I_{1}} + \underbrace{\frac{|\alpha_{2}|^{2} \int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY}_{I_{2}}}_{+2} + \underbrace{\frac{|\alpha_{1}| \ |\alpha_{2}|}{\int_{\text{source}} \mathcal{L}(X,Y) \ dX} \Re \left\{ \exp i(\epsilon_{1} - \epsilon_{2}) \int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY \exp 2i\pi\nu_{0} \frac{\Delta(P,M)}{c_{0}} \right\}}_{source}$$

On remplace $\frac{\nu_0}{c_0}$ par $\frac{1}{\lambda_0}$

Synthèse:

- la géométrie de la source étendue et la lumière émise sont caractérisées par luminance $\mathcal{L}(X,Y)$
- chaque point de la source possède une bonne cohérence temporelle, alors :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1 I_2} \Re \left\{ \exp i(\epsilon_1 - \epsilon_2) \frac{\int_{\text{source}} \mathcal{L}(X, Y) \, dX \, dY \exp 2i\pi \frac{\Delta(P, M)}{\lambda_0}}{\int_{\text{source}} \mathcal{L}(X, Y) \, dX \, dY} \right\}$$

$$\text{avec} \quad \Delta(P, M) = [P_{(X, Y)} M]_2 - [P_{(X, Y)} M]_1$$

$$(8.1)$$

Exemple : si la source étendue a une luminance homogène sur un disque de rayon R, on écrira $\mathcal{L}(X,Y) = \mathcal{L}_0 \operatorname{circ}_R(X,Y)$.

8.1.2 Exemple : miroir de Lloyd éclairé par une source étendue

Le dispositif interférentiel du miroir de Lloyd est schématisé ci-contre.

La source S(X,Y,0) ponctuelle émet S(t), onde quasimonochromatique stationnaire de fréquence ν_0 et temps de cohérence τ_c .

Au point M(x, y, z) de l'écran d'observation se superposent deux rayons (1) et (2) issus de S. Le rayon (2) subit entre S et M une réflexion sur un miroir plan (déphasage localisé $\epsilon_2 = \pi$). D'un point de vue géométrique, $[SM]_2 = SM' = S'M$, où M'(-x, y, z) et S'(-X, Y, 0) sont les symétriques de M(x, y, z) et S(X, Y, 0) par rapport au plan du miroir.

Le point M reçoit les ondes $S_1(t) = \alpha_1$ $S(t - \frac{[SM]_1}{c_0})$ et $S_2(t) = \alpha_2$ $S(t - \frac{[SM]_2}{c_0})$. On calcule la différence de marche $\Delta(S, M) = [SM]_2 - [SM]_1$ pour |X|, |Y|, |x|, $|y| \ll z$

$$\begin{array}{lll} \Delta(S,M) & = & SM'-SM \\ & = & \sqrt{z^2+(-x-X)^2+(y-Y)^2} - \sqrt{z^2+(x-X)^2+(y-Y)^2} \\ & = & z+\frac{x^2+y^2}{2z}-z-\frac{x^2+y^2}{2z}+\left[\frac{xX}{z}-\frac{yY}{z}+\frac{xX}{z}+\frac{yY}{z}\right] \\ & + \cdots & \text{termes d'ordre supérieur en } |X|/z,\,|Y|/z,\,|x|/z,\,|y|/z \\ & = & \frac{2xX}{z} & \text{au premier ordre} \end{array}$$

La source ponctuelle quasi monochromatique produit au point M de l'écran l'intensité

$$I(M) = I_1 + I_2 + 2 \sqrt{I_1 I_2} \Re \{ \exp i(\epsilon_1 - \epsilon_2) \gamma(\tau) \}$$

avec $I_1 = < |\alpha_1 \mathcal{S}(t)|^2 >$, $I_2 = < |\alpha_2 \mathcal{S}(t)|^2 >$ et $\tau = \frac{\Delta(S,M)}{c_0}$. On suppose $\tau = \frac{\Delta(S,M)}{c_0} \ll \tau_c$ sur tout le champ d'interférences. Dans ces conditions, on a comme pour une onde monochromatique $\gamma(\tau) = \exp i2\pi\nu_0\tau$. Pour ce montage, $\alpha_2 \simeq \alpha_1 \exp -i\pi$ donc $I_2 \simeq I_1$ et $\exp i(\epsilon_1 - \epsilon_2) = -1$. Avec $\Delta(S,M) = 2$ $\frac{xX}{z}$ et $\nu_0 \frac{\Delta(S,M)}{c_0} = 2$ $\frac{xX}{\lambda_0 z}$, l'intensité en M s'écrit

$$I(x,y,z) = 2I_1 \left(1 - \cos(2\pi \frac{2Xx}{\lambda_0 z})\right) = 2I_1 \left(1 - \cos(2\pi \frac{x}{\Delta i})\right)$$

où $\Delta i = \frac{\lambda_0 z}{2X}$ correspond à l'écart entre deux franges successives.

 $\Delta(S,M)$ est indépendant de y donc la figure d'interférences obtenue sur l'écran est formée de franges parallèles à Oy avec l'interfrange Δi . La position des maxima et minima est indépendante de l'ordonnée Y du point source donc l'utilisation d'une fente source parallèle à OY et fine suivant OX ne change pas la forme générale de la figure d'interférences.

On veut pour augmenter la luminosité des franges utiliser une source plus étendue, avec la géométrie d'une fente d'éclairement uniforme entre $X_0 - \frac{a}{2}$ et $X_0 + \frac{a}{2}$, et longue suivant Y. La radiation émise par chaque point source possède la même fréquence ν_0 et le même temps de cohérence τ_c .

Chaque point P(X,Y) de la source produit sur l'écran son propre systèmes de franges d'interférences, avec un minimum nul en x=0 et l'interfrange $\Delta i=\frac{\lambda_0 z}{2X}$ fonction de X.

Deux points sources distincts sont incohérents donc l'intensité totale sur l'écran est la superposition des intensités de tous ces systèmes élémentaires. Les interfranges sont différents d'où un brouillage des franges d'interférences et la diminution de leur visibilité. a

a. Selon le montage considéré, ce brouillage pourra affecter plus fortement certaines zones du champ d'interférences, comme ici pour le miroir de Lloyd, ou bien simultanément l'ensemble du champ d'interférences comme pour un dispositif des trous d'Young.

8.2 Interférences non localisées

8.2.1 Théorème de Van Cittert-Zernike

On discute l'expression précédente selon la géométrie de la source.

* Cas d'une source quasi-ponctuelle

Il s'agit d'une source suffisamment petite autour de O pour justifier l'approximation $\Delta(P, M) = \Delta(O, M)$ pour chacun de ses points P. L'équation (8.1) se simplifie en

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(2\pi \frac{\Delta(O, M)}{\lambda_0} + \epsilon_1 - \epsilon_2)$$

comme dans le cas d'une source ponctuelle O de bonne cohérence temporelle.

 I_1 et I_2 représentent les intensités arrivant en M depuis toute la surface de la source étendue. Si la fonction $\Delta(O,M)$ dépend des coordonnées x,y de M, on observe à son voisinage des franges d'interférences de visibilité $V=\frac{I_{max}(M)-I_{min}(M)}{I_{max}(M)+I_{min}(M)}=\frac{2\sqrt{I_1I_2}}{I_1+I_2}$.

* Cas d'une source étendue autour de O, discussion qualitative.

La figure d'interférences est la superposition de celles créées par chacun des points sources incohérents P voisins de O, chacun produisant :

$$I_P(M) = I_P(|\alpha_1|^2 + |\alpha_2|^2 + 2|\alpha_1| |\alpha_2| \cos(2\pi \frac{\Delta(P, M)}{\lambda_0} + \epsilon_1 - \epsilon_2))$$

La fonction $\Delta(P, M)$ est égale à $\Delta(O, M)$ plus des termes correcteurs fonctions de la position de P. Ils se traduisent par un décalage de la position des franges $I_P(M)$ par rapport à celles $I_O(M)$ produites par le point source en O. Si ce décalage reste faible par rapport à l'interfrange lorsque P décrit la source, les franges produites par l'ensemble de la source étendue sont quasi-superposées et la résultante conserve une bonne visibilité. Si ce décalage est beaucoup plus important, les franges sont très décalées et se brouillent, la visibilité des franges résultantes devient nulle.

systèmes élémentaires de franges produits par les points P de la source

* Cas d'une source étendue autour de O, discussion quantitative

I(M) est donnée par l'expression (8.1). Son évolution quand la source devient plus étendue autour de O est liée aux variations du terme $\exp 2i\pi \frac{\Delta(P,M)}{\lambda_0}$ quand P(X,Y) balaye la source. On écrit le développement limité :

$$\frac{\Delta(P,M)}{\lambda_0} = \frac{\Delta(O,M)}{\lambda_0} + \frac{\partial}{\partial X}(\frac{\Delta}{\lambda_0})\Big|_{X=0} \times X + \frac{\partial}{\partial Y}(\frac{\Delta}{\lambda_0})\Big|_{Y=0} \times Y + \text{termes d'ordres supérieurs en } X, Y$$

pour étudier comment cette quantité dépend de X,Y.

Cadre de l'étude.

Soient un point M du champ d'interférences et ses images géométriques P_1 et P_2 par les voie (1) et (2) de l'interféromètre.

Propriété : tout rayon passant par P_1 (P_2) arrive ensuite en M, avec une valeur unique de $[P_1M]$ $([P_2M])$. Conséquence : les rayons partant des différents points P de la source et atteignant M passent tous par P_1 ou par P_2 , avec $[P_1M]$ $([P_2M])$ indépendant de P.

Pour P(X, Y) sur la source, on décompose :

$$\Delta(P, M) = [PP_2] + [P_2M] - [PP_1] - [P_1M]$$

avec par construction de P_1 et P_2 la différence $[P_2M] - [P_1M]$ indépendante de X, Y. La dépendance de $\Delta(P, M)$ en X, Y est donc uniquement dans $[PP_2] - [PP_1]$.

On raisonne pour un montage sans système optique entre la source et $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$, et un milieu d'indice optique n=1:

$$[PP_2] - [PP_1] = \sqrt{z_2^2 + (x_2 - X)^2 + (y_2 - Y)^2} - \sqrt{z_1^2 + (x_1 - X)^2 + (y_1 - Y)^2}$$

$$\operatorname{Pour} \left. x_1, x_2, X, y_1, y_2, Y \ll z_1, z_2, \text{ il vient} \right| : \left. \frac{\partial}{\partial X} \left(\frac{\Delta}{\lambda_0} \right) \right|_{X=0} = -\underbrace{\frac{x_2}{\lambda_0 z_2}}_{f_{x2}} + \underbrace{\frac{x_1}{\lambda_0 z_1}}_{f_{x1}} \text{ et } \left. \frac{\partial}{\partial Y} \left(\frac{\Delta}{\lambda_0} \right) \right|_{Y=0} = -\underbrace{\frac{y_2}{\lambda_0 z_2}}_{f_{x2}} + \underbrace{\frac{y_1}{\lambda_0 z_1}}_{f_{x1}}$$

d'où:

$$\frac{\Delta(P, M)}{\lambda_0} = \frac{\Delta(O, M)}{\lambda_0} - (f_{x2} - f_{x1}) X - (f_{y2} - f_{y1}) Y$$
+ termes d'ordres supérieurs en X, Y

et, en négligeant les termes d'ordre 2 et plus,

$$\exp 2i\pi \frac{\Delta(P, M)}{\lambda_0} = \left(\underbrace{\exp 2i\pi \frac{\Delta(O, M)}{\lambda_0}}_{\text{terme associ\'e}}\right) \times \underbrace{\exp -2i\pi \left((f_{x2} - f_{x1}) X + (f_{y2} - f_{y1}) Y\right)}_{\text{terme associ\'e}}$$

$$\stackrel{\text{terme associ\'e}}{\stackrel{\text{à l'ordre 0}}{\text{terme 1}}}$$
(8.2)

Нур.:

- $-(f_{x2}-f_{x1},f_{y2}-f_{y1})\neq(0,0)$
- source assez petite pour que les termes suivants soient négligeables devant ceux d'ordre 1 On reporte (8.2) dans l'expression (8.1) de $I(M)^2$. Les termes de $\Delta(P,M)$ linéaires en X,Y font que l'intégrale prend la forme d'une transformée de Fourier directe écrite pour les variables $(f_{x2}-f_{x1},f_{y2}-f_{y1})$ d'où :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \Re \left\{ \exp i(\epsilon_1 - \epsilon_2) \exp 2i\pi \frac{\Delta(O, M)}{\lambda_0} \times \frac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(f_{x2} - f_{x1}, f_{y2} - f_{y1})}{\int \mathcal{L}(X,Y) dX dY} \right\}$$

on utilise la propriété $\frac{d}{dx}(f(x))^{1/2} = \frac{1}{2}\frac{df}{dx} \times (f(x))^{-1/2}$, avec pour $f(x) = z_2^2 + (x_2 - x)^2$ la dérivée $\frac{df}{dx} = -2(x_2 - x)$.

2.

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \Re \left\{ \exp i(\epsilon_1 - \epsilon_2) \frac{\int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY \exp 2i\pi \frac{\Delta(P,M)}{\lambda_0}}{\int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY} \right\}$$

$$\text{avec} \quad \Delta(P,M) = [P_{(X,Y)}M]_2 - [P_{(X,Y)}M]_1$$

Il sera pratique d'écrire $\int \mathcal{L}(X,Y) dX dY = \mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)$.

L'expérience montre que l'intensité au voisinage de M présente des oscillations dues aux variations de $\exp 2i\pi \frac{\Delta(O,M)}{\lambda_0}$ entre les enveloppes 3 :

$$I_{max,min}(M) = I_1 + I_2 \pm 2 \sqrt{I_1 I_2} \left| \frac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(f_{x2} - f_{x1}, f_{y2} - f_{y1})}{\mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)} \right|$$

Ce sont des franges d'interférences de visibilité :

$$V(M) = \frac{I_{max}(M) - I_{min}(M)}{I_{max}(M) + I_{min}(M)}$$

$$V(M) = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2} \left| \frac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(f_{x2} - f_{x1}, f_{y2} - f_{y1})}{\mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)} \right|$$
(8.3)

Cette quantité dépend de :

- la géométrie de la source de lumière, à travers la luminance $\mathcal{L}(X,Y)$,
- la géométrie de l'interféromètre qui détermine f_{x2} , f_{x1} , f_{y2} et f_{y1} associés à chaque point M du champ d'interférences.

La relation (8.3) constitue le théorème de Van Cittert-Zernike :

- il décrit quantitativement comment l'augmentation de la taille de la source affecte la visibilité des franges d'interférences.
- il est valable pour les points M du champ d'interférences associés à P_1 et P_2 tels que $(f_{x2}-f_{x1},f_{y2}-f_{y1})\neq 0$ (0,0). Les franges apparaissant au voisinage de M vérifiant cette condition sont appelées franges non localisées.

Remarque 1:

Soit une source étendue dans le plan focal objet d'une lentille. On détermine $[PP_2] - [PP_1]$ pour ce montage :

$$\begin{split} [PP_2] - [PP_1] &= \vec{u} \cdot \overrightarrow{P_1 P_2} \\ &= -\frac{X}{f} (x_2 - x_1) - \frac{Y}{f} (y_2 - y_1) + (z_2 - z_1) + \quad \text{termes d'ordres supérieurs en } X, \, Y \end{split}$$

Les raisonnements précédents et la formulation du théorème de Van Cittert-Zernike restent valables pour ce montage en notant $f_{x1} = \frac{x_1}{\lambda_0 f}$, $f_{y1} = \frac{y_1}{\lambda_0 f}$, $f_{x2} = \frac{x_2}{\lambda_0 f}$ et $f_{y2} = \frac{y_2}{\lambda_0 f}$.

Synthèse des résultats pour les deux types de montages :

^{3.} Dans l'expression $\exp 2i\pi \frac{\Delta(P,M)}{\lambda_0}$, les variations en fonction de la position de M produites par le terme d'ordre 0 $\exp 2i\pi \frac{\Delta(O,M)}{\lambda_0}$ sont rapides comparées à celles venant du terme correcteur pris en compte dans l'intégrale.

Source étendue à distance finie de P_1 et P_2 Théorème de Van Cittert-Zernike à appliquer avec $f_{x1}=\frac{x_1}{\lambda_0 z_1}, \ f_{y1}=\frac{y_1}{\lambda_0 z_1}, \ f_{x2}=\frac{x_2}{\lambda_0 z_2}$ et $f_{y2}=\frac{y_2}{\lambda_0 z_2}$.

Exemple de montage expérimentaux :

Source étendue à distance infinie de P_1 et P_2 Théorème de Van Cittert-Zernike à appliquer avec $f_{x1} = \frac{x_1}{\lambda_0 f}$, $f_{y1} = \frac{y_1}{\lambda_0 f}$, $f_{x2} = \frac{x_2}{\lambda_0 f}$ et $f_{y2} = \frac{y_2}{\lambda_0 f}$.

Remarque 2 : les raisonnements et résultats précédents restent valables pour un montage où un seul rayon va de P_1 à M, (de P_2 à M). Exemple : montage des trous d'Young avec P_1 et P_2 situés au niveau des trous.

Montage des trous d'Young éclairés par une source étendue à distance infinie

8.2.2 Notion de cohérence spatiale

Une source étendue éclaire un interféromètre. Soient M un point du champ d'interférences et les points P_1 , P_2 associés.

Lorsque P_1 et P_2 sont tels que le théorème de Van Cittert-Zernike prévoit une bonne visibilité, les franges d'interférences sont très proches de ce qu'on aurait avec l'interféromètre éclairé par une source ponctuelle donc par une onde sphérique.

Cette propriété justifie qu'on peut modéliser l'onde éclairant l'interféromètre par une onde sphérique et traiter la source étendue comme si elle était ponctuelle. On dit dans ce cas que l'onde possède au niveau de l'interféromètre une bonne cohérence spatiale malgré le caractère étendu de la source.

8.2.3 Cohérence spatiale et cohérence temporelle

Onde émise par une source ponctuelle quasi-monochromatique

 $\begin{array}{c} \text{onde de bonne} \\ \text{cohérence temporelle} \end{array} \Leftrightarrow$

produit des franges de bonne visibilité comme le ferait l'onde venant d'une source ponct. monochromatique.

'ressemble à une onde monochromatique' visibilité des franges liée au spectre des fréquences de la source par le théorème de Wiener-Khintchine

Onde émise par une source étendue possédant un temps de cohérence τ_c élevé

 $\begin{array}{c} \text{onde de bonne} \\ \text{cohérence spatiale} \end{array} \Leftrightarrow$

produit des franges de bonne visibilité comme le ferait l'onde venant d'une source ponct. monochromatique

'ressemble à une onde sphérique' visibilité des franges liée à l'extension géométrique de la source par le théorème de Van Cittert-Zernike

Le montage produit des interférences de bonne visibilité si l'onde émise par la source possède à la fois une bonne cohérence temporelle et une bonne cohérence spatiale.

8.2.4 Exemple d'application : interféromètre stellaire de Michelson

L'interféromètre stellaire de Michelson utilise un système de trous d'Young $O_1(\frac{s}{2},0,0)$ et $O_2(-\frac{s}{2},0,0)$ pour former des interférences d'interfrange $\Delta i = \frac{f_2 \lambda_0}{s}$. Le filtre spectral sert à sélectionner une valeur de λ_0 .

La lumière est captée par deux télescopes mobiles puis renvoyée par un jeu de miroirs vers O_1 et O_2 .

Les rayons passant par O_1 et O_2 sont ceux émis par une étoile en direction de P_1 et P_2 , images de O_1 et O_2 par les miroirs. Ce montage permet de faire varier l'écart des télescopes, la distance d des points $P_1(\frac{d}{2},0,z)$ $P_2(-\frac{d}{2},0,z)$, et par conséquent la visibilité des franges par perte progressive de la cohérence spatiale.

Si la source de lumière est une étoile de luminance $\mathcal{L}(X,Y) = \mathcal{L}_0 \operatorname{circ}_R(X,Y)$ située à une distance L et pointée à travers deux télescopes couplés distants de d, on a $(f_{x2} - f_{x1}, f_{y2} - f_{y1}) = (\frac{d}{\lambda_0 L}, 0)$ et la visibilité des franges vaut

$$V = \left| \frac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(\frac{d}{\lambda_0 L}, 0)}{\mathcal{F}_{[\mathcal{L}(X,Y)]}(0, 0)} \right|$$
$$= \left| \frac{2J_1(2\pi R \frac{d}{\lambda_0 L})}{2\pi R \frac{d}{\lambda_0 L}} \right|$$

Lorsque d augmente, la visibilité s'annule une première fois pour :

$$2\pi R \frac{d_1}{\lambda_0 L} = 3,83 \quad \Leftrightarrow \quad \frac{R}{L} = \frac{3,83}{\pi} \frac{\lambda_0}{2d_1}$$

La mesure de d_1 conduit à celle du rayon angulaire $\frac{R}{L}$ de l'étoile. Exemple : Bételgeuse , $d_1 = 3.5$ m, $\longrightarrow \frac{R}{L} = 22 \ 10^{-8}$ rad (Mesure faite en 1920 par Michelson) ; Actuellement : d = 50 à 70 m, d'où la mesure de diamètres angulaires d'étoiles 20 fois plus petites que Bételgeuse (Observatoire de Nice, $\frac{R}{L} \simeq 10^{-8}$ rad).

8.2.5 Distance transversale de corrélation. Aire de cohérence

Soit une source de luminance $\mathcal{L}(X,Y)$ et un montage qui à M associe $P_1(x_1,y_1,z_1)$ et $P_2(x_2,y_2,z_2)$ avec $z_1=z_2$. On suppose $I_1=I_2$.

Pour $(\frac{x_1}{\lambda_0 z_1} - \frac{x_2}{\lambda_0 z_2}, \frac{y_1}{\lambda_0 z_1} - \frac{y_2}{\lambda_0 z_2}) \neq (0,0)$, la visibilité des franges est donnée par le théorème de Van Cittert-Zernike, sans avoir besoin de plus de détails sur le montage.

aire de cohérence On définit la distance transversale de corrélation de l'onde au niveau de P_1 comme la distance d_c telle que la visibilité des franges vaille 0,5 pour $P_1P_2=d_c$.

La valeur de d_c peut dépendre de la direction considérée

On définit **l'aire de cohérence** A_c comme la surface autour de P_1 sur laquelle on peut situer P_2 pour obtenir des franges de visibilité supérieure à 0,5.

Exemple : le soleil a un diamètre apparent $\frac{2R}{z}=9\,10^{-3}$. Pour $\lambda=600\,\mathrm{nm}$, l'aire de cohérence est un disque de rayon approximatif $1,22\frac{\lambda z}{2R}=8,5\,10^{-5}\,\mathrm{m}$. L'utilisation du soleil pour éclairer directement des trous d'Young ne permettra donc pas d'observer des interférences pour des raisons de mauvaise cohérence spatiale même en intercalant un filtre qui rendrait la lumière quasi monochromatique.

Exemple : bilentilles de Billet :

On suppose que la source possède une luminance uniforme \mathcal{L}_0 sur un rectangle de côté $a \times b$ donc $\mathcal{L}(X,Y) = \mathcal{L}_0 \operatorname{rect}_a(X)\operatorname{rect}_b(Y)$. Le montage est quasi symétrique avec $I_1 = I_2$.

D'après le théorème de Van Cittert-Zernicke, la visibilité des franges vaut :

$$V = \frac{a \operatorname{sinc} a(f_{x2} - f_{x1}) \ b \operatorname{sinc} b(f_{y2} - f_{y1})}{a \operatorname{sinc}(0) \ b \operatorname{sinc}(0)}$$

avec pour une source à distance finie L de P_1 les expressions $f_{x2} - f_{x1} = \frac{x_2 - x_1}{\lambda_0 L}$ et $f_{y2} - f_{y1} = \frac{y_2 - y_1}{\lambda_0 L}$.

Le terme sinc $a\frac{x_2-x_1}{\lambda_0L}$ est supérieur à 0,5 pour $|x_2-x_1|\geq \frac{\lambda_0L}{2a}$. De même, sinc $b\frac{y_2-y_1}{\lambda_0L}\geq 0,5$ pour $|y_2-y_1|\geq \frac{\lambda_0L}{2a}$. On en déduit que la distance transversale de corrélation est de l'ordre de $\frac{\lambda_0L}{2a}$ suivant x et de $\frac{\lambda_0L}{2b}$ suivant

L'aire de cohérence se calcule en cherchant numériquement pour quelles valeurs de (x_2, y_2) on a

$$\operatorname{sinc}(a\frac{x_2 - x_1}{\lambda_0 L}) \times \operatorname{sinc}(b\frac{y_2 - y_1}{\lambda_0 L}) \ge 0, 5$$

Cette aire est inscrite dans un rectangle de côté $\frac{\lambda_0 L}{a} \times \frac{\lambda_0 L}{b}$ centré sur $P_1(x_1, y_1, z_1)$.

Ces exemples montrent que la notion d'aire de cohérence est à prendre en compte lors de la conception expérimentale d'un dispositif interférométrique destiné à analyser une source de dimension fixée 4, ou, inversement, à déterminer quelle est l'extension maximale de la source qu'on peut tolérer pour éclairer un interféromètre donné ⁵.

Interférences localisées 8.3

Condition de localisation - forme de l'intensité 8.3.1

On reprend la discussion sur la superposition des franges créées en M par les différents points P de la source. Pour chacun,

$$\Delta(P,M) = \Delta(O,M) - \lambda_0 (f_{x2} - f_{x1}) X - \lambda_0 (f_{y2} - f_{y1}) Y + \text{termes d'ordres sup. en } X, Y$$

et

$$I_P(M) = (I_1)_P + (I_2)_P + 2\sqrt{(I_1)_P (I_2)_P} \cos(2\pi \frac{\Delta(P, M)}{\lambda_0} + \epsilon_1 - \epsilon_2)$$

Lorsque P(X,Y) balaye la source étendue, les franges produites au voisinage de M se décalent peu les unes par rapport aux autres si $\Delta(P, M)$ est moins sensible à X, Y donc si

$$(f_{x2} - f_{x1}, f_{y2} - f_{y1}) = (0,0) (8.4)$$

A cette condition, la visibilité des franges autour de M se dégrade moins vite lorsque la source devient spatialement plus étendue. On va montrer que cette situation est liée à une condition géométrique simple pour la position de M.

⁴. savoir quelle contrainte on doit respecter sur la position des points P_1 et P_2 , Cf interféromètre stellaire de Michelson

^{5.} Cf bilentilles de Billet : avec O_1O_2 // OX et $e=O_1O_2$, il vient $f_{x2}-f_{x1}=\frac{2e}{\lambda_0L}$ et $f_{y2}-f_{y1}=0$ donc la visibilité des franges est indépendante de la dimension de la source parallèlement à y; celle-ci peut être étendue à volonté pour gagner en luminosité des franges sans dégrader leur visibilité (contraste); la visibilité des franges restera proche de son maximum si sinc $(a\frac{2e}{\lambda_0L})\approx 1 \Leftrightarrow (a\frac{2e}{\lambda_0L})\ll 1$

Pour un montage sans lentille entre la source, P_1 et P_2 , la condition (8.4) s'écrit $\frac{x_1}{\lambda_0 z_1} - \frac{x_2}{\lambda_0 z_2} = 0$ et $\frac{y_1}{\lambda_0 z_1} - \frac{y_2}{\lambda_0 z_2} = 0$ d'où :

$$\frac{x_1}{z_1} = \frac{x_2}{z_2}$$
 et $\frac{y_1}{z_1} = \frac{y_2}{z_2}$

Cela signifie géométriquement que les points O, P_1 et P_2 doivent être alignés.

Autre formulation : le rayon émis par O passe successivement en P_1 et P_2 avant d'être décomposé en deux rayons atteignant M par les voies (1) et (2) de l'interféromètre.

Conséquence : le rayon OP_2 (resp. OP_1) passe par la voie (2) (resp. (1)) de l'interféromètre pour atteindre M. On en déduit que M se situe à l'intersection des deux rayons formés par l'interféromètre à partir d'un même rayon émis par O. On peut justifier la même propriété pour une source étendue dans le plan focal objet d'une lentille, avec $O \equiv F$.

Cette condition sur la position de M est appelée **condition de localisation**. L'ensemble des points M associés à différents rayons émis par O (s'il en existe) est appelé **surface de localisation** associée à O. On y observe des franges d'interférences dites **localisées**.

Synthèse:

Lorsque M est sur la surface de localisation, $\Delta(P, M) = \Delta(O, M)$ à l'ordre 1 en X, Y (fonction stationnaire) et :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(2\pi \frac{\Delta(O, M)}{\lambda_0} + \epsilon_1 - \epsilon_2)$$

comme si la source était ponctuelle.

 I_1, I_2 : intensités produites en M à travers les voies (1) ou bien (2) à partir de l'ensemble de la source étendue.

Propriété : pour des franges d'interférences observées au niveau d'une surface de localisation, on peut étendre spatialement la source et gagner en luminosité sans dégrader la visibilité des franges autant qu'aux autres points du champ d'interférences.

8.3.2 Interférences localisées de deuxième espèce : lame à faces parallèles

Surface de localisation des franges

Soit un interféromètre de Michelson réglé en lame à faces parallèles (raisonnement sur le schéma équivalent, Cf annexe §8.5.3).

Soit le rayon émis par O arrivant sur les miroirs M_1' et M_2 avec l'angle θ . Les deux rayons réfléchis sont parallèles entre eux. Ils se coupent en M situé dans le plan focal image π_2' de la lentille (L_2) . π_2' est la surface de localisation, on parle de "franges localisées à l'infini".

On montre en annexe §8.5.4 la relation $\Delta(O, M) = [OM]_2 - [OM]_1 = 2 e \cos \theta$, où e est la distance entre les miroirs.

La figure montre qu'un point M de (π'_2) reçoit des rayons arrivant sur les lames avec le même angle d'incidence θ , mais pouvant provenir de plusieurs points P de la source étendue. On a pour tous ces points $\Delta(P,M)=2$ $e\cos\theta=\Delta(O,M)$. Cette quantité est indépendante de la position de P donc les systèmes d'interférences créés sur π'_2 par les différents P se superposent exactement. Pour ce montage, l'élargissement de la source n'entraîne aucune réduction de la visibilité des franges par perte de cohérence spatiale. Les interférences possédant cette propriété sont dites localisées de deuxième espèce.

Figure d'interférences

L'interféromètre de Michelson est éclairé par une source étendue autour de \mathcal{O} .

En M sur la surface de localisation π'_2 , les interférences gardent la forme de celles produites par une source ponctuelle O:

$$I(M) = 2I_0 \left(1 + \cos 2\pi \frac{\Delta(O, M)}{\lambda_0} + \epsilon_1 - \epsilon_2\right)$$

avec $\Delta(O, M) = 2e \cos \theta$ (Cf annexe§8.5.4) et $\epsilon_1 - \epsilon_2 = 0$ (symétrie des deux voies).

Interféromètre de Michelson, schéma semi-développé

En M proche de F_2' arrivent des rayons atteignant les miroirs avec l'angle d'incidence $\theta = \frac{F_2'M}{f_2} \ll 1$ et $\cos \theta = 1 - \frac{1}{2} \left(\frac{F_2'M}{f_2}\right)^2$ d'où

$$I(M) = 2I_0 \left(1 + \cos 2\pi \frac{2e \left(1 - \frac{1}{2} \left(\frac{F_2'M}{f_2}\right)^2\right)}{\lambda_0} \right)$$

I(M) ne dépend que de la distance F'_2M donc forme des anneaux alternativement brillants et sombres centrés sur F'_2 . Chacun correspond à une valeur de θ fixée, on parle de franges d'égale inclinaison.

8.3.3 Interférences localisées de première espèce : coin d'air

Surface de localisation des franges

'Coin d'air' entre deux lames.

Autre réalisation expérimentale : interféromètre de Michelson réglé "en coin d'air" (Cf TD 9). On poursuit la discussion pour ce dispositif.

L'observateur voit deux rayons qui semblent venir des points S_1 et S_2 , symétriques de S_0 par rapport à M'_1 et M_2 .

La source de lumière est étendue autour de O dans le plan focal objet d'une lentille (L_1) , O coïncide avec F_1 . Les rayons émis par O éclairent la lame supérieure avec l'angle d'incidence θ .

Les franges localisées s'observent en M à l'intersection des deux rayons formés à partir d'un même incident venant de O.

- Ces points M sont dans le prolongement des rayons réfléchis, ils sont virtuels.
- On peut montrer qu'ils sont sur un plan formant l'angle θ avec la lame inférieure (démonstration en annexe §8.5.5).

Franges d'égale épaisseur

L'intensité en M au voisinage du plan de localisation a la même forme que pour une source ponctuelle :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(2\pi \frac{\Delta(O, M)}{\lambda_0} + \epsilon_1 - \epsilon_2)$$

Le plan de localisation est virtuel donc on ne peut pas y placer un écran ou un détecteur pour mesurer I(M). On doit utiliser une lentille convergente (L_2) pour former son image géométrique sur un autre plan.

Tout rayon venant de M converge ensuite en son image géométrique N. Ainsi, les rayons (1) et (2) dont les prolongements se coupent en M vont se couper réellement en N où on peut mesurer I(N).

Compte tenu des propriétés du chemin optique entre un objet et son image, $[MN]_{(1)} = [MN]_{(2)}$ donc $\Delta(O,M) = \Delta(O,N)$ et I(N) = I(M) au grandissement g de l'image près $(I(N) = \frac{1}{q^2}I(M))$.

Source étendue

O

(L1)

Image du plan de localisation

M2

Minimage du plan de localisation

M2

M11

Plan de localisation

Plan de localisation

Plan de localisation

Plan de localisation

Exemple : on précise la forme des franges produites sur l'écran avec le montage suivant. Cette disposition correspond à $\theta=-\frac{\epsilon}{2}$ donc la surface de localisation (formant l'angle θ avec la lame inférieure) est le plan médiateur de M_1' et M_2 .

Un rayon incident est repéré par $x=\Omega A$. On note D la projection de A sur M_1' et e(x)=AD l'épaisseur du coin d'air à la distance x du sommet. Pour ϵ très petit, on a au premier ordre $e(x)=AD=AB=x\epsilon$ et $\Omega M=\Omega A=x$.

Soit M sur la surface de localisation, avec $\Omega M=x$. Il est établi en annexe §8.5.6) la relation $\Delta(O,M)=[OM]_2-[OM]_1=-2\ e(x)\ \cos\theta$, qui pour $\theta=-\frac{\epsilon}{2}$ petit vaut $-2\ e(x)=-2x\epsilon$. Il vient

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(2\pi \frac{(-2x\epsilon)}{\lambda_0} + \epsilon_1 - \epsilon_2)$$
 franges $//\Omega y$, interfrange $\Delta x = \frac{\lambda_0}{2\epsilon}$

Propriétés :

* Des points situés sur une même frange correspondent à la même valeur de x donc à la même épaisseur ϵx du coin d'air ("franges d'égale épaisseur"). Deux franges consécutives correspondent à x variant de Δx donc à l'épaisseur e(x) du coin d'air variant de ϵ $\Delta x = \frac{\lambda_0}{2}$.

* On reprend la discussion physique du développement

$$\Delta(P, M) = \Delta(O, M) + \underbrace{\text{termes d'ordres 1}}_{\text{nuls sur la surface de localisation}} + \text{termes d'ordres supérieurs en } X, Y$$

La valeur nulle des termes d'ordre 1 pour M situé sur la surface de localisation est vérifiée en annexe §8.5.7. Les termes d'ordre 2 et plus en X, Y font que les systèmes d'interférences créés par les différents points sources sont très légèrement décalés même avec M sur la surface de localisation. Ces franges localisées conservent une bonne visibilité avec une source moyennement étendue mais se brouillent si la source devient trop large. Elles sont dites 'franges localisées de première espèce'.

* pour M sur la surface de localisation, $(f_{x2} - f_{x1}, f_{y2} - f_{y1}) = (0,0)$ donc on est en dehors des conditions d'utilisation du théorème de Van Cittert-Zernike pour évaluer la visibilité.

Généralisation

Soient deux surfaces (1) et (2) avec des coefficients de réflexion tels que chacune réfléchit un rayon lumineux. Toutes les constructions graphiques faites pour un coin d'air restent les mêmes avec des surfaces (1) et (2) non planes, si on raisonne sur les plans (1') et (2') qui leur sont tangents en A et B et qui forment entre eux l'angle ϵ . Le paramètre physique pertinent reste l'épaisseur e(x,y) correspondant à la distance entre A et (2').

Conséquences :

- (a) Des franges sombres relient les points possédant la même valeur de e(x,y).
- (b) Deux franges sombres voisines traduiront une variation de e(x,y) de l'ordre de $\frac{\lambda_0}{2}$.

L'observation des interférences produites par réflexion sur ce système permet de visualiser des 'courbes de niveaux' en e(x,y) avec un pas de l'ordre de $\frac{\lambda_0}{2}=0.25~\mu\mathrm{m}$.

Michelson réglé en coin d'air, au voisinage de l'épaisseur optique nulle. Un jet d'air près d'un miroir crée des irrégularités dans les chemins optiques analogues à une très légère déformation du miroir.

Ce principe est à la base de nombreuses techniques de contrôle du profil de surfaces ou de défauts d'épaisseur optique, par exemple avec le montage présenté ci-dessous :

Applications au test de surfaces, montage de Twyman-Green

L'un des miroirs de l'interféromètre sert de référence de position. L'objet à tester est disposé sur l'autre voie de sorte que son image par la séparatrice forme un coin d'air d'épaisseur e(x,y). Les franges d'égale épaisseur visualisent les lignes de même différence d'épaisseur entre l'objet à tester et le miroir de référence.

Application : test de l'épaisseur d'une lentille à 0,05 μ m près sur des dimensions latérales pouvant aller jusqu'à quelques dizaines de centimètres.

Mise en évidence expérimentale de déformation de type 'aberration sphérique du 3ème ordre' par la méthode de Twyman-Green.

Franges d'interférence obtenues par réflexion de lumière blanche sur une bulle de savon Cet exemple illustre comment des interférences permettent des mesures précises et en temps réel.

8.4 Exemples de dispositifs interférentiels

8.4.1 Dispositifs à division du front d'onde

Ces dispositifs superposent en M deux rayons émis par la source **dans deux directions différentes**. Les points P_1 et P_2 vérifient dans ce cas $(f_{x2} - f_{x1}, f_{y2} - f_{y1}) \neq (0,0)$ donc :

- la visibilité est reliée à la luminance de la source par le théorème de Van Cittert-Zernike.

- les franges d'interférences se forment en tout point du champ d'interférences,
- pas de surface de localisation.

* Trous d'Young

Le champ d'interférences est indiqué en grisé. Les points P_1 et P_2 sont en O_1 et O_2 , c'est un exemple où ces points ne sont pas l'image de M par les voies de l'interféromètre.

* bilentille de Billet.

Le champ d'interférences est la zone éclairée simulatnément par les deux ondes. Les points S_1 et S_2 images de S sont des points de convergence qu'on utilise pour schématiser ces ondes et leur zone de recouvrement géométrique.

Dispositif des miroirs de Fresnel Biprisme de Fresnel (avec ou sans la seconde lentille) On doit aussi situer dans cette catégorie l'interféromètre de Michelson pour un point d'observation situé en dehors de la surface de localisation.

8.4.2 Dispositifs à division d'amplitude

Ces interféromètres peuvent superposer en M deux rayons issus d'un même incident émis par O:

- ils comportent un dispositif capable de séparer ce rayon incident en deux (lame semi-réfléchissante, système utilisant des effets de polarisation, ...)
- il existe une "surface de localisation" où pourront être observées des interférences qui conservent une visibilité correcte avec une source légèrement étendue.

Exemples:

* interféromètre de Michelson (réglé en lame à faces parallèles ou en coin d'air) pour un point d'observation situé sur la surface de localisation,

* L'interféromètre de Mach-Zehnder est composé d'une source de lumière, d'un collimateur, de deux miroirs plans réfléchissants, de deux lames semi-réfléchissantes et d'un écran. Si les deux ondes ressortent en formant un petit angle, le dispositif est analogue à un Michelson réglé en coin d'air.

* Dispositif du coin d'air

 \ast Dispositif utilisant des effets polarisation pour jouer le rôle de la séparatice.

L'onde transmise par le polariseur se projette sur les lignes neutres des prismes taillés dans des matériaux anisotopes. La géométrie est telle que les rayons s'y propagent en ligne droite mais voient des épaisseurs optiques différentes suivant leur position x et suivant la polarisation. La voie (1) de l'interféromètre est celle suivie par les photons polarisés selon x, qui voient l'indice extraordinaire dans le premier prisme puis l'indice ordinaire dans le second prisme. La voie (2) correspond à une polarisation suivant y, ses photons voient l'indice ordinaire puis l'extraordinaire. Le second polariseur recombine ces deux ondes déphasées, formant une onde résultante dont l'intensité présente des interférences en fonction de la hauteur sur l'écran d'observation.

* Dispositif des anneaux de Newton La source est centrée sur O situé au point focal objet de L_1 . Les rayons (1) et (2) sont ceux formés par réflexion en A (face inférieure de la lentille plan-convexe) et en B (face supérieure de la lame) à partir du même rayon incident parallèle à l'axe entrant. Ce sont des interférences de type coin d'air localisées près de A ou B et d'intensité fonction de l'épaisseur e(A) du coin d'air au niveau de A. La lentille (L_2) en forme l'image sur un écran. L'épaisseur e(A) est à symétrie de révolution donc les franges d'interférences sont des anneaux.

Attention, ce sont des franges d'égale épaisseur (de type 'coin d'air') et pas non des franges d'égale inclinaison (de type 'lame à faces parallèles'). Ces franges localisées de première espèce vont donc se brouiller si on étend trop la source.

8.4.3 Synthèse

	Source étendue autour de O					
	Luminance $\mathcal{L}(X,Y)$					
	division du front d'onde	division d'amplitude				
	(type trous d'Young)	(type Michelson)				
	P_1 et P_2 sur deux	pour certaines positions du point d'observation M ,				
r	rayons distincts issus de O	P_1 et P_2 sont sur le même rayon issu de O				
	source petite					
	variations de $\frac{\Delta(P,M)}{\lambda_0}$ du 1^{ier} ordre en OP					
	Théorème de Van Cittert-Zernike					
Interférences	Pour M en tout point du champ d'interférences					
non localisées	avec $(f_{x2} - f_{x1}, f_{y2} - f_{y1}) \neq (0, 0)$, on a la visibilité					
	$V(M) = \left rac{2\sqrt{I_1 I_2}}{I_1 + I_2} rac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(f_{x2} - f_{x1}, f_{y2} - f_{y1})}{\mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)} \right $					
	$\mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)$					
		gourge limitée non le dounième andre				
		source limitée par le deuxième ordre				
Interférences localisées		variations de $\frac{\Delta(P,M)}{\lambda_0}$ du 2^{ieme} ordre en OP				
de première espèce	impossible					
(type coin d'air)	-	'franges localisées' à l'intersection				
,		des émergents issus				
		d'un même rayon émis par O				
		source non limitée				
		$V(M) = \frac{2\sqrt{I_1I_2}}{I_1+I_2}$				
Interférences localisées		-11-2				
de deuxième espèce (type lame à faces parallèles)	impossible	'franges localisées' à l'intersection				
	Impossible	des émergents issus				
		d'un même rayon émis par ${\cal O}$				
		intensité analogue à celle				
		émise par une source ponctuelle.				

Ouverture : lien entre expérience et modélisation.

- la modélisation justifie pourquoi la visibilité des franges est en général sensible à la dimension de la source.
- étendre le source permet d'obtenir plus de photons donc une meilleure luminosité des franges.
- la modélisation permet d'identifier des conditions où la visibilité des interférences est moins sensible ou indépendante de la taille de la source

8.5 Annexes 183

- ces raisonnements donnent des indications sur les précautions à prendre et les points importants dans la réalisation d'un interféromètre.

On retiendra l'aspect particulièrement intéressant des dispositifs de type Michelson en lame à faces parallèles : par leur conception, la visibilité des franges est indépendante de la dimension de la source, donc sa réduction doit être attribuée uniquement à des effets de perte de cohérence temporelle, ce qui permet de la relier au spectre des fréquences de la source par le théorème de Wiener-Khintchine.

8.5 Annexes

8.5.1 Théorème de Van Cittert-Zernike, autre méthode de calcul

Un dispositif interférentiel est éclairé par une source étendue de luminance $\mathcal{L}(X,Y)$. On va démontrer la relation existant entre $\mathcal{L}(X,Y)$ et la visibilité des franges d'interférences.

Soient un point M du champ d'interférences et ses images géométriques P_1 et P_2 par les voie (1) et (2) de l'interféromètre. Les propriétés des chemins optique suivant des rayons entre deux points conjugués font que tout rayon passant par P_1 (P_2) arrive ensuite en M, avec une valeur unique de $[P_1M]$ $([P_2M])$. Par conséquent, les rayons partant des différents points P de la source et atteignant M passent tous par P_1 ou par P_2 , avec $[P_1M]$ $([P_2M])$ indépendant de P. On distinguera les situations illustrées ci-dessous avec une source étendue à distance finie ou bien infinie des points P_1 et P_2 .

Source étendue à distance finie de P_1 et P_2

Source étendue à distance infinie de P_1 et P_2

On s'intéresse à la visibilité des franges d'interférences au voisinage d'un point M, dont les images par les voies (1) et (2) du dispositif sont $P_1(x_1, y_1, z_1)$ et $P_2(x_2, y_2, z_2)$ respectivement. On discute le cas d'une source étendue disposée dans le plan focal objet d'une lentille de distance focale f, le point origine O correspondant au point focal objet. Pour tout point P(X, Y) voisin de O sur la source, $\Delta(P, M)$ se décompose en

$$\Delta(P, M) = [PP_2] + [P_2M] - [PP_1] - [P_1M]$$

avec par construction de P_1 et P_2 la différence $[P_2M] - [P_1M]$ indépendante de P

Calcul préliminaire : $[OP_2] - [OP_1] = \overline{HP_2} = z_2 - z_1$.

Les rayons arrivant de P et transmis par la lentille ont la direction $\vec{u} = \frac{\overline{P\Omega}}{||\overline{P\Omega}||}$ dont les composantes au premier ordre sont $(-\frac{X}{f}, -\frac{Y}{f}, 1)$.

On a donc

$$[PP_2] - [PP_1] = \vec{u} \cdot \overrightarrow{P_1} \overrightarrow{P_2}$$

$$= -\frac{X}{f} (x_2 - x_1) - \frac{Y}{f} (y_2 - y_1) + \underbrace{z_2 - z_1}_{[OP_2] - [OP1]} + \text{ termes d'ordres supérieurs en } X, Y$$

On note $f_{x1}=\frac{x_1}{\lambda_0 f},\, f_{y1}=\frac{y_1}{\lambda_0 f},\, f_{x2}=\frac{x_2}{\lambda_0 f}$ et $f_{y2}=\frac{y_2}{\lambda_0 f}$ d'où

$$[PP_2] - [PP_1] = [OP_2] - [OP_1] - \lambda_0 (f_{x2} - f_{x1}) X - \lambda_0 (f_{y2} - f_{y1}) Y$$

+terms d'ordres supérieurs en X, Y

La différence de marche $\Delta(P, M)$ pour P voisin de O s'écrit alors

$$\Delta(P,M) = \overbrace{[OP_2] - [OP1] + [P_2M] - [P_1M]}^{\Delta(O,M), \text{ terme indépendant de } X, Y}$$

$$-\lambda_0 (f_{x2} - f_{x1}) X - \lambda_0 (f_{y2} - f_{y1}) Y$$
+termes d'ordres supérieurs en X, Y (8.5)

On suppose $(f_{x2} - f_{x1}, f_{y2} - f_{y1}) \neq (0, 0)$ avec une source de taille telle que les termes d'ordre 1 en X, Y dans (8.5) sont prépondérants par rapport aux suivants qu'on pourra négliger. On reporte alors cette écriture de $\Delta(P, M)$ dans l'expression de l'intensité créée en M par la source étendue (Cf §8.1.1) :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \Re \left\{ \exp i(\epsilon_1 - \epsilon_2) \frac{\int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY \exp 2i\pi \frac{\Delta(P,M)}{\lambda_0}}{\int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY} \right\}$$

Les termes de $\Delta(P, M)$ indépendants de X, Y sortent de l'intégrale, ceux linéaires en X, Y font que cette intégrale prend la forme d'une transformée de Fourier. L'intégrale du dénominateur peut s'écrire comme une transformée de Fourier prise en (0,0) d'où finalement :

$$I(M) = I_1 + I_2 + 2\Re e\{\sqrt{I_1I_2} \exp i(\epsilon_1 - \epsilon_2) \exp 2i\pi \frac{\Delta(O,M)}{\lambda_0} \times \underbrace{\frac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(f_{x2} - f_{x1}, f_{y2} - f_{y1})}{\mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)}}_{\text{vient de l'ajout à } \Delta(O,M)}$$
 vient de l'ajout à $\Delta(O,M)$ de termes petits donc ce terme correctif produit au voisinage de M des variations de $I(M)$ lentes par rapport à celles dues à
$$\exp 2i\pi \frac{\Delta(O,M)}{\lambda_0}.$$

Au voisinage de M, les oscillations venant du terme $\exp 2i\pi \frac{\Delta(O,M)}{\lambda_0}$ produisent des variations d'intensité entre les enveloppes

$$I_{max,min}(M) = I_1 + I_2 \pm 2 \left\{ \sqrt{I_1 I_2} \left| \frac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(f_{x2} - f_{x1}, f_{y2} - f_{y1})}{\mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)} \right| \right\}$$

8.5 Annexes 185

donc des franges d'interférences de visibilité $V(M) = \frac{I_{max}(M) - I_{min}(M)}{I_{max}(M) + I_{min}(M)}$ reliée à $\mathcal{L}(X, Y)$ par

$$V(M) = \frac{2\sqrt{I_1I_2}}{I_1 + I_2} \left| \frac{\mathcal{F}_{[\mathcal{L}(X,Y)]}(f_{x2} - f_{x1}, f_{y2} - f_{y1})}{\mathcal{F}_{[\mathcal{L}(X,Y)]}(0,0)} \right|$$
(8.6)

Cette quantité dépend de la géométrie de la source de lumière, à travers la luminance $\mathcal{L}(X,Y)$, et de la géométrie de l'interféromètre qui détermine f_{x2} , f_{x1} , f_{y2} et f_{y1} .

La relation (8.6) constitue le théorème de Van Cittert-Zernike. Il décrit quantitativement comment l'augmentation de la taille de la source affecte la visibilité des franges d'interférences. Ce théorème est valable pour les points M du champ d'interférences associés à P_1 et P_2 tels que $(f_{x2} - f_{x1}, f_{y2} - f_{y1}) \neq (0,0)$. Les franges apparaissant au voisinage de M vérifiant cette condition sont appelées franges non localisées.

Qualitativement : la visibilité des franges décroît quand la dimension de la source augmente. Dans certains cas particuliers elle peut devenir nulle puis à nouveau augmenter (Cf §8.2.4).

* Théorème de Van Cittert-Zernike pour une source à distance finie de P_1 et P_2

Lorsqu'aucun système optique ne sépare la source étendue des points P_1 et P_2 , on a

$$\begin{split} PP_2 - PP_1 &= \sqrt{z_2^2 + (x_2 - X)^2 + (y_2 - Y)^2} - \sqrt{z_1^2 + (x_1 - X)^2 + (y_1 - Y)^2} \\ &= z_2 + \frac{x_2^2 + y_2^2}{2z_2} - z_1 - \frac{x_1^2 + y_1^2}{2z_1} \quad \text{termes indépendants de } X, Y \\ &\quad + \left[-\frac{x_2 X}{z_2} - \frac{y_2 Y}{z_2} + \frac{x_1 X}{z_1} + \frac{y_1 Y}{z_1} \right] \quad \text{termes linéaires de } X, Y \\ &\quad + \cdots \quad \text{termes d'ordres supérieurs} \\ &= OP_2 - OP_1 - \lambda_0 (f_{x2} - f_{x1}) X - \lambda_0 (f_{y2} - f_{y1}) Y + \quad \text{termes d'ordres supérieurs} \end{split}$$

avec les notations $f_{x1} = \frac{x_1}{\lambda_0 z_1}$, $f_{y1} = \frac{y_1}{\lambda_0 z_1}$, $f_{x2} = \frac{x_2}{\lambda_0 z_2}$ et $f_{y2} = \frac{y_2}{\lambda_0 z_2}$, qu'il reste à reporter dans l'expression (8.6) pour adapter le théorème à ce type de configuration expérimentale.

8.5.2 Cohérence spatiale et cohérence temporelle

Le tableau suivant situe les conditions dans lesquelles sont abordées les notions de cohérence temporelle d'une part, de cohérence spatiale de l'autre.

Cohérence temporelle	cohérence spatiale

hypothèses:

spectre $J(\nu)$, source quasi-ponctuelle S_0 : $\frac{\Delta(S_k, M)}{c_0} = \frac{[S_k M]_2 - [\hat{S}_k M]_1}{c_0} \text{ est le même,}$ noté τ pour tous les points de la source.

spectre étroit,
$$\tau_c$$
 élevé, luminance $\mathcal{L}(X,Y)$

$$\tau_k = \frac{\Delta(S_k,M)}{c_0} = \frac{[S_kM]_2 - [S_kM]_1}{c_0} \ll \tau_c$$
pour tous les points S_k de la source.

propriétés:

$$<\mathcal{S}_1(M,t)\mathcal{S}_2^*(M,t)> \propto <\mathcal{S}(S_0,t)\mathcal{S}^*(S_0,t-\tau)>$$

 $\propto \gamma(S_0,\tau)$

La visibilité des franges devient nulle par perte de cohérence temporelle pour $\tau \gg \tau_c$

Cet effet est moins sensible si le spectre de la source est étroit (systèmes de franges produits par chaque composante spectrale se décalant moins)

$$<\mathcal{S}_1(M,t)\mathcal{S}_2^*(M,t)> \propto \int_{ ext{source}} \mathcal{L}(X,Y) \; \exp 2i\pi rac{\Delta(P,M)}{\lambda_0} \; dX \; dY$$

La visibilité des franges devient nulle par perte de cohérence spatiale des deux ondes se superposant en Mlorsque la source devient trop étendue (à préciser selon la fonction $\exp 2i\pi \frac{\Delta(P,M)}{\lambda_o}$ et la localisation de M)

Cet effet est moins sensible aux points Mtels que $\Delta(P, M)$ est une fonction stationnaire de P $(\Leftrightarrow pour\ M \text{ sur une surface de localisation})$

interprétation physique:

bonne cohérence temporelle : les deux ondes arrivant en M reproduisent $S(S_0, t)$ et $S(S_0, t - \tau)$ et se ressemblent assez pour interférer en formant des franges de bonne visibilité malgré les déformations temporelles de $S(S_0,t)$

bonne cohérence spatiale: $S_1(M,t) = \sum_k \alpha_1 \ S(S_k, t - \frac{[S_k M]_1}{c_0}) \text{ arrivant en } M \text{ par (1)}$ et $S_2(M,t) = \sum_k \alpha_2 \ S(S_k, t - \frac{[S_k M]_2}{c_0}) \text{ arrivant en } M \text{ par (2)}$ se ressemblent assez pour interférer bien que les décalages $\tau_k = \frac{[S_k M]_2 - [S_k M]_1}{c_{\cap}}$ soient fonctions de la position de S_k sur la source étendue

expression de l'intensité:

$$I_1 + I_2 + 2\sqrt{I_1I_2} \Re e \left\{ e^{i(\epsilon_1 - \epsilon_2)} \int J(\nu) \exp i2\pi\nu\tau d\nu \right\}$$

Une source spectralement trop étendue fait que $\mathcal{S}(t)$ et $\mathcal{S}(t-\tau)$

 $I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}}\Re e\left\{e^{i(\epsilon_{1} - \epsilon_{2})} \frac{\int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY \exp 2i\pi\nu_{0} \frac{\Delta(P,M)}{c_{0}}}{\int_{\text{source}} \mathcal{L}(X,Y) \ dX \ dY}\right\}$ Une source spatialement trop étendue fait que $S_1(t)$ et $S_2(t)$ deviennent trop différentes pour interférer $\Leftrightarrow I = I_1 + I_2 \Leftrightarrow$ deviennent incohérentes

8.5.3Interféromètre de Michelson : schémas optiques équivalents

La source est en P_0 . On construit son image P'_0 par la séparatrice puis l'image M'_1 de M_1 par la séparatrice. On trace P'_1 et P'_2 , image de P'_0 par M'_1 et par M_2 .

8.5 Annexes 187

Pour l'interféromètre de Michelson 'réglé en lame à faces parallèles' $(M'_1$ parallèle à M_2), on reporte uniquement les points P'_0 ('la source'), les miroirs M'_1 M_2 , les rayons réels obtenus en sortie avec leurs prolongements virtuels jusqu'à P'_0 .

Schéma équivalent à l'interféromètre de Michelson 'réglé en coin d'air', avec M'_1 et M_2 proches et formant un petit angle. a

a. noter la rotation par rapport aux schémas précédents

8.5.4 Différence de marche pour les rayons réfléchis sur une lame à faces parallèles

Le calcul est le même pour les rayons réfléchis sur une lame à faces parallèles ou sur un interféromètre de Michelson réglé en lame à faces parallèles $(n_2=1)$.

On cherche la différence de marche entre les deux rayons issus d'un même point source S et se superposant au point M après réflexion sur les faces avant et arrière de la lame à faces parallèles d'épaisseur e représentée ci-contre. On note $\Delta = [SM]_2 - [SM]_1$.

Les chemins optiques pour aller de S à M en suivant les rayons (1) ou (2) se décomposent en :

$$[SM]_1 = [SA] + [AD] + [DM]$$
 $[SM]_2 = [SA] + [AB] + [BC] + [CM]$

Soit D la projection de C sur le rayon (1). D et C sont sur le même plan perpendiculaire à la direction de propagation donc [DM] = [CM], d'où $\Delta = [AB] + [BC] - [AD]$.

On a

$$AB = BC = \frac{e}{\cos r}$$

$$AC = 2(e \tan r)$$

$$AD = AC \sin i = 2e \frac{\sin r}{\cos r} \sin i = 2e \frac{\sin r}{\cos r} (\frac{n_2}{n_1} \sin r)$$

$$d'où: \Delta = [AB] + [BC] - [AD]$$

$$= n_2 AB + n_2 BC - n_1 AD$$

$$= n_2 \frac{e}{\cos r} + n_2 \frac{e}{\cos r} - n_1 2 \frac{e \sin r}{\cos r} \sin i$$

$$= \frac{2n_2 e}{\cos r} (1 - \sin^2 r)$$

et le résultat : $\Delta = 2 n_2 e \cos r$

On note que r est l'angle entre la normale et le rayon à l'intérieur de la lame.

8.5.5 Surface de localisation pour les interférences localisées du coin d'air

Soit S_0 le point origine de la source étendue, et on considère le rayon incident venant de S_0 et qui forme l'angle θ avec la normale à la lame **supérieure**. Les rayons réfléchis se situent dans le prolongement des symétriques du rayon incident par rapport aux plans (1) et (2) respectivement.

La condition de localisation est vérifiée au point M à l'intersection de (R_1) et (R_2) , ici dans leur prolongement. Cette intersection n'existe que si le rayon incident se situe dans un plan perpendiculaire à l'arête du coin d'air, les schémas sont tracés dans ce plan. L'intersection de l'arête avec ce plan est notée O.

8.5 Annexes 189

Le but des constructions suivantes et de préciser la position de M.

Le rayon incident coupe (1) en A et (2)t en B sur (2). On note I la projection de O sur ce rayon, avec OI \bot IA et $OA \bot AN$ donc $\widehat{IOA} = \theta$.

Soit M l'intersection des prolongements de (R_1) et (R_2) . Le prolongement de (R_1) est le symétrique du rayon incident par rapport à (1). Le point P_1 , défini comme le symétrique de M par rapport à (1) est donc sur le rayon incident. De même, le point P_2 défini comme le symétrique de M par rapport à (2) est sur le rayon incident.

L'angle entre les surfaces (1) et (2) vaut ϵ donc $\widehat{P_2OP_1} = 2\widehat{AOB} = 2\epsilon$. Pour P_1 et P_2 ainsi construits, on a par ailleurs $OM = OP_1$ et $OM = OP_2$.

 $OP_2 = OP_1$ donc le triangle P_1OP_2 est isocèle. La projection I du sommet O sur la base P_1P_2 est le milieu du segment P_1P_2 . On en déduit que $\widehat{IOP_2} = \frac{1}{2}\widehat{P_2OP_1} = \epsilon$. La relation $\widehat{IOA} = \theta$ établie au début entraîne

$$\widehat{P_2OB} = \widehat{IOA} - \widehat{IOP_2} + \widehat{AOB} = \theta - \epsilon + \epsilon = \theta$$

Le point M est le symétrique de P_2 par rapport à (2) donc $\widehat{BOM} = \widehat{P_2OB} = \theta$, relation qui va permettre de situer M.

Si la source ponctuelle est à l'infini (au point focal objet d'une lentille), elle éclaire les lames en différents points A, par des rayons formant tous l'angle θ avec la normale à la lame supérieure. Les points M construits par l'intersection des deux rayons réfléchis issus de chaque incident a sont localisés sur le plan coupant le coin d'air sur son arête et formant l'angle θ avec la lame inférieure.

Sur ce plan, la condition de localisation est vérifiée : le brouillage des franges d'interférences lorsque la source centrée sur S_0 devient plus étendue est moins rapide qu'aux autres points de l'espace, comme si les franges s'y localisaient.

Pour une source ponctuelle à distance finie, les rayons arrivent avec des angles différents et la surface de localisation est une courbe différente qu'on peut construire point par point par l'intsersection des deux émergents formés à partir de chaque incident.

a. c'est à dire la surface de localisation des franges d'interférences de première espèce.

8.5.6 Différence de marche sur la surface de localisation du coin d'air

On pour suit la démonstration précédente pour déterminer la différence de marche des deux rayons se superposant en un point M de la surface de localisation.

On évalue l'intensité aux points M déterminés par la condition de localisation. Un rayon est repéré par son point d'incidence A(x,y) sur (1).

$$[S_0M]_2 - [S_0M]_1 = (\overline{S_0A} + \overline{AB} + \overline{BM}) - (\overline{S_0A} + \overline{AM})$$

les valeurs algébriques étant comptées positivement dans le sens de propagation de la lumière a.

$$[S_0M]_2 - [S_0M]_1 = \overline{AB} + \overline{BM} - \overline{AM}$$
$$= \overline{AB} + \overline{BP_2} - \overline{AP_1}$$
$$= \overline{P_1P_2}$$

a. que le rayon soit réel ou virtuel, Cf chap 'Bases de la diffraction $\S 1.3.1$

La construction graphique montre que

$$\begin{array}{rcl} \overline{OI} & = & \overline{OA} \cos \theta \\ \overline{P_1 P_2} & = & 2 \overline{OI} \tan \epsilon \\ & = & 2 \cos \theta \overline{OA} \tan \epsilon \end{array}$$

On note $e(x,y) = \overline{OA} \sin \epsilon \simeq \overline{OA} \tan \epsilon$ l'épaisseur du coin d'air en A(x,y), définie comme la distance de A(x,y) au plan (2). Pour ϵ petit, on retiendra l'écriture

$$[S_0M]_2 - [S_0M]_1 = 2 e(x,y) \cos \theta$$

parce qu'elle a la même forme que pour une lame à faces parallèles, prenant simplement en compte l'épaisseur optique locale du coin d'air au niveau du point M considéré.

8.5.7 Source étendue : caractère stationnaire des interférences localisées

Le coin d'air éclairé par une source monochromatique ponctuelle S_0 produit des interférences de bonne visibilité en tout point du champ d'interférences. On a déterminé géométriquement la surface de localisation des franges où se maintient une meilleure visibilité lorsque la source centrée sur S_0 devient étendue. On va interpréter physiquement pourquoi le caractère stationnaire de $\Delta(P,M)$ pour les points P de la source voisins de S_0 entraı̂ne la localisation. On vérifiera ensuite que $\Delta(P,M)$ est bien stationnaire pour M sur la surface de localisation associée à S_0 et P au voisinage de S_0 .

8.5 Annexes 191

Soit S_1 un point source voisin de S_0 . Les rayons issus de S_1 et passant par M sont ceux passant par P_1 et P_2 respectivement (puisque ces points sont les images de M par (1) et (2)).

Pour un point M de la surface de localisation des interférences produites par S_0 , on a superposition des deux systèmes de franges

$$I(M) = 2I_0 \left(1 - \cos 2\pi \frac{[S_0 M]_2 - [S_0 M]_1}{\lambda_0}\right) + 2I_1 \left(1 - \cos 2\pi \frac{[S_1 M]_2 - [S_1 M]_1}{\lambda_0}\right)$$

avec $[S_1M]_2 - [S_1M]_1 = [S_0M]_2 - [S_0M]_1$ plus des termes d'ordre 2 en S_0S_1 puisque M a été déterminé par la condition de localisation.

Tant que ces termes sont petits devant λ_0 , les deux systèmes de franges sont quasi superposés.

Une source étendue est constituée de différents points sources P autour de S_0 . Pour les points M de la surface de localisation associée à S_0 , $\Delta(P,M)$ est une fonction stationnaire de la distance S_0P donc les systèmes d'interférences produits par chacun des points P sont quasi superposés. La visibilité des franges produites par la source étendue est meilleure en ces points qu'ailleurs dans l'espace.

Démonstration:

On va vérifier ce point en considérant un point source S_1 voisin de S_0 et calculer la différence de marche $\Delta(S_1, M)$ pour un point M sur la surface de localisation associée à S_0 .

Soit S_1 voisin de S_0 dans le plan focal de la lentille éclairant le dispositif. Le rayons issus de S_0 et S_1 forment entre eux après la lentille (L_1) un angle $\alpha = \frac{S_0 S_1}{f_1}$.

 P_1 et P_2 sont les images de M par (1) et (2) donc les rayons issus de S_1 passant par P_1 et P_2 semblent après réflexion provenir de M. Pour le point M défini à partir de S_0 , on a $\Delta(S_1,M)=[S_1M]_2-[S_1M]_1=[S_1P_1]_2-[S_1P_2]$ sachant que ce sont deux rayons différents arrivant de S_1 qui passent par P_1 et P_2 .

Le graphe montre

$$\begin{split} [S_1P_1] - [S_1P_2] &= \overline{HP_2} \\ &= P_1P_2 \cos \alpha \\ &= P_1P_2 \left(1 - (\frac{S_0S_1}{f_1})^2\right) \quad \text{pour } \frac{S_0S_1}{f_1} \text{ petit} \\ &= [S_0P_1] - [S_0P_2] - P_1P_2 \left(\frac{S_0S_1}{f_1}\right)^2 \end{split}$$

On montre ici deux points importants. Le plan de localisation des franges n'est pas identique pour S_1 et pour S_0 donc la lumière venant de S_1 contribuera à brouiller les franges produites par S_0 . Par contre, la variation de la différence de marche $\Delta(S_1, M)$ est d'ordre 2 en S_0S_1 , donc nulle à l'ordre 1 c'est à dire stationnaire.

8.5.8 Notion de cohérence spatiale: interprétation physique complémentaire

- L'interféromètre superpose en M deux ondes $S_1(M,t)$ et $S_2(M,t)$. L'intensité résultante est de la

$$I(M) = I_1 + I_2 + 2 \Re e < S_1(M, t) S_2^*(M, t) >$$

Les franges possèdent une bonne visibilité si $\langle S_1(M,t) S_2^*(M,t) \rangle$ est significativement non nulle.

- Les ondes (1) et (2) en M reproduisent à une atténuation et un déphasage constants près les ondes en P_1 et P_2 . La valeur de la fonction $\langle S_1(M,t) S_2^*(M,t) \rangle$ est donc liée à celle de $\langle S(P_1,t) S^*(P_2,t) \rangle$. Les interférences sont donc bien visibles si la source produit en P_1 et P_2 un rayonnement tel que $\langle S(P_1,t) S^*(P_2,t) \rangle$ est significativement non nul.

* Cas d'une source ponctuelle en O

Une source ponctuelle émet une onde sphérique.

La phase de l'onde au point Q à l'instant t est notée $\varphi(Q)$. La différence $\varphi(Q) - \varphi(Q)$ n'est fonction que de la longueur OQ, elle possède une valeur uniforme sur les sphères de centre O.

La différence des phases de l'onde en P_1 et en P_2 conserve la même valeur à tout instant. Il en est de même pour la différence $[SM]_2 - [SM]_1$. On a montré dans le chapitre 'cohérence temporelle' que ces conditions permettent d'observer en M des franges de bonne visibilité si $\frac{[SM]_2 - [SM]_1}{c_0} \ll \tau_c$.

* Cas d'une source étendue

Chaque point source élémentaire S_k émet une onde de type $A_k \exp i(2\pi\nu_0 t + \psi_k)$ (modèle de l'enveloppe lentement variable), avec A_k et ψ_k variant aléatoirement à l'échelle du temps de cohérence τ_c . On suppose τ_c élevé. Deux sources S_k et S_k' distinctes sont incohérentes.

L'onde en P_1 ou en P_2 est la somme d'ondes sphériques d'intensité $I_k = \langle A_k^2 \rangle$ émises par les différents points S_k incohérents.

$$S(P_1, t) = \sum_{k} \alpha_{1k} A_k \exp(i2\pi\nu_0(t - \frac{[S_k P_1]}{c_0}) + \psi_k)$$

$$S(P_2, t) = \sum_{k} \alpha_{2k} A_k \exp(i2\pi\nu_0(t - \frac{[S_k P_2]}{c_0}) + \psi_k)$$

$$S(P_2, t) = \sum_{k} \alpha_{2k} A_k \exp(i2\pi\nu_0(t - \frac{[S_k P_2]}{c_0}) + \psi_k)$$

Pour t fixé et P_1 , P_2 donnés, $\exp(i2\pi\nu_0(t-\frac{[S_kP_1]}{c_0}))$ et $\exp(i2\pi\nu_0(t-\frac{[S_kP_2]}{c_0}))$ possèdent des valeurs variant différemment selon la position de S_k . L'onde résultante n'a donc pas la même forme en P_1 et en P_2 . La différence est d'autant plus importante que les S_k balayent une surface étendue. De plus, les valeurs de A_k et ψ_k varient à l'échelle de τ_c donc la différence entre $\mathcal{S}_1(P_1,t)$ et $\mathcal{S}_1(P_2,t)$ évolue au cours du temps avec $\langle S(P_1,t) | S^*(P_2,t) \rangle$ tendant vers 0 en cas de variations trop fortes (source trop étendue).

8.5 Annexes 193

L'onde émise par la source étendue a une forme qui s'éloigne de celle d'une onde sphérique et qui évolue aléatoirement à l'échelle du temps τ_c . Si cette déformation est suffisamment forte entre le voisinage de P_1 et celui de P_2 pour entraîner $\langle S(P_1,t) S^*(P_2,t) \rangle \simeq 0$, on dit que la cohérence spatiale de l'onde est mauvaise à l'échelle de la distance P_1P_2 .

On peut inverser le raisonnement de la manière suivante : si la visibilité des franges reste satisfaisante, alors la forme au niveau de P_1 , P_2 pour cette onde créée par une source étendue correspond raisonnablement à celle d'une onde sphérique.