# Manual: Instalación y Configuración de una VPN con OpenVPN

# Introducción: ¿Qué es una VPN y por qué usarla?

# ¿Qué es una VPN?

Una VPN (Virtual Private Network, o Red Privada Virtual) es una tecnología que nos permite crear una conexión segura y cifrada entre un dispositivo (como un ordenador, móvil o tablet) y una red privada (como la red de nuestro servidor Ubuntu en Proxmox). Esta conexión actúa como un "túnel" seguro a través de Internet, protegiendo los datos que enviamos y recibimos.

## Ventajas de usar una VPN

#### 1. Seguridad:

- Cifrado de datos: Toda la información que viaja a través de la VPN está cifrada, lo que la protege de posibles interceptaciones.
- Protección contra ataques: Al acceder a la red interna a través de una VPN, reducimos el riesgo de ataques externos, ya que la conexión es privada y segura.

#### 2. Acceso remoto:

- Conectividad desde cualquier lugar: Nos permite acceder a los recursos de la red interna (como servidores, aplicaciones o archivos) desde fuera de la red local, como si estuviéramos físicamente en el lugar.
- Flexibilidad: Es ideal para trabajar de manera remota o para dar acceso a usuarios externos de forma controlada.

#### 3. Privacidad:

- Ocultación de la IP: La VPN oculta nuestra dirección IP real, lo que aumenta la privacidad y el anonimato en Internet.
- Evita el rastreo: El cifrado de la VPN dificulta que terceros rastreen nuestra actividad en línea.

#### 4. Control de acceso:

- Acceso restringido: Solo los usuarios autorizados (con los certificados y credenciales adecuados) pueden conectarse a la VPN.
- Segmentación de redes: Podemos limitar el acceso a ciertos recursos dentro de la red, lo que mejora la seguridad.

# ¿Por qué es una buena idea implementar una VPN en este proyecto?

En nuestro proyecto, queremos dar a conocer el ciclo de Administración de Sistemas Informáticos en Red (ASIR) y mostrar cómo se pueden implementar soluciones prácticas y seguras en un entorno real. Implementar una VPN nos permite:

- Demostrar habilidades técnicas: Configurar una VPN es una tarea avanzada que muestra nuestro dominio de redes, seguridad y sistemas.
- Proporcionar acceso seguro: Si queremos que los visitantes de las jornadas de puertas abiertas accedan a la página web o a otros recursos de forma segura, la VPN es la solución ideal.
- Fomentar la seguridad: Al usar una VPN, promovemos la importancia de la seguridad y la privacidad en el mundo digital, algo clave en la formación de un administrador de sistemas.

# Conceptos clave: Certificados, PKI, CA, Diffie-Hellman, Tunneling, Reglas de IPTables y Autenticación y Autorización

# 1. Certificados Digitales

- Definición: Archivos digitales que utilizamos para verificar la identidad de un dispositivo, servidor o usuario en una red. Funcionan como una especie de "credencial digital" que garantiza que una entidad es quien dice ser.
- Importancia: Los certificados son esenciales para garantizar la autenticidad y seguridad de las conexiones VPN. Sin ellos, no podríamos confiar en que las conexiones sean seguras.

# 2. PKI (Infraestructura de Clave Pública)

• Definición: Un sistema que gestiona la creación, distribución y revocación de certificados digitales.

• Importancia: La PKI es la base sobre la cual se construye la seguridad de la VPN. Nos permite generar y gestionar los certificados necesarios para autenticar a los dispositivos y cifrar las comunicaciones.

# 3. CA (Autoridad Certificadora)

- Definición: Una entidad de confianza que emite y gestiona certificados digitales.
- Importancia: La CA es quien garantiza que los certificados son válidos y pertenecen a una entidad específica. En nuestro caso, creamos nuestra propia CA para emitir certificados para el servidor y los clientes.

#### 4. Diffie-Hellman

- Definición: Un protocolo criptográfico que permite a dos partes generar una clave secreta compartida sobre un canal no seguro.
- Importancia: Este protocolo es crucial para el intercambio seguro de claves en la VPN. Garantiza que, incluso si alguien intercepta el tráfico, no podrá descifrarlo sin la clave compartida.

#### 5. Tunneling

- Definición: La creación de un "túnel" seguro a través del cual viajan los datos entre el cliente y el servidor VPN.
- Importancia: El tunneling es lo que permite que los datos viajen de manera segura a través de Internet, protegiéndonos de posibles interceptaciones. En una VPN, los datos se encapsulan dentro de paquetes cifrados que viajan a través de este túnel.

# 6. Reglas de IPTables

- Definición: IPTables es una herramienta en Linux que nos permite configurar reglas de firewall para controlar el tráfico de red.
- Importancia: En nuestro caso, utilizamos reglas de IPTables para:
  - Permitir el tráfico de la VPN: Aseguramos que el tráfico entre el cliente y el servidor VPN no sea bloqueado.
  - Habilitar el reenvío de IP: Permitimos que el tráfico de la VPN fluya entre el cliente y la red interna.
  - Proteger el servidor: Bloqueamos accesos no autorizados al servidor VPN.

## 7. Autenticación y Autorización

- Definición:
  - Autenticación: Verificar la identidad de un usuario o dispositivo (por ejemplo, mediante certificados digitales).
  - Autorización: Determinar a qué recursos puede acceder un usuario o dispositivo autenticado.
- Importancia: En la VPN, la autenticación se realiza mediante certificados digitales, lo que garantiza que sólo los dispositivos autorizados puedan conectarse. La autorización se gestiona mediante reglas de red y permisos, asegurando que los usuarios solo accedan a los recursos permitidos.

# Paso 1: Preparación del servidor Ubuntu

- 1. Accedemos al servidor Ubuntu:
  - Nos conectamos al servidor Ubuntu (10.10.16.2) mediante SSH o directamente desde la consola de Proxmox.
- 2. Actualizamos el sistema:
  - Ejecutamos los siguientes comandos para asegurarnos de que el sistema esté actualizado:

sudo apt update sudo apt upgrade -y

# Paso 2: Instalación de OpenVPN

- 1. Instalamos OpenVPN y Easy-RSA:
  - Easy-RSA es una herramienta que nos ayudará a gestionar los certificados SSL necesarios para la VPN.
  - o Ejecutamos el siguiente comando:

#### sudo apt install openvpn easy-rsa -y

Explicación del comando:

- sudo apt install openvpn easy-rsa -y: Instala los paquetes openvpn (para la VPN) y easy-rsa (para gestionar certificados).
- 2. Configuramos Easy-RSA:
  - o Copiamos la plantilla de Easy-RSA a un directorio de trabajo:

```
mkdir ~/easy-rsa
cp -r /usr/share/easy-rsa/* ~/easy-rsa/
cd ~/easy-rsa
```

o Editamos el archivo de configuración de variables:

#### nano vars

o Añadimos o modificamos las siguientes líneas con nuestros datos:

```
export KEY_COUNTRY="ES"
export KEY_PROVINCE="Gipuzkoa"
export KEY_CITY="Irun"
export KEY_ORG="Plaiaundi"
export KEY_EMAIL="ikdxz@plaiaundi.net"
export KEY_OU="ASIR"
export KEY_NAME="servidor"
```

- 3. Generamos los certificados y claves:
  - o Inicializamos el PKI (Public Key Infrastructure):

#### /easyrsa init-pki

- o Explicación del comando:
  - ./easyrsa init-pki: Inicializa la infraestructura de clave pública (PKI) en el directorio actual.
- o Generamos la CA (Autoridad Certificadora):

#### /easyrsa build-ca

o Explicación del comando:

- ./easyrsa build-ca: Crea la Autoridad Certificadora (CA) y genera los certificados raíz. Nos pedirá una contraseña para proteger la CA.
- Generamos el certificado y la clave para el servidor:

## /easyrsa gen-req 10.10.16.2 nopass /easyrsa sign-req server 10.10.16.2

- o Explicación de los comandos:
  - ./easyrsa gen-req server nopass: Genera una solicitud de certificado para el servidor sin contraseña (nopass).
  - ./easyrsa sign-req server server: Firma la solicitud de certificado para el servidor.
- Generamos el certificado Diffie-Hellman (necesario para el intercambio de claves):

#### ./easyrsa gen-dh

- Explicación del comando:
  - ./easyrsa gen-dh: Genera el archivo de parámetros
    Diffie-Hellman, que se utiliza para el intercambio seguro de
    claves.
- Generamos la clave HMAC (para mejorar la seguridad):

#### openvpn --genkey secret ta.key

- Explicación del comando:
  - openvpn --genkey ta.key: Genera una clave HMAC (Hash-based Message Authentication Code) para proteger contra ataques de repetición.
- 4. Movemos los archivos generados:
  - Copiamos los archivos generados al directorio de configuración de OpenVPN:

sudo cp pki/ca.crt pki/issued/10.10.16.2.crt pki/private/10.10.16.2.key pki/dh.pem ta.key /etc/openvpn/server/

# Paso 3: Configuración del servidor OpenVPN

- 1. Creamos el archivo de configuración del servidor:
  - o Copiamos la plantilla de configuración:

sudo cp /usr/share/doc/openvpn/examples/sample-config-files/server.conf
/etc/openvpn/server/

- Explicación de los comandos:
  - **sudo cp ... /etc/openvpn/server/:** Copia la plantilla de configuración del servidor.
- o Editamos el archivo de configuración:

#### sudo nano /etc/openvpn/server/server.conf

 Aseguramos que las siguientes líneas estén configuradas correctamente:

```
port 1194
proto udp
dev tun
ca /etc/openvpn/server/ca.crt
cert /etc/openvpn/server/10.10.16.2.crt
key /etc/openvpn/server/10.10.16.2.key
dh /etc/openvpn/server/dh.pem
server 10.8.0.0 255.255.255.0
push "redirect-gateway def1 bypass-dhcp"
push "dhcp-option DNS 8.8.8.8"
keepalive 10 120
tls-auth /etc/openvpn/server/ta.key 0
cipher AES-256-GCM
auth SHA256
data-ciphers AES-256-GCM:AES-128-GCM
auth SHA256
data-ciphers AES-256-GCM:AES-128-GCM
user nobody
group nogroup
persist-key
persist-tun
status openvpn-status.log
erb 3
```

| Resumen de la configuración    |                                                                      |
|--------------------------------|----------------------------------------------------------------------|
| Parámetro                      | Descripción                                                          |
| port 1194                      | Puerto en el que el servidor escucho conexiones.                     |
| proto udp                      | Protocolo de transporte (UDP o TCP).                                 |
| dev tun                        | Tipo de dispositivo de red virtual (tun para IP, tap para Ethernet). |
| ca ca.crt                      | Certificado de la Autoridad Certificadora (CA).                      |
| cert server.crt                | Certificado del servidor.                                            |
| key server.key                 | Clave privada del servidor.                                          |
| dh dh.pem                      | Parámetros Diffie-Hellman para el intercambio de claves.             |
| server 10.8.0.0 255.255.255.0  | Subred para asignar direcciones IP a los clientes.                   |
| push "redirect-gateway def1"   | Redirige todo el tráfico del cliente a través<br>de la VPN.          |
| push "dhcp-option DNS 8.8.8.8" | Mecanismo para mantener la conexión activa.                          |
| keepalive 10 120               | Mecanismo para mantener la conexión activa.                          |
| tls-auth ta.key 0              | Autenticación TLS adicional para mayor seguridad.                    |
| cipher AES-256-CBC             | Algoritmo de cifrado utilizado.                                      |
| user nobody                    | Grupo bajo el cual se ejecuta OpenVPN.                               |
| group nogroup                  | Grupo bajo el cual se ejecuta OpenVPN.                               |
| persist-key                    | Evita la relectura de la clave privada en reinicios.                 |
| persist-key                    | Evita el cierre y reapertura de la interfaz<br>TUN/TAP en reinicios. |
| status openvpn-status.log      | Nivel de detalle de los registros (logs).                            |
| verb 3                         | Nivel de detalle de los registros (logs).                            |

# 2. Habilitamos el reenvío de IP:

o Editamos el archivo de configuración de red:

#### sudo nano /etc/sysctl.conf

• Aseguramos que la siguiente línea esté descomentada:

#### net.ipv4.ip\_forward=1

o Aplicamos los cambios:

#### sudo sysctl -p

- o Explicación de los comandos:
  - **sudo sysctl -p**: Aplica los cambios en la configuración del kernel.
- 3. Configuramos las reglas de iptables:
  - Añadimos las reglas necesarias para permitir el tráfico a través de la VPN:

#### sudo iptables -t nat -A POSTROUTING -s 10.8.0.0/24 -o ens18 -j MASQUERADE

o Guardamos las reglas para que persistan después de un reinicio:

# sudo apt install iptables-persistent sudo netfilter-persistent save

- Explicación de los comandos:
  - sudo iptables -t nat -A POSTROUTING ...: Añade una regla de NAT para redirigir el tráfico de la VPN.
  - **sudo apt install iptables-persistent:** Instala el paquete para guardar las reglas de iptables.
  - **sudo netfilter-persistent save**: Guarda las reglas actuales de iptables.
- 4. Habilitamos y reiniciamos OpenVPN:
  - Habilitamos el servicio para que se inicie automáticamente:

#### sudo systemctl enable openvpn@server

o Reiniciamos el servicio:

#### sudo systemctl restart openvpn@server

- o Explicación de los comandos:
  - **sudo systemctl enable openvpn@servidor:** Habilita el servicio de OpenVPN para que se inicie automáticamente.
  - sudo systematl restart openvpn@servidor: Reinicia el servicio de OpenVPN.

# Paso 4: Configuración de los clientes

- 1. Generamos los certificados para los clientes:
  - Volvemos al directorio de Easy-RSA:

#### cd ~/easy-rsa

o Generamos un certificado para el cliente (por ejemplo, cliente1):

./easyrsa gen-req cliente1 nopass ./easyrsa sign-req client cliente1

- Explicación de los comandos:
  - ./easyrsa gen-req asir1 nopass: Genera una solicitud de certificado para el cliente sin contraseña.
  - ./easyrsa sign-req client asir1: Firma la solicitud de certificado para el cliente.
- 2. Creamos el archivo de configuración del cliente:
  - Copiamos la plantilla de configuración:

cp /usr/share/doc/openvpn/examples/sample-config-files/client.conf ~/cliente1.ovpn

Editamos el archivo:

#### nano ~/cliente1.ovpn

Configuramos las siguientes líneas:

client dev tun proto udp remote 10.10.13.202 1194 resolv-retry infinite nobind
persist-key
persist-tun
ca ca.crt
cert cliente1.crt
key cliente1.key
tls-auth ta.key 1
cipher AES-256-GCM
auth SHA256
verb 3

- 3. Transferimos el archivo de configuración al cliente:
  - Copiamos el archivo cliente1.ovpn y los archivos de certificados (ca.crt, cliente1.crt, cliente1.key, ta.key) al dispositivo del cliente.

# Paso 5: Conexión desde el cliente

- 1. Instalamos OpenVPN en el cliente:
  - En el dispositivo del cliente, instalamos OpenVPN.
- 2. Importamos la configuración:
  - o Importamos el archivo cliente1.ovpn en el cliente OpenVPN.
- 3. Conectamos a la VPN:
  - Iniciamos la conexión VPN desde el cliente. Si todo está bien configurado, el cliente debería conectarse al servidor y tener acceso a la red interna.

# Paso 6: Verificación

- 1. Comprobamos la conexión:
  - Desde el cliente, intentamos acceder a recursos internos (por ejemplo, la página web en 10.10.16.2).
  - Verificamos que el tráfico esté pasando a través de la VPN.



