Zadanie dodatkowe 2

Weronika Jakimowicz

15.12.2023

Niech $\{\xi_k\}$ będzie ciągiem zmiennych iid. o symetrycznym rozkładzie (ξ_k , $-\xi_k$ mają ten sam rozkład). Niech $S_0=0$,

$$S_n = \sum_{k=1}^n \xi_k, \quad k \ge 1.$$

Rozważmy funkcję ogonową F_k zmiennej S_k , czyli

$$F_k(x) = \mathbb{P}\left[S_k \geq x\right], \quad x \in \mathbb{R}$$

Zadanie 1 Ustalmy $n \in \mathbb{N}$. Uzasadnij, że dla każdego $a \in \mathbb{R}$ ciąg zmiennych losowych

$$X_k = F_{n-k}(a - S_k), k = 0, 2, ..., n$$

jest martyngałem wględem filtracji $\mathbb F=\{\mathcal F_k\}$ danej przez $\mathcal F_0=\{\emptyset,\Omega\}$ i $\mathcal F_k=\sigma(\xi_1,...,\xi_k)$ dla $k\geq 1$.

Zaczęłam to pisać na ćwiczeniach z listy 4, gdzie studenci prezentujący przy tablicy są bici po rękach jeśli zapomną sprawdzić całkowalności tego co wsadzamy do wwo, w tym całkowalności składników martyngału. Stąd postaram się zrobić to tak dokładnie jak tylko potrafię.

1. X_k jest całkowalne, bo jest ograniczone

$$X_k = F_{n-k}(a-S_k) = \mathbb{P}\left[S_{n-k} \geq a-S_k\right] \in [0,1].$$

2. X_k jest \mathcal{F}_k -mierzalne

$$X_k = \mathbb{P}\left[S_{n-k} \ge a - S_k\right] = \mathbb{P}\left[\sum_{j=1}^{n-k} \xi_j \ge a - \sum_{j=1}^k \xi_j\right]$$

ale ponieważ ξ_i są symetryczne, to

$$\mathbb{P}\left[\xi_{\mathbf{j}} \geq \mathbf{x}\right] = \mathbb{P}\left[-\xi_{\mathbf{j}} \geq \mathbf{x}\right]$$

czy da się to uogólnić na dowolną sumę ξ_i ?

$$\mathbb{P}\left[\xi_{j} + \xi_{i} \geq x\right] = \mathbb{P}\left[\xi_{j} \geq x - \xi_{i}\right] = \mathbb{P}\left[-\xi_{j} \geq x - \xi_{i}\right] = \mathbb{P}\left[-\xi_{j} + \xi_{i} \geq x\right]$$