Reconhecimento de gestos através da implementação de sistema bimodal de aquisição de sinais EMG-FMG

Nuno Manuel Lourenço Pires

Prof. Dr. Milton Augusto Morais Sarmento Pato de Macedo

Contexto do Projeto

- Próteses Mioelétricas: Dispositivos que se propõem a repor parte da função perdida da mão, permitindo movimentos de preensão em pessoas com amputações.
- Desafio Atual: Potencializar a eficiência dos sistemas de reconhecimento de gestos para aumentar a usabilidade e a aceitação das próteses.
- Enquadramento: Open Source Bionic Hand.

Problema e Solução Proposta

- Problema: Limitações dos sensores EMG sensibilidade ao ruído eletromagnético, fadiga muscular e alterações de impedância na interface sensor-pele.
- Solução Proposta: Sistema bimodal que integra EMG e FMG maior robustez relativa à sudorese e fadiga muscular.

Objetivos

- Objetivo Principal: Implementar e testar a eficiência de um sistema bimodal de aquisição de sinais EMG-FMG para o controlo de uma mão biónica.
- Objetivos Específicos:
 - Aquisição simultânea de dados EMG e FMG;
 - Otimização das rotinas MATLAB de processamento de sinal;
 - Utilização das características extraídas para treinar e comparar modelos de Machine Learning.

Mãos biónicas comercias

Destacam-se, pela inovação, as seguintes: i-Limb, Bebionic Hand, Michelangelo Hand, DEKA Arm e Hero Arm.

i-Limb (2009)

Michelangelo (2011)

DEKA Arm (2014)

Hero Arm (2018)

Force Myography (FMG) em Próteses Biónicas

- FMG: técnica não-invasiva que usa sensores de força para detetar alterações na morfologia de músculos superficiais.
- FMG apresenta potencial promissor em próteses biónicas (Citi et al., 2016; Kadkhodayan et al., 2016; Radmand et al., 2016).(Citi et al., 2016; Kadkhodayan et al., 2016; Radmand et al., 2016).
- Interesse crescente na combinação com sEMG (Jaquier et al., 2017; Nowak et al., 2017; Xiao & Menon, 2017).
- Desafios: Complexidade de processamento, insuficiências técnicas, ...

Algoritmos de Classificação de Gestos

Classificadores lineares:

- Fronteira de decisão linear;
- Usados em situações em que a velocidade de classificação é uma preocupação;
- Simplicidade, eficiência computacional, interpretabilidade. Ex: Linear SVM, Logistic Regression, ...

Classificadores não-lineares:

- Usados em situações em que os dados não são linearmente separáveis;
- Complexos e potencialmente difíceis de interpretar;
- Exemplos: Redes Neurais, k-NN, SVM com kernels não-lineares, ...

Metodologia – População e Gestos Estudados

População estudada: 3 participantes não-amputados e saudáveis, sem restrições físicas. Seleção não baseada em idade ou género.

Gestos estudados: abertura da mão, fecho da mão (em punho), *3-point pinch*, *thumbs-up* e apontar.

Metodologia – Hardware e Software

Hardware:

- BITalino (r)evolution;
- 2 Sensores EMG do BITalino
- 2 FSR 402;

Software:

- OpenSignals;
- MATLAB;
- Classification Learner

Metodologia – Procedimento de Aquisição dos Sinais

- Condicionamento dos sinais FMG (1 vez)
- Aquisição dos sinais: Posicionamento dos sensores EMG e FSR, fixação dos sensores FSR, execução dos gestos pelos participantes com durações e intervalos específicos (1-3 s), e registo das ativações no software OpenSignals. Taxa de amostragem de 1000 Hz.

Dataset

- 70 ficheiros de aquisição válidos, com ~17 ativações por ficheiro: 14 abertura, 16 fecho, 11 *pinch*, 14 *thumbs-up* e 15 apontar.
- 1080 ativações válidas, distribuídas da seguinte forma: Abrir (212), fechar (225), *pinch* (158), *thumbs-up* (250), apontar (235)

Pipeline de Processamento dos Sinais

1. Filtragem de sinais EMG

Aplicação de um filtro passa-banda de 20 a 500 Hz aos sinais EMG.

Wavelet Denoising para reduzir o ruído nos sinais EMG.

2. Deteção de onset e offset da atividade muscular

A função onsetting deteta o início e fim das ativações.

Vetores de onsets e offsets de contração muscular.

3. Ativações correspondentes

Procura por ativações musculares coincidentes entre EMG das duas janelas (tolerância de 500 ms).

Os FMG têm os valores de onset/offset do EMG correspondente.

4. Extração de características

Para cada instância coincidente, são extraídas características dos sinais.

Características Extraídas

No total, extraímos 36 características - 12 EMG e 6 FMG para cada grupo muscular.

Característica	Descrição	Domínio	EMG	FMG
MAV (Mean Absolute Value)	A média dos valores absolutos do sinal.	Тетро	\	_ i
RMS (Root Mean Square)	LA raiz quadrada da média dos quadrados dos valores do sinal; uma medida da magnitude	¦ Tempo	; √	
	do sinal.	1 1	1 1	! !
STD (Standard deviation)	A medida de dispersão em torno da média do sinal.	Tempo		✓
IQR (Interquartile range)	A diferença entre o terceiro quartil e o primeiro quartil, dando uma ideia da dispersão	Tempo	\	
	dos dados.	i J	i 1	i _ J
WL (Waveform Length)	A soma das diferenças absolutas entre valores de sinal adjacentes.	l Tempo		
SSC (Slope Sign Changes)	O número de mudanças na inclinação do sinal.	Tempo		
IEMG (Integrated EMG)	A soma dos valores absolutos do sinal, indicando a força muscular.	Tempo		
KURT (Kurtosis)	A medida do achatamento do sinal, com relação à distribuição normal.	Tempo	\	
LOG (Log Detector)	l A medida da irregularidade do sinal.	¦ Tempo	· •	
MNF (Mean Frequency)	A média ponderada das frequências do sinal.	Frequência	\ \ \	
PKF (Peak Frequency)	A frequência onde a densidade espectral de potência do sinal atinge o máximo.	Frequência	\	
MNPSD (Mean Power	A média das potências em todas as frequências do sinal.	Frequência	✓]
Spectral Density)	i I	i J	i 1	i _J
Média	A média dos valores do sinal.	Tempo	1	
Mediana	O valor do meio do sinal quando ordenado.	Tempo	1	V

Seleção e Aplicação dos Classificadores

1. Comparação Inicial de Classificadores (33 modelos)

Comparação preliminar entre 33 modelos de classificação (accuracy).

2. Impacto da Seleção de Características (12 modelos)

mRMR, ANOVA, RefiefF, Chi2, Kruskall-Wallis, com 30, 24, ou 18 das 36 caraterísticas.

3. Ajuste de Hiperparâmetros

As melhores combinações de modelos foram refinadas com a otimização de hiperparâmetros.

4. Comparação de Desempenho vs. EMG/FMG

Estudo paralelo. Justificação?

Resultados – Comparação Inicial dos Classificadores

Os melhores classificadores foram Quadratic SVM (89,35% e 87,96%), Cubic SVM (89,24% e 87,96%), Weighted KNN (86,92% e 88,43%), e Fine KNN (86,69% e 86,57%).

Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59	Modelo	Accuracy % (Validação)	Accuracy % (Teste)
Coarse Tree 48,26 43,06 Linear Discriminant 74,07 75,46 Quadratic Discriminant 83,68 83,80 Efficient Logistic Regression 38,77 31,02 Efficient Linear SVM 62,85 68,06 Gaussian Naive Bayes 54,75 56,94 Kernel Naive Bayes 64,00 64,81 Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse Gaussian SVM 64,00 62,96 Fine KNN 80,30 85,22 Cosine KNN 80,56 84,26 Cubic KNN 80,30 85,65 Cosine KNN 80,26 88,43 Boosted Trees 73,73 68,52 <td>Fine Tree</td> <td>71,64</td> <td>74,07</td>	Fine Tree	71,64	74,07
Linear Discriminant 74,07 75,46 Quadratic Discriminant 83,68 83,80 Efficient Logistic Regression 38,77 31,02 Efficient Linear SVM 62,85 68,06 Gaussian Naive Bayes 54,75 56,94 Kernel Naive Bayes 64,00 64,81 Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse Gaussian SVM 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 80,56 84,26 Cubic KNN 80,56 84,26 Cubic KNN 80,96 86,52 Bagged Trees 73,73 68,5	Medium Tree	64,93	56,94
Quadratic Discriminant 83,68 83,80 Efficient Logistic Regression 38,77 31,02 Efficient Linear SVM 62,85 68,06 Gaussian Naive Bayes 54,75 56,94 Kernel Naive Bayes 64,00 64,81 Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse Gaussian SVM 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 80,56 84,26 Cubic KNN 80,56 84,26 Cubic KNN 80,96 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace KNN 67,48 67,59	Coarse Tree	48,26	43,06
Efficient Logistic Regression 38,77 31,02 Efficient Linear SVM 62,85 68,06 Gaussian Naive Bayes 54,75 56,94 Kernel Naive Bayes 64,00 64,81 Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse Gaussian SVM 60,30 65,28 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70	Linear Discriminant	74,07	75,46
Efficient Linear SVM 62,85 68,06 Gaussian Naive Bayes 54,75 56,94 Kernel Naive Bayes 64,00 64,81 Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02		83,68	83,80
Gaussian Naive Bayes 54,75 56,94 Kernel Naive Bayes 64,00 64,81 Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 80,56 80,56 Trilayered Neural Network 80,56 80,56 <t< td=""><td>Efficient Logistic Regression</td><td>38,77</td><td>31,02</td></t<>	Efficient Logistic Regression	38,77	31,02
Kernel Naive Bayes 64,00 64,81 Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56	Efficient Linear SVM	62,85	68,06
Linear SVM 72,69 74,54 Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,56 80,56	Gaussian Naive Bayes	54,75	56,94
Quadratic SVM 89,35 87,96 Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,99 75,46 SVM Kernel 63,89 67,13	Kernel Naive Bayes	64,00	64,81
Cubic SVM 89,24 87,96 Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 80,56 80,56 Trilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,99 75,46 SVM Kernel 63,89 67,1	Linear SVM	72,69	74,54
Fine Gaussian SVM 74,88 72,69 Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,99 75,46 SVM Kernel 63,89 67,13	Quadratic SVM	89,35	87,96
Medium Gaussian SVM 85,65 87,96 Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,60 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,99 75,46 SVM Kernel 63,89 67,13	Cubic SVM	89,24	87,96
Coarse Gaussian SVM 64,00 62,96 Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,99 75,46 SVM Kernel 63,89 67,13	Fine Gaussian SVM	74,88	I — — — — — — — — — — — — — — — — — — —
Fine KNN 86,69 86,57 Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,99 75,46 SVM Kernel 63,89 67,13	Medium Gaussian SVM	85,65	87,96
Medium KNN 83,80 85,65 Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,99 75,46 SVM Kernel 63,89 67,13	Coarse Gaussian SVM	64,00	62,96
Coarse KNN 60,30 65,28 Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,60 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Fine KNN	86,69	86,57
Cosine KNN 80,56 84,26 Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,60 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Medium KNN	83,80	85,65
Cubic KNN 81,02 83,80 Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Coarse KNN	60,30	65,28
Weighted KNN 86,92 88,43 Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Cosine KNN		84,26
Boosted Trees 73,73 68,52 Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Cubic KNN	81,02	83,80
Bagged Trees 85,88 83,33 Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Weighted KNN	86,92	88,43
Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Boosted Trees	73,73	68,52
Subspace Discriminant 70,95 69,91 Subspace KNN 67,48 67,59 RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Bagged Trees	85,88	83,33
RUSBoosted Trees 70,37 72,69 Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Subspace Discriminant	70,95	
Narrow Neural Network 79,51 78,70 Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Subspace KNN	67,48	67,59
Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13		70,37	72,69
Medium Neural Network 85,07 81,02 Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Narrow Neural Network	79,51	78,70
Wide Neural Network 88,43 82,41 Bilayered Neural Network 80,56 80,56 Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13			
Trilayered Neural Network 80,09 75,46 SVM Kernel 63,89 67,13	Wide Neural Network	88,43	
SVM Kernel 63,89 67,13	Bilayered Neural Network	80,56	80,56
	Trilayered Neural Network	80,09	75,46
Logistic Regression Kernel 57,99 60,65	SVM Kernel	63,89	67,13
	Logistic Regression Kernel	57,99	60,65

Resultados – Impacto da Seleção de Características

TESTE	Nenhum	mRMR (30)	mRMR (24)	mRMR (18)	Chi2 (30)	Chi2 (24)	Chi2 (18)	ReliefF (30)	ReliefF (24)	ReliefF (18)	ANOVA (30)	ANOVA (24)	ANOVA (18)	Kruskal (30)	Kruskal (24)	Kruskal (18)
Quadratic Discriminant	83.80	80.56	77.31	81.94	82.87	78.70	81.48	81.02	81.02	81.94	81.02	82.87	66.20	81.48	77.31	65.28
Quadratic SVM	88.43	84.72	85.19	84.72	86.57	85.65	85.65	86.57	87.96	85.65	87.96	86.11	79.17	87.04	85.19	79.17
Cubic SVM	87.96	87.04	86.57	86.11	89.35	88.43	90.28	90.28	90.28	88.89	88.89	88.43	81.48	87.50	87.50	83.80
Medium Gaussian SVM	87.96	87.04	85.65	86.57	87.04	84.72	85.19	87.96	87.96	86.11	86.11	85.65	76.39	87.04	86.11	78.24
Fine KNN	86.57	85.65	84.72	87.50	85.19	85.19	86.11	88.89	87.96	87.04	87.04	85.65	84.72	86.11	84.26	81.94
Medium KNN	85.65	<u> </u> 83.33	81.48	85.19	86.57	82.41	81.94	85.19	83.80	81.02	L 83.80	85.65	78.70	85.19	83.33	79.63
Cosine KNN	84.26	<u> </u> 84.26	77.78	81.02	83.33	81.94	82.41	87.96	84.72	82.41	84.72	84.26	75.00	83.80	81.48	75.00
Cubic KNN	83.80	<u> </u> 82.41	81.02	¦ 81.94	84.26	79.63	82.87	83.80	81.94	<u> </u> 80.09	L 82.41	83.33	77.31	83.80	80.09	77.78
Weighted KNN	88.43	<u> </u>	85.65	88.43	87.50	¦ 86.57	87.50	87.96	86.57	¦ 86.11	L 86.11	¦ 89.35	83.80	88.43	87.50	85.65
Bagged Trees	83.33	84.72	87.04	84.72	84.26	84.72	83.33	84.26	84.26	82.41	84.72	83.33	76.85	84.72	81.94	82.41
Medium Neural Network	85.65	79.17	81.48	¦ 82.41	81.02	79.63	81.02	81.02	85.19	79.17	84.72	83.33	76.39	82.87	80.56	76.39
Wide Neural Network	82.41	83.33	82.87	83.80	82.41	85.19	81.94	83.80	84.72	86.11	¦ 85.65	83.80	74.07	86.57	85.65	80.56

Os modelos Quadratic SVM, Cubic SVM, Fine KNN, e Weighted KNN mostraram robustez, face à redução do nº de caraterísticas. Quadratic Discriminant e Redes Neurais?

Resultados – Otimização de Modelos e Seleção de Características

Modelo	Seleção de Características	Validação Pré-ajuste	Teste	Validação Pós-ajuste	Teste
	 	 	Pré-ajuste	1 1 <u>1</u>	l Pós-ajuste
Quadratic SVM	Sem seleção	90,05%	88,43%	90,28%	88,89%
Quadratic SVM	ANOVA (30)	88,19%	87,96%	89,24%	87,50%
Quadratic SVM	ReliefF (30)	89,00%	86,57%	90,16%	87,50%
Cubic SVM	Sem seleção	89,35%	87,96%	90,51%	87,96%
Cubic SVM	ReliefF (30)	89,00%	90,28%	89,70%	88,89%
Cubic SVM	Chi2 (18)	86,23%	90,28%	86,00%	88,43%
Weighted KNN	Sem seleção	87,15%	85,65%	89,47%	90,74%
Weighted KNN	ReliefF (30)	87,26%	85,19%	90,05%	88,89%
Weighted KNN	ANOVA (30)	87,15%	84,72%	89,00%	87,04%
Fine KNN	Sem seleção	88,19%	86,57%	89,12%	90,74%
Fine KNN	ReliefF (30)	90,16%	<u>88,89%</u>	90,05%	88,89%
Fine KNN	¦ ANOVA (30)	89,70%	£ 87,04%	88,31%	<u>87,04%</u>
Wide Neural Network	Sem seleção	87,15%	<u>k</u> 82,41%	90,63%	<u> </u> 85,19%
Wide Neural Network	ReliefF (18)	86,00%	86,11%	89,81%	88,89%
Wide Neural Network	Chi2 (24)	85,30%	¦ 85,19%	89,58%	86,57%

Melhorias significativas no desempenho dos modelos após otimização de hiperparâmetros.

Wide Neural Network e os modelos KNN mostraram excelentes ganhos com o ajuste.

A vermelho estão destacadas as melhores combinações para cada modelo.

Resultados – Otimização de Modelos e Seleção de Características

Avaliação F-score (macro) e a área sob a curva ROC:

Todos os modelos apresentaram desempenho próximo, com destaque para o Weighted KNN pela robustez nas métricas. Interpretabilidade?

Modelo	Accuracy (Validação)	Accuracy (Teste)	F-Score (Validação)	F-Score (Teste)	ROC-AUC	ROC-AUC (Teste)
	! !		! 		(Validação)	
Quadratic SVM	90,28%	88,89%	0,9030	0,8858	0,9806	0,9710
Cubic SVM	89,00%	90,28%	0,8914	0,9046	0,9798	0,9751
Fine KNN	89,12%	90,74%	0,8926	0,9012	0,9331	0,9396
Weighted KNN	89,47%	90,74%	0,8956	0,9027	0,9816	0,9764
Wide NN	89,81%	88,89%	0,8974	0,8860	0,9839	0,9683

Resultados – Comparação entre Características EMG e FMG

Geralmente, combinar características EMG e FMG aumenta a eficácia da maioria dos classificadores.

Excepções:

Fine Gaussian SVM: Melhor desempenho utilizando exclusivamente características EMG.

Efficient Logistic Regression: Melhor desempenho com características FMG apenas.

Significado?

Licenciatura em Engenharia Biomédica – Bioeletrónica 2022/2023 Unidade Curricular de Projeto/Estágio

Classificador	Validaçã	Teste	,	Teste	3	Teste
	o (Todos		o (EMG)	(EMG)	o (FMG)	(FMG)
	os I	os	 			
	dados)	dados)				
Fine Tree	71,64				,	
Medium Tree	64,93	56,94	62,5	59,26	50,93	52,31
Coarse Tree	48,26	43,06	47,57	43,06	41,67	42,59
Linear Discriminant	74,07	75,46	62,96		50,69	53,24
Quadratic Discriminant	83,68	83,8	73,15	72,69	55,32	57,41
Efficient Logistic	38,77	31,02	34,72	26,85	47,92	50,93
Regression	30,77	51,02	J 1,72	20,03		
Efficient Linear SVM	62,85	68,06	56,02	55,56	47,57	46,70
Gaussian Naive Bayes	54,75	56,94	48,96	51,85	49,19	50,40
Kernel Naive Bayes	64	64,81	58,45	57,41	49,65	49,0
Linear SVM	72,69	74,54	65,16	65,74	52,43	52,78
Quadratic SVM	89,35	87,96	79,28	75	65,16	68,0
Cubic SVM	89,24	87,96	79,4	79,63	70,49	70,3
Fine Gaussian SVM	74,88	72,69	75,93	75,46	66,32	68,0
Medium Gaussian SVM	85,65	87,96	73,15	75,46	56,83	58,3
Coarse Gaussian SVM	64	62,96	53,36	52,31	47,11	45,8
Fine KNN	86,69	86,57	74,88	80,09	65,05	63,4
Medium KNN	83,8	85,65	73,03	76,85	62,73	63,8
Coarse KNN	60,3	65,28	58,8	57,41	52,2	51,8
Cosine KNN	80,56	84,26	71,06		60,53	57,4
Cubic KNN	81,02	83,8	70,37	70,83	62,38	62,0
Weighted KNN	86,92	88,43	75,58	77,31	67,25	64,8
Boosted Trees	73,73	68,52	69,68	70,37	53,47	58,
Bagged Trees	85,88	83,33	76,97	81,94	65,05	65,74
Subspace Discriminant	70,95	69,91	62,85	62,96		51,8
Subspace KNN	67.49	67,59	60,3	65,28	55,67	55,0
RUSBoosted Trees	70,37	72,69	68,06	67,59	54,63	53,
Narrow NN	70,37	78,7	73,96	74,54		68,5
Medium NN	85,07	81,02	74,54	75	59,49	60,1
Wide NN	88,43	82,41	78,47	79,17	67,25	68,0
Bilayered NN	80,56		72,22		60,76	
Trilayered NN	80,09	75,46	67,94	78,24	60,19	59,7
SVM Kernel	63,89					53,2
	,07		,		5:53	19

Discussão

- Os resultados reforçam a ideia de que a combinação de EMG e FMG permite aprimorar a eficiência dos modelos de Machine Learning no reconhecimento de gestos.
- Os modelos Quadratic SVM, Cubic SVM, Weighted KNN e Fine KNN tiveram um desempenho notável em accuracy, F-score e área sob a curva ROC. Além disso destacaram-se pela robustez face à seleção de caraterísticas.
- A otimização de hiperparâmetros melhorou significativamente o desempenho dos modelos KNN e das Redes Neurais.
- Limitações do trabalho: fixação dos sensores FSR, repetibilidade do posicionamento dos sensores.

Conclusões

- Este estudo contribui para o campo das próteses mioelétricas, explorando a implementação e testando a eficiência de um sistema bimodal de aquisição de sinais EMG-FMG para o controlo de uma mão biónica.
- Modelos Quadratic SVM, Cubic SVM, Weighted KNN e Fine KNN mostraram uma forte capacidade de distinguir entre os diferentes gestos.
- Os resultados reforçam a ideia de que a combinação de EMG e FMG pode aprimorar a eficiência dos modelos de Machine Learning no reconhecimento de gestos.

Trabalho Futuro

- É importante considerar as limitações de estudo: houve dificuldades na fixação dos sensores FSR e na repetibilidade do posicionamento dos sensores.
- Realização de estudos com conjuntos de teste mais amplos para garantir uma maior representatividade e robustez dos resultados.
- Aprimorar o sistema de fixação dos sensores para torná-lo mais robusto e testar diferentes configurações no posicionamento dos sensores, de forma a melhorar confiabilidade e a aplicabilidade dos resultados.

Referências

- Citi, L., Vidoni, R., Menon cmenon, C., Cho, E., Chen, R., Merhi, L.-K., Xiao, Z., Pousett, B., & Menon, C. (2016). Force Myography to Control Robotic Upper Extremity Prostheses: A Feasibility Study. 4.
 https://doi.org/10.3389/fbioe.2016.00018
- Jaquier, N., Connan, M., Castellini, C., & Calinon, S. (2017). Combining Electromyography and Tactile Myography to Improve Hand and Wrist Activity Detection in Prostheses. *Technologies*, *5*, 64. https://doi.org/10.3390/technologies5040064
- Kadkhodayan, A., Jiang, X., & Menon, C. (2016). Continuous Prediction of Finger Movements Using Force Myography. *Journal of Medical and Biological Engineering*, *36*(4), 594–604. https://doi.org/10.1007/s40846-016-0151-y
- Nowak, M., Eiband, T., & Castellini, C. (2017). Multi-modal myocontrol: Testing combined force- and electromyography. *IEEE ... International Conference on Rehabilitation Robotics : [proceedings]*, 2017, 1364–1368. https://doi.org/10.1109/ICORR.2017.8009438

Referências

- Radmand, A., Scheme, E., & Englehart, K. (2016). High-density force myography: A possible alternative for upper-limb prosthetic control. *Journal of Rehabilitation Research and Development*, *53*, 443–456. https://doi.org/10.1682/JRRD.2015.03.0041
- Xiao, Z. G., & Menon, C. (2017). Performance of Forearm FMG and sEMG for Estimating Elbow, Forearm and Wrist Positions. *Journal of Bionic Engineering*, 14(2), 284–295. https://doi.org/https://doi.org/10.1016/S1672-6529(16)60398-0

OBRIGADO!

Nuno Pires – 2019125486 a2019125486@isec.pt