

Informations structurées

Interface : définition théorique d'une structure de données.

Implémentation: mise en œuvre concrète, pratique, de l'interface dans un langage de programmation en particulier.

Radiateur
Livre rouge
Tableau
blanc
bleu

Informations bruts

Interface		Exemple d'implémentation	
type abstrait liste		liste chaînée (python)	
Classe en POO		Définition d'une classe (python)	
Schéma d'une base de données relationnels		Table SQL	
Le plan de votre maison de rêve		Le plan de l'architecte avec le choix des matériaux	

∀				
Objet	Couleui			
Radiateur	bleu			
Livre	rouge			
Tableau	blanc			

Données structurées

Programmation orientée objet (POO):

- Basée sur les concepts de classe, attribut, méthode et objet
- Paradigme de programmation

Autres paradigmes: programmation impérative, programmation fonctionnelle

	Définition		Métaphore culinaire	Métaphore architecturale
Classe	Définition des c d'objets et des fond	aractéristiques d'un enser ctions associées	mble Le moule et la recette	Plan d'un studio
Objet	concept. Il est cara	ment du monde physique o ctérisé par une structure int mportement (méthodes).		Réalisation d'un studio
Attribut	Paramètres d'un o	ojet de la classe	Poid, temps cuisson	Taille, région
Méthode	Fonction associée	à une classe	Découper, ajouter une bougie	Louer, estimer la valeur
POO	avec python	1 class <u>Pays</u> :		
Docstring (a	uide utilisateur) —	drapeau (^I chemin d'un fi 5 par les méthodesinit 6 """	chier image), continent (st	
	Constructeur —	7		
	Méthodes —	13	n + " est un pays (" + self. rigé par un roi." n + " est un pays (" + self. pas dirigé par un roi."	
	tion d'un objet — 1 des méthodes —	def est_en_afrique(self return self.contine 23	nt == "Afrique" Océanie", "drapeau_tokelau. De())	.png", True) Adrien Taudière

- Construire (i) une liste vide, (ii) une liste à partir d'autres listes ;
- Accéder aux valeurs de la liste (via sa tête ou sa queue) ;
- Tester si une liste est vide.

Différentes implémentations du type abstrait liste :

- Liste chaînée (implémentation la moins gourmande en mémoire) ;
- Tableau dynamique (cas de l'implémentation sous python);
- Pile et File

TYPES CONSTRUITS (rappel première)

Tableaux Objet **mutable** (c.-à-d. modifiable) qui liste des objets de **tout type** y compris d'autres objets complexes (par ex. des tupples)

notes Joe Dalton = ["Dalton", "Joe", "01/01/1750", 12, 10, 15]

Daltons = [["Dalton", "Joe", "31 ans"], ["Dalton", "Jack", "31 ans"]]

Tableau 1

Tableau 2

Tupple Objet **immutable** (c.-à-d. non modifiable) qui liste des objets de **(p-upplet) tout type** y compris d'autres objets complexes

notes_Joe_Dalton = ("Dalton", "Joe", "01/01/1750", 12, 10, 15)

notes_Joe_Dalton = (["Dalton", "Joe", "01/01/1750"], [12, 10, 15])

Tableau 1

Tableau 2

Dictionnaires Objet **mutable** dont les **éléments sont indexés** par des couples clés (**keys**) - valeurs (**values**).

notes_Joe_Dalton = {"Nom" = "Dalton", Prénom" = "Joe", "Date de naissance" = "01/01/1750", "Note NSI" = 12, "Note" = 10}

KEY VALUE

Implémentation d'une pile en python

TYPES DE BASE (rappel première)

- int (integer) pour les variables constituées de nombres entiers,
- float pour les variables constituées de nombres décimaux (à virgule),
- str pour les variables constituées de chaînes de caractères
- bool pour les variables constituées de booléens (True/False)

Structure de données (3)

STRUCTURE EN ARBRE

Un arbre est constitué de :

- Nœuds dont un nœud est la racine et les nœuds à l'opposé sont des feuilles ;
- Branches qui relient les nœuds.

Il ne peut pas y avoir plusieurs chemins entre des nœuds dans un arbre.

Un nœud est caractérisé par :

- Son statut de racine ou de feuille ;
- Son degré : nombre de descendants (fils).

• Arbre de taille 9, de hauteur 4 et de degré 3

Pas un arbre (présence d'un cycle)

1 class Noeud: def init (self, valeur, gauche, droit): self.n = valeur self.q = gauche 5 self.d = droit 6 7 class ArbreBinaire: def init (self, c): 9 self.r = c10 def creeVide(): 11 return ArbreBinaire(None) 12 def creeNGD(valeur, gauche = None, droit = None): 13 return ArbreBinaire(Noeud(valeur, gauche, droit)) 14 def estVide(self): 15 return self.r is None 16 def racine(self): 17 assert not(self.r is None), 'Arbre vide' 18 return self.r.n 19 def filsGauche(self): 20 assert not(self.r is None), 'Arbre vide' 21 return self.r.g 22 def filsDroit(self): 23 assert not(self.r is None), 'Arbre vide' 24 return self.r.d

Un arbre est caractérisé par :

- Sa hauteur : nombre de nœuds qui constituent la branche contenant le plus de nœuds ;

- Sa taille: nombre de nœuds:
- Son degré : plus grand des degrés de ses noeuds.

Un arbre binaire est un arbre de degré 2. Un arbre binaire peut être défini comme une récursion d'arbres soit vide, soit ayant pour descendant un sous-arbre gauche et un sous arbre droit.

Un arbre binaire de recherche est un arbre binaire dont les nœuds possédent une valeur (*int* ou *str*). Ces valeurs sont triées afin de faire des recherches avec la valeur du fils gauche toujours inférieure ou égale à celle du nœud père et la valeur du fils droit toujours supérieure ou égale.

Une implémentation d'arbres binaires doit permettre un certain nombre d'opérations :

- Construire un arbre vide;
- Tester si un arbre est vide;
- Construire un arbre à partir d'un entier et de deux sous-arbres gauche et droit ;
- Accèder à la racine d'un arbre ;
- Accèder au sous-arbre gauche et droit.

