Université Sultan Moulay Slimane Faculté Polydisciplinaire Khouribga

Examen de Rattrapage Durée: 1h30

A.U. 2019-2020

Filière: SMA/SMI Module: Analyse 1

- Les documents et téléphones portables sont formellement interdits.
- Les calculatrices sont à usage personnel.

Questions de cours.(4pts)

- (1) Rappeler la définition de la densité d'un ensemble D dans \mathbb{R} .
- (2) Montrer que \mathbb{Q} est dense dans \mathbb{R} .

Exercice 1.(4pts)

Calculer la borne supérieure, la borne inférieure, le maximum et le minimum, s'ils existent, des ensembles suivants:

$$\mathcal{N} = \left\{ 1 + \frac{1}{n}, \ n \in \mathbb{N}^* \right\}, \quad \mathcal{X} = [-1, \sqrt{2}] \cap \mathbb{Q}$$

Exercice 2.(6pts)

Soit $a, b \in \mathbb{R}$ tels que 0 < b < a. On définit les suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ par

$$x_0 < y_0 \text{ et } \begin{cases} x_{n+1} = \frac{ax_n + by_n}{a+b} \\ y_{n+1} = \frac{ay_n + bx_n}{a+b} \end{cases}$$

- (1) Montrer que $x_n < y_n$ pour tout $n \in \mathbb{N}$.
- (2) Etudier la monotonie des suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$.
- (3) On pose $t_n = y_n x_n$. Démontrer que $(t_n)_n$ est une suite géométrique dont on précisera la raison. En déduire que les suites $(x_n)_n$ et $(y_n)_n$ sont adjacentes.
- (4) Exprimer $x_{n+1} + y_{n+1}$ en fonction de $x_n + y_n$. Que peut-on déduire?
- (5) Justifier que les suites $(x_n)_n$ et $(y_n)_n$ sont convergentes et calculez leur limite.

Exercice 3. (6pts)

On appelle sécante hyperbolique la fonction, notée sch, et définie par

$$sch(x) = \frac{1}{\cosh(x)}$$

- (1) Déterminez l'ensemble de définition D de la fonction **sch** et étudiez sa parité.
- (2) Etudiez la dérivabilité de la fonction sch et exprimez sa dérivée en fonction de tanh.
- (3) Montrez que la restriction de sch à l'intervalle $[0, +\infty[$ induit une bijection sur un intervalle J à préciser. On note Argsch sa bijection réciproque.
- (4) Donnez les ensembles de continuité et de dérivabilité de *Argsch*. Puis montrrer que

$$(Argsch(x))' = \frac{-1}{x\sqrt{1-x^2}}$$

(Vous pouvez commencer par montrer que: $\tanh(x) = \sqrt{1 - sch^2(x)}, \quad \forall x \in [0, +\infty[)$