SI231b: Matrix Computations

Lecture 13: Eigenvalue Computations

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 27, 2020

MIT Lab, Yue Qiu

Recap: Eigenvalue Revealing Decomposition

Factorize a matrix to a form in which eigenvalues are explicitly displayed

- ▶ Diagonalization, $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$, exists if and only if \mathbf{A} is nondefective.
- ightharpoonup Schur decompositon, $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^H$ always exists.
- ▶ Jordan canonical form, $A = SJS^{-1}$ always exists (will not be introduced in our lecture), where

$$\mathbf{J} = egin{bmatrix} \mathbf{J}_1 & & & & & \ & \mathbf{J}_2 & & & & \ & & \ddots & & & \ & & & \ddots & & \ & & & \mathbf{J}_k \end{bmatrix}$$

with

$$\mathbf{J}_i = egin{bmatrix} \lambda_i & & & & & \ & \lambda_i & & & \ & & \ddots & & \ & & & \lambda_i \end{bmatrix}, \quad ext{or} \quad \mathbf{J}_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & \ddots & & \ & & \ddots & 1 & & \ & & \lambda_i \end{bmatrix}$$

Outline

- ► Facts About Eigenvalues
- ▶ Power Iteration
- ► Inverse Iteration
- ▶ QR Iteration
- ▶ QR Iteration with Hessenberg Reduction

MIT Lab, Yue Qiu

Some Facts About Eigenvalues

- ► Eigenvalues of Hermitian matrices are real
- ► Eigenvalues of real symmetric matrices are real
- ► Eigenvectors of real symmetric matrices are also real
- ► Complex eigenvalues of real matrices appear in conjugate pair.
 - For $\mathbf{A} \in \mathbb{R}^{n \times n}$, if (λ, \mathbf{v}) is an eigenpair, then also $(\lambda^*, \mathbf{v}^*)$
- ightharpoonup Skew-Hermitian matrices ($\mathbf{A}=-\mathbf{A}^H$) have only pure imaginary eigenvalues
- ► Hermitian/real symmetric matricres are diagonalizable.

Power Iteration

The Largest Eigenvalue and Associated Eigenvector

Let
$$\mathbf{A} \in \mathbb{C}^{n \times n}$$
 be diagonalizable, i.e., $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$ with $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$, and $\Lambda = \operatorname{diag}(\lambda_1, \ \lambda_2, \ \cdots, \ \lambda_n)$. Assume that $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$.

The following iteration generates a sequence of $(\lambda^{(k)}, \mathbf{q}^{(k)})$ that converges to $(\lambda_1, \mathbf{v}_1)$.

Power Iteration:

$$\begin{array}{l} \text{random selection } \mathbf{q}^{(0)} \in \mathbb{C}^n \\ \text{for } k=1, \ 2, \ \cdots \\ \mathbf{z}^{(k)} = \mathbf{A}\mathbf{q}^{(k-1)} \\ \mathbf{q}^{(k)} = \frac{\mathbf{z}^{(k)}}{\|\mathbf{z}^{(k)}\|_2} \\ \lambda^{(k)} = (\mathbf{q}^{(k)})^H \mathbf{A}\mathbf{q}^{(k)} \end{array}$$

MIT Lab, Yue Qiu

Convergence of Power Iteration

The Power Iteration can only compute the largest eigenvalue and associated eigenvector with convergence rate

$$|\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

- $\blacktriangleright \|\mathbf{q}^{(k)} \mathbf{v}_1\| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$
- ▶ can have slow convergence when λ_2 is close to λ_1 in magnititude, i.e., $\left|\frac{\lambda_2}{\lambda_1}\right|$ is close to 1.
- \blacktriangleright convergence can be made faster by using a shift μ with

$$\left|\frac{\lambda_1 - \mu}{\mu - \lambda_j}\right| < \left|\frac{\lambda_2}{\lambda_1}\right|,$$

together with *Inverse Iteration*. Here λ_1 and λ_j are the closest and second closest eigenvalues to μ .

 ✓ □ →

Inverse Iteration

Suppose μ is not an eigenvaue of ${\bf A}$, the inverse iteration is given by

Inverse Iteration:

random selection
$$\mathbf{q}^{(0)} \in \mathbb{C}^n$$

for $k = 1, 2, \cdots$
 $\mathbf{z} = (\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{q}^{(k-1)}$ solve $(\mathbf{A} - \mu \mathbf{I}) \mathbf{z} = \mathbf{q}^{(k-1)}$
 $\mathbf{q}^{(k)} = \frac{\mathbf{z}}{\|\mathbf{z}\|_2}$
 $\lambda^{(k)} = (\mathbf{q}^{(k)})^H \mathbf{A} \mathbf{q}^{(k)}$
end

- lacktriangle compute the eigenvalue closest to μ
- convergence rate

$$\left| \frac{\mu - \lambda_j}{\mu - \lambda_k} \right|$$

where λ_j and λ_k are the closest and second closest eigenvalues to μ .

Efficiency per iteration vs Number of iterations?

MIT Lab. Yue Qiu SIR31b: Matrix Computations, Shanghailledn Oct. 27, 2020

QR Iteration

QR Iteration:

$$\mathbf{A}^{(0)} = \mathbf{A}$$
 for $k=1,\ 2,\ \cdots$
$$\mathbf{Q}^{(k)}\mathbf{R}^{(k)} = \mathbf{A}^{(k-1)} \quad \text{QR factorization of } \mathbf{A}^{(k-1)}$$

$$\mathbf{A}^{(k)} = \mathbf{R}^{(k)}\mathbf{Q}^{(k)}$$
 end

Facts:

- $ightharpoonup A^{(k)}$ is similar to A (why?)
- ightharpoonup Eigenvalues of $\mathbf{A}^{(k)}$ should be easier to compute than that of \mathbf{A} .
- ► **A**^(k) should converge fast (expected) to a form whose eigenvalues are easily computed.

Challenges of QR Iteration

For an $n \times n$ matrix **A**, each iteration requires $\mathcal{O}(n^3)$ flops to compute the QR factorization.

► too computational expensive!

Motivation: perform similarity transform **A** to an upper Hessenberg form (zeros below the first subdiagonal), i.e., $\mathbf{Q}^H \mathbf{A} \mathbf{Q} = \mathbf{H}$ where

Advantage: QR factorization of an upper Hessenberg matrix requires $\mathcal{O}(n^2)$ flops (why?).

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech

QR Iteration with Hessenberg Reduction:

$$\mathbf{A}=\mathbf{Q}^H\mathbf{H}\mathbf{Q}$$
, $\mathbf{A}^{(0)}=\mathbf{H}$ for $k=1,\ 2,\ \cdots$
$$\mathbf{Q}^{(k)}\mathbf{R}^{(k)}=\mathbf{A}^{(k-1)} \quad \text{QR factorization of } \mathbf{A}^{(k-1)}$$

$$\mathbf{A}^{(k)}=\mathbf{R}^{(k)}\mathbf{Q}^{(k)}$$
 end

Key: $\mathbf{A}^{(k)}$ is of upper Hessenberg form (how to preserve?)

by using Givens rotations to compute the QR factorization (how to prove?)

Benefit: $\mathcal{O}(n^2)$ flops for QR factorization.

Hessenberg Reduction

For an $n \times n$ matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$.

A Naive Try

Let \mathbf{Q}_1 be the Householder reflection matrix that reflects \mathbf{a}_1 to $-\text{sign}(\mathbf{a}_1(1))\|\mathbf{a}_1\|_2\mathbf{e}_1$,

Mission failed!

Less Ambitious Try

Let $\tilde{\mathbf{a}}_1 = \mathbf{A}(2:n,1)$ and \mathbf{Q}_1 be the Householder reflection matrix that reflects $\tilde{\mathbf{a}}_1$ to $-\text{sign}(\tilde{\mathbf{a}}_1(1)) \|\tilde{\mathbf{a}}_1\|_2 \mathbf{e}_1$,

Repeat the above procedure to the 2nd column of $\mathbf{Q}_1 \mathbf{A} \mathbf{Q}_1^H \cdots$

Hessenberg Reduction

Given an $n \times n$ matrix **A**, the following algorithm reduces **A** to an upper Hessenberg form.

Hessenberg Reduction:

```
for k = 1: n - 2

\mathbf{x} = \mathbf{A}(k+1:n, k)

\mathbf{v}_k = \operatorname{sign}(\mathbf{x}(1)) || \mathbf{x} ||_2 \mathbf{e}_1 + \mathbf{x}

\mathbf{v}_k = \frac{\mathbf{v}_k}{|| \mathbf{v}_k ||_2}

\mathbf{A}(k+1:n,k:n) = \mathbf{A}(k+1:n,k:n) - 2\mathbf{v}_k(\mathbf{v}_k^H \mathbf{A}(k+1:n,k:n))

\mathbf{A}(1:n,k+1:n) = \mathbf{A}(1:n,k+1:n) - 2(\mathbf{A}(1:n,k+1:n)\mathbf{v}_k)\mathbf{v}_k^H

end
```

Readings

You are supposed to read

► Lloyd N. Trefethen and David Bau III. *Numerical Linear Algebra*, SIAM, 1997.

Lecture 25, 26