PERSAMAAN KUADRAT

Pengertian Persamaan Kuadrat

Bentuk Umum Persamaan Kuadrat

$$ax^2 + bx + c = 0$$

Dimana a, b, c ϵ R dan a \neq 0.

- ❖ Cara- cara Menyelesaikan Persamaan Kuadrat
 - a. Memfaktorkan

untuk bentuk $ax^2 + bx + c = 0$), maka kalian harus menentukan dua buah bilangan yang jumlahnya $\,b\,$ dan hasil kalinya $\,c\,$

b. Melengkapkan kuadrat sempurna
 ialah mengubah suatu bentuk kuadrat menjadi bentuk
 kuadrat sempurna.

Misalnya $x^2 - 2x$ diubah menjadi bentuk kuadrat sempurna $x^2 - 2x + 1 = (x - 1)$

c. Menggunakan rumus kuadrat

Nilai diskriminan (D)

Jika b2 - 4ac < 0 maka persamaan kuadrat tidak memiliki penyelesaian

Jika b2 Jika b2-4ac = 0 maka persamaan kuadrat memiliki tepat satu penyelesaian

 $\label{eq:Jikab2-4ac} \mbox{Jika b2-4ac} > 0 \mbox{ maka persamaan kuadrat memiliki dua} \\ \mbox{penyelesaian}$

Menyusun Persamaan Kuadrat

Untuk akar-akar sebuah persamaan yang telah diketahui.

- > Memakai fal $(x x_1)(x x_2) = 0$
- ➤ Memakai rumus jumlah dan hasil kali akar-akar Diperoleh dari penjumlahan dan perkalian rumus abc

$$x_1 + x_2 = \frac{-b + \sqrt{b2 - 4ac}}{2a} + -\frac{b - \sqrt{b2 - 4ac}}{2a}$$

$$\begin{array}{rcl} & = & - \underline{2b} \\ & & \underline{2a} \\ & = & \underline{-b} \\ & a \\ x_1 \, x \, x_2 & = & \underline{-b} \, + \sqrt{b2 - 4ac} \ x \, - \underline{b} \, - \sqrt{b2 - 4ac} \\ & \underline{2a} & \underline{2a} \end{array}$$

$$= \frac{b^2 - (b^2 - 4 ac)}{4a^2}$$
$$= \frac{4ac}{4a^2}$$
$$= \underline{c}$$

Sehingga dapat dinyatakan Contoh 1:

$$x^2 - (x_1 + x_2) x + x_1.x_2 = 0$$

 \odot Bagaimana merubah persamaan $2x^2 = 3x - 8$ ke dalam bentuk umum???

Penyelesaian : $2x^2 = 3x - 8$

$$<=> 2x^2 - 3x = 3x-3x - 8$$
 (kedua ruas dikurangi 3x)
 $<=> 2x^2 - 3x = -8$
 $<=> 2x^2 - 3x + 8 = -8 + 8$ (kedua ruas ditambah 8)
 $<=> 2x^2 - 3x + 8 = 0$
Jadi a = 2, b = -3 dan c = 8

Contoh 2:

Cara memfaktorkan

Contoh:
$$x^2 - 5x + 6 = 0$$

 $\langle = \rangle (x-2)(x-3) = 0$
 $\langle = \rangle x - 2 = 0$ atau $x - 3 = 0$
 $\langle = \rangle x = 2$ atau $x = 3$
Sehingga himpunan penyelesaiannya adalah $\{2, 3\}$

Contoh 3

Cara Melengkapakan Kuadrat

Contoh : Menentukan himpunan penyelesaian dari persamaan $x^2 + 2x - 15 = 0$!

Jawab :
$$x^2 + 2x - 15 = 0$$

 $x^2 + 2x = 15$

Agar $x^2 + 2x$ menjadii bentuk kuadrat sempurna, harus ditambah dengan kuadrat dari setengah koefisien $x + (\frac{1}{2}x \ 2)^2 = 12 = 1$ Dengan menambahkan 1 pada kedua ruas, diperoleh

•

$$x^{2} + 2x + 1 = 15 + 1$$

 $<=> (x + 1)^{2} = 16$
 $<=> x + 1 = \pm \sqrt{16}$
 $<=> x + 1 = \pm 4$
 $<=> x + 1 = 4 \text{ atau } x + 1 = -4$
 $<=> x = 4 - 1 \text{ atau } x = -4 - 1$

<=> x = 3 atau x = -5

Jadi, himpunan penyelesaiannya adalah {3, -5}

Contoh 4

a. Menggunakan rumus kuadrat

Menentukan himpunan penyelesaian persamaan $x^2 + 4x - 12 = 0$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$a = 1 \quad b = 4 \quad c = -12$$

penyelesaian

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$<=> x_{1,2} = \frac{-4 \pm \sqrt{42 - 4 \times 1x (-12)}}{2 \times 1}$$

 $<=> x_{1,2} = \frac{-4 \pm \sqrt{16 + 48}}{2}$

$$\iff x_{1,2} = \frac{-4 \pm \sqrt{64}}{2}$$

<=>
$$x_{1,2} = \frac{-4 \pm 8}{2}$$
<=> $x_{1,2} = \frac{-4 + 8}{2}$ atau $x_{1,2} = \frac{-4 - 8}{2}$
<=> $x_1 = 2$ atau $x_2 = -6$ jadi himpunan penyelesaiannya adalah $\{-6, 2\}$

PERTIDAKSAMAAN

A.1. Pengantar

Pertidaksamaan muncul dari kasus-kasus sebagai berikut :

- i. Tidak kurang dari 700 siswa gagal dalam Ujian Akhir Nasional (UAN) tahun
 ini. Pernyataan ini secara matematis ditulis sbb:
 - $x \ge 700$, x = Banyaknya siswa yang gagal UAN
- ii. Pada jalan tertentu tertulis rambu "Beban maksimum 4 ton ". Pernyataan ini dapat ditulis sbb: $b \le 4$, b = Beban
- iii. Steven mendapatkan nilai 66 dan 72 pada dua tes yang lalu. Jika ia ingin mendapatkan nilai rata-rata paling sedikit 75, berapa nilai tes ketiga yang harus ia peroleh?.

Persoalan ini dapat ditulis
$$\frac{66+72+x}{3} \ge 75$$

Kalimat matematika di atas yang menggunakan tanda-tanda <, >, \le dan \ge dinamakan pertidaksamaan.

A.2. Notasi/Simbol

Simbol/Notasi	Garis Bilangan
x > a	a
x ≥ a	a
x < a	a
$x \le a$	a
$a \le x \le b$	a b
x < a atau	
$x \ge b$	a b

Simbol > artinya " lebih dari "

Simbol ≥ artinya " lebih dari atau sama dengan "

Simbol < artinya " kurang dari "

Simbol ≤ artinya " kurang dari atau sama dengan "

A.3. Sifat-sifat Pertidaksamaan

1. Untuk setiap bilangan real x, y, z berlaku jika x > y dan y > z maka x > z.

Contoh:
$$x = 10$$
, $y = 5$ dan $z = 2$ maka $10 > 5$, $5 > 2$ maka $10 > 2$
 $x = 1$, $y = 0$ dan $z = -4$ maka $1 > 0$, $0 > -4$ maka $1 > -4$

2. Untuk setiap dua bilangan real x dan y dan a sembarang bilangan, maka berlaku:

$$\Phi \text{ Jika } x > y \text{ maka } \begin{cases} x + a > y + a \\ x - a > y - a \end{cases}$$

♦ Jika x > y maka
$$\begin{cases} x + a > y + a \\ x - a > y - a \end{cases}$$

 Contoh: x=7, y=5, a=3 → 7>5 maka
$$\begin{cases} 7 + 3 > 5 + 3 \\ 7 - 3 > 5 - 3 \end{cases}$$

 x=7, y=5, a= -4 → 7>5 maka
$$\begin{cases} 7 + (-4) > 5 + (-4) \\ 7 - (-4) > 5 - (-4) \end{cases}$$

 ♦ Jika x < y maka
$$\begin{cases} x + a < y + a \\ x - a < y - a \end{cases}$$

$$\Phi \text{ Jika } x < y \text{ maka } \begin{cases} x + a < y + a \\ x - a < y - a \end{cases}$$

3. Untuk setiap dua bilangan real x dan y dan a sembarang bilangan, maka berlaku:

$$\Phi$$
 untuk a > 0 (positif), Jika x > y, maka

Contoh: x=5, y=2 dan a=3, berlaku
$$5>2 \text{ maka } 3(5)>3(2) \text{ dan } \frac{5}{3}>\frac{2}{3}$$

$$\text{ax}>ay$$

$$\frac{x}{a}>\frac{y}{a}$$

$$\text{ax}

$$\frac{x}{a}<\frac{y}{a}$$

$$\frac{x}{a}<\frac{y}{a}$$$$

$$\Phi$$
 untuk a < 0 (negatif), Jika x > y, maka

Contoh: x=5, y=2 dan a=-3, berlaku

$$5>2$$
 maka $-3(5)<-3(2)$ dan $\frac{5}{-3}<\frac{2}{-3}$

Sifat-sifat pertidaksamaan di atas dipakai untuk menyelesaikan pertidaksamaan.

B. PERTIDAKSAMAAN LINEAR

Pertidaksamaan linear adalah pertidaksamaan pangkat satu.

Contoh:

1. Selesaikan : $7x + 21 \ge 14$

$$\Leftrightarrow 7x + 21 - 21 \ge 14 - 21$$
 (tambahkan -21 pada kedua ruas)

 $\Leftrightarrow 7x \ge -7$ (bagilah kedua ruas dengan 7)

$$\Leftrightarrow$$
 $x \ge -1$

Dalam bentuk garis bilangan

2.
$$\frac{4x-7}{3} < \frac{5+2x}{4}$$

(kalikan 12 pada kedua ruas)

$$\Leftrightarrow$$
 4(4x-7) < 3(5+2x)

$$\Leftrightarrow 16x - 28 < \dots$$
 (tambahkan 6x+28 pada kedua ruas)

$$\Leftrightarrow$$
 10x < 33

Dalam bentuk garis bilangan

C. PERTIDAKSAMAAN KUADRAT

Untuk setiap x, y bilangan real berlaku:

- Φ Jika x.y > 0 maka x > 0 dan y > 0 <u>atau</u> x < 0 dan y < 0
- Φ Jika x.y < 0 maka x > 0 dan y < 0 <u>atau</u> x < 0 dan y > 0
- 1. Selesaikan $2x^2 x 3 \ge 0$

Faktorkan: $(.....)(.....) \ge 0$

Nilai nol x =	$\frac{3}{2}$	atau $x = -$	1
---------------	---------------	--------------	---

2x-3	negatif	negatif	positif
x+1	negatif	positif	positif
(2x-3)(x+1)	positif	negatif	positif

Jadi {
$$x \mid x \le -1$$
 atau $x \ge \frac{3}{2}$, $x \in \mathbb{R}$ }

Cara lain:

Jadi penyelesaiannya $\{ x \mid x \le -1 \text{ atau } x \ge \frac{3}{2}, x \in R \}$

2. Selesaikan : $2x + 4 \le 2x^2 < 2x + 12$

$$\Leftrightarrow$$
 $2x + 4 \le 2x^2$ dan $2x^2 < 2x + 12$

Penyelesaiannya: {}

F. PERTIDAKSAMAAN HARGA MUTLAK

- Φ Ingat $|x| = \begin{cases} x, \ jika \ x \ge 0 \\ -x, \ jika \ x < 0 \end{cases}$ atau $|x| = \sqrt{x^2}$
- Φ |x-1| < 2 artinya jarak x terhadap 1 kurang dari 2
- $|x+1| > 2 \Leftrightarrow |x-(-1)| > 2$ Artinya jarak x dari titik -1 lebih dari 2

Jadi |x - a| < b artinya jarak x dari a adalah kurang dari b atau nilai x dikurangi a terletak antara -b dan b.

Jadi $|x + a| > b \Leftrightarrow |x - (-a)| > b$ artinya jarak x dari - a adalah lebih dari b atau nilai x dikurangi (-a) / nilai x di tambah a berada kurang dari -b atau lebih dari b.

$$x - (-a) < -b$$
 atau $x - (-a) > b$

$$\frac{ATAU}{x + a < -b}$$
 $x + a > b$

Contoh:

1. Selesaikan pertidaksamaan |2x - 7| < 3

 $Cara\ 1$: |2x-7| < 3 artinya jarak 2x dari adalah dari 3.

Jadi penyelesaiannya : {x|.....}

Jadi penyelesaiannya {x|.....}

 $\underline{Cara\ 3}:\sqrt{(2x-7)^2}<3\ ...\ (kedua\ ruas\ dikuadratkan)$

2. Selesaikan pertidaksamaan $|2x - 1| \ge 3$

 $Cara\ 1: |2x-1| \ge 3$ artinya jarak 2x daridari 3

 $2x \le -2$ atau $2x \ge 4$

..... atau

Jadi penyelesaiannya {x|.....}

$$\underline{Cara\ 2}:\quad |2x-1|\geq 3$$

$$2x - 1 \le$$
 - 3 atau $2x - 1 \ge 3$

$$\dots$$
 \leq \dots atau \dots \geq \dots

$$x \le \dots$$
 atau $x \ge \dots$

Jadi penyelesaiannya {x|.....}

Cara 3:
$$\sqrt{(2x-1)^2} \ge 3$$
 ... (kedua ruas dikuadratkan)

$$(2x-1)^2 \, \geq 3^2 \, ... \, (\textit{kedua ruas dikurangi dengan } 3^2)$$

$$(2x-1)^2 - 3^2 \ge 0$$
 (pemfaktoran selisih kuadrat)

$$(.....+....)(.....-...)\geq 0$$

$$(..... +)(..... +) \ge 0$$

Nilai nol:
$$(..... +)(..... +) = 0$$

$$x = \dots$$
 atau $x = \dots$

Penyelesaian : {x|......}

SOAL-SOAL YANG HARUS DIKERJAKAN DAN JAWABANNYA KIRIMKAN SEBELUM BATAS WAKTU YANG SUDAH DITENTUKAN

Kelompok 1. Tentukan himpunan penyelesaian dari pertidaksamaan sbb:

- a. $2x-3 \le 2x^2-3x < x^2-2$
- b. $x^2+3x+4 \ge 0$
- c. $2 < x^2 x$
- d. $x^2(x^2+1)(2-x-x^2) < 0$
- e. $x(x^2+1)(2-x-x^2) > 0$

Kelompik 2. Tentukan Himpunan Penyelesaian dari pertidaksamaan sbb:

- a) $|2x+1| \ge 3$
- b) $\left|\frac{2x-1}{x+5}\right| \le 3$
- c) $|x+3| < \sqrt{9-x^2}$

Kelompok 3.

- \bigcirc Nyatakan persamaan $2(x^2+1)=x(x+3)$ ke dalam bentuk umum persamaan kuadrat!
- \bigcirc Tentukan himpunan penyelesaian persamaan kuadrat $2x^2-5x-3=0$, jika $x \in \mathbb{R}!$
- Tentukan persamaan kuadrat jika diketahui akar-akamya adalah 3 dan 0!
- Umlah dua bilangan cacah adalah 12. jika hasil kali dua bilangan itu 35. Tentukan kedua bilangan cacah yang dimaksud!