

Assessment Report

"INTERNET USAGE CLUSTERING"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY

DEGREE

SESSION 2024-25

in

CSE(AI)

Ву

NAME- Ravi Kant Raj

Roll NO. - 202401100300197

Introduction

This project aims to **group internet users into clusters** based on their behavior. We analyze three main features:

- daily_usage_hours: Total time spent using devices daily.
- site_categories_visited: Number of different website categories visited.
- sessions_per_day: Number of distinct usage sessions per day.

Clustering users based on these patterns can help in behavior analysis, personalization, and network resource management.

Methodology

1. Data Preprocessing:

- Load CSV data with relevant user behavior metrics.
- Normalize the features using StandardScaler for unbiased clustering.

2. Clustering:

- Apply KMeans clustering with 2 clusters (can be adjusted).
- Assign cluster labels to each user.

3. Visualization:

- Use PCA (Principal Component Analysis) to reduce the feature space to 2D.
- Plot the clusters for visual interpretation.

CODE

```
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
# Load dataset with correct headers
# dataset_path = '/mnt/data/internet_usage.csv' # Replace with your actual file path
data = pd.read_csv('/content/internet_usage.csv')
# Print dataset to confirm
print("Dataset preview:")
print(data.head())
# Select relevant features
features = data[['daily_usage_hours', 'site_categories_visited', 'sessions_per_day']]
# Scale features
scaler = StandardScaler()
features scaled = scaler.fit transform(features)
# KMeans clustering
kmeans = KMeans(n clusters=2, random state=0) # You can change n clusters as needed
clusters = kmeans.fit_predict(features_scaled)
# Add cluster info to the dataset
data['Cluster'] = clusters
```

```
# Show result

print("\nClustered Data:")

print(data)

# Visualize using PCA

pca = PCA(n_components=2)

reduced = pca.fit_transform(features_scaled)

plt.figure(figsize=(8, 5))

plt.scatter(reduced[:, 0], reduced[:, 1], c=clusters, cmap='viridis', s=100)

plt.title('User Clusters Based on Internet Usage')

plt.xlabel('PCA Component 1')

plt.ylabel('PCA Component 2')

plt.grid(True)

plt.show()
```

		site_categories_visited			
_	9.884957	2	13		
1	1.023220	9	1		
2	10.394205	9	3		
3	5.990237	6	16		
4	3.558451	4	4		
Clu	stered Data:				
	daily_usage_hours	site_categories_visited	sessions_per_day	Cluster	
0	9.884957	2	13	0	
1	1.023220	9	1	1	
2	10.394205	9	3	1	
3	5.990237	6	16	1	
4	3.558451	4	4	0	
		• • •		• • •	
95	3.051110	4	18	0	
96	7.572593	4	16	0	
97	0.299809	2	6	0	
98	8.648701	5	13	1	
99	6.168280	4	4	Ø	
[10	00 rows x 4 columns]				
		User Clusters Ba	sed on Internet L	Jsage	
	1.5	•			
	1.0	•		•	
7	0.5		•	<u> </u>	
Component 2			•		
00	0.0	•			
Ξ				P	

[100 rows x 4 columns]

References/Credits (Elaborated):

1. Dataset Source:

The dataset used for this project, named internet_usage.csv, was created manually based on simulated internet usage behavior data. It includes fields such as daily_usage_hours, site_categories_visited, and sessions_per_day to represent how different users interact with online platforms.

2. Libraries & Tools:

- Pandas (pandas): Used for loading, handling, and manipulating tabular data.
 Documentation link
- Scikit-learn (sklearn): Used for data preprocessing (StandardScaler), clustering (KMeans), and dimensionality reduction (PCA).
 Documentation link
- Matplotlib (matplotlib.pyplot): Used to create visualizations like the scatter plot for PCA output.
 Documentation link

3. Clustering Technique:

- The clustering was performed using KMeans algorithm, a widely-used unsupervised machine learning method that partitions the data into k clusters based on feature similarity.
- PCA (Principal Component Analysis) was used to reduce high-dimensional data into 2D for visualization purposes without losing much information.

4. IDE/Environment:

 The project was implemented in Google Colab, a cloud-based Python notebook environment that supports real-time execution and visualization.

5. General References:

- Scikit-learn User Guide: https://scikit-learn.org/stable/user_guide.html
- Python Data Science Handbook by Jake VanderPlas for understanding PCA and KMeans concepts.

6. **Credits**:

 Project done as part of a data analysis or machine learning coursework or self-study assignment.

0	Visuals and screenshots were captured during runtime to ensure real-time demonstration of cluster patterns.