전자회로

1. 다음 회로에서 $V_{DD}=12$ [V], $R_g=1$ [M Ω], $V_{GS}=4$ [V], $I_{DS}=0.5$ [mA]일 경우, $R_L[k\Omega]$ 은? (단, R_g 에 전류가 흐르지 않는다고 가정한다)

- ① 4
- ② 8
- ③ 16
- ④ 24
- 2. 다음 검파회로에서 입력된 반송파의 주파수가 10 [kHz]일 때, 회로의 시정수는 반송파 주기의 몇 배인가? (단, 다이오드는 이상적이다)

- ① 3
- ② 15
- 3 20
- ④ 30
- 3. 다음 공진회로에 대한 설명으로 옳지 않은 것은?

- ① 공진 주파수 $f_o = \frac{1}{2\pi\sqrt{LC}}$ 이다.
- ② 공진 주파수일 때, 입력 임피던스 Zi는 R이다.
- ③ 양호도(Quality factor, Q)는 R에 반비례한다.
- ④ 양호도는 L에 반비례한다.

4. 다음 회로와 같은 동작을 하는 출력 Y의 논리식은? (단, $R_2 \gg R_1$, 입력 A, B, C에 O[V] 또는 5[V]가 인가되며, 다이오드는 이상적이다)

- \bigcirc A+BC
- $2 A + \overline{BC}$
- 3 A(B+C)
- $\underline{4} \overline{A}(B+C)$

5. 다음 회로에서 입력 A, B에 논리값 '0'과 '1'에 해당하는 0 [V] 또는 5 [V]를 인가할 때, 출력 F의 논리값 중 (가)와 (다)에 들어갈 값은? (단, 입력 A, B에 0 [V] 또는 5 [V]를 인가할 때, 트랜지스터 Q₁, Q₂, Q₃는 차단 또는 포화영역에서만 동작하도록 저항값을 설계하였다)

	<u>(가)</u>	(다)
1	0	0
_		

- 2 0 1
- 3) 1 0
- 1 1

6. 그림 (a) 회로에 (b)의 입력 V_i가 인가될 때, 최대 양(+)의 출력전압 V_o[V]에 가장 가까운 것은? (단, 다이오드의 순방향 전압은 0.7 [V]이다)

- ① 1.92
- 2 2.62
- ③ 19.3
- 4) 20

7. 다음 회로에서 출력전압 $V_o[V]$ 는? (단, 연산증폭기는 이상적이다)

- ① 4
- ② 8
- ③ 10
- 4 12

8. 다음 회로에서 전달함수 $\frac{V_{o}(s)}{V_{i}(s)}$ 는? (단, 연산증폭기는 이상적이다)

$$\begin{array}{c} -R_{2}C_{1} \\ \hline \\ \left(1+\frac{s}{R_{1}C_{1}}\right) \left(1+\frac{s}{R_{2}C_{2}}\right) \end{array}$$

$$\frac{-sR_{1}C_{2}}{\left(1+\frac{s}{R_{1}C_{1}}\right)\left(1+\frac{s}{R_{2}C_{2}}\right)}$$

9. 다음 회로에서 공진 각주파수[rad/s]는?

- 1
- ② 2
- 3 3
- 4

10. 다음 회로에서 입력 V_1 , V_2 , V_3 에 대한 출력 V_0 의 관계식은? (단, 연산증폭기는 이상적이다)

- ① $2V_1 + 2V_2 + V_3$
- ② $3V_1 3V_2 + V_3$
- $3 4V_1 4V_2 + V_3$
- $4V_1 4V_2 + 2V_3$

11. 그림에서 Block의 전체 전압이득[dB]은?

- ① 10
- 2 20
- ③ 40
- 4 100

12. 그림 (a)의 두 개의 T 플립플롭 회로에서 Q의 초기 논리값은 '0'에서 시작한다. 그림 (b)와 같이 클럭 CLK와 입력 T가 주어질 때, 구간 T3 - T4에서 출력 Q1, Q2의 논리값은? (단, 각 논리 게이트에서 지연은 없다)

	<u>Q1</u>	<u>Q2</u>
1	0	0
2	0	1
3	1	0
4	1	1

- 13. p형 Si 반도체에 대한 설명으로 옳지 않은 것은?
 - ① 다수 캐리어가 정공이다.
 - ② 불순물 도핑 농도가 높을수록 저항률이 증가한다.
 - ③ 순수한 Si에 최외각 전자가 3개인 불순물을 첨가한다.
 - ④ 페르미준위는 진성반도체보다 가전자대역의 최고 에너지준위에 더 가깝게 위치한다.

14. 다음 회로에서 소신호 전압이득의 크기 $\left| \frac{V_o}{V_i} \right|$ 를 증가시키는 방법으로 옳은 것은? (단, 트랜지스터 Q는 활성영역에서 동작하고, 교류 출력 저항 $r_o = \infty$, 교류 이미터 저항은 r_e 이다)

- ① r_e를 증가시킨다.
- ② R_B를 증가시킨다.
- ③ Rc를 증가시킨다.
- ④ R_E를 증가시킨다.

15. 다음 회로에서 전압이득 $\frac{V_o}{V_i}$ 에 가장 가까운 것은? (단, 연산증폭기의 전압이득 $A=3,\ R_2=3R_1$ 이다)

- $2 \frac{9}{13}$
- $\frac{12}{13}$
- $\stackrel{\text{4}}{=} \frac{15}{13}$

16. 다음 회로에서 컬렉터-이미터 전압 $V_{CE}[V]$ 에 가장 가까운 것은? (단, $V_{BE}=0.7[V]$ 이며, 컬렉터전류는 이미터전류와 같다)

- ① 3.24
- ② 4.94
- ③ 6.04
- 4 10.0
- 17. 다음 회로에서 부하저항 R이 10 [Ω]이고, 입력 전원전압의 실횻값 V_s가 220 [V], 60 [Hz]일 때, 회로에 대한 설명으로 옳지 않은 것은?
 (단, 다이오드는 이상적이다)

- ① 출력전류 I_o 의 실횻값은 $\frac{220}{10}$ [A]이다.
- ② 출력전압 V_{\circ} 의 평균값은 $\frac{\sqrt{2} \times 220}{\pi}$ [V]이다.
- ③ 출력전압 V_o의 주파수는 120 [Hz]이다.
- ④ 다이오드 D₁에 걸리는 역방향 최대전압은 $\sqrt{2} \times 220$ [V]이다.
- 18. 다음 회로에서 입력 V_i 가 인가될 때, 구간 $0-t_1$ 에서 교류 출력 전압 V_o 의 피크값[V]에 가장 가까운 것은? (단, $V_{BE}=0.7~[V]$, $V_T=26~[mV]$, $\beta=50$, $C=\infty$, 트랜지스터 Q_1 과 Q_2 의 모든 특성이 동일하며, 컬렉터전류는 이미터전류와 같다)

- ① 5.0
- ③ 10.0
- 4 -10.0

19. 다음 회로의 등가 임피던스의 크기 $|Z_{eq}(j\omega)|$ 는?

$$\sqrt{\frac{R_S^2 + (\omega L_1)^2}{(1 - \omega^2 L_1 C_1)^2 + R_S^2 C_1^2 \omega^2}}$$

$$4) \sqrt{\frac{(1-\omega^2 L_1 C_1)^2 + R_S^2 C_1^2 \omega^2}{R_S^2 + (\omega L_1)^2}}$$

20. 다음 부궤환 시스템의 $H(s) = \frac{A_0}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)}$ 로 주어질 때,

페루프 전달함수의 극점(s_1, s_2)의 값[rad/s]은? (단, $\omega_{p1}=1$ [rad/s], $\omega_{p2}=3$ [rad/s], $\beta A_0=\frac{1}{3}$ 이다)

$$3 -2 -1$$

$$(4) -2 -2$$

21. 다음 회로에서 $R_{C}[k\Omega]$, $R_{E}[k\Omega]$ 는? (단, $I_{CQ} = 2$ [mA], $V_{CEQ} = 5.2$ [V], $V_E = 2.4 [V]$ 이며, 컬렉터전류와 이미터전류는 같다)

- R_{C} $R_{\rm E}$ ① 1.2 1.2 2 1.2 1.4 ③ 1.4 1.0 ④ 2.4 1.2
- 22. 논리식 $F = \overline{ABD} + \overline{ABC} + \overline{ACD} + \overline{BC} + \overline{ACD} + \overline{BCD}$ 를 아래의 논리회로로 구성할 때, (가)와 (나)의 입력은?

④ B \overline{D}

23. 다음 전압 조정기의 R_s 에 흐르는 전류 $I_s[mA]$ 는? (단, $V_{BE1} = V_{BE2} =$ $0.7~[V],~V_Z = 5~[V],~V_i = 10~[V],~R_s = 2~[k\Omega]$ 이다)

- ① 1.0
- ② 1.2
- ③ 1.5
- 4 1.8

24. 다음은 전송 게이트 ①, ②과 CMOS로 구성된 순차논리회로이다. 이 회로의 명칭은? (단, 전송 게이트 ①의 전송 특성은 C = '1' $(\overline{C}=\text{`0'})$ 이면 입력정보가 출력에 전달되고, $C=\text{`0'}(\overline{C}=\text{`1'})$ 이면 입력정보는 출력에 전달되지 못한다. 반면에 전송 게이트 ①은 ③과 반대의 전송 특성을 가진다)

- ① D 플립플롭
- ② T 플립플롭
- ③ JK 플립플롭
- ④ RS 플립플롭
- 25. 다음 버터워스 2차 고역통과필터회로에서 차단주파수 fc[kHz]와 전압이득 $A_v = \frac{V_o}{V_i}$ 에 가장 가까운 것은? (단, $R_A = R_B = 1.0$ [kΩ],

 $C_A = C_B = 0.5 \ [\mu F], \ \frac{R_1}{R_2} = 0.586$ 이고, 연산증폭기는 이상적이다)

 $\underline{f_c}$ $A_{\rm v}$ 1.586

 $2 \frac{1}{\pi}$ $3 \frac{2}{\pi}$ 2.706

1.586

2.706