§21. Давление идеального газа

Давление — ещё один макропараметр, описывающий систему многих частиц в состоянии термодинамического равновесия. Как уже говорилось в §19, это сила, с которой части системы действуют друг на друга, отнесенная к единице поверхности.

Выясним, откуда берётся эта сила. Молекулы идеального газа, находясь в хаотическом движении, сталкиваются друг с другом и со стенками сосуда, внутри которого и находится газ. При соударении со стенкой каждая молекула передаёт стенке импульс. За время Δt молекулы передадут стенке импульс $\Delta \vec{p}$. Согласно *II закону Ньютона* средняя сила, действующая на стенку:

$$\langle \vec{F} \rangle = \frac{\Delta \vec{p}}{\Delta t}.$$

Оценим сначала импульс, передаваемый стенке одной молекулой. Для этого рассмотрим

гладкую твёрдую стенку, расположенную в плоскости XY, ось X направлена к стенке.

Предположим, что удар частицы о стенку абсолютно упругий

$$\frac{mv_1^2}{2} = \frac{mv_2^2}{2} \implies v_1^2 = v_2^2.$$

При ударе о гладкую стенку сил, параллельных поверхности не возникает, и соответствующие составляющие скорости не изменяются: $v_{1_y} = v_{2_y}$; $v_{1_z} = v_{2_z}$.

Следовательно, третья компонента скорости будет, не изменяя свой величины $|v_{1_X}| = |v_{2_X}|$, изменять направление на противоположное: $v_{2_X} = -v_{1_X}$. Суммарное изменение импульса молекулы равно

$$mv_{2_{\chi}} - mv_{1_{\chi}} = -2mv_{1_{\chi}} = -2mv_{\chi}.$$

Наше предположение довольно грубое, но для систем с большим числом частиц всё же оказывается справедливо *в среднем*. Стенка сосуда, в котором газ находится, в результате ударов молекул о неё в движение ни по оси OY ни по оси OZ не приходит, так как количество молекул, которые двигаются вдоль стенки в противоположных направлениях и передают ей касательную к стенке составляющую импульса одинаково, и следовательно, $\langle \Delta p_y \rangle = 0$ и $\langle \Delta p_z \rangle = 0$. Повышение температуры стенки тоже не наблюдается — в состоянии равновесия

направленной передачи энергии от молекул к стенке не происходит, значит в среднем энергия молекул также сохраняется.

В соответствии с законом сохранения импульса каждая частица передает стенке импульс равный

$$\Delta p_x^{\boxed{1}} = -(-2mv_x) = 2mv_x.$$

Теперь сосчитаем суммарный импульс Δp_x , переданный частицами стенке в течение времени Δt . Найти эту величину простым умножение $\Delta p_x = \Delta N \cdot \Delta p_x^{\boxed{1}} = \Delta N \cdot 2mv_x$, где $\Delta N -$ число, ударивших в стенку за Δt частиц, не получится, так как скорости частиц различны. Придётся сгруппировать частицы по значениям v_x . Для начала найдем $dp(v_x)$ — импульс, переданный стенке частицами, проекция скорости которых v_x .

Пусть Δt — время, в течение которого мы следим за стенкой, ΔS — часть площади стенки сосуда, куда ударяются молекулы. Не все частицы, проекция скорости которых v_x , за время наблюдения смогут удариться о стенку. За время наблюдения в выделенную часть стенки ударят только частицы с v_x , находящиеся внутри некоторого цилиндра, площадь основания которого равна ΔS , а

длина образующей $v_x \cdot \Delta t$. Частицы, имеющие v_x , но находящиеся от стенки сосуда на расстоянии $\ell > v_x \cdot \Delta t$, смогут только приблизиться к ней. Соответственно, число частиц в этом мысленно выделенном цилиндре и будет равно $dN(v_x)$ — числу частиц, скорость которых лежит в интервале $[v_x; v_x + dv_x]$, и за время наблюдения Δt , ударяющих в площадку ΔS стенки сосуда.

Эти частицы передадут стенке импульс:

$$dp(v_x) = dN(v_x) \cdot \Delta p_x^{\boxed{1}} = dN(v_x) \cdot 2mv_x.$$

Полное изменение импульса в результате всех соударений можно найти, сложив $dp(v_x)$ для всех возможных значений v_x . Для цилиндра, приведённого на картинке, $v_x \in [0; +\infty)$: частицы летят к стенке в направлении оси OX.

$$\Delta p_x = \int dp(v_x) = \int \limits_0^\infty dN(v_x) \cdot 2mv_x.$$
но всему диапазону значений v_x

Число частиц в цилиндре выразим через концентрацию частиц, имеющих проекцию скорости v_x , и объём цилиндра $V_{\text{цил}} = v_x \Delta t \cdot \Delta S$:

$$dN(v_x) = dn(v_x)V_{\text{IM}} = dn(v_x) \cdot v_x \Delta t \cdot \Delta S.$$

$$\Delta p_x = \int\limits_0^\infty dn(v_x) \cdot v_x \Delta t \cdot \Delta S \cdot 2mv_x =$$

$$=2m\cdot\Delta t\cdot\Delta S\int\limits_{0}^{\infty}dn(v_{x})\cdot v_{x}^{2}=2m\cdot\Delta t\cdot\Delta S\cdot n\int\limits_{0}^{\infty}v_{x}^{2}\frac{dn(v_{x})}{n}=$$

Умножив и разделив выражение на n- концентрацию частиц газа, получим под интегралом относительную концентрацию частиц $\frac{dn(v_x)}{n}$, движущихся со скоростью v_x . Легко понять, что поскольку концентрация есть величина пропорциональная числу частиц $n=\frac{N}{V}$, то относительная концентрация равна относительному числу, имеющих скорость v_x :

$$\frac{dn(v_x)}{n} = \frac{dN(v_x)}{N}.$$

Тогда

$$=2m\cdot\Delta t\cdot\Delta S\cdot n\int\limits_{0}^{\infty}v_{x}^{2}\frac{dN(v_{x})}{N}.$$

Относительное число, имеющих скорость v_x , принадлежащую некоторому бесконечно малому интервалу шириной dv_x , может быть найдено с помощью функции распределения Максвелла для компоненты скорости (см. §17):

$$\frac{dN(v_x)}{N} = \varphi(v_x)dv_x = \left(\frac{m}{2\pi kT}\right)^{\frac{1}{2}} \exp\left(-\frac{mv_x^2}{2kT}\right)dv_x.$$

$$\int_{0}^{\infty} v_x^2 \frac{dN(v_x)}{N} \sim \int_{0}^{\infty} v_x^2 \exp\left(-\frac{mv_x^2}{2kT}\right) dv_x = \frac{1}{2} \int_{-\infty}^{+\infty} v_x^2 \exp\left(-\frac{mv_x^2}{2kT}\right) dv_x,$$

т.к.
$$v_x^2 \exp\left(-\frac{mv_x^2}{2kT}\right)$$
 — чётная функция.

Геометрически определённый интеграл выражает площадь фигуры, ограниченной графиком функции. Т.к. график чётной функции всегда симметричен относительно оси ординат, то площади заштрихованных частей равны. Следовательно, интеграл от четной функции в симметричных

пределах всегда равен удвоенному интегралу по половинному промежутку. Пример, $y = \cos x$ на промежутке от $-\frac{\pi}{2}$ до $\frac{\pi}{2}$: $\int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos x \, dx = 2 \int_{0}^{+\frac{\pi}{2}} \cos x \, dx$.

$$\Delta p_x = \frac{2m \cdot \Delta t \cdot \Delta S \cdot n}{2} \int_{-\infty}^{+\infty} v_x^2 \frac{dN(v_x)}{N}.$$

Вспомним ещё одно определение из §17 — определение *среднеквадратичного значения* непрерывной случайной величины и *теорему о равнораспределении энергии по степеням свободы* из §20:

$$\int\limits_{-\infty}^{+\infty} v_x^2 \frac{dN(v_x)}{N} = \int v_x^2 \frac{dN(v_x)}{N} \stackrel{\text{def}}{=} \langle v_x^2 \rangle \qquad \qquad \qquad \qquad \frac{m \langle v_x^2 \rangle}{2} = \frac{kT}{2} \,.$$

$$\Delta p_x = \frac{2m \cdot \Delta t \cdot \Delta S \cdot n}{2} \cdot \langle v_x^2 \rangle = 2\Delta t \cdot \Delta S \cdot n \cdot \frac{m \langle v_x^2 \rangle}{2} = 2\Delta t \cdot \Delta S \cdot n \cdot \frac{kT}{2}$$

Таким образом, средняя сила, действующая на стенку сосуда, равна:

$$\langle F_x \rangle = \frac{\Delta p_x}{\Delta t} = nkT \cdot \Delta S.$$

Ось ОХ направлена по нормали к стенке, остальные компоненты силы, как мы выяснили, равны 0. Поэтому мы можем говорить о *силе нормального давления* $F = \langle F_x \rangle$. Конечно, в разные моменты наблюдения Δt число частиц, ударяющих в стенку, может немного отличаться друг от друга. Но, как об этом говорилось в §17, при очень большом количестве частиц N в системе среднее значение силы F_x можно считать постоянной величиной.

Давлением называется (средняя) сила нормального давления, действующая на единицу площади

$$P = \frac{F}{\Delta S}$$

Окончательно, давление, оказываемое идеальным газом на стенку, равно:

$$P = nkT$$
 — давление идеального газа.

Полученное уравнение связывает между собой три макроскопических параметра, описывающих модель идеального газа: P, n и T, находящегося в состоянии термодинамического равновесия (см. §19). Соотношения, определяющие связь между

макроскопическими параметрами какой-либо системы, находящейся в состоянии термодинамического равновесия, называются *уравнениями состояния*.

$$P = nkT$$
 — уравнение состояния идеального газа.

Преобразуем его к виду хорошо всем известного уравнения, заменив концентрацию на число частиц системы $n=\frac{N}{v}$: PV=NkT. А число частиц выразим через ещё один макропараметр m — массу системы: $N=\frac{m}{m\square}$, здесь $m^{\boxed{1}}$ — масса частицы, которую, в свою очередь, выразим через молярную массу вещества μ и число Авогадро N_A : $m^{\boxed{1}}=\frac{\mu}{N_A}$.

$$PV = NkT = \frac{m}{\mu} N_A kT$$

$$PV = \frac{m}{\mu}RT -$$

уравнение Менделеева-Клапейрона,

или используя количество вещества $v = \frac{N}{N_A} = \frac{m}{\mu}$: $PV = \nu RT$.

Уравнение Менделеева-Клапейрона было сначала получено экспериментально. Входящая в него температура — эмпирический параметр, характеризующий степень «нагретости» тела. Температуру можно измерить, например, ртутным термометром, в котором ртуть изменяет свой объем в зависимости от температуры и заполняет капилляр, или по давлению газа в газовом термометре. Эмпирическая шкала температур привязывается к определенным физическим процессам, как, например, шкала Цельсия к точкам замерзания и кипения воды. Используемая при точных измерениях Международная температурная шкала МТШ-90 имеет множество хорошо воспроизводимых реперных точек во всем диапазоне доступных нам температур — это тройные точки газов и жидкостей температуры плавления и отвердевания металлов.

У нас же температура появилась в §17 как параметр, характеризующий распределение молекул по скоростям (распределение Максвелла), используя которое мы *теоретически* получили уравнение состояния идеального газа, совпадающее с экспериментальным. Таким образом, статистический метод раскрывает суть температуры: она характеризует среднюю энергию теплового движения молекул в состоянии термодинамического равновесия, приходящуюся на одну степень свободы

$$\langle \varepsilon_n \rangle = \frac{kT}{2}.$$

Это соотношение носит фундаментальный характер и с 2019 года в системе СИ является по сути определением температуры через фиксированное значение постоянной Больцмана (см. §1)

$$k = 1,380649 \cdot 10^{-23}$$
Дж/К.