

Contrôle moteur brushless

Théorie du pilotage

Moteur DC à balais

- Le moteur DC est constitué d'un rotor bobiné qui baigne dans un champ magnétique statique
 - Généré soit à partir d'aimants permanents (le plus courant)
 - Soit avec un stator bobiné alimenté en DC
- Le courant électrique est apporté jusqu'au rotor par un collecteur et des balais
- Ce bobinage génère alors un autre champ EM
- Deux champs EM étant présents, une force s'applique sur les bobinages du rotor et engendre un couple sur l'arbre de sortie.

Moteur DC à balais

Pour avoir une rotation continue, la polarité dans le rotor doit régulièrement s'inverser.

Ceci est réalisé grâce au collecteur et aux balais

Moteur DC sans balais

- « Brushless » : sans balais.
- « Moteur BLDC »: moteur DC sans balais (ni collecteur).

Le bobinage est connecté électriquement directement au circuit de pilotage extérieur, sans collecteur/balais intermédiaire.

En général, le stator est bobiné tandis que le rotor est lui un aimant permanent.

Le bobinage est toujours triphasée (3 bobinages)

- Avantage du moteur BLDC par rapport au moteur DC classique :
 - Suppression du couple collecteur/balais, source d'usure
- Inconvénient :
 - Un circuit électronique de pilotage est nécessaire pour inverser la polarité le moment venu...

Moteur DC sans balais

- Il faut inverser la polarité à un moment très précis, lorsque les pôles du champ EM du rotor arrivent en face des pôles opposés du champ EM du stator
- L'électronique de contrôle doit donc avoir un retour sur la position réelle du rotor :
 - Soit grâce à des capteurs à effet Hall, qui détectent le champ magnétique de l'aimant permanent constituant le stator
 - Soit grâce à la mesure de la tension induite sur le 3è fil, dans lequel aucun courant ne circule (cf. chronogrammes de commande). Cette méthode n'est pas expliquée dans ce cours.

Moteur DC sans balais

- Si l'électronique commute trop lentement les phases, le rotor « s'arrête » en face de chacune et le courant consommé augmente (rotor bloqué)
- Si les phases sont commutées trop tôt, lorsque le rotor n'a pas atteint sa position finale, il décroche et cale.

- La réactivité de l'électronique est primordiale !
 - Temps de réaction de l'élec doit être << temps de déplacement du rotor

Pont en H triphasé

• Le courant passe à tout instant dans deux bras, le troisième est bloqué

Pont triphasé

Rappel: choix du type de semiconducteurs

- Transistor bipolaire :
 - +: Vce_{sat} 50~300 mV
 - -: Vce_{sat} 50~300 mV
- MOSFET:
 - + : $Rds_{on} 1^{\sim}10 \text{ m}\Omega$
 - -: $Rds_{on} 1^{\sim}10 m\Omega$
- IGBT:
 - +: Vce_{sat} 50~300 mV
 - -: Vce_{sat} 50~300 mV

Commande de pont en H

- On utilise presque toujours des MOSFET dans la gamme 10-1000W
- Pour de meilleures performances, on utilise en haut et en bas des semiconducteurs de type N.
- Quel que soit le type de semiconducteur utilisé, le côté haut est plus difficile à piloter à cause de la référence de sa commande non fixée
- Il faut un translateur de niveau!

Commande de pont en H

- Les grilles de MOSFET se comportent comme une capacité. L'état de conduction dépend de la tension à ses bornes.
- Pour commuter vite, il faut donc la charger et la décharger vite.
- Il faut alors pour cela un courant élevé.
- Il faut donc une interface de puissance!

Les drivers de MOS jouent ces deux rôles.

Driver de MOSFET

Les principales caractéristiques d'un driver de MOSFET sont :

- Tension d'alim mini/maxi pour la commande côté bas
- Tension de translation maxi pour la commande côté haut
- Courant de sortie : aptitude à (dé)charger rapidement les MOSFET
- Nombre et types de canaux dans le boîtier (1H, 1B, 2H, 2B, 1H + 1B, etc...)

Commande bootstrappée

Commande bootstrappée

- Pour piloter le côté haut, on a besoin d'une tension de commande référencée par rapport à un point flottant (point médian) : elle est fournie par un condensateur
- Lorsque le transistor bas conduit, il se charge à Vcc grâce à la diode.
- Lorsque le transistor bas ne conduit plus et que le potentiel médian remonte, la diode se bloque et à tout instant, le condensateur procure une tension de commande adaptée.
- Il faut donc Cbootstrap >> Cmos!

Chronogramme

Procédure de mise au point

- Test du pont en H en statique, sans moteur connecté
 - → Validation de l'interface de puissance
- Test du pont en H avec une commande très basse fréquence (capteurs Hall non utilisés), sous tension d'alimentation réduite pour avoir I pas trop élevé
 - → Validation de l'ordre des phases : le moteur doit tourner « rond »
- Test en boucle fermée avec les capteurs Hall

Contrôle moteur Brushless

LIVE AND DISCOVER

Contact

Damien FAVRE

Contrôle moteur Brushless

damien.favre@cpe.fr

www.cpe.fr