

Técnicas de Amostragem - Aula 02

Definições e Notações Básicas II: Estatísticas, Distribuições Amostrais, Estimadores

Kaique Matias de Andrade Roberto

Ciências Atuariais

HECSA - Escola de Negócios

FIAM-FAAM-FMU

16/09 => NÃO HAVERÉ AUA!

Motivo: estatei no congresso

EBL (encontro brasileiro

de lógica).

19:00 - 71:50 19:10 - 71:30

18:45 - 77:10

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Estatísticas e Distribuições Amostrais
- 3. Estimadores e Propriedades
- 4. Comentários Finais
- 5. Referências

Conceitos que aprendemos em

Aulas anteriores

Na aula passada nós lidamos com uma parte das principais definições, nomenclaturas e terminologias da Teoria de Amostragem, no caso:

- população;
- amostra;

Vamos recapitular alguns exemplos/conceitos importantes da aula passada.

Exemplo 1.1

Considere a população formada por três domicílios $\mathcal U$ e que estão sendo observadas as seguintes variáveis: nome (do chefe), sexo, idade, fumante ou não, renda bruta familiar e número de trabalhadores. Os dados estão na planilha "aula-02-exemplo".

Vamos usar as notações

Unidade	i
Nome do Chefe	A_i
Sexo	Xi
Idade	Yi
Fumante	Gi
Renda Bruta Familiar	Fi
Número de Trabalhadores	T_i

Definição 1.2

Uma função P(s) definida em $\mathcal{S}(\mathcal{U})$, satisfazendo

$$P(\boldsymbol{s}) \geq 0$$
, para quaisquer $\boldsymbol{s} \in \mathcal{S}(\mathcal{U})$

e tal que

$$\sum_{\mathbf{s}\in\mathcal{S}(\mathcal{U})}P(\mathbf{s})=1,$$

é chamado um planejamento amostral ordenado.

Exemplo 1.3

Considere $\mathcal{U}=\{1,2,3\}$ (vide planilha "aula-01-exemplo") e a seguinte regra de sorteio:

- i sorteia-se com igual probabilidade um elemento de \mathcal{U} , e anota-se a unidade sorteada;
- ii este elemento é devolvido à população e sorteia-se um segundo elemento do mesmo modo.

Este é o mesmo plano amostral do Plano A. Este plano é conhecido como amostragem aleatória simples com reposição (AASc).

Plano A

$$P(11) = P(12) = P(13) = 1/9$$

 $P(21) = P(22) = P(23) = 1/9$
 $P(31) = P(32) = P(33) = 1/9$
 $P(s) = 0$, para as demais $s \in S$.

Exemplo 1.4

Considere $\mathcal{U}=\{1,2,3\}$ (vide planilha "aula-01-exemplo") e a seguinte regra de sorteio:

- i sorteia-se com igual probabilidade um elemento de \mathcal{U} , e anota-se a unidade sorteada;
- ii este elemento é retirado da população e sorteia-se um segundo elemento do mesmo modo.

Este é o mesmo plano amostral do Plano A. Este plano é conhecido como amostragem aleatória simples sem reposição (AASs).

Plano B

$$P(12) = P(13) = P(21) = P(23) = P(31) = P(32) = 1/6$$

 $P(s) = 0$, para as demais $s \in S$.

Estatísticas e Distribuições

Amostrais

Como já foi discutido, o objetivo principal da amostragem é adquirir conhecimentos sobre variáveis (características) de interesse, e desse modo, é necessário caracterizar as variáveis de interesse também na amostra.

Assim, associado a cada unidade elementar i tem-se uma característica \mathbf{Y}_i , que pode ser reunida na matriz (ou vetor) de dados populacionais \mathbf{D} .

Agora, fixada uma amostra s,

$$\mathbf{s} = (k_1, k_2, ..., k_n)$$

sabe-se que associado a cada elemento k_j tem-se um vetor de características $\mathbf{Y}_{k_j}.$

Definição 2.1

Chama-se de dados da amostra s à matriz ou vetor de observações pertencentes a amostra, isto é,

$$d_s = (Y_{k_1}, Y_{k_2}, ..., Y_{k_n}) = (Y_{k_j}, k_j \in s).$$

Quando s percorre todos os pontos possíveis de um plano amostral S_A , tem-se associado um vetor aleatório que será representado por

$$\boldsymbol{d}=\boldsymbol{y}=(y_1,...,y_n)$$

onde y_i é a variável aleatória que indica os possíveis valores que podem ocorrer na i-ésima posição.

Quando as observações são multidimensionais, os dados da amostra passam a ser a matriz

$$d_s = (Y_{k_i}, i \in s),$$

e tem-se associado a matriz aleatória

$$\boldsymbol{d}=(\boldsymbol{y}_1,...,\boldsymbol{y}_n).$$

Definição 2.2

Qualquer característica numérica dos dados correspondentes a amostra s é chamada estatística, ou seja, qualquer função $h(d_s)$ que relaciona as observações da amostra s.

Exemplo 2.3

Agora considere os dados na planilha "aula-02-exemplo" e a amostra s=(12). Desse modo, tem-se para o vetor $\begin{pmatrix} F_i \\ T_i \end{pmatrix}$ a seguinte matriz de dados da amostra:

$$\begin{pmatrix} 12 & 30 \\ 1 & 3 \end{pmatrix}.$$

As médias

$$\overline{f} = \frac{12+30}{2} = 21 \text{ e } \overline{t} = \frac{1+3}{2} = 2,$$

ou a razão

$$r = \frac{12+30}{1+3} = 10,5$$

são exemplos de estatísticas calculadas na amostra ${\it s}=$ (12).

Escolhido um plano amostral A, tem-se associado o par (S_A, P_A) dos respectivos pontos amostrais e suas probabilidades.

Fixada agora uma estatística $h(\boldsymbol{d_s})$, quando \boldsymbol{s} percorre \mathcal{S}_A , ter-se-á associado uma variável aleatória $H(\boldsymbol{d_s})$ associada ao par (\mathcal{S}_A, P_A) .

Considere também a notação

$$p_h = P_A(\mathbf{s} \in \mathcal{S}_A; H(\mathbf{d}_{\mathbf{s}}) = h),$$

que denota a probabilidade sobre o conjunto de todas as amostras ${m s}$ tais que $H({m d}_{m s})=h.$

Conhecendo-se todos os valores de h e as suas respectivas probabilidades, tem-se bem identificada a (distribuição da) variável aleatória H.

Definição 2.4

A distribuição amostral de uma estatística $h(d_s)$ segundo um plano amostral A, é a distribuição de probabilidades de $H(d_s)$, definida sobre S_A , com função de probabilidade dada por

$$p_h = P_A(\mathbf{s} \in \mathcal{S}_A; H(\mathbf{d}_{\mathbf{s}}) = h) = P(h).$$

1 - Dados amostrais 2 - Identificar/Escoller a estatistica (a conta que Farenos (om a amostra). 3 - Nomezmos à estatistica, digamos M 6 (5) y some (5) para todas es emostres un plano anostral. 5 - Identifica os possíveis 65642 by 1979 (2) 6 - (alculamos P(h(s) = ho) 2245 todos os possíve; s valores No.

Exemplo 2.5

Para os dados na planilha "aula-02-exemplo" com dados amostrais

$$\mathbf{D} = \begin{pmatrix} F_i \\ T_i \end{pmatrix} = \begin{pmatrix} 12 & 30 & 18 \\ 1 & 3 & 2 \end{pmatrix}, i \in \mathcal{U},$$

considere a estatística $r = h(d_s)$ como sendo a razão entre o total da renda familiar e o número de trabalhadores na amostra. Considere também os planos amostrais A e B. Temos as seguintes distribuições amostrais:

AASc]
$$P(200 A = AASc)$$
 $P(11) = P(12) = P(13) = P(21) = P(22) = P(23) = P(31) = P(32) = P(33) = 4/9$
 $P(5) = 0$ (250 contrário)

 $P(5) = 0$ (7) = 0 (12 30 16)
 $0 = 0$ (7) = 0 (12 30 16)
 $0 = 0$ (13 3 2)

$$d(M) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$+(11) = \frac{12+12}{1+1} = 22$$

$$d(12) = \begin{pmatrix} 12 & 18 \\ 1 & 2 \end{pmatrix}$$

$$Y(17) = \frac{12+18}{1+7} = \frac{30}{3} = 10$$

$$d(13) = \begin{pmatrix} 12 & 30 \\ 1 & 3 \end{pmatrix}$$

$$Y(13) = \frac{12+30}{1+3} = \frac{42}{4} = 10.5$$

$$Y(5)$$
 9 9.6 10 10.5 12 $P(Y(5) = h)$ $\frac{1}{9}$ $\frac{3}{9}$ $\frac{3}{9}$ $\frac{3}{9}$ $\frac{3}{9}$ $\frac{7}{9}$

$$P(\gamma(s)=9)=\frac{1}{9}$$

Figura 1: Plano amostral A (AASc)

s:	11	12	13	21	22	23	31	32	33
$P(\mathbf{s})$:	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9
$h(\mathbf{d_s}) = r$:	12	10,5	10	10,5	10	9,6	10	9,6	9

Figura 2: Distribuição amostral de r na AASc

h:	9	9,6	10	10,5	12
p_h :	1/9	2/9	3/9	2/9	1/9

Figura 3: Plano amostral B (AASs)

s:	12	13	21	23	31	32
$P(\mathbf{s})$:	1/6	1/6	1/6	1/6	1/6	1/6
$h(\mathbf{d_s}) = r$:	10,5	10	10,5	9,6	10	9,6

$$\begin{bmatrix}
E_{AAS_{5}} & E_{7} & = 0.6 \cdot \frac{1}{3} + 10.1 + 10.5 \cdot \frac{1}{3} \\
& = \frac{9.6 + 10 + 10.5}{3} = \frac{30.1}{3} = 10.03
\end{bmatrix}$$

A distribuição amostral, e conceitos derivados são básicos para uso e avaliação inteligente dos procedimentos amostrais.

Eles serão usados aqui para avaliar as propriedades e vantagens de um plano amostral, e/ou estatística, sobre seus concorrentes.

Considere dados: um plano amostral A, uma estatística $h(\mathbf{d}_s)$, $s \in \mathcal{S}_A$ e seja p_h a função de probabilidade correspondente ao plano amostral.

Definição 2.6

O valor esperado (esperança) da variável H será

$$E_A[H] = \sum_{s \in S_A} h(\mathbf{d}_s) P_A(s).$$

Definição 2.7

A variância da variável H será

$$Var_A[H] = \sum_{s \in S_A} (h(\mathbf{d}_s) - E_A[H])^2 P_A(s).$$

Definição 2.8

Quando houver duas estatísticas $H(d_s)$ e $G(d_s)$, a **covariância e correlação** são respectivamente

$$\begin{aligned} \mathsf{Cov}_A(H,G) &= \sum_{s \in \mathcal{S}_A} (h(\textbf{\textit{d}}_s) - E_A[H]) (g(\textbf{\textit{d}}_s) - E_A[G]) P_A(\textbf{\textit{s}}); \\ \mathsf{Corr}_A(H,G) &= \frac{\mathsf{Cov}_A(H,G)}{\sqrt{\mathsf{Var}_A[H]}\sqrt{\mathsf{Var}_A[G]}}. \end{aligned}$$

Exemplo 2.9

Considere os dados na planilha "aula-02-exemplo" com dados amostrais

$$\mathbf{D} = \begin{pmatrix} F_i \\ T_i \end{pmatrix} = \begin{pmatrix} 12 & 30 & 18 \\ 1 & 3 & 2 \end{pmatrix}, i \in \mathcal{U}$$

e plano amostral AASc. Agora considere as estatísticas r e \overline{f} . Vamos calcular

$$E_{AASc}[r], E_{AASc}[\overline{f}], Var_{AASc}[r],$$

 $Var_{AASc}[\overline{f}], Cov_{AASc}[r, \overline{f}] \in Corr_{AASc}[r, \overline{f}].$

Definido um plano amostral A, as variáveis $f_i(s)$ e $\delta_i(s)$ também passam a possuir uma distribuição de probabilidades associada, que indicaremos por $f_i(A)$ e $\delta_i(A)$.

Exemplo 2.10

Considere o plano amostral A (com os mesmo dados). Para cada amostra, tem-se associado as variáveis $f_1, f_2, f_3, \delta_1, \delta_2, \delta_3$ cujos valores e respectivas probabilidades são dados por:

Figura 5: Distribuições amostrais de $f_1, f_2, f_3, \delta_1, \delta_2, \delta_3$ na AASc

s:	11	12	13	21	22	23	31	32	33
$P(\mathbf{s})$:	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9	1/9
f_1 :	2	1	1	1	0	0	1	0	0
f_2 :	0	1	0	1	2	1	0	1	0
f_3 :	0	0	1	0	0	1	1	1	2
δ_1 :	1	1	1	1	0	0	1	0	0
δ_2 :	0	1	0	1	1	1	0	1	0
δ_3 :	0	0	1	0	0	1	1	1	1

Figura 6: Distribuição de f₁ na AASc

$$h(\mathbf{d_s}) = f_1: \quad 0 \quad 1 \quad 2$$

 $p_h: \quad 4/9 \quad 4/9 \quad 1/9$

Figura 7: Distribuição de δ_1 na AASc

$$h(\mathbf{d_s}) = \delta_1$$
: 0 1
 p_h : 4/9 5/9

Vamos verificar que f_2 e f_3 tem a mesma distribuição que f_1 , δ_2 e δ_3 tem a mesma distribuição que δ_1 , e

$$E_A[f_1] = 2/3 \text{ e } E_A[\delta_1] = 5/9.$$

O objetivo principal da amostragem é produzir estimadores para parâmetros populacionais desconhecidos.

Isso é feito escolhendo-se uma estatística que tenha propriedades convenientes em relação ao parâmetro populacional.

Quando associa-se uma estatística com a expressão que irá "estimar" o parâmetro populacional ela recebe o nome de **estimador**. O valor numérico do estimador, para dada amostra, chama-se **estimativa**.

Simbolicamente, o objetivo é estimar um parâmetro populacional $\theta(\mathbf{D})$. Isto será feito através de uma estatística obtida a partir dos dados amostrais \mathbf{d}_s , o estimador que será representado por $\hat{\theta}(\mathbf{d}_s)$.

Como já foi discutido, as propriedades de um estimador dependem da sua distribuição amostral, e as principais qualidades procuradas em amostragem são: pequenos vieses (vícios) e pequenas variâncias.

Definição 3.1

Um estimador é dito ${\bf n\~{a}o}{ ext{-}{\bf viciado}}$ segundo um plano amostral A se

$$E_{A}[\hat{\theta}] = \theta.$$

Definição 3.2

O **viés** de um estimador $\hat{\theta}(\textbf{\textit{d}}_{s})$ segundo um plano amostral A, é dado por

$$B_A[\hat{\theta}] = E_A[\hat{\theta} - \theta] = E_A[\hat{\theta}] - \theta;$$

e o erro quadrático médio por

$$\mathsf{EQM}_A[\theta] = E_A[\hat{\theta} - \theta]^2.$$

Com essas definições verifica-se que

$$\mathsf{EQM}_A[\theta] = \mathsf{Var}_A[\theta] + B_A^2[\hat{\theta}].$$

Observe que para uma amostra particular \mathbf{s} , a diferença $\hat{\theta}(\mathbf{s}) - \theta$ mostra o desvio entre o valor estimado e o valor que se desejaria conhecer, ou seja, o erro cometido pelo uso da amostra e do estimador $\hat{\theta}$ para estimar a quantidade de interesse (parâmetro) θ .

Esse desvio é usualmente conhecido por **erro amostral**. Para dada amostra, o erro amostral só pode ser calculado, na situação improvável de θ ser conhecido.

Por isso, a estratégia da avaliação da amostragem não é julgar o resultado particular de uma amostra, mas do plano amostral. Em outras palavras, queremos avaliar as propriedades do estimador sob a ótica de um plano amostral A.

Temos um parâmetro populacional

O [média, variância, tazão...)

des conhecido/inacessivel.

e per SESA (alculanos) e estimation $\theta(s)$.

Exemplo 3.3

Usando os dados da planilha "aula-02-exemplo" (com as notações adotadas até então) temos

$$E_{AASc}(r) \cong 10.13 \text{ e Var}_{AASc}(r) \cong 0.6289.$$

Suponha que o parâmetro de interesse seja a renda média por trabalhador, R, ou seja,

$$R = \frac{12 + 30 + 18}{1 + 3 + 2} = \frac{60}{6} = 10.$$

Observa-se então que r é um estimador viesado para R, pois

$$E_{AASc}(r) \cong 10.13 \neq 10 = R.$$

O vício é dado por

$$B_{AASc}(r) \cong 10.13 - 10 = 0.13,$$

de modo que

$$EMQ_{AASc}(r) \cong 0.6289 + 0.13^2 = 0.6458.$$

Exemplo 3.4

Com os mesmos dados do Exemplo anterior, suponha agora que o parâmetro de interesse seja a renda média familiar $\mu_F=20$. Observe que

$$E_{AASc}(\overline{f}) = 10 \text{ e Var}_{AASc}(\overline{f}) = 28.$$

Isso implica que \overline{f} não é viciado para μ_F , ou seja, $B_{AASc}(\overline{f})=0$, de modo que

$$\mathsf{EMQ}_{AASc}(\overline{f}) = \mathsf{Var}_{AASc}(\overline{f}) = 28.$$

Em resumo, na aula de hoje nós finalizamos a descrição das nomenclaturas, ou seja, falamos de:

- estatísticas;
- distribuições amostrais;
- estimadores e suas propriedades.

Nas próximas aulas nós vamos focar na Amostragem Aleatória Simples com Reposição.

ATIVIDADE PARA ENTREGAR (E COMPOR A NOTA N1)

Resolva em grupos de até 4 integrantes os Exercícios 2.1-2.7.

[Z.Z] AASS

$$\begin{pmatrix}
D : (123018) = (\overline{r}; \\
132) = (\overline{T}; \\
132) = P(32) = P(32)$$

P (Y(5))

distribuição amostral de r 2550riada 20 AASS

4 (com AASs) é vicido 21 R?

$$= \frac{9.6 + 10 + 10.5}{3} = 10.03$$

Como EAASS(+) + R + É
viesado par R (com relação do
AASS).

$$B_{AASS}(r) = E_{AASS}(r) - R$$

= 10.03 - 10 = 0.03

$$V_{24}(4) = (9.6 - 10.03)^{2.1} + (10.5 - 10.03)^{2.1}$$

$$(10 - 10.03)^{2.1} + (10.5 - 10.03)^{2.1}$$

$$= \underbrace{2.57 + 0.03 + 0.47}_{2} = 0.8956$$

 EQM_{AASS} (r) = 0.8956 + 0.03² = 0.8965

Referências

Referências

Bons Estudos!

