诚信保证

本人知晓我校考	ទ 场规则和违纪处分	条例的有关规定,	保证
遵守考场规则,	诚实做人。	本人签字:	

编号:_______ 学号:______ 班号:______姓名:

西北工业大学考试试题(卷)

2008 - 2009 学年 第 2 学期

成	
结	

<u>开课学院:理学院 课程:计算方法 学时 32</u> 2009年04月24日 考试时间:2小时 <u>闭卷(A卷)</u>

(共9道题,注意检查)

- 1.(每小题3分,共15分)填空
 - (1) 2n 个求积节点的插值型求积公式,其代数精确度至少为 次;
 - (2) 为提高数值计算精度,当正数 x 充分小时,应将 $\frac{1-\cos x}{\sin x}$ 改写为

____;

- (3) 拟合三点 A (0 ,1) , B (1 ,3) , C (2 ,2) 的平行于 y 轴的直线 方程为_____;
- (4) 求积公式 $\int_{-1}^{1} f(x)dx \approx 2f(0)$ 有_____次代数精确度;
- (5) 求方程 x = f(x) 的根的 Newton 迭代格式是______。
- 2 . (15 分) 曲线 $y=x^3-2.4x^2-0.51x+2.89$ 在点 $x_0=1.6$ 附近与 x 轴相切于 α 点 ,

试用 Newton 迭代法求 α 的近似值 x_{n+1} ,使 $\left|x_{n+1}-x_{n}\right| \leq 10^{-5}$ 。

分)求	一经过原点的	扚抛物线, 使	其按最小二	乘原理拟合于	F如下数据
_	x_i	1	2	3	4
	y_i	0.8	1.5	1.8	2.0
)正规方	ī程组为:				
所求抛	物线为:				

4 . (10 分) 用乘幂法求矩阵 $A=egin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$ 的按模最大的特征值 $\lambda_{_1}$ 的第k 次近似值 $\lambda_{_1}^{(k)}$ 及

相应的特征向量 $x_1^{(k)}$ 。要求取初始向量 $u_0 = (1,1)^T$,且

$$\left|\lambda_{1}^{(k)} - \lambda_{1}^{(k-1)}\right| \leq 0.001$$
 .

解:乘幂法的计算格式为:

计算过程列表如下:

所以:
$$\lambda_1^{(k)}$$
=

所以:
$$\lambda_1^{(k)} =$$
 , $x_1^{(k)} \approx t (1.000$, $)^T$, $t \neq 0$

$$)^{T}, t \neq 0$$

5 (10分) 试用三角分解求解线性方程组

$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 4 & 3 \\ 0 & 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 17 \\ 7 \end{pmatrix}$$

(1) 将系数矩阵进行三角分解:

(2) 用三角分解法求该方程组的解:

6.(10 分) 已知四阶连续可导函数 y = f(x) 的如下数据:

x_i	0	1
$f(x_i)$	0	1
$f'(x_i)$	0	1

的导数型表达式(不必证明)。

试求满足插值条件
$$p(x_i) = f(x_i), p'(x_i) = f'(x_i)$$

的三次插值多项式 p(x) ,并写出截断误差 R(x) = f(x) - p(x)

7 . (15 分)若用复化 Simpson 公式求积分 $\int_0^1 \mathrm{e}^{\mathrm{x}} dx$ 的近似值,为使该近似值有 4 位

有效数字,问至少应知道多少个结点的 e^x 值?并由此求 $\int_0^1 \mathrm{e}^x dx$ 的近似值. (小数点后至少取 4 位).

解: (1) 复化 Simpson 公式的截断误差为:

(2)计算所需要的节点数目:

(3)按(2)中的节点数计算 $\int_0^1 e^x dx$ 。

8.(10分)给定初值问题

$$y' = x + y^2$$
, $y(0) = 1$

(1) 写出欧拉(Euler)预估- 校正法的计算格式。

(2) 取步长h=0.1, 求y(0.2)的近似值(小数点后至少保留4位)。

9.(5分)设f(x)在[a,b]有二阶连续导数,试建立如下数值积分公式

$$\int_{a}^{b} f(x)dx \approx \frac{a-b}{2} [f(a) + f(b)] + \frac{1}{4} (b-a)^{2} [f'(a) - f'(b)]$$

并证明有余项表达式 $R[f] = \frac{1}{6}(b-a)^3 f''(\xi), \xi \in (a,b)$.