Última revisión del documento: 21 de enero de 2024

Practica la Unidad 2

Nombre del alumno: Fecha: Puntuación:

- Deduce información acerca de la estructura atómica a partir de datos ??>7 ??>15 Run LATEX again to produce the table experimentales sobre propiedades atómicas periódicas.
- Representa y diferencia mediante esquemas, modelos y simbología química, elementos y compuestos, así como átomos y moléculas.
- Explica y predice propiedades físicas de los materiales con base en modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas.

Ejemplo 1

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- $3 O_2 + energía \uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - B Combinación
 - \bigcirc Desplazamiento
 - (D) Doble desplazamiento
- $b \quad \mathrm{Ba(NO_3)_2} + \mathrm{K_2SO_4} \longrightarrow \mathrm{BaSO_4} + \mathrm{KNO_3}$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

- c CaCO₃(s) \longrightarrow CaO(s) + CO₂
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento
- **d** $C_6H_{12}O_6(ac) \longrightarrow 2C_2H_5OH(ac) + 2CO_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 1

de ?? puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(1) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 2 de ?? puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- **b** $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

- $\mathsf{C} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

Ejemplo 2

Balancea la siguiente ecuación química:

$$H_2O \longrightarrow H_2 + O_2$$

Solución:

Si representamos la ecuación química con átomos de Ahora, hay 4 H en los reactivos y 2 H en los productos, distintos colores para cada elemento, tenemos:

> $\mathrm{H_2O} \quad + \quad \longrightarrow \quad \ \mathrm{H_2}$ \odot

Hay 2 O en los productos y 1 O en los reactivos, por lo que hay que multiplicar por 2 al H₂O.

por lo que hay que multiplicar por 2 al H₂.

 $2 \,\mathrm{H}_2\mathrm{O} \quad + \quad \longrightarrow$ \odot **₯** \odot

Por lo tanto, la ecuación química balanceada es:

$$2 H_2 O \longrightarrow 2 H_2 + O_2$$

Ejemplo 3

Balancea la siguiente ecuación química:

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O$$

Solución:

distintos colores para cada elemento, tenemos:

 H_2O

Hay 4 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 2 al H₂O.

> CO_2 $2 H_2 O$

Si representamos la ecuación química con átomos de Ahora hay 4 O en los productos y 2 en los reactivos, por lo que hay que multiplicar por 2 al O_2 . Y la ecuación balanceada es:

Por lo tanto, la ecuación química balanceada es:

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

Ejercicio 3	de ?? puntos
Balancea la siguiente ecuación química:	
$\mathrm{Fe} + \mathrm{H_2O} \longrightarrow \mathrm{Fe_3O_4} + \mathrm{H_2}$	
Fiornicia 4	do 22 ountos
Ejercicio 4	de ?? puntos
Balancea la siguiente ecuación química:	
$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$	
Ejercicio 5	de ?? puntos
Balancea la siguiente ecuación química:	
$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + H_2O$	

Ejercicio	0 6					de ?	? puntos
Balancea	la siguiente ecuación química:						
		$N_{2}H_{4} +$	$O_2 \longrightarrow N$	$O_2 + H_2O$			
Ejercicio	o 7					de ?	? puntos
Ralancea	la siguiente ecuación química:						
Daraneea	ra siguiente codación quimica.						
		NH_4NO	$_3 \longrightarrow N_2 +$	$H_2O + O_2$			
Ejercicio	o 8					de ?	? puntos
	a la siguiente tabla determinan	do para ca	da especie,	el número de	protones, net	$_{ m itrones,\ electrones}$	s, número
de masa j	y número atómico.						
	Especie	Símbolo	Protones	Neutrones	Electrones	Masa atómica	
	Ión positivo de Estaño						
	Ión negativo de Antimonio						
	Uranio						
	Tecnesio						
	Ión positivo de Litio						

Ejercicio 9	de ?? puntos
Relaciona cada elemento o	con las características que le corresponden.
o Radón	A Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
b Helio	lacktriangle Elemento metálico con Z $=31$.
	© Elemento metaloide, ubicado en el tercer período de la tabla periódica.
c Galio	D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla
d Yodo	periódica.
e Bismuto	Elemento con 22 protones y 22 electrones.
f Radio	F Elemento de la familia de los Halógenos con 74 neutrones.
9Silicio	© Elemento de la familia de metales alcalino-terreos con 138 neutrones.
h Oro	$\stackrel{\textstyle f H}{\textstyle f H}$ Elemento no metálico con Z $=83$.
i Titanio	① Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
j Boro	(J) Metal brillante utilizado en joyería.

Ejercicio 10	_	_ de ?? puntos								
Relaciona la especie química con la cantidad de protones y electrones de valencia .										
(O)	20 protones y 2 electrones de valencia.									
\bigcirc Ión oxígeno \bigcirc	20 protones y 2 electrones de valencia.									
B Nitrógeno (N)	b 9 protones y 8 electrones de valencia.									
	c 15 protones y 5 electrones de valencia.									
© Silicio (Si)	d 8 protones y 7 electrones de valencia.									
(Ca) (Ca)	e 34 protones y 6 electrones de valencia.									
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	f 14 protones y 4 electrones de valencia.									
(F) Oxígeno (O)	9 7 protones y 5 electrones de valencia.									
	h 3 protones y 2 electrones de valencia.									
G Neón (Ne)	i 8 protones y 6 electrones de valencia.									
H Ión Litio (Li ⁺)	j 10 protones y 8 electrones de valencia.									
(I) Fósforo (P)	_									
J Selenio (Se)										

Ejercicio 11 de ?? puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

 \bigcirc Ión de Nitrógeno (N^{3-})

B Ión de Berilio (Be⁻)

(C) Ión de Flúor (F⁻)

(D) Ión de Hierro (Fe³⁺)

€ Ión de Potasio (K⁺)

- 2 _____ 9 protones y 8 electrones de valencia.
- b _____ 15 protones y 5 electrones de valencia.
- c _____ 4 protones y 3 electrones de valencia.
- d _____ 16 protones y 4 electrones de valencia.
- e _____ 7 protones y 8 electrones de valencia.

F) Ión de Aluminio (Al³⁺)

⑥ Ión de Cloro (Cl⁻)

 $\widehat{\text{H}}$ Ión de Azúfre (S²⁺)

(I) Litio (Li)

(I) Fósforo (P)

- f _____ 17 protones y 8 electrones de valencia.
- 9 _____ 13 protones y 8 electrones de valencia.
- h _____ 19 protones y 8 electrones de valencia.
- i _____ 26 protones y 2 electrones de valencia.
- j _____ 3 protones y 1 electrón de valencia.

Ejercicio 12 de ?? puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- ¿Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - (A) El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - E Ninguna de las anteriores
- **b** ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a derecha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - (B) El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - (D) Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - (A) Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 13	de ?? puntos
Relaciona cada concepto con su definición.	
(A) Las sustancias se representan sólo con símbolos atómicos.	O Diagrama de esferas.
B Esquema tridimensional en el que es posible identificar a los enlaces químicos.	b Fórmula estructural.
C Las sustancias se representan con símbolos atómicos y	c Fórmula condensada.
líneas que simbolizan a los enlaces químicos.	d Diagrama de esferas y barras.
Esquema tridimensional en el que no es posible identificar a los enlaces químicos.	
Ejercicio 14	de ?? puntos
Contesta a las siguientes preguntas, argumentando ampliamente tu resp Explica bajo qué condiciones el número atómico permite deducir átomo. En términos generales, el radio de un átomo es aproximadamente átomo pudiera amplificarse de manera que el radio de su núcleo mio ¿cuál sería el radio del átomo en metros?	el número de electrones presentes en un 10,000 veces mayor que su núcleo. Si un
Ejercicio 15	de ?? ρuntos
Escribe el grupo, subgrupo, período y clasificación de los siguientes eler ubica a cada elemento en la tabla periódica que se muestra abajo.	nentos. Después de realizar este ejercicio,
	П

$\mathbf{Elemento}$	Grupo	Subgrupo	Período	Tipo													
Oro								_	_	_	_	_	_				Ш
Potasio					\vdash	\vdash	\dashv	\dashv	\dashv	+	+	+		\dashv	-	_	Н
Paladio								\Box	\Box	1		L					
Yodo					L		Ш						_				Ш
Samario								\Box									
								\perp				L					

Ejercicio 16	de ?? puntos
Señala en cada uno de los enunciados si la sentencia es fal	lsa o verdadera.
• La tabla periódica se encuentra constituida por filas (períodos) y columnas (grupos).	k Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso
b Los electrones de valencia se encuentran siempre en el último nivel de energía.	l El símbolo Cl ⁻ indica que el átomo de cloro ha tenido una reducción o pérdida de electrones.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso
c El oxígeno y el nitrógeno son dos gases nobles de gran importancia.	M Una fórmula química sólo expresa la composición cualitativa de una sustancia.
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso
d El mercurio es un elemento líquido.	n En una fórmula química, los coeficientes indican el número de
☐ Verdadero ☐ Falso	moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.
e Los metales se ubican a la derecha y al centro de la tabla periódica.	☐ Verdadero ☐ Falso
☐ Verdadero ☐ Falso	El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.
f Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.	☐ Verdadero ☐ Falso
☐ Verdadero ☐ Falso	O La masa de un neutrón es similar a la del protón.
	☐ Verdadero ☐ Falso
9 La fórmula H ₂ O expresa que la molécula de agua está	
constituida por dos átomos de oxígeno y uno de hidrógeno. □ Verdadero □ Falso	ρ Las únicas partículas elementales en el núcleo, son los protones y neutrones.
	☐ Verdadero ☐ Falso
h En la fórmula de la Taurina, $4C_2H_7NO_3S$, el número 4 indica que hay 4 átomos de carbono.	
☐ Verdadero ☐ Falso	Q El número de masa representa la suma de protones y neutrones.
i Al número entero positivo, negativo o cero que se asigna a cada elemento en un compuesto, se denomina número de	☐ Verdadero ☐ Falso
oxidación.	r El número total de electrones en un átomo lo determina el
☐ Verdadero ☐ Falso	grupo al que pertenece.
m .	☐ Verdadero ☐ Falso
j En la construcción de una fórmula química se escribe primero la parte positiva y enseguida la negativa.	S Los protones y neutrones son partículas constituidas por
la parte positiva y enseguida la negativa. ☐ Verdadero ☐ Falso	quarks.
- verdadero - Farso	☐ Verdadero ☐ Falso

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}}}{\overset{\text{Neón}}{\overset{N}}}{\overset{N}}{\overset{N}}}}}}}}}}}}}}}}}}}}$	$\stackrel{18}{A}_{\Gamma}^{39.948}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\sum_{Xenón}^{54}$	$\mathop{Rad \delta n}\limits^{86}$	${\overset{\text{118}}{\bigcirc}} \overset{\text{294}}{\text{Squeson}}$	$\sum_{\text{Luterio}}^{71}$	$\frac{103}{L} \frac{262}{L}$ Lawrencio	
	17 VIIA	9 18.998 Fluor	$\bigcup_{Cloro}^{17} \bigcup_{Cloro}^{35.453}$	$\overset{35}{B}\overset{79.904}{\Gamma}$	53 126.9 T Yodo	$\mathop{\rm At}\limits_{\mathop{\sf Astato}}$	$\frac{117}{\mathrm{Teneso}}$	$\sum_{\text{Yterbio}}^{70} \sum_{\text{173.04}}^{173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{\mathbf{S}}\overset{32.065}{\mathbf{S}}$	$\overset{34}{\mathrm{Se}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	69 168.93 Tm Tulio	$\overset{\text{101}}{\text{Mondelevio}}$	
		$\sum_{\text{Nitrógeno}}^{7}$	$\overset{\text{15}}{P}\overset{30.974}{\text{Posforo}}$	${\overset{33}{A}}_{\text{Arsénico}}^{74.922}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\underset{Bismuto}{208.98}}$	${\stackrel{115}{ M }}^{288}_{C}$	$\frac{68}{\text{Erbio}}$	100 257 Fm	
	14 IVA	6 12.011 Carbono	$\overset{\text{14}}{\text{Silicio}}$	$\overset{32}{\text{Germanio}}$	$\mathop{Sn}_{\text{Estaño}}^{118.71}$	$\overset{82}{Pb}^{207.2}_{\text{Pbmo}}$	114 289 Flerovio	$\overset{67}{H}\overset{164.93}{0}$	99 252 Einsteinio	
	13 IIIA	5 H0.811 Boro	$ \bigwedge_{\text{Aluminio}}^{13} $	$\overset{31}{\overset{69.723}{\text{Galio}}}$	$\overset{49}{\text{II4.82}}$	81 204.38 Talio	$\underset{\text{Nihonio}}{\overset{113}{N}}$	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\underset{\text{Californio}}{\overset{98}{\text{C}}}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{\text{Cadmio}}$	$\underset{Mercurio}{\overset{80}{100.59}}$	$\overset{112}{C}\overset{285}{n}$	65 158.93 Terbio	$\frac{97}{BK}$	
			11 IB	$\overset{29}{\overset{63.546}{\mathbf{U}}}_{Cobre}$	$^{47}_{ m Ag}$	$\overset{79}{\mathrm{Au}}^{196.97}_{\mathrm{Oro}}$	$\underset{\text{Roentgenio}}{Rg}$	$\overset{64}{\text{Gadolinio}}$	$\overset{96}{Cm}^{247}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{i=1}^{58.693}$	$\Pr^{46 \ 106.42}$	$\Pr^{78}_{\text{P}}_{\text{195.08}}$	$\mathop{DS}\limits_{\text{Darmstadtio}}^{281}$	$\overset{63}{E}\overset{151.96}{u}$	$\underset{\text{Americio}}{\text{Am}}$	
			9 VIIIB	$\bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\overline{\Gamma}_{\mathbf{r}}^{192.22}$	$\underset{\text{Meitnerio}}{109}$	$\overset{62}{S}\overset{150.36}{m}$	$\underset{\text{Plutonio}}{P_{4}}$	
		œ	8 VIIIB	$\overset{26}{F}\overset{55.845}{\bullet}$ Hierro	$\mathop{Ruthenio}^{44\ 101.07}$	$\overset{76}{\text{Osmio}}$	$\overset{\text{108}}{\text{Hassio}}^{277}$	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	$\overset{93}{\text{IND}}\overset{237}{\text{P}}$	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{N}\overset{54.938}{\text{Manganeso}}$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Renio}_{\text{Renio}}^{75}$	$\underset{\text{Bohrio}}{\overset{107}{\text{BS}}}$	$\sum_{N \in \text{dimio}}^{60} \frac{144.24}{N}$	$\bigcup_{\text{Uranio}}^{92} 238.03$	
	Simbología:	Negro:] Gris: S	6 VIB	$ \bigcup_{\text{Cromo}}^{24} \sum_{\text{Cromo}}^{51.996}$	$\sum_{\text{Molybdeno}}^{42}$	$\bigvee_{\text{Tungstenio}}^{74} 183.84$	$\overset{106}{S}\overset{266}{\text{Seaborgio}}$	$\sum_{\text{Praseodymio}}^{59 \text{ 140.91}}$	$\overset{\text{91}}{Pa}^{231.04}$	
	Sin	$\sum_{ ext{Simbolo}}^{ ext{Z}}$	5 VB	$\sum_{\text{Vanadio}}^{23} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\prod_{Tantalo}^{73} \mathbf{B0.95}$	$\bigcup_{\text{Dubnio}}^{105}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\prod_{\text{Torio}}^{90-232.04}$	
			4 IVB	$\prod_{Titanio}^{22} 47.867$	$\sum_{ m Circonio}^{40~91.224}$	72 178.49 Hafnio	$\Pr^{104}_{\text{Rutherfordio}}$	νo _	$\overset{89}{ ext{AC}}_{\text{227}}$	
			3 IIIA	$\overset{\scriptscriptstyle{21}}{S}^{\scriptscriptstyle{44.956}}_{c}$ Escandio	$\sum_{\text{ltrio}}^{39 \text{ 88.906}}$	57-71 * Lantánido	.: 89-103 .: **	s -terreos		nidos
	2 IIA	$\overset{4}{B}\overset{9.0122}{e}$	${\overset{12}{\mathrm{Mge}}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{S}\overset{87.62}{\Gamma}$ Stroncio	$\overset{56}{\text{Bario}}_{\text{ario}}^{137.33}$	\mathop{Radio}^{88}	Alcalino Alcalino	le L o	obles los/Actí
1 IA	1 1.0079 Hidrógeno	3 6.941 Li tio	$\overset{_{11}}{\overset{22.990}{\text{N}}}$	19 39.098 K	$\mathop{Rb}\limits^{37-85.468}_{\text{Rubidio}}$	\sum_{Cesio}^{55}	$\overset{87}{F}\overset{223}{\Gamma}$ Francio	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/Actínidos
	Н	7	8	4	വ	9	7			