ECE 321: Software Requirements Engineering Assignment 3

Arun Woosaree

XXXXXXX

December 5, 2018

Figure 1: Screenshot of the petri net created in PIPE

Figure 2: Screenshot of the reachability graph generated from the petri net

2 Description of transitions

- 1. Default \rightarrow GreenG1
- 2. Default \rightarrow DefaultB3
- 3. Default \rightarrow DefaultS2
- 4. Default \rightarrow Night
- 5. DefaultB3 \rightarrow GreenP3
- 6. DefaultB3 \rightarrow DefaultB3S2
- 7. DefaultB3 \rightarrow Night
- 8. DefaultS2 \rightarrow GreenG1S2
- 9. DefaultS2 \rightarrow DefaultB3S2
- 10. DefaultS2 \rightarrow Night
- 11. DefaultB3S2 \rightarrow GreenP3S2
- 12. DefaultB3S2 \rightarrow Night
- 13. GreenP3 \rightarrow GreenG1
- 14. GreenP3S2 \rightarrow GreenG1S2
- 15. GreenG1 \rightarrow Green3
- 16. GreenG1S2 \rightarrow Green3S2
- 17. Green3 \rightarrow Default
- 18. Green3S2 \rightarrow Green2and3
- 19. Green2and3 \rightarrow Default
- 20. Night \rightarrow Default

3

3.1 Is the model conservative?

3.2 Can we have deadlock?

Using the *Space analysis tool* in PIPE, we see that the model is bounded, safe, and has no deadlock.

3.3 Can we have starvation?