

## **Electronic Signals**

- Every signal is expressed in two dimensions:
  - Level (amplitude)
  - Time
- Could be a voltage, current, charge, etc.

#### Level, Amplitentel, Magnitude





# **Analog vs. Digital Signals**

## **Analog (continuous-level)**



11:48:57:XX:XX:XX...



- Can take any value
- Real-world signals
  - Sound, light, image, biomedical, waves
  - Sensors and actuators

## Digital (discrete-level)



10:26



- Only takes specific levels
- Represented by binary digits (0 and 1)
- Boolean algebra
- Computational systems



# **Computers** are Digital

- Modular design
- Automated synthesis, hardware design language (HDL)
- Ease of data storage and transmission
- Noise and leakage immunity
- Integration with software
- Reconfigurability
- Scalability





Slide 3

# But the Real World is Analog

## Biopotential signals



| Signal | Frequency (Hz) | Dynamic Range      |
|--------|----------------|--------------------|
| EEG    | 0.5 - 100      | 2 μV – 100 μV      |
| ERG    | 0.2 - 200      | $0.5~\mu V - 1~mV$ |
| ECG    | 0.05 - 100     | 1 mV – 10 mV       |
| EMG    | 2 – 500        | 50 μV – 5 mV       |



# But the Real World is Analog

- Biopotential signals
- Telecommunication signals





# But the Real World is Analog

- Biopotential signals
- Telecommunication signals
- Audio signals





#### Attenuation

Path loss





#### Attenuation

Path loss



#### Attenuation

Path loss



#### Attenuation

Path loss



#### Attenuation

- Path loss
- Power loss on the internal impedances



#### Attenuation

- Path loss
- Power loss on the internal impedances

#### Noise

Random, stochastic process, unpredictable





#### Attenuation

- Path loss
- Power loss on the internal impedances

#### Noise

- Random, stochastic process, unpredictable
- Johnson-Nyquist (thermal) noise





#### Attenuation

- Path loss
- Power loss on the internal impedances

#### Noise

- Random, stochastic process, unpredictable
- Johnson–Nyquist (thermal) noise

#### Uncertainties and Variations

- Length of wires
- Twist and bending in cables
- Parasitic elements and mismatch
- Model deviations







## **Transmitter**

## Receiver







## **Amplification:** Boosting the Signal's Power

## **Transmitter**

## Receiver







## **Amplification:** Boosting the Signal's Power

## **Transmitter**

## Receiver







## **Quantization: Translation from Analog to Digital**

- Mapping analog intervals to digital levels
- Precision depends on the number of digits (resolution)
- In an *N*-bit binary quantizer:
  - Analog signal  $(V_a)$  varies from 0 to  $V_{fs}$
  - For quantizers supporting negative values:  $V_a \in \left[-V_{fs}/2, +V_{fs}/2\right]$
  - Number of digital levels: 2<sup>N</sup>
  - Lowest significant bit corresponds to:



$$V_{LSB} = \frac{V_{fs}}{2^N - 1}$$

# Continuous-Time (CT) vs. Discrete-Time (DT)

## **CT** signals





- Change dynamically at any instant
- x(t) can be defined for any  $t \in \mathbb{R}$
- All real-world signals
- Too volatile to be processed!

## **DT** signals





Refresh time:

- Change only at certain times
- x[n] can be defined for any  $n \in \mathbb{Z}$
- Sampled version of CT signals
- Commonly, equal sampling intervals

\* SIGNAL WANTER TO THE TOTAL OF THE TOTAL OF

# Sampling: Translation from CT to DT

- Uniform sampling: a periodic signal is used to sample CT signals and hold their corresponding DT signals.
- Sampling period:  $T_s$
- Sampling frequency:  $f_S = 1/T_S$
- Therefore, the k-th sample (x[k]) corresponds to the value of the CT signal at  $t = kT_s$ .





## **Pause and Ponder 1**

 What mathematical operation should be used to implement sampling?



## Pause and Ponder 2

 Considering the delay in signal processing systems, is it enough to sample signals at certain instants?





## Data Conversion: Sampling + Quantization



## **Electronics: Amplify + Sample + Quantize + Process**



# Logarithmic Scale (Decibel)

- General definition:  $|H(j\omega)|_{dB} = 20 \log_{10} |H(j\omega)|$
- $H(j\omega)$  can be a voltage gain, power gain, or any other type of transfer functions.
- Always represents a ratio → dB is unitless
- Useful for presenting wide-range quantities
- Can refer to a signal level in relation to a reference level:

**dBV:**  $20 \log_{10} \left( \frac{V_m}{1 \text{ V}} \right)$  **dBm:**  $10 \log_{10} \left( \frac{P}{1 \text{ mW}} \right)$ 

## Voltage gain

| $ H(\mathrm{j}\omega) $ | $ H(\mathrm{j}\omega) _{\mathrm{dB}}$ |
|-------------------------|---------------------------------------|
| $10^{n}$                | $20n\mathrm{dB}$                      |
| 10                      | $20\mathrm{dB}$                       |
| $\sqrt{2}$              | $\approx 3\mathrm{dB}$                |
| 1                       | $0\mathrm{dB}$                        |
| $1/\sqrt{2}$            | $\approx -3  \mathrm{dB}$             |
| 0.1                     | $-20\mathrm{dB}$                      |
| $10^{-n}$               | $-20n\mathrm{dB}$                     |

# Why dB?

Compact representation of wide-range signals and physical quantities

|   | Quantity                                    | Linear scale          | dB scale |
|---|---------------------------------------------|-----------------------|----------|
|   | The sun's radiated power                    | 4×10 <sup>27</sup> W  | 306 dBm  |
| ŀ | Typical FM transmitter output power         | 100 kW                | 80 dBm   |
|   | Typical mobile phone output power           | 0.5 W                 | 27 dBm   |
|   | Received power from GPS satellite           | 2×10 <sup>-16</sup> W | -127 dBm |
|   | Cosmic background radiation in 1 kHz window | 4×10 <sup>-21</sup> W | -174 dBm |

$$|V_{out}(j\omega)|_{dBV} = |V_{in}(j\omega)|_{dBV} + |A_{v1}(j\omega)|_{dB} + |H_f(j\omega)|_{dB} + |A_{v2}(j\omega)|_{dB}$$

Easier gain calculation in multiple stage cascade systems



## **Quantization: Translation from Analog to Digital**

- Mapping analog intervals to digital levels
- Precision depends on the number of digits (resolution)
- In an *N*-bit binary quantizer:
  - Analog signal  $(V_a)$  varies from 0 to  $V_{fs}$
  - For quantizers supporting negative values:  $V_a \in \left[-V_{fs}/2, +V_{fs}/2\right]$
  - Number of digital levels: 2<sup>N</sup>
  - Lowest significant bit corresponds to:



$$\Delta = V_{LSB} = \frac{V_{fs}}{2^N - 1}$$

# **Quantization: Example 1**

- 2-bit quantizer (N = 2)
- Number of discrete levels:  $2^2 = 4$

$$\bullet \ \Delta = V_{LSB} = \frac{V_{fS}}{2^2 - 1} = \frac{V_{fS}}{3}$$

- each sample Rounded to the closest integer
- Loss of information



# **Quantization: Example 2**

- 3-bit quantizer (N = 3)
- Number of discrete levels:  $2^3 = 8$

$$\bullet \ \Delta = V_{LSB} = \frac{V_{fS}}{2^3 - 1} = \frac{V_{fS}}{7}$$

- Rounds each sample to the closest integer
- Lower loss of information
  - Smaller quantization error  $(V_{err})$



# **Truncating or Rounding?**

- Truncating 3-bit quantizer
- Degradation of signal quality
- Quantization error depends on:
  - Number of bits  $(V_{LSB})$
  - · Rounding method
- Truncation:
  - Remove the decimals
  - $|V_{err}| \le V_{LSB}$
- Rounding (previous slide):
  - $|V_{err}| \le V_{LSB}/2$



# **Truncating or Rounding?**





# Quantization Noise (Error), Q

- This is not a real noise!
- However, has an effect like noise
  - Limits the dynamic range (DR) of data converters
- **DR:** Maximum range of analog signal that can be converted precisely.

$$DR = V_{a,max}[dBV] - V_{a,min}[dBV]$$

- *V<sub>a,max</sub>*: Limited by nonlinearities
- V<sub>a,min</sub>: Limited by quantization error and thermal noise





## **Quantization Noise**

# **Truncating**

Average Power: 
$$P_Q = \frac{1}{\Delta} \int_0^{\Delta} Q^2 dV_a = \frac{\Delta^2}{3}$$

## Rounding



Average Power: 
$$P_Q = \frac{1}{\Delta} \int_0^{\Delta} Q^2 dV_a = \frac{\Delta^2}{12}$$

Rounding results in 6 dB lower quantization noise.

# Signal-to-Noise Ratio (SNR)

The ratio of signal power to noise power

$$SNR = \frac{P_{sig}}{P_N}$$

$$SNR[dB] = 10 \log_{10} SNR$$

- A measure of conversion accuracy
- In an ideal *N*-bit quantizer:
  - Full-scale sinusoidal input signal:  $V_{sig,pp} = V_{fs}$

- Signal power: 
$$P_{sig} = \frac{(V_{sig,pp}/2)^2}{2} = \frac{V_{fs}^2}{8} = \frac{(2^N - 1)^2 \Delta^2}{8}$$





$$SNR = \frac{P_{sig}}{P_Q} = \frac{3}{2}(2^N - 1)^2$$

 $SNR[dB] \cong 6.02 \times N + 1.76 dB$ 

# Signal-to-Noise Ratio (SNR)

- Each additional bit of resolution → 6 dB higher SNR
- Example:

• 
$$N = 8$$

• 
$$V_{fs} = 2^8 - 1 = 255$$

• 
$$P_{sig} = 8128$$

• 
$$P_0 = 0.083$$

• 
$$SNR = \frac{P_{sig}}{P_Q} \cong 9.8 \times 10^4$$

•  $SNR[dB] \cong 50 \text{ dB}$ 

### Input signal



#### **Quantization noise**



#### **Audio Demonstration of Quantization Noise**



# **Effective Number of Bits (ENOB)**

- In practice, electronic quantizer adds thermal noise  $(N_t)$  to analog samples.
- Thermal noise is added to quantization noise.

$$N_{tot}[n] = N_t[n] + Q[n]$$

Degraded SNR compared to ideal quantizer

$$SNR = \frac{P_{sig}}{P_{N,t} + P_Q}$$

 ENOB: practical achievable resolution of a quantizer including thermal noise and other imperfections:





$$ENOB \triangleq \frac{SNR[dB] - 1.76 dB}{6.02}$$



Elektronik, EITA10, 2025 Data Conversion Slide 37

#### Transfer function of an Ideal Quantizer

• A linear function that relates analog levels ( $V_a$ ) to digital codes (D)

$$D = G(V_a - V_{a0})$$

• In an ideal quantizer:

$$G = \frac{1}{\Delta}$$

$$V_{a0} = 0$$
Gain Offset



#### **Quantization Non-idealities – Gain Error**

- Smaller or larger effective  $V_{LSB} = \Delta$
- Gain Expansion ( $G_{meas} > G_{ideal}$ ):
  - Saturation in the end
  - Part of full-scale range is lost
  - Limits the dynamic range



Elektronik, EITA10, 2025 Data Conversion Slide 39

#### **Quantization Non-idealities – Gain Error**

- Smaller or larger effective  $V_{LSB} = \Delta$
- Gain Expansion ( $G_{meas} > G_{ideal}$ ):
  - Saturation in the end
  - Part of full-scale range is lost
  - Limits the dynamic range
- Gain Compression ( $G_{meas} < G_{ideal}$ ):
  - Unused digital code (6 and 7 here)
  - Lower effective bits → larger Q
  - Lower SNR



#### **Quantization Non-idealities – Offset Error**

- Interval for the first digital code (0) is stretched.
- $\Delta_0 > V_{LSB}$
- Normally can be corrected in digital domain.
- Requires rigorous measurement and modeling



#### **Pause and Ponder 3**

 After 100 rounds of measurements, we have plotted this transfer function for an ADC. Find offset and gain error.

$$D = G(V_a - V_{a0})$$

$$V_{a0} = \Delta_0 = 1.25 V_{LSB}$$

$$G = \frac{1}{\Delta_3} = 0.73 \frac{1}{V_{LSB}}$$

 $G < 1 \rightarrow Compression$ 



# **Quantization Non-idealities – Nonlinearity**

- Nonlinearities of switches, capacitors, and resistors.
- Uneven intervals  $(\Delta_i \neq \Delta_i)$
- Generates distortion in digital spectrum
  - Harmonics
  - Inter-mixing of signals
- Degrades DR



### Sampling: Translation from CT to DT

- Uniform sampling: a periodic signal is used to sample CT signals and hold their corresponding DT signals.
- Sampling period:  $T_s$
- Sampling frequency:  $f_S = 1/T_S$
- Therefore, the k-th sample (x[k]) corresponds to the value of the CT signal at  $t = kT_s$ .





#### Data Conversion: Sampling + Quantization



# How Fast Should We Sample a Signal?

- Depends on the maximum frequency of interest in the signal spectrum  $(f_{sig})$
- Fourier transform of a signal determines  $f_{sig}$
- In this example:

• 
$$f_S = 10$$

• 
$$f_{sig} = 2$$

•  $f_s > 2 \times f_{sig}$ , seems OK!



### **Signal Reconstruction**

- The sampled signal is restored by interpolation.
- A filter takes average of samples and fill time intervals.
- Requires enough samples per second to reconstruct the signal with acceptable accuracy.



# Undersampling

- $f_s < 2 \times f_{sig}$
- Misses rapid changes
- The signal might have several extreme values between two sample points
- Cannot be reconstructed



# **Aliasing**

- Signals at different frequencies sampled by the same  $f_s$ , lead to the same sample points.
- We cannot differentiate them after sampling.
- Example:
  - $f_s = 10$
  - $f_{blue} = 2, f_{red} = 12$



### **Aliasing**

• In general aliased signals of a specific signal located at  $f_{sig}$ , exist at:

$$f_n = n \times f_s \pm f_{sig}$$

 Meaning, each signal itself repeats in spectrum as an image (copy) at:

$$f_{im} = n \times f_s \pm f_{sig}$$



### **Anti-aliasing Filter**



- Must reject interference signals at  $f > f_s f_{sig}$ 
  - Folded down into the spectrum of the useful signal
  - Cannot be performed digitally after sampling → analog filter is necessary
  - Disturbances with  $f_B < f < f_s f_B$  can be digitally filtered



# **Anti-aliasing Filter**

- Desired signal
  - Weak, low-power
  - $-f < f_B$
- Disorders that folds down
  - For frequencies  $f_{\text{mirror}} < f_B$
  - $-f \ge f_s f_B$
  - Attenuated at least by  $A_{SB}$
- Steep filter
  - Higher order



### Noise Folding and Oversampling



Noise also folded back

Elektronik, EITA10, 2025

 Sampling at higher frequency leads to less folding into the band of interest.

### Frequency Representation of Sampling

- In Fourier domain, multiplication is turned into convolution.
- Simply, shift by  $\pm kf_s$  in frequency  $(k \in \mathbb{Z})$
- Copies of signal spectrum is shifted both upwards and downwards.



# How Fast Should We Sample a Signal?

- Collision between copies of the signal spectrum is not allowed.
- The sampled signal would be undetectable if the copies overlap.
- Nyquist rate (minimum required  $f_s$ ):

$$f_{Nyquist} = f_{s,min} = 2 \times BW$$

