Домашнее задание от 21.09. Теоретическая информатика. 2 курс. Решения.

Глеб Минаев @ 204 (20.Б04-мкн)

23 сентября 2021 г.

Содержание	Задача 4
Задача 3	
Задача 3. Рассмотрим НКА $A=(\Sigma,Q,S,F,\delta)$ автомат $B=(\Sigma,Q,S,F',\delta), \qquad \text{где } F':=\{q$	
т.е. автомат A с новым множеством принимающих состояний. Тогда B будет распознавать $K\cdot L^{-1}$, так как есть следующая последовательность равносильных утверждений.	
ullet u распознаётся автоматом $B.$	
• Есть некоторое состояние $q \in \delta^*(S, u) \cap F'$.	
• Form homotopoo coctogrino $a \in \delta^*(S, u)$ is homotopoo chopo $u \in I$, here $\delta^*(a, v) \cap F \neq \emptyset$	

- Есть некоторое состояние $q \in \delta^*(S, u)$ и некоторое слово $v \in L$, что $\delta^*(q, v) \cap F \neq \emptyset$.
- Есть некоторое слово $v \in L$, что $\delta^*(S, uv) \cap F \neq \varnothing$.
- Есть некоторое слово $v \in L$, что $uv \in K$.
- $u \in K \cdot L^{-1}$.

 ${
m P.S.}$ Регулярность L не нужна!

Задача 4. Пусть даны ДКА $A_1=(\Sigma,Q_1,q_{0,1},F_1,\delta_1)$ и $A_2=(\Sigma,Q_2,q_{0,2},F_2,\delta_2)$. Рассмотрим ДКА $\widehat{A}=(\Sigma,\widehat{Q},\widehat{q}_0,\widehat{F},\widehat{\delta})$, где

$$\widehat{Q}:=Q_1 imes Q_2 imes\{0;1\}, \qquad \widehat{q}_0:=(q_{0,1},q_{0,2},0), \qquad \widehat{F}:=F_1 imes F_2 imes\{0\},$$
 $\widehat{\delta}((q_1,q_2,r),s):=egin{cases} (\delta_1(q_1,s),q_2,1) & ext{если } r=0, \ (q_1,\delta_2(q_2,s),0) & ext{если } r=1. \end{cases}$

Говоря на пальцах,

• \widehat{Q} хранит хранит текущие состояния двух автоматов и информацию о том, какой номер хода по модулю 2 был последним,

- $\hat{\delta}$ использует автомат, соответствующий остатку по модулю 2 номера хода, не трогая другой автомат, и меняет остаток хода на следующий,
- \widehat{q}_0 указывает на то, что в самом начале автоматы поставлены в свои обычные начальные конфигурации и будут использованы в порядке $A_1, A_2, A_1, A_2, \ldots$,
- \widehat{F} указывает на то, что признаны будут строки только чётной длины, где строка из нечётных символов принимается автоматом A_1 , а из чётных A_2 (формально будет следовать из утверждения дальше).

В таком случае несложно показать по индукции, что

$$\widehat{\delta}^*(\widehat{q}_0, u_1v_1u_2v_2\dots u_nv_n) = (\delta_1^*(q_{0,1}, u_1\dots u_n), \delta_2^*(q_{0,2}, v_1\dots v_n), 0),$$

$$\mathbf{u}$$

$$\widehat{\delta}^*(\widehat{q}_0, u_1v_1u_2v_2\dots u_nv_nu_{n+1}) = (\delta_1^*(q_{0,1}, u_1\dots u_{n+1}), \delta_2^*(q_{0,2}, v_1\dots v_n), 1).$$

Таким образом главное свойство F доказано: действительно, \widehat{A} принимает строку тогда и только тогда, когда строка имеет вид $u_1v_1\dots u_nv_n$, A_1 принимает строку $u_1\dots u_n$ и A_2 принимает строку $v_1\dots v_n$. А это и значит, что

$$L(\widehat{A}) = \text{PerfectShuffle}(L(A_1), L(A_2)).$$