Optimization Model for a SCRUM-based Software Development $$\operatorname{Process}$$

Generated by Gemini AI Assistant

September 4, 2025

Contents

1	Sets (Entities)	2
2	Indices	3
3	Goals (Objective Functions)	3
4	Conditions (Constraints)	4
5	Decision Variables	5

1 Sets (Entities)

- The set of all **Projects**, denoted by $P = \{p_1, \dots, p_{|P|}\}.$
- The set of all **Teams**, denoted by $T = \{t_1, \dots, t_{|T|}\}.$
- The set of all Workers, denoted by $W = \{w_1, \dots, w_{|W|}\}.$
- The set of all **Features**, denoted by $F = \{f_1, \dots, f_{|F|}\}.$
- The set of all **Skills**, denoted by $S = \{s_1, \ldots, s_{|S|}\}.$
- The set of all **Roles**, denoted by $R = \{r_1, \dots, r_{|R|}\}$.
- The set of all **ProductOwners**, denoted by $PO = \{po_1, \dots, po_{|PO|}\}$.
- The set of all **ScrumMasters**, denoted by $SM = \{sm_1, \dots, sm_{|SM|}\}$.
- The set of all **ProductBacklogs**, denoted by $PB = \{pb_1, \dots, pb_{|PB|}\}$.
- The set of all **Sprints**, denoted by $SP = \{sp_1, \dots, sp_{|SP|}\}.$
- The set of all **SprintPlannings**, denoted by $SPP = \{spp_1, \dots, spp_{|SPP|}\}.$
- The set of all **DailyScrums**, denoted by $DS = \{ds_1, \dots, ds_{|DS|}\}.$
- The set of all **SprintReviews**, denoted by $SR = \{sr_1, \dots, sr_{|SR|}\}.$
- The set of all **SprintRetrospectives**, denoted by $SRE = \{sre_1, \dots, sre_{|SRE|}\}.$
- The set of all **SprintBacklogs**, denoted by $SBL = \{sbl_1, \dots, sbl_{|SBL|}\}.$
- The set of all **SprintGoals**, denoted by $SG = \{sg_1, \dots, sg_{|SG|}\}.$
- The set of all **Epics**, denoted by $E = \{e_1, \dots, e_{|E|}\}.$
- The set of all **UserStories**, denoted by $US = \{us_1, \dots, us_{|US|}\}$.
- The set of all **Tasks**, denoted by $TSK = \{tsk_1, \dots, tsk_{|TSK|}\}.$
- The set of all **DevelopmentSnapshots**, denoted by $DEV = \{dev_1, \dots, dev_{|DEV|}\}$.
- The set of all **Blockers**, denoted by $BL = \{bl_1, \dots, bl_{|BL|}\}.$
- The set of all **Stakeholders**, denoted by $SH = \{sh_1, \dots, sh_{|SH|}\}.$
- The set of all **Velocities**, denoted by $VEL = \{vel_1, \dots, vel_{|VEL|}\}$.
- The set of all **ReleasePlans**, denoted by $REP = \{rep_1, \dots, rep_{|REP|}\}$.
- The set of all **Roadmaps**, denoted by $RM = \{rm_1, \dots, rm_{|RM|}\}.$
- The set of all **ScrumBoards**, denoted by $SCB = \{scb_1, \dots, scb_{|SCB|}\}.$
- The set of all **FeatureDocumentations**, denoted by $FED = \{fed_1, \dots, fed_{|FED|}\}$.

2 Indices

• $p \in P$: An index for a Project.

• $t \in T$: An index for a Team.

• $w \in W$: An index for a Worker.

• $f \in F$: An index for a Feature.

• $s \in S$: An index for a Skill.

• $r \in R$: An index for a Role.

• $po \in PO$: An index for a ProductOwner.

• $sm \in SM$: An index for a ScrumMaster.

• $pb \in PB$: An index for a ProductBacklog.

• $sp \in SP$: An index for a Sprint.

• $us \in US$: An index for a UserStory.

• $tsk \in TSK$: An index for a Task.

• $bl \in BL$: An index for a Blocker.

• $sh \in SH$: An index for a Stakeholder.

• $rep \in REP$: An index for a ReleasePlan.

3 Goals (Objective Functions)

• **ID**: G0

Name: maximize_story_points_per_sprint

Formulation: Let SP_{us} be the story points for user story us. Let $y_{us,sp}$ be a decision variable that is 1 if us is assigned to sprint sp.

$$\text{maximize } \sum_{sp \in SP} \sum_{us \in US} SP_{us} \cdot y_{us,sp}$$

• **ID**: G1

Name: minimize_effort_per_feature

Formulation: Let $Effort_f$ be the estimated effort for feature f. Let $z_{f,rep}$ be 1 if f is in release plan rep.

$$\text{minimize} \sum_{rep \in REP} \sum_{f \in F} Effort_f \cdot z_{f,rep}$$

• **ID**: G2

Name: maximize_team_satisfaction

Formulation: Let Sat_{sre} be the team satisfaction recorded in retrospective sre.

$$\text{maximize} \sum_{sre \in SRE} Sat_{sre}$$

• ID: G3

Name: minimize_number_of_open_blockers

Formulation: Let $Status_{bl}$ be a parameter that is 1 if blocker bl is open. Let r_{bl} be 1 if we decide to resolve bl.

minimize
$$\sum_{bl \in BL} Status_{bl} \cdot (1 - r_{bl})$$

• **ID**: G4

Name: maximize_priority_of_user_stories

Formulation: Let $Prio_{us}$ be the priority for user story us.

$$\text{maximize } \sum_{sp \in SP} \sum_{us \in US} Prio_{us} \cdot y_{us,sp}$$

4 Conditions (Constraints)

• **ID**: C0

Name: sprint_capacity_limit

Formulation: The sum of story points in a sprint cannot exceed the velocity of the team assigned to that sprint. Let Vel_t be the velocity of team t, and let Team(sp) be the team assigned to sprint sp.

$$\sum_{us \in US} SP_{us} \cdot y_{us,sp} \le Vel_{Team(sp)} \quad \forall sp \in SP$$

• **ID:** C1

Name: project_budget_limit

Formulation: The allocated budget for a project must not exceed its maximum budget. Let b_p be the budget decision variable for project p, and B_p be the maximum budget parameter.

$$b_p \le B_p \quad \forall p \in P$$

• **ID:** C2 & C3

Name: team_size_minimum & team_size_maximum

Formulation: The size of each team must be within a defined range. Let $size_t$ be the decision variable for the size of team t.

$$3 \le size_t \le 10 \quad \forall t \in T$$

• **ID:** C4

Name: worker_availability

Formulation: A worker cannot be assigned to any team if their status is 'on leave'. Let $x_{w,t}$ be 1 if worker w is assigned to team t. Let $OnLeave_w$ be a parameter that is 1 if worker w is on leave.

$$\sum_{t \in T} x_{w,t} \le (1 - OnLeave_w) \quad \forall w \in W$$

• **ID:** C6 & C7

Name: must_have_product_owner & must_have_scrum_master

Formulation: Each team must have exactly one Product Owner and one Scrum Master. Let $IsPO_w$ and $IsSM_w$ be parameters indicating if worker w has the respective role.

$$\sum_{w \in W} IsPO_w \cdot x_{w,t} = 1 \quad \forall t \in T$$

$$\sum_{w \in W} IsSM_w \cdot x_{w,t} = 1 \quad \forall t \in T$$

• **ID:** C9

Name: task_blocked_status

Formulation: A task cannot be 'Done' if it has an active blocker. Let $Done_{tsk}$ be 1 if task tsk is done. Let $IsBlocked_{tsk}$ be 1 if it has an active blocker.

$$Done_{tsk} + IsBlocked_{tsk} \le 1 \quad \forall tsk \in TSK$$

5 Decision Variables

• **ID:** DV0

Name: assign_worker_to_team

Variable: $x_{w,t} \in \{0,1\}$, 1 if worker $w \in W$ is assigned to team $t \in T$.

• **ID**: DV1

Name: assign_user_story_to_sprint

Variable: $y_{us,sp} \in \{0,1\}$, 1 if user story $us \in US$ is assigned to sprint $sp \in SP$.

• **ID:** DV2

Name: select_feature_for_release

Variable: $z_{f,rep} \in \{0,1\}$, 1 if feature $f \in F$ is selected for release plan $rep \in REP$.

• **ID:** DV3

Name: assign_task_to_worker

Variable: $a_{tsk,w} \in \{0,1\}, 1 \text{ if task } tsk \in TSK \text{ is assigned to worker } w \in W.$

• **ID:** DV4

Name: determine_team_size

Variable: $size_t \in \mathbb{Z}^+$, the number of workers in team $t \in T$.

• **ID:** DV5

Name: allocate_project_budget

Variable: $b_p \in \mathbb{R}^+$, the budget allocated to project $p \in P$.

• **ID:** DV6

Name: set_sprint_duration

Variable: $d_{sp} \in \{7, 14, 21, 28\}$, the duration in days of sprint $sp \in SP$.

• **ID:** DV7

Name: estimate_story_points

Variable: $sp_{us} \in \{1, 2, 3, 5, 8, \dots\}$, the story points for user story $us \in US$.

• **ID:** DV10

Name: resolve_blocker

Variable: $r_{bl} \in \{0,1\}$, 1 if a decision is made to resolve blocker $bl \in BL$.