Optimal Control of Fisheries

Student: Abner Hernandez

Advisor: Dr. Shaurya Agarwal

Final Project Presentation - EE5630

Outline of the Presentation

- Introduction
- Background and Motivation
- Problem Formulation
- Dynamics and Cost Function
- Analysis and Simulation
- Conclusion

Introduction

Introduction

- In 2009, Americans consumed a total of 4.8 billion pounds
- 15.8 pounds of fish and shellfish per person

Overfishing

- Overfishing occurs when fish are caught faster than nature can normally supply.
- From 1950 2011, fishing stocks have seen a decrease of 90 percent.
- By Catch: Sea creatures incidentally caught in the net.

Overfishing

• As a result of overfishing, various fish species are declining.

Overfishing

Southern Atlantic Species in Severe Decline

Considerations

Considerations

- Oppulation of Fish
- Cost of Fish
- Profits for Fishermen
- Control of Fishing
- Time for Fishing

Problem Formulation

Dynamics of the System

We can consider a model for a single population of fish.

Dynamics

$$dx = Kx(t)(M - x(t)) - u(t)x(t)$$
(1)

where x(t), is population level of fish and u(t) is the harvesting control.

Cost Function

For the model previous dynamics, the object of the control law is to maximize net profit for the fishermen for the given x_0 and time t_0 .

Cost Function

$$J_{=} \left\{ \int_{0}^{T} \exp(-\delta t) (p_{1}u(t)x(t) - p_{2}(x(t)u(t))^{2} - c_{1}u(t))dt \right\}, \quad (2)$$

where, p_1 , p_2 and c_1 represent profit from sales of fishing, diminishing returns when there is a large amount of fish to sell and cost of fishing. The value function then becomes:

Value Function

$$\mathscr{V}(x,t) = \inf_{u(\cdot)} J_{x,t}[u(\cdot)]. \tag{3}$$

Dynamics of the System - Baltic Sea

We can consider a model for multiple fish population.

Dynamics

$$\dot{x}_{i}(t) = \varepsilon_{i} x_{i}(t) \left(1 - \frac{x_{i}(t)}{K_{i}}\right) - \sum_{j=1}^{m} \gamma_{ij} \frac{x_{i}(t)}{K_{i}} \frac{x_{j}(t)}{K_{j}}$$
$$-u_{i}(t) r_{i} d \cdot \frac{x_{i}(t)}{K_{i}}$$

where x(t), is population level of fish and u(t) is the harvesting control, ε is growth coefficients, γ is the phagos coefficient, d is the number of days, r is the catch proportionality and K is a given constant number.

Cost Function

For the model previous dynamics, the object of the control law is to maximize net profit for the fishermen for the given x_0 and time t_0 .

Cost Function

$$J(u) = \int_{0}^{T} \left\{ \sum_{i=1}^{m} p_{i} u_{i}(t) r_{i} d \cdot \frac{x_{i}(t)}{K_{i}} - c d \cdot \sum_{i=1}^{m} u_{i}(t) \right\} e^{-\delta t} \rightarrow \max_{u(\cdot)}$$

where, p1 is profits from fishing, x(t) is population level of fish and u(t) is the harvesting control, $e^{(t)} - \delta t$ is the discount factor, d is the number of days, r is the catch proportionality and K is a given constant number.

Method

To simulate, use the Pontryagin method with Steepest descent method is used to find the solution.

Dynamics

$$dx = Kx(t)(M - x(t)) - u(t)x(t)$$
(4)

Cost Function

$$J_{=} \left\{ \int_{0}^{T} x^{2}(t) - u^{2}(t)dt \right\}, \tag{5}$$

Method

To simulate, use the Pontryagin method with Steepest descent method is used to find the solution.

State Equation

$$dx = Kx(t)(M - x(t)) - u(t)x(t)$$
(6)

Costate Equation

$$dp = 2x + p(t)(KM - 2Kx(t) - u(t));$$
 (7)

Partial derivative of H with respect to U

$$\frac{dH}{du} = 2u(t) + p(t)x(t); \tag{8}$$

Expectations

- The cost function is to rise exponentially, then settle.
- Population/Control should have an overshoot, then settle.
- Note: Following Figures was from the paper "Some Applications of Optimal Control in Sustainable Fishing in the Baltic Sea"

Expectations

Figure: Expectations for cost ¹

¹Copyright 2011 SciRes. Some Applications of Optimal Control in Sustainable Fishing in the Baltic Sea

Expectations

Figure: Expectations for states²

²Copyright 2011 SciRes. Some Applications of Optimal Control in Sustainable Fishing in the Baltic Sea

Simulation Results

Figure: Numerical Results for Inverse Problem-1

Simulation Results

Figure: Numerical Results for Inverse Problem-1

Conclusion

- Although I did not get great results, I understand what I am supposed to look for.
- Learned that everything can be written as a optimal control problem.

Future Work

- Try using multiple states
- Try using the steady state method
- Finalize code to work properly

Thank you!