KUBIG 24-S 여름방학 BASIC STUDY SESSION

NLP SESSION WEEK1

CONTENTS

Session 중에는 모두 캠을 켜주시기 바랍니다 :)

01 NLP SESSION 소개

02 자기 소개

03 Deep Learning Reminder

04 과제 설명

01 NLP SESSION 소개

방학동안무엇을하나요?

한 학기동안 잘 부탁 드립니다!!

- ・ 분반장 18기 정해원
- 전 홍보팀장 출신
- DL 초심자에서 분반장까지 순항 중
- 최근 우리말 겨루기를 시청하며 언어 능력 습득 중

분반장 17기 김연규 관심 분야: 데이터 분석 -> 인공지능 프로그래밍과 더 친해지려고 노력 중 스터디와 친목 둘 다 환영

분반장 18기 정해원

분반장 17기 김연규

주차	복습과제	학습내용	예습과제
1주차		OT, DL Reminder	
2주차	- 해당 주차에 배운 내용에 대한 코드 실습 과제 부여	텍스트 전처리, 워드 임베딩 (Word2Vec, GloVe)	- 다음 주차에 배울 내용에 대한 코드 실 - 다음 주차에 배울 내용에 대한 코드 실 - 습 과제 부여
3주차	- ex) week1 복습과제: deep learning reminder(pytorch	RNN, LSTM, GRU, ELMo	- ex) week1 예습과제: 텍스트 전처리
4주차	basic) - session 시작 초반부에 우수 코드	Attention, Transformer	pipeline 구현 코드 - week1 예습과제라 함은, week1
5주차	선정자가 5분 가량 코드 구현 과정 발표(별도 발표자료 없이 코드를 화	BERT	session이 끝나고 부여되는, week2 내용에 대한 예습과제를 의미합니다!
6주차	면공유하여 발표) - <mark>마감기한: 수요일 오후 6시</mark>	GPT	- <mark>마감기한: 수요일 오후 6시</mark>
7주차		LLM 기초, HuggingFace	

매주 목 19:00~21:00 총 2시간 진행

1-3. 참고 교재

밑바닥부터 시작하는 딥러닝2

딥러닝을 이용한 자연어 처리 입문 위키독스에서 무료 이용 가능(부분 유료)

고려대학교 DSBA 연구실 유튜브 채널에서 paper review 영상 참고

02 자기 소개

친해지길 바라!

2. 자기 소개

한 학기 동안 함께 하실 분들!

강동헌

강지윤

심승현

이동주

이소희

이승준

정종락

최지우

하진우

강민정

김채원

박준희

윤시호

이세은

이유진

기수, 이름, 학과, 나이, 사는 곳, 취미 NLP 경험, NLP 선택 이유, 원하는 방향성

03 Theoretical Background of Deep Learning

What is the True Function?

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

3-0. Principles of Deep Learning

single-layer perceptron

입력층(input layer) 출력층(output layer)

single-layer perceptron

입력층(input layer) 출력층(output layer)

Q) How many parameters?
Q) What Dimension?

XOR problem

Can you separate B/W by a single line (in 2-dimension space)?

<i>x</i> ₁	<i>x</i> ₂	y
0	0	0
0	1	1
1	0	1
1	1	0

Linearly Non-Separable

(in 2-dimension space)

Linearly Non-Separable

(in 2-dimension space)

Data in R^3 (separable)

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

Manifold Hypothesis

- Hypothesis: High-dimensional data tend to lie in the vicinity of a low-dimensional manifold
- We can map data to a high-dimensional space through a smooth representation if the manifold hypothesis holds

Multi-Layer Perceptron

(More Layers, much more parameters)

Universal Approximation Theorem

Why deep learning is powerful

Universal approximation theorem — Let $C(X,\mathbb{R}^m)$ denote the set of continuous functions from a subset X of a Euclidean \mathbb{R}^n space to a Euclidean space \mathbb{R}^m . Let $\sigma \in C(\mathbb{R},\mathbb{R})$. Note that $(\sigma \circ x)_i = \sigma(x_i)$, so $\sigma \circ x$ denotes σ applied to each component of x.

Then σ is not polynomial if and only if for every $n \in \mathbb{N}$, $m \in \mathbb{N}$, compact $K \subseteq \mathbb{R}^n$, $f \in C(K, \mathbb{R}^m)$, $\varepsilon > 0$ there exist $k \in \mathbb{N}$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $C \in \mathbb{R}^{m \times k}$ such that

$$\sup_{x \in K} \|f(x) - g(x)\| < \varepsilon$$

where
$$g(x) = C \cdot (\sigma \circ (A \cdot x + b))$$

(Universal Approximation Theorem) For a given arbitrary continuous function on a bounded domain and an error bound, there always exists a one-hidden-layer neural network that can approximate the given continuous function within the error bound.

Universal Approximation Theorem

Why deep learning is powerful

Increase in # of hidden units -> increase in # of parameters -> increase in # of regions -> increase in # of patterns a function can represent

04 Factors of Deep Learning

4-1. Deep Learning Training Cycle

Forward pass through NN, get predictions

Updatethe network
parameters

Backpropagation of the total cost

4-2. Forward Pass

Forward Pass computation

$$\sigma\left(\begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$
$$= \sigma\left(\begin{bmatrix} 4 \\ -2 \end{bmatrix}\right) = \begin{bmatrix} 0.98 \\ 0.12 \end{bmatrix}$$

activation function

4-3. Cost Function

Total Cost

Total cost를 minimize하는 network parameter 찾기

4-4. Loss Function

Gradient Descent

Gradient Descent

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

4-5. Backpropagation

$$w_{i}(t+1) = w_{i}(t) - \eta \frac{\partial C}{\partial w_{i}}$$

$$x_{1} \downarrow \qquad \qquad \downarrow$$

05 과제 설명

1주차 복습과제, 예습과제

4-1. 예습과제, 복습과제

코드과제의 파일형식은 ipynb로, KUBIG 24-2 **Github** repo에 업로드 될 예정입니다! Colab 환경에서 제작된 과제들이므로 **google** colab에서 실행하시는 것을 권장드립니다.

수고하셨습니다