Objective

Today, we're building on our knowledge of *Arrays* by adding another dimension. Check out the <u>Tutorial</u> tab for learning materials and an instructional video!

Context

Given a $\mathbf{6} \times \mathbf{6}$ 2D Array, \mathbf{A} :

We define an hourglass in \boldsymbol{A} to be a subset of values with indices falling in this pattern in \boldsymbol{A} 's graphical representation:

```
a b c
d
e f g
```

There are 16 hourglasses in A, and an hourglass sum is the sum of an hourglass' values.

Task

Calculate the hourglass sum for every hourglass in \boldsymbol{A} , then print the maximum hourglass sum.

Input Format

There are $\bf 6$ lines of input, where each line contains $\bf 6$ space-separated integers describing 2D Array $\bf A$; every value in $\bf A$ will be in the inclusive range of $\bf -\bf 9$ to $\bf 9$.

Constraints

 $\begin{array}{l} \bullet & -9 \leq A[i][j] \leq 9 \\ \bullet & 0 \leq i,j \leq 5 \end{array}$

Output Format

Print the largest (maximum) hourglass sum found in \boldsymbol{A} .

Sample Input

Sample Output

19

Explanation

 \boldsymbol{A} contains the following hourglasses:

```
1 1 1
       1 1 0
              1 0 0
                      0 0 0
 1
         0
                0
                        0
1 1 1
       1 1 0
              1 0 0
                      0 0 0
0 1 0
       1 0 0
               0 0 0
                      0 0 0
        1
               0
                        0
0 0 2
       0 2 4
              2 4 4
                      4 4 0
1 1 1
       1 1 0
              1 0 0
                      0 0 0
       2
                       4
0 0 0
       0 0 2
              0 2 0
```

The hourglass with the maximum sum (19) is: