

Figure 5: ASC and RPM simulations with variability in intermediate node policy. $\rho(x)$ taken as in Figure 1. Top row shows proper rhetorical issue $(x_0=0)$ for (a) complete network and (b) chain network. Bottom row shows improper rhetorical issue $(x_0=-5)$ for (c) complete network and (d) chain network. Positive and negative policy sides are on positive and negative horizontal axis respectively. Polarization shift, $\delta = \bar{x}(t_f) - \bar{x}(0)$, plotted as a function of the initial policy disagreement, $\Delta = x_3 - x_1$. Shift toward the extreme corresponds to $\delta > 0$ for positive policy side and $\delta < 0$ for negative side. The position of the intermediate node was varied according to $x_2 = \pm (6 + \epsilon)$ for the positive and negative policy sides and where ϵ takes on 41 uniformly-spaced values over the interval [-1,1]. $x_1 = 6 - \Delta/2$ and $x_3 = 6 + \Delta/2$ for $\Delta > 0$ and analogously for $\Delta < 0$. RPM (dashed) and ASC (solid) means are over all ϵ values. Shifts for individual ϵ values shown as gray curves for ASC model. Dotted curve shows $\epsilon = 0$ ASC baseline case where $x_2 = 6$ is exactly in middle. Gap in the curves is the region where x_2 would go beyond x_1 or x_3 . ASC model parameters: $\lambda_{1,2,3}(0) = 0.05$, $\lambda_{min} = 0.025$.