Evolution of galaxy dynamics over the last 10 Gyrs with MUSE/VLT

de Paris

Author: Mercier Wilfried

Supervisor: Contini Thierry (IRAP) Co-Supervisor: Epinat Benoit (LAM)

June 11, 2019

Galaxy evolution

Morphology at z>0.5 different from the local Universe. Kinematics more disturbed. Why ?

- ▶ Impact of the environment on the kinematics? On the morphology? How do they scale with each other?
- - · Which is/are dominant?
 - · How to identify them?
- ▷ Origin of quenching ?

Integral Field Spectroscopy & MUSE

IFS:

- > 3D cubes (2D spatial + 1D spectral)
- \triangleright photometry + kinematics

MUSE:

- $\triangleright 1 \times 1 \operatorname{arcmin}^2 \text{ FoV}$
- \triangleright 0.2 arcsec spatial sampling
- \triangleright spectral range [4650 Å, 9300 Å]
- > seeing-limited or AO observations

MUSE instrument. Credit: Contini Thierry (IRAP)

Our sample

HST image of COSMOS group CGr30

- > 16 MUSE fields in COSMOS area
- $> {
 m exposures~from~1~to~10\,hr}$
- ightharpoonup seeing-limited (FWHM $\lesssim 0.7$ ") or AO (FWHM $\lesssim 0.5$ ")
 - · deep and best_seeing observations
- $ightharpoonup \sim 500$ field galaxies with [OII] detection
 - · HST-ACS counterparts
 - 0.4 < z < 1.4

Checking a couple of parameters A need for reliable morphological parameters

Morphological parameters are useful for

> the morpho-kinematics comparison

 \triangleright the kinematical model

The two most important are

 $\,\rhd\,$ a size measure to select resolved galaxies

· half-light radius $R_{1/2}$

· compute the inclination from $\cos i = 1 - e$

· used as a fixed input for the kinematical model

Checking a couple of parameters Half-light radius

GALFIT run by V. Abril-Melgajero (LAM) on structure galaxies

> GALFIT
radius used as
a reference

spheroidal disk-like irregulars

Checking a few parameters Ellipticity

> values are consistent between catalogues

 ⊳ scatter is due to bulge dominated (spherically symmetric) systems

Characteristics of our sample Redshift distribution

- ightharpoonup sample of 103 galaxies with $R_{1/2} > 0.35$ " and SNR > 5
- ightharpoonup we loose galaxies at $z \approx 1.4$
- > redshift distribution is not drastically changed

Characteristics of our sample Mass-SFR relation

 $\,\rhd\,$ massive quiescent and low [OII] and very low mass galaxies are lost

Kinematical modelling Cleaning galaxies

Kinematical modelling Fitting a model

First results $V_{
m max}/\sigma_{
m v}$ distribution

First results Tully-Fisher relation

