Attorney Docket No. 13DV-13906 (07783-0081) Serial No. 10/029,365

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of HARRISON et al.

:

Serial No.

10/029,365

Group Art Unit 1742

Application Filed

December 20, 2001

Examiner: Sheehan, John P.

For: METHOD OF RESTORATION OF MECHANICAL PROPERTIES OF A CAST NICKEL-BASED SUPERALLOY FOR SERVICED AIRCRAFT COMPONENTS

DECLARATION UNDER 37 CFR § 1.132

Thomas J. Kelly, hereby certifies the following:

- 1. I am a joint inventor of all the claims of the patent application identified above and I am a joint inventor of the subject matter described and claimed therein.
- I have extensive knowledge of the compositions of superalloy materials and I am
 familiar with trademarks of superalloy materials, as I am skilled in the art of superalloy
 compositions.
- 3. To the best of my knowledge, the trademark "Inconel 903" for a superalloy material does not exist in the art. The use of such a designation would be recognized by one skilled in the art as referring to the trademark "INCOLOY® 903," which does exist.
- 4. To the best of my knowledge, the trademark "Inconel 907" for a superalloy material does not exist in the art. The use of such a designation would be recognized by one skilled in the art as referring to the trademark "INCOLOY® 907," which does exist.
- 5. To the best of my knowledge; the trademark "Inconel 909" for a superalloy material does not exist in the art. The use of such a designation would be recognized by one skilled in the art as referring to the trademark "INCOLOY® 909," which does exist.
- 6. The term INCOLOY® generally is used with reference to an alloy falling in the family of iron-base superalloys.
- 7. The term INCONEL® generally is used with reference to an alloy falling in the family of nickel-base superalloys.

Attorney Docket No. 13DV-13906 (07783-0081) Serial No. 10/029,365

- 8. I have observed incorrect usages of the terms INCOLOY® and INCONEL®. Examples of such incorrect usages are available on the Internet.
- 9. I hereby acknowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon, and I hereby declare that all statements made in this declaration of my own knowledge are true and that all statements made on information and belief are believed to be true.

Thomas J. Kelly

Thomas J. Kelly

Nominal compositions and densities of selected cast nickel-base superalloys (continued)

•						Co	mp siti	ion, %							D
Alloy	С	Cr	Co	Mo	W	Ta	Nb	Al	Ti	Нf	Zr	В	Ni	Other	Density, g/cm ³
Waspaloy	0.06	19.0	12.3	3.8	_	_		1.2.	3.0	_	0.01	0.005	bal	0.45 Mn	
NX 188	0.04	-		18.0	_	_	l —	8.0		. —	_	_	bal		_
SEL	0.08	15.0	26.0	4.5			l —	4.4	2.4		l — ·	0.015	bal		i <u> </u>
CMSX-2(a)	-	8.0	4.6	0:6	8.0	6.0.		5.6	1.0		l — ˈ	_	bal	_	8.6
GMR-235	.0.15	15.0	-	4.8	_	- .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3.8	2.0		_	0.05	bal	0.3 Mn, 0.4	8.0
CM (CV av.)	l	00		ا م ا		<i>-</i> -								Si, 11.0 Fe	
CMSX-3(a)	—	8.0	4.6	0.6	8.0	6.0		5.6	1.0	0.10	—	<u> </u>	bal	—	8.6
CMSX-4(a)		6.4	9.6	0.6	6.4	6.5	—	5.6	1.0	0.10	 	. —	bal	3.0 Re	8. <i>7</i>
CMSX-6(a)	1	. 9.9	5.0	3.0		2.0	—	4.8	4.7	0.05		-	bal		7.98
GMR-235	0.15	15.0	_	4.8	_		-	3.5	2.5	_	—	0.05	bal	4.5 Fe	8.04
SEL-15	0.07	11.0	14.5	6.5	1.5	-	0.5	5.4	2.5	 .	_	0.015	bal	_	8.7
UDM 56	0.02	16.0	5.0	1.5	6.0	. —	_	4.5	2.0		0.03	0.070	bal	0.5 V	8.2
M-22	0.13	5.7	_	2.0	11.0	3.0	—	6.3	_	_	0.60		bal	_	8.63
IN-731	0.18	9.5	10.0	2.5	· —	_		5.5	4.6	1	0.06	0.015	bal	1.0 V	7.75
MAR-M 421	0.14	15.8	9.5	2.0	3.8	— .		4.3	1.8	_	0.05	0.015	bal		8.08
MAR-M 432	0.15	15.5	20.0	_	3.0	2.0	2.0	2.8	4.3		0.05	0.015	bal	· —	8.16
MC-102	0.04	20.0	_	6.0	2.5	. 0.6	6.0					-	bal	0.25 Si,	
					•		·.							0.30 Mn	
Nimocast 242	0.34	20.5	10.0	10.5	_	_	· —	0.2	0.3	_	_	—	bal	1.0 Fe, 0.3	8.40
Nimocost 262	0.06	20.0	200											Mn, 0.3 Si	
Nimocast 263	0.06	20.0	20.0	5.8	-	_		0.5	2.2		0.04	0.008	bal	0.5 Fe,	· 8.36
	<u> </u>													0.5 Mn . ·	,

(a) Single crystal

Physical properties of cast nickel-base and cobalt-base alloys

	ł					Specif	ic heat				The	rmal c	onduc	tivity			Mear	
			elting nge	At 2	1°C °F)		38°C 00°F)	At 10)93°C (0°F)		93°C 0°F)		38°C 10°F)		193°C 10°F)	ther	fficien mal ex on, 10	t of opan-
Alloy	Density, g/cm³	ე,	ሳፑ	J/kg·K	Btu/lb · °F	J/kg · K	Btu/lb · ºF	J/kg·K	Btu/lb · °F	W/m·K	Btu·in/h·ft²·°F	W/m·K	Btu · in/h · ft² · °F	W/m·K	Btu · in/h · ft² · °F	At 93°C (200°F)	At 538°C (1000°F)	At 1093°C (2000°F)
Nickel base		٠.	· 															
IN-713 C	7.91	1260-	2300-	420	0.10	565	0.135	710	0.17	10.9	76	17.0	118	26.4	183	10.6	-13.5	17.1
IN-713 LC	8.00	1290 1290- 1320	2350 2350- 2410	440	0.105	565	0.135	710	0.17	10. <i>7</i>	74	16.7	116	25.3	176	10.1	15.8	18.9
B-1900	8.22	1275- 1300	2325- 2375	_	_	-	<u> </u>			(10.2)	(71)	16.3	113 -		<u>-</u>	11.7	13.3	16.2
Cast alloy 625 Cast alloy 718	8.44 8.22	 1205-	 2200-	<u>'-</u>	_	=	_	_	_	 - 	_		_		<u> </u>	_		_
IN-100	7.75	1345 12 13	2450												<u>.</u>	13.0	13.9	18.1
IN-162	8.08	12 13												<u>-</u>	_	12.2	14.1	
IN-731 IN-738	7.75 8.11	122			;									.2	 189	 11.6	14.0	_
IN-792 M-22	8.25 8.63	13:										•		•	_	12.4	10.0	
MAR-M 200	8.53	131 1370 i	-2000)	,	- ,	, ,	_~ ·~r	·- r				,		7	206	72.4°	13.3 13.1	17.0
MAR-M 246	8.44	1315-	2400- 2450	_	. <u>58.</u> . (5.56)		40 <u></u>	-	<u>-</u>		_	18.9	131	30.0	208	11.3	14.8	18.6
MAR-M 247 MAR-M 421	8.53 8.08	٠ <u>٠</u> .	\equiv			<u> </u>					-	19.1	137	32.0	229	=	 14.9	10.0

SUPERALLOYS

Nominal compositions of wrought iron-base superalloys (continued)

i		Composition, %													
Alloy	Ni	Cr	Co	Mo	W	Nb	Al	Ti	Fe	Mn	Si	С	В	Other	
Incoloy 909	38.0	· —	13.0			4.7	1	1.5	42.0		0.4	0.01	0.001	_	
N-155	20.0	21.0	20.0	3.0	2.5	1.0		_	30.0	1.5	0.5	0.15	_	0.15 N	
V-57	27.0	14.8		1.3		l —	0.3	3.0	52.0	0.3	0.7	0.08	0.010		
19-9 DL	9.0	19.0	0.4	—	1.3	-	_	0.3	bal	1.0	0.50	0.3	_		
16-25-6	25.5	16.25	_	6.0	_	-	<u> </u>		bal	2.0	1.0	0.10		_	
Pyromet CTX-1	37.7	0.1	16.0	0.1		3.0	1.0	1.7	39.0		_	0.03			
Pyromet CTX-3	38.3	0.2	13.6		—	4.9	0.1	1.6	bal	_	0.15	0.05	0.007	_	
17-14CuMo	14.0	16.0		2.5	l —	0.4	_	0.3	62.4	0.75	0.50	0.12		3.0 Cu	
20-Cb3	34.0	20.0	—	2.5	_	1.0	—	 —	42.4	_	_	0.07		3.5 Cu	

Nominal compositions and densities of selected cast nickel-base superalloys

	<u></u>					Co	mposit	ion, %							Density,
Alloy	C	Cr	Co	Mo	W	Ta	Nb	Al	Ti	Hf	Zr	В	Ni	Other	g/cm ³
IN-718	0.04	18.5		3.0	—		5.1	0.5	0.9	_		_	bal	18.5 Fe	8.22
René 200	0.03	19.0	12.0	3.2		3.1	5.1	0.5	1.0	_	—		bal	-	_
IN-625	0.06	21.5	_	8.5	—	_ ·	4.0	0.2	0.2		-	 '	bal	2.5 Fe	-
IN-713C	0.12	12.5	-	4.2	-	-	2.0	6.1	0.8	-	0.10	0.012	bal	I – .	8.25
IN-713LC	0.05	12.0		4.5	-		2.0	5.9	0.6	-	0.10	0.01	bal		8.00
IN-713 Hf (MM 004)	0.05	12.0		4.5	_	-	2.0	5.9	0.6	1.3	0.10	0.01	bal	-	-
IN-100	0.18	10.0	15.0	3.0			'	5.5	4.7	1	0.06	0.014	h.1	1037	7.75
IN-738C	0.17	16.0	8.5	1.75	2.6	1.75	0.9	3.4	3.4	=	0.00	0.014	bal bal	1.0 V	7.75 8.11
IN-738LC	0.11	16.0	8.5	1.75	2.6	1.75	0.9	3.4	3.4		0.04	0.01	bal		0.11
IN-792	0.21	12.7	9.0	2.0	3.9	3.9		3.2	4.2		0.10	0.02	bal		8.25
IN-939	0.15	22.4	19.0		2.0	1.4	1.0	1.9	3.7	_	0.10	0.009	bal		8.2
B-1900	0.10	8.0	10.0	6.0		4.3	l	6.0	1.0		0.08	0.015	bal		8.2
B-1900 Hf	0.10	8.0	10.0	6.0		4.3		6.0	1.0	1.5	0.08	0.015	bal		8.25
(MM 007)					1		i								1
B-1910	0.10	10.0	10.0	3.0	—	7.0	-	6.0	1.0	<u> </u>	0.10	0.015	bal	_	
MM 002	0.15	9.0	10.0	-		2.5	 —	5.5	1.5	1.5	0.05	0.015	bal	_	<u> </u>
MAR-M 200	0.15	9.0	10.0	-	12.5	-	1.8	5.0	2.0		0.05	0.015	bal	-	8.53
MAR-M 200	0.14	9.0	10.0		12.5	_	1.0	5.0	2.0	2.0	-	0.015	bal	` —	
Hf (MM 009)	0.15	00	1.00										١		
MAR-M 246 MAR-M 246	0.15	9.0	10.0	2.5 2.5	10.0	1.5		5.5	1.5		0.05	0.015	bal	-	8.44
Hf (MM 006)	0.13	9.0	10.0	2.5	10.0	1.5	_	5.5	1.5	1.4	0.05	0.015	bal	-	_
MAR-M 247	0.16	8.5	10.0	0.65	10.0	3.0		5.6	1.0	1.4	0.04	0.015	bal	ł	0.53
(MM 0011)	0.10	0.0	10.0	0.00	10.0	5.0		. 5.0	1.0	1.4	0.04	0.015	Dai	– ·	8.53
CM 247LC	0.07	8.1	9.3	0.5	9.5	3.0	_	5.6	0.7	1.4	0.01	0.015	bal		
René 41	0.08	19.0	10.5	9.5			<u> </u>	1.7	3.2		0.01	0.005	bal		
René 77	0.08	15.0	18.5	5.2	_			4.25	3.5			0.015	bal	<u> </u>	7.91
René 80	0.17	14.0	9.5	4.0	4.0	_ :		3.0	5.0		0.03	0.015	bal	<u> </u>	8.16
René 80 Hf	0.15	14.0	9.5	4.0	4.0	· —	_	3.0	4.7	0.8	0.01	0.015	bal	_	-
René 100	0.15	9.5	15.0	3.0	—			5.5	4.2	_	0.06	0.015	bal	1.0 V	7.75
René 125 Hf	0.10	9.0	10.0	2.0	7.0	3.8		4.8	- 2.6	1.6	0.05	0.015	bal	_	l —
(MM 005)	منما										1	·			
Nimocast 75	0.12	20.0	-	_	_	-		_	0.5	_	—	- :	bal		8.44
Nimocast 80	0.05	19.5	100		. —	-		1.4	2.3	_	ļ -	_	bal	1.5 Fe	8.17
Nimocast 90 Nimocast 95	0.06	19.5 19.5	18.0	_	_			1.4	2.4	_			bal	1.5 Fe	8.18
Nimocast 100	0.20	11.0	18.0 20.0	5.0	_	_	_	2.0	2.9	_	0.02	0.015	bal	_	l —
Udimet 500	0.08	18.5	16.5	3.5			.—	5.0 3.0	1.5 3.0	_	0.03	0.015	bal	_	
Udimet 700	0.08	14.3	14.5	4.3		_		4.25	3.5		0.02	0.006 0.015	bal bal	-	8.02
Udimet 710	0.13	18.0	15.0	3.0	1.5	_	_	2.5	5.0	. =	0.02	0.015	bal		8.08
C 130	0.04	21.5	-	10.0		_	-	0.8	2.6		0.00		bal	_	6.06
C 242	0.30	20.0	10.0	10.3		_		0.1	0.2	_	_		bal	i <u> </u>	_
C 263	0.06	20.0	20.0	5.9	_]	·	0.45	2.15	_	0.02	0.001	bal	l	
C 1023	0.15	15.5	10.0	8.0		_		4.2	3.6	_	-	0.006	bal	_	_
Hastelloy X	0.08	21.8	1.5	9.0	0.6		_			_ `		_	bal '	18.5 Fe. 0.5	
						.	:							Mn, 0.3 Si	
Hastelloy S	0.01	16.0	-	15.0	— I			0.40	_		_	0.009	bal -	3.0 Fe, 0.02,	
. :			l		.	i			- 1		ĺ			La, 0.65 Si,	
												i		0.55 Mn	

Chemical compositions of some nickel-base P/M superalloys (continued)

							Composition, %							
Alloy	С	Ni	. Ct	Co	Mo	W	Ta	Nb	Hf	Al	Ti	v	B Zr	
New alloys											·:	: , :	A Same	
RSR 103 RSR 104 RSR 143		bal bal bal	_	_	15.0 18.0 14.0	<u> </u>	- 6.0	-	_	8.4 8.0 6.0	-	<u>:</u>		
RSR 185	0:04	bal	_	<u> </u>	14.4	6.1	_	<u> </u>		6.8				

Nominal compositions of selected cast cobalt-base superalloys

,						Cor	npositic	n,%	- 1	,	•••	٠.	•	Density
Alloy	· C	Cr	Ni	W	Ta	Nb	Mo	Ti	В	Zr	Fe	·Co	Other	g/cm³
HS-21	0.25	27.0	3.0			-	5.0		_	1	1.0	bal	24 <u>21</u> 235	学的 <u>学</u> 点
(MOD Vitallium)						1	Ì	1					ļ· · ·	
HS-31 (X-40)	0.50	.25.0	10.0	7.5	l —		l — ·	l	i —	0.17	1.5	bal	0.4 Si	l ·
HS-25 (L-605)	0.10	20.0	10.0	15.0		_	l —	l —	_	-		bal	0.201	والأخطا
ML-1700	0.2	25.0	_	15.0		_			-0.4	l _	-	bal	· · _ ·	· - 7 1
WI-52	0.42	21.0	1.0 max	11.0		-2.0 ·		·		l	2.0	bal	l <u> </u>	8.88
MAR-M 302	0.85	21.5		10.0	9.0		·	0.2	0.005	l _	1.5 max	bal		9.21
MAR-M 322	1.0	21.5	_	9.0	4.5	l		0.75	_	2.25	0.75	bal		8.91
MAR-M 509	0.60	24.0	10.0	7.0	7.5	-	_	0.2	l		1.0	bal		8.85
AiResist 13	0.45	21.0	_	11.0	_	2.0		-	l	l _	2.5 max	bal	3.4 A1,	8.43
									1	}		· Dai	0.1 Y	ريد،ن
AiResist 215	0.35	19.0	0.5	4.5	7.5	_	_		l	0.13	_	bal	4.3 A1,	8.47
	- 3.					. 1						Day	0.1 Y	0.47
F <i>7</i> 5	0.25	28.0	1.0 max		:	<u></u>	5.5		<u> </u>	l	_	bal	0.1	1141 1 1 1 1 1
FSX-414	0.25	29.5	10.5	7.0		<u> </u>			0.012		2.0 max	bal		8.3
X-45	0.25	25,5	10.5	7.0	l <u> </u>	l ·		_	0.010		2.0 max	bal.		(0,5

Nominal compositions of wrought cobalt-base superalloys

													the state of the state of			
						Con	npositio	n; %		4/3	THE PROPERTY OF THE PARTY OF TH					
Alloy	Ni	Cr	Co	Mo	W	Ťa	Nb	Al	Fe	Mn	Si	С	Zr	Other		
AirResist 213	_	19	66		4.7	6.5		3.5		_		0.18	0.15	0.1 Y		
Elgiloy	15	20	40	7			l	-	bal	2	J	0.18		0.04 Be		
Haynes 188	22.0	22.0	39.2		14.0	1 —		<u> </u>	3.0	. —		0.10				
L-605	10.0	20.0	52.9	_	15.0				-			0.05				
MAR-M 918	20.0	20.0	52.5	_	_	7.5		l			ľ <u>-</u> '	0.05	0.10			
MP35N	35.0	20.0	35.0	10.0	<u> </u>		l —	l —				-	J. 10			
MP159	25.5	19.0	35.7	7.0	l —		0.6	0.2	9.0	_			:	3.0 Ti		
Stellite 6B	3.0	30	bal	1.5	4.5	<u> </u>			3.0	2.0	2.0	1.1				
Haynes 150	-	28	50.5	-	— ·	_	i —	-	bal		0.75		l — '	0.02 P.		
		·												0.002 S		
S-816	20.0	20.0	bal	4.0	4.0	 -	4.0		3.0	1.20		0.40	· — ·	1403 144 in 14		
V-36	20.0	25.0	bal	4.0	—	-	2.3	-	2.4	1.0	—	0.32	 	-		

Nominal compositions of wrought iron-base superalloys

	,			<u>.0</u>			<i>I</i>	- 9 -						THE SHOW IN
٠.		·			ξ. (.	Co	mpositi	on, %		٠				1.00 M
Alloy	Ni	Cr	Co	Mo	W	. Nb	Al	Ti	Fe	Mn	Si	C.	В	Other,
A-286	26.0	15.0	_	1.3			0.2	2.0	54.0	1.3	0.5	0.05	0.015	2 7-1 Add: 1
Discaloy	26.0	13.5	—	2.7	·		0.1	1.7	54.0	0.9	0.8	0.04	0.005	
Alloy 901	42.5	12.5	···—	5.7	:		0.2	2.8	36.0	0.1	0.1	0.05	0.015	
Haynes 556	20.0	22.0	20.0	3.0	2.5	0.1	0.3		29.0	1.5	0.4	0.10	- 0.013	02 N. 0.02
				l		<i>.</i> .		1				00		La 09Ta
Incoloy 800	32.5	21.0	—	l —		<u> </u>	0.4	0.4	46	:0.8	0.5	0.05		
Incoloy 801	32.0	20.5		— ·	<u> </u>	· —		1.1	44.5		0.5	0.05		7724
Incoloy 802	32.5	21.5		_			· ·	· —	46	0.8	0.4	0.04		1.4.27.
Incoloy 807	40.0	20.5	⊹∴8.0	0.1	5.0	—	0.2	0.3	25	0.50	0.40	0.05	· .—. `	
Incoloy 825	38-46	19.5-	<u> </u>	2.5-		٠ ــــ	0.2	0.6-	22	1.0	0.5	0.05	·	1.5-3 Cü.
Marie 1977 Co.	11111	23.5		3.5		200		1.2			/	1		0.035
Incoloy 903	38.0	· —	15.0	- :		3.0	.0.7	1.4	41.0		اور تدوی		\(\frac{1}{2} \)	
Incoloy 907	*** 38 ···	·	·· ′13 ·			4.7	0.03	1.5 ^	42	·	0.15			