FCC ID: ZHXMPT2700A

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in § 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power	Average Time				
Range(MHz)	Strength(V/m)	Strength(A/m)	rength(A/m) Density(mW/cm ²)					
(A) Limits for Occupational/Control Exposures								
300-1500			F/300	6				
1500-100000			5	6				
(B) Limits for General Population/Uncontrol Exposures								
300-1500			F/1500	6				
1500-100000			1	30				

11.1 Friis transmission formula: $Pd = (Pout*G) \setminus (4*pi*R^2)$

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

11.2 Measurement Result

Power density limited:

 $Pd = f(MHz)/1500 = 900/1500 = 0.6 \text{mW/cm}^2$

Antenna gain: 5.5dBi

Channel	Channel	Output	Output	Antenna	Power density	Power density
	Frequency	Peak power	Peak power	Gain (dBi)	at 20cm	Limits
	(MHz)	(dBm)	(mW)	Numeric	(mW/cm^2)	(mW/cm^2)
1	909.797974	12.91	19.54	3.55	0.14	0.6
6	915.796509	12.24	16.75	3.55	0.12	0.6
10	920.595337	12.29	16.94	3.55	0.12	0.6

Note 1: Note 2: there is a WiFi module (FCC ID: PD9WM3945ABG) on this EUT; however, there is only WiFi Rx function on this EUT, therefore, the simultaneous MPE evaluation is not required.

Note 2: the RF connections are wired to rear-panel connectors on the HUB, and are then connected to an external splitter/combiner, and then to an external directional antenna. The antenna gain is 9dBi and the splitter loss is 3.5dB, which combine for a total antenna network gain of 5.5dBi.