

L7800 series

Positive voltage regulators

Features

- Output current to 1.5A
- Output voltages of 5; 5.2; 6; 8; 8.5; 9; 10; 12; 15; 18; 20; 24V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

Description

The L7800 series of three-terminal positive regulators is available in TO-220, TO-220FP, TO-3 and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed

primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Schematic diagram

Contents

1	Pin configuration 3
2	Maximum ratings
3	Test circuits 5
4	Electrical characteristics 6
5	Typical performance
6	Package mechanical data 36
7	Order code
8	Revision history

L7800 series Pin configuration

1 Pin configuration

Figure 1. Pin connections (top view)

Figure 2. Schematic diagram

Maximum ratings L7800 series

2 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V	DC Input voltage	for V _O = 5 to 18V	35	V
V _I	for V _O = 20, 24V	40	V	
I _O	Output current		Internally Limited	
P _D	Power dissipation		Internally Limited	
T _{STG}	Storage temperature range		-65 to 150	°C
_	Operating junction temperature range	for L7800	-55 to 150	°C
T _{OP}	Operating junction temperature range	for L7800C	0 to 150	C

Note:

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied

Table 2. Thermal Data

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	35	°C/W

Figure 3. Application circuits

L7800 series Test circuits

3 Test circuits

Figure 4. DC Parameter

Figure 5. Load regulation

Figure 6. Ripple rejection

4 Electrical characteristics

Table 3. Electrical characteristics of L7805 (refer to the test circuits, T_J = -55 to 150°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.8	5	5.2	V
V _O	Output voltage	$I_O = 5$ mA to 1A, $P_O \le 15$ W $V_I = 8$ to 20V	4.65	5	5.35	٧
ΔV _O ⁽¹⁾	Line regulation	V _I = 7 to 25V, T _J = 25°C		3	50	mV
ΔΛO , ,	Line regulation	$V_I = 8 \text{ to } 12V, T_J = 25^{\circ}C$		1	25	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}C$			100	mV
ΔνΟ , ,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{mA}, T_{J} = 25^{\circ}\text{C}$			25	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
ΔI	Ouissant surrent shangs	I _O = 5mA to 1A			0.5	mA
∆l _d	Quiescent current change	V _I = 8 to 25 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		0.6		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18V, f = 120Hz	68			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 4. Electrical characteristics of L7806 (refer to the test circuits, T_J = -55 to 150°C, V_I = 11V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	5.75	6	6.25	٧
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 9 to 21V	5.65	6	6.35	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 8 to 25V, T _J = 25°C			60	mV
ΔνΟ, ,	Line regulation	V _I = 9 to 13V, T _J = 25°C			30	
ΔV _Ω ⁽¹⁾	Load regulation	I _O = 5 mA to 1.5A, T _J = 25°C			100	mV
ΔνΟ, ,	Load regulation	I _O = 250 to 750mA, T _J = 25°C			30	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quippont current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 9 to 25V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		0.7		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19V, f = 120Hz	65			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 5. Electrical characteristics of L7808 (refer to the test circuits, T_J = -55 to 150°C, V_I = 14V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	7.7	8	8.3	V
Vo	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V _I = 11.5 to 23V	7.6	8	8.4	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 10.5 to 25V, T _J = 25°C			80	m\/
Δνοζή	Line regulation	V _I = 11 to 17V, T _J = 25°C			40	mV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			100	m\/
Δν _Ο ΄΄	Load regulation	I _O = 250 to 750mA, T _J = 25°C			40	- mV
I _d	Quiescent current	T _J = 25°C			6	mA
4.1	Quiescent current change	I _O = 5mA to 1A			0.5	m 1
ΔI_d	Quiescent current change	V _I = 11.5 to 25V			0.8	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5V, f = 120Hz	62			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 6. Electrical characteristics of L7812 (refer to the test circuits, T_J = -55 to 150°C, V_I = 19V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	11.5	12	12.5	V
Vo	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 15.5 to 27V	11.4	12	12.6	٧
ΔV _O ⁽¹⁾	Line regulation	V _I = 14.5 to 30V, T _J = 25°C			120	mV
ΔνΟ, ,	Line regulation	V _I = 16 to 22V, T _J = 25°C			60	mv
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			100	mV
$\nabla \Lambda^{O}$,	Load regulation	I _O = 250 to 750mA, T _J = 25°C			60	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Ouissant surrent shangs	I _O = 5mA to 1A			0.5	- mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 15 to 30V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		1.5		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 15 to 25V, f = 120Hz	61			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 7. Electrical characteristics of L7815 (refer to the test circuits, T_J = -55 to 150°C, V_I = 23V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	14.4	15	15.6	V
Vo	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 18.5 to 30V	14.25	15	15.75	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 17.5 to 30V, T _J = 25°C			150	m\/
ΔνΟ, ,	Line regulation	V _I = 20 to 26V, T _J = 25°C			75	mV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			150	mV
$\Delta v_{O'}$	Load regulation	I _O = 250 to 750mA, T _J = 25°C			75	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
41	Quiescent current change	I _O = 5mA to 1A			0.5	mΛ
$\Delta l_{\sf d}$	Quiescent current change	V _I = 18.5 to 30V			8.0	mA
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5mA$		1.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5V, f = 120Hz	60			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

L7800 series

Table 8. Electrical characteristics of L7818 (refer to the test circuits, T_J = -55 to 150°C, V_I = 26V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	17.3	18	18.7	٧
Vo	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 22 to 33V	17.1	18	18.9	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 21 to 33V, T _J = 25°C			180	mV
ΔνΟ, ,	Line regulation	V _I = 24 to 30V, T _J = 25°C			90	ımv
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			180	mV
$\nabla \Lambda^{O}$,	Load regulation	I _O = 250 to 750mA, T _J = 25°C			90	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 22 to 33V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		2.3		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 22 to 32V, f = 120Hz	59			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	٧
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 9. Electrical characteristics of L7820 (refer to the test circuits, T_J = -55 to 150°C, V_I = 28V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	19.2	20	20.8	V
Vo	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 24 to 35V	19	20	21	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 22.5 to 35V, T _J = 25°C			200	m\/
ΔνΟ, ,	Line regulation	V _I = 26 to 32V, T _J = 25°C			100	mV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			200	m\/
ΔνΟ, ,	Load regulation	I _O = 250 to 750mA, T _J = 25°C			100	- mV
I _d	Quiescent current	T _J = 25°C			6	mA
4.1	Quiescent current change	I _O = 5mA to 1A			0.5	m 1
ΔI_d	Quiescent current change	V _I = 24 to 35V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5mA$		2.5		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 24 to 35V, f = 120Hz	58			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	٧
R _O	Output resistance	f = 1 KHz		24		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 10. Electrical characteristics of L7824 (refer to the test circuits, T_J = -55 to 150°C, V_I = 33V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	23	24	25	٧
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le 15W$ V_I = 28 to 38V	22.8	24	25.2	V
ΔV _Ω ⁽¹⁾	Line regulation	V _I = 27 to 38V, T _J = 25°C			240	mV
ΔνΟ, ,	Line regulation	V _I = 30 to 36V, T _J = 25°C			120	Inv
ΔV _Ω ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			240	mV
ΔνΟ, ,	Load regulation	I _O = 250 to 750mA, T _J = 25°C			120	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 28 to 38V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		3		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 28 to 38V, f = 120Hz	56			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	٧
R _O	Output resistance	f = 1 KHz		28		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 11. Electrical characteristics of L7805C (refer to the test circuits, T_J = -55 to 150°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.8	5	5.2	V
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le 15W$ V_I = 7 to 20V	4.75	5	5.25	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_I = 7 \text{ to } 25V, T_J = 25^{\circ}C$		3	100	mV
ΔνΟ, ,	Line regulation	V _I = 8 to 12V, T _J = 25°C		1	50	
ΔV _Ω ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			100	mV
ΔνΟ. ,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{mA}, T_{J} = 25^{\circ}\text{C}$			50	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 7 to 25 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1.1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		40		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18V, f = 120Hz	62			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 12. Electrical characteristics of L7852C (refer to the test circuits, T_J = -55 to 150°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	5.0	5.2	5.4	V
V _O	Output voltage	$I_O = 5$ mA to 1A, $P_O \le 15$ W $V_I = 8$ to 20V	4.95	5.2	5.45	٧
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 7 to 25V, T _J = 25°C		3	105	mV
	Line regulation	V _I = 8 to 12V, T _J = 25°C		1	52	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			105	m\/
		I _O = 250 to 750mA, T _J = 25°C			52	- mV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5mA to 1A			0.5	m 1
ΔI_d		V _I = 7 to 25 V			1.3	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5mA$		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		42		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18V, f = 120Hz	61			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.75		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 13. Electrical characteristics of L7806C (refer to the test circuits, T_J = -55 to 150°C, V_I = 11V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	5.75	6	6.25	V
V _O	Output voltage	$I_O = 5$ mA to 1A, $P_O \le 15$ W $V_I = 8$ to 21V	5.7	6	6.3	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 8 to 25V, T _J = 25°C			120	mV
$\Delta v_{O^{(1)}}$	Line regulation	V _I = 9 to 13V, T _J = 25°C			60	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			120	mV
$\Delta V_{O}^{(1)}$	Load regulation	I _O = 250 to 750mA, T _J = 25°C			60	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5mA to 1A			0.5	m A
$\Delta l_{\sf d}$		V _I = 8 to 25V			1.3	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		45		μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19V, f = 120Hz	59			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.55		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 14. Electrical characteristics of L7808C (refer to the test circuits, T_J = -55 to 150°C, V_I = 14V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	7.7	8	8.3	V
Vo	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 10.5 to 25V	7.6	8	8.4	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 10.5 to 25V, T _J = 25°C			160	mV
	Line regulation	V _I = 11 to 17V, T _J = 25°C			80	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			160	mV
	Load regulation	I _O = 250 to 750mA, T _J = 25°C			80	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5mA to 1A			0.5	A
ΔI_d		V _I = 10.5 to 25V			1	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5mA$		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		52		μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5V, f = 120Hz	56			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 15. Electrical characteristics of L7885C (refer to the test circuits, T_J = -55 to 150°C, V_I = 14.5V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	8.2	8.5	8.8	V
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le 15W$ V_I = 11 to 26V	8.1	8.5	8.9	٧
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 11 to 27V, T _J = 25°C			160	mV
	Line regulation	V _I = 11.5 to 17.5V, T _J = 25°C			80	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			160	mV
		I _O = 250 to 750mA, T _J = 25°C			80	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	- mA
$\Delta l_{\sf d}$		V _I = 11 to 27V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		55		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 22V, f = 120Hz	56			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 16. Electrical characteristics of L7809C (refer to the test circuits, T_J = -55 to 150°C, V_I = 15V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.64	9	9.36	V
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 11.5 to 26V	8.55	9	9.45	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 11.5 to 26V, T _J = 25°C			180	mV
	Line regulation	V _I = 12 to 18V, T _J = 25°C			90	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			180	mV
		I _O = 250 to 750mA, T _J = 25°C			90	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
ΔI	Quiescent current change	I _O = 5mA to 1A			0.5	- mA
∆l _d		V _I = 11.5 to 26V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		70		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 23V, f = 120Hz	55			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.40		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 17. Electrical characteristics of L7810C (refer to the test circuits, T_J = -55 to 150°C, V_I = 15V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	9.6	10	10.4	V
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 12.5 to 26V	9.5	10	10.5	V
ΔV _Ω ⁽¹⁾	Line regulation	V _I = 12.5 to 26V, T _J = 25°C			200	mV
Δνοζή		V _I = 13.5 to 19V, T _J = 25°C			100	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			200	mV
		$I_{O} = 250 \text{ to } 750 \text{mA}, T_{J} = 25^{\circ}\text{C}$			100	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$		V _I = 12.5 to 26V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		70		μV/V _O
SVR	Supply voltage rejection	V _I = 13 to 23V, f = 120Hz	55			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.40		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 18. Electrical characteristics of L7812C (refer to the test circuits, T_J = -55 to 150°C, V_I = 19V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	11.5	12	12.5	V
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 14.5 to 27V	11.4	12	12.6	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 14.5 to 30V, T _J = 25°C			240	mV
		V _I = 16 to 22V, T _J = 25°C			120	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			240	mV
		$I_{O} = 250 \text{ to } 750 \text{mA}, T_{J} = 25^{\circ}\text{C}$			120	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$		V _I = 14.5 to 30V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		75		μV/V _O
SVR	Supply voltage rejection	V _I = 15 to 25V, f = 120Hz	55			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.35		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 19. Electrical characteristics of L7815C (refer to the test circuits, T_J = -55 to 150°C, V_I = 23V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	14.5	15	15.6	V
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 17.5 to 30V	14.25	15	15.75	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 17.5 to 30V, T _J = 25°C			300	mV
$\Delta v_{O^{(1)}}$	Line regulation	V _I = 20 to 26V, T _J = 25°C			150	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			300	mV
Δv_{O}	Load regulation	I _O = 250 to 750mA, T _J = 25°C			150	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5mA to 1A			0.5	m 1
$\Delta l_{\sf d}$		V _I = 17.5 to 30V			1	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		90		μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5V, f = 120Hz	54			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.23		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 20. Electrical characteristics of L7818C (refer to the test circuits, T_J = -55 to 150°C, V_I = 26V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	17.3	18	18.7	٧
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 21 to 33V	17.1	18	18.9	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 21 to 33V, T _J = 25°C			360	mV
	Line regulation	V _I = 24 to 30V, T _J = 25°C			180	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}$ C			360	mV
		I _O = 250 to 750mA, T _J = 25°C			180	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$		V _I = 21 to 33V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		110		μV/V _O
SVR	Supply voltage rejection	V _I = 22 to 32V, f = 120Hz	53			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.20		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 21. Electrical characteristics of L7820C (refer to the test circuits, T_J = -55 to 150°C, V_I = 28V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	19.2	20	20.8	V
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 23 to 35V	19	20	21	٧
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 22.5 to 35V, T _J = 25°C			400	mV
	Line regulation	V _I = 26 to 32V, T _J = 25°C			200	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C			400	mV
		I _O = 250 to 750mA, T _J = 25°C			200	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	- mA
$\Delta l_{\sf d}$		V _I = 23 to 35V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		150		μV/V _O
SVR	Supply voltage rejection	V _I = 24 to 35V, f = 120Hz	52			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		24		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.18		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 22. Electrical characteristics of L7824C (refer to the test circuits, T_J = -55 to 150°C, V_I = 33V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	23	24	25	٧
V _O	Output voltage	I_O = 5mA to 1A, $P_O \le$ 15W V_I = 27 to 38V	22.8	24	25.2	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 27 to 38V, T _J = 25°C			480	mV
	Line regulation	V _I = 30 to 36V, T _J = 25°C			240	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25^{\circ}C$			480	mV
		I _O = 250 to 750mA, T _J = 25°C			240	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5mA to 1A			0.5	mA
$\Delta l_{\sf d}$		V _I = 27 to 38V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA		-1.5		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		170		μV/V _O
SVR	Supply voltage rejection	V _I = 28 to 38V, f = 120Hz	50			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		28		mΩ
I _{sc}	Short circuit current	V _I = 35V, T _J = 25°C		0.15		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Typical performance L7800 series

5 Typical performance

Figure 7. Dropout voltage vs junction temperature

Figure 8. Peak output current vs input/output differential voltage

Figure 9. Supply voltage rejection vs frequency

Figure 10. Output voltage vs junction temperature

Figure 11. Output impedance vs frequency

Figure 12. Quiescent current vs junction temp.

Figure 13. Load transient response

Figure 14. Line transient response

Figure 15. Quiescent current vs input voltage

Figure 16. Fixed output regulator

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Although no output capacitor is need for stability, it does improve transient response.
- 3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 17. Current regulator

Figure 18. Circuit for increasing output voltage

Figure 19. Adjustable output regulator (7 to 30V)

Figure 20. 0.5 to 10V Regulator

Figure 21. High current voltage regulator

Figure 22. High output current with short circuit protection

Figure 23. Tracking voltage regulator

Figure 24. Split power supply (± 15V - 1 A)

^{*} Against potential latch-up problems.

Figure 25. Negative output voltage circuit

Figure 26. Switching regulator

Figure 27. High input voltage circuit

Figure 28. High input voltage circuit

Figure 29. High output voltage regulator

Figure 30. High input and output voltage

5//

Figure 31. Reducing power dissipation with dropping resistor

Figure 32. Remote shutdown

Figure 33. Power AM modulator (unity voltage gain, $I_0 \le 0.5$)

Note: The circuit performs well up to 100 KHz.

 V_{1} O L78XX $V_{0} = V_{XX} (1+R_{2}/R_{1}) + V_{BE}$ V_{1} O $V_{0} = V_{XX} (1+R_{2}/R_{1}) + V_{BE}$ $V_{0} = V_{0} = V_{0}$

Figure 34. Adjustable output voltage with temperature compensation

Note:

 Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

Figure 35. Light controllers $(V_{Omin} = V_{XX} + V_{BE})$

V₁ O V₀ V₀ CS25410

Figure 36. Protection against input short-circuit with high capacitance loads

 Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 32) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

TO-3 MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

TO-220 (A TYPE) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.067
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.600		0.620
Е	10.0		10.40	0.393		0.409
е	2.4		2.7	0.094		0.106
e1	4.95		5.15	0.194		0.203
F	1.23		1.32	0.048		0.051
H1	6.2		6.6	0.244		0.260
J1	2.40		2.72	0.094		0.107
L	13.0		14.0	0.511		0.551
L1	3.5		3.93	0.137		0.154
L20		16.4			0.645	
L30		28.9			1.138	
φР	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

TO-220FP MECHANICAL DATA

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5	2.9		3.6	0.114		0.142
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126

Figure 37. DRAWING DIMENSION D²PAK (TYPE STD-ST) – E1 – c2-L1 D1 Н THERMAL PAD -b2 SEATING PLANE A 1 COPLANARITY R 0.25 GAUGE PLANE V2_

0079457/L

– E1 – *c2*→ L1 D1 D Н *L2* THERMAL PAD b2 SEATING PLANE A1-GAUGE PLANE 0.25 *V2* 0079457/L

Figure 38. DRAWING DIMENSION D²PAK (TYPE WOOSEOK-SUBCON.)

Table 23. D²PAK MECHANICAL DATA

	TYPE STD-ST mm.			TYPE WOOSEOK-SUBCON. mm.		
DIM.						
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	4.30		4.70
A1	0.03		0.23	0		0.20
b	0.70		0.93	0.70		0.90
b2	1.14		1.70	1.17		1.37
С	0.45		0.60	0.45	0.50	0.60
c2	1.23		1.36	1.25	1.30	1.40
D	8.95		9.35	9	9.20	9.40
D1	7.50			7.50		
E	10		10.40	9.80		10.20
E1	8.50			7.50		
е		2.54			2.54	
e1	4.88		5.28		5.08	
Н	15		15.85	15	15.30	15.60
J1	2.49		2.69	2.20		2.60
L	2.29		2.79	1.79		2.79
L1	1.27		1.40	1		1.40
L2	1.30		1.75	1.20		1.60
R		0.4			0.30	
V2	0°		8°	0°		3°

Note: The D^2PAK package coming from the subcontractor Wooseok is fully compatible with the ST's package suggested footprint.

Figure 39. D²PAK FOOTPRINT RECOMMENDED DATA

Table 24. FOOTPRINT DATA

VALUES					
	mm.	inch.			
А	12.20	0.480			
В	9.75	0.384			
С	16.90	0.665			
D	3.50	0.138			
Е	1.60	0.063			
F	2.54	0.100			
G	5.08	0.200			

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

L7800 series Order code

7 Order code

Table 25. Order code

	Packaging						
Part numbers	TO-220 (A Type)	D ² PAK	TO-220FP	ТО-3			
L7805				L7805T			
L7805C	L7805CV	L7805CD2T-TR	L7805CP	L7805CT			
L7852C	L7852CV	L7852CD2T-TR ⁽¹⁾	L7852CP ⁽¹⁾	L7852CT ⁽¹⁾			
L7806C	L7806CV	L7806CD2T-TR		L7806CT			
L7808C	L7808CV	L7808CD2T-TR	L7808CP	L7808CT			
L7885C	L7885CV	L7885CD2T-TR ⁽¹⁾	L7885CP ⁽¹⁾	L7885CT ⁽¹⁾			
L7809C	L7809CV	L7809CD2T-TR	L7809CP	L7809CT			
L7810C	L7810CV	L7810CD2T-TR ⁽¹⁾					
L7812C	L7812CV	L7812CD2T-TR	L7812CP	L7812CT			
L7815C	L7815CV	L7815CD2T-TR	L7815CP	L7815CT			
L7818C	L7818CV	L7818CD2T-TR ⁽¹⁾		L7818CT			
L7820C	L7820CV	L7820CD2T-TR ⁽¹⁾	L7820CP ⁽¹⁾	L7820CT ⁽¹⁾			
L7824C	L7824CV	L7824CD2T-TR	L7824CP	L7824CT			

^{1.} Available on request.

Revision history L7800 series

8 Revision history

Table 26. Revision history

Date	Revision	Changes	
21-Jun-2004	12	Document updating.	
03-Aug-2006	13	Order codes has been updated and new template.	
19-Jan-2007	14	D ² PAK mechanical data has been updated and add footprint data.	
31-May-2007	15	Order codes has been updated.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time. without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

