Security Protocols in CSP

Markus Roggenbach

Feburary 2021

Introduction to the topics

A *protocol* is a series of steps carried out by two or more entities. Examples: HTTP, TCP, SMTP

A *security protocol* is a protocol that runs in an untrusted environment and tries to achieve a security goal. Examples of security goals:

- Authentication (guarantee that one speaks with a specific participant and not someone else),
- Untraceability (adversary can't tell if they have seen you before)

Basic principles

Cryptography ("kryptos" – "hidden")

Cryptosystem:

- encryption(plain text) = cipher text
- decryption(cipher text) = plain text

We write: $\{m\}_k$ for message m encrypted with key k

Here: Public Key Cryptosystem (as, e.g, RSA) Every participant has

- ▶ public key *pk*
- ► secret key *sk*

such that

$$\{\{m\}_{pk}\}_{sk} = m$$

 $\{\{m\}_{sk}\}_{pk} = m$

Principles of Security - CIA

Confidentiality

Data is said to beconfidential to a set of entities if it is only available to those entities, and not disclosed to any other outside of the set.

Integrity

Assurance that data is not modified or manipulated in anyway from inception.

Availability

Assuarance that data is available when needed.

Security protocols

Communication protocol: agreed sequence of actions performed by two or more communicating entities in order to accomplish a purpose, e.g. fault tolerance over a noisy communication medium.

Writing Convention:

(i)
$$A \rightarrow B : m$$

in the ith step, entity A sends message m destined for entity B.

Security protocol: communication protocol that provides assurance on security.

Dolev/Yao Intruder Model

The intruder/adversary can

- block messages, where a message is withheld from recipients;
- replay messages, where an old message could be retransmitted to a recipient of choice;
- spoof messages, where messages are constructed to falsely come from a different source;
- manipulate messages, where multiple messages could be assembled into one or deassembled into fragments of choice; and
- encrypt or decrypt messages, however only where the intruder is in possession of the relevant keys (perfect encryption assumption).

Objective of Security Protocols

Even in the presence of a Dolev/Yao intruder, a security protocol shall guarantee security goals.

Needham-Schroeder Protocol for Authentication

Needham-Schroeder Protocol (N-S protocol)

- (1) $A \to B : \{N_A, A\}_{pk_B}$ (2) $B \to A : \{N_A, N_B\}_{pk_A}$ (3) $A \to B : \{N_B\}_{pk_B}$
- A, B: entities pk_A, pk_B public keys of A and B, resp. N_A and N_B are nonces: arbitrary values for single use.
 - fresh every time they are generated;
 - unpredictable such that no participant can determine the value of a nonce yet to appear; and
 - not able to reveal the identity of the participant that produced the nonce.

Purpose of the Needham-Schroeder Protocol

Definition (Injective agreement – a special form of authentication)

We say that a protocol guarantees to an initiator A injective agreement with a responder B on a set of data items ds if, whenever A (acting as initiator) completes a run of the protocol, apparently with responder B, then B has previously been running the protocol, apparently with A, and B was acting as responder in his run, and the two agents agreed on the data values corresponding to all the variables in ds, and each such run of A corresponds to a unique run of B.

N-S protocol shall guarantee that

- ► A in injective agreement with B; and
- ▶ B in injective agreement with A

Lowe's attack on the N-S Protocol

(1.1)
$$A \to I : \{N_A, A\}_{pk_I}$$

(2.1) $I \to B : \{N_A, A\}_{pk_B}$
(2.2) $B \to I : \{N_A, N_B\}_{pk_A}$
(1.2) $I \to A : \{N_A, N_B\}_{pk_A}$
(1.3) $A \to I : \{N_B\}_{pk_I}$
(2.3) $I \to B : \{N_B\}_{pk_B}$

Needham-Schroeder-Lowe Protocol (N-S-L)

(1)
$$A \to B : \{N_A, A\}_{pk_B}$$

(2) $B \to A : \{B, N_A, N_B\}_{pk_A}$
(3) $A \to B : \{N_B\}_{pk_B}$

Claim: this little repair in step (2) does the job :-) Question: how can we know?

Protocol Modelling in CSP

Alphabet: all messages of the protocol

Given

- $ightharpoonup \mathcal{U}$: set of protocol participants
- \triangleright \mathcal{N} : set of all nonces
- \blacktriangleright \mathcal{K} : set of all encryption keys

Set of all atoms \mathcal{A} :

$$\mathcal{A} ::= \mathcal{U} \mid \mathcal{N} \mid \mathcal{K}$$

Message space \mathcal{M} :

$$\mathcal{M} ::= \mathcal{A} \mid \{\mathcal{M}\}_{\mathcal{K}} \mid \mathcal{M}.\mathcal{M}$$

Example: Message space of the N-S Protocol

For the N-S Protocol the atoms of the message space are given as follows:

$$\mathcal{U} = \{A, B, I\}$$

$$\mathcal{N} = \{N_A, N_B, N_I\}$$

$$\mathcal{K} = \{pk_A, pk_B, pk_I, sk_A, sk_B, sk_I\}$$

Examples of messages: A, $\{N_A.A\}_{pk_B}$, and A.B.

The message space is infinite thanks to both, encryption and pairing.

N-S Protocol in CSP: participants (single run)

$$A = \Box_{b \in \mathcal{U}, b \neq A} \ send. A! b! \{N_A, A\}_{pk_b} \rightarrow \\ receive. A.b? \{N_A, n\}_{pk_A} \rightarrow \\ send. A.b. \{n\}_{pk_b} \rightarrow STOP$$

$$B = receive.B?a?\{n,a\}_{pk_B}
ightarrow send.B.a!\{n,N_B\}_{pk_B}
ightarrow STOP$$
 $receive.B.a.\{N_B\}_{pk_B}
ightarrow STOP$

Putting things together in a reliable network

$$\textit{Network} = \square_{i,j \in \mathcal{U}, m \in \mathcal{M}} \;\; \textit{send?i?j?m} \rightarrow \textit{receive!i!j!m} \rightarrow \textit{Network}$$

$$System = (|||_{U \in \{A,B\}})[|send, receive|]$$
 Network

Modelling the intruder: generates relation

Given a set $S \subseteq \mathcal{M}$ of messages, the generates relation $\vdash \subseteq \mathcal{P}(\mathcal{M}) \times \mathcal{M}$ is the smallest relation closed under:

- 1. $m \in S$ then $S \vdash m$
- 2. $S \vdash m$ and $S \vdash k$ then $S \vdash \{m\}_k$
- 3. $S \vdash \{m\}_k$ and $S \vdash k$ then $S \vdash m$
- 4. $S \vdash m_1.m_2$ then $S \vdash m_1$ and $S \vdash m_2$
- 5. $S \vdash m_1$ and $S \vdash m_2$ then $S \vdash m_1.m_2$

Example: generates relation in the N-S Protocol

Initial set of knowledge

$$S = \{pk_A, pk_B, pk_I, sk_I\}.$$

On step (1.1) of Lowe's attack, the intruder receives the message $\{N_A,A\}_{pk_l}$.

This inreases the intruder's knowledge to a set

$$S'=S\cup\{\{N_A,A\}_{pk_I}\}.$$

With S', the intruder can decrypt the message $\{N_A, A\}_{pk_I}$:

- ▶ we have $\{N_A, A\}_{pk_l} \in S'$ and thus $S' \vdash \{N_A, A\}_{pk_l}$, by Rule 1,
- ▶ we have $sk_I \in S'$ and thus $S' \vdash sk_I$, by Rule 1,
- ▶ finally, we obtain $S' \vdash \{N_A, A\}$, by Rule 2. (reminder: $\{\{m\}_{pk_A}\}_{sk_A} = m$ holds in the cryptosystem)

Intruder and insecure network

$$Intruder(IK) = ((\Box_{i,j \in \mathcal{U}, m \in \mathcal{M}} \ send?i?j?m \rightarrow Intruder(IK \cup m))$$

$$\Box$$

$$(\Box_{i,j \in \mathcal{U}, IK \vdash m} \ receive!i!j!m \rightarrow Intruder(IK))$$

$$NET = (|||_{U \in \mathcal{U}, U \neq Intruder} U) [| send, receive |] Intruder$$

Encoding in CSP-M

It is possible to encode N-S, N-S-L, and injective agreement in CSP-M. (It's lot's of work ...)

FDR4

- ► finds Lowe's attack on N-S (instantly)
- proves N-S-L to do authentication as expected (in about 6 minutes of time)

Summary of these two weeks

Summary

- ► Formal methods allow for modelling and verifying systems
- CSP is a FM for concurrent systems, comes with tools for
 - Simulation
 - Model checking
 - Theorem proving
- Security protocols
 - ► allow to achieve security goals
 - tricky to design
 - ► Formal Methods like CSP can help with verification