2022 2R KUBIG COMPETITION

심리성향예측 시경진대회

16기 머신러닝 1팀 김진서 임정준 최규빈 하예은

"再班的特別為"

CONTENTS

1 EDA

- (1) 데이터 구조 파악
- (2) 데이터 시각화
- (3) 결측치 파악

2 데이터전처리

- (1) 변수별 전처리
- (2) 결측치 처리
- (3) 범주형 변수 인코딩
- (4) 수치형 변수 정규화
- (5) Feature Selection

3 모델링

- (1) 학습방식
- (2) Auto ML
- (3) Blending

4 Conclusion

- (1) Predict model
- (2) Model evaluation
- (3) 제출 결과
- (4) 소감 및 의의

(1) 데이터 구조 파악

RangeIndex: 45532 entries, 0 to 45531

Data columns (total 78 columns):

Column Non-Null Count Divine

#	Column	Non-Null Count	Dtype				
0	index	45532 non-null	int 64	39	QtA	45532 non-null	float6
1	QaA	45532 non-null	float64	40	QtE	45532 non-null	int64
2	QaE	45532 non-null	int64	41	age_group	45532 non-null	object
3	QbA	45532 non-null	float64	42	education	45532 non-null	int64
4	QbE	45532 non-null	int64	43	engnat	45532 non-null	int64
5	QcA	45532 non-null	float64	44	familysize	45532 non-null	int64
6	QcE	45532 non-null	int64	45	gender	45532 non-null	object
7	QdA	45532 non-null	float64	46	hand	45532 non-null	int64
8	QdE	45532 non-null	int64	47	married	45532 non-null	int64
9	QeA	45532 non-null	float64	48	race	45532 non-null	object
10	QeE	45532 non-null	int64	49	religion	45532 non-null	object
11	QfA	45532 non-null	float64	50	tp01	45532 non-null	int64
12	QfE	45532 non-null	int64	51	tp02	45532 non-null	int64
13	QgA	45532 non-null	float64		tp03	45532 non-null	int64
14	QgE	45532 non-null	int64		tp04	45532 non-null	int64
15	QhA	45532 non-null	float64		tp05	45532 non-null	int64
16	QhE	45532 non-null	int64		tp06	45532 non-null	int64
17	QiA	45532 non-null	float64		tp07	45532 non-null	int64
18	QiE	45532 non-null	int64		tp08	45532 non-null	int64
19	QjA	45532 non-null	float64		tp09	45532 non-null	int64
20	QjΕ	45532 non-null	int64		tp10	45532 non-null	int64
21	QkA	45532 non-null	float64		urban	45532 non-null	int64
22	QkE	45532 non-null	int64		voted	45532 non-null	int64
23	QIA	45532 non-null	float64		wf_01	45532 non-null	int64
24	QIE	45532 non-null	int64		wf_02		int64
25	QmA	45532 non-null				45532 non-null	
26	QmE	45532 non-null	int64		wr_01	45532 non-null	int64
27	QnA	45532 non-null	float64	66	wr_02	45532 non-null	int64
28	QnE	45532 non-null	int64	67	wr_03	45532 non-null	int64
29	QoA	45532 non-null	float64	68	wr_04	45532 non-null	int64
30	QoE	45532 non-null	int64	69	wr_05	45532 non-null	int64
31	QpA	45532 non-null	float64	70	wr_06	45532 non-null	int64
32	QpE	45532 non-null	int64	71	wr_07	45532 non-null	int64
33	QqA	45532 non-null	float64	72	wr_08	45532 non-null	int64
34	QqE	45532 non-null	int64	73	wr_09	45532 non-null	int64
35	QrA	45532 non-null	float64	74	wr_10	45532 non-null	int64
36	QrE	45532 non-null	int64	75 70	wr_11	45532 non-null	int64
37	QsA	45532 non-null	float64	76	wr_12	45532 non-null	int64
38	QsE	45532 non-null	int64	77	wr_13	45532 non-null	int64

Feature (77개)

Q_A: 질문에 대한 대답 (1~5)

Q_E: 대답을 하기까지 걸린 시간

tp__: 자신에 대한 평가 (1 ~ 7)

wf__ : 실존하지 않는 단어를 아는지

wr__ : 실존하는 단어를 아는지

age_group, education, engnat(영어가 모국어),urban, familysize, gender, hand, married, race, religion,

Target (voted)

Train Size : 45532, Test Size : 11383

(2) 데이터 시각화

target(voted)

familysize

Q_E

	count	mean	std	min	25%	50%	75%	max
QaE	45532.0	945.357046	13075.648143	25.0	404.0	557.0	827.0	2413960.0
QbE	45532.0	2189.588575	33510.265924	25.0	875.0	1218.0	1838.0	5580395.0
QcE	45532.0	1484.294518	8977.664318	25.0	651.0	899.0	1335.0	871557.0
QdE	45532.0	1490.672231	10922.600860	26.0	679.0	931.0	1355.0	1552821.0
QeE	45532.0	1899.292278	16707.654162	25.0	834.0	1154.0	1656.0	1919926.0

매우 큰 분산 & min - q1, q3 - max 간 큰 차이

(3) 결측치 파악

	무응답 개수	무응답 비율
education	528	0.01160
engnat	77	0.00169
hand	161	0.00354
married	93	0.00204
urban	322	0.00707

02 G0 E1 전치리

(1) 변수별 전처리 1. Q_A: scoring

Q_A: 마키아벨리즘 성향 테스트 문항

→ 상관계수 부호로 그룹화

성향 강함: a, d, e, f, g, l, k, n, q, r 성향 약함: b, c, h, j, l, m, o, p, s, t

성향 약함 문항 답변 reverse 후 'Mach_score' 변수 생성 &

'tactics', 'view', 'morality' 변수 생성하여 검사 유형 구분

(1) 변수별 전처리 2. Q_E: 로그변환 후 값 병합

	count	mean	std	min	25%	50%	75%	max
QaE	45532.0	945.357046	13075.648143	25.0	404.0	557.0	827.0	2413960.0
QbE	45532.0	2189.588575	33510.265924	25.0	875.0	1218.0	1838.0	5580395.0
QcE	45532.0	1484.294518	8977.664318	25.0	651.0	899.0	1335.0	871557.0
QdE	45532.0	1490.672231	10922.600860	26.0	679.0	93 1 .0	1355.0	1552821.0
QeE	45532.0	1899.292278	16707.654162	25.0	834.0	1154.0	1656.0	1919926.0

mean	std	min	25%	50%	75%	max
6.407732	0.614277	3.258097	6.003887	6.324359	6.719013	10.0
7.178677	0.678994	3.258097	6.775366	7.105786	7.516977	10.0
6.880644	0.655525	3.258097	6.480045	6.802395	7.197435	10.0
6.905539	0.639446	3.295837	6.522093	6.837333	7.212294	10.0
7.101968	0.676615	3.258097	6.727432	7.051856	7.412764	10.0

로그변환 후 10 이상인 값을 10으로 대체

(1) 변수별 전처리 3. age_group: 범주 병합

	age_group	voted			
0	+70s	1.263830			
1	10s	1.837214			
2	20s	1.469671			
3	30s	1.411179			
4	40s	1.357949			
5	50s	1.329872			
6	60s	1.271357			

(1) 변수별 전처리 4. familysize : 값 병합

(1) 변수별 전처리 5. tp__: 범주 병합

○1 외향적인, 열정적인
○2 비판적인, 싸우기 좋아하는
○3 믿을 만한, 자기 훈련이 된
○4 걱정하는, 쉽게 맘이 상하는
○5 새로운 경험을 하는, 복잡한

-0.8

-0.6

- 0.4

- 0.2

-0.0

- -0.2

-0.4

07 동정적인, 따뜻한 08 체계적이지 못한, 부주의한 09 차분한, 감정적으로 안정된 10 관습적인, 창의적이지 못한

06 내성적인, 조용한

01 & 06R > extraversion

02R & 07 > agreeableness

03 & 08R > conscientiousness

04R & 09 > stability

05 & 10R > openness

→ 5개의 파생변수 생성

(1) 변수별 전처리 6. wf_ & wr _ : total 변수 생성

<wf__>

cuivocal florted verdid

<wr__>

boat incoherent pallid robot audible paucity epistemology decide pastiche abysmal lucid betray funny wf__ 변수 총합으로 total_wf 변수 생성

wr__ 변수 총합으로 total_wr 변수 생성

(2) 결측치 처리

education, engnat, hand, married, urban

- 1. 0 값 NaN으로 변환
 - 2. Imputation
 - KNN Imputation
 - DNN Imputation

(3) 범주형 변수 encoding

type='object'인 범주형 변수에 대해 label encoding

: age_group, gender, race, religion

	age_group	gender	race	religion
0	3	0	6	10
1	2	0	1	7
2	3	1	6	10
3	2	0	1	7
4	2	1	6	0

(4) 수치형 변수 정규화

: Mach_score, familysize, extraversion, agreeableness, conscientiousness, stability, openness, total_wf, total_wr

	Mach_score	familysize	extraversion	agreeableness	conscientiousness	stability	openness	total_wr	total_wf
0	-0.506478	-0.004686	0.129628	1.916629	-0.085904	1.118125	0.801315	-0.962165	-0.523797
1	-0.946923	-0.004686	-0.440193	0.888043	-0.742946	0.226893	-0.007245	-0.539503	-0.523797
2	-1.827812	-0.004686	-0.725104	-0.140542	-1.071468	-0.961418	1.205595	0.305820	0.924702
3	-0.003113	-0.004687	-0.440193	-0.826266	-0.085904	0.226893	0.397035	-1.807488	-0.523797
4	-0.443558	-0.004687	-0.440193	-0.140542	-1.071468	-0.961418	-1.220085	0.728481	0.924702
	Mach_score	familysize	extraversion	agreeableness	conscientiousness	stability	openness	total_wr	total_wf
0	Mach_score -1.135685	familysize -0.004686	extraversion -0.155283	agreeableness 0.545181	conscientiousness -0.085904	stability 0.226893	openness -0.007245	total_wr -1.384826	total_wf -0.523797
0	_						·		_
	-1.135685	-0.004686	-0.155283	0.545181	-0.085904	0.226893	-0.007245	-1.384826	-0.523797
1	-1.135685 -0.695240	-0.004686 -0.004687	-0.155283 -0.155283	0.545181 0.202320	-0.085904 0.571139	0.226893	-0.007245 1.205595	-1.384826 -3.920795	-0.523797 -0.523797

(4) Feature Selection

Random Forest - Feature Importance

☆ age_group, education, Q_E,
Mach_score, married ☆

urban, total_wf, engnat, hand, gender, familysize drop

(1) 학습 방식

Auto ML & Blending

(2) Auto ML

1. Install & model comparison

[]	!pip installpre pycaret	
[]	<pre>#Data Setup from pycaret.classification import * clf1 = setup(data = train,</pre>	
O	Session id	1
1	Target	voted
2	Target type	Binary
3	Target mapping	1: 0, 2: 1
4	Original data shape	(45532, 42)
5	Transformed data shape	(45532, 42)
6	Transformed train set shape	(31872, 42)
7	Transformed test set shape	(13660, 42)
8	Ordinal features	1
9	Numeric features	37
10	Categorical features	4
11	Preprocess	True
12	Imputation type	simple
13	Numeric imputation	mean
14	Categorical imputation	constant
15	Maximum one-hot encoding	5
16	Encoding method	None
17	Low variance threshold	0
18	Fold Generator	StratifiedKFold
19	Fold Number	10

[] #Best Model Comparison best = compare_models(sort='AUC',fold=5)

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	II (Sec)
gbc	Gradient Boosting Classifier	0.6941	0.7638	0.6543	0.7537	0.7005	0.3910	0.3951	11.0220
lightgbm	Light Gradient Boosting Machine	0.6925	0.7633	0.6480	0.7549	0.6973	0.3884	0.3932	0.9620
catboost	CatBoost Classifier	0.6888	0.7612	0.6560	0.7445	0.6974	0.3798	0.3830	13.6400
et	Extra Trees Classifier	0.6882	0.7590	0.6594	0.7417	0.6981	0.3780	0.3808	2.6440
ada	Ada Boost Classifier	0.6886	0.7555	0.6430	0.7516	0.6930	0.3810	0.3858	2.3120
rf	Random Forest Classifier	0.6846	0.7545	0.6371	0.7487	0.6883	0.3732	0.3783	6.0760
lda	Linear Discriminant Analysis	0.6690	0.7411	0.7180	0.6895	0.7035	0.3293	0.3297	0.2060
lr	Logistic Regression	0.6589	0.7283	0.7621	0.6651	0.7095	0.3009	0.3059	1.9900
qda	Quadratic Discriminant Analysis	0.4990	0.7133	0.1439	0.6455	0.1437	0.0715	0.0749	0.1520
nb	Naive Bayes	0.4944	0.6376	0.1420	0.1362	0.1390	0.0620	0.0620	0.1300
knn	K Neighbors Classifier	0.6018	0.6288	0.6499	0.6323	0.6409	0.1943	0.1944	6.2400
dt	Decision Tree Classifier	0.6130	0.6098	0.6443	0.6467	0.6455	0.2196	0.2196	0.8680
dummy	Dummy Classifier	0.5468	0.5000	1.0000	0.5468	0.7070	0.0000	0.0000	0.1160
svm	SVM - Linear Kernel	0.5453	0.0000	0.8766	0.5528	0.6718	0.0237	0.0280	1.0660
ridge	Ridge Classifier	0.6691	0.0000	0.7184	0.6894	0.7036	0.3294	0.3298	0.1220

(2) Auto ML

2. Creating & tuning

```
[ ] #Creating Model
gbc = create_model('gbc')
cat = create_model('catboost')
lgbm = create_model('lightgbm')
```

[] #Hyperparameter tuning
tuned_gbc=tune_model(gbc, search_library='optuna',n_iter=5)
tuned_cat=tune_model(cat,search_library='optuna',n_iter=5)
tuned_lgbm=tune_model(lgbm, search_library='optuna')

Gradient boosting

AUC Recall Prec. Accuracy Fold 0 0.7001 0.7749 0.6873 0.7446 0.7148 0.3997 0.4011 0.6764 0.7291 0.7018 0.3705 0.3717 0.6903 0.7626 0.6816 0.7333 0.7065 0.3796 0.3808 0.6944 0.7616 0.6764 0.7420 0.7077 0.3889 0.3908 0.6771 0.7468 0.6546 0.7277 0.6892 0.3552 0.3574 0.6644 0.7447 0.7022 0.3851 0.3878 0.6563 0.7448 0.6978 0.3802 0.3834 0.6963 0.7711 0.6843 0.7404 0.7112 0.3919 0.3933 0.6994 0.7703 0.6780 0.7484 0.7114 0.3994 0.4015 0.6912 0.7639 0.6749 0.7381 0.7050 0.3824 0.3842 0.0065 0.0076 0.0118 0.0079 0.0071 0.0131 0.0131 Std

Catboost

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.6998	0.7741	0.6368	0.7741	0.6988	0.4052	0.4129
1	0.6920	0.7567	0.6265	0.7674	0.6898	0.3901	0.3980
2	0.6966	0.7649	0.6242	0.7771	0.6923	0.4000	0.4094
3	0.6975	0.7668	0.6420	0.7670	0.6989	0.3998	0.4062
4	0.6869	0.7605	0.6139	0.7670	0.6820	0.3809	0.3901
5	0.6793	0.7463	0.6047	0.7599	0.6735	0.3663	0.3756
6	0.6900	0.7612	0.6271	0.7638	0.6887	0.3859	0.3933
7	0.6909	0.7583	0.6116	0.7758	0.6840	0.3898	0.4004
8	0.7069	0.7729	0.6320	0.7898	0.7022	0.4206	0.4308
9	0.6978	0.7674	0.6246	0.7788	0.6932	0.4025	0.4121
Mean	0.6938	0.7629	0.6243	0.7721	0.6903	0.3941	0.4029
Std	0.0073	0.0078	0.0109	0.0083	0.0083	0.0142	0.0143

Light GBM

	Accuracy	AUC	Recall	Prec.	F1	Kappa	ИСС
Fold							
0	0.7083	0.7772	0.6569	0.7752	0.7112	0.4205	0.4264
1	0.6904	0.7597	0.6483	0.7513	0.6960	0.3841	0.3884
2	0.6922	0.7648	0.6437	0.7571	0.6958	0.3884	0.3936
3	0.6981	0.7705	0.6649	0.7541	0.7067	0.3983	0.4016
4	0.6909	0.7660	0.6368	0.7592	0.6927	0.3866	0.3927
5	0.6806	0.7499	0.6162	0.7547	0.6785	0.3675	0.3750
6	0.6931	0.7653	0.6403	0.7607	0.6953	0.3908	0.3967
7	0.6947	0.7627	0.6334	0.7677	0.6941	0.3949	0.4022
8	0.6997	0.7736	0.6538	0.7629	0.7042	0.4029	0.4079
9	0.7022	0.7721	0.6510	0.7688	0.7050	0.4086	0.4143
Mean	0.6950	0.7662	0.6445	0.7612	0.6979	0.3943	0.3999
Std	0.0072	0.0074	0.0131	0.0071	0.0088	0.0138	0.0136

(3) Blending

```
[] #Blending Model('Soft Voting')
blend = blend_models([tuned_gbc, tuned_cat, tuned_lgbm],method = 'soft',optimize='AUC')
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС	
Fold								
0	0.7061	0.7771	0.6512	0.7753	0.7078	0.4166	0.4230	
1	0.6885	0.7590	0.6368	0.7551	0.6909	0.3815	0.3872	
2	0.6925	0.7649	0.6408	0.7593	0.6951	0.3894		
3	0.6969	0.7701	0.6638	0.7528	0.7055	0.3958		
4	0.6922	0.7654	0.6368	0.7613	0.6935	0.3892	0.3955	
5	0.6815	0.7484	0.6219	0.7528	0.6811	0.3687	0.3755	
6	0.6894	0.7644	0.6403	0.7546	0.6927	0.3829	0.3882	
7	0.6931	0.7621	0.6299	0.7673	0.6919	0.3921	0.3997 0.4156 0.3973	
8	0.7029	0.7744	0.6515	0.7695	0.7056	0.4098		
9	0.6934	0.7715	0.6406	0.7607	0.6955	0.3914		
Mean	0.6936	0.7657	0.6414	0.7609	0.6960	0.3917	0.3976	
Std	0.0067	0.0079	0.0112	0.0073	0.0078	0.0130	0.0129	
Processing: 100%							6/6 [03:05	

6/6 [03:05<00:00, 30.34s/it]

04 Conclusion

(1) Predict model

```
[] #Prediction
predict_model(blend)
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	Voting Classifier	0.6922	0.7611	0	0	0	0.3886	0.3941

(2) Model evaluation

Confusion matrix & class report

(3) 제출 결과

722263

submission1 (2).csv

sample3 edit

2022-08-30 03:39:06

0.7037467918 0.704640265

데이콘 최종 제출 결과

Public score: 0.7037

Private score: 0.7046

(4) 소감 및 의의

데이터 전처리

전처리 과정은 한정된 데이터를 더 효율적으로 사용하기 위한 필수적인 과정이지만 과도한 전처리는 오히려 데이터가 가지고 있는 정보를 훼손할 수 있기에 데이터에 맞는 기법을 적절히 사용하여야 함

모델링 과정

단순히 하나의 과정에 국한되지 않고 다양한 알고리즘을 알아볼 수 있는 기회였고, 하나의 강한 알고리즘보다 앙상블을 통해 여러 알고리즘을 결합했을 때 더 좋은 결과를 얻을 수 있다는 것을 배움

##