

I.N.E.T. Instancia Nacional

1/11/2019

INTEGRANTES

- Barrientos, Lucas
- Benitez, Maximiliano
- Davalle, Lucas
- Philippeaux, Enrique

Descripción general	2
Diseño del producto (Diagrama en bloques)	2
Problemáticas o inconvenientes	3
Información Técnica: Puntos de testeo y medición.	4
Lista de componentes (Bill of Materials)	5
Placa principal	5
Placa de prueba	6
Memoria Técnica	7
Dia 1	7
Dia 2	11
Dia 3	15
Placa principal	15
Placa de prueba	16
PCB placa principal	17
PCB placa de prueba	18
Bibliografía	19
Adjuntos	20

Descripción general

En la instancia de las olimpiadas de electrónica nos presentaron una situación problemática, en la cual debemos realizar una incubadora neonatológica que incluya una manta térmica, un sistema de control y electrónica para calentamiento y enfriamiento de la manta, con la finalidad de mantener esta entre 33 y 34 °C.

Una incubadora neonatológica es un dispositivo empleado para dar soporte vital a los bebés recién nacidos, bien sean prematuros o a términos, que no estén preparados para adaptarse al medio extrauterino.

Elaboramos un producto muy completo que tiene un formato de "Shield" de arduino ya que es un formato muy versátil y utilizado en la industria. Es un conexionado estándar que permite un conexionado y armado rápido.

Diseño del producto (Diagrama en bloques)

Problemáticas o inconvenientes

En esta estancia se nos presentaron algunos inconvenientes en el transcurso de la resolución:

- 1) La problemática era compleja, requería de planeamiento para ejecutar la efectivamente en el tiempo dado .
- 2) Disponemos de versiones de "Proteus 8 Professional" distintas y eso llevó a tener errores o no poder abrir el archivo que se transfiere de una computadora a otra.
- 3) Dificultades encontrando los componente adecuados para el perfecto funcionamiento del circuito asignado.
- 4) El punto anterior nos hizo tener problemas con la simulación del circuito en "Proteus 8 Professional".
- 5) En la programación surgió el problema que todo lo que se hacía (en tiempo real) o ocurre algún error, se tendría que mostrar en la pantalla "LCD" y eso llevó a que la programación se complique un poco más de lo esperado.
- 6) En el diseño del "PCB" surgió el problema de la posiciones de los componentes ya que algunos componentes como el "MOSFET" utilizan disipadores de calor(un disipador de calor como su propio nombre lo indica se lo utiliza para disipar el calor de dicho componente así no llegase a quemarse).
- 7) Si bien el circuito consta de un led indicativo del funcionamiento de la "Celda Peltier", vimos necesario la implementación de un sensor de corriente para detectar alguna falla interna del componente.
- 8) Como era complicado rootear o diseñar la plaqueta, tuvimos que cambiar los pines que definimos en un principio en la programación y en la plaqueta.
- 9) A hora de rutear tuvimos que mover los fusibles por que se chocaban los diseños

Información Técnica: Puntos de testeo y medición.

TEST POINTS	PERTENECE A	MEDICIÓN NORMAL
TP1	SALIDA LM35-1	0-5V 10mV/1°c
TP2	SALIDA LM35 AMPLIFICADA	0-5V 100mV/1°c
TP3	COLECTOR BOMBA	0-12V
TP4	COLECTOR TRANSISTOR 1	0-12V
TP5	SALIDA B PUENTE "H"	0-12V
TP6	SALIDA A PUENTE "H"	0-12V
TP7	COLECTOR TRANSISTOR 2	0-12V
TP8	SALIDA LM35-2	0-5V 10mV/1°c
TP9	POTENCIÓMETRO	0-5V
TP10	FUSIBLE 2	12V
TP11	FUSIBLE 1	12V
TP12	FUSIBLE 3 12V	
TP13	Vin 12V	
TP14	VCC 5V	

Lista de componentes (Bill of Materials)

Placa principal

Tipo de componente	Cantidad	Referencias	Valores	Código de fabricante
	2	C1-C2 470uF16v		493-4019-3-ND
Capacitores	1	C4 100uF16v		PCE3750TR-ND
	4	C3,C5-C6,C8	100nF	311-2080-2-ND
	9	R1-R3,R5,R8-R10,R17 -R18		311-10.0KLRTR-ND
Resistencias	5	R4,R6-R7,R11,R16 1k		PPC1.0KW-2TR-ND
	2	R12,R14 47k		311-47KGRTR-ND
	2	R13,R15	22k	311-22KGRTR-ND
Sensores	2	U1,U3	LM35	296-35151-2-ND
	5	Q6-Q10	BC547	BC547-ND
Transistores	2	Q3-Q4	IRF4905	IRF4905PBF-ND
	3	Q1-Q2,Q5	IRF540	IRF540PBF-ND
	8	D1-D2,D4,D6-D9,D11	1N4001	641-1310-3-ND
	1	D3	LED-BIRG	516-3299-2-ND
Diodos	1	D5	MZPY15RL	UDZSTE-175.1BTR-ND
	1	D10	LED-RED	516-1421-2-ND
	1	BORN1	BOMBA	A113320-ND
Borneras	1	BORN2	Vin	A113320-ND
Borneras	1	BORN3	PELTIER	A113320-ND
	1	BUZ1	COOLER	A113320-ND
	1	FU1	5A	486-4658-2-ND
Fusible	1	FU2	500mA	486-4658-2-ND
	1	FU3	10A	486-4658-2-ND
Arduino	1	GEN1	GENUINO MEGA	1050-1018-ND
Pines	5	J3,J5-J8	SIL8	AT-RK100-DK
1 11100	1	J2	SIL4	AT-RK100-DK

	1	J4	SIL10	AT-RK100-DK
LCD	1	LCD1	20x4	67-1772-ND
Potenciometro	1	RV1	1K	3310C-001-503L-ND
rotericionietro	1	RV2	20k	3310C-001-503L-ND
	1	BUZ1	BUZZER	102-1458-ND
	1	Peltier 60W 102-1668-ND Fuente 12v 12A		102-1668-ND
	1			Ą
	1	Disipador 60W 80x80x60mm Ventilador 80mm 12v de PC Rejilla ventilador 80mm		
Variados	1			
	1			
	1	Mangueras de conexión		exión
	1	Intercambiador de calor		
	1	Bomba de agua		

Placa de prueba

Componentes	Cantidad	Referencias	Valor	Código del Fabricante
Capacitores	3	C1-C3	47uF	493-2225-2-ND
Resistores	3	R1-R3	1k	PPC1.0KW-2TR-ND
Circuito	1	U1	78L05	W78L051A24FL-ND
Integrado	1	U2	NE555	497-16404-2-ND
Diodos —	2	D1-D2	LED-RED	516-1421-2-ND
	2	D3-D4	1N4148	1N4148FS-ND
Variados	1	J1	TESTER	
	1	RV1	100k	RV4N104C-ND
	1	SW1	SW-DIP4	

Memoria Técnica

Dia 1

Lo primero que realizamos fue el análisis de la situación problemática y del conjunto de circuitos o elementos que nos brindaron para la resolución, Empezaron los debates y las diversas ideas de posibles soluciones y métodos a utilizar para la resolución de dicha problemática.

Luego de hacer coincidir las diferentes ideas de como realizarlo, nos dividimos las diversas tareas haciendo las preguntas "¿COMO?", "¿CUANDO?" y "¿QUIEN?". Esto nos ayudó a decidir quién se encargaría de cada tarea, como la iba a realizar y en qué momento lo haría.

	Simulación con Arduino	Simulación con oscilador	Informe final Memoria Técnica
1°	• Elegir co	o básico mponentes mular	Notas para el informe
2°	Sumar protecciones • Fusibles • Prot Temperatura (LM35) • Testpoints	Hacer ocilador	Notas para el informe
3°	Agregar Arduino		Notas para el informe
4°	Rutear		Hacer informe y memoria Descriptiva

El "¿QUIEN?" quedó con la siguiente organización para el próximo día empezar a trabajar

- Circuito Básico "Puente H" (Maximiliano B y Lucas B).
- Protecciones (Enrique P y Lucas D).
- Test Points (Enrique P).
- Agregar Arduino (Maximiliano B y Lucas B).
- Oscilador (Lucas D).
- Rootear o realización del circuito PCB (Lucas By Lucas D).
- Preparación del informe (Maximiliano B y Lucas D).
- Diagramas en Bloques (Enrique P).

Esto conllevo a elegir diversos componentes y circuitos para el mejor funcionamiento del circuito en cuestión. **Por ejemplo:**

1) Un sensor de temperatura (en este caso utilizamos el sensor LM35).

- 2) Diversos circuito de protección por cualquier inconveniente (Utilizamos circuitos con fusibles, resistencias "son para el punto de medición para verificar si se corto el fusible" y un diodo de protección).
- 3) indicadores luminosos y sonoros para avisar las diversas fallas del circuito(a la vez quedan reflejada en la pantalla lcd y describe que tipo de error es). En la siguiente imagen apreciamos un ejemplo de indicadores de fallas.
- 4) Pantalla LCD para el set point, para el menú del circuito controlador, para mostrar la temperatura en tiempo real que introdujo el operador y mostrar los diferentes error que ocurren en el circuito por alguna falla. En la siguiente imagen podemos apreciar el "LCD"

5) Utilizamos una celda peltier(una celda peltier es un componente electrotérmico que permite generar frío o calor a partir de la electricidad). La utilizamos para proporcionar el frío y el calor a la manta térmica de la incubadora neonatologica. En la siguiente imagen podemos apreciar la "celda peltier" https://www.cuidevices.com/product/resource/cp30.pdf

Esta celda peltier a utilizar será de 60W.

6) También utilizamos un circuito "puente H" que controla la polaridad de la celda peltier y de ese circuito depende si la celda peltier enfría o calienta. En la siguiente imagen lo podemos apreciar al circuito "puente H".

7) Se utilizó un circuito oscilador con un integrado "LM555" para comprobar el funcionamiento correcto del circuito controlador "puente H". En la siguiente imagen podemos apreciar el circuito oscilador con el integrado "LM555".

8) Se conectará también una bomba Peristáltica de corriente continua "12V" para circular agua por la manguera de la manta. En la siguiente imagen podemos apreciar la bomba peristáltica.

Esta bomba presenta un consumo de máximo 4A.

Dia 2

43Empezamos a realizar las diversas tareas o actividades que se les asignó a cada miembro del equipo cumpliendo las especificaciones de dicha actividad.

Como se mencionó anteriormente cada uno tenía su distinta actividad como se muestra a continuación:

"Maximiliano B y Lucas B": Se encargaron del armado básico del circuito "Puente H", siguiendo las especificaciones del circuito en la situación problemática.

"Enrique P y Lucas D": Se encargaron de realizar los distintos circuitos de protección para proteger de cualquier tragedia en el circuito y proteger los componentes más importantes.

"Enrique P": Se encargó de la programación del arduino y del set point(el set point se encuentra dentro de la programación), para su perfecto funcionamiento en la simulación y en la vida real.

```
/* Nombre: float TEMP_leer(uint8_t ESTADO)

* Tipo: Funcion

* Funcion: Funcion que devuelve la temperatura en grados centigrados, cor

* Retorno: (float) Temperatura, en grados centigrados.

* Parametros:

* - SENSOR_PIN:

* - Usar "TEMP_LECTURA" para leer la temperatura del sensor rectal.

* - Usar "TEMP_DISIPADOR" para leer la temperatura del disipador del

*/
float TEMP_leer(uint8_t SENSOR_PIN) //Funcion que devuelve la temperatura

uint16_t adc_lecture = ADC_LEER_PROMEDIO(SENSOR_PIN, 20);

float mv = (adc_lecture / 1824.0) * 5000;

if (SENSOR_PIN == TEMP_LECTURA)

mv = (mv / 10) - LM35_CORRECCION_OPAMP; //Aplicar division...

float temp = mv / 10 + LM35_CORRECCION;
return (temp);
```

"Maximiliano B y Lucas B": Se encargaron de agregar el Arduino Mega 2560 para la simulación correcta del circuito y para el armado dicho PCB o diseño de placa impresa.

"Lucas D": Se encargó de realizar el circuito oscilador con un integrado "LM555" y diversos componentes, para probar el funcionamiento del circuito "Puente H".

"Lucas B y Lucas D": Se encargaron del diseño de la placa impresa o PCB, en este caso tuvimos la idea de crear un shield para el Arduino Mega 2560. Las "Shield" son placas de circuitos modulares que se montan unas encima de otras para dar funcionalidad extra a un Arduino.

"Maximiliano B y Lucas D": Se encargaron finalmente del armado del informe correspondiente según las consignas asignadas.

Cada vez que algun integrante cumplia con su tarea, lo anunciaba al grupo, si es que llegaba a tener un problema con la resolución de su tarea asignada otro miembro del grupo lo ayuda a comprender el tema así pueda resolver la tarea o se intercambian las ideas para no tardarnos mucho con la resolución de las tareas.

Dia 3

En este dia nos enfocamos en trabajar en el desarrollo de cada tarea predeterminada con el objetivo de poder terminarlas hoy, una de las más importantes fue rootear o diseñar la placa impresa, (Finalizar con la placa "PCB" o diseño impreso) lo cual fue un procedimiento que nos tomo por lo menos la mitad del día. Esta placa es una shield de arduino, en este caso Arduino Mega 2560.

Se nos ocurrió agregarle un sensor de corriente al peltier para relevar la falla cuando este se desconecte o quede el circuito abierto, implementamos el siguiente circuito:

Se agregan imágenes para la visualización

Placa principal

Placa de prueba

Vimos necesaria la implementación de un módulo externo que genere un PWM para poder llevar a cabo la prueba del correcto funcionamiento del puente "H" perteneciente al módulo o plaqueta principal.

PCB placa principal

PCB placa de prueba

Bibliografía

IRF540: https://www.vishay.com/docs/91021/91021.pdf

 $\frac{\mathsf{IRF4905:} https://www.infineon.com/dgdl/irf4905pbf.pdf?fileId=5546d462533600a4015355e}{329b1197e}$

TEC1-12706: https://peltiermodules.com/peltier.datasheet/TEC1-12706.pdf

Adjuntos

Siguiendo esta hoja, se presentarán los esquemáticos y demás adjuntos.