

Lecture 22: Semiconductor Diode Circuits

Instructor: Debanjan Bhowmik

Reference: Donald Neamen's 'Electronic Circuit Analysis'

Chapter 2 (Diode Circuits)

Ideal and Practical Diode

- An ideal diode has a infinite diffusion, and zero drift.
- Presents
 - Zero resistance in forward bias
 - Infinite resistance in reverse bias.

Like a switch

Wednesday, August 29, 2018

Ideal and Practical Diode

- An ideal diode acts like a switch.
- A practical diode has a nonlinear I-V characteristics.
 - Current-voltage relations

Practical Diode

Ideal and Practical Diode

Practical Diode:

under forward bias: potential across it is almost 0.7 V (Si), current depends on the circuit.

under reverse bias: potential across it can be anything (negative quantity), current is almost 0

• Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V. Determine Vo.

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V. Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. Now there are four situations corresponding to the forward/reverse biasing of the two diodes.

 $D1 \rightarrow FB$, $D2 \rightarrow RB$ (5>Vo>0)

Possible

 $D1 \rightarrow RB$, $D2 \rightarrow RB$ (0<5<Vo)

Possible

 $D1 \rightarrow FB$, $D2 \rightarrow FB$ (5>0>Vo)

Possible

 $D1 \rightarrow RB$, $D2 \rightarrow FB$ (5<Vo<0) No

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V. Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. Now there are four situations corresponding to the forward/reverse biasing of the two diodes.

D1
$$\rightarrow$$
FB, D2 \rightarrow RB (5>Vo>0)
Possible
Vo = 5-0.7 = 4.3 V

D1 \rightarrow RB, D2 \rightarrow RB (0<5<Vo) Possible D1 \rightarrow FB, D2 \rightarrow FB (5>0>Vo) Possible

 $D1 \rightarrow RB$, $D2 \rightarrow FB$ (5<Vo<0) No

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V. Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. Now there are four situations corresponding to the forward/reverse biasing of the two diodes.

$$Vo = 5-0.7 = 4.3 V$$

$$D1 \rightarrow RB$$
, $D2 \rightarrow RB$ (0<5

Possible

Vo = 0 and > 5 !!
D1
$$\rightarrow$$
FB, D2 \rightarrow FB (5>0>Vo)
Possible
D1 \rightarrow RB, D2 \rightarrow FB (5

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V. Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. Now there are four situations corresponding to the forward/reverse biasing of the two diodes.

D1→FB, D2→RB (5>Vo>0)
Possible

Vo = 5-0.7 = 4.3 V

$$D1 \rightarrow RB$$
, $D2 \rightarrow RB$ (0<5

D1→FB, D2→FB (5>0>Vo)
Possible

Vo =
$$5+0.7$$
; V=0+0.7 !!
D1->RB, D2->FB (5

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V. Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. Now there are four situations corresponding to the forward/reverse biasing of the two diodes.

Vo = 5-0.7 = 4.3 V
D1
$$\rightarrow$$
RB, D2 \rightarrow RB (0<5
D1 \rightarrow FB, D2 \rightarrow FB (5>0>Vo)
Possible
D1 \rightarrow RB, D2 \rightarrow FB (5

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V and Vcc=6 V Determine Vo.

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V and Vcc=6 V Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. D1, D2 → FB 6>Vo>(5,0) But then there is conflict of Vo=5-0.7 or 0-0.7. D1,D2 → RB 6<Vo<(5,0) NOT Possible

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V and Vcc=6 V Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. D1, D2 → FB 6>Vo>(5,0) D1,D2 → RB 6<Vo<(5,0) NOT Possible

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V and Vcc=6 V Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. D1, D2 → FB 6>Vo>(5,0) D1,D2 → RB 6<Vo<(5,0) NOT Possible D1→FB, D2→RB 0>Vo>5 NOT Possible

 Consider the Si diode in the circuit. Let V1 = 5 V and V2 = 0 V and Vcc=6 V Determine Vo.

Since it is a Silicon diode, barrier voltage is 0.7 V. $D1, D2 \rightarrow FB 6 \times Vo \times (5,0)$ $D1,D2 \rightarrow RB 6 \times Vo \times (5,0) \text{ NOT}$ Possible $D1 \rightarrow FB, D2 \rightarrow RB 0 \times Vo \times 5 \text{ NOT}$ Possible $D1 \rightarrow RB, D2 \rightarrow FB 0 \times Vo \times 5 \text{ NOT}$ V0 = 0 + 0.7 = 0.7 V

Current flowing through D1= 0

Current flowing through D2 = (Vcc - Vo)/ R

• Consider the circuit with silicon diodes. Determine V_B , when $V_A = 2 V$, 1 V, 0 V, -1. V

• Consider the circuit with Silicon diodes. Determine V_B , when $V_A = 2 V$, 1 V, 0 V, -1. V

	D2,D3→FB	D2,D3→RB
D1→RB		Vb <min(va,0) Vb = ???</min(va,0)
D1→FB		

Consider the circuit with Silicon diodes.

Determine V_{-} when $V_{\Delta} = 2 \text{ V}$, 1 V, 0 V, -1. V

	D2,D3→FB	D2,D3→RB
D1→RB	Va>Vb>0 Vb = 0+2*0.7 = 1.4V	Vb <min(va,0) Vb = ???</min(va,0)
D1→FB		

$$Va = 2 V, Vb = 1.4 V$$

Consider the circuit with Silicon diodes.

Determine V_{\perp} when $V_{\Delta} = 2 \text{ V}$, 1 V, 0 V, -1. V

	D2,D3→FB	D2,D3→RB
D1→RB	Va>Vb>0 Vb = 0+2*0.7 = 1.4V	Vb <min(va,0) Vb = ???</min(va,0)
D1→FB	Vb>Va,Vb>0 Vb = min(Va+0.7,1.4)	

• Consider the circuit with Silicon diodes. Determine V_B , when $V_A = 2 V$, 1 V, 0 V, -1. V

	D2,D3→FB	D2,D3→RB
D1→RB	Va>Vb>0 Vb = 0+2*0.7 = 1.4V	Vb <min(va,0) Vb = ???</min(va,0)
D1→FB	Vb>Va,Vb>0 Vb = min(Va+0.7,1.4)	Va <vb<0 Vb = Va + 0.7</vb<0

Diode as a Switch

- A diode (ideally) acts as a switch.
- This property can be used in a variety of circuits.
 - AC-DC Conversion : Rectifier
 - Peak Detection, DC Restoration: Clamper
 - Wave Shaping: Clipper

Rectifier

 Rectification: Conversion of an alternating current to unidirectional, but pulsating current by using a nonlinear element (like diode).

• Type :

- Half-Wave Rectifier: Utilizes only one half of an AC signal for conversion.
- Full-Wave Rectifier: Uses both halves of an AC signal for conversion

Half-Wave Rectifier (HWR)

• A Half-wave rectifier circuit uses a single diode to recover one HALF of an AC signal.

Input Waveform

Output Waveform

HWR: DC/Average Value

Assuming ideal diode

$$i = \frac{v}{R_L} = \frac{V_m \sin \omega t}{R_L}$$
 for $0 \le \omega t \le \pi$
= 0 for $\pi \le \omega t \le 2\pi$

$$I_{dc} = \frac{1}{2\pi} \int_0^{2\pi} i \ d(\omega t) = \frac{1}{2\pi} \int_0^{\pi} \frac{V_m \sin \omega t}{R_L} \ d(\omega t) + 0$$

$$=\frac{V_m}{\pi R_L}=\frac{I_m}{\pi}$$

$$V_{dc} = \frac{V_m}{\pi}$$
 Approx. 32%

Full-Wave Rectifier (FWR)

 Is there a way to utilize BOTH halves of the AC signal to produce a unidirectional output voltage/current?

AC input

• Bridge Rectifier:

$$V_{DC} = \frac{2}{\pi} V_m \approx 64\%$$
 of V_m

Friday, August 3-1/28 cycle of V: Diodes D1 and D3 conduct: D2 and D4 are off (a-b-c-d) -ve ½ cycle of V: Diodes D2 and D4 conduct: D1 and D3 are off (d-b-c-a)

Full-Wave Rectifier (FWR)

- Bridge Rectifier has some disadvantages.
 - Needs 4 diodes
 - Power is always dissipated in 2 of the diodes (in series with the load).

Full-Wave Rectifier (FWR)

• FWR with centre-tapped transformer:

+ve 1/2 cycle of v : D_1 conducts and D_2 is off -ve 1/2 cycle of v : D_2 conducts and D_1 is off

$$V_{dc} = \frac{2}{\pi} V_m$$

$$v_{1,2} = V_m \sin(\omega t \pm \pi/2 + \phi)$$

Vm is the maximum OUTPUT Voltage

FWR – Comparison

Full wave bridge rectifier	Full wave rectifier with center tap
	transformer
4 diodes required	2 diodes required
More power dissipation	Less power dissipation
Less expensive transformer	More expensive transformer re-
	quired
Lower operating efficiency	Higher operating efficiency

Signal Filtering

- In both HWR and FWR, the output voltage varies from 0 to Vmax.
- This variation between max and min voltage is called 'ripple voltage'. Undesirable.
- Filter: Removes these pulsations and improves the DC component.
- Capacitor Filter: Connect a Capacitor across the rectifier to reduce ripple.

Capacitor Filter with Rectifier (HWR)

 With the capacitor, the voltage across the load 'decays' slowly

Capacitor Filter with Rectifier (HWR)

$$\tau = R_L C \gg T$$

Output Voltage remains almost constant

$$V_r = \frac{\Delta q}{C} \approx \frac{I_{dc}T}{C}$$
$$= \frac{I_{dc}}{fC} = \frac{V_{dc}}{fR_LC}$$

Capacitor Filter with Rectifier (FWR)

Capacitor Filter with Rectifier (FWR)

Here the discharge time is T/2.

$$\tau = R_L C \gg T$$

$$V_r = \frac{\Delta q}{C} \approx \frac{I_{dc}T}{2C}$$
$$= \frac{I_{dc}}{2fC} = \frac{V_{dc}}{2fR_LC}$$