Veriopt Theories

March 14, 2022

Contents

1 Canonicalization Phase	1
1.1 Conditional Expression	. 2
1 Canonicalization Phase	
theory Common	
imports	
$Optimization DSL. \ Canonicalization$	
HOL-Eisbach.Eisbach	
begin	
fun $size :: IRExpr \Rightarrow nat$ where	
$size (UnaryExpr \ op \ e) = (size \ e) + 1$	
size (BinaryExpr BinAdd x y) = (size x) + ((size y) * 2)	
$size (BinaryExpr \ op \ x \ y) = (size \ x) + (size \ y)$	
$size\ (Conditional Expr\ cond\ t\ f) = (size\ cond) + (size\ t) + (size\ f) + 2$	
$size\ (ConstantExpr\ c) = 1$	
size (ParameterExpr ind s) = 2	
$size (LeafExpr \ nid \ s) = 2$	
size (Constant Var c) = 2	
size (Variable Expr x s) = 2	
lemma $size-pos[simp]: 0 < size y$	
apply (induction y; auto?)	
subgoal premises prems for op a b	
using prems by (induction op; auto)	
done	
lemma $size$ - non - add : $op \neq BinAdd \implies size$ ($BinaryExpr$ op a b) = $size$ a	+ size
by (induction op; auto)	
lemma size-non-const:	
$\neg is\text{-}ConstantExpr\ y \Longrightarrow 1 < size\ y$	
using size-pos apply (induction y; auto)	

```
subgoal premises prems for op a b
   apply (cases \ op = BinAdd)
   using size-non-add size-pos apply auto
   by (simp add: Suc-lessI one-is-add)+
 done
{f method} \ unfold\mbox{-}optimization =
  (unfold rewrite-preservation.simps, unfold rewrite-termination.simps,
   unfold intval.simps,
   rule conjE, simp, simp del: le-expr-def)
 (unfold rewrite-preservation.simps, unfold rewrite-termination.simps,
   rule conjE, simp, simp del: le-expr-def)
end
       Conditional Expression
1.1
theory ConditionalPhase
 imports
   Common
   Proofs. Stamp Eval Thms
begin
phase Conditional
  terminating size
begin
lemma negates: is-IntVal32 e \lor is-IntVal64 e \Longrightarrow val-to-bool (val[e]) \equiv \neg (val-to-bool
  by (smt (verit, best) Value.disc(1) Value.disc(10) Value.disc(4) Value.disc(5)
Value.disc(6)\ Value.disc(9)\ intval-logic-negation.elims\ val-to-bool.simps(1)\ val-to-bool.simps(2)
zero-neq-one)
optimization negate-condition: ((\neg e) ? x : y) \longmapsto (e ? y : x)
   apply unfold-optimization apply simp using negates
  \textbf{using} \ \textit{ConditionalExprE} \ \textit{UnaryExprE} \ \textit{intval-logic-negation.elims} \ \textit{unary-eval.simps}(4)
val-to-bool.simps(1) val-to-bool.simps(2) zero-neq-one
   apply (smt (verit) ConditionalExpr)
   unfolding size.simps by simp
optimization const-true: (true ? x : y) \mapsto x
  apply unfold-optimization
  apply force
  unfolding size.simps by simp
optimization const-false: (false ? x : y) \longmapsto y
  {\bf apply} \ unfold\text{-}optimization
  apply force
  unfolding size.simps by simp
```

```
optimization equal-branches: (e ? x : x) \longmapsto x
  {\bf apply} \ unfold\text{-}optimization
  apply force
  unfolding size.simps by auto
definition wff-stamps :: bool where
 wff-stamps = (\forall m \ p \ expr \ val \ . ([m,p] \vdash expr \mapsto val) \longrightarrow valid-value val \ (stamp-expr
expr))
definition wf-stamp :: IRExpr \Rightarrow bool where
  wf-stamp e = (\forall m \ p \ v. \ ([m, p] \vdash e \mapsto v) \longrightarrow valid-value \ v \ (stamp-expr \ e))
optimization condition-bounds-x: ((u < v) ? x : y) \mapsto x
   when (stamp-under\ (stamp-expr\ u)\ (stamp-expr\ v)\ \land\ wf-stamp\ u\ \land\ wf-stamp\ v)
  apply unfold-optimization
 using stamp-under-semantics
 using wf-stamp-def
 apply (smt (verit, best) ConditionalExprE le-expr-def stamp-under.simps)
 unfolding size.simps by simp
optimization condition-bounds-y: ((x < y) ? x : y) \mapsto y
   when (stamp-under\ (stamp-expr\ y)\ (stamp-expr\ x) \land wf-stamp\ x \land wf-stamp\ y)
  apply unfold-optimization
  using stamp-under-semantics-inversed
  using wf-stamp-def
 apply (smt (verit, best) ConditionalExprE le-expr-def stamp-under.simps)
 unfolding size.simps by simp
optimization b[intval]: ((x eq y) ? x : y) \longmapsto y
  apply unfold-optimization
    apply (smt (z3) bool-to-val.simps(2) intval-equals.elims val-to-bool.simps(1)
val-to-bool.simps(3))
   unfolding intval.simps
  apply (smt (z3) BinaryExprE ConditionalExprE Value.inject(1) Value.inject(2)
bin-eval.simps(10)\ bool-to-val.simps(2)\ evalDet\ intval-equals.simps(1)\ intval-equals.simps(10)
intval-equals. simps(12) intval-equals. simps(15) intval-equals. simps(16) intval-equals. simps(2)
intval-equals.simps(5) intval-equals.simps(8) intval-equals.simps(9) le-expr-def val-to-bool.cases
val-to-bool. elims(2))
 unfolding size.simps by auto
end
```

end