MA2101: Analysis I Lecture Notes

Instructor: Rajib Dutta

Debayan Sarkar * 22MS002

Sabarno Saha [†] 22MS037

Piyush Kumar Singh [‡] 22MS027

August 13, 2023

Contents

1	Alge	ebra of the Real Number System	1
	1.1	Properties of Addition	1
	1.2	Properties of Multiplication	1
	1.3	Distributive Property	2
	1.4	Order in Reals	2
		1.4.1 Law of Trichotomy	2
		1.4.2 Properties of <	2
2	Upp	per and Lower Bounds	7

§1 Algebra of the Real Number System

§1.1 Properties of Addition

The properties of addition(+) in the real number system are:

(A1)
$$x + y = y + x \ \forall \ x, y \in \mathbb{R}$$

(A2)
$$(x + y) + z = x + (y + z) \forall x, y, z \in \mathbb{R}$$

(A3)
$$\exists ! 0 \in \mathbb{R} \ s.t. \ x + 0 = 0 + x = x \ \forall \ x \in \mathbb{R}$$

(A4)
$$\forall x \in \mathbb{R} \exists ! y \in \mathbb{R} \text{ s.t. } x + y = y + x = 0$$

§1.2 Properties of Multiplication

The properties of multiplication (\cdot) in the real number system are:

(M1)
$$x \cdot y = y \cdot x \forall x, y \in \mathbb{R}$$

(M2)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z) \forall x, y, z \in \mathbb{R}$$

(M3)
$$\exists ! 1 \in \mathbb{R} \text{ s.t. } x \cdot 1 = x \forall x \in \mathbb{R}$$

(M4)
$$\forall x \in \mathbb{R} \setminus \{0\} \exists ! y \in \mathbb{R} \text{ s.t. } x \cdot y = y \cdot x = 0$$

^{*}TheSillyCoder.github.io

[†]TheInvisibleFoe.github.io

[‡]iamPiyushKrSingh.github.io

§1.3 Distributive Property

The multiplication operator distributes over addition inn real numbers.

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

Since addition and multiplication have these properties in real numbers, $(\mathbb{R}, +, \cdot)$ is a Field.

§1.4 Order in Reals

§1.4.1 Law of Trichotomy

Given two $x, y \in \mathbb{R}$, exactly one of the following statements is true:

- (i) x = y
- (ii) x > y
- (iii) x < y

$\S1.4.2$ Properties of <

- (i) If x < y and y < z then x < z
- (ii) If x > 0, y > 0 then, xy > 0
- (iii) If x < y then, $x + z < y + z \ \forall z \in \mathbb{R}$
- (iv) $x < y \Rightarrow -x > -y$
- (v) If x < y and z > 0 then xz < yz
- (vi) If 0 < x < y, then $0 < \frac{1}{y} < \frac{1}{x}$
- (vii) $x^2 > 0 \ \forall x \in \mathbb{R}$

Remark 1.1

Let $x, y \in \mathbb{R}$ such that, $x \leq y$ and $y \leq x$. Then, x = y.

Let's assume to teh contrary that $x \neq y$. Then, by the law of trichotomy, either x < y or y < x. Let y < x. From $x \le y$ we have either x < y or x = y. By the law of trichotomy, neither of them can be true. Hence, $y \not< x$ Now, let x < y. From $y \le x$ we have either y < x or y = x. Again, by the law of trichotomy, neither of them can be true. Hence, $x \not< y$ This is a contradiction. Hence, x = yQ.E.D.

For x < y, we have, $x < \frac{x+y}{2} < y$. The point $\frac{x+y}{2}$ is called the midpoint between x and y.

Proof: Since x < y, we have $\frac{x}{2} < \frac{y}{2}$. Then, we have $\frac{x}{2} + \frac{x}{2} < \frac{y}{2} + \frac{x}{2} \Rightarrow x < \frac{x+y}{2}$ Similarly, we have $\frac{x}{2} + \frac{y}{2} < \frac{y}{2} + \frac{y}{2} \Rightarrow \frac{x+y}{2} < y$ Hence, $x < \frac{x+y}{2} < y$ Q.E.D.

2

Example 2:

If $x \le y + z$ for all z > 0, then $x \le y$.

Proof:

Let $x,y\in\mathbb{R}$ such that $x\leq y+z$ for all z>0. We claim that, $x\leq y$. Let us assume to the contrary that, x>y. Then, we have x-y>0. Let $\epsilon:=x-y$. Also observe that, $x-y\leq z$ for all z>0. Let us set $z=\frac{\epsilon}{2}$. Then, $x-y\leq z\Rightarrow \epsilon\leq \frac{\epsilon}{2}\Rightarrow 1\leq \frac{1}{2}$. This is a contradiction. Hence, $x\leq y$. This proves our claim.

Example 3:

For 0 < x < y, we have $0 < x^2 < y^2$ and $0 < \sqrt{2} < \sqrt{y}$, assuming to existence of \sqrt{x} and \sqrt{y} . More generally, if x and y are positive, then x < y iff $x^n < y^n$ for all $n \in \mathbb{N}$.

Proof:

will type up later

Q.E.D.

Example 4:

For 0 < x < y, we have $\sqrt{xy} < \frac{x+y}{2}$.

Proof:

We claim that the statement is true. Let us assume to the contrary that, $\frac{x+y}{2} < \sqrt{xy}$. Then, we have,

$$\frac{x+y}{2} < \sqrt{xy}$$

$$\Rightarrow \left(\frac{x+y}{2}\right)^2 < xy$$

$$\Rightarrow \left(\frac{x+y}{2}\right)^2 - xy < 0$$

$$\Rightarrow \left(\frac{x-y}{2}\right)^2 < 0$$
(Example 1)

This is a contradiction since we know that $\alpha^2 \geq 0 \ \forall \alpha \in \mathbb{R}$. This proves our claim.

Q.E.D.

§2 Upper and Lower Bounds

Definition 1 (Upper Bound)

Let $A \subset \mathbb{R}$ be nonempty. A number $\alpha \in \mathbb{R}$ is said to be the upper bound of A if $\forall x \in A$, we have $x \leq \alpha$

Geometrically, this means that on the real number line, all the elements of A are to the left of α . If $\alpha \in \mathbb{R}$ is not an upper bound of A, then $\exists x \in A \text{ s.t. } x > \alpha$

Definition 2 (Lower Bound)

Let $A \subset \mathbb{R}$ be nonempty. A number $\alpha \in \mathbb{R}$ is said to be the lower bound of A if $\forall x \in A$, we have $x \geq \alpha$

3

Geometrically, this means that on the real number line, all the elements of A are to the right of α . If $\alpha \in \mathbb{R}$ is not an lower bound of A, then $\exists x \in A \text{ s.t. } x < \alpha$

Example 5:

Consider the set $A := \{1, 2, 3, 4, 5\}$ Then the upper bounds of this A are 5, 6, 1729... etc. And the lower bound of A are 1, 0, -1... etc. Hence, lower and upper bounds of a set are not unique.

Definition 3 (Bounded above set)

Let $\phi \neq A \subset \mathbb{R}$. Then, A is said to be bounded above, if $\exists \alpha \in \mathbb{R}$ such that α is an upper bound of A.

Definition 4 (Bounded below set)

Let $\phi \neq A \subset \mathbb{R}$. Then, A is said to be bounded below, if $\exists \alpha \in \mathbb{R}$ such that α is an lower bound of A.

Theorem 2.1

Let A be a bounded above set. Let $\alpha \in \mathbb{R}$ be an upper bound. Let $\beta \in \mathbb{R}$ such that $\beta \geq \alpha$. Then β is an upperbound of A.

Proof:

Since α is an upper bound, we have $x \leq \alpha \ \forall x \in A \ \text{But}, \ \alpha \leq \beta$. Then we have, $x \leq \beta \ \forall x \in A$. Hence β is an upper bound of A.

A similar theorem can be stated and proved analogously for bounded below sets and lower bounds.

Definition 5 (Maximum)

Let $\phi \neq A \subset \mathbb{R}$. $\alpha \in \mathbb{R}$ is said to be the maximum of A if

- (i) $\alpha \in \mathbb{R}$
- (ii) α is an upper bound of A

The maximum of a set A is denoted by $\max\{A\}$

Theorem 2.2

The maximum of a set is unique.

Proof:

Let α and β be two maxima of A s.t. $\alpha \neq \beta$. Then, by the law of trichotomy, either $\alpha > \beta$ or $\beta > \alpha$. If $\alpha > \beta$, then α cannot be an upper bound since, $\beta \in A$. And, if $\beta > \alpha$, then β cannot be an upper bound since, $\alpha \in A$. This is a contradiction. Hence, $\alpha = \beta$.

Remark 2.1

A bounded above set need not have a maximum. Consider set S := (0,1). S clearly has upper bounds for instance 1, 2, etc. However it does not have a maximum, since none of the upper bounds are in the set S itself. Some more of such remarks could be

1.
$$\{1 - \frac{1}{n} : n \in \mathbb{N}\}$$

2.
$$\{1 - \frac{1}{2^n} : n \in \mathbb{N}\}$$

Definition 6 (Least Upper Bound)

Let A be a non-empty subset of \mathbb{R} . An upper bound α is said to be the least upper bound of A if $\beta < \alpha \Rightarrow \beta$ is not an upper bound of A.

We denote the least upper bound of A as lub A

Definition 7 (Greatest Lower Bound)

Given a non-empty bounded below set A, a real number β is said to be the greatest lower bound of A if

- (i) β is a lower bound of A
- (ii) if $\beta' > \beta$ then, $\exists x \in A$ such that $\beta \leq x \leq \beta'$

We denote the Greatest lower bound of A as glbA

Theorem 2.3

The least upper bound(or greatest lower bound) of a bounded above(or below) set is unique.

Definition 8 (Completeness Axiom)

Every bounded above (or below) subset of \mathbb{R} has a least upper bound (or greatest lower bound).

Remark 2.2

This is an important property in \mathbb{R} . \mathbb{Q} does not have this property. For instance, consider the set $A = \{x \in \mathbb{Q} : 0 < x^2 < 2\}$. Clearly, $\text{lub}A = \sqrt{2} \notin \mathbb{Q}$

Theorem 2.4 (Archimedean Property)

(AP1) \mathbb{N} is not bounded above in \mathbb{R}

(AP2) Let x > 0, $y \in \mathbb{R}$, then $\exists n \in \mathbb{N}$ such that nx > y

Proof:

First, we prove AP1 by contradiction. Let us assume to the contrary that \mathbb{N} is bounded above in \mathbb{R} . Then, by the Completeness Axiom, $\exists \alpha \in \mathbb{R}$ such that $\alpha = \text{lub}\mathbb{N}$. Then, by definition of lub, $\alpha - 1$ is not an upper bound of \mathbb{N} . Hence, $\exists n \in \mathbb{N}$ such that $\alpha - 1 < n < \alpha$. Then we have $n + 1 > \alpha$. This is a contradiction since $n + 1 \in \mathbb{N}$ and α is an upper bound of \mathbb{N} . Hence, \mathbb{N} is not bounded above in \mathbb{R} .

Now, we show that AP1 \Rightarrow AP2. However, that trivially follows, since if we have $x, y \in \mathbb{R}$ with x > 0, then from AP1 we have that $\frac{y}{x}$ cannot be an upper bound of \mathbb{R} . Hence, $\exists n \in \mathbb{N}$ s.t. $n > \frac{y}{x}$, i.e. nx > y.

5

Definition 9 (Bounded Sets)

Let A be a non-empty subset of \mathbb{R} . Then, A is said to be bounded if A is bounded above and bounded below.

Theorem 2.5 (Greatest Integer Function)

Let $x \in \mathbb{R}$. Then, \exists a unique $m \in \mathbb{Z}$ s.t. $m \le x < m+1$ This m is denoted as $\lfloor x \rfloor$. We define the greatest integer function $f : \mathbb{R} \to \mathbb{Z}$ as, $f(x) = \lfloor x \rfloor$

Proof:

Let $S:=\{k\in\mathbb{Z}:k\le x\}$. S is bounded above as x is an upper bound from set definition. We now aim to show that S is non-empty. Let us suppose to the contrary that S is empty then we have $\forall k\in\mathbb{Z}, k>x$. Thus k is a lower bound of \mathbb{Z} which is a constradiction. Thus S is non empty. We know S is bounded above and non-empty. Then by the completeness axiom, there exists a least upper bound. Let $m=\sup(S)$. We now show that $m\le x< m+1$. Clearly $m\le x$ as x is any upper bound for S. For proving the right inequality we use contradiction. Let us suppose to the contrary that $x\ge m+1$. Since $m\in\mathbb{Z}$, then $m+1\in\mathbb{Z}$. Thus $m+1\in S$. Thus we have $m+1=\sup(S)$, which is a contradiction.

Claim: m is unique.

Proof:

Suppose we have $m \neq n$ and $m = \lfloor x \rfloor = n$. WLOG n > m. we have, $m \leq x < m+1$ and $n \leq x < m+1$. Since n > m and $n, m \in \mathbb{Z}$, then $n \geq m+1$. Now $m \leq x < m+1 \leq n \Rightarrow x < n$ which is a contradiction of the law of trichotomy of order as we assumed $x \geq n$.

Theorem 2.6 (Density of Rational Numbers)

 $\forall a, b \in \mathbb{R} \text{ and } a < b. \text{ Then } \exists g \in \mathbb{Q} \text{ s.t. } a < g < b.$

Proof:

Since $q \in \mathbb{Q}$, we can write $q = \frac{m}{n}$ where $m, n \in \mathbb{Z}$, $n \neq = 0$. Thus we have $a < \frac{m}{n} < b \Rightarrow na < m < nb$ Using the Archimedean Property, we choose n_0 s.t. $n_0 > \frac{1}{b-a}$. Now we choose $m = \lfloor n_0 a + 1 \rfloor$. Thus, we have $n_0 a < m \leq n_0 a + 1$. We thus have $m \leq n_0 a + 1$. We know from the AP inequality $n_0 (b-a) > 1$, we get $m < n_0 a + n_0 (b-a) = n_0 b$. Thus we have $n_0 a < m < n_0 b$

Definition 10 (Irrational Numbers)

If $\alpha \in \mathbb{R}$ and $\alpha \notin \mathbb{Q}$, we say that α is an irrational number.

Theorem 2.7 (Density of Irrational Numbers)

 $\forall a, b, \in \mathbb{R} \text{ and } a < b. \text{ Then } \exists \alpha \in \mathbb{R} \setminus \mathbb{Q} \text{ s.t. } a < \alpha < b.$

Proof:

We know from the previous theorem that $\forall a,b \in \mathbb{R} \ \exists q \in \mathbb{Q} \ s.t. \ a < q < b$. Let us have $a = a' - \sqrt{2}, b = b' - \sqrt{2}$ where $a',b' \in \mathbb{R}$. plugging these values into the inequality, we get $a - \sqrt{2} < q < b - \sqrt{2}$. Adding $\sqrt{2}$, we get $a' < q + \sqrt{2} < b'$. we know $q + \sqrt{2}$ is an irrational number. Let us suppose to the

contrary that $q + \sqrt{2}$ is a rational number. We know that $-q \in \mathbb{R}$ thus $q + \sqrt{2} - q \in \mathbb{R}$. Thus we have $\sqrt{2} \in \mathbb{R}$, which is a contradiction.

Theorem 2.8

Let p be a prime number. Let x be a non negative real s.t. $x^2 = p$. Then x is irrational.

Proof:

Suppose $x \in \mathbb{R}$ s.t. $x = \frac{m}{n}$, $m, n \in \mathbb{Z}, n \neq 0, \gcd(m, n) = 1$. We have $x^2 = \frac{m^2}{n^2} = p$. Thus $p|m^2$, $m^2 \equiv 0 \pmod{p}$. Since p is a prime number we can cancel m out on both sides, having $m \equiv 0 \pmod{p}$. Thus we have m = kp for some $k \in \mathbb{Z}.m^2 = k^2p^2 = pn^2$, thus $p|n^2$ implying that p|n. Thus we have p|m and p|n, which is a contradiction that $\gcd \neq 1$.

Theorem 2.9 (Existence of nth root of positive numbers)

Let $n \in \mathbb{N}$ and let $\alpha \in \mathbb{R}^+ \cup \{0\}$. Then $\exists ! x \geq 0$ s.t. $x^n = \alpha$