Applied Numerical Methods (MATH 151A, 2019) Assignment 3

Due day: 3:50 p.m., Feb 22, 2019, Friday.

- 1. Let f(x) = 1/x, $x_i = i + 1$, $0 \le i \le 2$, find the Lagrange interpolation polynomial interpolating the points $(x_i, f(x_i))$ using
 - (a) Lagrange interpolation formula.
 - (b) Neville's method.
 - (c) the divided difference interpolation.
- 2. Find the natural cubic spline passing through (-1,1), (0,1), (1,2).
- 3. Consider Hermite interpolation problem. Prove the following theorem: Let $f \in C^1([a,b])$ and $x_0, x_1, ... x_n$ be n distinct nodes in [a,b], and let

$$H(x) = \sum_{i=0}^{n} f(x_i)H_{n,j}(x) + \sum_{i=0}^{n} f'(x_i)\hat{H}_{n,j}(x)$$

where

$$H_{n,j} = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x)$$
 $\hat{H}_{n,j} = (x - x_j)L^2_{n,j}(x).$

Show that $H(x_i) = f(x_i)$ and $H'(x_i) = f'(x_i)$, for all $0 \le i \le n$. (You do not need to prove the uniqueness of H.)

- 4. Let f(x) be a function defined on the interval $[x_0 h, x_0 + h]$, and $f \in C^3[x_0 h, x_0 + h]$.
 - (a) Let P(x) be the Lagrange interpolation polynomial of f(x) at the nodes $x = x_0 h, x_0, x_0 + h$. Write down the expression of P(x).
 - (b) Write down the error term E(x) := f(x) P(x) in terms of the derivatives of f(x).
 - (c) Using the fact that f(x) = P(x) + E(x), calculate the derivatives of f, f'(x) at $x = x_0$.
 - (d) If we approximate the derivative $f'(x_0)$ by $P'(x_0)$, is it true that the above approximation is exact if f is a polynomial of degree less than or equal to 2? Why?
 - (e) Write down an error bound of this approximation rule suggested in (d) for a general function f(x) based on the result in (b).

5. (Programming problem)

Let a number of points $(x_i, f(x_i))$ be given, $0 \le i \le n$. Let P(x) be its Lagrange interpolation polynomial interpolating the points $(x_i, f(x_i))$, $0 \le i \le n$.

Write a program which allow inputs $\{(x_i, f(x_i))\}$ and a value a, and calculate the value of P(a).