Introdução

Fechadas

Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizadas

Formulas de Newton-Cote

> Análise dos Erros das Fórmulas

Quadratur Gaussiana

Integração Numérica Análise Numérica

Prof. Joventino de Oliveira Campos - joventino.campos@ufjf.br Departamento de Ciência da Computação Universidade Federal de Juiz de Fora

Conteúdo

Introdução

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Newton-Cotes

Análise dos Erros d Fórmulas Generalizadas

Quadratur Gaussiana

1 Introdução

Pórmulas Fechadas Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizadas Formulas de Newton-Cotes Análise dos Erros das Fórmulas Generalizadas

4 Quadratura Gaussiana

Conteúdo

Introdução

Formulas de Newton-Cotes

Newton-Cotes Análise do Erro de Integração

Integração Generalizad

Formulas de Newton-Cotes

Análise dos Erros Fórmulas Generalizadas

Quadratui Gaussiana

1 Introdução

2 Fórmulas Fechadas Formulas de Newton-Cotes Análise do Erro de Integração

3 Regras de Integração Generalizadas

Formulas de Newton-Cotes Análise dos Erros das Fórmulas Generalizadas

4 Quadratura Gaussiana

Introdução

Fechadas
Formulas de

Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros d Fórmulas

Quadratur Gaussiana

Introdução

- Estamos interessados em estudar métodos numéricos para calcular de forma aproximada a integral de uma função com uma variável real em um intervalo [a,b].
- O problema consiste em: encontrar

$$I = I(f) = \int_{a}^{b} f(x) \ dx$$

- onde f(x) é uma função contínua com derivadas contínuas no intervalo [a,b].
- Seja F(x) a função primitiva de f(x), tal que F'(x) = f(x). Pelo Teorema Fundamental do Cálculo (TFC) sabemos que o valor da integral é dado por

$$I = \int_a^b f(x) \ dx = F(b) - F(a)$$

Introdução

Introdução

Fechadas
Formulas de

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de

Análise dos Erros da Fórmulas

Quadratu

Exemplo

Calcular $\int_0^2 x^4 \ dx$. Como $F(x) = \frac{x^5}{5}$ satisfaz $F'(x) = x^4 = f(x)$, pelo TFC, temos

$$I = \int_0^2 x^4 dx = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5} = 6.4$$

Algumas observações:

• nem sempre conseguimos determinar a primitiva F(x)

$$\int_{a}^{b} e^{x^{2}} dx$$

- em algumas situações a manipulação de ${\cal F}(x)$ pode ser complexa
- em outros casos, podemos não conhecer de forma analítica a função f(x) que se deseja integrar e só temos os valores de f(x) em pontos x_i do intervalo (ex: experimentos)

Introdução

Formulas de Newton-Cotes Análise do Erro de

Regras de Integração Generalizada:

Formulas de

Análise dos Erros da Fórmulas

Quadratura Gaussiana

Introdução

• De forma geral, a integração numérica consiste em integrar o polinômio $P_n(x)$ que interpola os pontos

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))$$

onde
$$x_0, \ldots, x_n \in [a; b]$$

• Ou seja,

$$I = \int_a^b f(x) \mathrm{d}x \approx \int_{x_0}^{x_n} P_n(x) \mathrm{d}x$$

Conteúdo

Introdução Fórmulas

Formulas de

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Newton-Cotes

Analise dos Erros d Fórmulas Generalizadas

Quadratur Gaussiana 1 Introdução

Pórmulas Fechadas Formulas de Newton-Cotes Análise do Erro de Integração

3 Regras de Integração Generalizadas Formulas de Newton-Cotes Análise dos Erros das Fórmulas Generalizadas

4 Quadratura Gaussiana

Conteúdo

Introdução

mtrodução

Formulas de

Análise do Erro d Integração

Regras de Integração Generalizada

Formulas de

Análise dos Erros o Fórmulas

Quadratur Gaussiana 1 Introdução

2 Fórmulas Fechadas Formulas de Newton-Cotes

Análise do Erro de Integração

Regras de Integração Generalizadas Formulas de Newton-Cotes
Análise dos Erros das Fórmulas Generalizada

4 Quadratura Gaussiana

Regras de Integração Generalizadas

Formulas d

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Introdução

- Considera-se inicialmente as fórmulas de Newton-Cotes do tipo fechada, isto é, quando $x_0=a$ e $x_n=b$
- Serão adotados aqui polinômios interpoladores $P_n(x)$ sobre nós igualmente espaçados no intervalo [a;b]
- Assim,

$$x_i = \left(\frac{b-a}{n}\right)i + a; \quad i = 0, 1, \dots, n$$

• Além disso,

$$h = \frac{b-a}{n} \Rightarrow x_i = x_0 + ih; \quad i = 0, 1, \dots, n$$

 A Forma de Lagrange do polinômio interpolador será utilizada

Introducão

Fechadas

Formulas de Newton-Cotes

Análise do Erro de Integração

Integração Generalizada

Formulas de

Análise dos Erros o Fórmulas

Quadratura

Regra do Retângulo

- O polinômio mais simples é uma constante
- f(x) é aproximada pelo seu valor em $x_0 = a$ (ou em $x_1 = b$), de tal forma que

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{0}(x) dx = \int_{a}^{b} f(a)dx$$

$$= xf(a) \Big|_{a}^{b}$$

$$= (b-a)f(a) = \boxed{hf(a) = I_{R}}$$

$$f(x)$$

Introdução

Formulas de

Newton-Cotes Análise do Erro d

Regras de

Integração Generalizada

Formulas de

Análise dos Erros o Fórmulas

Quadratur

Regra do Ponto Médio

- Também pode-se aproximar f(x) por uma outra constante tomada ao avaliar f(x) em algum outro ponto do intervalo [a;b]
- Uma escolha comum é o ponto médio do intervalo

$$\int_{a}^{b} f(x) \ dx \approx (b-a)f\left(\frac{a+b}{2}\right) = hf\left(\frac{a+b}{2}\right) = I_{M}$$

Introdução

mtrodução

Formulas de

Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cote

Análise dos Erros d Fórmulas

Quadratura

Regra do Trapézio

• Seja $P_1(x)$ o polinômio interpolador de f(x) que passa pelos pontos $(x_0,f(x_0))$ e $(x_1,f(x_1))$, com $x_0=a$ e $x_1=b$, então

$$\int_a^b f(x) \mathrm{d}x \approx \int_{x_0}^{x_1} P_1(x) \mathrm{d}x$$

 A Forma de Lagrange do Polinômio interpolador é dada por

$$P_1(x) = f(x_0)L_0(x) + f(x_1)L_1(x)$$

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} \quad \text{e} \quad L_1(x) = \frac{x - x_0}{x_1 - x_0}$$

Assim,

$$\int_{x_0}^{x_1} P_1(x) dx = \int_{x_0}^{x_1} \left[f(x_0) L_0(x) + f(x_1) L_1(x) \right] dx$$

Introdução

Fórmulas

Formulas de Newton-Cotes

Análise do Erro d Integração

Regras de Integração

Generaliza Formulas de

Análise dos Erros Fórmulas

Generalizadas

Quadratura Gaussiana

Regra do Trapézio

Então

$$\begin{split} \int_{x_0}^{x_1} P_1(x) \mathrm{d}x \\ &= f(x_0) \int_{x_0}^{x_1} \underbrace{\frac{x - x_1}{x_0 - x_1}}_{L_0(x)} \mathrm{d}x + f(x_1) \int_{x_0}^{x_1} \underbrace{\frac{x - x_0}{x_1 - x_0}}_{L_1(x)} \mathrm{d}x \\ &= \frac{h}{2} \left(f(x_0) + f(x_1) \right) \end{split}$$

Introdução

Fórmulas

Formulas de Newton-Cotes

Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de

Análise dos Erros da Fórmulas

Quadratura Gaussiana

Regra do Trapézio

$$I_T = \frac{h}{2} (f(x_0) + f(x_1))$$

Introdução

Formulas de

Análise do Erro de Integração

Regras de Integração Generalizada

Newton-Cotes

Fórmulas Generalizadas

Quadratura

Regra 1/3 de Simpson

• Aproximando f(x) por um polinômio interpolador $P_2(x)$, então

$$\int_a^b f(x)\mathrm{d}x \approx \int_{x_0}^{x_2} P_2(x)\mathrm{d}x$$

 A Forma de Lagrange do Polinômio interpolador é dada por

$$P_2(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x)$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Introducão

Fechadas

Formulas de Newton-Cotes

Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de

Análise dos Erros o Fórmulas

Quadratura Gaussiana

Regra 1/3 de Simpson

Assim,

$$\begin{split} \int_{x_0}^{x_2} P_2(x) \mathrm{d}x = & f(x_0) \int_{x_0}^{x_2} \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \mathrm{d}x + \\ & f(x_1) \int_{x_0}^{x_2} \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} \mathrm{d}x + \\ & f(x_2) \int_{x_0}^{x_2} \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} \mathrm{d}x \end{split}$$

Obtém-se então

$$\int_{x_0}^{x_2} P_2(x) dx = f(x_0) \frac{h}{3} + f(x_1) \frac{4h}{3} + f(x_2) \frac{h}{3}$$
$$= \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Introducão

· -/

Formulas de Newton-Cotes

Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cote

Análise dos Erros da Fórmulas

Quadratura Gaussiana

Regra 1/3 de Simpson

$$I_{1/3S} = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Introdução

Exemplo - Regra 1/3 de Simpson

Formulas de Newton-Cotes

Regras de Integração Generalizad

Formulas de Newton-Cotes

Análise dos Erros de Fórmulas Generalizadas

Quadratura Gaussiana Vamos calcular o valor da integral $\int_0^{1.2} e^x \cos x \ dx$. Temos que

$$h = \frac{x_2 - x_0}{2}$$

Pela fórmula é preciso calcular o valore de f(x) em x_0 , x_1 e x_2 .

$$f(x_0) = f(0) = e^0 \cos(0) = 1$$

$$f(x_1) = f(0.6) = e^{0.6} \cos(0.6) = 1.50$$

$$f(x_2) = f(1.2) = e^{1.2} \cos(1.2) = 1.20$$

assim

$$I = \frac{0.6}{3} [1 + 4(1.50) + 1.2] = 0.2(8.2) = 1.64$$

Introdução

Fechadas

Formulas de

Análise do Erro de Integração

Regras de Integração Generalizada:

Formulas de Newton-Cotes

Análise dos Erros o Fórmulas

Quadratur Gaussiana

Regra 3/8 de Simpson

• Aproximando f(x) por um polinômio interpolador $P_3(x)$, então

$$\int_{a}^{b} f(x) \mathrm{d}x \approx \int_{x_0}^{x_3} P_3(x) \mathrm{d}x$$

A Forma de Lagrange do Polinômio interpolador é dada por

$$P_3(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x) + f(x_3)L_3(x)$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_2)}$$

Introdução

Fórmulas

Formulas de

Análise do Erro de Integração

Integração Generalizad

Formulas de Newton-Cotes

Análise dos Erros d Fórmulas

Quadratura

Regra 3/8 de Simpson

- Novamente, pode-se utilizar o polinômio interpolador na Forma de Lagrange
- A Regra 3/8 de Simpson é definida como

$$I_{3/8S} = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$

Introdução

Fechadas

Formulas de Newton-Cotes

Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Resumo

• Regra Retângulo

$$I_R = h * f(a)$$

Regra Ponto-Médio

$$I_M = h * f\left(\frac{a+b}{2}\right)$$

Regra Trapézio

$$I_T = \frac{h}{2} (f(x_0) + f(x_1))$$

• Regra 1/3 Simpson

$$I_{1/3S} = \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2))$$

Regra 3/8 Simpson

$$I_{3/8S} = \frac{3h}{8} \left(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right)$$

Conteúdo

Análise do Erro de Integração

1 Introdução

Pórmulas Fechadas

Análise do Erro de Integração

Regras de Integração Generalizadas

Introdução

Fechadas

Formulas de Newton-Cotes

Análise do Erro de Integração

Regras de Integração Generalizada:

Newton-Cotes Análise dos Erros o

Fórmulas Generalizadas

Quadratura Gaussiana

Introdução

- Vamos considerar agora o erro cometido ao usar as regras de quadratura apresentadas até agora.
- Em todos os casos aproximamos f(x) por um polinômio interpolador $P_n(x)$ de grau n no intervalo [a,b]
- Calculamos a integral de P_n como aproximação para a integral.
- Erro cometido é dado por

$$E = \int_a^b [f(x) - P_n(x)] dx$$

• Como vimos no estudo de interpolação, o erro é dado por

$$f(x) - P_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(\eta(x))}{(n+1)!}$$

onde $\eta(x)$ é um ponto entre [a,b] e x_0,\ldots,x_n são os pontos de interpolação.

Erro na Integração

Regra do Retângulo

$$E_R = \frac{f'(c)}{2} (b - a)^2$$
 ou $E_R = \frac{f'(c)}{2} h^2$

Regra do Trapézio

$$E_T = \frac{-f''(c)}{12} (b-a)^3$$
 ou $E_T = \frac{-f''(c)}{12} h^3$

Regra do Ponto Médio

$$E_M = \frac{f''(c)}{24} (b-a)^3$$
 ou $E_M = \frac{f''(c)}{24} h^3$

Regra 1/3 de Simpson

$$E_{1/3S} = \frac{-f^{(4)}(c)}{2880}(b-a)^5$$
 ou $E_{1/3S} = \frac{-f^{(4)}(c)}{90}h^5$

Regra 3/8 de Simpson

$$E_{3/8S} = \frac{-f^{(4)}(c)}{6480}(b-a)^5 \quad \text{ou} \quad E_{3/8S} = \frac{-3f^{(4)}(c)}{80}h^5$$

Conteúdo

Introdução

Formulas de Newton-Cotes Análise do Erro de

Regras de Integração Generalizadas

Newton-Cotes

Análise dos Erros d Fórmulas Generalizadas

Quadratui Gaussiana

1 Introdução

2 Fórmulas Fechadas Formulas de Newton-Cotes Análise do Erro de Integração

- Regras de Integração Generalizadas Formulas de Newton-Cotes Análise dos Erros das Fórmulas Generalizadas
- Quadratura Gaussiana

Conteúdo

Introdução

Fechadas
Formulas de
Newton-Cotes
Análise do Erro de

Regras de Integração

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratur Gaussiana 1 Introdução

2 Fórmulas Fechadas Formulas de Newton-Cotes
Apálica do Erra do Integração

Regras de Integração Generalizadas Formulas de Newton-Cotes Análise dos Erros das Fórmulas Generalizadas

4 Quadratura Gaussiana

Regras de Integração Generalizada

Formulas de Newton-Cotes

Analise dos Erros d Fórmulas Generalizadas

Quadratura Gaussiana

Introdução

- Quando o intervalo é grande, pode não ser conveniente aumentar o grau do polinômio interpolador
- Uma ideia é dividir o intervalo original em diversos subintervalos e aplicar uma regra de integração em cada subintervalo
- Essas são as chamadas regras repetidas
 - generalizadas
 - compostas

Introdução

Formulas de Newton-Cotes Análise do Erro de

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratura

Regra do Retângulo Generalizada

• Dividindo o intervalo [a;b] em m subintervalos, com $x_0=a, \ x_m=b$ e $x_i=a+ih$ para $i=0,\ldots,m$, então

$$I = \int_a^b f(x) \mathrm{d}x = \sum_{i=1}^m \int_{x_{i-1}}^{x_i} f(x) \mathrm{d}x$$

• Sendo a Regra do Retângulo dada por

$$I_R = hf(a)$$

• Então a regra generalizada fica como

$$I_{RR} = \sum_{i=1}^{m} hf(x_{i-1})$$

Introducão

Fechadas

Formulas de

Análise do Erro de

Regras de Integração

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratur

Regra do Retângulo Generalizada

$$I_{RR} = \sum_{i=1}^{m} hf(x_{i-1})$$

Regra do retângulo generalizada

Introdução

Formula Fechada

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratura

Regra do Ponto Médio Generalizada

$$I_{MR} = \sum_{i=1}^{m} hf\left(\frac{x_{i-1} + x_i}{2}\right)$$

Regra do ponto médio generalizada

Introducão

Fechadas

Eormulas do

Análise do Erro

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratura

Regra do Trapézio Generalizada

$$I_{TR} = \frac{h}{2} \sum_{i=0}^{m} c_i f(x_i)$$

$$c_0 = c_m = 1$$
 e $c_i = 2$, para $i = 1, \dots, m-1$

Introducão

Fechadas Formulas de

Newton-Cotes

Análise do Erro de
Integração

Regras de Integração

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratura Gaussiana

Exemplo

Exemplo: Aplicar a regra do trapézio generalizada para calcular:

$$\int_0^{1,2} e^x \cos(x) dx,$$

utilizando os dados da tabela a seguir:

	x_0	x_1	x_2	x_3	x_4	x_5	x_6
			0,4				
$e^x \cos(x)$	1	1,197	1,374	1,503	1,552	1,468	1,202

$$\int_0^{1,2} e^x \cos(x) dx$$

$$= \frac{h}{2} [f(x_0) + 2(f(x_1) + f(x_2) + f(x_3) + f(x_4) + f(x_5)) + f(x_6)]$$

$$= \frac{0,2}{2} [1 + 2(1,197 + 1,374 + 1,503 + 1,552 + 1,468) + 1,202]$$

$$= 0,1[1 + 2(7,094) + 1,202]$$

$$= 0,1[1 + 14,188 + 1,202] = 0,1[16,39] = 1,639$$

Introdução

Fórmulas Fochadas

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratura Gaussiana

Regra 1/3 de Simpson Generalizada

$$I_{1/3SR} = \frac{h}{3} \sum_{i=0}^{m} c_i f(x_i)$$

$$c_0 = c_m = 1$$

 $i=1,\ldots,m-1$: $c_i=4$, se i for impar, $c_i=2$, se i for par

Conteúdo

Introdução

Fechadas
Formulas de
Newton-Cotes

Análise do Erro d Integração

Generalizad

Newton-Cotes

Análise dos Erros das Fórmulas Generalizadas

Quadratu Gaussiana 1 Introdução

2 Fórmulas Fechadas Formulas de Newton-Cotes Análise do Erro de Integração

3 Regras de Integração Generalizadas

Formulas de Newton-Cotes

Análise dos Erros das Fórmulas Generalizadas

4 Quadratura Gaussiana

Introdução

Fórmula Fechada

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generaliza

ormulas de

Análise dos Erros das Fórmulas Generalizadas

Quadratur

Erro nas Fórmulas Generalizadas

• Regra do Retângulo

$$|E_{RR}| \le \frac{|b-a|h}{2} \max_{c \in [a;b]} |f'(c)|$$

• Regra do Trapézio

$$|E_{TR}| \le \frac{|b-a|h^2}{12} \max_{c \in [a;b]} |f''(c)|$$

• Regra do Ponto Médio

$$|E_{MR}| \le \frac{|b-a|h^2}{24} \max_{c \in [a;b]} |f''(c)|$$

• Regra 1/3 de Simpson

$$|E_{1/3SR}| \le \frac{|b-a|h^4}{180} \max_{c \in [a;b]} \left| f^{(4)}(c) \right|$$

Conteúdo

Introdução

Fechadas Formulas de

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Newton-Cot

Análise dos Erros d Fórmulas

Quadratura Gaussiana

1 Introdução

2 Fórmulas Fechadas Formulas de Newton-Cotes Análise do Erro de Integração

3 Regras de Integração Generalizadas

Formulas de Newton-Cotes Análise dos Erros das Fórmulas Generalizadas

4 Quadratura Gaussiana

Introduçã

Fechadas

Formulas de
Newton-Cotes

Regras de Integração

Generalizada

Newton-Cotes

Análise dos Erros da Fórmulas Generalizadas

Quadratura Gaussiana

Introdução

Como vimos, as regras de integração de Newton-Cotes são simples e efetivas, mas possuem algumas desvantagens:

- Uso de muitos pontos para interpolação de alta ordem pode gerar alguns problemas
- As regras de Newton-Cotes fechadas requerem a avaliação de f(x) nos pontos do extremo do intervalo, onde geralmente ocorrem singularidades
- As regras do tipo Newton-Cotes, não possuem um grau de precisão tão alto quanto poderiam

Veremos que algumas dessas desvantagens são contornadas pela Quadratura Gaussiana).

Quadratura Gaussiana

 Estamos interessados em obter uma fórmula de integração na forma

$$I = \int_{a}^{b} f(x) dx = w_0 f(x_0) + w_1 f(x_1) + \ldots + w_n f(x_n)$$

onde agora os coeficientes w_i assim como os pontos x_i para $i=0,\ldots,n$ devem ser determinados de forma a obter a melhor precisão possível.

- Temos as seguintes incógnitas:
 - \bullet x_0, x_1, \ldots, x_n
 - \bullet w_0, w_1, \ldots, w_n

isto é, um total de 2n+2 incógnitas a serem determinadas.

Introdução

Fechadas
Formulas de

Newton-Cotes
Análise do Erro de
Integração

Regras de Integração Generalizadas

Newton-Cotes

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

- Sendo assim, podemos esperar que as regras que iremos obter sejam capazes de integrar exatamente polinômios de grau $\leq 2n+1$ uma vez que estes são definidos por 2n+2 parâmetros.
- Vamos apresentar a ideia do método para o caso com 2 pontos

$$I = \int_{a}^{b} f(x) \ dx = w_0 f(x_0) + w_1 f(x_1)$$

- Vamos considerar o intervalo [-1,1] para as regras de Quadratura Gaussiana, sem perda de generalidade, já que sempre podemos fazer uma mudança de variável para mudar do intervalo [a,b] para [-1,1] para realizar a integração.
- Antes de continuar, vejamos como podemos fazer essa mudanca de intervalo.

Introdução

Fechadas Formulas de Newton-Cotes

Newton-Cotes

Análise do Erro de
Integração

Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros da Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Mudança de Variável

• Seja $x \in [a,b]$. Podemos fazer a seguinte mudança de variável

$$x(t) = \frac{(b-a)t}{2} + \frac{b+a}{2}, \qquad t \in [-1,1]$$

• Qualquer que seja $x \in [a,b]$, existe $t \in [-1,1]$ tal que x = x(t). Sendo assim

$$\frac{dx}{dt} = x'(t) = \frac{b-a}{2} \Rightarrow dx = \frac{b-a}{2}dt$$

• logo usando x = x(t) e dx = x'(t) dt temos

$$I = \int_{a}^{b} f(x) \ dx = \int_{-1}^{1} f(x(t)) \ x'(t) \ dt = \int_{-1}^{1} F(t) \ dt$$

onde
$$F(t)=f(x(t))$$
 $x'(t)=f\left(t\frac{(b-a)}{2}+\frac{b+a}{2}\right)\frac{b-a}{2}$

Introdução

Fórmula Fechada

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Generalizac

Formulas de

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana Utilizando 2 pontos

Assim vamos trabalhar com

$$I = \int_{-1}^{1} F(t)dt \approx w_0 F(t_0) + w_1 F(t_1)$$

onde t_0, t_1, w_0 e w_1 devem ser determinados de modo que a regra seja exata para polinômios de grau ≤ 3 , pois

- 2 pontos \rightarrow determinar t_0 , t_1 , w_0 e w_1
- Uma fórmula de Quadratura Gaussiana com os pontos t_0, t_1, \dots, t_n , tem grau de precisão polinomial dado por:

$$2n + 1$$

• Por exemplo, se tivermos 2 pontos, isto é, t_0 e t_1 , a Quadratura Gaussiana tem precisão 2n+1=2(1)+1=3.

Introdução

Fechadas

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana Utilizando 2 pontos

Vamos deduzir o caso

$$I = \int_{-1}^{1} F(t) dt = w_0 F(t_0) + w_1 F(t_1)$$

usando o método dos coeficientes indeterminados. Queremos encontrar w_0 , w_1 , t_0 e t_1 , isto é, 4 parâmetros, logo, a regra de integração que vamos deduzir deve integrar exatamente um polinômio de grau ≤ 3 .

Sendo assim, podemos escrever

$$F(t) = c_0\phi_0(t) + c_1\phi_1(t) + c_2\phi_2(t) + c_3\phi_3(t)$$

onde as funções base são: $\phi_i(t) = t^j$.

• Agora basta exigir que a regra que queremos encontrar, i.e., $w_0F(t_0)+w_1F(t_1)$ integre exatamente cada uma das funções base.

Introdução

Fechadas

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Newton-Cotes

Análise dos Erros d

Fórmulas Generalizadas

Quadratura Gaussiana

Quadratura Gaussiana Utilizando 2 pontos

Considerando que a regra é

$$w_0 F(t_0) + w_1 F(t_1) = \int_{-1}^{1} F(t) dt$$

• Temos que exigir que a regra integre $\phi_0(t)$ exatamente. Neste caso como $F(t)=\phi_0(t)$, e assim

$$w_0\phi_0(t_0) + w_1\phi_0(t_1) = \int_{-1}^1 \phi_0(t) dt$$

como $\phi_0(t) = 1$ temos

$$w_0 1 + w_1 1 = \int_{-1}^{1} 1 \ dt$$

ullet De forma similar, repetimos o processo para ϕ_1 , ϕ_2 e ϕ_3 .

Introdução

Fórmulas Fechadas

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cote

Análise dos Erros das Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 2 pontos

Pelo método dos coeficientes indeterminados temos

$$\phi_0(t) = 1 \Rightarrow w_0 \ 1 + w_1 \ 1 = \int_{-1}^1 dt$$

$$\phi_1(t) = t \Rightarrow w_0 t_0 + w_1 t_1 = \int_{-1}^1 t \ dt$$

$$\phi_2(t) = t^2 \Rightarrow w_0 t_0^2 + w_1 t_1^2 = \int_{-1}^1 t^2 \ dt$$

$$\phi_3(t) = t^3 \Rightarrow w_0 t_0^3 + w_1 t_1^3 = \int_{-1}^1 t^3 \ dt$$

Introdução

Fórmulas Fechadas

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizadas

Formulas de Newton-Cotes

Análise dos Erros das Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 2 pontos

Pelo método dos coeficientes indeterminados temos

$$\phi_0(t) = 1 \Rightarrow w_0 \ 1 + w_1 \ 1 = \int_{-1}^1 dt = t \Big|_{-1}^1 = 2$$

$$\phi_1(t) = t \Rightarrow w_0 t_0 + w_1 t_1 = \int_{-1}^1 t \ dt = \frac{t^2}{2} \Big|_{-1}^1 = 0$$

$$\phi_2(t) = t^2 \Rightarrow w_0 t_0^2 + w_1 t_1^2 = \int_{-1}^1 t^2 \ dt = \frac{t^3}{3} \Big|_{-1}^1 = \frac{2}{3}$$

$$\phi_3(t) = t^3 \Rightarrow w_0 t_0^3 + w_1 t_1^3 = \int_{-1}^1 t^3 \ dt = \frac{t^4}{4} \Big|_{-1}^1 = 0$$

Introdução

Fórmula Fechada

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizadas

Formulas de Newton-Cote

Análise dos Erros das Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 2 pontos

Temos o seguinte sistema de equações não-lineares

$$w_0 + w_1 = 2$$

$$w_0 t_0 + w_1 t_1 = 0$$

$$w_0 t_0^2 + w_1 t_1^2 = 2/3$$

$$w_0 t_0^3 + w_1 t_1^3 = 0$$

Introdução

Fechada Fechada

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas (

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 2 pontos

- Em geral precisamos recorrer a método numéricos para resolver sistemas de equações não-lineares (Método de Newton).
- Fazendo $t_0 = -t_1$, temos

$$-w_0t_1 + w_1t_1 = 0 \Rightarrow t_1(w_1 - w_0) = 0 \Rightarrow w_0 = w_1$$

assim $w_0 + w_1 = 2 \Rightarrow \boxed{w_0 = w_1 = 1}$ e ainda temos que

$$t_0^2 + t_1^2 = \frac{2}{3} \Rightarrow 2t_1^2 = \frac{2}{3} \Rightarrow t_1 = \frac{\sqrt{3}}{3}$$

e como $t_0=-t_1$ temos

$$t_0 = -\frac{\sqrt{3}}{3}$$

Introdução

Fechadas

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizadas

Formulas de

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 2 pontos

• Logo como

$$w_0 = 1$$
, $w_1 = 1$, $t_0 = -\frac{\sqrt{3}}{3}$, $t_1 = \frac{\sqrt{3}}{3}$

• obtemos a seguinte regra de integração numérica

$$I = \int_{-1}^{1} F(t) dt = w_0 F(t_0) + w_1 F(t_1)$$
$$= F\left(-\sqrt{3}/3\right) + F\left(\sqrt{3}/3\right)$$

que é chamada de **Quadratura Gaussiana**. Essa fórmula é exata para polinômios de grau ≤ 3 .

 Como vimos, uma fórmula de Quadratura Gaussiana com apenas 2 pontos é capaz de integrar polinômios de grau até 3, enquanto que as fórmulas de Newton-Cotes com 2 pontos (Regra do Trapézio) integram apenas polinômios de grau 1.

Introdução

Fórmula Fechada

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Generalizada Formulas de

Análise dos Erros o

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 3 pontos

Para o caso com 3 pontos $(t_0,t_1,t_2\to n=2)$ temos 2n+1=5 e portanto essa quadratura de Gauss é capaz de integrar exatamente polinômios de grau ≤ 5 .

$$I = \int_{-1}^{1} F(t) dt = w_0 F(t_0) + w_1 F(t_1) + w_2 F(t_2)$$

Introdução

Fechadas Formulas de

Formulas de Newton-Cotes Análise do Erro de Integração

Regras de Integração Generalizada

Formulas de Newton-Cotes

Análise dos Erros das Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 3 pontos

Considerando
$$\phi_0=1,\phi_1=t,\phi_2=t^2,\phi_3=t^3,\phi_4=t^4$$
 e $\phi_5=t^5$
$$w_0+w_1+w_2=\int_{-1}^1 dt=2$$

$$w_0t_0+w_1t_1+w_2t_2=\int_{-1}^1 t\ dt=0$$

$$w_0t_0^2+w_1t_1^2+w_2t_2^2=\int_{-1}^1 t^2\ dt=2/3$$

$$w_0t_0^3+w_1t_1^3+w_2t_2^3=\int_{-1}^1 t^3\ dt=0$$

$$w_0t_0^4+w_1t_1^4+w_2t_2^4=\int_{-1}^1 t^4\ dt=2/5$$

$$w_0t_0^5+w_1t_1^5+w_2t_2^5=\int_{-1}^1 t^5\ dt=0$$

Introdução

Fechadas

Newton-Cotes
Análise do Erro de
Integração

Integração Generalizada

Formulas de Newton-Cot

Análise dos Erros d Fórmulas

Quadratura Gaussiana

Quadratura Gaussiana

Utilizando 3 pontos

A solução do sistema fornece

pesos		pontos	
w_0	5/9	t_0	$-\sqrt{3/5}$
w_1	8/9	t_1	0
w_2	5/9	t_2	$\sqrt{3/5}$

• Em geral as fórmulas de Quadratura Gaussiana são dadas em forma de tabelas com os coeficientes (pesos) w_i e pontos t_i a serem usados na fórmula

$$I = \int_{-1}^{1} F(t) dt \approx \sum_{i=0}^{n} w_i F(t_i)$$

• E como vimos essas regras de integração tem grau de precisão 2n+1 por construção.

Exemplos

Introdução

Fechadas

Formulas de
Newton-Cotes

Análise do Erro de

Regras de Integração Generalizada

Newton-Cotes

Análise dos Erros da
Fórmulas

Quadratura Gaussiana

Exemplo com 2 pontos

Calcule $I=\int_1^3 3e^x\ dx$ usando a Quadratura Gaussiana com 2 pontos.

Solução do Exemplo 1

1. Mudança de intervalo

$$x(t) = \frac{(b-a)t}{2} + \frac{b+a}{2} = t+2$$

logo

$$x'(t) = \frac{dx}{dt} = 1 \Rightarrow dx = dt$$

assim

$$\int_{1}^{3} 3e^{x} dx = \int_{1}^{1} 3e^{(t+2)} 1 dt$$

Exemplos

Cont. Solução

Quadratura Gaussiana

$$1 - \frac{1}{9}T \left(-\frac{1}{9} \right)$$

 $3[e^3 - e] = 52.1018$

Precisamos avaliar
$$F(t)=3e^{(t+2)}$$
 em $t=-\sqrt{3}/3$ e $t=\sqrt{3}/3$:

$$F(-0.577350) = 3e^{(-0.577350+2)} = 12.444292$$
$$F(0.577350) = 3e^{(0.577350+2)} = 39.486647$$

Assim calculamos a integral de forma aproximada como

$$I = F(-0.577350) + F(0.577350) = 51.930938$$

Se usarmos uma regra com 3 pontos temos

$$I = \frac{5}{9}F(-\sqrt{\frac{3}{5}}) + \frac{8}{9}F(0) + \frac{5}{9}F(\sqrt{\frac{3}{5}}) = 52.1004$$

Obs: compare com o valor exato da integral:

Exemplos

Introdução

Fechadas
Formulas de
Newton-Cotes

Regras de Integração Generalizadas

Newton-Cotes

Análise dos Erros da

Fórmulas Generalizadas

Quadratura Gaussiana

Exemplo polinomio

Calcular a integral $I=\int_{-2}^0 (x^2-1)\ dx$ com a Quadratura Gaussiana de 2 pontos.

Solução do Exemplo 2

Mudança de intervalo

$$x(t) = \frac{(0 - (-2))t}{2} + \frac{(0 - 2)}{2} = t - 1$$
$$x'(t) = \frac{dx}{dt} = 1 \Rightarrow dx = dt$$

e portanto

$$\int_{-2}^{0} (x^2 - 1) dx = \int_{-1}^{1} [(t - 1)^2 - 1] 1 dx$$
$$= \int_{-1}^{1} t^2 - 2t + 1 - 1 dt = \int_{-1}^{1} [t^2 - 2t] dt$$

Regras de Integração Generalizadas

Formulas de

Análise dos Erros da Fórmulas

Quadratura Gaussiana

Cont. Solução

A aproximação da integral é dada por

$$I = F\left(-\frac{\sqrt{3}}{3}\right) + F\left(\frac{\sqrt{3}}{3}\right) = 1.488 - 0.821 = 0.66666$$

a qual pode ser comparada com o valor exato que é

$$\int_{-1}^{1} [t^2 - 2t] dt = \frac{t^3}{3} \Big|_{-1}^{1} - t^2 \Big|_{-1}^{1} = \frac{2}{3} = 0.66666$$

De onde podemos ver que de fato a Quadratura Gaussiana de 2 pontos integra polinômios de grau ≤ 3 de forma exata.