第4回 確率 (4.1-4.4)

村澤 康友

2023年10月6日

これまでの復習

統計学の2つのアプローチ

記述統計学 データの整理 統計的推測 標本から母集団について推測

- →抽出される標本により結果が変わる
- →信頼度の評価が必要

今日のポイント

- 1. 試行において起こりうる結果を標本点,標 本点全体の集合を標本空間、標本空間の部 分集合を事象という.
- 2. 事象に対して定義され、確率の公理を満た す関数を確率という.
- 3. 確率の公理から確率の性質が導かれる.

目次

1	標本空間と事象(p. 68)	1	定義 6. 標本空間全体の事象を 全事象 という
1.1	標本空間(p. 69)	1	化我 0. 你不上间上作为事家也 工事次 已 (
1.2	事象 (p. 69)	1	定義 7. ただ 1 つの標本点から成る事象を
1.3	集合算(p. 73)	1	象 という.
2	確率 (p. 75)	3	定義 8. 複数の標本点から成る事象を 複合 いう.
2.1	確率の公理(p. 78)		1.3 集合算(p. 73)
2.2	確率の性質(p. 80)	3	ある試行の事象を A, B, C とする.
3	今日のキーワード	4	定義 9. $A \cup B$ を A と B の和事象という.
4	次回までの準備	4	注 2. ベン図で表すと

1 標本空間と事象 (p. 68)

1.1 標本空間 (p. 69)

定義 1. 結果が偶然に支配される実験を**試行**という.

例 1. コイントス, サイコロ, 電球の寿命, 明日の 天気.

定義 2. 試行において起こりうる結果を標本点と いう.

定義 3. 標本点全体の集合を標本空間という.

例 2. コイントスなら $\{H,T\}$, サイコロなら $\{1,\ldots,6\}$, 電球の寿命なら $(0,\infty)$.

注 1. 標本点を ω , 標本空間を Ω で表すことが多い.

1.2 事象 (p. 69)

定義 4. 標本空間の部分集合を事象という.

例 3. コイントスの事象は \emptyset , $\{H\}$, $\{T\}$, Ω .

定義 5. 空集合の事象を空事象という.

根元事

事象と

定義 10. $A \cap B$ を A と B の積事象という.

注 3. ベン図で表すと

定義 11. $A \cap B = \emptyset$ なら $A \land B$ は排反という.

定義 12. A^c を A の余事象という.

注 4. ベン図で表すと

定理 1 (交換法則).

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

定理 2 (結合法則).

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

注 5. ベン図で表すと

定理 3 (分配法則).

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

注 6. 数の場合は

$$a \times (b+c) = (a \times b) + (a \times c)$$
$$a + (b \times c) \neq (a+b) \times (a+c)$$

注 7. ベン図で表すと

定理 4 (ド・モルガンの法則).

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

注 8. 「A または B」でない= A でなく,かつ B でない.「A かつ B」でない= A でないか,または B でない.ベン図で表すと

2 確率 (p. 75)

2.1 確率の公理 (p. 78)

定義 13. 事象に対して定義され、以下の公理を満たす関数 P(.) を確率という.

1.
$$0 \le P(.) \le 1$$

2.
$$P(\Omega) = 1$$

3. (σ 加法性) A_1, A_2, \ldots が排反なら

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

例 4. 公正なコイントスなら

$$P(A) := \begin{cases} 0 & \text{for } A = \emptyset \\ 1/2 & \text{for } A = \{H\}, \{T\} \\ 1 & \text{for } A = \Omega \end{cases}$$

2.2 確率の性質 (p. 80)

定理 5.

$$P(A) + P(A^c) = 1$$

証明. $A \ \ \ A^c$ は排反だから

$$P(A) + P(A^c) = P(A \cup A^c)$$
$$= P(\Omega)$$
$$= 1$$

定理 6.

$$P(\emptyset) = 0$$

証明. $A = A \cup \emptyset$ であり、 $A \otimes \emptyset$ は排反だから

$$P(A) = P(A \cup \emptyset)$$

= $P(A) + P(\emptyset)$

両辺から P(A) を引けば結果が得られる.

定理 7.

$$A \subset B \Longrightarrow P(A) \leq P(B)$$

証明. $A \subset B$ より

$$B = A \cup (A^c \cap B)$$

$$P(B) = P(A \cup (A^c \cap B))$$

= $P(A) + P(A^c \cap B)$
 $\geq P(A)$

定理 8 (加法定理).

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

証明. ベン図より

$$A \cup B = (A \cap B) \cup (A \cap B^c) \cup (A^c \cap B)$$
$$A = (A \cap B) \cup (A \cap B^c)$$
$$B = (A \cap B) \cup (A^c \cap B)$$

 $A \cap B$, $A \cap B^c$, $A^c \cap B$ は排反だから

$$P(A \cup B) = P(A \cap B) + P(A^c \cap B) + (A \cap B^c)$$

$$P(A) = P(A \cap B) + P(A \cap B^c)$$

$$P(B) = P(A \cap B) + P(A^c \cap B)$$

3 今日のキーワード

試行,標本点,標本空間,事象(空事象,全事象,根元事象,複合事象,和事象,積事象,排反事象,余事象),集合算の法則(交換法則,結合法則,分配法則,ド・モルガンの法則),確率の公理, σ 加法性,加法定理

4 次回までの準備

復習 教科書第 4 章 1-4 節,復習テスト 4

予習 教科書第4章5節