

Update on Ara

01/12/2021

Matteo Perotti

Matheus Cavalcante

Nils Wistoff

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

ETH Zürich

Summary

- New features:
 - Indexed memory operations
 - Integer reductions
 - Parametric D-cache AXI data-width
- Back-end trials:
 - Performance, Area
 - Analysis of the critical path
- New benchmark
 - Integer reductions

ETH Zürich 2

Reductions

- Cycle count for reduction benchmark
 - Varying vector length in Byte

	Cycle Count (#)			
	64 B	512 B	4096 B	
2 Lanes 16 Lanes				

Longer vectors == Higher Efficiency!!

ETH Zürich | 3

Reductions

- Cycle count for reduction benchmark
 - Varying vector length in Byte
 - Varying vector element size: 8-bit / 64-bit

	Cycle Count (#)			
	64 B	512 B	4096 B	
2 Lanes	25 / 23	55 / 51	279 / 275	
16 Lanes	33 / 32	36 / 32	64 / 60	

Cycle count almost independent on element size 8-bit elements == ~8x the throughput of 64-bit elements

Reductions

- Cycle count for reduction benchmark
 - Varying vector length in Byte
 - Varying vector element size: 8-bit / 64-bit
 - Varying number of lanes

	Cycle Count (#)			
	64 B	512 B	4096 B	
2 Lanes 16 Lanes	25 / 23	55 / 51	279 / 275	
16 Lanes	33 / 32	36 / 32	64 / 60	

High overhead by inter-lanes reduction phase for shorter vectors or more lanes

Parametric scalar D-cache

- CVA6's D-cache line-width and AXI data-width are parametric
- Vary AXI data-width and line-width
 - Modify miss penalty
 - Modify miss rate
- Impact on the throughput!
 - Especially with short vectors

ETH Zürich | 6

Parametric scalar D-cache

- Ara 16 lanes: throughput ideality fmatmul with 16x16 matrices
- Ideality w.r.t. system with "ideal" CVA6 and scalar memory system

ETH Zürich 7

Post layout - Ara 4 Lanes

- Configuration:
 - -75% of the original vector register file
- Performance:
 - Comparable or better IPC than Ara V1
 - Better typical corner frequency: 1.36 GHz in typical corner
- Area:
 - 10% smaller die
 - Cell area of one lane: +7% with enhanced features

ETH Zürich | 8

Post layout - Ara 4 Lanes

- Improving the worst case frequency
 - Critical path between scalar core and D-cache
- Ongoing:
 - Move the D-cache banks

