Mini Project Final Presentation

Instructor : Dr. Pavan Chakraborty

Handwritten and Machine Printed
Text Detection

Table of contents

01

About the project

02

Approach

03

Flow Chart

04

Results and discussion

05

Conclusion

06

References

Our team

Mrityunjaya Tiwari Raunak Rathore IIT2019239

IIT2019222

Amanjeet Kumar IIB2019239

Jyoti Verma IIT201920<mark>2</mark>

O1 About the project

Introduction

- The presence of printed and handwritten text in the same image of the document poses considerable problems as each mode requires different processing to recognize the corresponding characters.
- Users need to click pictures of their pic/doc that has both printed and Handwritten text, and upload that to our webpage.
- The system will analyse uploaded picture and give output with classification printed texts (show in blue color), handwritten texts (show in green color) and non-texts (show in yellow color).

O2 The Proposed Approach

Approach

The proposed methodology consists of two stages.

- > The first stage is to localize the possible text regions from the document images, and
- The second stage is to classify the localized portions of the image as handwritten, printed, non-text or in a few cases, mixed/combined text using the features extracted from the images of word or word-like segments.

Approach

Step1

The image is first converted into a single channel grayscale image

Step2

Now Otsu's binarization is performed on the output image

Step4

Training the model.

Deployment on flask server.

Step3

Now, the bounded box of each of the patches is determined and these parts are cropped out from the original image

O3 Flow Chart

O4 Results and discussion

Website

Model Prediction

Predicted results

97.72%

Model Accuracy

2.28%

Loss

O5 Conclusion

Conclusion

- In this project, a method has been proposed to Classify handwritten and machine printed text present in the same image & according to the text, printed texts (will show in blue color), handwritten texts (will show in green color) and non-texts (will show in yellow color).
- As the proposed method has successfully classified the printed and handwritten texts in the documents and with a very low complexity, this can easily be embedded with a recognition module as an additional resource requirement.

O6 References

Resources

- V.Pal and B.B.Chaudhuri, "Machine-printed and handwritten text lines identification", Pattern Recognition Letters, 22, 2001, pp.431-441.
- https://searchcontentmanagement.techtarget.com/definiti on/OCR-optical-character-recognition
- How to create salt and pepper noise in an image.
 https://www.projectrhea.org/rhea/index.php/How to Create Salt and Pepper Noise in an Image
- Breiman L (2001) Random forests. Mach Learn 45(1):5–32

Thanks!