Review Week 5

- Key exchange
 - 3rd party solution (TTP)
- Generating keys
 - x shared key with y
 - eavesdropping security only
 - x contains k a
 - y contains k_b
 - eavesdropper learns nothing about k_ab
- Toy protocol
 - · insecure against active attackers
 - replay attack attack records session between x and y then replays the session to y
- Merkle Puzzle
 - key exchange without a TTP
 - puzzle
 - puzzle(P) = E(P,"message")
 - $P = 0^9611b 1...b 32$
 - Alice
 - prepares 2^32 puzzles
 - For i = 1 to 2 ^ 32 choose random P_i element of {0,1}^32 and x_i, k_i element {0,1} ^ 128
 - puzzle_i = E(0^96 | P_i | k_i)
 - · send all the puzzles to Bob
 - Bob
 - choose random puzzle_j and solves it
 - obtains (x_j, k_j) and solves it
 - sends x_j to Alice
 - Alice
 - lookup puzzle with number x_i. Use k_i as shared secret
- Merkle Puzzles
 - Alice's and Bob's work O(n) each
 - Eavesdropper's work O(n^2)
- Diffie-Hellman protocol
 - Fix a large prime p
 - Fix an integer g in 1 to p
 - · Alice and Bob
 - Alice choose random a in 1 to p 1
 - Bob choose random b in 1 to p 1
 - Alice sends A <- g^a (mod p)
 - Bob sends B <- g^b (mod p)
 - Shared key = k_ab = g^ab (mod p)
 - Eavesdropper sess: p, g, A, and B
 - $DH(g^a,g^b) = (g^ab) \mod p$
 - How hard is the function to compute
- Man in the middle attack
 - DH insecure against active attacks
 - Intercept message and send own values a' and b'
- Public key encryption
 - G(): randomized algorithm outputs key pair (pk,sk)

- E(pk,m): randomized algorithm that takes m element M and outputs c element C
- D(sk,c): deterministic algorithm that takes c element C and outputs m element M or reject
- Consistency
- Semantic security
 - Two experiments the probability of outputting experiment 0 = 1 or experiment 1 = 1 is negligible
- Establishing a shared secret
 - Alice and Bob
 - Alice sends pk to Bob
 - Bob sends c <- E(pk,x) to Alice
 - Alice decrypts D(sk,c) -> x
 - Adversary sees pk, E(pk,x) and wants x element M
 - Semantic security
 - adversary cannot distinguish {pk, E(pk,x),x} from {pk, E(pk,x),rand element M}
 - Can derive session key from x
 - vulnerable to man in the middle
- Public key encryption: constructions generally rely on hard problems from number theory and algebra
- Number Theory see notes