

tissues in health care, and as a food additive.

IC ICM C07C051-41  
ICS C07C059-19; A61K031-19  
CC 9-14 (Biochemical Methods)  
Section cross-reference(s): 17, 23, 48  
IT 52009-14-0P, Calcium pyruvate  
RL: FFD (Food or feed use); IMF (Industrial manufacture); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
(method for producing calcium pyruvates by the reaction of calcium organic acid salts with pyruvic acid)

IT 52009-14-0P, Calcium pyruvate  
RL: FFD (Food or feed use); IMF (Industrial manufacture); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
(method for producing calcium pyruvates by the reaction of calcium organic acid salts with pyruvic acid)

RN 52009-14-0 HCAPLUS  
CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 61 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
ACCESSION NUMBER: 1999:56507 HCAPLUS  
DOCUMENT NUMBER: 130:95309  
TITLE: Method for the preparation of calcium pyruvates by the neutralization of pyruvic acid with calcium salts of organic acids  
INVENTOR(S): Pischel, Ivo; Weiss, Stefan; Ortenburger, Guenter; Koenig, Harro  
PATENT ASSIGNEE(S): SKW Trostberg A.-G., Germany  
SOURCE: Ger. Offen., 4 pp.  
CODEN: GWXXBX  
DOCUMENT TYPE: Patent  
LANGUAGE: German  
FAMILY ACC. NUM. COUNT: 2  
PATENT INFORMATION:

| PATENT NO.                                                                    | KIND | DATE     | APPLICATION NO.  | DATE     |
|-------------------------------------------------------------------------------|------|----------|------------------|----------|
| DE 19729786                                                                   | A1   | 19990114 | DE 1997-19729786 | 19970711 |
| US 5962734                                                                    | A    | 19991005 | US 1997-955838   | 19971021 |
| TW 404833                                                                     | B    | 20000911 | TW 1998-87109308 | 19980611 |
| CA 2296017                                                                    | AA   | 19990121 | CA 1998-2296017  | 19980702 |
| WO 9902479                                                                    | A1   | 19990121 | WO 1998-EP4089   | 19980702 |
| W: AU, BG, BR, CA, CN, CZ, HU, IL, JP, KR, MX, NO, NZ, PL, RO, RU, SG, SK, TR |      |          |                  |          |
| RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE    |      |          |                  |          |



## ● 1/2 Ca

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 60 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1999:64758 HCPLUS  
 DOCUMENT NUMBER: 130:107263  
 TITLE: Method for producing calcium pyruvates by the reaction of calcium organic acid salts with pyruvic acid  
 INVENTOR(S): Pischel, Ivo; Weiss, Stefan; Ortenburger, Gunter; Konig, Harro  
 PATENT ASSIGNEE(S): SKW Trostberg A.-G., Germany  
 SOURCE: PCT Int. Appl., 20 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: German  
 FAMILY ACC. NUM. COUNT: 2  
 PATENT INFORMATION:

| PATENT NO.                                                                    | KIND | DATE     | APPLICATION NO.  | DATE       |
|-------------------------------------------------------------------------------|------|----------|------------------|------------|
| WO 9902479                                                                    | A1   | 19990121 | WO 1998-EP4089   | 19980702   |
| W: AU, BG, BR, CA, CN, CZ, HU, IL, JP, KR, MX, NO, NZ, PL, RO, RU, SG, SK, TR |      |          |                  |            |
| RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE    |      |          |                  |            |
| DE 19729786                                                                   | A1   | 19990114 | DE 1997-19729786 | 19970711   |
| US 5962734                                                                    | A    | 19991005 | US 1997-955838   | 19971021   |
| CA 2296017                                                                    | AA   | 19990121 | CA 1998-2296017  | 19980702   |
| AU 9887312                                                                    | A1   | 19990208 | AU 1998-87312    | 19980702   |
| AU 725505                                                                     | B2   | 20001012 |                  |            |
| EP 993433                                                                     | A1   | 20000419 | EP 1998-938682   | 19980702   |
| EP 993433                                                                     | B1   | 20030205 |                  |            |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, NL, SE, PT, IE                 |      |          |                  |            |
| BR 9810702                                                                    | A    | 20000808 | BR 1998-10702    | 19980702   |
| NZ 501771                                                                     | A    | 20001027 | NZ 1998-501771   | 19980702   |
| JP 2002507998                                                                 | T2   | 20020312 | JP 1999-508097   | 19980702   |
| AT 232195                                                                     | E    | 20030215 | AT 1998-938682   | 19980702   |
| MX 9911864                                                                    | A    | 20000531 | MX 1999-11864    | 19991216   |
| NO 2000000122                                                                 | A    | 20000110 | NO 2000-122      | 20000110   |
| PRIORITY APPLN. INFO.:                                                        |      |          | DE 1997-19729786 | A 19970711 |
|                                                                               |      |          | US 1997-955838   | A 19971021 |
|                                                                               |      |          | WO 1998-EP4089   | W 19980702 |

AB High-purity calcium pyruvates having very good storage stability is prepared by the reaction of calcium salts of organic acids (e.g., calcium acetate) or keto acids or hydroxy acids at -20° to +120°, optionally in the presence of a diluent or a solvent. Calcium pyruvates having 0-2.5 mol of hydration water per mol of salt are used to increase stamina and vigor in the field of sports, to reduce weight and fat, as a protective substance for body cells and tissues, as a substance for inhibiting the formation of free radicals, a free radical scavenger in body cells and



## ● Na

RN 2922-61-4 HCAPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



## ● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



## ● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]<sup>-</sup>, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)

69-53-4, Ampicillin 69-72-7, Salicylic acid, biological studies  
 76-25-5, Triamcinolone acetonide 79-57-2, Oxytetracycline 83-43-2,  
 Methyl prednisolone 87-08-1, Penicillin V 89-57-6, Mesalamine  
 99-26-3, Bismuth subgallate 108-95-2, Phenol, biological studies  
 111-84-2, Nonane 112-80-1, Oleic acid, biological studies  
**113-24-6**, Sodium Pyruvate 114-07-8, Erythromycin 115-20-8,  
 Trichloroethanol 118-60-5, 2-Ethylhexyl salicylate 124-94-7,  
 Triamcinolone 127-17-3, Pyruvic acid, biological studies 127-17-3D,  
 Pyruvic acid, salts 131-57-7, Oxybenzone 134-09-8, Menthyl  
 anthranilate 134-62-3, N,N-Diethyl-m-toluamide 143-07-7, Dodecanoic  
 acid, biological studies 147-24-0, Diphenhydramine hydrochloride  
 153-61-7, Cephalothin 302-79-4, Tretinoin 328-50-7,  
 α-Ketoglutaric acid 373-49-9, Palmitoleic acid 443-48-1,  
 Metronidazole 463-40-1, Linolenic acid 506-12-7, Margaric acid  
 506-30-9, Arachidic acid 544-63-8, Tetradecanoic acid, biological  
 studies 544-64-9, Myristoleic acid 552-94-3, Salicylsalicylic acid  
 564-25-0, Doxycycline 600-22-6, Methyl Pyruvate 637-58-1, Pramoxine  
 hydrochloride. 665-66-7, Amantadine hydrochloride 872-50-4,  
 N-Methylpyrrolidone, biological studies 1002-84-2, Pentadecanoic acid  
 1344-85-0, Bismuth aluminate 1403-66-3, Gentamicin 1404-04-2, Neomycin  
 1405-87-4, Bacitracin 1406-05-9, Penicillin 1406-11-7, Polymyxin  
 1406-18-4, Vitamin E 1981-50-6, Margaroleic acid 2922-61-4,  
 Lithium Pyruvate 3079-28-5 3385-03-3, Flunisolide 4151-33-1,  
 Potassium Pyruvate 5466-77-3, Ethylhexyl p-methoxycinnamate 5534-09-8,  
 Beclomethasone dipropionate 5536-17-4, Vidarabine 5593-20-4,  
 Betamethasone dipropionate 6197-30-4, Octocrylene 6385-02-0,  
 Meclofenamate sodium 6506-37-2, Nimorazole 6969-49-9 6998-60-3,  
 Rifamycin 7440-69-9D, Bismuth, compds., biological studies 11111-12-9,  
 Cephalosporin 13463-67-7, Titanium dioxide, biological studies  
 14882-18-9, Bismuth subsalicylate 15307-86-5, Diclofenac 15686-71-2,  
 Cephalexin 15687-27-1, Ibuprofen 18323-44-9, Clindamycin  
**18983-79-4**, Magnesium Pyruvate 19387-91-8, Tinidazole  
 21245-02-3, Padimate O 22071-15-4, Ketoprofen 22204-53-1, Naproxen  
 22494-42-4, Diflunisal 24887-16-9, Zinc Pyruvate 25655-41-8,  
 Povidone-iodine 26787-78-0, Amoxicillin 29204-02-2, Gadoleic acid  
 30516-87-1, Zidovudine 34597-40-5, Fenoprofen calcium 36322-90-4  
 36791-04-5, Ribavirin 38194-50-2, Sulindac 41340-25-4, Etodolac  
 42924-53-8, Nabumetone 52009-14-0, Calcium Pyruvate  
 57644-54-9, Bismuth subcitrate 58817-05-3 59227-89-3, Azone  
 59277-89-3, Acyclovir 63585-09-1, Foscarnet sodium 64425-90-7, Choline  
 magnesium trisalicylate, biological studies 64872-76-0, Butoconazole  
 67915-31-5, Terconazole 74103-07-4, Ketonolac tromethamine 96436-87-2  
 107910-75-8, Ganciclovir sodium 145482-34-4, Manganese Pyruvate  
 152521-52-3, Betafectin

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (therapeutic permeation enhanced-wound healing compns. containing  
 antioxidant and lactate and fatty acids)

IT    **113-24-6**, Sodium Pyruvate 2922-61-4, Lithium Pyruvate  
**4151-33-1**, Potassium Pyruvate 18983-79-4, Magnesium  
 Pyruvate 52009-14-0, Calcium Pyruvate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (therapeutic permeation enhanced-wound healing compns. containing  
 antioxidant and lactate and fatty acids)

RN    113-24-6 HCPLUS

CN    Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 28

## PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE        |
|------------------------|------|----------|-----------------|-------------|
| US 5874479             | A    | 19990223 | US 1998-19457   | 19980205    |
| JP 2002356421          | A2   | 20021213 | JP 2002-82387   | 19920115    |
| JP 2003231632          | A2   | 20030819 | JP 2002-362245  | 19920115    |
| ZA 9502911             | A    | 19960828 | ZA 1995-2911    | 19950407    |
| US 5981606             | A    | 19991109 | US 1998-19316   | 19980205    |
| PRIORITY APPLN. INFO.: |      |          |                 |             |
|                        |      |          | US 1991-663500  | B1 19910301 |
|                        |      |          | US 1993-53922   | B2 19930426 |
|                        |      |          | US 1994-224936  | B2 19940408 |
|                        |      |          | JP 1992-505329  | A3 19920115 |
|                        |      |          | US 1997-37730P  | P 19970202  |

AB This invention pertains to therapeutic wound healing compns. for protecting and resuscitating mammalian cells. This invention also pertains to therapeutic permeation enhanced-wound healing compns. for enhancing the penetration of actives into membranes and increasing the proliferation and resuscitation rate of mammalian cells. The therapeutic wound healing composition comprises pyruvate, an antioxidant, lactate, permeation enhancer, and a mixture of saturated and unsatd. fatty acids. This invention also pertains to methods for preparing and using the permeation enhanced-wound healing compns. and the topical and ingestible pharmaceutical products in which the therapeutic compns. may be used. Thus, a wound healing composition was obtained from sodium pyruvate 2, vitamin E 1, chicken fat 2, LYCD 2400 U, shark liver oil 3, petrolatum 64, paraffin 5, and emulsifier 0.2%.

IC ICM A61K031-045  
ICS A61K031-07; A61K031-355

INCL 514724000

CC 63-6 (Pharmaceuticals)

IT Anesthetics

Anti-inflammatory agents

Antibacterial agents

Antihistamines

Antimicrobial agents

Antioxidants

Antiviral agents

**Fungicides**

Immunostimulants

Permeation enhancers

Sunscreens

Surfactants

Wound healing

(therapeutic permeation enhanced-wound healing compns. containing antioxidant and lactate and fatty acids)

IT 50-02-2, Dexamethasone 50-21-5, biological studies 50-23-7 50-24-8, Prednisolone 50-78-2, Acetylsalicylic acid 50-81-7, Vitamin C, biological studies 53-03-2, Prednisone 53-06-5 53-86-1, Indomethacin 56-75-7, Chloramphenicol 57-10-3, Palmitic acid, biological studies 57-11-4, Octadecanoic acid, biological studies 57-13-6, Urea, biological studies 57-62-5, ChlorTetracycline 57-92-1, Streptomycin, biological studies 58-95-7, Vitamin E acetate 59-01-8, Kanamycin 59-87-0, Nitrofurazone 60-33-3, Linoleic acid, biological studies 60-54-8D, Tetracycline, derivs. 61-33-6, Penicillin G, biological studies 61-68-7, Mefenamic acid 65-85-0, Benzoic acid, biological studies 67-20-9, Nitrofurantoin 67-45-8, Furazolidone 67-68-5, DMSO, biological studies 68-12-2, DMF, biological studies 68-26-8, Vitamin A

CC ICS A61K031-195; A61K035-52; A61K035-12; A61K038-43  
 2-8 (Mammalian Hormones)  
 Section cross-reference(s): 1, 63

IT Alzheimer's disease  
 Antidepressants  
 Anxiolytics  
 Cocoa products  
 Cognition enhancers  
 Drug delivery systems  
 Drug withdrawal  
 (method and compns. for treating conditions associated with neurotransmitter deficiencies using neurotransmitter precursors in combination with xanthines)

IT 56-85-9, Glutamine, biological studies 60-18-4, Tyrosine, biological studies 62-49-7, Choline 63-91-2, Phenylalanine, biological studies 71-00-1, Histidine, biological studies 87-67-2, Choline bitartrate, biological studies 127-17-3D, Pyruvic acid, derivs. 541-15-1, Carnitine 3040-38-8, Acetyl-L-carnitine 52009-14-0, Calcium pyruvate  
 RL: BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process);  
 USES (Uses)  
 (method and compns. for treating conditions associated with neurotransmitter deficiencies using neurotransmitter precursors in combination with xanthines)

IT 52009-14-0, Calcium pyruvate  
 RL: BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process);  
 USES (Uses)  
 (method and compns. for treating conditions associated with neurotransmitter deficiencies using neurotransmitter precursors in combination with xanthines)

RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 59 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1999:136777 HCPLUS  
 DOCUMENT NUMBER: 130:200931  
 TITLE: Therapeutic permeation enhanced-wound healing compositions containing antioxidant and lactate and fatty acids  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): Warner-Lambert Company, USA  
 SOURCE: U.S., 40 pp., Cont.-in-part of U.S. Ser. No. 224,936, abandoned.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent



●x Mg

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 58 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1999:141213 HCAPLUS

DOCUMENT NUMBER: 130:205539

TITLE: Method and compositions for promoting the neural synthesis and release of neurotransmitters using neurotransmitter precursors in combination with xanthines

INVENTOR(S): Shell, William E.; Jarmel, Mark E.

PATENT ASSIGNEE(S): Nicada, Inc., USA

SOURCE: PCT Int. Appl., 47 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 9908681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1   | 19990225 | WO 1998-US16882 | 19980813   |
| W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,<br>DK, EE, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP,<br>KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO,<br>NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA,<br>UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM<br>RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,<br>FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,<br>CM, GA, GN, GW, ML, MR, NE, SN, TD, TG |      |          |                 |            |
| AU 9891975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1   | 19990308 | AU 1998-91975   | 19980813   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          | US 1997-55732P  | P 19970813 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |          | US 1998-133660  | A 19980812 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |          | WO 1998-US16882 | W 19980813 |

AB A method and compns. for promoting the neural synthesis and release in an animal subject of the neurotransmitters acetylcholine, GABA, glutamate, norepinephrine, dopamine, aspartate, histamine and serotonin. To enhance release of the neurotransmitter in the subject precursors for each of these neurotransmitters may be administered concomitantly with a xanthine and with one or more precursors for another neurotransmitter selected from precursors for the neurotransmitters histamine, glutamine and aspartate. The xanthines include caffeine, theophylline and theobromine. This procedure for the promotion of synthesis and release of the neurotransmitters may be employed in the treatment of subjects having a neurotransmitter deficiency, including reduced neural tone and excessive neural activity. The compns. of the invention promote the synthesis and release of specific neurotransmitters while avoiding the side effects seen with other pharmaceutical agents.

IC ICM A61K031-52

(pharmaceutical compns. comprising D-galactose for treatment of metabolic stress)

IT 59-23-4, D-Galactose, biological studies 70-26-8, L-Ornithine  
 305-72-6 328-50-7,  $\alpha$ -Ketoglutaric acid 39649-91-7  
 , Potassium  $\alpha$ -ketoglutarate 56095-64-8 105596-49-4  
 155173-96-9 226955-63-1 226955-64-2 226955-65-3  
 226955-66-4 226955-67-5  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 (pharmaceutical compns. comprising D-galactose for treatment of metabolic stress)

IT 305-72-6 39649-91-7, Potassium  $\alpha$ -ketoglutarate  
 56095-64-8 226955-63-1  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 (pharmaceutical compns. comprising D-galactose for treatment of metabolic stress)

RN 305-72-6 HCPLUS

CN Pentanedioic acid, 2-oxo-, disodium salt (9CI) (CA INDEX NAME)



●2 Na

RN 39649-91-7 HCPLUS

CN Pentanedioic acid, 2-oxo-, dipotassium salt (9CI) (CA INDEX NAME)



●2 K

RN 56095-64-8 HCPLUS

CN Pentanedioic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●x Ca

RN 226955-63-1 HCPLUS

CN Pentanedioic acid, 2-oxo-, magnesium salt (9CI) (CA INDEX NAME)

RN 251966-40-2 HCPLUS  
 CN Benzenebutanoic acid,  $\alpha,\gamma$ -dioxo-3-(2H-1,2,3-triazol-2-ylmethyl)-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 57 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1999:392954 HCPLUS  
 DOCUMENT NUMBER: 131:27962  
 TITLE: Pharmaceutical compositions comprising D-galactose for treatment of metabolic stress  
 INVENTOR(S): Afting, Ernst-Guenter; Reutter, Werner  
 PATENT ASSIGNEE(S): Germany  
 SOURCE: Eur. Pat. Appl., 8 pp.  
 CODEN: EPXXDW  
 DOCUMENT TYPE: Patent  
 LANGUAGE: German  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                   | KIND | DATE     | APPLICATION NO.  | DATE     |
|----------------------------------------------------------------------------------------------|------|----------|------------------|----------|
| EP 922459                                                                                    | A1   | 19990616 | EP 1998-123447   | 19981211 |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO |      |          |                  |          |
| DE 19755367                                                                                  | A1   | 19990624 | DE 1997-19755367 | 19971212 |
| DE 19755367                                                                                  | C2   | 20010322 |                  |          |

PRIORITY APPLN. INFO.: DE 1997-19755367 A 19971212

AB Solid or liquid compns. containing high dosages of D-galactose, especially when combined with  $\alpha$ -ketoglutaric acid and/or ornithine or salts thereof, are useful for treatment of metabolic stress such as occurs in liver disease, alcoholism, encephalopathy, and eating disorders (no data). These compns. provide readily available energy to compensate for metabolic energy deficits in these patients.  $\alpha$ -Ketoglutaric acid and ornithine aid in detoxication of NH4+ by promoting its conversion to amino acids and urea. Preferred amts. per dosage unit are 1-20 g D-galactose, 50-300 mg  $\alpha$ -ketoglutaric acid, and 50-300 mg ornithine.

IC ICM A61K031-70

ICS A61K031-195; A61K031-19

ICI A61K031-70, A61K031-195, A61K031-19

CC 1-10 (Pharmacology)

IT Brain, disease

Cachexia

Liver, disease

Malnutrition

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(target compound; preparation of aromatic and heteroarom. aryldioxobutyric acid

derivs. as HIV integrase inhibitors)

RN 251966-32-2 HCAPLUS

CN Benzenebutanoic acid,  $\alpha,\gamma$ -dioxo-3-[(2,4,6-trifluorophenyl)methyl]-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 251966-33-3 HCAPLUS

CN Benzenebutanoic acid, 3-[(2-fluoro-3-methylphenyl)methyl]- $\alpha,\gamma$ -dioxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 251966-36-6 HCAPLUS

CN Benzenebutanoic acid, 2,3-dimethyl- $\alpha,\gamma$ -dioxo-5-(phenylmethyl)-, sodium salt (9CI) (CA INDEX NAME)



● Na

4-[5-Benzyl-3-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-17-3P, 2,4-Dioxo-4-[3-(pyridin-3-ylmethyl)phenyl]butyric acid trifluoroacetate 251966-18-4P,  
 4-[3-[(3-Methylpyridin-2-yl)methyl]phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-19-5P, 4-(5-Benzyl-3-morpholinophenyl)-2,4-dioxobutyric acid trifluoroacetate 251966-20-8P, 4-[3-Benzyl-5-(pyridin-2-ylmethyl)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-21-9P,  
 4-[3-Benzyl-5-(pyridin-3-ylmethyl)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-22-0P, 4-[5-Benzyl-2-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-23-1P,  
 4-[5-Benzyl-2-methoxy-3-[(4-methylpiperazin-1-yl)methyl]phenyl]-2,4-dioxobutyric acid bis(trifluoroacetate) 251966-24-2P,  
 4-[3-(2-Fluorobenzyl)-5-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-25-3P, 4-[3-(4-Fluorobenzyl)-5-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-26-4P, 4-[3-(3-Fluorobenzyl)-5-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-27-5P, 4-[5-Benzyl-2-isopropoxy-3-[2-(N,N-dimethylamino)ethoxy]phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-28-6P, 4-[5-Benzyl-2-isopropoxy-3-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid hydrochloride  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(target compound; preparation of aromatic and heteroarom. aryldioxobutyric acid

derivs. as HIV integrase inhibitors)

IT 251966-29-7P, 4-[5-Benzyl-2-isopropoxy-3-(1-piperidinylmethyl)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-30-0P, 4-[3-Benzyl-5-(4-benzylpiperazin-1-yl)phenyl]-2,4-dioxobutyric acid hemihydrochloride 251966-31-1P, 4-(1-Benzyl-1H-indol-6-yl)-2,4-dioxobutyric acid hydrochloride (4:3) 251966-32-2P, 2,4-Dioxo-4-[3-(2,4,6-trifluorobenzyl)phenyl]butyric acid sodium salt 251966-33-3P, 4-[3-(2-Fluoro-3-methylbenzyl)phenyl]-2,4-dioxobutyric acid sodium salt 251966-35-5P, 2,4-Dioxo-4-[3-(phenoxyethyl)phenyl]butyric acid methyl ester 251966-36-6P, 4-(5-Benzyl-2,3-dimethylphenyl)-2,4-dioxobutyric acid sodium salt 251966-37-7P, 4-[3-(2-Methylbenzyl)-5-pyrimidin-2-ylphenyl]-2,4-dioxobutyric acid methyl ester 251966-38-8P, 4-[3-Benzyl-2-(pyrimidin-2-ylamino)phenyl]-2,4-dioxobutyric acid hydrochloride 251966-39-9P, 4-[3-(Benzimidazol-1-ylmethyl)-5-(2-methylbenzyl)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-40-2P, 2,4-Dioxo-4-[3-(2H-1,2,3-triazol-2-ylmethyl)phenyl]butyric acid sodium salt 251966-41-3P, 4-[3-(Benzimidazol-1-ylmethyl)phenyl]-2,4-dioxobutyric acid trifluoracetic acid salt 251966-42-4P, 4-[3-(Benzylxyloxy)-5-[[6-[(tert-butoxycarbonyl)amino]hexyl]oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid methyl ester 251966-43-5P, 4-[3-(Benzylxyloxy)-5-(2-morpholin-4-ylethoxy)phenyl]-2-hydroxy-4-oxobut-2-enoic acid trifluoroacetic acid salt  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(target compound; preparation of aromatic and heteroarom. aryldioxobutyric acid

derivs. as HIV integrase inhibitors)

IT 251966-32-2P, 2,4-Dioxo-4-[3-(2,4,6-trifluorobenzyl)phenyl]butyric acid sodium salt 251966-33-3P, 4-[3-(2-Fluoro-3-methylbenzyl)phenyl]-2,4-dioxobutyric acid sodium salt 251966-36-6P, 4-(5-Benzyl-2,3-dimethylphenyl)-2,4-dioxobutyric acid sodium salt 251966-40-2P, 2,4-Dioxo-4-[3-(2H-1,2,3-triazol-2-ylmethyl)phenyl]butyric acid sodium salt

251965-63-6P, 4-(5-Benzyl-2,3-dimethylphenyl)-2,4-dioxobutyric acid  
 251965-64-7P, 4-[3-(3,5-Dibromobenzyl)phenyl]-2,4-dioxobutyric acid  
 251965-65-8P, 4-[3-(2-Methylbenzyl)-5-pyrimidin-2-ylphenyl]-2,4-dioxobutyric acid 251965-66-9P, 4-[3-Benzyl-2-(pyrimidin-2-ylamino)phenyl]-2,4-dioxobutyric acid 251965-67-0P, 4-[3-(Benzimidazol-1-ylmethyl)-5-(2-methylbenzyl)phenyl]-2,4-dioxobutyric acid 251965-68-1P,  
 2,4-Dioxo-4-[3-[3-(trifluoromethyl)benzyl]phenyl]butyric acid  
 251965-69-2P, 4-(4-Phenoxyphenyl)-2,4-dioxobutyric acid 251965-70-5P,  
 2,4-Dioxo-4-[3-(2H-1,2,3-triazol-2-ylmethyl)phenyl]butyric acid  
 251965-71-6P, 4-[3-Benzyl-5-(6-methoxypyridin-2-yl)phenyl]-2,4-dioxobutyric acid 251965-72-7P, 4-[3-(2H-1,2,3-Benzotriazol-2-ylmethyl)phenyl]-2,4-dioxobutyric acid 251965-73-8P,  
 4-[3-Benzyl-5-[2-(4-methylpiperazin-1-yl)pyrazin-6-yl]phenyl]-2,4-dioxobutyric acid 251965-75-0P, 4-(3-Phenethylphenyl)-2,4-dioxobutyric acid 251965-77-2P, 4-[4-(3-Chlorobenzyl)phenyl]-2,4-dioxobutyric acid  
 251965-78-3P, 4-[3-(Benzimidazol-1-ylmethyl)phenyl]-2,4-dioxobutyric acid  
 251965-79-4P, 4-[3-(Benzylxyloxy)-5-[[6-[(tert-butoxycarbonyl)amino]hexyl]oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-80-7P,  
 4-[3-(Benzotriazol-1-ylmethyl)phenyl]-2,4-dioxobutyric acid  
 251965-81-8P, 4-[3-[(3,5-Dimethylpyrazol-1-yl)methyl]phenyl]-2,4-dioxobutyric acid 251965-82-9P, 4-[3-(Benzylxyloxy)-5-(2-morpholin-4-ylethoxy)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-83-0P,  
 4-(4-Methyl-3-phenoxyphenyl)-2,4-dioxobutyric acid 251965-84-1P,  
 4-[3-(2-Hydroxybenzyl)phenyl]-2,4-dioxobutyric acid 251965-85-2P,  
 4-[3-Benzyl-5-[6-(dimethylamino)pyrazin-2-yl]phenyl]-2,4-dioxobutyric acid  
 251965-86-3P, 4-(5-Benzyl-2-methoxypyridin-3-yl)-2,4-dioxobutyric acid  
 251965-87-4P, 3-(Biphenyl-4-yl)-2,4-dioxobutanoic acid 251965-88-5P,  
 4-[3,5-Bis(benzylxyloxy)phenyl]-2-hydroxy-4-oxobut-2-enoic acid  
 251965-89-6P, 4-[3-[(3,4-Difluorobenzyl)oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-90-9P, 4-[3-[(4-Methylbenzyl)oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-91-0P, 4-[3-(Benzylxyloxy)-5-methoxyphenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-92-1P, 4-[3-(Benzylxyloxy)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-93-2P, 4-[3-[(4-Chlorobenzyl)oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-94-3P,  
 4-[3-[(3,4-Dichlorobenzyl)oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid  
 251965-95-4P, 4-[3-[(4-Fluorobenzyl)oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-96-5P, 4-[3-[(3-Chlorobenzyl)oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-97-6P, 4-[3-[(4-Methoxybenzyl)oxy]phenyl]-4-oxo-2-butenoic acid 251965-98-7P, 4-[3-(Benzylxyloxy)-5-hydroxyphenyl]-2-hydroxy-4-oxobut-2-enoic acid 251965-99-8P, 4-[3-(1-Phenylethoxy)phenyl]-4-oxo-2-butenoic acid 251966-00-4P, 4-[3-(Benzylxyloxy)-5-[[6-[(5-(2-oxohexahydrothieno[3,4-d]imidazol-4-yl)pentanoyl]amino]hexyl]oxy]phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251966-01-5P, 4-[3-[(6-Aminohexyl)oxy]-5-(benzylxyloxy)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251966-02-6P,  
 4-(3-Chlorophenyl)-2,4-dioxobutanoic acid 251966-03-7P,  
 4-[4-(Benzylamino)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251966-04-8P,  
 4-[2-(Benzylxyloxy)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251966-05-9P,  
 4-(Naphthalen-1-yl)-2,4-dioxobutanoic acid 251966-06-0P,  
 4-[6-(Benzylxyloxy)-2-oxo-1,2-dihydropyridin-4-yl]-2-hydroxy-4-oxobut-2-enoic acid 251966-07-1P, 4-[2,6-Bis(benzylxyloxy)pyridin-4-yl]-2,4-dioxobutanoic acid 251966-08-2P, 4-[1-(4-Fluorobenzyl)-5-indolyl]-2-hydroxy-4-oxo-2-butenoic acid 251966-09-3P, 4-[1-(4-Fluorobenzyl)-4-indolyl]-2-hydroxy-4-oxo-2-butenoic acid 251966-10-6P, 4-[4-(Benzylxyloxy)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251966-11-7P, 4-[1-(4-Fluorobenzyl)-6-indolyl]-2-hydroxy-4-oxo-2-butenoic acid 251966-12-8P, (R)-2,4-Dioxo-4-[3-(1,2,3,4-tetrahydronaphthalen-1-yl)phenyl]butyric acid 251966-13-9P,  
 (S)-2,4-Dioxo-4-[3-(1,2,3,4-tetrahydronaphthalen-1-yl)phenyl]butyric acid  
 251966-14-0P, 4-[3-Benzyl-4-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid trifluoroacetate 251966-15-1P, 2,4-Dioxo-4-[3-(pyridin-2-ylmethyl)phenyl]butyric acid trifluoroacetate 251966-16-2P,

ylamino)methyl]phenyl]-2,4-dioxobutyric acid 251964-88-2P,  
4-[1-(2,6-Difluorobenzyl)-1H-indol-6-yl]-2,4-dioxobutyric acid  
251964-89-3P, 4-(1-Benzyl-1H-indol-6-yl)-2,4-dioxobutyric acid  
251964-90-6P, 4-[1-(4-Fluorobenzyl)-6-indolyl]-2,4-dioxobutanoic acid  
251964-91-7P, 4-[1-(4-Fluorobenzyl)-4-indolyl]-2,4-dioxobutanoic acid  
251964-92-8P, 2,4-Dioxo-4-[3-(2,6-difluorobenzyl)phenyl]butyric acid  
251964-93-9P, 2,4-Dioxo-4-[3-(2,4,6-trifluorobenzyl)phenyl]butyric acid  
251964-94-0P, 2,4-Dioxo-4-[3-(2-fluoro-3-chlorobenzyl)phenyl]butyric acid  
251964-95-1P, 2,4-Dioxo-4-[3-(2-methyl-4-fluorobenzyl)phenyl]butyric acid  
251964-96-2P, 4-[3-(2,3-Dichlorobenzyl)phenyl]-2,4-dioxobutyric acid  
251964-97-3P, 4-[3-(2-Chloro-3-methylbenzyl)phenyl]-2,4-dioxobutyric acid  
251964-98-4P, 2,4-Dioxo-4-[3-(2,6-dichlorobenzyl)phenyl]butyric acid  
251964-99-5P, 2,4-Dioxo-4-[3-(2,3,4,5,6-pentafluorobenzyl)phenyl]butyric acid  
251965-00-1P, 4-[3-(2-Fluorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-01-2P, 2,4-Dioxo-4-[3-(2-chloro-4-fluorobenzyl)phenyl]butyric acid  
251965-02-3P, 4-[3-(2-Methylbenzyl)phenyl]-2,4-dioxobutyric acid  
251965-03-4P, 2,4-Dioxo-4-[3-(2-methoxybenzyl)phenyl]butyric acid  
251965-04-5P, 4-[3-(2-Bromobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-05-6P, 4-[3-(3-Chloro-2-methylbenzyl)phenyl]-2,4-dioxobutyric acid  
251965-06-7P, 4-[3-(2,3-Difluorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-07-8P, 4-(3,5-Dibenzylphenyl)-2,4-dioxobutyric acid 251965-08-9P,  
2,4-Dioxo-4-[3-[2-(trifluoromethyl)benzyl]phenyl]butyric acid  
251965-09-0P, 4-[3-(4-Fluorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-10-3P, 4-[3-(3-Chlorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-11-4P, 2,4-Dioxo-4-[3-(2-bromo-3-chlorobenzyl)phenyl]butyric acid  
251965-12-5P, 4-[3-(2-Fluoro-3-methylbenzyl)phenyl]-2,4-dioxobutyric acid  
251965-13-6P, 4-[3-(3-Chloro-4-fluorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-14-7P, 2,4-Dioxo-4-[3-(2-bromo-4-fluorobenzyl)phenyl]butyric acid  
251965-15-8P, 4-[3-(3-Bromobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-16-9P, 4-[3-(2,5-Difluorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-17-0P, 4-[3-(5-Chloro-2-fluorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-18-1P, 4-[3-(3-Methylbenzyl)phenyl]-2,4-dioxobutyric acid  
251965-19-2P, 4-(3-Benzyl-4-methylphenyl)-2,4-dioxobutyric acid  
251965-20-5P, 4-[3-(3,4-Difluorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-22-7P, 4-[3-(2,5-Dichlorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-24-9P, 4-[3-(2-Chloro-6-methylbenzyl)phenyl]-2,4-dioxobutyric acid  
251965-26-1P, 2,4-Dioxo-4-[3-[2-(trifluoromethyl)-4-chlorobenzyl]phenyl]butyric acid 251965-28-3P, 4-[3-(2-Bromo-5-chlorobenzyl)phenyl]-2,4-dioxobutyric acid 251965-30-7P,  
4-[3-(Naphthalen-1-ylmethyl)phenyl]-2,4-dioxobutyric acid 251965-32-9P,  
2,4-Dioxo-4-[3-(3-fluorobenzyl)phenyl]butyric acid 251965-35-2P,  
2,4-Dioxo-4-[3-(1-phenylethyl)phenyl]butyric acid 251965-37-4P,  
4-(3-Benzyl-4,5-dimethylphenyl)-2,4-dioxobutyric acid 251965-40-9P,  
2,4-Dioxo-4-[3-(3-methoxybenzyl)phenyl]butyric acid 251965-45-4P,  
4-[3-[(5-Chlorothiophen-2-yl)methyl]phenyl]-2,4-dioxobutyric acid  
251965-48-7P, 4-(3-Benzyl-5-methylphenyl)-2,4-dioxobutyric acid  
251965-49-8P, 4-[3-(2-Cyanobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-50-1P, 4-[3-(3,5-Dichlorobenzyl)phenyl]-2,4-dioxobutyric acid  
251965-51-2P, 4-(5-Benzyl-2,4-dimethylphenyl)-2,4-dioxobutyric acid  
251965-52-3P, 4-(5-Benzyl-2-methylphenyl)-2,4-dioxobutyric acid  
251965-53-4P, 4-[3-(Cyclohexylmethyl)phenyl]-2,4-dioxobutyric acid  
251965-54-5P, 4-[3-Benzyl-5-(5-hydroxypentyl)phenyl]-2,4-dioxobutyric acid  
251965-55-6P, 4-[3-(3-tert-Butoxy-2-hydroxypropyl)-5-(2-methylbenzyl)phenyl]-2,4-dioxobutyric acid 251965-56-7P,  
2,4-Dioxo-4-[3-(2,3-dimethoxybenzyl)phenyl]butyric acid 251965-57-8P,  
4-[3-(Methoxyphenylmethyl)phenyl]-2,4-dioxobutyric acid 251965-58-9P,  
4-[3-[Hydroxy(tetrahydrofuran-3-yl)methyl]-5-(2-methylbenzyl)phenyl]-2,4-dioxobutyric acid 251965-59-0P, 2,4-Dioxo-4-[3-(phenoxyethyl)phenyl]butyric acid 251965-60-3P 251965-61-4P  
251965-62-5P, 4-[3-(Hydroxyphenylmethyl)phenyl]-2,4-dioxobutyric acid

dioxobutyric acid 251964-37-1P, 4-[5-Benzyl-2-(pyrazin-2-yloxy)phenyl]-2,4-dioxobutyric acid 251964-38-2P, 4-[3-Benzyl-5-[(2-oxopiperidin-1-yl)methyl]phenyl]-2,4-dioxobutyric acid 251964-39-3P, 4-[5-Benzyl-2-methoxy-3-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid 251964-40-6P, 4-[3-(2-Chlorobenzyl)-5-(pyridin-2-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-41-7P, 4-[5-Benzyl-2-methoxy-3-[(4-methylpiperazin-1-yl)methyl]phenyl]-2,4-dioxobutyric acid 251964-42-8P, 4-[5-Benzyl-2-(methoxymethyl)phenyl]-2,4-dioxobutyric acid 251964-43-9P, 4-[3-(2-Fluorobenzyl)-5-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid 251964-44-0P, 4-[3-(4-Fluorobenzyl)-5-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid 251964-45-1P, 4-[3-(3-Fluorobenzyl)-5-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid 251964-46-2P 251964-47-3P, 4-[3-Benzyl-5-(1H-1,2,3-triazol-1-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-48-4P, 4-[5-Benzyl-3-(N'-methyl-N-piperazinyl)phenyl]-2,4-dioxobutyric acid 251964-49-5P, 4-[3-Benzyl-5-(1H-1,2,4-triazol-1-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-50-8P, 4-(6-Benzyl-3-oxo-3,4-dihydro-2H-benz[1,4]oxazin-8-yl)-2,4-dioxobutyric acid 251964-51-9P, 4-[5-Benzyl-2-(pyrimidin-2-yloxy)phenyl]-2,4-dioxobutyric acid 251964-52-0P, 4-(5-Benzyl-3-amino-2-methoxyphenyl)-2,4-dioxobutyric acid 251964-53-1P, 4-(5-Benzyl-2-ethoxyphenyl)-2,4-dioxobutyric acid 251964-54-2P, 4-[5-Benzyl-2-(2-morpholin-4-ylethoxy)phenyl]-2,4-dioxobutyric acid 251964-55-3P, 4-[5-Benzyl-2-(2,2,2-trifluoroethoxy)phenyl]-2,4-dioxobutyric acid 251964-56-4P, 4-[5-Benzyl-2-(cyclobutyloxy)phenyl]-2,4-dioxobutyric acid 251964-57-5P, 4-[5-Benzyl-2-(cyclopentyloxy)phenyl]-2,4-dioxobutyric acid 251964-58-6P, 4-[3-Benzyl-5-(tetrazol-2-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-59-7P, 4-(5-Benzyl-2,3-diisopropoxypyhenyl)-2,4-dioxobutyric acid 251964-60-0P, 4-[5-Benzyl-2-isopropoxy-3-(N-methylamino)phenyl]-2,4-dioxobutyric acid 251964-61-1P, 4-[5-Benzyl-2-isopropoxy-3-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid 251964-62-2P, 4-[5-Benzyl-2-isopropoxy-3-[2-(N,N-dimethylamino)ethoxy]phenyl]-2,4-dioxobutyric acid 251964-63-3P, 4-[5-Benzyl-2-isopropoxy-3-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid 251964-64-4P, 4-[5-Benzyl-2-isopropoxy-3-[(N,N-dimethylamino)methyl]phenyl]-2,4-dioxobutyric acid 251964-65-5P, 4-(7-Benzylbenzo[1,3]dioxol-5-yl)-2-hydroxy-4-oxobut-2-enoic acid 251964-66-6P, 2-Hydroxy-4-oxo-4-(3-phenylindan-5-yl)but-2-enoic acid 251964-67-7P, 4-[3-(Dibenzylamino)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251964-68-8P, 3-[3-Benzyl-5-(carboxyacetyl)phenyl]-3-oxopropionic acid 251964-69-9P, 4-[4-(Dibenzylamino)phenyl]-2-hydroxy-4-oxobut-2-enoic acid 251964-70-2P, 4-[5-Benzyl-3-methoxy-2-[2-(methylthio)ethoxy]phenyl]-2,4-dioxobutyric acid 251964-71-3P, 4-(7-Benzyl-2,3-dihydrobenzo[1,4]dioxin-5-yl)-2,4-dioxobutyric acid 251964-72-4P, 4-(8-Benzyl-3-hydroxy-3,4-dihydro-2H-benzo[b][1,4]dioxepin-6-yl)-2,4-dioxobutyric acid 251964-73-5P, 4-(2,3-Dimethoxy-5-pent-4-enylphenyl)-2,4-dioxobutyric acid 251964-74-6P, 4-[5-(Cyclopropylmethyl)-2,3-dimethoxyphenyl]-2,4-dioxobutyric acid 251964-76-8P, [6-(Benzylxyloxy)-1-oxoindan-2-ylidene]hydroxyacetic acid 251964-77-9P, 4-[5-Benzyl-2-isopropoxy-3-(1H-1,2,3-triazol-1-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-79-1P, 4-[5-Benzyl-2-isopropoxy-3-(1H-1,2,4-triazol-1-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-80-4P, 4-[5-Benzyl-2-[3-(N,N-dimethylamino)propoxy]-3-methoxyphenyl]-2,4-dioxobutyric acid 251964-81-5P, 4-[3-(Phenyldifluoromethyl)phenyl]-2,4-dioxobutyric acid 251964-82-6P, 4-[5-Benzyl-2-(cyclopropoxyloxy)phenyl]-2,4-dioxobutyric acid 251964-83-7P, 4-[5-Benzyl-2-isopropoxy-3-(1-piperidinylmethyl)phenyl]-2,4-dioxobutyric acid 251964-84-8P, 4-[5-Benzyl-2-[2-(dimethylamino)-1-methylethoxy]phenyl]-2,4-dioxobutyric acid 251964-85-9P, 4-[5-Benzyl-2-[(1-methylpiperidin-4-yl)oxy]phenyl]-2,4-dioxobutyric acid 251964-86-0P, 4-[3-Benzyl-5-(4-benzylpiperazin-1-yl)phenyl]-2,4-dioxobutyric acid 251964-87-1P, 4-[5-Benzyl-2-isopropoxy-3-[(pyridin-2-

dioxobutanoic acid 251963-84-5P, 4-[3-[(4-Fluorobenzyl)oxy]phenyl]-2,4-dioxobutanoic acid 251963-85-6P, 4-[3-[(3,4-Difluorobenzyl)oxy]phenyl]-2,4-dioxobutanoic acid 251963-86-7P, 4-[3-[(5-Methylthiophen-2-yl)methyl]phenyl]-2,4-dioxobutyric acid 251963-87-8P, 4-[3-[(Methylphenylamino)methyl]phenyl]-2,4-dioxobutyric acid 251963-88-9P, 4-(3-Benzyl-5-pyrazin-2-ylphenyl)-2,4-dioxobutyric acid 251963-89-0P, 2,4-Dioxo-4-[3-(1,2,3,4-tetrahydronaphthalen-1-yl)phenyl]butyric acid 251963-90-3P, 2,4-Dioxo-4-[3-(phenylsulfanyl)phenyl]butyric acid 251963-91-4P, 4-[3-(2,4-Difluorobenzyl)phenyl]-2,4-dioxobutyric acid 251963-92-5P, 4-[5-(4-Fluorobenzyl)-2,3-dimethoxyphenyl]-2,4-dioxobutyric acid 251963-93-6P, 4-(5-Benzyl-2-isopropoxyphenyl)-2,4-dioxobutyric acid 251963-94-7P, 4-[5-Benzyl-2-[2-(N,N-dimethylamino)ethoxy]phenyl]-2,4-dioxobutyric acid 251963-96-9P, 4-[5-Benzyl-2-(pyridin-2-yloxy)phenyl]-2,4-dioxobutyric acid 251963-98-1P, 4-(5-Benzyl-2-isopropoxy-3-methoxyphenyl)-2,4-dioxobutyric acid 251964-00-8P, 4-(5-Benzyl-2,3-dimethoxyphenyl)-2,4-dioxobutyric acid 251964-01-9P, 4-[5-Benzyl-3-(dimethylamino)-2-methoxyphenyl]-2,4-dioxobutyric acid 251964-02-0P, 4-[5-Benzyl-2-(N,N-dimethylamino)benzoxazol-7-yl]-2,4-dioxobutyric acid 251964-03-1P, 4-[3-Benzyl-5-(pyrazin-2-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-04-2P, 4-[3-Benzyl-5-(2H-1,2,3-triazol-2-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-05-3P, 4-[3-[(3-Chloropyridin-2-yl)methyl]phenyl]-2,4-dioxobutyric acid 251964-06-4P, 4-[5-Benzyl-2-methoxy-3-[(N,N-dimethylamino)methyl]phenyl]-2,4-dioxobutyric acid 251964-07-5P, 4-[5-Benzyl-3-methoxy-2-(2-methoxyethoxy)phenyl]-2,4-dioxobutyric acid 251964-08-6P, 4-(3-Benzyl-4-methoxyphenyl)-2,4-dioxobutyric acid 251964-09-7P, 4-(5-Benzyl-2-methoxyphenyl)-2,4-dioxobutyric acid 251964-10-0P, 4-(3-Benzyl-4-fluorophenyl)-2,4-dioxobutyric acid 251964-11-1P, 4-[3-Benzyl-4-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid 251964-12-2P, 4-[5-(2-Methylbenzyl)-2,3-dimethoxyphenyl]-2,4-dioxobutyric acid 251964-13-3P, 2,4-Dioxo-4-[3-(pyridin-2-ylmethyl)phenyl]butyric acid 251964-14-4P, 4-[5-Benzyl-3-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid 251964-15-5P, 4-(5-Benzyl-3-methoxyphenyl)-2,4-dioxobutyric acid 251964-16-6P, 4-[5-Benzyl-2-(benzyloxy)-3-methoxyphenyl]-2,4-dioxobutyric acid 251964-17-7P, 4-[5-(3-Methylbenzyl)-2,3-dimethoxyphenyl]-2,4-dioxobutyric acid 251964-18-8P, 4-[5-Benzyl-3-(benzyloxy)phenyl]-2,4-dioxobutyric acid 251964-19-9P, 4-[5-Benzyl-2-(2-hydroxyethoxy)phenyl]-2,4-dioxobutanoic acid 251964-20-2P, 2,4-Dioxo-4-[3-(pyridin-3-ylmethyl)phenyl]butyric acid 251964-21-3P, 4-[3-[(3-Methylpyridin-2-yl)methyl]phenyl]-2,4-dioxobutyric acid 251964-22-4P, 4-[5-Benzyl-2-(methylsulfanyl)phenyl]-2,4-dioxobutyric acid 251964-23-5P, 4-(5-Benzyl-3-morpholinophenyl)-2,4-dioxobutyric acid 251964-24-6P, 4-(8-Benzyl-4-methyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-2,4-dioxobutyric acid 251964-25-7P, 4-[5-(2-Chlorobenzyl)-3-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid 251964-26-8P, 4-[5-(3-Chlorobenzyl)-3-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid 251964-27-9P, 4-(5-Benzyl-2,3,4-trimethoxyphenyl)-2,4-dioxobutyric acid 251964-28-0P, 4-(6-Benzylbenzo[1,3]dioxol-4-yl)-2,4-dioxobutyric acid 251964-29-1P, 4-[3-Benzyl-5-(morpholin-4-ylcarbonyl)phenyl]-2,4-dioxobutyric acid 251964-30-4P, 4-[3-Benzyl-5-(pyridin-2-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-31-5P, 4-[3-Benzyl-5-(morpholinomethyl)phenyl]-2,4-dioxobutyric acid 251964-32-6P, 4-[3-Benzyl-5-(pyridin-3-ylmethyl)phenyl]-2,4-dioxobutyric acid 251964-33-7P, 4-[3-Benzyl-5-[2-(dimethylamino)-1-hydroxy-1-methylethyl]phenyl]-2,4-dioxobutyric acid 251964-34-8P, 4-[5-Benzyl-2-(N,N-dimethylamino)phenyl]-2,4-dioxobutyric acid 251964-35-9P, 4-(5-Benzyl-2-fluorophenyl)-2,4-dioxobutyric acid 251964-36-0P, 4-[5-Benzyl-3-(hydroxymethyl)-2-methoxyphenyl]-2,4-

dimethylamino)methyl]acetophenone 251966-77-5P, 1-[3-Bromo-4-(2-methoxyethoxy)-5-methoxyphenyl]-1-phenylmethanol 251966-78-6P, 1-[3-Bromo-4-(2-methoxyethoxy)-5-methoxyphenyl]-1-phenylmethane 251966-79-7P, 1-[2-(2-Methoxyethoxy)-3-methoxy-5-(phenylmethyl)phenyl]-1-ethanone 251966-80-0P, Ethyl 4-[5-benzyl-3-methoxy-2-(2-methoxyethoxy)phenyl]-2,4-dioxobutyrate 251966-81-1P, [6-(Benzylloxy)-1-oxoindan-2-ylidene]hydroxyacetic acid ethyl ester 251966-82-2P, 6-Bromo-1-(4-fluorobenzyl)indole 251966-83-3P, 1-[1-(4-Fluorobenzyl)-6-indolyl]ethanone 251966-84-4P, 4-[1-(4-Fluorobenzyl)-6-indolyl]-2,4-dioxobutanoic acid methyl ester 251967-46-1P, 5-Benzyl-2-methoxy-3-(N,N-dimethylamino)acetophenone  
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(intermediate; preparation of aromatic and heteroarom. aryldioxobutyric acid derivs. as HIV integrase inhibitors)

IT 52350-85-3, Integrase

RL: BPR (Biological process); BSU (Biological study, unclassified); MSC (Miscellaneous); BIOL (Biological study); PROC (Process)  
(preparation of aromatic and heteroarom. aryldioxobutyric acid derivs. as HIV integrase inhibitors)

IT 62-53-3, Benzenamine, reactions 95-92-1, Diethyl oxalate 99-03-6

99-92-3 100-39-0 100-51-6, Benzyl alcohol, reactions 100-52-7, Benzaldehyde, reactions 100-58-3, Phenylmagnesium bromide 108-36-1, 1,3-Dibromobenzene 108-98-5, Thiophenol, reactions 111-34-2, Butyl vinyl ether 121-71-1 288-36-8, 1,2,3-Triazole 352-13-6, 4-Fluorophenylmagnesium bromide 459-46-1, 4-Fluorobenzyl bromide 553-90-2, Dimethyl oxalate 626-39-1, 1,3,5-Tribromobenzene 2973-76-4, 5-Bromovanillin 3132-99-8, 3-Bromobenzaldehyde 3647-69-6, 4-(2-Chloroethyl)morpholine hydrochloride 6482-24-2, 2-Bromoethyl methyl ether 6948-30-7, 5-Bromoveratraldehyde 13679-70-4, 5-Methyl-2-thiophenecarboxaldehyde 14452-30-3, 3'-Iodoacetophenone 14508-49-7, Chloropyrazine 23915-07-3,  $\alpha$ -Bromo-2,4-difluorotoluene 28924-21-2, 1-[3,5-Bis(benzylloxy)phenyl]ethanone 31165-67-0, 2-(Benzylloxy)acetophenone 52415-29-9, 6-Bromoindole 52488-36-5, 4-Bromoindole 62803-47-8, 6-Hydroxyindan-1-one 78191-00-1, N-Methoxy-N-methylacetamide 85118-01-0, 3,4-Difluorobenzyl bromide 142356-33-0, (6-Bromohexyl)carbamic acid tert-butyl ester  
RL: RCT (Reactant); RACT (Reactant or reagent)

(starting material; preparation of aromatic and heteroarom. aryldioxobutyric acid derivs. as HIV integrase inhibitors)

IT 251966-34-4P, Methyl 4-(3-benzylphenyl)-2,4-dioxobutyrate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)

(target compound; preparation of aromatic and heteroarom. aryldioxobutyric acid

acid derivs. as HIV integrase inhibitors)

IT 85763-16-2P, 4-(Biphenyl-4-yl)-2,4-dioxobutanoic acid 105356-61-4P,

4-(Naphthalen-2-yl)-2,4-dioxobutanoic acid 251963-74-3P, 4-[3,5-Bis(benzylloxy)phenyl]-2,4-dioxobutanoic acid 251963-75-4P, 4-[3-(Benzylloxy)-5-(2-morpholin-4-ylethoxy)phenyl]-2,4-dioxobutanoic acid 251963-76-5P, 4-[3-(Benzylloxy)-5-[[6-[(tert-butoxycarbonyl)amino]hexyl]oxy]phenyl]-2,4-dioxobutanoic acid 251963-77-6P, 4-(3-Benzylphenyl)-2,4-dioxobutanoic acid 251963-78-7P, 4-[3-(2-Chlorobenzyl)phenyl]-2,4-dioxobutanoic acid 251963-79-8P, 4-[4-(Dibenzylamino)phenyl]-2,4-dioxobutanoic acid 251963-80-1P, 4-[3-(Dibenzylamino)phenyl]-2,4-dioxobutanoic acid 251963-81-2P, 4-[3-(Benzylloxy)-5-methoxyphenyl]-2,4-dioxobutanoic acid 251963-82-3P, 4-[3-(Benzylloxy)phenyl]-2,4-dioxobutanoic acid 251963-83-4P, 4-[2-(Benzylloxy)phenyl]-2,4-

**HIV integrase inhibitors)**

IT 251966-85-5P, 3-Benzyl-5-(1H-1,2,3-triazol-1-ylmethyl)-1-bromobenzene  
 RL: BYP (Byproduct); PREP (Preparation)  
 (byproduct; preparation of aromatic and heteroarom. aryldioxobutyric acid derivs. as HIV integrase inhibitors)

IT 150378-17-9, Indinavir  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (compns. also containing; preparation of aromatic and heteroarom. aryldioxobutyric acid derivs. as HIV integrase inhibitors)

IT 144114-21-6, Retropepsin  
 RL: BSU (Biological study, unclassified); MSC (Miscellaneous); BIOL (Biological study)  
 (inhibitors, compns. also containing; preparation of aromatic and heteroarom. aryldioxobutyric acid derivs. as HIV integrase inhibitors)

IT 16547-15-2P, (3-Bromobenzyl)methylphenylamine 25083-80-1P,  
 6-(Benzyl)indan-1-one 26388-18-1P, 1-[3-(Phenylsulfanyl)phenyl]ethane 27798-39-6P, 3-Benzylphenyl bromide 34068-01-4P,  
 1-[3-(Benzyl)phenyl]ethanone 51339-31-2P, (3,5-Dibromophenyl)phenylmethanol 63012-04-4P, (3-Bromophenyl)phenylmethanol 71572-36-6P, 3-Bromo-5-benzylbromobenzene 74209-15-7P,  
 1-[3-(Benzyl)phenyl]ethanone 74857-56-0P,  
 1-(3-Benzylphenyl)ethanone 81732-54-9P, 1-[3-(Benzyl)phenyl]ethanone 84754-32-5P, 1-[4-(Dibenzylamino)phenyl]ethanone 87154-51-6P, 3-Bromo-4-(2-methoxyethoxy)-5-methoxybenzaldehyde 144337-72-4P, 1-[3-[(4-Fluorobenzyl)oxy]phenyl]ethanone 251966-44-6P,  
 4-[3,5-Bis(benzyl)phenyl]-2,4-dioxobutanoic acid methyl ester 251966-45-7P, 4-[2-[3-Acetyl-5-(benzyl)phenoxy]ethyl]morpholine 251966-46-8P, [6-[3-Acetyl-5-(benzyl)phenoxy]hexyl]carbamic acid tert-butyl ester 251966-47-9P, 4-[3-(Benzyl)phenyl]ethanone 251966-48-0P, 4-[4-(Dibenzylamino)phenyl]-2,4-dioxobutanoic acid methyl ester 251966-49-1P, 1-[3-(Dibenzylamino)phenyl]ethanone 251966-50-4P,  
 4-[3-(Dibenzylamino)phenyl]-2,4-dioxobutanoic acid ethyl ester 251966-51-5P, 2-(3-Bromobenzyl)-5-methylthiophene 251966-52-6P,  
 1-[3-[(5-Methylthiophen-2-yl)methyl]phenyl]ethanone 251966-53-7P, (3-Bromobenzyl)phenylamine 251966-54-8P, 1-[3-[(Methylphenylamino)methyl]phenyl]ethanone 251966-55-9P,  
 2-(3-Benzyl-5-bromophenyl)pyrazine 251966-56-0P, 1-(3-Benzyl-5-pyrazin-2-ylphenyl)ethanone 251966-57-1P, (R)-2,4-Dioxo-4-[3-(1,2,3,4-tetrahydronaphthalen-1-yl)phenyl]butyric acid ethyl ester 251966-58-2P,  
 (S)-2,4-Dioxo-4-[3-(1,2,3,4-tetrahydronaphthalen-1-yl)phenyl]butyric acid ethyl ester 251966-59-3P, 1-[3-(2,4-Difluorobenzyl)phenyl]ethanone 251966-60-6P, (3-Bromo-4,5-dimethoxyphenyl)(4-fluorophenyl)methanol 251966-61-7P, (3-Bromo-4,5-dimethoxyphenyl)(4-fluorophenyl)methane 251966-62-8P, 1-[5-(4-Fluorobenzyl)-2,3-dimethoxyphenyl]ethanone 251966-63-9P, 5-Benzyl-2-isopropoxyacetophenone 251966-64-0P,  
 5-Benzyl-2-isopropoxybenzonitrile 251966-65-1P, Methyl 4-[5-benzyl-2-(pyridin-2-yloxy)phenyl]-2,4-dioxobutyrate 251966-66-2P,  
 5-Benzyl-2-isopropoxy-3-methoxyacetophenone 251966-67-3P, Ethyl 4-(5-benzyl-2,3-dimethoxyphenyl)-2,4-dioxobutyrate 251966-68-4P,  
 7-Acetyl-5-benzyl-2-(N,N-dimethylamino)benzoxazole 251966-69-5P,  
 3-Benzyl-5-(pyrazin-2-ylmethyl)acetophenone 251966-70-8P,  
 3-Benzyl-5-(2H-1,2,3-triazol-2-ylmethyl)-1-bromobenzene 251966-71-9P,  
 3-Benzyl-5-bromobenzyl bromide 251966-72-0P, 3-Benzyl-5-(2H-1,2,3-triazol-2-ylmethyl)acetophenone 251966-73-1P, 3-[(3-Chloropyridin-2-yl)methyl]-1-bromobenzene 251966-74-2P, 3-Chloropyridin-2-yl 3-bromophenyl ketone 251966-75-3P, 3-[(3-Chloropyridin-2-yl)methyl]acetophenone 251966-76-4P, 5-Benzyl-2-methoxy-3-[(N,N-

MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM,  
 TR, TT, UA, US, UZ, VN, YU, ZA, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM  
 RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,  
 ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,  
 CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG  
 CA 2333707 AA 19991209 CA 1999-2333707 19990601  
 AU 9942254 A1 19991220 AU 1999-42254 19990601  
 EP 1082121 A1 20010314 EP 1999-926094 19990601  
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, PT, IE,  
 SI, LT, LV, FI, RO  
 US 6380249 B1 20020430 US 1999-323417 19990601  
 JP 2002516863 T2 20020611 JP 2000-551776 19990601  
 PRIORITY APPLN. INFO.: US 1998-87820P P 19980603  
 GB 1998-15175 A 19980713  
 WO 1999-US12093 W 19990601

OTHER SOURCE(S): MARPAT 132:22755

GI



AB Certain six-membered aromatic and heteroarom. 2,4-dioxobutyric acid derivs. are described, specifically compds. ArCOCH<sub>2</sub>COCO<sub>2</sub>R [I; Ar = certain (un)substituted (hetero)aromatic groups; R = H, C<sub>1</sub>-6 alkyl]. I are inhibitors of HIV integrase, and are useful as inhibitors of HIV replication. The compds. are thus useful in the prevention or treatment of infection by HIV and the treatment of AIDS, either as compds., pharmaceutically acceptable salts, pharmaceutical composition ingredients, whether or not in combination with other antivirals [e.g., the HIV protease inhibitor indinavir], immunomodulators, antibiotics or vaccines. Methods of treating AIDS and methods of preventing or treating infection by HIV are also described. Over 200 specific compds. were prepared and/or claimed. For instance, title compound II was prepared as follows: (1) lithiation of 1,3-dibromobenzene and reaction with 5-methylthiophene-2-carboxaldehyde; (2) reduction of the resultant alc. with Et<sub>3</sub>SiH to give 2-(3-bromobenzyl)-5-methylthiophene; (3) lithiation of the latter bromide and acetylation with AcN(Me)OMe; (4) condensation of the resultant Me ketone with di-Et oxalate; and (5) alkaline hydrolysis of the obtained Et ester. Representative compds. I inhibited HIV replication in T-lymphoid cells with IC<sub>50</sub> values < 10 μM, and had IC<sub>50</sub> values of < 1 μM in reference integrase and preintegration complex assays (no addnl. data).

IC A61K031-534; A01N037-08; A01N037-12; A01N043-02; A01N043-06; A01N043-26; A01N043-32; A01N043-38; A01N043-40; A01N043-54; A01N043-65; A01N043-58; A01N043-60; A01N043-64; A01N043-76; A01N043-82; A01N053-00; C07C059-74; C07C059-76; C07C059-90

CC 25-17 (Benzene, Its Derivatives, and Condensed Benzenoid Compounds)  
 Section cross-reference(s): 1, 10, 27, 28

ST aryl dioxobutyrate prepn inhibitor HIV integrase; antiviral dioxobutyrate aryl heteroaryl prepns

IT Anti-AIDS agents  
 Antiviral agents  
 Human immunodeficiency virus 1  
 (preparation of aromatic and heteroarom. aryl dioxobutyric acid derivs. as

(Biological study); PROC (Process)

(pyruvate for augmenting inotropic effect of β-adrenergic agonist)

IT 113-24-6, Sodium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU  
(Biological study, unclassified); THU (Therapeutic use); BIOL  
(Biological study); USES (Uses)

(pyruvate for augmenting inotropic effect of β-adrenergic agonist)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

IT 57-00-1, Creatine

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL  
(Biological study); PROC (Process)  
(pyruvate for augmenting inotropic effect of β-adrenergic agonist)

RN 57-00-1 HCPLUS

CN Glycine, N-(aminoiminomethyl)-N-methyl- (9CI) (CA INDEX NAME)



REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 56 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1999:783939 HCPLUS

DOCUMENT NUMBER: 132:22755

TITLE: Preparation of aromatic and heteroaromatic  
4-aryl-2,4-dioxobutyric acid derivatives useful as  
HIV integrase inhibitorsINVENTOR(S): Young, Steven D.; Egbertson, Melissa; Payne, Linda S.;  
Wai, John S.; Fisher, Thorsten E.; Guare, James P.,  
Jr.; Embrey, Mark W.; Tran, Lee; Zhuang, Linghang;  
Vacca, Joseph P.; Langford, Marie; Melamed, Jeffrey;  
Clark, David L.; Medina, Julio C.; Jaen, Juan

PATENT ASSIGNEE(S): Merck and Co., Inc., USA

SOURCE: PCT Int. Appl., 319 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.                                                                                                                            | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 9962520                                                                                                                            | A1   | 19991209 | WO 1999-US12093 | 19990601 |
| W: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD,<br>GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, |      |          |                 |          |

ACCESSION NUMBER: 2000:335233 HCAPLUS  
 DOCUMENT NUMBER: 132:318037  
 TITLE: Method for augmenting the inotropic effects of  
   β-adrenergic agonists using pyruvate therapy  
 INVENTOR(S): Mallet, Robert T.; Caffrey, James L.; Tejero-Taldo,  
   Maria Isabel  
 PATENT ASSIGNEE(S): My-Tech, Inc., USA  
 SOURCE: PCT Int. Appl., 21 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KIND | DATE     | APPLICATION NO. | DATE     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2000027384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20000518 | WO 1999-US26745 | 19991112 |
| W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,<br>DE, DK, EE, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,<br>JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,<br>MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,<br>TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD,<br>RU, TJ, TM<br>RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE,<br>DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,<br>CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG |      |          |                 |          |
| US 6153647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A    | 20001128 | US 1998-190814  | 19981112 |

## PRIORITY APPLN. INFO.:

AB A method is provided for treating medical patients suffering from cardiac trauma by co-administering pyruvate with a β-adrenergic agonist. This method for treating cardiac trauma, e.g. ischemic reperfusion injury and heart failure, augments the inotropic effects of β-adrenergic agents. Typical β-adrenergic agonists are epinephrine, norepinephrine, dobutamine, and isoproterenol. The amount of β-adrenergic agonist necessary to achieve a 50% increase of cardiac power is diminished five-fold when co-administered with pyruvate. Since high concns. of agonists have many detrimental and hazardous side effects in patients, this invention would have important applications in the treatment of patients with cardiac trauma, e.g. ischemia reperfusion injury.

IC ICM A61K031-19

ICS A61K031-22

CC 1-8 (Pharmacology)

IT Anti-ischemic agents

Cardiovascular agents

Energy metabolism, animal

Heart

Inotropics

**Phosphorylation, biological**

(pyruvate for augmenting inotropic effect of β-adrenergic agonist)

IT 113-24-6, Sodium pyruvate 127-17-3, biological studies

7683-59-2, Isoproterenol

RL: BAC (Biological activity or effector, except adverse); BSU

(Biological study, unclassified); THU (Therapeutic use); BIOL

(Biological study); USES (Uses)

(pyruvate for augmenting inotropic effect of β-adrenergic agonist)

IT 56-65-5, Adenosine triphosphate, biological studies 57-00-1,

Creatine 67-07-2, Phosphocreatine 70-18-8, Reduced glutathione,

biological studies 27025-41-8, Oxidized glutathione

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



IT 113-24-6, Sodium pyruvate 4151-33-1, Potassium pyruvate  
 52009-14-0, Calcium pyruvate  
 RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (pharmaceutical composition for dietary use comprising pyruvate and unripe bitter orange extract)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 4151-33-1 HCPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 54 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2000:420754 HCPLUS  
 DOCUMENT NUMBER: 133:48887  
 TITLE: Pharmaceutical composition for dietary use comprising  
       a pyruvate and unripe bitter orange extract  
 INVENTOR(S): Villa, Claudio  
 PATENT ASSIGNEE(S): Roeder 1956 Farmaceutici S.p.A., Italy  
 SOURCE: Eur. Pat. Appl., 4 pp.  
 CODEN: EPXXDW  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                   | KIND | DATE     | APPLICATION NO. | DATE       |
|----------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| EP 1010429                                                                                   | A2   | 20000621 | EP 1999-124745  | 19991213   |
| EP 1010429                                                                                   | A3   | 20011128 |                 |            |
| EP 1010429                                                                                   | B1   | 20031029 |                 |            |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO |      |          |                 |            |
| IT 1303578                                                                                   | B1   | 20001114 | IT 1998-T01037  | 19981211   |
| AT 252908                                                                                    | E    | 20031115 | AT 1999-124745  | 19991213   |
| PT 1010429                                                                                   | T    | 20040331 | PT 1999-124745  | 19991213   |
| PRIORITY APPLN. INFO.:                                                                       |      |          | IT 1998-T01037  | A 19981211 |

AB The pharmaceutical composition, in particular for dietary use comprises at least 1 derivative of pyruvic acid and unripe bitter orange extract. In particular, the pyruvic acid derivative is a pyruvate or a product of the reaction of pyruvic acid with an amino acid, preferably magnesium pyruvate or pyruvoyl glycine. The composition displays a synergistic effect which can increase loss of body weight, reducing only the fatty mass, and which can prevent inhibition of the metabolism and the appearance of the yo-yo effect. Thus, a composition contained unripe bitter orange extract 150, Mg pyruvate

667, vitamin B1 0.7, vitamin B6 0.6, and natural vitamin C 20 mg, chromium 16.6 µg.

IC ICM A61K035-78  
 ICI A61K035-78, A61K031-19  
 CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 17, 18  
 IT 3997-91-9, Pyruvoyl glycine 18983-79-4, Magnesium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (pharmaceutical composition for dietary use comprising pyruvate and unripe bitter orange extract)  
 IT 113-24-6, Sodium pyruvate 127-17-3D, Pyruvic acid, derivs.  
 4151-33-1, Potassium pyruvate 52009-14-0, Calcium pyruvate  
 RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (pharmaceutical composition for dietary use comprising pyruvate and unripe bitter orange extract)  
 IT 18983-79-4, Magnesium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (pharmaceutical composition for dietary use comprising pyruvate and unripe bitter orange extract)

(9CI) (CA INDEX NAME)

Absolute stereochemistry.



●2 Li

RN 294871-75-3 HCPLUS

CN L-Norleucine, L-alanyl-L-alanyl-6-carboxy-6-oxo-, dilithium salt (9CI)  
(CA INDEX NAME)

Absolute stereochemistry.



●2 Li

RN 294871-79-7 HCPLUS

CN L-Norleucine, N-acetyl-L-beta-aspartyl-6-carboxy-6-oxo-, trilithium salt  
(9CI) (CA INDEX NAME)

Absolute stereochemistry.



●3 Li

REFERENCE COUNT:

35

THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

derivatives of bacterial cell wall  
biosynthesis inhibitors

AUTHOR(S): Cox, Russell J.; Jenkins, Helen; Schouten, James A.;  
Stentiford, Rosie A.; Wareing, Katrina J.

CORPORATE SOURCE: School of Chemistry, University of Bristol, Clifton,  
Bristol, BS8 1TS, UK

SOURCE: Perkin 1 (2000), (13), 2023-2036  
CODEN: PERKF9; ISSN: 1470-4358

PUBLISHER: Royal Society of Chemistry

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The enzyme succinylaminopimelate aminotransferase (DAP-AT; E.C. 2.6.1.17) is a good potential target for the design of novel antibacterial agents. The authors have synthesized a series of hydrazino peptides based on the structure of the natural substrate of DAP-AT. These compds. show varied inhibition properties in vitro vs. DAP-AT from *E. coli* as well as moderate antimicrobial activity vs. *E. coli*. Examination of the kinetics of inhibition reveals that hydrazine, as well as the substituted hydrazino peptides, shows two-phase slow-binding inhibition. Possible mechanisms for inhibition are discussed.

CC 34-3 (Amino Acids, Peptides, and Proteins)

Section cross-reference(s): 1, 7, 10

IT 208645-71-0P 208645-72-1P 294871-75-3P  
294871-79-7P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent)

(preparation of hydrazino peptides as antibiotics and inhibitors of succinylaminopimelate aminotransferase)

IT 208645-71-0P 208645-72-1P 294871-75-3P  
294871-79-7P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent)

(preparation of hydrazino peptides as antibiotics and inhibitors of succinylaminopimelate aminotransferase)

RN 208645-71-0 HCAPLUS

CN L-Norleucine, N-acetyl-L- $\alpha$ -aspartyl-6-carboxy-6-oxo-, trilithium salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.



●3 Li

RN 208645-72-1 HCAPLUS

CN L-Norleucine, N-acetyl-L-phenylalanyl-6-carboxy-6-oxo-, dilithium salt

JP 2000204038 A2 20000725 JP 1999-5736 19990112  
 JP 3130295 B2 20010131

PRIORITY APPLN. INFO.: JP 1999-5736 19990112  
**AB** The agents for treatment of pyruvate deficiency and/or hyperlactacidemia caused from alc. intake, muscular exercise, diabetes, and hypoxia due to cardiac and cerebral infarctions, contain Na pyruvate (I) at 30-400 mg/kg/day as pyruvic acid. An aqueous solution of 11 g I was orally administered to healthy male volunteers after 60 and 90 min from the beginning of the test while 40 g whisky was taken just at the beginning and after 30 min. Blood alc. was remarkably decreased after 2nd dosing of I. Administration of the solution also effective to relieve headache, nausea, malaise, thirsty, etc., due to drinking of whisky.

IC ICM A61K031-19  
 ICS A61P003-00; A61P043-00

CC 1-10 (Pharmacology)

Section cross-reference(s): 4, 14

ST pyruvate hyperlactacidemia pyruvate deficiency treatment; lactic acid excess treatment sodium pyruvate; alc intake hyperlactacidemia treatment sodium pyruvate; exercise hyperlactacidemia treatment sodium pyruvate; diabetes hyperlactacidemia treatment sodium pyruvate; brain heart infarction hyperlactacidemia treatment sodium pyruvate; hypoxia hyperlactacidemia treatment sodium pyruvate

IT Alcoholic beverages  
 Diabetes mellitus

Exercise

(treatment of pyruvate deficiency and/or hyperlactacidemia by administration of sodium pyruvate)

IT 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(treatment of pyruvate deficiency and/or hyperlactacidemia by administration of sodium pyruvate)

IT 113-24-6, Sodium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(treatment of pyruvate deficiency and/or hyperlactacidemia by administration of sodium pyruvate)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 53 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:426626 HCPLUS

DOCUMENT NUMBER: 133:252696

TITLE: Synthesis and in vitro enzyme activity of peptide

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (peroxidn.; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Cations  
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (transport; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (**diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT 50-70-4, Sorbitol, biological studies 50-99-7, D-Glucose, biological studies 56-65-5, 5'-ATP, biological studies 57-48-7, D-Fructose, biological studies 70-18-8, GSH, biological studies  
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (**diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (**diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 52 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2000:501811 HCPLUS  
 DOCUMENT NUMBER: 133:99582  
 TITLE: Prophylactic and therapeutic agents for pyruvate deficiency and hyperlactacidemia, containing sodium pyruvate  
 INVENTOR(S): Tanaka, Masatsugu  
 PATENT ASSIGNEE(S): Japan  
 SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.  
 CODEN: JKXXAF  
 DOCUMENT TYPE: Patent  
 LANGUAGE: Japanese  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

AUTHOR(S) : Zhao, W.; Devamanoharan, P. S.; Henein, M.; Ali, A. H.; Varma, S. D.

CORPORATE SOURCE: Departments of Ophthalmology and Biological Chemistry, School of Medicine, University of Maryland, Baltimore, MD, USA

SOURCE: Diabetes, Obesity and Metabolism (2000), 2(3), 165-174  
CODEN: DOMEF6; ISSN: 1462-8902

PUBLISHER: Blackwell Science Ltd.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Studies have been conducted to determine the effect of pyruvate administration on the biochem. of rat lens and the status of its transparency as affected by diabetic conditions. Sprague-Dawley rats were rendered diabetic by i.v. injection of streptozotocin (55 mg/kg body weight (b.w.)) and treated with sodium pyruvate (2%) in drinking water. The levels of glucose, fructose, sorbitol, ATP, GSH, MDA as well as glycated proteins in the lenses were determined at various intervals after the onset of diabetes and the values compared with untreated diabetic controls. The progress of cataract formation and associated histol. changes in the tissue were also monitored. Studies show that the pyruvate treatment decreased the extent of several biochem. changes known to be associated with cataract formation, such as the elevation in the levels of glycated proteins, sorbitol, lipid peroxidn. (MDA) and inhibition of the cation pump. The progress of cataract was also significantly delayed. Exogenous administration of this compound hence was found to exert an overall protective effect against cataract formation induced by the diabetic conditions.

CC 1-12 (Pharmacology)

Section cross-reference(s) : 14

ST diabetes eye lens biochem cataractogenesis pyruvate

IT Transport proteins

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(cation-transporting; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Biological transport

(cation; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Diabetes mellitus

(**diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Glycoproteins, general, biological studies

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(**diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Cataract

(**diabetic**; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Hemoglobins

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(glycohemoglobins; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Eye

(lens; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Peroxidation

(lipid; **diabetes**-induced biochem. changes in rat lens and attenuation of cataractogenesis by pyruvate)

IT Lipids, biological studies

**Spleen, neoplasm**

(lymphoma, inhibitors; pyrimidine-based nucleoside for treatment of mitochondrial disorder)

**IT Kidney, disease**

(tubular acidosis; pyrimidine-based nucleoside for treatment of mitochondrial disorder)

IT 51-35-4D, L-Hydroxyproline, pyrimidine nucleoside derivs. 52-90-4D,  
 L-Cysteine, pyrimidine nucleoside derivs., biological studies 56-40-6D,  
 Glycine, pyrimidine nucleoside derivs., biological studies 56-41-7D,  
 L-Alanine, pyrimidine nucleoside derivs., biological studies 56-45-1D,  
 L-Serine, pyrimidine nucleoside derivs., biological studies 56-84-8D,  
 L-Aspartic acid, pyrimidine nucleoside derivs., biological studies  
 56-86-0D, L-Glutamic acid, pyrimidine nucleoside derivs., biological  
 studies 56-87-1D, L-Lysine, pyrimidine nucleoside derivs., biological  
 studies 56-89-3D, L-Cystine, pyrimidine nucleoside derivs., biological  
 studies 58-85-5, Biotin 59-30-3, Folic acid, biological studies  
 59-43-8, Vitamin B1, biological studies 59-67-6, Niacin, biological  
 studies 60-18-4D, L-Tyrosine, pyrimidine nucleoside derivs., biological  
 studies 61-90-5D, L-Leucine, pyrimidine nucleoside derivs., biological  
 studies 68-19-9, Vitamin B12 70-26-8D, L-Ornithine, pyrimidine  
 nucleoside derivs. 71-00-1D, L-Histidine, pyrimidine nucleoside derivs.,  
 biological studies 72-18-4D, L-Valine, pyrimidine nucleoside derivs.,  
 biological studies 72-19-5D, L-Threonine, pyrimidine nucleoside derivs.,  
 biological studies 73-32-5D, L-Isoleucine, pyrimidine nucleoside  
 derivs., biological studies 74-79-3D, L-Arginine, pyrimidine nucleoside  
 derivs., biological studies 79-83-4, Pantothenic acid 83-88-5, Vitamin  
 B2, biological studies 147-85-3D, L-Proline, pyrimidine nucleoside  
 derivs., biological studies 541-15-1D, L-Carnitine, pyrimidine  
 nucleoside derivs. 4105-38-8 8059-24-3, Vitamin B6 52009-14-0  
 , Calcium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)

(pyrimidine-based nucleoside for treatment of mitochondrial disorder)

IT 52009-14-0, Calcium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)

(pyrimidine-based nucleoside for treatment of mitochondrial disorder)

RN 52009-14-0 HCAPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS  
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 51 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:516710 HCAPLUS

DOCUMENT NUMBER: 133:344571

TITLE: Diabetes-induced biochemical changes in rat  
 lens: Attenuation of cataractogenesis by pyruvate

L102 ANSWER 50 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2000:608584 HCPLUS  
 DOCUMENT NUMBER: 133:187987  
 TITLE: Methods using pyrimidine-based nucleosides for treatment of mitochondrial disorders  
 INVENTOR(S): Naviaux, Robert K.  
 PATENT ASSIGNEE(S): The Regents of the University of California, USA  
 SOURCE: PCT Int. Appl., 28 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO.  | DATE        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------|-------------|
| WO 2000050043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1   | 20000831 | WO 2000-US4663   | 20000223    |
| W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,<br>CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,<br>IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,<br>MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,<br>SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW<br>RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE,<br>DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,<br>CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG |      |          |                  |             |
| CA 2362925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AA   | 20000831 | CA 2000-2362925  | 20000223    |
| NZ 513926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A    | 20010928 | NZ 2000-513926   | 20000223    |
| BR 2000008447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A    | 20020115 | BR 2000-8447     | 20000223    |
| EP 1171137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1   | 20020116 | EP 2000-910321   | 20000223    |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |                  |             |
| JP 2002537340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T2   | 20021105 | JP 2000-600654   | 20000223    |
| AU 776437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B2   | 20040909 | AU 2000-32434    | 20000223    |
| CN 1626107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A    | 20050615 | CN 2004-10078405 | 20000223    |
| RU 2268732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2   | 20060127 | RU 2001-125913   | 20000223    |
| US 2004224920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1   | 20041111 | US 2004-868717   | 20040614    |
| AU 2004235661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1   | 20050127 | AU 2004-235661   | 20041206    |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | US 1999-121588P  | P 19990223  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |          | WO 2000-US4663   | W 20000223  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |          | US 2001-889251   | A1 20011101 |

OTHER SOURCE(S): MARPAT 133:187987

AB Methods are provided for the treatment of mitochondrial disorders. The methods include the administration of a pyrimidine-based nucleoside, e.g. triacetyluridine. Also provided are methods of reducing or eliminating symptoms associated with mitochondrial disorders. Mitochondrial disorders particularly appropriate for treatment include those attributable to a deficiency of one or more pyrimidines.

IC ICM A61K031-70

CC 1-12 (Pharmacology)

IT Brain, disease  
(MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes); pyrimidine-based nucleoside for treatment of mitochondrial disorder)

IT Mental disorder  
(dementia; pyrimidine-based nucleoside for treatment of mitochondrial disorder)

IT Antidiabetic agents  
(diabetes mellitus lactic acidemia; pyrimidine-based nucleoside for treatment of mitochondrial disorder)

IT Spleen, neoplasm

pyruvate 6.7 g. This formulation was a superior radical scavenger than either dl- $\alpha$ -tocopherol or a tocopherol mixture alone.

IC ICM A61K031-355  
 CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 1, 17  
 IT Cytokines  
   Interleukin 1  
   Interleukin 6  
   Interleukin 8  
   Tumor necrosis factors  
   RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
     (inhibition or reduction of; tocotrienol-based antioxidant formulations for therapeutic uses and as food additives)

IT Aging, animal  
   Anti-inflammatory agents  
   Antidiabetic agents  
   Cardiovascular agents  
   Eye, disease  
   Food additives  
     Kidney, disease  
     Liver, disease  
   Nervous system agents  
   Oxidative stress, biological  
   Radical scavengers  
     (tocotrienol-based antioxidant formulations for therapeutic uses and as food additives)

IT 50-81-7, Ascorbic acid, biological studies 50-81-7D, Ascorbic acid, derivs. and salts 73-31-4, Melatonin 74-79-3, L-Arginine, biological studies 113-24-6, Sodium pyruvate 137-66-6, Ascorbyl palmitate 1200-22-2,  $\alpha$ -Lipoic acid 1200-22-2D,  $\alpha$ -Lipoic acid, derivs. and salts 1210-83-9, N-Acetylserotonin 6829-55-6, Tocotrienol 10191-41-0, dl- $\alpha$ -Tocopherol  
   RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (tocotrienol-based antioxidant formulations for therapeutic uses and as food additives)

IT 113-24-6, Sodium pyruvate  
   RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (tocotrienol-based antioxidant formulations for therapeutic uses and as food additives)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

(Lactobacillus acidophilus viable cell enumeration in presence of thermophilic lactic acid bacteria and bifidobacteria)

IT 113-24-6, Sodium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)  
(Lactobacillus acidophilus viable cell enumeration in presence of thermophilic lactic acid bacteria and bifidobacteria)

RN 113-24-6 HCAPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 49 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:706980 HCAPLUS

DOCUMENT NUMBER: 133:271715

TITLE: Tocotrienol-based antioxidant formulations for therapeutic uses and as food additives

INVENTOR(S): Schneider, F. Howard; Lane, Ronald H.; Avila, Timothy

PATENT ASSIGNEE(S): Lipogenics, Inc., USA

SOURCE: PCT Int. Appl., 26 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                    | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2000057876                                                                                                                                                                                                                                                                                                                                                 | A1   | 20001005 | WO 2000-US7733  | 20000324 |
| W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |      |          |                 |          |
| RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                            |      |          |                 |          |

PRIORITY APPLN. INFO.: US 1999-126255P P 19990326

AB This invention relates to novel antioxidant formulations and methods for using them. The antioxidant formulations comprise a combination of a free radical scavenger (FRS), a radical scavenger recycler (RSR) and optionally, a radical formation inhibitor (RFI). The formulations of this invention may be used in pharmaceutical compns., foodstuffs, food additives and dietary supplements. In addition, this invention relates to the use of the antioxidant formulations to inhibit oxidative damage and to treat and prevent disorders associated with oxidative damage caused by free radicals. A formulation contained a tocotrienol mixture 5.0 g, ascorbic acid 3.3 g, palmityl ascorbate 1.0 g,  $\alpha$ -lipoic acid 3.3 g, and Na



●1/2 Ca

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 48 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2000:821307 HCPLUS  
 DOCUMENT NUMBER: 134:190311  
 TITLE: Method of Lactobacillus acidophilus viable cell enumeration in the presence of thermophilic lactic acid bacteria and bifidobacteria  
 AUTHOR(S): Bielecka, M.; Biedrzycka, E.; Majkowska, A.; Biedrzycka, El.  
 CORPORATE SOURCE: Department of Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, 10-747, Pol.  
 SOURCE: Progress in Biotechnology (2000), 17(Food Biotechnology), 399-404  
 CODEN: PBITE3; ISSN: 0921-0423  
 PUBLISHER: Elsevier Science B.V.

DOCUMENT TYPE: Journal  
 LANGUAGE: English  
 AB Six media were evaluated taking into consideration their selectivity for enumeration of Lactobacillus acidophilus in the presence of traditional yogurt cultures (Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus) and bifidobacteria strains com. used as well as freshly isolated from human and animal gut. Minimal nutrient agars BCP and MNA were used as base media. BCP medium was supplemented with penicillin and sodium pyruvate as selective agents or with 0.25-1.0% salicin instead of 0.1% glucose. MNA medium contained 1% salicin. Nutritive media MRS, M17 or Garche's were used as controls. The BCP agar with glucose replaced with 0.5 or 1.0% salicin was chosen as the most suitable for L. acidophilus selective enumeration in bio-yogurts due to high recovery of L. acidophilus strains (89-100%), along with good visibility of their colonies surrounded by yellow aureole, and enough prevention from forming colonies by concomitant bacteria.

CC 9-16 (Biochemical Methods)  
 IT Bifidobacterium  
 Growth, microbial  
 Lactobacillus acidophilus  
 Lactobacillus delbrueckii bulgaricus  
 Streptococcus thermophilus  
 (Lactobacillus acidophilus viable cell enumeration in presence of thermophilic lactic acid bacteria and bifidobacteria)  
 IT Culture media  
 (selective; Lactobacillus acidophilus viable cell enumeration in presence of thermophilic lactic acid bacteria and bifidobacteria)  
 IT 61-33-6, biological studies 113-24-6, Sodium pyruvate  
 138-52-3, Salicin  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)

(Biological study); USES (Uses)

(pyruvate or other antioxidant inflammatory response mediator for treating mammalian nasal and sinus disease caused by inflammatory response)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



## ● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



## ● K

RN 18983-79-4 HCPLUS

CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)

RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)

|                                                                                                                                                                                                                                                                                                                                                                   |    |          |                 |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|-----------------|------------|
| WO 2000069431                                                                                                                                                                                                                                                                                                                                                     | A1 | 20001123 | WO 2000-US10062 | 20000414   |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |    |          |                 |            |
| RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                                |    |          |                 |            |
| CA 2373611                                                                                                                                                                                                                                                                                                                                                        | AA | 20001123 | CA 2000-2373611 | 20000414   |
| EP 1183022                                                                                                                                                                                                                                                                                                                                                        | A1 | 20020306 | EP 2000-925997  | 20000414   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO                                                                                                                                                                                                                                                                         |    |          |                 |            |
| JP 2002544228                                                                                                                                                                                                                                                                                                                                                     | T2 | 20021224 | JP 2000-617890  | 20000414   |
| AU 772148                                                                                                                                                                                                                                                                                                                                                         | B2 | 20040408 | AU 2000-44602   | 20000414   |
| NZ 515364                                                                                                                                                                                                                                                                                                                                                         | A  | 20040528 | NZ 2000-515364  | 20000414   |
| ZA 2001009377                                                                                                                                                                                                                                                                                                                                                     | A  | 20021107 | ZA 2001-9377    | 20011107   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                            |    |          | US 1999-312168  | A 19990514 |
|                                                                                                                                                                                                                                                                                                                                                                   |    |          | WO 2000-US10062 | W 20000414 |

AB A method is disclosed for treating a disease state in mammals caused by mammalian nasal and sinus cells involved in the inflammatory response. Mammalian nasal and sinus cells participating in the inflammatory response are contacted with an inflammatory response mediator which reduces the undesired inflammatory response and is an antioxidant. The inflammatory response mediator may further provide a cellular energy source and be a building block in the cellular synthesis of other cellular components. The inflammatory mediator is e.g. pyruvate or a pyruvate precursor. Compns. for reducing and treating undesired inflammatory response are also disclosed.

IC ICM A61K031-19  
ICS A61K031-415

CC 1-7 (Pharmacology)

Section cross-reference(s): 63

IT Antibacterial agents  
Antihistamines  
Antiviral agents

#### Fungicides

(pyruvate or other antioxidant inflammatory response mediator for treating mammalian nasal and sinus disease caused by inflammatory response, and use with other agents)

IT 57-55-6, Propylene glycol, biological studies 96-26-4, Dihydroxyacetone 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 127-17-3D, Pyruvic acid, salts and precursors 631-66-3, Pyruvamide 2392-63-4 2922-61-4, Lithium pyruvate 3997-91-9 4151-33-1, Potassium pyruvate 16947-06-1 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 52009-14-0, Calcium pyruvate 68259-69-8 90088-56-5 145482-34-4, Manganese pyruvate 152102-61-9 308103-10-8

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(pyruvate or other antioxidant inflammatory response mediator for treating mammalian nasal and sinus disease caused by inflammatory response)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 47 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2000:824100 HCAPLUS  
 DOCUMENT NUMBER: 134:517  
 TITLE: Method and composition using pyruvate or other antioxidant inflammatory response mediator for treating mammalian nasal and sinus diseases caused by inflammatory response  
 INVENTOR(S): Katz, Stanley E.; Martin, Alain  
 PATENT ASSIGNEE(S): Cellular Sciences, Inc., USA  
 SOURCE: PCT Int. Appl., 47 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO. | KIND  | DATE  | APPLICATION NO. | DATE  |
|------------|-------|-------|-----------------|-------|
| -----      | ----- | ----- | -----           | ----- |

IC ICM A23L001-305  
 ICS A61K038-17; A61K038-38  
 INCL 514002000  
 CC 18-3 (Animal Nutrition)  
 Section cross-reference(s): 14, 17  
 ST enteral formulation pyruvate amino acid; cancer enteral  
 formulation pyruvate amino acid; AIDS enteral formulation  
 pyruvate amino acid; fat loss enteral formulation pyruvate amino acid;  
 anabolic fat loss enteral formulation pyruvate amino acid  
 IT AIDS (disease)  
 Adipose tissue  
 Anabolic agents  
 Exercise  
 Food additives  
**Neoplasm**  
 (composition including anabolic protein and pyruvate and method for  
 increasing fat loss in a mammal)  
 IT 56-40-6, Glycine, biological studies 56-41-7, L-Alanine, biological  
 studies 56-45-1, L-Serine, biological studies 56-84-8, L-Aspartic  
 acid, biological studies 56-86-0, L-Glutamic acid, biological studies  
 56-87-1, L-Lysine, biological studies 56-89-3, L-Cystine, biological  
 studies 60-18-4, L-Tyrosine, biological studies 61-90-5, L-Leucine,  
 biological studies 63-68-3, L-Methionine, biological studies 63-91-2,  
 L-Phenylalanine, biological studies 71-00-1, L-Histidine, biological  
 studies 72-18-4, L-Valine, biological studies 72-19-5, L-Threonine,  
 biological studies 73-22-3, L-Tryptophan, biological studies 73-32-5,  
 L-Isoleucine, biological studies 74-79-3, L-Arginine, biological studies  
**113-24-6**, Sodium pyruvate 127-17-3D, Pyruvic acid, amide, ester  
 or salt derivs, biological studies 147-85-3, L-Proline, biological  
 studies 631-66-3D, Pyruvamide, derivs 2392-63-4 3997-91-9  
**4151-33-1**, Potassium pyruvate 16947-06-1 **18983-79-4**,  
 Magnesium pyruvate **52009-14-0**, Calcium pyruvate 68259-69-8  
 76391-12-3 90088-56-5 152102-61-9 155404-03-8 252551-47-6  
 335605-26-0  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); FFD (Food or feed use);  
 THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (composition including anabolic protein and pyruvate and method for  
 increasing fat loss in a mammal)  
 IT **113-24-6**, Sodium pyruvate **4151-33-1**, Potassium pyruvate  
**18983-79-4**, Magnesium pyruvate **52009-14-0**, Calcium  
 pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); FFD (Food or feed use);  
 THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (composition including anabolic protein and pyruvate and method for  
 increasing fat loss in a mammal)  
 RN **113-24-6 HCPLUS**  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

(Biological study); USES (Uses)

(sodium  $\alpha$ -ketoglutarate after x-radiotherapy effect on liver mitochondria respiration and oxidative phosphorylation)

IT 305-72-6

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(sodium  $\alpha$ -ketoglutarate after x-radiotherapy effect on liver mitochondria respiration and oxidative phosphorylation)

RN 305-72-6 HCPLUS

CN Pentanedioic acid, 2-oxo-, disodium salt (9CI) (CA INDEX NAME)



## ●2 Na

L102 ANSWER 46 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:294953 HCPLUS

DOCUMENT NUMBER: 134:325767

TITLE: Composition of pyruvate and anabolic protein and method for increasing fat loss in a mammal

INVENTOR(S): Beale, Paxton K.; Nickey, Donald O.; Williamson, Millard F.

PATENT ASSIGNEE(S): USA

SOURCE: U.S., 10 pp., Cont.-in-part of U.S. 5,889,040.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

## PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE        |
|------------------------|------|----------|-----------------|-------------|
| US 6221836             | B1   | 20010424 | US 1998-213968  | 19981217    |
| US 5716926             | A    | 19980210 | US 1996-686819  | 19960726    |
| US 5889040             | A    | 19990330 | US 1997-951547  | 19971016    |
| PRIORITY APPLN. INFO.: |      |          | US 1996-686819  | A1 19960726 |
|                        |      |          | US 1997-951547  | A2 19971016 |

AB The present invention is based in part upon the discovery that the use of pyruvate in enteral formulations, in combination with an anabolic protein composition, produces a synergistic effect in increasing the lean body mass or muscle tissue of a mammal consuming same. The present invention also provides a method for increasing fat loss or decreasing the percent body fat in a mammal through the administration of an anabolic protein composition. The present invention relates generally to a composition for enhancing the protein concentration or muscle mass of a mammal and a method for enhancing the protein concentration or muscle mass in a mammal. More specifically, the present

invention relates to a composition which comprises an anabolic protein composition

and optionally pyruvate and/or derivs. thereof. The compns. according to the invention can take the form of powders, liqs., pills, capsules, tablets, food additives, candies or confections.



● 1/2 Ca

REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 45 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2001:453548 HCAPLUS  
 DOCUMENT NUMBER: 135:57913  
 TITLE: Effect of sodium  $\alpha$ -ketoglutarate injected after x-ray treatment on the respiration and oxidative phosphorylation of liver mitochondria  
 AUTHOR(S): Kurgalyuk, N. M.; Gorin, O. V.  
 CORPORATE SOURCE: L'viv. Univ. im. Ivana Franka, Minist. Osviti Ukrainsi, Lvov, Ukraine  
 SOURCE: Fiziologichni Zhurnal (Kiev, Ukraine) (2000), 46(5), 63-70  
 CODEN: FIZHFQ  
 PUBLISHER: Institut Fiziologii im. O. O. Bogomol'tsya NAN Ukrainsy  
 DOCUMENT TYPE: Journal  
 LANGUAGE: Ukrainian

AB It found that total X-ray treatment (everyday expose to 1 R up to achievement of total doses 10, 20 30 R) inhibits the rate of ADP-stimulated respiration of rat liver mitochondria, decreases its efficiency and makes phosphorylation less coupled to respiration. All this effects are present from the first period after treatment until the end of treatment. I.p.  $\alpha$ -ketoglutarate injections during treatment decreases the inhibition of respiration and oxidative phosphorylation and increases the efficiency of respiration.

CC 8-9 (Radiation Biochemistry)

ST sodium ketoglutarate x radiotherapy liver mitochondria respiration phosphorylation

IT Respiration, animal

(mitochondrial; sodium  $\alpha$ -ketoglutarate after x-radiotherapy effect on liver mitochondria respiration and oxidative phosphorylation)

IT Mitochondria

(respiration; sodium  $\alpha$ -ketoglutarate after x-radiotherapy effect on liver mitochondria respiration and oxidative phosphorylation )

IT Liver

Mitochondria

Oxidative phosphorylation, biological

Radioprotectants

(sodium  $\alpha$ -ketoglutarate after x-radiotherapy effect on liver mitochondria respiration and oxidative phosphorylation)

IT Radiotherapy

(x-ray; sodium  $\alpha$ -ketoglutarate after x-radiotherapy effect on liver mitochondria respiration and oxidative phosphorylation)

IT 305-72-6

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL



● K

RN 372169-32-9 HCPLUS  
CN Decanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 372169-33-0 HCPLUS  
CN Pentanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

RN 372169-34-1 HCPLUS  
CN Octanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

RN 372169-35-2 HCPLUS  
CN Decanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)

RN 13022-86-1 HCPLUS  
 CN Octanoic acid, 2-oxo-, sodium salt (7CI, 8CI, 9CI) (CA INDEX NAME)



● Na

RN 13287-96-2 HCPLUS  
 CN Butanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 13457-97-1 HCPLUS  
 CN Butanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

RN 28870-08-8 HCPLUS  
 CN Octanoic acid, 2-oxo-, potassium salt (8CI, 9CI) (CA INDEX NAME)



● K

RN 372169-31-8 HCPLUS  
 CN Hexanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)

(propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for cancer treatment)

IT 52-90-4, L-Cysteine, reactions 56-87-1, L-Lysine, reactions 70-18-8, Glutathione, reactions 74-79-3, L-Arginine, reactions 79-03-8, Propionic acid chloride 79-09-4, Propionic acid, reactions 107-92-6, Butyric acid, reactions 108-01-0, Dimethylaminoethanol 141-43-5, 2-Aminoethanol, reactions 141-75-3, Butyric acid chloride 156-57-0, Cysteamine hydrochloride 600-18-0, 2-Oxobutyric acid 7347-25-3, Taurine sodium salt

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for cancer treatment)

IT 2013-26-5 13022-84-9 13022-85-0  
13022-86-1 13287-96-2 13457-97-1  
28870-08-8 372169-31-8 372169-32-9  
372169-33-0 372169-34-1 372169-35-2

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for cancer treatment)

RN 2013-26-5 HCPLUS

CN Butanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 13022-84-9 HCPLUS

CN Decanoic acid, 2-oxo-, sodium salt (7CI, 8CI, 9CI) (CA INDEX NAME)



● Na

RN 13022-85-0 HCPLUS

CN Hexanoic acid, 2-oxo-, sodium salt (7CI, 8CI, 9CI) (CA INDEX NAME)



● Na

and preparation thereof, for **cancer** treatment)

IT Fatty acids, biological studies  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (zinc salts; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT 18266-55-2P 23363-91-9P 29868-00-6P 50409-80-8P,  
 S-Propionylglutathione 52513-95-8P 56409-18-8P 75383-79-8P  
 90434-46-1P 91725-14-3P 104071-94-5P 160112-39-0P 160200-97-5P  
 168278-67-9P 372169-26-1P 372169-27-2P 372169-28-3P 372169-29-4P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT 79-09-4D, Propionic acid, salts and derivs. 107-92-6D, Butyric acid, salts and derivs. 108-01-0D, Dimethylaminoethanol, salts with saturated fatty acids 124-07-2D, Caprylic acid, derivs. 137-40-6 141-43-5D, 2-Aminoethanol, salts with saturated fatty acids 142-62-1D, Caproic acid, derivs. 156-54-7 327-62-8 334-48-5D, Capric acid, salts and derivs. 556-45-6 557-09-5 557-27-7 557-28-8 566-27-8, 7 $\beta$ -Hydroxycholesterol 589-39-9 764-71-6 1002-62-6 1984-06-1  
**2013-26-5** 3386-57-0 4075-81-4 5743-36-2 6107-56-8  
 7112-02-9 7726-06-9 7726-08-1 10051-44-2 **13022-84-9**  
**13022-85-0** **13022-86-1** 13040-17-0 13040-18-1  
**13282-37-6** **13287-96-2** **13457-97-1** 13747-30-3  
 16268-48-7 16268-49-8 19455-00-6 20779-08-2 23409-25-8  
 25859-29-4 28098-03-5 **28870-08-8** 31301-00-5 31301-05-0  
 31301-06-1 38708-95-1 42966-30-3 53833-11-7 68945-90-4  
 75478-96-5 105449-93-2 108067-35-2 127633-40-3 136468-14-9  
 372169-30-7 372169-31-8 372169-32-9  
**372169-33-0** **372169-34-1** **372169-35-2**  
 372169-36-3 372169-37-4 372169-38-5 372169-39-6 372169-40-9  
 372169-41-0 372169-42-1 372169-43-2 372169-44-3 372169-45-4  
 372169-47-6 372169-48-7 372169-49-8 372169-51-2 372169-53-4  
 372169-54-5 372169-55-6 372169-56-7 372169-57-8 372169-58-9  
 372169-59-0 372169-60-3 372169-61-4 372169-62-5 372169-63-6  
 372169-64-7 372169-65-8 372169-66-9 372169-67-0 372169-68-1  
 372169-69-2 372169-70-5 372169-71-6 372169-72-7 372169-73-8  
 372169-74-9 372169-75-0 372169-76-1 372169-77-2 372169-78-3  
 372169-79-4 372169-80-7 372169-81-8 372169-82-9 372169-83-0  
 372169-84-1 372169-85-2 372169-86-3 372169-87-4 372169-88-5  
 372169-89-6 372169-90-9 372169-91-0 372169-92-1 372169-93-2  
 372169-95-4 372169-97-6 372169-99-8 372170-01-9 372170-02-0  
 372170-03-1 372170-04-2 372170-05-3 372170-06-4 372170-07-5  
 372170-08-6 372170-09-7 372170-10-0 372170-11-1 372170-12-2  
 372170-13-3 372170-14-4 372170-15-5 372170-16-6 372170-17-7  
 372170-18-8 372170-19-9 372170-20-2 372170-21-3 372170-22-4  
 372170-23-5 372170-24-6 372170-25-7 372170-26-8 372170-27-9  
 372170-28-0 372170-29-1 372178-66-0 372178-67-1 372178-68-2  
 372178-69-3 372178-70-6 372178-71-7 372178-72-8 372178-73-9  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT 72-89-9, Acetyl coenzyme A  
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(capsules; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Amides, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(fatty; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Drug delivery systems  
(injections; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Drug delivery systems  
(oral; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Fatty acids, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(potassium salts; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Antitumor agents  
Mitochondria  
(propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Amino acids, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); THU (Therapeutic use); BIOL (Biological study); RACT (Reactant or reagent); USES (Uses)  
(propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Peptides, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(reaction products; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Fatty acids, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(salts, magnesium salts; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Amino acids, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(salts; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Fatty acids, reactions  
RL: RCT (Reactant); RACT (Reactant or reagent)  
(saturated; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Fatty acids, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(sodium salts; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for **cancer** treatment)

IT Drug delivery systems  
(tablets; propionic and butyric acid derivs. and amino acid derivs.,



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 44 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2001:813989 HCAPLUS  
 DOCUMENT NUMBER: 135:352770  
 TITLE: Antitumor activity and induction of apoptosis with water-soluble derivatives of propionic and butyric acids  
 INVENTOR(S): Klemke, Rudolf Erich  
 PATENT ASSIGNEE(S): Germany  
 SOURCE: Ger. Offen., 30 pp.  
 CODEN: GWXXBX  
 DOCUMENT TYPE: Patent  
 LANGUAGE: German  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO.  | DATE     |
|------------------------|------|----------|------------------|----------|
| DE 10018098            | A1   | 20011108 | DE 2000-10018098 | 20000412 |
| PRIORITY APPLN. INFO.: |      |          | DE 2000-10018098 | 20000412 |

AB The invention discloses the use of amino acid derivs. and/or saturated fatty acid derivs. for the nontoxic treatment of the cancer phenotype by inhibition of acetyl-CoA formation in the mitochondria of cancer cells. Preparation of e.g. salts of propionic and butyric acids (e.g. propionic acid ethanalamine salt) is included.

IC ICM A61K038-06  
 ICS A61K031-223; A61K031-19

CC 1-6 (Pharmacology)  
 Section cross-reference(s): 23, 34

ST propionate butyrate deriv prepn antitumor apoptosis; amino acid deriv prepn cancer treatment

IT Fatty acids, biological studies

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(calcium salts; propionic and butyric acid derivs. and amino acid derivs., and preparation thereof, for cancer treatment)

IT Drug delivery systems

pyruvate 152102-61-9 308103-10-8

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate

4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response)

RN 113-24-6 HCAPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCAPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS

CN Magnesium, bis [2- (oxo- $\kappa$ O) propanoato- $\kappa$ O] -, (T-4) - (9CI) (CA INDEX NAME)

REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 43 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2002:51986 HCAPLUS  
 DOCUMENT NUMBER: 136:96046  
 TITLE: Method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response  
 INVENTOR(S): Katz, Stanley E.; Martin, Alain  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S. Pat. Appl. Publ., 12 pp., Cont.-in-part of U. S. Ser. No. 348,698.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.             | KIND  | DATE     | APPLICATION NO. | DATE        |
|------------------------|-------|----------|-----------------|-------------|
| -----                  | ----- | -----    | -----           | -----       |
| US 2002006961          | A1    | 20020117 | US 2001-846722  | 20010501    |
| US 6482856             | B1    | 20021119 | US 1999-348698  | 19990707    |
| PRIORITY APPLN. INFO.: |       |          |                 |             |
|                        |       |          | US 1999-312168  | B2 19990514 |
|                        |       |          | US 1999-348698  | A2 19990707 |
|                        |       |          | US 1995-3962P   | P 19950919  |
|                        |       |          | US 1996-709043  | A3 19960906 |
|                        |       |          | US 1998-40679   | A1 19980318 |

AB A method for treating the disease state in mammals caused by mammalian nasal and sinus cells involved in the inflammatory response is disclosed. Mammalian nasal and sinus cells participating in the inflammatory response are contacted with an inflammatory response mediator which reduces the undesired inflammatory response and is an antioxidant. The inflammatory response mediator may further provide a cellular energy source and be a building block in the cellular synthesis of other cellular components. Comps. for reducing and treating undesired inflammatory response are also disclosed.

IC ICM A61K031-19  
 ICS A61K031-16

INCL 514625000

CC 1-7 (Pharmacology)

IT Antibacterial agents  
 Antihistamines  
 Antioxidants  
 Antiviral agents  
 Buffers  
 Eosinophilia  
 Erythema  
**Fungicides**  
 Human

(method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response)

IT 51-45-6, Histamine, biological studies 57-55-6, Propylene glycol, biological studies 96-26-4, Dihydroxyacetone 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 631-66-3, Pyruvamide 1491-59-4, Oxymetazoline 2392-63-4 2922-61-4, Lithium pyruvate 3997-91-9 4151-33-1, Potassium pyruvate 9004-10-8, Insulin, biological studies 16947-06-1 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 52009-14-0, Calcium pyruvate 68259-69-8 90088-56-5 145482-34-4, Manganese

$\alpha$ -Carotene 499-12-7, Aconitic acid 499-75-2, Carvacrol  
 501-52-0, Hydrocinnamic acid 503-74-2, Iso-Valeric acid 507-70-0,  
 Borneol 513-86-0, Acetoin 514-78-3, Canthaxanthine 515-69-5,  
 $\alpha$ -Bisabolol 526-83-0, Tartaric acid 536-60-7, Cuminylalcohol  
 541-15-1, L-Carnitine 621-82-9, Cinnamic acid, biological studies  
 871-22-7, Acetaldehyde dibutyl acetal 1260-17-9, Carminic acid  
 1335-39-3, Hexenal 1390-65-4, Carmine 1393-63-1, Annatto 1398-61-4,  
 Chitin 1708-35-6 2111-75-3, Perillaaldehyde 2216-51-5 2568-25-4,  
 Benzaldehyde propylene glycolacetal 5392-40-5, Citral 5660-60-6  
 6812-78-8, Rhodinol 6915-15-7, Malic acid 7212-44-4, Nerolidol  
 7235-40-7,  $\beta$ -Carotene 7439-89-6, Iron, biological studies  
 7439-95-4, Magnesium, biological studies 7439-96-5, Manganese,  
 biological studies 7439-98-7, Molybdenum, biological studies  
 7440-09-7, Potassium, biological studies 7440-21-3, Silicon, biological  
 studies 7440-31-5, Tin, biological studies 7440-47-3, Chromium,  
 biological studies 7440-50-8, Copper, biological studies 7440-70-2,  
 Calcium, biological studies 7447-41-8, Lithiumchloride, biological  
 studies 7487-88-9, Magnesium-sulfate, biological studies 7493-57-4,  
 Acetaldehyde phenethylpropyl acetal 7553-56-2, Iodine, biological  
 studies 7558-79-4, Disodium hydrogen phosphate 7616-22-0,  
 $\gamma$ -Tocopherol 7631-86-9, Silica, biological studies 7647-14-5,  
 Sodium chloride, biological studies 7758-11-4 7778-77-0, Potassium  
 dihydrogen phosphate 7779-41-1, Decanaldimethyl acetal 7782-49-2,  
 Selenium, biological studies 7782-50-5, Chlorine, biological studies  
 8000-41-7, Terpineol 8007-35-0, Terpinylacetate 9000-69-5, Pectin  
 9000-92-4, Amylase 9001-33-6, Ficin 9001-62-1, Lipase 9001-73-4,  
 Papain 9001-75-6, Pepsin 9001-92-7, Protease 9001-98-3, Chymosin  
 9002-07-7, Trypsin 9003-99-0, Peroxidase 9004-07-3, Chymotrypsin  
 9004-08-4, Cathepsin 9005-32-7, Alginic acid 9005-53-2, Lignin,  
 biological studies 9013-05-2, Phosphatase 9013-19-8, Isomerase  
 9013-79-0, Esterase 9015-85-4, DNA-Ligase 9027-41-2, Hydrolase  
 9031-55-4, Carboxylase 9031-56-5, Ligase 9032-92-2, Glycosidase  
 9035-73-8, Oxidase 9035-82-9, Dehydrogenase 9037-29-0, Oxygenase  
 9047-61-4, Transferase 9055-04-3, Lyase 9055-15-6, Oxidoreductase  
 10032-05-0, Heptanaldimethyl acetal 10043-52-4, Calcium chloride,  
 biological studies 10124-49-9, Iron sulfate 15431-40-0, Magnesium  
 ascorbate 25917-35-5, Hexanol 26628-22-8, Sodium azide 33735-91-0,  
 Guanine hydrochloride 36653-82-4, 1-Hexadecanol 37259-52-2, DNA-Ligase  
 50984-52-6, Anisaldehyde 84843-69-6, Tryptose 119129-70-3, Ananain  
 150977-36-9, Bromelain 159519-79-6, Brenzcatechin 183256-98-6,  
 Fornesol 186209-48-3, Nonadienol  
 RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (symbiotic regenerative compns. containing microorganisms)

IT 113-24-6, Sodium pyruvate  
 RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (symbiotic regenerative compns. containing microorganisms)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

Wheat bran  
 Whey  
 Yeast  
*Zingiber officinale*  
 (symbiotic regenerative compns. containing microorganisms)  
 IT 50-14-6, Calciferol 50-21-5, Lactic acid, biological studies 50-81-7,  
 L-Ascorbic acid, biological studies 52-90-4, L-Cysteine, biological  
 studies 56-81-5, Glycerin, biological studies 56-87-1, L-Lysine,  
 biological studies 57-11-4D, Stearic acid, derivs. 57-13-6, Urea,  
 biological studies 57-55-6, Propylene glycol, biological studies  
 57-83-0, Progesterone, biological studies 57-88-5, Cholesterol,  
 biological studies 58-22-0, Testosterone 59-02-9,  $\alpha$ -Tocopherol  
 59-43-8, Thiamin, biological studies 59-67-6, Nicotinic acid, biological  
 studies 62-54-4, Calciumacetate 64-17-5, Ethylalcohol, biological  
 studies 64-18-6, Formic acid, biological studies 64-19-7, Acetic acid,  
 biological studies 66-25-1, Hexylaldehyde 67-63-0, Isopropanol,  
 biological studies 69-65-8, Mannite 70-47-3, L-Asparagine, biological  
 studies 71-23-8, Propylalcohol, biological studies 71-36-3,  
 n-Butylalcohol, biological studies 71-41-0, n-Amyl alcohol, biological  
 studies 75-07-0, Acetaldehyde, biological studies 76-22-2, Camphor  
 77-92-9, Citric acid, biological studies 78-70-6, Linalool 78-83-1,  
 Iso Butylalcohol, biological studies 78-84-2 79-83-4, Pantothenic acid  
 83-79-4, Rotenone 83-88-5, Riboflavin, biological studies 87-44-5,  
 $\beta$ -Caryophyllen 87-66-1, Pyrogallol 87-89-8, Inositol 89-83-8,  
 Thymol 90-64-2, Mandelic acid 93-15-2, Methyleugenol 93-28-7,  
 Eugenolacetate 94-59-7, Safrol 94-86-0, Propenylguaethol 97-53-0,  
 Eugenol 97-54-1, Isoeugenol 98-01-1, Furfural, biological studies  
 98-85-1,  $\alpha$ -Methylbenzylalcohol 100-51-6, Benzylalcohol, biological  
 studies 100-52-7, Benzaldehyde, biological studies 100-66-3, Anisol,  
 biological studies 102-16-9, Benzylphenylacetate 102-76-1, Triacetine  
 103-09-3, Octylacetate 103-45-7 103-54-8, Cinnamylacetate 103-82-2,  
 Phenylacetic acid, biological studies 104-46-1, Anethol 104-53-0,  
 Hydrocinnamic aldehyde 104-54-1, Cinnamic alcohol 104-55-2, Cinnamic  
 aldehyde 105-13-5, Anise alcohol 105-82-8, Acetaldehyde dipropylacetate  
 105-87-3, Geranylacetate 106-22-9, Citronellol 106-23-0, Citronellal  
 106-24-1, Geraniol 108-46-3, Resorcin, biological studies 108-73-6,  
 Phloroglucin 108-95-2, Phenol, biological studies 109-52-4, Valeric  
 acid, biological studies 110-17-8, Fumaric acid, biological studies  
 110-82-7, Cyclohexane, biological studies 111-02-4, Squalene 111-70-6,  
 Heptylalcohol 111-71-7, Heptylaldehyde 111-87-5, Octylalcohol,  
 biological studies 112-05-0, Pelargonic acid 112-30-1, n-Decylalcohol  
 112-31-2, Decanal 112-43-6, 10-Undecen-1-ol 112-53-8, Laurylalcohol  
 112-54-9, Laurylaldehyde 113-24-6, Sodium pyruvate 115-95-7,  
 Linalylacetate 120-57-0, Heliotropin 121-32-4, Ethylvanillin  
 121-33-5, Vanillin 122-03-2, Cuminaldehyde 122-59-8, Phenoxyacetic  
 acid 122-72-5, Hydrocinnamylacetate 122-78-1, Phenylacetaldehyde  
 122-87-2, Glycin 123-31-9, Hydroquinone, biological studies 123-38-6,  
 Propionaldehyde, biological studies 123-51-3, Iso-Amyl alcohol  
 123-86-4, n-Butylacetate 123-92-2, Iso-Amylacetate 124-04-9,  
 Hexanedioic acid, biological studies 124-13-0, Octylaldehyde 124-19-6,  
 Nonylaldehyde 125-46-2, Usnic acid 127-08-2, Potassium acetate  
 127-09-3, Sodium acetate 127-40-2, Lutein 137-08-6,  
 Calciumpantothenate 137-66-6, Ascorbic palmitate 138-86-3, Limonen  
 140-11-4, Benzylacetate 140-67-0, Methylchavicol 141-78-6,  
 Ethylacetate, biological studies 142-62-1, Capronic acid, biological  
 studies 142-92-7, Hexylacetate 143-08-8, Nonylalcohol 147-85-3,  
 L-Proline, biological studies 148-03-8,  $\beta$ -Tocopherol 149-91-7D,  
 Gallic acid, derivs. 150-84-5, Citronellylacetate 153-18-4, Rutin  
 154-23-4, Catechin 303-98-0, Coenzyme Q10 321-30-2, Adenine sulfate  
 331-39-5, Caffeic acid 367-51-1, Sodium thioglycolate 432-70-2,

Oryza sativa  
Panax  
Passiflora edulis  
Paullinia cupana  
Pearl  
Persea  
Peumus boldus  
Phocidae  
Phosphors  
Picea  
Pimenta dioica  
Pimpinella anisum  
Pinus  
Placenta  
Plantago major  
Pollen  
Porifera  
Poultry  
Preservatives  
Primula veris  
Propolis  
Prunus amygdalus  
Prunus persica  
Quassia  
Rheum  
Rhodotorula rubra  
Rosmarinus officinalis  
Royal jelly  
Ruscus aculeatus  
Saccharomyces cerevisiae  
Salvia  
Sarcina  
Satureja  
Scorzonera hispanica  
Serratia marcescens  
Sesamum indicum  
Silk  
Simmondsia chinensis  
Solanum tuberosum  
Solvents  
Staphylococcus epidermidis  
Streptococcus  
Styrax  
Symphytum officinale  
Syzygium aromaticum  
Taraxacum officinale  
Taxus  
Theobroma cacao  
Theobroma grandiflorum  
Thymus (plant)  
Tilia  
Torulopsis  
Trifolium  
Trigonella foenum-graecum  
Tussilago farfara  
Urtica  
Valeriana  
Veillonella parvula  
Veratrum viride  
Viscaceae

Fur  
Gaffkya tetragena  
Gentiana  
Geotrichum  
Ginkgo  
Glycine max  
Glycyrrhiza  
Hair  
Hamamelis  
Hay  
Hedera  
Helianthus annuus  
Hibiscus  
Honey  
Human  
Humulus  
Hypericum  
Immunostimulants  
Immunosuppressants  
Immunotherapy  
Ivory  
Juglans  
Juniperus  
*Lactobacillus acidophilus*  
*Lactobacillus casei*  
*Lactobacillus delbrueckii bulgaricus*  
*Lactobacillus fermentum*  
Lamium  
Laurus nobilis  
Lavandula  
Lawsonia inermis  
Leather  
Liquidambar  
Malus pumila  
Malva  
Mangifera indica  
Marigold  
Matricaria recutita  
Meat  
Melissa  
Mentha aquatica  
Mentha piperita  
Menyanthes trifoliata  
Milk  
*Moraxella catarrhalis*  
Moschus  
Mucor  
Musa  
Myristica  
*Neisseria flava*  
*Neisseria flavescens*  
*Neisseria perflava*  
*Neisseria sicca*  
*Neisseria subflava*  
Nut (seed)  
Odor and Odorous substances  
Orange  
Origanum  
*Origanum vulgare*  
Orthosiphon

Bacillus subtilis  
Beeswax  
*Bifidobacterium bifidum*  
Blood  
Bone  
*Borrelia buccalis*  
Brassica  
*Calamus* (palm genus)  
*Camellia*  
*Camellia sinensis*  
*Cananga odorata*  
*Carica papaya*  
*Carum carvi*  
Caviar  
*Centaurea cyanus*  
*Centaurium*  
*Chelidonium majus*  
*Chrysanthemum*  
Cinchona  
Cinnamon (horticultural common name)  
Citrobacter  
*Citrullus lanatus*  
*Citrus aurantifolia*  
*Citrus aurantium*  
*Citrus limon*  
*Citrus paradisi*  
*Citrus reticulata*  
*Citrus sinensis*  
*Cladosporium*  
*Cocos nucifera*  
Coffea  
Coral  
*Coriandrum sativum*  
*Corynebacterium pseudodiphtheriticum*  
*Corynebacterium xerosis*  
Crataegus  
Croton eluteria  
Crustacea  
*Cucumis melo*  
*Cucumis sativus*  
Cupressus  
Cymbopogon  
*Dactylopius coccus*  
*Daucus carota*  
*Derris* (genus)  
Dietary supplements  
Digestive tract  
Echinacea  
Egg, poultry  
*Elettaria cardamomum*  
Emulsifying agents  
*Equisetum*  
*Eucalyptus*  
*Eucalyptus citriodora*  
Feather  
Feed additives  
Fish  
Flavor  
*Foeniculum vulgare*  
**Fungicides**

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                           | KIND | DATE     | APPLICATION NO. | DATE       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| EP 1228769                                                                                                                                                                                                                                                                                                                                                                           | A1   | 20020807 | EP 2001-102384  | 20010202   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                                         |      |          |                 |            |
| CA 2437530                                                                                                                                                                                                                                                                                                                                                                           | AA   | 20020906 | CA 2002-2437530 | 20020201   |
| WO 2002067986                                                                                                                                                                                                                                                                                                                                                                        | A2   | 20020906 | WO 2002-EP1056  | 20020201   |
| WO 2002067986                                                                                                                                                                                                                                                                                                                                                                        | A3   | 20031211 |                 |            |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,<br>CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,<br>GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,<br>LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,<br>PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,<br>UA, UG, US, UZ, VN, YU, ZA, ZM, ZW |      |          |                 |            |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,<br>KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB,<br>GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA,<br>GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                      |      |          |                 |            |
| EP 1390071                                                                                                                                                                                                                                                                                                                                                                           | A2   | 20040225 | EP 2002-712882  | 20020201   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                                         |      |          |                 |            |
| JP 2005503332                                                                                                                                                                                                                                                                                                                                                                        | T2   | 20050203 | JP 2002-567351  | 20020201   |
| US 2004076614                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20040422 | US 2003-467040  | 20031204   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                               |      |          | EP 2001-102384  | A 20010202 |
|                                                                                                                                                                                                                                                                                                                                                                                      |      |          | WO 2002-EP1056  | W 20020201 |

AB The invention concerns regenerative drugs, dietary supplements, feed additives that contain microorganisms and modulating substances, e.g. enzymes, GRAS (Generally Recognized As Safe) aromas, plant exts. Further the compns. contain vitamins, minerals, growth promoters, carrier substances, etc. Microorganisms are a-pathogenic, pathogenic or facultative pathogenic,.

IC ICM A61K045-06

ICS A61P043-00

CC 18-6 (Animal Nutrition)

Section cross-reference(s): 1, 17, 63

IT Achillea

Actinidia chinensis

Aesculus

Alcaligenes faecalis

Algae

Allergy inhibitors

Allium cepa

Allium sativum

Aloe (genus)

Althaea officinalis

Anethum graveolens

Animals

Anti-infective agents

Antioxidants

Antitumor agents

Arctium

Arnica

Artemisia dracunculus

Avena sativa



## ● Na

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



## ● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2- (oxo- $\kappa$ O) propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



## ● 1/2 Ca

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 42 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2002:591669 HCAPLUS  
 DOCUMENT NUMBER: 137:154384  
 TITLE: Symbiotic regenerative compositions containing microorganisms  
 INVENTOR(S): Schuer, Joerg-Peter  
 PATENT ASSIGNEE(S): Germany  
 SOURCE: Eur. Pat. Appl., 25 pp.

INVENTOR(S) : Pistoletti, Elvira  
 PATENT ASSIGNEE(S) : Hunza Di Pistoletti Elvira E C. S.A.S., Italy  
 SOURCE: PCT Int. Appl., 16 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                | KIND | DATE     | APPLICATION NO. | DATE       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 2002062329                                                                                                                                                                                                                                                                                                                                                                                             | A1   | 20020815 | WO 2002-EP640   | 20020123   |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |      |          |                 |            |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                                                        |      |          |                 |            |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                                    |      |          | IT 2001-MI204   | A 20010202 |

AB Therapeutic and/or nutritional compns. contain pyruvic acid as such or salified with minerals, basic amino acids, proteins or peptides containing basic amino acids, nitrogen bases, and glutamine (and/or proteins and/or peptides containing it as such or salified). Thus, a composition contained calcium

pyruvate 90, glutamine 133, and inulin 777 g.

IC ICM A61K031-195

ICS A61K031-19; A61K031-195; A61K031-19

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 17

IT 56-85-9, Glutamine, biological studies 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 127-17-3D, Pyruvic acid, chromium and vanadium complexes 4151-33-1, Potassium pyruvate 7440-47-3D, Chromium, pyruvic acid complexes 7440-62-2D, Vanadium, pyruvic acid complexes 9000-69-5, Pectin 9004-34-6, Cellulose, biological studies 9005-25-8, Starch, biological studies 9005-80-5, Inulin 9012-76-4, Chitosan 9050-36-6, Maltodextrin 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 52009-14-0, Calcium pyruvate 446251-91-8 446251-93-0 446251-95-2 446251-97-4 446251-99-6 446252-01-3 446252-04-6 446252-06-8 446252-08-0 446252-10-4 446252-12-6

RL: FFD (Food or feed use); THU (Therapeutic use);

Biol (Biological study); USES (Uses)

(therapeutic and nutritional compns. containing pyruvic acid and glutamine having antioxidant activity and capable of controlling overweight)

IT 113-24-6, Sodium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate

RL: FFD (Food or feed use); THU (Therapeutic use);

Biol (Biological study); USES (Uses)

(therapeutic and nutritional compns. containing pyruvic acid and glutamine having antioxidant activity and capable of controlling overweight)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)

Postirradn. cells recovery results in a decrease of the ED  $D\Phi(t) = D_1 K + (1-K)e^{-\beta t}$ , where  $D_1$  - the initial dose;  $t$  - the duration of recovery;  $\beta$  - the recovery constant, i.e. the probability of the recovery per time unit;  $K$  - the fraction of irreversible component, determined by the equation  $K = K(\infty) = D\Phi(\infty)/D_1$ . Results: Using the methodol. described in this paper to estimate the quant. parameters of the recovery and exptl. data published by others, it is shown that the fraction of irreversible component increases with the increase in the concentration of chemical inhibitors of recovery while the recovery constant,

i.e. the

probability of the recovery per time unit, was identical for all treatments studied. Conclusion: The recovery process itself is not damaged after the combined action of ionizing radiation and the studied chemical inhibitors of recovery and the mechanism of their action may be related with the enhanced yield of irreversibly damaged cells.

CC 8-9 (Radiation Biochemistry)

ST modeling combined X radiation radiosensitizer cell damage recovery;

**cancer** x radiotherapy radiosensitizer modeling

IT Simulation and Modeling

X-ray

(modeling of combined action of X-ray and radiosensitizers-inhibitors of cell recovery from lethal damage: implication for **cancer** radiotherapy)

IT Drug interactions

(pharmacodynamic; modeling of combined action of X-ray and radiosensitizers-inhibitors of cell recovery from lethal damage: implication for **cancer** radiotherapy)

IT 72-17-3, Sodium lactate 113-24-6, Sodium pyruvate 303-81-1,

Novobiocin 389-08-2, Nalidixic acid

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(modeling of combined action of X-ray and radiosensitizers-inhibitors of cell recovery from lethal damage: implication for **cancer** radiotherapy)

IT 113-24-6, Sodium pyruvate

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(modeling of combined action of X-ray and radiosensitizers-inhibitors of cell recovery from lethal damage: implication for **cancer** radiotherapy)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 41 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2002:615393 HCPLUS

DOCUMENT NUMBER: 137:174927

TITLE: Therapeutic and nutritional compositions containing pyruvic acid and glutamine, having antioxidantizing activity and capable of controlling overweight.

EP. Delayed treatment with EP solution instead of RLS ameliorated ileal mucosal hyperpermeability to FD4 and bacterial translocation to mesenteric lymph nodes in mice challenged with lipopolysaccharide (LPS). These data support the view that EP ameliorates cytokine- and/or LPS-induced derangements in intestinal epithelial barrier function.

CC 1-12 (Pharmacology)  
 ST ethyl pyruvate intestinal epithelium permeability endotoxic shock cytoprotection occludin ZO1; antiinflammatory ethyl pyruvate interferon TNF interleukin iNOS NO NFkappaB; cytoprotectant ethyl pyruvate gut barrier permeability bacteria lymphnode hepatotoxicity  
 IT Interleukin 1 $\beta$   
 Reactive oxygen species  
 Tumor necrosis factors  
 RL: BSU (Biological study, unclassified); BIOL (Biological study) (Et pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated enterocytic cells monolayers)  
 IT 113-24-6, Sodium pyruvate  
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (Et pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated enterocytic cells monolayers)  
 IT 113-24-6, Sodium pyruvate  
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (Et pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated enterocytic cells monolayers)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 66 THERE ARE 66 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 40 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2002:839915 HCPLUS  
 DOCUMENT NUMBER: 138:364828  
 TITLE: The influence of combined action of X-rays and chemicals on Chinese hamster cell recovery  
 AUTHOR(S): Komarova, L. N.; Petin, V. G.; Tkhabisimova, M. D.  
 CORPORATE SOURCE: Medical Radiological Res. Center, RAMS, Obninsk, Russia  
 SOURCE: Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost (2002), 47(4), 17-22  
 CODEN: MRRBE5; ISSN: 1024-6177  
 PUBLISHER: RADEKON  
 DOCUMENT TYPE: Journal  
 LANGUAGE: Russian  
 AB Purpose: To estimate quant. parameters describing the postradiation recovery of Chinese hamster cells (V79A) exposed to X-rays and the subsequent 24 h treatment by recovery inhibitors - sodium pyruvate, sodium lactate, nalidixic acid and novobiocin in various concns. Math. methods:

Absolute stereochemistry.



RN 1113-83-3 HCAPLUS

CN Neuraminic acid, N-(hydroxyacetyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.



L102 ANSWER 39 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:12052 HCAPLUS

DOCUMENT NUMBER: 138:396147

TITLE: Ethyl pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated Caco-2 enterocytic monolayers

AUTHOR(S): Sappington, Penny L.; Han, Xiaonan; Yang, Runkuan; Delude, Russell L.; Fink, Mitchell P.

CORPORATE SOURCE: Department of Critical Care Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA

SOURCE: Journal of Pharmacology and Experimental Therapeutics (2003), 304(1), 464-476

CODEN: JPETAB; ISSN: 0022-3565

PUBLISHER: American Society for Pharmacology and Experimental Therapeutics

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Et pyruvate (EP) solution ameliorates ileal mucosal hyperpermeability and decreases the expression of several proinflammatory genes in ileal and/or colonic mucosa when it is used instead of Ringer's lactate solution (RLS) to resuscitate mice from hemorrhagic shock. To test the hypothesis that EP can ameliorate gut barrier dysfunction induced by other forms of inflammation, we incubated Caco-2 monolayers for 24 to 48 h with cytomix (a mixture of interferon- $\gamma$ , tumor necrosis factor- $\alpha$ , and interleukin-1 $\beta$ ) in the presence or absence of graded concns. of EP or sodium pyruvate. Cytomix increased the permeability of Caco-2 monolayers to fluorescein isothiocyanate-labeled dextran (FD4; average mol. mass 4 kDa), but this effect was inhibited by adding 0.1 to 10 mM EP (but not similar concns. of sodium pyruvate) to the culture medium. EP inhibited several other cytomix-induced phenomena, including nuclear factor- $\kappa$ B activation, inducible nitric oxide synthase mRNA expression, and nitric oxide production. Cytomix altered the expression and localization of the tight junctional proteins, ZO-1 and occludin, but this effect was prevented by

|                 |             |
|-----------------|-------------|
| US 2001-340182P | P 20011214  |
| US 2002-360909P | P 20020228  |
| US 2002-172809  | A1 20020613 |
| WO 2002-EP7124  | A 20020627  |
| WO 2002-EP7128  | W 20020627  |
| US 2004-779158  | A3 20040213 |

OTHER SOURCE(S) : MARPAT 138:66712

AB The invention provides compds. ABCDE [A = any amino acid except D-amino acid; B= Pro, Ala, Ser, Gly, Hyp, acetidine-(2)-carboxylic acid, pipecolic acid; C = any amino acid except Pro, Hyp, acetidine-(2)-carboxylic acid, pipecolic acid, N-alkylated amino acid; D, E = any amino acid or absent] and pharmaceutically acceptable salts thereof. The compds. can be used for the preparation of a medicament for the prophylaxis or treatment of a condition mediated by modulation of dipeptidyl peptidase IV activity, wherein the condition preferably is selected from impaired glucose tolerance, diabetes mellitus, glucosuria and metabolic acidosis.

IC ICM C07K005-08  
ICS C07K005-00; C07K007-06; A61K038-06; A61K038-07; A61K038-08;  
A61P003-00

CC 1-12 (Pharmacology)

IT ADP ribosylation  
Acetylation  
Antidiabetic agents  
Biotinylation  
Carboxylation  
Diabetes mellitus  
Drug delivery systems  
Farnesylation  
Formylation  
Glycosylation  
Hydroxylation  
Methylation  
Myristoylation  
Palmitoylation  
**Phosphorylation**  
Sulfation  
Tert-butylation  
(peptide compds. for competitive modulation of dipeptidyl peptidase IV, and therapeutic use)

IT 54-47-7D, Pyridoxal phosphate, peptide reaction products 70-18-8D, Glutathione, peptide reaction products 98-79-3D, Pyroglutamic acid, peptide reaction products 131-48-6D, N-Acetylneuraminic acid, peptide reaction products 672-15-1D, Homoserine, peptide reaction products 1113-83-3D, N-Glycolylneuraminic acid, peptide reaction products 2226-71-3D, 4'-Phosphopantetheine, peptide reaction products 6066-82-6D, N-Hydroxysuccinimide, peptide reaction products 57828-26-9D, Lipoic acid, peptide reaction products  
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(peptide compds. for competitive modulation of dipeptidyl peptidase IV, and therapeutic use)

IT 131-48-6D, N-Acetylneuraminic acid, peptide reaction products 1113-83-3D, N-Glycolylneuraminic acid, peptide reaction products  
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(peptide compds. for competitive modulation of dipeptidyl peptidase IV, and therapeutic use)

RN 131-48-6 HCPLUS  
CN Neuraminic acid, N-acetyl- (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 38 OF 100    HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:22901 HCPLUS  
 DOCUMENT NUMBER: 138:66712  
 TITLE: Peptide structures useful for competitive modulation  
       of dipeptidyl peptidase IV catalysis, and therapeutic  
       use  
 INVENTOR(S): Demuth, Hans Ulrich; Hoffmann, Torsten; Manhart,  
                 Susanne; Hoffmann, Matthias; Heins, Jochen  
 PATENT ASSIGNEE(S): Probiot drug AG, Germany  
 SOURCE: PCT Int. Appl., 54 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                           | KIND | DATE     | APPLICATION NO.  | DATE       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------|------------|
| WO 2003002593                                                                                                                                                                                                                                                                                                                                                                        | A2   | 20030109 | WO 2002-EP7128   | 20020627   |
| WO 2003002593                                                                                                                                                                                                                                                                                                                                                                        | A3   | 20030904 |                  |            |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,<br>CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,<br>GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,<br>LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,<br>PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,<br>UA, UG, US, UZ, VN, YU, ZA, ZM, ZW |      |          |                  |            |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,<br>KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB,<br>GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA,<br>GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                      |      |          |                  |            |
| US 2003119750                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20030626 | US 2002-126374   | 20020419   |
| US 2003130199                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20030710 | US 2002-172809   | 20020613   |
| CA 2419888                                                                                                                                                                                                                                                                                                                                                                           | AA   | 20030109 | CA 2002-2419888  | 20020627   |
| US 2003135023                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20030717 | US 2002-186177   | 20020627   |
| ZA 2003000833                                                                                                                                                                                                                                                                                                                                                                        | A    | 20040210 | ZA 2003-833      | 20020627   |
| EP 1399469                                                                                                                                                                                                                                                                                                                                                                           | A2   | 20040324 | EP 2002-762308   | 20020627   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                                         |      |          |                  |            |
| ZA 2003001312                                                                                                                                                                                                                                                                                                                                                                        | A    | 20040330 | ZA 2003-1312     | 20020627   |
| JP 2004530729                                                                                                                                                                                                                                                                                                                                                                        | T2   | 20041007 | JP 2003-508973   | 20020627   |
| ZA 2003000595                                                                                                                                                                                                                                                                                                                                                                        | A    | 20040213 | ZA 2003-595      | 20030122   |
| NO 2003000900                                                                                                                                                                                                                                                                                                                                                                        | A    | 20030424 | NO 2003-900      | 20030226   |
| US 2005171025                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20050804 | US 2005-93991    | 20050330   |
| US 2006194852                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20060831 | US 2006-369606   | 20060307   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                               |      |          | EP 2001-114796   | A 20010627 |
|                                                                                                                                                                                                                                                                                                                                                                                      |      |          | US 2001-301158P  | P 20010627 |
|                                                                                                                                                                                                                                                                                                                                                                                      |      |          | DE 2001-10150203 | A 20011012 |
|                                                                                                                                                                                                                                                                                                                                                                                      |      |          | DE 2001-10154689 | A 20011109 |
|                                                                                                                                                                                                                                                                                                                                                                                      |      |          | US 2001-340151P  | P 20011214 |



● Na

RN 2922-61-4 HCAPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo-κO)propanoato-κO]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)

## PRIORITY APPLN. INFO.:

US 2001-933981 A 20010821  
 WO 2002-US26059 W 20020815

**AB** The invention provides a method for treating bronchial constriction in mammals. The method comprises contacting mammalian lung with a compound selected from the group consisting of pyruvate and pyruvate precursors. The compound is present in a therapeutically effective amount to produce bronchial dilation. The invention also provides a method for treating airway disease in mammals. The method comprises contacting mammalian lung with a compound selected from the group consisting of pyruvate and pyruvate precursors. The compound is present in an amount of about 0.0001-0.005 mmol. The invention further provides a method for treating airway disease in mammals. The method comprises contacting the mammalian lung with a compound selected from the group consisting of pyruvate and pyruvate precursors. The compound is present in a therapeutically effective amount to prevent bronchial spasm. The invention is still further directed to a method for treating airway disease in mammals. The method comprises contacting the mammalian lung with a compound selected from the group consisting of pyruvate and pyruvate precursors. The compound is present in a therapeutically effective amount to prevent bronchial constriction.

**IC** ICM A61K009-14

**INCL** 424046000

**CC** 1-9 (Pharmacology)

**IT** Antiasthmatics

**Asthma**

Bronchodilators

Respiratory system, disease

(pyruvate or pyruvate precursor for treating bronchial constriction and airway diseases)

**IT** Antibacterial agents

Antihistamines

Antiviral agents

Drugs

**Fungicides**

Leukotriene antagonists

(pyruvate or pyruvate precursor for treating bronchial constriction and airway diseases, and use with other agents)

**IT** 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 127-17-3D, Pyruvic acid, derivs. and salts 631-66-3, Pyruvamide 2392-63-4 2922-61-4, Lithium pyruvate 3997-91-9 4151-33-1, Potassium pyruvate 16947-06-1 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 52009-14-0, Calcium pyruvate 68259-69-8 90088-56-5 145482-34-4, Manganese pyruvate 152102-61-9 499114-09-9

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(pyruvate or pyruvate precursor for treating bronchial constriction and airway diseases)

**IT** 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate

4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(pyruvate or pyruvate precursor for treating bronchial constriction and airway diseases)

**RN** 113-24-6 HCPLUS

**CN** Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 37 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:154908 HCPLUS  
 DOCUMENT NUMBER: 138:180726  
 TITLE: Method using pyruvate or a pyruvate precursor for treating bronchial constriction and bronchospasm  
 INVENTOR(S): Katz, Stanley E.  
 PATENT ASSIGNEE(S): Cellular Sciences, Inc., USA  
 SOURCE: U.S. Pat. Appl. Publ., 8 pp.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                             | KIND | DATE     | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| US 2003039615                                                                                                                                                                                                                                          | A1   | 20030227 | US 2001-933981  | 20010821 |
| US 6623723                                                                                                                                                                                                                                             | B2   | 20030923 |                 |          |
| CA 2457955                                                                                                                                                                                                                                             | AA   | 20030306 | CA 2002-2457955 | 20020815 |
| WO 2003017929                                                                                                                                                                                                                                          | A2   | 20030306 | WO 2002-US26059 | 20020815 |
| WO 2003017929                                                                                                                                                                                                                                          | A3   | 20030508 |                 |          |
| W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IN, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN  |      |          |                 |          |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG |      |          |                 |          |
| EP 1429712                                                                                                                                                                                                                                             | A2   | 20040623 | EP 2002-757156  | 20020815 |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK                                                                                                                              |      |          |                 |          |
| JP 2005500396                                                                                                                                                                                                                                          | T2   | 20050106 | JP 2003-522452  | 20020815 |

(viral; method for treating pulmonary disease states in mammals by altering indigenous in vivo levels of nitric oxide)

IT 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 156-06-9 298-12-4 328-42-7, Oxaloacetic acid 328-50-7 600-18-0 631-66-3, Pyruvamide 759-05-7 816-66-0 2392-63-4 2464-23-5 2492-75-3 2922-61-4, Lithium pyruvate 3184-35-8 3997-91-9 4151-33-1, Potassium pyruvate 16947-06-1 18983-79-4, Magnesium pyruvate 24809-08-3 24887-16-9, Zinc pyruvate 52009-14-0, Calcium pyruvate 68259-69-8 90088-56-5 145482-34-4, Manganese pyruvate 152102-61-9  
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (method for treating pulmonary disease states in mammals by altering indigenous in vivo levels of nitric oxide)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (method for treating pulmonary disease states in mammals by altering indigenous in vivo levels of nitric oxide)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

ACCESSION NUMBER: 2003:155097 HCAPLUS  
 DOCUMENT NUMBER: 138:198634  
 TITLE: Method for treating pulmonary disease states in mammals by altering indigenous in vivo levels of nitric oxide  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): Cellular Sciences, Inc., USA  
 SOURCE: U.S. Pat. Appl. Publ., 11 pp.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                | KIND | DATE     | APPLICATION NO. | DATE        |
|---------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|-------------|
| US 2003040542                                                                                                             | A1   | 20030227 | US 2002-205353  | 20020725    |
| US 6689810                                                                                                                | B2   | 20040210 |                 |             |
| CA 2457983                                                                                                                | AA   | 20030306 | CA 2002-2457983 | 20020815    |
| EP 1427402                                                                                                                | A1   | 20040616 | EP 2002-766007  | 20020815    |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK |      |          |                 |             |
| JP 2005501106                                                                                                             | T2   | 20050113 | JP 2003-522516  | 20020815    |
| US 2004220265                                                                                                             | A1   | 20041104 | US 2003-747963  | 20031230    |
| PRIORITY APPLN. INFO.:                                                                                                    |      |          | US 2001-313872P | P 20010821  |
|                                                                                                                           |      |          | US 2002-205353  | A2 20020725 |
|                                                                                                                           |      |          | WO 2002-US26060 | W 20020815  |

AB The present invention pertains to a method for treating a pulmonary disease state in mammals by altering indigenous in vivo levels of nitric oxide in mammalian cells. The method comprises contacting the mammalian cells with a therapeutically effective amount of a nitric oxide mediator selected from the group consisting of pyruvates, pyruvate precursors,  $\alpha$ -keto acids having four or more carbon atoms, precursors of  $\alpha$ -keto acids having four or more carbon atoms, and the salts thereof. The method may further comprise contacting the mammalian cells with a therapeutic agent and a nitric oxide source selected from the group consisting of nitric oxide, nitric oxide precursors, and nitric oxide stimulators.

IC ICM A61K031-195

ICS A61K031-19; A61K031-198

INCL 514557000; 514561000

CC 1-9 (Pharmacology)

IT Infection

(bacterial; method for treating pulmonary disease states in mammals by altering indigenous in vivo levels of nitric oxide)

IT Antiasthmatics

Antibacterial agents

Antihistamines

Antitumor agents

Antiviral agents

Asthma

Cystic fibrosis

Emphysema

Fungicides

Mycosis

Neoplasm

Pneumonia

(method for treating pulmonary disease states in mammals by altering indigenous in vivo levels of nitric oxide)

IT Infection

Mineral elements, biological studies

Monosaccharides

Nucleosides, biological studies

Peptides, biological studies

Peptones

Platelet-derived growth factors

Prostaglandins

Proteoglycans, biological studies

Salts, biological studies

Tenascins

Trace metals

Transferrins

Vitamins

Vitronectin

RL: COS (Cosmetic use); THU (Therapeutic use); BIOL (Biological study);

USES (Uses)

(compns. containing growth factors, nutrients, and extracellular matrix proteins for skin rejuvenation and repair)

IT 50-81-7, L-Ascorbic acid, biological studies 50-99-7, D-Glucose, biological studies 60-33-3, Linoleic acid, biological studies 67-48-1, Choline chloride 67-63-0, Isopropanol, biological studies 68-19-9, Vitamin B12 68-94-0, Hypoxanthine 70-18-8, L-Glutathione, biological studies 87-89-8, Inositol 112-80-1, Oleic acid, biological studies 113-24-6, Sodium pyruvate 134-03-2, Sodium ascorbate 3416-24-8, Glucosamine 7447-40-7, Potassium chloride, biological studies 7487-88-9, Magnesium sulfate, biological studies 7647-14-5, Sodium chloride, biological studies 7720-78-7, Ferrous sulfate 7733-02-0, Zinc sulfate 7758-98-7, Cupric sulfate, biological studies 9002-72-6, Growth hormone 9004-10-8, Insulin, biological studies 9004-61-9, Hyaluronic acid 10043-52-4, Calcium chloride, biological studies 10421-48-4, Ferric nitrate 11096-26-7, Erythropoietin 11138-66-2, Xanthan gum 61912-98-9, Insulin-like growth factor 62031-54-3, Fibroblast growth factor 62229-50-9, Epidermal growth factor 83869-56-1, Granulocyte macrophage colony stimulating factor 127464-60-2, Vascular endothelial growth factor 143011-72-7, Granulocyte colony stimulating factor 148348-15-6, Fibroblast growth factor 7

RL: COS (Cosmetic use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(compns. containing growth factors, nutrients, and extracellular matrix proteins for skin rejuvenation and repair)

IT 113-24-6, Sodium pyruvate

RL: COS (Cosmetic use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(compns. containing growth factors, nutrients, and extracellular matrix proteins for skin rejuvenation and repair)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

## PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE        |
|------------------------|------|----------|-----------------|-------------|
| US 2003068297          | A1   | 20030410 | US 2002-222949  | 20020816    |
| US 2004265268          | A1   | 20041230 | US 2004-821427  | 20040409    |
| PRIORITY APPLN. INFO.: |      |          |                 |             |
|                        |      |          | US 2001-313306  | A2 20010818 |
|                        |      |          | US 2001-313307  | A2 20010818 |
|                        |      |          | US 2001-313313  | A2 20010818 |
|                        |      |          | US 2001-313314  | A2 20010818 |
|                        |      |          | US 2001-313306P | P 20010818  |
|                        |      |          | US 2001-313307P | P 20010818  |
|                        |      |          | US 2001-313313P | P 20010818  |
|                        |      |          | US 2001-313314P | P 20010818  |
|                        |      |          | US 2002-222949  | A2 20020816 |

**AB** Compns. for the repair of mammalian skin contain cell growth enhancers to increase the growth rate of skin cells, nutrients to support log phase growth of skin cells, extracellular matrix proteins, stimulators of extracellular matrix proteins, and penetration enhancers. The compns. are effective for repairing and rejuvenating mammalian skin, such that aging skin treated with the compns. has a significant reduction in the number of fine lines and wrinkles. The compns. are also effective for promoting the healing of skin that has suffered a wound, such as a sunburn or abrasion, and for promoting the growth of hair on the scalp. The composition is applied as a coating on a medical or surgical device selected from the group consisting of sutures, implants, homeostatic plugs, dressings, gauze and pads. For example, an ointment with an antimicrobial agent or antibiotics for wound healing was prepared containing D-glucose 2.0-6.0 g/L, amino acids 4.0-150.0 mg/L, vitamins (B12, choline chloride, and inositol) 0.5-15.0 mg/L, sodium bicarbonate buffer 2.0-3.0 g/L, minerals (calcium chloride, magnesium sulfate) 25.0-150.0 mg/L, trace metals (ferric nitrate, ferrous, zinc and cupric sulfates) 0.001-0.6 mg/L, linoleic acid 0.03-0.3 µg/L, proteins (collagens, insulin, transferrin) 0.1-3.0 mg/L, EGF 0.1-10.0 mg/L, fibronectin 5.0-50.0 mg/L, growth factors (TGF-β, VEGF) 0.1-10.0 mg/L, fibrous proteins (elastin, collagen) 0.1-3.0%, Na ascorbate 30-150 µg/L, hyaluronic acid 1.0-20.0 mg/L, glucosamines (heparin, chondroitin sulfate) 0.1-10 mg/L, aggrecan, alc. as penetration enhancer 0-20.0 mg/L, and water to 1 L.

**IC** ICM A61K038-19

ICS A61K038-18; A61K031-557; A61K031-728; A61K031-715

**INCL** 424085100; 514012000; 514054000; 514573000

**CC** 63-7 (Pharmaceuticals)

Section cross-reference(s): 62

**IT** Aggrecans

Amino acids, biological studies

Angiogenic factors

Carbohydrates, biological studies

Collagens, biological studies

Cytokines

Disaccharides

Elastins

Fatty acids, biological studies

Fibronectins

Glycosaminoglycans, biological studies

Growth factors, animal

Hemopoietins

Integrins

Jojoba oil

Laminins

Lipoproteins

147-85-3, Proline, biological studies 463-40-1, Linolenic acid  
 541-15-1, L-Carnitine 651-48-9, Dehydroepiandrosterone sulfate  
 6893-02-3, 3,3'[,5-Triodo-L-thyronine 7447-40-7, Potassium chloride,  
 biological studies 7558-80-7, Sodium dihydrogen phosphate 7647-14-5,  
 Sodium chloride, biological studies 7733-02-0, Zinc sulfate 7786-30-3,  
 Magnesium chloride, biological studies 9001-05-2, Catalase 9004-10-8,  
 Insulin, biological studies 9054-89-1, Superoxide dismutase  
 10043-52-4, Calcium chloride, biological studies 10102-18-8, Sodium  
 selenite 10191-41-0, DL- $\alpha$ -Tocopherol 10421-48-4, Ferric nitrate  
 52225-20-4, DL $\alpha$  Tocopherol acetate 106096-93-9, Fgf2  
 RL: FFD (Food or feed use); PEP (Physical, engineering or  
 chemical process); PYP (Physical process); THU (Therapeutic use)  
 ; BIOL (Biological study); PROC (Process); USES (Uses)  
 (nutrient medium for maintaining neural cells in injured nervous  
 system)

IT 98-92-0, Niacinamide 113-24-6, Sodium pyruvate  
 RL: FFD (Food or feed use); PEP (Physical, engineering or  
 chemical process); PYP (Physical process); THU (Therapeutic use)  
 ; BIOL (Biological study); PROC (Process); USES (Uses)  
 (nutrient medium for maintaining neural cells in injured nervous  
 system)

RN 98-92-0 HCPLUS

CN 3-Pyridinecarboxamide (9CI) (CA INDEX NAME)



RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 35 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:281939 HCPLUS  
 DOCUMENT NUMBER: 138:309347  
 TITLE: Composition and methods for skin rejuvenation and  
 repair  
 INVENTOR(S): Jain, Deepak  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S. Pat. Appl. Publ., 13 pp., Cont.-in-part of U.S.  
 Ser. No. 313,306.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 2

|                        |                                                                                                                                                                                                                                                                                                                                                                        |          |                 |             |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-------------|
| WO 2003029417          | A2                                                                                                                                                                                                                                                                                                                                                                     | 20030410 | WO 2002-US31137 | 20021001    |
| WO 2003029417          | A3                                                                                                                                                                                                                                                                                                                                                                     | 20031204 |                 |             |
| W:                     | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |          |                 |             |
| RW:                    | GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                     |          |                 |             |
| US 2003077564          | A1                                                                                                                                                                                                                                                                                                                                                                     | 20030424 | US 2002-261462  | 20020930    |
| CA 2462802             | AA                                                                                                                                                                                                                                                                                                                                                                     | 20030410 | CA 2002-2462802 | 20021001    |
| EP 1451294             | A2                                                                                                                                                                                                                                                                                                                                                                     | 20040901 | EP 2002-766430  | 20021001    |
| R:                     | AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK                                                                                                                                                                                                                                                 |          |                 |             |
| CN 1599792             | A                                                                                                                                                                                                                                                                                                                                                                      | 20050323 | CN 2002-823992  | 20021001    |
| US 2005208028          | A1                                                                                                                                                                                                                                                                                                                                                                     | 20050922 | US 2005-115479  | 20050427    |
| PRIORITY APPLN. INFO.: |                                                                                                                                                                                                                                                                                                                                                                        |          | US 2001-326658P | P 20011002  |
|                        |                                                                                                                                                                                                                                                                                                                                                                        |          | US 2002-261462  | B1 20020930 |
|                        |                                                                                                                                                                                                                                                                                                                                                                        |          | WO 2002-US31137 | W 20021001  |

AB A method to improve neural cell viability in brain or spinal cord tissue after brain or spinal cord injury or surgery is provided. This method comprises applying a sterile liquid medium to the brain or spinal cord tissue, wherein the sterile aqueous liquid medium comprises 0 to about 3000  $\mu$ M CaCl<sub>2</sub>, about 0.1 to about 1.2  $\mu$ M Fe(NO<sub>3</sub>)<sub>3</sub>, about 2500 to about 10000  $\mu$ M KCl, 0 to about 4000  $\mu$ M MgCl<sub>2</sub>, about 30000 to about 150000  $\mu$ M NaCl, about 100 to about 30000  $\mu$ M NaHCO<sub>3</sub>, about 250 to about 4000  $\mu$ M NaH<sub>2</sub>PO<sub>4</sub>, about 0.01 to about 0.4  $\mu$ M sodium selenite, about 0.2 to about 2  $\mu$ M ZnSO<sub>4</sub>, about 2500 to about 50000  $\mu$ M D-glucose, about 1 to about 50  $\mu$ M L-carnitine, about 3 to about 80  $\mu$ M ethanolamine, about 15 to about 400  $\mu$ M D(+)-galactose, about 40 to about 800  $\mu$ M putrescine, about 20 to about 500  $\mu$ M sodium pyruvate, and growth-promoting essential fatty acids, hormones, amino acids, vitamins and anti-oxidants in amts. effective for neuron growth, and wherein the medium is essentially free of ferrous sulfate, glutamate, and aspartate.

IC ICM C12N

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 1, 2

IT 50-23-7, Cortisol 50-99-7, D Glucose, biological studies 52-90-4, Cysteine, biological studies 56-40-6, Glycine, biological studies 56-41-7, Alanine, biological studies 56-45-1, Serine, biological studies 56-85-9, Glutamine, biological studies 56-87-1, Lysine, biological studies 57-83-0, Progesterone, biological studies 58-85-5, Biotin 59-23-4, D(+)-Galactose, biological studies 59-30-3, Folic acid, biological studies 59-43-8, Thiamine, biological studies 60-18-4, Tyrosine, biological studies 60-33-3, Linoleic acid, biological studies 61-90-5, Leucine, biological studies 63-68-3, Methionine, biological studies 63-91-2, Phenylalanine, biological studies 66-72-8, Pyridoxal 67-48-1, Choline chloride 68-19-9, Vitamin b12 70-18-8, Reduced glutathione, biological studies 70-47-3, Asparagine, biological studies 71-00-1, Histidine, biological studies 72-18-4, Valine, biological studies 72-19-5, Threonine, biological studies 73-22-3, Tryptophan, biological studies 73-32-5, Isoleucine, biological studies 74-79-3, Arginine, biological studies 83-88-5, Riboflavin, biological studies 87-89-8, myo-Inositol 98-92-0, Niacinamide 110-60-1, Putrescine 113-24-6, Sodium pyruvate 127-47-9, Retinyl acetate 137-08-6, Calcium D-pantothenate 141-43-5, Ethanolamine, biological studies 144-55-8, Sodium hydrogen carbonate, biological studies

phosphorus binder used, but was replaced by calcium-containing binders because of the development of aluminum toxicity. Calcium-based binders were the mainstay of therapy for many years, but recent investigations have pointed to increased rates of vascular calcification in patients taking calcium-containing binders. For this reason, alternative agents were developed. Sevelamer (Renagel, GelTex Pharmaceuticals Inc.) is a polymer which was found to effectively bind phosphorus. It has resulted in a decreased rate of vascular calcification compared to calcium-containing binders. Other agents under development include lanthanum carbonate and iron-complex preps. Further research will likely concentrate on identifying binders that bind phosphate more efficiently, have minimal gastrointestinal side effects and provide other benefits to dialysis patients.

CC 1-0 (Pharmacology)  
 IT Kidney, disease  
     (failure; phosphate binder usage in kidney failure patients)  
 IT 62-54-4, Calcium acetate 471-34-1, Calcium carbonate, biological studies  
     587-26-8, Lanthanum carbonate 7429-90-5, Aluminum, biological studies  
     56095-64-8 152751-57-0, Renagel  
     RL: ADV (Adverse effect, including toxicity); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study);  
     USES (Uses)  
     (phosphate binder usage in kidney failure patients)  
 IT 56095-64-8  
     RL: ADV (Adverse effect, including toxicity); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study);  
     USES (Uses)  
     (phosphate binder usage in kidney failure patients)  
 RN 56095-64-8 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●x Ca

REFERENCE COUNT: 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 34 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:282706 HCPLUS  
 DOCUMENT NUMBER: 138:292804  
 TITLE: Nutrient medium for maintaining neural cells in injured nervous system  
 INVENTOR(S): Brewer, Gregory J.  
 PATENT ASSIGNEE(S): Southern Illinois University, USA  
 SOURCE: PCT Int. Appl., 45 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO. | KIND  | DATE  | APPLICATION NO. | DATE  |
|------------|-------|-------|-----------------|-------|
| -----      | ----- | ----- | -----           | ----- |

RL: PNU (Preparation, unclassified); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 114-76-1 HCPLUS

CN Benzenepropanoic acid, α-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 3715-29-5 HCPLUS

CN Butanoic acid, 3-methyl-2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 33 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:423597 HCPLUS

DOCUMENT NUMBER: 140:22454

TITLE: Phosphate binder usage in kidney failure patients

AUTHOR(S): Bleyer, Anthony J.

CORPORATE SOURCE: Section on Nephrology, Wake Forest University School  
of Medicine, Winston-Salem, NC, 27157, USA

SOURCE: Expert Opinion on Pharmacotherapy (2003), 4(6),  
941-947

PUBLISHER: CODEN: EOPHF7; ISSN: 1465-6566

DOCUMENT TYPE: Ashley Publications Ltd.

LANGUAGE: Journal; General Review

AB A review. Phosphorus binders are used in patients with kidney failure

because of the incomplete removal of phosphorus with dialysis and the  
inability to exclude phosphorus from the diet. Aluminum was the initial

disorders including spinocerebellar ataxia, CAG repeat disorders, and other ataxic disorders using the compds.; and pharmaceutically acceptable compns. that contain the inhibitors are disclosed.

IC ICM A61K031-00  
 CC 1-11 (Pharmacology)  
 Section cross-reference(s): 28, 63  
 IT Nervous system, disease  
     (ataxia, CAG repeat-associated; treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT Nervous system, disease  
     (ataxia; treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT Proteins  
     RL: BSU (Biological study, unclassified); BIOL (Biological study)  
     (g34872, inhibitors; treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT Genetic polymorphism  
     (in D-amino acid oxidase gene; treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT Nervous system, disease  
     (spinocerebellar ataxia; treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT Central nervous system, disease  
     Human  
     Molecular cloning  
     Nervous system agents  
     Protein sequences  
     cDNA sequences  
         (treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT 9000-88-8, D-Amino acid oxidase 9029-20-3, D-Aspartate oxidase  
     RL: BSU (Biological study, unclassified); BIOL (Biological study)  
     (inhibitors; treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT 54-21-7P 56-04-2P 57-83-0P, Pregn-4-ene-3,20-dione, biological studies  
 60-23-1P 60-56-0P 61-90-5P, L-Leucine, biological studies 62-56-6P,  
 Thiourea, biological studies 65-85-0P, Benzoic acid, biological studies  
 70-23-5P 72-14-0P 79-19-6P, Hydrazinecarbothioamide 79-24-3P  
 87-25-2P 87-51-4P, 1H-Indole-3-acetic acid, biological studies  
 97-67-6P 99-05-8P 113-24-6P 114-76-1P 118-92-3P  
 127-17-3P, biological studies 133-37-9P 134-20-3P 144-74-1P  
 147-71-7P 150-13-0P 150-83-4P 156-06-9P 156-39-8P 288-94-8P,  
 1H-Tetrazole 328-38-1P, D-Leucine 392-12-1P 501-30-4P 532-32-1P  
 542-05-2P 553-70-8P 578-36-9P 579-75-9P 600-22-6P 605-65-2P  
 611-73-4P 636-61-3P 771-50-6P, 1H-Indole-3-carboxylic acid  
 830-96-6P, 1H-Indole-3-propanoic acid 868-14-4P 879-37-8P,  
 1H-Indole-3-acetamide 996-19-0P 1075-06-5P 1091-85-6P 1201-26-9P  
 1721-26-2P 1912-33-0P 1937-19-5P 2456-73-7P 2524-52-9P  
 2582-30-1P 3715-29-5P 5094-24-6P 5470-11-1P 5470-70-2P  
 6046-97-5P 6138-41-6P 6214-20-6P 7517-19-3P 7540-64-9P  
 10308-82-4P 15454-60-1P, 2H-Tetrazole-2,5-diamine 19764-30-8P  
 20095-27-6P 23234-80-2P 34523-28-9P 37141-50-7P 50428-03-0P  
 57105-39-2P 332360-02-8P 540466-64-6P 540466-65-7P  
     RL: PNU (Preparation, unclassified); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
     (treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors)  
 IT 113-24-6P 114-76-1P 3715-29-5P



## ●2 Na

RN 71686-01-6 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, calcium salt (1:1) (9CI) (CA INDEX NAME)



## ● Ca

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 32 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:454101 HCPLUS  
 DOCUMENT NUMBER: 139:30834  
 TITLE: Treatment of CNS disorders using D-amino acid oxidase and D-aspartate oxidase inhibitors  
 INVENTOR(S): Moser, Paul  
 PATENT ASSIGNEE(S): Genset S.A., Fr.  
 SOURCE: PCT Int. Appl., 152 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO. | DATE       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 2003047558                                                                                                                                                                                                                                                                                                                                                         | A2   | 20030612 | WO 2002-IB4805  | 20021029   |
| WO 2003047558                                                                                                                                                                                                                                                                                                                                                         | A3   | 20040325 |                 |            |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW |      |          |                 |            |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                |      |          |                 |            |
| AU 2002339696                                                                                                                                                                                                                                                                                                                                                         | A1   | 20030617 | AU 2002-339696  | 20021029   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                |      |          | US 2001-336583P | P 20011203 |
|                                                                                                                                                                                                                                                                                                                                                                       |      |          | WO 2002-IB4805  | W 20021029 |

AB The present invention relates to compds. that are inhibitors of D-amino acid oxidase, D-aspartate oxidase, or g34872; methods of treating CNS

CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 2003055508                                                                                                                                                                                                                                                                                                                                                             | A1   | 20030710 | WO 2002-SE2381  | 20021219   |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                 |            |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                |      |          |                 |            |
| AU 2002359171                                                                                                                                                                                                                                                                                                                                                             | A1   | 20030715 | AU 2002-359171  | 20021219   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                    |      |          | SE 2001-4404    | A 20011221 |
|                                                                                                                                                                                                                                                                                                                                                                           |      |          | SE 2002-256     | A 20020129 |
|                                                                                                                                                                                                                                                                                                                                                                           |      |          | WO 2002-SE2381  | W 20021219 |

AB A composition comprising phytohemagglutinin (PHA), and glutamine, glutamine derivs. or metabolites, glutamine analogs or mixts. is disclosed. Also, a food and feed supply and a pharmaceutical composition are disclosed. Such compns. may be used for prevention, treatment and alleviation of immature GIT, or renal failure. Also contemplated are methods for obtaining mature GIT by administration of above compns., and a method for treatment, prevention and alleviation of renal failure. Results of experiment trilas show that it is possible to divert the excretion of N from the urine to the feces, using PHA in combination with  $\alpha$ -ketoglutaric acid.

IC ICM A61K038-16  
 ICS A61K031-195; A23L001-305

CC 1-10 (Pharmacology)  
 Section cross-reference(s): 17

IT Kidney, disease  
 (failure; phytohemagglutinin and glutamine derivative composition for the treatment of renal failure or gastric dysfunction)

IT 56-85-9, Glutamine, biological studies 56-86-0, L-Glutamic acid, biological studies 142-47-2, Sodium glutamate 305-72-6  
 13115-71-4, Glycyl-L-glutamine 26848-14-6 39537-23-0,  
 L-Alanyl-L-glutamine 71686-01-6 204774-97-0 556813-51-5  
 556834-43-6 556834-44-7 556834-45-8 556834-47-0  
 RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (phytohemagglutinin and glutamine derivative composition for the treatment of renal failure or gastric dysfunction)

IT 305-72-6 71686-01-6  
 RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (phytohemagglutinin and glutamine derivative composition for the treatment of renal failure or gastric dysfunction)

RN 305-72-6 HCAPLUS  
 CN Pentanedioic acid, 2-oxo-, disodium salt (9CI) (CA INDEX NAME)

|                |             |
|----------------|-------------|
| WO 1998-IT173  | W 19980624  |
| US 2000-446729 | A2 20000303 |
| WO 2003-US1226 | W 20030115  |

AB The invention provides a system for preparing an autologous solid-fibrin web suitable for regenerating tissue in a living organism. The system includes a sealed primary container containing a separation medium and a low-d. high-viscosity liquid. The separation medium is capable of separating red blood cells from plasma when the container contains blood and is centrifuged, and the primary container has a first pressure. The system further includes a sealed secondary container containing a calcium-coagulation activator. The secondary container has a second pressure that is less than the first pressure. The system also comprises a transfer device including a cannula having a first end and a second end. The first and second ends are capable of puncturing the sealed primary and secondary containers in order to provide fluid communication between the first and second containers. The low-d. high-viscosity liquid of the primary container is capable of blocking flow through the cannula upon entering therein.

IC ICM A61L024-10

CC 63-7 (Pharmaceuticals)

IT Analgesics

Antibiotics

Anticoagulants

Antitumor agents

Erythrocyte

**Neoplasm**

Prosthetic materials and Prosthetics

(methods for preparing autologous fibrin glue)

IT 299-28-5, Calcium gluconate 471-34-1, Calcium carbonate, biological studies 3416-22-6, Calcium fumarate 7789-75-5, Calcium fluoride, biological studies 10043-52-4, Calcium chloride, biological studies 52009-14-0, Calcium pyruvate

RL: **THU (Therapeutic use)**; BIOL (Biological study); USES (Uses)  
(methods for preparing autologous fibrin glue)

IT 52009-14-0, Calcium pyruvate

RL: **THU (Therapeutic use)**; BIOL (Biological study); USES (Uses)  
(methods for preparing autologous fibrin glue)

RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 31 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:532536 HCPLUS

DOCUMENT NUMBER: 139:79159

TITLE: Phytohemagglutinin and glutamine derivative  
composition for the treatment of renal failure or  
gastric dysfunction

INVENTOR(S): Pierzynowski, Stefan G.

PATENT ASSIGNEE(S): Gramineer International AB, Swed.

SOURCE: PCT Int. Appl., 49 pp.



● Na

RN 24567-12-2 HCAPLUS  
 CN Butanedioic acid, oxo-, sodium salt (9CI) (CA INDEX NAME)



● x Na

L102 ANSWER 30 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:570861 HCAPLUS  
 DOCUMENT NUMBER: 139:122832  
 TITLE: Methods for preparing autologous fibrin glue  
 INVENTOR(S): Beretta, Roberto; Grippi, Nicholas A.  
 PATENT ASSIGNEE(S): Italy  
 SOURCE: PCT Int. Appl., 40 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 3  
 PATENT INFORMATION:

| PATENT NO.             | KIND                                                                                                                                                                                                                                                                                                                                                                   | DATE     | APPLICATION NO. | DATE       |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------|
| WO 2003059405          | A2                                                                                                                                                                                                                                                                                                                                                                     | 20030724 | WO 2003-US1226  | 20030115   |
| WO 2003059405          | A3                                                                                                                                                                                                                                                                                                                                                                     | 20040205 |                 |            |
| W:                     | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |          |                 |            |
| RW:                    | GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                             |          |                 |            |
| US 2002169408          | A1                                                                                                                                                                                                                                                                                                                                                                     | 20021114 | US 2002-53247   | 20020115   |
| US 6979307             | B2                                                                                                                                                                                                                                                                                                                                                                     | 20051227 |                 |            |
| AU 2003205157          | A1                                                                                                                                                                                                                                                                                                                                                                     | 20030730 | AU 2003-205157  | 20030115   |
| EP 1465675             | A2                                                                                                                                                                                                                                                                                                                                                                     | 20041013 | EP 2003-703826  | 20030115   |
| R:                     | AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK                                                                                                                                                                                                                                             |          |                 |            |
| JP 2005514987          | T2                                                                                                                                                                                                                                                                                                                                                                     | 20050526 | JP 2003-559565  | 20030115   |
| PRIORITY APPLN. INFO.: |                                                                                                                                                                                                                                                                                                                                                                        |          | US 2002-53247   | A 20020115 |
|                        |                                                                                                                                                                                                                                                                                                                                                                        |          | IT 1997-MI1490  | A 19970624 |

which cause pain, erythema, swelling, crusting, ischemia scarring and excess white blood cell infiltration)

IT 113-24-6, Sodium pyruvate 2013-26-5 4502-00-5  
 22202-68-2 24567-12-2, Oxalacetic acid sodium salt  
 RL: BSU (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study);  
 USES (Uses)  
 ( $\alpha$ -keto acid composition for treating mammalian diseases and injuries which cause pain, erythema, swelling, crusting, ischemia scarring and excess white blood cell infiltration)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2013-26-5 HCPLUS

CN Butanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 4502-00-5 HCPLUS

CN Pentanoic acid, 4-methyl-2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 22202-68-2 HCPLUS

CN Pentanedioic acid, 2-oxo-, monosodium salt (9CI) (CA INDEX NAME)

inflammatory response such as pain, swelling, erythema, crusting, scarring, itching, also disclosed. Five  $\alpha$ -keto acids were compared for their effects on the rate of cutaneous healing. All five were effective. Active agent  $\alpha$ -keto-isovaleric acid, sodium salt was selected for further evaluation.

IC ICM A61K038-43

ICS A61K038-19; A61K031-56; A61K031-315; A61K031-19

INCL 424085100; 424094100; 514171000; 514557000; 514492000; 514494000

CC 1-7 (Pharmacology)

IT **Angiogenesis**

(reduction of excess;  $\alpha$ -keto acid composition for treating mammalian diseases and injuries which cause pain, erythema, swelling, crusting, ischemia scarring and excess white blood cell infiltration)

IT Analgesics

**Angiogenesis inhibitors**

Anti-inflammatory agents

Antibacterial agents

Antihistamines

Antioxidants

Antitumor agents

Antiviral agents

Cosmetics

Disease, animal

Erythema

**Fungicides**

Granulation tissue

Human

Inflammation

Injury

Ischemia

Keloid

Leukocyte

Mammalia

Metabolism, animal

Oxidative stress, biological

Pain

Pruritus

Skin, disease

Swelling, biological

Wound

Wound healing

Wound healing promoters

( $\alpha$ -keto acid composition for treating mammalian diseases and injuries which cause pain, erythema, swelling, crusting, ischemia scarring and excess white blood cell infiltration)

IT 113-24-6, Sodium pyruvate 127-17-3, biological studies

328-42-7 328-50-7 600-18-0 816-66-0 2013-26-5 2492-75-3

3184-35-8 4502-00-5 7429-90-5D, Aluminum, salts with

$\alpha$ -keto acids 7439-93-2D, Lithium, salts with  $\alpha$ -keto acids

7439-95-4D, Magnesium, salts with  $\alpha$ -keto acids 7439-96-5D,

Manganese, salts with  $\alpha$ -keto acids 7440-09-7D, Potassium, salts

with  $\alpha$ -keto acids 7440-23-5D, Sodium, salts with  $\alpha$ -keto

acids 7440-66-6D, Zinc, salts with  $\alpha$ -keto acids 7440-70-2D,

Calcium, salts with  $\alpha$ -keto acids 14798-03-9D, Ammonium, salts with

$\alpha$ -keto acids 22202-68-2 24567-12-2, Oxalacetic

acid sodium salt

RL: BSU (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

( $\alpha$ -keto acid composition for treating mammalian diseases and injuries

(nutritional supplement containing creatine, an acid component and/or a complexing agent for improvement of muscle and nerve health.)

RN 57-00-1 HCPLUS

CN Glycine, N-(aminoiminomethyl)-N-methyl- (9CI) (CA INDEX NAME)



RN 328-42-7 HCPLUS

CN Butanedioic acid, oxo- (9CI) (CA INDEX NAME)



RN 473-90-5 HCPLUS

CN Propanedioic acid, oxo- (9CI) (CA INDEX NAME)



REFERENCE COUNT: 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 29 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:696288 HCPLUS

DOCUMENT NUMBER: 139:207780

TITLE: Method and composition for treating mammalian diseases and injuries which cause pain, erythema, swelling, crusting, ischemia scarring and excess white blood cell infiltration

INVENTOR(S): Martin, Alain

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 15 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.    | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------|------|----------|-----------------|----------|
| US 2003165457 | A1   | 20030904 | US 2001-950490  | 20010911 |
|               |      |          | US 2001-950490  | 20010911 |

PRIORITY APPLN. INFO.:

AB A method for treating the disease state in mammals caused by mammalian cells involved in the inflammatory response is disclosed. Mammalian cells participating in the inflammatory response are contacted with an antioxidant inflammatory suppressor selected from the group consisting of alpha-keto acids and their salts which reduce the undesired inflammatory response. The inflammatory suppressor may further provide a cellular energy source and be a building block in the cellular synthesis of other cellular components. Compns. for reducing and treating undesired

L-Tyrosine, biological studies 60-33-3, Linoleic acid, biological studies 61-90-5, L-Leucine, biological studies 62-49-7, Choline 63-68-3, L-Methionine, biological studies 63-91-2, L-Phenylalanine, biological studies 64-18-6, Formic acid, biological studies 64-19-7, Acetic acid, biological studies 65-85-0, Benzoic acid, biological studies 67-52-7, Barbituric acid 69-72-7, Salicylic acid, biological studies 69-93-2, Uric acid, biological studies 70-18-8, Glutathione, biological studies 70-26-8, L-Ornithine 70-47-3, L-Asparagine, biological studies 71-00-1, L-Histidine, biological studies 72-18-4, L-Valine, biological studies 73-22-3, L-Tryptophan, biological studies 73-32-5, L-Isoleucine, biological studies 74-79-3, L-Arginine, biological studies 75-75-2, Methanesulfonic acid 79-10-7, Acrylic acid, biological studies 79-14-1, Glycolic acid, biological studies 79-31-2, Isobutyric acid 79-41-4, Methacrylic acid, biological studies 79-83-4, Pantothenic acid 83-86-3, Phytic acid 88-14-2, 2-Furancarboxylic acid 88-99-3, Phthalic acid, biological studies 90-64-2, Mandelic acid 97-65-4, Itaconic acid, biological studies 98-11-3, Benzenesulfonic acid, biological studies 98-79-3 99-05-8, 3-Aminobenzoic acid 99-06-9, 3-Hydroxybenzoic acid, biological studies 99-96-7, 4-Hydroxybenzoic acid, biological studies 100-21-0, Terephthalic acid, biological studies 103-82-2, Phenylacetic acid, biological studies 104-15-4, p-Toluenesulfonic acid, biological studies 104-98-3, Urocanic acid 107-92-6, Butyric acid, biological studies 107-95-9,  $\beta$ -Alanine 107-97-1, N-Methylglycine 108-80-5, Cyanuric acid 110-15-6, Succinic acid, biological studies 110-44-1, Sorbic acid 110-94-1, Glutaric acid 111-14-8, Heptanoic acid 111-16-0, Pimelic acid 111-20-6, Sebacic acid, biological studies 112-37-8, Undecanoic acid 118-92-3; 2-Aminobenzoic acid 123-99-9, Azelaic acid, biological studies 124-04-9, Adipic acid, biological studies 124-07-2, Octanoic acid, biological studies 141-78-6, Ethyl acetate, biological studies 141-82-2, Malonic acid, biological studies 142-62-1, Hexanoic acid, biological studies 143-07-7, Dodecanoic acid, biological studies 144-62-7, Oxalic acid, biological studies 147-85-3, L-Proline, biological studies 150-13-0, 4-Aminobenzoic acid 305-84-0, Carnosine 320-77-4, Isocitric acid 328-42-7, Oxalacetic acid 334-48-5, Decanoic acid 463-40-1, Linolenic acid 473-81-4, Glyceric acid 473-90-5, Mesoxalic acid 495-69-2, Hippuric acid 498-24-8, Mesoconic acid 505-48-6, Suberic acid 506-32-1, Arachidonic acid 526-95-4, Gluconic acid 535-75-1, Pipecolic acid 541-48-0,  $\beta$ -Aminobutyric acid 541-50-4, Acetoacetic acid, biological studies 544-63-8, Tetradecanoic acid, biological studies 585-84-2, cis-Aconitic acid 621-82-9, Cinnamic acid, biological studies 1493-13-6, Trifluoromethanesulfonic acid 2033-24-1, Meldrumic acid 2835-81-6,  $\alpha$ -Aminobutyric acid 3724-65-0, Crotonic acid 4023-65-8, trans-Aconitic acid 4350-09-8, 5-Hydroxytryptophan 5329-14-6, Sulfamic acid 6205-14-7, Hydroxycitric acid 6556-12-3, D-Glucuronic acid 7631-86-9, Silica, biological studies 7664-38-2D, Phosphoric acid, esters 9000-07-1, Carrageenan 9003-01-4, Polyacrylic acid 9004-32-4, Carboxymethylcellulose sodium salt 9004-34-6, Cellulose, biological studies 9005-32-7, Alginic acid 10043-35-3, Boric acid, biological studies 11138-66-2, Xanthan 25525-21-7, Glucaric acid 51750-56-2, Propanetricarboxylic acid

RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(nutritional supplement containing creatine, an acid component and/or a complexing agent for improvement of muscle and nerve health.)

IT 57-00-1, Creatine 328-42-7, Oxalacetic acid

473-90-5, Mesoxalic acid

RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

L102 ANSWER 28 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:696654 HCAPLUS  
 DOCUMENT NUMBER: 139:229691  
 TITLE: Nutritional supplement containing creatine, an acid component and/or a complexing agent for improvement of muscle and nerve health.  
 INVENTOR(S): Purpura, Martin; Jaeger, Ralf; Koenig, Harro  
 PATENT ASSIGNEE(S): Degussa Bioactives G.m.b.H., Germany  
 SOURCE: PCT Int. Appl., 30 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: German  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                               | KIND | DATE     | APPLICATION NO.  | DATE       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------|------------|
| WO 2003071884                                                                                                                                                                                                                                                                                                                                                                            | A1   | 20030904 | WO 2003-EP2042   | 20030227   |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,<br>CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,<br>GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,<br>LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,<br>PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ,<br>UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                  |            |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,<br>KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,<br>FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF,<br>BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                  |      |          |                  |            |
| DE 10208568                                                                                                                                                                                                                                                                                                                                                                              | A1   | 20030918 | DE 2002-10208568 | 20020227   |
| AU 2003215607                                                                                                                                                                                                                                                                                                                                                                            | A1   | 20030909 | AU 2003-215607   | 20030227   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                   |      |          | DE 2002-10208568 | A 20020227 |
|                                                                                                                                                                                                                                                                                                                                                                                          |      |          | WO 2003-EP2042   | W 20030227 |

AB The invention relates to a compound containing creatine, an acid component and/or a complexing agent. The invention also relates to methods for producing said compound, to a formulation containing the same, and to the use of the inventive compound  
 IC ICM A23L001-305  
 ICS A61K031-155; A61P003-00; C07C279-14  
 CC 17-6 (Food and Feed Chemistry)  
 Section cross-reference(s): 18, 62, 63  
 IT Alcohols, biological studies  
 Carbohydrates, biological studies  
 RL: COS (Cosmetic use); FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (phosphorylated; nutritional supplement containing creatine, an acid component and/or a complexing agent for improvement of muscle and nerve health.)  
 IT 50-21-5, Lactic acid, biological studies 50-71-5, Alloxan 51-35-4,  
 4-Hydroxyproline 52-90-4, Cysteine, biological studies 56-12-2,  
 $\gamma$ -Aminobutyric acid, biological studies 56-40-6, Glycine,  
 biological studies 56-41-7, L-Alanine, biological studies 56-45-1,  
 L-Serine, biological studies 56-84-8, L-Aspartic acid, biological  
 studies 56-85-9, L-Glutamine, biological studies 56-86-0, L-Glutamic  
 acid, biological studies 56-87-1, L-Lysine, biological studies  
 56-89-3, Cystine, biological studies 57-00-1, Creatine  
 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid,  
 biological studies 57-50-1, Sucrose, biological studies 58-85-5,  
 Biotin 59-67-6, Nicotinic acid, biological studies 60-18-4,

TITLE: An antioxidant formulation that induces differentiation of neuroblastoma in culture

AUTHOR(S): Hancock, Amy L.; Nakuci, Enkeleda; Nicolosi, Robert J.; Shea, Thomas B.

CORPORATE SOURCE: Center for Cellular Neurobiology and Neurodegeneration Research, Dept. of Biological Sciences, Health and Clinical Sciences, University of Massachusetts, Lowell, MA, 01854, USA

SOURCE: Neuroscience Research Communications (2003), 33(1), 73-76  
CODEN: NRCOEE; ISSN: 0893-6609

PUBLISHER: Wiley-Liss, Inc.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Neuroblastoma, the most common of all cancers found in children, may arise from a block of differentiation and a resultant continuation of the proliferative state. Neuroblastoma often spontaneously revert by undergoing partial differentiation and ultimate degeneration. A useful therapeutic approach for clin. neuroblastoma may encompass strategies to force neuroblastoma to differentiate. In ongoing studies on neuronal health, we have developed an anti-oxidant synergy formulation ("ASF"), comprised of  $\alpha$ -tocopherol (vitamin E), sodium pyruvate and phosphatidyl choline, which lessens neurotoxicity and promotes axonal elaboration in cultured neurons. We demonstrate herein that ASF prevents proliferation and promotes differentiation of neuroblastoma in culture, even in the presence of serum, which normally induces rapid neuroblastoma proliferation in culture. These data leave open the possibility that ASF, with proper administration, may foster differentiation, and therefore ultimate degeneration, of neuroblastoma *in situ*, and may therefore represent a novel approach towards suppression of clin. neuroblastoma.

CC 1-6 (Pharmacology)

Section cross-reference(s): 63

IT Nerve, neoplasm

(neuroblastoma; antioxidant formulation that induces differentiation of neuroblastoma in culture)

IT 59-02-9,  $\alpha$ -Tocopherol 113-24-6, Sodium pyruvate

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(antioxidant formulation that induces differentiation of neuroblastoma in culture)

IT 113-24-6, Sodium pyruvate

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(antioxidant formulation that induces differentiation of neuroblastoma in culture)

RN 113-24-6 HCAPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

INVENTOR(S) : Lavrent, Andrew George  
 PATENT ASSIGNEE(S) : Immuno Laboratories Limited, N. Z.  
 SOURCE: N.Z., 8 pp.  
 CODEN: NZXXBT  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE       |
|------------------------|------|----------|-----------------|------------|
| NZ 330439              | A    | 20010126 | NZ 1998-330439  | 19980515   |
| AU 9929071             | A1   | 19991125 | AU 1999-29071   | 19990517   |
| PRIORITY APPLN. INFO.: |      |          | NZ 1998-330439  | A 19980515 |
|                        |      |          | NZ 1998-330727  | A 19980618 |

AB Dietary compns. suitable for weight loss or as supplements are described. The composition consists of collagen hydrolyzate 1-55, A. vera 0.3-0.5, hydroxycitric acid 0.1-10, and L-carnitine 0.1-10% and water. The composition also contains calcium pyruvate, citric acid, N-acetylcarnitine, glycerin, methylparaben, sorbitol, lipoic acid, potassium sorbate, sodium benzoate, flavorings, a sweetener and chromium compds.

IC ICM A23L001-304  
 ICS A23L001-29; A23L002-00; A23L001-305

CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 11, 18

IT 50-21-5, Lactic acid, biological studies 50-70-4, Sorbitol, biological studies 56-81-5, Glycerin, biological studies 59-67-6D, Nicotinic acid, reaction with chromium 77-92-9, Citric acid, biological studies 87-69-4, Tartaric acid, biological studies 98-98-6D, Picolinic acid, reaction with chromium 99-76-3, Methyl paraben 532-32-1, Sodium benzoate 541-15-1, L-Carnitine 1200-22-2, Lipoic acid 7440-47-3D, Chromium, reaction with picolinic and nicotinic acids, soy protein chelates 24634-61-5, Potassium sorbate 27750-10-3, Hydroxy citric acid 52009-14-0, Calcium pyruvate 125349-24-8  
 RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (dietary supplements containing collagen hydrolyzate and Aloe vera and hydroxycitric acid and carnitine and water for weight loss)

IT 52009-14-0, Calcium pyruvate  
 RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)  
 (dietary supplements containing collagen hydrolyzate and Aloe vera and hydroxycitric acid and carnitine and water for weight loss)

RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 27 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2003:786826 HCPLUS  
 DOCUMENT NUMBER: 140:156897

Glaucoma (disease)

Human

Human immunodeficiency virus

Nervous system agents

(glutamate-modifying enzymes, cofactors, and glutamate synthesizing enzyme inhibitors for protecting neuronal tissue from damage induced by elevated glutamate levels)

IT Brain, disease

(stroke; glutamate-modifying enzymes, cofactors, and glutamate synthesizing enzyme inhibitors for protecting neuronal tissue from damage induced by elevated glutamate levels)

IT 113-24-6, Sodium pyruvate 127-17-3, biological studies

328-42-7 24567-12-2, Sodium oxaloacetate

RL: PAC (Pharmacological activity); PKT (Pharmacokinetics); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(glutamate-modifying enzymes, cofactors, and glutamate synthesizing enzyme inhibitors for protecting neuronal tissue from damage induced by elevated glutamate levels)

IT 113-24-6, Sodium pyruvate 24567-12-2, Sodium oxaloacetate

RL: PAC (Pharmacological activity); PKT (Pharmacokinetics); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(glutamate-modifying enzymes, cofactors, and glutamate synthesizing enzyme inhibitors for protecting neuronal tissue from damage induced by elevated glutamate levels)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 24567-12-2 HCPLUS

CN Butanedioic acid, oxo-, sodium salt (9CI) (CA INDEX NAME)



●x Na

L102 ANSWER 26 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2003:905034 HCPLUS

DOCUMENT NUMBER: 140:169630

TITLE: Dietary supplements containing collagen hydrolyzate, Aloe vera, hydroxycitric acid, L-carnitine and water for weight loss

## levels

INVENTOR(S): Teichberg, Vivian I.  
 PATENT ASSIGNEE(S): Yeda Research and Development Co. Ltd., Israel  
 SOURCE: PCT Int. Appl., 100 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 2004012762                                                                                                                                                                                                                                                                                                                                                                         | A2   | 20040212 | WO 2003-IL634   | 20030731   |
| WO 2004012762                                                                                                                                                                                                                                                                                                                                                                         | A3   | 20040617 |                 |            |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                 |            |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                    |      |          |                 |            |
| CA 2494348                                                                                                                                                                                                                                                                                                                                                                            | AA   | 20040212 | CA 2003-2494348 | 20030731   |
| AU 2003247143                                                                                                                                                                                                                                                                                                                                                                         | A1   | 20040223 | AU 2003-247143  | 20030731   |
| EP 1524989                                                                                                                                                                                                                                                                                                                                                                            | A2   | 20050427 | EP 2003-766600  | 20030731   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK                                                                                                                                                                                                                                                         |      |          |                 |            |
| US 2006024284                                                                                                                                                                                                                                                                                                                                                                         | A1   | 20060202 | US 2005-522415  | 20050126   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                |      |          | US 2002-399708P | P 20020801 |
|                                                                                                                                                                                                                                                                                                                                                                                       |      |          | US 2002-430689P | P 20021204 |
|                                                                                                                                                                                                                                                                                                                                                                                       |      |          | WO 2003-IL634   | W 20030731 |

AB The invention discloses a method for reducing extracellular brain glutamate levels. The method comprises administering to a subject in need thereof a therapeutically effective amount of an agent capable of reducing blood glutamate levels thereby reducing extracellular brain glutamate levels. The methodol. of the invention uses glutamate-modifying enzymes, cofactors of these enzymes, and glutamate synthesizing enzyme inhibitors.

IC ICM A61K038-43  
 ICS A61K038-44; A61K038-45; A61K031-19

CC 1-11 (Pharmacology)

IT Meningitis  
 (bacterial; glutamate-modifying enzymes, cofactors, and glutamate synthesizing enzyme inhibitors for protecting neuronal tissue from damage induced by elevated glutamate levels)

IT Mental and behavioral disorders  
 (dementia; glutamate-modifying enzymes, cofactors, and glutamate synthesizing enzyme inhibitors for protecting neuronal tissue from damage induced by elevated glutamate levels)

IT Alzheimer's disease  
 Anti-Alzheimer's agents  
 Anticonvulsants  
 Antiglaucoma agents  
 Brain  
 Brain, disease  
 Cerebrospinal fluid  
 Drug delivery systems  
 Drug interactions  
 Epilepsy

barrier dysfunction, ileal mucosal hyperpermeability, **bacterial translocation**, hepatocellular injury, iNOS induction, NO synthesis or pro-inflammatory cytokine in mouse)

IT Intestine  
(epithelium; EP pretreatment provide durable protection against LPS-induced gut barrier dysfunction, ileal mucosal hyperpermeability, **bacterial translocation**, hepatocellular injury, iNOS induction, NO synthesis or pro-inflammatory cytokine in mouse)

IT Injury  
(hepatic; EP pretreatment provide durable protection against LPS-induced gut barrier dysfunction, ileal mucosal hyperpermeability, **bacterial translocation**, hepatocellular injury, iNOS induction, NO synthesis or pro-inflammatory cytokine in mouse)

IT Liver, disease  
(injury; EP pretreatment provide durable protection against LPS-induced gut barrier dysfunction, ileal mucosal hyperpermeability, **bacterial translocation**, hepatocellular injury, iNOS induction, NO synthesis or pro-inflammatory cytokine in mouse)

IT Epithelium  
(intestinal; EP pretreatment provide durable protection against LPS-induced gut barrier dysfunction, ileal mucosal hyperpermeability, **bacterial translocation**, hepatocellular injury, iNOS induction, NO synthesis or pro-inflammatory cytokine in mouse)

IT 113-24-6, Sodium pyruvate  
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(EP pretreatment in mouse provides durable protection against some of deleterious effect of LPS or pro-inflammatory cytokines and decreases LPS-induced NO synthesis more effectively than treatment with sodium pyruvate)

IT 113-24-6, Sodium pyruvate  
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(EP pretreatment in mouse provides durable protection against some of deleterious effect of LPS or pro-inflammatory cytokines and decreases LPS-induced NO synthesis more effectively than treatment with sodium pyruvate)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 25 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:120743 HCPLUS

DOCUMENT NUMBER: 140:157478

TITLE: Methods and compositions using glutamate-modifying enzymes, cofactors of these enzymes, and glutamate synthesizing enzyme inhibitors for protecting neuronal tissue from damage induced by elevated glutamate



L102 ANSWER 24 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:292409 HCPLUS

DOCUMENT NUMBER: 141:307208

TITLE: Ethyl pyruvate provides durable protection against inflammation-induced intestinal epithelial barrier dysfunction

AUTHOR(S): Sappington, Penny L.; Fink, Matthew E.; Yang, Runkuan; Delude, Russell L.; Fink, Mitchell P.

CORPORATE SOURCE: Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA

SOURCE: Shock (2003), 20(6), 521-528

CODEN: SAGUAI; ISSN: 1073-2322

PUBLISHER: Lippincott Williams & Wilkins

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Et pyruvate (EP) has been shown to be an effective anti-inflammatory agent. Herein, we sought to test the following hypotheses: (1) the pharmacol. effects of EP persist after cells have been exposed to the compound *in vitro*, even if the cultures are washed to minimize the amount of EP that is retained in the media; (2) the pharmacol. effects of EP persist *in vivo*, even after waiting a prolonged period (i.e., 6 h) after the last dose of the compound; and (3) the *in vivo* pharmacol. effects of EP are distinct from those of the closely related compound, sodium pyruvate. Incubation of Caco-2 human enterocyte-like monolayers with cytomix, a mixture of interleukin-1 $\beta$ , interferon- $\gamma$ , and tumor necrosis factor, increased permeability to the fluorescent macromol., FITC-labeled Dextran (mol wt 4,000 Da). Co-incubation of the cells with 5 mM EP ameliorated cytomix-induced hyperpermeability and induction of iNOS mRNA expression. EP was associated with similar pharmacol. effects when cells were pre-incubated with the compound for 24 h prior and then washed extensively prior to adding the cytokine cocktail. Injecting C57BI/6 mice with lipopolysaccharide (LPS) resulted in gut barrier dysfunction and hepatocellular injury. Although equivalent doses of both EP and sodium pyruvate ameliorated these phenomena, EP was more efficacious than pyruvate. Pretreatment with EP ameliorated the deleterious effects of LPS, even when the duration between the last dose of EP and the endotoxic challenge was 6 h. We conclude that EP provides durable protection against some of the deleterious effects of LPS or pro-inflammatory cytokines.

CC 1-7 (Pharmacology)

IT Lipopolysaccharides

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)  
(EP pretreatment protect against LPS-induced ileal mucosal hyperpermeability, bacterial translocation, hepatocellular injury, iNOS induction, NO synthesis in mouse better than sodium pyruvate)

IT Human

Liver

(EP pretreatment provide durable protection against LPS-induced gut

10/66

Handy 10/643080

09/01/2006

CMF C5 H6 O5



CM 2

CRN 70-26-8  
CMF C5 H12 N2 O2

Absolute stereochemistry.



RN 52009-14-0 HCPLUS  
CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

RN 72087-40-2 HCPLUS  
CN L-Arginine, mono(4-methyl-2-oxopentanoate) (9CI) (CA INDEX NAME)

CM 1

CRN 816-66-0  
CMF C6 H10 O3



CM 2

CRN 74-79-3  
CMF C6 H14 N4 O2

Absolute stereochemistry.

7439-96-5, Manganese, biological studies 7439-98-7, Molybdenum, biological studies 7440-09-7, Potassium, biological studies 7440-23-5, Sodium, biological studies 7440-47-3, Chromium, biological studies 7440-50-8, Copper, biological studies 7440-66-6, Zinc, biological studies 7440-70-2, Calcium, biological studies 7553-56-2, Iodine, biological studies 7723-14-0, Phosphorus, biological studies 7782-49-2, Selenium, biological studies 8059-24-3, Vitamin B6 9050-36-6, Maltodextrin 10284-63-6, Inzitol 10417-94-4, Eicosapentaenoic acid 11103-57-4, Vitamin A 12001-76-2, Vitamin B 12001-79-5, Vitamin K 14265-44-2, Phosphate, biological studies 16887-00-6, Chloride, biological studies 34414-83-0, Ornithine  $\alpha$ -ketoglutarate 52009-14-0, Calcium pyruvate 55399-93-4 56038-13-2, Splenda 72087-40-2

RL: FFD (Food or feed use); THU (Therapeutic use);

BIOL (Biological study); USES (Uses)

(agglomerated granular protein-rich nutritional supplement)

IT 57-00-1, Creatine 127-17-3D, Pyruvic acid, derivs. 4151-33-1, Potassium pyruvate 34414-83-0, Ornithine  $\alpha$ -ketoglutarate 52009-14-0, Calcium pyruvate 72087-40-2

RL: FFD (Food or feed use); THU (Therapeutic use);

BIOL (Biological study); USES (Uses)

(agglomerated granular protein-rich nutritional supplement)

RN 57-00-1 HCAPLUS

CN Glycine, N-(aminoiminomethyl)-N-methyl- (9CI) (CA INDEX NAME)



RN 127-17-3 HCAPLUS

CN Propanoic acid, 2-oxo- (9CI) (CA INDEX NAME)



RN 4151-33-1 HCAPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 34414-83-0 HCAPLUS

CN L-Ornithine, 2-oxopentanedioate (9CI) (CA INDEX NAME)

CM 1

CRN 328-50-7

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW  
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

AU 2003287150 A1 20040504 AU 2003-287150 20031015

PRIORITY APPLN. INFO.: US 2002-271239 A 20021015  
WO 2003-US32646 W 20031015

AB An agglomerated granular protein-rich nutritional supplement comprises a mixture of: 13-100 percent by weight edible food proteins; 0-57 percent by weight edible carbohydrates; 0-10 percent by weight edible fats; 0-15 percent by weight

edible dietary vitamins and minerals; 0-78 percent by weight edible amino acids; 0-10 percent by weight edible plant exts., and up to 4 percent by weight chondroitin sulfate, where the nutritional supplement is agglomerated and granulated in an oral unit dosage form that is directly absorbable onto the tongue or rapidly dissolvable in an aqueous liquid Specific formulations

of

the supplement are disclosed, for use by specific groups of individuals. A method of supplementing the nutritional intake of individuals engaged in bodybuilding and protein supplementation, meal replacement, exercise recovery or mass gaining, comprising orally administering a formulation of the protein-rich nutritional supplement. A method of augmenting the mental acuity and energy of humans, comprising orally administering another formulation of the protein-rich nutritional supplement. Methods also are disclosed for supplementing the nutritional intake of women, male bodybuilders, children and adolescents, and older adults. In all methods, the nutritional supplement is in an oral unit dosage form of either agglomerated granules or a rapidly dissolvable wafer and also includes a flavoring compound and an effervescing compound

IC ICM A23L001-30

INCL 426072000; 426656000

CC 17-6 (Food and Feed Chemistry)

Section cross-reference(s): 18, 63

IT 50-69-1, Ribose 50-81-7, Vitamin C, biological studies 50-99-7, Dextrose, biological studies 56-41-7, L-Alanine, biological studies 56-85-9, Glutamine, biological studies 56-85-9D, L-Glutamine, peptides containing 56-87-1, Lysine, biological studies 57-00-1, Creatine 57-48-7, Fructose, biological studies 58-08-2, Caffeine, biological studies 58-85-5, Biotin 59-30-3, Folic acid, biological studies 59-43-8, Thiamin, biological studies 59-67-6, Niacin, biological studies 60-18-4, Tyrosine, biological studies 61-90-5, L-Leucine, biological studies 63-91-2, Phenylalanine, biological studies 68-19-9, Vitamin B12 70-47-3, L-Asparagine, biological studies 72-18-4, Valine, biological studies 73-32-5, L-Isoleucine, biological studies 74-79-3, Arginine, biological studies 79-83-4, Pantothenic acid 83-88-5, Riboflavin, biological studies 98-79-3, Pyroglutamic acid 107-35-7, Taurine 108-01-0, DMAE 127-17-3D, Pyruvic acid, derivs. 146-48-5, Yohimbine 625-08-1,  $\beta$ -Hydroxy- $\beta$ -methylbutyric acid 1406-16-2, Vitamin D 1406-18-4, Vitamin E 3416-24-8, Glucosamine 4151-33-1, Potassium pyruvate 4547-24-4 6020-87-7, Creatine monohydrate 6217-54-5, Docosahexaenoic acid 7235-40-7,  $\beta$ -Carotene 7439-89-6, Iron, biological studies 7439-95-4, Magnesium, biological studies

IT Angiogenesis inhibitors  
 Antioxidants  
 (antioxidants inhibit angiogenesis through down-regulation of NOS expression and activity)

IT Reactive oxygen species  
 RL: BSU (Biological study, unclassified); BIOL (Biological study)  
 (antioxidants inhibit angiogenesis through down-regulation of NOS expression and activity)

IT 7782-44-7D, Oxygen, reactive species 77106-92-4, NAD(P)H oxidase  
 501433-35-8, Inducible nitric oxide synthase  
 RL: BSU (Biological study, unclassified); BIOL (Biological study)  
 (antioxidants inhibit angiogenesis through down-regulation of NOS expression and activity)

IT 50-02-2, Dexamethasone 113-24-6, Sodium pyruvate 315-30-0,  
 Allopurinol 498-02-2, Apocynin 2226-96-2, Tempol 7722-84-1, Hydrogen peroxide, biological studies 9001-05-2, Catalase 9054-89-1, Superoxide dismutase 34284-75-8, 4-(2-Aminoethyl) benzenesulfonyl fluoride 50903-99-6, L-NAME 141968-19-6, D-NAME  
 RL: PAC (Pharmacological activity); BIOL (Biological study)  
 (antioxidants inhibit angiogenesis through down-regulation of NOS expression and activity)

IT 113-24-6, Sodium pyruvate  
 RL: PAC (Pharmacological activity); BIOL (Biological study)  
 (antioxidants inhibit angiogenesis through down-regulation of NOS expression and activity)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 23 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2004:310653 HCPLUS  
 DOCUMENT NUMBER: 140:320327  
 TITLE: Agglomerated granular protein-rich nutritional supplement  
 INVENTOR(S): Lockwood, Christopher  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S. Pat. Appl. Publ., 16 pp.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.    | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------|------|----------|-----------------|----------|
| US 2004071825 | A1   | 20040415 | US 2002-271239  | 20021015 |
| WO 2004034986 | A2   | 20040429 | WO 2003-US32646 | 20031015 |
| WO 2004034986 | A3   | 20050120 |                 |          |



RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 22 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2004:405379 HCPLUS  
 DOCUMENT NUMBER: 140:385780  
 TITLE: Antioxidants inhibit angiogenesis in vivo through down-regulation of nitric oxide synthase expression and activity  
 AUTHOR(S): Polytarchou, Christos; Papadimitriou, Evangelia  
 CORPORATE SOURCE: Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece  
 SOURCE: Free Radical Research (2004), 38(5), 501-508  
 CODEN: FRARER; ISSN: 1071-5762  
 PUBLISHER: Taylor & Francis Ltd.  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English  
 AB Although reactive oxygen species (ROS) participate in many cellular mechanisms, only few data exist concerning their involvement in physiol. angiogenesis. The aim of the present work was to elucidate possible mechanisms through which ROS affect angiogenesis in vivo, using the model of the chicken embryo chorioallantoic membrane (CAM). Superoxide dismutase (SOD) and its membrane permeable mimetic tempol, dose dependently decreased angiogenesis and down-regulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production. The NADPH oxidase inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) and apocynin, but not allopurinol, also had a dose dependent inhibitory effect on angiogenesis and NO production in vivo. Catalase and the intracellular hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) scavenger sodium pyruvate decreased, while H<sub>2</sub>O<sub>2</sub> increased in a dose-dependent manner the number of CAM blood vessels, as well as the expression and activity of iNOS. Dexamethasone, which down-regulated NO production by iNOS and L-NAME, but not D-NAME, dose dependently decreased angiogenesis in vivo. These data suggest that antioxidants affect physiol. angiogenesis in vivo, through regulation of NOS expression and activity.  
 CC 1-8 (Pharmacology)  
 ST antioxidant angiogenesis inhibition oxidative stress NOS expression

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK  
 PRIORITY APPLN. INFO.: FR 2002-16722 A3 20021226  
                           WO 2003-FR3917 W 20031226

AB A trophic composition in an aqueous medium comprises a complex nutrition base consisting of amino acids, vitamins, trace elements, and metallic salts, the above composition excluding any cellular growth promoter, cellular or animal exts. and a therapeutic substance. The composition comprises in addition to the nutrition complex, an inhibitor of collagenase from the corneal epithelium in humans or animals, and a promoter of the synthesis of neocollagens. A pH ranging 7.3-7.5 and osmolarity ranging 300-350 milli-Osmolar is established.

IC ICM A61K121-00  
 ICS A61P027-02

CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 1

IT 50-89-5, Thymidine, biological studies 50-99-7, Glucose, biological studies 51-35-4, Hydroxyproline 52-89-1, Cysteine hydrochloride 52-90-4, Cysteine, biological studies 56-40-6, Glycine, biological studies 56-41-7, Alanine, biological studies 56-45-1, Serine, biological studies 56-84-8, Aspartic acid, biological studies 56-85-9, Glutamine, biological studies 56-86-0, Glutamic acid, biological studies 58-56-0, Pyridoxine hydrochloride 58-85-5, Biotin 59-30-3, Folic acid, biological studies 60-18-4, Tyrosine, biological studies 61-90-5, Leucine, biological studies 62-33-9, Calcium EDTA 63-68-3, Methionine, biological studies 63-91-2, Phenylalanine, biological studies 67-03-8, Thiamine hydrochloride 68-19-9, Cyanocobalamin 70-47-3, Asparagine, biological studies 72-18-4, Valine, biological studies 72-19-5, Threonine, biological studies 73-22-3, Tryptophan, biological studies 73-24-5, Adenine, biological studies 73-32-5, Isoleucine, biological studies 83-88-5, Riboflavin, biological studies 87-89-8, Inositol 98-92-0, Niacinamide 113-24-6, Sodium pyruvate 127-09-3, Sodium acetate 137-08-6, Calcium pantothenate 144-55-8, Carbonic acid monosodium salt, biological studies 147-85-3, Proline, biological studies 616-91-1, N-AcetylCysteine 645-35-2, Histidine hydrochloride 657-27-2, Lysine hydrochloride 1077-28-7, Thioctic acid 1119-34-2, Arginine hydrochloride 1344-09-8, Sodium silicate 7447-40-7, Potassium chloride, biological studies 7558-79-4, Disodium phosphate 7647-14-5, Sodium chloride, biological studies 7720-78-7, Ferrous sulfate 7733-02-0, Zinc sulfate 7757-82-6, Sodium sulfate, biological studies 7758-98-7, Copper sulfate, biological studies 7773-01-5, Manganese chloride (MnCl<sub>2</sub>) 7786-30-3, Magnesium chloride (MgCl<sub>2</sub>), biological studies 9004-61-9, Hyaluronic acid 9067-32-7, Sodium hyaluronate 10043-52-4, Calcium chloride, biological studies 11098-84-3, Ammonium molybdate 11115-67-6, Ammonium vanadate 27083-26-7, Hexamethylenebis(cyanoguanidine)-hexamethylenediamine copolymer 28757-47-3, Polyhexamethylene biguanide 32289-58-0, Polyhexanide

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (trophic composition containing amino acids and trace elements and its applications in ophthalmol.)

IT 98-92-0, Niacinamide 113-24-6, Sodium pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (trophic composition containing amino acids and trace elements and its applications in ophthalmol.)

RN 98-92-0 HCPLUS  
 CN 3-Pyridinecarboxamide (9CI) (CA INDEX NAME)

CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA  
INDEX NAME)



RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 21 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:529223 HCPLUS

DOCUMENT NUMBER: 141:76748

TITLE: A trophic composition containing amino acids and trace elements and its applications in ophthalmology

INVENTOR(S): Thorel, Jean Noel; Gatto, Hugues

PATENT ASSIGNEE(S): Fr.

SOURCE: Fr. Demande, 26 pp.

CODEN: FRXXBL

DOCUMENT TYPE: Patent

LANGUAGE: French

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                    | KIND | DATE     | APPLICATION NO. | DATE     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| FR 2849383                                                                                                                                                                                                                                                                                                                                                                    | A1   | 20040702 | FR 2002-16722   | 20021226 |
| FR 2849383                                                                                                                                                                                                                                                                                                                                                                    | B1   | 20050930 |                 |          |
| FR 2849378                                                                                                                                                                                                                                                                                                                                                                    | A1   | 20040702 | FR 2003-5370    | 20030430 |
| WO 2004060348                                                                                                                                                                                                                                                                                                                                                                 | A2   | 20040722 | WO 2003-FR3917  | 20031226 |
| WO 2004060348                                                                                                                                                                                                                                                                                                                                                                 | A3   | 20040923 |                 |          |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                 |          |
| RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                        |      |          |                 |          |
| AU 2003303611                                                                                                                                                                                                                                                                                                                                                                 | A1   | 20040729 | AU 2003-303611  | 20031226 |
| EP 1575558                                                                                                                                                                                                                                                                                                                                                                    | A2   | 20050921 | EP 2003-814501  | 20031226 |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,                                                                                                                                                                                                                                                                                                            |      |          |                 |          |

studies 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 328-42-7, Oxaloacetic acid 328-50-7 506-32-1, Arachidonic acid 600-18-0 631-66-3, Pyruvamide 759-05-7 1821-02-9 2392-63-4 2922-61-4, Lithium pyruvate 3184-35-8 3997-91-9 4151-33-1, Potassium pyruvate 15078-28-1, Nitroprusside 16947-06-1 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 33876-97-0, Sis-1 52009-14-0, Calcium pyruvate 67776-06-1, SNAP 68259-69-8 90088-56-5 145482-34-4, Manganese pyruvate 152102-61-9

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(treatment of pulmonary diseases in mammals by altering indigenous in vivo levels of nitric oxide)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(treatment of pulmonary diseases in mammals by altering indigenous in vivo levels of nitric oxide)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS

|                                                                                                                                                                                                                                                                                                                                                                                  |    |          |                 |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|-----------------|----------|
| US 2003040542                                                                                                                                                                                                                                                                                                                                                                    | A1 | 20030227 | US 2002-205353  | 20020725 |
| US 6689810                                                                                                                                                                                                                                                                                                                                                                       | B2 | 20040210 |                 |          |
| CA 2457983                                                                                                                                                                                                                                                                                                                                                                       | AA | 20030306 | CA 2002-2457983 | 20020815 |
| WO 2003017996                                                                                                                                                                                                                                                                                                                                                                    | A1 | 20030306 | WO 2002-US26060 | 20020815 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,<br>CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,<br>GM, HR, HU, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,<br>LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, OM, PH, PL, PT,<br>RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG,<br>US, UZ, VC, VN, YU, ZA, ZM, ZW |    |          |                 |          |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, BG,<br>CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,<br>PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,<br>NE, SN, TD, TG                                                                                                                                                      |    |          |                 |          |
| EP 1427402                                                                                                                                                                                                                                                                                                                                                                       | A1 | 20040616 | EP 2002-766007  | 20020815 |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK                                                                                                                                                                                                                                                     |    |          |                 |          |
| JP 2005501106                                                                                                                                                                                                                                                                                                                                                                    | T2 | 20050113 | JP 2003-522516  | 20020815 |
| US 2005197397                                                                                                                                                                                                                                                                                                                                                                    | A1 | 20050908 | US 2005-56759   | 20050211 |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                           |    |          |                 |          |
| US 2002-205353 A2 20020725                                                                                                                                                                                                                                                                                                                                                       |    |          |                 |          |
| WO 2002-US26060 A 20020815                                                                                                                                                                                                                                                                                                                                                       |    |          |                 |          |
| US 2001-313872P P 20010821                                                                                                                                                                                                                                                                                                                                                       |    |          |                 |          |
| US 2002-205354 A2 20020725                                                                                                                                                                                                                                                                                                                                                       |    |          |                 |          |
| US 2003-747963 A2 20031230                                                                                                                                                                                                                                                                                                                                                       |    |          |                 |          |

AB The present invention pertains to a method for treating a pulmonary disease state in mammals by altering indigenous in vivo levels of nitric oxide in mammalian cells. The method comprises contacting the mammalian cells with a therapeutically effective amount of a nitric oxide mediator selected from the group consisting of pyruvates, pyruvate precursors,  $\alpha$ -keto acids having four or more carbon atoms, precursors of  $\alpha$ -keto acids having four or more carbon atoms, and the salts thereof. The method further comprises contacting the mammalian cells with a therapeutic agent and a nitric oxide source selected from the group consisting of nitric oxide, nitric oxide precursors, and nitric oxide stimulators. In another embodiment, the method comprises treating a pulmonary disease state in mammals by protecting indigenous in vivo levels of nitric oxide in mammalian cells during ozone inhalation by contacting the mammalian cells with a therapeutically effective amount of a nitric oxide mediator.

IC ICM A61K031-19  
ICS A61K031-198

INCL 514557000; 514563000

CC 1-9 (Pharmacology)

IT Antibacterial agents

Antihistamines

Antiviral agents

Cystic fibrosis

Emphysema

Fungicides

Lung, disease

Sarcoidosis

Sleep apnea

(treatment of pulmonary diseases in mammals by altering indigenous in vivo levels of nitric oxide).

IT 55-63-0, Nitroglycerin 56-40-6D, Glycine, reaction with keto-acids 56-41-7D, L-Alanine, reaction with keto-acids 56-89-3D, L-Cystine, reaction with keto-acids 58-64-0, 5'-ADP, biological studies 61-90-5D, L-Leucine, reaction with keto-acids 63-91-2D, L-Phenylalanine, reaction with keto-acids 72-18-4D, L-Valine, reaction with keto-acids 73-32-5D, L-Isoleucine, reaction with keto-acids 74-79-3, L-Arginine, biological

of strontium and determination of solubility of strontium salts. The invention also

relates to the use of a strontium salt for treating a male suffering from diseases and conditions affecting metabolism and/or structural integrity of cartilage and/or bone. The invention also relates to the use of a strontium-containing compound for preventing a cartilage and/or bone condition in a subject, and for the treatment and/or prophylaxis of secondary osteoporosis.

IC ICM A61K033-24

ICS A61P019-08

CC 63-5 (Pharmaceuticals)

IT **Neoplasm**

(humoral hypercalcemia of malignancy; controlled release composition containing

strontium salt)

IT **Bone, neoplasm**

(metastasis; controlled release composition containing strontium salt)

IT **Rheumatoid arthritis**

(periarticular erosion; controlled release composition containing strontium salt)

IT 56-86-0, Glutamic acid, biological studies 141-82-2, Malonic acid, biological studies 796104-83-1

RL: **PKT (Pharmacokinetics); BIOL (Biological study)**

(controlled release composition containing strontium salt)

IT 796104-83-1

RL: **PKT (Pharmacokinetics); BIOL (Biological study)**

(controlled release composition containing strontium salt)

RN 796104-83-1 HCPLUS

CN Pentanedioic acid, 2-oxo-, strontium salt (1:1) (9CI) (CA INDEX NAME)



● Sr

L102 ANSWER 20 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:934337 HCPLUS

DOCUMENT NUMBER: 141:388710

TITLE: Method for treating pulmonary disease states in mammals by altering indigenous in vivo levels of nitric oxide

INVENTOR(S): Martin, Alain

PATENT ASSIGNEE(S): Celluar Sciences, Inc., USA

SOURCE: U.S. Pat. Appl. Publ., 12 pp., Cont.-in-part of U.S. Ser. No. 205,353.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

| PATENT NO.    | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------|------|----------|-----------------|----------|
| US 2004220265 | A1   | 20041104 | US 2003-747963  | 20031230 |

09/01/2006

TITLE: Controlled release composition containing a strontium salt and uses for treatment of bone and cartilage diseases

INVENTOR(S): Hansen, Christian; Nilsson, Henrik; Andersen, Jens E. T.

PATENT ASSIGNEE(S): Nordic Bone A/S, Den.; Osteologix A/S; Christgau, Stephan

SOURCE: PCT Int. Appl., 60 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 9

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                  | KIND | DATE     | APPLICATION NO. | DATE     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2004098617                                                                                                                                                                                                                                                                                                                                                                                                               | A2   | 20041118 | WO 2004-DK326   | 20040506 |
| WO 2004098617                                                                                                                                                                                                                                                                                                                                                                                                               | A3   | 20050331 |                 |          |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,<br>LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,<br>NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,<br>TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW            |      |          |                 |          |
| RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,<br>AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,<br>EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,<br>SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,<br>SN, TD, TG                                                                                                                                  |      |          |                 |          |
| AU 2004237437                                                                                                                                                                                                                                                                                                                                                                                                               | A1   | 20041118 | AU 2004-237437  | 20040506 |
| CA 2524603                                                                                                                                                                                                                                                                                                                                                                                                                  | AA   | 20041118 | CA 2004-2524603 | 20040506 |
| EP 1622629                                                                                                                                                                                                                                                                                                                                                                                                                  | A2   | 20060208 | EP 2004-731307  | 20040506 |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK                                                                                                                                                                                                                                                                                                        |      |          |                 |          |
| WO 2005108339                                                                                                                                                                                                                                                                                                                                                                                                               | A2   | 20051117 | WO 2005-DK307   | 20050505 |
| WO 2005108339                                                                                                                                                                                                                                                                                                                                                                                                               | A3   | 20051229 |                 |          |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,<br>NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,<br>SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,<br>ZM, ZW |      |          |                 |          |
| RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,<br>AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,<br>EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,<br>RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,<br>MR, NE, SN, TD, TG                                                                                                                          |      |          |                 |          |

| PRIORITY APPLN. INFO.: | DK 2003-691     | A 20030507 |
|------------------------|-----------------|------------|
|                        | DK 2003-1043    | A 20030708 |
|                        | DK 2003-1821    | A 20031209 |
|                        | US 2003-528409P | P 20031209 |
|                        | WO 2004-DK326   | W 20040506 |
|                        | WO 2004-DK327   | A 20040506 |
|                        | WO 2004-DK328   | A 20040506 |
|                        | DK 2004-1708    | A 20041105 |

AB The present invention relates to a controlled release pharmaceutical composition comprising a strontium salt and uses for the therapy of bone diseases. Specifically, the invention relates to preparation of crystalline salts

**Rheumatoid arthritis**

(combination treatment with strontium for prophylaxis and/or treatment of cartilage and/or bone conditions)

**IT Bone, neoplasm**

(metastasis; combination treatment with strontium for prophylaxis and/or treatment of cartilage and/or bone conditions)

IT 50-14-6, Vitamin D2 56-53-1 67-97-0, Vitamin D3 67-98-1,  
 Ethamoxypytriphetol 446-72-0, Genistein 493-08-3D, Chroman, derivs.  
 526-26-1 553-39-9, Allenolic acid 569-57-3, Chlorotrianisene  
 592-89-2, Strontium formate 911-45-5, Clomiphene 1845-11-0, Nafoxidine  
 2188-25-2 2624-43-3, Cyclophenyl 2809-21-4 5630-53-5, Tibolone  
 5863-35-4, Nitromifene citrate 7440-24-6D, Strontium, salts 7446-28-8,  
 Strontium phosphate 7783-48-4, Strontium fluoride 9002-64-6,  
 Parathyroid hormone 10042-76-9, Strontium nitrate 10101-21-0  
 10476-81-0, Strontium bromide 10476-85-4, Strontium chloride  
 10476-86-5, Strontium iodide 10540-29-1, Tamoxifen 10596-23-3  
 13451-02-0, Strontium sulfite 13470-06-9, Strontium nitrite  
 13703-84-9, Strontium borate 16067-69-9 16088-89-4 18808-42-9  
 19657-12-6 23287-50-5 27540-07-4 29870-99-3 31477-60-8,  
 Ormeloxyifene 34816-55-2, Moxestrol 40302-04-3 40391-99-9  
 40472-00-2 58429-84-8 60884-91-5 63524-05-0 66376-36-1,  
 Alendronate 68047-06-3, 4-Hydroxy-tamoxifen 71912-45-3 77599-17-8,  
 Panomifene 78994-23-7, Levormeloxifene 82413-20-5, Droloxifene  
 84449-90-1, Raloxifene 85169-08-0 86111-26-4, Zindoxyfene  
 89778-26-7, Toremifene 89987-06-4, Tiludronate 98007-99-9  
 98774-23-3, Tesmilifene 103735-76-8, erythro-MEA 105462-24-6  
 114084-78-5, Ibandronate 115767-74-3, TAT-59 116057-68-2  
 116057-75-1, Idoxifene 118072-93-8, Zoledronate 124027-29-8  
 128607-22-7 129453-61-8, ICI 182780 129612-87-9, Miproxifene  
 135459-87-9, Strontium ranelate 165536-41-4, MDL-103323 180916-16-9,  
 Lasofoxifene 182167-03-9, EM-800 190791-29-8, CP-336156 198481-32-2,  
 Bazedoxifene 278172-05-7 452304-88-0 507471-56-9  
 796104-84-2 796104-90-0 796104-92-2 796104-97-7 796842-37-0  
 796842-38-1 796963-94-5

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(combination treatment with strontium for prophylaxis and/or treatment of cartilage and/or bone conditions)

**IT 278172-05-7**

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(combination treatment with strontium for prophylaxis and/or treatment of cartilage and/or bone conditions)

**RN 278172-05-7 HCPLUS****CN Propanoic acid, 2-oxo-, strontium salt (9CI) (CA INDEX NAME)**

●1/2 Sr

L102 ANSWER 19 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2004:995988 HCPLUS  
 DOCUMENT NUMBER: 141:427989

RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

AU 2004237438 A1 20041118 AU 2004-237438 20040506

CA 2524610 AA 20041118 CA 2004-2524610 20040506

EP 1622630 A2 20060208 EP 2004-731315 20040506

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK

WO 2005108339 A2 20051117 WO 2005-DK307 20050505

WO 2005108339 A3 20051229

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

PRIORITY APPLN. INFO.: DK 2003-691 A 20030507  
DK 2003-931 A 20030620  
DK 2003-1819 A 20031209  
US 2003-528548P P 20031209  
WO 2004-DK326 A 20040506  
WO 2004-DK327 W 20040506  
WO 2004-DK328 A 20040506  
DK 2004-1708 A 20041105

AB A combination treatment, wherein a strontium-containing compound together with one or more active substances capable of reducing the incidence of bone fracture and/or increasing bone d. and/or improving healing of fractured bone and/or improving bone quality are administered for use in the treatment and/or prophylaxis of cartilage and/or bone conditions.

IC ICM A61K033-24

ICS A61K033-06; A61K031-592; A61K031-593; A61K031-663; A61K038-23; A61K038-29; A61K045-06; A61P019-08

CC 1-12 (Pharmacology)

Section cross-reference(s): 2, 63

IT Antirheumatic agents

Antitumor agents

Bone, disease

Bone resorption

Bone resorption inhibitors

Cartilage

Combination chemotherapy

Drug bioavailability

Drug delivery systems

Human

Hyperparathyroidism

Myositis

Neoplasm

Osteoarthritis

Osteomalacia

Osteoporosis

Pharmacokinetics

Prophylaxis



● 6 H<sub>2</sub>O

● 1/2 Sr

IT 278172-05-7  
 RL: PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (water-soluble strontium salts for treatment of cartilage and/or bone disorders)  
 RN 278172-05-7 HCPLUS  
 CN Propanoic acid, 2-oxo-, strontium salt (9CI) (CA INDEX NAME)



● 1/2 Sr

L102 ANSWER 18 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2004:995989 HCPLUS  
 DOCUMENT NUMBER: 142:747  
 TITLE: Combination treatment with strontium for the prophylaxis and/or treatment of cartilage and/or bone conditions  
 INVENTOR(S): Hansen, Christian; Nilsson, Henrik  
 PATENT ASSIGNEE(S): Nordic Bone A/S, Den.; Osteologix A/S; Christgau, Stephan  
 SOURCE: PCT Int. Appl., 50 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 9  
 PATENT INFORMATION:

| PATENT NO.    | KIND                                                                                                                                                                                                                                                                                                                                                                                           | DATE     | APPLICATION NO. | DATE     |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------|
| WO 2004098618 | A2                                                                                                                                                                                                                                                                                                                                                                                             | 20041118 | WO 2004-DK327   | 20040506 |
| WO 2004098618 | A3                                                                                                                                                                                                                                                                                                                                                                                             | 20050324 |                 |          |
| W:            | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |          |                 |          |

## Tooth

(water-soluble strontium salts for treatment of cartilage and/or bone disorders)

IT 40472-00-2P 41839-80-9P 74078-98-1P 303730-87-2P  
**796104-83-1P**, Strontium  $\alpha$ -ketoglutarate 796104-86-4P  
 796104-88-6P **796104-89-7P** 796104-91-1P 796104-93-3P  
**796104-99-9P** 796105-01-6P 796105-03-8P 796842-37-0P,  
 Strontium L-aspartate  
 RL: PRP (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (water-soluble strontium salts for treatment of cartilage and/or bone disorders)

IT 868-19-9 16088-89-4 135459-87-9 183133-72-4, Strontium malonate  
**278172-05-7**  
 RL: PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (water-soluble strontium salts for treatment of cartilage and/or bone disorders)

IT **796104-83-1P**, Strontium  $\alpha$ -ketoglutarate **796104-89-7P**  
**796104-99-9P**  
 RL: PRP (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (water-soluble strontium salts for treatment of cartilage and/or bone disorders)

RN 796104-83-1 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, strontium salt (1:1) (9CI) (CA INDEX NAME)



## ● Sr

RN 796104-89-7 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, strontium salt (1:1), hexahydrate (9CI) (CA INDEX NAME)

● 6 H<sub>2</sub>O

## ● Sr

RN 796104-99-9 HCPLUS  
 CN Propanoic acid, 2-oxo-, strontium salt, dodecahydrate (9CI) (CA INDEX NAME)

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,  
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR  
 WO 2005108339 A2 20051117 WO 2005-DK307 20050505  
 WO 2005108339 A3 20051229

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,  
 CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,  
 GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,  
 LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,  
 NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,  
 SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,  
 ZM, ZW

RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,  
 AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,  
 EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,  
 RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,  
 MR, NE, SN, TD, TG

US 2006122274 A1 20060608 US 2005-269289 20051107

## PRIORITY APPLN. INFO.:

|                 |             |
|-----------------|-------------|
| DK 2003-691     | A 20030507  |
| DK 2003-932     | A 20030620  |
| DK 2003-1820    | A 20031209  |
| US 2003-528442P | P 20031209  |
| WO 2004-DK326   | A 20040506  |
| WO 2004-DK327   | A 20040506  |
| WO 2004-DK328   | A 20040506  |
| DK 2004-1708    | A 20041105  |
| WO 2005-DK140   | A2 20050228 |
| WO 2005-DK401   | A2 20050617 |
| WO 2005-DK404   | A2 20050617 |

AB Compds. and pharmaceutical compns. for use in the treatment and/or prophylaxis of cartilage and/or bone conditions and for methods of treating such condition. The compds. are salts of strontium that have a water-solubility of 1-100 g/L at room temperature, especially amino acid salts of strontium

or dicarboxylic acid salts of strontium. Examples of novel water-soluble strontium salts are strontium glutamate and strontium  $\alpha$ -ketoglutarate. The present invention also relates to an improved method for preparing the strontium salt of glutamic acid. The properties and crystal structure of some of the salts were determined

IC ICM A61K033-24

ICS A61P019-08

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 1, 23

IT Bone, neoplasm

(metastasis; water-soluble strontium salts for treatment of cartilage and/or bone disorders)

IT Bone, disease

Cartilage, disease

Dentifrices

Drug bioavailability

Human

Hyperparathyroidism

Mouthwashes

Myositis

Osteoarthritis

Osteomalacia

Osteoporosis

Periodontium, disease

Polymorphism (crystal)

Rheumatoid arthritis

Solubility



● Na

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 17 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:995990 HCAPLUS

DOCUMENT NUMBER: 141:428012

TITLE: Water-soluble strontium salts for treatment of cartilage and/or bone disorders

INVENTOR(S): Hansen, Christian; Nilsson, Henrik; Andersen, Jens E. T.

PATENT ASSIGNEE(S): Nordic Bone A/S, Den.; Christgau, Stephan

SOURCE: PCT Int. Appl., 93 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 9

PATENT INFORMATION:

| PATENT NO.    | KIND                                                                                                                                                                                                                                                                                                                                                                                           | DATE     | APPLICATION NO. | DATE     |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------|
| WO 2004098619 | A2                                                                                                                                                                                                                                                                                                                                                                                             | 20041118 | WO 2004-DK328   | 20040506 |
| WO 2004098619 | A3                                                                                                                                                                                                                                                                                                                                                                                             | 20050310 |                 |          |
| W:            | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |          |                 |          |
| RW:           | BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                     |          |                 |          |
| AU 2004237439 | A1                                                                                                                                                                                                                                                                                                                                                                                             | 20041118 | AU 2004-237439  | 20040506 |
| CA 2519189    | AA                                                                                                                                                                                                                                                                                                                                                                                             | 20041118 | CA 2004-2519189 | 20040506 |
| EP 1534305    | A2                                                                                                                                                                                                                                                                                                                                                                                             | 20050601 | EP 2004-731317  | 20040506 |

Inflammation  
 Molecular association  
 Multiple sclerosis  
**Neoplasm**  
 Oxidative stress, biological  
 Parkinson's disease  
 Phage display  
 Vision disorders  
     (pyrrole compds. for disease treatment by modulation of  
     phosphodiesterase 6 subunits and binding to GTPase and quinone  
     reductase 2 and calbindin-2)  
 IT   **Angiogenesis**  
 Bone formation  
     (stimulation; pyrrole compds. for disease treatment by modulation of  
     phosphodiesterase 6 subunits and binding to GTPase and quinone  
     reductase 2 and calbindin-2)  
 IT   **Brain, disease**  
     (stroke; pyrrole compds. for disease treatment by modulation  
     of phosphodiesterase 6 subunits and binding to GTPase and quinone  
     reductase 2 and calbindin-2)  
 IT   214284-48-7   351426-86-3   533883-15-7   666714-63-2   666714-64-3  
       666714-64-3   775356-40-6   811864-57-0   811864-58-1   811864-59-2  
       811864-61-6   811864-62-7   811864-63-8   811864-64-9   811864-65-0  
       811864-66-1   811864-67-2   811864-68-3   811864-69-4   811864-70-7  
       811864-71-8   811864-72-9   811864-73-0   811864-74-1   811864-75-2  
       811864-76-3   811864-77-4   811864-78-5   811864-79-6   811864-81-0  
       811864-83-2   811864-85-4   811864-87-6   811864-88-7   811864-89-8  
       **811864-90-1**   811864-91-2   811864-92-3   811864-93-4  
       811864-94-5   811864-95-6   811864-96-7  
   RL: PAC (Pharmacological activity); THU (Therapeutic  
   use); BIOL (Biological study); USES (Uses)  
     (pyrrole compds. for disease treatment by modulation of  
     phosphodiesterase 6 subunits and binding to GTPase and quinone  
     reductase 2 and calbindin-2)  
 IT   **811864-90-1**  
   RL: PAC (Pharmacological activity); THU (Therapeutic  
   use); BIOL (Biological study); USES (Uses)  
     (pyrrole compds. for disease treatment by modulation of  
     phosphodiesterase 6 subunits and binding to GTPase and quinone  
     reductase 2 and calbindin-2)  
 RN   811864-90-1   HCAPLUS  
 CN   1,3-Dioxane-4-propanoic acid, 6-[2-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-  
   phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]ethyl]-2,2-dimethyl-  
   α-oxo-, monosodium salt, (4R,6R)- (9CI)   (CA INDEX NAME)

Absolute stereochemistry.

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                        | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 2004110998                                                                                                                                                                                                                                                                                                                                                                                     | A1   | 20041223 | WO 2004-US15444 | 20040517   |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                 |            |
| RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                    |      |          |                 |            |
| US 2004242673                                                                                                                                                                                                                                                                                                                                                                                     | A1   | 20041202 | US 2004-847897  | 20040517   |
| US 2004248972                                                                                                                                                                                                                                                                                                                                                                                     | A1   | 20041209 | US 2004-848515  | 20040517   |
| US 2004248957                                                                                                                                                                                                                                                                                                                                                                                     | A1   | 20041209 | US 2004-848521  | 20040517   |
| AU 2004247627                                                                                                                                                                                                                                                                                                                                                                                     | A1   | 20041223 | AU 2004-247627  | 20040517   |
| CA 2523808                                                                                                                                                                                                                                                                                                                                                                                        | AA   | 20041223 | CA 2004-2523808 | 20040517   |
| EP 1636183                                                                                                                                                                                                                                                                                                                                                                                        | A1   | 20060322 | EP 2004-752457  | 20040517   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK                                                                                                                                                                                                                                                                                 |      |          |                 |            |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                            |      |          | US 2003-471425P | P 20030516 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | US 2003-480289P | P 20030620 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | US 2003-480475P | P 20030620 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | US 2003-488172P | P 20030716 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | US 2003-488178P | P 20030716 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | US 2003-516610P | P 20031030 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | US 2003-516616P | P 20031030 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | US 2003-516651P | P 20031030 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |      |          | WO 2004-US15444 | W 20040517 |

OTHER SOURCE(S): MARPAT 142:69218

AB The invention provides pyrrole-containing compds. and methods of use thereof. Kits and pharmaceutical compns. comprising the pyrrole compds. of the invention are also provided. The compds. and compns. disclosed herein are preferably used in the treatment of neurodegenerative diseases, cardiovascular diseases, proliferative diseases, and visual disorders. In particular, methods and compns. for the treatment of stroke are disclosed herein. The compds. described herein are useful in the treatment of various diseases; in particular diseases in which modulation of phosphodiesterase 6, quinone reductase 2, and/or calbindin-2 is desired.

IC ICM C07D207-36  
ICS A61K031-40

CC 1-12 (Pharmacology)

IT Nerve, disease  
(peripheral, diabetic neuropathy; pyrrole compds. for disease treatment by modulation of phosphodiesterase 6 subunits and binding to GTPase and quinone reductase 2 and calbindin-2)

IT Alzheimer's disease  
Anti-Alzheimer's agents  
Anti-inflammatory agents  
Antiparkinsonian agents  
Antitumor agents  
Cardiovascular agents  
Cardiovascular system, disease  
Cytoprotective agents  
Drug screening  
Human  
Immunostimulants  
Immunostimulation

11098-84-3, Ammonium molybdate 12001-79-5, Vitamin K 15595-35-4,  
 L-Arginine.hydrochloride 22177-51-1, Adenine.hydrochloride 25265-75-2,  
 Butylene glycol 34760-60-6 36653-82-4, Cetyl alcohol 52993-54-1,  
 Menthane 61912-98-9, Insulin-like growth factor 62031-54-3, Fibroblast  
 growth factor 62229-50-9, Epidermal growth factor 83869-56-1,  
 Granulocyte macrophage colony stimulating factor 106096-92-8, Acidic FGF  
 117147-70-3, Amphiregulin 127464-60-2, Vascular endothelial growth  
 factor 143011-72-7, Granulocyte colony stimulating factor 148348-15-6,  
 Fibroblast growth factor 7

RL: COS (Cosmetic use); THU (Therapeutic use); BIOL (Biological  
 study); USES (Uses)

(skin rejuvenation and repair compns. containing cell growth rate enhancers  
 and cell protectants and penetration enhancers)

IT 98-92-0, Niacinamide 113-24-6, Sodium pyruvate

RL: COS (Cosmetic use); THU (Therapeutic use); BIOL (Biological  
 study); USES (Uses)

(skin rejuvenation and repair compns. containing cell growth rate enhancers  
 and cell protectants and penetration enhancers)

RN 98-92-0 HCPLUS

CN 3-Pyridinecarboxamide (9CI) (CA INDEX NAME)



RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 16 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2004:1127333 HCPLUS

DOCUMENT NUMBER: 142:69218

TITLE: Pyrrole compounds and uses thereof

INVENTOR(S): Lockhart, David J.; Patel, Hitesh K.; Milanov, Zdravko  
 V.; Mehta, Shamal Anil; Zarrinkar, Patrick Parvis;  
 Biggs, William H., III; Ciceri, Pietro; Fabian, Miles  
 A.; Treiber, Daniel Kelly

PATENT ASSIGNEE(S): Ambit Biosciences Corporation, USA

SOURCE: PCT Int. Appl., 142 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

Prostaglandins

Proteins

Proteoglycans, biological studies

Salts, biological studies

Tenascins

Terpenes, biological studies

Thiols, biological studies

Thrombospondins

Trace metals

Transferrins

Vitamins

Vitronectin

RL: COS (Cosmetic use); THU (Therapeutic use); BIOL (Biological study);

USES (Uses)

(skin rejuvenation and repair compns. containing cell growth rate enhancers  
and cell protectants and penetration enhancers)

IT 50-81-7, Ascorbic acid, biological studies 52-89-1, L-Cysteine hydrochloride 52-90-4, Cysteine, biological studies 56-40-6, Glycine, biological studies 56-41-7, L-Alanine, biological studies 56-45-1, L-Serine, biological studies 56-84-8, L-Aspartic Acid, biological studies 56-85-9, L-Glutamine, biological studies 56-86-0, L-Glutamic Acid, biological studies 57-55-6, Propylene glycol, biological studies 57-88-5, Cholesterol, biological studies 58-56-0, Pyridoxine hydrochloride 58-85-5, D-Biotin 59-30-3, Folic Acid, biological studies 60-18-4, L-Tyrosine, biological studies 60-33-3, Linoleic acid, biological studies 61-90-5, L-Leucine, biological studies 63-68-3, L-Methionine, biological studies 63-91-2, L-Phenylalanine, biological studies 64-17-5, Ethanol, biological studies 65-22-5, Pyridoxal hydrochloride 67-03-8, Thiamine hydrochloride 67-48-1, Choline Chloride 67-56-1, Methanol, biological studies 67-63-0, Isopropanol, biological studies 68-19-9, Vitamin B12 68-94-0, Hypoxanthine 70-18-8, Glutathione, biological studies 70-47-3, L-Asparagine, biological studies 71-23-8, Propanol, biological studies 72-18-4, L-Valine, biological studies 72-19-5, L-Threonine, biological studies 73-22-3, L-Tryptophan, biological studies 73-32-5, L-Isoleucine, biological studies 76-22-2, Camphor 79-83-4, D-Pantothenic Acid 83-88-5, Riboflavin, biological studies 87-89-8, MyoInositol 98-92-0, Niacinamide 110-60-1, Putrescine 111-87-5, Octyl alcohol, biological studies 112-30-1, Decyl alcohol 112-53-8, Lauryl alcohol 112-80-1, Oleic acid, biological studies 112-92-5, Stearyl alcohol 113-24-6, Sodium pyruvate 127-09-3, Sodium acetate 134-03-2, Sodium ascorbate 137-08-6, Calcium D-pantothenate 143-28-2, Oleyl alcohol 144-55-8, Sodium bicarbonate, biological studies 147-85-3, L-Proline, biological studies 151-21-3, Sodium dodecylsulfate, biological studies 289-95-2D, Pyrimidine, derivs. 302-79-4, Tretinoin 303-98-0, Coenzyme Q 10 1007-42-7, L-Histidine hydrochloride 1200-22-2, Lipoic acid 1344-09-8, Sodium silicate 1406-18-4, Vitamin E 7235-40-7,  $\beta$ -Carotene 7365-45-9, HEPES 7447-40-7, Potassium chloride, biological studies 7558-79-4, Dibasic sodium phosphate 7558-80-7, Sodium phosphate monobasic 7647-14-5, Sodium chloride, biological studies 7718-54-9, Nickel chloride, biological studies 7720-78-7, Ferrous sulfate 7733-02-0, Zinc sulfate 7758-11-4, Potassium phosphate dibasic 7758-98-7, Copper sulfate, biological studies 7772-99-8, Tin chloride, biological studies 7778-77-0, Potassium phosphate monobasic 7782-49-2, Selenium, biological studies 7785-87-7, Manganese sulfate 9002-72-6, Somatotropin 9004-10-8, Insulin, biological studies 9004-61-9, Hyaluronic acid 9005-65-6, Polysorbate 80 9041-08-1, Heparin-Sodium 9067-32-7, Sodium hyaluronate 10098-89-2, L-Lysine hydrochloride 10102-18-8, Sodium selenite 10421-48-4, Ferric nitrate 11096-26-7, Erythropoietin

|                 |             |
|-----------------|-------------|
| US 2001-313313P | P 20010818  |
| US 2001-313314P | P 20010818  |
| US 2002-222949  | A2 20020816 |
| US 2001-313306  | A2 20010818 |
| US 2001-313307  | A2 20010818 |
| US 2001-313313  | A2 20010818 |
| US 2001-313314  | A2 20010818 |

AB The present invention provides compns. for the repair of mammalian skin. The compns. contain cell growth enhancers to increase the growth rate of skin cells, stimulators of cell growth enhancers, nutrients to support log phase growth of skin cells, cell protectors to protect growing cells and enhanced cellular activity, antioxidants to protect rejuvenated cells, extracellular matrix proteins, stimulators of extracellular matrix proteins, and penetration enhancers. The compns. of the present invention are effective for repairing and rejuvenating mammalian skin, such that aging skin treated with the compns. has a significant reduction in the number

of fine lines and wrinkles in the skin. The compns. are also effective for promoting the healing of skin that has suffered a wound, such as a sunburn or abrasion, and for promoting the growth of hair on the scalp.

IC ICM A61K038-19

ICS A61K031-728

INCL 424085100; 514474000; 435404000; 514054000

CC 62-4 (Essential Oils and Cosmetics)

Section cross-reference(s): 63

IT Alcohols, biological studies

Angiogenic factors

Antibodies and Immunoglobulins

Cadherins

Carbohydrates, biological studies

Castor oil

Cell adhesion molecules

Cocoa butter

Coconut oil

Collagens, biological studies

Cytokines

Disaccharides

Elastins

Fatty acids, biological studies

Fibroin

Fibronectins

Glycerides, biological studies

Glycols, biological studies

Growth factors, animal

Hemopoietins

Integrins

Keratins

Laminins

Linseed oil

Lipids, biological studies

Lipoproteins

Minerals, biological studies

Monosaccharides

Nucleosides, biological studies

Paraffin oils

Peptides, biological studies

Peptones

Phospholipids, biological studies

Platelet-derived growth factors

Polysaccharides, biological studies



## ● Na

RN 71686-01-6 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, calcium salt (1:1) (9CI) (CA INDEX NAME)



## ● Ca

RN 86248-59-1 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, calcium salt (2:1) (9CI) (CA INDEX NAME)



## ● 1/2 Ca

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 15 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:983 HCPLUS  
 DOCUMENT NUMBER: 142:79607  
 TITLE: Compositions and methods for skin rejuvenation and repair  
 INVENTOR(S): Jain, Deepak  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S. Pat. Appl. Publ., 18 pp., Cont.-in-part of U.S.  
 Ser. No. 222,949.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 2  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE       |
|------------------------|------|----------|-----------------|------------|
| US 2004265268          | A1   | 20041230 | US 2004-821427  | 20040409   |
| US 2003068297          | A1   | 20030410 | US 2002-222949  | 20020816   |
| PRIORITY APPLN. INFO.: |      |          | US 2001-313306P | P 20010818 |
|                        |      |          | US 2001-313307P | P 20010818 |

|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |          |                  |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|------------|
| WO 2005002567                                                                                                                                                                                                                                                                                                                                                                                     | A1                                                                                                                                                                                                                                                                             | 20050113 | WO 2004-SE1062   | 20040701   |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW | RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG |          |                  |            |
| AU 2004254154                                                                                                                                                                                                                                                                                                                                                                                     | A1                                                                                                                                                                                                                                                                             | 20050113 | AU 2004-254154   | 20040701   |
| CA 2530863                                                                                                                                                                                                                                                                                                                                                                                        | AA                                                                                                                                                                                                                                                                             | 20050113 | CA 2004-2530863  | 20040701   |
| EP 1638546                                                                                                                                                                                                                                                                                                                                                                                        | A1                                                                                                                                                                                                                                                                             | 20060329 | EP 2004-749100   | 20040701   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |          |                  |            |
| BR 2004012118                                                                                                                                                                                                                                                                                                                                                                                     | A                                                                                                                                                                                                                                                                              | 20060815 | BR 2004-12118    | 20040701   |
| CN 1822827                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                                                                                                                                                                                                              | 20060823 | CN 2004-80020322 | 20040701   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                |          | SE 2003-1947     | A 20030701 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |          | US 2003-481301P  | P 20030828 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |          | WO 2004-SE1062   | W 20040701 |

AB A method is disclosed for improving adsorption of amino acids in vertebrates, including mammals and birds. The method comprises administering  $\alpha$ -ketoglutaric acid (AKG), AKG derivs. or metabolites, AKG analogs or mixts. thereof, in a sufficient amount and/or at a sufficient rate to enable the desired effect. Also disclosed is a method for decreasing adsorption of glucose in vertebrates, including mammals and birds, using AKG, AKG derivs. or metabolites, AKG analogs or mixts. thereof, for decreasing glucose adsorption. Further disclosed are compns. for use in treatment.

IC ICM A61K031-198

ICS A23L001-305

CC 1-10 (Pharmacology)

Section cross-reference(s): 18, 63

IT Autoimmune disease

(insulin-dependent diabetes mellitus;  $\alpha$ -ketoglutaric acid for treatment of malnutrition and high plasma glucose)

IT Diabetes mellitus

(insulin-dependent;  $\alpha$ -ketoglutaric acid for treatment of malnutrition and high plasma glucose)

IT Diabetes mellitus

(non-insulin-dependent;  $\alpha$ -ketoglutaric acid for treatment of malnutrition and high plasma glucose)

IT 70-26-8, L-Ornithine 328-50-7D,  $\alpha$ -Ketoglutaric acid, derivs. and salts 9012-76-4, Chitosan 22202-68-2 71686-01-6  
86248-59-1

RL: AGR (Agricultural use); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
( $\alpha$ -ketoglutaric acid for treatment of malnutrition and high plasma glucose)

IT 22202-68-2 71686-01-6 86248-59-1

RL: AGR (Agricultural use); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
( $\alpha$ -ketoglutaric acid for treatment of malnutrition and high plasma glucose)

RN 22202-68-2 HCAPLUS

CN Pentanedioic acid, 2-oxo-, monosodium salt (9CI) (CA INDEX NAME)

migration and cGMP accumulation. In conclusion, superoxide and hydrogen peroxide seem to play a significant role in promoting endothelial cell proliferation and migration, possibly through regulation of eNOS activity.

CC 1-8 (Pharmacology)  
 Section cross-reference(s) : 7  
 ST antioxidant endothelium eNOS downregulation superoxide angiogenesis  
 IT Angiogenesis inhibitors  
 Antioxidants  
 Human  
 Radical scavengers  
 (antioxidants inhibit human endothelial cell functions through down-regulation of eNOS activity)  
 IT Phosphorylation, biological  
 (protein; antioxidants inhibit human endothelial cell functions through down-regulation of eNOS activity)  
 IT 50-02-2, Dexamethasone 113-24-6, Sodium pyruvate 315-30-0, Allopurinol 498-02-2, Apocynin 2226-96-2, Tempol 7722-84-1, Hydrogen peroxide, biological studies 9001-05-2, Catalase 9054-89-1, Superoxide dismutase 34284-75-8, 4-(2-Aminoethyl)-benzenesulfonyl fluoride 41443-28-1 50903-99-6, L-NAME 141968-19-6 159190-44-0 180001-34-7, 1400W 214358-33-5  
 RL: PAC (Pharmacological activity); BIOL (Biological study)  
 (antioxidants inhibit human endothelial cell functions through down-regulation of eNOS activity)  
 IT 113-24-6, Sodium pyruvate  
 RL: PAC (Pharmacological activity); BIOL (Biological study)  
 (antioxidants inhibit human endothelial cell functions through down-regulation of eNOS activity)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 32 THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 14 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:29193 HCPLUS  
 DOCUMENT NUMBER: 142:107416  
 TITLE: Use of  $\alpha$ -ketoglutaric acid for the treatment of malnutrition or high plasma glucose condition  
 INVENTOR(S): Pierzynowski, Stefan G.; Burrin, Douglas  
 PATENT ASSIGNEE(S): Essentys AB, Swed.  
 SOURCE: PCT Int. Appl., 40 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

(atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints as promising approach for modeling antibacterial activity)

IT 21085-60-9, Calcium mesoxalate  
 RL: PAC (Pharmacological activity); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints as promising approach for modeling antibacterial activity)

RN 21085-60-9 HCAPLUS

CN Propanedioic acid, oxo-, calcium salt (1:1) (9CI) (CA INDEX NAME)



● Ca

REFERENCE COUNT: 91 THERE ARE 91 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 13 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:184694 HCAPLUS  
 DOCUMENT NUMBER: 142:403842  
 TITLE: Antioxidants inhibit human endothelial cell functions through down-regulation of endothelial nitric oxide synthase activity  
 AUTHOR(S): Polytarchou, Christos; Papadimitriou, Evangelia  
 CORPORATE SOURCE: Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR 26504, Greece  
 SOURCE: European Journal of Pharmacology (2005), 510(1-2), 31-38  
 CODEN: EJPHAZ; ISSN: 0014-2999  
 PUBLISHER: Elsevier B.V.  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English  
 AB We have recently shown that superoxide and hydrogen peroxide are putative inducers of angiogenesis in vivo, possibly through up regulation of inducible nitric oxide synthase (NOS) and increased production of endogenous nitric oxide (NO). The aim of the present work was to elucidate the implication of reactive oxygen species in endothelial cell functions, using cultures of human umbilical vein endothelial cells (HUVEC). Superoxide dismutase (SOD), tempol (membrane permeable SOD mimetic) and the NADPH oxidase inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride and apocynin, but not allopurinol, inhibited HUVEC proliferation and migration, as well as activity of endothelial NOS (eNOS). Catalase and the intracellular hydrogen peroxide scavenger sodium pyruvate decreased, while hydrogen peroxide increased HUVEC proliferation, migration and activity of eNOS. Dexamethasone induced the proliferation and migration of HUVEC and activated eNOS. N<sup>ω</sup>-nitro-L-arginine Me ester (L-NAME), but not N<sup>ω</sup>-nitro-D-arginine Me ester, decreased endothelial cell functions and reversed the effects of dexamethasone and hydrogen peroxide. N 5-(1-iminoethyl)-L-ornithine dihydrochloride, but not the inducible NOS specific inhibitor N-[3-(aminomethyl)phenyl]methyl]-ethanimidamide dihydrochloride also decreased endothelial cell functions, similarly to L-NAME. The guanylate cyclase inhibitor 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one inhibited HUVEC proliferation in a concentration-dependent manner and completely reversed hydrogen peroxide-induced proliferation.

Bromchlorophene 15500-66-0, Pancuronium bromide 15574-96-6, Pizotifen 15585-71-4, Brometenamine 15590-00-8, Etamocycline 15599-51-6, Apicycline 15599-52-7, Broquinaldol 15686-71-2, Cefalexin 15687-37-3, Naftazone 15825-70-4, Nitromannitol 15876-67-2, Distigmine bromide 15949-72-1, Prazocillin 15997-76-9, Nonaperone 16029-28-0, Binoxol 16051-77-7, Isosorbide mononitrate 16255-48-4, Chloramphenicol stearate 16259-34-0, Penimocycline 16462-67-2, Plicatin 16590-41-3, Naltrexone 16755-07-0, Showdomycin 16806-29-4, Sulfathiadiazole 16822-88-1, Flutonidine hydrochloride 16846-24-5, Josamycin 16915-79-0, Mequidox 17090-79-8, Monensin 17169-60-7, Ferroglycine sulfate 17196-88-2, Vincofos 17243-38-8, Azidocillin 17243-56-0, Visnafylline, biological studies 17287-03-5, Trimethylsulfonium hydroxide 17289-49-5, 4,5,6,7-Tetrahydro-2-methyl-3-(methylamino)-2H-indazole 17311-31-8, Dioxidine 17411-19-7, Dicarbine 17433-31-7, Azapicyl 17505-25-8, Furamizole 17554-97-1, Rifamycin 10 17615-73-5, Sulfamoyldapsone 17630-39-6 17630-44-3, Alcabrol 17650-86-1, Amicetin 17692-22-7, Metizoline 17773-10-3 17784-12-2, Sulfacitine 17892-25-0 17902-23-7, Tegafur 17924-92-4, Zearalenone 18174-58-8, Pipoxolan hydrochloride 18323-44-9, Clindamycin 18329-77-6, SOG-18 18524-67-9, Mycobacillin 18607-98-2, Acetylsulfisomezole 18715-92-9, Epihetacillin 18857-59-5, Nifurmazole 18883-66-4, Streptozotocin 19077-97-5, Sulgin ASG 19246-24-3, Telomycin 19260-97-0 19388-87-5, Taurolidine 19561-70-7, Nifuratrone 19562-30-2, Piromidic acid 19703-86-7, LU 2443 19721-56-3, Pikromycin 19879-06-2, Granaticin 20167-22-0, Ag 307 20186-12-3 20406-60-4, Mipimazole 20537-88-6, Amifostine 20585-97-1, Everninocin 20619-89-0, Polyurene 20724-76-9, WR 2823 21085-60-9, Calcium mesoxalate 21256-23-5, Mebenformin 21299-86-5, PHQ-A 33 21306-55-8, Amformin 21345-23-3 21356-62-7, Esperin 21411-53-0, Virginiamycin M1 21416-67-1, Razoxane 21440-97-1, Brofoxine 21512-15-2, Citenazone 21590-92-1, Etomidoline 21638-36-8, Nifurimide 21649-57-0, Carfecillin sodium 21662-79-3, Sulfacecole 21702-93-2, Cloguanamil 21802-37-9, Caerulomycin 21831-01-6, Mebroxine furoate 21840-08-4, Melarsenoxyd 21879-81-2, Bostrycin 21884-44-6, Luteoskyrin 22013-23-6, Metoxepin 22103-14-6, Bufeniode 22232-54-8, Carbimazole 22232-57-1, Racefemine 22232-73-1, Amedalin hydrochloride 22259-30-9, Formetanate 22332-07-6, Hybrimycin A1 22350-90-9, Dactylarin 22484-64-6 22561-27-9, Cephachlomezine 22587-15-1, MSD-819 22609-73-0, Niludipine 22775-12-8, Dimetofrine hydrochloride 22839-47-0, Aspartame 22862-76-6, Anisomycin 22933-72-8, Salazodine 23152-29-6, Virginiamycin S1 23155-02-4, Fosfomycin 23210-58-4, Ifenprodil tartrate 23239-36-3, Deterenol hydrochloride 23239-41-0, Cefacetriile sodium 23239-78-3, Pridine hydrochloride 23247-36-1, Nafomine malate 23256-09-9, Closiramine aceturate 23256-23-7, Sulfatroxazole 23256-39-5, Tyformin hydrochloride 23307-72-4 23315-05-1, Elaiomycin 23319-48-4 23384-69-2 23413-66-3, DS-30 23444-86-2, Suncillin sodium 23465-76-1, Caroverine 23537-16-8, Rugulosin 23567-67-1, Abbott-31699 23593-08-0, Clonazoline hydrochloride 23668-90-8, Thiazanol 23696-28-8, Olaquindox 23780-36-1, Methindione 23943-03-5 24168-96-5, Isoconazole nitrate 24209-51-6, Cephanone 24292-47-5, Chloramphenicol Stearoylglycolate 24353-88-6, Lorbamate 24356-60-3, Cefapirin sodium 24397-89-5, Actinobolin 24466-64-6, Bismuth Cevitamate 24535-67-9, Anisyl butamide 24579-08-6 24632-47-1, Nifurpipone 24701-51-7, Demexiptiline 24729-96-2, Clindamycin phosphate 24916-50-5, Foromacidin A 24916-52-7, Spiramycin 3 25029-11-2, Cetovex 25129-81-1 25129-91-3, Albocycline 25238-82-8, Hexatolin 25389-94-0, Kanamycin sulfate 25395-22-6, O-Carbamoylphenoxyacetic acid  
RL: PAC (Pharmacological activity); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

PUBLISHER: Elsevier Ltd.  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English

AB The Topol. Mol. Computer Design (TOMOCOMD-CARDD) approach has been introduced for the classification and design of antimicrobial agents using computer-aided mol. design. For this propose, atom, atom-type, and total quadratic indexes have been generalized to codify chemical structure information. In this sense, stochastic quadratic indexes have been introduced for the description of the mol. structure. These stochastic fingerprints are based on a simple model for the intramol. movement of all valence-bond electrons. In this work, a complete data set containing 1006 antimicrobial agents is collected and presented. Two structure-based antibacterial activity classification models have been generated. The models (including nonstochastic and stochastic indexes) classify correctly more than 90% of 1525 compds. in training sets. These models permit the correct classification of 92.28% and 89.31% of 505 compds. in an external test sets. The approach, also, satisfactorily compares with respect to nine of the most useful models for antimicrobial selection reported to date. Finally, a virtual screening of 87 new compds. reported in the anti-infective field with antibacterial activities is developed showing the ability of the models to identify new leads as antibacterial.

CC 1-3 (Pharmacology)

Section cross-reference(s): 2

IT Structure-activity relationship

(bactericidal; atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints as promising approach for modeling antibacterial activity)

IT 10118-90-8, Minocycline 10161-33-8, Trenbolone 10173-02-1  
 10183-64-9, Decinin 10250-82-5, Bromocholine 10309-37-2, Drupanol  
 10329-60-9, Dioxifedrine 10382-35-1, Triostin C 10433-71-3,  
 Tiametonium iodide 10447-38-8 10457-66-6, Geroquinol 10489-23-3,  
 Tioctilate 10539-19-2, Moxaverine 10571-59-2, Nicoclionate  
 10572-34-6, Cicliomenol 10593-85-8, Homocysteine thiolactone  
 10605-24-0, Nitral 11005-98-4, Antibiotic A-16316-C 11011-72-6,  
 Bluensomycin 11013-76-6, Gramicidin J2 11015-47-7, Neotelomycin  
 11033-34-4, Steffimycin 11048-15-0, Kalafungin 11054-70-9, Lasalocid  
 11076-50-9, Tetramycin 11111-23-2, Lividomycin 11118-72-2, Antimycin  
 12040-46-9, Azoseptyl-T 12286-76-9, Ferric fructose 12318-51-3,  
 Feramide 12628-08-9, Arsylene 12650-69-0, Mupirocin 12704-90-4,  
 Antibiotic X-5108 12764-54-4, Olefincin 12772-35-9, Butirosin  
 13010-46-3 13010-48-5, Malazin 13040-98-7, Guamecycline hydrochloride  
 13052-92-1, Anaesthaminol 13058-67-8, Lucimycin 13061-27-3  
 13062-59-4, Solution A 40 13153-65-6, Nitrodimethylin 13185-22-3,  
 Furazonal 13254-33-6, Carpronium chloride 13278-80-3,  
 Bis(ethylmercury)sulfide 13292-46-1, Rifampicin 13369-07-8,  
 Sulfatrozole 13402-51-2, Tibenzate 13410-72-5, Nitrofen 13411-16-0,  
 Nifurpirinol 13434-13-4, Actinonin 13448-22-1, Clorotepine  
 13532-12-2, Azoseptyl-K 13583-21-6, Norclostebol 13636-18-5, Fendiline  
 hydrochloride 13754-56-8, 9,9-Dioxopromethazine 13838-08-9,  
 Azidamfenicol 13838-16-9, Enflurane 13838-18-1, Protozide  
 13925-12-7, Myxin 13930-34-2, Clormecaine 13957-33-0, Leptodactyline  
 14008-60-7, Cresotamide 14014-70-1, Doricin 14042-43-4 14088-71-2,  
 Proclonol 14149-43-0, Trimethidinium methosulfate 14176-50-2,  
 Tiletamine hydrochloride 14286-84-1, Bencyclane fumarate 14289-25-9,  
 Diproleandomycin 14376-16-0, Sulfaloxic acid 14399-14-5,  
 Chloramphenicol cinnamate 14838-15-4, Norephedrine 14885-29-1,  
 Ipronidazole 14949-00-9, Tio-Urasin 15062-34-7, Bromothymol  
 15125-97-0 15301-48-1 15301-80-1, Oxamarin 15301-82-3, Pecocycline  
 15301-97-0, Xylocoumarol 15318-45-3, Thiamphenicol 15339-50-1,  
 Ferrotrenine 15433-28-0, Clometocillin potassium 15435-29-7,

composition suitable for enteral administration containing: 2-20 weight% digestible dissolved carbohydrates; two or more glutathione promoters selected from: 0.5-50 g/L pyruvate equivalent; 0.05-20 g/L oxaloacetate equivalent; and 0.05-5 g/L cysteine equivalent; and at least 45 weight% water.

IC ICM A61K031-70  
ICS A61K031-7004; A61K031-7016; A61K031-715; A61K038-06; A23L001-30;  
A23L001-305; A61P011-00

CC 63-6 (Pharmaceuticals)

IT **Bacteremia**  
(carbohydrate composition for treating or preventing pulmonary inflammation or acute respiratory distress syndrome)

IT **Infection**  
(viral; carbohydrate composition for treating or preventing pulmonary inflammation or acute respiratory distress syndrome)

IT 50-99-7, Glucose, biological studies 57-48-7, Fructose, biological studies 69-79-4, Maltose 77-92-9, Citric acid, biological studies 127-17-3, Pyruvic acid, biological studies 328-42-7, Oxaloacetic acid 616-91-1, N-Acetylcysteine 1200-22-2,  $\alpha$  Lipoic acid 9004-53-9D, Dextrans, derivs. 9004-54-0, Dextran, biological studies 9005-25-8D, Starch, derivs. 9050-36-6D, Maltodextrin, derivs. 52009-14-0, Calcium pyruvate  
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(carbohydrate composition for treating or preventing pulmonary inflammation or acute respiratory distress syndrome)

IT 52009-14-0, Calcium pyruvate  
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(carbohydrate composition for treating or preventing pulmonary inflammation or acute respiratory distress syndrome)

RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 12 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:244333 HCPLUS  
 DOCUMENT NUMBER: 143:307  
 TITLE: Atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints: a promising approach for modeling of antibacterial activity  
 AUTHOR(S): Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Torrens, Francisco; Martinez, Yamile; Romero-Zaldivar, Vicente; Castro, Eduardo A.  
 CORPORATE SOURCE: Department of Pharmacy, Faculty of Chemical-Pharmacy, Central University of Las Villas, Santa Clara, 54830, Cuba  
 SOURCE: Bioorganic & Medicinal Chemistry (2005), 13(8), 2881-2899  
 CODEN: BMECEP; ISSN: 0968-0896



● 1/2 Ca

L102 ANSWER 11 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:283344 HCPLUS  
 DOCUMENT NUMBER: 142:322797  
 TITLE: Carbohydrate composition and its use for the preparation of a medicament for treating or preventing pulmonary inflammation or acute respiratory distress syndrome  
 INVENTOR(S): Van Norren, Klaske; Van Hoorn, Eduard Christian; Hageman, Robert Johan Joseph; Lamb, Kelly Jane  
 N.V. Nutricia, Neth.  
 PATENT ASSIGNEE(S):  
 SOURCE: PCT Int. Appl., 22 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                       | KIND | DATE     | APPLICATION NO. | DATE       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 2005027935                                                                                                                                                                                                                                                                                                                                                                                                    | A1   | 20050331 | WO 2004-NL649   | 20040920   |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,<br>LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,<br>NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,<br>TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                 |            |
| RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,<br>AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,<br>EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,<br>SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,<br>SN, TD, TG                                                                                                                       |      |          |                 |            |
| AU 2004273758                                                                                                                                                                                                                                                                                                                                                                                                    | A1   | 20050331 | AU 2004-273758  | 20040920   |
| CA 2539364                                                                                                                                                                                                                                                                                                                                                                                                       | AA   | 20050331 | CA 2004-2539364 | 20040920   |
| EP 1663256                                                                                                                                                                                                                                                                                                                                                                                                       | A1   | 20060607 | EP 2004-774952  | 20040920   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK                                                                                                                                                                                                                                                                                             |      |          |                 |            |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                                           |      |          | EP 2003-77972   | A 20030919 |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |      |          | WO 2004-NL649   | W 20040920 |

AB One aspect of the present invention is concerned with a method of treating or preventing pulmonary inflammation as a complication ensuing from phys. trauma, bacteremia or viral infection, said method comprising enterally administering at least one or more glutathione promoters selected from: 0.3-20 g, preferably 0.5-5 g pyruvate equivalent; 0.1-5 g, preferably 0.2-2 g oxaloacetate equivalent; 0.01-1 g, preferably 0.02-0.5 g lipoic acid equivalent;  
 and at least 20 g of digestible water soluble carbohydrates, in the form of an aqueous liquid composition containing at least 10 g/L of said digestible water soluble carbohydrates. Another aspect of the invention relates to an aqueous liquid

use); BIOL (Biological study); USES (Uses)  
 (pyruvates and  $\alpha$ -keto acids for treating mammalian diseases and  
 injuries caused by overexpression of peroxynitrite)

RN 113-24-6 HCAPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCAPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS

CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]<sup>-</sup>, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)

Cardiovascular system, disease  
 Combination chemotherapy  
     **Diabetes mellitus**  
 Digestive tract, disease  
 Drug delivery systems  
 Erythema  
     **Fungicides**  
 Gastrointestinal agents  
 Human  
     Human immunodeficiency virus  
     Inflammation  
     Ischemia  
     Leukocyte  
     Multiple sclerosis  
     **Neoplasm**  
     Nervous system, disease  
     Nervous system agents  
     Pain  
         **Parkinson's disease**  
         **Psoriasis**  
         **Rheumatoid arthritis**  
     Skin, disease  
     Sunburn  
     Swelling, biological  
     Transplant and Transplantation  
     Wound  
     Wound healing promoters  
         (pyruvates and  $\alpha$ -keto acids for treating mammalian diseases and  
             injuries caused by overexpression of peroxynitrite)

IT    Brain, disease  
     (stroke; pyruvates and  $\alpha$ -keto acids for treating  
         mammalian diseases and injuries caused by overexpression of  
         peroxynitrite)

IT    Infection  
     (viral; pyruvates and  $\alpha$ -keto acids for treating  
         mammalian diseases and injuries caused by overexpression of  
         peroxynitrite)

IT    56-40-6D, Glycine,  $\alpha$ -keto acid conjugates    56-41-7D, L-Alanine,  
      $\alpha$ -keto acid conjugates    61-90-5D, L-Leucine,  $\alpha$ -keto acid  
     conjugates    63-91-2D, L-Phenylalanine,  $\alpha$ -keto acid conjugates  
     72-18-4D, L-Valine,  $\alpha$ -keto acid conjugates    73-32-5D, L-Isoleucine,  
      $\alpha$ -keto acid conjugates    113-24-6, Sodium pyruvate  
     127-17-3, Pyruvic acid, biological studies    127-17-3D, aluminum complexes  
     127-17-3D, Pyruvic acid, derivs. and salts    328-42-7, Oxaloacetic acid  
     328-50-7,  $\alpha$ -keto-Glutaric acid    600-18-0    631-66-3, Pyruvamide  
     759-05-7,  $\alpha$ -keto-Isovaleric acid    923-32-0D, Cystine, -keto acid  
     conjugates    2392-63-4    2492-75-3    2922-61-4, Lithium pyruvate  
     3184-35-8    3997-91-9    4151-33-1, Potassium pyruvate    16947-06-1  
     17686-94-1, Ammonium pyruvate    18983-79-4, Magnesium pyruvate  
     24887-16-9, Zinc pyruvate    52009-14-0, Calcium pyruvate  
     68259-69-8    90088-56-5    145482-34-4, Manganese pyruvate    152102-61-9  
     863879-42-9  
     RL: PAC (Pharmacological activity); THU (Therapeutic  
         use); BIOL (Biological study); USES (Uses)  
         (pyruvates and  $\alpha$ -keto acids for treating mammalian diseases and  
             injuries caused by overexpression of peroxynitrite)

IT    113-24-6, Sodium pyruvate    2922-61-4, Lithium pyruvate  
     4151-33-1, Potassium pyruvate    18983-79-4, Magnesium  
     pyruvate    52009-14-0, Calcium pyruvate  
     RL: PAC (Pharmacological activity); THU (Therapeutic

CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,  
 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,  
 KG, KZ, MD, RU, TJ, TM

|                        |                 |             |
|------------------------|-----------------|-------------|
| PRIORITY APPLN. INFO.: | US 2002-205354  | A2 20020725 |
|                        | US 2003-747963  | A2 20031230 |
|                        | US 2001-313871P | P 20010821  |
|                        | US 2002-205353  | A2 20020725 |
|                        | WO 2002-US26060 | A 20020815  |
|                        | US 2005-56759   | A 20050211  |

**AB** The invention provides a method for treating wounds and diseases in mammals, caused by mammalian cells involved in an inflammatory response, by altering indigenous in vivo levels of peroxynitrous acid, and salts thereof. The method comprises contacting the mammalian cells with a therapeutically effective amount of a reactive oxygen species mediator, wherein the reactive oxygen species mediator is selected from the group consisting of pyruvates, pyruvate precursors,  $\alpha$ -keto acids having four or more carbon atoms, precursors of  $\alpha$ -keto acids having four or more carbon atoms, and the salts thereof, wherein mediation of reactive oxygen species results in mediation of peroxynitrous acid. The invention further provides a pharmaceutical composition for treating wounds and diseases in mammals, caused by mammalian cells involved in an inflammatory response, by altering indigenous in vivo levels of peroxynitrous acid, and salts thereof.

IC ICM A61K031-19

INCL 514557000

CC 1-7 (Pharmacology)

Section cross-reference(s): 63

IT Infection

(bacterial; pyruvates and  $\alpha$ -keto acids for treating mammalian diseases and injuries caused by overexpression of peroxynitrite)

IT Ulcer

(diabetic; pyruvates and  $\alpha$ -keto acids for treating mammalian diseases and injuries caused by overexpression of peroxynitrite)

IT Fungi

(infection; pyruvates and  $\alpha$ -keto acids for treating mammalian diseases and injuries caused by overexpression of peroxynitrite)

IT AIDS (disease)

Alzheimer's disease

Analgesics

Angiogenesis

Angiogenesis inhibitors

Anti-AIDS agents

Anti-Alzheimer's agents

Anti-inflammatory agents

Anti-ischemic agents

Antiarthritics

Antibacterial agents

Antidiabetic agents

Antihistamines

Antioxidants

Antiparkinsonian agents

Antirheumatic agents

Antitumor agents

Antiulcer agents

Antiviral agents

Arthritis

Atherosclerosis

Cardiovascular agents

use); BIOL (Biological study); USES (Uses)  
 (application of blood volume expander in treating hemorrhagic shock)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



## ● 1/2 Ca

L102 ANSWER 10 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:985327 HCPLUS  
 DOCUMENT NUMBER: 143:260368  
 TITLE: Method and composition using pyruvates and  
 α-keto acids for treating mammalian diseases and  
 injuries caused by the overexpression of peroxynitrite  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S. Pat. Appl. Publ., 24 pp., Cont.-in-part of U.S.  
 Ser. No. 747,963.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                              | KIND | DATE     | APPLICATION NO. | DATE     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| US 2005197397                                                                                                                                                                                                                                                                                                                                                                                                                           | A1   | 20050908 | US 2005-56759   | 20050211 |
| US 2003105162                                                                                                                                                                                                                                                                                                                                                                                                                           | A1   | 20030605 | US 2002-205354  | 20020725 |
| US 2004220265                                                                                                                                                                                                                                                                                                                                                                                                                           | A1   | 20041104 | US 2003-747963  | 20031230 |
| WO 2006086643                                                                                                                                                                                                                                                                                                                                                                                                                           | A1   | 20060817 | WO 2006-US4753  | 20060210 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,<br>KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX,<br>MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,<br>SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,<br>VN, YU, ZA, ZM, ZW |      |          |                 |          |
| RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,<br>IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,                                                                                                                                                                                                                                                                                                  |      |          |                 |          |

combination of strontium-containing compound and second active substance)  
IT 278172-05-7  
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(method of improving medical treatment of pain by administering  
combination of strontium-containing compound and second active substance)  
RN 278172-05-7 HCAPLUS  
CN Propanoic acid, 2-oxo-, strontium salt (9CI) (CA INDEX NAME)



● 1/2 Sr

L102 ANSWER 9 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
ACCESSION NUMBER: 2005:1066831 HCAPLUS  
DOCUMENT NUMBER: 143:410972  
TITLE: Application of blood volume expander in treating hemorrhagic shock  
INVENTOR(S): Wang, Ziling; Zhou, Hong; Zhao, Lian; Guan, Lidong;  
Wang, Guangyi  
PATENT ASSIGNEE(S): Institute of Field Transfusion, Academy of Military Medical Sciences, Pla, Peop. Rep. China  
SOURCE: Faming Zhuanli Shengqing Gongkai Shuomingshu, 9 pp.  
CODEN: CNXXEV  
DOCUMENT TYPE: Patent  
LANGUAGE: Chinese  
FAMILY ACC. NUM. COUNT: 1  
PATENT INFORMATION:

| PATENT NO. | KIND | DATE     | APPLICATION NO.  | DATE     |
|------------|------|----------|------------------|----------|
| CN 1559391 | A    | 20050105 | CN 2004-10008486 | 20040312 |
|            |      |          | CN 2004-10008486 | 20040312 |

PRIORITY APPLN. INFO.: AB The title blood volume expander contains 0.15-2.7mol/l sodium pyruvate or calcium pyruvate as protective component and sodium chloride and dextran or hydroxyethyl starch as blood volume expanding component. This blood volume expander has improved blood volume expanding effect, can reduce heart and lung injuries caused by ischemia reperfusion, and can improve cardiovascular functions and energy metabolism

IC ICM A61K031-19  
ICS A61K047-36; A61P007-08

CC 63-6 (Pharmaceuticals)  
Section cross-reference(s): 1

IT Blood substitutes  
Human  
(application of blood volume expander in treating hemorrhagic shock)

IT 113-24-6, Sodium pyruvate 7647-14-5, Sodium chloride, biological studies 9004-54-0, Dextran, biological studies 9005-27-0, Hydroxyethyl starch 52009-14-0, Calcium pyruvate  
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(application of blood volume expander in treating hemorrhagic shock)

IT 113-24-6, Sodium pyruvate 52009-14-0, Calcium pyruvate  
RL: PAC (Pharmacological activity); THU (Therapeutic

Bone, neoplasm

Gout

Osteoarthritis

Rheumatoid arthritis

Sarcoidosis

Surgery

(pain associated with; method of improving medical treatment of pain by administering combination of strontium-containing compound and second active substance)

IT Arthritis

(psoriatic arthritis, pain associated with; method of improving medical treatment of pain by administering combination of strontium-containing compound and second active substance)

IT 50-33-9, Phenylbutazone, biological studies 50-48-6, Amitriptyline  
 50-52-2, Thioridazine 50-53-3, Thorazine, biological studies 50-78-2,  
 Aspirin 52-86-8, Haldol 53-86-1, Indomethacin 56-06-4,  
 2,4-Diamino-6-hydroxypyrimidine 57-27-2, Morphine, biological studies  
 57-42-1, Meperidine 58-33-3, Phenergan 58-38-8, Prochlorperazine  
 58-39-9, Trilafon 60-87-7, Promethazine 61-68-7, Mefenamic acid  
 69-23-8, Fluphenazine 76-42-6, Oxycodone 76-57-3, Codeine 76-99-3,  
 Methadone 77-07-6, Levorphanol 77-17-8, Normeperidine 79-17-4,  
 Aminoguanidine 84-02-6, Compazine 103-90-2, Paracetamol 113-59-7,  
 Taractan 117-89-5, Trifluoperazine 125-29-1, Hydrocodone 130-61-0,  
 Mellaryl 151-16-6, S-(2-Aminoethyl)isothiourea 359-83-1, Pentazocine  
 364-62-5, Metoclopramide 437-38-7, Fentanyl 440-17-5, Stelazine  
 466-99-9, Hydromorphone 526-26-1, Strontium salicylate 548-73-2,  
 Inapsine 561-27-3, Heroin 868-19-9, Strontium tartrate 1977-10-2,  
 Loxapine 2034-23-3, FR 038251 2062-78-4, Orap 2149-70-4 2986-19-8,  
 S-Methylisothiourea 2986-20-1, S-Ethylisothiourea 4456-77-3, FR 038470  
 4673-26-1 5104-49-4, Flurbiprofen 5588-33-0, Serentil 5591-45-7,  
 Navane 5786-21-0, Clozaril 6913-17-3, S-Isopropylisothiourea  
 7232-21-5, Reglan 7416-34-4, Molindone 13539-59-8, Apazone  
 15307-86-5, Diclofenac 15622-65-8, Moban 15687-27-1, Ibuprofen  
 16067-69-9, Strontium benzenesulfonate 16088-89-4 17035-90-4,  
 NG-Monomethyl-L-arginine 20594-83-6, Nalbuphine 22071-15-4, Ketoprofen  
 22204-53-1, Naproxen 22780-54-7, 2-Iminopiperidine 22780-54-7D,  
 strontium salts 27203-92-5, Tramadol 27833-64-3, Loxitane  
 29679-58-1, Fenoprofen 32672-69-8, Mesoridazine besylate 36322-90-4,  
 Piroxicam 37841-91-1, Isovelleral 38194-50-2, Sulindac 40182-75-0,  
 Strontium citrate 40472-00-2 41839-80-9 42408-82-2, Butorphanol  
 51803-78-2, Nimesulide 52485-79-7, Buprenorphine 53648-55-8, Dezocine  
 53774-63-3 58493-49-5, Olvanil 65195-50-8, Scutigeral 71125-38-7,  
 Meloxicam 78754-81-1, FR 191863 83002-04-4, CP55940 106266-06-2,  
 Risperdal 111974-69-7, Quetiapine 111974-72-2, Seroquel 123663-49-0,  
 T-614 128007-31-8, Arvanil 132539-06-1, Zyprexa 133587-00-5,  
 NGMonomethyl-L-arginine acetate 135459-87-9, Strontium ranelate  
 146939-27-7, Geodon 155836-52-5, BW373U86 156719-41-4,  
 S-Methyl-L-thiocitrulline 158089-95-3, S-2474 159860-31-8, SNC-121  
 175033-36-0, NCX4016 179469-40-0 183133-72-4, STrontium malonate  
 183293-82-5 189954-66-3, DFP 198470-84-7, Parecoxib 198470-85-8,  
 Dynastat 251362-87-5 278172-05-7 303730-87-2 322766-10-9,  
 Tiracoxib 472981-92-3, SB-366791 507471-56-9 535974-91-5  
 630395-06-1, SVT 2016 796104-84-2 796104-86-4 796104-90-0  
 796842-36-9 796842-37-0 796842-38-1 872049-77-9 872049-78-0  
 872049-79-1 872049-81-5 872049-83-7 872049-85-9 872049-86-0  
 872049-88-2 872049-89-3 872049-90-6 872049-91-7 872049-92-8  
 872049-93-9 872049-94-0 872049-95-1 872125-28-5 872200-43-6  
 872340-68-6, AZD 4717

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (method of improving medical treatment of pain by administering

GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,  
 LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,  
 NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,  
 SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,  
 ZA, ZM, ZW

RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,  
 AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,  
 EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,  
 RO, SE, SI, SK, TR, BF, BJ, CF, CI, CM, GA, GN, GQ, GW, ML,  
 MR, NE, SN, TD, TG

US 2006122274 A1 20060608 US 2005-269289 20051107  
 WO 2006089546 A1 20060831 WO 2005-DK710 20051107

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,  
 CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,  
 GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,  
 KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX,  
 MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,  
 SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,  
 VN, YU, ZA, ZM, ZW

RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,  
 IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,  
 CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,  
 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,  
 KG, KZ, MD, RU, TJ, TM

PRIORITY APPLN. INFO.: DK 2004-947 A 20040617  
 DK 2003-691 A 20030507  
 DK 2003-932 A 20030620  
 DK 2003-1820 A 20031209  
 US 2003-528442P P 20031209  
 WO 2004-DK328 A2 20040506  
 WO 2005-DK140 A2 20050228  
 WO 2005-DK401 A2 20050617  
 WO 2005-DK404 A2 20050617

AB Methods for improving pain management in a mammal, the methods comprising administering a combination of a strontium-containing compound and a second therapeutically and/or prophylactically active substance selected from the group consisting of analgesic agents, anti-inflammatory agents and palliative agents to the mammal. Pharmaceutical compns. for use in such methods, comprising a strontium-containing compound and a second therapeutically and/or prophylactically active substance selected from the group consisting of analgesic agents, anti-inflammatory agents and palliative agents. For example, a tablet containing naproxen 250, strontium malonate 210, lactose 100, corn starch 30, and magnesium stearate 10 mg was formulated.

IC ICM A61P029-00  
 ICS A61K033-24; A61K031-415; A61K031-192

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 1

IT Rheumatoid arthritis  
 (adult-onset Still's disease, pain associated with; method of improving medical treatment of pain by administering combination of strontium-containing compound and second active substance)

IT Rheumatoid arthritis  
 (juvenile, pain associated with; method of improving medical treatment of pain by administering combination of strontium-containing compound and second active substance)

IT Antiarthritics  
 Behcet's syndrome

Raloxifene 84485-00-7 85801-42-9 86111-26-4, Zindoxyfene  
 89750-15-2, Glucagon-like peptide-2 89750-15-2D, Glucagon-like peptide  
 2, derivs. or fragments of 89778-26-7, Toremifene 89987-06-4,  
 Tiludronate 98007-99-9, ICI 164384 98774-23-3, Tesmilifene  
 103735-76-8, erythro-MEA 105462-24-6 114084-78-5, Ibandronate  
 115767-74-3, TAT-59 116057-75-1, Idoxifene 118072-93-8, Zoledronate  
 128607-22-7, Ospemifene 129453-61-8, Faslodex 129612-87-9, Miproxifene  
 135459-87-9, Strontium ranelate 165536-41-4, MDL-103323 170277-31-3,  
 Infliximab 175449-82-8, Matrix Metalloproteinase-13 180916-16-9,  
 Lasofoxifene 182133-25-1, LY-353381 182167-03-9, EM-800 183133-72-4,  
 Strontium malonate 185243-69-0, Etanercept 190791-29-8, CP-336156  
 198481-32-2, Bazedoxifene 199685-57-9, Onercept 205944-50-9,  
 Osteoprotegrin 278172-05-7 303730-87-2 331731-18-1,  
 Adalimumab 428863-50-7, CDP 870 507471-54-7 507471-56-9  
 615258-40-7, AMG 162 796104-84-2 796104-86-4 796104-90-0  
 796842-36-9 796842-37-0 796842-38-1 872049-77-9 872049-85-9  
 872049-86-0 872049-88-2 872049-89-3 872049-91-7 872049-92-8  
 872049-94-0 872049-95-1 872085-78-4 872085-79-5 872125-28-5,  
 Strontium naproxenate 872130-23-9, ICI 183780  
 RL: PAC (Pharmacological activity); THU (Therapeutic  
 use); BIOL (Biological study); USES (Uses)  
 (5-LOX inhibitor and bone and cartilage beneficial agent combinations  
 for arthritis, osteoporosis, or pain)

IT 278172-05-7  
 RL: PAC (Pharmacological activity); THU (Therapeutic  
 use); BIOL (Biological study); USES (Uses)  
 (5-LOX inhibitor and bone and cartilage beneficial agent combinations  
 for arthritis, osteoporosis, or pain)  
 RN 278172-05-7 HCPLUS  
 CN Propanoic acid, 2-oxo-, strontium salt (9CI) (CA INDEX NAME)



●1/2 Sr

L102 ANSWER 8 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:1354712 HCPLUS  
 DOCUMENT NUMBER: 144:94350  
 TITLE: A method of improving the medical treatment of pain  
 INVENTOR(S): Christgau, Stephan; Hansen, Christian; Nilsson, Henrik  
 PATENT ASSIGNEE(S): Osteologix A/S, Den.  
 SOURCE: PCT Int. Appl., 34 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 9  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                            | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2005123192                                                                                                                         | A2   | 20051229 | WO 2005-DK401   | 20050617 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, |      |          |                 |          |

EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,  
 RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,  
 MR, NE, SN, TD, TG

PRIORITY APPLN. INFO.: DK 2004-948 A 20040617

AB Combination treatments, wherein a 5-lipoxygenase (5-LOX) inhibitor are administered together with a bone or cartilage beneficial compound in order to obtain a therapeutically beneficial effect in the treatment and/or prophylaxis of osteoarthritis, rheumatoid arthritis, osteoporosis or pain, and pharmaceutical compns. comprising a combination of a 5-LOX inhibitor and a bone and cartilage beneficial compound

IC ICM A61K045-00

CC 1-12 (Pharmacology)

Section cross-reference(s): 63

ST lipoxygenase inhibitor bone cartilage protectant combination osteoporosis rheumatoid arthritis; osteoarthritis pain 5LOX inhibitor bone cartilage beneficial agent combination

IT Analgesics  
 Antiosteoporotic agents  
 Antirheumatic agents  
 Bone resorption inhibitors  
 Bos taurus  
 Canis familiaris  
 Combination chemotherapy  
 Equus caballus  
 Hormone replacement therapy  
 Human  
 Mammalia  
 Osteoarthritis  
 Osteoporosis  
 Pain  
 Prophylaxis  
 Rheumatoid arthritis  
 Selective estrogen receptor modulators  
 Sus scrofa (5-LOX inhibitor and bone and cartilage beneficial agent combinations for arthritis, osteoporosis, or pain)

IT Interleukin 1  
 Tumor necrosis factors  
 RL: BSU (Biological study, unclassified); BIOL (Biological study)  
 (antagonists/inhibitors; 5-LOX inhibitor and bone and cartilage beneficial agent combinations for arthritis, osteoporosis, or pain)

IT 50-02-2, Dexamethasone 50-14-6, Vitamin D2 50-23-7, Hydrocortisone 53-03-2, Prednisone 56-53-1 67-96-9, Dihydrotachysterol 67-97-0, Vitamin D3 67-98-1, Ethamoxypyriphetol 91-64-5D, Coumarin, derivs. 378-44-9, Betamethasone 446-72-0, Genistein 493-08-3D, Chroman, derivs. 526-26-1, Strontium salicylate 553-39-9, Allenolic acid 569-57-3, Chlorotrianisene 814-95-9, Strontium oxalate 868-19-9, Strontium tartrate 911-45-5, Clomiphene 1406-16-2, Vitamin D 1633-05-2, Strontium carbonate 1845-11-0, Nafoxidine 2624-43-3, Cyclophenyl 2809-21-4 3416-24-8, Glucosamine 5630-53-5, Tibolone 5863-35-4, Nitromifene citrate 7440-24-6D, Strontium, containing compds. 9002-64-6, Parathyroid hormone 9007-12-9, Calcitonin 9007-28-7, Chondroitin sulfate 10540-29-1, Tamoxifen 10596-23-3, Clodronate 12619-70-4D, Cyclodextrins, polysulfonated 16067-69-9 16088-89-4 22780-54-7 27540-07-4 29031-19-4, Glucosamine sulfate 29870-99-3, Strontium lactate 31477-60-8, Ormeloxytamoxifen 34816-55-2, Moxestrol 40182-75-0, Strontium citrate 40391-99-9 40472-00-2 41294-56-8, Alphacalcidol 41839-80-9 53774-63-3 66376-36-1, Alendronate 68047-06-3, 4-Hydroxytamoxifen 77599-17-8, Panomifene 78994-23-7, Levormeloxifene 82413-20-5, Droloxfene 82717-40-6 84449-90-1,

158089-95-3, S-2474 165536-41-4, MDL-103323 169799-44-4, Keratin sulfate 170713-75-4, Nociceptin 175033-36-0, NCX 4016 179469-40-0D, strontium derivative 180064-38-4 180916-16-9, Lasofoxifene 182167-03-9, EM-800 189954-66-3, DFP 190791-29-8, CP-336156 192755-52-5, Pralnacasan 198481-32-2, Bazedoxifene 278172-05-7  
 303730-87-2 322766-10-9, Tiracoxib 507471-54-7 507471-56-9  
 615258-40-7, AMG 162 630395-06-1, SVT 2016 796104-84-2 796104-86-4  
 796104-90-0 796842-36-9 796842-37-0 796842-38-1 872049-77-9  
 872049-78-0 872049-79-1 872049-81-5 872049-83-7 872049-85-9  
 872049-86-0 872049-88-2 872049-91-7 872049-92-8 872049-93-9  
 872049-94-0 872049-95-1 872093-25-9 872125-28-5

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (oral combination of strontium salt and other agents for improvement in treatment of arthritic diseases and associated pain)

IT 278172-05-7

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (oral combination of strontium salt and other agents for improvement in treatment of arthritic diseases and associated pain)

RN 278172-05-7 HCPLUS

CN Propanoic acid, 2-oxo-, strontium salt (9CI) (CA INDEX NAME)



●1/2 Sr

L102 ANSWER 7 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:1354726 HCPLUS  
 DOCUMENT NUMBER: 144:81225  
 TITLE: 5-LOX inhibitors and bone and cartilage beneficial agent combinations for arthritis, osteoporosis, or pain  
 INVENTOR(S): Christgau, Stephan; Hansen, Christian; Nilsson, Henrik  
 PATENT ASSIGNEE(S): Osteologix A/S, Den.  
 SOURCE: PCT Int. Appl., 34 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                      | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2005123130                                                                                                                                                                                                                                                                                                                                                                                                                   | A2   | 20051229 | WO 2005-DK403   | 20050617 |
| WO 2005123130                                                                                                                                                                                                                                                                                                                                                                                                                   | A3   | 20060202 |                 |          |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,<br>NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,<br>SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,<br>ZA, ZM, ZW |      |          |                 |          |
| RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,<br>AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,                                                                                                                                                                                                                                                                                          |      |          |                 |          |

(oral combination of strontium salt and other agents for improvement in treatment of arthritic diseases and associated pain)

IT Arthritis

(psoriatic arthritis; oral combination of strontium salt and other agents for improvement in treatment of arthritic diseases and associated pain)

IT 50-02-2, Dexamethasone 50-18-0, Cyclophosphamide 50-23-7, Hydrocortisone 50-24-8, Prednisolone 50-33-9, Phenylbutazone, biological studies 50-78-2, Aspirin 52-67-5, Penicillamine 53-03-2, Prednisone 53-06-5, Cortisone 53-86-1, Indomethacin 56-53-1 57-27-2, Morphine, biological studies 57-42-1, Meperidine 58-15-1, Aminopyrine 59-05-2, Methotrexate 60-80-0, Antipyrine 61-68-7, Mefenamic acid 62-44-2, Phenacetin 62-75-9, Dimethylnitrosamine 64-85-7, Deoxycortone 67-98-1, Ethamoxymtriphetol 69-72-7D, Salicylic acid, derivs. 76-42-6, Oxycodone 76-57-3, Codeine 76-99-3, Methadone 77-07-6, Levorphanol 77-17-8, Normeperidine 83-43-2, Methylprednisolone 91-64-5D, Coumarin, derivs. 118-42-3, Hydroxychloroquine 124-94-7, Triamcinolone 125-29-1, Hydrocodone 127-31-1, Fludrocortisone 129-20-4, Oxyphenbutazone 147-93-3, Thiosalicylic acid 359-83-1, Pentazocine 378-44-9, Betamethasone 437-38-7, Fentanyl 446-72-0, Genistein 446-86-6, Azathioprine 466-99-9, Hydromorphone 493-08-3D, Chroman, derivs. 526-26-1, Strontium salicylate 530-78-9, Flufenamic acid 552-94-3, Salsalate 553-39-9, Allenolic acid 561-27-3, Heroin 564-25-0, Doxycycline 569-57-3, Chlorotrianisene 644-62-2 853-34-9, Kebuzone 868-19-9, Strontium tartrate 911-45-5, Clomiphene 1400-61-9, Nystatin 1845-11-0, Nafoxidine 2624-43-3, Cyclophenyl 2809-21-4 3416-24-8, Glucosamine 4419-39-0, Beclomethasone 5104-49-4, Flurbiprofen 5630-53-5, Tibolone 9002-64-6, Parathyroid hormone 9002-72-6, Growth hormone 9004-61-9, Hyaluronic acid 9007-28-7, Chondroitin sulfate 10118-90-8, Minocycline 10448-84-7, Nitromifene 10540-29-1, Tamoxifen 10596-23-3, Clodronate 12244-57-4 13598-36-2D, Phosphonic acid, alkylidenebis- derivs. 15307-86-5, Diclofenac 15687-27-1, Ibuprofen 15722-48-2, Olsalazine 16067-69-9 16088-89-4 20594-83-6, Nalbuphine 21256-18-8, Oxaprozin 22071-15-4, Ketoprofen 22204-53-1, Naproxen 22494-42-4, Diflunisal 25322-68-3D, Polyethylene glycol, conjugates with IL-1 receptor derivs. 26171-23-3, Tolmetin 26983-52-8, Diphenol 27203-92-5, Tramadol 27540-07-4 29031-19-4, Glucosamine sulfate 29679-58-1, Fenoprofen 31477-60-8, Ormeloxifene 33369-31-2, Zomepirac 34816-55-2, Moxestrol 36322-90-4, Piroxicam 38194-50-2, Sulindac 40182-75-0, Strontium citrate 40391-99-9 40472-00-2 41340-25-4, Etodolac 41593-31-1, Dihydrochrysene 41839-80-9 42408-82-2, Butorphanol 42924-53-8, Nabumetone 51146-56-6, Dexibuprofen 51333-22-3, Budesonide 51803-78-2, Nimesulide 52485-79-7, Buprenorphine 53597-27-6, Fendosal 53648-55-8, Dezocine 59122-46-2, Misoprostol 59804-37-4, Tenoxicam 59865-13-3, Cyclosporine 60118-07-2, Endorphin 63524-05-0 66376-36-1, Alendronate 67763-96-6, Insulin-like growth factor-1 68047-06-3, 4-Hydroxytamoxifen 71125-38-7, Meloxicam 74103-06-3, Ketorolac 77599-17-8, Panomifene 78994-23-7, Levormeloxifene 81093-37-0, Pravastatin 82413-20-5, Droloxitene 84449-90-1, Raloxifene 85801-42-9 86111-26-4, Zindoxitene 89750-15-2, Glucagon-like peptide 2 89778-26-7, Toremifene 89987-06-4, Tiludronate 93957-54-1, Fluvastatin 98007-99-9, ICI 164384 98774-23-3, Tesmilifene 103735-76-8, erythro-MEA 105462-24-6 114084-78-5, Ibandronate 115767-74-3, TAT-59 116057-75-1, Idoxitene 118072-93-8, Zoledronate 121368-58-9, Olpadronate 123663-49-0, T-614 128607-22-7 129453-61-8 129612-87-9, Miproxitene 130996-28-0, P 54 134195-17-8, Cyclodextrin sulfate 134523-00-5, Atorvastatin 135459-87-9, Strontium ranelate 137945-48-3, CT 3 138330-18-4, Incadronate 143090-92-0, Anakinra 145599-86-6, Cerivastatin

|                 |             |
|-----------------|-------------|
| US 2003-528442P | P 20031209  |
| WO 2004-DK328   | A2 20040506 |
| WO 2005-DK140   | A2 20050228 |
| WO 2005-DK401   | A2 20050617 |
| WO 2005-DK404   | A2 20050617 |

AB Improved treatments of joint diseases, such as, e.g. osteoarthritis and rheumatoid arthritis, and pain, comprise a strontium-containing compound administered alone or in combination with one or more second therapeutically and/or prophylactically active substances. The second active substance is selected from the group consisting of bisphosphonates, glucosamine, palliative agents, analgesic agents, disease modifying anti-rheumatic compds. (DMARDs), selective estrogen receptor modulators (SERMs), aromatase inhibitors, non-steroidal anti-inflammatory agents (NSAIDs), COX-2 inhibitors, COX-3 inhibitors, opioids, inhibitors/antagonists of IL-1, inhibitors/antagonists of TNF- $\alpha$ , inhibitors of matrix metallo-proteinases (MMPs), cathepsin K inhibitors, inhibitors/antagonists of RANK-ligand, statins, glucocorticoids, chondroitin sulfate, NMDA receptor antagonists, inhibitors of interleukin-I converting enzyme, Calcitonin gene related peptide antagonists, glycine antagonists, vanilloid receptor antagonists, inhibitors of inducible nitric oxide synthetase (iNOS), N-acetylcholine receptor agonists, neurokinin antagonists, neuroleptic agents, PAR2 receptor antagonists and anabolic growth factors acting on joint tissue components. Pharmaceutical compns. comprising a strontium-containing compound and a second therapeutically and/or prophylactically active substance as defined above are also described. Thus, a tablet formulation to be administrated one to two times daily contained alendronate 10 mg, strontium malonate 200 mg, lactose 100 mg, corn starch (for mixing) 15 mg, corn starch (for paste) 15 mg, and magnesium stearate 10 mg.

IC ICM A61P029-00  
 ICS A61P029-02; A61K031-65; A61K033-24; A61K031-663; A61K031-737;  
 A61K031-519; A61K045-06; A61K031-7008; A61K031-573; A61K031-28

CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 1

IT Capsaicin receptors  
 Interleukin 1  
 Neurokinins  
 Tumor necrosis factors  
 RL: BSU (Biological study, unclassified); BIOL (Biological study)  
 (antagonists; oral combination of strontium salt and other agents for improvement in treatment of arthritic diseases and associated pain)

IT Rheumatoid arthritis  
 (juvenile; oral combination of strontium salt and other agents for improvement in treatment of arthritic diseases and associated pain)

IT Anabolic agents  
 Analgesics  
 Antiarthritics  
 Antirheumatic agents  
 Arthritis  
 Behcet's syndrome  
 Cholinergic agonists  
 Combination chemotherapy  
 Gout  
 Human  
 Osteoarthritis  
 Pain  
 Rheumatoid arthritis  
 Sarcoidosis  
 Selective estrogen receptor modulators  
 Tranquilizers



## ● Na

L102 ANSWER 6 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2005:1354741 HCPLUS  
 DOCUMENT NUMBER: 144:94351  
 TITLE: A method of improving treatments in rheumatic and arthritic diseases using strontium salts  
 INVENTOR(S): Christgau, Stephan; Hansen, Christian; Nilsson, Henrik  
 PATENT ASSIGNEE(S): Osteologix A/S, Den.  
 SOURCE: PCT Int. Appl., 40 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 9  
 PATENT INFORMATION:

| PATENT NO.             | KIND                                                                                                                                                                                                                                                                                                                                                                                                           | DATE         | APPLICATION NO. | DATE     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|----------|
| WO 2005123193          | A2                                                                                                                                                                                                                                                                                                                                                                                                             | 20051229     | WO 2005-DK404   | 20050617 |
| WO 2005123193          | A3                                                                                                                                                                                                                                                                                                                                                                                                             | 20060302     |                 |          |
| W:                     | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW     |              |                 |          |
| RW:                    | BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                             |              |                 |          |
| US 2006122274          | A1                                                                                                                                                                                                                                                                                                                                                                                                             | 20060608     | US 2005-269289  | 20051107 |
| WO 2006089546          | A1                                                                                                                                                                                                                                                                                                                                                                                                             | 20060831     | WO 2005-DK710   | 20051107 |
| W:                     | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |              |                 |          |
| RW:                    | AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM                                                                                                                             |              |                 |          |
| PRIORITY APPLN. INFO.: |                                                                                                                                                                                                                                                                                                                                                                                                                | DK 2004-950  | A 20040617      |          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                | DK 2003-691  | A 20030507      |          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                | DK 2003-932  | A 20030620      |          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                | DK 2003-1820 | A 20031209      |          |

halooxopropionate cancer treatment; sodium bromooxopropionate  
cancer treatment  
IT Uterus, neoplasm  
(cervix; halooxopropionate compds. as anticancer agents)  
IT Intestine, neoplasm  
(colon; halooxopropionate compds. as anticancer agents)  
IT Antitumor agents  
Apoptosis  
Bone, neoplasm  
Brain, neoplasm  
Cell proliferation  
Chemotherapy  
Chronic lymphocytic leukemia  
Combination chemotherapy  
Cytoprotective agents  
Cytotoxic agents  
Drug delivery systems  
Esophagus, neoplasm  
Gamma ray  
Gene therapy  
Head and Neck, neoplasm  
Human  
Hypoxia  
Immunotherapy  
Kidney, neoplasm  
Leukemia  
Liver, neoplasm  
Lung, neoplasm  
Lymphoma  
Mammary gland, neoplasm  
Melanoma  
Multidrug resistance  
Necrosis  
    Neoplasm  
    Ovary, neoplasm  
    Pancreas, neoplasm  
    Pharynx, neoplasm  
    Prostate gland, neoplasm  
    Radiotherapy  
    Skin, neoplasm  
    Spleen, neoplasm  
    Stabilizing agents  
    Stomach, neoplasm  
    Surgery  
    Tricarboxylic acid cycle  
        (halooxopropionate compds. as anticancer agents)  
IT Neoplasm  
(head and neck; halooxopropionate compds. as anticancer agents)  
IT Neoplasm  
(solid; halooxopropionate compds. as anticancer agents)  
IT 876344-66-0  
RL: PAC (Pharmacological activity); PRP (Properties); BIOL  
(Biological study)  
    (halooxopropionate compds. as anticancer agents)  
IT 876344-66-0  
RL: PAC (Pharmacological activity); PRP (Properties); BIOL  
(Biological study)  
    (halooxopropionate compds. as anticancer agents)  
RN 876344-66-0 HCAPLUS  
CN Propanoic acid, 3-bromo-2-oxo-, sodium salt (9CI) (CA INDEX NAME)

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 5 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2006:164738 HCAPLUS  
 DOCUMENT NUMBER: 144:226267  
 TITLE: Propyl 3-bromo-2-oxopropionate and derivatives as anticancer agents  
 INVENTOR(S): Huang, Peng; Keating, Michael J.; Xu, Ruihau  
 PATENT ASSIGNEE(S): Board of Regents, The University of Texas System, USA  
 SOURCE: PCT Int. Appl., 134 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.             | KIND                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE     | APPLICATION NO. | DATE       |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------|
| WO 2006020403          | A2                                                                                                                                                                                                                                                                                                                                                                                                                           | 20060223 | WO 2005-US26702 | 20050728   |
| WO 2006020403          | A3                                                                                                                                                                                                                                                                                                                                                                                                                           | 20060601 |                 |            |
| W:                     | AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,<br>NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,<br>SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,<br>ZA, ZM, ZW |          |                 |            |
| RW:                    | AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,<br>IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,<br>CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,<br>GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,<br>KG, KZ, MD, RU, TJ, TM                                                                                                                           |          |                 |            |
| US 2006058383          | A1                                                                                                                                                                                                                                                                                                                                                                                                                           | 20060316 | US 2005-192281  | 20050728   |
| PRIORITY APPLN. INFO.: |                                                                                                                                                                                                                                                                                                                                                                                                                              |          | US 2004-591643P | P 20040728 |

OTHER SOURCE(S): MARPAT 144:226267

AB The invention is directed to compns. that inhibit glycolysis, preferentially in cancer. Specifically, the anticancer compns. comprise 3-halo-2-oxopropionate and its derivs., such as ester derivs. However, in specific embodiments, the anticancer composition is sodium 3-halo-2-oxopropionate, such as sodium 3-bromo-2-oxopropionate and a stabilizing agent, such as carbonic acid. In particular embodiments, the compns. of the invention further comprise a metabolic intermediate for normal cells to utilize in a pathway for an alternate energy source, thereby providing protection to normal cells. In other embodiments, the 3-halo-2-oxopropionate or its ester derivative is used in combination with an addnl. cancer therapy, such as radiation and/or a drug.

CC 1-6 (Pharmacology)

Section cross-reference(s): 8

ST halooxopropionate cancer treatment glycolysis inhibition; ester



● 1/2 Ca

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 4 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2006:275958 HCPLUS  
 DOCUMENT NUMBER: 144:411297  
 TITLE: Manufacture of milk powder for reducing or keeping blood lipids  
 INVENTOR(S): Chen, Shangwu; Ren, Fazheng; Wang, Jinzhi; Li, Lili; Liu, Meiyu; Guo, Huiyuan; Chen, Shuxing; Lou, Fei; Jiang, Jingli  
 PATENT ASSIGNEE(S): China Agricultural University, Peop. Rep. China  
 SOURCE: Faming Zhuanli Shenqing Gongkai Shuomingshu, 13 pp.  
 CODEN: CNXXEV  
 DOCUMENT TYPE: Patent  
 LANGUAGE: Chinese  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE     | APPLICATION NO.  | DATE     |
|------------|------|----------|------------------|----------|
| CN 1736223 | A    | 20060222 | CN 2004-10058391 | 20040816 |
|            |      |          | CN 2004-10058391 | 20040816 |

PRIORITY APPLN. INFO.: AB The title milk powder is composed of (per 100 g) calcium pyruvate 3.542-5.678 g, magnesium sulfate heptahydrate 0.2-0.705 g, zinc glycinate 27.46-68.16 mg, EDTA sodium iron salt 87-180 mg, chromium picolinate 320-830 µg, vitamin A 648-1,765 µg, vitamin B1 0.4-2.40 mg, vitamin B2 0.32-2.62 mg, vitamin B6 1.46-5.23 mg, vitamin C 260-275 mg, vitamin E 5.42-12.8 mg, vitamin D 2-6.15 µg, nicotinic acid 7.5-12.5 mg, and skim milk powder in balance. The title manufacture method comprises cleaning and skimming fresh cow milk, adding the above materials, sterilizing, homogenizing under high pressure, concentrating under vacuum, spray-drying, cooling, and sieving. The level of leptin and insulin in serum has obviously reduced after applying the milk powder.

CC 17-8 (Food and Feed Chemistry)  
 Section cross-reference(s): 63

IT 50-81-7, Vitamin C, biological studies 59-43-8, Vitamin B1, biological studies 59-67-6, Nicotinic acid, biological studies 63-42-3, Lactose 68-26-8, Vitamin A 83-88-5, Vitamin B2, biological studies 1406-16-2, Vitamin D 1406-18-4, Vitamin E 7487-88-9, Magnesium sulfate, biological studies 8059-24-3, Vitamin B6 14281-83-5, Zinc glycinate 14639-25-9, Chromium(III) picolinate 15708-41-5, Sodium iron EDTA 52009-14-0, Calcium pyruvate

RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)

(manufacture of milk powder for reducing or keeping blood lipids)

IT 52009-14-0, Calcium pyruvate

RL: FFD (Food or feed use); THU (Therapeutic use);  
 BIOL (Biological study); USES (Uses)

(manufacture of milk powder for reducing or keeping blood lipids)

RN 52009-14-0 HCPLUS

IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,  
 CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,  
 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,  
 KG, KZ, MD, RU, TJ, TM

US 2006083793 A1 20060420 US 2005-240267 20050929

PRIORITY APPLN. INFO.: US 2004-614134P P 20040929

**AB** Disclosed is a nutritional composition that includes creatinol, e.g., creatinol O-phosphate, wherein the nutritional composition includes a timed-release delivery system. The timed-release delivery system may include one of quick release, slow release and controlled-release delivery system. Ingestion of the nutritional composition provides a method for, e.g., promoting muscle performance and/or acting as an hydrogen (H<sup>+</sup>) blocker. A serving of the nutritional composition comprises the following ingredients: creatinol, ALA, e evodiamine, yohimbine HCl, niacin, caffeine.

**IC** ICM A61K031-661

ICS A61P003-02

**CC** 63-6 (Pharmaceuticals)

Section cross-reference(s): 17

**IT** 50-69-1, Ribose 50-81-7, Ascorbic acid, biological studies 50-99-7, Dextrose, biological studies 53-43-0, DHEA 56-65-5, AT-P, biological studies 56-81-5, Glycerol, biological studies 57-00-1, Creatine 58-08-2, Caffeine, biological studies 59-43-8, Thiamine, biological studies 59-67-6, Niacin, biological studies 65-19-0, Yohimbine hydrochloride 74-79-3, Arginine, biological studies 83-88-5, Riboflavin, biological studies 107-35-7, Taurine 107-43-7, Betaine 144-55-8, Sodium bicarbonate, biological studies 305-84-0, Carnosine 518-17-2, Evodiamine 616-91-1 625-08-1 1200-22-2, α-Lipoic acid 1406-18-4, Vitamin E 1968-05-4, 3,3'-Diindolylmethane 3416-24-8, Glucosamine 4547-24-4, Corosolic acid 6903-79-3, Creatinol O-phosphate 7439-95-4, Magnesium, biological studies 7440-47-3, Chromium, biological studies 7440-62-2, Vanadium, biological studies 7440-66-6, Zinc, biological studies 7778-18-9, Calcium sulfate 7782-49-2, Selenium, biological studies 8059-24-3, Vitamin B6 9007-28-7, Chondroitin sulfate 10284-63-6, Pinitol 13429-32-8D, Creatinol, amides 27774-13-6, Vanadyl sulfate 42971-09-5, Vinpocetine 52009-14-0, Calcium pyruvate 70796-17-7, Citrulline malate 121250-47-3, Conjugated linoleic acid 142583-61-7, Policosanol 174882-69-0, Pycnogenol

RL: FFD (Food or feed use); THU (Therapeutic use);

BIOL (Biological study); USES (Uses)

(nutritional composition for promoting muscle performance and acting as hydrogen (H<sup>+</sup>) blocker)

**IT** 57-00-1, Creatine 52009-14-0, Calcium pyruvate

RL: FFD (Food or feed use); THU (Therapeutic use);

BIOL (Biological study); USES (Uses)

(nutritional composition for promoting muscle performance and acting as hydrogen (H<sup>+</sup>) blocker)

**RN** 57-00-1 HCPLUS

**CN** Glycine, N-(aminoiminomethyl)-N-methyl- (9CI) (CA INDEX NAME)



**RN** 52009-14-0 HCPLUS

**CN** Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)

IT **Rheumatoid arthritis**  
 (periarticular erosions in; oral compns. of water-soluble strontium salts  
 for treatment of cartilage and/or bone conditions)

IT 813-97-8P 868-19-9P, Strontium tartrate 7440-24-6DP, Strontium, salts  
 16088-89-4P, Strontium maleate 29870-99-3P, Strontium lactate  
 40472-00-2P, Strontium succinate 41839-80-9P 120312-20-1P  
 127357-26-0P 183133-72-4P, Strontium malonate 796104-83-1P  
 796104-84-2P 796842-36-9P 796842-37-0P 889655-92-9P 889655-93-0P  
**889655-94-1P 889655-95-2P**  
 RL: PKT (Pharmacokinetics); PRP (Properties); SPN (Synthetic  
 preparation); THU (Therapeutic use); BIOL (Biological study);  
 PREP (Preparation); USES (Uses)  
 (oral compns. of water-soluble strontium salts for treatment of cartilage  
 and/or bone conditions)

IT **796104-83-1P 889655-94-1P**  
 RL: PKT (Pharmacokinetics); PRP (Properties); SPN (Synthetic  
 preparation); THU (Therapeutic use); BIOL (Biological study);  
 PREP (Preparation); USES (Uses)  
 (oral compns. of water-soluble strontium salts for treatment of cartilage  
 and/or bone conditions)

RN 796104-83-1 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, strontium salt (1:1) (9CI) (CA INDEX NAME)



● Sr

RN 889655-94-1 HCPLUS

L102 ANSWER 3 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2006:318951 HCPLUS  
 DOCUMENT NUMBER: 144:357710  
 TITLE: Nutritional composition for promoting muscle  
 performance and acting as hydrogen (H<sup>+</sup>) blocker  
 INVENTOR(S): Gardiner, Paul T.; Heuer, Marvin A.  
 PATENT ASSIGNEE(S): Aplodan Formulations Ltd., Can.  
 SOURCE: PCT Int. Appl., 47 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                          | KIND | DATE     | APPLICATION NO. | DATE     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2006034586                                                                                                                                                                                                                                                                                                                                                                                                                       | A1   | 20060406 | WO 2005-CA1485  | 20050929 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ,<br>NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,<br>SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,<br>YU, ZA, ZM, ZW |      |          |                 |          |
| RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,                                                                                                                                                                                                                                                                                                                                                                 |      |          |                 |          |

NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

WO 2005123193 A2 20051229 WO 2005-DK404 20050617  
WO 2005123193 A3 20060302

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

|                        |                 |             |
|------------------------|-----------------|-------------|
| PRIORITY APPLN. INFO.: | DK 2003-691     | A 20030507  |
|                        | DK 2003-932     | A 20030620  |
|                        | DK 2003-1820    | A 20031209  |
|                        | US 2003-528442P | P 20031209  |
|                        | WO 2004-DK328   | A2 20040506 |
|                        | WO 2005-DK140   | A2 20050228 |
|                        | WO 2005-DK401   | A2 20050617 |
|                        | WO 2005-DK404   | A2 20050617 |
|                        | DK 2004-313     | A 20040226  |
|                        | US 2004-548529P | P 20040226  |
|                        | DK 2004-947     | A 20040617  |
|                        | DK 2004-950     | A 20040617  |

AB Compds. and pharmaceutical compns. for use in the treatment and/or prophylaxis of cartilage and/or bone conditions and methods of treating such condition are described. The compds. are salts of strontium that have a water-solubility of about 1 g/L to about 100 g/L at room temperature, especially

amino acid salts of strontium or dicarboxylic acid salts of strontium. Examples of novel water-soluble strontium salts are, e.g., strontium glutamate and strontium  $\alpha$ -ketoglutarate. The present invention also relates to an improved method for preparing the strontium salt of glutamic acid. Thus, tablets containing strontium malonate 300 mg, microcryst. cellulose 43.5 mg, Polyvidone 12 mg, colloidal silica 2.5 mg, magnesium stearate 2.5 mg, and water as needed were prepared by wet granulation and compression. The single dose pharmacokinetic study demonstrated that strontium was taken up in a dose dependent fashion when administered as a strontium malonate oral tablet to human subjects. The bioavailability of strontium from tablets containing strontium malonate 300 mg was better than that from the strontium ranelate dosage form (Protelos).

INCL 514566000; 562563000

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 1, 23, 34, 62

IT Neoplasm

(hypercalcemia; oral compns. of water-soluble strontium salts for treatment of cartilage and/or bone conditions)

IT Bone, neoplasm

(metastasis; oral compns. of water-soluble strontium salts for treatment of cartilage and/or bone conditions)



●1/2 Ca

L102 ANSWER 2 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2006:540925 HCAPLUS  
 DOCUMENT NUMBER: 145:34202  
 TITLE: Water-soluble strontium salts for use in treatment of cartilage and/or bone conditions  
 INVENTOR(S): Hansen, Christian; Nilsson, Henrik; Christgau, Stephan; Andersen, Jens E. T.  
 PATENT ASSIGNEE(S): Den.  
 SOURCE: U.S. Pat. Appl. Publ., 60 pp., Cont.-in-part of Appl. No. PCT/DK2005/000404.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 9  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KIND | DATE     | APPLICATION NO. | DATE     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| US 2006122274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1   | 20060608 | US 2005-269289  | 20051107 |
| WO 2004098619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A2   | 20041118 | WO 2004-DK328   | 20040506 |
| WO 2004098619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A3   | 20050310 |                 |          |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,<br>LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,<br>NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,<br>TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW<br>RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,<br>AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,<br>EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,<br>SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,<br>SN, TD, TG             |      |          |                 |          |
| WO 2005082385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1   | 20050909 | WO 2005-DK140   | 20050228 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,<br>LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,<br>NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,<br>SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW<br>RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,<br>AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,<br>EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT,<br>RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,<br>MR, NE, SN, TD, TG |      |          |                 |          |
| WO 2005123192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A2   | 20051229 | WO 2005-DK401   | 20050617 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,<br>CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,<br>GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |          |

Vein

Yeast

(sterilization of biol. materials with irradiation using  $\alpha$ -keto acid stabilizers)

IT 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 298-12-4, Glyoxylic acid 305-72-6 328-42-7, 2-Ketosuccinic acid 328-50-7,  $\alpha$ -Ketoglutaric acid 431-03-8, Diacetyl 583-92-6, 4-Methylthio-2-oxobutanoic acid 600-18-0,  $\alpha$ -Ketobutyric acid 600-22-6, Methyl pyruvate 611-73-4 669-90-9, 2-keto-D-Gluconic acid 759-05-7, 2-keto-3-Methylbutyric acid 816-66-0 1069-03-0 1460-34-0, 3-Methyl-2-oxovaleric acid 1821-02-9, 2-Ketopentanoic acid 2492-75-3, 2-Ketohexanoic acid 3184-35-8,  $\alpha$ -Ketoadipic acid 52009-14-0, Calcium Pyruvate  
 RL: MOA (Modifier or additive use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (sterilization of biol. materials with irradiation using  $\alpha$ -keto acid stabilizers)

IT 113-24-6, Sodium pyruvate 305-72-6 52009-14-0,  
 Calcium Pyruvate  
 RL: MOA (Modifier or additive use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (sterilization of biol. materials with irradiation using  $\alpha$ -keto acid stabilizers)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 305-72-6 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, disodium salt (9CI) (CA INDEX NAME)



●2 Na

RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)

LANGUAGE : English

FAMILY ACC. NUM. COUNT: 1

## PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                | KIND | DATE     | APPLICATION NO. | DATE     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 2006073461                                                                                                                                                                                                                                                                                                                                                                                             | A2   | 20060713 | WO 2005-US15518 | 20050505 |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW |      |          |                 |          |
| RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM                                                                                                                    |      |          |                 |          |

PRIORITY APPLN. INFO.: US 2004-567803P P 20040505

AB Methods are disclosed for sterilizing biol. materials, such as tissues, to reduce the level of one or more biol. contaminants or pathogens therein, such as viruses, bacteria (including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), yeasts, molds, fungi, single or multicellular parasites, and/or prions or similar agents responsible. These methods involve the use of  $\alpha$ -keto acid stabilizers in methods of sterilizing biol. materials with irradiation. Thus, the effects of gamma irradiation on thrombin irradiated in the presence of 50 mM sodium ascorbate, 50 mM sodium pyruvate or 104  $\mu$ M CuSO<sub>4</sub> were examined. Sodium ascorbate, sodium pyruvate, CuSO<sub>4</sub> and combinations of ascorbate/pyruvate and pyruvate/CuSO<sub>4</sub> had protective effects on the clotting activity of frozen bovine thrombin during irradiation. The combination of 50 mM ascorbate and 50 mM pyruvate showed the best protective effects on frozen bovine thrombin clotting activity. The combination of pyruvate/CuSO<sub>4</sub> showed better protective effects on frozen bovine thrombin than pyruvate or CuSO<sub>4</sub> used alone.

IC ICM A61F  
 CC 63-8 (Pharmaceuticals)  
 IT Animal tissue  
 Animal virus  
 Artery  
 Biological materials  
 Blood plasma  
 Blood serum  
 Bone  
 Bone marrow  
 Cartilage  
 Eubacteria  
**Fungi**  
 Gamma ray sterilization  
 Human  
 Joint, anatomical  
 Ligament  
 Mold (fungus)  
 Nerve  
**Parasite**  
 Pathogen  
 Stabilizing agents  
 Tendon  
 Tooth

L43 6 SEA FILE=HCAPLUS ABB=ON PLU=ON L42 AND L31  
 L50 1 SEA FILE=REGISTRY ABB=ON PLU=ON CREATINE/CN  
 L51 1 SEA FILE=REGISTRY ABB=ON PLU=ON NICOTINAMIDE/CN  
 L52 6355 SEA FILE=HCAPLUS ABB=ON PLU=ON L50  
 L53 9424 SEA FILE=HCAPLUS ABB=ON PLU=ON L51  
 L54 2023 SEA FILE=HCAPLUS ABB=ON PLU=ON ((L50 OR L51)) (L) L20  
 L55 9 SEA FILE=HCAPLUS ABB=ON PLU=ON L54 AND L31  
 L56 194670 SEA FILE=HCAPLUS ABB=ON PLU=ON ?PHOSPHORYLAT?/BI  
 L57 9 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L56  
 L58 104 SEA FILE=HCAPLUS ABB=ON PLU=ON L36 AND L56  
 L59 QUE ABB=ON PLU=ON SALT#/BI  
 L60 6 SEA FILE=HCAPLUS ABB=ON PLU=ON L58 AND L59  
 L63 QUE ABB=ON PLU=ON (?VIRAL? OR ?BACTER? OR ?FUNGAL? OR  
     ?FUNGI? OR ?PARASIT? OR HIV OR AIDS OR ALZHEIM? OR ?DEMEN  
     TIA? OR ?ANGIOGEN? OR ?CANCER? OR ?CARCINO? OR ?NEOPLAS?  
     OR ?TUMOR? OR ?APHTHOUS ULCER? OR ?ASTHMA? OR ATOPIC DERM  
     ATIT? OR ?PSORIA?) /OBI  
 L64 65 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L63  
 L65 QUE ABB=ON PLU=ON (BENIGN PROSTAT? HYPERTROPH?/OBI OR  
     BLOOD SUBSTITUT?/OBI OR BREAST CANCER/OBI OR ?CACHEXIA?/O  
     BI OR ?PNEUMONIA?/OBI OR STD#/OBI OR SEXUAL? TRANSMIT?/OB  
     I OR CANDIDA ALBICIAN?/OBI OR PARKINSON?/OBI OR PENTUMORA  
     L BRAIN EDEM?/OBI OR (RAGWEED/OBI (3A) ?ALLERG?/OBI))  
 L66 8 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L65  
 L67 QUE ABB=ON PLU=ON RENAL DISEAS?/OBI OR KIDNEY DISEAS?/  
     OBI OR RESTENOSIS/OBI OR ?RHEUMATOID?/OBI OR ALLERG?/OBI  
     OR ROTAVIRUS/OBI OR SEPTIC SHOCK/OBI OR ?TUMOR?/OBI OR ?T  
     UMOUR?/OBI OR STROKE/OBI OR ?THROMBOSIS?/OBI OR ?DIABET?/  
     OBI  
 L68 28 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L67  
 L71 QUE ABB=ON PLU=ON VISCR? LEISHMAN?/OBI OR MALARIA/OBI  
     OR PERIODONTAL DISEAS?/OBI OR GUM DISEAS?/OBI OR CNS DIS  
     ORD?/OBI OR CERVICAL DYSTOM?/OBI OR SPASM? TORTICOL?/OBI  
     OR CHORID? NEOVASCULAR/OBI OR HEPATITIS/OBI OR COLITIS/OB  
     I OR CYSTIC FIBROSIS/OBI  
 L72 4 SEA FILE=HCAPLUS ABB=ON PLU=ON L71 AND L31  
 L78 34 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) FFD/RL  
 L79 18 SEA FILE=HCAPLUS ABB=ON PLU=ON L78 AND L31  
 L81 104 SEA FILE=HCAPLUS ABB=ON PLU=ON L43 OR L55 OR L57 OR L60 OR  
     L64 OR L66 OR L68 OR L72 OR L79  
 L84 12 SEA FILE=HCAPLUS ABB=ON PLU=ON L81 AND (L52 OR L53 OR L54)

=> s (L43 or L55 or L57 or L60 or L64 or L66 or L68 or L72 or L79 or L84 ) not L100  
 L102 100 (L43 OR L55 OR L57 OR L60 OR L64 OR L66 OR L68 OR L72 OR L79 OR  
     L84 ) NOT L100

*pruned with author search*

=> d ibib abs hitind hitstr L102 1-100

L102 ANSWER 1 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 2006:681317 HCAPLUS  
 DOCUMENT NUMBER: 145:130981  
 TITLE: Methods of sterilizing biological mixtures using  
     alpha-keto acids  
 INVENTOR(S): Burgess, Wilson; Mann, David; Drohan, William; Miekka,  
     Shirley  
 PATENT ASSIGNEE(S): Clearant Inc., USA  
 SOURCE: PCT Int. Appl., 38 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent

Structure attributes must be viewed using STN Express query preparation.

```
L17      7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15
L18      6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1
L20      QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL
L23      549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG
L24      346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG
L27      1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18
L28      669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)
L29      21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)
L30      669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)
L31      226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20
L78      34 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) FFD/RL
L79      18 SEA FILE=HCAPLUS ABB=ON PLU=ON L78 AND L31
```

=> d stat que L84

```
L1      STR
```

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

```
L2      SCR 2040
L3      389 SEA FILE=REGISTRY SSS FUL L1 AND L2
L8      STR
```



Structure attributes must be viewed using STN Express query preparation.

```
L10     24561 SEA FILE=REGISTRY SSS FUL L8
L15     STR
```

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

```
L17      7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15
L18      6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1
L20      QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL
L23      549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG
L24      346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG
L27      1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18
L28      669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)
L29      21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)
L30      669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)
L31      226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20
L36      2255 SEA FILE=HCAPLUS ABB=ON PLU=ON (L3 OR L17) (L) L20
L37      27352 SEA FILE=HCAPLUS ABB=ON PLU=ON ?NICOTINAMID?/BI
L38      5 SEA FILE=HCAPLUS ABB=ON PLU=ON ?NICATINAMID?/BI
L39      99387 SEA FILE=HCAPLUS ABB=ON PLU=ON ?CREATIN?/BI
L41      4550 SEA FILE=HCAPLUS ABB=ON PLU=ON ((L37 OR L38 OR L39)) (L) L20
L42      79 SEA FILE=HCAPLUS ABB=ON PLU=ON L36 AND L41
```



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8  
 L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L17 7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15  
 L18 6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1  
 L20 QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL  
 L23 549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG  
 L24 346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG  
 L27 1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18  
 L28 669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)  
 L29 21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)  
 L30 669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)  
 L31 226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20  
 L71 QUE ABB=ON PLU=ON VISCR? LEISHMAN?/OBI OR MALARIA/OBI  
     OR PERIODONTAL DISEAS?/OBI OR GUM DISEAS?/OBI OR CNS DIS  
     ORD?/OBI OR CERVICAL DYSTOM?/OBI OR SPASM? TORTICOL?/OBI  
     OR CHORID? NEOVASCULAR/OBI OR HEPATITIS/OBI OR COLITIS/OB  
     I OR CYSTIC FIBROSIS/OBI  
 L72 4 SEA FILE=HCAPLUS ABB=ON PLU=ON L71 AND L31

=> d stat que L79  
 L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L2 SCR 2040  
 L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
 L8 STR



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8  
 L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

L66 8 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L65

=> d stat que L68  
 L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.  
 L2 SCR 2040  
 L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
 L8 STR



Structure attributes must be viewed using STN Express query preparation.  
 L10 24561 SEA FILE=REGISTRY SSS FUL L8  
 L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.  
 L17 7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15  
 L18 6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1  
 L20 QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL  
 L23 549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG  
 L24 346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG  
 L27 1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18  
 L28 669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)  
 L29 21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)  
 L30 669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)  
 L31 226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20  
 L67 QUE ABB=ON PLU=ON RENAL DISEAS?/OBI OR KIDNEY DISEAS?/  
 OBI OR RESTENOSIS/OBI OR ?RHEUMATOID?/OBI OR ALLERG?/OBI  
 OR ROTAVIRUS/OBI OR SEPTIC SHOCK/OBI OR ?TUMOR?/OBI OR ?T  
 UMOUR?/OBI OR STROKE/OBI OR ?THROMBOSIS?/OBI OR ?DIABET?/  
 OBI  
 L68 28 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L67

=> d stat que L72  
 L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.  
 L2 SCR 2040  
 L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
 L8 STR

Structure attributes must be viewed using STN Express query preparation.

L17        7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15  
 L18        6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1  
 L20        QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL  
 L23        549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG  
 L24        346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG  
 L27        1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18  
 L28        669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)  
 L29        21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)  
 L30        669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)  
 L31        226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20  
 L63        QUE ABB=ON PLU=ON (?VIRAL? OR ?BACTER? OR ?FUNGAL? OR  
             ?FUNGI? OR ?PARASIT? OR HIV OR AIDS OR ALZHEIM? OR ?DEMEN  
             TIA? OR ?ANGIOGEN? OR ?CANCER? OR ?CARCINO? OR ?NEOPLAS?  
             OR ?TUMOR? OR ?APHTHOUS ULCER? OR ?ASTHMA? OR ATOPIC DERM  
             ATIT? OR ?PSORIA?) /OBI  
 L64        65 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L63

=> d stat que L66  
 L1            STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L2            SCR 2040  
 L3        389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
 L8            STR



Structure attributes must be viewed using STN Express query preparation.

L10        24561 SEA FILE=REGISTRY SSS FUL L8  
 L15            STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L17        7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15  
 L18        6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1  
 L20        QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL  
 L23        549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG  
 L24        346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG  
 L27        1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18  
 L28        669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)  
 L29        21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)  
 L30        669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)  
 L31        226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20  
 L65        QUE ABB=ON PLU=ON (BENIGN PROSTAT? HYPERTROPH?/OBI OR  
             BLOOD SUBSTITUT?/OBI OR BREAST CANCER/OBI OR ?CACHEXIA?/O  
             BI OR ?PNEUMONIA?/OBI OR STD#/OBI OR SEXUAL? TRANSMIT?/OB  
             I OR CANDIDA ALBICIAN?/OBI OR PARKINSON?/OBI OR PENTUMORA  
             L BRAIN EDEM?/OBI OR (RAGWEED/OBI (3A) ?ALLERG?/OBI))

L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L2 SCR 2040

L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2

L8 STR



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8

L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L17 7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15

L20 QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL

L36 2255 SEA FILE=HCAPLUS ABB=ON PLU=ON (L3 OR L17) (L) L20

L56 194670 SEA FILE=HCAPLUS ABB=ON PLU=ON ?PHOSPHORYLAT?/BI

L58 104 SEA FILE=HCAPLUS ABB=ON PLU=ON L36 AND L56

L59 QUE ABB=ON PLU=ON SALT#/BI

L60 6 SEA FILE=HCAPLUS ABB=ON PLU=ON L58 AND L59

=> d stat que L64

L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L2 SCR 2040

L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2

L8 STR



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8

L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L17 7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15  
 L18 6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1  
 L20 QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL  
 L23 549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG  
 L24 346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG  
 L27 1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18  
 L28 669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)  
 L29 21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)  
 L30 669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)  
 L31 226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20  
 L50 1 SEA FILE=REGISTRY ABB=ON PLU=ON CREATINE/CN  
 L51 1 SEA FILE=REGISTRY ABB=ON PLU=ON NICOTINAMIDE/CN  
 L54 2023 SEA FILE=HCAPLUS ABB=ON PLU=ON ((L50 OR L51)) (L) L20  
 L55 9 SEA FILE=HCAPLUS ABB=ON PLU=ON L54 AND L31

=> d stat que L57  
 L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L2 SCR 2040  
 L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
 L8 STR



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8  
 L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L17 7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15  
 L18 6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1  
 L20 QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL  
 L23 549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG  
 L24 346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG  
 L27 1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18  
 L28 669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)  
 L29 21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)  
 L30 669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)  
 L31 226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20  
 L56 194670 SEA FILE=HCAPLUS ABB=ON PLU=ON ?PHOSPHORYLAT?/BI  
 L57 9 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L56

=> d stat que L60



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8  
L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L17 7632 SEA FILE=REGISTRY SUB=L10 SSS FUL L15  
L18 6003 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND NC=1  
L20 QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA)/RL  
L23 549863 SEA FILE=REGISTRY ABB=ON PLU=ON A1/PG  
L24 346070 SEA FILE=REGISTRY ABB=ON PLU=ON A2/PG  
L27 1629 SEA FILE=REGISTRY ABB=ON PLU=ON L17 NOT L18  
L28 669 SEA FILE=REGISTRY ABB=ON PLU=ON L27 AND (L23 OR L24)  
L29 21 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND (L23 OR L24)  
L30 669 SEA FILE=REGISTRY ABB=ON PLU=ON (L28 OR L29)  
L31 226 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) L20  
L36 2255 SEA FILE=HCAPLUS ABB=ON PLU=ON (L3 OR L17) (L) L20  
L37 27352 SEA FILE=HCAPLUS ABB=ON PLU=ON ?NICOTINAMID?/BI  
L38 5 SEA FILE=HCAPLUS ABB=ON PLU=ON ?NICOTINAMID?/BI  
L39 99387 SEA FILE=HCAPLUS ABB=ON PLU=ON ?CREATIN?/BI  
L41 4550 SEA FILE=HCAPLUS ABB=ON PLU=ON ((L37 OR L38 OR L39)) (L) L20  
  
L42 79 SEA FILE=HCAPLUS ABB=ON PLU=ON L36 AND L41  
L43 6 SEA FILE=HCAPLUS ABB=ON PLU=ON L42 AND L31

=> d stat que L55

L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L2 SCR 2040  
L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
L8 STR



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8  
L15 STR

Handy 10/643080

09/01/2006

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2006 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file  
provided by InfoChem.

STRUCTURE FILE UPDATES: 30 AUG 2006 HIGHEST RN 905475-39-0  
DICTIONARY FILE UPDATES: 30 AUG 2006 HIGHEST RN 905475-39-0

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 30, 2006

Please note that search-term pricing does apply when  
conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and  
predicted properties as well as tags indicating availability of  
experimental property data in the original document. For information  
on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

=> file hcaplus  
FILE 'HCAPLUS' ENTERED AT 13:22:25 ON 01 SEP 2006  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is  
held by the publishers listed in the PUBLISHER (PB) field (available  
for records published or updated in Chemical Abstracts after December  
26, 1996), unless otherwise indicated in the original publications.  
The CA Lexicon is the copyrighted intellectual property of the  
the American Chemical Society and is provided to assist you in searching  
databases on STN. Any dissemination, distribution, copying, or storing  
of this information, without the prior written consent of CAS, is  
strictly prohibited.

FILE COVERS 1907 - 1 Sep 2006 VOL 145 ISS 11  
FILE LAST UPDATED: 31 Aug 2006 (20060831/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate  
substance identification.  
'OBI' IS DEFAULT SEARCH FIELD FOR 'HCAPLUS' FILE

=> d stat que L43  
L1 STR  
  
\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*  
  
Structure attributes must be viewed using STN Express query preparation.  
L2 SCR 2040  
L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
L8 STR

Rodentia; Mammalia; Vertebrata; Chordata; Animalia  
 Taxa Notes

Animals, Chordates, Mammals, Nonhuman Vertebrates,  
 Nonhuman Mammals, Rodents, Vertebrates

REGISTRY NUMBER: 57-60-3 (PYRUVATE)  
 9000-83-3 (ATPASE)  
 4813-50-7 (BUTYLHYDROPEROXIDE)

L101 ANSWER 34 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
 STN

ACCESSION NUMBER: 1989:44247 BIOSIS

DOCUMENT NUMBER: PREV198936021564; BR36:21564

TITLE: PARALLEL INCREASES IN INOTROPISM AND CYTOSOLIC  
 PHOSPHORYLATION POTENTIAL BY EXCESS PYRUVATE PYR  
 IN ISOLATED WORKING GUINEA-PIG HEART.

AUTHOR(S): MALLETT R T [Reprint author]; HARTMAN D A; BUNGER R

CORPORATE SOURCE: DEP PHYSIOL, USUHS, BETHSEDA, MD 20814-4799, USA

SOURCE: Journal of Molecular and Cellular Cardiology, (1988) Vol.  
 20, No. SUPPL. 3, pp. S21.

Meeting Info.: XTH ANNUAL MEETING OF THE INTERNATIONAL  
 SOCIETY FOR HEART RESEARCH, WILLIAMSBURG, VIRGINIA, USA,  
 JUNE 26-29, 1988. J MOL CELL CARDIOL.

CODEN: JMCDAY. ISSN: 0022-2828.

DOCUMENT TYPE: Conference; (Meeting)

FILE SEGMENT: BR

LANGUAGE: ENGLISH

ENTRY DATE: Entered STN: 27 Dec 1988

Last Updated on STN: 27 Dec 1988

CONCEPT CODE: General biology - Symposia, transactions and proceedings  
 00520

Cytology - Animal 02506

Biochemistry studies - General 10060

Biochemistry studies - Minerals 10069

Biophysics - Bioenergetics: electron transport and  
 oxidative phosphorylation 10510

Metabolism - General metabolism and metabolic pathways  
 13002

Metabolism - Energy and respiratory metabolism 13003

Metabolism - Minerals 13010

Cardiovascular system - Physiology and biochemistry 14504

INDEX TERMS: Major Concepts

Cardiovascular System (Transport and Circulation); Cell  
 Biology; Metabolism

INDEX TERMS: Miscellaneous Descriptors

ABSTRACT CALCIUM REDOX STATE

ORGANISM: Classifier

Caviidae 86300

Super Taxa

Rodentia; Mammalia; Vertebrata; Chordata; Animalia

Taxa Notes

Animals, Chordates, Mammals, Nonhuman Vertebrates,  
 Nonhuman Mammals, Rodents, Vertebrates

REGISTRY NUMBER: 57-60-3 (PYRUVATE)

7440-70-2 (CALCIUM)

=> []

=> file registry  
 FILE 'REGISTRY' ENTERED AT 13:22:19 ON 01 SEP 2006

*STRUCTURE/TEXT  
 SEARCH*

Searched by John DiNatale x2-2557

Page 45

=> => file registry  
FILE 'REGISTRY' ENTERED AT 13:18:31 ON 01 SEP 2006  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2006 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 30 AUG 2006 HIGHEST RN 905475-39-0  
DICTIONARY FILE UPDATES: 30 AUG 2006 HIGHEST RN 905475-39-0

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 30, 2006

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

=> file hcaplus  
FILE 'HCAPLUS' ENTERED AT 13:18:39 ON 01 SEP 2006  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 1 Sep 2006 VOL 145 ISS 11  
FILE LAST UPDATED: 31 Aug 2006 (20060831/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.  
'OBI' IS DEFAULT SEARCH FIELD FOR 'HCAPLUS' FILE

=> d stat que L76  
L74 46 SEA FILE=HCAPLUS ABB=ON PLU=ON BUNGER R?/AU  
L75 1172 SEA FILE=HCAPLUS ABB=ON PLU=ON VERMA A?/AU  
L76 2 SEA FILE=HCAPLUS ABB=ON PLU=ON L74 AND L75

=> d stat que L83  
L1 STR

AUTHOR  
SEARCH

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

L2 SCR 2040  
 L3 389 SEA FILE=REGISTRY SSS FUL L1 AND L2  
 L8 STR



Structure attributes must be viewed using STN Express query preparation.

L10 24561 SEA FILE=REGISTRY SSS FUL L8  
 L15 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

|      |                                                                                                                                                                                                                                                                        |                                      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| L17  | 7632 SEA FILE=REGISTRY SUB=L10                                                                                                                                                                                                                                         | SSS FUL L15                          |
| L18  | 6003 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                          | PLU=ON L17 AND NC=1                  |
| L20  | QUE ABB=ON PLU=ON (THU                                                                                                                                                                                                                                                 | OR BAC OR PKT OR PAC OR DMA)/RL      |
| L23  | 549863 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                        | PLU=ON A1/PG                         |
| L24  | 346070 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                        | PLU=ON A2/PG                         |
| L27  | 1629 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                          | PLU=ON L17 NOT L18                   |
| L28  | 669 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                           | PLU=ON L27 AND (L23 OR L24)          |
| L29  | 21 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                            | PLU=ON L3 AND (L23 OR L24)           |
| L30  | 669 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                           | PLU=ON (L28 OR L29)                  |
| L31  | 226 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                            | PLU=ON L30 (L) L20                   |
| L36  | 2255 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                           | PLU=ON (L3 OR L17) (L) L20           |
| L37  | 27352 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                          | PLU=ON ?NICOTINAMID?/BI              |
| L38  | 5 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                              | PLU=ON ?NICATINAMID?/BI              |
| L39  | 99387 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                          | PLU=ON ?CREATIN?/BI                  |
| L41  | 4550 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                           | PLU=ON ((L37 OR L38 OR L39)) (L) L20 |
| <br> |                                                                                                                                                                                                                                                                        |                                      |
| L42  | 79 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                             | PLU=ON L36 AND L41                   |
| L43  | 6 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                              | PLU=ON L42 AND L31                   |
| L50  | 1 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                             | PLU=ON CREATINE/CN                   |
| L51  | 1 SEA FILE=REGISTRY ABB=ON                                                                                                                                                                                                                                             | PLU=ON NICOTINAMIDE/CN               |
| L54  | 2023 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                           | PLU=ON ((L50 OR L51)) (L) L20        |
| L55  | 9 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                              | PLU=ON L54 AND L31                   |
| L56  | 194670 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                         | PLU=ON ?PHOSPHORYLAT?/BI             |
| L57  | 9 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                              | PLU=ON L31 AND L56                   |
| L58  | 104 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                            | PLU=ON L36 AND L56                   |
| L59  | QUE ABB=ON PLU=ON SALT#/BI                                                                                                                                                                                                                                             |                                      |
| L60  | 6 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                              | PLU=ON L58 AND L59                   |
| L63  | QUE ABB=ON PLU=ON (?VIRAL? OR ?BACTER? OR ?FUNGAL? OR<br>?FUNGI? OR ?PARASIT? OR HIV OR AIDS OR ALZHEIM? OR ?DEMEN<br>TIA? OR ?ANGIOGEN? OR ?CANCER? OR ?CARCINO? OR ?NEOPLAS?<br>OR ?TUMOR? OR ?APHTHOUS ULCER? OR ?ASTHMA? OR ATOPIC DERM<br>ATIT? OR ?PSORIA?) /OBI |                                      |
| L64  | 65 SEA FILE=HCAPLUS ABB=ON                                                                                                                                                                                                                                             | PLU=ON L31 AND L63                   |
| L65  | QUE ABB=ON PLU=ON (BENIGN PROSTAT? HYPERTROPH?/OBI OR<br>BLOOD SUBSTITUT?/OBI OR BREAST CANCER/OBI OR ?CACHEXIA?/O<br>BI OR ?PNEUMONIA?/OBI OR STD#/OBI OR SEXUAL? TRANSMIT?/OB                                                                                        |                                      |

I OR CANDIDA ALBICIAN?/OBI OR PARKINSON?/OBI OR PENTUMORA  
 L BRAIN EDEM?/OBI OR (RAGWEED/OBI (3A) ?ALLERG?/OBI))  
 L66 8 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L65  
 L67 QUE ABB=ON PLU=ON RENAL DISEAS?/OBI OR KIDNEY DISEAS?/  
 OBI OR RESTENOSIS/OBI OR ?RHEUMATOID?/OBI OR ALLERG?/OBI  
 OR ROTAVIRUS/OBI OR SEPTIC SHOCK/OBI OR ?TUMOR?/OBI OR ?T  
 UMOUR?/OBI OR STROKE/OBI OR ?THROMBOSIS?/OBI OR ?DIABET?/  
 OBI  
 L68 28 SEA FILE=HCAPLUS ABB=ON PLU=ON L31 AND L67  
 L71 QUE ABB=ON PLU=ON VISCR? LEISHMAN?/OBI OR MALARIA/OBI  
 OR PERIODONTAL DISEAS?/OBI OR GUM DISEAS?/OBI OR CNS DIS  
 ORD?/OBI OR CERVICAL DYSTOM?/OBI OR SPASM? TORTICOL?/OBI  
 OR CHORID? NEOVASCULAR/OBI OR HEPATITIS/OBI OR COLITIS/OB  
 I OR CYSTIC FIBROSIS/OBI  
 L72 4 SEA FILE=HCAPLUS ABB=ON PLU=ON L71 AND L31  
 L74 46 SEA FILE=HCAPLUS ABB=ON PLU=ON BUNGER R?/AU  
 L75 1172 SEA FILE=HCAPLUS ABB=ON PLU=ON VERMA A?/AU  
 L78 34 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 (L) FFD/RL  
 L79 18 SEA FILE=HCAPLUS ABB=ON PLU=ON L78 AND L31  
 L81 104 SEA FILE=HCAPLUS ABB=ON PLU=ON L43 OR L55 OR L57 OR L60 OR  
 L64 OR L66 OR L68 OR L72 OR L79  
 L83 4 SEA FILE=HCAPLUS ABB=ON PLU=ON L81 AND (L74 OR L75)

=> s L76 or L83

L100 5 L76 OR L83

=> file medline embase biosis

FILE 'MEDLINE' ENTERED AT 13:19:26 ON 01 SEP 2006

FILE 'EMBASE' ENTERED AT 13:19:26 ON 01 SEP 2006

Copyright (c) 2006 Elsevier B.V. All rights reserved.

FILE 'BIOSIS' ENTERED AT 13:19:26 ON 01 SEP 2006

Copyright (c) 2006 The Thomson Corporation

=> L98-

~~L98 IS NOT A RECOGNIZED COMMAND~~

~~The previous command name entered was not recognized by the system.~~

~~For a list of commands available to you in the current file, enter~~

~~"HELP COMMANDS" at an arrow prompt (>).~~

=> d stat que L98

L86 229 SEA BUNGER R?/AU  
 L87 2397 SEA VERMA A?/AU  
 L89 116518 SEA ?PYRUVAT?  
 L92 11 SEA (L86 OR L87) AND L89 AND SODIUM  
 L93 4 SEA (L86 OR L87) AND L89 AND POTASSIUM  
 L94 3 SEA (L86 OR L87) AND L89 AND MAGNESIUM  
 L95 25 SEA (L86 OR L87) AND L89 AND CALCIUM  
 L98 41 SEA (L92 OR L93 OR L94 OR L95)

=> file wpix

FILE 'WPIX' ENTERED AT 13:19:46 ON 01 SEP 2006

COPYRIGHT (C) 2006 THE THOMSON CORPORATION

FILE LAST UPDATED: 25 AUG 2006 <20060825/UP>

MOST RECENT DERWENT UPDATE: 200655 <200655/DW>

DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,  
PLEASE VISIT:  
[<](http://www.stn-international.de/training_center/patents/stn_guide.pdf)

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE  
<http://scientific.thomson.com/support/patents/coverage/latestupdates/>

>>> PLEASE BE AWARE OF THE NEW IPC REFORM IN 2006, SEE  
[http://www.stn-international.de/stndatabases/details/ipc\\_reform.html](http://www.stn-international.de/stndatabases/details/ipc_reform.html) and  
[<<<](http://scientific.thomson.com/media/scpdf/ipcrdwpi.pdf)

>>> FOR FURTHER DETAILS ON THE FORTHCOMING DERWENT WORLD PATENTS  
INDEX ENHANCEMENTS PLEASE VISIT:  
[<<<](http://www.stn-international.de/stndatabases/details/dwpi_r.html)  
'BIX' IS DEFAULT SEARCH FIELD FOR 'WPIX' FILE

=> d stat que L99  
L86 229 SEA BUNGER R?/AU  
L87 2397 SEA VERMA A?/AU  
L89 116518 SEA ?PYRUVAT?  
L91 0 SEA (L86 OR L87) AND L89 AND SALT  
L92 11 SEA (L86 OR L87) AND L89 AND SODIUM  
L93 4 SEA (L86 OR L87) AND L89 AND POTASSIUM  
L94 3 SEA (L86 OR L87) AND L89 AND MAGNESIUM  
L95 25 SEA (L86 OR L87) AND L89 AND CALCIUM  
L96 0 SEA (L86 OR L87) AND L89 AND LITHIUM  
L97 0 SEA (L86 OR L87) AND L89 AND BARIUM  
L99 4 SEA FILE=WPIX ABB=ON PLU=ON (L91 OR L92 OR L93 OR L94 OR L95  
OR L96 OR L97)

=> => dup rem L100 L98 L99  
FILE 'HCAPLUS' ENTERED AT 13:20:18 ON 01 SEP 2006  
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'MEDLINE' ENTERED AT 13:20:18 ON 01 SEP 2006

FILE 'EMBASE' ENTERED AT 13:20:18 ON 01 SEP 2006  
Copyright (c) 2006 Elsevier B.V. All rights reserved.

FILE 'BIOSIS' ENTERED AT 13:20:18 ON 01 SEP 2006  
Copyright (c) 2006 The Thomson Corporation

FILE 'WPIX' ENTERED AT 13:20:18 ON 01 SEP 2006  
COPYRIGHT (C) 2006 THE THOMSON CORPORATION  
PROCESSING COMPLETED FOR L100  
PROCESSING COMPLETED FOR L98  
PROCESSING COMPLETED FOR L99  
L101 34 DUP REM L100 L98 L99 (16 DUPLICATES REMOVED)  
ANSWERS '1-5' FROM FILE HCAPLUS  
ANSWERS '6-18' FROM FILE MEDLINE  
ANSWERS '19-24' FROM FILE EMBASE  
ANSWERS '25-34' FROM FILE BIOSIS

=> d ibib abs hitind hitstr L101 1-5; d iall L101 6-34

L101 ANSWER 1 OF 34 HCAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 2

ACCESSION NUMBER: 2004:609932 HCAPLUS  
 DOCUMENT NUMBER: 141:145710  
 TITLE: Cellular phosphorylation potential enhancing compositions comprising a salt of an  $\alpha$ -keto carboxylic acid  
 INVENTOR(S): Bunger, Rolf; Verma, Ajay  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S. Pat. Appl. Publ., 34 pp., Cont.-in-part of U.S. Ser. No. 828,589, abandoned.  
 CODEN: USXXCO  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE        |
|------------------------|------|----------|-----------------|-------------|
| US 2004147604          | A1   | 20040729 | US 2003-643080  | 20030819    |
| US 5536751             | A    | 19960716 | US 1994-239635  | 19940509    |
| US 5714515             | A    | 19980203 | US 1996-646572  | 19960508    |
| PRIORITY APPLN. INFO.: |      |          | US 1994-239635  | A3 19940509 |
|                        |      |          | US 1996-643284  | B1 19960508 |
|                        |      |          | US 1996-646572  | A2 19960508 |
|                        |      |          | US 1997-999767  | B2 19971027 |
|                        |      |          | US 2000-550047  | B2 20000414 |
|                        |      |          | US 2001-828589  | B2 20010409 |

AB A pharmaceutical composition comprising, as an active phosphorylation potential enhancing, substance a pharmaceutically-acceptable salt of an  $\alpha$ -keto carboxylic acid thereof alone or in combination with nicotinamide and creatine and, its use and products containing the same are described.

IC ICM A61K031-202  
 ICS A61K031-198

INCL 514558000; 514565000

CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 1, 17

ST keto carboxylate salt nicotinamide creatine  
 phosphorylation cytoprotectant

IT Beverages  
 Cytoprotective agents  
 Drug delivery systems  
 Energy metabolism, animal  
 Food  
 Nutrients  
**Phosphorylation, biological**  
 (compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

IT Amino acids, biological studies  
 RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

IT Cytoprotective agents  
 Nervous system agents  
 (neuroprotective agents; compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

IT Carboxylic acids, biological studies

RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(oxo, salts, alkali or alkaline earth metal; compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

IT Carboxylic acids, biological studies

RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(salts,  $\alpha$ -keto, alkali or alkaline earth metals; compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

IT Drug interactions

(synergistic; compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

IT 57-00-1, Creatine 98-92-0, Nicotinamide 127-17-3D, Pyruvic acid, salts

RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

IT 127-17-3D, Pyruvic acid, salts

RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(compns. containing salt of  $\alpha$ -keto carboxylic acid in combination with nicotinamide and creatine for enhancing cellular phosphorylation potential)

RN 127-17-3 HCPLUS

CN Propanoic acid, 2-oxo- (9CI) (CA INDEX NAME)



L101 ANSWER 2 OF 34 HCPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 4

ACCESSION NUMBER: 1999:297294 HCPLUS

DOCUMENT NUMBER: 130:342992

TITLE: Novel pharmaceutical  $\alpha$ -keto carboxylic acid compositions, method of making and use thereof

INVENTOR(S): Bunger, Rolf

PATENT ASSIGNEE(S): United States Dept. of the Army, USA

SOURCE: PCT Int. Appl., 77 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                         | KIND | DATE     | APPLICATION NO. | DATE     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 9921544                                                                                                                                                                                         | A1   | 19990506 | WO 1998-US16141 | 19980803 |
| W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, |      |          |                 |          |

NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,  
 UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM  
 RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,  
 FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,  
 CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

AU 9887663 A1 19990517 AU 1998-87663 19980803

PRIORITY APPLN. INFO.: US 1997-999767 A 19971027  
 WO 1998-US16141 W 19980803

OTHER SOURCE(S): MARPAT 130:342992

AB Disclosed are a pharmaceutical composition comprising an  $\alpha$ -keto carboxylic acid or a pharmaceutically-acceptable salt thereof as an active phosphorylation potential enhancing substance, its use and products containing the same. For example, an injectable antibiotic augmented with a pyruvate contained ceftriaxone sodium 250 mg, water 0.9 mL, and Na pyruvate 0.5 mg.

IC ICM A61K031-19

ICS A61K031-20

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 1, 18, 62

ST oxo carboxylate phosphorylation enhancer; pyruvate phosphorylation cell function restoration

IT Lung, disease

(bronchopulmonary dysplasia, treatment of; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Antibiotics

(co-administration with; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Vitamins

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(co-administration with; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Respiratory tract

(disease, treatment of; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Blood vessel

(endothelium, perfusion to; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Exercise

(endurance, enhancement in; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Radicals, biological studies

RL: BSU (Biological study, unclassified); BIOL (Biological study)  
 (formation inhibition in; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Animal cell

(function restoration in; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Dialysis

(hemodialysis, solns.; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Drug delivery systems

(injections, i.m.; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Solutions

(isotonic solns.; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT Drug delivery systems

(ointments; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents in topical prepns.)

IT Carboxylic acids, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(oxo, salts; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Nutrition, animal  
(parenteral, total; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Bakery products  
(pastries; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents in refreshments)

IT Artery  
Brain  
Gland  
Heart  
Kidney  
Liver  
Pancreas  
Spleen  
(perfusion to; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Dialysis  
(peritoneal, solns.; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Hydration, physiological  
(rehydration; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Drug delivery systems  
(solns., cardioplegic; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Drug delivery systems  
(sprays; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Drug delivery systems  
(topical; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Acidosis  
Skin, disease  
(treatment of; use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Animal tissue culture  
Antiesthmatics  
Blood substitutes  
Dialysis fluids  
Electrolytes  
**Phosphorylation**, biological  
Physiological saline solutions  
(use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents)

IT Beverages  
Candy  
Confectionery  
(use of  $\alpha$ -keto carboxylic acid compns. as **phosphorylation** potential enhancing agents in refreshments)

IT Bath preparations  
Dentifrices  
Mouthwashes

Shampoos  
 Sunscreens  
   (use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents in topical preps.)

IT Soaps  
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)  
   (use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents in topical preps.)

IT 51-30-9, Isoproterenol hydrochloride 55-31-2, Epinephrine hydrochloride 59-43-8, Thiamine, biological studies 74578-69-1, Ceftriaxone sodium  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
   (co-administration with; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT 7722-84-1, Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), biological studies  
 RL: BSU (Biological study, unclassified); BIOL (Biological study)  
   (neutralization of; use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
   (use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
   (use of  $\alpha$ -keto carboxylic acid compns. as phosphorylation potential enhancing agents)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L101 ANSWER 3 OF 34 HCPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 6  
 ACCESSION NUMBER: 1997:740439 HCPLUS  
 DOCUMENT NUMBER: 128:39551  
 TITLE: Pharmaceutical compositions containing  $\alpha$ -ketocarboxylates  
 INVENTOR(S): Bunger, Rolf  
 PATENT ASSIGNEE(S): United States Dept. of the Army, USA  
 SOURCE: PCT Int. Appl., 79 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent

LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 9741848                                                                                                                                                                                                                                                                            | A1   | 19971113 | WO 1996-US11434 | 19960712   |
| W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |      |          |                 |            |
| RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG                                                                                                                                |      |          |                 |            |
| AU 9664860                                                                                                                                                                                                                                                                            | A1   | 19971126 | AU 1996-64860   | 19960712   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                |      |          | US 1996-643284  | A 19960508 |
|                                                                                                                                                                                                                                                                                       |      |          | WO 1996-US11434 | W 19960712 |

OTHER SOURCE(S): MARPAT 128:39551

AB Disclosed are novel pharmaceutical compns. comprising as an active phosphorylation potential-enhancing substance, a pharmaceutically acceptable salt of an  $\alpha$ -ketocarboxylic acid, method of making and use thereof. The  $\alpha$ -ketocarboxylates are effective in protecting and restoring normal cell functions. An i.v. Ringer's lactate augmented with pyruvate contained NaCl 600, KCl 30, Na lactate 310, Na pyruvate 310, CaCl<sub>2</sub> 20 mg, and purified water to 100 mL.

IC ICM A61K031-19  
 CC 63-6 (Pharmaceuticals)  
 ST Section cross-reference(s): 18, 62  
 IT ketocarboxylate phosphorylation potential enhancer cell function  
 IT Named reagents and solutions  
   RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (Krebs-Henseleit;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Named reagents and solutions  
   RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (Ringer's;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Lung, disease  
   (bronchopulmonary dysplasia;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Respiratory tract  
   (disease;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Bath preparations  
   (douches;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Beverages  
   (electrolyte-containing;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Dialysis  
   (hemodialysis, solns. for;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Drug delivery systems  
   (injections, i.m.;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Food  
   (low-calorie;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)  
 IT Drug delivery systems

(ointments;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Carboxylic acids, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(oxo;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Bakery products  
(pastries;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Dialysis  
(peritoneal, solns. for;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Hydration, physiological  
(rehydration, solns. for;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Organ preservation  
Perfusion  
(solns. for;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Drug delivery systems  
(solns., cardioplegic;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Drug delivery systems  
(sprays;  $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Acidosis  
Anti-inflammatory agents  
Antibiotics  
Asthma  
Bath preparations  
Blood substitutes  
Breakfast cereal  
Candy  
Culture media  
Dentifrices  
Mouthwashes  
Phosphorylation, biological  
Physiological saline solutions  
Shampoos  
Skin, disease  
Sunscreens  
( $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Vitamins  
RL: FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
( $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT Soaps  
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
( $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

IT 113-24-6, Sodium pyruvate  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
( $\alpha$ -ketocarboxylates for protecting cell functions by enhancing phosphorylation potential)

**phosphorylation potential)**

IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BUU (Biological use, unclassified);  
 FFD (Food or feed use); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 ( $\alpha$ -ketocarboxylates for protecting cell functions by enhancing  
 phosphorylation potential)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L101 ANSWER 4 OF 34 HCPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 7

ACCESSION NUMBER: 1996:469935 HCPLUS  
 DOCUMENT NUMBER: 125:123773  
 TITLE: Pharmaceutical  $\alpha$ -keto carboxylic acid  
 compositions, method of making, and use thereof  
 INVENTOR(S): Bunger, Rolf  
 PATENT ASSIGNEE(S): United States Dept. of the Army, USA  
 SOURCE: U.S., 13 pp.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE        |
|------------------------|------|----------|-----------------|-------------|
| US 5536751             | A    | 19960716 | US 1994-239635  | 19940509    |
| US 5714515             | A    | 19980203 | US 1996-646572  | 19960508    |
| US 2004147604          | A1   | 20040729 | US 2003-643080  | 20030819    |
| PRIORITY APPLN. INFO.: |      |          |                 |             |
|                        |      |          | US 1994-239635  | A3 19940509 |
|                        |      |          | US 1996-643284  | B1 19960508 |
|                        |      |          | US 1996-646572  | A2 19960508 |
|                        |      |          | US 1997-999767  | B2 19971027 |
|                        |      |          | US 2000-550047  | B2 20000414 |
|                        |      |          | US 2001-828589  | B2 20010409 |

AB A pharmaceutical composition comprises an  $\alpha$ -keto carboxylic acid as an active phosphorylation potential enhancing substance to prevent the deterioration or promote the restoration and preservation of normal cell functions. For example, an injected antibiotic solution was augmented with pyruvate to contain ceftriaxone Na 250, Na pyruvate 0.5 mg, and water 0.9 mL.

IC ICM A61K031-19  
 ICS A61K031-20

INCL 514557000

CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 1

IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU

(Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 ( $\alpha$ -keto carboxylic acids for restoration of normal cell  
 functions)

IT 113-24-6, Sodium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 ( $\alpha$ -keto carboxylic acids for restoration of normal cell  
 functions)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L101 ANSWER 5 OF 34 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:784172 HCPLUS

DOCUMENT NUMBER: 134:308256

TITLE: Nitric oxide: mechanism of action

AUTHOR(S): Muldoon, S. M.; Verma, A.; Jing, M.;  
 Bunger, R.

CORPORATE SOURCE: Departments of Anesthesiology and Physiology,  
 Uniformed Services University of the Health Sciences,  
 Bethesda, MD, USA

SOURCE: Molecular Pharmacology of Anaesthesia, [Symposium],  
 Hamburg, Germany, July 9-10, 1998 (2000), Meeting Date  
 1998, 274-282. Editor(s): Schulte am Esch, Jochen;  
 Scholz, Jens; Tonner, Peter H. Pabst Science  
 Publishers: Lengerich, Germany.

CODEN: 69APTX

DOCUMENT TYPE: Conference; General Review

LANGUAGE: English

AB A review with 15 refs. Topics discussed include its formation by nitric  
 oxide synthase; the measurement of nitric oxide in biol. fluids; the  
 physiol. aspects of nitric oxide; and the relation between halothane and  
 nitric oxide.

CC 13-0 (Mammalian Biochemistry)

Section cross-reference(s): 1

REFERENCE COUNT: 15 THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS  
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L101 ANSWER 6 OF 34 MEDLINE on STN

DUPLICATE 1

ACCESSION NUMBER: 2006095668 MEDLINE

DOCUMENT NUMBER: PubMed ID: 16394695

TITLE: Effects of caffeine, halothane, and 4-chloro-m-cresol on  
 skeletal muscle lactate and pyruvate in malignant  
 hyperthermia-susceptible and normal swine as assessed by  
 microdialysis.

AUTHOR: Bina Saaid; Cowan George; Karaian John; Muldoon Sheila;  
Mongan Paul; Bunger Rolf  
CORPORATE SOURCE: Department of Anesthesiology, Uniformed Services University  
of the Health Sciences, Bethesda, Maryland 20814, USA..  
sbina@usuhs.mil  
SOURCE: Anesthesiology, (2006 Jan) Vol. 104, No. 1, pp. 90-100.  
Journal code: 1300217. ISSN: 0003-3022.  
PUB. COUNTRY: United States  
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
LANGUAGE: English  
FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals  
ENTRY MONTH: 200603  
ENTRY DATE: Entered STN: 18 Feb 2006  
Last Updated on STN: 7 Mar 2006  
Entered Medline: 6 Mar 2006

## ABSTRACT:

**BACKGROUND:** Skeletal muscle fibers from malignant hyperthermia (MH)-susceptible humans and swine are markedly more sensitive to ryanodine receptor (RyR1) agonists than those from normal individuals. Reproducible shifts in the dose-response of skeletal muscle to caffeine and halothane are the basis of the current in vitro diagnostic caffeine-halothane contracture test. In an attempt to develop a less invasive MH diagnostic test, the authors determined the effects of RyR1 agonists (caffeine, 4-chloro-m-cresol [4CmC], and halothane) on the adductor muscle with respect to the lactate-pyruvate (L/P) system that was percutaneously dialyzed using a microdialysis technique in homozygous MH-susceptible compared with normal swine. **METHODS:** Animals were anesthetized (ketamine-propofol) and artificially ventilated. Sets of six CMA/20 microdialysis catheters were implanted; each catheter was perfused with different RyR1 agonist concentrations. After a 30-min equilibration after implantation, one of the catheters was perfused (2 microl/min) with vehicle (0.9% saline or lipid emulsion), and the other five were perfused with caffeine (1-64 mM), 4CmC (0.1-8 mM), or halothane (prepared in lipid emulsion; 10-500 mM). Outflow dialysate fractions collected at 10-min intervals and L/P parameters were measured enzymatically. **RESULTS:** Only in the MH-susceptible group did all RyR1 agonists increase dialysate L/P in a dose-dependent manner. The dose-effect relations were most prominent with 4CmC. With the halothane lipid emulsion, data scatter was high compared with that of the caffeine group and especially the 4CmC group. There were no signs of global muscle rigidity, systemic hypermetabolism, or a clinical MH episode during microdialysis RyR1 perfusion. **CONCLUSIONS:** The authors data demonstrate that the in vivo muscle microdialysis of the porcine L/P system reveals distinct differences between MH-susceptible and MH-normal muscle, especially in response to highly specific RyR1 agonists such as 4CmC. The microdialysis L/P technique seems to have an MH diagnostic potential in the clinical setting.

CONTROLLED TERM: Anesthesia, General  
Anesthetics, Dissociative  
\*Anesthetics, Inhalation: PD, pharmacology  
Anesthetics, Intravenous  
Animals  
Blood Gas Analysis  
\*Caffeine: PD, pharmacology  
\*Central Nervous System Stimulants: PD, pharmacology  
Creatine Kinase: BL, blood  
\*Cresols: PD, pharmacology  
Dose-Response Relationship, Drug  
Electrolytes: ME, metabolism  
Glucose: ME, metabolism  
\*Halothane: PD, pharmacology  
Ketamine  
\*Lactic Acid: ME, metabolism

Malignant Hyperthermia: GE, genetics  
 \*Malignant Hyperthermia: ME, metabolism  
 Microdialysis  
 Muscle, Skeletal: DE, drug effects  
 \*Muscle, Skeletal: ME, metabolism  
 Propofol  
 \*Pyruvic Acid: ME, metabolism  
 Research Support, Non-U.S. Gov't  
 Ryanodine Receptor Calcium Release Channel: DE, drug  
 effects  
 Swine

CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid); 151-67-7 (Halothane); 2078-54-8  
 (Propofol); 50-21-5 (Lactic Acid); 50-99-7 (Glucose);  
 58-08-2 (Caffeine); 59-50-7 (chlorocresol); 6740-88-1  
 (Ketamine)  
 CHEMICAL NAME: 0 (Anesthetics, Dissociative); 0 (Anesthetics, Inhalation);  
 0 (Anesthetics, Intravenous); 0 (Central Nervous System  
 Stimulants); 0 (Cresols); 0 (Electrolytes); 0 (Ryanodine  
 Receptor Calcium Release Channel); EC 2.7.3.2  
 (Creatine Kinase)

L101 ANSWER 7 OF 34      MEDLINE on STN      DUPLICATE 3  
 ACCESSION NUMBER: 2001402767      MEDLINE  
 DOCUMENT NUMBER: PubMed ID: 11454591  
 TITLE: Pyruvate improves cerebral metabolism during  
 hemorrhagic shock.  
 AUTHOR: Mongan P D; Capacchione J; Fontana J L; West S; Bunger  
 R  
 CORPORATE SOURCE: Department of Anesthesiology, Uniformed Services University  
 of the Health Sciences, Bethesda, Maryland 20814, USA..  
 pmongan@usuhs.mil  
 SOURCE: American journal of physiology. Heart and circulatory  
 physiology, (2001 Aug) Vol. 281, No. 2, pp. H854-64.  
 Journal code: 100901228. ISSN: 0363-6135.  
 PUB. COUNTRY: United States  
 DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
 LANGUAGE: English  
 FILE SEGMENT: Priority Journals  
 ENTRY MONTH: 200108  
 ENTRY DATE: Entered STN: 20 Aug 2001  
 Last Updated on STN: 20 Aug 2001  
 Entered Medline: 16 Aug 2001

ABSTRACT:  
 Pyruvate (PYR) improves cellular and organ function hypoxia and ischemia by stabilizing the reduced nicotinamide adenine dinucleotide redox state and cytosolic ATP phosphorylation potential. In this *in vivo* study, we evaluated the effects of intravenous pyruvate on neocortical function, indexes of the cytosolic redox state, cellular energy state, and ischemia during a prolonged (4 h) controlled arterial hemorrhage (40 mmHg) in swine. Thirty minutes after the onset of hemorrhagic shock, sodium PYR ( $n = 8$ ) was infused ( $0.5 \text{ g} \times \text{kg}^{-1} \times \text{h}^{-1}$ ) to attain arterial levels of 5 mM. The volume and osmotic effects were matched with 10% NaCl [hypertonic saline (HTS)] ( $n = 8$ ) or 0.9% NaCl [normal saline (NS)] ( $n = 8$ ). During the hemorrhage protocol, the time to peak hemorrhage volume was significantly delayed in the PYR group compared with the HTS and NS groups (94  $\pm$  5 vs. 73  $\pm$  6 and 72  $\pm$  4 min,  $P < 0.05$ ). In addition to the early onset of the decompensatory phase of hemorrhagic shock, the complete return of the hemorrhage volume during decompensatory shock resulted in the death of five and four animals, respectively, in the HTS and NS groups. In contrast, in the PYR group, reinfusion of the hemorrhage volume was slower and all animals survived.

the 4-h hemorrhage protocol. During hemorrhage, the PYR group also exhibited improved cerebral cortical metabolic and function status. PYR slowed and reduced the rise in neocortical microdialysis levels of adenosine, inosine, and hypoxanthine and delayed the loss of cerebral cortical biopsy ATP and phosphocreatine content. This improvement in energetic status was evident in the improved preservation of the electrocorticogram in the PYR group. PYR also prevented the eightfold increase in the excitotoxic amino acid glutamate observed in the HTS group. The findings show that PYR administered after the onset of hemorrhagic shock markedly improves cerebral metabolic and functional status for at least 4 h.

CONTROLLED TERM: Animals

- \*Brain: ME, metabolism
- Brain Ischemia: DT, drug therapy
- Energy Metabolism: DE, drug effects
- Oxidation-Reduction
- \*Pyruvic Acid: PD, pharmacology
- Pyruvic Acid: TU, therapeutic use
- Research Support, U.S. Gov't, Non-P.H.S.
- Shock, Hemorrhagic: DT, drug therapy
- \*Shock, Hemorrhagic: ME, metabolism
- Shock, Hemorrhagic: PP, physiopathology
- Swine

CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid)

|                     |                                                                                                                            |             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|
| L101 ANSWER 8 OF 34 | MEDLINE on STN                                                                                                             | DUPLICATE 5 |
| ACCESSION NUMBER:   | 1998120467 MEDLINE                                                                                                         |             |
| DOCUMENT NUMBER:    | PubMed ID: 9458846                                                                                                         |             |
| TITLE:              | <b>Pyruvate augments calcium transients and cell shortening in rat ventricular myocytes.</b>                               |             |
| AUTHOR:             | Martin B J; Valdivia H H; Bunger R; Lasley R D; Mentzer R M Jr                                                             |             |
| CORPORATE SOURCE:   | Division of Cardiothoracic Surgery, University of Wisconsin School of Medicine, Madison 53792-0001, USA.                   |             |
| CONTRACT NUMBER:    | HL-09250-02 (NHLBI)<br>R01 HL-34579 (NHLBI)                                                                                |             |
| SOURCE:             | The American journal of physiology, (1998 Jan) Vol. 274, No. 1 Pt 2, pp. H8-17.<br>Journal code: 0370511. ISSN: 0002-9513. |             |
| PUB. COUNTRY:       | United States                                                                                                              |             |
| DOCUMENT TYPE:      | Journal; Article; (JOURNAL ARTICLE)                                                                                        |             |
| LANGUAGE:           | English                                                                                                                    |             |
| FILE SEGMENT:       | Priority Journals                                                                                                          |             |
| ENTRY MONTH:        | 199802                                                                                                                     |             |
| ENTRY DATE:         | Entered STN: 6 Mar 1998<br>Last Updated on STN: 6 Mar 1998<br>Entered Medline: 23 Feb 1998                                 |             |

ABSTRACT:

**Pyruvate** has been shown to be a metabolic inotrope in the myocardium. In millimolar concentrations, it has been shown to increase both myocardial phosphorylation potential and the cytosolic [NAD<sup>+</sup>]-to-[NADH] ratio. To determine if changes in these parameters can alter intracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) and hence contractile function, Ca<sup>2+</sup> transients and cell shortening (CS) were measured in isolated rat ventricular myocytes superfused with a physiological N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer (11 mmol/l glucose) with and without additional **pyruvate**, L-lactate, acetate, or isoproterenol. The addition of 5 mmol/l \*\*\*pyruvate\*\*\* resulted in a 33% increase in CS and a 39% increase in systolic [Ca<sup>2+</sup>]<sub>i</sub>. These **pyruvate** effects were 70% of those observed with 100 nmol/l isoproterenol. The mitochondrial monocarboxylate transport inhibitor alpha-cyano-4-hydroxycinnamate (250 μmol/l) strongly inhibited

\*\*\*pyruvate\*\*\* inotropy, suggesting a substantial obligatory coupling between \*\*\*pyruvate\*\*\* inotropism and its oxidation by the mitochondria. A possible role of the cytosolic [NAD+] -to- [NADH] ratio was assessed by comparing the effects of 20 mmol/l L-lactate to those of equimolar pyruvate. In contrast to 20 mmol/l pyruvate, excess L-lactate failed to appreciably increase CS or systolic  $[Ca^{2+}]_i$ . The findings imply that, at levels substantially above 5 mmol/l, a portion of pyruvate inotropism might be due to extreme cytosolic [NAD+] -to- [NADH] ratios. This study is the first evidence that augmented  $[Ca^{2+}]_i$  transients are most likely the mechanism of cardiac pyruvate inotropism.

CONTROLLED TERM: Check Tags: Male

Animals

Calcium: ME, metabolism

Cells, Cultured

Comparative Study

Cytosol: ME, metabolism

Glucose: ME, metabolism

Glucose: PD, pharmacology

\*Heart: PH, physiology

Heart Ventricle

Lactic Acid: PD, pharmacology

Mitochondria, Heart: ME, metabolism

Models, Cardiovascular

\*Myocardial Contraction: DE, drug effects

Myocardium: CY, cytology

\*Myocardium: ME, metabolism

NAD: ME, metabolism

NADP: ME, metabolism

Phosphorylation

\*Pyruvic Acid: PD, pharmacology

Rats

Rats, Wistar

Research Support, U.S. Gov't, P.H.S.

CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid); 50-21-5 (Lactic Acid); 50-99-7 (Glucose); 53-59-8 (NADP); 53-84-9 (NAD); 7440-70-2 (Calcium)

L101 ANSWER 9 OF 34

MEDLINE on STN

DUPLICATE 8

ACCESSION NUMBER: 94348210 MEDLINE

DOCUMENT NUMBER: PubMed ID: 8069038

TITLE: Metabolically based treatment of stunned myocardium.

AUTHOR: Lasley R D; Bunger R; Zhou Z; Mentzer R M Jr

CORPORATE SOURCE: Department of Surgery, University of Wisconsin, Madison.

SOURCE: Journal of cardiac surgery, (1994 May) Vol. 9, No. 3 Suppl, pp. 469-73.

Journal code: 8908809. ISSN: 0886-0440.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199409

ENTRY DATE: Entered STN: 6 Oct 1994

Last Updated on STN: 6 Oct 1994

Entered Medline: 29 Sep 1994

ABSTRACT:

Reversible myocardial ischemia is associated with a rapid decrease in contractility and prolonged postischemic ventricular dysfunction, due in part to altered intracellular calcium handling and/or contractile protein dysfunction. The maintenance of intracellular calcium homeostasis and force development by the contractile apparatus are dependent upon the free

energy derived from ATP hydrolysis. This energy of hydrolysis is determined by the myocardial phosphorylation potential, an estimate of which can be made from the ratio  $(CrP)/(Cr) \times (P(i))$ . Results from in vitro and in vivo studies suggest that **pyruvate** enhances contractility in both normal and stunned myocardium by enhancing myocardial phosphorylation potential. In regionally stunned porcine myocardium, **pyruvate** infusion increased recovery of regional ventricular function from 33% +/- 4% of preischemic systolic wall thickening to 81% +/- 4% and increased the  $(CrP)/(Cr) \times (P(i))$  ratio fivefold from 0.21 +/- 0.04 to 1.05 +/- 0.08. Thus, metabolic substrates that enhance myocardial energetics and ventricular function may be effective agents for attenuating postischemic ventricular function.

CONTROLLED TERM: Animals

Humans

Myocardial Contraction: DE, drug effects

\*Myocardial Stunning: DT, drug therapy

\*Myocardial Stunning: ME, metabolism

\*Myocardium: ME, metabolism

Phosphorylation

Pyruvates: PD, pharmacology

\*Pyruvates: TU, therapeutic use

Pyruvic Acid

Ventricular Function: DE, drug effects

CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid)

CHEMICAL NAME: O (Pyruvates)

|                      |                                                                                                                      |             |
|----------------------|----------------------------------------------------------------------------------------------------------------------|-------------|
| L101 ANSWER 10 OF 34 | MEDLINE on STN                                                                                                       | DUPLICATE 9 |
| ACCESSION NUMBER:    | 95035117 MEDLINE                                                                                                     |             |
| DOCUMENT NUMBER:     | PubMed ID: 7948040                                                                                                   |             |
| TITLE:               | Energetic modulation of cardiac inotropism and sarcoplasmic reticular Ca <sup>2+</sup> uptake.                       |             |
| AUTHOR:              | Mallet R T; Bunger R                                                                                                 |             |
| CORPORATE SOURCE:    | Department of Physiology, University of North Texas Health Science Center, Fort Worth 76107-2699.                    |             |
| CONTRACT NUMBER:     | R01 HL-36067 (NHLBI)<br>R29 HL-50441 (NHLBI)                                                                         |             |
| SOURCE:              | Biochimica et biophysica acta, (1994 Oct 20) Vol. 1224, No. 1, pp. 22-32.<br>Journal code: 0217513. ISSN: 0006-3002. |             |
| PUB. COUNTRY:        | Netherlands                                                                                                          |             |
| DOCUMENT TYPE:       | Journal; Article; (JOURNAL ARTICLE)                                                                                  |             |
| LANGUAGE:            | English                                                                                                              |             |
| FILE SEGMENT:        | Priority Journals                                                                                                    |             |
| ENTRY MONTH:         | 199412                                                                                                               |             |
| ENTRY DATE:          | Entered STN: 10 Jan 1995<br>Last Updated on STN: 10 Jan 1995<br>Entered Medline: 7 Dec 1994                          |             |

ABSTRACT:

Myocardial contractile performance is a function of sarcoplasmic reticular Ca<sup>2+</sup> uptake and release. Ca<sup>2+</sup> handling is ATP-dependent and can account for up to 40% of total myocardial energy expenditure. We tested the hypothesis that the thermodynamics of the cytosolic adenylate system can modulate sarcoplasmic reticular Ca<sup>2+</sup> handling and hence function in intact heart. Cellular energy level was experimentally manipulated by perfusing isolated working guinea-pig hearts with substrate-free medium or media fortified with lactate and/or \*\*\*pyruvate\*\*\* as the main energy substrate. Left ventricular contractile function was judged by stroke work and intraventricular dP/dt. Cytosolic energy level was indexed by measured creatinine kinase reactants. Relative to 5 mM lactate, 5 mM pyruvate increased left ventricular stroke work, dP/dtmax, and dP/dtmin, while lowering left ventricular end-diastolic pressure at physiological left atrial and aortic pressures. Pyruvate also

doubled cytosolic phosphorylation potentials and increased [ATP]/[ADP] ratio; this energetic enhancement distinguishes **pyruvate** from inotropic stimulation by catecholamines, which are known to decrease cytosolic energy level in perfused heart. Sarcoplasmic reticular Ca<sup>2+</sup> handling was assessed in hearts prelabeled with <sup>45</sup>Ca, subjected to <sup>45</sup>Ca washout in the presence of different cytosolic energy levels, then stimulated with 10 mM caffeine to release residual sarcoplasmic reticular <sup>45</sup>Ca. When ryanodine (1 microM) was applied to open Ca<sup>2+</sup> channels and thereby released <sup>45</sup>Ca from the sarcoplasmic reticulum during washout, caffeine-stimulated <sup>45</sup>Ca release was decreased 96%, demonstrating that virtually the entire caffeine-sensitive <sup>45</sup>Ca pool was located in the sarcoplasmic reticulum. In detailed comparisons of \*\*\*pyruvate\*\*\* -energized vs. substrate-free deenergized hearts, an inverse relationship between cytosolic energy level and caffeine-mobilized <sup>45</sup>Ca pool size was observed. Thus, caffeine-induced <sup>45</sup>Ca release was decreased 60% by \*\*\*pyruvate\*\*\* energization and increased 2.5-fold by substrate-free deenergization. Taken together, these results support the hypothesis that enhancement of myocardial inotropism by energy-yielding substrate is mediated by increased sarcoplasmic reticular Ca<sup>2+</sup> loading/release. Thus we propose that the known control of sarcoplasmic reticular Ca<sup>2+</sup> turnover by the protein kinase/phospholamban system can be modulated by cytosolic energy level.

CONTROLLED TERM: Check Tags: Male

Animals

Caffeine: PD, pharmacology

\*Calcium: ME, metabolism

    Calcium Radioisotopes

Energy Metabolism

Guinea Pigs

In Vitro

Lactates: PD, pharmacology

Lactic Acid

\*Myocardial Contraction: PH, physiology

Phosphorylation

    Pyruvates: PD, pharmacology

Pyruvic Acid

Research Support, Non-U.S. Gov't

Research Support, U.S. Gov't, Non-P.H.S.

Research Support, U.S. Gov't, P.H.S.

Ryanodine: PD, pharmacology

\*Sarcoplasmic Reticulum: ME, metabolism

Ventricular Function, Left: DE, drug effects

CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid); 15662-33-6 (Ryanodine); 50-21-5  
(Lactic Acid); 58-08-2 (Caffeine); 7440-70-2  
(Calcium)

CHEMICAL NAME: 0 (Calcium Radioisotopes); 0 (Lactates); 0 (Pyruvates)

L101 ANSWER 11 OF 34 MEDLINE on STN

DUPLICATE 10

ACCESSION NUMBER: 93385145 MEDLINE

DOCUMENT NUMBER: PubMed ID: 8104034

TITLE: Mitochondrial **pyruvate** transport in working guinea-pig heart. Work-related vs. carrier-mediated control of **pyruvate** oxidation.

AUTHOR: Bunger R; Mallet R T

CORPORATE SOURCE: Department of Physiology, F.E. Hebert School of Medicine,  
Uniformed Services University of the Health Sciences,  
Bethesda, MD 20814-4799.

CONTRACT NUMBER: R01 HL-37067 (NHLBI)

SOURCE: Biochimica et biophysica acta, (1993 Sep 19) Vol. 1151, No. 2, pp. 223-36.

Journal code: 0217513. ISSN: 0006-3002.

PUB. COUNTRY: Netherlands  
 DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
 LANGUAGE: English  
 FILE SEGMENT: Priority Journals  
 ENTRY MONTH: 199310  
 ENTRY DATE: Entered STN: 5 Nov 1993  
               Last Updated on STN: 3 Feb 1997  
               Entered Medline: 21 Oct 1993

## ABSTRACT:

Myocardial **pyruvate** oxidation is work- or calcium -load-related, but control of **pyruvate** dehydrogenase (PDH) by the specific mitochondrial **pyruvate** transporter has also been proposed. To test the transport hypothesis distribution of **pyruvate** across the cell membrane as well as rates of mitochondrial **pyruvate** net transport plus oxidation were examined in isolated perfused but stable and physiologically working guinea-pig hearts. 150 microM-1.2 mM alpha-cyanohydroxycinnamate proved to specifically block mitochondrial \*\*\***pyruvate**\*\*\* uptake in these hearts. When perfuse glucose as cytosolic \*\*\***pyruvate**\*\*\* precursor was supplied in combination with octanoate (0.2 or 0.5 mM) as diffusible alternative fatty acid substrate, alpha-cyanohydroxycinnamate produced up to 20- and 3-fold increases in \*\*\***pyruvate**\*\*\* and lactate efflux, respectively. Cinnamates did not alter myocardial hemodynamics nor sarcolemmal **pyruvate** and lactate export. In contrast the tested concentrations of cinnamate produced reversible, dose-dependent decreases in  $^{14}\text{CO}_2$  production from [ $1-^{14}\text{C}$ ]**pyruvate** or [ $\text{U}-^{14}\text{C}$ ]glucose by inhibiting mitochondrial **pyruvate** uptake. Linear least-squares estimates of available cinnamate-sensitive total **pyruvate** transport potential yielded rates close to 110  $\mu\text{mol}/\text{min}$  per g dry mass at S0.5 approximately 120 microM, which compared reasonably well with literature values from isolated cardiac mitochondria. This transport potential was severalfold larger than total extractable myocardial PDH activity of approximately 32  $\mu\text{mol}/\text{min}$  per g dry mass at 37 degrees C. Even when cytosolic **pyruvate** levels were in the lower physiologic range of about 90 microM, **pyruvate** oxidation readily kept pace with mitochondrial respiration over a wide range of workload and inotropism. Furthermore, dichloroacetate, a selective activator of PDH, stimulated **pyruvate** oxidation without affecting myocardial  $\text{O}_2$  consumption, regardless of the metabolic or inotropic state of the hearts. Consequently, little or no regulatory function with regard to **pyruvate** oxidation could be assigned to the native mitochondrial **pyruvate** carrier of the working heart. Therefore, mitochondrial **pyruvate-H<sup>+</sup>** symport was the normal, highly efficient (rather than controlling) mechanism for **pyruvate** entry into the mitochondria where PDH regulation controlled **pyruvate** oxidation.

CONTROLLED TERM: Adrenergic Agonists: PD, pharmacology  
 Animals  
 Biological Transport: DE, drug effects  
 Carbon Radioisotopes  
 \*Carrier Proteins: ME, metabolism  
 Coumaric Acids: AI, antagonists & inhibitors  
 Coumaric Acids: PD, pharmacology  
 Dichloroacetate: PD, pharmacology  
 Glucose: ME, metabolism  
 Guinea Pigs  
 \*Heart Ventricle: PH, physiology  
 Hydrogen-Ion Concentration  
 Kinetics  
 \*Membrane Transport Proteins  
 \*Mitochondria, Heart: ME, metabolism  
 Oxidation-Reduction  
 \*Pyruvate Dehydrogenase Complex: ME, metabolism

**\*Pyruvates: ME, metabolism**

Pyruvic Acid

Research Support, U.S. Gov't, Non-P.H.S.

Research Support, U.S. Gov't, P.H.S.

Sarcolemma: ME, metabolism

CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid); 13425-80-4 (Dichloroacetate);  
 28166-41-8 (alpha-cyano-4-hydroxycinnamate); 50-99-7  
 (Glucose)

CHEMICAL NAME: 0 (Adrenergic Agonists); 0 (Carbon Radioisotopes); 0  
 (Carrier Proteins); 0 (Coumaric Acids); 0 (Membrane  
 Transport Proteins); 0 (Pyruvate Dehydrogenase  
 Complex); 0 (Pyruvates); 0 (pyruvate  
 transport protein)

L101 ANSWER 12 OF 34 MEDLINE on STN DUPLICATE 11  
 ACCESSION NUMBER: 92329565 MEDLINE  
 DOCUMENT NUMBER: PubMed ID: 1627662  
 TITLE: Use of cytosolic metabolite patterns to estimate free  
**magnesium** in normoxic myocardium.  
 AUTHOR: Mallet R T; Kang Y H; Mukohara N; Bunger R  
 CORPORATE SOURCE: Department of Physiology, Texas College of Osteopathic  
 Medicine, Fort Worth 76107-2699.  
 CONTRACT NUMBER: R01 HL-29060 (NHLBI)  
 R01 HL-37067 (NHLBI)  
 SOURCE: Biochimica et biophysica acta, (1992 Jul 7) Vol. 1139, No.  
 3, pp. 239-47.  
 Journal code: 0217513. ISSN: 0006-3002.  
 PUB. COUNTRY: Netherlands  
 DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
 LANGUAGE: English  
 FILE SEGMENT: Priority Journals  
 ENTRY MONTH: 199208  
 ENTRY DATE: Entered STN: 4 Sep 1992  
 Last Updated on STN: 3 Feb 1997  
 Entered Medline: 18 Aug 1992

## ABSTRACT:

Cytosolic free **magnesium** (Mgf) is considered relatively constant. To test this concept, Mgf was estimated during hyperkalemic ventricular akinesis, normal and maximum adrenergic stimulation, and sulfate loading of the normoxic perfused guinea-pig heart. The Mgf estimates utilized a new sliding scale derived from the Mg(2+)-dependence of glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK). The pseudo constant K'GAPDH.K'PGK was measured as ([creatine phosphate][3-phosphoglycerate][lactate]KLDH)/([creatine][Pi][glyceraldehyde 3-phosphate][\*\*\*pyruvate\*\*\*]KCK), which varied with **magnesium** due to KCK (CK, LDH = creatine kinase, lactate dehydrogenase). However, the correct \*\*\*magnesium\*\*\* dependencies of the true constants KGAPDH.KPGK and KCK were taken from the literature. The [Mg2+] at which pseudo K'GAPDH.K'PGK equalled true KGAPDH.KPGK was the best estimate of Mgf. Mgf fell to approximately 0.13 mM in hyperkalemic arrest from a control of approximately 0.6 mM, rising to approximately 0.85 mM only during maximum adrenergic stress. Mgf increased further to approximately 1.3 mM during sulfate loading which induced ATP catabolism. Mgf and ATP were reciprocally related. Thus, (1) myocardial free [Mg2+] judged from GADPH/PGK mass-action relations changed appreciably only under extreme physiological states; (2) ATP was a major chelator of Mg2+ in perfused myocardium, i.e., acute ATP pool size reduction may be associated with increments in Mgf.

CONTROLLED TERM: Check Tags: Female; Male  
 Aconitate Hydratase: ME, metabolism  
 Adenosine Triphosphate: ME, metabolism

Animals  
 Cytosol: ME, metabolism  
 Glycolysis  
 Guinea Pigs  
 In Vitro  
 Kinetics  
     \***Magnesium: ME, metabolism**  
 Myocardial Contraction  
 \*Myocardium: ME, metabolism  
     Research Support, Non-U.S. Gov't  
     Research Support, U.S. Gov't, Non-P.H.S.  
     Research Support, U.S. Gov't, P.H.S.  
 Sulfates: ME, metabolism

CAS REGISTRY NO.: 56-65-5 (Adenosine Triphosphate); **7439-95-4**  
 (Magnesium)

CHEMICAL NAME: 0 (Sulfates); EC 4.2.1.3 (Aconitate Hydratase)

L101 ANSWER 13 OF 34     MEDLINE on STN                          DUPLICATE 12  
 ACCESSION NUMBER: 89206332     MEDLINE  
 DOCUMENT NUMBER: PubMed ID: 2705826  
 TITLE: Effect of **pyruvate** on regional ventricular  
       function in normal and stunned myocardium.  
 AUTHOR: Mentzer R M Jr; Van Wylen D G; Sodhi J; Weiss R J; Lasley R  
       D; Willis J; **Bunger R**; Habil; Flint L M  
 CORPORATE SOURCE: Department of Surgery, School of Medicine and Biomedical  
       Sciences, State University of New York, Buffalo 14215.  
 CONTRACT NUMBER: HL-01299 (NHLBI)  
                   HL-34579 (NHLBI)  
                   HL-36067 (NHLBI)  
       +  
 SOURCE: Annals of surgery, (1989 May) Vol. 209, No. 5, pp. 629-33;  
       discussion 633-4.  
       Journal code: 0372354. ISSN: 0003-4932.  
 PUB. COUNTRY: United States  
 DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
 LANGUAGE: English  
 FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals  
 ENTRY MONTH: 198905  
 ENTRY DATE: Entered STN: 6 Mar 1990  
               Last Updated on STN: 3 Feb 1997  
               Entered Medline: 25 May 1989

**ABSTRACT:**  
 The prolonged ventricular dysfunction following brief periods of coronary artery occlusion that does not produce irreversible damage has been termed the "stunned" myocardium. Although ventricular function returns to preischemic values by 1 to 7 days after reperfusion is established, inotropic therapy may be necessary to enhance contractility in the stunned heart. The purpose of this study was to determine the effect of **pyruvate** on ventricular function in normal and stunned myocardium. Eight chloralose/urethane anesthetized dogs were instrumented with ultrasonic crystals to measure systolic wall thickening in the left anterior descending artery (LAD) and left circumflex artery perfused regions of the left ventricle. **Pyruvate** (1 ml/min of 150 mM sodium **pyruvate**, pH 7.4) was infused directly into the LAD prior to and 30 minutes after a 10 minute LAD occlusion. Prior to LAD occlusion, LAD **pyruvate** infusion increased systolic wall thickening in the LAD-perfused region from 16.2% +/- 4.3% to 23.4% +/- 5.1% (p less than 0.05). Thirty minutes after LAD occlusion, regional wall thickening was depressed (3.3% +/- 2.6%; p less than 0.05), which is indicative of stunned myocardium. Subsequent LAD **pyruvate** infusion increased wall thickening in the stunned myocardium to 12.7% +/- 2.5%. The improvement of

regional ventricular function was maintained only during the **pyruvate** infusion, as function returned to prepyruvate levels within 20 minutes after cessation of **pyruvate** infusion. These data indicate that **pyruvate** exerts a positive inotropic effect in normal and stunned myocardium. If **pyruvate**, a key intermediate in energy-producing pathways, exerts its inotropic effect through an enhancement of the energy state of the heart, it may have advantages over traditional inotropic agents in the treatment of postischemic contractile dysfunction.

CONTROLLED TERM: Check Tags: Female; Male

Animals

Cardiotonic Agents: PD, pharmacology

Dogs

Heart Ventricles: PH, physiology

Hemodynamic Processes

\*Myocardial Contraction: DE, drug effects

\*Myocardial Reperfusion Injury: PP, physiopathology

\***Pyruvates: PD, pharmacology**

Pyruvic Acid

Research Support, U.S. Gov't, P.H.S.

CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid)

CHEMICAL NAME: 0 (Cardiotonic Agents); 0 (**Pyruvates**)

L101 ANSWER 14 OF 34 MEDLINE on STN

DUPLICATE 13

ACCESSION NUMBER: 83272882 MEDLINE

DOCUMENT NUMBER: PubMed ID: 6878010

TITLE: Energy utilization and **pyruvate** as determinants of **pyruvate** dehydrogenase in norepinephrine-stimulated heart.

AUTHOR: Bunger R; Permanetter B; Yaffe S

CONTRACT NUMBER: R07638

SOURCE: Pflugers Archiv : European journal of physiology, (1983 May) Vol. 397, No. 3, pp. 214-9.  
Journal code: 0154720. ISSN: 0031-6768.

PUB. COUNTRY: GERMANY, WEST: Germany, Federal Republic of  
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 198309

ENTRY DATE: Entered STN: 19 Mar 1990  
Last Updated on STN: 19 Mar 1990  
Entered Medline: 23 Sep 1983

ABSTRACT:

The quantitative effects of norepinephrine (NE) on the active form of the cardiac **pyruvate** dehydrogenase complex (PDCa) and the rate of oxidative decarboxylation of **pyruvate** (MVPyr) were compared with those of **pyruvate** (Pyr). Isolated working guinea pig hearts metabolized **pyruvate** alone or in combination with alternative energy-providing substrates (ketone bodies, octanoate, glucose). NE produced proportional increases in PDCa and myocardial oxygen uptake (MVO<sub>2</sub>). Total PDC activity (PDC1) remained constant. The PDCa/PDC1 ratios in NE depleted hearts (reserpine pretreatment) compared well with those in hearts containing endogenous NE, provided myocardial substrate supply and MVO<sub>2</sub> were also comparable. No evidence was obtained indicating that NE or perfusate Ca<sup>2+</sup> can dissociate PDCa or MVPyr from MVO<sub>2</sub>, even in presence of the alternative cosubstrates. In contrast, 0.2-10 mM Pyr produced stepwise but only submaximal increases in PDCa and MVPyr, with MVO<sub>2</sub> remaining constant. Thus, at all Pyr concentrations tested, NE stimulations of myocardial energy utilization and MVO<sub>2</sub> were followed by further increases in PDCa and MVPyr. Evidently, \*\*\***pyruvate**\*\*\*, and particularly cellular respiration are important determinants in the regulation of cardiac PDC, also during adrenergic

stimulation of the heart.

CONTROLLED TERM: Check Tags: Male  
 Animals  
 Calcium: PD, pharmacology  
 \*Energy Metabolism: DE, drug effects  
 Guinea Pigs  
 \*Heart: DE, drug effects  
 In Vitro  
 Myocardium: EN, enzymology  
 \*Myocardium: ME, metabolism  
 \*Norepinephrine: PD, pharmacology  
 Oxidation-Reduction  
 Oxygen Consumption  
 \*Pyruvate Dehydrogenase Complex: ME, metabolism  
 \*Pyruvates: ME, metabolism  
 Research Support, U.S. Gov't, P.H.S.  
 CAS REGISTRY NO.: 51-41-2 (Norepinephrine); 7440-70-2 (Calcium)  
 CHEMICAL NAME: 0 (Pyruvate Dehydrogenase Complex); 0 (Pyruvates)

L101 ANSWER 15 OF 34 MEDLINE on STN  
 ACCESSION NUMBER: 2004017836 MEDLINE  
 DOCUMENT NUMBER: PubMed ID: 14551043  
 TITLE: The intermediary metabolite **pyruvate** attenuates stunning and reduces infarct size in *in vivo* porcine myocardium.  
 AUTHOR: Kristo Gentian; Yoshimura Yukihiro; Niu Jianli; Keith Byron J; Mentzer Robert M Jr; Bunger Rolf; Lasley Robert D  
 CORPORATE SOURCE: Department of Surgery, University of Kentucky College of Medicine, Lexington 40536-0298, USA.  
 CONTRACT NUMBER: R01-HL-34759 (NHLBI)  
 SOURCE: American journal of physiology. Heart and circulatory physiology, (2004 Feb) Vol. 286, No. 2, pp. H517-24.  
 Electronic Publication: 2003-10-09.  
 Journal code: 100901228. ISSN: 0363-6135.  
 PUB. COUNTRY: United States  
 DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
 LANGUAGE: English  
 FILE SEGMENT: Priority Journals  
 ENTRY MONTH: 200403  
 ENTRY DATE: Entered STN: 13 Jan 2004  
 Last Updated on STN: 10 Mar 2004  
 Entered Medline: 9 Mar 2004

ABSTRACT:

The intermediary metabolite **pyruvate** has been shown to exert significant beneficial effects in *in vitro* models of myocardial oxidative stress and ischemia-reperfusion injury. However, there have been few reports of the ability of **pyruvate** to attenuate myocardial stunning or reduce infarct size *in vivo*. This study tested whether supraphysiological levels of \*\*\***pyruvate**\*\*\* protect against reversible and irreversible *in vivo* myocardial ischemia-reperfusion injury. Anesthetized, open-chest pigs ( $n = 7/\text{group}$ ) underwent 15 min of left anterior descending coronary artery (LAD) occlusion and 3 h of reperfusion to induce stunning. Load-insensitive contractility measurements of regional preload recruitable stroke work (PRSW) and PRSW area (PRSWA) were generated. Vehicle or **pyruvate** (100 mg/kg i.v. bolus + 10 mg  $\times$  kg $^{-1}$   $\times$  min $^{-1}$  intra-atrial infusion) was administered during ischemia and for the first hour of reperfusion. In infarct studies, pigs ( $n = 6/\text{group}$ ) underwent 1 h of LAD ischemia and 3 h of reperfusion. Group I pigs received vehicle or **pyruvate** for 30 min before and throughout

ischemia. In group II, the infusion was extended through 1 h of reperfusion. In the stunning protocol, pyruvate significantly improved the recovery of PRSWA at 1 h (50 +/- 4% vs. 23 +/- 3% in controls) and 3 h (69 +/- 5% vs. 39 +/- 3% in controls) reperfusion. Control pigs exhibited infarct sizes of 66 +/- 1% of the area at risk. The pyruvate I protocol was associated with an infarct size of 49 +/- 3% ( $P < 0.05$ ), whereas the \*\*\*pyruvate\*\*\* II protocol was associated with an infarct size of 30 +/- 2% ( $P < 0.05$  vs. control and pyruvate I). These findings suggest that \*\*\*pyruvate\*\*\* attenuates stunning and decreases myocardial infarction in vivo in part by reduction of reperfusion injury. Metabolic interventions such as pyruvate should be considered when designing the optimal therapeutic strategies for limiting myocardial ischemia-reperfusion injury.

CONTROLLED TERM: Animals

- Bicarbonates: BL, blood
- Carbon Dioxide: BL, blood
- \*Coronary Circulation: DE, drug effects
- Disease Models, Animal
- In Vitro
- \*Myocardial Infarction: PC, prevention & control
- Myocardial Ischemia: ME, metabolism
- Myocardial Ischemia: PP, physiopathology
- Myocardial Ischemia: PC, prevention & control
- \*Myocardial Stunning: PC, prevention & control
- Partial Pressure
- \*Pyruvates: PD, pharmacology
- Research Support, U.S. Gov't, P.H.S.
- Sodium: BL, blood
- Swine

CAS REGISTRY NO.: 124-38-9 (Carbon Dioxide); 7440-23-5 (Sodium)

CHEMICAL NAME: 0 (Bicarbonates); 0 (Pyruvates)

L101 ANSWER 16 OF 34 MEDLINE on STN

ACCESSION NUMBER: 2000071633 MEDLINE

DOCUMENT NUMBER: PubMed ID: 10603966

TITLE: Metabolic inotropy and calcium transients in isolated rat cardiomyocytes.

AUTHOR: Lasley R D; Martin B J; Valdivia H H; Mentzer R M Jr;  
Bunger R

CORPORATE SOURCE: Department of Surgery, University of Wisconsin, Madison,  
USA.. rlasley@pop.uky.edu

SOURCE: Annals of the New York Academy of Sciences, (1998 Sep 16)  
Vol. 853, pp. 308-10.  
Journal code: 7506858. ISSN: 0077-8923.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200001

ENTRY DATE: Entered STN: 24 Jan 2000

Last Updated on STN: 24 Jan 2000

Entered Medline: 7 Jan 2000

CONTROLLED TERM: Check Tags: Male

- Acetates: PD, pharmacology

- Animals

- \*Calcium: ME, metabolism

- Coumaric Acids: PD, pharmacology

- In Vitro

- Isoproterenol: PD, pharmacology

- Lactates: PD, pharmacology

- Myocardial Contraction: DE, drug effects

\*Myocardial Contraction: PH, physiology

Myocardium: CY, cytology

\*Myocardium: ME, metabolism

    Pyruvates: PD, pharmacology

Rats

Rats, Wistar

CAS REGISTRY NO.: 28166-41-8 (alpha-cyano-4-hydroxycinnamate); 7440-70-2

(Calcium); 7683-59-2 (Isoproterenol)

CHEMICAL NAME: 0 (Acetates); 0 (Coumaric Acids); 0 (Lactates); 0 (Pyruvates)

L101 ANSWER 17 OF 34 MEDLINE on STN

ACCESSION NUMBER: 84254134 MEDLINE

DOCUMENT NUMBER: PubMed ID: 6331186

TITLE: Parallel stimulation by Ca<sup>2+</sup> of inotropism and pyruvate dehydrogenase in perfused heart.

AUTHOR: Bunger R; Permanetter B

CONTRACT NUMBER: HL-29-0 60-01 A1 (NHLBI)

SOURCE: The American journal of physiology, (1984 Jul) Vol. 247, No. 1 Pt 1, pp. C45-52.

Journal code: 0370511. ISSN: 0002-9513.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 198408

ENTRY DATE: Entered STN: 20 Mar 1990

Last Updated on STN: 3 Feb 1997

Entered Medline: 20 Aug 1984

#### ABSTRACT:

The effects of extracellular Ca<sup>2+</sup> (0.375-3.75 mM) on pyruvate oxidation and active form of the pyruvate dehydrogenase complex (PDCa) were quantitated in perfused guinea pig hearts in relation to inotropism, hydraulic work performance, and myocardial oxygen uptake (MVO<sub>2</sub>). The effects of afterload and norepinephrine (NE), alone or combined with the Ca<sup>2+</sup> channel blocker D 600, were also examined. Hearts utilized 1-5 mM \*\*\*pyruvate\*\*\* in presence of 5 mM DL-3-hydroxybutyrate as substrates. \*\*\*Pyruvate\*\*\* oxidation and MVO<sub>2</sub> increased essentially in parallel regardless of whether inotropism and energy metabolism were stimulated by increasing the Ca<sup>2+</sup> concentration [(Ca<sup>2+</sup>)], the NE concentration [(NE)], or the afterload. PDCa activity was also directly related to [Ca<sup>2+</sup>], [NE], and afterload, respectively. Elevated [Ca<sup>2+</sup>] failed, however, to stimulate \*\*\*pyruvate\*\*\* oxidation and PDCa activity when MVO<sub>2</sub> was held constant by an appropriate decrease in afterload at constant preload. Compound D 600, theophylline, and dibutyryl adenosine 3',5'-cyclic monophosphate also produced parallel alterations in cardiac mechanics, pyruvate oxidation, and MVO<sub>2</sub>. The striking proportionality between PDCa parameters, MVO<sub>2</sub>, and cardiac mechanics during the various alterations in cellular Ca<sup>2+</sup> metabolism seemed to suggest that the observed Ca<sup>2+</sup> stimulation of the PDC might be mainly secondary to increased myocardial energy utilization and myocyte respiration. Evidence for an additional direct effect of Ca<sup>2+</sup> on the intact PDC system was not obtained.

CONTROLLED TERM: Check Tags: Male

Animals

Bucladesine: PD, pharmacology

\*Calcium: PD, pharmacology

Carbon Radioisotopes: DU, diagnostic use

Energy Metabolism

Gallopamil: PD, pharmacology

Guinea Pigs

Mitochondria, Heart: EN, enzymology  
 \*Myocardial Contraction: DE, drug effects  
 \*Myocardium: EN, enzymology  
 Norepinephrine: PD, pharmacology  
 Oxygen Consumption  
 Perfusion  
 \*Pyruvate Dehydrogenase Complex: ME, metabolism  
 Pyruvates: ME, metabolism  
 Pyruvic Acid  
 Research Support, U.S. Gov't, Non-P.H.S.  
 Research Support, U.S. Gov't, P.H.S.  
 Stimulation, Chemical  
 Theophylline: PD, pharmacology  
 CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid); 16662-47-8 (Gallopamil); 362-74-3  
 (Bucladesine); 51-41-2 (Norepinephrine); 58-55-9  
 (Theophylline); 7440-70-2 (Calcium)  
 CHEMICAL NAME: 0 (Carbon Radioisotopes); 0 (Pyruvate  
 Dehydrogenase Complex); 0 (Pyruvates)

L101 ANSWER 18 OF 34 MEDLINE on STN  
 ACCESSION NUMBER: 82132877 MEDLINE  
 DOCUMENT NUMBER: PubMed ID: 7058910  
 TITLE: Adaptive changes of pyruvate oxidation in perfused heart during adrenergic stimulation.  
 AUTHOR: Bunger R; Permanetter B; Sommer O; Yaffe S  
 SOURCE: The American journal of physiology, (1982 Jan) Vol. 242, No. 1, pp. H30-6.  
 Journal code: 0370511. ISSN: 0002-9513.  
 PUB. COUNTRY: United States  
 DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
 LANGUAGE: English  
 FILE SEGMENT: Priority Journals  
 ENTRY MONTH: 198204  
 ENTRY DATE: Entered STN: 17 Mar 1990  
 Last Updated on STN: 3 Feb 1997  
 Entered Medline: 20 Apr 1982

**ABSTRACT:**  
 Pyruvate oxidation was studied in isolated guinea pig hearts perfused under various conditions of work and stimulated by norepinephrine. Hearts metabolized pyruvate alone or in combination with 3-hydroxybutyrate or acetate as substrate. [1-14C]-pyruvate-dependent 14CO<sub>2</sub> release into the venous effluent (MV<sub>pyr</sub>) was, like myocardial oxygen consumption (MVO<sub>2</sub>), directly related to aortic pressure or filling pressure. At high aortic pressures, ventricular pressure development and not work performance was the major determinant of MVO<sub>2</sub> and thus MV<sub>pyr</sub>. With 1 mM pyruvate as sole substrate, 0.08 microM norepinephrine produced parallel changes in hemodynamic performance, MVO<sub>2</sub>, MV<sub>pyr</sub>, and pyruvate dehydrogenase complex (PDC) activity (active form). Similar and dose-dependent effects of norepinephrine were observed during infusion of 5 mM DL-3-hydroxybutyrate as cosubstrate. When 1 mM acetate was applied, MV<sub>pyr</sub> was also dependent on work performance and norepinephrine stimulation. However, in perfusions with 25 mM \*\*\*potassium\*\*\* chloride, norepinephrine did not enhance hemodynamic function or MVO<sub>2</sub> and hence PDC activity and MV<sub>pyr</sub>. Thus regulation of the PDC in catecholamine-stimulated heart appears to be linked predominantly to myocardial energy demand even when alternative energy-providing substrates are utilized.

CONTROLLED TERM: Check Tags: Male  
 Animals  
 Blood Pressure: DE, drug effects  
 Energy Metabolism  
 Guinea Pigs

\*Heart: PH, physiology  
 \*Myocardium: ME, metabolism  
 \*Norepinephrine: PD, pharmacology  
 Oxygen Consumption: DE, drug effects  
 Pyruvate Dehydrogenase Complex: ME, metabolism  
 \*Pyruvates: ME, metabolism  
 Pyruvic Acid  
 Research Support, U.S. Gov't, Non-P.H.S.  
 CAS REGISTRY NO.: 127-17-3 (Pyruvic Acid); 51-41-2 (Norepinephrine)  
 CHEMICAL NAME: 0 (Pyruvate Dehydrogenase Complex); 0 (Pyruvates)

L101 ANSWER 19 OF 34 EMBASE COPYRIGHT (c) 2006 Elsevier B.V. All rights reserved on STN  
 ACCESSION NUMBER: 2001290809 EMBASE  
 TITLE: Pyruvate improves cerebral metabolism during hemorrhagic shock.  
 AUTHOR: Mongan P.D.; Capacchione J.; Fontana J.L.; West S.; Bunger R.  
 CORPORATE SOURCE: P.D. Mongan, Dept. of Anesthesia, Uniformed Serv. Univ. of Hlth. Sci., 4301 Jones Bridge Rd., Bethesda, MD 20814, United States. pmongan@usuhs.mil  
 SOURCE: American Journal of Physiology - Heart and Circulatory Physiology, (2001) Vol. 281, No. 2 50-2, pp. H854-H864. .  
 Refs: 45  
 ISSN: 0363-6135 CODEN: AJPPDI  
 COUNTRY: United States  
 DOCUMENT TYPE: Journal; Article  
 FILE SEGMENT: 002 Physiology  
 029 Clinical Biochemistry  
 LANGUAGE: English  
 SUMMARY LANGUAGE: English  
 ENTRY DATE: Entered STN: 30 Aug 2001  
 Last Updated on STN: 30 Aug 2001  
 ABSTRACT: Pyruvate (PYR) improves cellular and organ function hypoxia and ischemia by stabilizing the reduced nicotinamide adenine dinucleotide redox state and cytosolic ATP phosphorylation potential. In this in vivo study, we evaluated the effects of intravenous pyruvate on neocortical function, indexes of the cytosolic redox state, cellular energy state, and ischemia during a prolonged (4 h) controlled arterial hemorrhage (40 mmHg) in swine. Thirty minutes after the onset of hemorrhagic shock, \*\*\*sodium\*\*\* PYR ( $n = 8$ ) was infused ( $0.5 \text{ g.ovrhdot.kg}(-1).\text{ovrhdot.h}(-1)$ ) to attain arterial levels of 5 mM. The volume and osmotic effects were matched with 10% NaCl [hypertonic saline (HTS)] ( $n = 8$ ) or 0.9% NaCl [normal saline (NS)] ( $n = 8$ ). During the hemorrhage protocol, the time to peak hemorrhage volume was significantly delayed in the PYR group compared with the HTS and NS groups ( $94 \pm 5$  vs.  $73 \pm 6$  and  $72 \pm 4$  min,  $P < 0.05$ ). In addition to the early onset of the decompensatory phase of hemorrhagic shock, the complete return of the hemorrhage volume during decompensatory shock resulted in the death of five and four animals, respectively, in the HTS and NS groups. In contrast, in the PYR group, reinfusion of the hemorrhage volume was slower and all animals survived the 4-h hemorrhage protocol. During hemorrhage, the PYR group also exhibited improved cerebral cortical metabolic and function status. PYR slowed and reduced the rise in neocortical microdialysis levels of adenosine, inosine, and hypoxanthine and delayed the loss of cerebral cortical biopsy ATP and phosphocreatine content. This improvement in energetic status was evident in the improved preservation of the electrocorticogram in the PYR group. PYR also prevented the eightfold increase in the excitotoxic amino acid glutamate observed in the HTS group. The findings show that PYR administered after the onset of hemorrhagic shock markedly improves cerebral metabolic and

functional status for at least 4 h.

CONTROLLED TERM: Medical Descriptors:  
 \*hemorrhagic shock  
 \*brain  
 swine  
 brain metabolism  
 oxidation reduction state  
 microdialysis  
 high performance liquid chromatography  
 nonhuman  
 animal model  
 animal tissue  
 article  
 priority journal  
 Drug Descriptors:  
 \*pyruvic acid  
 adenosine triphosphate: EC, endogenous compound  
 nicotinamide adenine dinucleotide: EC, endogenous compound  
 sodium chloride  
 creatine phosphate: EC, endogenous compound  
 glutamic acid: EC, endogenous compound  
 (pyruvic acid) 127-17-3, 19071-34-2, 57-60-3; (adenosine triphosphate) 15237-44-2, 56-65-5, 987-65-5; (nicotinamide adenine dinucleotide) 53-84-9; (sodium chloride) 7647-14-5; (creatine phosphate) 67-07-2; (glutamic acid) 11070-68-1, 138-15-8, 56-86-0, 6899-05-4

CAS REGISTRY NO.: (pyruvic acid) 127-17-3, 19071-34-2, 57-60-3; (adenosine triphosphate) 15237-44-2, 56-65-5, 987-65-5; (nicotinamide adenine dinucleotide) 53-84-9; (sodium chloride) 7647-14-5; (creatine phosphate) 67-07-2; (glutamic acid) 11070-68-1, 138-15-8, 56-86-0, 6899-05-4

L101 ANSWER 20 OF 34 EMBASE COPYRIGHT (c) 2006 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 2000033226 EMBASE

TITLE: Intravenous **pyruvate** prolongs survival during hemorrhagic shock in swine.

AUTHOR: Mongan P.D.; Fontana J.L.; Chen R.; **Bunger R.**

CORPORATE SOURCE: P.D. Mongan, Dept. of Anesthesia, Uniformed Svcs. Univ. of Hlth. Sci., 4301 Jones Bridge Road, Bethesda, MD 20814, United States. pmongan@usuhs.mil

SOURCE: American Journal of Physiology - Heart and Circulatory Physiology, (1999) Vol. 277, No. 6 46-6, pp. H2253-H2263. .

Refs: 36

ISSN: 0363-6135 CODEN: AJPPDI

COUNTRY: United States

DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 002 Physiology

LANGUAGE: English

SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 3 Feb 2000

Last Updated on STN: 3 Feb 2000

ABSTRACT: **Pyruvate** improves cellular and organ function during hypoxia and ischemia and stabilizes the NADH redox state and cytosolic ATP phosphorylation potential. In this *in vivo* study, we evaluated the effects of intravenous **pyruvate** on cardiovascular and neocortical function, indexes of the cytosolic redox state (lactate/**pyruvate** ratio, L/P) and cellular energy state (adenosine and degradative products hypoxanthine and inosine, ADO + HX + Ino) during controlled arterial hemorrhage (40 mmHg) in sedated swine (45 kg). Na<sup>+</sup> **pyruvate** was infused 1 h before (1 g·kg<sup>-1</sup>·h<sup>-1</sup>) and 2 h during (0.5 g·kg<sup>-1</sup>·h<sup>-1</sup>) hemorrhage to attain arterial **pyruvate** levels of 6 mM. Volume (0.9% NaCl) and osmotic (10% NaCl) effects were matched in controls. Time to peak hemorrhage (57 min) and peak hemorrhage volume (43 ml/kg) were similar in all

groups. The volume and osmotic groups experienced spontaneous cardiovascular decompensation between 60 and 90 min, with an average time until death of 82.7 ± 5.5 and 74.8 ± 8.2 min. In contrast, survival in the **pyruvate** group was 151.2 ± 10.0 min ( $P < 0.001$ ). During hemorrhage, the \*\*\***pyruvate\*\*\*** group had better cardiovascular and cerebrovascular function with significantly higher systemic and cerebral oxygen consumption and less attenuation of the amplitude and frequency of the electrocorticogram. In addition, **pyruvate** prevented metabolic acidosis and stabilized the L/P. **Pyruvate** slowed the rise in neocortical microdialysis levels of ADO + HX + Ino, and prevented the net efflux of ADO + HX + Ino into the sagittal sinus. The findings reveal considerable metabolic and functional enhancement by **pyruvate** during severe hemorrhagic shock with a 75-min delay in spontaneous cardiovascular decompensation and death.

## CONTROLLED TERM: Medical Descriptors:

- \*hemorrhagic shock
- \*survival
- swine
- cell function
- hypoxia
- ischemia
- phosphorylation
- oxidation reduction state
- cell energy
- cardiovascular function
- oxygen consumption
- metabolic acidosis
- brain blood flow
- nonhuman
- animal experiment
- animal model
- controlled study
- adolescent
- article
- priority journal

## Drug Descriptors:

- \***pyruvate sodium**
- \*reduced nicotinamide adenine dinucleotide
- \*adenosine triphosphate
- \*pyruvic acid
- \*lactic acid
- \*hypoxanthine
- sodium chloride

inosine

CAS REGISTRY NO.: (pyruvate sodium) 113-24-6; (reduced nicotinamide adenine dinucleotide) 58-68-4; (adenosine triphosphate) 15237-44-2, 56-65-5, 987-65-5; (pyruvic acid) 127-17-3, 19071-34-2, 57-60-3; (lactic acid) 113-21-3, 50-21-5; (hypoxanthine) 68-94-0; (sodium chloride) 7647-14-5; (inosine) 58-63-9

L101 ANSWER 21 OF 34 EMBASE COPYRIGHT (c) 2006 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 1998065219 EMBASE

TITLE: **Pyruvate augments calcium transients and cell shortening in rat ventricular myocytes.**

AUTHOR: Martin B.J.; Valdivia H.H.; Bunger R.; Lasley R.D.; Mentzer R.M. Jr.

CORPORATE SOURCE: B.J. Martin, Div. of Cardiothoracic Surgery, Univ. of Wisconsin Sch. of Medicine, H4/383 Clinical Science Center,

SOURCE: 600 Highland Ave., Madison, WI 53792-0001, United States  
 American Journal of Physiology - Heart and Circulatory  
 Physiology, (1998) Vol. 274, No. 1 43-1, pp. H8-H17. .  
 Refs: 38  
 ISSN: 0363-6135 CODEN: AJPPDI

COUNTRY: United States  
 DOCUMENT TYPE: Journal; Article  
 FILE SEGMENT: 002 Physiology.  
 LANGUAGE: English  
 SUMMARY LANGUAGE: English  
 ENTRY DATE: Entered STN: 9 Apr 1998  
 Last Updated on STN: 9 Apr 1998

**ABSTRACT:** **Pyruvate** has been shown to be a metabolic inotrope in the myocardium. In millimolar concentrations, it has been shown to increase both myocardial phosphorylation potential and the cytosolic [NAD+] -to-[NADH] ratio. To determine if changes in these parameters can alter intracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>(i)</sub>) and hence contractile function, Ca<sup>2+</sup> transients and cell shortening (CS) were measured in isolated rat ventricular myocytes superfused with a physiological N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer (11 mmol/l glucose) with and without additional **pyruvate**, L-lactate, acetate, or isoproterenol. The addition of 5 mmol/l \*\*\*pyruvate\*\*\* resulted in a 33% increase in CS and a 39% increase in systolic [Ca<sup>2+</sup>]<sub>(i)</sub>. These **pyruvate** effects were 70% of those observed with 100 nmol/l isoproterenol. The mitochondrial monocarboxylate transport inhibitor  $\alpha$ -cyano-4-hydroxycinnamate (250  $\mu$ mol/l) strongly inhibited **pyruvate** inotropy, suggesting a substantial obligatory coupling between **pyruvate** inotropism and its oxidation by the mitochondria. A possible role of the cytosolic [NAD+] -to-[NADH] ratio was assessed by comparing the effects of 20 mmol/l L-lactate to those of equimolar \*\*\*pyruvate.\*\*\* In contrast to 20 mmol/l **pyruvate**, excess L-lactate failed to appreciably increase CS or systolic [Ca<sup>2+</sup>]<sub>(i)</sub>. The findings imply that, at levels substantially above 5 mmol/l, a portion of \*\*\*pyruvate\*\*\* inotropism might be due to extreme cytosolic [NAD+] -to-[NADH] ratios. This study is the first evidence that augmented [Ca<sup>2+</sup>]<sub>(i)</sub> transients are most likely the mechanism of cardiac **pyruvate** inotropism.

CONTROLLED TERM: Medical Descriptors:  
 \*heart muscle contractility  
 \*calcium current  
 sarcoplasmic reticulum  
 heart muscle cell  
 calcium cell level  
 mitochondrial respiration  
 glycolysis  
 nonhuman  
 male  
 rat  
 controlled study  
 animal cell  
 article  
 priority journal  
 Drug Descriptors:  
 \*pyruvic acid  
 \*calcium ion  
 nicotinamide adenine dinucleotide  
 reduced nicotinamide adenine dinucleotide  
 isoprenaline  
 CAS REGISTRY NO.: (pyruvic acid) 127-17-3, 19071-34-2, 57-60-3; (calcium ion) 14127-61-8; (nicotinamide adenine dinucleotide) 53-84-9; (reduced nicotinamide adenine

dinucleotide) 58-68-4; (isoprenaline) 299-95-6, 51-30-9,  
6700-39-6, 7683-59-2

L101 ANSWER 22 OF 34 EMBASE COPYRIGHT (c) 2006 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 95240636 EMBASE  
 DOCUMENT NUMBER: 1995240636

TITLE: Protection by **pyruvate** against inhibition of Na<sub>+</sub>,K<sub>+</sub>-ATase by a free radical generating system:  
 Containing t-butylhydroperoxide.

AUTHOR: Clough D.; **Bunger R.**

CORPORATE SOURCE: Physiology, Uniformed Serv.Univ.of the Hlth Scis, 4301 Jones Bridge Road,Bethesda, MD 20814-4779, United States

SOURCE: Life Sciences, (1995) Vol. 57, No. 10, pp. 931-943. .  
 ISSN: 0024-3205 CODEN: LIFSAK

COUNTRY: United States

DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 002 Physiology  
 030 Pharmacology  
 037 Drug Literature Index

LANGUAGE: English

SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 12 Sep 1995  
 Last Updated on STN: 12 Sep 1995

ABSTRACT: Global tissue damage due to oxygen-derived free radicals has been implicated in several pathological processes including exposure to ionizing radiation, and postischemic reperfusion of the heart or kidney. Recently \*\*\*pyruvate\*\*\*, a hydroperoxide scavenger, has been shown to protect against functional damage during postischemic reperfusion of the heart and in acute renal failure. In the present study, **pyruvate** was found to protect against inactivation of partially purified guinea pig renal and rat cardiac Na<sub>+</sub>,K<sub>+</sub>-ATPase which occurred when microsomal membranes were assayed for 1 hr at 37°C (pH 7.5) in the presence of a free radical generating system (FRGS) containing 0.3 mM t-butylhydroperoxide and horseradish peroxidase. The presence of the FRG system inhibited the guinea pig renal Na<sub>+</sub>,K<sub>+</sub>-ATPase activity by 48.2 ± 4.8% (N = 10, P < .05) and the presence of 0.2 to 20 mM \*\*\*pyruvate\*\*\* partially protected the Na<sub>+</sub>,K<sub>+</sub>-ATPase. At 5 mM \*\*\*pyruvate\*\*\* Na<sub>+</sub>,K<sub>+</sub>-ATPase was inhibited by only 18.8 ± 2.5% (N = 10, P < .05) but increasing the **pyruvate** concentration gave no further protection. Equimolar concentrations of glucose, mannitol or lactate were without effect. The protection appeared to require an α-keto acid since α- but not β-ketoglutarate was also effective and the mechanism is most probably the scavenging of t-BHO<sub>2</sub>. The results of the present study therefore support the hypothesis that, if free radical damage to native Na<sub>+</sub>,K<sub>+</sub>-ATPase does contribute to global tissue injury in certain pathological processes, **pyruvate**, in addition to being a powerful metabolic effector of recovery, may also protect against oxidative damage.

CONTROLLED TERM: Medical Descriptors:  
 \*reperfusion injury: PC, prevention  
 \*tissue injury: PC, prevention  
 animal tissue  
 article  
 enzyme inactivation  
 guinea pig  
 heart  
 kidney  
 male  
 nonhuman  
 oxidative stress

## Drug Descriptors:

- \*adenosine triphosphatase (potassium sodium): EC, endogenous compound
- \*free radical: EC, endogenous compound
- \*horseradish peroxidase: PD, pharmacology
- \*pyruvic acid: PD, pharmacology
- \*pyruvic acid: DO, drug dose
- \*tert butyl hydroperoxide: PD, pharmacology
- glucose
- lactic acid
- mannitol

CAS REGISTRY NO.: (pyruvic acid) 127-17-3, 19071-34-2, 57-60-3; (tert butyl hydroperoxide) 75-91-2; (glucose) 50-99-7, 84778-64-3; (lactic acid) 113-21-3, 50-21-5; (mannitol) 69-65-8, 87-78-5

L101 ANSWER 23 OF 34 EMBASE COPYRIGHT (c) 2006 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 84171056 EMBASE

DOCUMENT NUMBER: 1984171056

TITLE: Parallel stimulation by  $\text{Ca}^{2+}$  of inotropism and pyruvate dehydrogenase in perfused heart.

AUTHOR: Bunger R.; Permanetter B.

CORPORATE SOURCE: Department of Physiology, School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814, United States

SOURCE: American Journal of Physiology - Cell Physiology, (1984) Vol. 16, No. 1, pp. C45-C52.

CODEN: AJPCDD

COUNTRY: United States

DOCUMENT TYPE: Journal

FILE SEGMENT:

|     |                                                    |
|-----|----------------------------------------------------|
| 037 | Drug Literature Index                              |
| 002 | Physiology                                         |
| 030 | Pharmacology                                       |
| 029 | Clinical Biochemistry                              |
| 018 | Cardiovascular Diseases and Cardiovascular Surgery |

LANGUAGE: English

ENTRY DATE: Entered STN: 10 Dec 1991

LAST UPDATED: Last Updated on STN: 10 Dec 1991

ABSTRACT: The effects of extracellular  $\text{Ca}^{2+}$  (0.375-3.75 mM) on \*\*\*pyruvate\*\*\* oxidation and active form of the pyruvate dehydrogenase complex (PDC(a)) were quantitated in perfused guinea pig hearts in relation to inotropism, hydraulic work performance, and myocardial oxygen uptake ( $\text{MV.ovrhdot.}(O_2)$ ). The effects of afterload and norepinephrine (NE), alone or combined with the  $\text{Ca}^{2+}$  channel blocker D 600, were also examined. Hearts utilized 1-5 mM pyruvate in presence of 5 mM DL-3-hydroxybutyrate as substrates. Pyruvate oxidation and  $\text{MV.ovrhdot.}(O_2)$  increased essentially in parallel regardless of whether inotropism and energy metabolism were stimulated by increasing the  $\text{Ca}^{2+}$  concentration ( $[\text{Ca}^{2+}]$ ), the NE concentrations ( $[\text{NE}]$ ), or the afterload. PDC(a) activity was also directly related to  $[\text{Ca}^{2+}]$ ,  $[\text{NE}]$ , and afterload, respectively. Elevated  $[\text{Ca}^{2+}]$  failed, however, to stimulate pyruvate oxidation and PDC(a) activity when  $\text{MV.ovrhdot.}(O_2)$  was held constant by an appropriate decrease in afterload at constant preload. Compound D 600, theophylline, and dibutyryl adenosine 3',5'-cyclic monophosphate also produced parallel alterations in cardiac mechanics, pyruvate oxidation, and  $\text{MV.ovrhdot.}(O_2)$ . The striking proportionality between PDC(a) parameters,  $\text{MV.ovrhdot.}(O_2)$ , and cardiac mechanics during the various alterations in cellular  $\text{Ca}^{2+}$  metabolism seemed to suggest that the observed  $\text{Ca}^{2+}$  stimulation of the PDC might be mainly secondary to increased myocardial energy utilization

and myocyte respiration. Evidence for an additional direct effect of Ca<sup>2+</sup> on the intact PDC system was not obtained.

CONTROLLED TERM: Medical Descriptors:

- \*dose response
- \*drug antagonism
- \*drug comparison
- \*drug mechanism
- \*drug metabolism
- \*heart contraction
- \*heart perfusion
- \*inotropism
- \*isolated heart
- \*oxygen consumption
- pyruvic acid c 14
- drug response
- regional perfusion
- nonhuman
- heart
- guinea pig
- animal cell

Drug Descriptors:

- \*calcium
- \*bucladesine
- \*gallopamil
- \*noradrenalin
- \*pyruvate dehydrogenase
- \*theophylline
- radioisotope

CAS REGISTRY NO.: (calcium) 7440-70-2; (bucladesine) 16980-89-5, 362-74-3; (gallopamil) 16662-47-8; (noradrenalin) 1407-84-7, 51-41-2; (pyruvate dehydrogenase) 9014-20-4; (theophylline) 58-55-9, 5967-84-0, 8055-07-0, 8061-56-1, 99007-19-9

COMPANY NAME: Boehringer (Germany); Amersham (Germany); Sigma (United States); Knoll (Germany)

L101 ANSWER 24 OF 34 EMBASE COPYRIGHT (c) 2006 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 82183105 EMBASE

DOCUMENT NUMBER: 1982183105

TITLE: Adaptive changes of pyruvate oxidation in perfused heart during adrenergic stimulation.

AUTHOR: Bunger R.; Permanetter B.; Sommer O.; Yaffe S.

CORPORATE SOURCE: Dep. Physiol., Univ. Munich, D-8000 Munich, Germany

SOURCE: American Journal of Physiology - Heart and Circulatory Physiology, (1982) Vol. 11, No. 1, pp. H30-H36. .

CODEN: AJPPDI

COUNTRY: United States

DOCUMENT TYPE: Journal

FILE SEGMENT: 037 Drug Literature Index  
002 Physiology  
018 Cardiovascular Diseases and Cardiovascular Surgery  
023 Nuclear Medicine  
029 Clinical Biochemistry

LANGUAGE: English

ENTRY DATE: Entered STN: 9 Dec 1991

Last Updated on STN: 9 Dec 1991

ABSTRACT: Pyruvate oxidation was studied in isolated guinea pig hearts perfused under various conditions of work and stimulated by

norepinephrine. Hearts metabolized pyruvate alone or in combination with 3-hydroxybutyrate or acetate as substrate. [1-14C]-pyruvate-dependent 14CO<sub>2</sub> release into the venous effluent (MV.ovrhdot.pyr) was, like myocardial oxygen consumption (MV.ovrhdot.O2), directly related to aortic pressure or filling pressure. At high aortic pressures, ventricular pressure development and not work performance was the major determinant of MV.ovrhdot.O2 and thus MV.ovrhdot.pyr. With 1 nM pyruvate as sole substrate, 0.08 μM norepinephrine produced parallel changes in hemodynamic performance, MV.ovrhdot.O2, MV.ovrhdot.pyr, and pyruvate dehydrogenase complex (PDC) activity (active form). Similar and dose-dependent effects of norepinephrine were observed during infusion of 5 mM DL-3-hydroxybutyrate as cosubstrate. When 1 mM acetate was applied, MV.ovrhdot.pyr was also dependent on work performance and norepinephrine stimulation. However, in perfusions with 25 mM potassium chloride, norepinephrine did not enhance hemodynamic function or MV.ovrhdot.O2 and hence PDC activity and MV.ovrhdot.pyr. Thus regulation of the PDC in catecholamine-stimulated heart appears to be linked predominantly to myocardial energy demand even when alternative energy-providing substrates are utilized.

## CONTROLLED TERM: Medical Descriptors:

- \*cell energy
- \*heart
- \*heart function
- \*oxygen consumption
- \*pyruvic acid c 14
- isolated heart
- animal experiment
- guinea pig
- regional perfusion

Drug Descriptors:

- \*3 hydroxybutyric acid
- \*acetic acid
- \*adrenergic receptor
- \*noradrenalin
- \*pyruvate dehydrogenase

## radioisotope

CAS REGISTRY NO.: (3 hydroxybutyric acid) 300-85-6; (acetic acid) 127-08-2, 127-09-3, 64-19-7, 71-50-1; (noradrenalin) 1407-84-7, 51-41-2; (pyruvate dehydrogenase) 9014-20-4

COMPANY NAME: Boehringer (Germany); Sigma (United States); Amersham

L101 ANSWER 25 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN

ACCESSION NUMBER: 2004:202536 BIOSIS

DOCUMENT NUMBER: PREV200400203079

TITLE: Synergistic neuroprotection by nutriceuticals.

AUTHOR(S): McFate, T. [Reprint Author]; Favit, A. [Reprint Author]; Grimaldi, M. [Reprint Author]; Verma, A. [Reprint Author]

CORPORATE SOURCE: Neurol., Uniformed Services Univ. of the Hlth. Sci., Bethesda, MD, USA

SOURCE: Society for Neuroscience Abstract Viewer and Itinerary Planner, (2003) Vol. 2003, pp. Abstract No. 638.5.  
<http://sfn.scholarone.com>. e-file.

Meeting Info.: 33rd Annual Meeting of the Society of Neuroscience. New Orleans, LA, USA. November 08-12, 2003.  
 Society of Neuroscience.

DOCUMENT TYPE: Conference; (Meeting)  
 Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE:      Entered STN: 14 Apr 2004  
                  Last Updated on STN: 14 Apr 2004

ABSTRACT: Simple nutrients may be able to prevent neurotoxicity by correcting metabolic imbalances. We have performed in vitro experiments using cultured neuronal cells subjected to cell killing by oxidative stress, **calcium** overload, two of the most commonly sited pathologic events in neurotoxicity. We studied cytotoxicity in the rat hypothalamic neuronal cell line GT1-7 with hydrogen peroxide and thapsigargin as models of oxidative stress and \*\*\***calcium\*\*\*** overload. All studies were performed in Locke's medium to avoid contribution from the vitamins and additives typically found in many commercial media. After determining the toxin treatment dose needed to produce complete toxicity, we then treated the cells dose-dependently with \*\*\***pyruvate\*\*\***, nicotinamide and creatine, either alone or in combination along with the LD95 dose of the toxins. We then analyzed the amount of cell death observed after 24h using a standard cytotoxicity (MTT dye reduction) assay. **Pyruvate**, nicotinamide and creatine were each capable of providing nearly complete dose dependent protection against 500 micromolar H2O2 (IC50 of 0.35, 0.38, and 0.49 mM respectively) or against 20 micromolar thapsigargin (IC50 of 0.58, 0.62, and 0.74 mM respectively).. When added together, however, these agents produced a more than additive effect with a 10-fold increase in potency. Thus an IC50 of 0.05 was seen for each agent when used in combination in both cytotoxicity paradigms. When we analyzed the the effect of these agents on GTI-7 ATP levels we saw no significant increase. However, analysis of phosphocreatine (PC) levels showed that 1mM doses of \*\*\***pyruvate\*\*\***, nicotinamide, and creatine stimulated GT1-7 PC levels by 500%, 30%, and 3000% respectively. When used in combination at 1mM each, these agents increased PC content by more than 5000%. These remarkable synergistic effects of nutriceutical may be translated into effective therapeutic strategies.

CONCEPT CODE:      General biology - Symposia, transactions and proceedings 00520  
                      Cytology - Animal 02506  
                      Biochemistry studies - General 10060  
                      Biochemistry studies - Nucleic acids, purines and pyrimidines 10062  
                      Biochemistry studies - Proteins, peptides and amino acids 10064  
                      Biochemistry studies - Minerals 10069  
                      Nervous system - Physiology and biochemistry 20504  
                      Nervous system - Pathology 20506

INDEX TERMS:      Major Concepts  
                      Nervous System (Neural Coordination)

INDEX TERMS:      Parts, Structures, & Systems of Organisms  
                      neuronal cells: nervous system

INDEX TERMS:      Diseases  
                      neurotoxicity: nervous system disease

INDEX TERMS:      Chemicals & Biochemicals  
                      ATP; GTI; MTT; **calcium**; creatine; hydrogen peroxide; nicotinamide; phosphocreatine; **pyruvate**; thapsigargin; toxin

INDEX TERMS:      Miscellaneous Descriptors  
                      neuroprotection

ORGANISM:      Classifier  
                      Muridae 86375

                      Super Taxa  
                      Rodentia; Mammalia; Vertebrata; Chordata; Animalia

                      Organism Name  
                      rat (common)

                      Taxa Notes  
                      Animals, Chordates, Mammals, Nonhuman Vertebrates,

Nonhuman Mammals, Rodents, Vertebrates

REGISTRY NUMBER: 56-65-5Q (ATP)  
 42530-29-0Q (ATP)  
 94587-45-8Q (ATP)  
 111839-44-2Q (ATP)  
 298-93-1 (MTT)  
 7440-70-2 (calcium)  
 57-00-1 (creatine)  
 7722-84-1 (hydrogen peroxide)  
 98-92-0 (nicotinamide)  
 67-07-2 (phosphocreatine)  
 57-60-3 (pyruvate)  
 67526-95-8 (thapsigargin)

L101 ANSWER 26 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
 STN

ACCESSION NUMBER: 2001:415813 BIOSIS  
 DOCUMENT NUMBER: PREV200100415813

TITLE: Immunochemical detection of pyruvate dehydrogenase inactivation.

AUTHOR(S): Verma, Ajay [Reprint author]; Sharma, Pushpa [Reprint author]; Romanczyk, Tara [Reprint author]; Pandipati, Sruthi [Reprint author]; Beckwith, Susan [Reprint author]

CORPORATE SOURCE: Bethesda, MD, USA  
 SOURCE: Neurology, (April 24, 2001) Vol. 56, No. 8 Supplement 3, pp. A368. print.  
 Meeting Info.: 53rd Annual Meeting of the American Academy of Neurology. Philadelphia, PA, USA. May 05-11, 2001.  
 American Academy of Neurology.  
 CODEN: NEURAI. ISSN: 0028-3878.

DOCUMENT TYPE: Conference; (Meeting)  
 Conference; Abstract; (Meeting Abstract)  
 Conference; (Meeting Poster)

LANGUAGE: English  
 ENTRY DATE: Entered STN: 29 Aug 2001  
 Last Updated on STN: 22 Feb 2002

CONCEPT CODE: General biology - Symposia, transactions and proceedings 00520  
 Cytology - Animal 02506  
 Biochemistry studies - General 10060  
 Biochemistry studies - Minerals 10069  
 Enzymes - General and comparative studies: coenzymes 10802  
 Metabolism - Metabolic disorders 13020  
 Cardiovascular system - Physiology and biochemistry 14504  
 Nervous system - Physiology and biochemistry 20504  
 Nervous system - Pathology 20506

INDEX TERMS: Major Concepts  
 Enzymology (Biochemistry and Molecular Biophysics);  
 Nervous System (Neural Coordination)

INDEX TERMS: Parts, Structures, & Systems of Organisms  
 astrocyte: nervous system; blood vessel: circulatory system; brain cortex: nervous system; brain mitochondria: nervous system; hippocampal neuron: nervous system

INDEX TERMS: Diseases  
 brain metabolic dysfunction: metabolic disease, nervous system disease

INDEX TERMS: Chemicals & Biochemicals

EGTA: calcium chelator; acetyl CoA:  
 pyruvate dehydrogenase end product;  
 calcium: enzyme inducer; dichloroacetate: enzyme  
 inducer; pyruvate dehydrogenase: activation,  
 localization, non-phosphorylated form, phosphorylated  
 form, phosphorylation, regulation; pyruvate  
 dehydrogenase E1-alpha subunit: phosphorylation

INDEX TERMS: Methods & Equipment  
 immunochemical detection: detection method

INDEX TERMS: Miscellaneous Descriptors  
 Meeting Poster; Meeting Abstract

ORGANISM: Classifier  
 Muridae 86375  
 Super Taxa  
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia  
 Organism Name  
 rat: animal model  
 Taxa Notes  
 Animals, Chordates, Mammals, Nonhuman Vertebrates,  
 Nonhuman Mammals, Rodents, Vertebrates

REGISTRY NUMBER: 67-42-5 (EGTA)  
 72-89-9 (acetyl CoA)  
 7440-70-2 (calcium)  
 13425-80-4 (dichloroacetate)  
 9014-20-4 (pyruvate dehydrogenase)

L101 ANSWER 27 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
 STN

ACCESSION NUMBER: 2000:150111 BIOSIS

DOCUMENT NUMBER: PREV200000150111

TITLE: Pyruvate protects neurons from H<sub>2</sub>O<sub>2</sub>,  
 calcium and glutamate toxicity.

AUTHOR(S): Favit, A. [Reprint author]; Verma, A. [Reprint  
 author]

CORPORATE SOURCE: Dept. of Neurology, Uniformed Services Univ. of the Health  
 Sciences, Bethesda, MD, 20184, USA

SOURCE: Society for Neuroscience Abstracts, (1999) Vol. 25, No.  
 1-2, pp. 1296. print.

Meeting Info.: 29th Annual Meeting of the Society for  
 Neuroscience. Miami Beach, Florida, USA. October 23-28,  
 1999. Society for Neuroscience.

ISSN: 0190-5295.

DOCUMENT TYPE: Conference; (Meeting)  
 Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE: Entered STN: 19 Apr 2000

Last Updated on STN: 4 Jan 2002

CONCEPT CODE: Pharmacology - General 22002

Cytology - Animal 02506

Biochemistry studies - General 10060

Toxicology - General and methods 22501

Nervous system - General and methods 20501

General biology - Symposia, transactions and proceedings  
 00520

INDEX TERMS: Major Concepts

Nervous System (Neural Coordination); Pharmacology

INDEX TERMS: Parts, Structures, & Systems of Organisms

blood-brain barrier: circulatory system, nervous system;

brain: nervous system; cerebrocortical neuronal cells:

nervous system, cultured; neurons: nervous system

INDEX TERMS: Chemicals & Biochemicals  
                   calcium; glutamate; hydrogen peroxide;  
                   pyruvate: neuroprotectant-drug; reactive oxygen  
                   species  
 INDEX TERMS: Methods & Equipment  
                   MTT assay: analytical method  
 INDEX TERMS: Miscellaneous Descriptors  
                   neurotoxicity; Meeting Abstract  
 ORGANISM: Classifier  
                   Muridae 86375  
                   Super Taxa  
                   Rodentia; Mammalia; Vertebrata; Chordata; Animalia  
                   Organism Name  
                   GT1-7 cell line: murine hypothalamic neuronal cells  
                   rat  
                   Taxa Notes  
                   Animals, Chordates, Mammals, Nonhuman Vertebrates,  
                   Nonhuman Mammals, Rodents, Vertebrates  
 REGISTRY NUMBER: 7440-70-2 (calcium)  
                   11070-68-1 (glutamate)  
                   7722-84-1 (hydrogen peroxide)  
                   57-60-3 (pyruvate)

L101 ANSWER 28 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
 STN  
 ACCESSION NUMBER: 1999:283014 BIOSIS  
 DOCUMENT NUMBER: PREV199900283014  
 TITLE: i.v. sodium pyruvate protects against  
                   cerebral ischemia and prolongs survival during porcine  
                   hemorrhagic shock.  
 AUTHOR(S): Mongan, P. D. [Reprint author]; Fontana, J. L. [Reprint  
                   author]; Chen, R. [Reprint author]; Bunger, R.  
                   [Reprint author]  
 CORPORATE SOURCE: Depts. of Anesthesiology and Physiology, USUHS, Bethesda,  
                   MD, 20814, USA  
 SOURCE: FASEB Journal, (March 15, 1999) Vol. 13, No. 5 PART 2, pp.  
                   A755. print.  
                   Meeting Info.: Annual Meeting of the Professional Research  
                   Scientists on Experimental Biology 99. Washington, D.C.,  
                   USA. April 17-21, 1999. Federation of American Societies  
                   for Experimental Biology.  
                   CODEN: FAJOEC. ISSN: 0892-6638.  
 DOCUMENT TYPE: Conference; (Meeting)  
                   Conference; Abstract; (Meeting Abstract)  
 LANGUAGE: English  
 ENTRY DATE: Entered STN: 28 Jul 1999  
                   Last Updated on STN: 28 Jul 1999  
 CONCEPT CODE: Pharmacology - General 22002  
                   Pathology - Therapy 12512  
                   Cardiovascular system - General and methods 14501  
                   General biology - Symposia, transactions and proceedings  
                   00520  
                   Biochemistry studies - General 10060  
 INDEX TERMS: Major Concepts  
                   Cardiovascular System (Transport and Circulation);  
                   Pharmacology  
 INDEX TERMS: Diseases  
                   cerebral ischemia: nervous system disease, vascular  
                   disease  
                   Brain Ischemia (MeSH)

INDEX TERMS: Diseases  
                  hemorrhagic shock: vascular disease  
                  Shock, Hemorrhagic (MeSH)

INDEX TERMS: Chemicals & Biochemicals  
                  sodium pyruvate:  
                  neuroprotectant-drug

INDEX TERMS: Miscellaneous Descriptors  
                  Meeting Abstract

ORGANISM: Classifier  
                  Suidae 85740  
                  Super Taxa  
                  Artiodactyla; Mammalia; Vertebrata; Chordata; Animalia  
                  Organism Name  
                  porcine  
                  Taxa Notes  
                  Animals, Artiodactyls, Chordates, Mammals, Nonhuman  
                  Vertebrates, Nonhuman Mammals, Vertebrates

REGISTRY NUMBER: 113-24-6 (sodium pyruvate)

L101 ANSWER 29 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
                  STN

ACCESSION NUMBER: 1999:87187 BIOSIS  
                  PREV199900087187

DOCUMENT NUMBER:

TITLE: Metabolic inotropy and calcium transients in isolated rat cardiomyocytes.

AUTHOR(S): Lasley, Robert D. [Reprint author]; Martin, Bradley J.; Valdivia, Hector H.; Mentzer, Robert M., Jr.; Bunger, Rolf

CORPORATE SOURCE: Dep. Surgery, Univ. Ky. Coll. Med., Room MN 273, Chandler Med. Cent., 800 Rose Street, Lexington, KY 40536-0084, USA

SOURCE: Johnson, R. G., Jr. [Editor]; Kranias, E. G. [Editor]. Ann. N. Y. Acad. Sci., (1998) pp. 308-310. Annals of the New York Academy of Sciences; Cardiac sarcoplasmic reticulum function and regulation of contractility. print.  
                  Publisher: New York Academy of Sciences, 2 East 63rd Street, New York, New York 10021, USA. Series: Annals of the New York Academy of Sciences.  
                  Meeting Info.: Conference. Washington, D.C., USA. September 27-30, 1997. New York Academy of Sciences.  
                  CODEN: ANYAA9. ISSN: 0077-8923. ISBN: 1-57331-130-8 (paper), 1-57331-129-4 (cloth).

DOCUMENT TYPE: Book  
                  Conference; (Meeting)  
                  Book; (Book Chapter)  
                  Conference; (Meeting Poster)  
                  Conference; (Meeting Paper)

LANGUAGE: English

ENTRY DATE: Entered STN: 1 Mar 1999  
                  Last Updated on STN: 1 Mar 1999

CONCEPT CODE: Cardiovascular system - General and methods 14501  
                  Cytology - Animal 02506  
                  Biochemistry studies - General 10060  
                  Biophysics - Bioenergetics: electron transport and oxidative phosphorylation 10510  
                  Anatomy and Histology - Microscopic and ultramicroscopic anatomy 11108  
                  Metabolism - Energy and respiratory metabolism 13003  
                  General biology - Miscellaneous 00532  
                  Major Concepts  
                  Bioenergetics (Biochemistry and Molecular Biophysics);

INDEX TERMS:

Handy 10/643080

09/01/2006

L101 ANSWER 30 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
STN

SIN  
ACCESSION NUMBER: 1998:291848 BIOSIS  
DOCUMENT NUMBER: PREV199800291848  
TITLE: Neocortical purine nucleoside accumulation during hemorrhagic shock is attenuated by pyruvate in swine.  
AUTHOR(S): Mongan, P. D. [Reprint author]; Chen, R.; Fontana, J. L.; Bunger, R.  
CORPORATE SOURCE: Dep. Anesthesiol., USUHS, Bethesda, MD, USA  
SOURCE: Drug Development Research, (Jan., 1998) Vol. 43, No. 1, pp. 47. print.  
Meeting Info.: 6th International Symposium on Adenosine and Adenine Nucleotides: New Frontiers in the 3rd Millennium. Ferrara, Italy. May 19-24, 1998.  
CODEN: DDREDK. ISSN: 0272-4391.  
DOCUMENT TYPE: Conference; (Meeting)  
Conference; Abstract; (Meeting Abstract)  
LANGUAGE: English  
ENTRY DATE: Entered STN: 8 Jul 1998  
Last Updated on STN: 8 Jul 1998  
CONCEPT CODE: Pharmacology - Neuropharmacology 22024  
Metabolism - General metabolism and metabolic pathways 13002  
Cardiovascular system - Blood vessel pathology 14508  
Nervous system - Pathology 20506  
Pharmacology - Drug metabolism and metabolic stimulators 22003  
General biology - Symposia, transactions and proceedings 00520  
INDEX TERMS: Major Concepts  
Cardiovascular System (Transport and Circulation);  
Nervous System (Neural Coordination); Pharmacology  
Parts, Structures, & Systems of Organisms  
frontal neocortex: nervous system  
INDEX TERMS: Diseases

Handy 10/643080

09/21/2006

INDEX TERMS: hemorrhagic shock  
Shock, Hemorrhagic (MeSH)  
Chemicals & Biochemicals  
    sodium pyruvate  
INDEX TERMS: Miscellaneous Descriptors  
    neocortical purine nucleoside accumulation; Meeting  
    Abstract  
ORGANISM: Classifier  
    Suidae 85740  
    Super Taxa  
        Artiodactyla; Mammalia; Vertebrata; Chordata; Animalia  
    Organism Name  
        swine  
    Taxa Notes  
        Animals, Artiodactyls, Chordates, Mammals, Nonhuman  
        Vertebrates, Nonhuman Mammals, Vertebrates  
REGISTRY NUMBER: 113-24-6 (sodium pyruvate)  
                  57-60-3 (PYRUVATE)

L101 ANSWER 31 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
STN

ACCESSION NUMBER: 1998:19006 BIOSIS  
DOCUMENT NUMBER: PREV199800019006  
TITLE: Pyruvate inotropism is dependent upon its mitochondrial uptake.  
AUTHOR(S): Martin, Bradley J. [Reprint author]; Lasley, Robert D.; Valdivia, Hector H. [Reprint author]; Bunger, Rolf; Mentzer, Robert M., Jr.  
CORPORATE SOURCE: Univ. Wisconsin, Madison, WI, USA  
SOURCE: Circulation, (10/21/97) Vol. 96, No. 8 SUPPL., pp. I691. print.  
Meeting Info.: 70th Scientific Sessions of the American Heart Association. Orlando, Florida, USA. November 9-12, 1997.  
CODEN: CIRCAZ. ISSN: 0009-7322.  
DOCUMENT TYPE: Conference; (Meeting)  
Conference; Abstract; (Meeting Abstract)  
LANGUAGE: English  
ENTRY DATE: Entered STN: 5 Jan 1998  
Last Updated on STN: 24 Feb 1998  
CONCEPT CODE: Cardiovascular system - General and methods 14501  
Cytology - Animal 02506  
Biochemistry studies - General 10060  
Muscle - General and methods 17501  
General biology - Symposia, transactions and proceedings 00520  
INDEX TERMS: Major Concepts  
Cardiovascular System (Transport and Circulation); Ce  
Biology  
INDEX TERMS: Parts, Structures, & Systems of Organisms  
ventricular myocytes: circulatory system, muscular system  
INDEX TERMS: Chemicals & Biochemicals  
intracellular calcium ion; pyruvate  
inotropism  
INDEX TERMS: Miscellaneous Descriptors  
cell shortening; contractility; energy-yielding substrate metabolism; glucose-dependent glycolysis;  
mitochondrial uptake; sarcoplasmic reticular calcium ion handling; Meeting Abstract

ORGANISM: Classifier  
                   Muridae 86375  
                   Super Taxa  
                     Rodentia; Mammalia; Vertebrata; Chordata; Animalia  
                   Organism Name  
                     rat  
                   Taxa Notes  
                     Animals, Chordates, Mammals, Nonhuman Vertebrates,  
                     Nonhuman Mammals, Rodents, Vertebrates

REGISTRY NUMBER: 50-99-7 (GLUCOSE)  
                   14127-61-8 (CALCIUM ION)

L101 ANSWER 32 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
                   STN

ACCESSION NUMBER: 1997:5235 BIOSIS  
                   PREV199799304438

TITLE: Pyruvate augments calcium transients  
                   and contractility in rat ventricular myocytes.

AUTHOR(S): Martin, Bradley J. [Reprint author]; Lasley, Robert D.;  
                   Valdivia, Hector H.; Bunger, Rolf; Mentzer,  
                   Robert M., Jr.

CORPORATE SOURCE: Univ. Wisconsin, Madison, WI, USA  
                   Circulation, (1996) Vol. 94, No. 8 SUPPL., pp. I545-I546.  
                   Meeting Info.: 69th Scientific Sessions of the American  
                     Heart Association. New Orleans, Louisiana, USA. November  
                     10-13, 1996.  
                   CODEN: CIRCAZ. ISSN: 0009-7322.

DOCUMENT TYPE: Conference; (Meeting)  
                   Conference; Abstract; (Meeting Abstract)

LANGUAGE: English  
                   Entered STN: 7 Jan 1997  
                   Last Updated on STN: 7 Jan 1997

CONCEPT CODE: General biology - Symposia, transactions and proceedings  
                   00520  
                   Cytology - Animal 02506  
                   Biochemistry methods - Carbohydrates 10058  
                   Biochemistry methods - Minerals 10059  
                   Biochemistry studies - Carbohydrates 10068  
                   Biochemistry studies - Minerals 10069  
                   Movement 12100  
                   Metabolism - Carbohydrates 13004  
                   Metabolism - Minerals 13010  
                   Cardiovascular system - Anatomy 14502  
                   Cardiovascular system - Physiology and biochemistry 14504  
                   In vitro cellular and subcellular studies 32600  
                   Major Concepts  
                     Biochemistry and Molecular Biophysics; Cardiovascular  
                     System (Transport and Circulation); Cell Biology;  
                     Metabolism

INDEX TERMS: Chemicals & Biochemicals  
                     PYRUVATE; CALCIUM

INDEX TERMS: Miscellaneous Descriptors  
                     CALCIUM TRANSIENTS; CARDIAC SYSTEM;  
                     CARDIOVASCULAR SYSTEM; CONTRACTILITY; PYRUVATE  
                     ; VENTRICULAR MYOCYTE

ORGANISM: Classifier  
                   Muridae 86375  
                   Super Taxa  
                     Rodentia; Mammalia; Vertebrata; Chordata; Animalia  
                   Organism Name

rat  
 Taxa Notes  
 Animals, Chordates, Mammals, Nonhuman Vertebrates,  
 Nonhuman Mammals, Rodents, Vertebrates  
 REGISTRY NUMBER: 57-60-3 (PYRUVATE)  
 7440-70-2 (CALCIUM)

L101 ANSWER 33 OF 34 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on  
 STN

ACCESSION NUMBER: 1992:249074 BIOSIS  
 DOCUMENT NUMBER: PREV199242119374; BR42:119374

TITLE: PROTECTION BY EXCESS PYRUVATE AGAINST IN-VITRO  
 INACTIVATION OF RENAL SODIUM POTASSIUM  
 ATPASE BY A FREE RADICAL GENERATING SYSTEM CONTAINING  
 BUTYLHYDROPEROXIDE BOOH.

AUTHOR(S): CLOUGH D [Reprint author]; BUNGER R  
 CORPORATE SOURCE: DEP PHYSIOL, UNIORMED SERV UNIV HEALTH SCI, BETHESDA, MD  
 20814-4799, USA

SOURCE: FASEB Journal, (1992) Vol. 6, No. 4, pp. A1055.  
 Meeting Info.: 1992 MEETING OF THE FEDERATION OF AMERICAN  
 SOCIETIES FOR EXPERIMENTAL BIOLOGY (FASEB), PART I,  
 ANAHEIM, CALIFORNIA, USA, APRIL 5-9, 1992. FASEB (FED AM  
 SOC EXP BIOL) J.  
 CODEN: FAJOEC. ISSN: 0892-6638.

DOCUMENT TYPE: Conference; (Meeting)  
 FILE SEGMENT: BR  
 LANGUAGE: ENGLISH  
 ENTRY DATE: Entered STN: 14 May 1992  
 Last Updated on STN: 15 May 1992

CONCEPT CODE: General biology - Symposia, transactions and proceedings  
 00520  
 Cytology - Animal 02506  
 Biochemistry - Gases 10012  
 Biophysics - Molecular properties and macromolecules  
 10506  
 Biophysics - Membrane phenomena 10508  
 Biophysics - Bioenergetics: electron transport and  
 oxidative phosphorylation 10510  
 Enzymes - Physiological studies 10808  
 Metabolism - Energy and respiratory metabolism 13003  
 Cardiovascular system - Heart pathology 14506  
 Cardiovascular system - Blood vessel pathology 14508  
 Urinary system - General and methods 15501  
 Urinary system - Physiology and biochemistry 15504  
 Urinary system - Pathology 15506  
 Toxicology - General and methods 22501  
 In vitro cellular and subcellular studies 32600

INDEX TERMS: Major Concepts  
 Biochemistry and Molecular Biophysics; Bioenergetics  
 (Biochemistry and Molecular Biophysics); Cardiovascular  
 System (Transport and Circulation); Cell Biology;  
 Enzymology (Biochemistry and Molecular Biophysics);  
 Membranes (Cell Biology); Metabolism; Toxicology;  
 Urinary System (Chemical Coordination and Homeostasis)

INDEX TERMS: Miscellaneous Descriptors  
 ABSTRACT GUINEA-PIG KIDNEY HEART MEMBRANE PUMP ISCHEMIA  
 REPERFUSION INJURY

ORGANISM: Classifier  
 Caviidae 86300  
 Super Taxa

THIS PAGE BLANK (USPTO)

CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNs) PRESENT  
FROM JANUARY 1969 TO DATE.

RECORDS LAST ADDED: 30 August 2006 (20060830/ED)

FILE WPIX

FILE LAST UPDATED: 25 AUG 2006 <20060825/UP>  
MOST RECENT DERWENT UPDATE: 200655 <200655/DW>  
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,  
PLEASE VISIT:

[<http://www.stn-international.de/training\\_center/patents/stn\\_guide.pdf](http://www.stn-international.de/training_center/patents/stn_guide.pdf)

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE  
<http://scientific.thomson.com/support/patents/coverage/latestupdates/>

>>> PLEASE BE AWARE OF THE NEW IPC REFORM IN 2006, SEE  
[http://www.stn-international.de/stndatabases/details/ ipc\\_reform.html](http://www.stn-international.de/stndatabases/details/ ipc_reform.html) and  
[<<<http://scientific.thomson.com/media/scpdf/ ipcrdwpi.pdf](http://scientific.thomson.com/media/scpdf/ ipcrdwpi.pdf)

>>> FOR FURTHER DETAILS ON THE FORTHCOMING DERWENT WORLD PATENTS  
INDEX ENHANCEMENTS PLEASE VISIT:

[<<<http://www.stn-international.de/stndatabases/details/dwpi\\_r.html](http://www.stn-international.de/stndatabases/details/dwpi_r.html)

=>

FILE STNGUIDE  
FILE CONTAINS CURRENT INFORMATION.  
LAST RELOADED: Aug 25, 2006 (20060825/UP).

FILE HCPLUS

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 1 Sep 2006 VOL 145 ISS 11  
FILE LAST UPDATED: 31 Aug 2006 (20060831/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

FILE MEDLINE

FILE LAST UPDATED: 31 Aug 2006 (20060831/UP). FILE COVERS 1950 TO DATE.

On December 11, 2005, the 2006 MeSH terms were loaded.

The MEDLINE reload for 2006 is now (26 Feb.) available. For details on the 2006 reload, enter HELP RLOAD at an arrow prompt (=>). See also:

<http://www.nlm.nih.gov/mesh/>  
[http://www.nlm.nih.gov/pubs/techbull/nd04/nd04\\_mesh.html](http://www.nlm.nih.gov/pubs/techbull/nd04/nd04_mesh.html)  
[http://www.nlm.nih.gov/pubs/techbull/nd05/nd05\\_med\\_data\\_changes.html](http://www.nlm.nih.gov/pubs/techbull/nd05/nd05_med_data_changes.html)  
[http://www.nlm.nih.gov/pubs/techbull/nd05/nd05\\_2006\\_MeSH.html](http://www.nlm.nih.gov/pubs/techbull/nd05/nd05_2006_MeSH.html)

OLDMEDLINE is covered back to 1950.

MEDLINE thesauri in the /CN, /CT, and /MN fields incorporate the MeSH 2006 vocabulary.

This file contains CAS Registry Numbers for easy and accurate substance identification.

FILE EMBASE

FILE COVERS 1974 TO 1 Sep 2006 (20060901/ED)

EMBASE has been reloaded. Enter HELP RLOAD for details.

EMBASE is now updated daily. SDI frequency remains weekly (default) and biweekly.

This file contains CAS Registry Numbers for easy and accurate substance identification.

FILE BIOSIS

FILE COVERS 1969 TO DATE.

FILE 'WPIX' ENTERED AT 13:19:46 ON 01 SEP 2006  
D STAT QUE L99

FILE 'STNGUIDE' ENTERED AT 13:20:04 ON 01 SEP 2006

FILE 'HCAPLUS, MEDLINE, EMBASE, BIOSIS, WPIX' ENTERED AT 13:20:18 ON 01 SEP 2006

L101           34 DUP REM L100 L98 L99 (16 DUPLICATES REMOVED)  
              ANSWERS '1-5' FROM FILE HCAPLUS  
              ANSWERS '6-18' FROM FILE MEDLINE  
              ANSWERS '19-24' FROM FILE EMBASE  
              ANSWERS '25-34' FROM FILE BIOSIS  
D IBIB ABS HITIND HITSTR L101 1-5  
D IALL L101 6-34

FILE 'STNGUIDE' ENTERED AT 13:22:10 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 13:22:19 ON 01 SEP 2006

FILE 'HCAPLUS' ENTERED AT 13:22:25 ON 01 SEP 2006

D STAT QUE L43  
D STAT QUE L55  
D STAT QUE L57  
D STAT QUE L60  
D STAT QUE L64  
D STAT QUE L66  
D STAT QUE L68  
D STAT QUE L72  
D STAT QUE L79  
D STAT QUE L84

L102       100 SEA ABB=ON PLU=ON (L43 OR L55 OR L57 OR L60 OR L64 OR L66 OR  
L68 OR L72 OR L79 OR L84 ) NOT L100  
D IBIB ABS HITIND HITSTR L102 1-100

FILE 'STNGUIDE' ENTERED AT 13:26:19 ON 01 SEP 2006

FILE HOME

FILE REGISTRY

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 30 AUG 2006 HIGHEST RN 905475-39-0  
DICTIONARY FILE UPDATES: 30 AUG 2006 HIGHEST RN 905475-39-0

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 30, 2006

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

L69            78 SEA ABB=ON PLU=ON L64 OR L66 OR L68  
 L70            9 SEA ABB=ON PLU=ON L69 AND PY<1996  
                 D QUE L67  
 L71            QUE ABB=ON PLU=ON VISCR? LEISHMAN?/OBI OR MALARIA/OBI OR  
                 PERIODONTAL DISEAS?/OBI OR GUM DISEAS?/OBI OR CNS DISORD?/OBI  
                 OR CERVICAL DYSTOM?/OBI OR SPASM? TORTICOL?/OBI OR CHORID?  
                 NEOVASCULAR/OBI OR HEPATITIS/OBI OR COLITIS/OBI OR CYSTIC  
                 FIBROSIS/OBI  
 L72            4 SEA ABB=ON PLU=ON L71 AND L31  
 L73            79 SEA ABB=ON PLU=ON L69 OR L72  
 L74            46 SEA ABB=ON PLU=ON BUNGER R?/AU  
 L75            1172 SEA ABB=ON PLU=ON VERMA A?/AU  
 L76            2 SEA ABB=ON PLU=ON L74 AND L75  
 L77            2 SEA ABB=ON PLU=ON (L74 OR L75) AND L73  
 L78            34 SEA ABB=ON PLU=ON L30 (L) FFD/RL  
 L79            18 SEA ABB=ON PLU=ON L78 AND L31  
 L80            7 SEA ABB=ON PLU=ON L79 AND L73  
                 D SCA  
 L81            104 SEA ABB=ON PLU=ON L43 OR L55 OR L57 OR L60 OR L64 OR L66 OR  
                 L68 OR L72 OR L79  
 L82            13 SEA ABB=ON PLU=ON L81 AND PY<1996  
 L83            4 SEA ABB=ON PLU=ON L81 AND (L74 OR L75)  
 L84            12 SEA ABB=ON PLU=ON L81 AND (L52 OR L53 OR L54)

FILE 'STNGUIDE' ENTERED AT 13:13:09 ON 01 SEP 2006  
 D COST

FILE 'MEDLINE, EMBASE, BIOSIS' ENTERED AT 13:13:55 ON 01 SEP 2006  
 L85            0 SEA ABB=ON PLU=ON BUNGER R?/AU AND VERMA A?/AU  
 L86            229 SEA ABB=ON PLU=ON BUNGER R?/AU  
 L87            2397 SEA ABB=ON PLU=ON VERMA A?/AU  
 L88            0 SEA ABB=ON PLU=ON L86 AND L87  
 L89            116518 SEA ABB=ON PLU=ON ?PYRUVAT?  
 L90            130 SEA ABB=ON PLU=ON (L86 OR L87) AND L89  
 L91            0 SEA ABB=ON PLU=ON (L86 OR L87) AND L89 AND SALT  
 L92            11 SEA ABB=ON PLU=ON (L86 OR L87) AND L89 AND SODIUM  
 L93            4 SEA ABB=ON PLU=ON (L86 OR L87) AND L89 AND POTASSIUM  
 L94            3 SEA ABB=ON PLU=ON (L86 OR L87) AND L89 AND MAGNESIUM  
 L95            25 SEA ABB=ON PLU=ON (L86 OR L87) AND L89 AND CALCIUM  
 L96            0 SEA ABB=ON PLU=ON (L86 OR L87) AND L89 AND LITHIUM  
 L97            0 SEA ABB=ON PLU=ON (L86 OR L87) AND L89 AND BARIUM  
 L98            41 SEA ABB=ON PLU=ON (L92 OR L93 OR L94 OR L95)

FILE 'STNGUIDE' ENTERED AT 13:17:02 ON 01 SEP 2006

FILE 'WPIX' ENTERED AT 13:17:43 ON 01 SEP 2006  
 L99            4 SEA ABB=ON PLU=ON (L91 OR L92 OR L93 OR L94 OR L95 OR L96 OR  
                 L97)

FILE 'STNGUIDE' ENTERED AT 13:18:08 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 13:18:31 ON 01 SEP 2006

FILE 'HCAPLUS' ENTERED AT 13:18:39 ON 01 SEP 2006

                D STAT QUE L76  
                 D STAT QUE L83  
 L100           5 SEA ABB=ON PLU=ON L76 OR L83

FILE 'MEDLINE, EMBASE, BIOSIS' ENTERED AT 13:19:26 ON 01 SEP 2006  
 D STAT QUE L98

L44                    E CREATINE/CN  
       603 SEA ABB=ON PLU=ON CREATINE/CNS  
           E NICOTINAMIDE/CN  
           E NICOTINAMIDE/CNS

L45                    33650 SEA ABB=ON PLU=ON NICOTINAMIDE/CNS

FILE 'HCAPLUS' ENTERED AT 12:12:40 ON 01 SEP 2006  
 L46                    24327 SEA ABB=ON PLU=ON L44  
 L47                    120750 SEA ABB=ON PLU=ON L45  
 L48                    23 SEA ABB=ON PLU=ON L31 AND (L46 OR L47)

FILE 'REGISTRY' ENTERED AT 12:14:26 ON 01 SEP 2006  
 L49                    621 SEA ABB=ON PLU=ON CREATINE  
 L50                    1 SEA ABB=ON PLU=ON CREATINE/CN  
 L51                    1 SEA ABB=ON PLU=ON NICOTINAMIDE/CN

FILE 'HCAPLUS' ENTERED AT 12:14:53 ON 01 SEP 2006  
 L52                    6355 SEA ABB=ON PLU=ON L50  
 L53                    9424 SEA ABB=ON PLU=ON L51  
 L54                    2023 SEA ABB=ON PLU=ON ((L50 OR L51)) (L) L20

FILE 'STNGUIDE' ENTERED AT 12:16:05 ON 01 SEP 2006

FILE 'HCAPLUS' ENTERED AT 12:19:21 ON 01 SEP 2006  
 L55                    9 SEA ABB=ON PLU=ON L54 AND L31

FILE 'STNGUIDE' ENTERED AT 12:27:53 ON 01 SEP 2006

FILE 'HCAPLUS' ENTERED AT 12:36:54 ON 01 SEP 2006  
     E PHOSPHORYLATION+ALL/CT

L56                    194670 SEA ABB=ON PLU=ON ?PHOSPHORYLAT?/BI  
 L57                    9 SEA ABB=ON PLU=ON L31 AND L56  
     D SCA

L58                    104 SEA ABB=ON PLU=ON L36 AND L56  
 L59                    QUE ABB=ON PLU=ON SALT#/BI  
 L60                    6 SEA ABB=ON PLU=ON L58 AND L59  
 L61                    QUE ABB=ON PLU=ON (?VIRAL? OR ?BACTER? OR ?FUNGAL? OR  
                         ?FUNGI? OR ?PARASIT? OR HIV OR AIDS OR ALZHEIM? OR ?DEMENTIA?  
                         OR ?ANGIOGEN? OR ?CANCER? OR ?CARCINO? OR ?NEOPLAS? OR ?TUMOR?  
                         OR ?APHTHOUS ULCER? OR ?ASTHMA? OR ATOPIC DERMATIT? OR  
                         ?PSORIA?) /BI

L62                    84 SEA ABB=ON PLU=ON L31 AND L61  
 L63                    QUE ABB=ON PLU=ON (?VIRAL? OR ?BACTER? OR ?FUNGAL? OR  
                         ?FUNGI? OR ?PARASIT? OR HIV OR AIDS OR ALZHEIM? OR ?DEMENTIA?  
                         OR ?ANGIOGEN? OR ?CANCER? OR ?CARCINO? OR ?NEOPLAS? OR ?TUMOR?  
                         OR ?APHTHOUS ULCER? OR ?ASTHMA? OR ATOPIC DERMATIT? OR  
                         ?PSORIA?) /OBI

L64                    65 SEA ABB=ON PLU=ON L31 AND L63  
 L65                    QUE ABB=ON PLU=ON (BENIGN PROSTAT? HYPERTROPH?/OBI OR BLOOD  
                         SUBSTITUT?/OBI OR BREAST CANCER/OBI OR ?CACHEXIA?/OBI OR  
                         ?PNEUMONIA?/OBI OR STD#/OBI OR SEXUAL? TRANSMIT?/OBI OR  
                         CANDIDA ALBICIAN?/OBI OR PARKINSON?/OBI OR PENTUMORAL BRAIN  
                         EDEM?/OBI OR (RAGWEED/OBI (3A) ?ALLERG?/OBI))

L66                    8 SEA ABB=ON PLU=ON L31 AND L65  
     D STAT QUE L65

L67                    QUE ABB=ON PLU=ON RENAL DISEAS?/OBI OR KIDNEY DISEAS?/OBI OR  
                         RESTENOSIS/OBI OR ?RHEUMATOID?/OBI OR ALLERG?/OBI OR ROTAVIRUS/  
                         OBI OR SEPTIC SHOCK/OBI OR ?TUMOR?/OBI OR ?TUMOUR?/OBI OR  
                         STROKE/OBI OR ?THROMBOSIS?/OBI OR ?DIABET?/OBI

L68                    28 SEA ABB=ON PLU=ON L31 AND L67

L24 346070 SEA ABB=ON PLU=ON A2/PG  
L25 1 SEA ABB=ON PLU=ON L18 AND (L23 OR L24)  
D SCA

FILE 'HCAPLUS' ENTERED AT 11:48:45 ON 01 SEP 2006  
L26 0 SEA ABB=ON PLU=ON L25

FILE 'REGISTRY' ENTERED AT 11:49:08 ON 01 SEP 2006  
D L25 IDE

FILE 'STNGUIDE' ENTERED AT 11:49:52 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 11:49:56 ON 01 SEP 2006

L27 1629 SEA ABB=ON PLU=ON L17 NOT L18  
L28 669 SEA ABB=ON PLU=ON L27 AND (L23 OR L24)  
L29 21 SEA ABB=ON PLU=ON L3 AND (L23 OR L24)  
D SCA  
L30 669 SEA ABB=ON PLU=ON (L28 OR L29)

FILE 'HCAPLUS' ENTERED AT 11:52:56 ON 01 SEP 2006  
L31 226 SEA ABB=ON PLU=ON L30 (L) L20  
L32 2 SEA ABB=ON PLU=ON US200!-643080/APPS  
D SCA  
SEL RN

FILE 'REGISTRY' ENTERED AT 11:55:37 ON 01 SEP 2006  
L33 4 SEA ABB=ON PLU=ON (113-24-6/B1 OR 127-17-3/B1 OR 57-00-1/B1  
OR 98-92-0/B1)  
D SCA

FILE 'HCAPLUS' ENTERED AT 11:57:05 ON 01 SEP 2006  
SEL IT L32  
D COST  
D COST FULL  
D COST  
D COST FULL

L\*\*\* DEL 132930 S E5

FILE 'STNGUIDE' ENTERED AT 12:00:19 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 12:01:36 ON 01 SEP 2006  
L34 1 SEA ABB=ON PLU=ON L30 AND L33  
D SCA

FILE 'STNGUIDE' ENTERED AT 12:01:50 ON 01 SEP 2006

FILE 'HCAPLUS' ENTERED AT 12:02:33 ON 01 SEP 2006  
L35 50015 SEA ABB=ON PLU=ON L17  
L36 2255 SEA ABB=ON PLU=ON (L3 OR L17) (L) L20  
L37 27352 SEA ABB=ON PLU=ON ?NICOTINAMID?/BI  
L38 5 SEA ABB=ON PLU=ON ?NICATINAMID?/BI  
L39 99387 SEA ABB=ON PLU=ON ?CREATIN?/BI  
L40 117 SEA ABB=ON PLU=ON L36 AND (L37 OR L38 OR L39)  
L41 4550 SEA ABB=ON PLU=ON ((L37 OR L38 OR L39)) (L) L20  
L42 79 SEA ABB=ON PLU=ON L36 AND L41  
L43 6 SEA ABB=ON PLU=ON L42 AND L31  
D SCA

FILE 'REGISTRY' ENTERED AT 12:10:33 ON 01 SEP 2006  
E CREATIN/CN

# Search history

Handy 10/643080

09/01/2006

=> d his full

(FILE 'HOME' ENTERED AT 10:32:50 ON 01 SEP 2006)

FILE 'REGISTRY' ENTERED AT 10:57:33 ON 01 SEP 2006  
ACT HAN080STRA/A

L1 STR  
L2 SCR 2040  
L3 389 SEA SSS FUL L1 AND L2

FILE 'STNGUIDE' ENTERED AT 11:02:21 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 11:07:53 ON 01 SEP 2006  
L4 STRUCTURE uploaded  
L5 23 SEA SSS SAM L4  
D SCA

FILE 'STNGUIDE' ENTERED AT 11:11:15 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 11:13:27 ON 01 SEP 2006  
L6 STRUCTURE uploaded  
L7 0 SEA SSS SAM L4 AND L6

FILE 'STNGUIDE' ENTERED AT 11:14:47 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 11:17:49 ON 01 SEP 2006  
L8 STRUCTURE uploaded  
L9 50 SEA SSS SAM L8  
L10 24561 SEA SSS FUL L8  
SAVE TEMP L10 HAN080STRC/A  
L11 22016 SEA ABB=ON PLU=ON L10 AND NC=1  
L12 2545 SEA ABB=ON PLU=ON L10 NOT L11  
L13 668 SEA ABB=ON PLU=ON L12 AND NA>0

FILE 'STNGUIDE' ENTERED AT 11:26:07 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 11:27:17 ON 01 SEP 2006  
L14 1877 SEA ABB=ON PLU=ON L12 NOT L13

FILE 'STNGUIDE' ENTERED AT 11:29:31 ON 01 SEP 2006

FILE 'REGISTRY' ENTERED AT 11:37:39 ON 01 SEP 2006  
L15 STRUCTURE uploaded  
L16 50 SEA SUB=L10 SSS SAM L15  
D STAT QUE L16  
L17 7632 SEA SUB=L10 SSS FUL L15  
SAVE TEMP HAN080STRD/A L17  
L\*\*\* DEL 389 S L17 AND L3  
L18 6003 SEA ABB=ON PLU=ON L17 AND NC=1  
L19 114 SEA ABB=ON PLU=ON L18 AND M>0

FILE 'HCAPLUS' ENTERED AT 11:44:25 ON 01 SEP 2006  
L20 QUE ABB=ON PLU=ON (THU OR BAC OR PKT OR PAC OR DMA) /RL  
L21 18 SEA ABB=ON PLU=ON L19 (L) L20

FILE 'REGISTRY' ENTERED AT 11:46:24 ON 01 SEP 2006  
L\*\*\* DEL 0 S A1/PQ  
L23 549863 SEA ABB=ON PLU=ON A1/PG

|                                                               |    |          |                   |             |
|---------------------------------------------------------------|----|----------|-------------------|-------------|
| AU 9887312                                                    | A1 | 19990208 | AU 1998-87312     | 19980702    |
| AU 725505                                                     | B2 | 20001012 |                   |             |
| EP 993433                                                     | A1 | 20000419 | EP 1998-938682    | 19980702    |
| EP 993433                                                     | B1 | 20030205 |                   |             |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, NL, SE, PT, IE |    |          |                   |             |
| TR 200000018                                                  | T2 | 20000721 | TR 2000-200000018 | 19980702    |
| BR 9810702                                                    | A  | 20000808 | BR 1998-10702     | 19980702    |
| NZ 501771                                                     | A  | 20001027 | NZ 1998-501771    | 19980702    |
| JP 2002507998                                                 | T2 | 20020312 | JP 1999-508097    | 19980702    |
| AT 232195                                                     | E  | 20030215 | AT 1998-938682    | 19980702    |
| ES 2189216                                                    | T3 | 20030701 | ES 1998-938682    | 19980702    |
| ZA 9805908                                                    | A  | 19990223 | ZA 1998-5908      | 19980706    |
| MX 9911864                                                    | A  | 20000531 | MX 1999-11864     | 19991216    |
| NO 2000000122                                                 | A  | 20000110 | NO 2000-122       | 20000110    |
| US 6342631                                                    | B1 | 20020129 | US 2000-651638    | 20000830    |
| PRIORITY APPLN. INFO.:                                        |    |          | DE 1997-19729786  | A 19970711  |
|                                                               |    |          | US 1997-955838    | A 19971021  |
|                                                               |    |          | WO 1998-EP4089    | W 19980702  |
|                                                               |    |          | US 1998-163117    | B1 19980929 |

OTHER SOURCE(S): CASREACT 130:95309

AB High-purity calcium pyruvates, with varying degrees of hydration, useful for body weight or fat reduction (no data), as a cell free-radical inhibitor  
(no

data), or a food additive (no data), is prepared by the reaction of pyruvic acid with a calcium salt of an organic acid (e.g., calcium acetate), a calcium salt of a ketocarboxylic acid, or a calcium salt of a hydroxyorg. acid at -20° to +120° optionally in the presence of a solvent (e.g., Et acetate).

IC ICM C07C059-19

ICS C07C051-41; C07C051-42; A61K031-19; A23L001-30

CC 23-16 (Aliphatic Compounds)

Section cross-reference(s): 1, 17

IT 52009-14-0P, Calcium pyruvate

RL: BUU (Biological use, unclassified); FFD (Food or feed use); IMF (Industrial manufacture); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(method for preparation of calcium pyruvates by the neutralization of pyruvic acid with calcium salts of organic acids)

IT 52009-14-0P, Calcium pyruvate

RL: BUU (Biological use, unclassified); FFD (Food or feed use); IMF (Industrial manufacture); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(method for preparation of calcium pyruvates by the neutralization of pyruvic acid with calcium salts of organic acids)

RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 62 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1999:34477 HCPLUS  
 DOCUMENT NUMBER: 130:105332  
 TITLE: Therapeutic antiviral-wound healing compositions and methods for preparing and using them  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): Warner Lambert Company, USA  
 SOURCE: U.S., 64 pp., Cont.-in-part of U.S. Ser. No. 224,936, abandoned.  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28  
 PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE     | APPLICATION NO. | DATE        |
|--------------------------------------------------------------------|------|----------|-----------------|-------------|
| US 5856364                                                         | A    | 19990105 | US 1995-410079  | 19950329    |
| JP 2002356421                                                      | A2   | 20021213 | JP 2002-82387   | 19920115    |
| JP 2003231632                                                      | A2   | 20030819 | JP 2002-362245  | 19920115    |
| CA 2184617                                                         | AA   | 19951019 | CA 1995-2184617 | 19950405    |
| WO 9527501                                                         | A1   | 19951019 | WO 1995-US4201  | 19950405    |
| W: AU, CA, JP, MX, NZ                                              |      |          |                 |             |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |             |
| AU 9522402                                                         | A1   | 19951030 | AU 1995-22402   | 19950405    |
| AU 698682                                                          | B2   | 19981105 |                 |             |
| EP 754052                                                          | A1   | 19970122 | EP 1995-915557  | 19950405    |
| EP 754052                                                          | B1   | 20021211 |                 |             |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI                          |      |          |                 |             |
| JP 09511746                                                        | T2   | 19971125 | JP 1995-526421  | 19950405    |
| ES 2188656                                                         | T3   | 20030701 | ES 1995-915557  | 19950405    |
| ZA 9502911                                                         | A    | 19960828 | ZA 1995-2911    | 19950407    |
| US 5981606                                                         | A    | 19991109 | US 1998-19316   | 19980205    |
| PRIORITY APPLN. INFO.:                                             |      |          | US 1991-663500  | B1 19910301 |
|                                                                    |      |          | US 1993-53922   | B2 19930426 |
|                                                                    |      |          | US 1994-224936  | B2 19940408 |
|                                                                    |      |          | JP 1992-505329  | A3 19920115 |
|                                                                    |      |          | US 1995-410079  | A 19950329  |
|                                                                    |      |          | WO 1995-US4201  | W 19950405  |
|                                                                    |      |          | US 1997-37730P  | P 19970202  |

AB The invention pertains to therapeutic wound healing compns. for protecting and resuscitating mammalian cells (Embodiment I). The invention also pertains to therapeutic antiviral-wound healing compns. for reducing viral titers and increasing the proliferation and resuscitation rate of mammalian cells (Embodiment II). In a first aspect of Embodiment I (I.A), the therapeutic wound healing composition comprises (a) pyruvate, (b) an antioxidant, and (c) a mixture of saturated and unsatd. fatty acids. In a second aspect of Embodiment I (I.B), the therapeutic wound healing composition comprises (a) pyruvate, (b) lactate, and (c) a mixture of saturated and unsatd. fatty acids. In a third aspect of Embodiment I (I.C), the therapeutic wound healing composition comprises (a) an antioxidant and (b) a mixture of saturated and unsatd. fatty acids. In a fourth aspect of Embodiment I (I.D), the therapeutic wound healing composition comprises (a) lactate, (b) an antioxidant, and (c) a mixture of saturated and unsatd. fatty acids. In Embodiment II, the therapeutic wound healing compns. of Embodiment One (I.A-D) are combined with a therapeutically effective amount of an antiviral agent (V) to form antiviral-wound healing compns. (II.A-D+V). The invention also pertains to methods for preparing and using the antiviral-wound healing compns. and the topical and ingestible

pharmaceutical products in which the therapeutic compns. may be used.

IC ICM A61K031-045  
ICS A61K031-355

INCL 514724000

CC 1-12 (Pharmacology)  
Section cross-reference(s) : 63

IT Anesthetics  
Anti-inflammatory agents  
Antibacterial agents  
Antihistamines  
Antimicrobial agents  
Antiviral agents  
Cytoprotective agents  
Disinfectants  
Drug delivery systems  
**Fungicides**  
Human herpesvirus 1  
Human herpesvirus 2  
Immunostimulants  
Monocyte  
Sunscreens  
Wound healing promoters  
(antiviral-wound healing compns. and methods)

IT 50-21-5, biological studies 50-81-7, Vitamin C, biological studies  
57-10-3, Palmitic acid, biological studies 57-11-4, Octadecanoic acid,  
biological studies 58-95-7, Vitamin E acetate 60-33-3, Linoleic acid,  
biological studies 108-95-2, Phenol, biological studies 112-80-1,  
Oleic acid, biological studies 113-24-6, Sodium pyruvate  
127-17-3, Pyruvic acid, biological studies 127-17-3D, Pyruvic acid,  
salts 143-07-7, Dodecanoic acid, biological studies 328-50-7,  
 $\alpha$ -Ketoglutaric acid 373-49-9, Palmitoleic acid 463-40-1,  
Linolenic acid 506-12-7, Margaric acid 506-30-9, Arachidic acid  
544-63-8, Tetradecanoic acid, biological studies 544-64-9, Myristoleic  
acid 600-22-6, Methyl pyruvate 665-66-7, Amantadine hydrochloride  
1002-84-2, Pentadecanoic acid 1406-18-4, Vitamin E 1406-18-4D, Vitamin  
E, esters 1981-50-6, Margaroleic acid 2922-61-4, Lithium  
pyruvate 4151-33-1, Potassium pyruvate 5536-17-4, Vidarabine  
11103-57-4, Vitamin A 18983-79-4, Magnesium pyruvate  
24887-16-9, Zinc pyruvate 29204-02-2, Gadoleic acid 30516-87-1,  
Zidovudine 36791-04-5, Ribavirin 52009-14-0, Calcium pyruvate  
59277-89-3, Acyclovir 63585-09-1, Foscarnet sodium 107910-75-8,  
Ganciclovir sodium 145482-34-4, Manganese pyruvate 219562-21-7,  
Preparation H  
RL: BAC (Biological activity or effector, except adverse); BSU  
(Biological study, unclassified); THU (Therapeutic use); BIOL  
(Biological study); USES (Uses)  
(antiviral-wound healing compns. and methods)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate  
4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
pyruvate 52009-14-0, Calcium pyruvate  
RL: BAC (Biological activity or effector, except adverse); BSU  
(Biological study, unclassified); THU (Therapeutic use); BIOL  
(Biological study); USES (Uses)  
(antiviral-wound healing compns. and methods)

RN 113-24-6 HCPLUS  
CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCAPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo-κO)propanoato-κO] -, (T-4) - (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 63 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1998:761802 HCAPLUS  
 DOCUMENT NUMBER: 130:20594  
 TITLE: Pyruvate compounds for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use  
 INVENTOR(S): Brunengraber, Henri; Bomont, Catherine; David, France; Hallowell, Peter T.; Cooper, Kevin D.; Kasoumov, Takhar  
 PATENT ASSIGNEE(S): Case Western Reserve University, USA  
 SOURCE: PCT Int. Appl., 49 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 5  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                          | KIND | DATE     | APPLICATION NO. | DATE        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|-------------|
| WO 9851277                                                                                                                                                                                                          | A1   | 19981119 | WO 1998-US9729  | 19980513    |
| W: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, GH, GM, GW, HU,<br>ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO,<br>NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, UZ, VN, YU                         |      |          |                 |             |
| RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU,<br>TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,<br>MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN,<br>TD, TG |      |          |                 |             |
| US 6086789                                                                                                                                                                                                          | A    | 20000711 | US 1998-76374   | 19980512    |
| CA 2289704                                                                                                                                                                                                          | AA   | 19981119 | CA 1998-2289704 | 19980513    |
| AU 9874835                                                                                                                                                                                                          | A1   | 19981208 | AU 1998-74835   | 19980513    |
| AU 743136                                                                                                                                                                                                           | B2   | 20020117 |                 |             |
| EP 1009377                                                                                                                                                                                                          | A1   | 20000621 | EP 1998-922239  | 19980513    |
| R: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC,<br>NL, PT, SE                                                                                                                                    |      |          |                 |             |
| JP 2001526663                                                                                                                                                                                                       | T2   | 20011218 | JP 1998-549470  | 19980513    |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                              |      |          | US 1997-46343P  | P 19970513  |
|                                                                                                                                                                                                                     |      |          | US 1998-80695P  | P 19980403  |
|                                                                                                                                                                                                                     |      |          | US 1998-76374   | A 19980512  |
|                                                                                                                                                                                                                     |      |          | US 1996-617285  | A2 19960318 |
|                                                                                                                                                                                                                     |      |          | US 1997-807585  | A2 19970227 |
|                                                                                                                                                                                                                     |      |          | WO 1998-US9729  | W 19980513  |

OTHER SOURCE(S): MARPAT 130:20594

AB Pyruvate compds. are disclosed which are suitable for cosmetically or dermatol. administering to the skin and for use in treating diabetic ketosis or other medical treatments. The compds. include pyruvate thioesters, a dihydroxyacetone-pyruvate, and an ester of pyruvate with a sugar or a polyol.

IC ICM A61K007-48  
ICS A61K031-22  
CC 1-12 (Pharmacology)  
Section cross-reference(s): 23, 62, 63  
ST pyruvate compd prep skin pharmaceutical cosmetic; diabetic ketosis treatment pyruvate compd; thioester ester pyruvate skin pharmaceutical cosmetic diabetic ketosis treatment; sugar ester pyruvate skin pharmaceutical cosmetic diabetic ketosis treatment; polyol ester pyruvate skin pharmaceutical cosmetic diabetic ketosis treatment  
IT Skin, disease  
(aging, disorder, photoaging; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Carbohydrates, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(aldoses, esters with pyruvate; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Oxidation  
(biol., ethanol; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Temperature effects, biological  
(cold, skin condition from; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Diabetes mellitus  
(diabetic ketosis; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Temperature effects, biological  
(heat, skin condition from; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Heart, disease  
(infarction; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Skin, neoplasm  
Skin, neoplasm  
(inhibitors; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Skin, disease  
Skin, disease  
(injury; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Carbohydrates, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(ketoses, esters with pyruvate; pyruvate compds. for treatment of skin illness or injury, diabetic ketosis, and other medical conditions and for cosmetic use)  
IT Ketone bodies  
(ketosis, diabetic; pyruvate compds. for treatment of skin

illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT UV radiation  
(melanocytic response; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Skin, disease  
(photoaging; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Alcohols, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(polyhydric, esters, with pyruvate; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Aging, animal  
Anti-inflammatory agents  
Autoimmune disease  
Cardiovascular agents  
Cosmetics  
Dermatitis  
Melanocyte  
Radiation  
Skin, disease  
(pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Ketone bodies  
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
(pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Chemicals  
Wind  
(skin condition from; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Skin  
(skin health promotion; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Antitumor agents  
Antitumor agents  
(skin; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Carbohydrates, biological studies  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(sugar esters, with pyruvate; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT Drug delivery systems  
(topical; pyruvate compds. for treatment of skin illness or injury, **diabetic ketosis**, and other medical conditions and for cosmetic use)

IT 64-17-5, Ethanol, biological studies  
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (oxidation; pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 96-26-4, Dihydroxyacetone 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)  
 (pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 196495-03-1P 197372-38-6P 197392-57-7P 197392-58-8P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use);  
 BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 127-17-3D, Pyruvic acid, esters and thioesters 197372-33-1 197372-34-2  
 197372-36-4D, alkyl esters 197372-37-5 197372-39-7 216243-81-1  
 216252-23-2, Glucose pyruvate ester 216252-24-3, Ribose pyruvate ester  
 216252-25-4, Fructose pyruvate ester  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 50-21-5, biological studies 50-99-7, D-Glucose, biological studies  
 56-81-5, 1,2,3-Propanetriol, biological studies  
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 196495-05-3P  
 RL: SPN (Synthetic preparation); PREP (Preparation)  
 (pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 127-17-3, Pyruvic acid, biological studies  
 RL: BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)  
 (reaction; pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 106-61-6 5704-66-5, Pyruvyl chloride 16649-49-3 25395-31-7,  
 Diacylglycerol 52737-02-7 59587-09-6, N-Acetyl-L-cysteine ethyl  
 ester 196495-07-5  
 RL: RCT (Reactant); RACT (Reactant or reagent)  
 (reaction; pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic  
 use)

IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)  
 (pyruvate compds. for treatment of skin illness or injury,  
 diabetic ketosis, and other medical conditions and for cosmetic

use)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 64 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1998:572298 HCPLUS  
 DOCUMENT NUMBER: 129:197992  
 TITLE: Method and composition using antioxidant inflammatory response mediators for treating mammalian diseases caused by inflammatory response  
 INVENTOR(S): Katz, Stanley E.  
 PATENT ASSIGNEE(S): Cellular Sciences, Inc., USA  
 SOURCE: U.S., 6 pp.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE        |
|------------------------|------|----------|-----------------|-------------|
| US 5798388             | A    | 19980825 | US 1996-709043  | 19960906    |
| US 5939459             | A    | 19990817 | US 1998-40679   | 19980318    |
| US 5952384             | A    | 19990914 | US 1998-40678   | 19980318    |
| US 6482856             | B1   | 20021119 | US 1999-348698  | 19990707    |
| PRIORITY APPLN. INFO.: |      |          | US 1995-3962P   | P 19950919  |
|                        |      |          | US 1996-709043  | A3 19960906 |
|                        |      |          | US 1998-40679   | A1 19980318 |

AB A method for treating the disease state in mammals caused by mammalian cells involved in the inflammatory response is disclosed. Mammalian cells participating in the inflammatory response are contacted with an inflammatory response mediator which reduces the undesired inflammatory response and is an antioxidant. The inflammatory response mediator may further provide a cellular energy source and be a building block in the cellular synthesis of other cellular components. Compns. for reducing and treating undesired inflammatory response are also disclosed. The inflammatory response mediator is e.g. pyruvic acid or a salt or precursor thereof. A method for treating asthma is specifically claimed.

IC ICM A61K031-19  
 ICS A61K031-22

INCL 514557000

CC 1-7 (Pharmacology)

ST antioxidant inflammatory response mediator therapeutic; pyruvate inflammatory response mediator; asthma treatment antioxidant inflammatory response mediator

IT Antibacterial agents  
 Antihistamines

Antiviral agents

Drugs

**Fungicides**

(antioxidant inflammatory response mediators and other therapeutic agents for treating mammalian diseases caused by inflammatory response)

IT 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 127-17-3D, Pyruvic acid, salts and precursors 631-66-3, Pyruvamide 2392-63-4 2922-61-4, Lithium pyruvate 3997-91-9 4151-33-1, Potassium pyruvate 16947-06-1 18559-94-9, Albuterol 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 52009-14-0, Calcium pyruvate 68259-69-8 90088-56-5 145482-34-4, Manganese pyruvate 152102-61-9  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (antioxidant inflammatory response mediators for treating mammalian diseases caused by inflammatory response)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (antioxidant inflammatory response mediators for treating mammalian diseases caused by inflammatory response)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 37 THERE ARE 37 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 65 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1998:543187 HCPLUS  
 DOCUMENT NUMBER: 129:172759  
 TITLE: The use of NADPH and NADH analogs in the measurement of enzyme activities and metabolites  
 INVENTOR(S): Kaufman, Richard A.  
 PATENT ASSIGNEE(S): Specialty Assays, Inc., USA  
 SOURCE: PCT Int. Appl., 52 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                         | KIND | DATE     | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 9833936                                                                                                                                                                                                                                                         | A1   | 19980806 | WO 1998-US1890  | 19980203 |
| W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, |      |          |                 |          |

UG, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM  
 RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI,  
 FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM,  
 GA, GN, ML, MR, NE, SN, TD, TG

|                                                                                              |    |          |                 |          |
|----------------------------------------------------------------------------------------------|----|----------|-----------------|----------|
| US 5801006                                                                                   | A  | 19980901 | US 1997-795283  | 19970204 |
| CA 2278850                                                                                   | AA | 19980806 | CA 1998-2278850 | 19980203 |
| AU 9862598                                                                                   | A1 | 19980825 | AU 1998-62598   | 19980203 |
| AU 742386                                                                                    | B2 | 20020103 |                 |          |
| EP 973938                                                                                    | A1 | 20000126 | EP 1998-904810  | 19980203 |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO |    |          |                 |          |
| NZ 336841                                                                                    | A  | 20010330 | NZ 1998-336841  | 19980203 |
| JP 2001526528                                                                                | T2 | 20011218 | JP 1998-533147  | 19980203 |
| PRIORITY APPLN. INFO.: US 1997-795283 A 19970204                                             |    |          |                 |          |
| WO 1998-US1890 W 19980203                                                                    |    |          |                 |          |

OTHER SOURCE(S): MARPAT 129:172759

AB Kits and methods for measuring enzyme activities and metabolites using NADH and NADPH analogs are disclosed. The analogs have extended stability in aqueous solns. and can be used as replacements for NADH or NADPH cofactors in anal. procedures. Preferred aspects of the invention include kits containing the NADH and NADPH analogs for use in the measurement of ALT activity, AST activity, urea, ammonia, salicylate, triglycerides, pyruvic acid, sorbitol dehydrogenase activity, 5'-nucleotidase activity, creatine kinase activity, 2,3-diphosphoglyceric acid, ATP,  $\alpha$ -hydroxybutyrate dehydrogenase activity, lactate dehydrogenase activity and the carbon dioxide content in anal. samples. 3-Acetylpyridine-NADH was used in the determination of ALT activity.

IC ICM C12Q001-48

ICS C12Q001-00; C12Q001-34; C12Q001-58; C12Q001-42; C12Q001-54;  
 C12Q001-37; C12Q001-50; C12Q001-32; G01N033-53; C07H019-04

CC 9-5 (Biochemical Methods)

Section cross-reference(s): 7, 26

IT 56-65-5, Adenosine 5'-triphosphate, analysis 127-17-3, Pyruvic acid, analysis 9001-60-9, Lactate dehydrogenase

RL: ANT (Analyte); ARG (Analytical reagent use); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)

(determination of or diagnostic reagent kit component; NADPH and NADH analogs

for measurement of enzyme activities and metabolites)

IT 57-13-6, Urea, analysis 63-36-5D, Salicylate, derivs., analysis 124-38-9, Carbon dioxide, analysis 138-81-8, 2,3-Diphosphoglyceric acid 7664-41-7, Ammonia, analysis 9000-86-6, Alanine aminotransferase 9000-97-9, Aspartate aminotransferase 9001-15-4, Creatine

kinase 9027-73-0, 5'-Nucleotidase 9028-21-1, Sorbitol dehydrogenase 9067-92-9,  $\alpha$ -Hydroxybutyrate dehydrogenase

RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)

(determination of; NADPH and NADH analogs for measurement of enzyme activities

and metabolites)

IT 56-41-7, L-Alanine, biological studies 56-73-5, Glucose-6-phosphate

56-84-8, L-Aspartic acid, biological studies 57-00-1,

Creatine 57-48-7, Fructose, biological studies 58-64-0,

Adenosine 5'-diphosphate, biological studies 61-19-8, Adenosine

5'-monophosphate, biological studies 81-25-4, Cholic acid 86-07-7,

3-Pyridinealdehyde-NAD 86-08-8, 3-Acetylpyridine-NAD 138-08-9,

Phosphoenolpyruvic acid 153-59-3, 3-Acetylpyridine-NADH 305-72-6

, Disodium  $\alpha$ -ketoglutarate 328-50-7 471-47-6D, derivs.

565-73-1, Sodium oxamate 600-15-7 820-11-1 1921-48-8 2737-69-1

4090-29-3, Thionicotinamide-NAD 5263-47-8 7786-30-3,

Magnesium chloride, biological studies 7791-18-6 9001-40-5,  
 Glucose-6-phosphate dehydrogenase 9001-50-7, Glyceraldehyde phosphate  
 dehydrogenase 9001-59-6, Pyruvate kinase 9001-62-1, Lipase  
 9001-64-3, Malate dehydrogenase 9001-83-6 9002-13-5, Urease  
 9004-02-8, Lipoprotein lipase 9013-08-5, Phosphoenolpyruvate carboxylase  
 9026-93-1, Adenosine deaminase 9029-12-3, Glutamate dehydrogenase  
 9030-66-4, Glycerol kinase 9032-62-6, Phosphoglycerate mutase  
 9059-28-3, Salicylate hydroxylase 10526-80-4 13147-57-4,  
 2-Phosphoglycolic acid 17090-93-6, Sodium L-aspartate 38850-22-5  
 51963-61-2 77617-15-3 211361-41-0

RL: ARG (Analytical reagent use); THU (Therapeutic use); ANST  
 (Analytical study); BIOL (Biological study); USES (Uses)  
 (diagnostic reagent kit component; NADPH and NADH analogs for  
 measurement of enzyme activities and metabolites)

IT 127-17-3, Pyruvic acid, analysis

RL: ANT (Analyte); ARG (Analytical reagent use); THU (Therapeutic  
 use); ANST (Analytical study); BIOL (Biological study); USES (Uses)  
 (determination of or diagnostic reagent kit component; NADPH and NADH  
 analogs

for measurement of enzyme activities and metabolites)

RN 127-17-3 HCAPLUS

CN Propanoic acid, 2-oxo- (9CI) (CA INDEX NAME)



IT 57-00-1, Creatine 305-72-6, Disodium  
 $\alpha$ -ketoglutarate 328-50-7

RL: ARG (Analytical reagent use); THU (Therapeutic use); ANST  
 (Analytical study); BIOL (Biological study); USES (Uses)  
 (diagnostic reagent kit component; NADPH and NADH analogs for  
 measurement of enzyme activities and metabolites)

RN 57-00-1 HCAPLUS

CN Glycine, N-(aminoiminomethyl)-N-methyl- (9CI) (CA INDEX NAME)



RN 305-72-6 HCAPLUS

CN Pentanedioic acid, 2-oxo-, disodium salt (9CI) (CA INDEX NAME)



●2 Na

RN 328-50-7 HCAPLUS

CN Pentanedioic acid, 2-oxo- (9CI) (CA INDEX NAME)



REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 66 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1998:310428 HCAPLUS  
 DOCUMENT NUMBER: 129:54551  
 TITLE: Peptide inhibitors of N-succinyl diaminopimelic acid aminotransferase (DAP-AT): a novel class of antimicrobial compounds  
 AUTHOR(S): Cox, Russell J.; Schouten, James A.; Stentiford, Rosie A.; Wareing, Katrina J.  
 CORPORATE SOURCE: School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK  
 SOURCE: Bioorganic & Medicinal Chemistry Letters (1998), 8(8), 945-950  
 PUBLISHER: CODEN: BMCLE8; ISSN: 0960-894X  
 DOCUMENT TYPE: Elsevier Science Ltd.  
 LANGUAGE: Journal  
 English  
 GI



AB Dipeptide substrates of N-succyldiaminopimelic acid aminotransferase (DAP-AT) (EC 2.6.1.17) were converted to hydrazines I ( $R = H$ ,  $\text{AcNH}$ ,  $R1 = \text{CO}_2\text{H}$ ;  $R = \text{AcNH}$ ,  $R1 = \text{Ph}$ ) by treatment with hydrazine and cyanoborohydride. These compds. were tested in vitro as inhibitors of DAP-AT from *E. coli* and in vivo as antibiotics. The hydrazino-dipeptides showed potent slow binding inhibition of DAP-AT as well as antimicrobial activity.

CC 34-2 (Amino Acids, Peptides, and Proteins)  
 Section cross-reference(s): 1, 7, 10

ST bactericide hydrazino diaminopimelate peptide prep;  
 aminotransferase succyldiaminopimelate inhibitor hydrazinopimelate dipeptide prep

IT 208645-71-0P 208645-72-1P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent)  
 (preparation of hydrazino peptides as succyldiaminopimelic acid aminotransferase inhibitors and antibiotics)

IT 208645-71-0P 208645-72-1P  
 RL: BAC (Biological activity or effector, except adverse); BSU

(Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent)

(preparation of hydrazino peptides as succinylidiaminopimelic acid aminotransferase inhibitors and antibiotics)

RN 208645-71-0 HCPLUS

CN L-Norleucine, N-acetyl-L- $\alpha$ -aspartyl-6-carboxy-6-oxo-, trilithium salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.



●3 Li

RN 208645-72-1 HCPLUS

CN L-Norleucine, N-acetyl-L-phenylalanyl-6-carboxy-6-oxo-, dilithium salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.



●2 Li

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 67 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1998:118600 HCPLUS

DOCUMENT NUMBER: 128:153491

TITLE: Composition of pyruvate and protein and method for increasing protein concentration in a mammal

INVENTOR(S): Beale, Paxton K.; Nickey, Donald O.

PATENT ASSIGNEE(S): Beale, Paxton K., USA

SOURCE: U.S., 8 pp.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

## PATENT INFORMATION:

| PATENT NO. | KIND                                                                                     | DATE     | APPLICATION NO. | DATE     |
|------------|------------------------------------------------------------------------------------------|----------|-----------------|----------|
| US 5716926 | A                                                                                        | 19980210 | US 1996-686819  | 19960726 |
| CA 2261708 | AA                                                                                       | 19980205 | CA 1997-2261708 | 19970725 |
| WO 9804254 | A1                                                                                       | 19980205 | WO 1997-US13162 | 19970725 |
|            | W: AT, BG, BR, CA, CH, CN, CZ, DE, DK, ES, FI, GB, LU, MX, PL, PT,<br>RO, RU, SE, SK, UA |          |                 |          |
|            | RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE                   |          |                 |          |
| EP 914109  | A1                                                                                       | 19990512 | EP 1997-938052  | 19970725 |
|            | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, FI             |          |                 |          |
| BR 9710586 | A                                                                                        | 20000321 | BR 1997-10586   | 19970725 |
| US 5889040 | A                                                                                        | 19990330 | US 1997-951547  | 19971016 |
| US 6008252 | A                                                                                        | 19991228 | US 1998-71008   | 19980501 |
| US 6221836 | B1                                                                                       | 20010424 | US 1998-213968  | 19981217 |

## PRIORITY APPLN. INFO.:

|                 |             |
|-----------------|-------------|
| US 1996-686819  | A 19960726  |
| US 1996-686820  | A2 19960726 |
| WO 1997-US13162 | W 19970725  |
| US 1997-951547  | A2 19971016 |

AB The present invention is based in part upon the discovery that the use of pyruvate in enteral formulations, in combination with an anabolic protein composition, produces a synergistic effect in increasing the lean body mass or muscle tissue of a mammal consuming same. The present invention also provides a method for enhanced endurance of athletes. The present invention relates generally to a composition for enhancing the protein concentration

or muscle mass of a mammal and a method for enhancing the protein concentration or muscle mass in a mammal. More specifically, the present invention relates to a composition which comprises pyruvate and/or derivs. of pyruvate and an anabolic protein composition. The method of the present invention comprises administering to a mammal in need of enhancing its protein concentration or muscle mass, a composition comprising pyruvate and an anabolic protein composition. The pyruvate/anabolic protein composition can take the form of

powders, liqs., pills, capsules, tablets, food additives, candies or confections.

IC ICM A23L001-305

ICS A61K031-19; A61K031-22; A61K038-01

INCL 514002000

CC 18-3 (Animal Nutrition)

Section cross-reference(s): 14, 17, 63

ST enteral formulation pyruvate amino acid; osteoporosis enteral formulation pyruvate amino acid; AIDS enteral formulation pyruvate amino acid; cancer enteral formulation pyruvate amino acid

IT AIDS (disease)

Anabolic agents

Body weight

Candy

Confectionery

Drug delivery systems

Egg white

Food additives

**Neoplasm**

Osteoporosis

(composition of pyruvate and protein and method for increasing protein concentration in a mammal)

IT 51-35-4, L-Hydroxyproline 56-40-6, Glycine, biological studies

56-41-7, L-Alanine, biological studies 56-45-1, L-Serine, biological

studies 56-84-8, L-Aspartic acid, biological studies 56-86-0, L-Glutamic acid, biological studies 56-87-1, L-Lysine, biological studies 56-89-3, L-Cystine, biological studies 60-18-4, L-Tyrosine, biological studies 61-90-5, L-Leucine, biological studies 63-68-3, L-Methionine, biological studies 63-91-2, L-Phenylalanine, biological studies 71-00-1, L-Histidine, biological studies 72-18-4, L-Valine, biological studies 72-19-5, L-Threonine, biological studies 73-22-3, L-Tryptophan, biological studies 73-32-5, L-Isoleucine, biological studies 74-79-3, L-Arginine, biological studies 113-24-6, Sodium pyruvate 127-17-3D, Pyruvic acid, amide, ester or salt derivs, biological studies 147-85-3, L-Proline, biological studies 631-66-3D, Pyruvamide, derivs 2392-63-4 3997-91-9 4151-33-1, Potassium pyruvate 16947-06-1 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate 68259-69-8 76391-12-3 90088-56-5 152102-61-9 155404-03-8

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (composition of pyruvate and protein and method for increasing protein concentration in a mammal)

IT 113-24-6, Sodium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (composition of pyruvate and protein and method for increasing protein concentration in a mammal)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS

CN Magnesium, bis[2-(oxo-κO)propanoato-κO]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

REFERENCE COUNT: 55 THERE ARE 55 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 68 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1998:98317 HCPLUS  
 DOCUMENT NUMBER: 128:172123  
 TITLE: Composition of pyruvate and anti-cortisol compounds and method for increasing protein concentration in a mammal  
 INVENTOR(S): Beale, Paxton K.  
 PATENT ASSIGNEE(S): Beale, Paxton K., USA  
 SOURCE: PCT Int. Appl., 26 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.                                                                               | KIND | DATE     | APPLICATION NO. | DATE       |
|------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 9804253                                                                               | A1   | 19980205 | WO 1997-US13161 | 19970725   |
| W: AT, BG, BR, CA, CH, CN, CZ, DE, DK, ES, FI, GB, LU, MX, PL, PT,<br>RO, RU, SE, SK, UA |      |          |                 |            |
| RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE                   |      |          |                 |            |
| US 5756469                                                                               | A    | 19980526 | US 1996-686820  | 19960726   |
| CA 2261781                                                                               | AA   | 19980205 | CA 1997-2261781 | 19970725   |
| EP 914108                                                                                | A1   | 19990512 | EP 1997-935137  | 19970725   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, FI             |      |          |                 |            |
| BR 9710585                                                                               | A    | 20001024 | BR 1997-10585   | 19970725   |
| US 5919767                                                                               | A    | 19990706 | US 1998-27522   | 19980223   |
| PRIORITY APPLN. INFO.:                                                                   |      |          | US 1996-686820  | A 19960726 |
|                                                                                          |      |          | WO 1997-US13161 | W 19970725 |

AB The present invention is based, in part, upon the discovery that the use of pyruvate in combination with a cortisol blocker, such as phosphatidylserine, produces a synergistic effect in increasing lean body mass or muscle tissue, decreasing fat deposition, increasing endurance and athletic performance of a mammal consuming same. The invention also

relates to a method of treating the catabolic effects of diseases such as cancer and AIDS by the administration of pyruvate and a cortisol blocker. The present invention also discloses a synergistic composition comprising pyruvate and a cortisol blocker. More specifically, the present invention relates to a composition which comprises pyruvate and/or derivs. of pyruvate and phosphatidylserine.

IC ICM A61K031-19  
 ICS A61K031-66; A61K045-06  
 CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 18  
 IT 53-43-0, DHEA 56-86-0, Glutamic acid, biological studies 61-90-5,  
 Leucine, biological studies 113-24-6, Sodium pyruvate  
 145-13-1, Pregnenolone 625-08-1 631-66-3, Pyruvamide 1839-11-8,  
 Conjugated linoleic acid 2392-63-4 3997-91-9, Pyruvoyl glycine  
 4151-33-1, Potassium pyruvate 6020-87-7, Creatine  
 monohydrate 16947-06-1 18983-79-4, Magnesium pyruvate  
 35212-22-7, Ipriflavone 52009-14-0, Calcium pyruvate  
 68259-69-8 76391-12-3 90088-56-5 152102-61-9 155404-03-8  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 (enteral synergistic compns. containing pyruvates and cortisol blockers for  
 enhancing muscle mass)  
 IT 113-24-6, Sodium pyruvate 4151-33-1, Potassium pyruvate  
 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium  
 pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 (enteral synergistic compns. containing pyruvates and cortisol blockers for  
 enhancing muscle mass)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 4151-33-1 HCPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA  
 INDEX NAME)



RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L102 ANSWER 69 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:640631 HCPLUS

DOCUMENT NUMBER: 127:303344

TITLE: Pyruvate compounds, their preparation, and methods for therapeutic use and as a foodstuff

INVENTOR(S): Brunengraber, Henri; Dugas, Hermann; Qunize, Khadija; Bomont, Catherine; David, France; Hallowell, Peter T.

PATENT ASSIGNEE(S): Case Western Reserve University, USA

SOURCE: PCT Int. Appl., 58 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                        | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 9734856                                                                                                                                                                                        | A1   | 19970925 | WO 1997-US4335  | 19970318   |
| W: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |      |          |                 |            |
| RW: GH, KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG                                        |      |          |                 |            |
| US 5667962                                                                                                                                                                                        | A    | 19970916 | US 1996-617285  | 19960318   |
| US 5876916                                                                                                                                                                                        | A    | 19990302 | US 1997-807585  | 19970227   |
| AU 9722164                                                                                                                                                                                        | A1   | 19971010 | AU 1997-22164   | 19970318   |
| AU 712702                                                                                                                                                                                         | B2   | 19991111 |                 |            |
| EP 888267                                                                                                                                                                                         | A1   | 19990107 | EP 1997-915150  | 19970318   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI                                                                                                                         |      |          |                 |            |
| JP 2001526628                                                                                                                                                                                     | T2   | 20011218 | JP 1997-533639  | 19970318   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                            |      |          | US 1996-617285  | A 19960318 |
|                                                                                                                                                                                                   |      |          | US 1997-807585  | A 19970227 |

|                |             |
|----------------|-------------|
| US 1996-617255 | A2 19960318 |
| WO 1997-US4335 | W 19970318  |

OTHER SOURCE(S): MARPAT 127:303344

AB Pyruvate compds. are disclosed for the treatment or prevention of reperfusion injury following ischemia, diabetic effects, cholesterol levels, injured organs, ethanol intoxication, or as a foodstuff. The pyruvate compound is particularly a pyruvate thiolester, a glycerol-pyruvate ester or a dihydroxyacetone-pyruvate ester. Pyruvate-N-acetylcysteine Et ester (preparation given) was effective in recovery of isolated rabbit hearts following catecholamine injury and improved function of preserved rat livers.

IC ICM C07C031-22

ICS C07C059-245; C07C059-285; C07C069-66; C07C229-30; A01N001-02

CC 1-12 (Pharmacology)

Section cross-reference(s): 18, 23

ST pyruvate compd prepns ischemia reperfusion injury; hypocholesteremic ethanol intoxication foodstuff pyruvate compd; thiolester pyruvate therapeutic foodstuff; glyceryl ester pyruvate therapeutic foodstuff; dihydroxyacetone ester pyruvate therapeutic foodstuff; diabetes pyruvate compd

IT 96-26-4, Dihydroxyacetone 113-24-6, Sodium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)  
(pyruvate ester component effect on ethanol oxidation)

IT 113-24-6, Sodium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)  
(pyruvate ester component effect on ethanol oxidation)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 70 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:625591 HCPLUS

DOCUMENT NUMBER: 127:290229

TITLE: Hematopoietic cell culture nutrient supplement

INVENTOR(S): Daley, John P.; Dadey, Barbara M.; Biddle, William;  
Wysocki, Michelle G.

PATENT ASSIGNEE(S): Life Technologies, Inc., USA

SOURCE: PCT Int. Appl., 73 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE     | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 9733978                                                         | A1   | 19970918 | WO 1997-US1867  | 19970131 |
| W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, |      |          |                 |          |

DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC,  
 LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,  
 RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, AM,  
 AZ, BY, KG, KZ, MD, RU, TJ, TM

RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR,  
 IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML,  
 MR, NE, SN, TD, TG

|                                                                              |    |          |                                                                      |                                                     |
|------------------------------------------------------------------------------|----|----------|----------------------------------------------------------------------|-----------------------------------------------------|
| CA 2248142                                                                   | AA | 19970918 | CA 1997-2248142                                                      | 19970131                                            |
| AU 9722600                                                                   | A1 | 19971001 | AU 1997-22600                                                        | 19970131                                            |
| EP 891419                                                                    | A1 | 19990120 | EP 1997-905789                                                       | 19970131                                            |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, FI |    |          |                                                                      |                                                     |
| JP 2000507812                                                                | T2 | 20000627 | JP 1997-532595                                                       | 19970131                                            |
| US 2001033835                                                                | A1 | 20011025 | US 1997-792299                                                       | 19970131                                            |
| US 6733746                                                                   | B2 | 20040511 |                                                                      |                                                     |
| US 2004072349                                                                | A1 | 20040415 | US 2003-716619<br>US 1996-13149P<br>US 1997-792299<br>WO 1997-US1867 | 20031120<br>P 19960312<br>A1 19970131<br>W 19970131 |

## PRIORITY APPLN. INFO.:

AB The present invention provides a serum-free supplement which supports the growth of hematopoietic cells in culture. The supplement contains  $\geq 1$  ingredients selected from the group consisting of  $\geq 1$  antioxidant,  $\geq 1$  albumin or albumin substitute,  $\geq 1$  lipid agent,  $\geq 1$  insulin or insulin substitute,  $\geq 1$  transferrin or transferrin substitute,  $\geq 1$  trace element, and  $\geq 1$  glucocorticoid, wherein a basal cell culture medium supplemented with the supplement is capable of supporting the expansion of CD34+ hematopoietic cells and cells of myeloid lineage, in serum-free culture. The present invention also provides methods for culturing and for differentiating hematopoietic cells.

IC ICM C12N005-00  
 ICS A61K035-28

CC 9-11 (Biochemical Methods)

Section cross-reference(s): 13

IT 50-23-7, Hydrocortisone 50-99-7, D-Glucose, biological studies  
 51-35-4, L-Hydroxyproline 52-90-4, L-Cysteine, biological studies  
 56-40-6, Glycine, biological studies 56-41-7, L-Alanine, biological studies  
 56-45-1, L-Serine, biological studies 56-84-8, L-Aspartic acid, biological studies  
 56-85-9, L-Glutamine, biological studies  
 56-86-0, L-Glutamic acid, biological studies 56-87-1, L-Lysine, biological studies  
 58-85-5, Biotin 59-30-3, Folic acid, biological studies  
 59-43-8, Thiamin, biological studies 60-18-4, L-Tyrosine, biological studies  
 60-24-2, 2-Mercaptoethanol 61-90-5, L-Leucine, biological studies  
 63-68-3, L-Methionine, biological studies 63-91-2, L-Phenylalanine, biological studies  
 66-72-8, Pyridoxal 67-48-1, Choline chloride 68-19-9, Vitamin B12 70-47-3, L-Asparagine, biological studies  
 71-00-1, L-Histidine, biological studies 72-18-4, L-Valine, biological studies  
 72-19-5, L-Threonine, biological studies 73-22-3, L-Tryptophan, biological studies 73-32-5, L-Isoleucine, biological studies  
 74-79-3, L-Arginine, biological studies 83-88-5, Riboflavin, biological studies 87-89-8, i-Inositol 98-92-0, Niacinamide 113-24-6, Sodium pyruvate 127-17-3D, Pyruvic acid, salts 137-08-6, Calcium D-pantothenate 141-43-5, biological studies  
 143-74-8, Phenol red 144-55-8, Carbonic acid monosodium salt, biological studies  
 147-85-3, L-Proline, biological studies 616-91-1, N-Acetyl-L-cysteine 3812-32-6, Carbonate, biological studies  
 3812-32-6D, Carbonate, salts, biological studies 7365-45-9, HEPES 7439-95-4, Magnesium, biological studies 7439-95-4D, Magnesium, salts, biological studies 7440-09-7, Potassium, biological studies  
 7440-09-7D, Potassium, salts, biological studies 7440-23-5, Sodium,

biological studies 7440-23-5D, Sodium, salts, biological studies  
 7440-70-2, Calcium, biological studies 7440-70-2D, Calcium, salts,  
 biological studies 7447-40-7, Potassium chloride, biological studies  
 7487-88-9, Magnesium sulfate, biological studies 7558-80-7, Sodium  
 dihydrogen phosphate 7647-14-5, Sodium chloride (NaCl), biological  
 studies 7757-79-1, Potassium nitrate, biological studies 7782-49-2,  
 Selenium, biological studies 8049-62-5, Zinc insulin 9004-10-8,  
 Insulin, biological studies 10043-52-4, Calcium chloride (CaCl<sub>2</sub>),  
 biological studies 10102-18-8, Sodium selenite 11096-26-7,  
 Erythropoietin 14265-44-2, Phosphate, biological studies 14265-44-2D,  
 Phosphate, salts, biological studies 52225-20-4 83869-56-1,  
 Granulocyte/macrophage colony-stimulating factor 143011-72-7,  
 Granulocyte-colony-stimulating factor

RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BUU (Biological use, unclassified); BIOL  
 (Biological study); USES (Uses)  
 (hematopoietic cell culture nutrient supplement)

IT 98-92-0, Niacinamide 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BUU (Biological use, unclassified); BIOL  
 (Biological study); USES (Uses)  
 (hematopoietic cell culture nutrient supplement)

RN 98-92-0 HCAPLUS

CN 3-Pyridinecarboxamide (9CI) (CA INDEX NAME)



RN 113-24-6 HCAPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 71 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1997:597475 HCAPLUS  
 DOCUMENT NUMBER: 127:253193  
 TITLE: Antifungal wound healing compositions  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): Warner-Lambert Co., USA  
 SOURCE: U.S., 41 pp., Cont.-in-part of U. S. Ser. No. 279,462,  
 abandoned.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28

## PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE           | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------|------|----------------|-----------------|----------|
| US 5663208                                                         | A    | 19970902       | US 1995-445831  | 19950522 |
| JP 2002356421                                                      | A2   | 20021213       | JP 2002-82387   | 19920115 |
| JP 2003231632                                                      | A2   | 20030819       | JP 2002-362245  | 19920115 |
| CA 2191603                                                         | AA   | 19960208       | CA 1995-2191603 | 19950707 |
| WO 9603149                                                         | A1   | 19960208       | WO 1995-US8551  | 19950707 |
| W: AU, CA, JP, MX, NZ, SG                                          |      |                |                 |          |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |                |                 |          |
| AU 9530042                                                         | A1   | 19960222       | AU 1995-30042   | 19950707 |
| AU 701179                                                          | B2   | 19990121       |                 |          |
| EP 773795                                                          | A1   | 19970521       | EP 1995-926203  | 19950707 |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI                          |      |                |                 |          |
| JP 10503200                                                        | T2   | 19980324       | JP 1995-505755  | 19950707 |
| NZ 290029                                                          | A    | 20010223       | NZ 1995-290029  | 19950707 |
| ZA 9506117                                                         | A    | 19970421       | ZA 1995-6117    | 19950721 |
| US 5981606                                                         | A    | 19991109       | US 1998-19316   | 19980205 |
| PRIORITY APPLN. INFO.:                                             |      |                |                 |          |
|                                                                    |      | US 1991-663500 | B1              | 19910301 |
|                                                                    |      | US 1993-53922  | B2              | 19930426 |
|                                                                    |      | US 1994-279462 | B2              | 19940722 |
|                                                                    |      | JP 1992-505329 | A3              | 19920115 |
|                                                                    |      | US 1994-224936 | B1              | 19940408 |
|                                                                    |      | US 1995-445831 | A               | 19950522 |
|                                                                    |      | WO 1995-US8551 | W               | 19950707 |
|                                                                    |      | US 1997-37730P | P               | 19970202 |

AB This invention pertains to therapeutic antifungal-wound healing compns. The compns. comprise a therapeutically effective amount of an antifungal agent and a wound healing compns. In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic antifungal-wound healing compns. may be utilized in a wide variety of topical and ingestible pharmaceutical products. This invention also relates to methods for preparing and using the therapeutic antifungal-wound healing compns. and the pharmaceutical products in which the compns. may be used.

IC ICM A61K033-22

ICS A61K031-045; A61K047-60; A61K031-36

INCL 514724000

CC 63-6 (Pharmaceuticals)

IT Anti-inflammatory agents

Drug delivery systems

Fungicides

Wound healing promoters

(antifungal wound healing compns.)

IT 50-21-5, Lactic acid, biological studies 110-44-1, Sorbic acid  
 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological  
 studies 328-50-7,  $\alpha$ -Ketoglutaric acid 600-22-6, Methyl pyruvate  
 2922-61-4, Lithium pyruvate 4151-33-1, Potassium  
 pyruvate 18983-79-4, Magnesium pyruvate 22916-47-8, Miconazole  
 23593-75-1, Clotrimazole 24887-16-9, Zinc pyruvate 25655-41-8,  
 Povidone iodine 52009-14-0, Calcium pyruvate 64872-76-0,  
 Butoconazole 65899-73-2, Tioconazole 67915-31-5, Terconazole 145482-  
 34-4, Manganese pyruvate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (antifungal wound healing compns.)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate  
 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
 pyruvate 52009-14-0, Calcium pyruvate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(antifungal wound healing compns.)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



## ● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



## ● K

RN 18983-79-4 HCPLUS

CN Magnesium, bis [2-(oxo- $\kappa$ O)propanoato- $\kappa$ O] -, (T-4) - (9CI) (CA INDEX NAME)

RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 72 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:580666 HCAPLUS

DOCUMENT NUMBER: 127:181148

TITLE: Liquid compositions for adrenal cortex function promotion and infection prevention

INVENTOR(S): Sakata, Shigenobu; Tatsumi, Jiro; Fukai, Masaru

PATENT ASSIGNEE(S): Handa, Shigenobu, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

## PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                   | KIND                                       | DATE                            | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|-----------------|----------|
| JP 09176029                                                                                                                                                                                                                                                  | A2                                         | 19970708                        | JP 1995-354770  | 19951226 |
|                                                                                                                                                                                                                                                              |                                            |                                 | JP 1995-354770  | 19951226 |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                       |                                            |                                 |                 |          |
| AB Liquid compns. for adrenal cortex function promotion and infection prevention comprise Tilia exts. and substances selected from e.g. iron ammonium citrate, salicylic acid and citric acid. The compns. also can be incorporated into cosmetics or foods. |                                            |                                 |                 |          |
| IC ICM A61K035-78                                                                                                                                                                                                                                            |                                            |                                 |                 |          |
| CC 63-6 (Pharmaceuticals)                                                                                                                                                                                                                                    |                                            |                                 |                 |          |
| Section cross-reference(s): 1, 17, 62                                                                                                                                                                                                                        |                                            |                                 |                 |          |
| IT 50-70-4, D-Glucitol, biological studies                                                                                                                                                                                                                   | 50-81-7, Ascorbic acid,                    |                                 |                 |          |
| biological studies                                                                                                                                                                                                                                           | 50-99-7, D-Glucose, biological studies     | 56-40-6,                        |                 |          |
| Glycine, biological studies                                                                                                                                                                                                                                  | 56-41-7, Alanine, biological studies       |                                 |                 |          |
| 56-45-1, Serine, biological studies                                                                                                                                                                                                                          | 56-81-5, 1,2,3-Propanetriol,               |                                 |                 |          |
| biological studies                                                                                                                                                                                                                                           | 56-84-8, Aspartic acid, biological studies | 56-85-9,                        |                 |          |
| Glutamine, biological studies                                                                                                                                                                                                                                | 56-87-1, L-Lysine, biological studies      |                                 |                 |          |
| 56-89-3, Cystine, biological studies                                                                                                                                                                                                                         | 59-43-8, Thiamine, biological              |                                 |                 |          |
| studies                                                                                                                                                                                                                                                      | 60-18-4, Tyrosine, biological studies      | 61-90-5, L-Leucine,             |                 |          |
| biological studies                                                                                                                                                                                                                                           | 63-68-3, Methionine, biological studies    | 63-91-2,                        |                 |          |
| L-Phenylalanine, biological studies                                                                                                                                                                                                                          | 64-17-5, Ethanol, biological studies       |                                 |                 |          |
| 69-72-7, Salicylic acid, biological studies                                                                                                                                                                                                                  | 71-00-1, Histidine,                        |                                 |                 |          |
| biological studies                                                                                                                                                                                                                                           | 72-18-4, Valine, biological studies        | 72-19-5,                        |                 |          |
| L-Threonine, biological studies                                                                                                                                                                                                                              | 73-22-3, Tryptophan, biological studies    |                                 |                 |          |
| 73-32-5, IsoLeucine, biological studies                                                                                                                                                                                                                      | 74-79-3, Arginine, biological              |                                 |                 |          |
| studies                                                                                                                                                                                                                                                      | 77-92-9, biological studies                | 83-88-5, Riboflavin, biological |                 |          |
| 97-59-6, Allantoin                                                                                                                                                                                                                                           | 99-76-3, Methylparaben                     | 113-24-6,                       |                 |          |
| Sodium pyruvate                                                                                                                                                                                                                                              | 119-36-8, Methyl salicylate                | 127-17-3, Pyruvic acid,         |                 |          |
| biological studies                                                                                                                                                                                                                                           | 157-07-3                                   | 498-24-8, Citronic acid         | 499-44-5,       |          |
| 4-Isopropyl tropolone                                                                                                                                                                                                                                        | 994-36-5, Citric acid sodium salt          | 1114-41-6,                      |                 |          |
| Muramic acid                                                                                                                                                                                                                                                 | 1398-61-4, Chitin                          | 1406-18-4, Vitamin E            | 2338-05-8,      |          |
| Citric acid iron salt                                                                                                                                                                                                                                        | 2466-09-3, Pyrophosphoric acid             | 7050-19-3, Iron                 |                 |          |
| ammonium citrate                                                                                                                                                                                                                                             | 7439-89-6, Iron, biological studies        | 7440-09-7,                      |                 |          |
| Potassium                                                                                                                                                                                                                                                    | 7440-70-2, Calcium, biological studies     |                                 |                 |          |

7601-54-9, Sodium phosphate 7681-53-0, Sodium hypophosphate 7693-13-2,  
 Citric acid calcium salt 7722-88-5 7723-14-0, Phosphorus, biological  
 studies 7732-18-5, Water, biological studies 7758-87-4, TriCalcium  
 phosphate 7778-53-2, Tripotassium phosphate 7778-77-0, Potassium  
 dihydrogen phosphate 9000-69-5, Pectins 9004-34-6, Cellulose,  
 biological studies 9004-53-9, Dextrin 9004-61-9, Hyaluronic acid  
 9005-25-8, Starch, biological studies 9005-32-7, Alginic acid  
 9005-49-6, Heparin, biological studies 9007-27-6, Chondroitin  
 9012-72-0D, Glucan, derivative 9014-63-5, Xylan 9046-40-6, Pectic acid  
 9057-02-7, Pullulan 10103-46-5, Calcium phosphate 10124-31-9, Ammonium  
 phosphate 11103-57-4, Vitamin A 11138-66-2, Xanthan gum 12001-76-2,  
 Vitamin B 12619-70-4, Cyclodextrin 26009-03-0, Polyglycolic acid  
 26124-68-5, Polyglycolic acid 50813-16-6, Sodium metaphosphate  
 RL: BUU (Biological use, unclassified); FFD (Food or feed use);  
**THU (Therapeutic use); BIOL (Biological study); USES (Uses)**  
 (liquid compns. for adrenal cortex function promotion and infection  
 prevention)

IT 113-24-6, Sodium pyruvate

RL: BUU (Biological use, unclassified); FFD (Food or feed use);  
**THU (Therapeutic use); BIOL (Biological study); USES (Uses)**

(liquid compns. for adrenal cortex function promotion and infection  
 prevention)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 73 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:574521 HCPLUS

DOCUMENT NUMBER: 127:225310

TITLE: Immunostimulating wound healing compositions and  
 method for preparing and using same

INVENTOR(S): Martin, Alain

PATENT ASSIGNEE(S): Warner Lambert Co., USA

SOURCE: U.S., 49 pp., Cont.-in-part of U.S. Ser. No. 53,922,  
 abandoned.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 28

PATENT INFORMATION:

| PATENT NO.                                                             | KIND | DATE     | APPLICATION NO. | DATE     |
|------------------------------------------------------------------------|------|----------|-----------------|----------|
| US 5658957                                                             | A    | 19970819 | US 1995-446986  | 19950522 |
| JP 2002356421                                                          | A2   | 20021213 | JP 2002-82387   | 19920115 |
| JP 2003231632                                                          | A2   | 20030819 | JP 2002-362245  | 19920115 |
| CA 2218539                                                             | AA   | 19961128 | CA 1996-2218539 | 19960426 |
| WO 9637230                                                             | A1   | 19961128 | WO 1996-US5901  | 19960426 |
| W: AU, CA, JP, MX, NZ, SG                                              |      |          |                 |          |
| RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |          |

|                                           |    |          |                |             |
|-------------------------------------------|----|----------|----------------|-------------|
| AU 9656311                                | A1 | 19961211 | AU 1996-56311  | 19960426    |
| AU 713829                                 | B2 | 19991209 |                |             |
| EP 828514                                 | A1 | 19980318 | EP 1996-913231 | 19960426    |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI |    |          |                |             |
| NZ 307055                                 | A  | 20000128 | NZ 1996-307055 | 19960426    |
| ZA 9604054                                | A  | 19971024 | ZA 1996-4054   | 19960521    |
| US 5981606                                | A  | 19991109 | US 1998-19316  | 19980205    |
| PRIORITY APPLN. INFO.:                    |    |          | US 1991-663500 | B1 19910301 |
|                                           |    |          | US 1993-53922  | B2 19930426 |
|                                           |    |          | JP 1992-505329 | A3 19920115 |
|                                           |    |          | US 1994-224936 | B1 19940408 |
|                                           |    |          | US 1995-446986 | A 19950522  |
|                                           |    |          | WO 1996-US5901 | W 19960426  |
|                                           |    |          | US 1997-37730P | P 19970202  |

**AB** This invention pertains to therapeutic immunostimulating-wound healing compns. The compns. comprise a therapeutically effective amount of an immunostimulating agent and a wound healing composition. In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic immunostimulating-wound healing compns. may be utilized in a wide variety of pharmaceutical products. This invention also relates to methods for preparing and using the therapeutic immunostimulating-wound healing compns. and the pharmaceutical products in which the compns. may be used.

**IC** ICM A61K031-045  
ICS A61K031-34; A61K031-195; A61K009-50

**INCL** 514724000

**CC** 63-6 (Pharmaceuticals)

Section cross-reference(s): 1, 15

**IT** Anesthetics  
Anti-inflammatory agents  
Antibacterial agents  
Antioxidants  
Antiviral agents  
**Fungicides**  
Immunostimulants  
Sunscreens  
Wound healing promoters  
(immunostimulant wound healing composition)

**IT** 50-81-7, Vitamin C, biological studies 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid, biological studies 58-95-7, VITAMin E acetate 60-33-3, Linoleic acid, biological studies 112-80-1, Oleic acid, biological studies 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 143-07-7, Lauric acid, biological studies 328-50-7,  $\alpha$ -Ketoglutaric acid 373-49-9, Palmitoleic acid 463-40-1, Linolenic acid 506-12-7, Margaric acid 506-30-9, Arachidic acid 544-63-8, Myristic acid, biological studies 544-64-9, Myristoleic acid 600-22-6, Methyl pyruvate 1002-84-2, Pentadecanoic acid 1406-18-4, Vitamin E 1981-50-6, Margaroleic acid 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 11103-57-4, Vitamin A 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 29204-02-2, Gadoleic acid 52009-14-0, Calcium pyruvate 145482-34-4, Manganese pyruvate 152521-52-3, Betafectin

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(immunostimulant wound healing composition)

**IT** 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(immunostimulant wound healing composition)

RN 113-24-6 HCAPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCAPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo-κO)propanoato-κO]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 74 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1997:574520 HCAPLUS  
 DOCUMENT NUMBER: 127:225309  
 TITLE: Bioadhesive-wound healing compositions and methods for preparing and using same  
 INVENTOR(S): Martin, Alain; Leung, Sau-hung S.  
 PATENT ASSIGNEE(S): Warner-Lambert Co., USA  
 SOURCE: U.S., 131 pp., Cont.-in-part of U.S. Ser. No. 298,521, abandoned.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28  
 PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE           | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------|------|----------------|-----------------|----------|
| US 5658956                                                         | A    | 19970819       | US 1995-445824  | 19950522 |
| JP 2002356421                                                      | A2   | 20021213       | JP 2002-82387   | 19920115 |
| JP 2003231632                                                      | A2   | 20030819       | JP 2002-362245  | 19920115 |
| CA 2194876                                                         | AA   | 19960307       | CA 1995-2194876 | 19950707 |
| WO 9606640                                                         | A1   | 19960307       | WO 1995-US8568  | 19950707 |
| W: AU, CA, JP, MX, NZ, SG                                          |      |                |                 |          |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |                |                 |          |
| AU 9530045                                                         | A1   | 19960322       | AU 1995-30045   | 19950707 |
| AU 707353                                                          | B2   | 19990708       |                 |          |
| EP 779820                                                          | A1   | 19970625       | EP 1995-926209  | 19950707 |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI                          |      |                |                 |          |
| JP 10505057                                                        | T2   | 19980519       | JP 1996-508729  | 19950707 |
| NZ 290031                                                          | A    | 20010223       | NZ 1995-290031  | 19950707 |
| ZA 9507245                                                         | A    | 19970630       | ZA 1995-7245    | 19950829 |
| US 5981606                                                         | A    | 19991109       | US 1998-19316   | 19980205 |
| PRIORITY APPLN. INFO.:                                             |      |                |                 |          |
|                                                                    |      | US 1991-663500 | B1 19910301     |          |
|                                                                    |      | US 1993-53922  | B2 19930426     |          |
|                                                                    |      | US 1994-298521 | B2 19940830     |          |
|                                                                    |      | JP 1992-505329 | A3 19920115     |          |
|                                                                    |      | US 1994-224936 | B1 19940408     |          |
|                                                                    |      | US 1995-445824 | A 19950522      |          |
|                                                                    |      | WO 1995-US8568 | W 19950707      |          |
|                                                                    |      | US 1997-37730P | P 19970202      |          |

AB The present invention pertains to therapeutic bioadhesive-wound healing compns. useful for treating wounds and increasing the proliferation and resuscitation rate of mammalian cells. The compns. comprise a bioadhesive agent and a therapeutically effective amount of a wound healing composition. In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic bioadhesive-wound healing compns. may further comprise medicaments such as antiviral agents, antikeratolytic agents, anti-inflammatory agents, antifungal agents, antibacterial agents,

immunostimulating agents, and the like. The bioadhesive-wound healing compns. may be utilized in a wide variety of pharmaceutical products. This invention also relates to methods for preparing and using the bioadhesive-wound healing compns. and the pharmaceutical products in which the compns. may be used.

IC ICM A61K031-045  
 ICS A61K031-07; A61K031-355; A61L015-00  
 INCL 514724000  
 CC 63-6 (Pharmaceuticals)  
 Section cross-reference(s): 1  
 IT Anti-inflammatory agents  
 Antibacterial agents  
 Antihistamines  
 Antioxidants  
 Antiviral agents  
 Fungicides  
 Sunscreens  
 Wound healing promoters  
 (bioadhesive wound healing compns.)  
 IT 50-02-2, Dexamethasone 50-21-5, biological studies 50-23-7,  
 Hydrocortisone 50-24-8, Prednisolone 50-78-2, Acetylsalicylic acid  
 50-81-7, Vitamin C, biological studies 53-03-2, Prednisone 53-06-5,  
 Cortisone 53-86-1, Indomethacin 56-75-7, Chloramphenicol 57-10-3,  
 Hexadecanoic acid, biological studies 57-11-4, Octadecanoic acid,  
 biological studies 57-13-6, Urea, biological studies 57-62-5,  
 Chlortetracycline 57-92-1, Streptomycin, biological studies 58-95-7,  
 Vitamin E acetate 59-87-0, Nitrofurazone 60-33-3, 9,12-Octadecadienoic  
 acid (Z,Z)-, biological studies 60-54-8, Tetracycline 61-33-6,  
 Penicillin G, biological studies 61-68-7, Mefenamic acid 65-85-0,  
 Benzoic acid, biological studies 67-20-9, Nitrofurantoin 67-45-8,  
 Furazolidone 69-53-4, Ampicillin 69-72-7, Salicylic acid, biological  
 studies 76-25-5, Triamcinolone acetonide 79-10-7D, 2-Propenoic acid,  
 polymers, biological studies 79-57-2, Oxytetracycline 83-43-2, Methyl  
 prednisolone 87-08-1, Penicillin V 89-57-6, Mesalamine 99-26-3,  
 Bismuth subgallate 108-95-2, Phenol, biological studies 110-44-1,  
 Sorbic acid 112-80-1, Oleic acid, biological studies 113-24-6,  
 Sodium pyruvate 114-07-8, Erythromycin 118-60-5, 2-Ethylhexyl  
 salicylate 124-94-7, Triamcinolone 127-17-3, Pyruvic acid, biological  
 studies 131-57-7, Oxybenzone 134-09-8, Menthyl anthranilate  
 143-07-7, Lauric acid, biological studies 147-24-0, Diphenhydramine  
 hydrochloride 153-61-7, Cephalothin 302-79-4, Tretinoin 328-50-7,  
 α-Ketoglutaric acid 373-49-9, Palmitoleic acid 443-48-1,  
 Metronidazole 463-40-1 506-12-7, Margaric acid 506-30-9, Arachidic  
 acid 544-63-8, Myristic acid, biological studies 544-64-9, Myristoleic  
 acid 552-94-3, Salsalate 564-25-0, Doxycycline 600-22-6, Methyl  
 pyruvate 637-58-1, Pramoxine hydrochloride 665-66-7, Amantadine  
 hydrochloride 1002-84-2, Pentadecanoic acid 1344-85-0, Bismuth  
 aluminate 1403-66-3, Gentamicin 1404-04-2, Neomycin 1405-87-4,  
 Bacitracin 1406-05-9, Penicillin 1406-11-7, Polymyxin 1406-18-4,  
 Vitamin E 1981-50-6, Margaroleic acid 2922-61-4, Lithium  
 pyruvate 3385-03-3, Flunisolide 4151-33-1, Potassium pyruvate  
 5466-77-3, 2-Ethylhexyl p-methoxycinnamate 5534-09-8, Beclomethasone  
 dipropionate 5536-17-4, Vidarabine 5593-20-4, Betamethasone  
 dipropionate 6197-30-4, Octocrylene 6385-02-0, Meclofenamate sodium  
 6506-37-2, Nimorazole 6969-49-9, Octyl salicylate 6998-60-3, Rifamycin  
 7440-69-9D, Bismuth, compds., biological studies 8063-07-8, Kanamycin  
 9000-30-0, Guar gum 9003-97-8, Polycarbophil 9004-32-4 9004-67-5,  
 Methyl cellulose 11103-57-4, Vitamin A 11111-12-9, Cephalosporin  
 13463-67-7, Titanium oxide (TiO<sub>2</sub>), biological studies 14882-18-9,  
 Bismuth subsalicylate 15307-86-5, Diclofenac 15686-71-2, Cephalexin

15687-27-1, Ibuprofen 18323-44-9, Clindamycin 18983-79-4,  
 Magnesium pyruvate 19387-91-8, Tinidazole 21245-02-3, Padimate O  
 22071-15-4, Ketoprofen 22204-53-1, Naproxen 22494-42-4, Diflunisal  
 22916-47-8, Miconazole 23593-75-1, Clotrimazole 24887-16-9, Zinc  
 pyruvate 25655-41-8, Povidone-iodine 26787-78-0, Amoxicillin  
 29204-02-2, Gadoleic acid 30516-87-1, Zidovudine 34597-40-5,  
 Fenoprofen calcium 36322-90-4, Piroxicam 36791-04-5, Ribavirin  
 38194-50-2, Sulindac 41340-25-4, Etodolac 42924-53-8, Nabumetone  
 52009-14-0, Calcium pyruvate 57644-54-9, Bismuth subcitrate  
 58817-05-3, Octyl p-dimethylaminobenzoate 59277-89-3, Acyclovir  
 63585-09-1, Foscarnet sodium 64425-90-7, Choline magnesium  
 trisalicylate, biological studies 64872-76-0, Butoconazole 65899-73-2,  
 Tioconazole 67915-31-5, Terconazole 74103-07-4, Ketonolac tromethamine  
 96436-87-2, 2-Propenoic acid, 3-(4-methoxyphenyl)-, octyl ester  
 107910-75-8, Ganciclovir sodium 145482-34-4, Manganese pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (bioadhesive wound healing compns.)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate  
 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium

pyruvate 52009-14-0, Calcium pyruvate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (bioadhesive wound healing compns.)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA  
 INDEX NAME)



RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 75 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1997:513486 HCPLUS  
 DOCUMENT NUMBER: 127:166804  
 TITLE: Therapeutic-wound healing compositions and methods for preparing and using same  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S., 172 pp., Cont.-in-part of U.S. Ser. No. 187,435, abandoned.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE           | APPLICATION NO. | DATE     |
|------------------------|------|----------------|-----------------|----------|
| US 5652274             | A    | 19970729       | US 1995-445813  | 19950522 |
| JP 2002356421          | A2   | 20021213       | JP 2002-82387   | 19920115 |
| JP 2003231632          | A2   | 20030819       | JP 2002-362245  | 19920115 |
| US 5981606             | A    | 19991109       | US 1998-19316   | 19980205 |
| PRIORITY APPLN. INFO.: |      |                |                 |          |
|                        |      | US 1991-663500 | B2              | 19910301 |
|                        |      | US 1991-798392 | B1              | 19911126 |
|                        |      | US 1994-187435 | B2              | 19940127 |
|                        |      | JP 1992-505329 | A3              | 19920115 |
|                        |      | US 1993-53922  | B2              | 19930426 |
|                        |      | US 1994-224936 | B1              | 19940408 |
|                        |      | US 1997-37730P | P               | 19970202 |

AB This invention pertains to therapeutic wound healing compns. for protecting and resuscitating mammalian cells. In one embodiment, the therapeutic wound healing composition comprises (a) pyruvate, (b) an antioxidant, and (c) a mixture of saturated and unsatd. fatty acids. In another

embodiment, the therapeutic wound healing composition comprises (a) pyruvate, (b) lactate, and (c) a mixture of saturated and unsatd. fatty acids. In yet another embodiment, the therapeutic wound healing composition comprises (a) an antioxidant and (b) a mixture of saturated and unsatd. fatty adds. In still

yet

another embodiment, the therapeutic wound healing composition comprises (a) lactate, (b) an antioxidant, and (c) a mixture of saturated and unsatd. fatty acids. This invention also pertains to wound healing compns. combined with a medicament which is useful for treating injured mammalian cells to form augmented wound healing compns. such as immunostimulating-wound healing compns., antiviral-wound healing compns., antikeratolytic-wound healing compns., anti-inflammatory-wound healing compns., antifungal-wound healing compns., acne treating-wound healing compns., sunscreen-wound healing compns., dermatol.-wound healing compns., antihistamine-wound healing compns., antibacterial-wound healing compns., and bioadhesive-wound healing compns. This invention also pertains to wound healing compns. combined with a cytotoxic agent to form cytoprotective-wound healing compns. useful for protecting and reducing injury to mammalian cells and to razor cartridges comprising the wound healing compns. This invention also pertains to methods for preparing and using the wound healing compns. and the topical and ingestible pharmaceutical products in which the therapeutic compns. may be used.

IC ICM A61K031-45  
 ICS A61K031-07; A61K031-34; A61K047-00  
 INCL 514724000  
 CC 63-6 (Pharmaceuticals)  
 IT Anesthetics  
   Anti-inflammatory agents  
   Antibacterial agents  
   Antihistamines  
   Antioxidants  
   Antiviral agents  
     Fungicides  
   Immunostimulants  
   Sunscreens  
   Wound healing promoters  
     (therapeutic wound healing compns.)  
 IT 50-81-7, Vitamin C, biological studies 113-24-6, Sodium pyruvate  
 127-17-3, Pyruvic acid, biological studies 328-50-7,  
 α-Ketoglutaric acid 600-22-6, Methyl pyruvate 2922-61-4,  
 Lithium pyruvate 4151-33-1, Potassium pyruvate  
 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate  
 52009-14-0, Calcium pyruvate 145482-34-4, Manganese pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
   (therapeutic wound healing compns.)  
 IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate  
 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
 pyruvate 52009-14-0, Calcium pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
   (therapeutic wound healing compns.)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

RN 2922-61-4 HCAPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



## ● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



## ● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 76 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1997:454000 HCPLUS  
 DOCUMENT NUMBER: 127:62876  
 TITLE: Immortalized human skin cell lines and serum-free  
 medium for their culture  
 INVENTOR(S): Baur, Markus; Mace, Catherine; Malnoe, Armand;  
 Pfeifer, Andrea M. A.; Regnier, Marcelle  
 PATENT ASSIGNEE(S): Societe Des Produits Nestle S.A., Switz.  
 SOURCE: Eur. Pat. Appl., 27 pp.  
 CODEN: EPXXDW  
 DOCUMENT TYPE: Patent  
 LANGUAGE: French  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                          | KIND                                                                                                                                                                                                      | DATE                                                                                               | APPLICATION NO. | DATE     |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------|----------|
| EP 780469                                                                                                                           | A1                                                                                                                                                                                                        | 19970625                                                                                           | EP 1996-203641  | 19961219 |
| EP 780469                                                                                                                           | B1                                                                                                                                                                                                        | 20010228                                                                                           |                 |          |
| R: AT, BE, CH, CA 2234118                                                                                                           | DE, DK, ES, FI, AA                                                                                                                                                                                        | FR, GB, GR, IE, IT, LU, NL, PT, SE                                                                 | CA 1996-2234118 | 19961219 |
| WO 9723602                                                                                                                          | W: AL, AM, AT, AU, AZ, BB, BG, DE, DK, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN | CH, CN, CZ, DE, DK, EE, FR, GB, GR, IE, IT, LU, NL, PT, SE, MC, PT, RO, RU, SD, MR, NE, SN, TD, TG | WO 1996-EP5812  | 19961219 |
| RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, |                                                                                                                                                                                                           |                                                                                                    |                 |          |
| AU 9713054                                                                                                                          | A1                                                                                                                                                                                                        | 19970717                                                                                           | AU 1997-13054   | 19961219 |
| AU 730222                                                                                                                           | B2                                                                                                                                                                                                        | 20010301                                                                                           |                 |          |
| EP 877797                                                                                                                           | A1                                                                                                                                                                                                        | 19981118                                                                                           | EP 1996-944641  | 19961219 |
| R: AT, BE, CH, CN 1205737                                                                                                           | DE, DK, ES, FR, A                                                                                                                                                                                         | GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO                                         | CN 1996-199175  | 19961219 |
| BR 9612256                                                                                                                          | A                                                                                                                                                                                                         | 19990713                                                                                           | BR 1996-12256   | 19961219 |
| JP 2000506374                                                                                                                       | T2                                                                                                                                                                                                        | 20000530                                                                                           | JP 1997-523329  | 19961219 |
| AT 199390                                                                                                                           | E                                                                                                                                                                                                         | 20010315                                                                                           | AT 1996-203641  | 19961219 |
| ES 2155166                                                                                                                          | T3                                                                                                                                                                                                        | 20010501                                                                                           | ES 1996-203641  | 19961219 |
| PT 780469                                                                                                                           | T                                                                                                                                                                                                         | 20010629                                                                                           | PT 1996-203641  | 19961219 |
| SK 283314                                                                                                                           | B6                                                                                                                                                                                                        | 20030502                                                                                           | SK 1998-835     | 19961219 |
| RU 2215030                                                                                                                          | C2                                                                                                                                                                                                        | 20031027                                                                                           | RU 1998-113400  | 19961219 |
| IL 124191                                                                                                                           | A1                                                                                                                                                                                                        | 20040601                                                                                           | IL 1996-124191  | 19961219 |
| NO 9802810                                                                                                                          | A                                                                                                                                                                                                         | 19980821                                                                                           | NO 1998-2810    | 19980618 |
| US 2002012993                                                                                                                       | A1                                                                                                                                                                                                        | 20020131                                                                                           | US 1998-91483   | 19980619 |
| US 6423540                                                                                                                          | B2                                                                                                                                                                                                        | 20020723                                                                                           |                 |          |
| GR 3035719                                                                                                                          | T3                                                                                                                                                                                                        | 20010731                                                                                           | GR 2001-400570  | 20010406 |
| US 2002042129                                                                                                                       | A1                                                                                                                                                                                                        | 20020411                                                                                           | US 2001-982649  | 20011018 |
| US 6949381                                                                                                                          | B2                                                                                                                                                                                                        | 20050927                                                                                           |                 |          |

PRIORITY APPLN. INFO.: US 1995-576483 A 19951221  
                           WO 1996-EP5812 W 19961219  
                           US 1998-91483 A1 19980619

AB The invention concerns immortalized cell lines, especially of keratinocytes and melanocytes derived from normal human skin, as well as a novel serum-free medium for the isolation, growth, and maintenance of these cells. Procedures and compns. are disclosed for producing primary melanocytes and keratinocytes in the absence of serum and without fibroblast nurse cells. Plasmids derived from SV40 virus or papilloma virus 16 were used to immortalize the melanocytes and keratinocytes of this invention. The findings are useful for the improved immunol., pharmacol., photo-, and chemotoxicol. anal. of cutaneous reactions and for the expression of heterologous genes. The cells may be used for studying the inflammation reaction and for skin grafting.

IC ICM C12N005-08  
     ICS C12N005-00; C12N005-22

CC 9-11 (Biochemical Methods)  
     Section cross-reference(s): 13, 14

IT Transformation, neoplastic  
     (immortalization; immortalized human skin cell lines culture in serum-free medium)

IT Tumor necrosis factors  
     RL: BOC (Biological occurrence); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); OCCU (Occurrence)  
     (immortalized human skin cell lines culture in serum-free medium)

IT 50-23-7, Hydrocortisone 50-89-5, Thymidine, biological studies  
     50-99-7, D-Glucose, biological studies 51-43-4, Epinephrine 52-90-4,  
     L-Cysteine, biological studies 56-40-6, Glycine, biological studies  
     56-41-7, L-Alanine, biological studies 56-45-1, L-Serine, biological  
     studies 56-84-8, L-Aspartic acid, biological studies 56-85-9,  
     L-Glutamine, biological studies 56-86-0, L-Glutamic acid, biological  
     studies 56-87-1, L-Lysine, biological studies 57-92-1, Streptomycin,  
     biological studies 58-85-5 59-30-3, Folic acid, biological studies  
     59-43-8, Thiamin, biological studies 60-18-4, L-Tyrosine, biological  
     studies 61-33-6, biological studies 61-90-5, L-Leucine, biological  
     studies 63-68-3, L-Methionine, biological studies 63-91-2,  
     L-Phenylalanine, biological studies 65-23-6, Pyridoxine 67-48-1,  
     Choline chloride 68-19-9, Cyanocobalamin 70-47-3, L-Asparagine,  
     biological studies 71-00-1, L-Histidine, biological studies 72-18-4,  
     L-Valine, biological studies 72-19-5, L-Threonine, biological studies  
     73-22-3, L-Tryptophan, biological studies 73-24-5, Adenine, biological  
     studies 73-32-5, L-Isoleucine, biological studies 74-79-3, L-Arginine,  
     biological studies 83-88-5, Riboflavin, biological studies 87-89-8,  
     i-Inositol 98-92-0, Nicotinamide 110-60-1,  
     Putrescine 113-24-6, Sodium pyruvate 127-09-3, Sodium acetate  
     137-08-6, Calcium pantothenate 141-43-5, biological studies 143-74-8,  
     Phenol red 144-55-8, Carbonic acid monosodium salt, biological studies  
     147-85-3, L-Proline, biological studies 1071-23-4, Phosphoethanolamine  
     1077-28-7, Thioctic acid 1397-89-3, Fungizone 6834-92-0  
     7365-45-9, HEPES 7440-70-2, Calcium, biological studies 7447-40-7,  
     Potassium chloride, biological studies 7558-79-4, Disodium phosphate  
     7647-14-5, Sodium chloride (NaCl), biological studies 7733-02-0, Zinc  
     sulfate 7758-98-7, Cupric sulfate, biological studies 7772-99-8, Tin  
     chloride, biological studies 7773-01-5, Manganese chloride 7786-30-3,  
     Magnesium chloride, biological studies 7786-81-4, Nickel sulfate  
     7803-55-6, Ammonium metavanadate 9004-10-8, Insulin, biological studies  
     10028-22-5, Ferric sulfate 10043-52-4, Calcium chloride (CaCl<sub>2</sub>),  
     biological studies 10102-18-8, Sodium selenite 12027-67-7, Ammonium  
     molybdate 16561-29-8, Phorbol 12-myristate 13-acetate 62229-50-9,

Epidermal growth factor 106096-93-9, Basic fibroblast growth factor  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BUU (Biological use, unclassified); BIOL  
 (Biological study); USES (Uses)  
 (immortalized human skin cell lines culture in serum-free medium)

IT 98-92-0, Nicotinamide 113-24-6, Sodium  
 pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BUU (Biological use, unclassified); BIOL  
 (Biological study); USES (Uses)  
 (immortalized human skin cell lines culture in serum-free medium)

RN 98-92-0 HCPLUS

CN 3-Pyridinecarboxamide (9CI) (CA INDEX NAME)



RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 77 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:425981 HCPLUS

DOCUMENT NUMBER: 127:126651

TITLE: Antikeratolytic-wound healing compositions and methods  
 for preparing and using same

INVENTOR(S): Martin, Alain

PATENT ASSIGNEE(S): Warner-Lambert Co., USA

SOURCE: U.S., 41 pp., Cont.-in-part of U.S. Ser. No. 268,772,  
 abandoned.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 28

PATENT INFORMATION:

| PATENT NO.    | KIND | DATE     | APPLICATION NO. | DATE     |
|---------------|------|----------|-----------------|----------|
| US 5641814    | A    | 19970624 | US 1995-445808  | 19950522 |
| JP 2002356421 | A2   | 20021213 | JP 2002-82387   | 19920115 |
| JP 2003231632 | A2   | 20030819 | JP 2002-362245  | 19920115 |
| CA 2191605    | AA   | 19960111 | CA 1995-2191605 | 19950622 |
| WO 9600572    | A1   | 19960111 | WO 1995-US7941  | 19950622 |

W: AU, CA, JP, MX, NZ, SG

|                                                                    |    |          |                |             |
|--------------------------------------------------------------------|----|----------|----------------|-------------|
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |    |          |                |             |
| AU 9528707                                                         | A1 | 19960125 | AU 1995-28707  | 19950622    |
| AU 701301                                                          | B2 | 19990121 |                |             |
| EP 768877                                                          | A1 | 19970423 | EP 1995-924046 | 19950622    |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT                              |    |          |                |             |
| JP 10502344                                                        | T2 | 19980303 | JP 1995-503322 | 19950622    |
| NZ 288995                                                          | A  | 20010223 | NZ 1995-288995 | 19950622    |
| ZA 9505409                                                         | A  | 19970401 | ZA 1995-5409   | 19950629    |
| US 5981606                                                         | A  | 19991109 | US 1998-19316  | 19980205    |
| PRIORITY APPLN. INFO.:                                             |    |          |                |             |
|                                                                    |    |          | US 1991-663500 | B2 19910301 |
|                                                                    |    |          | US 1993-53922  | B1 19930426 |
|                                                                    |    |          | US 1994-268772 | B2 19940630 |
|                                                                    |    |          | JP 1992-505329 | A3 19920115 |
|                                                                    |    |          | US 1994-224936 | B1 19940408 |
|                                                                    |    |          | US 1995-445808 | A 19950522  |
|                                                                    |    |          | WO 1995-US7941 | W 19950622  |
|                                                                    |    |          | US 1997-37730P | P 19970202  |

AB This invention pertains to therapeutic antikeratolytic-wound healing compns. The compns. comprise a therapeutically effective amount of an antikeratolytic agent and a wound healing composition. In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic antikeratolytic-wound healing compns. may be utilized in a wide variety of topical and ingestible pharmaceutical products. This invention also relates to methods for preparing and using the therapeutic antikeratolytic-wound healing compns. and the pharmaceutical products in which the compns. may be used. The antikeratolytic agent is selected from the group consisting of salicylic acid, lactic acid, and urea. A wound-healing composition containing Na pyruvate 2, vitamin E 1, chicken fat 2 %, live yeast cell derivative 2400 U, shark liver oil 3, petrolatum 64, mineral oil 22.53, paraffins 5, and emulsifier 0.2 % was combined with an antikeratolytic agent to prevent scaling and dryness of the injured cells.

IC ICM A61K031-045  
ICS A61K031-07; A61K031-355

INCL 514724000

CC 63-6 (Pharmaceuticals)  
Section cross-reference(s): 1

IT Anesthetics  
Anti-inflammatory agents  
Antibacterial agents  
Antihistamines  
Antioxidants  
Antiviral agents  
Culture media  
Fungicides  
Immunostimulants  
Psoriasis  
Sunscreens  
Wound healing promoters  
(topical compns. containing keratolysis inhibitors and wound healing agents)

IT 50-21-5, Lactic acid, biological studies 50-81-7, Vitamin C, biological studies 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid, biological studies 57-13-6, Urea., biological studies 58-95-7, Vitamin E acetate. 60-33-3, Linoleic acid, biological studies 69-72-7, Salicylic acid, biological studies 112-80-1, Oleic acid, biological studies 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 143-07-7, Lauric acid, biological studies 328-50-7,  $\alpha$ -Ketoglutaric acid 373-49-9, Palmitoleic acid 463-40-1,

Linolenic acid 506-12-7, Margaric acid 506-30-9, Arachidic acid 544-63-8, Myristic acid,, biological studies 544-64-9, Myristoleic acid 600-22-6, Methyl pyruvate 1002-84-2, Pentadecanoic acid 1406-18-4, Vitamin E; 1981-50-6, Margaroleic acid 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 11103-57-4, Vitamin A 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc pyruvate 29204-02-2, Gadoleic acid 52009-14-0, Calcium pyruvate 145482-34-4, Manganese pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (topical compns. containing keratolysis inhibitors and wound healing agents)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (topical compns. containing keratolysis inhibitors and wound healing agents)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo-κO)propanoato-κO]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 78 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:390697 HCPLUS

DOCUMENT NUMBER: 127:2744

TITLE: Method for ex vivo proliferation and differentiation of adult pancreatic islet cells, media useful therefor and uses thereof

INVENTOR(S): Soon-Shiong, Patrick; Varsanyi-Nagy, Maria; Ferreri, Kevin; Moloney, Molly; Heintz, Roswitha

PATENT ASSIGNEE(S): Vivorx, Inc., USA

SOURCE: PCT Int. Appl., 68 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                             | KIND | DATE     | APPLICATION NO. | DATE       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 9716536                                                                                                                                                                                                                                                                                                                                                                                                                             | A1   | 19970509 | WO 1996-US16396 | 19961011   |
| W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,<br>DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC,<br>LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,<br>RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN,<br>AM, AZ, BY, KG, KZ, MD, RU, TJ, TM<br>RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR,<br>IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG |      |          |                 |            |
| AU 9674439                                                                                                                                                                                                                                                                                                                                                                                                                             | A1   | 19970522 | AU 1996-74439   | 19961011   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                                                                                                                                                                 |      |          | US 1995-558591  | A 19951030 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          | WO 1996-US16396 | W 19961011 |

AB A method for inducing the proliferation and differentiation of neonatal and/or adult human or non-human pancreatic islets to produce a product useful, for example, as a therapeutic agent for treatment of diabetes was developed. The method involves a series of complex cell culture media containing necessary nutrients and growth factors, a human cytokine (hepatocyte growth factor or scatter factor), a microgravity culture vessel for promoting 3-dimensional growth, and mol. biol. assays for measuring insulin promoter activity. A method for providing a hybrid

organoid comprising a combination of donor and recipient cell types is also described.

IC ICM C12N005-08  
ICS A61K035-39

CC 9-11 (Biochemical Methods)  
Section cross-reference(s): 2, 14

ST pancreatic islet cell culture proliferation differentiation; microgravity culture vessel pancreatic islet proliferation; type 1 diabetes therapy cell culture

IT Diabetes mellitus  
(insulin-dependent; ex vivo proliferation and differentiation of adult pancreatic islet cells and media and uses)

IT 50-23-7, Hydrocortisone 50-81-7, Ascorbic acid, biological studies  
50-89-5, Thymidine, biological studies 56-40-6, Glycine, biological studies 56-41-7, L-Alanine, biological studies 56-45-1, L-Serine, biological studies 56-84-8, L-Aspartic acid, biological studies 56-85-9, L-Glutamine, biological studies 56-86-0, L-Glutamic acid, biological studies 56-87-1, L-Lysine, biological studies 56-89-3, L-Cystine, biological studies 58-85-5, Biotin 59-30-3, Folic acid, biological studies 59-43-8, Thiamine, biological studies 60-18-4, L-Tyrosine, biological studies 60-33-3, 9,12-Octadecadienoic acid (Z,Z)-, biological studies 61-90-5, L-Leucine, biological studies 63-68-3, L-Methionine, biological studies 63-91-2, L-Phenylalanine, biological studies 65-23-6, Pyridoxine 67-48-1, Choline chloride 68-19-9, Vitamin B12 68-94-0, Hypoxanthine 70-47-3, L-Asparagine, biological studies 71-00-1, L-Histidine, biological studies 72-18-4, L-Valine, biological studies 72-19-5, L-Threonine, biological studies 73-22-3, L-Tryptophan, biological studies 73-32-5, L-Isoleucine, biological studies 74-79-3, L-Arginine, biological studies 83-88-5, Riboflavin, biological studies 87-89-8, Myoinositol 98-92-0, Nicotinamide 110-60-1, Putrescine 113-24-6, Sodium pyruvate 137-08-6, Calcium pantothenate 143-74-8, Phenol red 147-85-3, L-Proline, biological studies 7447-40-7, Potassium chloride, biological studies 7487-88-9, Magnesium sulfate, biological studies 7558-79-4, Disodium phosphate 7647-14-5, Sodium chloride (NaCl), biological studies 7720-78-7, Ferrous sulfate 7733-02-0, Zinc sulfate 7758-98-7, Cupric sulfate, biological studies 7778-77-0, Monobasic potassium phosphate 7783-00-8, Selenious acid 9035-54-5, Placental lactogen 10043-52-4, Calcium chloride (CaCl<sub>2</sub>), biological studies 57828-26-9, Lipoic acid 116243-73-3, Endothelin  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)  
(ex vivo proliferation and differentiation of adult pancreatic islet cells and media and uses)

IT 98-92-0, Nicotinamide 113-24-6, Sodium pyruvate  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)  
(ex vivo proliferation and differentiation of adult pancreatic islet cells and media and uses)

RN 98-92-0 HCPLUS  
CN 3-Pyridinecarboxamide (9CI) (CA INDEX NAME)



RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 79 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1997:308048 HCPLUS  
 DOCUMENT NUMBER: 126:272355  
 TITLE: Method and composition using antioxidant inflammatory response mediator for treating mammalian diseases caused by inflammatory response  
 INVENTOR(S): Katz, Stanley E.  
 PATENT ASSIGNEE(S): Cellular Sciences, Inc., USA; Katz, Stanley E.  
 SOURCE: PCT Int. Appl., 24 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 4  
 PATENT INFORMATION:

| PATENT NO.                                                                                                                                                                                                                                                                            | KIND | DATE     | APPLICATION NO.  | DATE       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------|------------|
| WO 9710818                                                                                                                                                                                                                                                                            | A1   | 19970327 | WO 1996-US14304  | 19960906   |
| W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |      |          |                  |            |
| RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN                                                                                                                                                        |      |          |                  |            |
| CA 2205112                                                                                                                                                                                                                                                                            | AA   | 19970327 | CA 1996-2205112  | 19960906   |
| AU 9669159                                                                                                                                                                                                                                                                            | A1   | 19970409 | AU 1996-69159    | 19960906   |
| AU 719332                                                                                                                                                                                                                                                                             | B2   | 20000504 |                  |            |
| EP 804181                                                                                                                                                                                                                                                                             | A1   | 19971105 | EP 1996-929932   | 19960906   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI                                                                                                                                                                                                             |      |          |                  |            |
| JP 10509463                                                                                                                                                                                                                                                                           | T2   | 19980914 | JP 1996-512741   | 19960906   |
| NZ 306832                                                                                                                                                                                                                                                                             | A    | 20010427 | NZ 1996-306832   | 19960906   |
| IL 119225                                                                                                                                                                                                                                                                             | A1   | 20000928 | IL 1996-119225   | 19960909   |
| ZA 9607833                                                                                                                                                                                                                                                                            | A    | 19970602 | ZA 1996-7833     | 19960917   |
| TW 434012                                                                                                                                                                                                                                                                             | B    | 20010516 | TW 1996-85111379 | 19960918   |
| PRIORITY APPLN. INFO.:                                                                                                                                                                                                                                                                |      |          | US 1995-3962P    | P 19950919 |

WO 1996-US14304 W 19960906

AB A method for treating the disease state in mammals caused by mammalian cells involved in the inflammatory response is disclosed. Mammalian cells participating in the inflammatory response are contacted with an inflammatory response mediator which reduces the undesired inflammatory response and is an antioxidant. The inflammatory response mediator may further provide a cellular energy source and be a building block in the cellular synthesis of other cellular components. Compns. for reducing and treating undesired inflammatory response are also disclosed. The inflammatory response mediator may be e.g. lactate or pyruvate or precursors or salts thereof. The efficacy of treatment with sodium pyruvate in a patient with emphysema and restrictive airway disease is presented.

IC ICM A61K031-19  
ICS A61K031-195; A61K031-12; A61K031-045

CC 1-7 (Pharmacology)

Section cross-reference(s) : 63

IT Antibacterial agents

Antihistamines

Antiviral agents

**Fungicides**

Therapy

(antioxidant inflammatory response mediator and therapeutic agent for treating diseases caused by inflammatory response)

IT Anti-inflammatory agents

Antiasthmatics

Antioxidants

**Cystic fibrosis**

Drug delivery systems

Emphysema

Energy metabolism, animal

Erythema

Leukocyte

**Pneumonia**

(antioxidant inflammatory response mediator for treating diseases caused by inflammatory response)

IT 50-21-5, biological studies 50-21-5D, salts 57-55-6, 1,2-Propanediol, biological studies 96-26-4, Dihydroxyacetone 113-24-6, Sodium pyruvate 127-17-3, biological studies 127-17-3D, salts 631-66-3, Pyruvamide 2043-43-8, Lactamide 2392-63-4 2922-61-4, Lithium pyruvate 3997-91-9 4151-33-1, Potassium pyruvate 7712-27-8 16947-06-1 18983-79-4, Magnesium pyruvate 24887-16-9 52009-14-0, Calcium pyruvate 68164-07-8 68259-69-8 70190-98-6 70190-99-7 90088-56-5 112757-17-2 112757-18-3 145482-34-4 152102-61-9

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(antioxidant inflammatory response mediator for treating diseases caused by inflammatory response)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(antioxidant inflammatory response mediator for treating diseases caused by inflammatory response)

RN 113-24-6 HCAPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCAPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo-κO)propanoato-κO] -, (T-4) - (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 80 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1997:128094 HCAPLUS  
 DOCUMENT NUMBER: 126:225148  
 TITLE: 2-thiosubstituted carbapenems  
 INVENTOR(S): Lin, Yang-i; Bittha, Panayota; Sakya, Subas;  
 Strohmeyer, Timothy W.; Bush, Karen; Ziegler, Carl B.;  
 Feigelson, Gregg B.  
 PATENT ASSIGNEE(S): American Cyanamid Company, USA  
 SOURCE: U.S., 95 pp., Cont.-in-part of U.S. Ser. No. 33,684,  
 abandoned.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 2  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO.    | DATE        |
|------------------------|------|----------|--------------------|-------------|
| US 5602118             | A    | 19970211 | US 1994-182781     | 19940126    |
| SG 77541               | A1   | 20010116 | SG 1996-3099       | 19940217    |
| SG 91908               | A1   | 20021015 | SG 2001-200101813  | 19940217    |
| HU 67741               | A2   | 19950428 | HU 1994-724        | 19940311    |
| HU 70209               | A2   | 19950928 | HU 1995-213        | 19940311    |
| CA 2118961             | AA   | 19940917 | CA 1994-2118961    | 19940314    |
| FI 9401215             | A    | 19940917 | FI 1994-1215       | 19940315    |
| FI 106718              | B1   | 20010330 |                    |             |
| NO 9400928             | A    | 19940919 | NO 1994-928        | 19940315    |
| NO 311939              | B1   | 20020218 |                    |             |
| AU 9457831             | A1   | 19940922 | AU 1994-57831      | 19940315    |
| AU 676877              | B2   | 19970327 |                    |             |
| ZA 9401828             | A    | 19941018 | ZA 1994-1828       | 19940315    |
| JP 06321948            | A2   | 19941122 | JP 1994-69945      | 19940315    |
| RU 2130457             | C1   | 19990520 | RU 1994-8616       | 19940315    |
| PL 179558              | B1   | 20000929 | PL 1994-302626     | 19940315    |
| CZ 290494              | B6   | 20020814 | CZ 1994-586        | 19940315    |
| CN 1104214             | A    | 19950628 | CN 1994-102266     | 19940316    |
| CN 1041633             | B    | 19990113 |                    |             |
| CN 1482122             | A    | 20040317 | CN 2003-2003145716 | 19940316    |
| TW 474937              | B    | 20020201 | TW 1994-83102728   | 19940328    |
| US 5750735             | A    | 19980512 | US 1995-445388     | 19950519    |
| US 5623081             | A    | 19970422 | US 1995-448052     | 19950523    |
| US 5744465             | A    | 19980428 | US 1995-448295     | 19950523    |
| AU 9728338             | A1   | 19970911 | AU 1997-28338      | 19970627    |
| AU 716772              | B2   | 20000309 |                    |             |
| CN 1223261             | A    | 19990721 | CN 1998-114768     | 19980610    |
| CN 1136207             | B    | 20040128 |                    |             |
| PRIORITY APPLN. INFO.: |      |          | US 1993-33684      | B2 19930316 |
|                        |      |          | US 1994-182781     | A3 19940126 |
|                        |      |          | HU 1994-724        | A 19940311  |

OTHER SOURCE(S) :  
GI

MARPAT 126:225148



**AB** Carbapenems I [R = substituted 3- tetrahydrofuryl; R1 = alkyl, alkenyl, cycloalkyl, substituted alkyl; R2 = H, Me, Et, substituted Me; R3 = H, alkyl, alkoxyethyl, acyloxymethyl, acyloxyethyl, alkoxy carbonyloxyethyl, alkoxy carbonyloxyethyl] were prepared for use as bactericides. Thus, the carbapenem II was prepared from the phosphate and the cis-2-carbamoyloxyethyltetrahydrofuran-4-thiol. II showed min. inhibitory concns. of 0.06 µg/mL against several strains of *E. coli*, but had little activity against *Pseudomonas aeruginosa*.

TC TCM A61K031-395

TCS A01N043-00: C07D487-04

TNCL: 514210000

CC 26-5 (Biomolecules and Their Synthetic Analogs)

Section cross-reference(s): 10

ST Section cross reference(s): 10  
tetrahydrofurylthiocarbapenem prep bactericide; carbapenem  
tetrahydrofurylthio prep bactericide

## IT Antibacterial agents

(preparation of bactericidal tetrahydrofurylthiocarbapenems)

IT 161855-50-1P 161855-67-0P 161855-74-9P 188067-97-2P  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)

|    |                                                              |              |              |              |              |
|----|--------------------------------------------------------------|--------------|--------------|--------------|--------------|
|    | (Reactant or Reagents), USP, USPC, USCS                      |              |              |              |              |
|    | (preparation of bactericidal tetrahydrofurylthiocarbapenems) |              |              |              |              |
| IT | 161854-58-6P                                                 | 161855-13-6P | 161855-51-2P | 161855-68-1P | 161855-70-5P |
|    | 161855-73-8P                                                 | 161855-75-0P | 161856-64-0P | 161969-00-2P | 188067-73-4P |
|    | 188067-79-0P                                                 | 188067-87-0P | 188067-91-6P | 188067-95-0P | 188067-98-3P |
|    | 188067-99-4P                                                 | 188068-00-0P | 188068-02-2P | 188068-03-3P | 188068-04-4P |
|    | 188068-09-9P                                                 | 188068-14-6P | 188068-26-0P | 188068-68-0P | 188068-89-5P |
|    | 188069-02-5P                                                 | 188069-03-6P | 188069-23-0P | 188193-02-4P | 188193-03-5P |
|    | 188193-05-7P                                                 |              |              |              |              |

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of bactericidal tetrahydrofurylthiocarbapenems)  
IT 56-40-6, Glycine, reactions 56-41-7, L-Alanine, reactions 61-90-5,  
L-Leucine, reactions 63-91-2, L-Phenylalanine, reactions 72-18-4,  
L-Valine, reactions 73-32-5, L-Isoleucine, reactions 108-93-0,  
Cyclohexanol, reactions 108-95-2, Phenol, reactions 135-19-3,  
2-Naphthol, reactions 371-41-5, 4-Fluorophenol 533-67-5,  
2-Deoxy-D-ribose 627-76-9, DL-2-Aminopimelic acid 1072-72-6,  
4-Tetrahydrothiopyranone 1492-24-6, L-2-Aminobutyric acid 1550-35-2,  
2,4-Difluorobenzaldehyde 1707-77-3 1708-29-8, 2,5-Dihydrofuran  
2731-73-9, 3-Chloro-L-alanine 3019-71-4, Trichloroacetyl isocyanate  
5336-08-3, D-(+)-Ribonic acid  $\gamma$ -lactone 5840-76-6,  
3-Methyl-2,5-oxazolidinedione 6258-60-2, p-Methoxybenzyl mercaptan  
6938-68-7 20031-21-4, 1,2-O-Isopropylidene-D-xylofuranose 31166-44-6

1-Benzylloxycarbonylpiperazine 32780-06-6 34371-14-7 52499-14-6,  
 4-Dodecylbenzenesulfonyl chloride 64370-35-0, p-Nitrobenzyl glyoxylate  
 83972-01-4, Magnesium p-nitrobenzyl malonate 90776-58-2 101221-89-0,  
 1,2-Dideoxy-D-ribose 127657-97-0 131139-12-3 137719-23-4  
 188067-74-5 188069-54-7 188069-59-2

RL: RCT (Reactant); RACT (Reactant or reagent)

(preparation of **bactericidal tetrahydrofurylthiocarbapenems**)

IT 285-69-8P, 3,6-Dioxabicyclo[3.1.0]hexane 4119-18-0P 4596-53-6P,  
 N-(4-Nitrobenzylloxycarbonyl)glycine 13942-76-2P 14825-82-2P  
 15186-48-8P 20701-43-3P 42850-68-0P, 1,4-Dioxa-8-thiaspiro[4.5]decane  
 51979-87-4P 53793-17-2P 58909-39-0P 58931-16-1P 60656-87-3P,  
 Benzylloxycetaldehyde 61477-12-1P, 1,4-Dioxa-8-thiaspiro[4.5]decane-7-  
 thiol 62396-80-9P 65973-24-2P 79364-35-5P 79791-38-1P,  
 4-Dodecylbenzenesulfonyl azide 82064-10-6P 82165-72-8P 83159-91-5P  
 87604-46-4P 87604-53-3P 88981-35-5P 89860-19-5P 90195-00-9P  
 90776-59-3P 90822-22-3P 90822-23-4P 90822-24-5P 90822-25-6P  
 91547-59-0P 96165-57-0P 98839-13-5P 99096-92-1P 99417-55-7P  
 99464-83-2P, 1-Chloroethyl cyclohexyl carbonate 99838-68-3P  
 101623-69-2P 116444-20-3P 134651-25-5P 137063-79-7P 144659-36-9P  
 144659-37-0P 157453-70-8P 158514-89-7P 158556-65-1P 161854-41-7P  
 161854-42-8P 161854-56-4P 161854-57-5P 161854-76-8P 161854-77-9P  
 161854-78-0P 161854-80-4P 161854-81-5P 161854-85-9P 161854-86-0P  
 161854-89-3P 161855-04-5P 161855-07-8P 161855-08-9P 161855-11-4P  
 161855-14-7P 161855-15-8P 161855-16-9P 161855-17-0P 161855-18-1P  
 161855-20-5P 161855-21-6P 161855-22-7P 161855-32-9P 161855-45-4P  
 161855-46-5P 161855-47-6P 161855-48-7P 161855-49-8P 161855-52-3P  
 161855-53-4P 161855-62-5P 161855-63-6P 161855-69-2P 161855-71-6P  
 161855-72-7P 161855-76-1P 161855-77-2P 161855-78-3P 161855-79-4P  
 161855-80-7P 161855-81-8P 161855-82-9P 161855-87-4P 161855-92-1P  
 161855-93-2P 161855-94-3P 161855-96-5P 161855-97-6P 161855-99-8P  
 161856-00-4P 161856-04-8P 161856-05-9P 161856-08-2P 161856-09-3P  
 161856-10-6P 161856-11-7P 161856-12-8P 161856-13-9P 161856-14-0P  
 161856-15-1P 161856-17-3P 161856-18-4P 161856-19-5P 161856-21-9P  
 161856-22-0P 161856-23-1P 161856-24-2P 161856-25-3P 161856-26-4P  
 161856-29-7P 161856-30-0P 161856-35-5P 161856-40-2P 161856-41-3P  
 161856-42-4P 161856-43-5P 161856-44-6P 161856-53-7P 161856-56-0P  
 161856-65-1P 161856-70-8P 161856-71-9P 161856-72-0P 161856-73-1P  
 161856-98-0P 161856-99-1P 161857-00-7P 161857-05-2P 161857-07-4P  
 161857-08-5P 161857-09-6P 161857-10-9P 161857-11-0P 161857-12-1P  
 161857-13-2P, 1,4-Dioxa-8-thiaspiro[4.5]decan-7-ol 161968-59-8P  
 161968-65-6P 161968-66-7P 161968-69-0P 161968-70-3P 161968-71-4P  
 161968-76-9P 161968-77-0P 161969-08-0P 161969-09-1P 161969-10-4P  
 161969-32-0P 161969-47-7P 161969-48-8P 161969-49-9P 161969-50-2P  
 161969-51-3P 161969-52-4P 161969-53-5P 188067-61-0P 188067-62-1P  
 188067-63-2P 188067-64-3P 188067-65-4P 188067-67-6P 188067-68-7P  
 188067-69-8P 188067-72-3P 188067-75-6P 188067-76-7P 188067-77-8P  
 188067-78-9P 188067-80-3P 188067-81-4P 188067-82-5P 188067-83-6P  
 188067-84-7P 188067-85-8P 188067-86-9P 188067-88-1P 188067-89-2P  
 188067-90-5P 188067-92-7P 188067-93-8P 188067-94-9P 188067-96-1P  
 188068-05-5P 188068-06-6P 188068-07-7P 188068-08-8P 188068-10-2P  
 188068-11-3P 188068-12-4P 188068-13-5P 188068-15-7P 188068-16-8P  
 188068-17-9P 188068-18-0P 188068-19-1P 188068-23-7P 188068-28-2P  
 188068-30-6P 188068-35-1P 188068-37-3P 188068-57-7P 188068-75-9P  
 188068-77-1P 188068-79-3P 188068-81-7P 188068-83-9P 188068-85-1P  
 188068-87-3P 188068-88-4P 188068-90-8P 188068-91-9P 188068-92-0P  
 188068-93-1P 188068-94-2P 188068-95-3P 188068-96-4P 188068-97-5P  
 188068-98-6P 188068-99-7P 188069-00-3P 188069-01-4P 188069-04-7P  
 188069-05-8P 188069-06-9P 188069-07-0P 188069-08-1P 188069-09-2P  
 188069-12-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT

## (Reactant or reagent)

(preparation of bactericidal tetrahydrofurylthiocarbapenems)

IT 188069-13-8P 188069-14-9P 188069-15-0P 188069-16-1P 188069-17-2P  
 188069-18-3P 188069-19-4P 188069-20-7P 188069-22-9P 188069-24-1P  
 188069-25-2P 188069-26-3P 188069-27-4P 188069-28-5P 188069-30-9P  
 188069-31-0P 188069-34-3P 188069-35-4P 188069-36-5P 188069-37-6P  
 188069-39-8P 188069-43-4P 188069-44-5P 188069-46-7P 188069-47-8P  
 188069-48-9P 188069-50-3P 188069-51-4P 188069-52-5P 188069-55-8P  
 188069-56-9P 188069-60-5P 188069-61-6P 188069-63-8P 188069-64-9P  
 188069-66-1P 188069-67-2P 188069-68-3P 188069-70-7P 188069-72-9P  
 188193-09-1P 188193-04-6P 188193-06-8P 188193-07-9P 188193-08-0P  
 188193-09-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation of bactericidal tetrahydrofurylthiocarbapenems)

IT 161856-27-5P  
 RL: RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)

(preparation of bactericidal tetrahydrofurylthiocarbapenems)

IT 2224-52-4P 3190-70-3P 87604-54-4P 91121-19-6P 101623-68-1P,  
 1-Acetoxyethyl p-nitrophenyl carbonate 116558-42-0P 144446-03-7P,  
 1-Bromoethyl cyclohexyl carbonate 161855-89-6P 161855-98-7P  
 161856-02-6P 161856-03-7P 161856-94-6P 161857-06-3P 188067-66-5P  
 188069-11-6P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of bactericidal tetrahydrofurylthiocarbapenems)

IT 161854-79-1P 161854-82-6P 161855-19-2P 161855-25-0P 161855-90-9P  
 161855-95-4P 161856-01-5P 161856-16-2P 161856-20-8P 161856-28-6P  
 161856-74-2P 161968-91-8P 161969-11-5P 161969-14-8P 188068-21-5P  
 188068-32-8P 188069-10-5P 188069-21-8P 188069-29-6P 188069-32-1P  
 188069-33-2P 188069-40-1P 188069-45-6P 188069-49-0P  
 188069-53-6P 188069-57-0P 188069-58-1P 188069-62-7P 188069-65-0P  
 188069-69-4P 188069-71-8P 188069-73-0P 188069-74-1P 188069-75-2P  
 188193-10-4P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of bactericidal tetrahydrofurylthiocarbapenems)

IT 188069-49-0P  
 RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of bactericidal tetrahydrofurylthiocarbapenems)

RN 188069-49-0 HCPLUS  
 CN 2-Azetidinebutanoic acid, 3-(1-hydroxyethyl)- $\gamma$ -methyl- $\alpha$ ,4-dioxo- $\beta$ -[[tetrahydro-5-(hydroxymethyl)-2-furanyl]thio]-, monopotassium salt, [2S[ $\beta$ (5S), $\gamma$ R],3S(R)]-[partial]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.



● K

L102 ANSWER 81 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:67456 HCPLUS

DOCUMENT NUMBER: 126:79962

TITLE: Immunostimulating wound healing compositions and methods for preparing and using same

INVENTOR(S): Martin, Alain

PATENT ASSIGNEE(S): Warner-Lambert Company, USA

SOURCE: PCT Int. Appl., 125 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 28

## PATENT INFORMATION:

| PATENT NO.                                                                                          | KIND | DATE     | APPLICATION NO. | DATE        |
|-----------------------------------------------------------------------------------------------------|------|----------|-----------------|-------------|
| WO 9637230                                                                                          | A1   | 19961128 | WO 1996-US5901  | 19960426    |
| W: AU, CA, JP, MX, NZ, SG<br>RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |             |
| US 5658957                                                                                          | A    | 19970819 | US 1995-446986  | 19950522    |
| AU 9656311                                                                                          | A1   | 19961211 | AU 1996-56311   | 19960426    |
| AU 713829                                                                                           | B2   | 19991209 |                 |             |
| EP 828514                                                                                           | A1   | 19980318 | EP 1996-913231  | 19960426    |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI                                                           |      |          |                 |             |
| NZ 307055                                                                                           | A    | 20000128 | NZ 1996-307055  | 19960426    |
| PRIORITY APPLN. INFO.:                                                                              |      |          | US 1995-446986  | A 19950522  |
|                                                                                                     |      |          | US 1991-663500  | B1 19910301 |
|                                                                                                     |      |          | US 1993-53922   | B2 19930426 |
|                                                                                                     |      |          | WO 1996-US5901  | W 19960426  |

AB This invention pertains to therapeutic immunostimulating wound healing compns. The compns. comprise a therapeutically effective amount of an immunostimulating agent and a wound healing composition. In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic immunostimulating

wound healing compns. may be utilized in a wide variety of pharmaceutical products. This invention also relates to methods for preparing and using the therapeutic immunostimulating wound healing compns. and the pharmaceutical products in which the compns. may be used.

IC ICM A61K045-06

CC 63-6 (Pharmaceuticals)

IT Antihistamines

Antioxidants

Fungicides

Immunostimulants

Sunscreens

Wound healing promoters

(immunostimulating wound healing compns.)

IT 113-24-6, Sodium pyruvate 127-17-3, biological studies  
 328-50-7,  $\alpha$ -Ketoglutaric acid 600-22-6, Methyl pyruvate  
 2922-61-4, Lithium pyruvate 4151-33-1, Potassium  
 pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0,  
 Calcium pyruvate 81686-75-1 149732-45-6, Propanoic acid, 2-oxo-, zinc  
 salt 152521-52-3, Betafectin  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(immunostimulating wound healing compns.)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate  
 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
 pyruvate 52009-14-0, Calcium pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(immunostimulating wound healing compns.)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS

CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 82 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1997:67453 HCAPLUS  
 DOCUMENT NUMBER: 126:79959  
 TITLE: Dermatological-wound healing compositions and methods  
 for preparing and using same  
 INVENTOR(S): Martin, Alain; Nayak, Ammunje Sadananda  
 PATENT ASSIGNEE(S): Warner-Lambert Company, USA  
 SOURCE: PCT Int. Appl., 119 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28  
 PATENT INFORMATION:

| PATENT NO.                                                             | KIND | DATE     | APPLICATION NO. | DATE        |
|------------------------------------------------------------------------|------|----------|-----------------|-------------|
| WO 9637227                                                             | A1   | 19961128 | WO 1996-US5895  | 19960426    |
| W: AU, CA, JP, MX, NZ, SG                                              |      |          |                 |             |
| RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |             |
| US 5602183                                                             | A    | 19970211 | US 1995-446964  | 19950522    |
| AU 9656687                                                             | A1   | 19961211 | AU 1996-56687   | 19960426    |
| PRIORITY APPLN. INFO.:                                                 |      |          | US 1995-446964  | A 19950522  |
|                                                                        |      |          | US 1991-663500  | B1 19910301 |
|                                                                        |      |          | US 1993-53922   | B2 19930426 |
|                                                                        |      |          | WO 1996-US5895  | W 19960426  |

AB The present invention pertains to therapeutic dermatol.-wound healing compns. useful to minimize and treat diaper dermatitis. The compns. comprise a therapeutically effective amount of a buffering agent to maintain the pH of the dermatitis in a range from about 5 to about 8, an anti-inflammatory agent, and a wound healing composition. In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic dermatol.-wound healing compns. may be utilized in a wide variety of topical pharmaceutical products. This invention also relates to methods for preparing and using the therapeutic dermatol.-wound healing compns. and the pharmaceutical products in which the compns. may be used.

IC ICM A61K045-06

CC 63-6 (Pharmaceuticals)  
 IT Anesthetics  
   Anti-inflammatory agents  
   Antibacterial agents  
   Antihistamines  
   Antioxidants  
   Buffers  
     **Fungicides**  
   Immunostimulants  
   Wound healing promoters  
     (dermatol. wound healing compns.)  
 IT 50-02-2, Dexamethasone 50-23-7, Hydrocortisone 50-24-8, Prednisolone  
 50-78-2, Acetylsalicylic acid 53-03-2, Prednisone 53-06-5, Cortisone  
 53-86-1, Indomethacin 61-68-7, Mefenamic acid 76-25-5, Triamcinolone  
 acetonide 83-43-2, Methyl prednisolone 89-57-6, Mesalamine  
 113-24-6, Sodium pyruvate 124-94-7, Triamcinolone 127-17-3,  
 biological studies 328-50-7,  $\alpha$ -Ketoglutaric acid 552-94-3,  
 Salsalate 600-22-6, Methyl pyruvate 2922-61-4, Lithium  
 pyruvate 3385-03-3, Flunisolide 4151-33-1, Potassium pyruvate  
 5534-09-8, Beclomethasone dipropionate 5593-20-4, Betamethasone  
 dipropionate 6385-02-0, Meclofenamate sodium 15307-86-5, Diclofenac  
 15687-27-1, Ibuprofen 18983-79-4, Magnesium pyruvate  
 22071-15-4, Ketoprofen 22204-53-1, Naproxen 22494-42-4, Diflunisal  
 34597-40-5, Fenoprofen calcium 36322-90-4, Piroxicam 38194-50-2,  
 Sulindac 41340-25-4, Etodolac 42924-53-8, Nabumetone  
 52009-14-0, Calcium pyruvate 64425-90-7, Choline magnesium  
 trisalicylate, biological studies 74103-07-4, Kеторолак tromethamine  
 81686-75-1 149732-45-6, Propanoic acid, 2-oxo-, zinc salt  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (dermatol. wound healing compns.)  
 IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate  
 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
 pyruvate 52009-14-0, Calcium pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (dermatol. wound healing compns.)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



## ● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



## ● 1/2 Ca

L102 ANSWER 83 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1996:476855 HCAPLUS  
 DOCUMENT NUMBER: 125:123805  
 TITLE: Sunscreen-wound healing composition  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): Warner-Lambert Company, USA  
 SOURCE: PCT Int. Appl., 137 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28  
 PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE     | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 9617624                                                         | A1   | 19960613 | WO 1995-US12848 | 19951005 |
| W: AU, CA, JP, MX, NZ, SG                                          |      |          |                 |          |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |          |
| US 5674912                                                         | A    | 19971007 | US 1995-446979  | 19950522 |

|                               |    |          |                 |             |
|-------------------------------|----|----------|-----------------|-------------|
| AU 9538596                    | A1 | 19960626 | AU 1995-38596   | 19951005    |
| AU 690366                     | B2 | 19980423 |                 |             |
| EP 796107                     | A1 | 19970924 | EP 1995-936858  | 19951005    |
| EP 796107                     | B1 | 20030108 |                 |             |
| R: BE, DE, FR, GB, IT, LU, NL |    |          |                 |             |
| ZA 9510376                    | A  | 19971006 | ZA 1995-10376   | 19951206    |
| PRIORITY APPLN. INFO.:        |    |          | US 1994-350918  | A 19941207  |
|                               |    |          | US 1995-446979  | A 19950522  |
|                               |    |          | US 1991-663500  | B1 19910301 |
|                               |    |          | US 1993-53922   | B2 19930426 |
|                               |    |          | WO 1995-US12848 | W 19951005  |

**AB** The present invention pertains to therapeutic sunscreen-wound healing compns. useful to minimize and treat sunburn damage. The compns. comprise a therapeutically effective amount of (1) a sunscreen agent; (2) an anti-inflammatory; and, (3) a wound healing composition. In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic sunscreen-wound healing compns. may be utilized in a wide variety of pharmaceutical products. This invention also relates to methods for preparing and using the therapeutic sunscreen-wound healing compns. and the pharmaceutical products in which the therapeutic compns. may be used.

**IC** ICM A61K045-06

**CC** 63-7 (Pharmaceuticals)

Section cross-reference(s): 62

**IT** Antihistaminics

Antioxidants

**Bactericides, Disinfectants, and Antiseptics**

**Fungicides and Fungistats**

Immunostimulants

Inflammation inhibitors

Nutrients

Sunburn and Suntan

Sunscreens

Virucides and Virustats

Wound healing promoters

(sunscreen-wound healing compns. for treatment of sunburn)

**IT** 50-02-2, Dexamethasone 50-21-5, Lactic acid, biological studies  
 50-23-7, Hydrocortisone 50-24-8, Prednisolone 50-78-2, Aspirin  
 50-81-7, Ascorbic acid, biological studies 53-03-2, Prednisone  
 53-06-5, Cortisone 53-86-1, Indomethacin 57-10-3, Hexadecanoic acid,  
 biological studies 57-11-4, Octadecanoic acid, biological studies  
 57-13-6, Urea, biological studies 58-95-7, Vitamin E acetate 59-02-9,  
 $\alpha$ -Tocopherol 60-33-3, 9,12-Octadecadienoic acid (Z,Z)-, biological  
 studies 61-68-7, Mefenamic acid 68-26-8, Retinol 76-25-5,  
 Triamcinolone acetonide 79-80-1, 3,4-Dihydroretinol 89-57-6,  
 Mesalamine 112-80-1, 9-Octadecenoic acid (Z)-, biological studies  
 113-24-6, Sodium pyruvate 118-60-5, 2-Ethylhexyl salicylate  
 119-13-1,  $\delta$ -Tocopherol 124-94-7, Triamcinolone 127-17-3, Pyruvic  
 acid, biological studies 127-17-3D, Pyruvic acid, Manganese complexes  
 131-57-7, Oxybenzone 134-09-8, Menthyl anthranilate 143-07-7,  
 Dodecanoic acid, biological studies 148-03-8,  $\beta$ -Tocopherol  
 328-50-7,  $\alpha$ -Ketoglutaric acid 373-49-9, Palmitoleic acid  
 432-70-2,  $\alpha$ -Carotene 463-40-1, Linolenic acid 472-92-4,  
 $\delta$ -Carotene 472-93-5,  $\gamma$ -Carotene 506-12-7, Margaric acid  
 506-30-9, Arachidic acid 544-63-8, Tetradecanoic acid, biological  
 studies 544-64-9, Myristoleic acid 552-94-3, Salsalate 600-22-6,  
 Methyl pyruvate 1002-84-2, Pentadecanoic acid 1247-42-3, Methyl  
 prednisone 1406-18-4, Vitamin E 1981-50-6, Margaroleic acid  
 2922-61-4, Lithium pyruvate 3385-03-3, Flunisolide  
 4151-33-1, Potassium pyruvate 5466-77-3, Ethylhexyl

p-methoxycinnamate 5534-09-8, Beclomethasone dipropionate 6197-30-4,  
 Octocrylene 6385-02-0, Meclofenamate sodium 6829-55-6, Tocotrienol  
 6969-49-9, Octyl salicylate 7235-40-7,  $\beta$ -Carotene 7439-96-5D,  
 Manganese, pyruvate complexes 7616-22-0,  $\gamma$ -Tocopherol  
 10504-35-5, D-Ascorbic acid 11103-57-4, Vitamin A 13463-67-7, Titania,  
 biological studies 15307-86-5, Diclofenac 15687-27-1, Ibuprofen  
 17407-37-3, Vitamin E succinate 18983-79-4, Magnesium pyruvate  
 21245-02-3, Padimate o 22071-15-4, Ketoprofen 22204-53-1, Naproxen  
 22494-42-4, Diflunisal 29204-02-2, Gadoleic acid 34597-40-5,  
 Fenoprofen calcium 36322-90-4, Piroxicam 38194-50-2, Sulindac  
 41340-25-4, Etodolac 42924-53-8, Nabumetone 52009-14-0,  
 Calcium pyruvate 58817-05-3 64425-90-7, Choline magnesium  
 trisalicylate, biological studies 71276-50-1 74103-07-4, Ketorolac  
 tromethamine 96436-87-2, Octyl p-methoxycinnamate 149732-45-6,  
 Propanoic acid, 2-oxo-, zinc salt

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (sunscreen-wound healing compns. for treatment of sunburn)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate  
 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
 pyruvate 52009-14-0, Calcium pyruvate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (sunscreen-wound healing compns. for treatment of sunburn)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS

CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)

RN 52009-14-0 HCAPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 84 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1996:425310 HCAPLUS

DOCUMENT NUMBER: 125:67854

TITLE: Razor cartridges comprising wound healing compositions

INVENTOR(S): Martin, Alain; Vreeland, William Elbert; Booth, Anthony R.

PATENT ASSIGNEE(S): Warner-Lambert Company, USA

SOURCE: PCT Int. Appl., 117 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

## PATENT INFORMATION:

| PATENT NO.                                                                                              | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------------------------------------------------|------|----------|-----------------|------------|
| WO 9610474                                                                                              | A1   | 19960411 | WO 1995-US8433  | 19950707   |
| W: AU, BR, CA, CN, JP, KR, MX, RU<br>RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |            |
| AU 9529607                                                                                              | A1   | 19960426 | AU 1995-29607   | 19950707   |
| EP 783398                                                                                               | A1   | 19970716 | EP 1995-925499  | 19950707   |
| EP 783398                                                                                               | B1   | 20020109 |                 |            |
| R: DE, FR, GB                                                                                           |      |          |                 |            |
| JP 2002514937                                                                                           | T2   | 20020521 | JP 1996-511718  | 19950707   |
| PRIORITY APPLN. INFO.:                                                                                  |      |          | US 1994-315734  | A 19940930 |
|                                                                                                         |      |          | US 1995-446989  | A 19950522 |
|                                                                                                         |      |          | WO 1995-US8433  | W 19950707 |

AB This invention pertains to therapeutic wound healing compns. useful for preventing and reducing injury to mammalian cells affixed to razor cartridges to form therapeutic razor cartridges with wound healing composition. In one embodiment of this invention the therapeutic wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and

unsatd. fatty acids. This invention also pertains to methods for making and using the razor cartridges comprising therapeutic wound healing compns.

IC ICM B26B021-44  
 ICS A61K031-20  
 CC 63-7 (Pharmaceuticals)  
 Section cross-reference(s) : 62  
 IT Anesthetics  
 Antihistaminics  
 Antioxidants  
     **Bactericides, Disinfectants, and Antiseptics**  
 Encapsulation  
     **Fungicides and Fungistats**  
 Immunostimulants  
 Inflammation inhibitors  
 Nutrients  
 Sunscreens  
 Virucides and Virustats  
 Wound healing promoters  
     (razor cartridges with wound healing compns. containing antioxidant, fatty acids, and pyruvate)

IT 50-21-5, Lactic acid, biological studies 50-81-7, Vitamin C, biological studies 57-10-3, Hexadecanoic acid, biological studies 57-11-4, Octadecanoic acid, biological studies 58-95-7, Vitamin E acetate 59-02-9,  $\alpha$ -Tocopherol 60-33-3, 9,12-Octadecadienoic acid (Z,Z)-, biological studies 68-26-8, Retinol 79-41-4D, esters, copolymers 79-80-1, 3,4-Didehydroretinol 112-80-1, 9-Octadecenoic acid (Z)-, biological studies 113-24-6, Sodium pyruvate 127-17-3, Pyruvic acid, biological studies 127-17-3D, Pyruvic acid, esters and salts 143-07-7, Dodecanoic acid, biological studies 148-03-8,  $\beta$ -Tocopherol 328-50-7,  $\alpha$ -Ketoglutaric acid 373-49-9, Palmitoleic acid 432-70-2,  $\alpha$ -Carotene 463-40-1, Linolenic acid 472-92-4,  $\delta$ -Carotene 472-93-5,  $\gamma$ -Carotene 506-12-7, Margaric acid 506-30-9, Arachidic acid 544-63-8, Tetradecanoic acid, biological studies 544-64-9, Myristoleic acid 600-22-6, Methyl pyruvate 1002-84-2, Pentadecanoic acid 1406-18-4, Vitamin E 1406-18-4D, Vitamin E, esters and salts 1981-50-6, Margaroleic acid 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 6829-55-6, Tocotrienol 7235-40-7,  $\beta$ -Carotene 7559-04-8,  $\alpha$ -Tocoquinone 7616-22-0,  $\gamma$ -Tocopherol 9002-93-1, Triton x-100 9003-53-6, Polystyrene 10504-35-5, D-Ascorbic acid 11103-57-4, Vitamin A 17407-37-3, Vitamin E succinate 18983-79-4, Magnesium pyruvate 29204-02-2, Gadoleic acid 52009-14-0, Calcium pyruvate 61181-29-1 71276-50-1 81686-75-1 149732-45-6, Propanoic acid, 2-oxo-, zinc salt  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (razor cartridges with wound healing compns. containing antioxidant, fatty acids, and pyruvate)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (razor cartridges with wound healing compns. containing antioxidant, fatty acids, and pyruvate)

RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCAPLUS  
 CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCAPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCAPLUS  
 CN Magnesium, bis [2-(oxo- $\kappa$ O)propanoato- $\kappa$ O] -, (T-4) - (9CI) (CA INDEX NAME)



RN 52009-14-0 HCAPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 85 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1996:396938 HCPLUS  
 DOCUMENT NUMBER: 125:158927  
 TITLE: Effects of varying doses of hydrocortisone on the energy metabolism in rat thymocytes  
 AUTHOR(S): Gizatullina, Z. Z.; Sukacheva, O. A.; Gagel'gans, A. I.  
 CORPORATE SOURCE: Faculty Soil Biology, State Univ. Tashkent, Tashkent, 700095, Uzbekistan  
 SOURCE: Biokhimiya (Moscow) (1996), 61(3), 445-450  
 CODEN: BIOHAO; ISSN: 0320-9725  
 PUBLISHER: Nauka  
 DOCUMENT TYPE: Journal  
 LANGUAGE: Russian  
 AB The dose-dependent effect of both the prolonged action of hydrocortisone (HC) in vivo (20 µg/kg of mass during 6 days daily) and the preincubation of thymocytes with 10 µM HC in vitro were cytotoxic and led to the complete uncoupling of the oxidative phosphorylation and decreased the rate of dinitrophenol-stimulated respiration. When glucose was used as the oxidative substrate, a short-time action of HC in vivo caused the inhibition of the respiration, while in the presence of Na pyruvate in the incubation media it stimulated the respiration.  
 CC 2-4 (Mammalian Hormones)  
 Section cross-reference(s): 13  
 IT Phosphorylation, biological  
 (oxidative, dose-dependent effect of hydrocortisone on energy metabolism in rat thymocytes)  
 IT 50-99-7, Glucose, biological studies 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (dose-dependent effect of hydrocortisone on energy metabolism in rat thymocytes)  
 IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (dose-dependent effect of hydrocortisone on energy metabolism in rat thymocytes)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

L102 ANSWER 86 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1996:367739 HCAPLUS  
 DOCUMENT NUMBER: 125:19043  
 TITLE: Bioadhesive-wound healing composition  
 INVENTOR(S): Leung, Sau-Hung S.; Martin, Alain  
 PATENT ASSIGNEE(S): Warner-Lambert Company, USA  
 SOURCE: PCT Int. Appl., 159 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28  
 PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE     | APPLICATION NO. | DATE        |
|--------------------------------------------------------------------|------|----------|-----------------|-------------|
| WO 9606640                                                         | A1   | 19960307 | WO 1995-US8568  | 19950707    |
| W: AU, CA, JP, MX, NZ, SG                                          |      |          |                 |             |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |             |
| US 5658956                                                         | A    | 19970819 | US 1995-445824  | 19950522    |
| AU 9530045                                                         | A1   | 19960322 | AU 1995-30045   | 19950707    |
| AU 707353                                                          | B2   | 19990708 |                 |             |
| EP 779820                                                          | A1   | 19970625 | EP 1995-926209  | 19950707    |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI                          |      |          |                 |             |
| JP 10505057                                                        | T2   | 19980519 | JP 1996-508729  | 19950707    |
| ZA 9507245                                                         | A    | 19970630 | ZA 1995-7245    | 19950829    |
| PRIORITY APPLN. INFO.:                                             |      |          |                 |             |
|                                                                    |      |          | US 1994-298521  | A 19940830  |
|                                                                    |      |          | US 1995-445824  | A 19950522  |
|                                                                    |      |          | US 1991-663500  | B1 19910301 |
|                                                                    |      |          | US 1993-53922   | B2 19930426 |
|                                                                    |      |          | WO 1995-US8568  | W 19950707  |

AB The present invention pertains to therapeutic bioadhesive-wound healing compns. useful for treating wounds and increasing the proliferation and resuscitation rate of mammalian cells. The compns. comprise a bioadhesive agent and a therapeutically effective amount of a wound healing composition In one embodiment the wound healing composition comprises (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic bioadhesive-wound healing compns. may further comprise medicaments such as antiviral agents, antikeratolytic agents, anti-inflammatory agents, antifungal agents, antibacterial agents, immunostimulating agents, and the like. The bioadhesive-wound healing compns. may be utilized in a wide variety of pharmaceutical products. This invention also relates to methods for preparing and using the bioadhesive-wound healing compns. and the pharmaceutical products in which the compns. may be used.

IC ICM A61K045-06  
 ICS A61K031-355  
 ICI A61K031-355, A61K031-20, A61K031-19  
 CC 63-6 (Pharmaceuticals)  
 IT Anesthetics

Antibiotics  
 Antihistaminics  
 Antioxidants  
**Bactericides, Disinfectants, and Antiseptics**  
 Cell proliferation  
 Cytotoxic agents  
**Fungicides and Fungistats**  
 Immunostimulants  
 Inflammation inhibitors  
 Nutrients  
 Sunscreens  
 Virucides and Virustats  
 Wound healing  
 Wound healing promoters  
     (bioadhesive, topical wound healing compns. containing pyruvates,  
     antioxidants, and fatty acids)

IT 50-02-2, Dexamethasone 50-21-5, Lactic acid, biological studies  
 50-23-7, Hydrocortisone 50-24-8, Prednisolone 50-78-2, Aspirin  
 50-81-7, Vitamin C, biological studies 53-03-2, Prednisone 53-06-5,  
 Cortisone 53-86-1, Indomethacin 56-75-7, Chloramphenicol 57-10-3,  
 Hexadecanoic acid, biological studies 57-11-4, Octadecanoic acid,  
 biological studies 57-13-6, Urea, biological studies 57-62-5,  
 Chlortetracycline 57-92-1, Streptomycin, biological studies 58-95-7,  
 Vitamin E acetate 59-01-8, Kanamycin 59-02-9,  $\alpha$ -Tocopherol  
 59-87-0, Nitrofurazone 60-33-3, 9,12-Octadecadienoic acid (Z,Z)-,  
 biological studies 60-54-8, Tetracycline 61-33-6, Penicillin G,  
 biological studies 61-68-7, Mefenamic acid 65-85-0, Benzoic acid,  
 biological studies 67-20-9, Nitrofurantoin 67-45-8, Furazolidone  
 68-26-8, Retinol 69-53-4, Ampicillin 69-72-7, biological studies  
 76-25-5, Triamcinolone acetonide 79-57-2, Oxytetracycline 79-80-1,  
 3,4-Didehydroretinol 83-43-2, Methyl prednisolone 87-08-1, Penicillin  
 V 89-57-6, Mesalamine 99-26-3, Bismuth subgallate 108-95-2, Phenol,  
 biological studies 110-44-1, Sorbic acid 112-80-1, 9-Octadecenoic acid  
 (Z)-, biological studies 113-24-6, Sodium pyruvate 114-07-8,  
 Erythromycin 118-60-5, 2-Ethylhexyl salicylate 119-13-1,  
 $\delta$ -Tocopherol 124-94-7, Triamcinolone 127-17-3, Pyruvic acid,  
 biological studies 131-57-7, Oxybenzone 134-09-8, Menthyl anthranilate  
 143-07-7, Dodecanoic acid, biological studies 147-24-0, Diphenhydramine  
 hydrochloride 148-03-8,  $\beta$ -Tocopherol 153-61-7, Cephalothin  
 302-79-4, Tretinoin 328-50-7,  $\alpha$ -Ketoglutaric acid 373-49-9,  
 Palmitoleic acid 432-70-2,  $\alpha$ -Carotene 443-48-1, Metronidazole  
 463-40-1, Linolenic acid 472-92-4,  $\delta$ -Carotene 472-93-5,  
 $\gamma$ -Carotene 506-12-7, Margaric acid 506-30-9, Arachidic acid  
 544-63-8, Tetradecanoic acid, biological studies 544-64-9, Myristoleic  
 acid 552-94-3, Salsalate 564-25-0, Doxycycline 600-22-6, Methyl  
 pyruvate 637-58-1, Pramoxine hydrochloride 665-66-7, Amantadine  
 hydrochloride 1002-84-2, Pentadecanoic acid 1344-85-0, Bismuth  
 aluminate 1403-66-3, Gentamycin 1404-04-2, Neomycin 1405-87-4,  
 Bacitracin 1406-05-9, Penicillin 1406-11-7, Polymyxin 1406-18-4,  
 Vitamin E 1406-18-4D, Vitamin E, esters and salts 1981-50-6,  
 Margaroleic acid 2134-78-3 2922-61-4, Lithium pyruvate  
 3385-03-3, Flunisolide 4151-33-1, Potassium pyruvate  
 5466-77-3, Ethylhexyl p-methoxycinnamate 5534-09-8, Beclomethasone  
 dipropionate 5536-17-4, Vidarabine 5593-20-4, Betamethasone  
 dipropionate 6197-30-4, Octocrylene 6385-02-0, Meclofenamate sodium  
 6506-37-2, Nimorazole 6829-55-6, Tocotrienol 6969-49-9, Octyl  
 salicylate 6998-60-3, Rifamycin 7235-40-7,  $\beta$ -Carotene  
 7616-22-0,  $\gamma$ -Tocopherol 9000-30-0, Guar gum 9003-01-4,  
 Polyacrylic acid 9003-97-8, Polycarbophil 9004-32-4, Sodium  
 CM-cellulose 9004-67-5, Methyl cellulose 10504-35-5, D-Ascorbic acid

11103-57-4, Vitamin A 11111-12-9D, Cephalosporin, derivs. 13463-67-7,  
 Titania, biological studies 14882-18-9, Bismuth subsalicylate  
 15307-86-5, Diclofenac 15686-71-2, Cephalexin 15687-27-1, Ibuprofen  
 17407-37-3, Vitamin E succinate 18323-44-9, Clindamycin  
 18983-79-4, Magnesium pyruvate 19387-91-8, Tinidazole  
 21245-02-3, Padimate o 22071-15-4, Ketoprofen 22204-53-1, Naproxen  
 22494-42-4, Diflunisal 22916-47-8, Miconazole 23593-75-1, Clotrimazole  
 25655-41-8, Povidone iodine 26787-78-0, Amoxicillin 29204-02-2,  
 Gadoleic acid 30516-87-1, Zidovudine 34597-40-5, Fenoprofen calcium  
 36322-90-4, Piroxicam 36791-04-5, Ribavirin 38194-50-2, Sulindac  
 41340-25-4, Etodolac 42924-53-8, Nabumetone 52009-14-0,  
 Calcium pyruvate 57644-54-9, Bismuth subcitrate 58817-05-3  
 59277-89-3, Acyclovir 63585-09-1, Foscarnet sodium 64425-90-7, Choline  
 magnesium trisalicylate, biological studies 64872-76-0, Butoconazole  
 65899-73-2, Tioconazole 71276-50-1 74103-07-4, Ketonolac tromethamine  
 81686-75-1 96436-87-2, Octyl p-methoxycinnamate 107910-75-8,  
 Ganciclovir sodium 149732-45-6, Propanoic acid, 2-oxo-, zinc salt  
 152521-52-3, Betafectin

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (bioadhesive, topical wound healing compns. containing pyruvates,  
 antioxidants, and fatty acids)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate

4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
 pyruvate 52009-14-0, Calcium pyruvate

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (bioadhesive, topical wound healing compns. containing pyruvates,  
 antioxidants, and fatty acids)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo-κO)propanoato-κO]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 87 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1996:318495 HCPLUS  
 DOCUMENT NUMBER: 124:352761  
 TITLE: Antifungal-wound healing compositions containing pyruvates and antioxidants and fatty acids  
 INVENTOR(S): Martin, Alain  
 PATENT ASSIGNEE(S): Warner-Lambert Company, USA  
 SOURCE: PCT Int. Appl., 114 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 28  
 PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE     | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 9603149                                                         | A1   | 19960208 | WO 1995-US8551  | 19950707 |
| W: AU, CA, JP, MX, NZ, SG                                          |      |          |                 |          |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |          |                 |          |
| US 5663208                                                         | A    | 19970902 | US 1995-445831  | 19950522 |
| AU 9530042                                                         | A1   | 19960222 | AU 1995-30042   | 19950707 |
| AU 701179                                                          | B2   | 19990121 |                 |          |
| EP 773795                                                          | A1   | 19970521 | EP 1995-926203  | 19950707 |

|                                           |             |                |             |
|-------------------------------------------|-------------|----------------|-------------|
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI |             |                |             |
| JP 10503200                               | T2 19980324 | JP 1995-505755 | 19950707    |
| ZA 9506117                                | A 19970421  | ZA 1995-6117   | 19950721    |
| PRIORITY APPLN. INFO.:                    |             | US 1994-279462 | A 19940722  |
|                                           |             | US 1995-445831 | A 19950522  |
|                                           |             | US 1991-663500 | B1 19910301 |
|                                           |             | US 1993-53922  | B2 19930426 |
|                                           |             | WO 1995-US8551 | W 19950707  |

AB Therapeutic antifungal-wound healing compns. comprise (a) pyruvate; (b) an antioxidant; and (c) a mixture of saturated and unsatd. fatty acids. The therapeutic antifungal-wound healing compns. may be utilized in a wide variety of topical and oral pharmaceutical products. A wound healing composition contained sodium pyruvate 2, vitamin E 1, chicken fat 2, LYCD 2400U, shark liver oil 3, petrolatum 64, mineral oil 22.53, paraffin 5, and emulsifier 0.2%. The above composition was applied on a 3 cm full thickness longitudinal incision on the back of hairless mice once/day for 7 days. The composition was significantly better than preparation H and there

was less scar tissue present at day 7 on the skin.

IC ICM A61K045-06

ICS A61K031-355

ICI A61K031-355, A61K031-20, A61K031-19

CC 63-6 (Pharmaceuticals)

IT Anesthetics

Antihistaminics

Antioxidants

**Bactericides, Disinfectants, and Antiseptics**

Culture media

**Fungicides and Fungistats**

Immunostimulants

Inflammation inhibitors

Sunscreens

Virucides and Virustats

Wound healing

(antifungal-wound healing compns. containing pyruvates and antioxidants and fatty acids)

IT 50-02-2, Dexamethasone 50-21-5, Lactic acid, biological studies  
 50-23-7, Hydrocortisone 50-24-8, Prednisolone 50-78-2, Acetylsalicylic acid 50-81-7, Vitamin c, biological studies 53-03-2, Prednisone 53-06-5, Cortisone 53-86-1, Indomethacin 58-95-7, Vitamin e acetate 59-02-9,  $\alpha$ -Tocopherol 61-68-7, Mefenamic acid 76-25-5, Triamcinolone acetonide 79-80-1, 3,4-Didehydroretinol 83-43-2, Methyl prednisolone 89-57-6, Mesalamine 110-44-1, Sorbic acid 113-24-6, Sodium pyruvate 119-13-1,  $\delta$ -Tocopherol 124-94-7, Triamcinolone 127-17-3, Pyruvic acid, biological studies 148-03-8,  $\beta$ -Tocopherol 328-50-7,  $\alpha$ -Ketoglutaric acid 472-92-4,  $\delta$ -Carotene 472-93-5,  $\gamma$ -Carotene 552-94-3, Salsalate 600-22-6, Methyl pyruvate 1406-18-4, Vitamin e 2922-61-4, Lithium pyruvate 3385-03-3, Flunisolide 4151-33-1, Potassium pyruvate 5534-09-8, Beclomethasone dipropionate 5593-20-4, Betamethasone dipropionate 6385-02-0, Meclofenamate sodium 6829-55-6, Tocotrienol 7235-40-7,  $\beta$ -Carotene 7488-99-5,  $\alpha$ -Carotene 7559-04-8 7616-22-0,  $\gamma$ -Tocopherol 11103-57-4, Vitamin a 15307-86-5, Diclofenac 15687-27-1, Ibuprofen 18983-79-4, Magnesium pyruvate 22071-15-4, Ketoprofen 22204-53-1, Naproxen 22494-42-4, Diflunisal 34597-40-5, Fenoprofen calcium 36322-90-4, Piroxicam 37311-39-0, Vitamin e succinate 38194-50-2, Sulindac 41340-25-4, Etodolac 42924-53-8, Nabumetone 52009-14-0, Calcium pyruvate 64425-90-7, Choline magnesium trisalicylate, biological studies 71276-50-1 74103-07-4, Ketorolac

tromethamine 81686-75-1 149732-45-6

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(antifungal-wound healing compns. containing pyruvates and antioxidants and fatty acids)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate

4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(antifungal-wound healing compns. containing pyruvates and antioxidants and fatty acids)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS

CN Magnesium, bis[2-(oxo-κO)propanoato-κO]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 88 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1996:171907 HCPLUS

DOCUMENT NUMBER: 124:212140

TITLE: Anti-inflammatory wound healing compositions containing pyruvates and antioxidants and fatty acids

INVENTOR(S): Martin, Alain

PATENT ASSIGNEE(S): Warner-Lambert Co., USA

SOURCE: PCT Int. Appl., 113 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 28

PATENT INFORMATION:

| PATENT NO.                                                         | KIND | DATE           | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------|------|----------------|-----------------|----------|
| WO 9600584                                                         | A1   | 19960111       | WO 1995-US7942  | 19950622 |
| W: AU, CA, JP, MX, NZ, SG                                          |      |                |                 |          |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |                |                 |          |
| US 5648380                                                         | A    | 19970715       | US 1995-445845  | 19950522 |
| AU 9529080                                                         | A1   | 19960125       | AU 1995-29080   | 19950622 |
| AU 701454                                                          | B2   | 19990128       |                 |          |
| EP 759783                                                          | A1   | 19970305       | EP 1995-924660  | 19950622 |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT, LI                          |      |                |                 |          |
| JP 10502345                                                        | T2   | 19980303       | JP 1995-503323  | 19950622 |
| NZ 289287                                                          | A    | 20010223       | NZ 1995-289287  | 19950622 |
| ZA 9505408                                                         | A    | 19970401       | ZA 1995-5408    | 19950629 |
| PRIORITY APPLN. INFO.:                                             |      |                |                 |          |
|                                                                    |      | US 1994-268429 | A 19940630      |          |
|                                                                    |      | US 1995-445845 | A 19950522      |          |
|                                                                    |      | US 1991-663500 | B1 19910301     |          |
|                                                                    |      | US 1993-53922  | B2 19930426     |          |
|                                                                    |      | WO 1995-US7942 | W 19950622      |          |

AB Therapeutic anti-inflammatory wound healing compns. comprise a therapeutically effective amount of one or more anti-inflammatory agents and a wound healing composition. A wound healing composition contained sodium pyruvate 2 (I), vitamin E (II) 1, chicken fat 2 (III), shark liver oil 3, petrolatum

64, mineral oil 22.53, paraffin 5, emulsifier 0.2% and live yeast cell derivative 2400 U. The composition was significantly better wound healing composition

than controls with no I, II, and III in healing incision wound in mice skin.

IC ICM A61K045-06

CC 63-7 (Pharmaceuticals)

Section cross-reference(s): 1

IT Acne

Anesthetics

Antihistaminics

Antioxidants

**Bactericides, Disinfectants, and Antiseptics**

Burn

**Fungicides and Fungistats**

Immunostimulants

Inflammation inhibitors

Nutrients

Sunburn and Suntan

Sunscreens

Virucides and Virustats

Wound healing

(anti-inflammatory wound healing compns. containing pyruvates and antioxidants and fatty acids)

IT 50-02-2, Dexamethasone 50-23-7, Hydrocortisone 50-24-8, Prednisolone 50-78-2, Acetylsalicylic acid 50-81-7, Vitamin c, biological studies 53-03-2, Prednisone 53-06-5, Cortisone 53-86-1, Indomethacin 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid, biological studies 58-95-7, Vitamin e acetate 59-02-9,  $\alpha$ -Tocopherol 60-33-3, Linoleic acid, biological studies 61-68-7, Mefenamic acid 68-26-8, Vitamin a 76-25-5, Triamcinolone acetonide 79-80-1, 3,4-Didehydroretinol 83-43-2, Methyl prednisolone 89-57-6, Mesalamine 112-80-1, Oleic acid, biological studies 113-24-6, Sodium pyruvate 119-13-1,  $\delta$ -Tocopherol 124-94-7, Triamcinolone 127-17-3, Pyruvic acid, biological studies 143-07-7, Lauric acid, biological studies 148-03-8,  $\beta$ -Tocopherol 328-50-7,  $\alpha$ -Ketoglutaric acid 373-49-9, Palmitoleic acid 432-70-2,  $\alpha$ -Carotene 472-92-4,  $\delta$ -Carotene 472-93-5,  $\gamma$ -Carotene 506-12-7, Margaric acid 506-30-9, Arachidic acid 544-63-8, Myristic acid, biological studies 544-64-9, Myristoleic acid 552-94-3, Salicylsalicylic acid 600-22-6, Methyl pyruvate 1002-84-2, Pentadecanoic acid 1406-18-4, Vitamin e 1981-50-6, Margaroleic acid 2922-61-4, Lithium pyruvate 3385-03-3, Flunisolide 4151-33-1, Potassium pyruvate 5534-09-8, Beclomethasone dipropionate 5593-20-4, Betamethasone dipropionate 6385-02-0, Meclofenamate sodium 6829-55-6, Tocotrienol 7235-40-7,  $\beta$ -Carotene 7616-22-0,  $\gamma$ -Tocopherol 10504-35-5, D-Ascorbic acid 15307-86-5, Diclofenac 15687-27-1, Ibuprofen 18983-79-4, Magnesium pyruvate 22071-15-4, Ketoprofen 22204-53-1, Naproxen 22494-42-4, Diflunisal 24887-16-9, Zinc, bis(2-oxopropanoato-O1,O2)-, (T-4)- 29204-02-2, Gadoleic acid 34597-40-5 36322-90-4, Piroxicam 37311-39-0, Vitamin e succinate 38194-50-2, Sulindac 41340-25-4, Etodolac 42924-53-8, Nabumetone 52009-14-0, Calcium pyruvate 64425-90-7, Choline magnesium trisalicylate, biological studies 71276-50-1, 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, dihydrogenphosphate, [2R-[2R\*(4R\*,8R\*)]]- 74103-07-4, Ketonolac tromethamine 145482-34-4, Manganese, bis(2-oxopropanoato-O1,O2)-

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL

(Biological study); USES (Uses)

(anti-inflammatory wound healing compns. containing pyruvates and  
antioxidants and fatty acids)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate

4151-33-1, Potassium pyruvate 18983-79-4, Magnesium  
pyruvate 52009-14-0, Calcium pyruvateRL: BAC (Biological activity or effector, except adverse); BSU  
(Biological study, unclassified); THU (Therapeutic use); BIOL  
(Biological study); USES (Uses)(anti-inflammatory wound healing compns. containing pyruvates and  
antioxidants and fatty acids)

RN 113-24-6 HCAPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

RN 2922-61-4 HCAPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



## ● Li

RN 4151-33-1 HCAPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



## ● K

RN 18983-79-4 HCAPLUS

CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA  
INDEX NAME)



RN 52009-14-0 HCAPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 89 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1996:171900 HCAPLUS

DOCUMENT NUMBER: 124:212068

TITLE: Antikeratolytic wound healing compositions containing pyruvates and antioxidants and fatty acids

INVENTOR(S): Martin, Alain

PATENT ASSIGNEE(S): Warner-Lambert Co., USA

SOURCE: PCT Int. Appl., 107 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 28

PATENT INFORMATION:

| PATENT NO.                                                                                      | KIND | DATE           | APPLICATION NO. | DATE     |
|-------------------------------------------------------------------------------------------------|------|----------------|-----------------|----------|
| WO 9600572                                                                                      | A1   | 19960111       | WO 1995-US7941  | 19950622 |
| W: AU, CA, JP, MX, NZ, SG<br>RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |      |                |                 |          |
| US 5641814                                                                                      | A    | 19970624       | US 1995-445808  | 19950522 |
| AU 9528707                                                                                      | A1   | 19960125       | AU 1995-28707   | 19950622 |
| AU 701301                                                                                       | B2   | 19990121       |                 |          |
| EP 768877                                                                                       | A1   | 19970423       | EP 1995-924046  | 19950622 |
| R: BE, CH, DE, DK, ES, FR, GB, GR, IT                                                           |      |                |                 |          |
| JP 10502344                                                                                     | T2   | 19980303       | JP 1995-503322  | 19950622 |
| NZ 288995                                                                                       | A    | 20010223       | NZ 1995-288995  | 19950622 |
| ZA 9505409                                                                                      | A    | 19970401       | ZA 1995-5409    | 19950629 |
| PRIORITY APPLN. INFO.:                                                                          |      |                |                 |          |
|                                                                                                 |      | US 1994-268772 | A 19940630      |          |
|                                                                                                 |      | US 1995-445808 | A 19950522      |          |
|                                                                                                 |      | US 1991-663500 | B2 19910301     |          |
|                                                                                                 |      | US 1993-53922  | B1 19930426     |          |
|                                                                                                 |      | WO 1995-US7941 | W 19950622      |          |

AB Therapeutic antikeratolytic wound healing compns. comprise a therapeutically effective amount of one or more antikeratolytic agents and a wound healing composition. A wound healing composition contained sodium pyruvate 2 (I), vitamin E (II) 1, chicken fat 2 (III), shark liver oil 3, petrolatum

64, mineral oil 22.53, paraffin 5, emulsifier 0.2% and live yeast cell derivative 2400 U. The composition was significantly better wound healing composition

than controls with no I, II, and III in healing incision wound in mice skin.

IC ICM A61K031-355

ICS A61K031-60

ICI A61K031-60, A61K031-355, A61K031-20, A61K031-19, A61K031-17

CC 63-6 (Pharmaceuticals)

Section cross-reference(s) : 1

IT Acne

Anesthetics

Antihistaminics

Antioxidants

Bactericides, Disinfectants, and Antiseptics

Burn

Fungicides and Fungistats

Immunostimulants

Inflammation inhibitors

Nutrients

Reducing agents

Sunburn and Suntan

Sunscreens

Virucides and Virustats

Wound healing

(antikeratolytic wound healing compns. containing pyruvates and antioxidants and fatty acids)

IT 50-21-5, Lactic acid, biological studies 50-81-7, Vitamin c, biological studies 57-10-3, Palmitic acid, biological studies 57-11-4, Stearic acid, biological studies 57-13-6, Urea, biological studies 58-95-7, Vitamin e acetate 59-02-9,  $\alpha$ -Tocopherol 60-33-3, Linoleic acid, biological studies 69-72-7, Salicylic acid, biological studies 79-80-1, 3,4-Didehydroretinol 112-80-1, Oleic acid, biological studies 113-24-6, Sodium pyruvate 119-13-1,  $\delta$ -Tocopherol 127-17-3, Pyruvic acid, biological studies 143-07-7, Lauric acid, biological studies 148-03-8,  $\beta$ -Tocopherol 328-50-7,  $\alpha$ -Ketoglutaric acid 373-49-9, Palmitoleic acid 432-70-2,  $\alpha$ -Carotene 472-92-4,  $\delta$ -Carotene 472-93-5,  $\gamma$ -Carotene 506-12-7, Margaric acid 506-30-9, Arachidic acid 544-63-8, Myristic acid, biological studies 544-64-9, Myristoleic acid 552-94-3, Salicylsalicylic acid 600-22-6, Methyl pyruvate 1002-84-2, Pentadecanoic acid 1406-18-4, Vitamin e 1981-50-6, Margaroleic acid 2922-61-4, Lithium pyruvate 4151-33-1, Potassium pyruvate 6829-55-6, Tocotrienol 7235-40-7,  $\beta$ -Carotene 7616-22-0,  $\gamma$ -Tocopherol 10504-35-5, D-Ascorbic acid 11103-57-4, Vitamin a 18983-79-4, Magnesium pyruvate 24887-16-9, Zinc, bis(2-oxopropanoato-01,02)-, (T-4)- 29204-02-2, Gadoleic acid 37311-39-0, Vitamin e succinate 52009-14-0, Calcium pyruvate 71276-50-1, 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, dihydrogenphosphate, [2R-[2R\*(4R\*,8R\*)]]- 145482-34-4, Manganese, bis(2-oxopropanoato-01,02)-  
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(antikeratolytic wound healing compns. containing pyruvates and antioxidants and fatty acids)

IT 113-24-6, Sodium pyruvate 2922-61-4, Lithium pyruvate

4151-33-1, Potassium pyruvate 18983-79-4, Magnesium

pyruvate 52009-14-0, Calcium pyruvate

RL: BAC (Biological activity or effector, except adverse); BSU

(Biological study, unclassified); THU (Therapeutic use); BIOL  
 (Biological study); USES (Uses)  
 (antikeratolytic wound healing compns. containing pyruvates and  
 antioxidants and fatty acids)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 2922-61-4 HCPLUS

CN Propanoic acid, 2-oxo-, lithium salt (9CI) (CA INDEX NAME)



● Li

RN 4151-33-1 HCPLUS

CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS

CN Magnesium, bis [2-(oxo-κO)propanoato-κO] -, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS

CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 90 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1995:982407 HCAPLUS  
 DOCUMENT NUMBER: 124:15482  
 TITLE: Bioactive and/or targeted dendrimer conjugates  
 INVENTOR(S): Tomalia, Donald A.; Baker, James R.; Bielinska, Anna U.; Brothers, Herbert M., II; Cheng, Roberta C.; Fazio, Michael J.; Hedstrand, David M.; Johnson, Jennifer A.; Kaplan, Donald A.; et al.  
 PATENT ASSIGNEE(S): Dow Chemical Co., USA; Dendritech Inc.; Regents of the University of Michigan  
 SOURCE: PCT Int. Appl., 252 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 9  
 PATENT INFORMATION:

| PATENT NO.                                                                                       | KIND | DATE     | APPLICATION NO. | DATE     |
|--------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| WO 9524221                                                                                       | A1   | 19950914 | WO 1995-US3045  | 19950307 |
| W: AU, BR, CA, CN, CZ, EE, FI, GE, HU, JP, KR, LT, LV, MX, NO, NZ,<br>PL, PT, RU, SI, SK, UA, US |      |          |                 |          |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE                               |      |          |                 |          |
| BR 8707431                                                                                       | A    | 19881101 | BR 1987-7431    | 19870419 |
| AT 89743                                                                                         | E    | 19930615 | AT 1987-307266  | 19870817 |
| JP 63501878                                                                                      | T2   | 19880728 | JP 1987-505282  | 19870818 |
| JP 07002840                                                                                      | B4   | 19950118 |                 |          |
| JP 63502350                                                                                      | T2   | 19880908 | JP 1987-505084  | 19870818 |
| JP 07057735                                                                                      | B4   | 19950621 |                 |          |
| BR 8707433                                                                                       | A    | 19881101 | BR 1987-7433    | 19870818 |
| FI 8801768                                                                                       | A    | 19880415 | FI 1988-1768    | 19880415 |
| FI 103410                                                                                        | B1   | 19990630 |                 |          |
| US 5338532                                                                                       | A    | 19940816 | US 1991-654851  | 19910213 |
| US 5527524                                                                                       | A    | 19960618 | US 1993-43198   | 19930405 |
| CA 2161684                                                                                       | AA   | 19950914 | CA 1995-2161684 | 19950307 |
| AU 9521181                                                                                       | A1   | 19950925 | AU 1995-21181   | 19950307 |
| EP 699079                                                                                        | A1   | 19960306 | EP 1995-914006  | 19950307 |
| EP 699079                                                                                        | B1   | 20040929 |                 |          |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE                            |      |          |                 |          |
| ZA 9501877                                                                                       | A    | 19960909 | ZA 1995-1877    | 19950307 |
| JP 08510761                                                                                      | T2   | 19961112 | JP 1995-523673  | 19950307 |
| RU 2127125                                                                                       | C1   | 19990310 | RU 1995-122714  | 19950307 |
| IL 128773                                                                                        | A1   | 20010520 | IL 1995-128773  | 19950307 |
| IL 128774                                                                                        | A1   | 20010520 | IL 1995-128774  | 19950307 |
| IL 128775                                                                                        | A1   | 20010520 | IL 1995-128775  | 19950307 |
| PL 181064                                                                                        | B1   | 20010531 | PL 1995-311633  | 19950307 |
| PL 182237                                                                                        | B1   | 20011130 | PL 1995-335982  | 19950307 |
| IL 112920                                                                                        | A1   | 20030410 | IL 1995-112920  | 19950307 |
| AT 277640                                                                                        | E    | 20041015 | AT 1995-914006  | 19950307 |
| FI 9505320                                                                                       | A    | 19951124 | FI 1995-5320    | 19951106 |

|               |    |          |               |          |
|---------------|----|----------|---------------|----------|
| NO 9504434    | A  | 19960105 | NO 1995-4434  | 19951106 |
| NO 317691     | B1 | 20041206 |               |          |
| FI 9801807    | A  | 19980824 | FI 1998-1807  | 19980824 |
| FI 105693     | B1 | 20000929 |               |          |
| AU 2002029312 | A5 | 20020523 | AU 2002-29312 | 20020328 |
| AU 768662     | B2 | 20031218 |               |          |

PRIORITY APPLN. INFO.: US 1986-897455 A2 19860818  
US 1987-87266 A2 19870818  
US 1989-386049 A2 19890726  
US 1991-654851 A2 19910213  
US 1993-43198 A2 19930405  
US 1994-207494 A2 19940307  
US 1994-316536 A2 19940930  
EP 1987-307266 A 19870817  
WO 1987-US2075 W 19870818  
WO 1987-US2076 A 19870818  
IL 1995-112920 A3 19950307  
WO 1995-US3045 W 19950307  
AU 1999-64440 A3 19991210

AB Dendritic polymer conjugates which are composed of at least one dendrimer in association with at least one unit of a carried material, where the carrier material can be a biol. response modifier, have been prepared. The conjugate can also have a target director present, and when it is present, then the carried material may be a bioactive agent. Preferred dendritic polymers are dense star polymers, which have been complexed with biol. response modifiers. These conjugates and complexes have particularly advantageous properties due to their unique characteristics.

IC ICM A61K047-48  
ICS C12N015-87

CC 63-6 (Pharmaceuticals)

Section cross-reference(s): 5, 35

IT Lymphokines and Cytokines

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(tumor necrosis factor, bioactive and/or targeted dendrimer conjugates)

IT 50-78-2DP, Aspirin, reaction products with Starburst polyamidoamine  
58-85-5DP, Biotin, reaction products with Starburst polyamidoamine  
67-43-6DP, Dtpa, reaction products with Starburst polyamidoamine  
69-72-7DP, reaction products with Starburst polyamidoamine 79-10-7DP,  
2-Propenoic acid, reaction products with Starburst polyamidoamine  
90-82-4DP, Pseudoephedrine, reaction products with Starburst  
polyamidoamine 94-75-7DP, 2,4-D, reaction products with Starburst  
polyamidoamine 107-15-3DP, 1,2-Ethanediamine, reaction products with  
Starburst polyamidoamine 113-24-6DP, Sodium pyruvate, reaction  
products with Starburst polyamidoamine 118-48-9DP, Isatoic anhydride,  
reaction products with Starburst polyamidoamine 137-40-6DP, Sodium  
propionate, reaction products with Starburst polyamidoamine 301-04-2DP,  
Lead acetate, complexes with Starburst polyamidoamine 350-46-9DP,  
4-Fluoronitrobenzene, reaction products with Starburst polyethylenimine  
463-71-8DP, Carbonothioic dichloride, reaction products starburst  
dendrimers 605-65-2DP, Dansyl chloride, reaction products with Starburst  
polyamidoamine 2321-07-5DP, reaction products with Starburst  
polyamidoamine 2984-50-1DP, 1,2-Epoxyoctane, reaction products with  
Starburst polyamidoamine 7390-81-0DP, reaction products with Starburst  
polyamidoamine 7439-89-6DP, Iron, complexes with Starburst  
polyamidoamine 7439-96-5DP, Manganese, complexes with Starburst  
polyamidoamine 7440-02-0DP, Nickel, complexes with Starburst  
polyamidoamine 7440-05-3DP, Palladium, complexes with Starburst  
polyamidoamine 7440-16-6DP, Rhodium, complexes with Starburst  
polyamidoamine 7440-54-2DP, Gadolinium, complexes with Starburst

polyamidoamine 7440-65-5DP, Yttrium, complexes with Starburst  
 polyamidoamine 7665-72-7DP, tert-Butyl glycidyl ether, reaction products  
 with Starburst polyamidoamine 7705-08-0DP, Ferric chloride, complexes  
 with Starburst polyamidoamine 7773-01-5DP, Manganese chloride, complexes  
 with Starburst polyamidoamine 9003-99-0DP, Peroxidase, reaction products  
 with Starburst polyamidoamine 9004-10-8DP, Insulin, reaction products  
 with Starburst polyamidoamine 10098-91-6DP, Yttrium 90, complexes with  
 Starburst polyamidoamine, biological studies 21293-29-8DP, Abscisic  
 acid, reaction products with Starburst polyamidoamine 22663-09-8DP,  
 Methyl 10,11-epoxyundecanoate, reaction products with Starburst  
 polyamidoamine 23911-26-4DP, DTPA anhydride, reaction products with  
 Starburst polyamidoamine 30953-20-9DP, Bradykinin potentiator C,  
 reaction products with Starburst polyamidoamine 51306-35-5DP, reaction  
 products with Starburst polyamidoamine 51908-46-4DP, N-Dansylaziridine,  
 reaction products with Starburst polyamidoamine 66556-73-8DP, reaction  
 products with Starburst polyamidoamine 76823-03-5DP,  
 5-Carboxyfluorescein, reaction products with Starburst polyamidoamine  
 106754-95-4DP, 4'-Aminomethylfluorescein, reaction products with Starburst  
 polyamidoamine 115234-09-8DP, reaction products with Starburst  
 polyamidoamine 119822-32-1P 130707-76-5DP, reaction products with  
 Starburst polyamidoamine 171409-40-8DP, reaction products with  
 ethylenediamine and Me acrylate 171409-40-8P 171409-41-9P  
 RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL  
 (Biological study); PREP (Preparation); USES (Uses)  
 (bioactive and/or targeted dendrimer conjugates)

IT 113-24-6DP, Sodium pyruvate, reaction products with Starburst  
 polyamidoamine

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL  
 (Biological study); PREP (Preparation); USES (Uses)  
 (bioactive and/or targeted dendrimer conjugates)

RN 113-24-6 HCPLUS

CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 91 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1995:537116 HCPLUS  
 DOCUMENT NUMBER: 122:287958  
 TITLE: Role of glycolysis in genesis of early postocclusion  
 arrhythmias  
 AUTHOR(S): Sernov, L. N.; Balashov, V. P.; Kostin, Ya. V.;  
 Sedova, D. G.; Gatsura, V. V.  
 CORPORATE SOURCE: Mordov Univ., Saransk, Russia  
 SOURCE: Byulleten Eksperimental'noi Biologii i Meditsiny  
 (1994), 117(6), 625-6  
 CODEN: BEBMAE; ISSN: 0365-9615  
 PUBLISHER: Meditsina  
 DOCUMENT TYPE: Journal  
 LANGUAGE: Russian  
 AB In rats, phosphorylated intermediates of glycolysis,  
 glucose-1-phosphate, fructose-1,6-diphosphate, and phosphoenolpyruvate had

an anti-arrhythmic effect on the early postocclusion arrhythmias, whereas D-glucose, sodium pyruvate, and monoiodoacetate (an inhibitor of glycolysis) did not have any anti-arrhythmic effect.

CC 14-5 (Mammalian Pathological Biochemistry)  
 IT 50-99-7, D Glucose, biological studies 59-56-3, Glucose-1-phosphate  
     113-24-6, Sodium pyruvate 138-08-9 488-69-7,  
     Fructose-1,6-diphosphate  
     RL: BAC (Biological activity or effector, except adverse); BSU  
     (Biological study, unclassified); BIOL (Biological study)  
     (glycolysis intermediates effect on early postocclusion arrhythmias)  
 IT 113-24-6, Sodium pyruvate  
     RL: BAC (Biological activity or effector, except adverse); BSU  
     (Biological study, unclassified); BIOL (Biological study)  
     (glycolysis intermediates effect on early postocclusion arrhythmias)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 92 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1995:528712 HCPLUS  
 DOCUMENT NUMBER: 122:256427  
 TITLE: Use of pyruvate salt to prevent neuronal degeneration  
       associated with ischemia  
 INVENTOR(S): Izumi, Yukitoshi; Olney, John W.  
 PATENT ASSIGNEE(S): USA  
 SOURCE: U.S., 10 pp.  
 CODEN: USXXAM  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE     |
|------------------------|------|----------|-----------------|----------|
| US 5395822             | A    | 19950307 | US 1993-124348  | 19930920 |
| PRIORITY APPLN. INFO.: |      |          | US 1993-124348  | 19930920 |

AB A method is disclosed for using a pyruvic acid salt (e.g. sodium pyruvate) to protect against neuronal degeneration due to ischemia (inadequate blood flow, which can be caused by stroke, cardiac arrest, or other events) or due to hypoxia, hypoglycemia, or cellular disorders which interfere with the energy metabolism of neurons. Treatment with pyruvate can be effective even when administered after the onset of an event that triggers neurodegeneration. A preferred mode of use involves co-administration of a pyruvate salt along with one or more agents that block NMDA and/or non-NMDA receptors, or with insulin or a thrombolytic agent. In vitro hippocampal slice studies showing protection against ischemic neurodegeneration by pyruvate are described.

IC ICM A61K037-26  
 ICS A61K031-19  
 INCL 514003000

CC 1-11 (Pharmacology)  
 IT Brain, disease  
     (stroke, pyruvate salt for prevention of neuronal degeneration associated with ischemia or other causes)  
 IT 113-24-6, Sodium pyruvate 127-17-3D, Pyruvic acid, salts  
     4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
     RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (pyruvate salt for prevention of ischemia-associated neuronal degeneration)  
 IT 113-24-6, Sodium pyruvate 4151-33-1, Potassium pyruvate 18983-79-4, Magnesium pyruvate 52009-14-0, Calcium pyruvate  
     RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
     (pyruvate salt for prevention of ischemia-associated neuronal degeneration)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 4151-33-1 HCPLUS  
 CN Propanoic acid, 2-oxo-, potassium salt (9CI) (CA INDEX NAME)



● K

RN 18983-79-4 HCPLUS  
 CN Magnesium, bis[2-(oxo- $\kappa$ O)propanoato- $\kappa$ O]-, (T-4)- (9CI) (CA INDEX NAME)



RN 52009-14-0 HCPLUS  
 CN Propanoic acid, 2-oxo-, calcium salt (9CI) (CA INDEX NAME)



●1/2 Ca

L102 ANSWER 93 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1995:340459 HCPLUS  
 DOCUMENT NUMBER: 122:102403  
 TITLE: Neural plate microvillus lengthening in rat embryos grown in various concentrations of glucose and further studies of the mechanisms  
 AUTHOR(S): Shepard, Thomas H.; Park, Hyoung Woo  
 CORPORATE SOURCE: Dep. Pediatrics, Univ. Washington, Seattle, WA, 98195, USA  
 SOURCE: Teratology (1994), 50(5), 340-7  
 CODEN: TJADAB; ISSN: 0040-3709  
 PUBLISHER: Wiley-Liss  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English

AB Glucose is an important cellular nutrient, and in the early embryo, which is dependent mostly on anaerobic glycolysis, it is even more essential. Based on tissue culture cells in which glucose utilization has become membrane-limited, a concept has been developed that the tip of the microvilli is the entrance compartment for glucose and that the shaft sets up a diffusion barrier. An increase in length of the microvillus is associated with decreased entry of phosphorylated hexose into the cells. The previous findings of lengthening of the microvilli of the neural plate cells after 40 min exposure to glucose at room temperature have been extended to a 17 h whole embryo culture system. In cultures where the final concentration of glucose was 20 and 24 mg/dL there was embryonic death.

In those cultures ending with 29-137 mg/dL of glucose the embryos developed normally. Those grown in dialyzed serum supplemented with B vitamins and glucose grew equally as well as those in whole rat serum. Somite nos. attained did not change with increasing glucose concentration but a modest increase in micromoles of glucose used per embryo was found, suggesting the presence of another source of energy at lower glucose concns. The average glucose utilization per g of protein per h was 844 μmol in these day 9.5-10 embryos and this compares to 733 μmol previously found using uniformly labeled <sup>14</sup>C glucose on day 10.3. Lactate production averaged 85% of the glucose utilized. Pyruvate did not support growth in the absence of glucose. Lengthening of the microvilli was studied using SEM and an associate between increasing glucose concentration and lengthening (with matting) of the microvilli was shown after whole embryo culture and after 40 min exposure at room temperature. In whole culture the microvilli were short in cultures ending with glucose concns. below 30 mg/dL, partially matted at 36-81 mg/dL, and fully matted at 78-137 mg/dL. Elongation of microvilli was found in the mouse during the early somite neural plate stage, but the microvilli were more sparse and the cells contained a single cilium. These later two differences might explain the increased sensitivity to hypoglycemia in the mouse. These studies were done after exposure to glucose at 150 mg/dL for 40 min at room temperature

Also at room temperature, day 9.5 rat neural epithelial microvilli lengthened when

exposed to glucose. Studies for 40 min at room temperature were carried out to investigate the mechanism of lengthening. L-Glucose, fructose, galactose, and pyruvate, which are not transported and phosphorylated, did not cause microvillar lengthening. 2-Deoxyglucose, which is transported and phosphorylated but does not enter the glycolytic pathway, caused microvillar lengthening. Cytochalasin D, which interferes with actin polymerization, caused marked shortening and ballooning of the microvilli.

The elongation of microvilli exposed to glucose at room temperature was reversed

by a 40 min exposure to glucose-free Hanks' balanced salt solution

CC 13-3 (Mammalian Biochemistry)

IT 50-21-5, Lactic acid, biological studies 50-99-7, D-Glucose, biological studies 127-17-3, Pyruvic acid, biological studies

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(neural plate microvillus lengthening in rat embryos grown in various concns. of glucose)

IT 127-17-3, Pyruvic acid, biological studies

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(neural plate microvillus lengthening in rat embryos grown in various concns. of glucose)

RN 127-17-3 HCPLUS

CN Propanoic acid, 2-oxo- (9CI) (CA INDEX NAME)



L102 ANSWER 94 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1994:73086 HCPLUS

DOCUMENT NUMBER: 120:73086

TITLE: Inter-connection between activities of nitrogenase and hydrogenase in free-living strain of Rhizobium arachis

AUTHOR(S): Xu, Liangshu; Liu, Weimin; Zeng, Ding; Zhang, Fengzhang

CORPORATE SOURCE: Dep. Biol., Xiamen Univ., Xiamen, Peop. Rep. China

SOURCE: Xiamen Daxue Xuebao, Ziran Kexueban (1992), 31(4), 419-24

CODEN: HMHHAF; ISSN: 0438-0479

DOCUMENT TYPE: Journal

LANGUAGE: Chinese

AB Both nitrogenase and hydrogenase activities of R. arachis strain X8-1 can be expressed in free-living cultures. H<sub>2</sub>, produced by nitrogenase, induced the hydrogenase, consequently the time course plot of the hydrogenase activity lagged behind the nitrogenase activity. However, time course plots of the activities of nitrogenase and hydrogenase activities were synchronous if the exogenous H<sub>2</sub> was added in the beginning of culture. Compared the effect of some carbon compds. on nitrogenase and hydrogenase activities, supported the nitrogenase activity but their effect on hydrogenase activity was slight. On the contrary, sucrose and maltose were more efficient, for increasing hydrogenase activity than for nitrogenase activity. H<sub>2</sub> significantly enhanced nitrogenase activity. 2,4-Dinitrophenol, an uncoupler of oxidative phosphorylation,

inhibited the H<sub>2</sub>-dependent C<sub>2</sub>H<sub>2</sub> reduction. This inhibition was more efficient in the presence of exogenous H<sub>2</sub>. Ammonium inhibited nitrogenase activity. Hydrogenase activity also was inhibited unless exogenous H<sub>2</sub> was added.

CC 10-2 (Microbial, Algal, and Fungal Biochemistry)  
 IT 57-50-1, Sucrose, biological studies 63-42-3, Lactose 69-65-8,  
 Mannitol 113-24-6, Sodium pyruvate 147-81-9, Arabinose  
 14047-56-4, Sodium succinate 16177-21-2, Sodium glutamate  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BIOL (Biological study)  
 (hydrogenase and nitrogenase of Rhizobium arachis response to)  
 IT 113-24-6, Sodium pyruvate  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BIOL (Biological study)  
 (hydrogenase and nitrogenase of Rhizobium arachis response to)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 95 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1993:580818 HCPLUS

DOCUMENT NUMBER: 119:180818

TITLE: Preparation of piperazine derivatives as drugs

INVENTOR(S): Kumagai, Kazuhiro; Nagasawa, Masaaki; Takahashi, Hidenori; Abe, Tooru; Omata, Takeshi; Segawa, Yoshihide

PATENT ASSIGNEE(S): Zeria Pharmaceutical Co., Ltd., Japan

SOURCE: PCT Int. Appl., 56 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO.                                                    | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------------------------------------------|------|----------|-----------------|------------|
| WO 9302062                                                    | A1   | 19930204 | WO 1992-JP833   | 19920702   |
| W: AU, CA, JP, KR, RU, US                                     |      |          |                 |            |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE    |      |          |                 |            |
| CA 2113449                                                    | AA   | 19930204 | CA 1992-2113449 | 19920702   |
| AU 9222316                                                    | A1   | 19930223 | AU 1992-22316   | 19920702   |
| AU 658656                                                     | B2   | 19950427 |                 |            |
| EP 598123                                                     | A1   | 19940525 | EP 1992-914249  | 19920702   |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, MC, NL, SE |      |          |                 |            |
| JP 2767321                                                    | B2   | 19980618 | JP 1993-502728  | 19920702   |
| US 5432179                                                    | A    | 19950711 | US 1993-170198  | 19931230   |
| PRIORITY APPLN. INFO.:                                        |      |          | JP 1991-203755  | A 19910719 |
|                                                               |      |          | WO 1992-JP833   | A 19920702 |

OTHER SOURCE(S): MARPAT 119:180818

GI



**AB** Piperazine derivs. [I; A = (substituted) phenoxy, pyridyloxy, quinolinylloxy, indolinylloxy, etc.; B = Ph, pyridyl; R1 = H, halo; m = 2, 3' p = 1,2], useful as antiallergic, antihistaminic, and antiasthmatic agents, are prepared and formulated. 3-HOC<sub>6</sub>H<sub>4</sub>CO<sub>2</sub>Me was added to a suspension of piperazine salt II and K<sub>2</sub>CO<sub>3</sub> in Me<sub>2</sub>CO and then refluxed to give 68% III. I showed 52.3-86.4% allergy inhibition at 10 mg/kg orally in rats. I also showed IC<sub>50</sub> of 0.14-1.59 μM in vitro against histamine in guinea pigs. Granular, tablet, and injection formulations are given.

**IC** ICM C07D295-08

ICS C07D295-10; C07D295-12; C07D295-14; C07D213-36; C07D213-80; C07D215-26; C07D401-12; C07D403-12; C07D257-04; C07D249-10; C07D209-14

**CC** 28-17 (Heterocyclic Compounds (More Than One Hetero Atom))  
Section cross-reference(s): 1, 63

**IT** Allergy inhibitors

Antihistaminics

(piperazine derivs.)

**IT** 150184-80-8P 152325-44-5P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
(preparation of, as allergy inhibitor)

|    |                     |              |              |              |              |
|----|---------------------|--------------|--------------|--------------|--------------|
| IT | 79310-67-1P         | 139329-39-8P | 139329-66-1P | 150167-28-5P | 150167-29-6P |
|    | 150167-30-9P        | 150167-31-0P | 150167-32-1P | 150167-33-2P | 150167-34-3P |
|    | 150167-35-4P        | 150167-36-5P | 150167-37-6P | 150167-38-7P | 150167-39-8P |
|    | 150167-40-1P        | 150167-41-2P | 150167-42-3P | 150167-43-4P |              |
|    | <b>150167-44-5P</b> | 150167-45-6P | 150167-46-7P | 150167-47-8P |              |
|    | 150167-48-9P        | 150167-49-0P | 150167-50-3P | 150167-51-4P | 150167-52-5P |
|    | 150184-41-1P        | 150184-42-2P | 150184-43-3P | 150184-44-4P | 150184-45-5P |
|    | 150184-46-6P        | 150184-47-7P | 150184-48-8P | 150184-49-9P | 150184-50-2P |
|    | 150184-51-3P        | 150184-52-4P | 150184-53-5P | 150184-54-6P | 150184-55-7P |
|    | 150184-56-8P        | 150184-57-9P | 150184-58-0P | 150184-59-1P | 150184-60-4P |
|    | 150184-61-5P        | 150184-62-6P | 150184-63-7P | 150184-64-8P | 150184-65-9P |
|    | 150184-66-0P        | 150184-67-1P | 150184-68-2P | 150184-69-3P | 150184-70-6P |
|    | 150184-71-7P        | 150184-72-8P | 150184-73-9P | 150184-74-0P | 150184-75-1P |
|    | 150184-76-2P        | 150184-77-3P | 150184-78-4P | 150184-79-5P | 150184-81-9P |
|    | 150184-82-0P        | 150184-83-1P | 150184-84-2P | 150184-85-3P | 150184-86-4P |
|    | 150184-87-5P        | 150324-40-6P | 150324-41-7P | 150324-42-8P | 150324-43-9P |

150324-45-1P 150324-46-2P 150324-47-3P 150324-48-4P 150324-49-5P  
 150324-50-8P 150324-52-0P 150324-54-2P 150324-55-3P

RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); SPN (Synthetic preparation); THU  
 (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES  
 (Uses)

(preparation of, as drug)

IT 150167-44-5P

RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); SPN (Synthetic preparation); THU  
 (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES  
 (Uses)

(preparation of, as drug)

RN 150167-44-5 HCPLUS

CN Benzeneacetic acid, 2-[[2-[4-[(4-chlorophenyl)phenylmethyl]-1-piperazinyl]ethyl]amino]- $\alpha$ -oxo-, monosodium salt (9CI) (CA INDEX NAME)

PAGE 1-A



PAGE 2-A



● Na

L102 ANSWER 96 OF 100 HCAPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1990:151849 HCAPLUS  
 DOCUMENT NUMBER: 112:151849  
 TITLE: Platinum (II) complexes as neoplasm inhibitors  
 INVENTOR(S): Hirai, Kenji; Fujita, Atsuko; Yokota, Masahiro;  
 Yamada, Kaoru; Ishii, Yoshimitsu  
 PATENT ASSIGNEE(S): Sagami Chemical Research Center, Japan; Chisso Corp.  
 SOURCE: PCT Int. Appl., 70 pp.  
 CODEN: PIXXD2  
 DOCUMENT TYPE: Patent  
 LANGUAGE: Japanese  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.                | KIND | DATE     | APPLICATION NO. | DATE       |
|---------------------------|------|----------|-----------------|------------|
| WO 8904317                | A1   | 19890518 | WO 1988-JP1123  | 19881105   |
| W: US                     |      |          |                 |            |
| RW: CH, DE, FR, GB, IT    |      |          |                 |            |
| JP 02000294               | A2   | 19900105 | JP 1988-56152   | 19880311   |
| JP 07062023               | B4   | 19950705 |                 |            |
| JP 01249791               | A2   | 19891005 | JP 1988-74677   | 19880330   |
| EP 386243                 | A1   | 19900912 | EP 1988-909613  | 19881105   |
| R: CH, DE, FR, GB, IT, LI |      |          |                 |            |
| PRIORITY APPLN. INFO.:    |      |          | JP 1987-279149  | A 19871106 |
|                           |      |          | JP 1988-56152   | A 19880311 |
|                           |      |          | JP 1988-74677   | A 19880330 |
|                           |      |          | WO 1988-JP1123  | W 19881105 |

OTHER SOURCE(S): MARPAT 112:151849  
 GI



AB Pt(II) complexes [I; AB = bidentate diamine ligand; R1, R2 = H, C1-8 alkyl; R1 = R2 ≠ H; Ar = aryl; n = 0, 1] are neoplasm inhibitors. Thus, bis[(+)-2-(6'-methoxy-β-naphthyl)propionato](trans-1,1,2-diaminocyclohexane) Pt (II) markedly inhibited the growth of mouse lymphatic leukemia cells in 10% calf fetal serum-containing RPAI-1640 medium. The IC50 value was 0.011 µg/mL. Preparation of I is described. Thirty-three I compds. are specified.

IC ICM C07F015-00  
 ICS C07C087-14; A61K031-28

CC 1-6 (Pharmacology)  
 Section cross-reference(s): 29

ST neoplasm inhibitor platinum complex

IT Neoplasm inhibitors  
 (platinum complexes as)

## IT Neoplasm inhibitors

(lymphatic leukemia, platinum complexes as)

IT 125429-87-0P 125429-88-1P 125429-89-2P 125429-90-5P 125429-91-6P  
 125429-92-7P 125429-93-8P 125429-94-9P 125429-95-0P 125429-96-1P  
 125429-97-2P 125429-98-3P 125429-99-4P 125430-00-4P 125430-01-5P  
 125430-02-6P 125430-03-7P 125430-04-8P 125430-05-9P 125430-06-0P  
 125430-07-1P 125430-08-2P 125430-09-3P 125445-72-9P  
 125445-73-0P 125445-99-0P 125446-00-6P 125446-01-7P 125474-55-7P  
 125474-56-8P 125514-88-7P 125515-53-9P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of, as neoplasm inhibitor)

IT 125430-09-3P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of, as neoplasm inhibitor)

RN 125430-09-3 HCPLUS

CN Platinate(2-), bis[4-carboxy- $\beta$ -methyl- $\alpha$ -oxobenzene propanoato(2-)](1,2-cyclohexanediamine-N,N')-, disodium, [SP-4-2-2(1R-trans)]- (9CI) (CA INDEX NAME)

PAGE 1-A



PAGE 2-A

●2 Na<sup>+</sup>

L102 ANSWER 97 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1988:74242 HCPLUS

DOCUMENT NUMBER: 108:74242

TITLE: Immunomodulator α-ketoisocaproate for improving

commercial performance of domestic animals  
INVENTOR(S): Nissen, Steven L.  
PATENT ASSIGNEE(S): Iowa State University Research Foundation, Inc., USA  
SOURCE: PCT Int. Appl., 41 pp.  
CODEN: PIXXD2  
DOCUMENT TYPE: Patent  
LANGUAGE: English  
FAMILY ACC. NUM. COUNT: 3  
PATENT INFORMATION:

| PATENT NO.                                 | KIND | DATE     | APPLICATION NO. | DATE       |
|--------------------------------------------|------|----------|-----------------|------------|
| WO 8705506                                 | A1   | 19870924 | WO 1987-US487   | 19870309   |
| W: AU, JP                                  |      |          |                 |            |
| RW: AT, BE, CH, DE, FR, GB, IT, LU, NL, SE |      |          |                 |            |
| US 4758593                                 | A    | 19880719 | US 1986-838356  | 19860311   |
| US 4760090                                 | A    | 19880726 | US 1986-838357  | 19860311   |
| US 4764531                                 | A    | 19880816 | US 1986-838355  | 19860311   |
| US 4835185                                 | A    | 19890530 | US 1987-20607   | 19870302   |
| AU 8771629                                 | A1   | 19871009 | AU 1987-71629   | 19870309   |
| EP 258422                                  | A1   | 19880309 | EP 1987-901996  | 19870309   |
| R: DE, FR, GB, IT, NL                      |      |          |                 |            |
| JP 63502835                                | T2   | 19881020 | JP 1987-501930  | 19870309   |
| CA 1308294                                 | A1   | 19921006 | CA 1987-531647  | 19870310   |
| PRIORITY APPLN. INFO.:                     |      |          | US 1986-838355  | A 19860311 |
|                                            |      |          | US 1986-838356  | A 19860311 |
|                                            |      |          | US 1986-838357  | A 19860311 |
|                                            |      |          | WO 1987-US487   | A 19870309 |

AB The com. performance of domestic animals is improved by feeding  $\alpha$ -ketoisocaproate (KIC) in a form nutritionally utilizable by the animals. The KIC enhances blastogenesis of the animal's T-lymphocytes and reduces plasma cortisol levels. The result is a favorable effect on the immune function of the animal, and can be used to counteract stress-associated immunosuppression. The method is applicable to beef, cattle, dairy cattle, sheep, goats, swine, and poultry, as raised, resp., for meat, milk, wool, or egg production. Laying hens were given a feed composition

of Na KIC 2.0, corn 672.5, soybean meal 214.0, meat and bone meal 20.0, animal fat 15.0, limestone powder 60.0, dicalcium phosphate 10.0, D,L-methionine 0.5, vitamin premix 5.0, and salt and trace minerals 3.0 lbs/1000 lbs. Feed intake was not changed but the average number of eggs/hen increased by 10.2% and the egg yolk cholesterol decreased by 7%.

IC ICM A61K031-19

ICS A61K037-54

CC 18-6 (Animal Nutrition)

Section cross-reference(s): 1, 15

IT 816-66-0 4502-00-5, Sodium  $\alpha$ -ketoisocaproate

51828-95-6, Calcium  $\alpha$ -ketoisocaproate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); BIOL (Biological study); USES (Uses)

(com. performance of domestic animals enhancement by)

IT 4502-00-5, Sodium  $\alpha$ -ketoisocaproate 51828-95-6,

Calcium  $\alpha$ -ketoisocaproate

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); FFD (Food or feed use); BIOL (Biological study); USES (Uses)

(com. performance of domestic animals enhancement by)

RN 4502-00-5 HCAPLUS

CN Pentanoic acid, 4-methyl-2-oxo-, sodium salt (9CI) (CA INDEX NAME)



● Na

RN 51828-95-6 HCPLUS  
 CN Pentanoic acid, 4-methyl-2-oxo-, calcium salt (9CI) (CA INDEX NAME)



● 1/2 Ca

L102 ANSWER 98 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1981:550706 HCPLUS  
 DOCUMENT NUMBER: 95:150706  
 TITLE: Piperazine derivative, processes for the preparation therof, and pharmaceutical composition comprising the same  
 INVENTOR(S): Teraji, Tsutomo; Oku, Teruo; Namiki, Takayuki  
 PATENT ASSIGNEE(S): Fujisawa Pharmaceutical Co., Ltd., Japan  
 SOURCE: Brit. UK Pat. Appl., 14 pp.  
 CODEN: BAXXDU  
 DOCUMENT TYPE: Patent  
 LANGUAGE: English  
 FAMILY ACC. NUM. COUNT: 1  
 PATENT INFORMATION:

| PATENT NO.             | KIND   | DATE      | APPLICATION NO. | DATE       |
|------------------------|--------|-----------|-----------------|------------|
| GB 2056968             | A      | 19810325  | GB 1979-29092   | 19790821   |
| JP 56032474            | A2     | 19810401  | JP 1980-115296  | 19800820   |
| PRIORITY APPLN. INFO.: |        |           | GB 1979-29092   | A 19790821 |
| OTHER SOURCE(S):       | MARPAT | 95:150706 |                 |            |
| GI                     |        |           |                 |            |



AB Piperazines I [R = CO<sub>2</sub>H, CO<sub>2</sub>H derivative, acylamino; R1 = H, halo, alkyl, alkoxy, aryl, acylamino; R2 = aralkyl; Z = NR<sub>3</sub>, O, S, NHCO (R<sub>3</sub> = H, acyl);

Z1 = alkylene], and their pharmaceutically acceptable salts, having antiallergic activity, were prepared E. g., a solution of 1-[3-(4-benzhydryl-1-piperazinyl)propyl]isatin in N aqueous NaOH and THF was treated by dropwise addition of 15% aqueous H<sub>2</sub>O<sub>2</sub> at room temperature and the mixture was stirred 5 h at 70°, cooled to room temperature, treated with Na<sub>2</sub>SO<sub>3</sub> (pH 1, 10% HCl), diluted with EtOAc, adjusted to pH 9 (aqueous NaHCO<sub>3</sub>), and stirred 0.5 h to give I [R = CO<sub>2</sub>H, R<sub>1</sub> = H, R<sub>2</sub> = CHPH<sub>2</sub>, Z = NH, Z1 = (CH<sub>2</sub>)<sub>3</sub>] (II). A 10 mg/kg p.o. dose of II produced complete inhibition of anaphylactic asthma in guinea pigs.

IC C07D295-04; A61K031-495; C07C127-19; C07D209-38  
 CC 28-18 (Heterocyclic Compounds (More Than One Hetero Atom))  
 ST arylaminoalkylpiperazine **allergy asthma inhibitor**;  
 piperazine arylaminoalkyl **allergy inhibitor**;  
 aryloxyalkylpiperazine **allergy inhibitor**;  
 arylthioalkylpiperazine **allergy inhibitor**;  
 arylamidoalkylpiperazine **allergy inhibitor**; aralkylpiperazine **allergy inhibitor**  
 IT **Allergy**  
**Asthma**  
 (inhibitors of, aralkylpiperazine derivs. as)  
 IT 14422-49-2P 79310-58-0P 79310-59-1P 79310-60-4P  
 79310-61-5P 79310-62-6P 79310-63-7P 79310-64-8P 79310-65-9P  
 79310-66-0P 79310-67-1P 79310-68-2P 79310-69-3P 79310-70-6P  
 79310-71-7P 79310-72-8P 79310-73-9P 79310-74-0P 79310-75-1P  
 79310-76-2P 79310-78-4P 79310-79-5P 79310-80-8P 79310-81-9P  
 79310-82-0P 79310-83-1P 79310-84-2P 79310-85-3P 79310-87-5P  
 79310-88-6P 79310-90-0P 79310-91-1P 79310-92-2P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (preparation of, as **allergy inhibitor**)  
 IT 79310-58-0P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (preparation of, as **allergy inhibitor**)  
 RN 79310-58-0 HCPLUS  
 CN Benzeneacetic acid, 2-[[3-[4-(diphenylmethyl)-1-piperazinyl]propyl]amino]- $\alpha$ -oxo-, monosodium salt (9CI) (CA INDEX NAME)



● Na

L102 ANSWER 99 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1978:486880 HCPLUS

DOCUMENT NUMBER: 89:86880

TITLE: Effect of various glycolytic and TCA intermediates on aflatoxin production

AUTHOR(S): Buchanan, R. L.; Ayres, J. C.

CORPORATE SOURCE: Dep. Food Sci., Univ. Georgia, Athens, GA, USA

SOURCE: Journal of Food Safety (1977), 1(1), 19-28

CODEN: JFSADP; ISSN: 0149-6085

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The effects of pyruvate, succinate, citrate,  $\alpha$ -keto glutarate, fumarate, malate, acetate, and glycerol supplementation (0.5, 1.0, and 2.0 g/100 mL) on aflatoxin (B1, B2, G1, and G2) production by *Aspergillus parasiticus* NRRL 2999 were examined in synthetic and semisynthetic media. Glycerol, lactate, and the 0.5 g/100 mL level of pyruvate stimulated production in the synthetic medium. At the 2.0 g/100 mL level, pyruvate, citrate,  $\alpha$ -keto glutarate, fumarate, and malate inhibited aflatoxin accumulation in both media. With the exception of glycerol, all supplements stimulated sporulation and elevated the pH of the cultures.

CC 10-1 (Microbial Biochemistry)

Section cross-reference(s): 4, 17

IT Carboxylic acids, biological studies

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)

(aflatoxin formation by *Aspergillus parasiticus* response to)

IT *Aspergillus parasiticus*

(aflatoxin formation by, carboxylic acids effect on)

IT Aflatoxins

RL: FORM (Formation, nonpreparative)

(formation of, by *Aspergillus parasiticus*, carboxylic acids effect on)

IT 56-81-5, biological studies 68-04-2 72-17-3 97-67-6 113-24-6  
149-61-1 150-90-3 305-72-6 7704-73-6

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)

(aflatoxin formation by *Aspergillus parasiticus* response to)  
 IT 1162-65-8 1165-39-5 7220-81-7 7241-98-7  
 RL: FORM (Formation, nonpreparative)  
 (formation of, by *Aspergillus parasiticus*, carboxylic acids  
 effect on)  
 IT 113-24-6 305-72-6  
 RL: BAC (Biological activity or effector, except adverse); BSU  
 (Biological study, unclassified); BIOL (Biological study)  
 (aflatoxin formation by *Aspergillus parasiticus* response to)  
 RN 113-24-6 HCPLUS  
 CN Propanoic acid, 2-oxo-, sodium salt (9CI) (CA INDEX NAME)



## ● Na

RN 305-72-6 HCPLUS  
 CN Pentanedioic acid, 2-oxo-, disodium salt (9CI) (CA INDEX NAME)



## ● 2 Na

L102 ANSWER 100 OF 100 HCPLUS COPYRIGHT 2006 ACS on STN  
 ACCESSION NUMBER: 1968:1745 HCPLUS  
 DOCUMENT NUMBER: 68:1745  
 TITLE: Antidiabetically active radical in the chemical  
 structure of mesoxalic acid  
 AUTHOR(S): Takeuchi, Setsuya  
 CORPORATE SOURCE: Dep. Pharmacol., Nippon Med. Sch., Tokyo, Japan  
 SOURCE: Japanese Journal of Pharmacology (1967), 17(3), 333-9  
 CODEN: JJPAAZ; ISSN: 0021-5198  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English  
 AB The antidiabetic activity of 32 compds. related to mesoxalic acid was  
 examined by the true glucose tolerance test in rabbits. Of the 11 dibasic  
 carboxylic acids tested, only mesoxalic acid had activity. The min.  
 effective dose of Na mesoxalate was 100 mg./kg./day with an assigned  
 mesoxalinic potency of 1. Dihydroxyacetone had no effect. No  
 antidiabetic activity was found in any of 7 mesoxalic acid derivs. such as  
 di-Me mesoxalate. Of the 6 compds. related to alloxan tested, only  
 alloxanic acid had any activity. The mesoxalinic activity of alloxanic  
 acid occurred at 30-100 mg./kg./day, with mesoxalinic potency of 3, and  
 alloxanic activity was found at >300 mg./kg./day with a potency of 0.01.  
 The min. effective dose of alloxan for alloxanic activity was 3  
 mg./kg./day. Alloxan also had a strong mesoxalinic action, the min.  
 effective dose being 1 mg./kg./day. 1,2,3-Cyclohexanetrione and kroconic

acid were active at 30 and 10 mg./kg./day, resp., with mesoxalinic potencies of 3 and 10, resp. Rhodizonic acid, trichinoyl and leuconic acid had mesoxalinic potencies of 100 and no alloxanic activity. Compds. possessing serial polyketones of more than 3 were judged active, while compds. possessing a -COCH(OH)CO-, -COC(:S)CO-, or -COC(:NH)CO- group were inactive. Introduction of an NH group into polyketones enhanced their diabetogenic activity and mesoxalinic activity; that is, antidiabetic activity of tetraketones or hexaketones was stronger than that of triketones.

CC 15 (Pharmacodynamics)  
 IT Molecular structure-biological activity relationships  
     (antidiabetic and **diabetogenic**, of mesoxalic acid derivs.)  
 IT 118-76-3 319-89-1 470-44-0 527-31-1 4322-62-7 **6629-94-3**  
     RL: **BAC** (Biological activity or effector, except adverse); BSU  
     (Biological study, unclassified); BIOL (Biological study)  
     (pancreas response to)  
 IT **6629-94-3**  
     RL: **BAC** (Biological activity or effector, except adverse); BSU  
     (Biological study, unclassified); BIOL (Biological study)  
     (pancreas response to)  
 RN 6629-94-3 HCPLUS  
 CN Mesoxalic acid, monosodium salt (8CI) (CA INDEX NAME)



● Na

=>