

USAF Inorganic Coating Successes

Elizabeth Berman, Ph.D.
Air Force Research Laboratory
Materials and Manufacturing Directorate

Integrity ★ Service ★ Excellence

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate or formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE AUG 2012		2. REPORT TYPE	3. DATES COVERED 00-00-2012 to 00-00-2012			
4. TITLE AND SUBTITLE		5a. CONTRACT	NUMBER			
USAF Inorganic C	oating Successes			5b. GRANT NUN	ИBER	
				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUME	BER	
				5f. WORK UNIT	NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH, 45433						
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
	SETSDefense 2012: -30, 2012, San Diego	<u>=</u>	ainable Surface E	ngineering fo	or Aerospace and	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	ATION OF:	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	Same as			OF PAGES 37	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Agenda

- Introduction
- Environmental Regulations and Drivers
- AFRL Mission and Approach
- Chromium Replacement Projects
- Cadmium Replacement Projects
- Summary

Environmental Regulations

Restrictions on chromium (Cr), cadmium (Cd), and other air pollutants and environmental toxins are becoming more stringent both nationally and internationally

Air Logistics Center (ALC) Drivers

AFRL focus areas

- Primary: Cr and Cd replacement
- Secondary: beryllium (Be), cobalt (Co), and nickel (Ni)

Regulatory issues

- Regulated by OSHA, EPA, and National Institute for Occupational Safety and Health (NIOSH), among others
 - Usage is restricted for all DoD applications; hexavalent chromium [Cr(VI)] requires a waiver for use
 - Cr(VI) are on the DoD's Emerging Contaminants Action List
 - Cd is on the DoD's Emerging Contaminants Watch List
- Regulatory enforcement is becoming a concern

ALC Drivers

Environmental, safety, and occupational health (ESOH) issues

- Cd and hexavalent chromium (Cr[VI]) are classified as toxic
- Cr(VI) compounds are genotoxic carcinogens
- Cd is a toxin and Cd plating involves cyanides

High costs associated with compliance

- Workplace safety features (personal protective equipment, ventilation, filtration, tank covers, etc.)
- Cd has a limited and decreasing numbers of vendors

AFRL Approach

- Identify legal requirements restricting material use
 - Review current U.S. regulations/directives
 - Identify international regulations
 - Speculate on future regulations/directives based on regulatory trends
- Review USAF usage of materials and solutions
 - Focus on high-priority problems/needs
- Identify replacement technologies and correct gaps
 - Identify newly developed commercial solutions
- Test, validate, and implement replacement technologies
 - Conduct applied research & development (R&D), as required

Cr Roadmap Development Approach and Status

* U.S. Air Force Inorganic Finishing Pollution Prevention Technology Roadmap
 U.S. Air Force Organic Finishing Pollution Prevention Technology Roadmap

Dichromate Sealer Replacement

Identified, demonstrated/validated, and implementing a chromium-free alternative to sodium dichromate sealer for Type II anodizing processes at Ogden Air Logistics Center (OO-ALC)

Sealer	Coating Process Identification
Sodium dichromate solution, 5-9 oz/gal	Baseline 1
Boiling deionized water	Baseline 2
Unsealed	Baseline 3
Sodium dichromate solution, 50 parts per million	Benchmark
Permanganate Seal	Candidate 1
Low Nickel Seal (with a hot water seal)	Candidate 2A
Low Nickel Seal (without a hot water seal)	Candidate 2B

Summary of Dichromate Sealer Test Results

Sealer	Substrate	Quality	Thickness	Corrosion	Primer	Dry Tape Adhesion	Wet Tape Adhesion
	AI 2024-T3	PASS	PASS	PASS	1	5B	5W
	AI 2024-13	1 700	1 700	1 700	2	5B	4W
Baseline 1	AI 6061-T6	PASS	PASS	FAIL	1	5B	5W
Bacomie i	7 11 0001 10	17100	17.00	. ,	2	5B	5W
	AI 7075-T6	PASS	PASS	PASS	1	5B	5W
					2	5B 3B	4W 4W
	AI 2024-T3	PASS	PASS	FAIL	1 2	3B	2W
					1	5B	5W
Baseline 2	AI 6061-T6	PASS	PASS	FAIL	2	5B	3W
					1	5B	5W
	Al 7075-T6	PASS	PASS	PASS	2	5B	2W
	AL 000 4 TO	5400	54.00	=	1	5B	5W
	Al 2024-T3	PASS	PASS	FAIL	2	5B	4W
Deceline 2	ALCOCA TO	DACC	DACC	EAH	1	5B	5W
Baseline 3	AI 6061-T6	PASS	PASS	FAIL	2	5B	3W
	Al 7075-T6	PASS	PASS	PASS	1	5B	5W
	A17073-10	1 700	1 700	1 700	2	5B	5W
	AI 2024-T3	PASS	PASS	PASS	1	5B	5W
	7 11 202 1 10	17100	17.00	17.00	2	5B	1W
Benchmark	AI 6061-T6	PASS	PASS	PASS	1	5B	5W
					2	5B	4W
	AI 7075-T6	PASS	PASS	PASS	2	5B	5W
					1	5B 5B	3W 5W
	AI 2024-T3	PASS	PASS	PASS	2	5B	3W
					1	5B	4W
Candidate 1	AI 6061-T6	PASS	PASS	FAIL	2	5B	0W
					1	5B	4W
	Al 7075-T6	PASS	PASS	PASS	2	5B	3W
	AL 000 4 T0	D4.00	D4.00	D4.00	1	5B	4W
	Al 2024-T3	PASS	PASS	PASS	2	4B	0W
Candidate 2A	ALGORA TO	PASS	DACC	DACC	1	5B	4W
Candidate 2A	Al 6061-T6	PA55	PASS	PASS	2	5B	0W
	AI 7075-T6	PASS	PASS	PASS	1	5B	4W
	A17073-10	1 700	1 700	1 700	2	5B	0W
Candidate 2B	AI 6061-T6	PASS	PASS	PASS	1	5B	4W
Candidate 2D	A10001-10	1 700	1 700	1 700	2	5B	1W

Dichromate Sealer Path Forward

- Complete additional corrosion and adhesion testing requested by OO-ALC
- Continue assisting OO-ALC with implementing permanganate sealer
 - Received approval from Engineering Review Board (ERB) to use the permanganate seal for Type II anodizing operations
- Position OO-ALC for a completely Cr-free surface finishing operation
 - Anodizing, sealing, and primer application
- Leverage success for additional aviation applications
 - Within other ALCs and Army Aviation and Missile Command

Typical Type II Anodizing Operation

Chromium-Free Conversion Coatings for Zinc-Nickel

Identify and evaluate a chromium-free conversion coating (CFCC) for the zinc-nickel (Zn-Ni) plating line at OO-ALC

Coating Process	Conversion Coating Composition	Secondary Sealer
Baseline	Trivalent Chromium (Cr[III]) base	None
Candidate 1-S	Permanganate base	Inorganic silicate
Candidate 1	Permanganate base	None
Candidate 2-S1	Fluorozirconate base	Organic silicate
Candidate 2-S2	Fluorozirconate base	Inorganic silicate
Candidate 2	Fluorozirconate base	None
Candidate 3	Divalent Zn salt base	None

CFCC Zn-Ni Test Results

Test	Test Method	Baseline	Candi	date 1	Candid	ate 1-S	Candi	date 2	Candidate 2-S1		lidate S2	Candi	date 3
Baking Sce	enario	Baked	Baked	As Coated	Baked	As Coated	Baked	As Coated	Baked	Baked	As Coated	Baked	As Coated
Quality/ Appearance	AMS QQ- P-416	PASS	FAIL	FAIL	FAIL	FAIL	PASS	PASS	PASS	FAIL	PASS	FAIL	FAIL
Adhesion to Zn-Ni	ASTM D 3359, Method A	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
Paint Adhesion – Cr Primer	ASTM D 3359, Method A	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
Paint Adhesion – Cr-Free Primer	ASTM D 3359, Method A	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	FAIL	FAIL	PASS	PASS
Corrosion Resistance –	ASTM B	W - PASS	W - FAIL	W – FAIL	W – FAIL	W – FAIL	W – FAIL	W – FAIL	W – PASS	W – FAIL	W – FAIL	W- FAIL	W- FAIL
Bare/ Unscribed	117	R - PASS	R – FAIL	R - FAIL	R - FAIL	R - PASS	R – FAIL	R - FAIL	R - PASS	R - PASS	R - PASS	R – FAIL	R – FAIL
Corrosion Resistance –	ASTM B	W - PASS	W – FAIL	W – FAIL	W – FAIL	W – FAIL	W – FAIL	W – FAIL	W – PASS	W – FAIL	W – FAIL	W – FAIL	W - FAIL
Bare/ Scribed	117	R - PASS	R - FAIL	R - FAIL	R - FAIL	R - FAIL	R - FAIL	R - FAIL	R - PASS	R - PASS	R - PASS	R – FAIL	R - FAIL
Corrosion Resistance –	ASTM B	W – PASS	W – PASS	W- PASS	W – PASS	W – PASS	W – PASS	W – PASS	W – PASS	W – PASS	W- PASS	W – PASS	W – PASS
Painted/ Scribed	117	R - PASS	R - FAIL	R - PASS	R - FAIL	R - PASS	R – PASS	R - PASS	R - PASS	R - PASS	R - PASS	R – PASS	R - PASS
Chemical Composition	ASTM E 1508	N/A	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS

CFCC Zn-Ni Path Forward

- Conduct hydrogen embrittlement and hydrogen re-embrittlement testing
- Optimize process for select candidates
 - Assess impact of operating parameters on key performance criteria (e.g., adhesion, corrosion resistance, appearance)
- Conduct additional performance tests
 - Evaluate fatigue effects on substrates, sulfur dioxide corrosion resistance, coating stripping performance, and brush plating repair

- Conduct a cost-benefit analysis
- Execute demonstration/validation testing

C-5 Bogie Beam – Targeted Component for Zn-Ni Plating

Replacing Chromate Conversion Coatings Used on Aluminum

Identify and evaluate a CFCC for use on aluminum (Al) and Al-clad substrates at Oklahoma City ALC (OC-ALC)

Conversion Coating	Coating Process Identification
CCC, Cr(VI) conversion coating, vendor 1	Baseline 1
CCC, Cr(VI) conversion coating, vendor 2	Baseline 2
CFCC, water-based organic compound	Benchmark
CFCC, permanganate solution	Candidate 1
CFCC, inorganic fluoride	Candidate 2
CFCC, inorganic fluoride	Candidate 3

Aluminum CFCC Test Results

Conversion Coating	Alloy	Quality/Appearance	Corrosion Resistance, Hours to Failure (OC-ALC Process)	Dry Tape Adhesion, Primer 1, Rating	Dry Tape Adhesion, Primer 2, Rating
	2024	Pass	48	5A	4A-2A
Baseline 1	5052	Pass	168+	5A	5A-3A
baseline 1	6061	Pass	168+	5A	5A - 3A
	7075	Pass	168+	5A	5A - 4A
	2024	Pass	48	5A	4A-2A
Danelina 2	5052	Pass	48-72	5A	5A
Baseline 2	6061	Pass	72-168	5A	5A
	7075	Pass	168+	5A	5A - 4A
	2024	Pass	24	5A	5A
Danahmanik	5052	Pass	24	5A	5A - 4A
Benchmark	6061	Pass	24	5A	5A
	7075	Pass	24	5A	5A - 4A
	2024	Pass	24	5A	5A
Candidate 1	5052	Pass	168+	5A	5A - 4A
Candidate 1	6061	Pass	168+	5A	5A - 4A
	7075	Pass	24	5A	5A
	2024	Pass	24	5A	4A - 3A
Candidate 2	5052	Pass	48	5A	5A - 4A
Candidate 2	6061	Pass	48	5A	5A - 3A
	7075	Pass	72-168	5A	5A
	2024	Pass	24	5A	4A - 2A
Candidate 3	5052	Pass	168+	5A	5A
Calluluate 3	6061	Pass	168+	5A	5A - 3A
	7075	Pass	168+	5A	5A - 4A

5 pits or less
were seen in
a total of 30
in ² (Pass)
5 to 7 pits
were seen in
a total of 30
in ² (Marginal
Fail)
7 or more pits
were seen in
a total of 30
in² (Fail)

Aluminum CFCC Path Forward

Continue performance testing

- Compare performance of conversion coatings using a modified OC-ALC process against a COTS cleaning process
- Evaluate the two baselines
- Evaluate two best performing candidates – Candidates 1 and 3
- Assist OC-ALC with transition to most promising candidate

TF-33 engine, containing parts coated with CCCs by OC-ALC

Select and evaluate electroplated hard chromium (EHC) coating alternatives for NLOS landing gear (LG) applications

NLOS Coating	Coating Process Identification
Electroplated Hard Chromium	Baseline 1
Cobalt-Phosphorus	Benchmark
Nickel-Phosphorus w/Silicon Carbide	Candidate 1
Cobalt-Phosphorus w/Silicon Carbide	Candidate 2
Cobalt-Phosphorus w/Wear Additive	Candidate 3

NLOS Performance Test Results

Test	Test Method	EHC (Baseline)	Co-P Benchmark	Candidate 1	Candidate 2		
Quality	AMS 2460	PASS	PASS	PASS	PASS		
Fatigue Debit	ASTM E 466		Testing	in Progress			
Hydrogen Embrittlement (As-plated)	ASTM F 519	PASS	Testing in Progress	PASS	PASS		
Advanced Grinding	Vendor Method		Test cancelled d	ue to warped panels			
Fluid Corrosion Resistance	ASTM F 483	PASS (All fluids passed)	FAIL (2 fluids failed)	MARGINAL (1 fluid failed)	MARGINAL (1 fluid failed)		
	E	valuation of Coatings	Deposited on a Complex	x Geometry			
Thickness (mils)	ASTM B 487 ASTM B 499	FAIL (5.2 to 12.4)	MARGINAL (3.5 to 3.9)	PASS (2.9 to 3.2)	MARGINAL (4.7 to 6.0)		
Hardness (Vickers)	ASTM E 384 ASTM B 487	FAIL (835)	FAIL (552)	FAIL (663)	FAIL (752)		
Knife Adhesion	ASTM B 571	PASS	FAIL	PASS	PASS		
Salt Fog Corrosion Resistance (120 hr)	ASTM B 117	Avg. Rating: 0 (48 hours to red rust)	Avg. Rating: 10 (No red rust)	Avg. Rating: 9 (No red rust)	Avg. Rating: 10 (No red rust)		
		Evaluation of C	oating Stripping Proces	ses			
Stripping Rate (mil/hr)	Vendor Method	PASS (2.9)	MARGINAL (0.3)	MARGINAL (0.4)	PASS (5.5)		
Adhesion of Re-Plated Coupons	ASTM B571	Plating in progress					
Hydrogen Embrittlement of Re-Plated Coupons	ASTM F 519	Plating in progress					

NLOS Path Forward

- Work with LG vendor to conduct additional testing and tech transition activities for best candidate
- Evaluate new nano-Co-P + wear additive coating for OO-ALC
- Work with OO-ALC on tech transition of best candidate
 - Select a best candidate based on cost and technical factors
 - Perform a high-level cost-benefit analysis to compare candidates
 - Perform demonstration/validation and qualification testing

EHC Plating Line

Ionic Liquids Aluminum Electroplating

Evaluate ionic liquid-based electrodeposition of Al as an alternative to toluene-bath Al electroplating and Cd plating

Coating Method and Composition	Coating Process Identification
Electroplated Aluminum, toluene bath	Baseline 1
Ion Vapor Deposited Aluminum	Baseline 2
Electroplated Aluminum, ionic liquid bath	Candidate 1
Electroplated Aluminum alloy, ionic liquid bath	Candidate 2
Electroplated Aluminum, ionic liquid bath	Candidate 3

Ionic Liquids High-Strength Steel Testing Results

	Baseline			Ionic Liquids				
Test	Baseline 1	Baseline 2	Candidate 1, Set 1	Candidate 1, Set 2	Candidate 2, Set 1	Candidate 2, Set 2	СТС	
Quality (Visual inspection)	PASS	PASS	PASS	FAIL	MARGINAL	PASS	PASS	
Thickness (Target 1-1.5 mils)	PASS	PASS	FAIL (Thin)	PASS	FAIL (Thin)	FAIL (Thin)	PASS	
Cross-Section Thickness (1-1.5 mils)	PASS	PASS	FAIL (Thin)	PASS	FAIL (Thin)	FAIL (Thin)	PASS	
Composition (99%+ AI)	PASS	PASS	PASS	Not Tested	Deliberately Alloyed Al-Mn- Zr	Deliberately Alloyed Al-Mn- Zr	PASS	
Salt Fog Corrosion Resistance (No red rust in 504 hours)	FAIL	PASS	PASS	Not Tested	PASS	Not Tested	Not Tested	
Porosity (Fewer pits than Baseline 1)	PASS (2-10)	PASS (1-2)	FAIL (15-25)	Not Tested	PASS (0-4)	Not Tested	Not Tested	
Adhesion (No separation from substrate)	PASS	FAIL	FAIL	FAIL	FAIL	MARGINAL	MARGINAL	

Ionic Liquids Alternate Substrates Testing Results

Test	Alternate Substrates and Candidate 3			
lest	2024 Aluminum	1010 Steel		
Quality (Visual inspection)	PASS	PASS		
Thickness (Target 1-1.5 mils)	FAIL (4.65 – 5.83 mils)	PASS		
Adhesion (No separation from substrate)	PASS	PASS		

Indium-Zinc and Zinc-Nickel Alloys as Cadmium Brush Plating Replacements

Identified, evaluating, and initiating implementation activities for a Cd brush plating repair alternative

Coating	Coating Process Identification
Electroplated cadmium	Baseline 1
Vendor 1 zinc-nickel brush plating system	ZN-1
Vendor 2 zinc-nickel brush plating system	ZN-2
Vendor 3 zinc-nickel traditional brush plating system	ZN-3 (traditional)
Vendor 3 zinc-nickel specialized brush plating system	ZN-3 (specialized)
Vendor 2 indium-zinc brush plating system	IZ-1
Vendor 4 indium-zinc brush plating system	IZ-2

In-Zi and Zn-Ni Composition and Thickness

Coating	Target Composition (weight %)	Actual Composition (weight %)	Thickness (mil)
Baseline	Cd: 100	Cd: 100	0.54 ± 0.05
ZN-1	Zn: 92-80 Ni: 8-20	Zn: 88 ± 2 Ni: 12 ± 2	0.55 ± 0.04
ZN-2	Zn: 92-80 Ni: 8-20	Zn: 89 ± 2 Ni: 10 ± 1	0.61 ± 0.11
IZ-1	In: 70-60 Zn: 30-40	0.54	
IZ-2	In: 60-40 Zn: 60-40	In: 59 ± 8 Zn: 41 ± 8	0.65 ± 0.11
ZN-3 (specialized)	Zn: 92-80 Ni: 8-20	Zn: 88 ± 0.3 Ni: 12 ± 0.3	0.51 ± 0.04
ZN-3 (traditional)	Zn: 92-80 Ni: 8-20	Zn: 88 ± 0.6 Ni: 12 ± 0.6	0.50 ± 0.06

Indium-Zinc and Zinc-Nickel Testing Summary

Test		Cd (Baseline)	ZN-1	ZN-2	IZ-2	IZ-1	ZN-3 (Specialized)	ZN-3 (Traditional)
Adhesion		Pass	Marginal	Marginal	Pass	Pass	Pass	Pass
Resistance/Impedance	DC	0.88	0.89	0.27	0.15	0.95	0.55	0.54
(As-plated, prior to aging) , mΩ	1MHz	36	26	24	7.9	50	38	30
Resistance/Impedance	DC	7.54	20.78	15.18	Not tested	18.24	Not tested	Not tested
(As-plated, prior to						<u> </u>		
temperature cycling), mΩ	1MHz	8.41	21.16	16.39	Not tested	19.30	Not tested	Not tested
Resistance/Impedance	DC	3.6	5.3	172	0.45	88	3.7	5.6
(Aged), mΩ	1MHz	35	32	217	7.5	112	26	24
Resistance/Impedance	DC	0.85	3.0	5.4	Not tested	3.4	Not tested	Not tested
(Temperature cycled), mΩ	1kHz	1.0	3.2	5.5	Not tested	3.5	Not tested	Not tested
Corrosion Resistance	Scribed	9	9	8	Not tested	Too severe to evaluate	10	10
Salt Spray Rating	Unscribed	8	7	9	Not tested	3	10	10
Wear (500 Cycles)	COF	0.32 ± 0.06	0.20 ± 0.03	0.23 ± 0.12	Not tested	0.55 ± 0.17	Not tested	Not tested
wear (500 Cycles)	Ranking	3.0 ± 0.4	2.0 ± 0.0	2.3 ± 0.3	Not tested	4.3 ± 0.9	Not tested	Not tested
Ween (F 000 Cycles)	COF	0.44 ± 0.02	0.43 ± 0.07	0.45 ± 0.21	Not tested	0.66 ± 0.11	Not tested	Not tested
Wear (5,000 Cycles)	Ranking	4.5 ± 0	2.5 ± 0.4	3.3 ± 0.9	Not tested	5.0 ± 0	Not tested	Not tested
Whisker Growt	h	No whiskers present	No whiskers present	No whiskers present	Whisker present before testing	Whisker present at 2000 hrs	Not tested	Not tested
(for informational purpo	ses only)	No whiskers present	No whiskers present	No whiskers present	Whisker present before testing	Whisker present at 2000 hrs	Not tested	Not tested

Indium-Zinc and Zinc-Nickel Path Forward

Continue testing ZN-3 candidate

- ZN-3 (specialized) performed well in impedance and corrosion tests
- Further tests will include reparability and suitability to weapon system

Continue testing ZN-3 specialized apparatus

- Transition the ZN-3's specialized brush plating equipment for depot implementation
 - Equipment removes Cd and rust
- Conduct Cd Type II reparability testing

Removal of rust and Cd using the specialized brush plating equipment

Summary

- Regulations are becoming more stringent and needs for alternatives more imperative
- International regulations are driving U.S. regulations
 - Used for regulatory outlook prospectus
- Continuous improvement is essential to maintain compliance and ensure process or material sustainability
- Alternative materials are being considered for replacement
- AFRL is proactively investigating next-generation alternatives, where possible and defendable

Contacts

Elizabeth S. Berman, Ph.D.
USAF AFMC AFRL/RXSC
Pollution Prevention Group
Materials & Manufacturing Directorate
Air Force Research Laboratory
2179 12th St, Ste 122
WPAFB, OH 45433
Phone: (937) 656-5700
Elizabeth.Berman@wpafb.af.mil

Melissa Klingenberg, Ph.D.
Concurrent Technologies Corporation
100 CTC Drive
Johnstown, PA 15904
Phone: (814) 269-6415

E-mail: klingenb@ctc.com

Natasha Voevodin, Ph.D.
USAF AFRL/RXSC (UDRI)
Pollution Prevention Group
Materials & Manufacturing Directorate
Air Force Research Laboratory
2179 12th St, Ste 122
WPAFB, OH 45433
Phone: (937) 656-5699

E-mail: natasha.voevodin@wpafb.af.mil

BACK UP SLIDES

Short-Term Environmental Drivers

Environmental

- Upcoming EPA Aerospace Residual Risk Rule could establish stricter emissions standards for aerospace surface finishing operations
- Greenhouse gas emissions reduction, monitoring, and permitting requirements at EPA and DoD levels may add new compliance costs and concerns
- New emissions standards for hazardous air pollutants from boilers and incinerators may create a significant compliance burden

Occupational Safety and Health Administration (OSHA)

- Annual Federal Agency Targeting Inspection Program (FEDTARG) is focusing on specific DoD locations experiencing an elevated number of work-related injuries and illnesses
- Notices of Unsafe and Unhealthful Working Conditions have been issued to several USAF facilities over past 2 years
 - Unwelcome PR and additional compliance costs

Dichromate Sealer Replacement

Candidate 2B

Objective

 Identify, demonstrate/validate, and implement an alternative to sodium dichromate sealer for anodizing

Accomplishments

- Identified alternatives to sodium dichromate seal
- Evaluated alternative sealers through screening and performance tests
- Conducted a cost-benefit analysis
- Conducting additional testing requested by OO-ALC
- Conducting technology transfer activities

Typical Type II Anodizing Operation

Goal

- Cou

AFRL Goal

- Eliminate hexavalent chromium (Cr[VI]) emissions in response to:
 - o EO 13423 and EO 13514
 - DoD Memo "Minimizing the Use of Hexavalent Chromium" April 2009

How Project Responds to Goal

- Eliminates Cr(VI) usage in OO-ALC's anodizing process
 - Identifies and evaluates commercial sealer alternatives
 - Reduces ESOH concerns associated with Cr(VI) use
 - Collects and analyzes cost, material, environmental, and other process requirements
 - Updates military specification and Technical Orders to enable process improvements.

Candidates

Sealer	Coating Process Identification
Sodium dichromate solution, 5-9 oz/gal	Baseline 1
Boiling deionized water	Baseline 2
Unsealed	Baseline 3
Sodium dichromate solution, 50 parts per million (ppm)	Benchmark
Permanganate Seal	Candidate 1
Low Nickel Seal (with a hot water seal)	Candidate 2A

Low Nickel Seal

Chromium-Free Conversion Coatings for Zinc-Nickel

Objective

- Identify and evaluate a chromium-free conversion coating (CC) for the zinc-nickel (Zn-Ni) plating line at Ogden Air Logistics Center (OO-ALC)
 - o Replace trivalent chromium (Cr[III]) CC used on baseline
 - Should be applicable to all Zn-Ni processes in the USAF

Accomplishments

- Identified Cr-free Candidate 2-S1 as a promising replacement for Cr(III) baseline
- Completed quality, chemical composition, and extended (3,020-hour) ASTM B117
- Conducting hydrogen embrittlement and hydrogen reembrittlement tests

C-5 Bogie Beam – Targeted Component for Zn-Ni Plating

Goal

AFRL Goal

- Eliminate use of Cr(III) in response to:
 - o EO 13423 and EO 13514
 - DoD Memo "Minimizing the Use of Hexavalent Chromium" April 2009
 - ESOH concerns

How Project Responds to Goal

- Eliminates Cr(III) from Zn-Ni processing at OO-ALC
 - Collects cost, material, environmental, and other process requirements
 - Identifies commercially available and developmental conversion coatings suitable for Zn-Ni

Candidates

Coating Process	Conversion Coating Composition	Secondary Sealer	
Baseline	Cr(III) base	None	
Candidate 1-S	Permanganate base	Inorganic silicate	
Candidate 1	Permanganate base	None	
Candidate 2-S1	Fluorozirconate base	Organic silicate	
Candidate 2-S2	Fluorozirconate base	Inorganic silicate	
Candidate 2	Fluorozirconate base	None	
Candidate 3	Divalent Zn salt base	None	

Replacing Chromate Conversion Coating Used on Aluminum

Objective

 Identify and evaluate a chromium-free conversion coating (CFCC) for use on aluminum (AI) and AI-clad substrates at Oklahoma City Air Logistics Center (OC-ALC)

Accomplishments

- Performed quality, corrosion, and tape adhesion tests
- Performed additional corrosion testing with CFCCs applied at new parameters requested by OC-ALC
- Identified two candidates, candidates 1 and 3
- Reviewed results with OC-ALC and CFCC vendors

Chromate conversion coating tank used at OC-ALC

Goal

AFRL Goal

- Eliminate Cr[VI] emissions in response to:
 - o EO 13423 and EO 13514
 - DoD Memo "Minimizing the Use of Hexavalent Chromium" April 2009
 - ESOH concerns

How Project Responds to Goal

- Eliminates use of chromium in metal finishing and painting processes at OC-ALC
 - Identifies commercially available and developmental CFCCs suitable for Al

Candidates

Conversion Coating	Coating Process Identification
CCC, Cr(VI) conversion coating, vendor 1	Baseline 1
CCC, Cr(VI) conversion coating, vendor 2	Baseline 2
CFCC, water-based organic compound	Benchmark
CFCC, permanganate solution	Candidate 1
CFCC, inorganic fluoride	Candidate 2
CFCC, inorganic fluoride	Candidate 3

Aluminum CFCC Screening Test Results

OC-ALC process vs. "Modification 1" OC-ALC Process

Conversion Coating	Alloy	OC-ALC Processed Panels, Failure Point (>5 spots)	"Modification 1" OC-ALC Processed Panels, Failure Point (>5 spots)
	2024	48 Hours	
Baseline 1	5052	168+ Hours	
baselille 1	6061	168+ Hours	
	7075	168+ Hours	
	2024	48 Hours	
Baseline 2	5052	48-72 Hours	72-168+ Hours (5 pits on one panel at 48 hours, but then no more)
Daseille 2	6061	72-168 Hours	168+ Hours (5 pits on one panel at 48 hours, but then no more)
	7075	168+ Hours (1 failure at 72 hours)	168+ Hours
	2024	24 Hours	
Benchmark	5052	24 Hours	
Delicilliark	6061	24 Hours	
	7075	24 Hours	
	2024	24 Hours	24 Hours
Candidate 1	5052	168+ Hours	168+ Hours
Candidate 1	6061	168+ Hours	24-48 Hours
	7075	24 Hours	24 Hours
	2024	24 Hours	24 Hours
Candidate 2	5052	48 Hours	24 Hours
Candidate 2	6061	48 Hours	24 Hours
	7075	72-168 Hours	24 Hours
	2024	24 Hours	24 Hours
Condidate 2	5052	168+ Hours	48 Hours
Candidate 3	6061	168+ Hours	48 Hours
	7075	168+ Hours (1 failure at 168 hours	24-72 Hours

5 pits or less
were seen in
a total of 30
in ² (Pass)
5 to 7 pits
were seen in
a total of 30
in ² (Marginal
Fail)
7 or more pits
were seen in
a total of 30
in ² (Fail)

Distribution Statement A: Approved for public release; distribution is unlimited.

Next Generation Non-Line-of-Sight (NLOS) Coatings for Landing Gear Applications

S ROORCE RESEARCH LIBERTY OF THE STATE OF TH

Objective

 Utilize previously gathered coating data to select and evaluate electroplated hard chromium (EHC) coating alternatives for non-line-of-sight (NLOS) landing gear (LG) applications

Accomplishments

- Completed screening tests (quality, corrosion, wear) and identified two candidate coatings
- Performed a majority of performance tests evaluating the candidates on complex geometries and in stripping/re-plating maintenance scenarios

EHC Plating Line

Candidates

AFRL Goal

- Eliminate use of chromium in response to:
 - o EO 13423 and EO 13514
 - DoD Memo "Minimizing the Use of Hexavalent Chromium" April 2009

Goal

ESOH concerns

How Project Responds to Goal

- OEM and OO-ALC by 100%
 - o Examines technical performance and processing logistics
 - Evaluates cost feasibility

Conversion Coating	Coating Process Identification
Electroplated Hard Chromium	Baseline 1
Cobalt-Phosphorus	Benchmark
Nickel-Phosphorus w/Silicon Carbide	Candidate 1
Cobalt-Phosphorus w/Silicon Carbide	Candidate 2

Ionic Liquids Aluminum Electroplating

Objective

 Evaluate ionic liquid-based electrodeposition of aluminum as alternative to AlumiPlate[™] and cadmium (Cd) plating

Accomplishments

- Evaluated multiple ionic liquid electroplating systems
- Demonstrated aluminum plating from ionic liquids and tested coating quality
- Confirmed need for further technology development
- Identified and evaluated critical plating variables
- Confirmed coating viability on multiple substrates

CTC-produced, aluminum-plated 4130 steel coupon: adherent, bright, and smooth

Goal

AFRL Goal

- Eliminate Cd and other toxic materials in response to:
 - EO 13423 and EO 13514
 - ESOH concerns

How Project Responded to Goal

- Validated a technology that can reduce Cd in coating operations and reduce toluene use in aluminum plating
 - Evaluated several ionic liquid electroplating technologies for Al plating
 - Provided groundbreaking ionic liquid-deposited coating data related to DoD requirements

Candidates

Conversion Coating	Coating Process Identification
Electroplated Aluminum, toluene bath	Baseline 1
Ion Vapor Deposited Aluminum	Baseline 2
Electroplated Aluminum, ionic liquid bath	Candidate 1
Electroplated Aluminum alloy, ionic liquid bath	Candidate 2
Electroplated Aluminum, ionic liquid bath	СТС