

Fundamentos de Matemática Lista 5 - 16/05/2024

A consulta é livre, mas você deve entregar suas soluções escritas de próprio punho e mencionar as fontes de consulta.

- 95. Prove que, para quaisquer sentenças lógicas p e q, são verdadeiras as seguintes implicações:
 - (a) $p \implies (p \lor q)$
 - (b) $(\mathfrak{p} \wedge \mathfrak{q}) \Longrightarrow \mathfrak{p}$
- **96.** Prove que, se $x^2 + x 1 = 0$, então $x^3 2x + 1 = 0$.
- 97. Determine se cada uma das sentenças a seguir é verdadeira ou falsa, e construa sua negação.
 - (a) Existe um número real x tal que $x^2 = -1$.
 - (b) Para todo número inteiro n, vale $n^2 > n$.
 - (c) Para todo número real x, tem-se x > 1 ou $x^2 \le 1$.
 - (d) Para todo número real x existe um número natural n tal que n > x.
 - (e) Existe um número natural $\mathfrak n$ tal que , para todo número real $\mathfrak x$, tem-se $\mathfrak n > \mathfrak x$.
- 98. Prove cada uma das seguintes propriedades dos conjuntos, considerando um certo conjunto universo U.
 - (a) $A \cup \emptyset = A \in A \cap \emptyset = \emptyset$.
 - (b) $A \subset B$ se, e somente se, $A \cup B = B$.
 - (c) $A \subset B$ se, e somente se, $A \cap B = A$.
 - (d) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - (e) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
 - $(\mathrm{f})\ A\cup A^c=U,\,A\cap A^c=\emptyset,\,\emptyset^c=U,\,U^c=\emptyset.$
 - (g) $(A^c)^c = A$.
 - (h) $A \subset B$ se, e somente se, $B^c \subset A^c$.
 - $(\mathrm{i})\ (A\cup B)^c=A^c\cap B^c.$
 - (j) $(A \cap B)^c = A^c \cup B^c$.
- 99. Em cada um dos itens seguintes, determine se a afirmação é verdadeira ou falsa. Justifique.
 - (a) Se $x \in A$ e $A \subset B$, então $x \in B$.
 - (b) Se $A \not\subset B$ e $B \subset C$, então $A \not\subset C$.
 - (c) Se $A \not\subset B$ e $B \not\subset C$, então $A \not\subset C$.
 - (d) Se $x \in A$ e $A \not\subset B$, então $x \notin B$.
 - (e) Se $A \subset B$ e $x \notin B$, então $x \notin A$.
- 100. Para quaisquer conjuntos A, B, C, D prove que
 - (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - (c) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$
 - (d) $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$
- 101. Prove que no item (d) da questão anterior a inclusão não pode ser substituída por uma igualdade, ou seja, que não necessariamente se tem $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$.
- 102. Qual é a negação da proposição "Quem não tem cão caça com gato"?
- 103. Se A é o conjunto das palavras da língua portuguesa e B é o conjunto dos números naturais, a regra que associa a cada palavra o seu número de letras define uma função de A em B?

- 104. Se A é o conjunto de todas as pessoas que já viveram no planeta terra, a regra que associa a cada pessoa x uma pessoa y tal que x e y são irmãos define uma função de A em B?
- 105. Se A é um conjunto com 3 elementos e B é um conjunto com 4 elementos, quantas funções distintas existem com domínio A e contradomínio B?
- **106.** Função composta. Dadas as funções $f: A \to B$ e $g: C \to D$, se $B \subset C$ definimos a função composta $g \circ f: A \to D$ pela regra $g \circ f(x) = g(f(x))$, $\forall x \in A$. Prove que se $f: A \to B$, $g: B \to C$ e $h: C \to D$ são funções, então $h \circ (g \circ f) = (h \circ g) \circ f$.
- 107. Defina as funções reais de variável real f e g pelas regras $f(x) = x^2$ e $g(x) = x^2 1$. Determine as funções $f \circ f, f \circ g, g \circ f, g \circ g$. Determine o conjunto $\{x \in \mathbb{R} \mid f \circ g(x) = g \circ f(x)\}$.
- 108. Em cada um dos itens a seguir defina uma função $f: \mathbb{R} \to \mathbb{R}$ cuja imagem seja o conjunto indicado.
 - (a) $\operatorname{Im} f = \mathbb{R}$
 - (b) Im $f = \mathbb{R}^+$
 - (c) Im $f = \mathbb{R} \mathbb{Z}$
 - (d) $\operatorname{Im} f = \mathbb{Z}$
- 109. Diz-se que uma função $f: D \to C$ é *injetiva* se ela satisfaz a seguinte condição:

Para todos os $x_1, x_2 \in D$, se $x_1 \neq x_2$ então $f(x_1) \neq f(x_2)$.

Quando uma função $f: D \to C$ não é injetiva?

110. Diz-se que uma função f: D \rightarrow C é sobrejetiva se ela satisfaz a seguinte condição:

Para todo $b \in C$, existe $a \in D$ tal que f(a) = b.

Quando uma função $f: D \to C$ não é sobrejetiva?

111. Diz-se que uma função $f: D \to C$ é crescente se ela satisfaz a seguinte condição:

Para todos os $x_1, x_2 \in D$, se $x_1 < x_2$ então $f(x_1) < f(x_2)$.

Quando uma função $f \colon D \to C$ não é crescente?

112. Diz-se que uma função f: D \rightarrow C é limitada se ela satisfaz a seguinte condição:

Existe $M \in \mathbb{R}$ tal que para todo $x \in D$ tem-se $|f(x)| \leq M$.

Quando uma função $f: D \to C$ não é limitada?

- 113. Determine o maior subconjunto D de \mathbb{R} para o qual a regra $f(x) = \sqrt{x}$ define uma função de D em \mathbb{R} . Qual é a imagem dessa função?
- **114.** Prove que $\sqrt{55 8\sqrt{39}} + \sqrt{103 16\sqrt{39}} = 4$.
- 115. Seja E o plano euclidiano. Uma função $f\colon E\to E$ é chamada de isometria quando, para quaisquer $P,Q\in E$, a distância entre os pontos f(P) e f(Q) é igual à distância entre P e Q. Seja ABC um triângulo qualquer e sejam $f,g\colon E\to E$ duas isometrias tais que $f(A)=g(A), \ f(B)=g(B)$ e f(C)=g(C). Prove que f=g.
- 116. Seja E o plano euclidiano. Dada uma reta r em E, definimos a reflexão em relação a r como a função $R_r \colon E \to E$ tal que para todo $A \in E$, $A \not\in r$, a mediatriz do segmento de extremos $A \in R_r(A)$ é a reta r, e $R_r(A) = A$ quando $A \in r$.
 - (a) Prove que R_r está bem definida para toda reta r em E.
 - (b) Prove que toda reflexão é uma bijeção.
 - (c) Qual é a função inversa de uma reflexão?
 - (d) Prove que toda reflexão é uma isometria.
 - (e) Descreva a função composta de duas reflexões.
- 117. Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ duas funções tais que g(f(x)) = x para todo $x \in \mathbb{R}$. Prove que f é injetiva e g é sobrejetiva, mas que f não necessariamente é a função inversa de g.
- 118. Prove que, se p > 3 é primo, então p^2 deixa resto 1 quando dividido por 12.
- 119. Prove que não é possível criar um programa de computador que ganhe sempre no xadrez.