✓ 1- Importing the packages

16281

```
# @title 1- Importing the packages
import numpy as np # for numerical operations
import pandas as pd # for data manipulation and analysis
import matplotlib.pyplot as plt # for data visualization
from sklearn.model_selection import train_test_split # for data splitting
from sklearn.preprocessing import MinMaxScaler, StandardScaler # for feature scaling
from sklearn.svm import SVC # for Support Vector Classifier
from sklearn.metrics import accuracy_score,confusion_matrix, classification_report # for evaluation
import seaborn as sns # for statistical graphics
from sklearn.tree import DecisionTreeClassifier #to build the decision tree model
from sklearn.tree import plot_tree #for visualizing decision tree models
from sklearn.neighbors import KNeighborsClassifier #estimation of the Knn model and outcome report
```

2- Importing the selected dataset and visualizing the dataset contents

```
# @title 2- Importing the selected dataset and visualizing the dataset contents
# Define column names
column_names = [
    "age", "workclass", "fnlwgt", "education", "education_num",
    "marital_status", "occupation", "relationship", "race", "sex",
    "capital_gain", "capital_loss", "hours_per_week", "native_country", "income"
]
# Load the training dataset
train_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
train_data = pd.read_csv(train_url, header=None, names=column_names, na_values=" ?", skipinitialspace=True)
# Load the testing dataset
test_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
test_data = pd.read_csv(test_url,
                       header=None, # No header row in the file, as column names are not provided in the file
                       names=column_names, # Assign the custom column names to the DataFrame from the `column_names` list
                        na_values=" ?", # "?" in the dataset are missing values
                        skipinitialspace=True, # Ignore any extra spaces after delimiters (commas) when parsing the file
                        skiprows=1 # Skip the first row in the file (metadata)
# Check the results
print("The number of train data:")
print(train_data.shape[0])
print("\nThe number of test data:")
print(test_data.shape[0])
print("\n_
test_data.head()

→ The number of train data:
     32561
     The number of test data:
```

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss
0	25	Private	226802	11th	7	Never-married	Machine- op-inspct	Own-child	Black	Male	0	0
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male	0	0
2	28	Local-gov	336951	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male	0	0
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0
4	18	?	103497	Some- college	10	Never-married	?	Own-child	White	Female	0	0
4 (

→ 3a- Train Data

@title 3a- Train Data

 $\mbox{\ensuremath{\mbox{\#}}}$ Count to check if there are null values in the column train_data.isna().sum()

	0
age	0
workclass	0
fnlwgt	0
education	0
education_num	0
marital_status	0
occupation	0
relationship	0
race	0
sex	0
capital_gain	0
capital_loss	0
hours_per_week	0
native_country	0
income	0
dhinai intG1	

train_data

_		age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_l
	0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	
					•••								
3	32556	27	Private	257302	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Female	0	
3	32557	40	Private	154374	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	Male	0	
3	32558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	
3	32559	22	Private	201490	HS-grad	9	Never-married	Adm- clerical	Own-child	White	Male	0	
4			Self_emn_				Married-civ-	Fver-					•

count to check if there are null values in the column train_data.isna().sum()

Display a summary of the DataFrame train_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns):

Data	COIUMIIS (COCAI	1) COTUMNIS).									
#	Column	Non-Null Count	Dtype								
0	age	32561 non-null	int64								
1	workclass	30725 non-null	object								
2	fnlwgt	32561 non-null	int64								
3	education	32561 non-null	object								
4	education_num	32561 non-null	int64								
5	marital_status	32561 non-null	object								
6	occupation	30718 non-null	object								
7	relationship	32561 non-null	object								
8	race	32561 non-null	object								
9	sex	32561 non-null	object								
10	capital_gain	32561 non-null	int64								
11	capital_loss	32561 non-null	int64								
12	hours_per_week	32561 non-null	int64								
13	native_country	31978 non-null	object								
14 income 32561 non-null objec											
<pre>dtypes: int64(6), object(9)</pre>											
memory usage: 3.7+ MB											

Count the occurrences of each class (<=50K, \gt 50K) in the 'income' column train_data.income.value_counts()

dtunas int@4

Visualize income distribution for training data

plt.show()

sns.countplot(x='income', data=train_data)

→ 3b- Test Data

· 	0
age	0
workclass	963
fnlwgt	0
education	0
education_num	0
marital_status	0
occupation	966
relationship	0
race	0
sex	0
capital_gain	0
capital_loss	0
hours_per_week	0
	274
income	0

test_data

-		_
		_
-	→	4

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital
0	25	Private	226802	11th	7	Never-married	Machine- op-inspct	Own-child	Black	Male	0	
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male	0	
2	28	Local-gov	336951	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male	0	
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	
4	18	None	103497	Some- college	10	Never-married	None	Own-child	White	Female	0	
16276	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	Female	0	
16277	64	None	321403	HS-grad	9	Widowed	None	Other-relative	Black	Male	0	
16278	38	Private	374983	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	Male	0	
16279	44	Private	83891	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	Male	5455	
16280	35	Self-emp- inc	182148	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
16281 rd	ows ×	15 columns										•

```
test_data['income'] = test_data['income'].replace('<=50K.', '<=50K')
test_data['income'] = test_data['income'].replace('>50K.', '>50K')
```

Visualize income distribution for test data
sns.countplot(x='income', data=test_data)
plt.show()


```
# Visualize age distribution
plt.figure(figsize=(8, 6))
sns.histplot(train_data['age'], bins=20, kde=True, color='coral')
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```


 $\label{eq:sns.countplot} sns.countplot(x='income', hue='sex', data=train_data) \\ plt.show()$

In the following step we combine training and test data to perform preprocessing, which ensures consistency and prevents "data leakage" between the training and testing stages

4- Data preprocessing

```
# @title 4- Data preprocessing
#Combine the Training and Test Data
combined_data = pd.concat([train_data, test_data], ignore_index=True)
combined_data.head(4)
```


combined_data.shape[0]

→ 48842

combined_data.isna().sum() # count to check if there are null values in the column

the results show three class with null "missing" values, to fix this we fill the missing values with the Most Frequent Value

```
# Fill missing values in 'workclass'
mode_value_workclass = combined_data['workclass'].mode()[0]
combined_data['workclass'] = combined_data['workclass'].fillna(mode_value_workclass)

# Fill missing values in 'occupation'
mode_value_occupation = combined_data['occupation'].mode()[0]
combined_data['occupation'] = combined_data['occupation'].fillna(mode_value_occupation)

# Fill missing values in 'native-country'
mode_value_native_country = combined_data['native_country'].mode()[0]
combined_data['native_country'] = combined_data['native_country'].fillna(mode_value_native_country)

combined_data.isna().sum() # check if there are still null values in the column
```

_		
₹		0
	age	0
	workclass	0
	fnlwgt	0
	education	0
	education_num	0
	marital_status	0
	occupation	0
	relationship	0
	race	0
	sex	0
	capital_gain	0
	capital_loss	0
	hours_per_week	0
	native_country	0

income

combined_data

₹		age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital
	0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
	1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
	2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
	3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
	4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	
	48837	39	Private	215419	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	Female	0	
	48838	64	Private	321403	HS-grad	9	Widowed	Prof- specialty	Other-relative	Black	Male	0	
	48839	38	Private	374983	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	Male	0	
	48840	44	Private	83891	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	Male	5455	
	48841	35	Self-emp- inc	182148	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
•													•

Encoding converts non-numeric categorical data (e.g., 'Male', 'Female') into a numerical format that the model can understand while preserving the information about the categories. Here, **One-Hot Encoding** is used for nominal data to avoid introducing artificial ordering.

#convert all categorical columns to numeric combined_data[categ_columns] = combined_data[categ_columns] = combined_data[categ_columns].apply(lambda x: pd.factorize(x)[θ])

#print head of data after convert
combined_data

_		age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss
	0	39	0	77516	0	13	0	0	0	0	0	2174	0
	1	50	1	83311	0	13	1	1	1	0	0	0	0
	2	38	2	215646	1	9	2	2	0	0	0	0	0
	3	53	2	234721	2	7	1	2	1	1	0	0	0
	4	28	2	338409	0	13	1	3	2	1	1	0	0
	48837	39	2	215419	0	13	2	3	0	0	1	0	0
	48838	64	2	321403	1	9	6	3	5	1	0	0	0
	48839	38	2	374983	0	13	1	3	1	0	0	0	0
	48840	44	2	83891	0	13	2	0	3	2	0	5455	0
	48841	35	5	182148	0	13	1	1	1	0	0	0	0
4	8842 rd	ows ×	15 columns										•

```
# Visualize income distribution
sns.countplot(x='income', data=combined_data)
plt.show()
```


Apply Normalization since SVM relies on distance to define margins, and k-NN calculates distances to identify neighbors making them sensitive to feature scales.

```
# Separate features and target
X_combined_data = combined_data.drop('income', axis=1)
y_combined_data = combined_data['income']

# Apply Min-Max Normalization to features
scaler = MinMaxScaler()
X_combined_data_normalized = scaler.fit_transform(X_combined_data)

# Convert back to DataFrame for better readability
combined_data= pd.DataFrame(X_combined_data_normalized, columns=X_combined_data.columns)
combined_data = combined_data.join(y_combined_data)
```

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capita]
0	0.301370	0.000000	0.044131	0.000000	0.800000	0.000000	0.000000	0.0	0.00	0.0	0.021740	
1	0.452055	0.142857	0.048052	0.000000	0.800000	0.166667	0.076923	0.2	0.00	0.0	0.000000	
2	0.287671	0.285714	0.137581	0.066667	0.533333	0.333333	0.153846	0.0	0.00	0.0	0.000000	
3	0.493151	0.285714	0.150486	0.133333	0.400000	0.166667	0.153846	0.2	0.25	0.0	0.000000	
4	0.150685	0.285714	0.220635	0.000000	0.800000	0.166667	0.230769	0.4	0.25	1.0	0.000000	
4883	0.301370	0.285714	0.137428	0.000000	0.800000	0.333333	0.230769	0.0	0.00	1.0	0.000000	
4883	0.643836	0.285714	0.209130	0.066667	0.533333	1.000000	0.230769	1.0	0.25	0.0	0.000000	
4883	0.287671	0.285714	0.245379	0.000000	0.800000	0.166667	0.230769	0.2	0.00	0.0	0.000000	
48840	0.369863	0.285714	0.048444	0.000000	0.800000	0.333333	0.000000	0.6	0.50	0.0	0.054551	
4884	0.246575	0.714286	0.114919	0.000000	0.800000	0.166667	0.076923	0.2	0.00	0.0	0.000000	
48842	rows × 15 co	lumns										
4												

Separate the Combined Data Back Into Train and Test

```
# Get the original number of rows for the training data
train_size = len(train_data)
```

Separate the combined data back into train and test sets
train_data_separated = combined_data.iloc[:train_size]
test_data_separated = combined_data.iloc[train_size:]

Check the results
print("Train Data Separated:")
print(train_data_separated.shape[0])
print("\nTest Data Separated:")
print(test_data_separated.shape[0])

→ Train Data Separated: 32561

__

Test Data Separated: 16281

Separate features and target

X_train = train_data_separated.drop('income', axis=1)

y_train = train_data_separated['income']

X_test = test_data_separated.drop('income', axis=1)

y_test = test_data_separated['income']

test_data.head()

_		age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss
	0	25	Private	226802	11th	7	Never-married	Machine- op-inspct	Own-child	Black	Male	0	0
	1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male	0	0
	2	28	Local-gov	336951	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male	0	0
	3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0
	4	18	None	103497	Some- college	10	Never-married	None	Own-child	White	Female	0	0
	4 (•

```
# Initialize the SVM classifier with default parameters
SVM_classifier = SVC()
# initialize SVM classifier
SVM_classifier = SVC(kernel='rbf')
Training the SVM Model
# X_train represent the training features, and y_train represent the training labels.
# The initialized SVM classifier is 'SVM_classifier'
# Train the SVM classifier using the training data
SVM_classifier.fit(X_train, y_train)
<del>_</del>
      ▼ SVC ① ?
     SVC()
Testing and Evaluating the SVM Model
# Make predictions using the test data
y_pred_svm = SVM_classifier.predict(X_test)
# Calculate the accuracy
accuracy = accuracy_score(y_test, y_pred_svm)
print("Accuracy:", accuracy)
# Make a confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred_svm)
# Plot confusion matrix
plt.figure(figsize=(5,3))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues")
plt.title("Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
Accuracy: 0.8483508384005897
                       Confusion Matrix
                                                          10000
                   11755
                                         680
         0
                                                          8000
      True Label
                                                          6000
                                                          4000
                    1789
                                        2057
                                                          2000
                      0
                                          1
                         Predicted Label
# Evaluating the model
print(confusion_matrix(y_test, y_pred_svm)) # confusion matrix
                                                   _\n")
print(classification_report(y_test, y_pred_svm)) # classification report
→ [[11755 680]
      [ 1789 2057]]
                   precision
                                recall f1-score
                                                   support
                        0.87
                                  0.95
                                            0.90
                                                     12435
                0
```

@title 5- Setting Up the SVM Model

0.75

accuracy

0.53

0.62

0.85

3846 16281

```
macro avg 0.81 0.74 0.76 16281
weighted avg 0.84 0.85 0.84 16281
```

Based on the provided classification report: the model shows very high precision and recall for class 0, indicating the instances of that class are reliably set. The recall for class 1 is appreciably worse, hinting toward undetected instances. Although the accuracy is very good at 84%, further investigation of the balance between precision and recall or possible strategies to improve the performance.

6- Setting Up the Decision Tree Model

```
# @title 6- Setting Up the Decision Tree Model
# perform training with entropy
# Decision tree with entropy
clf = DecisionTreeClassifier(criterion = "entropy", random_state = 42,max_depth = 4, min_samples_leaf =5)
# Fit the model
clf.fit(X_train, y_train)

DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy', max_depth=4, min_samples_leaf=5, random_state=42)
```

Training the Decision Tree Model

```
# Predictions on the test set
y_pred = clf.predict(X_test)
# Confusion matrix and performance metrics
cm = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
print("Confusion Matrix:\n", cm)
print("Accuracy:", accuracy)
print("Classification Report:\n", report)
→ Confusion Matrix:
      [[11804
               631]
      [ 1896 1950]]
     Accuracy: 0.8447884036607088
     Classification Report:
                    precision
                                 recall f1-score
                                                    support
                0
                        0.86
                                  0.95
                                            0.90
                                                     12435
                                                      3846
                1
                        0.76
                                  0.51
                                            0.61
                                            0.84
         accuracy
                                                     16281
                        0.81
                                  0.73
                                            0.76
                                                     16281
        macro avg
     weighted avg
                        0.84
                                  0.84
                                            0.83
                                                     16281
```

Testing and Evaluating the Decision Tree Model

```
# Create a heatmap for the confusion matrix
plt.figure(figsize=(7, 5))
sns.heatmap(cm, annot=True, fmt='d', cmap='Greens', linewidths=0.5, linecolor='black')

# Add labels and title
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')

# Display the plot
plt.show()
```


Plot the decision tree
plt.figure(figsize=(15, 7)) # Adjust the size as needed
plot_tree(clf, feature_names=X_train.columns, class_names=['income_<=50K', 'income_>50K'], filled=True, rounded=True)
Add title
plt.title('Decision Tree Visualization')
Display the plot
plt.show()

Decision Tree Visualization

Based on the provided classification report: the model shows the overall accuracy is strong, with high accuracy for class 0 but struggles with classifying 1 (many False Negatives)

→ 7- Setting Up the KNN Model

```
# @title 7- Setting Up the KNN Model
knn = KNeighborsClassifier(n_neighbors=7)
knn.fit(X_train, y_train)
# Predictions on the test set
y_pred_knn = knn.predict(X_test)
# Confusion matrix and performance metrics
cm = confusion_matrix(y_test, y_pred_knn)
accuracy = accuracy_score(y_test, y_pred_knn)
report = classification_report(y_test, y_pred_knn)
print("Confusion Matrix:\n", cm)
print("Accuracy:", accuracy)
print("Classification Report:\n", report)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred_knn)
print("Accuracy:", accuracy)
# Create a confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred_knn)
# Plot confusion matrix
plt.figure(figsize=(5, 3))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Reds")
plt.title("Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
→ Confusion Matrix:
      [[11298 1137]
      [ 1657 2189]]
     Accuracy: 0.8283889195995332
     Classification Report:
                    precision
                                 recall f1-score
                                                    support
                        0.87
                                  0.91
                                            0.89
                                                     12435
                0
                1
                        0.66
                                  0.57
                                            0.61
                                                      3846
                                            0.83
                                                     16281
         accuracy
```