Overview of process to build a model

Data **imputation**

- Radom Forest
- •KNN
- transformation
 - * ONLY for the requirement of Linearity or normality

(optional)

power

Feature selection /reduction

- Boruta
- PCA

Data Balancing

- •SMOTE
- •ROSE
- oversampling

Model

- Regression statistical model
- •SVM
- Random forest
- Naïve Bayse etc..

Training set

Data split

Test set

Literature review

High performance with..

- Boruta: Unsampling
- PCA: Unsampling, Oversampling

Feature selection vs. Data sampling which one should be first?

Figure 5 Summary of results obtained on the simulated data. Green and red color shading denote good and poor performance of the classifiers, respectively. Upwards and downwards trending arrows and the symbol \approx denote improved, deteriorated or similar performance of the classifier when comparing SMOTE or adjusted classification threshold (CO) with the uncorrected analysis (NC).

Feature selection should be done before Sampling(e.g. SMOTE)

- Classifier could be biased by minority group
- High dimensional data make highly correlated balancing result

Results: Linear / Logistic Regression after F. selection

Results: Machine Learning Algorithm after F.selection

Confusion Matrix: Log. Regression

Definition: Consider a semi conductor for faulty detection

1 True = Failpredicted class -1 False = Pass Positive Negative -1 total actual / observed Positive 1 TP FN class Negative -1 FP TN total 314

	RF_Rose_Boruta_Log.Reg	KNN_Rose_Boruta_Log.Reg
Faulty equipment and positive tested (TP)	252	283
Faulty equipment but negative tested - Type II error (FN)	41	10
Good quality equipment but positive tested - Type I error (FP)	10	15
Good quality equipment and negative tested		
(TN)	11	6

Confusion Matrix: Log. Regression

Summary

Parameter	PCA		Boruta	
	SVM	Naïve Bayes	Logistic Regression	Logistic Regression
AUC	0.89	0.78	0.78	0.73
ACCURACY	0.92	0.93	0.84	0.92
SENSITIVITY	0.93	0.95	0.86	0.84
SPECIFCITY	0.85	0.62	0.52	0.29
Error I	3	8	41	23
Error II	21	14	10	15
Best Predictive	1º	2º	3º	49
Model	1	2-	3-	-
Best Business	49	3º	2º	19
Model	•			-
Conclusion	Difficult to implement	Difficult to implement	A lot of semiconductors are discarded despite of being OK. Higher costs but less risk.	It is not statistically the best model. Fewer working semiconductors are discarded but has more risk.

htu.

Good Practices learnt

Programming:

- ✓ Naming convention and consistency.
- ✓ Saving intermediate outputs for reusability.
- ✓ Switching steps and sequences for improving results.
- ✓ Segregation of scripts for readability and reusability.
- ✓ Computer power availability
- ✓ How to handle imbalanced dataset
- ✓ Effect of each data handling techniques to imbalanced dataset
- ✓ Practice with various classifiers