Neural Network Basics

TOTAL POINTS 10

1. What does a neuron compute?

1 point

- A neuron computes the mean of all features before applying the output to an activation function
- A neuron computes a function g that scales the input x linearly (Wx + b)
- A neuron computes a linear function (z = Wx + b) followed by an activation function
- A neuron computes an activation function followed by a linear function (z = Wx + b)
- 2. Which of these is the "Logistic Loss"?

1 point

$$\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid$$

$$\bigcirc \; \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid^2$$

$$\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = max(0,y^{(i)}-\hat{y}^{(i)})$$

$$\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 - y^{(i)})\log(1 - \hat{y}^{(i)}))$$

Due Mar 9, 3:59 AM EDT

3.	Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?	1 point
	x = img.reshape((32*32,3))	
	x = img.reshape((1,32*32,*3))	
	x = img.reshape((3,32*32))	
	x = img.reshape((32*32*3,1))	
4.	Consider the two following random arrays "a" and "b":	1 point
	1 a = np.random.randn(2, 3) # a.shape = (2, 3) 2 b = np.random.randn(2, 1) # b.shape = (2, 1) 3 c = a + b	
	What will be the shape of "c"?	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	c.shape = (3, 2)	
	c.shape = (2, 3)	
	c.shape = (2, 1)	

5.	Consider the two following random arrays "a" and "b": 1 a = np.random.randn(4, 3) # a.shape = (4, 3) 2 b = np.random.randn(3, 2) # b.shape = (3, 2) 3 c = a*b		1 point
	What will be the shape of "c"?		
	c.shape = (4,2)		
		"1	
	The computation cannot happen because the sizes don't match. It's going to be "Error c.shape = (4, 3)	·	
6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What of X?	is the dimension	1 point
	\bigcirc $(m,1)$		
	$\bigcirc \ (n_x,m)$		
	$\bigcirc \ (m,n_x)$		
	\bigcirc $(1,m)$		

7.	Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an elementwise multiplication.	1 point
	Consider the two following random arrays "a" and "b":	
	1 a = np.random.randn(12288, 150) # a.shape = (12288, 150) 2 b = np.random.randn(150, 45) # b.shape = (150, 45) 3 c = np.dot(a.b)	
	What is the shape of c?	
	c.shape = (150,150)	
	c.shape = (12288, 45)	
	c.shape = (12288, 150)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
8.	Consider the following code snippet:	1 point
	1 # a.shape = (3,4) 2 # b.shape = (4,1)	
	3 4 * for i in range(3): 5 * for j in range(4): 6 c[i][i] = a[i][i] + b[i]	
	How do you vectorize this?	
	c = a.T + b.T	
	C = a + b.T	
	c = a.T + b	
	○ c=a+b	

Neural Network Basics

Due Mar 9, 3:59 AM EDT

9. Consider the following code:

```
1 a = np.random.randn(3, 3)
2 b = np.random.randn(3, 1)
3 c = a*b
```

What will be c? (If you're not sure, feel free to run this in python to find out).

- This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)
- 10. Consider the following computation graph.

1 point

1 point