solution to the ODE y'=1-2ty=F(t,y)=eq. (35)To find the initial condition y(0), we can take eq. (33) where $y(t)=\exp(-t^2)\int_0^t \exp(s^2)\,ds$ and set t=0.

Problem 9 tells us that Dawson's integral is a

This gives us. $y(0) = \exp(-0^2) \int_0^\infty \exp(s^2) ds = e^{\circ} \cdot 0 = 1 \cdot 0 = 0$ So the initial condition is y(0) = 0 when solving the ODE. To find an explicit expression for $y^{(k+1)}$ in terms of the

Value $y^{(k)}$ $t^{(k)}$ and Δt we use the trapezoidal rule: $y^{(k+1)} = y^{(k)} + \frac{\Delta t}{2} (f(t^{(k)}, y^{(k)}) + f(t^{(k+1)}, y^{(k+1)}))$. eq. (36)

First, we substitute f(t,y) = 1-2ty into the trapezoidal rule:

First, we substitute
$$f(t,y) = 1-2ty$$
 into the trapezoidal rule $y^{(k+1)} = y^{(k)} + \frac{\Delta t}{2} ((1-2t^{(k)}y^{(k)}) + (1-2t^{(k+1)}y^{(k+1)}))$
then we simplify $= y^{(k)} + \frac{\Delta t}{2} (2-2t^{(k)}y^{(k)} - 2t^{(k+1)}y^{(k+1)})$

 $= y^{(K)} + \frac{\Delta t}{2}(2) + \frac{\Delta t}{2}(-2t^{(K)}y^{(K)}) + \frac{\Delta t}{2}(-2t^{(K+1)}y^{(K+1)})$ $= y^{(K)} + \Delta t - t^{(K)}y^{(K)}\Delta t - t^{(K+1)}y^{(K+1)}\Delta t$

Then, we move all the terms that have $y^{(K+1)}$ to one side: $y^{(K+1)} + t^{(K+1)} y^{(K+1)} \Delta t = y^{(K)} + \Delta t - t^{(K)} y^{(K)} \Delta t$

$$y^{(k+1)} \left(1 + t^{(k+1)} \Delta t\right) = y^{(k)} + \Delta t - t^{(k)} y^{(k)} \Delta t$$
Then we isolate $y^{(k+1)}$ by dividing both sides by $(1 + t^{(k+1)} \Delta t)$:
$$y^{(k+1)} = \frac{y^{(k)} + \Delta t - t^{(k)} y^{(k)} \Delta t}{1 + t^{(k+1)} \Delta t}$$

Then we factor out y (k+1):