中国计量大学 2021~2022 学年第_一_学期

《概率论与数理统计 A》课程

试卷 (A) 参考答案及评分标准

开课二级学院:理学院,学生班级:20工试1-4等 教师: 邹海雷等

一、填空题(36分)

1、
$$\frac{1}{5}$$
; 2、0.75; 3. 一定 4. $\frac{7}{11}$ 5. 样本容量 6、25. 6 7、 $\frac{2n}{15}$ 8、 $\theta = \frac{\overline{X}}{\overline{X} - c}$

9,
$$(0.038,0.507)_{10}$$
, $\frac{1}{3}$ 11, $f(y) = \begin{cases} \frac{1}{3}, 0 < y < 3 \\ 0, y < 0 \end{cases}$ 12. $-\frac{1}{2}$

二、计算题(47分)

1、

X	3	2	1
P	0. 1	0. 3	0.6

-----4 分

$$F(x) = \begin{cases} 0, x < 1 \\ 0.6, 1 \le x < 2 \\ 0.9, 2 \le x < 3 \\ 1, x \ge 3 \end{cases}$$
8 $\frac{1}{x}$

2、

$$f(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2}{\pi} \sqrt{1-x^2}, -1 < x < 1$$
4 \(\frac{\partial}{2}{\partial}\)

$$EX = \iint_{x^2 + y^2 \le 1} x \frac{1}{\pi} dx dy = 0$$

$$EY = \iint_{x^2 + y^2 \le 1} y \frac{1}{\pi} dx dy = 0$$

$$EXY = \iint_{x^2 + y^2 \le 1} xy \frac{1}{\pi} dx dy = 0$$

3,
$$E(X) = 0$$
; $E(Y) = 0$; $E(XY) = 0$

$$Cov(X,Y) = 0$$

$$\rho = 0$$
 ······················4 \Re

4、解:由于若不接受这批玻璃纸需作退货处理,这必须慎重。故取 $\mu < 65$ 作为备择假设,从而所建立的假设为:

$$H_0: \mu \ge 65, \qquad H_1: \mu < 65$$
 ············ 1 分

现由样本求得

故应拒绝
$$H_0$$
,不能接受这批玻璃纸。 ·········6 分

5、解:

$$(2) F(x) = \begin{cases} 0, & x \le 0 \\ \frac{x^2}{4}, 0 < x \le 2 \\ 1, & x > 2 \end{cases}$$

(3)
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \frac{4}{3}$$

$$= \begin{cases} \int_{-\infty}^{+\infty} x e^{-x} (z - x) e^{-(z - x)} dx, z > 0 \\ 0, z \le 0 \end{cases}$$
4 \(\frac{\frac{1}{2}}{2}\)

$$= \begin{cases} \frac{z^3 e^{-z}}{3!}, z > 0 \\ 0, z \le 0 \end{cases}$$
6 $\frac{1}{2}$

三、应用题(6分)

由贝叶斯公式:

四、证明题(11分)

(1)

$$\frac{\mathrm{d}\ln L(\theta)}{d\theta} = -\frac{n}{\theta} + \frac{-1}{\theta^2} \sum_{i=1}^n \ln x_i = 0$$
4 \(\frac{\pi}{2}\)

故估计量:
$$\hat{\theta} = \frac{-1}{n} \sum_{i=1}^{n} \ln X_i$$

(2)

$$E(\ln X) = \int_{0}^{1} \ln x \frac{1}{\theta} x^{\frac{1}{\theta} - 1} dx \qquad \qquad \cdots$$

$$=$$
 $-\theta$ ············9 分

故
$$\hat{\theta} = \frac{-1}{n} \sum_{i=1}^{n} \ln X_i$$
 是 θ 的无偏估计量。