3

Motion in a Plane

PROJECTION MOTION

Horizontal Motion of Projectile

$$u \cos \theta = u_{x}$$

$$a_{x} = 0$$

$$x = u_x t = (u \cos \theta)t$$

Vertical Motion of Projectile

$$\begin{aligned} v_y &= u_y - gt \text{ where } u_y = u \sin \theta; \ y = u_y t - \frac{1}{2} g t^2 = u \sin \theta t - \frac{1}{2} g t^2 \end{aligned}$$
 Net acceleration = $\vec{a} = a_x \hat{i} + a_y \hat{j} = -g \hat{j}$

At any Instant

$$v_x = u \cos \theta$$
, $v_y = u \sin \theta - gt$

For Projectile Motion

❖ A body crosses two points at same height in time t₁ and t₂ the points are at distance x and y from starting point then

- \star x + y = R
- + $t_1 + t_2 = T$
- + $h = \frac{1}{2} gt_1 t_2$
- + Average velocity from A to B is u cos θ
- ❖ If a person can throw a ball to a maximum distance 'x' then the maximum height to which he can throw the ball will be (x/2).

Velocity of Particle at Time t

- $\vec{\mathbf{v}} = \mathbf{v}_{x}\hat{\mathbf{i}} + \mathbf{v}_{y}\hat{\mathbf{j}} = \mathbf{u}_{x}\hat{\mathbf{i}} + (\mathbf{u}_{y} \mathbf{g}\mathbf{t})\hat{\mathbf{j}} = \mathbf{u}\cos\theta\hat{\mathbf{i}} + (\mathbf{u}\sin\theta \mathbf{g}\mathbf{t})\hat{\mathbf{j}}$
- * If angle of velocity \vec{v} with horizontal is α , then

$$\tan \alpha = \frac{v_y}{v_x} = \frac{u_y - gt}{u_x} = \frac{u \sin \theta - gt}{u \cos \theta} = \tan \theta - \frac{gt}{u \cos \theta}$$

At highest point: $v_v = 0$, $v_x = u \cos \theta$

Time of flight: $T = \frac{2u_y}{g} = \frac{2u\sin\theta}{g}$

Horizontal range: $R = (u \cos \theta)T$

$$=\frac{2u^2\sin\theta\cos\theta}{g}=\frac{u^2\sin2\theta}{g}=\frac{2u_xu_y}{g}$$

It is same for θ and $(90^{\circ} - \theta)$ and maximum for $\theta = 45^{\circ}$.

Maximum height: $H = \frac{u_y^2}{2g} = \frac{u^2 \sin^2 \theta}{2g} = \frac{1}{8}gT^2$

$$\frac{H}{R} = \frac{1}{4} \tan \theta$$

Equation of trajectory:

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta} = x \tan \theta \left(1 - \frac{x}{R}\right)$$

Horizontal Projection from a Height h

Time of flight: $T = \sqrt{\frac{2h}{g}}$

Horizontal range: $R = uT = u\sqrt{\frac{2h}{g}}$

Angle of velocity at any instant with horizontal: $\theta = tan^{-1} \left(\frac{gt}{u} \right)$

RELATIVE MOTION

Relative Velocity of Rain w.r.t. the Moving Man

A man walking west with velocity \vec{v}_m , represented by \overline{OA} . Let the rain be falling vertically downwards with velocity \vec{v}_r , represented by \overline{OB} as shown in figure.

The relative velocity of rain w.r.t. man $\vec{v}_m = \vec{v}_r - \vec{v}_m$ will be represented by diagonal \overrightarrow{OD} of rectangle OBDC.

$$v_{rm} = \sqrt{v_r^2 + v_m^2 - 2v_r v_m \cos 90^\circ} = \sqrt{v_r^2 + v_m^2}$$

If θ is the angle which \vec{v}_{m} makes with the vertical direction then

$$\tan \theta = \frac{BD}{OB} = \frac{v_m}{v_r} \Rightarrow \theta = \tan^{-1} \left(\frac{v_m}{v_r}\right)$$

Swimming into the River

- * A man can swim with velocity \vec{v} , i.e., it is the velocity of man w.r.t. still water. If water is also flowing with velocity \vec{v}_R then velocity of man relative to ground $\vec{v}_m = \vec{v} + \vec{v}_R$.
 - + If the swimming is in the direction of flow of water or along the downstream then

$$\vec{v}_{\mathbf{R}} = \mathbf{v} + \mathbf{v}_{\mathbf{R}}$$

+ If the swimming is in the direction opposite to the flow of water or along the upstream then

$$\vec{\mathbf{v}} \leftarrow \vec{\mathbf{v}}_{\mathbf{R}}$$
 $\mathbf{v}_{\mathbf{m}} = \mathbf{v} - \mathbf{v}_{\mathbf{R}}$

+ If man is crossing the river as shown in the figure i.e. \vec{v} and \vec{v}_R are non-collinear then use the vector algebra $\vec{v}_m = \vec{v} + \vec{v}_R$ (assuming $v > v_R$)

For shortest path

(For minimum displacement)

+ To reach at B, $v \sin \theta = v_R \Rightarrow \sin \theta = \frac{v_R}{v}$

+ Time of crossing

Notes: If $v_R^{}>v$ then for minimum drifting sin $\theta=\frac{v}{v_{_R}}$.

For minimum time

then, Drift =
$$t_{min}$$
 $V_R = \frac{dV_R}{V}$