ML101 Assignment: PCA and K-Means Clustering on Indian District Data

Name: KRITIKA SINGH

Introduction

This report applies unsupervised machine learning techniques to demographic and socio-economic data from Indian districts. The objective is to identify natural groupings among districts using Principal Component Analysis (PCA) for dimensionality reduction and K-Means clustering to detect underlying clusters. All methods were implemented from scratch without the use of machine learning libraries.

Data Preprocessing

The dataset contained 610 rows and 7 columns, including district names, states, population, growth rates, sex ratio, and literacy levels.

- Columns like District, State, and Ranking were excluded from analysis as they are identifiers.
- The Population column was cleaned by removing commas, and Growth values were stripped of percentage signs.
- Missing values were filled using column-wise means to preserve all rows.
- All features were standardized using z-score normalization to ensure equal contribution to PCA and clustering.

Principal Component Analysis (PCA)

PCA was applied to the standardized data matrix to reduce its dimensionality while retaining as much variance as possible.

- The cumulative explained variance showed that:
 - 3 principal components retained 80% of the variance
 - All 4 features retained over 90% of the variance
 - Thus, all 4 features were kept for clustering, while only the first 2 principal components were used for visualization in 2D.

Cumulative Explained Variance Plot

K-Means Clustering

K-Means clustering was implemented from scratch with support for:

- Distance metrics: Euclidean and Manhattan
- Values of K: 5, 7, and 9
- Random initialization of centroids

The number of iterations to convergence was recorded for each configuration:

- K Distance Metric Iterations
- 5 Euclidean 20

- 7 Euclidean 23
- 9 Euclidean 26
- 5 Manhattan 13
- 7 Manhattan 34
- 9 Manhattan 41

Visualization and Interpretation

Districts were projected into 2D PCA space using the first two principal components, and scatter plots were generated to visualize cluster assignments.

- Euclidean (K = 5, 7, 9)
- *Manhattan (K = 5, 7, 9)*

Example: K = 5, Euclidean Distance

Cluster	Population	Growth	Sex-Ratio	Literacy
0	4.6M	19.2%	939	72.8%
1	1.4M	22.2%	955	62.1%
2	1.3M	17.0%	885	74.4%
3	0.29M	88.0%	908	76.7%
4	1.3M	11.8%	996	81.6%

- Cluster 0: Large districts with moderate growth and literacy; likely urban centers.
- Cluster 1: Rural, high-growth districts with low literacy.
- Cluster 2: Low sex ratio and moderate literacy possibly patriarchal northern regions.
- Cluster 3: Very small districts with extreme growth likely newly formed or administrative splits.
- Cluster 4: High literacy and balanced gender ratio well-developed districts (e.g., southern states).

K = 7, *Euclidean Distance*

Cluster Summary (K = 7, Euclidean)

Cluster	Population	Growth	Sex-Ratio	Literacy
0	6.7M	21.52%	920	81.37%
1	1.3M	8.87%	1029	87.36%
2	3.75M	18.91%	945	68.96%
3	0.29M	88.03%	908	76.71%
4	1.35M	16.50%	882	76.05%
5	1.29M	15.62%	971	73.37%
6	1.25M	24.34%	943	58.91%

Cluster Interpretations:

Cluster 0: Large, well-developed metro areas with high literacy.

Cluster 1: Highly educated districts with excellent sex ratios and low growth — possibly Kerala or Northeast states.

Cluster 2: Large districts with moderate literacy — possibly industrial or transitioning zones.

Cluster 3: Very small, explosive-growth districts — likely new administrative regions.

Cluster 4: Low sex ratio, moderate development — patriarchal regions.

Cluster 5: Balanced and moderate literacy — semi-urban growth areas.

Cluster 6: High growth, very low literacy — underdeveloped rural districts.

K = 9, Euclidean Distance

Cluster Summary (K = 9, Euclidean)

Cluster	Population	Growth	Sex-Ratio	Literacy
0	7.7M	26.16%	912	80.01%
1	1.2M	8.65%	1027	87.38%

2	3.6M	24.34%	912	62.89%
3	0.17M	104.5%	962	77.81%
4	1.34M	16.30%	883	76.04%
5	3.9M	15.14%	967	76.06%
6	1.3M	16.10%	969	72.71%
7	1.1M	23.89%	947	58.74%
8	0.39M	62.04%	823	73.26%

- Cluster 0: Very large, growing cities with high literacy.
- Cluster 1: Stable, educated, and gender-balanced districts.
- Cluster 2: High-growth zones with lower education emerging metros or industrial belts.
- Cluster 3: Very small and extremely fast-growing possible administrative splits.
- Cluster 4: Low sex ratio and modest literacy patriarchal rural areas.
- Cluster 5: Large, balanced regions well-developed tier-2 cities.
- Cluster 6: Mid-sized districts with above-average sex ratio and literacy.
- Cluster 7: High-growth, undereducated regions developing rural zones.
- Cluster 8: Low literacy and poor gender ratio likely isolated or tribal regions.

K = 5, *Manhattan Distance*

Cluster Summary (K = 5, Manhattan)

C	luster	Population	Growth	Sex-Ratio	Literacy
0		4.8M	19.23%	944	75.89%
1		1.5M	20.41%	977	62.70%
2		1.7M	21.22%	892	67.88%
3		0.29M	88.03%	907	76.71%
4		1.18M	11.67%	972	81.50%

- Cluster 0: Large and moderately developed districts older metros or capitals.
- Cluster 1: High sex ratio and low literacy possibly rural female-balanced states.
- Cluster 2: Low sex ratio and moderate literacy northern patriarchal regions.
- Cluster 3: Small, high-growth districts newly formed or reorganized.
- Cluster 4: Highly literate and balanced possibly southern, developed districts.

K = 7, Manhattan Distance

Cluster Summary (K = 7, Manhattan)

Cluster	Population	Growth	Sex-Ratio	Literacy
0	6.6M	22.86%	913	80.67%

1	1.4M	10.75%	1016	82.34%
2	3.7 M	19.11%	948	68.83%
3	0.28M	85.73%	912	76.57%
4	1.2M	14.61%	904	81.37%
5	1.3M	18.61%	919	69.43%
6	1.2M	23.31%	955	58.06%

- Cluster 0: Large, educated metros with balanced demographics.
- Cluster 1: Top-performing districts in literacy and gender equality.
- Cluster 2: High population but literacy lagging industrial or semi-urban zones.
- Cluster 3: Very small, fast-growing districts administrative expansions.
- Cluster 4: Educated and demographically stable mid-sized districts.
- Cluster 5: Average literacy and development suburban or tier-2 regions.
- Cluster 6: Underdeveloped, high-growth districts likely backward rural states.

K = 9, Manhattan Distance

Cluster Summary (K = 9, Manhattan)

Cluster	Population	Growth	Sex-Ratio	Literacy
0	4.9M	15.19%	962	76.97%
1	1.4M	7.14%	1060	87.83%
2	4.7M	26.96%	899	67.96%
3	0.17M	104.5%	962	77.81%

4	1.3M	16.94%	873	73.58%
5	2.3M	17.31%	962	70.47%
6	1.0M	12.76%	963	78.74%
7	1.2M	24.12%	949	59.01%
8	0.3M	57.58%	892	75.15%

- Cluster 0: Large, stable, literate districts with balanced demographics.
- Cluster 1: Excellent gender balance and top-tier literacy leading performers.
- Cluster 2: Rapid-growth, lower-literacy districts urban pressure zones.
- Cluster 3: Very small, new districts growing rapidly special attention zones.
- Cluster 4: Poor gender ratio, mid-level development needs social intervention.
- Cluster 5: Mid-population, average literacy stable semi-urban areas.
- Cluster 6: Small and fairly literate districts well-governed smaller towns.
- Cluster 7: High-growth, low-literacy classic backward zones.
- Cluster 8: Small districts with fast growth and low sex ratio neglected rural areas.

Conclusion

The application of PCA and K-Means clustering revealed meaningful patterns in the socio-economic structure of Indian districts:

- PCA allowed us to reduce feature space while retaining essential variance.
- K-Means clustering exposed distinct groupings based on growth, literacy, population, and sex ratio.
- Cluster interpretations helped identify progressive regions, rural lagging districts, urban centers, and administrative outliers.
- The results can assist in targeted development planning and resource allocation.