# Astrometry of the Neptune-Triton System

Altair Ramos Gomes Júnior

September 8, 2016

## Introduction

In this report I present the preliminary results of the astrometric reductions of the images from the Observatório do Pico dos Dias (OPD) in Brazil. The aim is to obtain precise positions for the Neptune - Triton system and to investigate the orbit of Neptune alone around the Sun. The telescopes used were the Perkin-Elmer (160) with a diameter of 1.6m, the Boller & Chivens (IAG) with a diameter of 0.6m, and the Zeiss telescope with a diameter of 0.6m.

The observations were carried out since 1992 when a CCD big enough was installed in the OPD. The planet and satellite have been constantly observed, and still are, by our group. There were many CCDs (IKON, IXON, CCD101, CCD106, ...) and many filters (V, R, I, No Filter, ...) utilized.

There was more than 5000 images from June 1992 to September 2015. Many of the oldest images had no coordinates in header or they were wrong. Sometimes the filter was missing. Many nights had two exposure sets. The first one with low exposure times so Neptune was not saturated, but there were few reference stars in the field. The second one with higher exposure time so Triton was brighter and had more reference stars than with the previous exposure, but the image of Neptune were saturated.

In Table 1 it is summarized the final number of images for Neptune (short-exposure observations) and Triton (all observations) for the 3 telescopes. It is also shown the number of positions where Neptune and Triton were identified automatically in the same image (short-exposure observations for precision premium).

**Table 1:** Number of positions by object by telescope

| Telescope | Neptune | Triton | Matches |
|-----------|---------|--------|---------|
| 160       | 782     | 1341   | 768     |
| IAG       | 3162    | 3645   | 2909    |
| Zeiss     | 354     | 479    | 341     |
| Total     | 4298    | 5465   | 4018    |

Number of positions identified of Neptune and Triton by telescope. Matches: Number of positions where Neptune and Triton were identified automatically in the same image.

Fig. 1 shows the distribution of positions where Neptune and Triton are identified in the same image (short-exposure observations) over the years. Figs 2-3 summarizes the distribution of positions with Neptune and Triton in the same image by filter obtained in the Perkin-Elmer and Boller & Chivens telescopes, respectively. Zeiss only has images observed in Clear and I filters.



**Figure 1:** Distribution of positions with Neptune and Triton in the same image (short-exposure observations) by year.



**Figure 2:** Distribution of positions with Neptune and Triton in the same image (short-exposure observations) by filter for the Perkin-Elmer telescope.



Figure 3: Same as in Fig 2 for the Boller & Chivens telescope.

### Reduction

The images were reduced using PRAIA, developed by Marcelo Assafin. To avoid the missing or wrong coordinates I used the coordinates of the ephemeris as input. This way PRAIA could identify reference stars in the images. The reference catalogue used was UCAC4. The ephemeris used to identify Neptune and Triton in the images was DE430+NEP081. The positions where the image of Neptune were saturated and where there were less than 5 reference stars were removed of the results.

In Table 2 it is presented the mean errors in X and Y of the bidimensional Gaussian used to fit the PSF of the objects and the mean value of the dispersion of the offsets by night.

**Table 2:** Table of error of the reduction. Gaussian error stands for the error in X and Y of the bidimensional Gaussian used to fit the PSF. Mean offset errors is the average dispersion of the positions of each night.

| Telescope/Satellite | Gaussia     | an error    | Mean offet errors |           |  |
|---------------------|-------------|-------------|-------------------|-----------|--|
|                     | X (mas)     | Y (mas)     | RA (mas)          | DEC (mas) |  |
| 160/Neptune         | 8±4         | 8±4         | 51                | 39        |  |
| 160/Triton          | 14±8        | 14±8        | 35                | 38        |  |
| IAG/Neptune         | 9±7         | 9±7         | 63                | 58        |  |
| IAG/Triton          | $20 \pm 14$ | $20 \pm 14$ | 52                | 53        |  |
| Zeiss/Neptune       | 9±6         | 9±6         | 49                | 57        |  |
| Zeiss/Triton        | $25 \pm 13$ | $25 \pm 13$ | 40                | 51        |  |

We applied the digital coronagraphy technique to test if the scattered light of Neptune would influence in the Triton's photocenter. No influence was identified in the 1 mas range.

#### Chromatic Refraction Test

Table 3 shows the colors for Triton (Pascu et al., 2006) and Neptune Schmude et al. (2016). Their colors are very different in the blue region. So it is expected that their positions have influence of chromatic refraction (CR) with different intensities. The apparent position of Neptune, which is more blue than Triton, would be more shifted towards the zenith than the Triton's position. There may also be noted that in 1992 Neptune had just exited the galactic plane, so the reference stars were redder due to dust.

| Object                 | U-B   | B-V              | V-R   | R-I   | V-I              |
|------------------------|-------|------------------|-------|-------|------------------|
| Triton (leading side)  |       | $+0.696\pm0.009$ |       |       | $+0.766\pm0.006$ |
| Triton (trailing side) |       | $+0.699\pm0.006$ |       |       | $+0.776\pm0.007$ |
| Neptune                | +0.14 | +0.39            | -0.29 | -1.05 | -1.34*           |

**Table 3:** Colors of Triton and Neptune. Leading side is the hemisphere of Triton that is in the direction of its movement. Trailing side is the opposite hemisphere. \*calculated from V-R and R-I colors.

(Pascu et al., 2006) data also support a secular "blueing" on Triton observed since 1954. They also evidence a reddening episode that happened in 1997 where the B-V color of Triton was bigger than 0.9. A similar reddening was also identified in 1979 (Fig. 4). The authors state that a possible cause of this event is an increase in the activity of geysers.



Fig. 1. Summary of B-V color observations of Triton. Redder colors result in higher values of B-V. Note the very red colors observed in 1977 and 1997—the latter occurrence only two months after the data reported here (which are among the bluest colors reported). Note that points at 1995.6 and 2002.8 are calculated from reflectance spectra published by Tryka and Bosh (1999) and by Marchi et al. (2004), respectively.

Figure 4: Figure extracted from Pascu et al. (2006).

For Neptune, Schmude et al. (2016) showed a secular brightening in the B-, V-, R- and I-bands (Fig. 5) from observations since 1954. They also identified, from Hubble observations, that Neptune has a variation of about 1 magnitude in the I-band over some hours caused by the presence of bright clouds on its atmosphere (Fig. 6). All these circumstances can difficult the estimative of chromatic refraction parameters for Neptune and Triton.



Figure 5: Secular brightening of Neptune in B-, V-, R- and I-bands (Schmude et al., 2016).



**Figure 6:** HST images of Neptune at  $\lambda = 8450\text{Å}$  which show a variation of the I-magnitude caused by bright clouds on the atmosphere (Schmude et al., 2016).

To test the effects of chromatic refraction I used the method of Benedetti-Rossi et al. (2014) on all nights with observations distributed over more than 1.5h of hour angle. I used the equation

$$\Delta[\alpha, \delta] = V_{\alpha, \delta}(\phi, \delta, H) \cdot \Delta B, \tag{1}$$

to model the chromatic refraction of the nights.  $\Delta[\alpha, \delta]$  is the position offset for each coordinate  $(\alpha, \delta)$ ,  $V_{\alpha,\delta}(\phi, \delta, H)$  is the first part of refraction which is due to the position of the observed objects and is a function of the latitude of the site  $(\phi)$ , of the object's declination  $(\delta)$ , and of the hour angle (H) and  $\Delta B$  is the the second part: the differential chromatic refraction which is due to the atmospheric conditions and the wavelength  $(\lambda)$  of the object and of the stars in the field. This equation is available in Benedetti-Rossi et al. (2014) where it was applied for observations of Pluto.

The model is applied to the offsets in  $\alpha$  and the chromatic parameter  $\Delta B$  is obtained. This parameter is then used to correct the offsets in  $\delta$ .

Fig. 7 shows the offsets for a sample night observed with the Perkin-Elmer telescope. In blue are the offsets before the correction and in green after correction. It is possible to see the increase in the offsets before the correction over time (blue).

Figs. 8-11 show the distributions of the offsets in RA and DEC before and after the elimination of chromatic refraction (Neptune-160, Triton-160, Neptune-IAG, Triton-IAG, respectively) for all the nights. The histograms clearly show an improvement in the distribution of the offsets, mainly for Neptune. So chromatic refraction is very important and must be removed.



Figure 7: Offsets before and after CR correction for the night of August 20, 1993 observed with the Perkin-Elmer telescope.



Figure 8: Distribution of the offsets of Neptune observed in 160.



Figure 9: Distribution of the offsets of Triton observed in 160.



Figure 10: Distribution of the offsets of Neptune observed in IAG.



Figure 11: Distribution of the offsets of Triton observed in IAG.

Table 4 show respective nights used in the Figs. 8-11, the filter, the variation in hour angle  $(\Delta H)$ , the parameters obtained  $(\Delta B)$ , number of images (Nimg), mean number of reference stars (Nstars) and mean offsets before and after correction. It is possible to see that the  $\Delta B$  calculated has high values for Neptune, while for Triton they are smaller.

For the nights with observations distributed in a smaller time interval, the correction was made following the conditions:

- If the night only has observations between -1h and 1h of hourangle, no correction is made.
- If there is another night with  $\Delta B$  calculated observed with the same filter in the same telescope within at most 3 days apart, the  $\Delta B$  from this night was used in the CR correction.
- If there is no close night with  $\Delta B$  calculated, it was used the mean  $\Delta B$  calculated for nights observed with the same filter and same telescope for the correction of CR.
- Other situations, no CR correction was made.

**Table 4:** Obtained parameters and offsets from adjustments. Only nights with  $\Delta H > 1.5h$ .

|            | Neptune-160 |            |                  |      |        |               |               |              |              |
|------------|-------------|------------|------------------|------|--------|---------------|---------------|--------------|--------------|
| Date       | Filter      | $\Delta H$ | $\Delta B$       | Nimg | Nstars | RA no corr    | DEC no corr   | RA corr      | DEC corr     |
| 1992-06-09 | Clear       | 1.57       | $+0.29\pm0.03$   | 13   | 11     | $190 \pm 54$  | $25 \pm 76$   | $-43 \pm 15$ | $65 \pm 68$  |
| 1992-07-19 | Clear       | 1.63       | $+0.20\pm0.04$   | 17   | 24     | $50 \pm 46$   | $117 \pm 37$  | $1\pm 26$    | $125 \pm 36$ |
| 1993-06-24 | Clear       | 1.61       | $-0.07\pm0.04$   | 10   | 17     | $-17 \pm 26$  | -38± 48       | $-21 \pm 22$ | $-40 \pm 48$ |
| 1993-06-25 | Clear       | 2.63       | $+0.03\pm0.02$   | 12   | 8      | $-37 \pm 26$  | $70 \pm 75$   | $-40 \pm 24$ | $72 \pm 74$  |
| 1993-08-20 | Clear       | 3.35       | $+0.20\pm0.02$   | 31   | 29     | $15 \pm 76$   | -83± 43       | $-7 \pm 34$  | $-75\pm 44$  |
| 1993-08-22 | Clear       | 2.87       | $+0.18\pm0.02$   | 35   | 9      | $-47 \pm 63$  | $-74 \pm 44$  | $-15 \pm 38$ | $-67 \pm 46$ |
| 1996-06-22 | Clear       | 1.68       | $+0.24\pm0.02$   | 19   | 16     | $-25 \pm 51$  | $-32 \pm 35$  | $-48 \pm 18$ | $-20\pm 35$  |
| 1996-10-02 | Clear       | 1.97       | $+0.31\pm0.07$   | 16   | 6      | $252 \pm 192$ | $-60 \pm 73$  | $-59\pm126$  | $10\pm 79$   |
| 1997-06-01 | Clear       | 4.89       | $+0.35\pm0.03$   | 91   | 11     | $-155\pm189$  | $-112 \pm 36$ | $-120\pm107$ | -81± 40      |
| 1997-06-02 | Clear       | 5.24       | $+0.22 \pm 0.01$ | 60   | 10     | $-113\pm125$  | -84± 36       | $-73 \pm 48$ | -61± 33      |
| 1998-06-06 | Clear       | 2.51       | $+0.38\pm0.04$   | 35   | 11     | $-140\pm101$  | $-66 \pm 42$  | $-13 \pm 56$ | -33± 41      |
| 1998-09-03 | Clear       | 1.52       | $+0.30\pm0.03$   | 20   | 10     | -86± 63       | $-75 \pm 49$  | $20 \pm 26$  | $-51 \pm 47$ |

Continued on next page

Table 4 – Continued from previous page

| Table 4 – Continuea from previous page |        |            |                |      |          |              |               |               |              |
|----------------------------------------|--------|------------|----------------|------|----------|--------------|---------------|---------------|--------------|
| Date                                   | Filter | $\Delta H$ | $\Delta B$     | Nimg | Nstars   | RA no corr   | DEC no corr   | RA corr       | DEC corr     |
|                                        |        |            |                |      | Triton-1 | .60          |               |               |              |
| Date                                   | Filter | $\Delta H$ | $\Delta B$     | Nimg | Nstars   | RA no corr   | DEC no corr   | RA corr       | DEC corr     |
| 1992-06-09                             | Clear  | 1.57       | $+0.01\pm0.03$ | 16   | 16       | 12± 20       | $19 \pm 79$   | 3± 20         | $20 \pm 79$  |
| 1992-07-19                             | Clear  | 1.89       | $+0.07\pm0.04$ | 21   | 25       | $-3 \pm 33$  | $15 \pm 52$   | $-21 \pm 30$  | $17 \pm 52$  |
| 1993-06-24                             | Clear  | 1.61       | $+0.01\pm0.04$ | 15   | 13       | $8 \pm 23$   | $15 \pm 55$   | $9 \pm 23$    | $16 \pm 55$  |
| 1993-06-25                             | Clear  | 2.90       | $-0.09\pm0.04$ | 20   | 12       | $-28 \pm 60$ | $36 \pm 79$   | $-14 \pm 52$  | $32 \pm 80$  |
| 1993-08-20                             | Clear  | 3.35       | $-0.01\pm0.02$ | 30   | 27       | -8± 29       | $-25 \pm 62$  | $-6 \pm 29$   | $-25 \pm 62$ |
| 1993-08-22                             | Clear  | 3.12       | $+0.05\pm0.01$ | 43   | 13       | -2± 28       | $-9 \pm 43$   | $4\pm 24$     | $-7 \pm 43$  |
| 1994-09-22                             | Clear  | 1.94       | $-0.12\pm0.08$ | 13   | 12       | $-33 \pm 53$ | $30 \pm 75$   | $48 \pm 49$   | $16 \pm 71$  |
| 1994-09-22                             | Clear  | 1.55       | $+0.00\pm0.04$ | 15   | 17       | $-53 \pm 21$ | $24 \pm 82$   | $-54 \pm 21$  | $24 \pm 82$  |
| 1995-08-07                             | Clear  | 3.02       | $+0.02\pm0.02$ | 11   | 21       | $-10 \pm 14$ | $-40 \pm 30$  | $-10 \pm 13$  | $-39 \pm 30$ |
| 1996-06-22                             | Clear  | 2.28       | $-0.08\pm0.02$ | 32   | 15       | $-87 \pm 24$ | -9± 29        | $-77 \pm 19$  | $-13 \pm 28$ |
| 1996-08-22                             | Clear  | 1.56       | $+0.01\pm0.02$ | 29   | 13       | $43 \pm 30$  | $-41 \pm 44$  | $37 \pm 30$   | $-40 \pm 44$ |
| 1996-08-24                             | Clear  | 1.99       | $-0.03\pm0.04$ | 10   | 11       | $46 \pm 15$  | $-66 \pm 23$  | $52 \pm \ 15$ | $-67 \pm 23$ |
| 1996-10-02                             | Clear  | 1.97       | $+0.04\pm0.07$ | 16   | 6        | $73\pm121$   | $1\pm 76$     | $38 \pm 120$  | $9 \pm 77$   |
| 1997-06-01                             | Clear  | 4.89       | $+0.11\pm0.01$ | 101  | 11       | $-76 \pm 71$ | $-107 \pm 53$ | $-68 \pm 51$  | $-98 \pm 54$ |
| 1997-06-02                             | Clear  | 5.41       | $+0.02\pm0.02$ | 81   | 10       | $-18 \pm 86$ | $-56 \pm 30$  | $-17 \pm 85$  | $-54 \pm 30$ |
| 1997-08-11                             | Clear  | 3.08       | $+0.12\pm0.02$ | 33   | 11       | $-30 \pm 46$ | $-23 \pm 27$  | $2\pm 28$     | $-14 \pm 28$ |
| 1997-08-13                             | Clear  | 1.67       | $+0.04\pm0.03$ | 19   | 6        | $44 \pm 30$  | $-4 \pm 16$   | $60 \pm 29$   | $-0 \pm 16$  |
| 1998-06-06                             | Clear  | 2.84       | $+0.13\pm0.04$ | 42   | 11       | $-46 \pm 62$ | $-55 \pm 33$  | $-5 \pm 53$   | $-44 \pm 33$ |
| 1998-09-03                             | Clear  | 1.52       | $-0.04\pm0.04$ | 20   | 10       | $3 \pm \ 36$ | $-48 \pm 54$  | $-11 \pm 35$  | $-50 \pm 54$ |
| 1999-06-06                             | Clear  | 1.58       | $+0.23\pm0.04$ | 27   | 14       | $19 \pm 47$  | $-63 \pm 43$  | $91 \pm 32$   | $-43 \pm 40$ |
| 1999-08-22                             | Clear  | 3.06       | $+0.03\pm0.02$ | 30   | 15       | $-32 \pm 37$ | $-7 \pm 25$   | $-45 \pm 35$  | -3± 26       |
|                                        | 1      |            | ,              | Ι    | Veptune- | IAG          | 1             |               |              |
| Date                                   | Filter | $\Delta H$ | $\Delta B$     | Nimg | Nstars   | RA no corr   | DEC no corr   | RA corr       | DEC corr     |
| 2001-08-26                             | В      | 2.11       | $+0.15\pm0.03$ | 44   | 15       | $89 \pm 55$  | $-41 \pm 57$  | 14± 41        | $-22 \pm 57$ |
| 2002-07-15                             | Clear  | 6.11       | $+0.18\pm0.00$ | 57   | 17       | $51 \pm 163$ | $85 \pm 90$   | -36± 31       | $131 \pm 76$ |

Continued on next page

Table 4 – Continued from previous page

| Date       | Filter | $\Delta H$ | $\Delta B$     | Nimg | Nstars   | RA no corr    | DEC no corr    | RA corr       | DEC corr     |
|------------|--------|------------|----------------|------|----------|---------------|----------------|---------------|--------------|
| 2002-07-18 | Clear  | 3.86       | $+0.21\pm0.02$ | 30   | 13       | $-100\pm115$  | -140± 61       | $-50 \pm 61$  | -111± 61     |
| 2003-07-22 | Clear  | 2.38       | $+0.33\pm0.04$ | 20   | 15       | $174 \pm 137$ | $-75 \pm 80$   | $-32 \pm 57$  | $-13\pm 74$  |
| 2003-07-23 | Clear  | 4.08       | $+0.02\pm0.01$ | 39   | 16       | $-81 \pm 36$  | $13 \pm 55$    | $-78 \pm 34$  | $17 \pm 55$  |
| 2003-07-25 | Clear  | 6.19       | $-0.01\pm0.02$ | 21   | 9        | $-107 \pm 74$ | $9 \pm 62$     | $-106 \pm 74$ | $7 \pm 62$   |
| 2003-07-26 | Clear  | 6.97       | $-0.01\pm0.08$ | 17   | 10       | $-132\pm211$  | 8±123          | $-129\pm211$  | $7\pm124$    |
| 2003-07-27 | Clear  | 1.54       | $+0.06\pm0.06$ | 26   | 14       | $-21\pm104$   | $4 \pm 84$     | $-90 \pm 102$ | $24 \pm 84$  |
| 2003-07-28 | Clear  | 7.98       | $+0.01\pm0.03$ | 43   | 12       | $-37 \pm 144$ | $21 \pm 162$   | $-44 \pm 144$ | $24 \pm 162$ |
| 2003-08-20 | Clear  | 4.03       | $+0.26\pm0.04$ | 30   | 17       | $95 \pm 154$  | $-72 \pm 66$   | $18 \pm 98$   | $-35 \pm 60$ |
| 2003-10-14 | V      | 2.33       | $+0.02\pm0.03$ | 8    | 30       | $20 \pm 25$   | $16 \pm 31$    | $16 \pm \ 25$ | 18± 31       |
| 2004-08-05 | V      | 2.21       | $-0.03\pm0.12$ | 5    | 6        | $-53 \pm 67$  | $-61 \pm 25$   | $-35 \pm 67$  | -66± 26      |
| 2004-08-06 | V      | 3.10       | $+0.18\pm0.03$ | 4    | 6        | $-160 \pm 61$ | $-173 \pm 60$  | $-165 \pm 14$ | -151± 59     |
| 2004-08-07 | V      | 4.31       | $+0.21\pm0.33$ | 6    | 11       | $128 \pm 333$ | $-40\pm210$    | $110\pm317$   | -9±212       |
| 2004-08-21 | Clear  | 4.09       | $+0.08\pm0.02$ | 30   | 21       | $-32 \pm 57$  | $-78 \pm 55$   | $-56 \pm 44$  | -66± 57      |
| 2004-08-21 | Clear  | 2.57       | $+0.05\pm0.02$ | 30   | 21       | $-42 \pm 28$  | $-86 \pm 41$   | $-32 \pm 26$  | -81± 41      |
| 2004-08-23 | Clear  | 5.20       | $+0.06\pm0.01$ | 70   | 18       | $10 \pm 59$   | $-88 \pm 52$   | $-29 \pm 42$  | $-73 \pm 50$ |
| 2004-08-24 | Clear  | 3.94       | $+0.06\pm0.01$ | 40   | 18       | $-2 \pm 34$   | -83± 66        | $-23 \pm 26$  | $-74 \pm 65$ |
| 2004-09-24 | R      | 3.08       | $+0.27\pm0.05$ | 35   | 13       | $157 \pm 183$ | $12\pm136$     | $-0\pm133$    | 63±126       |
| 2004-09-25 | Clear  | 3.75       | $+0.26\pm0.03$ | 40   | 14       | $201 \pm 164$ | $2 \pm 93$     | $37 \pm 106$  | $54 \pm 86$  |
| 2005-09-24 | V      | 2.78       | $+0.05\pm0.01$ | 88   | 14       | $2\pm 47$     | $-101 \pm 61$  | $-52 \pm 44$  | $-85 \pm 60$ |
| 2006-06-08 | Clear  | 2.68       | $+0.32\pm0.04$ | 95   | 24       | $-91 \pm 144$ | -83± 93        | $14 \pm 115$  | -30± 93      |
| 2011-09-26 | I      | 4.02       | $+0.05\pm0.00$ | 250  | 18       | $76 \pm 44$   | $-67 \pm 48$   | $38 \pm \ 36$ | $-52 \pm 45$ |
| 2012-10-19 | R      | 1.99       | $+0.13\pm0.03$ | 119  | 8        | $41\pm100$    | $-167 \pm 137$ | $-50 \pm 92$  | -130±138     |
|            |        |            |                |      | Triton-L | AG            |                |               |              |
| Date       | Filter | $\Delta H$ | $\Delta B$     | Nimg | Nstars   | RA no corr    | DEC no corr    | RA corr       | DEC corr     |
| 2001-08-26 | В      | 2.11       | $+0.03\pm0.03$ | 24   | 15       | 1± 40         | -53± 46        | -13± 39       | $-50 \pm 46$ |
| 2002-07-15 | Clear  | 6.11       | $+0.01\pm0.00$ | 55   | 17       | $14 \pm \ 27$ | $-29 \pm 45$   | $7\pm 24$     | $-26 \pm 45$ |
| 2002-07-18 | Clear  | 3.86       | $-0.01\pm0.03$ | 31   | 13       | $25 \pm 74$   | $-68\pm111$    | $23 \pm 74$   | -69±111      |
| 2003-07-22 | Clear  | 2.55       | $+0.08\pm0.02$ | 31   | 17       | -8± 57        | $-7 \pm 53$    | -58± 49       | 8± 54        |

Continued on next page

Table 4 – Continued from previous page

| Date       | Filter | $\Delta H$ | $\Delta B$     | Nimg | Nstars | RA no corr   | DEC no corr   | RA corr       | DEC corr     |
|------------|--------|------------|----------------|------|--------|--------------|---------------|---------------|--------------|
| 2003-07-23 | Clear  | 4.08       | $+0.04\pm0.02$ | 38   | 16     | -44± 54      | -12± 45       | $-37 \pm 50$  | $-6 \pm 45$  |
| 2003-07-25 | Clear  | 6.39       | $-0.04\pm0.03$ | 44   | 16     | $-60\pm138$  | $9 \pm 50$    | $-64 \pm 136$ | $2 \pm 51$   |
| 2003-07-26 | Clear  | 6.97       | $-0.04\pm0.04$ | 33   | 14     | $-133\pm167$ | $21 \pm 90$   | $-121\pm165$  | $13\pm 91$   |
| 2003-07-27 | Clear  | 1.54       | $+0.01\pm0.05$ | 26   | 14     | $-31 \pm 76$ | $31 \pm 74$   | $-40 \pm 76$  | $34 \pm 74$  |
| 2003-07-28 | Clear  | 7.98       | $-0.01\pm0.02$ | 60   | 14     | $-51\pm130$  | $46 \pm 133$  | $-44 \pm 130$ | 43±133       |
| 2003-08-20 | Clear  | 4.20       | $+0.02\pm0.02$ | 49   | 21     | $53 \pm 69$  | $-8 \pm 45$   | $46 \pm 68$   | $-5 \pm 45$  |
| 2003-10-14 | V      | 3.63       | $-0.04\pm0.03$ | 20   | 33     | $-4 \pm 54$  | $-34 \pm 72$  | $13 \pm 53$   | $-40\pm 74$  |
| 2003-10-15 | V      | 2.27       | $+0.01\pm0.05$ | 18   | 33     | $-22 \pm 38$ | $-3 \pm 78$   | $-23 \pm 38$  | $-2 \pm 77$  |
| 2003-10-16 | V      | 1.94       | -0.10±0.10     | 8    | 25     | $-18 \pm 64$ | $-15 \pm 36$  | $46 \pm 58$   | -32± 32      |
| 2003-10-17 | V      | 2.09       | $+0.02\pm0.04$ | 10   | 29     | $1\pm 31$    | $4 \pm 92$    | $-7 \pm 31$   | $7 \pm 92$   |
| 2003-10-19 | V      | 1.89       | $-0.12\pm0.05$ | 12   | 31     | $-7 \pm 40$  | $-45 \pm 35$  | $44 \pm 32$   | $-60 \pm 32$ |
| 2004-08-05 | V      | 2.38       | $-0.06\pm0.02$ | 21   | 15     | $-13 \pm 31$ | $-101 \pm 35$ | $21 \pm 26$   | -111± 35     |
| 2004-08-06 | V      | 3.27       | $+0.06\pm0.07$ | 22   | 16     | $53 \pm 99$  | $-110 \pm 50$ | $45 \pm 97$   | -102± 50     |
| 2004-08-07 | V      | 4.50       | $+0.00\pm0.03$ | 23   | 19     | $54 \pm 56$  | $-117 \pm 61$ | $54 \pm 56$   | -117± 61     |
| 2004-08-20 | Clear  | 3.81       | $+0.03\pm0.01$ | 16   | 24     | $-5 \pm 26$  | $-40 \pm 24$  | $-15 \pm 23$  | $-35 \pm 23$ |
| 2004-08-21 | Clear  | 4.09       | $+0.02\pm0.02$ | 27   | 22     | $-13 \pm 41$ | $-32 \pm 52$  | $-22 \pm 39$  | $-28 \pm 53$ |
| 2004-08-21 | Clear  | 2.57       | $+0.01\pm0.02$ | 26   | 21     | $-13 \pm 28$ | $-51 \pm 35$  | $-12 \pm 27$  | $-51 \pm 35$ |
| 2004-08-23 | Clear  | 5.20       | $+0.02\pm0.01$ | 43   | 18     | $-2 \pm 44$  | $-36 \pm 49$  | $-11 \pm 42$  | -32± 49      |
| 2004-08-24 | Clear  | 3.94       | $+0.02\pm0.01$ | 29   | 17     | $-2 \pm 29$  | $-34 \pm 62$  | -9± 28        | $-31 \pm 62$ |
| 2004-09-24 | R      | 3.08       | $+0.04\pm0.04$ | 37   | 14     | $26 \pm 111$ | $83\pm131$    | $2 \pm 109$   | 91±130       |
| 2004-09-25 | Clear  | 3.75       | $+0.01\pm0.04$ | 36   | 14     | $59 \pm 113$ | $91 \pm 77$   | $51 \pm 113$  | $93 \pm 77$  |
| 2005-09-24 | V      | 2.78       | $+0.01\pm0.01$ | 155  | 16     | -14± 43      | $-95 \pm 56$  | $-26 \pm 43$  | -91± 56      |
| 2006-06-08 | Clear  | 3.30       | $+0.10\pm0.03$ | 157  | 26     | $-22\pm104$  | $-47 \pm 69$  | $2 \pm 100$   | -32± 69      |
| 2009-07-22 | Clear  | 2.19       | $+0.08\pm0.07$ | 17   | 15     | $10 \pm 43$  | $74 \pm 96$   | -1± 41        | $87 \pm 95$  |
| 2011-09-05 | I      | 1.82       | $+0.19\pm0.03$ | 100  | 18     | $91 \pm 47$  | -1± 34        | $36 \pm 38$   | $38 \pm 36$  |
| 2011-09-26 | I      | 4.02       | $-0.00\pm0.00$ | 250  | 18     | $43 \pm 28$  | $4\pm 41$     | $43 \pm 28$   | $3 \pm 41$   |
| 2012-10-19 | R      | 1.99       | $+0.13\pm0.03$ | 118  | 8      | $14 \pm 108$ | $-76 \pm 134$ | $-78\pm100$   | -38±136      |

## Final Remarks

Fig 12 shows the mean offsets of each night and respective discrepancy (error bars) for Neptune in RA and DEC, respectively.

Fig 13 shows the difference in the mean offsets night by night for all matched nights and not eliminated by the sigma-clip procedure in the sense Triton - Neptune. The error bars are the mean value of the dispersions in the night for each satellite.

It seems that there are long term systematic errors in the orbit of Neptune, and in the orbit of Triton around Neptune, but it is too soon to state that with confidence. We must still further refine the positions. We plan to do the following:

- Test the PSF for Neptune to identify the best way to reduce all images.
- Utilize an astrometry which uses the same stars in all fields of a night to have a cleaner reduction to eliminate chromatic refraction.
- Further refinements in the data may be needed as we further investigate these position sets.

## Bibliography

Benedetti-Rossi, G., Vieira Martins, R., Camargo, J. I. B., Assafin, M., and Braga-Ribas, F. (2014). Pluto: improved astrometry from 19 years of observations. *Astronomy & Astrophysics*, 570:A86.

Pascu, D., Storrs, A. D., Wells, E. N., Hershey, J. L., Rohde, J. R., Seidelmann, P. K., and Currie, D. G. (2006). Hst bvi photometry of triton and proteus. *Icarus*, 185(2):487–491.

Schmude, Jr., R. W., Baker, R. E., Fox, J., Krobusek, B. A., Pavlov, H., and Mallama, A. (2016). The Secular and Rotational Brightness Variations of Neptune. *ArXiv e-prints*.

BIBLIOGRAPHY 15



Figure 12: Neptune - Mean offsets by day

BIBLIOGRAPHY 16



Figure 13: Difference between the offsets of Triton and Neptune - Mean offset by day