CS4833: Embedded Systems

Communication

CS 4833: Embedded Systems

1

Outline

- Communication protocols
- Parallel communication
 - > Peripheral Component Interconnect (PCI)
- Serial communication: RS232
 - > UART, I2C, USB and PCle
- Real time communication
 - > Event vs. time driven; CAN, FlexRay etc.
- Wireless communication

CS 4833: Embedded Systems

Communication Protocols

- Number of communication bits: parallel vs. serial
- Timing: asynchronous vs. asynchronous
- Layering
 - Lower levels provide services to higher level
 - Easier to design
 - Physical layer: lowest level in hierarchy
 - Medium to carry data from one actor (device or node) to another

CS 4833: Embedded Systems

3

Interface with "Remote" Devices

- Layering techniques:
 - Break communication into pieces easier to design and understand
 - Lower levels provide services to higher level
 - Lower level might work with bits while higher level might work with packets of data
 - Physical layer
 - ✓ Lowest level in hierarchy
 - √ Medium to carry data from one actor (device or node) to another

Parallel communication

- Physical layer capable of transporting multiple bits of data simultaneously
- Serial communication

Physical layer transports one bit of data at a time

CS 4833: Embedded Systems

Parallel Communication

- Multiple data, control, and power wires
 - > One bit per wire
- High data throughput with short distances
- Typically used when connecting devices on same IC or same circuit board
 - > Bus must be kept short
 - Long parallel wires result in high capacitance values that require more time to charge/discharges
 - > Data misalignment between wires as length increases
- Higher cost, bulky

CS 4833: Embedded Systems

5

Parallel protocols: PCI Bus

- Peripheral Component Interconnect (PCI)
 - High performance bus designed by Intel in the 1990's
 - ➤ Interconnects CPUs, expansion boards, memory
 - Data transfer rates up to 1GBs for 64 bit addresses
 - > Synchronous bus architecture
 - Multiplexed data/address lines
- Old printers: parallel cables

CS 4833: Embedded Systems

Parallel protocols: ARM Bus

- Many IC design companies have own bus protocol
 - > Intellectual proprietary
- ARM Bus
 - Proprietary
 - Designed and used internally by ARM Corporation
 - Interfaces with ARM line of processors
 - Data transfer rate is a function of clock speed
 - 32-bit addressing

CS 4833: Embedded Systems

7

Serial Communication

- Single data wire: one bit at a time
 - May have/need control wires
- Target at long distance transmission
 - Less average capacitance: more bits per unit of time
 - Higher data throughput
- Complex protocol and interfacing logic
 - Sender needs to decompose word into bits
 - > Receiver needs to recompose bits into word
 - Control signals often on the same wire -> increasing protocol complexity

CS 4833: Embedded Systems

- Universal asynchronous receiver transmitter (UART)
 - ➤ Parallel data → transmits serially at up to max 450 Kbps
 - > 8251 chip functions are integrated into PC interface chip

UART: Basic ParametersBasic parameters

- ➤ Baud (bit) rate (e.g., speed)
 - > Number of bits per character
 - Parity/no parity
 - Even/odd parity
 - Length of stop bit (1, 1.5, 2 bits)
 - Quiescent state: high !!!

CS 4833: Embedded Systems

12

Serial Protocol: I2C

- Inter-IC (I2C)
 - Two-wire serial bus protocol developed by Philips Semiconductors nearly 20 years ago
 - Enables peripheral ICs to communicate using simple communication hardware
 - ✓ appropriate for peripherals where simplicity and low manufacturing cost are more important than speed
 - Normal mode: 100 Kbps with 7-bit address
 - Fast mode: 3.4 Mbpbs with10-bit address
 - Common devices capable of interfacing to I2C bus
 - ✓EPROMS, Flash, and some RAM memory, real-time clocks, watchdog timers, and microcontrollers

CS 4833: Embedded Systems

13

Serial Protocol: Universal Serial Bus (USB)

- Easier connection between PC and peripherals
- USB 1.1 has 2 data rates:
 - > 12 Mbps for increased bandwidth devices
 - 1.5 Mbps for lower-speed devices (joysticks, game pads)
- USB 2.0 runs at 480 Mbps; USB 3.0 up to 5 Gbps
- Tiered star topology can be used
 - One USB device (hub) connected to PC
 - Up to 127 USB devices can be connected to hub
- USB host controller
 - Manages and controls bandwidth and driver software required by each peripheral
 - Dynamically allocates power downstream according to devices connected/disconnected

CS 4833: Embedded Systems

Real-Time Communication & Protocols

Requirements:

- Control systems: real-time behavior
- Bandwidth and delay
- Efficient and economical
- Robustness and fault tolerance
- Maintainability and diagnosability
- Safety and Security

CS 4833: Embedded Systems

17

Real-Time Behavior

- Token rings/bus: high priority nodes are ok
 - > Carrier-sense mult.-access/collision-avoidance: CSMA/CA
 - ✓ Each partner gets an ID (priority). After each bus transfer, all partners try setting their ID on the bus; partners detecting higher ID disconnect themselves from the bus. Highest priority partner gets guaranteed response time; others only if they are given a chance.
- Ethernet: no timing guarantees
 - Carrier-sense mult.-access/collision-Detection: CSMA/CD
- Field bus
 - Family of industrial computer network protocols for RTdistributed control

CS 4833: Embedded Systems

Event vs. Time Triggered

- Event Triggered (ET):
 - Comp./communication triggered by an external event
 - Generated by (primarily) state changes in the environment ✓ Efficient — only do things when they need to be done; rest and save energy/cpu time/bandwidth
 - High peak-load if multiple events happen at once
 - Hard to analyze due to asynchronous nature of events
- Time Triggered (TT):
 - Comp./comm. triggered by progress of a system clock
 - Events happen according to a fixed schedule ✓ Inefficient — does things periodically, whether needed or not
 - Enhanced analizability due to easily characterizable load, predictable interaction sequences, bus use, etc. CS 4833: Embedded Systems

Time Division Multiple Access

- Each connected node is assigned a fixed time slot
 - Master sends sync.
 - Some waiting time
 - > Each slave transmits in its time slot
 - Variations: truncating unused slots, several slots/slave etc.

http://users.ece.cmu.edu/~koopman/jtdma/jtdma.html CS 4833: Embedded Systems

TDMA vs. Priority-Driven Schemes

- Can provide QoS guarantees
 - > TDMA resources have a very deterministic timing behavior
 - > TDMA resources support temporal composability, by separating resource access of different subsystems
- Can be made fault tolerant
- Support for error detection
- Support for error contention
 - a faulty subsystem does not affect the correct behavior of the remaining system

CS 4833: Embedded Systems

21

Field Busses: Profibus

- More powerful and expensive than sensor interfaces
- Mostly serial; apps transmit a few bytes at a time
- Example: Process Field Bus (Profibus)
 - > Designed for factory and process automation.
 - Focus on safety; comprehensive protocol mechanisms
 - > Token passing
 - Speed and range: ≤93.75 kbit/s (1200 m);1500 kbits/s (200m);12 Mbit/s (100m)
 - > Integration with Ethernet via Profinet.
 - > 20% market share for field busses.

CS 4833: Embedded Systems

Controller Area Network (CAN)

- Designed by Bosch and Intel in 1981; Key concept:
 - > every device can be connected by a single set of wires;
 - > A device can exchange data w. any connected device
- Originally designed for automobiles/cars
 - Now also for: elevator controllers, medical instruments etc.
- Binary countdown arbitration (CSMA/CD)
 - > Start from MSB, transmit each bit of priority
 - highest priority wins
 - Low and high-priority signals
 ✓ maximum latency of 134 μs
 - for high priority

Throughput: 10kbit/s - 1 Mbit/s CS 4833: Embedded Systems

FlexRay

- Objective: robust, scalable, deterministic, and faulttolerant digital serial bus system designed for use in automotive applications
 - Developed by consortium: BMW, Ford, Bosch, Daimler-Chrysler, etc.; Specified in SDL; finalized in 2009
- Built as extension to TTP and Byteflight protocols.
 - Improved error tolerance and time-determinism
 - TDMA (Time Division Multiple Access) protocol: Fixed time slot with exclusive access to the bus
 - Cycle subdivided into a static and a dynamic segment.
 - Meets requirements with transfer rates >> CAN
 - √ initially targeted for ~ 10Mbit/sec;
 - ✓ design allows much higher data rates
 CS 4833: Embedded Systems

TDMA in Flexray

- Exclusive bus access for short time in each case.
- Dynamic segment for variable length information.
 - > Fixed priorities: Minislots for each potential sender.
 - Bandwidth used only when it is actually needed.

Aircraft Communication Systems

- Control platform: sampling and data transmission
 - ➤ Data: values of analog parameters: e.g. speed; height etc.
 - No response is expected, but:
 - √Time, integrity and availability are the key drivers
 - √ The stability of the flight relies on this transmission
 - Aeronautical response: ARINC 429 protocol
- Information exchange
 - > e.g. digital map, flight plan, etc.
 - > Response: e.g., ack
 - higher speed data link needed

CS 4833: Embedded Systems

Wireless Communication

- Infrared (IR)
 - Frequencies just below visible light spectrum
 - ➤ Diode emits infrared light to generate signal
 - > Infrared transistor detects signal
 - Cheap to build but need line of sight, limited range
 - Data transfer rate of 9.6 kbps and 4 Mbps
- Radio frequency (RF)
 - > Electromagnetic wave frequencies in radio spectrum
 - > Analog circuitry and antenna needed on both sides
 - Line of sight not needed, transmitter power determines range

CS 4833: Embedded Systems

27

Wireless Protocols: 802.11

- IEEE 802.11
 - > Standard for wireless LANs
 - Specifies parameters for PHY and MAC layers of network
- PHY layer
 - handles transmission of data between nodes
 - operates in 2.4 / 5 GHz frequency band (RF)
 - data transfer rates up to 600 Mbit/s for 802.11n
- MAC layer: medium access control layer
 - > protocol responsible to maintain order in shared medium
 - collision avoidance/detection

CS 4833: Embedded Systems

RFID: Radio Frequency ID

- Use EM field to transfer data, to identify & track tags attached to objects; no need for line of sight
- Active vs. passive tags
 - ➤ Active transmits ID, they are low power (~10-100uA) but higher cost (\$10-\$200/unit retail)
 - Passive no intrinsic power (powered by EM induction) and cheaper (\$0.20-0.40)
- RFID Readers: \$100+ to \$1000s: read & smart track
- Using RFID for real-time location systems (RTLS)
 - > Active tags: 100m+ in line of sight, or 1-20m obstructed
 - ➤ Battery: 1Y on a single charge @ <1Hz transmission rate
 - Location accuracy as close as 30cm with reader presence cs 4833: Embedded Systems 29

Comparison: Side by Side				
		Bluetooth	BLE	ZigBee
	Band	2.4GHz	2.4GHz	2.4GHz, 868MHz, 915MHz
	Antenna/HW	Shared		Independent
	Power	100 mW	~10 mW	30 mW
	Battery Life	Days - months	1-2 years	6 months – 2 yrs
	Range	10-30 m	10 m	10-75 m
	Data Rate	1-3 Mbps	1 Mbps	25-250 Kbps
	Network Topologies	Ad hoc, point to point, star	Ad hoc, point to point, star	Mesh, ad hoc, star
	Time to Wake and Transmit	3s	3ms	15ms
C	Security	128-bit encryption	128-bit encryption	128-bit encryption

Summary

- Communication protocols
- Parallel communication
 - ➤ Peripheral Component Interconnect (PCI)
- Serial communication: RS232
 - > UART, I2C, USB and PCle
- Real time communication
 - > Event vs. time driven; CAN, FlexRay etc.
- Wireless communication

CS 4833: Embedded Systems