Predictive modelling

George, John & William

11/17/2021

Data Preparation and cleaning

Getting the missing values percentages

```
Number_Missing Missing_Rate
##
                                          Variable
## 1
               7087
                         56.53318
                                        enrollment
## 2
               7087
                         56.53318
                                        employment
## 3
               9448
                         75.36694 employment_type
## 4
               9448
                         75.36694 weekly_work_hrs
## 5
               7361
                         58.71889
                                         ethnicity
## 6
               7383
                         58.89438
                                            gender
## [1] 4998
              22
```

missing value treatment

Method I

Treating imbalance classification

```
library(ROSE)

## Loaded ROSE 0.0-4

data_pad_balance<-ovun.sample(FI_q30 ~ ., data = data_pad, method = "both", p=0.5,
    dim(data_pad_balance)

## [1] 4998 22</pre>
```

Converting predictors to category

Partitioning data set

```
## [1] 3350 22
## [1] 1648 22
```

The training data has 76 observations with 1887 now (old =1057 when compared) variables. The testing data has 32 observation with 1887 now (old= 1057 when compared) variables.

Model fitting

```
#---- Model building -----
# Create a wrapper function to abstract away the common aspects of model fitting
```

```
formula<- FI_q30~.
fit.model <- function(method, tunegrid="", data=NULL, formula=NULL) {</pre>
 data <- training
  if(is.null(formula)) formula<- FI_q30~.</pre>
  # Train the model
  train(
           formula,
           data = data,
           method = method,
           trControl = trainControl(method = "cv", 5),
           preProcess = c("center", "scale"),
           tuneGrid = tunegrid)
}
# Logistic Regression
log <-train(formula,</pre>
                 data=training,
                 method="glm",
                 family = binomial(link = "logit"),
                trControl = trainControl(method = "cv", 5),
                preProcess = c("center", "scale"))
# LDA
lda <- train(formula,</pre>
                 data=training,
                 method="lda",
                trControl = trainControl(method = "cv", 5),
                preProcess = c("center", "scale"))
#----- Elastic Net Models -----
# fit a LASSO model
lasso <- fit.model("glmnet", expand.grid(.alpha=1, .lambda=seq(0,0.1,0.01)))</pre>
# Fit a Ridge regression model
ridge <- fit.model("glmnet", expand.grid(.alpha=0, .lambda=seq(0,0.1,0.01)))</pre>
# Bagging
# bag <- fit.model("rf", data.frame(mtry=11))</pre>
bag <- train(formula,</pre>
                 data=training,
                 method="rf",
                trControl = trainControl(method = "cv", 5),
                preProcess = c("center", "scale"),
                tuneGrid = data.frame(mtry=11),
                ntree = 1000)
# Random Forest
\# rf \leftarrow fit.model("rf", data.frame(mtry=1:10))
# rf <- train(formula,
                    data=training,
#
                   method="rf",
#
                   trControl = trainControl(method = "cv", 5),
```

```
#
                   preProcess = c("center", "scale"),
#
                   tuneGrid = data.frame(mtry=1:10),
#
                   ntree = 1000)
# Support Vector Machine with linear kernel
set.seed(125)
trctrl <- trainControl(method = "cv", number=5)</pre>
svc <- train(formula, data = training, method = "svmLinear",</pre>
                     trControl=trctrl, prob.model=T,
                     tuneLength = 10)
# Support Vector Machine with radial kernel
set.seed(125)
trctrl <- trainControl(method = "cv", number=5)</pre>
svmR <- train(formula , data = training, method = "svmRadial",</pre>
                     trControl=trctrl, prob.model=T,
                     tuneLength = 10)
```

Making predictions

```
# pred <- function(model){</pre>
   model <- lasso
      pred.test<- predict(model, testing)</pre>
#
     misscal <- round(mean(pred.test != testing$FI_q30), digits = 2)
#
#
#
    # test pred 1 <- predict(model, newdata = testing, type= "prob")</pre>
    # ROC_SR <- roc(testing$FI_q30, predictor = test_pred_1[,2])</pre>
#
    # # # plot(ROC_SR, col="brown")
#
#
   # AUC<-round(ROC_SR$auc, digits=4)*100 # AUC
   # # text(x=0.4, y=0.25, paste("Area Under Curve = ", AUC, sep=""), col="blue", cex=1.2)
#
#
    #AUC = 0
   return(list(missclass=misscal))
#
#}
```

Metrics

```
library(mlr3measures)
```

```
## In order to avoid name clashes, do not attach 'mlr3measures'. Instead, only load the namespace with
##
## Attaching package: 'mlr3measures'
## The following object is masked from 'package:pROC':
##
## auc
## The following objects are masked from 'package:caret':
##
## precision, recall, sensitivity, specificity
## The following object is masked from 'package:MASS':
##
## fbeta
```

```
# Create a custom confusion matrix with performance metrics
metrics <- function(model_object, response="", test_data=NULL) {</pre>
  # response = "FI_q30"
  # model_object <- log</pre>
  if(is.null(test_data)) test_data <- testing</pre>
  # make predictions
  prediction <- predict(model_object, test_data)</pre>
  target <- test_data[, response]</pre>
  cmat <- confusionMatrix(prediction, target, mode = "prec_recall")</pre>
  misscal<- round(mean(prediction != target), digits = 2)</pre>
 # Returned outputs
return(list(
   accuracy = (1-misscal),
  mcr = misscal,
   sens = round(cmat$byClass[1],2),
   spec = round(cmat$byClass[2],2),
  fbeta = round(cmat$byClass[7],2)
))
metric_log <- metrics(lasso, response = "FI_q30")</pre>
#----- Compute performance metrics for the full models
log.metric <- metrics(log, response = "FI_q30")</pre>
lda.metric <- metrics(lda, response = "FI q30")</pre>
# knn.metric <- metrics(knn)</pre>
lasso.metric <- metrics(lasso, response = "FI_q30")</pre>
ridge.metric <- metrics(ridge, response = "FI_q30")</pre>
bag.metric <- metrics(bag, response = "FI_q30")</pre>
# rf.metric <- metrics(rf)</pre>
svc.metric <- metrics(svc, response = "FI_q30")</pre>
# svmP.metric <- metrics(svmP)</pre>
svmR.metric <- metrics(svmR, response = "FI_q30")</pre>
mod.sum <- data.frame(rbind(</pre>
                            c("Logistic", log.metric$mcr, log.metric$accuracy, log.metric$sens, log.metri
                            c("LDA", lda.metric$mcr, lda.metric$accuracy, lda.metric$sens, lda.metric$sp
                            c("LASSO", lasso.metric$mcr, lasso.metric$accuracy, lasso.metric$sens, lasso.metric
                            c("Ridge", ridge.metric$mcr, ridge.metric$accuracy, ridge.metric$sens, ridge.metric
                            c("Bagging", bag.metric$mcr, bag.metric$accuracy, bag.metric$sens, bag.metric
                            c("SVC", svc.metric$mcr, svc.metric$accuracy, svc.metric$sens, svc.metric$sp
                            c("SVM (Radial Kernel)", svmR.metric$mcr, svmR.metric$accuracy, svmR.metric$s
names(mod.sum) <- c("Model", "Misclassification Rate", "Accuracy", "Sensitivity", "Specificity", "fbeta</pre>
kable(mod.sum, align = "lccccc", caption = "Table : Evaluation metrics for Housing Insecurity with Perm
  kable_paper("hover", full_width = F)%>%
       kable_styling(font_size = 12)
```

Table 1: Table : Evaluation metrics for Housing Insecurity with Permanent Address as a response

Model	Misclassification Rate	Accuracy	Sensitivity	Specificity	fbeta
Logistic	0.11	0.89	0.86	0.91	0.88
LDA	0.11	0.89	0.85	0.92	0.88
LASSO	0.11	0.89	0.88	0.9	0.89
Ridge	0.11	0.89	0.86	0.92	0.88
Bagging	0.05	0.95	0.96	0.93	0.95
SVC	0.11	0.89	0.88	0.9	0.89
SVM (Radial Kernel)	0.07	0.93	0.93	0.92	0.93

Base on our table of results SVM with radial basis function is the best

