June 2006 6679 Mechanics M3 Mark Scheme

Question	Scheme	Mar	ks
Number			
1.	Use of $(\pi) \int y^2 dx \times \overline{x} = (\pi) \int xy^2 dx$	M1	
	$\int x \mathrm{d}x \times \overline{x} = \int x^2 \mathrm{d}x$		
	$\left[\frac{1}{2}x^2\right]^{\cdots} \times \overline{x} = \left[\frac{1}{3}x^3\right]^{\cdots}$	A1 = A1	
	2 3		
	Using limits 0 and 4 $\frac{16}{2} \times \overline{x} = \frac{64}{3}$	M1	
	$\overline{x} = \frac{8}{3}$	A1	(5)
			[5]
2.	(a) Small Hemisphere Bowl Large Hemisphere		
2.	$(x)^3$ $(x)^3$ $(x)^3$ $(x)^3$	D1	
		B1	
	Anything in the ratio 1:7:8 $\frac{3}{16}a \qquad \overline{x} \qquad \frac{3}{8}a$	B1	
	$\frac{\lambda}{16}$ $\frac{\lambda}{8}$ $\frac{8}{8}$	Di	
	$1 \times \frac{3}{16} a + 7 \times \overline{x} = 8 \times \frac{3}{8} a$	M1 A1	
			(-)
	Leading to $\overline{x} = \frac{45}{112}a *$ cso	A1	(5)
	(b) Bowl Liquid Bowl and Liquid		
	Mass Ratios $M kM (k+1)M$	B1	
	$\frac{3}{112}a \qquad \frac{3}{16}a \qquad \frac{17}{48}a$	B1	
	45 3 () 17		
	$M \times \frac{45}{112}a + kM \times \frac{3}{16}a = (k+1)M \times \frac{17}{48}a$	M1 A1	
	Leading to $k = \frac{2}{7}$	A1	(5)
			[10]

3.	(a) $a = 0.1$	B1
	$\frac{2\pi}{\omega} = \frac{1}{5} \implies \omega = 10\pi$	M1 A1
	$F_{\text{max}} = ma\omega^2$	M1
	$=0.2\times0.1\times\left(10\pi\right)^2$	M1
	≈19.7 (N)	A1
	cao	(6)
	(b) $a' = 0.2, \omega' = 10\pi$	B1ft, B1ft
	$v^2 = \omega^2 (a^2 - x^2) = 100\pi^2 (0.2^2 - 0.1^2) (= 3\pi^2 \approx 29.6 \dots)$	M1 A1
	$v \approx 5.44 \left(\text{m s}^{-1} \right)$	A1
	cao If answers are given to more than 3 significant figures a	(5)
	maximum of one A mark is lost in the question.	[11]
	3	
4.	$\tan \alpha = \frac{3}{4}$	B1
	or equivalent	
	$\tan \alpha = \frac{r}{h}$	B1
	or $\frac{r}{h} = \frac{3a}{4a}$	
	$R(\uparrow) R\sin\alpha = mg$	
	$\left(R = \frac{5}{3}mg\right)$	M1 A1
	$h mg R(\leftarrow) R\cos\alpha = mr\omega^2$	M1 A1
	$= mr \times \frac{8g}{9a} \left(R = \frac{10mrg}{9a} \right)$	A1
	,	
	$\tan \alpha = \frac{9a}{8r} \left(\frac{5}{3}mg = \frac{10mrg}{9a}\right)$	M1 A1
	Eliminating R	
	$\left(\frac{3}{4} = \frac{9a}{8r} \implies r = \frac{3}{2}a\right)$	
	$h = \frac{r}{\tan \alpha} = \frac{3a}{2} \times \frac{4}{3} = 2a$	M1 A1 (11)

	[11]

Question	Scheme	Marks
Number		
5.	(a) $A = 0.75 \text{ m}$ $B = 1 \text{ m}$	
	$AP = \sqrt{\left(0.75^2 + 1^2\right)} = 1.25$	M1 A1
	Conservation of energy	
	$\frac{1}{2} \times 2 \times v^2 + 2 \times \frac{49 \times 0.5^2}{2 \times 0.75} = 2g \times 1$ for each incorrect term	M1 A2 (1, 0)
	Leading to $v \approx 1.8 \text{ (m s}^{-1}\text{)}$	A.1. (6)
	accept 1.81	A1 (6)
	(b)	
	A 0.75 m B	
	T α α T P $2g$	
	$R(\uparrow)$ $2T\cos\alpha = 2g$	M1 A1
	$y = \frac{0.75}{\sin \alpha}$ Hooke's Law $T = \frac{49}{0.75} \left(\frac{0.75}{\sin \alpha} - 0.75 \right)$	M1 A1
	$=49\left(\frac{1}{\sin\alpha}-1\right)$ $\frac{9.8}{\cos\alpha}=49\left(\frac{1}{\sin\alpha}-1\right)$	
	Eliminating T	M1
	$\tan \alpha = 5(1 - \sin \alpha)$	
	$5 = \tan \alpha + 5\sin \alpha \bigstar$	A1 (6) [12]

Question Number	Scheme	Marks
6.	(a) v	B1
	Parabola 15	B1
	Hyperbola	B1
	Points 7.5 4 5 10 t	(3)
	(b) Identifying the minimum point of the parabola and 5 as the end points.	M1
	2 < t < 5	A1 (2)
	(c) Splitting the integral into two part, with limits 0 and 4, and 4 and 5, and	
	evaluating both integrals.	M1
	$\int_{0}^{4} 3t (t-4) dt = \left[t^{3} - 6t^{2}\right]_{0}^{4} = -32 \text{ and } \int_{4}^{5} 3t (t-4) dt = \left[t^{3} - 6t^{2}\right]_{4}^{5} = 7$ Both	A1
	Total distance = $39 \text{ (m)} *$	A1
	cso	(3)
	(d) $\int_{5}^{t_{1}} \frac{75}{t} dt = 32 - 7$	M1 A1
	$75\left[\ln t\right]_5^{t_1} = 25$	A1
	$\ln \frac{t_1}{5} = \frac{1}{3} \implies t_1 = 5e^{\frac{1}{3}}$ ≈ 6.98	M1
	≈ 6.98 cao	A1 (5)
		[13]

			ı

Question	O-h	NA - vl	
Number	Scheme	Marks	
7.	(a) A P $\sqrt{\left(\frac{5gl}{2}\right)}$ Conservation of Energy $\frac{1}{2}m\left(\frac{5gl}{2}-u^2\right)=mgl$ Leading to $u=\sqrt{\left(\frac{gl}{2}\right)}$	M1 A1= A1 A1 (4)	
	(b) $\begin{array}{c} y \\ T \neq mg \\ A \end{array}$	A1 (4)	
	Conservation of Energy $\frac{1}{2}m(u^2 - v^2) = mgr$ $v^2 = u^2 - 2gr$	M1 A1	
	$R(\downarrow) \qquad T + mg = \frac{mv^2}{r}$	M1 A1	
	$T = \frac{m}{r} \left(u^2 - 2gr \right) - mg$	M1	
	$=\frac{mu^2}{r}-3mg$	A1	
	$=\frac{mgl}{2r}-3mg$	M1	
	$T \ge 0 \Rightarrow \frac{mgl}{2r} \ge 3mg$ $\Rightarrow \frac{1}{6} \ge r$	M1	
	$AB_{\text{MIN}} = \frac{5l}{6}$	A1 (9)	
		[13]	

