

Topic 3. Logic Gates

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

3.1 Basic Logic Gates

3.2 Type of Logic Gates

- Logic Gates are used to perform logic function
- Logic Gates also used to design logic circuit
- Logic Gates perform operation on one or more logic function and provide single output
- There are 3 Basic Gates, 2 Universal Gates, and 2 Special Gates

- Basic gates: AND, OR, NOT
- Universal gates: NAND, NOR (by using those gates we can implement all other gates
- Special gate: EX-OR, EX-NOR (XOR, NOR)

BASIC GATES

AND = multiplication functionality

• OR = addition functionality

• NOT = complement functionality

where
$$Z = \bar{X}$$

UNIVERSAL GATES

• NAND: AND + NOT

• NOR : OR + NOT

$$\begin{array}{c|c}
x \\
Y \\
Z
\end{array}$$

$$F(X,Y,Z) = \overline{X} + \overline{Y} + \overline{Z}$$

SPECIAL GATES

• XOR: eXclusive OR

• XNOR: eXclusive NOR (complement of XOR)

There are other concepts that will be used in this topic

Truth table

Has **one column for each input variable** (for example, A and B), and **one final column showing all of the possible results** of the logical operation that the table represents

Timing diagram

Representation of a set of signals in the time domain

For example

BASIC GATES

AND GATE: Logical multiplication

2 input AND gate
a
b

n input AND gate

Truth table

Inputs		Output	
A	В	Y=A.B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Timing diagram AND GATE

OR GATE: Logical addition

2 input OR gate

n input OR gate

Truth table

Inputs		Output	
A	В	Y=A+B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Timing diagram OR GATE

NOT GATE: complement

Truth table

Input	Output	
A	$Y = \overline{A}$	
0	1	
1	0	

Timing diagram NOT GATE

UNIVERSAL GATE

NAND GATE: AND + NOT

The symbol can also be represented as

Truth table

Inputs		Output	
A	В	Y= <u>A. B</u>	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Timing diagram NAND GATE

NOR GATE: OR + NOT

The symbol can also be represented as

Truth table

Inputs		Output	
A	В	$Y = \overline{A + B}$	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Timing diagram NOR GATE

SPECIAL GATE

EX-OR GATE: Exclusive OR

has the output only high when an odd number of inputs are high

he output is low when both the inputs are low, and both the inputs are high

Truth table

Inputs		Output	
A	В	Y=А⊕В	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Timing diagram EX-OR GATE

EX-NOR GATE: Exclusive NOR

has the output only high when both the inputs have the same values either high or low

Truth table

Inputs		Output	
A	В	Y=A ⊕ B	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

• Timing diagram EX-NOR GATE

Properties of XOR and XNOR GATE

X	0	0	=	X
	147	U	_	/\

•
$$X \oplus Y' = X' \oplus Y = (X \oplus Y)' = X \otimes Y$$

- X ⊕ Y = X' ⊕ Y' (same with XNOR)
- X ⊕ Y = Y ⊕ X (commutative, same with XNOR)
- X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z (associative, same with XNOR)

 $X \otimes 0 = X'$

 $X \otimes 1 = X$

 $X \otimes X = 1$

 $X \otimes X' = 0$

NAND Realization

NOR Realization

Example.

Implement $AB + A\overline{B}$ using logic gate

Example.

Implement

$$(A+B+C)$$
.

$$(\bar{A} + \bar{B} + C)$$
.

$$(A + \overline{B} + C)$$

using logic gate

Example.

Find the Boolean equation of the following logic circuit

Example.

Find the Boolean equation of the following logic circuit

Example.

Find the logic expression for the logic circuit below

Example.

Find the output for the logic circuit below.

The output is

$$Y = \overline{A} + \overline{AB} + \overline{BC} + \overline{C}$$

$$= \overline{A} + \overline{A} + \overline{B} + \overline{B} + \overline{C} + \overline{C}$$

$$= \overline{A} + \overline{B} + \overline{C}$$

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, **Chapter 2**

Next Topic: K-MAP