EM672 B - SISTEMAS FLUIDO-TÉRMICOS I

2a, Prova - 22/06/2010

1. (1,5) Considere as propriedades listadas abaixo para refrigerantes utilizados em refrigeradores residenciais. Analise em termos de propriedades termodinâmicas e em relação ao efeito ao meio ambiente as vantagens e desvantagens do R600a em relação ao R134a como substituto do R12. Analise pelo menos 3 propriedades.

Propriedades de refrigerantes para uso doméstico

Refrigerante	R12	R134a	R600a
Nome, fórmula	Dicloro-difluoro-	1,1,1,2-	Iso-butano,
	metano, CCl ₂ F ₂	tetrafluoro-	$CH_3)_3CH$
		etano, CF ₃ CH ₂ F	
Massa molar [kg/kgmol]	0,121	0,102	0,058
Temperatura de ebulição a 1 atm [K]	243,2	246,6	261,5
Temperatura Crítica [K]	388	374	408
Pressão Critica [MPa]	4,01	4,07	3,65
Densidade a 25 °C [kg/m ³]	1470	1370	600
Pressão vapor a 25 °C [kPa]	124	107	58
Entalpia vaporização a 25 °C [kJ/kg]	163	216	376
ODP (ozone depletion potential)	1	0	0
GWP (global warming potential)	8100	1300	0
Classificação ASHRAE	A1	A1	A3

- 2. (3,0) Ar externo a 34°C e 65% de umidade relativa atravessa um sistema central de condicionamento de ar composto de filtro, serpentina de resfriamento e serpentina de aquecimento até atingir o estado necessário para ser insuflado no ambiente condicionado. Sabendo que a umidade relativa do ar após serpentina de resfriamento é de 90%, a vazão de ar externo na entrada do sistema é de 125 m³/h e que o ar precisa ser insuflado no recinto condicionado a 26°C e 45% de umidade relativa, estime:
 - (a) A quantidade de água que precisa ser retirada do ar na serpentina de resfriamento;
 - (b) A capacidade da serpentina de resfriamento, sabendo que o condensado deixa a serpentina a 25°C;
 - (c) A capacidade da serpentina de aquecimento considerando que seu rendimento é de 50%.
- 3. (3,0) Um sistema de refrigeração com dois estágios de compressão opera entre as pressões de 1,6MPa (P_H) e 100kPa (P_L). Se a vazão mássica de R134a no estágio de baixa pressão é de 0,6kg/s e a pressão intermediária é obtida considerando P_i =(P_H , P_L) $^{1/2}$, encontre:
 - (a) A capacidade de resfriamento do ciclo;
 - (b) O coeficiente de desempenho do ciclo;
 - (c) A vazão mássica de água para resfriar o R134a no condensador se a variação de temperatura da água de resfriamento no condensador é de 15°C (cp_{água}=4,2 kJ/kg°C).

 Admitir: compressões isentrópicas, vapor saturado na saída do evaporador e líquido saturado na saída do condensador

4. (2,5) Um sistema de bombeamento que utiliza a bomba centrífuga da série Fl, modelo 4013 da Taco operando a 1160 rpm e com rotor de 11,25 pol, opera transportando água a 30°C. A vazão de operação do sistema é de 480gpm. Estime a potência no eixo da bomba (em HP), a altura de elevação do sistema para essa condição de operação (em metros) e o desnível máximo entre o reservatório e a bomba para evitar cavitação (em metros). Dados: O reservatório de água está a pressão atmosférica de 1 atm; a velocidade do fluido na linha de sucção é de 2m/s e a perda de carga na linha de sucção é de 7,5kPa.

Observe com atenção a curva característica da bomba onde é possível fazer as leituras tanto no sistema inglês como no S.I.

Anexos:

- Diagrama psicrométrico
- Tabela propriedades da água na saturação
- Tabelas R134a (saturado e superaquecido)

Boa Prova! Profa. Arai Pécora