

fitipower

Table of Contents	
	Page
1. GENERAL DESCRIPTION	4
2. FEATURES.	
3. BLOCK DIAGRAM	
4. APPLICATION CIRCUIT	
5. APPLICATION POWER CIRCUIT	
6. PIN DESCRIPTION	11
6.1 Pin define	<u>,</u> 11
6.2 I/O Pin Structure	13
6.3 Value of wiring resistance to each pin	13
7. SPI COMMAND DESCRIPTION	15
7.1 "3-Wire" Serial Port Interface 7.2 "4-Wire" Serial Port Interface	15
7.2 "4-Wire" Serial Port Interface	17
8 SPLCONTROL REGISTERS:	18
8.1 Register Table	18
8.1 Register Table 8.2 Register Description 8.2.1R00H (PSR): Panel setting Register 8.2.2 R01H (PWR): Power setting Register	20
8.2.1R00H (PSR): Panel setting Register	20
8.2.2 R01H (PWR): Power setting Register 8.2.3 R02H (POF): Power OFF Command 8.2.4 R03H (PFS): Power off Sequence Setting Register	21
8.2.3 R02H (POF): Power OFF Command (()	23
8.2.4 R03H (PFS): Power off Sequence Setting Register	24
8 2 5 ROAH (PON): Power ON Command	25
8.2.6 R05H (PMES): Power ON Measure Command	26
8.2.7 R06H (BTST): Booster Soft Start Command.	27
8.2.7 R06H (BTST): Booster Soft Start Command	29
8.2.9 R10H (DTM1): Data Start transmission Register	30
8.2.10 R11H (DSP) Data Stop Command	31
8.2.11 R12HXDRFX Display Refrest Command	32
8.2.12 R(3H)(DTM2): Data Start transmission 2 Register	33
8.2.13 R14H (RDTM1): Partial Data Start transmission 1 Register	34
8.2.14 R15H (PDTM2): Partial Data Start transmission 2 Register	35
8.2.15 R16H (PDRF): Partial Display Refresh Command	36
8.2.21 R30H (OSC): OSC control Register	
8.2.22 R40H (TSC): Temperature Sensor Command	39
8.2.23 R41H (TSE): Temperature Sensor Calibration Register	40
8.2.24 R42H (TSW): Temperature Sensor Write Register	41
8.2.25 R43H (TSR): Temperature Sensor Read Register	42
8.2.26 R50H (CDI): VCOM and DATA interval setting Register	
8.2.27 R51H (LPD): Lower Power Detection Register	
8.2.28 R60H (TCON): TCON setting	
8.2.29 R61H (TRES): Resolution setting	47
8.2.30 R62H (TSGS): Source & gate start setting	48
8.2.31 R70H (REV): REVISION register	49
8.2.32 R71H (FLG): Status register	50
8.2.33 R80H (AMV): Auto Measure VCOM register	
8.2.34 R81H (VV): Vcom Value register	52
8.2.35 R82H (VDCS): Vcom_DC Setting register	
8.2.36 RA0H (PGM): Program Mode	54
8.2.37 RA1H (APG): Active Program	55
8.2.38 RA2H (ROTP): Read OTP Data	56
8.2.39 RE0H (CCSET): Cascade Setting	57
8.2.40 RE5H (TSSET): Force Temperature	
8.3 Register Restriction	59
9. FUNCTION DESCRIPTION	

9.1 Power On/Off and DSLP Sequence	60
9.2 OTP LUT Definition	62
9.3 Data transmission waveform	66
9.4 Display refresh waveform	67
9.5 BUSY_N signal flow chart	68
9.6 Over-Current Protect	69
10. ELECTRICAL SPECIFICATIONS	70
10.1 Absolute Maximum Rating	70
10.2 Digital DC Characteristic	71
10.3 Analog DC Characteristics	72
10.4 AC Characteristics	73
11. CHIP OUTLINE DIMENSIONS	75
11.1 Circuit/Bump View	75
12. ALIGNMENT MARK INFORMATION	76
12.1 Location:	76
12.2 Pad coordinates	77
13. REVISION HISTORY	86

All-in-one driver with TCON for Color application

1. GENERAL DESCRIPTION

This driver is an all-in-one driver with timing controller for color application. The outputs have 1-bit white/black and 1-bit red resolution output per pixel. The timing controller provides control signals for the source driver and gate drivers.

The DC-DC controller allows to generate the source output voltage VSH/VSL (+12.4V+/-11V). The chip also includes an output buffer for the supply of the common electrode (VCOMAC or VCOMDC). The system is configurable through a 3-wire/4-wire (SPI) serial.

2. FEATURES

- System-on-chip (SOC) for color application
- Timing controller support several all resolution (maximum resolution 320x300)
- Support source & gate driver function:
 - 320 Outputs source driver with 1-bit white/black & 1-bit red per pixel:
 - Output dynamic range: VSH (+2.4~+1(V)& VSL (-2.4~-11V) (programmable, black/white)
 - VSHR 1/2/4-1/1V (programmable) red
 - Output deviation: 0.1V
 - et and Right shift capability

300 Output gate driver

- Output dynamic range: VGH and VGL: +16V, -15V
- Up and Down shift capability
- Common electrode level
 - AC-VCOM and DC-VCOM
 - Support sensing function (6-bit digital status)
 - Support LUT
- Charge Pump: On-chip booster and regulator
- Built in Frame memory maximum: (320 x 300 x 1 bit) x 2 SRAM
- Built in temperature sensor:
 - On-Chip: On-Chip: -25~50 °C ± 2.0°C / 8-bit status
 - Off-Chip: $-55\sim125^{\circ}C \pm 2.0^{\circ}C / 11$ -bit status ($l^{2}C/LM75$)
- Support LPD, Low Power detection (VDD<2.5V)

- OCS : On-chip RC oscillator
- 3-wire/4-wire (SPI) serial interface for system configuration: Clock rate up to 20MHz
- Digital supply voltage: 2.3~3.6V
- OTP: 4K-byte OTP for LUT
- Partial update
- Support cascade
- Package-COG
- COM / SEG bump information
 - Bump pitch: 44 μm
 - X Bump space: 22 μm ± 3 μm, Y Bump space : 20 μm ± 3 μm
 - Bump Area: 1210 μm²

3. BLOCK DIAGRAM

Cascade type 1

Cascade type 2 RESOLUTION: 640x300

4. APPLICATION CIRCUIT

5. APPLICATION POWER CIRCUIT

5.1 Power Generation

Note: VGL will be -15V if referring to the application circuit,

6. PIN DESCRIPTION

6.1 Pin define

Pin Name	Pin Type	I/O Structure	Description
		Seria	Communication Interface
CSB	I	Type 2	Serial communication chip select.
SDA	I/O	Type 4	Serial communication data input.
SCL	ļ	Type 3	Serial communication clock input.
DC	I	Type 2	Serial communication Command/Data input L: Command H: data (default)
			Control Interface
RST_N	I:	Type 2	Global reset pin Low reset. (normal pull high) When RST W become low, driver will reset. All register will reset to default value, all driver function will disable. SD output and VCOM will base on previous condition. It may have two conditions: 0v or floating.
BUSY_N	0	Type1	This per indicates the driver status. BUSY_N= "0": Driver is busy, data/VCOM is transforming. BUSY_N= "1" non-busy. Host side can send command/data to driver.
BS		Type 5	hput Interface setting. Select 3 wire/ 4 wire SPI interface H:3-wire IF(Default) Note: please always keep L or H.
TSOL		Type1	I ² C clock for external temperature sensor
TSPA \	1/0	Type 4	I ² C data for external temperature sensor
MS	1	Type 5	Master/Slave selection for cascade mode Low: Slave High: Master In single-chip mode, MS should be connect to VDD
Output Driver			
S[0,319]	0	-	Source driver output signals.
G[0,299]	0	=	Gate driver output signals
			Border
BDR_L, BDR_R	0	_	Border output pins. It outputs black WF.
VCOM GENERATO			
VCOM_PASSR / VCOM_PASSL	1/0		VCOM Internal Pass Line
VCOM	0	Type 1	VCOM output. VCOM has follow four voltage state: 1. (VSH-VCM_DC) v 2. (-VCM_DC) v 3. (VSL-VCM_DC) v. 4. Floating
			Power Circuit
GDR	0	-	This pin is N-MOS gate control.
RESE	Р	-	Current sense input for control loop.

fitipower

Pin Name	Pin Type	I/O Structure	Description
FB	Р	-	Keep open
VGH	Р	Type 4	Positive gate voltage
VGL	Р	Type 4	Negative gate voltage.
VSH	Р	Type 4	Positive source voltage
VSL	Р	Type 4	Negative source voltage.
VSHR	Р	Type 4	Positive source voltage for Red
VSLR	Р	Type 4	negative source voltage for Red
			Power Supply
VSSP	Р	-	DCDC Ground
VDDP	Р	-	DCDC power input
VDD	Р	ı	Digital/Analog power
VSS	Р	1	Digital ground
VSSA	Р		Analog Ground
VDDIO	Р	-	IO voltage supply
VDD_18V	Р	-	1.8V voltage input &output
VOTP	Р	-	OTP program power (7.5V)
VSSGS	Р	C	Driver Ground
Reserved Pins			
TP[66:0]	I/O		Leave it floating
MS_LR	1 1	Fype 5	Cascade direction 0 : Master(right side output) -> Slave(left side input) Slave(right side input) <- master(left side output)
VSYNC_R	TO	Type 4	Cascade right side Vsync
VSYNC_L /	$\frac{1}{\sqrt{ NO }}$	Type 4	Cascade left side Vsync
SYNCM_R) No	Type 4	Cascade master right side state sync
SYNCM	\\\\ I/O	Type 4	Cascade master left side state sync
SYMES_R \\	1/0	\\\Type 4	Cascade slave right side state sync
SYNCS_L\\	I/O	Type 4	Cascade slave left side state sync
CLK\L	I/O	Type 4	Cascade left side reference clock pin
CLK_R			On and what side as former also be side
	I/O	Type 4	Cascade right side reference clock pin
HSYNC_L	I/O I/O	Type 4 Type 4	Cascade left side system clock pin
HSYNC_L HSYNC_R		•	
	I/O	Type 4	Cascade left side system clock pin
HSYNC_R	I/O I/O	Type 4 Type 4	Cascade left side system clock pin Cascade right side system clock pin
HSYNC_R EN_L	I/O I/O I/O	Type 4 Type 4 Type 4	Cascade left side system clock pin Cascade right side system clock pin Cascade left side enable pin

Note: I: Input, O: Output, P: Power, D: Dummy, S: Shorted line, M: Mark, PI: Power input, PO: Power output, I/O: Input / Output. PS: Power Setting, C: Capacitor pin.

6.2 I/O Pin Structure

Pin name	Wiring resistance value(Ω)	Pin name	Wiring resistance value(Ω)	
VCOM_PASSR	5ohm	TSDA	100ohm	
VCOM	5ohm	TSCL	100ohm	
VGL	5ohm	MS	5ohm	
VSHR	5ohm	MS_LR	5ohm	
VGH	5ohm	VSL	5ohm	
VSH	5ohm	VSLR	5ohm	
VOTP	5ohm	RESE	100ohm	
VDD_18V	5ohm	GDR	100ohm	
VSSA	5ohm	SYNCS_L	100ohm	
VSSGS	5ohm	SYNCM_L	100ohm	
VSS	5ohm	VSYCM_L	100ohm	
VSSP	5ohm	HSYNC_L	100ohm	
VDD	5ohm	DT_L	100ohm	
VDDP	5ohm	EN_L	100ohm	
VDDIO	5ohm	CLK_L	100ohm	
SDA	100ohm	CLK_R	100ohm	
SCL	100ohm	EN_R	100ohm	
CSB	100ohm	DT_R	100ohm	
DC	100ohm	HSYNC_R	100ohm	
RST_N	100ohm	VSYNC_R	100ohm	
BUSY_N	100ohm	SYNCM_R	100ohm	

BS	100ohm	SYNCS_R	100ohm	

7. SPI COMMAND DESCRIPTION

7.1 "3-Wire" Serial Port Interface

EK79652 use the 3-wire serial port as communication interface for all the function and command setting. 3-Wire communication can be bi-directional controlled by the "R/W" bit in address field. EK79652 3-Wire engine act as a "slave mode" for all the time, and will not issue any command to the 3-Wire bus itself.

Under read mode, 3-Wire engine will return the data during "Data phase". The returned data should be latched at the rising edge of SCL by external controller. Data in the "Hi-Z phase" will be ignored by 3-Wire engine during write operation, and should be ignored during read operation, also During read operation, external controller should float SDA pin under "Hi-Z phase" and "Data phase".

3 pin serial interface characteristics (read mode)

7.2 "4-Wire" Serial Port Interface

(LUTBB/LUTB)

w

1

#

8. SPI CONTROL REGISTERS:

8.1 Register Table

Following table list all the SPI control registers and bit name definition for EK79652. Refer to the next

section for detail register function description. Bit Address command R/W D/CX D7 D6 D2 D5 D4 D3 D1 D0 Code 0 0 0 0 00H R00H Panel setting (PSR) RES[1] RES[0] REG EN BWR UD N CHE RST N 1 SHL 07h w 1 _ VDS_EM VDG_EN 03h VGHL_LV VGHL_LV W VCOM_HX R01H Power setting (PWR) W 1 VSH [5] VSH [4] EPPREV VSN [2] VSH [1] VSH [0] 26h VSL (8) **≫**SL [2] W 1 VSL [5] VSL [4] VSL [1] VSL [0] 26h VSHR [2] W VSHR [5] KSHR [4] (SHR [3] VSHR [1] VSHR [0] 1 VSHR [6] 03h R02H Power OFF(POF) W 0 0 0 0 02H W 0 0 0 a Ø 1 03H 9 1 Power off Sequence R03H T_VDS_OF Setting(PFS) VQS_QF 1 F[0] Power ON (PON) w 0 0 R04H Ø 0 0 0 04H Power ON Measure 0 R05H W 0 0 0 0 1 05H (PMES) W *)*b) 0 0 06H 1 BT PHA5 BT_PHA4 BT_PHA1 W BY PHAZ BT_PHA6 BT_PHA3 BT_PHA2 BT_PHA0 03h **Booster Soft Start** R06H (BTST) вт РНВ7 BT_PHB6 BT PHB5 BT PHB4 BT PHB3 BT PHB2 BT PHB1 BT PHB0 W 00h BT PHC5 BT PHC4 BT PHC3 BT PHC2 W BT PHC1 BT PHC0 26h W 0 Ó 07H Deep Sleep(DSLP) R07H w) 0 0 O A5h 1 1 1 1 **Data Start** W 0/ 0 0 0 1 0 0 0 10H 0 R₁₀H transmission1 W # # # ¥ # # # # 00H (DTM1) W **∕**₀ 0 0 1 0 0 0 1 11H R11H Data Stop (DSP) R Data_flag -_ 00h Display Refresh R12H W 0 0 0 0 1 0 0 0 1 12H (DRF) Data Start w 0 0 0 0 0 0 13H 1 0 0 R13H transmission W 2(DTM2) Partial Data Start W 0 0 0 0 0 0 0 14H R14H transmission1 # W # # # # # # # 1 00H (PDTM1) Partial Data Start W 0 0 0 0 1 0 1 0 1 15H R15H transmission 2 W # # # # # # # # 00H 1 (PDTM2) w O n ٥ 0 n 1 1 n 16H 1 Partial Display R16H Refresh(PDRF) W # # # # # # # 1 # 00H W 0 0 0 0 0 0 0 0 LUT for VCOM R₂₀H (LUT1) W 1 # # # # # # # # 00H w O n n 1 n ٥ n n 1 White to White LUT 21H R21H (LUTWW) W # # # # # # # # 00H W 0 0 0 0 0 0 1 1 0 Black to White LUT R22H (LUTBW/LUTR) w 1 # # # # # # # # 00H w 0 0 0 1 0 0 1 23H 0 White to Black LUT R23H (LUTWB/LUTW) W 1 # # # # # # # 00H Black to Black LUT W 0 0 0 1 0 0 0 0 24H R24H

#

#

#

#

#

00H

#

<u>fitipower</u>

		w	0	0	0	1 1	1	0	0	0	0	30H
R30H	OSC control (OSC)	W	1	-	_	DIV[1:0]	'	Ů	SEL_F[4:0]	Ü	- O	3Ch
		W	0	0	1	0	0	0	0	0	0	40H
R40H	Temperature Sensor	R	1	D10/TS[7]	D9/TS[6]	D8/TS[5]	D7/TS[4]	D6/TS[3]	D5/TS[2]	D4/TS[1]	D3/TS[0]	4011
114011	Command (TSC)	R	1	D10/10[/]	D3/10[0]	D0/10[0]	-	-	55/10[2]	D4/10[1]	-	
	T	W	0	0	1	0	0	0	0	0	1	41H
R41H	Temperature Sensor Calibration (TSE)	W	1	TSE		0		TO[3]	TO[2]	TO[1]	TO0]	4111
		W	0	0	1	0	0	0	0	10[1]	0	42H
	T	W	1	WATTR[7]	WATTR[6]	WATTR[5]	WATTR[4]	WATTR[3]	WATTR(2)	WATTR[1]	WATTR[0]	00h
R42H	Temperature Sensor Write (TSW)	W	1			WMSB[5]	WMSB[4]	WMSB[3]	MATTRIAL MMSB[2]	WANTE BITT	WMSB[0]	00h
	Wille (16W)	W	1	WMSB[7] WLSB[7]	WMSB[6] WLSB[6]	WLSB[5]	WLSB[4]	WLSB(S)	WLSB(2)	WLSB[1]	WLSB[0]	00h
		W	0	0	1	0	0	~ //	Mrseki	0	1	43H
R43H	Temperature Sensor	W	1				RMSB[4]	DMODIO	DMCD131			43П
K43H	Read (TSR)	W	1	RMSB[7]	RMSB[6]	RMSB[5]	RISB(4)	RMSB[3]	RMSB[2] RLSB[2]	RMSB[1]	RMSB[0]	
			0	RLSB[7]	RLSB[6]	RLSB[5]	Wroplet/	Kropis)	0 0	RLSB[1]	RLSB[0]	5011
R50H	VCOM and DATA interval setting (CDI)	W			1	0		ODIO				50H
	, , , , , , , , , , , , , , , , , , ,	W	1	VBD[1]	VBD[0]	N/KO0	ppxydi	CDI[3]	CD[2]	CDI[1]	CDI[0]	D7h
R51H	Lower Power Detection (LPD)	W	0	0	1	16911	~			0	1	51H
	` '	R	1	-		1111 0	• •			-	LPD	2011
R60H	TCON setting (TCON)	W	0	0 ((~ [])) /		9//	9	0	0	60H
	(TCON)	W	1	S2G[3]	V 11.	\$2G[1]-	S2G[0]	(252[3])	G2S[2]	G2S[1]	G2S[0]	22h
		W	0			1 ((18/0)) 0	0	0	1	61H
	Resolution	W				$\gg //$					HRES(8)	00h
R61H	R61H setting(TRES)	W	$\mathcal{H}\mathcal{H}$	HRES(7)	HRES(6)	HRES(6)	FIRES(4)	HRES(3)	HRES(2)	HRES(1)	-	00h
		M	111 1		(C)	$\bigcirc)$					VRES(8)	00h
		MI		VRES(Z)	VRES(6)	VRE8(5)	VRES(4)	VRES(3)	VRES(2)	VRES(1)	VRES(0)	
		(W)	0	18	11116	1	0	0	0	1	0	
	Source & gate start	W	1	H	<i>)</i>)						S_start [8]	
R62H	setting	W	11/	S_start (7)	S_start (6)	S_start (5)	S_start (4)	S_start (3)	S_start (2)	S_start (1)	S_start (0)	
		W		\mathcal{O}			gscan				G_start [8]	
		W	1/20	G_start (7)	G_start (6)	G_start (6)	G_start (4)	G_start (3)	G_start (2)	G_start (1)	G_start (0)	
R70H	REVISION (REV)	W	V	0	1	1	1	0	0	0	0	70H
	` ,	R	1	REV[7]	REV[6]	REV[5]	REV[4]	REV[3]	REV[2]	REV[1]	REV[0]	00h
R71H	Status register(FLG)	W	0	0	1	1	1	0	0	0	1	71H
, ,, ,, ,,	2.5.50 . 59.0.0 (1 20)	R	1	-	PTL_flag	I ² C_ERR	I ² C_ BUSYN	Data_flag	PON	POF	BUSY_N	02h
R80H	Auto Measure Vcom	W	0	1	0	0	0	0	0	0	0	80 H
1.0011	(AMV)	W	1	-	-	AMVT[1]	AMVT[0]	XON	AMVS	AMV	AMVE	10h
R81H	Vcom Value (VV)	W	0	1	0	0	0	0	0	0	1	81H
NO III	vooiii value (vv)	R	1	-	VV[6]	VV[5]	VV[4]	VV[3]	VV[2]	VV[1]	VV[0]	00h
R82H	Vcom_DC Setting	W	0	1	0	0	0	0	0	1	0	82H
110211	register(VDCS)	W	1	-	VCDS[6]	VCDS[5]	VCDS [4]	VCDS [3]	VCDS [2]	VCDS [1]	VCDS [0]	00h
RA0H	Program Mode	W	0	1	0	1	0	0	0	0	0	A0H
11/1/011	(PGM)	W	1	1	0	1	0	0	1	0	1	A5h
RA1H	Active program(APG)	W	0	1	0	1	0	0	0	0	1	A1H
DVJU	Read OTP Data	W	0	1	0	1	0	0	0	1	0	A2H
RA2H	(ROTP)	R	1	#	#	#	#	#	#	#	#	
DEAL	CASCADE setting	W	0	1	1	1	0	0	0	0	0	E0H
RE0H	(CCSET)	W	1	-	-	-	-	cce_sel	cce_lr	TSFIX	CCEIN	00h
RE5H Force Temperature		W	0	1	1	1	0	0	1	0	1	E5H

8.2 Register Description

8.2.1R00H (PSR): Panel setting Register

R00H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PSR	W	0	0	0	0	0	0	0	0	0	00H
1 st Parameter	W	1	RES[1]	RES[0]	REG_EN	BWR	UD	SHL	SAD_N	RST_N	07h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The commar	nd defines as :	
	Bit	Name	Description
	0	RST_N	RST_N function 1 : no effect 0: Booster OFF, Register data are set to their default values, and SE@/BG/VCOM: 0V(default)
	1	SHD_N	SHD N function): Booster OFF, register data are kept, and SEG/BG/VCOM are kept floating. 1: Booster on: (default)
		EHL	SHL function 0: Shift left: First data=Sn →Sn-1 →→S2 →Last data=S1. 1: Shift right: First data=S1→ S2 →→Sn-1 → Last data=Sn. (default)
	3	fre	UD function 0:Scan down; First line=Gn→Gn-1 →→ G2 → Last line=G1. (default) 1:Scan up; First line=G1 →G2 →→Gn-1 →Last line=Gn.
, and the second	4	BWR	Color selection setting 0: Pixel with B/W/Red. Run both LU1 and LU2. (default) 1: Pixel with B/W. Run LU1 only
	5	REG_EN	LUT selection setting 0 : Using LUT from OTP(default) 1 : Using LUT from register
	7-6	RES[1,0]	Resolution setting 00: Display resolution is 320x300. (default) 01: Display resolution is 300x200 10: Display resolution is 296x160 11: Display resolution is 296x128

Notes:

- 1. When SHD_N become low, DCDC will turn off. Register and SRAM data will keep until VDD turn off. SD output and VCOM will base on previous condition and keep floating.
- 2. When RST_N become low, driver will reset. All register will reset to default value. All of the driver's functions will disable. SD output and VCOM will base on previous condition and keep floating.

8.2.2 R01H (PWR): Power setting Register

R01H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PWR	W	0	0	0	0	0	0	0	0	1	01h
1 st Parameter	W	1	-	-	-	-	-	-	VDS_EN	VDG_EN	03h
2 nd Parameter	W	1			-	-	-	VCOM_HV	VGHL_LV \(\frac{1}{1}\)	VGHL_LV [0]	00h
3 rd Parameter	W	1			VSH [5]	VSH [4]	VSH [3]	VSH [2]	ASHAI	VSH [0]	26h
4 th Parameter	W	1			VSL [5]	VSL [4]	VSL [3]	Mer ISI	VSL [1]	VSL [0]	26h
5 th Parameter	W	1		VSHR [6]	VSHR [5]	VSHR [4]	VSHR [3]	VSHR[2]	VSHR [1]	VSHR [0]	03h

NOTE: "-" Don't care, can be set to VDD or GND level

Description -The command defines as :

1st Parameter:

Bit	Name	Description
0	VOG EN	Gate power selection. 0 : External VDNS power from VGH/VGL pins. (VDNG_EN open) 1. Internal DDD function for generate VGH/VGL.
	VDS_EN	Source power selection. Contact the selection of the sel

2nd Parameter

Bit	Name	Description
1-0	VGHL_LV	VGHL_LV Voltage Level. 00: VGH=16 v, VGL=-16v (default) 01: VGH=15 v, VGL=-15v 10: VGH=14 v, VGL=-14v 11: VGH=13 v, VGL=-13v
2	VCOM_HV	VCOM Voltage Level 0: VCOMH=VSH+VCOMDC,VCOML=VSL+VCOMDC 1: VCOMH=VGH, VCOML=VGL

3rd Parameter: Internal VSH power selection for B/W LUT. (Default value: 100110b)

Bit	Name	Description
5-0	vsh	Internal VSH power selection. 000000: 2.4 v 000001: 2.6 v 000010: 2.8 v 000011: 3.0 v 010111: 7.0V 011000: 7.2 V 011001: 7.4 V

100111: 10.2 V 101000: 10.4 V 101001: 10.6V 101010: 10.8V 101011: 11.0V			
---	--	--	--

4th Parameter: Internal VSL power selection for B/W LUT. (**Default value: 100110b**)

Bit	Name	Description
5-0	VSL	Internal VSL power selection. 000000: -2.4 v 000001: -2.6 v 000010: -2.8 v 000011: -3.0 v 010111: -7.0V 011000: -7.2 V 011001: -7.4 V 100110: -10.0V 100114: 10.2 V 10(000: 10.4 V 00(001: -10.0V) 101010: -10.0V 101010: -10.0V
	~ (()) '	

5th Parameter Internal VSHR power selection for Red LUT. (Default value: 000011b)

	Bit	Name	Description
L			Internal VSL power selection.
N			000000: 2.4 v
	////		000001: 2.6 v
/		, ///// // \	000010: 2.8 v
1	1 ×		000011: 3.0 v
	V	11/11/0	
•			010111: 7.0V
	5-0	V	011000: 7.2 V
	3-0		011001: 7.4 V
		VSHR/VSLR	
			100110: 10.0V
			100111: 10.2 V
			101000: 10.4 V
			101001: 10.6V
			101010: 10.8V
l			101011: 11.0V
	6		0:"+", default
l	0		1:"-"

Note:

1.VSH>VSHR 2.VSL<VSLR

Restriction

8.2.3 R02H (POF): Power OFF Command

R02H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
POF	W	0	0	0	0	0	0	0	1	0	02H

Description	-The command defines as :
	After power off command, driver will power off base on power off sequence.
	After power off command, BUSY_N signal will drop from high to low. When finish the
	power off sequence, BUSY N singal will rise from low to high.
	 Power off command will turn off charge pump, T-con, source driver, gate driver, VCOM,
	temperature sensor, but register and SRAM data will keep until VDD off.
	SD output and VCOM will base on previous condition. It may have two conditions: 0v or
	floating.
Restriction	

8.2.4 R03H (PFS): Power off Sequence Setting Register

R03H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PFS	W	0	0	0	0	0	0	0	1	1	03H
1 st Parameter	W	1	-	-	Vsh_off[1]	Vsh_off [0]	Vsl_off[1]	vsl_off[0]	vshr_off[1]	vshr_off[0]	00h

	carc, carroc sc	it to VDD of GND f	
Description	-The commar 1st Parameter	nd defines as : :	
	Bit	Name	Description
	1-0	vshr_off	00: 5ms. (default) 01: 10ms 10: 20ms 11: 40ms
	3-2	vsl_off	00 STIS (Teleput) 01: (10ms 10: 20ms 11: 40ms
	5-4	vsh_off	00-5ms. (default) 01: 10ms 10: 20ms 11:-40ms
Restriction			

8.2.5 R04H (PON): Power ON Command

R04H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PON	W	0	0	0	0	0	0	1	0	0	04H

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as :
	 After power on command, driver will power on base on power on sequence. After power on command, BUSY_N signal will drop from high to low. When finishing the power off sequence, BUSY_N signal will rise from low to high.
Restriction	

8.2.6 R05H (PMES): Power ON Measure Command

R05H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PMES	W	0	0	0	0	0	0	1	0	1	05H

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as :
	If user wants to read temperature sensor or detect low power in power of mode, user has to send this command. After power on measure command, driver will switch on relevant commend with Low Power detection (R51H) and temperature measurement. (R40H).
Restriction	

8.2.7 R06H (BTST): Booster Soft Start Command

R06H		Bit												
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code			
BTST	W	0	0	0	0	0	0	0	1	1	06H			
1 st Parameter	W	1	BT_PHA7	вт_рна6	BT_PHA5	BT_PHA4	BT_PHA3	BT_PHA2	BT_PHA1	BT_PHA0	03h			
2 nd Parameter	W	1	BT_PHB7	BT_PHB6	BT_PHB5	BT_PHB4	BT_PHB3	BT_PHB2	BT_PHB1	BT_PHB0	00h			
3 rd Parameter	W	1	-	-	BT_PHC5	BT_PHC4	BT_PHC3	BT_PHC2	BY PHC1	BT_PHC0	26h			

		,		
	-The comma 1 _{st} Parameter	nd define as follov :	ws:	
	Bit	Name	Description	
	2-0	Driving strength of	000: 0.27u\$ 001: 0.34u\$ 0107 0.40u\$ 01 tl 0.54u\$ 100 0.80u\$ 10171.54u\$ 110: 3.34u\$ 111: 6.58u\$ (default)	
	7-6	strength of phase A Soft start period of phase	000: Strength 1 001: Strength 2 000: Strength 3 001: Strength 4 000: Strength 5 001: Strength 6 001: Strength 7 11: Strength 8 00: 10mS (default)	
Description	2 _{nd} Paramete		10: 30mS 11: 100mS	
	Bit	Name	Description	
	2-0	0 0 0 0 1 1 Driving	000: 0.27uS 001: 0.34uS 010: 0.40uS 011: 0.54uS 100: 0.80uS 101: 1.54uS 110: 3.34uS 111: 6.58uS (default)	
	5-3	strength of phase B	000: Strength 1 001: Strength 2 010: Strength 3 (default) 011: Strength 4 100: Strength 5 101: Strength 6 110: Strength 7 111: Strength 8	
	7-6	Soft start period of phase B	00: 10mS (default)	

	3rd Paramete	er:							
	Bit	Name	Description						
Description	2-0 Minimum OFF time setting of GDR in phase C C 000: 0.27uS 001: 0.34uS 010: 0.40uS 011: 0.54uS 100: 0.80uS 101: 1.54uS 110: 3.34uS 111: 6.58uS (default)								
	5-3	Driving strength of phase C	00: Strength 1 01: Strength 2 10: Strength 3 (default) 11: Strength 4 00: Strength 5 01: Strength 6 10: Strength 7 11: Strength 8						
Restriction		(

8.2.8 R07H (DSLP): Deep Sleep

R07H		Bit												
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code			
DSLP	W	0	0	0	0	0	0	1	1	1	07H			
1 st Parameter	W	1	1	0	1	0	0	1	0	1	A5h			

NOTE: "-" Don't care, can be set to VDD or GND level

Description	The command define as follows:
	After this command is transmitted, the chip would enter the deep-sleep mode to save power.
	The deep sleep mode would return to standby by hardware reset.
	The only one parameter is a check code, the command would be excited if check code = 0xA5.
Restriction	

8.2.9 R10H (DTM1): Data Start transmission 1 Register

R10H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DTM1	W	0	0	0	0	1	0	0	0	0	10H
1 st Parameter	W	1	KPixel1	KPixel2	KPixel3	KPixel4	KPixel5	KPixel6	KPixel7	KPixel8	00h
2 nd Parameter	W	1							. 1		00h
	W	1								>	00h
Mth Parameter	W	1	KPixel(n-7)	KPixel(n-6)	KPixel(n-5)	KPixel(n-4)	KPixel(n-3)	KRixel(n-2)	KPixel(n-1)	KPixel(n)	00h

Description	The command define as follows:
	The register is indicates that user start to transmit data, then write to SRAM. While data
	transmission complete, user must send command 11H. Then chip will start to send
	data/VCOM for panel.
	In DAM made, this command writes "OV D" date to CDAM
	In B/W mode, this command writes "OLD" data to SRAM
	In B/W/Red mode, this command writes "B/W" date to \$RAM.
Restriction	

8.2.10 R11H (DSP): Data Stop Command

R11H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DSP	W	0	0	0	0	1	0	0	0	1	11H
1 st Parameter	R	1	Data_flag	-	-	-	-	-	-	-	00h

Description	■While finishe	-The command defines as : ■While finished the data transmitting, user must send this command to driver and read Data_flag information.												
	1st Parameter	1st Parameter:												
	Bit Name Description													
	7		0: Driver didn't receive all the data. 1: Driver has already received all of the one frame data.											
		After "Data Start" (10h) or "Data Stop" (11h) commands and when data_flag=1, BUSY_N signal will become "0" and the refreshing of panel starts.												
Restriction	This comman	donly actives who	en Budy N = \\\											

8.2.11 R12H (DRF): Display Refresh Command

R12H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
DRF	W	0	0	0	0	1	0	0	1	0	12H		

Description	-The command defines as :
	■While users send this command, driver will refresh display (data///COM) base on SRAM data
	and LUT. After display refresh command, BUSY_N signal will become "0"
Restriction	This command only actives when BUSY_N = "1" \\

8.2.12 R13H (DTM2): Data Start transmission 2 Register

R13H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DTM2	W	0	0	0	0	1	0	0	1	1	13H
1 st Parameter	W	1	KPixel1	KPixel2	KPixel3	KPixel4	KPixel5	KPixel6	KPixel7	KPixel8	00h
2 nd Parameter	W	1							. 1		00h
	W	1								>	00h
Mth Parameter	W	1	KPixel(n-7)	KPixel(n-6)	KPixel(n-5)	KPixel(n-4)	KPixel(n-3)	KRixel(n-Ջ)	KPixel(n-1)	KPixel(n)	00h

Description	The command define as follows:							
	The register is indicates that user start to transmit data, then write to SRAM. While data							
	transmission complete, user must send command 1H. Then ship will start to send							
	data/VCOM for panel.							
	In B/W mode, this command writes "NEW" data to SRAM.							
	In B/W/Red mode, this command writes "RED" data to SRAM.							
Restriction								

8.2.13 R14H (PDTM1): Partial Data Start transmission 1 Register

R14H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PDTM1	W	0	0	0	0	1	0	1	0	0	14H
1 st Parameter	W	1								X[8]	00h
2 nd Parameter	W	1	X[7]	X[6]	X[5]	X[4]	X[3]	0	100	0	
3 rd Parameter										Y[8]	
4 th Parameter	W	1	Y[7]	Y[6]	Y[5]	Y[4]	Y[3]	Y[2]	Y[1]	Y[0]	
5 th Parameter	W	1						My ,		W[8]	
6 th Parameter	W	1	W[7]	W[6]	W[5]	WI4	w[3]	0/	0	0	
7 th Parameter						Illa			\langle	L[8]	
8 th Parameter	W	1	L[7]	L[6]	Q 5 Y	(4]	H33/	[2]	L[1]	L[0]	
9 th Parameter	W	1	KPixel1	KP(xel2)	KRixel8	KPixel4	KPixel5	KPixel6	KPixel7	KPixel8	
	W	1									
M th Parameter	W	1 (KRIXel(n/7)	XPixel(n-6)	KPixel(n-5)	KPixe (n-4)	KPixel(n-3)	KPixel(n-2)	KPixel(n-1)	KPixel(n)	00h

8.2.14 R15H (PDTM2): Partial Data Start transmission 2 Register

R15H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PDTM2	W	0	0	0	0	1	0	1	0	1	15H
1 st Parameter	W	1								X[8]	00h
2 nd Parameter	W	1	X[7]	X[6]	X[5]	X[4]	X[3]	0	1 0	0	
3 rd Parameter										Y[8]	
4 th Parameter	W	1	Y[7]	Y[6]	Y[5]	Y[4]	Y[3]	Y[2]	V[1]	Y[0]	
5 th Parameter	W	1						May o		W[8]	
6 th Parameter	W	1	W[7]	W[6]	W[5]	WI47	([£]w	0/	0	0	
7 th Parameter						TILA			\wedge	L[8]	
8 th Parameter	W	1	L[7]	L[6]	Q 5 Y	(4]	H33/	[2]	L[1]	L[0]	
9 th Parameter	W	1	KPixel1	KP(xel2)	KRixel8	KPixel4	KPixel5	KPixel6	KPixel7	KPixel8	
	W	1									
M th Parameter	W	1 (KPIXel(n\7)	XPixel(n-6)	KPixel(n-5)	KPixel(n-4)	KPixel(n-3)	KPixel(n-2)	KPixel(n-1)	KPixel(n)	00h

NOTE: "-" Don't care, can be set to VDD or GND level

The command define as follows:
The register is indicates that user start to transmit data, then write to SRAM. While data transmission complete, user must send command 11H. Then chip will start to send data/VCOM for panel.

In B/W mode, this command writes "NEW" data to SRAM.
In B/W/Red mode, this command writes "RED" data to SRAM.

Partial update location and area

X, Y

Note: X and W should be the multiple of 8.

Restriction

8.2.15 R16H (PDRF): Partial Display Refresh Command

R16H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PDRF	W	0	0	0	0	1	0	1	1	0	16H
1 st Parameter	W	1	DFV_EN							X[8]	00h
2 nd Parameter	W	1	X[7]	X[6]	X[5]	X[4]	X[3]	0	1 0	0	
										Y[8]	
4 th Parameter	W	1	Y[7]	Y[6]	Y[5]	Y[4]	Y[3]	Y[2]	Y[1]	Y[0]	
5 th Parameter	W	1						May "		W[8]	
6 th Parameter	W	1	W[7]	W[6]	W[5]	WI4T	W[3]	0/	0	0	
						TILLA			\wedge	L[8]	
8 th Parameter	W	1	L[7]	L[6]	(5)	(4)	(J3)	([2]	L[1]	L[0]	
NOTE: "-" Don't care, can be set to VDD or SND level											

Description	-The command define as follows:								
	While user sent this command, driver will refresh display (data/VCOM) base on SRAM data and LUT.								
	Only the area (X,Y, W, L) would update, the others pixel output would follow VCOM LUT								
	After display refresh command BUSY_N signal will become "0".								
	X,Y								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
	\mathbf{L}								
	W								
	Note: X and W should be the multiple of 8.								
	DFV_EN: data follow VCOM function on display area.								
	DFV EN=1: Only effective in B/W mode, if pixel from "New data" SRAM equal to "Old data"								
	SRAM on display area, this pixel output would follow VCOM LUT.								
5 () (DFV_EN=0: Data doesn't follow VCOM LUT.								
Restriction	this command only active when BUSY_N = "1".								

8.2.21 R30H (OSC): OSC control Register

R30H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
OSC	W	0	0	0	1	1	0	0	0	0	30H
1 st Parameter	W	1	SEL_DI	V[1:0]	SEL_F[5:0]				3Ch		

	T =1		r·							\mathcal{H}	
scription	-The command defines as:										
	The command controls the OSC clock frequency. The OSC structure must support the following frame rates:										
						, ,		\mathbb{Z}	1),	Ŋ	•
										1	
	SEL_F[5:0]		SEL_DI\	/[1:0]		SEL_F[5:0]		SEL_DI	V[1:0]		
	3EL_F[3.0]	00	01	10	11	3EL_[[3.0]	00	01	10	11	
	000000	156.25	78.13	39.06	- <	100000	153.49	76.75	38,37	-	
	000001	159.01	79.5	39.75		100001	150.74	₹5.37	37.68	-	
	000010	161.76	80.88	40,44	20.22	100010	147.98	73.99	36.99	-	
	000011	164.52	82.26	41 (3	20,57	100011	(45.22)	72.61	36.31	-	
	000100	167.28	83.64	41.82	20.91	100100	142.46	71.23	35.62	-	
	000101	170.04	85.02	42.51	21.25	100101	139.71	69.85	34.93	-	
	000110	172.79	86.4	43.2	21.6	100110	136.95	68.47	34.24	-	
	000111	178,55	87.78	43.89	21.94	100111	134.19	67.1	33.55	-	
	001000	178131	89.15	44.58	22.29	101000	131.43	65.72	32.86	-	
	001001	181.07	90.53	45.2	22.63	101001	128.68	64.34	32.17	-	
\mathcal{A}	001010	183.82	91.91	46,96	22.98	101010	125.92	62.96	31.48	-	
	001011	186.58	93.29	46.65	23.32	101011	123.16	61.58	30.79	-	
	001100	189.34	94.67	47.33	23.67	101100	120.4	60.2	30.1	-	
1	001101	192.1	96.05	48.02	24.01	101101	117.65	58.82	29.41	-	
//	001110	194.85	97.43	48.71	24.36	101110	114.89	57.44	28.72	-	
	001111	197.61	98.81	49.4	24.7	101111	112.13	56.07	28.03	-	
	010000	-	100.18	50.09	25.05	110000	109.38	54.69	27.34	-	
	010001	-	101.56	50.78	25.39	110001	106.62	53.31	26.65	-	
	010010	-	102.94	51.47	25.74	110010	103.86	51.93	25.97	-	
	010011	-	104.32	52.16	26.08	110011	101.1	50.55	25.28	-	
	010100	-	105.7	52.85	26.42	110100	98.35	49.17	24.59	-	
	010101	-	107.08	53.54	26.77	110101	95.59	47.79	23.9	-	
	010110	-	108.46	54.23	27.11	110110	92.83	46.42	23.21	-	
	010111	-	109.83	54.92	27.46	110111	90.07	45.04	22.52	-	
	011000	-	111.21	55.61	27.8	111000	87.32	43.66	21.83	-	
	011001	-	112.59	56.3	28.15	111001	84.56	42.28	21.14	-	
	011010	-	113.97	56.99	28.49	111010	81.8	40.9	20.45	-	
	011011	-	115.35	57.67	28.84	111011	79.04	39.52	-	-	
	011100	-	116.73	58.36	29.18	111100	76.29	38.14	-	-	
	011101	-	118.11	59.05	29.53	111101	73.53	36.76	-	-	
	011110	-	119.49	59.74	29.87	111110	70.77	35.39	-	-	
	011111	-	120.86	60.43	30.22	111111	68.01	34.01	-	-	

fitipower

8.2.22 R40H (TSC): Temperature Sensor Command

R40H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSC	W	0	0	1	0	0	0	0	0	0	40H
1 st Parameter	R	1	D10/TS[7]	D9/TS[6]	D8/TS[5]	D7/TS[4]	D6/TS[3]	D5/TS[2]	D4/TS[1]	D3/TS[0]	
2nd Parameter	R	1	D2	D1	D0	-	-	-	-	-	

NOTE: - Dor	i't care, can be set to VI	DD or GN	D level		^ \			
Description	-The command defir	ne as foll	ows:		Min			
•	This command indic							
	The communication in the	atoo ti io	tomporatare value.		~ U_	•		
	If R41H(TSE) bit7 se	et to 0, th	nis command reads	internal/1	emperature sensor	value.		
If R41H(TSE) bit7 set to 1, this command reads external (LM75) temperature sensor vi								
	command		parameters	7////				
	CSB			←				
				٠ ^				
				\otimes	// //// ~			
	SCL ————————————————————————————————————			$\leq \mathcal{C}$				
	П	$\langle \langle \rangle \rangle$	TSC value	11/0	<i>)</i>			
	SDA		value	\sim	•			
	BUSY_N			2				
	TS[7;0](D)(10:3)	T(C)	T(\$[7:0]/D(10:3])	T (°C)	TS[7:0]/D[10:3]	T (°C)		
	11100111	-25	00000000	0	00011001	25		
	11101000)	-24	\\\06000 001	1	00011010	26		
	11101001	23	0000010	2	00011011	27		
	1101010	-22	00000011	3	00011100	28		
$\langle \langle \rangle \rangle$	11101011	-21	00000100	4	00011101	29		
	11101100 11101101	-20	00000101 00000110	5 6	00011110 00011111	30 31		
	11101101	-19	0000110	7	0011111	32		
•	11101110	-17	0000111	8	00100000	33		
	11110000	-16	00001001	9	00100010	34		
	11110001	-15	00001010	10	00100011	35		
	11110010	-14	00001011	11	00100100	36		
	11110011	-13	00001100	12	00100101	37		
	11110100	-12	00001101	13	00100110	38		
	11110101	-11	00001110	14	00100111	39		
	11110110	-10	00001111	15	00101000	40		
	11110111 11111000	<u>-9</u>	00010000	16 17	00101001	41		
	11111000	-8 -7	00010001 00010010	17	00101010 00101011	42 43		
	11111001	-7 -6	00010010	19	00101011	44		
	11111010	-5	00010011	20	00101101	45		
	11111100	-4	00010101	21	00101110	46		
	11111101	-3	00010110	22	00101111	47		
	11111110	-2	00010111	23	00110000	48		
	11111111	-1	00011000	24	00110001	49		
Restriction	This command only	actives a	after R04H(PON) or	R05H(P	MES)			

8.2.23 R41H (TSE): Temperature Sensor Calibration Register

R41H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSE	W	0	0	1	0	0	0	0	0	1	41H
1 st Parameter	W	1	TSE	-	-	-	TO[3]	TO[2]	TO[1]	TO[0]	

	The care, can be set to VDD or GND level
Description	-The command defines as:
	This command indicates the driver IC temperature sensor enable and calibration function.
	Bit temperature
	2-0 mean temperature offset value 000:0°€
	001:1℃ 010:2℃
	111:7°C
	3 Positive and negative value 0:"+" 1: "-"
	7 Internal temperature sensor grable 0: Internal temperature sensor enable.(default) 1: Internal temperature sensor disable, using external temperature sensor.
	For example:
	1100: A degree c 0111: +7 degree c
Restriction	This command only actives after R04H(PON) or R05H(PMES)

8.2.24 R42H (TSW): Temperature Sensor Write Register

R42H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSW	W	0	0	1	0	0	0	0	1	0	42H
1 st Parameter	W	1	WATTR[7]	WATTR[6]	WATTR[5]	WATTR[4]	WATTR[3]	WATTR[2]	WATTR[1]	WATTR[0]	00h
2 nd Parameter	W	1	WMSB[7]	WMSB[6]	WMSB[5]	WMSB[4]	WMSB[3]	WMSB[2]	WMSB[1]	WMSB[0]	00h
3 rd Parameter	W	1	WLSB[7]	WLSB[6]	WLSB[5]	WLSB[4]	WLSB[3]	WLSB[2]	WLSB[1]	WLSB[0]	00h

Description	-The command defines as:
	This command writes the temperature.
	1 st Parameter:
	Bit temperature
	2-0 Pointer setting
	5-3 User-defined address bits (A2, A1, A8)
	7-6 12C Write Byte Number 00: 1 byte (head byte only) 01: 2 bytes (head byte + pointer)
	10: 3 bytes (head byte pointer + 1st parameter)
	11: 4 bytes (fread byte + pointer + 1st parameter)
	2 nd Parameter
	Bit temperature
	7-0 MSByte of write-data to external temperature sensor
	3 nd Rarameter
	Bit temperature
	LSByte of write-pata to external temperature sensor
Restriction	This command only actives after R04H(PON) or R05H(PMES)

8.2.25 R43H (TSR): Temperature Sensor Read Register

R43H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSC	W	0	0	1	0	0	0	0	0	1	43H
1 st Parameter	R	1	RMSB[7]	RMSB[6]	RMSB[5]	RMSB[4]	RMSB[3]	RMSB[2]	RMSB[1]	RMSB[0]	00h
2 nd Parameter	R	1	RLSB[7]	RLSB[6]	RLSB[5]	RLSB[4]	RLSB[3]	RLSB[2]	RLSB[1]	RLSB[0]	00h

NOTE: "-" Don't care, can be set to VDD or GND level

8.2.26 R50H (CDI): VCOM and DATA interval setting Register

R50H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
CDI	W	0	0	1	0	1	0	0	0	0	50H
1 st Parameter	W	1	VBD[1]	VBD[0]	DDX[1]	DDX[0]	CDI[3]	CDI[2]	CDI[1]	CDI[0]	D7h

B/W mode (BWR=1)		
Bit 5-4	Bit7-6	description
DDX[0]	VBD[1:0]	LUT
0	00	Floating
	01	LUTBW (1->0)
	10	LUTWB (0->1)
	11	Floating
1 (default)	00	Floating
	01	LUTWB (1->0)
	10	LUTBW (0->1)
	11	Floating

DDX[1:0]: Data polarity

1. DDX[1] for RED data, DDX[0] for BW data in the B/W/Red mode 2. DDX[0] for B/W mode

	B/W/Red mode(BWR=0)		
	Bit 5-4	Description	
	DDX[1:0]	Data (Red/B/W)	LUT
	00	00	LUTW
		01	LUTB
		10	LUTR
		11	LUTR
	01 (default)	00	LUTB
		01	LUTW
		10	LUTR
		11	LUTR
1	10	00	LUTR
		01	LUTR
//		10	LUTW
		11	LUTB
	11	00	LUTR
		01	LUTR
		10	LUTB
		11	LUTW

B/W mode (BWR=1)

Bit 5-4	Description	
DDX[0]	Data (B/W)	LUT
0	00	LUTWW (0->0)
	01	LUTBW(1->0)
	10	LUTWB(0->1)
	11	LUTBB(1->1)
1 (default)	00	LUTBB(0->0)
	01	LUTWB(1->0)
	10	LUTBW(0->1)
	11	LUTWW(1->1)

8.2.27 R51H (LPD): Lower Power Detection Register

R51H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
LPD	W	0	0	1	0	1	0	0	0	1	51H
1 st Parameter	R	1	-	-	-	-	-	-	-	LPD	

Description	-The command defines as:
	This command indicates the input power condition. Host can read this data to understand the battery's
	condition. When LPD="1", system input power is normal.
	When LPD="0", system input power is lower (VDD<2.5v).
	1st Parameter:
	Bit 0 LPD 0 Low power input.
	1 Normal status. (Default)
Restriction	
	,

8.2.28 R60H (TCON): TCON setting

R60H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TCON	W	0	0	1	1	0	0	0	0	0	60H
1 st Parameter	W	1	S2G[3]	S2G[2]	S2G[1]-	S2G[0]	G2S[3]	G2S[2]	G2S[1]	G2S[0]	22h

NOTE: "-" Don't care, can be set to VDD or GND level

8.2.29 R61H (TRES): Resolution setting

R61H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TRES	W	0	0	1	1	0	0	0	0	1	61H
1 st Parameter	W	1								HRES(8)	00h
2 nd Parameter	W	1	HRES(7)	HRES(6)	HRES(5)	HRES(4)	HRES(3)	HRES(2)	HRES(1)	-	00h
3 rd Parameter	W	1						,		VRES(8)	ooh
4 th Parameter	W	1	VRES(7)	VRES(6)	VRES(5)	VRES(4)	VRES(3)	VRE812)	VRESMI	VRES(0)	00h

Description	-The command define as follows:
	When using register:
	Horizontal display resolution = HRES
	Vertical display resolution = VRES
	Totalogia diopidy recordation. The
	Channel disable calculation:
	GD : First G active = G0; LAS (active GD= first active +VRES[3 0] -1
	SD : First active channel: =\$0; LAST active SD = first active HRES[8:1]*2-1
	EX:320X240()) ((\\)
	GD: First G active = G0
	LAST active GD= 0+240-1= 239 (G239)
	SD : First active channel: =S0
	LAST active SD=0+320-1+319; (\$319)
	2101 4000 05 010201010, 10040)
Restriction	
Kesilicilett	

8.2.30 R62H (TSGS): Source & gate start setting

R62H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSGS	W	0	0	1	1	0	0	0	1	0	62H
1 st Parameter	W	1								S_start [8]	00h
2 nd Parameter	W	1	S_start (7)	S_start (6)	S_start (5)	S_start (4)	S_start (3)	S_start (2)	S_start (1)	S_start (0)	00h
3 rd Parameter	W	1				gscan		,		G_start [8]	ooh
4 th Parameter	W	1	G_start (7)	G_start (6)	G_start (6)	G_start (4)	G_start (3)	G_start(2)	G start (1)	G_start (0)	00h

Description	-The command define as follows:
	1.S_Start [8:0] describe which source output line is the first date line
	2.G_Start[8:0] describe which gate line is the first scan line
	3. gscan :Gate scan select 0: Normal scan
	1: Cascade type 2 scan
Restriction	

8.2.31 R70H (REV): REVISION register

R70H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
REV	W	0	0	1	1	1	0	0	0	0	70H
1 st Parameter	R	1	REV[7]	REV[6]	REV[5]	REV[4]	REV[3]	REV[2]	REV[1]	REV[0]	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as:
	The LUT_REV is read from OTP address = 0x001.
Restriction	- This command only actives when BUSY_N = "1"

8.2.32 R71H (FLG): Status register

R71H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
FLG	W	0	0	1	1	1	0	0	0	1	71H
1 st Parameter	R	1	-	-	I ² C_ERR	II ² C_ BUSYN	Data_flag	PON	POF	BUSY_N	02h

NOTE. DO	Treate, can be set to VDD or GND lever
Description	-The command defines as:
	This command indicates the IC status. Host can read this data to understand the IC status.
	1 . Doromotori
	1st Parameter:
	Bit Function
	5 I2C master error status
	4 I2C master busy status (low active)
	3 Driver has already received one frame data
	2 PON
	0: Not in PON mode
	1: In PON node
	0: Not in POR mode (default)
	1770 ROF mode
	0 Priver busy status(low active)
Deatriction	VIAN and this sales and in Vivi time. It decen't have restriction of DUCV N
Restriction	Use can send this command in any time. It doesn't have restriction of BUSY_N.
\	<i>\\</i>

8.2.33 R80H (AMV): Auto Measure VCOM register

R80H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
AMV	W	0	1	0	0	0	0	0	0	0	80 H
1 st Parameter	W	1	-	-	AMVT[1]	AMVT[0]	XON	AMVS	AMV	AMVE	10h

_	NOTE: "-" Do	n't care, can	be set to V	DD or GNI	D level						
	Description	-The comn	nand defir	es as:					. 1		
	-	This comm	nand indica	ates the IC	status. Ho	ost can rea	d this data	to understa	and the IC	status.	
		1 _{st} Parame	eter:							>	
		Bit	Function	on							
		0			re Vcom Set OM disable						
				measure VC		(uerauit)					
		1		nalog signal		~	11/		>		
					om R81h(de n analog(sign		7				
		2	AMVS:	setting for S	ource output	of ANIV	$ \mathbb{A}$	41. Or			
			0: Source	ce output 0V	during Auto	∟Measure VC					
						uto Measure	ACOM perio				
		3			Gate ON of A	AMV to Measure\	(COM poriod	(default)			
			1; All G	te ON durin	ig Auto Meas	sure XCOM	eriod.	. (derauit)			
		5-4			VCOM dete		S				
		\parallel	(00.13s)	dofoult	7(0)						
			10:85	default)	~ 1116))					
			1): 10s								
	Restriction	This comm	nand only	actives wh	en BUSY_	_N = "1".		·	·		
	\ <u>``</u>	<i>/</i> /		7)							

8.2.34 R81H (VV): Vcom Value register

R81H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
VV	W	0	1	0	0	0	0	0	0	1	(81H)
1 st Parameter	R	1		VV[6]	VV[5]	VV[4]	VV[3]	VV[2]	VV[1]	VV[0]	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description		and defines as:
	This comma	and could get the Vcom value
	1st Paramet	er:
	l ,	
	Bit	Function
	5-0	Vcom value
		0000000: -0.1V 0000001:-0.15V
		0000010:-0.2V
		0111010:-3.0V
		1001110:-4.0V
Restriction	This comma	and only actines when BUSY H=\"1".
	6	
	$//(C)_{n_{\bullet}}$	
	S////> ,	
	/ // //	
	1) ,	

8.2.35 R82H (VDCS): Vcom_DC Setting register

R82H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
VDCS	W	0	1	0	0	0	0	0	1	0	82H
1 st Parameter	W	1	-	VCDS[6]	VCDS[5]	VCDS [4]	VCDS [3]	VCDS [2]	VCDS [1]	VCDS [0]	00h

NOTE: " " D-	with some some has profite LVDD and CNID formal
	n't care, can be set to VDD or GND level -The command defines as:
Description	This command set the VCOM DC value. Driver will base on this value for VCM DC.
	This command set the voolvi be value. Driver will base on this value to voting be.
	1st Parameter:
	Bit Function
	5-0 VCOM value
	0000000:-0.1V(default) 0000001:-0.15V
	00000010.15V 0000010:-0.2V
	0111010:-3.0V
	1001110:-4.0V
Restriction	This command only actives when BUSY N=11".
- tootiloiioii	
	\bigvee

8.2.36 RA0H (PGM): Program Mode

RA0H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PTIN	W	0	1	0	1	0	0	0	0	0	A0H
1st Parameter	W	1	1	0	1	0	0	1	0	1	A5h

NOTE: "-" Don't care.	can be set to	VDD or GND le	vel

Desc	ription	-The command define as follows:	
		After this command is issued, the chip would enter the program mode.	
		The mode would return to standby by hardware reset.	
		The only one parameter is a check code, the command would be executed if check code = 0xA5.	
Restr	riction	This command only actives when BUSY_N = "1".	

8.2.37 RA1H (APG): Active Program

RA1H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
APG	W	0	1	0	1	0	0	0	0	1	A1H	

NOTE: "-" Do	on't care, can be set to VDD or GND level
Description	
	-The command define as follows: After this command is transmitted, the programming state machine would be activated.
Restriction	The BUSY flag would fall to 0 while the programming is completed.

8.2.38 RA2H (ROTP): Read OTP Data

RA2H						Bit							
Inst/Para	R/W	D/CX	D7	D7 D6 D5 D4 D3 D2 D1 D0									
ROTP	W	0	1	1 0 1 0 0 0 1 0									
1 st Parameter	R	1				Dun	nmy						
2 nd Parameter	R	1		The data of address 0x000 in the OTP									
3 rd Parameter	R	1			The	data of address	s 0x001 in the	ОТР					
4 th Parameter	R	1				;			~ //				
5 th Parameter	R	1			The	data of addres	ss (n-1) in the (OTP)			
6 ^{th~} (m-1) th Parameter	R	1											
m th Parameter	R	1		•	Th	e data of addre	ess (n) in the O	TP()					

8.2.39 RE0H (CCSET): Cascade Setting

RE0H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
CCSET	W	0	1	1	1	0	0	0	0	0	E0H
1 st Parameter	R	1	-	-	-	-	cce sel	cce Ir	TSFIX	CCEIN	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	This commar	nd is used for cascade.
	1 st Paramete	er:
	Bit	
	0	Output clock enable/disable. 0: Output 0V at CL pin. (default) 1: Output clock at CL pin for slave chip.
	1	Let the value of slave's temperature is same as the master's. 0: Temperature value is defined by internal temperature sensor / external LM75. (default) 1: Temperature value is defined by TS_SET [7:0] registers.
	2	Cascade direction 0 : Master(right side output) -> Slave(left side input) 1 : Slave(right side input) <- master(left side output)
	3	Cascade LR Select 0:Pin 1:Register(cce_Ir)
Restriction	This comman	d only actives when BUSY_N = "1".
	// //	

8.2.40 RE5H (TSSET): Force Temperature

RE5H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSSET	W	0	1	1	1	0	0	1	0	1	E5H
1 st Parameter	W	1	TS_SET[7]	TS_SET[6]	TS_SET[5]	TS_SET[4]	TS_SET[3]	TS_SET[2]	TS_SET[1]	TS_SET[0]	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command define as follows: This command is used to fix the temperature value of master and slave of ip in cascade
	The second of material and the production of the second of
Restriction	

8.3 Register Restriction

Following table will indicate the register restriction:

Register	Refresh restriction	BUSY N flag	
R00H(PSR)	X	No action	
R01H(PWR)	X	No action	
R02H(POF)	X	Flag	_
R03H(PFS)	X	No action	~ \
R04H(PON)	X	Flag	M p_{\bullet}
R05H(PMES)	X	No action	
R06H(BTST)	X	No action	1//////////////////////////////////////
R07H(DSLP)	X	Flag	SW 11 11 0.
R10H(DTM1)	X	No action	
R11H(DSP)	Valid (only read)	Flag	
R12H(DRF)	X	Flag	
R13H(DTM2)	X	No action	
R14H(PDTM1)	X	No action	
R15H(PDTM2)	X (/	No action	
R16H(PDRF)	X	Flag	
R20H(LUTC)	X (()	Ne action	// ///
R21H(LUTWW)	X	No action	
R22H(LUTBW/LUTR)	X	No action	
R23H(LUTWB/LUTW)	X	No action	
R24H(LUTBB/LUTB)	M	No action	
R30H(OSC)		No action	
R40H(TSC)	Valid (only read)	Flag	
R41H(TSE)	X	Me action	
R42H(TSW)	X \(\)	No action	
R43H(TSR)	Valid (only read)	Flag	
R50H(CDI)	X III	No action	
R51H(LPD)	Valid (only read)	No action	
R60H(TCON)	X	No action	
R61H(TRES)	X	No action	
R70H(REV)	Valid (only read)	No action	
R71H(FLG)	Valid (only read)	No action	
R80H(AMV)	X	Flag	
R81H(VV)	Valid	No action	
R82H(VDCS)	X	No action	
RA0H(PGM)	Χ	No action	
RA1H(APG)	Χ	Flag	
RA2H(ROTP)	X	No action	
RE0H(CCSET)	Χ	No action	
	Χ		

9. FUNCTION DESCRIPTION

9.1 Power On/Off and DSLP Sequence

In order to prevent IC fail in power on resetting, the power sequence must be followed as below.

Figure 1: Power on sequence

9.2 OTP LUT Definition

The OTP size would be 4096 Byte included temperature segment setting and 15 set waveform.

If TEMP<Boundary 0, use TR0 WF

If Boundary 0 ≤TEMP<Boundary1, use TR1

If Boundary 1 ≤TEMP<Boundary2, use TR2

.

Addr (hex)		
00h~0Fh	Temp. segment	
20h~60h	Default setting	
100h	TR0 WF	
200h	TR1 WF	
300h	TR2 WF	
400h	TR3 WF	
500h	TR4 WF	
600h	TR5 WF	
700h	TR6 WF	
800h	TR7.WF	
900h	JR8 V)F	
A00h	TR9 WF	
B00h	VR10WF	
C00h	TRITWE	
D00h	TR12 WE	
E00h	TR13 WF \\\\	₽
FØØń\\\	TRAWK	

Temperature segment:

Command	Addr (dec)	Addr(hex)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	0	000		Check Code (0xA5)							
	1	001		LUT Version							
	2	002		TEMP Boundary 0							
	3	003				TEMP Bo	undary 1				
	4	004				TEMP Bo	undary 2				
	5	005				TEMP Bo	undary 3				
	6	006		TEMP Boundary 4							
	7	007		TEMP Boundary 5							
	8	800				TEMP Bo	undary 6				
	9	009				TEMP Bo	undary 7				
	10	00A				TEMP Bo	undary 8				
	11	00B				TEMP Bo	oundary 9				
	12	00C				TEMP Box	undary 10				
	13	00D				TEMP Box	undary 11				
	14	00E	TEMP Boundary 12								
	15	00F	TEMP Boundary 13								
	16~31	010~01F				Reserve	d				

Default setting:

	32	020			Enable	OTP Set	ting (0xA5)				
R00H	33	021	res[1:0]	reg_en	bwr	ud	shl	shd_n			
	34	022							Vds_en	Vdg_en		
R01H	35	023						Vcom_hv	Vghl	_lv[1:0]		
	36	024					Vsl	1[5:0]	•			
DOALL	37	025					Vs	[5.0]				
R01H	38	026					VSHr(6:0					
R03H	39	027		Vsh_off[1:0]								
	40	028		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
R06H	41	029		pt_publz[0]								
	42	02A			. ($\mathbb{A}^{\mathbb{N}}$	bt_p	hc[5:0]				
R16H	43	02B	DFV_EN									
	44~50	02C~032		Reserved								
R30H	51	033	Sel_di	iv[1:0]		~	()\\8el_	f[5:0]				
R41H	52	034	tse		1100				To[3:0]			
	53	035		(t/[X/0]					
R42H	54	036		Whisb[7:0]								
	55	037		Wisb[7:0]								
R50H	56	038 (\\	[bdy/	\(\text{vbd[1:0]}\) \(\text{ddx[1:0]}\) \(\text{cdi[3:0]}\)								
R60H	57	(039	\$20[3:0] g2s[3:0]									
	58	03A	V		\bigcirc					hres[8]		
R61H	59	03B			T	hres[7:1]	1		1			
	60/	93C								vres[8]		
	\\61\\\\	03D		<u> </u>	1		s[7:0]		ı			
R80H	<u>\\ 62</u>	03E			amvi	[[1:0]	xon	amvs	amv	amve		
R82H	63	03F	\ <u>\</u>					s[5:0]				
RE0H	64	040				4	cce_sel	cce_lr	tsfix	ccein		
RE5H	65	041		1	T	IS_S	et[7:0]		<u> </u>	44[0]		
	66	042				224-	r+[7·0]			sstart[8]		
R62H	67	043 044			<u> </u>		rt[7:0]		<u> </u>	gotort[0]		
	68	044				gscan	rt[7:0]			gstart[8]		
	69 70~72	045					rt[7:0] erved					
	10~12	0+0/3040		Cl	ave setting		ei veu					
	73	049	slv_re		slv_reg_en	slv_bwr	slv_ud	slv_shl	slv_shd_n			
	74	04A	5.110						<u></u>	slv_sstart[8]		
	75	04B			<u> </u>	slv ss	 start[7:0]					
	76	04C				slv_gscan				slv_gstart[8]		
	77	04D					tart[7:0]		l .			
	1.1	0.15										

<u>fitipower</u>

TR1~14 WF is the same as TR0 defined as below:

	Discription	Addr (dec)	Addr (hex)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	PS1
		256	100	sel_di	iv[1:0]			sel_t	[5:0]			
		257	101	vghl_	vghl_lv[1:0]							
	Voltage	258	102	-	vcom _hv			vsl[5:0]			
		259	103	-			V	shr[6:0)]			
		260	104	-	vdcs[5:0]							
		261	106				$ \Omega $	XON	////			
		262	107			\mathcal{A}	<u>// \\</u>	COM				
		263	108	1th Level 2nd Level 3rd Level 4th Level selection selection selection [1:0] [1:0]			ection					
		264	109	M		1st Fr	ame n	umbei	[7:0]			
	LUTC	265	1 0 A ((, , , , , , , , , , , , , , , , , , ,	2nd(F	rame	iumbe	r [7:0]			Stage 1
		266	10B			\$rd Fi	ame r	numbe	r [7:0]			
		267	100			4th Fr	rame r	numbe	r [7:0]			
		302	12F	Repeat numbers [7:0]								
		130			S	tana 2	.∼ Stag	10 7				
	304		73/									
TR0 WF		305	132	sele	Level ction 1:0]	2nd L seled [1		sele	Level ection 1:0]	sele	Level ection 1:0]	
		306	133			1st Fr	ame n	ıumbeı	[7:0]			-
		307	134	2nd Frame number [7:0]				Stage 1				
	LUTWW	308	135	3rd Frame number [7:0]								
		309	136			4th Fr	rame r	numbe	r [7:0]			
		310	137			Repe	eat nur	mbers	[7:0]			
		311	138			Sta	ane 2~	Stage	7			
		346	15B									
		347	15C	sele	_evel ction ⊟:0]	2nd L seled [1		sele	Level ection 1:0]	sele	Level ection 1:0]	
		348	15D			1st Fr	ame n	ıumbeı	[7:0]			
	LUTDW	349	15E			2nd F	rame r	numbe	r [7:0]			Stage 1
	LUTBW / LUTR	350	15F			3rd Fi	rame r	numbe	r [7:0]			
		351	160					numbe				
		352	161			Repe	eat nur	mbers	[7:0]			
353 162 Stage 2~ Stage 7		7										
		388	185	Stage 2~ Stage /								

_			_					
		389	186	1th Level selection [1:0]	2nd Level selection [1:0]	3rd Level selection [1:0]	4th Level selection [1:0]	
		390	187		1st Frame n	umber [7:0]		
		391	188			Stage 1		
	LUTWB /	392	189		3rd Frame n	number [7:0]		
	LUTW	393	18A		4th Frame n	umber [7:0]		
		394	18B		Repeat nur	nbers [7:8]		
		395	18C		Ctogo 2.	Stage 7		
		430	1AF		Stage 2~	Stage 1		
		431	1B0	1th Level selection	2nd Level selection [1:0]	3rd Level selection [1:0]	4th Level selection [1:0]	
		432	1B1					
		433	1B2		2nd Frame r	number [7:0]		Stage 1
	LUTBB / LUTB	434	₽ 33 \\		3rd Frame	umber [7:0]		
		435	184 J	(<u>(</u>	4th Frame n	umber [7:0]		
		436	1B5	1 1	Repeat nur	mbers [7:0]		
		437	1B6 1Q9		Stage 2~	Stage 7		

9.3 Data transmission waveform

Figure 4: Data transmission example 2 waveform

9.4 Display refresh waveform

Figure 6: Display refresh example2 waveform

9.5 BUSY_N signal flow chart

Figure 7: BUSY_N signal flow chart

9.6 Over-Current Protect

Function:

the circuit could adjust the bias dynamically. When sensing the variation in bias point, OCP will have a reverse current.

Application:

In TFT substrate, this circuit could reduce the VCOM instant current and then decrease the VDD current. In ESL application, boost circuit take charge of the VDD instant current. Therefore, instant current still could be controlled well when turning off the OCP function.

10. ELECTRICAL SPECIFICATIONS

10.1 Absolute Maximum Rating

Parameter	Symbol	Min.	Max.	Unit
Logic supply voltage	VDD, AVDD, VDD1, VPP	-0.3	+6.0	V
Digital input voltage	VI	-0.3	TBD	V
Supply range	VGH-VGL	₩GL -0.3\\	√VGH+0.3	V
Analog supply	VSH	12.4	+11	V
Analog supply	VSL	11-11	-2.4	V
Analog supply	VSHR	-11	+11	
Supply voltage	VGH		+16	V
Supply voltage	VGL	15	-	V
Storage temperature	T _{STG}	-55	125	$^{\circ}\mathbb{C}$

Note:

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied.

Exposing device to the absolute maximum ratings in a long period of time may degrade the device and affect its

reliability.

10.2 Digital DC Characteristic

DC electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
IO Supply Voltage	VDDIO	2.3	3.3	3.6	V	
Digital/Analog supply voltage	VDD	2.3	3.3	3.6	V	
DCDC power input voltage	AVDD	2.3	3.3	3.6	V	
1.8V output voltage	VDD_18	1.62	1.8	1.98		
1.8V input voltage	VDD_18	1.62	1.8	1.98	25	
OTP program power	VOTP	7.25	7.5	7.75		
Digital ground	VSS		0			
DCDC ground	VSSP		0		12	
Low Level Input Voltage	Vil	GND	- <	Q.3xVDD	V	Digital input pins
High Level Input Voltage	Vih	0.7xVIO	\mathcal{A}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Y /	Digital input pins
High Level Output Voltage	Voh	VIO-0.4		\\\\-\\\\-\\\\\-\\\\\\\\\\\\\\\\\\\\\\	$\sim W_{\sim}$	Ďigital output pins; IOH = 400µA
High Level Output Voltage	Vohd	VDD1-0(4				Digital output pins; IOH = 400μA DRVD, DRVU
Low Level Output Voltage	Vol	GND) リ	GND+0.4		Digital output pins; IOL = -400μA
Input Leakage Current	lin) -1.0	- (# 1 20	uA	Digital input pins, except pull-up, pull-down pin
Pull-up/down impedance	Rip	<u> </u>	-200K	\mathcal{I}	ohm	
Digital Stand-by Current (power off mode)	IstVQD+	10 N	9	0.1	uA	All stopped
Digital Operating Current	₩ DD*		0.5	2.0	mA	
IO Stand-by Current (power off mode)	IstVDD10*		0.4	1.0	uA	All stopped
IO Operating Current	*VDDIO*		ı	0.2	mΑ	No load
DCDC Stand by Current (power off mode)	IstVDD1*	- -	0	0.1	uA	All stopped
DCDC Operating Current	IVDĎ1*	-	-	0.5	mA	fdcdc=250kHz, No load
DCDC Operating Current	IVDD1*	-	3	5		fdcdc=250kHz, External cap: PMOS=415pF, NMOS=340pF
Operating temperature	T op	-30	-	85	$^{\circ}$ C	

NOTE: typ. and max. values to be confirmed by design

10.3 Analog DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Positive Source voltage	VSH		10		V	For source driver/VCOM
Positive Source voltage dev	d VSH	-300	0	+300	mV	
Negative Source voltage	VSL		-10		V	For source driver/VCOM
Negative Source voltage dev	d VSL	-300	-	+300	mV	
Positive Source voltage for Red	VSHR				~	MI
Negative Source voltage for Red	VSLR			_		
Analog Operating Current	ldd		TBD		/mA	No load,
Dynamic Range of Output	Vdr	0.1	i	V\$H-0.1	X	>
Voltage Range of VGH - VGL	VGH-VGL	4.8	-	31/	$\langle \rangle$	
Negative Source voltage	VGL	-15	-	// - A\$/		For gate driver
Negative Source voltage dev	dVGL	-400	91/>	+400	m	4
Positive Source voltage	VGH	13	Will share	16	N/Y	For gate driver
Positive Source voltage dev	dVGH	-400	11/0/1/10	+400	W/	
Positive HV Stand-by Current (power off mode)	IstVGH*			(0.2)	uΑ	Include VSH power With load
Positive HV Operating Current	WOHE		0.	1.1		Include VSH power With load all SD=L VCOM external resistor divider not included
Positive HV Operating Current	IVGH*		0.8	1.2		Include VSH power With load all SD=H VCOM external resistor divider not included
Negative HV Stand-by Current (power off mode)	IstVGL*	-	0	0.2	-	Include VSH power With load
Negative HV Operating Current	IVGL*	-	0.8	1.2	mA	Include VSL power With load all SD=L
Negative HV Operating Current	IVGL*	-	0.9-	1.3	mA	Include VSL power With load all SD=H
VINT1 Stand-by Current (power off mode)	IstVINT1*		0	0.01	μΑ	
VINT1 Operating Current	IVINT1*			0.3	mA	

10.4 AC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
SERIAL COMMUNICATION						
	tCSS	60			ns	Chip select setup time
CSB	tCSH	65			ns	Chip select hold time
CSB	tSCC	20			ns	Chip select CSB setup time
	tCHW	150			ุกร 🏻	Chip select setup time
	tSCYCW	100			ns	Serial clock cycle (Write)
	TSHW	35	ı		\\\\\	SCL "H" pulse width (Write)
SCL	tSLW	35	-		ns	SCL "L" pulse width (Write)
SCL	tSCYCR	150	- (/		ns	Serial clock cycle (Read)
	TSHR	60			ņs	SCL "H" pulse width (Read)
	tSLR	60			ns	SCL "L" pulse width (Read)
	tSDS	30		S	চিহ	Data setup time
SDA	tSDH	30	11/2/1		ne	Data hold time
(DIN)	tACC	(TO)\\)) 🔍	$\ \ \ \ $	ns	Access time
(DOUT)	tOH	15			ns	Output disable time
D/C	Tcds	20	1 1			DC setup time
D/C	tcoh	20				DC hold time
RC loading	111 10 .					
Source driver output loading	RL_S		/ 13.36K		Ω	
Source driver output toading	CL ₂ S		39.19		pf	
Gate driver output loading	RL(S		12.32K		Ω	
Cate diver detput loading	CALS		32.09		pf	
VCOM output loading	RL_com		61.26		Ω	
V -	CL\(\frac{1}{2}\)com		3365.7		pf	
Driver						
Source driver rise time	trS		5		us	99% final value
Source driver fall time	tFS		5		us	
Gate driver rise time	TrG		5		us	99% final value
Gate driver fall time	tFG		5		us	
VCOM rise time	trCOM		1		ms	99% final value
VCOM fall time	tFCOM	-	1	·	ms	_

3 pin serial interface characteristics (white mode)

11. CHIP OUTLINE DIMENSIONS

11.1 Circuit/Bump View

12. ALIGNMENT MARK INFORMATION

12.1 Location:

Point Coordinates:

	Upper-Left Mark		Upper-Ri	ight Mark
Point	Х	Y	Χ	Υ
Center	-7499.5	444	7499.5	444
1	-7514.5	489	7484.5	489
2	-7484.5	489	7514.5	489
3	-7484.5	459	7514.5	459
4	-7454.5	459	7544.5	459
5	-7454.5	429	7544.5	429
6	-7484.5	429	7514.5	429
7	-7484.5	399	7514.5	399
8	-7514.5	399	7484.5	399
9	-7514.5	429	7484.5	429
10	-7544.5	429	7454.5	429
11	-7544.5	459	7454.5	459
12	-7514.5	459	7484.5	459

fitipower

12.2 Pad coordinates

No.	Name	X-axis	Y-axis	W	Н	
1	DUMMY	-7500	-496	35	70	1
2	VCOM_PASSR	-7445	-496	35	70	1
3	VCOM_PASSR	-7390	-496	35	70]
4	VCOM	-7335	-496	35	70	
5	VCOM	-7280	-496	35	70]
6	VCOM	-7225	-496	35	70	
7	VCOM	-7170	-496	35	70]
8	VCOM	-7115	-496	35	70	
9	VCOM	-7060	-496	35	70	
10	VCOM	-7005	-496	35	70	
11	VCOM	-6950	-496	35	70	
12	VCOM	-6895	-496	35	70	
13	VCOM	-6840	-496	35	70	
14	VCOM	-6785	-496	35	70	
15	VCOM	-6730	-496	35	70	ر ا
16	VCOM	-6675	-496	35	70	\
17	VGL	-6620	-496	35	70	
18	VGL	-6565	-496	35	(70)	//
19	VGL	-6510	-496	35	\\70 \	//
20	VGL	-6455	-496	35(70)
21	VGL	-6400	-496	35\\	770	ľ
22	VGL	-6345	-496	35	7 0	1
23	VGL	-6290	-496	35	70	<
24	VGL	-6235	11/496	35	70	6
25	TP[0]	-6180	\\-4,96	35	70	ľ
26	TP[1]	-6125	11496	35	(70 \\	1
27	TP[2] (-60×0	496	35	100	
28	TP[3]	-6015	-496	35	70	1`
29	TRIN	-5960	-496	35	1170	1
30	TP[5]	-5905	-496	35	70	1
31	TR(6]	-5850	1-496	35	70	ı
32	TPN V	-5795	1496	35	70	ı
33	✓ VSHR	-5740	1496	35	70	ı
34	VSHR	-5685	1-496	35	70	ı
35	VSHR	-5630	496	35	70	ł
36	VSHR	-5575	-496	35	70	ł
37	VSHR	-5520	-496	35	70	ł
38	VSHR	-5465	-496	35	70	ł
39	VSHR	-5410	-496	35	70	ł
40	VSHR	-5355	-496	35	70	ł
41	VGH	-5300	-496	35	70	ł
42	VGH	-5245		35	70	1
43	VGH	-5245	-496 -496	35	70	1
44	VGH	-5135	-496 -496		70	1
				35		1
45	VGH	-5080	-496 406	35	70	ł
46	VGH	-5025	-496 400	35	70	ł
47	VGH	-4970	-496	35	70	1
48	VGH	-4915	-496 400	35	70	ł
49	VSH	-4860	-496	35	70	ł
50	VSH	-4805	-496	35	70	ł
51	VSH	-4750	-496	35	70	ł
52	VSH	-4695	-496	35	70	
53	VSH	-4640	-496	35	70	1
54	VSH	-4585	-496	35	70	1
55	VSH	-4530	-496	35	70	1
56	VSH	-4475	-496	35	70	J
57					-	
58	DUMMY DUMMY	-4420 -4365	-496 -496	35 35	70 70	

No.	Name	X-axis	Y-axis	W	Н
59	VOTP	-4310	-496	35	70
60	VOTP	-4255	-496	35	70
61	VOTP	-4200	-496	35	70
62	VOTP	-4145	-496	35	70
63	DUMMY	-4090	<u>-496</u>	35	70
64	DUMMY	-4035	-496	35	70
65	VDD_18V	-3980	496	35	70
66	VDD_18V	3 925\\	496	35	70
67	VDD_18\(\nabla\)	\\-38X0\	-496	35	70
68	VDB_18\X	3815	-496	35	70
69	ABD ASK	-3760	-496	35	70
70	VDB_18V	3705	-496	35	70
(71)	VDD_18\	-3650	-496	35	70
1/25	V81_000/	-3595	-496	35	70
1/33/	MDD 18V	<i>-</i> 3∕540	-496	35	70
74/	VSSA_	-3485	-496	35	70
75	VS8A	3430	-496	35	70
76	VSSA	-3375	-496	35	70
77	\\ vs\a\\	-3820	-496	35	70
78	VSSA	-3265	-496	35	70
76	WSSA	-3210	-496	35	70
80	VSSA	-3155	-496	35	70
81	VSSGS	-3100	-496	35	70
82	VSSGS	-3045	-496	35	70
83	VSSGS	-2990	-496	35	70
84	VSSGS	-2935	- 4 96	35	70
85	VSSGS	-2880	- 4 96	35	70
86	VSSGS	-2825	- 4 96	35	70
87	VSSGS	-2770	-496	35	70
88	VSS	-2715	-496	35	70
89	VSS	-2660	-496	35	70
90	VSS	-2605	-496	35	70
91	VSS	-2550	-496	35	70
92	VSS	-2495	-496	35	70
93	VSS	-2440	-496	35	70
94	VSS	-2385	-496	35	70
95	VSSP	-2330	-496	35	70
96	VSSP	-2275	-496	35	70
97	VSSP	-2220	-496	35	70
98	VSSP	-2165	-496	35	70
99	VSSP	-2110	-496	35	70
100	VSSP	-2055	-496	35	70
101	VSSP	-2000	-496	35	70
102	TP[8]	-1945	-496	35	70
103	TP[9]	-1890	-496	35	70
104	TP[10]	-1835	-496	35	70
105	TP[11]	-1780	-496	35	70
106	TP[12]	-1725	-496	35	70
107	VDD	-1670	-496	35	70
108	VDD	-1615	-496	35	70
109	VDD	-1560	-496	35	70
110	VDD	-1505	-496	35	70
111	VDD	-1450	-496	35	70
112	VDD	-1395	-496	35	70
113	VDD	-1340	-496	35	70
114	VDD	-1285	-496	35	70
115	VDDP	-1230	-496	35	70
116	VDDP	-1175	-496	35	70

No.	Name	X-axis	Y-axis	W	х
117	VDDP	-1120	-496	35	70
118	VDDP	-1065	-496	35	70
119	VDDP	-1010	-496	35	70
120	VDDP	-955	-496	35	70
121	VDDP	-900	-496	35	70
122	VDDP	-845	-496	35	70
123	VDDIO	-790	-496	35	70
124	VDDIO	-735	-496	35	70
125	VDDIO	-680	-496	35	70
126	VDDIO	-625	-496	35	70
127	VDDIO	-570	-496	35	70
128	VDDIO	-515	-496	35	70
129	VDDIO	-460	-496	35	70
130	VDDIO	-405	-496	35	70
131	SDA	-350	-496	35	70
132	SDA	-295	-496	35	70
133	VSS	-240	-496	35	70
134	SCL	-185	-496 -496	35	70
135	SCL	-130	-496	35	70
136	VDDIO	-75	-496	35	70
137	CSB	-20	-496	35	70
138	CSB	35	-496 -496	35	70
139	VSS	90	-496	35	70
140	DC	145	-496	35	70
141	DC	_	- 4 96	35	70
142	VDDIO	200 255	-496	35	70
143		310	-496	35	70
144			~ 1111	35	
	RST_N VSS	365	1496	. · ·	70 (
145		420(496 496	35	70
146 147	BUSY_N BUSY N	475 (530)	496	35 35	70
148	VDD10	585	-496	35	X0))
149		\\ 5 @5 \640	-496 -496 ^	35	70
150	BS //	695	-496	1 35	70
151	VS\$	750	-496	1/35	70
152	TSDA			35	
153	TSDA	805 860	-496 -496	35	70 70
154 155	VDDIO	915 970	-496 406	35	70
	TSCL TSCL		-496 406	35	70
156		1025	-496 406	35	70
157 158	VSS	1080	-496	35	70
130	1 1/10	11.36	-406	35	//\
150	MS MS	1135	-496 -496	35 35	70 70
159 160	MS	1190	-496	35	70
160	MS VDDIO	1190 1245	-496 -496	35 35	70 70
160 161	MS VDDIO MS_LR	1190 1245 1300	-496 -496 -496	35 35 35	70 70 70
160 161 162	MS VDDIO MS_LR MS_LR	1190 1245 1300 1355	-496 -496 -496	35 35 35 35	70 70 70 70
160 161 162 163	MS VDDIO MS_LR MS_LR VSS	1190 1245 1300 1355 1410	-496 -496 -496 -496 -496	35 35 35 35 35	70 70 70 70 70
160 161 162 163 164	MS VDDIO MS_LR MS_LR VSS DUMMY	1190 1245 1300 1355 1410 1465	-496 -496 -496 -496 -496	35 35 35 35 35 35 35	70 70 70 70 70 70
160 161 162 163 164 165	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY	1190 1245 1300 1355 1410 1465 1520	-496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35	70 70 70 70 70 70 70
160 161 162 163 164 165 166	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY	1190 1245 1300 1355 1410 1465 1520 1575	-496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35	70 70 70 70 70 70 70 70
160 161 162 163 164 165 166 167	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY DUMMY	1190 1245 1300 1355 1410 1465 1520 1575 1630	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35	70 70 70 70 70 70 70 70 70
160 161 162 163 164 165 166 167	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY DUMMY DUMMY	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35	70 70 70 70 70 70 70 70 70 70
160 161 162 163 164 165 166 167 168	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685 1740	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35 35	70 70 70 70 70 70 70 70 70 70 70
160 161 162 163 164 165 166 167 168 169 170	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685 1740 1795	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35 35 35 3	70 70 70 70 70 70 70 70 70 70 70 70
160 161 162 163 164 165 166 167 168 169 170	MS VDDIO MS_LR MS_LR VSS DUMMY VSL	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685 1740 1795	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35 35 35 3	70 70 70 70 70 70 70 70 70 70 70 70 70
160 161 162 163 164 165 166 167 168 169 170 171	MS VDDIO MS_LR MS_LR VSS DUMMY VSL VSL	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685 1740 1795 1850	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35 35 35 3	70 70 70 70 70 70 70 70 70 70 70 70 70
160 161 162 163 164 165 166 167 168 169 170 171 172	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY VSL VSL	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685 1740 1795 1850 1905	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35 35 35 3	70 70 70 70 70 70 70 70 70 70 70 70 70 7
160 161 162 163 164 165 166 167 168 169 170 171 172 173	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY VSL VSL VSL	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685 1740 1795 1850 1905 1960 2015	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35 35 35 3	70 70 70 70 70 70 70 70 70 70 70 70 70 7
160 161 162 163 164 165 166 167 168 169 170 171 172	MS VDDIO MS_LR MS_LR VSS DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY VSL VSL	1190 1245 1300 1355 1410 1465 1520 1575 1630 1685 1740 1795 1850 1905	-496 -496 -496 -496 -496 -496 -496 -496	35 35 35 35 35 35 35 35 35 35 35 35 35 3	70 70 70 70 70 70 70 70 70 70 70 70 70 7

(No.	Name	X-axis	Y-axis	w	Х
0		177	VSL	2180	-496	35	70
0		178	VSL	2235	-496	35	70
0		179	VSL	2290	-496	35	70
0		180	VSL	2345	-496	35	70
0		181	VSL	2400	-496	35	70
0		182	DUMMY	2455	-496	35	70
0		183	DUMMY	2510	-496	35	70
0		184	DUMMY	2565	-496	35	70
0		185	DUMMY	2620	1496	35	70
0		186	VSLR	2675	498	35	70
0		187	VSLR	2730	11-496	35	70
0		188	VSLR _	2785	4,96	35	70
0		189	VSLR)	2840	-496	35	70
0		190	V SK R _	(2895)	-496	35	70
0		191 <	VSLR	2950	-496	35	70
0		192	// vst/R//	3005	-496	35	70
0	. <	193	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3060	-496	35	70
0	. 1	194	\\X\$ŁŔ	3115	<u></u> -496	35	70
0	(m)	\ 19 5	VSLR .	3170\	-496	35	70
0		11681	VSLR 🔨	3225	-4 96	35	70
0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	197	DUMMY \	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-496	35	70
Ó		198	DHMMX	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-496	35	70
Q\	η	199	DUMMY	3 390	-496	35	70
0//	9)	200	FB	3445	-496	35	70
0	1	201	\\FB	3500	-496	35	70
0	\otimes	202	RESE	3555	-496	35	70
0	$\sim 10^{\circ}$	203	RESE	3610	-496	35	70
0 (\sim //	204	GDR	3665	-496	35	70
0///	$\sim \sim$	205	GDR	3720	-496	35	70
0///	$\langle \langle \rangle \rangle$	206	GDR	3775	-496	35	70
0//	$^{\prime\prime}$	207	GDR	3830	-496	35	70
(())		208	GDR	3885	-496	35	70
		209	GDR	3940	-496	35	70
0		210	DUMMY	3995	-496	35	70
0		211	DUMMY	4050	-496 406	35	70
0		212	DUMMY TP[13]	4105	-496	35	70
0 0		213 214	TP[13]	4160 4215	-496 -496	35 35	70 70
0				4215	- 4 96		70
0		215 216	TP[15] TP[16]	4325	-496	35 35	70
0		217	TP[10]	4380	-496	35	70
0		218	TP[17]	4435	- 4 96	35	70
0		219	TP[19]	4490	-496	35	70
0		220	TP[20]	4545	-496	35	70
0		221	TP[21]	4600	-496	35	70
0		222	TP[22]	4655	-496	35	70
0		223	TP[23]	4710	-496	35	70
0		224	TP[24]	4765	-496	35	70
0		225	TP[25]	4820	-496	35	70
0		226	TP[26]	4875	-496	35	70
0		227	TP[27]	4930	-496	35	70
0		228	TP[28]	4985	-496	35	70
0		229	TP[29]	5040	-496	35	70
0		230	TP[30]	5095	-496	35	70
0		231	TP[31]	5150	-496	35	70
0		232	TP[32]	5205	-496	35	70
0		233	TP[33]	5260	-496	35	70
0		234	TP[34]	5315	-496	35	70
0		235	TP[35]	5370	-496	35	70
0		236	TP[36]	5425	-496	35	70
		-					

						•	
No.	Name	X-axis	Y-axis	w	X		N
237	TP[37]	5480	-496	35	70		29
238	TP[38]	5535	-496	35	70		29
239	TP[39]	5590	-496	35	70		29
240	TP[40]	5645	-496	35	70		30
241	TP[41]	5700	-496	35	70		30
242	TP[42]	5755	-496	35	70		30
243	TP[43]	5810	-496	35	70		30
244	TP[44]	5865	-496	35	70		30
245	TP[45]	5920	-496	35	70		30
246	TP[46]	5975	-496	35	70		30
247	TP[47]	6030	-496	35	70		30
248	TP[48]	6085	-496	35	70		30
249	TP[49]	6140	-496	35	70		30
250	TP[50]	6195	-496	35	70		31
251	TP[51]	6250	-496	35	70		(3)
252	TP[52]	6305	-496	35	70	^^	33
253	TP[53]	6360	-496	35	70		//3,
254	TP[54]	6415	-496	35	70		3
255	TP[55]	6470	-496	35	70	1/11/21	31
256	TP[56]	6525	-496	35	70	111/4/1	31
257	TP[57]	6580	-496	35 /	<u></u>	$ \sim$	31
258	TP[58]	6635	-496	35 ((70)) ^v	3/
259	TP[59]	6690	-496	35	70		3
260	TP[60]	6745	-496	35	70	((3
261	TP[61]	6800	-496	35	70	0 //	32
262	TP[62]	6855	(\4\96	\\35	70	$\gg $ '	32
263	TP[63]	6910	496	35	70		y 32
264	TP[64]	6965	11/496/	35	(70)		32
265	TP[65]	7020	<u>\\\-496</u>	35	1/20		32
266	TP[66]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	496	35	1/1/20	ע	32
267	DUMMY)) 7(30)	-496	35	1/ 20		32
268	DUMMY	7185	-496	35\\))70		32
269	VCOM_RASSL	7240	(4 9 6	\\35 \\	70		32
270	VCOM_PASSL	7295	-496 17-496	35	70		33
271	DUMMY DUMMY	7350 7405	496	35 35	70 70	•	33
273	DUMMY	7460	-496	35	70	•	33
274	DUMMY	7515	-496	35	70		33
275	DUMMY	7683	-490 -407.5	70	35		33
276	DUMMY	7683	-327.5	70	35		33
277	DUMMY	7683	-247.5	70	35	1	33
278	SYNCS_L	7683	-167.5	70	35	1	33
279	SYNCM L	7683	-87.5	70	35		33
280	VSYCM L	7683	-7.5	70	35		34
281	HSYNC L	7683	72.5	70	35		34
282	DT L	7683	152.5	70	35		34
283	EN L	7683	232.5	70	35		34
284	CLK L	7683	312.5	70	35		34
285	DUMMY	7683	392.5	70	35		34
286	DUMMY	7318	428.5	22	55		34
287	DUMMY	7296	503.5	22	55		34
288	DUMMY	7274	428.5	22	55]	34
289	DUMMY	7252	503.5	22	55]	34
290	DUMMY	7230	428.5	22	55]	35
291	DUMMY	7208	503.5	22	55]	35
292	VCOM_PASSL	7186	428.5	22	55		35
293	VCOM_PASSL	7164	503.5	22	55]	35
294	VCOM_PASSL	7142	428.5	22	55]	35
295	VCOM_PASSL	7120	503.5	22	55		35
296	DUMMY	7098	428.5	22	55]	35

No.	Name	X-axis	Y-axis	W	Х
297	DUMMY	7076	503.5	22	55
298	DUMMY	7054	428.5	22	55
299	DUMMY	7032	503.5	22	55
300	G[0]	7010	428.5	22	55
301	G[2]	6988	503.5	22	55
302	G[4]	6966	428.5	22	55
303	G[6]	6944	503.5	22	55
304	G[8]	6922	428.5	22	55
305	G[10]	6900	\$03.5	22	55
306	G[12]	√68 ₹8\\	428.5	22	55
307	G[14]	16856	503.5	22	55
308	G[16]\\	6834	428.5	22	55
309	∕6/18/	6812	503.5	22	55
310	G(20)	6790	428.5	22	55
311	([22]	6768	503.5	22	55
312	() (\$[24]	6746	428.5	22	55
1313) G[26]	6724	503.5	22	55
314	G[28]	6702	428.5	22	55
315	G[30]	8680	503.5	22	55
316	G[32]	6658	428.5	22	55
317	(\ G[3]4]\(6636	503.5	22	55
3/18	G[36]	6614	428.5	22	55
319	(38)	6592	503.5	22	55
320) \$[40]	6570	428.5	22	55
321	G[42]	6548	503.5	22	55
322	G[44]	6526	428.5	22	55
323	G[46]	6504	503.5	22	55
324	G[48]	6482	428.5	22	55
325	G[50]	6460	503.5	22	55
326	G[52]	6438	428.5	22	55
327	G[54]	6416	503.5	22	55
328	G[56]	6394	428.5	22	55
329	G[58]	6372	503.5	22	55
330	G[60]	6350	428.5	22	55
331	G[62]	6328	503.5	22	55
332	G[64]	6306	428.5	22	55
333	G[66]	6284	503.5	22	55
334	G[68]	6262	428.5	22	55
335	G[70]	6240	503.5	22	55
336	G[72]	6218	428.5	22	55
337	G[74]	6196	503.5	22	55
338	G[76]	6174	428.5	22	55
339	G[78]	6152	503.5	22	55
340	G[80]	6130	428.5	22	55
341	G[82]	6108	503.5	22	55
342	G[84]	6086	428.5	22	55
343	G[86]	6064	503.5	22	55
344	G[88]	6042	428.5	22	55
345	G[90]	6020	503.5	22	55
346	G[92]	5998	428.5	22	55
347	G[94]	5976	503.5	22	55
348	G[96]	5954	428.5	22	55
349	G[98]	5932	503.5	22	55
350	G[100]	5910	428.5	22	55
351	G[102]	5888	503.5	22	55
352	G[104]	5866	428.5	22	55
353	G[106]	5844	503.5	22	55
354	G[108]	5822	428.5	22	55
355	G[110]	5800	503.5	22	55
356	G[112]	5778	428.5	22	55

fitipower

No.	Name	X-axis	Y-axis	W	Х		No.
357	G[114]	5756	503.5	22	55		417
358	G[116]	5734	428.5	22	55		418
359	G[118]	5712	503.5	22	55		419
360	G[120]	5690	428.5	22	55		420
361	G[122]	5668	503.5	22	55		421
362	G[124]	5646	428.5	22	55		422
363	G[126]	5624	503.5	22	55		423
364	G[128]	5602	428.5	22	55		424
365	G[130]	5580	503.5	22	55		425
366	G[132]	5558	428.5	22	55		426
367	G[134]	5536	503.5	22	55		427
368	G[136]	5514	428.5	22	55		428
369	G[138]	5492	503.5	22	55		429
370	G[140]	5470	428.5	22	55		430
371	G[142]	5448	503.5	22	55		431
372	G[144]	5426	428.5	22	55		432
373	G[146]	5404	503.5	22	55	~	433
374	G[148]	5382	428.5	22	55 55		434
375 376	G[150] G[152]	5360 5338	503.5 428.5	22 22	55 55	ale	\435 436
377	G[152] G[154]	5316	503.5	22	55		437
378	G[154]	5294	428.5	22	55	// ///	438
379	G[158]	5272	503.5	22	56	\sim	439
380	G[160]	5250	428.5	22	55	<i>)</i>)	440
381	G[162]	5228	503.5	22	55		441
382	G[164]	5206	428.5	22	58		442
383	G[166]	5184	503.5	22	55	_ ((~ ,	443
384	G[168]	5162	428.6	22	55 (\gg // \cdot	1444
385	G[170]	5140	503.5	22	55		445
386	G[172]	5778	428.5	22	56\\	(\sim)	446
387	G[174]	\\5096 \\	503.5	22	\\ 55 \\		447
388	G[176]	5074	428.5	22	\55	•	448
389	G[178]\	/5062	503.5	(22)	56		449
390	G[180] \	5030	428.5	///85	55		450
391	(<u>G</u>)182]	5008	503.6	1122	55		451
392	\G[184]\	4986	428.5	22	55		452
393	C[186]	4964	503.5	22	55 55		453
394 395	G[188] G[190]	4942 4920	428.5	22 22	55 55		454 455
396	G[190] G[192]	4898	503.5 428.5	22	55 55		456
397	G[192] G[194]	4876	503.5	22	55		457
398	G[194]	4854	428.5	22	55		458
399	G[198]	4832	503.5	22	55		459
400	G[200]	4810	428.5	22	55		460
401	G[202]	4788	503.5	22	55		461
402	G[204]	4766	428.5	22	55		462
403	G[206]	4744	503.5	22	55		463
404	G[208]	4722	428.5	22	55		464
405	G[210]	4700	503.5	22	55		465
406	G[212]	4678	428.5	22	55		466
407	G[214]	4656	503.5	22	55		467
408	G[216]	4634	428.5	22	55		468
409	G[218]	4612	503.5	22	55		469
410	G[220]	4590	428.5	22	55		470
411	G[222]	4568	503.5	22	55		471
412	G[224]	4546	428.5	22	55		472
413	G[226]	4524	503.5	22	55		473
414	G[228]	4502	428.5	22	55		474
415 416	G[230]	4480	503.5	22	55 55		475
	G[232]	4458	428.5	22	55		476

No.	Name	X-axis	Y-axis	w	Х
417	G[234]	4436	503.5	22	55
418	G[236]	4414	428.5	22	55
419	G[238]	4392	503.5	22	55
420	G[240]	4370	428.5	22	55
421	G[242]	4348	503.5	22	55
422	G[244]	4326	428.5	22	55
423	G[246]	4304	503,5	22	55
424	G[248]	4282	428.6	22	55
425	G[250]	4260	5Q3.5	22	55
426	G[252]	4238	428.5	2 2	55
427	G[254]	4216	503.5	22	55
428	G[256] _	4194	428.5	22	55
429	G[258]	41/2	503.5	22	55
430	G[260] ^	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	428.5	22	55
431 <	6[262]	4128	503.5	22	55
432	\\G[264]\\	4106	428.5	22	55
433	G[266]	4084	503.5	22	55
434	\\G[268]	4062	428.5	22	55
435	G[270]	4640	503.5	22	55
436	G[272] 🔨	4018	428.5	22	55
437	G[2 7 4]	/ 3996	503.5	22	55
438	G[276]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	428.5	22	55
439	G[278]	3952	503.5	22	55
440	G[280]	3930	428.5	22	55
441	G[282]	3908	503.5	22	55
442	G [284]	3886	428.5	22	55
443	G[286]	3864	503.5	22	55
444	G[288]	3842	428.5	22	55
445	G[290]	3820	503.5	22	55
446	G[292]	3798	428.5	22	55
447	G[294]	3776	503.5	22	55
448	G[296]	3754	428.5	22	55
449	G[298]	3732	503.5	22	55
450	DUMMY	3710	428.5	22	55
451	DUMMY	3688	503.5	22	55
452	DUMMY	3665	428.5	22	55
453	DUMMY	3643	503.5	22	55
454	DUMMY	3621	428.5	22	55
455	DUMMY	3599	503.5	22	55
456	DUMMY	3577	428.5	22	55
457	DUMMY	3555	503.5	22	55
458 459	DUMMY	3533	428.5	22 22	55 55
	DUMMY DUMMY	3511	503.5	22	55 55
460	DUMMY	3488	428.5 503.5		
461 462	DUMMY	3466 3444	503.5 428.5	22 22	55 55
462	DUMMY	3444		22	55 55
464	DUMMY	3400	503.5 428.5	22	55
465	DUMMY	3378	503.5	22	55
466	BDR L	3356	428.5	22	55
467	S[0]	3334	503.5	22	55
468	S[1]	3312	428.5	22	55
469	S[2]	3290	503.5	22	55
470	S[3]	3268	428.5	22	55
471	S[4]	3246	503.5	22	55
472	S[5]	3224	428.5	22	55
473	S[6]	3202	503.5	22	55
474	S[7]	3180	428.5	22	55
475	S[8]	3158	503.5	22	55
476	S[9]	3136	428.5	22	55
<u> </u>	-[~]				- •

EK79652AC

No.	Name	X-axis	Y-axis	W	х		No.
477	S[10]	3114	503.5	22	55		537
478	S[11]	3092	428.5	22	55		538
479	S[12]	3070	503.5	22	55		539
480	S[13]	3048	428.5	22	55		540
481	S[14]	3026	503.5	22	55		541
482	S[14] S[15]	3004	428.5	22	55		542
483				22			543
	S[16]	2982	503.5		55		
484	S[17]	2960	428.5	22	55		544
485	S[18]	2938	503.5	22	55		545
486 487	S[19]	2916	428.5	22	55		546
	S[20]	2894	503.5	22	55		547
488	S[21]	2872	428.5	22	55		548
489	S[22]	2850	503.5	22	55		549
490	S[23]	2828	428.5	22	55		550
491	S[24]	2806	503.5	22	55		551
492	S[25]	2784	428.5	22	55		552
493	S[26]	2762	503.5	22	55	~ ~	553
494	S[27]	2740	428.5	22	55	~ //	\554
495	S[28]	2718	503.5	22	55		565
496	S[29]	2696	428.5	22	55		656
497	S[30]	2674	503.5	22	55	$^{\prime\prime}$	557
498	S[31]	2652	428.5	22	55		558
499	S[32]	2630	503.5	22	56	\mathcal{U}	559
500	S[33]	2608	428.5	22	55		560
501	S[34]	2586	503.5	/22\/	55		561
502	S[35]	2564	428.5	22\	58		562
503	S[36]	2542	503.5	\(22	√ 55	~ 11 .	\\ 5 63
504	S[37]	2520	428 6	22/	55 (\sim // .	564
505	S[38]	2498	503.5	<u>V</u> 22	55\\\		565
506	S[39]	2476	428.5	22	58\\\	$\langle \langle \rangle \rangle$	566
507	S[40]	2454	503.5	22	\\ 55 \\	//	567
508	S[41]	2432	428.5	(22)	\5 5	•	568
509	\$(42)	1 2410	503.5 🔨	(\22 \	56		569
510	S[\\3]	2388	428.5	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	55		570
511	(\$144)	2366	503.6	11550	55		571
512	\\S[45]	2344	428.5	222	55		572
513	§ [46]	2322	503.5	22	55		573
514	S[47]	2300	428.5	22	55		574
515	S[48]	2278	503.5	22	55		575
516	S[49]	2256	428.5	22	55		576
517	S[50]	2234	503.5	22	55		577
518	S[51]	2212	428.5	22	55		578
519	S[52]	2190	503.5	22	55		579
520	S[53]	2168	428.5	22	55		580
521	S[54]	2146	503.5	22	55		581
522	S[55]	2124	428.5	22	55		582
523	S[56]	2102	503.5	22	55		583
524	S[57]	2080	428.5	22	55		584
525	S[58]	2058	503.5	22	55		585
526	S[59]	2036	428.5	22	55		586
527	S[60]	2014	503.5	22	55		587
528	S[61]	1992	428.5	22	55		588
529	S[62]	1970	503.5	22	55		589
530	S[63]	1948	428.5	22	55		590
531	S[64]	1926	503.5	22	55		591
532	S[65]	1904	428.5	22	55		592
533	S[66]	1882	503.5	22	55		593
534	S[67]	1860	428.5	22	55		594
535	S[68]	1838	503.5	22	55		595
					_	ı	
536	S[69]	1816	428.5	22	55		596

State	No	Nama	X-axis	V ovio	w	х
538 S[71] 1772 428.5 22 55 539 S[72] 1750 503.5 22 55 540 S[73] 1728 428.5 22 55 541 S[74] 1706 503.5 22 55 542 S[75] 1684 428.5 22 55 543 S[76] 1662 503.5 22 55 544 S[77] 1640 428.6 22 55 546 S[79] 1598 428.5 22 55 546 S[79] 1598 428.5 22 55 548 S[81] 552 438.5 22 55 549 S[32] 1500 503.5 22 55 550 S[83] 1486 503.5 22 55 551 S[84] 1482 503.5 22 55 551 S[84] 1486 503.5 22	No.	Name		Y-axis		
539 S[72] 1750 503.5 22 55 540 S[73] 1728 428.5 22 55 541 S[74] 1706 503.5 22 55 541 S[76] 1684 428.5 22 55 543 S[76] 1662 503.5 22 55 544 S[77] 1640 428.6 22 55 545 S[78] 1618 403.5 22 55 546 S[79] 1598 428.5 22 55 548 S[81] 450 503.5 22 55 549 S[82] 430 503.5 22 55 550 S[83] 486 503.5 22 55 551 S[84] 448 503.5 22 55 551 S[85] 1464 428.5 22 55 551 S[85] 1424 503.5 22						
540 S[73] 1728 428.5 22 55 541 S[74] 1706 503.5 22 55 542 S[75] 1684 428.5 22 55 543 S[76] 1662 503.5 22 55 544 S[77] 1640 428.6 22 55 546 S[79] 1598 428.5 22 55 546 S[79] 1598 428.5 22 55 547 S[80] 5674 503.5 22 55 548 S[81] 552 428.5 22 55 549 S[82] 530 503.5 22 55 559 S[83] 1588 428.5 22 55 551 S[84] 486 503.5 22 55 552 S[85] 1442 503.5 22 55 553 S[88] 1388 503.5 22						
541 S[74] 1706 503.5 22 55 542 S[75] 1684 428.5 22 55 543 S[76] 1662 503.5 22 55 544 S[77] 1640 428.6 22 55 545 S[78] 1618 803.5 22 55 546 S[79] 15962 428.5 22 55 547 S[80] 4674 803.5 22 55 548 S[81] 552 428.5 22 55 549 S[82] 430 503.5 22 55 550 S[83] 486 503.5 22 55 551 S[84] 486 503.5 22 55 551 S[84] 1442 503.5 22 55 552 S[85] 1444 428.5 22 55 553 S[87] 1428 428.5 22						
542 S[75] 1684 428.5 22 55 543 S[76] 1662 503.5 22 55 544 S[77] 1640 428.6 22 55 545 S[78] 1618 503.5 22 55 546 S[79] 1598 428.5 22 55 548 S[81] 352 428.5 22 55 548 S[81] 352 430 503.5 22 55 549 S[82] 1530 503.5 22 55 550 S[83] 1886 503.5 22 55 551 S[84] 1486 503.5 22 55 551 S[83] 1442 503.5 22 55 551 S[84] 1486 503.5 22 55 552 S[83] 1482 428.5 22 55 553 S[84] 1438 503.5						
543 S[76] 1662 503.5 22 55 544 S[77] 1640 428.6 22 55 545 S[78] 1618 603.5 22 55 546 S[79] 1596 428.5 22 55 548 S[81] 552 428.5 22 55 549 S[322] 530 503.5 22 55 550 S[83] 568 428.5 22 55 551 S[84] 4386 503.5 22 55 551 S[84] 4464 428.5 22 55 551 S[85] 1442 503.5 22 55 552 S[85] 1464 428.5 22 55 553 S[88] 1388 503.5 22 55 554 S[88] 1388 503.5 22 55 557 S[80] 1322 428.5 22		_				
544 \$177\$ 1640 428.6 22 55 545 \$178\$ 1618 503.5 22 55 546 \$179\$ 1598 428.5 22 55 547 \$180\$ 1674 603.5 22 55 549 \$182\$ 1530 503.5 22 55 550 \$183\$ 1588 428.5 22 55 551 \$184\$ 428.5 22 55 551 \$184\$ 428.5 22 55 551 \$184\$ 428.5 22 55 552 \$185\$ 1442 503.5 22 55 554 \$184\$ 428.5 22 55 555 \$189\$ 1376 428.5 22 55 555 \$189\$ 1376 428.5 22 55 557 \$180\$ \$132\$ 428.5 22 55 557 \$190\$		•				
545 S[78] 1618 603.5 22 55 546 S[79] 1598 428.5 22 55 547 S[80] 5674 603.5 22 55 548 S[81] 552 128.5 22 55 549 S[82] 530 503.5 22 55 550 S[83] 1386 503.5 22 55 551 S[84] 1464 428.5 22 55 551 S[85] 1464 428.5 22 55 552 S[85] 1464 428.5 22 55 553 S[87] 1420 428.5 22 55 565 S[88] 1338 503.5 22 55 567 S[80] 1376 428.5 22 55 557 S[80] 1332 428.5 22 55 567 S[80] 1332 428.5 22						
546 S[79] 1596 4285 22 55 547 S[80] 1674 503.5 22 55 548 S[81] 352 428.5 22 55 549 S[82] 1530 503.5 22 55 551 S[84] 1886 503.5 22 55 552 S[85] 1464 428.5 22 55 553 S[86] 1442 503.5 22 55 553 S[88] 1386 503.5 22 55 555 S[88] 1396 503.5 22 55 565 S[88] 1376 428.5 22 55 566 S[89] 1376 428.5 22 55 557 S[80] 1376 428.5 22 55 558 S[91] 130 503.5 22 55 559 S[92] 1310 503.5 22				\sim		
547 S[80] 4674 503.5 22 55 548 S[81] 1562 428.5 22 55 549 S[82] 1500 503.5 22 55 550 S[83] 1508 428.5 22 55 551 S[84] 1486 503.5 22 55 552 S[85] 1442 503.5 22 55 553 S[86] 1442 503.5 22 55 554 S[87] 1420 428.5 22 55 565 S[88] 138 503.5 22 55 565 S[88] 138 428.5 22 55 565 S[88] 1376 428.5 22 55 557 S[90] 132 428.5 22 55 557 S[90] 1330 428.5 22 55 559 S[92] 1310 503.5 22			- (_	
548 S[81] \$52 \$285 22 55 549 S[82] \$30 \$503.5 22 55 550 S[83] \$88 \$503.5 22 55 551 \$184 \$486 \$503.5 22 55 552 \$185 \$1464 \$428.5 22 55 553 \$186 \$1442 \$503.5 22 55 553 \$187 \$1420 \$428.5 22 55 565 \$1881 \$386 \$503.5 22 55 566 \$1891 \$1376 \$428.5 22 55 566 \$1891 \$1332 \$428.5 22 55 557 \$1900 \$1376 \$503.5 22 55 558 \$191 \$1288 \$428.5 22 55 559 \$192 \$1310 \$503.5 22 55 560 \$1931 \$1286 \$22.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
549 S[82] \$30 \$503.5 22 55 550 S[83] 1508 428.5 22 55 551 S[84] 486 503.5 22 55 552 S[85] 1464 428.5 22 55 553 S[88] 1420 428.5 22 55 554 S[87] 1420 428.5 22 55 565 S[88] 1338 503.5 22 55 566 S[89] 1376 428.5 22 55 567 S[90] 1324 428.5 22 55 557 S[90] 1310 503.5 22 55 559 S[92] 1310 503.5 22 55 559 S[92] 1310 503.5 22 55 560 S[93] 1288 428.5 22 55 561 S[93] 1288 428.5 22						
550 \$[83] \$[58] 428.5 22 55 551 \$[84] \$[386] 503.5 22 55 552 \$[38] \$[464] 428.5 22 55 553 \$[86] \$[442] 503.5 22 55 556 \$[89] \$[376] 428.5 22 55 566 \$[89] \$[376] 428.5 22 55 567 \$[89] \$[376] 503.5 22 55 557 \$[99] \$[310] 503.5 22 55 559 \$[92] \$[310] 503.5 22 55 559 \$[92] \$[310] 503.5 22 55 560 \$[93] \$[344] 428.5 22 55 561 \$[94] \$[266] 503.5 22 55 562 \$[95] \$[244] 428.5 22 55 563 \$[97] \$[200] 428.5<						
551 \$184 \$486 503.5 22 55 552 \$185 1464 428.5 22 55 553 \$187 1420 428.5 22 55 565 \$188 1338 503.5 22 55 565 \$188 1338 503.5 22 55 560 \$189 1376 428.5 22 55 557 \$180 438 503.5 22 55 558 \$191 1332 428.5 22 55 559 \$192 1310 503.5 22 55 560 \$193 1288 428.5 22 55 560 \$193 1244 428.5 22 55 560 \$195 1244 428.5 22 55 562 \$195 1244 428.5 22 55 563 \$196 1222 503.5 22 55 <td></td> <td></td> <td><i></i></td> <td>~</td> <td></td> <td></td>			<i></i>	~		
552 S[85] 1464 428.5 22 55 553 S[86] 1442 503.5 22 55 565 S[88] 1388 503.5 22 55 566 S[89] 1376 428.5 22 55 557 S[90] 454 503.5 22 55 558 S[91] 1332 428.5 22 55 559 S[92] J310 503.5 22 55 560 S[93] 1288 428.5 22 55 560 S[93] 1288 428.5 22 55 560 S[93] 1288 428.5 22 55 561 S[96] 1222 503.5 22 55 562 S[95] 1244 428.5 22 55 563 S[96] 1222 503.5 22 55 564 S[97] 1200 428.5 22						
\$53\$ \$186 1442 503.5 22 55 \$44\$ \$1420 428.5 22 55 \$55\$ \$188 1388 503.5 22 55 \$66 \$189 1376 428.5 22 55 \$57\$ \$190 428.5 22 55 \$57\$ \$190 428.5 22 55 \$58 \$191 1332 428.5 22 55 \$58 \$192 1310 503.5 22 55 \$60 \$1931 1288 428.5 22 55 \$60 \$1931 1288 428.5 22 55 \$60 \$1931 1288 428.5 22 55 \$60 \$1931 1244 428.5 22 55 \$62 \$1951 1244 428.5 22 55 \$66 \$1991 1156 428.5 22 55 \$66 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
\$54 \$57 1420 428.5 22 55 \$65 \$[88] 1386 503.5 22 55 \$66 \$[89] 1376 428.5 22 55 \$67 \$[90] 4332 428.5 22 55 \$58 \$[91] 1310 503.5 22 55 \$59 \$[92] \$1310 503.5 22 55 \$60 \$[93] 1288 428.5 22 55 \$60 \$[93] 1288 428.5 22 55 \$60 \$[93] 1244 428.5 22 55 \$62 \$[95] 1244 428.5 22 55 \$63 \$[96] 1222 503.5 22 55 \$66 \$[99] 1156 428.5 22 55 \$66 \$[99] 1156 428.5 22 55 \$67 \$[100] 1134 503.5 22	\sim		_			
\$65 \$[88] 1388 503.5 22 55 \$66 \$[89] 1376 428.5 22 55 \$57 \$[90] \$67 503.5 22 55 \$57 \$[90] \$32 428.5 22 55 \$59 \$[92] \$310 503.5 22 55 \$60 \$[93] \$1288 428.5 22 55 \$60 \$[93] \$1288 428.5 22 55 \$60 \$[93] \$1288 428.5 22 55 \$64 \$[94] \$1266 \$503.5 22 55 \$63 \$[96] \$1222 \$503.5 22 55 \$66 \$[97] \$1200 \$428.5 22 55 \$66 \$[99] \$1156 \$428.5 22 55 \$66 \$[99] \$1156 \$428.5 22 55 \$67 \$[100] \$103.5 \$22 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
866 S[89] 1376 428.5 22 55 557 S[80] 1864 503.5 22 55 558 S[91] 1332 428.5 22 55 559 S[92] J310 503.5 22 55 560 S[93] 1288 428.5 22 55 561 S[95] 1244 428.5 22 55 562 S[96] 1222 503.5 22 55 563 S[96] 1222 503.5 22 55 563 S[97] 1200 428.5 22 55 565 S[98] 1178 503.5 22 55 566 S[99] 1156 428.5 22 55 567 S[100] 1134 503.5 22 55 567 S[101] 1112 428.5 22 55 570 S[103] 1068 428.5 22						
557 S[90] (§54 503.5 22 55 558 S[91] (§32 428.5 22 55 559 S[92] J310 503.5 22 55 560 S[93] 1288 428.5 22 55 561 S[94] 1266 503.5 22 55 562 S[95] 1244 428.5 22 55 562 S[96] 1222 503.5 22 55 563 S[96] 1222 503.5 22 55 564 S[97] 1200 428.5 22 55 565 S[98] 1178 503.5 22 55 566 S[99] 1156 428.5 22 55 567 S[100] 1134 503.5 22 55 567 S[100] 1090 503.5 22 55 570 S[103] 1068 428.5 22						
558 Sign (1) (133) 428.5 22 55 559 Sign (2) 1310 503.5 22 55 560 Sign (2) 1288 428.5 22 55 561 Sign (2) 1266 503.5 22 55 561 Sign (2) 1244 428.5 22 55 562 Sign (2) 1222 503.5 22 55 563 Sign (2) 1200 428.5 22 55 565 Sign (3) 1178 503.5 22 55 566 Sign (3) 1156 428.5 22 55 567 Si (100) 1134 503.5 22 55 568 Si (101) 1112 428.5 22 55 569 Si (102) 1090 503.5 22 55 570 Si (103) 1068 428.5 22 55 571 Si (104) 1046				\ <u> </u>		
559 \$[92] 310 503.5 22 55 560 \$[93] 1288 428.5 22 55 561 \$[94] 1266 503.5 22 55 561 \$[95] 1244 428.5 22 55 562 \$[95] 1244 428.5 22 55 563 \$[96] 1222 503.5 22 55 564 \$[97] 1200 428.5 22 55 565 \$[98] 1178 503.5 22 55 566 \$[99] 1156 428.5 22 55 567 \$[100] 1134 503.5 22 55 568 \$[101] 1112 428.5 22 55 568 \$[101] 1090 503.5 22 55 569 \$[102] 1090 503.5 22 55 570 \$[103] 1068 428.5 22 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
560 \$[93] 1288 428.5 22 55 561 \$[94] 1266 503.5 22 55 562 \$[95] 1244 428.5 22 55 563 \$[96] 1222 503.5 22 55 564 \$[97] 1200 428.5 22 55 565 \$[98] 1178 503.5 22 55 566 \$[99] 1156 428.5 22 55 567 \$[100] 1134 503.5 22 55 568 \$[101] 1112 428.5 22 55 569 \$[102] 1090 503.5 22 55 570 \$[103] 1068 428.5 22 55 571 \$[104] 1046 503.5 22 55 571 \$[105] 1024 428.5 22 55 573 \$[106] 1002 503.5 22<			- T-			
561 \$ 94 1266 503.5 22 55 562 \$ 95 1244 428.5 22 55 563 \$ 96 1222 503.5 22 55 564 \$ 97 1200 428.5 22 55 565 \$ 98 1178 503.5 22 55 566 \$ 99 1156 428.5 22 55 567 \$ 100 1134 503.5 22 55 568 \$ 101 1112 428.5 22 55 569 \$ 102 1090 503.5 22 55 570 \$ 103 1068 428.5 22 55 571 \$ 104 1046 503.5 22 55 571 \$ 105 1024 428.5 22 55 572 \$ 105 1024 428.5 22 55 573 \$ 106 1002 503.5 22	//-		_			
562 595 1244 428.5 22 55 563 S[96] 1222 503.5 22 55 564 S[97] 1200 428.5 22 55 565 S[98] 1178 503.5 22 55 566 S[99] 1156 428.5 22 55 567 S[100] 1134 503.5 22 55 568 S[101] 1112 428.5 22 55 569 S[102] 1090 503.5 22 55 570 S[103] 1068 428.5 22 55 571 S[104] 1046 503.5 22 55 572 S[105] 1024 428.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
\$63 \$[96] 1222 503.5 22 55 \$64 \$[97] 1200 428.5 22 55 \$65 \$[98] 1178 503.5 22 55 \$66 \$[99] 1156 428.5 22 55 \$66 \$[99] 1156 428.5 22 55 \$67 \$[100] 1134 503.5 22 55 \$68 \$[101] 1112 428.5 22 55 \$69 \$[102] 1090 503.5 22 55 \$69 \$[102] 1090 503.5 22 55 \$70 \$[103] 1068 428.5 22 55 \$71 \$[104] 1046 503.5 22 55 \$72 \$[105] 1024 428.5 22 55 \$73 \$[106] 1002 503.5 22 55 \$74 \$[107] 98 428.5 22<	562					
564 S[97] 1200 428.5 22 55 565 S[98] 1178 503.5 22 55 566 S[99] 1156 428.5 22 55 567 S[100] 1134 503.5 22 55 568 S[101] 1112 428.5 22 55 569 S[102] 1090 503.5 22 55 570 S[103] 1068 428.5 22 55 571 S[104] 1046 503.5 22 55 571 S[105] 1024 428.5 22 55 572 S[106] 1002 503.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22	563	_	1222		22	
565 S[98] 1178 503.5 22 55 566 S[99] 1156 428.5 22 55 567 S[100] 1134 503.5 22 55 568 S[101] 1112 428.5 22 55 569 S[102] 1090 503.5 22 55 570 S[103] 1068 428.5 22 55 571 S[104] 1046 503.5 22 55 571 S[105] 1024 428.5 22 55 572 S[106] 1002 503.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 575 S[109] 936 428.5 22 55 576 S[110] 914 503.5 22		•				
567 S[100] 1134 503.5 22 55 568 S[101] 1112 428.5 22 55 569 S[102] 1090 503.5 22 55 570 S[103] 1068 428.5 22 55 571 S[104] 1046 503.5 22 55 572 S[105] 1024 428.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22<			1178	503.5	22	55
568 S[101] 1112 428.5 22 55 569 S[102] 1090 503.5 22 55 570 S[103] 1068 428.5 22 55 571 S[104] 1046 503.5 22 55 572 S[105] 1024 428.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 574 S[109] 936 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 581 S[114] 826 503.5 22 </td <td>566</td> <td>S[99]</td> <td>1156</td> <td>428.5</td> <td>22</td> <td>55</td>	566	S[99]	1156	428.5	22	55
569 S[102] 1090 503.5 22 55 570 S[103] 1068 428.5 22 55 571 S[104] 1046 503.5 22 55 572 S[105] 1024 428.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 581 S[115] 804 428.5 22 <td>567</td> <td>S[100]</td> <td>1134</td> <td>503.5</td> <td>22</td> <td>55</td>	567	S[100]	1134	503.5	22	55
570 S[103] 1068 428.5 22 55 571 S[104] 1046 503.5 22 55 572 S[105] 1024 428.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 581 S[115] 804 428.5 22 55 582 S[115] 804 428.5 22 <td>568</td> <td>S[101]</td> <td>1112</td> <td>428.5</td> <td>22</td> <td>55</td>	568	S[101]	1112	428.5	22	55
571 S[104] 1046 503.5 22 55 572 S[105] 1024 428.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 581 S[115] 804 428.5 22 55 582 S[115] 804 428.5 22 55 584 S[117] 760 428.5 22	569	S[102]	1090			55
572 S[105] 1024 428.5 22 55 573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22		S[103]	1068	428.5		
573 S[106] 1002 503.5 22 55 574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 587 S[120] 694 503.5 22	571	•	1046	503.5		
574 S[107] 980 428.5 22 55 575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22	572	S[105]	1024	428.5		
575 S[108] 958 503.5 22 55 576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22		•				
576 S[109] 936 428.5 22 55 577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 590 S[123] 628 428.5 22						
577 S[110] 914 503.5 22 55 578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22						
578 S[111] 892 428.5 22 55 579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22		•				
579 S[112] 870 503.5 22 55 580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22			_			
580 S[113] 848 428.5 22 55 581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22						
581 S[114] 826 503.5 22 55 582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22						
582 S[115] 804 428.5 22 55 583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22						
583 S[116] 782 503.5 22 55 584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
584 S[117] 760 428.5 22 55 585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
585 S[118] 738 503.5 22 55 586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
586 S[119] 716 428.5 22 55 587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
587 S[120] 694 503.5 22 55 588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
588 S[121] 672 428.5 22 55 589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
589 S[122] 650 503.5 22 55 590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
590 S[123] 628 428.5 22 55 591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55		•				
591 S[124] 606 503.5 22 55 592 S[125] 584 428.5 22 55 593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55						
593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55	591	•			22	55
593 S[126] 562 503.5 22 55 594 S[127] 540 428.5 22 55 595 S[128] 518 503.5 22 55	592	S[125]	584	428.5	22	55
595 S[128] 518 503.5 22 55	593		562	503.5	22	55
	594	S[127]		428.5	22	55
596 S[129] 496 428.5 22 55	595	S[128]	518			55
	596	S[129]	496	428.5	22	55

No.	Name	X-axis	Y-axis	w	Х
597	S[130]	474	503.5	22	55
598	S[131]	452	428.5	22	55
599	S[132]	430	503.5	22	55
600	S[133]	408	428.5	22	55
				22	
601	S[134]	386	503.5		55
602	S[135]	364	428.5	22	55
603	S[136]	342	503.5	22	55
604	S[137]	320	428.5	22	55
605	S[138]	298	503.5	22	55
606	S[139]	276	428.5	22	55
607	S[140]	254	503.5	22	55
608	S[141]	232	428.5	22	55
609	S[142]	210	503.5	22	55
610	S[143]	188	428.5	22	55
611	S[144]	166	503.5	22	55
612	S[145]	144	428.5	22	55
613	S[146]	122	503.5	22	55
614	S[147]	100	428.5	22	55
615	S[148]	78	503.5	22	55
616	S[149]	56	428.5	22	55
617	S[149] S[150]	34	503.5	22	
_					55
618	S[151]	12	428.5	22	55
619	S[152]	-10	503.5	22	56
620	S[153]	-32	428.5	22	55
621	S[154]	-54	503.5	/22\/	55
622	S[155]	-76	428.5	22	58
623	S[156]	-98	503.5	\(22	⋄ 55
624	S[157]	-120	\$28.6	22	55 (
625	S[158]	-142	503.5	22	55\\
626	S[159]	-164\\	428.5	22	58\\\
627	S[160] <	\\-186\\	503.5	22	\\ 55 \\)
628	S[1617	// -208	428.5	22	\ 5 5))
629	S(162)	17530	503.5 🔨	(22	56
630	S[163]	-252	428.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	55
631	811641	-274	503.6	11250	55
632	\S[165]\	-296	428.5	22	
					55
633			503.5		55 55
633	\$[166]	-318	503.5 428.5	22	55
634	S[166] S[167]	-318 -340	428.5	22 22	55 55
634 635	S[166] S[167] S[168]	-318 -340 -362	428.5 503.5	22 22 22	55 55 55
634 635 636	\$[166] \$[167] \$[168] \$[169]	-318 -340 -362 -384	428.5 503.5 428.5	22 22 22 22 22	55 55 55 55
634 635 636 637	\$[166] S[167] S[168] S[169] S[170]	-318 -340 -362 -384 -406	428.5 503.5 428.5 503.5	22 22 22 22 22 22	55 55 55 55 55
634 635 636 637 638	\$[166] S[167] S[168] S[169] S[170] S[171]	-318 -340 -362 -384 -406 -428	428.5 503.5 428.5 503.5 428.5	22 22 22 22 22 22 22	55 55 55 55 55 55
634 635 636 637 638 639	\$[166] \$[167] \$[168] \$[169] \$[170] \$[171] \$[172]	-318 -340 -362 -384 -406 -428 -450	428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55
634 635 636 637 638 639 640	\$[166] \$[167] \$[168] \$[169] \$[170] \$[171] \$[172] \$[173]	-318 -340 -362 -384 -406 -428 -450 -472	428.5 503.5 428.5 503.5 428.5 503.5 428.5	22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641	\$\cong 166] \$\sum 166] \$\sum 168] \$\sum 169] \$\sum 170] \$\sum 170] \$\sum 171] \$\sum 172] \$\sum 173] \$\sum 174]	-318 -340 -362 -384 -406 -428 -450 -472 -494	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642	\$\(\) (66] \(\) (167] \(\) (168] \(\) (169] \(\) (170] \(\) (171] \(\) (172] \(\) (173] \(\) (174] \(\) (175]	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643	\$\(\) \(\)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643	\$\(\) (66) \\ \(\) (167) \\ \(\) (168) \\ \(\) (169) \\ \(\) (170) \\ \(\) (171) \\ \(\) (172) \\ \(\) (173) \\ \(\) (174) \\ \(\) (175) \\ \(\) (176) \\ \(\) (177)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644	\$\(\) \(\)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645	\$\(\) \(\)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644	\$\(\) \(\)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645	\$\(\) \(\)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646	\$\(\) \(\)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646 647	\$\(\) \(\)	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626 -648	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648	\$\cong 166] \$\sum 166] \$\sum 168] \$\sum 169] \$\sum 170] \$\sum 170] \$\sum 172] \$\sum 172] \$\sum 172] \$\sum 177] \$\sum 176] \$\sum 177] \$\sum 178] \$\sum 179] \$\sum 180] \$\sum 181] \$\sum 182]	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626 -648 -670	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651	\$\cong 166] \$\sum 166] \$\sum 168] \$\sum 169] \$\sum 170] \$\sum 177] \$\sum 177] \$\sum 177] \$\sum 177] \$\sum 178] \$\sum 179] \$\sum 180] \$\sum	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626 -648 -670 -692 -714	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651	\$\cong 166] \$\sum_{166} \$\sum_{168} \$\sum_{169} \$\sum_{170} \$\sum_{170} \$\sum_{172} \$\sum_{172} \$\sum_{172} \$\sum_{173} \$\sum_{175} \$\sum_{175} \$\sum_{175} \$\sum_{176} \$\sum_{177} \$\sum_{178} \$\sum_{179} \$\sum_{180} \$\sum_{180} \$\sum_{182} \$\sum_{182} \$\sum_{183} \$\sum_{184} \$\sum_{185}	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626 -648 -670 -692 -714 -736	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653	\$\cong 166] \$\sum_{166} \$\sum_{167} \$\sum_{168} \$\sum_{169} \$\sum_{170} \$\sum_{171} \$\sum_{172} \$\sum_{173} \$\sum_{175} \$\sum_{175} \$\sum_{175} \$\sum_{177} \$\sum_{178} \$\sum_{178} \$\sum_{180} \$\sum_{180} \$\sum_{182} \$\sum_{182} \$\sum_{183} \$\sum_{185} \$\sum_{186} \$\s	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626 -648 -670 -692 -714 -736 -758	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653	\$\cong 166] \$\sum_{166} \$\sum_{168} \$\sum_{169} \$\sum_{170} \$\sum_{170} \$\sum_{171} \$\sum_{172} \$\sum_{173} \$\sum_{175} \$\sum_{175} \$\sum_{175} \$\sum_{177} \$\sum_{178} \$\sum_{178} \$\sum_{180} \$\sum_{180} \$\sum_{182} \$\sum_{182} \$\sum_{183} \$\sum_{184} \$\sum_{185} \$\sum_{186} \$\sum_{187} \$\s	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626 -648 -670 -692 -714 -736 -758	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55 55
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653	\$\cong 166] \$\sum_{166} \$\sum_{167} \$\sum_{168} \$\sum_{169} \$\sum_{170} \$\sum_{171} \$\sum_{172} \$\sum_{173} \$\sum_{175} \$\sum_{175} \$\sum_{175} \$\sum_{177} \$\sum_{178} \$\sum_{178} \$\sum_{180} \$\sum_{180} \$\sum_{182} \$\sum_{182} \$\sum_{183} \$\sum_{185} \$\sum_{186} \$\s	-318 -340 -362 -384 -406 -428 -450 -472 -494 -516 -538 -560 -582 -604 -626 -648 -670 -692 -714 -736 -758	428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5 428.5 503.5	22 22 22 22 22 22 22 22 22 22 22 22 22	55 55 55 55 55 55 55 55 55 55 55 55 55

(No.	Name	X-axis	Y-axis	W	Х
5		657	S[190]	-846	503.5	22	55
5		658	S[191]	-868	428.5	22	55
5		659	S[192]	-890	503.5	22	55
5		660	S[193]	-912	428.5	22	55
5			S[194]	-934	503.5	22	55
		661					
5		662	S[195]	-956	428.5	22	55 55
5		663	S[196]	-978	503,5	22	55
5		664	S[197]	-1000	428.6	22	55
5		665	S[198]	-1022	\$Q3.5 \\	22	55
5		666	S[199]	-1044	428.5	2 2	55
5		667	S[200]	₇ 1066	\503.5	22	55
5		668	S[201] _	_\\880\\-	428.5	22	55
5		669	S[202] \	11/10	503.5	22	55
5		670	S[203] 🔨	\\1132\	428.5	22	55
5		671 <	S12041	-\154	503.5	22	55
5		672	// S[205]/\	1176	428.5	22	55
5	(673	S[206]	-1198	503.5	22	55
5		674	\$2071	-1220	428.5	22	55
5	()	075	\$[208]	1242	503.5	22	55
5		676	S[209] (1264	428.5	22	55
5	$((\ \))$	677	S[2 1 0]	1288	503.5	22	55
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	// // //	678	(8f2/1)/	1308	428.5	22	55
6		679	S[212]	-1330	503.5	22	55
5)) _	680	S[213]	-1352	428.5	22	55
5		681		-1374	503.5	22	55
5 8	$\mathcal{L}_{\mathcal{L}}$		\$[2 14] \$[215]				
	$\langle \circ \rangle$	682		-1396	428.5	22	55
5	~ 11	(683	S[216]	-1418	503.5	22	55
5 (684	S[217]	-1440	428.5	22	55
5///		685	S[218]	-1462	503.5	22	55
\$///	$\langle \langle \rangle \rangle$	686	S[219]	-1484	428.5	22	55
5\\\	$/\!\!/$	687	S[220]	-1506	503.5	22	55
5))	·	688	S[221]	-1528	428.5	22	55
5		689	S[222]	-1550	503.5	22	55
5		690	S[223]	-1572	428.5	22	55
5		691	S[224]	-1594	503.5	22	55
5		692	S[225]	-1616	428.5	22	55
5		693	S[226]	-1638	503.5	22	55
5		694	S[227]	-1660	428.5	22	55
5		695	S[228]	-1682	503.5	22	55
5		696	S[229]	-1704	428.5	22	55
5		697	S[230]	-1726	503.5	22	55
5		698	S[231]	-1748	428.5	22	55
5		699	S[232]	-1770	503.5	22	55
5		700	S[233]	-1792	428.5	22	55
5		701	S[234]	-1814	503.5	22	55
5		702	S[235]	-1836	428.5	22	55
5		703	S[236]	-1858	503.5	22	55
5		703	S[237]	-1880	428.5	22	55
5		704	S[237] S[238]	-1902	503.5	22	55
5		706	S[230] S[239]	-1902	428.5	22	55
5 5		706		-1924	503.5	22	55 55
			S[240]				
5		708	S[241]	-1968	428.5	22	55 55
5		709	S[242]	-1990	503.5	22	55
5		710	S[243]	-2012	428.5	22	55
5		711	S[244]	-2034	503.5	22	55
5		712	S[245]	-2056	428.5	22	55
5		713	S[246]	-2078	503.5	22	55
5		714	S[247]	-2100	428.5	22	55
5		715	S[248]	-2122	503.5	22	55
5		716	S[249]	-2144	428.5	22	55
	ı						

717 S[250] -2166 503.5 22 55 718 S[251] -2188 428.5 22 55 719 S[252] -2210 503.5 22 55 720 S[253] -2232 428.5 22 55 721 S[254] -2254 503.5 22 55 722 S[256] -2298 503.5 22 55 723 S[256] -2298 503.5 22 55 724 S[257] -2320 428.5 22 55 725 S[268] -2342 503.5 22 55 726 S[259] -2364 428.5 22 55 727 S[260] -2364 428.5 22 55 727 S[260] -2408 428.5 22 55 728 S[261] -2408 428.5 22 55 730 S[265] -2496 428.5	No.	Name	X-axis	Y-axis	W	х
718 S 251 -2188 428.5 22 55 719 S 252 -2210 503.5 22 55 720 S 253 -2232 428.5 22 55 721 S 254 -2254 503.5 22 55 722 S 255 -2276 428.5 22 55 723 S 256 -2298 503.5 22 55 724 S 257 -2320 428.5 22 55 725 S 258 -2342 503.5 22 55 726 S 259 -2364 428.5 22 55 726 S 259 -2364 428.5 22 55 727 S 260 -2386 503.5 22 55 728 S 261 -2408 428.5 22 55 730 S 263 -2452 428.5 22 55 731 S 266 -2518 503.5	717	S[250]	-2166	503.5	22	55
719 S 252 -2210 503.5 22 55 720 S 253 -2232 428.5 22 55 721 S 254 -2254 503.5 22 55 722 S 256 -2298 503.5 22 55 723 S 256 -2298 503.5 22 55 724 S 257 -2320 428.5 22 55 725 S 258 -2342 503.5 22 55 726 S 259 -2364 428.5 22 55 727 S 260 -2386 503.5 22 55 727 S 260 -2430 503.5 22 55 728 S 261 -2440 503.5 22 55 730 S 263 -2452 428.5 22 55 731 S 266 -2472 428.5 22 55 731 S 266 -2478 428.5						
720 S[253] -2232 428.5 22 55 721 S[254] -2254 503.5 22 55 722 S[255] -2276 428.5 22 55 723 S[256] -2298 503.5 22 55 724 S[257] -2320 428.5 22 55 726 S[259] -2364 428.5 22 55 726 S[260] -2366 503.5 22 55 727 S[260] -2366 503.5 22 55 728 S[261] -2408 428.5 22 55 729 S[262] -2430 503.5 22 55 730 S[263] -2452 428.5 22 55 731 S[266] -2474 503.5 22 55 732 S[266] -2540 428.5 22 55 733 S[266] -2584 428.5						
721 S[254] -2254 503.5 22 55 722 S[256] -2298 503.5 22 55 723 S[256] -2298 503.5 22 55 724 S[257] -2320 428.5 22 55 725 S[258] -2342 503.5 22 55 726 S[259] -2364 428.5 22 55 727 S[260] -2386 503.5 22 55 728 S[261] -2408 428.5 22 55 729 S[262] -2430 503.5 22 55 730 S[263] -2452 428.5 22 55 731 S[266] -2518 503.5 22 55 733 S[266] -2518 503.5 22 55 733 S[266] -2540 428.5 22 55 733 S[266] -2544 428.5						
722 S 255 -2276 428.5 22 55 723 S 256 -2298 503.5 22 55 724 S 257 -2320 428.5 22 55 726 S 259 -2364 428.5 22 55 726 S 259 -2364 428.5 22 55 727 S 260 -2386 503.5 22 55 728 S 261 -2408 428.5 22 55 728 S 262 -2490 503.5 22 55 730 S 263 -2452 428.5 22 55 731 S 2661 -2496 428.5 22 55 731 S 2661 -2496 428.5 22 55 733 S 2661 -2540 428.5 22 55 733 S 2661 -2540 428.5 22 55 735 S 268 -2562 5						
723 S[256] -2298 503.5 22 55 724 S[257] -2320 428.5 22 55 725 S[258] -2342 503.5 22 55 726 S[259] -2366 428.5 22 55 727 S[260] -2386 503.5 22 55 728 S[261] -2408 428.5 22 55 729 S[262] -2430 503.5 22 55 730 S[263] -2452 428.5 22 55 731 S[266] -2474 503.5 22 55 732 S[266] -2518 503.5 22 55 733 S[266] -2518 503.5 22 55 734 S[267] -2540 428.5 22 55 735 S[270] -2606 503.5 22 55 736 S[271] -2628 428.5						
724 S[257] -2320 428.5 22 55 725 S[258] -2342 503.5 22 55 726 S[259] -2364 428.5 22 55 727 S[260] -2408 428.5 22 55 728 S[261] -2408 428.5 22 55 729 S[262] -2430 503.5 22 55 730 S[263] -2452 428.5 22 55 731 S[266] -2474 503.5 22 55 731 S[266] -2496 428.5 22 55 732 S[268] -2562 503.5 22 55 733 S[268] -2562 503.5 22 55 733 S[268] -2562 503.5 22 55 736 S[270] -2606 503.5 22 55 737 S[271] -2628 428.5						
725 S 258 -2342 503.5 22 55 726 S 259 -2364 428.5 22 55 727 S 260 -2386 503.5 22 55 728 S 261 -2408 428.5 22 55 730 S 263 -2452 428.5 22 55 731 S 264 -2474 503.5 22 55 732 S 265 -2496 428.5 22 55 733 S 266 -2540 428.5 22 55 733 S 266 -2540 428.5 22 55 734 S 267 -2540 428.5 22 55 735 S 268 -2562 503.5 22 55 736 S 269 -2584 428.5 22 55 737 S 270 -2606 503.5 22 56 738 S 271 -2628 428.5						
726 S 259 -2364 428.5 22 55 727 S 260 -2386 503.5 22 55 728 S 261 -2408 428.5 22 55 729 S 262 -2430 503.5 22 55 730 S 263 -2452 428.5 22 55 731 S 264 -2474 503.5 22 55 732 S 265 -2496 428.5 22 55 733 S 266 -2518 503.5 22 55 734 S 267 -2562 503.5 22 55 735 S 268 -2562 503.5 22 55 736 S 269 -2584 428.5 22 55 737 S 270 -2606 503.5 22 55 738 S 271 -2628 428.5 22 55 738 S 271 -2628 428.5						
727 \$ 260 -2386 503.5 22 55 728 \$ 261 -2408 428.5 22 55 729 \$ 262 -2430 503.5 22 55 730 \$ 263 -2452 428.5 22 55 731 \$ 266 -2474 503.5 22 55 732 \$ 266 -2518 503.5 22 55 733 \$ 266 -2518 503.5 22 55 734 \$ 2671 -2540 428.5 22 55 735 \$ 268 -2562 503.5 22 55 735 \$ 269 -2584 428.5 22 55 736 \$ 270 -2606 503.5 22 55 737 \$ 271 -2628 428.5 22 56 739 \$ 272 -2650 503.5 22 55 740 \$ 273 -2672						
728 S[261] -2408 428.5 22 55 729 S[262] -2430 503.5 22 55 730 S[263] -2452 428.5 22 55 731 S[264] -2474 503.5 22 55 732 S[266] -2518 503.5 22 55 733 S[266] -2540 428.5 22 55 734 S[267] -2540 428.5 22 55 735 S[268] -2562 503.5 22 55 736 S[269] -2584 428.5 22 55 737 S[270] -2606 503.5 22 55 737 S[270] -2650 503.5 22 56 739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 56 741 S[274] -2694 503.5						
729 \$\sum{2}(262)\						
730 S[263] -2452 428.5 22 55 731 S[264] -2474 503.5 22 55 732 S[266] -2518 503.5 22 55 733 S[266] -2518 503.5 22 55 734 S[267] -2560 428.5 22 55 735 S[268] -2562 503.5 22 55 736 S[269] -2584 428.5 22 55 737 S[270] -2606 503.5 22 55 737 S[270] -2660 503.5 22 56 739 S[272] -2650 503.5 22 56 739 S[272] -2650 503.5 22 55 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 743 S[276] -2738 503.5						
731 S[264] -2474 503.5 22 55 732 S[265] -2496 428.5 22 55 733 S[266] -2518 503.5 22 55 734 S[267] -2540 428.5 22 55 735 S[268] -2562 503.5 22 55 736 S[269] -2584 428.5 22 55 737 S[270] -2606 503.5 22 55 738 S[271] -2628 428.5 22 56 739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 55 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.5						
732 S[265] -2496 428.5 22 55 733 S[266] -2518 503.5 22 55 734 S[267] -2540 428.5 22 55 735 S[268] -2562 503.5 22 55 736 S[269] -2584 428.5 22 55 737 S[270] -2606 503.5 22 56 738 S[271] -2628 428.5 22 56 739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 741 S[277] -2760 428.5 22 55 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.5 22 56 744 S[278] -2782 503.5						
733 S[266] -2518 503.5 22 55 734 S[267] -2540 428.5 22 55 735 S[268] -2562 503.5 22 55 736 S[269] -2584 428.5 22 55 737 S[270] -2606 503.5 22 55 738 S[271] -2628 428.5 22 56 739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 741 S[276] -2716 428.5 22 55 742 S[276] -2788 503.5 22 55 743 S[276] -2782 503.5 22 55 744 S[277] -2782 503.5 22 55 745 S[278] -2782 503.5						
734 \$ 267 \$ -2540 428.5 22 55 735 \$ 268 \$ -2562 503.5 22 55 736 \$ 269 \$ -2584 428.5 22 55 737 \$ 270 \$ -2606 503.5 22 55 738 \$ 271 \$ -2628 428.5 22 56 739 \$ 272 \$ -2650 503.5 22 56 740 \$ 273 \$ -2672 428.5 22 55 741 \$ 274 \$ -2694 503.5 22 55 741 \$ 274 \$ -2694 503.5 22 55 742 \$ 275 \$ -2716 428.5 22 55 743 \$ 276 \$ -2738 503.5 22 55 744 \$ 277 \$ -2760 428.5 22 55 744 \$ 277 \$ -2782 503.5 22 55 744 \$ 277 \$ -2782 503.5 22 55 745 \$ 280 \$ -2826 503.5 22 55 748						
735 S[268] -2562 503.5 22 55 736 S[269] -2584 428.5 22 55 737 S[270] -2606 503.5 22 55 738 S[271] -2628 428.5 22 56 739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 55 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.5 22 55 744 S[277] -2760 428.5 22 55 744 S[278] -2782 503.5 22 56 744 S[287] -2804 428.5 22 55 748 S[281] -2804 428.5						
736 S[269] -2584 428.5 22 55 737 S[270] -2606 503.5 22 55 738 S[271] -2628 428.5 22 56 739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 58 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.5 22 55 744 S[279] -2804 428.5 22 55 745 S[280] -2826 503.5 22 55 746 S[279] -2804 428.5 22 55 747 S[280] -2826 503.5 22 55 748 S[281] -2802 428.5						
737 S[270] -2606 503.5 22 55 738 S[271] -2628 428.5 22 56 739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 58 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.5 22 55 744 S[278] -2782 503.5 22 55 745 S[280] 2826 503.5 22 55 746 S[279] 2804 428.5 22 55 747 S[280] 2826 503.5 22 55 748 S[281] 2848 428.5 22 55 749 S[283] -2992 426.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
738 S[271] -2628 428.5 22 56 739 S[272] -2650 503.5 22 96 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 58 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.6 22 55 744 S[278] -2782 503.5 22 55 745 S[280] -2824 428.5 22 55 746 S[279] 2894 428.5 22 55 748 S[281] 2848 428.5 22 55 748 S[281] 2840 503.5 22 55 748 S[283] -2992 426.5 22 55 750 S[283] -2992 428.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
739 S[272] -2650 503.5 22 56 740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 56 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.6 22 55 744 S[278] -2782 503.5 22 55 744 S[279] 2894 428.5 22 55 746 S[279] 2894 428.5 22 55 747 S[280] 2848 428.5 22 55 748 S[281] 2848 428.5 22 55 749 S[283] -2992 428.5 22 55 750 S[283] -2914 503.5 22 55 751 S[286] -2958 503.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>\rightarrow</td>						\rightarrow
740 S[273] -2672 428.5 22 55 741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 58 743 S[276] -2738 503.5 22 55 744 S[277] -2760 428.6 22 55 744 S[278] -2782 503.5 22 55 745 S[280] -2804 428.5 22 55 746 S[279] 2804 428.5 22 55 747 S[280] 2826 503.5 22 55 748 S[281] 2848 428.5 22 55 749 \$(282) 2800 503.5 22 55 750 \$(283) -2914 503.5 22 55 751 \$(282) -2936 428.5 22 55 753 \$(286) -2958 503.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
741 S[274] -2694 503.5 22 55 742 S[275] -2716 428.5 22 58 743 S[276] -2738 503.6 22 55 744 S[277] -2760 428.6 22 55 744 S[278] -2782 503.5 22 55 746 S[279] 2804 428.5 22 55 747 S[280] 2826 503.5 22 55 748 S[281] -2848 428.5 22 55 749 S[282] 2870 503.5 22 55 749 S[283] -2992 428.5 22 55 750 S[283] -2992 428.5 22 55 751 S[288] -2914 503.5 22 55 751 S[288] -2902 428.5 22 55 753 S[286] -2958 503.5 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>					_	
742 S[275] -2716 428.5 22 55 743 S[276] -2738 50.6 22 55 744 S[277] -2760 428.5 22 55 745 S[278] -2782 503.5 22 56 746 S[279] 2804 428.5 22 56 747 S[280] 2826 503.5 22 55 748 S[28] 2848 428.5 22 55 749 3(282) 2870 503.5 22 55 749 3(282) 2870 503.5 22 55 750 S[283] -2992 426.5 22 55 750 S[283] -2992 426.5 22 55 751 S[288] -2914 503.5 22 55 753 S[286] -2958 503.5 22 55 754 S[287] -2980 428.5					\sim	
743 S[276] -2738 50.8 22 55 744 S[277] -2760 428.8 22 55 745 S[278] -2782 503.5 22 55 746 S[279] 2804 428.5 22 55 747 S[280] 2826 503.5 22 55 748 S[281] -2848 428.5 22 55 749 S[282] 2800 503.5 22 55 749 S[283] -2992 426.5 22 55 750 S[283] -2992 426.5 22 55 750 S[283] -2914 503.5 22 55 751 S[285] -2936 428.5 22 55 751 S[286] -2958 503.5 22 55 753 S[286] -3002 503.5 22 55 755 S[288] -3002 503.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
744 S[277] -2760 428.5 22 55 745 S[278] -2782 303.5 22 55 746 S[279] 2804 428.5 22 55 747 S[280] 2826 503.5 22 55 748 S[281] -2848 428.5 22 55 749 S[282] 2870 503.5 22 55 750 S[283] -2992 428.6 32 55 750 S[283] -2992 428.5 32 55 751 S[284] -2914 503.5 22 55 751 S[285] -2936 428.5 32 55 753 S[286] -2958 503.5 22 55 754 S[287] -2980 428.5 22 55 755 S[288] -3002 503.5 22 55 756 S[289] -3046 503.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>\</td>						\
745 S[278] -2782 303.5 22 56 746 S[279] -2804 428.5 22 55 747 S[280] 2826 503.5 22 55 748 S[281] -2848 428.5 22 55 749 \$[282] 2870 503.5 22 55 750 \$[283] -2992 426.5 32 55 750 \$[283] -2992 426.5 32 55 751 \$[284] -2914 503.5 22 55 751 \$[288] -2936 428.5 32 55 752 \$[288] -2936 428.5 22 55 753 \$[286] -2958 503.5 22 55 754 \$[287] -2980 428.5 22 55 755 \$[288] -3002 503.5 22 55 757 \$[290] -3046 503.5 </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>					_	
746 S[279] 2804 428.5 22 58 747 S[280] 2826 503.5 22 55 748 S[281] 2848 428.5 22 55 749 S[282] 2870 503.5 22 55 750 S[283] -2992 426.5 22 55 751 8[284] -2914 503.6 22 55 751 8[288] -2936 428.5 22 55 752 8[288] -2936 428.5 22 55 753 8[286] -2958 503.5 22 55 754 8[287] -2980 428.5 22 55 755 8[288] -3002 503.5 22 55 755 8[288] -3002 503.5 22 55 757 8[290] -3046 503.5 22 55 758 8[291] -3068 428.5 <td></td> <td></td> <td>/ _</td> <td></td> <td>\sim</td> <td>_ ^ \</td>			/ _		\sim	_ ^ \
747 S[280] 2836 503.5 22 55 748 S[281] 2448 428.5 22 55 749 S[282] 2870 503.5 22 55 750 S[283] -2892 426.6 32 55 751 S[284] -2914 503.6 22 55 751 S[288] -2936 428.5 32 55 752 S[288] -2958 503.5 22 55 753 S[286] -2958 503.5 22 55 754 S[287] -2980 428.5 22 55 755 S[288] -3002 503.5 22 55 755 S[288] -3024 428.5 22 55 757 S[290] -3046 503.5 22 55 758 S[291] -3068 428.5 22 55 759 S[292] -3090 503.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>~ \\</td>						~ \\
748 S[28] 2848 428.5 22 55 749 3(282) 2870 503.5 22 36 750 S[283] -2992 426.5 22 55 750 S[283] -2992 426.5 22 55 751 8[284] -2914 503.6 22 55 752 S[285] -2936 428.5 22 55 753 \$[286] -2958 503.5 22 55 754 \$[287] -2980 428.5 22 55 755 \$[288] -3002 503.5 22 55 756 \$[289] -3044 428.5 22 55 757 \$[290] -3046 503.5 22 55 758 \$[291] -3068 428.5 22 55 759 \$[292] -3090 503.5 22 55 760 \$[293] -3112 428.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749 \$(82) 2870 503.5 22 36 750 \$(83) -2992 426.5 \$2 55 751 \$(283) -2914 503.6 \$22 55 751 \$(285) -2936 428.5 \$22 55 752 \$(285) -2958 503.5 \$22 55 753 \$(286) -2958 503.5 \$22 55 754 \$(287) -2980 428.5 \$22 55 755 \$(288) -3002 503.5 \$22 55 756 \$(289) -3024 428.5 \$22 55 757 \$(290) -3046 503.5 \$22 55 758 \$(291) -3068 428.5 \$22 55 759 \$(292) -3090 503.5 \$22 <t>55 760 \$(293) -3112 428.5 \$22 55 761 \$(294) -3134 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></t>						
750 \$[283] -2892 426.5 \$2 55 751 \$[285] -2914 503.6 22 55 752 \$[285] -2936 428.5 22 55 753 \$[286] -2958 503.5 22 55 754 \$[287] -2980 428.5 22 55 755 \$[288] -3002 503.5 22 55 756 \$[289] -3024 428.5 22 55 757 \$[290] -3046 503.5 22 55 758 \$[291] -3068 428.5 22 55 759 \$[292] -3090 503.5 22 55 760 \$[293] -3112 428.5 22 55 761 \$[294] -3134 503.5 22 55 762 \$[295] -3156 428.5 22 55 763 \$[296] -3178 503.5						_ \\ / /
751 85284 -2914 503.6 22 55 752 \$[285] -2936 428.5 22 55 753 \$[286] -2958 503.5 22 55 754 \$[287] -2980 428.5 22 55 755 \$[288] -3002 503.5 22 55 756 \$[289] -3024 428.5 22 55 757 \$[290] -3046 503.5 22 55 758 \$[291] -3068 428.5 22 55 759 \$[292] -3090 503.5 22 55 760 \$[293] -3112 428.5 22 55 761 \$[294] -3134 503.5 22 55 762 \$[295] -3156 428.5 22 55 763 \$[296] -3178 503.5 22 55 764 \$[297] -3200 428.5<	750/		\rightarrow		1 22	· ·
752 \$[285] -2936 428.5 \$22 55 753 \$[286] -2958 503.5 22 55 754 \$[287] -2980 428.5 22 55 755 \$[288] -3002 503.5 22 55 756 \$[289] -3024 428.5 22 55 757 \$[290] -3046 503.5 22 55 758 \$[291] -3068 428.5 22 55 759 \$[292] -3090 503.5 22 55 760 \$[293] -3112 428.5 22 55 761 \$[294] -3134 503.5 22 55 762 \$[295] -3156 428.5 22 55 763 \$[296] -3178 503.5 22 55 764 \$[297] -3200 428.5 22 55 765 \$[298] -3244 428.			\		,,,, ,	/
753 \$\(286 \) -2958 503.5 22 55 754 \$\(287 \) -2980 428.5 22 55 755 \$\(288 \) -3002 503.5 22 55 756 \$\(289 \) -3024 428.5 22 55 757 \$\(290 \) -3046 503.5 22 55 758 \$\(291 \) -3068 428.5 22 55 759 \$\(292 \) -3090 503.5 22 55 760 \$\(293 \) -3112 428.5 22 55 761 \$\(294 \) -3134 503.5 22 55 762 \$\(295 \) -3156 428.5 22 55 763 \$\(296 \) -3178 503.5 22 55 764 \$\(297 \) -3200 428.5 22 55 765 \$\(298 \) -3244 428.5 22 55 766		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
754 S[287] -2980 428.5 22 55 755 S[288] -3002 503.5 22 55 756 S[289] -3024 428.5 22 55 757 S[290] -3046 503.5 22 55 758 S[291] -3068 428.5 22 55 759 S[292] -3090 503.5 22 55 760 S[293] -3112 428.5 22 55 761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 768 S[300] -3266 503.5	753				22	55
755 S[288] -3002 503.5 22 55 756 S[289] -3024 428.5 22 55 757 S[290] -3046 503.5 22 55 758 S[291] -3068 428.5 22 55 759 S[292] -3090 503.5 22 55 760 S[293] -3112 428.5 22 55 761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 769 S[302] -3310 503.5						
756 S[289] -3024 428.5 22 55 757 S[290] -3046 503.5 22 55 758 S[291] -3068 428.5 22 55 759 S[292] -3090 503.5 22 55 760 S[293] -3112 428.5 22 55 761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3288 428.5 22 55 768 S[301] -3288 428.5 22 55 770 S[303] -3332 428.5						
758 S[291] -3068 428.5 22 55 759 S[292] -3090 503.5 22 55 760 S[293] -3112 428.5 22 55 761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5			-3024	428.5	22	55
758 S[291] -3068 428.5 22 55 759 S[292] -3090 503.5 22 55 760 S[293] -3112 428.5 22 55 761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5	757	S[290]	-3046	503.5	22	55
760 S[293] -3112 428.5 22 55 761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 774 S[307] -3420 428.5		S[291]			22	
760 S[293] -3112 428.5 22 55 761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 774 S[307] -3420 428.5	759		-3090	503.5	22	55
761 S[294] -3134 503.5 22 55 762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5					22	
762 S[295] -3156 428.5 22 55 763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5	761		-3134			
763 S[296] -3178 503.5 22 55 764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	762				22	
764 S[297] -3200 428.5 22 55 765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55				503.5		
765 S[298] -3222 503.5 22 55 766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	764	S[297]	-3200	428.5	22	55
766 S[299] -3244 428.5 22 55 767 S[300] -3266 503.5 22 55 768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	765	S[298]		503.5	22	
768 S[301] -3288 428.5 22 55 769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	766	S[299]	-3244	428.5	22	55
769 S[302] -3310 503.5 22 55 770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	767	S[300]	-3266	503.5	22	55
770 S[303] -3332 428.5 22 55 771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	768	S[301]	-3288	428.5	22	55
771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	769	S[302]	-3310	503.5	22	55
771 S[304] -3354 503.5 22 55 772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	770	S[303]	-3332	428.5	22	55
772 S[305] -3376 428.5 22 55 773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	771		-3354	503.5	22	55
773 S[306] -3398 503.5 22 55 774 S[307] -3420 428.5 22 55 775 S[308] -3442 503.5 22 55	772		-3376		22	55
775 S[308] -3442 503.5 22 55						
775 S[308] -3442 503.5 22 55						
776 S[309] -3464 428.5 22 55						

	1				1		
K		No.	Name	X-axis	Y-axis	W	Х
5		777	S[310]	-3486	503.5	22	55
5		778	S[311]	-3508	428.5	22	55
5		779	S[312]	-3530	503.5	22	55
5		780	S[313]	-3552	428.5	22	55
5		781	S[314]	-3574	503.5	22	55
5		782	S[315]	-3596	428.5	22	55
5		783	S[316]	-3618	503,5	22	55
5		784	S[317]	-3640	428.6	22	55
5		785	S[318]	-3662	503.5	22	55
5		786	S[319]	-3684	428.5	22	55
5		787	BDR R	3706	503.5	22	55
5		788	DUMMY_	-3728	428.5	22	55
5		789	DUMMY	3750	503.5	22	55
5		790	DUMMY	(3772)	428.5	22	55
5		791	DUMMY	-3794	503.5	22	55
5		792	DUMMY	3816	428.5	22	55
5		793	DUMMY	-3838	503.5	22	55
5	7	794	DOMANA	-3860	428.5	22	55
5		795	DUMMY	3882	503.5	22	55
5	M	1406	DUMMY	3904	428.5	22	55
5		797	G[299]	-3928	503.5	22	55
6	// // //	798	G[297]	1-3948	428.5	22	55
Ø/	2	799	G[295]	-8970	503.5	22	55
5)) _	800	G[293]	-3992	428.5	22	55
5		801	G[291)	-4014	503.5	22	55
8		802	G[289]	-4036	428.5	22	55
5	$\langle C \rangle$	803	G[287]	-4058	503.5	22	55
5 ($\sim // \sim$	1804	G[287] G[285]	-4080	428.5	22	55
5//		805	G[283]	-4102	503.5	22	55
\$///		806	G[281]	-4124	428.5	22	55
5	\sim	807	G[279]	-4146	503.5	22	55
5)	//	808	G[277]	-4168	428.5	22	55
6		809	G[275]	-4190	503.5	22	55
5		810	G[273]	-4212	428.5	22	55
5		811	G[271]	-4234	503.5	22	55
5		812	G[269]	-4256	428.5	22	55
5		813	G[267]	-4278	503.5	22	55
5		814	G[267] G[265]	-4300	428.5	22	55
5		815	G[263]	-4322	503.5	22	55
5		816	G[261]	-4344	428.5	22	55
5		817	G[259]	-4366	503.5	22	55
5		818	G[259] G[257]	-4388	428.5	22	55
5		819	G[257] G[255]	-4410	503.5	22	55
5		820	G[253]	-4432	428.5	22	55
5		821	G[253] G[251]	-4454	503.5	22	55
5		822	G[249]	-4476	428.5	22	55
5		823	G[247]	-4498	503.5	22	55
5		824	G[247]	-4520	428.5	22	55
5		825	G[243]	-4542	503.5	22	55
5		826	G[241]	-4564	428.5	22	55
5		827	G[239]	-4586	503.5	22	55
5		828	G[237]	-4608	428.5	22	55
5		829	G[235]	-4630	503.5	22	55
5		830	G[233]	-4652	428.5	22	55
5		831	G[231]	-4674	503.5	22	55
5		832	G[229]	-4696	428.5	22	55
5		833	G[223] G[227]	-4718	503.5	22	55
5		834	G[227]	-4740	428.5	22	55
5		835	G[223]	-4762	503.5	22	55
5		836	G[223] G[221]	-4784	428.5	22	55
J] .	000	ال حاد	-7, U -1	720.0		55

837 838 839 840 841 842 843	G[219] G[217] G[215]	-4806 -4828	503.5 428.5	22 22	55 55
838 839 840 841 842	G[217] G[215]	-4828			
839 840 841 842	G[215]				
840 841 842		-4850	503.5	22	55
841 842	C[242]	-4850			
842	G[213]	-4872	428.5	22	55
	G[211]	-4894	503.5	22	55
843	G[209]	-4916	428.5	22	55
	G[207]	-4938	503.5	22	55
844	G[205]	-4960	428.5	22	55
845	G[203]	-4982	503.5	22	55
846	G[201]	-5004	428.5	22	55
847	G[199]	-5026	503.5	22	55
848	G[197]	-5048	428.5	22	55
849	G[195]	-5070	503.5	22	55
850	G[193]	-5092	428.5	22	55
851	G[191]	-5114	503.5	22	55
		-5114		22	
852	G[189]		428.5		55
853	G[187]	-5158	503.5	22	55
854	G[185]	-5180	428.5	22	55
855	G[183]	-5202	503.5	22	55
856	G[181]	-5224	428.5	22	55
857	G[179]	-5246	503.5	22	55
858	G[177]	-5268	428.5	22	\$ 6
859	G[175]	-5290	503.5	22	56
860	G[173]	-5312	428.5	22	55
861	G[171]	-5334	503.5	22	55
862	G[169]	-5356	428.5	22	58
863	G[167]	-5378	503.5	22	55
864		-5400	¥28.5	22	55 (
	G[165]	-5422		<u> </u>	
865	G[163]		503.5	22	55\\\
866	G[161]	-5444\	428.5	22	56///
867	G[159]	\\54 66 \	503.5	22	\\ 55 \\
868	G[157]	\\- 5 488	428.5	22	\5 5
869	<u> </u>	\55 10	503.5	(22 \	56
870	G[\ \\\\\\\	-5532	428.5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	55
871	_6 [15]	◇ -5554	503.6		55
872	(G[149]	-5576	428.5	222	55
873	G[147]	-5598	503.5	22	55
874	G[145]	-5620	428.5	22	55
875	G[143]	-5642	503.5	22	55
876	G[141]	-5664	428.5	22	55
	G[139]		503.5	22	55
877 878	G[139] G[137]	-5686 -5708	428.5	22	55
879	G[135]	-5730	503.5	22	55 55
880	G[133]	-5752	428.5	22	55
881	G[131]	-5774	503.5	22	55
882	G[129]	-5796	428.5	22	55
883	G[127]	-5818	503.5	22	55
884	G[125]	-5840	428.5	22	55
885	G[123]	-5862	503.5	22	55
886	G[121]	-5884	428.5	22	55
887	G[119]	-5906	503.5	22	55
888	G[117]	-5928	428.5	22	55
889	G[115]	-5950	503.5	22	55
890	G[113]	-5972 5004	428.5 503.5	22	55 55
891	G[111]	-5994	503.5	22	55
000	G[109]	-6016	428.5	22	55
892	G[107]	-6038	503.5	22	55
893					
893 894	G[105]	-6060	428.5	22	55
893		-6060 -6082 -6104	428.5 503.5 428.5	22 22 22	55 55 55

v		NI-	Nama	V auda	V auda	10/	v
X		No.	Name	X-axis	Y-axis	W	Х
55		897	G[99]	-6126	503.5	22	55
55		898	G[97]	-6148	428.5	22	55
55		899	G[95]	-6170	503.5	22	55
55		900	G[93]	-6192	428.5	22	55
55		901	G[91]	-6214	503.5	22	55
55		902	G[89]	-6236	428.5	22	55
55		903	G[87]	-6258	503.5	22	55
55		904	G[85]	-6280	428.5	22	55
55		905	G[83]	-6302	503.5	22	55
55		906	G[81]	-6824	428.5	22	55
55		907	G[79]	6346	503.5	22	55
		908	G[77]	-6368	428.5	22	55
55 55		909	G[75]	\\-63 9 0	503.5	22	55
55		910	G[73]	-6412	428.5	22	55
55		911 /	GVH	-6434	503.5	22	55
55 55		912	(<u>gl</u> 68)	-6456	428.5	22	55
55		913	G67	-6478	503.5	22	55
55 55	\ \n'	914	() (S/65)	-6500	428.5	22	55
55		\915	G[63]	1-6522	503.5	22	55
55	M	916	G[61] \	26544	428.5	22	55
55	(())	917	G[59]	-6566	503.5	22	55
55	// // //	918	©[2X] //	\ <u>-6588</u>	428.5	22	55
96		919	(GISS)	-6610	503.5	22	55
55)) _	920	G[53]	-6632	428.5	22	55
		921	(S[51]			22	55
55 58		922	G[49]	-6654 -6676	503.5 428.5	22	55
55	$\langle \circ \rangle$	923	G[47]	-6698	503.5	22	55
55 ($\sim // \sim$	1924	G[45]		428.5	22	55
55		_	G[43]	-6720 6742	503.5		
	$\sim 10^{\circ}$	925		-6742	428.5	22	55 55
55	\sim	926 927	G[41] G[39]	-6764 -6786	503.5	22 22	55 55
55))	//				428.5	22	
10 10		928	G[37]	-6808			55
55		929	G[35]	-6830	503.5	22	55
		930	G[33]	-6852	428.5	22	55
55		931	G[31]	-6874	503.5	22	55
55		932	G[29]	-6896	428.5	22	55
55		933	G[27]	-6918	503.5	22	55
55		934	G[25]	-6940	428.5	22	55
55		935	G[23]	-6962	503.5	22	55
55		936	G[21]	-6984	428.5	22	55
55		937	G[19]	-7006 -7000	503.5	22	55
55		938	G[17]	-7028 -7050	428.5	22	55 55
55		939	G[15]	-7050	503.5	22	55
55		940	G[13]	-7072	428.5	22	55
55		941	G[11]	-7094	503.5	22	55
55		942	G[9]	-7116	428.5	22	55
55		943	G[7]	-7138	503.5	22	55
55		944	G[5]	-7160	428.5	22	55
55		945	G[3]	-7182	503.5	22	55
55		946	G[1]	-7204	428.5	22	55
55		947	DUMMY	-7226	503.5	22	55
55		948	DUMMY	-7248	428.5	22	55
55		949	VCOM_PASSR	-7270	503.5	22	55
55		950	VCOM_PASSR	-7292	428.5	22	55
55		951	VCOM_PASSR	-7314	503.5	22	55
55		952	VCOM_PASSR	-7336	428.5	22	55
55		953	DUMMY	-7358	503.5	22	55
55		954	DUMMY	-7380	428.5	22	55
55		955	DUMMY	-7683	392.5	70	35
55		956	CLK_R	-7683	312.5	70	35

No.	Name	X-axis	Y-axis	w	х
_					
957	EN_R	-7683	232.5	70	35
958	DT_R	-7683	152.5	70	35
959	HSYNC_R	-7683	72.5	70	35
960	VSYNC_R	-7683	-7.5	70	35
961	SYNCM_R	-7683	-87.5	70	35
962	SYNCS_R	-7683	-167.5	70	35
963	DUMMY	-7683	-247.5	70	35
964	DUMMY	-7683	-327.5	70	35
965	DHMMY	-7683	-407.5	70	35

13. REVISION HISTORY

Revision	Content	Page	Date
1.0	1.new issue	69	2017/11/23
	AB to AC version update: Add OCP circuit statement		