목적 : BenchGAD 프로젝트 사용할 클라이언트 프로그램의 gui 을 제작하기 위해 다양한 레퍼런스를 참고하고 그 자료를 정리하였음

목차

- 1.상용 데이터베이스 벤치마킹 툴 조사
- 2.논문에 기재된 벤치마킹 툴 조사
- 3.결론 BenchGaD gui 방향

1.상용 데이터베이스 벤치마킹 툴 조사

- 1-1.Database Benchmark
- 1-2.HammerDB
- 1-3.DB Test Driven

1-1.Database Benchmark

참고: https://github.com/STSSoft/DatabaseBenchmark

소개:

Database Benchmark 는 대용량의 데이터와 함께 dbms 의 스트레스를 하는 오픈소스 툴 중 하나입니다. github 통해 관리하며 빠른 업데이트 피드백이 특징입니다.

특징:

랜덤 혹은 순차적으로 생성된 대용량의 레코드를 삽입하여 테스팅함

대용량의 레코드를 생성해주는 기능(랜덤 or 규칙적으로) 존재

output 을 시각화하여 보여주고 강력한 리포팅 옵션을 가지고 있습니다.

퍼포먼스 측정 툴보단 stress test 의 개념에 더 가까운 툴입니다.

UI: 설정 창 및 output

web UI: http://stssoft.com/benchmarks/?request_page=2

Database benchmark 같은 경우 자사 홈페이지에서 툴의 기능을 제공해주고 있음

Access 2013 Aerospike Document Store Firebird Key-Value Store LocalHost - Boleteria MongoDB MongoDB MSSQL Server 2012 MSSQL Server 2012 Clone MSSQL Server Compact 4.0 MySQL (ARCHIVE) MySQL (MINODB) MySQL (MINODB) MySQL (MINODB) NoSQL Oracle Berkeley DB Oracle GEISER Postgre Postgre		DATABASE NAME	FLOW X RECORD COUNT	RANDOM- NESS %	ELAPSED TIME	DATABASE SIZE	DATABASE INDEXING TECHNOLOGY
	0	MongoDB	1x1000000	100	0h 02m 48s 535ms	165 MB	BTree
		Firebird	1x50000	100	0h 01m 32s 969ms	7 MB	BTree
	0	MSSQL Server Compact 4.0	2x1000000	100	0h 33m 29s 564ms	96 MB	BTree
		Firebird	2x100	100	0h 00m 00s 259ms	1 MB	BTree
	0	Oracle Berkeley DB	1x1000000	10	0h 00m 45s 211ms	94 MB	BTree
RavenDB Redis SQL		Firebird	1x1000000	10	0h 17m 52s	108 MB	BTree

5,000,000 10,000,000					375ms		
50,000,000 100,000,000 1,000,000,000	0	Firebird	2x50000	100	0h 00m 43s 514ms	7 MB	BTree
KEY TYPES Random Sequential Both DATABASE SETTINGS Submit		STSdb 4.0	1x300000	100	0h 00m 01s 358ms	8 MB	WaterfallTree
	0	Firebird	1x1000000	100	0h 13m 05s 882ms	122 MB	BTree
		Firebird	1x1000000	100	0h 10m 44s 047ms	122 MB	BTree
		Firebird	1×1000000	100	0h 12m 12s 468ms	122 MB	BTree
	0	MySQL (INNODB)	1x1000000	100	0h 01m 47s 892ms	112 MB	BTree

Compare selected

1-2. HammerDB

참고: http://www.hammerdb.com/document.html

https://vimeo.com/174058490

소개:

HammerDB 는 오픈소스로 개발된 데이터베이스 테스팅 및 벤치마킹 툴입니다. 시중에서 별 다른 제약없이 사용 할 수 있는 툴이며 TPC-C TPC-H 등 최근 사용하는 방식으로 구현한 툴입니다.

주요 기능:

사용자들이 Gui 와 command line 을 통해 툴을 조작 가능

Linux 환경과 winodw 환경 모두다 정상 작동

자동화 된 멀티 스레드 및 동적 스크립팅 지원을 통한 확장이 가능

UI : 시작 UI

DBMS 및 벤치마킹 방식 선택

스키마 빌드 및 옵션 조정

output 모습

transaction 측정값

1-3. DB Test Driven

- 링크: http://www.dbtestdriven.com/

● 참고 자료

http://www.softwaretestingmagazine.com/tools/open-source-database-testing-tools/

2.논문에 기재된 벤치마킹 툴 조사

- 2-1 SenseMark Abstraction
- 2-2 BenchGAD 프로젝트에서 수행 가능한 개선점
- 2-3 UI 분석

목적 :

시중에 나와있는 상용화 툴 이외에 논문에 기재되어있는 벤치마크 툴의 기능과 ui 를 벤치마킹을 한 뒤 BenchGaD project 에 사용 예정

2-1 SenseMark (논문에서 제작한 벤치마킹툴)

목적: nosql dbms 시스템의 퍼포먼스를 측정하는데 의의를 둠

특징 : rest api와 wfs web services 사용하여 데이터를 전송 iot 기기를 통해 받은 다양한

형태의 데이터 값을 토대로 한 벤치마킹 시스템

2-2 BenchGAD 프로젝트에서 수행 가능한 개선점

시스템적 개선점 :

- 1) 단일 클러스터로 실행시키고 있다. ->gpu 를 사용
- 2) 아직 베타 버전인만큼 다양한 dbms를 지원하고 있지는 않다.-> 좀 더 많은 dbms지원

ui 적 개선점:

- 1) 상용툴(hammer db 나 benchmark tool)과 비교하였을때 확실히 사용자에게 별로 친숙하지 않는 ui 나 직관적이지 않는 ui 를 보여준다.
- 2) output 을 여러 자료형태로 보여주고 있지는 않다.
- -> 처음 이 툴을 사용하는 사용자들에게도 메뉴얼에 의지하지 않고 툴을 사용할 수 있도록 직관적인 ui 개발, output 값에 대한 다양한 정보 분석 제공(차트, 시트 정보 제공 등등)

2-3 UI 분석

SenseMark Architecture

6.2 Design of SenseMark

First step include to develop the **storage component** responsible for storing sensor data events (external data) and system component events (internal data) in Storage layer of sensing architecture[48]. The next step is to provide the **Adapter library** (Sensing layer) consisting of Java library for developing adapters capable of receiving data from all sensor types. Conceptual sensing architecture is shown in the figure 6.1.

Figure 6.1: Conceptual Architecture of SenseMark

input 창 query를 직업 타이핑 하는 형식

```
SPARQL

Endpoint: https://rdf.datagraft.net/4937384324/db/repositories/1604051091_measurement_june_sample_2016-processed

Query

1: select * where {
3: ?s ?p ?o . }
```

Figure 8.6: SPARQL Query

input 데이터 값에 대한 데이터 제공 ui 및 타입 지정

Figure 8.2: RDF Mapping of CITI-SENSE CSV

clojure code 창 display

Figure 8.3: Overview of Clojure Code

excute 전 설정 창

For doing mapping larger CSV files to RDF, a Java based executable is downloaded in the system and mapping is performed locally on the machine to transform the data into RDF.

Figure 8.4: Downloadable executable in DataGraft

3.결론 - BenchGaD gui 방향

직관적인 ui 사용 : 아이콘과 ui 위치 고려를 통한

Output 값 분석 : output. 값을 분석하여 사용자들에게 다양한 분석 결과를 제공 (도표화,

시트화)

현재 작업 상황에 대한 정보 제공 : 프로그램 하단이나 상단바에 현재 진행상태(작업상황 퍼센티이지화 경과시간 등)

진행 상황 컨트롤 ui 제공: 정지,일시정지,재생 버튼을 통한 작업상황 컨트롤 사용자에게 제공되도록이면 한 패널안에서 깔끔하게 제공: 필요한 상황이 아니면 불필요한 프레임 호출은 피하는 방향(메모리적으로도 더 좋은 방향)

현재 상황을 저장할 수 있는 ui.제공(현재는 환경설정 부분에서만)

또한 세팅정보를 로드할 수 있는 ui 제공 (마찬가지로 환경설정 부분에서만)

Dbms 리스트를. Tree 개념 + 리스트 형식으로 직관적으로 제공

Output info 를 통해 만들것:

시간 추이에 따른 transaction counter

output 텍스트 형식으로 표현

시스템 모니터

결론 : 이 툴을 처음하는 사용자라도 메뉴얼에 의지하지 않고 스스로 사용할 수 있게 하는 방향으로 ui 를 제작할려함. 또한 상용화 툴에 못지 않는 ui 와 기능을 제공하도록 할것임