Rob 501 - Mathematics for Robotics Recitation #8

Nils Smit-Anseeuw (Courtesy: Abhishek Venkataraman, Wubing Qin)

Nov 13, 2018

1 Application of Projection Theorem

1. **Theorem:** In an inner product space $(\mathbb{R}^n, \mathbb{R}, <\cdot, \cdot>)$ with $< x, y> = x^\top Q y$ where $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\|x\|_Q = \sqrt{< x, x>}$. Given a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, rank $\{A\} = n$, and vector $b \in \mathbb{R}^m$, then

$$\hat{x} := \arg\min_{x} \|Ax - b\|_Q^2$$

exists, is unique and given by $\hat{x} = (A^{\top}QA)^{-1}A^{\top}Qb$.

Note: In this case, Ax = b is an over-determined or over-constrained equation, thus there is no such x satisfying Ax = b, but we can find a solution \hat{x} such that the error $A\hat{x} - b$ has the minimum norm.

2. **Theorem:** In an inner product space $(\mathbb{R}^n, \mathbb{R}, \langle \cdot, \cdot \rangle)$ with $\langle x, y \rangle = x^\top Q y$ where $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $||x||_Q = \sqrt{\langle x, x \rangle}$. Given a matrix $A \in \mathbb{R}^{m \times n}$, $m \leq n$, rank $\{A\} = m$, and vector $b \in \mathbb{R}^m$, then

$$\hat{x} := \arg\min_{Ax=b} \|x\|_Q^2$$

exists, is unique and given by $\hat{x} = Q^{-1}A^{\top}(AQ^{-1}A^{\top})^{-1}b$.

Note: In this case, Ax = b is an under-determined or under-constrained equation, thus there are infinitely many solutions x satisfying Ax = b, and among all the solutions we can find a solution \hat{x} such that \hat{x} has the minimum norm.

- 3. Least squares: Model:
 - $y_i = C_i x + \epsilon_i, x \in \mathbb{R}^n, y_i \in \mathbb{R}^{m_i}, \epsilon_i \in \mathbb{R}^{m_i}, C_i \in \mathbb{R}^{m_i \times n}$
 - i is time index, y_i is measurement, x is a deterministic but unknown vector that we would like to estimate, ϵ_i is the unknown measurement noise.

• Compute an estimate of x at time k, using all the available measurements y_i , i = 1, 2, ..., k such that

$$\hat{x}_k = \arg\min_{x \in \mathbb{R}^n} \left(\sum_{i=1}^n (y_i - C_i x)^\top S_i (y_i - C_i x) \right)$$

where S_i is the weighting factor and $S_i > 0$ is symmetric positive definite.

Solution: Let $m_1 + m_2 + \ldots + m_k = m$ and suppose $m \ge n$. If we define

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix} \in \mathbb{R}^m, C = \begin{bmatrix} C_1 \\ \vdots \\ C_k \end{bmatrix} \in \mathbb{R}^{m \times n}, \epsilon = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_k \end{bmatrix} \in \mathbb{R}^m, R = \begin{bmatrix} S_1 \\ & \ddots \\ & & S_k \end{bmatrix} \in \mathbb{R}^{m \times m},$$

Then the measurements become $y = Cx + \epsilon$.

In the inner product space $(\mathbb{R}^n, \mathbb{R}, <\cdot, \cdot>)$, we define $< x, y> = x^\top Ry$ and $||x||_R = \sqrt{< x, x>}$ where $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. The the minimization problem can be re-interpreted as

$$\hat{x}_k = \arg\min_{x \in \mathbb{R}^n} \|Cx - y\|_R^2$$

The least squares solution gives us $\hat{x}_k = (C^\top R C)^{-1} C^\top R y$, i.e., $\hat{x}_k = K y$ where $K = (C^\top R C)^{-1} C^\top R$. You can compare this result with those given by BLUE and MVE later.

	BLUE	MVE		
Model	$y = Cx + \epsilon, x \in \mathbb{R}^n, y \in \mathbb{R}^m, \epsilon \in \mathbb{R}^m, C \in \mathbb{R}^{m \times n}, m > n, \operatorname{rank}(C) = n$			
	x is deterministic but unknown	$\mathbb{E}[x] = 0, \mathbb{E}[xx^{\top}] = \operatorname{cov}(x, x) = P \ge 0 \in \mathbb{R}^{n \times n}$		
Assumption	$Y(\epsilon, \epsilon) = Q \ge 0 \in \mathbb{R}^{m \times m}$			
	$\mathbb{E}[\epsilon x^{\top}] = \mathbb{E}[\epsilon] x^{\top} = 0$	$\mathbb{E}[\epsilon x^{\top}] = 0, \ Q + CPC^{\top} > 0$		
	sed $(\mathbb{E}[x-\hat{x}] = \mathbb{E}[(I-KC)x] - K\mathbb{E}[\epsilon] = (I-KC)\mathbb{E}[x] = 0)$			
Objective	Find the best $\hat{K} = \arg\min_K \mathbb{E}[\ x - \hat{x}\ _2^2] = \arg\min_K \mathbb{E}[(x - \hat{x})^\top (x - \hat{x})] = \arg\min_K \mathbb{E}[\operatorname{trace}((x - \hat{x})^\top (x - \hat{x}))]$			
	$= \arg\min_{K} \mathbb{E}[\operatorname{trace}((x-\hat{x})(x-\hat{x})^{\top})] = \arg\min_{K} \operatorname{trace}(\mathbb{E}[(x-\hat{x})(x-\hat{x})^{\top}])$			
Unbiased Estimator	$(I - KC)\mathbb{E}[x] = 0 \implies KC = I$	$(I - KC)\mathbb{E}[x] = 0$ is automatically true (since $\mathbb{E}[x] = 0$)		
	$cov(x - \hat{x}, x - \hat{x}) = \mathbb{E}[(x - \hat{x})(x - \hat{x})^{\top}] = \mathbb{E}[(x - Ky)(x - Ky)^{\top}] = \mathbb{E}[(x - KCx - K\epsilon)(x - KCx - K\epsilon)^{\top}]$ $= \mathbb{E}\left[(I - KC)xx^{\top}(I - KC)^{\top} - (I - KC)x\epsilon^{\top}K^{\top} - K\epsilon x^{\top}(I - KC)^{\top} + K\epsilon\epsilon^{\top}K^{\top}\right] (*)$			
Covariance matrix	$(*) = (I - KC)xx^{\top}(I - KC)^{\top} + KQK^{\top}$	$(*) = (I - KC)P(I - KC)^{\top} + KQK^{\top}$		
of estimation error	$\mathbb{E}[\ x - \hat{x}\ _2^2] = \ (I - KC)x\ _2^2 + \text{trace}(KQK^\top)$	$\mathbb{E}[\ x - \hat{x}\ _2^2] = \operatorname{trace}((I - KC)P(I - KC)^\top + KQK^\top)$		
	$= \operatorname{trace}(KQK^{\top}) \text{ (since } KC = I)$	$= \operatorname{trace}(\begin{bmatrix} I - KC & K \end{bmatrix} \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} (I - KC)^{\top} \\ K^{\top} \end{bmatrix})$		
		$=\operatorname{trace}\left(\left(\begin{bmatrix} C^{\top}\\I\end{bmatrix}K^{\top}-\begin{bmatrix} I\\0\end{bmatrix}\right)^{\top}\underbrace{\begin{bmatrix} P&0\\0&Q\end{bmatrix}}_{:=R}\left(\underbrace{\begin{bmatrix} C^{\top}\\I\end{bmatrix}}K^{\top}-\underbrace{\begin{bmatrix} I\\0\end{bmatrix}}\right)\right)$		
	$\min_{K} \mathbb{E}[\ x - \hat{x}\ _{2}^{2}] = \min_{K} \operatorname{trace}(KQK^{\top}) = \min_{K} \left(\sum_{i=1}^{n} K_{i}QK_{i}^{\top}\right)$	$\min_{K} \mathbb{E}[\ x - \hat{x}\ _{2}^{2}] = \min_{K} \operatorname{trace}\left(\left(AK^{\top} - B\right)^{\top} R\left(AK^{\top} - B\right)\right)$		
Re-interpretation	$=\sum_{i}^{n}\min_{K_{i}}(K_{i}QK_{i}^{ op})\;(K_{i} ext{ is the i-th row})$	$= \sum_{i}^{n} \min_{K_{i}} \left(\left(AK_{i}^{\top} - Be_{i} \right)^{\top} R \left(AK_{i}^{\top} - Be_{i} \right) \right)$		
	$\hat{K}_i = \arg\min_{K_i} (K_i Q K_i^{\top}) \text{ s.t. } C^{\top} K_i^{\top} = e_i$	$\hat{K}_i = \arg\min_{K_i} \left(\left(AK_i^{\top} - Be_i \right)^{\top} R \left(AK_i^{\top} - Be_i \right) \right)$		

	BLUE MVE	
For vector space $(\mathbb{R}^m, \mathbb{R})$, define $\langle x, y \rangle = \operatorname{trace}(x^\top Qy)$		For vector space $(\mathbb{R}^{m+n}, \mathbb{R})$, define $\langle x, y \rangle = \operatorname{trace}(x^{\top}Ry)$
	$ x _Q = \sqrt{\langle x, x \rangle}$	$ x _R = \sqrt{\langle x, x \rangle}$
solution	$\hat{K}_i^\top = \arg\min_{C^\top K_i^\top = e_i} \ K_i^\top\ _Q^2$	$\hat{K}_i^{\top} = \arg\min_{K_i^{\top}} \ AK_i^{\top} - Be_i\ _R^2$
	$\hat{K}_i^{\top} = Q^{-1}C(C^{\top}Q^{-1}C)^{-1}e_i$	$\hat{K}_i^{\top} = (A^{\top}RA)^{-1}A^{\top}RBe_i$
	solution is $\hat{K}^{\top} = Q^{-1}C(C^{\top}Q^{-1}C)^{-1}$	solution is $\hat{K}^{\top} = (A^{\top}RA)^{-1}A^{\top}Rb = (CPC^{\top} + Q)^{-1}CP$
	or $\hat{K} = (C^{\top}Q^{-1}C)^{-1}C^{\top}Q^{-1}$	or $\hat{K} = PC^{\top}(CPC^{\top} + Q)^{-1}$ (**)
		$= (P^{-1} + C^{\top} Q^{-1} C)^{-1} C^{\top} Q^{-1} \text{ if } P^{-1} \text{ exists}$
optimal Covariance	$(*) = KQK^{\top} = (C^{\top}Q^{-1}C)^{-1}$	$(*) = (I - KC)P(I - KC)^{\top} + KQK^{\top}$
matrix of		$= P - KCP - PC^{\top}K^{\top} + KCPC^{\top}K^{\top} + KQK^{\top}$
estimation error		$= P - PC^{\top}(CPC^{\top} + Q)^{-1}CP = (P^{-1} + C^{\top}Q^{-1}C)^{-1}$

Recall that from recitation 6, we have matrix identity $P(I+QP)^{-1}=(I+PQ)^{-1}P$.

$$\hat{K} = PC^{\top}(CPC^{\top} + Q)^{-1} = PC^{\top}(QQ^{-1}CPC^{\top} + Q)^{-1} = PC^{\top}(Q(Q^{-1}CPC^{\top} + I))^{-1} = \underbrace{PC^{\top}}(I + \underbrace{Q^{-1}CPC^{\top}})^{-1}Q^{-1} \\ = (I + \underbrace{PC^{\top}}Q^{-1}C)^{-1}\underbrace{PC^{\top}}Q^{-1} = \left(P^{-1}(I + PC^{\top}Q^{-1}C)\right)^{-1}C^{\top}Q^{-1} = (P^{-1} + C^{\top}Q^{-1}C)^{-1}C^{\top}Q^{-1}$$

The brief comparison among least squares, BLUE and MVE is listed below.

	Least Squares	BLUE	MVE
Model	$y = Cx + \epsilon, \ x \in \mathbb{R}^n, \ y \in \mathbb{R}^m, \ \epsilon \in \mathbb{R}^m, \ C \in \mathbb{R}^{m \times n}, \ m > n, \ \mathrm{rank}(C) = n$		
	No info about x and ϵ	$\epsilon \sim N(0,Q)$, but no info about x	$\epsilon \sim N(0,Q)$ and $x \sim N(0,P)$
Linear estimator	$\hat{x} = Ky$		
The best	$\hat{K} = (C^{\top}RC)^{-1}C^{\top}R$	$\hat{K} = (C^{\top} Q^{-1} C)^{-1} C^{\top} Q^{-1}$	$\hat{K} = (C^{\top}Q^{-1}C + P^{-1})^{-1}C^{\top}Q^{-1}$
linear estimator			$= PC^{\top}(CPC^{\top} + Q)^{-1}$
The optimal	N/A	$(C^{\top}Q^{-1}C)^{-1}$	$(C^{\top}Q^{-1}C + P^{-1})^{-1}$
covariance			$= P - PC^{\top}(CPC^{\top} + Q)^{-1}CP$