Bayesian Networks

Introduction to Graphical Models

Prof. Alexander Ihler

Conditional independence

- Recall: chain rule of probability
 - p(x,y,z) = p(x) p(y|x) p(z|x,y)
- Some of these models will be conditionally independent
 - e.g., p(x,y,z) = p(x) p(y|x) p(z|x)
- Some models may have even more independence
 - E.g., p(x,y,z) = p(x) p(y) p(z)

Bayesian networks

- Directed graphical model
- Nodes associated with variables
- "Draw" independence in conditional probability expansion
 - Parents in graph are the RHS of conditional
- Ex: p(x, y, z) = p(x) p(y | x) p(z | y)

• Ex: $p(a, b, c, d) = p(a) \frac{p(b|a)}{p(b|a)} p(c|a, b) p(d|b)$

Example

- Consider the following 5 binary variables:
 - B = a burglary occurs at your house
 - E = an earthquake occurs at your house
 - A = the alarm goes off
 - J = John calls to report the alarm
 - M = Mary calls to report the alarm
 - What is P(B | M, J) ? (for example)
 - We can use the full joint distribution to answer this question
 - Requires 2⁵ = 32 probabilities
 - Can we use prior domain knowledge to come up with a Bayesian network that requires fewer probabilities?

Constructing a Bayesian network

Order the variables in terms of causality (may be a partial order)

- e.g.,
$$\{ \ E, \ B \ \} \ \longrightarrow \ \{ \ A \ \} \ \longrightarrow \ \{ \ J, \ M \ \}$$

Now, apply the chain rule, and simplify based on assumptions

$$p(J, M, A, E, B) = p(E, B) \ p(A \mid E, B) \ p(J, M \mid A, E, B)$$
$$= p(E) \ p(B) \ p(A \mid E, B) \ p(J, M \mid A)$$
$$= p(E) \ p(B) \ p(A \mid E, B) \ p(J \mid A) \ p(M \mid A)$$

 These assumptions are reflected in the graph structure of the Bayesian network

Constructing a Bayesian network

- Given $p(J, M, A, E, B) = p(E) \ p(B) \ p(A \mid E, B) \ p(J \mid A) \ p(M \mid A)$
- Define probabilities: 1 + 1 + 4 + 2 + 2
- Where do these come from?
 - Expert knowledge; estimate from data; some combination

Constructing a Bayesian network

Joint distribution

Full joint distribution: $2^5 = 32$ probabilities

Structured distribution: specify 10 parameters

Ε	В	A	J	М	P()
0	0	0	0	0	.93674
1	0	0	0	0	.00133
0	1	0	0	0	.00006
1	1	0	0	0	.00000
0	0	1	0	0	.00003
1	0	1	0	0	.00002
0	1	1	0	0	.00003
1	1	1	0	0	.00000
0	0	0	1	0	.04930
1	0	0	1	0	.00007
0	1	0	1	0	.00000
1	1	0	1	0	.00000
0	0	1	1	0	.00027
1	0	1	1	0	.00016
0	1	1	1	0	.00025
1	1	1	1	0	.00000

Е	В	A	J	М	P()
0	0	0	0	1	.00946
1	0	0	0	1	.00001
0	1	0	0	1	.00000
1	1	0	0	1	.00000
0	0	1	0	1	.00007
1	0	1	0	1	.00004
0	1	1	0	1	.00007
1	1	1	0	1	.00000
0	0	0	1	1	.00050
1	0	0	1		.00000
0	1	0	1	1	.00000
1	1	0	1	1	.00000
0	0	1	1	1	.00063
1	0	1	1	1	.00037
0	1	1	1	1	.00059
1	1	1	1	1	.00000

Alarm network [Beinlich et al., 1989]

The "alarm" network: 37 variables, 509 parameters (rather than $2^{37} = 10^{11}$!)

Network structure and ordering

- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E

Network structure and ordering

- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E
- "Non-causal" ordering
 - Deciding independence is harder
 - Selecting probabilities is harder
 - Representation is less efficient

$$1 + 2 + 4 + 2 + 4 = 13$$
 probabilities

Network structure and ordering

- The network structure depends on the conditioning order
 - Suppose we choose ordering M, J, A, B, E
- "Non-causal" ordering
 - Deciding independence is harder
 - Selecting probabilities is harder
 - Representation is less efficient

Some orders may not reveal any independence!

$$p(J, M, A, E, B) = p(M) p(J|M) p(E|M, J) p(B|M, J, E) p(A|M, J, E, B)$$

- Suppose we observe J
 - Observing J makes A more likely
 - A being more likely makes B more likely
- Suppose we observe A
 - Makes M more likely
- Observe A and J?
 - J doesn't add anything to M
 - Observing A makes J, M independent
- How can we read independence directly from the graph?

- How are J,M related given A?
 - P(M) = 0.0117
 - P(M|A) = 0.7
 - P(M|A,J) = 0.7
 - Conditionally independent

(we actually know this by construction!)

$$p(J, M|a) \propto \sum_{e,b} p(e) \ p(b) \ p(a|e,b) \ p(J|a) \ p(M|a)$$

$$= \left(\sum_{e,b} p(e,b,a)\right) p(J|a) \ p(M|a)$$

$$= p(a) \ p(J|a) \ p(M|a)$$

$$= c_a \ f_a(J) \ g_a(M)$$

- How are J,B related given A?
 - P(B) = 0.001
 - P(B|A) = 0.3735
 - P(B|A,J) = 0.3735
 - Conditionally independent

• Proof:

$$p(J, B|a) \propto \sum_{e,m} p(e) \ p(B) \ p(a|e, B) \ p(J|a) \ p(m|a)$$

$$= \left(\sum_{e} p(e, B, a)\right) \ p(J|a) \ \left(\sum_{m} p(m|a)\right)$$

$$= p(B, a) \ p(J|a)$$

$$= f_a(B) \ g_a(J)$$

- How are E,B related?
 - P(B) = 0.001
 - P(B|E) = 0.001
 - (Marginally) independent
- What about given A?
 - P(B|A) = 0.3735
 - P(B|A,E) = 0.0032
 - Not conditionally independent!
 - The "causes" of A become coupled by observing its value
 - Sometimes called "explaining away"

D-Separation

- Prove sets X,Y independent given Z?
- Check all undirected paths from X to Y
- A path is "inactive" if it passes through:

(1) A "chain" with an observed variable

(2) A "split" with an observed variable

(3) A "vee" with **only unobserved** variables below it

If all paths are inactive, conditionally independent!

Markov blanket

A node is conditionally independent of all other nodes in the network given its Markov blanket (in gray)

Graphs and Independence

- Graph structure allows us to infer independence in p(.)
 - X,Y d-separated given Z?
- Adding edges
 - Fewer independencies inferred, but still valid to represent p(.)
 - Complete graph: can represent any distribution p(.)

Genetic linkage analysis

- 6 individuals
- Haplotype: {2, 3}
- Genotype: {6}
- Unknown

Pedigree model: 6 people, 3 markers

Example: Car diagnosis

Initial evidence: car won't start

Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
T	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Summary

- Bayesian networks
 - Directed, acyclic graphs
 - Encode chain rule + conditional independence
 - Efficient representation
- Building a Bayesian network
 - Select ordering
 - Evaluate independence relations
 - Assign probabilities
- Reasoning about independence in the graph
 - D-separation
 - Markov blanket