

Knowledge-Based AI Framework for Smart Factory

Ver. 1.3

User's Manual

Knowledge-Based AI Framework

Major Functions

- Forecasting will be supported from ver. 1.5
- Supports Data View in various Graphs
- Supports 11 Regression, 10 Classification, Forecasting Models
- Supports <u>Multi-output</u> Regressions
- Supports Feature Selection
- Supports Feature Extraction
- Support Hyper Parameter Optimization (AutoML) – Alpha version

No	Regression	Classification
1	Linear Regression	AdaBoost
2	LASSO	Decision Tree
3	Elastic Net	Gaussian Process
4	Ada Boost	Linear SVM
5	SVR	Naive Bayes
6	Gradient Boosting	Nearest Neighbors
7	KNN	Neural Net MLP
8	Random Forest	Random Forest
9	Extra Trees	RBF SVM
10	Decision Tree	QDA
11	XGB	

- Forecasting models is being developed.
- LASSO: Least Absolute Shrinkage and Selection Operator
- QDA: Quadratic Discriminant Analysis

Release Notes

- ❖ Ver. 1.0
 - > First release with 11 Regression Models
 - ➤ Used PyQt ver. 4
- ❖ Ver. 1.1
 - ➤ Used PyQt ver. 5
- ❖ Ver. 1.2
 - ➤ Added 10 Classification Models
 - > Added Classification Data: iris, wine, breast cancer -> make <iris | wine | br>
- ❖ Ver. 1.2.1
 - ➤ Added Scaling before Regression/Classification
- ❖ Ver. 1.3
 - Added Hyper Parameter Optimization (AutoML) alpha version
- Future Releases
 - > Forecasting model: Moving average, ARIMA
 - Export Best Model to Deploy

Requirements

- Python3, PyQt5
- Libraries: numpy, pandas, matplotlib, scipy, sklearn, xgboost, tpot

```
# PyQt5 for python3
sudo apt install python-qwt5-qt4 # QT Widget 5 for PyQt4
sudo apt install python3-tk tk-dev
sudo apt install qt5-default pyqt5-dev pyqt5-dev-tools qttools5-dev-tools
# Libraries for python3
pip3 install numpy, pandas, matplotlib, scipy sklearn xgboost tpot
```

Not recommended!

```
# PyQt4 for python2
sudo apt install python-qt4 qt4-default qt4-dev-tools pyqt4-dev-tools
# PyQt4 for python3
sudo apt install python3-pyqt4
sudo apt install qt4-designer # QT-Designer for PyQt4
Pip install numpy, pandas, matplotlib, scipy sklearn xgboost tpot
```

Basic Setup

- Configuration File <Not in Demo version, Only for Development Mode>
 - ➤ config_gui_pm.py
 - ✔ PYQT_VER = 5 # Python Qt Version 5 사용
 - ✔ PYQT_VER = 4 # Python Qt Version 4 사용
- Environment Setup
 - ➤ make req # Python Qt version 4/5 and Python Libraries

Running

- Command line Usage use pm.py for Demo Version
 - > python3 pm.py [-d <data file>] [-i <input columns file>] [-o <output columns file>]
- Pre-setup scripts in Makefile
 - ➤ make gui # Start Empty GUI
 - ✓ python3 gui_pm.py

> make guid

- ✓ # Start GUI with Regression Model Data file set, Input/Output Columns loaded
- ✓ python3 gui_pm.py -i Data/SeA/inputs.csv -o Data/SeA/outputs.csv -d Data/SeA/params_merged_Toshiba_2018.csv

➤ make guid5

✓ # Start GUI with Regression Model Data file, Input5/Output Columns loaded

> make <iris | wine | br>

- ✓ Start GUI with **classification model** Data file set, Input/Output Columns loaded
- ✓ Iris, wine and breast cancer data

File Formats

- Data file
 - > csv file or **Excel (xls, xlsx)** file
 - > columns: input features or output
 - > rows: instances
- Input
 - > csv file
 - ➤ Input feature names

For make guid

ProductNo, MachineNo, NumMachines, Low Speed, High Speed, High Duration, High Acc, Rising Time, Thickness, Pressure, Spray, Cycle Time, Power, Temp 1, Temp 2

- Output
 - > csv file
 - ➤ Output feature names

For make guid

"1","2","3","4","5","6","7","8","9","10","11"

Basic Usage Flow

Data View

- **❖** Data View: View selected column data
 - > Select Plot Type: Data, Histogram, Density, box Correlation, Scatter
 - > Select/Unselect columns and click Apply to view data

Data View

❖ Density, scatter plot may take time for big data

Setup -> Select Columns

- **❖** Choose each column as Ignore, Input, or Output
 - > Input means use them as input features
 - > Output means use them as target
 - > Then, click OK

Train -> Regression

- Options for Regression
 - > Select Max Rows: 0 means all rows
 - > Check whether to use Scaling before Regression (New in ver. 1.3)
 - > Select/Unselect Models to test
 - **>** Then, click OK

Train -> Regression

- * Regression Results: Select columns to view output graphs
 - > Usually Mean error and accuracy are important
 - > Save Results table to csv file

Train -> Regression

- **❖** Regression Results: Execution Time [sec] (Linux ubuntu 16.04, 4 GHz)
 - > SVR is not recommended for data size over 300K

Train -> Classification

- \$ make br # for breast cancer data
- Options for Classification
 - > Select Max Rows: 0 means all rows
 - > Check whether to use Scaling before Classification (New in ver. 1.3)
 - > Select/Unselect Models to test
 - > Then, click OK

Train -> Classification

- **❖ Classification Results**: Select columns to view output graphs
 - > Usually accuracy is important for classification
 - > Save Results table to csv file

Train -> AutoML

❖ \$ make guid1

- New in ver. 1.3 Not complete yet!
- Can be used to select model and optimize hyper parameters concurrently
- **❖** Options for AutoML
 - > Select Regressor/Classifier
 - > Select Generations: Number of iterations to the run pipeline optimization process. Must be a positive number.
 - > Select Cross Validation: <2 means no cross validation
 - > Select Max time [min]: How many minutes to use to optimize the pipeline. 0 means no limit.

Train -> Forecasting

- * \$ make ss
- Forecasting Type
 - ➤ Daily, Monthly, Seasonal, Yearly
 - > Select Starting Date to Estimate
 - > Select steps for Forecasting

Feature -> Feature Extraction

- **❖** Feature Extraction
 - > Can be used when input features are not enough to get good results
 - > Increase the number of features using given input features
 - > Performs Polynomial Feature Extraction
 - > Replace original features to x1, x2, ... xn
 - ➤ Generate new features such as x1^2, X1*x2, etc.

Feature -> Feature Selection

- Can be used to identify importance of input features to get better results for the target
- Options for Feature Selection
 - > Select Regressor model
 - > Select if use Scaling (new in Ver. 1.3)
 - > Select Test Ratio (%): Default is 20% for validation
 - > Check/Uncheck Perform Feature Selection
 - ✓ Uncheck means that just show feature importance graph
 - > Choose Minimum Importance Threshold value
 - **>** Then, Clock OK

❖ For classification data, Regression Models are used in feature selection! (Future release will use Classification Models.)

Feature -> Feature Selection

- **❖** Feature Selection Results
 - > When Perform Feature Selection is Checked
 - > Check/Uncheck columns to view
 - > Save result table to csv file, if needed

Feature -> Feature Selection

- ***** Feature Selection Results: Find the best number of input features
 - Using only 5 features (NumMachines, HighSpeed, LowSpeed, ProducNo, HighDuration) have best accuracy

