Clase de resturi

Tabla adunării şi tabla înmulțirii în \mathbb{Z}_5 : Tabla înmulțirii în \mathbb{Z}_6 și tabla adunării în \mathbb{Z}_6 :

+	ô	î	2	ŝ	$\hat{4}$		ô	î	2	ŝ	â	
ô	ô	î	2	ŝ	<u></u>	ô	ô	ô	ô	ô	ô	
î	î	2	ŝ	$\hat{4}$	ô	î	ô	î	2	ŝ	$\hat{4}$	
2	2	ŝ	â	ô	î	2	ô	2	â	î	ŝ	
ŝ	ŝ	â	ô	î	2	ŝ	ô	ŝ	î	â	2	
$\hat{4}$	â	ô	î	2	ŝ	â	ô	$\hat{4}$	ŝ	2	î	

•	ô	î	2	ŝ	â	<u></u>	+	ô	î	2	ŝ	â	<u></u>
ô	ô	ô	ô	ô	ô	ô	ô	ô	î	2	ŝ	$\hat{4}$	ŝ
î	ô	î	2	ŝ	â	ŝ	î	î	2	ŝ	â	ŝ	ô
2	ô	2	â	ô	2	â	2	2	ŝ	â	ŝ	ô	î
ŝ	ô	ŝ	ô	ŝ	ô	ŝ	ŝ	ŝ	$\hat{4}$	ŝ	ô	î	2
$\hat{4}$	ô	â	2	ô	$\hat{4}$	2	$\hat{4}$	â	ŝ	ô	î	2	ŝ
ŝ	ô	ŝ	$\hat{4}$	ŝ	2	î	ŝ	ŝ	ô	î	2	ŝ	$\hat{4}$

Tabla adunării din \mathbb{Z}_8 :

+_	Ô	î	2	ŝ	â	ŝ	Ĝ	$\hat{7}$
ô	ô	î	2	ŝ	â	ŝ	6 6 7 0 1 2 3 4 5	
î	î	2	ŝ	â	ŝ	Ĝ	$\hat{7}$	ô
2	2	ŝ	â	ŝ	Ĝ	$\hat{7}$	ô	î
ŝ	ŝ	â	ŝ	Ĝ	$\hat{7}$	ô	î	2
â	â	ŝ	Ĝ	2	ô	î	2	ŝ
ŝ	ŝ	Ĝ	$\hat{7}$	ô	î	2	ŝ	$\hat{4}$
6	Ĝ	7	ô	î	2	ŝ	â	ŝ
7	$\hat{7}$	ô	î	2	ŝ	â	ŝ	Ĝ

Tabla înmulțirii în \mathbf{Z}_8 :

•	0 0 0 0 0 0 0 0 0 0	î	2	ŝ	â	ŝ	Ĝ	2
ô	ô	ô	ô	ô	ô	ô	ô	ô
î	ô	î	2	ŝ	â	ŝ	6	2
2	ô	2	â	Ĝ	ô	2	â	Ĝ
ŝ	ô	ŝ	Ĝ	î	â	2	2	ŝ
â	ô	â	ô	â	ô	â	ô	â
ŝ	ô	ŝ	2	2	â	î	6	ŝ
6	ô	6	â	2	ô	Ĝ	â	2
$\hat{7}$	ô	$\hat{7}$	6	ŝ	â	ŝ	2	î

Tabla înmulțirii în \mathbf{Z}_{11} :

•	ô	î	2	ŝ	â	ŝ	Ĝ	$\hat{7}$	ŝ	ĝ	<u>10</u>
ô	$ \hat{0} $	ô	ô	ô	ô	ô	ô	ô	ô	ô	ô
î	ô	î	2	ŝ	â	ŝ	Ĝ	$\hat{7}$	ŝ	ĝ	10
2	ô	2	â	Ĝ	ŝ	10	î	ŝ	ŝ	$\hat{7}$	ĝ
ŝ	ô	ŝ	Ĝ	ĝ	î	ŝ	$\hat{7}$	10	2	ŝ	ŝ
â	ô	â	ŝ	î	ŝ	ĝ	2	Ĝ	10	ŝ	$\hat{7}$
ŝ	ô	ŝ	$\widehat{10}$	â	ĝ	ŝ	ŝ	2	$\hat{7}$	î	Ĝ
Ĝ	ô	Ĝ	î	$\hat{7}$	2	ŝ	ŝ	ĝ	â	10	ŝ
7 8 9 10	ô	$\hat{7}$	ŝ	10	Ĝ	2	ĝ	ŝ	î	ŝ	â
ŝ	ô	ŝ	ŝ	2	10	$\hat{7}$	$\hat{4}$	î	ĝ	Ĝ	ŝ
ĝ	ô	ĝ	$\hat{7}$	ŝ	ŝ	î	10	ŝ	Ĝ	â	2
10	ô	<u>10</u>	ĝ	ŝ	$\hat{7}$	Ĝ	ŝ	â	ŝ	2	î

Probleme propuse bacalaureat 2007

- 1. Determinați inversul lui $\hat{3}$ în \mathbb{Z}_{11} în raport cu operația de înmulțire.
- 2. a) Determinați simetricul lui $\hat{7}$ în \mathbb{Z}_8 în raport cu operația de adunare.
 - b) Calculati suma $S = \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7}$ în \mathbb{Z}_{8} .
- 3. Calculați produsul $\hat{1} \cdot \hat{2} \cdot \hat{3} \cdot \hat{4} \cdot \hat{5} \cdot \hat{6} \cdot \hat{7}$ în Z_8 .
- 4. Calculați suma elementelor din Z₁₄.
- 5. Determinați $\hat{y} \in \mathbf{Z}_6$ astfel încât $\hat{3} \cdot \hat{y} = \hat{3}$.
- 6. Determinați $\hat{x} \in \mathbb{Z}_9$ astfel încât $\hat{x} \cdot \hat{5} = \hat{1}$.
- 7. Determinați $\hat{x} \in \mathbb{Z}_8$ astfel încât $\hat{x} + \hat{3} = \hat{0}$.
- 8. Calculați produsul elementelor inversabile față de înmulțire în Z₅.
- 9. Calculați $\hat{2}^{2007}$ în Z_{12} .
- 10. Calculați $\hat{4}^{2007}$ în \mathbb{Z}_8 .
- 11. Rezolvați în \mathbb{Z}_5 ecuația $2 \cdot \hat{x} + 4 = 3$.
- 12. Rezolvați în Z_6 ecuația $\hat{4} \cdot \hat{x} + \hat{2} = \hat{4}$.
- 13. Rezolvați în \mathbb{Z}_8 ecuația $\hat{2} \cdot \hat{x} = \hat{4}$.
- 14. Calculați probabilitatea că un element din Z_6 să verifice relația $\hat{3} \cdot \hat{x} = \hat{0}$.

Probleme propuse bacalaureat 2008

- **1.** Se consideră inelul (\mathbb{Z}_6 , +,·), unde $\mathbb{Z}_6 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}\}$
 - a) Să se rezolve ecuația $\hat{2}x + \hat{5} = \hat{1}, x \in \mathbb{Z}_6$.
 - a) Să se rezolve ecuația 2x + 3 1, $x \in \mathbb{Z}_0$.

 b) Să se calculeze determinantul $\begin{vmatrix} \hat{1} & \hat{2} & \hat{3} \\ \hat{2} & \hat{3} & \hat{1} \\ \hat{3} & \hat{1} & \hat{2} \end{vmatrix}$ c) Să se rezolve în \mathbb{Z}_6 sistemul de ecuații $\begin{cases} \hat{2}x + y = \hat{4} \\ x + \hat{2}y = \hat{5} \end{cases}$
- **2.** Se consideră ($\mathbb{Z}_8,+,\cdot$) inelul claselor de resturi modulo 8.
 - a) Să se calculeze în \mathbb{Z}_8 suma $S = \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7}$.
 - b) Să se calculeze în \mathbb{Z}_8 produsul elementelor inversabile ale inelului.
 - c) Să se rezolve în \mathbb{Z}_8 sistemul $\begin{cases} \hat{2}x + \hat{5}y = \hat{2} \\ \hat{3}x + \hat{2}y = \hat{5} \end{cases}$
- **3.** Se consideră inelul (\mathbb{Z}_6 ,+,·).

a) Să se calculeze numărul elementelor inversabile în raport cu înmulțirea din inelul $(\mathbf{Z}_6, +, \cdot)$.

b) Se consideră S suma soluțiilor ecuației $\hat{2}x + \hat{1} = \hat{5}$ și P produsul soluțiilor ecuației $x^2 = x$, unde

 $x \in \mathbb{Z}_6$. Să se calculeze S + P.

c) Să se calculeze probabilitatea ca alegând un element din inelul (\mathbf{Z}_6 ,+,·), acesta să fie soluție a

ecuației $x^3 = \hat{0}$.

4. În mulțimea
$$M_3$$
 (\mathbb{Z}_8) se consideră matricele $A = \begin{pmatrix} \hat{1} & \hat{0} & \hat{0} \\ \hat{0} & \hat{3} & \hat{0} \\ \hat{0} & \hat{0} & \hat{5} \end{pmatrix}$, $B = \begin{pmatrix} \hat{1} & \hat{0} & \hat{0} \\ \hat{2} & \hat{3} & \hat{0} \\ \hat{3} & \hat{7} & \hat{5} \end{pmatrix}$, $I_3 = \begin{pmatrix} \hat{1} & \hat{0} & \hat{0} \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix}$

Se notează $X^2 = X \cdot X$, pentru $\forall X \in M_3 (\mathbf{Z}_8)$.

- a) Să se arate că $A^2 = I_3$.
- **b)** Să se rezolve ecuația matricială $A \cdot X = I_3$, unde $X \in M_3(\mathbf{Z}_8)$.
- c) Să se calculeze $(B A)^2$.

Rezolvări probleme bacalaureat 2007

- 1. Determinați inversul lui $\hat{3}$ în \mathbb{Z}_{11} în raport cu operația de înmulțire.
 - **R.** Din tabla înmulțirii în $\mathbb{Z}_{11} \Rightarrow \hat{3} \cdot \hat{4} = \hat{1}$ și atunci $\hat{3}^{-1} = \hat{4}$
- 2. a) Determinați simetricul lui $\hat{7}$ în \mathbb{Z}_8 în raport cu operația de adunare.
 - b) Calculați suma $S = \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7}$ în \mathbb{Z}_8 .
 - **R.** a) Din tabla adunării în $\mathbb{Z}_8 \Rightarrow \hat{7} + \hat{1} = \hat{0}$ și atunci $-\hat{7} = \hat{1}$

b)
$$\hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} = \hat{7} + \hat{5} + \hat{6} + \hat{7} = \hat{4} + \hat{6} + \hat{7} = \hat{2} + \hat{7} = \hat{1}$$

- 3. Calculați produsul $\hat{1} \cdot \hat{2} \cdot \hat{3} \cdot \hat{4} \cdot \hat{5} \cdot \hat{6} \cdot \hat{7}$ în Z_8 .
 - ${f R}$. Ținând cont că înmulțirea este comutativă, calculăm $\hat{2} \cdot \hat{4} = \hat{0}$ și atunci produsul este $\hat{0}$
- 4. Calculați suma elementelor din Z_{14}

R.
$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \widehat{10} + \widehat{11} + \widehat{12} + \widehat{13} =$$

$$= (\hat{1} + \widehat{13}) + (\hat{2} + \widehat{12}) + (\hat{3} + \widehat{11}) + (\hat{4} + \widehat{10}) + (\hat{5} + \hat{9}) + (\hat{6} + \hat{8}) + \hat{7} = \hat{7}$$

$$= \hat{0} \qquad = \hat{0} \qquad = \hat{0} \qquad = \hat{0} \qquad = \hat{0}$$

- 5. Determinați $\hat{y} \in \mathbf{Z}_6$ astfel încât $\hat{3} \cdot \hat{y} = \hat{3}$.
 - **R**. $\hat{3} \cdot \hat{1} = \hat{3}$, $\hat{3} \cdot \hat{2} = \hat{0}$, $\hat{3} \cdot \hat{3} = \hat{3}$, $\hat{3} \cdot 4 = \hat{0}$, $\hat{3} \cdot \hat{5} = \hat{3}$ și atunci $\hat{y} \in \{\hat{1}, \hat{3}, \hat{5}\}$.

<u>Clase de resturi – probleme clasa a XII-a</u> 6. Determinați $\hat{x} \in \mathbb{Z}_9$ astfel încât $\hat{x} \cdot \hat{5} = \hat{1}$.

R.
$$\frac{\cdot \quad \hat{0} \quad \hat{1} \quad \hat{2} \quad \hat{3} \quad \hat{4} \quad \hat{5} \quad \hat{6} \quad \hat{7} \quad \hat{8}}{\hat{5} | \quad \hat{0} \quad \hat{5} \quad \hat{1} \quad \hat{6} \quad \hat{2} \quad \hat{7} \quad \hat{3} \quad \hat{8} \quad \hat{4}} \implies \hat{x} = \hat{2}$$

7. Determinați $\hat{x} \in \mathbb{Z}_8$ astfel încât $\hat{x} + \hat{3} = \hat{0}$.

R.
$$\frac{+\hat{0} + \hat{0} +$$

- 8. Calculați produsul elementelor inversabile față de înmulțire în Z₅.
 - **R**. Elementele inversabile sunt: $\hat{1}, \hat{2}, \hat{3}, \hat{4}$ și produsul lor $\hat{1} \cdot \hat{2} \cdot \hat{3} \cdot \hat{4} = \hat{4}$
- 9. Calculați $\hat{2}^{2007}$ în \mathbb{Z}_{12} .

R.
$$\hat{2}^2 = \hat{4}$$
, $\hat{2}^3 = \hat{8}$, $\hat{2}^4 = \hat{4}$, $\hat{2}^5 = \hat{8}$, $\hat{2}^6 = \hat{4}$ și se repetă aceleași valori, atunci 2007=1003·2+1 și $\hat{2}^{2007} = \hat{4}$.

10. Calculați $\hat{4}^{2007}$ în \mathbb{Z}_8 .

R.
$$\hat{4}^1 = 4, \hat{4}^2 = \hat{0}, \hat{4}^3 = \hat{4}^2 \cdot \hat{4} = \hat{0} \cdot \hat{4} = \hat{0}, ..., \hat{4}^{2007} = \hat{0}$$

11. Rezolvați în \mathbb{Z}_5 ecuația $2 \cdot \hat{x} + 4 = 3$.

R.
$$\hat{2} \cdot \hat{x} + \hat{4} = \hat{3} | + \hat{1} \Rightarrow \hat{2} \cdot \hat{x} = \hat{4} \Rightarrow \hat{x} = \hat{2}$$

12. Rezolvați în Z_6 ecuația $\hat{4} \cdot \hat{x} + \hat{2} = \hat{4}$.

$$\mathbf{R}. \hat{\mathbf{4}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{2}} = \hat{\mathbf{4}} \Big| + \hat{\mathbf{4}} \Rightarrow \hat{\mathbf{4}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{2}} \Rightarrow \hat{\mathbf{x}} \in \left\{ \hat{\mathbf{2}}, \hat{\mathbf{5}} \right\}$$

13. Rezolvați în \mathbb{Z}_8 ecuația $\hat{2} \cdot \hat{x} = \hat{4}$.

R.
$$\frac{\cdot \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7}}{\hat{4}|\hat{0} + \hat{4} + \hat{0} + \hat{4} + \hat{0} + \hat{4} + \hat{0} + \hat{4}} \Rightarrow \hat{x} = \{\hat{0}, \hat{2}, \hat{4}, \hat{6}\}$$

14. Calculați probabilitatea că un element din Z_6 să verifice relația $\hat{3} \cdot \hat{x} = \hat{0}$.

R.
$$\frac{\hat{0} + \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5}}{\hat{3} | \hat{0} + \hat{3} + \hat{0} + \hat{3} + \hat{3} + \hat{3}} \Rightarrow \hat{x} = \{\hat{0}, \hat{2}, \hat{4}\}$$