Exam for ETS200 Software Testing

Lund University, Department of Computer Science

Time: 2013-03-14, 14:00-19:00

Place: Sparta: C-D

Assessment: total 60 points, at least 30 points is required in order to pass the exam.

Answers may be written in Swedish or English. Start answering each new task on a new page.

- 1. Define the following terms (one sentence each):
 - a) Testing b) Inspection c) Verification d) Validation e) Failure f) Oracle (6p)
- 2. a) Define the two main purposes of software testing, which sometimes may conflict. (1p)
 - b) Give an example on how the two test purposes may conflict in practice. (1p)
 - c) Give an example of a test metric that may be misleading due to the dual purpose of testing, and describe how this can be avoided. (2p)
- 3. Describe two different methods for test case design; one that uses a black box approach and one that uses white box approach. For each of the methods, present:
 - a) a general description of the method, (2p)
 - b) information needed to derive test cases using the method, (2p)
 - c) which test levels the method is most feasible for, and why, (2p)
 - d) main advantages of the method, and (2p)
 - e) main drawbacks of the method.(2p)
- 4. For the procedure Speaking Time Today below,
 - (a) draw the control flow graph and calculate the McCabe Cyclomatic Complexity, (3p)
 - (b) define the test cases needed to achieve 100% decision coverage, (2p)
 - (c) set up def-use tables for all three variables, and define minimum test cases needed to achieve 100% def-use coverage. (5p)

Note that test cases should include both input values and expected output.

```
procedure SpeakingTimeToday (in listOfCalls; out speakingTime);
2
  begin
3
     callNum = 0
4
     speakingTime = 0
     while (callNum < listOfCalls.Length)
5
6
        if listOfCalls[callNum].date = today
             speakingTime = speakingTime + listOfCalls[CallNum].time
7
8
        end
9
        callNum = callNum + 1
10
     end
11 end
```

- 5. A medium-sized company wants to introduce a tool for automatic test execution.
 - a) How much test code should they expect to write, compared to the production code? (1p)
 - b) Which trade-offs should they do when deciding which test cases to automate? (1p)
 - c) Define the three test automation approaches of recorded scripts, engineered scripts, and model-based testing. (3p)
 - d) Discuss pro's and con's for the three approaches. You should at least cover:
 - Upfront investment costs
 - Test script maintenance costs
 - ullet The oracle problem

(3p)

(Cont'd on next page)

6. Derive test cases for the NearestNeighbor function, using equivalence partitioning. NearestNeighbor(in: listOfPos:matrixType, numNeighbors: int; out: pos:int); The listOfPos variable is a 3*(n+1) matrix of real numbers, representing 3D coordinates, as illustrated below. The input variable numNeighbors, represents the number of valid neighbors in the matrix, stored in positions 1 to numNeighbors. The reference coordinate is stored in position 0 of the matrix.

	0	1 2		 NumNeighbors	 n
X	0.4	0.8	-0.4	 2.4	
y	0.5	0.8	0.9	 0.6	
z	0	-0.8	14.1	 -2.9	

The function calculates distances between the reference coordinate and coordinate m as $d_{0,m} = \sqrt{(x_0 - x_m)^2 + (y_0 - y_m)^2 + (z_0 - z_m)^2}$, and returns the index pos for the nearest neighbor. Define:

- a) equivalence classes for input and output variables (both valid and invalid), including assumptions made regarding the specification of the program, (4p)
- b) one test case per equivalence class (input data, procedures and expected output). (6p)
- 7. Two reviewers have inspected a document and found the defects listed in the table below, where 0 represents not found defect, and 1 represents found defect. The Lincoln-Peterson model estimates the number of defects as $\hat{N} = n_1 * n_2/n$, where

 $\hat{N} = \text{estimated total number of defects}$

 n_1 = number of defects found by reviewer 1

 n_2 = number of defects found by reviewer 2

n = number of defects found by both reviewers

Defect	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
Reviewer 1	1	1	0	1	1	1	0	1	1	1	1	0	1	1	1
Reviewer 2	1	0	1	0	1	0	1	0	0	0	0	1	1	0	0

- a) Estimate how many undetected defects there are in the document. (1p)
- b) Would you recommend release or re-review of the document, based on this estimate? Why? (3p)
- 8. The organization chart below comes from the PUSS course project.

- a) Describe it in terms of the organizational models in Kit's book. (2p)
- b) Select and describe an alternative organization based on another of Kit's models. (2p)
- c) Discuss pro's and con's for the two alternatives. You should at least cover:
 - competence provisioning,
 - communication,
 - management, and
 - scale-up to large-size organizations.

(4p)