Sequências e Séries

Matheus Pimenta

Universidade Estadual de Londrina Londrina

Fev. 2022

1/30

Matheus Pimenta

Matheus Pimenta e-mail: matheus.pimenta@outlook.com ou omatheuspimenta@outlook.com

Matheus Pimenta e-mail: matheus.pimenta@outlook.com ou omatheuspimenta@outlook.com Informações sobre a disciplina

Matheus Pimenta e-mail: matheus.pimenta@outlook.com ou omatheuspimenta@outlook.com Informações sobre a disciplina Dúvidas gerais

Definition (Sequências)

Uma sequência é uma função

$$a:\mathbb{N}\to\mathbb{R},$$

onde
$$\mathbb{N} = \{1, 2, 3, \dots\}$$

Definition (Sequências)

Uma sequência é uma função

$$a: \mathbb{N} \to \mathbb{R}$$
,

onde
$$\mathbb{N} = \{1, 2, 3, \dots\}$$

Considere
$$a(n) = n + 1$$
, $n \in \mathbb{N}$

Definition (Sequências)

Uma sequência é uma função

$$a:\mathbb{N}\to\mathbb{R},$$

onde
$$\mathbb{N} = \{1, 2, 3, \dots\}$$

Example

Considere a(n) = n + 1, $n \in \mathbb{N}$

$$a(1) = 2$$

$$a(2) = 3$$

$$a(5) = 6$$

Definition (Sequências)

Uma sequência é uma função

 $a:\mathbb{N}\to\mathbb{R},$

onde
$$\mathbb{N} = \{1, 2, 3, \dots\}$$

Example

Considere a(n) = n + 1, $n \in \mathbb{N}$

$$a(1) = 2$$

$$(5) = 6$$

Definition (Sequências)

Uma sequência é uma função

$$a:\mathbb{N}\to\mathbb{R},$$

onde
$$\mathbb{N} = \{1, 2, 3, \dots\}$$

Example

Considere
$$a(n) = n + 1$$
, $n \in \mathbb{N}$

$$a(1) = 2$$

$$a(2) = 3$$

:

$$a(5) = 6$$

Sequências e Séries

3/30

Os valores de a(n) são chamados de termos da sequência.

O termo a(n) é chamado de n-ésimo termo da sequência.

Os valores de a(n) são chamados de termos da sequência.

O termo a(n) é chamado de n—ésimo termo da sequência.

Notação: Denotaremos uma sequência $a: \mathbb{N} \to \mathbb{R}$ por:

$$(a_n)=(a(n))$$

Ou seja, a sequência (a_n) tem como n—ésimo termo a_n .

Os valores de a(n) são chamados de termos da sequência.

O termo a(n) é chamado de n-ésimo termo da sequência.

Notação: Denotaremos uma sequência $a: \mathbb{N} \to \mathbb{R}$ por:

$$(a_n)=(a(n))$$

Ou seja, a sequência (a_n) tem como n-ésimo termo a_n .

Example (Considere a sequência:)

$$a_n = \frac{n}{n+1}, n \in \mathbb{N}$$

Os valores de a(n) são chamados de termos da sequência.

O termo a(n) é chamado de n-ésimo termo da sequência.

Notação: Denotaremos uma sequência $a: \mathbb{N} \to \mathbb{R}$ por:

$$(a_n)=(a(n))$$

Ou seja, a sequência (a_n) tem como n-ésimo termo a_n .

Example (Considere a sequência:)

$$a_n = \frac{n}{n+1}, n \in \mathbb{N}$$

Os primeiros 4 elementos da sequência a_n são:

Os valores de a(n) são chamados de termos da sequência.

O termo a(n) é chamado de n-ésimo termo da sequência.

Notação: Denotaremos uma sequência $a: \mathbb{N} \to \mathbb{R}$ por:

$$(a_n)=(a(n))$$

Ou seja, a sequência (a_n) tem como n-ésimo termo a_n .

Example (Considere a sequência:)

$$a_n = \frac{n}{n+1}, n \in \mathbb{N}$$

Os primeiros 4 elementos da sequência a_n são:

Preencher!

Questões:

Qual é o domínio de uma sequência?

- Qual é o domínio de uma sequência?
- Podemos restringir uma sequência?

- Qual é o domínio de uma sequência?
- Podemos restringir uma sequência? Quais exemplos?

- Qual é o domínio de uma sequência?
- Podemos restringir uma sequência? Quais exemplos? Conseguimos representar uma sequência de outras maneiras?

- Qual é o domínio de uma sequência?
- Podemos restringir uma sequência? Quais exemplos? Conseguimos representar uma sequência de outras maneiras?
- Quais exemplos de outras sequências podemos ter neste momento?

- Qual é o domínio de uma sequência?
- Podemos restringir uma sequência? Quais exemplos? Conseguimos representar uma sequência de outras maneiras?
- Quais exemplos de outras sequências podemos ter neste momento?
- Como podemos representar graficamente uma sequência?

$$a_n=\frac{1}{n}$$

$$a_n = \frac{1}{n}$$

$$a_1 = 1$$
,

$$a_n=\frac{1}{n}$$

$$a_1=1, a_2=\frac{1}{2},$$

$$a_n = \frac{1}{n}$$

$$a_1=1, \ a_2=\frac{1}{2}, \ a_3=\frac{1}{3},$$

$$a_n=\frac{1}{n}$$

$$a_1=1, a_2=\frac{1}{2}, a_3=\frac{1}{3}, \ldots,$$

Example

$$a_n = \frac{1}{n}$$

$$a_1 = 1$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, ..., $a_n = \frac{1}{n}$

$$a_n = \frac{(-1)^n}{n}$$

Example

$$a_n=\frac{1}{n}$$

$$a_1 = 1$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, ..., $a_n = \frac{1}{n}$

Example

$$a_n = \frac{(-1)^n}{n}$$

 $a_1 = -1$,

Example

$$a_n = \frac{1}{n}$$

$$a_1 = 1$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, ..., $a_n = \frac{1}{n}$

$$a_n = \frac{(-1)^n}{n}$$

$$a_1=-1, \ a_2=\frac{1}{2},$$

Example

$$a_n = \frac{1}{n}$$

$$a_1 = 1$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, ..., $a_n = \frac{1}{n}$

$$a_n = \frac{(-1)^n}{n}$$

$$a_1 = -1$$
, $a_2 = \frac{1}{2}$, $a_3 = -\frac{1}{3}$

Podemos listar os termos da sequência através do uso de {}.

Podemos listar os termos da sequência através do uso de {}.

$$\{a_n\} = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots\}$$

$$\{c_n\} = \{1, -1, 1, -1, \dots, (-1)^{n+1}, \dots\}$$

$$\{b_n\} = \left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1} \frac{1}{n}, \dots, \right\}$$

Definition (Igualdade de sequências)

Dizemos que duas sequências (a_n) e (b_n) são iguais se e somente se, $a_n = b_n, \forall n \in \mathbb{N}$

Definition (Igualdade de sequências)

Dizemos que duas sequências (a_n) e (b_n) são iguais se e somente se, $a_n = b_n, \ \forall \ n \in \mathbb{N}$

Example

Analise as sequências: $a_n = (-1)^n$ e $b_n = (-1)^{n+1}$

Definition (Igualdade de sequências)

Dizemos que duas sequências (a_n) e (b_n) são iguais se e somente se, $a_n = b_n, \ \forall \ n \in \mathbb{N}$

Example

Analise as sequências: $a_n = (-1)^n$ e $b_n = (-1)^{n+1}$

Note que:

$$(a_n) = (-1, 1, -1, 1, -1, \dots, (-1)^n)$$

Sequências

Definition (Igualdade de sequências)

Dizemos que duas sequências (a_n) e (b_n) são iguais se e somente se, $a_n = b_n, \ \forall \ n \in \mathbb{N}$

Example

Analise as sequências: $a_n = (-1)^n$ e $b_n = (-1)^{n+1}$

Note que:

$$(a_n) = (-1, 1, -1, 1, -1, \dots, (-1)^n)$$

$$(b_n) = (1, -1, 1, -1, 1, \dots, (-1)^{n+1})$$

Sequências

Definition (Igualdade de sequências)

Dizemos que duas sequências (a_n) e (b_n) são iguais se e somente se, $a_n = b_n, \forall n \in \mathbb{N}$

Example

Analise as sequências: $a_n = (-1)^n$ e $b_n = (-1)^{n+1}$

Note que:

$$(a_n) = (-1, 1, -1, 1, -1, \dots, (-1)^n)$$

$$(b_n) = (1, -1, 1, -1, 1, \dots, (-1)^{n+1})$$

Logo, as sequências

Sequências

Definition (Igualdade de sequências)

Dizemos que duas sequências (a_n) e (b_n) são iguais se e somente se, $a_n = b_n, \forall n \in \mathbb{N}$

Example

Analise as sequências: $a_n = (-1)^n$ e $b_n = (-1)^{n+1}$

Note que:

$$(a_n) = (-1, 1, -1, 1, -1, \dots, (-1)^n)$$

$$(b_n) = (1, -1, 1, -1, 1, \dots, (-1)^{n+1})$$

Logo, as sequências não são iguais. Assim:

$$(a_n) \neq (b_n)$$

Motivação: Tome
$$a_n = \frac{1}{n}$$

9/30

Motivação: Tome $a_n = \frac{1}{n}$ **Graficamente:**

Motivação: Tome $a_n = \frac{1}{n}$ Graficamente:

Definition

Limite de uma Sequência Dizemos que uma sequência a_n converge para L se para dado $\epsilon > 0$, $\exists N > 0$ tal que n > N, $|a_n - L| < \epsilon$

9/30

Motivação: Tome $a_n = \frac{1}{n}$ Graficamente:

Definition

Limite de uma Sequência Dizemos que uma sequência a_n converge para L se para dado $\epsilon > 0$, $\exists N > 0$ tal que n > N, $|a_n - L| < \epsilon$

Em outras palavras:

Motivação: Tome $a_n = \frac{1}{n}$ Graficamente:

Definition

Limite de uma Sequência Dizemos que uma sequência a_n converge para L se para dado $\epsilon > 0$, $\exists N > 0$ tal que n > N, $|a_n - L| < \epsilon$

Em outras palavras:

$$\forall \epsilon > 0, \exists N > 0; n > N \implies L - \epsilon < a_n < L + \epsilon$$

Motivação: Tome $a_n = \frac{1}{n}$ Graficamente:

Definition

Limite de uma Sequência Dizemos que uma sequência a_n converge para L se para dado $\epsilon > 0$, $\exists N > 0$ tal que n > N, $|a_n - L| < \epsilon$

Em outras palavras:

$$\forall \epsilon > 0, \ \exists \ N > 0 \ ; \ n > N \implies L - \epsilon < a_n < L + \epsilon$$

Notação:

Motivação: Tome $a_n = \frac{1}{n}$ Graficamente:

Definition

Limite de uma Sequência Dizemos que uma sequência a_n converge para L se para dado $\epsilon > 0$, $\exists N > 0$ tal que n > N, $|a_n - L| < \epsilon$

Em outras palavras:

$$\forall \epsilon > 0, \ \exists \ N > 0 \ ; \ n > N \implies L - \epsilon < a_n < L + \epsilon$$

Notação:

Se (a_n) converge para L diremos que L é o limite da sequência (a_n) .

Motivação: Tome $a_n = \frac{1}{n}$ Graficamente:

Definition

Limite de uma Sequência Dizemos que uma sequência a_n converge para L se para dado $\epsilon > 0$, $\exists N > 0$ tal que n > N, $|a_n - L| < \epsilon$

Em outras palavras:

$$\forall \epsilon > 0, \ \exists \ N > 0 \ ; \ n > N \implies L - \epsilon < a_n < L + \epsilon$$

Notação:

Se (a_n) converge para L diremos que L é o limite da sequência (a_n) .

Escrevemos: $\lim_{n\to\infty} a_n = L$, ou lim $a_n = L$, ou simplismente, $a_n \to L$

Observações:

Observações:

• A noção de "sequência convergente" não depende apenas da sequência (a_n) , mas também do espaço X.

Observações:

• A noção de "sequência convergente" não depende apenas da sequência (a_n) , mas também do espaço X.

Example

A sequência $\left(\frac{1}{n}\right)$ converge a 0 em \mathbb{R} ou \mathbb{R}_+ , mas não em \mathbb{R}_+^* .

Observações:

• A noção de "sequência convergente" não depende apenas da sequência (a_n) , mas também do espaço X.

Example

A sequência $\left(\frac{1}{n}\right)$ converge a 0 em $\mathbb R$ ou $\mathbb R_+$, mas não em $\mathbb R_+^*$. Pois $0\notin\mathbb R_+^*$.

Observações:

• A noção de "sequência convergente" não depende apenas da sequência (a_n) , mas também do espaço X.

Example

A sequência $\left(\frac{1}{n}\right)$ converge a 0 em \mathbb{R} ou \mathbb{R}_+ , mas não em \mathbb{R}_+^* . Pois $0 \notin \mathbb{R}_+^*$. Dessa forma é conveniente dizer que " a_n converge (ou não) em X".

Observações:

• A noção de "sequência convergente" não depende apenas da sequência (a_n) , mas também do espaço X.

Example

A sequência $\left(\frac{1}{n}\right)$ converge a 0 em \mathbb{R} ou \mathbb{R}_+ , mas não em \mathbb{R}_+^* . Pois $0 \notin \mathbb{R}_+^*$. Dessa forma é conveniente dizer que " a_n converge (ou não) em X".

 Podemos reescrever a definição de limite de sequência de outras maneiras:

Observações:

• A noção de "sequência convergente" não depende apenas da sequência (a_n) , mas também do espaço X.

Example

A sequência $\left(\frac{1}{n}\right)$ converge a 0 em \mathbb{R} ou \mathbb{R}_+ , mas não em \mathbb{R}_+^* . Pois $0 \notin \mathbb{R}_+^*$. Dessa forma é conveniente dizer que " a_n converge (ou não) em X".

- Podemos reescrever a definição de limite de sequência de outras maneiras:
 - Dizemos que (p_n) converge se existe um ponto $p \in X$ tal que:

$$\forall \ \epsilon > 0 \ \exists \ n_0; d(p_n,p) < \epsilon \ \ \text{sempre que } n \geq n_0$$

Matheus Pimenta (UEL)

Em particular, considerando $X = \mathbb{R}$.

Em particular, considerando $X = \mathbb{R}$. Uma sequência (x_n) em \mathbb{R} converge se existe um número real x tal que:

Em particular, considerando $X = \mathbb{R}$. Uma sequência (x_n) em \mathbb{R} converge se existe um número real x tal que:

$$\forall \ \epsilon > 0 \ \exists \ n_0; |x_n - x| < \epsilon \ \text{ sempre que } n \ge n_0$$

11 / 30

Em particular, considerando $X = \mathbb{R}$. Uma sequência (x_n) em \mathbb{R} converge se existe um número real x tal que:

$$\forall \ \epsilon > 0 \ \exists \ n_0; |x_n - x| < \epsilon \ \text{ sempre que } n \geq n_0$$

Uma outra forma de obter a definição de limite de sequência é a seguinte:

Em particular, considerando $X = \mathbb{R}$. Uma sequência (x_n) em \mathbb{R} converge se existe um número real x tal que:

$$\forall \ \epsilon > 0 \ \exists \ n_0; |x_n - x| < \epsilon \ \text{ sempre que } n \geq n_0$$

Uma outra forma de obter a definição de limite de sequência é a seguinte:

Definition

A sequência $\{a_n\}$ converge para o número L se para todo númro positivo ϵ corresponder um número inteiro N, de forma que para todo n,

$$n > N \implies |a_n - L| < \epsilon$$

◄ □ ▶ ◀ 個 ▶ ◀ 필 ▶ ◀ 필 ▶ ♥ Q Q

Em particular, considerando $X = \mathbb{R}$. Uma sequência (x_n) em \mathbb{R} converge se existe um número real x tal que:

$$\forall \ \epsilon > 0 \ \exists \ n_0; |x_n - x| < \epsilon \ \text{ sempre que } n \geq n_0$$

Uma outra forma de obter a definição de limite de sequência é a seguinte:

Definition

A sequência $\{a_n\}$ converge para o número L se para todo númro positivo ϵ corresponder um número inteiro N, de forma que para todo n,

$$n > N \implies |a_n - L| < \epsilon$$

Se nenhum número L existir, dizemos que $\{a_n\}$ diverge.

4□ > 4□ > 4 = > 4 = > = 900

Fev. 2022

Exemplo 01:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{1}{n}$

Exemplo 01:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{1}{n}$ Solução:

Exemplo 01:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{1}{n}$ Solução: Queremos mostrar que $\forall \epsilon>0, \exists \ N>0;$

Exemplo 01:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{1}{n}$ Solução: Queremos mostrar que $\forall \epsilon>0, \exists N>0$;

se
$$n > N \implies |a_n - L| < \epsilon$$

se $n > N \implies \left|\frac{1}{n} - 0\right| < \epsilon \iff (x \in \mathbb{N} \implies |x| \in \mathbb{N})$
se $n > N \implies \frac{1}{n} < \epsilon \iff$
se $n > N \implies n > \frac{1}{\epsilon}$

Exemplo 01:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{1}{n}$ Solução: Queremos mostrar que $\forall \epsilon>0, \exists N>0$;

$$\begin{array}{lll} \text{se } n > N & \Longrightarrow |a_n - L| < \epsilon \\ \\ \text{se } n > N & \Longrightarrow \left|\frac{1}{n} - 0\right| < \epsilon & \longleftrightarrow (x \in \mathbb{N} \implies |x| \in \mathbb{N}) \\ \\ \text{se } n > N & \Longrightarrow \frac{1}{n} < \epsilon & \longleftrightarrow \\ \\ \text{se } n > N & \Longrightarrow n > \frac{1}{\epsilon} \end{array}$$

Tome $N \geq \frac{1}{\epsilon}$, então:

Exemplo 01:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{1}{n}$ Solução: Queremos mostrar que $\forall \epsilon>0, \exists N>0$;

$$\begin{array}{lll} \text{se } n > N \implies |a_n - L| < \epsilon & \iff \\ \text{se } n > N \implies \left|\frac{1}{n} - 0\right| < \epsilon & \iff (x \in \mathbb{N} \implies |x| \in \mathbb{N}) \\ \text{se } n > N \implies \frac{1}{n} < \epsilon & \iff \\ \text{se } n > N \implies n > \frac{1}{\epsilon} \end{array}$$

Tome $N \geq \frac{1}{\epsilon}$, então: se $n > N \geq \frac{1}{\epsilon}$ implica em $n > \frac{1}{\epsilon}$

Exemplo 01:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{1}{n}$ Solução: Queremos mostrar que $\forall \epsilon>0, \exists N>0$;

$$\begin{array}{lll} \text{se } n > N \implies |a_n - L| < \epsilon & \iff \\ \text{se } n > N \implies \left|\frac{1}{n} - 0\right| < \epsilon & \iff (x \in \mathbb{N} \implies |x| \in \mathbb{N}) \\ \text{se } n > N \implies \frac{1}{n} < \epsilon & \iff \\ \text{se } n > N \implies n > \frac{1}{\epsilon} \end{array}$$

Tome $N \geq \frac{1}{\epsilon}$, então: se $n > N \geq \frac{1}{\epsilon}$ implica em $n > \frac{1}{\epsilon}$

Logo, para dado $\epsilon > 0$, tome $N \geq \frac{1}{\epsilon}$, assim se $n > \frac{1}{n}$, então

$$\left|\frac{1}{n}-0\right|<\epsilon.$$

Exemplo 02:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{n}{2n+1}=\frac{1}{2}$

Exemplo 02:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{n}{2n+1}=\frac{1}{2}$ Solução:

14/30

Exemplo 02:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{n}{2n+1}=\frac{1}{2}$ Solução: Queremos mostrar que para $\forall \epsilon>0, \exists \ N=(N(\epsilon))>0;$

Exemplo 02:

Utilizando a definição mostre que $\lim_{n\to\infty}\frac{n}{2n+1}=\frac{1}{2}$ **Solução:** Queremos mostrar que para $\forall \epsilon>0, \exists \ N=(N(\epsilon))>0;$

$$\begin{array}{lll} \operatorname{se} \, n > N \implies \left| \frac{n}{2n+1} - \frac{1}{2} \right| < \epsilon & \iff \\ \\ \operatorname{se} \, n > N \implies \left| \frac{2n-2n-1}{2(2n+1)} \right| < \epsilon & \iff \\ \\ \operatorname{se} \, n > N \implies \left| \frac{-1}{2(2n+1)} \right| < \epsilon & \iff \\ \\ \operatorname{se} \, n > N \implies \frac{-1}{2(2n+1)} < \epsilon & \iff \\ \\ \operatorname{se} \, n > N \implies 2(2n+1) > \frac{1}{\epsilon} & \iff \\ \end{array}$$

Exemplo 02:

$$\operatorname{se} n > N \implies 2n+1 > \frac{1}{2\epsilon} \qquad \iff$$

$$\operatorname{se} n > N \implies n > \frac{1}{4\epsilon} - \frac{1}{2} = \frac{2-4\epsilon}{8\epsilon} \qquad \iff$$

$$\operatorname{se} n > N \implies n > \frac{1-2\epsilon}{4\epsilon}$$

Exemplo 02:

$$\operatorname{se} n > N \implies 2n+1 > \frac{1}{2\epsilon} \qquad \iff$$

$$\operatorname{se} n > N \implies n > \frac{1}{4\epsilon} - \frac{1}{2} = \frac{2-4\epsilon}{8\epsilon} \qquad \iff$$

$$\operatorname{se} n > N \implies n > \frac{1-2\epsilon}{4\epsilon}$$

Logo, tomando $N > \frac{1-2\epsilon}{4\epsilon}$, obtemos que se n > N, então

$$\left|\frac{n}{2n+1} - \frac{1}{2}\right| < \epsilon$$

Exemplo 03:

Mostre que a sequência $a_n = (-1)^{n+1}$ diverge.

Exemplo 03:

Mostre que a sequência $a_n = (-1)^{n+1}$ diverge.

Solução:

Exemplo 03:

Mostre que a sequência $a_n = (-1)^{n+1}$ diverge.

Solução: Suponha que a sequência convirja para algum número L.

Escolha $\epsilon = \frac{1}{2}$, da definição de limite, temos que todos os termos a_n da

sequência com índice n maior que N deve se localizar a menos de $\epsilon=\frac{1}{2}$ de L.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

Exemplo 03:

Mostre que a sequência $a_n=(-1)^{n+1}$ diverge. **Solução:** Suponha que a sequência convirja para algum número L. Escolha $\epsilon=\frac{1}{2}$, da definição de limite, temos que todos os termos a_n da sequência com índice n maior que N deve se localizar a menos de $\epsilon=\frac{1}{2}$ de L. Uma vez que o número 1 aparece repetidamente como termo sim, termo não (sequência alternada), devemos ter o número 1 localizado a uma distância a menos de $\epsilon=\frac{1}{2}$ de L.

Exemplo 03:

Segue que $|L-1|<\frac{1}{2}$, de forma equivalente, $\frac{1}{2}< L<\frac{3}{2}$. De forma análoga o número (-1) aparece repetidamente na sequência com índice arbitrariamente alto. E de forma análoga, segue que: $|L-(-1)|<\frac{1}{2}$, de forma equivalente, $-\frac{1}{2}< L<-\frac{3}{2}$.

Exemplo 03:

Segue que $|L-1|<\frac{1}{2}$, de forma equivalente, $\frac{1}{2}< L<\frac{3}{2}$. De forma análoga o número (-1) aparece repetidamente na sequência com índice arbitrariamente alto. E de forma análoga, segue que: $|L-(-1)|<\frac{1}{2}$, de forma equivalente, $-\frac{1}{2}< L<-\frac{3}{2}$. Contudo o número L não pode estar contido em dois intervalos disjuntos, isto é, os intervalos $\left(\frac{1}{2},\frac{3}{2}\right)$ e $\left(-\frac{1}{2},-\frac{3}{2}\right)$ não possuem sobreposição.

Exemplo 03:

Segue que $|L-1| < \frac{1}{2}$, de forma equivalente, $\frac{1}{2} < L < \frac{3}{2}$. De forma análoga o número $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ aparece repetidamente na sequência com índice arbitrariamente alto. E de forma análoga, segue que: $|L-(-1)|<\frac{1}{2}$, de forma equivalente, $-\frac{1}{2} < L < -\frac{3}{2}$. Contudo o número L não pode estar contido em dois intervalos disjuntos, isto é, os intervalos $\left(\frac{1}{2}, \frac{3}{2}\right)$ e $\left(-\frac{1}{2},-\frac{3}{2}\right)$ não possuem sobreposição. Dessa forma, não existe tal limite Le portanto a sequência diverge.

Definition

A sequência a_n diverge ao infinito se para cada número M houver um número inteiro N, tal que para todo n maior que N, $a_n > M$. Se essa condição for verdadeira, então:

$$\lim_{n\to\infty} a_n = \infty \quad \text{ou} \quad a_n \to \infty$$

Definition

A sequência a_n diverge ao infinito se para cada número M houver um número inteiro N, tal que para todo n maior que N, $a_n > M$. Se essa condição for verdadeira, então:

$$\lim_{n\to\infty}a_n=\infty \ \ \text{ou} \ \ a_n\to\infty$$

De maneira análoga a definição ocorre quando a sequência possui como limite $-\infty$.

Definition

A sequência a_n diverge ao infinito se para cada número M houver um número inteiro N, tal que para todo n maior que N, $a_n > M$. Se essa condição for verdadeira, então:

$$\lim_{n\to\infty}a_n=\infty \ \ \text{ou} \ \ a_n\to\infty$$

De maneira análoga a definição ocorre quando a sequência possui como limite $-\infty$.

Definition (Imagem de Sequência)

A *imagem* de uma sequência $(p_n)_{n\in\mathbb{N}}$ é o conjunto de seus pontos, isto é, $\{x_n; n\in\mathbb{N}\}.$

4 D > 4 A > 4 B > 4 B >

Definition

A sequência a_n diverge ao infinito se para cada número M houver um número inteiro N, tal que para todo n maior que N, $a_n > M$. Se essa condição for verdadeira, então:

$$\lim_{n\to\infty}a_n=\infty \ \ \text{ou} \ \ a_n\to\infty$$

De maneira análoga a definição ocorre quando a sequência possui como limite $-\infty$.

Definition (Imagem de Sequência)

A *imagem* de uma sequência $(p_n)_{n\in\mathbb{N}}$ é o conjunto de seus pontos, isto é, $\{x_n; n\in\mathbb{N}\}.$

4 D > 4 A > 4 B > 4 B >

Definition (Sequência limitada)

Dizemos que uma sequência é *limitada superiormente* (ou inferiormente) se existir $M \in X$ ($m \in X$) tal que:

$$p_n < M, \ \forall n \in \mathbb{N}$$

$$m < p_n, \ \forall n \in \mathbb{N}$$

Dizemos que uma sequência é limitada se existem $q \in X$ e M > 0 tal que $d(p_n,q) < M$ para todo n. Em outras palavras, se existirem $m,M \in X$ tal que $m < p_n < M, \ \forall n \in \mathbb{N}$.

Definition (Sequência limitada)

Dizemos que uma sequência é *limitada superiormente* (ou inferiormente) se existir $M \in X$ ($m \in X$) tal que:

$$p_n < M, \ \forall n \in \mathbb{N}$$

$$m < p_n, \ \forall n \in \mathbb{N}$$

Dizemos que uma sequência é limitada se existem $q \in X$ e M > 0 tal que $d(p_n,q) < M$ para todo n. Em outras palavras, se existirem $m,M \in X$ tal que $m < p_n < M, \ \forall n \in \mathbb{N}$.

Theorem

Se $\lim_{x\to\infty} f(x) = L$ e f estiver definida em X, então $\lim_{n\to\infty} f(n) = L$. Em particular, $X = \mathbb{N}$.

4□ ▶ 4部 ▶ 4巻 ▶ 4巻 ▶

Fe

19 / 30

Definition (Sequência limitada)

Dizemos que uma sequência é *limitada superiormente* (ou inferiormente) se existir $M \in X$ ($m \in X$) tal que:

$$p_n < M, \ \forall n \in \mathbb{N}$$

$$m < p_n, \ \forall n \in \mathbb{N}$$

Dizemos que uma sequência é limitada se existem $q \in X$ e M > 0 tal que $d(p_n,q) < M$ para todo n. Em outras palavras, se existirem $m,M \in X$ tal que $m < p_n < M, \ \forall n \in \mathbb{N}$.

Theorem

Matheus Pimenta (UEL)

Se $\lim_{x\to\infty} f(x) = L$ e f estiver definida em X, então $\lim_{n\to\infty} f(n) = L$. Em particular, $X = \mathbb{N}$.

Sequências e Séries

Demonstração: Utilizar a definição de limite 📑

Fev. 2022

Utilizando o Teorema anterior é possível utilizar as propriedades de limites que já foram estudadas.

Utilizando o Teorema anterior é possível utilizar as propriedades de limites que já foram estudadas.

Theorem

$$\bullet \lim_{n\to\infty} (a_n \pm b_n) = A \pm B$$

Utilizando o Teorema anterior é possível utilizar as propriedades de limites que já foram estudadas.

Theorem

- $\bullet \lim_{n\to\infty} (a_n \pm b_n) = A \pm B$
- $ullet \lim_{n o\infty}(k\cdot b_n)=k\cdot B$, para todo k constante

Utilizando o Teorema anterior é possível utilizar as propriedades de limites que já foram estudadas.

Theorem

- $\bullet \lim_{n\to\infty} (a_n \pm b_n) = A \pm B$
- $ullet \lim_{n o\infty}(k\cdot b_n)=k\cdot B$, para todo k constante
- $\bullet \lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$

Utilizando o Teorema anterior é possível utilizar as propriedades de limites que já foram estudadas.

Theorem

- $\bullet \lim_{n\to\infty} (a_n \pm b_n) = A \pm B$
- $\lim_{n \to \infty} (k \cdot b_n) = k \cdot B$, para todo k constante
- $\bullet \lim_{n\to\infty}(a_n\cdot b_n)=A\cdot B$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$, se $B \neq 0$

Theorem

Seja (a_n) uma sequência em um espaço métrico X.

• Se $a_n \to A$ e $a_n \to A'$, então A = A'

Theorem

Seja (a_n) uma sequência em um espaço métrico X.

• Se $a_n \to A$ e $a_n \to A'$, então A = A' Unicidade do Limite

Theorem

Seja (a_n) uma sequência em um espaço métrico X.

- Se $a_n \to A$ e $a_n \to A'$, então A = A' Unicidade do Limite
- Se (a_n) converge então (a_n) é limitada.

Sequências OBSERVAÇÃO:

Cuidado ao aplicar as regras de limite em sequências, pois em alguns casos mesmo sequências divergentes podem, dentro de hipóteses serem convergentes quando aplicamos alguma operação.

Sequências OBSERVAÇÃO:

Cuidado ao aplicar as regras de limite em sequências, pois em alguns casos mesmo sequências divergentes podem, dentro de hipóteses serem convergentes quando aplicamos alguma operação. Explico: Suponha as sequências $\{a_n\}=\{1,2,3,4,\ldots,\ldots\}$ e $\{b_n\}=\{-1,-2,-3,\ldots,\ldots\}$. Ambas as sequências sozinhas são sequências divergentes, contudo quando realizamos $\lim_{n\to\infty}\{a_n+b_n\}$ esta soma converge para 0.

Sequências OBSERVAÇÃO:

Cuidado ao aplicar as regras de limite em sequências, pois em alguns casos mesmo sequências divergentes podem, dentro de hipóteses serem convergentes quando aplicamos alguma operação.

Explico: Suponha as sequências $\{a_n\} = \{1,2,3,4,\ldots,\ldots\}$ e $\{b_n\} = \{-1,-2,-3,\ldots,\ldots\}$. Ambas as sequências sozinhas são sequências divergentes, contudo quando realizamos $\lim_{n\to\infty} \{a_n+b_n\}$ esta soma converge para 0.

Uma consequência é que toda sequência divergente quando multiplicada por algum escalar qualquer não nulo, também será uma sequência divergente. **PENSAR SOBRE!**

Theorem (do confronto para sequências)

Sejam $\{a_n\}$, $\{b_n\}$ e $\{c_n\}$ sequências de números reais. Se $a_n \leq b_n \leq c_n$ for verdade para todo n além de algum índice N, e se $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, então $\lim_{n \to \infty} b_n = L$.

Theorem (do confronto para sequências)

Sejam $\{a_n\}$, $\{b_n\}$ e $\{c_n\}$ sequências de números reais. Se $a_n \leq b_n \leq c_n$ for verdade para todo n além de algum índice N, e se $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, então $\lim_{n \to \infty} b_n = L$.

Corollary

Se $|b_n| \le c_n$ e $c_n \to 0$, então $b_n \to 0$.

Theorem (do confronto para sequências)

Sejam $\{a_n\}$, $\{b_n\}$ e $\{c_n\}$ sequências de números reais. Se $a_n \leq b_n \leq c_n$ for verdade para todo n além de algum índice N, e se $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, então $\lim_{n \to \infty} b_n = L$.

Corollary

Se $|b_n| \le c_n$ e $c_n \to 0$, então $b_n \to 0$.

Ideia: Já que $-c_n \le b_n \le c_n$, então segue o resultado.

Theorem (da função contínua para sequências)

Seja $\{a_n\}$ uma sequência de números reais. Se $a_n \to L$ e se f for uma função que é contínua em L e definida em todo a_n , então $f(a_n) \to f(L)$.

Theorem (da função contínua para sequências)

Seja $\{a_n\}$ uma sequência de números reais. Se $a_n \to L$ e se f for uma função que é contínua em L e definida em todo a_n , então $f(a_n) \to f(L)$.

Example

Mostre que
$$\lim_{n\to\infty} a_n = 1$$
, onde $a_n = \sqrt{\frac{n+1}{n}}$.

Theorem (da função contínua para sequências)

Seja $\{a_n\}$ uma sequência de números reais. Se $a_n \to L$ e se f for uma função que é contínua em L e definida em todo a_n , então $f(a_n) \to f(L)$.

Example

Mostre que
$$\lim_{n\to\infty} a_n = 1$$
, onde $a_n = \sqrt{\frac{n+1}{n}}$.

Solução:

Theorem (da função contínua para sequências)

Seja $\{a_n\}$ uma sequência de números reais. Se $a_n \to L$ e se f for uma função que é contínua em L e definida em todo a_n , então $f(a_n) \to f(L)$.

Example

Mostre que
$$\lim_{n\to\infty} a_n = 1$$
, onde $a_n = \sqrt{\frac{n+1}{n}}$.

Solução: Sabemos que
$$\frac{n+1}{n} \to 1$$
. Tomando $f(x) = \sqrt{x}$ e $L = 1$.

Aplicando o Teorema anterior tem-se que:
$$\sqrt{\frac{n+1}{n}} o \sqrt{1} = 1$$
 \square .

Theorem

• $a_n \rightarrow a$ se e somente se $a_{n_k} \rightarrow a$ para toda subsequência (a_{n_k}) .

Theorem

- $a_n \rightarrow a$ se e somente se $a_{n_k} \rightarrow a$ para toda subsequência (a_{n_k}) .
- $a_n \to a$ se e somente se toda subsequência (a_{n_k}) possui uma subsubsequência $(a_{n_{k_i}})$ que converge a a, isto é, $\lim_{i \to \infty} a_{n_{k_i}} = a$

Sequências

Theorem

- ullet $a_n o a$ se e somente se $a_{n_k} o a$ para toda subsequência (a_{n_k}) .
- $a_n o a$ se e somente se toda subsequência (a_{n_k}) possui uma subsubsequência $(a_{n_{k_i}})$ que converge a a, isto é, $\lim_{i o \infty} a_{n_{k_i}} = a$

Definition

Uma sequência (a_n) num espaço métrico X é dita de Cauchy se:

$$\forall \epsilon > 0, \ \exists \ n_0; d(a_n, a_m) < \epsilon \text{ sempre que } n, m \geq n_0$$

Sequências

Theorem

- ullet $a_n o a$ se e somente se $a_{n_k} o a$ para toda subsequência (a_{n_k}) .
- $a_n o a$ se e somente se toda subsequência (a_{n_k}) possui uma subsubsequência $(a_{n_{k_i}})$ que converge a a, isto é, $\lim_{i o \infty} a_{n_{k_i}} = a$

Definition

Uma sequência (a_n) num espaço métrico X é dita de Cauchy se:

$$\forall \epsilon > 0, \ \exists \ n_0; d(a_n, a_m) < \epsilon \text{ sempre que } n, m \geq n_0$$

Theorem (Cauchy)

Em um espaço métrico, toda sequência convergente é de Cauchy. Em outras palavras, se (a_n) é convergente então para dado $\epsilon > 0$ existe N > 0 tal que n, m > N, então $|a_n - a_m| < \epsilon$, no caso do conjunto dos números reais.

Uma sequência pode ser definida de maneira *recursiva*, dessa forma a sequência fornece:

• O(s) valor(es) do termo inicial ou termos iniciais, e

26 / 30

Uma sequência pode ser definida de maneira *recursiva*, dessa forma a sequência fornece:

- O(s) valor(es) do termo inicial ou termos iniciais, e
- Uma regra, chamada fórmula de recursão, para o cálculo de qualquer termo posterior a partir dos termos que o precederem.

26 / 30

Uma sequência pode ser definida de maneira *recursiva*, dessa forma a sequência fornece:

- O(s) valor(es) do termo inicial ou termos iniciais, e
- Uma regra, chamada fórmula de recursão, para o cálculo de qualquer termo posterior a partir dos termos que o precederem.

Example

• As sentenças $a_1 = 1$ e $a_n = a_{n-1} + 1$ para n > 1 definem a sequência $1, 2, 3, \ldots, n, \ldots$ de números inteiros positivos.

Uma sequência pode ser definida de maneira *recursiva*, dessa forma a sequência fornece:

- O(s) valor(es) do termo inicial ou termos iniciais, e
- Uma regra, chamada fórmula de recursão, para o cálculo de qualquer termo posterior a partir dos termos que o precederem.

Example

• As sentenças $a_1=1$ e $a_n=a_{n-1}+1$ para n>1 definem a sequência $1,2,3,\ldots,n,\ldots$ de números inteiros positivos. Para $a_1=1,a_2=a_1+1=2,\ldots$

Uma sequência pode ser definida de maneira *recursiva*, dessa forma a sequência fornece:

- O(s) valor(es) do termo inicial ou termos iniciais, e
- Uma regra, chamada fórmula de recursão, para o cálculo de qualquer termo posterior a partir dos termos que o precederem.

Example

- As sentenças $a_1=1$ e $a_n=a_{n-1}+1$ para n>1 definem a sequência $1,2,3,\ldots,n,\ldots$ de números inteiros positivos. Para $a_1=1,a_2=a_1+1=2,\ldots$
- As sentenças $a_1 = 1$ e $a_n = n \cdot a_{n-1}$ para n > 1 definem a sequência $1, 2, 6, 24, \ldots, n!, \ldots$ de fatoriais.

Uma sequência pode ser definida de maneira *recursiva*, dessa forma a sequência fornece:

- O(s) valor(es) do termo inicial ou termos iniciais, e
- Uma regra, chamada fórmula de recursão, para o cálculo de qualquer termo posterior a partir dos termos que o precederem.

Example

- As sentenças $a_1=1$ e $a_n=a_{n-1}+1$ para n>1 definem a sequência $1,2,3,\ldots,n,\ldots$ de números inteiros positivos. Para $a_1=1,a_2=a_1+1=2,\ldots$
- As sentenças $a_1=1$ e $a_n=n\cdot a_{n-1}$ para n>1 definem a sequência $1,2,6,24,\ldots,n!,\ldots$ de fatoriais. Com $a_1=1$, temos $a_2=2\cdot a_1=2$, $a_3=3\cdot a_2=6$ e assim por diante.

4 □ ト 4 問 ト 4 三 ト 4 三 ト 9 0 0

Uma sequência pode ser definida de maneira *recursiva*, dessa forma a sequência fornece:

- O(s) valor(es) do termo inicial ou termos iniciais, e
- Uma regra, chamada fórmula de recursão, para o cálculo de qualquer termo posterior a partir dos termos que o precederem.

Example

- As sentenças $a_1=1$ e $a_n=a_{n-1}+1$ para n>1 definem a sequência $1,2,3,\ldots,n,\ldots$ de números inteiros positivos. Para $a_1=1,a_2=a_1+1=2,\ldots$
- As sentenças $a_1=1$ e $a_n=n\cdot a_{n-1}$ para n>1 definem a sequência $1,2,6,24,\ldots,n!,\ldots$ de fatoriais. Com $a_1=1$, temos $a_2=2\cdot a_1=2$, $a_3=3\cdot a_2=6$ e assim por diante.
- Outros examplos são *números de Fibonacci* e o método de Newton.

< ロ > ←回 > ← 回 > ← 直 > 一直 → りへ()

Definition

Definition

Dizemos que uma sequência $\{a_n\}$ é:

• Decrescente: se $a_{n+1} \le a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \le 1, \ \forall n \in \mathbb{N}$

Definition

- Decrescente: se $a_{n+1} \leq a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \leq 1, \ \forall n \in \mathbb{N}$
- Estritamente Decrescente: se $a_{n+1} < a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} < 1, \ \forall n \in \mathbb{N}$

Definition

- Decrescente: se $a_{n+1} \le a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \le 1, \ \forall n \in \mathbb{N}$
- Estritamente Decrescente: se $a_{n+1} < a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} < 1, \ \forall n \in \mathbb{N}$
- Crescente: se $a_{n+1} \geq a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \geq 1, \ \forall n \in \mathbb{N}$

Definition

- Decrescente: se $a_{n+1} \le a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \le 1, \ \forall n \in \mathbb{N}$
- Estritamente Decrescente: se $a_{n+1} < a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} < 1, \ \forall n \in \mathbb{N}$
- Crescente: se $a_{n+1} \geq a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \geq 1, \ \forall n \in \mathbb{N}$
- Estritamente Crescente: se $a_{n+1} > a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} > 1, \ \forall n \in \mathbb{N}$

Definition

Dizemos que uma sequência $\{a_n\}$ é:

- Decrescente: se $a_{n+1} \le a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \le 1, \ \forall n \in \mathbb{N}$
- Estritamente Decrescente: se $a_{n+1} < a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} < 1, \ \forall n \in \mathbb{N}$
- Crescente: se $a_{n+1} \geq a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} \geq 1, \ \forall n \in \mathbb{N}$
- Estritamente Crescente: se $a_{n+1} > a_n, \ \forall n \in \mathbb{N}$, ou ainda $\frac{a_{n+1}}{a_n} > 1, \ \forall n \in \mathbb{N}$

Se $\{a_n\}$ é uma sequência satisfazendo qualquer um dos itens anteriores dizemos que $\{a_n\}$ é monótona.

Voltaremos a discutir sequências limitadas.

Definition

Um número $c \in \mathbb{R}$ é chamado de *limitante inferior* para a sequência $\{a_n\}$ se

$$c \leq a_n, \forall n \in \mathbb{N}$$

Um número $D \in \mathbb{R}$ é chamado de *limitante superior* para $\{a_n\}$ se

$$a_n \leq D, \forall n \in \mathbb{N}$$

Voltaremos a discutir sequências limitadas.

Definition

Um número $c \in \mathbb{R}$ é chamado de *limitante inferior* para a sequência $\{a_n\}$ se

$$c \leq a_n, \forall n \in \mathbb{N}$$

Um número $D \in \mathbb{R}$ é chamado de *limitante superior* para $\{a_n\}$ se

$$a_n \leq D, \forall n \in \mathbb{N}$$

Example

Para a sequência $\left\{\frac{1}{n}\right\}$ qualquer $c \leq 0$ é limitante inferior de $\left\{\frac{1}{n}\right\}$ e qualquer $D \geq 1$ é limitante superior de $\left\{\frac{1}{n}\right\}$.

Theorem

Se uma sequência $\{a_n\}$ é limitada e monótona, então a sequência converge.

Theorem

Se uma sequência $\{a_n\}$ é limitada e monótona, então a sequência converge.

OBSERVAÇÃO: O Teorema não afirma que sequências convergentes são monótonas.

Theorem

Se uma sequência $\{a_n\}$ é limitada e monótona, então a sequência converge.

OBSERVAÇÃO: O Teorema não afirma que sequências convergentes são monótonas.

EXEMPLO: A sequência $\left\{\frac{(-1)^{n+1}}{n}\right\}$ converge e é limitada, mas não é monótona, uma vez que ela altera entre valores positivos e negativos à medida que tende a 0.

Exemplos

Exemplo 01:

Mostre que a sequência $\left\{\frac{2^n}{n!}\right\}$ converge.

Exemplos

Exemplo 01:

Mostre que a sequência $\left\{\frac{2^n}{n!}\right\}$ converge.

Solução: Inicialmente vamos determinar a monotocidade da sequência:

$$\frac{2^n}{n!} > \frac{2^{n+1}}{(n+1)!} \iff 1 > \frac{2}{n+1}, n > 1$$

Isto ocorre pois: $2^{n+1} = 2^n \cdot 2 e(n+1)! = (n+1) \cdot n!$

VERIFICAR AS CONTAS!

 \therefore $a_n > a_{n+1}, \ n > 1$. Logo a sequência é estritamente decrescente a partir de n = 2.

Exemplos

Exemplo 01:

Mostre que a sequência $\left\{\frac{2^n}{n!}\right\}$ converge.

Solução: Inicialmente vamos determinar a monotocidade da sequência:

$$\frac{2^n}{n!} > \frac{2^{n+1}}{(n+1)!} \iff 1 > \frac{2}{n+1}, n > 1$$

Isto ocorre pois: $2^{n+1} = 2^n \cdot 2$ e $(n+1)! = (n+1) \cdot n!$ *VERIFICAR AS CONTAS!*

 $\therefore a_n > a_{n+1}, \ n > 1$. Logo a sequência é estritamente decrescente a partir de n=2.

Agora note que, $\forall c \leq 0$ e então

$$\frac{2^n}{n!} > c, \ \forall n \geq 1$$

Dessa forma, como a sequência é estritamente decrescente e limitada inferiormente, segue que $\left\{\frac{2^n}{n!}\right\}$ converge. \Box