MemLabs Lab 0 - Never Too Late Mister

I. Mô tả thử thách:

John – là một "nhà hoạt động vì môi trường" và là một người nhân đạo. Anh ta ghét hệ tư tưởng của Thanos trong phim Avengers: Infinity War. John lập trình
rất tệ – anh ta dùng quá nhiều biến trong chương trình của mình. Một ngày nọ, John đưa cho mình một bản memory dump và nhờ mình tìm hiểu xem anh ta đã
làm gì khi chụp bộ nhớ. Bạn có thể tìm ra điều đó giúp mình không?

File thử thách: (được cung cấp qua Google Drive)

Challenge file: Google Drive

Những manh mối có thể rút ra từ phần mô tả:

- Nhà hoạt động vì môi trường" có dấu ngoặc kép => có thể là một ám chỉ quan trọng.
- John ghét Thanos nghe có vẻ vô dụng, nhưng biết đâu sẽ cần.
- John lập trình rất tệ và sử dụng quá nhiều biến điều này có thể liên quan đến cách viết script hoặc chương trình mà anh ấy đã chạy trong RAM.

II. Memory Dump Analysis

- 1. Xác định profile của file Challenge.raw:
- Việc đầu tiên khi forensic analysis một memory dump là xác định profile.
- Profile cho chúng ta biết hệ điều hành của hệ thống hoặc máy tính từ memory dump. Volatility (tool) có một plugin tích hợp để giúp chúng ta xác định profile của memory dump:
- Sử dụng plugin imaginfo:

\$ python2 vol.py -f Challenge.raw imageinfo

2. Phân tích hệ thống mục tiêu thông qua memory dump từ file Challenge.raw:

Một trong những điều quan trọng nhất mà chúng ta cần biết từ một hệ thống trong quá trình phân tích là:

- Các tiến trình hoạt động
- Các commands được thực thi trong shell / terminal / Command prompt
- Tiến trình ẩn (nếu có) hoặc tiến trình đã thoát
- Lịch sử trình duyệt (Điều này phụ thuộc rất nhiều đối với tình huống liên quan)

Bây giờ, để liệt kê các quy trình đang hoạt động hoặc đang chạy, chúng ta sử dụng sự trợ giúp của plugin pslist:

```
$ python2 vol.py -f Challenge.raw --profile=Win7SP1x86 pslist
```

olatility	Foundation Volatility	Framew	ork 2.6.	. 1						
)ffset(V) I		PID	PPID	Thds	Hnds	Sess	Wow64	Start	Exit	W
×83d09c58	System	4		85	483		0	2018-10-23 08:29:16 UTC+000	0	
×8437db18	smss.exe (see) x vola	260	-f Qha	lleng.	naw - 29°0		in7SP0	2018-10-23 08:29:16 UTC+000	9	
×84d69030	csrss.exedation Volati	340	nar332)n	2.8	347	0	0	2018-10-23 08:29:21 UTC+000	0	
×84d8d030	csrss.exe	380	□372	PPID 9	Thds 188	Hnds 1	Sess 0	2018-10-23 08:29:23 UTC+000	0	
×84d93c68 v	wininit.exe	388	332	3	79	0	0	2018-10-23 08:29:23 UTC+000	0	
×84dcbd20 v	winlogon.exe	424	372		117	1	0	2018-10-23 08:29:23 UTC+000	0	
×84debd20	services.exe	484	388	10	ຸ⊂ 191	100 0	0	2018-10-23 08:29:25 UTC+000	0-1000	
×84def3d8	lsass.exe	492	388		480	0	0	2018-10-23 08:29:25 UTC+000	0	
×84df2378	lsm.exe	500	388	10	146	0	0	2018-10-23 08:29:25 UTC+000	0	
×84e23030	svchost.exe	592	484	12	8 358	347 0	° 0	2018-10-23 08:29:30 UTC+000	0.10000	
×84e41708 \	VBoxService.ex	652	484	372 12	⁹ 116	188 0	0	2018-10-23 08:29:31 UTC+000	gC+0000	
×84e54030	svchost.exe	716	484	332 9	∃ 243	79 0		2018-10-23 08:29:32 UTC+000		
×84e7ad20 :	svchost.exe on exe	804	484	37719	6 378	1170	1 0	2018-10-23 08:29:32 UTC+000	0C+0000	
×84e84898	svchost.exe	848	484	38 20	10 400	1910	0 0	2018-10-23 08:29:33 UTC+000	0 C+0000	
×84e89c68	svchost.exe	872	484	38:19	7 342	4800	0 0	2018-10-23 08:29:33 UTC+000	0 .:+0000	
×84e8c648	svchost.exe	896	484	30	809	1.0	o 0	2018-10-23 08:29:33 UTC+000	0	
×84ea7d20 a	audiodg.exe	988	804	6	127	0	0	2018-10-23 08:29:35 UTC+000	0	
	svchost.exe	1192	484	15	365	0		2018-10-23 08:29:40 UTC+000		
	spoolsv.exe	1336	484	16	295	0		2018-10-23 08:29:43 UTC+000		
	svchost.exe	1364	484	48419	307	243 0		2018-10-23 08:29:43 UTC+000		
×84f7d578	svchost.exe	1460	484	48411	¹⁹ 148	378 0		2018-10-23 08:29:44 UTC+000		
×84f828f8	svchost.exe	1488	484	484 8	20 170	400 o		2018-10-23 08:29:44 UTC+000		
	taskhost.exe	308	484	484 8	19 151	342 1		2018-10-23 08:29:55 UTC+000		
×850d0030		1164	8 484	484 6	30 154	809 0		2018-10-23 08:29:57 UTC+000		
×85109030		1992	848	804 5	6 132	127 1		2018-10-23 08:30:04 UTC+000		
	explorer.exe	324	1876	/ 33	827	265 1		2018-10-23 08:30:04 UTC+000		
	VBoxTray.exe	1000	324	14	159	200 -		2018-10-23 08:30:08 UTC+000		
	SearchIndexer.	2032	484	14	614	0		2018-10-23 08:30:14 UTC+000		
	SearchProtocol	284	2032	4847	235	807.0		2018-10-23 08:30:16 UTC+000		
	SearchFilterHo	1292	2032	484 5	80	148 0		2018-10-23 08:30:17 UTC+000		
×851a6610		2096	324	484 1	8 22	170 1		2018-10-23 08:30:18 UTC+000		
	conhost.exe	2104	380	484 2	8 52	151 1		2018-10-23 08:30:18 UTC+000		
×845a8d20 [2412	324	484 2	6 38	154 1		2018-10-23 08:30:48 UTC+000		
	conhost.exe	2424	19380	848 2	5 51	132 1		2018-10-23 08:30:48 UTC+000		

• Thực hiện lệnh này cung cấp cho chúng ta một danh sách các quá trình đang chạy khi memory dump được thực hiện. Đầu ra của lệnh cung cấp các thông tin gồm tên, PID, PPID, Luồng, Xử lý, thời gian bắt đầu, v.v.

Quan sát kỹ, chúng tôi nhận thấy một số tiến trình cần chú ý:

- cmd.exe
- Dumplt.exe
- explorer.exe

0×85097870 explorer.exe	324	1876	33	827	1	0 2018-10-23 08:30:04 UTC+0000
0×85135af8 VBoxTray.exe	1000	324	cor <u>n</u> mand	159		0 2018-10-23 08:30:08 UTC+0000
0×85164030 SearchIndexer.	2032	ids484re	exauted	in 614 sys	ster@	0 2018-10-23 08:30:14 UTC+0000
0×8515ad20 SearchProtocol	284	2032	7	235	0	0 2018-10-23 08:30:16 UTC+0000
0×8515cd20 SearchFilterHo	1292	2032	5	80	0	0 2018-10-23 08:30:17 UTC+0000
0×851a6610 cmd.exe	2096	324	e tha mer	22	n o ¹ the	0 2018-10-23 08:30:18 UTC+0000
0×851a5cd8 conhost.exe	2104	380	2	52	1	0 2018-10-23 08:30:18 UTC+0000
0×845a8d20 DumpIt.exe	2412	324	2	38	1	0 2018-10-23 08:30:48 UTC+0000
0×84d83d20 conhost.exe	2424	380	. 2	51	1	0 2018-10-23 08:30:48 UTC+0000

- cmd.exe: Đây là tiến trình chịu trách nhiệm cho command prompt. Việc trích xuất nội dung từ tiến trình này có thể cung cấp cho chúng ta thông tin chi tiết về những lệnh đã được thực thi trong hệ thống.
- Dumplt.exe: Tiến trình này đã được ta sử dụng để có kết xuất được bộ nhớ của hệ thống.
- Explorer.exe: Tiến trình này xử lý File Explorer.

Ta đã thấy rằng cmd.exe đang chạy, hãy thử xem liệu có bất kỳ lệnh nào được thực thi và nội dung được in ra trong shell/terminal hay không.

• Đối với điều này, ta sử dụng plugin consoles

\$ python2 vol.py -f Challenge.raw --profile=Win7SP1x86 consoles

```
(kali⊛kali)-[~/volatility
   python2 vol.py -f Challenge.raw --profile=Win7SP1×86 consoles
Volatility Foundation Volatility Framework 2.6.1
******************
ConsoleProcess: conhost.exe Pid: 2104
Console: 0xe981c0 CommandHistorySize: 50
HistoryBufferCount: 2 HistoryBufferMax: 4
OriginalTitle: %SystemRoot%\system32\cmd.exe
Title: C:\Windows\system32\cmd.exe
AttachedProcess: cmd.exe Pid: 2096 Handle: 0×5c
CommandHistory: 0×300690 Application: python.exe Flags:
CommandCount: 0 LastAdded: -1 LastDisplayed: -1
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0×0
CommandHistory: 0×300498 Application: cmd.exe Flags: Allocated, Reset
CommandCount: 1 LastAdded: 0 LastDisplayed: 0
FirstCommand: 0 CommandCountMax: 50
ProcessHandle: 0×5c
Cmd #0 at 0×2f43c0: C:\Python27\python.exe C:\Users\hello\Desktop\demon.py.txt
Screen 0×2e6368 X:80 Y:300
Dump:
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\hello>C:\Python27\python.exe C:\Users\hello\Desktop\demon.py.txt
335d366f5d6031767631707f
```

• Từ hình trên, một tệp python đã được thực thi. Lệnh được thực hiện là C:\Python27\python.exe C:\Users\hello\Desktop\demon.py.txt và nội dung trả về là một chuỗi nhất định đã được viết ra stdout. Bây giờ ta có thể thấy đây là một chuỗi được mã hóa hex 335d366f5d6031767631707f. Một khi chúng tôi cố gắng decode hex, ta nhận được một văn bản vô nghĩa. 3[60] 1vv1p\x7f

```
data = bytes.fromhex("335d366f5d6031767631707f")
print(data)
```

output: b'3]6o] $^1vv1p\x7f'$

- Bây giờ ta hãy nhớ lại một số manh mối từ mô tả thử thách. Cái đầu tiên là từ Environmental. Có một số biến do hệ thống xác định được gọi là biến môi trường.
- Để xem các biến môi trường trong một hệ thống, hãy sử dụng plugin envars. Kéo xuống ở đầu ra, chúng ta thấy một biến lạ có tên Thanos (Ah! vì vậy có lẽ đó là lý do tại sao nó được cung cấp trong mô tả.), giá trị của biến là xor and password

\$ python2 vol.py -f Challenge.raw --profile=Win7SP1x86 envars

```
kali⊛kali)-[~/volatility
 -$ python2 vol.py -f Challenge.raw --profile=Win7SP1×86 envars
Volatility Foundation Volatility Framework 2.6.1
Pid
                                          Variable
         Process
                               Block
                                                                            Value
     260 smss.exe
                               0×001707f0 Path
                                                                            C:\Windows\System32
     260 smss.exe
                               0×001707f0 SystemDrive
                                                                            C:
                                                                            C:\Windows
     260 smss.exe
                               0×001707f0 SystemRoot
     340 csrss.exe
                               0×003807f0 ComSpec
                                                                            C:\Windows\system32\cmd.exe
                               0×003807f0 FP_NO_HOST_CHECK
     340 csrss.exe
                                                                            NO
     340 csrss.exe
                               0×003807f0 NUMBER_OF_PROCESSORS
     340 csrss.exe
                               0×003807f0 OS
                                                                           Windows_NT
     340 csrss.exe
                               0×003807f0 Path
                                                                            C:\Windows\system32;C:\Windows;C:\Windows\System32\Wb
     340 csrss.exe
                               0×003807f0 PATHEXT
                                                                            .COM; .EXE; .BAT; .CMD; .VBS; .VBE; .JS; .JSE; .WSF; .WSH; .MSC
                               0×003807f0 PROCESSOR_ARCHITECTURE
0×003807f0 PROCESSOR_IDENTIFIER
     340 csrss.exe
                                                                            x86
                                                                            x86 Family 6 Model 142 Stepping 9, GenuineIntel
     340 csrss.exe
                               0×003807f0 PROCESSOR_LEVEL
                               0×003807f0 PROCESSOR_REVISION
                               0×003807f0 PSModulePath
                                                                            C:\Windows\system32\WindowsPowerShell\v1.0\Modules\
     340 csrss.exe
                               0×003807f0 SystemDrive
                                                                            c:
     340 csrss.exe
     340 csrss.exe
                               0×003807f0 SystemRoot
                                                                            C:\Windows
                               0×003807f0 TEMP
                                                                            C:\Windows\TEMP
     340 csrss.exe
     340 csrss.exe
                               0×003807f0 Thanos
                                                                            xor and password
     340 csrss.exe
                               0×003807f0
                                                                            C:\Windows\TEMP
     340 csrss.exe
                               0×003807f0 USERNAME
                               0×003807f0 windir
                                                                            C:\Windows
     340 csrss.exe
                               0×003807f0 windows_tracing_flags
     340 csrss.exe
                               0×003807f0 windows_tracing_logfile
                                                                            C:\BVTBin\Tests\installpackage\csilogfile.log
     340 csrss.exe
     380 csrss.exe
                               0×002307f0 ComSpec
                                                                            C:\Windows\system32\cmd.exe
     380 csrss.exe
                               0×002307f0 FP_NO_HOST_CHECK
                                                                            NO
                               0×002307f0 NUMBER_OF_PROCESSORS
     380 csrss.exe
                               0×002307f0 OS
     380 csrss.exe
     380 csrss.exe
                               0×002307f0 Path
                                                                            C:\Windows\system32;C:\Windows;C:\Windows\System32\Wb
```

Bây giờ, chúng ta có tổng cộng 3 điều:

- Văn bản vô nghĩa là kết quả của việc decode bằng hex
- x0
- password

Hãy thử thử giải mã xor trên văn bản vô nghĩa 335d366f5d6031767631707f

```
data = bytes.fromhex("335d366f5d6031767631707f")

for k in range(1, 256):
    s = ''.join(chr(b ^ k) for b in data)
    if s.isprintable():
        print(f"[Key {k:3}] => {s}")

output: [Key 2] => 1_4m_b3tt3r}
```

- Có tổng cộng 255 khả năng (tương ứng với 255 giá trị khóa XOR khác nhau), và nếu để ý, kết quả thứ 2 hiển thị một chuỗi đáng ngờ: 1_4m_b3tt3r} Trông giống như phần sau của flag.
- Tiếp theo là "password" (mật khẩu). Sử dụng Volatility, chúng ta có thể trích xuất các hash mật khẩu NTLM (Windows) bằng plugin hashdump:

\$ python2 vol.py -f Challenge.raw --profile=Win7SP1x86 hashdump

```
(kali@ kali)-[~/volatility]
$ python2 vol.py -f Challenge.raw --profile=Win7SP1×86 hashdump mimikatz
Volatility Foundation Volatility Framework 2.6.1
Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
hello:1000:aad3b435b51404eeaad3b435b51404ee:
```

- Lệnh này sẽ hiển thị danh sách các username và password hash có trong bộ nhớ RAM lúc dump. Trong số đó, hash mà chúng ta quan tâm là: 101da33f44e92c27835e64322d72e8b7
- Giờ bạn có thể dùng các website bẻ khóa hash NTLM online (như Hashes.com...) để giải mã hash này thành chuỗi văn bản gốc (mật khẩu rõ ràng).
- · Link: hashes.com

Kết quả sau khi giải mã:

- Hash đó khi giải được cho ra phần đầu của flag: flag{you_are_good_but
- Ghép hai phần lại:
 - o Phần đầu: flag{you_are_good_but
 - Phần sau (từ đoạn XOR hex): 1_4m_b3tt3r}

N Kết quả hoàn chỉnh:

 $\label{eq:pod_but1_4m_b3tt3r} \begin{tabular}{ll} \mathbb{N} FLAG: flag{you_are_good_but1_4m_b3tt3r} \end{tabular}$

🛚 Tài nguyên tham khảo: link