MA 572: Homework 2

Carlos Salinas

January 26, 2016

PROBLEM 2.1 (HATCHER §2.1, Ex. 16)

- (a) Show that $H_0(X, A) = 0$ iff A meets each path-component of X.
- (b) Show that $H_1(X, A) = 0$ iff $H_1(A) \to H_1(X)$ is surjective and each path-component of X contains at most one path-component of A.

Proof. (a) \Longrightarrow Suppose that the relative 0th homology of X with respect to A, $H_0(X,A)$, is trivial. Let $\{X_{\alpha}\}$ be the set of path-components of X. We aim to show that $A \cap X_{\alpha} \neq \emptyset$ for all α . Let $i \colon A \hookrightarrow X$ denote the canonical inclusion map $A \subset X$. Now, the map i can be extended to a chain map between chain complexes which, by proposition 2.9, induces a homomorphism $i_* \colon H_n(A) \to H_n(X)$ between the homology groups of A and X. Similarly, the map $j \colon C_n(X) \to C_n(X,A)$ induces a map $j_* \colon H_n(X) \to H_n(X,A)$ so, by theorem 2.16, we have a long exact sequence

$$\cdots \xrightarrow{\partial} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X, A) \xrightarrow{0} 0. \tag{1}$$

In particular, the short exact sequence

$$0 \xrightarrow{0} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X, A) \xrightarrow{0} 0. \tag{2}$$

But $H_0(X, A) = 0$ so the map $j_* = 0$. By short exactness of (2) we have im $i_* = \ker j_* = H_0(X)$, so i_* is surjective.

MA 572: Homework 2

CARLOS SALINAS PROBLEM 2.3

PROBLEM 2.2 (HATCHER §2.1, Ex. 17)

(a) Compute the homology groups $H_n(X,A)$ when X is S^2 or $S^1 \times S^1$ and A is a finite set of points in X.

(b) Compute the groups $H_n(X, A)$ and $H_n(X, B)$ for X a closed orientable surface of genus two with A and B the circles shown. [What are X/A and X/B?]

Proof. (a) Since A is a finite collection of points in S^2 , let us enumerate the set A via $\{a_1, ..., a_n\}$ and denote by A_k the subset $\{a_1, ..., a_k\}$ of A, where $k \leq n$. Now, by the generalization of theorem 2.16 to triples, we have the long exact sequence

$$\cdots \longrightarrow H_m(A_n, A_{n-1}) \longrightarrow H_m(S^2, A_{n-1}) \longrightarrow H_m(S^2, A_n) \longrightarrow H_{m-1}(A_n, A_{n-1}) \longrightarrow \cdots . \tag{3}$$

Exactness of (3) tells us that for $m \geq 2$ we have $H(S^2, A_{n-1}) \cong H(S^2, A_n)$ since

$$H_m(A_n, A_{n-1}) = 0 \longrightarrow H_m(S^2, A_{n-1}) \longrightarrow H_m(S^2, A_n) \longrightarrow 0 = H_{m-1}(A_n, A_{n-1})$$

is exact. Evidently, $H_m(A_n, A_{n-1}) = 0$ for m > 1.

PROBLEM 2.3

Proof.

MA 572: Homework 2

¹I will prove this if time permits.