In the Lecture Series Introduction to Database Systems

Normalization

Presented by Stéphane Bressan

Learning Objectives

 Understand the rationale (anomalies) and definition of the main <u>normal forms</u> based on functional dependencies (<u>2NF</u>, <u>3NF</u> and <u>BCNF</u>)

Be able to <u>decompose</u> and <u>synthesize</u> a schema into a <u>lossless</u> and <u>dependency</u> <u>preserving BCNF</u> and <u>3NF</u>.

Anomalies

- Redundant storage
- Update anomalies
- Insertion anomalies
- Deletion anomalies

Anomalies: Example

Assume that the position determines the salary: $position \rightarrow salary$

4W3E Iz 3XXE J 5SD2 A	Dewi Izabel John Axel Winnie	Srijaya Leong Smith Bayer	12a Jln Lempeng 10 Outram Park 107 Clementi Rd 55 Cuscaden Rd	Toys Sports Toys	Clerk Trainee Clerk	2000 1200 2000	
3XXE J	John Axel	Smith Bayer	107 Clementi Rd	·			
5SD2 A	Axel	Bayer		Toys	Clerk	2000	1 \
		•	55 Cuscaden Rd			2000	Redundant storage
CDCF VA	Winnie			Sports	Trainee	1200	
6RG5 V		Lee	10 West Coast Rd	Sports	Manager	2500	T
755Y S	Sylvia	Tok	22 East Coast Lane	Toys	Manager	2600	Update anomaly
2SD3 E	Eric	Wei	100 Jurong drive	Toys	Assistant manager	2200	
? ?	?	?	?	?	Security guard	1500	
key	ke	y		Insertio	n anomaly	,	Potential deletion anomaly

Decomposition

The decomposition of a relation scheme R
is a set if relation scheme R_i such that:

$$\bigcup_i R_i = R$$

Decomposition: Example

employee

eNumber	firstName	lastName	address	depart ment	Position
1XU3	Dewi	Srijaya	12a Jln Lempeng	Toys	Clerk
4W3E	Izabel	Leong	10 Outram Park	Sports	Trainee
3XXE	John	Smith	107 Clementi Rd	Toys	Clerk
5SD2	Axel	Bayer	55 Cuscaden Rd	Sports	Trainee
6RG5	Winnie	Lee	10 West Coast Rd	Sports	Manager
755Y	Sylvia	Tok	22 East Coast Lane	Toys	Manager
2SD3	Eric	Wei	100 Jurong drive	Toys	Assistant manager

salary

Position	salary
Clerk	2000
Trainee	1200
Manager	2500
Assistant manager	2200
Security guard	1500

Lossless Decomposition: Example

 The decomposition is lossless if we can recover the initial table:

SELECT first_name, last_name, address, department, T2.position, salary FROM T2, T3 WHERE T2.position = T3.position

Lossless Decomposition : Example

employee

eNumber	firstName	lastName	address	depart ment	Position
1XU3	Dewi	Srijaya	12a Jln Lempeng	Toys	Clerk
4W3E	Izabel	Leong	10 Outram Park	Sports	Trainee
3XXE	John	Smith	107 Clementi Rd	Toys	Clerk
5SD2	Axel	Bayer	55 Cuscaden Rd	Sports	Trainee
6RG5	Winnie	Lee	10 West Coast Rd	Sports	Manager
755Y	Sylvia	Tok	22 East Coast Lane	Toys	Manager
2SD3	Eric	Wei	100 Jurong drive	Toys	Assistant manager

key key

salary

Position	salary
Clerk	2000
Trainee	1200
Manager	2500
Assistant manager	2200
Security guard	1500

key

Lossless Decomposition: Counter Example

Flight Number	Departure time	Arrival time	Origin	Destination
SG12	12h00	13h00+	SIN	CDG
TG414	15h50	16h30	SIN	JKT
TG415	12h00	14h20	BKK	SIN

¤Flight Number is the key

Lossless Decomposition: Counter Example

Flight Number	Departure time	Arrival time	Origin	Destination
SG12	12h00	13h00+	SIN	CDG
TG414	15h50	16h30	SIN	JKT
TG415	12h00	14h20	BKK	SIN

Lossless, Dependency Preserving

- The decomposition is lossy
- And we lost functional dependencies:

{Flight Number} → **{Arrival time, Destination}**

Decomposition: Example

- Consider the relation scheme {C,S,J,D,P,Q,V}
- with FDs

$$\{C\} \rightarrow \{S,J,D,P,Q,V\}$$

 $\{J,P\} \rightarrow \{C\}$
 $\{S,D\} \rightarrow \{P\}$

Decomposition: Example

- Consider the decomposition into {C,S,J,D,Q,V}, {S,D,P}
- The decomposition is lossless
 - We can recover the initial relation thanks to S,D
- However the functional dependency {J,P} → {C}
 is lost across the two relations...
- This decomposition is not dependency preserving

Dependency Preserving Decomposition

- The decomposition of a relation scheme
 - R with FDs F
 - Is a set of relation schemes R_i with FDs F_i
- The decomposition is dependency preserving if and only if

$$(\cup_i F_i) + = F +$$

Too Much Decomposition

- It might be tempting to decompose to the extreme
- Evaluation of queries may be inefficient since it will involve combining several relations

Too Much Decomposition: Example

Flight Number	Departure time	Origin
SG12	12h00	SIN
TG414	15h50	SIN
TG415	12h00	BKK

Flight Number	Arrival time	Destination
SG12	13h00+	CDG
TG414	16h30	JKT
TG415	14h20	SIN

Looking for a "Good" Design

- The designer needs guidelines:
 - Normalization theory
 - Minimal redundancy and no anomalies
 - Lossless decompositions
 - Dependency preserving decompositions
- But ultimately the designer needs to look at the workload (the queries and their efficiency requirement)

Second Normal Form (2NF)

- R is a relation schema, with the set F of FDs
- R is in 2NF if and only if
 - For all X: X ⊂ R
 - and, for all A ∈ R
 - such that there exists a FD: $X \rightarrow \{A\}$ in F+
- Then
 - A ∈ X (the FD is trivial), or
 - X is not a proper subset of a candidate key for R, or
 - A is part of some candidate key for R
 (A is called a prime attribute)

Second Normal Form (2NF)

- Consider the relation scheme {A,B,C,D} with the FDs:
 - $\{A,B\} \rightarrow \{C,D\}$ and
 - $\{A\} \rightarrow \{D\}$
- {A,B} is a primary key (it is not a proper subset)
- {A} is a proper subset of a primary key
- {D} is not part of some candidate key
- This scheme is not in 2NF

Second Normal Form (2NF)

- E.g., Relation scheme {A,D} with FDs
 - $\{A\} \rightarrow \{D\}$
 - {A} is the primary key (i.e., not proper subset)
 - The scheme is in 2NF
- E.g., Relation scheme {A,B,C} with FDs
 - $\{A,B\} \rightarrow \{C\}$
 - {A,B} is the primary key
 - The scheme is in 2NF

Third Normal Form (3NF)

- R is a relation schema, with the set F of FDs
- R is in 3NF if and only if
 - For all X: $X \subset R$
 - And, for all A ∈ R
 - such that there exists a FD: $X \rightarrow \{A\}$ in F+
- Then
 - A ∈ X (trivial FD), or
 - X is a superkey for R, or
 - A is part of some candidate key for R

Boyce-Codd Normal Form (BCNF)

- R is a relation schema, with the set F of FDs
- R is in BCNF if and only if
 - For all X: X ⊂ R
 - And, for all $A \in R$
 - such that there exists a FD: $X \rightarrow \{A\}$ in F+
- Then
 - $A \in X$, or
 - X is a superkey for R

BCNF \subset 3NF \subset 2NF \subset 1NF

• 2NF:

- $A \in X$, or
- X is not a proper subset of a candidate key for R, or
- A is part of some candidate key for R

• 3NF:

- $A \in X$, or
- X is a superkey for R, or
- A is part of some candidate key for R

• BCNF:

- A ∈ X, or
- X is a superkey for R

```
Let S be the initial set of schemes with FDs F
Until all relation schemes in S are in BCNF
  for each R in S
       if FD X \rightarrow Y in F+ violates BCNF for R
       (X \rightarrow R \text{ not hold, not superkey})
       X \cap Y = \emptyset, not trivial)
       then
              use X \rightarrow X+
              let S be (S - \{R\}) \cup \{(R-X+) \cup X, X+\}
  endfor
enduntil
```

$$X \rightarrow Y$$

$$X=\{c,d\}$$

$$X=\{c,d\}$$

 $X+=\{c,d,e,f\}$

а	b	С	d	е	f

a	b	С	d

С	d	е	f

 The different possible orders* in which we may consider the dependencies violating BCNF in the algorithm application may lead to different decompositions

*orders in which we consider the constraints violating the BCNF condition

Let us consider the relation scheme R={A,B,C,D,E} and the FDs:

$$\begin{aligned} \{A\} &\rightarrow \{B\} \\ \{A\} &\rightarrow \{E\} \\ \{C\} &\rightarrow \{D\} \end{aligned}$$

Candidate key: {A, C}

R is not in BCNF

- Because (for instance):
 - {A} → {B} holds
 - It is not trivial
 - {A} is not a superkey

- Pick {A} → {B} for decomposition
- Expand into $\{A\} \rightarrow \{B,E\}$
- {A,B,C,D,E} becomes
 - {A,C,D} and {A,B,E}
- With FDs: (we need projected FDs)

$$\{A\} \rightarrow \{B\}, \text{ on } \{A,B,E\}$$

 $\{A\} \rightarrow \{E\}, \text{ on } \{A,B,E\}$

$$\{C\} \rightarrow \{D\}, \text{ on } \{A,C,D\}$$

Remark: Projecting FDs

- If S is a fragment after decomposition of a relation R with FDs F
- The set of projected FDs on S is the set G of FDs
 - If $X \rightarrow Y$ is in G
 - Then X and Y are subsets of S
 - \blacksquare X \rightarrow Y is in F+
 - If X → Y is in F+ and X and Y are subsets of S
 - Then $X \rightarrow Y$ is in G+

- Pick {C} → {D} for decomposition
- Expand into $\{C\} \rightarrow \{D\}$
- {A,C,D} and {A,B,E} become
 - {A,C}, {C,D} and {A,B,E}
- With FDs: (we need projected FDs)

$$\{A\} \rightarrow \{B\}, on \{A,B,E\}$$

 $\{A\} \rightarrow \{E\}, on \{A,B,E\}$
 $\{C\} \rightarrow \{D\}, on \{C,D\}$

Finally the BCNF decomposition of R={A,B,C,D,E} with the FDs:

$$\{A\} \rightarrow \{B\},\$$

 $\{A\} \rightarrow \{E\},\$
 $\{C\} \rightarrow \{D\}$

• is: R1={A,C}, R2={C,D} and R3={A,B,E}

- BCNF decomposition may not be dependency preserving
- Example: {A,B,C} with FDs {A,B} → {C} {C} → {A}
- The first FD is not preserved.

Decomposition into 3NF (Synthesis)

Let S be the initial set of relation scheme R with FDs F

```
for each X\subsetR such that X \to {A<sub>i</sub>} is in the minimal cover of F

if no scheme contains X \cup_i {A<sub>i</sub>}

then create relation with scheme X \cup_i {A<sub>i</sub>}

endfor
```

if no scheme contains a key for Rthen create a relation with scheme with key for R

Decomposition into 3NF (Synthesis)

Let us consider the relation scheme R={A,B,C,D,E} and the FDs:

$$\{A\} \rightarrow \{B\}$$

 $\{A\} \rightarrow \{E\}$
 $\{C\} \rightarrow \{D\}$

Candidate key: {A, C}

Decomposition into 3NF (Synthesis)

• Minimal cover:

$${A} \rightarrow {B}$$

 ${A} \rightarrow {E}$
 ${C} \rightarrow {D}$

- Decomposition:
 - \blacksquare R1 = {A,B},
 - R2={A,E},
 - R3={C,D}
 - R4 = {A, C}

• Minimal cover:

$${A} \rightarrow {B, E}$$

 ${C} \rightarrow {D}$

- Decomposition:
 - R1 = {A,B, E},
 - R2={C,D}
 - R3 = {A, C}

Dependency preserving

 The 3NF synthesis algorithm always finds a loosless dependency preserving decomposition

Credits

The content of this lecture is based on chapter 8 of the book "Introduction to database Systems"

By
S. Bressan and B. Catania,
McGraw Hill publisher

Clipart and media are licensed from Microsoft Office Online Clipart and Media

Copyright © 2014 by Stéphane Bressan

