Lengths of Curves in \mathbb{R}^3

Let $\vec{\mathbf{r}}(t) = \langle f(t), g(t), h(t) \rangle$ be a parameterized curve/trajectory in \mathbb{R}^3 for $t \in [a,b]$ and $\vec{v}(t)$ be the associated velocity vector composed of the derivatives of the components of $\vec{r}(t)$.

Similarly, let $|\vec{v}(t)|$ be a scalar function representing the speed at time t. We will assume that $|\vec{v}(t)|$ is a continuous function for $t \in [a,b]$ or that it has, at most, a finite number of jump discontinuities.

Regardless of the direction of $\vec{v}(t)$ at any given time, the distance travelled during a short interval of time Δt (say over the interval $[t_{k-1},t_k]$ where $\Delta t_k=t_k-t_{k-1}$ and where these intervals do not span any jump discontinuities in $\left|\vec{v}(t)\right|$) can be approximated as the product of the average value of the speed over that interval, $\left|\vec{v}(t_k)\right|_{AVG}$ and the duration of that interval, Δt_k .

Therefore, denoting the distance travelled during the interval $[t_{k-1},t_k]$ by s_k , we can write, $s_k \approx \left| \vec{v}(t_k) \right|_{AVG} \Delta t_k$ where this approximation becomes exact as $\Delta t_k \to 0$.

Since $\left|\vec{v}(t)\right|$ is continuous for $t\in[t_{k-1},t_k]$, there is some t_k^* in the interval $\left[t_{k-1},t_k\right]$ where $\left|\vec{v}(t_k^*)\right|=\left|\vec{v}(t_k)\right|_{AVG}$. As a result, we can express s_k as $s_k\approx\left|\vec{v}(t_k^*)\right|\Delta t_k$ where, again, the approximation becomes exact as $\Delta t_k\to 0$.

Adding up these distances travelled over all subintervals yields an approximation of the total distance travelled given by $s \approx \sum_{k=1}^n \left| \vec{v}(t_k^*) \middle| \Delta t_k \right|$. The exact total distance is then given by the limit of this expression as the norm of the partition, $\|P\|$, goes to zero (yielding a Riemann sum and an integral representation). Therefore,

$$s = \lim_{\|P\| \to 0} \sum_{k=1}^{n} \left| \vec{v}(t_k^*) \middle| \Delta t_k \right| = \int_{a}^{b} \left| \vec{v}(t) \middle| dt \right| = \int_{a}^{b} \left| \left(\frac{df}{dt} \right)^2 + \left(\frac{dg}{dt} \right)^2 + \left(\frac{dh}{dt} \right)^2 \right|^{\frac{1}{2}} dt$$

¹ We will restrict partitions of [a,b] to be composite partitions made up of unions of partitions of the continuous segments of $|\vec{v}(t)|$. Note that this restriction on the partition is levied only to make the explanation easier. If a sub-partition spans a discontinuity, its effect diminishes to zero as the norm of the partition is forced to zero and, since there are a finite number of such discontinuities, the overall effect of all discontinuities also goes to zero.