INDIAN SCHOOL MUSCAT

NAME OF THE EXAMINATION-	SECOND PERIODIC TEST	CLASS: XI
DATE OF EXAMINATION	20.11.2023	SUBJECT: PHYSICS
TYPE	MARKING SCHEME	SET-A

SE	Q.N	VALUE POINTS	MAR
Т	О		K
A	1	(i) b (ii) c (iii) b (iv) d or c	4 x1 M
	2	a	1M
	3	a	1M
	4	Work is equal to the product of an applied force and the displacement caused in the direction of force. It is a scalar quantity. On the other hand, torque is measured as the product of the force and its perpendicular distance from the axis of rotation. It is a vector quantity.	1+1
	5	In the whirl wind of a cyclone, the air from the nearby region gets concentrated in a small space. As a result, the moment of inertia is decreased considerably. In order to conserve angular momentum, the angular speed of the whirl wind becomes extremely high.	2
	6	position of the axis of rotation	4X½
		• orientation of the axis of rotation	M
		shape and size of the bodydistribution of mass of the body about the axis of rotation	
	7	final volume, $V_2=rac{1}{64}$ initial volume, V_1	
		i.e., $rac{4}{3}\pi R_2^3 = rac{1}{64} imes rac{4}{3}\pi R_1^3$	
		$R_2^3 igg(rac{1}{4} R_1igg)^3 \; ext{or} \; R_2 = rac{1}{4} R_1$	1/2

	i.e., $I_2/T_2=I_1/T_1$	
	$\left(rac{2}{5}MR_{2}^{2} ight)rac{1}{T_{2}} = \left(rac{2}{5}MR_{1}^{2} ight) imesrac{1}{T_{1}}$	
	$T_2=rac{R_2^2}{R_1^2} imes T_1$	1
	As $T_1=$ time taken by earth to complate one revolution about its axis.	
	i.e., normal lenght of the day $=24$ hours	
	$\therefore T_2 = \left(rac{1}{4} ight)^2 imes 24 = 1.5 h$	1/2
8	Derivation of Rotational KE.	3
	All particles are moving with same angular velocity about the axis of rotation but they have different linear velocity – if this statement is not given deduct ½ marks	
9	Answer: Here, $M = 3 \text{ kg}$, $R = 40 \text{ cm} = 0.4 \text{ m}$ Moment of inertia of the hollow cylinder about its axis. $I = MR^2 = 3(0.4)^2 = 0.48 \text{ kg}$	1/2
	Force applied $F = 30 \text{ N}$	1/1/
	$\therefore \text{ Torque}, \qquad \tau = F \times R = 30 \times 0.4 = 12 \text{ N-m}.$	1/2 1/2
	If α is angular acceleration produced, then from $\tau = I\alpha$	
	$\alpha = \frac{\tau}{I} = \frac{12}{0.48} = 25 \text{ rad s}^{-2}$	1/2
	Linear acceleration, $a = R\alpha = 0.4 \times 25 = 10 \text{ ms}^{-2}$.	1/2 1/2

INDIAN SCHOOL MUSCAT

NAME OF THE EXAMINATION-	SECOND PERIODIC TEST	CLASS: XI
DATE OF EXAMINATION	20.11.2023	SUBJECT: PHYSICS
TYPE	MARKING SCHEME	SET-B

SE T	Q.N O	VALUE POINTS	MAR K
A	1	(i) b (ii) b (iii) bc (iv) c or d	4 x1 M
	2	a	1M
	3	a	1M
	4	final volume, $V_2=rac{1}{64}$ initial volume, V_1 i.e., $rac{4}{3}\pi R_2^3=rac{1}{64} imesrac{4}{3}\pi R_1^3$	
		$R_2^3 igg(rac{1}{4} R_1igg)^3 \; ext{or} \; R_2 = rac{1}{4} R_1$	1/2
		i.e., $I_2/T_2=I_1/T_1$ $\left(rac{2}{5}MR_2^2 ight)rac{1}{T_2}=\left(rac{2}{5}MR_1^2 ight) imesrac{1}{T_1}$ $T_2=rac{R_2^2}{R_1^2} imes T_1$	1
		As $T_1=$ time taken by earth to complate one revolution about its axis. i.e., normal lenght of the day $=24$ hours $\therefore T_2=\left(\frac{1}{4}\right)^2\times 24=1.5h$	1/2
	5	Work is equal to the product of an applied force and the displacement caused in the direction of force. It is a scalar quantity. On the other hand, torque is measured as the product of the force and its perpendicular distance from the axis of rotation. It is a vector quantity.	2
	6	Statement the law of conservation of angular momentum.	2

	If mathematical expression given, give 1 mark	
7	In the whirl wind of a cyclone, the air from the nearby region gets concentrated in a small space. As a result, the moment of inertia is decreased considerably. In order to conserve angular momentum, the angular speed of the whirl wind becomes extremely high.	2
8	Answer: Here, M = 3 kg, R = 40 cm = 0.4 m Moment of inertia of the hollow cylinder about its axis. $I = MR^2 = 3(0.4)^2 = 0.48 \text{ kg}$ Force applied $F = 30 \text{ N}$ \therefore Torque, $\tau = F \times R = 30 \times 0.4 = 12 \text{ N-m}$. If α is angular acceleration produced, then from $\tau = I\alpha$ $\alpha = \frac{\tau}{I} = \frac{12}{0.48} = 25 \text{ rad s}^{-2}$ Linear acceleration, $a = R\alpha = 0.4 \times 25 = 10 \text{ ms}^{-2}$.	1/ ₂
9	Definition torque and angular momentum. Derivation of relation between torque and Angular momentum. Note- If Vector sign is not given over Torque and L, deduct ½ mark.	1/2 1/2

INDIAN SCHOOL MUSCAT

NAME OF THE EXAMINATION-	SECOND PERIODIC TEST	CLASS: XI
DATE OF EXAMINATION	20.11.2023	SUBJECT: PHYSICS
TYPE	MARKING SCHEME	SET-C

SET	Q.NO	VALUE POINTS	MARK
A	1	(i) b (ii) c (iii) b (iv) d or c	4 x1 M
	2	a	1M
	3	a	1M
	4	Statement of law of conservation of angular momentum. If Mathematical expression given, give 1 mark.	
	5	In the whirl wind of a cyclone, the air from the nearby region gets concentrated in a small space. As a result, the moment of inertia is decreased considerably. In	

	order to conserve angular momentum, the angular speed of the whirl wind becomes extremely high.	
6	Work is equal to the product of an applied force and the displacement caused in the direction of force. It is a scalar quantity. On the other hand, torque is measured as the product of the force and its perpendicular distance from the axis of rotation. It is a vector quantity.	1+1
7	final volume, $V_2=rac{1}{64}$ initial volume, V_1 i.e., $rac{4}{3}\pi R_2^3=rac{1}{64} imesrac{4}{3}\pi R_1^3$	
	$R_2^3 igg(rac{1}{4}R_1igg)^3 ext{ or } R_2=rac{1}{4}R_1$ i.e., $I_2/T_2=I_1/T_1$ $igg(rac{2}{5}MR_2^2igg)rac{1}{T_2}=igg(rac{2}{5}MR_1^2igg) imesrac{1}{T_1}$	1/2
	$T_1 = rac{R_2^2}{R_1^2} imes T_1$	1
	As $T_1=$ time taken by earth to complate one revolution about its axis. i.e., normal lenght of the day $=24$ hours	
	$\therefore T_2 = \left(rac{1}{4} ight)^2 imes 24 = 1.5 h$	1/2
8	Derivation of Rotational KE. All particles are moving with same angular velocity about the axis of rotation but they have different linear velocity – if this statement is not given deduct ½ marks	3
9	Answer: Here, $M = 3 \text{ kg}$, $R = 40 \text{ cm} = 0.4 \text{ m}$ Moment of inertia of the hollow cylinder about its axis. $I = MR^2 = 3(0.4)^2 = 0.48 \text{ kg}$	1/2
	Force applied $F = 30 \text{ N}$ \therefore Torque, $\tau = F \times R = 30 \times 0.4 = 12 \text{ N-m}$. If α is angular acceleration produced, then from $\tau = I\alpha$	1/2 1/2
	$\alpha = \frac{\tau}{I} = \frac{12}{0.48} = 25 \text{ rad s}^{-2}$	1/2
	Linear acceleration, $a = R\alpha = 0.4 \times 25 = 10 \text{ ms}^{-2}$.	1/2 1/2