Macroeconomic Effects of Funds Rate Perturbation (VAR Expectations)

Macroeconomic Effects of Funds Rate Perturbation (VAR Expectations)

Macroeconomic Effects of Funds Rate Shock

	iter	converge stat	SSR stat	step length	step iters	Newton MCE deriv's?
-	0	0.346269	1.517015	longar	11010	40111 01
	ĭ	0.145797	0.454926	1.000000	1	
	2	0.161630	0.411550	1.000000	1	
	2 3	0.123393	0.222776	1.000000	1	
	4	0.011729	0.002376	1.000000	1	
	5	0.004536	0.000179	1.000000	1	
	Ğ	0.001145	2.35E-05	1.000000	1	
	7	0.000445	1.22E-06	1.000000	1	
	8	0.000147	1.36E-07	1.000000	1	
	9	1.00E-05	1.32E-09	1.000000	1	
	10	3.64E-06	9.75E-11	1.000000	1	

Simulation start = 2012Q1
Simulation end = 2016Q4
MCE method = "qnewton"
--- Initial Jacobian approximation = "bd"
---- QNewton iteration switch = 600
Linesearch method = Imr
--- Linesearch trigger = 0.9
--- Maximum linesearch iterations = 10
Convergence criteria = 1e-05
Maximum number of MCE iterations = 200
MCE instrument perturbation factor = 0.001
Intermediate output level factor = 1
MCE instrument variables = ZDIVGR_A_ZGAP05_A_ZGAP10_A_ZGAP30_A_ZPI10_A_ZPI10F_A_ZPIB5_A_ZPIC30_A_ZPIC58_A_ZPICXFE_A_ZPIECI_A_ZRFF10_A_ZRFF30_A_ZRFF5_A
MCE error variables = EZDIVGR_EZGAP05_EZGAP10_EZGAP30_EZPI10_EZPI10F_EZPIB5_EZPIC30_EZPIC58_EZPICXFE_EZPIECI_EZRFF10_EZRFF30_EZRFF5
There are 280 instrument and 280 error observations
At iteration 11, convergence

Macroeconomic Effects of Funds Rate Shock

iter	converge	SSR	step	step	Newton MCE
	stat	stat	length	iters	deriv's?
0	9.22E-12	2.99E-21			

Macroeconomic Effects of Negative AD Shock (VAR Expectations; Policy = rfftay) (ZLB and Thresholds Imposed)

Blue: Actual; Red: Simulated

Macroeconomic Effects of a Shock to Consumption

iter	converge	SSR stat	step	step iters	Newton MCE deriv's?
	stat		length	iters	uenv s :
Ų	0.379208	0.637643			
1	0.080090	0.083945	1.000000	1	
2	0.077680	0.147392	1.000000	1	
2 3	0.038179	0.031319	1.000000	1	
4	0.003610	0.000389	1.000000	1	
5	0.001156	1.88E-05	1.000000	1	
6	0.001247	2.60E-05	1.000000	1	
7	0.000182	8.09E-07	1.000000	1	
8	5.72E-05	3.94E-08	1.000000	1	
9	1.77E-05	3.81E-09	1.000000	1	
10	6.63E-07	6.59E-12	1.000000	1	

Simulation start = 2012Q1
Simulation end = 2016Q4
MCE method = "qnewton"
--- Initial Jacobian approximation = "bd"
---- QNewton iteration switch = 600
Linesearch method = Imr
--- Linesearch trigger = 0.9
--- Maximum linesearch iterations = 10
Convergence criteria = 1e-05
Maximum number of MCE iterations = 200
MCE instrument perturbation factor = 0.001
Intermediate output level factor = 1
MCE instrument variables = ZDIVGR_A_ZGAP05_A_ZGAP10_A_ZGAP30_A_ZPI10_A_ZPI10F_A_ZPIB5_A_ZPIC30_A_ZPIC58_A_ZPICXFE_A_ZPIECI_A_ZRFF10_A_ZRFF30_A_ZRFF5_A_ZGAP30_EZPI10_EZPI10F_EZPIB5_EZPIC30_EZPIC58_EZPICXFE_EZPIECI_EZRFF10_EZRFF5_EZGAP3_EZPIC43
There are 320 instrument and 320 error observations
At iteration 11, convergence

FRB/US Ping Simulations: VAR Expectations -- III

FRB/US Ping Simulations: VAR Expectations -- II

FRB/US Ping Simulations: VAR Expectations -- I

qtr	baseline	mean	median	stdev	90%-low	90%-hi	70%-low	70%-hi
RFF 2012Q4 2013Q4	0.161 0.085	0.261 0.373	0.250 0.250	0.042 0.291	0.250 0.250	0.332 1.058	0.250 0.250	0.250 0.526
LUR 2012Q4 2013Q4	7.812 6.956	7.814 6.987	7.778 6.981	0.467 0.836	7.134 5.639	8.595 8.338	7.355 6.148	8.296 7.856
PICXFE 2012Q4 2013Q4	1.762 1.900	1.793 1.867	1.782 1.880	0.945 1.075	0.254 0.193	3.309 3.558	0.828 0.798	2.711 2.920
PICNIA 2012Q4 2013Q4	2.240 1.629	2.266 1.633	2.253 1.624	1.178 1.379	0.491 -0.433	4.005 3.656	1.190 0.432	3.432 2.931
PICX4 2012Q4 2013Q4	1.808 1.578	1.832 1.588	1.831 1.612	0.593 0.827	0.897 0.216	2.791 2.953	1.244 0.718	2.422 2.396
XGAP2 2012Q4 2013Q4	-3.119 -1.949	-3.133 -2.058	-3.089 -2.033	1.087 1.991	-4.986 -5.381	-1.493 1.222	-4.234 -4.140	-2.098 -0.096
HGGDP 2012Q4 2013Q4	0.455 3.180	0.406 2.971	0.522 3.130	2.716 2.965	-4.136 -1.703	4.448 7.446	-2.263 0.081	3.098 5.769
ANNGR 2012Q4 2013Q4	1.469 2.614	1.458 2.528	1.522 2.555	1.184 1.669	-0.606 -0.282	3.314 5.074	0.308 0.858	2.580 4.257
EPOP 2012Q4 2013Q4	0.588 0.585	0.587 0.585	0.588 0.585	0.003 0.006	0.582 0.575	0.592 0.595	0.584 0.579	0.590 0.591
RWAG 2012Q4 2013Q4	-0.002 0.002	-0.002 0.002	-0.002 0.002	0.000 0.000	-0.002 0.002	-0.002 0.002	-0.002 0.002	-0.002 0.002

Stochastic Simulations (70 and 90 percent bands)

error	mean	std-dev
EBFI_ERR ECD_ERR ECH_ERR ECH_ERR ECH_ERR EGFE_ERR EGFE_ERR EGFE_ERR EGSE_ERR EH ERR EMO_ERR EMO_ERR EMP_ERR EX_ERR FYXRR_ERR FYXRAP_ERR HMFPT_ERR HQLWW_ERR HQLWW_ERR LHP_ERR LHP_ERR LHP_ERR LHP_ERR LHP_ERR LHP_ERR PCFR_ERR PCFR_ERR PCFR_ERR PCFR_ERR PHOUSE_ERR RCGANG_ERR RCGANG_ERR RCGANG_ERR RCGANG_ERR RG10P_ERR	-5.27E-21 1.59E-18 7.73E-20 -5.80E-20 -1.55E-19 1.77E-19 -1.02E-19 1.10E-20 8.15E-19 5.52E-20 1.10E-20 -3.89E-19	0.016080 0.026028 0.000196 0.003977 0.018092 0.007015 0.015560 0.002875 0.032328 0.017316 0.182535 0.021175 0.028269 0.902008 0.002755 0.044292 7.415-05 0.011991 0.004964 0.001206 0.003213 0.005263 0.006170 0.004478 0.006554 0.006951 0.006688 0.769652 1.074947 0.0011428 0.006402 0.0028156 0.322087 4.158527 0.8043253 0.292603 0.492511 0.002341 0.002341 0.002341 0.002341 0.002341 0.0023173