Advanced algorithms and data structures Assignment 1: Minimum-cost Flow

Philip Munksgaard University of Copenhagen pmunksgaard@gmail.com Malte Stær Nissen University of Copenhagen malte.nissen@gmail.com

Jacob Daniel Kirstejn Hansen University of Copenhagen jkirstejn@gmail.com

May 12, 2013

Contents

1	Exercise 1: b-flow	2				
	1.1 Figure 1(a)	2				
	1.2 Figure 1(b)					
2	Exercise 2: Minimum-cost flow problem	2				
3	Exercise 3: An application of MCFP: rectilinear planar embedding					
	3.1	4				
	3.2	5				
	3.3	5				
	3.4	6				
	3.5	6				

1 Exercise 1: b-flow

1.1 Figure 1(a)

The following is a b-flow for the graph in Figure 1(a):

$$f(v_1, v_3) = 4$$

$$f(v_2, v_1) = 5$$

$$f(v_2, v_5) = 1$$

$$f(v_3, v_2) = 4$$

$$f(v_3, v_4) = 3$$

$$f(v_4, v_5) = 1$$

$$f(v_5, v_1) = 2$$

$$f(v_5, v_3) = 7$$

This holds because; for each vertex, the sum of the incoming flow minus the sum of the outgoing flow is exactly the demand of that vertex.

1.2 Figure 1(b)

There exists no b-flow for the graph in Figure 1(b). This is best seen by inspecting vertex v_4 that has a negative demand of -2, meaning it needs to send 2 units away from the vertex, as negative capacities are not defined. However, v_4 only has ingoing edges and is therefore not able to meet its demands, meaning that a b-flow does not exist.

2 Exercise 2: Minimum-cost flow problem

We assign variable names to all the edges in Figure 1(a):

$$x_1 := v_1 v_3$$

$$x_2 := v_1 v_4$$

$$x_3 := v_2 v_1$$

$$x_4 := v_2 v_4$$

$$x_5 := v_3 v_2$$

$$x_7 := v_3 v_4$$

$$x_8 := v_4 v_5$$

$$x_9 := v_5 v_1$$

$$x_{10} := v_5 v_3$$

We then want to minimize $x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 + 6x_6 + 7x_7 + 8x_8 + 9x_9 + 10x_{10}$ with the following constraints:

We notice the linear programming formulation is not on standard form, so to fix this we convert the objective function into a maximisation problem by multiplying -1 on each side, meaning we have to maximize: $-x_1 - 2x_2 - 3x_3 - 4x_4 - 5x_5 - 6x_6 - 7x_7 - 8x_8 - 9x_9 - 10x_{10}$.

We then convert all the equality constraints into inequality constraints, using the fact that $A \ge B$, $A \le B \Leftrightarrow A = B$. However then we obtain \ge -inequalities which are not allowed in the standard form, so we convert these to \le -inequalities by multiplying each side of the inequality with -1. The standard form of the linear programming formulation then looks as follows.

3 Exercise 3: An application of MCFP: rectilinear planar embedding

3.1

Number of breakpoints total: 13

Figure 1: Rectilinear layout of graph

$_{_}f$	$\mid g \mid$	$oxed{z_{fg}}$	v	f	x_{vf}
a	b	0	v_1	a	0
a	c	0	v_1	b	1
a	d	0	v_1	c	1
a	e	0	v_2	b	0
b	a	2	v_2	c	1
b	c	1	v_2	d	1
b	d	1	v_3	a	1
b	e	0	v_3	c	1
$^{\mathrm{c}}$	a	1	v_3	d	1
$^{\mathrm{c}}$	b	1	v_3	е	1
\mathbf{c}	d	0	v_4	d	-1
$^{\mathrm{c}}$	e	0	v_4	e	1
d	a	0	v_5	a	1
d	b	1	v_5	e	-1
d	c	0	v_6	a	1
d	e	2	v_6	b	1
e	a	$\mid 4 \mid$	v_6	d	1
e	b	0	v_6	e	1
e	c	0	v_7	a	0
e	d	0	v_7	e	0
(a) All	vari	ables z_{fg}	(b) All	varia	ables $x_v f$

3.2

$$b_f = \sum_{v \in V} x_{vf} + \sum_{g \in F} z_{fg} - z_{gf} = \begin{cases} -4 & f \text{ is external} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

$$b_{a} = \sum_{v \in V} x_{va} + \sum_{g \in F} z_{ag} - z_{ga}, \quad F = \{b, c, d, e\}, \ V = \{v_{1}, v_{3}, v_{5}, v_{6}, v_{7}\}$$

$$= 3 + (0 - 7) = -4$$

$$b_{e} = \sum_{v \in V} x_{ve} + \sum_{g \in F} z_{eg} - z_{ge}, \quad F = \{a, d\}, \ V = \{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\}$$

$$= 2 + (4 - 2) = 4$$

3.3

As stated in the question we have assumed that no vertex in G has degree greater than 4. This assumption is necessary since we wouldn't be able to make a rectilinear layout for vertices with degree greater than 4 since naturally there are only 4 directions of horizontal/vertical edges (north, south, east and west).

Furthermore we assume that no vertices in G has degree lower than 2. If we had vertices lower than 2 they wouldn't form a true corner on a face boundary. Furthermore the vertex wouldn't be a true face boundary point since it would be placed inside a face.

If a vertex v has degree 2, it will only be a part of two faces f_1 and f_2 . When $x_{vf} = 0$ for one of the faces, the same will be the case for the other face since this implies the two edges to lie on a straight line and hence $\sum_f x_{vf} = 0$. If the two edges make a "corner", then $x_{vf} = -1$ for one of the faces f_1 or f_2 and $x_{vf} = 1$ for the other and hence we have $\sum_f x_{vf} = 0$ again.

If a vertex v has degree 3, there will always have two of it's edges in a straight line and hence contribution nothing to the sum. The third edge will be perpendicular to both of the edges on the straight line and hence make a inner turn on both of the faces that share the perpendicular edge. This will contribute with 1 for each of the two faces and hence $\sum_f x_{vf} = 2$.

Given a vertex v of degree 4, the vertex will always be part of 4 faces in each of which the vertex will be creating an inner turn. This gives us $\sum_f x_{vf} = 4$ and we have the following property of each vertex v:

$$\sum_{f} x_{vf} = \begin{cases} 0 & \text{if } v \text{ has degree 2} \\ 2 & \text{if } v \text{ has degree 3} \\ 4 & \text{if } v \text{ has degree 4} \end{cases}$$
 (2)

3.4

3.5