Combinatorics

We want to choose k elements among n elements.

	Repetition not allowed	Repetition allowed
Order does not matter	$\frac{n!}{(n-k)!k!}$	$\binom{n-1+r}{n-1}$
	(n choices, then n-1 choices, etc. and we stop at n-k, we also remove n! because order does not matter and n! is the number of permutations)	It's stars and bars method. We want r stars + n stars for each box. Then, we transform n-1 of these stars into bars to separate the r stars into boxes.
Order matters	n!	n^k
	(n choices, then n-1 choices, etc.)	Cartesian product.

Probabilities

Solving a probability problem

- list possible outcomes, define the probability space
- sometimes we keep a general Ω and different $\mathcal F$ depending on the point of view (colorblind/not colorblind, etc.)

Terminology

- Ω is the **sample space**, containing all possible outcomes ω .
- \mathcal{F} is an **event space** (there are multiple event spaces!). It is a set of the subsets of Ω . The powerset of Ω includes all \mathcal{F} . $|\mathcal{F}|=2^{|\Omega|}$ only if Ω is finite.

 ${\mathcal F}$ is also called a sigma-algebra.