SEDSI 2022

Tobin Turner

2022-02-17

Contents

1	SEDSI 2022					
2						
3						
4	Son	ne Options	11			
	4.1	Spring 2022	11			
	4.2	Or a figure	12			
	4.3	Or an Equation	12			
	4.4	Or a table of something	13			
	4.5	Or an Image	13			
5	Wo	rkflow Summary	15			
	5.1	R (engine) and Rstudio (IDE)	15			
	5.2	RMarkdown	16			
	5.3	bookdown package	17			
	5.4	github	17			
	5.5	netlify	18			
6	Lab	3: coronavirus visualization, data wrangling, and dates	19			
	6.1	Overview	19			
	6.2	Let's look like Applied Analytics Superstars and make some neat visuals.	19			

4		CONTENTS

7	Tho	ughts? Questions? Discussion?	29
	7.1	Thank you for your time!	29

SEDSI 2022

SEDSI Fun with Reproducible Analysis and RMarkdown

Motivation

A COVID Classroom

A Learning Management System Nightmare

Concise, Precisely Organized, Frequently Revised Assignments and Schedules

Date	Topic
Wednesday, February 16, 2022	SEDSI in Jacksonville
Thursday, February 17, 2022	Present at 2:45 PM
Friday, February 18, 2022	Celebrate a successful DASI Session

Real life example

It's nice to know exactly what you did when your original data requires wrangling.

Conflicts and students honors...

Table 3.1: Some Actual Data We Considered

NAME	TOTAL.HOURS	PC.HOURS	ADMIT.TERM
Greer, Patrick Sterling	3.0	3.0	201101
Greer, Patrick Sterling	144.0	123.0	201101
Thompson, Charleston Hannah	0.0	0.0	201201
Thompson, Charleston Hannah	142.0	122.0	201201
Melvin, Victor Richard-Scorsese	132.0	100.0	201202
Roberson, States Taylor	126.0	99.0	201301
Allen, Kaylee Michelle	125.0	68.0	201601
Phelps, Payton Elliott	117.0	114.0	201701
Rowley, Ella Marie Dorothy	121.0	121.0	201701
Smith, Michael Leston	112.0	112.0	201701
Taylor, Darrell Tyrese	78.0	78.0	201701
Wright, Alexandra Ruby	116.0	116.0	201701
Adu, Tyler	80.0	80.0	201801
Armell, James Richard	90.0	87.0	201801
Bell, Carrie Abigail	120.5	99.5	201801
Boyd, Jeremiah Quintin	87.0	87.0	201801
Brinkley, Khalid Osmon	74.0	74.0	201801
Campbell, Blakeney Herlong	92.0	85.0	201801
Dearman, Clark Avant	101.5	82.5	201801
Drake, John Chapman	94.0	94.0	201801

Some Options

This is just a cool place to put stuff¹. Like a schedule, for example:

4.1 Spring 2022

Date	Topic
Monday, January 10, 2022	R basics and install
Wednesday, January 12, 2022	R basics and workflows
Friday, January 14, 2022	QUIZ 1
Monday, January 17, 2022	MLK Holiday
Wednesday, January 19, 2022	Objects, Vectors, and Arithmetic
Friday, January 21, 2022	QUIZ 2
Monday, January 24, 2022	Summaries and Subscripting

 $^{^1{\}rm Footnotes}$ are always neat. And useful. Like this one!

4.2 Or a figure

4.3 Or an Equation

Here is a ${\bf fun}$ equation for my SEDSI DASI friends:

$$f\left(k\right) = \binom{n}{k} p^{k} \left(1 - p\right)^{n - k} \tag{4.1}$$

 cyl disp hp drat wtqsec mpg $_{
m VS}$ Mazda RX4 2.620 0 21.0 6 160.0 110 3.90 16.46 Mazda RX4 Wag 21.06160.0110 3.902.87517.020 Datsun 710 22.8108.093 3.852.32018.611 Hornet 4 Drive 258.019.44 21.46 110 3.083.2151 Hornet Sportabout 18.78 360.0175 3.153.44017.020 105Valiant 18.1 6 225.02.763.46020.221 Duster 360 8 245 0 14.3 360.03.21 3.57015.84 $\rm Merc~240D$ 24.4146.762 3.693.19020.001 4 Merc 23022.84 140.895 3.923.15022.901 Merc 2806 123 19.2167.63.923.44018.301

Table 4.2: A table of the first 10 rows of the mtcars data.

4.4 Or a table of something

4.4.1 Fun example table

4.5 Or an Image

4.5.1 Hero 1

4.5.2 Hero 2

Workflow Summary

5.1~R~(engine) and Rstudio (IDE)

5.2 RMarkdown

5.3 bookdown package

5.4 github

5.5 netlify

Lab 3: coronavirus visualization, data wrangling, and dates

6.1 Overview

The package is available on GitHub here and is updated daily.

I use the coronavirus package and use the coronavirus::update_data() function to keep the data current. This also has the dates preformatted which can be nice.

6.2 Let's look like Applied Analytics Superstars and make some neat visuals.

```
coronavirus::update_dataset()
#> Rows: 633609 Columns: 15
#> -- Column specification ------
#> Delimiter: ","
#> chr (8): province, country, type, iso2, iso3, combined_...
#> dbl (6): lat, long, cases, uid, code3, population
#> date (1): date
#>
* i Use `spec()` to retrieve the full column specification for this data.
```

```
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> No updates are available
library(coronavirus)
library(dplyr)
library(ggplot2)
```

I'd recommend you always start by trying to understand a bit about the data.

```
head(coronavirus)
          date province country
                                   lat
                                            long
                                                      type
#> 1 2020-01-22 Alberta Canada 53.9333 -116.5765 confirmed
#> 2 2020-01-23 Alberta Canada 53.9333 -116.5765 confirmed
#> 3 2020-01-24 Alberta Canada 53.9333 -116.5765 confirmed
#> 4 2020-01-25 Alberta Canada 53.9333 -116.5765 confirmed
#> 5 2020-01-26 Alberta Canada 53.9333 -116.5765 confirmed
#> 6 2020-01-27 Alberta Canada 53.9333 -116.5765 confirmed
   cases uid iso2 iso3 code3
                                  combined_key population
        0 12401 CA CAN
                          124 Alberta, Canada
                                                 4413146
#> 1
#> 2
        0 12401 CA CAN
                           124 Alberta, Canada
                                                 4413146
#> 3
        0 12401 CA CAN
                          124 Alberta, Canada
                                                4413146
#> 4
        0 12401
                CA CAN
                           124 Alberta, Canada
                                                 4413146
#> 5
        0 12401
                  CA CAN
                           124 Alberta, Canada
                                                 4413146
        0 12401
                CA CAN
                           124 Alberta, Canada
                                                 4413146
   continent_name continent_code
#> 1 North America
                              NA
#> 2 North America
                              NA
#> 3 North America
                              NA
#> 4 North America
                              NA
#> 5 North America
                              NA
#> 6 North America
```

For example, what does this summary let us know?

1. Can you create a visual showing the cases over time for Russia, Spain, US, and Venezuela? Also, why might filter(cases >= 0) be worth using?

6.2. LET'S LOOK LIKE APPLIED ANALYTICS SUPERSTARS AND MAKE SOME NEAT VISUALS.21

2. Can you show deaths over time for Russia, Spain, US, and Venezuela? And can you play with your geoms and make something neat?

22CHAPTER 6. LAB 3: CORONAVIRUS VISUALIZATION, DATA WRANGLING, AND DATES

3. Now let's do a plot of COVID rate (# confirmed cases / population). Something like this.

4. What is and **is not** useful about the previous illustration?

5. Make a chart with cumulative cases. Something like this:

$6.2.\ \ LET'S\ LOOK\ LIKE\ APPLIED\ ANALYTICS\ SUPERSTARS\ AND\ MAKE\ SOME\ NEAT\ VISUALS. 23$

6. With a little more time and a few extra packages, we ${f could}$ make a graph prettier. Try.

library(scales)
library(ggrepel)
library(glue)
library(lubridate)

Cumulative deaths from COVID-19, selected countries Data as of Wed, Feb 16, 2022

Source: github.com/RamiKrispin/coronavirus

7. Now let's **really** have some fun. Let's illustrate death rates relative to confirmed cases. Why is this more challenging than anything we've done so far in this lab? We're going to have to make this data **tidy**.

One way to play this game.

Let's make a little table of just date, country, and deaths (with a meaning-ful variable name), and then count observations by coutry just to make sure eveything looks nice.

```
date country deaths
#> 1 2020-01-22 Russia
                              0
#> 2 2020-01-23
                 Russia
                              0
#> 3 2020-01-24
                 Russia
                              0
#> 4 2020-01-25
                 Russia
                              0
#> 5 2020-01-26
                 Russia
                              0
  6 2020-01-27
                 Russia
#>
       country
#> 1
        Russia 757
#> 2
         Spain 754
#> 3
            US 757
#> 4 Venezuela 756
```

Let's make a little table of just confirmed cases.

6.2. LET'S LOOK LIKE APPLIED ANALYTICS SUPERSTARS AND MAKE SOME NEAT VISUALS.25

```
#>
          date country confirmed
#> 1 2020-01-22 Russia
#> 2 2020-01-23 Russia
                              0
#> 3 2020-01-24 Russia
                              0
#> 4 2020-01-25 Russia
                             0
#> 5 2020-01-26 Russia
                              0
#> 6 2020-01-27 Russia
                             0
#>
      country
               n
#> 1
       Russia 757
#> 2
       Spain 757
          US 757
#> 3
#> 4 Venezuela 757
```

Let's join these together. I use $left_join$.

#>		date	country	deaths	confirmed
#>	1	2020-01-22	Russia	0	0
#>	2	2020-01-23	Russia	0	0
#>	3	2020-01-24	Russia	0	0
#>	4	2020-01-25	Russia	0	0
#>	5	2020-01-26	Russia	0	0
#>	6	2020-01-27	Russia	0	0
#>		country	n		
#>	1 Russia 757				
#>	2 Spain 757				
#>	3	US 7	757		
#>	4 Venezuela 757				

Let's add some cumulative statistics as well.

#>		date	country	deaths	confirmed	cumulative_cases
#>	1	2020-01-22	Russia	0	0	0
#>	2	2020-01-23	Russia	0	0	0
#>	3	2020-01-24	Russia	0	0	0
#>	4	2020-01-25	Russia	0	0	0
#>	5	2020-01-26	Russia	0	0	0
#>	6	2020-01-27	Russia	0	0	0
#>		cumulative	_deaths 1	rate		
#>	1		0	0		
#>	2		0	0		
#>	3		0	0		
#>	4		0	0		
#>	5		0	0		
#>	6		0	0		

Now we can plot some more fun stuff.


```
summary(df3)
#>
        date
                        country
                                           deaths
#> Min. :2020-01-22
                     Length:3028
                                       Min. : 0.0
#> 1st Qu.:2020-07-29
                      Class : character
                                       1st Qu.: 5.0
#> Median :2021-02-03
                      Mode :character
                                       Median : 126.0
#> Mean
        :2021-02-03
                                       Mean : 452.7
#> 3rd Qu.:2021-08-11
                                       3rd Qu.: 639.2
  Max. :2022-02-16
#>
                                       Max. :4442.0
                                       NA's :4
#>
#>
   confirmed
                     cumulative_cases
                                       cumulative\_deaths
#> Min. : -74937.0 Min. : 0
                                       Min. : 0
#> 1st Qu.:
                                       1st Qu.: 16977
            461.5 1st Qu.: 14445698
#> Median : 7814.0 Median : 25190092
                                       Median : 99431
#> Mean : 34303.5 Mean : 43523860
                                       Mean :135068
#> 3rd Qu.: 28170.0 3rd Qu.:103362932
                                       3rd Qu.:248203
```

```
#> Max. :1368563.0
                       Max.
                             :103870974
                                            Max.
                                                   :364273
#>
                                            NA's
                                                   :2147
#>
        rate
#> Min. :-0.036576
#> 1st Qu.: 0.004568
#> Median : 0.012750
#> Mean : 0.021680
#> 3rd Qu.: 0.023227
#> Max. : 3.840391
#> NA's :4
library(scales)
library(ggrepel)
library(glue)
library(lubridate)
as_of_date <- df3 \%>%
  summarise(max(date)) %>%
 pull()
as_of_date_formatted <- glue("{wday(as_of_date, label = TRUE)}, {month(as_of_date, label = TRUE)}
ggplot(data = df3,
       mapping = aes(x = date,
                    y = cumulative_cases,
                     color = country)) +
  # represent cumulative cases with lines
  geom_line(size = 0.7, alpha = 0.8) +
  # add points to line endings
  geom_point() +
  # add country labels, nudged above the lines
  # geom_label_repel(nudge_y = 1, direction = "y", hjust = 1) +
  # turn off legend
  guides(color = FALSE) +
  # use pretty colors
  scale_color_viridis_d() +
  # better formatting for y-axis
  scale_y_continuous(labels = label_comma()) +
  # use minimal theme
  theme_minimal() +
  # customize labels
  labs(
   x = "My pretty Lab 3 visual",
   y = "Cumulative number of deaths",
   title = "Cumulative deaths from COVID-19, selected countries",
   subtitle = glue("Data as of", as_of_date_formatted, .sep = " "),
    caption = "Source: github.com/RamiKrispin/coronavirus"
 )
```

$28 CHAPTER\ 6.\ LAB\ 3:\ {\it coronavirus}\ VISUALIZATION, DATA\ WRANGLING, AND\ DATES$

Cumulative deaths from COVID-19, selected countries Data as of Wed, Feb 16, 2022

Source: github.com/RamiKrispin/coronavirus

Thoughts? Questions? Discussion?

7.1 Thank you for your time!