Block I

Definitions

1. Statistic models

introduction

Statistical model

Let:

 $\cdot\,\Omega$ set

 $\cdot\,\mathcal{A}$ sigma-algebra over Ω

$$\cdot \mathcal{P} \subset \mathcal{F}(\Omega, \mathbb{R})$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is a statistical model if:

$$\cdot \quad \forall \ f \in \mathcal{P}$$
:

f probability distribution

Parametrized

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model

$$\cdot \, \Theta \subset \mathbb{R}^d$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is parametrized by Θ if:

$$\cdot \mathcal{P} = \{P_{\theta}\}_{\theta \in \Theta}$$

4 2 Estimation

Likelihood

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ

We name likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$ to:

$$\begin{array}{cccc} L : \Omega \times \Theta & \longrightarrow & \mathbb{R}^+ \\ (x, \theta) & \longmapsto & P_{\theta}(x) \end{array}$$

Exponential model

Let:

- $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ
- · L likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is exponential if:

$$\exists \{f_i\}_{i=1}^r, f \in \mathcal{F}(\Omega, \mathbb{R}) \quad \forall i \in [1, r]_{\mathbb{N}}$$
:

 f_i, f measurable

$$\exists \{\phi_i\}_{i=1}^r, \phi \in \mathcal{F}(\theta, \mathbb{R}) \quad \forall i \in [1, r]_{\mathbb{N}}$$
:

 ϕ_i, ϕ measurable

 $\cdot \quad \forall \ x \in \Omega$:

 $\forall \theta \in \Theta$:

$$L(x,\theta) = \exp(\sum_{i=1}^{r} f_i(x)\phi_i(\theta) + f(x) + \phi(\theta))$$

6 2 Estimation

2. Estimation

Statistic

Let:

 $\cdot \left(\Omega, \mathcal{A}, \mathcal{P} \right)$ m-D statistical model parametrized by Θ

 $\cdot \left(M,\Sigma \right)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $f: M \to \mathbb{R}^m$

Then, f is a statistic if:

 $\cdot f$ measurable

We denote:

 $\cdot f : T$

Sufficiency

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ m-D statistical model parametrized by Θ

 $\cdot \left(M,\Sigma \right)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $T: M \to \mathbb{R}^m$ statistic

Then, T is sufficient if:

$$\cdot \quad \forall \ \theta_1, \theta_2 \in \Theta$$
:

 $\forall x \in M$:

 $\forall t \in \mathbb{R}^m$:

$$P_{\theta_1}(X = x \mid T \circ X = t) = P_{\theta_2}(X = x \mid T \circ X = t)$$

8 2 unit name

Estimator

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\: X\: :\: \Omega \to M$ random variable

 $T: M \to \mathbb{R}^k$ statistic

 $\cdot \theta \in \Theta$

Then, T is an estimator of θ if:

 $\cdot T$ approaches θ

Loss function

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model parametrized by Θ

 $\cdot (M, \Sigma)$ measurable space

 $\cdot \, X \, : \, \Omega \to M$ random variable

 $T: M \to \mathbb{R}^k \text{ estimator}$

 $\cdot W : \mathbb{R}^k \times \Theta \to \mathbb{R}^+$

Then, W is a loss function if:

 $\cdot W(\theta, \theta) = 0$

Risk function

Let:

$$\cdot (\Omega, \mathcal{A}, \mathcal{P})$$
 statistical model parametrized by Θ

$$x_1, \dots, x_n$$
 observation of $X = X_1, \dots, X_n$: $\tilde{\Omega} \to \Omega$

$$T: \Omega \to \mathbb{R}^k \text{ estimator}$$

$$W: \mathbb{R}^k \times \Theta \to \mathbb{R}^+$$
 loose function

We name risk function to:

$$R_T: \Theta \longrightarrow \mathbb{R}^+ \atop \theta \longmapsto E_{\theta}(W(T, \theta)) \ adsf$$

 $\cdot asdfjkdaf$