Arquitetura e Organização de Computadores

Aula 04: Continuação: Conversão de Bases e Aritmética Computacional

Adição no Sistema Binário

- Outros exemplos
 - -Efetuar a soma 45₁₀ e 47₁₀

Efetuar a soma 27₁₀ e 25₁₀
= 110100₂

Subtração no Sistema Binário

• O método de subtração é análogo a uma subtração no sistema decimal. Assim, tem-se:

 Para o caso 0-1, o resultado será igual a 1, porém haverá um transporte para a coluna seguinte que deve ser acumulado no subtraendo e, obviamente, subtraído do minuendo. Para exemplificar. tem-se:

Subtração no Sistema Binário

- Outro exemplo
 - -Efetuar a subtração 101101 100111

```
101/101

-- 100111

-- 0 0 0 1 1 0 ou 110<sub>2</sub>

— Efetuar a subtração 100110001 - 10101101
```

 $= 010000100_2$

Multiplicação no Sistema Binário

Ocorre exatamente como uma multiplicação no sistema decimal.
 Assim sendo, tem-se:

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

 Enquanto que na multiplicação decimal temos uma tabela com 100 operações, do tipo:

$$-1 \times 2 = 2$$

$$-2 \times 7 = 14$$

$$-5 \times 6 = 30$$

-Etc.

Multiplicação no Sistema Binário

- Para exemplificar, efetua-se a multiplicação entre os números 11010₂ e 101₂.
- O procedimento consiste em multiplicar cada algarismo do multiplicador pelos algarismos do multiplicando.
- Isto resulta em produtos parciais, tantos quanto forem os algarismos do multiplicador
- Cada produto parcial é colocado de modo a se posicionar uma casa para a esquerda do produto anterior
- Em seguida, os três produtos são somados produzindo o resultado desejado.

$$\begin{array}{c}
11010 & \longleftarrow & \text{Multiplicando} \\
 & \times 101 & \longleftarrow & \text{Multiplicador} \\
\hline
11010 & \longleftarrow & \text{Produtos parciais} \\
000000+ & & \\
11010++ & & \\
\hline
10000010
\end{array}$$

Multiplicação no Sistema Binário

- Mais exemplos:
 - Efetuar a multiplicação 6 x 5= 11110₂
 - —Efetuar a multiplicação 21 x 13
 = 100010001₂
 - —Efetuar a multiplicação 18 x 4
 = 1001000₂

- Semelhante a divisão com números decimais
 - Deslocamentos e adições
- O procedimento compreende a manipulação de quatro elementos:
- Dividendo o valor a ser dividido
- Divisor Valor que deve estar contido n vezes no dividendo e que, então, se deseja saber qual o valor de n
- Quociente Quantidade de vezes que o divisor se repete no dividendo (o valor de n)
- Resto Caso a divisão não seja exata, isto é, o divisor vezes n não seja igual ao dividendo, a diferença é chamada de resto

- Procedimento decimal
 - a) verificasse quantas vezes o divisor cabe no dividendo por tentativa
 - b) busca o maior valor do quociente cuja a sua multiplicação com o divisor não seja maior que o dividendo
 - —c) subtrai-se de 35 o valor resultante
 - d) O resto da divisão deve ser um valor igual, no máximo, ao divisor menos 1

- Procedimento binário
 - Verifica-se que valor é suficientemente maior que o divisor, de modo que o primeiro algarismo do quociente seja 1
 - a) No exemplo utilizado, o valor 100 três primeiros algarismos da esquerda para a direita) é igual ao divisor
 - 2) Acrescenta-se ao resto algarismos do dividendo (um a um da esquerda para a direita) quantos forem necessários para que o valor obtido seja igual ou maior que o divisor
 - A Cada algarismo selecionado e não suficiente acrescenta-se um zero ao quociente.

- Exemplo:
 - Efetuar a divisão 101010₂ por 110₂
 - Resposta:

Exercícios

- 1) Efetuar a seguintes operações de subtração:
 - a) 11001000010₂ 1111111111₂
 - b) 10001101000₂ 101101101₂
- 2) Efetue as seguintes operações aritméticas:
 - a) $(101)_2 \times (111)_2 = ()_2$
 - b) $(11101) \times (1010) = ()_2$
 - (11001110 $\frac{1}{2}$ / (1101 $\frac{1}{2}$ = ()₂
 - d) $(10010011 \frac{1}{2})/(11101 \frac{1}{2} = ()_2$

- Em aplicações práticas, os números binários devem ser representados com sinal. Uma maneira de fazer isto é adicionar um bit de sinal ao número.
- Este bit é adicionado mais a esquerda do número, por convenção se for 0, o número em questão é positivo, caso seja 1, o número é negativo.
- Este processo é denominado sinal-magnitude.

- Vamos ver alguns exemplos:
 - —Representar em binários sinal-magnitude os números 23_{10} , -15_{10} , 11_{10} e -9_{10} usando palavras de 8 bits.

- Vamos ver alguns exemplos:
 - —Representar em binários sinal-magnitude os números 23_{10} , -15_{10} , 11_{10} e -9_{10} usando palavras de 8 bits.
 - $23_{10} = 10111_2$ usando 8 bits temos: 00010111_2

- Vamos ver alguns exemplos:
 - —Representar em binários sinal-magnitude os números 23_{10} , -15_{10} , 11_{10} e -9_{10} usando palavras de 8 bits.

```
23_{10} = 10111_2 usando 8 bits temos: 00010111_2
```

 $15_{10} = 1111_2$ usando 8 bits temos: 00001111_2 como o sinal é negativo vem $-15_{10} = 10001111_2$.

- Vamos ver alguns exemplos:
 - Representar em binários sinal-magnitude os números 23_{10} , -15_{10} , 11_{10} e -9_{10} usando palavras de 8 bits. 23_{10} = 10111_2 usando 8 bits temos: 00010111_2 15_{10} = 1111_2 usando 8 bits temos: 00001111_2 como o sinal é negativo vem -15_{10} = 10001111_2 . 11_{10} = 1011_2 usando 8 bits temos: 00001011_2

Vamos ver alguns exemplos:

-Representar em binários sinal-magnitude os números 23_{10} , -15_{10} , 11_{10} e -9_{10} usando palavras de 8 bits. 23_{10} = 10111_2 usando 8 bits temos: 00010111_2 15_{10} = 1111_2 usando 8 bits temos: 00001111_2 como o sinal é negativo vem -15_{10} = 10001111_2 . 11_{10} = 1011_2 usando 8 bits temos: 00001011_2 9_{10} = 1001_2 usando 8 bits temos: 00001001_2 , como o sinal é negativo vem -9_{10} = 10001001_2

Soma

- —Se os sinais forem iguais soma e conserva o sinal da parcela de maior magnitude
- -Exemplo1:

0 010

+ 0 101

Soma

- —Se os sinais forem iguais soma e conserva o sinal da parcela de maior magnitude
- -Exemplo1:

Soma

- —Se os sinais forem iguais soma e conserva o sinal da parcela de maior magnitude
- -Exemplo2:

```
1 111
```

+ 0 011

Soma

- —Se os sinais forem iguais soma e conserva o sinal da parcela de maior magnitude
- -Exemplo2:

Soma

- —Se os sinais forem diferentes subtrai e conserva o sinal da parcela de maior magnitude
- -Exemplo1:

0 111

+ 1011

Soma

- —Se os sinais forem diferentes subtrai e conserva o sinal da parcela de maior magnitude
- -Exemplo1:

Soma

- —Se os sinais forem diferentes subtrai e conserva o sinal da parcela de maior magnitude
- -Exemplo2:

```
1 111
```

+ 0 011

Soma

- —Se os sinais forem diferentes subtrai e conserva o sinal da parcela de maior magnitude
- -Exemplo2:

- Subtração
 - —Sejam dois número binário A e B
 - —A-B corresponde a A+(-B)

• Quantidade de números com sinal que podem ser representados com um número N de bits de representação:

$$-2^{N-1} + 1 \le X \le 2^{N-1}$$

—Assim, para
$$N = 8$$
, $-127 \le X \le 127$

- Problema da Aritmética em Sinal Magnitude:
 - Duas representações para o zero

- Outra forma de representação de números negativos bastante utilizada é o complemento de 2.
- Para obtermos o complemento de 2 de um número binário, precisamos inicialmente converter o número em seu complemento de 1.
- O complemento de 1 de um número binário obtém-se trocando cada bit pelo seu complemento (0→1 e 1→0).
- A seguir, soma-se 1 ao complemento de 1, obtendo assim o complemento de 2.

 Vamos exemplificar obtendo os complementos de 2 dos números binários abaixo:

binário compl. de 1 compl. de 2 10001001

 Vamos exemplificar obtendo os complementos de 2 dos números binários abaixo:

binário compl. de 1 compl. de 2 10001001 01110110 01110111

binário	compl. de 1	compl. de 2
10001001	01110110	01110111
00111100		

binário	compl. de 1	compl. de 2	
10001001	01110110	01110111	
00111100	11000011	11000100	

binário	compl. de 1	compl. de 2
10001001	01110110	01110111
00111100	11000011	11000100
10011111		

binário	compl. de 1	compl. de 2
10001001	01110110	01110111
00111100	11000011	11000100
10011111	01100000	01100001

binário	compl. de 1	compl. de 2
10001001	01110110	01110111
00111100	11000011	11000100
10011111	01100000	01100001
11000101		

binário	compl. de 1	compl. de 2
10001001	01110110	01110111
00111100	11000011	11000100
10011111	01100000	01100001
11000101	00111010	00111011

binário	compl. de 1	compl. de 2
10001001	01110110	01110111
00111100	11000011	11000100
10011111	01100000	01100001
11000101	00111010	00111011
01101011		

binário	compl. de 1	compl. de 2
10001001	01110110	01110111
00111100	11000011	11000100
10011111	01100000	01100001
11000101	00111010	00111011
01101011	10010100	10010101

- Devemos observar que devido ao seu emprego em hardware os números binários são representados sempre com um número fixo de bits.
- A conversão inversa, ou seja, de um número em representação complemento de 2 para a notação binária original é feita obtendo-se novamente o seu complemento de 2.

Valor em decimal de um número com sinal

•
$$01010110_2 = +86_{10}$$

- $2^6 + 2^4 + 2^2 + 2^1 = 64 + 16 + 4 + 2 = 86_{10}$

• $10101010_2 = -86_{10}$

$$--2^7 + 2^5 + 2^3 + 2^1 = -128 + 32 + 8 + 2 = -86_{10}$$

- Utilização do complemento de 2 em operações aritméticas.
- Podemos utilizar a notação complemento de 2 para efetuar operações de soma (e subtração).
- Para efetuar operações envolvendo números negativos usamos seu complemento de 2

Por exemplo:

— Efetuar 11010111₂-00100101₂

obtemos o complemento de 2 de 00100101 temos 11011011

a seguir efetuamos a soma 11010111 + 11011011

11010111 +11011011

110110010

Outro exemplo:

-Efetuar 001101_2 - 010101_2 (13-21)₁₀ usando notação de complemento de 2

Outro exemplo:

-Efetuar 001101_2 - 010101_2 (13-21)₁₀ usando notação de complemento de 2

O complemento de 2 de 010101 é 101011 (confere?), agora temos

001101 +1<u>01011</u> 111000 O resultado foi 56 ?? O que deu errado?

- Nada! Como o subtraendo é o maior, o resultado é um número negativo e portanto já está representado em complemento de 2.
- Para obtermos o módulo do resultado, basta obter novamente o complemento de 2, assim
- 11000 → 1000, ou seja, trata-se de -8.

Complemento de 2

1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Comparação das representações

Decimal	Sinal e magnitude	Complemento a 2
-16	_	10000
-15	11111	10001
-14	11110	10010
-13	11101	10011
-12	11100	10100
-11	11011	10101
-10	11010	10110
-4	10100	11100
-3	10011	11101
-2	10010	11110
-1	10001	11111
-0	10000	_
+0	00000	00000
+1	00001	00001
+2	00010	00010
+3	00011	00011
+4	00100	00100
+10	01010	01010
+11	01011	01011
+12	01100	01100
+13	01101	01101
+14	01110	01110
+15	01111	01111

Comparação das representações

Tipo de Representação	Dupla representação para o zero	Custo	Velocidade
Sinal e magnitude	SIM (desvantagem)	Alto (componentes separados para soma e subtração)	Baixa (algoritmo de verificação de sinais, soma e subtração)
Complemento a 2	Não (vantagem)	Baixo (um componente único para soma e subtração)	Alta (algoritmo simples e igual para soma e subtração)

 Ocorre sempre que o resultado de uma operação não pode ser representado no hardware disponível

Operação	Operando A	Operando B	Resultado
A+B	>= 0	>=0	<0
A+B	<0	<0	>=0
A-B	>=0	<0	<0
A-B	<0	>=0	>=0

• Se um número for negativo, e o outro positivo, não ocorrerá overflow.

- Outra forma de verificar a ocorrência de overflow
 - —Some os dois números e observe se ocorre carry (vai 1) sobre o bit de sinal e se ocorreu carry após o bit de sinal.
 - —Se ocorreu um e somente um dos dois carrys houve estouro (resultado errado), caso contrário a soma está correta.

```
(40_{10}) + (-50_{10}) = -10_{10}

40_{10} = 00101000_2

50_{10} = 00110010_2 ==> -50_{10} = 11001110_2

00101000_2

+11001110_2

11110110 = -2^7 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1 = -10 (correto)
```

Soma (carry sobre bit de sinal)

```
(5_{10}) + (6_{10}) = 11_{10}

5_{10} = 0101_2

6_{10} = 0110_2

1

0101_2

+0110_2

1011 => carry sobre bit de sinal (estouro = overflow)

-2^3 + 2^1 + 2^0 = -5 (resultado errado)
```

Exemplos de overflow

 Isto significa que o resultado está correto se o bit de sinal for ignorado

Exemplos de overflow

Isto significa que o resultado é negativo e está em complemento a
 2

Exemplos de overflow

 Não ocorre overflow, o resultado é negativo e está em complemento a 2

Exemplos de overflow

Não ocorre overflow, o carry é ignorado e o resultado é positivo

Complemento de 2

Exercícios

Efetue as operações binárias

```
a) 10001+1111 b) 1110+1001011 c) 1011+ 11100
```

```
d) 110101+1011001+11111110 e) 1100+1001011+11101
```

f) 10101-1110 g) 100000-11100 h) 1011001-11011

i) 11001x101 j) 11110x110 k) 11110x111

Represente os números em notação sinal-módulo 8bits

a) 97 b) -121 c) 79 d) -101

Represente os números do exercício anterior em complemento de 2.

Efetue as operações utilizando complemento de 2.

a) 111100-11101011 b) 101101-100111 c) 75₈-30₈

Números Fracionários

- Discutiram-se, até o momento, as diversas formas de conversão de números inteiros, pertencentes a um dado sistema, em outro.
- Neste tópico, serão mostrados os procedimentos para converter números fracionários.

Conversão de Números Binários Fracionários em Decimais

• O método de conversão é obtido observando-se a regra básica de formação de um número fracionário no sistema decimal. Para exemplificar, tem-se o número $10,5_{10}$.

$$10.5_{10} = 1 \times 10^{1} + 0 \times 10^{0} + 5 \times 10^{-1}$$

 Desta forma, para converter o número binário fracionário 101,101 para o sistema decimal, adota-se o mesmo procedimento.

$$101,101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$101,101_2 = 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times \frac{1}{2} + 0 \times \frac{1}{4} + 1 \times \frac{1}{8}$$

$$101,101_2 = 4 + 1 + 0,5 + 0,125 = 5,625_{10}$$

Conversão de Números Decimais Fracionários em Binários

- O processo consiste em separar o número decimal na parte inteira e na fracionária.
- O método das divisões sucessivas é aplicado a parte inteira, conforme estudado anteriormente.
- Para a parte fracionária aplica-se o método das multiplicações sucessivas até que se atinja zero.
- Para exemplificar, será convertido o número decimal 8,375 em binário.

$$8,375 = 8 + 0,375$$

• Parte inteira:

LSB
$$- \bigcirc \begin{array}{c|c} 8 & 2 \\ \hline \bigcirc & 4 & 2 \\ \hline \bigcirc & 2 & 2 \\ \hline \bigcirc & \bigcirc & -MSB \end{array}$$
 $8_{10} = 1000_2$

Conversão de Números Decimais Fracionários em Binários

Parte Fracionária:

Pode-se observar que é utilizado somente a parte fracionária dos números em todas as multiplicações.

Os algarismos inteiros, resultantes das multiplicações, irão compor o número binário.

Estes números são tomados na ordem da multiplicação. Assim:

$$0,375_{10} = 0,011_2$$

Para completar a conversão basta efetuar a composição da parte interia com a fracionária:

$$8,375_{10} = 1000,011_2$$

Conversão de Números Decimais Fracionários em Binários

- Observação Importante: existem casos em que o método das multiplicações sucessivas encontra novamente os números já multiplicados e o processo entra em um "loop" infinito.
- Isto equivale a uma dízima periódica. Como exemplo, tem-se:

$$0.8_{10} = (0.1100 \ 1100 \ 1100...)_2$$

Sistema de Numeração Binário

Bits e Bytes

- —A menor unidade de informação usada pelo computador é o *bit*. Este tem atribuições lógicas **0** ou **1**.
- Cada um destes estados pode, internamente, ser representado por meios eletro-magnéticos (negativo/positivo, ligado/desligado, etc).
- -É por isso que é mais fácil para armazenar dados em formato binário. Assim, todos os dados do computador são representados de forma binária.
- Mesmo os números são comumente representados na base 2, em vez da base 10, e suas operações são feitas na base 2.

Sistema de Numeração Binário

- Um conjunto de 8 bits é chamado de byte e pode ter até 28 = 256 configurações diferentes.
- As seguintes denominações são comumente usadas na área de informática

nome	memória
bit	$\{0,1\}$
byte	8 bits
kilobyte (kbyte)	2^{10} bytes (pouco mais de mil bytes ($2^{10} = 1024$))
megabyte	2 ²⁰ bytes (pouco mais de um milhão de bytes)
gigabyte	2 ³⁰ bytes (pouco mais de um bilhão de bytes)

O código binário e o correspondente valor decimal de alguns caracteres no padrão ASCII:

O principal padrão usado para

Representar caracteres

é o padrão ASCII (American

Standard Code for Information

Interchange), usado na

maioria dos computadores.

Cada um destes caracteres

é representado por um byte.

Caracter	Representação em ASCII	Valor na base decimal
:	÷	
	00100000	32
!	00100001	33
22	00100010	34
#	00100011	35
\$	00100100	36
:	:	:
0	00110000	48
1	00110001	49
2	00110010	50
3	00110011	51
:	:	
$\stackrel{:}{A}$	01000001	65
B	01000010	66
C	01000011	67
D	01000100	68
:	:	:
a	01100001	97
b	01100010	98
c	01100011	99
d	01100100	100
:	:	:

Tabela ASCII

- Observe que:
- 1. As codificações para letras em maiúsculas e minúsculas são diferentes.
- 2. A codificação de 'B' é a codificação de 'A' somado de 1; a codificação de 'C' é a codificação de 'B' somado de 1; assim por diante.

Esta codificação permite poder comparar facilmente se um caráter vem antes do outro ou não.

Exercícios para serem feitos do livro base

14) Efetuar as seguintes somas:

a)
$$31752_8 + 6735_8 =$$

e)
$$11001111101_2 + 1011110110_2 =$$

b)
$$37742_8 + 26573_8 =$$

f)
$$211312_4 + 121313_4 =$$

c)
$$2A5BEF_{16} + 9C829_{16} =$$

g)
$$3645_8 + 2764_8 =$$

d)
$$356_7 + 442_7 =$$

15) Efetuar as seguintes operações de subtração:

a)
$$64B2E_{16} - 27EBA_{16} =$$

b)
$$2351_8 - 1763_8 =$$

c)
$$543_6 - 455_6 =$$

d)
$$43321_5 - 2344_5 =$$

f)
$$10001101000_2 - 101101101_2 =$$

g)
$$43DAB_{16} - 3EFFA_{16} =$$

h)
$$100010_2 - 11101_2 =$$

Exercícios para serem feitos do livro base

```
42) Efetue as seguintes operações aritméticas:

a) (101)_2 \times (111)_2 = (\ )_2

b) (11101)_2 \times (1010)_2 = (\ )_2

c) (11001110)_2 / (1101)_2 = (\ )_2

d) (111110001)_2 \times (10011)_2 = (\ )_2

e) (100100011)_2 / (11101)_2 = (\ )_2

f) (1101101)_2 / (100)_2 = (\ )_2

g) (111000001) \times (101001)_2 = (\ )_2
```