6. Operatoren und Wellenfunktionen

6.1 Normierung von Wellenfunktionen

Bestimme die Normierungskonstante N nachfolgender Wellenfunktionen.

a.)
$$\Psi_1 = N \cdot \sin\left(\frac{n \cdot \pi \cdot x}{L}\right) \qquad \qquad \int_0^L dx$$
b.)
$$\Psi_2 = N \cdot r \cdot \exp\left(-\frac{r}{a_0}\right) \qquad \qquad \int_0^\infty \int_0^{2\pi} \int_0^\pi d\varphi d\vartheta dr$$
c.)
$$\Psi_3 = N \cdot \left(2 - \frac{r}{a_0}\right) \cdot \exp\left(-\frac{r}{a_0}\right) \qquad \qquad \int_0^\infty \int_0^{2\pi} \int_0^\pi d\varphi d\vartheta dr$$

6.2 Eigenwerte und Eigenfunktionen von Operatoren

Vervollständige nachfolgende Tabelle, die die Eigenwerte und normierten Eigenfunktionen eines angegeben Operators angibt.

Operator	Eigenwert	norm. Eigenfunktion
$\frac{\hbar}{i} \frac{\partial}{\partial \varphi}$	$m_l \cdot \hbar$	
	0	$\Psi = \sqrt{\frac{3}{4\pi}} \cdot \cos \vartheta$
$\frac{\hbar}{i} \frac{\partial}{\partial r}$	$-\frac{(2+\mathbf{r})\cdot\hbar}{2\cdot\mathbf{r}\cdot i}$	

6.3 Kommutator (Wiederholung)

Bestimme den Kommutator von \hat{L}_x und \hat{L}_y . Beachte, dass gilt:

$$ec{L} = ec{r} imes ec{p} = egin{bmatrix} ec{e}_x & ec{e}_y & ec{e}_z \ x & y & z \ p_x & p_y & p_z \ \end{pmatrix}$$