一元微积分 B 上复习题(一)

预备知识

- 3、将幂指函数 $x^{\sin x}$ 表示为指数函数 $x^{\sin x} =$ ______.
- 4、 函数 $f(x) = \ln(x + \sqrt{x^2 + a^2}), (a > 0)$ 为______(填奇函数,偶函数或非奇 非偶函数).
- 5、函数 $y = \frac{\sin x}{x(x-\pi)^2}$ 在以下 () 区间内无界.
 - (A) $(-\infty, -1)$ (B) (-1, 0) (C) (0, 1) (D) $(1, \pi)$

- 6、 $f(x) = x \cdot \tan x \cdot (e^{\sin x})$ 是().
 - (A) 偶函数
- (B) 无界函数 (C) 周期函数 (D) 单调函数

- 7、函数 $y = \arccos x$ 在[-1,1] 是 ().
 - (A) 奇函数
- (B) 偶函数 (C) 非奇非偶函数 (D) 单调递增函数.
- 8、设函数 g(x) = 1 x,且当 $x \neq 0$ 时, $f[g(x)] = \frac{1 x}{x}$,则 $f\left(\frac{1}{2}\right) = \underline{\qquad}$ (A) 0(C) 3 (D) -3(B) 1
- 9、金额为 M_0 的钱存入银行账户,每年以r的利率支付利息,M(t)表示t年后账户的余额. 问(1)如果利息每年复合n次,求M(t)的表达式;(2)如果利息是连续复合的,(即 $n \to \infty$), 推导出 M(t) 的表达式. 请利用你得到的表达式帮小明计算一下, 当银行年利 率为 2.5%, 4 年后小明的一万元存款, 按连续复利计算, 账户余额是多少? (无需近似
- 10、求 $r=1+\cos\theta$ 与 $r=3\cos\theta$ 的交点.

极限与连续

- $2 \cdot \lim_{x \to 0} x \sin \frac{1}{x^2} = \underline{\hspace{1cm}}.$

- $3. \lim_{n\to\infty} \left(1 \frac{1}{n} \frac{1}{n^2}\right)^n = \underline{\hspace{1cm}}.$
- 4、设当 $x \to 0$ 时, $\left(1+ax^2\right)^{\frac{1}{2}}-1$ 与 $1-\cos x$ 是等价无穷小,则 a=_____.
- 5. $\lim_{x\to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}} = \underline{\hspace{1cm}}$.
- 6. $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^6+1^3}} + \frac{2^2}{\sqrt{n^6+2^3}} + \dots + \frac{n^2}{\sqrt{n^6+n^3}} \right) = \underline{\hspace{1cm}}$
- 7、 $a \neq 0$ 时, $\lim_{x \to a} \frac{\sin x \sin a}{\sin(x a)} = \underline{\hspace{1cm}}$
- 8. $\lim_{n\to\infty} \left(\frac{n}{2} \frac{1+2+\cdots+n}{n+2} \right) = \underline{\hspace{1cm}}$
- 9、曲线 $y = \frac{2x^2 x}{|x|(x+1)}$ 的水平渐近线是____
- 10、以下关于数列收敛的性质描述,正确的是(
 - (A) 若 $\{a_n\}$ 收敛, $\{b_n\}$ 有界,则 $\{a_nb_n\}$ 收敛
 - (B) 若 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则 $\{a_nb_n\}$ 发散
 - (C) 若 $\{a_n\}$ 发散, $\{b_n\}$ 发散,则 $\{a_nb_n\}$ 发散
 - (D) 若 $\{a_n\}$ 收敛, $\{b_n\}$ 有界,则 $\{a_nb_n\}$ 有界
- 11、以下哪个是错误的().
 - (A) 数列 $\left\{a_{n_k}^{(1)}\right\}$, $\left\{a_{n_k}^{(2)}\right\}$ 是数列 $\left\{a_n\right\}$ 的两个子数列. $\lim_{k\to\infty}a_{n_k}^{(1)}=\lim_{k\to\infty}a_{n_k}^{(2)}=a$, 则 $\lim_{n\to\infty} a_n = a$
 - (B) 数列 $\{a_n\}$, 则 $\lim_{n\to\infty} a_n = 0 \Leftrightarrow \lim_{n\to\infty} |a_n| = 0$
 - (C) 数列 $\{a_n\}$, 已知 $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = a$,则 $\lim_{n\to\infty} a_n = a$
 - (D) 数列 $\left\{a_{n}\right\}$ 收敛于a,则其子数列 $\left\{a_{n_{k}}\right\}$ 也收敛于a
- 12、曲线 $y = \frac{\arctan x}{x(x-1)^2}$ 的水平渐近线与竖直渐近线一共有()条.
 - (A) 1条 (B) 2条
- (C) 3条 (D) 4条

13,	关于方程 $x^5 + x - 1$	=0的根的个数,	以下说法正确的	的是().
()	A) 在(0,+∞)内兒	只有一个根 (B)在(0,+∞)内	有两个根
((こ) 在(0,+∞)内尹	无实数根 (1	D) 在(0,+∞)	内至少有一个根
14、 li	$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 14x} =$	=().		
	(B)		-1 (D)	5
15、逐	首数 $f(x) = x \tan \frac{1}{x}$	().		
•	A)当 $x \to \infty$ 时为			当 $x \to \infty$ 时为无穷小
16、下	C) 当 $x \rightarrow \infty$ 时机 F列极限正确的是(() .		以上结论都不对
()	$A) \lim_{x \to \pi} \frac{\sin x}{x} = 1$	(B)	$\lim_{x \to \infty} x \sin \frac{1}{x} = 1$	
((C) $\lim_{x \to \infty} \frac{1}{x} \sin \frac{1}{x} \pi \bar{A}$	存在 (D)	$\lim_{x\to\infty}\frac{\sin x}{x}=1$	
17、若	$\lim_{x \to \infty} x \sin \frac{e}{x} = \lim_{x \to \infty}$	$\left(1-\frac{a}{x}\right)^{x+e}$, \mathbb{N} $a=$	().	
	A)- 1 太下说法中 <u>正确</u> 的有		(C) 1	(D) e
(I) 函数 $f(x)$ 在 x_0 点连续,则函数在 x_0 点极限存在				
(II) $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = a$, 则函数在 $f(x)$ 在 x_0 点极限存在且连续				
(III) $\lim_{x \to x_0^+} f(x) = f(x_0)$,则函数在 $f(x)$ 在 x_0 点右极限存在且右连续				
(IV) $\lim_{x \to x_0^+} f(x) = a$, $\lim_{x \to x_0^-} f(x) = b$, 且 $a \neq b$, 则函数在 $f(x)$ 在 x_0 点不连续				
((A) 1	(B) 2	(C) 3	(D) 4.
19、极	及坐标方程 $r^2 = a^2$	$\cos 2\theta \ (a>0)$ 图	像中, $ heta$ 的范围	是().
()	$A) [0,\frac{\pi}{2}] \cup [\pi,\frac{3\pi}{2}]$]	(B) $[0,\frac{\pi}{4}] \bigcup [\pi,$	$\left(\frac{5\pi}{4}\right]$
(($(-\frac{\pi}{4}, \frac{\pi}{4}] \cup [\frac{3\pi}{4}]$	$,\frac{5\pi}{4}]$	(D) $\left[-\frac{\pi}{2}, -\frac{\pi}{4}\right]$	$\bigcup [\frac{3\pi}{4},\pi].$
20、□	上知 $\lim_{x\to 0} \frac{\ln(1+f(x))}{e^x-1}$	$\frac{0}{1} = 1$, $\lim_{x \to 0} \frac{f(x)}{x}$	$\frac{x}{x} = ($).	

(A) 1 (B) 2 (C) 3 (D) 4

21、设函数
$$f(x) = 3^x$$
, 求 $\lim_{n \to \infty} \frac{1}{n^2} \ln[f(1)f(2)\cdots f(n)]$.

22、若
$$\lim_{x\to 1} \frac{\sin^2(x-1)}{x^2+ax+b} = 1$$
, 求常数 a,b .

23、若函数
$$f(x)$$
 在 $[a,b]$ 上连续, $a < x_1 < x_2 < \dots < x_n < b$,常数 $k_1,k_2,\dots,k_n > 0$,并记

$$k_1 + k_2 + \cdots + k_n = K$$
,证明: 必定存在 $\xi \in [x_1, x_n]$,使得

$$f(\xi) = \frac{1}{K} [k_1 f(x_1) + k_2 f(x_2) + \dots + k_n f(x_n)].$$