	Utech
Name :	
Roll No.:	A Agency Of Exercising 2nd Explored
Invigilator's Signature :	

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

 $1. \quad \hbox{Choose the correct alternatives for any $\it ten$ of the following:}$

 $10 \propto 1 = 10$

i) The value of
$$\lim_{n \neq \infty} \left[\frac{\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}}{n \sqrt{n}} \right]$$
 is

a) 0

b) 1

c) $\frac{2}{3}$

d) $\frac{3}{2}$.

ii) Which of the following functions obeys Rolle's theorem in [0, π] ?

a) *x*

b) $\sin x$

c) $\cos x$

d) $\tan x$.

11701 [Turn over

a) 0 b) $\frac{1}{3}$

c)

- The equation $x^2 + y^2 = a^2$, z = 0 represents
 - a) circle

b) cylinder

sphere c)

- d) right circular cylinder.
- If θ be an angle between the vectors

$$\overset{\varnothing}{a} = 6\hat{i} + 2\hat{j} + 3\hat{k}$$
 and $\overset{\varnothing}{b} = 2\hat{i} - 9\hat{j} + 6\hat{k}$, then

- a) $\theta = \cos^{-1}\left(\frac{12}{77}\right)$ b) $\theta = \sin^{-1}\left(\frac{12}{77}\right)$
- c) $\theta = \tan^{-1}\left(\frac{12}{77}\right)$
- d) none of these.
- If Cauchy's mean value theorem is applicable to the function f(x)x and $g(x) = x^2$, then the value of C is
 - 3/2 a)

b) 0

1/2 c)

- d) -3/2.
- vii) If $y^2 = 4ax$ (a is a real constant), then $\frac{d^2y}{dx^2} \cdot \frac{d^2x}{du^2}$ is

b) $\frac{2a}{y^3}$

c) $-\frac{2a}{u^3}$

d) $-\frac{2a}{y}$.

viii) The law of mean is given by

a)
$$\frac{f(b) + f(a)}{b - a} = f'(c)$$

b)
$$\frac{f(b) + f(a)}{b + a} = f'(c)$$

c)
$$\frac{f(b)-f(a)}{b-a} = f'(c)$$

d)
$$\frac{f(b)-f(a)}{b-a} = f(c).$$

ix) If $x = r \cos \theta$ and $y = r \sin \theta$, then the value of $\frac{\partial (r, \theta)}{\partial (x, y)}$

is

a) (

b)

c) $\frac{1}{r}$

- d) -r.
- x) The series $\frac{1}{n} = \frac{2}{r} = \frac{2}{n}$ is
 - a) convergent
- b) divergent
- c) oscillatory
- d) none of these.

xi) The function
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is

- a) continuous and differentiable at x = 0
- b) continuous but not differentiable at x = 0
- c) neither continuous nor differentiable at x = 0
- d) none of these.

- xii) If $f(x, y) = \tan(x / y)$, then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$
 - tan(x/y)a)
- b) $\cot(x/y)$

c) 0

- d) none of these.
- xiii) The moment of inertia of a thin uniform rod of mass Mand length 2a about an axis perpendcular to the rod at its centre is

b) $\frac{Ma^2}{2}$

c) Ma^2

- d) $\frac{Ma^2}{4}$.
- xiv) The point of intersection of the line $\frac{x-1}{2} = \frac{y}{3} = \frac{z+1}{-1}$ with the plane x + 2y - z = 5 is
 - a) (1, 1, 1)
- b) (0, 1, 3)
- c) $\left(\frac{5}{3}, 1, \frac{-4}{3}\right)$
- d) none of these.
- xv) The reduction formula of $I_n = \int \cos^n x \, dx$ is

 - a) $I_n = \frac{n-1}{n} I_{n-1}$ b) $I_n = \frac{n}{n-1} I_{n-1}$
 - c) $I_n = \frac{n-1}{n} I_{n-2}$ d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

2. If $y = (x^2 - 1)^n$, then show that

$$(x^2-1)y_{n+2} + 2xy_{n+1} - n(n+1)y_n = 0.$$

3. If $\overset{\varnothing}{a}$, $\overset{\varnothing}{b}$, $\overset{\varnothing}{c}$ are three vectors, then show the

 $\left[\stackrel{\bigcirc}{a} \propto \stackrel{\bigcirc}{b}, \stackrel{\bigcirc}{b} \propto \stackrel{\bigcirc}{c}, \stackrel{\bigcirc}{c} \propto \stackrel{\bigcirc}{a} \right] = \left[\stackrel{\bigcirc}{a}, \stackrel{\bigcirc}{b}, \stackrel{\bigcirc}{c} \right]^2$, where symbols have their usual meanings.

- 4. Test the convergence of the series
- 5. A. B, C and D are points (α , 3, -1), (3, 5, -3), (1, 2, 3,) and (3, 5, 7) respectively. If AB is perpendicular to CD, then find the value of α .
- 6. If , then prove that
- 7. Verify Rolle's theorem for the function

$$f(x) = |x|, -1 \le x \le 1$$
.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 8. a) Examine continuity and differentiability of $f(x) \text{ at } x = 0, \text{ when } f(x) = x \sin\left(\frac{1}{x}\right); (x \neq 0) \text{ and } f(0) = 0.$
 - b) Show that

is not continuous at (0,0)

c) Find the extrema of the function

 $f(x, y) = x^3 + 3xy^2 - 3y^2 - 3x^2 + 4.$ 5 + 5 + 5

9. a) Obtain a reduction formula for $\int_{0}^{\pi/2} \sin^{n} x \, dx$ and

evaluate $\int_{0}^{\pi/2} \sin^5 x \, dx.$

- b) If z = f(x, y) where $x = e^u \cos v$, $y = e^u \sin v$ then show that
- c) Prove that the function f(x) = |x-1|, 0 < x < 2, is continuous at x = 1, but not differentiable there. Is it continuous and derivable at x = 0? 5 + 5 + 5

11701

- 10. a) State Leibnitz's theorem for Alternating Series and test convergence of the series $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$
 - b) Define absolute and conditional convergence of Series. Also show that the series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ is absolutely convergent.
- 11. a) A particle moves on the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where t is the time. Find the components of velocity and acceleration at time t = 1 in the direction $\hat{i} 3\hat{j} + 2\hat{k}$.
 - b) Find the angles between the lines whose direction cosines are given by the equations l+m+n=0 and $l^2+m^2-n^2=0.$
 - c) Find the shortest distance between the lines

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$$
 and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$.

5 + 5 + 5

- Find the *n*-th derivative of $y = (ax + b)^m$ 12. a) number.
 - Test the convergence of the series b)

$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots$$

Find: c)

$$div\stackrel{\triangle}{F}$$
 and $curl\stackrel{\triangle}{F}$, where $\stackrel{\triangle}{F}$ = grad ($x^3 + y^3 + z^3 - 3xyz$) .

$$5 + 5 + 5$$

13. a) Find the whole length of the loop of the curve

$$9y^2 = (x-2)(x-5)^2$$
.

Evaluate b)

$$6 + 6 + 3$$