Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики \mathbb{N}^2 4.3.1

Изучение дифракции света

Автор:

Лепарский Роман Б01-003

Долгопрудный, 2022

1 Аннотация

Цель работы: исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

2 Теоретические сведения

А. Дифракция Френеля

Рис. 1: Схема установки 1.

При освещении S_2 параллельным пучком лучей (плоская зона) зоны Френеля представляют собой плоскости, параллельные краям щели. Результирующая амплитуда в точке наблюдения определеяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина m зон Френеля z_m определяется соотношение

$$z_m = \sqrt{am\lambda},\tag{1}$$

где a — расстояние от щели до плоскости Π . Вид наблюдаемой картины определяется количеством зон Френеля Φ :

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}}$$

Если их m, то будет набюдаться m-1 тёмная полоса.

Б. Дифракция Фраунгофера на щели

Дифракцию Фраунгофера можно наблюдать на установке Рис. 1, но для удобства к подобной установке добавляется объектив O_2 .

Рис. 2: Схема установки 2.

Дифракционная картина здесь наблюдается в фокальной плоскости объектива O_2 . Каждому значению θ соответствует в этой плоскости точка, отстоящая от оптической оси на расстоянии

$$X = f_2 \tan \theta \approx f_2 \theta. \tag{2}$$

При $\theta = 0$ разность хода между лучами нулевая, поэтому в центре поля зрения дифракционный максимум. Первый минимум соответствует θ_1 такому, что в точке наблюдения разность хода пробегаем все значения от 0 до 2π . Аналогично рассуждая, для m-й полосы

$$\theta_m = \frac{m\lambda}{D} \tag{3}$$

Расстояние X_m тёмной полосы от оптической оси из (2) и (3)

$$X_m = f_2 m \frac{\lambda}{D} \tag{4}$$

В. Дифракция Фраунгофера для двух щелей

Для наблюдения дифракции Фраунгофера на двух щелях S_2 заменим экраном Э с двумя щелями. При этом для оценки влияния ширины входной щели на чёткость вместо S_1 поставим щель с микрометрическим винтом.

Рис. 3: Схема установки 3.

Два дифракционных изображения входной щели, одно из которых образовано лучами, прошедшими через левую, а другое — через правую щели, накладываются друг на друга. Светлая интерфереционная полоса наблюдается в случаях, когда разность хода равна целому числу длин волн. Таким образом, угловая координата максимума порядка m равна

$$\theta_m = \frac{m\lambda}{d},\tag{5}$$

где d – расстояние между щелями. Отсюда расстояние между соседними интерфереционными полосами в плоскости Π равно

$$\delta x = f_2 \frac{\lambda}{d} \tag{6}$$

Число интерференционных полос укладывающихся в области центрального максимума равна отношению ширины главного максимума $\frac{2\lambda f_2}{D}$ к расстоянию между соседними полосами:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta f} = \frac{2d}{D}.$$
 (7)

При дифракции света на двух щелях чёткая система интерференционных полос наблюдается только при достаточно узкой ширине входной щели S. При увеличении ширины картинка пропадает и появляется вновь, но полосы при этом сильно размыты и видны плохо.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Рис. 4: Схема установки 4.

В отсутствие щели S_2 линзы O_1 и O_2 создают на плоскости П изоюражение щели S_1 и это изображение рассматриваются микроскопом М. Таким образом, установку можно рассматривать как оптический инструмент, предназначенные для получения изображения предмета. Если перед O_2 расположить S_2 , то изображение объекта будет искажено из-за дифракции. Чем меньше ширина щели, тем сильнее искажение. Качественной характеристикой этого искажения может служить φ_{min} — минимальное угловое расстояние между объектами (источниками), которые всё ещё воспринимаются как раздельные. Поместим вместо S_1 экран Θ с двумя щелями с расстоянием d. Тогда на S_2 будут падать два пучка света с углом

$$\varphi = \frac{d}{f_1} \tag{8}$$

Из геометрии расстояние l между изображениями щелей в плоскости Π равно

$$l = \varphi f_2 = d \frac{f_2}{f_1}. \tag{9}$$

Ширина $\Delta \varphi$ определяется дифракцией на S_2 . Условия, при которых изображения различимы разные для разных наблюдателей, поэтому используют критерий Рэлея – максимум одного дифракционного пятна должен совпадать с минимумом другого. В наших условиях это значит, что угловая полуширина $\frac{\lambda}{D}$ равна угловому расстоянию $\frac{l}{f_2}$.

3 Обработка результатов

3.1 Дифракция Френеля на щели

Длина волны для этой работы $\lambda = 578$ нм.

Запишем ширину щели S_2 , измеренную с помощью микрометрического винта и шкалы микроскопа.

$$b_micro = 0.25 \pm 0.02 \text{ MM}$$

$$b_s cale = 0.26 \pm 0.01 \text{ mm}$$

В первом случае погрешность обусловлена точному измерению положения открытия щели. Во втором случае взята половина ц.д.

Запишем начальное положение микроскопа (дифракция не наблюдается)

$$x_0 = 64.3 \pm 0.1$$
 cm

Запишем в таблицу координаты микроскопа в зависимости от количества темных полос, найдем для каждого случая величину z_m

m	1	2	3	4	5
x_m , cm	62,2	62,9	63,3	63,6	63,8
a, cm	2,1	1,4	1	0,7	0,5
z_m , MKM	110	120	130	120	120

Погрешность найдем по формуле

$$\sigma_z = rac{\sqrt{n\lambda}}{2\sqrt{a}} \cdot \sigma_a = 12 \; ext{mkm}$$

Отложим эти значения на графике $z_m(m)$

Линией на графике отмечена полуширина щели. Почти все значения лежат в пределах погрешности.

3.2 Дифракция Фраунгофера на щели

Ширина щели по показаниям микрометра: $b=0.19\pm0.01$ мм. Фокусное расстояние линзы $F_2=10.2$ см. Запишем координаты минимумов дифракционной картины. Погрешность измерений $\sigma_X=0.02$ мм обусловлена шириной темной полосы

\overline{m}	-3	-2	-1	1	2	3
X_m , MM	1,50	1,70	2,12	2,72	3,02	3,34

Построим график

По МНК расстояние между минимумами $\Delta X = 0.312 \pm 0.007$ мм. Из формулы (4)

$$b = \frac{\lambda}{\Lambda X} F_2 = 0.188 \text{ MM}$$

$$\sigma_b = \frac{\lambda}{\Delta X^2} F_2 \cdot \sigma_{\Delta X} = 0{,}004 \text{ mm}$$

Полученное значение совпадает с измеренным в пределах погрешности.

3.3 Дифракция Фраунгофера на двух щелях

Измерим координаты центрального максимума: $X_1=1.61\pm0.01$ мм, $X_2=2.02\pm0.01$ мм. Число светлых полос $n=6\pm1.$

$$\delta x = \frac{\Delta X}{n} = 0.07 \text{ MM}$$

$$\sigma_{\delta x} = \sqrt{\left(\frac{1}{n}\sigma_{\Delta X}\right)^2 + \left(\frac{\Delta X}{n^2}\sigma_n\right)^2} = 0.012 \text{ mm}$$

Рассчитаем величину d:

$$d=rac{\lambda}{\delta x}F_2=0,8$$
 мм $\sigma_d=rac{\lambda}{\delta x^2}F_2\cdot\sigma_{\delta x}=0,14$ мм

Дифракционная картина пропадает при раскрытии входной щели $b_0=0.071\pm0.03$ мм. Рассчитаем это значение по формуле:

$$b_0=rac{\lambda}{d}F_2=0.07$$
 mm

$$\sigma_{b_0} = rac{\lambda}{d^2} F_2 \cdot \sigma_d = 0.13 \; \mathrm{mm}$$

Рассчитанное значение совпадает с экспериментальным в пределах погрешности.

Из следующего пункта ширина щели $D=0.2\pm0.11$ мм Соответственно количество полос

$$n = \frac{2d}{D} = 8 \pm 4$$

3.4 Влияние дифракции на разрешающую способность

Запишем минимальную ширину щели $b_0=0.092\pm0.003$ мм, при которой еще различимо изображение щели.

Для проверки справедливости критерия Релея рассчитаем эту величину по формуле

$$b_0 = \frac{\lambda}{d} F_1 = 0.08$$
MM

$$\sigma_{b_0} = \frac{\lambda}{d^2} F_1 \cdot \sigma_d = 0.03 \text{ mm}$$

Полученное значение совпадает в пределах погрешности.

Координаты краев двух щелей:

$$X$$
, MM $\begin{vmatrix} 0 & 0.12 & 0.84 & 1.18 \end{vmatrix}$

4 Вывод

В данной работе мы исследовали явление дифракции Френеля и Фраунгофера на щели и изучили влияние дифракции на разрешающую способность оптических приборов.