

NASA Technical Memorandum 100675

**A Compendium of Sources of Fracture Toughness and
Fatigue Crack Growth Data for Metallic Alloys - Part III**

C. Michael Hudson and Sue K. Seward

(NASA-TM-100675) A COMPENDIUM OF SOURCES OF
FRACTURE TOUGHNESS AND FATIGUE CRACK GROWTH
DATA FOR METALLIC ALLOYS, PART 3 (NASA)
32 p

N89-10165

CSCL 11F

Unclass

G3/26 0169390

September 1988

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

In references 1 and 2, the authors presented the first two parts of their compendium of sources of fracture toughness and fatigue crack growth data. Because of the many requests received for copies of these references, the authors have compiled Part III of the compendium. Part III concentrates on both technical reports and technical journals published in 1979 and 1980. The reports and journals published before 1979 were extensively reviewed for references 1 and 2. The reports and journals published after 1980 will hopefully be reviewed for subsequent parts of the compendium. The reader should note that none of the references cited in references 1 and 2 are included herein.

Table I lists the journals reviewed and the periods covered during this review. Table II lists the abbreviations used for the various references. Table III lists the materials for which data were located, and the corresponding references.

The reader is again cautioned not to use the data indiscriminately. The reader should ensure that all factors affecting fracture and/or fatigue crack growth behavior are adequately considered in using the data sources in Table III.

Where available, accession numbers have been included with the references. These accession numbers (which are listed in brackets at the ends of the references) are the code numbers for ordering these reports. The sources for ordering these reports are listed below:

<u>Accession Number</u>	<u>Source</u>
xxAxxxxx	American Institute for Aeronautics and Astronautics 555 West 57th Street (12th floor) New York, NY 10019
AD-xxxxxxL	Defense Technical Information Center Defense Logistics Agency Cameron Station Alexandria, VA 22314 USA
AD-xxxxxx	National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 USA
xxNxxxxx	NASA Scientific and Technical Information Facility P.O. Box 8757 B.W.I. Airport, MD 21240 USA

Table I. Journals Reviewed, Over Periods Shown

ASME - Journal of Engineering Materials and Technology	Oct. 1979 - Oct. 1980
ASME - Journal of Engineering for Industry	Feb. 1980 - Nov. 1980
ASME - Journal of Pressure Vessel Technology	Aug. 1979 - Nov. 1980
Cryogenics	Feb. 1980 - Dec. 1980
Engineering Fracture Mechanics	1980
Experimental Mechanics	Feb. 1980 - Dec. 1980
Fatigue of Engineering Materials and Structures	1980
International Journal of Fracture	Feb. 1980 - Dec. 1980
Journal of Material Science	Dec. 1979 - Dec. 1980
Metals Science	Jan. 1980 - Dec. 1980
Metallurgical Transactions A	Feb. 1980 - Dec. 1980

Nuclear Technology

Jan. 1980 - Dec. 1980

Welding Journal, Research Supplement

Feb. 1980 - Dec. 1980

Table II. Abbreviations

AFFDL Air Force Flight Dynamics Laboratory

Wright-Patterson Air Force Base, OH 45433 USA

AFML Air Force Materials Laboratory

Wright-Patterson Air Force Base, OH 45433 USA

AGARD Advisory Group for Aeronautical Research and Development

7 rue Ancelle, 92200 Neuilly Sur Seine, France

AIAA American Institute of Aeronautics and Astronautics

1290 Avenue of the Americas

New York, NY 10019 USA

AIME American Institute of Mining, Metallurgical and Petroleum Engineers

345 East 47th Street

New York, NY 10017 USA

AMMRC Army Materials and Mechanics Research Center
Watertown, MA 02172 USA

ASME American Society of Mechanical Engineering
345 East 47th Street
New York, NY 10017 USA

ASTM American Society for Testing and Materials
1916 Race Street
Philadelphia, PA 19103 USA

CRYO Cryogenics

EFM Engineering Fracture Mechanics

EM Experimental Mechanics

FEMS Fatigue of Engineering Materials and Structures

IJF International Journal of Fracture

JEMT Journal of Engineering Materials and Technology

JMS Journal of Materials Science

JPVT Journal of Pressure Vessel Technology

MEQ Metals Engineering Quarterly

MS Metal Science

MT Metallurgical Transactions

NASA National Aeronautics and Space Administration
 Scientific and Technical Information Office
 Washington, DC 20546 USA

NRL Naval Research Laboratory
 Washington, DC 20375 USA

SAE Society of Automotive Engineers
 485 Lexington Avenue
 New York, NY 10017 USA

WJ Welding Journal

TABLE III. Materials and References Cited for Fracture Toughness and Fatigue Crack Growth Data**A.I Aluminum and Its Alloys; Fracture Toughness**

A357-T6	3,4	AK4-T1	5
AZ5G-T6	6	AZ5GU-T6	6
AZ5GU-T73	6	AZ8GUZr-T6	6
AZ74.61-T7	7	CT-91-T7E70	8
D16T	5	D16-T1	5
DTD-5024-T6	7	RR58	9
V95-T1	5	VAD-23T1	5
ZK 141	10	2014-T6	5,11,12
2014-T651	10,13	2020-T6	5
2024-T3	5,14-16	2024-T6	5,17
2024-T8	18	2024-T86	5
2024-T351	19	2048-T851	17,20,21
2124-T851	17,22,23	2219-T87	10,11
2219-T851	24,25	2618-T6	21
2618-T651	26	6061-T651	20,27,28
7010-T73651	8,29	7049-T73511	30
7050-T736	7	7050-T73511	30
7050-T73651	22,31,32	7075-T0	5
7075-T6	5,14,15,18,24,33,34		
7075-T7	35	7075-T73	33
7075-T76	33		
7075-T651	5,25,35-38		
7075-T6351	19	7075-T7351	24
7075-T73511	30	7079-T6	5,7
7079-T651	21	7178-T6	18

7475-T76	39	7475-T761	16,34
7475-T7351	22,31		

A.2 Aluminum and It's Alloys; Fatigue Crack Growth

A357-T6	3,4,8	RR58	9,40
2017-T4	41	2024-T3	42-45
2024-T351	46	2048-T851	21
2124-T851	23,47		
2219-T851	47-53		
2618-T6	21	2618-T651	26
5083-0	54-56	5456-H343	57
7010-T73651	8,29	7049-T73	51
7049-T73511	30	7050-T73	29
7050-T73511	30		
7075-T6	41,44,46,51,58-61		
7075-T73	51,62	7075-T651	37,63
7075-T7351	64	7075-T73511	30
7075-T73651	65,66	7079-T651	21,48,67
7475-T761	40		

B1. Iron and Steel Excepting Stainless Steel; Fracture Toughness

ASTM A7	68	ASTM A36	68-70
ASTM A203	71	ASTM A216	19,72,73
ASTM A217	19,27	ASTM A242	68

ASTM A302	74-79	ASTM A353	71
ASTM A387	79-81	ASTM A440	68
ASTM A441	68	ASTM A453	27
ASTM A469	27	ASTM A470	19,22,27,82
ASTM A471	19,27,72,79,83,84		
ASTM A508	74,77,85-89	ASTM A516	87,90,91
ASTM A517	70,71,92		
ASTM A533	18,19,71,73-79,85,87,88,90,93-104		
ASTM A537	71,77	ASTM A540	27,77,87
ASTM A542	71	ASTM A543	90
ASTM A558	68	ASTM A572	70
ASTM A633	91	AISI 1018	105
AISI 1020	105	AISI 1035	68
AISI 1340	5	AISI 2340	5
AISI 3140	5	AISI 4140	24,106
AISI 4330	5	AISI 4330+2Si	107
AISI 4335	108		
AISI 4340	5,14,22,75,79,92,98,109-115		
AISI 4340 + 1.5Al + Si	107	AISI 5140	5
AISI 98B40	5	AISI 52100	116,117
AGCM-225	5	AGCX - 7	5
Airsteel X-200	5	AM 355	11
AMS 6434	5	BS 970	118
BS 1501-271	119	CMS-9	120
D6AC	5,22,32,121	En 8	122
En 25	123	En 30	124
ERNiCr-3	125	Fe 460	96,97

Fe 510	96,97	H-II	124
H-50	126	HF-I	22,112,127
HP-9-4-.20	128	HP-9-4-.25	24,73
HST-140	126	HY-80	129
HY-130	70,120,129,130	HY-180M	131
Iron, cast nodular	132,133	Iron,gray cast	132,134
JIS SPV 50	135	MBMC-I	5
Mellon X-2	5	N-II	5
Peerless 56	5	Steel, carbon	80
Steel, mild	136	Steel, mild-high S	75
Steel, tool	137	Steel, weld	74
St E47	97	STPT 49	87
Tenelon	138	Tricent	5
Unimach II	5	Vascojet 1000	5
VKS-I	5	VL-ID	5
U8	5	X-70	139
Mn-Cr-Mo-V	5	Ni-Cr-Mo	31
2.25 Cr-Mo	19,79,125,140-142		
3.5 Ni	143	4Cr	144
4 Cr-C	145	4Ni-Cr-Mo-V	146
5 Ni	147	5 Mn	148
5 Mn-1 Ni	148	5 Mn-3 Ni	148
9 Ni	147-149	10 Ni	130
10 Cr-2.5 Mo	150	12 Ni	24
20	5	20 Mn	150
20 Cr-2.5 Mo-V	150	35 GS	5
35 NiCrMo 16	151	40KhN	5

3	5	17C	152
80C	152	300M	5,153,154
350M	154		

B2. Iron and Steel Excepting Stainless Steel; Fatigue Crack Growth

ASTM A106	155	ASTM A155	155
ASTM A302	156	ASTM A333	157,158
ASTM A387	159,160	ASTM A469	161
ASTM A470	162	ASTM A471	163
ASTM A508	157,164-167	ASTM A514	168
ASTM A516	157,165		
ASTM A533	46,65,66,99,100,103,156,157,164,169-173		
ASTM A542	159	ASTM A543	156
ASTM A633	91	AISI 1015	172,174
AISI 4140	175		
AISI 4340	47,65,66,110,115,176,177		
AF 1410	178	BS 15	9
BS 968	179	BS 970	179
BS 1719 cl.E6	179	BS 2901	179
BS 4360	47,180,181	BS 4461	182
D6AC	121	EN 24	65
FV 520	183	G40.11	171,172,174
HP-9-4-.20	183	HP-9-4-.30	51,184
HT-80	47,56	HY-80	175
HY-130	47,175,185,186	Iron,ductile	187
Iron, gray cast	187	JIS SM50B	41

SPCC	41	SM58Q	47,188
Steel, cast	187	Steel,mild	41,179,189-191
SA weld	157	WT60	192
X-65	47,193	X-70	47
Cr-Mo-V	194,195	Mn-Mo weld	157
2NiCrMoV	196	2 1/2 Cr-Mo-V	197
3 1/2 NiCrMoV	196	4Ni-Cr-Mo-V	146
9Ni	149,183	10Ni	47
10Ni-Cr-Mo-Co	183	12Ni	183
18Ni	183		
300M	46,47,51,62,65,66,159,184		

C1. Stainless Steel; Fracture Toughness

AISI 301	5,10	AISI 304	152,198-200
AISI 310	5	AISI 316	75,95,198,201-203
AISI 403	19,27	AISI 3105	27
AFC 77	18	Kromarc-58	27
Pyromet-538	27	Ph15-7Mo	5
Ph17-4	130	Ph17-7RN	5
Fe-21Cr-6Ni-9Mn	200	30CrNiMo 8	204

C2. Stainless Steel; Fatigue Crack Growth

AISI 304	100,156,158,164,165,170,183,191,205-209		
AISI 309	183	AISI 310	205
AISI 316	156,164,173,183,201,205,209-215		

AISI 321	183	AISI 403	183
Ph14-8Mo	183	Ph15-5	183
Ph15-7Mo	183	Ph17-4	40,183
Ph17-7	183	AM 350	183
AM 355	183	AM 367	183
FV535	197	22/13/5	183
24/20	183		

DI. Titanium and Its Alloys; Fracture Toughness

Ti-6Al-2Sn-4Zr-6Mo	216	Ti-3Al-8V-6Cr-4Zr-4Mo	153
Ti-5Al-2.5Sn	14,217		
Ti-6Al-4V	5,18,22,24,32,84,130,216-222		
Ti-6Al-4V-0.02Y	222	Ti-6Al-4V-0.05Y	222
Ti-6Al-4V-0.1Er	222	Ti-6Al-4V-2Mo	5
Ti-6Al-4V-2Sn	5,24	Ti-6Al-4Zr-2Mo	24
Ti-6Al-4Zr-2Sn-0.5Mo-0.5V	5,24	Ti-6Al-6V-2Sn	223
Ti-6Al-6V-2.5Sn	5	Ti-6.5Al-5Zr-1V	24
Ti-7Al-2Cb-1Ta	130	Ti-8Al-1Mo-1V	217,224
Ti-10V-2Fe-3Al	153	Ti-11Sn-4Mo-2.25Al-0.2Si	225
Ti-13V-11Cr-3Al	217	Ti-155A	5,226
Ti-38644	227	Corona 5	8,228
IMI 550	229,230	IMI 551	230
Titanium, pure	15,217	VT14	5

D2. Titanium and Its Alloys; Fatigue Crack Growth

Ti-6Al-2Cb-1Ta-0.8Mo	231		
Ti-6Al-2Nb-1Ta-0.8Mo	232		
Ti-6Al-2Sn-4Zr-6Mo	216		
Ti-6Al-4V	40,47,51,61,216,219-221,232-236		
Ti-6Al-6V-2Sn	237	Ti-7Al	238
Ti-8Al-1Mo-IV	47,234,235,238	Ti-27V	238
Ti-30V	238	Ti-40V	238

E1. Nickel and Nickel Alloys; Fracture Toughness

IN-792	8	Inco LEA	27
Inconel 706	27	Inconel 718	120
Inconel X-750	79,239		

E2. Nickel and Nickel Alloys; Fatigue Crack Growth

Astroloy	240,241	Hastelloy X	242-244
IN 100	60, 245-247	IN 600	248
Inconel 718	210,211,240,249-256		
Inconel 738	257-259	Inconel X750	211,260
Inconel 792	8	NASA II B-7	247
Nimonic 105	197	Nimonic 115	240
Rene 95	240	X40	257
Udimet 500	257,258	Udimet 700	210,211,261
Waspaloy	240,245-247,251,262		

F1. Copper and Copper Alloys; Fracture Toughness

No References

F2. Copper and Copper Alloys; Fatigue Crack Growth

Brass, alpha	263	Brass, 70:30	264
Bronze, ABS (Types 2, 4&5)	265		
Copper	191,264		

G. Magnesium and Magnesium Alloys

No References

H. Beryllium and Beryllium Alloys, Fracture Toughness

Beryllium, pure	266	Beryllium, P-O,P-I&P-10	267,268
Beryllium S-200	73		

I. Molybdenum and Molybdenum Alloys

No References

J. Zirconium and Zirconium Alloys

No References

K. Cobalt and Cobalt Alloys; Fracture Toughness

X-40

258

REFERENCES

1. C.M. Hudson and S.K. Seward, IJF, 14 (1978) R151-R184 (78A4 7590).
2. C.M. Hudson and S.K. Seward, IJF, 20 (1982) R59-R117.
3. C.K. Gunther, Cast Metals for Structural and Pressure Containment Applications, Metals Properties Council MPC-11 (1979) 315-329.
4. C.K. Gunther, AFWAL-TR-80-3021 -PT2 (1980) (80N31530).
5. G.P. Cherepanov, Mechanics of Brittle Fracture (1979), (AD-B014813L).
6. A. Andrzejewski and V. Pluvinage, Analytical and Experimental Fracture Mechanics, Sijhoff and Noordhoff (1981) 725-735 (83A21098).
7. R.J.H. Wanhill, L. Schra and H.P. Van Leeuwen, National Aerospace Laboratory Report NLR MP 77040U (1978) (79N16968).
8. O. Deel, AFWAL-TR-80-4103, (1980) (81N25194).
9. J.C. Radon, P.M.S.T. de Castro and L.E. Culver, European Colloquium on Fracture (ECF 2), Darmstadt, October 9-11, 1978, VDI-Verlag GmbH (1978) 311-336.
10. H. Terada, E. Nakai and Y. Kakuta, Japan Society for Aeronautical and Space Sciences, Transactions, 21 (1979) 182-193 (79A32171).
11. T.W. Orange, NASA TP-1753, 1980 (81N11717).
12. R.B. Anderson, NASA TMX-52079 (1965) (79N73784).
13. A. Arieli, Y. Gilad and A. Blas, SAMPE Quarterly, 1 (1980) 16-21 (80A24623).
14. C.M. Carman, Iron and Steel Institute Publication 120, Unwin Brothers Ltd. (1970) 116-126.
15. H. Ghonem and J.W. Provan, EFN, 13 (1980) 963-977 (81A11943).
16. D.E. McCabe and R.H. Heyer, Linear Fracture Mechanics, Envo Publishing Co. (1975) 189-203.
17. R. Bunch, M.A. Hamstad and A.K. Mukkerjee, Lawrence Livermore Laboratory Report UCRL-81879 (1979) (79N31387).
18. L.P. Pook and R.A. Smith, Fracture Mechanics Current Status, Future Prospects, Pergamon Press (1979) 29-67 (80A49465).
19. J.D. Landes and J.A. Begley, Post-Yield Fracture Mechanics, Applied Science Publishers, LTD (1979) 211-253.

20. D.B. Chisholm and D.L. Jones, *Dynamic Fracture Toughness*, The Welding Institute (1977) 85-93.
21. M.O. Speidel, *Stress Corrosion Research*, Sijthoff and Noordhoff (1979) 117-176 (80A26516).
22. L.M. Barker and F.I. Baratta, AMMRC-TR-79-19 (1979) (80N76775).
23. C.L. Harmsworth and G.J. Petrak, AFML-TR-79-4205 (1979) (80N21512).
24. C.N. Freed, Iron and Steel Institute Publication 120, Unwin Brothers Ltd (1970) 29-34.
25. H.L. Marcus, AFOSR TR-80-0233 (1980) (80N24427).
26. J. Petit, N. Ranganathan and J. de Fouquet, *Fracture and Fatigue*, Pergamon Press (1980) 329-337 (82A17245).
27. P.C. Paris, H. Tada, A. Zahoor and H. Ernst, *Elastic-Plastic Fracture*, STP 668, American Society for Testing and Materials (1979) 5-36 (79A51152).
28. L.M. Barker, National Science Foundation Report NSF RA-780080 (1978) (79N16316).
29. R.R. Cervey, AFWAL-TR-80-4094 (1980) (81N16220).
30. G.J. Petrak, AFWAL-TR-80-4079 (1980) (81N16223).
31. D. Munz, *Elastic-Plastic Fracture*, STP 668, American Society for Testing and Materials (1979) 406-425 (79A51167).
32. W. Schutz, AGARD-LS-97 (1979) 7-1--7-11 (79N20415).
33. J. Waldman, D.T. Rorabaugh and H.V. Suluski, Army Armament Research and Development Command Report ARSCD-TR-81016 (AD-B059195L).
34. K. Schulte, K.H. Trautmann and H. Nowack, *Analytical and Experimental Fracture Mechanics*, Sijhoff and Noordhoff (1981) 477-488 (83A21098).
35. J.A. Vlasveld and J. Schijve, FEMS, 3, (1980) 129-145 (81A16602).
36. L.M. Barker, National Science Foundation Report NSF RA-780081 (1978) (79N16315).
37. H.F. DeJong, EFM, 13 (1980) 175-192.
38. R. Streit and I. Finne, EM, 20 (1980) 17-23.
39. W.G.J. 't Hart, National Aerospace Laboratory Report NLR TR 76103U (1978) (79N16966).
40. W. Schutz, AGARD-LS-97 (1979) 3-1-3-13 (79N20411).
41. H.-G. Noack and K. Seifert, *Analytical and Experimental Fracture Mechanics*, Sijhoff and Noordhoff (1981) 365-374 (83A21098).

42. J. Schijve, Fracture Mechanics; Current Status, Future Prospects, STP 700, American Society for Testing and Materials (1980) 3-34 (81A18777).
43. J. Schijve, Technische Hogeschool Memorandum M-336 (1979) (80N24643).
44. R.J.H. Wanhill, National Aerospace Laboratory Report NLR MF 78015U (1978) (79N32596).
45. J. Schijve, Delft University of Technology Report LR-282 (1979) (79N33498).
46. L.R. Kaisand and D.F. Mowbray, J. Testing and Evaluation, 7 (1979) 270-280 (79A50012).
47. J.M. Krafft, NRL Memo Report 4161 (1980) (80N26432).
48. H.L. Marcus, Fatigue and Microstructure, American Society for Metals (1979) 365-383 (80A26738).
49. R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir and G.W. Simmonds, Office of Naval Research Report TR-9 (1979) (80N10519).
50. R.P. Wei, N.E. Fenelli, K.D. Unangst, and T.T. Shih, JEMT, 102 (1980) 280-292 (80A45669).
51. R. Badaliance, EFM, 13 (1980) 657-666 (80A48068).
52. J.P. Gallagher, Fracture Mechanics, University Press of Virginia (1978) 541-557 (79A17550).
53. R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir and G.W. Simmonds, MT, 11A (1980) 151-158 (80A22542).
54. J. Arai, Y. Ino and H. Iwaki, Twenty-Fourth Japan Congress on Materials Research, Society of Materials Science, (1981) 155-161 (82A11976).
55. J.G. Kaufman, R.J. Bucci and R.A. Kelsey, JEMT, 102 (1980) 303-314.
56. S. Matsuoka and K. Tanaka, EFM, 13 (1980) 293-306 (80A36080).
57. H.P. Chu, J.A. Hauser and J.P. Sikora, David Taylor Navel Ship R & D Center Report DTNSRDC-79/102 (1979) (N80-21497).
58. J. Schijve, National Aerospace Laboratory Report NLR MP 79006U (1979) (79N21448).
59. R. Sunder, Fracture Mechanics in Engineering Applications, Sijthoff and Noordhoff International Publishers (1979) 217-225 (80A53437).
60. J.J. McGowan and H.W. Liu, JEMT, 202 (1980) 341-346 (81A12263).
61. R. P. Wei, Linear Fracture Mechanics, Envo Publishing Co. (1975) 287-302.
62. R. Badaliance, Mixed-Mode Crack Propagation, Sijthoff and Noordhoff (1981), 77-98.

63. C.R. Saff, AFF DL-TR-79-3184 (1980) (80N27353).
64. C. Elangovan, C.J. Lof, G. Reibaldi and S.B. Welt, Numerical Methods in Fracture Mechanics, Pineridge Press (1980) 671-686.
65. R.O. Ritchie, Environment-Sensitive Fracture of Engineering Materials, The Metallurgical Society of AIME (1979) 538-564 (80A14566).
66. Deleted.
67. S.E. LeBeau and D.J. Duquette, Rensselaer Polytechnic Institute (1978) (79N14198).
68. R. Roberts, Application of Fracture Mechanics to Design, Plenum Press (1979) 165-212 (79A26980).
69. R. Roberts, G.V. Krishna and J. Nishanian, Fracture Mechanics: Current Status, Future Prospects, STP 700, American Society for Testing and Materials (1980) 552-577. (81A18776).
70. J.M. Barsom, Dynamic Fracture Toughness, The Welding Institute (1977) 113-125.
71. A.W. Pense, WJ, 59 (1980) 311s-325s.
72. J.D. Landes and D.H. Shaffer, Fracture Mechanics: Current Status, Future Prospects, STP 700, American Society for Testing and Materials (1980) 368-382 (81A18776).
73. E.T. Wessel, W.K. Wilson and W.G. Clark, Linear Fracture Mechanics, Env Publishing Co. (1975) 205-251.
74. W.L. Server, Elastic-Plastic Fracture, STP 668, American Society for Testing and Materials (1979) 493-514 (79A51151).
75. P. Brozzo and G. Buzzichelli, Analytical and Experimental Fracture Mechanics, Sijhoff and Noordhoff (1981) 45-79 (83A21098).
76. F.J. Loss and G. Angelino, Analytical and Experimental Fracture Mechanics, Sijhoff and Noordhoff (1981) 291-304 (83A21098).
77. W.L. Server and W. Oldfield, Electric Power Research Institute Report EPRI-NP-933 (1978) (79N28303).
78. W.L. Server, R.A. Wullaert and R.O. Ritchie, JEMT, 102 (1980) 192-199 (80A32474).
79. H. Takahashi, M.A. Khan, and M. Suzuki, J. Testing and Evaluation, 8 (1980) 63-67.

80. R.E. Rai, N.K. Roy, P.K. Roy, B.J. Ansari and S.K. Banerjee, Fracture Mechanics in Engineering Applications, Sijthoff & Noordhoff (1979) 151-158 (80A53426).
81. L.A. James, JEMT, 102 (1980) 187-191.
82. G.A. Clarke and T.T. Shih, Ductility and Toughness Considerations in Elevated Temperature Service, Metal Properties Council Report MPC-8, ASME (1978) 187-197.
83. P.C. Paris, H. Tada, H. Ernst and A. Zahoor, Elastic-Plastic Fracture, STP 668, American Society for Testing and Materials (1979) 251-265 (79A51161).
84. P.W. Early and S.J. Burns, IJF, 16 (1980) 397-410 (80A52843).
85. W.A. Logsdon, Ductility and Toughness Considerations in Elevated Temperature Service, Metal Properties Council Report MPC-8, ASME (1978) 149-165.
86. W.A. Logsdon, Elastic-Plastic Fracture, STP 668, American Society for Testing and Materials (1979) 515-536 (79A51151).
87. S. Susukida, M. Sato, K. Ando, Y. Sakaguchi, A. Fukuhara, J. Tanabe and Y. Ando, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, I (1980) 361-368.
88. H. Tsukada, T. Iwadate, Y. Tanaka and S. Ono, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, I (1980) 369-374.
89. G.T. Hahn, P.L. Gehlen, R.G. Hoagland, J. Lereim, M.W. Kanninen, C. Popelar, C.W. Marshall and A.R. Rosenfield, U.S. Nuclear Regulatory Commission, NUREG/CR-0583 (1979) (79N24382).
90. A.D. Wilson, Elastic-Plastic Fracture, STP 668, American Society for Testing and Materials (1979) 469-492 (79A51151).
91. A.D. Wilson, JEMT, 102 (1980) 269-279.
92. J.I. Bluhm, Linear Fracture Mechanics, Envo Publishing Co., (1975) 129-173.
93. M.G. Vassilaros, J.A. Joyce and J.P. Gudas, Fracture Mechanics: Current Status, Future Prospects, STP 700, American Society for Testing and Materials (1980) 251-270 (81A18776).
94. S.J. Garwood, Fracture Mechanics: Current Status, Future Prospects, STP 700, American Society for Testing and Materials (1980) 271-295 (81A18776).
95. B.W. Pickles, Second European Colloquium on Fracture (ECF 2), Darmstadt, October 9-11, 1978 VDI-Verlag GmbH (1978) 130-143.
96. W. Dahl and A. Krabiell, Second European Colloquium on Fracture (ECF 2), Darmstadt, October 9-11, 1978, VDI-Verlag GmbH (1978) 226-243.

97. W. Dahl, Analytical and Experimental Frature Mechanics, Sijhoff and Noordhoff (1981) 17-43 (83A21098).
98. M.F. Kanninen, P.C. Gehlen, C.R. Barnes, R.G. Hoagland and G.T. Hahn, Nonlinear and Dynamic Fracture Mechanics, The American Society of Mechanical Engineers (1979) 185-200 (80A27705).
99. K. Suzuki, M. Nishiya and K. Ishikawa, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, 2 (1980) 71-75.
100. H. Kobayashi, H. Nakamura and H. Nakazawa, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, 1 (1980) 251-256.
101. N. Ohashi, M. Tanaka, T. Enami, H. Ooi, T. Sekine and Y. Ando, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, 1 (1980) 391-396.
102. J.M. Bloom, IJF, 16 (1980) R163-167.
103. D.G.H. Latzko, Post-Yield Fracture Mechanics, Applied Science Publishers, LTD., (1979) 1-21.
104. J.R. Low, Jr., Linear Fracture Mechanics, Envo Publishing Co. (1975) 275-286.
105. M.L. Wilson, R.H. Hawley and J. Duffy, EFM, 13 (1980) 371-385.
106. T.K. Odegaard, M.S. Thesis, Brown University (1979) (80N20379).
107. N.J. Kar, V.F. Zackay and E.R. Parker, AMMRC-TR-80-20 (1980) (80N30496).
108. C.L.M. Cottrell, Iron and Steel Institute Publication 120, Unwin Brothers Ltd. (1970) 112-115.
109. W.G. Clark, Jr., J. Materials for Energy Systems, 1 (1979) 33-40.
110. W.E. Wood, Oregon Graduate Center Report ARO-13894.2-MS (1979) (80N22470).
111. D.R. Ireland, Dynamic Fracture Toughness, The Welding Institute (1977) 47-62.
112. L.M. Barker, AMMRC TR-79-53(1979) (80N30791).
113. A.K. Wong, M. Levy and W.F. Czyrkis, AMMRC-MS-79-1 (1979) (79N25202).
114. M.G. Hebsur, K.P. Abraham and Y.V.R.K. Prasad, Fracture Mechanics in Engineering Applications, Sijthoff and Noordhoff International Publishers (1979) 189-197 (80A53435).
115. M.G. Hebsur, K.P. Abraham and Y.V.R.K. Prasad, EFM, 13 (1980) 851-864 (81A11937).
116. J.F. McCauley, Master's Thesis , Naval Postgraduate School (1980) (80N30492).

117. J.L. Taylor, M.S. Thesis, Naval Postgraduate School (1979) (80N12159).
118. N.J. Hurd and P.E. Irving, *Fracture and Fatigue*, Pergamon Press (1980) 239-249 (82A17226).
119. I. Milne and D.A. Curry, *Fracture and Fatigue*, Pergamon Press (1980) 39-47 (82A17226).
120. J.R. Matthews and G.D. West, Defence Research Establishment Report DREP-80-A (1980) (AD-A091390).
121. N.E. Ryan, Aeronautical Research Laboratories Report ARL-MAT-Report-110 (1979) (80N24411).
122. G. Green and A. Willoughby, *Fracture and Fatigue*, Pergamon Press (1980) 69-77 (82A17226).
123. M.O. Lai and W.G. Ferguson, EFM, 13 (1980) 285-292 (80A36079).
124. A.H. Priest and M.J. May, Iron and Steel Institute Publication 120, Unwin Brothers Ltd (1970) 16-23.
125. T. Weerasooriya, Oak Ridge National Laboratory Report ORNL TM-6971 (1979) (80N21524).
126. K. Firth and R. D. Garwood, Iron and Steel Institute Publication 120, Unwin Brothers Ltd (1970) 81-89.
127. R.J. Weimer, W.L. Phillips and C. Ehe, NRL Report MR-4031 (1979) (80N11193).
128. R.E. Oakes, Jr, Union Carbide, Y-12 Plant, Report Y-2196 (1980).
129. G.T. Hahn and M.F. Kanninen, Battelle Columbus Report (1979) (80N28745).
130. J.A. Joyce and J.P. Gudas, *Elastic-Plastic Fracture*, STP 668, American Society for Testing and Materials (1979) 451-468 (79A51168).
131. S.R. Bala and D. Tromans, MT, 11A (1980) 1187-1196.
132. D.K. Verma, J.T. Berry and A.A. Tseng, *Cast Metals for Structural and Pressure Containment Applications*, Metals Properties Council MPC-11 (1979) 1-55.
133. W.L. Bradley and H.E. Mead, Jr., *Cast Metals for Structural and Pressure Containment Applications*, Metals Properties Council MPC-11 (1979) 69-87.
134. A.G. Glover and G. Pollard, Iron and Steel Institute Publication 120, Unwin Brothers Ltd (1970) 90-94.
135. K. Iida, K. Ishikawa, K. Sakai, N. Onozuka, M. Satoh and I. Soya, *Fourth International Conference on Pressure Vessel Technology*, Mechanical Engineering Publications Limited, 1 (1980) 403-409.

136. M.E. deMorton, Dynamic Fracture Toughness, The Welding Institute (1977) 207-216.
137. D.A. Curry, MS, 14 (1980) 319-326 (80A54005).
138. G.R. Caskey, Jr., Savannah River Laboratory Report DP-MS-78-68 (1979) (79N30366).
139. A.J. Bryhan and W. Troyer, WJ, 59 (1980) 37s-47s.
140. T. Iwadate, J. Watanabe, K. Ohnishi, R. Saikudo, Y. Ohshio, T. Tsukikawa, S. Yamamoto, N. Nakano and H. Ueyama, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, 2 (1980) 369-373.
141. Y. Kusuhara, T. Sekine, T. Enami and H. Ooi, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, 1 (1980) 205-209.
142. T. Tsukikawa, S. Yamamoto, Y. Ohshio, M. Nakano, H. Ueyama, J. Watanabe, K. Ohnishi, R. Suikudo and I. Iwadate, JPVT 102 (1980) 353-362.
143. H. Ohtani, Y. Kawaguchi, Y. Matsukawa, M. Nakamura, A. Nakamura and K. Oda, The Sumitomo Search, 22 (1979) 134-144.
144. B.V. Narasinha Rao, Lawrence Berkeley Laboratory Report LBL-3794 (1975) (79N79629).
145. B.V. Narasimha Rao and G. Thomas, MT, 11A (1980) 441-457 (80A51804).
146. K. Chiba, T. Iwadate, J. Watanabe and H. Takeda, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, 1 (1980) 1-6.
147. J.R. Strife and D.E. Passoja, MT, 11A (1980) 1341-1350.
148. M. Niikura and J.W. Morris, Jr., MT, 11A (1980) 1531-1540.
149. M. Toyosada, Hitachi Zosen Technical Review, 40 (1979) 38-49.
150. M. Tvrdy, S. Havel, L. Hyspecka and K. Mazanec, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, 1 (1980) 383-389.
151. D. Munz and H.P. Keller, Fracture and Fatigue, Pergmon Press (1980) 105-117 (82A17226).
152. T. Fujita, A. Mizuta and O. Tsuda, IJF, 16 (1980) 221-232.
153. L.E. Sloter and D.H. Peterson, Vought Corporation Advance Technology Center Report No. R-92000/OCR-31 (1980) (80N30796).
154. S.D. Antolovich, T.R. Risbeck and A. Saxena, EFM, 13 (1980) 717-739.

155. B. Mukherjee and M.L. Vanderglas, JPVT, 102 (1980) 294-302.
156. L.A. James, Hanford Engineering Development Laboratory Report HEDL-SA-1663 (1978) (79N24133).
157. W.H. Cullen and K. Torronen, NRL Memo Report 4298 (1980) (81N11426).
158. T.A. Prater, F.P. Ford and L.F. Coffin, MS, 14 (1980) 424-432 (80A54017).
159. R.O. Ritchie, Analytical and Experimental Fracture Mechanics, Sijhoff and Noordhoff (1981) 81-108 (83A21098).
160. R.O. Ritchie, S. Suresh and C.M. Moss, JEMT, 102 (1980) 293-299.
161. T.T. Shih and J.K. Donald, Methods for Predicting Material Life in Fatigue, American Society of Mechanical Engineers (1979) 203-220 (80A27951).
162. A. Saxena, FEMS, 3 (1980) 247-255 (81A26381).
163. R. Rungta and J.A. Begley, MT, 11A (1980) 821-830 (80A51827).
164. W.H. Bamford and D.M. Moon, Corrosion, 36 (1980) 289-298.
165. D.A. Hale, J.L. Yuen and T.L. Gerber, U.S. Nuclear Regulatory Commission Report NUREG/CR-0390 (1980).
166. V. Provenzano, K. Torronen, W.H. Cullen and G. Gabetta, Fracture Mechanics, Sijhoff and Noordhoff (1981) 211-222 (83A21098).
167. W.H. Cullen, V. Provenzano, K.J. Torronen, H.E. Watson and F.J. Loss, NRL Memo Report 4063 (1979) (80N18159).
168. S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures, Prentice-Hall Inc., (1977) (77A13275).
169. N.E. Dowling, Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, STP 637, American Society for Testing and Materials, (1977) 97-121 (78A30089).
170. L.F. Coffin, Fatigue and Microstructure, American Society for Metals (1979) 1-27 (80A26750).
171. M.H. El Haddad and T.H. Topper, Risk and Failure Analysis for Improved Performance and Reliability, Plenum Press (1980) 121-140 (80A48931).
172. M.H. El Haddad, N.E. Dowling, T.H. Topper and K.N. Smith, IJF, 16 (1980) 15-30 (80A24464).
173. B. Tomkins, MS, 14 (1980) 408-417 (80A54015).
174. M.H. El Haddad, T.H. Topper and T.N. Topper, Methods for Predicting Material Life in Fatigue, American Society of Mechanical Engineers (1979) 41-56 (80A27954).

175. S.I. Kwun and M.E. Fine, FEMS, 3 (1980) 367-382.
176. P.S. Pao, W. Wei and R.P. Wei, Environment-Sensitive Fracture of Engineering Materials, The Metallurgical Society of AIME (1979) 565-580 (80A14567).
177. Deleted.
178. S.D. Antolovich, AFML-TR-79-4209 (1980) (81N12453).
179. S.J. Maddox, Welding Research International, 4 (1974) 36-60.
180. J.K. Musuva and J.C. Radon, Second European Colloquium on Fracture (ECF 2), Darmstadt, October 9-11, 1978, VDI-Verlag GmbH (1978) 286-310.
181. J.K. Musuva and J.C. Radon, Fracture and Fatigue, Pergamon Press (1980) 129-141 (82A17232).
182. A.S. Salah El Din and J.M. Lovegrove, FEMS, 3 (1980) 315-323.
183. ANON: Engineering Sciences Data Item (ESDU) Number 84003, The Royal Aeronautical Society Institution of Mechanical Engineers, December, 1987. (87N26211).
184. C.R. Saff, Naval Air Development Center Report NADC-79095-60 (1980) (81N17242).
185. M.E. Fine, Northwestern University Report, (1980) (81N13157).
186. O. Vosikovsky, WJ, 59(1980) 255s-258s.
187. B.M. Kapadia and E.J. Imhof, Jr., Cast Metals for Structural and Pressure Containment Applications, Metals Properties Council MPC-11 (1979) 117-153.
188. C. Masuda, A. Ohta, S. Nishijima and E. Sasaki, JMS, 15 (1980) 1663-1670.
189. I. Hayashi, K. Itoh, S. Kojima and H. Gotoh, Twenty Fourth Japan Congress on Materials Research, Society of Materials Science, (1981) 99-104 (82A11976).
190. T. Uchida, N. Okabe, T. Yano and T. Mori, Twenty-Fourth Japan Congress on Materials Research, Society of Materials Science, (1981) 134-140 (82A11976).
191. S. Stanzl and E. Tschegg, MS, 14 (1980) 137-143 (80A31783).
192. H. Kitagawa, R. Yuuki and K. Tohgo, Fatigue of Engineering Materials and Structures, 2 (1979) 195-206.
193. O. Vosikovsky, L.P. Trudeau and A. Rivard, IJF, 16 (1980) R187-R190 (80A46038).
194. D.F. Mowbray, Elastic-Plastic Fracture, STP 668, American Society for Testing and Materials (1979) 736-752 (79A51173).

195. H. Kotilainen, K. Torronen and P. Nenonen, Analytical and Experimental Fracture Mechanics, Sijhoff and Noordhoff (1981) 465-475 (83A21098).
196. A.T. Stewart, EFM, 13 (1980) 463-478 (80A48055).
197. M.W. Proctor and T.V. Duggan, Fracture Mechanics in Engineering Applications, Sijthoff & Noordhoff (1979) 227-239 (80A53438).
198. W.H. Bamford and A.J. Bush, Elastic-Plastic Fracture, STP 668, American Society for Testing and Materials (1979) 553-577 (79A51151).
199. H. Kranth and A. Nyilas, Fracture and Fatigue, Pergamon Press (1980) 119-128 (82A17226).
200. C.E. Witherell, WJ, 59 (1980) 326s-342s.
201. E.I. Landerman and W.H. Bamford, Ductility and Toughness Considerations in Elevated Temperature Service, Metal Properties Council Report MPC-8, ASME (1978) 99-108.
202. C.G. Chipperfield, Dynamic Fracture Toughness, The Welding Institute (1977) 169-179.
203. D.T. Read, H.I. McHenry, P.A. Steinmeyer and R.D. Thomas,Jr., WJ, 59 (1980) 104s-113s.
204. H-J. Kaiser and K.E. Hagedorn, Fracture and Fatigue, Pergamon Press (1980) 79-86 (82A17230).
205. K. Mukai, K. Hoshino and T. Fujioka, J. Iron and Steel Institute of Japan, 65 (1979) 96-105.
206. V. Provenzano, D.J. Michel, H.H. Smith, F.A. Smidt, Jr. and P. Shahinian, Ductility and Toughness Considerations in Elevated Temperature Service, Metals Properties Council Report MPC-8, ASME (1978) 211-223.
207. W.R. Brose and N.E. Dowling, Elastic-Plastic Fracture, STP 668, American Society for Testing and Materials (1979) 720-735 (79A51172).
208. Y. Asada, R. Yuuki, D. Sunamoto, T. Sakon, K. Tomimasa, Y.Makino, M. Kitagawa and K. Shingai, Fourth International Conference on Pressure Vessel Technology, Mechanical Engineering Publications Limited, I (1980) 347-352.
209. K. Sadananda and P. Shahinian, MT, 11A (1980) 267-276 (80A24894).
210. K. Sadananda and P. Shahinian, Fracture Mechanics: Current Status, Future Prospects, STP 700, American Society for Testing and Materials (1980) 152-163 (81A18782).
211. K. Sadananda and P. Shahinian, Creep-Fatigue-Environment-Interactions, The Metallurgical Society of AIME (1980) 86-111 (83A32650).
212. D.J. Michel and H.H. Smith, Creep-Fatigue-Environment-Interactions, The Metallurgical Society of AIME (1980) 165-177 (83A32650).

213. D.J. Michel and H.H. Smith, NRL Memo Report 4282 (1980) (80N32493).
214. D.J. Michel and H.H. Smith, NRL Memo Report 3936 (1979) (79N28295).
215. G.J. Lloyd and J.D. Walls, EFM, 13 (1980) 897-911.
216. J.C. Chestnutt, A.W. Thompson and J.C. Williams, AFML-TR-78-68 (1978) (79N21188).
217. D.R. Salmon, National Physics Laboratory (England) Report NPL QU 53 (1979) (80N23448).
218. T. Kishi, H.S. Park, H. Horiuchi, T. Kakimi, M. Nakanose and T. Tanabe, Titanium '80, Science and Technology, Metallurgical Society of AIME, 3 (1980) 1709-1718 (81A41618).
219. C.G. Rhodes, Rockwell International Science Center Report SC5056.5TR (1980) (80N25417).
220. C.G. Rhodes and N.E. Paton, Rockwell International Science Center Report SC5056.4FR (1979) (79N28298).
221. R.R. Boyer and R. Bajoraitis, AFML-TR-78-131 (1978) (79N33307).
222. C.R. Whitsett, S.M.L. Sastry, J.E. O'Neal and R.J. Lederrich, McDonnell Douglas Research Laboratories Report MDC-Q0654 (1978) (79N19147).
223. H.J. Rack and J.W. Munford, Environment Sensitive Fracture of Engineering Materials, The Metallurgical Society of AIME (1979) 284-302 (80A14559).
224. K.S. Chan and D.A. Koss, Office of Naval Research Technical Report No. 9 (1979) (79N32331).
225. K.T. Lee and R.T.J. Hubbard, Iron and Steel Institute Publication 120, Unwin Brothers Ltd (1970) 127-129.
226. C.M. Ward-Close and C.J. Beevers, MT, 11A (1980) 1007-1017 (80A51838).
227. H. J. Rack, Titanium '80, Science and Technology, Metallurgical Society of AIME, 3 (1980) 1627-1635 (81A41610).
228. F.H. Froes, C.F. Yolton, J.C. Chesnutt, C.H. Hamilton and W.T. Highberger, Mechanical Behavior of Materials, Pergamon Press, Ltd, 3 (1980) 403-412 (80A52178).
229. R.F. Vaughan, P.A. Blenkinsop and H.A. Holl, Titanium '80, Science and Technology, Metallurgical Society of AIME, 3 (1980) 1645-1651 (81A41612).
230. R.J.H. Wanhill, National Aerospace Laboratory Report NLR TR 78143U (1978) (80N31548).
231. R.J. Goode and R.W. Judy, Jr., Application of Fracture Mechanics to Design, Plenum Press (1979) 213-231 (79A26980).

232. C.R. Crowe and D.F. Hasson, Titanium for Energy and Industrial Applications, The Metallurgical Society of AIME (1981) 93-110.
233. C.G. Rhodes, Titanium '80, Science and Technology, Metallurgical Society of AIME, 3 (1980) 1691-1700 (81A41616).
234. G.R. Yoder, L.A. Cooley and T.W. Crooker, NRL Memo Report 4120 (1979) (80N18452).
235. R.J.H. Wanhill, National Aerospace Laboratory, NRL MP 78009U (1977) (79N18015).
236. G.C. Sih and B.M. Barthelemy, EFM, 13 (1980) 439-451 (80A48053).
237. N.R. Moody and W.W. Gerberich, MS, 14 (1980) 95-100 (80A27425).
238. D.A. Koss, AFOSR TR-78-1517 (1978) (79N20235).
239. W.J. Mills, Hanford Engineering Development Lab Report HEDL-SA 1818 (1979) (80N21515).
240. S. Floreen, Creep-Fatigue-Environment-Interactions, The Metallurgical Society of AIME (1980) 112-128 (83A32650).
241. R.M. Pelloux and J.S. Huang, Creep-Fatigue-Environment-Interactions, The Metallurgical Society of AIME (1980) 151-164 (83A32650).
242. T. Weerasooriya and J. P. Strizak, Oak Ridge National Laboratory Report ORNL/TM-7255 (1980) (80N31839).
243. T. Weerasooriya, Oak Ridge National Laboratory Report ORNL/TM-6999 (1979) (80N20386).
244. J.S. Huang and R.M. Pelloux, MT, 11A (1980) 899-904 (80A51833).
245. M.J. Larsen and C.G. Annis, Jr., Effect of Load Spectrum Variables on Fatigue Crack Initiation and Propagation, STP 714, American Society of Testing and Materials (1980) 91-107 (81A21735).
246. J.M. Larsen, B.J. Schwartz and C. G. Annis, Jr., AFMIL-TR-79-4159 (80N28365).
247. B.A. Cowles, D.L. Sims, J.R. Warren and R.V. Minor, Jr., JEMT 202 (1980) 356-363 (81A12266).
248. W. Hoffelner, J. Physics E-Sci. Insts., 13 (1980) 617-619 (80A40548).
249. W.J. Mills, Hanford Engineering Development Laboratory HEDL-TME 78-98 (1979) (80N16151).
250. H.H. Smith and D.J. Michel, Ductility and Toughness Considerations in Elevated Temperature Service, Metals Properties Council Report MPC-8, ASME (1978) 225-246.

251. M. Clavel, C. Levaillant and A. Pineau, Creep-Fatigue-Environment-Interactions, The Metallurgical Society of AIME (1980) 24-45 (83A32650).
252. L.A. James and W.J. Mills, Hanford Engineering Development Laboratory, HEDL-SA 1810 (1979) (80N23699).
253. H.H. Smith and D.J. Michel, NRL Memo Report 3810 (1978) (79NI5183).
254. K. Sadananda and P. Shahinian, Res Mechanica, I (1980) 109-128 (80A48778).
255. K. Sadananda and P. Shahinian, Characterization of Materials for Service at Elevated Temperatures, ASME (1978) 107-127 (79A16032).
256. W.J. Mills and L.A. James, ASME Paper 78-WA/PVP-3 (1978) (79A19833).
257. R. Ekbom, J. Viklund and H. Johansson, Stal-Laval Turbin AB Summary Report (1979) (79N25212).
258. Deleted.
259. M.C. Bacon, and R.T. Smart, High Temperature Alloys for Gas Turbines, Applied Science Publishers (1978) 653-661 (79A48937).
260. W.J. Mills and L.A. James, FEMS, 3 (1980) 159-175 (81A16604).
261. K. Sadananda and P. Shahinian, Fracture Mechanics, University Press of Virginia (1978) 685-703 (79N22578).
262. C.G. Annis, Jr., ASME Paper 79-GT-134 (1979) (79A32403).
263. C.J. Beevers, MS, 14 (1980) 418-423 (80A54016).
264. K. Katagiri, J. Awatani, K. Koyanagi and M. Tsuji, MS, 14 (1980) 485-492.
265. M. Prager, Cast Metals for Structural and Pressure Containment Applications, Metals Properties Council MPC-11 (1979) 225-302.
266. N.P. Pinto, Beryllium Science and Technology, Plenum Press, 2 (1979) 319-350 (79A53113).
267. R.E. Cooper, Beryllium Science and Technology, Plenum Press, 2 (1979) 351-378 (79A53114).
268. I.W. Dunmur, Beryllium Science and Technology, Plenum Press, 2 (1979) 135-175 (79A53106).

Report Documentation Page

1. Report No. NASA TM-100675	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle A Compendium of Sources of Fracture Toughness and Fatigue Crack Growth Data for Metallic Alloys - Part III		5. Report Date September 1988	
6. Performing Organization Code			
7. Author(s) C. Michael Hudson and Sue K. Seward		8. Performing Organization Report No.	
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665		10. Work Unit No. 505-63-01-05	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546		11. Contract or Grant No.	
		13. Type of Report and Period Covered Technical Memorandum	
		14. Sponsoring Agency Code	
15. Supplementary Notes			
16. Abstract This technical memorandum presents sources of fracture toughness and fatigue crack growth data for metallic alloys.			
17. Key Words (Suggested by Author(s)) Fracture toughness, fatigue crack growth, data		18. Distribution Statement Unclassified - Unlimited Subject Category 26	
19. Security Classif. (of this report) UNCLASSIFIED	20. Security Classif. (of this page) UNCLASSIFIED	21. No. of pages 31	22. Price A03