Analysis of variance

Assignment Project Exam Help

https://powcoder.com

Statistics (MAST20005) & Elements of Statistics

Chat powerouser

School of Mathematics and Statistics University of Melbourne

Semester 2, 2022

Aims of this module

- A SSI grand control of the ideas of bynathesis testing
 - Revisit linear regression and apply the ideas of hypothesis testing and analysis of variance.
 - · Dishttps://poweoderstcom

Overview

Assingation entire (ANOVA).

Assingation entire roject Exam Help

Regression.

Hypothesis testing for simple linear regression

• Like the transition of the best test for a given problem

Outline

Assignment Project Exam Help Introduction

One-way ANOVA
Twhat psyd/powcoder.com
Two-way ANOVA with interaction

Add WeChat powcoder

Likelihood ratio tests

Analysis of variance: introduction

• Initial aim: compare the means of more than two populations SSIGENMENT PROPERTY EXAM Help

- Explore components of variation
- Evaluate the fit a (general) linear model
- Formulate pshypothesiotex coder.com
 Referred to as analysis of variance, or ANOVA for short
- Involves comparing different summaries of variation
- Related to the 'analysis of variance decomposition' formulae we derived previously

Example: large variation between groups

Example: smaller variation between groups

ANOVA: setting it up

Assignment Project Exam Help

- \bullet We sample n_i iid observations from the $i{\rm th}$ population, which has mean μ_i
- · All https: ss/powerederiesm
- Question of interest: do the populations all have the same mean?
- Hypotheses:

Add , We Chat powcoder

 $(\bar{H}_0 \text{ means 'not } H_0')$

 This model is known as a one-way ANOVA, or single-factor ANOVA

Notation

Assignment Project Exam Help

```
	ext{https://powcoder.com} \ \frac{N(\mu_1,\sigma^2)}{N(\mu_2,\sigma^2)} \ \frac{X_{11},X_{12},\dots,X_{1n_1}}{X_{21},X_{22},\dots,X_{2n_2}} \ rac{ar{X}_1}{ar{X}_2} \ S_2^2 \ N(\mu_k,\sigma^2) \ \frac{N(\mu_k,\sigma^2)}{X_{k1},X_{k2},\dots,X_{kn_k}} \ rac{ar{X}_k}{ar{X}_k} \ S_k^2 \ N(\mu_k,\sigma^2) \
```

 $n = n_1 + \dots + n_k$ (total sample size)

Assignment Project Exam Help

 $h\bar{t}t\bar{p}\bar{s}\sum_{i\neq 1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{N_{i}}\sum_{j=1}^{N_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{k}\sum_{j=1}^{n_{i}}\sum_{j=1}^{n_{$

Sum of squares (definitions)

Assiegnment Project Exam Help

$$SS(TO) = \sum_{n=1}^{K} \sum_{i=1}^{N_n} (X_{ij} - \bar{X}_{..})^2$$

https://powicoder.com

$$\mathbf{Add}^{SS(T)} \mathbf{\overline{W}}_{1}^{\Sigma} \mathbf{\overline{Chat}}^{n_{i}} \mathbf{\overline{Z}}_{1}^{-\bar{X}_{1}})^{2} = \sum_{i=1}^{k} n_{i}(\bar{X}_{i} - \bar{X}_{1})^{2}$$

The error SS, or within groups SS, is:

$$SS(E) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2 = \sum_{i=1}^{k} (n_i - 1)S_i^2$$

Analysis of variance decomposition

Assignment Project Exam Help

- This is similar to the analysis of variance formulae we derived earlier in Ser see 100 W (100 C) Issis mill
- We will use this relationship as a basis to derive a hypothesis test
- Let's first prove the relationship. . .

• Start with the 'add and subtract' trick:

Assignment
$$\stackrel{k}{\underset{i=1}{\overset{n_i}{\longrightarrow}}} \text{Project Exam Help}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{..})^2$$

$$\text{https://kpowcoder.com}_{=(X_{ij} - \bar{X}_{i.})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{i.} - \bar{X}_{..})^2}$$

$$\text{Add Wechiat-powcoder}$$

$$= SS(E) + SS(T) + CP$$

• The cross-product term is:

Assignment
$$\sum_{i=1}^{CP=2} \sum_{k=1}^{k} \sum_{i=1}^{n_i} (X_{ij} - \bar{X}_{i\cdot}) (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})$$

$$= 2 \sum_{i=1}^{k} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot}) \sum_{j=1}^{k} (X_{ij} - \bar{X}_{i\cdot})$$

$$\text{https://powcoder.com}_{=2 \sum_{i=1}^{k} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot}) (n_i X_{i\cdot} - n_i X_{i\cdot})}$$

Add WeChat powcoder

Thus, we have:

$$SS(TO) = SS(T) + SS(E)$$

Sampling distribution of SS(E)

Assignmente from the ith group, S2 is an unbiased Help

• The samples from each group are independent, so we can usefully combine them,

$$https:/powecoder.com$$

- Note had d1 We2 hat power der
 This also gives us an unbiased pooled estimator of σ²,

$$\hat{\sigma}^2 = \frac{SS(E)}{n-k}$$

• These results are true irrespective of whether H_0 is true or not 15 of 81

Null sampling distribution of SS(TO)

As stronger of size n from $N(u, \sigma^2)$

• The combined data would be a sample of size n from $N(\mu,\sigma^2)$. Hence SS(TO)/(n-1) is an unbiased estimator of σ^2 and

https://powcoder.com

Null sampling distribution of SS(T)

\mathbf{A} \mathbf{S} \mathbf{I} \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{I} \mathbf{S} \mathbf{S}

- (Can think of this as a sample of sample means, and then think about what its variance estimator is)
- about what its variance estimator is)

 It is possible is shown to (MCGGGGT): COM

Add
$$= \frac{\sum_{i=1}^{k} n_i(\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2}{\text{powcoder}} = \frac{SS(T)}{\text{powcoder}} \sim \chi_k^2 - 1$$

and that this is independent of SS(E)

Null sampling distributions

Assignment Project Exam Help
$$\frac{SS(TO)}{\sigma^2} = \frac{SS(E)}{\sigma^2} + \frac{SS(T)}{\sigma^2}$$

https://powcoder.com...

SS(E) and SS(T) are independent


```
https://powcoder.com
Group 2
Group 3
Group 4 dd WeChat powcoder.
```

SS(T) under H_1

- Assiegonments of H₁ is true? Lessange Help
 - Let's make this precise...

https://powcoder.com

• Let $\bar{\mu} = n^{-1} \sum_{i=1}^k n_i \mu_i$, and then,

$$\begin{array}{l} \mathbf{Assignment}^{\mathbb{E}[SS(T)]} = \mathbb{E}\left[\sum_{i=1}^{k} n_{i}(\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{k} n_{i}\bar{X}_{i\cdot}^{2} - n\bar{X}^{2}\right] \\ = \sum_{i=1}^{k} n_{i}\,\mathbb{E}(\bar{X}_{i\cdot}^{2}) - n\,\mathbb{E}(\bar{X}_{\cdot\cdot}^{2}) \\ \mathbf{https:} //\mathbf{poweder.com} \end{aligned}$$

Adel Me Chat Powcoder

$$= (k-1)\sigma^{2} + \sum_{i=1}^{k} n_{i}(\mu_{i} - \bar{\mu})^{2}$$

$$\mathbb{E}[SS(T)] = (k-1)\sigma^2 + \sum_{i=1}^{k} n_i (\mu_i - \bar{\mu})^2$$

Assignment Project Exam Help

Add WeChat powcoder

In contrast, we always have,

$$\frac{E(SS(E))}{n-k} = \sigma^2$$

F-test statistic

- Und 17f, pshaye/p Owy Coide is the Otion independent χ² randam variables
- Under H_1 , the numerator will tend to be larger
- eChat powcoder

ANOVA table

The test quantities are often summarised using an ANOVA table: A SSIGNMENT PROJECT Exam Help Source of SS MS F

Treatment k-1 / SS(T) $MS(T) = \frac{SS(T)}{k-1}$ $\frac{MS(T)}{MS(E)}$ Error NS(T) NS

Notes: Add WeChat powcoder

- MS = 'Mean square'
- $\hat{\sigma}^2 = MS(E)$ is an unbiased estimator

Example (one-way ANOVA)


```
> head(data1)
Position Force

Assignment Project Exam Help
3 1 87
4 1 105
```

```
> table(data1$Position)
Add WeChat powcoder
```

https://powcoder.com

```
> anova (model 1)
Analysis of Variance Table
Assignment Project Exam Help
```

> model1 <- lm(Force ~ factor(Position), data = data1)</pre>

Notes: Addactive Chattepawickeder

- R doesn't provide a 'Total' row, but we don't need it
- · Residuals is the 'Error' row
- Pr(>F) is the p-value for the F-test

We conclude that the mean force required to pull out the window studs varies between the 5 positions on the car window (e.g. p-value <0.01)

Assignmente Popoje of the Examite Help different from 3, 4 & 5

Force

Two factors

- In other words, they were defined by a single categorical variable ('factor')
- · whittps://poweoder.com
- We can extend the procedure to give two-way ANOVA, or two-factor ANOVA
- For example, the fig sub ation of poor may depend on type of petrol and the brand of tyres

Two-way ANOVA: setting it up

• Factor 1 has a levels, Factor 2 has b levels Extambilities processing personal pers

- Observe X_{ij} with factor 1 at level i and factor 2 at level j
- Gives a total of n = ab observations
 Assinttpsi(μ_{ij} powco,deri,com) that these are independent
- Consider the model: Add WeChat powcoder

with
$$\sum_{i=1}^{a} \alpha_i = 0, \sum_{j=1}^{b} \beta_j = 0$$

- μ is an overall effect, α_i is the effect of the *i*th row and β_i the effect of the *j*th column.
- For example, a=4 and b=4.

ignment-Project Exam-Help

2
$$\mu + \alpha_2 + \beta_1$$
 $\mu + \alpha_2 + \beta_2$ $\mu + \alpha_2 + \beta_3$ $\mu + \alpha_2 + \beta_4$
3 $\mu + \alpha_3 + \beta_1$ $\mu + \alpha_3 + \beta_2$ $\mu + \alpha_3 + \beta_3$ $\mu + \alpha_3 + \beta_4$
4 1440 $+\beta_1$ $\mu + \alpha_3 + \beta_4$ $\mu + \alpha_3 + \beta_4$

- We are usually interested in H_{0A} : $\alpha_1 = \alpha_2 = \cdots = \overline{\alpha_a} = 0$ or $H_{0B}: \beta_1 = \beta_2 = \cdots = \beta_b = 0$

• Let Add WeChat powcoder
$$\bar{X}_{..} = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} X_{ij}, \quad \bar{X}_{i.} = \frac{1}{b} \sum_{j=1}^{a} X_{ij}, \quad \bar{X}_{.j} = \frac{1}{a} \sum_{i=1}^{a} X_{ij}$$

• Arguing as before,

$$Assignme_{i=1}^{a}t_{j=1}^{b}(X_{ij}-\bar{X}_{..})^{2}$$

$$=\sum_{i=1}^{a}\sum_{j=1}^{b}(X_{ij}-\bar{X}_{..})^{2}$$

$$=\sum_{i=1}^{a}\sum_{j=1}^{b}(X_{ij}-\bar{X}_{..})^{2}$$

$$=\sum_{i=1}^{a}\sum_{j=1}^{b}(X_{ij}-\bar{X}_{..})^{2}$$

https://powcoder.com

Add
$$w^{i}=b\sum_{i=1}^{a}(\bar{X}_{i\cdot}-\bar{X}_{\cdot\cdot})^{2}+a\sum_{i=1}^{b}(\bar{X}_{\cdot j}-\bar{X}_{\cdot\cdot})^{2}$$

 $+\sum_{i=1}^{a}\sum_{j=1}^{b}(\bar{X}_{ij}-\bar{X}_{i\cdot}-\bar{X}_{\cdot j}+\bar{X}_{\cdot\cdot})^{2}$
 $=SS(A)+SS(B)+SS(E)$

• If both $\alpha_1=\cdots=\alpha_a=0$ and $\beta_1=\cdots=\beta_b=0$, then we have $SS(A)/\sigma^2\sim\chi^2_{a-1}$, $SS(B)/\sigma^2\sim\chi^2_{b-1}$ and $SS(E)/\sigma^2\sim\chi^2_{(a-1)(b-1)}$ and these variables are independent

Assignment Project Exam Help

$\frac{\mathbf{https:}}{\mathsf{powcoder:}} > c \\ \mathsf{where} \ c \ \mathsf{is the} \ 1 - \alpha \ \mathsf{quantile of} \ \mathsf{F}_{a-1,(a-1)(b-1)} > c \\ \mathsf{modes}$

• Reject H_{0B} : $\beta_1 = \cdots = \beta_b = 0$ at significance level α if:

$$Add WeCshat_{(bp)} coder$$

$$F_B = \frac{SS(E)/((a-1)(b-1))}{SS(E)/((a-1)(b-1))} > c$$

where c is the $1-\alpha$ quantile of $F_{b-1,(a-1)(b-1)}$

ANOVA table

Example (two-way ANOVA)

```
> head(data2)
Car Fuel Consumption
1 1 https://powcoder.com
2 1 2 18
3 1 3 21
4 1 Add WelChat powcoder
6 2 2 15
```


Assignment Project Exam Help

Response: Consumption

From this we conclude there is a clear difference in fuel consumption between cars (we reject H_{0A} : $\alpha_1 = \alpha_2 = \alpha_3$) and also between fuels (we reject H_{0B} : $\beta_1 = \beta_2 = \beta_3 = \beta_4$).

Interaction terms

Assignment Project Exam Help $\mathbf{Assignment} \overset{\text{ln the previous example pre assumed an additive model:}}{\mathbf{Project}} \mathbf{Exam} \overset{\text{holding the previous example project}}{\mathbf{Project}} \mathbf{Exam} \overset{\text{holding the project}}{\mathbf{Project}} \mathbf{Project} \overset{\text{holding the project}}{\mathbf{Project}} \mathbf{Pro$

- This assumes, for example, that the relative effect of petrol 1 is the sample by sam
- If it is not true, then there is a statistical interaction (or simply an interaction) between the factors

• A more general model, which includes interactions, is:

$$\mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}$$

AssignmenterProjectedExameiHelp

In addition to our previous assumptions, we also impose:

https://poweoder.com

- The terms α_i and β_i are called main effects
- When writter out the lighter power effects and column effects respectively

Writing this out as a table:

- We are now interested in testing whether:
 - o the tribute of tribut
 - o the column effects are zero
 - o the interactions are zero (do this first!)
- To make inferences about the interactions we need more than one
- Let X_{ijk} , i = 1, ..., a, j = 1, ..., b, k = 1, ..., c be the kth observation for combination (i, j)

Let

Assignment
$$\Pr_{\bar{X}_{i\cdot\cdot}}^{\bar{X}_{ij\cdot}} = \frac{1}{c} \sum_{c}^{c} X_{ijk}$$

$$\bar{X}_{i\cdot\cdot} = \frac{1}{bc} \sum_{j=1}^{c} \sum_{k=1}^{X_{ijk}} X_{ijk}$$

https://poweoder.com

• and as before

$$Assignment_{a}^{j} Project Exam Help$$

$$= bc \sum_{i=1}^{a} (\bar{X}_{i..} - \bar{X}_{...})^{2} + ac \sum_{j=1}^{a} (\bar{X}_{.j.} - \bar{X}_{...})^{2}$$

$$https://powcoder.com_{c} (\bar{X}_{ij.} - \bar{X}_{i...} - \bar{X}_{..j.} + \bar{X}_{...})^{2}$$

$$= SS(A) + SS(B) + SS(AB) + SS(E)$$

Test statistics

 $A \overset{\textbf{Familiar arguments show that to-test}}{\underset{H_{0AB}: \ \gamma_{ij}}{\text{end}}} \overset{\textbf{Familiar arguments show that to-test}}{\underset{i=1,\ldots,a}{\text{end}}} \underbrace{Exam}_{j=1,\ldots,b} \ Help$

https://powcoder.com
$$F = \frac{SS(AB)/[(a-1)(b-1)]}{SS(E)/[ab(c-1)]}$$

which as a device in what powered et degrees of freedom.

To test

$$H_{0A}$$
: $\alpha_i = 0$, $i = 1, \dots, a$

Assignment $F = \frac{\text{reject }_{1}}{SS(E)/[ab(c-1)]}$

which has a F distribution with (a - 1) and ab(c - 1) degrees of freedom. C - 1

To test

$$H_{0B}$$
: $\beta_j = 0$, $j = 1, \dots, b$

Assignment $F = \frac{\text{reject }_{1}}{SS(E)/[ab(c-1)]}$

which has a F distribution with the dank about 1 degrees of freedom. POWCOder. Com

ANOVA table

Example (two-way ANOVA with interaction)

- Assignmentarhamiestes Examthelp
 numbers together
 - The numbers are presented either in a down array or an across arra ntition (see 2/1965) (1965) (1965)
 - ullet The numbers have either one, two or three digits; this defines 3 levels of factor B
 - The Asponse valiable (Y, is the offerage number of problems completed correctly over two 90-second sessions

• Example of adding one-digit numbers in an across array:

$$2+5+1=?$$

Assignment-Project Exam Help

13

https://powcoder.com

```
A B X

1 down 1 19.5
Singing ent Project Exam Help
3 down 1 32.0
4 down 1 21.5
5 down 1 1285
6 down 1 1285
7 powcoder.com
```

```
 \overset{\text{> table}(\text{data3[, 1:2]})}{\text{Add}} \overset{\text{WeChat powcoder}}{\text{WeChat powcoder}}
```

down 18 18 18 across 18 18 18

> head(data3)

```
> model3 <- lm(X ~ factor(A) * factor(B), data = data3)
> anova(model3)
```

Analysis of Variance Table

Assignment Project Exam Help

Signif Acod We'Chat powcoder

Note the use of '*' in the model formula.

The interaction is significant at a 5% level (or even at 1%).

Interaction plot

Beyond the F-test

- Assilgantment beginning ectatistical analyting hit copy of data
 - Will be interested in more detailed inferences, e.g. **Attended** in initial wranter. com
 - You know enough to be able to work some of this out...
 - ... and later subjects will go into this in more detail (e.g. Add WeChat powcoder

Outline

Assignment Project Exam Help

Introduction
One-way ANOVA
Twhttps://powcoder.com
Two-way NOVA with interaction

Analysid derive epochat powcoder

Likelihood ratio tests

Recap of simple linear regression

Y a response variable, e.g. student's grade in first-year calculus SS1 generation. The Economic SS1 generation of the student's grade in first-year calculus and the student's grade in first-year calculus.

- Data: pairs $(x_1, y_1), \dots, (x_n, y_n)$
- Linear regression model: https://powcoder.com

dropped the '0' subscript for convenience, and also to avoid confusion with its use to denote null hypotheses.

• The MLE (and OLS) estimators are:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} [Y_i - \hat{\alpha} - \hat{\beta}(x_i - \bar{x})]^2$$
https://powcoder.com

• We also derived:

Assignment
$$\mathbb{A} \sim \mathbb{N}\left(\alpha, \frac{\sigma^2}{n}\right)$$
 $\mathbb{A} \sim \mathbb{A} \subset \mathbb$

• and https://powcoder.com $\frac{(n-2)\hat{\sigma}^2}{\sigma^2} = \frac{\sum_{i=1}^n \left[Y_i - \hat{\alpha} - \hat{\beta}(x_i - \bar{x})\right]}{\sigma^2} \sim \chi_{n-2}^2$ Add WeChat powcoder

From these we obtain.

Assignment
$$\Pr_{T_{\beta} = \frac{\hat{\alpha} - \alpha}{\hat{\sigma}/\sqrt{n}} \sim t_{n-2}}^{T_{\alpha} = \frac{\hat{\alpha} - \alpha}{\hat{\sigma}/\sqrt{n}} \sim t_{n-2}}$$

$$T_{\beta} = \frac{Project}{\hat{\sigma}/\sqrt{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}} \sim t_{n-2}$$

- We held these previously to construct on idence intervals
 We can also use them to construct hypothesis tests
- For example, to test H_0 : $\beta = \beta_0$ versus H_1 : $\beta \neq \beta_0$ (or BAdd Wechat powcoder

Example: testing the slope parameter (β)

Assignment project. Exam Help

- Test H_0 : $\beta=0$ versus H_1 : $\beta\neq 0$ with a 1% significance level
- Reject H_0 if: //powcoder.com $|T_\beta| \geqslant 3.36$ (0.995 quantile of t_8)

so we reject H_0 , concluding there is sufficient evidence that the slope differs from zero.

Note regarding the intercept parameter (α)

Assignment Project Exam Help $P_{Y_i = \alpha + \beta x_i + \epsilon_i}^{\text{Software packages (such Project Exam Help}}$

where $\alpha = \alpha^* - \beta \bar{x}$ • The Arth thon We chart provided theoretically.

We saw that

$$\hat{\alpha}^* = \bar{Y}$$
, and $\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{x}$

• $\hat{\alpha}$ or $\hat{\alpha}^*$ are rarely of direct interest

Using R

Assignment Project Exam Help

> summary(m1)

Call: https://powcoder.com

Residuals:

-6.883 -3.24 dely echat powcoder

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.6147 _13.0622 2.344 _0.04714 *

Assignment Project Exam Help

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5-217 on 8 degrees of freedom Multiple a squared: 00000, National Erquired: 0.137 F-statistic: 15.3 on 1 and 8 DF, p-value: 0.004471

The t-value and the Value are for testing H_0 : $\alpha=0$ and H_0 : $\beta=0$ respectively.

Interpreting the R output

- Usually most interested in testing H_0 : $\beta = 0$ versus H_1 : $\beta \neq 0$ 1 least) a linear relationship between the mean response and x
 - In the example, https://pow/421oder.com
 - This test statistic has a t-distribution with 10-2=8 degrees of freedom, and the associated p-value is 0.00447 < 0.05 so at the 5% level of significance we reject t_0 DOWCOOLT
 - It is also possible to represent this test using an ANOVA table

Deriving the variance decomposition formula

Assignment Project Exam Help

Fitted value (estimated mean),

• Do the 'add and subtract' trick again:

Assignment
$$\Pr_{i=1}^{n}(Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n}(Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

= $\sum_{i=1}^{n}(Y_i - \hat{Y}_i)^2 + \sum_{i=1}^{n}(\hat{Y}_i - \bar{Y})^2$

https://poweoder.com

• Deal with the cross-product term,

Assignment Project Exam Help
$$= \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] (x_{i} - \bar{x})$$

$$+ https://po[Project Exam Help]$$

$$+ https://po[Project Exam Help]$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] (x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right]$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right]$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right]$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right]$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right]$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} - \bar{x}) \right] \hat{\beta}(x_{i} - \bar{x})$$

$$+ \hat{\beta} \sum_{i=1}^{n} \left[Y_{i} - \bar{Y} - \hat{\beta}(x_{i} -$$

That gives us,

https://powcoder.com where SS(R) is the regression SS or model SS

- The regression SS quantifies the variation due to the straight line
- · The Arcofolqua Wiene uniaith poweroit tire

• To complete the specification,

Assignment
$$P_{MS(R)}^{SS(E)} = \frac{1}{n-2} \sum_{r=2}^{n} (Y_i - \hat{Y}_i)^2 = \hat{\sigma}^2$$

$$MS(R) = \frac{SS(R)}{1} = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y}_i)^2$$
Help

· The https://powcoder.com

ANOVA table

Assignment Project Exam Help

```
Source df SS MS F

Model TTPS: SS (P) O WS GO GET. MS(E)

Error n-2 SS(E) MS(E) = \frac{SS(E)}{n-2}
```

Total Andd We Chat powcoder

Using R

Assignment Project Exam Help

```
Response: final_exam

prelim_test Pf $46.39 46.39 456.30 15.301 0.004471 **

Residuals 8 217.71 27.21
```

Signif Add WeChat powcoder ' ' 1

Notes:

- The F-statistic tests the 'significance of the regression'
- That is, H_0 : $\beta = 0$ versus H_1 : $\beta \neq 0$

Outline

Assignment Project Exam Help

One-way ANOVA
Twhttps://powcoder.com
Two-way NOVA with interaction

Add WeChat powcoder

Likelihood ratio tests

Is there a 'best' test?

We have examined a variety of commonly used tests
SMEANTHEIR BATOJECT Exam Help

- Seemed useful
- We were familiar with
- Did hetitophe best proweder.com
 Is there a general procedure for finding a good/best test statistic?
- We will introduce a general procedure now, and discuss why it is optimal later in Ween that powcoder

Likelihood ratio test

Assignment of the likelihood ratio test (RT) is a general procedure that can find procedure that can be considered to the can be considered to the can find procedure that can be considered to the can be conside

• Suppose we have H_0 and H_1 and both are composite and of the form:

https://powcoder.com where A_0 and A_1 are sets of possible parameter values consistent with each of the hypotheses.

- Note we have mostly dentifying that has only one element (simple half ypothesis Chat POWCOGET
- The likelihood ratio is:

$$\lambda = \frac{L_0}{L_1} = \frac{\max_{\theta \in A_0} L(\theta)}{\max_{\theta \in A_1} L(\theta)}$$

$$\lambda = \frac{L_0}{L_1} = \frac{\max_{\theta \in A_0} L(\theta)}{\max_{\theta \in A_1} L(\theta)}$$

Assignment Project Exam Help

- Clearly $\lambda \geqslant 0$
- Large $\lambda\Rightarrow$ more support for H_0 over H_1
- A nattosing powcoder.com
- Therefore, we want a critical region of the form,

Add WeChat powcoder

Choose k to give the desired significance level

Example 1 (likelihood ratio test)

Assignment, P_{μ} toject Exam Help

- When H_0 is true, $\mu=162$ so $L_0=L(162)$
- When H_1 is true, need to maximise the likelihood, L_1 H_1 is true, need to maximise the likelihood, D_1 H_2 D_2 D_3 D_4 D_4 D_4 D_5 D_4 D_5 D_4 D_5 D_5 D_5 D_6 D_6 D_7 D_8 D_8
- The likelihood ratio is,

$$\begin{array}{c}
\text{Add} \frac{L(x,y)}{L(x)} = \underbrace{\begin{pmatrix} 101 \\ 10n \end{pmatrix}}_{-10} \underbrace{\frac{1}{10}}_{-10} \underbrace{\sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - 162)^2}_{10} \\
= \exp \left[-\frac{n}{10} (\bar{x} - 162)^2 \right]
\end{array}$$

$$\lambda = \exp\left[-\frac{n}{10}(\bar{x} - 162)^2\right]$$

Assignment Project Exam Help

• A continuous for a size α test is $\frac{1}{\sigma/\sqrt{n}} \ge \Phi^{-1}(1-\alpha/2)$

$$\frac{x - 162|}{\sigma/\sqrt{n}} \geqslant \Phi^{-1}(1 - \alpha/2)$$

· Note Adduired knewedghatte powcoder

Example 2 (likelihood ratio test)

$\mathbf{A}\dot{\mathbf{s}}\overset{X_{\bullet}}{\mathbf{s}}\overset{\sim}{\mathbf{n}}\overset{\mathrm{N}(\mu,\sigma^{2}), \text{ i.e. }\sigma}{\mathbf{s}}$ is Project Exam Help

- Under H_0 we have $\mu=\mu_0$, and under H_1 we need to use its MLE
- Under either hypothesis, σ^2 is unspecified, so in both cases we need it MF (cord/tipe) who peciled release in So, under Ho, we use

Add $\hat{\mathbf{W}} = \hat{\mathbf{C}} \hat{\mathbf{h}} = \hat{\mathbf{T}} \hat{\mathbf{T}} \hat{\mathbf{T}} \hat{\mathbf{W}} \hat{\mathbf{$

• And under H_1 we use:

$$\hat{\mu} = \bar{x}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• Some simplification yields

Assignment
$$\Pr_{\mathbf{roject}}^{\lambda = \left[\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{\mu}_i)^2}\right]^{n/2}}$$
 Exam Help

$$\sum_{i=1}^{n} \mathbf{http}^{2} \mathbf{\bar{s}} : \sum_{i=1}^{n} (\mathbf{p} \mathbf{\bar{o}} \mathbf{\bar{w}} \bar{\mathbf{r}} \mathbf{\bar{c}} \mathbf{\dot{w}})^{2} \mathbf{d} \mathbf{e} \mathbf{\bar{f}} \mathbf{\bar{c}} \mathbf{\dot{w}}^{2} \mathbf{c} \mathbf{\bar{o}} \mathbf{\dot{m}}^{n(\bar{x} - \mu_{0})^{2}}$$

• Substitute and rearrange to get

Add We Chat powcoder
$$\lambda = \left[\frac{1 + \sum_{i=1}^{n(\bar{x} - \mu_0)^2} 1}{1 + \sum_{i=1}^{n} (x_i - \bar{x})^2}\right]$$

• Therefore, we have $\lambda \leq k$ when,

$$\frac{n(\bar{x} - \mu_0)^2}{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \geqslant \epsilon$$

$\frac{n(\bar{x}-\mu_0)^2}{\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2}\geqslant c$ Assignment $(X - \text{roject}, 1 \text{Exam}_{\sum_{i=1}^n(X_i-\bar{X})^2/\sigma^2} \sim \chi^2_{n-1}$, and is independent of \bar{X} .

• Therefore,

$$Add\sqrt[]{\overline{W_1}} \underbrace{\overline{C(hat)}} p \overline{\overline{o}} \underline{w} \overline{c} \widetilde{o} \underline{d} e r$$

• So we reject H_0 when |T| is too large, with the following critical region for a test with significance level α ,

$$|T|\geqslant d,\quad \text{where } d\text{ is the }1-\frac{\alpha}{2}\text{ quantile of }t_{n-1}$$

Remarks

- Assignment in the form of the test and a supering the left of the test of the test of the left of the test of the test of the test of the left of the test of the left of the
 - Manipulating λ until we have something whose distribution we know can be tricky!
 - · Marhttps://powcoderecom

Asymptotic distribution & optimality

- Assignment Project Exam Help
 - For large sample sizes, this approaches a known distribution

 - Also, the LRT gives the optimal test
 We MITTOP Shis the Only in the series of the common series