

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC142451
Page: 1 of 41

FCC Radio Test Report FCC ID: 2ADKSGBTY-6A

Original Grant

Report No. : TB-FCC142451

Applicant: MEET Studio CO.,LTD.

Equipment Under Test (EUT)

EUT Name : Cool Gym

Model No. : GBTY-6A

Brand Name : Cool Gym

Receipt Date : 2014-10-31

Test Date : 2014-10-31 to 2014-11-25

Issue Date : 2014-11-26

Standards: FCC Part 15, Subpart C (15.247:2014)

Test Method : ANSI C63.4:2003

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page:

Contents

CONT	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Test Facility	7
2.	TEST SUMMARY	8
3.	CONDUCTED EMISSION TEST	9
	3.1 Test Standard and Limit	9
	3.2 Test Setup	
	3.3 Test Procedure	
	3.4 Test Equipment Used	10
	3.5 EUT Operating Mode	10
	3.6 Test Data	10
4.	RADIATED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	
	4.3 Test Procedure	15
	4.4 EUT Operating Condition	15
	4.5 Test Equipment	16
	4.6 Test Data	16
5 .	RESTRICTED BANDS REQUIREMENT	25
	5.1 Test Standard and Limit	25
	5.2 Test Setup	25
	5.3 Test Procedure	25
	5.4 EUT Operating Condition	26
	5.5 Test Equipment	26
	5.6 Test Data	26
6.	BANDWIDTH TEST	32
	6.1 Test Standard and Limit	32
	6.2 Test Setup	32
	6.3 Test Procedure	32
	6.4 EUT Operating Condition	
	6.5 Test Equipment	32
	6.6 Test Data	33
7.	PEAK OUTPUT POWER TEST	35

Page: 3 of 41

	7.1 Test Standard and Limit	35
	7.2 Test Setup	35
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Equipment	
	7.6 Test Data	
8.	POWER SPECTRAL DENSITY TEST	38
	8.1 Test Standard and Limit	38
	8.2 Test Setup	38
	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Equipment	39
	8.6 Test Data	39
9.	ANTENNA REQUIREMENT	41
	9.1 Standard Requirement	
	9.2 Antenna Connected Construction	
	9.3 Result	

Page: 4 of 41

1. General Information about EUT

1.1 Client Information

Applicant: MEET Studio CO.,LTD.

Address: Room 204, Hanhai Building, NO.2 North Construction Road,

Chenghua District, Chengdu, Sichuan, China

Manufacturer : MEET Studio CO.,LTD.

Address : Room 204, Hanhai Building, NO.2 North Construction Road,

Chenghua District, Chengdu, Sichuan, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Cool Gym	Cool Gym		
Models No.	:	GBTY-6A			
Brand Name	:	Cool Gym	Cool Gym		
Model Difference	:	N/A			
		Operation Frequency: 2402MHz~2480MHz			
		Number of Channel:	Bluetooth 4.0 (BLE): 40 channels see note(3)		
Product Description	:	RF Output Power:	-0.97 dBm Conducted Power		
Description		Antenna Gain:	-2 dBi PCB Antenna		
		Modulation Type:	GFSK		
		Bit Rate of Transmitter:	1Mbps(GFSK)		
Power Supply	:	DC power by USB cable form Host System			
DC power by Li-ion battery		ery			
Power Rating	:	DC 5V by USB Cable from PC system.			
		DC 3.7V by 60 mAh Li-ion Battery.			
Connecting	:	Please refer to the User's Manual			
I/O Port(S)					

Note:

- (1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r02.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

Page: 5 of 41

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested USB Charging with TX Mode

TX Mode

Page: 6 of 41

1.4 Description of Support Units

Equipment Information					
Name	Name Model S/N I		Manufacturer	Used "√"	
LCD Monitor	E170Sc	DOC	DELL	√	
PC	OPTIPLEX380	DOC	DELL	√	
Keyboard	L100	DOC	DELL	√	
Mouse	M-UARDEL7	DOC	DELL	√	
		Cable Information			
Number Shielded Type Ferr		Ferrite Core	Length	Note	
Cable 1	YES	YES	1.5M		
Cable 2	YES	YES	1.5M		
Cable 3	YES	NO	1.5M		
Cable 4	YES	YES	1.0M		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode Description			
Mode 1	USB Charging with TX Mode		

For Radiated Test			
Final Test Mode	Description		
Mode 2	USB Charging with TX Mode		
Mode 3	TX Mode		
Mode o	(Channel 00/20/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

Page: 7 of 41

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Bluetooth BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Bluetooth BLE Graphical User Interface Tool		
Channel	CH 00	CH 20	CH 39
BLE Mode	DEF	DEF	DEF

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 41

2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS-210: 2010					
Standar	rd Section	Test Item	Judgment	Remark	
FCC	IC	rest item	Juagment	Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205 RSS-GEN 7.2.2		Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS-210 A.8.2(a)	6dB Bandwidth	PASS	N/A	
15.247(b) RSS-210 A.8.4(4) Peak Output Power		Peak Output Power	PASS	N/A	
15.247(e) RSS-210 A.8.2(b)		Power Spectral Density	PASS	N/A	
15.247(d) RSS-210 Annex 8 (A8.5)		Transmitter Radiated Spurious Emission	PASS	N/A	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 9 of 41

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit

Conducted Emission Test Limit

Eroguanov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 10 of 41

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&		400004	Aug. 09. 2014	Aug. 07, 2015
Receiver	SCHWARZ	ESCI	100321	Aug. 08, 2014	Aug. 07, 2015
50ΩCoaxial	Anritsu	MP59B	X10321	Aug. 08, 2014	Aug. 07, 2015
Switch	Aiiiisu	MESSE	X10321	Aug. 08, 2014	Aug. 07, 2015
L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 08, 2014	Aug. 07, 2015
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 08, 2014	Aug. 07, 2015

3.5 EUT Operating Mode

Please refer to the description of test mode.

3.6 Test Data

Please see the next page.

Page: 11 of 41

7		DYZ
	W	КY
	. •	

EUT:	Cool Gym	Model:	GBTY-6A								
Temperature:	25 ℃	5 ℃ Relative Humidity: 55%									
Test Voltage:	AC 120V/60 Hz										
Terminal:	Line										
Test Mode:	Test Mode: USB Charging with BLE TX 2402 MHz										
Remark: Only worse case is reported											
90.0 dBuV	0.5 (MHz	5	QP:								
No. Mk. Fr	Reading Correct eq. Level Facto	1.1.11	Over								
MI	Hz dBuV dB	dBuV dBuV	dB Detector								
1 0.20	060 38.08 10.02	48.10 63.36	-15.26 QP								
2 * 0.20	060 35.00 10.02	45.02 53.36	-8.34 AVG								
3 0.58	32.84 10.06	42.90 56.00	-13.10 QP								
4 0.58	320 26.46 10.06	36.52 46.00	-9.48 AVG								
5 0.97	700 28.56 10.07	38.63 56.00	-17.37 QP								
6 0.97	700 22.23 10.07	32.30 46.00	-13.70 AVG								
7 2.14	160 27.26 10.06	37.32 56.00	-18.68 QP								
8 2.14	160 22.18 10.06	32.24 46.00	-13.76 AVG								
9 5.27	700 25.21 9.97	35.18 60.00	-24.82 QP								
10 5.27	700 22.09 9.97	32.06 50.00	-17.94 AVG								
*:Maximum data x:	Over limit !:over margin										

Page: 12 of 41

EUT:	Cool Gym	Model:	GBTY-6A								
Temperature:	25 ℃	Relative Humidity:	55%								
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz									
Terminal:	Neutral										
Test Mode:	Test Mode: USB Charging with BLE TX 2402 MHz										
Remark: Only worse case is reported											
90.0 dBuV QP: AVG: AVG: DISTO 0.5 (MHz) 5 30.000											
No. Mk. Fr	Reading Correct eq. Level Facto	1	Over								
	Hz dBuV dB	dBuV dBuV	dB Detector								
1 0.20	060 34.61 10.02	44.63 63.36	-18.73 QP								
2 0.20	060 32.52 10.02	42.54 53.36	-10.82 AVG								
3 0.4	140 30.34 10.02	40.36 57.57	-17.21 QP								
4 0.4	140 25.24 10.02	35.26 47.57	-12.31 AVG								
5 0.57	780 34.80 10.06	44.86 56.00	-11.14 QP								
6 * 0.57	780 27.39 10.06	37.45 46.00	-8.55 AVG								
7 1.03	380 27.34 10.06	37.40 56.00	-18.60 QP								
8 1.03	380 21.19 10.06	31.25 46.00	-14.75 AVG								
9 2.83	340 26.47 10.03	36.50 56.00	-19.50 QP								
10 2.83	340 22.90 10.03	32.93 46.00	-13.07 AVG								
*:Maximum data x:	Over limit !:over margin										

Page: 13 of 41

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.209

4.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

		<u> </u>
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBuV	/m)(at 3 M)	Class B (dBuV/m)(at 3 M)		
(MHz)	Peak	Average	Peak	Average	
Above 1000	80	60	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 14 of 41

4.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Turntable

EUT

0.8 m lm to 4m

Coaxial Cable

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 16 of 41

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015	
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug. 07, 2015	
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug. 07, 2015	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015	
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015	
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015	
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015	
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015	
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015	
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	

4.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 17 of 41

EUT:			Co	ol Gy	/m		Model	:		G	BTY	-6A	
Гет	peratu	re:	25	$^{\circ}\!\mathbb{C}$			Relativ	ve Hur	nidity	: 5	55%		
Test	Voltag	e:	DC	DC 5V									
Ant.	Pol.		Но	Horizontal									
Test	Mode:		BLI	E TX	2402 I	Mode							
Rem	ark:		On	ly wo	rse ca	se is repor	ted						
80.0	dBuV/m												
									(RF)FCC	15C 3M	Radiatio	on
												Margin ·	-6 dB
_							2 X		_				
30									Х З			4 *	
						1 *				ļ		J. Market	ale market
	/h.a			1			11	1 1/	NAN		Later of Property	ALANC TO THE	
"".	magar frefre	1	and the same	Land Lindrage	Maryler Joseph	hear hours and warmen		Mulmor					
		May 18 How	A. A										
-20													
30.0	000 40	50	60	70 8	0	(MHz)	30	00 4	100	500 6	00 700	1000.0
				F	Readin	g Corre	ct Me	asure			_		
Ν	lo. Mł	(. F	req.		Level	Fact	or n	nent	Li	mit	0	ver	
		N	ИНz		dBu∀	dB/m	dl	BuV/m	dE	BuV/m		dB	Detecto
1		143	.829	5	44.93	-21.6	7 2	3.26	4	3.50	-2	0.24	peak
2	*	191	.7450)	59.67	-20.8	1 3	8.86	4	3.50	-4	1.64	peak
3		336	.0352	2	48.55	-15.4	6 3	3.09	4	6.00	-1	2.91	peak
4		696	.8567	7	39.09	-6.95	3	32.14	4	6.00	-1	3.86	peak
*:Max	ximum da	ıta x:0	Over lim	nit !:	over març	 gin							
Emis	ssion L	.evel=	Rea	d Le	vel+ C	orrect Fac	tor						

18 of 41 Page:

EUT:	Cool Gym	Model:	GBTY-6A
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	BLE TX 2402 Mode		

Remark: Only worse case is reported

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		143.8295	47.06	-21.67	25.39	43.50	-18.11	peak
2	*	191.7450	54.53	-20.81	33.72	43.50	-9.78	peak
3		336.0352	43.26	-15.46	27.80	46.00	-18.20	peak
4		480.5276	39.68	-11.62	28.06	46.00	-17.94	peak
5		696.8567	37.92	-6.95	30.97	46.00	-15.03	peak

^{*:}Maximum data x:Over limit !:over margin

Report No.: TB-FCC142451
Page: 19 of 41

EUT:	Cool Gym	Model:	GBTY-6A			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal					
Test Mode:	BLE Mode TX 2402 MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1		4803.838	45.56	13.44	59.00	74.00	-15.00	peak
2	2	*	4804.087	34.67	13.44	48.11	54.00	-5.89	AVG

Page: 20 of 41

EUT:	Cool Gym	Model:	GBTY-6A			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2402 MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
	p. 000.1200					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.069	33.13	13.44	46.57	54.00	-7.43	AVG
2		4804.366	44.83	13.44	58.27	74.00	-15.73	peak

Report No.: TB-FCC142451
Page: 21 of 41

EUT:	Cool Gym	Model:	GBTY-6A		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 5V				
Ant. Pol.	Horizontal				
Test Mode:	BLE Mode TX 2442 MHz				
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.				

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.595	47.53	13.92	61.45	74.00	-12.55	peak
2	*	4883.595	35.53	13.92	49.45	54.00	-4.55	AVG

22 of 41 Page:

EUT:	Cool Gym	Model:	GBTY-6A		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 5V				
Ant. Pol.	Vertical				
Test Mode:	BLE Mode TX 2442 MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				

No	o. N	۱k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		48	883.526	45.81	13.92	59.73	74.00	-14.27	peak
2	*	48	884.228	34.00	13.92	47.92	54.00	-6.08	AVG

Report No.: TB-FCC142451
Page: 23 of 41

EUT:	Cool Gym	Model:	GBTY-6A		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 5V				
Ant. Pol.	Horizontal				
Test Mode:	BLE Mode TX 2480 MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				

1	No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4960.090	31.79	14.36	46.15	54.00	-7.85	AVG
2			4960.549	45.20	14.36	59.56	74.00	-14.44	peak

Report No.: TB-FCC142451
Page: 24 of 41

EUT:	Cool Gym	Model:	GBTY-6A			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 5V					
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2480 MHz					
Remark:	No report for the emission prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.				
100.0 dP.3//m						

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.069	34.06	14.36	48.42	54.00	-5.58	AVG
2		4960.474	46.17	14.36	60.53	74.00	-13.47	peak

Page: 25 of 41

5. Restricted Bands Requirement

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

5.1.2 Test Limit

Restricted Frequency	Class B (dBu	uV/m)(at 3 M)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

5.2 Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit

Report No.: TB-FCC142451 26 of 41

Page:

Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug. 07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug. 07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

5.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

Report No.: TB-FCC142451
Page: 27 of 41

(1) Radiation Test

EUT:	Cool Gym	Model:	GBTY-6A			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 5V					
Ant. Pol.	Horizontal					
Test Mode:	BLE Mode TX 2402 MHz	BLE Mode TX 2402 MHz				
Remark:	N/A					
-						

No.	. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	44.68	0.77	45.45	74.00	-28.55	peak
2		2390.000	33.78	0.77	34.55	54.00	-19.45	AVG
3	*	2402.200	83.89	0.82	84.71	Fundamental	Frequency	AVG
4	Χ	2402.400	85.49	0.82	86.31	Fundamental	Frequency	peak

EUT: Cool Gym Model: **GBTY-6A** Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** DC 5V Ant. Pol. Vertical **Test Mode:** BLE Mode TX 2402 MHz N/A Remark: 100.0 dBuV/m (RF) FCC PART 15C (PEAK) (RF) FCC PART (5C (AVG) 0.02318.000 2328.00 2338.00 2348.00 2358.00 2368.00 2378.00 2418.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV/m dBuV/m dΒ Detector dB/m 1 2390.000 45.62 0.77 46.39 74.00 -27.61 peak 2 2390.000 33.61 0.77 34.38 54.00 -19.62 AVG 3 2402.200 0.82 85.51 84.69 Χ peak Fundamental Frequency 4 2402.200 83.18 84.00 AVG 0.82 **Fundamental Frequency**

29 of 41 Page:

UT:			Cool	Cool Gym		Model:	Model:		GBTY-6A	
emp	eratu	re:	25 °C			Relative Humidity: 55%				
est '	Voltag	e:	DC 5	V	,			1		
nt. I	Pol.		Horiz	ontal						
est l	Mode:		BLE	BLE Mode TX 2480 MHz						
Rema	ark:		N/A	N/A						
100.0	dBuV/m									
Γ										
			<u>1</u>							
			A				(RF) F	CC PART 15C (PEA	K)	
								,		
			3 X							
		+	×				(RF)	FCC PART 15C (AV	G)	
50			Ĭ							
			+							
	the second of the second of the			~~~~~~~	deren algeria de la companya de la c	educal papage and all research of the constraints	h-disease-displantering	arina pigunanen oran arina karan erilar	and the second second	
0.0										
	3.000 24	73.00	2483.00	2493.00 2	503.00 2513.	00 2523.00	2533.00 2	543.00	2563.00 MH	
				Reading	Correc	t Measur	re-			
No	o. Mk	. F	req.	Level	Facto			t Over		
		N	1Hz	dBuV	dB/m	dBuV/r		/m dB	Detecto	
1	Χ	2479	9.800	85.13	1.15	86.28	3 Fundame	ental Frequency	peak	
2	*	2479	9.900	83.46	1.15	84.61	 Fundame	ental Frequency	AVG	
3		2483	3.500	56.27	1.17	57.44	1 74.0	0 -16.56	peak	
4		2483	3.500	48.81	1.17	49.98	3 54.0	0 -4.02	AVG	
4										

Page: 30 of 41

EUT:	Cool Gym	r	Model:	GBTY-6A				
Temperature:	25 ℃	F	Relative Humidity	/ : 55%				
Test Voltage:	DC 5V	DC 5V						
Ant. Pol.	Vertical	/ertical						
Test Mode:	BLE Mode TX 2480 MHz							
Remark:	N/A							
100.0 dBuV/m								
100	3			RF) FCC PART 15C (PE	AK)			
F0	×			(RF) FCC PART 15C (A	(VG)			
50			mangunas da dina salgan januarga tumbah melangkan pendabag		motornia wikana winda			
0.0 2463.000 2473.00 2	483.00 2493.00 2503	3.00 2513.0	00 2523.00 2533.00	2543.00	2563.00 MHz			
No. Mk. Fre	Reading eq. Level	Correct Factor		mit Over				
MH	łz dBuV	dB/m	dBuV/m dE	BuV/m dB	Detector			
1 X 2479.	800 85.07	1.15	86.22 Funda	mental Frequency	peak			
2 * 2479.	900 83.44	1.15	84.59 Funda	mental Frequency	AVG			
3 2483.	500 56.46	1.17	57.63 7	4.00 -16.37	' peak			
4 2483.	500 49.17	1.17	50.34 5	4.00 -3.66	AVG			

(2) Conducted Test

EUT:	Cool Gym	Model:	GBTY-6A			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Test Mode:	BLE Mode TX 2402MHz / BLE Mode TX 2480MHz					
Remark:	The EUT is programed in continuously transmitting mode					

Page: 32 of 41

6. Bandwidth Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(2)

6.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210						
Test Item	Frequency Range(MHz)					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

6.2 Test Setup

6.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

6.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

Page: 33 of 41

6.6 Test Data

_O I.	JT: Cool Gym			Model:	GBTY-6A
Tempera	nperature: 25 °C			Relative Humidity:	55%
Test Volt	age:	DC 3.7			
Test Mod	le:	BLE T	X Mode		
Channel	frequen	cy 6	dB Bandwidth	99% Bandwidth	Limit
(N	1Hz)		(kHz)	(kHz)	(kHz)
2	402		695.899	1263.10	
2	442		715.301	1178.50	>=500
2	480		713.891	1124.20	-
					•
				Mode ! MHz	
₩ Aç					
Ref 10	dBm				
Ref 10 #Peak Log	dBm		Atten 20 dB		
Ref 10 #Peak Log 10	dBm		2402		
Ref 10 #Peak Log	dBm		2402 Atten 20 dB		
			2402		

BLE Mode 2442 MHz Agilent Ref 10 dBm Atten 20 dB #Peak Log **\$**~~ 10 dB/ Offst 1 dB Center 2.442000000 GHz Center 2.442 GHz Span 3 MHz #Res BW 100 kHz **#VBW 300 kHz** Sweep 5 ms (401 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % -6.00 dB 1.1785 MHz x dB Transmit Freq Error x dB Bandwidth 72.557 kHz 715.301 kHz **BLE Mode** 2480 MHz

Page: 35 of 41

7. Peak Output Power Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (b)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210					
Test Item	Limit	Frequency Range(MHz			
Peak Output Power	1 Watt or 30 dBm	2400~2483.5			

7.2 Test Setup

7.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

7.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

Report No.: TB-FCC142451
Page: 36 of 41

7.6 Test Data

JT:	Cool Gym	I	Model:		GBTY-6A
mperature:	25 ℃	ı	Relative Humidity:		5%
st Voltage:	DC 3.7V				
st Mode:	BLE TX Mode	е			
hannel freque	ncy (MHz)	Test Resul	t (dBm)	L	imit (dBm)
2402		-0.97	0		
2442		-1.23	0		30
2480		-2.20	6		
		BLE M	ode		
		2402 N	lHz		
* Agilent					
* Aylient				Mkı	1 2.4023150 GHz
Ref 10 dBm Peak	Att	en 20 dB			-0.97 dBm
Log			1		
10 dB/					
Offst 1					
dB					
Mark					
Marke					
2.402	315000 GHz	<u></u>			
2.402 -0.97	315000 GHz dBm	<u>z</u>			
2.402 -0.97 M1 S2					
2.402 -0.97					
2.402 -0.97 M1 S2 S3 FC					
2.402 -0.97 M1 S2 S3 FC					
2.402 -0.97 M1 S2 S3 FC	'dBm				Span 3 MH:

Page: 37 of 41

2480 MHz Agilent Mkr1 2.4798050 GHz -2.206 dBm Ref 10 dBm Atten 20 dB Peak Log 1 10 dB/ Offst 1 dB Marker 2.479805000 GHz -2.206 dBm M1 S2 S3 FC AΑ Center 2.48 GHz Span 3 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 5 ms (401 pts)

Page: 38 of 41

8. Power Spectral Density Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (e)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item	Limit	Frequency Range(MHz)				
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5				

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.

39 of 41

8.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

8.6 Test Data

EUT:	Cool Gym		Model:		GBTY-6A
Temperature:	25 ℃		Relative Humi	dity:	55%
Test Voltage:	DC 3.7V				
Test Mode: BLE TX Mode					
Channel Frequency	uency	Power Density		Limit (dBm)	
(MHz)		(3 kHz/dBm)			
2402	2402		-13.57		
2442	2442		.04	8	
2480		-13.38			
BLE Mode					

2402 MHz

Center 2.48 GHz

#Res BW 3 kHz

BLE Mode 2442 MHz Agilent Mkr1 2.44200570 GHz -14.04 dBm Ref 10 dBm Atten 20 dB Peak Log 10 dB/ Offst 1 dB Amman mannaman Marker 2.442005700 GHz -14.04 dBm M1 S2 S3 FC AA Center 2.442 GHz Span 1.14 MHz #Res BW 3 kHz #VBW 10 kHz Sweep 130.4 ms (401 pts) **BLE Mode** 2480 MHz Agilent Mkr1 2.47999715 GHz -13.38 dBm Ref 10 dBm Atten 20 dB Peak Log 10 dB/ Offst 1 dB Marker 2.479997150 GHz -13.38 dBm M1 S2 S3 FC AA

#VBW 10 kHz

Span 1.14 MHz

Sweep 130.4 ms (401 pts)

Page: 41 of 41

9. Antenna Requirement

9.1 Standard Requirement

9.1.1 Standard FCC Part 15.203

9.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is -2 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

9.3 Result

The EUT antenna is a Chip Antenna. It complies with the standard requirement.