CSE 015: Discrete Mathematics Fall 2021 Homework #3 Solution

Bryant Chon Lab F21-CSE 015 02L

October 15, 2021

The conclusion is true Jane Flies = p Jane is a bird = q Modus Ponens $\neg p \rightarrow \neg q$

q

1. Question 1:

 $\therefore p$

2. Question 2:

(a)	p: Bats can fly
	q: Bats are mammals
	$p \wedge q$
	Conjunction Elimination
	$\therefore q$

(b) p: Pigs are mammals

q: Pigs are birds

 $\neg q$ _____ Disjunctive Syllogism
∴ p

(c) p: Jack is a CSE major q: Jack is a freshman p

 $\frac{\mathbf{q}}{------}$ Conjunction $\therefore p \wedge q$

(d) p: Mary is a CSE major q: Mary is a History major

$$\therefore p \vee q$$

(e) p: I go hiking

q: I will sweat a

lot

r: I will lose weight

 $p \to q$

 $q \rightarrow r$

_____ Hypothetical Syllogism

$$\therefore p \to r$$

3. Question 3:

(a) p: It is sunny

q: I will go swimming

 $p \rightarrow q$

 $\neg n$

. ~

$\therefore \neg q$

		premise	premise	conclusion
p	\mathbf{q}	$p \to q$	$\neg p$	$\neg q$
T	Τ	Τ	F	F
$\parallel T$	F	\mathbf{F}	\mathbf{F}	${ m T}$
F	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}
$\parallel F$	\mathbf{F}	${ m T}$	${ m T}$	${f T}$

Invalid

Third row, both premises are True but the conclusion is False

(b) p: It is Sunday

q: I will go to the park

 $p \to q$

 $\neg a$

 $\therefore \neg p$

			premise	premise	conclusion
	p	\mathbf{q}	$p \to q$	$\neg q$	$\neg p$
ĺ	Т	Т	Т	F	F
	Γ	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}
١	F	${\rm T}$	${ m T}$	\mathbf{F}	${ m T}$
	F	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$

Valid

In the last row when both premises are true, the conclusion is true.

(c) p: I will pass the class

q: I score at least 60 on the final exam

$$p \iff q$$
 $\neg q$

$\therefore \neg p$					
		premise	premise	conclusion	
p	\mathbf{q}	$p \iff q$	$\neg q$	$\neg p$	
$\mid T \mid$	\mathbf{T}	${ m T}$	${ m F}$	F	
$\mid T \mid$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	
F	${\rm T}$	\mathbf{F}	\mathbf{F}	$_{ m T}$	
F	F	${ m T}$	${ m T}$	${ m T}$	

Valid

In the last row when both premises are true, the conclusion is true.

4. Question 4:

if n is an integer and n^2 is odd, then n is odd

p: n^2 is odd

q: n is odd

 $p \rightarrow q$

Contrapositive:

 $\neg p$: n^2 is even

 $\neg q$: n is even

 $\neg p \rightarrow \neg q$

Proof:

Let n be any even integer and k be any integer.

n=2k

 $n^2 = (2k)^2$ $n^2 = 4k^2$

 $n^2 = 2(2k^2)$

The proof shows that if n is even then n^2 is even.

5. Question 5:

For n = 3

$$[(p_1 \lor p_2 \lor p_3) \to q] \iff [(p_1 \to q) \land (p_2 \to q) \land (p_3 \to q)]$$

```
p_2
Τ
                     Τ
Τ
         T F
                               \mathbf{F}
                     \mathbf{F}
                                        \mathbf{F}
\mathbf{T}
     Τ
                                                                                                 \mathbf{T}
        \mathbf{F} \quad \mathbf{T}
                     Τ
                               \mathbf{T}
\mathbf{T}
     Τ
        F 	 F 	 F
                                                    \mathbf{T}
                               F
                                                                                                 F
   Τ
                               \mathbf{T}
                                                                                                 T
\mathbf{T}
                               \mathbf{T}
                                                    \mathbf{T}
                                                                                                 \mathbf{F}
Τ
                                                    \mathbf{T}
                                                                                                 F
                                                                                                 Τ
                                                                                                 F
                                                    \mathbf{T}
                                                                      \mathbf{T}
                                                                                                 Τ
                                                    Τ
                                                                                                 \mathbf{F}
                                                    \mathbf{T}
                                                                      \mathbf{T}
                                                                                                 Τ
                                                                      \mathbf{T}
                                                                                                 Τ
```

 ${
m T}$

Tautology proved by truth table