Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 11 – Aritmética computacional: adição e subtração

<u>Circuitos Aritméticos</u>: utilizados para construir a ULA

Adição

Exemplo de adição em decimal (dígitos de 0 a 9):

Adição em Binário:

Exemplo Cada posição só pode representar b) d) a) um dígito, por isso, gera um carry 10 10101 10101 00111 00111 00111 00111 00111 00111 1100 00 100 Soma

E	Entrada	Saídas		
Α	В	C _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	Entradas		Saíd				
A	A	В	C _{in}	S	C _{out}		
C	0	0	0	0	0		
C	0	0	1	1	0	$\overline{A}\overline{B}C_{ m in}$	
C	0	1	0	1	0	$\overline{A} oldsymbol{B} \overline{oldsymbol{C}_{ ext{in}}}$	
C	0	1	1	0	1	$A\overline{B}\overline{C_{ m in}}$	
1	1	0	0	1	0		
1	1	0	1	0	1		
1	1	1	0	0	1		
1	1	1	1	1	1	ABC _{in}	

Entradas		Saí	das		
,	Α	В	C _{in}	S	C _{out}
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

<u>Simplificando as expressões</u>

$$S = \overline{A} \, \overline{B} \, C_{in} + \overline{A} \, \overline{B} \, \overline{C_{in}} + A \, \overline{B} \, \overline{C_{in}} + B \, \overline{C_{in}}) \qquad \longleftarrow \quad A \, e \, \overline{A} \, em \, ev i d \hat{e} n c i a$$

$$Como \, B \oplus \, C_{in} = \overline{B} \, C_{in} + B \, \overline{C_{in}} \quad e \quad B \odot \, C_{in} = \overline{B} \, \overline{C_{in}} + B \, C_{in}$$

$$S = \overline{A} \, (B \oplus \, C_{in}) + A \, (B \odot \, C_{in})$$

$$Fazendo \, X = B \oplus \, C_{in} \quad e \quad \overline{X} = B \odot \, C_{in}$$

$$S = \overline{A} \, X + A \, \overline{X}$$

$$S = \overline{A} \, X + A \, \overline{X}$$

$$S = A \oplus X \qquad \longleftarrow \quad Como \, X = B \oplus \, C_{in}$$

 $S = A \oplus B \oplus C_{in}$

Lembrete

 $\oplus: XOR$

 $\odot: XNOR$

Simplificando as expressões

$$C_{out} = \overline{A}BC_{in} + A\overline{B}C_{in} + AB\overline{C}_{in} + ABC_{in}$$

Somador de 4 bits

Somador Bit Slice

Somador de 4 bits

- Ripple-Carry: Ondulação ou Propagação do Carry. <u>Carry-Out</u> de um estágio se transforma no <u>Carry-In</u> do estágio seguinte.
- A_i e B_i "alimentam" os somadores em paralelo, mas o circuito deve esperar a propagação dos <u>Carries</u> para concluir a operação.

Exercícios

2. Considere um somador ripple-carry de 4 bits. Considere que as portas lógicas têm um atraso de 1ns. Qual é o atraso causado pelo somador ripple-carry para propagar o carry por todos os somadores?

2)

Para gerar:

C₁ consome-se 2ns

C₂ consome-se 4ns

C₃ consome-se 6ns

C₄ consome-se 8ns

Quanto maior o número de bits do somador, maior o atraso para gerar o carry final

Aritmética Computacional

Subtração

Exemplo de subtração em decimal (dígitos de 0 a 9):

Aritmética Computacional

Subtração em Binário

Gera um "empresta 1" (carry out) da coluna seguinte: a 1ª coluna passa a valer 2_{10} = 10_2

Exemplo

O carry out será subtraído da coluna seguinte na continuação da operação

Aritmética Computacional

Subtração em Binário:

Exemplo

Gera um "empresta 1" (carry out) da coluna seguinte: a 1^a coluna passa a valer $10_2 = 2_{10}$

Exercício

- 1. Obter a Tabela Verdade para o circuito subtrator de 1 bit (considere como entradas: A, B e C_{in} ; e como saídas: S e C_{out}).
- 2. Obtenha as expressões para a subtração S e para o C_{out} a partir da Tabela Verdade.
- 3. Desenhe o diagrama de portas lógicas do circuito subtrator.

1)		Entrada	Saídas		
	Α	В	C _{in}	S	C _{out}
	0	0	0	0	0
	0	0	1	1	1
	0	1	0	1	1
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	0
	1	1	0	0	0
	1	1	1	1	1

Tabela Verdade para o Subtrator

2)

 $S = A \oplus B \oplus C_{in}$

Simplificando as expressões

$$S = \overline{A} \, \overline{B} \, C_{in} + \overline{A} \, \overline{B} \, \overline{C_{in}} + A \, \overline{B} \, \overline{C_{in}} + B \, \overline{C_{in}}) \qquad \longleftarrow \qquad A \, e \, \overline{A} \, em \, evid \hat{e}n \, cia$$

$$Como \, B \oplus C_{in} = \overline{B} \, C_{in} + B \, \overline{C_{in}} \quad e \quad B \odot C_{in} = \overline{B} \, \overline{C_{in}} + B \, \overline{C_{in}}$$

$$S = \overline{A} \, (B \oplus C_{in}) + A \, (B \odot C_{in})$$

$$Fazendo \, X = B \oplus C_{in} \quad e \quad \overline{X} = B \odot C_{in}$$

$$S = \overline{A} \, X + A \, \overline{X}$$

$$S = \overline{A} \, X + A \, \overline{X}$$

$$S = A \oplus X \qquad \longleftarrow \qquad Como \, X = B \oplus C_{in}$$

Lembrete

 $\oplus: XOR$

 $\odot: XNOR$

2) <u>Simplificando as expressões</u>

$$C_{out} = \overline{A} \, \overline{B} \, C_{in} + \overline{A} \, B \, \overline{C_{in}} + \overline{A} \, B \, C_{in} + A \, B \, C_{in}$$

$$C_{out} = \overline{A} B + B C_{in} + \overline{A} C_{in}$$

ULA: Somador e Subtrator

ULA com 2 circuitos para efetuar a adição e a subtração

ULA: Somador e Subtrator

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + BC_{in} + AC_{in}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = \overline{A} B + B C_{in} + \overline{A} C_{in}$$

ULA: Somador e Subtrator

Circuito Somador/Subtrator

Exemplo: ULA Simplificada

Exercício

Projeto de ULA de 8 bits no Logisim

Projeto de ULA de 8 bits com as seguintes funções:

- 1. AND
- 2. OR
- 3. NOT
- 4. NAND
- 5. NOR
- 6. XOR
- 7. XNOR
- 8. SOMADOR

Obs.: Utilize subcircuitos (Lógica, Somador, Decodificador)

Próxima aula

- Aritmética Computacional
 - Adição e subtração em complemento de 2
 - Somador de alto desempenho