

$$\int_{0}^{1} (x^{3} - 2x + 1) \cos \bar{x} dx$$

$$u = 9 \Rightarrow du = 9' = 3x^{2} - 2$$

$$dv = f \Rightarrow v = \int_{0}^{1} f dx = \frac{1}{3} \hat{x} \bar{x} x$$

$$u = g \Rightarrow du = g^{(1)} = 6x - (g^{(1)} f_{2} - \int_{0}^{1} f dx) + (g^{(2)} f_{2} - f dx) + (g^{(2)} f_{3} - f dx) + (g^{(2)}$$

	+																				
	_																				
	\dashv																				
\vdash	+																				