Integração por partes

Teorema

Se u=f(x) e v=g(x), e se f' e g' são contínuas, então $\int u dv = uv - \int v du$ Demonstração:

Temos
$$D_x f(x)g(x) = f'(x)g(x) + f(x)g'(x)$$

E então
$$f(x)g'(x) = D_x f(x)g(x) - g(x)f'(x)$$

Integrando ambos os membros, obtemos

$$\int f(x)g'(x)dx = \int D_x f(x)g(x)dx - \int g(x)f'(x)dx$$

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx$$

Como
$$du = f'(x)dx$$
 e $dv = g'(x)dx$, temos

$$\int u dv = uv - \int v du$$

Exemplo 1

Calcule $\int x \sec^2 x \, dx$

Solução:

Fazendo u=x e $dv=sec^2x\ dx$, obtemos du=dx e $v=tg\ x$. Assim

$$\int x \sec^2 x \, dx = x t g x - \int t g x \, dx$$

$$xtg |x + ln|\cos x| + c$$

Exemplo 2

Calcule $\int x^2 e^x dx$

Solução:

Fazendo $u = x^2$ e $dv = e^x dx$, obtemos

du = 2xdx e $v = e^x$. Assim

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx$$

Para calcular $\int xe^x dx$, aplicamos mais uma vez a integração por partes.

Fazendo $u = x e dv = e^x dx$, obtemos

$$du = dx$$
 e $v = e^x$. Assim

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + c_1$$

Portanto

$$\int x^2 e^x dx = x^2 e^x - 2(xe^x - e^x) + c =$$

$$x^2e^x - 2xe^x + 2e^x + c$$