Chapter 3

Jeffrey Wubbenhorst

February 23, 2016

- Scalars have only magnitude. Vectors have both magnitude and direction.
- Two vectors \vec{a} and \vec{b} may be added geometrically by drawing them to a common scale and placing them head to tail. The vector connecting the tail of the first to the head of the second is the vector sum \vec{s} . Vector addition is commutative and obeys the associative law.
- The components of a a two-dimensional vector \vec{a} are given as $a_x = \cos \theta$ and $a_y = a \sin \theta$
- Magnitude and orientation of a vector are given as $a = \sqrt{a_x^2 + a_y^2}$ and $\tan \theta = \frac{a_y}{a_x}$
- Unit vectors $\hat{i}, \hat{j}, \hat{k}$ have magnitudes of unity and are directed in the positive directions of the x, y, and x axes. Unit vectors are defined as $\hat{v} \equiv \frac{v}{|v|}$
- The scalar (or dot product) of two vectors \vec{a} and \vec{b} is written $\vec{a}\vec{b}$ and is the scalar quantity given by $ab\cos\theta$ where θ is the angle between the directions of \vec{a} and \vec{b} .
- The vector (or cross) product of two vectors is a vector whose magnitude is given as $c = ab \sin \theta$. The rest of it is ugly and we do not care.

•