CS61B Lecture #17

Topics

- Overview of standard Java Collections classes.
 - Iterators, ListIterators
 - Containers and maps in the abstract
- Amortized analysis of implementing lists with arrays.

Last modified: Sun Oct 6 14:43:32 2019 C561B: Lecture #17 1 Last modified: Sun Oct 6 14:43:32 2019 C561B: Lecture #17 2

Data Types in the Abstract

- Most of the time, should *not* worry about implementation of data structures, search, etc.
- What they do for us—their specification—is important.
- Java has several standard types (in java.util) to represent collections of objects
 - Six interfaces:
 - * Collection: General collections of items.
 - * List: Indexed sequences with duplication
 - * Set, SortedSet: Collections without duplication
 - $* \ \texttt{Map}, \texttt{SortedMap} \texttt{:} \ \textbf{Dictionaries (key} \mapsto \textbf{value)}$
 - Concrete classes that provide actual instances: LinkedList, ArrayList, HashSet, TreeSet.
 - To make change easier, purists would use the concrete types only for new, interfaces for parameter types, local variables.

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 3

Collection Structures in java.util

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 4

The Collection Interface

- Collection interface. Main functions promised:
 - Membership tests: contains (\in), contains All (\subseteq)
 - Other queries: size, isEmpty
 - Retrieval: iterator, toArray
 - Optional modifiers: add, addAll, clear, remove, removeAll (set difference), retainAll (intersect)

Side Trip about Library Design: Optional Operations

- Not all Collections need to be modifiable; often makes sense just to get things from them.
- So some operations are optional (add, addAll, clear, remove, removeAll, retainAll)
- The library developers decided to have *all* Collections implement these, but allowed implementations to throw an exception:

 ${\tt UnsupportedOperationException}$

• An alternative design would have created separate interfaces:

```
interface Collection { contains, containsAll, size, iterator, ... }
interface Expandable extends Collection { add, addAll }
interface Shrinkable extends Collection { remove, removeAll, ... }
interface ModifiableCollection
  extends Collection, Expandable, Shrinkable { }
```

 You'd soon have lots of interfaces. Perhaps that's why they didn't do it that way.

Last modified: Sun Oct 6 14:43:32 2019 CS618: Lecture #17 5 Last modified: Sun Oct 6 1

The List Interface

- Extends Collection
- Intended to represent indexed sequences (generalized arrays)
- Adds new methods to those of Collection:
 - Membership tests: indexOf, lastIndexOf.
 - Retrieval: get(i), listIterator(), sublist(B, E).
 - Modifiers: add and addAll with additional index to say where to add. Likewise for removal operations. set operation to go with get.
- Type ListIterator<Item> extends Iterator<Item>:
 - Adds previous and hasPrevious.
 - add, remove, and set allow one to iterate through a list, inserting, removing, or changing as you go.
 - Important Question: What advantage is there to saying List L rather than LinkedList L or ArrayList L?

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 7

Implementing Lists (I): ArrayLists

- The main concrete types in Java library for interface List are ArrayList and LinkedList:
- As you might expect, an ArrayList, A, uses an array to hold data.
 For example, a list containing the three items 1, 4, and 9 might be represented like this:

- After adding four more items to A, its data array will be full, and the value of data will have to be replaced with a pointer to a new, bigger array that starts with a copy of its previous values.
- Question: For best performance, how big should this new array be?
- ullet If we increase the size by 1 each time it gets full (or by any constant value), the cost of N additions will scale as $\Theta(N^2)$, which makes ArrayList look much worse than LinkedList (which uses an IntList-like implementation.)

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 8

Expanding Vectors Efficiently

- When using array for expanding sequence, best to *double* the size of array to grow it. Here's why.
- \bullet If array is size s, doubling its size and moving s elements to the new array takes time proportional to 2s.
- \bullet In all cases, there is an additional $\Theta(1)$ cost for each addition to account for actually assigning the new value into the array.
- \bullet When you add up these costs for inserting a sequence of N items, the total cost turns out to be proportional to N, as if each addition took constant time, even though some of the additions actually take time proportional to N all by themselves!

Last modified: Sun Oct 6 14:43:32 2019 CS618: Lecture #17 9

Amortized Time

- ullet Suppose that the actual costs of a sequence of N operations are c_0,c_1,\ldots,c_{N-1} , which may differ from each other by arbitrary amounts and where $c_i\in O(f(i))$.
- ullet Consider another sequence a_0,a_1,\ldots,a_{N-1} , where $a_i\in O(g(i)).$
- If

$$\sum\limits_{0 \leq i < k} a_i \geq \sum\limits_{0 \leq i < k} c_i \ ext{for all } k,$$

we say that the operations all run in O(g(i)) amortized time.

- ullet That is, the actual cost of a given operation, c_i , may be arbitrarily larger than the amortized time, a_i , as long as the total amortized time is always greater than or equal to the total actual time, no matter where the sequence of operations stops—i.e., no matter what k is.
- \bullet In cases of interest, the amortized time bounds are much less than the actual individual time bounds: $g(i) \ll f(i).$
- \bullet E.g., for the case of insertion with array doubling, $f(i) \in O(N)$ and $q(i) \in O(1).$

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 10

Amortization: Expanding Vectors (II)

To Insert Item #	Resizing Cost	Cumulative Cost	Resizing Cost per Item	Array Size After Insertions
0	0	0	0	1
1	2	2	1	2
2	4	6	2	4
3	0	6	1.5	4
4	8	14	2.8	8
5	0	14	2.33	8
:	:	:	:	:
7	0	14	1.75	8
8	16	30	3.33	16
:	:	:	:	:
15	0	30	1.88	16
:	:	:	:	:
$2^m + 1$ to $2^{m+1} - 1$	0	$2^{m+2} - 2$ $2^{m+3} - 2$	≈ 2	2^{m+1}
2^{m+1}	2^{m+2}	$2^{m+3}-2$	≈ 4	2^{m+2}

• If we spread out (amortize) the cost of resizing, we average at most about 4 time units for resizing on each item: "amortized resizing time is 4 units." Time to add N elements is $\Theta(N)$, not $\Theta(N^2)$.

Last modified: Sun Oct 6 14:43:32 2019

Demonstrating Amortized Time: Potential Method

- To formalize the argument, associate a potential, $\Phi_i \geq 0$, to the $i^{\mbox{th}}$ operation that keeps track of "saved up" time from cheap operations that we can "spend" on later expensive ones. Start with $\Phi_0=0$.
- ullet Now we pretend that the cost of the $i^{\mbox{th}}$ operation is actually a_i , the amortized cost, defined

$$a_i = c_i + \Phi_{i+1} - \Phi_i,$$

where c_i is the real cost of the operation. Or, looking at potential:

$$\Phi_{i+1} = \Phi_i + (a_i - c_i)$$

- ullet On cheap operations, we artificially set $a_i>c_i$ so that we can increase Φ $(\Phi_{i+1}>\Phi_i)$.
- ullet On expensive ones, we typically have $a_i \ll c_i$ and greatly decrease Φ (but don't let it go negative—may not be "overdrawn").
- \bullet We try to do all this so that a_i remains as we desired (e.g., O(1) for expanding array), without allowing $\Phi_i<0$.
- ullet Requires that we choose a_i so that Φ_i always stays ahead of c_i .

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 12

• When adding to our array, the cost, c_i , of adding element $\#i$ when the array already has space for it is 1 unit. • The array does not initially have space when adding items 1, 2, 4, 8, 16,—in other words at item 2^n for all $n \geq 0$. So, $-c_i = 1$ if $i \geq 0$ and is not a power of 2; and $-c_i = 2i+1$ when i is a power of 2 (copy i items, clear another i items, and then add item $\#i$). • So on each operation $\#2^n$ we're going to need to have saved up at least $2 \cdot 2^n = 2^{n+1}$ units of potential to cover the expense of expanding the array, and we have this operation and the preceding $2^{n-1}-1$ operations in which to save up this much potential (everything since the preceding doubling operation). • So choose $a_0 = 1$ and $a_i = 5$ for $i > 0$. Apply $\Phi_{i+1} = \Phi_i + (a_i - c_i)$, and here is what happens: $\begin{vmatrix} i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ c_i & 1 & 3 & 5 & 1 & 9 & 1 & 1 & 17 & 1 & 1 & 1 & 1 & 1 & 13 & 3 & 1 \\ a_i & 1 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5$	