

ADA 033261

TIMOLACCIFIED

APPLIED RESEARCH LABORATORIES

THE UNIVERSELECT OF THE YAS

ARL-TM-70-5 V 9 April 1970 Copy No. 2

DIGITIZED SONAR DATA LOG: PART I (U)

NAVAL SHIP SYSTEMS COMMAND Contract N00024-69-C-1129 Proj. Ser. No. SF 11121100, Task 8515

T.D. Plemons

(This page is UNCLASSIFIED.)

UNCLASSIFIED

TOUTION STATEMENT A

Approved for public release; Distribution Unlimited

APPLIED RESEARCH LABORATORIES
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS 78712

(The reverse of this page is blank.)

UNCLASSIELED

Downgraded at 3 year intervals, declassify after 12 years

404 434

UNCLASSIFIED

TABLE OF CONTENTS

		Page
INT	RODUCTION	1
Α.	Beam Aspect Submarine Echoes	5
	1. Group A: 1 and 2 msec Transmit Pulses	5
	2. Group B: 1, 2, and 5 msec Transmit Pulses	35
в.	Stern Aspect Submarine Echoes: 5 msec Transmit Pulse	45
c.	Bow Aspect Submarine Echoes: 1 msec Transmit Pulse	53

(The reverse of this page is blank.)
UNCLASSIFIED

INTRODUCTION

(C) This is the first of several collections of various types of digital data obtained by the Signal Physics Division of Applied Research Laboratories (ARL). Future data will not be restricted to echoes but will also contain collections of reverberation data.

The digitized echoes were generated by the ASPECT (Acoustical Short Pulse Echo Classification Technique) mode of the AN/SQS-23 sonar. Echoes from targets corresponding to three target aspect angles are presented. This set of data should prove valuable to those persons doing research in signal processing since use of the digital computer now has a prominent role in this field. The data are readily available since they are stored on ARL's digital tapes which can be easily duplicated. Detailed records of these signals are included. These records provide information pertaining to the transmit signals, target geometry, digitizing technique, etc.

- (C) Since the echoes were generated by the ASPECT transmission mode, a high data rate of information from the target is available in that the pulses within a burst of transmitted waveforms are separated by only 375 msec. Figure 1 is a schematic drawing of the ASPECT mode. Here is shown a set of 12 submarine echoes generated by a burst of 12 short pulses.
- (U-FOUO) Two types of sampling were used in digitizing these data.

 Direct sampling refers to sampling the echo waveform, assumed to be narrow band with center frequency fo and bandwidth W, at the rate of 4fo. Quadrature sampling refers to a sampling technique with which

(This page is UNCLASSIFIED.) FOR OFFICIAL USE ONLY

FIGURE 1
A BURST OF 12 TRANSMIT SIGNALS AND THE CORRESPONDING SET OF SUBMARINE ECHOES

2

CONFIDENTIAL

ARL - UT AS - 69 - 607 TDP - JEW 6 - 26 - 69

(U-FOUO) the quadrature components of the signal are obtained directly (Ref. 1). If the echo y(t) is written in the form

$$y(t) = X(t) \cos 2\pi f_0 t + Y(t) \sin 2\pi f_0 t$$

then X(t) and Y(t) are called the quadrature components of the echo y(t). All information, other than the carrier frequency f_o , concerning y(t) is contained in X(t) and Y(t). Since these functions are bandlimited to the interval

$$|f| \leq \frac{W}{2}$$
,

they are of much lower frequency than y(t) and hence the required sampling rate is lower.

(C) These data were obtained originally in analog form by ARL personnel in September 1965. Conversion from analog to digital format occurred during the past two years as specific research needs for the data arose. One example of the usefulness of such a data collection can be seen in an ARL report on echo-echo correlation characteristics (Ref. 2). The beam aspect echoes display a considerable variation in the envelope structure from echo to echo. It would be of interest to know the statistical characteristics of this variation. Some important questions that should be investigated are: Is the variation purely random or does it have a deterministic nature? What is the source of this variation? Why do the beam aspect data display a much lower consistency than do the bow or stern data? Would nonsubmarine targets with submarine-like geometry exhibit similar variations in envelope structure? Accurate determination of the epoch of these echoes is another area of research. This problem is discussed briefly in this memorandum, but no attempt was made to

- (C) attack it in any persistent effort. Highlight structure of the echoes merits attention. Of particular interest is again the beam aspect data since here can be seen the decrease in range resolution as the transmit pulse length increases from 1 to 2 to 5 msec. These are only a very few of the questions or problems concerned with these data that are open to investigation.
- (U-FOUO) Each echo is represented by a plot of its envelope. A small interval precedes the beginning of the echo epoch and a similar interval follows the end of the epoch. Epoch was determined by measuring the time occurrence of the 50% level of some consistent or repeatable feature of the envelope. Repeatable refers here to consistency from echo to echo, and not to within one echo. The set was then "aligned" using these threshold points to form a common time or phase among the echoes. An ensemble average of the aligned envelopes was then computed and plotted. The average of several noise envelopes will tend to a constant level, with respect to time (provided the noise process is locally stationary). Whenever the echo is present in the set, a time variation in the average envelope occurs and the epoch can be approximated. The accuracy of this technique increases as the signal-to-noise ratio increases.
- (U-FOUO) The envelope was chosen to determine the epoch since it is a more slowly varying time function than is the high frequency waveform which we refer to as the amplitude. The uncertainty inherent in a finite sampling rate would cause the computed average amplitude to mistakenly tend to zero. Accurate calculation of epoch is hampered by any noise present. Also averaging over a finite number of echoes produces an error in the computation of epoch. An optimum determination of epoch was not attempted. The averaging technique was used because of its simplicity and ease of execution. However, the interval preceding and following each echo does allow for error in calculated epoch.

(U-FOUO) The data are presented in three sections corresponding to beam, stern, and bow aspect submarine targets. At the beginning of each section is a brief description of the data and associated plots, digitizing techniques, etc.

A. Beam Aspect Submarine Echoes

- (C) The collection of beam aspect submarine echoes is divided into two groups, A and B. Group A refers to data collected on
- 15 November 1965, while the data in Group B was collected on 16 November 1965. The echoes of Group A were generated by 1 and 2 msec transmit pulses and the echoes of Group B by 1, 2, and 5 msec transmit pulses.

1. Group A: 1 and 2 msec Transmit Pulses

- (C) Group A consists of two parts corresponding to transmit pulse lengths of 1 and 2 msec. The transmit pulse is a cw waveform of frequency 5 kHz. The data were sampled in quadrature, each component being sampled with a rate of 2500 samples per second. Each burst of 12 transmit signals results in a set of 12 echoes.
- (C) The digitized data are stored on ARL computer tape 649. Each record on this tape corresponds to an entire set of 12 echoes. Therefore, associated with each record are 12 pairs of numbers each of which give the beginning (IFROM) and end (ITO) of the 12 envelope plots. The odd record numbers in each pair correspond to the X components and the even record numbers to the Y components.
- (C) The destroyer and submarine maintained approximately parallel courses, each with a speed of 4 kt. The target aspect was 84 deg from stern. The range was 4000 yd.

(This page is UNCLASSIFIED.) FOR OFFICIAL USE ONLY

(U-FOUO) Corresponding to the 2 msec transmit pulse there are 18 echo sets, each set containing 12 echoes. Each plotted echo is 120 samples long. Therefore, each plot corresponds to approximately 48 msec since the sample rate was 2500 (sec)⁻¹. In Tables I, II, and III the IFROM and ITO of the plot of the first echo in each set is listed. The IFROMs and ITOs of the remaining 11 echoes in each set can be calculated from the formulas

$$(IFROM)_n = (IFROM)_1 + (n-1)(936)$$

and

$$(ITO)_n = (ITO)_1 + (n-1)(936)$$

for n = 1, 2, ..., 11, 12.

(U-FOUO) As an example, the IFROM and ITO of the first plot of the third set are 580 and 700, respectively. The IFROM and ITO of the fifth plot of this set are

$$(IFROM)_5 = 580 + (5-1)(936)$$

= 4324

and

= 4444

respectively.

- (C) Following these tables are Figs. 2 through 7 which contain the individual echo plots. Each column of 12 plots represents a set of 12 echoes resulting from a burst of 12 transmitted signals. Below each column are three numbers written in the form l(m,n). The integer l denotes the particular set of 12 echoes, and m and n are record numbers (computer tape 649) corresponding, respectively, to the X and Y quadrature components. There are 18 echo sets corresponding to the 2 msec transmitted signal. Therefore l, in Figs. 2 through 7, varies from 1 to 18. Similarly the echo sets resulting from the 1 msec transmitted signals are described by Tables II and III and Figs. 8 through 24.
- (U-FOUO) The plots corresponding to the 1 msec transmit pulses are 90 samples (= 36 msec) long. The calculation of IFROMs and ITOs for these plots is identical to that of the 2 msec data.

TABLE I
Group A: 2 msec Transmit Pulse (U)

(C) Set No	. IFROM	ITO
1	614	734
2	617	737
3	580	760
4	517	637
5	515	635
6	518	638
7	520	640
8	526	648
9	527	647
10	531	651
11	529	649
12	531	651
13	534	654
14	536	656
15	535	655
16	543	663
17	551	671
18	560	680

Group A: 1 msec Transmit Pulse (U)

OII OII	609	589	009	969	602	419	609	620	551	546	558	220	568
IFROM	519	66η	510	906	512	524	519	530	1941	459	894	1480	478
Set No.	14	15	16	17	18	19	50	21	22	23	77	25	56
OLI	699	629	682	691	869	407	708	712	712	720	617	743	662
IFROM	579	582	592	109	809	419	618	622	622	630	659	653	572
(c) Set No.	1	α	8	†	17	. 9	7	Φ	6	10	11	12	13

TABLE III

(0)

	ITO	591	591	588	591	594	965	109	602	109	603	909	809	610
se (U)	IFROM	501	493	1,98	501	504	506	511	512	511	513	516	518	520
1 msec Transmit Pulse (U)	Set No.	40	17	142	. 54	44	45	94	24	84	64	50	51	52
Group A: 1	OTI	571	579	582	591	591	409	559	548	559	580	576	583	587
	IFROM	481	489	765	501	501	514	6911	458	694	1490	1,86	493	164
	Set No.	27	28	53	30	31	32	33	34	35	36	37	38	39

84 deg BEAM ASPECT: 2 msec TRANSMIT PULSE (U)

AS-70-222

CONFIDENTIAL

148570-224 C20:

84 deg BEAM ASPECT: 2 msec TRANSMIT PULSE (U)

AS-70-226

17

84 deg BEAM ASPECT:

AS-70-228

AS-70-229

20

AS-70-231

84 deg BEAM ASPECT: 1 msec TRANSMIT PULSE (U)

AS-70-233

24

AS-70-234

AS-70-235

26

AS-70-237

28

AS-70-238

29

AS-70-240

AS-70-241

33

AS-70-242

(The reverse of this page is blank.)

2. Group B: 1, 2, and 5 msec Transmit Pulse

- (C) The echoes of Group B are from a submarine having a target aspect angle of 77 deg relative to stern. The destroyer and submarine had parallel courses, a range of 3900 yd, and speeds of 3 kt each.
- (C) The analog data were sampled directly with a sampling rate of 4f = 20,000 samples per second. The digital data are stored on ARL computer tape 646. Each record, which contains one echo, on tape 646 is 3000 samples long. The computer plots are 1000 samples = 50 msec long. Tables IV, V, VI, and VII list the first sample number of each plot (IFROM). The last sample number of each plot (ITO) is obtained by adding 1000 to that plot's IFROM. For example the plot of the third echo of Echo Set 1 has an IFROM of 1804 and an ITO of 1804 + 1000 = 2804. Also these data are from record 3 (Rec. No. 3) of ARL computer tape 646. As another example, note that the sixth echo of Set 3 is found in record 31 of tape 646. The IFROM and ITO of the corresponding plot are 1348 and 2348, respectively. The first five sets of echoes (Sets 1, 2, 3, 4, and 5) correspond to the 1 msec transmit pulse, the second five sets (Sets 6, 7, 8, 9, and 10) to the 2 msec transmit pulse, and the last five sets (Sets 11, 12, 13, 14, and 15) to the 5 msec transmit pulse. The plots are given in Figs. 25 through 29.

TABLE IV

Group B; Beam Aspect; SARSFIELD Reel 33 12 Pings/Burst; Computer Tape 646 1 Set of 12 Echoes (U)

ITO = IFROM + 1000

(0)

msec IFROM	929	1120	1600	1584	980	1340	1816	1796	172	652	1132	1112
Set 4, 1 Rec. No.	38	39	04	41	75	43	77	45	911	24	48	64
msec IFROM	768	1252	1740	1720	872	1348	1828	1812	140	919	1096	1084
Set 3, 1 msec Rec. No. IFROM	56	27	28	59	30	31	32	33	34	35	36	37
msec IFROM	959	1136	1620	1608	736	1216	1692	1676	536	1020	1500	1476
Set 2, 1 msec Rec. No. IFROM	13	14	15	16	17	18	19	20	21	22	23	77
msec IFROM	944	1332	1804	1792	572	1060	1540	1520	376	498	1344	1328
Set 1, 1 msec Rec. No. IFROM	٦	α	2	4	2	9	7	80	6	10	11	75

	Set 8, 2 msec Rec. No. IFROM	₩ 86 804	87 1284	88 1768	89 1748	90 632	9111 16	92 1600	93 1580	899 +76	95 1148	96 1632	97 1612
_	msec IFROM	428	906	1388	1368	520	1004	1488	1941	584	1064	1544	1520
= IFROM + 1000 (U)	Set 7, 2 msec Rec. No. IFROM	4/2	75	92	77	87	62	80	81	82	83	18	85
≈ OLI	msec IFROM	360	448	1328	1308	700	888	1358	1348	449	1124	1604	1592
	Set 6, 2 Rec. No.	62	63	49	69	99	19	89	69	70	77	72	73
	msec IFROM	700	1184	1668	1652	966	1472	1952	1932	280	756	1240	1220
	Set 5, 1 Rec. No.	20	51	55	53	54	55	95	57	28	59	09	19

(0)

Group B

TABLE V

TABLE VI

Group B

ITO = IFROM + 1000 (U)

(2)

msec IFROM	592	1080	1556	1530	538	1000	1474	1444	1094	1558	2024	2010
Set 12, 5 msec Rec. No. IFROM	134	135	136	137	138	139	140	141	142	143	144	145
5 msec IFROM	925	1072	1540	1550	192	672	1140	1112	1068	1564	2044	2020
Set 11, 5 msec Rec. No. IFROM	122	123	124	125	126	127	128	129	130	131	132	133
2 msec IFROM	532	1020	1504	1,488	898	1344	1820	1804	288	768	1252	1232
Set 10, 2 msec Rec. No. IFROM	110	111	211	113	114	115	116	117	118	119	120	121
msec IFROM	899	1144	1632	1616	760	1240	1716	1700	812	1292	1780	1768
Set 9, 2 Rec. No.	98	66	100	101	102	103	104	105	106	107	108	109

38

TTO = IFROM + 1000 (U) Set 14, 5 msec Rec. No. IFROM 158 644 159 1126 160 1572 161 1556 162 452 164 1400 165 920 166 968 167 1444 168 1968 181 958	TTO = IFROM + 1000 (U) Set 14, 5 msec Rec. No. IFROM 158 644 159 1126 160 1572 161 1556 162 920 164 1400 165 1372 166 968 167 1444 168 1968	(n)
TTO = IFROM + 1000 Set 14, 5 msec Rec. No. IFROM 158 644 159 1126 160 1572 161 1556 162 452 163 920 164 1400 165 1572 166 968 167 1444 168 1968 169 1888		
TTO = IFRO] Set 14, Rec. No. 158 160 161 162 167 167 168 169		
	5	5 msec 1FROM 628 1112 1564 484 980 1460 1468 1960 1916

(0)

AS-70-243

40

AS-70-244

41

AS-70-245

42

AS-70-246

43

AS-70-247

44

B. Stern Aspect Submarine Echoes: 5 msec Transmit Pulse

(C) This collection of data was generated by a submarine with an aspect of 20 deg relative to stern. The transmit pulse length was 5 msec. The analog echoes were sampled directly with a sampling rate of 4f = 20 kHz. Nine echo sets, each set containing 12 echoes, are plotted and the IFROMs and ITOs of these plots are listed in Tables VIII, IX, and X. These data can be found on ARL computer tape 648. Each record of this tape is 4000 samples long and contains one echo. The epoch of the echo was estimated to be 2440 samples = 122 msec long. The following plots contain a 100-sample interval preceding the beginning of the echo and a 100-sample interval following the echo. Thus each plot has a length of 2440 + 200 = 2640 samples = 132 msec. Figures 30 through 32 give the individual echo plots.

TABLE VIII

Group II; Stern Aspect; SARSFIELD Reel 39 12 Pings/Burst; Computer Tape 648, 20 kHz Sample Rate 1 Ensemble of 12 Echoes, ~116 msec (U)

5 msec Transmit Pulse

(0)

3332	3284	3272	3032	3020	3008	2876	2860	2848	3148	3136	3134
SET 3 IFROM 692	449	632	392	380	368	236	220	208	508	961	184
Rec. No. 25	98	27	28	53	30	31	32	33	34	35	36
1 <u>TO</u>	3332	3340	3072	3024	9662	2920	2916	5896	3216	3212	3204
SET 2 IFROM 712	692	707	432	384	356	280	276	256	925	572	264
Rec. No.	$1^{l_{4}}$	15	16	17	18	19	20	21	22	23	24
1 <u>T0</u>	3332	3320	3048	3028	3016	2908	2892	2936	3200	3192	3136
SET 1 IFROM 712	692	680	708	388	376	568	252	596	260	552	967
Rec. No.	CI.	2	77	10	9	7	00	0,	10	11	12

46

Stern Aspect: Computer Plots' IFROM, ITO (U)

TABLE IX

5 msec Transmit Pulse

	OLI	3356	3548	3320	3148	3112	3100	3020	3000	5662	3288	3280	3248
	SET 6 IFROM	716	708	680	508	472	1460	380	360	356	628	620	809
	Rec. No.	61	62	63	49	65	99	29	68	69	70	7.1	72
	OLI	3324	3316	3300	3076	3060	3052	2924	2912	2904	3192	3184	3228
	SET 5 IFROM	684	929	099	954	1,20	412	284	272	564	552	544	588
	Rec. No.	64	50	51	52	53	54	55	56	57	58	59	09
			3256										
	SET 4 IFROM	632	616	009	700	388	368	272	564	248	260	548	536
(0)	Rec. No.	37	38	39	70	41	1,2	143	44	145	947	74	84

Stern Aspect: Computer Plots' IFROM, ITO (U)

TABLE X

5 msec Transmit Pulse

	OLI	3492	3452	3448	3248	3244	3212	3148	3148	3156	3436	3432	3420
	SET 9 IFROM	852	812	808	809	409	572	508	508	516	962	792	780
	Rec. No.	16	86	66	100	101	102	103	104	105	106	107	108
	OLI	3416	3404	3392	3188	3176	3172	3088	3080	3068	3328	3312	3308
	SET 8 IFROM	776	492	752	548	929	532	448	1440	428	688	672	899
	Rec. No.	85	98	87	88	89	06	91	92	93	46	25	96
	ITO	3372	3380	3360	3196	3184	3172	3040	3024	3008	3328	3312	3300
	SET 7 IFROM	732	740	720	556	544	532	700	384	368	688	672	099
(0)	Rec. No.	73	77	75	92	77	78	42	80	81	82	83	84

48

AS-70-249

50

20 deg STERN ASPECT: 5 msec TRANSMIT PULSE (U)

51

(The reverse of this page is blank.)

AS-70-250

C. Bow Aspect Submarine Echoes: 1 msec Transmit Pulse

- (C) This is a collection of 11 sets of bow aspect echoes. Each set contains 12 echoes. The transmit pulse length was 1 msec. The quadrature components of the analog data were digitized, each component being sampled at a rate of 2500 samples per second. The range of the target was 4000 yd, although the exact target geometry that produced these data is unknown. However, it is very likely that the destroyer and submarine had a target aspect, as estimated from the echo epoch, of about 20 deg relative to bow.
- (U-FOUO) Table XI gives the IFROM and ITO of the first plot of each set of 12 echoes. The (IFROM)_n of the nth echo of a set is given by

$$(IFROM)_n = IFROM + (n-1)(943)$$

Similarly the corresponding $(ITO)_n$ is given by

$$(ITO)_n = ITO + (n-1)(943)$$
.

Thus the IFROM and ITO of the eighth echo of the fifth echo set is

$$(IFROM)_8 = 1615 + (8-1)(943)$$

= 8116 ,

and

$$(ITO)_8 = 1935 + (8-1)(943)$$

$$= 8436 .$$

Each plot is 320 samples = 128 msec in length. The 11 sets, each set containing 12 echoes, are shown in Figs. 33 through 36.

TABLE XI

Bow Aspect: Computer Plots' IFROM, ITO (U)

(C) Rec. No.	IFROM	ITO
1	1600	1920
2	1598	1918
3	1601	1921
14	1610	1930
5	1615	1935
6	1619	1939
7	1626	1946
8	1633	1953
9	1640	1960
10	1644	1964
11	1646	1966

AS-70-251

UNCLASSIFIED

REFERENCES

- Pitt, S. P., and O. D. Grace, "Signal Processing by Digital Quadrature Techniques," DRL-TR-68-39, Defense Research Laboratory, The University of Texas at Austin (30 December 1968).
- 2. Plemons, T. D., "An Echo-Echo Correlation Analysis of Submarine Echoes" (U), ARL-TR-70-7, Applied Research Laboratories
 The University of Texas at Austin (26 February 1970). (CONFIDENTIAL)

(The reverse of this page is blank.)

UNCLASSIFIED

9 April 1970

DISTRIBUTION LIST FOR ARL-TM-70-5 UNDER CONTRACT NOO024-69-C-1129 (U) CONFIDENTIAL, GROUP 4

Copy No.

1 - 2 Commander
Naval Ship Systems Command
Department of the Navy
Washington, D. C. 20360
Attn: SHIPS OOVIC

Commander
Naval Undersea Research and Development Center
San Diego Division
271 Catalina Boulevard
San Diego, California 92152

- 3 4 Attn: Code D606
 - 5 Attn: Bryson Pennoyer, Code D554
 - 6 Attn: Mr. Littrell, Code 603
 - 7 Attn: Dr. Watson, Code 556
 - 8 Attn: Library
 - 9 Commanding Officer and Director
 U.S. Navy Underwater Sound Laboratory
 Fort Trumbull
 New London, Connecticut 06320
 Attn: Code 2242
 - Director
 Naval Personnel and Training Research Laboratory
 Department of the Navy
 San Diego, California 92152
 - 11 General Electric Company
 Post Office Box 1122
 Court Street
 Syracuse, New York 13206
 Attn: S. M. Garber
 Building 4, CSP

UNCLASSIFIED

(This page is UNCLASSIFIED.)

Distribution list for ARL-TM-70-5 under Contract NOO024-69-C-1129 (U)

Copy No.

12	Office of Naval Research
	Resident Representative
	Lowich Building
	1103 Guadalupe
	Austin, Texas 78701

- 13 Computer Science Division, ARL/UT
- 14 Signal Physics Division, ARL/UT
- 15 K. J. Diercks, ARL/UT
- 16 R. K. Goodnow, ARL/UT
- 17 W. D. Howard, ARL/UT
- 18 S. P. Pitt, ARL/UT
- 19 23 T. D. Plemons, ARL/UT
 - 24 W. W. Ryan, ARL/UT
 - 25 J. K. Vaughan, ARL/UT
 - 26 R. H. Wallace, ARL/UT
 - J. F. Willman, ARL/UT
 - 28 Library, ARL/UT

