Symulacja Monte Carlo Modelu Isinga

Wojciech Gromski

12 lutego 2024

Imię i nazwisko: Wojciech Gromski	Numer indeksu: 268725		
Nazwa projektu: Symulacja Monte Carlo Modelu Isinga			
Program napisany w języku: Python			
Interpreter: Visual Studio Code, Jupyter Notebook			
Generator liczb pseudolosowych: PCG64			
Rysunki wykonane przy użyciu: Matplotlib, Seaborn			
Wsparcie sztucznej inteligencji: TAK, ChatGPT			

Spis treści

1	Wst	tęp	1
2	Wei	rsja podstawowa	2
	2.1	Konfigurację spinów po 100 krokach MC	2
	2.2	Pojedyncze trajektorie dla temperatury: $T^* = 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	5
	2.3	Pojedyncze trajektorie dla temperatury: $T < T^*, T = T^*$ i $T > T^*$	7
	2.4	Magnetyzacja jako funkcja temperatury - średnia po czasie	13
	2.5	Magnetyzacja jako funkcja temperatury - średnia po zespole	14

1 Wstęp

W ramach projektu został zaimplementowany algorytm Metropolisa dla modelu Isinga bez pola magnetycznego na dwuwymiarowej sieci kwadratowej. Przeanalizowano zachowanie systemu dla różnych rozmiarów sieci i temperatur. Wygenerowano wykresy przedstawiające konfigurację spinów, pojedyncze trajektorie oraz magnetyzację w zależności od temperatury. Przeprowadzono analizę uśredniającą zarówno po czasie, jak i po zespole.

Do zaimplementowania algorytmu użyto języka Python wzbogaconego o moduły takie jak numpy oraz numba. Do rysowania wykresów użyto bibliotek Matplotlib oraz Seaborn.

We wszystkich przypadkach zaczynano od losowego stanu początkowego, za wyjątkiem średniej po czasie, gdzie zaczęto od stanu uporządkowanego (wszystkie spiny przyjmują wartość +1).

2 Wersja podstawowa

2.1 Konfigurację spinów po 100 krokach MC

Rysunek 1: Ewolucja układu dla $L=10,\,T^*=1$

Rysunek 2: Ewolucja układu dla $L=10,\,T^*=2.26$

Rysunek 3: Ewolucja układu dla $L=10,\,T^*=4$

Rysunek 4: Ewolucja układu dla $L=80,\,T^*=1$

Rysunek 5: Ewolucja układu dla $L=80,\,T^*=2.26$

Rysunek 6: Ewolucja układu dla $L=80,\,T^*=4$

2.2 Pojedyncze trajektorie dla temperatury: $T^* = 1$

Rysunek 7: 10 trajektorii dla $L=10,\,T^*=1$

Rysunek 8: 10 trajektorii dla $L=20,\,T^*=1$

Rysunek 9: 10 trajektorii dla $L=40,\,T^*=1$

Rysunek 10: 10 trajektorii dla $L=80,\,T^*=1$

2.3 Pojedyncze trajektorie dla temperatury: $T < T^*, T = T^*$ i $T > T^*$

Rysunek 11: 10 trajektorii dla $L=10,\,T^*=1.13$

Rysunek 12: 10 trajektorii dla $L=20,\,T^*=1.13$

Rysunek 13: 10 trajektorii dla $L=40,\,T^*=1.13$

Rysunek 14: 10 trajektorii dla $L=80,\,T^*=1.13$

Rysunek 15: 10 trajektorii dla $L=10,\,T^*=2.27$

Rysunek 16: 10 trajektorii dla $L=20,\,T^*=2.27$

Rysunek 17: 10 trajektorii dla $L=40,\,T^*=2.27$

Rysunek 18: 10 trajektorii dla $L=80,\,T^*=2.27$

Rysunek 19: 10 trajektorii dla $L=10,\,T^*=4.54$

Rysunek 20: 10 trajektorii dla $L=20,\,T^*=4.54$

Rysunek 21: 10 trajektorii dla $L=40,\,T^*=4.54$

Rysunek 22: 10 trajektorii dla $L=80,\,T^*=4.54$

2.4 Magnetyzacja jako funkcja temperatury - średnia po czasie

Rysunek 23: Wykres zależności magnetyzacji od temperatury - średnia po czasie $100000~\rm kroków~MCS,$ odrzucono pierwsze 50000

2.5 Magnetyzacja jako funkcja temperatury - średnia po zespole

Rysunek 24: Wykres zależności magnetyzacji od temperatury - średnia po zespole, 100trajektorii po $10000~\rm MCS$ każda