Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

MIT 6.036 Spring 2022 1

7.X.4 The Gradient: a vector input, scalar output

Our plan is to look at every derivative combination of scalars, vectors, and matrices we can.

First, we consider:

$$\frac{\partial (Scalar)}{\partial (Vector)} = \frac{\partial s}{\partial v} \tag{1}$$

We'll take s to be our scalar, and v to be our vector. So, our input is a **vector**, and our output is a **scalar**.

$$\Delta v \longrightarrow \boxed{f} \longrightarrow \Delta s$$
 (2)

How do we make sense of this? Well, let's write Δv_i explicitly:

$$\overbrace{\begin{bmatrix} \Delta \nu_1 \\ \Delta \nu_2 \\ \vdots \\ \Delta \nu_m \end{bmatrix}}^{\Delta \nu} \longrightarrow \Delta s \tag{3}$$

We can see that we have m different **inputs** we can change in order to change our **one** output.

So, our derivative needs to have m different **elements**: one for each element v_i .

7.X.5 Finding the scalar/vector derivative

But how do we shape our matrix? Let's look at our rule.

$$\Delta s \approx \frac{\partial s}{\partial \nu} \star \Delta \nu$$
 or $\Delta s \approx \frac{\partial s}{\partial \nu} \star \overbrace{\begin{bmatrix} \Delta \nu_1 \\ \Delta \nu_2 \\ \vdots \\ \Delta \nu_m \end{bmatrix}}^{\Delta \nu}$ (4)

How do we get $\Delta reds$? We have so many variables. Let's focus on them one at a time: breaking Δv into Δv_i , so we'll try to consider each v_i separately.

One problem, though: how can we treat each **derivative** separately? Each Δv_i will move our position, which can change a different derivative v_k : they can **affect** each other.

It's usually possible to change each ν_i , so we have to look at every one of them.

Last Updated: 11/09/22 05:28:32

7.X.6 Review: Planar Approximation

We'll resolve this the same way we did in chapter 3, **gradient** descent: by taking advantage of the "planar approximation".

The solution is this: assume your function is **smooth**. The **smaller** a step you take, the **less** your derivative has a chance to change.

Example: Take $f(x) = x^2$.

- If we go from $x = 1 \rightarrow 2$, then our derivative goes from $f'(x) = 2 \rightarrow 4$.
- Let's **shrink** our step. We go from $x = 1 \rightarrow 1.01$, our derivative goes from $f'(x) = 2 \rightarrow 2.02$.
 - Our derivative is almost the same!

if we take a small enough step Δv_i , then, if our function is **smooth**, then the derivative will hardly change!

So, if we zoom in enough (shrink the scale of change), then we can **pretend** the derivative is **constant**.

You could imagine repeatedly shrinking the size of our step, until the change in the derivatives is basically unnoticeable.

This isn't true for big steps, but eventu-

ally, if your step is small enough, then the derivative will barely

change.

Concept 1

If you have a smooth function, then...

If you take sufficiently **small steps**, then you can treat the derivatives as **constant**.

Clarification

This section is **optional**.

We can describe "sufficiently small steps" in a more mathematical way:

Our goal is for f'(x) to be basically constant: it doesn't change much. $\Delta f'(x)$ is small.

Let's say it can't change more then δ .

If you want

- $\Delta f'(x)$ to be very small $(|\Delta f'(x)| < \delta)$
- It has been proven that...
 - can take a small enough step $|\Delta x| < \epsilon$, and to get that result.

One way to describe this is to say that our function is (locally) **flat**: it looks like some kind of plane/hyperplane.

The word "locally" represents the small step size: we stay in the "local area".

Last Updated: 11/09/22 05:28:32

Clarification 2

Why is this true? Because a hyperplane can be represented using our linear function

$$f(x) \approx \theta^{T} x + \theta_0 = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$

If we take a derivative:

$$\frac{\partial f}{\partial x_i} = \theta_i$$

That derivative is a **constant**! It's doesn't change based on **position**.

Movement in θ_1 on J

If we take very small steps, we can approximate our function as **flat**.

Why does this help? If our derivative doesn't **change**, we can combine multiple steps You can take multiple steps Δv_i and the order doesn't matter.

So, you can combine your steps or separate them easily.

Combining two movements Combining two movements 250 250 200 200 150 150 100 100 50 50 0 0 -50 ⁻¹⁵-10 ₋₅ -15_{-10 -5} -5 -5 -10 -10 15 -15

We can break up our big step into two smaller steps that are truly independent: order doesn't matter.

With that, we can add up all of our changes:

$$\Delta s = \Delta s_{\text{from }\nu_1} + \Delta s_{\text{from }\nu_2} + \dots + \Delta s_{\text{from }\nu_m}$$
 (5)

7.X.7 Our scalar/vector derivative

From this, we can get an approximated version of the MV chain rule.

Definition 3

The multivariable chain rule approximation looks similar to the multivariable chain rule, but for finite changes Δx_i .

In 3-D, we get

$$\Delta \mathbf{f} = \underbrace{\frac{\partial \mathbf{f}}{\partial x} \Delta x}_{x} + \underbrace{\frac{\partial \mathbf{f}}{\partial y} \Delta y}_{z} + \underbrace{\frac{\partial \mathbf{f}}{\partial z} \Delta z}_{z}$$

In general, we have

$$\Delta f = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i} \Delta x_i$$

This function lets us add up the effect each component has on our output, using **derivatives**.

This gives us what we're looking for:

MIT 6.036 Spring 2022 5

$$\Delta s \approx \sum_{i=1}^{m} \frac{\partial s}{\partial \nu_i} \Delta \nu_i$$
 (6)

If we circle back around to our original approximation:

$$\sum_{i=1}^{m} \frac{\partial \mathbf{s}}{\partial \nu_{i}} \Delta \nu_{i} = \frac{\partial \mathbf{s}}{\partial \nu} \star \underbrace{\begin{bmatrix} \Delta \nu_{1} \\ \Delta \nu_{2} \\ \vdots \\ \Delta \nu_{m} \end{bmatrix}}$$
(7)

When we look at the left side, we're multiplying pairs of components, and then adding them. That sounds similar to a **dot product**.

$$\sum_{i=1}^{m} \frac{\partial s}{\partial \nu_{i}} \Delta \nu_{i} =
\begin{bmatrix}
\frac{\partial s}{\partial \nu_{1}} \\
\frac{\partial s}{\partial \nu_{2}}
\end{bmatrix} \cdot
\begin{bmatrix}
\Delta \nu_{1} \\
\Delta \nu_{2}
\end{bmatrix} \cdot
\begin{bmatrix}
\Delta \nu_{1} \\
\Delta \nu_{2}
\end{bmatrix} \cdot
\begin{bmatrix}
\delta s/\partial \nu_{m}
\end{bmatrix} \cdot
\begin{bmatrix}
\Delta \nu_{m}
\end{bmatrix}$$
(8)

This gives us our derivative: it contains all of the **element-wise** derivatives we need, and in a **useful** form!

Definition 4

If s is a scalar and v is an $(m \times 1)$ vector, then we define the derivative or gradient $\partial s/\partial v$ as fulfilling:

$$\Delta s = \frac{\partial s}{\partial v} \cdot \Delta v$$

Or, equivalently,

$$\Delta \mathbf{s} = \left(\frac{\partial \mathbf{s}}{\partial \nu}\right)^{\mathsf{T}} \Delta \nu$$

Thus, our derivative must be an $(m \times 1)$ vector

$$\frac{\partial \mathbf{s}}{\partial \mathbf{v}} = \begin{bmatrix} \partial \mathbf{s} / \partial \mathbf{v}_1 \\ \partial \mathbf{s} / \partial \mathbf{v}_2 \\ \vdots \\ \partial \mathbf{s} / \partial \mathbf{v}_m \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{s}}{\partial \mathbf{v}_1} \\ \frac{\partial \mathbf{s}}{\partial \mathbf{v}_2} \\ \vdots \\ \frac{\partial \mathbf{s}}{\partial \mathbf{v}_m} \end{bmatrix}$$

We can see the shapes work out in our matrix multiplication:

$$\Delta s = \left(\frac{\partial s}{\partial \nu}\right)^{T} \Delta \nu \tag{9}$$