Universidad Nacional Autónoma de México Facultad de Ingeniería

Inteligencia Artificial

PRÁCTICA 9. REGRESIÓN LOGÍSTICA

Casasola García Oscar 316123747 oscar.casasola.g7@gmail.com Grupo 03

Profesor: Dr. Guillermo Gilberto Molero Castillo

Semestre 2022-1

Contenido Preparación del entorno de ejecución......3 1) Importar las bibliotecas necesarias3 2) Selección de características......3 Matriz de correlaciones5 Definición de variables predictoras (X) y variable clase (Y)......5 Aplicación del algoritmo6 Regresión logística......6 Se hace la división de los datos.......7 Entrando el modelo......7 Validación del modelo8 Modelo de clasificación9 Nuevos pronósticos9 Conclusiones10

Contexto

Objetivo: Clasificar registros clínicos de tumores malignos y benignos de cáncer de mama a partir de imágenes digitalizadas.

Fuente de datos

Estudios clínicos a partir de imágenes digitalizadas de pacientes con cáncer de mama de Wisconsin (WDBC, Wisconsin Diagnostic Breast Cancer).

Variable	Descripción	Tipo
ID number	Identifica al paciente	Discreto
Diagnosis	Diagnostico (M=maligno, B=benigno)	Booleano
Radius	Media de las distancias del centro y puntos del perímetro	Continuo
Texture	Desviación estándar de la escala de grises	Continuo
Perimeter	Valor del perímetro del cáncer de mama	Continuo
Area	Valor del área del cáncer de mama	Continuo
Smoothness	Variación de la longitud del radio	Continuo
Compactness	Perímetro ^ 2 /Area - 1	Continuo
Concavity	Caída o gravedad de las curvas de nivel	Continuo
Concave points	Número de sectores de contorno cóncavo	Continuo
Symmetry	Simetría de la imagen	Continuo
Fractal dimension	"Aproximación de frontera" - 1	Continuo

Fuente: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Registros clínicos de cáncer de mama a partir de imágenes digitalizadas.

Preparación del entorno de ejecución

1) Importar las bibliotecas necesarias

2) Importar los datos

Fuente de datos: WDBCOriginal.csv

```
# Si se usa Google Colab
#from google.colab import files
#files.upload()

# Si se importan los datos desde Drive
#from google.colab import drive
#drive.mount('/content/drive')
```

	IDNumber	Diagnosis	Radius	Texture	Perimeter	Area	Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	FractalDimension
0	P-842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.0787
1	P-842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.0566
2	P-84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.0599
3	P-84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.0974
4	P-84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.0588
564	P-926424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.0562
565	P-926682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.0553
566	P-926954	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.0564
567	P-927241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.0701
568	P-92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.0588

print(BCancer.groupby('Diagnosis').size())
De una población total de 569 muestras, 357 presentan un tipo de cáncer benigno y 212 maligno.

Diagnosis

B 357

dtype: int64

212

Selección de características

Evaluación visual

Se utiliza una matriz de correlaciones con el propósito de seleccionar variables significativas.

sns.pairplot(BCancer, hue='Diagnosis')
plt.show()


```
#plt.plot(BCancer['Radius'], BCancer['Perimeter'], 'b+')
sns.scatterplot(x='Radius', y='Perimeter',data=BCancer, hue='Diagnosis')
plt.title('Gráfico de dispersión')
plt.xlabel('Radio')
plt.ylabel('Perímetro')
plt.show()
```



```
#plt.plot(BCancer['Concavity'], BCancer['ConcavePoints'], 'b+')
sns.scatterplot(x='Concavity', y='ConcavePoints',data=BCancer, hue='Diagnosis')
plt.title('Gráfico de dispersión')
plt.xlabel('Concavity')
plt.ylabel('ConcavePoints')
plt.show()
```


Matriz de correlaciones

CorrBCancer = BCancer.corr(method='pearson') CorrBCancer **Fractal Dimension Radius Texture Perimeter** Concavity ConcavePoints Area **Smoothness** Compactness Symmetry **Radius** 1.000000 0.323782 0.997855 0.987357 0.170581 0.506124 0.676764 0.822529 0.147741 -0.311631 0.323782 Texture 1.000000 0.329533 0.321086 -0.023389 0.236702 0.302418 0.293464 0.071401 -0.076437 0.997855 0.329533 1.000000 0.986507 0.207278 0.556936 0.716136 0.850977 0.183027 -0.261477 Perimeter 0.987357 0.321086 0.986507 1.000000 0.177028 0.498502 0.685983 0.823269 0.151293 -0.283110 Area **Smoothness** 0.170581 -0.023389 0.207278 0.177028 1.000000 0.659123 0.521984 0.553695 0.557775 0.584792 0.883121 Compactness 0.506124 0.236702 0.556936 0.498502 0.659123 1.000000 0.831135 0.602641 0.565369 Concavity 0.302418 0.716136 1.000000 0.336783 0.676764 0.685983 0.521984 0.883121 0.921391 0.500667 ConcavePoints 0.822529 0.293464 0.850977 0.823269 0.553695 0.831135 0.921391 1.000000 0.462497 0.166917 Symmetry 0.071401 0.557775 0.602641 0.147741 0.183027 0.151293 0.500667 0.462497 1.000000 0.479921 -0.311631 -0.261477 0.584792 FractalDimension -0.076437 -0.283110 0.565369 0.336783 0.166917 0.479921 1.000000

plt.figure(figsize=(14,7))
MatrizInf = np.triu(BCancer.corr())
sns.heatmap(BCancer.corr(), cmap='RdBu_r', annot=True, mask=MatrizInf)
plt.show()

Variables seleccionadas:

1)

2)

3)

6)

- 0.8

0.6

- 0.4

0.2

0.0

- Textura [Posición 3]
 - Area [Posición 5]
 - Smoothness [Posición 6]
- 4) Compactness [Posición 7]
- 5) Symmetry [Posición 10]
 - FractalDimension [Posición 11]

Definición de variables predictoras (X) y variable clase (Y)

BCancer = BCancer.replace({'M': 0, 'B': 1}) **BCancer IDNumber Diagnosis** Radius Texture Smoothness Compactness Concavity ConcavePoints Symmetry FractalDimension Perimeter Area P-842302 0.27760 0.07871 0 0 17.99 10.38 122.80 1001.0 0.11840 0.30010 0.14710 0.2419 P-842517 0 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667 1 P-84300903 0 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790 0.2069 0.05999 0.10520 P-84348301 0 77.58 0.24140 0.2597 0.09744 3 11.42 20.38 386.1 0.14250 0.28390 135.10 1297.0 P-84358402 0 20.29 14.34 0.10030 0.13280 0.19800 0.10430 0.1809 0.05883 564 0 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 P-926424 0.1726 0.05623 0.14400 565 P-926682 0 1261.0 0.10340 0.09791 0.1752 0.05533 20.13 28.25 131.20 0.09780 0.09251 566 P-926954 0 16.60 28.08 108.30 858.1 0.08455 0.10230 0.05302 0.1590 0.05648 567 P-927241 0 20.60 29.33 140.10 1265.0 0.11780 0.35140 0.15200 0.2397 0.07016 0.27700 568 0.05884 P-92751 1 7.76 24.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 569 rows × 12 columns

```
print(BCancer.groupby('Diagnosis').size())
# 0 = MALIGNO: 212 muestras
# 1 = BENIGNO: 357 muestras
# Variables predictoras
X = np.array(BCancer[['Texture','Area','Smoothness','Compactness','Symmetry', 'FractalDimension']])
# X = BCancer.iloc[:, [3,5,6,7,10,11]].values # iloc para seleccionar filas y columnas según su posición
pd.DataFrame(X)
                                                    0
                                                           1
                                                                   2
                                              0 10.38 1001.0 0.11840 0.27760 0.2419 0.07871
                                                       1326.0 0.08474 0.07864 0.1812 0.05667
                                              2 21.25
                                                       1203.0 0.10960 0.15990 0.2069 0.05999
                                              3 20.38
                                                        386.1 0.14250 0.28390 0.2597
                                                       1297.0 0.10030 0.13280 0.1809 0.05883
                                                 14.34
                                            564 22.39 1479.0 0.11100 0.11590 0.1726 0.05623
                                            565 28.25 1261.0 0.09780 0.10340 0.1752 0.05533
                                            566 28.08
                                                        858.1 0.08455 0.10230 0.1590 0.05648
                                            567 29.33 1265.0 0.11780 0.27700 0.2397 0.07016
                                                24.54
                                                        181.0 0.05263 0.04362 0.1587 0.05884
                                           569 rows × 6 columns
# Variable Clase
Y = np.array(BCancer['Diagnosis'])
pd.DataFrame(Y)
                                                                0
                                                                0
                                                                0
                                                                0
                                                             3
                                                               0
                                                                0
                                                           564
                                                               0
```

565 0566 0

567 0

568

569 rows × 1 columns

Aplicación del algoritmo

Regresión logística

```
# Se importan las bibliotecas necesarias
from sklearn import linear_model # Para la regresión lineal / pip install scikit-learn
from sklearn import model_selection
```

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=0.2, random_state=1234, shuffle=True)

Datos de entrenamiento: 70, 75 u 80% de los datos
Datos de prueba: 20, 25 o 30% de los datos

Se hace la división de los datos

pd.DataFrame(X_train)

0 1 2 3 4 0 18.22 493.1 0.12180 0.16610 0.1709 0.07253 22.44 378.4 0.09566 0.08194 0.2030 0.06552 20.76 480.4 0.09933 0.12090 0.1735 0.07070 499.0 0.11220 0.12620 0.1905 0.06590 23.84 18.32 340.9 0.08142 0.04462 0.2372 0.05768 450 15.18 587.4 0.09516 0.07688 0.2110 0.05853 451 15.10 1386.0 0.10010 0.15150 0.1973 0.06183 18.60 481.9 0.09965 0.10580 0.1925 0.06373 453 18.70 1033.0 0.11480 0.14850 0.2092 0.06310 492.1 0.09667 0.08393 0.1638 0.06100 454 13.78 455 rows × 6 columns

pd.DataFrame(Y train)

Entrando el modelo

Se entrena el modelo a partir de los datos de entrada
Clasificacion = linear_model.LogisticRegression() # Se crea el modelo
Clasificacion.fit(X_train, Y_train) # Se entrena el modelo

Predicciones probabilísticas
Probabilidad = Clasificacion.predict_proba(X_train)
pd.DataFrame(Probabilidad)

Predicciones probabilísticas de los datos de prueba
Probabilidad = Clasificacion.predict_proba(X_validation)
pd.DataFrame(Probabilidad) # A partir de las probabilidades se hacen el etiqueta de si es cancerígeno o no

```
        0
        1

        0
        0.050099
        9.499011e-01

        1
        0.003135
        9.968647e-01

        2
        0.057000
        9.430004e-01

        3
        0.011637
        9.883630e-01

        4
        0.065728
        9.342722e-01

        ...
        ...
        ...

        109
        0.057255
        9.427452e-01

        110
        0.990748
        9.252494e-03

        111
        0.066344
        9.336558e-01

        112
        0.186568
        8.134320e-01

        113
        1.000000
        3.283193e-10
```

```
# Predicciones con clasificación final
Predicciones = Clasificacion.predict(X_validation)
pd.DataFrame(Predicciones) # A partir de las probabilidades obtenidas anteriormente
# se hace el etiquetado de si es cancerígeno o no
```

```
0 1
1 1
2 1
3 1
4 1
... ...
109 1
110 0
111 1
112 1
113 0
114 rows × 1 columns
```

```
# Se calcula la exactitud promedio de la validación
Clasificacion.score(X_validation, Y_validation)
# Se tiene un 93% de exactitud este modelo: 0.9385964912280702
```

Se tiene un 93% de exactitud este modelo: 0.9385964912280/02

Validación del modelo

```
# Matriz de clasificación
Y_Clasificacion = Clasificacion.predict(X_validation)
Matriz_Clasificacion = pd.crosstab(Y_validation.ravel(), Y_Clasificacion, rownames=['Real'], colnames=['Clasificación'])
Matriz_Clasificacion

# El modelo se equivocó en un total de 7 casos, de los cuales 6 fueron falsos positivos y 1 falso negativo

# Para los casos benignos, se equivocó 6 de 68 veces.
# Para los casos malignos, se equivocó 1 de 39 veces.
```

					Predicción		
Clasificación	0	1			Positivos	Negativos	
Real			vación	Positivos	Verdaderos Positivos (VP):	Falsos Negativos (FN):	
0	39	6	_		68 Falses	1	
		-	Obsei	Negativos	Falsos Positivos (FP):	Verdaderos Negativos (VN):	
1	1	68		3	6	39	

```
# Reporte de clasificación

print(classification_report(Y_validation, Y_Clasificacion))

print("Exactitud", Clasificacion.score(X_validation, Y_validation))

print("Precisión: ",classification_report(Y_validation, Y_Clasificacion).split()[10])

print("Tasa de error: ",1-Clasificacion.score(X_validation, Y_validation))

print("Sensibilidad: ",classification_report(Y_validation, Y_Clasificacion).split()[11])

print("Especificidad: ",classification_report(Y_validation, Y_Clasificacion).split()[6])

# Precisión positiva del 92% (92% de exactitud al clasificar casos de cáncer benigno)

# Precisión negativa del 97% (97% de exactitud al clasificar casos de cáncer maligno)

# En general, el modelo es muy bueno, ya que tiene casi 94% de exactitud. (93.86%)
```

	precision	recall	f1-score	support
0	0.97	0.87	0.92	45
1	0.92	0.99	0.95	69
accuracy			0.94	114
macro avg	0.95	0.93	0.93	114
weighted avg	0.94	0.94	0.94	114
Exactitud 0.9	3859649122807	702		
Precisión: 0	.92			
Tasa de error	: 0.06140350	987719297	9	
Sensibilidad:	0.99			
Especificidad	: 0.87			

Modelo de clasificación

```
# Ecuación del modelo
print("Intercept:",Clasificacion.intercept_)
print("Coeficientes:\n",Clasificacion.coef_)

print("------")
print("Prob = 1/1+e^-(a+bX))")
print("Ecuación del modelo: ")
print("a + bX =",Clasificacion.intercept_[0],"+",Clasificacion.coef_[0][0],"(Texture) +",Clasificacion.coef_[0][1],"(Area) +"
,Clasificacion.coef_[0][2],"(Smoothness) +",Clasificacion.coef_[0][3],"(Compactness) +",Clasificacion.coef_[0][4],"(Symmetry) +"
,Clasificacion.coef_[0][5],"(FractalDimension)")
```

Nuevos pronósticos

De acuerdo con nuestro modelo y con los datos ingresados, este paciente tiene un tumor maligno.

De acuerdo con nuestro modelo y con los datos ingresados, este paciente tiene un tumor benigno.

Conclusiones

En esta práctica, a través de registros clínicos de cáncer de mama tomados de imágenes digitalizadas de la WDBC (Wisconsin Diagnostic Breast Cancer), se pudo hacer un análisis de estos datos, esto gracias a la aplicación del algoritmo de regresión logística, que pertenece a la categoría de aprendizaje supervisado, el cual su principal objetivo es predecir valores binarios (en este caso, el objetivo fue predicir si el paciente tiene un tipo de tumor maligno o benigno)

Los resultados obtenidos del algoritmo fueron los siguientes:

		Predicción				
		Positivos	Negativos			
Observación	Positivos	Verdaderos Positivos (VP): 68	Falsos Negativos (FN): 1			
Obser	Negativos	Falsos Positivos (FP): 6	Verdaderos Negativos (VN): 39			

Esto nos indica que el modelo se equivocó en un total de 7 casos, de los cuales 6 fueron falsos positivos y 1 falso negativo.

- Para los casos benignos, se equivocó 6 de 68 veces.
- Para los casos malignos, se equivocó 1 de 39 veces.

<u> </u>							
	precision	recall	f1-score	support			
0	0.97	0.87	0.92	45			
1	0.92	0.99	0.95	69			
accuracy			0.94	114			
macro avg	0.95	0.93	0.93	114			
weighted avg	0.94	0.94	0.94	114			
Exactitud 0.9385964912280702							
Precisión: 0.92							
Tasa de error: 0.06140350877192979							
Sensibilidad: 0.99							
Especificidad	1: 0.87						

1) Exactitud (Acurracy)

Exactitud =
$$\frac{VP + VN}{Total} = \frac{VP + VN}{VP + VN + FP + FN} = \frac{68 + 39}{68 + 39 + 1 + 6} = 0.93860$$

El 93.86% de los datos fueron clasificados correctamente.

2) Tasa de error (Misclassification Rate)

$$Tasa\ de\ error = \frac{FP + FN}{Total} = \frac{FP + FN}{VP + VN + FP + FN} = 0.06140$$

El 6.14% de los datos fueron clasificados incorrectamente.

3) Precisión (Precision)

$$Precisi\'on = \frac{VP}{Total\ clasificados\ positivos} = \frac{VP}{VP+FP} = 0.918918919$$

El 91.89% de los datos positivos fueron clasificados correctamente.

4) Sensibilidad (Recall, Sensitivity, True Positive Rate)

$$Sensibilidad = \frac{VP}{Total\ positivos} = \frac{VP}{VP + FN} = 0.985507246$$

El 98.55% de los datos positivos totales fueron clasificados correctamente.

5) Especificidad (Especificity, True Negative Rate)

$$Especificidad = \frac{VN}{Total\ negativos} = \frac{VN}{VN + FP} = 0.866666667$$

El 86.66% de los datos negativos totales fueron clasificados correctamente.

Modelo logístico:

$$p = \frac{1}{1 + e^{-(a+bX)}}$$

Ecuación del modelo:

```
a+bX=12.025-0.195(Texture)-0.011(Area)-0.707(Smoothness)-2.592(Compactness)-1.025(Symmetry)\\-0.257(Fractal Dimension)
```