Chapter 1: Introduction

CS 231 Operating Systems

3-0-0-6

Syllabus: Process Management: process, thread, scheduling; Concurrency: mutual exclusion, synchronization, semaphores, deadlocks; Memory Management: allocation, protection, hardware support, paging, segmentation; Virtual Memory: demand paging, allocation, replacement, swapping, segmentation, TLBs; File Management: naming, file operations and their implementation; File Systems: allocation, free space management, directory management, mounting; I/O Management: device drivers, disk scheduling, Basics of Security

Text:

1. Silberschatz, A. and Galvin, P. B. Operating System Concepts. 8/e. Wiley, 2008.

References :

- 1. Stalling, W. Operating Systems: Internals and Design Principles. 6/e. Pearson, 2008.
- 2. Tanenbaum, A. S. Modern Operating System. 3/e. Pearson, 2007.
- 3. Dhamdhere, D. M. Operating SystemsA Concept Based Approach, McGrawHill, 2008

Marking

- Tentative marking scheme
 - □ 30% Midsem
 - □ 50% Endsem
 - □ 20% Class test (2 tests)
- Marking can slightly deviate from it

Main Contents

- Why we need Operating Systems
- Main components of computer system
- Storage Device Hierarchy
- Main Functions of Operating Systems

Use of computer

- Web browsing -> Web browser
- Watching video -> Media player
- Text editing -> Office software
- □ Email -> Web browser

For each use, there is a program.

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- "The one program running at all times on the computer" is the kernel. Everything else is either a system program (ships with the operating system) or an application program.

Computer System Structure

- Computer system can be divided into four components:
 - Hardware
 - ▶ CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates use of hardware among various applications and users
 - Application programs
 - Word processors, compilers, web browsers, database systems, video games
 - Users
 - People, machines, other computers

Four Components of a Computer System

Operating System Functions

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer
 - Error in one program should not affect other programs

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices

Computer-System Operation

- □ I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- □ I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into faster storage system; main memory can be viewed as a cache for secondary storage

Storage-Device Hierarchy

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- □ Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

Operating System Structure

- Multiprogramming needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - □ When it has to wait (for I/O for example), OS switches to another job
- ☐ Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - □ Response time should be < 1 second</p>
 - □ Each user has at least one program executing in memory ⇒process
 - If several jobs ready to run at the same time ⇒ CPU scheduling
 - If processes don't fit in memory, swapping moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

operating system job 1 job 2 job 3 job 4

512M

Process Management

- A process is a program in execution. It is a unit of work within the system. Program is a passive entity, process is an active entity.
- Process needs resources to accomplish its task
 - □ CPU, memory, I/O, files
 - Initialization data
- Process termination requires reclaim of any reusable resources
- Single-threaded process has one program counter specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
- Multi-threaded process has one program counter

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Memory Management

- All data in memory before and after processing
- All instructions in memory in order to execute
- Memory management determines what is in memory when
 - Optimizing CPU utilization and computer response to users
- Memory management activities
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof) and data to move into and out of memory
 - Allocating and deallocating memory space as

Storage Management

- OS provides uniform, logical view of information storage
 - Abstracts physical properties to logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, data-transfer rate, access method (sequential or random)
- File-System management
 - Files usually organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and dirs
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage

Protection and Security

- Protection any mechanism for controlling access of processes or users to resources defined by the OS
- Security defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

End of Chapter 1

