Экзаменационная программа спецкурса «Криптография» (специализация *«Защита информации»*), 4 курс, 1 семестр 2006–2007 учебного года

Основные задачи криптографии. Криптосистема. Шифры сдвига, подстановки, аффинный, Хилла, перестановки.

Криптоанализ шифра Виженера. Тест Казиски. Индекс совпадения. Взаимный индекс совпадения. Матричный анализ шифра Виженера.

Вычислительная и безусловная стойкость. Абсолютно стойкая криптосистема. Теорема об абсолютной стойкости шифра сдвига. Теорема Шеннона.

Энтропия. Определение энтропии. Кодирование Хаффмена, связь с энтропией. Вогнутые функции. Неравенство Йенсена. Теорема об оценке $0 \le H(X) \le \log_2 n$, условие равенства. Определение H(X,Y). Теорема: $H(X,Y) \le H(X) + H(Y)$, случай равенства. Условная энтропия, полная условная энтропия, соотношение $H(X,Y) = H(Y) + H(X \mid Y)$, неравенство $H(X \mid Y) \le H(X)$, случай равенства.

Ложные ключи и расстояние единственности, ненадежность ключа. Теорема о вычислении $H(K \mid C)$. Алфавит, биграммы, триграммы, n-граммы. Энтропия языка, избыточность языка. Теорема об оценке числа ложных ключей: $\log_2(\overline{s_n}+1) \geq H(K) - nR_L \log_2 |\mathcal{P}|$. Случай равновероятных ключей, оценка $\overline{s_n} \geq \frac{|\mathcal{K}|}{|\mathcal{P}|^{nR_L}} - 1$. Формула $n_0 \approx \frac{\log_2 |\mathcal{K}|}{R_L \log_2 |\mathcal{P}|}$.

Произведение криптосистем.

Алгоритм RSA. Тест Ферма для определения составного числа. Псевдопростое число по основанию a. Числа Кармайкла, критерий, следствие. Тест Соловея-Штрассена. Теорема о количестве чисел, удовлетворяющих условию $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \pmod{n}$. Вероятностный анализ теста Соловея-Штрассена. Тест Миллера-Рабина.

Построение больших простых чисел. Критерий Люка, замечания. Числа Ферма, критерий простоты. Лемма о делимости. Теорема Поклингтона (о представлении делителей числа вида q^kR+1). Теорема о простоте числа вида FR+1. Следствия о простоте чисел вида 2^kR+1 .

Теорема Диемитко (лемма о простых делителях чисел $q^k R + 1$, теорема).

МЕТОД МАУРЕРА. Леммы о простых делителях чисел вида 2FR+1 и простоте этих чисел. Неравенство для функции Эйлера. Леммы о числе элементов группы \mathbb{Z}_p^* заданного порядка (делящего d, равного d, делящегося на d). Неравенство $\prod_{j=1}^n (1-\alpha_i) \ge 1 - \sum_{i=1}^n \alpha_i$. Алгоритм тестирования на простоту, его вероятностный анализ, следствие о нижней границе вероятности успеха.

Алгоритмы факторизации. Алгоритм Полларда.

Криптосистема Эль-Гамаля. Алгоритм Шенкса. Алгоритм Поллига-Хеллмана. Метод вычисления индексов.

Формулировки утверждений из раздела «Построение больших простых чисел»

ЛЕММА О ДЕЛИМОСТИ. Пусть q — простое. Если $m \mid q^k R$, $m \nmid q^{k-1} R$ $(k \ge 1)$, то $q^k \mid m$.

ТЕОРЕМА. Натуральное число n является простым \Leftrightarrow существует такое число a, что $a^{n-1} \equiv 1 \pmod n$ и для любого $q \mid (n-1), q > 1$ выполняется соотношение $a^{(n-1)/q} \not\equiv 1 \pmod n$.

ТЕОРЕМА: число $F_k=2^{2^k}+1$, $k\geq 1$ простое в том и только том случае, когда выполняется условие $3^{(F_k-1)/2}\equiv -1 (\bmod F_k)$.

Теорема Поклингтона.

ТЕОРЕМА. Пусть $n = q^k R + 1$, где q простое, $k \ge 1$. Если существует целое a, для которого $a^{n-1} \equiv 1 \pmod n$, $(a^{(n-1)/q} - 1, n) = 1$, то каждый простой делитель числа n имеет вид $p = q^k r + 1$ при некотором r.

ТЕОРЕМА. Пусть n = RF + 1, где $1 \le R < F$. Если для любого простого делителя q числа $F \exists$ целое a, что $a^{n-1} \equiv 1 \pmod n$, $(a^{(n-1)/q} - 1, n) = 1$ то число n простое.

Следствие 1. $n = 2^k R + 1$, k > 1, $R < 2^k$. $n \ npocmoe \Leftrightarrow \exists a \in \mathbb{Z}, \ a^{\frac{n-1}{2}} \equiv -1 \pmod{n}$.

Следствие 2. $n=2^kR+1$, k>1, $R<2^k$, $3 \nmid R$. n $npocmoe \Leftrightarrow 3^{\frac{n-1}{2}} \equiv -1 \pmod n$. Теорема Диемитко

то \exists простой делитель p числа n, такой, что $p=q^kr+1$ при некотором целом r .

R < 4(q+1). Если существует такое a, что $a^{n-1} \equiv 1 \pmod{n}$, $a^{\frac{n-1}{q}} \not\equiv 1 \pmod{n}$, то число n простое.

ТЕОРЕМА. Пусть n = qR + 1, где q — нечетное простое, R — четное u

МЕТОД МАУРЕРА

ЛЕММА 1. Пусть n=2FR+1. Если для любого простого делителя q числа F существует такое целое число a, что $a^{n-1}\equiv 1(\bmod n), \quad (a^{\frac{n-1}{q}}-1,n)=1, \ mo$ каждый простой делитель p числа n имеет вид p=rF+1 при некотором целом r. Если, кроме того, $F\geq \sqrt{n}$ или F нечетное и $R\leq F$, то число n простое.

ЛЕММА 2. Пусть n = 2FR + 1. Предположим, что для любого простого делителя q числа F существует такое целое число a, что $a^{n-1} \equiv 1 \pmod{n}$, $(a^{\frac{n-1}{q}} - 1, n) = 1$. Определим числа x, y следующими условиями: $x \ge 0$, $0 \le y < F$, 2R = xF + y. Если $F \ge \sqrt[3]{n}$ и число $y^2 - 4x$ не является полным квадратом, то число n простое.

ЛЕММА 3. Функция Эйлера удовлетворяет неравенству $\varphi(mn) \ge \varphi(m)\varphi(n)$, m, $n \ge 1$, причем равенство имеет место в том и только том случае, когда числа m и n взаимно простые.

ЛЕММА 4. Пусть p — нечетное простое число, $d \mid (p-1)$. Тогда число элементов группы \mathbb{Z}_p^* , порядки которых делят число d, равно d.

ЛЕММА 5. Пусть p — нечетное простое число, $d \mid (p-1)$. Тогда число элементов группы \mathbb{Z}_p^* , порядки которых равны d, равно $\varphi(d)$.

ЛЕММА 6. Пусть p — нечетное простое число, $d \mid (p-1)$. Обозначим через T число элементов группы \mathbb{Z}_p^* , порядки которых делятся на d. Тогда имеет место неравенство $T \geq \frac{\varphi(d)}{d} \cdot (p-1)$ причем равенство имеет место в том и только том случае, когда числа d и $\frac{p-1}{d}$ являются взаимно простыми.

ЛЕММА 7. Предположим, что числа α_1 , α_2 , ..., α_n удовлетворяют условиям $0 \le \alpha_i < 1$, i = 1, 2, ..., n. Тогда имеет место неравенство $\prod_{j=1}^n (1-\alpha_i) \ge 1 - \sum_{i=1}^n \alpha_i$, причем равенство имеет место в том и только том случае, когда все числа α_i , кроме, возможно, одного, равны нулю.

АЛГОРИТМ ТЕСТИРОВАНИЯ НА ПРОСТОТУ.

Пусть n = 2FR + 1, R < F и F нечетное. Выбираем случайным образом число a, $1 \le a \le n - 1$. Если $a^{n-1} \equiv 1 \pmod n$ и для любого простого делителя q числа F выполняется соотношение $(a^{(n-1)/q} - 1, n) = 1$, то n простое число. Иначе неизвестно.

ТЕОРЕМА. Пусть n=2RF+1 — простое число, R < F и (2R,F)=1. Тогда вероятность того, что случайно выбранное число a, $1 \le a \le n-1$, будет доказывать простоту числа a по данному алгоритму, равна $\frac{\varphi(F)}{F}$.

Следствие. В условиях теоремы при достаточно больших $q_1, q_2, ..., q_s$ в качестве нижней оценки вероятности успеха можно взять величину $1 - \sum_{i=1}^s \frac{1}{q_i}$.