PRACA KONTROLNA nr 2 - POZIOM ROZSZERZONY

- 1. Dla jakich wartości rzeczywistego parametru p równanie $(p-1)x^2-(p+1)x-1=0$ ma dwa różne pierwiastki ujemne?
- 2. Narysować na płaszczyźnie zbiór $\left\{(x,y):\sqrt{x-1}+x\leqslant 2,\ 0\leqslant y^3\leqslant \sqrt{5}-2\right\}$ i obliczyć jego pole. Wsk. Obliczyć $a=\left(\frac{\sqrt{5}-1}{2}\right)^3$.
- 3. Obliczyć $a=\operatorname{tg}\alpha$, jeżeli $\sin\alpha-\cos\alpha=\frac{1}{5}$ i kąt α spełnia nierówność $\frac{\pi}{4}<\alpha<\frac{\pi}{2}$. Znaleźć promień koła wpisanego w trójkąt prostokątny o polu 25π , wiedząc, że tangens jednego z kątów ostrych tego trójkąta jest równy a.
- 4. Narysować wykres funkcji $f(x) = 2|x-1| \sqrt{x^2 + 2x + 1}$. Dla jakiego m pole figury ograniczonej wykresem funkcji f oraz prostą y = m równe jest 32?
- 5. Wiadomo, że liczby -1,3 są pierwiastkami wielomianu $W(x)=x^4-ax^3-4x^2+bx+3$. Wyznaczyć a,b i rozwiązać nierówność $\sqrt{W(x)}\leqslant x^2-x$.
- 6. Narysować wykres funkcji $f(x) = \begin{cases} \frac{x-2}{x}, & \text{gdy} \quad |x-2| \leq 1, \\ \frac{x}{x-2}, & \text{gdy} \quad |x-2| > 1 \end{cases}$

i na jego podstawie wyznaczyć:

- a) przedziały, na których funkcja f jest malejąca,
- b) zbiór wartości funkcji f(x),
- c) zbiór rozwiązań nierówności $|f(x)| \leq \frac{1}{2}$.