默默的点滴

智障儿童欢乐多

无线通信中的IQ调制,BPSK调制,QPS K调制,16QAM调制的理解

先从IQ调制说起:

IQ调制:

我们先来看看什么是IQ信号。+

IQ信号与IQ调制有关, IQ调制也叫正交调制, 其调制原理如下:

I路和Q路分别输入两个数据a、b,I路信号与 $\cos \omega_b t$ 相乘,Q路信号与 $\sin \omega_b t$ 相乘,之 后再叠加(通常Q路在叠加时会乘以-1),输出信号为。 $s(t) = a\cos \omega_b t - b\sin \omega_b t$ 。这个 过程我们称之为IQ调制,也叫正交调制。 $s(t) = a\cos \omega_b t - b\sin \omega_b t$ 。这个 输入正交调制器的信号一般被称为IQ信号,经常用复数来表示,a+jb,对应复平面上的一个点,因此IQ信号通常被大家称为"复信号"。如果再将与I路数据相乘的 $\cos \omega_0 t$ 和与Q路数据相乘的 $\sin \omega_0 t$ 表示为: $e^{j\omega_t} = \cos \omega_0 t + j\sin \omega_0 t$,这样IQ调制就可以利用复数乘法来实现: $\omega_0 t$

$$a+jb$$

取实部 $s(t)=a\cdot\cos\omega_0t-b\cdot\sin\omega_0t$
 $e^{j\omega_0t}$

$$\operatorname{Re}\left\{(a+jb)e^{ja_{b}t}\right\}$$

- $= \operatorname{Re}\{(a+jb)(\cos \omega_0 t + j\sin \omega_0 t)\}\$
- $= \operatorname{Re} \{ (a \cos \omega_0 t b \sin \omega_0 t) + j(b \cos \omega_0 t + a \sin \omega_0 t) \}$
- $= a \cos \omega_0 t b \sin \omega_0 t$

值得注意的是。在IQ调制过程中出现的信号a、b、 $\cos \omega_0 t$ 、 $\sin \omega_0 t$ 以及最终输出的信号 $s(t) = a\cos \omega_0 t - b\sin \omega_0 t$ 全部都是实信号,只是在实现过程中我们把相关的信号表示为复数而已。s

IQ解调原理:

IQ解调原理如下图所示: →

接收端收到s(t)后,分为两路:

一路乘以cosωot再积分,就可以得到a: →

$$\begin{split} &\frac{2}{T} \int_{-T/2}^{T/2} s(t) \cos \omega_0 t dt \\ &= \frac{2}{T} \int_{-T/2}^{T/2} (a \cos \omega_0 t - b \sin \omega_0 t) \cos \omega_0 t dt \\ &= \frac{2}{T} \int_{-T/2}^{T/2} (a \cos^2 \omega_0 t - b \sin \omega_0 t \cos \omega_0 t) dt \\ &= \frac{2}{T} \int_{-T/2}^{T/2} \left[\frac{a}{2} (1 + \cos 2\omega_0 t) - \frac{b}{2} \sin 2\omega_0 t \right] dt \\ &= \frac{2}{T} \cdot \frac{a}{2} \cdot T = a \end{split}$$

另一路乘以-sinωot再积分,就可以得到b: ₽

$$\begin{split} &\frac{2}{T} \int_{-T/2}^{T/2} s(t)(-\sin \omega_0 t) dt \\ &= \frac{2}{T} \int_{-T/2}^{T/2} (-a\cos \omega_0 t + b\sin \omega_0 t) \sin \omega_0 t dt \\ &= \frac{2}{T} \int_{-T/2}^{T/2} (-a\sin \omega_0 t \cos \omega_0 t + b\sin^2 \omega_0 t) dt \\ &= \frac{2}{T} \int_{-T/2}^{T/2} \left[\frac{a}{2} (-\sin 2\omega_0 t) + \frac{b}{2} (1 - \cos 2\omega_0 t) \right] dt \\ &= \frac{2}{T} \cdot \frac{b}{2} \cdot T = b \end{split}$$

其中T是To=2元/い。的整数倍即可。」

注意:上面用到了sin2ωot和cos2ωot在[-T/2, T/2]区间内积分为0。这是很显然的,如下图所示:黄色部分面积(横轴上方的面积取正,横轴下方的面积取负)的代数和为0。→

Linux 下使用 GNU Octave 运行下面的代码:

```
MATLAB

1 t=-1:0.001:1;
2 f=1;
3 y=cos(2*pi*2*f*t);
4 subplot(1,2,1);plot(t,y);
5 y=sin(2*pi*2*f*t);
6 subplot(1,2,2);plot(t,y);
```

前面我们讲了IQ调制和解调的原理,下来我们看一下如何应用IQ调制来实现MPSK调制(QPSK、8PSK等)、MQAM调制(16QAM、64QAM等)。

先来了解一下BPSK (Binary Phase Shift Keying, 二相相移键控)

先来了解一下BPSK (Binary Phase Shift Keying, 二相相移键控)。 两个信号源: 一个相位为0: cos(ωt), 一个相位为π; cos(ωt+π)

根据输入,通过按键控制输出哪个信号(Phase Shift Keying),例如: 输入是0时输出cos(ωt),相位为0。

输入是1时输出cos(ω+π),相位为π。

这就是BPSK的最初含义。→

BPSK: 用2个相位分别表示0和1~

QPSK: 用4个相位分别表示00、01、10、11-

8PSK: 用8个相位分别表示000、001、010、011、100、101、110、111

如何用IQ调制实现QPSK调制?

除了上面的"键控"方法来实现PSK之外,有没有其它方法来实现呢? 4

有! 那就是IO正交调制, 这是目前普遍使用的方法。 +

我们看一下:在IQ调制器的输入端分别输入(+1, +1)、(-1, +1)、(-1, -1)、(+1, -1), 输出将得到什么? →

 $s(t)=I*\cos(\omega t)-Q*\sin(\omega t)=A\cos(\omega t+\theta)$

将(+1, +1)、(-1, +1)、(-1, -1)、(+1, -1)作为(I, Q)分别代入,经过简单的三角函数运算,可得。 $A=\sqrt{2}$, θ 如下图所示。+

输入信号 I Q	输出相位 θ
+1 ±1	π/4
-1 +1	3π/4
-1 -1	5π/4
+1 -1	7π/4

推导过程: +

I=+1,Q=+1,
$$s(t) = \cos \omega t - \sin \omega t = \sqrt{2}\cos(\omega t + \pi/4) + C$$

I=-1,Q=+1,
$$s(t) = -\cos \omega t - \sin \omega t = \sqrt{2}\cos(\omega t + 3\pi/4)$$

I=-1,Q=-1,
$$s(t) = -\cos \omega t + \sin \omega t = \sqrt{2}\cos(\omega t + 5\pi/4)$$

I=+1,Q=-1,
$$s(t) = \cos \omega t + \sin \omega t = \sqrt{2}\cos(\omega t + 7\pi/4) + \sqrt{2}\cos(\omega t + 7\pi/4)$$

注: 其中主要用到了cos (α+β) = cosαcosβ - sinαsinβ+

为了使输出信号s(t)的幅值A=1,调整输入信号的幅度为 $1/\sqrt{2}$ 即可。

将上述4个相位及对应的IQ信号和输入的00、01、11、10建立映射关系: #

输入信号: s1s0≠	IQ信号₽	输出信号相位4	+
000	+1/√2,+1/√2+	π/4+	
01 <i>e</i>	-1/√2,+1/√20	3π/4φ	
110	$-1/\sqrt{2}, -1/\sqrt{2} +$	5π/40	
10₽	+1/\sqrt{2},-1/\sqrt{2}+	7π/40	-

这实际上就实现了QPSK调制,将输入的数据每两个比特划分为一组,s1s0,再根据上面的映射关系转换为对应的IQ信号,最终对应一个输出信号的相位。→

假定输入QPSK调制器的数据为:0110110001101100(假定左边的数据先进入调制器),如下图所示:

经QPSK调制后的信号s(t)的时域波形如下图所示。从上至下依次为输入数据信号、I路信号、Q路信号、输出QPSK调制后的信号。↓

Linux 下使用 GNU Octave 运行下面的代码:

```
MATLAB

1 %输入信号
2
3 >> subplot(4,1,1);
4 >> t=0:0.001:8;
5 >> d=[0 0;0.5 1;1 1;1.5 0;2 1;2.5 1;3 0;3.5 0;4 0;4.5 1;5 1;5.5 0;6 1;6.5 6 >> s=pulstran(t-0.25,d,'rectpuls',0.5);plot(t,s);
7 >> axis([0 8 -0.5 1.5]);
8 >> text(0.25,1.2,'0'); text(0.75,1.2,'1'); text(1.25,1.2,'1'); text(1.75,1.2, 9 >> text(2.25,1.2,'1'); text(2.75,1.2,'1'); text(3.25,1.2,'0'); text(3.75,1.2, 10 >> text(4.25,1.2,'0'); text(4.75,1.2,'1'); text(5.25,1.2,'1'); text(5.75,1.2, 11 >> text(6.25,1.2,'1'); text(6.75,1.2,'1'); text(7.25,1.2,'0'); text(7.75,1.2, 11 >> text(6.25,1.2,'1'); text(6.75,1.2,'1'); text(7.25,1.2,'0'); text(7.75,1.2,'1)
```

```
MATLAB

1 % I路信号
2
3 >> subplot(4,1,2);
4 >> t=0:0.001:8;
5 >> a=1/sqrt(2);
6 >> d=[0 -a;1 +a;2 -a;3 +a; 4 -a;5 +a;6 -a;7 +a];
7 >> s=pulstran(t-0.5,d,'rectpuls');plot(t,s);
8 >> axis([0 8 -2 2]);
9 >> text(0.5,1.5,'-0.7'); text(1.5,1.5,'+0.7'); text(2.5,1.5,'-0.7'); text(3.5,1 10 >> text(4.5,1.5,'-0.7'); text(5.5,1.5,'+0.7'); text(6.5,1.5,'-0.7'); text(7.5,1)
```

```
1 %QPSK调制信号
2
3 >> subplot(4,1,4);
4 >> t=0:0.001:8;
5 >> d1=[0 -a ;1 +a;2 -a;3 +a; 4 -a ;5 +a;6 -a;7 +a];
6 >> s1=pulstran(t-0.5,d1,'rectpuls').*cos(2*pi*5*t);
7 >> d2=[0 +a;1 -a;2 -a;3 +a; 4 +a;5 -a;6 -a;7 +a];
8 >> s2=pulstran(t-0.5,d2,'rectpuls').*sin(2*pi*5*t);
9 >> plot(t,s1-s2);
10 >> axis([0 8 -2 2]);
11 >> text(0.3,1.5,'3\pi/4'); text(1.3,1.5, '7\pi/4'); text(2.3,1.5,'5\pi/4'); text(4.3,1.5, '3\pi/4'); text(5.3,1.5, '7\pi/4'); text(6.3,1.5,'5\pi/4');
```

QPSK调制的星座图

4个点分别对应4个相位: π/4、3π/4、5π/4、7π/4。

不只是QPSK调制,其它数字调制,包括PSK、QAM调制,都有对应的星座图。 由于星座图完整、清晰地表达了数字调制的映射关系,因此很多书中提到数字调制时经常只是画个星座图完事,不做过多描述。

数字调制也因此而经常被称为"星座调制"。

星座图,就是说一个坐标,如高中的单位圆,横坐标是I,纵坐标是Q,相应于投影到I轴的,叫同相分量,同理投影到Q轴的叫正交分量。由于信号幅度有差别,那么就有可能落在单位圆之内。具体地说,64QAM,符号有64个,等于2的6次方,因此每个符号需要6个二进制来代表才够用。这64个符号就落在单位圆内,根据幅度和相位的不同 落的地方也不同。从其中一个点跳到另一个点,就意味着相位调制和幅度调制同时完成了。"

上面是从映射的角度来引出星座图的,下面我们再换个角度来理解。♪ 这是前面已经讲过的利用复数运算来实现IQ调制解调的原理框图: ♪

发送端:输入a+jb(I路输入a,Q路输入b)。+

接收端,输出a+jb(I路输出a, Q路输出b)。+

对于QPSK来讲, a、b只有两种取值+1/√2,-1/√2, a+jb有四种取值: ⊌

$$\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}$$
, $-\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$, $+\frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$

将这4个复数画到I、Q平面上(横轴为实轴,对应I路,纵轴为虚轴,对应Q路)就是QPSK的星座图。4

QPSK的映射关系可以随意定吗?

为什么映射时取00、01、11、10顺序与π/4、3π/4、5π/4、7π/4进行一一映射呢?为 什么不取00、01、10、11的顺序呢?↓

这个需要从接收端的QPSK解调来理解。#

由于信道条件不是理想的,当QPSIX调制后的数据atib通过信道到达接收端解调时,得到的数据a'+ib'不会正好位于星座图中4个点中某个点正中央的位置,而是分布在4个点周边一定范围内:

接收端如何判决收到的数据a'+jb'是星座图中的哪个点呢?最简单的办法就是看距离4个点中的哪个点最近。假定接收到的数据a'+jb'位于IQ平面的第三象限,则判决接收到的数据为11,如下图所示: +

判决有可能出错:从概率的角度讲,误判为相邻点的概率要高于非相邻点。

以发送数据是11为例,接收数据如果没出现在第三象限,则其出现在二、四象限的概率 要高于第一象限。』

按上述映射关系,接收数据误判为01和10的概率要高于误判为00的概率。11误判为01、 11误判为10都只是错了1个比特。

如果我们将映射关系改为:按00、01、10、11顺序与π/4、3π/4、5π/4、7π/4——映 射,如下图所示: *

还以发送数据是11为例,接收数据误判为10和00的概率要高于误判为01的概率。11误判为10错了1个比特,但11误判为00却错了2个比特。

综上所述,在相同的信道条件下,采用 $00\leftrightarrow \pi/4$ 、 $01\leftrightarrow 3\pi/4$ 、 $10\leftrightarrow 5\pi/4$ 、 $11\leftrightarrow 7\pi/4$ 映射关系的QPSK调制的误比特率要高于采用 $00\leftrightarrow \pi/4$ 、 $01\leftrightarrow 3\pi/4$ 、 $11\leftrightarrow 5\pi/4$ 、 $10\leftrightarrow 7\pi/4$ 映射关系。

象00、01、11、10这样,相邻的两个码之间只有1位数字不同的编码叫做**格雷码**。QPSK调制中使用的就是格雷码。

十进制数	自然二进制数	格雷码
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

如何使用IQ调制实现8PSK?

上面讲了QPSK,下面再来看看:如何使用IQ调制实现8PSK?

1、先照葫芦画瓢, 把星座图画出来: →

2、画原理框图:根据上面QPSK的实现,很容易想到:将输入的数据每三个比特划分为一组:s2s1s0,共有8种组合,对应8个输出信号的相位。

3、确定映射关系: 随着输出相位的递增, 输入的s2s1s0采用格雷码即可。

输入信号: s2s1s04	IQ信号₽	输出信号相位↩	
000₽	+ C,+S+	π/80	j
001₽	+S,+C₽	3π/8ρ	
011₽	-S,+C₽	5π/8φ	0
010₽	-C,+S+	7π/8ρ	
110₽	-C,-S+	9π/8φ	
111₽	-S,-C₽	11π/8₽	
101₽	+S,-C+	13π/8₽	Ì
100₽	+ C, - S+	15π/8ρ	

如何使用IQ调制实现16QAM?

1、星座图: 下面是最常见的一种16QAM星座图-

2、原理图:实际上不需要再画了,和前面没什么差别,主要是输入的比特被分成了4 个一组:s3s2s1s0。→

3、映射关系:注意格雷码与各个点之间的映射关系,非常巧妙的是:任何一个点和相邻的左、右、上、下四个点(不一定都有)对应的格雷码都只有1位不同,这样带来的好处是:在出现误码时错1个比特的概率高,而错多个比特的概率相对要低一些(道理与连载38中讲的类似)。

输入的格雷码和IQ信号之间的映射关系表(事实上这张图也没必要画了,一切都在上面的星座图中): 4

s3s2s1s0₽	IQ信号₽	
0000₽	+3A,+3A₽	
0001₽	+A,+3A₽	
0011₽	-A,+3A+2	
0010₽	-3A,+3A₽	
0110₽	-3A,+A₽	
0111₽	- A,+A₽	
0101₽	+A,+A+²	
0100₽	+3A,+A₽	
1100€	+3A,-A₽	
1101₽	+A,-A↔	
1111₽	-A,-A+	
1110₽	-3A,-A₽	
1010₽	-3A,-3A₽	
1011₽	-A,-3A+	
1001₽	+A,-3A₽	
1000₽	+3A,−3A₽	

注:前面讲的PSK调制(QPSK、8PSK),星座图中的点都位于单位圆上,模相同(都为1),只有相位不同。而QAM调制星座图中的点不再位于单位圆上,而是分布在复平面的一定范围内,各点如果模相同,则相位必不相同,如果相位相同则模必不相同。星座图中点的分布是有讲究的,不同的分布和映射关系对应的调制方案的误码性能是不一样的,这里不再展开去讲。

利用IQ调制实现BPSK调制

一般的系统中经常会同时用到BPSK、QPSK、QAM调制等多种调制方式,前面讲了 QPSK、8PSK和QAM调制可以利用IQ调制来实现,那BPSK能不能用IQ调制来实现呢? 答案是肯定的一只要令Q路数据为0即可。

输入信号和IQ信号、输出信号相位之间的映射关系为:

输入信号: ≤0₽	IQ信号₽	输出信号相位 🤊	0
00	+1, 00	0.0	42
1+3	-1, 0∞	πο	e

BPSK的星座图如下: +

参考链接

• 通信里 星座图 到底是什么意思啊? 正交幅度调制

发布者

默默

默默码农 查看默默的所有文章 →

iii 2018年4月20日 ♣ 默默 ► LTE、Software defined Radio 26,729浏览

《无线通信中的IQ调制,BPSK调制,QPSK调制,16QAM调制的理解》上有5条评论

syg

2019年7月5日下午3:26

写的很好哦~

5GNR

2019年8月8日上午11:49

受益非浅

钩划

2019年8月26日下午4:28

我爱这篇文章

是是是

2019年9月18日下午5:22

太厉害了吧

wjx
2019年9月22日下午9:32
写的太棒了

浙ICP备12020288号-1