Annual Movements Supplemental

David Wolfson

2024-01-18

Supplemental Methods Description

Text Sections:

Rule-based thresholds chosen:

- Minimum distance between 2 potential segments: 2 kilometers
- Minimum time difference between 2 potential change points: 2 days
- Minimum distance moved between breeding/capture location and the furthest segment in order to consider onset of fall migration: 100 kilometers
- Minimum distance moved between the furthest segment and the segment representing return to spring territory: 100 kilometers
- Maximum distance between the spring return segment and the breeding/capture territory in order to consider a spring migration arrival: 10 kilometers
- Latest date to be considered a fall migration onset / earliest date to be considered a spring return onset: December 1st

Figures

Figure 1: An overview of GPS telemetry data received from all collared IP trumpeter swans. Each line represents the period of data collection from a single collared swan. The grey regions indicate periods of collar deployment. The black lines are 1 January of each year. Number of deployments (including redeployments) by state/province are: Michigan (n=14), Minnesota (n=56), Manitoba (n=11), Iowa (n=12), Ohio (n=20), Wisconsin (n=9), and Arkansas (n=4).

Tables:

Autumn Departure

Table 1: Compiled migration pheno 2019-2022. Fall departure timing w traveled >100km from breeding/cap

Total Swans Tracked	Number of Long-Distance Migrants	Number of Fall Departure Events A
123	64	91

Figure 2: Breeding/capture latitude versus extent of migration (furthest distance from breeding territory during the nonbreeding season) for 221 'swan-year' datasets representing annual migration cycles.

Table 2: Yearly summaries of migration phenology of tures from 2019-2022. Fall departure timing was quan swans that traveled >100km from breeding/capture temperature temperature.

Year T	Total Swans	Tracked Number of Long-Distance	Migrants Average Fall Departure Standa
2019	17	7	October 31
2020	82	38	October 25
2021	87	30	November 06
2022	44	16	November 07

Table 3: Fall departure status

Breeding Status	Total Swans Tracked	Number of Long-Distance Migrants	Number of Fall De
breeder	71	33	50
$non_breeder$	23	12	19
paired	22	13	16

Spring Arrival

Table 4: Compiled migration phenology 2020-2023. Spring arrival timing was questraveled >100km from the breeding/cap non-breeding season and that returned we ous summer territory.

Total Swans Tracked	Number of Long-Distance I	Migrants Number of Spring	Arrival Events A
123	42	63	

Table 5: Yearly summaries of migration phenology of spring a from 2020-2023. Spring arrival timing was quantified from that traveled >100km from the breeding/capture territory the non-breeding season and that returned within 10 km of previous summer territory.

Year	Total Swans	Tracked Number of Long-Distance	Migrants Average Spring Arrival Standar
2020	17	4	March 02
2021	82	27	March 05
2022	87	24	March 07
2023	44	8	March 05

Table 6: Fall departures of status

Breeding Status	Total Swans Trac	cked Number of Long-Distance Migrants	Number of Spring
breeder	71	29	45
$non_breeder$	23	6	8
paired	22	7	10