实验十二 测定介质中的声速

实验人: 钟易轩 (2000012706)

组号: 九组七号 指导教师: 张焱

实验时间: 2021 年 10 月 29 日 星期五 下午 实验地点: 物理楼南楼 208

【实验目的】

(1) 学习测定空气中声速的原理和方法

- (2) 测定空气中的声速
- (3) 利用声光效应法测定水中的声速
- (4) 熟练使用示波器和信号发生器
- (5) 学会用不确定度分析所得实验结果

【仪器用具】

声速测定仪,信号发生器,数字示波器,福廷式气压计,干湿球湿度计,温度计,超声波发生器,He-Ne 激光器等.

【实验内容及结果】

- 1. 用极值法测空气中的声速
- (1) 接好线路,调节两换能器端面平行,然后锁定.
- (2) 调节示波器,并将信号发生器换成正弦波输出,幅值调到略小于最大值的状态.接下来调节信号源的频率,当调到 39.121kHz 时,正弦波有了最大振幅,意味着此时换能器工作在谐振状态,可提高测量的灵敏度.
- (3) 将两换能器的间距 l 从约 30mm 处起,缓慢地增加,记录下荧光屏上依次出现正弦波振幅极大值时标尺上的示数 $x_1,x_2,...,x_n$,然后缓慢地减小间距 l,记录下依次出现正弦波振幅极大值时标尺上的示数 $x_1',x_2',...,x_n'$. 用逐差法去处理数据,对上述两种情况分别求出 $\lambda_1/2$ 和 $\lambda_2/2$ 的平均值,再将两者平均求出 $\lambda/2$.
- (4) 根据 $v = f_0 \lambda$, 求出声速 v.

下面是实验数据:

表 1: 极值法测空气中声速数据表

	0	1	2	3	4	5	6	7	8	9
$x_i(\text{mm})$	33.495	38.103	42.570	47.215	51.759	56.380	60.505	64.785	69.531	73.620
$V_{pp}(V)$	34.8	31.2	27.6	24.4	22.0	20.4	18.8	17.6	16.0	14.8
$x_i'(\text{mm})$	73.620	68.981	64.449	59.959	56.234	51.759	46.955	42.570	37.941	33.315
$V'_{pp}(V)$	14.8	16.4	18.0	19.6	20.8	22.0	24.4	28.0	32.0	35.2

利用逐差法:

$$\frac{\bar{\lambda}_1}{2} = (\sum_{i=5}^9 x_i - \sum_{i=0}^4 x_i)/25 \approx 4.467mm$$

$$\frac{\bar{\lambda}_2}{2} = (\sum_{i=0}^4 x_i' - \sum_{i=5}^9 x_i')/25 \approx 4.428mm$$

$$v_1 = 39.121 \times 10^3 \times 4.467 \times 10^{-3} \times 2 \approx 349.5(m/s)$$

$$v_2 = 39.121 \times 10^3 \times 4.428 \times 10^{-3} \times 2 \approx 346.5(m/s)$$

2. 用相位法测空气中声速

- (1) 线路连接方式不变,将示波器的"水平显示"选择"X-Y"方式,再调节垂直偏转系数,使示波器显示稳定的李萨如图形.
- (2) 记录下荧光屏上依次出现相同直线 (选择偏左上的直线)时标尺上的示数 $x_1, x_2, ..., x_n$, 用逐差法求出波长 λ 的平均值.
- (3) 计算声速.

下面是实验数据:

表 2: 极值法测空气中声速数据表

	0	1	2	3	4	5	6	7	8	9
$x_i(\text{mm})$	44.269	58.035	66.655	75.800	84.669	93.320	102.230	110.072	120.110	129.335
$x_i'(\text{mm})$	129.335	120.109	111.049	102.335	94.380	85.078	76.110	67.035	58.549	49.582

利用逐差法:

$$\bar{\lambda}_1 = (\sum_{i=5}^9 x_i - \sum_{i=0}^4 x_i)/25 \approx 8.826mm$$

$$\bar{\lambda}_1' = (\sum_{i=0}^4 x_i' - \sum_{i=5}^9 x_i')/25 \approx 8.834mm$$

$$v_1 = 8.826 \times 39.121 \approx 345.3(m/s)$$

$$v_2 = 8.834 \times 39.121 \approx 345.6(m/s)$$

3. 利用气体状态参量测空气中声速

- (1) 测量室温 θ , 并用干湿球湿度计测出相对湿度 H, 查表得出测量温度下的饱和蒸气压 p_s , 从而求出 p_w , 其中 $p_w = p_s H$, 再利用福廷式气压计测出大气压强 p.
- (2) 若将空气当作理想气体处理,对于空气介质,0°C 时的声速为 331.45m/s, 若同时考虑到空气中水蒸气的影响,校准后的声速公式为

$$v = 331.45\sqrt{(1 + \frac{\theta}{273.15})(1 + \frac{0.3192p_w}{p \times 133.3224})}$$

下面是实验数据:

表 3: 气体参量法测声速数据表

	$\theta(^{\circ}C)$	$P_s(Pa)$	H(%)	P(mmHg)
最小分度	1	无	2	0.05
数据	25.0	3167.6	61	763.95

由于 1mmHg=133.3224Pa, 则声速为

$$v = 331.45\sqrt{(1 + \frac{\theta}{273.15})(1 + \frac{0.3192p_w}{p \times 133.3224})} \approx 347.3(m/s)$$

4. 利用声光效应法测量水中声速

下面是实验数据:

 $f_0 = 9.9 \text{MHz, L} = 440 \text{cm}$.

						6			
$x_i(cm)$	5.55	7.38	9.25	11.00	12.90	14.70	16.55	18.40	20.28

利用上述数据,借助 matlab 工具做线性回归分析.

经过 matlab 的计算得出斜率为 1.8380, 即取 Δx =1.838cm. 已知光的波长为 λ_l =633nm, 则 $\lambda = \frac{\lambda_l}{\sin \theta}$, 而 $\tan \theta = \frac{\Delta x}{L}$, 最后算出 $v \approx 1500 m/s$.

【误差分析】

1. 极值法测量空气中声速

利用隔五项逐差法处理表一中的数据得到下表:

	1	2	3	4	5
$\Delta x_i(mm)$	22.885	22.402	22.215	22.316	21.861
$\Delta x_i'(mm)$	21.861	22.026	21.879	22.018	22.919

现将 Δx_i 和 $\Delta x_i'$ 统一为 Δ , 则 $\bar{\Delta} = (22.885 + 22.402 + 22.215 + 22.316 + 21.861 + 21.861 + 22.026 + 21.879 + 22.018 + 22.919) ÷ 10 = 22.2382(mm)$, 而 $\sigma_{\bar{\Delta}} = \sqrt{\frac{\sum_{i=1}^{10} (\Delta_i - \bar{\Delta})^2}{10 \times 9}} \approx 0.126(mm)$.

若考虑仪器允差 $e = 0.004mm, \Delta$ 的总不确定度为

$$\sigma_{\Delta} = \sqrt{\sigma_{\bar{\Delta}}^2 + \frac{e^2}{3}} = \sqrt{(0.126)^2 + \frac{(0.004)^2}{3}} = 0.126(mm)$$

则有

$$\Delta = \bar{\Delta} \pm \sigma_{\Delta} = (22.238 \pm 0.126) mm$$

又由于 $\lambda = \frac{2}{5}\Delta$,则 $\sigma_{\lambda} = \frac{2}{5}\sigma_{\Delta} = 0.4 \times 0.126 = 0.0504(mm) = 0.05(mm)$,则 $\lambda = 0.0504(mm)$

(8.90±0.05)mm. 最后测出声速为

$$v = f_o \times \lambda = (348 \pm 2)m/s$$

2. 相位法测量空气中声速

利用最小二乘法来分别处理两组数据, 对第一组数据进行处理, 得出斜率为 $k_1 = 8.8494$, 图像如下:

再处理第二组数据,得出斜率为 $k_2 = -8.8288$,图像如下:

对于
$$y = kx + b$$
 来说, $\sigma_k = \frac{\sigma_y}{\sqrt{\sum_{i=1}^{10} (i - 5.5)^2}}$,且 $\sigma_y = \frac{e}{\sqrt{3}}$,则有:
$$\sigma_{k_1} = \frac{\frac{e}{\sqrt{3}}}{\sqrt{\sum_{i=1}^{10} (i - 5.5)^2}} = 0.0003(mm)$$

$$\sigma_{k_2} = \frac{\frac{e}{\sqrt{3}}}{\sqrt{\sum_{i=1}^{10} (i - 5.5)^2}} = 0.0003(mm)$$

$$k_1 = (8.8494 \pm 0.0003)mm$$

$$k_2 = (-8.8288 \pm 0.0003)mm$$

又由于斜率的绝对值即为 λ ,则

$$v_1 = (346.20 \pm 0.01)m/s$$

 $v_2 = (345.39 \pm 0.01)m/s$

3. 气体参量法测空气中声速

由前可知,
$$v=331.45\sqrt{(1+\frac{\theta}{273.15})(1+\frac{0.3192p_sH}{p})}$$
,根据方和根合成公式

$$\sigma_v = \sqrt{\left[\left(\frac{\partial v}{\partial \theta} \sigma_\theta \right)^2 + \left(\frac{\partial v}{\partial H} \sigma_H \right)^2 + \left(\frac{\partial v}{\partial p} \sigma_p \right)^2 \right]}$$

又有如下关系:

$$\sigma_{\theta} = \frac{1}{\sqrt{3}}$$

$$\sigma_{H} = \frac{0.01}{\sqrt{3}}$$

$$\sigma_{p} = \frac{0.05}{\sqrt{3}}$$

得出 $\sigma_v = 0.35(m/s) \approx 0.4(m/s)$, 则 $v = (347.3 \pm 0.4)m/s$.

4. 总结

(1) 对于逐差法的不确定度分析来说,是一个求平均数和标准差的一个过程;而对于最小二乘法的不确定度分析来说,是一个不用求平均值标准差的过程,因为其 σ 的值是由仪器允差计算而来.则对于数据量过大的数据分析来说,利用最小二乘法的不

确定度分析无疑是比较好的,因为不用去计算平均值的标准差,但是论精准度,那 么一步一步地求取平均值和其标准差是较好的办法.

(2) 对于极值法和相位法测量的数据来说,与真实值的差别还是有一点,不确定度的有效数字皆为 1, 但是所处的数字位不一样, 真实值的不确定度处于十分位, 而极值法的处于个位, 相位法的处于百分位. 究其原因, 可能是测量中具有随机误差, 由于示波器显示在振幅处比较密集, 在转动轮盘、读取数据时会有一定的随机误差; 也有可能是在计算不确定的过程中出现的问题, 在相位法中只进行了仪器允差的计算, 而仪器允差毕竟属于系统误差, 而在极值法中却考虑了系统误差和随机误差的双重影响.

【思考题】

(1) 能用人耳可听到的声音作为发射波吗?

答:不能.在实验中有亲身经历,在调节信号发生器的频率时,在低频段,会有尖锐的蜂鸣声,但是 CH-2 所代表的曲线(即输出曲线)并没有明显波动,等到高频部分,人耳听不到的时候,CH-2 代表的曲线才有了正弦波的样子. 究其原因,是当频率在人耳范围内时,能量不足以使示波器显示出正常波形.

(2) 如何手动调整示波器方便极值和图像读取?

答:可以将示波器的显示波形切换到持续模式,这样在调节l时,示波器上显示的波形会留有痕迹,根据这些痕迹可以大致判断出极值点在哪里,再根据 V_{pp} 值的大小,精准判断出极值点的所在位置.

(3) 如何估算和测量回程差的大小?

答: 在量程范围内测量,并画出上行和下行曲线,则回程差是两曲线的最大差值.

(4) 驻波和行波两个原理为什么可以共用?

答:因为驻波是两列行波叠加而成.

- (5) 极值出现的位置和相位法中的相位差有什么关系?实际测量中是否符合预期? 答:相邻两个极值出现的位置之差是相位差的一半.在实际测量中也是这样的.
- (6) 极值法中多极值出现的原因是什么?

答:因为测量的是刚性平面处的声压强度,在移动 l 时,刚性平面处的声压会周期性变化,但是由于距离在改变,能量在中间部分的空气中会耗散掉一部分,则在两个不同的位置处,极值也是不一样的,根据表一也能看出来多极值的情况.