

Goal

- What is measurement, uncertainty and metrology?
- How to use applied statistics?
- How to determine an uncertainty budget?

Metrology and measurement

- What is Metrology
- What measuring instruments do we use daily?
 - How accurate are they and how important is this?
- Are we making a measurement?

Measurement: Definition

- Process of experimentally obtaining one or more quantity values that can reasonably be attributed to a quantity
- The quantity to be measured is also called the measurand

Measurement: Quantity or measurand

 Property of a phenomenon, body, or substance where the property has a magnitude that can be expressed as a number and a reference

Measurement: Reference

- Measurement unit
- 2. Measurement procedure
- 3. Reference material

			r	•
$I \cap m$	nın	ation	$\cap t$	curh
CUIIII	VIII	ation	OI .	sucii

Entity	Base Unit Name	Abbreviation		
Mass	kilogram	kg		
Length	meter	m		
Time	second	S		
Amount of matter	mole	mol		
Electric current	ampere	Α		
Luminosity	candella	Cd		
Temperature	kelvin	k		

Measurement: Result I

- Quantity values provided by the measurement are therefore a magnitude and a reference expressing the magnitude of a quantity
- True value
- Uncertainty

Measurement: Result II

 Set of quantity values being attributed to a measurand together with any other available relevant information

Measurement: Uncertainty

uncertainty is doubt

Uncertainty of measurement is ...

Uncertainty **budget**

$\overline{}$	1	$\overline{}$
	Error Source	Primary
		Evaluation Method
1	Probe relative pattern	Analysis
2	Probe polarization ratio	Analysis
3	Probe gain measurement	Analysis
4	Probe alignment error	Analysis
5	Normalization constant	Analysis
6	Impedance mismatch	Analysis
7	AUT alignment error	Analysis
8	Data point spacing	Measurement
9	Meas. area truncation	Measurement
10	Probe x, y-position errors	Analysis
11	Probe z-position errors	Analysis
12	Multiple reflections (probe/AUT)	Measurement
13	Receiver amplitude nonlinearity	Measurement
	System phase error due to:	
	Flexing cables/rotary joints	Measurement
14	Temperature effects	Measurement
	Receiver phase errors	Simulation
15	Receiver dynamic range	Measurement
16	Room scattering	Measurement
17	Leakage and crosstalk	Measurement
18	Random errors in amplitude/phase	Measurement

 $\underline{https://www.nsi-mi.com/-/media/project/oneweb/oneweb/nsi/files/technical-papers/2009/identifying-pointing-errors-for-the-nist-18-term-error-technique.pdf?la=en\&revision=f62e1379-2de3-438c-822d-4bf3ef7f25c3\&hash=0AEFF665550A1E6B6DAC058C8DC2D6BA$

Statistics: Error relation table

Type of errors	Qualitative Performance	Quantitative Performance		
Systematic	Trueness	Bias		
Total	Accuracy	Uncertainty		
Random	Precision	Standard Deviation		

 x_{t} \bar{x} True Accuracy (*Uncertainty*) Precise

Statistics: Definition

- "If your experiments need statistics, you ought to perform a better experiment" Lord Ernest Rutherford 1871-1937
- What is statistics?
- "Statistics is a branch of mathematics dealing with the collection, analysis, interpretation, presentation, and organization of data"

Statistics: Equations

$$T_{\text{Bias}} = \left(\frac{|R_{\text{v}}|}{|R_{\text{v}} - M_{\text{v}}| + |R_{\text{v}}|}\right) 100\%,$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2},$$

$$s = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})^2}.$$

Precision (Standard deviation of x)

Vector Network Analyzer: Settings

- Frequency
- Power
- Intermediate Frequency Bandwidth (IFBW)
- S_{xx}

Vector Network Analyzer: Settings

Reflection coefficient

- Ratio between incident and reflected signal
 - Reflection coefficient (Γ)
 - return loss (RL)
 - Voltage standing wave ration (VSWR)

Vector Network Analyzer: S_{11} *Calibration I*

Vector Network Analyzer: S_{11}

Calibration III

Incident

Open = 0 degrees

Short = 180 degrees

Load = 50 Ohm

Measurement

- Reflection coefficient $[S_{11}(\Gamma)]$:
 - Impedance match / mismatch
 - Part of realized gain
 - How much power is transferred to a load e.g. antenna

Representation

Reflect

Transmission coefficient

- Reflection coefficient $[S_{11}(\Gamma)]$:
 - Impedance match / mismatch
 - Part of realized gain
 - How much power is transferred to a load e.g. antenna

Vector Network Analyzer: S_{21} *Coordinate system*

Near- and far-field

Vector Network Analyzer: S_{21} *Measurement*

- Transmission coefficient $[S_{21}(T)]$
 - Radiation pattern $[S_{21}(\phi)]$
 - Gain, realized gain (G)
 - Efficiency (η)
 - Total radiated power (TRP)
 - Equivalent isotropic radiated power (EIRP)

Vector Network Analyzer: S_{21}

Representation

Statistics

Evaluation type

- Type A evaluation
 - method of evaluation of uncertainty by the statistical analysis of series of observations
- Type B evaluation
 - method of evaluation of uncertainty by means other than the statistical analysis of series of observations

Statistics

Obtaining data

- Repeatability:
 - Closeness of the agreement between the results of successive measurements of the same measurand carried out under the same conditions of measurement
- Reproducibility:
 - Closeness of the agreement between the results of measurements of the same measurand carried out under changed conditions of measurement.

Uncertainty

Budget example I, amplifier

- Calibration
- RF-cable reconnect
- DC-power supply
- Different PCB boards with the same function

Uncertainty

Budget example II, antenna and stub

- Calibration
- RF-cable reconnect
- Antenna alignment
- Environment

Uncertainty

Applying

- 1. Chose number of repeated measurements (N) and derive degrees of freedom (N-1)
- 2. Standard uncertainty
- 3. Combine the measured uncertainties (RMS)
- 4. Expand the number (k)

Uncertainty *T-table*

Degrees of freedom	Fraction P in percent					
v	68.27	90.00	95.00	95.45	99.00	99.73
1	1.84	6.31	12.71	13.97	63.66	235.80
2	1.32	2.92	4.30	4.53	9.92	19.21
3	1.20	2.35	3.18	3.31	5.84	9.22
4	1.14	2.13	2.78	2.87	4.60	6.62
5	1.11	2.02	2.57	2.65	4.03	5.51
6	1.09	1.94	2.45	2.52	3.71	4.90
7	1.08	1.89	2.36	2.43	3.50	4.53
8	1.07	1.86	2.31	2.37	3.36	4.28
9	1.06	1.83	2.26	2.32	3.25	4.09
10	1.05	1.81	2.23	2.28	3.17	3.96
111			11.1		1.1.1	1.1.1
<u>20</u>	1.03	1.72	2.09	2.13	2.85	3.42
30	1.02	1.70	2.04	2.09	2.75	3.27
40	1.01	1.68	2.02	2.06	2.70	3.20
50	1.01	1.68	2.01	2.05	2.68	3.16
100	1.005	1.660	1.984	2.025	2.626	3.077
000	1.000	1.645	1.960	2.000	2.576	3.000

Thank you

