Assignment: 01 Name: Methew Guda
Due Date: 25-09-2015 A#: A00381751

Q01.

The single die has four side with the numbers 1 through 4. So when the die is thrown, there are four possible outcomes: 1, 2, 3, 4. The probability of each of the numbers will be rolled is 1/4.

If there are two of this four sided die, let's make a table to show all the possible total outcomes of this two four sided die.

	<u>Die 2</u>							
		1	2	3	4			
	1	<mark>2</mark>	<mark>3</mark>	4	<mark>5</mark>			
<u>Die 1</u>	2	<mark>3</mark>	4	<mark>5</mark>	<mark>6</mark>			
	3	4	<mark>5</mark>	<mark>6</mark>	7			
	4	<mark>5</mark>	6	7	8			

So from the table we can see that the range of possible totals of the values showing on the two dice is 2 to 8. So form the table we can see that the chances of totals of these two four sided die appearing: $\frac{2}{5}$ and $\frac{3}{5}$ is $\frac{2}{16}$, $\frac{4}{5}$ and $\frac{6}{5}$ is $\frac{3}{16}$.

Q02.

Now we have an eight sided die with numbers 1,2,3,3,4,5,5,5. The probability of appearing number 1, 2 and 4 is 1/8, for number 3 is 1/4 and lastly for number 5 is 3/8.

Numbers	1	2	3	3	4	5	5	5
Probability	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

If there are two of this eight sided die, let's make a table to show all the possible outcomes of this two eight sided die.

	<u>Die 2</u>								
		1	2	3	3	4	5	5	5
	1	<mark>2</mark>	3	4	4	<mark>5</mark>	6	6	6
	2	<mark>3</mark>	4	<mark>5</mark>	5	6	7	7	7
Dio 1	3	4	<mark>5</mark>	6	6	7	8	8	8
<u>Die 1</u>	3	4	<mark>5</mark>	6	6	7	8	8	8
	4	<mark>5</mark>	6	7	7	8	9	9	9
	5	6	7	8	8	9	10	10	10
	5	6	7	8	8	9	10	10	10
	5	6	7	8	8	9	10	10	10

So from the table we can see that the total possible outcomes are 64 and the range of possible totals of the values showing on the two dice is from 2 to 10. So form the table we can see that the chances of totals of these two four sided die appearing: 2 is 1/64; 3 is 2/64; 4 is 5/64; 5 is 6/64; 6 is 12/64; 7 is 10/64; 8 is 13/64; 9 is 6/64 and 10 is 9/64.

Q03.

To compute the probability of each pair of dices lets select the pairs first form those four dice.

Dice pairs: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

Dice Pair (1, 2):

	Dice 01							
		1	2	3	9	10	11	
	0	0,1	0,2	0,3	0,9	0,10	0,11	
	1	1,1	1,2	1,3	1,9	1,10	1,11	
Dice 02	7	<mark>7,1</mark>	<mark>7,2</mark>	<mark>7,3</mark>	7,9	7,10	7,11	
	8	<mark>8,1</mark>	<mark>8,2</mark>	<mark>8,3</mark>	8,9	8,10	8,11	
	8	<mark>8,1</mark>	<mark>8,2</mark>	<mark>8,3</mark>	8,9	8,10	8,11	
	9	<mark>9,1</mark>	<mark>9,2</mark>	<mark>9,3</mark>	9,9	9,10	9,11	

So from the table we can see that the probability of $\frac{\text{Dice 01}}{\text{Dice 02}}$ will have the highest value will be (22/36 = 0.611....) and $\frac{\text{Dice 02}}{\text{Dice 01}}$ will have the highest value will be (12/36 = 0.333....). The winner of these pair will be $\frac{\text{Dice 01}}{\text{Dice 01}}$.

Dice Pair (1, 3):

	Dice 01							
		1	2	3	9	10	11	
	5	<mark>5,1</mark>	<mark>5,2</mark>	<mark>5,3</mark>	5,9	5,10	5,11	
	5	<mark>5,1</mark>	<mark>5,2</mark>	<mark>5,3</mark>	5,9	5,10	5,11	
Dice 03	6	<mark>6,1</mark>	<mark>6,2</mark>	<mark>6,3</mark>	6,9	6,10	6,11	
	6	<mark>6,1</mark>	<mark>6,2</mark>	<mark>6,3</mark>	6,9	6,10	6,11	
	7	<mark>7,1</mark>	<mark>7,2</mark>	<mark>7,3</mark>	7,9	7,10	7,11	
	7	<mark>7,1</mark>	<mark>7,2</mark>	<mark>7,3</mark>	7,9	7,10	7,11	

So from the table we can see that the probability of $\frac{\text{Dice 01}}{\text{Dice 03}}$ will have the highest value will be (18/36 = 0.5) and $\frac{\text{Dice 03}}{\text{Dice 03}}$ will have the highest value will be (18/36 = 0.5). So the both pair of these dices will have the same probability of wining.

Dice Pair (1, 4):

	Dice 01								
		1	2	3	9	10	11		
	3	<mark>3,1</mark>	<mark>3,2</mark>	3,3	3,9	3,10	3,11		
	4	<mark>4,1</mark>	<mark>4,2</mark>	<mark>4,3</mark>	4,9	4,10	4,11		
Dice 04	4	<mark>4,1</mark>	<mark>4,2</mark>	<mark>4,3</mark>	4,9	<mark>4,10</mark>	4,11		
	5	<mark>5,1</mark>	<mark>5,2</mark>	<mark>5,3</mark>	5,9	5,10	5,11		
	11	<mark>11,1</mark>	11,2	<mark>11,3</mark>	<mark>11,9</mark>	<mark>11,10</mark>	11,11		
	12	<mark>12,1</mark>	<mark>12,2</mark>	<mark>12,3</mark>	<mark>12,9</mark>	<mark>12,10</mark>	<mark>12,11</mark>		

So from the table we can see that the probability of $\frac{\text{Dice 01}}{\text{Dice 04}}$ will have the highest value will be (12/36 = 0.333....) and $\frac{\text{Dice 04}}{\text{Dice 04}}$ will have the highest value will be (22/36 0.611....). The winner of these pair will be $\frac{\text{Dice 04}}{\text{Dice 04}}$.

Dice Pair (2, 3):

	Dice 02							
		0	1	7	8	8	9	
	5	<mark>5,0</mark>	<mark>5,1</mark>	5,7	5,8	5,8	5,9	
	5	<mark>5,0</mark>	<mark>5,1</mark>	5,7	5,8	5,8	5,9	
Dice 03	6	<mark>6,0</mark>	<mark>6,1</mark>	6,7	6,8	6,8	6,9	
	6	<mark>6,0</mark>	<mark>6,1</mark>	6,7	6,8	6,8	6,9	
	7	<mark>7,0</mark>	<mark>7,1</mark>	7,7	7,8	7,8	7,9	
	7	<mark>7,0</mark>	<mark>7,1</mark>	7,7	7,8	7,8	7,9	

So from the table we can see that the probability of $\frac{\text{Dice 02}}{\text{Dice 02}}$ will have the highest value will be (22/36 = 0.611....) and $\frac{\text{Dice 03}}{\text{Dice 03}}$ will have the highest value will be (12/36 0.333....). The winner of these pair will be $\frac{\text{Dice 02}}{\text{Dice 02}}$.

Dice Pair (2, 4):

	Dice 02							
		0	1	7	8	8	9	
	3	<mark>3,0</mark>	<mark>3,1</mark>	3,7	3,8	3,8	3,9	
	4	<mark>4,0</mark>	<mark>4,1</mark>	4,7	4,8	4,8	4,9	
Dice 04	4	<mark>4,0</mark>	<mark>4,1</mark>	4,7	4,8	4,8	4,9	
<u> </u>	5	<mark>5,0</mark>	<mark>5,1</mark>	5,7	5,8	5,8	5,9	
	11	<mark>11,0</mark>	<mark>11,1</mark>	<mark>11,7</mark>	<mark>11,8</mark>	<mark>11,8</mark>	<mark>11,9</mark>	
	12	<mark>12,0</mark>	<mark>12,1</mark>	<mark>12,7</mark>	<mark>12,8</mark>	<mark>12,8</mark>	<mark>12,9</mark>	

So from the table we can see that the probability of $\frac{\text{Dice 02}}{\text{Dice 04}}$ will have the highest value will be (16/36 = 0.444....) and $\frac{\text{Dice 04}}{\text{Dice 04}}$ will have the highest value will be (20/36 0.555....). The winner of these pair will be $\frac{\text{Dice 04}}{\text{Dice 04}}$.

Dice Pair (3, 4):

		Dice 03							
		7	7						
	3	3,5	3,5	3,6	3,6	3,7	3,9		
	4	4,5	4,5	4,6	4,6	4,7	4,9		
Dice 04	4	4,5	4,5	4,6	4,6	4,7	4,9		
<u> </u>	5	5,5	5,5	5,6	5,6	5,7	5,9		
	11	<mark>11,5</mark>	<mark>11,5</mark>	<mark>11,6</mark>	<mark>11,6</mark>	<mark>11,7</mark>	<mark>11,9</mark>		
	12	12,5	<mark>12,5</mark>	<mark>12,6</mark>	<mark>12,6</mark>	<mark>12,7</mark>	<mark>12,9</mark>		

So from the table we can see that the probability of $\frac{\text{Dice 03}}{\text{Dice 04}}$ will have the highest value will be (22/36 = 0.611....) and $\frac{\text{Dice 04}}{\text{Dice 03}}$ will have the highest value will be (12/36 0.333....). The winner of these pair will be $\frac{\text{Dice 03}}{\text{Dice 03}}$.

From above six pairs we can see that how many times which dice wins.

Dices

		Dice 01	Dice 02	Dice 03	Dice 04
	Pair (1,2)	٧			
	Pair (1,3)				
<u>Pairs</u>	Pair (1,4)				٧
· · · · · · · · · · · · · · · · · · ·	Pair (2,3)		٧		
	Pair (2,4)				٧
	Pair (3,4)			٧	

These are Nontransitive set of dice, where Dice 04 rolls higher 2 times than Dice 01, 02 and 03 roll higher.