# Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Информационных технологий и программирования

# Расчетно-графическая работа **«Интеграл и функция нескольких переменных»** Математический анализ

Выполнили: Бобков Артем Грибов Артем Комашко Александр Насонов Петр Орлов Максим

<u>Группа</u>: М3100 ∡

<u>Преподаватель:</u> Далевская Ольга Петровна

## Содержание

| Задание 1. Интеграл функции одной переменной    | 3  |
|-------------------------------------------------|----|
| Задание 2. Исследование функции двух переменных | 5  |
| Задание 3. Интегралы Пуассона и Френеля         | 8  |
| Задание 4. Потенциал векторного поля            | 9  |
| Задание 5. Поток векторного поля                | 10 |

## Задание 1. Интеграл функции одной переменной

#### Условие.

В задачах проведите исследование:

- 1.Составьте математическую модель задачи: введите обозначения, выпишите данные, составьте уравнение (систему уравнений), содержащее неизвестное.
  - 2. Решите задачу аналитически.
  - 3. Сделайте графическую иллюстрацию к решению задачи.
  - 4.Запишите ответ.

Вычислите силу давления воды на пластинку, вертикально погруженную в воду, считая, что удельный вес воды равен 9.81 кH/м<sup>3</sup>. Результат округлите до целого числа. Форма, размеры и расположение пластины указаны на рисунке.



#### Решение.

Сила давления воды вычисляется по формуле:  $F = \rho gh$ . Т.е. у нас такая задача: есть ромб состоящий из точек и для каждой его точки действует функция. И нам нужно вычислить суммарную силу во всех точках. Т.е. взять интеграл. Привяжем начало декартовой системы координат к верхней точке ромба на картинке. Ось Y в положительном направлении направим вниз. Тогда у нас есть функция:  $f(y) = \rho gy = \gamma y$ . Заметим что ромб можно разделить на 2 равных для нашего интеграла треугольника.



T.e.  $\frac{1}{2}$  ответа выглядит так:

$$\iint f(y)dxdy = \int_0^2 f(y)dy \int_{x_0=0}^{x_1=0.5y} dx + \int_2^4 f(y)dy \int_{x_0=0}^{x_1=4-0.5y} dx$$

$$= \int_0^2 f(y) * 0.5ydy + \int_2^4 f(y) * (4-0.5y)dy$$

$$= \int_0^2 \gamma 0.5y^2 dy + \int_2^4 \gamma y * (4-0.5y)dy$$

$$= \int_0^2 \gamma 0.5y^2 dy + \int_2^4 \gamma 4y - \gamma 0.5y^2 dy$$

$$= \int_0^2 \gamma d\left(\frac{y^3}{6}\right) + \int_2^4 \gamma d\left(2y^2 - \frac{y^3}{6}\right)$$

$$= \gamma \left( \frac{2^3}{6} + \left( 2 * 4^2 - \frac{4^3}{6} \right) - \left( 2 * 2^2 - \frac{2^3}{6} \right) \right)$$

$$= \gamma \left( \frac{8}{6} + \left( 32 - \frac{64}{6} \right) - \left( 8 - \frac{8}{6} \right) \right)$$

$$= \gamma \left( \frac{16 - 64}{6} + 24 \right) = \gamma * \left( 24 - \frac{48}{6} \right) = \gamma * (24 - 8) = \gamma * 16 = 156.96$$

Вспомним что это половина ответа: 2\*156.96 = 313.92

Ответ: 313.92 H

### Задание 2. Исследование функции двух переменных

#### Условие.

- А. Изобразите поверхность, заданную уравнением z = z(x, y), в программе Geogebra 3D. Выполните следующие этапы исследования:
  - 1. Найдите область определения z = z(x, y).
  - 2. Постройте в программе Geogebra Classic (на одном листе!) семейство линий уровня z(x,y) = c. Для построения выберите 3–4 значения c. Определите тип построенных кривых (найдите уравнения линий уровня при выбранных значениях c). Если разным c соответствуют кривые разных типов (например: прямые, окружности, точка), изобразите все типы линий уровня.
  - 3. Выберите на поверхности какую-либо обыкновенную и не стационарную точку  $M_0$  (определите ее координаты  $x_0, y_0, z = z(x_0, y_0)$ ). Докажите (по определению), что выбранная точка не является особой и стационарной.
  - 4. Найдите вектор  $\overrightarrow{m}$  направление наискорейшего спуска (подъема) в точке  $M_0$ .
  - 5. Изобразите в программе Geogebra Classic линию уровня  $z = z(x_0, y_0)$  и направление. Проверьте их ортогональность.
- В. Найдите наибольшее и наименьшее значения функции u = u(x, y) в области D:
  - 1. Найдите стационарные точки внутри области.
  - 2. Определите, являются ли стационарные точки точками экстремума.
  - 3. Исследуйте значения функции вдоль границ области.
  - 4. Определите точки области, в которых достигаются наибольшее и наименьшее значения функции, и сами значения

Функция 
$$z=z(x,y)$$
       Функция  $u=u(x,y)$          Область  $D$  
$$z=\frac{8y}{x^2+4y^2} \qquad u=x^2+2x+y^2-4y+4 \quad 0\leq x\leq 2, \ 0\leq y\leq 3$$

#### Решение.

A. Изображение данной поверхности  $z = \frac{8y}{x^2 + 4y^2}$ 



1. Исследуем  $z = \frac{8y}{x^2 + 4y^2}$  - функция принимает все значения (x, y), кроме тех, что дают нулевой знаменатель, то есть  $x^2 + 4y^2 = 0 \Longrightarrow x = y = 0$ 

$$D(z) = \mathbb{R}^2 \setminus \{(0,0)\}$$

2. Заметим, что при z=0 получаем  $\frac{8y}{x^2+4u^2}=0\Longrightarrow y=0 (x\neq 0)$  - прямую с выколотой

При 
$$z > 0$$
 получаем  $zx^2 + 4zy^2 = 8y \Longrightarrow zx^2 + 4zy^2 - 8\frac{\sqrt{z}}{\sqrt{z}}y + \frac{4}{z} - \frac{4}{z} = 0 \Longrightarrow$ 

$$zx^2 + \left(2\sqrt{z}y - \frac{2}{\sqrt{z}}\right)^2 = \frac{4}{z}$$
 - эллипс

Аналогично при 
$$z<0$$
 получаем  $zx^2-\left(2\sqrt{|z|}y+\frac{2}{\sqrt{|z|}}\right)^2=-\frac{4}{z}$  - эллипс

Возьмем кривые при z = 0, z = 3, z = -1, вот, как они будут выглядеть:



3. Выберем точку  $M_0 = (1,0,0)$ . Она нестационарная, по определению стационарные точки - это те, в которых

ТОЧКИ - ЭТО ТЕ, В КОТО
$$\begin{cases} \frac{\partial z}{\partial x} = \frac{16xy}{(x^2 + 4y^2)^2} = 0\\ \frac{\partial z}{\partial y} = \frac{8x^2 + 32y^2 - 64y^2}{(x^2 + 4y^2)^2} = 0 \end{cases}$$
Но простой неистания

Но простой подстановкой мы можем убедиться, что это не так.

Она обыкновенная: пусть наша поверхность -  $F(x, y, z) = z - \frac{8y}{x^2 + 4u^2} = 0$ , тогда по определению особой точки должна выполняться система:

$$\begin{cases} \frac{\partial F}{\partial x} = -\frac{16xy}{(x^2 + 4y^2)^2} = 0\\ \frac{\partial F}{\partial y} = -\frac{8x^2 + 32y^2 - 64y^2}{(x^2 + 4y^2)^2} = 0\\ \frac{\partial F}{\partial z} = 0 \end{cases}$$

Но это не выполняется, так как  $\frac{\partial F}{\partial z} = 1 \neq 0$ 

- 4. Найдем вектор направления наискорейшего подъема при помощи градиента:  $\overrightarrow{m} = \overrightarrow{\nabla} F = \left( -\frac{16xy}{(x^2 + 4y^2)^2} \overrightarrow{i} \frac{8x^2 + 32y^2 64y^2}{(x^2 + 4y^2)^2} \overrightarrow{j} + \overrightarrow{k} \right) \Big|_{M_0} = -8 \overrightarrow{j} + \overrightarrow{k}$ 5. В точке  $M_0$  линии уровня  $z = z(M_0) = 0$  это  $y = 0(x \neq 0)$  с направляющим вектором

Вектор направления  $\overrightarrow{m}$  в точке  $M_0$  - это (0,-8,1)

Их скалярное произведение  $(1,0,0)\cdot(0,-8,1)=0$  - линия уровня z=0 и  $\overrightarrow{m}$  перпендикулярны

Вот изображение линии уровня и вектора  $\overrightarrow{m}$ :



- В. Найдем наибольшее и наименьшее значения функции  $u = x^2 + 2x + y^2 4y + 4$  в области  $D\{0 \le x \le 2, \ 0 \le y \le 3\}$ :
  - 1. По определению стационарные точки это те, в которых выполняется система:

1. По определению стационарные точки - 
$$\begin{cases} \frac{\partial u}{\partial x} = 2x + 2 = 0 \\ \frac{\partial u}{\partial y} = 2y - 4 = 0 \end{cases} \Longrightarrow \begin{cases} x = -1 \\ y = 2 \end{cases}$$
2. Найдем производные второго порядка: 
$$A = \frac{\partial^2 u}{\partial x^2} = 2; B = \frac{\partial^2 u}{\partial x \partial y} = 0; C = \frac{\partial^2 u}{\partial y^2} = 2$$

$$A = \frac{\partial^2 u}{\partial x^2} = 2; B = \frac{\partial^2 u}{\partial x \partial y} = 0; C = \frac{\partial^2 u}{\partial y^2} = 2$$

По достаточному условию экстремума в точке должно соблюдаться  $AC - B^2 > 0$ , что в точке (-1,2) верно, поэтому она экстремум

3. Приведем график этой функции и ее значений в данной области:



Как можем заметить, все значения в данной области неотрицательные

4. Исходя из графика выше, наименьшее значения в области D достигается в точке (0,2) - это 0

Так как, функция - это эллипсоидный параболоид (в данном случае эллипс - это окружность), то наибольшее значение этой функций будет достигаться при наибольшем удалении от центра параболоида (что в нашем случае минимум параболоида, то есть (-1,2))

Таким образом, из всех точек в области подходит точка (2,0), находящаяся от центра на расстоянии  $\sqrt{13}$ , а функция в данной точке имеет значение 12

Аналогично находится минимум: точка (0,2) ближайшая к центру, поэтому функция принимает в нем наименьшее значение, то есть 0, что соответствует графику выше

## Задание 3. Интегралы Пуассона и Френеля

#### Условие.

Вычислите интеграл K:

$$\int_0^\infty \frac{\sin\left(\frac{\pi}{2} - t\right)}{\sqrt{t}} dt$$

Замечание. В задачах физики и дифракционной оптики возникают интегралы вида:

$$\int e^{-x^2} dx, \int \frac{\sin(t)}{\sqrt{t}} dt, \int \frac{\cos(t)}{\sqrt{t}} dt$$

которые являются специальными функциями (т.е. «неберущимися» интегралами).

Однако, переход к «многомерным» интегралам позволяет вычислить по крайней мере функцию ошибок  $\Phi(z) = \int_0^z e^{-x^2} dx$  и интегралы Френеля:  $\Phi_S(z) = \int_0^z \frac{\sin(t)}{\sqrt{t}} dx$  и  $\Phi_C(z) = \frac{\cos(t)}{\sqrt{t}} dx$ 

- 1. Вычисление  $\int_0^\infty e^{-x^2} dx = I$ :
  - Заметьте, что  $I = \int_0^\infty e^{-x^2} dx = \int_0^\infty e^{-y^2} dy$  Тогда  $I^2 = \int_0^\infty e^{-x^2} dx \int_0^\infty e^{-y^2} dy$  дву-кратный интеграл.
  - Перейдите к полярным координатам и вычислите его.
- 2. Вычисление  $\int_0^\infty \frac{\sin(t)}{\sqrt{t}} dt = J$ 
  - Используя результат пункта 1), докажите справедливость интегрального представления функции  $\frac{2}{\sqrt{\pi}} \int_0^\infty e^{-u^2} du = \frac{1}{\sqrt{t}}$ .В интеграле J замените функцию  $\frac{1}{\sqrt{t}}$  её интегральным представлением и получите двойной (несобственный) интеграл.
  - Выберите порядок интегрирования так, чтобы можно было найти первообразную в элементарных функциях. (Смена порядка интегрирования требует обоснования, но в данном случае она разрешена.)
  - Вычислите интеграл J, затем интеграл K.
  - Используя замену переменной и сводя эти интегралы к J, вычислите также:

$$\int_0^\infty \sin(x^2) dx$$
 и 
$$\int_0^\infty \sin(\frac{\pi x^2}{2}) dx$$

3. Нарисуйте графики функции ошибок, интегралов Френеля и их подынтегральных функций.

#### Решение.

It is empty but you can fill it!

Omsem: It is empty but you can fill it!

## Задание 4. Потенциал векторного поля

#### Условие.

Дано векторное поле  $\overrightarrow{H} = \left(\frac{1}{x^2}; \frac{1}{y^2}\right)$ 

#### Выполните:

- 1. Убедитесь, что данное векторное поле потенциально.
- 2. Найдите уравнения векторных линий. Изобразите векторные линии на рисунке.
- 3. Найдите потенциал поля при помощи криволинейного интеграла.
- 4. Найдите уравнения линий уровня потенциала (эквипотенциальных линий). Изобразите линии уровня потенциала.
- 5. Докажите ортогональность найденных векторных линий поля и линий уровня потенциала. Проиллюстрируйте ортогональность на графике.
- 6. Выберите какую-либо векторную линию поля и зафиксируйте на ней точки Аи В, выбрав для них числовые координаты. Вычислите работу поля вдоль этой линии, используя найденный в п. 3) потенциал.

#### Решение.

It is empty but you can fill it!

Omeem: It is empty but you can fill it!

## Задание 5. Поток векторного поля

#### Условие.



# Решение.

It is empty but you can fill it!

Omeem: It is empty but you can fill it!

Дано тело T, ограниченное следующими поверхностями:  $y-\sqrt{1-x^2-z^2}=0, x^2+z^2=1, y-z=2.$ 

На рисунке представлено сечение тела T координатной плоскостью Oyz.

- 1) Изобразите тело T на графике в пространстве.
  - 2) Вычислите поток поля

$$\overrightarrow{a} = (\cos^2(z+y))\overrightarrow{i} + 2x\overrightarrow{j} + (\sqrt{y+5} + 2z)\overrightarrow{k}$$

через боковую поверхность тела T, образованную вращением дуги ABC вокруг оси Оу, в направлении внешней нормали поверхности тела T.