Evaluating Interfaces

COMP2044: Human-Computer Interaction (2024-2025)

Matthew Pike

Overview

Objectives for today

- · Reflect on our progress so far, and what's left to do.
- · Understand the different types of evaluation methods.
- Considerations when designing and conducting a questionnaire.
- Introduce Cognitive Walkthroughs as an evaluation method.

Reflecting on What We've Learned So Far

Evaluation

Evaluation Methods

Figure 1: The evaluation methods that are available at various stages of the development process.

Formative vs. Summative

Figure 2: Formative evaluations are conducted during the design and development process, while summative evaluations are conducted after the system has been developed.

Conducting an Evaluation (1/2)

- · Who:
 - · Identify the target group. Ensure they are representative of real users.
- Task(s):
 - What tasks will the users perform during the evaluation? Important to be specific and to test before the evaluation.
- Recruit Participants:
 - How many participants? What are the demographics? Is it a representative sample?
 - · How to recruit? (e.g. incentives). This can often be the most difficult part of the evaluation.
- Prepare the Evaluation:
 - · Protocols, Task, Timings, etc.
 - Instructions: What does the user need to be told to do? Equipment: including test materials.
 - · Consent Forms.

Conducting an Evaluation (2/2)

· Run the Evaluation:

- Make sure you have signed (informed) consent for taking part (before beginning the evaluation).
- Encourage users to be critical and reflective. Reinforce it is the system being tested not them.
- · Collect data (think about how you are recording).
- · Generate Results:
 - Executive summary, Aims, Study Design, Methods (Participants, Procedure, Equipment),
 Results, Discussion, Conclusions.
 - · What structure will be best to represent your data?
 - · What evidence is appropriate?

Code of Conduct

- Before conducting any evaluation, it is important to consider the ethical implications of your work. This is often required by your institution/employer.
- Often codes of conduct will include the following:
 - Emphasise system test not user test.
 - · Clarify what is expected of the participant and inform that they are free to leave at any point.
 - Explain the purpose of the test (try not to deceive the participants).
 - · Make sure the participant is comfortable (or at least normally positioned).
 - Explain that results are confidential and anonymous and how they will be used.
 - $\boldsymbol{\cdot}$ Get the participant to agree in writing to take part in the study.
 - · Never do anything to embarrass, hurt or otherwise distress the participant.

Example Consent Form

Figure 3: The consent form must be completed before data collection with a participant can begin. This is often accompanied by an information sheet to ensure that the participant is providing informed consent.

Questionnaires

Questionnaires

- · A tool for gathering information from users.
- They are cheap and easy to administer. Can be done remotely.
- · Very easy to design a bad/misleading questionnaire.
 - E.g. leading questions, double-barrelled questions, ambiguous questions, etc.
- Questionnaires need to be carefully designed to ensure that they are valid and reliable.
 - Validity: Does the questionnaire measure what it is supposed to measure?
 - Reliability: Does it produce consistent results over time when the same (types of) people are tested?

Figure 4: Questionnaires can be completed remotely and scale well to large numbers of participants.

Questionnaire Design

Types of Questions

- · Factual: Observable information.
 - E.g. "What is your age?"
- Opinion: Attitudes or beliefs (outward facing).
 - E.g. "How satisfied are you with the system?"
- Attitude: Attitudes or beliefs (inward facing).
 - · E.g. "I find the system easy to use."

Question Styles

- Closed: Fixed set of responses.
 - · Quick and easy to complete and analyse.
 - E.g. "How satisfied are you with the system?" (Very satisfied, Satisfied, Neutral, Unsatisfied, Very unsatisfied)
- Open: User gives free-form answers.
 - Captures more detail but harder to analyse.
 - E.g. "What do you like about the system?"

Example Questionnaire: System Usability Scale (SUS) (Brooke et al., 1996)

- Simple, ten-item attitude Likert scale which provides a broad, subjective assessments of usability.
- · Cheap, quick and simple to administer.
- Can be used to compare usability across different systems.

Figure 5: The System Usability Scale (SUS) questionnaire.

Standard SUS Questions (Brooke et al., 1996)

- I think that I would like to use this system frequently.
- 2. I found the system unnecessarily complex.
- 3. I thought the system was easy to use.
- I think that I would need the support of a technical person to be able to use this system.
- 5. I found the various functions in this system were well integrated.

- 6. I thought there was too much inconsistency in this system.
- 7. I would imagine that most people would learn to use this system very quickly.
- 8. I found the system very cumbersome to use.
- 9. I felt very confident using the system.
- I needed to learn a lot of things before I could get going with this system.

Calculating SUS Scores

- The SUS score is calculated as follows:
 - For odd-numbered questions, subtract 1 from the response value.
 - For even-numbered questions, subtract the response value from 5.
 - · Total the scores for each question.
 - Multiply the total by 2.5 to get the SUS score.
- The SUS score ranges from 0 to 100, but is not a percentage.
- The average SUS score is around 68.

Figure 6: Example SUS calculation (Brooke et al., 1996).

SUS Results Interpretation

Figure 7: The interpretation of SUS scores. A score of 68 is considered average. This provides a convenient (if imperfect) way to compare the usability of different systems (Brooke, 2013).

What is a Cognitive Walkthrough?

"The cognitive walkthrough is a theoretically structured evaluation process that takes the form of a list of questions (Figure 8). The questions focus the designer's attention on individual aspects of the interface that the CE+ theory claims are important in facilitating the problem-solving and learning processes."

(Lewis et al., 1990)

 Many variations of the cognitive walkthroughs (CW) exist. A nice summary of the different approaches was produced by Mahatody et al. (2010).

CE+ Design Walkthrough	Evaluator	Date Step #				
Actions/choices should be ranked ac wave problems: 0 = none; 1 = some			e expected to			
. Description of user's immediate a	goal:					
. (First/next) atomic action user sh	ould take:					
2a. Obvious that action is available? Why/Why not?						
2b. Obvious that action is appropriate to goal? Why/Why not?						
. How will user access description	of action?					
3a. Problem accessing? Why/	Why not?					
. How will user associate descripti	on with action?					
4a. Problem associating? Why	/why not?					
. All other available actions less ap	ppropriate? For each	h, why/why not?				
. How will user execute the action	?					
6a. Problems? Why/why not?						
. If timeouts, time for user to decid	le before timeout?	Why/why not?				
. Execute the action. Describe sys	tem response:					
8a. Obvious progress has been	made toward goal?	Why/why not?				
8b. User can access needed in	o. in system respon	se? Why/why not?				
. Describe appropriate modified go	al, if any:					
9a. Obvious that goal should co	hange? Why/why n	ot?				
9b. If task completed, is it obv	ious? Why/why no	1?				

Figure 8: The questions posed by Lewis et al., when conducting a CW (Lewis et al., 1990).

Conducting a Cognitive Walkthrough (Lewis et al., 1990)

- 1. First, the researcher specifies a series of tasks on which one will evaluate the design.
- 2. Next, the sequence of user actions that will successfully perform a given task is specified by the researcher.
- 3. Finally, the main part of the walkthrough involves using the questionnaire to evaluate the ease of learning for the proposed design on a particular task.
 - · If an evaluator expects no problems at a given step, that judgment has to be defended.
 - If problems are expected, they should be documented.
- 4. At each stage, the evaluator asks themselves a series of questions (Figure 8, for example) about the interface.
 - There are many variations of the questions that can be asked. Another example is given by the NNGroup.

NNGroup Cognitive Walkthrough Questions

Task Action step				Action success	Action failure
Will the user try to achieve the right result?	yes	from experience	the system tells them to	no 🗍	
Will the user notice that the correct action is available?	yes	from experience	they would see a call-to-action	no 🗌	
Will the user associate the correct action with the effect they're trying to achieve?	yes	from experience	a prompt/label matches action	no 🗍	
After the action is performed, will the user see that progress is being made toward the goal?	yes	from experience	there's a connection between the system response and user goal	no 🗍	

Figure 9: Available via NNGroup - https://media.nngroup.com/media/articles/attachments/Blank_Cognitive-Walkthrough_Template.pdf

Personas

"A persona is a fictional, yet realistic, description of a typical or target user of the product. It is used to promote empathy, increase awareness and memorability of target users, prioritize features, and inform design decisions."

NNGroup

- Popularised by Alan Cooper in his book "The Inmates are Running the Asylum" (Cooper, 1999).
- · Personas (Chang et al., 2008) allow:
 - Designers to focus on the primary user, his/her behavior patterns and needs.
 - Researchers to categorise feedback from real users onto a small number of personas making it easier to understand and act upon.
- Personas can be used in conjunction with CW to better model the approaches that different users might take to complete a task.

Web Articles

- System Usability Scale (SUS) Score Calculator
 - https://stuart-cunningham.github.io/sus/
- SUStisfied? Little-Known System Usability Scale Facts
 - http://uxpamagazine.org/sustified/
- Evaluate Interface Learnability with Cognitive Walkthroughs
 - https://www.nngroup.com/articles/cognitive-walkthroughs/
- · How to Conduct a Cognitive Walkthrough
 - https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitivewalkthrough
- Personas Make Users Memorable for Product Team Members
 - https://www.nngroup.com/articles/persona/

References

- Brooke, J. et al. (1996). SUS-a quick and dirty usability scale. *Usability Evaluation in Industry*, 189(194), 4–7.
- Brooke, J. (2013). SUS: A retrospective. Journal of Usability Studies, 8(2), 29–40.
- Chang, Y., Lim, Y., & Stolterman, E. (2008). Personas: From theory to practices. *Proceedings of the 5th Nordic Conference on Human-Computer Interaction: Building Bridges*, 439–442.
- Cooper, A. (1999). The inmates are running the asylum. Springer.
- Lewis, C., Polson, P. G., Wharton, C., & Rieman, J. (1990). Testing a walkthrough methodology for theory-based design of walk-up-and-use interfaces. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 235–242.
- Mahatody, T., Sagar, M., & Kolski, C. (2010). State of the art on the cognitive walkthrough method, its variants and evolutions. *Intl. Journal of Human–Computer Interaction*, 26(8), 741–785.