21-849 High-Dimensional Probability

Lectures by Konstantin Tikhomirov Notes by Kadin Zhang

Fall 2024

Contents

1	Hig	h dimensional probability	3
	1.1	8/26/24 - Subexponential and subgaussian random variables	3
	1.2	8/28/24 - Kchintchine and Hoeffding	3
	1.3	8/30/24 - Example, symmetrization trick	4
	1.4	9/4/24 - Bernstein's inequality	5
	1.5	9/6/24 - Subgaussian RVs, Johnson-Lindenstrauss lemma	5
	1.6	9/9/24 - Sparse JL	6
	1.7	$9/11/24$ - ε -net arguments	6
	1.8	9/13/24 - RIP	7
		9/16/24 - Concentration of singular values	8
		9/18/24 - Covariance estimation	9
		9/20/24 - Linear algebra facts	10
			11
		, ,	12
		, ,	12

1 High dimensional probability

1.1 8/26/24 - Subexponential and subgaussian random variables

Definition (Orlicz space): Let $\psi : [0, \infty) \to [0, \infty)$ be convex and increasing. Define the *Orlicz norm* of a random variable X as

$$||X||_{\psi} = \inf\{t > 0 : \mathbf{E}\psi(|X|/t) \le 1\}.$$

The Orlicz space L_{ψ} is the set of random variables on $(\Omega, \Sigma, \mathbf{P})$ with finite Orlicz norm.

Definition (Subgaussian, subexponential): X is subexponential if it has finite Orlicz norm with $\psi_1(t) := \exp(t) - 1$. X is subgaussian if it has finite Orlicz norm with $\psi_2(t) := \exp(t^2) - 1$.

Theorem (Characterization of subexponential and subgaussian): X is subexponential if and only if

$$\frac{(\mathbf{E}|X|^p)^{1/p}}{p} < \infty.$$

X is subgaussian if and only if

$$\frac{\left(\mathbf{E}|X|^p\right)^{1/p}}{\sqrt{p}} < \infty.$$

Theorem: Let X_1, \ldots, X_n independent, mean zero, sub-gaussian. Then $\sum_i X_i$ is sub-gaussian and there is C > 0 such that

$$\left\|\sum X_i\right\|_{\psi_2}^2 \leq C\sum_i \|X_i\|_{\psi_2}^2.$$

Proof. Combinatorial.

$1.2 ext{ } 8/28/24$ - Kchintchine and Hoeffding

Proposition: Let $1 \leq p < \infty$. There are c_p, C_p only depending on p such that:

(a) If $||X||_{\psi_p} \le 1$, then

$$\mathbf{P}(|X| \ge t) \le \exp(-c_p t^p), \quad t \ge 2.$$

(b) If $\mathbf{P}(|X| \ge t) \le \exp(-t^p)$ for $t \ge 2$, then

$$||X||_{\psi_p} \le C_p.$$

Lemma: Let X_1, \ldots, X_n independent, mean zero, and $||X_i||_{\psi_2} \leq 1$. For any real numbers a_1, \ldots, a_n ,

$$\left\| \sum a_i X_i \right\|_{\psi_2}^2 \le C \sum a_i^2.$$

Theorem (Kchintchine's inequality): Let r_1, \ldots, r_n be independent Rademacher. Fix $(a_1, \ldots, a_n) \in S^{n-1}$. Then $\sum a_i r_i$ is O(1) subgaussian, i.e.

 $\left\| \sum a_i r_i \right\|_{\psi_2} \le C.$

for some universal constant C.

Proof. Direct from lemma.

Theorem (Hoeffding's inequality): Let X_1, \ldots, X_n independent, mean zero, sub-gaussian. Then for t > 0,

$$\mathbf{P}\Big(\Big| \sum X_i \Big| \ge t \Big) \le 2 \exp\left(-\frac{ct^2}{\sum_i \|X_i\|_{\psi_2}^2} \right).$$

Proof. By the lemma, $\sum X_i$ is subgaussian with

$$\left\| \sum X_i \right\|_{\psi_2} \le C \sqrt{\sum \left\| X_i \right\|_{\psi_2}^2}.$$

So dividing by the RHS gives us a variable with ψ_2 norm at most 1, and we can apply the earlier proposition.

Theorem (Hoeffding's inequality for bounded RV): Let X_1, \ldots, X_n independent taking values in bounded intervals $[a_i, b_i]$. Then for t > 0,

$$\mathbf{P}\Big(\Big|\sum X_i - \sum \mathbf{E}X_i\Big| \ge t\Big) \le C \exp\left(-\frac{ct^2}{\sum (b_i - a_i)^2}\right).$$

Proof. Note that $X_i - \mathbf{E}X_i$ is mean zero subgaussian with $||X_i||_{\psi_2} \leq b_i - a_i$. Then we can apply Hoeffding's inequality in its general form.

$1.3 ext{ } 8/30/24$ - Example, symmetrization trick

Example: Let $v_1, \ldots, v_n \in S^{n-1}$ fixed. Then

$$\mathbf{P}\left(\left\|\sum_{i} r_{i} v_{i}\right\|_{2} \ge C\sqrt{n \log n}\right) \le n^{-100}.$$

$1.4 \quad 9/4/24$ - Bernstein's inequality

Theorem (Bernstein's inequality): Let X_1, \ldots, X_n independent, zero mean, sub-exponential. Then

$$\mathbf{P}\Big(\Big|\sum X_i\Big| \geq t\Big) \leq 2\exp\Biggl(-C\min\Biggl(\frac{t^2}{\sum_i \big\|X_i\big\|_{\psi_1}^2}, \frac{t}{\max_{i\leq n} \big\|X_i\big\|_{\psi_1}}\Biggr)\Biggr).$$

Proof. MGF and Markov-Chebyshev.

Example: Let X random vector zero mean, unit variance, sub-gaussian components bounded by K. By Bernstein inequality,

$$\mathbf{P}\Big(\Big| \sum X_i^2 - n \Big| \ge t \Big) \le 2 \exp \left(-C \min \left(\frac{t}{k^2}, \frac{t^2}{k^4 n} \right) \right).$$

Show that

$$\mathbf{P}(\left|\left\|X\right\|_{2} - \sqrt{n}\right| \ge t) \le 2\exp(-C_{k}t^{2}),$$

from which we can conclude that $||X||_2 - \sqrt{n}$ is sub-gaussian.

Proof.

Proposition:

Theorem (Chernoff's inequality): Let X_i independent Bernoulli with parameter p. Then

$$\mathbf{P}\left(\sum_{i} b_{i} - p_{n} \ge tpn\right) \le \left(\frac{\exp t}{(1+t)^{1+t}}\right)^{pn}.$$

$1.5 ext{ } 9/6/24$ - Subgaussian RVs, Johnson-Lindenstrauss lemma

Definition (K-subgaussian random vectors): Let X be random vector in \mathbb{R}^n , $K < \infty$. X is K-subgaussian if

$$||X||_{\psi_2} := \max_{y \in S^{n-1}} ||\langle X, y \rangle||_{\psi_2} \le K.$$

Corollary of Hoeffding's inequality:

Theorem: Let X be a random vector in \mathbb{R}^n with independent, zero mean components, identity covariance, and $\max_{i\leq n} \|X_1\|_{\psi_2} \leq K$. Then for every $(a_1,\ldots,a_n)\in S^{n-1}$,

$$\sum_{i} a_i X_i$$

is CK-subgaussian.

Theorem (Johnson-Linderstrauss lemma): Consider a dataset of m points in \mathbb{R}^n , $\mathcal{C} = \{x_1, \dots, x_m\}$. For every $n \geq 1$, $m \geq 3$, $\varepsilon \in (0, 1/2]$, and $k \geq C\varepsilon^{-2}\log m$, there exists a linear mapping $\phi : \mathbb{R}^n \to \mathbb{R}^k$ where $k \ll n$ such that for all $x, y \in \mathbb{R}^n$,

$$1 - \varepsilon \le \frac{\|\phi(x) - \phi(y)\|_2}{\|x - y\|_2} \le 1 + \varepsilon.$$

1.6 9/9/24 - Sparse JL

1.7 9/11/24 - ε -net arguments

Definition (ε -net): Let (T, ρ) be a metric space and $S \subset T$. A subset $\mathcal{N} \subset T$ is a ε -net for S if for every $x \in S$ there exists $y = y(x) \in \mathcal{N}$ such that $\rho(x, y) \leq \varepsilon$. We say \mathcal{N} is a ε -net in S if $\mathcal{N} \subset S$.

Definition (Operator norm): Let A be a $m \times n$ matrix. We define the operator norm as the largest factor by which the linear operator A can stretch a vector:

$$||A|| \coloneqq \max_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_2}{||x||_2} = \max_{x \in S^{n-1}} ||Ax||_2.$$

Note that this is equal to the largest singular value of A.

Proposition (Operator norm on net): Let A be $m \times n$ matrix and $\varepsilon \in [0,1)$. For an ε -net \mathcal{N} of S^{n-1} ,

$$\sup_{x \in \mathcal{N}} \|Ax\|_2 \leq \|A\| \leq \frac{1}{1-\varepsilon} \sup_{x \in \mathcal{N}} \|Ax\|_2.$$

Proof. Let $x \in S^{n-1}$ for which $||Ax||_2 = ||A||$. Choose $x_0 \in \mathcal{N}$ such that $||x - x_0||_2 \le \varepsilon$. Then,

$$||Ax - Ax_0||_2 = ||A(x - x_0)||_2 \le ||A|| ||x - x_0||_2 \le \varepsilon ||A||.$$

Triangle inequality gives us

$$||Ax_0||_2 \ge ||Ax||_2 - ||Ax - Ax_0||_2 \ge (1 - \varepsilon)||A||.$$

Dividing by $1 - \varepsilon$,

$$||A|| \le \frac{1}{1-\varepsilon} ||Ax_0||_2 \le \frac{1}{1-\varepsilon} \sup_{x \in N} ||Ax||_2.$$

П

Proposition: If A is symmetric $n \times n$, then $||A|| = \max_{x \in S^{n-1}} |\langle Ax, x \rangle|$.

Proof. If A is symmetric, it has orthonormal basis v_1, \ldots, v_n , which are eigenvectors with some eigenvalues $\lambda_1, \ldots, \lambda_n$. Then for $x \in S^{n-1}$, write $x = a_1v_1 + \cdots + a_nv_n$, where $a = (a_1, \ldots, a_n)$ is a unit vector.

$$\langle Ax, x \rangle = \langle a_1 A v_1 + \dots + a_n A v_n, a_1 v_1 + \dots + a_n v_n \rangle$$

= $a_1^2 \lambda_1 + \dots + a_n^2 \lambda_n$.

If λ_i is maximum, then the optimal choice is $x = v_i$, which yields operator norm λ_i as expected.

Proposition (Operator norm on net, symmetric case): Let M be $n \times n$ symmetric real matrix and \mathcal{N} be an ε net in S^{n-1} . Then

$$||M|| \le \frac{1}{1 - 2\varepsilon} \max_{y \in \mathcal{N}} |\langle My, y \rangle|.$$

Proof. Let y_x denote vector in \mathcal{N} with distance at most ε from x by ε net.

$$\begin{split} \|M\| & \leq \max_{x \in S^{n-1}} |\langle Mx, x \rangle| \\ & = \max_{x \in S^{n-1}} |\langle Mx, y_x \rangle| + \max_{x \in S^{n-1}} |\langle Mx, x - y_x \rangle| \\ & \leq \max_{x \in S^{n-1}} |\langle x, My_x \rangle| + \varepsilon \|M\| \\ & \leq \max_{x \in S^{n-1}} |\langle y_x, My_x \rangle| + \max_{x \in S^{n-1}} \|\langle x - y_x \rangle, My_x\| + \varepsilon \|M\| \\ & \leq \max_{y \in \mathcal{N}} |\langle y, My \rangle| + 2\varepsilon \|M\|. \end{split}$$

Note that $\langle x, My_x \rangle = \langle y_x, Mx \rangle$ since M is symmetric.

1.8 9/13/24 - RIP

Definition (Restricted isometry property): Let A be a $k \times n$ matrix. A satisfies RIP with parameters a, b > 0 and $s \in \mathbb{N}$ if for every s-sparse vector x in \mathbb{R}^n ,

$$a||x||_2 \le ||Ax||_2 \le b||x||_2.$$

Theorem (RIP implies exact recovery of sparse signals): Let A be $k \times n$ satisfying RIP with parameters a, b, s. Then for every $x \in \mathbb{R}^n$ with $|\{i \le n : x_i \ne 0\}| (1 + b^2/a^2) < s$,

$$x = \arg\min\{\|y\|_1 : Ay = Ax\}.$$

Theorem (RIP for random matrices): Let A be $m \times n$ random matrix with mean zero, unit variance, K-subgaussian entries. Let $n \geq s, m \geq C_s \log(en/s)$. Then, with high probability, A is RIP with parameters $0.9\sqrt{m}, 1.1\sqrt{m}, s$. In particular, we can reconstruct any s/3-sparse vector.

1.9 9/16/24 - Concentration of singular values

Lemma: S^{n-1} has a ε -net of size at most $(1+2/\varepsilon)^n$.

Theorem: Let A be $N \times n$ matrix with i.i.d. entries of zero mean, unit variance, subgaussian moment bounded by K. Then for any t > 0,

$$\mathbf{P}\Big(\sqrt{N} - C\sqrt{n} - Ct \le s_{\min}(A) \le s_{\max}(A) \le \sqrt{N} + C\sqrt{n} + Ct\Big) \ge 1 - 2e^{-ct^2}$$

where C, c only depend on K.

Proof. Let $M := A^{\top}A$. Let \mathcal{N} be a 1/4-net in S^{n-1} with cardinality at most 9^n . We apply the ε -net argument for operator norm on symmetric matrices on $\frac{1}{N}M - I_n$:

$$\left\| \frac{1}{N} - I_n \right\| \le 2 \max_{y \in \mathcal{N}} \left| \left\langle \frac{1}{N} M y - I_n y \right\rangle, y \right|$$
$$= 2 \max_{y \in \mathcal{N}} \left| \frac{1}{N} \|Ay\|_2^2 - 1 \right|.$$

By corollary of Bernstein, for fixed y, since By is a random vector with zero mean, unit variance, and bounded subgaussian moment, $||By||_2 - \sqrt{N}$ is subgaussian. So $||By||_2^2 - N$ is a sum of zero mean subexponential variables, and we may apply Bernstein's inequality:

$$\begin{aligned} \mathbf{P}(\left| \left\| By \right\|_{2}^{2} - N \right| \geq t) &\leq 2 \exp\left(-c \min\left(\frac{t^{2}}{N}, t \right) \right) \\ &= 2 \exp\left(-\frac{ct^{2}}{N+t} \right). \end{aligned}$$

Consider the inequality for $t = 2\sqrt{N}(C\sqrt{n}+t)+(C\sqrt{n}+t)^2$, where $C = \sqrt{2\ln 9/c}$. Then we obtain

$$\mathbf{P}\Big(\Big|\|By\|_2^2 - N\Big| \ge 2\sqrt{N}(C\sqrt{n} + t) + (C\sqrt{n} + t)^2\Big) \le 2 \cdot 9^{-n} \exp(-ct^2/2).$$

Taking union bound over $y \in \mathcal{N}$ and substituting $\left|\frac{1}{N}\|By\|_2^2 - 1\right|$ with $\left\|\frac{1}{N}M - I_n\right\|$,

$$\mathbf{P}\bigg(\bigg\|\frac{1}{N}M - I_n\bigg\| \ge 2(C\sqrt{n} + t)/\sqrt{N} + (C\sqrt{n} + t)^2/N\bigg) \le 2\exp(-ct^2/2).$$

It suffices to use the deterministic relations

$$\max(|N^{-1}s_{\min}^2(A) - 1|, |N^{-1}s_{\max}^2(A) - 1|) \le \left\|\frac{1}{N}M - I_n\right\|.$$

Corollary: If we let $t = c'\sqrt{n}$ for appropriate choice of c' we have that

$$\mathbf{P}(\sqrt{N} - C\sqrt{n} \le s_{\min}(A) \le s_{\max}(A) \le \sqrt{N} + C\sqrt{n}) \ge 1 - 2e^{-n}.$$

Remark: As $N, n \to \infty$, $s_{\text{max}}(A) = (1 + o(1))(\sqrt{N} + \sqrt{n})$ and $s_{\text{min}}(A) = (1 + o(1))(\sqrt{N} - \sqrt{n})$. This shows that our bounds are optimal.

$1.10 \quad 9/18/24$ - Covariance estimation

Consider a statistical model $((\mathbb{R}^n)^N, \mathcal{P}, N)$, $N \geq n$, where \mathcal{P} is a family of distributions on \mathbb{R}^n such that for every random vector X from \mathcal{P} ,

$$\left\| \frac{\langle X, y \rangle}{\sqrt{\mathbf{E}\langle X, y \rangle}} \right\|_{\psi_2} \le K.$$

We observe sample $\Sigma^{1/2}X_1, \ldots, \Sigma^{1/2}X_N$, where X_1, \ldots, X_N are i.i.d. mean zero K-subgaussian isotropic vectors and Σ is the true covariance matrix. We then compute the sample covariance matrix as

$$\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\Sigma^{1/2} X_i) (\Sigma^{1/2} X_i)^{\top}.$$

So

$$\hat{\Sigma} - \Sigma = \Sigma^{1/2} \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i^{\top} - I_n \right) \Sigma^{1/2}.$$

We can then bound

$$\left\| \hat{\Sigma} - \Sigma \right\| \le \left\| \Sigma \right\| \left\| \frac{1}{N} \sum_{i=1}^{N} X_i X_i^{\top} - I_n \right\|,$$

thus the ratio $\frac{\|\hat{\Sigma} - \Sigma\|}{\|\Sigma\|}$ is deterministically upper bounded by (letting $M := \frac{1}{N} \sum_{i=1}^{N} X_i X_i^{\top}$) $\max(\lambda_{\max}(M) - 1, 1 - \lambda_{\min}(M)).$

Let A be the $N \times n$ matrix with rows X_i , $i \leq N$. Then, $M = \frac{1}{N}A^{\top}A$, so

$$\lambda_{\max}(M) = \frac{1}{N} s_{\max}(A)^2, \quad \lambda_{\min}(M) = \frac{1}{N} s_{\min}(A)^2.$$

A modified form of the ε -net argument for singular values holds for matrices with independent isotropic K-subgaussian rows (rather than i.i.d. mean zero, unit variance, subgaussian moment at most K at every entry). So with high probability in n,

$$s_{\max}(A) \le \sqrt{N} + C\sqrt{n}, \quad s_{\min}(A) \ge \sqrt{N} - C\sqrt{n}.$$

Note that $N \geq n$, so

$$\lambda_{\max}(M) \le 1 + C' \sqrt{\frac{n}{N}}, \quad \lambda_{\min}(M) \ge 1 - C' \sqrt{\frac{n}{N}},$$

thus

$$\mathbf{P}\left(\frac{\left\|\hat{\Sigma} - \Sigma\right\|}{\|\Sigma\|} \ge C\sqrt{\frac{n}{N}}\right) \ge 1 - 2e^{-n}.$$

$1.11 \quad 9/20/24$ - Linear algebra facts

Definition (Schatten norm): Let $1 \le p \le \infty$. If A is $m \times n$ matrix with singular values $s_1(A), \ldots, s_n(A)$, then define the Schatten norm as

$$||A||_p := ||(s_1(A), \dots, s_n(A))||_p$$

Remark: If $p = \infty$ this is called *spectral norm*. If p = 2, then this is called *Frobenius/Hilbert-Schmidt norm*, and

$$||A||_2 = \sqrt{\sum_{i,j} a_{ij}^2}.$$

This turns the space of matrices into Euclidean space with dimension equal to the minimum of A, B, or $tr(AB^{\top})$?

Proposition (Circular property of trace): If AB, BA well defined,

$$tr(AB) = tr(BA).$$

Corollary: If A, B are PSD, then $tr(AB) \ge 0$.

Proof. Let
$$A = M^{\top}M$$
, $B = N^{\top}N$. Then $\operatorname{tr}(AB) = \operatorname{tr}(M^{\top}MN^{\top}N) = \operatorname{tr}(MN^{\top}(MN^{\top})^{\top}) \geq 0$.

Corollary: Let B PSD, A any symmetric matrix. Then

$$\operatorname{tr}(AB) \le \operatorname{tr}(\|A\|B) = \|A\|\operatorname{tr}(B).$$

Proof.

$$\operatorname{tr}((\|A\|I - A)B) \ge 0.$$

Definition (Matrix exponent): Let A be a square matrix. Then

$$e^A = \sum_{i=0}^{\infty} \frac{A^j}{j!}.$$

So

$$spec(e^A) = \exp(spec(A)).$$

Theorem (Golden-Thompson inequality): Let A, B symmetric. Then

$$\operatorname{tr}\exp(A+B) \le \operatorname{tr}(\exp(A)\exp(B)).$$

Theorem (Matrix Kchintchine inequality): Let A_1, \ldots, A_m deterministic symmetric $n \times n$ matrices. Let r_1, \ldots, r_m independent Rademacher. Then

$$\mathbf{P}\bigg(\bigg\|\sum_{i} r_{i} A_{i}\bigg\| \geq t\bigg) \leq 2n \exp\bigg(-\frac{t^{2}}{4\|\sum_{i} A_{i}^{2}\|}\bigg).$$

П

Lemma: Let B symmetric random matrix, and $\lambda > 0$ be a parameter. Then

$$\mathbf{P}(\|B\| \ge t) \le \mathbf{P}(\operatorname{tr}(\exp(\lambda B)) \ge \exp(\lambda t)) + \mathbf{P}(\operatorname{tr}(\exp(-\lambda B)) \ge \exp(\lambda t)).$$

Proof. Condition on realization of B s.t. $||B|| \ge t$, so either $\lambda_{\max}(B) \ge t$ or $\lambda_{\min}(B) \le -t$.

If
$$\lambda_{\max}(B) \ge t$$
, then $\lambda_{\max}(\exp(\lambda B)) \ge \exp(\lambda t)$, so $\operatorname{tr}(\exp(\lambda B)) \ge \exp(\lambda t)$.

$1.12 \quad 9/23/24$ - Matrix concentration

Midterm: 2, 3, 4: 2 coffee cups Concentration inequalities / covering problem.

Lemma: Let C_1, \ldots, C_m independent symmetric $n \times n, a_1, \ldots, a_m \in \mathbb{R}$ such that $\exp(a_i I) - \mathbf{E} \exp(\lambda C_i)$ is PSD for all i. Then

$$\mathbf{E}\operatorname{tr}(\exp(\lambda(C_1+\cdots+C_m))) \le n\exp(a_1+\cdots+a_m).$$

Proof. Let $B = \sum_{i} r_i A_i$.

$$\mathbf{P}(\|B\| \ge t) \le \frac{\mathbf{E} \operatorname{tr}(\exp(\lambda B))}{\exp(\lambda t)}$$

$$\le \mathbf{E} \operatorname{tr}(\exp(\lambda C_1) \exp(\lambda (C_2 + \dots + C_m)))$$

$$= \mathbf{E} \operatorname{tr}(\mathbf{E}(\exp(\lambda C_1)) \exp(\lambda (C_2 + \dots + C_m)))$$

$$\le \mathbf{E} \operatorname{tr}(\exp(a_i I) \exp(\lambda (C_2 + \dots + C_m)))$$

$$\le \dots$$

$$\le n \exp(a_1 + \dots + a_m).$$
(G-T)

Theorem (Matrix Kchintchine inequality): Let A_1, \ldots, A_m deterministic symmetric $n \times n$ matrices. Let r_1, \ldots, r_m independent Rademacher. Then

$$\mathbf{P}\bigg(\bigg\|\sum_i r_i A_i\bigg\| \geq t\bigg) \leq 2n \exp\bigg(-\frac{t^2}{4\|\sum_i A_i^2\|}\bigg).$$

Proof.

$$\mathbf{P}\left(\left\|\sum_{i} r_{i} A_{i}\right\| \geq t\right) \leq 2\mathbf{P}\left(\operatorname{tr}\exp(\lambda \sum_{i} r_{i} A_{i}) \geq \exp(\lambda t)\right)$$
$$\leq 2\frac{\mathbf{E}\operatorname{tr}\exp(\lambda \sum_{i} r_{i} A_{i})}{\exp(\lambda t)}.$$

Consider the numerator. By G-T,

$$\mathbf{E}\operatorname{tr}\exp(\lambda\sum_{i}r_{i}A_{i})\leq\mathbf{E}\operatorname{tr}\exp(\lambda^{2}(A_{1}^{2}+\cdots+A_{m}^{2}))\exp\left(\sum_{i}(r_{i}\lambda A_{i}-\lambda^{2}A_{i}^{2})\right).$$

Theorem: Let A_1, \ldots, A_m mean zero, independent, $n \times n$ symmetric with $\|\|A_i\|\|_{\psi_1} \leq K$. Then

$$\mathbf{P}(\|A_1 + \dots + A_m\| \ge t) \le$$

$$2n \exp \left(-\frac{ct^2}{\|\mathbf{E}(A_1^2 + \dots + A_m^2)\| + tK \log\left(1 + \frac{mk^2}{\|\mathbf{E}(A_1^2 + \dots + A_m^2)\|}\right)}\right)$$

Let $\{x_1, \ldots, x_N\}$ where x_i are i.i.d. mean zero vectors with $\mathbf{E} x_i x_i^{\top} = \Sigma$, and are K-subgaussian. The goal is to show

$$\left\| \Sigma - \frac{1}{N} \sum_{i=1}^{N} x_i x_i^{\top} \right\| \le C_K \left(\sqrt{\frac{k(\Sigma) \log n}{N}} + \frac{k(\Sigma) \log^2(n)}{N} \right) \|\Sigma\|,$$

where $\|\Sigma\|$ is the intrinsic dimension of Σ .

$1.13 \quad 9/25/24$

Definition (Anisotropic random vector): Let $X \sim \Sigma$, $\mathbf{E}X = 0$. Then

(a)
$$\mathbf{E} \|X\|_2^2 = \mathbf{E} X^{\top} X = \mathbf{E} \operatorname{tr}(X^{\top} X)$$

$1.14 \quad 9/30/24$ - Non-linear concentration

Theorem (Azuma): Let X be random variable, \mathcal{F}_n a filtration.

$$\mathbf{P}(|X - \mathbf{E}X| \ge t) \le 2 \exp\left(-\frac{ct^2}{\sum_{n=0}^{N} \|\mathbf{E}(X \mid \mathcal{F}_n) - \mathbf{E}(X \mid \mathcal{F}_{n-1})\|_{\infty}^2}\right), \quad t > 0.$$

Proof. From 721.