INTEGRACION NUMERICA (Version papel)

Para calcular integrales de la forma:

$$\int_{a}^{b} w(x)f(x)dx,$$

en las cuales w es positiva, se verán reglas de cuadratura de la forma:

$$I_n(f) = \sum_{i=0}^n A_i f(x_i),$$

donde $x_i \in [a, b]$, A_i son constantes, i = 0, ..., n para n = 0 o $n \in \mathbb{N}$.

FORMULAS DE NEWTON-COTES

Para estas reglas w(x) = 1 y los nodos de cuadratura son arbitrarios en [a, b]. Usaremos $x_i = a + ih$, i = 0, ..., n con h = (b - a)/n. Los coeficientes A_i se determinan de modo que $I_n(f)$ resulte exacta cuando $f \in P_n([a, b])$. Si $f \notin P_n([a, b])$, la función f se aproxima por el polinomio de interpolación respecto a $x_0, ..., x_n$. En general, los coeficientes A_i se obtienen del sistema:

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & \vdots & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_n \end{bmatrix} = \begin{bmatrix} m_0 \\ m_1 \\ \vdots \\ m_n \end{bmatrix}, \tag{1}$$

en el cual,

$$m_k = \int_a^b x^k dx, \quad k = 0, \dots, n.$$

Para $f \notin P_n([a,b])$, sea p_n el polinomio de interpolación de f y escribamos:

$$f(x) = p_n(x) + E_n(x), \quad x \in [a, b],$$

donde $E_n(x)$ es el error de interpolación. Entonces:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (p_{n}(x) + E_{n}(x))dx = \sum_{i=0}^{n} A_{i}p_{n}(x_{i}) + \int_{a}^{b} E_{n}(x)dx$$
$$= \sum_{i=0}^{n} A_{i}f(x_{i}) + \int_{a}^{b} E_{n}(x)dx,$$

y luego, el error de integración es,

$$R_n(f) = \int_a^b E_n(x) dx.$$

Regla del punto medio. Corresponde al caso n = 0 con $x_0 = (a+b)/2$. Resolviendo el sistema (1) se encuentra $A_0 = b - a$, luego la regla del punto medio es:

$$I_0(f) = (b-a)f(\frac{b+a}{2}).$$

Si $f \in C^2([a,b])$, el error de integración está dado por:

$$R_0(f) = \int_a^b E_0(x)dx = \int_a^b (f(x) - f(x_0))dx$$
$$= \int_a^b \left[f'(x_0)(x - x_0) + \frac{1}{2}f''(\zeta_x)(x - x_0)^2 \right] dx,$$

para algún ζ_x entre x y x_0 . Usando $M_2 := \max_{x \in [a,b]} |f''(x)|$ y evaluando la integral, se encuentra:

$$|R_0(f)| \le \frac{M_2}{24}(b-a)^3.$$

Regla del punto medio general (o compuesta)

El intervalo [a, b] se divide en n subintervalos introduciendo los nodos $x_i := a + ih$, $i = 0, \ldots, n$ para h := (b - a)/n.

La regla general se obtiene aplicando la anterior en cada subintervalo $I = [x_i, x_{i+1}]$:

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x)dx,$$

$$= \sum_{i=0}^{n-1} \left\{ (x_{i+1} - x_{i})f(\frac{x_{i-1} + x_{i}}{2}) + R_{0}(f_{|_{I}}) \right\}, \qquad f_{|_{I}} := \text{restricción de } f$$

$$= h \sum_{i=0}^{n-1} f(\frac{x_{i-1} + x_{i}}{2}) + \sum_{i=0}^{n-1} R_{0}(f_{|_{I}})$$

luego, la regla del punto medio general es:

$$I_M(f) = h \sum_{i=0}^{n-1} f(\frac{x_{i-1} + x_i}{2})$$

y para el error se tiene:

$$|R_M(f)| \le \sum_{i=0}^{n-1} \frac{M_2}{24} h^3 = \frac{M_2}{24} (b-a)h^2.$$

Regla del trapecio. Corresponde al caso n = 1 con $x_0 = a$, $x_1 = b$. Del sistema (1) se obtienen $A_0 = A_1 = \frac{b-a}{2}$. Luego, la regla del trapecio es:

$$I_1(f) = \frac{(b-a)}{2} [f(a) + f(b)].$$

Si $f \in C^2([a,b])$, para el error de integración se obtiene:

$$R_1(f) := \int_a^b (x - x_0)(x - x_1) \frac{f''(\xi_x)}{2} dx = -\frac{(b - a)^3}{12} f''(\theta),$$

para algún $\theta \in [a, b]$.

Regla de trapecios general (o compuesta)

El intervalo [a, b] se divide en n subintervalos introduciendo los nodos $x_i := a + ih$, para i = 0, ..., n y h := (b - a)/n. La regla general se obtiene aplicando la del trapecio en cada subintervalo.

Regla de trapecios general:

$$T(f) := h \left\{ \frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i) \right\}.$$

Para $f \in C^2([a,b])$, se tiene:

$$R_T(f) = -n\frac{h^3}{12}f''(\theta) = -\frac{(b-a)h^2}{12}f''(\theta), \quad \text{para algún } \theta \in [a,b].$$

Regla de Simpson. Corresponde al caso n=2 con $x_0=a, x_1=(a+b)/2, x_2=b$. Del sistema (1) se obtienen, $A_0=A_2=\frac{b-a}{6}$ y $A_1=4$ $\frac{b-a}{6}$. Luego, la regla Simpson es:

$$I_2(f) := \frac{(b-a)}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right].$$

Para $f \in C^4([a, b])$, el error de integración satisface:

$$R_2(f) := -\frac{1}{90} \left(\frac{b-a}{2}\right)^5 f^{(4)}(\theta),$$

para algún $\theta \in [a, b]$.

Regla de Simpson general (o compuesta)

En el intervalo [a,b] se introducen los 2n+1 nodos $x_i := a+ih$ para $i=0,\ldots,2n$ y h:=(b-a)/(2n). La regla general se obtiene aplicando la regla de Simpson en cada subintervalo $[x_{2i},x_{2i+2}], i=0,\ldots,n-1$.

Regla de Simpson general:

$$I_S(f) := \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=0}^{n-1} f(x_{2i+1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) \right].$$

Cuando $f \in C^4([a,b])$, el error de $I_S(f)$ satisface:

$$R_S(f) = -\frac{(b-a)h^4}{180}f^{(4)}(\theta) = -\frac{nh^5}{90}f^{(4)}(\theta),$$
 para algún $\theta \in [a,b].$

Ejercicio. Encontrar el valor aproximado, con un error menor o igual a 10^{-3} , para

$$\int_0^1 e^{-x^2} dx$$

usando cada método visto anteriormente.

Observaciones.

- (1) Es costumbre referirse a las reglas generales $I_T(f)$ y $I_S(f)$ simplemente como regla de trapecios y regla de Simpson.
- (2) Existen versiones de las Reglas para nodos no igualmente espaciados.

Método de Romberg

Usando la regla de trapecios con diferentes pasos h se pueden obtener reglas de mayor orden. El siguiente proceso, aplicable a funciones muy suaves, se llama $m\acute{e}todo\ de\ Romberg\ y$ se basa en que:

$$\int_{a}^{b} f(x)dx = I_{T}(f) + c_{2}h^{2} + c_{4}h^{4} + \dots + c_{2m}h^{2m} +$$

donde las constantes c_i son independientes de h. Para $h = \frac{b-a}{n}$ sean:

$$I = \int_a^b f(x)dx, \qquad T_h^0 = I_T(f).$$

Con esta notación,

$$I = T_h^0 + c_2 h^2 + c_4 h^4 + \dots + c_{2m} h^{2m} +$$
 (2)

Calculando I por trapecios con $\frac{h}{2}$ se tiene,

$$I = T_{\frac{h}{2}}^{0} + c_{2} \left(\frac{h}{2}\right)^{2} + c_{4} \left(\frac{h}{2}\right)^{4} + \dots + c_{2m} \left(\frac{h}{2}\right)^{2m} +$$
 (3)

Restando a (3) la (2) multiplicada por $\frac{1}{4}$ se encuentra

$$I = T_{\frac{h}{2}}^{0} + \frac{T_{\frac{h}{2}}^{0} - T_{h}^{0}}{3} + \hat{c}_{4}(\frac{h}{2})^{4} + \dots +$$

$$\tag{4}$$

Comparando (4) con (3) vemos que:

(1) $\frac{T_{\frac{h}{2}}^0 - T_h^0}{3}$ es una estimación para el error en $T_{\frac{h}{2}}^0$

(2)
$$T_{\frac{h}{2}}^{1} = T_{\frac{h}{2}}^{0} + \frac{T_{\frac{h}{2}}^{0} - T_{h}^{0}}{3}$$
 es una aproximación para I de orden $\left(\frac{h}{2}\right)^{4}$.

Calculando I por trapecios con $\frac{h}{4}$ se tiene,

$$I = T_{\frac{h}{4}}^{0} + c_{2}(\frac{h}{4})^{2} + c_{4}(\frac{h}{4})^{4} + \dots + c_{2m}(\frac{h}{4})^{2m} +$$
 (5)

Procediendo de forma similar, se encuentra que

$$I = T_{\frac{h}{4}}^{0} + \frac{T_{\frac{h}{4}}^{0} - T_{\frac{h}{2}}^{0}}{3} + \hat{c}_{4}(\frac{h}{4})^{4} + \dots +$$
 (6)

Comparando (5) con (6) vemos que:

(1) $\frac{T_{\frac{h}{4}}^0-T_{\frac{h}{2}}^0}{3}$ es una estimación para el error en $T_{\frac{h}{4}}^0$

(2)
$$T_{\frac{h}{4}}^{1} = T_{\frac{h}{4}}^{0} + \frac{T_{\frac{h}{4}}^{0} - T_{\frac{h}{2}}^{0}}{3}$$
 es una aproximación para I de orden $\left(\frac{h}{4}\right)^{4}$.

Además, con $T^1_{\frac{h}{2}}$ y $T^1_{\frac{h}{4}}$ se obtiene que

$$T_{\frac{h}{4}}^2 = T_{\frac{h}{4}}^1 + \frac{T_{\frac{h}{4}}^1 - T_{\frac{h}{2}}^1}{15}$$

es una aproximación para I de orden $\left(\frac{h}{4}\right)^6$.

Ejemplo: Calcular $\int_0^1 {\rm e}^{-x^2}\,dx$ con error menor que 10^{-9} (valor exacto de la integral: $0.746\,824\,132\,812\ldots$).

Paso	Trapecios	$\Delta/(2^2-1)$		$\Delta/(2^4-1)$		$\Delta/(2^6-1)$
0.5	0.731370251829	1				
0.25	0.742 984 097 800	0.003 871 281 991	0.746 855 379 791			
		0.000 960 505 682		-0.000 001 950 618		
0.125	0.745865614846	\	0.746 826 120 527	\	0.746 824 169 910	\
		0.000 239 660 648		-0.000 000 124 206		-0.000000000582
0.0625	0.746584596788	`	0.746 824 257 438	/	0.746 824 133 230	\
:						0.746824132647
0.00025	0.746 824 128 980	(n=4000)				
: 0.000125	0.746 824 131 854	(n=8000)				

FORMULAS DE GAUSS

Se considera nuevamente el cálculo de

$$\int_{a}^{b} w(x)f(x)dx,$$

con w positiva en [a, b], usando reglas de cuadratura de la forma:

$$I_n(f) = \sum_{i=0}^n A_i f(x_i).$$

A diferencia de las fórmulas de Newton-Cotes, en las fórmulas Gaussianas, tanto los nodos x_i , como las constantes A_i $i=0,\ldots,n$ se determinan de modo que $I_n(f)$ resulte exacta cuando $f \in P_{2n+1}([a,b])$. Esta condición implica que los nodos x_i ahora no son arbitrarios; dependen de w.

Veremos las fórmulas de Gauss-Legendre, en las cuales w(x) = 1 para cada $x \in [-1, 1]$. Tanto los nodos x_i , como las constantes A_i , para la fórmula de Gauss

$$\int_{-1}^{1} f(x)dx = \sum_{i=0}^{n} A_i f(x_i)$$

se pueden ver en la tabla siguiente.

Puntos y pesos de la regla de Gauss de integración

x_i	A_i	x_i	A_i	
n :	= 0	n = 8		
0.0000000000000000	2.000000000000000	$\pm\ 0.968160239507626$	0.081274388361574	
		$\pm\ 0.836031107326636$	0.180648160694858	
n :	= 1	$\pm\ 0.613371432700590$	0.260610696402936	
$\pm\ 0.577350269189626$	1.000000000000000	$\pm\ 0.324253423403809$	0.312347077040003	
		0.0000000000000000	0.330239355001260	
n =	= 2			
$\pm\ 0.774596669241483$	0.55555555555555	n =	= 9	
0.0000000000000000	0.8888888888889	$\pm\ 0.973906528517172$	0.066671344308688	
		$\pm\ 0.865063366688984$	0.149451349150580	
n :	= 3	$\pm\ 0.679409568299024$	0.219086362515982	
$\pm\ 0.861136311594053$	0.347854845137455	$\pm\ 0.433395394129247$	0.269266719309996	
$\pm\ 0.339981043584856$	0.652145154862547	$\pm\ 0.148874338981631$	0.295524224714752	
n :	=4	n = 10		
$\pm\ 0.906179845938664$	0.236926885056189	$\pm\ 0.978228658146057$	0.055668567116174	
$\pm\ 0.538469310105683$	0.478628670499367	$\pm\ 0.887062599768095$	0.125580369464905	
0.0000000000000000	0.56888888888889	$\pm\ 0.730152005574049$	0.186290210927734	
		$\pm\ 0.519096129206811$	0.233193764591990	
n :	= 5	$\pm\ 0.269543155952345$	0.262804544510247	
$\pm\ 0.932469514203152$	0.171324492379170	0.0000000000000000	0.272925086777902	
$\pm\ 0.661209386466265$	0.360761573048138			
$\pm\ 0.238619186083197$	0.467913934572691	n =	= 11	
		$\pm\ 0.981560634246719$	0.047175336386512	
n :	= 6	$\pm\ 0.904117256370475$	0.106939325995318	
$\pm\ 0.949107912342759$	0.129484966168870	$\pm\ 0.769902674194305$	0.160078328543346	
$\pm\ 0.741531185599394$	0.279705391489276	$\pm\ 0.587317954286617$	0.203167426723066	
$\pm\ 0.405845151377397$	0.381830050505119	$\pm\ 0.367831498998180$	0.233492536538355	
0.0000000000000000	0.417959183673470	$\pm\ 0.125233408511469$	0.249147045813403	
n =	= 7			
$\pm\ 0.960289856497537$	0.101228536290376			
$\pm\ 0.796666477413627$	0.222381034453375			
$\pm\ 0.525532409916329$	0.313706645877887			
$\pm\ 0.183434642495650$	0.362683783378362			

$\underline{}$	A_i	x_i	A_i		
n =	= 12	n =	n = 14		
$\pm\ 0.984183054718588$	0.040484004765315	$\pm\ 0.987992518020486$	0.030753241996117		
$\pm\ 0.917598399222978$	0.092121499837728	$\pm\ 0.937273392400706$	0.070366047488108		
$\pm\ 0.801578090733310$	0.138873510219787	$\pm\ 0.848206583410427$	0.107159220467172		
$\pm\ 0.642349339440340$	0.178145980761946	$\pm\ 0.724417731360170$	0.139570677926155		
$\pm\ 0.448492751036447$	0.207816047536889	$\pm\ 0.570972172608538$	0.166269205816994		
$\pm\ 0.230458315955135$	0.226283180262897	$\pm\ 0.394151347077563$	0.186161000015561		
0.0000000000000000	0.232551553230874	$\pm\ 0.201194093997435$	0.198431485327112		
		0.0000000000000000	0.202578241925561		
n = 13					
$\pm\ 0.986283808696813$	0.035119460331751	n =	= 15		
$\pm\ 0.928434883663574$	0.080158087159760	$\pm\ 0.989400934991650$	0.027152459411754		
$\pm\ 0.827201315069765$	0.121518570687903	$\pm\ 0.944575023073233$	0.062253523938648		
$\pm\ 0.687292904811685$	0.157203167158194	$\pm\ 0.865631202387832$	0.095158511682493		
$\pm\ 0.515248636358154$	0.185538397477938	$\pm\ 0.755404408355003$	0.124628971255534		
$\pm\ 0.319112368927890$	0.205198463721296	$\pm\ 0.617876244402644$	0.149595988816577		
$\pm\ 0.108054948707343$	0.215263853463158	$\pm\ 0.458016777657228$	0.169156519395003		
		$\pm\ 0.281603550779259$	0.182603415044924		
		$\pm\ 0.095012509837637$	0.189450610455068		

Ejemplo: Valor calculado de las siguientes integrales mediante la regla de Gauss de n puntos:

$$\int_{-1}^{1} e^{-x^2} dx \qquad \qquad \int_{0}^{\sqrt{\pi}} \sin x^2 dx$$

$$n \quad \text{integral calculada} \qquad n \quad \text{integral calculada}$$

$$0 \quad 2.00000000000000 \qquad 0 \quad 1.253314137315500$$

$$1 \quad 1.43306262114758 \qquad 1 \quad 0.945846306765387$$

$$2 \quad 1.49867959566003 \qquad 2 \quad 0.881724441044291$$

$$3 \quad 1.49333462244954 \qquad 3 \quad 0.895101280858322$$

$$4 \quad 1.49366392070263 \qquad 4 \quad 0.894873008285135$$

$$5 \quad 1.49364761415061 \qquad 5 \quad 0.894829867593220$$

$$6 \quad 1.49364828886942 \qquad 6 \quad 0.894831432899344$$

$$7 \quad 1.49364826489901 \qquad 7 \quad 0.894831471817628$$

$$8 \quad 1.49364826562435 \qquad 9 \quad 0.894831469487727$$

$$9 \quad 1.49364826562435 \qquad 9 \quad 0.894831469487727$$

$$9 \quad 1.49364826562485 \qquad 10 \quad 0.894831469484157$$

$$11 \quad 1.49364826562485 \qquad 11 \quad 0.894831469484145$$

$$12 \quad 1.49364826562485 \qquad 12 \quad 0.894831469484146$$

$$13 \quad 1.49364826562485 \qquad 13 \quad 0.894831469484146$$

$$13 \quad 1.49364826562485 \qquad 14 \quad 0.894831469484144$$

$$15 \quad 1.49364826562485 \qquad 14 \quad 0.894831469484144$$

$$15 \quad 1.49364826562485 \qquad 15 \quad 0.894831469484144$$

Respecto al error de estas fórmulas se tiene el siguiente teorema.

Teorema. Si $f \in C^{2n+2}([-1,1])$, existe $\theta \in [-1,1]$ tal que

$$\int_{-1}^{1} f(x)dx = \sum_{i=0}^{n} A_i f(x_i) + \frac{f^{(2n+2)}(\theta)}{(2n+2)!} \int_{-1}^{1} p_{n+1}^2(x)dx,$$

donde p_{n+1} es el polinomio de Legendre de grado n+1.

Ejemplo. La fórmula de Gauss de m=3 "puntos" (m:=n+1) se obtiene con $x_0=-.774597$, $x_1=.000000$, $x_2=.774597$ y con constantes $A_0=.555556$, $A_1=.888889$, $A_2=.555556$. Esta fórmula es exacta para integrar polinomios $p \in P_5([-1,1])$. Si $f \notin P_5([-1,1])$, el error se calcula usando el teorema.

Cambio de intervalo. Notando que

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(x(t))dt,$$

donde

$$x(t) = \frac{a+b}{2} + \frac{b-a}{2}t.$$

Así, las fórmulas de Gauss anteriores se aplican a integrales sobre [a, b].

Integrales multiples

Las ideas anteriores se extienden a más dimensiones. Como ejemplo del procedimiento, considere calcular

$$I = \int_{D} f(x, y) dA = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx.$$

Para

$$g(x) = \int_{c}^{d} f(x, y) dy$$

se tiene:

$$I = \int_{a}^{b} g(x)dx.$$

Si la integral I se calcula con la regla

$$\int_{a}^{b} g(x)dx = \sum_{i=0}^{n} A_{i}g(x_{i}) + R_{g}, \quad x_{i} \in [a, b]$$

y si los $g(x_i)$ se obtienen como:

$$g(x_i) = \sum_{j=0}^{m} B_j f(x_i, y_j) + R_f, \quad y_j \in [c, d],$$

entonces,

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \sum_{i=0}^{n} A_{i} \left(\sum_{j=0}^{m} B_{j} f(x_{i}, y_{j}) \right) + R,$$

donde el error R es

$$R = R_g + \sum_{i=0}^{n} A_i R_{f(x_i, y)}.$$

Ejemplo. Calcular usando la fórmula de Gauss de 3 puntos en cada dirección

$$\int_0^1 \int_{-1}^0 e^{-(x^2+y^2)} dx dy.$$

Solución. Note que:

$$I = \int_0^1 \int_{-1}^0 f(x, y) dx dy = \int_0^1 F(y) dy = B \int_{-1}^1 F(A + Bt) dt$$

con $A = \frac{a+b}{2} = \frac{1}{2}$ y $B = \frac{b-a}{2} = \frac{1}{2}$. Usando la fórmula de Gauss de 3 puntos:

$$I \approx \sum_{i=0}^{2} \frac{1}{2} A_i F(\frac{1+x_i}{2})$$

donde

$$F(y) = \int_{-1}^{0} f(x, y) dx = \hat{B} \int_{-1}^{1} f(\hat{A} + \hat{B}z, y) dz = \frac{1}{2} \int_{-1}^{1} e^{-((\frac{z-1}{2})^{2} + y^{2})} dz$$

para $\hat{A} = \frac{a+b}{2} = -\frac{1}{2}$ y $\hat{B} = \frac{b-a}{2} = \frac{1}{2}$. Usando la fórmula de Gauss de 3 puntos:

$$F(y) \approx \frac{1}{2} \sum_{j=0}^{2} A_j e^{-((\frac{x_j-1}{2})^2 + y^2)}$$

y luego,

$$I \approx \frac{1}{4} \sum_{i=0}^{2} \sum_{j=0}^{2} A_i A_j e^{-\left(\left(\frac{x_j-1}{2}\right)^2 + \left(\frac{x_i+1}{2}\right)^2\right)}.$$

Ejercicio. Calcular

$$\int_0^1 \left[\int_{e^{-x}}^{e^x} \operatorname{sen}(\frac{x}{1+y^2}) dx \right] dy$$

usando trapecios con n puntos en la dirección x, y m puntos en la dirección y.

Integrales impropias

Todas las reglas de cuadratura anteriores son aplicables cuando f es **acotada** en el intervalo [a,b] y cuando éste es **finito**. Para aplicarlos a integrales impropias se debe previamente hacer ciertos ajustes que dependen de la integral misma.

Considere la integral

$$\int_{a}^{b} f(x)dx$$

con integranda **no acotada** en a, pero convergente.

(1) Si es posible determinar analíticamente un r tal que

$$\left| \int_{a}^{r} f(x) dx \right| \le \epsilon,$$

entonces se toma

$$\int_a^b f(x)dx \approx \int_r^b f(x)dx.$$

(2) Si $\{r_k\}$ es una sucesión estrictamente decreciente con limite a, entonces se escribe

$$\int_{a}^{b} f = \int_{r_{1}}^{b} f + \int_{r_{2}}^{r_{1}} f + \dots + \int_{r_{n+1}}^{r_{n}} f + \dots$$

y se consideran sumandos hasta que

$$\left| \int_{r_{n+1}}^{r_n} f \right| \le \epsilon.$$

(3) A veces un cambio de variable es útil. Por ejemplo, para $f \in C^1([0,1])$, el cambio $t^n = x$ transforma

$$\int_0^1 x^{-\frac{1}{n}} f(x) dx \quad \text{en} \quad n \int_0^1 f(t^n) t^{n-2} dt.$$

(4) Otras ideas.

Cuando el intervalo de integración no es acotado, las mismas ideas anteriores se pueden aplicar cambiando el punto de singularidad por ∞ . Por ejemplo, para

$$\int_0^\infty f(x)dx,$$

(1) determinar analíticamente un r tal que

$$\left| \int_{r}^{\infty} f(x) dx \right| \le \epsilon,$$

y luego se toma

$$\int_0^\infty f(x)dx \approx \int_0^r f(x)dx.$$

(2) Si $\{r_k\}$ es una sucesión estrictamente creciente con limite ∞ , entonces se escribe

$$\int_0^\infty f = \int_0^{r_1} f + \int_{r_1}^{r_2} f + \dots + \int_{r_n}^{r_{n+1}} f + \dots$$

y se consideran sumandos hasta que

$$\left| \int_{r_n}^{n+1} f \right| \le \epsilon.$$

(3) A veces un cambio de variable es útil. Por ejemplo, el cambio $x=\operatorname{tg}(t)$ transforma

$$\int_{-\infty}^{\infty} f(x)dx \quad \text{en} \quad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{f(\operatorname{tg}(t))}{\cos^2(t)} dt.$$

(4) Otras ideas.

GBG/MCP/RRS/MSC, 18 de Septiembre de 2003 \diamond