第五章 弯曲应力

弯曲正应力公式

弯曲切应力公式

$$\tau = \frac{F_S S_z^*}{I_z b}$$

距离z轴y处的切应力

 I_z :整个横截面对中性轴的惯性矩;

b: 矩型截面的宽度

 S_z^* : 距中性轴为y的横线以下部分对中性轴的静矩

弯曲切应力公式

$$\tau = \frac{F_S S_z^*}{I_z b}$$

距离z轴y处的切应力

切应力在横截面上的变化规律

$$\tau = \frac{F_S S_z^*}{I_z b} = \frac{F_S}{2I_z} (\frac{h^2}{4} - y^2)$$

$$\tau_{\text{max}} = \frac{F_S h^2}{8I_z} = \frac{F_S h^2}{8 \times bh^3 / 12} = \frac{3}{2} \times \frac{F_S}{bh} = \frac{3F_S}{2A}$$

弯曲切应力公式

$$\tau = \frac{F_S S_z^*}{I_z b}$$

距离z轴y处的切应力

腹板切应力在横截面上的变化规律

$$\tau = \frac{F_s}{I_z b_0} \left[\frac{b}{8} (h - h_0^2) + \frac{b_0}{2} \left(\frac{h_0^2}{4} - y^2 \right) \right]$$

腹板上的剪力占主导,且近似均匀分布

$$\tau \approx \frac{F_s}{b_0 h_0}$$

3、圆截面梁的切应力

矩形截面梁切应力公式推导过程中涉及的假设和思路:

$$\tau = \frac{F_S S_z^*}{I_z b}$$

- □ 横截面上各点切应力与剪力平行 (τ// F_s);
- □ 切应力沿截面宽度方向均匀分布;
- □ 根据剪应力互等定理转换求解思路;
- □ 横截面上弯曲正应力公式;
- **口** (切三刀得到的单元体)的静力平衡。

3、圆截面梁的切应力

第三刀的边缘上切应力的方向与圆周相切,和剪力不平行。

两个假设

- (1) 沿宽度/k'上各点处的切应力均汇交于0'点。
- (2) 沿宽度方向各点切应力沿y方向分量 τ_y 相等。
- \Box 横截面上各点 τ_{ν} 与剪力平行;
- □ 剪应力互等定理转换求解思路;
- □ 横截面上弯曲正应力公式;
- □ (切三刀得到的单元体) 的静力平衡;

3、圆截面梁的切应力

$$\tau_{y} = \frac{F_{s} S_{Z}^{*}}{I_{Z} b}$$

$$I_{\rm Z} = \frac{\pi d^4}{64}$$

 S_z^* : 弦kk'以下面积对z 轴的静矩。

b: kk'弦的长度

最大切应力在哪个位置?

3、圆截面梁的切应力

$$S_Z^* = S_{Z 扇形}^* - S_{Z 三 角形}^*$$

$$S_{Z\bar{n}\mathcal{R}}^* = \frac{2R^3 \sin \alpha}{3}$$

$$S_{Z \equiv \text{Am}}^* = \frac{2}{3} R^3 \sin \alpha \cos^2 \alpha$$

3、圆截面梁的切应力

$$S_Z^* = S_{Z 南 \mathcal{R}}^* - S_{Z \equiv \mathcal{H} \mathcal{R}}^*$$

$$= \frac{2R^3 \sin \alpha}{3} - \frac{2}{3}R^3 \sin \alpha \cos^2 \alpha$$

$$= \frac{2R^3 \sin \alpha}{3} (1 - \cos^2 \alpha) = \frac{2R^3}{3} \sin^3 \alpha$$

$$b = 2R \sin \alpha$$

$$\frac{S_Z^*}{b} = \frac{1}{3}R^2 \sin^2 \alpha$$

3、圆截面梁的切应力

最大切应力:

$$\tau_{\text{max}} = \frac{4}{3} \frac{F_s}{A}$$

式中
$$A = \frac{\pi d^2}{4}$$
 为圆截面的面积

4、弯曲正应力与弯曲切应力比较

悬臂梁在自由端受集中载荷*F*作用,作此梁的剪力图和弯矩图。

解: (1) 坐标原点取在梁的左端,梁的剪力方程和弯矩方程

$$F_S(x) = -F \qquad (0 < x < l)$$

$$M(x) = -Fx \qquad (0 \le x < l)$$

$$F_{S\max} = F$$
 $M_{\max} = Fl$

4、弯曲正应力与弯曲切应力比较

考虑直径为 d 的圆截面

$$W_z = \frac{\pi d^3}{32} = \frac{Ad}{8}$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} = \frac{8M_{\text{max}}}{Ad}$$

$$\tau_{\text{max}} = \frac{4F_{\text{Smax}}}{3A}$$

$$F_{S \text{max}} = F \qquad M_{\text{max}} = Fl$$

$$\frac{\sigma_{\text{max}}}{\tau_{\text{max}}} = 6\frac{l}{d}$$

4、弯曲正应力与弯曲切应力比较

考虑宽b、高h的矩形截面

$$W_z = \frac{bh^2}{6} = \frac{Ah}{6}$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_z} = \frac{6M_{\text{max}}}{Ah}$$

$$\tau_{\text{max}} = \frac{3F_{\text{Smax}}}{2A}$$

$$\frac{\sigma_{\text{max}}}{\tau_{\text{max}}} = 4\frac{l}{h}$$

对于细长梁, 切应力的影响可以忽略!

哪些情况必需考虑切应力?

- ➤ 梁的跨度较短时 (l/h < 5) , 切应力不可忽略;
- > 在支座附近作用较大载荷(载荷靠近支座), 弯矩小剪力大;
- ▶ 铆接、焊接、胶合的工字形或箱形梁

5、弯曲切应力强度准则

$$\tau_{\text{max}} \leq [\tau]$$

矩形等截面梁

$$\tau_{\text{max}} = \frac{F_{s,\text{max}} S_{z,\text{max}}^*}{I_z b} \le [\tau]$$

例题5.4 圆形截面梁受力如图所示。已知材料的许用应

力[
$$\sigma$$
] = 160 MPa, [τ] = 100 MPa, 试求最小

直径d_{min}。

解:
$$F_{s \max} = 40 \text{ kN}$$
,

$$M_{\text{max}} = \frac{1}{8}ql^2 = 40\text{kN} \cdot \text{m}$$

由正应力强度条件:

$$\sigma_{\max} = \frac{M_{\max}}{W_z} \le [\sigma]$$

 $d \ge 137$ mm

由切应力强度条件:

$$\tau_{\text{max}} = \frac{4}{3} \frac{F_{s \text{max}}}{A} \le [\tau]$$

 $d \ge 26.1$ mm

梁的合理设计

限制梁的承载能力的主要因素是弯曲正应力

$$\sigma_{\max} = \frac{M_{\max}}{W_Z} \le [\sigma]$$

以此作为梁设计的主要依据。

如何提高梁的承载能力?

- (1) 合理安排梁的受力,使 M_{max} 尽可能地小;
- (2) 合理设计截面,使 W_Z 尽可能地大。

1、降低 M_{\max}

合理安排支座

1、降低 M_{\max}

合理安排支座

当两端支座分别向跨中移动 a (0.21) 时

1、降低 M_{\max}

合理安排支座

2、增大 W_z

$$\sigma_{\max} = \frac{M_{\max}}{W_Z} \le [\sigma]$$

合理设计截面

面积相等时,选择抗弯截面系数大的截面

1、 圆:
$$W_{zI} = \frac{\pi D^3}{32}$$

2、正方形:
$$\frac{\pi D_1^2}{4} = a^2, a = \sqrt{\pi}(D_1/2)$$

$$W_{z2} = \frac{bh^2}{6} = \frac{(\sqrt{\pi}R)^3}{6} = 1.18W_{z1}$$

3、长方形:
$$\frac{\pi D_l^2}{4} = 2a_l^2, a_l = \sqrt{2\pi}D_l$$

$$W_{z3} = \frac{bh^2}{6} = \frac{4a_l^3}{6} = 1.67W_{z1}$$

2、增大 W_z

合理设计截面

面积相等时,选择弯曲截面系数大的截面

4、框形:

$$\frac{\pi D_I^2}{4} = 2a_2^2 - 0.8 \times 1.6a_2^2, a_2 = 1.05D_I$$

$$W_{z4} = 4.57W_{zI}$$

5、工字形:

工字形截面与框形截面类似。

2、增大*W*_z

合理设计截面

截面的优化方向

等截面梁的最大正应力

$$\sigma_{max} = \frac{M_{max}}{W_Z}$$

等截面梁的正应力强度准则

$$\sigma_{max} = \frac{M_{max}}{W_Z} \leq [\sigma]$$

等截面梁材料没有充分利用。

设计变截面梁(Wz),使梁上各处最大正应力相等。

$$\sigma_{max}(x) = \frac{M(x)}{W_Z(x)} = Const.$$

3、等强度梁

梁各横截面上可承受的最大正应力都相等,并均达到材料的许用应力,则称为等强度梁。

例如,矩形截面简支梁,宽度b保持不变,高度可变化。试将其设计成等强度梁。

$$\sigma_{\max} = [\sigma]$$

3、等强度梁

$$M(x) = \frac{F}{2}x$$

$$W_z(x) = \frac{1}{6}bh^2(x)$$

梁任一横截面上最大正应力为

$$\sigma_{\text{max}} = \frac{M(x)}{W(x)} = \frac{(F/2)x}{(1/6)bh^2(x)} = [\sigma] \qquad h(x) = \sqrt{\frac{3Fx}{b[\sigma]}}$$

应按切应力强度准则确定截面的最小高度 h_{min}

$$\tau_{\text{max}} = \frac{3}{2} \frac{F_S}{A} = \frac{3}{2} \frac{F/2}{bh_{\text{min}}} = [\tau]$$
 $h_{\text{min}} = \frac{3F}{4b[\tau]}$

3、等强度梁

$$h(x) = \sqrt{\frac{3Fx}{b[\sigma]}} \qquad h_{\min} = \frac{3F}{4b[\tau]}$$

按上式确定的梁的外形,就是厂房建筑中常用的鱼腹梁。

3、等强度梁

鱼腹式吊车梁

作业

5.27 (校核强度)

4.23日(周二) 之前交