Vpliv kršenja predpostavk linearne regresije na njene rezultate

Seminarska naloga pri predmetu Računsko zahtevne metode

Anja Žavbi Kunaver in Vesna Zupanc

11.01.2020

Uvod

- Opazujemo širino in pokritost IZ regresijskih koeficientov
- Linearna regresija (lm) in posplošeni linearni modeli (glm)
- Metoda najmanjših kvadratov (OLS) in metoda iterativnega uteženega povprečja najmanjših kvadratov (IWLS)
- Prednost funkcije glm(): family, link
- Ocenjevanje intervalov zaupanja s funkcijo confint.default()

Predpostavke LR

- linearnost regresijskega modela: $y = \beta_1 + \beta_2 x_i + u_i$
- ničelna povprečna vrednost u_i : $E(u_i) = 0$
- homoskedastičnost: $Var(u_i) = E(u_i^2) = \sigma^2$
- odsotnost avtokorelacije: $cov(e_i, e_j | x_i, x_j) = 0$ za vsak $i \neq j$
- $Cov(x_2, u) = Cov(x_3, u) = ... = Cov(x_k, u) = 0$
- število opazovanj mora presegati število ocenjenih parametrov
- Var(X) je končno pozitivno število
- pravilno specificiran regresijski model
- odsotnost multikolinearnosti: $\lambda_1 X_1 + \lambda_2 X_2 + ... + \lambda_k X_k = 0$
- $u_i \sim N(0, \sigma_u^2)$.

Generiranje podatkov

formula za generiranje podatkov:

$$y_i = 1 + x_1 + x_2 + 0x_3 + \epsilon_i$$
.

- velikost vzorca $n \in \{10, 50, 100, 500, 1000\};$
- korelacija med pojasnjevalnimi spremenljivkami (cor ∈ {0, 0.3, 0.6, 0.9});
- porazdelitev pojasnjevalnih spremenljivk: $X_j \sim Gamma(\delta, 5)$, $j = 1, 2, 3, \ \delta = 2, 5$;
- porazdelitev napak $Gamma(\alpha, 5)$, $\alpha \in \{1, 3, 5\}$;
- v modelu ne upoštevamo vseh neodvisnih spremenljivk: enkrat vključimo vse spremenljivke, enkrat izločimo X_3 , enkrat pa X_2 .

Porazdelitev gama

Analiza variance

Samo za primer vključitve slike.

Slika 1: Velikost učinka pri analizi variance za pokritost intervala zaupanja

Strukturni modeli

Star slajd, samo za primer, če hočeš vključit tabelo.

Tabela 1: Regresijski modeli

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
neobnovljiviViri ~						
starost	-0.003	0.001	-3.289	0.001	-0.004	-0.074
spol	0.076	0.036	2.122	0.034	0.095	0.047
klimatske	-0.079	0.018	-4.468	0.000	-0.099	-0.089
obnovljiviViri ~						
starost	-0.003	0.001	-2.588	0.010	-0.004	-0.062
spol	-0.214	0.040	-5.362	0.000	-0.248	-0.124
klimatske	0.113	0.022	5.197	0.000	0.131	0.118
klimatske ~						
spol	-0.080	0.043	-1.878	0.060	-0.080	-0.045
starost	0.001	0.001	0.864	0.387	0.001	0.020

Dopolnitev in izboljšave

Na koncu je dobro, da napiševa, kaj bova še dodali/spremenili. Npr:

• Preverjanje vpliva homoskedastičnosti/nelinearne zveze

•

Zaključek

Hvala za pozornost!