Description Logics

Material and Examples from the Book An Introduction to Description Logics by

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler
Cambridge University Press, 2017

CS6852: Theory and Applications of Ontologies (TAO) Prof P Sreenivasa Kumar, Dept of CSE, I I T Madras

Introduction

Knowledge of a domain - Essential

- To infer new information from given information
 - John is a research scholar given
 - John is guided/advised by a professor inferred
- Take necessary actions as part of an application

Description Logics (DLs)

- Logic-based knowledge representation (KR) and reasoning 1980's onwards
- A family of languages for KR
 - Important notions in the domain represented by "concept descriptions"
 - Concept descriptions expressions built from atomic concepts and roles
 - Using the "constructors" provided by the particular DL
 - DLs have mathematical logic based semantics
 - Unlike the previous approaches semantic nets and frames
 - Roughly the same as the semantics of first-order logic

Components of domain knowledge

Description Logic Approach

- Divide the domain knowledge into two components
 - Terminological part -- called the TBox
 - Assertional part -- called the ABox
 - TBox and ABox together called as the Knowledge Base (KB)

TBox

- Knowledge about the "structure" of the domain generic nature
- Constraints that hold in the domain
- Like the DB Scheme

ABox

- Knowledge about a concrete situation concerning the domain
- Like a DB instance
- DL KBs also referred as Ontologies

University Domain

Example statements in the TBox

Teacher is a person who teaches a course Student is a person who attends a course Students do not teach

Example statements in the ABox

Mary is a person

CS600 is a course

Mary teaches CS600

DL statements have logic-based semantics

Example sentences in first-order logic:

```
 \forall x \, (\mathsf{Teacher}(x) \Leftrightarrow \mathsf{Person}(x) \land \exists y \, (\mathit{teaches}(x,y) \land \mathsf{Course}(y))), \\ \forall x \, (\mathsf{Student}(x) \Leftrightarrow \mathsf{Person}(x) \land \exists y \, (\mathit{attends}(x,y) \land \mathsf{Course}(y))), \\ \forall x \, ((\exists y \, \mathit{teaches}(x,y)) \Rightarrow \neg \mathsf{Student}(x)), \\ \mathsf{Person}(\mathsf{Mary}), \\ \mathsf{Course}(\mathsf{CS600}), \\ \mathit{teaches}(\mathsf{Mary}, \mathsf{CS600}).
```

Description Logic Notation

Same sentences in DL notation: compact and variable-free

```
TBox: Teacher \equiv Person \sqcap \exists teaches. Course, Student \equiv Person \sqcap \exists attends. Course, \exists attends. \top \sqsubseteq \neg Student,

ABox: Mary: Person, CS600: Course, (Mary, CS600): teaches.
```

What can you infer about Mary?

```
        \forall x \, (\mathsf{Teacher}(x) \Leftrightarrow \mathsf{Person}(x) \land \exists y \, (\mathsf{teaches}(x,y) \land \mathsf{Course}(y))), \\ \forall x \, (\mathsf{Student}(x) \Leftrightarrow \mathsf{Person}(x) \land \exists y \, (\mathsf{attends}(x,y) \land \mathsf{Course}(y))), \\ \forall x \, ((\exists y \, \mathsf{teaches}(x,y)) \Rightarrow \neg \mathsf{Student}(x)), \\ \mathsf{Person}(\mathsf{Mary}), \\ \mathsf{Course}(\mathsf{CS600}), \\ \mathsf{teaches}(\mathsf{Mary}, \mathsf{CS600}).
```

Semantics of DLs

- Based on Mathematical Logic
- Well-defined and shared understanding of
 - When a new statement is entailed by a KB
 - Example KB entails Mary is a teacher
- Automated tools compute the entailments
 - Support development of Knowledge-Based applications
- Common reasoning tasks
 - Concept satisfiability
 - Consistency of KBs
 - Whether one concept is more specific than the other subsumption
 - Is every Surgeon also a Doctor?
 - And Database-style queries
 - Is Jane a Teacher?
 - Who is Sara's advisor?

A trade-off

DL-based systems

- Powerful and perform reasoning wrt to the whole KB TBox and ABox
- Reasoning power comes with a cost
- Computational cost of reasoning
 - Depends on the specific DL
 - DL constructs constrained to ensure reasoning tasks are "decidable"

Trade-off

- Highly expressive DLs have high computational complexity of reasoning
- A large variety of DLs are proposed aiming to get decidable, tractable and useful systems
- o Careless combinations of DL extensions may lead to either undecidability or intractability

Practical Systems

Efficient implementations and optimizations need to be explored

Applications of DL-based systems

DL systems are used in a variety of applications Semantic Web Web Ontology Language (OWL) is based on DLs Databases Schema and Data Integration Query Answering NLP - Word-problem solving/generation **Biological Sciences** Gene, protein ontologies - in widespread use Software Static Analysis, Semantic Debugging -

Typical Application Development

Formalise the domain into an appropriate TBox / Ontology Choose the relevant concept names / role names

- The vocabulary of the domain

Formulate axioms of the TBox

Ontology Engineering

Manual or semi-automatic process

Reasoners

Consistency of the ontology

Ontology editors - Protege

KBs may layer on top of DBs also

Applications - interface with KB through APIs
And carry out tasks

Description Logics - The Specifics

We start with an concrete example domain

The University Domain

Consisting of students, professors, courses, etc

Running example

An informal conceptualization

Graphical representation

Ambiguous

Different people may interpret the arrows in different ways...

University Domain

Domains and Their Descriptions

Domain

- An abstract set that contains things of interest called the "elements"
 - May have a variety of elements e.g. students, courses, professors, class rooms etc
- Captures / represents an application scenario

Description of the domain

- Three Building blocks Concept Names, Role Names, Concept Language
- Concepts *sets* of elements that belong together in some way
- Roles binary relationships among elements
- Concept Language set of concept-forming operators
 - To build concept expressions representing compound concepts
 - Using concept names, role names and operators

The ALC Concept Language (Syntax)

ALC - Attributive Language with Complements

C - set of concept names **R** - set of role names; **C** and **R** are disjoint

ALC concept descriptions are inductively defined as:

- Every concept name is an ALC concept description
- \top and \bot are \mathcal{ALC} concept descriptions (aka *top* and *bottom* concepts)
- If C and D are \mathcal{ALC} concept descriptions and r is a role name, the following are also \mathcal{ALC} concept descriptions

```
C \sqcap D (conjunction); C \sqcup D (disjunction); \neg C (negation);
```

 $\exists r.C$ (existential restriction); $\forall r.C$ (value restriction).

Concept Names and Expressions

Concept - A **set** of elements that belong together in some way -An element may belong to multiple concepts

Concept Names

Represent atomic concepts

Student - elements of the domain who are students

Professor - elements of the domain who are faculty of the university

Staff - employees who are not professors

Concept Expressions / Descriptions

Represent compound concepts

Woman professors - Woman □ Professor

University employees - Staff

Professor

Male professors - Professor □ ¬Woman

Role Names

Role Names

Represent binary relations among elements of the domain

Examples

'teaches' - "Prof John" teaches the course "Discrete Mathematics"

'attends' - "Sara" attends course "Discrete Mathematics"

Use of *role names* to define new sets of elements (concepts)

We often use this in our day-to-day activities...

Students-in-Core-Courses

 Elements of the domain who have 'attends' relation to any of the core courses.

Existential Restriction

Role Fillers

```
r, s - role names; e_1, e_2 and e_3 - elements (e_1, e_2) \in r -- e_2 is called an r-filler for e_1 (e_1, e_3) \in s -- e_3 is called an s-filler for e_1
```

Existential Restriction:

Notation: $\exists r.C$ Here, r is a role name and C is a concept description Set of elements that have at least one r-filler belonging to C

Examples:

- ∃ attends.CoreCourse -- persons who attend a core course
- ∃ teaches. CoreCourse -- persons who teach a core course
- ∃ hasChild.Woman -- persons who have a girl child

Value Restrictions

Notation: $\forall r.C$ -- Here, r is a role name and C is a concept description

Set of elements that have **all** of their *r*-fillers in C

Note that elements with *no r*-fillers also belong to this set!

- consequence of the mathematical definition
- to be seen later

Examples:

- *∀ hasChild.Doctor* -- persons whose children are all doctors!
- ∀ teaches.CoreCourse -- persons who teach only core courses
- → attends. Elective Course -- persons who attend only elective courses

Examples - existential / value restrictions

Interpretation Functions

- Used to fix / assign meanings
 - for concept names
 - o for role names
 - and by extension, for concept descriptions
- Consists of
 - a domain set,
 - a function that assigns
 - subsets of the domain to concept names, and
 - binary relations on the domain to role names
- Definition: An interpretation $I = \{ \Delta^I, .^I \}$ consists of a non-empty set Δ^I , called the interpretation domain and a mapping $.^I$ that maps
 - every concept name $A \subseteq C$ to a set $A^I \subseteq \Delta^I$
 - every role name $r \in R$ to a binary relation $r^I \subseteq \Delta^I \times \Delta^I$

I(A) = a subset of Δ^I I(r) = a subset of $\Delta^I \times \Delta^I$

Notes and Notations

- Domain set Δ^I -- a non-empty set; -- can be finite or infinite also
- A, B -- represent concept names (sometimes with subscripts)
- C, D -- represent compound concepts (sometimes with subscripts)
- *r*, *s* -- represent role names (sometimes with subscripts)
- Domain of the interpretation function: the set of concept descriptions
- A^I -- result of applying the interpretation function I to A
 - o Can be empty or the whole domain or something in-between
- r^{I} -- result of applying the interpretation function I to r
 - o Can be empty or the whole cross-product or something in-between
- $(X)^{I}$ -- result of applying the interpretation function I to X

Interpretation of Concept Descriptions

The mapping \mathcal{I} is extended to \top , \bot and compound concepts as follows:

```
\begin{split} \top^{\mathcal{I}} &= \Delta^{\mathcal{I}}, \\ \bot^{\mathcal{I}} &= \emptyset, \\ (C \sqcap D)^{\mathcal{I}} &= C^{\mathcal{I}} \cap D^{\mathcal{I}}, \\ (C \sqcup D)^{\mathcal{I}} &= C^{\mathcal{I}} \cup D^{\mathcal{I}}, \\ (\neg C)^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}, \\ (\exists r.C)^{\mathcal{I}} &= \{d \in \Delta^{\mathcal{I}} \mid \text{there is an } e \in \Delta^{\mathcal{I}} \text{ with } (d,e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}, \\ (\forall r.C)^{\mathcal{I}} &= \{d \in \Delta^{\mathcal{I}} \mid \text{for all } e \in \Delta^{\mathcal{I}}, \text{ if } (d,e) \in r^{\mathcal{I}}, \text{ then } e \in C^{\mathcal{I}}\}. \end{split}
```

We call: $C^{\mathcal{I}}$ the extension of C in \mathcal{I} , $b \in \Delta^{\mathcal{I}}$ an r-filler of a in \mathcal{I} if $(a, b) \in r^{\mathcal{I}}$

An example interpretation function I

```
\Delta^{\mathcal{I}} = \{m, c6, c7, et\},\
Teacher =\{m\},\
 Course^{\mathcal{I}} = \{c6, c7, et\},\
 \mathsf{Person}^{\mathcal{I}} = \{m, et\},\
     PGC^{\mathcal{I}} = \{c7\},\
teaches ^{\mathcal{I}} = \{(m, c6), (m, c7), (et, et)\}.
```

Interpretation function as a graph

Examples

- (Person ¬ Teacher)^I = { m }
- (Course \neg Person)^I = { c6, c7 }
- (∃ teaches.Course)^I ={ m, et }
- (∀teaches.Course)^I ={ m, c6, c7, et }

- (∃ teaches.(Course □ ¬Person)^I = { m }
- (Person □ ∀ teaches.(Course □ PGC))^I = { }
- (Person □ ∃ teaches.(Course □ ¬PGC))^I = { m, et }
- ...

```
\Delta^{\mathcal{I}} = \{m, c6, c7, et\},
\mathsf{Teacher}^{\mathcal{I}} = \{m\},
\mathsf{Course}^{\mathcal{I}} = \{c6, c7, et\},
\mathsf{Person}^{\mathcal{I}} = \{m, et\},
\mathsf{PGC}^{\mathcal{I}} = \{c7\},
\mathsf{teaches}^{\mathcal{I}} = \{(m, c6), (m, c7), (et, et)\}.
```

ALC syntax is generous

Lemma 2.3. Let \mathcal{I} be an interpretation, C, D concepts, and r a role. Then

Proof of part (vi)

```
(vi) (\neg(\exists r.C))^I = (\forall r.\neg C)^I
(\neg(\exists r.C))^I = \Delta^I \setminus \{d \in \Delta^I \mid \text{there is an } e \in \Delta^I \text{ s.t } (d,e) \in r^I \text{ and } e \in C^I \}
                    = \{ d \in \Delta^{l} \mid \text{there is no } e \in \Delta^{l} \text{ s.t } (d,e) \in r^{l} \text{ and } e \in C^{l} \}
                    = \{ d \in \Delta^{l} \mid \text{ for all } e \in \Delta^{l}, \neg [(d,e) \in r^{l} \text{ and } e \in C^{l}] \}
                    = { d \in \Delta^{l} | for all e \in \Delta^{l}, [\neg(d,e) \in r^{l} \lor \neg(e \in C^{l})] }
                    = \{ d \in \Delta^{l} \mid \text{ for all } e \in \Delta^{l}, \lceil (d,e) \in r^{l} \rightarrow \neg (e \in C^{l}) \rceil \}
                     = (\forall r. \neg C)^{I}
```

ALC Knowledge Bases

We can do several things with \mathcal{ALC}

Represent domain knowledge // Terminological Knowledge - TBox

// Assertional Knowledge - ABox

a. Set-up new terms in the domain

```
UG-Student ≡ Student □ ∀attends.UG-Course

CS-Faculty ≡ Teacher □ ∃ teaches.(Course □ ∃ about.CS-Topic)
```

b. State domain constraints / background knowledge

```
PGC = ¬UGC
```

Teacher

∃ teaches.UG-Course

- State specific knowledge
 - a. Membership of elements in conceptsE.g., John is a Teacher
 - b. Role relationshipsE.g., John "teaches" Discrete Mathematics"

ALC KB - TBoxes

- General Concept Inclusion (GCI) statement / axiom
 - o C ⊑ D where C, D are (possibly compound) concepts
 - Examples: Teacher
 ☐ Person; ☐ teaches. Course ☐ Teacher
- Equivalence axiom
 - \circ C \equiv D is same as C \subseteq D and D \subseteq C
 - Example: ∃ teaches.Course ≡ Teacher
- An ALC TBox
 - A finite set of GCIs
- An interpretation *I* satisfies a GCI C ⊆ D if C^I ⊆ D^I
- An interpretation I satisfies a TBox T if it satisfies all the GCIs in T
- An interpretation I that satisfies a TBox τ is called a **model** of τ

TBox - An example

```
\mathcal{T}_1 = \{ \mathsf{Teacher} \sqsubseteq \mathsf{Person}, \\ \mathsf{PGC} \sqsubseteq \neg \mathsf{Person}, \\ \mathsf{Teacher} \sqsubseteq \exists \mathit{teaches}.\mathsf{Course}, \\ \exists \mathit{teaches}.\mathsf{Course} \sqsubseteq \mathsf{Person} \}
```


I satisfies all the GCIs of \mathcal{T}_1 *I* is a *model* of \mathcal{T}_1

Focus: Design a TBox such that only the interpretations that capture the essence of the domain are its *models*

I does not satisfy the GCIs:

∃ teaches.Course ⊑ Teacher

Course ⊑ ¬ Person

Lemma:

 $\mathcal{T}_1 \subseteq \mathcal{T}_2 \Rightarrow$ any model of \mathcal{T}_2 is also a model of \mathcal{T}_1

TBox Tex

 $T_{\rm ex}$ partially captures our university domain.

I is **not a model** of T_{ex} as I does not satisfy T_{ex} .1, T_{ex} .4

ALC KB - ABoxes

I - set of individual names -- disjoint with concept names C, role names R For a,b \in I, C \in C and r \in R:

An expression of the form a:C is called a *concept assertion*An expression of the form (a,b):r is called a *role assertion*

An ALC ABox: a finite set of concept and role assertions

Additional work for the interpretation function:

Map individual names to elements of the domain: $a \mapsto a^{I}$

I satisfies a:C if $a^I \in C^I$ *I* satisfies (a,b):r if $(a^I,b^I) \in r^I$

If I satisfies all the assertions in an ABox \mathcal{A} , then I is a **model** for \mathcal{A}

An example ABox - \mathcal{A}_{ex}

```
\mathcal{A}_{ex} = \{ Mary : Person, \}
                                               (\mathcal{A}_{ex}.1)
                                                (\mathcal{A}_{ex}.2)
          CS600: Course,
          Ph456 : Course □ PGC,
                                                (\mathcal{A}_{ex}.3)
            Hugo: Person,
                                                (A_{ex}.4)
           Betty: Person \sqcap Teacher, (A_{ex}.5)
(Mary, CS600): teaches,
                                               (\mathcal{A}_{ex}.6)
Hugo, Ph456): teaches,
                                               (\mathcal{A}_{ex}.7)
Betty, Ph456): attends,
                                               (\mathcal{A}_{ex}.8)
(Mary, Ph456): attends }
                                                (\mathcal{A}_{ex}.9)
```

I is a model for \mathcal{A}_{ex}

Unique Names Assumption (UNA) is *not* made UNA: $a \neq b \rightarrow a^{I} \neq b^{I}$

Betty and Hugo are both mapped to h

Interpretation I

```
\Delta^{\mathcal{I}} = \{h, m, c6, p4\},\
   Mary^{\mathcal{I}} = m,
   Betty<sup>\mathcal{I}</sup> = Hugo<sup>\mathcal{I}</sup> = h,
 CS600^{\mathcal{I}} = c6,
  Ph456^{\mathcal{I}} = p4,
 Person<sup>\mathcal{I}</sup> = \{h, m, c6, p4\},
Teacher = \{h, m\},\
 \mathsf{Course}^{\mathcal{I}} = \{c6, p4\},\
    \mathsf{PGC}^{\mathcal{I}} = \{p4\},\
    \mathsf{UGC}^{\mathcal{I}} = \{c6\},\
\mathsf{Student}^{\mathcal{I}} = \emptyset,
teaches = \{(m, c6), (h, p4)\},\
attends = \{(h, p4), (m, p4)\}.
```

An example ABox - \mathcal{A}_{ex}

```
\mathcal{A}_{ex} = \{ Mary : Person, \}
                                               (\mathcal{A}_{ex}.1)
          CS600: Course,
                                               (\mathcal{A}_{ex}.2)
          Ph456 : Course □ PGC,
                                               (A_{ex}.3)
                                               (A_{ex}.4)
            Hugo: Person,
           Betty: Person \sqcap Teacher, (A_{ex}.5)
(Mary, CS600): teaches,
                                               (\mathcal{A}_{ex}.6)
Hugo, Ph456): teaches,
                                               (\mathcal{A}_{ex}.7)
Betty, Ph456): attends,
                                               (\mathcal{A}_{ex}.8)
(Mary, Ph456): attends }
                                               (\mathcal{A}_{ex}.9)
```

I is a model for \mathcal{A}_{ex}

I puts *c*6, *p*4 in Person^{*I*} and *m* in Teacher^{*I*}. Also, *I* interprets UGC.

The ABox does not demand these!

Interpretation I

```
\Delta^{\mathcal{I}} = \{h, m, c6, p4\},\
   Mary^{\mathcal{I}} = m,
   Betty<sup>\mathcal{I}</sup> = Hugo<sup>\mathcal{I}</sup> = h,
 CS600^{\mathcal{I}} = c6,
  Ph456^{\mathcal{I}} = p4,
 Person<sup>\mathcal{I}</sup> = \{h, m, c6, p4\},
Teacher = \{h, m\},\
 Course = \{c6, p4\},
    PGC^{\mathcal{I}} = \{p4\},
    \mathsf{UGC}^{\mathcal{I}} = \{c6\},\
\mathsf{Student}^{\mathcal{I}} = \emptyset,
teaches = \{(m, c6), (h, p4)\},\
attends = \{(h, p4), (m, p4)\}.
```

T_{ex} and interpretation I

```
I does not satisfy T_{ex}. 1 is not satisfied T_{ex}.6 is not satisfied
```

Interpretation I

```
\Delta^{2} = \{h, m, c6, p4\},\
   Mary^{\mathcal{I}} = m,
   Betty<sup>\mathcal{I}</sup> = Hugo<sup>\mathcal{I}</sup> = h,
 CS600^{\mathcal{I}} = c6
  Ph456^{\mathcal{I}} = p4,
 Person<sup>\mathcal{I}</sup> = \{h, m, c6, p4\},
Teacher = \{h, m\},\
 \mathsf{Course}^{\mathcal{I}} = \{c6, p4\},\
    \mathsf{PGC}^{\mathcal{I}} = \{p4\},\
   \mathsf{UGC}^{\mathcal{I}} = \{c6\},\
Student^{\mathcal{I}} = \emptyset,
teaches^{\mathcal{I}} = \{(m, c6), (h, p4)\},\
attends = \{(h, p4), (m, p4)\}.
```