Types of Morphisms in Bicategories

The Clowder Project Authors

May 3, 2024

019H In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 1 and 2). There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory.

Arguably, the notion that best captures these concepts is that of a *pseudomonic morphism* (Definition 1.10.1.1) and of a *pseudoepic morphism* (Definition 2.10.1.1), although the other notions introduced in Sections 1 and 2 are also interesting on their own.

Contents

1	Mo	Monomorphisms in Bicategories		
		Representably Faithful Morphisms		
	1.2	Representably Full Morphisms	3	
	1.3	Representably Fully Faithful Morphisms	4	
	1.4	Morphisms Representably Faithful on Cores	5	
	1.5	Morphisms Representably Full on Cores	6	
	1.6	Morphisms Representably Fully Faithful on Cores	6	
	1.7	Representably Essentially Injective Morphisms	8	
	1.8	Representably Conservative Morphisms	8	
	1.9	Strict Monomorphisms	9	
	1.10	Pseudomonic Morphisms	9	
2	Epi	morphisms in Bicategories	11	
	2.1	Corepresentably Faithful Morphisms	11	
	2.2	Corepresentably Full Morphisms	12	
	2.3	Corepresentably Fully Faithful Morphisms	13	

	2.4	Morphisms Corepresentably Faithful on Cores	14
	2.5	Morphisms Corepresentably Full on Cores	15
	2.6	Morphisms Corepresentably Fully Faithful on Cores	16
	2.7	Corepresentably Essentially Injective Morphisms	17
	2.8	Corepresentably Conservative Morphisms	17
	2.9	Strict Epimorphisms	18
	2.10	Pseudoepic Morphisms	18
A	Oth	er Chapters	20

019J 1 Monomorphisms in Bicategories

019K 1.1 Representably Faithful Morphisms

Let C be a bicategory.

019L **Definition 1.1.1.1.** A 1-morphism $f: A \to B$ of C is **representably** faithful¹ if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is faithful.

Remark 1.1.1.2. In detail, f is representably faithful if, for all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

- **Example 1.1.1.3.** Here are some examples of representably faithful morphisms.
- 019P 1. Representably Faithful Morphisms in Cats₂. The representably faithful morphisms in Cats₂ are precisely the faithful functors; see Categories, Item 1 of Proposition 5.1.1.2.
- 2. Representably Faithful Morphisms in Rel. Every morphism of Rel is representably faithful; see Relations, Item 1 of Proposition 3.8.1.1.

¹Further Terminology: Also called simply a **faithful morphism**, based on Item 1 of

019R 1.2 Representably Full Morphisms

Let C be a bicategory.

Definition 1.2.1.1. A 1-morphism $f: A \to B$ of C is representably full² if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_C(X,A) \to \mathsf{Hom}_C(X,B)$$

given by postcomposition by f is full.

019T Remark 1.2.1.2. In detail, f is representably full if, for each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\beta \downarrow \qquad }_{f \circ \psi} B$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \underbrace{\alpha \downarrow}_{\psi}^{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

$$\beta = \mathrm{id}_f \star \alpha.$$

- **©19U** Example 1.2.1.3. Here are some examples of representably full morphisms.
- 019V 1. Representably Full Morphisms in Cats₂. The representably full morphisms in Cats₂ are precisely the full functors; see Categories, Item 1 of Proposition 5.2.1.2.
- 2. Representably Full Morphisms in Rel. The representably full morphisms in Rel are characterised in Relations, Item 2 of Proposition 3.8.1.1.

Example 1.1.1.3.

²Further Terminology: Also called simply a **full morphism**, based on Item 1 of

019X 1.3 Representably Fully Faithful Morphisms

Let C be a bicategory.

- **Definition 1.3.1.1.** A 1-morphism $f: A \to B$ of C is representably fully faithful³ if the following equivalent conditions are satisfied:
- 1. The 1-morphism f is representably faithful (Definition 1.1.1.1) and representably full (Definition 1.2.1.1).
- 01A0 2. For each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is fully faithful.

- **Remark 1.3.1.2.** In detail, f is representably fully faithful if the conditions in Remark 1.1.1.2 and Remark 1.2.1.2 hold:
 - 1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(C)$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\beta \downarrow \qquad }_{f \circ \psi} B$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

Example 1.2.1.3.

³Further Terminology: Also called simply a fully faithful morphism, based on Item 1

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

- **Example 1.3.1.3.** Here are some examples of representably fully faithful morphisms.
- 01A3 1. Representably Fully Faithful Morphisms in Cats₂. The representably fully faithful morphisms in Cats₂ are precisely the fully faithful functors; see Categories, Item 5 of Proposition 5.3.1.2.
- 2. Representably Fully Faithful Morphisms in Rel. The representably fully faithful morphisms of Rel coincide (Relations, Item 3 of Proposition 3.8.1.1) with the representably full morphisms in Rel, which are characterised in Relations, Item 2 of Proposition 3.8.1.1.
- 01A5 1.4 Morphisms Representably Faithful on Cores Let C be a bicategory.
- Ola6 Definition 1.4.1.1. A 1-morphism $f: A \to B$ of C is representably faithful on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \mathsf{Core}(\mathsf{Hom}_C(X,A)) \to \mathsf{Core}(\mathsf{Hom}_C(X,B))$$

given by postcomposition by f is faithful.

Remark 1.4.1.2. In detail, f is representably faithful on cores if, for all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

01A8 1.5 Morphisms Representably Full on Cores

Let C be a bicategory.

01A9 **Definition 1.5.1.1.** A 1-morphism $f: A \to B$ of C is **representably full** on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \mathsf{Core}(\mathsf{Hom}_C(X,A)) \to \mathsf{Core}(\mathsf{Hom}_C(X,B))$$

given by postcomposition by f is full.

Q1AA Remark 1.5.1.2. In detail, f is representably full on cores if, for each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \underbrace{\stackrel{\phi}{\underset{\psi}{\longrightarrow}}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

O1AB 1.6 Morphisms Representably Fully Faithful on Cores

Let C be a bicategory.

- O1AC Definition 1.6.1.1. A 1-morphism $f: A \to B$ of C is representably fully faithful on cores if the following equivalent conditions are satisfied:
- 1. The 1-morphism f is representably faithful on cores (Definition 1.5.1.1) and representably full on cores (Definition 1.4.1.1).

Olak 2. For each $X \in \text{Obj}(C)$, the functor

$$f_* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is fully faithful.

- **Remark 1.6.1.2.** In detail, f is representably fully faithful on cores if the conditions in Remark 1.4.1.2 and Remark 1.5.1.2 hold:
 - 1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \quad X \stackrel{f \circ \phi}{\biguplus} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \underbrace{\alpha \downarrow \qquad }_{\psi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

$$\beta = \mathrm{id}_f \star \alpha.$$

01AG 1.7 Representably Essentially Injective Morphisms

Let C be a bicategory.

Definition 1.7.1.1. A 1-morphism $f: A \to B$ of C is representably essentially injective if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is essentially injective.

Remark 1.7.1.2. In detail, f is representably essentially injective if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ of C, the following condition is satisfied:

(*) If
$$f \circ \phi \cong f \circ \psi$$
, then $\phi \cong \psi$.

01AK 1.8 Representably Conservative Morphisms

Let C be a bicategory.

O1AL Definition 1.8.1.1. A 1-morphism $f: A \to B$ of C is representably conservative if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is conservative.

Remark 1.8.1.2. In detail, f is representably conservative if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ and each 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \underbrace{\alpha \| \quad }_{\psi} A$$

of C, if the 2-morphism

$$\mathrm{id}_f \star \alpha \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\overset{f \circ \phi}{\underset{f \circ \psi}{\parallel}}}_{f \circ \psi} B$$

is a 2-isomorphism, then so is α .

of Example 1.3.1.3.

01AN 1.9 Strict Monomorphisms

Let C be a bicategory.

Definition 1.9.1.1. A 1-morphism $f: A \to B$ of C is a **strict monomorphism** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$f_* : \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

is injective.

Q1AQ Remark 1.9.1.2. In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

- **O1AR** Example 1.9.1.3. Here are some examples of strict monomorphisms.
- o1AS 1. Strict Monomorphisms in Cats₂. The strict monomorphisms in Cats₂ are precisely the functors which are injective on objects and injective on morphisms; see Categories, Item 1 of Proposition 6.2.1.2.
- 2. Strict Monomorphisms in **Rel**. The strict monomorphisms in **Rel** are characterised in Relations, Proposition 3.7.1.1.

01AU 1.10 Pseudomonic Morphisms

Let C be a bicategory.

Definition 1.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudomonic** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{Hom}_{\mathcal{C}}(X, A) \to \operatorname{Hom}_{\mathcal{C}}(X, B)$$

given by postcomposition by f is pseudomonic.

Q1AW Remark 1.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudomonic if it satisfies the following conditions:

01AX 1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

Olay 2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \quad X \underbrace{\stackrel{f \circ \phi}{\beta \downarrow}}_{f \circ \psi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\circ \psi}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

O1AZ Proposition 1.10.1.3. Let $f: A \to B$ be a 1-morphism of C.

- 01B0 1. Characterisations. The following conditions are equivalent:
- 01B1 (a) The morphism f is pseudomonic.

01B2

(b) The morphism f is representably full on cores and representably faithful.

01B3 (c) We have an isocomma square of the form

$$A \stackrel{\operatorname{id}_A}{\cong} A \xrightarrow{\operatorname{id}_A} A$$

$$A \stackrel{\operatorname{eq.}}{\cong} A \xrightarrow{\times}_B A, \quad \operatorname{id}_A \downarrow \qquad \downarrow_F \downarrow$$

$$A \xrightarrow{F} B$$

in C up to equivalence.

- 01B4 2. Interaction With Cotensors. If C has cotensors with 1, then the following conditions are equivalent:
 - (a) The morphism f is pseudomonic.
 - (b) We have an isocomma square of the form

$$A \overset{\text{eq.}}{\cong} A \overset{\leftrightarrow}{\times}_{\mathbb{1} \pitchfork F} B, \quad A \overset{f}{\underset{E}{\longmapsto}} A \overset{\text{f.}}{\underset{E}{\longmapsto}} A \overset{\text{f$$

in \mathcal{C} up to equivalence.

Proof. Item 1, Characterisations: Omitted. Item 2, Interaction With Cotensors: Omitted.

01B5 2 Epimorphisms in Bicategories

01B6 2.1 Corepresentably Faithful Morphisms

Let C be a bicategory.

Old Definition 2.1.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably faithful** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \operatorname{Hom}_{\mathcal{C}}(B,X) \to \operatorname{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is faithful.

Q1B8 Remark 2.1.1.2. In detail, f is corepresentably faithful if, for all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \Downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

- **O1B9** Example 2.1.1.3. Here are some examples of corepresentably faithful morphisms.
- 01BA 1. Corepresentably Faithful Morphisms in Cats₂. The corepresentably faithful morphisms in Cats₂ are characterised in Categories, Item 4 of Proposition 5.1.1.2.
- 01BB 2. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is corepresentably faithful; see Relations, Item 1 of Proposition 3.10.1.1.
- **01BC** 2.2 Corepresentably Full Morphisms

Let C be a bicategory.

Definition 2.2.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably** full if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is full.

Q1BE Remark 2.2.1.2. In detail, f is corepresentably full if, for each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta : \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \underbrace{\alpha \downarrow \qquad }_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{}}}_{f} X = A \underbrace{\overset{\phi \circ f}{\underset{\psi \circ f}{}}}_{f} X$$

$$\beta = \alpha \star id_f$$
.

O1BF Example 2.2.1.3. Here are some examples of corepresentably full morphisms.

01BG 1. Corepresentably Full Morphisms in Cats₂. The corepresentably full morphisms in Cats₂ are characterised in Categories, Item 5 of Proposition 5.2.1.2.

2. Corepresentably Full Morphisms in Rel. The corepresentably full morphisms in Rel are characterised in Relations, Item 2 of Proposition 3.10.1.1.

01BJ 2.3 Corepresentably Fully Faithful Morphisms

Let C be a bicategory.

- O1BK Definition 2.3.1.1. A 1-morphism $f: A \to B$ of C is corepresentably fully faithful⁴ if the following equivalent conditions are satisfied:
- 1. The 1-morphism f is corepresentably full (Definition 2.2.1.1) and corepresentably faithful (Definition 2.1.1.1).
- **O1BM** 2. For each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is fully faithful.

- **O1BN** Remark 2.3.1.2. In detail, f is corepresentably fully faithful if the conditions in Remark 2.1.1.2 and Remark 2.2.1.2 hold:
 - 1. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{\bigoplus}}}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

 $^{^4}Further\ Terminology:$ Corepresentably fully faithful morphisms have also been called lax epimorphisms in the literature (e.g. in [Adá+01]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

$$\beta \colon \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \underbrace{\alpha \downarrow}_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow}_{\psi}^{\phi} X = A \underbrace{\beta \downarrow}_{\psi \circ f}^{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

- **Example 2.3.1.3.** Here are some examples of corepresentably fully faithful morphisms.
- 01BQ 1. Corepresentably Fully Faithful Morphisms in Cats₂. The fully faithful epimorphisms in Cats₂ are characterised in Categories, Item 9 of Proposition 5.3.1.2.
- 2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Relations, Item 3 of Proposition 3.10.1.1) with the corepresentably full morphisms in Rel, which are characterised in Relations, Item 2 of Proposition 3.10.1.1.
- 01BS 2.4 Morphisms Corepresentably Faithful on Cores Let C be a bicategory.
- **Definition 2.4.1.1.** A 1-morphism $f: A \to B$ of C is **corepresentably** faithful on cores if, for each $X \in \mathrm{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is faithful.

Q1BU Remark 2.4.1.2. In detail, f is corepresentably faithful on cores if, for all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

01BV 2.5 Morphisms Corepresentably Full on Cores

Let C be a bicategory.

O1BW Definition 2.5.1.1. A 1-morphism $f: A \to B$ of C is corepresentably full on cores if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_C(B,X)) \to \mathsf{Core}(\mathsf{Hom}_C(A,X))$$

given by precomposition by f is full.

Q1BX Remark 2.5.1.2. In detail, f is corepresentably full on cores if, for each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon \phi \circ f \xrightarrow{\sim} \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\stackrel{\phi}{\underset{\psi}}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\alpha \parallel}_{\psi} X = A \underbrace{\beta \parallel}_{\psi \circ f} X$$

$$\beta = \alpha \star id_f$$
.

01BY 2.6 Morphisms Corepresentably Fully Faithful on Cores Let C be a bicategory.

- 01BZ Definition 2.6.1.1. A 1-morphism $f: A \to B$ of C is corepresentably fully faithful on cores if the following equivalent conditions are satisfied:
- 1. The 1-morphism f is corepresentably full on cores (Definition 2.5.1.1) and corepresentably faithful on cores (Definition 2.1.1.1).
- 01C1 2. For each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_C(B,X)) \to \mathsf{Core}(\mathsf{Hom}_C(A,X))$$

given by precomposition by f is fully faithful.

- **Remark 2.6.1.2.** In detail, f is corepresentably fully faithful on cores if the conditions in Remark 2.4.1.2 and Remark 2.5.1.2 hold:
 - 1. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow \downarrow \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \qquad A \stackrel{\phi \circ f}{\underbrace{\beta \Downarrow}_{\psi \circ f}} X$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\stackrel{\phi}{\bigoplus}}_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow}_{\psi} X = A \underbrace{\beta \downarrow}_{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

- $^{\circ}$ 2.7 Corepresentably Essentially Injective Morphisms Let C be a bicategory.
- **Definition 2.7.1.1.** A 1-morphism $f: A \to B$ of C is **corepresentably** essentially injective if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is essentially injective.

- **Q1C5** Remark 2.7.1.2. In detail, f is corepresentably essentially injective if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ of C, the following condition is satisfied:
 - (\star) If $\phi \circ f \cong \psi \circ f$, then $\phi \cong \psi$.
- 01C6 2.8 Corepresentably Conservative Morphisms

Let C be a bicategory.

Definition 2.8.1.1. A 1-morphism $f: A \to B$ of C is corepresentably conservative if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is conservative.

Q1C8 Remark 2.8.1.2. In detail, f is corepresentably conservative if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ and each 2-morphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\stackrel{\phi}{\underset{\psi}{\longrightarrow}}} X$$

of C, if the 2-morphism

$$\alpha \star \mathrm{id}_f \colon \phi \circ f \Longrightarrow \psi \circ f, \qquad A \underbrace{ \begin{array}{c} \phi \circ f \\ \parallel \\ \alpha \star \mathrm{id}_f \end{array} }_{\psi \circ f} X$$

is a 2-isomorphism, then so is α .

01C9 2.9 Strict Epimorphisms

Let C be a bicategory.

O1CA Definition 2.9.1.1. A 1-morphism $f: A \to B$ is a strict epimorphism in C if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$f_* \colon \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

is injective.

Q1CB Remark 2.9.1.2. In detail, f is a strict epimorphism if, for each diagram in C of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\Longrightarrow} X,$$

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

- **©1CC** Example 2.9.1.3. Here are some examples of strict epimorphisms.
- 01CD 1. Strict Epimorphisms in Cats₂. The strict epimorphisms in Cats₂ are characterised in Categories, Item 1 of Proposition 6.3.1.2.
- 01CE 2. Strict Epimorphisms in Rel. The strict epimorphisms in Rel are characterised in Relations, Proposition 3.9.1.1.

01CF 2.10 Pseudoepic Morphisms

Let C be a bicategory.

O1CG Definition 2.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudoepic** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is pseudomonic.

- **Q1CH** Remark 2.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudoepic if it satisfies the following conditions:
- 01CJ 1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha | \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

Olck 2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \quad A \xrightarrow[\psi \circ f]{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad B \underbrace{\alpha \downarrow \qquad}_{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow}_{\psi} X = A \underbrace{\beta \downarrow}_{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

O1CL Proposition 2.10.1.3. Let $f: A \to B$ be a 1-morphism of C.

01CM 1. Characterisations. The following conditions are equivalent:

01CN (a) The morphism f is pseudoepic.

(b) The morphism f is corepresentably full on cores and corepresentably faithful.

(c) We have an isococomma square of the form

$$B \stackrel{\text{eq.}}{\cong} B \stackrel{\leftrightarrow}{\coprod}_A B, \quad \text{id}_B \qquad \bigcap_{B \stackrel{\leftarrow}{\longleftarrow}_F} B \qquad \bigcap_{B \stackrel{\leftarrow}{\longleftarrow}_F} A$$

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Appendices

A Other Chapters

Sets

01CP

01CQ

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

6. Constructions With Relations

7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

5. Relations

Relations

9. Types of Morphisms in Bicategories

References

[Adá+01] Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří Velebil. "On Functors Which Are Lax Epimorphisms". In: *Theory Appl. Categ.* 8 (2001), pp. 509–521. ISSN: 1201-561X (cit. on p. 13).