Instructor

You have 50 minutes to complete this test. You must show all work to receive full credit. Each question is worth the indicated value, for a total of 100 points possible. If you have any questions, please come to the front and ask.

## 1. Complete this chart, using exact values:

(20)

| θ in radians      | θ in degrees | sinθ  | cosθ  | tan θ | cscθ  | sec θ   | cot θ |
|-------------------|--------------|-------|-------|-------|-------|---------|-------|
| $-\frac{2\pi}{3}$ | -120°        | -13/2 | -1/2  | V3    | -2/13 | -2      | 1/13  |
| 5T/4              | 225°         | -1/2  | -11/2 | 1     | - Va  | (2<br>- | . 1   |
| TI                | 180°         | 0     | 1     | 0     | undef | -       | undef |
| $\frac{\pi}{3}$   | 60°          | 13/2  | 1/2   | 13    | 2/3   | 2       | 1/13  |

## 2. Determine the EXACT value of the following:

(6)

(a) 
$$sec[arctan(-\frac{3}{5})]$$

Let  $\theta = arctan^{-3}/5$ 
 $tan \theta = \frac{-3}{5}$  and  $-\frac{1}{2} = \frac{4}{5} = \frac{1}{2}$ 

Sec  $\theta = \sqrt{\frac{34}{5}}$ 



(b) 
$$\cos\left[\sin^{-1}\frac{5}{13}\right]$$

Let  $\theta = \sin^{-1}\frac{5}{13}$ 
 $\sin \theta = \frac{5}{13}$  and  $-\frac{17}{2} \le \theta < \frac{17}{2}$ 
 $\cos \theta = \frac{12}{13}$ 



3. Sketch one period of  $y = \frac{1}{2} \sin(\frac{x}{2} - \frac{\pi}{3})$ .

(8)

| (8)                                  |             |
|--------------------------------------|-------------|
| Start \$ - = 0                       | <u> </u>    |
| $X = \frac{2T}{3}$                   | 1/2 - shape |
| end $\frac{x}{3} - \frac{x}{3} = 2T$ | 2T WIT      |
| X = 1红<br>3                          | 3 3         |
| period = 12T = 4TT                   |             |

amplitude:  $\frac{1/2}{4\pi}$  2

period:  $\frac{4\pi}{2\pi\sqrt{3}}$  2

4. Graph the function and use it to solve the equation on the interval  $[-2\pi, 2\pi]$ .

$$\csc x = \sqrt{2}$$



$$SINX = \sqrt{2}$$
  
 $X = \sqrt{14}, 3\sqrt{4}$   
 $-S\sqrt{4}, -7\sqrt{4}$ 

5. Given that  $\tan \theta = -\frac{15}{8}$  and  $\sin \theta < 0$ , find

(a) 
$$\tan(\theta) = -15$$

(6)

(b) 
$$cos(\theta) = \frac{8}{17}$$



(c) 
$$\sin(\theta) = -\frac{15}{17}$$

6. The radius of the magnetic disk in a 3.5-inch diskette is 1.68 inches. Find the linear speed of a point on the circumference of the disk if it is rotating at a speed of 360 revolutions per minute.

$$\frac{360 \text{ red}}{1 \text{ min}} \times \frac{1 \text{ circumserence}}{1 \text{ red}} \times \frac{2 \text{TT} (1.68)''}{1 \text{ circ}}$$

$$= 1209.6 \text{ TT inches/min}$$

- 7. A boat is pulled in by means of a winch located on a dock 10 feet above the deck of the boat. Find the
- () angle of elevation from the boat to the winch if the length of the rope from the winch to the boat is 24 feet. (Round your answer off to 2 decimal places.) Draw a picture of the situation and label known quantities.



$$Sin \theta = \frac{10}{24} = \frac{5}{12}$$
  
 $\theta \approx .4298 \text{ radians or } 24.62^{\circ}$ 

- 8. Determine the quadrant in which the angle (whose measure given in radians) terminates.
- (8)
- (a)  $\frac{5\pi}{4}$



(b)  $-\frac{11\pi}{9}$ 



(c) -1 <u>IV</u>



(d) 2.25 II



9. Solve for y:

(6)



$$tan 30^\circ = \frac{9}{75}$$
  
 $y = 75 tan 30^\circ$   
 $= 75 (\frac{1}{3})$   
 $= \frac{75}{\sqrt{3}} = \frac{75\sqrt{3}}{3} = 25\sqrt{3}$ 

- The terminal side of  $\theta$  lies on the line  $y = \frac{1}{3}x$  in quadrant III. Find the values of the six trigonometric
- functions of  $\theta$ . (6)



$$\sin \theta = \frac{-1}{\sqrt{10}}$$

$$csc\theta = -\sqrt{10}$$

$$sin \theta = \sqrt{10}$$

$$cos\theta = \frac{-3}{\sqrt{10}}$$

$$sec\theta = -\sqrt{10}/3$$

$$sec\theta = -\sqrt{10/3}$$

$$tan \theta = 1/3$$

11. Find a, b, and c for the function  $y = a\sin(bx - c)$  so that the graph of f matches the figure.

Starts at 
$$-\pi/4$$
 = phase shift  $\rightarrow b(-\pi/4)-c=0$   
ends at  $\pi$   
amplitude =  $a=2$ <sub>2pts</sub>  $b\pi-c=2\pi$ 



OR period = 
$$\frac{5\pi}{4} = \frac{2\pi}{b}$$
  $\frac{5b=8}{5}$  phase shift =  $\frac{7}{4}$   $\frac{7}{5}$  =  $\frac{3\pi}{5}$   $\frac{5b=8}{5}$   $C = -\frac{\pi}{4}b = -\frac{\pi}{4}(\frac{9}{5}) = -\frac{2\pi}{5}\pi$ 

phase shift  
= -
$$\frac{\pi}{4}$$
 =  $\frac{2}{5}$ ,  $C = -\frac{2}{5}$ ;  
 $C = -\frac{\pi}{4}b = -\frac{\pi}{4}(\frac{9}{5}) = -\frac{2}{5}$ .

- Find the following: 12.
- The reference angle of 309°: 51° (2) (a)



Both values of  $\theta$  if  $\cos \theta = -\frac{\sqrt{2}}{2}$ :  $\theta = 135^{\circ}, 225^{\circ}$  or  $\frac{3\pi}{4}, 5\pi/4$ (b) (2)

- The radian measure (as a multiple of  $\pi$ ) of 315°:  $3/5^{\circ} \times \frac{\pi}{160^{\circ}} = 7\pi/4$  radians (2) (c)
- The length of the arc on a circle of radius 15 inches intercepted by a central angle of (d) (4)

