Multiple NSP Architecture for IPv6

David Miles david.miles@alcatel-lucent.com

Tadahisa Okimoto t.okimoto@hco.ntt.co.jp

Satoru Matsushima satoru.matsushima@tm.softbank.co.jp

Jun-ya Kato kato.junya@lab.ntt.co.jp

Agenda

- 1. IPv6 Broadband Service Circumstance in Japan
- 2. Generalized Problem Statement & Requirements
- 3. A policy based solution
 - 3.1 Source Address Selection
 - 3.2 Route Selection
 - 3.3 DNS Selection
- 4. Legacy Host Support
- 5. Considerations of how to put this model into BBF

[Background] Current IPv6 Service and Next Step toward April 2011.

- NTT regional companies hold almost 74.3% FTTH market share in Japan (as of Sep 2009). Their current major service is connectivity to the IPv4 Internet.
- In addition, they already started IPv6 transport services on their FTTH over 6 years ago.
 - Now that many residential gateways have an IPv6 uplink.
 - The network configuration for accessing ASP is almost compatible with architecture defined in WT-177.
 - IPv6 uplink doesn't reach global IPv6 internet.

- However, global IPv4 address will be exhausted in recent days. They decided to launch commercial IPv6 Internet connectivity service by April 2011.
 - Two types of IPv6 Internet connectivity services will be deployed: One is PPP tunnel, the other is so-called quasi-native model.

IPv6 Broadband Service Circumstance after Introduced IPv6 Internet access

- PPP tunnel that is almost equivalent to WT-187 will be adopted for IPv6 Internet connection. New BNG installation is planned for PPP termination.
- In this configuration, the residential gateway has two IPv6 uplinks when PPP link is established.
- Both BNGs distribute the following three kinds of information to RG.
 - 1. IPv6 prefixes prefix #1 for ASP, another #2 for the IPv6 Internet
 - 2. Route information RG needs route info for IPv6 packet forwarding
 - 3. DNS information DNS address and domain suffix need to be distributed

Use cases

Multi-Uplink situation will happen in many use case scenarios.

Why it'll not work without policy

- ■Without knowledge, end system will connect by try-anderror or try-all-at-once manner.
- ■However, it raises the following problems.
- Privacy exposure

xSP can know which services user's are subscribing

• Unwanted traffic

Unwanted traffic/query goes to xSP's network/server

• DNS view

DNS replies can be different depending on query source.

NAT64 is another example.

Simultaneous Internet and ASP Access

The challenge becomes:

"How do I provide IPv6 multi-SP Access to a single device?"

The Issues we need to solve:

- How can we implement source address selection policy?
- How can we implement route selection policy?
- How can we implement DNS selection policy?

Source Address Selection Requirement

- When the host has multiple IPv6 addresses on the same interface, a host can dynamically select its own source address based on a selection policy.
- The RG can determine the address selection policy for each uplink, and distribute the policy to the hosts in IPv6 home network.
- •Hosts can get the address selection policy from the RG.

IPv6 Policy Table (RFC 3484)

For *source* address selection

Prefix	Precedence	Label	Explanation
::1/128	50	0	Loopback
::/0	40	1	Native IPv6 addresses
2002::/16	30	2	6to4
::/96	20	3	IPv4 compatible addresses
::ffff:0:0/96	10	4	IPv4 mapped address
2001::/32	5	5	Teredo (Windows)

Longest prefix match

Ignore precedence (dest. addr selection)

Retrieve label Rule 6: Prefer matching label

Try to match source and dest. address labels

Example use of policy table

For *source* address selection

Prefix	Precedence	Label
::1/128	50	0
::/0	40	1
2002::/16	30	2
::/96	20	3
::ffff:0:0/96	10	4
2001::/32	5	5

Source	Source Label	Destination	Destination Label
2001:ac00:1234:1234::100	1	2001:1800:1234::3	1
2001:db8:0:1234::100	1	2001:1800:1234::3	1

Automatic Table Generation

For *source* address selection

Prefix	Prec	Label
::1/128	50	0
::/0	40	1
2001:ac00:1234:1234::/64	40	1
2002::/16	30	2
::/96	20	3
::ffff:0:0/96	10	4
2001::/32	5	5
2001:db8::/32	1	10
2002:db8:0:1234::/64	1	10

RG Route Table

Prefix	Next-Hop
::/0	NSP
2001:db8::/32	ASP

RG Delegated Prefix Table

Delegated Prefix	Origin
2001:ac00:1234:1234::/64	NSP
2002:db8:0:1234::/64	ASP

Example use of policy table

For *source* address selection

Prefix	Prec	Label
::1/128	50	0
::/0	40	1
2001:ac00:1234:1234::/64	40	1
2002::/16	30	2
::/96	20	3
::ffff:0:0/96	10	4
2001::/32	5	5
2001:db8::/32	1	10
2002:db8:0:1234::/64	1	10

Source	Source Label	Destination	Destination Label
2001:ac00:1234:1234::100	1	2001:1800:1234::3	1
2001:db8:0:1234::100	10	2001:1800:1234::3	1

Example use of policy table

For *source* address selection

Prefix	Prec	Label
::1/128	50	0
::/0	40	1
2001:ac00:1234:1234::/64	40	1
2002::/16	30	2
::/96	20	3
::ffff:0:0/96	10	4
2001::/32	5	5
2001:db8::/32	1	10
2002:db8:0:1234::/64	1	10

Source	Source Label	Destination	Destination Label
2001:ac00:1234:1234::100	1	2002:db8:881::45	10
2001:db8:0:1234::100	10	2002:db8:881::45	10

Conclusion: Source address selection policy

- •Can be configured automatically by combining the RG routing table and a table of delegated prefixes: explicit policy table
- A mechanism to pass information to the client is required: "draft-fujisaki-dhc-addr-select-opt" is one of the possible solution
- Only hosts which request the Address Selection Policy will be assigned an IPv6 address from the ASP networks and provided the policy

How to populate routes on the RG?

- <Requirement>
- RG can select the route for each uplink
- <Possible solutions>
- RFC 4191 Default Router Preference and More Specific Routes
- DHCPv6 Route Option (draft-dec-dhcpv6-route-option-02)
- Static Configuration
- **TR-069**
- RIPng

RFC 4191 Example

Prefix	Next-hop
::/0 (default)	NSP
2001:db8::/32	ASP <i>a</i>
2001:4444::/32	ASP <i>b</i>

DHCPv6 - Route Option Example

Prefix	Next-hop
::/0 (default)	NSP
2001:db8::/32	ASP <i>a</i>
2001:4444::/32	ASP <i>b</i>

Conclusion: Routing Policy

Distributing routing policy to the RG allows for the simple routing of packets based on destination IP

Avoids a need to track remote destinations

Policy gives operators and users the ability to influence behavior to suit their needs (such as with VPN access)

DNS selection requirements

- "A user can resolve a FQDN from the qualified ASP's DNS server(s)."
 - •Domain Name can be used to represent "qualification".
 - •An ASP can have multiple DNS servers and Domain Name.
 - •For NSP's case, an ASP can be qualified for ANY domains.

DNS Server	Domain Name	
2001:db8:1::53 fd00:1:1:1::53	[ANY]	Q: cnn.com (Internet)
2001:db8:2::53	.myasp.com, .myasp.net	Q: cnn.com (Internet)
		Q: myasp.com myasp.net

DNS selection possible solutions

1) Distribute Domain Name to DNS Server mapping information

By DHCP or RA.

"draft-savolainen-mif-dnsserver-selection" shows the solution.

DNS Server	Domain Name
2001:db8:1::53 fd00:1:1:1::53	[ANY]
2001:db8:2::53	.myasp.com, .myasp.net

- 2) Send DNS queries to every possible DNS servers:
 - Clear drawbacks are extra-load on DNS servers.
 - Also when multiple replies are returned, it's hard to tell which answer is qualified.

Conclusion: DNS selection policy

Hosts themselves do not require DNS policy: the RG acts as a DNS relay/proxy

The RG DNS proxy will direct the DNS query to the appropriate name server

DHCPv6 without Address Selection Policy

- We should not give multiple addresses to hosts which cannot support address selection policy, if a request is sent we discard the Solicit (per RFC)
- DNS and routing are provided by the RG, so legacy hosts can access
 ASP services via NAT66

Hosts without policy table

For ASP access

■ **Stateless** 1:1 NAT66

2001:ac00:1234:1234:w:x:y:z <-> 2002:db8:0:1234:w:x:y:z

 NAT66 should be the option of last resort for hosts which don't support policy.

Gateway Routing Table

Prefix	Next-hop
::/0 (default)	WAN1
2002:db8::/32	WAN2 (NAT)

Recommendations

- TR-124 expanded to include gateway operation for multiple links (IPv6)
- WT-187 normative reference to TR-124bis multi-link operation for PPPoE and L2TP Softwires
- WT-177 normative reference to TR-124bis multi-link operation for IPv6oE
- Solicit operator input and advance IETF drafts in the various WG

Related I-Ds

draft-fujisaki-dhc-addr-select-opt-08

@6man wg

- October 13, 2009
- http://tools.ietf.org/html/draft-fujisaki-dhc-addr-select-opt-08
- Distributing Address Selection Policy using DHCPv6
- Intended status: Standards Track
- T. Fujisaki, A. Matsumoto NTT, R. Hiromi Intec Netcore

draft-dec-dhcpv6-route-option-02

@dhc wg

- October 19, 2009
- http://tools.ietf.org/html/draft-dec-dhcpv6-route-option-02
- DHCPv6 Route Option
- Intended status: Informational
- W. Dec, R. Johnson Cisco Systems

draft-savolainen-mif-dns-server-selection-01

@mif wg

- October 20, 2009
- http://tools.ietf.org/html/draft-savolainen-mif-dns-server-selection-01
- DNS Server Selection on Multi-Homed Hosts
- Intended status: Informational
- T. Savolainen Nokia

