exercise P

15656

April 2020

P2.11

let **A** and **B** be 2 matrices with size m * n

let
$$\mathbf{A}$$
 and \mathbf{B} be 2 matrices with size $m*n$

$$\bar{A} = \begin{bmatrix} \mathbf{A} & \mathbf{a} \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

$$\bar{B} = \begin{bmatrix} \mathbf{B} & \mathbf{b} \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

$$\bar{A}*\bar{B} = \begin{bmatrix} \mathbf{A} & \mathbf{a} \\ 0 & \dots & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{B} & \mathbf{b} \\ 0 & \dots & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \cdot \mathbf{B} & \mathbf{A} \cdot \mathbf{b} + \mathbf{a} \\ 0 & \dots & 0 & 1 \end{bmatrix}$$
as it can be seen, the multiplication of \mathbf{A} and \mathbf{B} result in a matrix that also has

as it can be seen, the multiplication of A and B result in a matrix that also has the similar $m+1^{th}$ row, thus allow multiple composition of linear transformation on n-dimension vector space.

2 P2.3

$$\mathbf{T} = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$T \cdot C = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{T} \cdot \mathbf{c_1} & \mathbf{T} \cdot \mathbf{c_2} & \dots & \mathbf{T} \cdot \mathbf{c_p} \end{bmatrix}$$

$$T \cdot B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{T} \cdot \mathbf{b_1} & \mathbf{T} \cdot \mathbf{b_2} & \dots & \mathbf{T} \cdot \mathbf{b_p} \end{bmatrix}$$

$$T \cdot B + T \cdot C = \begin{bmatrix} \mathbf{T} \cdot \mathbf{b_1} + \mathbf{T} \cdot \mathbf{c_1} & \mathbf{T} \cdot \mathbf{b_2} + \mathbf{T} \cdot \mathbf{c_2} & \dots & \mathbf{T} \cdot \mathbf{b_p} + \mathbf{T} \cdot \mathbf{c_p} \end{bmatrix}$$

$$= \mathbf{T} \cdot \begin{bmatrix} \mathbf{b_1} + \mathbf{c_1} & \mathbf{b_2} + \mathbf{c_2} & \dots & \mathbf{b_p} + \mathbf{c_p} \end{bmatrix}$$

Hence transformation T preserves addition. It can also be proven that T preserves scalar multiplication, hence it's a linear map.

Matrix representation of that transformation is :
$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix}$$
 if we assume the order of the basis is h_{11} has h_{22}

if we assume the order of the basis is $b_{11}, b_{12}, b_{21}, b_{22}$

3 P2.4

Denote x_1 and x_2 two elements of $ker(\mathbf{f})$

Since f is a linear map, we have $f(x_1) + f(x_2) = f(x_1 + x_2) \implies f(x_1 + x_2) = \vec{0}$ hence $x_1 + x_2$ also belong to $ker(\mathbf{f})$, thus it is closed under addition. Similarly, $ker(\mathbf{f})$ is also closed under scalar multiplication Hence, $ker(\mathbf{f})$ is a subspace

is 1