Listing of the Claims

1. (currently amended) A dispersion and dispersion slope compensating optical waveguide fiber comprising:

a core region surrounded by and in contact with a clad layer, said core region including three segments, a central segment and a first and a second annular segment surrounding said central segment, each said segment having respective radii, r_i , relative refractive index percents, $\Delta_i\%$, where i takes on values 1, 2, and 3 beginning with 1 for the central segment, and refractive index profiles; wherein,

 Δ_1 % is greater than 1.4%, r_1 is less than 3 μ m;

 Δ_2 % is more negative than -0.3%, r_2 is greater than 6 μ m;

 Δ_3 % is greater than 0.15%, r_3 is greater than 9 μ m;

 Δ_1 % is greater than Δ_3 %, r_3 is greater than r_2 ; and,

the combination of Δ_i %'s and r_i 's is selected to provide a negative total dispersion slope more negative than -1.5 ps/nm²-km at 1550 nm and a ratio of total dispersion to total dispersion slope in the range of 40 nm to 60 nm at a wavelength of 1550 nm.

2. (original) The compensating optical waveguide fiber of claim 1 wherein;

 $1.4\% \le \Delta_1\% \le 2\%$, $1.5 \mu m < r_1 < 3.0 \mu m$;

 $-0.3\% \le \Delta_2\% \le -0.45\%$, 6.0 µm $\le r_2 \le 8.0$ µm; and,

 $0.15\% \le \Delta_3\% \le 0.85\%$, $9 \mu m \le r_3 \le 12.0 \mu m$.

- 3. (currently amended) The compensating waveguide of either one of claims 1 or 2 wherein attenuation at 1550 nm is less than 0.60 dB/km and total dispersion slope is more negative than -1.5-ps/nm²-km at 1550 nm.
- 4. (currently amended) The compensating optical waveguide fiber of either one of claims 1

or 2 A dispersion and dispersion slope compensating optical waveguide fiber comprising:

a core region surrounded by and in contact with a clad layer, said core region including three segments, a central segment and a first and a second annular segment surrounding said central segment, each said segment having respective radii, r_i, relative

	e index percents, Δ ₁ %, where i takes on values 1, 2, and 3 beginning with 1 for the
	egment, and refractive index profiles; wherein,
	1% is greater than 1.4%, r ₁ is less than 3 μm;
	2% is more negative than -0.3%, r ₂ is greater than 6 μm;
	3% is greater than 0.15%, r ₃ is greater than 9 μm;
Δ	1% is greater than $\Delta_3\%$, r_3 is greater than r_2 ; and,
tł	te combination of Δ_i %'s and r_i 's is selected to provide a negative total dispersion
slope and	l a ratio of total dispersion to total dispersion slope in the range of 40 nm to 60 nm at
a wavele	ngth of 1550 nm further including a first and a second clad layer, said first layer
	arer t the the core region, each said layer having respective radii, r _{cj} , relative
refractive	e index percents, Δ_{cj} %, where j takes on values 1 and 2, the value 1 corresponding to
	clad layer and the value 2 to an outer clad layer, wherein;
Δ	$_{c1}\%$ < $\Delta_{c2}\%$, r_{1c} > 22 μ m, and the difference between $\Delta_{c2}\%$ and $\Delta_{c1}\%$ is less than or
equal to	0.1%.
5. (origii	nal) The compensating optical waveguide fiber of claim 4 wherein r _{1c} has a range
from 25	um to 35 μ m and the difference between $\Delta_{c1}\%$ and $\Delta_{c2}\%$ has a range from 0.05% to
0.08%.	
6. (origi	nal) The compensating optical waveguide fiber of claim 5 wherein both cut off
waveleng	th and zero dispersion wavelength are less than or equal to 1525 nm.
7. (origi	nal) The compensating optical waveguide fiber of claim 6 wherein attenuation at
1550 nm	is less than 0.60 dB/km and total dispersion slope is more negative than -1.5 ps/nm ² -
km at 15	50 nm.
8. (canc	eled)
9. (curr	ently amended) The compensated span of claim 8 A total dispersion and total
	n slope compensated optical waveguide fiber span comprising;
	first length L_1 of optical waveguide fiber having, at 1550 nm, a positive total
	n and total dispersion slope;

a second length L ₂ of optical waveguide fiber having, at 1550 nm, a negative total
dispersion and negative total dispersion slope, said second length optically coupled in series
arrangement with said first length; wherein,
the ratio of total dispersion to total dispersion slope, at 1550 nm of said first and
second lengths are equal to each other to within 5%, the ratio of the first length to the second
length is not less than 35, and the end to end total dispersion of said span has a pre-selected
value at 1550 nm wherein the pre-selected end to end total dispersion at 1550 nm is zero and
the local total dispersion along said span has a magnitude greater than or equal to 1.0 ps/nm-
km.
10. (currently amended) The compensated span of claim 8 A total dispersion and total
dispersion slope compensated optical waveguide fiber span comprising;
a first length L ₁ of optical waveguide fiber having, at 1550 nm, a positive total
dispersion and total dispersion slope;
a second length L ₂ of optical waveguide fiber having, at 1550 nm, a negative total
dispersion and negative total dispersion slope, said second length optically coupled in series
arrangement with said first length; wherein,
the ratio of total dispersion to total dispersion slope, at 1550 nm of said first and
second lengths are equal to each other to within 5%, the ratio of the first length to the second
length is not less than 35, and the end to end total dispersion of said span has a pre-selected
value at 1550 nm wherein the ratio of total dispersion to total dispersion slope at 1550 nm for
both said first and second optical waveguide fiber lengths have a range from 40 nm to 60 nm.
11. (currently amended) The compensated span of claim 8 A total dispersion and total
dispersion slope compensated optical waveguide fiber span comprising;
a first length L ₁ of optical waveguide fiber having, at 1550 nm, a positive total
dispersion and total dispersion slope;
a second length L ₂ of optical waveguide fiber having, at 1550 nm, a negative total
dispersion and negative total dispersion slope, said second length optically coupled in series
arrangement with said first length; wherein,
the ratio of total dispersion to total dispersion slope, at 1550 nm of said first and
second lengths are equal to each other to within 5%, the ratio of the first length to the second
length is not less than 35, and the end to end total dispersion of said span has a pre-selected
value at 1550 nm wherein said second length of optical waveguide fiber includes a core

i

region surrounded by and in contact with a clad layer, said core region including three segments, a central segment and a first and a second annular segment, each said segment having respective radii, r_i , relative refractive index percents, Δ_i %, where i takes on values 1, 2, and 3 beginning with 1 for the central segment, and a refractive index profile; wherein,

 Δ_1 % is greater than 1.4%, r_1 is less than 3 μ m;

 Δ_2 % is more negative than -0.3%, r_2 is greater than 6 μ m;

 Δ_3 % is greater than 0.15%, r_3 is greater than 9 μ m;

 Δ_1 % is greater than Δ_3 %, r_3 is greater than r_2 .

12. (original) The compensated span of claim 11 wherein said second optical waveguide fiber length has core segment values:

 $1.4\% \le \Delta_1\% \le 2\%$, $1.5 \mu m \le r_1 \le 3.0 \mu m$;

 $-0.3\% \le \Delta_2\% \le -0.45\%$, 6.0 µm $\le r_2 \le 8.0$ µm; and,

 $0.15\% \le \Delta_3\% \le 0.85\%$, $9 \ \mu m \le r_3 \le 12.0 \ \mu m$.

13. (original) The compensated span of claim 12 wherein said second length of optical waveguide fiber further includes a first and a second clad layer, each said layer having respective radii, r_{cj} , relative refractive index percents, Δ_{cj} %, where j takes on values 1 and 2, the value 1 corresponding to an inner clad layer and the value 2 to an outer clad layer, wherein;

 $\Delta_{c1}\%$ < $\Delta_{c2}\%$, r_{1c} > 22 μm , and the difference between $\Delta_{c2}\%$ and $\Delta_{c1}\%$ is less than or equal to 0.1%.

14. (original) The compensated span of claim 13 wherein said second length of optical waveguide fiber has, at 1550 nm, a slope more negative than -1.5 ps/nm²-km, an attenuation less than 0.60 dB/km, and a cut off wavelength less than 1525 nm.