Introdução à Engenharia Química e Bioquímica ENUNCIADO DOS PROBLEMAS

I. Conversão de unidades e cálculos em engenharia

- 1. Converta uma viscosidade de 1 poise (= 1 g cm $^{-1}$ s $^{-1}$) no seu equivalente em lbm ft $^{-1}$ s $^{-1}$. Dados: 1lbm = 453.6 g; 1 ft = 30.48 cm
- 2. Prove que R, a constante dos gases perfeitos, tem o valor 8,314 em unidades de kg.m 2 .s 2 .mol $^{-1}$.K $^{-1}$ e o valor 82,05 em unidades de cm 3 .atm.mol $^{-1}$.K $^{-1}$. Dados: 1 Pa = 9.869×10^{-6} atm
- 3. Bombeia-se ar através de um orifício imerso num líquido. A dimensão das bolhas assim produzidas é função do diâmetro do orifício e das propriedades físicas do líquido. A equação de projecto é a seguinte:

$$\frac{g(\rho_L - \rho_G)D_b^3}{\sigma D_0} = 6$$

Calcule o diâmetro da bolha.

<u>Dados</u>: $g = 32.174 \text{ ft.s}^{-2}$; $\rho_L = \text{densidade do líquido} = 1 \text{ g.cm}^{-3}$; $\rho_G = \text{densidade do gás} = 0.081 \text{ lbm.ft}^{-3}$; $D_b = \text{diâmetro da bolha}$; $\sigma = \text{tensão superficial gás/líquido} = 70.8 \text{ dyn.cm}^{-1}$; $D_0 = \text{diâmetro do orifício} = 1 \text{ mm.}$

- 4. Converta 300 J/min em hp.
- 5. Converta 1 N em lbf.
- 6. Represente as seguintes quantidades na notação científica e indique o respectivo número de algarismos significativos (a) 12,200 (b) 12,200.0 (c) 0.003040
- Exprima as seguintes quantidades na forma decimal e indique o respectivo número de algarismos significativos (a) 1.34×10⁵ (b) 1.340×10⁻²
- 8. Indique o número de algarismo significativos dos resultados dos seguintes cálculos (a) (5.74) (38.27) / (0.001250); (b) $(1.76 \times 10^4) (0.12 \times 10^{-6})$
- 9. Considere a seguinte equação: D(m) = 3t(s) + 4
 - a) Sendo a equação válida, quais são as dimensões das constantes 3 e 4?
 - b) Sendo a equação consistente nas suas unidades, quais são as unidades de 3 e 4?

- 10. O número de Prandtl, *N_{Pr}*, é um grupo adimensional muito importante em cálculos de transporte de calor. É definido pela expressão C_p.μ/k em que C_p é o calor específico de um fluido, μ é a viscosidade do fluido e k a sua condutividade térmica. Considere que para um dado fluido, C_p = 583 J/(kg.°C), k = 0.286 W/(m.°C) e μ = 0.802 kg/(m.s). Estime o valor de N_{Pr} sem usar máquina de calcular. Compare com o valor que obtém com a máquina.
- 11. A variável *k* depende da temperatura da seguinte forma:

$$k$$
(mol.cm⁻³.s⁻¹)=1.2×10⁵ exp($\frac{-20000}{1.987T}$)

em que o valor 20000 tem as unidades de cal.mol⁻¹ e T está em K (Kelvin). Calcule as unidades das quantidades 1.2×10^5 e 1.987.

12. A densidade de um fluido é representada pela seguinte equação empírica:

$$\rho = 70.5 \exp(8.27 \times 10^{-7} P)$$

em que ρ é a densidade do fluido (lbm ft⁻³) e P a pressão (lbf/in²).

- a) quais são as unidades das constantes 70.5 e 8.27×10⁻⁷?
- b) calcule a densidade do fluido, em g/cm³, a uma pressão de 9.00 ×10⁶ N/m²
- c) deduza a expressão de ρ (g/cm³) em função de P (N/m²).
- d) estamos a falar de um fluido líquido ou gasoso?