$$S$$
 aff. alg. sets $T_{n} \in \mathbb{R}^{n}$ S and S alg. sets $T_{n} \in \mathbb{R}^{n}$ S aff. alg. sets $T_{n} \in \mathbb{R}^{n}$ S and S are S are S and S are S are S are S and S are S and S are S are S are S are S and S are S are S are S and S are S and S are S are

· Basic property of () * & (),
$$\Rightarrow$$
 $A^n - U_{n+1} \subset P^n$.

$$P^{n} = \bigcup_{i=1}^{n+1} U_{i} \quad \text{Open covering} \quad \frac{\alpha_{i} \chi_{i} + \dots + \alpha_{n} \chi_{n} + \alpha_{n} \chi_{n} + \alpha_{n} \chi_{n}}{H}$$

general:
$$\bigcup_{H} := \{ l \in \mathbb{P}^n | l \cap H \neq \emptyset \}$$

= $\mathbb{P}(A^m) - \mathbb{P}(L)$

Fact: 1)
$$V_{A}(F)^{*} = V_{P}(F^{*})$$

- 2). Saffine var. () > > > > > Pnj. var nox contained in Hoof
- 3). $Q : k(v^*) \stackrel{\checkmark}{\Longrightarrow} R(v)$ $f/g \mapsto f_*/g_*$ $\lambda: \mathcal{O}_{p}(V^{*}) \cong \mathcal{O}_{p}(V)$.

$$\cdot \lceil \lceil (V^*)_d \xrightarrow{\{\}_*} \lceil (V) \rceil \qquad \text{f mod } I_p(V^*) \longmapsto \ F_* \text{ mod } I$$

$$\Rightarrow d\left(\frac{\text{F mod I}(v^*)}{\text{G mod I}(v^*)}\right) := \frac{\text{F* mod I}}{\text{G* mod I}}$$

$$\Gamma(V) = \mathbb{R}[x] \left(\chi \sim \frac{\chi}{Y} \right) \qquad \Gamma_h(V^*) = \mathbb{R}[\chi, Y]$$

$$\frac{F(x,y)}{G(x,y)} = \frac{F(x,y)/yd}{G(x,y)/yd} = \frac{F(x,y)}{G(x,y)} \sim \frac{F(x)}{G_{*}(x)}$$

where F & G forms of the same degree.

	/A ⁿ	P	Pax x Par x Am		
7£	(x, ,, x _n)	[x ₁ ::x _{n4}]	(P1,, Pr, P) Pie par		
Ying	k[x1,,xn]	'k[X _{1,} , Xn4]	k[X ₁₁ ,, X ₁₁₁ , X ₂₁ ,, X ₂₁₁ ,, X _{r11} ,		
zu pt	F(p)=0	F(P) =0	F(P) = 0 (=)		
algset	V(E)	V _p (s)	√(c) = : {		
Isleal	1(x)	7 _p (X)	I(x) = -		

$$I_p(x) = homog.$$
 (\Leftrightarrow generated by homog. poly.)
$$I_b(x) = \text{multihomog.} (\Leftrightarrow \text{generated by multihomog.})$$

Def. 1) $F = \text{multiform of nultiday} (P_1,...,P_r, q_r) = f F = a = form of deg P_z = when consider as = n = k(x_1,...,x_{i,j} x_{i+1},...x_r, y) [x_i] = ti.

2) I = k(x_1,...,x_r, y) = zs called multi-homogeneous, = f = 1 = s generated forms.$

$$V \subseteq \mathbb{P}^{n_{x}} \times \mathbb{P}^{n_{x}} \dots \times \mathbb{P}^{n_{w}} \times \mathbb{A}^{m_{w}} \qquad \text{Vav. (in)}$$

$$\Gamma_{m}(v) := \mathbb{E}\left[X_{i, \dots}, x_{r}, Y\right] / I_{m}(v)$$

$$\Gamma_{m}(v) := \mathbb{E}\left[X_{i, \dots}, x_{r}, Y\right] / I_{m}(v)$$

$$R_{m}(v) := \mathbb{E}\left[X_{i, \dots}, x_{r}, Y\right]$$

chapter 5 Projective Plane Curve

$$\forall F = Form in k(x, y, z) \Rightarrow V(F) = hypersurface in P2$$

Projective Plane Curve

$$\forall P \in V(F)_{*}$$
 (if not, dehomognize with $X \propto Y$)

 $\mathsf{Imp}(F) := \mathsf{Imp}(F_{*})$

•
$$F = \overline{i} r$$
. $P = \overline{i} m p(E) = 1 \Rightarrow Op(F) = DVR$
 $\Rightarrow ord \stackrel{P}{\rightarrow} : k(F) \rightarrow 2$

from
$$G \in k[x, y, z]$$
, $G_* \in \mathcal{O}_p(\mathbb{P}^2)$ (5.1.3)

$$\overline{G}_* = G_* \pmod{F} \in \mathcal{O}_P(F)$$

$$\operatorname{ord}_{P}^{F}(G) := \operatorname{ord}_{P}^{F}(\overline{G}_{*}) = \operatorname{ord}_{P}^{F}(G) + \operatorname{ord}_{P}^{F}(G$$

$$I(P, Png) := I(P, F_*nG_*)$$

§ 5.2. linear systems of curves aim: model of curves of deg.d.

 $\{H_1, \dots, H_N\} = \text{Set of monorials in } X,Y,Z \text{ of deg } d$. $N = \frac{1}{2}(d+1)(d+2)$ $N-1 = \frac{d(d+3)}{3}$

 $\mathbb{P}^{N-1} \xleftarrow{\text{12.1}} \rightarrow \text{curves of deg. d}$ $[a_1: \dots: a_N] \longrightarrow F = a_1 H_1 + \dots + a_N H_N$

> well-defined. AF, F Stand for the same curve

Fact: the curses of deg. d form a proj. space of din. $\frac{d(d+3)}{2}$.

Transle: (1) $\{ \text{line in } \mathbb{P}^2 \} \xrightarrow{\sim} \mathbb{P}^2$

- (2) { conic in P2 } ~ P5
- (3) & cubic in p2 4 ~ p9
- (4) { quartics in P2} ~ P14

linear system of plane curves := a set of curves of degree d which forms a linear subvariety in $\mathbb{P}^{d(a+3)/2}$

lemma: (1) $P \in \mathbb{P}^2$. $\left\{ C : \text{ curve of day.d} \middle| P \in C \right\}$ forms a hyperp-lane in $\mathbb{P}^{d(d+3)/2}$ $(2) \text{ Give a Set } S \subseteq \mathbb{P}^2.$

 $SF: curve of dept | S \subseteq F$ forms a linear subvariety of $P^{d(d+3)/2}$

Pf: 1) $P \in F_{[a_1:\dots:a_N]} = \sum_{\hat{i}} a_{\hat{i}} H_{\hat{i}} \iff \sum_{\hat{i}} a_{\hat{i}} H_{\hat{i}}(P) = 0 \implies \sqrt{2}$