18.745: LECTURE 25

PROFESSOR: VICTOR KAČ SCRIBE: MAKSIM MAYDANSKIY

Let \mathfrak{g} be as in the last lecture - finite dimesional semisimple lie algebra. Let \mathfrak{h} be a Cartan subalgebra, and $\Pi = \{\alpha_1, \ldots, \alpha_r\} \subset \Delta_+ \subset \Delta$, as before, a system of simple roots. We have the triangular decomposition $\mathfrak{g} = \mathfrak{n}_- + \mathfrak{h} + \mathfrak{n}_+$, $\mathfrak{b} = \mathfrak{h}_+ + \mathfrak{n}_+$, with \mathfrak{b} - a Borel subalgebra, and $[\mathfrak{b}, \mathfrak{b}] = \mathfrak{n}_+$. Let (\cdot, \cdot) be a nondegenerate invariant symmetric form on \mathfrak{g} , let $\rho = \frac{1}{2} \Sigma_{\alpha \in \Delta_+} \alpha$. Let $\{E_i, H_i, F_i\}$ be the Chevalley generators satisfying $H_i = \frac{2\nu^{-1}(\alpha_i)}{(\alpha_i, \alpha_i)}$, $E_i \in \mathfrak{g}_{\alpha}$, $F_i \in \mathfrak{g}_{-\alpha}$ and such that $< E_i, H_i, F_i>$ form the standard basis of $\mathrm{sl}_2(\mathbb{F})$. Recall that E_i 's (respectively F_i 's) generate \mathfrak{n}_+ (respectively \mathfrak{n}_-) and H_i 's form a basis of \mathfrak{h} . We have the weight lattice $P = \{\lambda \in \mathfrak{h}^* | \lambda(H_i) \in \mathbb{Z} \text{ for all } i = 1, \ldots r\}$. Note that $Q \subset P$, since $\alpha_i(H_j) \in \mathbb{Z}$. Define the subset $P_+ = \{\lambda \in \mathfrak{h}^* | \lambda(H_i) \in \mathbb{Z}_+ \text{ for all } i = 1, \ldots r\}$, called the set of dominant integral weights.

Theorem 25.1. (Cartan) The \mathfrak{g} -modules $\{L(\Lambda)\}_{\Lambda\in P_+}$ are, up to isomorphism, all irreducible finite-dimensional \mathfrak{g} -modules. (Recall from previous lectures that $L(\Lambda)$ is the irreducible heigest weight module with heighest weight λ .)

Theorem 25.2. (Weyl's dimension formula) $\dim L(\Lambda) = \prod_{\alpha \in \Delta} \frac{(\Lambda + \rho, \alpha)}{(\rho, \alpha)}$ provided that $\Lambda \in P_+$

Note. $\rho(H_i) = 1$ for all i. Indeed, $s_i(\rho) = s_i \left(\frac{1}{2} \alpha_i + \sum_{\alpha \in \Delta_+ \setminus \{\alpha_i\}} \alpha \right) = -\frac{1}{2} \alpha_i + \sum_{\alpha \in \Delta_+ \setminus \{\alpha_i\}} \alpha = \rho - \alpha_i$. But for any λ we have $s_i(\lambda) = \lambda - \lambda(H_i)\alpha_i$. Hence $\rho(H_i) = 1$

Example 25.3. $\mathfrak{g} = \mathrm{sl}_2$. All finite dimensional irreducible sl-modules are $L(\Lambda(m\rho))$ for $m \in \mathbf{Z}_+$ (observe that $m\rho(H) = m$). $\dim L(m\rho) = m+1$.

Example 25.4. $\mathfrak{g}=\mathrm{sl}_3$. We have $\Pi=\{\alpha_1,\alpha_2\},\ (\alpha_i,\alpha_j)=\begin{pmatrix}2&-1\\-1&2\end{pmatrix},\ \rho=\alpha_1+\alpha_2,\ \rho(\alpha_i)=1,$ $\Lambda=k_1\Lambda_1+k_2\Lambda_2,\ \text{where}\ (\Lambda_i,\alpha_j)=\delta_{ij}.$ By Cartan's theorem, $\dim L(\Lambda)<\infty$ iff $k_1,k_2\in\mathbb{Z}_+.$ We compute $(\Lambda+\rho,\alpha_1)=k_1+1,\ (\Lambda+\rho,\alpha_2)=k_2+1,\ \mathrm{and}\ (\Lambda+\rho,\alpha_1+\alpha_2)=k_1+k_2+1,\ \mathrm{so}\ \mathrm{the}\ \mathrm{Weyl's}$ dimension formula gives $\dim L(\Lambda)=\frac{(k_1+1)(k_2+1)(k_1+k_2+1)}{2}.$

In general, we may write $\Lambda = \Sigma_i k_i \Lambda_i$, where $\Lambda_i(H_j) = \delta_{ij}$. Then $\dim L(\Lambda) < \infty$ iff $k_i \in \mathbb{Z}_+$. These

 k_i are called *labels* of the heighest weight. They are depicted on the Dynkin diagram: Operations on modules can then often be described by manipulations of such labeled Dynkin diagrams.

Proof of Theorem 25.1. First suppose that V is a finite dimensional irreducible \mathfrak{g} -module. By Lie's theorem, since \mathfrak{b} is solvable, there exists a non-zero vector $v \in V$ and $\lambda \in \mathfrak{b}^*$ such that $b(v) = \lambda(b)v$ for any $b \in \mathfrak{b}$. Now if $n \in \mathfrak{n}_+ = [\mathfrak{b}, \mathfrak{b}]$, then $\lambda(n) = \sum_i \lambda([b_i, b_i']) = \sum_i \lambda(b_i) \lambda(b_i') - \lambda(b_i') \lambda(b_i) = 0$. So we have $hv = \lambda(h)v$ and $\mathfrak{n}_+v = 0$. Also $\mathcal{U}(\mathfrak{g})v = V$, since V is irreducible, and $\mathcal{U}(\mathfrak{g})v$ is a non-zero submodule (it contains v). Hence $V = L(\lambda)$. Why is $\lambda \in P_+$? This is because V is a finite-dimensional module with respect to $V = L(\lambda)$. Why is $V \in L(\lambda)$ is an endule with respect to $V \in L(\lambda)$. It remains to show that $V \in L(\lambda)$ if $V \in L(\lambda)$ if $V \in L(\lambda)$ if $V \in L(\lambda)$ if $V \in L(\lambda)$ is dimension formula, which we will in turn deduce from the Weyl's character formula.

Definition. Let V be a \mathfrak{g} -module, such that $V = \bigoplus_{\mu \in \mathfrak{h}^*} V_{\mu}$, where $V_{\mu} = \{v | hv = \mu(h)v \text{ for all } h \in \mathfrak{h}\}$ (we assume $\dim V < \infty$). Then the (formal) character of V is $\operatorname{ch} V = \Sigma_{\mu \in \mathfrak{h}^*}(\dim V_{\mu})e^{\mu}$, where e^{μ} are formal symbols, which obey the property of exponentials, $e^{\lambda}e^{\mu} = e^{\lambda + \mu}$, $e^0 = 1$.

1

Theorem 25.5. (Weyl's character formula.) Let $R = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})$. Provided that $\Lambda \in P_+$, one has: $e^{\rho}R \operatorname{ch}L(\Lambda) = \sum_{w \in W} (\det w)e^{w(\Lambda+\rho)}$

Example 25.6. sl₂. We get $e^{\frac{\alpha}{2}}(1-e^{-\alpha}) \operatorname{ch} L(m\rho) = e^{(m+1)\rho} - e^{-(m+1)\rho}$, so that $\operatorname{ch} L(m\rho) = \frac{e^{(m+1)\rho} - e^{-(m+1)\rho}}{e^{\rho} - e^{-\rho}} = e^{m\rho} + e^{(m-2)\rho} + \ldots + e^{-m\rho}$, which exactly corresponds to what we would expect from last lecture, since applying F means subtracting $\alpha = 2\rho$.

Derivation of Theorem 25.2 from Theorem 25.5. Given $v \in \mathfrak{h}^*$, consider the linear map F_{ν} characterised by $e^{\lambda} \mapsto e^{t(\nu,\lambda)}$. It maps linear combinations to linear combinations and products to products. Applying F_{ρ} to both sides of Weyl's character formula:

$$e^{t(\rho,\rho)}\Pi_{\alpha\in\Delta_{+}}\left(1-e^{-t(\rho,\alpha)}\right)\Sigma_{\lambda}\left(\operatorname{dim}L(\Lambda)_{\lambda}\right)e^{t(\rho,\lambda)}=\Sigma_{w\in W}(\operatorname{det}w)e^{t(\rho,w(\Lambda+\rho))}=$$

$$= \Sigma_{w \in W}(\det w)e^{t(w^{-1}(\rho),\Lambda+\rho)} = \Sigma_{w \in W}(\det w)e^{t(w(\rho),\Lambda+\rho)} = F_{\Lambda+\rho}\left(\Sigma_{w \in W}(\det w)e^{w(\rho)}\right).$$

Letting $\Lambda = 0$ in the Weyl character formula, we get the Weyl denominator identity:

$$e^{\rho}R \cdot 1 = \Sigma_{w \in W} (\det w) e^{w(\rho)}.$$

Substituting in, we obtain

$$F_{\Lambda+\rho}\left(\Sigma_{w\in W}(\mathrm{det}w)e^{w(\rho)}\right) = e^{t(\Lambda+\rho,\rho)}\Pi_{\alpha\in\Delta_+}\left(1-e^{-t(\Lambda+\rho,\alpha)}\right).$$

Together with the first equality, this gives

$$e^{t(\rho,\rho)} \sum \dim L(\Lambda)_{\lambda} e^{-t(\rho,\alpha)} = e^{t(\Lambda+\rho,\rho)} \prod_{\alpha \in \Delta_+} \frac{1 - e^{-t(\Lambda+\rho,\alpha)}}{1 - e^{-t(\rho,\alpha)}}$$

Taking the limit as t goes to 0, we get, by L'Hopital's rule, $\dim L(\Lambda) = \lim_{t \to 0} \prod_{\alpha \in \Delta_+} \frac{(\Lambda + \rho, \alpha)e^{-t(\Lambda + \rho, \alpha)}}{(\rho, \alpha)e^{-t(\rho, \alpha)}} = \prod_{\alpha \in \Delta_+} \frac{(\Lambda + \rho, \alpha)e^{-t(\rho, \alpha)}}{(\rho, \alpha)}$

Proof of the Weyl's character formula. The Weyl group acts on the linear combinations of formal exponentials in an obvious way: $w\left(\Sigma_{\lambda}c_{\lambda}e^{\lambda}\right) = \Sigma_{\lambda}c_{\lambda}e^{w(\lambda)}$.

Lemma 1. If $\Lambda(H_i) \in \mathbb{Z}_+$, then $\operatorname{ch} L(\Lambda)$ is r_i -invariant.

Proof. By the key sl_2 lemma, $F_i^{\Lambda(H_i+1)}v_\Lambda$ is a singular vector of $L(\Lambda)$ (it is killed by E_i by the key lemma, and by E_j for $j\neq i$ since F_i and E_j commute). As $L(\Lambda)$ is irreducible, we conclude that $F_i^{\Lambda(H_i)+1}v_\Lambda=0$. But $L(\Lambda)=\mathcal{U}(\mathfrak{g})v_\Lambda$. Since $(\mathrm{ad}F_i)^Nu=0$ for all $N\gg 0$, given $u\in\mathcal{U}(\mathfrak{g})$, we conclude that $F_i^Nv=0$ for $N\gg 0$, given $v\in V$. It is easy to deduce, using Weyl's complete reducibility theorem, that $L(\Lambda)$ is isomorphic to a direct sum of irreducible $\mathrm{sl}_2=< E_i, H_i, F_i>$ modules, say $V_j:L(\Lambda)=\oplus_j V_j$. But for each V_j the lemma holds, since $V_j\cong \mathrm{sl}_2$ -module $L(m\rho)$. Hence the lemma holds for $L(\Lambda)$ as well.

Lemma 2. For the Verma module $M(\Lambda)$ we have $R \operatorname{ch} M(\Lambda) = e^{\lambda}$

Proof. By Proposition 2 from the last lecture, vectors $E^{k_1}_{-\beta_1}\dots E^{k_N}_{-\beta_N}$ form a basis of $M(\Lambda)$. Hence $\mathrm{ch} M(\Lambda) = \Sigma_{(k_1,\dots k_N)\in \mathbf{Z}_+^N} e^{\Lambda-k_1\beta_1\dots-k_N\beta_N} = e^{\Lambda}\Pi_{\beta\in\Delta_+}(1+e^{-\beta}+e^{-2\beta}+\dots)$. Multiplying both sides by R we get the desired result.

Lemma 3. $w(e^{\rho}R) = (\det w)e^{\rho}R$

Proof. Since s_i 's generate W, it suffices to prove $s_i(e^{\rho}R) = -e^{\rho}R$. Indeed, $s_i(e^{\rho}R) = s_i(e^{\rho}(1 - e^{-\alpha_i})) \left(\prod_{\alpha \in \Delta_+ \setminus \alpha_i} (1 - e^{-\alpha})\right) = e^{\rho - \alpha_i} (1 - e^{\alpha_i}) \prod_{\alpha \in \Delta_+ \setminus \alpha_i} (1 - e^{-\alpha}) = -e^{\rho}R$, as wanted.

Lemma 4. Let $\Lambda \in \mathfrak{h}_{\mathbb{R}}^*$ and let V be a heighest weight module with heighest weight Λ . Let $D(\Lambda) = \{\Lambda - \Sigma k_i \alpha_i, k_i \in \mathbb{Z}_+\}$. Then $\operatorname{ch} V = \Sigma_{\lambda \in B(\Lambda)} a_{\lambda} \operatorname{ch} L(\lambda)$, where $a_{\Lambda} = 1$, $a_{\lambda} \in \mathbb{Z}_+$, and $B(\Lambda) = \{\lambda \in D(\Lambda) | (\Lambda + \rho, \Lambda + \rho) = (\lambda + \rho, \lambda + \rho) \}$.

Proof. By induction on $\dim V = \Sigma_{\lambda \in B(\Lambda)} \dim V_{\lambda} < \infty$, since $B(\Lambda)$ is finite (by Proposition 1 from last lecture). If v_{λ} is the only singular vector of V, then $V = L(\Lambda)$ and we are done. If we have another singular vector v_{λ} then by Proposition 1 from last time $\lambda \in B(\Lambda)$. Let $U = \mathcal{U}(\mathfrak{g})v_{\lambda}$, a heighest weight submodule of V. Then we have an exact sequence of \mathfrak{g} -modules $0 \to U \to V \to V/U \to 0$. Then $\operatorname{ch} V = \operatorname{ch} U + \operatorname{ch} U/V$, and we apply the induction assumption to both summands.

Lemma 5. In the assumptions of Lemma 4 and presuming V is irreducible, we have $\operatorname{ch} V = \Sigma_{\lambda \in B(\lambda)} b_{\lambda} \operatorname{ch} M_{\lambda}$, where $b_{\Lambda} = 1$ and $b_{\lambda} \in Z$.

Proof. By Lemma 4 we have for any $\mu \in M(\Lambda)$: $\operatorname{ch} M_{\mu} = \Sigma_{\lambda \in B(\mu)} a_{\lambda,\mu} \operatorname{ch} L(\lambda)$. Now $B(\Lambda) = \{\lambda_1, \ldots, \lambda_s\}$, where $\lambda_i - \lambda_j \notin \{\Sigma k_i \alpha_i | k_i \in \mathbb{Z}_+\}$ if i > j. We therefore have a system of linear equations $\operatorname{ch} M_{\mu} = \Sigma_{\lambda \in B(\mu)} a_{\lambda,\mu} \operatorname{ch} L(\lambda)$, for which the matrix $(a_{ij})_{ij}$ is upper triangular matrix of integers with ones on the diagonal, and so its inverse, which expresses $\operatorname{ch} L(\Lambda)$'s in terms of $\operatorname{ch} M(\mu)$'s for $\mu \in B(\Lambda)$ is a matrix of integers with ones on the diagonal as well, and we are done.

Now, to deduce the theorem from the lemmas, observe that by Lemma 5 $\operatorname{ch} V = \Sigma_{\lambda \in B(\lambda)} a_{\lambda} \operatorname{ch} M_{\lambda}$, where $a_{\Lambda} = 1$ and $a_{\lambda} \in Z$ We multiply both sides by $e^{\rho}R$ and use Lemma 2 to obtain $e^{\rho}R$ $\operatorname{ch} L(\Lambda) = \Sigma_{\lambda \in B(\lambda)} a_{\lambda} e^{\rho + \lambda}$, $a_{\Lambda} = 1$, $a_{\lambda} \in Z$. By Lemma 1 $\operatorname{ch} L(\Lambda)$ is W-invariant, and by Lemma 3 $e^{\rho}R$ is W-anti-invariant (i.e. multiplied by the determinant). Hence the left hand side of the equation is anti-invariant, and therefore so is the right hand side. We have

$$e^{\rho}R \operatorname{ch}L(\Lambda) = \sum_{w \in W} (\det w) e^{w(\Lambda+\rho)} + \sum_{\lambda \in B(\Lambda) \setminus \{\Lambda\}, \lambda+\rho \in P_+} a_{\lambda} \sum_{w \in W} (\det w) e^{w(\lambda+\rho)}$$

It remains to show that the second term in this sum is empty, i.e. that there are no λ with $\lambda + \rho \in P_+$, $\lambda = \Lambda - \alpha$ for $\alpha = \Sigma k_i \alpha_i, k_i \in \mathbb{Z}_+, \alpha \neq 0$ and $(\lambda + \rho, \lambda + \rho) = (\Lambda + \rho, \Lambda + \rho)$. Indeed, for such a λ we would have $0 = (\Lambda + \rho, \Lambda + \rho) - (\lambda + \rho, \lambda + \rho) = (\lambda + \Lambda + 2\rho, \alpha) > 0$, since $(\Lambda, \alpha_i) = \frac{2\Lambda(H_i)}{(\alpha_i, \alpha_i)} \geq 0$ and similarly $(\lambda + \rho, \alpha_i) \geq 0$, and $(\rho, \alpha) > 0$ since $\frac{2}{(\alpha_i, \alpha_i)} > 0$. This gives a contradictionand complets the proof.