Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Домашнее задание №1 по дисциплине «Методы машинного обучения»

Выполнил: студент группы ИУ5-21М Мьоу 3о У

1. Задание

Домашнее задание по дисциплине направлено на решение комплексной задачи машинного обучения с учителем. Домашнее задание включает выполнение следующих шагов:

- 1. Поиск и выбор набора данных для построения модели машинного обучения. На основе выбранного набора данных строится модель машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Для выбранного датасета (датасетов) на основе материалов лекций, в целях улучшения выборки, решить следующие задачи (если это необходимо в данном датасете):
- устранение пропусков в данных;
- кодирование категориальных признаков;
- нормализацию числовых признаков;
- масштабирование признаков;
- обработку выбросов для числовых признаков;
- обработку нестандартных признаков (которые не является числовым или категориальным);
- отбор признаков, наиболее подходящих для построения модели;
- устранение дисбаланса классов в случае решения задачи классификации на дисбалансированной выборке.
- 3. Обучить модель и оценить метрики качества для двух выборок:
- исходная выборка, которая содержит только минимальную предобработку данных, необходимую для построения модели (например, кодирование категориальных признаков).
- улучшенная выборка, полученная в результате полной предобработки данных в пункте 2.
- 4. Построить модель с использованием произвольной библиотеки AutoML.
- 5. Сравнить метрики для трех полученных моделей.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
from sklearn.impute import KNNImputer
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Lasso
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
%matplotlib inline
sns.set(style="ticks")
```

data_loaded = pd.read_csv('solar.csv', sep=",")

data_loaded.head()

		talog mber	Unnamed: 1	Time	Delta	Lunationnumber	Sarosnumber	Unnamed: 6	Gamma	Eclipsemagnitude	Unnamed: 9	Unnamed: 10	Sunaltitude	Sunazin
C	1.0)	NaN	3:14:51	46438.0	49456.0	5.0	NaN	0.2701	1.0733	NaN	NaN	74.0	344.0
1	2.0)	NaN	23:45:23	46426.0	49457.0	10.0	NaN	0.2702	0.9382	NaN	NaN	76.0	21.0
2	3.0)	NaN	18:09:16	46415.0	49458.0	15.0	NaN	0.2703	1.0284	NaN	NaN	60.0	151.0
3	4.0)	NaN	5:57:03	46403.0	49459.0	20.0	NaN	0.2704	0.9806	NaN	NaN	25.0	74.0
4	5.0)	NaN	13:19:56	46393.0	49460.0	-13.0	NaN	0.2705	0.1611	NaN	NaN	0.0	281.0

```
data_loaded.shape
(32686, 19)
```

```
data_loaded = data_loaded.drop(['Unnamed: 6', 'Sunaltitude'], axis=1)
data_loaded.head()
```

	Catalog Number	Unnamed:	Time	Delta	Lunationnumber	Sarosnumber	Gamma	Eclipsemagnitude	Unnamed: 9	Unnamed: 10	Sunazimuth	PathWidth (km)	Central Duratio
0	1.0	NaN	3:14:51	46438.0	49456.0	5.0	0.2701	1.0733	NaN	NaN	344.0	247.0	0:06:37
1	2.0	NaN	23:45:23	46426.0	49457.0	10.0	0.2702	0.9382	NaN	NaN	21.0	248.0	0:06:38
2	3.0	NaN	18:09:16	46415.0	49458.0	15.0	0.2703	1.0284	NaN	NaN	151.0	249.0	0:06:37
3	4.0	NaN	5:57:03	46403.0	49459.0	20.0	0.2704	0.9806	NaN	NaN	74.0	250.0	0:06:37
4	5.0	NaN	13:19:56	46393.0	49460.0	-13.0	0.2705	0.1611	NaN	NaN	281.0	251.0	0:06:38

```
def check_null_values(data):
    return list(zip([i for i in data.columns], zip(
    #munn κοποικοκ
    [str(i) for i in data.dtypes],
    #προδερκα, есть ли пропущенные значения
    [i for i in data.isnull().sum()])))
```

```
data_features = check_null_values(data_loaded)
data_features

[('Catalog Number', ('float64', 20788)),
    ('Unnamed: 1', ('float64', 32686)),
    ('Time', ('object', 20788)),
    ('Delta', ('float64', 20788)),
    ('Lunationnumber', ('float64', 20788)),
    ('Sarosnumber', ('float64', 20788)),
    ('Gamma', ('float64', 20788)),
    ('Eclipsemagnitude', ('float64', 20788)),
    ('Unnamed: 9', ('float64', 32686)),
```

Устранение пропусков в данных

Заполнение значений для одного признака

data_na_replaced

	Catalog Number	Unnamed:	Time	Delta	Lunationnumber	Sarosnumber	Gamma	Eclipsemagnitude	Unnamed: 9	Unnamed: 10	Sunazimuth	PathWidth (km)	Ce Du
0	1.0	NaN	3:14:51	46438.0	49456.0	5.0	0.2701	1.0733	NaN	NaN	344.0	247.0	0:0
1	2.0	NaN	23:45:23	46426.0	49457.0	10.0	0.2702	0.9382	NaN	NaN	21.0	248.0	0:0
2	3.0	NaN	18:09:16	46415.0	49458.0	15.0	0.2703	1.0284	NaN	NaN	151.0	249.0	0:0
3	4.0	NaN	5:57:03	46403.0	49459.0	20.0	0.2704	0.9806	NaN	NaN	74.0	250.0	0:0
4	5.0	NaN	13:19:56	46393.0	49460.0	-13.0	0.2705	0.1611	NaN	NaN	281.0	251.0	0:0
32681	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32682	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32683	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32684	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32685	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

32686 rows × 17 columns

Name: Delta, Length: 32686, dtype: float64

#Сравнение заполнения различными показателями распределения research_impute_numeric_column(data_loaded, 'Delta')

Кодирование категориальных признаков

1. Label Encoding

```
from sklearn.preprocessing import LabelEncoder
```

data_encoded = data_na_replaced.copy()
data_encoded

	Catalog Number	Unnamed: 1	Time	Delta	Lunationnumber	Sarosnumber	Gamma	Eclipsemagnitude	Unnamed: 9	Unnamed: 10	Sunazimuth	PathWidth (km)	Ce Du
0	1.0	NaN	3:14:51	46438.0	49456.0	5.0	0.2701	1.0733	NaN	NaN	344.0	247.0	0:0
1	2.0	NaN	23:45:23	46426.0	49457.0	10.0	0.2702	0.9382	NaN	NaN	21.0	248.0	0:0
2	3.0	NaN	18:09:16	46415.0	49458.0	15.0	0.2703	1.0284	NaN	NaN	151.0	249.0	0:0
3	4.0	NaN	5:57:03	46403.0	49459.0	20.0	0.2704	0.9806	NaN	NaN	74.0	250.0	0:0
4	5.0	NaN	13:19:56	46393.0	49460.0	-13.0	0.2705	0.1611	NaN	NaN	281.0	251.0	0:0
32681	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32682	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32683	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32684	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
32685	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na

32686 rows × 17 columns

4

```
#Le = LabelEncoder()
category_columns = ['Catalog Number', 'Delta', 'Gamma']
for col in category_columns:
    le = LabelEncoder()
    data_encoded[col] = le.fit_transform(data_encoded[col])
data_encoded
```

	Catalog Number	Unnamed:	Time	Delta	Lunationnumber	Sarosnumber	Gamma	Eclipsemagnitude	Unnamed:	Unnamed:	Sunazimuth	PathWidth (km)	Cent Dura
0	0	NaN	3:14:51	9189	49456.0	5.0	0	1.0733	NaN	NaN	344.0	247.0	0:06
1	1	NaN	23:45:23	9188	49457.0	10.0	1	0.9382	NaN	NaN	21.0	248.0	0:06
2	2	NaN	18:09:16	9187	49458.0	15.0	2	1.0284	NaN	NaN	151.0	249.0	0:06
3	3	NaN	5:57:03	9186	49459.0	20.0	3	0.9806	NaN	NaN	74.0	250.0	0:06
4	4	NaN	13:19:56	9185	49460.0	-13.0	4	0.1611	NaN	NaN	281.0	251.0	0:06
32681	0	NaN	NaN	16113	NaN	NaN	17019	NaN	NaN	NaN	NaN	NaN	NaN
32682	0	NaN	NaN	16112	NaN	NaN	17018	NaN	NaN	NaN	NaN	NaN	NaN
32683	0	NaN	NaN	9190	NaN	NaN	17017	NaN	NaN	NaN	NaN	NaN	NaN
32684	0	NaN	NaN	21876	NaN	NaN	22780	NaN	NaN	NaN	NaN	NaN	NaN
32685	0	NaN	NaN	29977	NaN	NaN	30881	NaN	NaN	NaN	NaN	NaN	NaN

32686 rows × 17 columns

Control of the Contro

Нормализация числовых признаков


```
def diagnostic_plots(df, variable):
   plt.figure(figsize=(15,6))
   # zucmozpamma
   plt.subplot(1, 2, 1)
   df[variable].hist(bins=30)
   ## Q-Q plot
   plt.subplot(1, 2, 2)
   stats.probplot(df[variable], dist="norm", plot=plt)
   plt.show()
```

data_normalized.hist(figsize=(20,20)) plt.show()

data_normalized

	Catalog Number	Unnamed:	Time	Delta	Lunationnumber	Sarosnumber	Gamma	Eclipsemagnitude	Unnamed: 9	Unnamed: 10	Sunazimuth	PathWidth (km)	Ce Du
0	-0.000000	NaN	3:14:51	9189	49456.0	5.0	0	1.0733	NaN	NaN	344.0	247.0	0:0
1	0.645487	NaN	23:45:23	9188	49457.0	10.0	1	0.9382	NaN	NaN	21.0	248.0	0:0
2	0.982104	NaN	18:09:16	9187	49458.0	15.0	2	1.0284	NaN	NaN	151.0	249.0	0:0
3	1.204290	NaN	5:57:03	9186	49459.0	20.0	3	0.9806	NaN	NaN	74.0	250.0	0:0
4	1.367702	NaN	13:19:56	9185	49460.0	-13.0	4	0.1611	NaN	NaN	281.0	251.0	0:0
32681	-0.000000	NaN	NaN	16113	NaN	NaN	17019	NaN	NaN	NaN	NaN	NaN	Nal
32682	-0.000000	NaN	NaN	16112	NaN	NaN	17018	NaN	NaN	NaN	NaN	NaN	Nal
32683	-0.000000	NaN	NaN	9190	NaN	NaN	17017	NaN	NaN	NaN	NaN	NaN	Nal
32684	-0.000000	NaN	NaN	21876	NaN	NaN	22780	NaN	NaN	NaN	NaN	NaN	Nal
32685	-0.000000	NaN	NaN	29977	NaN	NaN	30881	NaN	NaN	NaN	NaN	NaN	Nal

32686 rows × 17 columns

•

Масштабирование признаков

На основе Z-оценки

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import MaxAbsScaler

cols_to_scale = ['Delta', 'Gamma','Lunationnumber',
data_to_scale = data_loaded[cols_to_scale]
data_to_scale = data_to_scale.dropna()
data_to_scale.describe()
```

	Delta	Gamma	Lunationnumber	Sarosnumber
count	11898.000000	11898.000000	11898.000000	11898.000000
mean	12142.172802	0.742000	44567.074971	87.483190
std	13583.402888	0.280094	19443.399140	48.380284
min	-6.000000	0.270100	1.000000	-13.000000
25%	970.250000	0.518025	50038.250000	47.000000
50%	5636.500000	0.684550	53012.500000	87.000000
75%	20943.500000	0.981975	55986.750000	128.000000
max	46438.000000	1.279400	58961.000000	190.000000

```
X_ALL = data_to_scale.drop('Gamma', axis=1)
X_ALL
```

	Delta	Lunationnumber	Sarosnumber
0	46438.0	49456.0	5.0
4	16106 O	40457 O	10.0

```
: # Функция восстановления датафрейма на основе масштавированных данных
  def arr_to_df(arr_scaled):
      res = pd.DataFrame(arr_scaled, columns=X_ALL.columns)
      return res
: # Разделим выборку на обучающую и тестовую
  X_train, X_test, y_train, y_test = train_test_split(X_ALL, data_to_scale['Gamma'],
                                                          test_size=0.2,
                                                          random_state=1)
  # Преобразуем массивы в DataFrame
  X_train_df = arr_to_df(X_train)
X_test_df = arr_to_df(X_test)
  X_{\text{train\_df.shape}}, X_{\text{test\_df.shape}}
((9518, 3), (2380, 3))
: # Обучаем StandardScaler на всей выборке и масштавируем
  cs11 = StandardScaler()
  data_cs11_scaled_temp = cs11.fit_transform(X_ALL)
  # формируем DataFrame на основе массива
  data_cs11_scaled = arr_to_df(data_cs11_scaled_temp)
  data_cs11_scaled
```

	Delta	Lunationnumber	Sarosnumber
0	2.524939	0.251455	-1.704964
1	2.524056	0.251506	-1.601612
2	2.523246	0.251557	-1.498260
3	2.522363	0.251609	-1.394908
4	2.521626	0.251660	-2.077032
11893	-0.568966	-1.656780	2.057057

```
# Построение плотности распределения

def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()
```

```
draw_kde(['Delta', 'Lunationnumber', 'Sarosnumber'], data_to_scale, data_cs11_scaled,
'до масштабирования', 'после масштабирования')
```


Обработка выбросов

```
x_col_list = ['Delta', 'Sarosnumber', 'Lunationnumber']

def diagnostic_plots(df, variable, title):
    fig, ax = plt.subplots(figsize=(10,7))
# eucmoepamma
plt.subplot(2, 2, 1)
```

```
# zucmozpamma
plt.subplot(2, 2, 1)
df[variable].hist(bins=30)
## Q-Q plot
plt.subplot(2, 2, 2)
stats.probplot(df[variable], dist="norm", plot=plt)
# muuk c ycamu
plt.subplot(2, 2, 3)
sns.violinplot(x=df[variable])
# muuk c ycamu
plt.subplot(2, 2, 4)
sns.boxplot(x=df[variable])
fig.suptitle(title)
plt.show()
```

diagnostic_plots(data_to_scale, 'Delta', 'Delta - original')

Delta - original


```
# Тип вычисления верхней и нижней границы выбросов
from enum import Enum
class OutlierBoundaryType(Enum):
    SIGMA = 1
    QUANTILE = 2
    IRQ = 3
```

```
# Функция вычисления верхней и нижней границы выбросов

def get_outlier_boundaries(df, col, outlier_boundary_type: OutlierBoundaryType):

if outlier_boundary_type == OutlierBoundaryType.SIGMA:

K1 = 3

lower_boundary = df[col].mean() - (K1 * df[col].std())

upper_boundary = df[col].mean() + (K1 * df[col].std())

elif outlier_boundary_type == OutlierBoundaryType.QUANTILE:
lower_boundary = df[col].quantile(0.05)

upper_boundary = df[col].quantile(0.95)

elif outlier_boundary_type == OutlierBoundaryType.IRQ:

K2 = 1.5

IQR = df[col].quantile(0.75) - df[col].quantile(0.25)
lower_boundary = df[col].quantile(0.25) - (K2 * IQR)

upper_boundary = df[col].quantile(0.75) + (K2 * IQR)

else:
    raise NameError('Unknown Outlier Boundary Type')

return lower_boundary, upper_boundary
```

Поле-Delta, метод-OutlierBoundaryType.SIGMA, строк-11898

Поле-Delta, метод-OutlierBoundaryType.QUANTILE, строк-10709

Замена выбросов

Поле-Delta, метод-OutlierBoundaryType.SIGMA

data_o	ata_outliers_deleted												
	Catalog Number	Unnamed:	Time	Delta	Lunationnumber	Sarosnumber	Gamma	Eclipsemagnitude	Unnamed: 9	Unnamed: 10	Sunazimuth	PathWidth (km)	Ce Du
0	-0.000000	NaN	3:14:51	9189	49456.0	5.0	0	1.0733	NaN	NaN	344.0	247.0	0:0
1	0.645487	NaN	23:45:23	9188	49457.0	10.0	1	0.9382	NaN	NaN	21.0	248.0	0:0
2	0.982104	NaN	18:09:16	9187	49458.0	15.0	2	1.0284	NaN	NaN	151.0	249.0	0:0
3	1.204290	NaN	5:57:03	9186	49459.0	20.0	3	0.9806	NaN	NaN	74.0	250.0	0:0
4	1.367702	NaN	13:19:56	9185	49460.0	-13.0	4	0.1611	NaN	NaN	281.0	251.0	0:0
32681	-0.000000	NaN	NaN	16113	NaN	NaN	17019	NaN	NaN	NaN	NaN	NaN	Nal
32682	-0.000000	NaN	NaN	16112	NaN	NaN	17018	NaN	NaN	NaN	NaN	NaN	Nal
32683	-0.000000	NaN	NaN	9190	NaN	NaN	17017	NaN	NaN	NaN	NaN	NaN	Nal
32684	-0.000000	NaN	NaN	21876	NaN	NaN	22780	NaN	NaN	NaN	NaN	NaN	Nal
32685	-0.000000	NaN	NaN	29977	NaN	NaN	30881	NaN	NaN	NaN	NaN	NaN	Nal

32686 rows × 17 columns

Отбор признаков

Метод фильтрации

Метод, основынный на корреляции

: fs_data.tail()

	Catalog Number	Delta	Lunationnumber	Sarosnumber	UNIXTime
32681	NaN	NaN	NaN	NaN	1480587604
32682	NaN	NaN	NaN	NaN	1480587301
32683	NaN	NaN	NaN	NaN	1480587001
32684	NaN	NaN	NaN	NaN	1480586702
32685	NaN	NaN	NaN	NaN	1480586402

```
fs data = fs data.dropna()
fs_data.shape
(11898, 5)
g_cat_enc_le = le.fit_transform(fs_data['UNIXTime'])
g_cat_enc_le
array([7416, 7415, 7414, ..., 7419, 7418, 7417])
fs_data['UNIXTime'] = g_cat_enc_le
fs_data['UNIXTime']
0
         7416
1
         7415
2
         7414
3
         7413
4
         7412
         ...
11893
         7421
11894
         7420
         7419
11895
11896
         7418
11897
         7417
Name: UNIXTime, Length: 11898, dtype: int64
```

fs_data

	Catalog Number	er Delta	Lunationnumber	Sarosnumber	UNIXTime
0	1.0	46438.0	49456.0	5.0	7416
1	2.0	46426.0	49457.0	10.0	7415
2	3.0	46415.0	49458.0	15.0	7414

```
heatmap_cols = [ 'Delta', 'Lunationnumber', 'UNIXTime', ]
sns.heatmap(fs_data[heatmap_cols].corr(), annot=True, fmt='.3f')
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f18d6a68d10>


```
# Формирование DataFrame с сильными корреляциями

def make_corr_df(df):
    cr = df.corr() # !!!вот здесь был недочет - data.corr -> df.corr
    cr = cr.abs().unstack()
    cr = cr.sort_values(ascending=False)
    cr = cr[cr >= 0.3]
    cr = cr[cr < 1]
    cr = pd.DataFrame(cr).reset_index()
    cr.columns = ['f1', 'f2', 'corr']
    return cr
```

make corr df(fs data)

	f1	f2	corr
0	Sarosnumber	Catalog Number	0.965515
1	Catalog Number	Sarosnumber	0.965515
2	Catalog Number	Delta	0.896787

```
# Обнаружение групп коррелирующих признаков

def corr_groups(cr):
    grouped_feature_list = []
    correlated_groups = []

for feature in cr['f1'].unique():
    if feature not in grouped_feature_list:
        # находим коррелирующие признаки
        correlated_block = cr[cr['f1'] == feature]
        cur_dups = list(correlated_block['f2'].unique()) + [feature]
        grouped_feature_list = grouped_feature_list + cur_dups
        correlated_groups.append(cur_dups)

return correlated_groups
```

```
# Группы коррелирующих признаков corr_groups(make_corr_df(fs_data))
```

[['Catalog Number', 'Delta', 'Lunationnumber', 'UNIXTime', 'Sarosnumber']]

Метод, основанный на статистических характеристиках

```
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
from sklearn.feature_selection import SelectKBest, SelectPercentile
```

```
x = fs_data.drop('UNIXTime', axis=1)
x
```

	Catalog Number	Delta	Lunationnumber	Sarosnumber
0	1.0	46438.0	49456.0	5.0
1	2.0	46426.0	49457.0	10.0
2	3.0	46415.0	49458.0	15.0
3	4.0	46403.0	49459.0	20.0
4	5.0	46393.0	49460.0	-13.0

```
y = fs_data['UNIXTime']
 у
: 0
           7416
  1
           7415
  2
           7414
  3
           7413
  4
           7412
  11893
           7421
  11894
           7420
  11895
           7419
  11896
           7418
  11897
           7417
  Name: UNIXTime, Length: 11898, dtype: int64
mi = mutual_info_regression(x, y)
  mi = pd.Series(mi)
  mi.index = x.columns
  mi.sort_values(ascending=False).plot.bar(figsize=(10,5))
  plt.ylabel('Взаимная информация')
: Text(0, 0.5, 'Взаимная информация')
     8 -
```


Обучение моделей с различными вариантами масштабирования признаков

data_encoded['UNIXTime']

```
: 0
          1475229326
 1
          1475229023
          1475228726
 2
          1475228421
 3
 4
          1475228124
 32681
          1480587604
 32682
          1480587301
 32683
          1480587001
 32684
          1480586702
 32685
          1480586402
```

Name: UNIXTime, Length: 32686, dtype: int64

: # данные с выпдоненными 1-4 пунктами предобработки #(устранение пропусков в данных, кодирование категориальных признаков, нормализацию числовых признаков, #масштабирование признаков data_cs11_scaled

	Delta	Lunationnumber	Sarosnumber		
0	2.524939	0.251455	-1.704964		
1	2.524056	0.251506	-1.601612		
2	2.523246	0.251557	-1.498260		
3	2.522363	0.251609	-1.394908		
4	2.521626	0.251660	-2.077032		
11893	-0.568966	-1.656780	2.057057		
11894	-0.568745	-1.656523	1.374932		

данные, с замененными выбросами data_outliers_deleted

	Catalog Number	Unnamed:	Time	Delta	Lunationnumber	Sarosnumber	Gamma	Eclipsemagnitude	Unnamed: 9	Unnamed: 10	Sunazimuth	PathWidth (km)	Ce Du
0	-0.000000	NaN	3:14:51	9189	49456.0	5.0	0	1.0733	NaN	NaN	344.0	247.0	0:0
1	0.645487	NaN	23:45:23	9188	49457.0	10.0	1	0.9382	NaN	NaN	21.0	248.0	0:0
2	0.982104	NaN	18:09:16	9187	49458.0	15.0	2	1.0284	NaN	NaN	151.0	249.0	0:0
3	1.204290	NaN	5:57:03	9186	49459.0	20.0	3	0.9806	NaN	NaN	74.0	250.0	0:0
4	1.367702	NaN	13:19:56	9185	49460.0	-13.0	4	0.1611	NaN	NaN	281.0	251.0	0:0
32681	-0.000000	NaN	NaN	16113	NaN	NaN	17019	NaN	NaN	NaN	NaN	NaN	Nal
32682	-0.000000	NaN	NaN	16112	NaN	NaN	17018	NaN	NaN	NaN	NaN	NaN	Nal
32683	-0.000000	NaN	NaN	9190	NaN	NaN	17017	NaN	NaN	NaN	NaN	NaN	Nal
32684	-0.000000	NaN	NaN	21876	NaN	NaN	22780	NaN	NaN	NaN	NaN	NaN	Nal
32685	-0.000000	NaN	NaN	29977	NaN	NaN	30881	NaN	NaN	NaN	NaN	NaN	Nal

32686 rows × 17 columns

3. Выводы

Все построенные модели обладают очень хорошими показателями.

Список литературы

- [1] Гапанюк Ю. Е. Домашнее задание по дисциплине «Методы машинного обучения»[Электронный ресурс] // GitHub. 2019. Режим доступа: https://github.com/ugapanyuk/ml_course/wiki/MMO_DZ (дата обращения: 06.05.2019).
- [2] You are my Sunshine [Electronic resource] // Space Apps Challenge. 2017. Access mode: https://2017.spaceappschallenge.org/challenges/earth-and-us/you-are-my-sunshine/details (online; accessed: 22.02.2019).
- [3] dronio. Solar Radiation Prediction [Electronic resource] // Kaggle. 2017. Access mode: https://www.kaggle.com/dronio/SolarEnergy (online; accessed: 18.02.2019).
- [4] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] //Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 20.02.2019).
- [5] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/ (online; accessed: 20.02.2019).
- [6] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode:http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).
- [7] Chrétien M. Convert datetime.time to seconds [Electronic resource] // Stack Overflow. 2017. Access mode: https://stackoverflow.com/a/44823381 (online; accessed:20.02.2019).