CSE 12 — Basic Data Structures and Object-Oriented Design Lecture 11

Greg Miranda & Paul Cao, Winter 2021

Announcements

- Quiz 11 due Wednesday @ 8am
- Survey 5 due Friday @ 11:59pm
- PA4 due Wednesday @ 11:59pm

Topics

- Questions on Lecture 11?
- Big Theta
- Sorting

Questions on Lecture 11?

O is an upper bound (\(\leq \) Ω is a lower bound 7 We say a function f(n) is "big-omega" of another function g(n), and write $f(n) \in \Omega(g(n))$, if there are positive constants c and no such $f(n) \ge c g(n)$ for all $n \ge n_0$. In other words, for large n, can you multiply g(n) by a constant and have it always be smaller than or equal to f(n)

$$f_2 \in \Omega(f_1)$$

 $n \in \mathcal{F}(n)$ $f = \frac{1}{2}$ $n \in \mathcal{F}(n)$

A. TRUE

B. FALSE

Why or why not?

In other words, for large n, can you multiply f_1 by a positive constant and have it always be smaller than f_2

 $f(n) \in O(g(n))$, if there are positive constants c and n_0 such that $f(n) \le *g(n)$ for all $n \ge n_0$.

 $f(n) \in \Omega(g(n))$, if there are positive constants c and n_0 such that $f(n) \ge *g(n)$ for all $n \ge n_0$.

- Obviously $f_1 \in \Omega(f_2)$ because $f_1 > f_2$ (after about n=10, so we set $n_0 = 10$)
 - f_2 is clearly a *lower* **bound** on f_1 and that's what big- Ω is all about
- But $f_2 \in \Omega(f_1)$ as well!
 - We just have to use the "c" to adjust so f₁ that it moves below f₂

 $f(n) \in O(g(n))$, if there are positive constants c and n_0 such that $f(n) \le c * g(n)$ for all $n \ge n_0$.

 $f(n) \in \Omega(g(n))$, if there are positive constants c and n_0 such that $f(n) \ge c^*$ g(n) for all $n \ge n_0$.

$$f_3 \in \Omega(f_1)$$

B. FALSE

Why or why not?

f3 > Ff

f₂ f₂ ES(f)

$$f(n) \in O(g(n))$$
, if there are positive constants c and n_0 such that $f(n) \le c * g(n)$ for all $n \ge n_0$.

 $f(n) \in \Omega(g(n))$, if there are positive constants c and n_0 such that $f(n) \ge c * g(n)$ for all $n \ge n_0$.

$$f_1 \in \Omega(f_3)$$

A. TRUE
B. FALSE

Why or why not?

$f_3 \in \Omega(f_1)$ but f_1 not $\in \Omega(f_3)$

 There is no way to pick a c that would make an O(n²) function (f₃) stay below an O(n) function (f₁).

Summary

Big-O

- Upper bound on a function
- f(n) ∈ O(g(n)) means that we can expect f(n) will always be under the bound g(n)
 - But we don't count n up to some starting point n₀
 - And we can "cheat" a little bit by moving g(n) up by multiplying by some constant c

Big-Ω

- Lower bound on a function
- f(n) ∈ Ω(g(n)) means that we can expect f(n) will always be over the bound g(n)
 - But we don't count n up to some starting point n₀
 - And we can "cheat" a little bit by moving g(n) down by multiplying by some constant c

Big-
$$\theta$$
 (= =) $f(n) \in \theta(a^{(n)})$
• Tight bound on a function.
• If $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$, then $f(n) \le t$.
• $\theta(g(n))$.
• Basically it means that $f(n)$ and $g(n)$ are interchangeable
• Examples:
• $3n+20 = \theta(10n+7)$
• $5n^2 + 50n + 3 = \theta(5n^2 + 100)$
• $f(n) \in \theta(n^2)$
• $f(n) \in \theta(n^2)$

$$f_1 \in \Theta(f_2)$$

A. TRUE B. FALSE

Why or why not?

$$f_1 \in \Theta(f_2)$$

A. TRUE

B. FALSE

Why or why not?

Since f_1 is $O(f_2)$ and $\Omega(f_2)$, it is also $O(f_2)$ (this is the definition of big-Theta)

$$f_1 \in \Theta(f_3)$$

A. TRUE

B. FALSE

Why or why not?

Big-θ and sloppy usage

- Sometimes people say, "This algorithm is $O(n^2)$ " when it would be more precise to say that it is $\theta(n^2)$
 - They are intending to give a tight bound, but use the looser "big-O" term instead of the "big- θ " term that actually means tight bound
 - Not wrong, but not as precise
- I don't know why, this is just a cultural thing you will encounter among computer scientists

Count how many times each line executes, then say which O() statement(s) is(are) true.

C. $f(n) \in O(n)$

```
Line #
       int maxDifference(int[] arr) {
         max = 0;
         for (int i=0; i<arr.length; i++) {
             for (int j=0; j<arr.length; j++) { ·
                if (arr[i] - arr[j] > max)
                   max = arr[i] - arr[j];
                                                                 6
                                                                 8
          return max;
                                                                 9
A. f(n) \in O(2^n)
                                      D. f(n) \in O(n^3)
```

E. Other/none/more

(assume n = arr.length)

Count how many times each line executes, then say which $\Theta()$ statement(s) is(are) true.

```
Line #
       int maxDifference(int[] arr){
          max = 0;
          for (int i=0; i<arr.length; i++) {</pre>
             for (int j=0; j<arr.length; j++) {</pre>
                 if (arr[i] - arr[j] > max)
                    max = arr[i] - arr[j];
                                                                     6
          return max;
                                                                     9
                                        D. f(n) \in \theta(n^3)
A. f(n) \in \theta(2^n)
B, f(n) \in \theta(n^2)
                                        E. Other/none/more
```

C. $f(n) \in \theta(n)$ (assume n = arr.length)

Count how many times each line executes, then say which $\Theta()$ statement(s) is(are) true.

```
int sumTheMiddle(int[] arr){
  int range = 100;
  int start = arr.length/2 - range/2;
  int sum = 0;
  for (int i=start; i<start+range; i++)
  {
    sum += arr[i];
  }
  return max;</pre>
```

A.
$$f(n) \in \theta(2^n)$$

B. $f(n) \in \theta(n^2)$

C.
$$f(n) \in \theta(n)$$
 (assume $n = arr.length$)

D. $f(n) \in \theta(1)$

E. None of these

Count how many times each line executes, then say which $\Theta()$ statement(s) is(are) true.

```
int sumTheMiddle(int[] arr){
   int range = arr.length/100;
   int start = arr.length/2 - range/2;
   int sum = 0;
   for (int i=start; start+range; i++)
   {
      sum += arr[i];
   }
   return sum;
}
```

A.
$$f(n) \in \theta(2^n)$$
 D. $f(n) \in \theta(1)$
B. $f(n) \in \theta(n^2)$ E. None of these

C.
$$f(n) \in \theta(n)$$
 (assume $n = arr.length$)

With worst case analysis, which algorithm has the better (smaller) Big-Θ bound?

```
boolean find( String[] theList, String toFind ) {
  for ( int i = 0; i < theList.length; i++ ) {
    if ( theList[i].equals(toFind) )
      return true;
  }
  return false;
}

boolean fastFind( String[] theList, String toFind ) {
  return false;
}</pre>
```

- A. find
- B. fastFind
- C. They are the same

With *best case* analysis, which algorithm has the better Big-Θ bound?

```
boolean find( String[] theList, String toFind ) {
  for ( int i = 0; i < theList.length; i++ ) {
    if ( theList[i].equals(toFind) )
      return true;
  }
  return false;
}

boolean fastFind( String[] theList, String toFind ) {
  return false;
}</pre>
```

- A. find
- B. fastFind
- C. They are the same

Practical sorting algorithms: Selection sort

Pseudocode: selectionSort

- While the size of the unsorted part is greater than 1
 - find the position of the smallest element in the unsorted part
 - move this smallest element to the last position in the sorted part
 - increase the size of the sorted part and decrement the size of the unsorted part

https://www.youtube.com/watch?v=Ns4TPTC8whw

Insertion Sort: The Picture

- (a) Initial configuration for insertion sort. The input array is logically split into a sorted part (initially containing one element) and an unsorted part.
- (b) The array after the first value from the unsorted part has been inserted in its proper position in the sorted part (first pass).
- (c) The array after the first value from the unsorted part has been inserted in its proper position in the sorted part (second pass).
- (d) The array after the first value from the unsorted part has been inserted in its proper position in the sorted part (third pass).

https://www.youtube.com/watch?v=ROalU379l3U

Selection Sort – what does it print out?

```
Sort.sortA(new int[]{ 53, 83, 15, 45, 49 });
import java.util.Arrays;
public class Sort {
                                                           [53, 83, 15, 45, 49] ->
public static void sortA(int[] arr) {
 for(int i = 0; i < arr.length; i += 1) {
  System.out.print(Arrays.toString(arr) + " -> ");
  int minIndex = i;
  for(int j = i; j < arr.length; j += 1) {
    if(arr[minIndex] > arr[j]) { minIndex = j; }
  int temp = arr[i];
  arr[i] = arr[minIndex];
  arr[minIndex] = temp;
  System.out.println(Arrays.toString(arr));
```

Insertion Sort – what does it print out?

```
Sort.sortB(new int[]{ 53, 83, 15, 45, 49 });
import java.util.Arrays;
public class Sort {
                                                             [53, 83, 15, 45, 49] ->
public static void sortB(int[] arr) {
 for(int i = 0; i < arr.length; i += 1) {
  System.out.print(Arrays.toString(arr) + " -> ");
  for(int j = i; j > 0; j = 1) {
    if(arr[j] < arr[j-1]) {
     int temp = arr[j-1];
     arr[j-1] = arr[j];
     arr[j] = temp;
   System.out.println(Arrays.toString(arr));
```