Name_____

Date_____Period____

Worksheet 2.10—Derivatives of Log Functions & LOG DIFF

Show all work. No calculator unless otherwise stated.

Short Answer

1. Find the derivative of each function with respect to x, given that a is a constant

(a)
$$v = x^a$$

(b)
$$y = a^x$$

(c)
$$y = x^x$$

(d)
$$y = a^a$$

2. Evaluate each of the following. Remember to simplify early and often (especially when you have logs).

(a)
$$\frac{d}{dx} \left[e^{2 \ln x} \right] =$$

(b)
$$\frac{d}{dx} \left[\log_a a^{\sin x} \right] =$$

(c)
$$\frac{d}{dx} \left[\log_2 8^{x-5} \right] =$$

3. For each of the following, find $\frac{dy}{dx}$. Look to simplify using the properties of logs first.

(a)
$$y = \log_3 \frac{x\sqrt{x-1}}{2}$$

(b)
$$y = x^{3/2} \log_2 \sqrt{x+1}$$

(c)
$$y = \ln \left| \frac{\cos x}{\cos x - 1} \right|$$

(d)
$$y = \ln\left(\ln\frac{1}{x}\right)$$

(e)
$$y = \ln^3 x$$

(f)
$$y = x \ln x^2$$

$$(g) y = \log_3 \left(1 + x \ln x\right)$$

(h)
$$y = \ln \sqrt[4]{\frac{4x - 2}{3x + 1}}$$

4. Use implicit differentiation to find $\frac{dy}{dx}$.

(a)
$$x^2 - 3\ln y + y^2 = 10$$

(b)
$$\ln xy + 5x = 30$$

5. Find an equation of the tangent line to the graph of $x + y - 1 = \ln(x^2 + y\sqrt{2})$ at (1,0).

6. A line with slope m passes through the origin and is tangent to $y = \ln\left(\frac{x}{3}\right)$. What is the value of m?

7. Find an equation for a line that is tangent to the graph of $y = e^x$ and goes through the origin.

8. Find the point where the tangent line to the curve $y = e^{-x}$ is perpendicular to the line -2x + y = 8.

9. Use Logarithmic Differentiation to evaluate the following.

(a)
$$\frac{d}{dx} \left[\sqrt[5]{\frac{(x-3)^4(x^2+1)}{(2x-5)^3}} \right] =$$

(b) If
$$y = x^{1/\ln x}$$
, find $\frac{dy}{dx}$.

- 10. Let $f(x) = \ln(1 x^2)$.
 - (a) State the domain of f.

(b) Find $\lim_{x \to -1^{-}} f(x)$

(c) Find f'(x).

(d) State the domain of f'(x).

(d) Explain why f''(x) < 0 for all x in the domain of f.

Multiple Choice

_____11. Use the properties of logs to simplify, as much as possible, the expression:

$$\log_a 32 + \frac{4}{5}\log_a 4 - \frac{4}{5}\log_a 2 + \log_a \frac{1}{2^{\frac{14}{5}}}$$

- (A) $\log_a 128$ (B) $\log_a 8$ (C) $\log_a 32$ (D) $\log_a 2^{-7}$
- (E) 8

_____ 12. Simplify the expression: $2^{5(\log_2 e)\ln x}$

- (A) 5^x (B) e^{11} (C) x^5 (D) x^{10} (E) x^2

_____13. Which of the following is the domain of f'(x) if $f(x) = \log_2(x+3)$?

- (A) x < -3 (B) $x \le 3$ (C) $x \ne -3$ (D) x > -3 (E) $x \ge -3$

_____14. If $f(x) = (x^2 + 1)^{(2-3x)}$, then f'(1) =

- (A) $-\frac{1}{2}\ln(8e)$ (B) $-\ln(8e)$ (C) $-\frac{3}{2}\ln 2$ (D) $-\frac{1}{2}$ (E) $\frac{1}{8}$

_____ 15. Determine if $\lim_{x\to\infty} \left[\ln(2+5x) - \ln(2+3x) \right]$ exists, and if it does, find its value.

- (A) $\ln \frac{1}{2}$
- (B) $ln \frac{5}{3}$
- (C) $\ln \frac{3}{5}$
- (D) ln 2
- (E) Does Not Exist

_____ 16. Find the derivative of $f(t) = \frac{2 \ln t}{3 + \ln t}$.

(A)
$$f'(t) = \frac{2}{t(3+\ln t)^2}$$

(B)
$$f'(t) = \frac{6 \ln t}{(3 + \ln t)^2}$$

(C)
$$f'(t) = \frac{6}{(3+\ln t)^2}$$

(D)
$$f'(t) = \frac{2}{t(3+\ln t)}$$

(E)
$$f'(t) = \frac{6}{t(3+\ln t)^2}$$

_____ 17. Determine the derivative of f when $f(x) = x^{4x}$

(A)
$$f'(x) = (\ln x + 4)x^{4x}$$

(B)
$$f'(x) = 4(\ln x + 1)x^{4x}$$

(C)
$$f'(x) = 4(\ln x + 1)$$

(D)
$$f'(x) = (\ln x + 1)x^{4x}$$

(E)
$$f'(x) = 4x^{4(x-1)}$$

_____18. Find the derivative of f when $f(x) = x [7 \sin(\ln x) + 2 \cos(\ln x)]$.

(A)
$$f'(x) = x \lceil 5\sin(\ln x) + 9\cos(\ln x) \rceil$$

(B)
$$f'(x) = 5\sin(\ln x) - 9\cos(\ln x)$$

(C)
$$f'(x) = 5\sin(\ln x) + 9\cos(\ln x)$$

(D)
$$f'(x) = 9\sin(\ln x) + 5\cos(\ln x)$$

(E)
$$f'(x) = x \lceil 9\sin(\ln x) + 5\cos(\ln x) \rceil$$