

アドバンス・トップエスイー プロフェッショナルスタディ

確率モデル分析ツールを 用いた車載ネットワーク評価

株式会社デンソー

種村 嘉高

yoshitaka_tanemura@denso.co.jp

開発における問題点

車両部品の電子化,高機能化が進むにつれ,車両の電子部品同士をつなぐ車載ネットワークが複雑化してきている。今後,車載ネットワークの設計を技術者が人手で行い続けていくと,設計コストが加速的に増大していくことが予想される。

手法・ツールの適用による解決

車載ネットワークの設計時に参考となるネットワークの品質を自動的に算出する事で、車載ネットワーク設計の指針の一つとして活用する手法を提案する. 具体的には、車載ネットワークをモデル化し、確率モデル分析ツールを用いて設計中の車載ネットワークの品質評価を行う.

研究課題とアプローチ概要

評価対象とするネットワーク品質として遅延の発生状況の評価を実施

評価対象とする車載ネットワーク

データサイズの分類

映像データ ···	→	サイズ3
環境データ 	→	サイズ2
制御データ	→	サイズ1

遅延発生状況のモデル化

評価

評価対象:個々のデータ転送の異なる3パターンを用意

確率モデル分析ツール(PRISM^[1])を活用し、 遅延の発生確率を算出

[1]PRISM Probabilistic Symbolic Model Checker http://www.prismmodelchecker.org/

評価結果

遅延の発生確率:

	パターン1	パターン2	パターン3
全体	0.3589	0.3616	0.3191
	±0.0046	±0.0006	±0.039
サイズ1	0.0196	0.0211	0.0390
	±0.0045	±0.008	±0.008

標準的なPCを利用して評価し, 現実的な時間(1~2分)で算出できることを確認

また, 複数経路(マルチパス)の活用が有用であること等の 結果も得られた