MATH221 Mathematics for Computer Science

Tutorial Sheet Week 11

Autumn 2017

- **1.** Let $A = \{1, 2, 3, 4\}, B = \{a, b, c, d, e\}$
 - (i) Write down non-empty $f \subseteq A \times B$ which is not a function
 - (ii) Write down $f \subseteq A \times B$ which is a function which is not one-to-one or onto
 - (iii) Write down $f \subseteq A \times B$ which is a one-to-one function
 - (iv) Write down $f \subseteq B \times A$ which is an onto function
 - (v) Write down $f \subseteq A \times A$ which is one-to-one and onto but is not the identity function (i.e. $f(x) \neq x$ for some $x \in A$.
 - (vi) Write down non-empty $R \subseteq A \times A$ which has none of the three properties of an equivalence relation.
 - (vii) Write down $R \subseteq A \times A$ which has one of the three properties of an equivalence relation (3 cases)
 - (viii) Write down $R \subseteq A \times A$ which has two of the three properties of an equivalence relation (3 cases)
 - (ix) Write down $R \subseteq A \times A$ which has all three of the properties of an equivalence relation. What are the equivalence classes?

2. Consider the following

- (i) Let $f:[0,\infty)\to\mathbb{R}$, defined by $f(x):=x^2+1$, for $x\geq 0$. Show that f is a function, and that it is one-to-one but not onto. How can the range of f be changed to allow an inverse function f^{-1} to be defined?
- (ii) Let $f: \mathbb{R} \to [0, \infty)$, defined by $f(x) := x^4$ for $x \in \mathbb{R}$. Show that f is a function, and that it is onto but not one-to-one. How can the domain of f be changed to allow an inverse function f^{-1} to be defined?
- (iii) Let $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) := x^3$ for $x \in \mathbb{R}$. Show that f is a function, and that it is onto and one-to-one. Can an inverse function f^{-1} be defined?
- (iv) Let $f:(0,1)\to (0,\infty)$, defined by $f(x):=\frac{x}{1-x}$ for $x\in (0,1)$, is one-to-one and onto. Show further that $g:(0,\infty)\to (0,1)$, defined by $g(t):=\frac{t}{t+1}$ for t>0 is the inverse of f.

3. Inverses of familiar functions.

- (i) $\cos : \mathbb{R} \to \mathbb{R}$ is not one-to-one or onto. How can the domain of \cos be changed to allow an inverse function \arccos to be defined?
- (ii) $\tan : \mathbb{R} \to \mathbb{R}$ is not one-to-one but is onto. How can the domain of \tan be changed to allow an inverse function \arctan to be defined?
- (iii) $\exp : \mathbb{R} \to \mathbb{R}$ is not onto. How can the range of exp be changed to allow an inverse function \ln to be defined?