- 1. 3.80 kg Eisen sollen geschmolzen werden.
- a) Bei welcher Temperatur schmilzt Eisen?
- b) Wie viel Wärme muss zugeführt werden, bis alles Eisen (bei der Schmelztemperatur) geschmolzen ist?
- 2. Hier sehen Sie das Temperatur-Energie-Diagramm eines Stoffes (*m* = 632 g), der sich zuerst im festen Zustand befindet. Dem Stoff wurde Wärme zugeführt und dabei wurde ständig die Temperatur gemessen.

- a) Welche Vorgänge spielen sich in den drei Phasen des Diagramms ab?
- b) Wie viel Wärme wurde zugeführt, um den Stoff im festen Zustand bis zu seinem Schmelzpunkt zu erwärmen?
- c) Um wie viel hat dabei seine Temperatur zugenommen?
- d) Bei welcher Temperatur in °C und in K schmilzt der Stoff?
- e) Wie viel Wärme wurde zugeführt, um den Stoff zu schmelzen?
- f) Um wie viel hat dabei seine Temperatur zugenommen?
- g) Wie viel Wärme wurde zugeführt, um den Stoff im flüssigen Zustand vom Schmelzpunkt bis zu seiner Endtemperatur zu erwärmen?
- h) Um wie viel hat dabei seine Temperatur zugenommen?
- i) Wie gross ist die spezifische Schmelzwärme des Stoffs?
- j) Wie gross ist die spezifische Wärmekapazität im festen Zustand?
- k) Wie gross ist die spezifische Wärmekapazität im flüssigen Zustand?
- 3. Fritzli hat ein Aluminiumrohr (m = 340 g) bei Zimmertemperatur (ϑ = 22.0 °C), das er gerne schmelzen möchte.
- a) Bei welcher Temperatur schmilzt Aluminium?
- b) Um wie viel nimmt die innere Energie des Aluminiumrohrs zu, wenn man es von Zimmertemperatur bis zur Schmelztemperatur erhitzt?
- c) Wie viel Wärme muss dem Aluminiumrohr zugeführt werden, um es von Zimmertemperatur bis zur Schmelztemperatur zu erhitzen?
- d) Wie viel Wärme muss dem Aluminiumrohr zugeführt werden, um es bei seiner Schmelztemperatur zu schmelzen?
- e) Wie viel Wärme muss dem Aluminiumrohr insgesamt zugeführt werden?
- 4. Elimir ist bei ϑ = -19.4 °C auf einer Bergtour und braucht Wasser für eine warme Suppe. Er macht ein Feuer, gibt 472 g Eis in einen Kupferkessel (m = 326 g) und erhitzt beides, bis der Kessel und das Wasser eine Temperatur von 83.5 °C haben.

Wie viele g Holz muss er verbrennen? (1.0 kg Holz enthält 8.0 MJ Energie).

Hinweis: Wir machen hier die höchst unrealistische Annahme, dass keine Energie an die Umgebung abgegeben wird.

- 5. Weil man zum Schmelzen von Eis viel Wärme braucht, kann man Getränke mit Eisstückchen gut kühlen. Die benötigte Wärme wird nämlich vom Getränk geliefert, und dadurch kühlt es sich ab!
 - Überlegen Sie sich anhand der Abbildungen, welche zwei Vorgänge sich dabei abspielen, und füllen Sie die Tabellen aus.

	Vorgang	Temperatur (steigt/sinkt/bleibt)	Wärme (nimmt auf/gibt ab)
Wasser			
Eis			

	Vorgang	Temperatur (steigt/sinkt/bleibt)	Wärme (nimmt auf/gibt ab)
Wasser			
Schmelz- wasser (aus Eis)			

- 6. Kleopatra möchte 2.0 d ℓ Wasser von ϑ = 32 °C auf ϑ = 0.0 °C abkühlen. Hierzu nimmt sie ein Eisstückchen (ϑ = 0.0 °C) und gibt es ins Wasser.
- a) Um wie viel nimmt die innere Energie des Wassers ab, wenn es sich von 32 °C auf 0.0 °C abkühlt?
- b) Wie viel Wärme gibt das Wasser ans Eisstückchen ab, wenn es sich von 32 °C auf 0.0 °C abkühlt?
- c) Wie viel Wärme nimmt das Eisstückchen auf?
- d) Wie viele g Eis können mit der Wärme aus c) geschmolzen werden? (So viel Eis muss Petra ins Getränk geben!)
- 7. Erwin schüttet Eis (ϑ = 5.00 °C) in einen Eimer, der mit 4.50 ℓ Wasser der Temperatur ϑ = 14.0 °C gefüllt ist. Er rührt gut um bis alles Eis geschmolzen ist und misst nach einer Weile die Endtemperatur ϑ_{End} = 0.00 °C.
- a) Wie viel Wärme gibt das Wasser ans Eis ab, wenn es sich von 14.0 °C auf 0.00 °C abkühlt?
- b) Wie viel Wärme nimmt das Eis auf?
- c) Für welche Vorgänge benötigt das Eis diese Wärme? (zwei!)
- d) Wie viele g Eis hat Erwin in den Eimer geschüttet?

Lösungen: 1. a) 1535 °C	b) 1.05 MJ	4) FO °C. 202 K	a) 400 lel	0.0
2. b) 40 kJ	c) 150 K	d) 50 °C; 323 K	e) 180 kJ	f) 0
g) 100 kJ	h) 150 K	i) 2.85 · 10⁵ <mark>J</mark>	j) 422	k) 1.05 · 10³
3. a) 660 °C 4. 44 g	b) 194 kJ	c) 194 kJ	d) 135 kJ	e) 329 kJ
6.a) 27 kJ	b) 27 kJ	c) 27 kJ	d) 81 g	
7.a) 263 kJ	b) 263 kJ	d) 766 g	, 3	