RUTCERS THE STATE UNIVERSITY OF NEW JERSEY

DART: Drone Assisted Replication Training

Ryan Meegan, Aaron Yagudayev, Sean Maniar, Keyur Rana, Jinam Modasiya {rtm121, ay355, smm616, kjr150, jjm601} @scarletmail.rutgers.edu Advisor: Dr. Laleh Najafizadeh (ECE), Dr. Laurent Burlion (MAE)

S24-03

ΓΕΑΜ

Goals

- ☐ Create a reliable, cost-effective system for training novice drone pilots through an experienced instructor
 - System relies on replication training and a set of live feedback mechanisms
 - Facilitate learning for students through two modes:
 - **Trace:** servos on joysticks mimic instructor's path in real-time or from recorded flight
 - **Comparison:** student controls joysticks to mimic instructor's recorded flight
 - Offer varying difficulty levels to cater to individual skill levels
 - Enable **real-time** feedback for students during flight replication
 - Integrate feedback through:
 - Audio cues
 - Haptic feedback

Motivations and Methodology

□ Motivations

- Drone industry revenue projected to reach \$4.7B by 2028
 - Pressing need for an optimal training method to meet the growing demand for skilled pilots
- VR simulator training offers a safer alternative, but it's effectiveness and accuracy compared to practical training needs improvement

□ Methodology

- Read and write voltages from main transmitter using Pi
 - DAC and ADC set-up for WRITE/READ modes
- Wireless bi-directional communication between Pi and Arduino
- Adding vertical servo-joystick motion in training transmitter
- Adding horizontal servo-joystick motion in training transmitter
- Playing recorded voltages from Pi to Arduino to control joysticks
- Tracing live voltages from Pi to Arduino to control joysticks
- Live comparison of Student transmitter inputs vs recorded flight
 - Haptic feedback and audio feedback during the live comparison mode

Acknowledgement

We would like to thank Dr. Burlion, Dr. Najafizadeh, and Kevin Wine for their continued support, help and guidance throughout the year.

System Overview

□ Hardware

- Control Module: Interface between both transmitters and the computer
- Main Transmitter: Controls the drone and receives inputs/sends outputs to the control module
- Training Transmitter: Receives inputs from the control module to enact both training modes

□ Software

- Read/Write Mode: Record and playback joystick inputs for controls optimization
- Trace Training: Internal servos move joysticks to follow a live/recorded flight path
- Comparison Training: Auditory and haptic feedback for a live/recorded flight path

Results

- ☐ Switch to change between the **read/write modes** successfully added to main transmitter
 - Raspberry Pi added to back of transmitter with 3D-printed case
- ☐ Servo-controlled joysticks and two haptic motors successfully added to the training transmitter
- ☐ MQTT server allows communication between Pi and Arduino with minimal latency

- ☐ Main transmitter can accurately **replay flight path** to drone and training transmitter
- ☐ Training transmitter successfully imitates inputs made by instructor transmitter in **trace mode**
- □ Haptic feedback from motors for throttle/pitch and sound feedback from Android app for roll/yaw works in comparison mode on training transmitter

References

[1]Drones - Worldwide | Statista Market Forecast. (n.d.). Statista. Retrieved April 19, 2024, from https://www.statista.com/outlook/cmo/consumer-electronics/drones/worldwide?currency=usd#revenue [2]Gov Capital. (n.d.). Gov Capital. Retrieved April 19, 2024, from https://technology.gov.capital/how-does-haptic-feedback-contribute-to-the-effectiveness-of-training-simulators/