

Outline

PART 1	Background & Problem Statement	
PART 2	EDA	
PART 3	Models	
PART 4	App Showcase	
PART 5	Conclusion & Next Steps	

Advantages

- Wind IS solar power
- Cost-effective
- Creates jobs and supplements income
- Turbines can be built on existing farmed land and ranches
- Blade lifespan is 25-30 years max

Disadvantages

- Weather-dependent
- Noise pollution & habitat alteration
- Far from urban areas that would benefit most
- Only recently more focused on recyclable components
 - ex. Siemens Gamesa claims its
 RecyclableBlades are "the world's first recyclable wind turbine blades ready for commercial use offshore."

Problems:

How do I forecast wind energy output for wind farms?

Which timeseries model and forecast is most accurate?

Model Comparison

AR2 and LSTM were used for comparison against the baseline of 0.31

MODEL	PARAMETERS	RMSE
ARIMA	P=1 D=0 Q=2	0.269
AR1	P=1 D=0 Q=0	0.261
AR2	P=2 D=0 Q=0	0.27
LSTM	nodes=2 lags=2 epochs=9	0.21

AR2 PACF

This is a classic AR2 model signature. It cuts off after 2 lags and leveling out over time.

App Showcase

Next Steps

MODELS

- adding layers to LSTM
- Tuning other hyperparameters
- generating forecasts for all windfarms in dataset

FORECASTS

- Larger scale
- Trying Monte Carlo
- Incorporating weather conditions
- Adding confidence intervals for LSTM

APP

Deploying remotely