Imperial College London

Fifth Force and Vainshtein Mechanism in two-body systems

Jean Luo, Haoyang Jin, supervised by Prof. Andrew Tolley
Department of Physics, Imperial College London, London SW7 2BX, United Kingdom

ABSTRACT

We propose the first analytic insight on how the Vainshtein screening mechanism occurs in two-body systems. We apply the variational approximation method to study the behaviour of the fifth force by considering the helicity-0 mode of the field in the DGP model of massive gravity for a two-body system. The analytical result is numerically applied to various two-body systems to show that the fifth force can sustain stable procession orbits under appropriate initial conditions.

MASSIVE GRAVITY

- A modified gravity theory with m ≠ 0 graviton.
- Exists self-accelerating solution, i.e., no need for dark energy
- Extra gravitational force contributions, the 'Fifth Force' F_{fifth} .
- F_{fifth} causes discrepancy with observation (light bending).
 - \rightarrow Vainshtein Mechanism: F_{fifth} is screened within the so called Vainshtein radius r_v if having non-linear interaction.

DGP MODEL

- The first model of massive gravity to explicitly demonstrate the Vainshtein mechanism.
- D = (3 + 1) brane embedded in a D = (4 + 1) bulk.
- Gravitons can propagate in the extra spatial dimension.
- Gravitons tend to propagate along the brane within r_v (GR).

- Fifth force carried by a decoupled scalar field π .
- The Lagrangian density considered.

$$\mathcal{L}_{\pi} = \frac{1}{2} (\nabla \pi)^2 - \frac{1}{\Lambda^3} (\nabla \pi)^2 (\nabla^2 \pi) + \pi \rho$$

- A Galileon theory with cubic interaction.
- Solvable for one-body problem $ho = \delta(r)$:

$$F_{\pi} = -\frac{\partial \pi}{\partial r} = -\frac{r\Lambda^3}{8}(-1 + \sqrt{1 + \frac{16M}{M_{Pl}r^3\Lambda^3}})$$

Two-body systems? Difficult due to non-linearity!

RESULTS AND APPLICATIONS

- Transform so that energy only depends on separation, a, and the mass ratio, R.
- Minimise the energy for each value of (a, R) using the ansatz.

- Fit E_{min} for a fixed R's: $E(a) = A + B \arctan a$
- Consider two masses that start moving in opposite directions in the yz-plane, numerically we found by solving the Lagrangian: $L=\frac{1}{9}M_1\dot{\vec{r}}_1^2+\frac{1}{9}M_2\dot{\vec{r}}_2^2-E(|\vec{r}_1-\vec{r}_2|)$

Stable procession orbits under the fifth force

ALTERNATIVE ANSATZE

Sophisticated ansatze typically pose challenges for analytical integration -- tested only in one-body problem, e.g.

$$\pi(r) = \frac{A_1 - A_2 e^{-\sqrt{\frac{r}{L}}}}{B + (\frac{r}{L})}$$

Contributions to π with $\pi(0) = 0$ vanish \rightarrow limitation of using point mass

VARIATIONAL APPROXIMATION METHOD

- Usually used in quantum mechanics: pick an ansatz for the wavefunction ψ and minimise $\langle \psi | H | \psi \rangle$.
- Here, we pick an ansatz for π based on the one-body solution and minimise.

 $E = \int d^3x \left[\frac{1}{2} (\nabla \pi)^2 + \frac{1}{\Lambda^3} (\nabla \pi)^2 (\nabla^2 \pi) + \pi \rho \right]$

First try gaussian!

 $\pi(\vec{r}_1, \vec{r}_2) = C_1 e^{-\frac{|\vec{r}_1 + \frac{a\hat{z}}{2}|^2}{L_1^2}} + C_2 e^{-\frac{|\vec{r}_2 - \frac{a\hat{z}}{2}|^2}{L_2^2}}$

SUMMARY & OUTLOOK

- Analytically solved the two-body problem using VAM with gaussian ansatz, and tested the validity of the latter
 incorporate key physics properties
- Found stable procession orbits for binary system only by fifth force
- Will do: Apply the method to more body problem and/or using better ansatz (finite-size source? Compactify the space?) + combine with the GR force