

₹/

Figure 3a) Mean resist film thickness as a function of solvent concentration at a fixed drying spin speed. Mean film thickness can be varied close to 4000Å by varying the solvent concentration at a fixed 2000 rpm.

Figure 3b): Film thickness as a function of solvent flow time for a working example.

Figure 4: A typical film thickness profile, as measured by 30,000 pts film thickness measurement tool, has a 1σ uniformity of 4Å (0.045%) for 8880Å target thickness.

	Conventional Coater	Invention
$1\sigma_{ave}$	5.67A	4.86A
1σ _{band}	4.5A	2.2A

Figure 5) Film uniformity comparison between the invention (SME) and conventional spin coaters.

Figure 6: Resist temperature latitude comparison between the invention (SME) and conventional coaters for 200mm wafers. The SME coater resist temperature latitude of film uniformity is 36% wider than that of a conventional coater.

Figure 7: Chill plate temperature latitude comparison of the invention (SME) and conventional coaters for 200mm wafers. The SME coater chill plate temperature latitude of film uniformity is 43% wider than that of a conventional coater.

FIG. 16

FIG. 24

FIG. 25

F16.26