Auxiliar 5

Repaso:
Pipeline - Transformaciones – Grafos de Escena

CC3501 Modelación y Computación Gráfica para Ingenieros

Primavera 2023

Profesor: Iván Sipiran

Auxiliar: Ariel Riveros

Vértices

Un **vértice** es una estructura de datos que contiene la información necesaria para que la GPU dibuje o realice operaciones.

Son definidos por el usuario y están conformados por atributos que la GPU puede leer

atributo	Posición (float)		Color (float)			Intensidad
vértice	Х	у	r	g	b	(float)
0	-0,5	-0,5	1,0	0,0	0,0	1,0
1	0,5	-0,5	0,0	1,0	0,0	0,5
2	0,0	0,5	0,0	0,0	1,0	0,0

Cómo se verían al final del pipeline:

Pipeline

Los vértices son alimentados a la GPU, donde se inicia un procedimiento llamado rendering pipeline: Serie de pasos que resultan en la generación de imágenes

Shaders

Rasterización

Procedimiento que realiza la GPU para asignar cada porción de geometría descrita por vértices a un pixel correspondiente

Aquí es donde ocurre la interpolación

Interpolación

Al pipeline solo se le entregaron 3 puntos del triángulo La rasterización interpola todos los pixeles contenidos en él

La interpolación gráfica es la estimación de valores intermedios entre vértices para asignarlos a pixeles.

Interpolación

Coordenadas baricéntricas:

$$w_{v_1} = rac{(y_{v_2} - y_{v_3})(p_x - x_{v_3}) + (x_{v_3} - x_{v_2})(p_y - y_{v_3})}{(y_{v_2} - y_{v_3})(x_{v_1} - x_{v_3}) + (x_{v_3} - x_{v_2})(y_{v_1} - y_{v_3})} \ w_{v_2} = rac{(y_{v_3} - y_{v_1})(p_x - x_{v_3}) + (x_{v_1} - x_{v_3})(p_y - y_{v_3})}{(y_{v_2} - y_{v_3})(x_{v_1} - x_{v_3}) + (x_{v_3} - x_{v_2})(y_{v_1} - y_{v_3})} \ w_{v_3} = 1 - w_{v_1} - w_{v_2}$$

https://www.youtube.com/watch?v=HYAgJN3x4GA

Interpolación

b-a and c-a form a non-orthogonal basis for points in triangle (origin at a)

$$\mathbf{x} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$
$$= (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}$$
$$= \alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}$$

$$\alpha + \beta + \gamma = 1$$

Color at $\,\mathbf{x}\,$ is linear combination of color at three triangle vertices.

$$\mathbf{x}_{\text{color}} = \alpha \mathbf{a}_{\text{color}} + \beta \mathbf{b}_{\text{color}} + \gamma \mathbf{c}_{\text{color}}$$

green [0,1,0]

En el *pipeline*, se aplican las transformaciones a cada vértice por medio de *uniforms*, variables globales enviadas a la GPU desde la aplicación

Traslación

A cada vértice del cuadrado le sumo el vector [1, 1, 0]

Traslación en coordenadas homogéneas

$$T(dx, dy, dx) = \begin{pmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & xz \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + dx \\ y + dy \\ z + dz \\ 1 \end{pmatrix}$$

Traslación

A cada vértice del cuadrado

le aplico la matriz

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Esto permite concatenación de transformaciones

Rotación

Importante: La rotación siempre es con origen en (0, 0)

$$R_{z}(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotación en todos los ejes

$$R_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad R_{y}(\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{z}(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Escala

$$S(sx, sy, sz) = \begin{pmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Shear o Corte

$$Sh(xy, yx, xz, zx, yz, zy) = \begin{pmatrix} 1 & xy & xz & 0 \\ yx & 1 & yz & 0 \\ zx & zy & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Shear o Corte

$$Sh(xy, yx, xz, zx, yz, zy) = \begin{pmatrix} 1 & xy & xz & 0 \\ yx & 1 & yz & 0 \\ zx & zy & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Concatenación de Transformaciones

Como las transformaciones son matrices de igual dimensión, pueden multiplicarse

Concatenación de Transformaciones

No es una operación conmutativa

P3: Transformaciones (1.5 ptos)

Considere la siguiente figura:

Cuál es la matriz de transformación (o producto de matrices) que transforma el cuadrilátero ABCD en el cuadrilátero A'B'C'D'?

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda En realidad muevo los objetos a la derecha

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda En realidad muevo los objetos a la derecha Lo mismo con la rotación

View Matrix

Transforma todo el mundo a la transformación inversa de la cámara

Si muevo la cámara a la izquierda En realidad muevo los objetos a la derecha Lo mismo con la rotación

View Matrix

https://jsantell.com/model-view-projection/mvp.webm

Proyecciones

Proyecciones

https://jsantell.com/3d-projection/world-to-ndc.webm

Son estructuras y relaciones de objetos en una escena. Ayudan a organizar, describir y optimizar la renderización

- Cada hoja del árbol es un objeto básico.
- Cada nodo interno representa un grupo de objetos.
- Cada arco representa una transformación.
- La transformación final de un objeto es la composición de todas las transformaciones desde la raíz hasta la hoja.

P1: Scene Graph y Transformaciones (1.5 ptos)

Dada la siguiente imagen de la Caja de Cornell:

Describa los objetos 3D (vértices e índices) y el grafo de escena necesario para generarla de manera eficiente.

No considere los efectos de iluminación ni sombras, sin embargo, la fuente de luz sí existe como objeto (asuma que es una luz rectangular).

Los tamaños y ángulos de rotación quedan a su discreción mientras mantengan la coherencia visual de la imagen.

...

Auxiliar 5

Repaso:
Pipeline - Transformaciones – Grafos de Escena

CC3501 Modelación y Computación Gráfica para Ingenieros

Primavera 2023

Profesor: Iván Sipiran

Auxiliar: Ariel Riveros