Assignment 15 (5/6)

Subhadip Chowdhury

Problem 1

Note that $\frac{\partial^2 f}{\partial x \partial y}$ means $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$ and is also denoted as f_{xy} . Similarly $\frac{\partial^3 f}{\partial x^2 \partial y}$ means $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \right)$ and denoted as f_{xxy} .

Problems 12.2.(37, 38, 50).

Problem 2

Note: Read theorem A on page 630.

Problems 12.3.(2, 4, 6, 9, 11, 14, 16, 35, 37).

Problem 3

Let

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Note that in general, $\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y)-f(x,y)}{h}$ and $\frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h)-f(x,y)}{h}$.

- 1. Find $f_x(0, y)$. Then find $f_{yx}(0, 0)$.
- 2. Similarly find $f_{xy}(0,0)$.