Оглавление

Тема 1	1
Задача №1	1
Задача №2	1
Задача №3	2
Задача №4	3
Задача №5. Задача 5	3
Задача №6	4
Задача №7. Задача 7	4
Задача №8. Мужчина, 35 лет. В автомобильной катастрофе получил закрыперелом бедра. Через 10 часов был доставлен в больницу с резко выраженным малокровием. Еще через 2 часа умер от острой почечной недостаточности (ОПН)	
Задача №9. У больного, 65 лет, страдавшего атеросклерозом, смерть наступила от острого нарушения мозгового кровообращения. На вскрыт обнаружены выраженные атеросклеротические изменения в аорте, трог сосудах мозга и инфаркт селезенки	мб в 5
Задача №10	6
Задача №11	7
тема 2	8
задача 1	8
Задача 2	8
Задача 3	9
Задача 4	10
Задача 5	10
Задача 6	11
Задача 7	11
Задача 8	12
Задача 9	13
Задача 10	13
Задача 11	14
Задача 12	15
Задача 13	16
Задача 14	16
Задача 15	17
Задача 16	18
Задача 17	18
Задача 18	19
Задача 19	20

Задача 20	20
Задача 21	21
Задача 22	22
Задача 23 Больной П., 40 лет, болен острым вирусным гепатит взята биопсия печени, сделаны световое и электронно-микр исследования	оскопическое
Тема 3. Задача 1	
Задача 2	
Задача 3	
Задача 4	
Задача 5	
Задача 6	26
Задача 7	
Задача 8	
Задача 9	28
Задача 10	29
Задача 11	30
Задача 12	30
Гема 4	31
Задача 1	31
Задача 2	31
Задача 3	32
Задача 4	33
Задача 5	33
Задача 6	34
Задача 7	34
Задача 8	35
Задача 10	36
Гема 5	38
Задача 1	38
Задача 3	40
Задача 4	41
Задача 5	41
Задача 6	42
Задача 7	43
Задача 8	44
Задача 9	44
Задача 10	45
Задача 11	46

Тема 1

Задача №1.

Задача 1.

У больного, оперированного по поводу массивной забрюшинной опухоли, после операции развилась острая почечная недостаточность (ОПН). Во время операции имела место значительная потеря крови, падение АД.

- 1. какой патологический процесс развился в почках как морфологический субстрат ОПН?
 - 2. опишите микроскопические изменения в почках.
 - 3. какой фактор явился причиной развития ОПН у данного больного?
- 4. назовите этиологический вид некроза в почках, а также его вид по механизму действия этиологического фактора.
 - 5. какие еще факторы могут привести к развитию ОПН?
 - 1. Ишемический инфаркт почки
 - 2. Белый инфаркт, с геморрагическим венчиком, конусовидный участок некроза, охватывает либо корковое вещество, либо всю толщу паренхимы. На препарате видны 3 зоны: 1 зона зона сохранной ткани органа; 2 зона зона некроза, представленная очагом клиновидной формы, в котором сохранились лишь контуров клубочков и канальцев. В их клетках отсутствуют ядра (кариолизис), местами цитоплазма в состоянии лизиса, на микропрепарате встречаются бесструктурные участки розового цвета (некротический детрит); 3 зона демаркационная зона представлена полнокровными сосудами и скоплением полиморфно ядерных лейкоцитов. Данная зона разделяет неизмененную ткань и зону некроза.
 - 3. Ишемия органа
 - 4. Ишемический, непрямой сосудистый некроз.
 - 5. Прямой некроз: травматические и токсические факторы.

Задача №2.

Залача 2.

Мужчина 40 лет, выпил 200 мл этиленгликоля. Через сутки развилась острая почечная недостаточность (ОПН).

- 1. назовите изменения в почках, обусловившие развитие ОПН.
- 2. назовите этиологическую форму некроза.

- 3. укажите вид некроза в зависимости от механизма действия патогенного фактора.
- 4. назовите морфологические признаки некроза и их локализацию. укажите возможные изменения базальной мембраны канальцев.
 - 1. Токсичность этиленгликоля определяется его метаболитами, в том числе щавелевой кислотой. Основное токсическое действие этиленгликоля наблюдается в паренхиме почек, где развиваются некроз канальцевого эпителия, интерстициальный отек, очаги геморрагического некроза в корковом слое, перерождение канальцевых клеток и отложение кристаллов солей щавелевой кислоты в просвете канальцев.
 - 2. Токсический некроз
 - 3. Прямой некроз
 - 4. Кариопикноз, кариолизис, кариорексис (ядро клетки). Коагуляция цитоплазмы, плазморексис, плазмолизис (цитоплазма клетки)
 - 5. Гибель эпителия канальцев и даже базальной мембраны.

Задача №3.

Задача 3.

У больного, страдавшего атеросклерозом с развитием обтурации левой средней мозговой артерии (образование в ней тромба), развилось острое нарушение мозгового кровообращения. Смерть наступила от отека головного мозга. На секции в легком обнаружен петрификат в 1 сегменте.

- 1. опишите макроскопическую картину изменений, развившихся в левом полушарии головного мозга.
- 2. какая это клинико-морфологическая форма и этиологический вид некроза? Как можно назвать эту форму некроза с учетом этиологии ее возникновения?
- 3. какой это вид некроза в зависимости от механизма действия этиологического фактора?
- 4. продемонстрируйте и опишите изменения в ткани головного мозга при благоприятном исходе этого процесса.
 - 5. назовите синоним петрификата в легком. Что предшествовало этому процессу в ткани легкого?
 - 1. Инфаркт мозга. Очаг серого размягчения головного мозга, округлой формы, дряблой консистенции, представлен кашицеобразными массами. По типу белый инфаркт. Обычно локализуется в подкорковых узлах, разрушая проводящие пути мозга, что проявляется параличами. Форма инфаркта неправильная.
 - 2. Инфаркт (клинико морфологическая форма). Сосудистый некроз, вызванный ишемией органа.
 - 3. Непрямой некроз
 - 4. Образование на месте некроза кисты. При небольших размерах ишемического инфаркта мозга возможно замещение его глиальной тканью с формированием глиального рубца.

5. Кальцинат. Дистрофическое обызвествление(уровень кальция в крови не меняется, соли откладываются местно в участках некроза и склероза). Очаговое, или диффузное, отложение в ткани минеральных солей называют ее петрификацией. Этому процессу предшествует дегенеративное изменение основного вещества ткани в отдельных участках или по всей массе с освобождением мукополисахаридов и белков.

Задача №4.

Задача 4.

У больного, страдавшего атеросклерозом с выраженными изменениями в аорте и артериях нижних конечностей, появились боли в левой стопе, развились некротические изменения в тканях. Впоследствии в некротизированных тканях появились изменения, обусловленные действием присоединившейся инфекции.

- 1. опишите макроскопические изменения в тканях стопы, отражающие некротические изменения.
 - 2. как изменился характер изменений под воздействием инфекции?
- 3. какая клинико-морфологическая форма некроза развилась у больного в конечности?
 - 4. какие ее разновидности имели место?
 - 5. какой это этиологический вид некроза?
 - 1. Влажная гангрена развилась вследствие развития инфекции (попадание микроорганизмов) в некротизированной стопе: черного цвета, слабо выражена граница между живой и некротизированной тканью. Ткань отечная, набухшая, дряблой консистенции. Возможно появление неприятного гнилостного запаха.
 - 2. Из сухой гангрены превратилась во влажную
 - 3. Гангрена
 - 4. Сухая и влажная
 - 5. Сосудистый, ишемический некроз

Задача №5. Задача 5.

Больной поступил в клинику в хирургическое отделение по поводу ущемленной грыжи. В грыжевом мешке обнаружена петля тонкой кишки с выраженными некротическими изменениями.

- 1. опишите макроскопические изменения, развившиеся в тонкой кишке.
- 2. какая это клинико-морфологическая форма некроза? Дайте определение.
- 3. какая ее разновидность развилась в кишке?
- 4. какой это этиологический вид некроза?
- 5. какие другие причины могут привести к развитию таких же изменений в кишке?

- 1. Петля тонкой кишки отечная, набухшая, черно красного цвета, дряблой консистенции, стенка на разрезе утолщена. На серозной оболочке фибринозные наложения в виде нитей сероватого цвета. Демаркационная зона не выражена. Может быть выражен зловонный гнилостный запах.
- 2. Гангрена некроз тканей, соприкасающихся с внешней средой. Ткани имеют черную окраску в результате образования сульфида железа из железа гемоглобина и сероводорода воздуха.
- 3. Влажная гангрена. Возникает в тканях при действии гнилостных микроорганизмов.
- 4. Сосудистый некроз
- 5. <u>При переломах</u> влажная гангрена может развиться вследствие эмболии сосуда попавшими в систему кровообращения кусочками жировой ткани или костного мозга. Токсическая при этом токсины могут попадать в организм как извне, так и образовываться в процессе его жизнедеятельности. <u>Аллергическая</u>, развивающаяся на фоне чрезмерной стимуляции и извращенной реакции иммунной системы в ответ на какой-либо аллерген. В его роли могут выступать и микроорганизмы, на которые иммунная система некоторых людей реагирует неадекватно силе инфекционного воздействия. <u>Инфекционная</u>, которая развивается при первичном проникновении патогенных микроорганизмов в ткани Сосудистая, в основе которой лежит нарушение нормального артериального кровотока в тех или иных частях человеческого организма, то есть первично развивается некроз. Подобные явления характерны для сахарного диабета, тромбозов, инфарктов и инсультов.

Задача №6.

Задача 6.

У больного, страдавшего ревматическим пороком сердца, развился очаг некроза в селезенке вследствие закрытия ветви селезеночной артерии тромбоэмболом.

- 1. опишите макроскопическую картину изменений в селезенке.
- 2. какая это клинико-морфологическая форма некроза?
- 3. какой это этиологический вид некроза?
- 4. какой благоприятный исход этих изменений?
- 5. в каких органах могут развиться подобные поражения у этого больного?
- 1. Белый инфаркт, с реактивным фибринозным воспалением капсулы (наличие на капсуле наложений фибрина). Очаг некроза беловатого цвета, треугольной (клиновидной) формы, плотной консистенции.
- 2. Инфаркт селезенки
- 3. Сосудистый, ишемический инфаркт
- 4. Организация и образование рубца
- 5. Сердце, легкие, почки ?

Задача №7. Задача 7.

У больной, страдавшей атеросклерозом с поражением аорты, развился очаг некроза в почке вследствие закупорки ветви почечной артерии тромбоэмболом.

- 1. опишите микроскопическую картину изменений в почке.
- 2. какая это клинико-морфологическая форма некроза?
- 3. какой это этиологический вид некроза?
- 4. какие благоприятные и неблагоприятные исходы может иметь этот процесс?
- 5. в каких органах могут развиться подобные поражения у этого больного?
- 1. Белый инфаркт, с геморрагическим венчиком, конусовидный участок некроза, охватывает либо корковое вещество, либо всю толщу паренхимы. На препарате видны 3 зоны: 1 зона зона сохранной ткани органа; 2 зона зона некроза, представленная очагом клиновидной формы, в котором сохранились лишь контуров клубочков и канальцев. В их клетках отсутствуют ядра (кариолизис), местами цитоплазма в состоянии лизиса, на микропрепарате встречаются бесструктурные участки розового цвета (некротический детрит); 3 зона демаркационная зона представлена полнокровными сосудами и скоплением полиморфно ядерных лейкоцитов. Данная зона разделяет неизмененную ткань и зону некроза.
- 2. Инфарктпочки
- 3. Непрямой сосудистый некроз
- 4. Благоприятный: организация или образование рубца. Неблагоприятный: нагноение
- 5. Сердце, легкие, почки ?

<u>Задача №8.</u> Мужчина, 35 лет. В автомобильной катастрофе получил закрытый перелом бедра. Через 10 часов был доставлен в больницу с резко выраженным малокровием. Еще через 2 часа умер от острой почечной недостаточности (ОПН).

- 1. назовите изменения в почках, обусловившие развитие ОПН.
- 2. назовите причину возникновения патологии.
- 3. назовите вид некроза в зависимости от механизма действия патогенного фактора.
- 4. опишите микроскопическую картину почек.
- 5. укажите возможные изменения базальной мембраны канальцев.
- 1. Инфильтрация эпителия почечных канальцев. При проникновении капель жира через капиллярный барьер может возникать обтурация ими мелких сосудов почек. Что приводит к развитию ОПН.
- 2. Жировая эмболия, возникшая вследствие закрытого перелома бедра
- 3. Травматический некроз
- 4. Просветы отдельных капиллярных петель почечных клубочков растянуты округлоовальными пустотами, похожими на жировые эмболы.В цитоплазме эпителиоцитов канальцев видны мелкие оранжево-красные включения, являющиеся каплями жира.
- 5. ?

<u>Задача №9.</u> У больного, 65 лет, страдавшего атеросклерозом, смерть наступила от острого нарушения мозгового кровообращения. На вскрытии обнаружены выраженные атеросклеротические изменения в аорте, тромб в сосудах мозга и инфаркт селезенки.

1. опишите макроскопические изменения в селезенке.

- 2. назовите клинико-морфологическую форму и вид некроза в селезенке в зависимости от действия этиологического фактора.
- 3. опишите изменения, обнаруженные в ткани головного мозга, назовите синоним процесса.
 - 4. назовите причина развития процесса в головном мозге.
 - 5. назовите возможный благоприятный исход процесса в головном мозге.
 - 1. Инфаркт селезенки: белый, нередко с реактивным фибринозным воспалением капсулы и последующим образованием спаек с диафрагмой, париетальным листком брюшины и петлями кишечника. Очаг некроза белого цвета, треугольный формы.
 - 2. Непрямой, ишемический инфаркт
 - 3. Инфаркт мозга: очаг серого размягчения головного мозга, кашицеобразные массы, округлой формы, дряблой консистенции. По типу белый инфаркт. Обычно локализуется в подкорковых узлах, разрушая проводящие пути мозга, что проявляется параличами. Форма инфаркта неправильная. Синоним инсульт
 - 4. Наиболее распространенными причинами являются атеросклероз, гипертоническая болезнь, тромбоз
 - 5. Развитие организации, т.е. замещение тромба врастающей соединительной тканью. Начиная с 6 – 11 дни канализация и васкуляризация тромботических масс. Возможно обызвествление тромба. Иногда отмечается асептический аутолиз под действием фибринолитической системы и протеолитических ферментом.

Задача №10.

На вскрытии тела мужчины, 63 лет, умершего от инфаркта миокарда, обнаружены множественные крупные рубцы в почках.

- 1. опишите изменения в сердце, обнаруженные на секции.
- 2. что можно найти в коронарной артерии?
- 3. назовите исходы процесса в миокарде.
- 4. опишите микроскопические изменения в почках.
- 5. в исходе какого патологического процесса они возникли?
- 1. На препарате видны 3 зоны: <u>1 зона</u> зона некроза мышечных клеток (видны кариолизис, плазмокоагуляция, кариорексис и др.); <u>2 зона</u> демаркационное воспаление расширенные полнокровные тонкостенные сосуды, видна инфильтрация полиморфно ядерными лейкоцитами; <u>3 зона</u> сохранная ткань миокарда.
- 2. Тромб, атеросклеротическая бляшка
- 3. Развитие организации, т.е. замещение тромба врастающей соединительной тканью. Начиная с 6 11 дни канализация и васкуляризация тромботических масс. Возможно обызвествление тромба. Иногда отмечается асептический аутолиз под действием фибринолитической системы и протеолитических ферментом.
- 4. Белый инфаркт, с геморрагическим венчиком, конусовидный участок некроза, охватывает либо корковое вещество, либо всю толщу паренхимы. На препарате

видны 3 зоны: **1 зона** — зона сохранной ткани органа; **2 зона** — зона некроза, представленная очагом клиновидной формы, в котором сохранились лишь контуров клубочков и канальцев. В их клетках отсутствуют ядра (кариолизис), местами цитоплазма в состоянии лизиса, на микропрепарате встречаются бесструктурные участки розового цвета (некротический детрит); **3 зона** — демаркационная зона представлена полнокровными сосудами и скоплением полиморфно — ядерных лейкоцитов. Данная зона разделяет неизмененную ткань и зону некроза.

5. Инфаркт

Задача №11.

У больного 65 лет, страдавшего атеросклерозом, развился инсульт с потерей сознания и параличом левой половины туловища. В стационаре проводилось лечение в течение 7 недель, состояние улучшилось, вернулось сознание, паралич остался, на коже крестца появились участки омертвения кожи в местах соприкосновения с постелью. Смерть наступила от двусторонней бронхопневмонии.

- 1. назовите и опишите изменения, обнаруженные на секции в ткани головного мозга.
 - 2. какой патологический процесс предшествовал этим изменениям?
 - 3. опишите его макроскопические проявления, назовите синоним.
 - 4. какая это клинико-морфологическая форма некроза?
 - 5. назовите изменения в коже, объясните их цвет.
 - 1. Инфаркт мозга: очаг серого размягчения головного мозга, кашицеобразные массы, округлой формы, дряблой консистенции. По типу белый инфаркт. Обычно локализуется в подкорковых узлах, разрушая проводящие пути мозга, что проявляется параличами. Форма инфаркта неправильная.
 - 2. Атеросклероз, тромбоз?
 - 3. Пролежень как разновидность гангрены трофоневротического генеза, ткани становятся серо бурыми или черными, усыхают, сморщиваются. Четко видная граница между живой и мертвой тканью
 - 4. Сухая гангрена
 - 5. Ткани становятся серо-бурыми или черными, что связано с превращением кровяных пигментов в сульфид железа.

тема 2

задача 1

- В эксперименте на свиньях была создана модель ревматизма с преимущественным поражением клапанного аппарата сердца.
 - 1. назовите диспротеинозы, которые могут быть последовательными стадиями дезорганизации соединительной ткани.
 - 2. в чем сущность изменений при каждом диспротеинозе?
 - 3. каковы механизмы развития каждого диспротеиноза?
 - 4. назовите группы заболеваний, при которых эти диспотеинозы развиваются как последовательные стадии дезорганизации соединительной ткани
 - 5. опишите микропрепараты, иллюстрирующие эти дистрофии
- 1.Последовательные стадии дезорганизации соед ткани: мукоидное набухание, фибриноидное набухание, гиалиноз
- 2-3. Сущность и механизм: мукоидного набухания накопление гликозаминогликанов (изза ослабления связей между гликозаминогликанами и белками или активной деятельности фибробластов) => коллагеновые волокна набухают и разволокняются, набухает и увеличивается в объеме основное вещество => клетки соединительной ткани отдаляются друг от друга; фибриноидного набухания распад белка и деполимеризация гликозаминогликанов =>
- фибриноидного набухания распад белка и деполимеризация гликозаминогликанов => деструкция основного вещества и волокон, резкое повышение сосудистой проницаемости с образованием фибриноида (ФИБРИНОИД сложное вещество, образованное за счет белков, полисахаридов, распадающихся коллагеновых волокон основного вещества, а также плазменных белков крови и нуклеопротеидов разрушенных клеток соединительной ткани, фибрин); гиалиноза образование в соединительной ткани однородной полупрозрачной массы (внеклеточное отложение гиалина), к развитию гиалиноза ведет деструкция волокнистых структур и повышение тканево-сосудистой проницаемости в связи с дисциркуляторными, метаболическими и иммунопатологическими процессами
- 4. заболевания: гипертоническая болезнь, атеросклероз, сахарный диабет, ревматизм
- 5. микропрепараты: мукоидное набухание клапана при ревматизме резкая метахромазия в клапане сердца и париетальном эндокарде, умеренная инфильтрация; гиалиноз сосудов селезенки стенки артериол утолщенные, представлены гомогенными эозинофильными массами

Залача 2

Женщина Н., 24 года, заболела ревматизмом. Умерла внезапно от острой сердечно-сосудистой недостаточности.

- 1. какие виды дистрофии можно выявить гистологически в клапане сердца?
- 2. назовите селективную окраску для выявления одной из этих дистрофий. Опишите микропрепарат, иллюстрирующий подобные изменения.
- 3. в чем сущность изменений при данной дистрофии?
- 4. в какую группу относится описанная Вами дистрофия

- по локализации
- по виду нарушенного обмена
- 5. какие изменения в клапанах сердца могли бы развиться у больной в последующем? Опишите макропрепарат.
- 1.можно выявить белковую стромально-сосудистую дистрофию (мукоидное набухание, фибриноидное набухание, гиалиноз)
- 2. окраска толуидиновый синий; мукоидное набухание клапана при ревматизме резкая метахромазия в клапане сердца и париетальном эндокарде, умеренная инфильтрация
- 3. сущность изменений при данной дистрофии: накопление гликозаминогликанов (из-за ослабления связей между гликозаминогликанами и белками или активной деятельности фибробластов) => коллагеновые волокна набухают и разволокняются, набухает и увеличивается в объеме основное вещество => клетки соединительной ткани отдаляются друг от друга

4.по локализации – стромально-сосудистая, по виду – белковая

5.мог бы развиться гиалиноз. Макропрепарат: гиалиноз клапанов сердца(наличие сложного гиалина, состоящего из иммунных комплексов, фибрина и разрушающихся структур сосудистой стенки; сужен просвет сосудов.

Задача 3

Больной К., 65 лет, длительно страдал гипертонической болезнью с преимущественным поражением головного мозга и почек. Умер при явлениях хронической почечной недостаточности.

- 1. чем обусловлено развитие хронической почечной недостаточности?
- 2. опишите макроскопические изменения почек.
- 3. дайте название (два синонима) процессу, который развился в почках.
- 4. какие изменения сосудов способствовали развитию сморщивания почек
 - название дистрофии
- охарактеризуйте ее по локализации и по виду нарушенного обмена
- 5. опишите микропрепарат, в котором представлены аналогичные изменения сосудов

1.гипертонической болезнью

2.макроскопическое изменение почек: почки уменьшены в размерах, уплотнены, с мелкозернистой поверхностью, мелкими кистами и прозрачным содержимым, на разрезе уменьшен объем паренхимы (в основном уменьшение коркового слоя), увеличен объем жировой клетчатки ворот почек

- 3. два названия: артериосклеротический нефросклероз, первично сморщенная почка
- 4. название дистрофии гиалиноз, локализация стромально-сосудистая, вид нарушения диспротеиноз
- 5.микропрепарат с аналогичными изменениями: гиалиноз сосудов селезенки стенки артериол утолщенные, представлены гомогенными эозинофильными массами

Задача 4.

Больной Р., 34 года, страдал ревматическим пороком митрального клапана. Умер от хронической сердечно-сосудистой недостаточности.

- 1. опишите макроскопическую картину изменений митрального клапана.
- 2. вследствие какой дистрофии створки митрального клапана имеют подобный вид?
- 3. в результате каких последовательных изменений (стадий процесса) в митральном клапане развилась эта дистрофия?
- 4. опишите микропрепарат, иллюстрирующий одну из предшествующих стадий.
- 5. на каком этапе изменения в клапане были обратимыми? Почему?

1.изменения митрального клапана:створки утолщены, белесоваты, укорочение сухожильных хорд, деформация, сращение друг с другом

- 2.вследствие гиалиноза
- 3.последовательно:мукоидное набухание,фибриноидноенабухание,гиалиноз
- 4. описание одной из предшествующих стадий: мукоидное набухание клапана при ревматизме резкая метахромазия в клапане сердца и париетальном эндокарде, умеренная инфильтрация
- 5.изменения были обратимыми на стадии мукоидного набухания, так как на этой стадии не происходил распад коллагена, при прекращении воздействия патогенного фактора структура и функции полностью восстанавливаются.

Задача 5

Больной В., 74 лет, страдавший декомпенсированной формой сахарного диабета, умер от влажной гангрены нижней конечности. На вскрытии - обтурирующий тромб в бедренной артерии, резко измененная аорта.

- 1. какой процесс можно обнаружить в аорте? С нарушением обмена какого вещества он связан?
- 2. опишите макроскопическую картину изменений аорты.
- 3. опишите микропрепарат, иллюстрирующий данный процесс. Назовите селективную окраску для выявления этой дистрофии.
- 4. назовите морфогенетические механизмы развития данной дистрофии.
- 5. найдите микропрепарат, демонстрирующий изменения мелких сосудов,

которые могли иметь место у данного больного.

1.атеросклероз аорты; связан с нарушением обмена холестерина

2.макроскопическая картина при атеросклерозе аорты: в интиме аорты видны желтые пятна и полоски, выбухающие в просвет белесовато-серые бляшки

3.микро: окраснасуданом 3, липоидоз аорты: в утолщенной интиме аорты видны окруженные суданом в ярко-желтый цвет капли жира и кристаллы холестерина

4

5

Задача 6

Больная Ж., 38 лет, с опухолью гипофиза обратилась к врачу с жалобами на избыточный вес, причем особенно много жира в области подкожной клетчатки лица и туловища. Беспокоит одышка при физической нагрузке. Последние 5 лет отмечается повышение артериального давления.

- 1. каков механизм развития тучности у больной? Какой тип ожирения имеет место в данном случае?
 - 2. опишите макроскопическую картину изменений сердца у больной.
- 3. с чем связаны признаки сердечной недостаточности? Назовите возможное смертельное осложнение в данном случае.
- 4. опишите микропрепарат, отражающий изменения мелких артерий, которые могли иметь место у данной больной.
- 5. назовите вид дистрофии (по локализации, по виду нарушенного обмена), лежащий в основе этих изменений.

1.вторичное ожирение, эндокринное (синдром Иценко-Кушинга), верхний тип ожирения; из-за опухоли гипофиза происходит избыточная продукция АКТГ, и, влияя на надпочечники, излишняя выработка кортикостероидов, которые нарушают обмен веществ

2. размеры сердца увеличены, количество жира под эпикардом увеличено, жировая ткань охватывает сердце в виде футляра и врастает в строму миокарда, что ведет к атрофии мышечных волокон

3.

4.при гипертонической болезни отмечается гиалиноз мелких артериол и артерий в связи с плазматическим пропитыванием и фибриноидным набуханием сосудистой стенки при длительном спазме, сопровождающимся гипоксическим повреждением структур сосудистой стенки

5.фибриноидное набухание, стромально-сосудистая белковая дистрофия

Задача 7

Больная В., 67 лет, страдающая ожирением III ст., погибла внезапно. На секции обнаружен разрыв сердца и резко измененная аорта.

- 1. дайте описание макроскопических изменений сердца.
- 2. какая дистрофия (по виду нарушенного обмена и по локализации изменений) имеет место в данном случае?
- 3. опишите макро- и микроскопические изменения аорты, которые возможны в данном случае.
- 4. назовите эту дистрофию по виду нарушенного обмена и локализации изменений.
- 5. причины и механизмы развития этой дистрофии в стенке аорте.
- 1.макроскопически: ожирение сердца, под эпикардом толстый слой жира
- 2.жировая дистрофия, стромально-сосудистая
- 3. микроскопические изменения аорты: липоидоз аорты в утолщенной интиме аорты видны окруженные суданом в ярко-желтый цвет капли жира и кристаллы холестерина, макро: при атеросклерозе аорты: в интиме аорты видны желтые пятна и полоски, выбухающие в просвет белесовато-серые бляшки

4.как 2

5.

Задача 8

Тучная больная О., 56 лет, длительно страдавшая гипертонической болезнью, умерла при явлениях нарастающей сердечно-сосудистой недостаточности.

- 1. какой вид дистрофии (по локализации и по виду нарушенного обмена) лежит в основе тучности? Назовите локализацию основных изменений при тучности.
- 2. опишите изменения в сердце, обнаруженные на вскрытии.
- 3. опишите макропрепарат, демонстрирующий изменения в почках, обнаруженные на вскрытии. Дайте название процессу.
- 4. назовите вид дистрофии (по локализации, по виду нарушенного обмена),

лежащий в основе этих изменений.

- 5. опишите микропрепарат, демонстрирующий эту дистрофию. Объясните механизм ее развития.
- 1. стромально-сосудистая дистрофия, жировая;
- 2. ожирение больше выражено в правой половине сердца;слой жира под эпикардом
- 3. изменения в почках: артериолосклеротический нефросклероз почки уменьшены в размерах, уплотнены, с мелкозернистой поверхностью, мелкими кистами и прозрачным

содержимым, на разрезе уменьшен объем паренхимы (в основном уменьшение коркового слоя), увеличен объем жировой клетчатки ворот почек

4. название дистрофии – гиалиноз, локализация – стромально-сосудистая, вид нарушения – диспротеиноз

5. при гиалинозе - образование в соединительной ткани однородной полупрозрачной массы (внеклеточное отложение гиалина), к развитию гиалиноза ведет деструкция волокнистых структур и повышение тканево-сосудистой проницаемости в связи с дисциркуляторными, метаболическими и иммунопатологическими процессами; микро: гиалиноз сосудов - стенки артериол утолщенные, представлены гомогенными эозинофильными массами

Задача 9

У больного гриппом ребенка температура поднялась до 40°С, появилась тахикардия, в моче - следы белка. Через 10 дней температура и пульс нормализовались, анализы мочи без изменений.

- 1. какой дистрофический процесс развился в миокарде и в почках?
- 2. опишите морфогенетический механизм развития этой дистрофии в миокарде и в почках.
- 3. опишите препарат, характеризующий микроскопические изменения почек.
- 4. к какой группе нарушений обмена относится данная дистрофия по локализации
 - по виду нарушенного обмена в почках и в миокарде
- 5. почему после выздоровления больного нормализовалась деятельность сердца и почек?

1. зернистая дистрофия

2.изменение физико-химических и морфологических свойств белков клеток, белки подвергаются денатурации и коагуляции; при избыточном свертывании белков в клетках миокарда и почек фрагменты белков формируют в цитоплазме эозинофильные белковые зерна

3. препарат: зернистая дистрофия эпителия канальцев: в цитоплазме клеток эпителия извитых канальцев видны гиалиноподобные капли, окрашенные эозином в розовый цвет, эпителиальные клетки увеличины в объеме, границы их нечеткие

4. паренхиматозные, вид – зернистая белковая

5. тк зернистая дистрофия обратима при устранении причины, вызвавшей дистрофию(наступило выздоровление)

Задача 10

Больной К., 40 лет, жалуется на отеки. Клинически у него выявлены выраженная протеинурия (в моче до 20 г в сутки), гипопротеинемия (20 г/л), гиперлипидемия (холестерин крови 10 ммоль/л).

- 1. назовите синдром, имеющий место у больного.
- 2. какие изменения в эпителии канальцев почек являются морфологическим эквивалентом этого синдрома?
- 3. опишите микропрепараты почки, в которых имеют место данные изменения.
- 4. каков морфогенетический механизм описанных Вами изменений?
- 5. возможно ли их обратное развитие? Почему?

1.нефротический синдром

2.гиалиново-капельная дистрофия

3.микропрепарат: гиалиново-капельная дистрофия эпителия канальцев: в цитоплазме клеток эпителия извитых канальцев видны гиалиноподобные капли, окрашенные эозином в розовый цвет, эпителиальные клетки увеличины в объеме, границы их нечеткие, просветы канальцев сужены, отмечается слущивание эпителия

4.механизм: недостаточность вакуолярно-лизосомального аппарата при длительном существенном увеличении белка в первичной моче, количество пиноцитозных пузырьков с белком возрастает, они становятся крупными, сливаются с лизосомами, но не метаболизируются, а подвергаются коагуляции

5. нет,тк наступает деструкция липопротеидных комплексов мембранных структур клетки, и остатки белков подвергаются коагуляции

Задача 11

У больного с распадающимся раком желудка с повторными желудочными кровотечениями отмечается выраженная анемия (гемоглобин крови 38 ед.), тахикардия. Тоны сердца глухие, границы сердца перкуторно расширены влево, печень увеличена, на 5 см выступает из подреберья, поверхность ее гладкая.

- 1. какая дистрофия развилась в печени и миокарде?
- 2. каковы морфогенетические механизмы развития этой дистрофии в печени
 - в миокарде?
- 3. опишите макроскопическую картину изменений миокарда и печени в данном случае. Приведите образное название препаратов.
- 4. опишите микроскопическую картину изменениймиокарда в данном случае. Назовите селективную окраску для выявления данной дистрофии.
- 5. назовите клинический эквивалент обнаруженной в данном случае дистрофии миокарда.

1.жировая дистрофия печени и миокарда

2.в сердце: гипоксия вследствие анемии (гипоксия ->энергодефицит -> анаэробный гликолиз -> снижение атф, ацидоз, повреждение митохондрий - > нарушение окисления

ЖК -> накопление липидов), в печени: заболевание ЖКТ - > недостаточность белков, из которых синтезируются апопротеины -> накопление жиров в печени, тк нарушен транспорт липидов из печеночной клетки

3.макроскопически печень(гусиная): увеличена в размерах, дряблая, на разрезе желтого или охряно-желтого цвета, с налетом жира; макроскопически сердце(тигровое): под эндокардом левого желудочка, особенно особенно в области трабекул и сосочковых мышц, видна желто-белая исчерченность

4. окрасна суданом 3.в миокарде:в цитоплазме клеток, расположенных преимущественно вокруг венул и вен, скопления мелких капель жира желто-красного цвета, другие мышечные клетки свободны от жировых включений, отсутствует поперечная исчерченность мышечных клеток, ядра сморщены или лизированы

5.

Задача 12

У больного хроническим гломерулонефритом отмечается выраженная протеинурия (в моче до 20 г белка в сутки), гипопротеинемия, гиперлипидемия, отеки. С диагностической целью произведена пункция почки. В биоптате почки в эпителии извитых канальцев выявлены гиалиновые капли, канальцы резко расширены.

- 1. назовите синдром, имеющий место у больного. Какая дистрофия выявлена гистологически в эпителии извитых канальцев?
- 2. какие еще виды дистрофий, составляющие морфологическую сущность этого синдрома, можно выявить в эпителии канальцев почки?
- 3. опишите микропрепараты, в которых можно выявить эти виды дистрофий. В какую группу дистрофий относятся обнаруженные Вами изменения?
- 4. опишите морфогенетический механизм развития этих дистрофий.
- 5. обратимы ли эти процессы? Почему?
- 1. Нефротический синдром. Гиалиново-капельная дистрофия
- 2.Зернистая дистрофия?

Может возникать **гидропическая** дистрофия в случае повреждения мебранофермнтных систем, вакуолярно-лизосомального аппарата и системы базального лабиринта, отвественных за реабсорбцию белка и воды

- 3.Паренхиматозная белковая дистрофия . Микро: « Гиалиново-кпельная дистрофия эпителия канальцев почки эпителий извитых канальцев почки увеличен в размере ,набухший ,границы клеток размыты ,в просвете видны эозинофил.белковые массы. В цитоплазме нефроцитов опредляются мелкие вакуоли,окрашен. В розовый цвет,ядра клеток пикнотичны»
- « Гидропическая дистрофия эпителия канальцев почки- невроциты увеличены, набухшие, контуры их размыты. В цитоплазме клеток видны крупные белковые эозинофил . Вакуоли, оттесняющие ядра к периферии ,ядра сморщены или вакуолизированы.
- 4. Гиалиново-капельная избыточное содержание белка в первичной моче, высокая реабсорбция белка (инфильтрация клеток), количество пиноцитозных

пузырьков в клетке растет, они становятся крупными, сливаются с лизосомами, но не метаболизируются (декомпозиция, недостаточность вакуолярно-лизосомального аппарата) и подвергаются коагуляции.

Гидропическая — нарушение обмена белков часто сочетается с расстройством работы Na/K-помпы, клетки теряют способность поддерживать ионный и водный гомеостаз ,что приводит к накоплению ионов Na и набуханию или гидратации клетки (инфильтрация) . Декомпозиция — нарастание гидропии приводит к разрушению ультра-структур клетки и переполнению клетки водой,образуются вакуоли заполненные жидкостью-баллоны (баллонная дистрофия)

5. При гиалиново-капельной дистр. Происходит коагуляция белка ,исход неблагоприятен – завершается фокальным ,а затем и тотальным коагуляцион. Некрозом клеток, функция клеток и органов снижается .

Гидропическая дистр., как правило, обратима, но при выраженном набухании (баллонная дистрофия) происходит фокальный, а затем тотальный колликвационный некроз клеток.

Задача 13

Мужчина 35 лет, длительно злоупотреблял алкоголем - в течение многих лет выпивал ежедневно не менее 250 мл. В последнее время жалуется на боли в правом подреберье, постоянное чувство горечи во рту. Печень на 7 см выступает из-под края реберной дуги.

- 1. какой дистрофический процесс развился в печени?
- 2. опишите макроскопические изменений печени. Приведите образное название.
- 3. опишите микроскопические изменения печени (с учетом селективной окраски).
- 4. каков морфогенетический механизм развития этой дистрофии в данном случае?
- 5. назовите другие возможные морфогенетические механизмы развития этого вида дистрофии в печени. Назовите исход данного процесса в печени.
- 1. Жировая дистрофия
- 2. Макро «Гусиная печень»:Печень увеличена в размерах, край печени закруглен, гладкая поверхность, желтоватый цвет, дряблой консистенции. При разрезе жир остается на ноже.
- 3.Микро:Судан III-В центральной части дольки(характерно для алкогольной болезни) печени обнаруживаются капли жира разного размера ,окрашен в оранжевый цвет. При окраске Г-Э видны вакуоли на месте включений липидов ,растворивш. при обработке . Жир оттесняет ядро и цитопазму с органеллами на периферию.
- 4. Этанол усиливает мобилизацию жира из депо , увеличивает этерификацию ЖК в ТАГ , что приводит к инфильтрации клеток нейтральными жирами. Также интоксикация алкоголем уменьшает окисление ЖК и синтез липопротеинов. Декомпозиция разрушение ульраструктур клетки.
- 5. Причины накопления нейтр.жиров в печени являются следствием дезорганизации ферментативных процессов на разных этапах обмена липидов -повышенное постепление ЖК в пчень (напр. При СД)или повышенный их синтез в

гепатоцитах, что приводит к дефициту ферментов

-снижение поступления аминокислот для синтеза фосфолипидов и липопротеинов . Исход данного процесса зависит от длительности приема алкоголя. При полном отказе жир исчезает из печени через 2-4 недели ,а прогрессирование алкогольного стеатоза ведет к циррозу печени,при этом большое значение имеют атаки острого алкогольного гепатита .

Задача 14

30-летний мужчина Р. с детства страдал ревматизмом с развитием комбинированного порока сердца. Явления декомпенсации стали нарастать, и больной скончался от сердечной недостаточности.

- 1. какая дистрофия развилась в миокарде как морфологический эквивалент декомпенсации?
- 2. опишите макроскопические изменения сердца. Приведите образное название.
- 3. опишите микроскопические изменения миокарда. Назовите селективную окраску для выявления данной дистрофии.
- 4. каков морфогенетический механизм развития дистрофии? Назовите факторы, способствующие ее развитию.
- 5. почему этот вид дистрофии лежит в основе сердечной декомпенсации?
- 1. Жировая дистрофия миокарда
- 2. «Тигровое сердце» Макро: жировая дистрофия имеет очаговый характер, так как содержащие жир кардиомиоциты находятся преимущественно вдоль венозного колена капилляров и мелких вен. Под эндокардом левого желудочка, в области трабекул и сосочковых мышц видна желто-белая исчерченность.
- 3. Микро: накопление липидов в цитоплазме кардиомиоцитов по ходу венозного колена капилляров и мелких вен. Селективной окраской является окраска суданом III
- 4. Происходит деструкция митохондрий и снижение сократительной способности миокарда. (?)

Задача 15

У больной Л., 56 лет, страдающей декомпенсированным сахарным диабетом, постоянное чувство тяжести в правом подреберье, тошнота, горечь во рту, затем присоединились признаки нарушения функции почек: протеинурия до 1-3%о, сахар в моче.

- 1. какая дистрофия развилась в печени?
- 2. опишите морфогенетические механизмы ее развития.
- 3. опишите макроскопическую картину изменений печени. Приведите образное название.
- 4. какие виды дистрофий в эпителии канальцев почек могут иметь место в данном случае?
- 5. опишите микропрепараты, иллюстрирующие эти изменения. Назовите используемые селективные окраски.
- 1. Жировая дистрофия
- 2. Инфильтрация нейтральными жирами клетках печени при: повышенном поступлении ЖК из крови ,так как недостаток инсулина (антилиполитический гормон) приводит к

высвобождение ЖК из жировых депо и поступлению в печень. Но печень не способна полностью усвоить поступающие ЖК ,идущие на синтез липопротеидов ,из-за недостатка синтеза апопротеинов. Поэтому ЖК ресинтезируются в ТАГ. Затем происходит вакуолизация ядер ожиревших гепатоцитов за счет накопления в них гликогена — дырчатые или гликогенные ядра (декомпозиция)

- 3. «Гусиная печень» Макро: Печень увеличена в размерах, край печени закруглен, гладкая поверхность, желтоватый цвет, дряблой консистенции. При разрезе жир остается на ноже.
- 4. Жировая дистрофия почек ,гиалиново-капельная и гидропическая дистрофии
- 5. Микро: «Гиалиново-кпельная дистрофия эпителия канальцев почки эпителий извитых канальцев почки увеличен в размере ,набухший ,границы клеток размыты ,в просвете видны эозинофил. белковые массы. В цитоплазме нефроцитов опредляются мелкие вакуоли, окрашен. В розовый цвет,ядра клеток пикнотичны»
- « Гидропическая дистрофия эпителия канальцев почкиневроцитыувеличены, набухшие, контуры их размыты. В цитоплазме клеток видны крупгые белковые эозинофил . Вакуоли, оттесняющие ядра к периферии ,ядра сморщены или вакуолизированны.
- «Жировая дистрофия почек» : Селективая окраска суданомІІІ липиды видны в цитоплазме эпителия канальцев и строме почки в виде капель (нейтральные жиры) или двоякопреломляющихся кристаллов (холестерин)

Задача 16

У женщины П., 64 лет, страдающей ожирением, были жалобы на чувство тяжести в правом подреберье, горечь во рту, тошнота. В дальнейшем присоединились признаки сердечной недостаточности.

- 1. опишите макроскопические изменения в печени.
- 2. какой вид дистрофии развился в печени, его морфогенетический механизм в данном случае
- 3. какая дистрофия развилась в миокарде как морфологический субстрат декомпенсации сердца?
- 4. опишите микроскопическую картину изменений в миокарде. Назовите селективную окраску для подтверждения данной дистрофии.
- 5. объясните механизм развития декомпенсации работы сердца при этом виде дистрофии.
- 1. Макро «Гусиная печень»:Печень увеличена в размерах, край печени закруглен, гладкая поверхность, желтоватый цвет, дряблой консистенции. При разрезе жир остается на ноже.
- 2.Жировая дистрофия. . Причины накопления нейтр.жиров в печени являются следствием дезорганизации ферментативных процессов на разных этапах обмена липидов . Инфильтрация нейтральными жирами клетках печени при: повышенном поступлении ЖК из крови (так как при общем ожирении характерно высокое содержание ЖК в крови). Но печень не способна полностью усвоить поступающие ЖК ,идущие на синтез липопротеидов ,из-за недостатка синтеза апопротеинов. Поэтому ЖК ресинтезируются в ТАГ
- 3. Жировая дистрофия

4. Селективная окраска — суданIII

Микро: : накопление липидов в цитоплазме кардиомиоцитов по ходу венозного колена капилляров и мелких вен.

5. Жировая дистрофия приводит к деструкции митохондрий и снижает сократительную способность сердца (?)

Задача 17

Мужчина Д., 29 лет, с детства страдал миокардитом. Явления декомпенсации стали нарастать, и больной скончался от сердечной недостаточности.

- 1. какая дистрофия развилась в миокарде как морфологический эквивалент декомпенсации?
- 2. опишите макроскопические изменения сердца. Приведите образное название.
- 3. опишите микроскопические изменения миокарда в данном случае. Назовите селективную окраску для выявления данной дистрофии.
- 4. опишите механизм развития дистрофии в миокарде.
- 5. почему этот вид дистрофии лежит в основе сердечной декомпенсации?
- 1. Жировая дистрофия
- 2. «Тигровое сердце» Макро: жировая дистрофия имеет очаговый характер,так как содержащие жир кардиомиоциты находятся преимущественно вдоль венозного колена капилляров и мелких вен. Под эндокардом левого желудочка,в области трабекул и сосочковых мышц видна желто-белая исчерченность.
- 3. Селективная окраска суданIII

Микро: : накопление липидов в цитоплазме кардиомиоцитов по ходу венозного колена капилляров и мелких вен.

- 4. Основными механизмами развития жир. дистр в миокарде явл.:
- -повышение поступления жиров в кардиомиоциты
- -нарушение обмена жиров в них
- -распад внутриклеточных липопротеиндных комплексов (фанероз) Причинами являются гипоксии(анемия,хрон. С-с недост.) и интоксикация (дифтерия,алко,мышьяк,отрав. Фосфором)

Гипоксия->переход на анаэробынй гликолиз(снижение АТФ),так же ацидоз тканей (повреждение митохондрий и нарушение окисления ЖК)-> активация липолиза -> накопление жиров в кардиомиоцитах

5. Жировая дистрофия приводит к деструкции митохондрий и снижает сократительную способность сердца (?)

Задача 18

У больного К., 45 лет, длительно злоупотреблявшего алкоголем, выявлено значительное увеличение размеров печени.

- 1. какой вид дистрофии развился в печени?
- 2. опишите макропрепарат, иллюстрирующий данный процесс.
- 3. образное название печени по макроскопической картине.
- 4. опишите микроскопические изменения печени.
- 5. какая селективная окраска необходима для подтверждения этой дистрофии? Опишите соответствующий микропрепарат.
- 1. Жировая дистрофия
- 2. Печень увеличена в размерах, край печени закруглен, гладкая поверхность, желтоватый цвет, дряблой консистенции. При разрезе жир остается на ноже
- 3. «Гусиная печень»
- 4. Микро: В центральной части дольки(характерно для алкогольной болезни) печени При окраске Г-Э видны вакуоли на месте включений липидов ,растворивш. при обработке. Жир оттесняет ядро и цитопазму с органеллами на периферию.
- 5. При селективной окраске суданом-III Капли жира окрашиваются в оранжевый цвет

Задача 19

У африканского ребенка, получающего бедную белками растительную пищу, в 3 года отмечен больших размеров живот за счет значительного увеличения печени.

- 1. какой вид дистрофии развился в печени?
- 2. опишите макропрепарат, иллюстрирующий данный процесс, приведите его образное название.
- 3. опишите микроскопические изменения печени (с учетом селективной окраски)
- 4. какой механизм развития дистрофии в данном случае?
- 5. перечислите другие возможные механизмы развития этого процесса в печени.
- 1. Жировая дистрофия
- 2.Макро «Гусиная печень» : Печень увеличена в размерах, край печени закруглен, гладкая поверхность, желтоватый цвет, дряблой консистенции. При разрезе жир остается на ноже
- 3. Микро:СуданIII-В центральной части дольки(характерно для алкогольной болезни) печени обнаруживаются капли жира разного размера ,окрашен в оранжевый цвет. При окраске Г-Э видны вакуоли на месте включений липидов ,растворивш. при обработке . Жир оттесняет ядро и цитопазму с органеллами на периферию.
- 4. Длительыйн прием бедной белками пищи привел к снижению поступления аминокислот, необходимых для синтеза фосфолипидов и липопротеинов, что привело к инфильтрации клеток печени жирами
- 5. Механизмы накопления нейтр.жиров в печени являются следствием дезорганизации ферментативных процессов на разных этапах обмена липидов
- -повышенное постепление ЖК в пчень (напр. При СД)или повышенный их синтез в гепатоцитах, что приводит к дефициту ферментов
- -токсичные вещества ,блокирующие окисление ЖК и синтез апопротеинов

Задача 20

Больной П., 55 лет, страдал хронической ишемической болезнью сердца на фоне атеросклероза. Умер от хронической сердечно-сосудистой недостаточности. На вскрытии обнаружено «тигровое» сердце.

- 1. опишите макропрепараты печени и миокарда.
- 2. какой вид дистрофии развился в печени и миокарде?
- 3. объясните, какие факторы способствовали развитию этой дистрофии и каков механизм ее развития в печени и миокарде?
- 4. опишите микроскопические изменения в миокарде.
- 5. какая окраска необходима для подтверждения данной дистрофии?
- 1. Макро печени: Печень увеличена в размерах, край печени закруглен, гладкая поверхность, желтоватый цвет, дряблой консистенции. При разрезе жир остается на ноже

Макро миокарда: жировая дистрофия имеет очаговый характер,так как содержащие жир кардиомиоциты находятся преимущественно вдоль венозного колена капилляров и мелких вен. Под эндокардом левого желудочка,в области трабекул и сосочковых мышц видна желто-белая исчерченность.

- 2. Жировая дистрофия
- 3. Основными механизмами развития жир. дистр в миокарде явл.:
- -повышение поступления жиров в кардиомиоциты
- -нарушение обмена жиров в них
- -распад внутриклеточных липопротеиндных комплексов (фанероз) Причинами являются гипоксии(анемия,хрон. С-с недост.) и интоксикация (дифтерия,алко,мышьяк,отрав. Фосфором)

Гипоксия->переход на анаэробынй гликолиз(снижение ATФ),так же ацидоз тканей (повреждение митохондрий и нарушение окисления ЖК)-> активация липолиза -> накопление жиров в кардиомиоцитах

В печени:

Механизмы накопления нейтр.жиров в печени являются следствием дезорганизации ферментативных процессов на разных этапах обмена липидов

- -повышенное постепление ЖК в пчень (напр. При СД)или повышенный их синтез в гепатоцитах, что приводит к дефициту ферментов
- -токсичные вещества ,блокирующие окисление ЖК и синтез апопротеинов
- -пониженное поступление аминокислот, необх. Для синтеза липопротеинов и фосфолипидов
- 4. Микро миокард:накопление липидов в цитоплазме кардиомиоцитов по ходу венозного колена капилляров и мелких вен
- 5.Суданом III

Задача 21

Больной Н., 49 лет, в течение многих лет страдал бронхоэктатической болезнью. В финале развился нефротический синдром с быстрым прогрессированием почечной недостаточности.

- 1. перечислите симптомы, составляющие сущность нефротического синдрома.
- 2. какие виды дистрофии развились в эпителии канальцев почек в данном случае?
- 3. опишите микропрепараты, иллюстрирующие эти изменения.
- 4. каков морфогенетический механизм описанных Вами изменений в почках?
- 5. возможно ли обратное развитие этих видов дистрофий? Почему?
- 1. Нефротический синдром: протеинурия более 3 г в сутки дилиндрурия, гипопротеинемия, гиперлипидемия, отеки
- 2. Гиалиново-капельная, гидропическая и жировая(?) дистрофии
- 3. Микро: «Гиалиново-кпельная дистрофия эпителия канальцев почки эпителий извитых канальцев почки увеличен в размере ,набухший ,границы клеток размыты ,в просвете видны эозинофил. белковые массы. В цитоплазме нефроцитов опредляются мелкие вакуоли,окрашен. В розовый цвет,ядра клеток пикнотичны»
- « Гидропическая дистрофия эпителия канальцев почкиневроцитыувеличены, набухшие, контуры их размыты. В цитоплазме клеток видны крупгые белковые эозинофил. Вакуоли, оттесняющие ядра к периферии, ядра сморщены или вакуолизированны.
- «Жировая дистрофия почек» : Селективая окраска суданомIII липиды видны в цитоплазме эпителия канальцев и строме почки в виде капель (нейтральные жиры) или двоякопреломляющихся кристаллов (холестерин)
- 4. (???)Гиалиново-капельная избыточное содержание белка в первичной моче, высокая реабсорбция белка (инфильтрация клеток), количество пиноцитозных пузырьков в клектерастет, они становятся крупными, сливаются с лизосомами, но не метаболизируются (декомпозиция, недостаточность вакуолярно-лизосомального аппарата) и подвергаются коагуляции.

Гидропическая — нарушение обмена белков часто сочетается с расстройством работы Na/K-помпы, клетки теряют способность поддерживать ионный и водный гомеостаз ,что приводит к накоплению ионов Na и набуханию или гидратации клетки (инфильтрация) . Декомпозиция — нарастание гидропии приводит к разрушению ультра-структур клетки и переполнению клетки водой,образуются вакуоли заполненные жидкостью-баллоны (баллонная дистрофия)

Жировая дистрофия :При XПН уровень ТАГ и холестерина в крови повышен (снижен активности липопротеидлипазы и уменьшение утилизации глюкозы, что ведет к усиленеию липолиза. Ум. утил. глюобусловленно недостаточностью белка в рационе питания больных XПН (уремия) . Дефицит белка подавляет синтез ферментов, необходимых для окисления жиров

5. При гиалиново-капельной дистр. Происходит коагуляция белка ,исход неблагоприятен – завершается фокальным ,а затем и тотальным коагуляцион. Некрозом клеток, функция клеток и органов снижается .

Гидропическая дистр., как правило, обратима, но при выраженном набухании (баллонная дистрофия) происходит фокальный, а затем тотальный колликвационный некроз клеток.

Задача 22

У мужчины О., 44 лет, болевшего хроническим гломерулонефритом, первоначально в анализах мочи были следы белка, которые появлялись

эпизодически. Через 5 лет от начала заболевания стойкая и резко выраженная протеинурия (в моче 20 г белка в сутки), появились отеки, гипопротеинемия, гиперлипидемия.

- 1. какая дистрофия развилась в почках в начале заболевания?
- 2. опишите микропрепарат, иллюстрирующий первоначальные изменения в почках.
- 3. какой синдром развился в финале заболевания? какие виды дистрофий могли обусловить развитие этого синдрома?
- 4. опишите микропрепарат, иллюстрирующий одну из этих дистрофий.
- 5. каковы морфогенетические механизмы развития этих дистрофий?
- 1. Гиалиново-капельная ??? зернистая ???
- 2. Микро: «Гиалиново-кпельная дистрофия эпителия канальцев почки эпителий извитых канальцев почки увеличен в размере ,набухший ,границы клеток размыты ,в просвете видны эозинофил. белковые массы. В цитоплазме нефроцитов опредляются мелкие вакуоли, окрашен. В розовый цвет,ядра клеток пикнотичны»
- 3. Нефротический синдром . Гидропическая и жировая дистрофии
- 4. Микро« Гидропическая дистрофия эпителия канальцев почкиневроцитыувеличены, набухшие, контуры их размыты. В цитоплазме клеток видны крупгые белковые эозинофил. Вакуоли, оттесняющие ядра к периферии, ядра сморщены или вакуолизированны.
- 5. Гиалиново-капельная избыточное содержание белка в первичной моче, высокая реабсорбция белка (инфильтрация клеток), количество пиноцитозных пузырьков в клектерастет, они становятся крупными, сливаются с лизосомами, но не метаболизируются (декомпозиция, недостаточность вакуолярно-лизосомального аппарата) и подвергаются коагуляции.

Гидропическая — нарушение обмена белков часто сочетается с расстройством работы Na/K-помпы, клетки теряют способность поддерживать ионный и водный гомеостаз ,что приводит к накоплению ионов Na и набуханию или гидратации клетки (инфильтрация) . Декомпозиция — нарастание гидропии приводит к разрушению ультра-структур клетки и переполнению клетки водой,образуются вакуоли заполненные жидкостью-баллоны (баллонная дистрофия)

Задача 23

Больной П., 40 лет, болен острым вирусным гепатитом В. В больнице взята биопсия печени, сделаны световое и электронно-микроскопическое исследования.

- 1. назовите изменения в гепатоцитах, обнаруженные при световой микроскопии.
- 2. дайте электронно-микроскопическую характеристику изменениям гепатоцитов.
- 3. назовите вид дистрофии.
- 4. опишите механизм развития дистрофии.
- 5. назовите возможные исходы дистрофии.
- 1. Ядра (сморщенны) и цитоплазма на периферию оттеснены вакуолями с жидкостью.
- 2.Отражает извращение белково-синтетическио функции клеток печени вследствии

репродукции вируса гепатита В. В цитоплазме гепатоцитов можно видеть значительно расширенную ЭПС с формированием цистерн – баллонов.

- 3. Гидропическая дистрофия
- 4. Механизм-извращенный синтез, при гепатите В. Накапливание белков
- 5. Гидропическая дистр., как правило, обратима, но при выраженном набухании (баллонная дистрофия) происходит фокальный, а затем тотальный колликвационный некроз клеток

Тема 3. Задача 1.

Больная К., 75 лет, умерла от инфаркта миокарда. На секции обнаружены изменения в сердце, кроме того, в правом легком под плеврой выявлен очаг каменистой плотности диаметром 1,0 см. В аорте – многочисленные бляшки, многие из которых режутся с хрустом.

- 1. назовите очаг в ткани легкого и синоним этого процесса.
- 2. с нарушением обмена какого вещества связано образование очага в легком? Опишите механизм его развития.
 - 3. при каком заболевании в аорте образуются бляшки?
- 4. с какими дистрофическими процессами связано образование бляшек (по локализации, по виду нарушенного обмена)?
- 5. Какие селективные окраски можно использовать для выявления каждой из этих дистрофий?
 - 1. петрификат, дистрофическое обызвествление.
- 2. Нарушение обмена Ca2+. 2 фазы: инициация (нуклеация) и распространения. Инициация внутриклеточного обызвествления происходит в митохондриях умерших или умирающих клеток, которые накапливают кальций; вне клеток в окруженных мембраной пузырьках, образующихся при разрушении или старении клетки. Процесс имеет циклический характер, в рез-те формируются микрокристаллы, которые увеличиваются в размере (фаза распространения или роста). Образование кристаллов зависит от концентрации кальция и фосфора во внеклеточных пространствах.
 - 3. атеросклероз
 - 4. Сосудисто-стромальная жировая дистрофия (нарушение обмена холестерина)
- 5. для обызвествления г/э, метод серебрения Косса, для атеросклероза судан III, г/э

Задача 2.

У больного Ш., 56 лет, страдавшего острым лейкозом, после повторных переливаний крови появились анемия, желтушное окрашивание кожных покровов и склер. Смерть наступила от кровоизлияния в головной мозг. На вскрытии печень, селезенка и костный мозг имели ржавую окраску. В желудке множество поверхностных дефектов, дно которых окрашено в темно-коричневый цвет.

- 1. опишите макроскопически изменения в ткани головного мозга. Назовите вид кровоизлияния.
- 2. назовите пигменты, образующиеся при этом. Каков механизм их образования?
 - 3. с накоплением какого пигмента связано изменение окраски кожи?
- 4. какой процесс, приведший к изменению окраски внутренних органов, развился у больного? Назовите вид этого процесса.
- 5. опишите микроскопическую картину изменений печени. Назовите гистохимическую реакцию, которую используют для диагностики.
 - 1. капилляры резко расширены, переполнены эритроцитами. Вещество мозга отечно (периваскулярный и перицеллюлярный отеки), некоторые клетки некротизированы.
 - 2. Гемосидерин (в небольших кровоизлияних, в крупных на периферии). При внутрисосудистом разрушении эритроцитов разрушенные эритроциты, их обломки, гемоглобин идут на построение гемосидерина. Сидеробластами становятся ретикулярные, эндотелиальные и гистиоцитарные элементы селезенки, печени, Костного мозга, лимфатических узлов, почек, легких, потовых и слюнных желез. Появляется большое количество сидерофагов, которые не успевают поглощать гемосидерин, в рез-те этого коллагеновые и эластические волокна пропитываются железом, органы приобретают ржаво-коричневую окраску. В крупных кровоизлияниях в центре появляются кристаллы гематоидина (аутолиз происходит без доступа кислорода и участия клеток)
 - 3. билирубин
 - 4. Общий гемосидероз
- 5. Гемосидероз печени: в гепатоцитах и звездчатых ретикулоцитах видны скопления зеленовато-голубоватых зерен гемосидерина («берлинская лазурь»). Реакция Перлса

Задача 3.

Больная В., 32 года, длительно страдала склеродермией с поражением кишки и развитием синдрома недостаточного всасывания и кахексии. На фоне интенсивной терапии глюкокортикоидными гормонами развилось желудочное кровотечение, приведшее к смерти. На вскрытии в желудке выявлены множественные мелкие дефекты, дно которых окрашено в темно-коричневый цвет. В головном мозге - мелкие «ржавые» кисты.

- 1. опишите макроскопические изменения в желудке. Назовите пигмент, появляющийся при этом, и его происхождение.
- 2. опишите макроскопические изменения сердца и печени, обнаруженные на вскрытии. Назовите процесс.
 - 3. объясните характерный вид сердца и печени.
- 4. какой пигмент обусловил окраску обнаруженных в мозге кист? Назовите вид нарушения обмена этого пигмента и механизм его образования.
 - 5. уточните ультраструктурные особенности этого пигмента.

- 1. набухание и полнокровие слизистой оболочки. Она покрыта слизью и имеет складки различной степени выраженности: от сглаженных и атрофичных до четко выраженных. Иногда обнаруживаются кровоизлияния и эрозии: множественные мелкие поверхностные дефекты слизистой оболочки желудка, округлой или вытянутой, овальной формы, с гладкими ровными мягкими краями и черновато-коричневого или серовато-черного цвета дном. Пигмент— солянокислый гематин (гемин), обнаруживается на дне язв и эрозий на дне желудка, возникает в результате действия на гемоглобин ферментов желудочного сока и соляной кислоты
- 2. Бурая атрофия миокарда: уменьшение размеров и массы сердца, отсутствие жировой ткани в эпикарде, извитой ход сосудов, бурый цвет (липофусциноз) миокарда

Бурая атрофия печени: уменьшение размера печени, уплотнение ткани, бурый цвет.

- 3. Вид органов обусловлен накоплением липофусцина
- 4. гемосидерин
- 5. Полимер ферритина, образуется при расщеплении гема, представляет коллоидную гидроокись железа, связанную с белками, гликозаминогликанами и липидами клетки.

Задача 4.

У больной Л., 40 лет, при рентгенологическом обследовании обнаружены множественные мелкие фокусы обызвествления в легких, миокарде, некоторых других органах.

- 1. между какими видами кальциноза надо проводить дифференциальный диагноз?
- 2. какой анализ необходимо провести с этой целью?
- 3. какой диагноз будет поставлен в случае положительного ответа?
- 4. в каких еще органах нужно искать аналогичные изменения? Опишите микроскопические изменения, характерные для этого вида обызвествления. Назовите селективную окраску.
 - 5. какие органы надо обследовать для установления причины этого вида кальциноза?
 - 1. Дистрофический/метастатический
 - 2. Анализ крови на кальций (гиперкальциемия будет указывать на метастатический тип обызвествления); анализ на уровни парат-гормона и кальцитонина в крови
 - 3. Метастатическое обызвествление
 - 4. Слизистая желудка, почки, стенки сосудов. Матрица для кальция кристы митохондрий (из-за высокой активности фосфатаз), поэтому происходит разобщение дых. цепи, клетки отмирают, вокруг отложений извести отмечается воспалительная реакция, иногда скопление макрофагов, гигантских клеток, образование гранулемы. Также кальций может откладываться в лизосомах, гликозаминогликанах основного вещества, коллагеновых и эластических волокнах. Окраска г-э, кальций окрашивается в темный сине-фиолетовый цвет, метод серебрения Косса.
 - 5. Щитовидную железу и паращитовидный железы, надпочечники, костную систему на наличие опухолей.

Задача 5.

Больной Ж., 40 лет, страдал раком легкого с множественными метастазами. Появилась адинамия, гипотония, изменение окраски кожных покровов. Смерть наступила от кахексии.

- 1. опишите микроскопические изменения в коже. Чем обусловлено изменение окраски?
- 2. назовите вид нарушения обмена этого пигмента (по происхождению, количеству пигмента, распространенности).

- 3. с поражением какого органа можно связать изменение окраски кожи? Объясните механизм нарушения обмена пигмента.
 - 4. какие изменения обнаружены на вскрытии в печени, сердце, скелетной мускулатуре?
- 5. опишите макроскопические изменения сердца. Объясните появление характерного цвета миокарда.
 - 1. Цитоплазма меланоцитов базального слоя эпидермиса и некоторых кератиноцитов заполнена большим количеством зерен меланина (пигментом бурого цвета). В дерме меланин можно видеть в меланоцитах и макрофагах, фагоцитирующих пигмент при гибели меланоцитов. Эпидермис атрофичен, отмечается избыточное образование кератина (гиперкератоз).
 - 2. Приобретенный распространенный меланоз.
 - 3. Болезнь Аддисона двустороннее поражение надпочечников (причина метастазы), приводящее к снижению в крови уровня кортизола и к усилению синтеза АКТГ, обладающего меланинстимулирующим действием, что вызывает активацию тирозиназы и усиление синтеза меланина в коже и в слизистых.
 - 4. Бурая атрофия.
 - 5. Бурая атрофия миокарда: уменьшение размеров и массы сердца, отсутствие жировой ткани в эпикарде, извитой ход сосудов, бурый цвет (липофусциноз) миокарда.

Задача 6.

Больной Т., 37 лет, длительное время имел контакт с гемолитическими ядами. У него развилась анемия, появилась резкая слабость, изменился цвет кожи.

- 1. назовите вид гемолиза у этого больного.
- 2. каким пигментом обусловлена окраска кожи?
- 3. какой еще пигмент и преимущественно в каких органах образуется при этой патологии?
- 4. назовите вид нарушения этого пигмента, механизм его образования.
- 5. опишите микроскопические изменения в печени, характерные для этого вида нарушения обмена. Назовите селективную окраску.

1. Внутрисосудистый гемолиз

- 2. билирубин
- 3. Гемосидерин в печени, лимфатических узлах, селезенке
- 4. Общий гемосидероз. При внутрисосудистом разрушении эритроцитов, вызванного гемолитическими ядами, разрушенные эритроциты, их обломки, гемоглобин идут на построение гемосидерина. Сидеробластами становятся ретикулярные, эндотелиальные и гистиоцитарные элементы селезенки, печени, Костного мозга, лимфатических узлов, почек, легких, потовых и слюнных желез. Появляется большое количество сидерофагов, которые не успевают поглощать гемосидерин, в рез-те этого коллагеновые и эластические волокна пропитываются железом, органы приобретают ржаво-коричневую окраску.
- 5. В гепатоцитах и звездчатых ретикулоэндотелиоцитах видны скопления зеленовато-голубых зерен гемосидерина («Берлинская лазурь»). Реакция Перлса.

Задача 7.

Больной Б., 45 лет, истощен. Длительное время находился на учете в противотуберкулезном диспансере. Последнее время жалуется на слабость, гипотонию, сонливость, изменение цвета кожных покровов – они приобрели бронзовую окраску.

- 1. назовите синдром, осложнивший течение туберкулеза. Назовите изменение кожных покровов.
- 2. опишите микроскопические изменения кожи.
- 3. с нарушением обмена какого пигмента связаны эти изменения (по происхождению, по распространенности, по количеству пигмента)?
 - 4. объясните механизм развития этих изменений у больного.
 - 5. опишите макроскопические изменения печени, объясните причину их развития.

1. Синдром Аддисона. Приобретенный распространенный Меланоз

- 2. Цитоплазма меланоцитов базального слоя эпидермиса и некоторых кератиноцитов заполнена большим количеством зерен меланина (пигментом бурого цвета). В дерме меланин можно видеть в меланоцитах и макрофагах, фагоцитирующих пигмент при гибели меланоцитов. Эпидермис атрофичен, отмечается избыточное образование кератина (гиперкератоз).
 - 3. Приобретенный распространенный Меланоз
- 4. двустороннее поражение надпочечников, приводящее к снижению в крови уровня кортизола и к усилению синтеза АКТГ, обладающего меланинстимулирующим действием, что вызывает активацию тирозиназы и усиление синтеза меланина в коже и в слизистых.
- 5. Бурая атрофия печени: уменьшение размера печени, уплотнение ткани, бурый цвет.

Задача 8.

У женщины Т., 60 лет, отмечено повышение уровня мочевой кислоты в крови (гиперуриикемия) и в моче (гиперурикурия). Мелкие суставы кистей деформированы, над ними болезненные шишки, движения ограничены. При обследовании в клинике были выявлены камни в правой почке.

- 1. назовите заболевание, которым страдает женщина. Опишите морфологический субстрат этой болезни (микропрепарат).
 - 2. назовите исход процесса.
 - 3. опишите макроскопические изменения почек.
 - 4. какие виды камней наиболее вероятны при этом заболевании?
 - 5. какие осложнения со стороны почек могут наблюдаться?
- 1. Подагра. В участках некроза ткани аморфные массы и кристаллы мочекислого натрия. Вокруг участка некроза воспалительный инфильтрат с гигантскими многоядерными клетками типа «инородный тел» и развитие соединительной ткани.
- 2. Деформация суставов, развитие воспалительных и атрофических изменений в почках (подагрические почки); камни в почках могут стать причиной почечной недостаточности.
- 3. Почка или увеличена или уменьшена в размерах, полости лоханки и чашечек резко расширены. В лоханке определяются плотные, овальной формы камни с гладкой или шероховатой поверхностью, серовато-белого цвета. Слизистая оболочка лоханки и

чашечек утолщена. Корковое и мозговое вещество почки резко истончено, уплотнено, и почка на разрезе напоминает тонкостенный мешок, заполненный камнями и мочой

- 4. ураты
- 5. камни в почках могут обтурировать канальца и собирательные трубочки, что приведет к развитию воспалительных и атрофических изменений в почках (подагрические почки), мочекаменной болезни, ОПН

Задача 9.

Больной С., 67 лет, длительно страдает желчнокаменной болезнью. Очередное обострение сопровождалось резким подъемом температуры, развитием желтушности кожных покровов. Экстренно проведена операция удаления желчного пузыря (холецистэктомия). Смерть наступила на 3 сутки от острой сердечно-сосудистой недостаточности. В стенке аорты и крупных сосудов – с трудом режущиеся, стенозирующие просвет бляшки.

- 1. какая локализация камня привела к развитию желтухи? Какой вид желтухи развился у больного?
- 2. с накоплением какого пигмента связана желтуха?
- 3. опишите макроскопически желчный пузырь.
- 4. назовите возможный состав камней. Объясните механизм их образования.
- 5. опишите макроскопические изменения в аорте. Какие виды дистрофий развиваются при этом?
 - 1. В просвете протока; механическая желтуха
- 2. билирубин
- 3. желчный пузырь увеличен в размерах, его полость расширена, в ней множественные или граненые, притертые друг к другу (фасетированные) или округлой формы камни темно-коричневого, серого или желтого цвета. Стенка пузыря утолщена, плотной консистенции (со стороны серозной оболочки нередко обрывки спаек), на разрезе белесоватая, слизистая оболочка гладкая, теряет свою бархатистость. В слизистой оболочке может наблюдаться отложение множественных желтовато-коричневых плотных мелких гранул (холестероз желчного пузыря, «земляничный» желчный пузырь)
- 4. Объясните механизм их образования. Холестериновые, пигментные, известковые или комбинированные (сложные). Механизм: образование органической матрицы и кристаллизация солей. Нарушение секреции, застой секрета ведут к увеличению концентрации веществ и осаждению их из раствора; при воспалении в секрете появляются белковые вещества, что создает органичскую матрицу, в которую откладываются соли.
- 5. Атеросклероз аорты в аорте со стороны эндотелия определяются множественные фиброзные бляшки, в том числе с обызвествлением, атероматозом и тромботическими наложениями, видны желтые пятна и полосы. Сосудисто-стромальная жировая дистрофия

Задача 10.

Больная Б., 58 лет, страдает миеломной болезнью, истощена. Жалуется на слабость, боли в костях. В течение года дважды была госпитализирована в связи с переломом шейки бедра и компрессионным переломом позвоночника, развившихся без видимых причин. При рентгенологическом исследовании выявлен остеопороз, во внутренних органах множественные плотные очаги.

- 1. назовите изменения во внутренних органах, выявленные при рентгенологическом исследовании.
- 2. назовите органы, в которых преимущественно появляются эти очаги.

- 3. опишите микроскопические изменения в одном из этих органов. Назовите селективную окраску.
- 4. объясните механизм образования этих очагов.
- 5. опишите микроскопические изменения в печени.
- 1. Остеопороз, множественные плотные очаги (метастатическое обызвествление)
- 2. Слизистая желудка, почки, легкие, миокард, артерии и легочные вены
- 3. В кардиомиоцитах отложения солей кальция окрашиваются гематоксилинэозином в темный сине-фиолетовый цвет. Матрицей для кальция служат кристы
 митохондрий, происходит разобщение дых. цепи, поэтому есть очаги некроза, вокруг очага
 признаки воспаления. Окраска г-э, в тканях кальций выявляют методом серебрения
 Косса.
- 4. Известковые метастазы образуются в тканях, которые отличаются большей щёлочностью и способны накапливать кальций. В миокарде и стенке артерий известь откладывается в связи с омыванием ткани артериальной кровью и относительной их бедностью углекислотой. Кальций накапливается на кристах митохондрий, этим вызывает нарушение энергообмена, появляются очаги некроза, вокруг них воспаление. Также кальций может откладываться в лизосомах, гликозаминогликанах основного вещества, коллагеновых и эластических волокнах.
- 5. Метастазы являются причиной очагов некроза, Вокруг отложений появляется реактивное воспаление с разрастанием элементов соединительной ткани, скоплением гигантских клеток инородных тел и развитием капсулы.

Задача 11.

У больного Д., 37 лет, обнаружена доброкачественная опухоль паращитовидной железы, сопровождающаяся гиперкальциемией. При рентгенологическом исследовании во многих органах выявлены мелкие очаги обызвествления.

- 1. какие изменения в органах можно обнаружить при гиперкальциемии?
- 2. перечислите органы, в которых возможно отложение кальция при гиперкальциемии.
- 3. объясните причину преимущественного поражения данных органов.
- 4. опишите микроскопические изменения в одном из этих органов.
- 5. опишите клиническое значение данного вида обызвествления.

1. известковые метастазы

- 2. Слизистая желудка, почки, легкие, миокард, артерии и легочные вены
- 3. Органы выделяют кислые продукты, ткани этих органов вследствие больщей щелочности менее способны удерживать соли кальция в растворе.
- 4. В кардиомиоцитах отложения солей кальция окрашиваются гематоксилинэозином в темный сине-фиолетовый цвет. Матрицей для кальция служат кристы
 митохондрий, происходит разобщение дых. цепи, поэтому есть очаги некроза, вокруг очага
 признаки воспаления. Также кальций может откладываться в лизосомах,
 гликозаминогликанах основного вещества, коллагеновых и эластических волокнах.

5. Чаще всего минерльны соли не вызывают дисфункции органов, клинически, однако массивное обызвествление, например, тканей легкого или почек (нефрокальциноз) могут нарушить функцию этих органов.

Задача 12.

Больная Н., 56 лет, страдавшая раком желудка, умерла от кахексии.

- 1. перечислите органы, в которых наиболее выражены изменения при кахексии.
- 2. опишите макроскопические изменения сердца.
- 3. нарушение обмена какого пигмента обусловливает характерную окраску сердца?
- 4. дайте характеристику этого пигмента.
- 5. опишите микроскопические изменения печени у этой больной.
 - 1. Сердце, печень, поперечно-полосатые мышцы.
- 2. Бурая атрофия миокарда: уменьшение размеров и массы сердца, отсутствие жировой ткани в эпикарде, извитой ход сосудов, бурый цвет (липофусциноз) миокарда.
 - 3. Липофусцин
- 4. Гликолипопротеид, имеет вид зерен золотистого или коричневого цвета. Нерастворим. Электронно-микроскопически его выявляют в виде электронно-плотных гранул, окруженных трехконтурной мембраной, которая содержит миелиноподобные структуры.
- 5. Бурая атрофия печени: ткань бурого цвета, гепатоциты уменьшены в размерах, содержат липофусцин, синусоиды расширены

Тема 4

Задача 1.

Больная Л., 63 лет, в течение 15 лет страдала ревматическим пороком сердца. Смерть наступила от хронической сердечной недостаточности.

- 1. назовите морфологические изменения в сердце, явившиеся субстратом сердечной недостаточности.
- 2. общепатологический процесс, лежащий в основе обнаруженных изменений в органах при хронической сердечной недостаточности.
- 3. дайте макроскопическую характеристику почек и селезенки.
- 4. найдите препарат и дайте микроскопическую характеристику изменений в легких. Опишите морфогенез описанных изменений легких.
- 5. назовите отдельные клинические проявления процесса в легких.
- 1. Гиалиноз- морф.признаки:сужение просветов сосудов, атрофия и склероз.гиалин(сложный)
- 2. Хронический венозный застой
- 3. Макро почка: увеличина в размере,плотнойконсист., синюшные Макро селезенки: увел. Размера,уплотнение,на разрезе пульпа не дает соскоба,синюшного цвета.
- 4. Бурая индурациялегких:гемосидерин в просвете альвеол,бронхов и склерозированных участках. Соединит.тк. распространяется в стенки альвеол,бронов,сосудов. Наблюдается полнокровие сосудов. Хронический венозный застой-местный гемосидероз. Механизм:хронический венозный застой-увеличение гидростатического давления в сосудах-гипоксия,приводящая к активации фибробластов и разрастанию стромы. За счет использования магистрального кровотока возникает лимфостаз, также вызывающий склероз,некроз, гиалиноз.
 - В легких обнаруживаются клетки сердечной недостаточности(гемосидерофаги) Гемосидерин(sh-ФЕРРИТИН) обладает вазопаралитическим действием,увеличивая венозный застой.
- 5. Хронический венозный застой., общий гемосидероз, пневмосклероз.

Задача 2

У больного А., 45 лет, с тромбофлебитом печеночных вен (болезнь Бадда-Киари) пальпируется плотная с закругленным краем печень.

- 1. назовите процесс, развившийся в печени.
- 2. дайте микроскопическую характеристику изменений в печени, обнаруженных при исследовании биоптата. Назовите окраску, используемую для оценки топографии процесса.
- 3. опишите морфогенез развившихся в печени изменений.
- 4. опишите макроскопически печень.
- 5. назовите исход процесса при длительном его существовании.
- 1. Хроническое венозное полнокровие
- 2. Микро «мускатная печень»:наблюдается венозное полнокровие сопровождающееся кровоизлияние в центральные отделы дольки, атрофия и некроз гепатоцитов расположенных ближе к центру, а также жировая дистрофия на переферии,

структура балок сохранена,но может быть нарушена, в некоторых местах возможно сохранение гепатоцитов. Видно разсрастание соединительной ткани по ходу синусоидов (отражение капиллярно-паренхиматозного блока),пестрый вид(чередование темно-красного с желто-коричневым) Окраска возможно(судан 3)?

- 3. Из-за тромбофлебита печеночных вен развилось хроническое венозное полнокровие с замедление тока крови, перераспределением ее по сосуда, что привело к увеличению гидростатического давления в сосудах, повышенная проницаемость привела к диапедезным кровоизлияниям с развитием атрофии , дистрофии и некроза паренхимы. развитии хронической гипоксии приводит к склерозированию по ходу синусоидов.
- 4. Орган увеличен в размере, с закругленными краями, повер-ть гладкая. На разрезе имеет пестрый вид(бурые участки в центре долек, желтый на переферии)
- 5. В конечном итоге формируется мускатный цирроз, а далее и мелкоузловый цирроз.

Задача 3

У больного Ш., 65 лет, с хронической ишемической болезнью сердца, осложнившейся хронической сердечной недостаточностью, в терминальном периоде развилась мозговая кома, вывести из которой больного не удалось.

- 1. морфологическое выражение хронической сердечной недостаточности во внутренних органах.
- 2. дайте макроскопическую характеристику легких.
- 3. объясните, чем обусловлен характерный вид легких.
- 4. с каким процессом в головном мозге можно связать возникновение комы? Дайте его микроскопическую характеристику.
- 5. определение этого процесса, механизм его развития, исходы.
- 1. В зависимости от места возникновения хронической сердечной недостаточности происходят изменения в легхи,печни,селезенки, почка,коже. Основными морфологическими изменениями является склероз, атрофия,некроз,возникающ. В следсвтии хронической гипоксии. А также полнокровие сосудов, на необратимых стазияхкровоизлияня.
- 2. Бурая индурация легких : бурый цетлегкого, функция органа снижена. Имеет плотную консистенцию.
- 3. Бурый цвет обусловлен местным гемосидерозом, возникшего в следсвтии венозного полнокровия, плотная консист, за счет склероза.
- 4. Кома могла возникнуть в следствии развития стаза(сладж-феномен)-гипоксияповышенная проницаемость сосудов(микронекрозы, диапедезные кровоизлияния)развитие отека головного мозга. Микро:капилляры резко полнокровны, возможны мелкие кровоизлияния (диапедез), наблюдается периваскулярный и перицеллюлярный отек.
- 5. Стаз-остановка кровотока в сосудах микроциркуляторного русла.
- 6. Патогенез:в основе лежит снижение градиента давления между артериальным и венозным отделами, что возможно например при слипании эритроцитов. Стаз в оргнах может быть обратимым при устранении причины,но в головном мозге приводит к тяжелым отекам,которые могут стать причиной комы или летального исхода.

Задача 4

У больного В., 78 лет, страдавшего гипертонической болезнью, осложнившейся хронической сердечно-сосудистой недостаточностью, внезапно наступила смерть. На вскрытии обнаружено хроническое венозное полнокровие внутренних органов и гематома в головном мозге.

- 1. дайте макроскопическую характеристику процесса в головном мозге.
- 2. приведите определение понятия «гематома». Опишите механизм развития гематомы мозга при гипертонической болезни.
- 3. дайте микроскопическую характеристику процесса в головном мозге.
- 4. назовите возможный благоприятный исход.
- 5. дайте макроскопическую характеристику изменений печени, обнаруженных на вскрытии.
- 1. макро: видны очаги,представленные скоплением крови. Ве-во мозгаотечно,видны очаги некроза, борозды истончены.
- 2. гематома- кровоизлияние с нарушением целостности тканей и образованием полостей, заполненых кровью.

В следствии гипертонической болезни увеличилась проницаемость стенки сосуда, что обеспечило выход крови в окружающие ткани. Или возможен разрыв стенки сосуды с массивным кровоизлиянием (во время приступа)

- 3.микро :сосуды резко полнокровны, расширены. Вещество мозга отечно, некоторые клетки некротизированы. Наблюдаются атерсклеротические изменения.
- 4. возможный благоприятный исход это образование «ржавой» кисты (за счет железа)
- 5. макро печени: увелечение органа в размере, закругленный край,поверхность гладкая, на разрезе пестрая окраска,плотной консистенции.

Задача 5

У больной Г., 56 лет, страдавшей трансмуральным инфарктом миокарда на фоне гипертонической болезни развилась острая сердечная недостаточность. Смерть при явлениях мозговой комы.

- 1. морфологическое выражение острой сердечной недостаточности в органах.
- 2. дайте микроскопическую характеристику изменений в легких.
- 3. опишите морфогенез этих изменений.
- 4. микроскопическую характеристику процесса в головном мозге.
- 5. определение этого процесса, его причины, исход.
- 1. В зависимости от места возникновения хронической сердечной недостаточности происходят изменения в легких, печени, селезенки, почка,коже. Основными морфологическими изменениями является склероз, атрофия,некроз,возникающ. В следсвтии хронической гипоксии. А также полнокровие сосудов, на необратимых стадиях кровоизлияния

- 2. Бурая индурация легких: гемосидерин в просвете альвеол,бронхов и склерозированных участках. Соединит.тк. распространяется в стенки альвеол,бронов,сосудов. Наблюдается полнокровие сосудов. Хронический венозный застой-местный гемосидероз.
- 3. Механизм:хронический венозный застой-увеличение гидростатического давления в сосудах-гипоксия,приводящая к активации фибробластов и разрастанию стромы. За счет использования магистрального кровотока возникает лимфостаз, также вызывающий склероз,некроз, гиалиноз.
 В легких обнаруживаются клетки сердечной недостаточности(гемосидерофаги) Гемосидерин(sh-ФЕРРИТИН) обладает вазопаралитическим действием,увеличивая венозный застой.
- 4. микро :сосуды резко полнокровны, расширены. Вещество мозга отечно, некоторые клетки некротизированы. Наблюдаются атерсклеротические изменения
- 5. стаз остановка кровотока в сосудах микроциркуляторного русла. Сладж феномен. Исход кома или летальный.

Задача 6

У больного, страдавшего атеросклерозом с развитием крупноочагового постинфарктного кардиосклероза, осложнившегося хронической сердечной недостаточностью и аневризмой аорты, внезапная боль в пояснице, падение артериального давления. Смерть. На вскрытии в забрюшинной клетчатке массивное скопление свернувшейся крови. Выраженное малокровие внутренних органов.

- 1. какой вид кровоизлияния имеет место в данном случае? Опишите механизм его развития.
- 2. какой вид малокровия имеет место? Назовите другие виды малокровия.
- 3. дайте макроскопическую характеристику изменений почки.
- 4. перечислите возможные процессы в паренхиме органов.
- 5. дайте микроскопическую характеристику изменений легких, обнаруженных на вскрытии. Опишите их морфогенез.
- 1. механизм разрыв аневризмы аорты. Вид: гематома
- 2. острое аретериальное малокровие возникшее в следствии перераспределения крови. Др.виды:ангиоспастическое,обтурационное,компрессионное)
- 3. уеньшена в размере, становится бледной, снижение скорости кровотока в ней (сужение артерий и вен) видны некротизированные участки
- 4. в паренхиме происходит изменение диаметров сосудов, органыуменшены в размере, бледные, развитие гипоскии определяет развитие некроза, склероза, атрофии или дистрофии.
- 5. В следствии гипоскии будут видны участки некроза и склероза.?

Задача 7

У больной З., 67 лет, страдавшей гипертонической болезнью с хронической сердечной недостаточностью, и перенесшей 2 года назад геморрагический инсульт (кровоизлияние в головной мозг), при очередном резком повышении артериального давления развилась потеря сознания. В спинномозговой жидкости обилие эритроцитов. Через 3 часа наступила смерть.

1. дайте макроскопическую характеристику изменений в головном

мозге.

- 2. название процесса, его разновидность. Какие еще разновидности процесса известны? Наиболее вероятный механизм развития у больной.
- 3. характеристика старых изменений в головном мозге. Чем обусловлен характерный цвет этих изменений?
- 4. назовите изменения во внутренних органах, обусловленные хронической сердечной недостаточностью.
- 5. дайте микроскопическую характеристику процесса в коже
- 1. макро: видны очаги,представленные скоплением крови. Ве-во мозга отечно,видны очаги некроза, борозды истончены.
- 2. Кровоизлияние в мозг гематома.
 - Разновидности: геморрагическоепропитывание, кровоподтек, петехии. механизм: разрыв сосудистой стенки в следствии повышения ад (возможно в месте кисты)
- 3. «ржавая» киста, образовалась в следсвтиипредыдушего кровоизлияния (благоприятный исход) окраска такова в следствии накопления гемосидерина, в состав которого входит 3-х валентное железо.
- 4. Для паренхиматозных органов характерны увеличенная проницаемость с кровоизлияниями и отеками, соправождающася атрофией, дистрофией, некрозом и склерозом.
- 5. Микро кожа: полнокровие венозных сосудов, синюшный цвет, отек, атрофия эпидермиса, склероз собственной дермы, застой лимфы.

Залача 8

Проведите дифференциальный диагноз изменений легких при острой и хронической сердечной недостаточности.

- 1. микроскопическая характеристика легких при острой сердечной недостаточности.
- 2. морфогенез этих, изменений.
- 3. микроскопическая характеристика легких при хронической сердечной недостаточности.
- 4. название процесса, морфогенез.
- 5. дополнительная окраска, используемая для диагностики.
- 6. укажите аналог врожденной патологии.
- 1. При острой серд. Недостат.: развивается кардиогенный отек,плазматическое пропитывание стенок сосудов,множестводиапедезных кровоизлияний.
- 2. Острый венозный застой- острый стаз, сладжфеномен_тканеваягипоксия, увеличение гидростатического давления, гиперкапния, ацидоз- повышение прониц. Сосуд стенки-кровоизлияния, отки-некроз, дистрофия.
- 3. Развитие бурой индурации легких: полнокровие сосудов, накопление гемосидерина в сидеробластах и сидерофагов в просвете альвеол, бронхиального дерева, сосудах, склеротические изменения в альвеолярных перегородка, бронхиальных и сосудистых стенках.

- 4. Бурая индурация легких. В следствии хронического венозного полнокровияувеличение гидростатического давления- увеличение проницаемости, гипоксия ,ацидоз, гиперкапния- повышение проницаемости, активация фибробластовотек, кровоизлияния, разростание стромы-лимфостаз, капиллярно-паренхиматозный блок-некроз, дистрофия, атрофия.
- 5. Реакция перлса
- 6. BΠC(?)

Задача 9

Больной Ц., 49 лет, поступил в клинику в бессознательном состоянии с правосторонним параличом, при спинно-мозговой пункции получена кровь. Смерть от острой сердечной недостаточности.

- 1. дайте макроскопическую характеристику процесса в головном мозге.
- 2. назовите морфологический вид процесса.
- 3. опишите механизм развития.
- 4. назовите признак, указывающий на давность процесса.
- 5. дайте микроскопическую характеристику этого процесса. Какое изменение сосудов позволяет предположить заболевание, которым страдал больной?
 - 1. Инсульт левого полушария. Кровоизлияние в левое полушарие(гематома)
 - 2. АГ-гемморагическийсиндро- в следствии сладж-феномена при стазе(?)
 - 3. ОСН-развитие стаза со сладж-феноменом- увеличение проницаемости- выход крови в окружающие ткани с образованием гематомы. Или разрыв аневризмы
 - 4. Крвьобнаружанная в спинном мозге
 - 5. микро :сосуды резко полнокровны, расширены. Вещество мозга отечно, некоторые клетки некротизированы. Наблюдаются атерсклеротические изменения. Измнение строения стенки сосудов (плазматическое пропитывание, аневризма)?

Задача 10

- У больного Р., 56 лет, перенесшего повторные инфаркты миокарда, отмечается постоянная одышка, отеки, увеличение живота, пальпируется печень.
 - 1. какой патологический процесс развился во внутренних органах?
 - 2. дайте макроскопическую характеристику печени, объясните характерный вид на разрезе.
 - 3. опишите морфогенез изменений.
 - 4. дайте микроскопическую характеристику изменений кожи.
 - 5. в каких еще органах и тканях могут развиться изменения? Назовите их.
 - 1. хроническое венозное полнокровие

- 2. макро печени: Орган увеличен в размере, с закругленными краями, повер-ть гладкая. На разрезе имеет пестрый вид(бурые участки в центре долек, желтый на переферии)
- 3. отдышка из за застоя в МКК, увеличение печени-увеличение живота
- 4. Микро кожа: полнокровие венозных сосудов, синюшный цвет, отек, атрофия эпидермиса, склероз собственной дермы, застой лимфы.
- 5. Селезенка, почки, легкие, кожа, печень, стаз в ГМ

Задача 11

У больной Т., 25 лет, в послеродовом периоде развился септический шок, сопровождавшийся коматозным состоянием. В последующем развился синдром диссеминированного внутрисосудистого свертывания, смерть от массивного маточного кровотечения.

- 1. какие изменения ткани мозга обусловили развитие коматозного состояния? Опишите соответствующий микропрепарат.
- 2. объясните механизм развития изменений.
- 3. приведите название маточного кровотечения.
- 4. какие изменения во внутренних органах развились вследствие массивного кровотечения?
 - 5. дайте макроскопическую характеристику почек.
- 6. какие микроскопические изменения в тканях можно обнаружить при этом?
 - 1. кровоизлияние и отек. микро :сосуды резко полнокровны,расширены. Вещество мозга отечно,некоторые клетки некротизированы. Наблюдаются атерсклеротические изменения
 - 2. стаз в капил головного мозга-гематома-некроз, отек-кома
 - 3. метроррагия
 - 4. развитие геповолемического шока. Развитие шоковых органов:почка(некротический нефроз эпит. Канал.),легкое(отек,ателектаз),мозг(ишемическая энцефалопатия,отек,очагинекроза,кровоизлияния),сердце((кровоизлияния,некроз,жиро вая дистрофия),печнь(жировая дистрофия,некроз)
 - 5. почка уменьшена в размере ,бледного цвета,дряблойконсистенции,просветы сосудов резко сужены.
 - 6. суженные сосуды, очагинекроза, дистрофии (из-за гипоксии)?

Тема 5.

Залача 1.

На вскрытии у женщины А., 75 лет, в аорте обнаружено крошащееся образование, фиксированное к стенке сосуда, бурого цвета. В легочной артерии -эластичные темно-красные массы с блестящей гладкой поверхностью.

- 1. назовите образование в аорте. Дайте его макроскопическую характеристику.
- 2. Укажите возможные причины его образования.
- 3. перечислите стадии морфогенеза. Возможные исходы.
- 4. дайте макроскопическую характеристику изменений в почке и селезенке, которые могли развиться в связи с образованием в аорте.
- 5. что представляет собой массы, обнаруженные в легочной артерии?
- 1. Тромб. Интима аорты неровная. Виден тромб, спаянный со стенкой сосуда. Сухой, плтоный, крошащийся, серо-красного цвета с гофрированной поверхностью.
- **2.** Атеросклероз. (Также причины тромбоза хронический общий венозный застой в связи с сердечно-сосудистой недостаточностью, злокачественные новообразования, гиперкоагуляция, при беременности).

3. Морфогенез:

- агглютинация тромбоцитов (адгезия к интиме сосуда, выделение различных факторов свертываемости крови)
- коагуляция фибриногена (формирование нерастворимого фибринового свертка, захватывающего форменные элементы, компоненты плазмы крови, процесс становится необратимым)
- агглютинация эритроцитов
- преципитация плазменных белков (пропитывание тромботической массы белками плазмы крови)

Исходы:

Благоприятные:

- Организация (врастает соединительная ткань)
- Канализация и васкуляризация
- Обызвествление/оссификация (редко)

- Асептический аутолиз

Неблагоприятные:

- Отрыв тромба (образование тромбоэмбола)
- Септическое расплавление
- **4.** Т.к. тромб пристеночный (не обтурирующий), то в селезенке и почке будет развиваться ишемия (обтурационная в связи с частичным закрытием просвета артерии тромбом).
 - бледность органа
 - снижение пульсации артерий, падение давления
 - орган уменьшен в размерах
 - тургор ткани снижается
 - -ослабляется лимфообразование и лимфоотток

При возможном отрыве тромба (образовании тромбоэмбола) может возникнуть некроз органов.

Инфаркт селезенки. Очаг некроза треугольной формы, плотной консистенции, основанием обращен к капсуле. На капсуле видны области инфаркта, шероховатые наложения фибрина.

Инфаркт почки. Зона инфаркта клиновидной формы, окаймлена темнокрасным ободком (геморрагический венчик). Поверхность разреза сухая плотной консистенции. Видны серо-белые пятна.

5. Посмертный сгусток крови.

У больного Н., 66 лет, страдавшего постинфарктным кардиосклерозом и перенесшего операцию холецистэктомии, в послеоперационном периоде увеличение объема правой голени. На 2 сутки внезапно возникла одышка, боль в боку, кровохарканье. На 4 сутки при попытке подняться с постели внезапно - резкая синюшность лица, смерть.

- 1. какое смертельное осложнение развилось у больного? Опишите соответствующий макропрепарат. Объясните механизм смерти.
- 2. какой процесс в легких, обусловивший одышку, кровохарканье, боль в
 - боку, обнаружен на вскрытии (опишите макропрепарат, микропрепарат)?
- 3. причина развития и фоновые изменения в легких для развития этого процесса.
- 4. какие изменения в нижних конечностях, имеющие отношение к развитию осложнений обнаружены на вскрытии? Опишите соответствующий макропрепарат.
- 5. наиболее вероятная причина их возникновения.

1. Тромбоэмболия легочной артерии.

Макропрепарат. В просвете легочной артерии видны червеобразные тромботические массы, НЕ спаянные с интимой, плотные, сухие, крошащиеся, темно-красного цвета.

Тромбоэмболия легочной артерии отмечается, как правило, у малоподвижных больных, происходит из нижних конечностей, жировой клетчатки малого таза, правых отделов сердца и др. В танатогенезе имеет значение правая желудочковая недостаточность, вызванная закрытием просвета сосуда, так и остановка сердца вследствие пульмоно-коронарного рефлекса, запускаемого механическим раздражением тромботическими массами рецепторных окончаний интимы ствола артерии. Возникает тяжелый бронхоспазм.

2. (?) Геморрагический инфаркт легкого.

Микропрепарат. В зоне инфаркта разрушены межальвеолярные перегородки. Клетки лишены ядер. Вся зона инфаркта пропитана кровью. Вблизи инфаркта виден тромбированный сосуд.

Макропрепарат. В верхней доле легкого – очаг конической формы, обращенный основанием к плевре, а верхушкой – к корню легкого. Плотная консистенция, тёмно-красного цвета. На плевре видны наложения фибрина.

- **3.** Пульмоно-коронарный рефлекс. Тромбоэмбол ударяет по барорецепторам легочной артерии включается пульмокоронарный рефлекс возникает спазм бронхов, ветвей легочной артерии и венечных артерий сердца остановка сердца, остановка дыхания (механизм смерти).
- 4. Тромбоз глубоких вен нижних конечностей.

Макропрепарат. В просвете вен виден полностью обтурированный просвет сосуда. Тромботические массы плотные, сухие, крошащиеся, темно-красного цвета.

5. Постельный (малоподвижный) режим больного после операции.

Задача 3

На вскрытии обнаружены варикозно расширенные вены голеней, заполненные в одних участках плотными сероватого цвета массами, прочно фиксированными к стенке на всем протяжении, в других же участках темнокрасными массами, фиксированными к стенке лишь на небольшом протяжении. В сегментарных ветвях легочной артерии плотные темнокрасные массы, не связанные со стенкой сосуда. В легком обнаружен инфаркт.

- 1. какие образования обнаружены в венах голени (в разных участках)?
- 2. дайте микроскопическую характеристику этих образований. Какова

- причина их образования?
- 3. дайте макроскопическую характеристику инфаркта легкого. Объясните характерную форму и вид инфаркта.
- 4. найдите препарат и дайте микроскопическую характеристику инфаркта легкого.
- 5. назовите образования, обнаруженные в сегментарных ветвях легочной артерии.
 - 1. Пристеночный и обтурирующий тромб.

2.

3. Макропрепарат. В верхней доле легкого – очаг конической формы, обращенный основанием к плевре, а верхушкой – к корню легкого. Плотная консистенция, тёмно-красного цвета. На плевре видны наложения фибрина.

Форма инфаркта зависит от особенностей строения сосудистой системы органа. В легком – инфаркт клиновидной формы.

В легком красный (геморрагический) инфаркт. При обтурациитромбоэмболом или тромбом ветви легочной артерии в ней падает кровяное давление, что вызывает резкое поступление по анастомозам крови в зону пониженного давления их системы бронхиальных артерий.

- **4. Микропрепарат.** В зоне инфаркта разрушены межальвеолярные перегородки. Клетки лишены ядер. Вся зона инфаркта пропитана кровью. Вблизи инфаркта виден тромбированный сосуд.
 - 5. Тромбоэмбол.

Задача 4.

У больного В., 34 лет, со сложным переломом бедренных костей отмечались признаки нарастающей дыхательной недостаточности. В дальнейшем присоединилась мозговая кома, наступила смерть. На вскрытии в легочной артерии обнаружены блестящие червеобразные эластичные массы темно-красного цвета.

- 1. какой процесс развился в легких? Дайте микроскопическую характеристику процесса.
- 2. селективная окраска для выявления этого процесса.
- 3. назовите причину смерти больного.
- 4. перечислите другие известные Вам причины развития этого процесса.
- 5. назовите образование, обнаруженное на вскрытие в легочной артерии.
 - 1. Жировая эмболия легкого.

Микропрепарат. Большая часть альвеолярных капилляров заполнена каплями жира. Жир окрашен в желто-красный цвет.

- 2. Судан III
 - 3. Эмболия сосудов легких.

- **4.** Жировая эмболия отмечается при травмах (размозжении подкожной жировой клетчатки, переломах длинных трубчатых костей), ошибочном введении в кровеносное русло масляных растворов.
- 5. Посмертный сгусток крови. (?)

Задача 5.

На вскрытии больного А., 67 лет, страдавшего раком легкого, осложнившимся массивной абсцедирующей пневмонией, обнаружена большая бугристая печень с множественными узлами. В почках диагностирован эмболический гнойный нефрит. Глубокие вены голеней варикозно расширены. В одном из участков просвет заполнен плотными, серовато-бурыми массами, плотно фиксированными к стенке на всем протяжении.

- 1. назовите процесс, обнаруженный в печени и причину его возникновения. Дайте макроскопическую характеристику процесса.
- 2. дайте макроскопическую характеристику процесса в почках. Какова причина развития этого процесса?
- 3. назовите образование, обнаруженное в глубоких венах голени.
- 4. дайте микроскопическую характеристику процесса.
- 5. какие факторы способствовали возникновению образования в вене?

1. Метастазы рака в печень.

Макропрепарат. В ткани печени видны опухолевые узлы с четкими границами желтовато-белого цвета, в некоторых наблюдаются небольшие углубления – «пупочки».

2. Эмболический гнойный нефрит.

Макропрепарат. Размер почки увеличен, консистенция дряблая, в очагах множество гнойных участков, после вскрытия остается полость. Очаги окружены геморрагическими венчиками красного цвета

Вызываются гнойные нефриты гноеродными бактериями, причем проникание последних в почку происходит путем эмболии бактерий током крови.

3. Тромбоз глубоких вен голени.

5.Треть случаев тромбоза глубоких вен нижних конечностей связаны с онкологическим заболеванием. В случае уже диагностированного рака, тромбоз как правило ассоциирован со стадией и тяжестью рака. В частности, четко прослеживается связь между тромботическими осложнениями и метастазами.

Задача 6.

У больного Д., 46 лет, страдавшего трансмуральным инфарктом миокарда, внезапно появились боли в левой поясничной области, появилась кровь в моче. В дальнейшем развился правосторонний паралич с последующей потерей сознания и смертью.

- 1. дайте характеристику изменениям в сердце. Укажите стадии развития инфаркта миокарда.
- 2. объясните характерный вид инфаркта.
- 3. назовите наиболее частые причины развития инфаркта миокарда.
- 4. дайте микроскопическую характеристику инфаркта миокарда
- 5. назовите процессы, развившиеся в почке, головном мозге. Возможные причины их возникновения и исходы.

1. Инфаркт миокарда.

Стадии развития: ишемическая и некротическая.

2. Макропрепарат «Ишемический инфаркт миокарда с геморрагическим венчиком.»

В области левого желудочка – очаг неправильной формы, желтоватого цвета, дряблой консистенции. Окружен темно-красным венчиком.

3. Эмболия, метастазы, первичные опухоли, механические травмы, нарушения коронарного кровообращения.

4. Микропрепарат.

3 зоны: 1) зона некроза, где видны явления кариорексиса, кариолизиса, плазморексиса. 2) зона демаркационного воспаления, в ней наблюдаются полнокровные сосуды и лейкоцитарная инфильтрация. 3) зона относительно сохранного миокарда.

5. Инфаркт миокарда, (особенно трансмуральный), когда воспаляется эндокард, приводит к внутрисердечному тромбообразованию и эмболии других органов.

В связи с чем может возникнуть инфаркт почки (обусловливает гематурию) и инсульт головного мозга.

Задача 7.

Проведите сравнительный морфологический анализ тромба, тромбоэмбола и посмертного свертка (на соответствующих макропрепаратах) и ответьте на вопросы:

- 1. характеристика макроскопических особенностей (консистенция, поверхность, отношение к интиме сосуда).
- 2. механизм образования.
- 3. микроскопическая характеристика. Описать микропрепарат «Смешанный

тромб в вене».

- 4. исходы тромба.
- 5. последствия тромбоза и тромбоэмболии в артериальной и венозной

Системах.

1. Тромб – шероховатые, плотные, крошащиеся тромботические массы, прикрепленные к сосудистой стенке.

Посмертный сгусток крови – гладкий, эластичный, свободно лежащий в просвете сосуда.

Тромбоэмбол – плотные, сухие крошащиеся массы темно-красного цвета, свободно лежащие в просвете сосуда.

- 2. Тромбообразование:
- агглютинация тромбоцитов
- коагуляция фибриногена
- агглютинация эритроцитов
- преципитация плазменных белков крови

Тромбоэмбол появляется в результате отрыва тромба или его части.

- **3. Микропрепарат.** Просвет вены полностью закрыт смешанным тромбом, состоящим из нтей фибрина, эритроцитов лейкоцитов и тромбоцитов.
- 4. Благоприятные исходы тромба: организация, канализация, оссификация, аутолиз

Неблагоприятные исходы: отрыв тромба, сепсис

5. Тромбоз и тромбоэмболия приводят к нарушению тока крови, недостаточному кровоснабжению органов и тканей. В связи с чем может возникать ишемия, гипоксия, некроз и инфаркт органов.

Задача 8.

У больного Ш., 68 лет, с хронической ишемической болезнью сердца на фоне атеросклероза, осложнившейся хронической сердечно-сосудистой недостаточностью, при попытке подняться с постели появилась синюшность лица и наступила смерть. На секции обнаружена тромбоэмболия легочной артерии (ТЭЛА).

- 1. дайте макроскопическую характеристику ТЭЛА.
- 2. объясните механизм смерти.
- 3. возможные источники тромбоэмболии легочной артерии.
- 4. что способствовало образованию тромбов у данного больного?
- 5. проведите дифференциальный диагноз между тромбоэмболом и тромбом.
- **1. Макропрепарат.** В просвете легочной артерии видны червеобразные тромботические массы, НЕ спаянные с интимой, плотные, сухие, крошащиеся, темно-красного цвета.
- 2. Тромбоэмболия легочной артерии отмечается, как правило, у малоподвижных больных, происходит из нижних конечностей, жировой клетчатки малого таза, правых отделов сердца и др. В танатогенезе имеет значение правая желудочковая недостаточность, вызванная закрытием просвета сосуда, так и остановка сердца вследствие пульмоно-коронарного рефлекса, запускаемого механическим раздражением тромботическими

массами рецепторных окончаний интимы ствола артерии. Возникает тяжелый бронхоспазм.

- **3.** Тромбоэмболия легочной артерии отмечается, как правило, у малоподвижных больных, происходит из нижних конечностей, жировой клетчатки малого таза, правых отделов сердца и др.
- 4. Атеросклеротические бляшки, ИБС
- **5.** Тромботические массы плотно спаяны с интимой сосуда, а тромбоэбол свободно лежит в просвете сосуда.

Задача 9.

Проведите сравнительный морфологический анализ различных видов инфарктов, используя макропрепараты «Инфаркт селезенки», «Инфаркт легкого», «Инфаркт миокарда»:

- 1. дайте характеристику макроскопических особенностей (цвет, форма, консистенция).
- 2. чем обусловлены форма и цвет инфаркта?
- 3. основные причины развития в каждом их органов.
- 4. исходы инфаркта в различных органах
- 5. основные клинические проявления инфарктов в разных органах.

1. Ишемический инфаркт селезенки

Очаг некроза треугольной формы, плотной консистенции. Основание треугольника обращено к капсуле органа. На капсуле видны отложения фибрина. (Чаще в селезенке возникает белый инфаркт, реже-красный).

Геморрагический инфаркт легкого

В верхней доле легкого – очаг конической формы, обращенный основанием к плевре, а верхушкой – к корню легкого. Плотная консистенция, тёмно-красного цвета. На плевре видны наложения фибрина.

Ишемический инфаркт миокарда

В области левого желудочка – очаг неправильной формы, желтоватого цвета, дряблой консистенции. Окружен темно-красным венчиком.

- **2.** Форма обусловлена ангиоархитектоникой органов, прохождение магистральных сосудов. (Венчик появляется за счет зоны демаркационного воспаления.)
- **3.** Инфаркт миокарда развивается вследствие тромбоза, эмболии, длительного спазма артерий. Причины инфаркта селезенки патологии сердца, воспаление сосудов, киста селезенки, инфекционные заболевания и др. Инфаркт легкого тромбофлебиты, ревматизм, опухоли, инфекционная патология и др.
- **4.** Исходы инфаркта: Нейтрофилы и макрофаги резорбируютнекротизированную ткань. На 7-10й день отмечается врастание из демаркационной зоны грануляционной ткани.

Происходит организация инфаркта и его рубцевание. Возможно образование кисты (головной мозг). Возможно замещение глиальной тканью с формирование глиального рубца. Неблагоприятным исходом является его нагноение.

5. Инфаркт миокарда проявляется жгучей болью в области сердца за грудиной.

Инфаркт почки может сопровождаться гематурией, а инфаркт легкого - кровохарканьем, болях в грудной клетке.

Задача 10.

Больной Н., 55 лет, страдавший раком предстательной железы, получал терапию масляными препаратами эстрогенов. Пальпировалась бугристая плотная печень. Очередная инъекция препарата была ошибочно произведена внутривенно. Развилась одышка, а затем внезапная потеря сознания, смерть.

- 1. дайте макроскопическую характеристику печени.
- 2. диагностируйте процесс. Опишите механизм его развития.
- 3. дайте микроскопическую характеристику изменениям в легких. Назовите окраску, необходимую для выявления процесса.
- 4. с каким процессом можно связать смертельный исход?
- 5. другие возможные причины развития этого процесса
- 1. Метастазы рака в печень.
- **2. Макропрепарат.** В ткани печени видны опухолевые узлы с четкими границами желтовато-белого цвета, в некоторых наблюдаются небольшие углубления «пупочки».

В основе формирования метастазов лежит клеточная эмболия.

3. Жировая эмболия. Судан III

Микропрепарат. Большая часть альвеолярных капилляров заполнена каплями жира. Жир окрашен в желто-красный цвет.

- 4. Жировая эмболия легкого.
- **5.** Нарушение обмена липидов, размозжение подкожной жировой клетчатки, переломы длинных трубчатых костей.

Задача 11.

Больной Ч., 50 лет, оперирован по поводу острого аппендицита. На 4-е сутки внезапно возникла боль при дыхании в грудной клетке, кровохаркание. Через 2 дня при попытке встать наступила смерть.

- 1. наиболее вероятная причина смерти, ее механизм.
- 2. дайте макроскопическую характеристику смертельного осложнения.
 - 3. чем обусловлены боли в боку и кровохаркание?
 - 4. дайте микроскопическую характеристику процесса

5. причина возникновения этого процесса, возможный его исход при

благоприятном течении.

- 1. Тромбоэболия легочной артерии могла возникнуть вследствие тромбоза глубоких вен нижних конечностей, который мог появиться из-за постельного режима больного.
- **2. Макропрепарат.** В просвете легочной артерии видны червеобразные тромботические массы, НЕ спаянные с интимой, плотные, сухие, крошащиеся, темно-красного цвета.
- 3. Геморрагический инфаркт легкого.

4.Геморрагический инфаркт легкого

В верхней доле легкого – очаг конической формы, обращенный основанием к плевре, а верхушкой – к корню легкого. Плотная консистенция, тёмно-красного цвета. На плевре видны наложения фибрина.

5.Тромб мог оторваться в связи с попыткой встать с кровати. Возник ускоренный ток крови по большому кругу от вен нижних конечностей, что привело в тромбоэмболии. Благоприятным исходом будет являться организация, то есть рубцевание.

Задача 12.

У больного Ф., 34 лет, страдавшего септикопиемией (в посевах крови - стафилококк), в моче отмечается большое количество лейкоцитов (пиурия) и бактерий (бактериурия). В терминальном периоде развивается синдром диссеминированного внутрисосудистого свертывания. Отмечается спутанное сознание, которое переходит в кому и смерть.

- 1. какие изменения в почках могли быть обнаружены у больного?
- 2. дайте макроскопическую характеристику процессу.
- 3. дайте определение синдрому диссеминированного внутрисосудистого свертывания (ДВС).
- 4. какие микроскопические изменения в органах характерны для синдрома ДВС?
- 5. опишите микроскопические изменения в ткани мозга, которые привели к развитию коматозного состояния.
- 1. Эмболический гнойный нефрит
- **2. Макропрепарат.** Размер почки увеличен, консистенция дряблая, в очагах множество гнойных участков, после вскрытия остается полость. Очаги окружены геморрагическими венчиками красного цвета
- **3.** ДВС-синдром состояние, возникающее при различных заболевания и терминальных состояниях. Характеризуется рассеянным внутрисосудистым свертыванием белков крови, агрегацией форменных элементов, активацией и истощением компонентов

свертывающей и фибринолитической системе, блокадой сосудов микроциркуляции в органах с последующим микротромбообразованием.

4. Морфологические изменения в органах. В финале развития ДВС-синдрома возникают два типа нарушений, которые зависят от его распространенности, локализации и степени выраженности: 1) геморрагический диатез как результат коагулопатии потребления и активации фибринолиза; 2) некрозы вследствие нарушения кровотока в микроциркуляторном русле различных органов с нарушением их функции. Многообразие этиологических факторов, нозологических форм, патогенетических процессов, приводящих к развитию ДВС-синдрома, обусловили многогранность проявлений внутрисосудистой коагуляции, участие в процессе различных органов и систем. Наиболее часто поражаются почки, легкие и надпочечники, значительно реже — печень, поджелудочная железа, желудочно-кишечный тракт, кожа, аденогипофиз, в единичных случаях признаки внутрисосудистого свертывания отмечены в миокарде, головном мозге. Особое место среди пораженных органов занимает селезенка.

Почки увеличены в размерах, набухшие, корковое вещество бледное с серо-желтым оттенком, при длительности процесса 2—3 сут нередко видны очаговые или тотальные кортикальные некрозы, окруженные зоной гиперемии и кровоизлияний. Часты субкапсулярные кровоизлияния. Определяются выраженные дистрофические изменения эпителия канальцев вплоть до развития некробиоза и некроза. В микроциркуляторном русле микро-

тромбы в капиллярах клубочков, приводящих и отводящих артериолах, сосудах мозгового вещества. Тромбы могут быть чисто фибриновыми, гиалиновыми, глобулярными, эритроцитарными или смешанными (фибрино-эритроцитарными). В ряде случаев при наличии выраженных изменений в канальцах микротромбы не обнаруживаются. В легких при ДВС-синдроме внутрисосудистая коагуляция выражена наиболее ярко. Встречаются все варианты микротромбов, а также агрегация, сладж и агглютинация форменных элементов крови. Объясняется это тем, что легкие являются своеобразным сосудистым фильтром, который задерживает инородные частицы, встречающиеся в кровотоке и служащие триггером для запуска ДВС-синдрома — чешуйки, сыровидная смазка при эмболии околоплодными водами, капельки жира при жировой эмболии, клетки синцитиотрофобласта при преждевременной отслойке плаценты, клетки злокачественных опухолей при гематогенном метастазировании или тканевой эмболии. Все другие макро- и микроскопические признаки (резкое полнокровие, отек, скопление альвеолярных макрофагов и кровоизлияния в альвеолы), часто обнаруживаемые при ДВС-синдроме, считаются неспецифичными.

Надпочечники также являются одним из основных органов, поражаемых при ДВС ("шоковый орган"). Как правило, определяется окклюзия микроциркуляторного русла, которая приводит к выраженной дистрофии вплоть до некроза клеток коркового и мозгового вещества. Микротромбы обычно сочетаются с множественными кровоизлияниями — от точечных до обширных, захватывающих всю толщу органа и ведущих к деструкции ткани надпочечника. Часто обнаруживаются кровоизлияния в капсуле и окружающей жировой клетчатке.

В печени при ДВС обнаруживается сочетание поражения паренхимы с внутрисосудистой коагуляцией, но нередко имеет место повреждение гепатоцитов без обтурации сосудов микротромбами. Изменения гепатоцитовобычо резко выражены в центрах долек, где часто развиваются центролобулярные некрозы. Последние нередко сочетаются с кровоизлияниями, что придает органу пестрый вид. Наиболее частым проявлением ДВС в

печени являются тяжи и нити фибрина, свободно лежащие в печеночных синусоидах. В центральных венах встречаются часто фибриновые тромбы. Другие виды микротромбов в сосудах печени наблюдаются редко.

Повреждение поджелудочной железы при ДВС-синдроме может варьировать от минимального до панкреонекроза. Степень повреждения железы коррелирует с выраженностью микротромбов. Выход ферментов при панкреонекрозе поддерживает процесс внутрисосудистой коагуляции и ведет к формированию новых микротромбов в железе.

В желудочно-кишечном тракте характерными проявлениями ДВС-синдрома являются кровоизлияния в слизистую оболочку, эрозии, иногда острые язвы. В микроциркуляторном русле желудка и тонкой кишки обнаруживаются резкое полнокровие, сладж и агглютинация эритроцитов; изредка выявляются чисто фибриновые и эритроцитарные микротромбы.

Кожные проявления ДВС-синдрома носят преимущественно геморрагический характер: петехиальная, мелко- и крупнопетлистая, иногда сливная геморрагическая сыпь, множественные кровоизлияния в местах инъекций, операционных разрезах. Иногда в центре высыпаний можно обнаружить очаги некроза. При гистологическом исследовании находят единичные фибриновые, лейкоцитарные и смешанные микротромбы сосудов дермы.

Для поражения аденогипофиза характерна распространенная внутрисосудистая коагуляция с образованием гиалиновых и чисто фибриновых тромбов, приводящая к дистрофии и некрозу клеток передней доли гипофиза, что у выживших больных приводит к гипофизарной недостаточности (синдром Шихена).

В миокарде проявление распространенного свертывания крови наблюдается редко. Единичные гиалиновые микротромбы обтурируют капилляры. Довольно часто обнаруживают геморрагии под эпи- и эндокардом.

В головном мозге микротромбы выявляются редко; чаще они встречаются в мягких мозговых оболочках, а также в сосудистых сплетениях и имеют характер чисто фибриновых и гиалиновых.

В селезенке морфологические признаки внутрисосудистой коагуляции имеются в мелких внутриорганных артериях и венах (гиалиновые и чисто фибриновые тромбы), синусоидах (тяжи и нити фибрина). В фолликулах определяются белковые массы, содержащие фибрин. Геморрагический синдром также находит свое отражение: постоянно обнаруживаются кровоизлияния в пульпу органа и под капсулу.

5. В головном мозге возникают микротромбы, дистрофические изменения, отек, микронекрозы и мелкие кровоизлияния.