Stock's pricing

Introduction about data set

- Daily trade data for around 200 companies listed in the Saudi Arabia exchange market (Tadawul) for the last 4 years.
- Financial data for these companies including the balance sheet and cash flow statements.

How many rows and columns and where you find your data:

The data set is expected to have around 200,000 (1,000 for each company) rows with 50 columns.

What are the questions that you are interested to answer:

- What are the variables impacting the change in stock price?
- How could we utilize the historical **trade** data to estimate the stock price in the future?
- How could we utilize the historical **financial** data to estimate the stock price in the future?

Which tools you will use in this project:

• Colab, pandas, numpy, seaborn, matplotlib, sklearn

What you need to do to achieve the goal:

- Understanding the trading mechanism in Tadawul.
- Understanding basic finance for companies
- Merging, exploring, cleaning and transforming the data

Findings:

~120 companies have more than 1000 day trade data

~180 companies have 4 years financial data

Findings:

Close price mostly affected by day trade data and balance sheet data

Feature	Correlation
high	0.9998
low	0.9998
open	0.9997
moving_5	0.9995
moving_10	0.9986
moving_100	0.9882
moving_200	0.9814
retained_earnings	0.2975
inventory	0.2673
net_income	0.2370
minority_interest	0.2314
deferred_long_term_asset_charges	0.2149
cash	0.2091
dividends_paid	-0.3416

Findings:

Close price correlation varies across the different companies, specifically for the financial data

Models:

Different Models have been created to predict the stock price

Features	All		
Model Name	LinearRegression	Lasso	Ridge
Absolute percentage error	0.96%	3.71%	0.96%
Features	High Correlated (All)		
Model Name	LinearRegression	Lasso	Ridge
Absolute percentage error	0.95%	3.71%	0.95%
Features	High Correlated (Financial)		
Model Name	LinearRegression	Lasso	Ridge
Absolute percentage error	72.09%	73.31%	72.09%

Recommendation:

- Linear regression model is better to value the stock price using the both day trade and financial data

 Further toning to the model could be done to minimize the impact of the velocity of day trade data.

Thank You!

