

Classification and logistic regression

József Mezei

Business Analytics I

Machine learning

- Learning from past experiences
- A computer system learns from data of an application domain
- Now: predict the values of a discrete class attribute, e.g., approve or not-approved, high-risk or low risk.
- Supervised learning, classification

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification vs. Prediction

- Classification:
 - predicts categorical class labels
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Prediction:
 - models continuous-valued functions

Classification

Typical Applications

- credit approval
- target marketing
- medical diagnosis
- treatment effectiveness

Example 1.

- Patients in a hospital: numerous variables (e.g., blood pressure, age, etc.) of newly admitted patients
- Decision to make: assigning patient to the intensive-care unit or not
- Prioritizing more severe patients
- Task: identify high-risk patients

Example 2.

- A credit card company receives thousands of applications for new cards
- Information about an applicant
 - Age, marital status, salary, debts, credit rating, etc.
- Task: classify applications into two groups, approve and reject

Classification—A Two-Step Process Model Construction

Model construction: describing a set of predetermined classes

- Each observation is assumed to belong to a predefined class
- The set of observations used for model construction: training set
- The model is represented as classification rules, decision trees, mathematical formulae, etc.

Classification—A Two-Step Process Model Usage

Model usage: for classifying future or unknown objects

- Estimate accuracy of the model
- The known label of test sample is compared with the classified result from the model
- Accuracy rate is the percentage of test set samples that are correctly classified by the model
- Test set is independent of training set, otherwise over-fitting will occur

The data and the goal

- Data: A set of data records described by
 - k attributes: $A_1, A_2, ... A_k$
 - a class: Each example is labelled with a pre-defined class
- Goal: To learn a classification model from the data that can be used to predict the classes of new cases

Linear versus logistic regression

Linear versus logistic regression

Logistic function

$$f(z) = \frac{1}{1 + e^{-z}}$$

Example data

ID	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	fa1se	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Predicting class for new cases

- Learn a classification model from the data
- Use the model to classify future loan applications into
 - Yes (approved) and
 - No (not approved)
- What is the class for following case/instance?

Age	Has_Job	Own_house	Credit-Rating	Class
young	false	false	good	?

Supervised learning in two steps

- Learning (training): Learn a model using the training data
 - Testing: Test the model using unseen test data to assess the model accuracy

Cross-validation

 Instead of having one training and test set, we divide our dataset into k parts (k folds) and choose the model that has the best average perfomance across all folds

Fundamental assumption of learning

- Assumption: The distribution of training examples is identical to the distribution of test examples (including future unseen examples).
- In practice, this assumption is often violated to certain degree.
- Strong violations will clearly result in poor classification accuracy.
- To achieve good accuracy on the test data, training examples must be sufficiently representative of the test data.

Evaluation methods

- The available data set D is divided into two disjoint subsets,
 - the *training set* (for learning a model)
 - the *test set* (for testing the model)
- Training set should not be used in testing and the test set should not be used in learning.
 - Unseen test set provides a unbiased estimate of accuracy.
- This method is mainly used when the data set D is large (for smaller datasets: crossvalidation)

Classification measures

- Accuracy is only one measure (error = 1-accuracy).
- Accuracy is not suitable in some applications
- In classification involving imbalanced data, we are interested only in the minority class.
- High accuracy can be achieved by missing many cases of the smaller class
- The class of interest is commonly called the positive class, and the rest negative classes.

Confusion matrix

Predicted Class

Performance evaluation

Naïve Rule

Naïve rule: classify all records as belonging to the most prevalent class

 Often used as benchmark: we hope to do better than that

Confusion Matrix

Classification Confusion Matrix						
Predicted Class						
Actual Class	1	0				
1	201	85				
0	25	2689				

201 1's correctly classified as "1"

85 1's incorrectly classified as "0"

25 0's incorrectly classified as "1"

2689 0's correctly classified as "0"