

"ACTIVIDADES EN ADROID Y JAVA"

Montserrat Olan Lopez

Ingeniería en sistemas computacionales y diseño de software Instituto Universitario de Yucatán

2303040768: Sistemas Operativos

Docente Ing.Perla Alejandra Landero Heredia

20 de Julio del 2025

Contenido

¿Que es un proceso?	4
¿Cuáles son los estados de un proceso?	5
¿Cómo funcionan los procesos?	6
Ejemplo detallado	7
Proceso de abrir un navegador web	7
ENSAYO	9

Maria Eugenia Herrera Sanchez

Monserrat Olan López

Jorge Garduza

Ingeniería en Sistemas Computacionates y Diseno de Sottware, Instituto Universitario de Yucatán

(46220517343724M): Sistemas operativos

Perla Alejandra Landero Heredia

(Fecha con: 20 de julio 2025)

¿Que es un proceso?

En sistemas operativos, un proceso es un programa en ejecución.

- Incluye:
- Código ejecutable
- Espacio de memoria asignado
- Registros del CPU
- Recursos como archivos, dispositivos y permisos
- Cada proceso tiene un PCB (Process Control Block) que almacena su estado, prioridad, contador de programa, etc.
- Es la unidad básica de ejecución que el sistema operativo gestiona para realizar tareas.

¿Cuáles son los estados de un proceso?

Algunos sistemas incluyen estados intermedios como *transición* o *zombie*, según el modelo de planificación.

Estado	Descripción
Nuevo	El proceso ha sido creado pero aún no se ejecuta
Listo	Está preparado para ejecutarse, esperando asignación de CPU
En ejecución	Está usando la CPU activamente
Bloqueado	Espera un evento externo (como E/S o liberación de recursos)
Terminado	Ha finalizado su ejecución
Suspendido	Detenido temporalmente, puede estar en espera o bloqueado

¿Cómo funcionan los procesos?

- El sistema operativo crea, gestiona y finaliza procesos.
- Usa un planificador para decidir qué proceso se ejecuta.
- Cada proceso tiene su propio espacio de memoria y recursos.
- Se comunican entre sí mediante IPC (Inter-Process Communication).

Ejemplo de funcionamiento Ejemplo: Proceso de impresión de un documento

- Usuario envía el archivo a imprimir.
- El sistema operativo crea un proceso de impresión.
- El proceso entra en estado Preparado.
- Cuando la impresora está libre, pasa a En ejecución.
- Si falta papel, entra en Bloqueado.
- Al completarse la impresión, pasa a Terminado.

- Los procesos son esenciales para la ejecución de tareas en un sistema operativo.
- Su gestión eficiente permite multitarea, estabilidad y rendimiento.
- Comprender sus estados y funcionamiento ayuda a optimizar recursos y detectar errores.

Ejemplo detallado

Proceso de abrir un navegador web

- 1. El usuario hace clic en el ícono del navegador.
- 2. El sistema operativo crea un proceso con exec() y lo coloca en estado *Nuevo*.
- 3. Se carga en memoria y pasa a *Listo*.
- 4. El planificador le asigna CPU → pasa a *En ejecución*.
- 5. Si el navegador necesita cargar una página, entra en *Bloqueado* esperando respuesta del servidor.
- 6. Al recibir los datos, vuelve a Listo y luego a En ejecución.
- 7. Cuando el usuario cierra el navegador, el proceso pasa a *Terminado* y libera recursos.

Maria Eugenia Herrera Sanchez

Monserrat Olan López

Ingeniería en Sistemas Computacionales y Diseño de Software, Instituto Universitario de Yucatán

(46220517343724M): Sistemas operativos

Perla Alejandra Landero Heredia Actividad 3

(Fecha con: 20 de julio 2025)

ENSAYO

1. ¿Qué es un proceso?

Un **proceso** es una instancia en ejecución de un programa. Cuando ejecutas una aplicación (por ejemplo, un navegador o un procesador de texto), el sistema operativo crea un proceso para esa aplicación.

Características de un proceso:

- Aislamiento: Cada proceso tiene su propio espacio de direcciones en memoria. Esto significa que un proceso no puede acceder directamente a la memoria de otro proceso.
- Recursos asociados: Cada proceso tiene recursos asignados por el sistema operativo, como memoria, archivos abiertos, identificador de proceso (PID), estado de ejecución, etc.
- Pesado: Cambiar de un proceso a otro (conmutación de contexto) puede ser costoso en términos de rendimiento porque implica guardar y restaurar el contexto completo del CPU.

Componentes de un proceso:

- Código del programa
- Contador de programa (PC)
- Pila (Stack)
- Datos del programa (segmento de datos)
- Sección de heap (memoria dinámica)
- Registros de CPU
- Información del sistema operativo (estado, prioridad, recursos, etc.)

2. ¿Qué es un hilo? (Thread)

Un hilo es la unidad básica de ejecución dentro de un proceso. Un proceso puede tener uno o varios hilos, que comparten el mismo espacio de direcciones y recursos del proceso que los contiene.

Características de los hilos:

- Compartición de memoria: Los hilos de un mismo proceso comparten memoria, archivos abiertos y otros recursos.
- Livianos: Son más livianos que los procesos. Cambiar de un hilo a otro dentro del mismo proceso es más rápido que cambiar entre procesos.
- Concurrentes: Los hilos pueden ejecutarse en paralelo si el sistema tiene múltiples núcleos de CPU.

Tipos de hilos:

- Hilos del usuario: Gestionados por una biblioteca a nivel de usuario, sin intervención del núcleo del sistema operativo.
- Hilos del kernel: Gestionados directamente por el núcleo del sistema operativo.

3. Diferencias clave entre procesos e hilos:

Aspecto	Proceso	Hilo
Espacio de memoria	Separado para cada proceso	Compartido dentro del proceso
Costo de creación	Alto	Bajo
Costo de conmutación	Alto	Bajo
Comunicación entre ellos	IPC (Inter-Process Communication)	Compartiendo memoria
Independencia	Totalmente independientes	Parcialmente (comparten recursos)
Fallo	Un proceso no afecta a otro	Un hilo puede afectar a los demás del mismo proceso

4. Ventajas y desventajas

Procesos

Ventajas:

- Aislamiento entre procesos proporciona seguridad.
- Si un proceso falla, no afecta a otros.

Desventajas:

- Comunicación entre procesos más complicada.
- Más uso de recursos

Hilos

Ventajas:

- Más eficientes en uso de CPU y memoria.
- Compartir recursos facilita la comunicación entre tareas.

Desventajas:

- Errores en un hilo pueden afectar a todo el proceso.
- Requiere sincronización cuidadosa (por ejemplo, uso de mutex, semaphores, etc.).

5. Uso de procesos e hilos en la práctica

- Procesos: Se usan cuando se requiere fuerte aislamiento, por ejemplo, navegadores que crean un proceso por pestaña para evitar que un error en una página afecte a todas.
- Hilos: Se usan para tareas paralelas que deben compartir datos, como un servidor web que atiende múltiples solicitudes simultáneamente.

6. Ejemplo ilustrativo (en pseudocódigo)

Un proceso con múltiples hilos:

Proceso: ServidorWeb

Hilo 1: Aceptar nuevas conexiones Hilo 2: Procesar petición del cliente Hilo 3: Enviar respuesta al cliente

Todos los hilos comparten la base de datos de usuarios, archivos de registro, configuración, etc.

7. Sincronización de hilos

Como los hilos comparten memoria, se necesita coordinación para evitar condiciones de carrera (race conditions), errores de concurrencia y bloqueos mutuos (deadlocks).

Mecanismos comunes:

- Mutex (Mutual Exclusion): Solo un hilo puede acceder a un recurso a la vez
- Semáforos: Contadores usados para gestionar acceso a recursos múltiples.
- Monitores: Estructuras que encapsulan datos con mecanismos de sincronización.

8. Multithreading y Multiprocessing

- Multithreading: Varios hilos dentro de un mismo proceso ejecutándose de forma concurrente. Útil para dividir tareas en subprocesos (hilos) que pueden compartir datos fácilmente.
- Multiprocessing: Varios procesos ejecutándose en paralelo, cada uno con su propio espacio de memoria. Más seguro pero más pesado.

9. Modelos de hilo

- Modelo uno a uno (1:1): Cada hilo de usuario se asigna a un hilo del kernel.
- Modelo muchos a uno (N:1): Todos los hilos de usuario se ejecutan en un solo hilo del kernel.
- Modelo muchos a muchos (N:M): Los hilos de usuario se asignan dinámicamente a hilos del kern

Conclusión

Los procesos y los hilos son componentes esenciales en el funcionamiento de los sistemas operativos y el diseño de software moderno. Los **procesos** permiten ejecutar programas de forma aislada, con su propia memoria y recursos, lo que garantiza seguridad y estabilidad. Son ideales cuando se necesita separar tareas críticas, aunque su creación y gestión consume más recursos.

Por otro lado, los **hilos** ofrecen una forma más ligera y eficiente de ejecutar múltiples tareas dentro de un mismo proceso, compartiendo memoria y otros recursos. Esto permite una mayor velocidad, mejor uso del CPU y la posibilidad de realizar múltiples tareas en paralelo, aunque requiere un manejo cuidadoso de la sincronización para evitar errores.

En conjunto, ambos conceptos permiten construir aplicaciones más rápidas, escalables y confiables, siempre que se utilicen correctamente según las necesidades del sistema. Comprender cómo y cuándo usar procesos o hilos es clave para desarrollar software moderno, eficiente y seguro.