Machine Learning Theory

Maria-Florina (Nina) Balcan

ML: February 9th, 2015 7.4.1 - 7.4.3.

林轩田.一加下

Goals of Machine Learning Theory

Develop & analyze models to understand:

- what kinds of tasks we can hope to learn, and from what kind of data;
 what are key resources involved (e.g., data, running time)
- prove guarantees for practically successful algs (when will they succeed, how long will they take?)
- develop new algs that provably meet desired criteria (within new learning paradigms)

Interesting tools & connections to other areas:

 Algorithms, Probability & Statistics, Optimization, Complexity Theory, Information Theory, Game Theory.

Very vibrant field:

- Conference on Learning Theory
- NIPS, ICML

(NeurIPS)

Today's focus: Sample Complexity for Supervised Classification (Function Approximation)

- Statistical Learning Theory (Vapnik) 5 LT
- PAC (Valiant)

Probably Approximately Correct

- Recommended reading: Mitchell: Ch. 7
 - Suggested exercises: 7.1, 7.2, 7.7
- Additional resources: my learning theory course!

Supervised Classification

Supervised classification

Decide which emails are spam and which are important.

Not spam

gamma-model

- help

ibm 🔣

icc 🔣

Gatech for ninamf@cs.cmu.edu - Thunderbird File Edit View Go Message Tools Help Reply Reply All Forward Delete Print diverse-nina docs ... docume...tante Re: Georgia Tech Visit (Balcan) - doru dragute Subject: interview dragutze From: Santosh S. Vempala < vempala@cc.gatech.edu> dubios Date: 4/7/2008 1:23 PM . EC - eva + Cc: ril@cc.gatech.edu, chisholm@cc.gatech.edu expedia Hi Nina. · 🔝 f_ciudate fellowship I am happy to report that the committee has decided to interview 2 theoreticians, possibly 3, and you are one of - focs FOCS

I am also cc-ing Jennifer Chisholm, our super-admin, who will

be in touch with you to arrange your visit. It has two be in

the next couple of weeks. Could you please indicate some

spam

Goal: use emails seen so far to produce good prediction

Unread: 0 Total: 93

rule for future data.

theoretician here.

Aly: h: X -> y

future incoming

Example: Supervised Classification

Represent each message by features. (e.g., keywords, spelling, etc.)

	4	// ****	// 0. 4 11	1 - 1 112			
	'money''	"pills"	"IVIr."	bad spelling	known-sender	spam?	
	Y	Ν	Y	Y	N	Y	_
	Ν	Ν	Ν	Y	Y	N	
	N	Y	N	N	N	Y	
examp	le Y	Ν	N	Ν	Y	N	label
	Ν	Ν	Y	Ν	Y	N	
	Y	Ν	N	Y	Ν	Y	
	Ν	Ν	Y	Ν	Ν	N	
						I	

Reasonable RULES:

Predict SPAM if unknown AND (money OR pills)

Predict SPAM if 2money + 3pills -5 known > 0

Linearly separable

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data,

E.g.: logistic regression, SVM, Adaboost, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

- Very well understood: Occam's bound, VC theory, etc.
- Note: to talk about these we need a precise model.

- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),$ independently and identically distributed (i.i.d.) from D; labeled by c^*
- · Does optimization over 5, finds hypothesis h (e.g., a decision free) (h)

- X feature or instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - labeled examples assumed to be drawn i.i.d. from some distr.
 D over X and labeled by some target concept c*
 - labels $\in \{-1,1\}$ binary classification

 $ermor_{D}(h) \neq 0$

- Algo does optimization over 5, find hypothesis h. errors (h)= 9
- · Goal: h has small error over D. pointwise

$$err_{D}(h) = \Pr_{x \sim D}(h(x) \neq c^{*}(x))$$
$$= \mathop{\mathbb{E}}_{D}[h(x) \neq c^{*}(x)]$$

Need a bias: no free lunch.

Function Approximation: The Big Picture

(c*∈+1) +1: h × → 1-1,1}

$$\chi = \langle 0, 1 \rangle^n$$

$$h(S) = \langle (h(x_1), ..., h(x_m)) \rangle$$

$$|H| = 2^{2^n} - 2^{|x|}$$

(a. How many labeled examples of 22h hyposis cx?

are needed to determine which $2^{h}-1 < \frac{+1}{-1} - \frac{+1}{h}$

- X feature or instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - labeled examples assumed to be drawn i.i.d. from some distr.
 D over X and labeled by some target concept c*
 - labels $\in \{-1,1\}$ binary classification
 - Algo does optimization over S, find hypothesis h.
 - · Goal: h has small error over D.

$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$

Bias: Fix hypotheses space H. (whose complexity is not too large).

Realizable: $c^* \in H$.

Agnostic: c^* "close to" H. $(c^* \notin H)$

- Algo sees training sample 5: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)), x_i$ i.i.d. from D
- Does optimization over S, find hypothesis $h \in H$.
- Goal: h has small error over D. $E_{\mathcal{D}} \cap h^{(x)} \neq C(x)$

```
True error: err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))

2. Expected error How often h(x) \neq c^*(x) over future instances drawn at random from D
```

• But, can only measure:

Min ens(h)

Sample complexity: bound $err_D(h)$ in terms of $err_S(h)$

- Consistent Learner
 - \Box outputs hypothesis h that perfectly fits the training data S,

$$h(x) = c^*(x), \quad \forall x \in S.$$

- Version Space (VS)
 - \Box set of all hypotheses $h \in H$ that correctly classify the training data S,

$$VS_{H,S} = \{h \in H | \forall x \in \underline{S}, h(x) = c^*(x)\}.$$

evypos

Definition: Consider a hypothesis space H, target concept c, instance distribution \mathcal{D} , and set of training examples \mathcal{B} of c. The version space $VS_{H,D}$ is said to be ϵ -exhausted with respect to c and \mathcal{D} , if every hypothesis h in $VS_{H,D}$ has error less than ϵ with respect to c and \mathcal{D} .

$$(\forall h \in VS_{H,D}) (error_{\mathcal{D}}(h) < \epsilon)$$

$$VS_{H,S} = \{ h \mid \gamma \in H, e\gamma\gamma_{S}(h) = 0 \}$$

$$\leq$$
-exhansted $VS_{H,S} = \frac{\pi}{2} h \mid h \in H, ew_{S}(h) = 0, ew_{S}(h) < \frac{\pi}{2}$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

$$= \frac{\pi}{2} h \mid h \in VS_{H,S}, ew_{S}(h) < \frac{\pi}{2}$$

2 H finite

Theorem 7.1. ϵ -exhausting the version space. If the hypothesis space H is finite, and D is a sequence of $m \ge 1$ independent randomly drawn examples of some target concept c, then for any $0 \le \epsilon \le 1$, the probability that the version space $VS_{H,D}$ is not ϵ -exhausted (with respect to c) is less than or equal to

$$P(\exists h \in VSH, s, eW_{0}(h) \geq s) \leq |H|e^{-sm}$$

$$P(\forall h \in VSH, s, eW_{0}(h) < s) \leq |H|e^{-sm} \leq S, \quad (n < 8 < \frac{1}{2})$$

$$P(\forall h \in VSH, s, eW_{0}(h) < s) \geq 1 - S \qquad \text{with high prob.}$$

$$(iv hp)$$

$$good (s-exhausted)$$

$$|n|H| - sm |ne| \leq |ns|$$

$$Sample$$

$$Sample$$

$$Complexing$$

P(3heVSH,5, errolh)=5) < 1H1e-5m

Proof: if $\exists h \in H$, $erv_s(h) = 0$, $evv_b(h) = 5$, then VS is not z-exhausted. (h $\in VS_{H,S}$)

Calculate the prob.

$$\Rightarrow P(h(x) = C(x)) \le 1-2 P(h(s) = C(s))$$

$$\Rightarrow P(h(x_i) = C^*(x_i), x_i + h(x_m) = C^*(x_m)).$$

$$\frac{1}{1} \prod_{i=1}^{m} P(h(x_i) = C^*(x_i)) \leq (1-\xi)^m$$

$$P(AVB) \leq P(A) + P(B)$$

$$P(h,(s)=C^{*}(s)) \cup h_{2}(s)=C^{*}(s) \cup \dots \cup h_{(H)}(s)=C^{*}(s))$$

$$\leq \sum_{t=1}^{|H|} P(h_{e}(s)=C^{*}(s)) \leq \sum_{t=1}^{|I-I|} (1-\xi)^{M} = |H|(1-\xi)^{M} \leq \cdot |H| e^{-\xi M}$$

Consistent Learner

Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))

- erro(h) = errs(h) +{2
- · Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1-\delta$, all $h\in H$ with

$$(err_D(h) \ge \varepsilon)$$
have $err_S(h) > 0$.

$$erys(h)=0 \Rightarrow eryp(h)<\Sigma$$
7A

Contrapositive: if the target is in H, and we have an algo that can find consistent fns, then we only need this many examples to get generalization error $\leq \epsilon$ with prob. $\geq 1 - \delta$

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H consistent with the sample (if one exits).

Theorem

Bound inversely linear in ϵ

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1-\delta$, all $h\in H$ with $err_D(h)\geq \varepsilon$ have $err_S(h)>0$. Bound only logarithmic in |H|

- ϵ is called error parameter
 - D might place low weight on certain parts of the space
- δ is called confidence parameter
 - there is a small chance the examples we get are not representative of the distribution

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- · Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Example: H is the class of conjunctions over $X = \{0,1\}^n$. $|H| = 3^n$ E.g., $h = x_1 \overline{x_3} x_5$ or $h = x_1 \overline{x_2} x_4 x_9$

Then $m \ge \frac{1}{\epsilon} \left[n \ln 3 + \ln \left(\frac{1}{\delta} \right) \right]$ suffice

 $n = 10, \epsilon = 0.1, \delta = 0.01$ then $m \ge 156$ suffice

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Proof Assume k bad hypotheses $h_1, h_2, ..., h_k$ with $err_D(h_i) \ge \epsilon$

- 1) Fix h_i . Prob. h_i consistent with first training example is $\leq 1 \epsilon$. Prob. h_i consistent with first m training examples is $\leq (1 - \epsilon)^m$.
- 2) Prob. that at least one h_i consistent with first m training examples is $\leq k (1 \epsilon)^m \leq |H|(1 \epsilon)^m$.
- 3) Calculate value of m so that $|H|(1-\epsilon)^m \leq \delta$
- 3) Use the fact that $1 x \le e^{-x}$, sufficient to set $|H| e^{-\epsilon m} \le \delta$

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Theorem

$$m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1-\delta$ all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Probability over different samples of m training examples

Sample Complexity: Finite Hypothesis Spaces Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.

Theorem

$$m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

2) Statistical Learning Way:

With probability at least $1 - \delta$, for all $h \in H$ s.t. $err_S(h) = 0$ we have

$$\operatorname{err}_{D}(h) \leq \frac{1}{m} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right).$$

Supervised Learning: PAC model (Valiant)

- X instance space, e.g., $X = \{0,1\}^n$ or $X = R^n$
- $S_1=\{(x_i, y_i)\}$ labeled examples drawn i.i.d. from some distr. D over X and labeled by some target concept c^*
 - labels $\in \{-1,1\}$ binary classification

- Algorithm A PAC-learns concept class H if for any target c* in H, any distrib. D over X, any ε , δ > 0:
 - A uses at most poly(n,1/ ϵ ,1/ δ ,size(c*)) examples and running time.
 - With probab. 1- δ , A produces h in H of error at $\leq \epsilon$.

Uniform Convergence

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

- This basic result only bounds the chance that a bad hypothesis looks perfect on the data. What if there is no perfect h∈H (agnostic case)?
 - What can we say if $c^* \notin H$?
 - Can we say that whp all $h \in H$ satisfy $|err_D(h) err_S(h)| \le \varepsilon$?
 - Called "uniform convergence".
 - Motivates optimizing over S, even if we can't find a perfect function.

errs(h) -
$$\leq$$
 \leq $\left(e\gamma\gamma_{D}(h) \leq e\gamma\gamma_{S}(h) + \leq\right)$

Sample Complexity: Finite Hypothesis Spaces

Realizable Case CEH

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1-\delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$. \Rightarrow $e\gamma\gamma_S(h)=\emptyset \Rightarrow$ $e\gamma\gamma_S(h)=\emptyset \Rightarrow$ $e\gamma\gamma_S(h)=\emptyset \Rightarrow$

Agnostic Case

★

What if there is no perfect h?

Theorem After m examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

To prove bounds like this, need some good tail inequalities.

Hoeffding bounds levising-ensinger

Consider coin of bias p flipped m times.

Let N be the observed # heads. Let $\varepsilon \in [0,1]$.

Hoeffding bounds:

- $Pr[N/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$, and
- Pr[N/m .

Exponentially decreasing tails

=) $P(|\frac{N}{m}-7| > 2) \le 20$

ersin il

 Tail inequality: bound probability mass in tail of distribution (how concentrated is a random variable

around its expectation).

$$eyv_{b}(h) = P_{Y_{b}}(h \times) \pm C^{*}(x))$$

$$= E_{D} \left[h \times \right] \pm C^{*}(x)$$

$$eyv_{b}(h) = \frac{1}{m} \sum_{i=1}^{m} \left[h \times_{i} \right] + C^{*}(x)$$

$$P(|em_{s}(h)-em_{s}(h)|> \epsilon) \leq 2e^{-2m\epsilon^{2}}$$

$$P(|em_{s}(h)-em_{s}(h)|> \epsilon) \leq 2e^{-2m\epsilon^{2}}$$

$$P(|em_{s}(h)-em_{s}(h)|> \epsilon) \leq e^{-2m\epsilon^{2}}$$

$$P(|em_{s}(h)-em_{s}(h)|> \epsilon) \leq e^{-2m\epsilon^{2}}$$

(3hEH, eMsh)>ens(h)ts) < |H) P(ensh)>ens(h)+s) -2ms Palcalute the prob.

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

Theorem After m examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \geq \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

- Proof: Just apply Hoeffding.
 - Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
 - Set to δ . Solve.
- So, whp, best on sample is ϵ -best over D.
 - Note: this is worse than previous bound (1/ ϵ has become 1/ ϵ^2), because we are asking for something stronger.
 - Can also get bounds "between" these two.

What you should know

- Notion of sample complexity.
- Understand reasoning behind the simple sample complexity bound for finite H.