Scaling Up Graph Neural Networks to Large Graphs

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Lecture 5 readings:
 - Design Space of Graph Neural Networks
 - OGB Datasets
- Lecture 6 readings:
 - GraphSAINT
 - GNN AutoScale

Recap of Lecture 5

We introduce the pipeline of GNN training

- Prediction Heads:
 - Node-level / Edge-level / Graph-level
- Predictions & Labels
 - Supervised / unsupervised
- Loss Functions:
 - Regression / Classification
- Evaluation Metrics:
 - Regression / Classification
- Dataset Split
 - Transductive / inductive
 - Node / edge / graph

Graphs in Modern Applications (1/4)

Scenario 1. Recommender Systems

Examples

- Amazon
- YouTube
- Pinterest

...

Machine Learning Tasks

- Recommend items
 (link prediction)
- Classify users/items
 (node classification)

Users Products/Videos 100M~1B 10M ~ 1B

Graphs in Modern Applications (2/4)

Scenario 2. Social networks

Examples

- Facebook
- Twitter
- Instagram

. .

Machine Learning Tasks

- Friend recommendation (link prediction)
- User property prediction (node classification)

Graphs in Modern Applications (3/4)

Scenario 3. Academic graph

Examples

- Microsoft Academic Graph
- Arxiv Graph

• • •

Machine Learning Tasks

- Paper categorization (node classification)
- Author collaboration prediction
- Paper citation recommendation (link prediction)

Papers Authors 120M 120M

Graphs in Modern Applications (4/4)

Scenario 4. Knowledge Graphs (KGs)

Examples

- Wikidata
- Freebase
- ConceptNet

. . .

Machine Learning Tasks

- KG completion (link prediction)
- Logical reasoning (set prediction)

What is in common?

1. Large-Scale:

- #nodes ranges from 10M to 10B.
- #edges ranges from 100M to 100B.

2. Tasks

- Node-level: User/item/paper classification.
- Link-level: Recommendation, completion.

Todays' lecture

Scale up GNNs to large graphs!

Why is it hard? (1/4)

How do we usually train an ML model on large data (N=#data is large)?

Objective: Minimize the averaged loss

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=0}^{N-1} \mathcal{L}_i(\boldsymbol{\theta})$$

 $\boldsymbol{\theta}$: model parameters, $\mathcal{L}_i(\boldsymbol{\theta})$: loss for i-th data point.

Method: Stochastic Gradient Descent (SGD).

- Randomly sample M (<< N) data points (mini-batches \mathcal{B}).
- Compute the $\mathcal{L}_{\mathcal{B}}(\boldsymbol{\theta})$ over the M data points.
- Perform SGD: $\theta \leftarrow \theta \nabla \mathcal{L}_{\mathcal{B}}(\theta)$

Why is it hard? (2/4)

Method: Stochastic Gradient Descent (SGD).

- Randomly sample M (<< N) data points (mini-batches).
- Compute the $\mathcal{L}_{\mathcal{B}}(\boldsymbol{\theta})$ over the M data points.
- Perform SGD: $\theta \leftarrow \theta \nabla \mathcal{L}_{\mathcal{B}}(\theta)$

What if we use the standard SGD for GNN on large graphs?

In mini-batch, we sample M (<< N) nodes independently

- (i) Sampled nodes tend to be isolated from each other.
- (ii) Recall: GNNs generate node embeddings by aggregating neighboring node embeddings.
- (i)&(ii)→ GNN has no access to neighboring nodes within the mini-batch We need to construct special minibatches to train GNNs.

Why is it hard? (3/4)

- Naïve approach: full-batch implementation
 - Generate embeddings of all the nodes at the same time.
- Load the entire graph and features.
- 2. At each GNN layer:
 - compute embeddings of all nodes using all the node embeddings from the previous layer.
 - Use **sparse matrix operation** (recall Lecture 3, 4) For example (GraphSAGE),

$$H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{\mathrm{T}})$$

- Compute the loss
- Perform gradient descent

Why is it hard? (4/4)

Problem with full-batch implementation

Full-batch implementation is often not feasible for large graphs.

Why?

Because we want to use GPU for accelerating training, but GPU memory is **limited** (only 10~40 GB).

The entire graph, features and gradients exceed GPU memory limit.

Slow computation, large memory

CPU 00GB—10TB Fast computation, limited memory

GPU 10GB—40GB

Outline of Today's Lecture

Three Methods for Scaling up GNNs

1. Neighbor Sampling [Hamilton et al. NeurIPS 2017]

2. Cluster-GCN [Chiang et al. K

3. Simplified GCN [Wu et al. ICML 2019]

Small subgraphs in each mini-batch; only load subgraphs on GPU at a time.

Simplify a GNN into a **feature-processing operation**.

Outline of Today's Lecture

Three Methods for Scaling up GNNs

1. Neighbor Sampling [Hamilton et al. NeurIPS 2017]

2. Cluster-GCN [Chiang et al. KDD 2019]

3. Simplified GCN [Wu et al. ICML 2019]

Small subgraphs in each mini-batch; only load subgraphs on GPU at a time.

Simplify a GNN into a **feature-processing operation**.

GraphSAGE Neighbor Sampling

W.L. Hamilton*, R. Ying*, and J. Leskovec. **Inductive representation learning on large graphs.** *Advances in neural information processing systems (NeurIPS)*, *2017*.

Recall: Computational Graph (1/2)

Recall

GNNs generate node embeddings via neighbor aggregation.

• Represented as a computational graph (right).

Recall: Computational Graph (2/2)

Observation

A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and features.

More generally, K-layer GNNs generate embedding of a node using K-hop neighborhood structure and features.

Computing Node Embeddings

Key Insight

- To compute embedding of a single node, all we need is the K-hop neighborhood (which defines the computation graph).
- Given a set of M different nodes in a mini-batch, we can generate their embeddings using M computation graphs.
- Can be computed on GPU!

Node Sharing in Minibatches

- To further reduce memory usage, we could share the same nodes (features)
 among different computation trees, if they correspond to the same node in
 the original graph
 - The default behavior in Pytorch Geometric Neighbor Sampler
- This is not always possible in special circumstances of <u>temporal sampling</u>
 - We sample nodes with timestamps less than the root node of the computation tree
 - The same node can have different temporal constraints in different computation trees

Stochastic Training of GNNs

Potential Solution

We can now consider the following SGD strategy for training K-layer GNNs

- Randomly sample M (<< N) nodes.
- For each sampled node v:
 - Get K-hop neighborhood and construct the computation graph.
 - Use the above to generate v's embedding.
- Compute the loss $\mathcal{L}_{\mathcal{B}}(\boldsymbol{\theta})$ averaged over the M nodes.
- Perform SGD: $\theta \leftarrow \theta \nabla \mathcal{L}_{\mathcal{B}}(\theta)$

K-hop neighborhood

Computational graph

Issues with Stochastic Training of GNNs (1/2)

Problems with the Solution

For each node, we need to get the entire K-hop neighborhood and pass it through the computation graph.

We need to aggregate lot of information just to compute one node embedding.

→ Computationally expensive.

K-hop neighborhood

Computational graph

Issues with Stochastic Training of GNNs (2/2)

Problems with the Solution

Specifically, two major issues may occur.

- **1.** Exponential growth: Computation graph becomes exponentially large with respect to the layer size K.
- 2. Hub node: Computation graph explodes when it hits a hub node (high-degree node).

How to fix this? Make the computational graph more compact!

K-hop neighborhood

Computational graph

Neighbor Sampling

Key idea

Construct the computational graph by (randomly) sampling at most n_k neighbors at each hop.

Pruned computational graph \rightarrow compute node embeddings more efficiently.

Neighbor Sampling Algorithm

Neighbor sampling for K-layer GNN

For k = 1, 2, ..., K:

- For each node in *k*-hop neighborhood:
 - (Randomly) sample at most n_k neighbors.

K-layer GNN will at most involve $\prod_{k=1}^{K} n_k$ leaf nodes in the computational graph.

Typically done in CPU. Implemented in C++ for efficiency, see Example.

Remarks on Neighbor Sampling

• Remark 1: Trade-off in sampling number n_k

• Smaller n_k leads to more efficient neighbor aggregation, but results in more unstable training due to the larger variance in neighbor aggregation.

Remark 2: Computational time

- Even with neighbor sampling, the size of the computational graph is still exponential with respect to number of GNN layers K.
- Increasing one GNN layer would make computation H times more expensive.

Remark 3: How to sample the nodes

• (See next slide)

Remark 3: How to sample the nodes

- Random sampling: fast but many times not optimal (may sample "unimportant" nodes)
- Random Walk with Restarts:
 - Natural graphs are "scale free", sampling random neighbors, samples many low degree "leaf" nodes.
 - Strategy to sample important nodes:
 - Compute Random Walk with Restarts score R_i starting at the green node
 - At each level sample n_k neighbors i with the highest R_i scores
 - Often more effective

Summary: Neighbor Sampling

A computational graph is constructed for each node in a mini-batch.

• In neighbor sampling, the computational graph is **pruned/sub-sampled to** increase computational efficiency.

The pruned computational graph is used to generate a node embedding.

Problem with Neighbor Sampling Computational graphs can still become large, especially for GNNs with many message-passing layers.

Outline of Today's Lecture

Three Methods for Scaling up GNNs

1. Neighbor Sampling [Hamilton et al. NeurIPS 2017]

2. Cluster-GCN [Chiang et al. KDD 2019]

Small subgraphs in each mini-batch; only load subgraphs on GPU at a time.

3. Simplified GCN [Wu et al. ICML 2019]

feature-processing operation.

Cluster GCN

WL Chiang, X Liu, S Si, Y Li, S Bengio and CJ Hsieh. Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining 2019 Jul 25 (pp. 257-266).

Issues with Neighbor Sampling

Problems with Neighbor Sampling

- The size of computational graph becomes **exponentially large w.r.t. the #GNN layers**.
- Computation is redundant, especially when nodes in a mini-batch share many neighbors.

Recall: Full-Batch GNN

• In full-batch GNN implementation, all the node embeddings are updated together using embeddings of the previous layer.

Update for all $v \in V$

$$h_v^{(\ell)} = COMBINE\left(h_v^{(\ell-1)}, AGGR\left(\left\{\frac{h_u^{(\ell-1)}}{u}\right\}_{u \in N(v)}\right)\right)$$

- In each layer, only 2*#(edges) messages need to be computed.
- For K-layer GNN, only $2K^*$ #(edges) messages need to be computed.
- GNN's entire computation is only linear in #(edges) and #(GNN layers). Fast!

Subgraph Sampling (1/3)

Insight from full-batch GNN

- The layer-wise node embedding update allows the re-use of embeddings from the previous layer.
- This significantly reduces the computational redundancy of neighbor sampling.
 - Of course, the layer-wise update is not feasible for a large graph due to limited GPU memory.

Key idea

We can sample a small subgraph of the large graph and then perform the efficient layer-wise node embeddings update over the subgraph.

Sampled subgraph (small enough to be put on a GPU)

Layer-wise Node embeddings update on the GPU

Subgraph Sampling (2/3)

Key question: What subgraphs are good for training GNNs?

- Recall: GNN performs node embedding by passing messages via the edges.
 - Subgraphs should retain edge connectivity structure of the original graph as much as possible.
 - This way, the GNN over the subgraph generates embeddings closer to the GNN over the original graph.

Case Study: Which subgraph is good for training GNN?

Original graph

Subgraphs (both 4-node induced subgraph)

Subgraph Sampling (3/3)

Case Study: Which subgraph is good for training GNN?

Original graph

Subgraphs (both 4-node induced subgraph)

Left subgraph retains the essential community structure among the 4 nodes → **Good**

Right subgraph drops many connectivity patterns, even leading to isolated nodes → Bad

Exploiting Community Structure

Real-world graph exhibits community structure

A large graph can be decomposed into many small communities.

Key Insight [Cluster GCN, KDD 2019] **Sample a community as a subgraph.**

Each subgraph retains essential local connectivity pattern of the original graph.

Cluster-GCN: Overview

- We first introduce "vanilla" Cluster-GCN.
- Cluster-GCN consists of two steps
 - Pre-processing: Given a large graph, partition it into groups of nodes (i.e., subgraphs).
 - Mini-batch training: Sample one node group at a time. Apply GNN's message passing over the induced subgraph.

Input large graph

Mini-batch training
Message-passing over
induced subgraph
to compute the loss

Cluster-GCN: Preprocessing

- Given a large graph G = (V, E), partition its nodes V into C groups: V_1, \dots, V_C .
 - We can use any scalable community detection methods, e.g., Louvain, METIS [Karypis et al. SIAM 1998].
- V_1, \ldots, V_C induces C subgraphs, G_1, \ldots, G_C ,
 - Recall: $G_c \equiv (V_c, E_c)$,
 - where $E_c = \{(u, v) | u, v \in V_c\}$

Notice: Between-group edges are not included in $G_1, ..., G_C$.

Cluster-GCN: Mini-batch Training

- For each mini-batch, randomly sample a node group V_c .
- Construct induced subgraph $G_c = (V_c, E_c)$.
- Apply GNN's layer-wise node update over G_c to obtain embedding h_v for each node $v \in V_c$.
- Compute the loss for each node $v \in V_c$ and take average:

$$\mathcal{L}_{\mathcal{B}}(\boldsymbol{\theta}) = (1/|V_c|) \cdot \sum_{v \in V_c} \mathcal{L}_v(\boldsymbol{\theta})$$

• Update params: $\theta \leftarrow \theta - \nabla \mathcal{L}_{\mathcal{B}}(\theta)$

Sampled node group V_c Induced subgraph G_c

Layer-wise node embedding update

Issues with Cluster-GCN (1/2)

Problems with Cluster-GCN

- 1. Loss of between-group links
 - The induced subgraph removes between-group links.
 - As a result, messages from other groups will be lost during message passing, which could hurt the GNN's performance.

Issues with Cluster-GCN (2/2)

Problems with Cluster-GCN

2. Sampling bias

- Graph community detection algorithm puts similar nodes together in the same group.
- Sampled node group tends to only cover the small-concentrated portion of the entire node population.
- Sampled nodes are not diverse enough to represent the entire graph structure.
 - The gradient averaged over the sampled nodes, $\frac{1}{|V_c|} \sum_{v \in V_c} \nabla \mathcal{L}_v(\boldsymbol{\theta}), \text{ becomes unreliable.}$
 - Fluctuates a lot from a node group to another.
 - In other words, the gradient has high variance.

Leads to slow convergence of SGD

Advanced Cluster-GCN: Overview (1)

Key Idea

Aggregate multiple node groups per mini-batch.

- Partition the graph into relatively-small groups of nodes.
- For each mini-batch:
 - Sample and aggregate multiple node groups.
 - Construct the induced subgraph of the aggregated node group.
 - The rest is the same as vanilla Cluster-GCN (compute node embeddings and the loss, update parameters)

Advanced Cluster-GCN: Overview (2)

Why does this solution work?

Sampling multiple node groups

- → Makes the sampled nodes more representative of the entire node population.
- → Leads to less variance in gradient estimation.

The induced subgraph over aggregated node groups

- → Includes between-group edges
- → Message can flow across groups.

Improved Cluster-GCN

Similar to vanilla Cluster-GCN, improved Cluster-GCN also follows a 2-step approach.

Pre-processing step

- Given a large graph G = (V, E), partition its nodes V into C relatively-small groups: V_1, \dots, V_C .
 - $V_1, ..., V_C$ needs to be small so that even if multiple of them are aggregated, the resulting group would not be too large.

Mini-batch training

- For each mini-batch, randomly sample a set of q node groups: $\{V_{t_1}, \dots, V_{t_q}\} \subset \{V_1, \dots, V_C\}$.
- Obtain all nodes in the sampled node groups: $V_{aggr} = V_{t_1} \cup \cdots \cup V_{t_q}$
- Extract the induced subgraph $G_{aggr} = ig(V_{aggr}, E_{aggr}ig)$,

where
$$E_{aggr} = \{(u, v) \mid u, v \in V_{aggr}\}$$

ullet E_{aggr} also includes between-group edges!

Comparison of Time Complexity

Generate M (<< N) node embeddings using K-layer GNN (N: #all nodes).

Neighbor-sampling (sampling n nodes per layer):

- For each node, the size of K-layer computational graph is n^K .
- For M nodes, the cost is $M \cdot n^K$

Cluster-GCN:

- Perform message passing over a subgraph induced by the M nodes.
- The subgraph contains $M \cdot D_{avg}$ edges, where D_{avg} is the average node degree.
- K-layer message passing over the subgraph costs at most $K \cdot M \cdot D_{avg}$.

Comparison: Assume $H=D_{avg}/2$. In other words, 50% of neighbors are sampled.

- Cluster-GCN (cost: 2MHK) is much more efficient than neighbor sampling (cost: MH^K).
- Linear (instead of exponential) dependency w.r.t. K.

Cluster-GCN: Summary

- Cluster-GCN first partitions the entire nodes into a set of small node groups.
- At each mini-batch, multiple node groups are sampled, and their nodes are aggregated.
- GNN performs layer-wise node embeddings update over the induced subgraph.
- Cluster-GCN is more computationally efficient than neighbor sampling, especially when #(GNN layers) is large.
 - But Cluster-GCN leads to systematically biased gradient estimates (due to missing cross-community edges)
 - It also imposes the assumption that the graph has clustering structure

Outline of Today's Lecture

Three Methods for Scaling up GNNs

1. Neighbor Sampling [Hamilton et al. NeurIPS 2017]

2. Cluster-GCN [Chiang et al. KDD 2019]

Small subgraphs in each mini-batch; only load subgraphs on GPU at a time.

3. Simplified GCN [Wu et al. ICML 2019]

Simplify a GNN into a **feature-processing operation**.

Simplified GCN

F Wu, A Souza, T Zhang, C Fifty, T Yu and K Weinberger. **Simplifying graph convolutional networks**. In International conference on machine learning 2019 May 24 (pp. 6861-6871). PMLR.

Roadmap of Simplifying GCN

- We start from Graph Convolutional Network (GCN) [Kipf & Welling. ICLR 2017].
- We simplify GCN by removing the non-linear activation from the GCN [Wu et al. ICML 2019].
 - Wu et al. demonstrated that the performance on benchmark is not much lower by the simplification.
- Simplified GCN turns out to be scalable by the model design.

Recall: GCN (mean-pool)

- Given: Graph G = (V, E) with input node features X_v for $v \in V$, where E includes the self-loop:
 - $(v, v) \in E$ for all $v \in V$.
- Set input node embeddings: $h_v^{(0)} = X_v$ for $v \in V$.
- For $k \in \{0, ..., K-1\}$:
 - For all $v \in V$, aggregate neighboring information as

$$h_v^{(k+1)} = \text{ReLU}\left(\frac{1}{|N(v)|} \sum_{u \in N(v)} h_u^{(k)}\right)$$

Trainable weight matrices (i.e., what we learn) Mean-pooling

• Final node embedding: $z_v = h_v^{(K)}$

Recall: Matrix formulation of GCN (1)

GCN aggregations can be formulated as matrix vector product:

• Let
$$\mathbf{H}^{(k)} = [h_1^{(1)} \dots h_{|V|}^{(k)}]^{\mathrm{T}}$$

- Let A be the adjacency matrix (w/ self-loop)
- Then: $\sum_{u \in N(v)} h_u^{(k)} = A_{v,:} \mathbf{H}^{(k)}$
- Let **D** be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of $D: D^{-1}$ is also diagonal $D_{v.v}^{-1} = 1/|N(v)|$
- Therefore,

Matrix of hidden embeddings $\mathbf{H}^{(k)}$

Recall: Matrix formulation of GCN (2)

GCN's neighbor aggregation:

$$h_v^{(k+1)} = \text{ReLU}\left(\boldsymbol{W_k} \frac{1}{|N(v)|} \sum_{u \in N(v)} h_u^{(k)}\right)$$

In matrix form:

where $\widetilde{A} = D^{-1}A$.

$$\mathbf{H}^{(k+1)} = \text{ReLU}(\widetilde{\mathbf{A}}\mathbf{H}^{(k)}\mathbf{W}_{\mathbf{k}}^{\text{T}})$$

- Note: The original GCN uses re-normalized version: $\widetilde{A} = D^{-1/2}AD^{-1/2}$
 - Empirically, this version of \widetilde{A} often gives better performance than $D^{-1}A$.

Simplifying GCN (1/3)

- Simplify GCN by removing ReLU non-linearity: (recall that \widetilde{A} is the normalized adjacency in Lecture 4) $H^{(k+1)} = \widetilde{A}H^{(k)}W_k^{\mathrm{T}}$
- The final node embedding matrix is given as

$$\begin{split} &H^{(K)} = \widetilde{A} \ H^{(K-1)} \ W_{K-1}^{\mathrm{T}} \\ &= \widetilde{A} \big(\widetilde{A} H^{(K-2)} W_{K-2}^{\mathrm{T}} \big) W_{K-1}^{\mathrm{T}} = \cdots \\ &= \widetilde{A} \big(\widetilde{A} \big(\cdots \big(\widetilde{A} \ H^{(0)} \ W_{0}^{\mathrm{T}} \big) \cdots \big) W_{K-2}^{\mathrm{T}} \big) W_{K-1}^{\mathrm{T}} \\ &= \widetilde{A}^{K} \ X \ \big(W_{0}^{\mathrm{T}} \cdots W_{K-1}^{\mathrm{T}} \big) \qquad \text{Composition of linear transformation is still linear!} \\ &= \widetilde{A}^{K} \ X \ W^{\mathrm{T}} \quad \text{where } W \equiv W_{K-1} \cdots W_{0} \end{split}$$

Simplifying GCN (2/3)

Removing ReLU significantly simplifies GCN!

$$\mathbf{H}^{(K)} = \widetilde{\mathbf{A}}^K \mathbf{X} \mathbf{W}^{\mathrm{T}}$$

- Notice $\widetilde{A}^K X$ does not contain any learnable parameters; hence, it can be precomputed.
 - Efficiently computable as a sequence of sparse-matrix vector products.
 - Do $X \leftarrow \widetilde{A} X$ for K times.
- Let $\widetilde{\pmb{X}}=\widetilde{\pmb{A}}^K \pmb{X}$ be pre-computed matrix. Simplified GCN's final embedding is $\pmb{H}^{(K)}=\widetilde{\pmb{X}} \pmb{W}^{\mathrm{T}}$
- It's just a linear transformation of pre-computed matrix!
- Back to the node embedding form:

$$h_{v}^{(K)} = \boldsymbol{W}\,\widetilde{\boldsymbol{X}}_{\boldsymbol{v}}$$

• Embedding of node v only depends on its own (pre-processed) feature!

Simplifying GCN (3/3)

Node embedding form:

$$h_v^{(K)} = \boldsymbol{W}\,\widetilde{\boldsymbol{X}}_{\boldsymbol{v}}$$

- Once \widetilde{X} is pre-computed, embeddings of M nodes can be generated in time linear in M:
 - Given M nodes $\{v_1, v_2, ..., v_M\}$, their embeddings are
 - $\bullet \ h_{v_1}^{(K)} = \mathbf{W}\widetilde{\mathbf{X}}_{v_1},$
 - $\bullet \ h_{v_2}^{(K)} = \mathbf{W}\widetilde{\mathbf{X}}_{v_2},$
 - ...
 - $h_{v_M}^{(K)} = \mathbf{W}\widetilde{\mathbf{X}}_{v_M}$.

Simplifying GCN: Summary

In summary, simplified GCN consists of two steps:

- Pre-processing step
 - Pre-compute $\widetilde{X} = \widetilde{A}^K X$. Can be done on CPU.
- Mini-batch training step
 - For each mini-batch, randomly-sample M nodes $\{v_1, v_2, \dots, v_M\}$.
 - Compute their embeddings by

•
$$h_{v_1}^{(K)} = \mathbf{W}\widetilde{\mathbf{X}}_{v_1}, h_{v_2}^{(K)} = \mathbf{W}\widetilde{\mathbf{X}}_{v_2}, ..., h_{v_M}^{(K)} = \mathbf{W}\widetilde{\mathbf{X}}_{v_M}$$

- Use the embeddings to make prediction and compute the loss averaged over the M data points.
- Perform SGD parameter update.

Comparison with Other Methods

- Compared to GraphSAGE neighbor sampling:
 - Simplified GCN generates node embeddings **much more efficiently** (no need to construct the giant computational graph for each node).
- Compared to Cluster-GCN:
 - Mini-batch nodes of simplified GCN can be sampled completely randomly from the entire nodes (no need to sample from multiple groups as Cluster-GCN does)
 - Leads to lower SGD variance during training.

Problems with Simplified GCN

• Its expressive power is **limited** due to the **lack of non-linearity** in generating node embeddings.

Performance of Simplified GCN

 Surprisingly, in semi-supervised node classification benchmark, simplified GCN works comparably to the original GNNs despite being less expressive.

• Why?

Graph Homophily

 Surprisingly, in semi-supervised node classification benchmark, simplified GCN works comparably to the original GNNs despite being less expressive.

• Why?

 Many node classification tasks exhibit homophily structure, i.e., nodes connected by edges tend to share the same target labels.

Examples:

- Paper category classification in paper-citation network
 - Two papers tend to share the same category if one cites another.
- Movie recommendation for users in social networks
 - Two users tend to like the same movie if they are friends in a social network.

When does Simplified GCN Work? (1)

Recall the preprocessing step of the simplified GCN:

Do $X \leftarrow \widetilde{A} X$ for K times.

- Pre-processed features are obtained by iteratively averaging their neighboring node features.
- As a result, nodes connected by edges tend to have similar pre-processed features.

When does Simplified GCN Work? (2)

- Premise: Model uses the pre-processed node features to make prediction.
- Nodes connected by edges tend to get similar pre-processed features.
 - → Nodes connected by edges tend to be predicted the same labels by the model.
- Simplified GCN's prediction aligns well with the graph homophily in many node classification benchmark datasets.

Simplified GCN: Summary

- Simplified GCN removes non-linearity in GCN and reduces to the simple pre-processing of node features.
- Once the pre-processed features are obtained, scalable mini-batch SGD can be directly applied to optimize the parameters.
- Simplified GCN works surprisingly well in node classification benchmark.
 - The feature pre-processing aligns well with graph homophily in real-world prediction tasks.