ът		Page 1	IIT Kanpu	
Name: Roll N		Dont :	CS772A (PML) End-sem Exam	
ROII IN	U. :	Dept.:	Date: November 21, 2022	
Instru	ctio	ons:	Total: 100 marks	
1. 2. 3. 4.	Th pa Wi Av	tal duration: 3 hours . Please write your name, roll number, depais booklet has 10 pages (9 pages + 1 page for rough work). No pages designated for rough work. Additional rough sheets may be parite/mark your answers clearly in the provided space. Please keep roid showing very detailed derivations (you may use the rough showing very detailed derivations)	part of your answers should be on provided if needed. p your answers precise and concise. eet for that). In some cases, you	
Section		ay directly use the standard results/expressions provided on page (True or False: $15 \times 1 = 15$ marks). For each of the following simple.		
1. [2. [3. []	The frequentist approach cannot provide an estimate of the par SGLD sampling based inference usually converges faster than M In Metropolis-Hastings sampling for posterior inference, the cosprobability depends on the dataset size.	rameter uncertainty. Metropolis-Hastings.	
4. []	The predictive variance of a regression model when using the depends on the inputs.	MAP estimate of the weights	
5. []	When using VI to approximate the posterior, the posterior prequire an approximation.	redictive distribution does not	
6. [7. [8. []	A non-probabilistic autoencoder cannot be used to generate new A standard generative adversarial network (GAN) cannot be used If a node c is the common parent of two nodes a and b and the nodes, then conditioned on c , nodes a and b are independent.	sed to compress/encode data.	
9. []	A generative model for classification, in general, has fewer p discriminative model.	parameters to estimate than a	
10. []	A generalized linear model (GLM) is guaranteed to have a closed when doing MLE/MAP estimation.	form solution for its parameters	
11. []	Storing the VI approximation of a posterior distribution require MCMC approximation.	es less space as compared to its	
12. []	When using the Bayes rule to find the expression for the post Bayes rule expression (i.e., the marginal likelihood) can always		
13. []	Active Learning is based on querying the labels of those unlabelabel distribution has the smallest entropy.	_	
14. []	The posterior predictive distribution of Bayesian linear regress Gaussian prior on weights, and rest of the hyperparameters being	•	
15. []	A large value of the concentration parameter α in a Dirichlet Bayesian model for clustering will lead to large inferred number	Process based nonparametric	
Section	2 ((15 short answer questions: $15 \times 3 = 45$ marks)		

1.	How is Bayesian ML different from "conventional" ML? Specifically, state the difference in terms of:	(a)
	How parameter estimation is done? (b) How predictions are made?	()

Nam	ie:					IIT Kanpu CS772A (PML)
Roll	No.:			Dept.:		End-sem Exam Date: November 21, 2022
2.					_	e confidence scores being a_1, c_2 lel has a better calibration?
3.						some text data. Given a topic aning) ϕ_k represents?
4.		ly explain how a shr				modeling helps learn the right
5.			•			doing posterior inference for a Bayesian ML models?
6.		ace approximation of meters. How is the I				ne to the enormous number of neural network?

Nam	ne:				CS772A (PML)
Roll	No.	:	Dept.:		End-sem Exan Date: November 21, 2022
7.		what way is the deep ensemble approache quality of inferred posterior?	ach better tl	nan inference 1	methods such as sampling or VI in terms
8.	serv	, ,	escribe the		acquisition function to decide which ob-
Q	Can	you combine a standard (not Bayes	ian) daan n	oural network	and Bayesian linear regression model to
0.		Bayesian nonlinear regression? If yes	, -		and Dayesian inical regression model (e
10.		efly explain why VI which is based erestimate the variance of the true p			$p(Z X)$] = $\int q(Z) \log \frac{q(Z)}{p(Z X)} dZ$ tends to

Nam	ie:					IIT Kanpui CS772A (PML)
Roll	No.:			Dept.:		End-sem Exam Date: November 21, 2022
11.		,	nould be distinct frelearning models, so	,		s based models over standard earest neighbors.
12.			model $p(x \theta) = \mathcal{N}$ s $p(\theta)$ conjugate to			me a prior distribution $p(\theta) = \frac{1}{2}$? If no, why not?
13.	until the t	you see a total c total number (cal	of k heads (assumed lit n) of tosses is	e i.i.d. tosses). N stochastic. Give	Tote that the num the expression for	Beta $(\pi a, b)$. You toss the coin ber of heads is fixed here but or the likelihood, and also the nd it by inspection/intuition).
14.	Wha	t is the benefit of	using amortized i	nference for infer	ring the local late	nt variables?
15.	Wha	t is the meaning of	of "collapsing" in o	context of Bayesia	an inference? Wha	at is the benefit of collapsing?

			Page 5		
Vame:	:				IIT Kanpur CS772A (PML)
Roll N	Jo.:		Dept.:		End-sem Exam
					Date: November 21, 2022
!	- 3 (4		2 - 0 - 12 - 10 - 4	0)	
	1 3 (4 not-so-short a			•	·
1. S	uppose you are give eatures. Denote it a	en N data-points a $\mathbf{x}_n = [\mathbf{x}_n^{(o)}, \mathbf{x}_n^{(m)}]$	$oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_N \ ext{where} \ oldsymbol{x}_n^{(o)} \ ext{der}$	nere each data notes the obse	a-point $\boldsymbol{x}_n \in \mathbb{R}^D$ has some missing rved features and $\boldsymbol{x}_n^{(m)}$ denotes the
m	nissing features. The	he set of features r	missing could be	e different in d	lifferent data-points. Assume each
					algorithm to compute the MLE of
	ie parameters ($oldsymbol{\mu}, oldsymbol{\Sigma}$ i the EM algorithm			, you should of	nly mention the key steps/equations
Н	lint: Treat the miss	sing features $oldsymbol{x}_n^{(m)}$ of	of each data-poir		
N fo	Note: You may use	the standard result $\frac{1}{N} \sum_{n=1}^{N} \frac{1}{n}$	that the MLE o	of $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ for a $\boldsymbol{\Sigma}^N$	Gaussian when there are no missing $(x, y)^{\top}$
	eatures is given by μ	$oldsymbol{x}_{MLE} \equiv rac{1}{N} \sum_{n=1}^{\infty} oldsymbol{x}_n$	$_{n}$, and $\mathcal{L}_{MLE} = \frac{1}{2}$	$\overline{N} \sum_{n=1} (\boldsymbol{x}_n - \boldsymbol{y}_n)$	$(oldsymbol{\mu}_{MLE})(oldsymbol{x}_n - oldsymbol{\mu}_{MLE})^ op$

Page 6 Name: Ro

IIT Kanpur CS772A (PML) End-sem Exam

Date: November 21, 20	oll No.: Dept.:			
rs $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \sigma_k^2 \mathbf{I}\}_{k=1}^K$. Note that the cal. Consider the posterior distribution $\boldsymbol{x} \in \mathbb{R}^D$.	are assumed to be spher		covari	
ppy of this posterior distribution if to to zero)? Justify your answer. Also,). What will be the entra a very small value (close	e down the expression for $p(\boldsymbol{z} \boldsymbol{x}, \boldsymbol{\Theta})$	Write varian	

rage (Page	e 7
--------	------	-----

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS772A (PML) End-sem Exam

Date: November 21, 2022

3. Consider modeling an $N \times K$ binary matrix **Z** with a prior such that its binary entries are assumed to be generated i.i.d. as follows

$$\pi_k \sim \text{Beta}(\alpha/K, 1)$$
 $k = 1, ..., K$
 $Z_{nk} | \pi_k \sim \text{Bernoulli}(\pi_k)$ $n = 1, ..., N, k = 1, ..., K$

- Derive the expression for the marginal prior $p(\mathbf{Z}|\alpha)$ after integrating out the π_k 's.
- Derive the expression for $p(Z_{nk}|Z_{-nk})$ where Z_{-nk} denotes all the entries of \mathbf{Z} , except Z_{nk} . What will $p(Z_{nk}|Z_{-nk})$ be as $K \to \infty$? What does the result mean intuitively?
- (Bonus: 5 marks) As a function of α , what will be the expected number of ones in each column of \mathbb{Z} , and in all of \mathbb{Z} ?

Name:

IIT Kanpur

Nam	1e:		CS772A (PML)			
Roll	No.:			Dept.:		End-sem Exam Date: November 21, 2022
4.	$p(y_n x)$ $p(\boldsymbol{w})$ infere	$(\boldsymbol{x}_n, \boldsymbol{w}) = \text{Pois}$ = $\mathcal{N}(\boldsymbol{w} 0, \lambda^{-1})$ ence algorithm	$\operatorname{sson}(y_n \exp(\boldsymbol{w}^{\top}\boldsymbol{x})$ with λ known	(n_n)), $n = 1,$ a. The goal is the and SGLD, which	N. Assume a o infer the posterich one would you	responses using a Poisson distribution Gaussian prior on the weights, i.e., erior of \boldsymbol{w} . Given two choices for the ou prefer for this problem and why? date equations.

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS772A (PML) End-sem Exam

Date: November 21, 2022

Some distributions and their properties:

- For $x \in (0,1)$, Beta $(x|a,b) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}$, where $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ and Γ denotes the gamma function s.t. $\Gamma(x) = (x-1)!$ for a positive integer x. Expectation of a Beta r.v.: $\mathbb{E}[x] = \frac{a}{a+b}$.
- For $x \in \{0, 1, 2, \ldots\}$ (non-negative integers), $Poisson(x|\lambda) = \frac{\lambda^x \exp(-\lambda)}{x!}$ where λ is the rate parameter.
- For $x \in \mathbb{R}_+$, Gamma $(x|a,b) = \frac{b^a}{\Gamma(a)}x^{a-1}\exp(-bx)$ (shape and rate parameterization), and Gamma $(x|a,b) = \frac{1}{\Gamma(a)b^a}x^{a-1}\exp(-\frac{x}{b})$ (shape and scale parameterization)
- For $x \in \mathbb{R}$, Univariate Gaussian: $\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$
- For $x \in \mathbb{R}^D$, D-dimensional Gaussian: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\}$. Trace-based representation: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2}\mathrm{trace}[\boldsymbol{\Sigma}^{-1}\mathbf{S}]\}$, $\mathbf{S} = (\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^\top$. Information form: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-D/2}|\boldsymbol{\Lambda}|^{1/2}\exp\left[-\frac{1}{2}\left(\boldsymbol{x}^\top \boldsymbol{\Lambda} \boldsymbol{x} + \boldsymbol{\xi}^\top \boldsymbol{\Lambda}^{-1}\boldsymbol{\xi} - 2\boldsymbol{x}^\top \boldsymbol{\xi}\right)\right]$ where $\boldsymbol{\Lambda} = \boldsymbol{\Sigma}^{-1}$ and $\boldsymbol{\xi} = \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}$
- For $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]$, s.t. $\sum_{k=1}^K \pi_k = 1$, Dirichlet $(\boldsymbol{\pi} | \alpha_1, \dots, \alpha_K) = \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \pi_k^{\alpha_k 1}$ where $B(\alpha_1, \dots, \alpha_K) = \frac{\prod_{k=1}^K \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^K \alpha_k)}$, and $\mathbb{E}[\pi_k] = \frac{\alpha_k}{\sum_{k=1}^K \alpha_k}$
- For $x_k \in \{0, N\}$ and $\sum_{k=1}^K x_k = N$, multinomial $(x_1, \dots, x_K | N, \boldsymbol{\pi}) = \frac{N!}{\boldsymbol{x}_1! \dots, x_K!} \pi_1^{x_1} \dots \pi_K^{x_K}$ where $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]$, s.t. $\sum_{k=1}^K \pi_k = 1$. The multinoulli is the same as multinomial with N = 1.

Some other useful results:

- If $\mathbf{x} = \mathbf{A}\mathbf{z} + \mathbf{b} + \epsilon$, $p(\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$, $p(\boldsymbol{\epsilon}) = \mathcal{N}(\boldsymbol{\epsilon}|\mathbf{0}, \mathbf{L}^{-1})$ then $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{A}\mathbf{z} + \mathbf{b}, \mathbf{L}^{-1})$, $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\top} + \mathbf{L}^{-1})$, and $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mathbf{\Sigma}\left\{\mathbf{A}^{\top}\mathbf{L}(\mathbf{x} \mathbf{b}) + \boldsymbol{\Lambda}\boldsymbol{\mu}\right\}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma} = (\boldsymbol{\Lambda} + \mathbf{A}^{\top}\mathbf{L}\mathbf{A})^{-1}$.
- Marginal and conditional distributions for Gaussians: $p(\boldsymbol{x}_a) = \mathcal{N}(\boldsymbol{x}_a|\boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa}),$ $p(\boldsymbol{x}_a|\boldsymbol{x}_b) = \mathcal{N}(\boldsymbol{x}_a|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$ where $\boldsymbol{\Sigma}_{a|b} = \boldsymbol{\Lambda}_{aa}^{-1} = \boldsymbol{\Sigma}_{aa} - \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} \boldsymbol{\Sigma}_{ba}, \, \boldsymbol{\mu}_{a|b} = \boldsymbol{\Sigma}_{a|b} \left\{ \boldsymbol{\Lambda}_{aa} \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{ab} (\boldsymbol{x}_b - \boldsymbol{\mu}_b) \right\} = \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab} (\boldsymbol{x}_b - \boldsymbol{\mu}_b) = \boldsymbol{\mu}_a + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\boldsymbol{x}_b - \boldsymbol{\mu}_b), \text{ where symbols have their usual meaning. :)}$
- $\frac{\partial}{\partial \mu}[\mu^{\top} \mathbf{A} \mu] = [\mathbf{A} + \mathbf{A}^{\top}] \mu$, $\frac{\partial}{\partial \mathbf{A}} \log |\mathbf{A}| = \mathbf{A}^{-\top}$, $\frac{\partial}{\partial \mathbf{A}} \operatorname{trace}[\mathbf{A} \mathbf{B}] = \mathbf{B}^{\top}$
- For a random variable vector \boldsymbol{x} , $\mathbb{E}[\boldsymbol{x}\boldsymbol{x}^{\top}] = \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{x}]^{\top} + \text{cov}[\boldsymbol{x}]$

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS772A (PML) End-sem Exam

Date: November 21, 2022

FOR ROUGH WORK ONLY