Coursework_MAP501_2021

02/12/2021

- (1a)
- (1b)
- (1c)
- (1d)
- (1e)
- (2a)
- (2b)
- (2c)
- (0-1)
- (2d)(2e)
- (3a)
- (3b)
- (3c)
- (3d)
- (3e)
- (3f)
- (4a)
- (4b)
- (4c)
- (4d)
- (4e)
- (4f)
- (4g)

library("car") library("rio") library("dplyr") library("tidyr") library("magrittr") library("ggplot2") library("pROC") library("nnet") library("caret") library("lme4") library("AmesHousing") library("Lahman") library("tidyverse") library("here") library("janitor") library("readxl") library("lindia") library("glmnet") library("caret") library("lme4")


```
People %>%
  select(c(playerID, birthYear, nameFirst, nameLast, weight, height, bats, throws, debut, birth
Country)) %>%
  rename("bornUSA" = "birthCountry") %>%
  mutate(bornUSA = as.logical(as.factor(bornUSA) =="USA")) -> Peopledata
```

(1b)

```
Batting %>%
  filter(yearID == 1985 | yearID == 2015)  %>%
  select(!c(G, teamID, lgID)) %>%
  mutate(batav = case_when(H == 0 ~ 0, H > 0 ~ H/AB)) -> Battingdata

Battingdata %>% sapply(function(x) sum(is.na(x)))

Fielding %>%
  filter(yearID == 1985 | yearID == 2015) %>%
  select(!c(G, teamID, lgID)) -> Fieldingdata1

Fieldingdata1 %>% sapply(function(x) sum(is.na(x)))

Fieldingdata1 %>%
  select(!c(PB, WP, SB, CS, ZR)) -> Fieldingdata

Fieldingdata
Battingdata
```

p]	layerID	year:		stint		АВ	R		H		X2		X	3B
	0		0	0		0	0		9			0		0
	HR	RI	BI	SB		CS	ВВ		SC		IB		H	BP
	0		0	0		0	0		6)		0		0
	SH	9	SF	GIDP	ba	atav								
	0		0	0		0								
p]	layerID	year:		stint		POS	GS	Inr	10uts		P			Α
	0		0	0		0	0		6			0		0
	E	[OP	PB		WP	SB		CS	5	Z	R		
	0		0	2995	3	3205	2995		2995	5	320	5		
	play	erID y	yearID	stint	POS	GS	InnOuts	PO	Α	Ε	DP			
1	aase	do01	1985	1	Р	0	264	8	10	0	0			
2	abreg	jo01	1985	1	Р	5	72	1	6	1	0			
3	acker	•	1985	1	Р	0	259	10	16	0	1			
4	adams	ri02	1985	1	2B	3	84	9	13	1	1			
5	adams	ri02	1985	1	3B	10	337	2	31	1	3			
6	adams	ri02	1985	1	SS	19	476	24	57	3	9			
7	agost	ju01	1985	1	Р	0	181	10	15	1	0			
8	aguay	lu01	1985	1	2B	3	192	27	25	1	5			
9	aguay	lu01	1985	1	3B	3	126	4	16	0	1			
16	aguay	lu01	1985	1	SS	36	1052	61	117	8	21			
11	L aguil	ri01	1985	1	Р	19	367	8	16	0	1			
12	_		1985	1	Р	36	782	28	32	1	4			
13			1985	1	С	11	271	39	2	0	0			
14		_	1985	1	Р	1	87	2	5	0	0			
15			1985	2	Р	0	88	3	3	0	0			
16			1985	1	1B	3	74	25	1	2	3			
17			1985	1	3B	4	111	2	4	1	0			
18			1985	1	0F	23	507	27	2	0	0			
19			1985	1	SS	31	920		101	2	19			
26			1985	1	2B	1	36	4	2	0	1			
21			1985	1				28		6				
22			1985	1	SS SB	39 20	1100 566	29	107 78	3	10 9			
23			1985	1	33 P	0	219	5	21	2	2			
24				1	P	38	809	8	45	6	8			
	•	•	1985											
25			1985	1	OF D	79 0	1962	173	3	3	1			
26			1985	1	P	0	44	212	1 27	0	0			
27	-		1985	1	C	55	1414	312	37	8	1			
28			1985	1	P	10	314	4	6	1	0			
29	-		1985	1	OF	19	294	21	1	2	0			
36			1985	1		122	3384		370	7	76			
31			1985	1	SS	0	6	1	0	0	0			
32			1985	1	1B	0	7	1	1	0	0			
33			1985	1	С	96	2651	565	51		6			
34			1985	1	2B	6	209	18	30	0	5			
35			1985	1	3B	18	642	14	63	3	6			
36			1985	1	OF	0	1	0	0	0	0			
37			1985	1	SS	2	75	3	10	0	1			
38			1985	1	OF	158	4193	318	8	2	2			
39	9 bair	do01	1985	1	Р	3	147	4	9	0	0			
46	ð bair	do01	1985	2	Р	0	6	0	0	0	0			
41	L baker	do01	1985	1	2B	0	6	0	0	0	0			
42	2 baker	do01	1985	1	SS	6	177	12	12	1	2			
43			1985	1	1 B	53	1258	400	26	3	33			
P _f Q	cessing met	hiu1092%	1985	1	OF	25	699	65	3	2	0			

```
      2474
      0
      1
      8
      0.27011494

      2475
      2
      0
      1
      0.16883117

      2476
      0
      0
      0.00000000

      2477
      0
      0
      0.00000000

      2478
      6
      0
      0.15873016

      2479
      0
      10
      13
      0.24855491

      2480
      0
      0
      0.00000000

      2481
      0
      3
      5
      0.26808511

      2482
      0
      2
      3
      0.28448276

      2483
      8
      2
      6
      0.17428571

      2484
      0
      0
      0.00000000
```

(1c)

```
Salaries %>%
  filter(yearID == 1985 | yearID == 2015) %>%
  inner_join(Fieldingdata, by = c("yearID", "playerID"), keep = FALSE) %>%
  mutate(allstar = playerID %in% AllstarFull$playerID) %>%
  inner_join(Battingdata, by = c("yearID", "playerID"), keep = FALSE) %>%
  inner_join(Peopledata, by = c("playerID" = "playerID"), keep = FALSE) %>%
  mutate(age = yearID - birthYear) %>%
  rename(stint = stint.x) %>%
  drop_na() %>%
  droplevels() -> Playerdata
Playerdata
```

	yearID	teamID	lgID	playerID	salary	stint	POS		InnOuts	PO	Α	Ε
1	1985	ATL	NL	barkele01	870000	1	Р	18	221	2	9	1
2	1985	ATL	NL		550000	1	Р	37	620	13	23	4
3	1985	ATL	NL	benedbr01	545000	1	C	67	1698	314	35	4
4	1985	ATL	NL	campri01	633333	1	Р	2	383	7	13	4
5	1985	ATL	NL	ceronri01	625000	1	C	76	2097	384	48	6
6	1985	ATL	NL	chambch01	800000	1	1B	27	814	299	25	1
7	1985	ATL	NL	dedmoje01	150000	1	Р	0	258	9	27	2
8	1985	ATL	NL	forstte01	483333	1	Р	0	178	2	7	1
9	1985	ATL	NL	garbege01	772000	1	Р	0	292	11	17	0
10	1985	ATL	NL	harpete01	250000	1	OF	124	3299	215	10	5
11	1985	ATL	NL	hornebo01	1500000	1	1B	85	2239	892	58	0
12	1985	ATL	NL	hornebo01	1500000	1	3B	40	957	25	61	11
13	1985	ATL	NL	hubbag101	455000	1	2B	130	3425	339	539	10
14	1985	ATL	NL	mahleri01	407500	1	Р	39	800	21	45	4
15	1985	ATL	NL	mcmurcr01	275000	1	Р	6	135	2	12	2
16	1985	ATL	NL	mumphje01	775000	1	OF	113	3009	248	6	8
17	1985	ATL	NL	murphda05	1625000	1	OF	161	4264	334	8	7
18	1985	ATL	NL	oberkke01	616667	1	2B	12	275	18	37	1
19	1985	ATL	NL	oberkke01	616667	1	3B	101	2766	70	220	11
20	1985	ATL	NL	perezpa01	450000	1	Р	22	286	7	9	1
21	1985	ATL	NL	perryge01	120000	1	1 B	50	1319	541	37	9
22	1985	ATL	NL	perryge01	120000	1	OF	0	6	0	0	0
23	1985	ATL	NL	ramirra01	750000	1	SS	130	3466	214	451	32
24	1985	ATL	NL	suttebr01	1354167	1	Р	0	265	5	13	0
25	1985	ATL	NL	washicl01	800000	1	OF	90	2459	122	3	5
26	1985	BAL	AL	boddimi01	625000	1	Р	32	610	26	46	2
27	1985	BAL	AL	dauerri01	480000	1	1B	0	3	2	0	0
28	1985	BAL	AL	dauerri01	480000	1	2B	63	1504	117	181	3
29	1985	BAL	AL	dauerri01	480000	1	3B	8	250	7	21	1
30	1985	BAL	AL	davisst02	437500	1	Р	28	525	15	20	0
31	1985	BAL	AL	dempsri01	512500	1	С	113	3024	575	49	8
32		BAL	AL	dwyerji01	375000	1	OF	61	1494	131	4	1
33	1985	BAL	AL	flanami01	641667	1	Р	15	258	4	11	0
34	1985	BAL	AL	grosswa01	483333	1	1B	5	132	40	4	0
35		BAL		grosswa01	483333	1	3B	57	1337	41	98	10
36		BAL	AL	lacyle01	725000	1	OF	112	2946	231	9	4
37		BAL	AL	lynnfr01	1090000	1		121	3139	314	6	2
38		BAL		martide01	560000	1	Р	31	540	17	26	1
39		BAL		martiti01	440000	1	Р	0	210	9	10	1
40		BAL		mcgresc01	547143	1	Р	34	612	13	26	1
41		BAL		murraed02	1472819	1	1B			1338		
42		BAL		nolanjo01	341667	1	C	4	97	22	2	0
43		BAL		rayfofl01	128500	1	3B	66	1829		145	6
44		BAL		rayfofl01	128500	1	C	22	575	114	7	1
45		BAL		ripkeca01	800000	1		161	4282		474	
46		BAL		roeniga01	558333	1	OF	53	1541	134	6	1
47		BAL		sheetla01	60000	1	1B	1	24	5	1	0
48		BAL		sheetla01	60000	1	0F	6	141	7		1
49		BAL		shelbjo01	130000	1	2B	0	3	0	1	0
50		BAL		shelbjo01	130000	1	0F	43	1262	148	3	3
51		BAL		stewasa01	581250	1	P	1	389	12	13	0
52		BAL		youngmi01	121000	1	OF	83	2239	190	6	5
53		BOS		armasto01	915000	1	0F	79	1962	173	3	3
	cessing 1986:			barrema02	272500	1		150	4007		479	
74	- 1203	ديو	AL	Jul 1 Cilladz	212300		20	100	-007	درر	713	

1	2/2021, 17:52				
	2330	L	2008-08-06	TRUE	30
	2331	R	2012-04-28	TRUE	23
	2332	R	2006-04-27	TRUE	34
	2333	R	2003-04-17	TRUE	39
	2334	R	2009-07-05	FALSE	31
	2335	R	2012-04-29	TRUE	28
	2336	R	2012-04-29	TRUE	28
	2337	R	2012-04-29	TRUE	28
	2338	R	2010-05-02	FALSE	28
	2339	R	2013-04-21	TRUE	25
	2340	R	2013-04-21	TRUE	25
	2341	R	2013-08-07	TRUE	29
	2342	L	2012-06-08	TRUE	30
	2343	L	2012-06-08	TRUE	30
	2344	L	2012-06-08	TRUE	30
	2345	R	2008-04-29	TRUE	31
	2346	L	2008-04-06	TRUE	31
	2347	R	2009-05-21	TRUE	31
	2348	R	2010-05-17	TRUE	28
	2349	R	2010-06-08	TRUE	27
	2350	R	2014-08-12	TRUE	24
	2351	L	2004-06-27	TRUE	39
	2352	R	2014-04-12	TRUE	27
	2353	R	2006-04-03	TRUE	35
	2354	R	2006-04-03	TRUE	35
	2355	R	2002-09-01	TRUE	36
	2356	R	2009-04-20	TRUE	29
	2357	R	2005-09-01	TRUE	31
	2358	R	2005-09-01	TRUE	31

(1d)

```
Salaries %>%
  group_by(teamID, yearID) %>%
  summarise(Rostercost = sum(salary), meansalary = mean(salary), rostersize = n_distinct(player
ID)) -> TeamSalaries
TeamSalaries
```

```
# A tibble: 918 x 5
# Groups:
           teamID [35]
  teamID yearID Rostercost meansalary rostersize
   <fct>
          <int>
                      <int>
                                 <dbl>
                                            <int>
1 ANA
            1997
                  31135472
                             1004370.
                                               31
2 ANA
            1998
                  41281000
                             1214147.
                                               34
 3 ANA
           1999
                  55388166
                             1384704.
                                               40
4 ANA
           2000
                  51464167
                             1715472.
                                               30
           2001
                 47535167
                                               30
5 ANA
                             1584506.
 6 ANA
            2002
                 61721667
                             2204345.
                                               28
7 ANA
           2003
                 79031667
                             2927099.
                                               27
8 ANA
            2004 100534667
                             3723506.
                                               27
9 ARI
           1998
                  32347000
                              898528.
                                               36
10 ARI
            1999
                   68703999
                              2020706.
                                               34
# ... with 908 more rows
```

(1e)

```
Teams %>%
  filter(yearID >= 1984, yearID <=2016) %>%
  inner_join(TeamSalaries, by = c("yearID", "teamID"), keep = FALSE) %>%
  drop_na() -> Teamdata
Teamdata
```

	-	_		franchID				Ghome	W		DivWin		LgWin
1	1995	NL	ATL	ATL	Е		144	72	90	54	Υ	N	Υ
2	1995	AL	BAL	BAL	E		144	72	71	73	N	N	N
3	1995	AL	BOS	BOS	Е		144	72	86	58	Υ	N	N
4	1995	AL	CAL	ANA	W		145	72	78	67	N	N	N
5	1995	AL	CHA	CHW	С		145	72	68	76	N	N	N
6	1995	NL	CHN	CHC	C		144	72	73	71	N	N	N
7	1995	NL	CIN	CIN	С		144	72	85	59	Υ	N	N
8	1995	AL	CLE	CLE	С		144		100	44	Y	N	Υ
9	1995	NL	COL	COL	W		144	72	77	67	N	Υ	N
10	1995	AL	DET	DET	E		144	72	60	84	N	N	N
11	1995	NL	FLO	FLA	E		143	71	67	76	N	N	N
12	1995	NL	HOU	HOU	C		144	72	76	68	N	N	N
13	1995	AL	KCA	KCR	C		144	72	70	74	N	N	N
14	1995	NL	LAN	LAD	W		144	72	78	66	Y	N	N
15	1995	AL	MIN	MIN	C		144	72	56	88	N	N	N
16	1995	AL	ML4	MIL	C		144	72	65	79	N	N	N
17	1995	NL	MON	WSN	E		144	72	66	78	N	N	N
18	1995	AL	NYA	NYY	E		145	73	79	65	N	Y	N
19	1995	NL	NYN	NYM	E		144	72	69	75	N	N	N
20	1995	AL	OAK	OAK	W		144	72	67	77	N	N	N
21	1995	NL	PHI	PHI	Е		144	72	69	75	N	N	N
22	1995	NL	PIT	PIT	C		144	72	58	86	N	N	N
23	1995	NL	SDN	SDP	W		144	72	70	74	N	N	N
24	1995	AL	SEA	SEA	W		145	73	79	66	Υ	N	N
25	1995	NL	SFN	SFG	W		144	72	67	77	N	N	N
26	1995	NL	SLN	STL	C		143	72	62	81	N	N	N
27	1995	AL	TEX	TEX	W		144	72	74	70	N	N	N
28	1995	AL	TOR	TOR	E _		144	72	56	88	N	N	N
29	1996	NL	ATL	ATL	E		162	81	96	66	Y	N	Y
30	1996	AL	BAL	BAL	E		163	82	88	74	N	Y	N
31	1996	AL	BOS	BOS	E		162	81	85	77	N	N	N
32	1996	AL	CAL	ANA	W		161	81	70	91	N	N	N
33	1996	AL	CHA	CHW	C		162		85	77	N	N	N
34	1996	NL	CHN	CHC	C		162	81	76	86	N	N	N
35	1996	NL	CIN	CIN	C		162	81	81	81	N	N	N
36	1996 1996	AL	CLE	CLE	C		161	80	99	62	Y	N	N
37		NL	COL	COL	W		162	81	83	79	N	N	N
38 39	1996 1996	AL NL	DET FLO	DET FLA	E E		162 162	81 81	80	109 82	N N	N N	N N
40	1996	NL	HOU	HOU	C		162	81	82	80			
41	1996		KCA	KCR	C		161	80	75		N	N	N
42	1996	AL NL	LAN	LAD	W		162	81	90	86 72	N N	N Y	N N
43	1996	AL	MIN	MIN	C		162	82	78	84			
44	1996	AL	ML4	MIL	C		162	81	80	82	N N	N N	N N
45	1996	NL	MON	WSN	E		162	81	88	74	N	N	N
46	1996	AL	NYA	NYY	E		162	80	92	70	Y	N	Y
47	1996	NL		NYM	E				71				
47	1996	AL	NYN	OAK	W		162 162	81 81	71 78	91 84	N	N N	N
48	1996	NL	OAK PHI	PHI	w E		162	81	78 67	95	N N	N N	N N
50	1996	NL	PIT	PIT	C		162	80	73	89	N	N	N
51	1996	NL NL	SDN	SDP	W		162	81	91	71	N Y	N N	N N
52	1996	AL	SEA	SEA	W		161	81	85	71 76	r N	N	N
53	1996	NL	_ SFN	SFG	W		162	82	68	94	N	N	N
	essing gaath			STL	C		162	81	88	74	Y	N	N
J4	±950	INL	JLIN	JIL	C	1	102	OI	50	74	1	IN	IN

12/2021, 17:52				Coursework_	MAP501_2021	
627	BAL	BAL	161863456	5581498.5	29	
628	BOS	BOS	188545761	6501578.0	29	
629	CHA	CHA	112998667	4519946.7	25	
630	CHN	CHN	154067668	5312678.2	29	
631	CIN	CIN	88940059	3066898.6	29	
632	CLE	CLE	74311900	2752292.6	27	
633	COL	COL	112645071	3413487.0	33	
634	DET	DET	194876481	6286338.1	31	
635	HOU	HOU	94893700	3389060.7	28	
636	KCA	KCA	131487125	4534038.8	29	
637	ANA	ANA	137251333	5278897.4	26	
638	LAN	LAN	221288380	6322525.1	35	
639	FLO	MIA	77314202	2761221.5	28	
640	ML4	MIL	68775237	2292507.9	30	
641	MIN	MIN	102583200	4274300.0	24	
642	NYA	NYA	222997792	7689579.0	29	
643	NYN	NYN	133889129	4958856.6	27	
644	OAK	OAK	86806234	2893541.1	30	
645	PHI	PHI	58980000	2033793.1	29	
646	PIT	PIT	103778833	3706386.9	28	
647	SDN	SDN	101424814	3756474.6	27	
648	SEA	SEA	135683339	4845833.5	28	
649	SFN	SFN	172253778	6890151.1	25	
650	SLN	SLN	143053500	4614629.0	31	
651	TBA	TBA	57097310	2039189.6	28	
652	TEX	TEX	176038723	6070300.8	29	
653	TOR	TOR	138701700	4782817.2	29	
654	MON	WAS	141652646	5448178.7	26	

(2a)

```
# Regular Plot

Teamdata %>%
    ggplot(mapping = aes(x = yearID, y = meansalary)) +
    geom_point() +
    labs(x = "Year", y = "Average Salary in ($)") +
    ggtitle("Changes in team salary 1984-2016") +
    theme_classic()
```



```
# Log Plot

Teamdata %>%
    ggplot(mapping = aes(x = yearID, y = log10(meansalary))) +
    geom_point() +
    labs(x = "Year", y = "Average Salary in ($)") +
    ggtitle("Changes in team salary 1984-2016") +
    theme_classic()
```


Two reasons a linear model using log base 10 as opposed to the raw salary figures here could be:

- Using log 10 axis in a linear model allows for a cleaner visualization of the data which is easier to interpret and present to a stakeholder, the exponential values on an axis require are too difficult to quickly read and understand.
- Our log scale also allows us to plot values which are significantly higher/lower on the same chart
 without them warping the visualization. For example in the regular plot there were very low salaries in
 95 and so it is difficult to see the spread of data down there when it's on the same chart as the high
 salaries later on; the log scale also allows for outliar values such as those seen in 2005 not to warp the
 scale to such a significant degree.

(2b)

```
lm(log10(meansalary) ~ yearID, data = Teamdata) -> linmod1
linmod1
summary(linmod1)
linmod1$coefficients
```

```
Call:
lm(formula = log10(meansalary) ~ yearID, data = Teamdata)
Coefficients:
               yearID
(Intercept)
 -51.22242
               0.02871
Call:
lm(formula = log10(meansalary) ~ yearID, data = Teamdata)
Residuals:
             1Q
                Median
                             3Q
                                    Max
-0.66345 -0.11692 0.00644 0.13394 0.55976
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
24.92 <2e-16 ***
            0.028711 0.001152
yearID
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1858 on 652 degrees of freedom
Multiple R-squared: 0.4878,
                            Adjusted R-squared: 0.487
F-statistic: 620.9 on 1 and 652 DF, p-value: < 2.2e-16
(Intercept)
                yearID
-51.22241645
            0.02871141
```

```
log10(meansalary) = -51.22242 + 0.02871 \times Year
```

The multiple R squared here tells us that 48.78% of the variance seen in the log10(meansalary) value can be explained by the current year.

(2c)

```
linmod1 %>%
  gg_diagnose(max.per.page = 1)
```

Histogram of Residuals

Residual vs. Fitted Value

Scale-Location Plot

Residual vs. Leverage

Cook's Distance Plot

- 1. Linearity: to begin with we can look at both scatter plots in question 2a which both would indicate some form of linearity at first a glance. A look at the residual plots in the diagnose function would further support this assumption, I would say that we have a strong case for linearity here.
- 2. Homoscedasticity: for this assumption we have to analyse the variance in residual values for our data. In the above diagnose function, looking at the "Residual vs yearID" I believe this is a reasonable residual plot to assume homoscedasticity.
- 3. Normality: we can look at the QQ plot in the diagnose function, and seeing as the points are almost all hugging the straight line on the plot we can say that the residuals are approximately normally distributed. This is further supported by the histogram plot which we can see clearly indicated normality.
- 4. Independence: as we have time series data we have to watch out for autocorrelation, i.e. are data points easily predicted or known based on the data that's come in the previous X value/s. Looking at the residual plot for yearID, it doesn't seem that there is any autocorrelation occurring, I would say that generally the results seem independent of each other; however it would be interesting to see if we had a larger data set in the future whether or not time based factors such as economic cycle crashes would influence this data.

(2d)

```
confint(linmod1) -> confidenceinterval1

predict(linmod1, interval = "prediction") -> predictionband1

as.tibble(predictionband1) -> predictiontibble

bind_cols(Teamdata, predictiontibble) -> TeamSalary2d

TeamSalary2d %>%
    ggplot(aes(x = yearID, y = log10(meansalary), colour = WSWin)) +
    geom_point() +
    geom_smooth(method = lm, colour = "red") +
    geom_line(aes(y = lwr), color = 2, lty = 2) +
    geom_line(aes(y = upr), color = 2, lty = 2) +
    theme_classic()
```


From this plot we can see that your chance of a world series win is definitely influenced by the amount you pay your teams, however I would also say that it seems post 2000 this is slowly becoming less of the case; perhaps due to the fact that more teams have the money to hand out (just speculating lol I have no clue about baseball).

(2e)

```
TeamSalary2d %>%
filter(log10(meansalary) > upr) %>%
select(yearID, name) %>%
Processing (math: 190%
```

```
name n
1 New York Yankees 9
```

The teams appearing above the top prediction band are always the New York Yankees - a total of 9 times.

(3a)

```
Playerdata %>%
  ggplot(aes(R)) +
  geom_histogram(binwidth = 1) +
  labs(x = "Number of Runs", y = "Frequency", title = "Runs scored") +
  theme_classic() -> RunsScored

RunsScored
```



```
Playerdata %>%
  filter(H > 0) %>%
  ggplot(aes(R)) +
  geom_histogram(binwidth = 1) +
  labs(x = "Number of Runs", y = "Frequency", title = "Runs scored") +
  theme_classic() -> HitRuns
HitRuns
```


The second data set is more reasonable to use when creating our model as it is pointless to include players who haven't had the chance to score a run in a research question looking at runs.

Including the full set of hits = 0 will skew the data visualization making it harder to read.

(3b)

```
Playerdata %>%
  filter(H > 0) %>%
  mutate("yearID" = as.factor(yearID)) -> OnBaseP

glm(formula = R ~ H + as.factor(yearID) + POS + height + age, family = "poisson", data = OnBase
P) -> glm1

glm1

# I'm going to evaluate the data we have checking whether any positions shouldn't be included i
n this model (I'm pretty sure baseball has their own version of a useless role like goalkeeper)

glm1 %>%
  ggplot(aes(x= H, y = R, colour = factor(POS))) +
  geom_point()
```


Have found that POS = P (pitchers) don't get many hits or runs (I think they only get to hit if you rotate through every other player on the team? And I guess because rarely do it as well they usually suck). So I will remove Pitchers from the Hit model.

```
Playerdata %>%
  filter(H > 0) %>%
  mutate("yearID" = as.factor(yearID)) %>%
  filter(POS != "P") -> OnBase

glm(formula = R ~ H + as.factor(yearID) + POS + height + age, family = "poisson", data = OnBas
```

 $e) \rightarrow glm2$

```
Call: glm(formula = R ~ H + as.factor(yearID) + POS + height + age,
    family = "poisson", data = OnBaseP)
Coefficients:
          (Intercept)
                                           H as.factor(yearID)2015
             2.347998
                                    0.013332
                                                            0.024172
                                                                POSC
                POS2B
                                       POS3B
            -0.005030
                                                           -0.061520
                                    0.008146
                POSOF
                                        POSP
                                                               POSSS
             0.069327
                                                           -0.014180
                                   -1.161731
               height
                                          age
            -0.002828
                                    0.005467
Degrees of Freedom: 1739 Total (i.e. Null); 1729 Residual
Null Deviance:
                    44650
Residual Deviance: 6734
                            AIC: 14680
```

(3c)

```
Anova(glm2)
```

```
Analysis of Deviance Table (Type II tests)
Response: R
                 LR Chisq Df Pr(>Chisq)
Н
                  24778.8 1 < 2.2e-16 ***
as.factor(yearID)
                     1.7 1
                              0.197407
POS
                    79.6 5 1.034e-15 ***
                             0.988469
height
                     0.0 1
                              0.008928 **
                     6.8 1
age
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The hypothesis being tested by each p value is whether not the full model is a better method for prediction compared to a reduced model (which would be the NULL hypothesis). Each p value indicates whether or not that variable is a relevant predictor of the number of runs (R) scored.

We can see that the p value for POS (1.034e-15 or 0.00000000000001034) is extremely small, almost 0. So we have strong evidence that including position within our model generates more accuracy than excluding it.

We can also see that the p value for height (0.988469) is the greatest value and is above the typical threshold of 0.05. This indicates that height is not an important predictor of runs scored.

(3d)

```
plot(glm2,which=3)
abline(h=0.8,col=3)
```


Linearity
plot(glm2,which=1)

Poisson distribution
plot(glm2,which=2)

The first assumption we can test is the dispersion assumption (testing if variance = mean), so the variance should rise when our measured values rise; winning teams with skyrocketing salaries may create an environment where the smaller teams can't keep up with the paychecks - widening the spread of data. We can see the red line, in the dispersion chart above is slightly higher than 0.8 meaning the data is overdispersed.

For our linearity assumption it seems that the data follows a parabolic curve rather than a straight line. Meaning that we will have to look for a better model and test that one.

For the distribution assumption we can look at the QQ plot and see that the data follows the line nicely so we won't have to use robust confidence intervals.

Finally there is the independence assumption, in our data set there is not natural order to how the data is collected so we cannot check this assumption. (Will data points be influenced by the data point before it)

(3e)

```
glmer(R ~ H + yearID + POS + age + (1|teamID), data = OnBase, family = "poisson") -> mmod1
mmod1
glmer(R ~ H + yearID + POS + age + (1|teamID), data = OnBase, family = "poisson", nAGQ = 0) -> mmod2
mmod2

# statistical significance, there are some warnings
# glmer(R ~ H + yearID + POS + age + (1|teamID), data = OnBase, family = "poisson") -> mmod3
# confint(mmod3)
# this code takes really long to run so I commented it when knitting
```

```
Generalized linear mixed model fit by maximum likelihood (Laplace
 Approximation) [glmerMod]
 Family: poisson (log)
Formula: R ~ H + yearID + POS + age + (1 | teamID)
   Data: OnBase
     AIC
              BIC logLik deviance df.resid
12602.48 12655.61 -6291.24 12582.48
Random effects:
Groups Name
                    Std.Dev.
teamID (Intercept) 0.1055
Number of obs: 1500, groups: teamID, 33
Fixed Effects:
                                                                        POSC
(Intercept)
                           yearID2015
                                             POS2B
                                                          POS3B
                                                       0.010591
   2.248067
                0.013191
                             0.015829
                                         -0.001358
                                                                   -0.064989
      POSOF
                   POSSS
                                  age
   0.067566
               -0.013711
                             0.002408
optimizer (Nelder Mead) convergence code: 0 (OK); 0 optimizer warnings; 2 lme4 warnings
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: poisson (log)
Formula: R ~ H + yearID + POS + age + (1 | teamID)
   Data: OnBase
                BIC
      ATC
                       logLik deviance df.resid
12602.482 12655.614 -6291.241 12582.482
                                             1490
Random effects:
Groups Name
                    Std.Dev.
teamID (Intercept) 0.1055
Number of obs: 1500, groups: teamID, 33
Fixed Effects:
                                                                        POSC
(Intercept)
                           yearID2015
                                             POS2B
                                                          POS3B
                       Н
   2.248398
                0.013191
                             0.015832
                                         -0.001356
                                                       0.010591
                                                                   -0.064989
      POSOF
                   POSSS
                                  age
   0.067567
                             0.002408
               -0.013710
```

Runs ~ Pois(2.248398 + 0.013191 * H + POS2B * -0.001356 + POS3B * 0.010591 + POSC * -0.064989 + POSOF * 0.067567 + POSSS * -0.013710 + age * 0.002408 + yearID2015 * 0.015832 + u)

```
4-rock ging math 5500%
```

We can see that the standard deviation of the effect of team on number of runs was 0.1055 and average runs are 2.248398.

So this means being in the top club as opposed to an average team a player will score about 0.57 more runs, just based on team as a stand alone. (e(2*0.1055)). Which is a reasonably large difference.

You can check the statistical significance of this effect by using confidence intervals.

(3f)

```
predict(mmod2, newdata=data.frame(age = 30, height = 72, teamID = "BAL", POS = "OF", yearID =
"2015", H = 20), type = "response")
```

```
1
16.76264
```

You would expect a mean of 16.763 runs for such a player.

(4a)

```
Teamdata %>%
    select(!c(teamID, name, park, teamIDBR, teamIDlahman45, teamIDretro, lgID, Rank, franchID, di
vID, WCWin, LgWin, WSWin)) -> DivWinners

DivWinners
set.seed(123)

DivWinners$DivWin %>%
    createDataPartition(p = 0.8, list = FALSE) -> training.samples

DivWinners[training.samples, ] -> train.data
DivWinners[-training.samples, ] -> test.data
```

	yearID	G	Ghome	W	L	DivWin	R	AB	Н	X2B	ХЗВ	HR	ВВ	SO	SB	cs
1	1995		72	90	54			4814			_	168		933		43
2	1995	144	72	71	73	N	704	4837	1267	229	27	173	574	803	92	45
3	1995	144	72	86	58	Υ	791	4997	1399	286	31	175	560	923	99	44
4	1995	145	72	78	67	N	801	5019	1390	252	25	186	564	889	58	39
5	1995	145	72	68	76	N	755	5060	1417	252	37	146	576	767	110	39
6	1995	144	72	73	71	N	693	4963	1315	267	39	158	440	953	105	37
7	1995	144	72	85	59	Υ	747	4903	1326	277	35	161	519	946	190	68
8	1995		72	100	44	Υ	840	5028	1461	279	23	207	542	766	132	53
9	1995		72	77	67	N		4994		_		200			125	59
10	1995		72	60	84	N	654	4865	1204	228		159		987	73	36
11	1995		71	67	76	N		4886				144			131	
12	1995		72	76	68	N		5097				109			176	
13	1995		72	_	74		-	4903	_	_		119			120	
14	1995		72	78 56	66	Y		4942						1023		
15	1995		72	56	88	N		5005				120			105	
16 17	1995 1995		72 72	65 66	79 78	N		5000 4905				128			105 120	_
						N		4905				122	400			
18 19	1995 1995		73 72	79 69	65 75	N N		4947			_	125		851 994		30 39
20	1995		72	67	73 77	N N		4916				169			112	
21	1995		72	69	75	N		4950			30		497	884		25
22	1995		72		86	N		4937				125		972		55
23	1995		72	70	74	N		4950					447		124	
24	1995		73	79	66	Υ		4996				182			110	
25	1995		72	67	77	N		4971						1060		
26	1995		72	62	81	N		4779				107		920		46
27	1995	144	72	74	70	N	691	4913	1304	247	24	138	526	877	90	47
28	1995	144	72	56	88	N	642	5036	1309	275	27	140	492	906	75	16
29	1996	162	81	96	66	Υ	773	5614	1514	264	28	197	530	1032	83	43
30	1996	163	82	88	74	N	949	5689	1557	299	29	257	645	915	76	40
31	1996	162	81	85	77	N	928	5756	1631	308	31	209	642	1020	91	44
32	1996	161	81	70	91	N	762	5686	1571	256	24	192	527	974	53	39
33	1996	162	81	85	77	N	898	5644	1586	284	33	195	701	927	105	41
34	1996		81	76	86	N	772	5531	1388	267				1090		
35	1996				81			5455						1134		
36	1996		80		62			5681						844		
37	1996		81		79			5590						1108		
38	1996				109			5530						1268	_	50
39	1996				82			5498						1122		
40	1996		81		80	N		5508 5542						1057		
41 42	1996 1996		80 91		86 72		_	5538						943 1190		
42	1996		81 82		84			5673					576	958		
44	1996				82			5662						986		
45	1996		81		74			5505						1077		
46	1996		80		70			5628						909		46
47	1996		81		91			5618						1069		48
48	1996		81		84			5630						1114		35
49	1996		81	67	95	N		5499						1092		
50	1996		80	73	89	N		5665						989		
51	1996		81		71			5655						1014		
52	1996		81	85	76			5668						1052		
53	1996		82	68	94	N	752	5533	1400	245	21	153	615	1189	113	53
P596	essing goodh	1:1100	% 81	88	74	Υ	759	5502	1468	281	31	142	495	1089	149	58

649	3365256 103 102	172253778	6890151.1	25
650	3444490 100 99	143053500	4614629.0	31
651	1286163 93 94	57097310	2039189.6	28
652	2710402 106 105	176038723	6070300.8	29
653	3392099 111 110	138701700	4782817.2	29
654	2481938 100 98	141652646	5448178.7	26

(4b)

```
as.vector(train.data$DivWin) -> divwin1
model.matrix(~ . -1, train.data[,-c(6)]) -> divpredict1

glmnet(divpredict1, divwin1, family = "binomial") -> divwinfit

plot(divwinfit, xvar = "dev",ylim = c(0,0))
```


(4c)

```
divwinfit
```

```
# First over 0.5: 21  2 50.02 0.038030
# First over 0.6: 53 26 60.13 0.001937

coef(divwinfit, s = 0.038030) -> divwin4c50
divwin4c50@Dimnames[[1]][1+divwin4c50@i]

coef(divwinfit, s = 0.001937) -> divwin4c60
divwin4c60@Dimnames[[1]][1+divwin4c60@i]
```

```
glmnet(x = divpredict1, y = divwin1, family = "binomial")
   Df %Dev
              Lambda
    0 0.00 0.244500
1
2
    1 6.30 0.222800
3
    1 11.67 0.203000
    1 16.31 0.184900
5
    2 20.45 0.168500
    2 24.13 0.153500
6
7
    2 27.40 0.139900
    2 30.31 0.127500
8
    2 32.92 0.116100
10
   2 35.27 0.105800
11 2 37.38 0.096430
    2 39.29 0.087860
   2 41.02 0.080060
14 2 42.58 0.072940
   2 44.00 0.066460
16 2 45.27 0.060560
   2 46.43 0.055180
18 2 47.47 0.050280
19 2 48.41 0.045810
20 2 49.26 0.041740
21 2 50.02 0.038030
22 2 50.70 0.034650
23 3 51.31 0.031580
24 3 51.91 0.028770
25
   3 52.45 0.026220
26 3 52.92 0.023890
    3 53.34 0.021760
27
28 3 53.71 0.019830
29 3 54.04 0.018070
30 3 54.33 0.016460
31 3 54.58 0.015000
32 4 54.80 0.013670
33
    6 55.04 0.012450
   7 55.29 0.011350
   8 55.74 0.010340
   9 56.15 0.009421
37 9 56.51 0.008584
38 12 56.84 0.007822
39 14 57.18 0.007127
40 14 57.52 0.006494
41 15 57.81 0.005917
42 15 58.10 0.005391
43 16 58.36 0.004912
44 18 58.61 0.004476
45 19 58.84 0.004078
46 19 59.04 0.003716
47 19 59.21 0.003386
48 20 59.36 0.003085
49 21 59.49 0.002811
50 22 59.63 0.002561
Processing math: 100%02334
```

```
52 25 59.93 0.002126
53 26 60.13 0.001937
54 27 60.29 0.001765
55 26 60.44 0.001609
56 27 60.61 0.001466
57 27 60.80 0.001335
58 28 61.04 0.001217
59 28 61.28 0.001109
60 28 61.48 0.001010
61 27 61.62 0.000920
62 29 61.79 0.000839
63 29 61.98 0.000764
64 30 62.21 0.000696
65 31 62.42 0.000634
66 31 62.60 0.000578
67 31 62.76 0.000527
68 31 62.89 0.000480
69 31 63.00 0.000437
70 32 63.10 0.000398
71 32 63.18 0.000363
72 32 63.25 0.000331
73 32 63.30 0.000301
74 32 63.35 0.000275
75 33 63.40 0.000250
76 33 63.43 0.000228
77 34 63.46 0.000208
78 34 63.49 0.000189
79 34 63.51 0.000172
80 34 63.53 0.000157
81 34 63.55 0.000143
82 34 63.56 0.000130
83 34 63.57 0.000119
84 35 63.58 0.000108
85 35 63.59 0.000099
86 35 63.60 0.000090
87 35 63.61 0.000082
88 36 63.62 0.000075
89 36 63.65 0.000068
90 35 63.66 0.000062
91 35 63.67 0.000056
92 35 63.68 0.000051
93 36 63.69 0.000047
94 37 63.73 0.000043
95 37 63.78 0.000039
96 37 63.81 0.000035
97 37 63.81 0.000032
[1] "(Intercept)" "W"
                                                                "L"
                                                 "W"
 [1] "(Intercept)" "yearID"
                                  "Ghome"
                                  "X2B"
                                                                "HR"
 [6] "AB"
                    "H"
                                                 "X3B"
                                  "SB"
                                                 "CS"
[11]
    "BB"
                    "S0"
                                                                "HBP"
                                                 "SV"
                                  "CG"
                                                               "HA"
[16] "SF"
                    "RA"
                    "BBA"
                                  "SOA"
                                                 "DP"
                                                                "FP"
[21] "HRA"
                    "PPF"
[26] "attendance"
                                  "rostersize"
```

We can see from the plot that 50% of the deviance can be explained by 2 parameters(Wins(W) and Losses(L)), and 60% can be explained by 26 parameters ("yearID", "Ghome", "W", "L", "AB", "H", "X2B", "X3B", "HR", "BB", "SO", "SB", "CS", "HBP", "SF", "RA", "CG", "SV", "HA", "HRA", "BBA", "SOA", "DP", "FP", "attendance", "PPF", "roster size".)

(4d)

set.seed(312)
cv.glmnet(divpredict1, divwin1, family = "binomial") -> crossvalidation
plot(crossvalidation)

coef(divwinfit, s = crossvalidation\$lambda.1se) -> divwincoef

divwincoef

setdiff(divwincoef@Dimnames[[1]][1+divwincoef@i], divwin4c50@Dimnames[[1]][1+divwin4c50@i])

```
38 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 3.674316e+00
yearID
G
Ghome
W
             6.536722e-02
L
             -1.417659e-01
R
AB
Н
X2B
X3B
HR
BB
S0
SB
CS
HBP
SF
RA
ER
ERA
CG
SHO
SV
IPouts
HA
HRA
BBA
SOA
Ε
DΡ
FΡ
attendance
             1.444007e-10
BPF
PPF
Rostercost
meansalary
rostersize
[1] "attendance"
```

Looking at the plot of cross validation we can see that around 3~5 variables seems to be where the binomial deviance is at its lowest. So going off this I have cross validated against our previous previous analysis where s = 0.038030 (lamda value showing 2 variables) as this is closer to our amount of values suggested here. Looking at our coefficient results we can see that "attendance" is suggested to be included within the model. So for my conservative model I will include: W, L, attendance.

(4e)

```
DivWinners
train.data
test.data

glm(as.factor(DivWin) ~ W + L + attendance, data = train.data, family = "binomial") -> train.mo
del4

train.model4 %>%
  predict(type = "response") -> predtrain

train.model4 %>%
  predict(newdata = test.data, type = "response") -> predtest

roc(response = train.data$DivWin, predictor = predtrain, plot = TRUE, auc = TRUE) -> roctrain

roc(response = test.data$DivWin, predictor = predtest, plot = TRUE, auc = TRUE, add = TRUE, col = 2)
legend(0,0.4,legend=c("training data","testing data"),fill=1:2)
```



```
2148808 94 95 85556990 3168777.4
                                                  27
583
      2423852 100 101 180944967 5654530.2
                                                  32
585
595
      2080145 107 106
                                                  29
                      61834000 2132206.9
604
      2726048 97 98 172284750 6891390.0
                                                  25
605
      2153585 97 99
                      72256200 2580578.6
                                                  28
      2708549 104 103 112107025 4152112.0
                                                  27
606
      1831080 98 98 111693000 4295884.6
615
                                                  26
      2498596 99 97
                      88892499 3065258.6
                                                  29
616
      2193581 92 94 122208700 4888348.0
                                                  25
618
628
      2955434 108 106 188545761 6501578.0
                                                  29
      3016142 95 95 137251333 5278897.4
637
                                                  26
      1521506 90 91
                      86806234 2893541.1
                                                  30
644
      2351422 99 99 101424814 3756474.6
                                                  27
647
652
      2710402 106 105 176038723 6070300.8
                                                  29
roc.default(response = test.data$DivWin, predictor = predtest, auc = TRUE, plot = TRUE, add
= TRUE, col = 2)
Data: predtest in 104 controls (test.data$DivWin N) < 26 cases (test.data$DivWin Y).
Area under the curve: 0.9442
```

We can see that these ROC curves are very close, almost on top of each other, so this indicates that the model did not overfit the data.

(4f)

```
coords(roctrain, "b", best.method = "youden", transpose = TRUE) -> youdenroctrain

youdenroctrain

ifelse(predict(train.model4, newdata = train.data, type = "response") >= 0.1836071, "Y", "N") ->
    confusiontrain

table(confusiontrain, train.data$DivWin)

ifelse(predict(train.model4, newdata = test.data, type = "response") >= 0.1836071, "Y", "N") ->
    test.data$confusiontest

table(test.data$confusiontest, test.data$DivWin)
```

Looking at the confusion matrix for testing data we can see that 25/26 = 96.15% DivWinners were identified correctly (Y). We can also see that 87/104 = 83.65% of Non-DivWinners were identified correctly. So this is a great model in terms of both false positives and false negatives.

(4g)

```
merge(x = test.data, y = Teamdata[ , c("yearID","W","L","DivWin","attendance","divID")], by = c
("yearID", "W", "L", "DivWin", "attendance"), all.x=TRUE) -> testdivID
testdivID %>%
  filter(divID == "C") -> testdivIDC
testdivID %>%
  filter(divID == "W") -> testdivIDW
testdivID %>%
  filter(divID == "E") -> testdivIDE
table(testdivIDC$confusiontest, testdivIDC$DivWin) -> tableC
sensitivity(tableC) + specificity(tableC) -> divC
table(testdivIDW$confusiontest, testdivIDW$DivWin) -> tableW
sensitivity(tableW) + specificity(tableW) -> divW
table(testdivIDE$confusiontest, testdivIDE$DivWin) -> tableE
sensitivity(tableE) + specificity(tableE) -> divE
data.frame(div = c("C", "W", "E"),
           SS = c(1.794715 , 1.866667, 1.757576)) \rightarrow divdf
divdf %>%
  ggplot(aes(x = div, y = SS)) +
  geom_col()
```

