

WHAT IS CLAIMED IS:

1. A compound represented by Formula I:

I

5

or a pharmaceutically acceptable salt or solvate thereof, wherein:

A and B may be taken separately or together;

when taken separately,

10 A represents halo, C₁₋₆alkyl, OC₁₋₆alkyl or phenyl, said alkyl, phenyl
and the alkyl portion of OC₁₋₆alkyl being optionally substituted with 1-3 halo groups;
and

15 B represents H, halo, C₁₋₆alkyl, -OC₁₋₆alkyl, -SC₁₋₆alkyl, C₂₋₆alkenyl, phenyl or naphthyl, said alkyl, alkenyl, phenyl, naphthyl, and the alkyl
portions of -OC₁₋₆alkyl and -SC₁₋₆alkyl being optionally substituted with 1-3 groups
selected from halo, OH, CH₃O, CF₃ and OCF₃; and

when taken together,

20 A and B together represents (a) C₁₋₄alkylene optionally substituted
with 1-3 halo groups, and 1-2 R^a groups wherein R^a represents C₁₋₃alkyl, OC₁₋₃alkyl,
C₆₋₁₀arC₁₋₆alkylene or phenyl optionally substituted with 1-3 halo groups, or (b) C₂₋₅alkanediyl such that they form a 3-6 membered ring with the carbon atom to which
they are attached, said ring optionally containing 1 double bond or 1-2 heteroatoms
selected from O, S and N, said 3-6 membered ring being optionally substituted with
C₁₋₄alkylene, oxo, ethylenedioxy or propylenedioxy, and being further optionally
substituted with 1-4 groups selected from halo, C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₃acyl, C₁₋₃acyloxy, C₁₋₃alkoxy, C₁₋₆alkylOC(O)-, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₃alkoxyC₁₋₃alkyl,
C₁₋₃alkoxyC₁₋₃alkoxy, phenyl, CN, OH, D, NH₂, NHR^a and N(R^a)₂ wherein R^a is as
previously defined;

each R¹ represents H or is independently selected from the group consisting of: OH, halo, C₁₋₁₀alkyl, C₁₋₆alkoxy and C₆₋₁₀aryl, said C₁₋₁₀alkyl, C₆₋₁₀aryl and the alkyl portion of C₁₋₆alkoxy being optionally substituted with 1-3 halo, OH, OC₁₋₃alkyl, phenyl or naphthyl groups, said phenyl and naphthyl being optionally substituted with 1-3 substituents independently selected from halo, OCH₃, OCF₃, CH₃, CF₃ and phenyl, wherein said phenyl is optionally substituted with 1-3 halo groups,

5 or two R¹ groups taken together represent a fused C₅₋₆alkyl or aryl ring, which may be optionally substituted with 1-2 OH or R^a groups, wherein R^a is as
10 defined above;

R² and R³ are taken together or separately;

when taken together, R² and R³ represent (a) a C₃₋₈ alkanediyl forming a fused 5-10 membered non-aromatic ring optionally interrupted with 1-2 double bonds, and optionally containing 1-2 heteroatoms selected from O, S and N; or (b) a
15 fused 6-10 membered aromatic monocyclic or bicyclic group, said alkanediyl and aromatic monocyclic or bicyclic group being optionally substituted with 1-6 halo atoms, and 1-4 of OH, C₁₋₃alkyl, OC₁₋₃alkyl, haloC₁₋₃alkyl, haloC₁₋₃alkoxy, and phenyl, said phenyl being optionally substituted with 1-4 groups independently selected from halo, C₁₋₃alkyl, OC₁₋₃alkyl, and said C₁₋₃alkyl and the C₁₋₃alkyl
20 portion of OC₁₋₃alkyl being optionally substituted with 1-3 halo groups;

when taken separately,

R² is selected from the group consisting of: (a) C₁₋₁₄alkyl optionally substituted with 1-6 halo groups and 1-3 substituents selected from OH, OC₁₋₃alkyl, and phenyl, said phenyl being optionally substituted with 1-4 groups independently selected from halo, OCH₃, OCF₃, CH₃ and CF₃, and said C₁₋₃alkyl portion of OC₁₋₃alkyl being optionally substituted with 1-3 halo groups; (b) phenyl or pyridyl
25 optionally substituted with 1-3 halo, OH or R^a groups, with R^a as previously defined; (c) C₂₋₁₀ alkenyl, optionally substituted with 1-3 substituents independently selected from halo, OH and OC₁₋₃alkyl, said C₁₋₃alkyl portion of OC₁₋₃alkyl being
30 optionally substituted with 1-3 halo groups; (d) CH₂CO₂H; (e) CH₂CO₂C₁₋₆alkyl; (f) CH₂C(O)NHR^a wherein R^a is as previously defined; (g) NH₂, NHR^a and N(R^a)₂ wherein R^a is as previously defined;

and R³ is selected from the group consisting of: C₁₋₁₄alkyl, C₂₋₁₀alkenyl, SC₁₋₆alkyl, C₆₋₁₀aryl, heterocyclyl and heteroaryl, said alkyl, alkenyl, aryl, heterocyclyl, heteroaryl and the alkyl portion of SC₁₋₆alkyl being optionally substituted with (a) R; (b) 1-6 halo groups and (c) 1-3 groups selected from OH, NH₂, NHC₁₋₄alkyl, N(C₁₋₄alkyl)₂, C₁₋₄alkyl, OC₁₋₄alkyl, CN, C₁₋₄alkylS(O)_x- wherein 5 x is 0, 1 or 2, C₁₋₄alkylSO₂NH-, H₂NSO₂-, C₁₋₄alkylNHSO₂- and (C₁₋₄alkyl)₂NSO₂-, said C₁₋₄alkyl and the C₁₋₄alkyl portions of said groups being optionally substituted with phenyl and 1-3 halo groups, and

R is selected from heterocyclyl, heteroaryl and aryl, said group 10 being optionally substituted with 1-4 groups selected from halo, C₁₋₄alkyl, C₁₋₄alkylS(O)_x-, with x as previously defined, C₁₋₄alkylSO₂NH-, H₂NSO₂-, C₁₋₄alkylNHSO₂-, (C₁₋₄alkyl)₂NSO₂-, CN, OH, OC₁₋₄alkyl, and, said C₁₋₄alkyl and the C₁₋₄alkyl portions of said groups being optionally substituted with 1-5 halo and 1 group selected from OH and OC₁₋₃alkyl.

15

2. The compound of Claim 1 wherein A and B are taken separately and each represents a C₁₋₆alkyl group, optionally substituted with 1-3 halo groups.

20

3. The compound of Claim 1 wherein A and B are taken together and represent C₂₋₅alkanediyl such that a 3-6 membered ring is formed with the carbon atom to which they are attached, said ring optionally containing 1 double bond or 1-2 heteroatoms selected from O, S and N, said 3-6 membered ring being optionally substituted with C₁₋₄alkylene, oxo, ethylenedioxy or propylenedioxy, and being further 25 optionally substituted with 1-4 groups selected from halo, C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₃acyl, C₁₋₃acyloxy, C₁₋₃alkoxy, C₁₋₆alkylOC(O)-, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₃alkoxyC₁₋₃alkyl, C₁₋₃alkoxyC₁₋₃alkoxy, phenyl, CN, OH, D, NH₂, NHR^a and N(R^a)₂ where R^a represents C₁₋₃alkyl, OC₁₋₃alkyl, C₆₋₁₀arC₁₋₆alkylene or phenyl optionally substituted with 1-3 halo groups.

30

4. The compound of Claim 3 wherein A and B are taken together and represent a C₂₋₄ membered alkanediyl group such that a 3 to 5 membered ring is formed with the carbon atom to which they are attached, optionally substituted with 1-

2 groups selected from halo, C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₃alkoxy, C₁₋₃alkoxyC₁₋₃alkyl, C₁₋₃alkoxyC₁₋₃alkoxy and phenyl.

5. The compound of Claim 4 wherein A and B are taken together
 and represent a C₂₋₄ alkanediyl group such that a 3-5 membered ring is formed with
 the carbon atom to which they are attached, said ring being unsubstituted or
 substituted with 1-2 halo groups.

6. The compound of Claim 5 wherein the 1-2 halo groups are
 10 fluoro groups.

7. The compound of Claim 1 wherein two R¹ groups represent H
 and one R¹ is selected from the group consisting of: OH, halo, C₁₋₁₀alkyl, C₁₋₆alkoxy
 and C₆₋₁₀aryl, said C₁₋₁₀alkyl, C₆₋₁₀aryl and the alkyl portion of C₁₋₆alkoxy being
 15 optionally substituted with 1-3 halo, OH, OC₁₋₃alkyl, phenyl or naphthyl groups, said
 phenyl and naphthyl being optionally substituted with 1-3 substituents selected from:
 halo, OCH₃, OCF₃, CH₃, CF₃ and phenyl, wherein said phenyl is optionally
 substituted with 1-3 halo groups.

20 8. The compound of Claim 1 wherein one R¹ group represents H
 and two R¹ groups are selected from the group consisting of: OH, halo, C₁₋₁₀alkyl and
 C₁₋₆alkoxy, said C₁₋₁₀alkyl and the alkyl portion of C₁₋₆alkoxy being optionally
 substituted with 1-3 halo groups.

25 9. The compound of Claim 8 wherein two R¹ groups represent
 halo or methyl.

10. The compound of Claim 1 wherein R² is taken separately from
 R³ and is selected from the group consisting of: (a) C₁₋₁₄alkyl optionally substituted
 30 with 1-6 halo groups and 1-3 substituents selected from OH, OC₁₋₃alkyl, and phenyl,
 said phenyl being optionally substituted with 1-4 groups independently selected from

halo, OCH₃, OCF₃, CH₃ and CF₃, and said C₁₋₃alkyl portion of OC₁₋₃alkyl being optionally substituted with 1-3 halo groups; (b) phenyl or pyridyl optionally substituted with 1-3 halo, OH or R^a groups; (c) C₂₋₁₀ alkenyl, optionally substituted with 1-3 substituents independently selected from halo, OH and OC₁₋₃alkyl, said C₁₋₃alkyl portion of OC₁₋₃alkyl being optionally substituted with 1-3 halo groups; (d) CH₂CO₂H; (e) CH₂CO₂C₁₋₆alkyl; (f) CH₂C(O)NHR^a and (g) NH₂, NHR^a and N(R^a)₂, and

R^a represents C₁₋₃alkyl, OC₁₋₃alkyl, C₆₋₁₀arC₁₋₆alkylene or phenyl optionally substituted with 1-3 halo groups.

10

11. The compound of Claim 1 wherein R² is taken separately from R³ and is C₁₋₁₄alkyl optionally substituted with 1-6 halo groups and 1-3 substituents selected from OH, OC₁₋₃alkyl and phenyl, said phenyl being optionally substituted with 1-4 groups independently selected from halo, OCH₃, OCF₃, CH₃ and CF₃, and the alkyl portion of OC₁₋₃alkyl being optionally substituted with 1-3 halo groups.

12. The compound of Claim 10 wherein R² is taken separately from R³ and represents methyl or cyclopropyl.

20

13. The compound of Claim 1 wherein R³ is taken separately from R² and is selected from the group consisting of: C₁₋₁₄alkyl, C₂₋₁₀alkenyl, SC₁₋₆alkyl, C₆₋₁₀aryl, heterocyclyl and heteroaryl, said alkyl, alkenyl, aryl, heterocyclyl, heteroaryl and the alkyl portion of SC₁₋₆alkyl being optionally substituted with (a) R; (b) 1-6 halo groups and (c) 1-3 groups selected from OH, NH₂, NHC₁₋₄alkyl, N(C₁₋₄alkyl)₂, C₁₋₄alkyl, OC₁₋₄alkyl, CN, C₁₋₄alkylS(O)_x- wherein x is 0, 1 or 2, C₁₋₄alkylSO₂NH-, H₂NSO₂-, C₁₋₄alkylNHSO₂- and (C₁₋₄alkyl)₂NSO₂-, said C₁₋₄alkyl and the C₁₋₄alkyl portions of said groups being optionally substituted with phenyl and 1-3 halo groups, and

30 R is selected from heterocyclyl, heteroaryl and aryl, said group being optionally substituted with 1-4 groups selected from halo, C₁₋₄alkyl, C₁₋₄alkylS(O)_x-, with x as previously defined, C₁₋₄alkylSO₂NH-, H₂NSO₂-, C₁₋₄alkylNHSO₂-, (C₁₋₄alkyl)₂NSO₂-, CN, OH, OC₁₋₄alkyl, and, said C₁₋₄alkyl and the C₁₋₄alkyl portions

of said groups being optionally substituted with 1-5 halo and 1 group selected from OH and OC₁₋₃alkyl.

14. The compound of Claim 13 wherein R³ is taken separately from
 5 R² and is selected from the group consisting of: C₁₋₁₄alkyl, C₆₋₁₀aryl, heterocyclyl and heteroaryl, said groups being optionally substituted with (a) R; (b) 1-6 halo groups and (c) 1-3 groups selected from OH, NH₂, NHC₁₋₄alkyl, N(C₁₋₄alkyl)₂, C₁₋₄alkyl, OC₁₋₄alkyl, CN, C₁₋₄alkylS(O)_x- wherein x is 0, 1 or 2, C₁₋₄alkylSO₂NH-, H₂NSO₂-, C₁₋₄alkylNHSO₂-, (C₁₋₄alkyl)₂NSO₂-, said C₁₋₄alkyl and the C₁₋₄alkyl portions of said
 10 groups being optionally substituted with phenyl and 1-3 halo groups.

15. The compound of Claim 13 wherein R³ is taken separately and is selected from the group consisting of: cyclopropyl optionally substituted with methyl or phenyl; phenyl optionally substituted with halo, OH, OCH₃ or OCF₃; heteroaryl selected from benzimidazolyl, indolyl, benzofuranyl, and dihydrobenzofuranyl, said heteroaryl groups being optionally substituted with: (a) R;
 15 (b) 1-6 halo groups or (c) 1-3 groups selected from OH, NH₂, NHC₁₋₄alkyl, N(C₁₋₄alkyl)₂, C₁₋₄alkyl, OC₁₋₄alkyl, CN, C₁₋₄alkylS(O)_x- wherein x is 0, 1 or 2, C₁₋₄alkylSO₂NH-, H₂NSO₂-, C₁₋₄alkylNHSO₂-, (C₁₋₄alkyl)₂NSO₂-, said C₁₋₄alkyl and the
 20 C₁₋₄alkyl portions of said groups being optionally substituted with phenyl and 1-3 halo groups, and

R is selected from heterocyclyl, heteroaryl and aryl, said group being optionally substituted with 1-4 groups selected from halo, C₁₋₄alkyl, OH, OC₁₋₄alkyl, and, said C₁₋₄alkyl and the C₁₋₄alkyl portions of said groups being optionally substituted with 1-5 halo groups and 1 group selected from OH and OC₁₋₃alkyl.
 25

16. The compound of Claim 1 wherein R² and R³ are taken together and represent: (a) a C₃₋₈ alkanediyl forming a fused 5-10 membered non-aromatic ring optionally interrupted with 1 double bond, and optionally interrupted by
 30 1 heteroatom selected from O, S and N; or (b) a fused 6-10 membered aromatic monocyclic or bicyclic group.

said alkanediyl and aromatic monocyclic or bicyclic group being optionally substituted with 1-3 halo atoms, and 1-2 of OH, C₁₋₃alkyl, OC₁₋₃alkyl,

haloC₁₋₃alkyl, haloC₁₋₃alkoxy and phenyl, said phenyl being optionally substituted with 1-2 groups independently selected from halo, C₁₋₃alkyl, OC₁₋₃alkyl , and said

- 5 C₁₋₃alkyl and the C₁₋₃alkyl portion of OC₁₋₃alkyl being optionally substituted with 1-3 halo groups.

17. The compound of Claim 1 wherein R is selected from heterocyclyl, heteroaryl and aryl, said group being optionally substituted with 1-4 halo groups and 1-2 groups selected from C₁₋₄alkyl, C₁₋₄alkylS(O)_x-, wherein x is 0, 1 or 10 2, C₁₋₄ alkylSO₂NH-, H₂NSO₂-, C₁₋₄alkylNHSO₂-, (C₁₋₄ alkyl)₂NSO₂-, CN, OH and OC₁₋₄alkyl, said C₁₋₄alkyl and the C₁₋₄alkyl portions of said groups being optionally substituted with 1-3 halo groups and 1 group selected from OH and OC₁₋₃alkyl.

- 15 18. The compound of Claim 1 selected from the table set forth below:

Cpd	Structure	Cpd	Structure
1-1		2-1	
1-2		2-2	

1-3		2-3	
1-4		2-4	
1-5		2-5	
1-6		2-6	

1-7		2-7	
1-8		2-8	
1-9		2-9	
1-10		2-10	

1-11		2-11	
1-12		2-12	
1-13		2-13	
1-14		2-14	

1-15		2-15	
1-16		2-16	
2-17		2-51	
2-18		2-52	

2-23		3-5	
2-24		3-6	
2-25		3-7	
2-26		3-8	

2-27		3-9	
2-28		3-10	
2-29		3-11	
2-30		3-12	

2-31		3-13	
2-32		3-14	
2-33		3-15	
2-49		3-16	
2-50		3-17	

3-18		3-28	
3-19		3-29	
3-20		3-41	
3-21		3-42	
3-22		4-1	

3-24		4-2	
3-25		4-3	
3-26		4-4	
3-27		4-5	
3-30		4-6	

3-31		4-7	
3-32		3-23	
3-33		4-8	
3-34		4-9	
3-35		4-10	

3-36		4-11	
3-37		4-12	
3-38		4-13	
3-39		4-14	

3-40		4-15	
2-34		2-35	
2-36		2-37	
2-38		2-39	

2-40		2-41	
2-42		2-43	
2-44		2-45	
2-46		2-47	

2-48

or a pharmaceutically acceptable salt or solvate thereof.

19. The compound of Claim 1 selected from the table below:

Cpd	Structure	Cpd	Structure
2-11		2-13	
2-19		3-1	
2-21		3-2	

2-26		3-8	
2-29		3-10	
2-30		3-11	
3-14		3-12	
3-15		3-13	

2-49		3-16	
2-50		3-17	
3-18		3-28	
3-19		3-29	
3-20		3-41	

3-21		3-42	
3-22		4-1	
3-24		4-2	
3-25		4-3	
3-26		4-4	

3-27		4-5	
3-30		4-6	
3-31		4-7	
3-32		4-8	
3-33		4-9	

3-34		4-10	
3-35		4-11	
3-36		4-12	
3-37		4-13	
3-38		4-14	

3-39		4-15	
3-40			

or a pharmaceutically acceptable salt or solvate thereof.

20. A compound selected from the group consisting of:

or a pharmaceutically acceptable salt or solvate thereof.

5

21. The compound of Claim 20 of the structural formula:

or a pharmaceutically acceptable salt or solvate thereof.

22. The compound of Claim 20 of the structural formula:

or a pharmaceutically acceptable salt or solvate thereof.

23. The compound of Claim 20 of the structural formula:

5

or a pharmaceutically acceptable salt or solvate thereof.

24. The compound of Claim 20 of the structural formula:

10 or a pharmaceutically acceptable salt or solvate thereof.

25. A pharmaceutical composition comprising a compound in accordance with Claim 1 in combination with a pharmaceutically acceptable carrier.

15 26. A method of treating hyperglycemia, diabetes or insulin resistance in a mammalian patient in need of such treatment which comprises

administering to said patient an effective amount of a compound in accordance with Claim 1.

5 27. A method of treating non-insulin dependent diabetes mellitus in a mammalian patient in need of such treatment comprising administering to the patient an anti-diabetic effective amount of a compound in accordance with Claim 1.

10 28. A method of treating obesity in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective to treat obesity.

15 29. A method of treating Syndrome X in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective to treat Syndrome X.

20 30. A method of treating a lipid disorder selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective to treat said lipid disorder.

25 31. A method of treating atherosclerosis in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with Claim 1 in an amount effective to treat atherosclerosis.

30 32. A method of treating a condition selected from the group consisting of: (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component, in a mammalina

patient in need of such treatment, comprising administering to the patient a compound in accordance with Claim 1 in an amount that is effective to treat said condition.

33. A method of delaying the onset of a condition selected from the
5 group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin
resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia,
(8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high
LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14)
pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17)
10 retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other
conditions and disorders where insulin resistance is a component in a mammalina
patient in need of such treatment, comprising administering to the patient a
compound in accordance with Claim 1 in an amount that is effective to delay the onset
of said condition.

15

34. A method of reducing the risk of developing a condition
selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance,
(3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7)
hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL
20 levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular
restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease,
(17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other
conditions and disorders where insulin resistance is a component in a mammalian
patient in need of such treatment, comprising administering to the patient a compound
25 in accordance with Claim 1 in an amount that is effective to reduce the risk of
developing said condition.

35. A method of treating a condition selected from the group
consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4)
30 obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8)
hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high
LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14)
pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17)
retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other
35 conditions and disorders where insulin resistance is a component, in a mammalian

patient in need of such treatment, comprising administering to the patient an effective amount of a compound as defined in Claim 1, and a compound selected from the group consisting of:

- (a) DP-IV inhibitors;
 - 5 (b) insulin sensitizers selected from the group consisting of (i) PPAR agonists and (ii) biguanides;
 - (c) insulin and insulin mimetics;
 - (d) sulfonylureas and other insulin secretagogues;
 - (e) α -glucosidase inhibitors;
 - 10 (f) glucagon receptor antagonists;
 - (g) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists;
 - (h) GIP, GIP mimetics, and GIP receptor agonists;
 - (i) PACAP, PACAP mimetics, and PACAP receptor 3 agonists;
 - (j) cholesterol lowering agents selected from the group consisting of
 - 15 (i) HMG-CoA reductase inhibitors, (ii) sequestrants, (iii) nicotinyl alcohol, nicotinic acid and salts thereof, (iv) PPAR α agonists, (v) PPAR α/γ dual agonists, (vi) inhibitors of cholesterol absorption, (vii) acyl CoA:cholesterol acyltransferase inhibitors, and (viii) anti-oxidants;
 - 20 (k) PPAR δ agonists;
 - (l) antiobesity compounds;
 - (m) an ileal bile acid transporter inhibitor
 - (n) anti-inflammatory agents excluding glucocorticoids; and
 - (o) protein tyrosine phosphatase-1B (PTP-1B) inhibitors,
- 25 said compounds being administered to the patient in an amount that is effective to treat said condition.

36. A method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, 30 hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalina patient in need of such treatment, comprising administering to the patient a therapeutically effective amount of a compound as defined in Claim 1 and an HMG-CoA reductase inhibitor.

37. The method of Claim 36 wherein the HMG-CoA reductase inhibitor is a statin.

5 38. The method of Claim 37 wherein the statin is selected from the group consisting of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, ZD-4522 and rivastatin.

10 39. A method of reducing the risk of developing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, and the sequelae of such conditions comprising administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound as defined in Claim 1 and an HMG-CoA reductase inhibitor.

15 40. A method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient an effective amount of a compound as defined in Claim 1, and an HMG-CoA reductase inhibitor.

20 41. The method of Claim 39 wherein the HMG-CoA reductase inhibitor is a statin.

25 42. A method of Claim 41 wherein the statin is selected from the group consisting of: lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, ZD-4522 and rivastatin.

43. The method of Claim 42 wherein the statin is simvastatin.

30 44. The method of Claim 43 further comprising administering a cholesterol absorption inhibitor.

45. The method of Claim 44 wherein the cholesterol absorption inhibitor is ezetimibe.

35 46. A pharmaceutical composition comprising

- (1) a compound according to Claim 1,
- (2) a compound selected from the group consisting of :
 - (a) DP-IV inhibitors;
 - (b) insulin sensitizers selected from the group consisting of (i) PPAR agonists and (ii) biguanides;
 - (c) insulin and insulin mimetics;
 - (d) sulfonylureas and other insulin secretagogues;
 - (e) α -glucosidase inhibitors;
 - (f) glucagon receptor antagonists;
 - (g) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists;
 - (h) GIP, GIP mimetics, and GIP receptor agonists;
 - (i) PACAP, PACAP mimetics, and PACAP receptor 3 agonists;
 - (j) cholesterol lowering agents selected from the group consisting of (i) HMG-CoA reductase inhibitors, (ii) sequestrants, (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPAR α agonists, (v) PPAR α/γ dual agonists, (vi) inhibitors of cholesterol absorption, (vii) acyl CoA:cholesterol acyltransferase inhibitors, and (viii) anti-oxidants;
 - (k) PPAR δ agonists;
 - (l) antiobesity compounds;
 - (m) an ileal bile acid transporter inhibitor;
 - (n) anti-inflammatory agents other than glucocorticoids; and
 - (o) protein tyrosine phosphatase-1B (PTP-1B) inhibitors;
and
- (3) a pharmaceutically acceptable carrier.