SOLUTIONS TO PRACTICE PROBLEMS

1. First, compute

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 5 & 7 \\ -3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -3 & -3 \\ 1 & 5 & 1 \\ 1 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 9 & 0 \\ 9 & 83 & 28 \\ 0 & 28 & 14 \end{bmatrix}$$
$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 5 & 7 \\ -3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix} = \begin{bmatrix} -3 \\ -65 \\ -28 \end{bmatrix}$$

Next, row reduce the augmented matrix for the normal equations, $A^{T}Ax = A^{T}b$:

$$\begin{bmatrix} 3 & 9 & 0 & -3 \\ 9 & 83 & 28 & -65 \\ 0 & 28 & 14 & -28 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 56 & 28 & -56 \\ 0 & 28 & 14 & -28 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & -3/2 & 2 \\ 0 & 1 & 1/2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general least-squares solution is $x_1 = 2 + \frac{3}{2}x_3$, $x_2 = -1 - \frac{1}{2}x_3$, with x_3 free. For one specific solution, take $x_3 = 0$ (for example), and get

$$\hat{\mathbf{x}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

To find the least-squares error, compute

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = \begin{bmatrix} 1 & -3 & -3 \\ 1 & 5 & 1 \\ 1 & 7 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$$

It turns out that $\hat{\mathbf{b}} = \mathbf{b}$, so $\|\mathbf{b} - \hat{\mathbf{b}}\| = 0$. The least-squares error is zero because \mathbf{b} happens to be in Col A.

2. If **b** is orthogonal to the columns of A, then the projection of **b** onto the column space of A is **0**. In this case, a least-squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ satisfies $A\hat{\mathbf{x}} = \mathbf{0}$.

6.6 APPLICATIONS TO LINEAR MODELS

A common task in science and engineering is to analyze and understand relationships among several quantities that vary. This section describes a variety of situations in which data are used to build or verify a formula that predicts the value of one variable as a function of other variables. In each case, the problem will amount to solving a least-squares problem.

For easy application of the discussion to real problems that you may encounter later in your career, we choose notation that is commonly used in the statistical analysis of scientific and engineering data. Instead of $A\mathbf{x} = \mathbf{b}$, we write $X\boldsymbol{\beta} = \mathbf{y}$ and refer to X as the **design matrix**, $\boldsymbol{\beta}$ as the **parameter vector**, and \mathbf{y} as the **observation vector**.

Least-Squares Lines

The simplest relation between two variables x and y is the linear equation $y = \beta_0 + \beta_1 x$. Experimental data often produce points $(x_1, y_1), \dots, (x_n, y_n)$ that,

This notation is commonly used for least-squares lines instead of y = mx + b.

when graphed, seem to lie close to a line. We want to determine the parameters β_0 and β_1 that make the line as "close" to the points as possible.

Suppose β_0 and β_1 are fixed, and consider the line $y = \beta_0 + \beta_1 x$ in Fig. 1. Corresponding to each data point (x_j, y_j) there is a point $(x_j, \beta_0 + \beta_1 x_j)$ on the line with the same x-coordinate. We call y_j the observed value of y and $\beta_0 + \beta_1 x_j$ the predicted y-value (determined by the line). The difference between an observed y-value and a predicted y-value is called a residual.

FIGURE 1 Fitting a line to experimental data.

There are several ways to measure how "close" the line is to the data. The usual choice (primarily because the mathematical calculations are simple) is to add the squares of the residuals. The **least-squares line** is the line $y = \beta_0 + \beta_1 x$ that minimizes the sum of the squares of the residuals. This line is also called a **line of regression of y** on \mathbf{x} , because any errors in the data are assumed to be only in the y-coordinates. The coefficients β_0 , β_1 of the line are called (linear) **regression coefficients**.²

If the data points were on the line, the parameters β_0 and β_1 would satisfy the equations

Predicted
y-valueObserved
y-value $\beta_0 + \beta_1 x_1$ = y_1 $\beta_0 + \beta_1 x_2$ = y_2 :::: $\beta_0 + \beta_1 x_n$ = y_n

We can write this system as

write this system as
$$X\boldsymbol{\beta} = \mathbf{y}, \quad \text{where } X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
(1)

Of course, if the data points don't lie on a line, then there are no parameters β_0 , β_1 for which the predicted y-values in $X\beta$ equal the observed y-values in y, and $X\beta = y$ has no solution. This is a least-squares problem, Ax = b, with different notation!

The square of the distance between the vectors $X\beta$ and y is precisely the sum of the squares of the residuals. The β that minimizes this sum also minimizes the distance between $X\beta$ and y. Computing the least-squares solution of $X\beta = y$ is equivalent to finding the β that determines the least-squares line in Fig. 1.

 $^{T}\mathbf{b}$:

 $\begin{array}{c} 2 \\ -1 \\ 0 \end{array}$

ι₃ free.

cause b

in space

ionships ations in variable olving a

nter later alysis of r to X as or.

equation y_n) that,

²If the measurement errors are in x instead of y, simply interchange the coordinates of the data (x_j, y_j) before plotting the points and computing the regression line. If both coordinates are subject to possible error, then you might choose the line that minimizes the sum of the squares of the *orthogonal* (perpendicular) distances from the points to the line. See the Practice Problems for Section 7.5.

SOLUTION Use the x-coordinates of the data to build the design matrix X in (1) and the y-coordinates to build the observation vector \mathbf{y} :

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

For the least-squares solution of $X\beta = y$, obtain the normal equations (with the new notation):

$$X^T X \boldsymbol{\beta} = X^T \mathbf{y}$$

That is, compute

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$
$$X^{T}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

The normal equations are

$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

Hence

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 142 & -22 \\ -22 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 24 \\ 30 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$$

Thus the least-squares line has the equation

$$y = \frac{2}{7} + \frac{5}{14}x$$

See Fig. 2.

FIGURE 2 The least-squares line $y = \frac{2}{7} + \frac{5}{14}x$.

A common practice before computing a least-squares line is to compute the average \overline{x} of the original x-values and form a new variable $x^* = x - \overline{x}$. The new x-data are said to be in **mean-deviation form**. In this case, the two columns of the design matrix will be orthogonal. Solution of the normal equations is simplified, just as in Example 4 in Section 6.5. See Exercises 17 and 18.

The General Linear Model

In some applications, it is necessary to fit data points with something other than a straight line. In the examples that follow, the matrix equation is still $X\beta = y$, but the specific form of X changes from one problem to the next. Statisticians usually introduce a residual vector ϵ , defined by $\epsilon = \mathbf{y} - X\boldsymbol{\beta}$, and write

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Any equation of this form is referred to as a **linear model**. Once X and y are determined, the goal is to minimize the length of ϵ , which amounts to finding a least-squares solution of $X\beta = y$. In each case, the least-squares solution $\hat{\beta}$ is a solution of the normal equations

 $X^T X \boldsymbol{\beta} = X^T \mathbf{y}$

Least-Squares Fitting of Other Curves

When data points $(x_1, y_1), \ldots, (x_n, y_n)$ on a scatter plot do not lie close to any line, it may be appropriate to postulate some other functional relationship between x and y.

The next two examples show how to fit data by curves that have the general form (2)

mples show how to
$$y = \beta_0 f_0(x) + \beta_1 f_1(x) + \dots + \beta_k f_k(x)$$
 (2)

where f_0, \ldots, f_k are known functions and β_0, \ldots, β_k are parameters that must be determined. As we will see, equation (2) describes a linear model because it is linear in

For a particular value of x, (2) gives a predicted, or "fitted," value of y. The the unknown parameters. difference between the observed value and the predicted value is the residual. The parameters β_0, \ldots, β_k must be determined so as to minimize the sum of the squares of the residuals.

EXAMPLE 2 Suppose data points $(x_1, y_1), \ldots, (x_n, y_n)$ appear to lie along some sort of parabola instead of a straight line. For instance, if the x-coordinate denotes the production level for a company, and y denotes the average cost per unit of operating at a level of x units per day, then a typical average cost curve looks like a parabola that opens upward (Fig. 3). In ecology, a parabolic curve that opens downward is used to model the net primary production of nutrients in a plant, as a function of the surface area of the foliage (Fig. 4). Suppose we wish to approximate the data by an equation of (3)the form

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 \tag{3}$$

Describe the linear model that produces a "least-squares fit" of the data by equation (3).

SOLUTION Equation (3) describes the ideal relationship. Suppose the actual values of the parameters are β_0 , β_1 , β_2 . Then the coordinates of the first data point (x_1, y_1) satisfy an equation of the form

$$y_1 = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \epsilon_1$$

where ϵ_1 is the residual error between the observed value y_1 and the predicted y-value $\beta_0 + \beta_1 x_1 + \beta_2 x_1^2$. Each data point determines a similar equation:

$$y_{1} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{1}^{2} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{2} + \beta_{2}x_{2}^{2} + \epsilon_{2}$$

$$\vdots \qquad \vdots$$

$$y_{n} = \beta_{0} + \beta_{1}x_{n} + \beta_{2}x_{n}^{2} + \epsilon_{n}$$

FIGURE 3 Average cost curve.

FIGURE 4 Production of nutrients.

verage re said rix will ole 4 in It is a simple matter to write this system of equations in the form $y = X\beta + \epsilon$. To find X, inspect the first few rows of the system and look for the pattern.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$\mathbf{y} = X \qquad \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

EXAMPLE 3 If data points tend to follow a pattern such as in Fig. 5, then an appropriate model might be an equation of the form

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Such data, for instance, could come from a company's total costs, as a function of the level of production. Describe the linear model that gives a least-squares fit of this type to data $(x_1, y_1), \ldots, (x_n, y_n)$.

SOLUTION By an analysis similar to that in Example 2, we obtain

Observation vector Design matrix Parameter vector Residual vector
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}, \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

FIGURE 5Data points along a cubic curve.

Multiple Regression

Suppose an experiment involves two independent variables—say, u and v—and one dependent variable, y. A simple equation for predicting y from u and v has the form

$$y = \beta_0 + \beta_1 u + \beta_2 v \tag{4}$$

A more general prediction equation might have the form

$$y = \beta_0 + \beta_1 u + \beta_2 v + \beta_3 u^2 + \beta_4 u v + \beta_5 v^2$$
 (5)

This equation is used in geology, for instance, to model erosion surfaces, glacial cirques, soil pH, and other quantities. In such cases, the least-squares fit is called a *trend surface*.

Equations (4) and (5) both lead to a linear model because they are linear in the unknown parameters (even though u and v are multiplied). In general, a linear model will arise whenever y is to be predicted by an equation of the form

$$y = \beta_0 f_0(u, v) + \beta_1 f_1(u, v) + \dots + \beta_k f_k(u, v)$$

with f_0, \ldots, f_k any sort of known functions and β_0, \ldots, β_k unknown weights.

EXAMPLE 4 In geography, local models of terrain are constructed from data $(u_1, v_1, y_1), \ldots, (u_n, v_n, y_n)$, where u_j, v_j , and y_j are latitude, longitude, and altitude, respectively. Describe the linear model based on (4) that gives a least-squares fit to such data. The solution is called the *least-squares plane*. See Fig. 6.

then an

n of the his type

ual

FIGURE 6 A least-squares plane.

SOLUTION We expect the data to satisfy the following equations:

$$y_{1} = \beta_{0} + \beta_{1}u_{1} + \beta_{2}v_{1} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}u_{2} + \beta_{2}v_{2} + \epsilon_{2}$$

$$\vdots$$

$$\vdots$$

$$y_{n} = \beta_{0} + \beta_{1}u_{n} + \beta_{2}v_{n} + \epsilon_{n}$$

This system has the matrix form $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where

Observation vector		Desig matri		Parameter vector	Residual vector
$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix},$	$X = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$	u_1 u_2 \vdots u_n	$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$	$oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \ eta_2 \end{bmatrix},$	$oldsymbol{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{bmatrix}$

Example 4 shows that the linear model for multiple regression has the same abstract form as the model for the simple regression in the earlier examples. Linear algebra gives us the power to understand the general principle behind all the linear models. Once X is defined properly, the normal equations for β have the same matrix form, no matter how many variables are involved. Thus, for any linear model where X^TX is invertible, the least-squares $\hat{\beta}$ is given by $(X^TX)^{-1}X^Ty$.

SG The Geometry of a Linear Model 6-19

Further Reading

Ferguson, J., Introduction to Linear Algebra in Geology (New York: Chapman & Hall, 1994).

Krumbein, W. C., and F. A. Graybill, An Introduction to Statistical Models in Geology (New York: McGraw-Hill, 1965).

Legendre, P., and L. Legendre, Numerical Ecology (Amsterdam: Elsevier, 1998).

Unwin, David J., An Introduction to Trend Surface Analysis, Concepts and Techniques in Modern Geography, No. 5 (Norwich, England: Geo Books, 1975).

PRACTICE PROBLEM

When the monthly sales of a product are subject to seasonal fluctuations, a curve that approximates the sales data might have the form

$$y = \beta_0 + \beta_1 x + \beta_2 \sin{(2\pi x/12)}$$

where x is the time in months. The term $\beta_0 + \beta_1 x$ gives the basic sales trend, and the sine term reflects the seasonal changes in sales. Give the design matrix and the parameter vector for the linear model that leads to a least-squares fit of the equation above. Assume the data are $(x_1, y_1), \ldots, (x_n, y_n)$.

ind one form

(4)

(5) cirques,

rurface.
r in the

m data ltitude, to such