Arquitetura e Organização de Computadores Turma C - 2018/02

Projeto MIPS Multiciclo

Objetivo: montar e simular uma versão do processador MIPS multiciclo.

Descrição:

Neste trabalho deve-se instanciar o conjunto de módulos fornecidos na plataforma Moodle que descrevem uma versão elementar do MIPS multiciclo, ilustrado na figura abaixo. Deve-se interligar todos os módulos relativos à parte operativa e à parte de controle.

O diagrama acima não suporta a execução de todas as instruções do MIPS. As instruções fornecidas com os módulos do trabalho 5 são as seguintes:

• LW, SW, ADD, ADDi, SUB, AND, OR, NOR, XOR, SLT, J, BEQ, BNE

Para o projeto da disciplina devem ser acrescentadas as seguintes instruções:

• ORi: ori rs, rt, imediato breg[rt] = breg[rs] | 0x0000iiii;

0xd	rs	rt	imediato
-----	----	----	----------

• ANDi: andi rs, rt, imediato breg[rt] = breg[rs] & 0x0000iiii;

0xc rs rt imediato	0xc	rs	s rt	imediato
--------------------	-----	----	------	----------

• SLL: deslocamento lógico à esquerda

sll rd, rt, shamt breg[rd] = breg[rt] << shamt;</pre>

0x0	rs	rt	rd	shamt	0
-----	----	----	----	-------	---

• SRL: deslocamento lógico à direita

srl rd, rt, shamt breg[rd] = breg[rt] >> shamt;

0x0 rs rt rd sham	t 2
-------------------	-----

• LB/LBU/LH/LHU: ler int8_t/uint8_t/int16_t/uint16_t da memória

lx rt, kte16(rs) breg[rt] = mem[breg[rs]+kte16];

LB	0x20	rs	rt	kte16
LBU	0x24	rs	rt	kte16
LH	0x21	rs	rt	kte16
LHU	0x25	rs	rt	kte16

• SB/SH: armazena int8_t/int16_t

sx rs, kte16(rs) mem[breg[rt]+kte16] = breg[rs];

SB	0x28	rs	rt	kte16
SH	0x29	rs	rt	kte16

O processador deve ser simulado no ModelSim e implementado em FPGA. Neste caso, para verificação de seu funcionamento, deve-se observar o PC, o RI, o RDM e a saída da ULA através dos mostradores de 7 segmentos.

Para entrada e saída de dados deve-se utilizar:

- botão para acionar o relógio
- mostrador de 7 segmentos para exibir conteúdo de RI e SaidaALU

O PC deve ter 32 bits. A memória tem apenas 256 palavras de 32 bits, de forma que apenas 8 bits do PC devem ser utilizados no seu endereçamento. Para executar um programa gerado pelo MARS, devem ser carregados o código e os dados do programa. Os endereços da área de dados devem ser mapeados para a região de memória que começa no endereço 128 no FPGA. Assim, o endereço de dado deve ser gerado concatenando os bits [8 dowto 2] do registrador de saída da ULA com o bit '1' na posição mais significativa: '1' & alu out(8 downto 2).

Um arquivo comprimido com todos os módulos VHDL do MIPS multiciclo é disponibilizado no Moodle. O código MIPS a ser carregado na memória está contido no arquivo **mem.mif**.

Para exibição dos dados nos mostradores, utilizar os acionadores de display de 7 segmentos feito na primeira aula de laboratório.

A verificação do processador consistirá na execução de programas gerados a partir do MARS.

Entrega: até 11 de dezembro. Apresentar um relatório sucinto de implementação, o código VHDL simulando no ModelSim e executando em FPGA.

Obs: lógica para leitura e escrita de *bytes* e *half-words* na memória:

