Dependency Parsing Data structures and algorithms for Computational Linguistics III

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

> University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2018-2019

Dependency grammars

common assumptions, variations

- Single-headed: most dependency formalisms allow a word to have a single head
- Acyclic: most dependency formalism do not allow loops in the graph
- · Connected: all nodes are reachable from the 'root' node
- Projective: no crossing dependencies

The above assumptions (except projectivity) are common in dependency parsing.

Ç. Çöltekin, SfS / University of Tübinger

Introduction Transition-based parsing Classification Graph based parsing Variations/impr

Dependency parsing

common methods for data-driven parsers

There are two main approaches:

Graph-based search for the best tree structure, for example

- find minimum spanning tree (MST)
- adaptations of CF chart parser (e.g., CKY)

(in general, computationally more expensive)

Transition-based similar to shift-reduce parsing (used for programming language parsing)

- Single pass over the sentence, determine an operation (shift or reduce) at each step
- Linear time complexity
- We need an approximate method to determine the operation

Ç. Çöltekin, SfS / University of Tübingen

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition-based parsing

differences from shift-reduce parsing

- The shift-reduce parsers (for programming languages) are deterministic, actions are determined by a table lookup
- · Natural language sentences are ambiguous, hence a dependency parser's actions cannot be made deterministic
- Operations are (somewhat) different: instead of reduce (using phrase-structure rules) we use arc operations connecting two nodes with a label
- Further operations are often defined (e.g., to deal with non-projectivity)

Dependency grammars

a refresher

- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric, binary relations between syntactic units
- Each relation defines one of the words as the head and the other as dependent
- The links (relations) have labels (dependency types)
- Often an artificial root node is used for computational convenience

C. Cöltekin, SfS / University of Tübingen

Dependency parsing

an overview

- Dependency parsing has many similarities with context-free parsing (e.g., the result is a tree)
- · They also have some different properties (e.g., number of edges and depth of trees are limited)
- The process involves discovering the relations between words in a sentence
 - Determine the head of each word
 - Determine the relation type
- Dependency parsing can be
 - grammar-driven (hand crafted rules or constraints)
 - grammar-driven (name traced rules of each
 data-driven (rules/model is learned from a treebank)

Ç. Çöltekin, SfS / University of Tübinger

fuction Transition-based parsing Classification Graph based parsing Variations/improvements

Shift-Reduce parsing

a refresher through an example

 $S \rightarrow P \mid S + P \mid S - P$ $P \rightarrow Num \mid P \times Num \mid P \ / \ Num$

Stack	Input buffer	Action
	$2 + 3 \times 4$	shift
2	$+ 3 \times 4$	reduce (P \rightarrow Num)
P	$+ 3 \times 4$	reduce $(S \rightarrow P)$
S	$+ 3 \times 4$	shift
S +	3×4	shift
S + 3	$\times 4$	reduce (P \rightarrow Num)
S + P	$\times 4$	shift
$S + P \times$	4	shift
$S + P \times 4$		reduce $(P \rightarrow P \times Num)$
S + P		reduce $(S \rightarrow S + P)$
S		accept

Introduction Transition-based parsing Classification Graph based parsing Variations/improve

Transition based parsing

- Use a stack and a buffer of unprocessed words
- Parsing as predicting a sequence of transitions like

Left-Arc: mark current word as the head of the word on top of the stack

Right-Arc: mark current word as a dependent of the word on top of the stack

 $\ensuremath{\mathsf{SHIFT:}}$ push the current word on to the stack

- · Algorithm terminates when all words in the input are processed
- The transitions are not naturally deterministic, best transition is predicted using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)

C. Cöltekin. SfS / University of Tübingen C. Cöltekin. SfS / University of Tübinger WS 18-19 6 / 32

Roor We saw her with binoculars

C-Coltekin, StS / University of Tubingen ws 18-19 9/32

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Transition based parsing: example

SHIFT

Roor We saw her with binoculars

Transition based parsing: example

Shift

Root We saw her with binoculars

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Ç. Çöltekin, SfS / University of Tübingen WS 18–19

obl

with

Left-Arc(root)

binoculars

Transition based parsing: example

Transition based parsing: example

nsubj

saw

buffe

Root

Transition based parsing: example

Ç. Çöltekin, SfS / University of Tübing

Introduction Transition-based parsing Classification Graph based parsing Variations/imp

Making transition decisions

- In classical shift-reduce parsing the actions are deterministic
- · In transition-based dependency parsing, we need to choose among all possible transitions
- The typical method is to train a (discriminative) classifier on features extracted from gold-standard transition sequences
- Almost any machine learning method method is applicable. Common choices include
 - Memory-based learning
 - Support vector machines
 - (Deep) neural networks

Introduction Transition-based parsing Classification Graph based parsing Variations/impr

The training data

- We want features like.
 - lemma[Stack] = duck
 - POS[Stack] = NOUN
- But treebank gives us:

 The treebank has the outcome of the parser, but none of our features.

Transition based parsing: example

Ç. Çöltekin, SfS / University of Tübin

Features for transition-based parsing

- · The features come from the parser configuration, for example
 - The word at the top of the stack, (peeking towards the bottom of the stack is also fine)

Transition-based parsing Classification Graph based parsing Variations/improvements

- The first/second word on the buffer
- Right/left dependents of the word on top of the stack/buffer
- For each possible 'address', we can make use of features like
 - Word form, lemma, POS tag, morphological features, word embeddings
 - Dependency relations (w_i, r, w_j) triples

Introduction Transition-based parsing Classification Graph based parsing Variations/improve

• Note that for some 'address'-'feature' combinations may be missing

The training data

- The features for transition-based parsing have to be from parser configurations
- The data (treebanks) need to be preprocessed for obtaining the training data
- · Construct a transition sequence by parsing the sentences, and using treebank annotations (the set A) as an 'oracle'
- · Decide for

Left-Arc_r if $(\beta[0], r, \sigma[0]) \in A$ Right-Arc_r if $(\sigma[0], r, \beta[0]) \in A$

and all dependents of $\beta \left[0\right]$ are attached

Shift otherwise

• There may be multiple sequences that yield the same dependency tree, the above defines a 'canonical' transition sequence

Non-projective parsing

- · The transition-based parsing we defined so far works only for projective dependencies
- One way to achieve (limited) non-projective parsing is to add special operations:
 - Swap operation that swaps tokens in swap and buffer
 - Left-Arc and Right-Arc transitions to/from non-top words from the stack
- Another method is pseudo-projective parsing:
 - preprocessing to 'projectivize' the trees before training
 - The idea is to attach the dependents to a higher level head that preserves projectivity, while marking it on the new dependency label
 - post-processing for restoring the projectivity after parsing
 - Re-introduce projectivity for the marked dependencies

Transition based parsing: summary/notes

Introduction Transition-based parsing Classification Graph based parsing Variations/imp

- · Linear time, greedy parsing
- Can be extended to non-projective dependencies
- · One can use arbitrary features,
- We need some extra work for generating gold-standard transition sequences from treebanks
- · Early errors propagate, transition-based parsers make more mistakes on long-distance dependencies
- The greedy algorithm can be extended to beam search for better accuracy (still linear time complexity)

Ç. Çöltekin, SfS / University of Tübinş

Introduction Transition-based parsing Classification Graph based parsing Variations/imp

Supervised learning

with a picture

tion Transition-based parsing Classification Graph based parsing Variations/improve

Graph-based parsing: preliminaries

- Enumerate all possible dependency trees
- · Pick the best scoring tree
- Features are based on limited parse history (like CFG parsing)
- Two well-known flavors:
 - Maximum (weight) spanning tree (MST)
 - Chart-parsing based methods

eisner1996; McDonald, Pereira, Ribarov, and Hajič 2005

Pseudo-projective parsing

nsition-based parsing Classification Graph based parsing Varia

Classification

a minimal introduction

- In transition-based parsing, transition decisions come from a classifier
- At each step during parsing, we have features like

- form[Stack] = saw - form[Buff] = her - lemma[Buff] = she lemma[Stack] = see - POS[Buf] = PRON - POS[Stack] = VERB

· We need to make a transition decision such as

- Shift - Right-Arc(obl) Right-Arc(ові) Left-Arc(acl)

· We can use any multi-class classifier, examples in the literature include

- SVMs - Neural networks

Decision Trees

Ç. Çöltekin, SfS / University of Tübin

Transition-based parsing Classification Graph based parsing Varia

A few notes

- In ML, the focus is generalizations outside our training data
- In this class,
 - we will treat classification methods as a black box: no introduction to any particular method
 - we will have a short, hands-on introduction to (linear) classification
- Statistical NLP course (summer semester) includes a more detailed introduction to ML methods

Ç. Çöltekin, SfS / University of Tübinger

ction Transition-based parsing Classification Graph based parsing Variations/impr

MST parsing: preliminaries

Spanning tree of a graph

C. Cöltekin. SfS / University of Tübinge

- · Spanning tree of a connected graph is a sub-graph which is a tree and traverses all the nodes
- For fully-connected graphs, the number of spanning trees are exponential in the size of the graph
- The problem is well studied
- There are efficient algorithms for enumerating and finding the optimum spanning tree on weighted graphs

MST algorithm for dependency parsing

- For directed graphs, there is a polynomial time algorithm that finds the minimum/maximum spanning tree (MST) of a fully connected graph (Chu-Liu-Edmonds algorithm)
- The algorithm starts with a dense/fully connected graph
- Removes edges until the resulting graph is a tree

Ç. Çöltekin, SfS / University of Tübinger

WS 18-19 22 / 32

32 Ç. Çölte

For each node select the incoming arc with highest weight

troduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST example

Detect the cycles, contract them to a 'single node'

Çöltekin, SfS / University of Tübingen

S 18–19 23 /

Evaluation

MST example

Once all cycles are eliminated, the result is the MST

. Çöltekin, SfS / University of Tübingen

WS 18-19 23

ntroduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

CKY for dependency parsing

- The CKY algorithm can be adapted to projective dependency parsing
- For a naive implementation the complexity increases drastically $O(n^6)$
 - $\,-\,$ Any of the words within the span can be the head
 - Inner loop has to consider all possible splits
- For projective parsing, the observation that the left and right dependents of a head are independently generated reduces the complexity to $O(\pi^3)$

(Eisner 1997)

Introduction Transition-base MST example

MST example

her

Pick the best arc into the combined node, break the cycle

Ç. Çöltekin, SfS / University of Tübingen

WS 18–19 23 / 32

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Properties of the MST parser

- $\bullet\,$ The MST parser is non-projective
- $\bullet\,$ There is an algorithm with $O(n^2)$ time complexity $_{\mbox{\tiny (Tarjan 1977)}}$
- The time complexity increases with typed dependencies (but still close to quadratic)
- The weights/parameters are associated with edges (often called 'arc-factored')
- We can learn the arc weights directly from a treebank
- $\bullet\,$ However, it is difficult to incorporate non-local features

Çöltekin, SfS / University of Tübingen

WS 18-19 24 / 32

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Non-local features

- The graph-based dependency parsers use edge-based features
- This limits the use of more global features
- Some extensions for using 'more' global features are possible
- This often leads non-projective parsing to become intractable
- Another option is using beam search, and re-ranking based on different/global features

 Ç. Çöltekin,
 SfS / University of Tübingen
 WS 18-19
 25 / 32
 Ç. Çöltekin,
 SfS / University of Tübingen
 WS 18-19

External features

- For both type of parsers, one can obtain features that are based on unsupervised methods such as
 - clustering
 - dense vector representations (embeddings)
 - alignment/transfer from bilingual corpora/treebanks

Ç. Çöltekin, SfS / University of Tübinger

WS 18–19 27 / 32

Ç. Çöltekin, SfS / University

18-19 28 / 3

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements **Evaluation**

Evaluation metrics for dependency parsers

- Like CF parsing, exact match is often too strict
- Attachment score is the ratio of words whose heads are identified correctly.
 - Labeled attachment score (LAS) requires the dependency type to match
- Unlabeled attachment score (UAS) disregards the dependency type
 Precision/recall/F-measure often used for quantifying success
- on identifying a particular dependency type precision is the ratio of correctly identified dependencies (of a certain
- type)
- recall is the ratio of dependencies in the gold standard that parser predicted correctly

f-measure is the harmonic mean of precision and recall (2xprecisionxrecall)

 $\left(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right)$

Ç. Çöltekin, SfS / University of Tübingen

VS 18–19 29 / 3

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements **Evaluation**

Averaging evaluation scores

- Average scores can be macro-averaged over sentences micro-averaged over words
- Consider a two-sentence test set with

	words	correct
sentence 1	30	10
sentence 2	10	10

- word-based average attachment score: 50% (20/40)
- sentence-based average attachment score: 66% ((1 + 1/3)/2)

Ç. Çöltekin, SfS / University of Tübinger

WS 18–19 31 / 3

References / additional reading material

- Kübler, McDonald, and Nivre (2009) is an accessible book on to dependency parsing
- The new version of Jurafsky and Martin (2009) also includes a draft chapter on dependency grammars and dependency parsing

Errors from different parsers

- Different parsers make different errors
 - Transition based parsers do well on local arcs, worse on long-distance arcs
 - Graph based parsers tend to do better on long-distance dependencies
- Parser combination is a good way to combine the powers of different models. Two common methods
 - Majority voting: train parsers separately, use the weighted combination of their results
 - Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)

Evaluation example

action Transition-based parsing Classification Graph based parsing Variations/impr

Ç. Çöltekin, SfS / University of Tübingen

VS 18–19 30 / 3

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency parsing: summary

- Dependency relations are often semantically easier to interpret
- It is also claimed that dependency parsers are more suitable for parsing free-word-order languages
- Dependency relations are between words, no phrases or other abstract nodes are postulated
- Two general methods: transition based greedy search, non-local features, fast, less accurate
- graph based exact search, local features, slower, accurate (within model limitations)
- Combination of different methods often result in better performance
- Non-projective parsing is more difficult
- Most of the recent parsing research has focused on better machine learning methods (mainly using neural networks)

Ç. Çöltekin, SfS / University of Tübingen WS 18-

References / additional reading material (cont.)

Eisner, Jason (1997). "Bilexical grammars and a cubic-time probabilistic parser". In:

Proceedings of the Fifth International Conference on Parsing Technologies (IWPT).

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguistics, and Speech

Recognition. second. Pearson Prentice Hall. issN: 978-0-13-504196-3.

Kübler, Sandra, Ryan McDonald, and Joakim Nivre (2009). *Dependency Parsing*. Synthesis lectures on human language technologies. Morgan & Claypool. ISBN 0781508205042

9761598295902.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič (2005). "Non-projective Dependency Parsing Using Spanning Tree Algorithms". In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. HLT '05. Vancouver, British Columbia, Canada: Association for Computational Linguistics, pp. 523–530. DOI: 10.3115/1220575.1220641. URL: http://dx.doi.org/10.3115/10.20575.1220641.

Computational Linguistics, pp. 525–530. DOI: 10.3115/122001.122001.0020. http://dx.doi.org/10.3115/1220575.1220641.

McDonald, Ryan and Giorgio Satta (2007). "On the complexity of non-projective data-driven dependency parsing". In: Proceedings of the 10th International Conference on Parsing Technologies. Association for Computational Linguistics, pp. 121–132.

Nivre, Joakim, Johan Hall, and Jens Nilsson (2004). "Memory-based dependency

Nivre, Joakim, Johan Hall, and Jens Nilsson (2004). "Memory-based dependent parsing". In: Proceedings of the 8th Conference on Computational Natural Langua Learning (CoNLL). Ed. by Hwee Tou Ng and Ellen Riloff, pp. 49–56.

References / additional reading material (cont.)

Nivre, Joakim and Ryan McDonald (June 2008). "Integrating Graph-Based and Transition-Based Dependency Parsers". In: Proceedings of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, pp. 950-958. urx.: http://www.aclweb.org/anthology/P/P08/P08-1108.
Sagae, Kenji and Alon Lavie (June 2006). "Parser Combination by Reparsing". In: Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers. New York City, USA: Association for Computational Linguistics, pp. 129-132. urx.: http://www.aclweb.org/anthology/N/N06/N06-2033.
Tarjan, R. E. (1977). "Finding optimum branchings". In: Networks 7.1, pp. 25-35. ISSN: 1097-0037, DOI: 10.1002/net.3230070103.
Yamada, Hiroyasu and Yuji Matsumoto (2003). "Statistical dependency analysis with support vector machines". In: Proceedings of 8th international workshop on parsing technologies (IWPT). Ed. by Gertjan Van Noord, pp. 195-206.

Ç. Çöltekin, SfS / University of Tübingen

WS 18-19 A.3