Foundations of Machine Learning second edition

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar

Foundations of Machine Learning

second edition

Adaptive Computation and Machine Learning

Francis Bach, Editor

A complete list of books published in The Adaptive Computations and Machine Learning series appears at the back of this book.

Foundations of Machine Learning

second edition

Mehryar Mohri

Afshin Rostamizadeh

Ameet Talwalkar

The MIT Press Cambridge, Massachusetts London, England

© 2018 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was set in L^AT_EX by the authors. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Mohri, Mehryar, author. | Rostamizadeh, Afshin, author. | Talwalkar, Ameet, author.

Title: Foundations of machine learning / Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.

Description: Second edition. | Cambridge, MA: The MIT Press, [2018] | Series: Adaptive computation and machine learning series | Includes bibliographical references and index.

Identifiers: LCCN 2018022812 | ISBN 9780262039406 (hardcover : alk. paper)

Subjects: LCSH: Machine learning. | Computer algorithms.

Classification: LCC Q325.5 .M64 2018 | DDC 006.3/1--dc23 LC record available at https://lccn.loc.gov/2018022812

10 9 8 7 6 5 4 3 2 1

Contents

	Prefa	ace	xiii
1	Intro	oduction	1
	1.1	What is machine learning?	1
	1.2	What kind of problems can be tackled using machine learning?	2
	1.3	Some standard learning tasks	3
	1.4	Learning stages	4
	1.5	Learning scenarios	6
	1.6	Generalization	7
2	The	PAC Learning Framework	9
	2.1	The PAC learning model	9
	2.2	Guarantees for finite hypothesis sets — consistent case	15
	2.3	Guarantees for finite hypothesis sets — inconsistent case	19
	2.4	Generalities	21
		2.4.1 Deterministic versus stochastic scenarios	21
		2.4.2 Bayes error and noise	22
	2.5	Chapter notes	23
	2.6	Exercises	23
3	Rad	emacher Complexity and VC-Dimension	29
	3.1	Rademacher complexity	30
	3.2	Growth function	34
	3.3	VC-dimension	36
	3.4	Lower bounds	43
	3.5	Chapter notes	48
	3.6	Exercises	50
4	Mod	el Selection	61
	4.1	Estimation and approximation errors	61
	4.2	Empirical risk minimization (ERM)	62
	4.3	Structural risk minimization (SRM)	64

vi Contents

	4.4	Cross-	-validation	68
	4.5	$n ext{-}Fold$	cross-validation	71
	4.6	Regula	arization-based algorithms	72
	4.7	Conve	x surrogate losses	73
	4.8	Chapte	er notes	77
	4.9	Exercis	ses	78
5	Sup	port Ved	ctor Machines	79
	5.1	Linear	classification	79
	5.2	Separa	able case	80
		5.2.1	Primal optimization problem	81
		5.2.2	Support vectors	83
		5.2.3	Dual optimization problem	83
		5.2.4	Leave-one-out analysis	85
	5.3	Non-se	eparable case	87
		5.3.1	Primal optimization problem	88
		5.3.2	Support vectors	89
		5.3.3	Dual optimization problem	90
	5.4	Margin	n theory	91
	5.5	Chapte	er notes	100
	5.6	Exercis	ses	100
6	Kerr	Kernel Methods		105
	6.1	Introdu	uction	105
	6.2	Positiv	re definite symmetric kernels	108
		6.2.1	Definitions	108
		6.2.2	Reproducing kernel Hilbert space	110
		6.2.3	Properties	112
	6.3	Kernel	-based algorithms	116
		6.3.1	SVMs with PDS kernels	116
		6.3.2	Representer theorem	117
		6.3.3	Learning guarantees	117
	6.4	Negati	ve definite symmetric kernels	119
	6.5	Seque	nce kernels	121
		6.5.1	Weighted transducers	122
		6.5.2	Rational kernels	126
	6.6	Approx	ximate kernel feature maps	130
	6.7	Chapte	er notes	135
	6.8	Exercis	ses	137
7	Воо	sting		145
	7.1	•		145
	7.1	AdaBo		146
	1.2	7.2.1	Bound on the empirical error	149
		7.2.2	Relationship with coordinate descent	150
		7.2.3	Practical use	154
				101

Contents vii

154

	7.3	Theoretical results	154
		7.3.1 VC-dimension-based analysis	154
		7.3.2 L_1 -geometric margin	155
		7.3.3 Margin-based analysis	157
		7.3.4 Margin maximization	161
		7.3.5 Game-theoretic interpretation	162
	7.4	L_1 -regularization	165
	7.5	Discussion	167
	7.6	Chapter notes	168
	7.7	Exercises	170
8	On-L	ine Learning	177
	8.1	Introduction	178
	8.2	Prediction with expert advice	178
		8.2.1 Mistake bounds and Halving algorithm	179
		8.2.2 Weighted majority algorithm	181
		8.2.3 Randomized weighted majority algorithm	183
		8.2.4 Exponential weighted average algorithm	186
	8.3	Linear classification	190
		8.3.1 Perceptron algorithm	190
		8.3.2 Winnow algorithm	198
	8.4	On-line to batch conversion	201
	8.5	Game-theoretic connection	204
	8.6	Chapter notes	205
	8.7	Exercises	206
9	Multi	i-Class Classification	213
	9.1	Multi-class classification problem	213
	9.2	Generalization bounds	215
	9.3	Uncombined multi-class algorithms	221
		9.3.1 Multi-class SVMs	221
		9.3.2 Multi-class boosting algorithms	222
		9.3.3 Decision trees	224
	9.4	Aggregated multi-class algorithms	228
		9.4.1 One-versus-all	229
		9.4.2 One-versus-one	229
		9.4.3 Error-correcting output codes	231
	9.5	Structured prediction algorithms	233
	9.6	Chapter notes	235
	9.7	Exercises	237
10	Rank	king	239
	10.1	The problem of ranking	240
	10.1	Generalization bound	241
	10.2	Ranking with SVMs	243
	. 0.0	Tanana Mario Tino	240

viii Contents

	10.4	RankBoost	244
		10.4.1 Bound on the empirical error	246
		10.4.2 Relationship with coordinate descent	248
		10.4.3 Margin bound for ensemble methods in ranking	250
	10.5	Bipartite ranking	251
		10.5.1 Boosting in bipartite ranking	252
		10.5.2 Area under the ROC curve	255
	10.6	Preference-based setting	257
		10.6.1 Second-stage ranking problem	257
		10.6.2 Deterministic algorithm	259
		10.6.3 Randomized algorithm	260
		10.6.4 Extension to other loss functions	262
		Other ranking criteria	262
	10.8	Chapter notes	263
	10.9	Exercises	264
11	Regr	ression	267
	11.1	The problem of regression	267
	11.2	Generalization bounds	268
		11.2.1 Finite hypothesis sets	268
		11.2.2 Rademacher complexity bounds	269
		11.2.3 Pseudo-dimension bounds	271
	11.3	Regression algorithms	275
		11.3.1 Linear regression	275
		11.3.2 Kernel ridge regression	276
		11.3.3 Support vector regression	281
		11.3.4 Lasso	285
		11.3.5 Group norm regression algorithms	289
		11.3.6 On-line regression algorithms	289
	11.4	Chapter notes	290
	11.5	Exercises	292
12	Maxi	mum Entropy Models	295
	12.1	Density estimation problem	295
		12.1.1 Maximum Likelihood (ML) solution	296
		12.1.2 Maximum a Posteriori (MAP) solution	297
	12.2	Density estimation problem augmented with features	297
	12.3	Maxent principle	298
	12.4	Maxent models	299
	12.5	Dual problem	299
	12.6	Generalization bound	303
	12.7	Coordinate descent algorithm	304
	12.8	Extensions	306
	12.9	L_2 -regularization	308

Contents ix

		Chapter notes Exercises	312 313
13	Cond	litional Maximum Entropy Models	315
	13.1	Learning problem	315
	13.2	Conditional Maxent principle	316
	13.3	Conditional Maxent models	316
		Dual problem	317
	13.5	Properties	319
		13.5.1 Optimization problem	320
		13.5.2 Feature vectors	320
	126	13.5.3 Prediction	321
	13.6	Generalization bounds	321 325
	13.7	Logistic regression 13.7.1 Optimization problem	325
		13.7.2 Logistic model	325
	13.8	L_2 -regularization	326
		Proof of the duality theorem	328
		Chapter notes	330
		Exercises	331
14	Algorithmic Stability		
	14.1	Definitions	333
	14.2		334
	14.3	Stability of kernel-based regularization algorithms	336
		14.3.1 Application to regression algorithms: SVR and KRR	339
		14.3.2 Application to classification algorithms: SVMs	341
		14.3.3 Discussion	342
	14.4	Chapter notes	342
	14.5	Exercises	343
15	Dime	nsionality Reduction	347
	15.1	Principal component analysis	348
	15.2	Kernel principal component analysis (KPCA)	349
	15.3	KPCA and manifold learning	351
		15.3.1 Isomap	351
		15.3.2 Laplacian eigenmaps	352
		15.3.3 Locally linear embedding (LLE)	353
	15.4	Johnson-Lindenstrauss lemma	354
	15.5	Chapter notes	356
	15.6	Exercises	356
16	Learr	ning Automata and Languages	359
	16.1	Introduction	359

x Contents

	16.2	Finite automata	360
	16.3	Efficient exact learning	361
		16.3.1 Passive learning	362
		16.3.2 Learning with queries	363
		16.3.3 Learning automata with queries	364
	16.4	Identification in the limit	369
		16.4.1 Learning reversible automata	370
	16.5	Chapter notes	375
	16.6	Exercises	376
17	Rein	forcement Learning	379
	17.1	Learning scenario	379
	17.2	Markov decision process model	380
	17.3	Policy	381
		17.3.1 Definition	381
		17.3.2 Policy value	382
		17.3.3 Optimal policies	382
		17.3.4 Policy evaluation	385
	17.4	Planning algorithms	387
		17.4.1 Value iteration	387
		17.4.2 Policy iteration	390
		17.4.3 Linear programming	392
	17.5	Learning algorithms	393
		17.5.1 Stochastic approximation	394
		17.5.2 TD(0) algorithm	397
		17.5.3 Q-learning algorithm	398
		17.5.4 SARSA	402
		17.5.5 $TD(\lambda)$ algorithm	402
		17.5.6 Large state space	403
	17.6	Chapter notes	405
Con	clusio	n	407
A	Line	ar Algebra Review	409
	A.1	Vectors and norms	409
		A.1.1 Norms	409
		A.1.2 Dual norms	410
		A.1.3 Relationship between norms	411
	A.2	Matrices	411
		A.2.1 Matrix norms	411
		A.2.2 Singular value decomposition	412
		A.2.3 Symmetric positive semidefinite (SPSD) matrices	412

Contents xi

В	Conv	ex Optimization	415
	B.1	Differentiation and unconstrained optimization	415
	B.2	Convexity	415
	B.3	Constrained optimization	419
	B.4	Fenchel duality	422
		B.4.1 Subgradients	422
		B.4.2 Core	423
		B.4.3 Conjugate functions	423
	B.5	Chapter notes	426
	B.6	Exercises	427
С	Prob	ability Review	429
	C.1	Probability	429
	C.2	Random variables	429
	C.3	Conditional probability and independence	431
	C.4	Expectation and Markov's inequality	431
	C.5	Variance and Chebyshev's inequality	432
	C.6	Moment-generating functions	434
	C.7	Exercises	435
D	Cond	centration Inequalities	437
	D.1	Hoeffding's inequality	437
	D.2	Sanov's theorem	438
	D.3	Multiplicative Chernoff bounds	439
	D.4	Binomial distribution tails: Upper bounds	440
	D.5	Binomial distribution tails: Lower bound	440
	D.6	Azuma's inequality	441
	D.7	McDiarmid's inequality	442
	D.8	Normal distribution tails: Lower bound	443
	D.9	Khintchine-Kahane inequality	443
	D.10		444
	D.11	Chapter notes	445
	D.12	Exercises	445
E	Notic	ons of Information Theory	449
	E.1	Entropy	449
	E.2	Relative entropy	450
	E.3	Mutual information	453
	E.4	Bregman divergences	453
	E.5	Chapter notes	456
	E.6	Exercises	457

xii	Contents
F Notation	459
Bibliography	461
Index	475

Preface

This book is a general introduction to machine learning that can serve as a reference book for researchers and a textbook for students. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms.

We have aimed to present the most novel theoretical tools and concepts while giving concise proofs, even for relatively advanced results. In general, whenever possible, we have chosen to favor succinctness. Nevertheless, we discuss some crucial complex topics arising in machine learning and highlight several open research questions. Certain topics often merged with others or treated with insufficient attention are discussed separately here and with more emphasis: for example, a different chapter is reserved for multi-class classification, ranking, and regression.

Although we cover a very wide variety of important topics in machine learning, we have chosen to omit a few important ones, including graphical models and neural networks, both for the sake of brevity and because of the current lack of solid theoretical guarantees for some methods.

The book is intended for students and researchers in machine learning, statistics and other related areas. It can be used as a textbook for both graduate and advanced undergraduate classes in machine learning or as a reference text for a research seminar. The first three or four chapters of the book lay the theoretical foundation for the subsequent material. Other chapters are mostly self-contained, with the exception of chapter 6 which introduces some concepts that are extensively used in later ones and chapter 13, which is closely related to chapter 12. Each chapter concludes with a series of exercises, with full solutions presented separately.

The reader is assumed to be familiar with basic concepts in linear algebra, probability, and analysis of algorithms. However, to further help, we have included an extensive appendix presenting a concise review of linear algebra, an introduction to convex optimization, a brief probability review, a collection of concentration

xiv Preface

inequalities useful to the analyses and discussions in this book, and a short introduction to information theory.

Our goal has been to give a unified presentation of multiple topics and areas, as opposed to a more specialized presentation adopted by some books which favor a particular viewpoint, such as for example a Bayesian view, or a particular topic, such as for example kernel methods. The theoretical foundation of this book and its deliberate emphasis on proofs and analysis make it also very distinct from many other presentations.

In this second edition, we have updated the entire book. The changes include a different writing style in most chapters, new figures and illustrations, many simplifications, some additions to existing chapters, in particular chapter 6 and chapter 17, and several new chapters. We have added a full chapter on model selection (chapter 4), which is an important topic that was only briefly discussed in the previous edition. We have also added a new chapter on Maximum Entropy models (chapter 12) and a new chapter on Conditional Maximum Entropy models (chapter 13) which are both essential topics in machine learning. We have also significantly changed the appendix. In particular, we have added a full section on Fenchel duality to appendix B on convex optimization, made a number of changes and additions to appendix D dealing with concentration inequalities, added appendix E on information theory, and updated most of the material. Additionally, we have included a number of new exercises and their solutions for existing and new chapters.

Most of the material presented here takes its origins in a machine learning graduate course (Foundations of Machine Learning) taught by the first author at the Courant Institute of Mathematical Sciences in New York University over the last fourteen years. This book has considerably benefited from the comments and suggestions from students in these classes, along with those of many friends, colleagues and researchers to whom we are deeply indebted.

We are particularly grateful to Corinna Cortes and Yishay Mansour who made a number of key suggestions for the design and organization of the material presented in the first edition, with detailed comments that we have fully taken into account and that have greatly improved the presentation. We are also grateful to Yishay Mansour for using a preliminary version of the first edition of the book for teaching, and for reporting his feedback to us.

We also thank for discussions, suggested improvement, and contributions of many kinds the following colleagues and friends from academic and corporate research laboratories: Jacob Abernethy, Cyril Allauzen, Kareem Amin, Stephen Boyd, Aldo Corbisiero, Giulia DeSalvo, Claudio Gentile, Spencer Greenberg, Lisa Hellerstein, Sanjiv Kumar, Vitaly Kuznetsov, Ryan McDonald, Andrès Muñoz Medina, Tyler Neylon, Peter Norvig, Fernando Pereira, Maria Pershina, Borja de Balle Pigem,

Preface xv

Ashish Rastogi, Michael Riley, Dmitry Storcheus, Ananda Theertha Suresh, Umar Syed, Csaba Szepesvári, Toshiyuki Tanaka, Eugene Weinstein, Jason Weston, Scott Yang, and Ningshan Zhang.

Finally, we thank the MIT Press publication team for their help and support in the development of this text.

1 Introduction

This chapter presents a preliminary introduction to machine learning, including an overview of some key learning tasks and applications, basic definitions and terminology, and the discussion of some general scenarios.

1.1 What is machine learning?

Machine learning can be broadly defined as computational methods using experience to improve performance or to make accurate predictions. Here, *experience* refers to the past information available to the learner, which typically takes the form of electronic data collected and made available for analysis. This data could be in the form of digitized human-labeled training sets, or other types of information obtained via interaction with the environment. In all cases, its quality and size are crucial to the success of the predictions made by the learner.

An example of a learning problem is how to use a finite sample of randomly selected documents, each labeled with a topic, to accurately predict the topic of unseen documents. Clearly, the larger is the sample, the easier is the task. But the difficulty of the task also depends on the quality of the labels assigned to the documents in the sample, since the labels may not be all correct, and on the number of possible topics.

Machine learning consists of designing efficient and accurate prediction *algorithms*. As in other areas of computer science, some critical measures of the quality of these algorithms are their time and space complexity. But, in machine learning, we will need additionally a notion of *sample complexity* to evaluate the sample size required for the algorithm to learn a family of concepts. More generally, theoretical learning guarantees for an algorithm depend on the complexity of the concept classes considered and the size of the training sample.

Since the success of a learning algorithm depends on the data used, machine learning is inherently related to data analysis and statistics. More generally, learning