# Annotating protein functions via fusing multiple biological modalities

Wenjian Ma, Xiangpeng Bi, Huasen Jiang, Zhiqiang Wei & Shugang Zhang

Nature Communications Biology

doi.org/10.1038/s42003-024-07411-y

#### Gökçe Uludoğan

PhD Candidate

LifeLU Reading Group | 2 January 2025

### **Motivation**

- Multimodal Integration for Protein Function Prediction
  - methods rely only on sequences or structures, ignoring:
    - Protein-protein interactions
    - Domain knowledge
    - Subcellular localization and other biological contexts.
- Component-based approach
  - Modality-specific feature subspaces & unavailability of unified and high-quality protein representations.
  - Difficulty in fusing diverse biological modalities effectively
- Supervised methods vs Self-supervised learning

## MIF2GO: Multimodal Information Fusion for GO Annotation

**Objective:** To fuse diverse biological modalities using a unified framework

**Modalities:** domain, localization, pathway, interaction, homology, sequence



### MIF2GO: Multimodal Information Fusion for GO Annotation

**Siamese Contrastive Autoencoder (SCA):** Encodes domain, localization, pathway, interaction, and homology relationships.

**LM-HAW:** Self-supervised language model for sequence features with hierarchical adaptive weighting

**Modal Hypernode Pooling (MHP):** Final fusion of all modalities into unified protein representations.





### **MIF2GO: Siamese Contrastive Autoencoder (SCA)**

**PPI:** STRING **PHN:** BLAST



Siamese Contrastive autoencoder (SCA)

### **MIF2GO: Siamese Contrastive Autoencoder (SCA)**

#### Encoder

$$H_{PPI} = \text{GCN}_{PPI}^{enc} \left( \widetilde{\mathcal{X}}, \mathcal{A}_{PPI} \right)$$
 $H_{PHN} = \text{GCN}_{PHN}^{enc} \left( \widetilde{\mathcal{X}}, \mathcal{A}_{PHN} \right)$ 

$$GCN^{enc}(\widetilde{\mathcal{X}},\mathcal{A}) = \widetilde{\mathcal{A}}ReLU\Big(\widetilde{\mathcal{A}}\widetilde{\mathcal{X}}W_0\Big)W_1$$

#### Decoder

$$Z_{PPI} = ext{GCN}_{PPI}^{dec} ig( H_{PPI}, \mathcal{A}_{PPI} ig) \ Z_{PHN} = ext{GCN}_{PHN}^{dec} ig( H_{PHN}, \mathcal{A}_{PHN} ig)$$

Loss

$$\mathcal{L}_{SCA} = \left(\mathcal{L}_{SCE}^{PPI} + \mathcal{L}_{SCE}^{PHN}\right) + \lambda \left(\mathcal{L}_{MCE}^{PPI} + \mathcal{L}_{MCE}^{PHN}\right)$$

#### Scaled Cosine Error

$$\mathcal{L}_{\text{SCE}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_i \in \widetilde{\mathcal{V}}} \left( 1 - \frac{x_i^T z_i}{\|x_i\| \cdot \|z_i\|} \right)^{\gamma}, \gamma \ge 1$$

$$reconstruction$$

#### Multiview Contrastive Error

$$\begin{split} \mathcal{L}_{MCE}^{PPI} &= \mathcal{L}_{Inter-view}^{PPI} + \mathcal{L}_{Intra-view}^{PPI} \\ &= -\frac{1}{N} \sum_{i=0}^{N} \left( \sum_{j=0}^{N} \mathcal{A}_{ij}^{PHN} \times \log \left( \frac{\exp \left( \boldsymbol{h}_{i}^{PPI} \cdot \boldsymbol{h}_{j}^{PHN^{T}} / \tau \right)}{\sum_{k=0}^{N} \exp \left( \boldsymbol{h}_{i}^{PPI} \cdot \boldsymbol{h}_{k}^{PHN^{T}} / \tau \right)} \right) \\ &+ \sum_{j=0}^{N} \mathcal{A}_{ij}^{PPI} \times \log \left( \frac{\exp \left( \boldsymbol{h}_{i}^{PPI} \cdot \boldsymbol{h}_{j}^{PPI^{T}} / \tau \right)}{\sum_{k=0}^{N} \exp \left( \boldsymbol{h}_{i}^{PPI} \cdot \boldsymbol{h}_{k}^{PPI^{T}} / \tau \right)} \right) \right) \end{split}$$

aligning interaction and homology modalities

### MIF2GO: LM-HAW

$$\begin{split} \textit{emb}_{\textit{seq}}^{\textit{p}} = & \text{MLP}_{\textit{seq}} \Bigg( W_{33} \frac{1}{L} \sum_{i=0}^{L} \mathcal{X}_{\textit{seq}_{i}}^{33} + W_{28} \frac{1}{L} \sum_{i=0}^{L} \mathcal{X}_{\textit{seq}_{i}}^{28} \\ & + W_{23} \frac{1}{L} \sum_{i=0}^{L} \mathcal{X}_{\textit{seq}_{i}}^{23} \Bigg) \end{split}$$



### MIF2GO: Modal hypernode pooling (MHP)



$$F_{(0)}^p = \left[ ext{MLP}_{PPI} \left( emb_{PPI}^p 
ight) \parallel ext{MLP}_{PHN} \left( emb_{PHN}^p 
ight)$$
 $\parallel ext{MLP}_{seq} \left( emb_{seq}^p 
ight) 
ight]$ 

$$F_{(1)}^p = \text{MultiHead}\left(F_{(0)}^p, F_{(0)}^p, F_{(0)}^p\right) + \text{Norm}\left(F_{(0)}^p\right)$$

$$F_{(2)}^p = \text{FFN}\left(F_{(1)}^p\right) + \text{Norm}\left(F_{(1)}^p\right)$$

# MIF2GO outperforms existing methods for human protein function prediction

|                    | MF            |               |               | BP            |               |               | cc            |               |               |
|--------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Methods            | M- AUPR       | m- AUPR       | F- max        | M- AUPR       | m- AUPR       | F- max        | M- AUPR       | m- AUPR       | F- max        |
| DeepNF             | 0.489 (N/A)   | 0.636 (N/A)   | 0.618 (N/A)   | 0.261 (N/A)   | 0.425 (N/A)   | 0.447 (N/A)   | 0.454 (N/A)   | 0.626 (N/A)   | 0.597 (N/A)   |
| Mashup             | 0.540 (N/A)   | 0.704 (N/A)   | 0.681 (N/A)   | 0.302 (N/A)   | 0.490 (N/A)   | 0.496 (N/A)   | 0.497 (N/A)   | 0.696 (N/A)   | 0.655 (N/A)   |
| DeepFRI (GCN)      | 0.520 (0.003) | 0.737 (0.002) | 0.708 (0.002) | 0.187 (0.001) | 0.378 (0.005) | 0.415 (0.003) | 0.334 (0.004) | 0.635 (0.007) | 0.615 (0.004) |
| DeepFRI (GAT)      | 0.532 (0.002) | 0.742 (0.001) | 0.709 (0.002) | 0.192 (0.002) | 0.384 (0.003) | 0.417 (0.003) | 0.348 (0.004) | 0.647 (0.003) | 0.622 (0.003) |
| DeepFRI (SAGEConv) | 0.517 (0.002) | 0.740 (0.003) | 0.707 (0.003) | 0.188 (0.003) | 0.386 (0.005) | 0.417 (0.003) | 0.345 (0.002) | 0.649 (0.006) | 0.623 (0.004) |
| DeepFRI (ChebConv) | 0.517 (0.006) | 0.737 (0.004) | 0.705 (0.003) | 0.189 (0.003) | 0.384 (0.002) | 0.417 (0.003) | 0.340 (0.006) | 0.643 (0.003) | 0.621 (0.003) |
| GAT-GO (GCN)       | 0.530 (0.001) | 0.749 (0.002) | 0.703 (0.001) | 0.200 (0.003) | 0.393 (0.007) | 0.420 (0.003) | 0.357 (0.005) | 0.667 (0.002) | 0.626 (0.001) |
| GAT-GO (GAT)       | 0.531 (0.001) | 0.751 (0.002) | 0.706 (0.001) | 0.204 (0.002) | 0.401 (0.002) | 0.425 (0.001) | 0.365 (0.003) | 0.670 (0.001) | 0.628 (0.002) |
| GAT-GO (SAGEConv)  | 0.521 (0.004) | 0.727 (0.004) | 0.699 (0.006) | 0.202 (0.002) | 0.381 (0.003) | 0.417 (0.002) | 0.352 (0.002) | 0.647 (0.002) | 0.619 (0.002) |
| GAT-GO (ChebConv)  | 0.517 (0.009) | 0.729 (0.006) | 0.699 (0.010) | 0.198 (0.004) | 0.376 (0.005) | 0.411 (0.003) | 0.349 (0.003) | 0.637 (0.007) | 0.616 (0.003) |
| HEAL (GCN)         | 0.491 (0.004) | 0.730 (0.003) | 0.698 (0.002) | 0.169 (0.007) | 0.363 (0.008) | 0.395 (0.007) | 0.300 (0.005) | 0.635 (0.009) | 0.605 (0.005) |
| HEAL (GAT)         | 0.486 (0.007) | 0.726 (0.003) | 0.696 (0.004) | 0.166 (0.007) | 0.364 (0.003) | 0.394 (0.002) | 0.305 (0.006) | 0.633 (0.004) | 0.607 (0.002) |
| HEAL (SAGEConv)    | 0.494 (0.006) | 0.729 (0.006) | 0.701 (0.004) | 0.166 (0.003) | 0.365 (0.006) | 0.394 (0.005) | 0.311 (0.006) | 0.632 (0.006) | 0.606 (0.005) |
| HEAL (ChebConv)    | 0.496 (0.004) | 0.735 (0.005) | 0.700 (0.003) | 0.170 (0.003) | 0.369 (0.004) | 0.398 (0.003) | 0.313 (0.002) | 0.637 (0.005) | 0.609 (0.004) |
| MultiPredGO        | 0.444 (0.008) | 0.603 (0.019) | 0.591 (0.015) | 0.242 (0.006) | 0.454 (0.006) | 0.465 (0.003) | 0.374 (0.011) | 0.698 (0.001) | 0.657 (0.002) |
| DeepFusionGO       | 0.546 (0.003) | 0.587 (0.013) | 0.656 (0.005) | 0.294 (0.006) | 0.437 (0.011) | 0.481 (0.005) | 0.427 (0.006) | 0.608 (0.011) | 0.643 (0.009) |
| Graph2GO           | 0.560 (N/A)   | 0.761 (N/A)   | 0.718 (N/A)   | 0.284 (N/A)   | 0.488 (N/A)   | 0.490 (N/A)   | 0.494 (N/A)   | 0.751 (N/A)   | 0.686 (N/A)   |
| DeepGraphGO        | 0.591 (0.001) | 0.786 (0.002) | 0.751 (0.001) | 0.277 (0.002) | 0.470 (0.003) | 0.489 (0.001) | 0.453 (0.002) | 0.678 (0.006) | 0.649 (0.003) |
| CFAGO              | 0.353 (0.005) | 0.721 (0.002) | 0.669 (0.004) | 0.192 (0.002) | 0.484 (0.003) | 0.488 (0.002) | 0.365 (0.001) | 0.771 (0.001) | 0.705 (0.001) |
| MIF2GO (Ours)      | 0.624 (0.002) | 0.804 (0.002) | 0.758 (0.001) | 0.317 (0.002) | 0.523 (0.001) | 0.514 (0.001) | 0.528 (0.002) | 0.757 (0.003) | 0.697 (0.002) |

# MIF2GO demonstrates good generalization and robustness across other species

**Supplementary Table 1.** Performance comparison of MIF2GO and other baseline methods on the fruit fly dataset.

**Supplementary Table 2.** Performance comparison of MIF2GO and other baseline methods on the mouse dataset.

|              |            | MF         |         |            | BP         |         |            | CC         |         |                        |            | $\mathbf{MF}$ |         |            | BP         |         |            | $\mathbf{CC}$ |         |
|--------------|------------|------------|---------|------------|------------|---------|------------|------------|---------|------------------------|------------|---------------|---------|------------|------------|---------|------------|---------------|---------|
| Methods      | M-<br>AUPR | m-<br>AUPR | F-max   | M-<br>AUPR | m-<br>AUPR | F-max   | M-<br>AUPR | m-<br>AUPR | F-max   | Methods                | M-<br>AUPR | m-<br>AUPR    | F-max   | M-<br>AUPR | m-<br>AUPR | F-max   | M-<br>AUPR | m-<br>AUPR    | F-max   |
| D EDI        | 0.611      | 0.768      | 0.731   | 0.250      | 0.420      | 0.440   | 0.413      | 0.697      | 0.667   | DeepFRI                | 0.533      | 0.733         | 0.709   | 0.174      | 0.362      | 0.399   | 0.307      | 0.621         | 0.602   |
| DeepFRI      | (0.005)    | (0.004)    | (0.006) | (0.003)    | (0.009)    | (0.005) | (0.006)    | (0.007)    | (0.003) |                        | (0.004)    | (0.003)       | (0.002) | (0.001)    | (0.004)    | (0.002) | (0.005)    | (0.007)       | (0.004) |
| GAT-GO       | 0.589      | 0.750      | 0.697   | 0.253      | 0.441      | 0.449   | 0.397      | 0.710      | 0.664   | GAT-GO                 | 0.541      | 0.743         | 0.696   | 0.177      | 0.385      | 0.408   | 0.333      | 0.650         | 0.609   |
| GAI-GO       | (0.009)    | (0.006)    | (0.006) | (0.008)    | (0.003)    | (0.004) | (0.006)    | (0.017)    | (0.011) |                        | (0.007)    | (0.002)       | (0.002) | (0.002)    | (0.003)    | (0.002) | (0.006)    | (0.002)       | (0.003) |
| M1t100       | 0.444      | 0.603      | 0.591   | 0.242      | 0.454      | 0.465   | 0.374      | 0.698      | 0.657   | MultipredGO            | 0.311      | 0.606         | 0.594   | 0.128      | 0.400      | 0.430   | 0.274      | 0.621         | 0.603   |
| MultipredGO  | (0.009)    | (0.019)    | (0.015) | (0.006)    | (0.007)    | (0.004) | (0.011)    | (0.001)    | (0.002) | (0.007)                | (0.009)    | (0.008)       | (0.001) | (0.002)    | (0.003)    | (0.002) | (0.003)    | (0.002)       |         |
| HEAL         | 0.597      | 0.761      | 0.715   | 0.223      | 0.400      | 0.419   | 0.381      | 0.684      | 0.645   | 0.645<br>(0.008)       | 0.501      | 0.726         | 0.694   | 0.148      | 0.341      | 0.376   | 0.289      | 0.618         | 0.591   |
| REAL         |            | (0.006)    | (0.009) | (0.005)    | (0.010)    | (0.008) | (0.006)    | (0.007)    | (0.008) |                        | (0.006)    | (0.003)       | (0.002) | (0.006)    | (0.006)    | (0.004) | (0.008)    | (0.005)       | (0.003) |
| DeepFusionGO | 0.546      | 0.587      | 0.656   | 0.294      | 0.437      | 0.481   | 0.427      | 0.608      | 0.643   | DeepFusionGO           | 0.560      | 0.695         | 0.703   | 0.241      | 0.398      | 0.455   | 0.390      | 0.599         | 0.616   |
| DeeprusionGO | (0.003)    | (0.013)    | (0.005) | (0.006)    | (0.011)    | (0.005) | (0.006)    | (0.011)    | (0.009) | DeeprusionGO           | (0.003)    | (0.005)       | (0.002) | (0.001)    | (0.002)    | (0.002) | (0.003)    | (0.003)       | (0.002) |
| CFAGO        | 0.375      | 0.634      | 0.590   | 0.226      | 0.502      | 0.496   | 0.391      | 0.777      | 0.708   | 0.708<br>(0.001) CFAGO | 0.369      | 0.711         | 0.659   | 0.177      | 0.480      | 0.485   | 0.356      | 0.771         | 0.703   |
| Crago        | (0.001)    | (0.001)    | (0.001) | (0.002)    | (0.001)    | (0.001) | (0.003)    | (0.001)    | (0.001) |                        | (0.001)    | (0.001)       | (0.001) | (0.001)    | (0.001)    | (0.001) | (0.001)    | (0.001)       | (0.001) |
| MIESCO       | 0.682      | 0.808      | 0.764   | 0.378      | 0.546      | 0.536   | 0.576      | 0.794      | 0.735   | MESCO                  | 0.627      | 0.794         | 0.748   | 0.284      | 0.489      | 0.493   | 0.509      | 0.745         | 0.685   |
| MIF2GO       | (0.006)    | (0.003)    | (0.003) | (0.004)    | (0.002)    | (0.003) | (0.005)    | (0.004)    | (0.003) | MIF2GO                 | (0.002)    | (0.001)       | (0.001) | (0.002)    | (0.001)    | (0.002) | (0.005)    | (0.004)       | (0.001) |

# MIF2GO outperforms other baseline methods on the GO terms with few protein samples

Table 2 | Comparison of different methods on the GO terms with few protein samples using F-max metric

|              | Min-30 <sup>a</sup> |               |               | 31-100        |               |               | 101-300       |               |               |  |
|--------------|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
| Methods      | MF                  | BP            | СС            | MF            | BP            | СС            | MF            | BP            | CC            |  |
| DeepFRI      | 0.497 (0.004)       | 0.172 (0.007) | 0.307 (0.004) | 0.513 (0.003) | 0.231 (0.009) | 0.301 (0.007) | 0.657 (0.008) | 0.279 (0.006) | 0.359 (0.003) |  |
| GAT-GO       | 0.489 (0.002)       | 0.189 (0.001) | 0.341 (0.005) | 0.505 (0.002) | 0.240 (0.004) | 0.312 (0.003) | 0.641 (0.001) | 0.287 (0.001) | 0.355 (0.003) |  |
| MultiPredGO  | 0.235 (0.007)       | 0.108 (0.005) | 0.258 (0.005) | 0.345 (0.003) | 0.202 (0.004) | 0.287 (0.002) | 0.523 (0.002) | 0.284 (0.004) | 0.336 (0.003) |  |
| HEAL         | 0.468 (0.007)       | 0.147 (0.003) | 0.278 (0.003) | 0.480 (0.010) | 0.199 (0.005) | 0.266 (0.008) | 0.640 (0.006) | 0.247 (0.004) | 0.323 (0.007) |  |
| DeepFusionGO | 0.526 (0.004)       | 0.222 (0.003) | 0.393 (0.003) | 0.531 (0.006) | 0.273 (0.002) | 0.346 (0.005) | 0.629 (0.002) | 0.312 (0.001) | 0.372 (0.003) |  |
| CFAGO        | 0.463 (0.001)       | 0.251 (0.001) | 0.471 (0.003) | 0.468 (0.002) | 0.310 (0.001) | 0.436 (0.001) | 0.588 (0.001) | 0.363 (0.002) | 0.476 (0.002) |  |
| MIF2GO       | 0.600 (0.003)       | 0.278 (0.002) | 0.481 (0.003) | 0.600 (0.001) | 0.350 (0.005) | 0.450 (0.002) | 0.717 (0.004) | 0.403 (0.006) | 0.486 (0.002) |  |

<sup>&</sup>lt;sup>a</sup>'Min-30' refers to the GO terms whose number of protein samples is less than 30. Bold indicates the optimal performance.

# Performance comparison of MIF2GO on shallow terms and specific terms

Table 3 | F-max performance of MIF2GO on different depth of shallow terms and specific terms

|                       | Depth-2                                                                                                              | Depth-3                                                                                                                                                                                                                                                                                                                                                            | Depth-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shallow terms         | 0.848 (0.001)                                                                                                        | 0.841 (0.003)                                                                                                                                                                                                                                                                                                                                                      | 0.818 (0.001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.781 (0.004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.764 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Specific terms        | 0.741 (0.003)                                                                                                        | 0.694 (0.003)                                                                                                                                                                                                                                                                                                                                                      | 0.762 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.775 (0.001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.772 (0.003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The number of GO term | 12                                                                                                                   | 27                                                                                                                                                                                                                                                                                                                                                                 | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Shallow terms         | 0.635 (0.005)                                                                                                        | 0.691 (0.006)                                                                                                                                                                                                                                                                                                                                                      | 0.657 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.606 (0.003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.576 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Specific terms        | 0.526 (0.003)                                                                                                        | 0.462 (0.005)                                                                                                                                                                                                                                                                                                                                                      | 0.401 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.357 (0.004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.372 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The number of GO term | 14                                                                                                                   | 43                                                                                                                                                                                                                                                                                                                                                                 | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Shallow terms         | 0.661 (0.001)                                                                                                        | 0.684 (0.003)                                                                                                                                                                                                                                                                                                                                                      | 0.672 (0.003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.662 (0.005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.671 (0.004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Specific terms        | 0.358 (0.003)                                                                                                        | 0.429 (0.006)                                                                                                                                                                                                                                                                                                                                                      | 0.478 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.529 (0.005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.560 (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The number of GO term | 34                                                                                                                   | 87                                                                                                                                                                                                                                                                                                                                                                 | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | Specific terms The number of GO term Shallow terms Specific terms The number of GO term Shallow terms Specific terms | Shallow terms         0.848 (0.001)           Specific terms         0.741 (0.003)           The number of GO term         12           Shallow terms         0.635 (0.005)           Specific terms         0.526 (0.003)           The number of GO term         14           Shallow terms         0.661 (0.001)           Specific terms         0.358 (0.003) | Shallow terms       0.848 (0.001)       0.841 (0.003)         Specific terms       0.741 (0.003)       0.694 (0.003)         The number of GO term       12       27         Shallow terms       0.635 (0.005)       0.691 (0.006)         Specific terms       0.526 (0.003)       0.462 (0.005)         The number of GO term       14       43         Shallow terms       0.661 (0.001)       0.684 (0.003)         Specific terms       0.358 (0.003)       0.429 (0.006) | Shallow terms       0.848 (0.001)       0.841 (0.003)       0.818 (0.001)         Specific terms       0.741 (0.003)       0.694 (0.003)       0.762 (0.002)         The number of GO term       12       27       74         Shallow terms       0.635 (0.005)       0.691 (0.006)       0.657 (0.002)         Specific terms       0.526 (0.003)       0.462 (0.005)       0.401 (0.002)         The number of GO term       14       43       135         Shallow terms       0.661 (0.001)       0.684 (0.003)       0.672 (0.003)         Specific terms       0.358 (0.003)       0.429 (0.006)       0.478 (0.002) | Shallow terms         0.848 (0.001)         0.841 (0.003)         0.818 (0.001)         0.781 (0.004)           Specific terms         0.741 (0.003)         0.694 (0.003)         0.762 (0.002)         0.775 (0.001)           The number of GO term         12         27         74         165           Shallow terms         0.635 (0.005)         0.691 (0.006)         0.657 (0.002)         0.606 (0.003)           Specific terms         0.526 (0.003)         0.462 (0.005)         0.401 (0.002)         0.357 (0.004)           The number of GO term         14         43         135         364           Shallow terms         0.661 (0.001)         0.684 (0.003)         0.672 (0.003)         0.662 (0.005)           Specific terms         0.358 (0.003)         0.429 (0.006)         0.478 (0.002)         0.529 (0.005) |

MIF2GO learns distinguishable representations after two stages of fusion



Supplementary Figure 2. The evaluation of feature distribution in the human dataset throughout the fusion process. For each category, a representative GO term is selected for visualization. Samples with that GO term (i.e., positive samples) are colored in red. With the progress of fusion, the positive samples tend to be more clustered and more even.

### **Ablation Studies**



### **Execution Times**



# Modal missing scenarios of MIF2GO on the CAFA-subset benchmark

|                 | MF            |               |               | ВР            |               |               | cc            |               |               |  |
|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
| Methods         | M- AUPR       | m- AUPR       | F- max        | M- AUPR       | m- AUPR       | F- max        | M- AUPR       | m- AUPR       | F- max        |  |
| DeepFRI         | 0.341 (0.002) | 0.553 (0.019) | 0.547 (0.010) | 0.115 (0.004) | 0.392 (0.014) | 0.441 (0.011) | 0.186 (0.001) | 0.633 (0.015) | 0.610 (0.005) |  |
| GAT-GO          | 0.357 (0.003) | 0.579 (0.006) | 0.555 (0.004) | 0.122 (0.002) | 0.445 (0.004) | 0.470 (0.002) | 0.205 (0.004) | 0.649 (0.003) | 0.610 (0.001) |  |
| MultiPredGO     | 0.152 (0.004) | 0.451 (0.005) | 0.471 (0.006) | 0.065 (0.005) | 0.387 (0.007) | 0.433 (0.006) | 0.089 (0.006) | 0.568 (0.006) | 0.569 (0.003) |  |
| HEAL            | 0.342 (0.006) | 0.541 (0.014) | 0.541 (0.011) | 0.115 (0.004) | 0.413 (0.006) | 0.449 (0.004) | 0.175 (0.001) | 0.653 (0.008) | 0.618 (0.002) |  |
| DeepFusionGO    | 0.359 (0.005) | 0.578 (0.006) | 0.565 (0.002) | 0.145 (0.001) | 0.472 (0.001) | 0.490 (0.002) | 0.198 (0.004) | 0.663 (0.002) | 0.618 (0.001) |  |
| CFAGO           | 0.145 (0.001) | 0.509 (0.002) | 0.505 (0.003) | 0.105 (0.001) | 0.465 (0.003) | 0.478 (0.004) | 0.150 (0.001) | 0.697 (0.001) | 0.649 (0.001) |  |
| MIF2GO (LM-HAW) | 0.392 (0.004) | 0.609 (0.001) | 0.579 (0.001) | 0.150 (0.002) | 0.466 (0.010) | 0.488 (0.001) | 0.199 (0.004) | 0.659 (0.001) | 0.620 (0.002) |  |
| MIF2GO          | 0.398 (0.002) | 0.611 (0.011) | 0.586 (0.007) | 0.206 (0.002) | 0.524 (0.006) | 0.532 (0.001) | 0.293 (0.005) | 0.699 (0.005) | 0.650 (0.005) |  |

### Missing Modalities: Challenges and Solutions

#### 1. Sequence Information:

- Always available for all proteins.
- Provides a robust backbone for MIF2GO.

### 2. **Protein Homology Network (PHN):**

Adaptable threshold for similarity scores ensures sufficient connectivity.

### 3. Protein-Protein Interaction (PPI) Network:

 Interaction data gaps addressed by transferring relationships from homologous proteins.

### 4. Other Modalities (Pathway, Subcellular Localization, Domains):

- Initialized as zero vectors when unavailable.
- Biological features aggregated from neighboring nodes via GCN.

### Conclusion

- **MIF2GO** is proposed to integrate **multimodal** biological information for accurate Gene Ontology (GO) term prediction.
  - 1. **Siamese Contrastive Autoencoder (SCA):** Self-supervised encoding of domain, localization, and pathway modalities into interaction and homology relationships.
  - 2. **Language Model with Hierarchical Adaptive Weighting (LM-HAW):** Captures fine-grained and coarse-grained sequence features.
  - 3. **Modal Hypernode Pooling (MHP):** Fuses interaction, homology, and sequence modalities into unified representations.
- Performance: Outperformed state-of-the-art methods across seven benchmark datasets.
- **Robustness:** Demonstrated generalizability across species and resilience to missing modalities.
- **Insights:** Revealed critical associations between modalities and protein functions, validating the importance of multimodal integration.