

Python for scientific calculations

Ben Dudson, 16th June 2017

Why python?

- Python is an expressive and flexible language
- Relatively easy for new users to learn, without limiting advanced users
- Can be run interactively, making debugging and experimentation easier
- A huge and easily accessible collection of libraries (pip install . . .)
 - SciPy https://docs.scipy.org
 - Matplotlib https://matplotlib.org/
 - Sympy http://www.sympy.org
 - Scikits https://scikits.appspot.com/scikits
 - Pandas http://pandas.pydata.org/
- Generally less code to write. Quicker and generally fewer bugs

Why python for scientific work?

- 1 Data analysis and interactive exploration
- 2 Many research problems need only moderate resources
 - A modern processor (e.g. Intel i7) has a peak performance of nearly 100 GFlops
 - Compare to Cray-2 (1985) with 1.9 GFlops
- 3 For larger problems it's often not clear what algorithm to use
 - Try out different things and fail quickly

Motivation: Time

- Implementation time vs execution time
- Absolute speed is not important. What matters is acceptable speed

Motivation: Cost

- A PDRA-day : £50k / 260 days = £200
- Amazon EC2 compute nodes : 4p per core-hour
- Archer (notional) cost : 20p for 24 core-hours

So every day spent optimising a code needs to save over 5,000 core-hours (200 days) on EC2 to be worthwhile, or 24,000 core-hours on Archer.

Example: Solving Laplace equation

2D solution to Laplace's equation using Jacobi iteration

Implementation in Python

```
Solving a Laplacian in 2D (x,y)
    solve(rhs, dx, dy, tol=1e-3):
    result = np.zeros(rhs.shape)
        last = result
        result = jacobi_iteration(last, rhs, dx, dy)
        change = np.amax(np.abs(result - last))
           change < tol:</pre>
             return result
```

Implementation in Python

```
Solving a Laplacian in 2D (x,y)
    jacobi_iteration(last, rhs, dx, dy):
    out = last.copv()
    nx,ny = last.shape
    for x in range (1, nx-1):
        for y in range(1, ny-1):
            out[x,y] = ( (last[x+1,y] + last[x-1,y])/dx**2
                          + (last[x,y+1] + last[x,y-1])/dy**2
                          - rhs[x,y])
                         /(2./dx**2 + 2./dv**2)
    return out
```

Profiling

Before optimising this, we first need to:

- 1 Add tests, to make sure it's correct and we don't break it
- Measure it: Is it fast enough, and if not then why?

Some tools to do the measuring:

- timeit https://docs.python.org/3/library/timeit.html
- cProfile https://docs.python.org/3/library/profile.html
- line profiler https://github.com/rkern/line_profiler
- pProfile https://github.com/vpelletier/pprofile

Timing using timeit

```
import timeit

def fun():
    result = solve(rhs, dx, dy)

niter = 10
time = timeit.Timer(fun, 'gc.enable()').timeit(number=niter)/niter
```

- Note:
 - Timer can either be given a string or a function without arguments
 - By default the garbage collector is turned off
 - The time returned by timeit() is for all iterations

The Python interpreter is slow

Timing in seconds, comparing against a C implementation compiled with -O3

	10×10	100×100	1000×1000	10000×10000
C code	2.47e-06	1.08e-04	4.07e-03	1.13
Python	2.00e-03	7.62e-02	1.58	159.5
Ratio	810	706	388	141

cProfile gives function timings

```
import cProfile
cProfile.run('fun()')
```

```
ncalls
                 percall
                          cumtime
                                    percall filename: lineno(function)
        tottime
                                     11.082 01-python.py:17(solve)
          0.009
                   0.009
                           11.082
                                     11.071 01-python.py:3(jacobi_iteration
         11.059
                  11.059
                           11.071
          0.000
                   0.000
                           11.082
                                    11.082 01-python.py:44(fun)
          0.000
                   0.000
                           11.082
                                     11.082 <string>:1(<module>)
          0.000
                   0.000
                            0.001
                                     0.001 methods.pv:15(_amax)
                                     0.001 fromnumeric.py:2048(amax)
          0.000
                   0.000
                            0.001
          0.005
                   0.005
                            0.005
                                      0.005 {method 'copy' of 'numpy.ndarra
          0.000
                   0.000
                                      0.000 {method 'disable' of '_lsprof.P
                            0.000
          0.001
                   0.001
                                      0.001 {method 'reduce' of 'numpy.ufun
                            0.001
          0.002
                                      0.002 {numpy.core.multiarray.zeros}
                   0.002
                            0.002
   999
          0.007
                   0.000
                            0.007
                                      0.000 {range}
```

line profiler gives individual line timings

```
jacobi_iteration(last, rhs, dx, dy):
$ kernprof -l -v 01-python.py
                                        % Time Line Contents
Line #
            Hits
                         Time
                               Per Hit
```

```
Oprofile
```

0				`	sbr c	,1116
4				C	def	jacobi_iterat
8	1	1607	1607 0	0 0		regult = lagt

4				d€	ef jacobi_iterat
8	1	1607	1607.0	0.0	result = last

result = last.copy(0.0	1607.0	1607	1	8
nx,ny = last.shape	0.0	4.0	4	1	10
for - in(1	0 0	0.7	705	000	4.4

U					eprofite	
4					def jacobi	$_$ iteration
8	1	160	7 1607.	0.0	result	= last.co

n(last,

```
11
            999
                             705
                                                     0.0
```

1.0

for x in range (1, nx-1): 12 997002 865450 0.9 5.9 for y in range(1, n

14 996004 13769696 13.8 94.1 result[x,y] = (

0.0

return result

Python for scientific calculations June 2017 13/32

15

Why is python so slow?

Many of its nice features (for humans) lead to poor performance:

- **Types**: Python has a very flexible dynamic type system, only known at run time
- Flexibility: Python allows objects to be modified in many ways, which means lots of checks
- **No threading**: Reference counting and thread locking remove performance benefit of threads

Inside the Python Virtual Machine:

http://leanpub.com/insidethepythonvirtualmachine

Disassembling Python bytecode

```
square(x):
  return x*x
from dis import dis
dis(square)
       O LOAD FAST
                                   0(x)
                                   0(x)
       3 LOAD FAST
       6 BINARY MULTIPLY
       7 RETURN VALUE
```

Python uses a stack system, loading variables onto a stack and applying operators

Note: The same bytecode is used for all types of x

Disassembling Python bytecode

dis(jacobi_iteration)

```
79 LOAD_FAST
                             0 (last)
82 LOAD FAST
                             7(x)
85 LOAD_CONST
88 BINARY ADD
89 LOAD FAST
                             8 (y)
                                                  (x+1,y) <-
92 BUILD_TUPLE
                                                               last[x+1,y]
95 BINARY_SUBSCR
96 LOAD_FAST
                             0 (last)
                             7 (x) ⊲
99 LOAD FAST
102 LOAD_CONST
                              1 (1) <-
105 BINARY_SUBTRACT
106 LOAD_FAST
                              8 (y) ⊲-
                                                   (x-1,y) <
109 BUILD_TUPLE
                                                                last[x-1,y] ◆
112 BINARY SUBSCR
                                                                                 last[x+1,y] + last[x-1,y]
113 BINARY_ADD
```

Switch statement handles bytecodes in loop

```
https://github.com/python/cpython/blob/master/Python/ceval.c#L1158
  TARGET(LOAD_FAST) {
      PyObject *value = GETLOCAL(oparg);
         (value == NULL) {
          format_exc_check_arg(PyExc_UnboundLocalError,
                                UNBOUNDLOCAL ERROR MSG.
                                PyTuple_GetItem(co->co_varnames, oparg));
               error;
      Pv_INCREF(value);
      PUSH(value);
      FAST_DISPATCH();
```

TARGET(LOAD CONST)

Switch statement handles bytecodes in loop

```
https://github.com/python/cpython/blob/master/Python/ceval.c#L1158
  TARGET(BINARY_MULTIPLY) {
      PvObject *right = POP():
      PvObject *left = TOP();
      PyObject *res = PyNumber_Multiply(left, right);
      Pv_DECREF(left);
      Py_DECREF(right);
      SET_TOP(res):
         (res == NULL)
          goto error;
      DISPATCH():
```

Lots of type checking and indirection

```
https://github.com/python/cpython/blob/master/Objects/abstract.c#L954
PyNumber_Multiply(PyObject *v, PyObject *w) {
    PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply));
       (result == Py_NotImplemented) {
        PySequenceMethods *mv = v->ob_type->tp_as_sequence;
        PvSequenceMethods *mw = w->ob type->tp as sequence;
        Py_DECREF(result);
            (mv && mv->sq_repeat) {
            return sequence_repeat(mv->sq_repeat, v, w);
          else if (mw && mw->sq_repeat)
            return sequence_repeat(mw->sq_repeat, w, v);
        result = binop_type_error(v, w, "*");
    return result:
```

CPython does not optimise

The Python compiler does not do a lot of optimisation e.g common factors:

	10×10	100×100	1000×1000	10000×10000
Previous	810	706	388	141
New	482	389	215	79

Better ways : Don't use Python!

Trying to optimise the Python interpreter is not a productive way forward...

Use Python as "glue" to organise calls to C/Fortran code:

- NumPy, SciPy: http://www.scipy-lectures.org/
- Numexpr: https://github.com/pydata/numexpr
- Numba (JIT compiler) : http://numba.pydata.org/
- PyPy: http://pypy.org/ (was Psyco)

Note: You can install many packages as user

pip install --user numexpr

The easiest way: NumPy

return out

	10×10	100×100	1000×1000	10000×10000
Previous	482	389	215	79
New	98	6.0	5.5	7.7

Adding out parameter improves a little

A common pattern in NumPy code is an "out" argument, which reduces memory allocation

return out

Inlining to remove function calls

```
solve(rhs, dx, dy, tol=1e-3):
result = np.zeros(rhs.shape)
last = result.copy()
    last, result = result, last # swap
    result[1:-1,1:-1] = ((last[2:,1:-1] + last[:-2,1:-1])/dx**2
                         + (last[1:-1,2:] + last[1:-1,:-2])/dy**2
                         - rhs[1:-1.1:-1])
                        /(2./dx**2 + 2./dv**2)
    change = np.amax(np.abs(result - last))
       change < tol:</pre>
        return result
```

Numexpr is easy to try

```
rhs middle = rhs[1:-1.1:-1]
   last, result = result, last # swap
   xm = last[:-2.1:-1] # at x-1
   xp = last[2:,1:-1] # at x+1
   vm = last[1:-1,:-2] # at y-1
   vp = last[1:-1,2:] # at y+1
   result[1:-1,1:-1] = ne.evaluate("( (xm + xp)/dx**2
                                     /(2./dx**2 + 2./dv**2)")
```

Summary of timings

Relative to C implementation (in seconds)

	10×10	100×100	1000×1000	10000×10000
C code (-O3)	2.47e-06	1.08e-04	4.07e-03	1.13
	 -			
Simple python	810	706	388	141
Opt. python	482	389	215	79
NumPy	98	6.0	5.5	7.7
NumPy out	97	5.8	5.1	7.7
Numpy inline	97	5.7	5.2	7.5
Numexpr	195	7.1	3.2	2.3

Just In Time (JIT) compilers

- The first time a function is called is slow as it compiles
- More information is available about types, resulting in faster code

Numba is a package which adds JIT support to Python

```
from numba import jit
```

```
# Numba decorator compiles function when called laft jacobi_iteration(last, rhs, dx, dy):
... # original version with nested for loops
```

	10×10	100×100	1000×1000	10000×10000
Original	1246	697	284	174
Numba	80	3.2	3	1.5

Just In Time (JIT) compilers

- The first time a function is called is slow as it compiles
- More information is available about types, resulting in faster code

PyPy is a separate implementation of Python

- JIT compiles everything
- Compatible with standard CPython
- Many libraries but not all: NumPy but not SciPy
- Retains Global Interpreter Lock (no threading)

I found both Numba and PyPy quite hard to install (works on sausage)

Cython for optimisation and linking

```
http://cython.org/

Compiles to C. Optimises if given additional type information
```

```
primes(int kmax):
cdef int n, k, i
cdef int p[1000]
result = []
if kmax > 1000:
    kmax = 1000
k = 0
n = 2
while k < kmax:
    i = 0
    while i < k and n % p[i] != 0:
        i = i + 1
    if i == k:
```

Cython for optimisation and linking

```
http://cython.org/
   Compiles to C. Optimises if given additional type information
    Easily links to C and Fortran code
cdef extern from "idamclient.h":
    bint getIdamProperty(const char *property)
    getProperty(property):
    "Get a property for client/server behavior"
    return getIdamProperty(property)
```

Parallel programming

Due to the Global Interpreter Lock, standard Python (CPython) does not do threading

- multiprocessing This provides a way to spawn multiple Python processes and pass data between them
- MPI4py
- GPU programming
 - Theano, Tensorflow
 - PyCUDA

Many libraries for large scientific problems:

- Fenics https://fenicsproject.org/
- Firedrake http://www.firedrakeproject.org
- PyFR http://www.pyfr.org/

Conclusions

Always treat benchmarks like this with extreme caution: Test for your problems

- Many libraries for scientific computing: Don't reinvent the wheel!
- Use NumPy (and SciPy) whenever possible
- Numexpr is simple to try, but not always faster
- Numba looks impressive but hard to install
- Cython requires some time investment, but allows optimisation and coupling to C/Fortran code
- Huge number of useful packages, including for parallel and GPU programming

"Premature optimization is the root of all evil" - D.Knuth