

Useful Economic Theory and Mathematics

Author: Wenxiao Yang

Institute: Haas School of Business, University of California Berkeley

Date: 2023

Contents

Chapte	r 1 Sto	chastic Dominance	1
1.1	Gener	al Definitions	1
1.2	order Stochastic Dominance	2	
	1.2.1	Two Equivalent Definitions	2
1.3	1.3 Second-order Stochastic Dominance		2
	1.3.1	Definition in terms of final goals	2
	1.3.2	Mean-Preserving Spread/Contraction	3
	1.3.3	For Same Mean Distributions, Second-order Stochastic Dominance is equivalent to	
		Mean-Preserving Spread	3
Chapte	r 2 Too	ols for Comparative Statics	5
2.1	Regula	ar and Critical Points and Values	5
	2.1.1	Rank of Derivatives Rank $df_x = \text{Rank}Df(x)$	5
	2.1.2	Regular and Critical Points and Values	5
2.2	Invers	e and Implicit Function Theorem	6
	2.2.1	Inverse Function Theorem	6
	2.2.2	Implicit Function Theorem	6
	2.2.3	Prove Implicit Function Theorem Given Inverse Function Theorem	7
	2.2.4	Prove Inverse Function Theorem Given Implicit Function Theorem	8
	2.2.5	Example: Using Implicit Function Theorem	8
	2.2.6	Corollary: $a \to \{x \in X : f(x,a) = 0\}$ is lhc	9
2.3	Transv	versality and Genericity	10
	2.3.1	Lebesgue Measure Zero	10
	2.3.2	Sard's Theorem	10
	2.3.3	Transversality Theorem	10
2.4	Envelo	ppe Theorem	11
Chapte	r 3 Fix	ed Point Theorem	12
3.1	Contra	action Mapping Theorem (@ Lec 05 of ECON 204)	12
	3.1.1	Contraction: Lipschitz continuous with constant < 1	12

	3.1.2	Theorem: Contraction \Rightarrow Uniformly Continuous	12
	3.1.3	Blackwell's Sufficient Conditions for Contraction	12
3.2	Fixed	Point Theorem (@ Lec 05 of ECON 204)	13
	3.2.1	Fixed Point	13
	3.2.2	\bigstar Contraction Mapping Theorem: contraction \Rightarrow exist unique fixed point	14
	3.2.3	Conditions for Fixed Point's Continuous Dependence on Parameters	15
3.3	Brouw	ver's Fixed Point Theorem (@ Lec 13 of ECON 204)	15
	3.3.1	Simple One: One-dimension	15
	3.3.2	★ Brouwer's Fixed Point Theorem: continuous function has fixed point over compact,	
		convex set	16
Chapte	r 4 Coi	respondence: $\Psi:X o 2^Y$ (@ Lec 07 of ECON 204)	17
4.1	Contin	nuity of Correspondences	17
	4.1.1	Upper/Lower Hemicontinuous	17
	4.1.2	Theorem: $\Psi(x) = \{f(x)\}\ $ is uhc $\Leftrightarrow f$ is continuous	19
	4.1.3	Berge's Maximum Theorem: the set of maximizers is uhc with non-empty compact values	19
4.2	Graph	of Correspondence	19
	4.2.1	Closed Graph	19
4.3	Closed	d-valued, Compact-valued, and Convex-valued Correspondences	20
	4.3.1	Closed-valued, uhc and Closed Graph	20
	4.3.2	Theorem: compact-valued, uhs correspondence of compact set is compact	20
4.4	Fixed Points for Correspondences (@ Lec 13 of ECON 204)		21
	4.4.1	Definition	21
	4.4.2	Kakutani's Fixed Point Theorem: uhs, compact, convex values correspondence has a	
		fixed point over compact convex set	21
	4.4.3	Theorem: \exists compact set $C = \cap_{i=0}^{\infty} \Psi^i(X)$ s.t. $\Psi(C) = C$	21
Chapte	r 5 Bay	vesian Persuasion: Extreme Points and Majorization	23
5.1	Extren	ne Points	23
	5.1.1	Extreme Points of Convex Set	23
	5.1.2	Krein-Milman Theorem: Existence of Extreme Points	23
	5.1.3	Bauer's Maximum Principle: Usefulness of Extreme Points for Optimization	23
5.2	Majori	ization	24

		5.2.1	Majorization and Weak Majorization	24
		5.2.2	How to work for non-monotonic functions? – Non-Decreasing Rearrangement	24
		5.2.3	Theorem: F majorizes $G \Leftrightarrow G$ is a mean-preserving spread of F	24
	5.3	Captur	re Extreme Points in Economic Applications	25
		5.3.1	Definitions of $\mathcal{MPS}(f)$, $\mathcal{MPS}_w(f)$, $\mathcal{MPC}(f)$	25
		5.3.2	Proposition: $\mathcal{MPS}(f)$, $\mathcal{MPS}_w(f)$, $\mathcal{MPC}(f)$ have extreme points and any element is	
			a combination of extreme points	26
		5.3.3	Extreme Points in $\mathcal{MPS}(f)$	26
		5.3.4	Extreme Points in $\mathcal{MPS}_w(f)$	27
		5.3.5	Extreme Points in $\mathcal{MPC}(f)$	27
Cl	naptei	r 6 Bay	resian Persuasion: Bi-Pooling	28
	6.1	Persua	tion Model	28
	6.2	Bi-Poo	oling	29
		6.2.1	Bi-pooling Distribution	29
	6.3	Applyi	ing Bi-pooling Distributions to Persuasion Problems	30
		6.3.1	It works for all	30
		6.3.2	How it works	30
Cl	naptei	r 7 Opt	timization Methods	32
	7.1	Genera	alized Neyman-Pearson Lemma	32
		7.1.1	The Neyman-Pearson Lemma	32
Cl	naptei	r 8 Cal	culus of Variations	33
	8.1	Genera	alized Calculus	33
		8.1.1	Functional	33
		8.1.2	Gâteux Derivative	33
		8.1.3	Linear Functionals	34
		8.1.4	Functionals involving first-order derivatives	35
8.2		Optimization of Functionals		35
		8.2.1	Extremes of Functionals	35
		8.2.2	Euler-Lagrange Equation	36
		8 2 3	Constrained Maximum of Functionals	36

Chapte	r 9 Pol	itics Models	38	
9.1	Voting Model: Implicit Function Theroem			
	9.1.1	Case 1	38	
	9.1.2	Case 2: Moral Hazard Version	38	
	9.1.3	Case 3	39	
9.2	Two P	eriod Accountability Model: Normal-Normal Learning	40	
	9.2.1	Normal-Normal Learning	40	
	9.2.2	Two Period Accountability Model	40	
9.3	Motiva	ated Beliefs	41	
	9.3.1	Normal Distribution	42	
	9.3.2	Accountability Model with Motivated Reasoning	43	
9.4	Stocha	astic Game	44	
	9.4.1	Prison Dilemma as a stochastic game	44	
	9.4.2	Revised Prison Dilemma	45	
	943	Dynamic Commitment Problem	45	

Chapter 1 Stochastic Dominance

Based on

- o MIT 14.123 S15 Stochastic Dominance Lecture Notes
- o Princeton ECO317 Economics of Uncertainty Fall Term 2007 Notes for lectures 4. Stochastic Dominance
- Jensen, M. K. (2018). Distributional comparative statics. The Review of Economic Studies, 85(1), 581-610.

1.1 General Definitions

Definition 1.1 (Jensen (2018), Definition 1)

Let F and G be two distributions on the same measurable space. Let u be a function for which the following expression is well-defined,

$$\int u(x)dF \ge \int u(x)dG \tag{1.1}$$

Then:

- F first-order stochastically dominates G if 1.1 holds for any increasing function u.
- F is a **mean-preserving spread** of G if 1.1 holds for any <u>convex</u> function u.
- F is a **mean-preserving contraction** of G if 1.1 holds for any concave function u.
- F second-order stochastically dominates G if 1.1 holds for any <u>concave</u> and <u>increasing</u> function u.
- F dominates G in the convex-increasing order if 1.1 holds for any convex and increasing function
 u.

Note F is a mean-preserving contraction of $G \Leftrightarrow G$ is a mean-preserving spread of F.

Definition 1.2 (MPS and MPC)

We define the following notations of sets.

- \circ MPS(f) is the set of all **mean-preserving spread** of f;
- \circ MPC(f) is the set of all **mean-preserving contraction** of f;

1.2 First-order Stochastic Dominance

1.2.1 Two Equivalent Definitions

Definition 1.3 (First-order Stochastic Dominance)

For any lotteries F and G, F first-order stochastically dominates G if and only if the decision maker weakly prefers F to G under every weakly increasing utility function u, i.e.,

$$\int u(x)dF \ge \int u(x)dG$$

Definition 1.4 (First-order Stochastic Dominance)

For any lotteries F and G, F first-order stochastically dominates G if and only if

$$F(x) \le G(x), \forall x$$

Figure 1.1: F_1 is FOSD over F_2 : CDF and density comparison

1.3 Second-order Stochastic Dominance

1.3.1 Definition in terms of final goals

Definition 1.5 (Second-order Stochastic Dominance)

For any lotteries F and G, F second-order stochastically dominates G if and only if the decision maker weakly prefers F to G under every weakly increasing concave utility function u, i.e.,

$$\int u(x)dF \ge \int u(x)dG$$

Figure 1.2: F_1 is SOSD over F_2 : CDF and density comparison

1.3.2 Mean-Preserving Spread/Contraction

<u>Definition</u> 1.6 (Mean-Preserving Spread)

Let x_F and x_G be the random variables associated with lotteries F and G. Then G is a **mean-preserving** spread of F if and only if

$$x_G \stackrel{d}{=} x_F + \varepsilon$$

for some random variable ε such that $\mathbb{E}(\varepsilon \mid x_F) = 0 \ \forall x_F$.

The " $\frac{d}{d}$ " means "is equal in distribution to" (that is, "has the same distribution as").

Note Given G is a **mean-preserving spread** of F, G has larger variance than F.

Example 1.1

$$F(198) = \frac{1}{2}, F(202) = \frac{1}{2} \text{ and } G(100) = \frac{1}{100}, G(200) = \frac{98}{100}, G(300) = \frac{1}{100}.$$
 Then $x_G \stackrel{d}{=} x_F + \varepsilon$

where the distribution of ε can be solved by

$$\begin{cases} G(300) = F(198)P(\varepsilon = 102|x_F = 198) + F(202)P(\varepsilon = 98|x_F = 202) \\ G(200) = F(198)P(\varepsilon = 2|x_F = 198) + F(202)P(\varepsilon = -2|x_F = 202) \\ G(100) = F(198)P(\varepsilon = -98|x_F = 198) + F(202)P(\varepsilon = -102|x_F = 202) \end{cases}$$

1.3.3 For Same Mean Distributions, Second-order Stochastic Dominance is equivalent to Mean-Preserving Spread

Theorem 1.1 (Second-order Stochastic Dominance Equivalence)

Given $\int x dF = \int x dG$ (same mean). The following are equivalent.

1. F second-order stochastically dominates G: $\int u(x)dF \geq \int u(x)dG$ for every weakly increasing concave utility function u.

- 2. F is a mean-preserving contraction of G (G is a mean-preserving spread of F).
- 3. For every $t \ge 0$, $\int_a^t G(x) dx \ge \int_a^t F(x) dx$.

Figure 1.3: F_1 is SOSD over F_2 , $S(t): \int_a^t F_2(x) dx \ge \int_a^t F_1(x) dx$

Corollary 1.1 (Euqivalent Definitions of MPC and MPS)

F is a mean-preserving contraction of G (or G is a mean-preserving spread of F) if and only if

(1).
$$\int xdF = \int xdG$$

(2).
$$\int_a^t G(x)dx \ge \int_a^t F(x)dx, \forall t$$

Corollary 1.2 (MPC(f) and MPS(f) are convex and compact)

MPC(f) and MPS(f) are **convex** and **compact**.

Chapter 2 Tools for Comparative Statics

Consider the function $f:(0,2\pi)\times\mathbb{R}\to\mathbb{R}$ s.t.

$$f(x,a) = \sin x + a$$

Let $X = (0, 2\pi)$ and let $f_a(x) = f(x, a) = \sin x + a$ denote the perturbed function for fixed a.

2.1 Regular and Critical Points and Values

2.1.1 Rank of Derivatives Rank $df_x = \text{Rank}Df(x)$

Suppose $X \subseteq \mathbb{R}^n$ is open. Suppose $f: X \to \mathbb{R}^m$ is differentiable at $x \in X$, and let $W = \{e_1, ..., e_n\}$ denote the standard basis of \mathbb{R}^n . Then $df_x \in L(\mathbb{R}^n, \mathbb{R}^m)$, and

$$\begin{aligned} \operatorname{Rank} & df_x = \dim \operatorname{Im}(df_x) \\ &= \dim \operatorname{span}\{df_x(e_1),...,df_x(e_n)\} \\ &= \dim \operatorname{span}\{Df(x)e_1,...,Df(x)e_n\} \\ &= \dim \operatorname{span}\{\operatorname{column} 1 \text{ of } Df(x),...,\operatorname{column} \text{ n of } Df(x)\} \\ &= \operatorname{Rank} Df(x) \end{aligned}$$

Thus,

$$\operatorname{Rank} df_x \leq \min\{m, n\}$$

 df_x has **full rank** if Rank $df_x = \min\{m, n\}$, that is, is df_x has the maximum possible rank.

2.1.2 Regular and Critical Points and Values

Definition 2.1 (Regular and Critical Points and Values)

Suppose $X \subseteq \mathbb{R}^n$ is open. Suppose $f: X \to \mathbb{R}^m$ is differentiable at $x \in X$.

- 1. x is a **regular point** of f if Rank $df_x = \min\{m, n\}$.
- 2. x is a **critical point** of f if Rank $df_x < \min\{m, n\}$.
- 3. y is a **critical value** of f if there exists $x \in f^{-1}(y)$ such that x is a critical point of f.
- 4. y is a **regular value** of f if y is not a critical value of f.

Note Notice that if $y \notin f(X)$, so $f^{-1}(y) = \emptyset$, then y is automatically a regular value of f.

Example 2.1

Suppose
$$f(x,y)=(\sin x,\cos y),$$
 $Df(x,y)=\begin{bmatrix}\cos x & 0\\ 0 & -\sin y\end{bmatrix}$. Critical point: $\{(\frac{k\pi}{2},\mathbb{R}):k\in 2\mathbb{Z}+1\}\cup\{(\mathbb{R},k\pi):k\in \mathbb{Z}\};$ Critical values: $\{(x,y):x=1\text{ or }x=-1\text{ or }y=1\text{ or }y=-1\}$

2.2 Inverse and Implicit Function Theorem

2.2.1 Inverse Function Theorem

Using Taylor's theorem to approximate

$$f(x) = f(x_0) + Df(x_0)(x - x_0) + o(x - x_0)$$

The requirement of "regular point" is necessary for the $Df(x_0)$ being invertible.

Theorem 2.1 (Inverse Function Theorem)

Suppose $X \subseteq \mathbb{R}^n$ is open. Suppose $f: X \to \mathbb{R}^n$ is C^1 on X, and $x_0 \in X$. If $\det Df(x_0) \neq 0$ (i.e., x_0 is a regular point of f), then there are open neighborhoods U of x_0 and Y of $f(x_0)$ s.t.

 $f: U \to V$ is bijective (on-to-on and onto)

$$\exists \ f^{-1}: V \to U \text{ is } C^1$$

$$Df^{-1}(f(x_0)) = [Df(x_0)]^{-1}$$

(In
$$\mathbb{R}$$
, $(f^{-1})'(f(x_0)) = (f'(x_0))^{-1}$)

If in addition $f \in C^k$, then $f^{-1} \in C^k$.

2.2.2 Implicit Function Theorem

Using Taylor's theorem to approximate

$$f(x,a) = f(x_0,a_0) + Df(x_0,a_0)(x-x_0) + Df(x_0,a_0)(a-a_0) + \text{remainder}$$

The requirement of "regular point" is necessary for the $Df(x_0, a_0)$ being invertible.

We want to know how the function $x^*(a)$ changes with keeping $f(x^*, a) = 0$.

Theorem 2.2 (Implicit Function Theorem)

Suppose $X \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}^p$ are open and $f: X \times A \to \mathbb{R}^n$ is C^1 . Suppose $f(x_0, a_0) = 0$ and $\det(D_x f(x_0, a_0)) \neq 0$, i.e. x_0 is a regular point of $f(\cdot, a_0)$. Then there are open neighborhoods U of x_0 ($U \subseteq X$) and W of a_0 such that

$$\forall a \in W, \ \exists ! x \in U \text{ s.t. } f(x, a) = 0$$

For each $a \in W$ let g(a) be that unique x. Then $g: W \to U$ is C^1 and

$$Dg(a_0) = -[D_x f(x_0, a_0)]^{-1} [D_a f(x_0, a_0)]$$

If in addition $f \in C^k$, then $g \in C^k$.

2.2.3 Prove Implicit Function Theorem Given Inverse Function Theorem

Proof 2.1

1. Firstly, we prove "q is differentiable": The "change of a" incurs the value change:

$$f(x_0, a_0 + h) = f(x_0, a_0) + D_a f(x_0, a_0) h + o(h)$$
$$= D_a f(x_0, a_0) h + o(h)$$

Find a Δx such that the new x can let the value go back to 0, i.e., $f(x_0 + \Delta x, a_0 + h) = 0$. That is,

$$g(a_0 + h) = x_0 + \Delta x$$

To prove "g is differentiable", we want to prove " $\exists T \in L(A, X)$ s.t. $\Delta x = T(h) + o(h)$ "

$$0 = f(x_0 + \Delta x, a_0 + h)$$

$$= f(x_0, a_0) + D_x f(x_0, a_0 + h) \Delta x + D_a f(x_0, a_0) h + o(\Delta x) + o(h)$$

$$= D_x f(x_0, a_0 + h) \Delta x + D_a f(x_0, a_0) h + o(\Delta x) + o(h)$$

$$D_x f(x_0, a_0 + h) \Delta x = -D_a f(x_0, a_0) h + o(\Delta x) + o(h)$$

Because f is C^1 and the determinant is a continuous function of the entries of the matrix, $\det D_x f(x_0, a_0 + h) \neq 0$ for h sufficiently small, so

$$\Delta x = -[D_x f(x_0, a_0 + h)]^{-1} D_a f(x_0, a_0) h + o(\Delta x) + o(h)$$
 Since $f \in C^1$, $\Delta x = -[D_x f(x_0, a_0) + o(1)]^{-1} D_a f(x_0, a_0) h + o(\Delta x) + o(h)$ Since $f \in C^1$, $\Delta x = -[D_x f(x_0, a_0)]^{-1} D_a f(x_0, a_0) h + o(\Delta x) + o(h)$

Hence, "g is differentiable" is proved and the derivative of g is $Dg(a_0) = -[D_x f(x_0, a_0)]^{-1}[D_a f(x_0, a_0)].$

2. Secondly, given the "g is differentiable", we can also compute the derivative by

$$Df(g(a), a)(a_0) = 0$$

$$D_x f(x_0, a_0) Dg(a_0) + D_a f(x_0, a_0) = 0$$

$$Dg(a_0) = -[D_x f(x_0, a_0)]^{-1} D_a f(x_0, a_0)$$

Example 2.2

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f((3, -1, 2)) = (0, 0)$, $Df(3, -1, 2) = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$. Then, let $(x_0, a_0) = (3, -1, 2)$, where $x_0 = 3$ and $a_0 = (-1, 2)$. Or, we can let $(x_0, a_0) = (3, -1, 2)$, where $x_0 = (3, -1)$ and $a_0 = 2$.

2.2.4 Prove Inverse Function Theorem Given Implicit Function Theorem

Proof 2.2 (Prove Inverse Function Theorem Given Implicit Function Theorem)

Define $F: X \times \mathbb{R}^n$ s.t. F(x,y) = y - f(x). Let $y_0 = f(x_0)$.

$$D_x F(x,y) = -Df(x), \ D_y F(x,y) = I_{n \times n}$$

According to the implicit function theorem, there are open sets $U \subseteq X$ and $V \subseteq \mathbb{R}^n$ such that $x_0 \in U$, $y_0 \in V$ and a function $g: V \to U$ differentiable at y_0 such that F(g(y), y) = 0 for all $y \in V$. So, 0 = F(g(y), y) = y - f(g(y)), we have f(g(y)) = y, that is $g = f^{-1}$. $f: U \to V$ is bijective because it has inverse $g: V \to U$.

By the implicit function theorem, g(y) is differentiable and

$$Df^{-1}(y_0) = Dg(y_0) = -[D_x F(x_0, y_0)]^{-1}[D_y F(x_0, y_0)] = [Df(x_0)]^{-1}$$

where $y_0 = f(x_0)$.

By the implicit function theorem, the $g = f^{-1}$ is C^k if f is C^k .

All in all, the inverse function theorem is proved.

2.2.5 Example: Using Implicit Function Theorem

 $x^2 + y^2 = c$. Define $g(x, y) = x^2 + y^2 - c$. The optimal solution of y given x is represented by $y^*(x)$. By the implicit function theorem,

$$\frac{\partial y^*}{\partial x} = -\frac{\frac{\partial g}{\partial x}\big|_{x,y^*}}{\frac{\partial g}{\partial y}\big|_{x,y^*}}$$

Example 2.3

Let us consider a firm that produces a good y; it uses two inputs x_1 and x_2 . The firm sells the output and acquires the inputs in competitive markets: The market price of y is p, and the cost of each unit of x_1 and x_2 are w_1 and w_2 respectively. Its technology is given by $f: \mathbb{R}^2_+ \to \mathbb{R}_+$, where $f(x_1, x_2) = x_1^a x_2^b$, a+b<1. Its profits take the form

$$\pi(x_1, x_2; p, w_1, w_2) = px_1^a x_2^b - w_1 x_1 - w_2 x_2$$

The firm selects x_1 and x_2 in order to maximize profits. We aim to know how its choice of x_1 and x_2 is affected by a change in w_1 .

Assuming an interior solution, the first-order conditions of this optimization problem are

$$\frac{\partial \pi}{\partial x_1}(x_1^*, x_2^*; p, w_1, w_2) = pa(x_1^*)^{a-1}(x_2^*)^b - w_1 = 0$$

$$\frac{\partial \pi}{\partial x_2}(x_1^*, x_2^*; p, w_1, w_2) = pb(x_1^*)^a(x_2^*)^{b-1} - w_2 = 0$$

for some $(x_1, x_2) = (x_1^*, x_2^*)$.

Let us define

$$F(x_1^*, x_2^*; p, w_1, w_2) = \begin{bmatrix} pa(x_1^*)^{a-1}(x_2^*)^b - w_1 \\ pb(x_1^*)^a(x_2^*)^{b-1} - w_1 \end{bmatrix}$$

Jacobian matrices are

$$D_{(x_1,x_2)}F(x_1^*, x_2^*; p, w_1, w_2) = \begin{bmatrix} pa(a-1)(x_1^*)^{a-2}(x_2^*)^b & pab(x_1^*)^{a-1}(x_2^*)^{b-1} \\ pab(x_1^*)^{a-1}(x_2^*)^{b-1} & pb(b-1)(x_1^*)^a(x_2^*)^{b-2} \end{bmatrix}$$

$$D_{w_1}F(x_1^*, x_2^*; p, w_1, w_2) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

By the implicit function theorem, we can get

$$\begin{bmatrix} \frac{\partial x_1^*}{\partial w_1} \\ \frac{\partial x_2^*}{\partial w_1} \end{bmatrix} = -[D_{(x_1, x_2)} F(x_1^*, x_2^*; p, w_1, w_2)]^{-1} [D_{w_1} F(x_1^*, x_2^*; p, w_1, w_2)]$$

$$= [D_{(x_1, x_2)} F(x_1^*, x_2^*; p, w_1, w_2)]^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

2.2.6 Corollary: $a \to \{x \in X : f(x, a) = 0\}$ is lhc

Corollary 2.1

Suppose $X \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}^p$ are open and $f: X \times A \to \mathbb{R}^n$ is C^1 . If 0 is a regular value of $f(\cdot, a_0)$, then the correspondence

$$a \to \{x \in X : f(x, a) = 0\}$$

is **lower hemicontinuous** at a_0 .

2.3 Transversality and Genericity

2.3.1 Lebesgue Measure Zero

Definition 2.2 (Lebesgue Measure Zero)

Suppose $A \subseteq \mathbb{R}^n$. A has **Lebesgue measure zero** if for every $\varepsilon > 0$ there is a countable collection of rectangles $I_1, I_2, ...$ such that

$$\sum_{k=1}^{\infty} \operatorname{Vol}(I_k) < \varepsilon \text{ and } A \subseteq \cup_{k=1}^{\infty} I_k$$

Here by a rectangle we mean $I_k = \times_{j=1}^n (a_j^k, b_j^k) = \{x \in \mathbb{R}^n : x_j \in (a_j^k, b_j^k), \forall j\}$ for some $a_j^k < b_j^k \in \mathbb{R}$, and

$$Vol(I_k) = \prod_{j=1}^n |b_j^k - a_j^k|$$

Example 2.4

- 1. "Lower-dimensional" sets have Lebesgue measure zero. For example, $A=\{x\in\mathbb{R}^2:x_2=0\}$
- 2. Any **finite** set has Lebesgue measure zero in \mathbb{R}^n .
- 3. **Finite Union** of sets that have Lebesgue measure zero has Lebesgue measure zero: If A_n has Lebesgue measure zero $\forall n$ then $\bigcup_{n \in N} A_n$ has Lebesgue measure zero.
- 4. Every **countable** set (e.g. \mathbb{Q}) has Lebesgue measure zero.
- 5. No open set in \mathbb{R}^n has Lebesgue measure zero.

2.3.2 Sard's Theorem

Theorem 2.3 (Sard's Theorem)

Let $X \subseteq \mathbb{R}^n$ be open, and $f: X \to \mathbb{R}^m$ be C^r with $r \ge 1 + max\{0, n-m\}$. Then the set of all critical values of f has Lebesgue measure zero.

2.3.3 Transversality Theorem

Theorem 2.4 (Transversality Theorem)

Let $X \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}^p$ be open, and $f: X \times A \to \mathbb{R}^m$ be C^r with $r \ge 1 + max\{0, n - m\}$. Suppose that 0 is a regular value of f (that is all (x, a) such that f(x, a) = 0 are regular points). Then,

- 1. $\exists A_0 \subseteq A$ such that $A \setminus A_0$ has Lebesgue measure zero.
- 2. $\forall a \in A_0$, 0 is a regular value of $f_a = f(\cdot, a)$.

Example 2.5

$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
 s.t. $f(x,y,z,w) = (g(x)+y,z^3+1,w+x+y^2)$

2.4 Envelope Theorem

Theorem 2.5 (Envelope Theorem)

Suppose that $f(x,\cdot)$ is absolutely continuous for all $x\in X$. Suppose there exists an integrable function $b:[0,1]\to\mathbb{R}_+$ such that $|f_t(x,t)|\le b(t)$ for all $x\in X$ and almost all $t\in [0,1]$. Then $V(t)=\sup_{x\in X}f(x,t)$ is absolutely continuous.

Suppose, in addition, that $f(x,\cdot)$ is differentiable for all $x\in X$, and that $X^*(t)=\{x\in X: f(x,t)=V(t)\}\neq\emptyset$ almost everywhere on [0,1]. Then, for any selection $x^*(t)\in X^*(t)$,

$$V(t) = V(0) + \int_0^t f_t(x^*(s), s) ds$$

Chapter 3 Fixed Point Theorem

3.1 Contraction Mapping Theorem (@ Lec 05 of ECON 204)

3.1.1 Contraction: Lipschitz continuous with constant < 1

Definition 3.1

Let (X,d) be a <u>nonempty complete</u> metric space. An operator is a function $T:X\to X$. An operator T is a **contraction of modulus** β if $\beta<1$ and

$$d(T(x), T(y)) \le \beta d(x, y), \forall x, y \in X$$

A contraction shrinks distances by a *uniform* factor $\beta < 1$.

3.1.2 Theorem: Contraction ⇒ Uniformly Continuous

Theorem 3.1 (Contraction ⇒ **Uniformly Continuous)**

Every contraction is uniformly continuous.

Proof 3.1

Let $\delta = \frac{\varepsilon}{\beta}$.

3.1.3 Blackwell's Sufficient Conditions for Contraction

Let X be a set, and let B(X) be the set of all bounded functions from X to \mathbb{R} . Then $(B(X), \|\cdot\|_{\infty})$ is a normed vector space.

(Notice that below we use shorthand notation that identifies a constant function with its constant value in \mathbb{R} , that is, we write interchangeably $a \in \mathbb{R}$ and $a: X \to \mathbb{R}$ to denote the function such that $a(x) = a, \forall x \in X$.)

Theorem 3.2 (Blackwell's Sufficient Conditions)

Consider B(X) with the sup norm $\|\cdot\|_{\infty}$. Let $T:B(X)\to B(X)$ be an operator satisfying

- 1. (monotonicity) $f(x) \leq g(x), \forall x \in X \Rightarrow (Tf)(x) \leq (Tg)(x), \forall x \in X$
- 2. (discounting) $\exists \beta \in (0,1)$ such that for every $a \geq 0$ and $x \in X$,

$$(T(f+a))(x) \leq (Tf)(x) + \beta a$$

Then *T* is a contraction with modulus β .

Proof 3.2

Fix $f, g \in B(X)$. By the definition of the sup norm,

$$f(x) \le g(x) + ||f - g||_{\infty} \forall x \in X$$

Then

$$(Tf)(x) \le (T(g + ||f - g||_{\infty}))(x) \le (Tg)(x) + \beta ||f - g||_{\infty} \quad \forall x \in X$$

where the first inequality above follows from monotonicity, and the second from discounting. Thus

$$(Tf)(x) - (Tg)(x) \le \beta ||f - g||_{\infty} \quad \forall x \in X$$

Reversing the roles of f and g above gives

$$(Tg)(x) - (Tf)(x) \le \beta ||f - g||_{\infty} \quad \forall x \in X$$

Thus

$$||T(f) - T(g)||_{\infty} \le \beta ||f - g||_{\infty}$$

Thus T is a contraction with modulus β

3.2 Fixed Point Theorem (@ Lec 05 of ECON 204)

3.2.1 Fixed Point

Definition 3.2 (Fixed Point)

A fixed point of an operator T is element $x^* \in X$ such that $T(x^*) = x^*$.

Definition 3.3 (Fixed Point of Function)

Let X be a nonempty set and $f: X \to X$. A point $x^* \in X$ is a **fixed point** of f if $f(x^*) = x^*$.

Example 3.1

Let $X = \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$

- 1. f(x) = 2x has fixed point: x = 0.
- 2. f(x) = x has fixed points: $x \in \mathbb{R}$.
- 3. f(x) = x + 1 doesn't have fixed points.

3.2.2 \bigstar Contraction Mapping Theorem: contraction \Rightarrow exist unique fixed point

Theorem 3.3 (Contraction Mapping Theorem)

Let (X,d) be a nonempty complete metric space and $T:X\to X$ a contraction with modulus $\beta<1.$ Then

- 1. T has a unique fixed point x^* .
- 2. For every $x_0 \in X$, the sequence defined by

$$x_1 = T(x_0)$$

 $x_2 = T(x_1) = T(T(x_0)) = T^2(x_0)$
 \vdots
 $x_{n+1} = T(x_n) = T^{n+1}(x_0)$

converges to x^* .

Note that the theorem asserts both the **existence** and **uniqueness** of the fixed point, as well as giving an **algorithm** to find the fixed point of a contraction.

Proof 3.3

Define the sequence $\{x_n\}$ as above. Then,

$$d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1}))$$

$$\leq \beta d(x_n, x_{n-1})$$

$$\leq \beta^n d(x_1, x_0)$$

Then for any n > m,

$$d(x_n, x_m) \le d(x_1, x_0) \sum_{i=m}^{n-1} \beta^i$$

$$< d(x_1, x_0) \sum_{i=m}^{\infty} \beta^i$$

$$= \frac{\beta^m}{1 - \beta} d(x_1, x_0) \to 0 \text{ as } m \to \infty$$

Fixed $\varepsilon>0$, we can choose $N(\varepsilon)$ such that $\forall n,m>N(\varepsilon)$,

$$d(x_n, x_m) < \frac{\beta^m}{1 - \beta} d(x_1, x_0) < \varepsilon$$

Therefore, $\{x_n\}$ is Cauchy. Since (X,d) is complete, $x_n \to x^*$ for some $x^* \in X$.

Next we show that x^* is a fixed point of T.

$$T(x^*) = T\left(\lim_{n \to \infty} x_n\right)$$

$$= \lim_{n \to \infty} T(x_n) \text{ since } T \text{ is continuous}$$

$$= \lim_{n \to \infty} x_{n+1}$$

$$= x^*$$

so x^* is a fixed point of T.

Finally, we show that there is at most one fixed point. Suppose x^* and y^* are both fixed points of T, so $T(x^*) = x^*$ and $T(y^*) = y^*$. Then

$$d(x^*, y^*) = d(T(x^*), T(y^*))$$

$$\leq \beta d(x^*, y^*)$$

$$\Rightarrow (1 - \beta)d(x^*, y^*) \leq 0$$

$$\Rightarrow d(x^*, y^*) \leq 0$$

So $d(x^*, y^*) = 0$, which implies $x^* = y^*$.

3.2.3 Conditions for Fixed Point's Continuous Dependence on Parameters

Theorem 3.4 (Continuous Dependence on Parameters)

Let (X,d) and (Ω,ρ) be two metric spaces and $T:X\times\Omega\to X$. For each parameter $\omega\in\Omega$ let $T_\omega:X\to X$ be defined by $T_\omega(x)=T(x,\omega)$.

Suppose (1). (X,d) is complete, (2). T is continuous in ω (that is $T(x,\cdot):\Omega\to X$ is continuous for each $x\in X$), and (3). $\exists \beta<1$ such that T_{ω} is a contraction of modulus $\beta\ \forall \omega\in\Omega$.

Then the fixed point function (about parameter ω) $x^* : \Omega \to X$ defined by $x^*(\omega) = T_\omega(x^*(\omega))$ is continuous.

3.3 Brouwer's Fixed Point Theorem (@ Lec 13 of ECON 204)

3.3.1 Simple One: One-dimension

Theorem 3.5

Let X = [a, b] for $a, b \in \mathbb{R}$ with a < b and let $f : X \to X$ be continuous. Then f has a fixed point.

Proof 3.4

Easily proved by Intermediate Value Theorem.

3.3.2 ★ Brouwer's Fixed Point Theorem: continuous function has fixed point over compact, convex set

Theorem 3.6 (Brouwer's Fixed Point Theorem)

Let $X \subseteq \mathbb{R}^n$ be nonempty, **compact**, and **convex**, and let $f: X \to X$ be continuous. Then f has a fixed point.

Proof 3.5

Consider the case when the set X is the unit ball in \mathbb{R}^n .

Using a fact that "Let B be the unit ball in \mathbb{R}^n . Then there is no continuous function $h: B \to \partial B$ such that $h(x_0) = x_0$ for every $x_0 \in \partial B$ ", which is intuitive but hard to prove. (See J. Franklin, Methods of Mathematical Economics, for an elementary (but long) proof.)

Then prove by contradiction: suppose f has no fixed points in B. That is, $\forall x \in B, x \neq f(x)$. Since x and its image f(x) are distinct points in B for every x, we can carry out the following construction. For each $x \in B$, construct the line segment originating at f(x) and going through x. Let g(x) denote the intersection of this line segment with ∂B . This construction gives a continuous function $g: B \to \partial B$. Furthermore, notice that if $x_0 \in \partial B$, then $x_0 = g(x_0)$. Then, g gives $g(x) = x, \forall x \in \partial B$. Since there are no such functions by the fact above, we have a contradiction.

Chapter 4 Correspondence: $\Psi:X\to 2^Y$ (@ Lec 07 of ECON 204)

Definition 4.1 (Correspondence)

A **correspondence** $\Psi: X \to 2^Y$ from X to Y is a function from X to 2^Y , that is, $\Psi(x) \subseteq Y$ for every $x \in X$. (2^Y) is the set of all subsets of Y)

Example 4.1

Let $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a continuous utility function, y > 0 and $p \in \mathbb{R}^n_{++}$, that is, $p_i > 0$ for each i. Define $\Psi: \mathbb{R}^n_{++} \times \mathbb{R}_{++} \to 2^{\mathbb{R}^n_+}$ by

$$\Psi(p, y) = \operatorname{argmax} u(x)$$

s.t.
$$x \ge 0$$

$$p \cdot x \le y$$

 Ψ is the demand correspondence associated with the utility function u; typically $\Psi(p,y)$ is multi-valued.

4.1 Continuity of Correspondences

4.1.1 Upper/Lower Hemicontinuous

Let $X \subseteq \mathbb{E}^n$, $Y \subseteq \mathbb{E}^m$, and $\Psi: X \to 2^Y$.

Definition 4.2 (Upper Hemicontinuous)

 Ψ is **upper hemicontinuous** (uhc) at $x_0 \in X$ if, for every <u>open set</u> V with $\Psi(x_0) \subseteq V$, there is an open set U with $x_0 \in U$ s.t.

$$x \in U \Rightarrow \Psi(x) \subseteq V$$

Upper hemicontinuity reflects the requirement that Ψ doesn't "jump down/implode in the limit" at x_0 . (A set to "jump down" at the limit x_0 : It should mean the set suddenly gets smaller – it "implodes in the limit" – that is, there is a sequence $x_n \to x_0$ and points $y_n \in \Psi(x_n)$ that are far from every point of $\Psi(x_0)$ as $n \to \infty$.)

Definition 4.3 (Lower Hemicontinuous)

 Ψ is **lower hemicontinuous** (lhc) at $x_0 \in X$ if, for every open set V with $\Psi(x_0) \cap V \neq \emptyset$, there is an open set U with $x_0 \in U$ s.t.

$$x \in U \Rightarrow \Psi(x) \cap V \neq \emptyset$$

Lower hemicontinuity reflects the requirement that Ψ doesn't "jump up/explode in the limit" at x_0 . (A set to

"jump up" at the limit x_0 : It should mean that the set suddenly gets bigger – it "explodes in the limit" – that is, there is a sequence $x_n \to x_0$ and a point $y_0 \in \Psi(x_0)$ that is far from every point of $\Psi(x_n)$ as $n \to \infty$.)

Definition 4.4 (Continuous Correspondence)

 Ψ is **continuous** at $x_0 \in X$ if it is both **uhc** and **lhc** at x_0 .

Proposition 4.1

 Ψ is upper hemicontinuous (respectively lower hemicontinuous, continuous) if it is uhc (respectively lhc, continuous) at every $x \in X$.

Figure 4.1: The correspondence Ψ "implodes in the limit" at x_0 . Ψ is not upper hemicontinuous at x_0 .

Figure 4.2: The correspondence Ψ "explodes in the limit" at x_0 . Ψ is not lower hemicontinuous at x_0 .

4.1.2 Theorem: $\Psi(x) = \{f(x)\}\$ is uhc $\Leftrightarrow f$ is continuous

Theorem 4.1 ($\Psi(x) = \{f(x)\}\)$ is uhc $\Leftrightarrow f$ is continuous)

Let $X \subseteq \mathbb{E}^n$, $Y \subseteq \mathbb{E}^m$ and $f: X \to Y$. Let $\Psi: X \to 2^Y$ be defined by $\Psi(x) = \{f(x)\}$ for all $x \in X$. Then Ψ is **uhc** if and only if f is **continuous**.

4.1.3 Berge's Maximum Theorem: the set of maximizers is uhc with non-empty compact values

Theorem 4.2 (Berge's Maximum Theorem)

Let $X\subseteq\mathbb{R}^n$ and $Y\subseteq\mathbb{R}^m$. Consider the function $f:X\times Y\to\mathbb{R}$ and the correspondence $\Gamma:Y\to 2^X$. Define $v(y)=\max_{x\in\Gamma(y)}f(x,y)$ and the set of maximizers

$$\Omega(y) = \operatorname*{argmax}_{x \in \Gamma(y)} f(x,y) = \{x : f(x,y) = v(y)\}$$

Suppose f and Γ are continuous, and that Γ has non-empty compact values. Then, v is continuous and Ω is uhc with non-empty compact values.

4.2 Graph of Correspondence

An alternative notion of continuity looks instead at properties of the graph of the correspondence.

Definition 4.5 (Graph of Correspondence)

The **graph** of a correspondence $\Psi: X \to 2^Y$ is the set

$$\mathsf{graph}\Psi = \{(x,y) \in X \times Y : y \in \Psi(x)\}$$

4.2.1 Closed Graph

By the definition of continuous function $f: \mathbb{R}^n \to \mathbb{R}$, each convergent sequence $\{(x_n, y_n)\}$ in graph f converges to a point (x, y) in graph f, that is, graph f is closed.

Definition 4.6 (Closed Graph)

Let $X\subseteq \mathbb{E}^n$, $Y\subseteq \mathbb{E}^m$. A correspondence $\Psi:X\to 2^Y$ has closed graph if its graph is a closed subset of $X\times Y$, that is, if for any sequences $\{x_n\}\subseteq X$ and $\{y_n\}\subseteq Y$ such that $x_n\to x\in X$, $y_n\to y\in Y$ and $y_n\in \Psi(x_n)$ for each n, then $y\in \Psi(x)$.

Example 4.2

Consider the correspondence $\Psi(x)=\begin{cases} \{\frac{1}{x}\}, & \text{if } x\in(0,1]\\ \{0\}, & \text{if } x=0 \end{cases}$ ("implode in the limit")

Let V=(-0.1,0.1). Then $\Psi(0)=\{0\}\subseteq V$, but no matter how close x is to 0, $\Psi(x)=\{\frac{1}{x}\}\nsubseteq V$, so Ψ is not uhc at 0. However, note that Ψ has closed graph.

4.3 Closed-valued, Compact-valued, and Convex-valued Correspondences

Definition 4.7 (Closed-valued, Compact-valued, and Convex-valued Correspondences)

Given a correspondence $\Psi: X \to 2^Y$,

- 1. Ψ is **closed-valued** if $\Psi(x)$ is a closed subset of Y for all x;
- 2. Ψ is **compact-valued** if $\Psi(x)$ is compact for all x.
- 3. Ψ is **convex-valued** if $\Psi(x)$ is convex for all x.

4.3.1 Closed-valued, uhc and Closed Graph

For closed-valued correspondences these concepts can be more tightly connected. A closed-valued and upper hemicontinuous correspondence must have closed graph. For a closed-valued correspondence with a compact range, upper hemicontinuity is equivalent to closed graph.

Theorem 4.3

Let $X \subseteq \mathbb{E}^n$, $Y \subseteq \mathbb{E}^m$, and $\Psi: X \to 2^Y$.

- 1. Ψ is closed-valued and uhc $\Rightarrow \Psi$ has closed graph.
- 2. Ψ is closed-valued and uhc $\Leftarrow \Psi$ has closed graph. (If Y is compact)

Theorem 4.4

Let $X \subseteq \mathbb{E}^n$, $Y \subseteq \mathbb{E}^m$, and $\Psi : X \to 2^Y$. If Ψ has **closed graph** and there is an **open set** W with $x_0 \in W$ and a **compact set** Z such that $x \in W \cap X \Rightarrow \Psi(x) \subseteq Z$, then Ψ is **uhc** at x_0 .

4.3.2 Theorem: compact-valued, uhs correspondence of compact set is compact

Theorem 4.5

Let X be a compact set and $\Psi: X \to 2^X$ be a non-empty, compact-valued upper-hemicontinuous correspondence. If $C \subseteq X$ is compact, then $\Psi(C)$ is compact.

Proof 4.1

Given the compact-valued Ψ , we can have an open cover of $\Psi(C)$, $\{U_{\lambda} : \lambda \in \Lambda\}$. So $\forall x \in C$, there exists $U_{l(x)}, l(x) \in \Lambda$ such that $U_{l(x)}$ is an open cover of $\Psi(x)$.

Consider a $c \in C$. Since Ψ is uhs and $\Psi(c) \subseteq U_{l(c)}$, there exists open set V_c s.t. $c \in V_c$ and $\Psi(x) \subseteq U_{l(c)}, \forall x \in V_c \cap C$.

 $\{V_c:c\in C\}$ is an open cover of C. Because C is compact, there is a finite subcover $\{V_{c_i}:i=1,...,m\},m\in\mathbb{N}$, where $\{c_i:i=1,...,m\}\subseteq C$.

Because $\Psi(x) \subseteq U_{l(c_i)}, \forall x \in V_{c_i} \cap C$ and $\{V_{c_i} : i = 1, ..., m\}, m \in \mathbb{N}$ is a open cover for C, we can infer $\{U_{l(c_i)} : i = 1, ..., m\}$ is a finite subcover of $\{U_{l(c)} : c \in C\}$ for $\Psi(C)$. Hence, $\Psi(C)$ is compact.

4.4 Fixed Points for Correspondences (@ Lec 13 of ECON 204)

4.4.1 Definition

Definition 4.8 (Fixed Points for Correspondences)

Let X be nonempty and $\psi: X \to 2^X$ be a correspondence. A point $x^* \in X$ is a fixed point of ψ if $x^* \in \psi(x^*)$.

Note We only need x^* to be in $\psi(x^*)$, not $\{x^*\} = \psi(x^*)$. That is, ψ need not be single-valued at x^* . So x^* can be a fixed point of ψ but there may be other elements of $\psi(x^*)$ different from x^* .

4.4.2 Kakutani's Fixed Point Theorem: uhs, compact, convex values correspondence has a fixed point over compact convex set

Theorem 4.6 (Kakutani's Fixed Point Theorem)

Let $X \subseteq \mathbb{R}^n$ be a non-empty, **compact**, **convex** set and $\psi : X \to 2^X$ be an **upper hemi-continuous** correspondence with non-empty, **compact**, **convex** values. Then ψ has a fixed point in X.

4.4.3 Theorem: \exists compact set $C = \bigcap_{i=0}^{\infty} \Psi^i(X)$ s.t. $\Psi(C) = C$

Theorem 4.7

Let (X,d) be a compact metric space and let $\Psi(x): X \to 2^X$ be a upper-hemicontinuous, compact-valued correspondence, such that $\Psi(x)$ is non-empty for every $x \in X$. There exists a compact non-empty subset $C \subseteq X$, such that $\Psi(C) \equiv \bigcup_{x \in C} \Psi(x) = C$.

Proof 4.2

Let's construct a sequence $\{C_n\}$ such that $C_0 = X$, $C_1 = \Psi(C_0)$, ..., $C_n = \Psi(C_{n-1})$, ... We claim that $C = \bigcap_{i=0}^{\infty} C_i$ is a non-empty compact set and satisfies $\Psi(C) = C$.

- 1. Because we can infer $\Psi(X_1) \subseteq \Psi(X_2)$ if $X_1 \subseteq X_2$, $X = C_0 \supseteq C_1 \Rightarrow C_1 = \Psi(C_0) \supseteq C_2 = \Psi(C_1)$,...., so $C_0 \supseteq C_1 \supseteq \cdots \subseteq C_n \supseteq \cdots$. Hence, C is not empty.
- 2. Because X is compact, by the theorem 4.5, we can infer C_n is compact for all n. Then, C_n is closed for all n, so C is closed. Because C is a closed set of compact set X, C is compact.
- 3. $C \subseteq C_n, \forall n \Rightarrow \Psi(C) \subseteq \Psi(C_n), \forall n \Rightarrow \Psi(C) \subseteq C$
- 4. Assume $C \subseteq \Psi(C)$ doesn't hold, that is $\exists y \in C$ s.t. $y \notin \Psi(C)$. Because $y \in C$ and $C_0 \supseteq C_1 \supseteq \cdots \subset C_n \supseteq \cdots$, there exists $k \in C_n$ for all n s.t. $y \in \Psi(k)$. $k \in \bigcap_{i=1}^{\infty} C_i = C$, so $\Psi(k) \subseteq \Psi(C)$, which contradicts to $y \notin \Psi(C)$. Hence, $C \subseteq \Psi(C)$.

All in all the claim " $C = \bigcap_{i=0}^{\infty} C_i$ is a non-empty compact set and satisfies $\Psi(C) = C$ " is proved.

Chapter 5 Bayesian Persuasion: Extreme Points and Majorization

Based on

Kleiner, A., Moldovanu, B., & Strack, P. (2021). Extreme points and majorization: Economic applications. *Econometrica*, 89(4), 1557-1593.

0

5.1 Extreme Points

5.1.1 Extreme Points of Convex Set

Definition 5.1 (Extreme Points)

An **extreme point** of a convex set A is a point $x \in A$ that cannot be represented as a convex combination of points in A.

5.1.2 Krein-Milman Theorem: Existence of Extreme Points

Theorem 5.1 (Krein-Milman Theorem)

Every non-empty **compact convex** subset of a Hausdorff locally convex topological vector space (for example, a normed space) is the closed, convex hull of its extreme points.

In particular, this set has extreme points.

5.1.3 Bauer's Maximum Principle: Usefulness of Extreme Points for Optimization

Theorem 5.2 (Bauer's Maximum Principle)

Any function that is **convex and continuous**, and defined on a set that is **convex and compact**, attains its maximum at some extreme point of that set.

5.2 Majorization

5.2.1 Majorization and Weak Majorization

Definition 5.2 (Majorization of Non-decreasing Functions)

Consider right-continuous functions that map the unit interval [0,1] into the real numbers. For two non-decreasing functions $f,g \in L^1$, we say that f majorizes g, denoted by $g \prec f$, if the following two conditions hold:

$$\int_{x}^{1} g(s)ds \leq \int_{x}^{1} f(s)ds, \forall x \in [0,1]$$
 (Condition 1)

$$\int_0^1 g(s)ds = \int_0^1 f(s)ds$$
 (Condition 2)

Definition 5.3 (Weak Majorization)

f weakly majorizes g, denoted by $g \prec_w f$, if Condition 1 holds (not necessarily Condition 2).

5.2.2 How to work for non-monotonic functions? - Non-Decreasing Rearrangement

Note How this work with non-monotonic functions?

Suppose f, g are non-monotonic, we compare their non-decreasing rearrangements f^*, g^* .

Definition 5.4 (Rearrangement)

Given a function f, let m(x) denote the Lebesgue measure of the set $\{s \in [0,1]: f(s) \leq x\}$, that is $m(x) = \int_{s \in \{s \in [0,1]: f(s) \leq x\}} 1 ds$ (the "length" of the set). The non-decreasing rearrangement of f, f^* , is defined by

$$f^*(t) = \inf\{x \in \mathbb{R} : m(x) \ge t\}, \ t \in [0, 1]$$

5.2.3 Theorem: F majorizes $G \Leftrightarrow G$ is a mean-preserving spread of F

Based on

o Shaked, M., & Shanthikumar, J. G. (2007). Stochastic orders. New York, NY: Springer New York.

Definition 5.5 (Generalized Inverse)

Suppose G is defined on the interval [0,1], we can define the **generalized inverse**

$$G^{-1}(x) = \sup\{s : G(s) \le x\}, x \in [0, 1]$$

Let X_F and X_G be now random variables with distributions F and G, defined on the interval [0,1].

Theorem 5.3 (Shaked & Shanthikumar (2007), Section 3.A)

$$G \prec F \Leftrightarrow F^{-1} \prec G^{-1} \Leftrightarrow X_G \leq_{ssd} X_F \text{ and } \mathbb{E}[X_G] = \mathbb{E}[X_F]$$

where \leq_{ssd} denotes the standard <u>second-order stochastic dominance</u>.

Based on Theorem 1.1 and the Condition 2 of Majorization, we can conclude

Corollary 5.1 (Majorization ⇔ **Mean-preserving Contraction)**

F majorizes $G \Leftrightarrow F$ is a mean-preserving contraction of G (G is a mean-preserving spread of F)

That is, we can construct random variables X_F , X_G , jointly distributed on some probability space, such that $X_F \sim F$, $X_G \sim G$ and such that $X_F = \mathbb{E}[X_G \mid X_F]$.

5.3 Capture Extreme Points in Economic Applications

Let L^1 denote the real-valued and integrable functions defined on [0,1].

In this section, we focus on **non-decreasing (weakly increasing) functions**, for example, a cumulative distribution function in Bayesian persuasion, or an incentive-compatible allocation in mechanism design.

5.3.1 Definitions of $\mathcal{MPS}(f)$, $\mathcal{MPS}_w(f)$, $\mathcal{MPC}(f)$

Based on Corollary 5.1, we can define following sets

Definition 5.6

1. The set of non-decreasing functions that are majorized by f is denoted by

$$\mathcal{MPS}(f) = \mathsf{MPS}(f) \cap \{g \in L^1 \mid g \text{ is non-decreasing}\}$$

$$= \{g \in L^1 \mid g \text{ is non-decreasing and } g \prec f\}$$

2. The set of non-negative, non-decreasing functions that are weakly majorized by f is denoted by

$$\mathcal{MPS}_w(f) = \{g \in L^1 \mid g \text{ is non-negative, non-decreasing and } g \preceq f\}$$

3. The set of non-decreasing functions that majorize f and satisfy $f(0) \le g \le f(1)$ is denoted by

$$\mathcal{MPC}(f) = \mathsf{MPC}(f) \cap \{g \in L^1 \mid g \text{ is non-decreasing and } f(0) \leq g \leq f(1)\}$$

$$= \{g \in L^1 \mid g \text{ is non-decreasing and } g \succ f \text{ and } f(0) \leq g \leq f(1)\}$$

where $f(0) \le g \le f(1)$ is used to ensure compactness.

5.3.2 Proposition: $\mathcal{MPS}(f)$, $\mathcal{MPS}_w(f)$, $\mathcal{MPC}(f)$ have extreme points and any element is a combination of extreme points

Following two propositions are the Proposition 1 of the Kleiner et al. (2021).

Proposition 5.1 (Non-decreasing $f \Rightarrow \mathcal{MPS}(f)$, $\mathcal{MPS}_w(f)$, and $\mathcal{MPC}(f)$ have extreme points) Suppose $f \in L^1$ is non-decreasing. Then $\mathcal{MPS}(f)$, $\mathcal{MPS}_w(f)$, and $\mathcal{MPC}(f)$ are convex and compact in the norm topology \Rightarrow (by Krein-Milman Theorem 5.1) they all have non-empty set of extreme points.

Note We use extA to denote the set of extreme points of set A.

Proposition 5.2 (Non-decreasing $f \Rightarrow$ any distribution is a combination of extreme points)

Suppose $f \in L^1$ is non-decreasing. For any $g \in \mathcal{MPS}(f)$, \exists a probability measure λ_g over $\mathsf{ext}\mathcal{MPS}(f)$ such that

$$g = \int_{\text{ext}\mathcal{MPS}(f)} h \ d\lambda_g(h)$$

(also hold for any $g \in \mathcal{MPS}_w(f)$ and $g \in \mathcal{MPC}(f)$).

5.3.3 Extreme Points in $\mathcal{MPS}(f)$

Theorem 5.4 (Form of Extreme Points in MPS(f): Kleiner et al. (2021), Theorem 1)

Let f be non-decreasing. Then g is an **extreme point** in $\mathcal{MPS}(f)$ <u>if and only if</u> there exists a collection of disjoint intervals $\{[\underline{x}_i, \overline{x}_i)\}_{i \in I}$ such that

$$g(x) = \begin{cases} f(x), & \text{if } x \notin \bigcup_{i \in I} [\underline{x}_i, \overline{x}_i) \\ \frac{\int_{\underline{x}_i}^{\overline{x}_i} f(s) ds}{\overline{x}_i - \underline{x}_i}, & \text{if } x \in [\underline{x}_i, \overline{x}_i) \end{cases}$$

g is an extreme point of $\mathcal{MPS}(f)$ implies either that g(x) = f(x) or that g is constant at x.

Definition 5.7 (Exposed Element)

An element x of a convex set A is **exposed** if there exists a continuous linear functional that attains its maximum on A uniquely at x.

Note Every exposed point is extreme, but the converse is not true in general.

Corollary 5.2 (Kleiner et al. (2021), Corollary 1)

Every extreme point of $\mathcal{MPS}(f)$ is exposed.

5.3.4 Extreme Points in $\mathcal{MPS}_w(f)$

For a set $A \subseteq [0,1]$, we use $\mathbf{1}_A(x)$ denote the indicator function of set A: it equals to 1 if $x \in A$ and 0 otherwise.

Corollary 5.3 (Kleiner et al. (2021), Corollary 2)

Suppose that f is non-decreasing and non-negative. A function g is an extreme point of $\mathcal{MPS}_w(f)$ if and only if there is $\theta \in [0,1]$ such that g is an extreme point of $\mathcal{MPS}(f)$ and $g(x) = 0, \forall x \in [0,\theta).$

5.3.5 Extreme Points in $\mathcal{MPC}(f)$

Theorem 5.5 (Kleiner et al. (2021), Theorem 2)

Let f be non-decreasing and continuous. Then $g \in \mathcal{MPC}(f)$ is an extreme point of $\mathcal{MPC}(f)$ if and only if there exists a collection of intervals $[\underline{x}_i, \overline{x}_i)$, (potentially empty) sub-intervals $[\underline{y}_i, \overline{y}_i) \subseteq [\underline{x}_i, \overline{x}_i)$, and numbers v_i indexed by $i \in I$ such that for all $x \in [0, 1]$,

$$g(x) = \begin{cases} f(x) & \text{if } x \notin \bigcup_{i \in I} \left[\underline{x}_i, \bar{x}_i\right) \\ f\left(\underline{x}_i\right) & \text{if } x \in \left[\underline{x}_i, \underline{y}_i\right) \\ v_i & \text{if } x \in \left[\underline{y}_i, \bar{y}_i\right) \\ f\left(\bar{x}_i\right) & \text{if } x \in \left[\bar{y}_i, \bar{x}_i\right) \end{cases}$$

$$(5.1)$$

Moreover, a function g as defined in (5.1) is in $\mathcal{MPC}(f)$ if the following three conditions are satisfied:

$$\left(\bar{y}_i - \underline{y}_i\right) v_i = \int_{\underline{x}_i}^{\bar{x}_i} f(s) ds - f\left(\underline{x}_i\right) \left(\underline{y}_i - \underline{x}_i\right) - f\left(\bar{x}_i\right) \left(\bar{x}_i - \bar{y}_i\right)$$
(5.2)

$$f\left(\underline{x}_{i}\right)\left(\bar{y}_{i}-\underline{x}_{i}\right)+f\left(\bar{x}_{i}\right)\left(\bar{x}_{i}-\bar{y}_{i}\right)\leq\int_{\underline{x}_{i}}^{\bar{x}_{i}}f(s)\mathrm{d}s\leq f\left(\underline{x}_{i}\right)\left(\underline{y}_{i}-\underline{x}_{i}\right)+f\left(\bar{x}_{i}\right)\left(\bar{x}_{i}-\underline{y}_{i}\right)\tag{5.3}$$

If $v_i \in \left(f\left(\underline{y}_i\right), f\left(\bar{y}_i\right)\right)$, then for an arbitrary point m_i satisfying $f\left(m_i\right) = v_i$ it must hold that

$$\int_{m_i}^{\bar{x}_i} f(s) \mathrm{d}s \le v_i \left(\bar{y}_i - m_i \right) + f\left(\bar{x}_i \right) \left(\bar{x}_i - \bar{y}_i \right) \tag{5.4}$$

Condition (5.2) in the theorem ensures that g and f have the same integrals for each sub-interval $[\underline{x}_i, \bar{x}_i)$, analogously to the condition imposed in Theorem 5.3.3. Condition (5.3) ensures that $v_i \in (f(\underline{x}_i), f(\bar{x}_i))$, ensuring that g is non-decreasing. If f crosses g in the interval $[\underline{y}_i, \bar{y}_i]$, then there is $m_i \in [\underline{y}_i, \bar{y}_i]$ such that $f(m_i) = v_i$. In this case, Condition (5.4) ensures that $\int_s^{\bar{x}_i} f(t) dt \leq \int_s^{\bar{x}_i} g(t) dt$ for all $s \in [\underline{x}_i, \bar{x}_i)$ and thus that $f \prec g$. If $v_i \notin (f(\underline{y}_i), f(\bar{y}_i))$, Condition (5.3) is enough to ensure that $f \prec g$ and thus Condition (5.4) is not necessary.

Chapter 6 Bayesian Persuasion: Bi-Pooling

Based on

- ★ Arieli, I., Babichenko, Y., Smorodinsky, R., & Yamashita, T. (2023). Optimal persuasion via bipooling. *Theoretical Economics*, 18(1), 15-36.
- Gentzkow, Matthew and Emir Kamenica (2016), "A Rothschild-Stiglitz approach to Bayesian persuasion."
 American Economic Review, 106, 597-601.
- Kolotilin, Anton (2018), "Optimal information disclosure: A linear programming ap-proach." *Theoretical Economics*, 13, 607-635.

6.1 Persuation Model

Consider a persuation model where the state space is the interval [0,1] with a common prior $F \in \Delta([0,1])$ that has full support (i.e., [0,1] is the smallest closed set that has probability one). The sender knows the realized state and the receiver is uninformed.

1. Singaling: Prior to the realization of the state, the sender commits to a signaling policy

$$\pi: [0,1] \to \Delta(S)$$

where S is an arbitrary measurable space. Once the state $\omega \in [0,1]$ is realized, the sender sends a signal $s \in S$ to the receiver based on the committed signaling policy, i.e., $s \sim \pi(\omega)$. Without loss of generality, we may assume that S = [0,1], and that the posterior mean of the state, given signal s, is s itself.

Hence, the distribution of the posterior mean s given the signal policy π , denoted by $F_{\pi} \in \Delta([0,1])$ is a mean-preserving contraction of F.

It is also easy to note that for any $G \in MPC(F)$, there exists a signaling policy π (may not be unique) that makes $F_{\pi} = G$ (e.g., Gentzkow and Kamenica(2016), Kolotilin (2018)).

2. <u>Persuation problem:</u> The sender's indirect utility is denoted by $u : [0,1] \to \mathbb{R}$, where u(x) is the sender's expected utility in case the receiver's posterior mean is x. u is assume to be upper semicontinuous. (F, u) is referred as a **persuation problem**. The sender's problem takes the form:

$$\max_{G \in \mathsf{MPC}(F)} \mathbb{E}_{x \sim G}[u(x)]$$

6.2 Bi-Pooling

6.2.1 Bi-pooling Distribution

\$

Note For a distribution $H \in \Delta([0,1])$ and a measurable set $C \subseteq [0,1]$ we denote by $H|_C$ the distribution of $h \sim H$ conditional on the event that $h \in C$.

Definition 6.1 (Bi-pooling Distribution (Arieli et al. (2023), Definition 1))

A distribution $G \in MPC(F)$ is called a **bi-pooling distribution** (with respect to F) if there exists a collection of pairwise disjoint open intervals $\{(y_i, \overline{y}_i)\}_{i \in A}$ such that

 \circ For every $i \in A$,

$$G((y_i, \overline{y}_i)) = F((y_i, \overline{y}_i))$$

where
$$G((\underline{y}_i,\overline{y}_i)) = G(\overline{y}_i) - G(\underline{y}_i) = \int_{\underline{y}_i}^{\overline{y}_i} g(x) dx, F((\underline{y}_i,\overline{y}_i)) = F(\overline{y}_i) - F(\underline{y}_i) = \int_{\underline{y}_i}^{\overline{y}_i} f(x) dx.$$

o The remaining intervals are the same:

$$G|_{[0,1]\setminus \cup_{i\in A}(y_i,\overline{y}_i)} = F|_{[0,1]\setminus \cup_{i\in A}(y_i,\overline{y}_i)}$$

 \circ For every $i \in A$,

$$|\mathrm{supp}(G|_{(y_i,\overline{y}_i)})| \leq 2$$

which means there are at most two different values of G over $(\underline{y}_i, \overline{y}_i)$. If $|\operatorname{supp}(G|_{(\underline{y}_i, \overline{y}_i)})| = 2$, we call $(\underline{y}_i, \overline{y}_i)$ a **bi-pooling interval**; If $|\operatorname{supp}(G|_{(\underline{y}_i, \overline{y}_i)})| = 1$, we call $(\underline{y}_i, \overline{y}_i)$ a **pooling interval**. In the case where all intervals are pooling intervals, we say that G is a **pooling distribution** (with respect to F).

Example 6.1

Consider the persuasion problem (F,u), where F=U[0,1] is the uniform distribution over [0,1] and $u:[0,1]\to\mathbb{R}$ is an arbitrary function satisfying $u(\frac{1}{3})=u(\frac{2}{3})=0$ and $u(x)<0, \forall x\notin\{\frac{1}{3},\frac{2}{3}\}.$

Consider using a binary signal space $S = \{s_1, s_2\}$, where s_1 is sent with probability 1 over the interval $(\frac{1}{12}, \frac{7}{12})$ and s_2 is sent with probability 1 over the interval $[0, \frac{1}{12}] \cup [\frac{7}{12}, 1]$. This policy is a bi-pooling policy for the singleton collection $\{[0, 1]\}$.

6.3 Applying Bi-pooling Distributions to Persuasion Problems

6.3.1 It works for all

Theorem 6.1 (Arieli et al. (2023), Theorem 1)

Every persuasion problem (F, u) admits an optimal bi-pooling distribution.

Proposition 6.1 (Arieli et al. (2023), Proposition 1)

The set of extreme points of MPC(F) is precisely the set of bi-pooling distributions.

Theorem 6.2 (Arieli et al. (2023), Theorem 2)

For every bi-pooling distribution $G \in MPC(F)$ there exists a continuous utility function u for which G is the unique optimal solution of $\max_{G \in MPC(F)} \mathbb{E}_{x \sim G}[u(x)]$. That is, every extreme point of MPC(F) is exposed.

6.3.2 How it works

Definition 6.2 (Bi-pooling Policy (Arieli et al. (2023), Definition 3))

A signaling policy π is called a **bi-pooling policy** if there exists a collection of pairwise disjoint intervals $\{(\underline{y}_i, \overline{y}_i)\}_{i \in A}$ such that

- $\text{o for every state } \omega \in (\underline{y}_i, \overline{y}_i) \text{ we have } \operatorname{supp}(\pi(\omega)) \subseteq \{\underline{z}_i, \overline{z}_i\} \text{ (either } \pi(\omega) = \overline{z}_i \text{ or } \pi(\omega) = \underline{z}_i) \text{ for some } \underline{z}_i \leq \overline{z}_i \text{ and } \underline{z}_i, \overline{z}_i \in [\underline{y}_i, \overline{y}_i];$
- o for every $\omega \notin \bigcup_{i \in A}(y_i, \overline{y}_i)$, the policy sends the signal $\pi(\omega) = \omega$ (i.e., it reveals the state).

In the case where $\underline{z}_i = \overline{z}_i$ for all $i \in A$, we refer to π as a **pooling policy**.

Definition 6.3 (Monotonic Signaling Policy (Arieli et al. (2023), Definition 4))

A (possibly mixed) signaling policy, $\pi:[0,1]\to\Delta([0,1])$, is **monotonic** if

 $\pi(x)$ first-order stochastically dominates $\pi(y)$ for every $x \geq y$.

Proposition 6.2 (Arieli et al. (2023), Proposition 2)

Every persuasion problem admits an optimal (mixed) monotonic signaling policy.

Lemma 6.1 (Arieli et al. (2023), Lemma 3)

A persuasion problem (F, u) admits an optimal pure monotonic signaling policy <u>if and only if</u> it admits an optimal pooling policy.

Definition 6.4 (Double-Interval Nested Structure)

A pure signaling policy: for each bi-pooling interval $(\underline{y}_i, \overline{y}_i)$, we can find a sub-interval $(\underline{w}_i, \overline{w}_i) \subseteq (\underline{y}_i, \overline{y}_i)$ such that π is constant over the interval $(\underline{w}_i, \overline{w}_i)$ as well as over its complement $(\underline{y}_i, \overline{y}_i) \setminus (\underline{w}_i, \overline{w}_i)$.

Corollary 6.1 (Arieli et al. (2023), Corollary 2)

Every persuasion problem (F,u) has an optimal bi-pooling policy that has a double-interval nested structure.

Chapter 7 Optimization Methods

7.1 Generalized Neyman-Pearson Lemma

Based on

- Chernoff, H., & Scheffe, H. (1952). A generalization of the Neyman-Pearson fundamental lemma. The Annals of Mathematical Statistics, 213-225.
- Dantzig, G. B., & Wald, A. (1951). On the fundamental lemma of Neyman and Pearson. *The Annals of Mathematical Statistics*, 22(1), 87-93.

Given

- $\circ n + m$ real integrable functions $g_1, ..., g_n, f_1, ..., f_m$ of a point x in a Euclidean space X;
- \circ a real function $\phi: \mathbb{R}^n \to \mathbb{R}$ of n;
- \circ and m constants $c_1, ..., c_m$.

The problem considered is about the existence, necessary conditions, and sufficient conditions of

$$S_0 = \arg\max_{S \subset X} \phi\left(\int_S g_1 dx, ..., \int_S g_n dx\right)$$

s.t.
$$\int_S f_i dx = c_i, i = 1, ..., m$$

Notations: $y_j(S) \triangleq \int_S f_j dx, j = 1, ..., m \text{ and } z_i(S) \triangleq \int_S g_i dx, i = 1, ..., n.$

7.1.1 The Neyman-Pearson Lemma

The Neyman-Pearson lemma refers to the case $n=1, \phi(z_1)=z_1, X$ is 1-dimensional Euclidean space.

$$\max_{S \subset X} \int_S g(x) dx$$
 s.t.
$$\int_S f_i(x) dx = c_i, i = 1, ..., m$$
 (S1)

Chapter 8 Calculus of Variations

Based on:

- Advanced Mathematical Economics Paulo B. Brito PhD in Economics Lecture 4 3.11.2021
- o Minimization and Constraints of Partial Differential Equations Cathal Ormond.

0

Calculus of variations primarily focuses on finding functions that make certain integral expressions reach their maximum or minimum values.

8.1 Generalized Calculus

8.1.1 Functional

Definition 8.1 (functional)

A **functional** is a mapping between a normed vector space (e.g. a space of functions) and the space of real numbers.

Example 8.1

Specifically, the input of a functional can be a function, for example,

$$F(y) := \int_{a}^{b} y(x)dx$$

where $y \in X \subseteq \mathbb{R} \to \mathbb{R}$ is a function in the space of functions \mathcal{Y} which map $X \subseteq \mathbb{R} \to \mathbb{R}$. The F is the functional between \mathcal{Y} and \mathbb{R} .

8.1.2 Gâteux Derivative

We consider a functional F over the space of functions \mathcal{Y} in the following.

The variation of the functional is denoted as

$$\Delta F(y) = F(y + dy) - F(y)$$

In particular, the variation of the functional in the direction $h(x) \in \mathcal{Y}$ is

$$DF(y) = F(y + \epsilon h) - F(y)$$

Definition 8.2 (Gâteux Derivative / First Variation)

The *Gâteux derivative* (or the first variation) of the functional F at y in the direction $h(x) \in \mathcal{Y}$ is defined as the variation of the functional in the direction $h(x) \in \mathcal{Y}$ when the constant ϵ is infinitesimal

$$\delta F(y,h) := \lim_{\epsilon \to 0} \frac{F(y+\epsilon h) - F(y)}{\epsilon}$$
$$= \frac{d}{d\epsilon} F(y+\epsilon h) \Big|_{\epsilon=0}$$

Corollary 8.1 (Corollary to Riesz-Frechet theorem (Riesz and Sz.-Nagy, 1955, p. 61))

If we consider \mathcal{Y} as a *space of distributions*, we can represent the Gâteux derivative as a linear functional as regards any perturbation $h(\cdot)$ by

$$\delta F(y,h) = \int_X \frac{dF(y)}{dy(x)} h(x) dx$$

Definition 8.3 (Second-order Gâteux derivative)

The second-order Gâteux derivative associated to perturbations $h_1(x)$ and $h_2(x)$ is given by

$$\delta F(y, h_1, h_2) := \lim_{\epsilon_2 \to 0} \lim_{\epsilon_1 \to 0} \frac{F(y + \epsilon_1 h_1 + \epsilon_2 h_2) - F(y + \epsilon_1 h_1) - F(y + \epsilon_2 h_2) - F(y)}{\epsilon_1 \epsilon_2}$$
$$= \int_X \int_X \frac{d^2 F(y)}{dy(x_1) dy(x_2)} h_1(x_1) h_2(x_2) dx_1 dx_2$$

Specifically, we write $\delta^2 F(y,h) := \delta F(y,h,h)$.

From now on we will consider the following types of functionals which are common in economics.

8.1.3 Linear Functionals

Consider the linear functional

$$F(y) = \int_X f(y(x))dx$$

where $f(\cdot)$ is assumed to be smooth and the integral exists, and

$$G(y) = g(F(y)) = g\left(\int_X f(y(x))dx\right)$$

Then, the Gâteux derivatives of these two functionals are

$$\delta F(y,h) = \int_X \frac{dF(y)}{dy(x)} h(x) dx = \int_X \frac{df(y(x))}{dy} h(x) dx$$
$$\delta G(y,h) = \int_X \frac{dG(y)}{dy(x)} h(x) dx = \int_X g'(F(y)) \frac{df(y(x))}{dy} h(x) dx$$

and the second-order Gâteux derivatives are

$$\delta^{2}F(y,h) = \int_{X} \frac{d^{2}F(y)}{dy(x)^{2}} h^{2}(x) dx = \int_{X} \frac{d^{2}f(y(x))}{dy^{2}} h(x)^{2} dx$$

$$\delta^{2}G(y,h) = \int_{X} \frac{d^{2}G(y)}{dy(x)^{2}} h^{2}(x) dx = \int_{X} \left[g''(F(y)) \left(\frac{df(y(x))}{dy} \right)^{2} + g'(F(y)) \frac{d^{2}f(y(x))}{dy^{2}} \right] h(x)^{2} dx$$

8.1.4 Functionals involving first-order derivatives

Consider the functional that involves first-order derivatives

$$F(y) = \int_{x}^{\bar{x}} f(x, y(x), y'(x)) dx$$

where $f(\cdot)$ is continuous and continuous differentiable in (y, y'). The Gâteux derivative is given by

$$\begin{split} \delta F(y,h) &= \frac{d}{d\epsilon} F(y+\epsilon h) \bigg|_{\epsilon=0} \\ &= \frac{d}{d\epsilon} \int_X f(x,y(x)+\epsilon h(x),y'(x)+\epsilon h'(x)) dx \bigg|_{\epsilon=0} \\ &= \int_{\underline{x}}^{\bar{x}} \left[\frac{\partial f(x,y(x),y'(x))}{\partial y} h(x) + \frac{\partial f(x,y(x),y'(x))}{\partial y'} h'(x) \right] dx \\ &= \int_x^{\bar{x}} \frac{\partial f(x,y(x),y'(x))}{\partial y} h(x) dx + \int_x^{\bar{x}} \frac{\partial f(x,y(x),y'(x))}{\partial y'} dh(x) \end{split}$$

By integration by parts, the second integral can be written as

$$\int_{x}^{\bar{x}} \frac{\partial f(x, y(x), y'(x))}{\partial y'} dh(x) = \frac{\partial f(x, y(x), y'(x))}{\partial y'} h(x) \Big|_{x}^{\bar{x}} - \int_{x}^{\bar{x}} h(x) d\frac{\partial f(x, y(x), y'(x))}{\partial y'} dx$$

Therefore,

$$\delta F(y,h) = \int_{x}^{\bar{x}} \left[\frac{\partial f(x,y(x),y'(x))}{\partial y} - \frac{d}{dx} \left(\frac{\partial f(x,y(x),y'(x))}{\partial y'} \right) \right] h(x) dx + \frac{\partial f(x,y(x),y'(x))}{\partial y'} h(x) \Big|_{x}^{\bar{x}}$$

Note By choosing the $h(\cdot)$ that is a differentiable function vanishing on its boundary, i.e., $h(\underline{x}) = h(\bar{x}) = 0$, we have

$$\delta F(y,h) = \int_{\underline{x}}^{\overline{x}} \left[\frac{\partial f(x,y(x),y'(x))}{\partial y} - \frac{d}{dx} \left(\frac{\partial f(x,y(x),y'(x))}{\partial y'} \right) \right] h(x) dx \tag{GD}$$

That is, $\frac{dF(y^*)}{dy(x)} = \frac{\partial f(x,y(x),y'(x))}{\partial y} - \frac{d}{dx} \left(\frac{\partial f(x,y(x),y'(x))}{\partial y'} \right).$

8.2 Optimization of Functionals

8.2.1 Extremes of Functionals

Given an extreme $y^* \in \mathcal{Y}$ of functional F(y), locally we have

$$\delta F(y^*, h) = 0, \forall h \in \mathcal{Y}$$

According to $\delta F(y,h) = \int_X \frac{dF(y)}{dy(x)} h(x) dx$, we have that

$$\frac{dF(y^*)}{dy(x)} = 0, \forall x \tag{N1}$$

is a necessary condition for a maximum.

Since the maximum requires $F[y^*] \ge F[y]$ for all $y \in \mathcal{Y}$, by the generalized Taylor expansion that $F(y + \epsilon h) = F(y) + \delta F(y,h)\epsilon + \frac{1}{2}\delta^2 F(y,h)\epsilon^2 + o(\epsilon^2)$,

$$\delta^2 F(y^*, h) \le 0, \forall h \in \mathcal{Y} \tag{N2}$$

is a necessary condition for a maximum.

8.2.2 Euler-Lagrange Equation

Proposition 8.1 (Euler-Lagrange Equation)

Let $y^* : \mathbb{R} \to \mathbb{R}$ be an extremum of the functional that involves first-order derivatives

$$F(y) = \int_{x}^{\bar{x}} f(x, y(x), y'(x)) dx$$

where $f(\cdot)$ is continuous and continuous differentiable in (y, y'). Then, y^* must satisfy the **Euler**-

Lagrange Equation for f, i.e.,

$$\frac{\partial f(x,y^*(x),y^{*\prime}(x))}{\partial y} = \frac{d}{dx} \left(\frac{\partial f(x,y^*(x),y^{*\prime}(x))}{\partial y'} \right) \text{ for each } x \in [\underline{x},\bar{x}]$$

Proof 8.1

By choosing the $h(\cdot)$ that is a differentiable function vanishing on its boundary, i.e., $h(\underline{x}) = h(\bar{x}) = 0$, we have the equation (GD), where $\frac{dF(y^*)}{dy(x)} = \frac{\partial f(x,y(x),y'(x))}{\partial y} - \frac{d}{dx} \left(\frac{\partial f(x,y(x),y'(x))}{\partial y'} \right)$. Then, the Euler-Lagrange Equation is directly given by (N1).

8.2.3 Constrained Maximum of Functionals

Problems with functional constraints Consider the two functionals over function $y:X\to\mathbb{R},\ F(y)=\int_X f(y(x))dx$ and $G(y)=\int_X g(y(x))dx$.

The optimization problem is

$$\max_{y(\cdot)} F(y) := \int_X f(y(x)) dx$$
 s.t. $G(y) := \int_X g(y(x)) dx = 0$ (P1)

We can define a generalized Lagrangian functional

$$\mathcal{L}(y;\lambda) := F(y) + \lambda G(y)$$
$$= \int_X L(y(x), \lambda) dx$$

where $\lambda \in \mathbb{R}$ is the Lagrangian multiplier and $L(y(x), \lambda) := f(y(x)) + \lambda g(y(x))$ is a Lagrangian (function).

The necessary conditions for an optimum $y^*(x)$ are

$$\left.\frac{\partial \mathcal{L}(y;\lambda)}{\partial y(x)}\right|_{y^*(x)} = \frac{\partial f(y^*(x))}{\partial y} + \lambda \frac{\partial g(y^*(x))}{\partial y} = 0, \text{ for each } x \in X \tag{P1-N1}$$

and

$$\left. \frac{\partial \mathcal{L}(y;\lambda)}{\partial \lambda} \right|_{y^*(x)} = \int_X g(y^*(x)) dx = 0 \tag{P1-N2}$$

Problems with local constraints Now consider the problem that has infinity of constraints, i.e., for each $x \in X$.

$$\max_{y(\cdot),z(\cdot)} \int_X f(y(x),z(x)) dx$$
 (P2) s.t. $g(y(x),z(x)) = 0$ for each $x \in X$

Therefore, we introduce a Lagrangian function $\lambda:X\to\mathbb{R}$ instead of a Lagrange multiplier. The Lagrangian functional is

$$\mathcal{L}(y, z; \lambda) := \int_{X} \left[f(y(x), z(x)) + \lambda(x) g(y(x), z(x)) \right] dx$$

The necessary conditions are

$$\begin{split} \frac{\partial \mathcal{L}(y,z;\lambda)}{\partial y(x)}\bigg|_{y^*(x),z^*(x)} &= \frac{\partial f}{\partial y}(y^*(x),z^*(x)) + \lambda(x)\frac{\partial g}{\partial y}(y^*(x),z^*(x)) = 0, \text{ for each } x \in X \\ \frac{\partial \mathcal{L}(y,z;\lambda)}{\partial z(x)}\bigg|_{y^*(x),z^*(x)} &= \frac{\partial f}{\partial z}(y^*(x),z^*(x)) + \lambda(x)\frac{\partial g}{\partial z}(y^*(x),z^*(x)) = 0, \text{ for each } x \in X \\ \frac{\partial \mathcal{L}(y,z;\lambda)}{\partial \lambda(x)}\bigg|_{y^*(x),z^*(x)} &= g(y^*(x),z^*(x)) = 0, \text{ for each } x \in X \end{split}$$

Chapter 9 Politics Models

9.1 Voting Model: Implicit Function Theroem

Consider an incumbent I and a citizen/voter v.

- I picks $x_1 \in \mathbb{R}$;
- v observes $u_1 = -x_1^2 + \epsilon$, where $\epsilon \sim f$ and f is uninormal of 0, symmetric, continuous, and differentiable. f'(z) is positive for z < 0, negative for z > 0, and zero for z = 0.
- \bullet v re-elects or not
- (new) I chooses x_2
- ...

9.1.1 Case 1

Incumbents have $\alpha \in (0,1)$ probability to be "good" type who picks $x_1 = x_2 = 0$ and $1 - \alpha$ probability to be "bad" type who picks $\hat{x} = x_1 = x_2 > 0$.

Bayesian posterior beliefs are

$$Pr(\text{good} \mid u_1) = \frac{\alpha f(u_1)}{\alpha f(u_1) + (1 - \alpha) f(u_1 + \hat{x}^2)}$$

where $Pr(good \mid u_1) \ge \alpha \Leftrightarrow f(u_1) \ge f(u_1 + \hat{x}^2)$.

By our assumption about f, $f(u_1) \ge f(u_1 + \hat{x}^2)$ means u_1 is closer to zero than $u_1 + \hat{x}^2 \Rightarrow u_1^2 \le (u_1 + \hat{x}^2)^2 = u_1^2 + 2u_1\hat{x}^2 + \hat{x}^4$, that is, $u_1 > -\frac{\hat{x}^2}{2}$.

9.1.2 Case 2: Moral Hazard Version

All incumbents are "bad": ideal policy is 1. Assume voters re-elect if and only if $u_1 \ge k$, where k is endogenous. Based on this rule, the probability of an incumbent being re-elected is

$$\Pr(\text{re-elect}|x_1) = \Pr(-x_1^2 + \epsilon \ge k) = 1 - F(k + x_1^2)$$

Suppose the utility of the incumbent is

$$U_I(x_1, x_2) = w - (1 - x_1)^2 + \delta(w - (1 - x_2)^2) \mathbf{1}_{\text{re-elect}}$$

Specifically, the expected utility with $u_2 = 1$ is

$$U_I(x_1, x_2 = 1) = w - (1 - x_1)^2 + \delta w \left[1 - F(k + x_1^2) \right]$$

Then, x_1^* should solve

$$\frac{\partial U_I}{\partial x_1} = 2(1 - x_1) - 2\delta w x_1 f(k + x_1^2) = 0$$

$$\Rightarrow f(k + x_1^2) = -\frac{1}{\delta w} + \frac{1}{x_1} \frac{1}{\delta w}$$

Apply Implicit Function Theorem

Let
$$g(k, x) = f(k + x_1^2) + \frac{1}{\delta w} - \frac{1}{x_1} \frac{1}{\delta w}$$
.

The goal of the voter is to find the k that minimizes x_1^* . By the implicit function theorem

$$\frac{\partial x_1^*}{\partial k} = -\frac{\frac{\partial g}{\partial k}\Big|_{x_1^*}}{\frac{\partial g}{\partial x}\Big|_{x_1^*}}$$

As $\frac{\partial g}{\partial k} = f'(k+x_1^2)$ and $\frac{\partial g}{\partial x} = 2x_1f'(k+x_1^2) + \frac{1}{x_1^2}\frac{1}{\delta w}$, we can conclude the optimal k satisfies $k = -x_1^{*2}$. Then, $f(0) = -\frac{1}{\delta w} + \frac{1}{x_1^*}\frac{1}{\delta w} \Rightarrow$

$$x_1^* = \frac{1}{1 + \delta w f(0)}, \ k^* = -\left(\frac{1}{1 + \delta w f(0)}\right)^2$$

9.1.3 Case 3

Suppose the incumbent has probability α being "good" with $y_I = 0$ and probability $1 - \alpha$ being "bad" with $y_I = 1$. He chooses $x_2 = y_I$ at stage 2.

Given the strategy x_g and x_b Bayesian posterior beliefs are

$$Pr(good \mid u_1) = \frac{\alpha f(x_g^2 + u_1)}{\alpha f(x_g^2 + u_1) + (1 - \alpha) f(x_h^2 + u_1)}$$

Hence, $Pr(\text{good} \mid u_1) \ge \alpha$ if and only if $f(x_q^2 + u_1) \ge f(x_b^2 + u_1)$.

The voter's strategy is also represented by "re-elect" iff $u_1 \ge k$. At the critical point $u_1 = k$,

$$f(x_g^2 + k) = f(x_b^2 + k) \Rightarrow k = -\frac{x_g^2 + x_b^2}{2}$$

Suppose the expected utility (constructed based on avoiding deviations from the incumbent's true type) of the incumbent is

$$\mathbb{E}U_I(x_1, x_2 = y_I) = w - (x_1 - y_I)^2 + \delta w \left(1 - F(k + x_1^2)\right)$$

Obviously, $x_1^*=0$ for good incumbent. (i.e., $x_g=0$). Then, $k=-\frac{x_b^2}{2}$, and

$$\mathbb{E}U_b(x_1) = w - (x_1 - 1)^2 + \delta w \left(1 - F(k + x_1^2)\right)$$

which has derivative

$$-2(x_1 - 1) - 2\delta w x_1 f(k + x_1^2)$$

So, the optimal x_1^* of "bad" type should satisfy

$$f(k+x_1^2) + \frac{1}{\delta w} - \frac{1}{\delta w x_1} = 0$$

Consider the $x_1 = \sqrt{-2k}$ (by what we induced, $k = -\frac{x_b^2}{2}$), the optimal k should be solved by

$$H(k) = f(-k) + \frac{1}{\delta w} - \frac{1}{\delta w\sqrt{-2k}}$$
$$= f(k) + \frac{1}{\delta w} - \frac{1}{\delta w\sqrt{-2k}} = 0$$

By our assumption about f, f(k) = f(-k).

Also, by the implicit function theorem, we can analyze how the \boldsymbol{w} affects \boldsymbol{k}

$$\frac{\partial k}{\partial w} = -\frac{\frac{\partial H}{\partial w}\big|_{k^*}}{\frac{\partial H}{\partial k}\big|_{k^*}}$$

9.2 Two Period Accountability Model: Normal-Normal Learning

9.2.1 Normal-Normal Learning

Suppose θ has a prior $N(\mu_{\theta}, \sigma_{\theta}^2)$. We observe $s = \theta + \varepsilon$, where $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$.

Proposition 9.1 (Normal-Normal Learning)

The posterior beliefs about θ given s is also normal with mean $\mu_1 = \lambda \mu_\theta + (1 - \lambda)s$ and variance $\lambda \sigma_\theta^2$,

$$\theta \mid s \sim N(\lambda \mu_{\theta} + (1 - \lambda)s, \lambda \sigma_{\theta}^2)$$

where $\lambda = \frac{\sigma_{\theta}^{-2}}{\sigma_{\theta}^{-2} + \sigma_{\varepsilon}^{-2}} = \frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2} + \sigma_{\theta}^{2}}$ is the precision weight.

9.2.2 Two Period Accountability Model

- 1. Nature chooses $\theta \in \mathbb{R}$, which follows distribution $N(\mu_{\theta}, \sigma_{\theta}^2)$.
- 2. Incumbent takes the first action $a_1 \ge 0$.
- 3. All observe $y_1 = \theta + a_1 + \epsilon_1$, where $\epsilon_1 \sim N(0, \sigma_{\epsilon}^2)$.
- 4. Citizens choose $s_1 \in \mathbb{R}$.
- 5. Incumbent takes the second action $a_2 \ge 0$.
- 6. Citizens observe a_1 and $y_2 = \theta + a_2 + \epsilon_2$.
- 7. Citizens choose $s_2 \in \mathbb{R}$.

The utility of the incumbent is

$$U_I = s_1 - ka_1^2 + s_2 - ka_2^2, k > 0$$

and the utility of the citizens is

$$U_C = y_1 - (s_1 - \theta)^2 + y_2 - (s_2 - \theta)^2$$

1. **Period 1 Belief:** Given y_1 and the conjecture \tilde{a}_1 , we have

$$y_1 - \tilde{a}_1 = \theta + \epsilon_1$$

Based on the normal-Normal learning (9.1), the posterior belief about θ is

$$N(\underbrace{\lambda_1\mu_\theta + (1-\lambda_1)(y_1 - \tilde{a}_1)}_{\bar{\mu}_\theta}, \underbrace{\lambda_1\sigma_\theta^2}_{\bar{\sigma}_a^2})$$

where
$$\lambda_1 = \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\theta}^2}$$

2. **Period 2 Belief:** Given y_2 , a_1 (substitute \tilde{a}_1 in $\bar{\mu}_{\theta}$ and $\bar{\sigma}_{\theta}^2$), and the conjecture \tilde{a}_2 , we have

$$y_2 - \tilde{a}_2 = \theta + \epsilon_2$$

Based on the normal-Normal learning (9.1), the posterior belief about θ is

$$N(\underbrace{\lambda_2 \bar{\mu}_{\theta} + (1 - \lambda_2)(y_2 - \tilde{a}_2)}_{\bar{\mu}_{\theta}}, \underbrace{\lambda_2 \bar{\sigma}_{\theta}^2}_{\bar{\sigma}_{\theta}^2})$$

where
$$\lambda_1 = \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \bar{\sigma}_{\theta}^2}$$

The optimal $s_2^* = \bar{\bar{\mu}}_{\theta}$. Then,

$$U_{I,2} = s_2^* - ka_2^2$$

$$= \lambda_2 \bar{\mu}_\theta + (1 - \lambda_2)(y_2 - \tilde{a}_2) - ka_2^2$$

$$= \lambda_2 \bar{\mu}_\theta + (1 - \lambda_2)(\theta + a_2 + \epsilon_2 - \tilde{a}_2) - ka_2^2$$

$$\frac{\partial U_{I,2}}{\partial a_2} = 1 - \lambda_2 - 2ka_2$$

$$a_2^* = \frac{1 - \lambda_2}{2k}$$

Similarly,

$$a_1^* = \frac{1 - \lambda_2}{2k} > \frac{1 - \lambda_2}{2k}$$

9.3 Motivated Beliefs

- 1. The objective probability distribution is $\Pi = (\pi_1, \pi_2, ..., \pi_n)$;
- 2. The motivated belief $\Pi'=(\pi'_1,\pi'_2,...,\pi'_n)$ maximizes

$$f(\Pi') = \underbrace{-\alpha D_{KL} \left(\Pi' \| \Pi\right)}_{\text{accuracy}} + \underbrace{v(\Pi')}_{\text{directional}}$$

s.t.
$$g(\Pi') = 1 - \sum_{i=1}^{n} \pi'_i = 0$$

where $D_{KL}\left(\Pi'\|\Pi\right) \triangleq \sum_{i=1}^{n} \pi'_{i} \log\left(\frac{\pi'_{i}}{\pi_{i}}\right)$ is the KL-divergence.

The Lagrangian is

$$L(\Pi') = f(\Pi') - \lambda g(\Pi')$$

$$= -\alpha D_{KL} (\Pi' \| \Pi) + v(\Pi') - \lambda (1 - \sum_{i=1}^{n} \pi'_i)$$

$$\frac{\partial L(\Pi')}{\partial \pi'_i} = -\alpha \left(1 + \log \left(\frac{\pi'_i}{\pi_i} \right) \right) + \frac{\partial v(\Pi')}{\partial \pi'_i} + \lambda = 0$$

Let $v(\Pi') = \sum_{i=1}^n v_i \pi'_i$, then we have

$$\pi_i' = e^{\frac{\lambda}{\alpha} - 1} e^{\frac{v_i}{\alpha}} \pi_i$$

By the constraint $1-\sum_{i=1}^n\pi_i'=0,$ $e^{\frac{\lambda}{\alpha}-1}=\frac{1}{\sum_{j=1}^ne^{\frac{v_j}{\alpha}}\pi_j}.$ Then,

$$\pi_i' = \frac{e^{\frac{v_i}{\alpha}} \pi_i}{\sum_{i=j}^n e^{\frac{v_j}{\alpha}} \pi_j}$$

9.3.1 Normal Distribution

Suppose there is a $\theta \sim N(\mu, \sigma^2)$, the real density is

$$f(\theta) \propto e^{-\frac{1}{2} \left(\frac{\theta-\mu}{\sigma}\right)^2}$$

The motivated density is

$$\tilde{f}(\theta) = \underset{f'(\theta)}{\operatorname{argmax}} - D_{KL} \left(f' \| f \right) + \int_{\theta} v(\theta) f'(\theta) d\theta$$

$$\Rightarrow \tilde{f}(\theta) = \frac{f(\theta) e^{v(\theta)}}{\int_{\theta'} f(\theta') e^{v(\theta')} d\theta'} \propto f(\theta) e^{v(\theta)}$$

where $\int_{\theta'} f(\theta') e^{v(\theta')} d\theta'$ is assumed to be finite.

Proof 9.1

The optimization problem is

$$\max_{f'(\cdot)} \int_{-\infty}^{\infty} \left[v(\theta) - \log \left(\frac{f'(\theta)}{f(\theta)} \right) \right] f'(\theta) d\theta$$
s.t.
$$\int_{-\infty}^{\infty} f'(\theta) d\theta = 1$$

The generalized Lagrangian functional can be defined as

$$\mathcal{L}(f';\lambda) = \int_{-\infty}^{\infty} \left[v(\theta) - \log \left(\frac{f'(\theta)}{f(\theta)} \right) \right] f'(\theta) d\theta + \lambda \left(\int_{-\infty}^{\infty} f'(\theta) d\theta - 1 \right)$$

The necessary conditions for a maximum f^* is

$$\begin{split} \frac{\partial \mathcal{L}(f^*;\lambda)}{\partial f'(\theta)} &= -1 + v(\theta) - \log\left(\frac{f^*(\theta)}{f(\theta)}\right) + \lambda = 0, \text{ for each } \theta \in \mathbb{R} \\ \frac{\partial \mathcal{L}(f^*;\lambda)}{\partial \lambda} &= \int_{-\infty}^{\infty} f^*(\theta) d\theta - 1 = 0 \end{split}$$

Thus, we have

$$f^*(\theta) \propto f(\theta)e^{v(\theta)}$$

We take any quadratic $v(\theta) = v_0 + v_1\theta + v_2\theta^2$. Then,

$$\tilde{f}(\theta) \propto e^{-\frac{1}{2} \left(\frac{\theta - \mu}{\sigma}\right)^2 + v_0 + v_1 \theta + v_2 \theta^2} = k e^{-\frac{1}{2} \left(\frac{\theta - \mu_d}{\sigma_d}\right)^2}$$

where $\mu_d = \frac{v_1 + \sigma^{-2}\mu}{\sigma^{-2} - 2v_2}$, $\sigma_d = \left(\sigma^{-2} - 2v_2\right)^{-\frac{1}{2}}$, and k is a constant that is not a function of θ .

9.3.2 Accountability Model with Motivated Reasoning

There is an incumbent (with $\theta_I \sim N(\mu_I = 0, \sigma_\theta^2)$), finite set of voters and a (non-strategic) challenger (with θ_C).

The incumbent takes action $e \ge 0$. Public signal is $s = \theta_I + e + \epsilon$, where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$. Voters decide whether to retain the incumbent after observing s.

$$U_I(e, R) = R - c(e)$$

 $U_j(R) = s + a_j + R(\theta_I + a_j + v_I) + (1 - R)(\theta_C + v_C)$

R=1 if the incumbent stays at t=2, R=0 otherwise.

 v_I, v_C are candidate-specific utility shocks common to all voters $(v_I - v_C)$ has mean 0 and variance σ_v^2). a_j is the affinity of voter j to the incumbent.

Motivated Reasoning: (a simpler version), the voter is maximizing $\log f_{\theta|s}(\tilde{\theta}_I|s) + \delta v(a_j, \tilde{\theta}_I)$.

Assumptions: weakly concave in $\tilde{\theta}_I$ and $\frac{\partial^2 v(a_j,\tilde{\theta}_I)}{\partial a_j\partial\tilde{\theta}_I}\geq 0$.

A more general version:

$$\tilde{f}(\theta) = \underset{f'(\theta)}{\operatorname{argmax}} - D_{KL} \left(f' \| f \right) + \delta \int_{\theta} v(\theta) f'(\theta) d\theta$$

$$\Rightarrow \tilde{f}(\theta) = \frac{f(\theta) e^{\delta v(\theta)}}{\int_{\theta'} f(\theta') e^{\delta v(\theta')} d\theta'} \propto f(\theta) e^{\delta v(\theta)}$$

Example 9.1

Spatial Bias: $v(a_j, \theta_I) = -(a_j - \theta_I)^2$.

$$\tilde{\mu}_I = \tfrac{1}{1+2\delta\sigma_\theta^2}\mu_I + \tfrac{2\delta\sigma_\theta^2}{1+2\delta\sigma_\theta^2}a_j \text{ and the variance is } \tilde{\sigma}_\theta^2 = \left(\sigma_\theta^2 + 2\delta\right)^{-1} < \sigma_\theta^2.$$

Given the conjecture \hat{e} , the posterior belief of mean upon receiving s is $\lambda \tilde{\mu}_I + (1 - \lambda)(s - \hat{e})$.

A voter votes to re-elect if and only if: $\tilde{\mu}_I(s, a_j, \delta, \hat{e}) + a_j + v_I \ge \mu_C + v_C$

9.4 Stochastic Game

A "stochastic game" consist of:

- 1. A set of states K;
- 2. A set of players N;
- 3. Action for player $i: A_i(k) \ (k \in K);$
- 4. "Period Payoffs": $u_i(A, k)$;
- 5. Law of motion: $Pr(k_{t+1} \mid k_t, a_t)$, where a_t is the action taken at t. ("Markov")
- 6. Discount Rate δ ;
- 7. Utility for the entire game is given by

$$U_i = \sum_{t=1}^{\infty} \delta^{t-1} u_i(a_t, k_t)$$

8. History: $h_t \triangleq (a_1, k_1, ..., a_t, k_t)$ and the set of possible history is H_t .

Definition 9.1 (Markovian Strategy)

A **strategy** for *i* is a mapping $\sigma_i: H_t \times K \to \Delta A_i(k)$ for all *t*.

A Markovian strategy is a mapping $\sigma_i : K \to \Delta A_i(k)$.

Game starting at t is a subgame; A strategy profile σ^* is a SPNE if all players play BR, starting at each t.

Definition 9.2 (Markov Perfect Equilibrium)

A σ^* is a **Markov Perfect Equilibrium** (MPE) iff it is a SPNE satisfying Markovian.

9.4.1 Prison Dilemma as a stochastic game

Consider PD (Prison Dilemma) as a stochastic game,

- 1. $K = \{PD\};$
- 2. $A_i(PD) = \{0, 1\}, u_i(a, PD) = 1 a_{i,t} + 2a_{-i,t};$
- 3. $Pr(PD|PD, a_t) = 1$

Markov Strategy is defined by $\sigma_i = \Pr(a_{i,t} = 1) \in [0,1]$.

=0

In any MPE, the Markov Strategy at t should maximize U_i starting at t',

$$\sigma_i = \operatorname*{argmax}_{\sigma_i' \in [0,1]} \delta^{t'} (1 - \sigma_i' + 2\sigma_{-i}) + \sum_{t=t'+1}^{\infty} \delta^{t-1} (1 - \sigma_i + 2\sigma_{-i})$$

This a SPNE and MPE.

9.4.2 Revised Prison Dilemma

- 1. $K = \{PD, WPD\};$
- 2. $A_i(PD) = \{0, 1\}, u_i(a, PD) = 1 a_{i,t} + 2a_{-i,t};$
- 3. $A_i(WPD) = \{0, 1\}, u_i(a, WPD) = u_i(a, PD) x, \text{ where } x \in \mathbb{R}_+;$
- 4. $Pr(k_{t+1} = WPD \mid k_t = WPD) = 1;$
- 5. $Pr(k_{t+1} = WPD \mid k_t = PD, (1, 1)) = 0;$
- 6. $Pr(k_{t+1} = WPD \mid k_t = PD, \{(0,1), (1,0), (0,0)\}) = q, q \in [0,1].$

Markov Strategy is defined by $\sigma_i(k_t)$. Obviously, $\sigma_i^*(WPD) = 0$ in any MPE.

"Value function" $v(PD, \sigma)$ represents the net present value of starting a period in state PD given σ . The most desirable situation that both players choose 1:

$$v(PD, \sigma^*) = 2 + \delta v(PD, \sigma^*) \Rightarrow v(PD, \sigma^*) = \frac{2}{1 - \delta}$$

Check one-period devotion from changing 1 to 0 at this stage:

$$v'(PD, \sigma^*) = 3 + \delta \left[qv(WPD, \sigma^*) + (1 - q)v(PD, \sigma^*) \right]$$
$$= 3 + \delta \left[q \frac{1 - x}{1 - \delta} + (1 - q) \frac{2}{1 - \delta} \right]$$

This deviation is not profitable if

$$v'(PD, \sigma^*) \le v(PD, \sigma^*)$$

i.e. $q \ge \frac{1 - \delta}{(1 + x)\delta}$

9.4.3 Dynamic Commitment Problem

- 1. $K = \{l, h, w_C, w_R\};$
- 2. $N = \{C, R\};$
- 3. In state $k \in \{l, h\}$:

R makes an offer $x_k \leq 1$;

C accepts $(R \text{ and } C \text{ get period payoffs } (1 - x_k, x_k) \text{ and } \Pr(k_{t+1} = h) = q, \Pr(k_{t+1} = l) = 1 - q)$ or rejects $(R \text{ and } C \text{ get period payoffs } ((1 - p_k)(1 - f), p_k(1 - f)) \text{ and } \Pr(k_{t+1} = w_C) = p_k, \Pr(k_{t+1} =$

4. If enter w_C (R and C get period payoffs (0, 1 - f)); If enter w_R (R and C get period payoffs (1 - f, 0)); Game over.

MPE

If offer accepted in l and h, x_k :

$$v_C(l; p) = x_k + \delta (qv_C(h; p) + (1 - q)v_C(l; p))$$

$$=v_C(h; p) = x_k + \delta (qv_C(h; p) + (1 - q)v_C(l; p))$$

If offer rejected, $\frac{p_k(1-f)}{1-\delta}$.

In equilibrium $\frac{p_k(1-f)}{1-\delta} = v_C(l;p) = v_C(h;p),$ then we have

$$x_k = (p_k - \delta \bar{p}) \frac{1-f}{1-\delta}$$
, where $\bar{p} = qp_h + (1-q)p_l$