大学物理 II 期末考试题(大面积)

- 一、单选题(共11小题,每题3分,共33分)
- 1、边长为 l 的正方形线圈中通有电流 I,此线圈在 A 点(见图) 产生的磁感强度B为

- (D) 以上均不对.
- Γ
- 2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为 R, x 坐标轴 垂直圆筒轴线,原点在中心轴线上.图(A) \sim (E)哪一条曲线表示B-x的关系?

- 3、长直电流 I₂ 与圆形电流 I₁ 共面,并与其一直径相重合如图(但 两者间绝缘),设长直电流不动,则圆形电流将
 - (A) 绕 I₂旋转.
- (B) 向左运动.
- (C) 向右运动.
- (D) 向上运动.
- (E) 不动.

Γ

Γ]

- 4、图示一测定水平方向匀强磁场的磁感强度 \bar{B} (方向见图)的实验装置. 位于竖直 面内且横边水平的矩形线框是一个多匝的线圈. 线框挂在天平的右盘下, 框的下 端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场 对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m才能使天平重新 平衡. 若待测磁场的磁感强度增为原来的 3 倍, 而通过线圈的电流减为原来的 1/2,
- 磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为

(B) 3m/2.

(C) 2m/3.

- (D) m/6.
- (E) 9m/2.

			[]	
5、半径为 a 的圆线圈置于码线圈电阻为 R; 当把线圈转 线圈电阻为 R; 当把线圈转 与线圈面积及转动所用的时 (A) 与线圈面积成正比 (B) 与线圈面积成正比	专动使其法院 时间的关系。 比,与时间	句与 <i>Ē</i> 的夹角。 是 无关.			
(C) 与线圈面积成反比 (D) 与线圈面积成反比	L,与时间,	戎正比.			
]
6、将形状完全相同的铜环 化率相等,则不计自感时 (A)铜环中有感应电动 (B)铜环中感应电动势 (C)铜环中感应电动势 (D)两环中感应电动势	动势,木环。 势大,木环。 势小,木环。	中无感应电动 中感应电动势	势. 小.	磁通量的	植时间的变
	14H /1 •]
7、用频率为 ν ₁ 的单色光照 光照射该金属时,测得饱和 (A) ν ₁ > ν ₂ . (C) ν ₁ = ν ₂ .	和电流为 I ₂ , (B) v ₁	,若 I ₁ > I ₂ ,贝		以频率;	为12的单色
, ,	顽散射的 X _e ,且 I _{Li.} >I _I (Β) λ _{Li} =λ _I	射线波长分别 Fe 则	为λ _{Li} 和λ _{Fe}		
9、要使处于基态的氢原子谱线组成的谱线系)的最长(A) 1.5 eV.(C) 10.2 eV.	波长的谱线 (B)				
10、若α粒子(电荷为 2e)在动,则α粒子的德布罗意波(A) (2eRB)/h.	区的波数是 (B)	(eRB)/h.	场中沿半径	为 R 的 🛭	圆形轨道运

11、已知粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi(x) = B\cos\frac{3\pi x}{2a}, \quad (-a \le x \le a)$$

]

		(B) 2. (D) 1/						
(C)	\ 2/\ \ a.	(D) 1/	\sqrt{a} .]
12、若空 则该磁场	题(共2题, 间存在两根无际 分布 只能用安培环	艮长直载流	导线,空		分布就ス	不具有简	育单的₹	寸称性,
(A) (B) (C) (D)	可以直接用安可以用毕奥一	培环路定3 萨伐尔定6	理求出. 津求出.	的叠加原	理求出.	Г		1
	光电管上电势。 初动能 <i>E</i> ₀ 、饱					则从阴	极逸出	- 的光电
` '	E_0 不变, I_s 增 E_0 增大, I_s 不		` '	<i>E</i> ₀ 不变, <i>E</i> ₀ 不变,]
14、置于 磁场方向 其相对磁	题(共3题,是磁场中的磁介。 和外磁场方向 日本外磁场方向 日本。 一种磁场强度是	质,介质表 	E面形成。 关键词: 大于 1,	磁化电流。 相同, 小于 1,	相反,垂 等于 1)	直); ;若是	若是顺 铁磁质	磁质, , 其磁
量=	² 波长为λ,则基	•		; 动量	的大小	=		; 质
16、写出	二维定态薛定谔	景方程式						0
17、(本 匀外磁场 场的情况	[题(共 4 题,] (题 5 分)一圆 $($ \bar{B} 中(如图示)。 (】下,求线圈导: 圈的法线方向,	线圈的半径 在不考虑 线上的张力	载流圆约 J.	美 圈本身所		•	I. R	$\langle \vec{B} \rangle$
三角形区	题 5 分)有一 域中的磁感强 \bar{k} 为 z 轴方向自	度为 $\vec{B} = B_0$	$\int_{0}^{2} x^{2} y e^{-at} \vec{k}$, 式中 <i>I</i>	B ₀ 和 a	<i>y b O</i>	b	→ x

那么归一化常数 B 为

19、(本题 10 分)一个粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a) \qquad (0 < x < a)$$

若粒子处于 n=2 的状态,确定概率密度最大和最小的位置,然后计算在 [0, a/3] 区间内粒子出现的概率是多少?

[提示:
$$\int \sin^2 x \, dx = \frac{1}{2}x - (1/4)\sin 2x + C$$
]

20、(本题 10 分)波长为 $\lambda_0 = 0.500$ Å 的 X 射线被静止的自由电子所散射,若散射光的波长变为 $\lambda = 0.522$ Å,试求反冲电子的动能和动量的大小.

(普朗克常量 $h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s}$)

五、说明题(共2题,共12分)

21、(本题 4 分) 如图,一个正电荷在 xy 平面内以速度 \bar{v}_1 (\bar{v}_1 的方向与 x 轴正向夹角为 α)运动时,所受到的磁场作用力为 \bar{F}_1 (\bar{F}_1 的方向与 z 轴正向相反). 若该粒子沿 z 轴以速度 \bar{v}_2 运动时,所受到的磁场力为 \bar{F}_2 (\bar{F}_2 的方向与 x 轴正向一致),问该磁场的磁感强度 \bar{B} 是什么方向?

22、(本题 8 分)何谓激光?它有哪些特性? 实现这些特性的实验装置是什么以及如何实现?

六、讨论题(共1题,共10分)

23、名词解释: (1) 涡旋电场; (2) 位移电流密度. 并写出与这两个概念相关的环路定理及其微分形式。

17. 一圆线圈的半径为 R,载有电流 I,置于均匀外磁场 \bar{B} 中(如图示). 在不考虑载流圆线圈本身所激发的磁场的情况下,求线圈导线上的张力.

解:考虑半圆形载流导线 \widehat{CD} 所受的安培力

$$F_m = IB \cdot 2R$$
 3 $\%$

列出力的平衡方程式 $IB \cdot 2R = 2T$

故:
$$T = IBR$$

18 有一三角形闭合导线,如图放置. 在这三角形区域中的磁感强度为 $\bar{B} = B_0 x^2 y e^{-at} \bar{k}$,式中 B_0 和a是常量, \bar{k} 为z轴方向单位矢量,求导线中的感生电动势.

解: $\boldsymbol{\Phi} = B_0 e^{-at} \int_0^b \int_0^{b-x} x^2 y \, dy \, dx$ 2 分

$$= B_0 e^{-at} \int_0^b x^2 [(b-x)^2/2] dx$$
1 $/x$

$$= (b^5 / 60) \cdot B_0 e^{-at}$$
 2 $\%$

●的方向与 k 成右旋关系 1分

20 解:入射光子的能量为 $\varepsilon_0 = \frac{hc}{\lambda_0}$ 1

分

散射光子的能量为 $\varepsilon = \frac{hc}{\lambda}$ 1 分

反冲电子的动能为 $E_{K} = \varepsilon_{0} - \varepsilon = hc(\frac{1}{\lambda_{0}} - \frac{1}{\lambda}) = 1.68 \times 10^{-16}$ 3分

23

答: 涡旋电场: 随时间变化的磁场所产生的电场, 其电场强度线为闭合曲线.

2分

位移电流密度:位移电流是变化电场产生的,其定义为:电场中某点位移电流密度等于该点电位移矢量的时间变化率. 3分

大面积答案

1-5 ABCBA 6D (A) 7DBCAD

12 CD 13AD

14 相反; 大于1; 非线性

15 hc/λ ; h/λ ; $h/(c\lambda)$

16
$$\frac{\partial^2 \Psi(x,y)}{\partial x^2} + \frac{\partial^2 \Psi(x,y)}{\partial y^2} + V(x,y)\Psi(x,y) = E\Psi(x,y)$$

$$17 F_{CD} = IB2R = 2T$$
, $IBR = T$

$$18 \, \overset{\mathbf{v}}{B} = B_0 x^2 \, \text{ye}^{-at} \overset{\mathbf{v}}{k} \, ,$$

$$\Phi = B_0 \int_0^b \int_0^{b-x} x^2 y e^{-at} dx dy = B_0 e^{-at} b^5 / 60 , \quad \varepsilon = \frac{d\Phi}{dt} = aB_0 e^{-at} b^5 / 60 \quad (3+2)$$

19
$$\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a)$$
, $|\psi_n(x)|^2 = 2/a \sin^2(2\pi x/a)$,

最大值位置, a/4,3a/4;最小值 0, a/2,a; 5 分

$$\int_{0}^{a} \left| \psi_{n}(x) \right|^{2} dx = (1/3 + \frac{\sqrt{3}}{8\pi}) = 0.4(3+2)$$

20
$$\varepsilon_0 = h \frac{c}{\lambda_0}$$
, $\varepsilon = h \frac{c}{\lambda}$, $E_k = h \frac{c}{\lambda_0} - h \frac{c}{\lambda} = 1.68 \times 10^{-16} J$ (5 分)

做矢量三角形, 得到

$$p^{2} = \left(\frac{h}{\lambda_{0}}\right)^{2} + \left(\frac{h}{\lambda}\right)^{2} - 2\frac{h}{\lambda_{0}}\frac{h}{\lambda}\cos\theta \qquad (2\,\%)$$

又

$$\lambda - \lambda_0 = h / (m_0 c) (1 - \cos \theta) \quad (2 \text{ } \%)$$

得到

 $\cos\theta = 1/12$

经过近似计算,得到

$$p = \sqrt{2} \frac{h}{\lambda_0} = 1.7 \times 10^{-23} \, kgm \, / \, s \quad (1 \, \text{fb})$$

21 磁感应强度沿着 v 轴的负方向。4 分

228分

激光: Laser, 受激辐射光放大。 三个特征: 1 方向性好 2 单色性好 3 亮度高 (1+3) 实验装置: 激励装置,工作物质,光学谐振腔。 激励装置提供能量,工作物质要有粒子数 反转特征,谐振腔: 1 产生和维持光放大 2 方向性好 3 选频 (4分)

23 10 分

涡旋电场: 时间变化的磁场产生的, 为闭合曲线。(2分)

位移电流密度: 随时间变化的电场产生的, 为位移电流密度的时间变化率。(3分)

$$\mathbf{N}^{\mathbf{T}} \cdot d\mathbf{l}^{\mathbf{T}} = \mathbf{I}^{\mathbf{T}} \mathbf{j}_{c} \cdot d\mathbf{S}^{\mathbf{T}} + \mathbf{I}^{\mathbf{T}} \frac{\partial \mathbf{D}^{\mathbf{L}}}{\partial t} \cdot d\mathbf{S}^{\mathbf{T}} \quad 微分形式: \quad \nabla \times \mathbf{H}^{\mathbf{T}} = \mathbf{j}_{c}^{\mathbf{T}} + \frac{\partial \mathbf{D}^{\mathbf{L}}}{\partial t} \quad (1+2 \, \%)$$