

M10

Quectel Cellular Engine

Hardware Design

M10_HD_V3.0

Document Title	M10 Hardware Design	
Revision	3.0	
Date	2012-03-02	
Status	Released	
Document Control ID	M10_HD_V3.0	

General Notes

Quectel offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Quectel. The information provided is based upon requirements specifically provided for customers of Quectel. Quectel has not undertaken any independent search for additional information, relevant to any information that may be in the customer's possession. Furthermore, system validation of this product designed by Quectel within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information of Quectel Co., Ltd. Copying of this document, distribution to others, and communication of the contents thereof, are forbidden without permission. Offenders are liable to the payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Quectel Wireless Solutions Co., Ltd. 2012

M10_HD_V3.0 -1-

Contents

Contents	2
Table Index	4
Figure Index	5
0. Revision history	7
1. Introduction	9
1.1. Related documents	9
1.2. Terms and abbreviations	10
1.3. Directives and standards	12
1.3.1. FCC Statement	12
1.3.2. FCC Radiation exposure statement	12
1.3.3. Industry Canada licence	12
1.4. Safety cautions	13
2. Product concept	15
2.1. Key features	15
2.2. Functional diagram	17
2.3. Evaluation board	18
3. Application interface	19
3.1. Pin of module	19
3.1.1. Pin assignment	19
3.1.2. Pin description	20
3.2. Operating modes	25
3.3. Power supply	26
3.3.1. Power supply pins	27
3.3.2. Minimizing supply voltage drop	27
3.3.3. Monitor power supply	28
3.4. Power up and down scenarios	28
3.4.1. Power on	28
3.4.2. Power down	31
3.4.3. Restart module using the PWRKEY pin	35
3.5. Power saving	36
3.5.1. Minimum functionality mode	36
3.5.2. SLEEP mode (slow clock mode)	36
3.5.3. Wake up module from SLEEP mode	37
3.6. Summary of state transitions (except SLEEP mode)	37
3.7. RTC backup	37
3.8. Serial interfaces	39
3.8.1. UART Port	40
3.8.2. Debug Port	
3.8.3. UART Port 3	
3.8.4. UART Application	45
3.9. Audio interfaces	

3.9.1. Decrease TDD noise and other noise	47
3.9.2. Microphone interfaces configuration	48
3.9.3. Receiver and speaker interface configuration	49
3.9.4. Earphone interface configuration	51
3.10. SIM card interface	52
3.10.1. SIM card application	52
3.10.2. Design considerations for SIM card holder	54
3.11. Keypad interface	56
3.12. ADC	57
3.13. Behaviors of the RI	58
3.14. Network status indication	60
3.15. Operating status indication	61
3.16. General purpose input & output (GPIO)	61
3.17. Open drain output (LIGHT_MOS)	62
3.18. SD card interface	63
4. Antenna interface	65
4.1. Antenna installation	65
4.2. RF output power	66
4.3. RF receiving sensitivity	66
4.4. Operating frequencies	66
4.5. Recommendation of RF pad welding	66
5. Electrical, reliability and radio characteristics	68
5.1. Absolute maximum ratings	68
5.2. Operating temperature	68
5.3. Power supply ratings	69
5.4. Current consumption	70
5.5. Electro-static discharge	72
6. Mechanical dimensions	73
6.1. Mechanical dimensions of module	73
6.2. Footprint of recommendation	75
6.3. Top view of the module	77
6.4. Bottom view of the module	77
Appendix A: GPRS coding schemes	78
Appendix B: GPRS multi-slot classes	79

Table Index

TABLE 1: RELATED DOCUMENTS	9
TABLE 2: TERMS AND ABBREVIATIONS	10
TABLE 3: MODULE KEY FEATURES	15
TABLE 4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR	
INTERFACE	17
TABLE 5: PIN DESCRIPTION	20
TABLE 6: OVERVIEW OF OPERATING MODES	25
TABLE 7: AT COMMANDS USED IN ALARM MODE	31
TABLE 8: SUMMARY OF STATE TRANSITION	37
TABLE 9: LOGIC LEVELS OF THE SERIAL INTERFACE	40
TABLE 10: PIN DEFINITION OF THE SERIAL INTERFACES	40
TABLE 11: PIN DEFINITION OF AUDIO INTERFACE	47
TABLE 12: TYPICAL ELECTRET MICROPHONE CHARACTERISTIC	51
TABLE 13: TYPICAL SPEAKER CHARACTERISTIC	51
TABLE 14: PIN DEFINITION OF THE SIM INTERFACE	52
TABLE 15: PIN DESCRIPTION OF AMPHENOL SIM CARD HOLDER	55
TABLE 16: PIN DESCRIPTION OF MOLEX SIM CARD HOLDER	55
TABLE 17: PIN DEFINITION OF THE KEYPAD INTERFACE	56
TABLE 18: PIN DEFINITION OF THE ADC	57
TABLE 19: CHARACTERISTIC OF THE ADC	
TABLE 20: BEHAVIORS OF THE RI	58
TABLE 21: WORKING STATE OF THE NETLIGHT	60
TABLE 22: PIN DEFINITION OF THE STATUS	61
TABLE 23: PIN DEFINITION OF THE GPIO INTERFACE	62
TABLE 24: PIN DEFINITION OF THE LIGHT_MOS	62
TABLE 25: PIN DEFINITION OF THE SD CARD INTERFACE	63
TABLE 26: PIN NAME OF THE SD CARD AND T-FLASH(MICRO SD) CARD	64
TABLE 27: PIN DEFINITION OF THE RF_ANT	65
TABLE 28: THE MODULE CONDUCTED RF OUTPUT POWER	66
TABLE 29: THE MODULE CONDUCTED RF RECEIVING SENSITIVITY	66
TABLE 30: THE MODULE OPERATING FREQUENCIES	66
TABLE 31: ABSOLUTE MAXIMUM RATINGS	68
TABLE 32: OPERATING TEMPERATURE	68
TABLE 33: THE MODULE POWER SUPPLY RATINGS	69
TABLE 34: THE MODULE CURRENT CONSUMPTION	70
TABLE 35: THE ESD ENDURANCE (TEMPERATURE:25°C, HUMIDITY:45 %)	72
TABLE 36: DESCRIPTION OF DIFFERENT CODING SCHEMES	
TABLE 37: GPRS MULTI-SLOT CLASSES	79

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	18
FIGURE 2: TOP VIEW OF MODULE PIN ASSIGNMENT	19
FIGURE 3: REFERENCE CIRCUIT OF THE SOURCE POWER SUPPLY INPUT	26
FIGURE 4: RIPPLE IN SUPPLY VOLTAGE DURING TRANSMITTING BURST	27
FIGURE 5: REFERENCE CIRCUIT OF THE VBAT INPUT	28
FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT	29
FIGURE 7: TURN ON THE MODULE USING KEYSTROKE	
FIGURE 8: TIMING OF TURN ON SYSTEM	30
FIGURE 9: TIMING OF TURN OFF THE MODULE	32
FIGURE 10: REFERENCE CIRCUIT FOR EMERG_OFF BY USING DRIVING CIRCUIT	34
FIGURE 11: REFERENCE CIRCUIT FOR EMERG_OFF BY USING BUTTON	34
FIGURE 12: TIMING OF RESTART SYSTEM	35
FIGURE 13: TIMING OF RESTART SYSTEM AFTER EMERGENCY SHUTDOWN	35
FIGURE 14: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	38
FIGURE 15: RTC SUPPLY FROM RECHARGEABLE BATTERY	38
FIGURE 16: RTC SUPPLY FROM CAPACITOR	38
FIGURE 17: SEIKO XH414H-IV01E CHARGE CHARACTERISTIC	39
FIGURE 18: CONNECTION OF ALL FUNCTIONAL UART PORT	42
FIGURE 19: CONNECTION OF THREE LINES UART PORT	42
FIGURE 20: CONNECTION OF UART PORT WITH HARDWARE FLOW CONTROL	
FIGURE 21: CONNECTION OF SOFTWARE UPGRADE	
FIGURE 22: CONNECTION OF SOFTWARE DEBUG	44
FIGURE 23: CONNECTION OF AUXILIARY UART PORT	44
FIGURE 24: 3.3V LEVEL MATCH CIRCUIT	
FIGURE 25: 5V LEVEL MATCH CIRCUIT	45
FIGURE 26: RS232 LEVEL MATCH CIRCUIT	46
FIGURE 27: MICROPHONE INTERFACE CONFIGURATION OF AIN1&AIN2	48
FIGURE 28: SPEAKER INTERFACE CONFIGURATION OF AOUT1	49
FIGURE 29: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION OF AOUT1	49
FIGURE 30: SPEAKER INTERFACE CONFIGURATION OF AOUT2	50
FIGURE 31: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION OF AOUT2	50
FIGURE 32: EARPHONE INTERFACE CONFIGURATION	51
FIGURE 33: REFERENCE CIRCUIT OF THE 8 PINS SIM CARD	53
FIGURE 34: REFERENCE CIRCUIT OF THE 6 PINS SIM CARD	53
FIGURE 35: AMPHENOL C707 10M006 512 2 SIM CARD HOLDER	54
FIGURE 36: MOLEX 91228 SIM CARD HOLDER	55
FIGURE 37: REFERENCE CIRCUIT OF THE KEYPAD INTERFACE	57
FIGURE 38: RI BEHAVIOUR OF VOICE CALLING AS A RECEIVER	59
FIGURE 39: RI BEHAVIOUR OF DATA CALLING AS A RECEIVER	59
FIGURE 40: RI BEHAVIOUR AS A CALLER	
FIGURE 41: RI BEHAVIOUR OF URC OR SMS RECEIVED.	60

M10 Hardware Design

FIGURE 42: REFERENCE CIRCUIT OF THE NETLIGHT	60
FIGURE 43: REFERENCE CIRCUIT OF THE STATUS	61
FIGURE 44: REFERENCE CIRCUIT OF THE LIGHT_MOS	62
FIGURE 45: REFERENCE CIRCUIT OF SD CARD	63
FIGURE 46: REFERENCE CIRCUIT OF RF INTERFACE	65
FIGURE 47: RECOMMENDATION OF RF PAD WELDING	67
FIGURE 48: M10 TOP AND SIDE DIMENSIONS (UNIT: MM)	73
FIGURE 49: M10 BOTTOM DIMENSIONS (UNIT: MM)	74
FIGURE 50: PAD BOTTOM DIMENSIONS (UNIT: MM)	74
FIGURE 51: FOOTPRINT OF RECOMMENDATION (UNIT: MM)	76
FIGURE 52: TOP VIEW OF THE MODULE	77
FIGURE 53: BOTTOM VIEW OF THE MODULE	77
FIGURE 54: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3	78
FIGURE 55: RADIO BLOCK STRUCTURE OF CS-4	78

0. Revision history

Revision	Date	Author	Description of change	
1.00	2009-06-27	Tracy ZHANG	Initial	
1.01	2009-09-18	Yong AN	Modified VRTC voltage inputting range.	
			2. Modified Figure 1.	
			3. Added Table 7 and Figure 4 with remark.	
			4. Modified ordering information content in	
			Chapter 6.	
			5. Added VCHG pin description.	
			6. Modified current consumption data in Table 36.	
			7. Added appendix A and B.	
1.02	2009-11-12	Yong AN	1. Baud rate of the main UART port is set to	
			autobauding mode from former fixed baud rate	
			of 115200 in default configuration.	
			2. Modified contents about autobauding in	
			Chapter 3.8	
			3. Modified the SIM card detection function	
			through "AT+QSIMDET".	
1.03	2010-06-09	Yong AN	1. Added charging interface description.	
			2. Added Serial Port 3 interface description.	
			3. Added STATUS pin and its function description.	
			4. Added GPIO control by AT+QGPIO command.	
			5. Modified timing of powering on, powering down and restarting the module.	
			6. Added ESD level of SIM card interface.	
			7. Modified function description of audio AOUT2	
			channel.	
			8. Disabled VDD EXT pin as the indication of	
			power-on and power-down.	
			9. Both STATUS and AT+QGPIO functions are	
			supported at R05A05 release version and later,	
			while Serial Port 3 function will be supported at	
			R06AXX and later.	
2.0	2010-07-30	DavidWEI	Added recommendation of RF pad welding.	
3.0	2012-02-28	LayneYE	Modified the power supply range	
			2. Modified buzzer interface as RESERVED	
l			3. Modified the display interface as SD interface	
			4. Modified the peak current in a transmitting burst	
			5. Modified the current consumption in GSM talk	
l			mode and GPRS communication mode	
			6. Modified the RF receiving sensitivity	

M10_HD_V3.0 -7-

	7.	Deleted the content of charging function.

M10_HD_V3.0 - 8 -

1. Introduction

This document defines the M10 module and describes the hardware interface of M10 module which are connected with the customer application and the air interface.

This document can help customer quickly understand module interface specifications, electrical and mechanical details. Associated with application notes and user guide, customer can use M10 module to design and set up mobile applications easily.

1.1. Related documents

Table 1: Related documents

SN	Document name	Remark
[1]	M10_ATC	AT commands set
[2]	ITU-T Draft new	Serial asynchronous automatic dialing and control
	recommendation V.25ter	
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT
		command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of
		Data Terminal Equipment – Data Circuit terminating
		Equipment (DTE - DCE) interface for Short Message
		Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications (Phase 2+);
		Specification of the SIM Application Toolkit for the
		Subscriber Identity module – Mobile Equipment (SIM –
		ME) interface
[7]	GSM 11.11	Digital cellular telecommunications (Phase 2+);
		Specification of the Subscriber Identity module – Mobile
		Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications (Phase 2+);
		Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications (Phase 2); Mobile
		Station (MS) conformance specification; Part 1:
		Conformance specification
[10]	GSM_UART_AN	UART port application notes
[11]	M10_HD_AN01	M10 hardware design application notes
[12]	GSM_FW_Upgrade_AN01	GSM Firmware upgrade application note
[13]	M10_EVB_UGD	M10 EVB user guide application notes

M10_HD_V3.0 -9-

1.2. Terms and abbreviations

Table 2: Terms and abbreviations

Abbreviation	Description		
ADC	Analog-to-Digital Converter		
AMR	Adaptive Multi-Rate		
ARP	Antenna Reference Point		
ASIC	Application Specific Integrated Circuit		
BER	Bit Error Rate		
BOM	Bill Of Material		
BTS	Base Transceiver Station		
СНАР	Challenge Handshake Authentication Protocol		
CS	Coding Scheme		
CSD	Circuit Switched Data		
CTS	Clear To Send		
DAC	Digital-to-Analog Converter		
DRX	Discontinuous Reception		
DSP	Digital Signal Processor		
DCE	Data Communications Equipment (typically module)		
DTE	Data Terminal Equipment (typically computer, external controller)		
DTR	Data Terminal Ready		
DTX	Discontinuous Transmission		
EFR	Enhanced Full Rate		
EGSM	Enhanced GSM		
EMC	Electromagnetic Compatibility		
ESD	Electrostatic Discharge		
ETS	European Telecommunication Standard		
FCC	Federal Communications Commission (U.S.)		
FDMA	Frequency Division Multiple Access		
FR	Full Rate		
GMSK	Gaussian Minimum Shift Keying		
GPRS	General Packet Radio Service		
GSM	Global System for Mobile Communications		
HR	Half Rate		
I/O	Input/Output		
IC	Integrated Circuit		
IMEI	International Mobile Equipment Identity		
Imax	Maximum Load Current		
Inorm	Normal Current		
kbps	Kilo Bits Per Second		
LED	Light Emitting Diode		

M10_HD_V3.0 - 10 -

Abbreviation	Description		
Li-Ion	Lithium-Ion		
МО	Mobile Originated		
MS	Mobile Station (GSM engine)		
MT	Mobile Terminated		
PAP	Password Authentication Protocol		
РВССН	Packet Switched Broadcast Control Channel		
PCB	Printed Circuit Board		
PDU	Protocol Data Unit		
PPP	Point-to-Point Protocol		
RF	Radio Frequency		
RMS	Root Mean Square (value)		
RTC	Real Time Clock		
RX	Receive Direction		
SIM	Subscriber Identification Module		
SMS	Short Message Service		
TDMA	Time Division Multiple Access		
TE	Terminal Equipment		
TX	Transmitting Direction		
UART	Universal Asynchronous Receiver & Transmitter		
URC	Unsolicited Result Code		
USSD	Unstructured Supplementary Service Data		
VSWR	Voltage Standing Wave Ratio		
Vmax	Maximum Voltage Value		
Vnorm	Normal Voltage Value		
Vmin	Minimum Voltage Value		
VIHmax	Maximum Input High Level Voltage Value		
VIHmin	Minimum Input High Level Voltage Value		
VILmax	Maximum Input Low Level Voltage Value		
VILmin	Minimum Input Low Level Voltage Value		
VImax	Absolute Maximum Input Voltage Value		
VImin	Absolute Minimum Input Voltage Value		
VOHmax	Maximum Output High Level Voltage Value		
VOHmin	Minimum Output High Level Voltage Value		
VOLmax	Maximum Output Low Level Voltage Value		
VOLmin	Minimum Output Low Level Voltage Value		
Phonebook abbr	eviations		
FD	SIM Fix Dialing phonebook		
LD	SIM Last Dialing phonebook (list of numbers most recently dialed)		
MC	Mobile Equipment list of unanswered MT Calls (missed calls)		
ON	SIM (or ME) Own Numbers (MSISDNs) list		
RC	Mobile Equipment list of Received Calls		

M10_HD_V3.0 - 11 -

Abbreviation	Description
SM	SIM phonebook

1.3. Directives and standards

The M10 module is designed to comply with the FCC statements. FCC ID is XMR201202M10. The Host system using M10, should have label indicating FCC ID: XMR201202M10.

1.3.1. FCC Statement

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

1.3.2. FCC Radiation exposure statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body.

The manual of the host system, which uses M10, must include RF exposure warning statement to advice user should keep minimum 20cm from the radio antenna of M10 module depending on portable or Mobile status.

Note: If a portable device (such as PDA) uses M10 module, the device needs to do permissive change and SAR testing.

1.3.3. Industry Canada license

English version

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- a) This device may not cause harmful interference.
- b) This device must accept any interference, including interference that may cause undesired operation of the device.
- The Host system using M10, should have label indicating "transmitter module IC: 10064-201202M10.

• French version

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio

M10_HD_V3.0 - 12 -

exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- a) l'appareil ne doit pas produire de brouillage, et
- L'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

1.4. Safety cautions

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating M10 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, Quectel does not take on any liability for customer failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions about the use of mobile. Switch the cellular terminal or mobile off. Medical equipment may be sensitive to not operate normally for RF energy interference.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forget to think much of these instructions may lead to the flight safety or offend against local legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gas or fume. Switch off the cellular terminal when you are near petrol station, fuel depot, chemical plant or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmosphere can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

Road safety comes first! Do not use a hand-held cellular terminal or mobile while driving a vehicle, unless it is securely mounted in a holder for hands-free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

M10_HD_V3.0 - 13 -

sos

GSM cellular terminals or mobiles operate over radio frequency signal and cellular network and cannot be guaranteed to connect in all conditions, for example no mobile fee or an invalid SIM card. While you are in this condition and need emergent help, Please Remember using emergency call. In order to make or receive call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.

Also, some networks require that a valid SIM card be properly inserted in cellular terminal or mobile.

M10_HD_V3.0 - 14 -

2. Product concept

The M10 is a Quad-band GSM/GPRS engine that works at frequencies GSM850MHz, GSM900MHz, DCS1800MHz and PCS1900MHz. The M10 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to *Appendix A* and *Appendix B*.

With a tiny profile of 29mm×29mm ×3.6 mm, the module can meet almost all the requirements for M2M applications, including Tracking and Tracing, Intelligent Instrument, Wireless POS, Security, Telematics, Remote Controlling, etc.

M10 is an SMD type module, which can be embedded in customer application through its 64-pin pads. It provides all hardware interfaces between the module and customer's host board.

Designed with power saving technique, current consumption of M10 is as low as 1.1 mA in SLEEP mode when DRX is 5.

M10 is integrated with Internet service protocols, which are TCP/IP, PPP. Extended AT commands have been developed for customer to use these Internet service protocols easily.

The modules are fully RoHS compliant to EU regulation.

2.1. Key features

Table 3: Module key features

Feature	Implementation		
Power supply	Single supply voltage: 3.3V~4.6V		
	Typical supply voltage: 4V		
Power saving	Typical power consumption in SLEEP mode to 1.1 mA@ DRX=5		
	0.95mA@ DRX=9		
Frequency bands	• Daud-band: GSM850, GSM900, DCS1800, PCS1900.		
	The module can search these frequency bands automatically		
	The frequency bands can be set by AT command.		
	• Compliant to GSM Phase 2/2+		
GSM class	Small MS		
Transmitting power	• Class 4 (2W) at GSM850 and GSM900		
	• Class 1 (1W) at DCS1800 and PCS1900		
GPRS connectivity	GPRS multi-slot class 12 (default)		
	● GPRS multi-slot class 1~12 (configurable)		
	GPRS mobile station class B		
Temperature range	• Normal operation: -35°C ~ +80°C		

M10_HD_V3.0 - 15 -

	1)		
	• Restricted operation: $-45^{\circ}\text{C} \sim -35^{\circ}\text{C}$ and $+80^{\circ}\text{C} \sim +85^{\circ}\text{C}^{-1}$		
	• Storage temperature: -45°C ~ +90°C		
DATA GPRS:	GPRS data downlink transfer: max. 85.6 kbps		
	GPRS data uplink transfer: max. 85.6 kbps		
	• Coding scheme: CS-1, CS-2, CS-3 and CS-4		
	Support the protocols PAP (Password Authentication Protocol)		
	usually used for PPP connections		
	• Internet service protocols TCP/UDP/FTP/HTTP/MMS/SMTP		
	Support Packet Switched Broadcast Control Channel (PBCCH)		
CSD:	• CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps non-transparent		
	Support Unstructured Supplementary Services Data (USSD)		
SMS	MT, MO, CB, Text and PDU mode		
	SMS storage: SIM card		
FAX	Group 3 Class 1 and Class 2		
SIM interface	Support SIM card: 1.8V, 3V		
Antenna interface	Connected via 50 Ohm antenna pad		
Audio features	Speech codec modes:		
	• Half Rate (ETS 06.20)		
	• Full Rate (ETS 06.10)		
	• Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)		
	Adaptive Multi-Rate (AMR)		
	Echo Cancellation		
	Echo Suppression		
	Noise Reduction		
Serial interface	Serial Port:		
	Seven lines on serial port interface		
	 Use for AT command, GPRS data and CSD data 		
	Multiplexing function		
	 Support autobauding from 4800 bps to 115200 bps 		
	Debug Port:		
	Two lines on second serial port interface DBG_TXD and		
	DBG RXD		
	Debug Port used for software debugging and log output		
	UART3:		
	Use for AT command		
Phonebook management	Support phonebook types: SM, FD, LD, RC, ON, MC		
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99		
Real time clock	Implemented		
Alarm function	Programmable via AT command		
Physical characteristics	Size:		
J	29±0.15×29±0.15×3.6±0.3mm		
	Weight: 6g		
Firmware upgrade	Firmware upgrade over Serial Port		
1 apgrade	aborage over serial Lore		

M10_HD_V3.0 - 16 -

1) When the module works in this temperature range, the deviation from the GSM specification might occur. For example, the frequency error or the phase error could increase.

Table 4: Coding schemes and maximum net data rates over air interface

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	9.05kbps	18.1kbps	36.2kbps
CS-2:	13.4kbps	26.8kbps	53.6kbps
CS-3:	15.6kbps	31.2kbps	62.4kbps
CS-4:	21.4kbps	42.8kbps	85.6kbps

2.2. Functional diagram

The following figure shows a block diagram of M10 and illustrates the major functional parts.

- Power management
- Baseband
- Serial Flash
- The GSM radio frequency part
- The Peripheral interface
 - —Power supply
 - —Turn on/off interface
 - —UART interface
 - —Audio interface
 - -SIM interface
 - —Keypad interface
 - -ADC
 - —SD card interface
 - -RF interface

M10_HD_V3.0 - 17 -

Figure 1: Module functional diagram

2.3. Evaluation board

In order to help customer on the application of M12, Quectel supplies an Evaluation Board (EVB) that hosts the module directly with appropriate power supply, SIM card holder, RS-232 serial interface, handset RJ11 port, earphone port, antenna and other peripherals to control or test the module. For details, please refer to the *document* [13].

M10_HD_V3.0 - 18 -

3. Application interface

The module is equipped with a 64-pin 1.3mm pitch SMT pad that connects to the cellular application platform. Sub-interfaces included in these pads are described in detail in following chapters:

- Power supply (refer to Chapter 3.3)
- Serial interfaces (refer to Chapter 3.8)
- Two analog audio interfaces (refer to Chapter 3.9)
- SIM interface (refer to Chapter 3.10)
- SD card interface(refer to Chapter 3.18)

Electrical and mechanical characteristics of the SMT pad are specified in *Chapter 5& Chapter 6*.

3.1. Pin of module

3.1.1. Pin assignment

The following figure shows pin name and assignment of M10.

Figure 2: Top view of module pin assignment

M10_HD_V3.0 - 19 -

3.1.2. Pin description

Table 5: Pin description

Power supply	7				
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
	NO.			CHARACTERISTICS	
VBAT	50,51	I	Module main	Vmax= 4.6V	It must be able to
	52		power supply.	Vmin=3.3V	provide sufficient
			VBAT=3.3V~4.6V	Vnorm=4.0V	current in a
					transmitting burst
					which typically
					rises to 1.6A.
VRTC	16	I/O	Power supply for	VImax=VBAT	Recommended to
			RTC when VBAT	VImin=2.6V	connect to a
			is not supplied.	VInorm=2.75V	backup battery or a
			Charging for	VOmax=2.85V	golden capacitor.
			backup battery or	VOmin=2.6V	
			golden capacitor	VOnorm=2.75V	
			when the VBAT is	Iout(max)= 730uA	
			supplied.	Iin=2.6~5 uA	
VDD_EXT	7	O	Supply 2.8V	Vmax=2.9V	1. If unused, keep
			voltage for	Vmin=2.7V	this pin open.
			external circuit.	Vnorm=2.8V	2. Recommended
				Imax=20mA	to add a 2.2~4.7uF
					bypass capacitor,
					when used for
	0.15				power supply.
GND	8,42,		Digital ground		
	44~				
TD / 00	49				
Turn on /off	DDI	1/0	DECOMPTION	D.C.	COLUMNIT
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
DIVIDIZEN	NO.	_	D / 001	CHARACTERISTICS	D. H LIDATE
PWRKEY	18	I	Power on/off key	VILmax=0.1*VBAT	Pull up to VBAT
			PWRKEY should	VIHmin=0.6*VBAT	internally.
			be pulled down for a moment to turn	VImax=VBAT	
			on or off the		
Emonosmor	hutda	<u> </u>	system.		
Emergency si	PIN	I/O	DESCRIPTION	DC	COMMENT
FIN NAIVIE	NO.	1/0	DESCRIPTION	CHARACTERISTICS	COMMENT
]	INU.			CHARACTERISTICS	1

M10_HD_V3.0 - 20 -

EMERC	17	т	Emanage en en e	VII may = 0.437	Oman
EMERG_	17	Ι	Emergency off.	VILmax=0.4V	Open
OFF			Pulling down for	VIHmin=2.2V	drain/collector
			at least 20ms will	V _{open} max=2.8V	driver required in
			turn off the module		cellular device
			in case of		application.
			emergency. Use it		If unused, keep
			only when normal		this pin open.
			shutdown through		
			PWRKEY or AT		
			command cannot		
			perform well.		
Module statu	s indicati	on	-		
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
	NO.			CHARACTERISTICS	
STATUS	54	О	Used to indicate	VOLmax=	If unused, keep
Similos	34		module's operating	0.15*VDD EXT	this pin open.
			status. High level	VOHmax=	uns pin open.
			indicates module		
				0.85*VDD_EXT	
			power-on and low		
			level indicates		
			power-down.		
Audio interfa	ces				
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
PIN NAME	PIN NO.	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
PIN NAME MIC1P		I/O	DESCRIPTION Positive and		COMMENT If unused, keep
	NO.			CHARACTERISTICS	
MIC1P	NO. 23		Positive and	CHARACTERISTICS For Audio DC	If unused, keep
MIC1P	NO. 23		Positive and negative	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N	NO. 23 24		Positive and negative voice-band input. Auxiliary positive	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P	NO. 23 24 25		Positive and negative voice-band input. Auxiliary positive and negative	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N	NO. 23 24 25 26	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input.	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P	NO. 23 24 25 26 22		Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N	NO. 23 24 25 26	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N	NO. 23 24 25 26 22 21	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative and negative voice-band output.	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P	NO. 23 24 25 26 22	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N	NO. 23 24 25 26 22 21	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output.	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N	NO. 23 24 25 26 22 21	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output. AGND is separate	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N SPK2P	NO. 23 24 25 26 22 21	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output. AGND is separate ground connection	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N	NO. 23 24 25 26 22 21	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output. AGND is separate ground connection for external audio	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N	NO. 23 24 25 26 22 21	I	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output. AGND is separate ground connection	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N SPK2P	NO. 23 24 25 26 22 21 20	I O O	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output. AGND is separate ground connection for external audio circuits.	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N SPK2P AGND	NO. 23 24 25 26 22 21 20 19	I O O	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output. AGND is separate ground connection for external audio circuits.	CHARACTERISTICS For Audio DC characteristics refer to Chapter 3.10.	If unused, keep these pins open.
MIC1P MIC1N MIC2P MIC2N SPK1P SPK1N SPK2P	NO. 23 24 25 26 22 21 20	I O O	Positive and negative voice-band input. Auxiliary positive and negative voice-band input. Positive and negative voice-band output. Auxiliary positive voice-band output. AGND is separate ground connection for external audio circuits.	CHARACTERISTICS For Audio DC characteristics refer to	If unused, keep

M10_HD_V3.0 - 21 -

KBC0~	33~37	I	Keypad interface	VILmin=-0.3V	If unused, keep
KBC4				VILmax=	these pins open.
KBR0~ KBR4	28~32	О		0.25*VDD_EXT VIHmin= 0.75*VDD_EXT VIHmax= VDD_EXT+0.3	Pull up to VDD_EXT, if unused, keep these pins open.
GPIO1_ KBC5	38	I/O	Normal input/output port/Keypad interface	VOLmax= 0.15*VDD_EXT VOHmin= 0.85*VDD_EXT	If unused, keep these pins open.
GPIO0	64	I/O	Normal input/output port	0.03 VDD_LX1	
NETLIGHT	6	О	Network status indication		
LIGHT_ MOS	27	О	Open drain output	Imax=60mA	If unused, keep this pin open.
	 		port		this pin open.
Main Serial p	PIN	I/O	DESCRIPTION	DC	COMMENT
PIN NAME	NO.	1/0	DESCRIPTION	CHARACTERISTICS	COMMENT
DTR	59	Ι	Data terminal ready	VILmin=-0.3V VILmax=	If only use TXD, RXD and GND to
RXD	61	I	Receive data	0.25*VDD_EXT	communicate,
TXD	60	О	Transmit data	VIHmin= 0.75*VDD EXT	recommend connecting RTS to
RTS	58	Ι	Request to send	VIHmax=	GND via 0R
CTS	57	О	Clear to send	VDD_EXT+0.3	resistor and
RI	55	О	Ring indicator	VOLmax= 0.15*VDD EXT	keeping other pins open.
DCD	56	О	Data carrier detection	VOHmin= 0.85*VDD_EXT	
Debug port					
DBG_TXD	10	О	Serial interface for	Same as above	If unused, keep
DBG_RXD	9	I	debugging only		these pins open.
UART3	UART3				
TXD3	62	О	Transmit data	Same as above	If unused, keep
RXD3	63	I	Receive data		these pins open.
SD card inter	face				
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
	NO.			CHARACTERISTICS	
SD_DATA	1	I/O	SD serial data	VILmin=-0.3V	If unused, keep

M10_HD_V3.0 - 22 -

SD_CLK	2	О	SD serial clock	VILmax=	these pins open.
				0.25*VDD_EXT	If used,
SD_CMD	3	О	SD command	VIHmin=	SD_DATA is
				0.75*VDD_EXT	connected to SD
				VIHmax=	card DATA0 pin.
				VDD_EXT+0.3	
				VOLmax=	
				0.15*VDD_EXT	
				VOHmin=	
				0.85*VDD_EXT	
SIM interface	e				
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
	NO.			CHARACTERISTICS	
SIM_VDD	12	О	Voltage supply for	The voltage can be	All signals of SIM
			SIM card	selected by software	interface should be
				automatically. Either	protected against
				1.8V or 3V.	ESD with a TVS
SIM_DATA	13	I/O	SIM data	When SIM_VDD=3V	diode array.
_				VILmax=0.4V	Maximum cable
				VIHmin=	length is 200mm
				SIM_VDD-0.4	from the module
				VOLmax=0.4V	pad to SIM card
				VOHmin=	holder.
				SIM VDD-0.4	noider.
				When SIM_VDD=1.8V	
				VILmax=	
				0.15*SIM_VDD	
				VIHmin=	
				SIM_VDD-0.4	
				VOLmax=	
				0.15*SIM_VDD	
				VOHmin=	
		_		SIM_VDD-0.4	
SIM_CLK	14	О	SIM clock	When SIM_VDD=3V	
				VILmax=0.4V	
				VIHmin=	
				0.9*SIM_VDD	
				VOLmax=0.4V	
				VOHmin=	
				0.9*SIM_VDD	
				When SIM_VDD=1.8V	
				VILmax=	
				0.12*SIM_VDD	
		\perp		VIHmin=	

M10_HD_V3.0 - 23 -

	1	1		0.04.077.5	
				0.9*SIM_VDD	
				VOLmax=	
				0.12*SIM_VDD	
				VOHmin=	
				0.9*SIM_VDD	
SIM_RST	15	О	SIM reset	When SIM_VDD=3V	
				VILmax=0.36V	
				VIHmin=	
				0.9*SIM_VDD	
				VOLmax=0.4V	
				VOHmin=	
				0.9*SIM VDD	
				When SIM_VDD=1.8V	
				VILmax=	
				0.12*SIM VDD	
				VIHmin=	
				0.9*SIM VDD	
				VOLmax=	
				0.12*SIM_VDD	
				VOHmin=	
				0.9*SIM VDD	
CIM	11	I	CIM and datastics	_	If
SIM_	11	1	SIM card detection	VILmax=0.67V	If unused, keep
PRESENCE				VIHmin=1.7V	this pin open.
AUX ADC	T	1	I		
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
	NO.			CHARACTERISTICS	
ADC0	41	I	General purpose	Voltage range:	If unused, keep
ADC1	40	I	analog to digital	$0V \sim 2.8V$	this pin open.
			converter		
RF interface					
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
	NO.			CHARACTERISTICS	
RF_ANT	43	I/O	RF antenna pad	Impedance of 50Ω	Refer to Chapter
-					4.
Other interfa	ices	·			
PIN NAME	PIN	I/O	DESCRIPTION	DC	COMMENT
	NO.	1, 0		CHARACTERISTICS	
RESERVED	4,5,				Keep these pins
KESEKVED	39,53				
	37,33				open

M10_HD_V3.0 - 24 -

3.2. Operating modes

The table below briefly summarizes the various operating modes referred to in the following chapters.

Table 6: Overview of operating modes

Mode	Function	
Normal	GSM/GPRS	The module will automatically go into SLEEP mode if DTR
operation	SLEEP	is set to high level and there is no interrupt (such as GPIO
		interrupt or data on serial port).
		In this case, the current consumption of module will reduce
		to the minimal level.
		During SLEEP mode, the module can still receive paging
		message and SMS from the system normally.
	GSM IDLE	Software is active. The module has registered to the GSM
		network, and the module is ready to send and receive data.
	GSM TALK	GSM connection is ongoing. In this mode, the power
		consumption is decided by the configuration of Power
		Control Level (PCL), dynamic DTX control and the
		working RF band.
	GPRS IDLE	The module is not registered to GPRS network. The module
		is not reachable through GPRS channel.
	GPRS	The module is registered to GPRS network, but no GPRS
	STANDBY	PDP context is active. The SGSN knows the Routing Area
		where the module is located at.
	GPRS	The PDP context is active, but no data transfer is going on.
	READY	The module is ready to receive or send GPRS data. The
		SGSN knows the cell where the module is located at.
	GPRS DATA	There is GPRS data in transfer. In this mode, power
		consumption is decided by the PCL, working RF band and
		GPRS multi-slot configuration.
POWER		wn by sending the "AT+QPOWD=1" command, using the
DOWN ¹⁾	PWRKEY or u	using the EMERG_OFF pin. The power management ASIC
	disconnects the	power supply from the base band part of the module, and
	only the power	supply for the RTC is remained. Software is not active. The
		s are not accessible. Operating voltage (connected to VBAT)
	remains applied	
Minimum		command can be set the module to a minimum functionality
functionality		removing the power supply. In this case, the RF part of the
mode (without		t work or the SIM card will not be accessible, or both RF part
removing power		vill be closed, but the serial port is still accessible. The power
supply)	consumption in	this case is very low.

M10_HD_V3.0 - 25 -

Alarm mode	RTC alert function launches this restricted operation while the module is in
	POWER DOWN mode. The module will not be registered to GSM network
	and only parts of AT commands can be available.

1) Use the EMERG_OFF pin only while failing to turn off the module by the command "AT+QPOWD=1" and the ON/OFF pin. Please refer to Chapter 3.4.2.4.

3.3. Power supply

The power supply range of M12 is from 3.3V to 4.6V which is supplied with a single voltage source of VBAT. The GSM transmitting burst can cause obvious voltage drop at the supply voltage thus the power supply must be carefully designed and is capable of providing sufficient current up to 1.6A.

A reference design of DC 5V/2A input power source is shown in Figure 3. The designed output for the power supply is 4.16V, thus a linear regulator can be used. If there's a big voltage difference between the input source and the desired output (VBAT), a switching converter power supply would be preferable for its better efficiency especially with the 1.6A peak current in burst mode of the module.

Figure 3: Reference circuit of the source power supply input

The RF Power Amplifier current (1.6A peak in GSM/GPRS mode) flows with a ratio of 1/8 of time, around 577us every 4.615ms, in talking mode. The following figure is the VBAT voltage and current ripple at the maximum power transmitting phase, the test condition is VBAT=4.16V, VBAT maximum output current is 1.6A, C3=100 μ F tantalum capacitor (ESR=0.7 Ω).

M10_HD_V3.0 - 26 -

Figure 4: Ripple in supply voltage during transmitting burst

3.3.1. Power supply pins

The VBAT pins are dedicated to connect the module supply voltage. VRTC pin can be used to connect a rechargeable coin battery or a golden capacitor which can help to maintain the system clock when VBAT supply is not applied.

3.3.2. Minimizing supply voltage drop

Please pay special attention to the power supply design for your applications. Make sure that the input voltage will never drop below 3.3V even in a transmitting burst during which the current consumption may rise up to 1.6A. If the power voltage drops below 3.3V, the module could turn off automatically. The PCB traces from the VBAT pads to the power source must be wide enough to ensure that there is not too much voltage drop occur in the transmitting burst mode. The width of trace should be no less than 2mm and the principle of the VBAT trace is the longer route, the wider trace. The VBAT voltage can be measured by oscilloscope.

For the VBAT input, a bypass capacitor of about 100 μF with low ESR is recommended. Multi-layer ceramic chip (MLCC) capacitor can provide the best combination of low ESR and small size but may not be economical. A lower cost choice could be a 100 μF tantalum capacitor with low ESR. Other small ceramic capacitors should be in parallel with the 100 μF capacitor, which is illustrated in Figure 5. The capacitors should be placed close to the M12 VBAT pins.

M10_HD_V3.0 - 27 -

C1>=100uF; C2=0.1uF~1uF; C3=10pF; C4=33pF

Figure 5: Reference circuit of the VBAT input

3.3.3. Monitor power supply

To monitor the supply voltage, you can use the "AT+CBC" command which includes three parameters: charging status, remaining battery capacity and voltage value (in mV). It returns the 0-100 percent of battery capacity and actual value measured between VBAT and GND. The voltage is continuously measured at an interval depending on the operating mode. The displayed voltage (in mV) is averaged over the last measuring period before the "AT+CBC" command is executed.

For details, please refer to *document* [1].

3.4. Power up and down scenarios

3.4.1. Power on

The module can be turned on through the two ways, which are described in following chapters:

- Via PWRKEY pin: start normal operating mode (please refer to chapter 3.4.1.1);
- Via RTC interrupt: start ALARM mode (*please refer to chapter 3.4.1.2*).

Note: The module is set to autobauding mode (AT+IPR=0) in default configuration. In the autobauding mode, the URC "RDY" is not sent to host controller after powering on. AT command can be sent to the module 2-3 seconds after the module is powered on. Host controller should firstly send an "AT" or "at" string in order that the module can detect baud rate of host controller, and it should send the second or the third "AT" or "at" string until receiving "OK" string from module. Then an "AT+IPR=x;&W" should be sent to set a fixed baud rate for

M10_HD_V3.0 - 28 -

module and save the configuration to flash memory of module. After these configurations, the URC "RDY" would be received from the Serial Port of module every time when the module is powered on. Refer to Chapter "AT+IPR" in document [1].

3.4.1.1. Power on module using the PWRKEY pin

Customer's application can turn on the module by driving the pin PWRKEY to a low level voltage and after STATUS pin outputs a high level, PWRKEY pin can be released. Customer may monitor the level of the STATUS pin to judge whether the module is power-on or not. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated in Figure 6.

Figure 6: Turn on the module using driving circuit

The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. When pressing the key, electrostatic strike may generate from finger. A reference circuit is showed in Figure 7.

Figure 7: Turn on the module using keystroke

M10_HD_V3.0 - 29 -

The power on scenarios is illustrated as following figure.

Figure 8: Timing of turning on system

- ① Make sure that VBAT voltage is stable before pulling down PWRKEY pin. The interval time between them is recommended 30ms.
- 2 Keep the EMERG_OFF pin open if not used.

Note: Customer can monitor the voltage level of the STATUS pin to judge whether the module is power-on. After the STATUS pin goes to high level, PWRKEY may be released. If the STATUS pin is ignored, pull the PWRKEY pin to low level for more than 2 seconds to turn on the module.

3.4.1.2. Power on module using the RTC (Alarm mode)

Alarm mode is a power-on approach by using the RTC. The alert function of RTC can wake-up the module while it is in power-off state. In alarm mode, the module will not register to GSM network and the GSM protocol stack software is closed. Thus the part of AT commands related with SIM card and the protocol stack will not be accessible, and the others can be used.

Use the "AT+QALARM" command to set the alarm time. The RTC remains the alarm time if the module is powered off by "AT+QPOWD=1" or by PWRKEY pin. Once the alarm time is expired,

M10_HD_V3.0 - 30 -

the module will go into the alarm mode. In this case, the module will send out an Unsolicited Result Code (URC) when the baud rate of the Serial Port is set to a fixed one.

RDY

ALARM MODE

+CFUN:0

Note: This result code does not appear when autobauding is active because a valid baud rate is not available immediately after powering up the module. Therefore, the module is recommended to set to a fixed baud rate.

During alarm mode, use "AT+CFUN" command to query the status of software protocol stack; it will return "0" which indicates that the protocol stack is closed. After 90 seconds, the module will power down automatically. However, if the GSM protocol stack is started by "AT+CFUN=1" command during the alarm mode, the process of automatic power-off will not be executed. In alarm mode, driving the PWRKEY to a low level voltage for a period will cause the module to power down.

The frequently-used AT commands during alarm mode are briefly summarized In Table 7. For details of these instructions, please refer to *document* [1].

Table 7: AT commands used in alarm mode

AT command	Function
AT+QALARM	Set alarm time
AT+CCLK	Set data and time of RTC
AT+QPOWD	Power down the module
AT+CFUN	Start or close the protocol stack

3.4.2. Power down

The following procedures can be used to turn off the module:

- Normal power down procedure: Turn off module using the PWRKEY pin
- Normal power down procedure: Turn off module using command "AT+QPOWD"
- Over-voltage or under-voltage automatic shutdown: Take effect when over-voltage or under-voltage is detected
- Emergent power down procedure: Turn off module using the EMERG OFF pin

M10_HD_V3.0 - 31 -

3.4.2.1. Power down module using the PWRKEY pin

Customer's application can turn off the module by driving the PWRKEY to a low level voltage for certain time. The power-down scenario is illustrated as in Figure 9.

The power-down procedure causes the module to log off from the network and allows the software to save important data before completely disconnecting the power supply, thus it is a safe way.

Before the completion of the power-down procedure, the module sends out the result code as shown below:

NORMAL POWER DOWN

Note: This result code does not appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set a fixed baud rate.

After this moment, no other AT commands can be executed. And then the module enters the POWER DOWN mode, only the RTC is still active. The POWER DOWN mode can also be indicated by the STATUS pin, which is a low level voltage in this mode.

Figure 9: Timing of turning off the module

3.4.2.2. Power down module using AT command

Customer's application can use an AT command "AT+QPOWD=1" to turn off the module. This command will let the module to log off from the network and allow the software to save important

M10_HD_V3.0 - 32 -

data before completely disconnecting the power supply, thus it is a safe way.

Before the completion of the power-down procedure, the module sends out the result code as shown below:

NORMAL POWER DOWN

After this moment, no other AT commands can be executed. And then the module enters the POWER DOWN mode, only the RTC is still active. The POWER DOWN mode can also be indicated by STATUS pin, which is a low level voltage in this mode.

For details about the AT command of "AT+QPOWD", please refer to *document* [1].

3.4.2.3. Over-voltage or under-voltage automatic shutdown

The module will constantly monitor the voltage applied on the VBAT, if the voltage is \leq 3.5V, the following URC will be presented:

UNDER VOLTAGE WARNING

If the voltage is ≥ 4.5 V, the following URC will be presented:

OVER_VOLTAGE WARNING

The normal input voltage range is 3.3V to 4.6V. If the voltage is > 4.6V or <3.3V, the module would automatically shutdown itself.

If the voltage is <3.3V, the following URC will be presented:

UNDER_VOLTAGE POWER DOWN

If the voltage is >4.6V, the following URC will be presented:

OVER_VOLTAGE POWER DOWN

Note: These result codes don't appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set to a fixed baud rate.

After this moment, no other AT command can be executed, the module logs off from network and enters POWER DOWN mode, and only RTC is still active. The POWER DOWN mode can also be indicated by the pin STATUS, which is a low level voltage in this mode.

M10_HD_V3.0 - 33 -

3.4.2.4. Emergency shutdown

The module can be shut down by driving the pin EMERG_OFF to a low level voltage for over 20ms and then releasing it. The EMERG_OFF line can be driven by an Open Drain/Collector driver or a button. The circuit is illustrated as the following figures.

Figure 10: Reference circuit for EMERG_OFF by using driving circuit

Figure 11: Reference circuit for EMERG_OFF by using button

Be cautious to use the pin EMERG_OFF. It should only be used under emergent situation. For instance, if the module is unresponsive or abnormal, the pin EMERG_OFF could be used to shutdown the system. Although turning off the module by EMERG_OFF is fully tested and nothing wrong is detected, this operation is still a big risk as it could cause destroying of the code or data area of the NOR flash memory in the module. Therefore, it is recommended that PWRKEY or AT command should always be the preferential way to turn off the system.

M10_HD_V3.0 - 34 -

3.4.3. Restart module using the PWRKEY pin

Customer's application can restart the module by driving the PWRKEY to a low level voltage for certain time, which is similar to the way to turn on the module. Before restarting the module, at least 500ms should be delayed after detecting the low level of STATUS. The restart scenario is illustrated as the following figure.

Figure 12: Timing of restarting system

The module can also be restarted by the PWRKEY after emergency shutdown.

Figure 13: Timing of restarting system after emergency shutdown

M10_HD_V3.0 - 35 -

3.5. Power saving

Upon system requirement, there are several actions to drive the module to enter low current consumption status. For example, "AT+CFUN" can be used to set the module into minimum functionality mode and DTR hardware interface signal can be used to lead system to SLEEP mode.

3.5.1. Minimum functionality mode

Minimum functionality mode reduces the functionality of the module to minimum level, thus minimizes the current consumption when the slow clocking mode is activated at the same time. This mode is set with the "AT+CFUN" command which provides the choice of the functionality levels <fun>=0,1,4.

- 0: minimum functionality
- 1: full functionality (default)
- 4: disable both transmitting and receiving of RF part

If the module is set to minimum functionality by "AT+CFUN=0", the RF function and SIM card function would be closed. In this case, the serial port is still accessible, but all AT commands correlative with RF function or SIM card function will not be accessible.

If the module has been set by "AT+CFUN=4", the RF function will be closed but the serial port is still active. In this case, all AT commands correlative with RF function will not be accessible.

After the module is set by "AT+CFUN=0" or "AT+CFUN=4", it can return to full functionality by "AT+CFUN=1".

For detailed information about "AT+CFUN", please refer to document [1].

3.5.2. SLEEP mode (slow clock mode)

The SLEEP mode is disabled in default software configuration. Customer's application can enable this mode by "AT+QSCLK=1". On the other hand, the default setting is "AT+QSCLK=0" and in this mode, the module cannot enter SLEEP mode.

When "AT+QSCLK=1" is set to the module, customer's application can control the module to enter or exit from the SLEEP mode through pin DTR. When DTR is set to high level, and there is no on-air or hardware interrupt such as GPIO interrupt or data on serial port, the module will enter SLEEP mode automatically. In this mode, the module can still receive voice, SMS or GPRS paging from network but the serial port is not accessible.

M10_HD_V3.0 - 36 -

3.5.3. Wake up module from SLEEP mode

When the module is in the SLEEP mode, the following methods can wake up the module.

If the DTR Pin is pulled down to a low level, it would wake up the module from the SLEEP mode. The serial port will be active about 20ms after DTR is changed to low level.

Receive a voice or data call from network to wake up module.

Receive an SMS from network to wake up module.

RTC alarm expired to wake up module.

Note: DTR pin should be held low level during communicating between the module and DTE.

3.6. Summary of state transitions (except SLEEP mode)

Table 8: Summary of state transition

Current mode	Next mode			
	POWER DOWN	Normal mode	Alarm mode	
POWER DOWN		Use PWRKEY	Turn on the module by RTC	
			alarm	
Normal mode	Use "AT+QPOWD"		Set alarm by "AT+QALARM",	
	command, PWRKEY		and then turn off the module.	
	pin, or EMERG_OFF		When the timer expires, the	
	pin		module turns on automatically	
			and enters Alarm mode.	
Alarm mode	Use PWRKEY pin or	Use		
	wait module turning	"AT+CFUN"		
	off automatically	command		

3.7. RTC backup

The RTC (Real Time Clock) can be supplied by an external capacitor or battery (rechargeable or non-chargeable) through the pin VRTC. A 1.5K resistor has been integrated in the module for current limiting. A coin-cell battery or a super-cap can be used to backup power supply for RTC.

The following figures show various sample circuits for RTC backup.

M10_HD_V3.0 - 37 -

Figure 14: RTC supply from non-chargeable battery

Figure 15: RTC supply from rechargeable battery

Figure 16: RTC supply from capacitor

Coin-type rechargeable capacitor such as XH414H-IV01E from Seiko can be used.

M10_HD_V3.0 - 38 -

Figure 17: Seiko XH414H-IV01E Charge Characteristic

3.8. Serial interfaces

The module provides two unbalanced asynchronous serial ports including Serial Port, Debug Port. The module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding function supports baud rate from 4800bps to 115200bps.

The UART Port:

- TXD: Send data to RXD of DTE
- RXD: Receive data from TXD of DTE
- RTS: Requests to send
- CTS: Clear to send
- DTR: DTE is ready and inform DCE (this pin can wake the module up)
- RI: Ring indicator (when the call, SMS, data of the module are coming, the module will output signal to inform DTE)
- DCD: Data carrier detection (the validity of this pin demonstrates the communication link is set up)

Note: The module disables hardware flow control by default. When hardware flow control is required, RTS and CTS should be connected to the host. AT command "AT+IFC=2,2" is used to enable hardware flow control. AT command "AT+IFC=0,0" is used to disable the hardware flow control. For more details, please refer to document [1].

M10_HD_V3.0 - 39 -

The Debug Port:

• DBG_TXD: Send data to the COM port of a debugging computer

• DBG_RXD: Receive data from the COM port of a debugging computer

UART3:

• TXD_AUX: Send data to the RXD of DTE

• RXD AUX: Receive data from the TXD of DTE

The logic levels are described in the following table.

Table 9: Logic levels of the serial interface

Parameter	Min	Max	Unit
$V_{\rm IL}$	0	0.25*VDD_EXT	V
V_{IH}	0.75*VDD_EXT	VDD_EXT +0.3	V
V_{OL}	0	0.15*VDD_EXT	V
V _{OH}	0.85*VDD_EXT	VDD_EXT	V

Table 10: Pin definition of the serial interfaces

Interface	Name	Pin	Function
Dahwa Dant	DBG_RXD	9	Receive data of the debug port
Debug Port	DBG_TXD	10	Transmit data of the debug port
	RI	55	Ring indicator
	RTS	58	Request to send
	CTS	57	Clear to send
Serial Port	RXD	61	Receive data of the serial port
	TXD	60	Transmit data of the serial port
	DTR	59	Data terminal ready
	DCD	56	Data carrier detection
UART3	TXD3	62	Transmit data of UART3
UAK13	RXD3	63	Receive data of UART3

3.8.1. UART Port

3.8.1.1. The features of UART Port.

Seven lines on UART interface:

• Contain data lines TXD and RXD, hardware flow control lines RTS and CTS, other control lines DTR, DCD and RI.

M10_HD_V3.0 - 40 -

- The module disables hardware flow control in default, AT command "AT+IFC=2,2" is used to enable hardware flow control.
- Used for AT command, GPRS data, CSD FAX, etc. Multiplexing function is supported on the UART Port. So far only the basic mode of multiplexing is available.
- Support the communication baud rates as the following:
- 300,600,1200,2400,4800,9600,14400,19200,28800,38400,57600,115200.
- The default setting is autobauding mode. Support the following baud rates for Autobauding function: 4800, 9600, 19200, 38400, 57600, 115200.

After setting a fixed baud rate or Autobauding, please send "AT" or "at" string at that rate. The UART port is ready when it responds with "OK".

Autobauding allows the module to detect the baud rate by receiving the string "AT" or "at" from the host or PC automatically, which gives module flexibility without considering which baud rate is used by the host controller. Autobauding is enabled by default. To take advantage of the autobauding mode, special attention should be paid according to the following requirements:

Synchronization between DTE and DCE:

When DCE (the module) powers on with the autobauding enabled, it is recommended to wait 2 to 3 seconds before sending the first "AT" string. After receiving the "OK" response, DTE and DCE are correctly synchronized.

If the host controller needs URC in the mode of autobauding, it must be synchronized first. Otherwise the URC will be discarded.

Restrictions on autobauding operation

- The UART port has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).
- The A/ and a/ commands can't be used.
- Only the strings "AT" or "at" can be detected (neither "At" nor "aT").
- The Unsolicited Result Codes like "RDY", "+CFUN: 1" and "+CPIN: READY" will not be indicated when the module is turned on with autobauding enabled and not be synchronized.
- Any other Unsolicited Result Codes will be sent at the previous baud rate before the module detects the new baud rate by receiving the first "AT" or "at" string. The DTE may receive unknown characters after switching to new baud rate.
- It is not recommended to switch to autobauding from a fixed baud rate.
- If autobauding is active it is not recommended to switch to multiplex mode

Note: To assure reliable communication and avoid any problems caused by undetermined baud rate between DCE and DTE, it is strongly recommended to configure a fixed baud rate and save it instead of using autobauding after start-up. For more details, please refer to Section "AT+IPR" in document [1].

M10_HD_V3.0 - 41 -

3.8.1.2. The connection of UART

The connection between module and host via UART port is very flexible. Three connection styles are illustrated as below.

UART Port connection is shown as below when it is applied in modulation-demodulation.

Figure 18: Connection of all functional UART port

Three lines connection is shown as below.

Figure 19: Connection of three lines UART port

UART Port with hardware flow control is shown as below. This connection will enhance the

M10_HD_V3.0 - 42 -

reliability of the mass data communication.

Figure 20: Connection of UART port with hardware flow control

3.8.1.3. Software upgrade

The TXD and RXD can be used to upgrade software. The PWRKEY pin must be pulled down before the software upgrade. Please refer to the following figure for software upgrade.

Figure 21: Connection of software upgrade

3.8.2. Debug Port

Debug Port:

- Two lines: DBG_TXD and DBG_RXD
- It outputs log information automatically.
- Debug Port is only used for software debugging and its baud rate must be configured as

M10_HD_V3.0 - 43 -

460800bps.

Figure 22: Connection of software debug

3.8.3. UART Port 3

UART3:

- Two data lines: TXD3and RXD3
- UART3 port is used for AT command only and does not support GPRS data, CSD FAX, Multiplexing function etc.
- Support the communication baud rates as the following: 4800, 9600, 14400, 19200,28800,38400,57600,115200.
- The default baud rate setting is 115200bps, and does not support autobauding. The baud rate can be modified by AT+QSEDCB command. For more details, please refer to *document* [1].

Figure 23: Connection of Auxiliary UART port

M10_HD_V3.0 - 44 -

3.8.4. UART Application

The reference design of 3.3V level match is shown as below. When the peripheral MCU/ARM system is 3V, the divider resistor should be changed from 5.6K to 10K.

Figure 24: 3.3V level match circuit

The reference design of 5V level match is shown as below. The construction of dotted line can refer to the construction of solid line. Please pay attention to direction of connection. Input dotted line of module should refer to input solid line of the module. Output dotted line of module should refer to output solid line of the module.

Figure 25: 5V level match circuit

M10_HD_V3.0 - 45 -

The following picture is an example of connection between module and PC. A RS_232 level shifter IC or circuit must be inserted between module and PC, since these three UART ports do not support the RS_232 level, while support the CMOS level only.

Figure 26: RS232 level match circuit

3.9. Audio interfaces

The module provides two analogy input channels and two analogy output channels.

M10_HD_V3.0 - 46 -

Table 11: Pin definition of Audio interface

Interface	Name	Pin	Function
	MIC1P	23	Microphone1 input +
(AINI/AOUTI)	MIC1N	24	Microphone1 input -
(AIN1/AOUT1)	SPK1P	22	Audio1 output+
	SPK1N	21	Audio1 output-
	MIC2P	25	Microphone2 input +
	MIC2N	26	Microphone2 input -
(AINI2/AOLIT2)	SPK2P	20	Audio2 output+
(AIN2/AOUT2)	AGND	19	Suggested to be used in audio circuit. Do not
			connect to digital GND in host PCB as it could
			produce TDD noise.

- AIN1 and AIN2, which may be used for both microphone and line inputs. An electret microphone is usually used. AIN1 and AIN2 are both differential input channels.
- AOUT1 and AOUT2, which may be used for both receiver and speaker outputs. AOUT1 channel is typically used for a receiver built into a handset, while AOUT2 channel is typically used with headset or hands-free speaker. AOUT1 channel is a differential channel and AOUT2 is a single-ended channel. SPK2P and AGND can establish a pseudo differential mode. If customer needs to play Melody or Midi ringtone for incoming call, AOUT2 Channel should always be used.
- These two audio channels can be swapped by "AT+QAUDCH" command. For more details, please refer to *document* [1].

Use AT command "AT+QAUDCH" to select audio channel:

0--AIN1/AOUT1 (normal audio channel), the default value is 0.

1--AIN2/AOUT2 (aux audio channel).

For each channel, customer can use AT+QMIC to adjust the input gain level of microphone. Customer can also use "AT+CLVL" to adjust the output gain level of receiver and speaker. "AT+QECHO" is to set the parameters for echo cancellation control. "AT+QSIDET" is to set the side-tone gain level. For more details, please refer to *document* [1].

3.9.1. Decrease TDD noise and other noise

The 33pF capacitor is applied for filtering out 850MHz/900MHz RF interference when the module is transmitting at GSM900MHz. Without placing this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is for filtering out 1800MHz/1900MHz RF interference. However, the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customer would have to discuss with its capacitor vendor to choose the most suitable capacitor for filtering out GSM850MHz, GSM900MHz, DCS1800MHz and PCS1900MHz separately.

M10_HD_V3.0 - 47 -

The severity degree of the RF interference in the voice channel during GSM transmitting period largely depends on the application design. In some cases, GSM850/GSM900 TDD noise is more severe; while in other cases, DCS1800/PCS1900 TDD noise is more obvious. Therefore, customer can have a choice based on test results. Sometimes, even no RF filtering capacitor is required.

The capacitor which is used for filtering out RF noise should be close to RJ11 or other audio interfaces. Audio alignment should be as short as possible.

In order to decrease radio or other signal interference, the position of RF antenna should be kept away from audio interface and audio alignment. Power alignment and audio alignment should not be parallel, and power alignment should be far away from audio alignment.

The differential audio traces have to be placed according to the differential signal layout rules.

3.9.2. Microphone interfaces configuration

AIN1/IN2 channels come with internal bias supply for external electret microphone. A reference circuit is shown in Figure 27.

Figure 27: Microphone interface configuration of AIN1&AIN2

M10_HD_V3.0 - 48 -

3.9.3. Receiver and speaker interface configuration

Figure 28: Speaker interface configuration of AOUT1

Figure 29: Speaker interface with amplifier configuration of AOUT1

Texas Instruments TPA6205A1is recommended for a suitable differential audio amplifier. There are plenty of excellent audio amplifiers in the market.

M10_HD_V3.0 - 49 -

Figure 30: Speaker interface configuration of AOUT2

Figure 31: Speaker interface with amplifier configuration of AOUT2

Note: The value of C1 and C2 depends on the input impedance of audio amplifier.

M10_HD_V3.0 - 50 -

3.9.4. Earphone interface configuration

Figure 32: Earphone interface configuration

Table 12: Typical electret microphone characteristic

Parameter	Min	Туре	Max	Unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External Microphone Load Resistance		2.2		k Ohm

Table 13: Typical speaker characteristic

Parameter			Min	Тур	Max	Unit
Normal	Single	Load resistance	28	32		Ohm
Output(SPK1)	Ended	Ref level	0		2.4	Vpp
	Differential	Load resistance	28	32		Ohm
		Ref level	0		4.8	Vpp
Auxiliary	Single	Load resistance	16	32		Ohm
Output(SPK2)	Ended	Ref level	0		2.4	Vpp
Maxim driving					50	mA
current limit of						
SPK1 and SPK2						

M10_HD_V3.0 - 51 -

3.10. SIM card interface

3.10.1. SIM card application

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM card, which is intended for use with a SIM application Tool-kit.

The SIM interface is powered from an internal regulator in the module. Both 1.8V and 3.0V SIM Cards are supported.

Table 14: Pin definition of the SIM interface

Name	Pin	Function
SIM_VDD	12	Supply power for SIM Card. Automatic detection of
		SIM card voltage. 3.0V±10% and 1.8V±10%.
		Maximum supply current is around 10mA.
SIM_DATA	13	SIM Card data I/O
SIM_CLK	14	SIM Card Clock
SIM_RST	15	SIM Card Reset
SIM_PRESENCE	11	SIM Card Presence

Figure 33 is the reference circuit for SIM interface, and here an 8-pin SIM card holder is used.

The pin SIM_PRESENCE is used to detect whether the tray of the Molex SIM socket, which is used for holding SIM card, is present in the card socket. When the tray is inserted in the socket, SIM_PRESENCE is at low level. Regardless of the SIM card is in the tray or not, the change of SIM_PRESENCE level from high to low level prompts the module to reinitialize SIM card. In default configuration, SIM card detection function is disabled. Customer's application can use "AT+QSIMDET=1,0" to be switched on and "AT+QSIMDET=0,0" to switch off the SIM card detection function. For detail of this AT command, please refer to *document [1]*. When "AT+QSIMDET=1,0" is set and the tray with SIM card is removed from SIM socket, the following URC will be presented.

+CPIN: NOT READY

When the tray with SIM card is inserted into SIM socket again and the module finishes re-initializing SIM card, the following URC will be presented.

Call Ready

M10_HD_V3.0 - 52 -

Figure 33: Reference circuit of the 8 pins SIM card

Note: Please do not use "AT+QSIMDET=1,1" which causes to initialize SIM card when Figure 33 circuit is adopted.

If customer does not need the SIM card detection function, keep SIM_PRESENCE open. The reference circuit using a 6-pin SIM card socket is illustrated as the following figure.

Figure 34: Reference circuit of the 6 pins SIM card

M10_HD_V3.0 - 53 -

In SIM interface designing, in order to ensure good communication performance with SIM card, the following design principles should be complied with.

- Place the SIM card holder close to module as close as possible. Ensure the trace length of SIM signals do not exceed 20mm.
- Keep the SIM signals far away from VBAT power and RF trace.
- The width of SIM_VDD trace is not less than 0.5mm. Place a bypass capacitor close to SIM card power pin. The value of capacitor is less than 1uF.
- To avoid possible cross-talk from the SIM_CLK signal to the SIM_DATA signal be careful that both lines are not placed closely next to each other. A useful approach is to use GND to shield the SIM_DATA line from the SIM_CLK line.
- In order to ensure good ESD protection, it is recommended to add TVS such as WILL (http://www.willsemi.com) ESDA6V8AV6. The capacitance of ESD component is less than 50pF. The 22Ω resistors should be added in series between the module and the SIM card so as to suppress the EMI spurious transmission and enhance the ESD protection. Note that the SIM peripheral circuit should be close to the SIM card socket.

3.10.2. Design considerations for SIM card holder

For 6-pin SIM card holder, it is recommended to use Amphenol C707 10M006 512 2. Please visit http://www.amphenol.com for more information.

Figure 35: Amphenol C707 10M006 512 2 SIM card holder

M10_HD_V3.0 - 54 -

Table 15: Pin description of Amphenol SIM card holder

Name	Pin	Function	
SIM_VDD	C1	SIM Card Power supply	
SIM_RST	C2	SIM Card Reset	
SIM_CLK	C3	SIM Card Clock	
GND	C5	Ground	
VPP	C6	Not Connect	
SIM_DATA	C7	SIM Card data I/O	

For 8-pin SIM card holder, it is recommended to use Molex 91228. Please visit http://www.molex.com for more information.

Figure 36: Molex 91228 SIM card holder

Table 16: Pin description of Molex SIM card holder

Name	Pin	Function
SIM_VDD	C1	SIM Card Power supply
SIM_RST	C2	SIM Card Reset
SIM_CLK	C3	SIM Card Clock
SIM_PRESENCE	C4	SIM Card Presence Detection
GND	C5	Ground

M10_HD_V3.0 - 55 -

VPP	C6	Not Connect
SIM_DATA	C7	SIM Card Data I/O
SIM_DETECT	C8	Pulled down GND with external circuit. When the tray is
		present, C4 is connected to C8.

3.11. Keypad interface

The keypad interface consists of 5 keypad column inputs and 5 keypad row outputs. The basic configuration is 5 keypad columns and 5 keypad rows, giving 25 keys.

Table 17: Pin definition of the keypad interface

Name	Pin	Function
KBC0	33	
KBC1	34	
KBC2	35	Keypad matrix column
KBC3	36	
KBC4	37	
KBR0	28	
KBR1	29	
KBR2	30	Keypad matrix row
KBR3	31	
KBR4	32	

The keypad interface allows a direct external matrix connection. A typical recommended circuit about the keypad is shown in the following figure.

M10_HD_V3.0 - 56 -

Figure 37: Reference circuit of the keypad interface

If a 5*5 matrix does not provide enough keys, GPIO1 could be multiplexed as KBC5 to configure a 5*6 keypad matrix. Then, the keypad interface consists of 5 keypad row outputs and 6 keypad column inputs. The basic configuration is 5 keypad rows and 6 keypad columns, giving 30 keys.

Note: This function is not supported in the default firmware.

3.12. ADC

The module provides two auxiliary ADC interfaces to measure the values of two analog inputs. AT command "AT+QADC?" is used to read the voltage value present on ADC1 pin. AT command "AT+QEADC?" is used to read the voltage value present on ADC1 pin. For details of this AT command, please refer to *document* [1].

Table 18: Pin definition of the ADC

Name	Pin	Function
ADC0	41	Analog to digital converter.
ADC1	40	Analog to digital converter

M10_HD_V3.0 - 57 -

Table 19: Characteristic of the ADC

Item	Min	Тур	Max	Units
Voltage range	0		2.8	V
ADC Resolution		10		bits
ADC accuracy		2.7		mV

3.13. Behaviors of the RI

Table 20: Behaviors of the RI

State	RI response		
Standby	HIGH		
Voice calling	Changed to LOW, then:		
	1. Changed to HIGH when call is established.		
	2. Use ATH to hang up the call, RI changes to HIGH.		
	3. Calling part hangs up, RI changes to HIGH first, and changes to LOW		
	for 120ms indicating "NO CARRIER" as an URC, then changes to		
	HIGH again.		
	4. Change to HIGH when SMS is received.		
Data calling	Changed to LOW, then:		
	Changed to HIGH when data connection is established.		
	2. Use ATH to hang up the data calling, RI changes to HIGH.		
	3. Calling part hangs up, RI changes to HIGH first, and changes to LOW		
	for 120ms indicating "NO CARRIER" as an URC, then changes to		
	HIGH again.		
	4. Changed to HIGH when SMS is received.		
SMS	When a new SMS comes, the RI changes to LOW and holds low level for		
	about 120 ms, then changes to HIGH.		
URC	Certain URCs can trigger 120ms low level on RI. For more details, please		
	refer to the <i>document [10]</i>		

If the module is used as a caller, the RI would maintain high except the URC or SMS is received. On the other hand, when it is used as a receiver, the timing of the RI is shown below.

M10_HD_V3.0 - 58 -

Figure 38: RI behaviour of voice calling as a receiver

Figure 39: RI behaviour of data calling as a receiver

Figure 40: RI behaviour as a caller

M10_HD_V3.0 - 59 -

Figure 41: RI behaviour of URC or SMS received

3.14. Network status indication

The NETLIGHT signal can be used to drive a network status indicator LED. The working state of this pin is listed in Table 21.

Table 21: Working state of the NETLIGHT

State	Module function
Off	The module is not running.
64ms On/ 800ms Off	The module is not synchronized with network.
64ms On/ 2000ms Off	The module is synchronized with network.
64ms On/ 600ms Off	GPRS data transfer is ongoing.

A reference circuit is shown in following figure.

Figure 42: Reference circuit of the NETLIGHT

M10_HD_V3.0 - 60 -

3.15. Operating status indication

The STATUS pin is set as an output pin and can be used to judge whether module is power-on, please refer to *Chapter 3.4*. In customer design, this pin can be connected to a GPIO of DTE or be used to drive an LED in order to judge the module's operation status. A reference circuit is shown in figure 43.

Table 22: Pin definition of the STATUS

Name	Pin	Function
STATUS	54	Indicate module's operating status

Figure 43: Reference circuit of the STATUS

3.16. General purpose input & output (GPIO)

The module provides a limited number of General Purpose Input/Output signal pins. The driving capability of these pins is 4mA. Every GPIO can be configured as input or output, and set to high or low when working as an output pin by "AT+CEQGPIO" command. Before using these GPIO pins, customer should configure them with "AT+CEQGPIO=1,x,x,x,x,x" first. For details, please refer to *document* [1].

M10_HD_V3.0 - 61 -

Table 23: Pin definition of the GPIO interface

Name	Pin	PU/PD	Function	
GPIO0	64	Pulled up internally	General Purpose Input/Output Port	
		to 75K resistor		
GPIO1_KBC5	38	Pulled up internally General Purpose Input/Output Port		
		to 75K resistor	Keypad interface KBC5	

3.17. Open drain output (LIGHT_MOS)

The module provides an open drain output pin to control keyboard backlight. The output LIGHT MOS can sink 60mA. This open-drain output switch is high impedance when disabled.

Table 24: Pin definition of the LIGHT_MOS

Name	Pin	Function
LIGHT_MOS	27	Open drain output port

Note: This function is not supported in the default firmware. There must be special firmware if customer needs this function. Please contact Quectel for more details.

Figure 44: Reference circuit of the LIGHT_MOS

M10_HD_V3.0 - 62 -

3.18. SD card interface

The module provides SD card interface that supports many types of memory, such as Memory Stick, SD/MCC card and T-Flash or Micro SD card. The following are the main features of SD card interface.

- Only supports 1bit serial mode
- Dose not support the SPI mode SD/MMC memory card
- Dose not support multiple SD memory cards
- Dose not support hot plug
- The data rate up to 26MHz in serial mode
- Up to 32GB maximum memory card capacity

With the SD card interface features and reference circuit shown in figure 45, the users can easily design the SD card application circuit to enhance the memory capacity of the module. The users can store some high-capacity files to external memory card. Such as in the automotive application system, the module can record and store the audio file to the SD card, and also can play the audio files in SD card.

Table 25: Pin definition of the SD card interface

Name	Pin	Function	
SD_DATA	1	Data output and input signal of SD card	
SD_CLK	2	Clock signal of SD card output	
SD_CMD	3	Command signal of SD card output	

Figure 45: Reference circuit of SD card

M10_HD_V3.0 - 63 -

Table 26: Pin name of the SD card and T-Flash(Micro SD) card

Pin NO.	Pin name of SD card	Pin name of T-Flash(Micro SD) card
1	CD/DATA3	DATA2
2	CMD	CD/DATA3
3	VSS1	CMD
4	VCC	VCC
5	CLK	CLK
6	VSS2	VSS
7	DATA0	DATA0
8	DATA1	DATA1
9	DATA2	

In SD card interface designing, in order to ensure good communication performance with SD card, it should be complied with following design principles.

- Route SD card signals as short as possible. Ensure the length of trace do not exceed 20mm.
- In order to offer good ESD protection, it is recommended to add TVS on signals with the capacitance is less than 15pF.
- Reserve external pull-up resistor for other data lines except the DATA0.
- The SD_CLK and SD_DATA line must be shielded by GND in order to avoid interference.
- The SD_CLK and SD_DATA and SD_CMD trace should be routed together and keep each trace as close as possible.

M10_HD_V3.0 - 64 -

4. Antenna interface

The Pin 43 is the RF antenna pad. The RF interface has an impedance of 50Ω . A reference circuit is shown in following figure. By default, the resistor R1 is 0 ohm and capacitor C1 and C2 are not mounted.

Figure 46: Reference circuit of RF interface

4.1. Antenna installation

M10 provides an RF antenna PAD for customer's antenna connection. The RF trace in host PCB connecting to the module RF antenna pad should be micro-strip line or other types of RF trace, whose characteristic resistance should be close to 50Ω . M10 comes with two grounding pads which are next to the antenna pad in order to give a better grounding.

Table 27: Pin definition of the RF_ANT

Name	Pin	Function
RF_ANT	43	RF antenna pad
GND	42	Ground
GND	44	Ground

To minimize the loss on the RF trace and RF cable, they should be designed carefully. It is recommended that the insertion loss should try to meet the following requirements:

- GSM850/EGSM900<1dB
- DCS1800/PCS1900<1.5dB

M10_HD_V3.0 - 65 -

4.2. RF output power

Table 28: The module conducted RF output power

Frequency	Max	Min
GSM850	33dBm ±2dB	5dBm±5dB
EGSM900	33dBm ±2dB	5dBm±5dB
DCS1800	30dBm ±2dB	0dBm±5dB
PCS1900	30dBm ±2dB	0dBm±5dB

Note: In GPRS 4 slots TX mode, the max output power is reduced by 2.5dB. This design conforms to the GSM specification as described in chapter 13.16 of 3GPP TS 51.010-1.

4.3. RF receiving sensitivity

Table 29: The module conducted RF receiving sensitivity

Frequency	Receive sensitivity
GSM850	<-108.5dBm
EGSM900	<-108.5dBm
DCS1800	<-108dBm
PCS1900	<-108dBm

4.4. Operating frequencies

Table 30: The module operating frequencies

Frequency	Receive	Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.5. Recommendation of RF pad welding

If external antenna is connected with RF cable welded on the RF pads, please refer to figure 47. Any incorrect welding type may cause poor performance both in transmitting power and receiving sensitivity.

M10_HD_V3.0 - 66 -

Figure 47: Recommendation of RF pad welding

M10_HD_V3.0 - 67 -

5. Electrical, reliability and radio characteristics

5.1. Absolute maximum ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of module are listed in the following table:

Table 31: Absolute maximum ratings

Parameter	Min	Max	Unit
VBAT	-0.3	4.7	V
Peak current of power supply	0	2	Α
RMS current of power supply (during one TDMA- frame)	0	0.7	A
Voltage at digital pins	-0.3	3.3	V
Voltage at analog pins	-0.3	3.0	V
Voltage at digital/analog pins in POWER DOWN mode	-0.25	0.25	V

5.2. Operating temperature

The operating temperature is listed in the following table:

Table 32: Operating temperature

Parameter	Min	Тур	Max	Unit
Normal temperature	-35	25	+80	$^{\circ}$
Restricted operation*	-45 to -35		+80 to +85	${\mathbb C}$
Storage temperature	-45		+90	${\mathbb C}$

^{*} When the module works in this temperature range, the deviation from the GSM specification may occur. For example, the frequency error or the phase error could increase.

M10_HD_V3.0 - 68 -

5.3. Power supply ratings

Table 33: The module power supply ratings

Parameter	Parameter Description Conditions		Min	Type	Max	Unit
VBAT	Supply	Voltage must stay within the	3.3	4.0	4.6	V
	voltage	min/max values, including				
		voltage drop, ripple, and spikes.				
	Voltage drop	Maximum power control level			400	mV
	during	on GSM850 and GSM900.				
	transmitting					
	burst					
	Voltage	Maximum power control level				
	ripple	on GSM850 and GSM900				
		@ f<200kHz			50	mV
		@ f>200kHz			2	mV
I_{VBAT}	Average	POWER DOWN mode		29		uA
V 15/11	supply	SLEEP mode @ DRX=5		1.1		mA
	current	Minimum functionality mode				
		AT+CFUN=0				
		IDLE mode		13		mA
		SLEEP mode		0.84		mA
		AT+CFUN=4				
		IDLE mode		13		mA
		SLEEP mode		0.83		mA
		IDLE mode				
		GSM850/EGSM900		13		mA
		DCS1800/PCS1900		13		mA
		TALK mode				
		GSM850/EGSM900 ¹⁾		209/208		mA
		DCS1800/PCS1900 ²⁾		191/202		mA
		DATA mode, GPRS (3 Rx,2Tx)				
		GSM850/EGSM900 ¹⁾		341/347		mA
		DCS1800/PCS1900 ²⁾		318/335		mA
		DATA mode, GPRS(2 Rx,3Tx)				
		GSM850/EGSM900 ¹⁾		394/408		mA
		DCS1800/PCS1900 ²⁾		377/396		mA
		DATA mode, GPRS (4 Rx,1Tx)				mA
		GSM850/EGSM900 ¹⁾		225/226		mA
		DCS1800/PCS1900 ²⁾		210/219		
		DATA mode, GPRS(1Rx,4Tx)				
		GSM850/EGSM900 ¹⁾		449/464		mA

M10_HD_V3.0 - 69 -

Parameter	Description	Conditions	Min	Type	Max	Unit
		DCS1800/PCS1900 ²⁾		423/445		mA
	Peak supply current (during transmission slot)	Maximum power control level on GSM900.		1.6	1.8	A

¹⁾ Power control level PCL 5

5.4. Current consumption

The values of current consumption are shown in Table 34.

Table 34: The module current consumption

Condition	Current Consumption
Voice Call	
GSM850	@power level #5 <300mA,Typical 209mA
	@power level #12,Typical 96mA
	@power level #19,Typical 73mA
GSM900	@power level #5 <300mA,Typical 208mA
	@power level #12,Typical 96mA
	@power level #19,Typical 73mA
DCS1800	@power level #0 <250mA,Typical 191mA
	@power level #7,Typical 93mA
	@power level #15,Typical 70mA
PCS1900	@power level #0 <250mA,Typical 202mA
	@power level #7,Typical 95mA
	@power level #15,Typical 71mA
GPRS Data	
DATA mode, GPRS (1 Rx,1 Tx)	CLASS 12
GSM850	@power level #5 <350mA,Typical 199mA
	@power level #12,Typical 87mA
	@power level #19,Typical 63mA
EGSM 900	@power level #5 <350mA,Typical 200mA
	@power level #12,Typical 96mA
	@power level #19,Typical 70mA
DCS 1800	@power level #0 <300mA,Typical 184mA
	@power level #7,Typical 82mA
	@power level #15,Typical 66mA
PCS 1900	@power level #0 <300mA,Typical 192mA
	@power level #7,Typical 82mA

M10_HD_V3.0 - 70 -

²⁾ Power control level PCL 0

	@power level #15,Typical 66mA			
DATA mode, GPRS (3 Rx, 2 Tx				
GSM850	@power level #5 <550mA, Typical 341mA			
	@power level #12, Typical 135mA			
	@power level #19,Typical 85mA			
EGSM 900	@power level #5 <550mA, Typical 347mA			
	@power level #12,Typical 156mA			
	@power level #19,Typical 103mA			
DCS 1800	@power level #0 <450mA, Typical 318mA			
	@power level #7,Typical 118mA			
	@power level #15, Typical 84mA			
PCS 1900	@power level #0 <450mA, Typical 335mA			
	@power level #7,Typical 128mA			
	@power level #15, Typical 95mA			
DATA mode, GPRS (2 Rx, 3 Tx				
GSM850	@power level #5 <600mA, Typical 394mA			
	@power level #12, Typical 176mA			
	@power level #19, Typical 102mA			
EGSM 900	@power level #5 <600mA, Typical 408mA			
	@power level #12, Typical 189mA			
	@power level #19,Typical 110mA			
DCS 1800	@power level #0 <490mA, Typical 377mA			
	@power level #7,Typical 147mA			
	@power level #15,Typical 97mA			
PCS 1900	@power level #0 <480mA, Typical 396mA			
	@power level #7,Typical 146mA			
	@power level #15, Typical 98mA			
DATA mode, GPRS (4 Rx,1 Tx				
GSM850	@power level #5 <350mA, Typical 225mA			
	@power level #12,Typical 87mA			
	@power level #19,Typical 62mA			
EGSM 900	@power level #5 <350mA, Typical 226mA			
	@power level #12, Typical 97mA			
	@power level #19,Typical 69mA			
DCS 1800	@power level #0 <300mA, Typical 210mA			
	@power level #7,Typical 82mA			
	@power level #15, Typical 66mA			
PCS 1900	@power level #0 <300mA, Typical 219mA			
	@power level #7,Typical 82mA			
	@power level #15, Typical 66mA			
DATA mode, GPRS (1 Rx, 4 Tx				
GSM850	@power level #5 <660mA, Typical 449mA			
	@power level #12, Typical 207mA			
	[@r = = . = . = .] prom 20 / mm 1			

M10_HD_V3.0 -71 -

	@power level #19,Typical 109mA				
EGSM 900	@power level #5 <660mA,Typical 464mA				
	@power level #12,Typical 221mA				
	@power level #19,Typical 117mA				
DCS 1800	@power level #0 <530mA, Typical 423mA				
	@power level #7,Typical 166mA				
	@power level #15,Typical 99mA				
PCS 1900	@power level #0 <530mA, Typical 445mA				
	@power level #7,Typical 165mA				
	@power level #15,Typical 100mA				

Note: GPRS Class 12 is the default setting. The module can be configured from GPRS Class 1 to Class 12 by "AT+QGPCLASS". Setting to lower GPRS class would make it easier to design the power supply for the module.

5.5. Electro-static discharge

Although the GSM engine is generally protected against Electrostatic Discharge (ESD), precautions about ESD protection should still be emphasized. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any applications using the module.

The measured ESD values of module are shown as the following table:

Table 35: The ESD endurance (Temperature:25°C, Humidity:45 %)

Tested point	Contact discharge	Air discharge
VBAT,GND	±5KV	±12KV
PWRKEY	±4KV	+8KV/-6 KV
SIM Card Interface	±4KV	+8KV/-6 KV
Antenna port	±5KV	±10KV
SPK1P/1N, SPK2P/2N,	±4KV	+ 0VV/ 6 VV
MIC1P/1N, MIC2P/2N	±4 K V	+8KV/-6 KV

M10_HD_V3.0 - 72 -

6. Mechanical dimensions

This chapter describes the mechanical dimensions of the module.

6.1. Mechanical dimensions of module

Figure 48: M10 top and side dimensions (Unit: mm)

M10_HD_V3.0 - 73 -

Figure 49: M10 bottom dimensions (Unit: mm)

Figure 50: PAD bottom dimensions (Unit: mm)

M10_HD_V3.0 - 74 -

6.2. Footprint of recommendation

single pad

M10_HD_V3.0 -75 -

Figure 51: Footprint of recommendation (Unit: mm)

- Note1: Keep out the area below the test point in the host PCB. Place solder mask.
- Note2: In order to maintain the module, keep about 3mm between the module and other components in host PCB.
- Note3: Keep out area in above figure in which is forbid to pour GND copper. Since the RF test point in this area, avoid generating parasitic capacitance between RF test point and GND.

M10_HD_V3.0 - 76 -

6.3. Top view of the module

Figure 52: Top view of the module

6.4. Bottom view of the module

Figure 53: Bottom view of the module

M10_HD_V3.0 - 77 -

Appendix A: GPRS coding schemes

Four coding schemes are used in GPRS protocol. The differences between them are shown in Table 36.

Table 36: Description of different coding schemes

Scheme	Code	USF	Pre-coded	Radio	BCS	Tail	Coded	Punctured	Data
	rate		USF	Block			bits	bits	rate
				excl.USF					Kb/s
				and BCS					
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456	-	21.4

Radio block structure of CS-1, CS-2 and CS-3 is shown as Figure 54:

Figure 54: Radio block structure of CS-1, CS-2 and CS-3

Radio block structure of CS-4 is shown as Figure 55:

Figure 55: Radio block structure of CS-4

M10_HD_V3.0 - 78 -

Appendix B: GPRS multi-slot classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependant, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes of the M10 module support is shown in Table 37.

Table 37: GPRS multi-slot classes

Multislot class	Downlink slots	Uplink slots	Active slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

M10_HD_V3.0 - 79 -

Shanghai Quectel Wireless Solutions Co., Ltd.

 $Room\ 501, Building\ 13, No.99, Tianzhou\ Road, Shanghai, China\ 200233$

Tel: +86 21 5108 6236

Mail: info@quectel.com