In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]:

```
df2=pd.read_csv(r'C:\Users\user\Downloads\C2_test.gender_submission.csv')
df2
fin2=pd.read_csv(r'C:\Users\user\Downloads\C2_train.gender_submission.csv')
fin2
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.283
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.925
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.100
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.050
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.450
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.000
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.750
891 r	ows × 12 colu	ımns								
4										>
										·

In [3]:

```
df0=df2.head(10)
df=df0.fillna("30.0")
df
fin0=fin2.head(10)
fin=fin0.fillna("35.0")
fin
```

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
5	6	0	3	Moran, Mr. James	male	35.0	0	0	330877	8.4583
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708
4										•

In [4]:

```
df.info()
fin.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 11 columns): Non-Null Count Dtype # Column _ _ _ ---------PassengerId 10 non-null 0 int64 1 Pclass 10 non-null int64 2 Name 10 non-null object 3 Sex 10 non-null object 4 Age 10 non-null float64 5 10 non-null SibSp int64 6 Parch 10 non-null int64 7 Ticket 10 non-null object 8 float64 Fare 10 non-null 9 Cabin 10 non-null obiect 10 Embarked 10 non-null object dtypes: float64(2), int64(4), object(5) memory usage: 1008.0+ bytes <class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 12 columns): # Column Non-Null Count Dtype 0 PassengerId 10 non-null int64 1 Survived 10 non-null int64 2 Pclass 10 non-null int64 3 Name 10 non-null object 4 Sex 10 non-null object 5 10 non-null object Age 6 SibSp 10 non-null int64 7 Parch 10 non-null int64 8 Ticket 10 non-null object 9 10 non-null float64 Fare 10 Cabin 10 non-null object 11 Embarked 10 non-null object dtypes: float64(1), int64(5), object(6)

memory usage: 1.1+ KB

In [5]:

```
df.describe()
fin.describe()
```

Out[5]:

	Passengerld	Survived	Pclass	SibSp	Parch	Fare
count	10.00000	10.000000	10.000000	10.000000	10.000000	10.000000
mean	5.50000	0.500000	2.300000	0.700000	0.300000	27.020820
std	3.02765	0.527046	0.948683	0.948683	0.674949	23.601938
min	1.00000	0.000000	1.000000	0.000000	0.000000	7.250000
25%	3.25000	0.000000	1.250000	0.000000	0.000000	8.152075
50%	5.50000	0.500000	3.000000	0.500000	0.000000	16.104150
75%	7.75000	1.000000	3.000000	1.000000	0.000000	46.414575
max	10.00000	1.000000	3.000000	3.000000	2.000000	71.283300

In [6]:

```
df.columns
fin.columns
```

Out[6]:

In [7]:

```
sns.pairplot(df)
sns.pairplot(fin)
```

Out[7]:

<seaborn.axisgrid.PairGrid at 0x2918b32d340>

a future version. Please adapt your code to use either `displot (a figure -level function with similar flexibility) or `histplot` (an axes-level fun

Out[8]:

ction for histograms).

<AxesSubplot:xlabel='Age', ylabel='Density'>

Warrings warn (msg, Future Warning)

In [9]:

```
sns.histplot(df["Age"],color='red')
sns.histplot(fin["Parch"],color='blue')
```

Out[9]:

<AxesSubplot:xlabel='Age', ylabel='Count'>

In [10]:

In [11]:

```
sns.heatmap(df1.corr())
sns.heatmap(fin1.corr())
```

Out[11]:

<AxesSubplot:>


```
In [12]:
```

```
x=df1[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
y=fin1[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
```

In [13]:

```
from sklearn.model_selection import train_test_split
```

In [14]:

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [15]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)#ValueError: Input contains NaN, infinity or a value too large for
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

In [17]:

```
coef= pd.DataFrame(lr.coef_)
coef
```

Out[17]:

	0	1	2	3	4	5
0	1.000000	-4.866403e-16	6.924589e-16	5.515729e-16	0.0	3.279364e-15
1	-0.354184	-3.868372e+00	-9.726923e-02	2.681135e-01	0.0	5.464786e-02
2	5.532481	1.657792e+01	5.239007e-01	1.407403e-01	0.0	-3.184044e+00
3	-0.161799	1.715021e+00	2.249348e-02	-2.257961e-01	0.0	1.245994e-01
4	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.0	0.000000e+00
5	7.516158	7.225946e+01	1.859503e+00	1.470512e+01	0.0	-3.811048e+00

In [18]:

```
print(lr.score(x_test,y_test))
```

-22.52209907188785

```
In [19]:
```

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[19]:

<matplotlib.collections.PathCollection at 0x2918bbb62b0>

In [20]:

```
lr.score(x_test,y_test)
```

Out[20]:

-22.52209907188785

In [21]:

```
lr.score(x_train,y_train)
```

Out[21]:

0.8916852718919287

In [22]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [23]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[23]:

Ridge(alpha=10)

In [24]:

```
rr.score(x_test,y_test)
```

Out[24]:

-3.383452576892554

```
In [25]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
  model = cd_fast.enet_coordinate_descent(
Out[25]:
Lasso(alpha=10)
In [26]:
la.score(x_test,y_test)
Out[26]:
-2.207084556972902
Elastic Net
In [27]:
from sklearn.linear_model import ElasticNet
en = ElasticNet()
en.fit(x_train,y_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
  model = cd_fast.enet_coordinate_descent(
Out[27]:
ElasticNet()
In [28]:
print(en.coef_)
[ 7.38992951e-01 -0.00000000e+00 -1.95680928e-02 0.00000000e+00
   0.00000000e+00 6.77545964e-02]
 [-0.00000000e+00 -0.00000000e+00
                                   2.08752798e-03 -0.00000000e+00
   0.00000000e+00 1.61910530e-03]
 [ 3.68143731e+00 7.97420625e-02 6.51140915e-02 5.10797984e-01
   0.00000000e+00 -2.78083821e+00]
 [-0.00000000e+00 0.00000000e+00 -1.77696945e-05
                                                   0.00000000e+00
   0.00000000e+00 7.83565915e-031
 [ 0.00000000e+00 0.0000000e+00
                                   0.00000000e+00 0.00000000e+00
   0.00000000e+00 0.00000000e+00]
```

0.00000000e+00 -2.71379332e+00]]

[3.42014506e+00 5.01721588e+00 2.76294345e-01 9.34754689e+00

In [29]:

```
print(en.intercept_)
[-6.57271969e+02 1.91261092e+00 -3.23868308e+03 4.88986989e-01
 0.0000000e+00 -3.02949935e+03]
In [30]:
prediction=en.predict(x_test)
print(prediction)
32.08255313]
[ 8.5388068
            2.0138407 -7.35198985 0.71575909 0.
                                                     -6.92332105]
49.0375898
3]]
In [31]:
print(en.score(x_test,y_test))
-5.080616467467732
Logistic Regression
In [32]:
from sklearn.linear_model import LogisticRegression
In [33]:
feature_matrix=df1[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch','Fare']]
target_vector = df1[['Embarked']]
In [34]:
feature_matrix.shape
Out[34]:
(10, 6)
In [35]:
target_vector.shape
Out[35]:
(10, 1)
In [36]:
from sklearn.preprocessing import StandardScaler
```

```
In [37]:
fs = StandardScaler().fit_transform(feature_matrix)
In [38]:
logr = LogisticRegression()
logr.fit(fs,target_vector)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:63:
DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using r
avel().
  return f(*args, **kwargs)
Out[38]:
LogisticRegression()
In [41]:
observation=df1[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
In [42]:
prediction = logr.predict(observation)
print(prediction)
['C' 'C' 'C' 'C' 'C' 'C' 'C' 'C' 'C']
In [43]:
logr.classes_
Out[43]:
array(['C', 'Q', 'S'], dtype=object)
In [44]:
logr.predict_proba(observation)[0][0]
Out[44]:
1.0
In [45]:
logr.predict proba(observation)[0][1]
Out[45]:
```

Evaluation Metrics

0.0

```
In [46]:
```

```
from sklearn import metrics
```

```
In [47]:
```

```
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
ValueError
                                           Traceback (most recent call las
t)
<ipvthon-input-47-4b3ebc69c71d> in <module>
----> 1 print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, pr
ediction))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner_f(*args, **kwargs)
     61
                    extra_args = len(args) - len(all_args)
     62
                    if extra args <= 0:</pre>
---> 63
                        return f(*args, **kwargs)
     64
     65
                    # extra_args > 0
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\ regression.py
in mean_absolute_error(y_true, y_pred, sample_weight, multioutput)
            0.85...
    180
    181
            y_type, y_true, y_pred, multioutput = _check_reg_targets(
--> 182
    183
                y_true, y_pred, multioutput)
    184
            check_consistent_length(y_true, y_pred, sample_weight)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\ regression.py
in _check_reg_targets(y_true, y_pred, multioutput, dtype)
     86
                the dtype argument passed to check_array.
     87
---> 88
            check_consistent_length(y_true, y_pred)
     89
            y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
     90
            y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
check consistent length(*arrays)
    260
            uniques = np.unique(lengths)
    261
            if len(uniques) > 1:
--> 262
                raise ValueError("Found input variables with inconsistent
numbers of"
                                  " samples: %r" % [int(1) for 1 in length
    263
s])
    264
ValueError: Found input variables with inconsistent numbers of samples:
[3, 10]
```

```
In [48]:
```

```
print("Mean Squared Error:", metrics.mean squared error(y test, prediction))
        ______
ValueError
                                         Traceback (most recent call las
t)
<ipython-input-48-a8cbb0b7f78a> in <module>
----> 1 print("Mean Squared Error:", metrics.mean_squared_error(y_test,pred
iction))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner f(*args, **kwargs)
    61
                   extra_args = len(args) - len(all_args)
     62
                   if extra args <= 0:</pre>
---> 63
                       return f(*args, **kwargs)
     64
     65
                   # extra_args > 0
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\_regression.py
in mean squared_error(y_true, y_pred, sample_weight, multioutput, squared)
           0.825...
    333
           .....
    334
--> 335
           y_type, y_true, y_pred, multioutput = _check_reg_targets(
    336
               y_true, y_pred, multioutput)
           check_consistent_length(y_true, y_pred, sample_weight)
    337
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\ regression.py
in _check_reg_targets(y_true, y_pred, multioutput, dtype)
    86
               the dtype argument passed to check_array.
    87
---> 88
           check_consistent_length(y_true, y_pred)
           y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
     89
           y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
     90
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
check consistent length(*arrays)
           uniques = np.unique(lengths)
    260
    261
           if len(uniques) > 1:
               raise ValueError("Found input variables with inconsistent
--> 262
numbers of"
                                " samples: %r" % [int(1) for 1 in length
    263
s1)
    264
ValueError: Found input variables with inconsistent numbers of samples:
[3, 10]
```

```
In [49]:
print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
ValueError
                                           Traceback (most recent call las
t)
<ipython-input-49-c32fd676945a> in <module>
---> 1 print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_erro
r(y_test, prediction)))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner f(*args, **kwargs)
     61
                    extra_args = len(args) - len(all_args)
     62
                    if extra args <= 0:</pre>
---> 63
                        return f(*args, **kwargs)
     64
                    # extra_args > 0
     65
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\_regression.py
in mean squared_error(y_true, y_pred, sample_weight, multioutput, squared)
            0.825...
    333
    334
--> 335
           y_type, y_true, y_pred, multioutput = _check_reg_targets(
    336
                y_true, y_pred, multioutput)
            check_consistent_length(y_true, y_pred, sample_weight)
    337
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\ regression.py
in _check_reg_targets(y_true, y_pred, multioutput, dtype)
                the dtype argument passed to check_array.
     87
---> 88
            check_consistent_length(y_true, y_pred)
            y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
     89
            y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
check consistent length(*arrays)
    260
            uniques = np.unique(lengths)
            if len(uniques) > 1:
    261
                raise ValueError("Found input variables with inconsistent
--> 262
numbers of"
                                  " samples: %r" % [int(1) for 1 in length
    263
s1)
    264
ValueError: Found input variables with inconsistent numbers of samples:
[3, 10]
```

Model Saving

```
In [50]:
import pickle
```

```
In [51]:
```

```
filename="prediction"
pickle.dump(lr,open(filename,'wb'))
```