Kernel Methods for Regression

I. Santamaría, S. Van Vaerenbergh

GTAS, Universidad de Cantabria

3 de febrero de 2022

Master Universitario Oficial Data Science

Contents

Linear regression

Linear regression

Kernel Ridge Regression

SVR

Gaussian Processes

Conclusions

•000000

▶ Input: $(\mathbf{x}_1, \dots, \mathbf{x}_n)$, $\mathbf{x}_i \in \mathbb{R}^d$

ightharpoonup Output: $(y_1, \ldots, y_n), y_i \in \mathcal{R}$

▶ **Problem**: find $f(\cdot)$: $\mathbb{R}^d \to \mathbb{R}$ to fit (or predict) y from \mathbf{x}

000000

Typical applications are time-series prediction or nonlinear modeling

Before considering kernel methods, let us briefly review the linear case

Linear regression

0000000

► To find the hyperplane $f(\mathbf{x}) = \overline{\mathbf{w}^T}\mathbf{x} + b$ that best fits the observations

▶ If we redefine $\mathbf{x} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$, the linear function becomes

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \mathbf{x}^T \mathbf{w}$$

► Training data set $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ with $\mathbf{x}_i \in \mathcal{R}^d$ and $y_i \in \mathcal{R}$ $y_i = \mathbf{x}_i^T \mathbf{w} + e_i, \quad i = 1, ..., n$

 \blacktriangleright Overdetermined system (n > d) of linear equations

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & & & \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nd} \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} \mathbf{w} + \mathbf{e} = \mathbf{X}^T \mathbf{w} + \mathbf{e}$$

► Solution to overfitting or ill-conditioned problems

$$J(\mathbf{w}) = \sum_{i=1}^{n} \mathcal{L}(e_i) + \lambda ||\mathbf{w}||^2$$

▶ Error penalty or loss function $\mathcal{L}(e_i)$

$$\mathcal{L}_2 - \text{norm}: \qquad \mathcal{L}(e_i) = e_i^2$$
 $\mathcal{L}_1 - \text{norm}: \qquad \mathcal{L}(e_i) = |e_i|$
 $\epsilon - \text{insensitive}: \qquad \mathcal{L}(e_i) = \max(0, |e_i| - \epsilon)$

- ► The complexity of the solution is penalized through ||w||²
- \blacktriangleright λ is the regularization parameter
- ► Note: the resulting optimization problem may be nonlinear, but we find a linear regressor

Linear regression

0000000

0000000

Linear regression problem with L_2 -norm loss function

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 + \lambda ||\mathbf{w}||^2$$

The solution is

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^T + \underline{\lambda}\mathbf{I}_d\right)^{-1}\mathbf{X}\mathbf{y}$$

 $\mathbf{w} = \left(\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I}_d\right)^{-1}\mathbf{X}\mathbf{y}$ $\blacktriangleright \text{ If } \lambda = 0 \text{ we recover the sector solution}$

$$\mathbf{w}_{LS} = \left(\mathbf{X}\mathbf{X}^T\right)^{-1}\mathbf{X}\mathbf{y} = \mathbf{X}^\sharp\mathbf{y}$$

 $\mathbf{X}^{\sharp} = (\mathbf{X}\mathbf{X}^{T})^{-1}\mathbf{X}$ is the pseudoinverse or Moore-Penrose inverse of $\hat{\mathbf{X}}^T$

► The Ridge Regression solution can be expressed as a linear combination of the input patterns

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{T} + \lambda \mathbf{I}_{d}\right)^{-1} \mathbf{X}\mathbf{y} = \mathbf{X} \underbrace{\left(\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I}_{n}\right)^{-1} \mathbf{y}}_{\alpha}$$
$$= \mathbf{X}\alpha = \sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i},$$

where

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} \langle \mathbf{x}_{1}, \mathbf{x}_{1} \rangle & \cdots & \langle \mathbf{x}_{1}, \mathbf{x}_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{x}_{n}, \mathbf{x}_{1} \rangle & \cdots & \langle \mathbf{x}_{n}, \mathbf{x}_{n} \rangle \end{bmatrix}$$
 is a kernel matrix !!

► And the output for a new test pattern **x** is

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^n \alpha_i \langle \mathbf{x}_i, \mathbf{x} \rangle$$
 is a kernel expansion!!

Linear regression

000000

Kernel Ridge Regression (KRR)

We apply the kernel trick and change the linear kernel $\langle \mathbf{x}_i, \mathbf{x}_i \rangle = \mathbf{x}_i^T \mathbf{x}_i$ by a nonlinear kernel (e.g., Gaussian)

SVR

$$\left\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \right\rangle = k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|_2^2\right) \right)$$

The solution for the coefficients is

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

► The output for a test vector **x** is

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

Given $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$, the kernel function $k(\cdot, \mathbf{x})$, and the regularization parameter $\lambda > 0$:

- 1. Build the $n \times n$ kernel matrix **K** with elements $k(\mathbf{x}_i, \mathbf{x}_i)$
- 2. Obtain the expansion coefficients

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

3. The output for a new input data **x** is (out-of-sample regression)

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

- ► The matrix $(\mathbf{K} + \lambda \mathbf{I})$ is always invertible
- ▶ With a Gaussian kernel and $\lambda = 0$ we are interpolating the data
- ► The computational cost to calculate $(\mathbf{K} + \lambda \mathbf{I})^{-1}$ grows as n^3
- ► KRR: parameter fitting
 - \triangleright λ : Regularization parameter

 - $ightharpoonup \lambda \uparrow$ more regularization \rightarrow smooth models
 - γ: Gaussian kernel
 - $ightharpoonup \gamma \downarrow$ broad (overlapped) Gaussians \rightarrow smooth models
 - ▶ $\gamma \uparrow$ narrow Gaussians \rightarrow non-smooth models

Example: $\gamma = 12, 5$; $\lambda = 1$

Example: $\gamma = 5 \cdot 10^3$; $\lambda = 0.1$

Support Vector Regression (SVR)

▶ Instead of the L_2 -norm, the SVR uses the ϵ -insensitive loss function

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{n} \left| y_i - \mathbf{w}^T \mathbf{x}_i \right|_{\epsilon}$$

- ▶ L_1 -norm penalty for errors larger than ϵ
- Avoids overfitting by not considering small errors

- ► The coefficients of the expansion, α , are the solution of a Quadratic Programming (QP) problem
- ► The output for a test vector is

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

000000

 $ho \quad \alpha_i \neq 0$ only for points outside the ϵ -tube \Longrightarrow sparse expansion

- ► C: Regularization parameter
 - $ightharpoonup C \downarrow$ less penalty for errors \rightarrow smooth models
 - C ↑ more penalty for errors → non-smooth models, overfitting risk
- ► *ϵ*: Loss function parameter
 - ► $\epsilon \downarrow$ small errors are penalized \rightarrow non-smooth models, overfitting risk
 - $ightharpoonup \epsilon \uparrow$ only large errors are penalized \rightarrow smooth models
- $ightharpoonup \gamma$: Gaussian kernel
 - $ightharpoonup \gamma \downarrow$ broad (overlapped) Gaussians \rightarrow smooth models
 - $ightharpoonup \gamma \uparrow$ narrow Gaussians \rightarrow non-smooth models

Example: $C = 10^3$, $\gamma = 0.1$

Example: $\epsilon = 0.1$, $\gamma = 10$

► SVR and KRR minimize regularized functionals

KRR:
$$\min_{\mathbf{w}} \lambda ||\mathbf{w}||^2 + \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

SVR:
$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{n} |y_i - \mathbf{w}^T \mathbf{x}_i|_{\epsilon}$$

- ► To obtain the output for a test vector \mathbf{x} , SVR and KRR have identical functional form: $f(\mathbf{x}) = \sum_{j=1}^{n} \alpha_{j} k(\mathbf{x}_{j}, \mathbf{x})$, but the expansion coefficients are different
 - ▶ SVR: QP problem, sparse solution, many $\alpha_i = 0$
 - ▶ KRR: Linear problem, non-sparse solution, $\alpha_i \neq 0, \forall i$

Introduction

Linear regression

► A limitation of SVR and KRR is that they do not provide any information about the uncertainty or confidence interval of the predictions

► Gaussian Processes or GPs are state-of-the-art
Bayesian methods for regression that overcome this
limitation of kernel methods

GPs are known in geostatistics as kriging

Bayes Theorem

- ▶ Prior distribution: What a priori knowledge do we have about the function we want to estimate $f(\mathbf{x})$?
- ▶ **Likelihood**: What information about $f(\mathbf{x})$ do the observations provide? → Noise distribution
- ▶ Bayes Theorem: How to combine the prior with the likelihood to yield a posterior distribution for f(x)

► GPs: the prior distribution and the noise distribution (likelihood) are both Gaussian ⇒ the posterior is also Gaussian

Prior: a zero-mean Gaussian with covariance matrix **K** (kernel matrix): $f(\mathbf{x}) \sim \mathcal{GP}(0, \mathbf{K})$

$$k(x_1, x_2) = \exp\left(\frac{-(x_1 - x_2)^2}{2\sigma^2}\right)$$

$$k(x_1, x_2) = \exp\left(\frac{-|x_1 - x_2|}{\sigma^2}\right)$$

Likelihood: a zero-mean Gaussian with variance σ_e^2 : $e_i \sim \mathcal{N}(0, \sigma_e^2)$

Posterior: Given a new test point \mathbf{x} , the posterior distribution for the latent function (GP output) is a Gaussian: $\mathcal{N}(f(\mathbf{x}), \sigma^2)$

▶ Mean

Linear regression

$$f(\mathbf{x}) = \mathbf{k}^T [\mathbf{K} + \sigma_e^2 \mathbf{I}]^{-1} \mathbf{y},$$

same expression as a KRR with regularization parameter $\lambda = \sigma_a^2!!$

▶ Variance

$$\sigma^2 = k(\mathbf{x}, \mathbf{x}) - \mathbf{k}^T [\mathbf{K} + \sigma_e^2 \mathbf{I}]^{-1} \mathbf{k}$$

where $\mathbf{k} = [k(\mathbf{x}_1, \mathbf{x}), \dots, k(\mathbf{x}_n, \mathbf{x})]^T$, and \mathbf{K} is the kernel matrix with elements $k(\mathbf{x}_i, \mathbf{x}_i)$

- ► GP with Gaussian kernel
- ► Hyperparameters: kernel size σ^2 and noise variance σ^2

Fixed kernel size ($\sigma^2 = 0.2$)

$$\sigma_e^2 = 0.2$$

$$\sigma_{\rm e}^2 = 0.02$$

$$\sigma^2 = 0.02$$

$$\sigma^2 = 1$$

Gaussian Processes

00000000000

Typically we use the Maximum Likelihood estimates of the hyperparameters: $\hat{\sigma}^2 \approx 0.04$ y $\sigma_e^2 \approx 0.135$

Software

Linear regression

Matlab:

GPML software package: http://www.gaussianprocess.org/gpml/code/matlab/doc/

Python:

- GPy: http://sheffieldml.github.io/GPy/
- GPs via TensorFlow: https://github.com/GPflow/GPflow

scikit-learn includes a simple version

Conclusions

Linear regression

► KRR

- Regularized LS in the feature space
- ► Loss function: *L*₂-norm → Non-sparse solution
- ► Inversion of the regularized kernel matrix
- ► Hyperparameter estimation: Cross-validation

► SVR

- Based on the SRM principle
- ▶ Loss function: ϵ -insensitive \rightarrow Sparse solution
- QP problem
- Hyperparameter estimation: Cross-validation

► GPs

- ► Bayesian approximation
- Provides confidence intervals
- ► Mean value of the posterior = KRR
- ► Hyperparameter estimation: Maximum Likelihood

