Nested Quantifiers

Section 1.5

Section Summary

- Nested Quantifiers
- Order of Quantifiers
- Translating to and from English
- Negating Nested Quantifiers

Nested Quantifiers

 Two qualifiers are nested if one is within the scope of the other.

Example: "Every real number has an inverse" is

where the domains of x and y are the real numbers.

Thinking of Nested Quantification as Nested Loops

Loop through all values of x. At each step, loop through all values of y.

- $\forall x \forall y P(x,y)$
 - If P(x,y) is false for some pair of x and y, then $\forall x \forall y P(x,y)$ is false and both the outer and inner loop terminate.
 - $\forall x \forall y P(x,y)$ is true if the outer loop ends after stepping through each x.
- $\forall x \exists y P(x,y)$
 - The inner loop ends when a pair x and y is found such that P(x, y) is true.
 - If no *y* is found such that P(x, y) is true, the outer loop terminates as $\forall x \exists y P(x,y)$ has been shown to be false.
 - $\forall x \exists y P(x,y)$ is true if the outer loop ends after stepping through each x.

Order of Quantifiers

Examples:

- 1. P(x,y): "x + y = y + x." Assume that U is the real numbers.
 - $\forall x \ \forall y P(x,y)$ and $\forall y \ \forall x P(x,y)$ have the same truth value.
 - $\exists x \exists y P(x,y)$ and $\exists y \exists x P(x,y)$ have the same truth value.
- 2. Q(x,y): "x + y = 0." Assume that U is the real numbers.
 - $\forall x \exists y Q(x,y)$ is true, but
 - $\exists y \forall x Q(x,y)$ is false

Questions on Order of Quantifiers

Example 1: Let *U* be the real numbers,

Define P(x,y): " $x \cdot y = 0$ "

What is the truth value of the following:

1. $\forall x \forall y P(x,y)$

Answer: False

2. $\forall x \exists y P(x,y)$

Answer: True

3. $\exists x \forall y P(x,y)$

Answer: True

4. $\exists x \exists y P(x,y)$

Answer: True

Questions on Order of Quantifiers

Example 2: Let *U* be the real numbers,

Define P(x,y): "x / y = 1"

What is the truth value of the following:

1. $\forall x \forall y P(x,y)$

Answer: False

2. $\forall x \exists y P(x,y)$

Answer: True

3. $\exists x \forall y P(x,y)$

Answer: False

4. $\exists x \exists y P(x,y)$

Answer: True

Quantifications of Two Variables

Statement	When True?	When False
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x,y) is true for every pair x,y .	There is a pair x , y for which $P(x,y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x,y)$ is true.	There is an x such that $P(x,y)$ is false for every y.
$\exists x \forall y P(x,y)$	There is an x for which $P(x,y)$ is true for every y .	For every x there is a y for which $P(x,y)$ is false.
$\exists x \exists y P(x,y)$	There is a pair x , y for which $P(x,y)$ is true.	P(x,y) is false for every pair x,y
$\exists y \exists x P(x,y)$		

Translating Nested Quantifiers into English

Let *U* be all students in your school. Using C(x)= "x has a computer," and F(x,y)= "x and y are friends," translate the following statements.

• $\forall x \ (C(x) \lor \exists y \ (C(y) \land F(x,y)))$

Solution: Every student in your school has a computer or has a friend who has a computer.

• $\exists x \forall y \forall z ((F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z))$

Solution: There is a student none of whose friends are also friends with each other.

Translating Mathematical Statements into Predicate Logic

- Rewrite the statement to make the implied quantifiers and domains explicit
- 2. Introduce variables and specify the domain for them
- 3. Rewrite the statement using quantifiers, variables, and logic expressions.

Example: Translate "The sum of two positive integers is always positive" into a logical expression.

- 1. "For every two positive integers, the sum of these integers is positive."
- 2. "For all positive integers x and y, x + y is positive."
- 3. $\forall x \forall y (x + y > 0)$, where the domain of both variables consists of all positive integers

Translating English into Logical Expressions Example

Example: Use quantifiers to express the statement "There is a woman who has taken a flight on every airline."

Solution:

- Let P(w,f) ="w has taken f" and Q(f,a) = "f is a flight on a."
- The domain of *w* is all women, the domain of *f* is all flights, and the domain of *a* is all airlines.
- Then the statement can be expressed as: $\exists w \ \forall a \ \exists f \ (P(w,f) \land Q(f,a))$

Questions on Translation from English

Choose the obvious predicates and express in predicate logic.

Example 1: "Brothers are siblings."

Solution: $\forall x \ \forall y \ (B(x,y) \rightarrow S(x,y))$

Example 2: "Siblinghood is symmetric."

Solution: $\forall x \ \forall y \ (S(x,y) \rightarrow S(y,x))$

Example 3: "Everybody loves somebody."

Solution: $\forall x \exists y L(x,y)$

Example 4: "There is someone who is loved by everyone."

Solution: $\exists y \ \forall x \ L(x,y)$

Example 5: "There is someone who loves someone."

Solution: $\exists x \exists y L(x,y)$

Example 6: "Everyone loves himself"

Solution: $\forall x L(x,x)$

Negating Nested Quantifiers

Example 1: Express the negation of the statement $\forall x\exists y(xy=1)$ so that no negation precedes a quantifier.

Solution: Use De Morgan's Laws to move the negation as far inwards as possible.

- 1. $\neg \forall x \exists y (xy = 1)$
- 2. $\exists x \neg \exists y (xy = 1)$ by De Morgan's for \forall
- 3. $\exists x \forall y \neg (xy = 1)$ by De Morgan's for \exists
- 4. $\exists x \forall y (xy \neq 1)$

Negating Nested Quantifiers

Translate the following statement into a logical expression.

"There does not exist a woman who has taken a flight on every airline."

Solution:

- Translate the positive sentence into a logical expression
 - $\exists w \forall a \exists f (P(w,f) \land Q(f,a))$ [by previous example]
 - P(w,f): "w has taken f" Q(f,a): "f is a flight on a."
- Find the negation of the logical expression
 - $\neg \exists w \forall a \exists f (P(w,f) \land Q(f,a))$
 - $\forall w \neg \forall a \exists f (P(w,f) \land Q(f,a))$
 - $\forall w \exists a \neg \exists f (P(w,f) \land Q(f,a))$
 - $\forall w \exists a \forall f \neg (P(w,f) \land Q(f,a))$
 - $\forall w \exists a \forall f(\neg P(w,f) \lor \neg Q(f,a))$

"For every woman there is an airline such that for all flights, this woman has not taken that flight or that flight is not on this airline"