Semicontinuità Inferiore

Andrea Marino

Maggio 2023

Sommario

Questo breve articolo esamina tre caratterizzazioni equivalenti di semicontinuità inferiore.

I concetti trattati sono alla portata di chiunque abbia qualche nozione di base di topologia generale (all'Università di Pisa, queste sono fornite ad esempio dal corso di Geometria 2), ma – ho pensato – un "rinfresco" non farà male.

Sia (X, τ) uno spazio topologico. Per il resto della trattazione ometteremo di indicare esplicitamente la topologia τ di X, visto che non ci saranno ambiguità.

Definizione 1. Una funzione $f: X \to \mathbb{R}$ si dice semicontinua inferiormente in $x_0 \in X$ se $\forall \epsilon > 0 \; \exists \; U \in \mathcal{I}(x_0) \quad f(x) > f(x_0) - \epsilon$, dove $\mathcal{I}(x_0)$ è la famiglia degli intorni di x_0 .

La topologia considerata su \mathbb{R} è, naturalmente, la topologia euclidea.

Osservazione. Una funzione si dice semicontinua inferiormente su X se è semicontinua inferiormente in ogni $x \in X$.

Definizione 2. La topologia della semicontinuità inferiore su \mathbb{R} è data da $\tau_I = \{\emptyset, \mathbb{R}\} \cup \{(y, +\infty) \mid y \in \mathbb{R}\}.$

Quindi gli aperti sono \emptyset , $\mathbb R$ e le semirette aperte a sinistra, illimitate a destra.

Ricordiamo che una funzione tra spazi topologici si dice *continua* se l'immagine inversa di un aperto è un aperto. Ricordiamo inoltre la seguente definizione:

Definizione 3. Sia A uno spazio topologico. Una funzione $f: X \to A$ si dice continua in x_0 se $\forall V \in \mathcal{I}(f(x_0)) \exists U \in \mathcal{I}(x_0) \quad f^{-1}(V) \subseteq U$.

Proposizione 1. $f: X \to \mathbb{R}$ è semicontinua inferiormente se e solo se $f: X \to (\mathbb{R}, \tau_I)$ è continua

Dimostrazione. Ricordiamo che una funzione è continua se e solo se è continua in ogni punto.

(\Longrightarrow) Consideriamo $x_0 \in X$ e sia $V \in \mathcal{I}(f(x_0))$. Possiamo supporre $V = (f(x_0) - \epsilon, +\infty)$ per un qualche $\epsilon > 0$. Ora, per ipotesi $\exists U \in \mathcal{I}(x_0)$ tale che $f(x) > f(x_0) - \epsilon \quad \forall x \in U$, ovvero $f(x) \in V \quad \forall x \in U$. Ma quindi $f(U) \subseteq V$.

Per la definizione 3 f è continua in x_0 . Dall'arbitrarietà di x_0 segue che f è continua.

(\iff) Sia $x_0 \in X$ e sia $\epsilon > 0$. È sufficiente dimostrare che f è semicontinua inferiormente in x_0 .

Consideriamo $f(x_0) \in \mathbb{R}$ e l'intorno $V \in \mathcal{I}(f(x_0))$ definito da $V = (f(x_0) - \epsilon, +\infty)$. Poiché f è continua, $U := f^{-1}(V)$ è un aperto di X. Si ha che $x_0 \in U$, infatti $x_0 \in f^{-1}(f(x_0))$, quindi U è un aperto che contiene x_0 , ossia $U \in \mathcal{I}(x_0)$.

Ora,
$$f(U) = f(f^{-1}(V)) \subseteq V$$
 ossia $\forall x \in U$ si ha $f(x) \in V$. Dunque $f(x) > f(x_0) - \epsilon \quad \forall x \in U$.

È possibile dare un'altra caratterizzazione della semicontinuità inferiore. Prima però ricordiamo la seguente definizione:

Definizione 4. il *limite inferiore di* f *in* x_0 è definito come

$$\liminf_{x \to x_0} f(x) \coloneqq \sup_{U \in \mathcal{I}(x_0)} \inf_{x \in U \setminus \{x_0\}} f(x) =
= \sup \left\{ \inf \left\{ f(x) \in \mathbb{R} \mid x \in U \setminus \{x_0\} \right\} \mid U \in \mathcal{I}(x_0) \right\}.$$

Proposizione 2. Sia $x_0 \in X$ un punto di accumulazione. $f: X \to \mathbb{R}$ è semicontinua inferiormente in $x_0 \in X$ se e solo se $\liminf_{x\to x_0} f(x) \ge f(x_0)$

Dimostrazione. (\iff) Sia $\epsilon > 0$ e per ogni $U \in \mathcal{I}(x_0)$ definiamo $i(U) = \inf_{x \in U \setminus \{x_0\}}$.

Per ipotesi

$$\liminf_{x \to x_0} = \sup \{ i(U) \mid U \in \mathcal{I}(x_0) \} \ge f(x_0) > f(x_0) - \epsilon.$$
 (1)

Se per ogni $U \in \mathcal{I}(x_0)$ fosse $f(x) \leq f(x_0) - \epsilon \quad \forall x \in U \setminus \{x_0\}$ allora si avrebbe che $i(U) \leq f(x_0) - \epsilon \quad \forall U \in \mathcal{I}(x_0)$, e di conseguenza – passando all'estremo superiore in $U \in \mathcal{I}(x_0)$ – si avrebbe una contraddizione con la (1).

Dunque deve esistere $\mathcal{I}(x_0) \ni U = U(\epsilon)$ tale che $f(x) > f(x_0) - \epsilon \quad \forall x \in U \setminus \{x_0\}.$

(\Longrightarrow) Per contronominale. Usando la notazione introdotta al punto precedente, $\liminf_{x\to x_0} f(x) < f(x_0) \iff \sup_{U\in \mathcal{I}(x_0)} i(U) < f(x_0)$. Di conseguenza $\exists \, \epsilon > 0 \quad \sup_{U\in \mathcal{I}(x_0)} i(U) \leq f(x_0) - \epsilon$, ma quindi $i(U) \leq f(x_0) - \epsilon \quad \forall \, U \in \mathcal{I}(x_0)$.

Cioè
$$\inf_{x \in U \setminus \{x_0\}} f(x) \leq f(x_0) - \epsilon$$
. Da ciò segue che $f(x) \leq f(x_0) - \epsilon$ $\forall x \in U \setminus \{x_0\} \forall U \in \mathcal{I}(x_0)$.

Supponiamo ora che $X = \mathbb{R}^n$. In questo caso, possiamo dare un'ulteriore caratterizzazione di semicontinuità inferiore.

Proposizione 3. $f: \mathbb{R}^n \to \mathbb{R}$ è semicontinua inferiormente se e solo se tutti i sottolivelli sono chiusi.

Dimostrazione. Per la proposizione 1 f è semicontinua inferiormente se e solo se $f: \mathbb{R}^n \to (\mathbb{R}, \tau_I)$ è continua. Ciò accade se e solo se l'immagine inversa di un chiuso è un chiuso.

Osserviamo che, per ogni $\alpha \in \mathbb{R}$, $(-\infty, \alpha] = \mathbb{R} \setminus (\alpha, +\infty)$ è chiuso in τ_I in quanto complementare di un aperto. Ma $f^{-1}((-\infty, \alpha]) = \{x \in \mathbb{R}^n \mid f(x) \leq \alpha\}$, ossia l'immagine inversa di $(-\infty, \alpha]$ è proprio il sottolivello di livello α . \square

Vediamo adesso una proprietà molto utile delle funzioni semicontinue inferiormente. Prima di fare ciò, introduciamo un semplice lemma. La proprietà segue immediatamente da questo.

Lemma 1. Sia $K \subseteq \mathbb{R}$ compatto per la topologia della semicontinuità inferiore. Allora inf $K \in K$, ossia K ammette minimo.

Dimostrazione. Sia $\alpha := \inf K$ e supponiamo per assurdo che $\alpha \notin K$.

Osserviamo che $\mathcal{U} = \left\{ \left(\alpha + \frac{1}{n}, +\infty \right) \right\}_{n>0}$ è un ricoprimento aperto di K. Sia infatti $x \in K$. Allora $x > \alpha$, quindi $\exists \, \tilde{n} \in \mathbb{N} \setminus \{0\} \quad \frac{1}{\tilde{n}} < x - \alpha$, dunque $x \in (\alpha + 1/\tilde{n}, +\infty)$.

Ora,

$$\bigcup \mathcal{U} = \bigcup_{n=1}^{+\infty} (\alpha + 1/n, +\infty) = (\alpha, +\infty) \supseteq K,$$

ma non possono esserci sottoricoprimenti finiti di \mathcal{U} .

Siano infatti $n_0 < n_1 < \cdots < n_k$ degli indici. Si ha

$$\bigcup_{t=1}^{k} (\alpha + 1/n_t, +\infty) = \left(\alpha + \frac{1}{n_k}, +\infty\right)$$

che non contiene K poiché α è l'estremo inferiore di K. Siamo caduti in contraddizione. \Box

Corollario 1. Sia X compatto e $f: X \to \mathbb{R}$ una funzione semicontinua inferiormente. Allora f assume minimo su X.

Dimostrazione. Per la proposizione 1 f è continua se consideriamo \mathbb{R} con la topologia della semicontinuità inferiore.

Sappiamo dalla topologia generale che l'immagine di un compatto tramite una funzione continua è un compatto, quindi f(X) è compatto in (\mathbb{R}, τ_I) . Per il lemma 1 f(X) ammette minimo.

Esercizi

Esercizio 1. Verificare che la topologia della semicontinuità inferiore introdotta nella definizione 2 è effettivamente una topologia su \mathbb{R}

Esercizio 2. Dimostrare che una funzione è continua se e solo se è continua in ogni punto

Esercizio 3. Perché nella dimostrazione della proposizione 1 abbiamo potuto supporre $V = (f(x_0) - \epsilon, +\infty)$ per un qualche $\epsilon > 0$?

Esercizio 4. Cosa ci assicura che la quantità i(U) (introdotta nella dimostrazione della proposizione 2) è ben definita?

Esercizio 5. Sia $x \in \mathbb{R}$. Dimostrare che $[x, +\infty)$ è compatto in (\mathbb{R}, τ_I)

Esercizio 6. Sia $K\subseteq (\mathbb{R},\tau_I)$. Dimostrare che la condizione min $K\in K$ è sufficiente alla compattezza

Esercizio 7. Dimostrare che $\bigcup_{n=1}^{+\infty} (\alpha + 1/n, +\infty) = (\alpha, +\infty)$

Esercizio 8. Descrivere la topologia della semicontinuità superiore e, partendo da essa, dimostrare le caratterizzazioni delle funzioni semicontinue superiormente analoghe a quelle viste