

Lucas K. Bobadilla, Darci Giacomini, Aaron Hager, Patrick J Tranel
NCWSS – 2021 – Grand Rapids, MI

Crop Sciences

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

Outline

Background

Methods

Results & discussion

Conclusions & future studies

Background

Waterhemp (Amaranthus tuberculatus (Moq.) Sauer) is one of the most troublesome agronomic weeds in the midwestern US.

CHR population:

- Identified in 2012 in Champaign County, IL
- Resistant to 6 sites of action (WSSA groups 2, 4, 5, 14, 15 and 27)
- No history of dicamba or 2,4-D application in CHR field
- Ineffective control of CHR was observed in the field after dicamba application
- Preliminary field experiments show a reduction in the effectiveness of dicamba -> dicamba resistance evolution

Objectives

1. Quantify the dicamba resistance level and investigate its inheritance in CHR

2. Identify putative candidate genes involved with dicamba resistance via RNA-seq

Methods – Experiments

Population development

- Resistant (R) plants selected from original CHR field (after 560 g ae ha⁻¹ of dicamba)
- RxR crosses for R parental line
- Select susceptible parent (S)
- Reciprocal crosses for F₁ generation
- Pseudo- F₂ and Backcross generations

Dose response

- Experimental design: RCBD
 + 6 reps/rate + 9 rates + 2
 experiment replications
- Dicamba rates: 0, 1.18, 3.92, 11.8, 39.2, 118, 392, 1,180 and 2,350 g ae ha⁻¹
- Populations used: Parental (R and S) and F₁ lines
- Analysis: DRC and Dominance degree calculation in R
- Define delimiting rate for segregation analysis

Segregation analysis

- Quantify dicamba resistance inheritance pattern
- Populations: All populations
- Dicamba damage: Using a delimiting rate damage quantification via machine learning
- Analysis: chi-square (x²) and broad sense heritability in R
- Hypothesis: Dicamba resistance is caused by a single gene

RNA-seq

- RNA extraction (T = 0h)
- Dicamba 560 g ae ha¹
- Phenotyping
- Apply machine learning model to selected plants
- Sequencing
- Giacomini et al. 2019

Crop Sciences

COLLEGE OF AGRICULTURAL, CONSUMER

8 ENVIRONMENTAL SCIENCES

Methods – Dicamba damage estimation

- Image analysis: ImageJ + Python
- Analysis based on:
 - Plant area
 - Biomass
 - Visual estimation
- Unsupervised machine learning: Bayesian random forest model to classify samples
- 2,000 samples used as training dataset for the model
- 85% accuracy / 88% specificity

Methods - RNA-seq

Sequencing & data processing

- Illumina NovaSeq 6000 1x100bp
- 16 samples (8 R and 8 S)
- Adapters trimmed and rRNA removed

Transcriptome assembly

- Reads mapped to waterhemp genome using STAR
- Genome guided transcriptome assembly using Trinity

RT-qPCR confirmation

- RNA-seq candidate genes tested via qPCR
- · Two housekeeping genes
- 2^{ΔΔct2} method for relative expression estimation
- 36 F₂ individuals tested (Including individuals used for RNA-seq)

Differential expression analysis

Analysis conducted using the Sleuth and EdgeR for transcript and gene level, respectively.

Expression count

 Expression count done via pseudoalignment using the software Kallisto.

Crop Sciences

college of agricultural, consume

& environmental sciences

Background Methods R & D Conclusions Future studies

Dose-response

ILLINOIS

Crop Sciences

college of agricultural, consumer

8 environmental sciences

Dose-response

- 3 parameter Log-logistic model
- Two experiments
- R/S = 5 10
- Degree of dominance = 0.25
- Incomplete dominant trait

$$Degree\ of\ dominance = \frac{(2W_3 - W_2 - W_1)}{(W_2 - W_1)}$$

$$W_x = ED_{50}$$

$$1,2,3 = S,\ R,\ F_1$$

Populations: - CHR **-** F1-1 F1-2 F1-3 F1-4 **-** WUS

Conclusions

Segregation analysis

		Observed		Expected		Chi-square	
Population	# plants	No/partial damage	Severe damage	No/partial damage	Severe damage	x ²	p-value
F ₂	431	247	183	282	149	22.74	< 0.001
BC-1	147	93	54	72	75	10.34	<0.001
BC-2	110	68	42	54	56	6.14	0.01
F₁-R♀xS♂	165	140	25	Reject 3:1 ratio (single gene)			

Reject 3:1 ratio (single gene)

• Moderate heritability

199

148

131

• Dicamba resistance: Multi-genic trait

134

132

18

F₁- S♀xR♂

R parent

S parent

65

16

113

RNA-seq – Transcript level

- 45 DE transcripts
- 1 major candidate:
 - Auxin efflux gene (TIR3)

- Aggregation of transcripts:
- 2 major candidates:
 - 1. Transcription activator for cytokine response (ORR)
 - 2. Auxin induced protein (IAA)

RNA-seq – Gene level

- 103 DE genes
- 7 major candidates:

Upregulated

Down regulated

7. MLP – ABA regulator •

Candidate genes dicamba resistance

Candidates:

- 1. SAUR First Auxin responsive protein
- 2. **Peroxidase** Auxin Catabolism and ROS detoxification
- **3. MLP** ABA regulator when down regulated
- 4. TIR3 Auxin efflux gene
- **5. IAA induced protein** Auxin response transcriptional factors that repress early auxin responses
- **6. UDP-glycosyl transferase** Glycosylation of hormones and exogenous compounds
- 7. Glutathione-S-transferase conjugation of exogenous compound and hormones. Can also work as a peroxidase.
- **8. ABC** transporter Transportation of secondary metabolites

RT qPCR – Gene confirmation

F₂ plants

- 2 housekeeping genes (GAPDH and EF1 α)
- $36 \, \mathrm{F}_2 \, \mathrm{plants}$
- $2^{\Delta\Delta ct2}$ method
- Pairwise t-test

Gene	P-value		
PEROX	< 0.001		
PIN3	0.0032		
GST-N	0.005		
UDP	<0.001		
SAUR	NS		
GST-C	NS		
ABC	NS		
MLP	NS		
IAA	NS		
ORR	NS		

I ILLINOIS

Crop Sciences COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

R & D

Conclusions

RT qPCR – Gene confirmation

Background Methods R & D Conclusions Future studi

Hypothesis: Mechanism of resistance

Hypothesis: mechanism of resistance

Background Methods R & D Conclusions Future studies

Conclusions

- Dicamba resistance:
 - Incompletely dominant trait
 - Moderate heritability
 - Multi-genic trait
- Multiple candidate genes identified including Glutathione-S-transferases and UDP-glycosyl transferase
- Hypothesis of mechanism of resistance:
 - ROS detoxification via GST and peroxidase
 - Glycosylation and conjugation of ABA and dicamba
 - Changes in dicamba efflux

Future studies

- Physiology studies
- Expression variation after dicamba treatment
- Functional validation of genes
- 3-way resistance QTL mapping:
 - 2,4-D
 - S-metolachlor
 - Dicamba

R&D

Acknowledgements

Current Tranel Lab members:

- Dr. Pat Tranel
- Damilola Alex Rayemo
- Undergrads

Previous members:

- Dr. Brent Murphy
- Dr. Darci Giacomini
- Jake Montgomery

Special thanks to Dr. Aaron Hager

