Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks

Thomas Schaefer, North Carolina State University

RHIC serves the perfect fluid

Experiments at RHIC are consistent with the idea that a thermalized plasma is produced, and that the equation of state is that of a weakly coupled gas of quarks and gluons.

But: Transport properties of the system (primarily viscosity and energy loss) are in dramatic disagreement with expectations for a weakly coupled QGP. The plasma must be very strongly coupled.

In this talk I will try to explain this statement, review the current evidence (including data from the LHC), and put the results in a broader perspective (by comparing with another strongly coupled fluid, the dilute atomic Fermi gas at "unitarity").

Fluids: Gases, liquids, plasmas, . . .

Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved charges (or spontaneously broken symmetry fields).

 $\tau \sim \tau_{micro}$

Historically: Water $(\rho, \epsilon, \vec{\pi})$

Simple non-relativistic fluid

Simple fluid: Conservation laws for mass, energy, momentum

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0$$
$$\frac{\partial \epsilon}{\partial t} + \vec{\nabla} \vec{j}^{\epsilon} = 0$$
$$\frac{\partial}{\partial t} (\rho v_i) + \nabla_j \Pi_{ij} = 0$$

Constitutive relations: Stress tensor

$$\Pi_{ij} = P\delta_{ij} + \rho v_i v_j + \eta \left(\nabla_i v_j + \nabla_j v_i - \frac{2}{3} \delta_{ij} \nabla_k v_k \right) + O(\nabla^2)$$

reactive

dissipative

2nd order

Expansion
$$\Pi^0_{ij} \gg \delta \Pi^1_{ij} \gg \delta \Pi^2_{ij}$$

Regime of applicability

Expansion parameter
$$Re^{-1} = \frac{\eta(\partial v)}{\rho v^2} = \frac{\eta}{\rho L v} \ll 1$$

$$\frac{1}{Re} = \frac{\eta}{\hbar n} \times \frac{\hbar}{mvL}$$
fluid flow
property property

Bath tub: $mvL \gg \hbar$ hydro reliable

Heavy ions: $mvL \sim \hbar$ need $\eta < \hbar n$

Shear viscosity and friction

Momentum conservation at $O(\nabla v)$

$$\rho\left(\frac{\partial}{\partial t}\vec{v} + (\vec{v}\cdot\vec{\nabla})\vec{v}\right) = -\vec{\nabla}P + \eta\nabla^2\vec{v}$$

Navier-Stokes equation

Viscosity determines shear stress ("friction") in fluid flow

Kinetic theory

Kinetic theory: conserved quantities carried by quasi-particles. Quasi-particles described by distribution functions f(x, p, t).

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p + \vec{F} \cdot \vec{\nabla}_p f_p = -C[f_p]$$

$$C[f_p] =$$

Shear viscosity corresponds to momentum diffusion

$$\eta \sim \frac{1}{3} n \, \bar{p} \, l_{mfp}$$

Shear viscosity: Additional properties

Weakly interacting gas,
$$l_{mfp} \sim \frac{1}{n\sigma}$$
: $\eta \sim \frac{1}{3} \frac{\bar{p}}{\sigma}$

$$\eta \sim \frac{1}{3} \frac{\bar{p}}{\sigma}$$

shear viscosity independent of density

Non-interacting gas $(\sigma \to 0)$: $\eta \to \infty$

$$\eta \to \infty$$

non-interacting and hydro limit $(T \to \infty)$ limit do not commute

strongly interacting gas:

$$\frac{\eta}{n} \sim \bar{p}l_{mfp} \ge \hbar$$

but: kinetic theory not reliable!

And now for something completely different . . .

This is an irreversible process, $\Delta S > 0$.

And now for something completely different . . .

gravitational wave shears fluid

Idea can be made precise using the "AdS/CFT correspondence"

Strongly coupled thermal field theory on \mathbb{R}^4

 \Leftrightarrow

CFT temperature

CFT entropy

 \Leftrightarrow

Weakly coupled string theory on AdS_5 black hole Hawking temperature of black hole

Hawking-Bekenstein entropy

 \sim area of event horizon

Holographic duals: Transport properties

Thermal (conformal) field theory $\equiv AdS_5$ black hole

CFT entropy

shear viscosity

Strong coupling limit

$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$$

Son and Starinets (2001)

Hawking-Bekenstein entropy

 \sim area of event horizon Graviton absorption cross section

 \sim area of event horizon

Strong coupling limit universal? Provides lower bound for all theories?

Kinetics vs no-kinetics

pQCD plasma $\label{eq:pqcd} \mbox{quasi-particles} \\ \eta/s \sim 1/\alpha_s^2 \gg 1$

Perfect Fluids: The contenders

QGP (T=180 MeV)

Liquid Helium (T=0.1 meV)

Perfect Fluids: The contenders

QGP
$$\eta = 5 \cdot 10^{11} Pa \cdot s$$

Trapped Atoms $\eta = 1.7 \cdot 10^{-15} Pa \cdot s$

Liquid Helium $\eta = 1.7 \cdot 10^{-6} Pa \cdot s$

Consider ratios η/s

Perfect Fluids: Not a contender

Queensland pitch-drop experiment

1927-2011 (8 drops)

$$\eta = (2.3 \pm 0.5) \cdot 10^8 \, Pa \, s$$

I. QCD and the Quark Gluon Plasma

$$\mathcal{L} = \bar{q}_f (i \not\!\!\!D - m_f) q_f - \frac{1}{4g^2} G^a_{\mu\nu} G^a_{\mu\nu}$$

Quantumchromodynamics (QCD)

Elementary fields:

Quarks

Gluons

$$(q_{\alpha})_f^a \begin{cases} \text{color} & a = 1, \dots, 3 \\ \text{spin} & \alpha = 1, 2 \end{cases} \qquad A_{\mu}^a \begin{cases} \text{color} & a = 1, \dots, 8 \\ \text{spin} & \epsilon_{\mu}^{\pm} \end{cases}$$
 flavor $f = u, d, s, c, b, t$

Dynamics: Generalized Maxwell (Yang-Mills) + Dirac theory

$$\mathcal{L} = \bar{q}_f (i \not\!\!\!D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

Asymptotic freedom

Modification of Coulomb interaction due to quantum fluctuations

electric gluons

dielectric $\epsilon > 1$

magnetic gluons

para-magnetic $\mu>1$

vacuum: $\mu\epsilon=1$

anti-screening $\epsilon < 1$

$$\beta(g) = -\frac{\partial g}{\partial \log(r)} = \frac{g^3}{(4\pi)^2} \left\{ \frac{1}{3} - 4 \right\} N_c < 0$$

From hadrons to quarks

weakly coupled hadron gas

strongly correlated fluid

weakly coupled quark gluon plasma

II. Dilute Fermi gas: BCS-BEC crossover

$$\mathcal{L}_{\text{eff}} = \psi^{\dagger} \left(i \partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2$$

Unitarity limit

Consider simple square well potential

$$a = \infty, \, \epsilon_B = 0$$

$$a < 0$$
 $a = \infty, \epsilon_B = 0$ $a > 0, \epsilon_B > 0$

Unitarity limit

Now take the range to zero, keeping $\epsilon_B \simeq 0$

Universal relations

$$\mathcal{T} = \frac{1}{ik + 1/a}$$
 $\epsilon_B = \frac{1}{2ma^2}$ $\psi_B \sim \frac{1}{\sqrt{ar}} \exp(-r/a)$

Feshbach resonances

Atomic gas with two spin states: "↑" and "↓"

Feshbach resonance

$$a(B) = a_0 \left(1 + \frac{\Delta}{B - B_0} \right)$$

III. Almost ideal fluid dynamics (cold Fermi gas)

Hydrodynamic
expansion converts
coordinate space
anisotropy
to momentum space
anisotropy

O'Hara et al. (2002)

Elliptic flow: High T limit

Quantum viscosity
$$\eta = \eta_0 \frac{(mT)^{3/2}}{\hbar^2}$$

$$\eta = \eta_0 (mT)^{3/2}$$

$$\tau_R = \eta/P$$

Cao et al., Science (2010)

fit:
$$\eta_0 = 0.33 \pm 0.04$$

theory:
$$\eta_0 = \frac{15}{32\sqrt{\pi}} = 0.26$$

Viscosity to entropy density ratio

consider both collective modes (low T) and elliptic flow (high T)

Cao et al., Science (2010)

$$\eta/s \leq 0.4$$

IV. Elliptic Flow (QGP)

Hydrodynamic expansion converts coordinate space anisotropy

to momentum space anisotropy

source: U. Heinz (2005)

$$p_0 \left. \frac{dN}{d^3p} \right|_{p_z=0} = v_0(p_\perp) \left(1 + 2v_2(p_\perp) \cos(2\phi) + \ldots \right)$$

Elliptic flow: initial entropy scaling

source: U. Heinz (2005)

Viscosity and Elliptic Flow

Viscous correction to v_2 (blast wave model)

$$\frac{\delta v_2}{v_2} = -\frac{1}{3} \frac{1}{\tau_f T_f} \left(\frac{\eta}{s}\right) \left(\frac{p_\perp}{T_f}\right)^2$$

Grows with p_{\perp} , decreases with system size

Romatschke (2007), Teaney (2003)

Many details: Dependence on initial conditions, freeze out, etc.

conservative bound

$$\frac{\eta}{s} < 0.25$$

Higher moments of flow

Hydro converts moments of initial deformation to moments of flow

Glauber predicts flat initial spectrum $(n \ge 3)$. Observed flow spectrum consistent with sound attenuation

$$\delta T^{\mu\nu}(t) = \exp\left(-\frac{2}{3}\frac{\eta}{s}\frac{k^2t}{T}\right)\delta T^{\mu\nu}(0)$$

Alice flow: Nearly perfect fluidity at the LHC?

Differential v_2 equal to RHIC accidental cancellation? freezeout? m

Integrated v_2 somewhat high mean p_T increase? acceptance?

The bottom-line

Remarkably, the best fluids that have been observed are the coldest and the hottest fluid ever created in the laboratory, cold atomic gases $(10^{-6} \rm K)$ and the quark gluon plasma $(10^{12} \rm K)$ at RHIC.

Both of these fluids come close to a bound on the shear viscosity that was first proposed based on calculations in string theory, involving nonequilibrium evolution of back holes in 5 (and more) dimensions.