AI24BTECH11004-BHERI SAI LIKITH REDDY

1 Section-A JEE Advanced/ IIT-JEE

- 1) f(x) $\sec(x) \cos(x) \sec^2(x) + \cot(x)$
- 2) The integral $\int_0^{1.5} (x^2) dx$, (1988 2) Marks) Where [d] enotes the greatest integer finction, equals _____
- 3) The value of $\int_{-2}^{2} |1 x^2| dx$ is ______ (1989 2 Marks)
- 4) The value of $\int_{\frac{\pi}{4}}^{\frac{3\pi'}{4}} \frac{\phi}{1+\sin\phi} d\phi$ (1993 2) Marks)
- 5) The value of $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} dx$ (1994 2)
- 6) If for nonzero x, $af(x) + bf(\frac{1}{x}) = \frac{1}{x} 5$ where $a \neq b$, then $\int_{1}^{2} f(x)dx =$
- (1996 1 Mark) 7) If n > 0, $\int_{1}^{2\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} dx$ (1996 1 Mark)
- one of the possible valued of k is (1997 - 2 Marks)

2 Section B True/False

1) The value of the intrgral $\int_0^{2a} \frac{f(x)}{(f(x)+f(2a-x))} dx$ is equal to a (1988 - 1 Mark)

3 Section C MCQs with One Correct Answer

- 1) The value of the definite integral $\int_0^{2a} (1 + e^{-x^2}) dx$ is

 - b) 2
 - c) $1+e^{-1}$
 - d) none of these

(1981 - 2 Marks)

1

- 2) Let a, b, che non-zero real numbers such $\int_0^1 (1 + \cos^8(x)) (ax^2 + bx + c) dx$ $\int_0^2 (1 + \cos^8(x)) (ax^2 + bx + c) dx.$ Then the quadratic equa that $ax^2 + bx + c = 0$ has
 - a) no roots in(0, 2)
 - b) at least one root in(0, 2)
 - c) double root in(0, 2)
 - d) two imagenary roots

(1981 - 2 Marks)

- 3) The area bounded by the curves y =f(x), the x-axis and the ordinate x = 1and x = b is $(b - 1) \sin (3b + 4)$. Then f(x) is
 - a) $(x-1)\cos(3x+4)$
 - b) $\sin(3x + 4)$
 - c) $\sin(3x+4) + 3(x-1)\cos(3x+4)$
 - d) none of the above

(1982 - 2 Marks)

- 4) the of the integral value $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot(x)}}{\sqrt{\cot(x)} + \sqrt{\tan(x)}} dx \text{ is}$
 - a) $\frac{\pi}{4}$
 - b) $\frac{\pi}{2}$

 - d) none of the above

(1983 - 1 Marks)

- 5) For any integer n the integral- $\int_0^{\pi} e^{\cos^2(x)} \cos^3(2n+1)x dx$ has the value
 - a) π
 - b) 1
 - c) 0
 - d) none of these

(1985 - 2 Marks)