Управление файлами

Задачи ОС:

- Обеспечить пользователю удобный интерфейс доступа к данным;
- Обеспечить совместное использование данных;

Будет рассмотрено:

- 1. Физическая структура
- 2. Логическая организация
- 3. Хранение конфигурации ОС
- 4. Механизм защиты файлов
- 5. Многотомные файловые системы
- 6. Специальные файлы (файлы устройств)
- 7. Дополнительные возможности файловых систем

- 1. Долговременное хранение после выключения завершения процесса
- 2. Хранение больших объемов
- 3. Обеспечить возможность одновременного доступа к информации
- Совокупность файлов/каталогов на диске
- Наборы структур данных для управления файлами
- Комплекс программных средств для управления файлами

Упоминание файловых систем — 1964г, DECtape для DEC PDP-6 и OS/3x0 FS для IBM OS/360, подробнее wiki https://en.wikipedia.org/wiki/Comparison_of_file_systems

Устройства долговременного хранения данных

НЖМД (1956-н.вр.) До 22ТБ и более

Магнитные ленты (1951-н.вр) Рекорд хранения >50лет Гарантированный срок хранения 30-40лет Объем до 18Тб/картридж

Flash память (1984-н.вр) Срок хран 10-20лет Гарантир. срок хранения ~5лет

Интерфейсы

- SA1000 для первого диска 5,25" ST-506 объемом 6Мб, использован в IBM/PC, основа дисков 1980-х
- SCSI
- IDE
- SATA
- SAS
- FC (Fibre channel)
- iSCSI

Физическая организация файловых систем

Область подкачки для виртуальной памяти

Раздел накопителя (на HDD/SSD/...) Файл подкачки

- Скорость работы максимальна за счет прямого доступа к информации на накопителе
- Фиксированный объем

- Динамическое изменение размера
- Доступ к информации через файловую систему

Способы организации хранения информации в файловых системах

Непрерывными блоками

Связанный индекс

Связанный список блоков

Организация доступа к листингу каталога

Неупорядоченный перечень "B-Trees" (двоичные деревья) содержимого каталога Поискв дереве Поиск перебором vicmd.exe vicmd.eixe spchtel.dll spchtel.dll speech.cnt speech.cnt speech.dll speech.dll speech.hlp speech.hlp vicauto.tlb. vicauto.tlb vicmshli.dll vicmshl.dll Vdict.dll Vdict.dll VText.dll ! VText.dll vtxtauto.tlb vtxtauto.tlb WrapSAPI.dll WrapSAPI.dll X command.dll X command.dll Xlisten.dll Xlisten.dll XTel.DII XTel.DII Xvoice.dll Xvoice.dll.

Unix, s5

Boot-блок Суперблок Таблица i-node Область данных

Boot-блок
Суперблок
Таблица i-node
Блок группы цилиндров
Область данных

. **.** .

Вооt-блок
Суперблок
Таблица i-node
Блок группы цилиндров
Область данных

I-node: Реализация адресации к блокам с данными на диске

I-node: реализация соответствия имени физическому расположению на диске

Виртуальная файловая система VFS

UNIX System V Release 3

File System Switch, FSS

UNIX System V Release 4 (Sun Microsystem)

Virtual File System (VFS)

IBM HPFS (High Performance File System)

Для IBM OS/2 разработка ~1989г, поддержка в WindowsNT до 3.5 (4.0 неофиц)

Microsoft

FAT - DOS

vFAT – для Windows95 (особые случаи)

FAT32 – Windows95

exFAT (Extended File Allocation Table)

NTFS WindowsNT (win10/server)
ReFS Windows2012/win8...

	FAT	FAT32	exFAT
р-р ФС	2Гб	8Тиб	
Р-р файла		2(4)Гб	16млн Тб
Назначение	нгмд	нжмд	Флэш-накопители
Особенности	MSDOS	Win95	Поддержка прав доступа, при наличии возможности - транзакций
	8имя+3расш	255симв	

FAT (File Allocation Table)

- 1. Размер кластера до 32К
- 2. Имя файла 8+3 XXXXXXXXXXXX
- 3. Нет поддержки прав доступа
- 4. Есть поддержка атрибутов
- 5. Определение типов файлов по расширению
 - 1. EXE (DOS/Windows)
 - 2. COM (DOS)

Плюсы

- 1. Простота
- 2. Ориентирована на небольшие объемы накопителей

Были FAT12 и FAT16

FAT32

- 1. нет обратной совместимости с FAT
- 2. Размер файла 2гб
- 3. Имя файла 255 символов
- 4. Нет поддержки прав доступа
- 1. Ориентирована на HDD

Поддержка длинных имен для обратной совместимости

Алгоритм преобразования длинного имени в старый формат

 Іопд.file.name.with.extension.jpeg
 Іопд_f~1.jpe

 Допустимо до 255
 Допустимо

 символов
 11 - 8+3

 символов
 Iong_f~9.jpe

 Iong ~19.jpe

Реализация хранения длинного имени в ФС FAT

FAT
LONGFILE.NAM
LONGFIL1.NAM
LONGFIL2.NAM

VFAT
LONG FILE NAME.EXTEN

LONG_F~1 EXT E.EXTEN LONG FILE NAM

Microsoft NTFS

Копия первых 3 записей в MFT

\$MFT	Структура MFT	
\$MFTmirr	копия первых 16 записей MFT, размещенная посередине диска	
\$LogFile	файл поддержки журналирования	
\$Volume	служебная информация — метка тома, версия файловой системы, т. д.	

- Права доступа ACL (Access List)
- Шифрование данных
- Сжатие данных
- Функционал дефрагментации файлов

Microsoft ReFS (Resilient File System)

2012г

	ReFS	NTFS
Максимальная длина имени файла	255 символов Юникода	255 символов Юникода
Максимальная длина имени пути	32 КБ символов Юникода	32 КБ символов Юникода
Максимальный размер файла	35 РВ (петабайтов)	256 ТБ
Максимальный размер тома	35 ПБ	256 ТБ
	Виртуализация, BigData	

Файловые системы специального назначения

- 1. Файловые системы procfs sysfs
- 2. Файловые системы devfs
- 3. Файловые системы в памяти (ОЗУ) tmpfs
- 4. Сжатые файловые системы, например SquashFS (!НЕ путать с режимом сжатия при записи "на лету")

Типы объектов файловых систем

- 1. Обычные файлы основной тип объектов
 - **Текстовые файлы** в кодировке ASCII, можно просмотреть простейшим текстовым редактором
 - **Двоичные файлы** необходима специальная программа для просмотра содержимого, например JPEG
- 2. Каталоги объекты особого формата, доступны только ОС
- **3. Специальные файлы** (файлы устройств) специальный файл, сопоставленный с драйвером устройством вв/вывода
- 4. Именованные каналы механизм взаимодействия двух приложения
- 5. Сокеты механизм взаимодействия приложений по схеме «клиент-сервер»
- **6. Символические ссылки** особые файлы, указывающие на другие объекты (т.н. «ярлыки»)

Способы организации (группировки) хранения информации

Полные и относительные пути файловой системы

Полный путь к объекту файловой системы /usr/local/sbin/http

каталог

разделитель

имя объекта

Относительный путь к объекту файловой системы

sbin/http
./sbin/http
../local/sbin/http

Логическая организация файловой системы Windows

Файлы операционной системы:

C:\winnt - windowsNT (4..2000)

C:\windows – windows2k.... H.B.

C:\windows – windows9X

Установленное программное обеспечение:

C:\program files

WindowsNT .. Windows XP: Каталог с пользовательскими данными

C:\document and settings

Windows Vista ... н.в.:

Каталог с пользовательскими данными C:\users

Каталог с данными системных приложений C:\ProgramData

Логическая организация файловой системы Unix

OC Linux – Filesystem Hierarchy Standard (FHS) (https://refspecs.linuxfoundation.org/fhs.shtml)

Корневая файловая система состоит из:

```
/ - содержит основные каталоги системы
/boot — файлы для загрузки ОС, в т.ч. ядро ОС
/sbin — системное ПО, доступно системному администратору
/bin — системное ПО, доступное всем пользователям
/lib — базовые разделяемые библиотеки
/root — домашний каталог системного администратора
/etc — каталог конфигурационных файлов
/dev — с парой технических спецфайлов *
```

Виртуальные файловые системы

```
/proc – отображение/настройка параметров ядра ОС /sys (linux) – отображение/настройка параметров ядра ОС /dev – каталог с специальными файлами устройств
```

Логическая организация файловой системы Unix

Прикладное ПО /usr

```
/usr/sbin — Прикладное ПО, доступное системному администратору /usr/bin — прикладное ПО, доступное всем пользователям /usr/lib — разделяемые библиотеки прикладного ПО /usr/include — библиотеки языка С
```

Прочее

```
/home – каталог
/var – изменяемые файлы – журналы, файлы баз данных и т.д.
/tmp – каталог временных файлов
/mnt – обычный каталог для подключения дополнительных файловых систем
```

Механизмы разграничения доступа к файловой системе

«Код защиты» - двоичная маска

Sstrwxrwx UID GID

Rwx rwx rwx

R = read

W – write

X – eXecute

Rw- r-- ---

110 100 000

640

chmod 640 file chmod +w file

chown

chgrp

SST

SetUID (SUID) (на файл)

SetGID (SGID) (на файл)

sTicky (на каталог)

ACL – «списки доступа»

Способы хранения конфигурации ОС и прикладного ПО

В виде отдельных конфигурационных файлов

В виде БД

+ проще и легче забрать конфигурацию ПО с неработающих ОС + предоставляются системные вызовы для работы с настройками

Типы файловых систем

- Локальные ФС подключаются к данному компьютеру
- Сетевые ФС доступ к файлам через компьютерную сеть, работа с информацией похожа на работу с локальной файловой системой, информация находится на определенных серверах
- Распределенные ФС аналогично сетевым, но [в общем случае] пользователь не знает где именно находятся его данные
- Кластерные ФС применяется в ситуациях прямого соединения системы хранения данных (СХД, в частном случае накопителя) с двумя и более серверами для обеспечения одновременного доступа к одной файловой системе

UNC Universal Naming Conversation
\\\workgroup\\hostname\sharename\path-to-object

Сетевые файловые системы

Сетевые файловые системы

- NFS Network File System (Unix)
- Novell Netware
- SMB Lan Manager samba.org

Доступ к информации в сетевых и распределенных файловых системах

Распределенные файловые системы

AFS Andrew File System

- 1. Отказоустойчивость
- 2. Балансировка нагрузки
- 3. Репликация файлов

Сетевые файловые системы

NFS **SMB** NAS Доступ к данным на уровне **NTFS** объектов FAT32 накопителя Ext4

Кластерные файловые системы

Спецфайлы

0 способ – прямое программирование

1 способ – системные вызовы

2 способ – спецфайлы устройств

/dev «Особые» драйвера для /dev/null В (block) блок ориентированный

mknod /dev/hhh c 99 1 /dev/hhh — название С — тип (c/b) 99 — major 1 - minor

С (char) байт ориентированный

Первая необходимость plug-and-play PCMCIA CardBus

Udev eudev + механизмы в ядре ОС

«Домашние каталоги»/профили пользователя

- 1. Локальный профиль
- 2. Перемещаемый профиль (Roaming)
 - 1. Необходима MS Active Directory
 - 2. При входе в ОС профиль синхронизируется с сервером (скачивается)
 - 3. При выходе из ОС профиль синхронизируется с сервером (передается на сервер)
 - 4. Преимущества:
 - 1. Пользователи могут переходить между компьютерами с автоматическим переносом личной информации
 - 2. Всегда есть копия на сервере (на случай поломки компьютера)
 - 5. Недостатки:
 - 1. На синхронизацию нужно время
 - 2. На сервере нужно МНОГО места
 - 3. Необходимо на всей сети иметь типизированное ПО
- 3. Обязательный
- 4. временный

Дисковые квоты

Используются на серверах

Жесткие квоты – нельзя превысить Гибкие квоты – временно превысить

Windows2000 – квоты появились, NFTS v5 WindowsNT4, service pack6

Unix

- Ограничение по количеству объектов (количество i-node)
- Ограничение по суммарному объему объектов
- Гибкие лимиты
- Жесткие лимиты
- □ Либо по пользователям либо по группам пользователей

Неприменимо для каталогов перемещеаемых профилей

Резервное копирование

Для сохранения копии информации на определенный момент времени

Вопросы:

- 1. Срок хранения
- 2. Где хранить в другом помещении/другом офисе, вопросы сохранности, доступа к копиям
- 3. Что архивировать полная копия или конкретная информация (каталоги, базы данных); поблочная копия или логическое(по объектам) рез.копирование
- 4. Схема резервного копирования
 - 1. Полная копия + скорость восстановления, требуется много места на устр.рез.копирования
 - 2. Дифференциальная копия +скорость восстановления + экономия места с течением времени размер дифф. Копии стремится к размеру полной копии, для восстановления нужна ближайшая полная + ближайшая дифф
 - 3. Инкрементальная копия +высокая скорость копирования сложность восстановления полная копия, ближайшая дифф и копии с момента полной(дифф)
 - 4. Вариант1 1р/нед «полная копия», ежедневно «инкрементальная копия»
 - 5. Вариант2 1р/мес «полная копия», еженедельно дифф копия, ежедевно инкрементальная
- 5. Промежуток резервного копирования моменты наименьшей активности
- 6. Устройства резервного копирования стримеры (Аннонс2021г LTO9 45Тб/картридж), сетевое хранение в специализированном ПО/серверах

По резервного копирования: ArcServ, TapeWare, Acronis, Seagate backup (Veritas) Не все можно восстановить. Например сервер-контроллер MS Active Directory

Журнализируемые файловые системы

Не журнализируемые ФС:

- Много времени на восстановление после нештатной перезагрузки
- + нет накладных расходов на поддержку журналировагния

Журнализируемые ФС:

- + Практически моментальное восстановление после нештатной перезагрузки
- Чем подробнее ведутся журналы тем медленнее работают файловые системы, но тем выше вероятность успеха восстановления
- Помогают восстановить актуальность метаданных о файлах
- Помогают повысить вероятность успеха восстановления целостности (актуальности) файловой системы
- При записи информации сначала записываем действия в журнал, а потом физически записываем данные

MS NTFS (\$LogFile), MS ReFS, MS ExFAT Ext3/ext4
ReiserFS
IBM XFS

Репликация

Для повышения доступности информации:

- Сбой одного сервера
- Распределение нагрузки
- Для больших объемов часть вычислений переносится на копию (ReadOnly)

Менеджер логических томов (LVM, Logical Volume Manager)

Отказоустойчивые массивы дисков (RAID)

Создаются за счет применения дополнительных дисков под хранение информации

Raid-1..raid-5 защищают от одиночного сбоя Raid-6 защает от двойного сбоя

Отказоустойчивые массивы дисков (RAID)

RAID10 = RAID-1 + RAID0

