KHAN G.S. RESEARCH CENTER

Kisan Cold Storage, Sai Mandir, Musallahpur Hatt, Patna - 6 Mob.: 8877918018, 8757354880

Time: 08 to 09 am

Physics

By: Khan Sir (मानचित्र विशेषज्ञ)

आवर्धन (Magnification)

- → कोई दर्पण या लेंस किसी वस्तु को कितना बड़ा या छोटा बना सकता है। इस क्षमता को ही आवर्धन क्षमता कहते है।
- अवतल लेंस की आवर्धन क्षमता सदैव एक से कम होती है।
- → उत्तल लेंस की आवर्धन क्षमता एक, एक से कम, एक से ज्यादा हो सकती है। जिस कारण इसका प्रयोग सुक्ष्मदर्शी या दुरदर्शी में करते है।

Note-1: (i) जब m>1 प्रतिबिंब बड़ा बनेगा।

- (ii) जब m<1 प्रतिबिंब छोटा बनेगा।
- (iii) जब m धनात्मक हो, प्रतिबिंब सीधा बनेगा अर्थात्
- (iv) अवतल दर्पण की स्थिति में, आवर्धन (m) ध्नात्मक या ऋणात्मक हो सकता है परंतु उत्तल दर्पण की स्थिति में आवर्धन केवल धनात्मक होगा।
- Note-2: (i) जब प्रतिबिंब काल्पनिक होता है (सीधा, आवर्धन धनात्मक होगा। जब प्रतिबिंब वास्तविक होता है (उल्टा) तो आवर्धन ऋणात्मक होता है।
 - (ii) अवतल दर्पण में, प्रतिबिंब का वास्तविक या काल्पनिक होना वस्तु की स्थिति पर निर्भर करता है तो अवतल दर्पण में आवर्धन ऋणात्मक या धनात्मक हो सकता है।
 - (iii) उत्तल दर्पण में, प्रतिबिंब सदैव कालपनिक बनेगा। इसलिए उत्तल दर्पण में आवर्धन हमेशा धनात्मक होगा।
 - (iv) समतल दर्पण की स्थिति में। |u| = |v| इसलिए m = +1 अर्थात् वस्तु व प्रतिबिंब दोनों सीधे होंगे और वस्तु का आकार = प्रतिबिंब का आकार

1.
$$m = \frac{\dot{v}}{u} (\dot{e})$$

2.
$$\mathbf{m} = \frac{-\mathbf{v}}{\mathbf{u}}$$
 (दर्पण)

$$3. \quad M = \frac{I}{O}$$

4.
$$M = 1 + \frac{D}{f}$$

Q. एक गोलीय लेंस द्वारा लेंस से 10 cm दूरी पर रखें पिन की दुगुना लंबा प्रतिबिंब बनता है। प्रतिबिंब से दुरीयाँ क्या-क्या हो सकती है।

Sol. alta a pi que $m = \frac{v}{v} = +2 =$

काल्पनिक होने पर $m = \frac{v}{u} = -2 =$

v = 20 cmQ. वह वस्तु से दुरी क्या होगी जबिक 20 cm फोकस दूरी का

उत्तल लेंस तीगुना आवर्धित आभासी प्रतिबिंब बनाएगा? Sol. f=20 cm

 $u = \frac{20 \times (-2)}{2} = -13.33$

Q. एक 15 cm ऊँची वस्तु एक पतली लेंस से 10 cm की दूरी पर रखी हुई है। यदि उसकी प्रतिबिंब 25 cm की दुरी पर उसी ओर बनती है तो प्रतिबिंब की ऊँचाई होगी?

Sol. u = -10, v = -25

$$m = \frac{v}{u} = \frac{-25}{-10} = 2.5$$

 $m = \frac{I}{Q}$

 $2.5 = \frac{I}{15}$

 $I = 2.5 \times 15 = 37.5 \text{ cm}$

Q. एक उत्तल लेंस के सामने प्रधान अक्ष पर 2 मीमी. लंबी पीन खड़ी है। इसके प्रतिबिंब की लम्बाई क्या होगी। यदि आवर्धन +3 हो।

Sol. : $m = \frac{v}{u}$

 $\begin{array}{c} \therefore v\!=\!6\,\text{mm} \\ \text{Pdf Downloaded website-- www.techssra.in} \end{array}$

 Q. एक उत्तल लेंस के सामने प्रधान अक्ष पर 3 मीमी. लंबी पीन खड़ी है। इसके प्रतिबिंब की लम्बाई क्या होगी। यदि आवर्धन + 15 हो।

Sol.
$$\therefore$$
 m = $\frac{v}{u}$

$$15 = \frac{v}{3}$$

$$\therefore v = 45 \text{ mm}$$

Q. एक दंत चिकित्सक दांत देखने के लिए छोटे अवतल दर्पण का प्रयोग करते हैं। यदि 3 cm फोकस लं० का एक दर्पण दांत से 2 cm की दूरी पर रखा गया हो तो प्रतिबिंब का आवर्धन क्या है?

Sol.
$$f = 3, v = 2$$

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

$$\frac{1}{v} = \frac{1}{3} + \frac{-1}{2}$$

$$\frac{1}{v} = \frac{1}{3} - \frac{1}{2}$$

$$\frac{1}{v} = \frac{2-3}{6} = \frac{-1}{6}$$

$$v = 6$$

आवर्धन क्षमता
$$m = m = \frac{v}{u} = \frac{6}{2} = 3$$

Q. एक अवतल के सामने ध्रुव से 15 cm की दूरी पर रखी वस्तु का प्रतिबिंब दर्पण से पीछे 30 cm की दूरी पर बनता है तो रेखीय आवर्धन का मान क्या होगा?

Sol.
$$v = 30$$
, $u = -15$

$$\mathbf{m} = \left(-\frac{v}{u}\right) = -\left(\frac{30}{15}\right) = +2$$

Q. 15 cm वक्रता त्रिज्या वाला एक उत्तल दर्पण एक प्रतिबिंब बनाता है जो वस्तु के आकार का आधा है वस्तु का प्रतिबिंब की स्थिति क्या होगी?

Sol.
$$f = \frac{15}{2} = 7.5$$

$$\therefore$$
 m = $\frac{-v}{u}$

$$\Rightarrow \frac{1}{2} = \frac{-v}{u}$$

$$\therefore$$
 $v = \frac{-u}{2}$

$$\therefore \quad \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

$$\frac{1}{7.5} = \frac{2}{-u} + \frac{1}{u}$$

$$v = \frac{-u}{2} = -\frac{(-7.5)}{2} = 375$$

Q. एक अवतल दर्पण की फोकस दूरी 20 cm है। इसके द्वारा 5

cm आवर्धित तथा सीधा प्रतिबिंब प्राप्त करने के लिए बिंब की स्थिति क्या होगी?

Sol.
$$f = -20$$

$$m = m = \frac{-v}{u} \implies 5 = -\frac{v}{u} \implies u = -\frac{v}{5}$$

$$\therefore \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

$$\Rightarrow \frac{-1}{20} = \frac{1}{v} + \frac{1}{u}$$

$$\Rightarrow \frac{-1}{20} = \frac{1}{v} + \frac{5}{-v}$$

$$V = 80 \text{ CM}$$

$$m = \frac{-v}{u}$$

$$u = \frac{-v}{5} = \frac{-80}{5} = -16 \text{ cm}$$

Q. 3 cm ऊँचाई वाले पिन को अवतल दर्पण के दर्पण के वक्रता केंद्र पर खड़ा करके रखा जाता है। प्रतिबिंब की ऊँचाई का मान क्या है?

Sol.
$$m = -\left(\frac{v}{u}\right)$$

वक्रता केन्द्र पर रखे वस्तु का प्रतिबिंब वक्रता केंद्र पर ही बनेगा

$$m=-1$$

$$m = \frac{I}{O}$$

$$-1=\frac{I}{3}$$

Q. एक 30 cm फोकस वाले उत्तल दर्पण से जो प्रतिबिंब बनता है वह वस्तु से 1/4 माप का है वस्तु से दर्पण की दूरी ज्ञात करें।

Sol.
$$m = \frac{-v}{u}$$

$$v = \frac{-u}{u}$$

$$\therefore \quad \frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{30} = \frac{4}{u} - \frac{1}{4}$$

$$11 - 40 \text{ cm}$$

Q. 50 cm फोकस दूरी का अवतल दर्पण किसी वस्तु का प्रतिबिंब एक तिहाई आकार का उल्टा बनाता है। प्रतिबिंब का स्थान ज्ञात करें?

Sol.
$$f = -50 \text{ cm}$$

$$m = \frac{-1}{3} v = ?$$

$$m = \frac{-v}{u}$$

$$-\frac{1}{3} = -\frac{v}{u}$$

$$u = 3 v$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$\frac{1}{3v} + \frac{1}{v} = \frac{1}{50}$$

$$\frac{1+3}{3v} = \frac{1}{-50}$$

$$\frac{4}{3v} = \frac{1}{-50}$$

$$3v = -50 \times 4$$

$$v = \frac{-50 \! \times \! 4}{3}$$

$$v = -66.67$$
 cm

Q. 3 cm ऊँचाई वाले पिन को अवतल दर्पण के वक्रता केन्द्र पर खडा करके रखा जाता है प्रतिबिंब की ऊँचाई का मान क्या होगा?

Sol.
$$m = \frac{-v}{u}$$

वक्रता केन्द्र पर रखे वस्तु का प्रतिबिंब वक्रता केन्द्र पर ही

$$m = \frac{I}{O}$$

$$-1 = \frac{I}{3}$$

I = 3 cm = उल्टा प्रतिबिंब

O. एक उत्तल लेंस का अधिकतम आवर्धन क्षमता 8.5 है तो इनका मान पावर में कितना होगा?

Sol.
$$m = 1 + \frac{D}{f}$$

$$8.5 = 1 + \frac{D}{f}$$

$$\frac{D}{f} = 7.5$$

$$f = \frac{25}{7.5}$$

$$P = \frac{100}{f}$$

$$= \frac{100}{\frac{25}{7.5}} = \frac{100 \times 75}{25} = 300 \text{ cm}$$

वर्ण विक्षेपण (Dispersion)

- → इसकी खोजकर्ता न्यूटन हैं।
- श्वेत प्रकाश का अपने रंगों में विभक्त हो जाना वर्ण विक्षेपण कहलाता है।
- → वर्ण विक्षेपण प्रिज्म के माध्यम से होता है। प्रिज्म से गुजरने के बाद प्रकाश 7 रंगों में बंट जाती है। अपने मार्ग से भटकने को विचलन कहते है।
- → सर्वाधिक विचलन बैंगनी का होता है। जिस कारण इसका प्रयोग Night light में करते है। Pdf Downloaded website-- www.techssra.in

सबसे कम विचलन लाल रंग का होत है। अत: इसका प्रयोग खतरे के संकेत में करते है।

- → तरंगदैर्ध्य वेग और क्रांतिक कोण बढेगा।
- अपर्वतनांक, आवृत्ति, विचलन, प्रकींणन घटेगा।
- प्रकाश का प्रकीर्णन (Scattering of light):-
- → प्रकाश का धुलकण से टकराकर बिखर जाना प्रकिर्णन कहलाता है। सर्वाधिक प्रकीर्णन बैंगनी, आसमानी और नीला का होता है। हमारी आंखें नीला तथा आसमानी के प्रति अधिक संवेदी होती है। जिस कारण आसमान नीला दिखता है।
- अंतरिक्ष में धूलकण नहीं है अत: अंतरिक्ष में प्रकीर्णन नहीं होगा अत: चंद्रमा से आकाश को देखने पर काला दिखेगा।
- नीले आकाश की परछाई जब गहरी समुद्र में परती है तो समुद्र भी नीला दिखता है।
- → काँच का चूर्ण प्रकाश का अपवर्तन और परावर्तन होने नहीं देता है वह प्रकीर्णन के कारण चमकीला दिखता है। सूर्योदय तथा सूर्यास्त के समय प्रकीर्णन के कारण सूर्य लाल दिखता है।

⇒ विवर्तन (Differaction) :-

प्रकाश का किसी पतले कोण से टकराकर मुड़ जाना विवर्तन कहलाता है। विवर्तन के लिए यह आवश्यक है कि कोण $10^{-7}\mathrm{m}$ से पतला हो।

→ प्रकाश में विवर्तन कम देखा जाता है जबिक ध्विन में विवर्तन अधिक होता है। विवर्तन के कारण ही अधिक ऊँचाई पर उड रहे विमान से टकराने वाला प्रकाश हल्का मुड़ जाता है और जमीन पर आकर उसकी परछाई को बनने नहीं देता है। Ex. – ब्लेड का

⇒ व्यतिकरण (Interferance):-

कई दिशाओं से आने वाला प्रकाश जब किसी बिन्दु पर अध्यारापित होता है तो कहीं पर तीव्रता बढ़ जाती है और प्रकाश रंगीन दिखने लगता है। इसे समपोषी व्यतीकरण कहते है।

→ कहीं पर तीव्रता घट जाती है और अंधेरा दिखने लगता है जिसे विनाशी व्यतिकरण कहते है।

Ex:-साबुन के बुलबुले का चमकना, पेट्रोल का चमकना, CD कैसेट का चमकना।

- ⇒ प्रकाश का ध्रुवण (Pollerisation of light): –
 प्रकाश सिधी रेखा में गमन के साथ–साथ कई दिशाओं में बिखर कर गती करता है जिसे ध्रुवण कहते है।
- → ध्रुवण केवल अनुप्रस्थ तरंगों में भी हो सकता है।
- → ध्रुवण के कारण चकाचौंध होने लगता है और वस्तुएं स्पष्ट नहीं दिखती है।
- → ध्रुवण को रोकने के लिए Polleride glass का प्रयोग करते है।
- → Polleride glass के माध्यम से 3D Hologram, 3D mouse देखा जा सकता है।
- → क्रिकेट खिलाड़ी भी Polleride glass का प्रयोग करता है।
- → निकॉल प्रिज्म का भी प्रयोग करके ध्रुवण से बचा जा सकता है।

⇒ इंद्रधनुष (Rainbow):-

वर्षा की बूंदो पर जब सूर्य का प्रकाश पड़ता है तो वह अपने सात रंगों में बंट जाता है और धनुष की एक आकृति बनाता है। इस धनुष आकृति को चाप या आर्क कहते है।

- → सुबह के समय इंद्रधनुष पश्चिम की ओर बनता है जबिक शाम के समय इंद्रधनुष पूरब में बनता है। दोपहर में इंद्रधनुष नहीं बनता है।
- ★ इंद्रधनुष बनने में चार चीजें आवश्यक होती है जो क्रमशः है-
 - (a) अपवर्तन
 - (b) परावर्तन
 - (c) पूर्ण आंतरिक परावर्तन
 - (d) वर्ण विक्षेपण
- ★ सबसे महत्वपूर्ण घटना वर्ण विक्षेपण होती है।
- (1) प्राथमिक इंद्रधनुष इसे देखने पर आँखों पर 42° का कोण बनता है इसमें बाहर की ओर (ऊपर) लाल रंग होता है क्योंकि लाल रंग का विचलन सबसे कम होता है। अंदर (निचे की ओर) बैंगनी रंग होता है क्योंकि इसका विचलन सबसे अधिक होता है।
- (2) द्वितीयक इंद्रधनुष- इसमें बाहर की ओर बैंगनी तथा अंदर की ओर लाल रंग होता है अर्थात् प्राथमिक का यह उल्टा होता है। इसे देखने पर आँखों पर 50 से 55° का कोण बनता है।

Note:- प्राथमिक इंद्रधनुष गाढ़ा होता हैिPdf Downloaded website-- www.techssra.in

⊃ वस्तु का रंग :-

किसी वस्तु का रंग उसके द्वारा परावर्तित करने वाले प्रकाश पर निर्भर करता है। यदि सभी रंग को परावर्तित कर देगी तो सफेद दिखेगी। यदि सभी रंगों को अवशोषित कर लेगी तो काला दिखेगी।

- → गर्मी के दिन में सफेद वस्त्र पहनना आरामदायक होता है क्योंकि रंगों को अवशोषित नहीं करता।
- प्रकाश का रंग बदलने पर वस्तु का रंग :-
- → कोई वस्तु अपने मूल रंग में तभी दिखेगी जब उसे श्वेत प्रकाश में देखा जाए या उस वस्तु के रंग में प्रकाश में ही देखा जाए। प्रकाश का रंग बदलने पर वस्तु काली दिखने लगती है।
- ★ सफेद रंग के प्रकाश में लाल कपड़ा कैसा दिखेगा- लाल
- * हरे बोतल में लाल गुलाब कैसा दिखेगा काला
- * नीले प्रकाश में हरा सुट कैसा दिखेगा काला
- * सफेद रंग में पीला वस्त्र कैसा दिखेगा- पीला

🗢 प्राथमिक रंग :-

वैसा रंग जो अन्य रंगों का निर्माण कर सके उसे प्राथमिक रंग कहते हैं। इसकी संख्या तीन है- नीला, हरा, लाल।

⇒ द्वितीयक रंग :-

दो प्राथमिक रंगों को बराबर अनुपात में मिलाने पर द्वितीयक रंग की प्राप्ति होती है।

Ex. -(i) Yellow = green + Red

- (ii) Maigenta = Red + blue
- (iii) Cyan = Green + blue

⇒ पुरक रंग (Complementary Colour) :-

वैसे रंग जिन्हें आपस में मिलाने पर श्वेत रंग (सफेद)की प्राप्ति होती है उसे पुरक कहते है।

Ex. – Green + Maigenta = white

Red + Cyan = white

Yellow + Blue = White

R + B + G = White

