Aggregation and multiscale visualization for embedded system program trace analysis

Damien Dosimont 1 Guillaume Huard ² Jean-Marc Vincent ²

1 INRIA

² Université Joseph Fourier Grenoble

firstname.lastname@imag.fr

MOAIS 2013 Seminary

Introduction Thesis problematic FrameSoC visualization module Future Work

Table of Contents

- 1 Introduction
 - Context : SoC-Trace Project
 - FrameSoc : SoC-Trace infrastructure
- 2 Thesis problematic
 - Visualization scalability issues
 - Thesis objectives
 - Works summary
- 3 FrameSoC visualization module
 - Presentation
 - Time-Slicing
 - Best-Cut partition algorithm
- 4 Future Works

Introduction

Section

- Introduction
 - Context : SoC-Trace Project
 - FrameSoc : SoC-Trace infrastructure
- - Visualization scalability issues

 - Works summary
- - Presentation
 - Time-Slicing
 - Best-Cut partition algorithm

Context: SoC-Trace Project

SoC-Trace Project

- Embedded system program trace analysis
- Solve architecture and software growing complexity analysis issues
- Storage, data-model, trace/tools/results management
- Analysis flow: statistics, trace processing, data-mining, visualization

- INRIA
- UJF
- STMicroelectronics
- ProbaYes

Context: SoC-Trace Project

SoC-Trace Project

- Embedded system program trace analysis
- Solve architecture and software growing complexity analysis issues
- Storage, data-model, trace/tools/results management
- Analysis flow: statistics, trace processing, data-mining, visualization

Partners

- INRIA
- UJF
- STMicroelectronics
- ProbaYes

FrameSoc: SoC-Trace infrastructure

FIG. 1: FrameSoC architecture and its features

Thesis problematic Introduction

Section

- - Context : SoC-Trace Project
 - FrameSoc : SoC-Trace infrastructure
- 2 Thesis problematic
 - Visualization scalability issues
 - Thesis objectives
 - Works summary
- - Presentation
 - Time-Slicing
 - Best-Cut partition algorithm

Introduction Thesis problematic FrameSoC visualization module Future Works

Visualization scalability issues

In traditional visualization techniques

- Fidelity: aliasing artifacts, proportions (zoom out)
- Understanding: loss of context (zoom in, scroll), information loss (aggregation)

FIG. 2: KPTrace dezoom: example of time axis scalability issues

FIG. 3: Example of space limitations : Pajé trace with 700 producers

Thesis problematic Introduction

Thesis objectives

Visual representation that enables to...

- Show behavior evolution over time
- Spot **disruptions**, phases
- Relate time behavior to **space** dimension

- Avoid artifacts, context and information loss
- Keep reasonable performance

- User interaction

Thesis problematic Introduction

Thesis objectives

Visual representation that enables to...

- Show behavior evolution over time
- Spot **disruptions**, phases
- Relate time behavior to **space** dimension

Scalability issues solving

- Avoid artifacts, context and information loss
- Keep reasonable performance

- User interaction

Introduction Thesis problematic FrameSoC visualization module Future Works

Thesis objectives

Visual representation that enables to...

- Show behavior evolution over time
- Spot disruptions, phases
- Relate time behavior to space dimension

Scalability issues solving

- Avoid artifacts, context and information loss
- Keep reasonable **performance**

Relevant techniques

- Time and space aggregation
- User interaction

Thesis problematic Introduction

Works summary

Visualization tools

- Simple aggregation prototype (STMicroelectronics)
- FrameSoC visualization module using time aggregation mechanisms (Lamarche-Perrin, Pagano)

- D. Dosimont, G. Huard et J.-M. Vincent La visualisation de
- G. Pagano & al. Trace Management and Analysis Infrastructure

Introduction Thesis problematic FrameSoC visualization module

Works summary

Visualization tools

- Simple aggregation prototype (STMicroelectronics)
- FrameSoC visualization module using time aggregation mechanisms (Lamarche-Perrin, Pagano)

Papers

- D. Dosimont, G. Huard et J.-M. Vincent La visualisation de traces, support à l'analyse, déverminage et optimisation d'applications de calcul haute performance (VIF-EGC'2013)
- G. Pagano & al. Trace Management and Analysis Infrastructure for Embedded Systems (Inria RR-8304, submitted to MCSoC'13)

FrameSoC visualization_module Introduction

Section

- - Context : SoC-Trace Project
 - FrameSoc : SoC-Trace infrastructure
- - Visualization scalability issues

 - Works summary
- 3 FrameSoC visualization module
 - Presentation
 - Time-Slicing
 - Best-Cut partition algorithm

FrameSoC visualization module: presentation

Principle

- Trace is divided in time slices
- Variable parameter enables to aggregate consecutive slices
- **Aggregates** are related to phases, disruptions

- Trace time-slicing (Schnorr)

- C++ library (best partition algorithm)
- FrameSoC module/Java (GUI, database gueries, time-slicing)

FrameSoC visualization module: presentation

Principle

- Trace is divided in time slices
- Variable parameter enables to aggregate consecutive slices
- Aggregates are related to phases, disruptions

Theoretical aspects

- Trace time-slicing (Schnorr)
- **Best-Cut partition** algorithm (Lamarche-Perrin)

- C++ library (best partition algorithm)
- FrameSoC module/Java (GUI, database gueries, time-slicing)

FrameSoC visualization module: presentation

Principle

- Trace is divided in time slices
- Variable parameter enables to aggregate consecutive slices
- Aggregates are related to phases, disruptions

Theoretical aspects

- Trace time-slicing (Schnorr)
- **Best-Cut partition** algorithm (Lamarche-Perrin)

Implementation

- C++ library (best partition algorithm)
- FrameSoC module/Java (GUI, database queries, time-slicing)

Time-Slicing: example of a synthetic trace

Time-Slicing: activity time matrix generation

Best-Cut Partition algorithm: qualities

Qualities: Gain and loss

- Computed from Shannon Entropy and Kullback-Leibler Divergence
- Used to compute parametrized information criteria $pIC(A) = p \times gain(A) - (1 - p) \times loss(A)$

012345					
01234	12345				
0123	1234	2345			
012	123	234	345		
01	12	23	34	45	
0	1	2	3	4	5

Best-Cut Partition algorithm: parts aggregation

Demonstration

Future Works Introduction

Section

- - Context : SoC-Trace Project
 - FrameSoc : SoC-Trace infrastructure
- - Visualization scalability issues

 - Works summary
- - Presentation
 - Time-Slicing
 - Best-Cut partition algorithm
- 4 Future Works

Future Works Introduction

Future Works

Analysis module

- Discontinue parts **similarity**
- **Hierarchy** aggregation/clustering
- Aggregation metrics
- Visualization/parts representation improvement
- User interaction

- From embedded applications (ST, LIG?)
- From various parallel applications (ex : Kaapi Pajé traces)

Future Works Introduction FrameSoC visualization module

Future Works

Analysis module

- Discontinue parts **similarity**
- **Hierarchy** aggregation/clustering
- Aggregation metrics
- Visualization/parts representation improvement
- User interaction

Use cases

- From embedded applications (ST, LIG?)
- From various parallel applications (ex : Kaapi Pajé traces)

Merci de votre attention!

http://moais.imag.fr/membres/damien.dosimont/

Future Works