Zadanie 1.1. (0-2)

Podaj zawartość biblioteczki po wstawieniu do niej kolejno książek o numerach: 14, 18, 12, 9, 20, 15, 17.

Numery książek wpisz we właściwe miejsca na poniższym schemacie.

Zadanie 1.2. (0-3)

Uzupełnij tabelkę – wpisz, ile minimalnie, a ile maksymalnie musi być półek w biblioteczce, żeby można było umieścić w niej *n* książek i żeby na ostatniej półce znalazła się co najmniej jedna książka.

n – liczba książek	Minimalna liczba półek	Maksymalna liczba półek
1	1	1
3	2	3
4	3	4
7	3	7
16	5	16
31	5	31
32	6	32
$2^k - 1$, dla $k > 0$	l k	2h-1

$$1+2+4+8+16+$$
 $1+2+4+8+16+$
 $1=5$
 $15-1=37$ $2p.10$ 5 , wisc k

Zadanie 1.3. (0–2)

Kolega Adama, oglądający biblioteczkę, stwierdził, że aby wypisać wszystkie numery książek umieszczonych na półkach, można posłużyć się podanym poniżej rekurencyjnym algorytmem A, którego działanie rozpoczynamy od półki o numerze 0 i od przegródki o numerze 1. Zakładamy przy tym, że w biblioteczce jest co najmniej jedna książka.

Dla biblioteczki z siedmioma książkami z przykładu 2. algorytm A wypisze: 10, 2, 1, 5, 15, 13, 25.

Podaj ciągi liczb wypisane przez algorytm **A** dla podanych zawartości biblioteczki.

