Лабораторная работа №6

Построение и исследование компьютерных моделей с использованием дифференциальных уравнений

Задача 2. Установлено, что скорость распада радия прямо пропорциональна его количеству в каждый данный момент. Определить закон изменения массы радия в зависимости от времени, если при t = 0, масса радия была m0, k = 0,00044. Найти период полураспада радия.

Решение

1. Определим скорость распада радия.

В момент t масса была равна m, значит, в момент t+ Δ t масса равна m+ Δ m. Отношение Δ m/ Δ t — средняя скорость распада радия. Решая предел при Δ t -> 0, получаем скорость распада радия, которая равна dm/dt. Следовательно,

$$\frac{dm}{dt} = -km$$

(минус стоит, так как масса уменьшается со временем)

2. Установим закон изменения массы.

Решая уравнение, получим $ln\ m = -kt + ln\ C$, откуда

$$m = Ce^{-kt}$$

Так как при t = 0 масса радия была m_0 , то C должно удовлетворять соотношению выше, следовательно, $m_0 = C$. Подставим значение C в наше уравнение и получим искомую зависимость:

$$m = m_0 e^{-kt}$$

3. Найдем период полураспада радия.

Подставляя в найденную закономерность вместо m значение $m_0/2$, получим $\frac{m_0}{2}=m_0\;e^{-kt},$ откуда

$$T = \frac{ln2}{k} = 1590$$
 лет

Задача 3. Проходя через лес и испытывая сопротивление деревьев, ветер теряет часть своей скорости. На бесконечно малом пути эта потеря пропорциональна скорости в начале этого пути и длине его. Найти скорость ветра, прошедшего в лесу 150 м, зная, что до вступления в лес начальная скорость ветра v0=12 м/с; после прохождения в лесу пути s=1 м, скорость ветра уменьшилась до величины v1=11,8 м/с.

Решение

1. Найдем закон, по которому происходит процесс замедления ветра.

Пусть на расстоянии S от начала леса скорость ветра равна V, потеря скорости на пути dS равна –dV (процесс убывающий). Эта потеря пропорциональна V, и поэтому дифференциальное уравнение процесса примет вид:

$$-\frac{dV}{dS} = kV$$

Сгруппируем переменные:

$$\frac{dV}{V} = -k \ dS$$

Интегрируя уравнение, получим общее решение:

$$V = C e^{-kS}$$

Как и в предыдущей задаче, C должно соответствовать начальному отношению, откуда $V_0 = C$. Подставив значение C, получим закон процесса:

$$V = V_0 e^{-kS}$$

2. Определим коэффициент пропорциональности к.

Для этого используем данные об изменении состояния ветра, то есть S_1 и V_1 . Получим:

$$V_1 = V_0 e^{-k} = > e^{-k} = \frac{V_1}{V_0} = > k = -\frac{lnV_1}{lnV_0} = > k = lnV_0 - lnV_1$$

Окончательно,

$$k = ln12 - ln11,8 = 0,0168$$

3. Получим скорость ветра, с которой он вышел из леса.

$$V = 12 \cdot e^{-0.0168 \cdot 150} = 0.9655 \text{ m/c}$$

Программная реализация

Код программы (на языке С++):

```
#include <iostream>
#include <cmath>
#include <locale.h>
using namespace std;
const float k=0.000436, m0=2, t last=4500; //Данные для задачи 2
//const float k=0.0168, V0=12, S last=150; //Данные для задачи 3
int main()
  setlocale(LC_ALL,"");
  //Переменные для задачи 2:
  int t=0;
  float m;
  //Переменные для задачи 3:
  //int S=0;
  //float V;
  //Оформление шапки для задачи 2:
  cout \ll " \mid t \mid m \mid \n";
  cout << "|-----|\n";
  //Оформление шапки для задачи 3:
  //cout \ll "| S | V | n";
  //cout << "|-----|\n";
  cout.precision(3);
  do
  {
    m=m0*exp(-k*t); //Формула для задачи 2
    //V=V0*exp(-k*S); //Формула для задачи 3
    cout << "| ";
    cout.width(4);
    cout << left << t << " | "; //для задачи 2
    //cout << left << S << " | "; //для задачи 3
    cout.width(6);
    cout << fixed << m << " | \n"; //для задачи 2
    t += 300; //для задачи 2
    //cout << fixed << V << " \n"; //для задачи 3
    //S += 10; //для задачи 3
  while(t<=t last); //Условие для задачи 2
  //while(S<=S_last); //Условие для задачи 3
```

```
cout << " -----\n";
cin.get();
return 0;
```

Результат:

Задача 2

l t	m
0	2.000
300	1.755
600	1.540
900	1.351
1200	1.185
1500	1.040
1800	0.912
2100	0.801
2400	0.702
2700	0.616
3000	0.541
3300	0.474
3600	0.416
3900	0.365
4200	0.320
4500	0.281

Задача 3

l s	l v l
j	jj
0	12.000
10	10.144
20	8.575
30	7.249
40	6.128
50	5.181
60	4.379
70	3.702
80	3.130
90	2.646
100	2.236
110	1.891
120	1.598
130	1.351
140	1.142
150	0.966