Orthogonal Projection Matrices and Symmetry

Let $P \in \mathbb{R}^{n \times n}$ be a projection matrix, meaning $P^2 = P$. We say P is an **orthogonal projection** if it projects vectors orthogonally onto its column space. We will use the theory of the **four fundamental subspaces** of a matrix to prove the following key result:

A projection matrix P is orthogonal if and only if $P^T = P$.

Recall the four fundamental subspaces of a matrix P:

- Column space: Col(P)
- Null space: Nul(P)
- Row space: Row(P)
- Left null space: $Nul(P^T)$

For any matrix, we have the orthogonal decompositions:

$$\mathbb{R}^n = \operatorname{Col}(P) \oplus \operatorname{Nul}(P^T), \quad \mathbb{R}^n = \operatorname{Row}(P) \oplus \operatorname{Nul}(P)$$

and since $Row(P) = Col(P^T)$, the symmetry condition $P^T = P$ implies Row(P) = Col(P).

Now, suppose P is a projection, so $P^2 = P$. This means that for any $\mathbf{x} \in \mathbb{R}^n$, we can write:

$$\mathbf{x} = P\mathbf{x} + (\mathbf{x} - P\mathbf{x})$$

where $P\mathbf{x} \in \text{Col}(P)$ and $\mathbf{x} - P\mathbf{x} \in \text{Nul}(P)$, because:

$$P(\mathbf{x} - P\mathbf{x}) = P\mathbf{x} - P^2\mathbf{x} = P\mathbf{x} - P\mathbf{x} = \mathbf{0}.$$

Thus, $\mathbb{R}^n = \operatorname{Col}(P) \oplus \operatorname{Nul}(P)$, and P projects \mathbf{x} onto $\operatorname{Col}(P)$ along $\operatorname{Nul}(P)$.

Definition: The projection P is **orthogonal** if $Nul(P) \perp Col(P)$. That is, the projection direction is orthogonal to the range.

We now prove the main result in two parts.

 (\Rightarrow) Suppose P is an orthogonal projection. Then $Nul(P) \perp Col(P)$.

Since $\mathbb{R}^n = \operatorname{Col}(P) \oplus \operatorname{Nul}(P)$ and the sum is orthogonal, we have:

$$\operatorname{Nul}(P) = \operatorname{Col}(P)^{\perp}$$
.

But from the fundamental theorem of linear algebra,

$$\operatorname{Col}(P)^{\perp} = \operatorname{Nul}(P^T).$$

Therefore,

$$Nul(P) = Nul(P^T).$$

Also, since P is a projection, Col(P) consists of all vectors \mathbf{y} such that $P\mathbf{y} = \mathbf{y}$. Similarly, $Col(P^T)$ contains vectors fixed by P^T if P^T is also idempotent, but more importantly, we use subspace equality.

We already have $\text{Nul}(P) = \text{Nul}(P^T)$. Taking orthogonal complements:

$$\operatorname{Nul}(P)^{\perp} = \operatorname{Nul}(P^T)^{\perp} \implies \operatorname{Col}(P^T) = \operatorname{Col}(P),$$

since
$$\operatorname{Col}(P) = \operatorname{Nul}(P)^{\perp}$$
 and $\operatorname{Col}(P^T) = \operatorname{Nul}(P^T)^{\perp}$.
So $\operatorname{Col}(P) = \operatorname{Col}(P^T)$ and $\operatorname{Nul}(P) = \operatorname{Nul}(P^T)$.

Now, consider that both P and P^T are projections (note: $(P^T)^2 = (P^2)^T = P^T$, so P^T is also idempotent). Both project onto the same column space Col(P), and along the same null space Nul(P). Since a projection is uniquely determined by its range and null space (as complementary subspaces), and here both P and P^T have:

- Range: Col(P)
- Null space: Nul(P) it follows that $P = P^T$. Hence, $P^T = P$.

(\Leftarrow) Conversely, suppose $P^T = P$ and $P^2 = P$. We show P is an orthogonal projection.

Since P is symmetric, Col(P) = Row(P), and from the fundamental theorem:

$$Nul(P) = Row(P)^{\perp} = Col(P)^{\perp}.$$

Thus, $\operatorname{Nul}(P) \perp \operatorname{Col}(P)$, which means the projection is along the orthogonal complement of the column space. Therefore, P is an orthogonal projection.

Conclusion: A projection matrix P (i.e., $P^2 = P$) is an orthogonal projection if and only if $P^T = P$.