第六章 常微分方程初值问题的数值解法

微分方程是模拟自然、生物、工程等现象的重要数学工具。

包含自变量、未知函数的导数或微分的方程称为微分方程。 在求解微分方程时,须附加某种条件,即定解条件。微分方程和 定解条件一起组成**定解问题**。

- 定解条件通常有两种给法:
 - (1) 初值问题: 给出积分曲线初始时刻的性态:
 - (2) 边值问题:给出积分曲线首未两端的性态。

未知函数为一元函数的微分方程叫常微分方程: 未知函数为 多元函数,从而有多元函数偏导数的方程叫**偏微分方程**。微分方 程中各阶导数的最高阶数叫**微分方程的阶。**

本章着重讨论--阶常微分方程初值问题:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的数值解法。

微分方程组和高阶方程的数值解法的基本思想与一阶常微 分方程是类似的。

● 初值问题简介

一阶常微方程初值问题:

$$\begin{cases} \frac{dy}{dx} = f(x, y), & x \in [a, b] \\ y(a) = y_0 \end{cases}$$
 (6.1)

$$xy(a) = y_0 \tag{6.2}$$

● 解的存在唯一性问题

设 $x_0 \in [a,b]$, f(x,y)对x连续且关于y满足利普希茨 (Lipschitz)条件:存在常数L,使 $\forall x \in [a,b]$ 及任何实数 y_1,y_2 ,有

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

则初值问题(6.1)、(6.2)在[a,b]上存在唯一解。

● 解的适定性问题: 解对初始数据及函数 f(x,y) 的依赖关系。

定义 称初值问题(**6.1**)、(**6.2**)对初始值 y_0 和函数 f(x, y) 是 **适定的**,如果存在常数 $K > 0, \eta > 0$,对任意 $0 < \varepsilon < \eta$,当

$$|y_0 - \widetilde{y}_0| < \varepsilon$$

 $|f(x,y)-\widetilde{f}(x,y)|<\varepsilon, \ \forall (x,y)\in [x_0,b]\times (-\infty,+\infty)$ 时,初值问题

$$\begin{cases} z' = \widetilde{f}(x, z), & x_0 \le x \le b \\ z(x_0) = \widetilde{y}_0 \end{cases}$$

的解存在,且和(6.1)、(6.2)的解 y(x) 之间满足:

$$|y(x)-z(x)| \le K\varepsilon$$

适定性刻画:初始值 y_0 和函数f(x,y)小的扰动对解的影响。

定理 假设 f(x, y) 在 $[x_0, b] \times (-\infty, +\infty)$ 上对 y 满足利 普希茨条件,则初值问题(6.1)、(6.2)是适定的。

虽然求解常微分方程有各种各样的解析方法,但解析方法只能解一些特殊类型的方程,在实际中**微分方程求解主要靠数值** 解。甚至用解析方法得到的解析解,也常常需用数值方法得到数 值解。例如方程:

$$\begin{cases} y' = 1 - 2xy \\ y(0) = 0 \end{cases}$$

其解为 $y = e^{-x^2} \int_0^x e^{t^2} dt$, 为了具体计算函数值 y, 还需要用数值积分的方法, 如果需要计算许多点处的 y 值,则其计算量也可能很大。

- 离散变量法: 求初值问题近似解的一类数值方法是离散变量法, 即采用步进的方式求出方程的解析解 y(x) 在存在区间 [a,b] 离散点列 $x_n = x_{n-1} + h_n$, $n = 1,2,\cdots,N$ 上近似值 y_n , 即数值方法给出解在一些离散点上的近似值, 这里 h_n 是 x_{n-1} 到 x_n 的步长, 均为正数。一般说来, 在计算过程中可以改变, 通常选取 h_n 不变, 记为 h 。
- 常微分方程初值问题的数值解法一般分为两大类: 一步法和多步法。

一步法: 在计算 y_{n+1} 时,只用 x_{n+1} , x_n 和 y_n 就行了,其代表是欧拉法。

多步法: 在计算 y_{n+1} 时,除用到 x_{n+1} , x_n 和 y_n 以外,还要用到 x_{n-p} , y_{n-p} ($p=1,2,\cdots,k$),即前面 k 步的值,其代表是亚当斯法。

§ 1 欧拉(Euler)方法与改进欧拉方法

欧拉方法是求解初值问题(6.1)、(6.2)的最简单的数值方法,通过欧拉方法,可以很好地理解数值格式的构造、求解、

误差估计和稳定性分析等。

1.1 欧拉方法

初值问题:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

的解 y = y(x) 代表通过点 (x_0, y_0) 的一条曲线,称为**微分方程的积分曲线**。积分曲线上每一点 (x, y) 的切线的斜率 y'(x) 等于函数 f(x, y) 在这点的值。

• 欧拉法是过点 (x_0, y_0) 作曲线的切线与 x_1 交于点 (x_1, y_1) ,用 y_1 作为曲线 y(x) 上的点 $(x_1, y(x_1))$ 的纵坐标 $y(x_1)$ 的近似值。如下图所示。

过点 (x_0, y_0) 以 $f(x_0, y_0)$ 为斜率的切线方程:

$$y = y_0 + f(x_0, y_0)(x - x_0)$$

当 $x = x_1$ 时,得

$$y_1 = y_0 + f(x_0, y_0)(x_1 - x_0)$$

取 y_1 作为解 $y(x_1)$ 的近似值 $y(x_1) \approx y_1$ 。然后,再过点 (x_1, y_1) 以 $f(x_1, y_1)$ 为斜率的直线

$$y = y_1 + f(x_1, y_1)(x - x_1)$$

当
$$x = x_2$$
 时,得
$$y_2 = y_1 + f(x_1, y_1)(x_2 - x_1)$$
 同样取 $y(x_2) \approx y_2$ 。
一般地,已求得点 (x_i, y_i) ,以 $f(x_i, y_i)$ 为斜率作直线
$$y = y_i + f(x_i, y_i)(x - x_i)$$
 当 $x = x_{i+1}$ 时,得
$$y_{i+1} = y_i + f(x_i, y_i)(x_{i+1} - x_i)$$
 取 $y(x_{i+1}) \approx y_{i+1}$ 。
这样,从 x_0 逐个算出 x_1, x_2, \dots, x_n 对应的数值解 $y_1, y_2, \dots y_n$

- 欧拉法的几何意义: 用一条初始点重合的折线来来近似表示 曲线 y = y(x) 。
- 欧拉法的计算格式 (通常取 $x_{i+1} x_i = h_i = h$):

$$\begin{cases} y_{i+1} = y_i + hf(x_i, y_i) \\ x_i = x_0 + ih, \ i = 0, 1, 2, \dots \end{cases}$$
(6.4)

● 从数值微分和数值积分等的角度讨论欧拉格式

对微分方程,数值解法的第一步就是设法消除其导数项,这项工作称为**离散化**。由于差分是微分的近似运算,实现离散化的基本途径是**用差商代替导数(数值微分方法)**。

在 x_i 点微分方程:

$$y'(x_i) = f(x_i, y(x_i))$$
 (6.3)

用差商 $\frac{y(x_{i+1})-y(x_i)}{h}$ 代替其中的导数项 $y^{'}(x_i)$, 即

$$y'(x_i) \approx \frac{y(x_{i+1}) - y(x_i)}{h}$$

于是有

$$y(x_{i+1}) \approx y(x_i) + hf(x_i, y(x_i))$$

用 $y = y(x_i)$ 的近似值 y_i 代入上式右端,记所得结果为 y_{i+1} ,就有:

$$y_{i+1} = y_i + hf(x_i, y_i), i = 0,1,\dots,n-1$$
 (6.4) ——由数值微分导出的欧拉格式,若初值 y_0 已知,就可逐步算出 y_1, y_2, \dots 。

若将方程 y' = f(x, y) 的两端从 x_n 到 x_{n+1} 求积分

$$\int_{x_n}^{x_{n+1}} y' dx = \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$
$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$

选用不同的数值方法计算积分项 $\int_{x_n}^{x_{n+1}} f(x,y(x))dx$, 就会得出不同的差分格式。

用左矩形方法计算积分项:

$$\int_{x_n}^{x_{n+1}} f(x, y(x)) dx \approx h f(x_n, y(x_n))$$

代入上式,得:

$$y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

据此离散化,**从数值积分可导出欧拉格式**。由于数值积分的矩形方法精度很低,欧拉方法当然很粗糙。

对 $y(x_{n+1})$ 在 x_n 处按二阶泰勒展开有

$$y(x_{n+1}) = y(x_n + h) = y(x_n) + hy'(x_n) + \frac{1}{2!}h^2y''(\varepsilon_n)$$

其中 $X_n \leq \mathcal{E}_n \leq X_{n+1}$

略去余项得:

$$y(x_{n+1}) \approx y(x_n) + hy'(x_n) = y(x_n) + hf(x_n, y(x_n))$$

用近似值 y_n 代替 $y(x_n)$, 把上式右端所得值记为 y_{n+1} , 有

$$y_{n+1} = y_n + hf(x_n, y_n)$$

——用泰勒展开法推出的欧拉格式

以上用4种方法:几何方法、数值微分法、数值积分法和泰勒法展开法推导了欧拉格式。泰勒展开法和数值积分法是两种常用的方法,可以用泰勒展开法导出单步法的龙格-库塔格式,用泰勒展开法和数值积分法推导线性多步法的亚当斯格式。

例 求解初值问题
$$\begin{cases} y' = y - \frac{2x}{y}, \ 0 < x < 1 \\ y(0) = 1 \end{cases}$$

解 欧拉格式的具体形式

$$y_{i+1} = y_i + h(y_i - \frac{2x_i}{y_i})$$

取步长h=0.1, 计算结果见下表。

表 计算结果

x_i y_i	$y(x_i)$	x_i	y_i	$y(x_i)$
-------------	----------	-------	-------	----------

					-
0. 1	1.1000	1.0954	0. 6	1.5090	1.4832
0. 2	1.1918	1.1832	0. 7	1.5803	1.5492
0. 3	1.2774	1.2649	0.8	1.6498	1.6125
0. 4	1.3582	1.3416	0. 9	1.7178	1.6733
0. 5	1.4351	1.4142	1. 0	1.7848	1.7321

该初值问题解析解 $y = \sqrt{1+2x}$, 将解析解 $y(x_i)$ 同近似值 y_i 进行比较可以看出**欧拉法的精度较低**。

例1 (见教材 p.149)。

1.2 欧拉公式的局部截断误差与精度分析

为了衡量差分格式的精度,引入局部截断误差和阶数概念。

定义1 在 y_i 准确的前提下,即 $y_j = y(x_j)$ $(j \le i)$ 时,用数值方法计算 y_{i+1} 的误差

$$R_{i+1} = y(x_{i+1}) - y_{i+1}$$

(对欧拉法: $R_{i+1} = y(x_{i+1}) - y(x_i) - hf(x_i, y(x_i))$)

称为该数值方法计算 y_{i+1} 时的**局部截断误差**。

定义 2 若一个数值方法的局部截断误差为 $O(h^{p+1})$,则称这种**数值方法的阶数是**p。

显然,步长h(<1)越小,p值越高,则局部截断误差越小,计算精度越高。

● 欧拉法的局部截断误差

对于**欧拉公式**,假定 $y_i = y(x_i)$,则有

$$y_{i+1} = y(x_i) + hf(x_i, y(x_i)) = y(x_i) + hy'(x_i)$$

而按二阶泰勒公式

$$y(x_{i+1}) = y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(\zeta_i), x_i < \zeta_i < x_{i+1}$$
 (6.5)

因此有

$$R_{i+1} = y(x_{i+1}) - y_{i+1} = \frac{h^2}{2}y''(\zeta_i)$$
 (6.6)

若y(x)具有三阶导数,则欧拉公式局部截断误差可表示成:

$$R_{i+1} = y(x_{i+1}) - y_{i+1} = \frac{h^2}{2}y''(x_i) + \frac{h^3}{6}y'''(\zeta_i)$$
 (6.7)

注: 也可由数值积分公式得到上述估计。

欧拉法的局部截断误差为 $O(h^2)$,欧拉方法为一阶方法。

1.3 改进欧拉方法

设改用向后差商 $\frac{1}{h}(y(x_{i+1})-y(x_i))$ 替代方程 $y'(x_{i+1})=f(x_{i+1},y(x_{i+1}))$ 中的导数项 $y'(x_{i+1})$,再离散化,即可导出下列格式:

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$
 (6.8)

称为**向后欧拉公式**(又称**隐式欧拉公式**)。(**6.4**)也称为**向前欧拉公式**(又称**显式欧拉公式**)。

● 向后欧拉公式的显式化:

$$y_{i+1}^{(k+1)} = y_i + hf\left(x_{i+1}, y_{i+1}^{(k)}\right) \quad (k = 0, 1, 2, \dots)$$

● 隐式欧拉公式的局部截断误差

$$R_{i+1} = -\frac{h^2}{2}y''(x_i) + O(h^3)$$
 (6.9)

● (*) 两步欧拉格式

为了改善精度,改用中心差商 $\frac{1}{2h}(y(x_{i+1})-y(x_{i-1}))$ 替代 方程 $y'(x_i)=f(x_i,y(x_i))$ 中的导数项,并取离散化得出

$$y_{i+1} = y_{i-1} + 2hf(x_i, y_i)$$

无论是显式欧拉格式,还是隐式欧拉格式都是单步法,其特点是计算 y_{i+1} 时只用到前一步的信息 y_i ,然而上面推导出的格式,除了 y_i 以外,还用到更前一步的信息 y_{i-1} ,即调到了前面两步的信息,因此该格式称为**两步欧拉格式**。

两步欧拉格式比显式或隐式欧拉格式具有更高的精度。设 $y_i = y(x_i), y_{i-1} = y(x_{i-1})$,前两步准确,则对两步欧拉格式,有

$$y_{i+1} = y(x_{i-1}) + 2hf(x_i, y(x_i))$$

将 $y(x_{i+1})$ 进行泰勒展开

$$y(x_{i+1}) = y(x_{i-1}) + 2hy'(x_i) + \frac{h^3}{3}y'''(\zeta_i), x_{i-1} < \zeta_i < x_{i+1}$$

上二式相比较得:

$$y(x_{i+1}) - y_{i+1} = O(h^3)$$

因此这是一种**二阶方法**。

● 梯形公式和改进的欧拉方法

将方程 y' = f(x, y) 的两端从 x_i 到 x_{i+1} ,求积分得 $y(x_{i+1}) = y(x_i) + \int_{x_i}^{x_{i+1}} f(x, y(x)) dx$

为了提高精度,改用梯形方法代替矩形方法计算积分项:

$$\int_{x_i}^{x_{i+1}} f(x, y(x)) dx \approx \frac{h}{2} [f(x_i, y(x_i)) + f(x_{i+1}, y(x_{i+1}))]$$
 再代入上式,有

$$y(x_{i+1}) \approx y(x_i) + \frac{h}{2} [f(x_i, y(x_i)) + f(x_{i+1}, y(x_{i+1}))]$$
 设将式中的 $y(x_i), y(x_{i+1})$ 分别用 y_i, y_{i+1} 代替,作为离散

化的结果导出如下的梯形公式:

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$
 (6.10)

欧拉公式是一种显式算法, 计算量小, 但精度低, 梯形公式 虽提高了精度, 但它是一种隐式算法, 需要迭代求解, 计算量大。

梯形公式实际上是显式欧拉公式与隐式欧拉公式的算术平均。因此梯形公式是隐式方式不易求解,一般构成如下计算公式(梯形公式显式化):

$$\begin{cases} y_{i+1}^{(0)} = y_i + hf(x_i, y_i) \\ y_{i+1}^{(k+1)} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(k)})] \end{cases}, k = 0, 1, 2, \dots$$

即: 先用欧拉方法算出 x_{i+1} 处 y_{i+1} 的初始值 $y_{i+1}^{(0)}$,然后进行迭代,得到 $y_{i+1}^{(1)}$, $y_{i+1}^{(2)}$,…,用 $\left|y_{i+1}^{(k+1)}-y_{i+1}^{(k)}\right| \leq \varepsilon$ 控制迭代次数,其中 ε 为允许误差。把满足误差要求的 $y_{i+1}^{(k+1)}$ 作为 $y(x_{i+1})$ 的近似值 y_{i+1} ,类似地可得 y_{i+2} , y_{i+3} ,…。

在实用上,当h取值较小,先用欧拉格式得一个初步近似值 $y_{i+1}^{(0)}$,称之为**预估值**,预报值的精度不高,用它替代梯形法右端的 y_{i+1} ,再直接计算出 y_{i+1} ,并称之为**校正值**,得到:

● 改进的欧拉方法(预估-校正公式):

{ 预估:
$$y_{i+1}^{(0)} = y_i + hf(x_i, y_i)$$

校正: $y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(0)})]$ (6.11)

称为**改进的欧拉方法**。这是一种一步显式格式,它可以表示为 **嵌套形式:** $y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$ (6.12) 或者表示成下列**平均化形式**:

$$\begin{cases} y_{p} = y_{i} + hf(x_{i}, y_{i}) \\ y_{c} = y_{i} + hf(x_{i+1}, y_{p}) \\ y_{i+1} = \frac{1}{2} (y_{p} + y_{c}) \end{cases}$$
(6.13)

改进的欧拉方法是一个二阶方法。

例2 见教材 p.153。

例 用向前欧拉方法、向后欧拉方法和改进的欧拉方法求解 以下初值问题:

$$\begin{cases} y'(x) = \frac{y(x) + x^2 - 2}{x + 1} \\ y(0) = 2 \end{cases}$$

解 准确解为: $y(x) = x^2 + 2x + 2 - 2(x+1)\ln(x+1)$ 分别取h = 0.2, 0.1, 0.05, 得到三种方法的结果如表 1、表 2 和表 3 所示。

改进的欧拉格式的具体形式:

$$\begin{cases} y_{i+1}^{(0)} = y_i + h \frac{y_i + x_i^2 - 2}{x_i + 1} \\ y_{i+1} = y_i + \frac{h}{2} \left[\frac{y_i + x_i^2 - 2}{x_i + 1} + \frac{y_{i+1}^{(0)} + x_{i+1}^2 - 2}{x_{i+1} + 1} \right] \end{cases}$$

表 1 向前欧拉法求解

h	x_i	$y(x_i)$	误差	相对误差
0.2	1.0	2.1592	6.82E-2	0.0306
0.2	2.0	3.1697	2.39E-1	0.0701

	3.0	5.4332	4.76E-1	0.0805
	4.0	9.1411	7.65E-1	0.0129
	5.0	14.406	1.09	0.0703
	1.0	2.1912	3.63E-2	0.0163
	2.0	3.2841	1.24E-1	0.0364
0.1	3.0	5.6636	2.46E-1	0.0416
	4.0	9.5125	3.93E-1	0.0665
	5.0	14.939	5.60E-1	0.0361
	1.0	2.2087	1.87E-2	0.0084
	2.0	3.3449	6.34E-1	0.0186
0.05	3.0	5.7845	1.25E-1	0.0212
	4.0	9.7061	1.99E-1	0.0337
	5.0	15.214	2.84E-1	0.0183

表 2 向后欧拉法求解

h	x_i	$y(x_i)$	误差	相对误差
	1.0	2.3157	8.83E-2	0.0396
	2.0	3.6916	2.83E-1	0.0831
0.2	3.0	6.4563	5.46E-1	0.0925
	4.0	10.7664	8.61E-1	0.0869
	5.0	16.7141	1.22	0.0784
	1.0	2.2687	4.13E-2	0.0185
	2.0	3.5437	1.35E-1	0.0397
0.1	3.0	6.1732	2.64E-1	0.0446
	4.0	10.3227	4.17E-1	0.0421
	5.0	16.0897	5.91E-1	0.0381
	1.0	2.2474	2.00E-2	0.0090
	2.0	3.4745	6.62E-1	0.0194
0.05	3.0	6.0391	1.29E-1	0.0219
	4.0	10.1110	2.05E-1	0.0217
	5.0	15.7903	2.91E-1	0.0188

表 3 改进欧拉法求解

h	x_i	$y(x_i)$	误差	相对误差
	1.0	2.2324	5.01E-3	0.0022
	2.0	3.4171	8.80E-3	0.0026
0.2	3.0	5.9221	1.24E-2	0.0021
	4.0	9.9215	1.59E-2	0.0016
	5.0	15.5182	1.93E-2	0.0012

	1.0	2.2287	1.20E-3	0.0006
	2.0	3.4105	2.20E-3	0.0007
0.1	3.0	5.9128	3.10E-3	0.0005
	4.0	9.9096	4.01E-3	0.0004
	5.0	15.5037	4.91E-3	0.0003
	1.0	2.2277	3.00E-4	0.0001
	2.0	3.4089	5.50E-4	0.0002
0.05	3.0	5.9104	7.71E-4	0.0001
	4.0	9.9066	1.00E-3	0.0001
	5.0	15.5001	1.23E-3	0.0001

向前欧拉方法和向后欧拉方法是一阶收敛, 改进的欧拉方法 是二阶收敛。

§ 2 龙格-库塔(Runge-Kutta)法

龙格-库塔法是一种应用较广的高精度的单步法。

2.1 龙格-库塔法的构造原理

在**泰勒展开**推导欧拉方法中,若取更多高阶项则可以得到 更高局部截断误差阶的格式。

设
$$y_i = y(x_i)$$
,将 $y(x_{i+1})$ 在 x_i 处展开

$$y(x_{i+1}) = y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(x_i) + \frac{h^3}{3!}y'''(x_i) + \cdots$$

若取右端前有限项为 $y(x_{i+1})$ 的近似值,就可得到计算 $y(x_{i+1})$ 的各种不同截断误差的数值公式。

若取前两项时

$$y(x_{i+1}) \approx y(x_i) + hy'(x_i) = y(x_i) + hf(x_i, y(x_i))$$
$$= y(x_i) + hf(x_i, y_i)$$

即有
$$y_{i+1} = y_i + hf(x_i, y_i)$$

这就是**局部截断误差为** $O(h^2)$ 的欧拉格式。

若取前三项时,可得**局部截断误差为** $O(h^3)$ 的公式:

$$y(x_{i+1}) \approx y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(x_i)$$

$$= y(x_i) + hf(x_i, y(x_i)) + \frac{h^2}{2}[f_x(x_i, y(x_i)) + f(x_i, y(x_i))]$$

$$\cdot f_y(x_i, y(x_i))$$

其中

$$y'(x_i) = f(x_i, y(x_i))$$

$$y''(x_i) = f_x(x_i, y(x_i)) + f_y(x_i, y(x_i)) \cdot y'(x_i)$$

$$= f_x(x_i, y(x_i)) + f(x_i, y(x_i)) \cdot f_y(x_i, y(x_i))$$

可以构造:

$$y_{i+1} = y_i + hf(x_i, y_i) + \frac{h^2}{2} [f_x(x_i, y_i) + f(x_i, y_i)f_y(x_i, y_i)]$$

类似地,若取前p+1项作为 $y(x_{n+1})$ 的近似值,可得到局部截断误差为 $O(h^{p+1})$ 的数值计算公式。这些公式的计算必须依赖于求 $y(x_i)$ 的p 阶导数,除非f(x,y) 足够简单,否则直接用泰勒展开法求解将很复杂。但是泰勒级数展开法的基本思想是很多数值方法的基础。

● 龙格-库塔法的基本思路

用复合函数的计算来代替各阶偏导数,通过不同点的函数值组合(y = y(x)平均斜率(6.14)的近似)间接使用泰勒展开来达到高阶局部截断误差的目的。龙格-库塔法保留了泰勒展开法所具有的高阶局部截断误差,同时避免了计算函数

f(x,y)的高阶导数。

设 m是一个正整数, 称方程

$$\begin{cases} y_{i+1} = y_i + h(\alpha_1 K_1 + \alpha_2 K_2 + \dots + \alpha_m K_m) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + \lambda_2 h, y_i + \mu_2 h K_1) \\ \dots \\ K_m = f(x_i + \lambda_m h, y_i + \mu_m h K_{m-1}) \end{cases}$$
(6.17)

为 m级龙格-库塔法。其中 $0 \le \lambda_j \le 1$, α_j , μ_j 是待定常数,由 局部截断误差阶等来确定。

● **基本选取原则**: Y_{n+1} 的展开表达式:

$$y_{i+1} = y_i + a_1 h + \frac{1}{2!} a_2 h^2 + \frac{1}{3!} a_3 h^3 + \cdots$$

与 $y(x_{i+1})$ 在 (x_i, y_i) 处的泰勒展开式:

$$y(x_{i+1}) = y(x_i) + hy'(x_i) + \frac{1}{2!}h^2y''(x_i) + \frac{1}{3!}h^3y'''(x_i) + \cdots$$

有尽可能多的项相重合, 以减小局部截断误差。

● 以m=2为例,来确定(6.17)中的系数:

$$\begin{cases} y_{i+1} = y_i + h(\alpha_1 K_1 + \alpha_2 K_2) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + \lambda_2 h, y_i + \mu_2 h K_1) \end{cases}$$
(6.18)

将 K_2 在 (x_i, y_i) 处泰勒展开,且 $y_i = y(x_i)$,有

$$y_{i+1} = y_i + h(\alpha_1 K_1 + \alpha_2 K_2) = y_i + \alpha_1 h f(x_i, y_i)$$

$$+\alpha_2 h[f(x_i, y_i) + \lambda_2 h f_x(x_i, y_i) + \mu_2 h K_1 f_y(x_i, y_i) + O(h^2)]$$

$$= y_i + (\alpha_1 + \alpha_2) f(x_i, y_i) h$$

$$+\alpha_{2}[\lambda_{2}f_{x}(x_{i},y_{i})+\mu_{2}f(x_{i},y_{i})f_{y}(x_{i},y_{i})]h^{2}+O(h^{3})$$

又

$$y(x_{i+1}) = y(x_i) + y'(x_i)h + \frac{1}{2}y''(x_i)h^2 + O(h^3)$$

$$= y_i + f(x_i, y_i)h$$

$$+ \frac{1}{2}[f_x(x_i, y_i) + f_y(x_i, y_i)f(x_i, y_i)]h^2 + O(h^3)$$
注: $y''(x_i) = \frac{df(x_i, y_i)}{dx} = f_x(x_i, y_i) + f_y(x_i, y_i)f(x_i, y_i)$
比较 $y_{i+1} = y(x_{i+1})$ 的表达式,只要选取
$$\begin{cases} \alpha_1 + \alpha_2 = 1 \\ \alpha_2 \lambda_2 = \frac{1}{2} \\ \alpha_2 \mu_2 = \frac{1}{2} \end{cases}$$
 (6.19)

由此得到**一族二阶龙格-库塔法。**即对上述四个未知数三个方程的不定方程组,任一未知数可设为自由变量,求出其余三个未知数,这样**每一组合就确定了一种二阶龙格-库塔格式**。

当取 $\alpha_1 = 0$, $\alpha_2 = 1$, $\lambda_2 = \mu_2 = \frac{1}{2}$, 得到中点公式: $y_{i+1} = y_i + hf\left(x_i + \frac{1}{2}h, y_i + \frac{h}{2}f(x_i, y_i)\right) \qquad \textbf{(6.20)}$ 取 $\alpha_1 = \frac{1}{4}$, $\alpha_2 = \frac{3}{4}$, $\lambda_2 = \mu_2 = \frac{2}{3}$, 得到休恩 (Heun)

公式:

$$y_{i+1} = y_i + \frac{1}{4}h[f(x_i, y_i) + 3f\left(x_i + \frac{2}{3}h, y_i + \frac{2}{3}hf(x_i, y_i)\right)]$$

取 $\alpha_1 = \frac{1}{2}$, $\alpha_2 = \frac{1}{2}$, $\lambda_2 = \mu_2 = 1$, 得到改进欧拉公式:
 $y_{i+1} = y_i + \frac{h}{2}[f(x_i, y_i) + f\left(x_{i+1}, y_i + hf(x_i, y_i)\right)]$

2.2 经典龙格-库塔法

类似于二阶龙格-库塔公式的推导,可以得到更高价的龙格-

库塔公式。当m = 4时,可以得到**四阶经典龙格-库塔法**:

$$\begin{cases} y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_i, y_i) \\ K_2 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1\right) \\ K_3 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2\right) \\ K_4 = f(x_i + h, y_i + hK_3) \end{cases}$$
(6.21)

四阶经典龙格-库塔法每一步需要 4 次计算函数值 f(x,y),它具有四阶精度,即局部截断截断是 $O(h^5)$ 。

四阶经典龙格-库塔法精度较高,可满足一般工程计算的要求。

例 设步长 h = 0.2,从 x = 0 到 x = 1,用**四阶经典龙格**-**库塔法**求解初值问题

$$\begin{cases} y' = y - \frac{2x}{y} \\ y(0) = 1 \end{cases}$$

解 四阶经典龙格-库塔法:

解 母所经典龙格-库洛法:
$$\begin{cases} y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = y_i - \frac{2x_i}{y_i} \\ K_2 = y_i + \frac{h}{2}K_1 - \frac{2x_i + h}{y_i + \frac{h}{2}K_1} \\ K_3 = y_i + \frac{h}{2}K_2 - \frac{2x_i + h}{y_i + \frac{h}{2}K_2} \\ K_4 = y_i + hK_3 - \frac{2x_i + 2h}{y_i + hK_3} \end{cases}$$

下表记录了计算结果, 其中 $y(x_i)$ 表示准确解。

x_i	y_i	$y(x_i)$
0. 2	1. 1832	1. 1832
0. 4	1. 3417	1. 3416
0. 6	1. 4833	1. 4832
0.8	1. 6125	1. 6125
1. 0	1. 7321	1, 7321

例3、例4 参见教材 p. 156-158。

比较四阶经典龙格-库塔法和改进欧拉法的计算结果,显然 四阶经典龙格-库塔法精度高。许多计算实例表明,要达到相同的精度,四阶经典龙格-库塔法的步长可以比二阶方法的步长大十倍,而四阶经典龙格-库塔法每步的计算量仅比二阶方法大一倍,所以总的计算量仍比二阶方法小。正是由于上述原因,工程上常用四阶经典龙格-库塔法。高于四阶的方法由于每步计算量将增加较多,而精度提高不快,因此使用得也比较少。

然而值得指出的是, 龙格-库塔法的推导是基于泰勒级数展开的方法, 因而它要求所求的解具有较好的光滑性质。如果解的光滑性差, 那么, 使用四阶龙格-库塔方法求得的数值解, 其精度可能反而不如改进的欧拉方法。在实际计算时, 应当针对问题的具体特点选择合适的算法。

● 一般地,m 级龙格-库塔法所能达到的最大阶 p 的关系如下:

m	2	3	4	5	6	7	8	9	10	
p	2	3	4	4	5	6	6	7	7	

2.3 步长的自动选择

在微分方程的数值解中,选择适当的步长是非常重要的。从 截断误差来看,步长越小,截断误差就越小。但是,随着步长的 减小,在一定的求解区间内所需要走的步数就增多,这样会引起 计算量的增大,并且会引起舍入误差的大量积累与传播。因此, 如何选择步长是微分方程数值解法需要考虑的问题。

以四阶经典龙格-库塔法为例。从结点 x_i 出发,以 h 为步长求一个近似值记为 $y_{i+1}^{(h)}$,由于局部截断误差为 $O(h^5)$,故有

$$y(x_{i+1}) - y_{i+1}^{(h)} \approx ch^5$$
 (6.22)

这里假定系数 c 变化很慢,近似常数,并且在 h 很小时, c 与 h 无关。然后将步长折半,即取 $\frac{h}{2}$ 为步长,从 x_i 跨两步到 x_{i+1} ,求得一个近似值 $y_{i+1}^{(\frac{h}{2})}$ 每跨一步的截断误差是 $c(\frac{h}{2})^5$,因此有

$$y(x_{i+1}) - y_{i+1}^{(\frac{h}{2})} \approx 2c(\frac{h}{2})^5$$
 (6.23)

可以看出,步长折半后,误差大约减少 $\frac{1}{16}$,即

$$\frac{y(x_{i+1}) - y_{i+1}^{(\frac{h}{2})}}{y(x_{i+1}) - y_{i+1}^{(h)}} \approx \frac{1}{16}$$

由此易得出下列误差估计式:

$$y(x_{i+1}) \approx \frac{2^4 y_{i+1}^{(\frac{h}{2})} - y_{i+1}^{(h)}}{2^4 - 1}$$
 (6.24)

取:

$$y_{i+1} = \frac{2^4 y_{i+1}^{(\frac{h}{2})} - y_{i+1}^{(h)}}{2^4 - 1}$$
 (6.25)

作为 $y(x_{i+1})$ 的近似值,则其精度比 $y_{i+1}^{(h)}$ 与 $y_{i+1}^{(\frac{h}{2})}$ 都要高(**理查森外推方法)**。

(6.24)式可以改写成:

$$y(x_{i+1}) - y_{i+1}^{\left(\frac{h}{2}\right)} \approx \frac{1}{2^{4}-1} \left(y_{i+1}^{\left(\frac{h}{2}\right)} - y_{i+1}^{(h)}\right)$$
 (6.26)

这样,可以通过检查步长折半前后两次计算结果的偏差

$$\Delta \triangleq |y_{i+1}^{\left(\frac{h}{2}\right)} - y_{i+1}^{(h)}|$$

来判断所选的步长是否合适:

- (1) 对于给定的精度 ε , 如果 $\Delta > \varepsilon$, 反复将步长折半进行 计算, 直至 $\Delta < \varepsilon$ 为止, 这时取步长折半后的"新值"作为结果;
- (2) 如果 $\Delta < \varepsilon$, 反复将步长加倍, 直到 $\Delta > \varepsilon$ 为止, 这时取步长加倍前的"老值"作为结果。

这种通过步长加倍或折半来处理步长的方法称为**变步长方 法**。表面上看,为了选择步长,每一步的计算量增加了,但总体 考虑往往是合算的,尤其当解 y(x)变化剧烈时。

§3 收敛性与稳定性

3.1 收敛性

定义 3 若一个数值方法对任意固定的点 $x_i = x_0 + ih$, 当

 $h = \frac{x_i - x_0}{i} \to 0$ (即 $i \to \infty$) 时,都有 $y_i \to y(x_i)$,则称**该方法是收敛的**。

收敛性与方法的整体截断误差有关,记整体截断误差 $\varepsilon_i = y(x_i) - y_i$ 为在 x_i 处的准确值 $y(x_i)$ 与数值方法得到的近似值 y_i 之间的误差,则有

定理1 设 f(x,y) 关于 y 满足利普希茨条件,即存在常数 L,使得

 $|f(x,y_1)-f(x,y_2)| \leq L|y_1-y_2| \ (\forall \ x \in [a,b]) \ (\textbf{6.27})$ 且 y''(x)有界,记 $M=\max_{x\in [a,b]}|y''(x)|$,则欧拉方法(6.4) 的整体截断误差有估计式:

$$|\varepsilon_i| \le e^{L(b-a)}|\varepsilon_0| + \frac{Mh}{2L}(e^{L(b-a)} - 1)$$
 (6.28)

其中 $\varepsilon_0 = y(x_0) - y_0$ 。

当欧拉方法的初始值 y_0 和原问题初始值 $y(x_0)$ 一致时 $(\varepsilon_0=0)$,有

$$|\varepsilon_i| \le \frac{Mh}{2L} (e^{L(b-a)} - 1) = O(h) \tag{6.29}$$

即具有一阶收敛速度。

证明 由欧拉公式及泰勒展开,有

$$y_i = y_{i-1} + hf(x_{i-1}, y_{i-1})$$

 $y(x_i) = y(x_{i-1}) + y'(x_{i-1})h + \frac{1}{2}y''(\varsigma)h^2$
 $= y(x_{i-1}) + hf(x_{i-1}, y(x_{i-1})) + \frac{1}{2}y''(\varsigma)h^2, \ \varsigma \in (x_{i-1}, x_i)$
两式相减,得

$$y(x_i) - y_i = y(x_{i-1}) - y_{i-1} + h[f(x_{i-1}, y(x_{i-1})) - f(x_{i-1}, y_{i-1})] + \frac{1}{2}y''(\varsigma)h^2$$

于是, 得

$$\begin{aligned} |y(x_i) - y_i| &\leq |y(x_{i-1}) - y_{i-1}| + hL|y(x_{i-1}) - y_{i-1}| + \frac{M}{2}h^2 \\ &= (1 + hL)|y(x_{i-1}) - y_{i-1}| + \frac{M}{2}h^2 \end{aligned}$$

所以:

$$|y(x_i) - y_i| \le (1 + hL)^i |y(x_0) - y_0| + \frac{Mh}{2L} [(1 + hL)^i - 1]$$

$$\text{d}: \quad 1 \le (1 + hL)^i \le (1 + \frac{L(b-a)}{n})^n \le e^{L(b-a)}$$

$$\text{θ:}$$

$$|\varepsilon_i| \le e^{L(b-a)}|\varepsilon_0| + \frac{Mh}{2L}(e^{L(b-a)} - 1)$$

- 欧拉法整体截断误差的阶与 *h* 同阶,而比局部截断误差 低一阶。
- 整体截断误差与局部截断误差之间关系: 整体截断误差= $O(h^{-1}*$ 局部截断误差)。

3.2 稳定性

微分方程初值问题的数值方法用差分格式进行计算的过程中,初始值会有误差,计算过程中也会产生舍入误差。这些误差(或称扰动)的传播、积累对以后的计算结果将产生怎样的影响?这就是差分方法的数值稳定性问题。

• (*) 称欧拉方法(**6.4**)是**稳定的**,如果存在正常数 C 及 h_0 ,使得对任意初始值 y_0 和 z_0 的欧拉方法的解 y_i 和 z_i 满足估计式 $|y_i-z_i| \leq C|y_0-z_0|$, $x_0 \leq x_0+ih \leq b$, $h \leq h_0$

(*)**定理** 设 f(x,y) 关于 y 满足利普希茨条件,则欧拉方法 (6.4)是稳定的。

证明 初始值为 У0 和 乙0 的欧拉方法的解为

$$y_{i+1} = y_i + hf(x_i, y_i)$$

$$z_{i+1} = z_i + hf(x_i, z_i)$$

两式相减,并类似于定理1的证明方法,有

$$|y_{i+1} - z_{i+1}| \le (1 + hL)^{i+1} |y_0 - z_0| \le e^{L(b-x_0)} |y_0 - z_0|$$

定义 4 设用某一数值方法计算 y_i 时,所得到的实际计算结果为 \tilde{y}_i ,且由误差 $\delta_i = y_i - \tilde{y}_i$ 引起以后各结点处 y_j (j > i)的误差为 δ_i ,如果总有 $|\delta_i| \leq |\delta_i|$,则称该方法是**绝对稳定**的。

一个数值方法的绝对稳定性与方法本身有关,也与f(x,y)和步长h有关。

稳定性问题比较复杂,为简化讨论,通常考虑如下**试验方** 程 (即取: $f(x,y) = \lambda y$):

$$y' = \lambda y \tag{6.30}$$

其中 λ 是一个复常数,记 $\tilde{h}=\lambda h$ 。能使某一数值方法绝对稳定的 \tilde{h} 的允许取值范围称为该方法的**绝对稳定域**。

注:对于一个数值方法,尽管试验方程绝对稳定,也不一定保证

对一般方程绝对稳定。但试验方程在一定程度上反映了数值方法的某些特性。

● 欧拉方法的绝对稳定性:

试验方程 $y' = \lambda y$ 的欧拉格式为

$$y_{i+1} = y_i + h\lambda y_i = (1 + \tilde{h})y_i$$

当 y_i 有误差而变为 \tilde{y}_i 时,有

$$\tilde{y}_{i+1} = (1 + \tilde{h})\tilde{y}_i$$

记 $\delta_i = y_i - \tilde{y}_i$, 两式相减有

$$\delta_{i+1} = (1 + \tilde{h})\delta_i$$

要使误差不增加,则必须选取 \tilde{h} ,使

$$|1 + \tilde{h}| \le 1 \tag{6.31}$$

即**欧拉方法的绝对稳定区域**是以(-1,0)为中心、半径为 1 的圆 形区域。欧拉方法是条件稳定的。

类似地,可以得到(参见教材图 6-4~图 6-6, p. 162):

- 向后欧拉方法绝对稳域分别为: $|1-\widetilde{h}|>1$
- 改进欧拉方法的绝对稳域分别为:

$$|1 + \widetilde{h} + \frac{1}{2}\widetilde{h}^2| \le 1 \tag{6.32}$$

注: $y_{i+1} = y_i + \frac{h}{2} [\lambda y_i + \lambda (y_i + h \lambda y_i)] = (1 + \tilde{h} + \frac{1}{2} \tilde{h}^2) y_i$ 得: $\delta_{i+1} = (1 + \tilde{h} + \frac{1}{2} \tilde{h}^2) \delta_i$,所以: $|1 + \tilde{h} + \frac{1}{2} \tilde{h}^2| \le 1$ 。

● 经典龙格-库塔法的绝对稳域分别为:

$$|1 + \widetilde{h} + \frac{1}{2}\widetilde{h}^2 + \frac{1}{6}\widetilde{h}^3 + \frac{1}{24}\widetilde{h}^4| \le 1$$
 (6.33)

例 5 见教材 p. 163。

对于一般方程
$$\frac{dy}{dx} = f(x,y)$$
, 可近似地取
$$\lambda \approx -|\frac{\partial f}{\partial y}|_{(x_i,y_i)}$$

以便判断绝对稳定性,并用以确定求 y_{i+1} 时的步长 h_{i+1} 。

(*) 线性多步法

● 一般形式

龙格-库塔法每一步都需要先预报几个点上的导数值,计算量比较大,而计算 y_{n+1} 之前已经得到一系列结点 x_n , x_{n-1} , · · · 上的导数值,利用这些"老信息"来减少计算量,这就是多步法的基本出发点。**多步法中最常用的是线性多步法**。**线性多步法是利用已求出若干结点** x_n , x_{n-1} , · · · 上的近似值 y_n , y_{n-1} , · · · 和其一阶导数 y'_n , y'_{n-1} , · · · 的线性组合来求出下一个结点 x_{n+1} 处的近似值 y_{n+1} , 写成—般形式:

$$y = \sum_{i=0}^{k-1} \alpha_i y_{n-i} + h \sum_{i=-1}^{k-1} \beta_i y'_{n-i}, \quad n = k, k+1, \dots$$

构造线性多步法公式常用泰勒展开法和数值积分法。下面 仅以最简单的例子进行说明,进而可推广到一般情况。

● 亚当斯 (Adams) 格式

当线性多步法取如下形式的k步法:

$$y_{n+1} = y_n + h \sum_{i=-1}^{k-1} \beta_i y'_{n-i}$$

称为**亚当斯法**,当 β_{-1} = 0 时为**显式亚当斯法**,当 β_{-1} ≠ 0 时为**隐**式亚当斯法。

● 泰勒展开构造亚当斯格式的基本思路: 先将线性多步法的 表达式 y_{n+1} 在 $x = x_n$ 处进行泰勒展开,并与真实值 $y(x_{n+1})$ 在 x_n 处的泰勒展开式相比较,使其局部截断误差为 $O(h^{k+1})$,以此确定格式中的系数,便得到 k **阶亚当斯格式**。

设用 x_{n-1}, x_n 两点的斜率值加权平均作为区间 $[x_n, x_{n+1}]$ 上的平均斜率,有计算格式

$$\begin{cases} y_{n+1} = y_n + h[(1-\lambda)y'_n + \lambda y'_{n-1}] \\ y'_n = f(x_n, y_n) \\ y'_{n-1} = f(x_{n-1}, y_{n-1}) \end{cases}$$

选取参数 λ ,使上述格式有二阶精度。

将 y'_{n-1} 在 x_n 点泰勒展开

$$y'_{n-1} = y'_n + y''_n(-h) + \frac{1}{2!}y'''_n(-h)^2 + \cdots$$

代入计算格式化简, 并假设 $y_n = y(x_n), y_{n-1} = y(x_{n-1})$, 因此有

$$y_{n+1} = y(x_n) + hy'(x_n) - \lambda h^2 y''(x_n) + \cdots$$

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{1}{2}hy''(x_n) + \cdots$$

两式相比较,需取 $\lambda = -\frac{1}{2}$ 才使计算格式具有二阶精度。这样导出的计算格式:

$$y_{n+1} = y_n + \frac{h}{2}(3y'_n - y'_{n-1})$$

称做**二阶亚当斯格式**。

类似地,可以导出**三阶亚当斯格式:**

$$y_{n+1} = y_n + \frac{h}{12} (23y'_n - 16y'_{n-1} + 5y'_{n-2})$$

和四阶亚当斯格式:

$$y_{n+1} = y_n + \frac{h}{24} (55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$$

这里和下面均记 $y'_{n-k} = f(x_{n-k}, y_{n-k})$ 。

上述几种亚当斯格式都是显式的,算法比较简单,但用结点 x_n, x_{n-1}, \cdots 的斜率值来预报区间 $[x_n, x_{n-1}], \cdots$ 上的平均斜率是个外推过程,效果不够理想。为了进一步改善精度,**变外推为内插,**即增加结点 x_{n+1} 的斜率值来得出 $[x_n, x_{n-1}], \cdots$ 上的平均斜率。譬如,考察形如

$$\begin{cases} y_{n+1} = y_n + h[(1-\lambda)y'_{n+1} + \lambda y'_n] \\ y'_n = f(x_{n,y_n}) \\ y'_{n+1} = f(x_{n+1}, y_{n+1}) \end{cases}$$

的隐式格式,设右端的 $y_n = y(x_n), y_{n+1} = y(x_{n+1})$,泰勒展开有

$$y_{n+1} = y(x_n) + hy'(x_n) + (1-\lambda)h^2y''(x_n) + \cdots$$

当取 $\lambda = \frac{1}{2}$ 时,就可构造出**二阶隐式亚当斯格式:**

$$y_{n+1} = y_n + \frac{h}{2}(y'_{n+1} + y'_n)$$

其实就是梯形格式。

类似地,可以导出**三阶隐式亚当斯格式:**

$$y_{n+1} = y_n + \frac{h}{12} (5y'_{n+1} + 8y'_n - y'_{n-1})$$

和四阶隐式来当斯格式:

$$y_{n+1} = y_n + \frac{h}{24} (9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2})$$

§ 4 一阶方程组与高阶方程的数值解法

4.1 一阶方程组初值问题的数值解法

一阶常微分方程组初值问题:

$$\begin{cases} \frac{dy_i}{dx} = f_i(x, y_1, y_2, \dots, y_n), & i = 1, 2, \dots, n \\ y_i(x_0) = y_{i0} \end{cases}$$

若把其中的未知函数、方程右端都表成向量形式

$$Y = (y_1, y_2, \dots, y_n)^T, F = (f_1, f_2, \dots, f_n)^T$$

初值条件表示成

$$Y(x_0) = Y_0 = (y_{10}, y_{20}, \dots, y_{n0})^T$$

则方程可表示成:

$$\begin{cases} \frac{dY}{dx} = F(x, Y) \\ Y(x_0) = Y_0 \end{cases}$$

这种写法的优点:简洁且形式上与一个方程的初值问题类似, 其数值解法可以完全按照一个方程的情形去做,甚至误差估 计、收敛性、稳定性等可以类似地加以讨论。

例如, 对于方程组:

$$\begin{cases} y' = f(x, y, z), & y(x_0) = y_0 \\ z' = g(x, y, z), & z(x_0) = z_0 \end{cases}$$
 (6.34)

引入向量记号:

$$Y(x) = \begin{pmatrix} y(x) \\ z(x) \end{pmatrix}, F(x,Y) = \begin{pmatrix} f(x,y,z) \\ g(x,y,z) \end{pmatrix}, Y(x_0) = \begin{pmatrix} y(x_0) \\ z(x_0) \end{pmatrix} = \begin{pmatrix} y_0 \\ z_0 \end{pmatrix}$$

令 $x_i = x_0 + ih$, $i = 1,2,\cdots$, 以 y_i, z_i 表示结点 x_i 上的近似解,则:

● 改进的欧拉格式的预报公式:

$$\widetilde{Y}_{i+1} = Y_i + hF(x_i, Y_i), \quad \operatorname{pr}\left(\widetilde{Y}_{i+1}\right) = \begin{pmatrix} y_i \\ z_i \end{pmatrix} + h\begin{pmatrix} f(x_i, y_i, z_i) \\ g(x_i, y_i, z_i) \end{pmatrix}$$

或:
$$\begin{cases} \tilde{y}_{i+1} = y_i + hf(x_i, y_i, z_i) \\ \tilde{z}_{i+1} = z_i + hg(x_i, y_i, z_i) \end{cases}$$

校正公式:

$$\begin{cases} y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i, z_i) + f(x_{i+1}, \tilde{y}_{i+1}, \tilde{z}_{i+1})] \\ z_{i+1} = z_i + \frac{h}{2} [g(x_i, y_i, z_i) + g(x_{i+1}, \tilde{y}_{i+1}, \tilde{z}_{i+1})] \end{cases}$$

● 四阶经典龙格—库塔公式:

$$\begin{cases} y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ z_{i+1} = z_i + \frac{h}{6}(L_1 + 2L_2 + 2L_3 + L_4) \end{cases}$$
 (6.35)

式中:

$$\begin{cases} K_1 = f(x_i, y_i, z_i) \\ L_1 = g(x_i, y_i, z_i) \end{cases}$$

$$\begin{cases} K_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1, z_i + \frac{h}{2}L_1) \\ L_2 = g(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1, z_i + \frac{h}{2}L_1) \end{cases}$$

$$\begin{cases} K_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2, z_i + \frac{h}{2}L_2) \\ L_3 = g(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2, z_i + \frac{h}{2}L_2) \end{cases}$$

$$\begin{cases} K_4 = f(x_i + h, y_i + hK_3, z_i + hL_3) \\ L_4 = g(x_i + h, y_i + hK_3, z_i + hL_3) \end{cases}$$

利用结点值 y_i, z_i , 首先计算 $K_1, L_1, K_2, L_2, K_3, L_4, K_4$, 然后代入上式,即可求得结点值 y_{i+1}, z_{i+1} 。

向量形式的经典龙格-库塔法参见教材(6.36)、(6.37)(p. 165)。

4.2 高阶方程初值问题的数值解法

对于如下形式的高阶常微分方程:

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

其初值问题应在初值点 $x = x_0$ 处给出n个条件:

$$y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$

可引进新的未知函数:

$$y_1 = y, y_2 = y', \dots, y_n = y^{(n-1)}$$

从而把上述初值问题变成一个常微分方程组:

$$\begin{cases} y'_{1} = y_{2} \\ y'_{2} = y_{3} \\ \vdots \\ y'_{n-1} = y_{n} \\ y'_{n} = f(x, y_{1}, y_{2}, \dots, y_{n-1}) \end{cases}$$

初始条件为:

$$y_1(x_0) = y_0, y_2(x_0) = y'_0, \dots, y_n(x_0) = y_0^{(n-1)}$$

例如,对于下列二阶常微分方程初值问题:

$$\begin{cases} y'' = f(x, y, y') \\ y(x_0) = y_0, y'(x_0) = y'_0 \end{cases}$$
 (6.38)

若引入新的变量z=y',即可化为一阶方程组的初值问题:

$$\begin{cases} y' = z, & y(x_0) = y_0 \\ z' = f(x, y, z), z(x_0) = y'_0 \end{cases}$$
 (6.39)

则由公式(6.35), 可得:

● 四阶经典龙格─库塔公式:

$$\begin{cases} y_{i+1} = y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ z_{i+1} = z_i + \frac{h}{6}(L_1 + 2L_2 + 2L_3 + L_4) \end{cases}$$

其中:

$$\begin{cases} K_1 = z_i \\ L_1 = f(x_i, y_i, z_i) \end{cases}$$

$$\begin{cases} K_2 = z_i + \frac{h}{2}L_1 \\ L_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1, z_i + \frac{h}{2}L_1) \end{cases}$$

$$\begin{cases} K_3 = z_i + \frac{h}{2}L_2 \\ L_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2, z_i + \frac{h}{2}L_2) \end{cases}$$

$$\begin{cases} K_4 = z_i + hL_3 \\ L_4 = f(x_i + h, y_i + hK_3, z_i + hL_3) \end{cases}$$
消去 K_1, K_2, K_3, K_4 , 上述公式可简化为:
$$\begin{cases} y_{i+1} = y_i + hz_i + \frac{h^2}{6}(L_1 + L_2 + L_3) \\ z_{i+1} = z_i + \frac{h}{6}(L_1 + 2L_2 + 2L_3 + L_4) \end{cases}$$
(6.40)

其中:

$$\begin{cases}
L_{1} = f(x_{i}, y_{i}, z_{i}) \\
L_{2} = f\left(x_{i} + \frac{h}{2}, y_{i} + \frac{h}{2}z_{i}, z_{i} + \frac{h}{2}L_{1}\right) \\
L_{3} = f(x_{i} + \frac{h}{2}, y_{i} + \frac{h}{2}z_{i} + \frac{h^{2}}{4}L_{1}, z_{i} + \frac{h}{2}L_{2}) \\
L_{4} = f(x_{i} + h, y_{i} + hz_{i} + \frac{h^{2}}{2}L_{2}, z_{i} + hL_{3})
\end{cases} (6.41)$$

例 6 求微分方程

$$\begin{cases} y'' - 2y' + 2y = e^{2x} \sin x \\ y(0) = -0.4 \\ y'(0) = -0.6 \end{cases}$$

的解 $x \in [0,1]$, 取步长 h = 0.1。

解 作变换z = y',则上述二阶微分方程转为一阶方程组:

$$\begin{cases} y' = z \\ z' = e^{2x} \sin x - 2y + 2z \triangleq f(x, y, z) \\ y(0) = -0.4 \\ z(0) = -0.6 \end{cases}$$

用经典龙格--库塔格式:

$$\begin{cases} y_{i+1} = y_i + hz_i + \frac{h^2}{6}(L_1 + L_2 + L_3) \\ z_{i+1} = z_i + \frac{h}{6}(L_1 + 2L_2 + 2L_3 + L_4) \end{cases}$$

其中:

$$\begin{cases} L_1 = f(x_i, y_i, z_i) \\ L_2 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}z_i, z_i + \frac{h}{2}L_1\right) \\ L_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}z_i + \frac{h^2}{4}L_1, z_i + \frac{h}{2}L_2) \\ L_4 = f(x_i + h, y_i + hz_i + \frac{h^2}{2}L_2, z_i + hL_3) \end{cases}$$

求解结果如下表所示。

表 6-6

x_i	y_i	$y(x_i)$	$ y(x_i)-y_i $
0	-0.4	0.4	0
0.1	-0.46173334	-0.4617329	0.37×10 ⁻⁶
0.2	-0.52555988	-0.52555905	0.83×10 ⁻⁶
0.3	-0.58860005	-0.58860005	0.139×10 ⁻⁵

0.4	-0.64661028	-0.64661028	0.2036×10 ⁻⁵
0.5	-0.69356395	-0.69356395	0.271×10 ⁻⁵
:	:	:	:
1.0	-0.35339886	-0.35339436	0.450×10 ⁻⁵

§ 5 边值问题的数值解法

求解二阶常微分方程:

$$y'' = f(x, y, y'), x \in [a, b]$$
 (6.42)

需要两个特定的条件,除了初值条件外,也可以通过给定边值条件来确定。**边值条件一般有下列三种给定法**:

- (1) 第一边值条件: $y(a) = \alpha$, $y(b) = \beta$;
- (2) 第二边值条件: $y'(a) = \alpha$, $y'(b) = \beta$;

(3) 第三边值条件:
$$\begin{cases} y'(a) - \omega_1 y(a) = \alpha \\ y'(b) + \omega_2 y(b) = \beta \end{cases}$$

其中 $\omega_1 \ge 0$, $\omega_2 \ge 0$, $\omega_1 + \omega_2 > 0$ 。

本节介绍两点边值问题的打靶法和有限差分法。

5.1 打靶法

● 打靶法: 把边值问题转化为初值问题的一种数值方法。

考虑二阶常微分方程第一边值问题:

$$\begin{cases} y'' = f(x, y, y'), & a < x < b \\ y(a) = \alpha, & y(b) = \beta \end{cases}$$
 (6.43)

假定方程(6.43)存在唯一解。

选取适当的 t, 构造初值问题:

$$\begin{cases} y'' = f(x, y, y'), & a < x < b \\ y(a) = \alpha, & y'(a) = t \end{cases}$$
(6.44)

(6.43)、(6.44)的解分别记为y(x)与y(x,t)。若能使:

$$|y(b,t) - \beta| < \varepsilon \tag{6.45}$$

其中: ε为给定的精度要求

则可以把初值问题(6.44)的解y(x,t)作为边值问题(6.43)的近似解,即表示近似"命中"精确解,见教材图 6-7,p.168。

为了满足(6.45)式,常常通过不断试算和修正的方法来获得 **t**的值。

先凭经验确定 y'(a)的两个预测值 t_1 和 t_2 进行试算,分别得到两个解 $y(x,t_1)$ 和 $y(x,t_2)$,记

$$\beta_1 = y(b, t_1), \ \beta_2 = y(b, t_2)$$

$$t_3 = t_1 + \frac{t_2 - t_1}{\beta_2 - \beta_1} (\beta - \beta_1)$$

然后,重新试算可得 β_3 ,……,直到满足 $|\beta_i - \beta| < \varepsilon$ 为止,其中 $\beta_i = y(b,t_i)$ 。 t_i 计算的公式:

$$t_i = t_{i-2} + \frac{t_{i-1} - t_{i-2}}{\beta_{i-1} - \beta_{i-2}} (\beta - \beta_{i-2}), i = 3,4, \cdots$$

注:(1) 也可以通过牛顿迭代法等方法来得到t的值。

(2) 对于第二、第三边值问题,类似地可以得到相应的解。

5.2 有限差分法

考虑两点边值问题

$$\begin{cases} Ly \triangleq -\frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + r(x) \frac{dy}{dx} + q(x) y = f(x), & a < x < b \\ y(a) = \alpha, & y(b) = \beta \end{cases}$$

其中 $p(x) \in C^1[a,b]$, $r(x),q(x),f(x) \in C[a,b]$, $p(x) \ge p_0 > 0$, $q(x) \ge 0$ 。在 x = a, x = b 两个端点给定两个边值条件,也可给定其他带一阶导数值的边值条件。

将区间[a,b]均匀分成N等份网格,即

$$x_n = a + nh, \ h = \frac{b - a}{N}; \quad n = 0, 1, \dots, N$$

在每个内网格结点 X_n ,令

$$Ly|_{x_n} = f|_{x_n}, \quad n = 1, 2, \dots, N-1$$

假定解 y(x) 充分光滑,则由泰勒展开式,有

$$\begin{cases} \frac{dy}{dx} \Big|_{x_{n}} = \frac{y(x_{n+1}) - y(x_{n-1})}{2h} + O(h^{2}) \\ \frac{d}{dx} (p(x) \frac{dy}{dx}) \Big|_{x_{n}} = \frac{1}{h} ((p \frac{dy}{dx})_{x_{n+\frac{1}{2}}} - (p \frac{dy}{dx})_{x_{n-\frac{1}{2}}}) + O(h^{2}) \\ = \frac{1}{h} [p_{n+\frac{1}{2}} \frac{y(x_{n+1}) - y(x_{n})}{h} - p_{n-\frac{1}{2}} \frac{y(x_{n}) - y(x_{n-1})}{h}] + O(h^{2}) \end{cases}$$

这里
$$x_{n+\frac{1}{2}} = \frac{1}{2}(x_{n+1} + x_n), p_{n\pm\frac{1}{2}} = p(x_{n\pm\frac{1}{2}})$$
。

于是,有

$$-\frac{1}{h} \left[p_{n+\frac{1}{2}} \frac{y(x_{n+1}) - y(x_n)}{h} - p_{n-\frac{1}{2}} \frac{y(x_n) - y(x_{n-1})}{h} \right] + r_n \frac{y(x_{n+1}) - y(x_{n-1})}{2h} + q_n y(x_n) + R_n = f_n$$

其中 $R_n = O(h^2)$ 。

忽略高阶项 R_n , 并用 y_n 表示 $y(x_n)$ 的近似值, 得

$$-\frac{1}{h}\left(p_{n+\frac{1}{2}}\frac{y_{n+1}-y_n}{h}-p_{n-\frac{1}{2}}\frac{y_n-y_{n-1}}{h}\right)+r_n\frac{y_{n+1}-y_{n-1}}{2h} +q_ny_n=f_n, \quad n=1,2,\cdots,N-1 \qquad (*)$$

加上边值条件

$$y_0 = \alpha , \quad y_N = \beta \tag{**}$$

方程(*)-(**)是关于未知量 $y_n(n=1,2,\dots,N-1)$ 的一个线性方程组,其系数矩阵为:

$$A = \begin{bmatrix} b_1 & -c_1 \\ -a_2 & b_2 & -c_2 \\ & \ddots & \ddots & \ddots \\ & -a_{N-2} & b_{N-2} & -c_{N-2} \\ & & -a_{N-1} & b_{N-1} \end{bmatrix}_{(N-1)\times(N-1)}$$

其中:
$$\begin{cases} b_n = \frac{1}{h^2} (p_{n+\frac{1}{2}} + p_{n-\frac{1}{2}}) + q_n \\ c_n = \frac{1}{h^2} p_{n+\frac{1}{2}} + \frac{1}{2h} r_n \\ a_n = \frac{1}{h^2} p_{n-\frac{1}{2}} - \frac{1}{2h} r_n \end{cases}$$

当网格步长h充分小时,A是一个对角占优的三对角矩阵,因此A是非奇异矩阵,可用追赶法直接求解。

若 $p(x) \equiv 1$, $r(x) \equiv 0$, $f(x) \triangleq -\gamma(x)$, 则两点边值问题为

$$\begin{cases} Ly \triangleq -y'' + q(x)y = -\gamma(x), & q(x) \ge 0, x \in [a, b] \\ y(a) = \alpha, & y(b) = \beta \end{cases}$$
 (6.46)

由:

$$y''(x_i) - q(x_i)y(x_i) = \gamma(x_i)$$
 (6.47)

得到的线性方程组(称为差分方程)为

$$\begin{cases} \frac{y_{i+1}-2y_i+y_{i-1}}{h^2}-q_iy_i=\gamma_i\\ y_0=\alpha,\quad y_N=\beta \end{cases},\ i=1,2,\cdots,N-1\ \ \textbf{(6.48)}$$

整理后的矩阵形式:

$$Ay = b ag{6.49}$$

其中

$$A = \begin{bmatrix} -2 - q_1 h^2 & 1 & & & \\ 1 & -2 - q_2 h^2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & 1 & -2 - q_{N-2} h^2 & 1 & \\ & 1 & -2 - q_{N-1} h^2 \end{bmatrix}_{(N-1) \times (N-1)}$$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{N-2} \\ y_{N-1} \end{pmatrix}, \qquad b = \begin{pmatrix} \gamma_1 h^2 - \alpha \\ \gamma_2 h^2 \\ \vdots \\ \gamma_{N-2} h^2 \\ \gamma_{N-1} h^2 - \beta \end{pmatrix}$$

系数矩阵 A 是一个对角占优的三对角矩阵,可用追赶法求解。

注: 若边界条件 $y(b) = \beta$ 改为: y'(b) = m, 时:

由 $y''(x_N) - q(x_N)y(x_N) = \gamma(x_N)$, 得 i = N 时的(6.48):

$$\frac{y_{N+1}-2y_N+y_{N-1}}{h^2}-q_Ny_N=\gamma_N$$

由
$$\frac{y(x_{N+1}) - y(x_{N-1})}{2h} = y'(x_N) + O(h^2) = m + O(h^2)$$
, 得:

$$\frac{y_{N+1}-y_{N-1}}{2h}=m$$

保证了其余项为 $O(h^2)$,仍是一个二阶方法。

例 7 (见教材 p. 170)。