Clustering practicum

Stanislav Protasov

Agenda: clustering

- Problem statement
- How we measure quality
- Couple of algorithms
 - K-means
 - DBScan
 - Louvain modularity

Why do we cluster?

- Any modelling is done to simplify data
- simplify because we cannot make decisions based on millions of numbers
 - E.g. regression brings **few parameter numbers** to describe a domain instead of holding samples
 - "Terminator and similar" is a good way to describe

customer's preferences

 Clustering is a way to bring limited number of entities (clusters or representatives) while preserving general idea about the structure.

Clustering - what is this?

Set partitioning - grouping of set's elements into non-empty subsets, such that every element is included in **one and only one** of the subsets (disjoint).

Number of partitionings - **Bells number** (
$$\sim$$
 e $^{\times}$) $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$

Number of non-empty partitionings of size k- **Stirling** number of second kind $\binom{n}{k}$ $\binom{k}{k}$

$${n \brace k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i {k \choose i} (k-i)^n.$$

NB: for any metric introduced, we <u>cannot</u> solve a problem with brute force

Clustering - what can we do then?

Thus we put **limitations**:

- [Optionally] Predefine number **k** of clusters
- Implement iterative approaches with convergence
- Rely on distance to avoid considering obviously bad case

But even then clustering is usually slow.

Clustering - what is the **object**?

As we don't have any idea about cluster form, we usually rely on **distance** and its representation in graph or matrix form. There are 2 major approaches to define distance: *metric* and *vector* spaces.

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{pmatrix} \infty & 2 & \infty & \infty & 1 \\ \infty & \infty & 5 & 1 & 6 \\ \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & 1 & \infty \end{pmatrix}$$

Clustering - how to understand success?

General idea: ... include groups with **small distances between cluster members**, dense areas of the data space ...

Also: maximize between-cluster variance, minimize within-class variance.

Internal evaluation (on the training data).

• Davies-Bouldin index
$$DB = \frac{1}{n} \sum_{i=1}^{n} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

Dunn index

• Silhouette Coefficient
$$s = \frac{b-a}{max(a,b)}$$
 $SC = \max_{k} \tilde{s}(k)$

Purity, coverage, Differential edit distance - rely on **pre-defined** clusters (compare with validation set)

K-Means

DBScan

Density-based spatial clustering of applications with noise.

Lab #1. Clustering 2D points

- Consider <u>clustering example</u>.
- What is silhouette score for k={2, 3}?
- Will DBScan provide better results?
- What about <u>this example</u>?

Lab #2. Multidimensional case. Multiple subscriptions

multiple subscriptions

Louvain modularity

$$Q = rac{1}{2m} \sum_{ij} igg[A_{ij} - rac{k_i k_j}{2m} igg] \delta(c_i, c_j),$$

- A_{ij} represents the edge weight between nodes i and j;
- ullet k_i and k_j are the sum of the weights of the edges attached to nodes i and j, respectively;
- ullet 2m is the sum of all of the edge weights in the graph;
- ullet c_i and c_j are the communities of the nodes; and
- ullet δ is a simple delta function.

- Graph-based
- Considers only existing edges (no centroids)
- Starts with community number == number of nodes.
- Searches for communities.
 Change element
 assignment if this
 improves modularity Q

Lab #3

Complete <u>the tutorial</u> using Louvain modularity algorithm. Did it perform ok?

Can you measure **silhouette score** somehow?