CC3102: Teoría de la Computación, Primavera 2015

Prof. A. Hevia 2 de Diciembre 2015

Tarea 3

Miercoles 16 de Diciembre 2015, 23:59hrs

Tarea 3

Problema 1. [Total: 15]

Un lenguaje A es no trivial si $A \neq \emptyset$ y $A \neq \Sigma^*$. Demuestre que si $\mathcal{P} = \mathcal{NP}$ entonces todo lenguaje no trivial en \mathcal{NP} es \mathcal{NP} -Completo.

Problema 2. [Total: 25]

Considere el siguiente problema:

(1) **Nombre:** Conjunto independiente (independent set).

- (2) **Entradas:** Un grafo G = (V, E) y un entero $k \leq |V|$
- (3) **Pregunta:** Determinar si existe un subconjunto $R \subseteq V$ de k nodos en G tales que no hay aristas entre ellos.

Describa el problema como un problema de decisión de lenguajes y demuestre que es \mathcal{NP} -Completo via una reducción desde CLIQUE.

Problema 3. [Total: 25]

Recuerde que

$$A_{MT} = \{ \langle M, w \rangle : M \text{ es una MTs}, w \in \Sigma^*, y M(w) = \text{acepta} \}$$

- (a). [20 puntos] Demuestre que A_{MT} es \mathcal{NP} -duro. Pista: Reduzca SAT a A_{MT} .
- (b). [5 puntos] ¿Pudiera A_{MT} ser \mathcal{NP} -Completo? Justifique su respuesta.

Problema 4. [Total: 35]

Para esta preguta puede usar que el problema del camino hamiltoniano (CAMINOHAM) es NP-Completo. Considere el siguiente problema:

Problema: Circuito Hamiltoniano (CIRCUITO)

Entrada: un grafo dirigido G de n nodos.

Pregunta: Tiene G un cicuito hamiltoniano? esto es, tiene G un ciclo que pasa por todos los nodos de G exactamente una vez? (Recuerde que un ciclo es una secuencia de nodos v_0, v_1, \ldots, v_n tal

CC3102, Tarea 3 2

que existe una arista entre v_i y v_{i+1} para todo $i=0,1,2,\ldots,n-1$ y el último nodo es el inicial $v_0=v_n$).

a. [10/35 pts] Demuestre que el lenguaje

 $CIRCUITO = \{ \langle G \rangle : G \text{ es un grafo dirigido de } n \text{ nodos que tiene un circuito hamiltoniano.} \}$

es \mathcal{NP} -Completo.

b. [25/35 pts] Ahora considere el siguiente problema llamado Circuito No-dirigido Hamiltoniano (CIRCUITOND).

Problema: Circuito No-dirigido Hamiltoniano (CIRCUITOND).

Entrada: un grafo no dirigido H de n nodos.

Pregunta: Tiene G un circuito hamiltoniano, donde el circuito es no-dirigido?

Demuestre que

 $CIRCUITOND = \{ \langle H \rangle : H \text{ es un grafo no dirigido de } n \text{ nodos que tiene un circuito hamiltoniano.} \}$

es \mathcal{NP} -Completo.

Pista 1: Reduzca desde CIRCUITO. Para ello, dado un grafo dirigido G, cree un grafo no dirigido H tal que cada nodo v_i de G ahora has sido reemplazado por una "tripleta" de 3 nodos $v_{i,0}, v_{i,1}, v_{i,2}$. Muestre cómo conectar estos 3 nodos entre sí, y luego conectarlos con otras tripletas de nodos para "forzar" que cualquier circuito no-dirigido hamiltoneano en H provea una manera de deducir un circuito dirigido hamiltoniano en G.

Observación: No olvide que debe demostrar que su reducción es polinomial y funciona, esto es que G está en CIRCUITO entonces H estáa en CIRCUITOND y que si G no está en CIRCUITO entonces H no está en CIRCUITOND.