TP Bloque II

<u>Contenidos Teóricos</u> Distribuciones de probabilidad conjunta: distribuciones marginales y condicionales. Covarianza y Correlación. Distribuciones condicionales. Esperanza y varianza condicional. Propiedades.

Cambio de variables. Momentos de orden superior. Función generadora de momentos. Desigualdades de Markov, Jensen y Tchebichev.

Ejercicio 1

Cuando un automóvil es detenido por una patrulla, se revisa el desgaste de cada neumático, y cada faro delantero se verifica para ver si está correctamente alineado. Denotemos por **X** el número de faros delanteros que necesitan ajuste y por **Y** el número de neumáticos defectuosos.

- a) Si $\mathbf{X} \in \mathbf{Y}$ son independientes con $p_X(0) = 0.5$, $p_X(1) = 0.3$ y $p_X(2) = 0.2$ y $p_Y(0) = 0.6$, $p_Y(1) = 0.1$, $p_Y(2) = p_Y(3) = 0.05$ y $P_Y(4) = 0.2$, presente la función de probabilidad conjunta de (\mathbf{X}, \mathbf{Y}) en una tabla.
- b) Calcule $P(X \le 1, Y \le 1)$ a partir de la tabla de probabilidad conjunta y verifique que es igual al producto $P(X \le 1)$ $P(Y \le 1)$.
- c) ¿Cuál es P(X + Y = 0), o sea la probabilidad de no violaciones?
- d) Calcule $P(X + Y \le 1)$.

Ejercicio 2

Denote por X el número de VCR (grabadoras) de marca A vendidas durante una semana en particular por cierto comercio. La función de probabilidad puntual de X es:

х	0	1	2	3	4
$p_{X}(x)$	0.1	0.2	0.3	0.25	0.15

Sesenta por ciento (60%) de los clientes que compran VCR de marca A también compran una garantía de cobertura amplia. Denote por Y el número de compradores que compra garantía de cobertura amplia durante esta semana.

- a) ¿Cuál es P(X = 4, Y = 2)? (Sugerencia: Esta probabilidad es igual al producto P(Y = 2/X = 4). Ahora considere las cuatro compras como cuatro repeticiones de un experimento Binomial, en el cuál éxito es la compra de una garantía de cobertura amplia).
- b) Calcule P(X = Y).
- c) Determine la función de probabilidad conjunta de (X, Y) y luego la función de probabilidad marginal de Y.

Ejercicio 3

El gerente de una compañía de seguros afirma que el 45% de las personas a las que envía a uno de sus promotores adquiere una póliza contra terceros para su automóvil, el 15% adquiere una póliza contra todo riesgo, y el resto no compra. Si el promotor visita 5 personas en un día determinado, ¿cuál es la probabilidad de que 2 le compren pólizas contra terceros y 1 una póliza contra todo riesgo?.

Ejercicio 4

Dos componentes de una microcomputadora tienen la siguiente función de densidad conjunta para sus tiempos de vida útiles **X** e **Y**:

$$f(x,y) = \begin{cases} x e^{-x(1+y)} & \text{si } x \ge 0, y \ge 0 \\ 0 & \text{en caso contrario} \end{cases}$$

- a) ¿Cuál es la probabilidad de que la duración X del primer componente sea mayor que 3?
- b) ¿Cuáles son las funciones de densidad marginal de X e Y?. ¿Son independientes las dos duraciones?. Explique.
- c) ¿Cuál es la probabilidad que la duración de por lo menos un componente sea mayor que 3?

Ejercicio 5

Una persona tiene dos bombillas para una lámpara en particular. Sea X = duración de la primera bombilla e <math>Y = duración de la segunda (ambas en miles de horas). Suponga que X = Y son independientes y que cada una tiene distribución exponencial de parámetro $\lambda=1$.

- a) ¿Cuál es la función de densidad conjunta de (X, Y)?
- b) ¿Cuál es la probabilidad de que cada bombilla dure a lo sumo 1000 horas (es decir, $X \le 1$, $Y \le 1$)?
- c) ¿Cuál es la probabilidad de que la duración total de las dos bombillas sea a lo sumo de 2000 horas (o sea $X + Y \le 2$)? (Sugerencia: Dibuje la región $A = \{(x, y) \mid x \ge 0, y \ge 0, x + y \le 2\}$.
- d) ¿Cuál es la probabilidad de que la duración total de las dos bombillas esté entre 1000 y 2000 horas?

Ejercicio 6

Considere un pequeño bote transbordador que tiene capacidad para automóviles y autobuses. La cuota para automóviles es 3\$ y la de autobuses es 10\$. Denote por $\textbf{\textit{X}}$ e $\textbf{\textit{Y}}$ el número de

automóviles y autobuses, respectivamente, transportados en un solo viaje y suponga que su función de probabilidad conjunta es la siguiente:

		у				
		0	1	2		
	0	0.025	0.015	0.010		
Х	1	0.050	0.030	0.020		
	2	0.125	0.075	0.050		
	3	0.150	0.090	0.060		
	4	0.100	0.060	0.040		
	5	0.050	0.030	0.020		

Calcule el ingreso esperado de un solo viaje.

- a) Calcule la covarianza entre X e Y del ejercicio 8
- b) Calcule el coeficiente de correlación entre X e Y.

Ejercicio 7

Sea U una v.a. con distribución U(0,1).

- a) Hallar la función de distribución y la función de densidad de la v. a. X = aU + b, siendo a > 0. ¿A qué familia pertenece esta distribución?
- b) Hallar la función de distribución y la función de densidad de la v. a.:

$$X = -\frac{1}{\lambda} \ln(1 - U)$$

- c) λ siendo $\lambda > 0$. ¿A qué familia pertenece esta distribución?
- d) Hallar la función de distribución y la función de densidad de la v. a: Y=U5
- e) Hallar la función de distribución y la función de densidad de la v. a : X=ln(U)
- f) Hallar la función de distribución y la función de densidad de la v. a : W= U/(U+1)

Ejercicio 8

Se tira una moneda equilibrada tres veces y X = "número de caras que se obtienen en las tiradas".

Si $\mathbf{X} = a$, se extrae sin reposición a+1 bolillas de una urna que contiene 4 bolillas blancas y una bolilla roja. Sea $\mathbf{Y} =$ "número de bolillas rojas extraídas". ¿Cuál es la esperanza de la variable \mathbf{Y} ?

Ejercicio 9:

Sea (X, Y) un vector aleatorio bidimensional continuo con función de densidad conjunta:

$$f_{XY}(x, y) = \begin{cases} 6(x - y) & si \quad 0 < y \le x < 1 \\ 0 & en \ caso \ contrario \end{cases}$$

a.- Hallar
$$E(Y/X) = g(X)$$

b.- Verificar que
$$E(E(Y/X)) = E(Y)$$
.

Ejercicio 10:

Sea (X, Y) un vector aleatorio bidimensional continuo con función de densidad conjunta:

$$f_{XY}(x, y) = \begin{cases} 1/2x^2 & si \ |x| \le 1 ; 0 < y < x^2 \\ 0 & en \ caso \ contrario \end{cases}$$

a.- Hallar
$$E(X/Y) = g(Y)$$

b.- Verificar que
$$E(E(X/Y)) = E(X)$$
.

Ejercicio 11

Un resultado que recibe el nombre de Desigualdad de Chebyshev establece que para cualquier distribución de probabilidad de una variable aleatoria \boldsymbol{X} con $E(\boldsymbol{X}) = \mu \ y \ V(\boldsymbol{X}) = \sigma^2$, y cualquier número $k \ge 1$,

$$P(|X - \mu| \ge k \sigma) \le 1/k^2$$
.

En otras palabras, la probabilidad de que el valor de X se encuentre alejado por lo menos k desviaciones standard de su media es a lo sumo $1/k^2$.

- a) ¿Cuál es el valor de la cota superior para k = 2? ¿ k = 3? ¿ k = 4? ¿ k = 5? ¿ k = 10?
- b) Calcular μ y σ para la siguiente función de probabilidad puntual

x	0	1	2	3	4	5	6
p(x)	0.10	0.15	0.20	0.25	0.20	0.06	0.04

y evaluar $P(|X - \mu| \ge k \sigma)$ para los valores de k dados en la parte a). ¿Qué sugiere ésto acerca de la cota superior en relación con la probabilidad correspondiente?

- c) Si X toma valores -1, 0 y 1 con probabilidades 1/18, 8/9 y 1/18 respectivamente, ¿cuál es $P(|X \mu| \ge 3 \sigma)$, y cómo se compara con la cota correspondiente?
- d) Dar una distribución para la cual $P(|X \mu| \ge 5 \sigma) = 0.04$.

Ejercicio 12

La desigualdad de Chebyshev, introducida en el ejercicio anterior, es válida para distribuciones continuas y discretas. Ella expresa que para cualquier número k que satisfaga $k \ge 1$, P($|X - \mu| \ge k\sigma$) $\le \frac{1}{k^2}$. Obtenga esta probabilidad en el caso de una distribución normal para k = 1, 2 y 3 y compare con la cota superior