Definitionen

- **1. Relation:** Eine **Relation** zwischen A und B ist eine Teilmenge von $A \times B$. Man schreibt aRb. aRb genau dann, wenn $(a, b) \in R$
- **2.** Inverse Relation: Sei $R \subseteq A \times B$ eine Relation zwischen A und B. Die Inverse Relation zu R wird R^{-1} notiert.
- $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R\}$
- **3. Komposition:** Seien $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zweistellige Relationen.

Die Verknüpfung $(R \circ S) \subseteq (M_1 \times M_3)$ heißt Komposition der Relationen R und S:

 $R \circ S := \{(x,z) \mid \text{es existiert } y \in M_2 \text{ mit } (x,y) \in R \text{ und } (y,z) \in S\}$

4. Reflexivität: Eine Relation $R \subseteq A^2$ über einer Menge A heißt **reflexiv**, wenn jedes Element in Relation zu sich selbst steht:

für alle $a \in A : (a,a) \in R$

5. Symmetrie: Eine Relation $R \subseteq A^2$ über einer Menge A heißt **symmetrisch**, wenn die Reihenfolge der Elemente keine Rolle spielt: $(a,b) \in R$, dann $(b,a) \in R$.

Antisymmetrie ist das Gegenteil: $(a,b) \in R$, dann $\neg (b,a) \in R$.

- **6. Antisymmetrie:** Eine Relation $R \subseteq A^2$ über einer Menge A heißt **antisymmetrisch**, wenn aus der Symmetrie die Identität folgt: $(a,b) \in R$ und $(b,a) \in R$, dann a = b
- 7. Transitivität: Eine Relation $R \subseteq A^2$ über einer Menge A heißt transitiv, wenn aus einer Kette das mittlere Element entfernt werden kann:

 $(a,b) \in R$ und $(b,c) \in R$, dann $(a,c) \in R$

8. Totalität Eine Relation $R \subseteq A^2$ über einer Menge A heißt **total** (auch: linear), wenn je zwei Elemente in mindestens einer Richtung in Relation stehen:

Für alle $(a,b) \in A : (a,b) \in R \text{ oder } (b,a) \in R$

9. Teilbarkeitsrelation: Sei $a \in \mathbb{N}^+$, $b \in \mathbb{Z}$.

Wir schreiben a|b, wenn "a ein Teiler von b"ist, d.h. wenn gilt: $\exists k \in \mathbb{Z} : b = k \cdot a$

10. Rechtseindeutigkeit: Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig (nacheindeutig) wenn für alle $a \in A$ gilt:

Wenn $(a,b) \in R$ und $(a,c) \in R$, dann b = c.

11. Linkseindeutigkeit: Eine Relation $R \subseteq A \times B$ heißt linkseindeutig: für alle $a \in B$ gilt:

Wenn $(b,a) \in R$ und $(c,a) \in R$, dann b = c.

- 12. Eindeutigkeit: Eine Relation $R \subseteq A \times B$ heißt eindeutig: R rechtseindeutig und R linkseindeutig
- 13. Linkstotal: Eine Relation $R \subseteq A \times B$ heißt linkstotal: Für alle $a \in A$ existiert $b \in B$ mit $(a,b) \in R$.
- **14. Rechtstotal:** Eine Relation $R \subseteq A \times B$ heißt **rechtstotal:** Für alle $b \in B$ ex. a $P \in A$ mit $(a,b) \in R$.
- **15. Irreflexiv:** Eine Relation $R \subseteq A^2$ über einer Menge A heißt **irreflexiv** für alle $a \in A$ mit $(a,a) \notin R$

- **16. Alternativ:** Eine Relation $R \subseteq A^2$ über einer Menge A heißt **alternativ** für alle $a,b\in R$ mit $(a,b)\in R$ xor $(b,a)\in R$
- 17. Äquivalenzrelation: Ist eine Relation ~ reflexiv, symmetrisch und transitiv, so wird sie Äquivalenzrelation genannt.
- 18. Äquivalenzklasse: Gegeben sei eine Äquivalenzrelation R über der Menge A.

Dann ist für $a \in A$: $[a]_R = \{x \mid (a,x) \in R\}$ die Äquivalenzklasse von a.

- 19. Zerlegung: Sei A eine nicht.leere Menge. Eine Zerlegung (oder Partition) von A ist eine Mengenfamilie $\mathcal{Z} \subseteq \mathcal{P}(A)$ mit:
- 1. Überdeckung: $A \subseteq \bigcup \mathcal{Z}$
- $2. \emptyset \notin \mathcal{Z}$
- 3. Disjunktivität: Für alle $M_1, M_2 \in \mathbb{Z}$ gilt entweder $M_1 = M_2$ oder $M_1 \cap M_2 = \emptyset$

Eine Zerlegung ist also eine Einteilung von A in nicht leere, paarweise elementfremde Teilmengen, deren Vereinigung mit A übereinstimmt.

20. Abschluss: Sei R eine Relation über A und sei ϕ (reflexiv, usw.) eine Eigenschaft von Relationen.

Die Relation R* heißt **Abschluss** von R bezüglich ϕ , wenn gilt:

- 1. R* besitzt die Eigenschaft ϕ
- 2. $R \subseteq R^*$
- 3. Für alle Relationen D, die R umfassen und ebenfalls die Eigenschaft ϕ besitzen, gilt $R^* \subseteq S$.

Mit anderen Worten: R* ist die kleinste Relation, die R
umfasst und die Eigenschaft ϕ besitzt.

Besitzt R
 bereits die Eigenschaft, so fügt der Abschluss nichts hinzu:
 $\mathbf{R}^*=\mathbf{R}$

21. Ordnung: Ist eine Relation ≤ reflexiv, antisymmetrisch und transitiv, so ist sie eine **Halbordnung** (partielle Ordnung)

a und b heißen **vergleichbar** bzgl. \leq , falls a \leq b oder b \leq a gilt (sonst unvergleichbar).

Ist eine Halbordnung zusätzlich total, heißt die (totale) Ordnung und A heißt durch \leq geordnet.

22. minimal/maximal: Sei \leq eine Halbordnungsrelation auf A. Sei M eine nichtleere Teilmenge von A.

Ein Element $m \in M$ heißt **maximal** Element in M, wenn für alle $m' \in M$, aus gilt: aus $m \le m'$ folgt m = m'.

m heißt **minimales** Element, wenn für alle $m' \in M$ gilt: Aus $m' \leq m$ folgt m = m'.

spezielle Relationen

Es gibt spezielle Relationen, die im weiteren auch noch genutzt werden:

Leere Relation: $R = \emptyset$

All-Relation: $R = A \times B$

Identität (über M): $R = Id_M = \triangle_M := \{(x,x) \mid x \in M\}$