

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2013 /2014 – 1st Year Examination – Semester 1

EN1201: Introductory Mathematics

Multiple Choice Question Paper 21st March 2014 (TWO HOUR)

Important Instructions:

- The duration of the paper is 2(two) hours.
- The medium of instruction and guestions is English.
- The paper has 40 questions and 6 pages.
- All questions are of the MCQ (Multiple Choice Questions) type.
- All guestions should be answered.
- Each question will have 5 (five) choices with **one or more** correct answers.
- All guestions will carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (All the incorrect choices are marked & no correct choices are marked) to +1 (All the correct choices are marked & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.

1)	0.6×0.023 is equal to						
	(a) 0.00138	(b) 0.0138	(c) 0.138	(d) 1.38	(e) 13.8		
2)	$\sqrt{7056}$ is equal to						
	(a) 76	(b) 84	(c) $3\sqrt{784}$	(d) 86	(e) $4\sqrt{441}$		
	(a) 70	(0) 04	(c) 34704	(u) 00	(0) 47 441		
3)	C . 4 . 2 . 5 2 :	14-					
3)	$-6 + 4 \div 2 - 5 \times 3 \text{ is}$	s equal to					
	(a) -12	(b) -14	(c) -17	(d) -18	(e) -19		
4)	· · · · · · · · · · · · · · · · · · ·		once every 4 hours, a ca kes all three together a	•			
	when will he take a		•	t 0.00 a.m. on a w	onday morning,		
	(a) Tuesday 6.00) a.m.	(b) Tuesday 6.00 p.m.	(c) Wedr	nesday 6.00 a.m.		
	(d)Wednesday		(e) Thursday 6.00 a.m.				
5)	$\frac{0.012 \times (0.2)^2 \times 4}{0.96}$ is						
	0.96	equal to					
	(a) 2.0	(b) 0.2	(c) 0.02	(d) 0.002	(e) 0.0002		
6)			1	C 1	1		
0)			chool. He gave $\frac{1}{10}$ of the		_		
	15% to Riaz. The rest he distributed equally among 11 other students in the class. If each of these 11 students received 3 fruits each, how many fruits did Sunil take to school?						
	(a) 60	(b) 70	(c) 80	(d) 90	(e) 100		
	(4)	(1)	(-)		(1)		
7)	1950×2050 is equal to						
(a) 3 999 500 (b) 3 998 500 (c) 3 997 500							
	(d) 3 996 500	(e) 3 994 500					
8)	8) $\begin{bmatrix} x & y & x^2 & y^2 \end{bmatrix}$						
	If $\frac{x}{y} - \frac{y}{x} = 4$, then $\frac{x^2}{y^2} + \frac{y^2}{x^2}$ is equal to						
	(a) 20	(b) 18	(c) 16	(d) 14	(e) 12		

9)	$\frac{1}{(a-b)^2} + \frac{1}{b^2-a^2}$	s equal to				
	(a) $\frac{2b}{(a+b)(a-b)}$ (d) $\frac{2b}{(a^2-b^2)(a-b)}$	$\frac{1}{a^2}$ (6)	$\frac{2a}{(a+b)(a-b)^2}$ e) $\frac{2b}{(b^2-a^2)(b-a)}$	(c) $\frac{2b}{(b^2-a^2)(a-b^2)}$))	
10)	$8x^4 - 50x^2y^2 $ is equ	al to				
	(a) $2x^2(4x^2 - 25)$ (d) $2(2x^2 - 5y)$ (2)	(y^2) (1) $(2x^2 + 5y)$ (1)	b) $2x^2(2x - 5y)^2$ e) $2(2x^2 - 5xy)(2x^2 + 5x^2)$	(c) $2x^2(2x-5y)$ (xy)	(2x+5y)	
11)	$x^2 + 6y - 3x - 2xy $ is	equal to				
	(a) $(x+3)(x-1)$ (d) $3(2y-x)-x$	$ (2y) \qquad (2y-x) \qquad (4x) \qquad (4x)$	b) $(x-3)(x+2y)$ e) $(x-3)(x-2y)$	(c) $-3(x-2y) +$	x(x-2y)	
12)	If $T = 6\left(\frac{r - \frac{H}{3}}{8}\right)^{\frac{1}{3}}$		al to			
	(a) $3r - \frac{1}{9}T^3$ (d) $3\left[r + 8\left(\frac{T}{6}\right)^3\right]$	(1	b) $3r + \frac{1}{9}T^3$	(c) $3\left[r - 8\left(\frac{r}{6}\right)^3\right]$	3]	
	$(d) 3 \left[r + 8 \left(\frac{T}{6} \right)^3 \right]$	((e) $r - \frac{1}{27} T^3$			
13)	, <u>, , , , , , , , , , , , , , , , , , </u>	<u>.</u>				
,	$\text{If } T = 6\left(\frac{r - \frac{H}{3}}{8}\right)^{\frac{1}{3}}$	r = -29 and H	H = -6, then T is equal	to		
	(a) -3	(b) 6	(c) -6	(d) 9	(e) -9	
14)	If $-3x + 9y = a$ and $-5x - y = b$, then $x - y$ is equal to					
	(a) $\frac{a+b}{8}$ (d) $\frac{a^2-b^2}{8}$		(b) $\frac{a-b}{8}$ (e) $-\frac{a+b}{8}$	(c) $\frac{b-a}{8}$		
15)	The sum of three co	nsecutive integ	ers is equal to 201. The	en which of the followi	ng is/are not one of	
	(a) 64	(b) 65	(c) 67	(d) 68	(e) 69	

The graph of which	of the following equ	ation/s is perpendicu	ular to the graph of 3y	-x = 2?
(a) $y - 3x = 0$	(b)	y + 3x = 0	(c) $\frac{1}{6}y = -$	$\frac{1}{2}x - 3$
(d) $-\frac{1}{6}y = -\frac{1}{2}$	$\alpha - 3$ (e)	$\frac{1}{2}y = -\frac{1}{6}x - 3$	6 2	2
Kamala has Rs. 2, F 12 and the total valu number of Rs. 10 cc	Rs. 5 and Rs. 10 coing the of the coins is Rs. oins in the purse, the	s in her purse. The to 58. If the number of the number of Rs. 2	otal number of coins if Rs 5 coins in the purse is	rse is three times the
(a) 9	(b) 8	(c) 6	(d) 5	(e) 4
	e equation $12x^2 - 5x$			
(a) $\frac{2}{3}$ and $\frac{1}{4}$	(b) $-\frac{2}{3}$ and $\frac{1}{4}$	- (c) $-\frac{2}{3}$ and $\frac{1}{4}$	(d) $\frac{2}{3}$ and $-\frac{1}{4}$	(e) $\frac{1}{4}$
	the intersection points wo points (3, 6) and		3x + 2y = 11 and the	e straight line which
(a) (1, 4)	(b) (-1, 7)	(c) (3, 1)	(d) (-3, 10)	(e) (0, 5.5)
The solution set of t	he inequality $4x - 10$	$0 < -2x - 4 \le x + 8 \text{ is}$,	
(a) $\{x \mid -4 < 3\}$ (d) $\{x \mid -1 \le 3\}$	$x \le 1$ (b) $x < 4$ (e)	$\{x \mid -4 \le x < 1\} $ $\{x \mid -4 \le x < -1\}$	(c) $\{x \mid -1 <$	$x \le 4$
The solutions of 3x	+5 -3 = 2x + 6 as	re		
(a) $x = -4$ and (d) $x = 4$ and 3	$x = \frac{14}{5}$ (b) $x = -\frac{14}{5}$ (e)	$x = -4$ and $x = -\frac{8}{5}$ $x = -\frac{8}{5}$ and $x = -\frac{1}{5}$	(c) $x = 4$ and $\frac{4}{5}$	$x = -\frac{8}{5}$
If $\frac{-x-2}{3x-x^2} - \frac{2}{x} = \frac{1}{x^2}$	$\frac{1}{3}$, then x is equal	to		
(a) -5	(b) 5	(c) -4	(d) 4	(e) 3
			rude. If the base is the imeter of the triangle?	
(a) 24 cm	(b) 32 cm	(c) 30 cm	(d) 28 cm	(e) 26 cm
Which of the follow	ring is equal to 180 k	cm h ⁻¹ ?		
(a) 50 ms ⁻¹	(b) 60 ms ⁻¹	(c) 75 ms ⁻¹	(d) 80 ms ⁻¹	(e) 90 ms ⁻¹

25)	A circle of radius $\frac{r}{2}$ cm is cut out from a circle of radius $2r$ cm. What is the ratio of the area of the circle that is cut out to the area of the remaining portion?					
	(a) 1: 3	(b) 1:4	(c) 1: 7	(d) 1: 15	(e) 1: 16	
26)	A solid metal cylinder of radius r cm and height $2r$ cm is melted and solid metal spheres of radius $\frac{r}{2}$ cm are formed. If there is no wastage, how many such spheres can be formed?					
	(a) 16	(b) 12	(c) 8	(d) 4	(e) 2	
27)	If $\theta = 60^{\circ}$ then w	hich of the following has	s the greatest value?	•		
	(a) $\sin \theta$	(b) cos θ	(c) $\tan \theta$	(d) cosec θ	(e) $\sec \theta$	
28)	Let $A = \cos 30^{\circ}$	$\sin 30^{0}$ - $\tan 60^{\circ}$. The	n which of the following	lowing is true?		
	(a) 1 < A	(b) $0 < A < 1$	(c) $-1 < A < 0$	(d) -2 < A < -1	(e) A < -2	
29)	If the angle of elevation to the top of a building from a point on the flat ground which is 30 m awa from the building is 30° , what is the height of the building to the nearest meter? $(\sin 30^{\circ} = 0.5, \tan 30^{\circ} = 0.5773, \cos 30^{\circ} = 0.8660)$					
	(a) 15	(b) 17	(c) 26	(d) 53	(e) 60	
30)	Five people working 8 hours a day can cut a drain in 6 days. How many days will four people working 6 hours a day require for the same task?					
	(a) 8	(b) 9	(c) 10	(d) 11	(e) 12	
31)	In a 200 m race, Amal beats Kamal by 10 m. If Amal's average speed was 9 ms ⁻¹ , what was Kamal's average speed?					
	(a) 8.75 ms	-1 (b) 8.65 ms ⁻¹	(c) 8.55 ms ⁻¹	(d) 8.45 ms ⁻¹	(e) 8.35 ms ⁻¹	
32)	2) The magnitude of the interior angles of a quadrilateral are in the ratio 2:3:3:4. Which the following cannot be the magnitude of an interior angle of this quadrilateral?					
	(a) 45°	(b) 60°	(c) 90°	(d) 120°	(e) 150°	
33)	-	42% of his monthly s s Rs. 16 800, how muc		-	If the amount he	
	(a) Rs. 4800 (d) Rs. 4200	` '	. 4600 . 4000	(c) Rs. 4400		

34)	A trader sells an item for Rs. 170 at a loss of 15%. What was the original price of the item					
	(a) Rs. 195.50	(b) Rs. 200	(c) Rs. 205.50	(d) Rs. 210	(e) Rs. 215.50	
35)	The simple interest on a loan taken for three years period was Rs. 216. If the principal amount was Rs. 600, what was the interest rate per annum?					
	(a) 8%	(b) 9%	(c) 11%	(d) 12%	(e) 14%	
36)	The sum of the first <i>n</i> common difference of	this progression?				
	(a) -3	(b) -2	(c) -1	(d) 1	(e) 2	
37)	The sum of the first n terms of an arithmetic progression is given by $S_n = -n(n+2)$. What is the 10^{th} term of this progression?					
	(a) -120	(b) -91	(c) -60	(d) -31	(e) -21	
38)	How many terms are t					
	(a) 108	(b) 107	(c) 106	(d) 105	(e) 104	
39)	The 2 nd term of a geon progression?	netric progression is	-24 and the 7 th term is	$3\frac{3}{4}$. What is the 5^{th}	term of this	
	(a) -6	(b) -3	(c) 1	(d) 3	(e) 6	
40	$\sum_{n=3}^{\infty} \frac{2 \times 3^{n+1}}{5^{n-2}}$					
	(a) 81	(b) 78	(c) 75	(d) 73	(e) 69	
