105demography

B-MAT-100

Relationships between variables

- There often is relationships between different variables
 - Example: radius and area of a circle, gas pressure and temperature...
- This relationships are expressed with an equation:

$$Y = f(X)$$

- X is the independent variable and Y is the dependent variable
- Y is explained by X
- What if your data come from observations and no exact relationship exists?

Regression analysis

- Estimation of the relationships between variables
- Given a set of N data points (X_i, Y_i) , the goal is to find a function f such as $Y_i \approx f(X_i)$
- This function is called a regression, or a fit

Correlation theory

- Correlation indicates how closely the data fits the regression
- If the fit is exact, there is a perfect correlation
 - Example: radius and area of a circle
- There is no correlation when the variables are independent
 - Example: two dice rolls
- If the variable are somewhat related, there is some correlation
 - Example: size and weight of an individual

Linear regression

- Simple model with a single independent variable
- The regression is a line:

$$f(X) = aX + b$$

• The differences between the prediction of the fit $f(X_i) = \widehat{Y}_i$ and the actual observation Y_i are called the residuals ε_i

$$Y_i = \widehat{Y}_i + \varepsilon_i = aX_i + b + \varepsilon_i$$

a and b are obtained by minimizing the sum of squared residuals.
 This is the method of least squares

Least squares (1/2)

 The goal is to find a and b to minimize

$$S = \sum_{i=1}^{N} \varepsilon_i^2$$

• Since $Y_i = aX_i + b + \varepsilon_i$ we can write

$$S = \sum_{i=1}^{N} (Y_i - aX_i - b)^2$$

• The minimum is found by setting the gradient to 0:

$$\frac{\partial S}{\partial a} = \frac{\partial S}{\partial b} = 0$$

Least squares (2/2)

By expanding the derivates we get the following equations

$$\begin{cases}
\sum_{i=1}^{N} Y_i = a \sum_{i=1}^{N} X_i + bN \\
\sum_{i=1}^{N} X_i Y_i = a \sum_{i=1}^{N} X_i^2 + b \sum_{i=1}^{N} X_i
\end{cases}$$

And then

$$a = \frac{N(\sum XY) - (\sum X)(\sum Y)}{N(\sum X^2) - (\sum X)^2}$$

$$b = \frac{(\sum Y)(\sum X^2) - (\sum X)(\sum XY)}{N(\sum X^2) - (\sum X)^2}$$

Root-mean-squared deviation

• Quantifies the amount of dispersion of the data around the fit

$$s_{Y,X} = \sqrt{\frac{\sum_{i=1}^{N} \varepsilon_i^2}{N}} = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2}{N}}$$

• Similar properties as the standard deviation: if N is large enough, 68% of the data points are at a distance less than $s_{Y,X}$, 95% at less than $2s_{Y,X}$, and 99.7% at less than $3s_{Y,X}$.

Explained and unexplained variances

$$\sum_{i=1}^{N} (Y_i - \bar{Y})^2 = \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2 + \sum_{i=1}^{N} (\hat{Y}_i - \bar{Y})^2$$

- $\sum (Y \overline{Y})^2$ is the total variance of Y (TSS: Total sum of squares)
- $\sum (Y \widehat{Y}_i)^2$ is the unexplained variance (RSS: Residual sum of squares)
- $\sum (\widehat{Y}_i \overline{Y})^2$ is the explained variance (ESS: Explained sum of squares)

Coefficient of correlation

 The correlation coefficient is the proportion of expected variance in the total variance:

$$r = \sqrt{\frac{ESS}{TSS}} = \sqrt{\frac{\sum (\widehat{Y}_i - \overline{Y})^2}{\sum (Y_i - \overline{Y})^2}}$$

• If σ_Y is the standard deviation of Y, r can also be written

$$r = \sqrt{1 - \frac{RSS}{TSS}} = \sqrt{1 - \frac{\sum (Y_i - \widehat{Y}_i)^2}{\sum (Y_i - \overline{Y})^2}} = \sqrt{1 - \frac{s_{Y,X}^2}{\sigma_Y^2}}$$

• r measures the quality of the fit

Covariance

• If we suppose there is a linear relationship between two variables X and Y with standard deviations σ_X and σ_Y , we can define the covariance as:

$$cov(X,Y) = \frac{E[(X - E[X])(Y - E[Y])]}{\sum (X_i - \overline{X}) \sum (Y_i - \overline{Y})}$$
$$= \frac{\sum (X_i - \overline{X}) \sum (Y_i - \overline{Y})}{N}$$

• In this case, the coefficient of correlation can now be expressed as:

$$r = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

105demography

- Goal: Use the linear least square regression to predict a country's population
- 105demography_data.csv: data file containing every country's population from 1960 to 2017
- Inputs: one or several country codes

105demography

- *Y* is the population
- *X* is the year
- Outputs
 - Coefficients of the fit $Y = a_X X + b_X$
 - Root-mean-square deviation of the fit
 - Population prediction in 2050 according to this fit
 - Coefficients of the fit $X = a_Y Y + b_Y$
 - Root-mean-square deviation of the fit
 - Population prediction in 2050 according to this fit
 - Coefficient of correlation

Exercise: Sums

- Given a data set (X_i, Y_i) , compute the following sums:
 - $\sum X$
 - $\sum Y$
 - $\sum X^2$
 - $\sum Y^2$
 - $\sum X.Y$
- It should then be easy to compute the coefficients of a linear fit

Exercise: root-mean-square deviation

• Given a data set (X_i, Y_i) and a linear fit, compute the root-mean-square deviation of the fit.

$$s_{Y,X} = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2}{N}}$$

Exercise: data parsing

 Given a country code, parse the data file 105demography_data.csv and store the corresponding population data for every year from 1960 to 2017.