Material Summary: Probability and Combinatorics

1. Probability

1.1 Some Definitions

- The scientific method relies on experiments
 - Initial conditions → outcome
 - Usually, we control the initial conditions to isolate the outcome
- Random event
 - A set of outcomes of an experiment
 - Each outcome happens with a certain probability
- Random variable
 - An expression whose value is the outcome of the experiment
 - Usually denoted with X, Y, Z... (capital letters)
- It is not possible to predict the next outcome of a random event!
 - But we can perform the same experiment many times (trials)
 - The patterns and laws become more apparent with more trials

1.2 Frequency

- Let's perform the same experiment many times
 - Under the same conditions
 - ... such as throwing a dice
- Assign a frequency to each number $i = \{1, 2, ..., 6\}$ that the dice shows

$$f_i = \frac{m_i}{n}$$

- m number of trials we got i, n all trials
- As n increases, f_i "stabilizes" around some number
- We cannot perform infinitely many experiments
 - But we can "extend" the trials mathematically

$$p(A) = \lim_{n \to \infty} \frac{m}{n}$$

- We call this the probability of outcome A
 - Statistical definition of probability

1.3 Examples

- Rolling a dice
 - Possible outcomes: {1, 2, 3, 4, 5, 6}
 - Fair dice all outcomes are equally likely $p(1)=p(2)=\cdots=p(6)=1/6$
- Tossing a fair coin
 - Possible outcomes: $\{0 = heads, \ 1 = tails\}$ p(0) = p(1) = 1/2
- Tossing an unfair coin

$$p(0) = 0, 3; p(1) = 0, 7$$

- Note that
 - The probability $p \in [0; 1]$
 - It can also be expressed as percentage: $p \in [0\%; 100\%]$
 - The sum of all probabilities is equal to 1

1.4 Countable and Uncountable Outcomes

- In some cases, the number of outcomes is finite
- But some random variables have infinitely many outcomes
- Example: intervals
 - What is the probability that a real number $A \in [0; 100]$ chosen at random, is in the interval [10; 20]?
 - Answer: it depends only on the lengths of the intervals

$$p = \frac{20 - 10}{100 - 0} = 0.1 = 10\%$$

- The number of outcomes in infinite, but we are still able to compute probabilities
- **Probability density** the probability of the result being in a tiny interval dx

$$dp = \frac{dx}{b-a}$$

• a, b – both ends of the interval [0; 100]

1.5 Visualizing Random Variables

- To visualize a random variable, we plot the value as a function of the trial number
 - We can generate random values using numpy

Example: throwing a dice

```
def throw_dice():
    return np.random.randint(1, 7) # from 1 to 6

x = [throw_dice() for i in range(100)]
    plt.plot(x)
    plt.show()
```

1.6 Visualizing Random Variables

- The function we got is not very informative
 - Better way: show the frequency of each output
 - For each possible value of the random variable, count how many times we got that value
 - This is called a histogram

2. Combinatorics

2.1 Combinatorics

- Combinatorics deals with counting objects and groups of objects
- Prerequisites
 - Finite (countable) number of outcomes
 - All outcomes have equal probability
- Examples: gambling games
 - Roulette all segments are equally likely
 - Card games all card backs are the same
- Counting rules
 - Rules for computing a combinatorial probability
 - Show how many "desired" outcomes exist
- Notation
 - All outcomes: n
 - All experiment outcomes: k

Usually, n is fixed and k depends on the experiment

Types of samples

- with repetition / without repetition
- ordered / unordered
- Example: taking numbered balls out of a box
 - Take a ball, then return it to the box
 - Take a ball without returning it to the box (in this case $k \le n$)
 - Take balls in a specific order (e.g., if they are numbered or colored)
 - Take balls in no specific order

2.2 Counting Rules

- Rule of sum
 - m choices for one action, n choices for another action
 - The two actions cannot be done at the same time
 - There are m + n ways to choose one of these actions
- Example
 - A woman will shop at **one** store in town today
 - North part of town mall, furniture, jewellery (3 stores)
 - South part of town clothing, shoes (2 stores)
 - In how many ways she could visit one shop?
 - Answer: 3 + 2 = 5 ways

Rule of product

- m choices for one action, n choices for another action
- The two actions are performed one after the other
- There are m. n ways to do both actions
- Example
 - You have to decide what to wear
 - Shirts red, blue, purple (3 colors)
 - Pants black, white (2 colors)
 - In how many ways can you create one outfit (shirt and pants)?
 - Answer: 3.2 = 6 ways
 - For each choice of shirt, you can choose one color of pants
 - These are independent

2.3 Example: Three Coin Tosses

- Let's explore a graphic method of solving combinatorial problems called a tree diagram
 - Draw all intermediate results and the links between them
 - A "path" through the tree represents an outcome
 - Useful when the outcomes are relatively few
- What's the probability of getting 3 tails out of 3 coin tosses?
 - Answer: 1/8
- What's the probability that both of these are true?
 - The first outcome is a head
 - The second outcome is a tail
 - Answer: 1/4

2.4 Example 2: Eating at a Restaurant

- A restaurant offers
 - 5 choices of appetizer
 - 10 choices of main course
 - 4 choices of dessert
- You can choose one course, two different courses, or all three
- How many possible meals can you make?
- One course: either appetizer, main course, or dessert: 5 + 10 + 4 = 19
- Two courses: total 110
- Appetizer + main course: 5.10 = 50
- Main course + dessert: 10.4 = 40
- Appetizer + dessert: 5.4 = 20
- Three courses: 5.10.4 = 200

• Total: 19 + 110 + 200 = 329 possible meals

2.5 Permutations

- A permutation (without repetition) of a set A is any shuffling of all elements in A
 - The order matters
 - Notation: P_n
- Example:
 - If A = {1, 2, 3, 4}, some permutations are {1, 2, 3, 4}; {1, 4, 3, 2}; {2, 3, 4, 1}
- Number of permutations of n elements
 - n choices for the first element
 - n-1 for the second one
 - Because the first one is already taken
 - n-2 for the third one
 - 1 for the last one
 - Total: $n! = 1.2.3. \dots . n$

2.6 Variations

- A variation is an ordered subset of k elements from A
- Notation: V_n^k
 - We read this as "Variations of n elements, k^{th} class"
- Example:
 - If $A = \{1, 2, 3, 4\}$, k = 2, some variations are $\{1, 2\}$; $\{4, 3\}$; $\{3, 1\}$; $\{4, 1\}$
- Number of variations
 - Same technique as in permutations
 - n choices for the first element
 - n-1 for the second one

$$V_n^k = n.(n-1).....(n-k+1) = \frac{n!}{(n-k)!}$$

• (n-k+1) for the last one

2.7 Combinations

A combination is an unordered subset of k elements from A

• Notation: C_n^k

- Example:
 - If $A = \{1, 2, 3, 4\}$, k = 2, some combinations are $\{1, 2\}$; $\{3, 4\}$; $\{3, 1\}$; $\{4, 1\}$
- Number of combinations of n elements
 - Using a similar (but more involved) logic, we can prove that

$$C_n^k = \frac{n!}{(n \ \overline{n}!k)!k!}$$
 $\binom{n}{k} = \frac{(n \ \overline{n}!k)!k!}{(n-k)!k!}$

• This is also known as "**n choose k**" (we choose k elements from n)

2.8 Example Usages

- Shuffle a deck of cards
 - The same as generating a random permutation of 52 (or 54) elements
- Crack a password
 - How many 3-letter passwords are there (26 + 26 letters total)? V_{52}^3
- Generate all anagrams of a given word
 - Anagram: a different word using the same letters
 - Example: emits → items, mites, smite, times
 - Method:
 - Generate all permutations of the letters
 - For each permutation, find whether it's a valid word (check with a dictionary)
 - Return all valid words
- Make a fruit salad
 - Generate combinations of fruits (the order doesn't matter)
 - Possibly, combinations with repetition (if I love bananas, I'll take a double serving)

3. Probability Algebra

3.1 Events

- Event a result from the experiment
- Elementary event
 - One particular outcome
 - Example: outcomes of two coin flips: {HH}, {HT}, {TH}, {TT}
- Compound event

- Consists of many elementary events
- Example: getting an odd number from a dice
 - Consists of the elementary events 1, 3, 5
- **Event space** the set Ω of all possible events
- The algebra of events is the same as the algebra of sets
 - ... and we already know these :)

3.2 Algebra of Events

- If event A happens with event B, A is a consequence of B: $A \subset B$
- If $A \subset B$ and $B \subset A$, then A = B
- Complementary event: \bar{A} happens iff A does not happen
- Impossible event: contains no elementary events: Ø
- Product of events: happens iff A and B happen: $C = A \cap B$
 - Incompatible events: $A \cap B = \emptyset$
- Sum of events: happens if A, B or both happen: $C = A \cup B$
 - If A and B are incompatible, C = A + B
- Observe that
 - Logical relations are the same as set operations (and event operations)
 - AND: intersection
 - OR: union
 - NOT: complement

3.3 Conditional Probability

- Additional information about the experiment outcome can change the probabilities
 - "a priori" → "a posteriori"
- Example:
 - "Hidden dice": someone rolls a dice and doesn't tell us the result
 - Probabilities: 1/6 for every number
 - These are also called "a priori" probabilities
 - Now we know the number is even
 - This changes all outcome probabilities: $\left\{1 \to 0; 2 \to \frac{1}{3}; 3 \to 0; 4 \to 0\right\}$ $\frac{1}{3}$; 5 \rightarrow 0; 6 \rightarrow $\frac{1}{3}$
 - These are called "a posteriori" probabilities

- Conditional probability
 - Probability of event A given event B
 - Math notation: P(A|B)
- More formally
 - If we know B happened, the probability P(A|B) corresponds to the part of the set B which is shared between A and B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- In our example
 - Event *A*: number on a fair dice

$$A = \{1, 2, 3, 4, 5, 6\}$$

■ Event *B*: the number is even

$$B = \{2, 4, 6\}$$

 $A \cap B = \{2, 4, 6\}$

• $P(1|\text{even}) = 0; P(2|\text{even}) = \frac{1}{3}; ...$

3.4 Event Independence

- Sometimes, an event doesn't influence another event
 - They are called independent events
- If two events are independent, knowledge of one does not tell us anything about the other
- More formally, $P(A \cap B) = P(A).P(B)$

• If
$$P(B) \neq 0$$
, $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$

- The same can be applied to A if $P(A) \neq 0$
- Example
 - 99% of all people who died of cancer, have consumed pickles
 - 99,8% of all soldiers have eaten pickles
 - http://www.pleacher.com/mp/mhumor/pickles.html

http://www.dhmo.org/facts.html

3.5 Bayes' Theorem

- The theorem tells us how to update the probabilities when we know some evidence
- Example usage: spam detection

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(A|B)P(B)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \Rightarrow P(B \cap A) = P(B|A)P(A)$$

$$A \cap B = B \cap A \Rightarrow P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Consider each word w; compute number of emails which contain it
 - m spam emails containing w; n total emails containing w:
 - "Spamminess" of word: frequency P(word|spam) = m/n
 - "Spamminess" of email: *P*(spam|all words)

3.6 Example: Family Paradox 1

- A family has two children
 - One of them is a boy
 - What is the probability that both children are boys?
 - A child has a 0,5 chance of being a boy or a girl
- Intuitive answer: 0,25
 - But wait... let's exhaust all possibilities

3.7 Example: Family Paradox 2

- Mr. Smith is the father of two children
 - When we meet him on the street, he introduces one as his son
 - What's the probability that the other child is a boy?

Assumption

He is equally likely to take any child to a walk

3.8 Example: Monty Hall Problem

- In a game show, you have to choose between three doors
 - Behind one is a car, behind the other two goats
- You pick a door
- The host reveals one of the two other doors it's always a goat
- You have the option to keep your choice or switch doors
 - Which is the winning strategy?
- It turns out that the winning strategy is to always switch
 - This gives you 2/3 chanceof winning the car
- More details: Quora

4. Statistical Distributions

4.1 Distributions

- We saw that random variables can be treated as functions
 - But they look funky
 - Don't have derivatives at most points
 - Difficult to work with

- We can instead take functions of these functions
 - Like we counted each outcome
 - Instead of graphing the real function, we made a histogram of counts
 - This gives us a much better idea what the random variable looks like
- These functions of functions are called **distributions**
 - In our example, we looked at the frequency distribution

4.2 Discrete Distribution

- Probability distribution function
 - A table which maps each outcome of a random variable to a probability: $p_X(x_i) = P(X = x_i)$
 - Also called probability mass function (pmf)
- Example: two die rolls
 - Random variable: sum of numbers
 - Outcomes: {2, 3, ..., 12}
 - **Probabilities**

$$P(2) = P(\{1,1\}) = 1/36$$

$$P(3) = P(\{1,2\}) + P(\{2,1\}) = 2/36$$

$$\vdots$$

$$0.16$$

$$0.14$$

$$0.13$$

$$\vdots$$

$$\frac{f_{\overline{6}}}{5}$$

$$\frac{1}{36}$$

- **Cumulative distribution function**
 - A table which maps each outcome of a random variable to the probability of its value being less than or equal to a given number

$$F_X(x_i) = P(X \le x_i)$$

- Also called cumulative mass function (cmf) or cumulative density function (cdf)
- Every cmf is non-decreasing
 - Usually starts at 0

Always ends at 1

4.3 Continuous Distribution

Cumulative density function (cdf)

• Defined in the same way as the cmf:

$$F(x) = P(X \le x)$$

Probability density function

Derivative of the cdf:

$$f(x) = \frac{dF(x)}{dx}$$

 Meaning: the probability of the function taking values in an infinitely small interval around x

 The probability of observing any single value a is exactly 0

■ The number of outcomes is ∞

•
$$p(a) = \left[\frac{\text{\# of values } a}{\infty}\right] = 0$$

5. Common Distributions

5.1 Bernoulli and Uniform Distributions

Bernoulli distribution

■ The simplest distribution of a random variable

Value 0 with probability p

• Value 1 with probability q = 1 - p

■ The two events are incompatible (mutually exclusive)

• Example: coin flip (fair coin: p = 0.5)

- ... Not so interesting on its own
 - But takes part in other distributions
- Uniform distribution
 - All values in some range [a; b] are equally likely
 - Example: number on a fair dice
 - Also generalizes to continuous variables

5.2 Binomial Distribution

- n Bernoulli trials
 - Each trial has a "success" probability p
 - $n = 1 \Rightarrow Bernoulli distribution$
- Discrete distribution
- Notation: $X \sim B(n, p)$
 - "X follows the binomial distribution with parameters n and p"
- Probability mass function

$$f(k; n, p) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Cumulative function

$$F(k; n, p) = P(X \le k) = \sum_{i=0}^{\lfloor k \rfloor} \binom{n}{i} p^i (1-p)^{n-i}$$

5.3 Normal Distribution

- Origin: random errors in measurements
 - When we perform an experiment, there are many sources of error
- Example: throwing a dart at the origin of the (x,y)-plane
 - We aim at the origin
 - Random errors prevent us from hitting it every time
 - Sources of error
 - Hand shaking, air currents, distribution of mass inside the arrow, different viewing angles... and many more, some of which we can't even know
- **Assumptions**
 - The errors don't depend on the orientation of the coordinate system
 - The errors in x and y directions are independent: one doesn't influence the other

- Large errors are less likely than small errors
- We can derive the distribution of errors
 - Distances from the origin
- Normal (Gaussian) distribution
 - pdf: $p(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
 - μ, σ parameters
 - We'll see their real meaning next time
 - cdf: doesn't exist as a function, we can integrate numerically
- Complete derivation of the formula: <u>here</u>
- Standard normal distribution: $\mu = 0$, $\sigma = 1$
 - Mainly for convenience

5.3 Central Limit Theorem

- The sum of many independent random variables tends to a normal distribution even if the original random variables are not normally distributed
 - In other words: The sampling distribution of the mean of any independent random variable will be normal or nearly normal if the sample is large enough
 - Large enough?
 - $n \in [30; 40]$ for most statisticians, but more is better
- Example: customers in a shop
 - Every customer has their own behavior, reasons, money, etc.
 - We can treat them as random variables with unknown distributions
 - The shop's earnings are approximately normally distributed
 - If there are many customers
 - We don't even care about the many sources of error: they will produce a normal distribution anyway

