Ficha Técnica – Medidor de Salinidad

Dispositivo: Medidor portátil de salinidad con visualización digital en

pantalla OLED SSD1306 o LCD 16x2 I2C

Autora: Paulina Juich

Año: 2025

Licencia: © 2025 Paulina Juich. Todos los derechos reservados.

Uso personal, académico o educativo sin fines de lucro permitido con atribución.

Uso comercial o distribución requiere licencia o autorización expresa.

Contacto para licencias: paulinajuich4@gmail.com

Objetivo

Permitir la medición básica y portátil de la conductividad eléctrica de líquidos (por ejemplo, orina, agua o soluciones simuladas), mostrando los valores en tiempo real en una pantalla OLED SSD1306 o LCD 16x2 I2C. El dispositivo incluye un pulsador para pausar o reanudar la lectura.

El sistema está diseñado para monitoreo simple y está preparado para incorporar calibraciones profesionales posteriores que permitan convertir la conductividad a salinidad real (g/L, ppt, etc). No sustituye análisis clínicos.

Componentes principales

Componente	Descripción
Arduino UNO o Nano (ATmega328P)	Microcontrolador para procesamiento y lectura
Sensor analógico de conductividad	Simulado con potenciómetro para pruebas

Componente	Descripción
Pantalla OLED SSD1306 (I2C, 128×64 px) o LCD 16x2 I2C	Visualización digital de datos
Pulsador	Conectado a pin digital D2 con resistencia pull-up interna (INPUT_PULLUP)
Alimentación	USB 5 V o fuente externa estable
Cables dupont y protoboard o PCB	Para montaje y conexiones

Esquema de conexión

Componente	Conexión Arduino UNO/Nano
Sensor conductividad (analógico)	Pin A0 (entrada analógica)
Pulsador	Pin D2 y GND (con INPUT_PULLUP)
Pantalla OLED SSD1306 / LCD 16x2 I2C	SDA \rightarrow A4, SCL \rightarrow A5, VCC \rightarrow 5 V, GND \rightarrow GND

Funcionamiento

- 1. El sensor análogo mide la conductividad (simulada por un potenciómetro en prototipo).
- 2. El valor ADC (0–1023) se convierte a voltaje (0–5 V) y luego a conductividad en mS/cm usando un factor de escala (maxConductividad).
- 3. Los datos se muestran en pantalla OLED o LCD I2C en tiempo real.
- 4. Mediante el pulsador se puede pausar o reanudar la medición.

- 5. El sistema envía datos al monitor serie para monitoreo o registro externo.
- Está preparado para incorporar la fórmula profesional de conversión conductividad → salinidad cuando se disponga.

Código base

- Archivo principal: medidor_salinidad_mejorado.ino
- Librerías utilizadas:
 - Adafruit GFX y Adafruit SSD1306 (solo para OLED)
 - LiquidCrystal I2C (solo para LCD 16x2)
 - Wire.h para comunicación I2C
- Implementa antirrebote para el botón con detección de cambio de estado.
- Parámetros calibrables para ajustar la conversión ADC → conductividad.
- Bloque comentado para futura incorporación de fórmula química/bioquímica para convertir conductividad a salinidad (g/L, ppt).

Simulación y validación

- Simulado y validado en plataformas:
 - Wokwi (archivo disponible en repositorio)
 - Tinkercad (prototipo funcional con potenciómetro y LCD)
- Esquema de conexión incluido en archivo esquema_conexion.png.

Limitaciones y consideraciones

- El sensor es simulado; para uso real se debe usar sensor analógico de conductividad certificado.
- La calibración para conversión a salinidad requiere datos profesionales y debe ser incorporada en el código posteriormente.
- La temperatura y composición química de la muestra afectan la conductividad; dispositivo básico no incluye compensación térmica.

• El dispositivo no reemplaza análisis clínicos ni diagnósticos médicos, es una herramienta de monitoreo básico.

Licencia y contacto

© 2025 Paulina Juich. Todos los derechos reservados. Uso académico o educativo sin fines de lucro permitido con atribución. Uso comercial requiere licencia paga.

Contacto para licencias y consultas: paulinajuich4@gmail.com

Repositorio

https://github.com/paupau77/Arduino-para-mi-dispositivo