EA-3 Fisis dari Dioda

A. Tujuan Praktikum

Memahami operasi fisis pada diode dan pemodelan diode dalam rangkaian.

B. Dasar Teori

Dioda merupakan komponen elektronika non linier yang sederhana. Struktur dasar dioda berupa sambungan semikonduktor tipe p dan semikonduktor tipe n (*pn junction*). Bentuk fisik dan simbol dioda ditunjukkan oleh Gambar 3.1. Pada ujung bahan tipe p dijadikan terminal Anoda (A) dan ujung lainnya sebagai Katoda (K). Operasi dioda ditentukan relatif kaki Anoda terhadap kaki Katoda.

Gambar 3.1 Bentuk fisik dan simbol dioda.

Kurva hubungan antara tegangan dan arus yang mengalir dalam dioda ditunjukkan oleh Gambar 3.2. Gambar 3.2 menunjukkan kurva karakteristik I-V pada dioda silikon (Si) dan dioda germanium (Ge). Pada saat dioda dibias maju, $V_{A-K} > 0$, maka arus dioda, I_D , akan naik dengan cepat setelah tegangan mencapai tegangan *cut-in* (V_γ) yang besarnya besarnya 0,2 V untuk germanium dan 0,6 V untuk silikon. Saat dioda dibias mundur,

 V_{A-K} < 0, arus saturasi mundur, I_S , akan mengalir dengan besar arus saturasi dalam skala mikro-ampere untuk dioda germanium dan dalam skala nano ampere untuk dioda silikon. Apabila tegangan mundur terus diperbesar sampai mencapai tegangan patah (*break down*), maka arus saturasi ini akan naik dengan tiba-tiba. Tegangan *break down* akan menyebabkan medan listrik pada sambungan tinggi sehingga pembawa muatan akan dipercepat untuk bisa melewati sambungan. Pada dioda biasa, pencapaian tegangan *break down* ini dihindari karena dioda bisa rusak.

Gambar 3.2. Kurva karakteristik I-V dari dioda.

Secara umum, ada tiga macam pendekatan yang digunakan untuk membuat model suatu dioda. Pendekatan pertama, merupakan model pendekatan dioda dengan menganggap bahwa dioda mempunyai karakteristik seperti sakalar. Saat dioda di bias maju, $V_D > 0$, maka arus dioda, I_D , akan mengalir dalam dioda. Pada kondisi ini, dioda seperti saklar yang menutup atau dioda akan ON. Sedangkan, saat dioda di bias mundur, $V_D < 0$, arus dioda, I_D , sama dengan nol. Dioda seperti saklar yang terbuka atau dioda akan OFF. Pada pendekatan kedua, saat dioda di bias maju, $V_D > 0$, maka arus dioda, I_D , akan mengalir dalam dioda jika $V_D > V_\gamma$. V_γ merupakan tegangan cut-in dioda, yang dalam model ini besar $V_\gamma = 0.7$ V.

Pendekatan ketiga merupakan pendekatan dengan model dioda riel dengan karakteristik riel dari dioda pada Gambar 3.3. Saat dioda di bias maju, $V_D > 0$, maka arus dioda, I_D , akan mengalir dalam dioda jika $V_D > V_Y$ dengan hambaran dioda R_f .

Gambar 3.3. Karakteristik (a) dan model riel (b) dioda saat dibias maju.

Saat dioda di bias mundur, $V_D < 0$, maka arus saturasi mundur, I_S , akan mengalir dalam dioda dengan hambaran dioda R_r .

Gambar 3.4. Karakteristik (a) dan model riel (b) dioda saat dibias mundur.

Besar hambatan R_r pada skala mega ohm karena besar arus saturasi untuk dioda germanium dalam skala mikro-ampere dan dalam skala untuk dioda silikon nano ampere. Dalam analisis rangkaian, hambatan R_r sering dimodelkan sebagai saklar terbuka.

C. Alat dan Komponen

Tabel 3.1. Daftar Alat dan Komponen yang Dibutuhkan

No.	Komponen dan Alat	Spesifikasi	Jumlah
1.	Resistor	220 Ω	2
		$470~\Omega$	1
		1 k Ω	1
		100 k Ω	1
2.	Dioda	1N4001	2
		1N914	2
3.	Catu Daya DC		1
4.	Project board		1
5.	Multimeter		1
6.	Kabel jumper		Secukupnya

D. Prosedur Praktikum

Percobaan 1: Karakteristik Dioda

- 1. Rangkai rangkaian seperti yang ditunjukkan oleh Gambar 3.5 pada project board.
- 2. Hubungkan rangkaian dengan osiloskop, dengan

Probe positif (+) Ch-1 (X) dihubungkan ke titik X

Probe positif (+) Ch-y (Y) dihubungkan ke titik Y dan tekan tombol *invert*.

Ground osiloskop di titik G.

- 3. Amati dengan menggunakan mode x-y. Catat tegangan *cut-in*, dan gambarkan bentuk karakteristik I-V dioda pada Tabel 1 lembar laporan sementara.
- 4. Ulangi untuk dioda yang lain.

Gambar 3.5. Rangkaian percobaan 1.

Percobaan 2: Pemodelan Dioda

- 1. Rangkai rangkaian seperti yang ditunjukkan oleh Gambar 3.6 pada *project board*. Gunakan diode yang sama dengan diode yang digunakan pada percobaan 1.
- 2. Dapatkan titik operasi diode (*Q point*) dengan mengukur besar tegangan dan arus yang melewati diode.

Gambar 3.6. Rangkaian percobaan 2.

3. Analisis hasil yang didapat dengan membandingkan hasil pengukuran dengan perhitungan. Perhitungan *Q point* bisa anda lakukan dengan menggunakan model diode yang didapat dari percobaan 1.

Percobaan 3: Tegangan Drop pada Dioda

1. Rangkai rangkaian seperti yang ditunjukkan oleh Gambar 3.7a pada *project board*. Gunakan dioda yang tersedia pada Tabel 3.1.

Gambar 3.7. Rangkaian percobaan 3.

- 2. Nilai pada V_A adalah 4,2V s.d 4,3V.
- 3. Potensiometer (R_{V2}) digunakan sebagai rangkaian pembagi tegangan sehingga tegangan sumber 12V turun hingga sebesar V_A .
- 4. Hitung nilai tegangan pada beban (R₂₀).
- 5. Variasikan jumlah, jenis dioda, dan bentuk rangkaian kombinasi dioda agar tegangan pada beban (R_{20}) menjadi 3,3V.
- 6. Dilarang menambah komponen lain selain dioda.

E. Daftar Pustaka

Malvino, Albert Paul. 1995. *Electronic Principles, Fifth Edition*, McGraw-Hill.USA Malvino, Albert Paul. 1995. *Experiments for Electronic Principles, Fifth Edition*, McGraw-Hill.USA

LAPORAN SEMENTARA

Fisis dari Dioda

Tabel 1. Hasil Percobaan 1 : Karakteristik Dioda

Dioda	Kode	Tegangan	Grafik karakteristik I-V
ke-		cut-in	
1.			
2.			
3.			
4			

Tabel 2. Hasil Percobaan 2 : Pemodelan Dioda

	Q Point	
	V_{DQ}	I_{DQ}
Perhitungan		
Pengukuran		

Kesimpulan:		

Tabel 3. Hasil Percobaan 3 : Tegangan *Drop* pada Dioda

Jumlah dioda		V
Seri	Paralel	$ m V_{beban}$
2	0	
0	2	
2	2	

Skema Rangkaian:						
Kesimpulan:	Kesimpulan:					