Projekt LVS-IR-Taubenstein

Projektpartner: Sascha Filimon, Roman Ossner

Gruppenbetreuer: Dr. André Klima

Projektgruppe: Alexander Fogus, Lea Vanheyden, Zorana Spasojević

25. Mai 2020

Ludwig Maximilians Universität

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Modell
- 4. Messfehler
- 5. Fazit
- 6. Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Model
- 4. Messfehler
- 5. Fazit
- 6. Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

- Konfliktsituation zwischen Mensch und Natur bzw. Tierreich im Alpengebiet
- Kooperation des Departments für Geographie an der LMU, Lawinencamp Bayern, Gebietsbetreuer Mangfallgebirge, Alpenregion Tegernsee/Schliersee und dem Deutschen Alpenverein München (DAV)
- Aktionstag
 - ↓ "Natürlich auf Tour"

- Untersuchungsgebiet: Spitzingsee

 - → Beliebte Gegend für Sportler
- Untersuchung über die Mitnahme von LVS-Geräten anhand von Checkpoints und manueller Datenerhebung
 - ↓ Ziel: Das Verhalten der Besucher analysieren

Abbildung 1: Untersuchungsraum: Spitzingsee

Abbildung 2: Checkpoints an der Nord- und Südseite

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Model
- 4. Messfehler
- 5. Fazit
- 6. Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

- Untersuchungsgegenstand: Wintersportler (vorrangig Skitourengänger & Schneeschuhgeher)
- Untersuchungszeitraum der Checkpoints Wintersaison 18/19
 Genauer Zeitraum: 25.12.2018 13.04.2019
- Checkpoints an zwei Routen (Nord- und Südseite) erfassen:

Messungen insgesamt	37216
Personen ohne LVS-Gerät	28911
Personen mit LVS-Gerät	8305

 Untersuchungszeitraum der manuellen Erhebung am 27.02.und 28.02.2020

Zielvariable:

Anteil der Personen mit LVS-Gerät

Kovariablen:

- Datum
- Tag der Woche
- Feiertag
- Schneehöhe (in cm)
- Temperatur (in ° C)
- Sonneneinstrahlung (in W/m^2)
- Lawinenwarnstufe
- Uhrzeit der Messung

Zielvariable:

Anteil der Personen mit LVS-Gerät

Kovariablen:

- Datum
- Tag der Woche
- Feiertag
- Schneehöhe (in cm)
- Temperatur (in °C)
- Sonneneinstrahlung (in W/m^2)
- Lawinenwarnstufe
- Uhrzeit der Messung

Abbildung 3: Absolute Häufigkeit der Personen mit und ohne LVS-Gerät nach Datum

Abbildung 4: Anteil der Personen mit LVS-Gerät nach Datum

Zielvariable:

Anteil der Personen mit LVS-Gerät

Kovariablen:

- Datum
- Tag der Woche
- Feiertag
- Schneehöhe (in cm)
- Temperatur (in $^{\circ}C$)
- Sonneneinstrahlung (in W/m^2)
- Lawinenwarnstufe
- Uhrzeit der Messung

Abbildung 5: Schneehöhe, Temperatur und Sonneneinstrahlung nach Datum

Zielvariable:

Anteil der Personen mit LVS-Gerät

Kovariablen:

- Datum
- Tag der Woche
- Feiertag
- Schneehöhe (in cm
- Temperatur (in °C)
- Sonneneinstrahlung (in W/m^2)
- Lawinenwarnstufe
- Uhrzeit der Messung

Abbildung 6: Absolute Häufigkeit der Personen mit und ohne LVS-Gerät nach Uhrzeit

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Modell
 - 3.1 Theorie
 - 3.2 Schwierigkeiten
 - 3.3 Ergebnisse
- 4. Messfehler
- 5. Fazit
- Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Modell
 - 3.1 Theorie
 - 3.2 Schwierigkeiten
 - 3.3 Ergebnisse
- 4. Messfehler
- 5. Fazit
- Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

3.1 Theorie/Lineares Regressionsmodell

Modell

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i$$

- Erwartungswert einer Zufallsvariable wird durch Linearkombination von Kovariablen beschrieben
- Problem: Oft unzureichend, da auch nicht lineare Einflüsse auf Zielvariable wirken können

3.1 Theorie/Generalisiertes lineares Regressionsmodell

Zielgröße

Beobachtete Zielgröße ist Binomial-verteilt $y_i|x_i \sim B(1,\pi_i)$:

$$y_i = \begin{cases} 1 & \text{,wenn Person mit LVS-Gerät identifiziert wird} \\ 0 & \text{,wenn Person ohne LVS-Gerät identifiziert wird.} \end{cases}$$

Erwartungswert

Für den Erwartungswert der Zielvariable gilt:

$$E(y_i) = \pi_i = \frac{e \times p(\eta_i)}{1 + e \times p(\eta_i)} = h(\eta_i)$$

Logit-Link

$$\log(\pi_i) = \log(\tfrac{\pi_i}{1-\pi_i})$$

(Quelle: Fahrmeir, Ludwig, et al. Regression, 2007: S.192)

3.1 Theorie/Additives Modell

Standardmodell der additiven Regression:

$$y_i = \underbrace{\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}}_{\text{parametrische Effekte}} + \underbrace{f_1(z_{i1}) + \ldots + f_q(z_{iq})}_{\text{nicht-parametrische Effekte}} + \epsilon_i$$

- Stellt ein nicht-parametrisches Regressionsmodell dar
- Vorteil: Neben linearen Effekten können auch nicht-lineare Einflüsse von Kovariablen auf Zielvariable modelliert werden

3.1 Theorie/Penalisierte Splines basierend auf B-Splines

- Funktion f durch Spline modellieren
- Verwendete Splines:

 - ↓ Zyklische P-Splines
- Konstruktion des Penalisierten Splines durch B-Spline Basisfunktion und Strafterm

3.1 Theorie/B-Spline Basisfunktion

Abbildung 7: Visualisierung von B-Spline Basisfunktion anhand von fiktiven Daten (Quelle: Fahrmeir, Ludwig, et al. Regression, 2007: S.307)^{24/54}

3.1 Theorie/Penalisierte Splines basierend auf B-Splines

B-Spline Basisfunktion

- (b) Basisfunktion skalieren
- (c) Skalierte Basisfunktionen addieren

$$f(z) = \sum_{j=1}^{d} \gamma_j B_j(z)$$

3.1 Theorie/Penalisierte Splines basierend auf B-Splines

Strafterm

- Ziel: Rauen Schätzfunktionen entgegenwirken, d.h. zu starke Anpassung der Daten verhindern
- Bestrafung durch Glättungsparameter
- Für Glättungsparameter = 0 keine Penalisierung
- Für Glättungsparameter gegen ∞ , annähernd lineare Schätzfunktion

3.1 Theorie/Zyklische P-Splines

- Funktion der Variable Wochentag mit Hilfe von zyklischem P-Spline modelliert
- Werte am Ende einer Woche zusammenhängend zu den Werten am Anfang der Woche
- Beispiel: Sonntag und Montag

3.1 Theorie/Thin-Plate-Splines

- Eignet sich sehr gut zur Schätzung einer glatten Funktion mit mehreren Variablen
- Hier: Zwei Dimensionale Smooth Funktion
 Datum und Uhrzeit
- Knotenpositionen oder Basisfunktionen auswählen nicht notwendig

Thin-Plate-Spline

Glattheit, wenn \times zweidimensional ist, durch Minimierung der Funktion von f:

$$||y - f||^2 + \lambda J_{md}(f)$$

3.1 Theorie/Generalisiertes additives Modell

Additiver Prädiktor:

```
\eta_{i} = \beta_{0} + \beta_{1}(Ferientag_{i}) + f_{1,2}(Uhrzeit_{i}, Datum_{i})^{*} + f_{3}(Lawinenwarnstufe_{i}) + f_{4}(Wochentag_{i}) + f_{5}(Temperatur_{i}) + f_{6}(Anteil Max Sonneneinstrahlung_{i})^{**} + f_{7}(Neuschnee_{i})^{**}
```

Bemerkung*: Modell kann durch Interaktionseffekt ergänzt werden → Nicht-lineare Interaktion zwischen Datum und Uhrzeit

Bemerkung**: Transformation der Kovariablen Schneehöhe und Sonneneinstrahlung, da ansonsten Concurvity-Problem

\$\(\triangle \) Concurvity, stellt nicht-lineare Form der Kollinearität dar

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Modell
 - 3.1 Theorie
 - 3.2 Schwierigkeiten
 - 3.3 Ergebnisse
- 4. Messfehler
- 5. Fazit
- Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

3.2 Schwierigkeiten/Concurvity

Umcodierung der Variablen mit hohem Maß an Concurvity:

- Neuschnee in cm (statt Schneehöhe)
- Anteil an der maximalen Sonneneinstrahlung (statt Sonneneinstrahlung)

Abbildung 8: Smooth Funktion für die Maximale Sonneneinstrahlung 31/54

3.2 Schwierigkeiten/Überdispersion

- Bisher: Betrachtung von Individualdaten
- Weitere Möglichkeit: Gruppierte Daten
 Nach identische Zeilen der Kovariablen-Datenmatrix gruppieren (z.B. Datum)

Einführung eines Dispersionsparameters in Varianzformel

$$Var(y_i|\mathbf{x}_i) = \underbrace{\phi}_{ ext{Dispersionsparameter}} \underbrace{\pi_i(1-\pi_i)}_{ ext{Varianz}}$$

Dispersionsparameter

$$\phi = \frac{\text{Devianz}}{\text{Freiheitsgrade der Residuen}}$$

3.2 Schwierigkeiten/Zeitreihe

Problem: Autokorrelation der Uhrzeit
 Korrelation einer Funktion mit sich selbst zu einem früheren
 Zeitpunkt

Abbildung 9: Plot zur Autokorrelation der Uhrzeit

3.2 Schwierigkeiten/Zeitreihe

Abbildung 10: Plot zur Partiellen Autokorrelation der Uhrzeit

Lag

20

30

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Modell
 - 3.1 Theorie
 - 3.2 Schwierigkeiten
 - 3.3 Ergebnisse
- 4. Messfehler
- 5. Fazit
- 6. Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

3.3 Ergebnisse

Zwei Modelle:

- Datumsmodell
 - □ Gruppierte Daten pro Tag
 - 4 Uhrzeit der Messung nicht beachtet
- Zeitmodell
 - → Gruppierte Daten pro Minute

 - 4 Aber: Viele Variablen nur einmal am Tag erhoben

3.3 Ergebnisse/Datumsmodell

Abbildung 11: Smooth-Plots für das Datumsmodell

Kein Feiertag: 0.208; Feiertag: 0.225

3.3 Ergebnisse/Zeitmodell

Abbildung 12: Smooth-Plots für das Zeitmodell

Kein Feiertag: 0.198; Feiertag: 0.232

3.3 Ergebnisse/Zeitmodell

Abbildung 13: Smoothfunktion für die Uhrzeit und das Datum im Zeitmodell

- 1. Hintergrund
- 2. Datengrundlage
- 3. Model
- 4. Messfehler
 - 4.1 Messfehleranalyse
 - 4.2 Messfehlerszenarien
- 5. Fazit
- 6. Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

- 1. Hintergrund
- 2. Datengrundlage
- 3. Model
- 4. Messfehler
 - 4.1 Messfehleranalyse
 - 4.2 Messfehlerszenarien
- 5. Fazit
- Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

4.1 Messfehleranalyse

Abbildung 14: Manuelle (Studenten) Zählung am 27.02 und 28.02.2019

4.1 Messfehleranalyse

Abbildung 15: Verhältnis der (Nicht-)Erfassungen nach Gruppengröße

- 1. Hintergrund
- 2. Datengrundlage
- 3. Model
- 4. Messfehler
 - 4.1 Messfehleranalyse
 - 4.2 Messfehlerszenarien
 - 5. Fazit
- 6. Ausblick
- Literaturverzeichnis
- 8. Anhang

- Überlegung: Mögliche Szenarien für Messfehler erstellen und mögliche Änderungen im Modell prüfen
- 4 verschiedene Szenarien:
 - → Generelle Unterschätzung von 20%

 - 4 Unterschätzung bei niedrigen Temperaturen

Abbildung 16: Smooth-Plots für das Datumsmodell

Abbildung 17: Smooth-Plots für das Datumsmodell (Szenario 1)

Szenario

Abbildung 18: Smooth-Plots für das Datumsmodell (für jedes Szenario)

Abbildung 19: Smooth-Plots für das Datumsmodell (für jedes Szenario)

Tabelle 1: Add caption

Anteil hinzugefügter Messungen	10%			20%			25%			30%			40%		
	Koeffizient	p-Wert		Koeffizient	p-Wert		Koeffizient	p-Wert		Koeffizient	p-Wert				
(Intercept)	0.178	<2e-16	***	0.156	<2e-16	***	0.147	<2e-16	***	0.141	<2e-16	***			
Ferientag	0.559	0.16		0.549	0.48		0.555	0.41		0.547	0.49				
s(Datum)		0.06			0.17			0.18			0.10				
s(Lawinengefahr)		0.01	*		0.13			0.09			0.08				
s(Wochentag)		0.04	*		0.02	*		0.02			0.01				
s(Temperatur)		0.04	*		0.19			0.19			0.19				
s(Sonneneinstrahlung)		0.16			0.30			0.24			0.24				
s(Neuschnee)		0.18			0.51			0.49			0.37				

- 1. Hintergrund
- 2. Datengrundlage
- 3. Modell
 - 3.1 Concurvity
 - 3.2 Überdispersion
 - 3.3 Autokorrelation
- 4. Ergebnisse
 - 4.1 Messfehleranalyse
 - 4.2 Messfehlerszenarien
- 5. Fazit
- 6. Ausblick
- 7. Literaturverzeichnis
- 8. Anhang

7. Literaturverzeichnis

- Fahrmeir, L., T. Kneib, and S. Lang. "Regression. Modelle, Methoden und Anwendungen. 2007."
- Wood, Simon N. Generalized additive models: an introduction with R. CRC press, 2017.

8.Anhang/Penalisierte Splines basierend auf B-Splines

B-Spline Basisfunktion

$$f(z) = \sum_{j=1}^{d} \gamma_j B_j(z)$$
, wobei $d = m + l - 1$

$$B_j^l(z) = \frac{z - k_j}{k_{j+l} - k_j} B_j^{l-1}(z) + \frac{k_{j+l+1} - z}{k_{j+l+1} - k_j + 1} B_{j+1}^{l-1}(z).$$

- Basisfunktion aus (I+1) Polynomstücke des gewünschten Grades (I)
 - \downarrow werden an den Knoten (I-1-mal) stetig zusammengesetzt
- Basisfunktion $(B_j(z))$ mit dem Kleinste-Quadrate-Schätzer $\hat{\gamma}_j$ skalieren

Skalierte Basisfunktionen addieren

8.Anhang/Penalisierte Splines basierend auf B-Splines

Strafterm

$$\lambda \int (f'(z))^2 dz$$

- Ziel: Rauen Schätzfunktionen entgegenwirken, d.h. zu starke Anpassung der Daten verhindern
- Bestrafung durch Glättungsparameter λ
- Für $\lambda \to \infty$, annähernd lineare Schätzfunktion

