

CHA 2555 Artificial Intelligence

Clustering – Part 1

Dr Tianhua Chen

Department of Computer Science University of Huddersfield

What we'll look at

- Preliminaries: datasets, data points, features, distance
- What is clustering?
- Partitional clustering
 - ▶ *k*-means algorithm
 - Extensions (fuzzy)

Why clustering is useful

Why clustering is useful

Why clustering is useful

Clustering applications

- Image segmentation (e.g. object recognition)
- Social network analysis (recognise communities)
- ▶ Bioinformatics (gene expression analysis)
- Data mining/retrieval (e.g. search result grouping)
- Recommender systems (clusters of users)

Datasets - labelled

		Headache	Muscle pain	Тетр.	Flu
	1	Yes	Yes	37.2	No
7	2	Yes	Yes	38.1	Yes
/ 1	3	Yes	Yes	39.0	Yes
	4	No	Yes	36.9	No
	5	No	No	37.9	No
	6	No	Yes	39.2	Yes
Each row is object/data p					
Each column dimensions	n is a fe	eature/symptom/	measureme	nt =	

TIANHUA CHEN(T.CHEN@HUD.AC.UK)::CHA2555 ARTIFICIAL INTELLIGENCE::LECTURE 20::CLUSTERING 1

Have a *class* feature = decision/diagnosis

Datasets - unlabelled

	Headache	Muscle pain	Temp.	?
1	Yes	Yes	37.2	
2	Yes	Yes	38.1	
3	Yes	Yes	39.0	
4	No	Yes	36.9	
5	No	No	37.9	
6	No	Yes	39.2	

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
5.1	3.5	1.4	0.2	setosa	(1)
4.9	3.0	1.4	0.2	setosa	11
4.7	3.2	1.3	0.2	setosa	U
4.6	3.1	1.5	0.2	setosa	
5.0	3.6	1.4	0.2	setosa	- 1
5.4	3.9	1.7	0.4	setosa	- 1
4.6	3.4	1.4	0.3	setosa	- 1
5.0	3.4	1.5	0.2	setosa	- 1
4.4	2.9	1.4	0.2	setosa	- 1
4.9	3.1	1.5	0.1	setosa	- 1
5.4	3.7	1.5	0.2	setosa	- 1
4.8	3.4	1.6	0.2	setosa	- 1
4.8	3.0	1.4	0.1	setosa	- 1
4.3	3.0	1.1	0.1	setosa	- 1
5.8	4.0	1.2	0.2	setosa	- 1
5.7	4.4	1.5	0.4	setosa	- 1
5.4	3.9	1.3	0.4	setosa	- 1
5.1	3.5	1.4	0.3	setosa	- 1
5.7	3.8	1.7	0.3	setosa	
5.1	3.8	1.5	0.3	setosa	
5.4	3.4	1.7	0.2	setosa	A
5.1	3.7	1.5	0.4	setosa	Y

What is clustering?

Clustering: the process of grouping a set of objects into classes of similar objects

Most common form of unsupervised learning

Unsupervised learning = learning from raw data

...as opposed to supervised data where a classification of examples is

given

	Headache	Muscle pain	Тетр.	?
1	Yes	Yes	37.2	
2	Yes	Yes	38.1	
3	Yes	Yes	39.0	
4	No	Yes	36.9	
5	No	No	37.9	
6	No	Yes	39.2	

Clustering

Clustering

Clustering algorithms

Partitional algorithms

- Usually start with a random (partial) partitioning
- Refine it iteratively
 - k-means clustering
 - Model-based clustering

Hierarchical algorithms

- Bottom-up, agglomerative
- Top-down, divisive

Clustering considerations

- Clustering: the process of grouping a set of objects into classes of similar objects
- What does it mean for objects to be similar? How do we measure this?
- What algorithm and approach do we take?
 - Partitional
 - Hierarchical

Clustering considerations

- Clustering: the process of grouping a set of objects into classes of similar objects
- How many clusters?
- Can we label or name the clusters?
- How do we make it efficient and scalable?

k–means algorithm(s)

- Terminology: centroid = a point that is considered to be the center of a cluster
- Start by picking k, the number of clusters (centroids)
- Initialise clusters by picking one point per cluster (seeds)
 - E.g., pick data points at random
 - Could also generate these randomly

Populating clusters

Iterate until converged

- Compute distance from all data points to all k centroids
- For each data point, assign it to the cluster whose current centroid it is nearest
- For each centroid, compute the average (mean) of all points assigned to it
- Replace the k centroids with the new averages

k-means example (k = 2)

Measuring distance

 <u>Euclidean distance</u> most often used to determine how far points are from each other (although alternatives exist)

Defined as (features indexed from 1 to n):

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}.$$

- ▶ E.g. only two features: $d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 q_1)^2 + (p_2 q_2)^2}$.
- ▶ E.g. only one feature: $\sqrt{(x-y)^2} = |x-y|$.

Distance between data points

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2

Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations
 - Centroid positions don't change (can be proven to converge)
 - Clusters look reasonable

Cluster validity

Cluster validity

Cluster validity: what we want!

High inter-cluster distances

- Large distance between clusters
- Otherwise known as good separability

Low intra-cluster distances

- Distances between data points within a cluster should be relatively low
- Otherwise known as good compactness
- Adequate distortion (e.g. mean distance between centroid and points)
- Many cluster validity measures have been developed, often based on these distances
 - But beyond the scope of this module

Find optimal k – elbow technique

Run K-means for multiple number of clusters and plot the cluster distortion

Find optimal k – elbow technique

Run K-means for multiple number of clusters and plot the cluster distortion

Limitations

- Must choose parameter k in advance, or try many values
 - This is a particular problem for k-means as often the optimal number of clusters is not known
- Data must be numerical and must be compared via a suitable distance measure
 - ▶ E.g. 'Fruit' feature: how do you compare apples and oranges? How far is a banana from a pineapple?
- The algorithm is sensitive to outliers/points which do not belong in any cluster
 - These can distort the centroid positions and ruin the clustering

Limitations

- The algorithm works best on data which contains spherical clusters; clusters with other geometry may not be found
 - Even then, it tends to generate clusters of similar size...

Next...

Hierarchical clustering