

XTR110

BURR-BROWN®
BURR-BROWN

PRECISION VOLTAGE-TO-CURRENT CONVERTER/TRANSMITTER

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
- PRESSURE/THERMOPROBE
TRANSMITTERS
- CURRENT-MODE BRIDGE EXCITATION
- GROUNDED TRANSDUCER CIRCUITS
- CURRENT SOURCE REFERENCE FOR
DATA ACQUISITION
- PROGRAMMABLE CURRENT SOURCE
FOR TEST EQUIPMENT
- POWER/PLANT/ENERGY SYSTEM
MONITORING

FEATURES

- 0mA TO 20mA TRANSMITTER
- SELECTABLE INPUT/OUTPUT RANGES:
0V to +5V, 0V to +10V Inputs
0mA to 20mA, 5mA to 25mA Outputs
- OTHER RANGES
0.005% MAX NONLINEARITY, 14 BIT
- PRECISION +10V REFERENCE OUTPUT
- SINGLE SUPPLY OPERATION
- WIDE SUPPLY RANGE: 13.5V to 40V

DESCRIPTION

The XTR110 is a precision voltage-to-current converter designed for analog signal transmission. It accepts inputs of 0 to 5V or 0 to 10V and can be connected for outputs of 4 to 20mA, 0 to 20mA, 5 to 25mA and many other commonly used ranges. A precision on-chip metal film resistor network provides input scaling and current offsetting. An injective probe input scaling reference can be used to drive external circuitry.

The XTR110 is available in 16-pin plastic DIP,

ceramic DIP and SOL-16 surface-mount packages.

Commercial and industrial temperature range models

are available.

FIGURE 8. 13.5V-Powered Transmitter With X10 Preamplifier.

FIGURE 9. ±12V-Powered Transmitter/Receiver Loop.

FIGURE 10. Isolated Transmitter/Receiver Loop.

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL

$A_1 = +25^\circ\text{C}$ and $V_{cc} = +24\text{V}$ and $R_s = 250\text{k}\Omega$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TRANSMITTER					$I_b = 10^{-10} [V_{cc}/(V_{cc}-4)] \cdot [V_{cc}-4]/[V_{cc}-1] R_{load}$			
Transmitter Bias Current, I_{bb}	Standard Performance Specified Performance ¹⁾ Dashed Performance ¹⁾ 16mA/20mA Span ²⁾	0	0.01	4.5	0.025	0.002	0.005	
Nonlinearity								% of Span
Output Current, I_{os}								% of Span
Input Current, I_{in}								% of Span
Temperature Range, T_{min} to T_{max} , V_{cc}								% of Span
Supply Current, I_{ss}								% of Span
Input Resistance, R_{in}								% of Span
Output Resistance, R_{out}								% of Span
Dynamic Response Time								ms
Settling Time	To 0.1% of Span	15	20	30	15	20	30	ms
Settling Error	To 0.1% of Span	1.3	1.3	1.3	1.3	1.3	1.3	ms
Settling Rate								ms
VOLATILE REFERENCE								
Output Voltage, V_{out}								
V_{out} vs Temperature, T								%/°C
V_{out} vs Supply, V_{cc}								%/V
V_{out} vs Output Current, I_{os}								%/mA
Time Range								s
Output Current, I_{os}								mA
POWER SUPPLY								
Input Voltage, V_{cc}								V
Quiescent Current								mA
TEMPERATURE RANGE								
Specification AG, BG								
Operating AG, BG								
Operating AG, AU								

¹⁾ Specifications same as AGOP grade. ²⁾ Specifications apply to the range of R_s shown in Typical Performance Curves. ³⁾ Notes 1) and 2) do not apply to output current meeting from set value in negative input voltage range. ⁴⁾ Within compliance range of V_{cc} and V_{in} . ⁵⁾ For detailed test drive circuit see Figure 4. ⁶⁾ For detailed test drive circuit see Figure 5. ⁷⁾ See section "Input Voltage Range".

ABSOLUTE MAXIMUM RATINGS

Power Supply, $-V_{cc}$	$-V_{cc}$	$+V_{cc}$	$+V_{cc}$
Safe and operating limit ranges	-50°C to +125°C	-50°C to +125°C	-50°C to +125°C
Storage Temperature Range, X	-50°C to +125°C	-50°C to +125°C	-50°C to +125°C
Lead Temperature (soldering), T_s	+150°C	+150°C	+150°C
Output Short-Circuit Duration, t_{sc}
Output Current Using Internal 500 μA Resistor

¹⁾ Specifications same as AGOP grade. ²⁾ Safe and operating limit ranges. ³⁾ Storage temperature range of -50°C to $+125^\circ\text{C}$. ⁴⁾ Notes 1) and 2) do not apply to output current meeting from set value in negative input voltage range. ⁵⁾ For detailed test drive circuit see Figure 4. ⁶⁾ For detailed test drive circuit see Figure 5. ⁷⁾ See section "Input Voltage Range".

ELECTROSTATIC DISCHARGE SENSITIVITY

Any integral circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Protection integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

Or, Call Customer Service at 1-800-546-6132 (USA Only)

PIN CONFIGURATION

NOTE: (1) For detailed drawing and description refer to Appendix D or Burr-Brown IC Data Book.

NOTE: (2) See section "Input Voltage Range".

NOTE: (3) See section "Output Current Using Internal 500 μA Resistor".

INSTRUMENTATION AMPLIFIERS

4 XTR110

PACKAGE INFORMATION	PACKAGE	PACKAGE DRAWING NUMBER
MODEL		109
XTR110AG	16-Pin Ceramic DIP	109
XTR110G	16-Pin Plastic DIP	109
XTR110P	SC7-16 Surface Mount	180
XTR110U		211

TYPICAL PERFORMANCE CURVES

$T_c = +25^\circ\text{C}$, $V_{cc} = 24\text{VDC}$, $R_s = 250\text{k}\Omega$, unless otherwise noted.

4.217

Burr-Brown IC Data Book—Linear Products

Burr-Brown IC Data Book—Linear Products

APPLICATIONS INFORMATION

Figure 1 shows the basic connections required for 0 to 10V input and to 20mA output. Other input voltage and output current ranges require changes in connections of pins 3, 4, 5, 9 and 10 as shown in the table of Figure 1.

The complete transfer function of the XTR110 is:

$$I_o = \frac{10 \left[\frac{(V_{IN} - V_{TH})}{R_{IN}} + \frac{(V_{IN})}{4} + \frac{(V_{IN})}{2} \right]}{R_{SW}} \quad (1)$$

R_{SW} is the internal SOG resistor. R_{IN} when connected as shown in Figure 1. An external R_{IN} can be connected for different output current ranges as described later.

EXTERNAL TRANSISTOR

An external pass transistor, Q_{ext} , is required as shown in Figure 1. This transistor conducts the output signal voltage. A P-channel MOSFET transistor is recommended. It must have a voltage rating equal to or greater than the maximum power supply voltage. Various recommended types are shown in Figure 1.

MANUFACTURER	PART NO.	V _{IN} (mV)	V _{TH} (mV)	PACKAGE
Fairchild	20P1304A	40V	20V	TO-92
	20P1304B	40V	20V	TO-92
	20P1306A	60V	20V	TO-92
International Rectifier	IRF1015	80V	20V	TO-220
Motorola	MTP1008	80V	20V	TO-220
RCI	RF1100A	80V	20V	TO-220
Siliconix (defended)	VN9003	30V	40V	TO-92
	VN9004	30V	40V	TO-92
	VN9005	30V	40V	TO-92
	VN9006	30V	40V	TO-92
	VN9008	30V	40V	TO-92
	VN9009	30V	40V	TO-92
	VN9010	30V	40V	TO-92
Supertex	VP1304N2	40V	20V	TO-220
	VP1306N2	60V	20V	TO-220
	VP1308N2	60V	20V	TO-92

NOTE: (1) $V_{IN} =$ Chain-source breakdown voltage. $V_{IN} =$ Gate-to-drain source breakdown voltage.

TABLE 1. Available P-Channel MOSFETs.

INSTRUMENTATION AMPLIFIERS

PIN	INPUT RANGE (V)	OUTPUT RANGE (mA)	PIN 3	PIN 4	PIN 5	PIN 6	PIN 10
PIN 1	0-10	0-20	-	Com	Com	Com	Com
	2-10	4-20	-	NonInv	NonInv	NonInv	NonInv
	0.5-10	1-20	5-10V Ref	Com	Com	Com	Com
	0.5	1	5-10V Ref	Com	Com	Com	Com
	1-5	4-20	Com	Com	Com	Com	Com
	0.5-5	1-10V Ref	Com	Com	Com	Com	Com
	0.5	0.5-2.5	1-10V Ref	Com	Com	Com	Com

For Immediate Assistance, Contact Your Local Salesperson

If the supply voltage, $+V_{CC}$, exceeds the gate-to-source breakdown voltage of Q_{ext} and the output connection (drain of Q_{ext}) is broken, Q_{ext} will fail. If the gate-to-source breakdown voltage is lower than $+V_{CC}$, Q_{ext} can be protected with a 12V zener diode connected from gate to source.

TRANSISTOR DISSIPATION

Maximum power dissipation of Q_{ext} depends on the power supply voltage and full-scale output current. Assuming that the load resistance is low, the power dissipated by Q_{ext} is:

$$P_{MAX} = (V_{CC}) I_{FS} \quad (2)$$

The transistor type and heat sinking must be chosen according to the maximum power dissipation to prevent overheating. See Table II for general recommendations.

INPUT VOLTAGE RANGE

Maximum power dissipation of Q_{ext} depends on the power supply voltage and full-scale output current. Assuming that the load resistance is low, the power dissipated by Q_{ext} is:

$$P_{MAX} = (V_{CC}) I_{FS} \quad (2)$$

The transistor type and heat sinking must be chosen according to the maximum power dissipation to prevent overheating. See Table II for general recommendations.

PACKAGE TYPE	ALLOWABLE POWER DISSIPATION
TO-52	Lowers: Use minimum supply and at 25°C. Acceptable: Trace off supply and temperature.
TO-227	Good: Acceptable for prolonged maximum stress.
TO-200	Acceptable: Trace off supply and temperature.
TO-3	Use hermetically sealed package if required.

TABLE II. External Transistor Package Type and Dissipation.

FIGURE 2. Q_{ext} Using PNP Transistors.

FIGURE 3. Optional Adjustment of Reference Voltage.

COMMON (Ground)

Careful attention should be directed toward proper connection of the common (ground). All commons should be joined at one point as close to pin 2 of the XTR110 as possible. The exception is the I_{out} return. It can be returned to any point where it will not modulate the common at pin 2.

VOLTAGE REFERENCE

The reference voltage is accurately regulated at pin 12 ($V_{REF,SENSE}$). To preserve accuracy, any load including pin 3

FIGURE 5. Offset and Span Adjustment Circuit for 0V to +10V Input, 4mA to 20mA Output.

starting at 0mA, the following special procedure is recommended: set the input to a small nonzero value and then adjust R_{ext} to the proper output current. When the input is zero the output will be zero. Figures 6 and 7 show graphically how offset is adjusted.

SPAN ADJUSTMENT

The span is adjusted at the full-scale output current using the potentiometer, R_{ext} , shown in Figure 5. This adjustment is made with the offset adjustment, and a few iterations may be necessary. For the circuit shown, set the input voltage to +10V full scale and adjust R_{ext} to give 20mA full-scale output. Figures 6 and 7 show graphically how span is adjusted.

LOW TEMPERATURE COMPENSATION OPERATION

The values of R_S , R_{ext} , and R_{ext} for adjusting the span are determined as follows: choose R_{ext} in series with the absolute temperature coefficient of Q_{ext} to increase the span; then choose R_S and R_{ext} to increase the span to be adjustable about the center value.

Although the precision resistors in the XTR110 track within $\pm 0.1\%$, the output current depends upon the absolute temperature coefficient of any one of the resistors, R_S , R_{ext} , or R_{ext} . Since the absolute TC of the output current can have 20ppm/ $^{\circ}\text{C}$ maximum, the TC of the output current can have 20ppm/ $^{\circ}\text{C}$ maximum. For low TC operation, three resistors can be substituted for either the span resistors (R_{ext} or R_{ext}) or for the source resistor (R_S) but not both.

EXTENDED SPAN

For spans beyond 40mA, the internal 50Ω resistor (R_S) may be replaced by an external resistor connected between pins 13 and 16.

Its value can be calculated as follows:

$$R_{ext} = R_S (\frac{Span_{new}}{Span_{old}} - 1) \quad (3)$$

Since the internal biasing resistors have a 20% absolute value tolerance, measure R_S before determining the final value of R_{ext} . Self-heating of R_S can cause nonlinearities. Therefore, choose one with a low TC and adequate power rating. See Figure 10 for application.

INSTRUMENTATION AMPLIFIERS

XTR110

FIGURE 6. Zero and Span of 0V to +10V Input, 4mA to 20mA Output Configuration (see Figure 5).

FIGURE 7. Zero and Span of 0V to +10V Input, 4mA to 20mA Output Configuration (see Figure 5).

EXTENDED SPAN

For spans beyond 40mA, the internal 50Ω resistor (R_S) may be replaced by an external resistor connected between pins 13 and 16.

Its value can be calculated as follows:

$$R_{ext} = R_S (\frac{Span_{new}}{Span_{old}} - 1) \quad (3)$$

FIGURE 4. Increasing Reference Current Drive.

should be connected to this point. The circuit in Figure 3 shows adjustment of the voltage reference. The current drive capability of the XTR110's internal reference is 10mA. This can be extended if desired by adding an external NPN transistor shown in Figure 4.

OFFSET (ZERO) ADJUSTMENT

The offset current can be adjusted by using the potentiometer, R_{ext} , shown in Figure 5. Set the input voltage to zero and then adjust R_{ext} to give 4mA at the output. For spans

For Immediate Assistance, Contact Your Local Salesperson

TYPICAL APPLICATIONS

The XTR110 is ideal for a variety of applications requiring high noise immunity current-mode signal transmission. The precision +10V reference can be used to excite bridges and transducers. Selectable ranges make it very useful as a precision programmable current source. The compact design minimizes external components and design engineering expense.

Figures 8 through 10 show typical applications of the XTR110.

Or, Call Customer Service at 1-800-546-9132 (USA Only)

4 XTR110 INSTRUMENTATION AMPLIFIERS

FIGURE 8. Isolated 4mA to 20mA Channel.

FIGURE 9. Isolated 4mA to 20mA Channel.
See standard span section.

R_L , R_T : Low-TC resistor to derive a 5.2W conductive power.
 R_{P1} , R_{P2} , R_{P3} : 10-ohm resistors for greatest sensitivity.
 A_1 , A_2 : 1V/LA224 (power supply 115V).
 T_1 : International Rectifier IRF5131.
 T_2 : International Rectifier IRFP9119T.
 NOTE: (1) Or other silicon power rating IGBT transistor.

FIGURE 8. ±200mA Current Pump.