Problem Set 3 - Finite Horizon Cass-Koopmans

This problem set is a continuation of question 2 from Problem Set 2. You may use the results from there directly without proof. Assume

$$f(k) = k^{\alpha}, \quad 0 < \alpha < 1$$

$$u(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma}, \quad \sigma > 0$$

- 1. Assume $\delta=0.1,\,\alpha=0.3,\,\beta=0.96,\,\sigma=2$ and also that $k_0=0.01.$
 - (a) Suppose T = 1 (a two-period model).
 - i. List all conditions that will be needed to solve for allocations $\{c_0, c_1, k_1, k_2\}$.
 - ii. Conditions from part i can be reduced to one non-linear equation for k_1 . Use Matlab to solve that equation numerically. Report the solution for all variables $\{c_0, c_1, k_1, k_2\}$
 - (b) Suppose T = 2 (a three-period model).
 - i. List all conditions that will be needed to solve for allocations $\{c_0,c_1,c_2,k_1,k_2,k_3\}$
 - ii. Solve for those allocations (Note you now need to solve two non-linear equations for k_1 and k_2 simultaneously) and report your solution for all variables
 - iii. Report the savings rate in each period and comment on how it differs from the Solow model
 - (c) Now suppose T=200. Solve the model numerically as above and report plots of the sequences of capital, consumption and savings rate over time. Hint: You will need to write a Matlab code that can solve this for any value of T. Use vectors and 'for' loops to avoid having to define 200 variables and to specify 200 equations in Matlab.

- 2. Now let $\delta = 1$ (full depreciation) and also $\sigma = 1$ (α , β and k_0 left unspecified)
 - (a) Show that when $\sigma \to 1$ the utility becomes $u(c) = \ln(c)$
 - (b) Show that the Inada conditions are satisfied for both f(.) and u(.).
 - (c) Write the capital Euler equation (equation 1 in problem set 2) for this case and use the change of variable $z_t = \frac{k_t}{k_{t-1}^{\alpha}}$ to convert the result into a first order difference equation in z_t (that is an equation that involves z_{t+1} and z_t). Plot z_{t+1} against z_t and plot the 45^o line on the same graph.
 - (d) Use the fact that $z_{T+1} = 0$ to show that

$$z_t = \alpha \beta \frac{1 - (\alpha \beta)^{T-t+1}}{1 - (\alpha \beta)^{T-t+2}}$$
 for all $t = 1, 2, ..., T+1$

HINT: Work backwards to solve for z_T , z_{T-1} etc. until you notice a pattern. You will need to use the following result

$$\sum_{i=0}^{M} x^i = \frac{1 - x^{M+1}}{1 - x}$$

(e) Substitute back for z_t in terms of capital to obtain the following first order difference equation in capital.

$$k_{t+1} = \alpha \beta \frac{1 - (\alpha \beta)^{T-t}}{1 - (\alpha \beta)^{T-t+1}} k_t^{\alpha} \text{ for } t = 0, 1, ..., T$$