Tutorial for Graph Algorithms

Hengfeng Wei (魏恒峰)

2011年12月18日

Contents

1	\mathbf{BF}	BFS and DFS					
	1.1 Exploring Types of Edges on Both BFS and DFS						
		1.1.1	Types of Edges on Both BFS and DFS	2			
		1.1.2	Cycle Detection Problems	3			
	1.2 Exploring DFS's Time Intervals						
		1.2.1	DAG and Topological Sorting	4			
		1.2.2	Strongly Connected Components of a Digraph	4			
		1.2.3	Biconnected Components of an Undirected Graph	5			
2	Minimum Spanning Tree						
3	Shortest Paths						
	3.1	Single	-source Shortest Paths	7			
		3.1.1	Priority queue implementations	8			
	3.2	K-edg	es Constrained Shortest Paths	9			
	3.3	All Pa	airs Shortest Paths	9			
4	Dyı	namic	Programming	9			

1 BFS and DFS

BFS 和DFS 算法本身并不困难, 但是它们却蕴含着极强的解决其他图论算法问题的能力. 究其原因, 我们可以归纳出四点.

Table 1: BFS and DFS on undirected graph and directed graph

- 1. BFS, DFS 提供了一种exploring graph 的框架. 我们需要掌握该框架, 理解图中每个顶点v 的状态的变化, 以及在每种状态下, 我们所拥有的信息和可以对v进行的操作.
- 2. BFS, DFS 将graph 的边做了classification. 不同类型的边具有不同的性质, 在具体的图论算法中又扮演着不同的角色. 理解这些不同的类型和角色对于一些算法来说至关重要.
- 3. DFS 的time interval (下文详述) 提供了点与点之间的各种关系, 可以用来高效求解一些重要问题.
- 4. BFS 与Dijkstra, Prim 的关系.

1.1 Exploring Types of Edges on Both BFS and DFS

1.1.1 Types of Edges on Both BFS and DFS

表1区分了BFS和DFS作用于undirected graph 和directed graph 时所得边的类型.

Table 2: Cycle detection

	Undirected graph	Directed graph ($[P_{379} 7.17]$)	
BFS	Cross edge	NOTE: What if there are no BACK edges?	
DFS	Back edges	absence of back edges = acyclicity = linearizability (DAG)	

1. BFS

- (a) On undirected graph
 - properties of non-tree edges: layer constrains (different from that on Digraph).
 - Applications: Connected components; Bipartite.
- (b) On Digraph

2. DFS

- (a) On undirected graph.
 - Notice that there are <u>only</u> two types of edges: tree edge and back edge.

•

(b) On Digraph.

1.1.2 Cycle Detection Problems

我们分别考察在无向图和有向图上的cycle detection问题,并且分别考虑BFS和DFS两种解决方案:

Problem 1: Existence of cycle?

表2 总结了cycle detection 算法类型.

Problem 2: All cycles?

Problem 3: Shortest cycle?

- 1. Directed graph: Floyd-Warshall algorithm D[i][i]
- 2. Undirected graph:

Problem 4: Length=k cycle?

1.2 Exploring DFS's Time Intervals

在DFS中,我们顺带记录了访问每个顶点的discoverTime 和finishTime. 这可以看作每个顶点在DFS算法中的生存期,它们共同定义了一个time interval. 该time interval 在许多场合中都有重要应用.

- 1. Who is an ancestor?
- 2. How many descendants?

$$\frac{finishTime-discoverTime}{2}$$

- 3. topological sorting
- 4. strongly-connected components
- 5. biconnected components

1.2.1 DAG and Topological Sorting

DAG 具有topological sorting, 其重要性在于它提供了一种不违背顶点间依赖次序的处理顺序.该顺序在Job scheduling, Critical path 和Dynamic Programming 问题中至关重要.

- 1. Check: back edge; Search: Reverse topological ordering.
- 2. Critical path. 其实是DAG 中的longest path. 在General digraph 中,
- 3. DP (略. 在以后的课程中介绍).

1.2.2 Strongly Connected Components of a Digraph

"Two-trier" structure of digraph:

- 1. SCC
- 2. DAG ([P_{379} 7.22])

SCC 算法的思想:

 "The node that has highest finishTime in DFS must lie in a source SCC";

Figure 1: Strong connected components and corresponding DAG.

Figure 2: What if DFS tree is the entirety of the graph?

- 2. What we need is sink! So try G^R ; ([P_{380} 7.26])
- 3. When a sink SCC is found (connectivity) , just delete it and continue.

1.2.3 Biconnected Components of an Undirected Graph

- By brute force : choose one vertex to cut and check the connectivity of remaining graph using BFS or DFS. Complexity: O(n(m+n)).
- Clever approach: A single DFS making use of back edges and time intervals.
 - 1. 基本思想见图2,图3和图4.

Figure 3: Back edge, cycle, no articulation vertices.

Figure 4: Three cases of articulations.

- 2. Important information: the extent to which back edges link chunks of the DFS tree back to ancestor nodes. 需要考察DFS算法框架, 在每次处理v时更新back值:
 - (a) v is first discovered. 初始化back = discoverTime(v).
 - (b) back edge vw. back = min(back, discoverTime(w)).
 - (c) backtracking from w to v back = min(back, wback).
- 3. Q: How the reachability relation impacts whether v is an articulation vertex (见图3).
 - (a) Root cut-nodes.
 - (b) Bridge cut-nodes ($[P_{383} 7.42]$).
 - (c) Parent cut-nodes.

Q : Back \geq discoverTime[v] ([P_{383} 7.42]).

A: Back = discoverTime[v]. It just detects Bridge cut-notes.

2 Minimum Spanning Tree

3 Shortest Paths

3.1 Single-source Shortest Paths

1. DAG:

acyclicity = linearizability = absence of back edges in DFS trees.

Figure 5: Dijkstra's algorithm will not work if there are negative edges.

2. No negative edges:

Dijkstra 算法. 得到的是shortest path tree; 成功的关键部分在于positive ([P_{418} 8.14]), 因此如果s...u-v是 $s \rightarrow v$ 的最短路径,则dist(u) < dist(v). Dijkstra 算法可以看作一系列的updates,该系列是特定顺序的.

Dijkstra alg 在with negative edges 情况下失效的例子如图5所示.

3. With negative edges:

Bellman-Ford 算法,得到的不一定是tree (无向图也是一种有向图). 可不可以每次不update所有的边,而只涉及那些i步之内到达的顶点?

3.1.1 Priority queue implementations

Dijkstra's algorithm 算法复杂度:

- 1. makequeue $V \cdot insert$
- 2. $V \cdot deletemin$
- 3. $E \cdot descreaseKey$

Dijkstra algorithm 的性能依赖于Priority queue 所采用的数据结构.

Implementation	deletemin	insert, decreaseKey	total
Array	O(V)	O(1)	$O(V^2)$
Binary heap	O(logV)	O(logV)	O((V+E)logV)
Fibonacci heap	O(logV)	O(1)	O(VlogV + E)

3.2 K-edges Constrained Shortest Paths

3.3 All Pairs Shortest Paths

Floyd-Warshall 算法. Single-source shortest path 问题不能采取类似的DP,因为其source 确定, 不满足subproblem 的定义.

4 Dynamic Programming

Dynamic Programming 的基础是DAG. 在使用DP解题时,关键在于构建问题的DAG图.也就是要定义子问题结构(node),以及子问题之间的依赖(edge). 定义子问题是解决问题的关键,因此注定是非trivial 的.但是一般而言,有如下规律可循[1]:

- 1. Input 为 $x_1x_2...x_n$, subproblem is $x_1x_2...x_i$; 如longest increasing sequence
- 2. Input 为 $x_1x_2...x_m$, and $y_1y_2...y_n$, subproblem is $x_1x_2...x_i$ and $y_1y_2...y_j$; 如edit distance;
- 3. Input 为 $x_1x_2...x_n$, subproblem is $x_i, x_{i+1}, ..., x_j$; 如Chain Matrix Multiplication.
- 4. Input 为rooted tree, subproblem is rooted subtree; 如Chain Matrix Multiplication.
- 5. 在定义子问题时,可以将输入的某些量参数化, shrinking these parameters can get smaller problems. 有可能是一维的,比如Knapsack problem with repetitions; 也可能是二维的,比如Knapsack problem without repetitions. 多维就意味着多变量,而每一个变量都控制着某一方面的信息.
- 6. 还要时刻考虑问题背后的DAG图,并考虑是否可以与shortest path 或者longest path 相对应,并考虑是否可以generalize the problem.

References

[1] S. Dasgupta, C. Papadimitriou, and U. Vazirani, "Algorithms," 2006.