Combinatorial Optimization Problem: Model and Implementation

Dang Xuan Vuong, Le Anh Tuan, Le Van Cuong, Pham Quang Dung

December 7, 2019

Contents

1	Inti	roduct	ion	1
2 Case study		у	3	
	2.1	Capac	Capacitated Vehicle Routing Time Windows Problem	
		2.1.1	Problem description	3
		212	Mixed Integer Programming model	1

iv CONTENTS

Chapter 1

Introduction

This document describes combinatorial optimization problems including models (mixed integer programming, constraint programming) and its implementation by MIP solver, CP solver, CBLS solver, etc.

Chapter 2

Case study

2.1 Capacitated Vehicle Routing Time Windows Problem

2.1.1 Problem description

There are N delivery requests 1,2, ..., N. Request i (i = 1, ..., N) has

- w(i): weight of item
- e(i): early delivery time
- l(i): late delivery time
- d(i): delivery duration
- delivery location is point i

There are K trucks for delivering. Truck k(k = 1, ..., K) has

- \bullet c(j): capacity of the truck (total weight of items on the truck cannot exceed its capacity)
- e(j): start working time

• l(j): end working time

-depot location is point 0

d(i,j) and t(i,j) are respectively distance and travel time from point i to point j (i,j=0,1,...,N).

Objective is to minimize total distance of the routes of trucks.

2.1.2 Mixed Integer Programming model

Variables

• Binary variable $X(k, i, j) \in \{0, 1\}$ in which X(k, i, j) = 1 indicates that truck k traverse from point i to point j $(\forall k \in \{1, \ldots, K\}, i, j \in \{0, 1, \ldots, N\}).$

Constraints

Objective functions