PAW for Abinit

M. Torrent, F. Jollet, G. Zerah, F. Bottin

Commissariat à l'Energie Atomique Bruyères-le-Chatel - France

Introduction

PAW atomic data generation

Implementation of PAW formalism: present, future and perspectives

PAW – Framework

$$E = \widetilde{E} + \sum_{R} \left(E_{R}^{1} - \widetilde{E}_{R}^{1} \right)$$

$$n(\mathbf{r}) = \widetilde{n}(\mathbf{r}) + \sum_{R} \left(n_R^1(\mathbf{r}) - \widetilde{n}_R^1(\mathbf{r}) \right)$$

Plane-waves development in the whole FFT box

Development over spherical partial waves of AE quantities

Development over spherical partial waves of PSEUDIZED quantities

PAW – Framework

$$H\widetilde{\Psi}_n = \varepsilon_n S\widetilde{\Psi}_n$$

$$H = \frac{dE}{d\tilde{\rho}} = -\frac{1}{2}\Delta + \tilde{v}_{eff} + \sum_{i,j} \left| \tilde{p}_i \right\rangle D_{i,j} \left\langle \tilde{p}_j \right|$$

$$\widetilde{v}_{eff} = v_H \left[\widetilde{n}_{Z+C} + \widetilde{n} + \widehat{n} \right] + v_{xc} \left[\widetilde{n}_C + \widetilde{n} + \widehat{n} \right]$$

$$\hat{n}(r) = \sum_{i,j,L} \rho_{ij} \hat{Q}_{ij}^{L}(r)$$

$$S = 1 + \sum_{ij} \left| \widetilde{p}_i \right\rangle \left| \left\langle \phi_i \middle| \phi_j \right\rangle - \left\langle \widetilde{\phi}_i \middle| \widetilde{\phi}_j \right\rangle \left| \left\langle \widetilde{p}_j \middle| \right\rangle$$

$$D_{ij} = D_{ij}^{0} + \sum_{kl} \rho_{kl} E_{ijkl} + D_{ij}^{xc} + \sum_{L} \int \widetilde{v}_{eff}(\mathbf{r}) \hat{Q}_{ij}^{L}(\mathbf{r}) d\mathbf{r}$$

$$\hat{Q}_{ij}^{L}(r) = q_{ij}^{L} g_{l}(r) Y_{L}(r)$$

$$\rho_{i,j} = \sum_{n} f_{n} \langle \widetilde{\Psi}_{n} \mid \widetilde{p}_{j} \rangle \langle \widetilde{p}_{i} \mid \widetilde{\Psi}_{n} \rangle$$

PAW atomic data generation for Abinit

M. Torrent, F. Jollet

Commissariat à l'Energie Atomique Bruyères-le-Chatel - France

- What do we need for a PAW calculation in Abinit?
- Two PAW Atomic data generators for Abinit
- Performances and accuracy
- Practical example

- Simplicity and accessibility for user
- Availability on web site
- Abinit needs specific PAW tools (models, format)

PAW in Abinit: Need to produce specific "PSP" files (pspcod=7)

- Work of the last 6 months (2003/04)
- PAW in Abinit was improved (perf, accuracy)
- Need for PAW "input" data became clearer

PAW – Framework

$$H\widetilde{\Psi}_n = \varepsilon_n S\widetilde{\Psi}_n$$

$$H = \frac{dE}{d\tilde{\rho}} = -\frac{1}{2}\Delta + \tilde{v}_{eff} + \sum_{i,j} \left| \tilde{p}_i \right\rangle D_{i,j} \left\langle \tilde{p}_j \right|$$

$$\widetilde{v}_{eff} = v_H \left[\widetilde{n}_{Z+C} + \widetilde{n} + \widehat{n} \right] + v_{xc} \left[\widetilde{n}_C + \widetilde{n} + \widehat{n} \right]$$

$$\hat{n}(r) = \sum_{i,j,L} \rho_{ij} \hat{Q}_{ij}^{L}(r)$$

$$S = 1 + \sum_{ij} \left| \widetilde{p}_i \right\rangle \left| \left\langle \phi_i \middle| \phi_j \right\rangle - \left\langle \widetilde{\phi}_i \middle| \widetilde{\phi}_j \right\rangle \left| \left\langle \widetilde{p}_j \middle| \right\rangle \right|$$

$$D_{ij} = D_{ij}^{0} + \sum_{kl} \rho_{kl} E_{ijkl} + D_{ij}^{xc} + \sum_{L} \int \widetilde{v}_{eff}(\mathbf{r}) \hat{Q}_{ij}^{L}(\mathbf{r}) d\mathbf{r}$$

$$\hat{Q}_{ij}^{L}(r) = q_{ij}^{L} g_{l}(r) Y_{L}(r)$$

$$\rho_{i,j} = \sum_{n} f_{n} \langle \widetilde{\Psi}_{n} \mid \widetilde{p}_{j} \rangle \langle \widetilde{p}_{i} \mid \widetilde{\Psi}_{n} \rangle$$

PAW − *What is frozen during e*⁻ *iterations*

$$H\widetilde{\Psi}_{n} = \mathcal{E}_{n} S\widetilde{\Psi}_{n}$$

$$S = 1 + \sum_{ij} |\widetilde{p}_{i}\rangle \langle \widetilde{\phi}_{j} \rangle - \langle \widetilde{\phi}_{i}\rangle \widetilde{\phi}_{j}\rangle |\widetilde{p}_{j}\rangle|$$

$$H = \frac{dE}{d\widetilde{p}} = -\frac{1}{2} \Delta + \widetilde{v}_{eff} + \sum_{i,j} |\widetilde{p}_{i}\rangle D_{i,j} \langle \widetilde{p}_{j}|$$

$$D_{ij} = D_{ij}^{0} + \sum_{kl} \rho_{kl} E_{ijkl} + D_{ij}^{kc} + \sum_{l} |\widetilde{v}_{eff}(\mathbf{r}) \widehat{Q}_{ij}^{l}(\mathbf{r}) d\mathbf{r}$$

$$\widehat{v}_{eff} = v_{H}[\widetilde{n}_{Z+C} + \widetilde{n} + \widehat{n}] + v_{M}(\widetilde{n}_{C} + \widetilde{n} + \widehat{n}]$$

$$\widehat{q}_{ij}^{L}(r) = q_{ij}^{l} g_{l}(r) Y_{L}(r)$$

$$\widehat{q}_{i,j} = \sum_{n} f_{n} \langle \widetilde{\Psi}_{n} | \widetilde{p}_{j} \rangle \langle \widetilde{p}_{i} | \widetilde{\Psi}_{n} \rangle$$
Starting value

PAW in Abinit – Atomic data needed...

x Frozen part of
$$D_{ij}$$
:

X Starting value for
$$\rho_{ii}$$
:

X Local potential
$$v_H(\tilde{n}_{Z+C})$$
:

$$r_c$$
, radial grids definitions

$$\varphi_i(r)$$

$$\widetilde{\varphi}_i(r)$$

$$i = l, m, n$$

$$\widetilde{p}_i(r)$$
 $n_c(r)$

$$\tilde{n}_c(r)$$

$$g_l(r)$$

$$D_{ij}^0$$

$$ho_{ij}^0$$

$$V_{loc}(r)$$

Building PAW atomic data...

All-electrons atomic calculation

Get
$$\{\mathcal{E}_n^{at}\}, \{\varphi_n^{at}\}, \{f_n\}, V^{AE}(r), n_c(r)$$

Chose
$$\{\mathcal{E}_i\}$$
 $i = l, m, n$ $\mathcal{E}_i = \mathcal{E}_n^{at}$ possible

$$i = l, m, n$$

$$\mathcal{E}_i = \mathcal{E}_n^{at}$$
 possible

Choose
$$\{r_c\}$$

and reverse Sch. Equation to get $\{\varphi_i\}$

Pseudize
$$\{\varphi_i\}$$
 and $n_c(r)$

Get
$$\{\widetilde{\boldsymbol{\varphi}}_i\}$$
 $\widetilde{n}_c(r)$

Building PAW atomic data...

Get
$$\{\widetilde{p}_i\}$$
 dual of $\{\widetilde{\boldsymbol{\varphi}}_i\}$

Compute $V_{loc}(r)$

Pseudize and unscreen $V^{AE}(r)$

Choose $g_l(r)$

Compute additional data

$$D_{ij}^0$$
 ho_{ij}^0

Atomic data "generators" for Abinit

- Use of "existing" all-electrons and pseudized data
- Ultrasoft pseudization scheme
- Use of "existing" ultrasoft generators
- Write "converters"
 - to compute additional PAW atomic data
 - to put data into Abinit's format

Atomic data "generators" for Abinit

Ultrasoft generators used

AtomPAW

PAW atomic data generator for "PWPAW"

Written by Natalie Holzwarth and coworkers

Dept. of Physics, Wake Forest University

USPP

Ultrasoft pseudopotential generator

Written by **David Vanderbilt**

Department of Physics and Astronomy

Rutgers, The State University of New Jersey

Definition of spheres:

- **X** Partial waves:
- **X** Pseudized partial waves:
- **X** Nonlocal Projectors:
- **X** Core density:
- * Pseudized core density:
- **X** Compensation "shape" functions:
- **x** Frozen part of D_{ij} :
- **X** Starting value for ρ_{ii} :
- \star Local potential $v_H(\widetilde{n}_{Z+C})$:

r_c , radial grids definitions

$$\varphi_i(r)$$

$$\widetilde{\varphi}_{i}(r)$$

i = l, m, n

$$\tilde{p}_i(r)$$

$$n_c(r)$$

$$\tilde{n}_c(r)$$

$$g_l(r)$$

$$D^0_{ij}$$

$$oldsymbol{
ho_{ij}} V_{loc}(r)$$

"converter

AtomPAW

Launch AtomPAW and a converter separately...

Only one input file

AtomPAW produces 3 files: Atomic data, densities, potentials

3 files used by *AtomPAW2Abinit*

Downloadable on abinit.org

USPP

Add a "plugin" into USPP...

Extract "add-on" into USPP's directory and compile...

USPP's behaviour is not changed

Only have to use USPP to produce a file for Abinit

- Fully documented by D. Vanderbilt...
- Set of input files downloadable on D. Vanderbilt's site...

Downloadable on abinit.org

PAW atomic data – Generators and "converters"

AtomPAW

AtomPAW

- \blacksquare Impose $\mathcal{E}_i = \mathcal{E}_n^{at}$
- × Regular radial grid
- ➤ Shape function: sin or exp
- × LDA or GGA
- × No control on pseudiz. scheme

AtomPAW2Abinit

- ➤ Possibility to transfer some data onto a log. radial grid
- ➤ Possibility to optimize nonlocal projectors with King-Smith et al. Scheme
- ightharpoonup Compute V_{loc} (Kresse's formulation)

USPP

USPP

- \times No constraint on \mathcal{E}_i
- ✗ Logarithmic radial grid
- **✗** LDA or GGA, multiple func. **✗**
- ✗ Efficient pseudiz. scheme
- Control on pseudiz. scheme

USpp2Abinit

- Possibility to optimize nonlocal projectors with King-Smith et al. Scheme
- ightharpoonup Compute V_{loc} (Kresse's formulation)

Validating PAW atomic data...

Accuracy

* Atomic level

Number of partial waves per atom?

Choice of reference energies for partial waves

[Test] Logarithmic derivatives of the wave functions

$$\left[\phi_l^2(\varepsilon,r)\frac{d}{d\varepsilon}\frac{d}{dr}\ln\phi_l(\varepsilon,r)\right]$$

[Test] Excited states

× Solid level

Test of transferability on some physical properties

Validating PAW atomic data...

Performances

- **x** Radius of augmentation regions (no overlap allowed)
- Number of partial waves per atom
- Pseudization scheme
- Size of radial grids
- $p_i(g)$ behaviour's for large gKing-Smith optimization
- \mathbf{x} Softness of $V_{loc}(r)$

Example: oxygen...

 $O: 1s^22s^22p^4$

All-electrons wave functions

Choice of partial waves basis: 2 partial waves per angular momentum

Example: oxygen...

Model system: oxygen fcc

	HGH	TM	Vasp	AtomPAW	USPP
Cut-off ΔE=1 mHa	50	35	20	26	22
a (Å)	3.11	3.10	3.09	3.07	3.06
B (GPa)	182		194	194	
E _{coh} (eV)	2.60		2.81	2.89	

NC

NC

PAW

PAW

PAW

Convergence - example...

O.input

```
Atom summary file name
                 exchange-correlation keyword
'LDA-PW'
2 2 0 0 0
                 maximum n for s, p, d, f, g shells
2 1 4
                 correction to maximum occupancy (n 1 occ)
                 end corrections
0 0 0
                 core state
                 valence state
                 valence state
                 allow for Vloc contribution
vloc0
2.3987351
                 Vloc amplitude
                 use default parameters
ipass
                 lmax
1
1.4
                 rc
                 add new 1=0 basis function
                 energy of new 1=0 basis function
                 end of 1=0 basis functions
                 add new l=1 basis function
                 energy of new l=1 basis function
                 end of l=1 basis functions
n
                 Atom symbole
```

AtomPAW + AtomPAW2Abinit

Program ended.

```
atompaw2abinit - v1.4.0:
Input atomicdata file name (from atompaw) [atomicdata] ?
Input densities file name (from atompaw) [density] ?
Input potentials file name (from atompaw) [potential] ?
Output psp file name (for Abinit) [abinit.pawps] ?
Do you want to transfer atomic data from AtomPAWon a (reduced) logarithmic grid
(recommended) [v] ?
Logarithmic grid: Number of pts, logarithmic step [350, 0.035] ?
Do you want to improve non-local projectorby using "Real Space Optimization" (King-Smith
et al.) [y] ?
Real Space optim.: Ecut, Gamma/Gmax, Wl(error) [20.0, 2.0, .1E-02] ?
Info:
 Mesh size for Vloc=Vhtnzc(r) has been set to
                                               565
 with Vh(tnzc( 565)) = -Z/r+ 4.255E-07
Info:
  Optimizing non-local projectors
  using Real Space Optimization...
 Parameters: Ecut (Hartree) = 25.00
             Gamma/Gmax
                          = 2.00
             Wl max (error) = 0.100E-02
 New radius R0 for nl projectors (Bohr) = 1.4125 (= 1.0018*Rc)
Info:
 All quantities (except nl projectors) are transfered
  into a logarithmic grid (r(i)=A*exp[B(i-2)])...
  Log. grid parameters: rad_step=0.7236E-05
                       log_step=0.3500E-01
                       Size
                                 = 350
                       Size (Vloc) = 350
```


AtomPAW + AtomPAW2Abinit

O.abinit.paw atomic data for element O - Generated by AtomPAW (N. Holzwarth) Header lines 8 100 6.000 20040415 : zatom, zion, pspdat 1 0 350 0. : pspcod,pspxc,lmax,lloc,mmax,r2well paw2 1 : creatorID : basis size, lmn size Partial waves basis 0 1 1 : orbitals : number of meshes 1 3 350 0.723623E-05 0.350000E-01 : mesh 1, type, size, rad_step[,log_step] 2 1 565 0.25000000E-02 : mesh 2, type, size, rad_step[,log_step] Radial grids 1.4100000000 : r cut(SPH) : shape type[,lambda,sigma] ===== PHI 1 ===== #phi(r), for phi(r)/r*Ylm) 1 : radial mesh index 0.00000000000000 -0.700433229600737E-04 -0.725386190989452E-04 -0.751228239819879E-04 -0.777991064665656E-04 -0.805707484248686E-04-0.834411487796300E-04 -0.864138276843183E-04 -0.894924308530113E-04Augmentation -0.926807340453349E-04 -0.959826477120498E-04 -0.994022218070742E-04-0.102943650771938E-03 -0.106611278698880E-03 -0.110409604679042E-03sphere radius -0.114343288342419E-03 -0.118417155596495E-03 -0.122636204570750E-03-0.127005611774439E-03 -0.131530738475396E-03 -0.136217137307808E-03-0.141070559117276E-03 -0.146096960051730E-03 -0.151302508907104E-03-0.156693594737002E-03 -0.162276834735921E-03 -0.168059082405948E-03-0.174047436017223E-03 -0.180249247372826E-03 -0.186672130889152E-03-0.193323973003237E-03 -0.200212941918927E-03 -0.207347497704228E-0-0.214736402752611E-03 -0.222388732621553E-03 -0.230313887262059E-03-0.238521602653433E-03 -0.247021962858099E-03 -0.255825412511829E-03-0.264942769765280E-03 -0.274385239693389E-03 -0.284164428189729E-03-0.294292356363629E-03 -0.304781475458488E-03 -0.315644682310419E-03-0.326895335367085E-03 -0.338547271287322E-03 -0.350614822142928E-03-0.363112833244798E-03 -0.376056681616438E-03 -0.389462295138726E-03

 $-0.448041369870749 \\ E-03 \\ -0.464015437401057 \\ E-03 \\ -0.480559568507496 \\ E-03 \\ -0.48055956850749 \\ E-03 \\ -0.48055956850749 \\ E-03 \\ -0.48055956850749 \\ E-03 \\ -0.48055956850749 \\ E-03 \\ -0.48055959685074 \\ E-03 \\ -0.48055959685074 \\ E-03 \\ -0.48055959685074 \\ E-03 \\ -0.48055959685074 \\ E-03 \\ -0.480559685074 \\ E-03 \\ -0.480559685074 \\ E-03 \\ -0.480559685074 \\ E-03 \\ -0.480559685074 \\ E-03 \\ -0.48059685074 \\ E-03 \\ -0.48059685074 \\ E-03 \\ -0.48059685074 \\ E-03 \\ -0.48059674 \\ E-03 \\ -0.4805974 \\ E-03 \\ -0.480574 \\ E-03 \\$

USPP + USPP2Abinit


```
uspp2abinit - v1.6.0:
    Use D. Vanderbilt ultrasoft psp generator (uspp) ==
    to produce a PAW atomic data file readable
    by Abinit (v4.3.1+)
> USpp->Abinit translator: reading uspp2abinit.dat...
> USpp->Abinit translator INFO:
 At r_vloc=r( 737), VHartree(ntild(Zv+Zc)) = -Zv/r + -0.3033E-08
  This quantity must be as small as possible.
> USpp->Abinit translator INFO:
  Optimizing non-local projectors
  using Real Space Optimization...
  Parameters: Ecut (Hartree) = 15.00
              Gamma/Gmax
                           = 2.00
              Wl max (error) = 0.100E-02
  New radius R0 for nl projectors (Bohr) = 2.1552 (= 1.6350*Rc)
  Warning: Radius for nl projectors (R0) seems to be high!
> PAW atomic data file successfully created.
```

O.abinit.paw

```
Paw atomic data extracted from US-psp (D. Vanderbilt): oxygen
       Header lines
                                        8.000
                                                6.000 20040503
                                                                         : zatom, zion, pspdat
                                       7 2 1 0
                                                   494 0.
                                                                         : pspcod, pspxc, lmax, lloc, mmax, r2well
                                      paw2 2
                                                                         : creatorID
                                       4 8
                                                                         : basis_size,lmn size
Partial waves basis
                                      0 0 1 1
                                                                         : orbitals
                                                                         : number of meshes
                                          494 0.309844E-03 0.169492E-01 : mesh 1, type, size, rad_step[,log_step]
                                         523 0.309844E-03 0.169492E-01 : mesh 2, type, size, rad_step[,log_step]
        Radial grids
                                      3 2 737 0.309844E-03 0.169492E-01 : mesh 3, type, size, rad_step[,log_step]
                                       1.3181847962
                                                                         : r cut (SPH)
                                                                         : shape type[,lambda,sigma]
                                     ===== PHI 1 ===== #phi(r), for phi(r)/r*Ylm)
                                      1 : radial mesh index
                                     0.00000000000000
                                                            0.531829581672144E-04
                                                                                   0.107274881307508E-03
                                     0.162291177240415E-03 0.218247509442237E-03
                                                                                   0.275159801439171E-03
     Augmentation ,
                                     0.333044240984221E-03
                                                           0.391917284300236E-03
                                                                                   0.451795660390204E-03
                                     0.512696375415963E-03
                                                           0.574636717146483E-03
                                                                                   0.637634259476910E-03
      sphere radius
                                     0.701706867019563E-03
                                                           0.766872699768094E-03
                                                                                   0.833150217836044E-03
                                                           0.969115679945753E-03
                                     0.900558186271021E-03
                                                                                   0.103884208852728E-02
                                     0.110975712152553E-02
                                                           0.118188081342260E-02
                                                                                   0.125523352888392E-02
                                     0.132983596805278E-02
                                                           0.140570917192918E-02
                                                                                   0.148287452783473E-02
                                                           0.164116901002693E-02
                                     0.156135377496443E-02
                                                                                   0.172234269297445E-02
                                     0.180489765282357E-02
                                                           0.188885709356826E-02
                                                                                   0.197424460018628E-02
                                     0.206108414474034E-02
                                                           0.214940009257505E-02
                                                                                   0.223921720861105E-02
                                     0.233056066373737E-02
                                                           0.242345604130327E-02
                                                                                   0.251792934371063E-02
                                                           0.271171586818773E-02
                                     0.261400699910806E-02
                                                                                   0.281108325108612E-02
                                     0.291213689438951E-02
                                                           0.301490499824541E-02
                                                                                   0.311941622358069E-02
                                     0.322569969942747E-02
                                                           0.333378503035754E-02
                                                                                   0.344370230402624E-02
                                     0.355548209882649E-02 0.366915549165380E-02
                                                                                   0.378475406578295E-02
```


In brief

- . Welcome to new users! Please read the Readme and subscribe to the ABINTT users mailing list.
- . ABINIT: a project that favours development and collaboration (short presentation of the ABINIT project 10 pages in pdf).
- · Starting from version 3, ABINTT is distributed under the GNU General Public Licence.
- If you plan to write a scientific article in which ABINIT was used, please read the acknowledgments suggestions. When your article is published, please register it in the ABINIT database.
- . There are many ways to help the ABINIT project, including sponsoring.
- . If you want to report a bug, please use the bug report information.

Available versions of the code (summary table):

- ABINIT v4.0 (installation notes, release notes, features, new user guide, abinis help, input variables, tutorial)
 - ◇ ABINIT v 4.0.5 (obsolete)
- ABINTT v4.1 (installation notes, release notes, features, new user guide, abinis help, input variables, tutorial)
 - ◆ ABINIT v 4.1.1 (only for reference)
 - ABINIT v 4.1.2 (only for reference)
 - ◆ ABINIT v 4.1.3 (only for reference)

 - ◆ ABINTT v 4.1.4 (only for reference)
 - ABINIT v 4.1.5 (production version, very robust, last of the 4.1 series)
- . ABINTT v4.2 (installation notes, release notes, features, new user guide, abinis help, input variables, tutorial)
 - △ ABINIT v 4.2.1 (only for reference)
 - ABINIT v 4.2.2 (only for reference)
 - ◆ ABINTT v 4.2.3 (only for reference)
 - ABINIT v 4.2.4 (preferred production version, robust)
- . ABINIT v4.3 (installation notes, release notes, features, new user guide, abinis help, input variables, tutorial)
 - ◇ ABINIT v 4.3.1 (only for reference)
 - ◆ ABINIT v 4.3.2 (only for development)
 - ABINIT v 4.3.3 (production version, also for developpers)

To be continued...

Work of the last year

- Two types of atomic data now available
- Abinit's user can download/generate atomic data
- Fully documented on Abinit's web site

To be continued...

- ... Final format?
- Evaluate accuracy and performance for elements of the periodic table
- XML "universal" format for PAW atomic data?
- An atomic data generator completely written for Abinit?
- Spin orbit?

Real Space Optimization

Essential for USPP's atomic data Available for AtomPAW's atomic data

$$\Delta \varepsilon_{n,k}^{nl}(l,m,n) \leq W_{l,n} = \max_{g} \left[\int_{R_0}^{\infty} \widetilde{p}_{l,n}(r) j_l(g) r^2 dr \right]$$

<u>Real-space implementation</u> of nonlocal pseudopotentials for 1st-principle total-energy calculations,

R.D. King-Smith, M.C. Payne, J.S. Lin, Phys. Rev. B 44, 13063 (1991)

- ▶ Impose error W_l
- ▶ Adjust g_{max} according to E_{cut}
- ► Choose $2g_{\text{max}} \le \gamma \le 3g_{\text{max}}$

ightharpoonup Deduce R_0

Choose reasonable R_0

Return