1	The Transition to Grandparenthood and its Impact on the Big Five Personality
2	Traits and Life Satisfaction
3	Michael D. Krämer ^{1,2} , Manon A. van Scheppingen ³ , William J. Chopik ⁴ , and & David
4	$\mathrm{Richter}^{1,4}$
5	¹ German Institute for Economic Research
6	Germany
7	2 International Max Planck Research School on the Life Course (LIFE)
8	Germany
9	³ Tilburg University
10	Netherlands
1	⁴ Michigan State University
12	USA

 5 Freie Universität Berlin

Germany

13

14

15 Author Note

16

- Michael D. Krämer https://orcid.org/0000-0002-9883-5676, Socio-Economic
- Panel (SOEP), German Institute for Economic Research (DIW Berlin); International Max
- 19 Planck Research School on the Life Course (LIFE), Max Planck Institute for Human
- 20 Development
- Manon A. van Scheppingen, Department of Developmental Psychology, Tilburg
- ²² School of Social and Behavioral Sciences, Tilburg University
- William J. Chopik, Department of Psychology, Michigan State University
- David Richter, Socio-Economic Panel (SOEP), German Institute for Economic
- 25 Research (DIW Berlin); Survey Research Division, Department of Education and
- ²⁶ Psychology, Freie Universität Berlin
- The authors made the following contributions. Michael D. Krämer:
- ²⁸ Conceptualization, Data Curation, Formal Analysis, Methodology, Visualization, Writing -
- 29 Original Draft Preparation, Writing Review & Editing; Manon A. van Scheppingen:
- Methodology, Writing Review & Editing; William J. Chopik: Methodology, Writing -
- Review & Editing; David Richter: Supervision, Methodology, Writing Review & Editing.
- ³² Correspondence concerning this article should be addressed to Michael D. Krämer,
- German Institute for Economic Research, Mohrenstr. 58, 10117 Berlin, Germany. E-mail:
- 34 mkraemer@diw.de

35 Abstract

36 abc

Keywords: grandparenthood, Big Five, life satisfaction, development, propensity

38 score matching

Word count: abc

The Transition to Grandparenthood and its Impact on the Big Five Personality Traits and Life Satisfaction

Becoming a grandparent is a pivotal life event for many people in midlife or old age 42 (Infurna et al., 2020). At the same time, there is considerable heterogeneity in how 43 intensely grandparents are involved in their grandchildren's lives and care (Meyer & Kandic, 2017). In the context of an aging demographic, the time that grandparents are alive and in good health during grandparenthood is prolonged compared to previous generations (Leopold & Skopek, 2015; Margolis & Wright, 2017). In addition, an increased share of childcare functions are being fulfilled by grandparents (Hayslip et al., 2019; Pilkauskas et al., 2020). Thus, intergenerational relations have received heightened attention from psychological and sociological research in recent years (Bengtson, 2001; Coall & Hertwig, 2011). With regard to personality development, the transition to 51 grandparenthood has been posited as an important developmental task in old age (Hutteman et al., 2014). However, empirical research into the psychological consequences of becoming a grandparent is sparse. Testing hypotheses derived from neo-socioanalytic theory (Roberts & Wood, 2006) in a prospective matched control-group design (see Luhmann et al., 2014), we investigate whether the transition to grandparenthood affects the Big Five personality traits and life satisfaction using data from two nationally representative panel studies.

Personality Development in Middle Adulthood and Old Age

The life span perspective characterizes aging as a lifelong process of development and adaptation (Baltes et al., 2006). In accordance with this perspective, research has found personality traits to be subject to change throughout the entire life span (Costa et al., 2019; Graham et al., 2020; Specht, 2017; Specht et al., 2014; for recent reviews, see Bleidorn et al., 2021; Roberts & Yoon, 2021). Although a major portion of personality development takes place in adolescence and emerging adulthood (Bleidorn & Schwaba,

2017; Pusch et al., 2019; Schwaba & Bleidorn, 2018), evidence has accumulated that personality traits also undergo changes in middle and old adulthood (e.g., Allemand et al., 67 2008; Damian et al., 2019; Kandler et al., 2015; Lucas & Donnellan, 2011; Mõttus et al., 2012; Mueller et al., 2016; Wagner et al., 2016; for a review, see Specht, 2017). 69 Here, we examine the Big Five personality traits—agreeableness, conscientiousness, 70 extraversion, neuroticism, and openness to experiences—which constitute a broad 71 categorization of universal patterns of thought, affect, and behavior (John et al., 2008). 72 While the policy relevance of the Big Five personality traits has recently been emphasized 73 (Bleidorn et al., 2019)—especially because of their predictive power regarding many 74 important life outcomes (Ozer & Benet-Martínez, 2005; Roberts et al., 2007; Soto, 2021, 2019; Turiano et al., 2020), we acknowledge that there are other viable taxonomies of 76 personality (Ashton & Lee, 2007, 2020) and other levels of breadth and scope that could add valuable insights to personality development in middle adulthood and old age (Mõttus et al., 2017; Mõttus & Rozgonjuk, 2021). Changes over time in the Big Five occur both in mean trait levels (i.e., mean-level 80 change; Roberts et al., 2006) and in the relative ordering of people to each other on trait 81 dimensions (i.e., rank-order stability; Anusic & Schimmack, 2016; Roberts & DelVecchio, 2000). No observed changes in mean trait levels do not necessarily mean that individual trait levels are stable over time, and perfect rank-order stability does not preclude 84 mean-level changes. Mean-level changes in middle adulthood (ca. 30–60 years old; 85 Hutteman et al., 2014) are typically characterized in terms of greater maturity as evidenced by increased agreeableness and conscientiousness, and decreased neuroticism 87 (Damian et al., 2019; Roberts et al., 2006). In old age (ca. 60 years and older; Hutteman et al., 2014), research is generally more sparse but there is some evidence for a reversal of the maturity effect, especially following retirement (sometimes termed la dolce vita effect; Asselmann & Specht, 2021; Marsh et al., 2013; cf. Schwaba & Bleidorn, 2019) and at the 91 end of life in ill health (Wagner et al., 2016).

In terms of rank-order stability, most prior studies have shown support for an 93 inverted U-shape trajectory (Ardelt, 2000; Lucas & Donnellan, 2011; Seifert et al., 2021; Specht et al., 2011; Wortman et al., 2012): Rank-order stability rises until reaching a 95 plateau in midlife, and decreases, again, in old age. However, evidence is mixed whether 96 rank-order stability actually decreases again in old age (see Costa et al., 2019; Wagner et 97 al., 2019). Nonetheless, the historical view that personality is stable, or "set like plaster" (Specht, 2017, p. 64) after one reaches adulthood (or leaves emerging adulthood behind; 99 Bleidorn & Schwaba, 2017) can largely be abandoned (Specht et al., 2014). 100 Theories explaining the mechanisms of personality development in middle 101 adulthood and old age emphasize both genetic influences and life experiences as 102 interdependent sources of stability and change (Specht et al., 2014; Wagner et al., 2020). In 103 a behavior-genetic twin study, Kandler et al. (2015) found that non-shared environmental 104 factors were the main source of personality plasticity in old age. Here, we conceptualize the 105 transition to grandparenthood as a life experience that offers the adoption of a new social 106 role according to the social investment principle of neo-socioanalytic theory (Lodi-Smith & 107 Roberts, 2007; Roberts & Wood, 2006). According to the social investment principle, 108 normative life events or transitions such as entering the work force or becoming a parent 109 lead to personality maturation through the adoption of new social roles (Roberts et al., 110 2005). These new roles encourage or compel people to act in a more agreeable, 111 conscientious, and emotionally stable (i.e., less neurotic) way, and the experiences in these 112 roles as well as societal expectations towards them are hypothesized to drive long-term 113 personality development (Lodi-Smith & Roberts, 2007; Wrzus & Roberts, 2017). 114 Conversely, consistent social roles foster personality stability. 115 The paradoxical theory of personality coherence (Caspi & Moffitt, 1993) offers 116 another explanation for personality development through role shifts stating that trait 117 change is more likely whenever people transition into unknown environments where 118 pre-existing behavioral responses are no longer appropriate and societal norms or social 119

expectations give clear indications how to behave instead. On the other hand, stability is 120 favored in environments where no clear guidance how to behave is available. Thus, the 121 finding that age-graded, normative life experiences, such as the transition to 122 grandparenthood, drive personality development would also be in line with the paradoxical 123 theory of personality coherence (see Specht et al., 2014). Compared to the transition to 124 parenthood, however, societal expectations on how grandparents should behave (e.g., 125 "Grandparents should help parents with childcare if needed") are less clearly defined and 126 strongly dependent on the degree of (possible) grandparental investment (Lodi-Smith & 127 Roberts, 2007). Thus, societal expectations and role demands might differ depending on 128 how close grandparents live to their children, the quality of the relationship with their 129 children, and other sociodemographic factors that exert conflicting role demands (Bordone 130 et al., 2017; Lumsdaine & Vermeer, 2015; Silverstein & Marenco, 2001; cf. Muller & Litwin, 2011). In the whole population of first-time grandparents this diversity of role investment 132 might generate pronounced interindividual differences in intraindividual personality change. 133 Empirically, certain life events such as the first romantic relationship (Wagner et al., 134 2015) or the transition from high school to university or the first job (Asselmann & Specht, 135 2021; Golle et al., 2019; Lüdtke et al., 2011) have (partly) been found to be accompanied 136 by mean-level increases in line with the social investment principle (for a review, see 137 Bleidorn et al., 2018). However, recent evidence regarding the transition to parenthood 138 failed to empirically support the social investment principle (Asselmann & Specht, 2020b; 139 van Scheppingen et al., 2016). An analysis of monthly trajectories of the Big Five before 140 and after nine major life events only found limited support for the social investment 141 principle: small increases were found in emotional stability following the transition to 142 employment but not for the other traits or for the other life events theoretically linked to 143 social investment (Denissen et al., 2019). Recently, it has also been emphasized that effects 144 of life events on the Big Five personality trends generally tend to be small and need to be 145 properly analyzed using robust, prospective designs, and appropriate control groups 146

(Bleidorn et al., 2018; Luhmann et al., 2014).

Overall, much remains unknown regarding the environmental factors underlying 148 personality development in middle adulthood and old age. One indication that age-graded, 149 normative life experiences contribute to change following a period of relative stability in 150 midlife is offered by recent research on retirement (Bleidorn & Schwaba, 2018; Schwaba & 151 Bleidorn, 2019). These results were only partly in line with the social investment principle 152 in terms of mean-level changes and displayed substantial individual differences in change 153 trajectories. The authors discuss that as social role "divestment" (Schwaba & Bleidorn, 154 2019, p. 660) retirement functions differently compared to social investment in the classical 155 sense which adds a role. The transition to grandparenthood could represent such an 156 investment into a new role in middle adulthood and old age—given that grandparents have 157 regular contact with their grandchild and actively take part in childcare to some degree 158 (i.e., invest psychologically in the new grandparent role; Lodi-Smith & Roberts, 2007).

Grandparenthood

172

147

The transition to grandparenthood, that is, the birth of the first grandchild, can be 161 described as a time-discrete life event marking the beginning of one's status as a 162 grandparent (Luhmann et al., 2012). In terms of characteristics of major life events 163 (Luhmann et al., 2020), the transition to grandparenthood stands out in that it is 164 externally caused (by one's own children; see also Arpino, Gumà, et al., 2018; Margolis & 165 Verdery, 2019), while at the same time being predictable as soon as one's children reveal 166 their pregnancy or family planning. The transition to grandparenthood has been labeled a countertransition due to this lack of direct control over if and when someone has their first grandchild (Hagestad & Neugarten, 1985; as cited in Arpino, Gumà, et al., 2018). 169 Grandparenthood is also generally positive in valence and emotionally significant—given 170 one maintains a good relationship with their child. 171

Grandparenthood can also be characterized as a developmental task (Hutteman et

al., 2014) mostly associated with the period of (early) old age—although considerable 173 variation in the age at the transition to grandparenthood exists both within and between 174 cultures (Leopold & Skopek, 2015; Skopek & Leopold, 2017). Still, the period where 175 parents on average experience the birth of their first grandchild coincides with the end of 176 (relative) stability in terms of personality development in midlife (Specht, 2017), where 177 retirement, shifting social roles, and initial cognitive and health declines can be disruptive 178 to life circumstances putting personality development into motion (e.g., Mueller et al., 179 2016; Stephan et al., 2014). As a developmental task, grandparenthood is expected to be 180 part of a normative sequence of aging that is subject to societal expectations and values 181 differing across cultures and historical time (Baltes et al., 2006; Hutteman et al., 2014). 182 Mastering developmental tasks (i.e., fulfilling roles and expectations to a high 183 degree) is hypothesized to drive personality development towards maturation similarly to 184 propositions by the social investment principle, that is, leading to higher levels of 185 agreeableness and conscientiousness, and lower levels of neuroticism (Roberts et al., 2005; 186 Roberts & Wood, 2006). In comparison to the transition to parenthood which has been 187 found to be ambivalent in terms of both personality maturation and life satisfaction 188 (Aassve et al., 2021; Johnson & Rodgers, 2006; Krämer & Rodgers, 2020; van Scheppingen 189 et al., 2016), Hutteman et al. (2014) hypothesize that the transition to grandparenthood is 190 generally seen as positive because it (usually) does not impose the stressful demands of 191 daily childcare on grandparents. Grandparental investment in their grandchildren has been 192 discussed as beneficial in terms of the evolutionary, economic, and sociological advantages 193 it provides for the whole intergenerational family structure (Coall et al., 2018; Coall & 194 Hertwig, 2011). 195 While we could not find prior studies investigating development of the Big Five over 196 the transition to grandparenthood, there is some evidence on changes in life satisfaction 197 over the transition to grandparenthood. In cross-sectional studies, the preponderance of 198 evidence suggests that grandparents who provide grandchild care or have close

199

relationships with their older grandchildren have higher life satisfaction (e.g., Mahne & 200 Huxhold, 2014; Triadó et al., 2014). There are a few longitudinal studies, albeit they offer 201 conflicting conclusions: Data from the Survey of Health, Ageing and Retirement in Europe 202 (SHARE) showed that the birth of a grandchild was followed by improvements to quality 203 of life and life satisfaction, but only among women (Tanskanen et al., 2019) and only in 204 first-time grandmothers via their daughters (Di Gessa et al., 2019). Several studies 205 emphasized that grandparents actively involved in childcare experienced larger increases in 206 life satisfaction (Arpino, Bordone, et al., 2018; Danielsbacka et al., 2019; Danielsbacka & 207 Tanskanen, 2016). On the other hand, fixed effects regression models¹ using SHARE data 208 did not find any effects of first-time grandparenthood on life satisfaction regardless of 209 grandparental investment and only minor decreases of grandmothers' depressive symptoms 210 (Sheppard & Monden, 2019). 211

In a similar vein, some prospective studies reported beneficial effects of the
transition to grandparenthood and of grandparental childcare investment on various health
measures, especially in women (Chung & Park, 2018; Condon et al., 2018; Di Gessa et al.,
2016a, 2016b). Again, beneficial effects on self-rated health did not persevere in fixed
effects analyses as reported in Ates (2017) who used longitudinal data from the German
Aging Survey (DEAS).

We are not aware of any study investigating the rank-order stability of traits over
the transition to grandparenthood. The occurrence of other life events has been shown to
be associated with the rank-order stability of personality and well-being, although only for
certain events and traits (e.g., Denissen et al., 2019; Hentschel et al., 2017; Specht et al.,
2011).

¹ Fixed effects regression models exclusively rely on within-person variance (see Brüderl & Ludwig, 2015; McNeish & Kelley, 2019).

3 Current Study

231

232

233

234

In the current study, we revisit the development of life satisfaction across the
transition to grandparenthood. We extend this research to psychological development in a
more general sense by examining the development of Big Five personality traits. Three
research questions motivate the current study which is the first to analyze Big Five
personality development over the transition to grandparenthood:

- 1. What are the effects of the transition to grandparenthood on mean-level trajectories of the Big Five traits and life satisfaction?
 - 2. How large are interindividual differences in intraindividual change for the Big Five traits and life satisfaction over the transition to grandparenthood?
 - 3. How does the transition to grandparenthood affect rank-order stability of the Big Five traits and life satisfaction?

To address these questions, we compare development over the transition to 235 grandparenthood with that of matched participants who do not experience the transition 236 during the study period (Luhmann et al., 2014). This is necessary because pre-existing 237 differences between prospective grandparents and non-grandparents in variables related to 238 the development of the Big Five or life satisfaction introduce confounding bias when 239 estimating the effects of the transition to grandparenthood (VanderWeele et al., 2020). The 240 impact of adjusting (or not adjusting) for pre-existing differences, or background 241 characteristics, has recently been emphasized in the prediction of life outcomes from 242 personality in a mega-analytic framework of ten large panel studies (Beck & Jackson, 2021). Propensity score matching is one technique to account for confounding bias by equating the groups in their estimated propensity to experience the event in question (Thoemmes & Kim, 2011). This propensity is calculated from regressing the so-called treatment variable (i.e., the group variable indicating whether someone experienced the 247 event) on covariates related to the likelihood of experiencing the event and to the 248

outcomes. This approach addresses confounding bias by creating balance between the groups in the covariates used to calculate the propensity score (Stuart, 2010).

We adopt a prospective design that tests the effects of becoming first-time 251 grandparents separately against two propensity-score-matched control groups: first, a 252 matched control group of parents (but not grandparents) with at least one child in 253 reproductive age, and, second, a matched control group of nonparents. Adopting two 254 control groups allows us to disentangle potential effects attributable to becoming a 255 grandparent from effects attributable to being a parent already, thus addressing selection 256 effects into grandparenthood and confounding more comprehensively than previous 257 research. Thereby, we cover the first two of the three causal pathways to not experiencing 258 grandparenthood pointed out by demographic research (Margolis & Verdery, 2019): one's 259 own childlessness, childlessness of one's children, and not living long enough to become a grandparent. Our comparative design also controls for average age-related and historical trends in the Big Five traits and life satisfaction (Luhmann et al., 2014), and enables us to report effects of the transition to grandparenthood unconfounded by instrumentation 263 effects, which describe the tendency of reporting lower well-being scores with each repeated 264 measurement (Baird et al., 2010).² 265

We improve upon previous longitudinal studies utilizing matched control groups

(e.g., Anusic et al., 2014a, 2014b; Yap et al., 2012) in that we performed the matching at a

specific time point preceding the transition to grandparenthood (at least two years

beforehand) and not based on individual survey years. This design choice ensures that the

covariates involved in the matching procedure are not already influenced by the event or

anticipation of it (Greenland, 2003; Rosenbaum, 1984; VanderWeele, 2019; VanderWeele et

al., 2020), thereby reducing the risk of confounding through collider bias (Elwert &

Winship, 2014). Similar approaches in the study of life events have recently been adopted

² Instrumentation effects caused by repeated assessments have only been described for life satisfaction but we assume similar biases exist for certain Big Five items.

(Balbo & Arpino, 2016; Krämer & Rodgers, 2020; van Scheppingen & Leopold, 2020).

Informed by the social investment principle and previous research on personality development in middle adulthood and old age, we preregistered the following hypotheses (prior to data analysis; https://osf.io/a9zpc/):

- H1a: Following the birth of their first grandchild, grandparents increase in agreeableness and conscientiousness, and decrease in neuroticism compared to the matched control groups of parents (but not grandparents) and nonparents. We do not expect the groups to differ in their trajectories of extraversion and openness to experience.
- H1b: Grandparents' post-transition increases in agreeableness and conscientiousness, and decreases in neuroticism are more pronounced among those who provide substantial grandchild care.
- H1c: Grandmothers increase in life satisfaction following the transition to grandparenthood as compared to the matched control groups but grandfathers do not.
- H2: Individual differences in intraindividual change in the Big Five and life satisfaction are larger in the grandparent group than the control groups.
- H3: Compared to the matched control groups, grandparents' rank-order stability of the Big Five and life satisfaction over the transition to grandparenthood is smaller.

Exploratorily, we further probe the moderator performing paid work which could constitute a potential role conflict among grandparents.

294 Methods

295 Samples

278

279

280

281

282

283

284

285

286

287

288

289

290

291

To evaluate these hypotheses, we used data from two population-representative panel studies: the Longitudinal Internet Studies for the Social Sciences (LISS) panel from the Netherlands and the Health and Retirement Study (HRS) from the United States.

The LISS panel is a representative sample of the Dutch population initiated in 2008 299 with data collection still ongoing (Scherpenzeel, 2011; van der Laan, 2009). It is 300 administered by CentERdata (Tilburg University, The Netherlands). Included households 301 are a true probability sample of households drawn from the population register 302 (Scherpenzeel & Das, 2010). While originally roughly half of invited households consented 303 to participate, refreshment samples were drawn in order to oversample previously 304 underrepresented groups using information about response rates and their association with 305 demographic variables (household type, age, ethnicity; see 306 https://www.lissdata.nl/about-panel/sample-and-recruitment/). Data collection was 307 carried out online and participants lacking the necessary technical equipment were 308 outfitted with it. We included yearly assessments from 2008 to 2020 from several different 309 modules (see *Measures*) as well as data on basic demographics which was assessed on a 310 monthly rate. For later coding of covariates from these monthly demographic data we used 311 the first available assessment in each year. 312 The HRS is an ongoing longitudinal population-representative study of older adults 313 in the US (Sonnega et al., 2014) administered by the Survey Research Center (University 314 of Michigan, United States). Initiated in 1992 with a first cohort of individuals aged 51-61 315 and their spouses, the study has since been extended with additional cohorts in the 1990s 316 (see https://hrs.isr.umich.edu/documentation/survey-design/). In addition to the HRS 317 core interview every two years (in-person or as a telephone survey), the study has since 318 2006 included a leave-behind questionnaire covering a broad range of psychosocial topics 319 including the Big Five personality traits and life satisfaction. These topics, however, were 320 only administered every four years starting in 2006 for one half of the sample and in 2008 321 for the other half. We included personality data from 2006 to 2018, all available data for 322 the coding of the transition to grandparenthood from 1996 to 2018, as well as covariate 323 data from 2006 to 2018 including variables drawn from the Imputations File and the 324 Family Data (only available up to 2014).

325

These two panel studies provided the advantage that they contained several waves 326 of personality data as well as information on grandparent status and a broad range of 327 covariates at each wave. While the HRS provided a large sample with a wider age range, 328 the LISS panel was smaller and vounger³ but provided more frequent personality 329 assessments spaced every one to two years. Note that M. van Scheppingen has previously 330 used the LISS panel to analyze correlated changes between life satisfaction and Big Five 331 traits across the lifespan (https://osf.io/3cxuy/). W. Chopik and M. van Scheppingen have 332 previously used the HRS to analyze Big Five traits and relationship-related constructs (van 333 Scheppingen et al., 2019). W. Chopik has additionally used the HRS to analyze mean-level 334 and rank-order changes in Big Five traits in response to be reavement (Chopik, 2018) and 335 other relationship-related or non-Big Five-related constructs (e.g., optimism; Chopik et al., 336 2020). These publications do not overlap with the current study in the central focus of grandparenthood. The present study used de-identified archival data in the public 338 domain, and, thus, it was not necessary to obtain ethical approval from an IRB.

340 Measures

Personality

In the LISS panel, the Big Five personality traits were assessed using the 50-item
version of the IPIP Big-Five Inventory scales (Goldberg, 1992). For each Big Five trait, ten
5-point Likert-scale items were answered (1 = very inaccurate, 2 = moderately inaccurate, 3
= neither inaccurate nor accurate, 4 = moderately accurate, 5 = very accurate). Example
items included "Like order" (conscientiousness), "Sympathize with others' feelings"
(agreeableness), "Worry about things" (neuroticism), "Have a vivid imagination" (openness

³ The reason for the included grandparents from the LISS panel being younger was that grandparenthood questions were part of the *Work and Schooling* module and—for reasons unknown to us—filtered to participants performing paid work. Thus, older, retired first-time grandparents from the LISS panel could not be identified.

⁴ Publications using LISS panel data can be searched at https://www.dataarchive.lissdata.nl/publications/. Publications using HRS data can be searched at https://hrs.isr.umich.edu/publications/biblio/.

to experience), and "Start conversations" (extraversion). At each wave, we took a 348 participant's mean of each subscale as their trait score. Internal consistencies at the time of 349 matching, as indicated by McDonald's ω (McNeish, 2018), averaged $\omega = 0.83$ over all traits 350 ranging from $\omega = 0.77$ (conscientiousness in the parent control group) to $\omega = 0.90$ 351 (extraversion in the nonparent control group). Other studies have shown measurement 352 invariance for these scales across time and age groups, and convergent validity with the Big 353 Five inventory (BFI-2) (Denissen et al., 2020; Schwaba & Bleidorn, 2018). The Big Five 354 (and life satisfaction) were contained in the *Personality* module which was administered 355 yearly but with planned missingness in some years for certain cohorts (see Denissen et al., 356 2019). Thus, there are one to two years between included assessments, given no other 357 sources of missingness. 358 In the HRS, the Midlife Development Inventory (MIDI) scales were administered to measure the Big Five (Lachman & Weaver, 1997). This instrument was constructed for use in large-scale panel studies of adults and consisted of 26 adjectives (five each for 361 conscientiousness, agreeableness, and extraversion, four for neuroticism, and seven for 362 openness to experience). Participants were asked to rate on a 4-point scale how well each 363 item described them (1 = a lot, 2 = some, 3 = a little, 4 = not at all). Example adjectives 364 included "Organized" (conscientiousness), "Sympathetic" (agreeableness), "Worrying" 365 (neuroticism), "Imaginative" (openness to experience), and "Talkative" (extraversion). For 366 better comparability with the LISS panel, we reverse scored all items so that higher values 367 corresponded to higher trait levels and, at each wave, took the mean of each subscale as the 368 trait score. Big Five trait scores showed satisfactory internal consistencies at the time of 360

matching which averaged $\omega = 0.75$ over all traits ranging from $\omega = 0.68$ (conscientiousness

in the nonparent control group) to $\omega = 0.81$ (agreeableness in the nonparent control group).

370

$_{72}$ Life Satisfaction

In both samples, life satisfaction was assessed using the 5-item Satisfaction with Life 373 Scale (SWLS; Diener et al., 1985) which participants answered on a 7-point Likert scale (1 374 = strongly disagree, 2 = somewhat disagree, 3 = slightly disagree, 4 = neither agree or 375 disagree, 5 = slightly agree, 6 = somewhat agree, 7 = strongly agree)⁵. An example item 376 was "I am satisfied with my life". Internal consistency at the time of matching was $\omega =$ 377 0.90 in the LISS panel with the parent control sample ($\omega = 0.88$ with the nonparent 378 control sample), and $\omega = 0.91$ in the HRS with the parent control sample ($\omega = 0.91$ with 379 the nonparent control sample). 380

381 Transition to Grandparenthood

The procedure to obtain information on grandparents' transition to 382 grandparenthood generally followed the same steps in both samples. The items this coding 383 was based on, however, differed slightly: In the LISS panel, participants were asked "Do 384 you have children and/or grandchildren?" with "children", "grandchildren", and "no 385 children or grandchildren" as possible answer categories. This question was part of the Work and Schooling module and filtered to participants performing paid work. In the HRS, all participants were asked for the total number of grandchildren: "Altogether, how many 388 grandchildren do you (or your husband / wife / partner, or your late husband / wife / 389 partner) have? Include as grandchildren any children of your (or your [late] husband's / 390 wife's / partner's) biological, step- or adopted children".6 391 In both samples, we tracked grandparenthood status $(0 = no \ grandchildren, 1 = at)$ 392 least one grandchild) over time. Due to longitudinally inconsistent data in some cases, we 393 included in the grandparent group only participants with exactly one transition from 0 to 1 394 in this grandparenthood status variable, and no transitions backwards (see Fig. SX). We 395

⁵ In the LISS panel, the "somewhat" was omitted and instead of "or" "nor" was used.

⁶ The listing of biological, step-, or adopted children has been added since wave 2006.

marked participants who continually indicated that they had no grandchildren as potential members of the control groups.

Moderators

Based on insights from previous research, we tested three variables as potential 399 moderators of the mean-level trajectories of the Big Five and life satisfaction over the transition to grandparenthood: First, we analyzed whether gender acted as a moderator as 401 indicated by research on life satisfaction (see Tanskanen et al., 2019; Di Gessa et al., 2019). 402 We coded a dummy variable indicating female gender (0 = male, 1 = female). 403 Second, we tested whether performing paid work or not was associated with 404 divergent trajectories of the Big Five and life satisfaction (see Schwaba & Bleidorn, 2019). 405 Since the LISS subsample of grandparents we identified was based exclusively on 406 participants performing paid work, we performed these analyses only in the HRS 407 subsample. This served two purposes: to test how participants involved in the workforce 408 (even if officially retired) differed from those not working, which might shed light on role 409 conflict and have implications for the social investment mechanisms we described earlier. 410 As a robustness check, these moderation tests also allowed us to assess whether potential 411 differences in the main results between the LISS and HRS samples could be accounted for 412 by including performing paid work as a moderator in analyses of the HRS sample. In other 413 words, perhaps the results in the HRS participants performing paid work are similar to 414 those seen in the LISS sample, which had already been conditioned on this variable 415 through filtering in the questionnaire. Third, we examined how involvement in grandchild care moderated trajectories of 417 the Big Five and life satisfaction in grandparents after the transition to grandparenthood 418 (see Arpino, Bordone, et al., 2018; Danielsbacka et al., 2019; Danielsbacka & Tanskanen, 419 2016). We coded a dummy variable (0 = provided less than 100 hours of grandchild care, 1 420 = provided 100 or more hours of grandchild care) as a moderator based on the question 421

"Did you (or your [late] husband / wife / partner) spend 100 or more hours in total since
the last interview / in the last two years taking care of grand- or great grandchildren?".

This information was only available for grandparents in the HRS; in the LISS panel, too
few participants answered follow-up questions on intensity of care to be included in the
analyses (<50 in the final analysis sample).

Procedure Procedure

Drawing on all available data, three main restrictions defined the final analysis 428 samples of grandparents (see Fig. SX for participant flowcharts): First, we identified 429 participants who indicated having grandchildren for the first time during study 430 participation (see Measures; $N_{LISS} = 337$; $N_{HRS} = 3272$, including HRS waves 1996-2004 431 before personality assessments were introduced). Second, we restricted the sample to 432 participants with at least one valid personality assessment (valid in the sense that at least 433 one of the six outcomes was non-missing; $N_{LISS} = 335$; $N_{HRS} = 1702$). Third, we included 434 only participants with both a valid personality assessment before and one after the 435 transition to grandparenthood ($N_{LISS} = 253$; $N_{HRS} = 859$). Lastly, few participants were 436 excluded because of inconsistent or missing information regarding their children⁹ resulting 437 in the final analysis samples of first-time grandparents, $N_{LISS} = 250$ (53.60% female; age at 438 transition to grandparenthood M = 57.94, SD = 4.87) and $N_{HRS} = 846$ (54.85% female; age at transition to grandparenthood M = 61.80, SD = 6.88). To disentangle effects of the transition to grandparenthood from effects of being a

parent, we defined two pools of potential control subjects to be involved in the matching

⁷ Although dichotomization of a continuous construct (hours of care) is not ideal for moderation analysis (MacCallum et al., 2002), there were too many missing values in the variable assessing hours of care continuously (variables *E063).

⁸ For the HRS subsample, we also excluded N=30 grandparents in a previous step who reported unrealistically high numbers of grandchildren (> 10) in their first assessment following the transition to grandparenthood.

⁹ We opted not to use multiple imputation for these child-related variables such as number of children which defined the control groups and were also later used for computing the propensity scores.

procedure: The first pool of potential control subjects comprised parents who had at least 443 one child in reproductive age (defined as $15 \leq age_{firstborn} \leq 65$) but no grandchildren throughout the observation period ($N_{LISS} = 844$ with 3040 longitudinal observations; 445 $N_{HRS} = 1485$ with 2703 longitudinal observations). The second pool of potential matches 446 comprised participants who reported being childless throughout the observation period 447 $(N_{LISS} = 1077 \text{ with } 4337 \text{ longitudinal observations}; N_{HRS} = 1340 \text{ with } 2346 \text{ longitudinal})$ 448 observations). The two control groups were, thus, by definition mutually exclusive. 449 In order to match each grandparent with the control participant who was most 450 similar in terms of the included covariates we utilized propensity score matching. 451

$egin{array}{ccc} Covariates \end{array}$

For propensity score matching, we used a broad set of covariates (VanderWeele et 453 al., 2020) covering participants' demographics (e.g., education), economic situation (e.g., 454 income), and health (e.g., mobility difficulties). We also included the pre-transition 455 outcome variables as covariates—as recommended in the literature (Cook et al., 2020; 456 Hallberg et al., 2018; Steiner et al., 2010; VanderWeele et al., 2020), as well as the panel 457 wave participation count and assessment year in order to control for instrumentation effects 458 and historical trends (e.g., 2008/2009 financial crisis; Baird et al., 2010; Luhmann et al., 459 2014). For matching grandparents with the parent control group we additionally included 460 as covariates variables containing information on fertility and family history (e.g., number 461 of children, age of first three children) which were causally related to the timing of the 462 transition to grandparenthood (i.e., entry into treatment; Arpino, Gumà, et al., 2018; Margolis & Verdery, 2019). Covariate selection has seldom been explicitly discussed in previous longitudinal 465 studies estimating treatment effects of life events (e.g., in matching designs). We see two 466 (in part conflicting) traditions that address covariate selection: First, classical 467 recommendations from psychology argue to include all available variables that are 468

associated with both the treatment assignment process (i.e., selection into treatment) and
the outcome (e.g., Steiner et al., 2010; Stuart, 2010). Second, recommendations from a
structural causal modeling perspective (see Elwert & Winship, 2014; Rohrer, 2018) are
more cautious aiming to avoid pitfalls such as conditioning on a pre-treatment collider
(collider bias) or a mediator (overcontrol bias). Structural causal modeling, however,
requires advanced knowledge of the causal structures underlying all involved variables
(Pearl, 2009).

In selecting covariates, we followed guidelines laid out by VanderWeele et al. (2019; 476 2020) which reconcile both views and offer practical guidance¹⁰ when complete knowledge 477 of the underlying causal structures is unknown: These authors propose a "modified 478 disjunctive cause criterion" (VanderWeele, 2019, p. 218) recommending to select all 479 available covariates which are assumed to be causes of the outcomes, treatment exposure (i.e., the transition to grandparenthood), or both, as well as any proxies for an unmeasured 481 common cause of the outcomes and treatment exposure. To be excluded from this selection are variables assumed to be instrumental variables (i.e., assumed causes of treatment 483 exposure that are unrelated to the outcomes except through the exposure) and collider 484 variables (Elwert & Winship, 2014). Because all covariates we used for matching were 485 measured at least two years before the birth of the grandchild, we judge the risk of 486 introducing collider bias or overcontrol bias by controlling for these covariates to be 487 relatively small. In addition, as mentioned in the *Introduction*, the event transition to 488 grandparenthood is not planned by or under direct control of grandparents which further 489 reduces the risk of bias introduced by controlling for pre-treatment colliders. 490

An overview of the variables we used to compute the propensity scores for matching can be found in the Supplemental Material (see also Tables S5 & S6). Critically, we also provide justification for each covariate on whether we assume it to be causally related to

¹⁰ Practical considerations of covariate selection when using large archival datasets (i.e., with no direct control over data collection) are discussed in VanderWeele et al. (2020).

treatment assignment, the outcomes, or both. We tried to find substantively equivalent covariates in both samples but had to compromise in a few cases (e.g., children's educational level only in HRS vs. children living at home only in LISS).

Estimating propensity scores requires complete covariate data. Therefore, before 497 computing propensity scores, we performed multiple imputations in order to account for 498 missingness in our covariates (Greenland & Finkle, 1995). Using five imputed data sets 499 computed by classification and regression trees (CART; Burgette & Reiter, 2010) in the 500 mice R package (van Buuren & Groothuis-Oudshoorn, 2011), we predicted treatment 501 assignment (i.e., the transition to grandparenthood) five times per observation in logistic 502 regressions with a logit link function. 11 We averaged these five scores per observation to 503 compute the final propensity score to be used for matching (Mitra & Reiter, 2016). We 504 used imputed data only for propensity score computation and not in later analyses because missing data in the outcome variables due to nonresponse was negligible.

$_{\scriptscriptstyle{07}}$ Propensity Score Matching

Propensity score matching was performed in a grandparent's survey year which 508 preceded the year when the transition was first reported by at least two years (aside from 509 that choosing the smallest available gap between matching and transition). This served the 510 purpose to ensure that the covariates used for matching were not affected by the event 511 itself or its anticipation (i.e., when one's child was already pregnant with their first child; 512 Greenland, 2003; Rosenbaum, 1984; VanderWeele et al., 2020). Propensity score matching 513 was performed using the MatchIt R package (Ho et al., 2011) with exact matching on 514 gender combined with Mahalanobis distance matching on the propensity score. In total, 515 four matchings were performed; two per sample (LISS; HRS) and two per control group 516 (parents but not grandparents; nonparents). We matched 1:4 with replacement because of 517

 $^{^{11}}$ In these logistic regressions we included all covariates listed above as predictors except for *female* which was later used for exact matching and health-related covariates in LISS-wave 2014 which were not assessed in that wave.

the relatively small pools of available non-grandparent controls. This meant that each
grandparent was matched with four control observations in each matching procedure, and
that control observations were allowed to be used multiple times for matching (i.e.,
duplicated in the analysis samples¹²). We did not specify a caliper because our goal was to
find matches for all grandparents, and because we achieved satisfactory covariate balance
this way.

We evaluated the matching procedure in terms of covariate balance and, graphically, in terms of overlap of the distributions of the propensity scores and (non-categorical) covariates (Stuart, 2010). Covariate balance as indicated by the standardized difference in means between the grandparent and the controls after matching was satisfactory (see Tables S5 & S6) lying below 0.25 as recommended in the literature (Stuart, 2010), and below 0.10 with few exceptions (Austin, 2011). Graphically, differences between the groups in their distributions of the propensity score were also small and indicated no substantial missing overlap (see Fig. (???)(fig:pscore-overlap)).

After matching, each matched control observation received the same value as their 532 matched grandparent in the time variable describing the temporal relation to treatment, 533 and the control subject's other longitudinal observations were centered around this matched 534 observation. Thereby, we coded a counterfactual transition time frame for each control 535 subject. Due to left- and right-censored longitudinal data (i.e., panel entry or attrition), we 536 restricted the final analysis samples to six years before and six years after the transition as 537 shown in Table S2. We analyzed unbalanced panel data where not every participant 538 provided all person-year observations. The final LISS analysis samples, thus, contained 250 530

¹² In the LISS data, 250 grandparent observations were matched with 1000 control observations (matching with replacement); these control observations corresponded to 523 unique person-year observations stemming from 270 unique participants for the parent control group, and to 464 unique person-year observations stemming from 189 unique participants for the nonparent control group. In the HRS data, 846 grandparent observations were matched with 3384 control observations (matching with replacement); these control observations corresponded to 1393 unique person-year observations stemming from 982 unique participants for the parent control group, and to 1008 unique person-year observations stemming from 704 unique participants for the nonparent control group.

grandparents with 1368 longitudinal observations, matched with 1000 control subjects with
either 5167 (parent control group) or 5340 longitudinal observations (nonparent control
group). The final HRS analysis samples contained 846 grandparents with 2262 longitudinal
observations, matched with 3384 control subjects with either 8257 (parent control group)
or 8167 longitudinal observations (nonparent control group; see Table S2. In the HRS,
there were a few additional missing values in the outcomes ranging from 18 to 105
longitudinal observations which will be listwise deleted in the respective analyses.

Analytical Strategy

We used R (Version 4.0.4; R Core Team, 2021) and the R-packages lme4 (Version 548 1.1.26; Bates et al., 2015), and lmerTest (Version 3.1.3; Kuznetsova et al., 2017) for 549 multilevel modeling, as well as tidyverse (Wickham et al., 2019) for data wrangling, and 550 papaja (Aust & Barth, 2020) for reproducible manuscript production. Additional modeling 551 details and a list of all software we used is provided in the Supplemental Material. Scripts 552 for data wrangling, analyses, and to reproduce this manuscript can be found on the OSF 553 (https://osf.io/75a4r/?view only=ac929a2c41fb4afd9d1a64a3909848d0) and on GitHub 554 (https://github.com/ [blinded for review]). Following Benjamin et al. (2018), we set the 555 α -level for all confirmatory analyses to .005. 556

Our design can be referred to as an interrupted time-series with a "nonequivalent no-treatment control group" (Shadish et al., 2002, p. 182) where treatment, that is, the transition to grandparenthood, is not deliberately manipulated. First, to analyze mean-level changes, we used linear piecewise regression coefficients in multilevel regression models with person-year observations nested within participants and households (Hoffman, 2015). To model change over time in relation to the birth of the first grandchild, we coded three piecewise regression coefficients: a before-slope representing linear change in the years leading up to the transition to grandparenthood, an after-slope representing linear change in the years for the years after the transition, and a shift coefficient shifting the intercept directly after

571

the transition was first reported, thus representing sudden changes that go beyond changes already modeled by the *after-slope* (see Table S2 for the coding scheme of these coefficients; Hoffman, 2015). Other studies of personality development have recently adopted similar piecewise growth-curve models (e.g., Bleidorn & Schwaba, 2018; Krämer & Rodgers, 2020; Schwaba & Bleidorn, 2019; van Scheppingen & Leopold, 2020).

All effects of the transition to grandparenthood on the Big Five and life satisfaction

were modeled as deviations from patterns in the matched control groups by interacting the 572 three piecewise coefficients with the binary treatment variable (0 = control, 1 =573 grandparent). In additional models, we interacted these coefficients with the binary 574 moderator variables resulting in two- or three-way interactions. To test differences in the 575 growth parameters between two groups in cases where these differences were represented by 576 multiple fixed-effects coefficients, we defined linear contrasts using the linear Hypothesis command from the car R package (Fox & Weisberg, 2019). All models of mean-level 578 changes were estimated using maximum likelihood and included random intercepts but no 579 random slopes of the piecewise regression coefficients. We included the propensity score as 580 a level-2 covariate for a double-robust approach (Austin, 2017). The model equations of 581 the basic model and the moderation models can be found in the Supplemental Material. 582 Second, to assess interindividual differences in intraindividual change in the Big Five 583 and life satisfaction we added random slopes to the models assessing mean-level changes 584 (see Denissen et al., 2019 for a similar approach). In other words, we allowed for differences 585 between individuals in their trajectories of change to be modeled, that is, differences in the 586 before-slope, after-slope, and shift coefficients. Because multiple simultaneous random 587 slopes are often not computationally feasible, we added random slopes one at a time and 588 used likelihood ratio test to determine whether the addition of the respective random slope 580 led to a significant improvement in model fit. We plotted distributions of random slopes 590 (for a similar approach, see Denissen et al., 2019; Doré & Bolger, 2018). To statistically 591 test differences in the random slope variance between the grandparent group and each 592

the nlme R package (Pinheiro et al., 2021), which allows for separate random slope 594 variances to be estimated in the grandparent group and the control group within the same 595 model. Model fit of these heterogeneous variance models was compared to the 596 corresponding models with a homogeneous (single) random slope variance via likelihood 597 ratio tests. This was also done separately for the parent and nonparent control groups. 598 Third, to examine rank-order stability in the Big Five and life satisfaction over the 590 transition to grandparenthood, we computed the test-retest correlation of measurements 600 prior to the transition to grandparenthood (at the time of matching) with the first 601 available measurement after the transition. To test the difference in test-retest stability 602 between grandparents and either of the control groups, we then entered the pre-treatment 603 measure as well as the treatment variable (0 = control, 1 = grandparent) and their interaction into multiple regression models predicting the Big Five and life satisfaction. These interactions test for significant differences in the test-retest stability between those who experienced the transition to grandparenthood and those who did not (for a similar 607

control group, we respecified the multilevel models as heterogeneous variance models using

Results

approach, see Denissen et al., 2019; McCrae, 1993).

Throughout the results section, we referred to results of statistical tests with 0.005 as suggestive evidence as stated in our preregistration.

Descriptive Results

593

608

612

Means and standard deviations of the Big Five and life satisfaction over the analyzed time points are presented in Tables S3 and S4. Visually represented (see Fig. S2-S7), all six outcomes display marked stability over time in both LISS and HRS. Intra-class correlations (see Table S1) show that large portions of the total variance in the Big Five could be explained by nesting in participants (median = 0.75), while nesting in households only accounted for minor portions (median = 0.03). For outcome—subsample

combinations with an ICC_{hid} below .05 we omitted the household nesting factor from all models because the nesting otherwise frequently lead to computational errors—a small deviation from our preregistration. For life satisfaction the nesting in households accounted for slightly larger portions of the total variance (median = 0.36) than nesting in participants (median = 0.32). Over all outcomes, the proportion of variance due to within-person factors was relatively low (median = 0.22).

In the basic models (see Tables S7 & S8 and Figure S8), grandparents in the LISS

increased slightly in agreeableness in the years after the transition to grandparenthood as

625 Mean-Level Changes

626 Agreeableness

627

628

compared to the parent controls, $\hat{\gamma}_{21} = 0.02$, 95% CI [0.01, 0.03], p = .003. However, this 629 effect was quite small and not significant when compared against the nonparent controls, or 630 against either control sample in the HRS sample (suggestive evidence in the HRS 631 nonparents: $\hat{\gamma}_{21}=0.02,\,95\%$ CI [0.01, 0.04], p=.006). The models including the gender 632 interaction (see Tables S9 & S10 and Figure S8) indicate that grandfathers' post-transition 633 increases in agreeableness were more pronounced as compared to parent (LISS: $\hat{\gamma}_{21}=0.03,$ 634 95% CI [0.01, 0.05], p < .001; HRS: $\hat{\gamma}_{21} = 0.04$, 95% CI [0.01, 0.06], p = .003) and 635 nonparent controls (HRS: $\hat{\gamma}_{21} = 0.03$, 95% CI [0.01, 0.05], p = .004), whereas grandmothers 636 did not differ from female controls. 637 There is suggestive evidence for a moderation by paid work (see Tables S11 & S12 638 and Figure S9): non-working grandparents increased more in agreeableness than working 639 grandparents in anticipation of the transition to grandparenthood (difference in before parameter; parents: $[\hat{\gamma}_{30} + \hat{\gamma}_{31}] = -0.07, 95\%$ CI [-0.12, -0.01], p = .013; nonparents: $[\hat{\gamma}_{30} + 0.01]$ 641 $\hat{\gamma}_{31}]$ = -0.07, 95% CI [-0.12, -0.02], p = .009). Grandparents providing substantial grandchild care increased in agreeableness after the transition to grandparenthood 643 compared to matched nonparent controls (difference in after parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = 0.04$, 644

95% CI [0.01, 0.06], p=.002; suggestive evidence in the parent sample: $[\hat{\gamma}_{21}\,+\,\hat{\gamma}_{31}]=0.04$, 645 95% CI [0.01, 0.06], p = .006; see Tables S13 & S14 and Figure S10). However, differences 646 between caring and non-caring grandparents—as specified in hypothesis H1b—are not 647 significant in either sample. 648

We found a slight post-transition increase in grandparents' conscientiousness in

Conscientiousness640

650

651

comparison to the controls in the HRS (parents: $\hat{\gamma}_{21} = 0.02$, 95% CI [0.01, 0.04], p = .002; nonparents: $\hat{\gamma}_{21}=0.02,\,95\%$ CI [0.01, 0.04], p=.003; suggestive evidence in the LISS parent sample: $\hat{\gamma}_{21} = 0.02$, 95% CI [0.00, 0.03], p = .006; see Tables S15 & S16 and Figure 653 S11). Grandparents' conscientiousness trajectories were not significantly moderated by 654 gender (see Tables S17 & S18 and Figure S11). 655 However, there were significant differences in conscientiousness depending on 656 grandparents' work status (see Tables S19 & S20 and Figure S12): non-working 657 grandparents saw more pronounced increases in conscientiousness in the years before the 658 transition to grandparenthood compared to non-working parent, $\hat{\gamma}_{21} = 0.08, 95\%$ CI 659 [0.04, 0.13], p < .001,and nonparent controls, $\hat{\gamma}_{21} = 0.07, 95\%$ CI [0.03, 0.12], p = .002, and 660 compared to working grandparents (difference in *before* parameter; parents: $[\hat{\gamma}_{30} + \hat{\gamma}_{31}] =$ 661 -0.08, 95% CI [-0.13, -0.03], p=.002; nonparents: $[\hat{\gamma}_{30}+\hat{\gamma}_{31}]=-0.08,$ 95% CI [-0.12, -0.03], 662 p = .001). There is suggestive evidence that grandparents who provided substantial 663 grandchild care increased more strongly in conscientiousness after the transition compared 664 to grandparents who did not (difference in after parameter; parents: $[\hat{\gamma}_{30} + \hat{\gamma}_{31}] = 0.03$, 665 95% CI [0.00, 0.06], p = .034; nonparents: $[\hat{\gamma}_{30} + \hat{\gamma}_{31}] = 0.03$, 95% CI [0.00, 0.06], p = .022; 666 see Tables S21 & S22 and Figure S13). 667

Extraversion

668

The trajectories of grandparents' extraversion closely followed those of the matched 669 controls. There were no significant effects indicating differences between grandparents and 670

controls in the basic models (see Tables S23 & S24 and Figure S14), the models including 671 the gender interaction (see Tables S25 & S26 and Figure S14), or the models of moderation 672 by paid work (see Tables S27 & S28 and Figure S15). The only significant effect for 673 extraversion is found in the analysis of moderation by grandchild care (see Tables S29 & 674 S30 and Figure S16): compared to matched parent controls grandparents providing 675 substantial grandchild care increased slightly more strongly in extraversion after the 676 transition to grandparenthood (difference in after parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = 0.04, 95\%$ CI 677 [0.02, 0.07], p = .001; suggestive evidence in the nonparent sample: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = 0.04, 95\%$ 678 CI [0.01, 0.06], p = .007).679

680 Neuroticism

The basic models for neuroticism (see Tables S31 & S32 and Figure S17) show only 681 minor differences between grandparents and matched controls: Compared to the parent 682 controls, grandparents in the HRS shifted slightly downward in their neuroticism 683 immediately after the transition to grandparenthood (difference in *shift* parameter: $[\hat{\gamma}_{21}$ + 684 $\hat{\gamma}_{31}$] = -0.08, 95% CI [-0.12, -0.03], p < .001), which was not the case in the three other 685 samples (HRS nonparents, LISS parents, and LISS nonparents). Further, in the HRS there 686 is suggestive evidence that grandparents increased in neuroticism before the transition to 687 grandparenthood compared to the nonparent controls, $\hat{\gamma}_{11} = 0.04, 95\%$ CI [0.01, 0.07], p =688 .016. The models including the gender interaction (see Tables S33 & S34 and Figure S17) 689 show one significant effect in the comparison of grandparents and controls: In the HRS, grandfathers, as compared to male parent controls, shifted downward in neuroticism 691 directly after the transition to grandparenthood (difference in shift parameter: $[\hat{\gamma}_{21}\,+\,\hat{\gamma}_{31}]$ = -0.16, 95% CI [-0.22, -0.09], p < .001; suggestive evidence in the nonparent sample: $[\hat{\gamma}_{21}]$ 693 $+ \hat{\gamma}_{31}$] = -0.07, 95% CI [-0.14, -0.01], p = .024). There is suggestive evidence that 694 grandfathers in the HRS increased more strongly in neuroticism before the transition than 695 the male controls (parent controls: $\hat{\gamma}_{11} = 0.06$, 95% CI [0.01, 0.10], p = .024; nonparent 696

controls: $\hat{\gamma}_{11} = 0.06$, 95% CI [0.02, 0.11], p = .007). Thus, effects present in the basic 697 models seem to be mostly due to differences in the grandfathers (vs. male controls). 698 Grandparents' trajectories of neuroticism as compared to the controls were 699 significantly moderated by paid work (see Tables S35 & S36 and Figure S18): Compared to 700 working nonparent controls, working grandparents increased more strongly in neuroticism 701 in the years before the transition to grandparenthood (difference in before parameter: $\hat{\gamma}_{21}$ 702 $+ \hat{\gamma}_{31}$] = 0.06, 95% CI [0.03, 0.10], p < .001; suggestive evidence in the parent sample: [$\hat{\gamma}_{21}$ 703 $+ \hat{\gamma}_{31}$] = 0.05, 95% CI [0.01, 0.08], p = .015). At the first post-transition assessment, working grandparents shifted downward in neuroticism compared to working parent 705 controls (difference in *shift* parameter: $[\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71}] = -0.08, 95\%$ CI [-0.14, 706 -0.03], p = .004; suggestive evidence in the nonparent sample: $[\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71}] =$ 707 -0.06, 95% CI [-0.11, 0.00], p = .034). There is suggestive evidence that grandparents providing substantial grandchild care decreased more strongly in neuroticism after the 709 transition to grandparenthood than grandparents who did not (difference in after 710 parameter; parents: $[\hat{\gamma}_{30} + \hat{\gamma}_{31}] = -0.04$, 95% CI [-0.07, 0.00], p = .044; nonparents: $[\hat{\gamma}_{30} + 0.00]$ 711 $\hat{\gamma}_{31}$] = -0.04, 95% CI [-0.07, 0.00], p = .048; see Tables S37 & S38 and Figure S19). 712

713 Openness

For openness, we also found a high degree of similarity between the grandparents 714 and the matched control subjects in their trajectories based on the basic models (see 715 Tables S39 & S40 and Figure S20) and models including the gender interaction (see Tables 716 S41 & S42 and Figure S20). Grandparents in the HRS shifted downward in openness in the first assessment after the transition to grandparenthood compared to the parent controls 718 (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.05, 95\%$ CI [-0.09, -0.02], p = .004;719 suggestive evidence in the nonparent sample: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.04, 95\%$ CI [-0.07, 0.00], p =720 .039), which is due to significant differences between grandfathers and male parent controls 721 (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.11, 95\%$ CI [-0.17, -0.06], p < .001). There is 722

```
suggestive evidence that grandmothers in the LISS increased more strongly in openness
723
    before the transition to grandparenthood than female controls (difference in before
724
    parameter; parents: [\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.02, 95\% CI [0.00, 0.03], p = .036; nonparents: [\hat{\gamma}_{11} +
725
    \hat{\gamma}_{13}] = 0.02, 95% CI [0.00, 0.04], p = .009).
726
             Performing paid work moderated grandparents' trajectories in subtle ways (see
727
    Tables S43 & S44 and Figure S21): Non-working grandparents increased more strongly in
728
    openness post-transition than non-working controls (parents: \hat{\gamma}_{41} = 0.05, 95\% CI
729
    [0.02, 0.07], p < .001; nonparents: \hat{\gamma}_{41} = 0.04, 95\% CI [0.02, 0.06], p < .001). Further, there
730
    is suggestive evidence that openness of non-working grandparents shifted downward
731
    directly after the transition compared to non-working controls (difference in shift
732
    parameter; parents: [\hat{\gamma}_{41}\,+\,\hat{\gamma}_{61}] = -0.09, 95% CI [-0.15, -0.02], p = .007; nonparents: [\hat{\gamma}_{41}\,+\,\hat{\gamma}_{61}]
733
    \hat{\gamma}_{61}] = -0.07, 95% CI [-0.13, -0.01], p = .014). However, compared to non-working
    grandparents, working grandparents shifted upward in openness directly after the
735
    transition (suggestive evidence for difference in shift parameter; parents: [\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} +
736
    \hat{\gamma}_{71}] = 0.08, 95% CI [0.00, 0.15], p = .038; nonparents: [\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71}] = 0.08, 95\%
737
    CI [0.01, 0.14], p = .023) and decreased afterwards (suggestive evidence for difference in
738
    \mathit{after} parameter; parents: [\hat{\gamma}_{50}\,+\,\hat{\gamma}_{51}] = -0.04, 95% CI [-0.07, -0.01], p = .016; nonparents:
739
    [\hat{\gamma}_{50} + \hat{\gamma}_{51}] = -0.04, 95\% CI [-0.07, -0.01], p = .007). The analysis of moderation by
740
    grandchild care (see Tables S45 & S46 and Figure S22) reveals that grandparents providing
741
    substantial grandchild care increased more strongly in openness after the transition to
742
    grandparenthood than the matched nonparent controls (difference in after parameter: \hat{\gamma}_{21}
743
    + \hat{\gamma}_{31}] = 0.04, 95% CI [0.01, 0.06], p = .002; suggestive evidence in the parent sample: [ \hat{\gamma}_{21}
    + \hat{\gamma}_{31}] = 0.04, 95% CI [0.01, 0.07], p = .005). At the same time, the plotted trajectories
    demonstrate that the described moderation effects for openness were all quite small.
```

$_{^{\prime}47}$ Life Satisfaction

The basic models for life satisfaction (see Tables S47 & S48 and Figure S23) show 748 that grandparents in the LISS increased more strongly in life satisfaction directly following 749 the transition compared to nonparent controls (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] =$ 750 0.18, 95% CI [0.06, 0.30], p = .004). In the HRS, there is suggestive evidence that 751 grandparents increased more strongly in life satisfaction before the transition to 752 grandparenthood than matched parent controls, $\hat{\gamma}_{11} = 0.12$, 95% CI [0.03, 0.21], p = .010. 753 There is evidence in the models including the gender interaction (see Tables S49 & S50 and 754 Figure S23) that these differences were due to grandmothers, who increased more strongly 755 in life satisfaction directly following the transition to grandparenthood than female 756 nonparent controls in the LISS (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33}] =$ 0.24, 95% CI [0.08, 0.41], p = .004) and increased more strongly before the transition to 758 grandparenthood compared to female parent controls in the HRS (difference in before 759 parameter: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.21, 95\% \text{ CI } [0.09, 0.33], p < .001).$ 760 The models of moderation by paid work give suggestive evidence that working 761 grandparents increased in life satisfaction before the transition to grandparenthood 762 compared to working parent controls (difference in *before* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = 0.11$, 763 95% CI [0.00, 0.21], p = .047; see Tables S51 & S52 and Figure S24). There is no evidence for a moderation by grandchild care (see Tables S53 & S54 and Figure S25). 765

Interindividual Differences in Change

772

First, we conducted comparisons of model fit between the random-intercept models reported previously and models where a random slope variance was estimated, separately for each change parameter. These comparisons showed a substantial amount of interindividual differences in change for all random slopes in all models as indicated by increases in model fit significant at p < .001.

Second, we estimated models with heterogeneous random slope variances between

the grandparents and each control group in order to test whether interindividual differences in change were significantly larger in the grandparents. Contrary to hypothesis H2, for agreeableness, conscientiousness, and extraversion, interindividual differences in intraindividual change were greater in the control group for all tested effects (see Tables S55, S56, & S57). In the two HRS samples, assuming group heterogeneity in the random slope variances lead to significant improvements in model fit in all model comparisons. In the two LISS samples, this was the case for around half the tests.

Interindividual differences in changes in neuroticism before the transition to grandparenthood were significantly greater in the HRS grandparents than the nonparent controls (random slope variance of the *before* parameter), *likelihood ratio* = 73.45, p < .001. However, this was not the case in the comparison of grandparents with parent controls in the HRS or either control group in the LISS (see Table S58). The other parameters of change in neuroticism did not differ significantly between groups in their random slope variances or—in the HRS—displayed significantly larger random slope variances in the respective control group.

For openness, interindividual differences in changes before the transition to grandparenthood were significantly greater in the LISS grandparents than the nonparent controls (random slope variance of the *before* parameter), *likelihood ratio* = 25.90, p < .001. Again, this result could not be replicated in the other three samples, and the other parameters of change did either not differ between groups in their random slope variances or had significantly larger random slope variances in the respective control group (see Table S59).

We found partial evidence for larger interindividual differences in grandparents' changes in life satisfaction (see Table S60): In the LISS, grandparents' changes before the transition to grandparenthood varied interindividually to a larger extent compared to the parent controls (random slope variance of the before parameter), likelihood ratio = 41.47, p < 0.001, and in the HRS compared to the nonparent controls, likelihood ratio = 111.97, p < 0.001

.001. We found suggestive evidence for larger interindividual differences in grandparents' linear post-transition changes compared to the parent controls (random slope variance of the after parameter), likelihood ratio = 11.74, p = .008, and in sudden shifts directly after the transition was first reported (random slope variance of the shift parameter), likelihood ratio = 10.00, p = .019. Still, the majority of tests for heterogeneous random slope variance in life satisfaction indicated either non-significant differences or significantly larger random slope variances in the control sample.

807 Rank-Order Stability

819

As indicators of rank-order stability, we computed test-retest correlations for the 808 Big Five and life satisfaction for the matched sample, as well as separately for grandparents 809 only and controls only (see Table S61). In 6 out of 24 comparisons grandparents' test-retest 810 correlation was lower than that of the respective control group. However, differences in rank-order stability between the grandparents and control participants did not reach significance in any of these comparisons. We found suggestive evidence that rank-order 813 stability in the HRS was higher in the grandparents for extraversion than in either parent, 814 p = .007, or nonparent controls, p = .029, and that for openness it was larger in the 815 grandparents than in the parent controls, p = .015. In the LISS, there was suggestive 816 evidence that grandparents' rank-order stability in agreeableness was higher than that of 817 the nonparent controls, p = .009. 818

Overall, we found no confirmatory evidence in support of hypothesis H3.¹³

 $^{^{13}}$ In addition to the preregistered retest interval, we have also computed a maximally large retest interval between the first available pre-transition assessment and the last available post-transition assessment within the observation period. Here, 5 out of 24 comparisons indicated that rank-order stability was lower in the grandparents, and we found one significant difference in rank-order stability in accordance with our hypothesis: in the HRS, grandparents' rank-order stability in openness was lower than that of the nonparents, p < .001 (see Table S62). In another analysis, we followed the preregistered approach but excluded any duplicate control participants resulting from matching with replacement who might bias results towards greater stability in the controls: 14 out of 24 comparisons showed lower rank-order stability in the grandparents compared to either control group (see Table S63). However, differences between the groups were nonsignificant throughout.

Discussion 820

In an analysis of first-time grandparents in comparison with both parent and 821 nonparent matched control subjects we found pronounced stability in the Big Five and life 822 satisfaction over the transition to grandparenthood. Although there were a few isolated 823 effects in line with our hypotheses on mean-level changes (H1), they were very small in size 824 and also not consistent over the two analyzed panel studies—LISS and HRS. We found 825 partial evidence for moderation of the mean-level trajectories of conscientiousness, 826 neuroticism, and openness by performing paid work, and of extraversion and openness by 827 providing substantial grandchild care (contrary to H1b). While interindividual differences 828 in change were present for all parameters of change, they were only greater in the 820 grandparents in a stark minority of conducted model comparisons (H2). Lastly, rank-order 830 stability did not differ between grandparents and either controls group, or was larger in the 831 control group—contrary to expectations (H3). 832

Social Investment Principle 833

834

836

837

844

We conducted a preregistered, multi-comparison, and cross-study test of the social investment principle (Lodi-Smith & Roberts, 2007; Roberts & Wood, 2006) in middle 835 adulthood and old age where the transition to grandparenthood has been put forward as a potentially important developmental task driving lifespan personality development of the Big Five (Hutteman et al., 2014). Across all analyzed traits, we found more evidence for 838 trait stability than change (Bleidorn et al., 2021). 839

Still, below we summarize the sparse evidence in line with the social investment principle because even small effects may be meaningful and have real world consequences (Götz et al., 2021): For agreeableness and conscientiousness we found slight post-transition increases in comparison to the matched control groups which are line with the theory. However, the effects were not only small but also inconsistent across samples.

Agreeableness only increased in the LISS (compared to the parent controls) and

conscientiousness only in the HRS (compared to both parent and nonparent controls). In
the HRS, neuroticism decreased in grandparents directly following the transition to
grandparenthood when compared to matched parent respondents. This was not the case in
the other analysis samples.

In the case of agreeableness and neuroticism, these effects were only present in the 850 comparison of grandfathers and male controls, whereas no differences were found for 851 grandmothers. In contrast, past research—mostly in the domains of well-being and 852 health—has found more pronounced effects of the transition to grandparenthood for 853 grandmothers (Di Gessa et al., 2016b, 2019; Sheppard & Monden, 2019; Tanskanen et al., 854 2019). More beneficial effects for grandmothers have been discussed in the context of 855 grandmothers spending more time with their grandchildren than grandfathers and 856 providing more hours of care (Condon et al., 2013; Di Gessa et al., 2020), thus making a higher social investment.¹⁴ In our analysis, we found partial support for this for life 858 satisfaction (see below). Yet our results for the Big Five are not in agreement with this line of thought. Instead, one possible explanation is that (future) grandfathers have on average 860 previously been more invested in their work lives than in child rearing, and then at the end 861 of their career or after retirement found investment in grandchild care to be a more novel 862 and meaningful transition than grandmothers (StGeorge & Fletcher, 2014; Tanskanen et 863 al., 2021). Currently, however, empirical research specifically into the grandfather role is 864 sparse, and the demography of grandparenthood is undergoing swift changes toward a 865 higher proportion of actively involved grandfathers (see Coall et al., 2016; Mann, 2007). 866 Thus, more research into grandfathers' experience of the transition to grandparenthood is 867 needed to substantiate our tentative findings. 868

To gain more insight into social investment mechanisms, we included paid work and grandchild care as moderators in our analysis. For conscientiousness, we found that

869

870

¹⁴ In the HRS, the proportion of grandparents reporting that they have provided at least 100 hours of grandchild care since the last assessment was also slightly higher in grandmothers (M = 0.45, SD = 0.50) than grandfathers (M = 0.41, SD = 0.49).

grandparents who were not gainfully employed increased more strongly in anticipation of 871 the transition to grandparenthood than working grandparents (and than the matched 872 nonworking controls). Although this could imply that working grandparents did not find as 873 much time for social investment because of the role conflict with the employee/worker role 874 (see Tanskanen et al., 2021), we would have expected these moderation effects after the 875 transition where grandparents were indeed able to spend time with their grandchild. 876 However, such post-transition differences did not surface. Results for neuroticism were even 877 less clearly in line with the social investment principle: Working grandparents increased in 878 neuroticism in anticipation of the transition to grandparenthood (compared to nonparent 879 controls), and decreased immediately following the transition (compared to parent 880 controls). Regarding moderation by grandchild care, our results suggest that grandparents 881 who provided substantial grandchild care increased more in conscientiousness and decreased 882 more in neuroticism compared to grandparents who did not. However, the strength of 883 evidence was not entirely convincing and indicates a need for temporally more fine-grained 884 assessments with more extensive instruments of grandchild care (Vermote et al., 2021). 885

In total, evidence in favor of the social investment principle in our analyses was 886 rather thin. This adds to other recent empirical tests of the social investment principle in 887 the context of parenthood and romantic relationships (Asselmann & Specht, 2020a, 2020b; 888 Spikic et al., 2021; van Scheppingen et al., 2016) that have challenged its core theoretical 889 assumption of personality maturation through age-graded social role transitions. In fact, 890 more recent formulations of the social investment principle have acknowledged that it is 891 mostly applicable to transitions into first employment roles and romantic relationships in 892 emerging adulthood and may also be more closely tied to subjective perceptions of adult 893 role competency than to the transitions per se (Roberts & Davis, 2016). 894

Alternatively, it is possible that certain preconditions that we have not considered in the analyses have to be met for grandparents to undergo personality maturation due the transition to grandparenthood. For example, grandparents might need to live in close

proximity to their grandchild, see them on a regular basis, and provide grandchild care 898 above a certain quantity and quality (i.e., level of responsibility). To our knowledge, 899 however, there are presently no panel datasets with such detailed information regarding the 900 grandparent role in conjunction with multiple waves of Big Five personality data. Studies 901 in the well-being literature have provided initial evidence that more frequent contact with 902 grandchildren was associated with higher grandparental well-being (Arpino, Bordone, et 903 al., 2018; Danielsbacka et al., 2019; Danielsbacka & Tanskanen, 2016). However, 904 Danielsbacka et al. (2019) noted that this moderating effect of frequency of grandchild care 905 was due to between-person differences in grandparents, thus limiting a causal 906 interpretation as a mechanism of development. 907

908 Life Satisfaction

We did not find convincing evidence that life satisfaction changed as a consequence 909 of the transition to grandparenthood. Only in the LISS in comparison with the nonparent 910 control group did grandparents' life satisfaction increase slightly at the first assessment 911 following the transition to grandparenthood. This difference was present in grandmothers 912 but not grandfathers. While this pattern of effects is in line with several studies reporting 913 increases associated with women becoming grandmothers (e.g., Di Gessa et al., 2019; 914 Tanskanen et al., 2019), we did not uncover it reliably in both samples or both comparison 915 groups and also did not see consistent differences in the linear trajectories after the 916 transition to grandparenthood. As mentioned in the introduction, a study into the effects 917 of the transition on first-time grandparents' life satisfaction that used fixed effects regressions also did not discover any positive within-person effects of the transition (Sheppard & Monden, 2019). In line with this study, we also did not find evidence that grandparents who provided substantial grandchild care increased more strongly in life 921 satisfaction than those who did not and, likewise, grandparents' life satisfaction trajectories 922 were not moderated by employment status. 923

Overall, the accumulated research on life satisfaction indicates that there is an association between having grandchildren and higher life satisfaction on the between-person level—especially for (maternal) grandmothers who provide frequent grandchild care (Danielsbacka et al., 2011; Danielsbacka & Tanskanen, 2016)—but no within-person effect of the transition. One reason for this could be the presence of selection effects, that is, confounding that we have accounted for through the propensity score matching design (Luhmann et al., 2014; Thoemmes & Kim, 2011; VanderWeele et al., 2020).

Interindividual Differences in Change

931

941

942

943

Analyzing how grandparents differed interindividually in their trajectories of change 932 provides additional insight beyond the analysis of mean-level change. As a prerequisite for further analyses we checked that the parameters of change exhibited considerable interindividual differences in every model. This was the case as evidenced by significant 935 increases in model fit through the addition of random slopes. Similar to Denissen et 936 al. (2019) who found significant model fit improvements of random slopes in most models 937 (see also Doré & Bolger, 2018) this indicates that respondents—both grandparents and 938 matched controls—deviated to a considerable extent from the average trajectories that we 939 reported on previously. 15 940

Next, in keeping with our analytical strategy of testing results found in the grandparents against the matched controls, we specified heterogeneous random slope models and tested whether the addition of heterogeneous random slope variances for each group's change parameter lead to significantly higher model fit (indicating significant differences in the random slope variance estimates). We expected larger interindividual

 $^{^{15}}$ (internal footnote) If I only look at grandparents and test if adding random slopes to the (simplified) basic models increases model fit significantly I see that now only a minority of model comparisons indicate significant model fit increases (23 out of 72 test at $\alpha = .005$; almost none in the HRS - 3 out of 36 tests). Not sure, if this is just a sample size issue (but why are the HRS random slopes even more often n.s.? -> maybe within-peson variance overall too low) or what is going on. Also, a couple of the random slope models now only converge with singular fit (even if I try a different optimizer). I think this is because these particular random slope variances are estimated as too close to zero.

differences in the grandparents because life events and transitions differ in the impact on people's daily lives and in the degree that those who experience them perceive them as 947 meaningful or emotionally significant (Doré & Bolger, 2018; Luhmann et al., 2020). Our 948 results, however, indicated that interindividual differences were larger in the controls than 949 the grandparents for many models or that there were no significant group differences. Only 950 in a minority of tests for neuroticism, openness, and life satisfaction were interindividual 951 differences significantly larger in the grandparents. This concerned the linear slope before 952 the transition to grandparenthood. Thus, we did not find supporting evidence for our 953 hypothesis that interindividual differences in change would be larger in the grandparents 954 than the controls (H2). 955

There are two important points to consider regarding these results: First, most 956 previous studies investigating personality development did not compare interindividual differences in change between the event group and a comparison group (even if they did use 958 comparison groups for the main analyses; Denissen et al., 2019; Schwaba & Bleidorn, 2019; cf. Jackson & Beck, 2021). Second, an analysis across the entire life span that also used 960 LISS panel data demonstrated that interindividual differences in change in the Big Five 961 were largest in emerging adulthood and decreased in middle and old adulthood (except for 962 neuroticism; Schwaba & Bleidorn, 2018). Still, even in the later stages of the life span there 963 was a substantial degree of variability in change in the whole sample, up until circa 70 964 years of age for most domains (Schwaba & Bleidorn, 2018). Therefore, we propose 965 that—regarding the substantive question of how the transition affects interindividual 966 differences in change—it is more informative to test grandparents' degree of variability in 967 change against well-matched control groups than against zero as done previously. 968

Recently, Jackson and Beck (2021) have presented evidence that the experience of sixteen commonly analyzed life events was mostly associated with decreases in interindividual variation in the Big Five. They used a comparable approach to ours but in a SEM latent growth curve framework and not accounting for covariates related to

960

970

971

pre-existing group differences. Their results based on the German SOEP data suggested—counter to their expectations—that most life events made people *more* similar to each other (Jackson & Beck, 2021). Thus, coupled with our results it seems that the long-held assumption that life events and transitions generally produce increased heterogeneity between people needs to be scrutinized in future studies.

Rank-Order Stability

We also investigated whether grandparents' rank-order stability in the Big Five 979 personality traits and life satisfaction over the transition to grandparenthood differed from 980 that of the matched controls. The hypothesis of lower rank-order stability in the 981 grandparents (H3) was based on the idea that the transition to grandparenthood would be 982 associated with changes in grandparents' personality or life satisfaction which might not 983 only manifest in mean-level changes but also in the relative ordering of people to each 984 other over time. Conceptually, rank-order changes are possible in the absence of mean-level 985 changes. Empirically, however, we did not find evidence supporting our hypothesis: 986 Rank-order stability did not differ significantly between grandparents and controls and, 987 descriptively, was larger in the grandparents in the majority of comparisons. In a recent 988 study of the effects of eight different life events on the development of the Big Five 980 personality traits and life satisfaction (Denissen et al., 2019), comparably high rank-order 990 stability was reported in the event groups. Only the particularly adverse events widowhood 991 and disability significantly lowered respondents' rank-order stability (Denissen et al., 2019). 992 Regarding the Big Five's general age trajectories of rank-order stability, support for inverted U-shape trajectories was recently strengthened in a study of two panel data sets (Seifert et al., 2021). This study also explored that health deterioration accounted for the decline of personality stability in old age. Therefore, it is possible that in later developmental phases (see also Hutteman et al., 2014) rank-order stability of personality is 997 largely influenced by health status and less by normative life events. In the context of

grandparenthood, this relates to research into health benefits (Chung & Park, 2018;
Condon et al., 2018; Di Gessa et al., 2016a, 2016b; cf. Ates, 2017) and decreases to
mortality risk associated with grandparenthood or grandchild care (Choi, 2020;
Christiansen, 2014; Hilbrand et al., 2017; cf. Ellwardt et al., 2021). Thereby,
grandparenthood might have a time-lagged effect on personality stability through
protective effects on health. However, with the currently available data such a mediating
effect cannot be reliably recovered (under realistic assumptions; Rohrer et al., 2021).

1006 Limitations and Future Directions

1024

The current study has a number of strengths that bolster the robustness of its 1007 inferences: It features a preregistered analysis of archival data with an internal cross-study 1008 replication, a propensity score matching design that carefully deliberated covariate choice, 1009 and a twofold comparison of all effects of the grandparents—against matched parents and 1010 nonparents. To obtain a more complete picture of personality development, we analyzed 1011 mean-level changes, interindividual differences in change, and changes to rank-order 1012 stability. Both of the panel studies we used had its strengths and weaknesses: The HRS 1013 had a larger sample of first-time grandparents besides information on important 1014 moderators but assessed personality and life satisfaction only every four years 1015 (within-person). The LISS assessed the outcomes every year (apart from a few waves with 1016 planned missingness) but restricted the grandparent sample through filtering of the 1017 relevant questions to employed respondents resulting in a smaller and younger sample. 1018 Still, a number of limitations need to be addressed: First, there remains some doubt 1019 whether we were able to follow truly socially invested grandparents over time. More 1020 detailed information regarding a grandparent's relationship with their first and later 102 grandchildren and the level of care a grandparent provides would be a valuable source of 1022 information on social investment, as would be information on possible constraining factors 1023

such as length and cost of travel between grandparent and grandchild. Lacking such precise

contextual information, the multidimensionality of the grandparent role (Buchanan & 1025 Rotkirch, 2018; Findler et al., 2013; Thiele & Whelan, 2006) might lend itself to future 1026 investigations into grandparents' personality development using growth mixture models 1027 (Grimm & Ram, 2009; Ram & Grimm, 2009). On a similar note, we did not consider 1028 grandparents' subjective perception of the transition to grandparenthood in terms of the 1020 emotional significance, meaningfulness, and impact to daily lives which might be 1030 responsible for differential individual change trajectories (Kritzler et al., 2021; Luhmann et 1031 al., 2020). 1032

Second, we relied on self-report personality data and did not include other-reports by family members or close friends (Luan et al., 2017; McCrae, 2018; McCrae & Mõttus, 2019; Mõttus et al., 2019). Thus, our results might be influenced by common method bias (Podsakoff et al., 2003). Large-scale panel data incorporating both self- and other-reports of personality over time would be needed to overcome this issue (e.g., Oltmanns et al., 2020).

Third, a causal interpretation of our results depends on a number of assumptions 1039 that are not directly testable with the data (Li, 2013; Stuart, 2010): most importantly, 1040 that we picked the right sets of covariates, that our model to estimate the propensity score 1041 was correctly specified, and that there was no substantial remaining bias due to 1042 unmeasured confounding. Working with archival data meant that we had no influence on 1043 data collection, and we also aimed for roughly equivalent sets of covariates across both 1044 data sets. Therefore, we had to make some compromises to covariate choice. Still, we 1045 believe that our procedure to select covariates following recent state-of-the-art 1046 recommendations (see Methods; VanderWeele et al., 2020), and to substantiate each 1047 covariate's selection explicitly within our preregistration greatly improved upon previously 1048 applied practices. Regarding the propensity score estimation, we opted to estimate the 1040 grandparents' propensity scores at a specific time point at least two years before the 1050 transition to grandparenthood which had the advantages that (1) the covariates were 1051

uncontaminated by anticipation of the transition, and (2) the matched controls had a clear counterfactual timeline of transition (for similar recent approaches analyzing life events, see Balbo & Arpino, 2016; Krämer & Rodgers, 2020; van Scheppingen & Leopold, 2020).

Inverse probability of treatment weighting (Hernán & Robins, 2020; Thoemmes & Ong, 2016), which is able to directly account for the longitudinal effects of time-varying covariates, may constitute a valuable alternative analytical strategy for future studies.

Fourth, our results only pertain to the countries for which our data are 1058 representative on a population-level, the Netherlands and the United States. Personality 1059 development, and more specifically personality maturation, have been examined 1060 cross-culturally (Bleidorn et al., 2013; Chopik & Kitayama, 2018). On the one hand, these 1061 studies showed universal average patterns of change towards greater maturity over the life 1062 span, and on the other hand they emphasized cultural differences regarding norms and 1063 values and the temporal onset of social roles. For grandparenthood, there are substantial 1064 demographic differences between countries (Leopold & Skopek, 2015), as well as differences 1065 in public child care systems which may demand different levels of grandparental 1066 involvement (Bordone et al., 2017; Hank & Buber, 2009). Compared to the US, Dutch 1067 people on average become grandparents six years later (Leopold & Skopek, 2015) and, 1068 although both countries have largely market-based systems for early child care, Dutch 1069 parents on average have access to more fully developed child care systems through 1070 (capped) governmental benefits (OECD, 2020). Despite these differences, results from the 1071 Dutch and US samples were on the whole relatively similar to each other. 1072

Lastly, while we assessed our dependent variables through highly reliable scales in
both samples, there was a conceptual difference in the Big Five measures (see John &
Srivastava, 1999): In the LISS, the IPIP Big-Five Inventory (Goldberg, 1992) presented as
items statements to which respondents indicated how accurately they described them
(using a bipolar response scale). However, in the HRS, the Midlife Development Inventory
(Lachman & Weaver, 1997) used adjectives as items to ask respondents how well they

described them (using a unipolar response scale). This discrepancy hindered the
between-sample comparison somewhat and also resulted in different distributions of the
Big Five across samples (see Fig. S2-S7). The possibility should also be pointed out that
our analyses on the domain-level of the Big Five were be too broad conceptually to identify
patterns of personality development over the transition to grandparenthood that are
discernible on the level of facets or nuances (Mõttus & Rozgonjuk, 2021).

1085 Conclusion

Do personality traits change in grandparents over the transition to 1086 grandparenthood? Using data from two nationally representative panel studies in a 1087 preregistered propensity score matching design, the current study revealed that trajectories 1088 of the Big Five personality traits remained predominantly stable in first-time grandparents 1089 over this transition compared to matched parents and nonparents. We found slight 1090 post-transition increases to grandparents' agreeableness and conscientiousness in line with 1091 our hypothesis of personality maturation based on the social investment principle. 1092 However, these effects were minuscule and inconsistent across the different analysis 1093 samples. Together with (1) the lack of consistent moderation of personality development 1094 by providing substantial grandchild care, (2) mostly smaller interindividual differences in 1095 change in grandparents (vs. matched controls), and (3) comparable rank-order stability in 1096 grandparents and matched respondents, we conclude that the transition to 1097 grandparenthood did not act as an important developmental task driving personality 1098 development in middle adulthood and old age (Hutteman et al., 2014). With more detailed 1090 assessment of the grandparent role, future research could investigate if personality 1100 development occurs in a subset of grandparents who are highly socially invested. 1101

Acknowledgements

1102

We thank Joe Rodgers, Jaap Denissen, and Julia Rohrer for helpful comments on this project.

1105 References

Aassve, A., Luppi, F., & Mencarini, L. (2021). A first glance into the black box of life satisfaction surrounding childbearing. *Journal of Population Research*.

https://doi.org/10.1007/s12546-021-09267-z

Allemand, M., Zimprich, D., & Martin, M. (2008). Long-term correlated change in personality traits in old age. *Psychology and Aging*, 23(3), 545–557.

https://doi.org/10.1037/a0013239

1108

Anusic, I., & Schimmack, U. (2016). Stability and change of personality traits, self-esteem,
and well-being: Introducing the meta-analytic stability and change model of retest
correlations. Journal of Personality and Social Psychology, 110(5), 766–781.
https://doi.org/10.1037/pspp0000066

Anusic, I., Yap, S., & Lucas, R. E. (2014a). Does personality moderate reaction and adaptation to major life events? Analysis of life satisfaction and affect in an Australian national sample. *Journal of Research in Personality*, 51, 69–77. https://doi.org/10.1016/j.jrp.2014.04.009

Anusic, I., Yap, S., & Lucas, R. E. (2014b). Testing set-point theory in a Swiss national sample: Reaction and adaptation to major life events. *Social Indicators Research*, 1122 119(3), 1265–1288. https://doi.org/10.1007/s11205-013-0541-2

Ardelt, M. (2000). Still stable after all these years? Personality stability theory revisited.

Social Psychology Quarterly, 63(4), 392–405. https://doi.org/10.2307/2695848

Arpino, B., Bordone, V., & Balbo, N. (2018). Grandparenting, education and subjective well-being of older Europeans. *European Journal of Ageing*, 15(3), 251–263. https://doi.org/10.1007/s10433-018-0467-2

Arpino, B., Gumà, J., & Julià, A. (2018). Family histories and the demography of grandparenthood. *Demographic Research*, 39(42), 1105–1150.

```
https://doi.org/10.4054/DemRes.2018.39.42
1130
    Ashton, M. C., & Lee, K. (2007). Empirical, Theoretical, and Practical Advantages of the
1131
           HEXACO Model of Personality Structure. Personality and Social Psychology
1132
           Review, 11(2), 150–166. https://doi.org/10.1177/1088868306294907
1133
    Ashton, M. C., & Lee, K. (2020). Objections to the HEXACO Model of Personality
1134
           Structure and why those Objections Fail. European Journal of Personality, 34(4),
1135
           492–510. https://doi.org/10.1002/per.2242
1136
    Asselmann, E., & Specht, J. (2020a). Taking the ups and downs at the rollercoaster of
1137
           love: Associations between major life events in the domain of romantic relationships
1138
           and the Big Five personality traits. Developmental Psychology, 56(9), 1803–1816.
1139
           https://doi.org/10.1037/dev0001047
1140
    Asselmann, E., & Specht, J. (2021). Personality maturation and personality relaxation:
1141
           Differences of the Big Five personality traits in the years around the beginning and
1142
           ending of working life. Journal of Personality, n/a(n/a).
1143
           https://doi.org/10.1111/jopy.12640
1144
    Asselmann, E., & Specht, J. (2020b). Testing the Social Investment Principle Around
1145
           Childbirth: Little Evidence for Personality Maturation Before and After Becoming
1146
           a Parent. European Journal of Personality, n/a(n/a).
1147
           https://doi.org/10.1002/per.2269
    Ates, M. (2017). Does grandchild care influence grandparents' self-rated health? Evidence
           from a fixed effects approach. Social Science & Medicine, 190, 67–74.
1150
           https://doi.org/10.1016/j.socscimed.2017.08.021
1151
    Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles with R
           Markdown. https://github.com/crsh/papaja
1153
```

Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects

- of confounding in observational studies. Multivariate Behavioral Research, 46(3), 1155 399–424. https://doi.org/10.1080/00273171.2011.568786 1156 Austin, P. C. (2017). Double propensity-score adjustment: A solution to design bias or bias 1157 due to incomplete matching. Statistical Methods in Medical Research, 26(1), 1158 201–222. https://doi.org/10.1177/0962280214543508 1159 Baird, B. M., Lucas, R. E., & Donnellan, M. B. (2010). Life satisfaction across the lifespan: 1160 Findings from two nationally representative panel studies. Social Indicators 1161 Research, 99(2), 183–203. https://doi.org/10.1007/s11205-010-9584-9 1162 Balbo, N., & Arpino, B. (2016). The role of family orientations in shaping the effect of 1163 fertility on subjective well-being: A propensity score matching approach. 1164 Demography, 53(4), 955–978. https://doi.org/10.1007/s13524-016-0480-z 1165 Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life Span Theory in 1166 Developmental Psychology. In R. M. Lerner & W. Damon (Eds.), Handbook of child 1167 psychology: Theoretical models of human development (pp. 569-664). John Wiley & 1168 Sons Inc. 1169 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects 1170 models using lme4. Journal of Statistical Software, 67(1), 1–48. 1171 https://doi.org/10.18637/jss.v067.i01 1172 Beck, E. D., & Jackson, J. J. (2021). A Mega-Analysis of Personality Prediction: 1173
- Beck, E. D., & Jackson, J. J. (2021). A Mega-Analysis of Personality Prediction:

 Robustness and Boundary Conditions. *Journal of Personality and Social*Psychology, In Press. https://doi.org/10.31234/osf.io/7pg9b
- Bengtson, V. L. (2001). Beyond the Nuclear Family: The Increasing Importance of
 Multigenerational Bonds. *Journal of Marriage and Family*, 63(1), 1–16.
 https://doi.org/10.1111/j.1741-3737.2001.00001.x
- Benjamin, D. J., Berger, J. O., Clyde, M., Wolpert, R. L., Johnson, V. E., Johannesson,

```
M., Dreber, A., Nosek, B. A., Wagenmakers, E. J., Berk, R., & Brembs, B. (2018).
1180
           Redefine statistical significance. Nature Human Behavior, 2, 6–10.
1181
           https://doi.org/10.1038/s41562-017-0189-z
1182
    Bleidorn, W., Hill, P. L., Back, M. D., Denissen, J. J. A., Hennecke, M., Hopwood, C. J.,
1183
           Jokela, M., Kandler, C., Lucas, R. E., Luhmann, M., Orth, U., Wagner, J., Wrzus,
1184
           C., Zimmermann, J., & Roberts, B. W. (2019). The policy relevance of personality
1185
           traits. American Psychologist, 74(9), 1056–1067.
1186
           https://doi.org/10.1037/amp0000503
1187
    Bleidorn, W., Hopwood, C. J., Back, M. D., Denissen, J. J. A., Hennecke, M., Hill, P. L.,
1188
           Jokela, M., Kandler, C., Lucas, R. E., Luhmann, M., Orth, U., Roberts, B. W.,
1189
           Wagner, J., Wrzus, C., & Zimmermann, J. (2021). Personality Trait Stability and
1190
           Change. Personality Science, 2(1), 1–20. https://doi.org/10.5964/ps.6009
1191
    Bleidorn, W., Hopwood, C. J., & Lucas, R. E. (2018). Life events and personality trait
1192
           change. Journal of Personality, 86(1), 83–96. https://doi.org/10.1111/jopy.12286
1193
    Bleidorn, W., Klimstra, T. A., Denissen, J. J. A., Rentfrow, P. J., Potter, J., & Gosling, S.
1194
           D. (2013). Personality Maturation Around the World: A Cross-Cultural
1195
           Examination of Social-Investment Theory. Psychological Science, 24(12),
1196
           2530–2540. https://doi.org/10.1177/0956797613498396
1197
    Bleidorn, W., & Schwaba, T. (2018). Retirement is associated with change in self-esteem.
1198
           Psychology and Aging, 33(4), 586-594. https://doi.org/10.1037/pag0000253
1199
    Bleidorn, W., & Schwaba, T. (2017). Personality development in emerging adulthood. In
1200
           J. Specht (Ed.), Personality Development Across the Lifespan (pp. 39–51).
1201
           Academic Press. https://doi.org/10.1016/B978-0-12-804674-6.00004-1
1202
    Bordone, V., Arpino, B., & Aassve, A. (2017). Patterns of grandparental child care across
1203
           Europe: The role of the policy context and working mothers' need. Ageing and
1204
           Society, 37(4), 845–873. https://doi.org/10.1017/S0144686X1600009X
1205
```

- Brüderl, J., & Ludwig, V. (2015). Fixed-Effects Panel Regression (H. Best & C. Wolf, Eds.). SAGE.
- Buchanan, A., & Rotkirch, A. (2018). Twenty-first century grandparents: Global
 perspectives on changing roles and consequences. *Contemporary Social Science*,
 13(2), 131–144. https://doi.org/10.1080/21582041.2018.1467034
- Burgette, L. F., & Reiter, J. P. (2010). Multiple Imputation for Missing Data via

 Sequential Regression Trees. American Journal of Epidemiology, 172(9), 1070–1076.

 https://doi.org/10.1093/aje/kwq260
- Caspi, A., & Moffitt, T. E. (1993). When do individual differences matter? A paradoxical theory of personality coherence. *Psychological Inquiry*, 4(4), 247–271. https://doi.org/10.1207/s15327965pli0404_1
- Choi, S.-w. E. (2020). Grandparenting and Mortality: How Does Race-Ethnicity Matter?

 Journal of Health and Social Behavior, 61(1), 96–112.

 https://doi.org/10.1177/0022146520903282
- Chopik, W. J. (2018). Does personality change following spousal bereavement? *Journal of Research in Personality*, 72, 10–21. https://doi.org/10.1016/j.jrp.2016.08.010
- Chopik, W. J., & Kitayama, S. (2018). Personality change across the life span: Insights
 from a cross-cultural, longitudinal study. *Journal of Personality*, 86(3), 508–521.
 https://doi.org/10.1111/jopy.12332
- Chopik, W. J., Oh, J., Kim, E. S., Schwaba, T., Krämer, M. D., Richter, D., & Smith, J. (2020). Changes in optimism and pessimism in response to life events: Evidence from three large panel studies. *Journal of Research in Personality*, 88, 103985. https://doi.org/10.1016/j.jrp.2020.103985
- Christiansen, S. G. (2014). The association between grandparenthood and mortality. *Social*Science & Medicine, 118, 89–96. https://doi.org/10.1016/j.socscimed.2014.07.061

```
Chung, S., & Park, A. (2018). The longitudinal effects of grandchild care on depressive
           symptoms and physical health of grandmothers in South Korea: A latent growth
1232
           approach. Aging & Mental Health, 22(12), 1556-1563.
1233
           https://doi.org/10.1080/13607863.2017.1376312
1234
    Coall, D. A., & Hertwig, R. (2011). Grandparental Investment: A Relic of the Past or a
1235
           Resource for the Future? Current Directions in Psychological Science, 20(2), 93–98.
           https://doi.org/10.1177/0963721411403269
1237
    Coall, D. A., Hilbrand, S., Sear, R., & Hertwig, R. (2016). A New Niche? The Theory of
1238
           Grandfather Involvement. In A. Buchanan & A. Rotkirch (Eds.), Grandfathers:
1230
           Global Perspectives (pp. 21–44). Palgrave Macmillan UK.
1240
           https://doi.org/10.1057/978-1-137-56338-5_2
1241
    Coall, D. A., Hilbrand, S., Sear, R., & Hertwig, R. (2018). Interdisciplinary perspectives on
1242
           grandparental investment: A journey towards causality. Contemporary Social
1243
           Science, 13(2), 159–174. https://doi.org/10.1080/21582041.2018.1433317
1244
    Condon, J., Corkindale, C., Luszcz, M., & Gamble, E. (2013). The Australian First-time
1245
           Grandparents Study: Time spent with the grandchild and its predictors.
1246
           Australasian Journal on Ageing, 32(1), 21-27.
1247
           https://doi.org/10.1111/j.1741-6612.2011.00588.x
    Condon, J., Luszcz, M., & McKee, I. (2018). The transition to grandparenthood: A
1249
           prospective study of mental health implications. Aging & Mental Health, 22(3),
1250
           336–343. https://doi.org/10.1080/13607863.2016.1248897
1251
    Cook, T. D., Zhu, N., Klein, A., Starkey, P., & Thomas, J. (2020). How much bias results
1252
           if a quasi-experimental design combines local comparison groups, a pretest outcome
1253
           measure and other covariates?: A within study comparison of preschool effects.
1254
           Psychological Methods, Advance Online Publication, 0.
1255
```

https://doi.org/10.1037/met0000260

- Costa, P. T., McCrae, R. R., & Löckenhoff, C. E. (2019). Personality Across the Life Span.
- Annual Review of Psychology, 70(1), 423–448.
- https://doi.org/10.1146/annurev-psych-010418-103244
- Damian, R. I., Spengler, M., Sutu, A., & Roberts, B. W. (2019). Sixteen going on sixty-six:
- A longitudinal study of personality stability and change across 50 years. Journal of
- 1262 Personality and Social Psychology, 117(3), 674–695.
- https://doi.org/10.1037/pspp0000210
- Danielsbacka, M., & Tanskanen, A. O. (2016). The association between grandparental
- investment and grandparents' happiness in Finland. Personal Relationships, 23(4),
- 787–800. https://doi.org/10.1111/pere.12160
- Danielsbacka, M., Tanskanen, A. O., Coall, D. A., & Jokela, M. (2019). Grandparental
- childcare, health and well-being in Europe: A within-individual investigation of
- longitudinal data. Social Science & Medicine, 230, 194–203.
- https://doi.org/10.1016/j.socscimed.2019.03.031
- Danielsbacka, M., Tanskanen, A. O., Jokela, M., & Rotkirch, A. (2011). Grandparental
- 1272 Child Care in Europe: Evidence for Preferential Investment in More Certain Kin.
- Evolutionary Psychology, 9(1), 147470491100900102.
- https://doi.org/10.1177/147470491100900102
- 1275 Denissen, J. J. A., Geenen, R., Soto, C. J., John, O. P., & van Aken, M. A. G. (2020). The
- Big Five Inventory2: Replication of Psychometric Properties in a Dutch Adaptation
- and First Evidence for the Discriminant Predictive Validity of the Facet Scales.
- Journal of Personality Assessment, 102(3), 309–324.
- https://doi.org/10.1080/00223891.2018.1539004
- Denissen, J. J. A., Luhmann, M., Chung, J. M., & Bleidorn, W. (2019). Transactions
- between life events and personality traits across the adult lifespan. Journal of
- 1282 Personality and Social Psychology, 116(4), 612–633.

```
https://doi.org/10.1037/pspp0000196
```

- Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction With Life Scale. Journal of Personality Assessment, 49(1), 71–75.
- https://doi.org/10.1207/s15327752jpa4901_13
- Di Gessa, G., Bordone, V., & Arpino, B. (2019). Becoming a Grandparent and Its Effect
 on Well-Being: The Role of Order of Transitions, Time, and Gender. *The Journals*of Gerontology, Series B: Psychological Sciences and Social Sciences, Advance
 Online Publication. https://doi.org/10.1093/geronb/gbz135
- Di Gessa, G., Glaser, K., & Tinker, A. (2016a). The Health Impact of Intensive and

 Nonintensive Grandchild Care in Europe: New Evidence From SHARE. The

 Journals of Gerontology, Series B: Psychological Sciences and Social Sciences,

 71(5), 867–879. https://doi.org/10.1093/geronb/gbv055
- Di Gessa, G., Glaser, K., & Tinker, A. (2016b). The impact of caring for grandchildren on the health of grandparents in Europe: A lifecourse approach. Social Science & Medicine, 152, 166–175. https://doi.org/10.1016/j.socscimed.2016.01.041
- Di Gessa, G., Zaninotto, P., & Glaser, K. (2020). Looking after grandchildren: Gender
 differences in "when," "what," and "why": Evidence from the English Longitudinal
 Study of Ageing. *Demographic Research*, 43(53), 1545–1562.
 https://doi.org/10.4054/DemRes.2020.43.53
- Doré, B., & Bolger, N. (2018). Population- and individual-level changes in life satisfaction
 surrounding major life stressors. Social Psychological and Personality Science, 9(7),
 875–884. https://doi.org/10.1177/1948550617727589
- Ellwardt, L., Hank, K., & Mendes de Leon, C. F. (2021). Grandparenthood and risk of mortality: Findings from the Health and Retirement Study. Social Science & Medicine, 268, 113371. https://doi.org/10.1016/j.socscimed.2020.113371

```
Elwert, F., & Winship, C. (2014). Endogenous Selection Bias: The Problem of
1308
           Conditioning on a Collider Variable. Annual Review of Sociology, 40(1), 31–53.
1309
           https://doi.org/10.1146/annurev-soc-071913-043455
1310
    Findler, L., Taubman - Ben-Ari, O., Nuttman-Shwartz, O., & Lazar, R. (2013).
1311
           Construction and Validation of the Multidimensional Experience of
1312
           Grandparenthood Set of Inventories. Social Work Research, 37(3), 237–253.
1313
           https://doi.org/10.1093/swr/svt025
1314
    Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage.
1315
    Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure.
1316
           Psychological Assessment, 4(1), 26–42. https://doi.org/10.1037/1040-3590.4.1.26
    Golle, J., Rose, N., Göllner, R., Spengler, M., Stoll, G., Hübner, N., Rieger, S., Trautwein,
1318
           U., Lüdtke, O., Roberts, B. W., & Nagengast, B. (2019). School or Work? The
1319
           Choice May Change Your Personality. Psychological Science, 30(1), 32–42.
1320
           https://doi.org/10.1177/0956797618806298
1321
    Götz, F. M., Gosling, S. D., & Rentfrow, P. J. (2021). Small Effects: The Indispensable
1322
           Foundation for a Cumulative Psychological Science. Perspectives on Psychological
1323
           Science, 1745691620984483. https://doi.org/10.1177/1745691620984483
1324
    Graham, E. K., Weston, S. J., Gerstorf, D., Yoneda, T. B., Booth, T., Beam, C. R.,
1325
           Petkus, A. J., Drewelies, J., Hall, A. N., Bastarache, E. D., Estabrook, R., Katz, M.
1326
           J., Turiano, N. A., Lindenberger, U., Smith, J., Wagner, G. G., Pedersen, N. L.,
1327
           Allemand, M., Spiro Iii, A., ... Mroczek, D. K. (2020). Trajectories of Big Five
1328
           Personality Traits: A Coordinated Analysis of 16 Longitudinal Samples. European
1329
           Journal of Personality, n/a(n/a). https://doi.org/10.1002/per.2259
1330
    Greenland, S. (2003). Quantifying biases in causal models: Classical confounding vs
1331
           collider-stratification bias. Epidemiology, 14(3), 300–306.
1332
           https://doi.org/10.1097/01.EDE.0000042804.12056.6C
```

- Greenland, S., & Finkle, W. D. (1995). A Critical Look at Methods for Handling Missing
- 1335 Covariates in Epidemiologic Regression Analyses. American Journal of
- Epidemiology, 142(12), 1255-1264.
- https://doi.org/10.1093/oxfordjournals.aje.a117592
- Grimm, K. J., & Ram, N. (2009). A second-order growth mixture model for developmental
- research. Research in Human Development, 6(2-3), 121-143.
- https://doi.org/10.1080/15427600902911221
- Hagestad, G. O., & Neugarten, B. L. (1985). Age and the life course. In E. Shanas & R.
- Binstock (Eds.), Handbook of aging and the social sciences. Van Nostrand and
- Reinhold.
- Hallberg, K., Cook, T. D., Steiner, P. M., & Clark, M. H. (2018). Pretest Measures of the
- Study Outcome and the Elimination of Selection Bias: Evidence from Three Within
- Study Comparisons. Prevention Science, 19(3), 274–283.
- https://doi.org/10.1007/s11121-016-0732-6
- Hank, K., & Buber, I. (2009). Grandparents Caring for their Grandchildren: Findings
- From the 2004 Survey of Health, Ageing, and Retirement in Europe. Journal of
- 1350 Family Issues, 30(1), 53–73. https://doi.org/10.1177/0192513X08322627
- Hayslip, B., Jr, Fruhauf, C. A., & Dolbin-MacNab, M. L. (2019). Grandparents Raising
- Grandchildren: What Have We Learned Over the Past Decade? The Gerontologist,
- 1353 59(3), e152-e163. https://doi.org/10.1093/geront/gnx106
- Hentschel, S., Eid, M., & Kutscher, T. (2017). The Influence of Major Life Events and
- Personality Traits on the Stability of Affective Well-Being. Journal of Happiness
- Studies, 18(3), 719–741. https://doi.org/10.1007/s10902-016-9744-y
- Hernán, M. A., & Robins, J. M. (2020). Causal Inference: What If. Chapman & Hall/CRC.
- Hilbrand, S., Coall, D. A., Gerstorf, D., & Hertwig, R. (2017). Caregiving within and

- beyond the family is associated with lower mortality for the caregiver: A
- prospective study. Evolution and Human Behavior, 38(3), 397–403.
- https://doi.org/10.1016/j.evolhumbehav.2016.11.010
- Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric
- preprocessing for parametric causal inference. Journal of Statistical Software, 42(8),
- 1-28.
- Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change.
- Routledge/Taylor & Francis Group.
- Hutteman, R., Hennecke, M., Orth, U., Reitz, A. K., & Specht, J. (2014). Developmental
- Tasks as a Framework to Study Personality Development in Adulthood and Old
- Age. European Journal of Personality, 28(3), 267–278.
- https://doi.org/10.1002/per.1959
- 1371 Infurna, F. J., Gerstorf, D., & Lachman, M. E. (2020). Midlife in the 2020s: Opportunities
- and challenges. American Psychologist, 75(4), 470–485.
- https://doi.org/10.1037/amp0000591
- Jackson, J. J., & Beck, E. D. (2021). Personality Development Beyond the Mean: Do Life
- Events Shape Personality Variability, Structure, and Ipsative Continuity? The
- Journals of Gerontology: Series B, 76(1), 20–30.
- https://doi.org/10.1093/geronb/gbaa093
- John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big
- Five trait taxonomy: History, measurement, and conceptual issues. In O. P. John,
- R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality: Theory and research
- (pp. 114–158). The Guilford Press.
- John, O. P., & Srivastava, S. (1999). The Big Five Trait taxonomy: History, measurement,
- and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), Handbook of
- personality: Theory and research, 2nd ed. (pp. 102–138). Guilford Press.

- Johnson, A. B., & Rodgers, J. L. (2006). The impact of having children on the lives of women: The Effects of Children Questionnaire. *Journal of Applied Social*
- Psychology, 36(11), 2685–2714. https://doi.org/10.1111/j.0021-9029.2006.00123.x
- Kandler, C., Kornadt, A. E., Hagemeyer, B., & Neyer, F. J. (2015). Patterns and sources
- of personality development in old age. Journal of Personality and Social Psychology,
- 1390 109(1), 175–191. https://doi.org/10.1037/pspp0000028
- Krämer, M. D., & Rodgers, J. L. (2020). The impact of having children on domain-specific
- life satisfaction: A quasi-experimental longitudinal investigation using the
- Socio-Economic Panel (SOEP) data. Journal of Personality and Social Psychology,
- 119(6), 1497–1514. https://doi.org/10.1037/pspp0000279
- Kritzler, S., Rakhshani, A., Terwiel, S., Fassbender, I., Donnellan, B., Lucas, R. E., &
- Luhmann, M. (2021). How Are Common Major Life Events Perceived? Exploring
- Differences Between and Variability of Different Typical Event Profiles and Raters.
- 1398 PsyArXiv. https://doi.org/10.31234/osf.io/fncz3
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests
- in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.
- https://doi.org/10.18637/jss.v082.i13
- Lachman, M. E., & Weaver, S. L. (1997). The Midlife Development Inventory (MIDI)
- personality scales: Scale construction and scoring. Brandeis University.
- Leopold, T., & Skopek, J. (2015). The Demography of Grandparenthood: An International
- Profile. Social Forces, 94(2), 801–832. https://doi.org/10.1093/sf/sov066
- Li, M. (2013). Using the Propensity Score Method to Estimate Causal Effects: A Review
- and Practical Guide. Organizational Research Methods, 16(2), 188–226.
- https://doi.org/10.1177/1094428112447816
- Lodi-Smith, J., & Roberts, B. W. (2007). Social Investment and Personality: A

```
Meta-Analysis of the Relationship of Personality Traits to Investment in Work,
1410
           Family, Religion, and Volunteerism. Personality and Social Psychology Review,
1411
           11(1), 68–86. https://doi.org/10.1177/1088868306294590
1412
    Luan, Z., Hutteman, R., Denissen, J. J. A., Asendorpf, J. B., & van Aken, M. A. G. (2017).
1413
           Do you see my growth? Two longitudinal studies on personality development from
1414
           childhood to young adulthood from multiple perspectives. Journal of Research in
1415
           Personality, 67, 44-60. https://doi.org/10.1016/j.jrp.2016.03.004
1416
    Lucas, R. E., & Donnellan, M. B. (2011). Personality development across the life span:
1417
           Longitudinal analyses with a national sample from Germany. Journal of Personality
1418
           and Social Psychology, 101(4), 847–861. https://doi.org/10.1037/a0024298
1419
    Luhmann, M., Fassbender, I., Alcock, M., & Haehner, P. (2020). A dimensional taxonomy
           of perceived characteristics of major life events. Journal of Personality and Social
1421
           Psychology, No Pagination Specified—No Pagination Specified.
1422
           https://doi.org/10.1037/pspp0000291
1423
    Luhmann, M., Hofmann, W., Eid, M., & Lucas, R. E. (2012). Subjective well-being and
1424
           adaptation to life events: A meta-analysis. Journal of Personality and Social
1425
           Psychology, 102(3), 592–615. https://doi.org/10.1037/a0025948
1426
    Luhmann, M., Orth, U., Specht, J., Kandler, C., & Lucas, R. E. (2014). Studying changes
1427
           in life circumstances and personality: It's about time. European Journal of
1428
           Personality, 28(3), 256–266. https://doi.org/10.1002/per.1951
1429
    Lumsdaine, R. L., & Vermeer, S. J. C. (2015). Retirement timing of women and the role of
1430
           care responsibilities for grandchildren. Demography, 52(2), 433–454.
1431
           https://doi.org/10.1007/s13524-015-0382-5
    Lüdtke, O., Roberts, B. W., Trautwein, U., & Nagy, G. (2011). A random walk down
1433
           university avenue: Life paths, life events, and personality trait change at the
1434
```

transition to university life. Journal of Personality and Social Psychology, 101(3),

```
620-637. https://doi.org/10.1037/a0023743
1436
    MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of
1437
           dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40.
1438
           https://doi.org/10.1037/1082-989X.7.1.19
1439
    Mahne, K., & Huxhold, O. (2014). Grandparenthood and Subjective Well-Being:
1440
           Moderating Effects of Educational Level. The Journals of Gerontology: Series B,
1441
           70(5), 782–792. https://doi.org/10.1093/geronb/gbu147
1442
    Mann, R. (2007). Out of the shadows?: Grandfatherhood, age and masculinities.
1443
           Masculinity and Aging, 21(4), 281–291.
1444
           https://doi.org/10.1016/j.jaging.2007.05.008
1445
    Margolis, R., & Verdery, A. M. (2019). A Cohort Perspective on the Demography of
1446
           Grandparenthood: Past, Present, and Future Changes in Race and Sex Disparities
           in the United States. Demography, 56(4), 1495-1518.
1448
           https://doi.org/10.1007/s13524-019-00795-1
1449
    Margolis, R., & Wright, L. (2017). Healthy Grandparenthood: How Long Is It, and How
1450
           Has It Changed? Demography, 54(6), 2073-2099.
1451
           https://doi.org/10.1007/s13524-017-0620-0
    Marsh, H. W., Nagengast, B., & Morin, A. J. S. (2013). Measurement invariance of big-five
           factors over the life span: ESEM tests of gender, age, plasticity, maturity, and la
1454
           dolce vita effects. Developmental Psychology, 49(6), 1194–1218.
           https://doi.org/10.1037/a0026913
    McCrae, R. R. (1993). Moderated analyses of longitudinal personality stability. Journal of
```

McCrae, R. R. (2018). Method biases in single-source personality assessments.

Personality and Social Psychology, 65(3), 577–585.

https://doi.org/10.1037/0022-3514.65.3.577

Psychological Assessment, 30(9), 1160–1173. https://doi.org/10.1037/pas0000566 1461 McCrae, R. R., & Mõttus, R. (2019). What personality scales measure: A new 1462 psychometrics and its implications for theory and assessment. Current Directions in 1463 Psychological Science, 28(4), 415–420. https://doi.org/10.1177/0963721419849559 1464 McNeish, D. (2018). Thanks coefficient alpha, we'll take it from here. Psychological 1465 Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144 1466 McNeish, D., & Kelley, K. (2019). Fixed effects models versus mixed effects models for 1467 clustered data: Reviewing the approaches, disentangling the differences, and making 1468 recommendations. Psychological Methods, 24(1), 20–35. 1469 https://doi.org/10.1037/met0000182 1470 Meyer, M. H., & Kandic, A. (2017). Grandparenting in the United States. *Innovation in* 1471 Aging, 1(2), 1–10. https://doi.org/10.1093/geroni/igx023 1472 Mitra, R., & Reiter, J. P. (2016). A comparison of two methods of estimating propensity 1473 scores after multiple imputation. Statistical Methods in Medical Research, 25(1), 1474 188–204. https://doi.org/10.1177/0962280212445945 1475 Mõttus, R., Allik, J., & Realo, A. (2019). Do Self-Reports and Informant-Ratings Measure 1476 the Same Personality Constructs? European Journal of Psychological Assessment, 1477 1-7. https://doi.org/10.1027/1015-5759/a000516 Mõttus, R., Johnson, W., & Deary, I. J. (2012). Personality traits in old age: Measurement and rank-order stability and some mean-level change. Psychology and Aging, 27(1), 1480 243-249. https://doi.org/10.1037/a0023690 1481 Mõttus, R., Kandler, C., Bleidorn, W., Riemann, R., & McCrae, R. R. (2017). Personality traits below facets: The consensual validity, longitudinal stability, heritability, and 1483 utility of personality nuances. Journal of Personality and Social Psychology, 112(3), 1484

474–490. https://doi.org/10.1037/pspp0000100

- Mõttus, R., & Rozgonjuk, D. (2021). Development is in the details: Age differences in the Big Five domains, facets, and nuances. Journal of Personality and Social 1487 Psychology, 120(4), 1035–1048. https://doi.org/10.1037/pspp0000276 1488 Mueller, S., Wagner, J., Drewelies, J., Duezel, S., Eibich, P., Specht, J., Demuth, I., 1489 Steinhagen-Thiessen, E., Wagner, G. G., & Gerstorf, D. (2016). Personality development in old age relates to physical health and cognitive performance: 1491 Evidence from the Berlin Aging Study II. Journal of Research in Personality, 65, 1492 94–108. https://doi.org/10.1016/j.jrp.2016.08.007 1493 Muller, Z., & Litwin, H. (2011). Grandparenting and well-being: How important is 1494
- grandparent-role centrality? European Journal of Ageing, 8, 109–118. 1495 https://doi.org/10.1007/s10433-011-0185-5 1496
- OECD. (2020). Is Childcare Affordable? Policy Brief On Employment, Labour And Social Affairs. 1498
- Oltmanns, J. R., Jackson, J. J., & Oltmanns, T. F. (2020). Personality change: 1499 Longitudinal self-other agreement and convergence with retrospective-reports. 1500 Journal of Personality and Social Psychology, 118(5), 1065–1079. 1501 https://doi.org/10.1037/pspp0000238 1502
- Ozer, D. J., & Benet-Martínez, V. (2005). Personality and the Prediction of Consequential 1503 Outcomes. Annual Review of Psychology, 57(1), 401–421. 1504 https://doi.org/10.1146/annurev.psych.57.102904.190127 1505
- Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146. 1506 https://doi.org/10.1214/09-SS057 1507
- Pilkauskas, N. V., Amorim, M., & Dunifon, R. E. (2020). Historical Trends in Children 1508 Living in Multigenerational Households in the United States: 18702018. 1509 Demography, 57(6), 2269–2296. https://doi.org/10.1007/s13524-020-00920-5 1510

- Pinheiro, J., Bates, D., & R-core. (2021). Nlme: Linear and nonlinear mixed effects models [Manual]. 1512 Podsakoff, P. M., MacKenzie, S. B., Jeong-Yeon, L., & Podsakoff, N. P. (2003). Common 1513 method biases in behavioral research: A critical review of the literature and 1514 recommended remedies. Journal of Applied Psychology, 88(5), 879–903. 1515 https://doi.org/10.1037/0021-9010.88.5.879 1516 Pusch, S., Mund, M., Hagemeyer, B., & Finn, C. (2019). Personality Development in 1517 Emerging and Young Adulthood: A Study of Age Differences. European Journal of 1518 Personality, 33(3), 245–263. https://doi.org/10.1002/per.2181 1519 Ram, N., & Grimm, K. J. (2009). Methods and Measures: Growth mixture modeling: A method for identifying differences in longitudinal change among unobserved groups. 1521 International Journal of Behavioral Development, 33(6), 565–576. 1522 https://doi.org/10.1177/0165025409343765 1523 R Core Team. (2021). R: A language and environment for statistical computing. R 1524 Foundation for Statistical Computing. https://www.R-project.org/ 1525 Roberts, B. W., & Davis, J. P. (2016). Young Adulthood Is the Crucible of Personality 1526 Development. Emerging Adulthood, 4(5), 318–326. 1527 https://doi.org/10.1177/2167696816653052 1528
- Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consistency of personality 1529 traits from childhood to old age: A quantitative review of longitudinal studies. 1530 Psychological Bulletin, 126(1), 3-25. https://doi.org/10.1037/0033-2909.126.1.3 1531
- Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A., & Goldberg, L. R. (2007). The Power 1532 of Personality: The Comparative Validity of Personality Traits, Socioeconomic 1533 Status, and Cognitive Ability for Predicting Important Life Outcomes. Perspectives 1534 on Psychological Science, 2(4), 313–345. 1535
- https://doi.org/10.1111/j.1745-6916.2007.00047.x 1536

```
Roberts, B. W., Walton, K. E., & Viechtbauer, W. (2006). Patterns of mean-level change
           in personality traits across the life course: A meta-analysis of longitudinal studies.
1538
           Psychological Bulletin, 132, 1–25. https://doi.org/10.1037/0033-2909.132.1.1
1539
    Roberts, B. W., & Wood, D. (2006). Personality Development in the Context of the
1540
           Neo-Socioanalytic Model of Personality. In D. K. Mroczek & T. D. Little (Eds.),
1541
           Handbook of Personality Development. Routledge.
1542
    Roberts, B. W., Wood, D., & Smith, J. L. (2005). Evaluating Five Factor Theory and
1543
           social investment perspectives on personality trait development. Journal of
1544
           Research in Personality, 39(1), 166–184. https://doi.org/10.1016/j.jrp.2004.08.002
1545
    Roberts, B. W., & Yoon, H. J. (2021). Personality Psychology. Annual Review of
1546
           Psychology, in press. https://doi.org/10.1146/annurev-psych-020821-114927
1547
    Rohrer, J. M. (2018). Thinking Clearly About Correlations and Causation: Graphical
1548
           Causal Models for Observational Data. Advances in Methods and Practices in
1549
           Psychological Science, 1(1), 27-42. https://doi.org/10.1177/2515245917745629
1550
    Rohrer, J. M., Hünermund, P., Arslan, R. C., & Elson, M. (2021). That's a lot to
1551
           PROCESS! Pitfalls of Popular Path Models. PsyArXiv.
1552
           https://doi.org/10.31234/osf.io/paeb7
1553
    Rosenbaum, P. (1984). The consequences of adjustment for a concomitant variable that has
           been affected by the treatment. Journal of the Royal Statistical Society. Series A
1555
           (General), 147(5), 656–666. https://doi.org/10.2307/2981697
    Scherpenzeel, A. (2011). Data Collection in a Probability-Based Internet Panel: How the
           LISS Panel Was Built and How It Can Be Used. Bulletin of Sociological
1558
           Methodology/Bulletin de Méthodologie Sociologique, 109(1), 56-61.
1559
           https://doi.org/10.1177/0759106310387713
```

Scherpenzeel, A. C., & Das, M. (2010). True" longitudinal and probability-based internet

- panels: Evidence from the Netherlands. In M. Das, P. Ester, & L. Kaczmirek

 (Eds.), Social and behavioral research and the internet: Advances in applied methods
- and research strategies (pp. 77–104). Taylor & Francis.
- Schwaba, T., & Bleidorn, W. (2019). Personality trait development across the transition to retirement. *Journal of Personality and Social Psychology*, 116(4), 651–665.
- https://doi.org/10.1037/pspp0000179
- Schwaba, T., & Bleidorn, W. (2018). Individual differences in personality change across the adult life span. *Journal of Personality*, 86(3), 450–464.
- https://doi.org/10.1111/jopy.12327
- Seifert, I. S., Rohrer, J. M., Egloff, B., & Schmukle, S. C. (2021). The Development of the
 Rank-Order Stability of the Big Five Across the Life Span. *Journal of Personality*and Social Psychology. https://doi.org/10.1037/pspp0000398
- Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and
 quasi-experimental designs for generalized causal inference. Houghton, Mifflin and
 Company.
- Sheppard, P., & Monden, C. (2019). Becoming a First-Time Grandparent and Subjective
 Well-Being: A Fixed Effects Approach. *Journal of Marriage and Family*, 81(4),

 1579
 1016–1026. https://doi.org/10.1111/jomf.12584
- Silverstein, M., & Marenco, A. (2001). How Americans Enact the Grandparent Role Across
 the Family Life Course. *Journal of Family Issues*, 22(4), 493–522.
- https://doi.org/10.1177/019251301022004006
- Skopek, J., & Leopold, T. (2017). Who becomes a grandparent and when? Educational differences in the chances and timing of grandparenthood. *Demographic Research*, 37(29), 917–928. https://doi.org/10.4054/DemRes.2017.37.29
- Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W., & Weir, D. R.

```
(2014). Cohort Profile: The Health and Retirement Study (HRS). International
1587
           Journal of Epidemiology, 43(2), 576-585. https://doi.org/10.1093/ije/dyu067
1588
    Soto, C. J. (2021). Do Links Between Personality and Life Outcomes Generalize? Testing
1589
           the Robustness of TraitOutcome Associations Across Gender, Age, Ethnicity, and
1590
           Analytic Approaches. Social Psychological and Personality Science, 12(1), 118–130.
1591
           https://doi.org/10.1177/1948550619900572
    Soto, C. J. (2019). How Replicable Are Links Between Personality Traits and
1593
           Consequential Life Outcomes? The Life Outcomes of Personality Replication
1594
           Project. Psychological Science, 30(5), 711-727.
1595
           https://doi.org/10.1177/0956797619831612
1596
    Specht, J. (2017). Personality development in adulthood and old age. In J. Specht (Ed.),
1597
           Personality Development Across the Lifespan (pp. 53-67). Academic Press.
1598
           https://doi.org/10.1016/B978-0-12-804674-6.00005-3
1599
    Specht, J., Bleidorn, W., Denissen, J. J. A., Hennecke, M., Hutteman, R., Kandler, C.,
1600
           Luhmann, M., Orth, U., Reitz, A. K., & Zimmermann, J. (2014). What Drives
1601
           Adult Personality Development? A Comparison of Theoretical Perspectives and
1602
           Empirical Evidence. European Journal of Personality, 28(3), 216–230.
1603
           https://doi.org/10.1002/per.1966
1604
    Specht, J., Egloff, B., & Schmukle, S. C. (2011). Stability and change of personality across
1605
           the life course: The impact of age and major life events on mean-level and
1606
           rank-order stability of the Big Five. Journal of Personality and Social Psychology,
1607
           101(4), 862–882. https://doi.org/10.1037/a0024950
1608
    Spikic, S., Mortelmans, D., & Pasteels, I. (2021). Does divorce change your personality?
1609
           Examining the effect of divorce occurrence on the Big Five personality traits using
1610
           panel surveys from three countries. Personality and Individual Differences, 171,
1611
           110428. https://doi.org/10.1016/j.paid.2020.110428
```

- Steiner, P., Cook, T., Shadish, W., & Clark, M. (2010). The Importance of Covariate

 Selection in Controlling for Selection Bias in Observational Studies. *Psychological Methods*, 15, 250–267. https://doi.org/10.1037/a0018719
- Stephan, Y., Sutin, A. R., & Terracciano, A. (2014). Physical activity and personality
 development across adulthood and old age: Evidence from two longitudinal studies.

 Journal of Research in Personality, 49, 1–7.
- https://doi.org/10.1016/j.jrp.2013.12.003
- StGeorge, J. M., & Fletcher, R. J. (2014). Men's experiences of grandfatherhood: A
 welcome surprise. The International Journal of Aging & Human Development,

 78(4), 351–378. https://doi.org/10.2190/AG.78.4.c
- Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward.

 Statistical Science: A Review Journal of the Institute of Mathematical Statistics,

 25(1), 1–21. https://doi.org/10.1214/09-STS313
- Tanskanen, A., Danielsbacka, M., Hämäläinen, H., & Solé-Auró, A. (2021). Does

 Transition to Retirement Promote Grandchild Care? Results from the Survey of

 Health, Ageing and Retirement in Europe. *PsyArXiv*.
- Tanskanen, A. O., Danielsbacka, M., Coall, D. A., & Jokela, M. (2019). Transition to

 Grandparenthood and Subjective Well-Being in Older Europeans: A Within-Person

 Investigation Using Longitudinal Data. Evolutionary Psychology, 17(3),
- 1474704919875948. https://doi.org/10.1177/1474704919875948

https://doi.org/10.31235/osf.io/akme6

- Thiele, D. M., & Whelan, T. A. (2006). The Nature and Dimensions of the Grandparent

 Role. Marriage & Family Review, 40(1), 93–108.

 https://doi.org/10.1300/J002v40n01 06
- Thoemmes, F. J., & Kim, E. S. (2011). A Systematic Review of Propensity Score Methods
- in the Social Sciences. Multivariate Behavioral Research, 46(1), 90–118.

```
https://doi.org/10.1080/00273171.2011.540475
1639
    Thoemmes, F., & Ong, A. D. (2016). A Primer on Inverse Probability of Treatment
1640
           Weighting and Marginal Structural Models. Emerging Adulthood, 4(1), 40–59.
1641
           https://doi.org/10.1177/2167696815621645
1642
    Triadó, C., Villar, F., Celdrán, M., & Solé, C. (2014). Grandparents Who Provide
1643
           Auxiliary Care for Their Grandchildren: Satisfaction, Difficulties, and Impact on
1644
           Their Health and Well-being. Journal of Intergenerational Relationships, 12(2),
1645
           113–127. https://doi.org/10.1080/15350770.2014.901102
1646
    Turiano, N. A., Graham, E. K., Weston, S. J., Booth, T., Harrison, F., James, B. D.,
1647
           Lewis, N. A., Makkar, S. R., Mueller, S., Wisniewski, K. M., Zhaoyang, R., Spiro,
1648
           A., Willis, S., Schaie, K. W., Lipton, R. B., Katz, M., Sliwinski, M., Deary, I. J.,
1649
           Zelinski, E. M., ... Mroczek, D. K. (2020). Is Healthy Neuroticism Associated with
1650
           Longevity? A Coordinated Integrative Data Analysis. Collabra: Psychology, 6(33).
1651
           https://doi.org/10.1525/collabra.268
1652
    van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by
1653
           chained equations in r. Journal of Statistical Software, 45(3), 1–67.
1654
    van der Laan, J. (2009). Representativity of the LISS panel (Discussion Paper 09041).
1655
           Statistics Netherlands.
1656
    VanderWeele, T. J. (2019). Principles of confounder selection. European Journal of
1657
           Epidemiology, 34(3), 211–219. https://doi.org/10.1007/s10654-019-00494-6
1658
    VanderWeele, T. J., Mathur, M. B., & Chen, Y. (2020). Outcome-Wide Longitudinal
1659
           Designs for Causal Inference: A New Template for Empirical Studies. Statistical
1660
           Science, 35(3), 437–466. https://doi.org/10.1214/19-STS728
1661
```

van Scheppingen, M. A., Chopik, W. J., Bleidorn, W., & Denissen, J. J. A. (2019).

Longitudinal actor, partner, and similarity effects of personality on well-being.

1662

```
Journal of Personality and Social Psychology, 117(4), e51–e70.
1664
           https://doi.org/10.1037/pspp0000211
1665
    van Scheppingen, M. A., Jackson, J. J., Specht, J., Hutteman, R., Denissen, J. J. A., &
1666
           Bleidorn, W. (2016). Personality Trait Development During the Transition to
1667
           Parenthood: A Test of Social Investment Theory. Social Psychological and
1668
           Personality Science, 7(5), 452–462. https://doi.org/10.1177/1948550616630032
1669
    van Scheppingen, M. A., & Leopold, T. (2020). Trajectories of life satisfaction before, upon,
1670
           and after divorce: Evidence from a new matching approach. Journal of Personality
1671
           and Social Psychology, 119(6), 1444–1458. https://doi.org/10.1037/pspp0000270
1672
    Vermote, M., Deliens, T., Deforche, B., & D'Hondt, E. (2021). The impact of
           non-residential grandchild care on physical activity and sedentary behavior in
1674
           people aged 50 years and over: Study protocol of the Healthy Grandparenting
1675
           Project. BMC Public Health, 21. https://doi.org/10.1186/s12889-020-10024-9
1676
    Wagner, J., Becker, M., Lüdtke, O., & Trautwein, U. (2015). The First Partnership
1677
           Experience and Personality Development: A Propensity Score Matching Study in
1678
           Young Adulthood. Social Psychological and Personality Science, 6(4), 455–463.
1679
           https://doi.org/10.1177/1948550614566092
1680
    Wagner, J., Lüdtke, O., & Robitzsch, A. (2019). Does personality become more stable with
1681
           age? Disentangling state and trait effects for the big five across the life span using
1682
           local structural equation modeling. Journal of Personality and Social Psychology,
1683
           116(4), 666–680. https://doi.org/10.1037/pspp0000203
1684
    Wagner, J., Orth, U., Bleidorn, W., Hopwood, C. J., & Kandler, C. (2020). Toward an
1685
           Integrative Model of Sources of Personality Stability and Change. Current
1686
           Directions in Psychological Science, 29(5), 438–444.
1687
           https://doi.org/10.1177/0963721420924751
1688
```

Wagner, J., Ram, N., Smith, J., & Gerstorf, D. (2016). Personality trait development at

https://doi.org/10.1016/j.jrp.2012.05.005

```
the end of life: Antecedents and correlates of mean-level trajectories. Journal of
1690
           Personality and Social Psychology, 111(3), 411–429.
1691
           https://doi.org/10.1037/pspp0000071
1692
    Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
1693
           Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller,
1694
           E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ...
1695
           Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software,
1696
           4(43), 1686. https://doi.org/10.21105/joss.01686
1697
    Wortman, J., Lucas, R. E., & Donnellan, M. B. (2012). Stability and change in the Big
1698
           Five personality domains: Evidence from a longitudinal study of Australians.
1699
           Psychology and Aging, 27(4), 867–874. https://doi.org/10.1037/a0029322
1700
    Wrzus, C., & Roberts, B. W. (2017). Processes of personality development in adulthood:
1701
           The TESSERA framework. Personality and Social Psychology Review, 21(3),
1702
           253-277. https://doi.org/10.1177/1088868316652279
1703
    Yap, S., Anusic, I., & Lucas, R. E. (2012). Does personality moderate reaction and
1704
           adaptation to major life events? Evidence from the British Household Panel Survey.
1705
           Journal of Research in Personality, 46(5), 477–488.
1706
```

Supplemental Material

1708 Model Equations

Model equation for the basic models (ignoring the additional nesting in households applied to the majority of models):

$$y_{ti} = \beta_{0i} + \beta_{1i}before_{ti} + \beta_{2i}after_{ti} + \beta_{3i}shift_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01}grandparent_{i} + \gamma_{02}pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11}grandparent_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21}grandparent_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i} ,$$

$$(1)$$

where at time t for person i $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. y_{ti} represented either one of the Big Five or life satisfaction. Separate models were computed for LISS and HRS samples, and for parent and nonparent matched controls.

Model equation for the models including the gender interaction (moderator variable $female_i$):

$$y_{ti} = \beta_{0i} + \beta_{1i}before_{ti} + \beta_{2i}after_{ti} + \beta_{3i}shift_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01}grandparent_{i} + \gamma_{02}female_{i} + \gamma_{03}grandparent_{i}female_{i}$$

$$+ \gamma_{04}pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11}grandparent_{i} + \gamma_{12}female_{i} + \gamma_{13}grandparent_{i}female_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21}grandparent_{i} + \gamma_{22}female_{i} + \gamma_{23}grandparent_{i}female_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i} + \gamma_{32}female_{i} + \gamma_{33}grandparent_{i}female_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i} + \gamma_{32}female_{i} + \gamma_{33}grandparent_{i}female_{i}$$

where $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. Again, we estimated separate models for each sample (LISS, HRS) and each comparison group (parents, nonparents).

Model equation for the models including the interaction by paid work (moderator variable $working_{ti}$):

$$y_{ti} = \beta_{0i} + \beta_{1i}working_{ti} + \beta_{2i}before_{ti} + \beta_{3i}before_{ti}working_{ti} + \beta_{4i}after_{ti}$$

$$+ \beta_{5i}after_{ti}working_{ti} + \beta_{6i}shift_{ti} + \beta_{7i}shift_{ti}working_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01}grandparent_{i} + \gamma_{02}pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11}grandparent_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21}grandparent_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i}$$

$$\beta_{4i} = \gamma_{40} + \gamma_{41}grandparent_{i}$$

$$\beta_{5i} = \gamma_{50} + \gamma_{51}grandparent_{i}$$

$$\beta_{6i} = \gamma_{60} + \gamma_{61}grandparent_{i}$$

$$\beta_{7i} = \gamma_{70} + \gamma_{71}grandparent_{i}$$
,

where $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. We estimated separate models for each comparison group (parents, nonparents) in the HRS.

Model equation for the models including the interaction by grandchild care (moderator variable $caring_{ti}$):

$$y_{ti} = \beta_{0i} + \beta_{1i} caring_{ti} + \beta_{2i} after_{ti} + \beta_{3i} after_{ti} caring_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01} grandparent_{i} + \gamma_{02} pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11} grandparent_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21} grandparent_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31} grandparent_{i} ,$$

$$(4)$$

where $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. Restricted to the HRS post-transition period, we estimated separate models for each comparison group (parents, nonparents).

1726 Supplemental Tables

Table S1

Intra-Class Correlations of Grandparents and Matched Controls in the Four Analysis Samples.

	A	С	Е	N	О	LS
LISS: Parent controls						
ICC_{pid}	0.74	0.77	0.81	0.71	0.78	0.35
ICC_{hid}	0.05	0.01	0.02	0.07	0.00	0.37
$ICC_{pid/hid}$	0.79	0.78	0.83	0.78	0.78	0.71
LISS: Nonparent controls						
ICC_{pid}	0.76	0.76	0.64	0.67	0.79	0.32
ICC_{hid}	0.00	0.00	0.22	0.10	0.02	0.36
$ICC_{pid/hid}$	0.76	0.77	0.85	0.77	0.81	0.67
HRS: Parent controls						
ICC_{pid}	0.76	0.69	0.79	0.73	0.57	0.31
ICC_{hid}	0.00	0.07	0.00	0.01	0.21	0.35
$ICC_{pid/hid}$	0.76	0.76	0.79	0.74	0.78	0.67
HRS: Nonparent controls						
ICC_{pid}	0.71	0.73	0.77	0.76	0.59	0.33
ICC_{hid}	0.07	0.06	0.04	0.00	0.23	0.38
$ICC_{pid/hid}$	0.78	0.79	0.80	0.76	0.82	0.71

Note. A = agreeableness, C = conscientiousness, E = extraversion, N = neuroticism, O = openness, LS = life satisfaction. Intra-class correlations are the proportion of total variation that is explained by the respective nesting factor. ICC_{pid} is the proportion of total variance explained by nesting in participants which corresponds to the correlation between two randomly selected observations from the same participant. ICC_{hid} is the proportion of total variance explained by nesting in households which corresponds to the correlation between two randomly selected observations from the same household. $ICC_{pid/hid}$ is the proportion of total variance explained by nesting in participants and in households which corresponds to the correlation between two randomly selected observations from the same participant and the same household.

Table S2

Longitudinal sample size in the analysis samples and coding scheme for the piecewise regression coefficients.

		Pr	Pre-transition years	tion yes	ırs				Post-tr	Post-transition years	ı years		
	9-	쟌	4-	-3	-2	-	0		2	33	4	ಬ	9
LISS: Analysis samples													
Grandparents: obs.	92	105	108	121	156	116	133	138	108	108	69	62	52
Grandparents: % women	51.09	48.57	52.78	51.24	56.41	62.93	47.37	52.90	51.85	50.00	56.52	66.13	53.85
Parent controls: obs.	335	425	381	540	740	351	450	488	333	394	365	164	201
Parent controls: % women	57.61	51.06	55.12	51.48	55.00	56.13	53.11	54.10	56.76	51.27	56.99	59.76	48.76
Nonparent controls: obs.	331	399	407	554	739	354	473	516	367	477	375	146	202
Nonparent controls: % women	52.57	54.89	57.99	52.71	55.21	54.52	49.26	54.46	52.86	52.83	54.67	48.63	51.49
LISS: Coding scheme													
Before-slope	0	П	2	က	4	ಬ	ಬ	ರ	2	ಬ	2	ಬ	ಬ
After-slope	0	0	0	0	0	0	П	2	က	4	ರ	9	7
Shift	0	0	0	0	0	0	П	1	\vdash	\vdash	П	\vdash	\vdash
HRS: Analysis samples													
Grandparents: obs.	162		388		461		380		444		195		232
Grandparents: % women	57.41		54.12		55.53		53.95		55.41		56.41		53.45
Parent controls: obs.	619		1540		1844		1228		1504		658		864
Parent controls: % women	55.41		54.03		55.53		54.64		56.45		56.08		57.64
Nonparent controls: obs.	620		1541		1844		1205		1448		889		821
Nonparent controls: % women HRS: Coding scheme	56.45		54.06		55.53		56.10		58.91		57.56		60.54
Before-slope	0		1		2		2		2		2		2
After-slope	0		0		0		П		2		က		4
Shift	0		0		0		\vdash		\vdash		1		1

Note. obs. = observations. time = 0 marks the first year where the transition to grandparenthood has been reported. The

number of grandparent participants is $N_{LISS}=250$ and $N_{HRS}=846$.

Means and Standard Deviations of the Big Five and Life Satisfaction over Time in the LISS Panel.

		Ъ	re-transi	re-transition years	ŏ				Post-tı	Post-transition years	years		
	9-	با	-4	-3	-2	-	0	1	2	3	4	5	9
Agreeableness													
Grandparents	3.85	3.87	3.93	3.87	3.90	3.93	3.87	3.92	3.91	3.91	3.89	4.01	3.98
	(0.52)	(0.50)	(0.46)	(0.49)	(0.54)	(0.47)	(0.49)	(0.52)	(0.52)	(0.51)	(0.52)	(0.49)	(0.37)
Parent controls	3.93	3.89	3.90	3.87	3.91	3.95	3.91	3.89	3.90	3.92	3.86	3.86	3.81
	(0.52)	(0.51)	(0.47)	(0.50)	(0.48)	(0.48)	(0.47)	(0.51)	(0.53)	(0.48)	(0.50)	(0.43)	(0.43)
Nonparent controls	3.95	3.94	3.98	3.98	3.94	3.91	3.94	3.95	3.94	3.94	3.92	3.92	3.88
	(0.47)	(0.50)	(0.45)	(0.50)	(0.49)	(0.47)	(0.44)	(0.45)	(0.46)	(0.47)	(0.41)	(0.44)	(0.42)
Conscientiousness													
Grandparents	3.76	3.84	3.74	3.75	3.77	3.79	3.77	3.78	3.75	3.79	3.84	3.74	3.76
	(0.50)	(0.45)	(0.49)	(0.46)	(0.53)	(0.48)	(0.49)	(0.51)	(0.49)	(0.51)	(0.44)	(0.48)	(0.43)
Parent controls	3.80	3.78	3.80	3.77	3.79	3.83	3.82	3.79	3.80	3.79	3.78	3.76	3.77
	(0.52)	(0.50)	(0.52)	(0.49)	(0.49)	(0.50)	(0.49)	(0.47)	(0.47)	(0.46)	(0.43)	(0.44)	(0.45)
Nonparent controls	3.77	3.79	3.76	3.80	3.74	3.75	3.77	3.72	3.82	3.81	3.78	3.84	3.80
	(0.53)	(0.50)	(0.51)	(0.50)	(0.51)	(0.53)	(0.50)	(0.50)	(0.50)	(0.51)	(0.48)	(0.46)	(0.50)
Extraversion													
Grandparents	3.23	3.20	3.31	3.32	3.28	3.30	3.19	3.24	3.22	3.19	3.33	3.34	3.19
	(0.66)	(0.74)	(0.54)	(0.58)	(0.64)	(0.57)	(0.61)	(0.69)	(0.65)	(0.60)	(0.60)	(0.58)	(0.55)
Parent controls	3.32	3.30	3.28	3.27	3.26	3.30	3.25	3.20	3.22	3.28	3.19	3.19	3.14
	(0.58)	(0.59)	(0.58)	(0.59)	(0.59)	(0.59)	(0.64)	(0.62)	(0.59)	(0.61)	(0.58)	(0.53)	(0.56)
Nonparent controls	3.31	3.27	3.21	3.32	3.32	3.28	3.30	3.27	3.31	3.31	3.28	3.13	3.26
	(0.74)	(0.70)	(0.79)	(0.75)	(0.69)	(0.70)	(0.72)	(0.73)	(0.77)	(0.78)	(0.73)	(0.75)	(0.74)
Neuroticism													
Grandparents	2.39	2.31	2.33	2.41	2.45	2.47	2.30	2.39	2.30	2.36	2.33	2.44	2.53
	(0.71)	(0.64)	(09.0)	(0.64)	(0.65)	(0.71)	(0.67)	(0.76)	(0.68)	(99.0)	(0.67)	(0.80)	(0.67)
Parent controls	2.43	2.42	2.42	2.38	2.40	2.37	2.35	2.35	2.30	2.28	2.35	2.31	2.33
	(0.59)	(0.63)	(0.56)	(0.58)	(0.58)	(0.60)	(0.63)	(0.65)	(0.56)	(0.56)	(0.60)	(0.55)	(0.56)
Nonparent controls	2.41	2.44	2.47	2.36	2.43	2.37	2.33	2.37	2.34	2.33	2.35	2.48	2.35
	(0.64)	(0.63)	(0.69)	(0.70)	(0.69)	(0.63)	(0.69)	(0.71)	(0.74)	(0.68)	(0.70)	(0.82)	(0.83)

Table S3 continued

		P	re-transi	tion year	8				Post-tı	transition	ı years		
	9-	ಸ	-4	6-	-2	-	0		2	ಣ	4	ಸಾ	9
Openness													
Grandparents	3.43	3.50	3.54	3.49	3.49	3.50	3.48	3.48	3.50	3.45	3.50	3.43	3.36
	(0.51)	(0.50)	(0.49)	(0.45)	(0.49)	(0.50)	(0.48)	(0.54)	(0.43)	(0.46)	(0.50)	(0.53)	(0.56)
Parent controls	3.53	3.46	3.43	3.48	3.48	3.48	3.50	3.49	3.44	3.51	3.42	3.37	3.42
	(0.52)	(0.52)	(0.50)	(0.53)	(0.51)	(0.51)	(0.52)	(0.50)	(0.48)	(0.48)	(0.49)	(0.48)	(0.42)
Nonparent controls	3.53	3.57	3.53	3.58	3.52	3.51	3.52	3.55	3.54	3.59	3.53	3.51	3.51
	(0.52)	(0.51)	(0.51)	(0.52)	(0.52)	(0.51)	(0.51)	(0.51)	(0.52)	(0.51)	(0.50)	(0.47)	(0.53)
Life satisfaction													
Grandparents	5.18	5.29	5.23	5.16	5.28	5.24	5.31	5.24	5.37	5.38	5.39	5.25	5.15
	(1.06)	(0.93)	(1.13)	(0.95)	(0.93)	(1.10)	(0.93)	(1.03)	(1.09)	(0.90)	(1.10)	(1.10)	(1.00)
Parent controls	5.21	5.30	5.26	5.23	5.28	5.29	5.36	5.25	5.26	5.45	5.33	5.40	5.41
	(1.11)	(1.03)	(1.01)	(0.97)	(1.01)	(1.07)	(0.99)	(1.03)	(1.04)	(0.93)	(1.04)	(1.05)	(1.05)
Nonparent controls	5.27	5.19	5.10	5.21	5.26	5.18	5.24	5.09	5.10	5.07	5.23	4.98	5.19
	(0.92)	(0.87)	(0.90)	(0.92)	(0.95)	(0.90)	(0.96)	(1.04)	(1.12)	(1.13)	(1.08)	(1.30)	(1.18)

Note. Standard deviations shown in brackets; time = 0 marks the first year where the transition to grandparenthood was reported.

Means and Standard Deviations of the Big Five and Life Satisfaction over Time in the HRS.

		Pre-1	Pre-transition years	n year	S;			L	Post-transition years	sitior	ı years		
	9-	ಭ	4-	ကု	-2	-	0		2	33	4	ಬ	9
Agreeableness													
Grandparents	3.46		3.51		3.51		3.52		3.52		3.50		3.56
	(0.47)		(0.48)		0.49)		(0.49)		(0.48)		0.53)		(0.44)
Parent controls	3.50		3.48	•	3.50		3.49		3.49	,	3.44°		3.47
	(0.48)		(0.49)		0.46)		(0.50)		(0.48)		0.52)		(0.51)
Nonparent controls	3.50		3.50	,	3.50		3.52		3.52	•	3.44°		3.48
•	(0.50)		(0.50)		(0.51)		(0.50)		(0.50)		(0.53)		(0.53)
Conscientiousness													
Grandparents	3.47		3.46		3.47		3.46		3.45		3.44		3.49
	(0.46)		(0.45)		0.44)		(0.45)		(0.44)		0.43)		(0.44)
Parent controls	3.45		3.45		3.45		3.47		3.46		3.43		3.44
	(0.45)		(0.45)		0.45)		(0.45)		(0.46)		0.50)		(0.50)
Nonparent controls	3.50		3.48		3.49		3.50		3.48		3.46		3.49
	(0.44)		(0.44)		0.44)		(0.42)		(0.45)		0.45)		(0.43)
Extraversion													
Grandparents	3.15		3.22		3.20		3.21		3.19		3.22		3.22
	(0.56)		(0.56)		0.54)		(0.56)		(0.58)		0.59)		(0.58)
Parent controls	3.20		3.18		3.19		3.21		3.21		3.17		3.19
	(0.51)		(0.56)		0.54)		(0.54)		(0.54)		0.55)		(0.56)
Nonparent controls	3.19		3.20		3.20		3.23		3.22		3.23		3.24
	(0.55)		(0.54)		(0.56)		(0.54)		(0.54)		(0.56)		(0.57)
Neuroticism													
Grandparents	2.00		1.97		2.06		1.91		1.96		1.91		1.91
	(0.56)		(0.63)		0.62)		(09.0)		(0.58)		0.59)		(0.61)
Parent controls	2.01		2.05		2.01		2.03		2.00		2.01		1.95
	(0.59)		(0.60)		(0.59)		(0.61)		(0.61)		(0.61)		(0.60)
Nonparent controls	2.05		2.00		2.02		1.92		1.97		1.84		1.90
	(0.56)		(0.58)		(09.0)		(0.57)		(0.59)		0.55)		(0.58)

Table S4 continued

		Pre-t	Pre-transition years	on yea	ırs				Post-transition years	nsitio	on years		
	9-	5-	4-	ကု	-2		0	-	2	က	4	ಬ	9
Openness													
Grandparents	3.00		3.02		3.04		3.01		3.00		2.96		3.04
	(0.51)		(0.53)		(0.51)		(0.52)		(0.52)		(0.59)		(0.51)
Parent controls	3.03		3.00		2.98		3.03		3.00		2.96		2.96
	(0.51)		(0.56)		(0.54)		(0.54)		(0.52)		(0.58)		(0.56)
Nonparent controls	3.06		3.05		3.05		3.07		3.06		3.02		3.04
	(0.54)		(0.53)		(0.55)		(0.54)		(0.55)		(0.57)		(0.57)
Life satisfaction													
Grandparents	5.14		5.08		5.15		5.17		5.16		5.29		5.28
	(1.44)		(1.45)		(1.46)		(1.40)		(1.44)		(1.38)		(1.50)
Parent controls	5.14		4.98		5.01		5.11		5.10		5.06		5.12
	(1.52)		(1.57)		(1.57)		(1.52)		(1.53)		(1.47)		(1.47)
Nonparent controls	5.10		5.14		5.09		5.26		5.21		5.40		5.40
	(1.49)		(1.50)		(1.52)		(1.44)		(1.51)		(1.30)		(1.36)

Note. Standard deviations shown in brackets; time = 0 marks the first year where the transition to grandparenthood was reported.

Standardized Difference in Means for Covariates Used in Propensity Score Matching and the Propensity Score in the LISS

panel.

			Parent control group	trol group	Nonparent control group	ontrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
pscore	Propensity score		1.14	0.02	1.34	0.04
female	Gender $(f=1, m=0)$	geslacht	0.05	0.00	0.02	0.00
age	Age	gebjaar	0.85	-0.10	4.05	-0.01
degreehighersec	Higher secondary/preparatory university education	oplmet	0.07	-0.06	-0.07	0.12
degreevocational	Intermediate vocational education	oplmet	-0.20	90.0-	-0.02	0.00
degreecollege	Higher vocational education	oplmet	0.00	0.05	0.02	-0.09
degreeuniversity	University degree	oplmet	-0.08	0.14	-0.15	-0.05
religion	Member of religion/church	cr^*012	0.10	0.08	0.33	0.07
speakdutch	Dutch spoken at home (primarily)	cr^*089	-0.02	90.0-	0.00	-0.02
divorced	Divorced (marital status)	burgstat	0.02	-0.03	0.29	-0.02
widowed	Widowed (marital status)	burgstat	0.00	-0.12	0.13	-0.07
livetogether	Live together with partner	$^{ m cf}$	-0.08	0.04	1.05	-0.02
rooms	Rooms in dwelling	cd*034	-0.03	0.05	0.63	-0.11
logincome	Personal net monthly income in Euros (logarithm)	nettoink	-0.01	0.04	0.59	-0.14
rental	Live for rent (vs. self-owned dwelling)	woning	-0.08	-0.09	-0.47	-0.03
financialsit	Financial situation of household (scale from 1-5)	ci*252	0.08	0.00	-0.03	0.00
jobhours	Average work hours per week	cw*127	0.05	0.08	0.11	-0.04
mobility	Mobility problems (walking, staircase, shopping)	ch*023/027/041	0.07	0.04	0.00	-0.02
deb	Depression items from Mental Health Inventory	$ch^*011 - ch^*015$	-0.01	0.08	-0.22	-0.08
betterhealth	Poor/moderate health status (ref.: good)	ch*004	0.00	-0.01	-0.26	0.07
worsehealth	Very good/excellent health status (ref.: good)		0.04	-0.02	0.11	-0.04
totalchildren	Number living children	cf*455 / cf*036	0.25	0.05	NA	NA
totalresidentkids	Number of living-at-home children in household	aantalki	-0.71	0.02	NA	NA
secondkid	Has two or more children	cf^*455 / cf^*036	0.20	0.04	NA	NA
thirdkid	Has three or more children	cf*455 / cf*036	0.26	0.01	NA	NA
kid1female	Gender of first child $(f=1, m=0)$	$^{ m cf}$	0.04	0.04	NA	NA
kid2female	Gender of second child $(f=1, m=0)$	$^{ m cf}$	0.01	90.0-	NA	NA
kid3female	Gender of third child $(f=1, m=0)$	$^{ m cf}$	0.17	0.02	NA	NA
kid1age	Age of first child	\	1.70	-0.17	NA	NA
kid2age	Age of second child	cf^*457 / cf^*038	0.87	-0.01	NA	NA

Table S5 continued

			Parent control group	trol group	Nonparent control group	ontrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
kid3age	Age of third child	cf^*458 / cf^*039	0.40	0.01	NA	NA
kid1home	First child living at home	$^{ m cf}$	-1.56	0.05	NA	NA
kid2home	Second child living at home	cf^*084	-1.05	0.04	NA	NA
kid3home	Third child living at home	$_{ m cf}^*085$	-0.05	0.00	NA	NA
swls	Satisfaction with Life Scale	$cp^*014 - cp^*018$	0.10	-0.03	0.25	-0.06
agree	Agreeableness	$cp^*021 - cp^*066$	0.05	-0.01	0.13	-0.13
con	Conscientiousness	$cp^*022 - cp^*067$	90.0-	-0.05	0.16	0.00
extra	Extraversion	$cp^*020 - cp^*065$	0.05	0.02	0.02	-0.07
neur	Neuroticism	$cp^*023 - cp^*068$	-0.02	0.02	-0.26	0.03
open	Openness	$cp^*024 - cp^*069$	90.0	0.05	-0.16	-0.08
participation	Waves participated	_	-0.27	-0.09	0.00	-0.03
year	Year of assessment	wave	-0.23	-0.07	0.08	90.0-

was computed by $(\bar{x}_{gp} - \bar{x}_c)/(\hat{\sigma}_{gp})$. Rules of thumb say that this measure should ideally be below .25 (Stuart, 2010) or below Note. PSM = propensity score matching, ref. = reference category, f. = female, m. = male, NA = covariate not used in this sample. The standardized difference in means between the grandparent and the two control groups (parent and nonparent) .10 (Austin, 2011).

Standardized Difference in Means for Covariates Used in Propensity Score Matching and the Propensity Score in the HRS.

			Parent control group	rol group	Nonparent control group	ntrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
pscore	Propensity score	/	0.92	0.01	1.45	0.00
female	Gender $(f=1, m=0)$	RAGENDER	-0.07	0.00	0.01	0.00
age	Age	RABYEAR	-0.46	-0.01	-1.02	0.11
schlyrs	Years of education	RAEDYRS	0.11	0.03	0.25	-0.04
religyear	Religious attendance: yearly	*B082	0.04	0.01	0.13	0.00
religmonth	Religious attendance: monthly	*B082	0.01	-0.02	0.10	0.05
religweek	Religious attendance: weekly	*B082	0.00	0.02	0.04	0.03
religmore	Religious attendance: more	*B082	0.00	-0.04	0.00	-0.01
notusaborn	Not born in the US	*Z230	-0.05	0.03	0.13	-0.02
black	Race: black/african american (ref.: white)	RARACEM	-0.13	-0.08	-0.22	0.01
raceother	Race: other (ref.: white)	RARACEM	-0.09	-0.06	0.01	-0.05
divorced	Divorced (marital status)	R^*MSTAT	-0.06	0.01	0.01	0.03
widowed	Widowed (marital status)	R^*MSTAT	-0.31	0.02	-0.41	0.04
livetogether	Live together with partner	$*A030 / *XF065_R$	0.25	-0.02	1.05	-0.04
${\rm roomsless three}$	Number of rooms (in housing unit)	* H147 $/ *066$	-0.15	-0.05	-0.59	-0.01
roomsfourfive	Number of rooms (in housing unit)	* H147 $/ *066$	0.00	-0.02	-0.25	-0.03
${\bf roomsmoreeight}$	Number of rooms (in housing unit)	* H147 $/ *$ 066	0.07	-0.03	0.28	0.00
loghhincome	Household income (logarithm)	*IOTI	0.03	0.03	0.41	0.00
loghhwealth	Household wealth (logarithm)	*ATOTB	0.07	0.05	0.34	-0.02
renter	Live for rent (vs. self-owned dwelling)	*H004	-0.10	-0.08	-0.51	-0.02
jobhours	Hours worked/week main job	R*JHOURS	0.25	0.08	0.59	0.00
paidwork	Working for pay	*J020	0.28	0.07	0.62	-0.04
mobilitydiff	Difficulty in mobility rated from 0-5	$R^*MOBILA$	-0.16	-0.04	-0.52	0.00
cesd	CESD score (depression)	R^*CESD	-0.13	-0.04	-0.26	-0.04
conde	Sum of health conditions	R*CONDE	-0.22	-0.03	-0.51	0.04
healthexcellent	Self-report of health - excellent (ref: good)	R^*SHLT	0.05	0.02	0.15	-0.03
healthverygood	Self-report of health - very good (ref: good)	$ m R^*SHLT$	0.23	0.02	0.31	-0.02
healthfair	Self-report of health - fair (ref: good)	$ m R^*SHLT$	-0.16	-0.02	-0.29	0.00
healthpoor	Self-report of health - poor (ref: good)	$ m R^*SHLT$	-0.07	-0.03	-0.24	0.02
totalnonresidentkids	Number of nonresident kids	*A100	99.0	-0.05	NA	NA
totalresidentkids	Number of resident children	*A099	-0.22	0.00	NA	NA
secondkid	Has two or more children	KIDID	0.52	-0.03	NA	NA

Table S6 continued

			Parent control group	trol group	Nonparent control group	ontrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
thirdkid	Has three or more children	KIDID	0.38	-0.03	NA	NA
kid1female	Gender of first child (f.=1, m.=0)	KAGENDERBG	0.11	0.03	NA	NA
kid2female	Gender of second child (f.=1, m.=0)	KAGENDERBG	0.17	-0.01	NA	NA
kid3female	Gender of third child $(f=1, m=0)$	KAGENDERBG	0.24	0.02	NA	NA
kid1age	Age of first child	KABYEARBG	-0.35	-0.02	NA	NA
kid2age	Age of second child	KABYEARBG	0.36	-0.03	NA	NA
kid3age	Age of third child	KABYEARBG	0.35	-0.01	NA	NA
kid1educ	Education of first child (years)	KAEDUC	0.30	0.02	NA	NA
kid2educ	Education of second child (years)	KAEDUC	0.57	0.00	NA	NA
kid3educ	Education of third child (years)	KAEDUC	0.40	-0.02	NA	NA
childrenclose	Children live within 10 miles	*E012	0.14	0.01	NA	NA
siblings	Number of living siblings	$\mathrm{R}^*\mathrm{LIVSIB}$	0.05	-0.04	0.21	0.03
swls	Satisfaction with Life Scale	$^*\mathrm{LB003}^*$	0.17	0.08	0.30	0.00
agree	Agreeableness	$^*\mathrm{LB033}^*$	0.00	0.04	0.11	0.02
con	Conscientiousness	$^*\mathrm{LB033}^*$	0.14	0.04	0.26	-0.04
extra	Extraversion	$^*\mathrm{LB033}^*$	0.04	0.04	0.18	0.01
near	Neuroticism	$^*\mathrm{LB033}^*$	-0.06	0.00	-0.04	0.01
open	Openness	$^*\mathrm{LB033}^*$	0.04	0.07	0.05	-0.04
participation	Waves participated (2006-2018)	_	-0.36	-0.01	-0.26	-0.04
interviewyear	Date of interview - year	*A501	-0.33	-0.05	-0.18	-0.05

was computed by $(\bar{x}_{gp} - \bar{x}_c)/(\hat{\sigma}_{gp})$. Rules of thumb say that this measure should ideally be below .25 (Stuart, 2010) or below Note. PSM = propensity score matching, ref. = reference category, f. = female, m. = male, NA = covariate not used in this sample. The standardized difference in means between the grandparent and the two control groups (parent and nonparent) .10 (Austin, 2011).

Table S7

Fixed Effects of Agreeableness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«≻	95% CI	t	<i>d</i>	<i>∞</i>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.86		131.70	< .001	3.90		112.97	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.02		-0.56	.572	-0.01		-0.20	.838
	0.00		-0.25	.802	-0.01		-1.81	070.
After-slope, $\hat{\gamma}_{20}$	-0.02		-6.76	< .001	-0.01		-3.32	.001
Shift, $\hat{\gamma}_{30}$	0.04	[0.01, 0.06]	3.12	.002	0.03	[0.00, 0.05]	1.98	.048
Grandparent, $\hat{\gamma}_{01}$	90.0		1.33	.183	0.01		0.30	.768
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01		-1.06	.289	0.00		-0.26	.791
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		2.99	.003	0.01		1.44	.149
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01		-0.37	.714	0.00		0.08	.937
Intercept, $\hat{\gamma}_{00}$	3.46		196.32	< .001	3.48		166.19	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08		2.51	.012	0.05		1.51	.131
Before-slope, $\hat{\gamma}_{10}$	0.01		1.37	.169	-0.01		-1.33	.184
After-slope, $\hat{\gamma}_{20}$	-0.01		-2.87	.004	-0.02		-5.16	< .001
Shift, $\hat{\gamma}_{30}$	0.01	[-0.01, 0.03]	0.71	.476	0.04	[0.02, 0.06]	4.30	< .001
Grandparent, $\hat{\gamma}_{01}$	0.02		0.88	.378	0.01		0.44	.662
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01		-0.87	.384	0.00		0.28	.781
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01		1.71	.088	0.02		2.78	900.
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01		-0.35	.729	-0.04		-1.97	.049

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S8

Linear Contrasts for Agreeableness.

Linear Contrast $\hat{\gamma}_c$		COTTO	Farent controls	Nonpa	Nonparent controls	itrols
	$\hat{\gamma}_c \qquad \chi^2$	χ^2	d	$\hat{\gamma}_c \chi^2$	χ^2	d
LISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0.02		4.00	.046	0.02	2.22	.136
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	03	1.79	.181	0.03	1.51	.219
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ 0.01	.01	0.08	.779	0.01	0.18	899.
	.01	1.72	.189	-0.01	1.45	.228
er-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)		0.01	.934	0.00	0.00	.958
HRS						
Shift of the controls vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} \right)$ 0.00	0.00	0.12	.725	0.03	10.76	.001
$(30 + \hat{\gamma}_{21} + \hat{\gamma}_{31})$		0.03	859	0.00	0.03	.862
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ 0.01		0.10	.751	-0.02	1.77	.183
		0.09	.762	0.00	0.11	.743
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$) 0.00		0.23	.633	0.00	0.28	.596

the car R package (Fox & Weisberg, 2019) based on the models from Table S7. $\hat{\gamma}_c = \text{combined}$ Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from fixed-effects estimate.

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>√</i> ~	95% CI	t		√≻	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.65	[3.58, 3.73]	93.02	< .001	3.66	[3.57, 3.75]	79.73	< .001
Propensity score, $\hat{\gamma}_{04}$	-0.01	[-0.08, 0.07]	-0.21	.833	0.02	[-0.05, 0.08]	0.45	.653
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	0.02	.984	0.00	[-0.01, 0.01]	-0.37	.712
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.02]	-6.37	< .001	-0.01	[-0.02, 0.00]	-2.49	.013
Shift, $\hat{\gamma}_{30}$	0.03	[-0.01, 0.07]	1.66	260.	0.07	[0.03, 0.11]	3.66	< .001
Grandparent, $\hat{\gamma}_{01}$	90.0	[-0.06, 0.17]	0.92	.356	0.04	[-0.09, 0.17]	09.0	.550
Female, $\hat{\gamma}_{02}$	0.38	[0.27, 0.48]	7.16	< .001	0.44	[0.32, 0.56]	7.11	< .001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01	[-0.03, 0.01]	-0.73	.466	0.00	[-0.02, 0.01]	-0.50	.615
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.01, 0.05]	3.43	.001	0.01	[0.00, 0.03]	1.64	.101
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01	[-0.09, 0.07]	-0.33	.739	-0.05	[-0.14, 0.03]	-1.23	.217
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.01]	-0.26	.799	-0.01	[-0.02, 0.00]	-1.14	.254
After-slope * Female, $\hat{\gamma}_{22}$	0.01	[0.00, 0.02]	2.34	.019	0.00	[-0.01, 0.01]	0.28	.781
Shift * Female, $\hat{\gamma}_{32}$	0.02	[-0.03, 0.06]	09.0	.550	-0.08	[-0.14, -0.03]	-3.18	.001
Grandparent * Female, $\hat{\gamma}_{03}$	0.01	[-0.15, 0.17]	0.15	.883	-0.05	[-0.22, 0.12]	-0.57	.568
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.00	[-0.03, 0.02]	-0.05	959	0.00	[-0.02, 0.03]	0.35	.728
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.02	[-0.04, 0.00]	-1.92	020.	-0.01	[-0.03, 0.01]	-0.93	.351
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.01	[-0.10, 0.12]	0.21	.836	0.11	[-0.01, 0.23]	1.87	.061
HRS								
Intercept, $\hat{\gamma}_{00}$	3.27	[3.23, 3.32]	132.82	< .001	3.38	[3.33, 3.43]	122.35	< .001
Propensity score, $\hat{\gamma}_{04}$	0.09	[0.03, 0.15]	2.91	.004	0.04	[-0.03, 0.10]	1.12	.261
Before-slope, $\hat{\gamma}_{10}$	0.02	[0.01, 0.04]	2.98	.003	-0.01	[-0.02, 0.01]	-1.12	.262
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-3.95	< .001	-0.02	[-0.03, -0.01]	-3.43	.001
Shift, $\hat{\gamma}_{30}$	0.04	[0.01, 0.07]	2.77	900.	0.03	[0.00, 0.06]	1.68	.093
Grandparent, $\hat{\gamma}_{01}$	0.08	[0.00, 0.16]	1.97	.048	-0.01	[-0.09, 0.08]	-0.16	877
Female, $\hat{\gamma}_{02}$	0.33	[0.27, 0.39]	10.55	< .001	0.20	[0.13, 0.26]	5.76	< .001
	-0.04	[-0.08, 0.00]	-2.18	.030	-0.01	[-0.04, 0.03]	-0.47	.640
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.04	[0.01, 0.06]	3.00	.003	0.03	[0.01, 0.05]	2.85	.004
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05	[-0.12, 0.02]	-1.50	.133	-0.03	[-0.10, 0.03]	-1.04	.298
Before-slope * Female, $\hat{\gamma}_{12}$	-0.03	[-0.05, -0.01]	-2.84	.004	0.00	[-0.02, 0.02]	0.38	.702
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[0.01, 0.03]	2.74	900.	0.00	[-0.01, 0.01]	0.08	.937
Shift * Female, $\hat{\gamma}_{32}$	-0.06	[-0.11, -0.02]	-3.07	.002	0.03	[-0.01, 0.07]	1.50	.134

Table S9 continued

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter	Ŷ	95% CI	t	d	Ŷ	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	-0.10	[-0.20, 0.01]	-1.77	220.	0.03	[-0.07, 0.14]	0.64	.521
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.06	[0.01, 0.11]	2.20	.028	0.02	[-0.03, 0.07]	0.86	.392
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.04	[-0.07, -0.01]	-2.48	.013	-0.02		-1.34	.180
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.08	[-0.01, 0.17]	1.73	.084	-0.01	[-0.10, 0.07]	-0.31	.758

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S10

Linear Contrasts for Agreeableness (Moderated by Gender).

	Pare	Parent controls	rols	Nonp	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
LISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.01	0.19	.665	0.06	13.04	< .001
Shift of female controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.03	5.25	.022	-0.02	1.90	.168
Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$)	0.02	0.47	.493	0.02	0.40	.525
	0.04	1.79	.181	0.04	1.56	.212
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.17	829.	-0.04	1.05	305
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	-0.01	0.78	.376	0.00	0.00	.971
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.78	.377	0.00	0.15	695
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.02	988.	0.06	3.02	.082
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.03	1.51	.219	-0.08	12.80	< .001
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.03	.853	0.00	0.03	857
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.92	.337	-0.01	0.82	366
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	0.15	695	0.02	0.14	.712
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.02	3.34	290.	0.01	0.41	.520
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	-0.02	4.49	.034	0.04	14.19	< .001
Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$)	0.01	0.05	.818	0.01	0.05	.815
	0.00	0.01	.927	0.00	0.01	936
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	0.39	.531	0.00	0.01	926
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.01	0.74	.390	0.01	0.58	.445
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.15	.701	0.01	1.32	.250
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	1.07	.301	-0.04	2.61	.106
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.04	7.70	900.	0.03	3.92	.048
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	1.17	.279	0.02	1.28	.258
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	1.94	.163	-0.02	2.13	.144
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.01	.912	0.00	0.01	.904

Note. The linear contrasts are based on the models from Table S9. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S11

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>⟨</i> ~	95% CI	t	. d	⟨~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.50	[3.45, 3.54]	157.26	< .001	3.48	[3.43, 3.52]	138.40	< .001
Propensity score, $\hat{\gamma}_{02}$	0.09	[0.03, 0.15]	2.93	.003	0.04	[-0.03, 0.10]	1.14	.253
Before-slope, $\hat{\gamma}_{20}$	0.01	[-0.01, 0.03]	0.91	.363	0.00	[-0.02, 0.02]	-0.23	.819
After-slope, $\hat{\gamma}_{40}$	-0.02	[-0.03, -0.01]	-4.07	< .001	-0.03	[-0.04, -0.02]	-5.38	< .001
Shift, $\hat{\gamma}_{60}$	-0.01	[-0.04, 0.02]	-0.53	.594	0.07	[0.03, 0.10]	3.93	< .001
Grandparent, $\hat{\gamma}_{01}$	-0.11	[-0.20, -0.02]	-2.33	.020	-0.07	[-0.16, 0.02]	-1.49	.137
Working, $\hat{\gamma}_{10}$	90.0-	[-0.10, -0.02]	-2.77	900.	0.01	[-0.03, 0.05]	0.61	.540
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.04	[-0.01, 0.09]	1.55	.121	0.05	[0.00, 0.10]	2.09	.037
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.02	[0.00, 0.05]	1.96	050.	0.03	[0.01, 0.05]	2.68	200.
Shift * Grandparent, $\hat{\gamma}_{61}$	0.00	[-0.08, 0.07]	-0.07	.947	-0.08	[-0.15, -0.01]	-2.17	.030
Before-slope * Working, $\hat{\gamma}_{30}$	0.00	[-0.03, 0.02]	-0.30	292.	0.00	[-0.03, 0.02]	-0.37	.712
After-slope * Working, $\hat{\gamma}_{50}$	0.02	[0.01, 0.04]	2.87	.004	0.02	[0.01, 0.03]	2.83	.005
Shift * Working, $\hat{\gamma}_{70}$	0.02	[-0.03, 0.06]	0.77	.441	-0.04	[-0.08, 0.00]	-1.87	.061
Grandparent * Working, $\hat{\gamma}_{11}$	0.18	[0.08, 0.28]	3.68	< .001	0.11	[0.02, 0.20]	2.40	.017
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	90.0-	[-0.12, -0.01]	-2.15	.032	90.0-	[-0.12, -0.01]	-2.22	.026
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.02	[-0.05, 0.02]	-0.97	.333	-0.01	[-0.05, 0.02]	-0.94	.347
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	-0.01	[-0.10, 0.09]	-0.11	.914	0.05	[-0.04, 0.14]	1.08	.282

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S12

Linear Contrasts for Agreeableness (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	-0.03	5.08	.024	0.04	7.79	.005
Shift of working controls vs. 0 $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.01	0.52	.472	0.02	3.86	.049
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.01	0.14	.713	-0.01	0.15	669.
Shift of working grandparents vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{71} + \hat{\gamma}_{71}$)	0.01	0.10	.755	0.01	0.09	.768
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61})$	0.02	0.44	.505	-0.05	2.76	760.
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	2.73	660.	-0.01	0.76	.383
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	0.01	0.36	.548	0.02	2.00	.157
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.00	0.00	996.	-0.01	0.35	.553
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.04	4.89	.027	-0.02	1.43	.232
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.07	6.12	.013	-0.07	6.87	600.
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.01	0.12	.734	0.01	0.13	.714
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.03	0.22	.637	0.03	0.23	.633

Note. The linear contrasts are based on the models from Table S11. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S13

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«≻	95% CI	t	d	⟨~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.47	[3.43, 3.52]	155.84	< .001	3.47	[3.42, 3.53]	130.92	< .001
Propensity score, $\hat{\gamma}_{02}$	0.16	[0.08, 0.24]	3.91	< .001	0.15	[0.07, 0.23]	3.67	< .001
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-4.36	< .001	-0.02	[-0.03, -0.01]	-3.63	< .001
Grandparent, $\hat{\gamma}_{01}$	-0.04	[-0.11, 0.03]	-1.16	.246	-0.05	[-0.12, 0.02]	-1.49	.137
Caring, $\hat{\gamma}_{10}$	0.00	[-0.04, 0.03]	-0.27	.784	0.02	[-0.01, 0.05]	1.09	.276
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.00, 0.05]	2.36	.018	0.02	[0.00, 0.04]	2.02	.044
After-slope * Caring, $\hat{\gamma}_{30}$	0.00	[-0.01, 0.02]	0.29	.773	0.00	[-0.02, 0.01]	-0.60	.550
Grandparent * Caring, $\hat{\gamma}_{11}$	0.02	[-0.07, 0.11]	0.46	.645	0.00	[-0.09, 0.08]	-0.09	.925
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.01	[-0.02, 0.04]	0.57	.572	0.02	[-0.02, 0.05]	1.00	.319

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild care Note. Two models were computed (only HRS): grandparents matched with parent controls and with since the last assessment.

Table S14

Linear Contrasts for Agreeableness (Moderated by Grandchild Care; only HRS).

	Pare	arent controls	crols	Nonparen	arent cc	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	p
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.04	0.04 7.62	900.	.006 0.04	9.15	.002
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.01	0.61	.434	0.01 0.61 .434 0.01	0.66	.415

Note. The linear contrasts are based on the models from Table S13. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S15

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	\\ \times	95% CI	t		\\ \C	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.77		130.27	< .001	3.82		112.10	< .001
Propensity score, $\hat{\gamma}_{02}$	0.00		-0.02	786.	0.01		0.24	.813
	0.00		-0.84	.402	0.00		-0.26	962.
After-slope, $\hat{\gamma}_{20}$	-0.02		-6.17	< .001	0.01		3.45	.001
Shift, $\hat{\gamma}_{30}$	0.04		3.14	.002	0.00	[-0.03, 0.02]	-0.15	.881
Grandparent, $\hat{\gamma}_{01}$	-0.01		-0.24	.813	-0.06		-1.22	.225
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		0.77	.439	0.00		0.50	.617
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		2.73	900.	-0.01		-1.61	.107
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04	[-0.10, 0.01]	-1.49	.137	0.00	[-0.06, 0.06]	0.01	686.
HRS								
Intercept, $\hat{\gamma}_{00}$	3.41		206.26	< .001	3.35	[3.31, 3.38]	172.70	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08		2.86	.004	0.17	[0.11, 0.23]	5.74	< .001
Before-slope, $\hat{\gamma}_{10}$	0.00		0.31	.754	0.00	[-0.01, 0.01]	0.72	.473
After-slope, $\hat{\gamma}_{20}$	-0.01		-4.11	< .001	-0.01	[-0.02, -0.01]	-3.84	< .001
Shift, $\hat{\gamma}_{30}$	0.02	[0.00, 0.04]	1.93	.053	0.00	[-0.02, 0.02]	0.01	.991
Grandparent, $\hat{\gamma}_{01}$	0.02		0.60	.547	0.03	[-0.02, 0.08]	1.08	.280
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01		0.55	.580	0.00	[-0.02, 0.03]	0.43	.664
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		3.06	.002	0.02	[0.01, 0.04]	3.01	.003
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05		-2.36	.018	-0.03	[-0.07, 0.01]	-1.59	.111

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S16

Linear Contrasts for Conscientiousness.

Linear Contrast LISS Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ Chit of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	χ^2 4.71				
0.02	ı	d	$\hat{\gamma}_c \chi^2 p \hat{\gamma}_c \chi^2$	χ^2	d
0.02					
000		.030	0.01	0.40	.525
00.0	_	.928	0.00	0.01	.932
$\hat{\gamma}_{31}$) -0.03		.286	-0.01		.718
0.00		.655	0.00	0.18	299.
_	_	.942	0.00	0.01	.943
		.491	-0.01	2.83	.092
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$ -0.02		.114	-0.02	2.82	.093
$\hat{\gamma}_{31}$) -0.03	2.96	.085	-0.01	0.54	.462
0.01	_	.444	0.01	0.68	.409
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$) 0.01 1.	1.88	.170	0.01	2.13	.145

Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from ||the car R package (Fox & Weisberg, 2019) based on the models from Table S15. $\hat{\gamma}_c$ combined fixed-effects estimate.

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	⟨ ~	95% CI	t	d	⟨ >	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.69	[3.60, 3.77]	87.30	< .001	3.70	[3.61, 3.80]	75.84	< .001
Propensity score, $\hat{\gamma}_{04}$	0.00	[-0.08, 0.07]	-0.03	926.	0.01	[-0.06, 0.08]	0.34	.732
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	0.64	.524	0.00	[-0.01, 0.01]	0.75	.455
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, -0.01]	-3.43	.001	0.00	[0.00, 0.01]	0.71	.477
Shift, $\hat{\gamma}_{30}$	0.04	[0.00, 0.08]	2.16	.031	0.00	[-0.03, 0.04]	0.14	.892
Grandparent, $\hat{\gamma}_{01}$	0.03	[-0.09, 0.16]	0.48	.634	0.01	[-0.13, 0.14]	0.12	206.
	0.16	[0.05, 0.27]	2.88	.004	0.22	[0.09, 0.34]	3.26	.001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.02]	-0.01	.994	0.00	[-0.02, 0.02]	-0.06	.953
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.00, 0.04]	2.53	.011	0.01	[-0.01, 0.02]	0.65	.513
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04	[-0.13, 0.04]	-1.07	.286	-0.01	[-0.09, 0.08]	-0.14	988.
Before-slope * Female, $\hat{\gamma}_{12}$	-0.01	[-0.02, 0.00]	-1.61	.108	-0.01	[-0.02, 0.00]	-1.23	.218
After-slope * Female, $\hat{\gamma}_{22}$	-0.01	[-0.02, 0.00]	-1.11	.268	0.01	[0.00, 0.02]	2.38	.017
Shift * Female, $\hat{\gamma}_{32}$	0.00	[-0.05, 0.05]	-0.04	.970	-0.01	[-0.06, 0.04]	-0.41	.683
Grandparent * Female, $\hat{\gamma}_{03}$	-0.07	[-0.24, 0.10]	-0.81	.418	-0.12	[-0.30, 0.06]	-1.30	.193
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.01	[-0.02, 0.03]	0.61	.542	0.01	[-0.02, 0.03]	0.44	.663
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.03, 0.01]	-0.84	.403	-0.03	[-0.05, 0.00]	-2.37	.018
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.01	[-0.11, 0.12]	0.11	.916	0.02	[-0.10, 0.13]	0.27	.787
HRS								
Intercept, $\hat{\gamma}_{00}$	3.35	[3.30, 3.39]	143.72	< .001	3.26	[3.21, 3.31]	124.79	< .001
Propensity score, $\hat{\gamma}_{04}$	0.09	[0.03, 0.14]	3.00	.003	0.17	[0.11, 0.23]	5.65	< .001
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.01, 0.02]	1.19	.234	0.01	[0.00, 0.03]	2.08	.037
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.00]	-2.42	.016	0.00	[-0.01, 0.01]	-0.10	.920
Shift, $\hat{\gamma}_{30}$	0.02	[-0.01, 0.05]	1.18	.237	-0.01	[-0.04, 0.02]	-0.74	.462
Grandparent, $\hat{\gamma}_{01}$	-0.03	[-0.10, 0.05]	-0.74	.461	0.01	[-0.07, 0.09]	0.28	.780
Female, $\hat{\gamma}_{02}$	0.11	[0.05, 0.17]	3.81	< .001	0.15	[0.09, 0.22]	4.67	< .001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.02, 0.05]	0.74	.460	0.01	[-0.03, 0.04]	0.45	.651
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.01, 0.05]	2.64	800.	0.02	[0.00, 0.04]	1.71	.088
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.08	[-0.15, -0.02]	-2.57	.010	-0.06	[-0.12, 0.00]	-1.85	.064
Before-slope * Female, $\hat{\gamma}_{12}$	-0.01	[-0.03, 0.01]	-1.34	.180	-0.02	[-0.04, 0.00]	-2.16	.031
After-slope * Female, $\hat{\gamma}_{22}$	0.00	[-0.02, 0.01]	-0.39	.695	-0.02	[-0.03, -0.01]	-3.05	.002
Shift * Female, $\hat{\gamma}_{32}$	0.00	[-0.04, 0.04]	0.13	.895	0.02	[-0.02, 0.05]	0.92	.356

Table S17 continued

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	<≻	95% CI	t		->>	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.08	[-0.02, 0.18]	1.64	.101	0.03	[-0.07, 0.13]	0.62	.538
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.01	[-0.06, 0.03]	-0.47	.637	0.00	[-0.05, 0.04]	-0.21	.836
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.04, 0.02]	-0.79	.428	0.00	[-0.02, 0.03]	0.29	.770
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	90.0	[-0.03, 0.14]	1.34	.181	0.02	[-0.04, 0.13]	1.11	.269

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S18

Linear Contrasts for Conscientiousness (Moderated by Gender).

Linear Contrast LISS Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ Shift of female controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ Shift of female controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$ Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{20} + \hat{\gamma}_{20} + \hat{\gamma}_{20})$		c	 	٠ć	c	
ft of male controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$) ft of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$) ft of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{20} + \hat{\gamma}_{20} + \hat{\gamma}_{20}$)		χ^{z}	d	1/0	χ^{7}	d
$0 + \hat{\gamma}_{22} + \hat{\gamma}_{32}$ $0 + \hat{\gamma}_{23} + \hat{\gamma}_{32}$						
		2.83	.092	0.01	0.10	.750
		1.93	.165	0.01	0.22	.640
3(120 + 30 + 121 + 131)	_	0.03	.883	0.00	0.03	988.
$0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33} \right)$		0.04	.849	-0.01	0.03	.857
grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$		0.40	.528	0.00	0.00	.991
itrols vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$		0.81	368	0.01	0.34	.560
		2.25	.133	-0.02	29.2	900.
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$ -0.03		0.64	.422	-0.01	0.14	.709
		0.09	.763	0.00	0.01	.930
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$ 0.00		0.02	.901	0.00	0.02	899
		2.25	.134	-0.02	2.12	.146
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$ -0.01		90.0	.812	-0.01	0.05	.820
		.21	.648	-0.01	1.00	.317
Shift of female controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$ 0.01		0.26	609.	-0.01	1.95	.163
1	7	4.94	.026	-0.05	5.72	.017
$0\left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}\right)$.01	906	0.00	0.01	.912
grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$		1.78	.029	-0.04	2.75	260.
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$ 0.00		0.02	.900	0.00	0.04	.839
		96.	.085	0.02	5.42	.020
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$ -0.01		0.11	.737	0.01	0.27	009.
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$ 0.00		0.00	866.	0.00	0.02	877
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$ -0.02		1.36	.244	-0.03	1.58	.208
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$ -0.01		1.17	.279	-0.02	1.43	.232
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$ 0.05		2.47	.116	0.05	2.90	680.

Note. The linear contrasts are based on the models from Table S17. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S19

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<≻	95% CI	t	. d	⟨~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.41		165.13	< .001	3.37	[3.33, 3.42]	146.02	> .001
Propensity score, $\hat{\gamma}_{02}$	0.06		2.13	.033	0.14		4.83	< .001
Before-slope, $\hat{\gamma}_{20}$	-0.01		-1.55	.121	0.00		-0.28	.779
After-slope, $\hat{\gamma}_{40}$	-0.02		-3.55	< .001	-0.02		-4.10	< .001
Shift, $\hat{\gamma}_{60}$	0.02	[-0.01, 0.05]	1.49	.137	-0.02	[-0.05, 0.01]	-1.30	.193
Grandparent, $\hat{\gamma}_{01}$	-0.09		-2.19	0.029	-0.10		-2.30	.022
Working, $\hat{\gamma}_{10}$	0.01		0.45	029.	-0.03		-1.60	.109
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.08		3.54	< .001	0.07		3.16	.002
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.03		2.66	800.	0.03		2.96	.003
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.09		-2.64	800.	-0.05		-1.46	.145
Before-slope * Working, $\hat{\gamma}_{30}$	0.02		2.21	.027	0.01		0.91	.362
ey S	0.01		1.92	055	0.02		2.96	.003
Shift * Working, $\hat{\gamma}_{70}$	-0.01		-0.45	.653	0.03		1.30	.194
Grandparent * Working, $\hat{\gamma}_{11}$	0.14		3.16	.002	0.17		4.05	< .001
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.10		-3.69	< .001	-0.09		-3.31	.001
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.01		-0.76	.449	-0.02		-1.17	.240
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	90.0		1.31	.191	0.03	[-0.06, 0.11]	0.56	.578

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S20

Linear Contrasts for Conscientiousness (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	itrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	0.01	0.23	.635	-0.04	9.72	.002
Shift of working controls vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70}$)	0.01	1.06	.304	0.00	0.28	.598
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.06	5.20	.023	-0.06	5.93	.015
Shift of working grandparents vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71}$)	-0.01	0.09	.768	-0.01	0.13	.717
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.06	5.09	.024	-0.02	0.46	.498
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	1.75	.185	-0.02	1.50	.221
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	0.02	2.59	.107	0.01	1.83	.176
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.02	0.52	.469	-0.01	0.31	.578
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.00	0.06	808	0.04	8.10	.004
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.08	9.38	.002	-0.08	10.44	.001
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.00	0.01	.920	0.00	0.02	879
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{71} + \hat{\gamma}_{71})$	0.05	2.62	.106	0.05	2.89	.089

Note. The linear contrasts are based on the models from Table S19. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S21

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	,≿	95% CI	t	d	,≿	95% CI	t	\overline{b}
Intercept, $\hat{\gamma}_{00}$	3.44	[3.40, 3.48]	168.69	< .001	3.34	[3.30, 3.39]	138.33	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08	[0.00, 0.15]	2.03	.042	0.29	[0.22, 0.37]	7.78	< .001
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-3.80	< .001	-0.01	[-0.02, 0.00]	-2.74	900.
Grandparent, $\hat{\gamma}_{01}$	-0.02	[-0.08, 0.05]	-0.51	.610	-0.02	[-0.09, 0.04]	-0.74	.462
Caring, $\hat{\gamma}_{10}$	0.00	[-0.03, 0.03]	0.03	.972	0.02	[0.00, 0.05]	1.64	.102
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01	[-0.01, 0.03]	1.37	.170	0.01	[-0.01, 0.02]	0.73	.468
After-slope * Caring, $\hat{\gamma}_{30}$	0.00	[-0.01, 0.01]	0.01	.993	-0.01	[-0.02, 0.00]	-1.72	.085
Grandparent * Caring, $\hat{\gamma}_{11}$	-0.04	[-0.12, 0.04]	-0.93	.355	-0.07	[-0.14, 0.01]	-1.74	.081
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.03	[0.00, 0.06]	1.88	090.	0.04	[0.01, 0.07]	2.82	.005

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S22

Linear Contrasts for Conscientiousness (Moderated by Grandchild Care; only HRS).

	Pai	Parent control	ıtrols	Non	onparent co	t controls
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	$0.04 \\ 0.03$	13.75 4.48	< .001 < .034	$0.05 \\ 0.03$	19.49 5.28	< .001

Note. The linear contrasts are based on the models from Table S21. $\hat{\gamma}_c =$ combined fixed-effects estimate.

 Table S23

 Fixed Effects of Extraversion Over the Transition to Grandparenthood.

		Parent controls	ontrols			Nonparent controls	controls	
Parameter	\\ \tau_{\tau}	95% CI	t		<i>∞</i>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.25		87.65	< .001	3.29	[3.20, 3.39]	67.72	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.01		-0.26	.793	0.01	[-0.07, 0.08]	0.18	.860
Before-slope, $\hat{\gamma}_{10}$	-0.01		-1.77	.077	0.00	[0.00, 0.01]	0.65	.515
After-slope, $\hat{\gamma}_{20}$	0.00		-1.47	.141	-0.01	[-0.02, 0.00]	-3.62	< .001
Shift, $\hat{\gamma}_{30}$	-0.01		-0.97	.332	-0.01	[-0.03, 0.02]	-0.41	.683
Grandparent, $\hat{\gamma}_{01}$	90.0		1.03	306	0.01	[-0.12, 0.14]	0.19	.849
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		-0.40	069.	-0.01	[-0.02, 0.00]	-1.44	.150
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00		0.57	.569	0.01	[0.00, 0.02]	1.45	.146
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.02	[-0.08, 0.05]	-0.51	209.	-0.02	[-0.08, 0.04]	-0.73	.467
HRS								
Intercept, $\hat{\gamma}_{00}$	3.20		159.82	< .001	3.11	[3.07, 3.16]	133.29	< .001
Propensity score, $\hat{\gamma}_{02}$	0.02		0.56	.577	0.05	[-0.02, 0.12]	1.44	.150
Before-slope, $\hat{\gamma}_{10}$	0.00		-0.52	.604	0.01	[-0.01, 0.02]	0.99	.321
After-slope, $\hat{\gamma}_{20}$	0.00		-0.64	.520	0.00	[-0.01, 0.01]	-0.35	.729
Shift, $\hat{\gamma}_{30}$	0.02	[0.00, 0.04]	1.68	093	0.01	[-0.01, 0.03]	1.07	.285
Grandparent, $\hat{\gamma}_{01}$	0.00		0.05	726.	0.07	[0.01, 0.14]	2.20	.028
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		0.31	.757	0.00	[-0.03, 0.02]	-0.35	.728
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01		1.46	.143	0.01	[0.00, 0.03]	1.38	.169
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04		-1.55	.121	-0.03	[-0.08, 0.02]	-1.30	.193

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S24

Linear Contrasts for Extraversion.

Linear Contrast $\hat{\gamma}_{c} \qquad \chi^{2} \qquad p \qquad \hat{\gamma}_{c} \qquad \chi^{2}$ LISS Shift of the controls vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} \right)$ Shift of the grandparents vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} \right)$ Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{01} + \hat{\gamma}_{31})$ Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{01} + \hat{\gamma}_{31})$ Could be shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{01} + \hat{\gamma}_{31})$	$\frac{\chi^2}{\chi^2}$ p 12 .145 58 208	$\hat{\gamma}_c$ -0.02	χ^2	a
-0.02 -0.03 -0.03				L
$^{-0.02}$				
$\hat{\gamma}_{21}$ -0.03			1.73	.188
$\hat{\gamma}_{91}$) -0.01			1.47	.225
1				.620
	77 .183	-0.01	1.65	.200
After-slope of the grandparents vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0.00 0.01 HRS				.852
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0.02 3.63	53 .057		1.51	.219
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$ -0.01	34 .561		0.36	.548
$\hat{\gamma}_{31}$) -0.03	90 .168	-0.02	1.19	.275
			0.01	.929
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$) 0.01 1.73	73 .189	0.01	1.86	.173

Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from ||the car R package (Fox & Weisberg, 2019) based on the models from Table S23. $\hat{\gamma}_c$ combined fixed-effects estimate.

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Gender. Table S25

		Parent controls	ntrols			Nonparent controls	sontrols	
Parameter	⟨~	95% CI	t		«≻	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.28	[3.18, 3.39]	60.26	< .001	3.22	[3.08, 3.35]	46.79	< .001
Propensity score, $\hat{\gamma}_{04}$	-0.01	[-0.09, 0.08]	-0.15	.881	0.01	[-0.06, 0.09]	0.30	.765
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.00]	-1.82	690.	0.02	[0.01, 0.03]	4.00	< .001
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.00]	-2.56	.011	0.00	[-0.01, 0.00]	-1.08	.280
Shift, $\hat{\gamma}_{30}$	-0.04	[-0.08, 0.01]	-1.68	.094	-0.05	[-0.09, -0.01]	-2.43	.015
Grandparent, $\hat{\gamma}_{01}$	0.01	[-0.15, 0.17]	0.00	.929	0.07	[-0.11, 0.26]	0.78	.435
Female, $\hat{\gamma}_{02}$	-0.06	[-0.20, 0.09]	-0.78	.436	0.13	[-0.05, 0.31]	1.45	.148
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.02]	0.14	.893	-0.03	[-0.05, -0.01]	-2.49	.013
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01	[-0.01, 0.03]	1.19	.236	0.00	[-0.01, 0.02]	0.48	.628
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01	[-0.10, 0.08]	-0.12	.903	0.01	[-0.08, 0.10]	0.22	.825
Before-slope * Female, $\hat{\gamma}_{12}$	0.01	[-0.01, 0.02]	0.87	.386	-0.03	[-0.04, -0.02]	-4.83	< .001
After-slope * Female, $\hat{\gamma}_{22}$	0.01	[0.00, 0.02]	2.10	.035	-0.01	[-0.02, 0.00]	-2.03	.043
Shift * Female, $\hat{\gamma}_{32}$	0.04	[-0.02, 0.09]	1.36	.174	0.08	[0.03, 0.14]	2.91	.004
Grandparent * Female, $\hat{\gamma}_{03}$	0.09	[-0.13, 0.31]	0.82	.411	-0.11	[-0.36, 0.13]	-0.90	360
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.01	[-0.04, 0.02]	-0.53	.593	0.03	[0.00, 0.06]	2.09	.037
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.04, 0.01]	-1.11	.266	0.01	[-0.02, 0.03]	0.71	.475
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	-0.02	[-0.14, 0.10]	-0.29	.768	-0.06	[-0.18, 0.06]	-0.98	.328
HRS								
Intercept, $\hat{\gamma}_{00}$	3.15	[3.09, 3.21]	108.70	< .001	3.11	[3.04, 3.17]	96.32	< .001
Propensity score, $\hat{\gamma}_{04}$	0.02	[-0.04, 0.09]	0.64	.520	0.05	[-0.02, 0.12]	1.31	.191
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.01, 0.02]	0.70	.482	0.00	[-0.02, 0.01]	-0.37	.709
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.02]	2.05	.040	0.00	[-0.01, 0.01]	0.51	609.
Shift, $\hat{\gamma}_{30}$	-0.01	[-0.04, 0.02]	-0.52	.601	-0.01	[-0.04, 0.03]	-0.41	.685
Grandparent, $\hat{\gamma}_{01}$	-0.01	[-0.10, 0.08]	-0.28	.782	0.02	[-0.08, 0.11]	0.39	269.
Female, $\hat{\gamma}_{02}$	0.08	[0.01, 0.16]	2.24	.025	0.01	[-0.07, 0.09]	0.30	.767
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.02	[-0.06, 0.02]	-0.85	397	-0.01	[-0.05, 0.03]	-0.41	.684
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.03]	0.35	.730	0.01	[-0.01, 0.04]	1.09	.276
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.08, 0.07]	-0.12	.905	-0.01	[-0.08, 0.06]	-0.19	.853
Before-slope * Female, $\hat{\gamma}_{12}$	-0.02	[-0.04, 0.01]	-1.44	.150	0.02	[-0.01, 0.04]	1.40	.161
After-slope * Female, $\hat{\gamma}_{22}$	-0.03	[-0.04, -0.01]	-3.28	.001	-0.01	[-0.02, 0.01]	-0.98	.327
Shift * Female, $\hat{\gamma}_{32}$	0.05	[0.00, 0.09]	2.17	.030	0.03	[-0.01, 0.07]	1.45	.146

Table S25 continued

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	-%	95% CI	t	d	.≻	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.03		0.45	.649	0.10		1.51	.131
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.04		1.42	.155	0.01		0.23	.817
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.02, 0.05]	0.79	.431	0.00	[-0.04, 0.03]	-0.27	.790
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	-0.06		-1.19	.234	-0.04		-0.87	.383

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S26

Linear Contrasts for Extraversion (Moderated by Gender).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
LISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.05	6.28	.012	-0.05	9.10	.003
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.01	0.09	.763	0.02	0.95	.330
Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	1.25	.264	-0.04	1.16	.281
Shift of grandmothers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.45	.500	-0.02	0.41	.520
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.02	.891	0.01	0.13	.716
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	-0.01	0.42	.518	0.00	0.13	.720
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.13	.722	0.01	2.45	.117
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.03	0.54	.461	-0.04	1.03	.311
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.05	4.20	.040	0.07	8.22	.004
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.03	.871	0.00	0.01	.943
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.03	.857	0.00	0.04	.834
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	0.14	.709	0.02	0.13	.717
HRS						
Shift of male controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.00	0.06	.812	0.00	0.09	.765
Shift of female controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.03	5.44	.020	0.02	3.52	.061
Shift of grandfathers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.01	.905	0.00	0.01	.903
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	-0.02	0.73	.393	-0.02	0.78	.377
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.00	666.	0.01	0.06	.805
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.02	1.42	.234	0.00	0.01	606.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.02	2.40	.122	0.01	0.65	.419
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.05	3.28	.070	-0.04	2.65	.104
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.02	1.88	.171	0.02	2.10	.147
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	0.79	.373	0.02	0.85	.357
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.57	.452	-0.01	0.62	.431
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.44	.508	-0.02	0.47	.495

Note. The linear contrasts are based on the models from Table S25. $\hat{\gamma}_c = \text{combined fixed-effects estimate.}$

Table S27

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>⟨</i> ~	95% CI	t	d	<i>⟨</i> ≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.18	[3.13, 3.23]	129.04	< .001	3.12	[3.07, 3.17]	112.49	< .001
Propensity score, $\hat{\gamma}_{02}$	0.01	[-0.06, 0.08]	0.31	.757	0.03	[-0.04, 0.10]	0.77	.439
Before-slope, $\hat{\gamma}_{20}$	0.02	[0.00, 0.04]	1.69	.091	0.00	[-0.02, 0.02]	0.00	.927
After-slope, $\hat{\gamma}_{40}$	0.00	[-0.01, 0.01]	0.12	.901	-0.01	[-0.02, 0.00]	-1.24	.213
Shift, $\hat{\gamma}_{60}$	-0.04	[-0.08, -0.01]	-2.48	.013	0.02	[-0.02, 0.05]	0.91	.364
Grandparent, $\hat{\gamma}_{01}$	-0.06	[-0.16, 0.04]	-1.23	.217	-0.01	[-0.11, 0.09]	-0.18	.853
Working, $\hat{\gamma}_{10}$	0.03	[-0.02, 0.07]	1.19	.232	0.00	[-0.05, 0.04]	-0.12	.902
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[-0.03, 0.07]	0.74	.460	0.04	[-0.02, 0.09]	1.38	.169
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.02	[0.00, 0.04]	1.65	660.	0.03	[0.00, 0.05]	2.32	.021
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.02	[-0.10, 0.06]	-0.46	.643	-0.08	[-0.16, 0.00]	-2.02	.044
Before-slope * Working, $\hat{\gamma}_{30}$	-0.03	[-0.05, -0.01]	-2.38	.017	0.01	[-0.02, 0.03]	0.59	.556
ρ, ,	0.00	[-0.02, 0.01]	-0.19	.848	0.01	[0.00, 0.03]	1.79	.074
Shift * Working, $\hat{\gamma}_{70}$	0.10	[0.05, 0.14]	4.18	< .001	-0.01	[-0.06, 0.04]	-0.43	299.
Grandparent * Working, $\hat{\gamma}_{11}$	0.08	[-0.02, 0.18]	1.53	.126	0.11	[0.01, 0.21]	2.13	.034
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.01	[-0.08, 0.05]	-0.46	.646	-0.05	[-0.11, 0.01]	-1.69	.092
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.01	[-0.05, 0.02]	-0.80	.425	-0.03	[-0.06, 0.00]	-1.69	060.
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	-0.03	[-0.13, 0.08]	-0.49	.623	0.08	[-0.02, 0.18]	1.57	.115

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S28

Linear Contrasts for Extraversion (Moderated by Paid Work; only HRS).

				1		toubarous courses
Linear Contrast γ_c	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$ -0.04		9.28	.002	0.01	0.42	.515
Shift of working controls vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70}$)	• •	22.76	< .001	0.01	1.67	.196
vs. 0 $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$		2.05	.152	-0.04	2.20	.138
) $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$		0.40	.526	0.01	0.42	.517
not-working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61})$		0.00	.957	-0.05	2.60	.107
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ 0.01		0.12	.729	-0.02	1.06	.303
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$ 0.01		0.28	.598	0.00	0.00	.948
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$ -0.04		2.46	.117	0.00	0.00	786.
	. 1	27.75	< .001	0.00	0.04	.852
arents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$		2.34	.126	-0.04	2.52	.113
•		0.97	.325	-0.02	1.01	.314
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{71} + \hat{\gamma}_{71})$ 0.06		2.24	.135	90.0	2.38	.123

Note. The linear contrasts are based on the models from Table S27. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S29

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent	controls	
Parameter	.⊱	95% CI	t	d	«≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.19	[3.14, 3.24]	128.26	< .001	3.12	[3.06, 3.18]	102.87	< .001
Propensity score, $\hat{\gamma}_{02}$	0.13	[0.04, 0.22]	2.98	.003	0.08	[-0.01, 0.17]	1.67	960.
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.03, 0.00]	-2.61	600.	0.00	[-0.01, 0.01]	-0.39	.694
Grandparent, $\hat{\gamma}_{01}$	-0.04	[-0.11, 0.03]	-1.05	.296	0.04	[-0.04, 0.12]	1.06	.288
Caring, $\hat{\gamma}_{10}$	0.00	[-0.03, 0.04]	0.23	.815	0.02	[-0.02, 0.05]	0.86	.391
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[-0.01, 0.04]	1.32	.186	0.00	[-0.02, 0.02]	0.30	.767
After-slope * Caring, $\hat{\gamma}_{30}$	0.00	[-0.02, 0.02]	-0.04	962	0.00	[-0.02, 0.01]	-0.42	929.
Grandparent * Caring, $\hat{\gamma}_{11}$	-0.04	[-0.13, 0.06]	-0.74	.461	-0.05	[-0.14, 0.04]	-1.04	.299
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.03	[-0.01, 0.06]	1.56	.119	0.03	[0.00, 0.07]	1.83	290.

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S30

Linear Contrasts for Extraversion (Moderated by Grandchild Care; only HRS).

	Pare	arent control	cols	Nonpa	Vonparent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.04	10.45	.001	0.04	7.39	200.
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.03	2.98	.084	0.03	3.37	990.

Note. The linear contrasts are based on the models from Table S29. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S31

Fixed Effects of Neuroticism Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>⟨</i> ≻	95% CI	t	d	⟨>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	2.48	[2.40, 2.56]	63.09	< .001	2.45	[2.35, 2.54]	51.88	< .001
Propensity score, $\hat{\gamma}_{02}$	0.01	[-0.09, 0.11]	0.19	.852	0.00	[-0.09, 0.09]	0.04	296.
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	-0.56	.575	-0.01	[-0.02, -0.01]	-3.66	< .001
After-slope, $\hat{\gamma}_{20}$	0.00	[0.00, 0.01]	0.94	.350	0.00	[0.00, 0.01]	1.31	.190
Shift, $\hat{\gamma}_{30}$	-0.05	[-0.08, -0.02]	-2.96	.003	-0.03	[-0.06, 0.01]	-1.58	.115
Grandparent, $\hat{\gamma}_{01}$	-0.08	[-0.20, 0.03]	-1.37	.170	-0.04	[-0.17, 0.08]	-0.67	.500
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.01, 0.02]	0.43	899.	0.02	[0.00, 0.03]	1.83	290.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.01]	-0.33	.744	0.00	[-0.02, 0.01]	-0.48	.635
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.02	[-0.09, 0.06]	-0.41	.684	-0.04	[-0.12, 0.04]	-1.01	.312
HRS								
Intercept, $\hat{\gamma}_{00}$	2.07		94.42	< .001	2.07		79.36	< .001
Propensity score, $\hat{\gamma}_{02}$	0.00		0.12	.902	0.15		3.70	< .001
Before-slope, $\hat{\gamma}_{10}$	-0.01		-1.90	.057	-0.03		-4.70	< .001
After-slope, $\hat{\gamma}_{20}$	-0.01		-1.20	.230	-0.01		-3.18	.001
Shift, $\hat{\gamma}_{30}$	0.01	[-0.02, 0.03]	0.42	675	-0.03		-2.36	.018
Grandparent, $\hat{\gamma}_{01}$	-0.06		-1.64	.100	-0.12		-3.31	.001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02		1.28	.201	0.04		2.42	.016
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02		-1.52	.127	-0.01		-0.80	.424
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.06		-2.12	.034	-0.03	[-0.08, 0.03]	-0.88	.381

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S32

Linear Contrasts for Neuroticism.

	Pa_1	Parent controls	trols	Nonp	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$ χ^2	χ^2	d
LISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.05	10.12	.001	-0.02	2.26	.133
Shift of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.07	4.99	.025	-0.07	4.74	.029
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	0.30	.587	-0.04	1.62	.203
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00		.842	0.00	0.05	.830
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	0.00	0.01	.914	0.00	0.03	.900
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.00	0.00	.993	-0.04	20.02	< .001
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.08	15.10	< .001	-0.08	15.78	< .001
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.08	Η	.001	-0.03	2.29	.130
Before-slope of the grandparents vs. $0(\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.01	0.25	.618	0.01	0.19	999.
After-slope of the grandparents vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{21})$	-0.02	5.29	.021	-0.02	6.13	.013
rect-stope of the grantipatents vs. 0 (720 ± 721)	70.0-	64.0	1770:	70:0-	-	-

R package (Fox & Weisberg, 2019) based on the models from Table S31. $\hat{\gamma}_c = \text{combined fixed-effects}$ multiple fixed-effects coefficients and are computed using the linearHypothesis function from the car Note. The linear contrasts are needed in cases where estimates of interest are represented by estimate.

Table S33

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	itrols			Nonparent controls	controls	
Parameter	<i>⟨</i> ~	95% CI	t	<i>d</i>	⟨≻	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	2.45	[2.34, 2.56]	43.45	< .001	2.32	[2.19, 2.45]	34.99	< .001
Propensity score, $\hat{\gamma}_{04}$	0.02	[-0.09, 0.12]	0.30	292.	0.02	[-0.08, 0.11]	0.33	.744
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.00]	-1.89	050	-0.01	[-0.02, 0.00]	-1.12	.263
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.02]	2.82	.005	0.01	[0.00, 0.02]	2.43	.015
Shift, $\hat{\gamma}_{30}$	-0.06	[-0.11, -0.01]	-2.24	0.025	-0.05	[-0.10, 0.00]	-1.95	.052
Grandparent, $\hat{\gamma}_{01}$	-0.18	[-0.35, -0.01]	-2.11	.035	-0.05	[-0.23, 0.13]	-0.56	.574
Female, $\hat{\gamma}_{02}$	0.05	[-0.09, 0.20]	0.72	.474	0.22	[0.05, 0.40]	2.52	.012
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.01, 0.04]	0.82	.413	0.01	[-0.02, 0.03]	0.46	.643
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02	[-0.04, 0.01]	-1.36	.173	-0.01	[-0.04, 0.01]	-1.15	.250
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.03	[-0.14, 0.08]	-0.51	.612	-0.04	[-0.15, 0.08]	-0.63	.529
Before-slope * Female, $\hat{\gamma}_{12}$	0.02	[0.00, 0.03]	2.03	.043	-0.01	[-0.03, 0.00]	-1.83	290.
After-slope * Female, $\hat{\gamma}_{22}$	-0.02	[-0.03, -0.01]	-2.99	.003	-0.01	[-0.03, 0.00]	-2.10	036
Shift * Female, $\hat{\gamma}_{32}$	0.01	[-0.05, 0.08]	0.39	.700	0.04	[-0.03, 0.11]	1.19	.234
Grandparent * Female, $\hat{\gamma}_{03}$	0.18	[-0.05, 0.40]	1.54	.123	0.01	[-0.24, 0.25]	0.06	.951
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.01	[-0.05, 0.02]	-0.66	.508	0.02	[-0.02, 0.05]	1.08	.279
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.02	[-0.01, 0.05]	1.48	.138	0.02	[-0.01, 0.05]	1.08	.282
ft * Grandparent * Female, $\hat{\gamma}_{33}$	0.03	[-0.12, 0.18]	0.35	.730	0.00	[-0.16, 0.15]	-0.03	.975
HRS								
$\text{Intercept, } \hat{\gamma}_{00}$	1.98	[1.91, 2.04]	62.73	< .001	2.01	[1.94, 2.08]	56.33	< .001
Propensity score, $\hat{\gamma}_{04}$	0.01	[-0.07, 0.09]	0.26	.798	0.15	[0.07, 0.23]	3.58	< .001
Before-slope, $\hat{\gamma}_{10}$	-0.02	[-0.04, 0.00]	-2.11	.035	-0.03	[-0.05, -0.01]	-3.18	.001
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, 0.00]	-2.40	.017	-0.02	[-0.03, -0.01]	-2.92	.003
Shift, $\hat{\gamma}_{30}$	0.08	[0.04, 0.12]	4.02	< .001	0.00	[-0.03, 0.04]	0.21	.834
Grandparent, $\hat{\gamma}_{01}$	-0.06	[-0.16, 0.04]	-1.10	.272	-0.16	[-0.26, -0.05]	-2.89	.004
Female, $\hat{\gamma}_{02}$	0.17	[0.09, 0.25]	4.19	< .001	0.10	[0.01, 0.19]	2.23	020
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[0.01, 0.10]	2.26	.024	0.06	[0.02, 0.11]	2.72	200.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.03, 0.03]	0.31	.755	0.01	[-0.02, 0.04]	0.48	.630
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.16	[-0.25, -0.07]	-3.60	< .001	-0.08	[-0.17, 0.00]	-1.89	050
Before-slope * Female, $\hat{\gamma}_{12}$	0.01	[-0.01, 0.04]	1.04	.300	0.00	[-0.03, 0.03]	0.09	.926
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[0.00, 0.04]	2.19	.029	0.01	[-0.01, 0.03]	1.15	.250
Shift * Female, $\hat{\gamma}_{32}$	-0.14	[-0.19, -0.08]	-5.02	< .001	-0.06	[-0.11, -0.01]	-2.33	.020

Table S33 continued

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter	<i>∞</i>	95% CI	t	. d	<≻	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.00	[-0.14, 0.13]	-0.01	.993	0.06	[-0.08, 0.20]	0.82	.410
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.06	[-0.12, 0.00]	-1.85	.065	-0.05	[-0.11, 0.01]	-1.49	.138
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.04	[-0.08, 0.00]	-1.80	.073	-0.03	[-0.07, 0.01]	-1.35	.176
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.17	[0.06, 0.29]	2.90	.004	0.10	[-0.01, 0.21]	1.71	780.

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S34

Linear Contrasts for Neuroticism (Moderated by Gender).

	Pa _l	Parent controls	trols	Nong	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
SSIT						
Shift of male controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.04	3.64	050	-0.04	2.76	960.
Shift of female controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.05	6.02	.014	-0.01	0.24	.621
Shift of grandfathers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.09	3.89	.048	-0.09	3.67	.055
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.04	1.25	.263	-0.05	1.20	.273
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	0.80	.371	-0.05	0.97	.325
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.00	0.01	.935	0.03	4.48	.034
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.51	.476	0.00	0.12	.730
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{23})$	0.01	0.01	.904	-0.03	0.57	.451
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.01	0.06	.799	0.03	0.76	.382
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.08	.783	0.00	0.09	.765
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.02	.882	0.00	0.02	.875
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.04	0.50	.481	0.04	0.46	.498
HRS						
Shift of male controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.06	17.37	< .001	-0.02	1.08	.299
Shift of female controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.05	13.66	< .001	-0.07	25.37	< .001
Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.09	9.12	.003	-0.09	9.50	.002
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	-0.07	6.49	.011	-0.07	6.77	600.
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.16	20.99	< .001	-0.07	5.10	.024
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.00	0.05	.821	0.02	0.73	.392
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	-0.03	5.41	.020	-0.02	2.20	.138
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.37	.541	0.00	0.01	.943
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.12	31.04	< .001	-0.05	6.32	.012
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.05	2.41	.120	-0.05	2.56	.109
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	0.84	360	-0.02	0.88	.349
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.03	0.30	.584	0.02	0.31	.577

Note. The linear contrasts are based on the models from Table S33. $\hat{\gamma}_c = \text{combined fixed-effects estimate.}$

Table S35

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Performing Paid Work.

Parameter $\hat{\gamma}$ Parameter $\hat{\gamma}$ Parameter $\hat{\gamma}$ Intercept, $\hat{\gamma}_{00}$ Propensity score, $\hat{\gamma}_{02}$ Propensity score, $\hat{\gamma}_{03}$ Paffor-slope, $\hat{\gamma}_{40}$ Propensity, $\hat{\gamma}_{01}$ Propersione * Working, $\hat{\gamma}_{30}$ Propersione * Working, $\hat{\gamma}_{30}$ Propersione * Working, $\hat{\gamma}_{50}$ Propensity, $\hat{\gamma}_{61}$ Propensity Propersional Propersional Propersional Propersional Propersional Propensity Propersional Proper	95% [1.96, 3] [-0.08, -0.02, -0.02, -0.02, -0.03, -0.03, -0.03, -0.03, -0.13, -	t 0.01 0.01 0.18 -0.79 1.91 2.28	p p c c c c c c c c	$\frac{\hat{\gamma}}{2.02}$ 0.15 -0.01	95% CI [1.96, 2.08] [0.06, 0.23]	t	8
re, $\hat{\gamma}_{02}$ re, $\hat{\gamma}_{02}$ re, $\hat{\gamma}_{02}$ 0.00 0.00 0.08 0.00 0.02 0.02 0.02 0.03 0.04 0.00 0.03 0.03 0.08 0.03 Grandparent, $\hat{\gamma}_{21}$ 0.08 0.08 0.03 Parent, $\hat{\gamma}_{61}$ 0.05 0.05 Working, $\hat{\gamma}_{50}$ 0.00 0.00 0.00 0.00 0.00	[1.96, 3] [-0.08, 2] [-0.02, 2] [0.00, 2] [0.03, 2]	72.21 0.01 0.18 -0.79 1.91 2.28	 < .001 .993 .860 .429 .056 	2.02 0.15 -0.01			Ъ
re, $\hat{\gamma}_{02}$ 0.00 [-0.08, $\hat{\gamma}_{20}$ 0.00 [-0.02, 0.00 [-0.02, 0.00 [-0.02, 0.00 [-0.02, 0.00 [-0.04] [0.02, 0.00 [0.03] [0.03, 0.00 [0.03] [0.03, 0.00 [-0.07] [-0.13, 0.00 [-0.05] [-0.13, 0.00 [-0.05] [-0.15, 0.00 [-0.05] [-0.15, 0.00 [-0.05] [-0.15, 0.00 [-0.05] [-0.15, 0.00 [-0.05] [-0.05] [-0.15, 0.00 [-0.05] [-	[-0.08, [-0.02, [-0.02, [-0.02, [-0.02, [-0.02, [-0.02, [-0.03, [-0.03, [-0.13]]]]]]	0.01 0.18 -0.79 1.91 2.28	.993 .860 .429	0.15		63.73	< .001
e, $\hat{\gamma}_{20}$ 0.00 [-0.02, $\hat{\gamma}_{20}$ 0.01 [-0.02, $\hat{\gamma}_{40}$ 0.04 [0.00, 0.04 [0.00, 0.04 [0.00, 0.04 [0.00, 0.08 [0.03, 0.08 [0.03, 0.08 [0.03, 0.08 [0.03, 0.08 [-0.07] [-0.13, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05, 0.09 [-0.05]	[-0.02, [-0.02, [0.00, [0.02, (-0.03,	0.18 -0.79 1.91 2.28	.860 .429 .056	-0.01		3.46	.001
$\begin{array}{cccccc} , \hat{\gamma}_{40} & & & & & & & & & & & & & & & & & & &$	[-0.02, [0.02, 0.02, 0.03, 0.0	-0.79 1.91 2.28	.429	-0.01		-0.84	.400
nt, $\hat{\gamma}_{01}$ e * Grandparent, $\hat{\gamma}_{21}$ e * Grandparent, $\hat{\gamma}_{21}$ Grandparent, $\hat{\gamma}_{41}$ Grandparent, $\hat{\gamma}_{41}$ Grandparent, $\hat{\gamma}_{41}$ Grandparent, $\hat{\gamma}_{61}$ Grandparent,	[0.00, 0.02, 0.02, 0.03,	1.91	.056	1		-1.41	.159
nt, $\hat{\gamma}_{01}$ 0.13 [0.02, 0.08] 10 0.08 [0.03, 0.03] e * Grandparent, $\hat{\gamma}_{21}$ -0.07 [-0.13, 0.05] adparent, $\hat{\gamma}_{61}$ -0.05 [-0.05, 0.05] e * Working, $\hat{\gamma}_{30}$ -0.02 [-0.05, 0.05] * Working, $\hat{\gamma}_{70}$ -0.05 [-0.02, 0.02] rking, $\hat{\gamma}_{70}$ -0.05 [-0.11, 0.05]	[0.02, 0] [0.03, 0] [-0.13	2.28		-0.03		-1.32	.188
ent, $\hat{\gamma}_{21}$ -0.08 [0.03, 0.08], at, $\hat{\gamma}_{41}$ -0.07 [-0.13, 0.02], and, $\hat{\gamma}_{41}$ -0.05 [-0.05, 0.03], $\hat{\gamma}_{30}$ -0.05 [-0.05, 0.00], $\hat{\gamma}_{50}$ -0.05 [-0.01, 0.05], and $\hat{\gamma}_{50}$ -0.05 [-0.01, 0.05].	[0.03, 0]		77.0	0.07		1.27	.203
ent, $\hat{\gamma}_{21}$ -0.07 [-0.13, nt, $\hat{\gamma}_{41}$ -0.02 [-0.05, 1.05], $\hat{\gamma}_{30}$ -0.05 [-0.15, $\hat{\gamma}_{30}$ -0.02 [-0.05, $\hat{\gamma}_{50}$ -0.05 [-0.02, $\hat{\gamma}_{50}$ -0.05 [-0.01, $\hat{\gamma}_{50}$ -0.05 [-0.11, $\hat{\gamma}_{50}$ -0.05 [-0.11].	[-0.13]	2.94	.003	0.07		2.63	600.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	-2.04	.042	-0.06		-1.73	.084
$\hat{\gamma}_{30}$ -0.05 [-0.15, $\hat{\gamma}_{30}$ -0.02 [-0.05, $\hat{\gamma}_{50}$ 0.00 [-0.02, -0.05, $\hat{\gamma}_{50}$ -0.05 [-0.11,	[-0.05,	-1.55	.122	-0.02		-1.37	.170
$\hat{\gamma}_{30}$ -0.02 [-0.05, $\hat{\gamma}_{50}$ 0.00 [-0.02, -0.05 [-0.11,	[-0.15,	-1.03	.303	0.02		0.45	.655
)50 0.00 [-0.02, -0.05 [-0.11,	[-0.05,	-1.43	.153	-0.02		-1.54	.123
-0.05 [-0.11,	[-0.02,	-0.23	.820	-0.01		-0.73	.463
	[-0.11,	-1.90	058	0.00		0.13	.893
$, \hat{\gamma}_{11}$ -0.25 [-0.38, -	$[-0.38, \cdot]$	-4.08	< .001	-0.25		-4.20	< .001
[0.04, 0.04]	[0.04, 0.04]	2.95	.003	0.12		3.13	.002
[-0.03,	[-0.03,	0.51	.613	0.02		0.75	.451
Shift * Grandparent * Working, $\hat{\gamma}_{71}$ -0.02 [-0.15, 0.10]	[-0.15,	-0.33	.740	-0.08		-1.23	.217

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S36

Linear Contrasts for Neuroticism (Moderated by Paid Work; only HRS).

	Par	Parent controls	trols	Non	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	0.04	4.30	.038	-0.04	4.61	.032
Shift of working controls vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70}$)	-0.02	2.18	.140	-0.04	11.64	.001
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.04	1.12	.290	-0.04	1.24	.266
Shift of working grandparents vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71}$)	-0.10	15.38	< .001	-0.10	16.09	< .001
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.07	3.47	.063	0.00	0.00	.974
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.05	5.89	0.015	0.06	11.29	.001
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	-0.01	0.72	396	0.00	0.11	.743
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.08	8.11	.004	-0.06	4.48	.034
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	-0.06	6.36	.012	0.00	0.02	.895
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.09	6.73	600.	0.00	7.45	900.
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.01	0.20	.651	0.01	0.23	.634
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$.	-0.07	2.14	.143	-0.06	2.17	.141

Note. The linear contrasts are based on the models from Table S35. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S37

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent c	controls	
Parameter	√≻	95% CI	t	d	⟨~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	2.04		75.41	< .001	1.97	[1.91, 2.04]	59.05	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.02		-0.45	.652	0.14	[0.03, 0.24]	2.59	.010
After-slope, $\hat{\gamma}_{20}$	0.00		-0.02	.982	-0.02	[-0.03, 0.00]	-2.67	800.
Grandparent, $\hat{\gamma}_{01}$	-0.10		-2.45	.014	-0.11	[-0.20, -0.02]	-2.43	.015
Caring, $\hat{\gamma}_{10}$	0.01		0.33	.740	0.00	[-0.04, 0.04]	-0.09	.930
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00		-0.17	3865	0.01	[-0.01, 0.04]	1.06	.291
$\hat{\gamma}_{30}$	-0.01		-1.01	.311	0.01	[-0.01, 0.03]	0.68	.494
Grandparent * Caring, $\hat{\gamma}_{11}$	0.09		1.57	.117	0.09	[-0.02, 0.21]	1.67	.095
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	-0.03	[-0.07, 0.01]	-1.34	.182	-0.04	[-0.09, 0.00]	-2.07	.038

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S38

Linear Contrasts for Neuroticism (Moderated by Grandchild Care; only HRS).

	Pare	arent control	rols	Nonparen	rent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.03	3.78	.052	-0.03	3.60	.058
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.04	4.06	.044	-0.04	3.90	.048

Note. The linear contrasts are based on the models from Table S37. $\hat{\gamma}_c = \text{combined fixed-effects}$

1763

estimate.

Table S39

Fixed Effects of Openness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«~	95% CI	t	<i>d</i>	\	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.48		118.77	< .001	3.52	[3.45, 3.59]	104.18	< .001
Propensity score, $\hat{\gamma}_{02}$	0.00		-0.07	.944	0.03	[-0.03, 0.09]	1.02	.309
Before-slope, $\hat{\gamma}_{10}$	0.00		-1.58	.114	0.00	[-0.01, 0.00]	-0.68	.494
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.01, 0.00]	-2.36	.018	0.00	[0.00, 0.01]	1.95	.051
Shift, $\hat{\gamma}_{30}$	0.02		1.88	.061	0.00	[-0.02, 0.02]	0.00	866.
Grandparent, $\hat{\gamma}_{01}$	0.01		0.16	.872	-0.05	[-0.14, 0.04]	-1.06	.290
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01		1.23	.220	0.01	[-0.01, 0.02]	0.87	.384
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00		0.11	.910	-0.01	[-0.02, 0.00]	-1.92	055
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.03		-1.05	.296	-0.01	[-0.06, 0.04]	-0.21	.832
HRS						1		
Intercept, $\hat{\gamma}_{00}$	3.04		149.49	< .001	3.01		129.29	< .001
Propensity score, $\hat{\gamma}_{02}$	0.03		0.82	.411	0.00		0.13	895
	-0.02		-3.29	.001	0.00		-0.68	.495
After-slope, $\hat{\gamma}_{20}$	-0.03		-5.28	< .001	-0.02		-4.83	< .001
Shift, $\hat{\gamma}_{30}$	0.06	[0.03, 0.08]	4.92	< .001	0.03	[0.01, 0.05]	3.26	.001
Grandparent, $\hat{\gamma}_{01}$	-0.03		-0.55	.582	0.02		0.75	.451
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02		1.36	.172	0.00		0.19	.850
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		2.01	.044	0.01		1.74	.083
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.07	[-0.12, -0.02]	-2.86	.004	-0.05		-2.16	.031

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

.037 .210 .039

 $\frac{4.36}{1.57}$ 4.25

0.02 -0.02 -0.04

.001.253.004

0.03 -0.02 -0.05 0.00 0.00

> Shift of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$ Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$

Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$

Before-slope of the grandparents vs. 0 ($\hat{\gamma}_{10} + \hat{\gamma}_{11}$) After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)

 $16.48 \\ 1.31 \\ 8.14 \\ 0.00 \\ 0.14$

.908

 $0.01 \\ 0.20$

0.00

.946 .709

0.00

.489 .528 .244

0.48 0.40 1.36

-0.02 0.00 -0.01

.561 .284

0.00

.109 .618 .241

Nonparent controls

 $\stackrel{\circ}{\sim}$

Table S40

Litical Collectuates for Operations.			
	Paı	Parent controls	slo
Linear Contrast	$\hat{\gamma}_c$	$\hat{\gamma}_c$ χ^2	
TISS			
Shift of the controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$)	0.02	2.57	.T
Shift of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.01	0.25	9.
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.03	1.38	.2
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00	0.34	ŭ
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	-0.01	1.15	.23

multiple fixed-effects coefficients and are computed using the linearHypothesis function from the Note. The linear contrasts are needed in cases where estimates of interest are represented by car R package (Fox & Weisberg, 2019) based on the models from Table S39. $\hat{\gamma}_c = \text{combined}$ fixed-effects estimate.

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	<i>d</i>	⟨>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.47	[3.39, 3.55]	81.39	< .001	3.54	[3.45, 3.64]	73.02	< .001
Propensity score, $\hat{\gamma}_{04}$	0.00	[-0.08, 0.07]	-0.04	.970	0.03	[-0.03, 0.09]	0.94	.347
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	0.17	.864	0.01	[0.00, 0.02]	2.39	.017
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.01, 0.00]	-1.05	.292	0.01	[0.00, 0.01]	1.53	.126
Shift, $\hat{\gamma}_{30}$	-0.02	[-0.05, 0.02]	-0.93	.353	-0.01	[-0.04, 0.02]	-0.64	.523
Grandparent, $\hat{\gamma}_{01}$	0.11	[-0.01, 0.24]	1.78	920.	0.03	[-0.10, 0.16]	0.44	.661
Female, $\hat{\gamma}_{02}$	0.01	[-0.10, 0.12]	0.16	.871	-0.05	[-0.17, 0.08]	-0.69	.488
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.01]	-0.39	.694	-0.01	[-0.03, 0.00]	-1.42	.156
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.01	[-0.02, 0.01]	-0.88	.380	-0.02	[-0.03, 0.00]	-2.16	.031
Shift * Grandparent, $\hat{\gamma}_{31}$	0.03	[-0.05, 0.12]	0.84	.400	0.03	[-0.05, 0.10]	0.75	.452
Before-slope * Female, $\hat{\gamma}_{12}$	-0.01	[-0.02, 0.00]	-1.64	.102	-0.02	[-0.03, -0.01]	-3.89	< .001
After-slope * Female, $\hat{\gamma}_{22}$	0.00	[-0.01, 0.01]	-0.79	.431	0.00	[-0.01, 0.01]	-0.24	.812
Shift * Female, $\hat{\gamma}_{32}$	0.08	[0.03, 0.13]	2.98	.003	0.02	[-0.03, 0.06]	0.84	.402
Grandparent * Female, $\hat{\gamma}_{03}$	-0.20	[-0.37, -0.03]	-2.31	.021	-0.15	[-0.33, 0.03]	-1.59	.113
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.02	[0.00, 0.05]	1.70	060.	0.03	[0.01, 0.06]	2.80	.005
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.01, 0.04]	1.29	.197	0.01	[-0.01, 0.03]	1.14	.255
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	-0.12	[-0.23, -0.01]	-2.11	.035	-0.06	[-0.16, 0.04]	-1.21	.225
HRS								
Intercept, $\hat{\gamma}_{00}$	3.06	[3.00, 3.12]	108.70	< .001	3.03	[2.97, 3.09]	97.90	< .001
Propensity score, $\hat{\gamma}_{04}$	0.03	[-0.04, 0.09]	0.86	.391	0.00	[-0.06, 0.07]	0.03	926.
Before-slope, $\hat{\gamma}_{10}$	-0.02	[-0.04, 0.00]	-2.44	.015	-0.01	[-0.03, 0.00]	-1.90	0.058
After-slope, $\hat{\gamma}_{20}$	-0.03	[-0.04, -0.02]	-5.75	< .001	-0.01	[-0.02, 0.00]	-2.04	.042
Shift, $\hat{\gamma}_{30}$	0.11	[0.07, 0.14]	6.34	< .001	0.00	[-0.03, 0.03]	-0.29	.772
Grandparent, $\hat{\gamma}_{01}$	-0.03	[-0.12, 0.06]	-0.62	.535	0.01	[-0.08, 0.10]	0.24	.813
Female, $\hat{\gamma}_{02}$	-0.03	[-0.09, 0.04]	-0.80	.423	-0.04	[-0.11, 0.04]	-0.98	.328
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.03, 0.05]	0.41	.685	0.00	[-0.03, 0.04]	0.05	096.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.01, 0.06]	2.66	800.	0.01	[-0.01, 0.03]	0.94	.346
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.15	[-0.22, -0.07]	-3.93	< .001	-0.03	[-0.10, 0.03]	-1.00	.316
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.02, 0.03]	0.28	.781	0.02	[0.00, 0.04]	1.97	.049
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[0.01, 0.04]	3.05	.002	-0.01	[-0.02, 0.00]	-1.47	.141
Shift * Female, $\hat{\gamma}_{32}$	-0.09	[-0.14, -0.05]	-4.11	< .001	0.06	[0.03, 0.10]	3.21	.001

Table S41 continued

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	⟨ ~	95% CI	t	d	<i>∞</i>	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.02	[-0.10, 0.13]	0.30	.763	0.03	_	0.45	.652
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.02	[-0.04, 0.07]	0.67	.504	0.00	_	80.0	.939
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.03	[-0.06, 0.00]	-1.75	620.	0.00	[-0.03, 0.03]	0.27	.790
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.14	[0.04, 0.23]	2.71	200.	-0.02	_	-0.52	.603

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S42

Linear Contrasts for Openness (Moderated by Gender).

	Paı	Parent controls	trols	Non	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	$\frac{d}{d}$	$\hat{\gamma}_c$	χ^2	d
SSIT						
Shift of male controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.02	1.70	.192	-0.01	0.14	902.
Shift of female controls vs. $\hat{0}$ ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.05	11.29	.001	0.01	0.84	.359
Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.03	.853	0.01	0.04	.833
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.03	0.78	.378	-0.03	0.93	.335
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.03	0.57	.450	0.01	0.13	.721
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.02	4.38	.036	0.03	6.74	600.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.91	.341	0.00	0.42	.517
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.08	5.37	.020	-0.04	1.63	.202
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.07	10.45	.001	0.02	0.82	.366
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.01	1.16	.282	0.01	1.41	.236
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.01	1.10	.294	0.01	1.33	.249
ift of grandfathers vs. grand:	-0.03	0.53	.466	-0.03	0.65	.421
HRS						
Shift of male controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.07	32.25	< .001	-0.02	1.67	.197
Shift of female controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.00	0.15	869.	0.04	15.02	< .001
Shift of grandfathers vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} \right)$	-0.04	2.39	.122	-0.04	2.82	.093
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	0.00	0.01	.919	0.00	0.02	836
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.11	15.71	< .001	-0.02	0.80	.372
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.03	2.17	.141	0.00	0.03	.863
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.10	.747	0.01	2.08	.150
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.01	0.07	.791	-0.04	3.38	990.
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.07	15.92	< .001	0.05	12.31	< .001
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	0.76	.382	0.02	1.04	307
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.19	099	-0.01	0.19	.663
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.04	1.17	.280	0.04	1.35	.245

Note. The linear contrasts are based on the models from Table S41. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S43

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i> </i>	95% CI	t	d	Ŷ	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.02	[2.97, 3.06]	121.17	< .001	3.03	[2.97, 3.08]	111.81	< .001
Propensity score, $\hat{\gamma}_{02}$	0.01	[-0.06, 0.07]	0.25	800	-0.01	[-0.08, 0.05]	-0.39	.693
Before-slope, $\hat{\gamma}_{20}$	-0.01	[-0.03, 0.01]	-1.03	.303	-0.01	[-0.03, 0.01]	-0.96	.339
After-slope, $\hat{\gamma}_{40}$	-0.03	[-0.04, -0.02]	-5.25	< .001	-0.02	[-0.03, -0.01]	-4.51	< .001
Shift, $\hat{\gamma}_{60}$	0.06	[0.02, 0.09]	3.20	.001	0.04	[0.00, 0.07]	2.21	.027
Grandparent, $\hat{\gamma}_{01}$	-0.05	[-0.15, 0.05]	-1.04	.299	-0.06	[-0.15, 0.04]	-1.17	.243
Working, $\hat{\gamma}_{10}$	0.05	[0.01, 0.09]	2.26	.024	-0.02	[-0.06, 0.02]	-0.88	.378
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.04	[-0.02, 0.09]	1.30	.194	0.03	[-0.01, 0.08]	1.38	.167
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.05	[0.02, 0.07]	3.86	< .001	0.04	[0.02, 0.06]	3.73	< .001
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.14	[-0.22, -0.06]	-3.37	.001	-0.12	[-0.19, -0.04]	-3.14	.002
Before-slope * Working, $\hat{\gamma}_{30}$	-0.01	[-0.04, 0.01]	-0.86	.389	0.01	[-0.01, 0.03]	0.82	.414
After-slope * Working, $\hat{\gamma}_{50}$	0.02	[0.01, 0.04]	2.94	.003	0.02	[0.00, 0.03]	2.15	.031
Shift * Working, $\hat{\gamma}_{70}$	-0.01	[-0.06, 0.04]	-0.44	.661	-0.01	[-0.05, 0.03]	-0.52	909.
Grandparent * Working, $\hat{\gamma}_{11}$	0.04	[-0.06, 0.14]	0.79	.429	0.11	[0.02, 0.20]	2.33	.020
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.02	[-0.08, 0.04]	-0.56	.578	-0.04	[-0.10, 0.02]	-1.34	.179
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.06	[-0.10, -0.03]	-3.46	.001	-0.05	[-0.08, -0.02]	-3.35	.001
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	0.13	[0.02, 0.23]	2.37	.018	0.12	[0.03, 0.22]	2.62	600.

Note. Two models were computed (only HRS): grandparents matched with parent controls and with

nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S44

Linear Contrasts for Openness (Moderated by Paid Work; only HRS).

	Paı	Parent controls	trols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	$\frac{d}{d}$
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	0.03	3.80	.051	0.01	1.06	.303
	0.04	13.84	< .001	0.02	3.72	.054
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.06	4.22	.040	-0.06	5.04	.025
Shift of working grandparents vs. $0(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.02	0.61	.433	0.02	0.75	.385
	-0.09	7.30	200.	-0.07	6.07	.014
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.02	1.23	.267	0.00	0.10	.751
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	-0.01	1.08	.299	-0.01	1.00	.317
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.02	0.93	.336	0.00	0.00	.951
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.01	0.48	.487	0.00	0.05	.818
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.03	0.96	.327	-0.03	1.22	.270
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	-0.04	5.78	.016	-0.04	7.17	200.
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{71} + \hat{\gamma}_{71})$	0.08	4.30	.038	0.08	5.16	.023

Note. The linear contrasts are based on the models from Table S43. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S45

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	«≿	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.06	[3.01, 3.10]	125.52	< .001	3.00	[2.95, 3.06]	103.68	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08	[-0.01, 0.16]	1.81	020.	0.22	[0.13, 0.30]	5.00	< .001
After-slope, $\hat{\gamma}_{20}$	-0.04	[-0.05, -0.03]	-6.73	< .001	-0.02		-4.90	< .001
Grandparent, $\hat{\gamma}_{01}$	-0.06	[-0.14, 0.01]	-1.74	.082	-0.08	[-0.16, -0.01]	-2.21	.027
Caring, $\hat{\gamma}_{10}$	-0.02	[-0.06, 0.02]	-1.09	.275	0.01		0.67	.503
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.00, 0.05]	2.10	036	0.01		0.88	.377
After-slope * Caring, $\hat{\gamma}_{30}$	0.01	[0.00, 0.03]	1.52	.129	0.00		-0.24	807
Grandparent * Caring, $\hat{\gamma}_{11}$	0.00	[-0.10, 0.10]	0.02	.985	-0.04	[-0.12, 0.05]	-0.79	.432
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.01	[-0.02, 0.05]	0.74	.457	0.03	[0.00, 0.06]	1.73	.084

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild care Note. Two models were computed (only HRS): grandparents matched with parent controls and with since the last assessment.

Table S46

Linear Contrasts for Openness (Moderated by Grandchild Care; only HRS).

	Pare	arent control	rols	Nonparen	rent cc	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.04	7.78	300.	0.04	9.46	.002
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.03	2.58	.108	0.03	3.26	.071

Note. The linear contrasts are based on the models from Table S45. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S47

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	sontrols	
Parameter		95% CI	t		\\ \sigma_	95% CI	t	<i>d</i>
LISS								
Intercept, $\hat{\gamma}_{00}$	5.11	[4.99, 5.23]	85.63	< .001	5.13	[4.99, 5.27]	72.47	< .001
Propensity score, $\hat{\gamma}_{02}$	0.07	[-0.10, 0.24]	0.78	.433	0.01	[-0.15, 0.17]	0.17	.863
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.01]	-1.06	.288	0.02	[0.00, 0.03]	2.18	0.029
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.02]	2.13	.033	-0.01	[-0.02, 0.01]	-0.93	.351
Shift, $\hat{\gamma}_{30}$	0.02	[-0.04, 0.08]	0.72	.470	-0.11	[-0.17, -0.05]	-3.42	.001
Grandparent, $\hat{\gamma}_{01}$	0.07	[-0.11, 0.25]	0.73	.464	0.07	[-0.13, 0.26]	0.06	.510
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02	[-0.01, 0.04]	1.03	.301	-0.01	[-0.04, 0.02]	-0.47	.637
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02	[-0.05, 0.00]	-1.78	.075	0.00	[-0.03, 0.02]	-0.33	.741
Shift * Grandparent, $\hat{\gamma}_{31}$	0.05	[-0.08, 0.18]	0.79	.428	0.18	[0.04, 0.32]	2.57	.010
HRS						ı		
Intercept, $\hat{\gamma}_{00}$	4.81	[4.69, 4.92]	82.17	< .001	4.58	[4.45, 4.72]	68.89	< .001
Propensity score, $\hat{\gamma}_{02}$	0.40	[0.19, 0.61]	3.78	< .001	0.33	[0.11, 0.54]	3.01	.003
Before-slope, $\hat{\gamma}_{10}$	-0.03	[-0.07, 0.01]	-1.53	.125	0.05	[0.01, 0.08]	2.50	.013
After-slope, $\hat{\gamma}_{20}$	0.01	[-0.01, 0.04]	0.83	.405	0.04	[0.01, 0.06]	3.14	.002
Shift, $\hat{\gamma}_{30}$	0.02	[-0.05, 0.10]	0.58	.564	-0.05	[-0.12, 0.02]	-1.50	.135
$\text{Grandparent, } \hat{\gamma}_{01}$	-0.02	[-0.21, 0.16]	-0.24	.812	0.20	[0.00, 0.39]	1.98	.048
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.12	[0.03, 0.21]	2.58	.010	0.05	[-0.04, 0.13]	1.06	.290
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[-0.02, 0.09]	1.17	.241	0.01	[-0.05, 0.06]	0.31	.753
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.08	[-0.24, 0.09]	-0.93	.351	-0.01	[-0.17, 0.15]	-0.13	268.

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched

with parent controls and with nonparent controls. CI = confidence interval.

Table S48

Linear Contrasts for Life Satisfaction.

	Pare	Parent controls	rols	Non	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c \chi^2 p \hat{\gamma}_c \chi^2$	χ^2	d
TISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.03	1.76	1.76 .185	-0.12	17.14	< .001
Shift of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	90.0	1.51	.219	0.06		.256
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.03	0.24	.622	0.18	8.25	.004
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.01	0.39	.532	0.01	0.32	.574
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	-0.01	0.84	.358	-0.01	0.70	.403
IIIVS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.03	1.26	.262	-0.02	0.30	.581
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.01		.833	-0.02	0.10	.754
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	0.49	.485	0.00	0.00	826.
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00	4.51	.034	0.09	5.61	.018
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	0.04	2.98	.084	0.05	3.67	.055

multiple fixed-effects coefficients and are computed using the *linearHypothesis* function from the Note. The linear contrasts are needed in cases where estimates of interest are represented by car R package (Fox & Weisberg, 2019) based on the models from Table S47. $\hat{\gamma}_c = \text{combined}$ fixed-effects estimate.

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Gender.

Table S49

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<≻	95% CI	t		<i>∞</i>	95% CI	t	d
TISS								
Intercept, $\hat{\gamma}_{00}$	5.05	[4.89, 5.21]	61.49	< .001	5.05	[4.86, 5.24]	51.98	< .001
Propensity score, $\hat{\gamma}_{04}$	90.0	[-0.11, 0.23]	0.70	.485	0.01	[-0.15, 0.17]	0.17	998.
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.03, 0.01]	-1.13	.258	0.02	[0.00, 0.05]	2.28	.023
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.03]	1.55	.122	-0.03	[-0.04, -0.01]	-2.76	900.
Shift, $\hat{\gamma}_{30}$	0.10	[0.01, 0.18]	2.25	.025	0.00	[-0.09, 0.09]	-0.01	886.
Grandparent, $\hat{\gamma}_{01}$	0.21	[-0.04, 0.46]	1.67	960.	0.23	[-0.04, 0.50]	1.65	660.
Female, $\hat{\gamma}_{02}$	0.12	[-0.08, 0.32]	1.18	.239	0.16	[-0.08, 0.40]	1.28	.203
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.04, 0.04]	0.10	.922	-0.03	[-0.08, 0.01]	-1.38	.168
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.03	[-0.07, 0.01]	-1.62	.104	0.01	[-0.03, 0.05]	0.36	.718
Shift * Grandparent, $\hat{\gamma}_{31}$	0.01	[-0.18, 0.20]	0.10	.919	0.11	[-0.10, 0.31]	1.03	.303
Before-slope * Female, $\hat{\gamma}_{12}$	0.01	[-0.02, 0.03]	0.55	.581	-0.02	[-0.04, 0.01]	-1.10	.273
After-slope * Female, $\hat{\gamma}_{22}$	0.00	[-0.02, 0.02]	-0.11	.913	0.04	[0.01, 0.06]	2.95	.003
Shift * Female, $\hat{\gamma}_{32}$	-0.14	[-0.26, -0.02]	-2.37	.018	-0.21	[-0.33, -0.08]	-3.28	.001
Grandparent * Female, $\hat{\gamma}_{03}$	-0.27	[-0.59, 0.05]	-1.67	260.	-0.31	[-0.66, 0.05]	-1.71	.088
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.03	[-0.03, 0.08]	0.87	.385	0.05	[-0.02, 0.11]	1.48	.138
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.04, 0.07]	0.51	209.	-0.03	[-0.08, 0.03]	-0.90	369
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.08	[-0.17, 0.34]	0.63	.530	0.15	[-0.13, 0.43]	1.07	.283
HRS								
$\text{Intercept, } \hat{\gamma}_{00}$	4.67	[4.52, 4.82]	60.70	-	4.54	[4.37, 4.71]	52.50	< .001
Propensity score, $\hat{\gamma}_{04}$	0.41	[0.20, 0.62]	3.84	< .001	0.30	[0.08, 0.51]	2.71	200.
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.04, 0.07]	0.49	.625	0.05	[-0.01, 0.10]	1.61	.107
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.04, 0.04]	0.09	.931	0.02	[-0.01, 0.06]	1.31	.190
Shift, $\hat{\gamma}_{30}$	0.07	[-0.04, 0.18]	1.23	.220	-0.16	[-0.27, -0.05]	-2.91	.004
Grandparent, $\hat{\gamma}_{01}$	0.11	[-0.15, 0.37]	0.81	.419	0.25	[-0.02, 0.51]	1.82	020.
Female, $\hat{\gamma}_{02}$	0.24	[0.07, 0.41]	2.75	900.	0.10	[-0.10, 0.29]	0.98	.329
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.13, 0.14]	0.03	826.	-0.02	[-0.15, 0.11]	-0.33	.745
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.04	[-0.04, 0.13]	1.05	.294	0.03	[-0.05, 0.10]	0.62	.536
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.08	[-0.33, 0.16]	-0.65	.514	0.14	[-0.10, 0.37]	1.16	.246
Before-slope * Female, $\hat{\gamma}_{12}$	-0.08	[-0.16, 0.00]	-2.08	.037	0.01	[-0.07, 0.08]	0.14	.887
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[-0.03, 0.07]	0.64	.525	0.02	[-0.03, 0.07]	0.84	.399
Shift * Female, $\hat{\gamma}_{32}$	-0.09	[-0.24, 0.06]	-1.14	.254	0.19	[0.05, 0.33]	2.59	.010

Table S49 continued

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter	⋄	95% CI	t	d	⋄	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	-0.23	[-0.55, 0.09]	-1.42	.156	-0.08	[-0.40, 0.25]	-0.47	.637
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.21	[0.03, 0.39]	2.28	.023	0.11	[-0.05, 0.28]	1.34	.181
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.02	[-0.13, 0.09]	-0.37	.714	-0.03	[-0.13, 0.08]	-0.50	.615
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.01	[-0.32, 0.34]	90.0	.954	-0.26	[-0.57,0.05]	-1.63	.103

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S50

Linear Contrasts for Life Satisfaction (Moderated by Gender).

	Pare	Parent controls	slo	Non	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	$\frac{d}{d}$
LISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.11	8.55	.003	-0.03	0.42	.515
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	-0.03	0.77	.379	-0.20	26.82	< .001
	0.00	1.42	.233	0.09	1.17	.279
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.04	0.39	.531	0.04	0.35	.552
•••	-0.02	0.07	.794	0.12	1.58	.208
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.03	1.96	.161	0.01	0.47	.493
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	-0.02	0.99	.320	-0.02	0.86	.353
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.07	0.92	.338	0.24	8.27	.004
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.14	7.55	900.	-0.17	9.46	.002
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.03	1.56	.211	0.03	1.23	.267
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.01	0.27	.602	0.01	0.22	.638
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.05	0.21	.647	-0.04	0.16	069.
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.07	2.68	.101	-0.14	10.20	.001
Shift of female controls vs. $0\left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}\right)$	0.00	0.00	.973	0.07	4.01	.045
Shift of grandfathers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.04	0.17	089.	0.03	0.12	.732
Shift of grandmothers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	-0.05	0.37	.541	-0.05	0.48	.489
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	0.15	.700	0.16	3.22	.073
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.21	12.04	.001	0.09	2.72	660.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.02	0.38	.540	0.00	0.00	.953
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.05	0.31	.575	-0.12	2.31	.129
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.07	1.44	.229	0.21	13.91	< .001
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.13	2.33	.127	0.12	2.41	.121
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.01	.931	-0.01	0.02	.894
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.08	0.52	.471	-0.08	0.52	.470

Note. The linear contrasts are based on the models from Table S49. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S51

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	ontrols	
Parameter		95% CI	t	d	<i></i>	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	4.78	[4.63, 4.93]	62.86	< .001	4.55	[4.38, 4.71]	53.96	< .001
Propensity score, $\hat{\gamma}_{02}$	0.36	[0.15, 0.57]	3.33	.001	0.28	[0.06, 0.50]	2.50	.012
Before-slope, $\hat{\gamma}_{20}$	-0.06	[-0.13, 0.01]	-1.77	220.	-0.02	[-0.09, 0.05]	-0.51	.613
After-slope, $\hat{\gamma}_{40}$	-0.03	[-0.07, 0.00]	-1.73	.083	0.08	[0.04, 0.12]	4.32	< .001
Shift, $\hat{\gamma}_{60}$	0.13	[0.01, 0.25]	2.11	.034	0.07	[-0.05, 0.19]	1.17	.243
Grandparent, $\hat{\gamma}_{01}$	-0.02	[-0.33, 0.30]	-0.09	.925	0.22	[-0.09, 0.53]	1.37	.169
$\text{Working, } \hat{\gamma}_{10}$	0.07	[-0.07, 0.22]	0.99	.324	0.12	[-0.02, 0.25]	1.64	.102
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.14	[-0.04, 0.32]	1.50	.134	0.10	[-0.07, 0.27]	1.12	.264
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.07	[-0.02, 0.15]	1.57	.116	-0.05	[-0.12, 0.03]	-1.20	.231
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.04	[-0.31, 0.22]	-0.31	.755	0.01	[-0.24, 0.27]	0.10	.917
Before-slope * Working, $\hat{\gamma}_{30}$	0.05	[-0.03, 0.14]	1.21	.225	0.09	[0.00, 0.17]	1.99	.047
After-slope * Working, $\hat{\gamma}_{50}$	0.10	[0.05, 0.15]	3.83	< .001	-0.08	[-0.13, -0.03]	-3.16	.002
Shift * Working, $\hat{\gamma}_{70}$	-0.20	[-0.35, -0.04]	-2.50	.012	-0.15	[-0.30, 0.00]	-1.94	.052
Grandparent * Working, $\hat{\gamma}_{11}$	-0.02	[-0.36, 0.32]	-0.11	.912	-0.07	[-0.39, 0.25]	-0.42	929.
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.03	[-0.24, 0.18]	-0.28	777.	-0.06	[-0.26, 0.13]	-0.63	.527
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.08	[-0.20, 0.03]	-1.40	.161	0.10	[-0.01, 0.21]	1.79	.073
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	-0.03	[-0.38, 0.32]	-0.18	.859	-0.09	[-0.42, 0.24]	-0.54	.590

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S52

Linear Contrasts for Life Satisfaction (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonp	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	0.10	3.85	.050	0.15	9.24	.002
Shift of working controls vs. 0 $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.00	0.00	696.	-0.08	5.03	.025
Shift of not-working grandparents vs. 0 $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	0.12	1.47	.226	0.12	1.63	.201
	-0.09	1.57	.210	-0.10	2.13	.144
	0.02	0.04	.834	-0.03	0.10	.746
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.11	3.95	.047	0.03	0.44	.505
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	-0.02	0.17	929.	0.05	1.82	.178
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.09	1.21	.270	-0.03	0.11	.746
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	-0.10	2.47	.116	-0.23	13.96	< .001
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.02	0.05	.823	0.02	0.05	.818
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.02	0.12	.727	0.02	0.17	829.
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{71} + \hat{\gamma}_{71})$	-0.21	2.87	060.	-0.22	3.48	.062

Note. The linear contrasts are based on the models from Table S51. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S53

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<~	95% CI	t	d	<i></i>	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	4.86		67.71	< .001	4.75	[4.58, 4.92]	55.25	< .001
Propensity score, $\hat{\gamma}_{02}$	0.27		2.05	.040	0.05	[-0.21, 0.31]	0.35	.728
After-slope, $\hat{\gamma}_{20}$	0.00		-0.02	986.	0.03		1.99	.047
Grandparent, $\hat{\gamma}_{01}$	0.00		-0.04	296.	0.17		1.45	.148
Caring, $\hat{\gamma}_{10}$	-0.10		-1.67	.094	0.02		0.34	.738
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.07		1.85	.065	0.04		1.24	.216
After-slope * Caring, $\hat{\gamma}_{30}$	0.04	[-0.01, 0.10]	1.70	080.	-0.01	[-0.06, 0.03]	-0.59	.557
Grandparent * Caring, $\hat{\gamma}_{11}$	0.32		2.08	038	0.21		1.45	.147
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	-0.08	[-0.19, 0.03]	-1.40	.162	-0.03	[-0.13, 0.08]	-0.51	.613

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S54

Linear Contrasts for Life Satisfaction (Moderated by Grandchild Care; only HRS).

	Pare	arent controls	rols	Nonparent of	rent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.01 -0.04	$0.10 \\ 0.49$.751 .486	.751 0.01 .486 -0.04	0.13	.392

Note. The linear contrasts are based on the models from Table S53. $\hat{\gamma}_c = \text{combined fixed-effects}$

1779

estimate.

Table S55

Tests of Heterogeneous Random Slope Variance Models for Agreeableness Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	controls				lonparen	Nonparent controls	
	Var.	SD	LR	ď	GP greater	Var.	$^{\mathrm{SD}}$	LR	ф	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.04			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.02			
Before-slope: heterogeneous (grandparents)	0.00	0.04	9.72	.021	ou	0.00	0.03	17.01	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (grandparents)	0.00	0.03	3.34	.343	ou	0.00	0.03	9.22	.026	ou
Shift: uniform	0.03	0.16				0.02	0.15			
Shift: heterogeneous (controls)	0.03	0.17				0.03	0.16			
Shift: heterogeneous (grandparents)	0.02	0.13	3.79	.285	ou	0.01	0.12	7.32	.062	ou
HRS										
Before-slope: uniform	0.01	0.12				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.15				0.02	0.15			
Before-slope: heterogeneous (grandparents)	0.01	0.12	75.87	< .001	ou	0.02	0.14	82.20	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.11			
After-slope: heterogeneous (controls)	0.01	0.11				0.02	0.13			
After-slope: heterogeneous (grandparents)	0.01	0.08	37.85	< .001	ou	0.01	0.09	90.69	< .001	ou
Shift: uniform	0.00	0.25				0.02	0.26			
Shift: heterogeneous (controls)	0.08	0.28				0.00	0.29			
Shift: heterogeneous (grandparents)	0.02	0.22	68.99	< .001	ou	0.06	0.24	91.90	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S56

Tests of Heterogeneous Random Slope Variance Models for Conscientiousness Against Comparison Models With a Uniform Random Slope Variance.

			Parent	Parent controls				Nonparent controls	controls	
	Var.	SD	LR	d	GP greater	Var.	SD	LR	Ф	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.04			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.02			
Before-slope: heterogeneous (grandparents)	0.00	0.02	45.09	< .001	ou	0.00	0.03	26.46	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (controls)	0.00	0.05				0.00	0.04			
After-slope: heterogeneous (grandparents)	0.00	0.03	18.06	< .001	ou	0.00	0.03	8.69	.034	ou
Shift: uniform	0.03	0.16				0.02	0.14			
Shift: heterogeneous (controls)	0.04	0.19				0.02	0.16			
Shift: heterogeneous (grandparents)	0.02	0.12	21.47	< .001	ou	0.01	0.11	8.86	.031	ou
HRS										
Before-slope: uniform	0.01	0.11				0.01	0.11			
Before-slope: heterogeneous (controls)	0.02	0.14				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.11	92.92	< .001	ou	0.02	0.13	103.88	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.10			
After-slope: heterogeneous (controls)	0.01	0.11				0.01	0.12			
After-slope: heterogeneous (grandparents)	0.01	0.09	61.33	< .001	ou	0.01	0.09	77.41	< .001	ou
Shift: uniform	0.06	0.24				0.06	0.25			
Shift: heterogeneous (controls)	0.07	0.27				0.08	0.28			
Shift: heterogeneous (grandparents)	90.0	0.23	83.05	< .001	ou	90.0	0.25	97.85	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S57

Tests of Heterogeneous Random Slope Variance Models for Extraversion Against Comparison Models With a Uniform Random Slope Variance.

			Parent o	Parent controls			I	Vonparen	Nonparent controls	
	Var.	$^{\mathrm{CD}}$	$_{ m LR}$	d	GP greater	Var.	QS	$_{ m LR}$	d	GP greater
LISS										
Before-slope: uniform	0.00	0.02				0.00	0.05			
Before-slope: heterogeneous (controls)	0.00	90.0				0.00	0.06			
Before-slope: heterogeneous (grandparents)	0.00	0.04	14.67	.002	ou	0.00	0.04	25.96	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.05			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.05			
After-slope: heterogeneous (grandparents)	0.00	0.03	7.37	.061	ou	0.00	0.03	13.50	.004	ou
Shift: uniform	0.03	0.17				0.03	0.18			
Shift: heterogeneous (controls)	0.04	0.19				0.04	0.21			
Shift: heterogeneous (grandparents)	0.01	0.12	11.13	.011	ou	0.02	0.13	13.00	.005	ou
HRS										
Before-slope: uniform	0.02	0.12				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.15				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.12	59.59	< .001	ou	0.02	0.13	61.85	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.12			
After-slope: heterogeneous (controls)	0.01	0.11				0.02	0.14			
After-slope: heterogeneous (grandparents)	0.01	0.09	27.05	< .001	ou	0.01	0.10	61.55	< .001	ou
Shift: uniform	0.07	0.26				0.08	0.29			
Shift: heterogeneous (controls)	0.08	0.29				0.10	0.32			
Shift: heterogeneous (grandparents)	90.0	0.25	44.54	< .001	ou	0.07	0.26	70.11	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S58

Tests of Heterogeneous Random Slope Variance Models for Neuroticism Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	ontrols				Nonparent controls	controls	
	Var.	$^{\mathrm{SD}}$	LR	ď	GP greater	Var.	SD	LR	ď	GP greater
LISS										
Before-slope: uniform	0.00	90.0				0.00	0.02			
Before-slope: heterogeneous (controls)	0.00	90.0				0.01	0.08			
Before-slope: heterogeneous (grandparents)	0.00	90.0	3.74	.291	yes	0.00	90.0	19.38	< .001	ou
	0.00	0.05				0.00	90.0			
After-slope: heterogeneous (controls)	0.00	0.05				0.00	0.02			
After-slope: heterogeneous (grandparents)	0.00	0.05	1.09	.781	ou	0.00	0.05	6.22	.101	ou
Shift: uniform	0.04	0.20				0.06	0.24			
Shift: heterogeneous (controls)	0.04	0.20				0.07	0.26			
Shift: heterogeneous (grandparents)	0.04	0.21	3.32	.344	yes	0.02	0.21	3.27	.352	ou
HRS										
Before-slope: uniform	0.02	0.15				0.02	0.15			
Before-slope: heterogeneous (controls)	0.03	0.19				0.03	0.18			
Before-slope: heterogeneous (grandparents)	0.03	0.17	95.90	< .001	ou	0.03	0.18	73.45	< .001	yes
After-slope: uniform	0.01	0.12				0.02	0.12			
After-slope: heterogeneous (controls)	0.02	0.13				0.02	0.15			
After-slope: heterogeneous (grandparents)	0.01	0.10	79.78	< .001	ou	0.01	0.11	101.07	< .001	ou
Shift: uniform	0.10	0.31				0.10	0.32			
Shift: heterogeneous (controls)	0.13	0.35				0.13	0.36			
Shift: heterogeneous (grandparents)	0.09	0.29	116.36	< .001	ou	0.09	0.30	116.43	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S59

Tests of Heterogeneous Random Slope Variance Models for Openness Against Comparison Models With a Uniform Random Slope Variance.

			Parent of	Parent controls				Vonparen	Nonparent controls	
	Var.	SD	LR	d	GP greater	Var.	SD	LR	d	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.03			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.04			
Before-slope: heterogeneous (grandparents)	0.00	0.04	19.82	< .001	ou	0.00	0.04	25.90	< .001	yes
After-slope: uniform	0.00	0.04				0.00	0.03			,
After-slope: heterogeneous (controls)	0.00	0.02				0.00	0.03			
After-slope: heterogeneous (grandparents)	0.00	0.02	26.80	< .001	ou	0.00	0.05	9.20	.027	ou
Shift: uniform	0.03	0.16				0.02	0.13			
Shift: heterogeneous (controls)	0.03	0.18				0.03	0.14			
Shift: heterogeneous (grandparents)	0.01	0.10	17.96	< .001	ou	0.02	0.12	10.36	.016	ou
HRS										
Before-slope: uniform	0.01	0.11				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.14				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.09	55.99	< .001	ou	0.02	0.14	50.54	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.11			
After-slope: heterogeneous (controls)	0.01	0.11				0.02	0.13			
After-slope: heterogeneous (grandparents)	0.01	0.09	37.59	< .001	ou	0.01	0.10	50.64	< .001	ou
Shift: uniform	0.07	0.26				0.07	0.27			
Shift: heterogeneous (controls)	0.08	0.28				0.09	0.30			
Shift: heterogeneous (grandparents)	90.0	0.24	58.39	< .001	ou	0.07	0.26	67.21	< .001	ou

models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S60

Tests of Heterogeneous Random Slope Variance Models for Life Satisfaction Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	ontrols				Nonparen	Nonparent controls	
	Var.	$^{\mathrm{SD}}$	LR	ф	GP greater	Var.	$^{\mathrm{SD}}$	LR	Ъ	GP greater
LISS										
Before-slope: uniform	0.01	0.11				0.01	0.10			
Before-slope: heterogeneous (controls)	0.02	0.13				0.01	0.12			
Before-slope: heterogeneous (grandparents)	0.02	0.14	41.47	< .001	yes	0.01	0.12	21.10	< .001	ou
After-slope: uniform	0.01	0.11				0.01	0.12			
After-slope: heterogeneous (controls)	0.01	0.10				0.01	0.12			
After-slope: heterogeneous (grandparents)	0.03	0.13	11.74	800.	yes	0.02	0.12	5.26	.154	yes
Shift: uniform	0.20	0.45				0.18	0.42			
Shift: heterogeneous (controls)	0.19	0.44				0.17	0.41			
Shift: heterogeneous (grandparents)	0.25	0.50	10.00	.019	yes	0.21	0.46	4.50	.212	yes
HRS										
Before-slope: uniform	0.14	0.37				0.14	0.37			
Before-slope: heterogeneous (controls)	0.28	0.53				0.22	0.47			
Before-slope: heterogeneous (grandparents)	0.26	0.50	140.31	< .001	ou	0.34	0.58	111.97	< .001	yes
After-slope: uniform	0.10	0.32				0.14	0.37			
After-slope: heterogeneous (controls)	0.13	0.36				0.21	0.46			
After-slope: heterogeneous (grandparents)	0.08	0.28	93.14	< .001	ou	0.10	0.32	108.41	< .001	ou
Shift: uniform	0.83	0.91				0.93	0.96			
Shift: heterogeneous (controls)	1.07	1.04				1.24	1.11			
Shift: heterogeneous (grandparents)	0.80	0.89	172.53	< .001	ou	0.91	0.96	153.16	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S61
Rank-Order Stability.

		Parent controls	ontrols			Nonparent controls	controls	
Outcome	Cor_{all}	Cor_{GP}	Cor_{con}	d	Cor_{all}	Cor_{all} Cor_{GP}	Cor_{con}	d
SSIT								
Agreeableness	0.79	0.81	0.78	.619	0.76	0.81	0.75	600.
Conscientiousness	0.76	0.80	0.75	.102	0.79	0.80	0.78	.480
Extraversion	0.81	0.86	0.80	.768	0.86	0.86	0.85	.284
Neuroticism	0.71	0.77	0.68	090.	0.76	0.77	0.76	.262
Openness	0.75	0.79	0.74	.126	0.79	0.79	0.79	.531
Life Satisfaction	0.69	0.66	0.70	.647	0.63	0.66	0.62	.674
HRS								
Agreeableness	0.68	0.70	0.67	909.	0.73	0.70	0.74	.304
Conscientiousness	0.71	0.69	0.72	.201	0.70	0.69	0.70	.467
Extraversion	0.72	0.75	0.71	200.	0.74	0.75	0.74	.029
Neuroticism	0.06	0.71	0.65	.654	0.68	0.71	0.67	.709
Openness	0.69	0.73	0.67	.015	0.76	0.73	0.76	.241
Life Satisfaction	0.51	0.55	0.50	060.	0.55	0.55	0.55	.439

indicating significant group differences therein between grandparents and each control group. The average retest intervals in years are 3.06~(SD=0.91) for the LISS parent sample, 3.06 (SD = 0.89) for the LISS nonparent sample, 4.15 (SD = 0.77) for the HRS parent sample, and 4.11 (SD = 0.67) for the HRS nonparent sample. Cor =Note. Test-retest correlations as indicators of rank-order stability, and p-values correlation; GP = grandparents; con = controls.

Table S62
Rank-Order Stability With Maximal Retest Interval.

		Parent controls	ontrols			Nonparer	Nonparent controls	
Outcome	Cor_{all}	Cor_{GP}	Cor_{con}	d	Cor_{all}	Cor_{GP}	Cor_{con}	d
SSIT								
Agreeableness	0.73	0.73	0.73	.754	09.0	0.73	0.57	< .001
Conscientiousness	0.68	0.77	0.66	.004	0.73	0.77	0.73	.091
Extraversion	0.76	0.82	0.74	.021	0.82	0.82	0.82	.568
Neuroticism	0.68	0.76	0.65	.001	0.72	0.76	0.71	.534
Openness	0.72	0.77	0.71	.290	0.81	0.77	0.82	.316
Life Satisfaction	0.65	0.53	0.68	980.	0.48	0.53	0.48	300
HRS								
Agreeableness	0.67	0.68	0.67	.641	0.70	0.68	0.71	.498
Conscientiousness	0.65	0.68	0.65	.289	0.64	0.68	0.63	.819
Extraversion	0.70	0.73	0.70	.093	0.71	0.73	0.70	.038
Neuroticism	0.64	0.67	0.63	.704	0.64	0.67	0.63	.265
Openness	0.69	0.71	0.69	.894	0.75	0.71	0.76	.001
Life Satisfaction	0.53	0.54	0.53	.675	0.48	0.54	0.47	.166

sample, 8.13 (SD = 1.95) for the LISS nonparent sample, 6.83 (SD = 2.23) for the HRS parent sample, and 6.92~(SD=2.26) for the HRS nonparent sample. Cor = correlation; indicating significant group differences therein between grandparents and each control group. The average retest intervals in years are 8.08 (SD=2.06) for the LISS parent Note. Test-retest correlations as indicators of rank-order stability, and p-values GP = grandparents; con = controls.

 Table S63

 Rank-Order Stability Excluding Duplicate Control Observations.

		Parent controls	ontrols		N	Nonparent controls	controls	
Outcome	Cor_{all}	Cor_{GP}	Cor_{con}	d	Cor_{all}	Cor_{GP}	Cor_{con}	d
LISS								
Agreeableness	0.80	0.81	0.79	.760	0.80	0.81	0.80	.641
Conscientiousness	0.78	0.80	0.77	.315	0.80	0.80	0.80	.493
Extraversion	0.84	0.86	0.82	.832	0.87	0.86	0.88	.444
Neuroticism	0.78	0.77	0.78	.522	0.80	0.77	0.84	.914
Openness	0.79	0.79	0.79	.547	0.79	0.79	0.80	.467
Life Satisfaction	0.67	0.66	0.68	.708	0.69	0.66	0.72	.269
HRS								
Agreeableness	0.69	0.70	0.69	.504	0.71	0.70	0.74	.445
Conscientiousness	0.71	0.69	0.72	.208	0.70	0.69	0.72	.297
Extraversion	0.75	0.75	0.75	.315	0.74	0.75	0.73	.122
Neuroticism	0.69	0.71	0.67	.543	0.70	0.71	0.70	367
Openness	0.75	0.73	0.76	396	0.74	0.73	0.75	.855
Life Satisfaction	0.58	0.55	0.59	.317	0.58	0.55	0.61	.015

indicating significant group differences therein between grandparents and each control group. The average retest intervals in years are 2.94 (SD=0.94) for the LISS parent sample, 2.95 (SD = 0.92) for the LISS nonparent sample, 3.88 (SD = 1.01) for the HRS parent sample, and 3.87 (SD = 0.96) for the HRS nonparent sample. Cor Note. Test-retest correlations as indicators of rank-order stability, and p-values correlation; GP = grandparents; con = controls.

Supplemental Figures

Figure S1

Distributional Overlap of the Propensity Score in the Four Analysis Samples at the Time of Matching.

Figure S2

Violin Plots for Agreeableness Including Means Over Time and LOESS Line.

Figure S3

Violin Plots for Conscientiousness Including Means Over Time and LOESS Line.

Figure S4

Violin Plots for Extraversion Including Means Over Time and LOESS Line.

Figure S5

Violin Plots for Neuroticism Including Means Over Time and LOESS Line.

Figure S6

Violin Plots for Openness Including Means Over Time and LOESS Line.

Figure S7

Violin Plots for Life Satisfaction Including Means Over Time and LOESS Line.

Figure S8

Change trajectories of agreeableness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S9

Change trajectories of agreeableness based on the models of moderation by paid work (see Table S11). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S8 (basic models) and added here for better comparability.

Figure S10

Change trajectories of agreeableness based on the models of moderation by grandchild care (see Table S13). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S8 (basic models) but restricted to the post-transition period for better comparability.

Figure S11

Change trajectories of conscientiousness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S12

Change trajectories of conscientiousness based on the models of moderation by paid work (see Table S19). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S11 (basic models) and added here for better comparability.

Figure S13

Change trajectories of conscientiousness based on the models of moderation by grandchild care (see Table S21). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S11 (basic models) but restricted to the post-transition period for better comparability.

Figure S14

Change trajectories of extraversion based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S15

Change trajectories of extraversion based on the models of moderation by paid work (see Table S27). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S14 (basic models) and added here for better comparability.

Figure S16

Change trajectories of extraversion based on the models of moderation by grandchild care (see Table S29). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S14 (basic models) but restricted to the post-transition period for better comparability.

Figure S17

Change trajectories of neuroticism based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S18

Change trajectories of neuroticism based on the models of moderation by paid work (see Table S35). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S17 (basic models) and added here for better comparability.

Figure S19

Change trajectories of neuroticism based on the models of moderation by grandchild care (see Table S37). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S17 (basic models) but restricted to the post-transition period for better comparability.

Figure S20

Change trajectories of openness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S21

Change trajectories of openness based on the models of moderation by paid work (see Table S43). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S20 (basic models) and added here for better comparability.

Figure S22

Change trajectories of openness based on the models of moderation by grandchild care (see Table S45). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S20 (basic models) but restricted to the post-transition period for better comparability.

Figure S23

Change trajectories of life satisfaction based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S24

Change trajectories of life satisfaction based on the models of moderation by paid work (see Table S51). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S23 (basic models) and added here for better comparability.

Figure S25

Change trajectories of life satisfaction based on the models of moderation by grandchild care (see Table S53). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S23 (basic models) but restricted to the post-transition period for better comparability.

1790 Complete Software and Session Information

```
We used R (Version 4.0.4; R Core Team, 2021) and the R-packages car (Version
1791
    3.0.10; Fox et al., 2020a, 2020b; Yentes & Wilhelm, 2018), carData (Version 3.0.4; Fox et
1792
    al., 2020b), careless (Version 1.1.3; Yentes & Wilhelm, 2018), citr (Version 0.3.2; Aust,
1793
    2019), corrplot2017 (Wei & Simko, 2017), cowplot (Version 1.1.0; Wilke, 2020), dplyr
1794
    (Version 1.0.2; Wickham, François, et al., 2020), effects (Version 4.2.0; Fox & Weisberg,
1795
    2018; Fox, 2003; Fox & Hong, 2009), forcats (Version 0.5.0; Wickham, 2020a), foreign
1796
    (Version 0.8.81; R Core Team, 2020), Formula (Version 1.2.4; Zeileis & Croissant, 2010),
1797
    qqplot2 (Version 3.3.5; Wickham, 2016), GPArotation (Version 2014.11.1; Bernaards &
1798
    I.Jennrich, 2005), Hmisc (Version 4.4.2; Harrell Jr et al., 2020), interactions (Version 1.1.3;
1799
    Long, 2019), jtools (Version 2.1.1; Long, 2020), knitr (Version 1.30; Xie, 2015), lattice
1800
    (Version 0.20.41; Sarkar, 2008), lme4 (Version 1.1.26; Bates et al., 2015), lmerTest (Version
1801
    3.1.3; Kuznetsova et al., 2017), magick (Version 2.6.0; Ooms, 2021), MASS (Version 7.3.53;
1802
    Venables & Ripley, 2002), MatchIt (Version 4.1.0; Ho et al., 2020), Matrix (Version 1.3.2;
1803
    Bates & Maechler, 2021), multcomp (Version 1.4.17; Hothorn et al., 2008), mutnorm
1804
    (Version 1.1.1; Genz & Bretz, 2009), papaja (Version 0.1.0.9997; Aust & Barth, 2020),
1805
    patchwork (Version 1.1.0.9000; Pedersen, 2020), pnq (Version 0.1.7; Urbanek, 2013), psych
    (Version 2.0.9; Revelle, 2020), purrr (Version 0.3.4; Henry & Wickham, 2020), readr
1807
    (Version 1.4.0; Wickham & Hester, 2020), robustlmm (Version 2.3; Koller, 2016), scales
1808
    (Version 1.1.1; Wickham & Seidel, 2020), stringr (Version 1.4.0; Wickham, 2019), survival
1809
    (Version 3.2.7; Terry M. Therneau & Patricia M. Grambsch, 2000), TH.data (Version
1810
    1.0.10; Hothorn, 2019), tibble (Version 3.1.2; Müller & Wickham, 2020), tidyr (Version
181
    1.1.2; Wickham, 2020b), tidyverse (Version 1.3.0; Wickham, Averick, et al., 2019), and
1812
    tinylabels (Version 0.1.0; Barth, 2020) for data wrangling, analyses, and plots.
1813
           The following is the output of R's sessionInfo() command, which shows information
1814
    to aid analytic reproducibility of the analyses.
1815
```

R version 4.0.4 (2021-02-15) Platform: x86_64-apple-darwin17.0 (64-bit) Running

1816

```
under: macOS Big Sur 10.16
1817
           Matrix products: default BLAS:
1818
    Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib LAPACK:
1819
    Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib/
1820
           locale: [1]
1821
    en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
1822
           attached base packages: [1] stats graphics grDevices utils datasets methods base
1823
           other attached packages: [1] car 3.0-10 carData 3.0-4 scales 1.1.1
1824
           [4] cowplot_1.1.0 lmerTest_3.1-3 lme4_1.1-26
1825
           [7] Matrix_1.3-2 GPArotation_2014.11-1 psych_2.0.9
1826
           [10] forcats 0.5.0 stringr 1.4.0 dplyr 1.0.2
1827
           [13] purrr 0.3.4 readr 1.4.0 tidyr 1.1.2
1828
           [16] tibble_3.1.2 tidyverse_1.3.0 Hmisc_4.4-2
1829
           [19] ggplot2 3.3.5 Formula 1.2-4 lattice 0.20-41
1830
           [22] multcomp_1.4-17 TH.data_1.0-10 MASS_7.3-53
1831
           [25] survival 3.2-7 mvtnorm 1.1-1 citr 0.3.2
1832
           [28] papaja_0.1.0.9997 tinylabels_0.1.0
1833
           loaded via a namespace (and not attached): [1] minqa_1.2.4 colorspace_2.0-1
1834
    rio\_0.5.16
1835
           [4] ellipsis_0.3.2 htmlTable_2.1.0 base64enc_0.1-3
1836
           [7] fs 1.5.0 rstudioapi 0.13 fansi 0.5.0
           [10] lubridate 1.7.9.2 xml2 1.3.2 codetools 0.2-18
1838
           [13] splines_4.0.4 mnormt_2.0.2 knitr_1.30
1839
           [16] jsonlite 1.7.2 nloptr 1.2.2.2 broom 0.7.6
1840
           [19] cluster 2.1.0 dbplyr 1.4.4 png 0.1-7
1841
           [22] shiny_1.5.0 compiler_4.0.4 httr_1.4.2
1842
```

- [25] backports_1.2.1 assertthat_0.2.1 fastmap_1.0.1 [28] cli_2.5.0 later_1.1.0.1 htmltools_0.5.0
- [31] tools_4.0.4 gtable_0.3.0 glue_1.4.2
- 1846 [34] Rcpp_1.0.6 cellranger_1.1.0 vctrs_0.3.8
- 1847 [37] nlme_3.1-152 xfun_0.19 openxlsx_4.2.3
- 1848 [40] rvest_0.3.6 mime_0.9 miniUI_0.1.1.1
- 1849 [43] lifecycle_1.0.0 statmod_1.4.35 zoo_1.8-8
- 1850 [46] hms_0.5.3 promises_1.1.1 parallel_4.0.4
- 1851 [49] sandwich_3.0-0 RColorBrewer_1.1-2 curl_4.3.1
- [52] yaml_2.2.1 gridExtra_2.3 rpart_4.1-15
- 1853 [55] latticeExtra_0.6-29 stringi_1.5.3 checkmate_2.0.0
- [58] zip_2.1.1 boot_1.3-26 rlang_0.4.11
- 1855 [61] pkgconfig_2.0.3 evaluate_0.14 htmlwidgets_1.5.2
- 1856 [64] tidyselect_1.1.0 magrittr_2.0.1 bookdown_0.21
- 1857 [67] R6 2.5.0 generics 0.1.0 DBI 1.1.0
- 1858 [70] pillar_1.6.1 haven_2.3.1 foreign_0.8-81
- 1859 [73] withr_2.4.2 abind_1.4-5 nnet_7.3-15
- 1860 [76] modelr_0.1.8 crayon_1.4.1 utf8_1.2.1
- 1861 [79] tmvnsim_1.0-2 rmarkdown_2.5 jpeg_ 0.1-8.1
- 1862 [82] grid_4.0.4 readxl_1.3.1 data.table_1.13.2
- 1863 [85] blob_1.2.1 reprex_0.3.0 digest_0.6.27
- 188] xtable 1.8-4 httpuv 1.5.4 numDeriv 2016.8-1.1 [91] munsell 0.5.0

References

1865

- Aust, F. (2019). Citr: 'RStudio' add-in to insert markdown citations.
- https://github.com/crsh/citr
- Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles with R
- 1869 Markdown. https://github.com/crsh/papaja
- Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects
- of confounding in observational studies. Multivariate Behavioral Research, 46(3),
- 399–424. https://doi.org/10.1080/00273171.2011.568786
- Barth, M. (2020). Tinylabels: Lightweight variable labels.
- https://CRAN.R-project.org/package=tinylabels
- Bates, D., & Maechler, M. (2021). Matrix: Sparse and dense matrix classes and methods.
- https://CRAN.R-project.org/package=Matrix
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
- models using lme4. Journal of Statistical Software, 67(1), 1–48.
- https://doi.org/10.18637/jss.v067.i01
- Bernaards, C. A., & I.Jennrich, R. (2005). Gradient projection algorithms and software for
- arbitrary rotation criteria in factor analysis. Educational and Psychological
- Measurement, 65, 676-696.
- Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical
- Software, 8(15), 1–27. https://www.jstatsoft.org/article/view/v008i15
- Fox, J., & Hong, J. (2009). Effect displays in R for multinomial and proportional-odds
- logit models: Extensions to the effects package. Journal of Statistical Software,
- 32(1), 1–24. https://www.jstatsoft.org/article/view/v032i01
- Fox, J., & Weisberg, S. (2018). Visualizing fit and lack of fit in complex regression models
- with predictor effect plots and partial residuals. Journal of Statistical Software,

- 1890 87(9), 1–27. https://doi.org/10.18637/jss.v087.i09
- Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage.
- Fox, J., Weisberg, S., & Price, B. (2020a). Car: Companion to applied regression [Manual].
- Fox, J., Weisberg, S., & Price, B. (2020b). CarData: Companion to applied regression data

 sets. https://CRAN.R-project.org/package=carData
- Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities.

 Springer-Verlag.
- Harrell Jr, F. E., Charles Dupont, & others. (2020). *Hmisc: Harrell miscellaneous*.

 https://CRAN.R-project.org/package=Hmisc
- Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools.

 https://CRAN.R-project.org/package=purrr
- Ho, D., Imai, K., King, G., Stuart, E., & Greifer, N. (2020). *MatchIt: Nonparametric*preprocessing for parametric causal inference [Manual].
- Hothorn, T. (2019). TH.data: TH's data archive.
- https://CRAN.R-project.org/package=TH.data
- Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal*, 50(3), 346–363.
- Koller, M. (2016). robustlmm: An R package for robust estimation of linear mixed-effects models. *Journal of Statistical Software*, 75(6), 1–24.
- https://doi.org/10.18637/jss.v075.i06
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. *Journal of Statistical Software*, 82(13), 1–26.
- https://doi.org/10.18637/jss.v082.i13
- Long, J. A. (2019). Interactions: Comprehensive, user-friendly toolkit for probing interactions. https://cran.r-project.org/package=interactions

```
Long, J. A. (2020). Jetols: Analysis and presentation of social scientific data.
1915
           https://cran.r-project.org/package=jtools
1916
    Müller, K., & Wickham, H. (2020). Tibble: Simple data frames.
1917
           https://CRAN.R-project.org/package=tibble
1918
    Ooms, J. (2021). Magick: Advanced graphics and image-processing in r.
1910
           https://CRAN.R-project.org/package=magick
1920
    Pedersen, T. L. (2020). Patchwork: The composer of plots.
1921
    R Core Team. (2020). Foreign: Read data stored by 'minitab', 's', 'sas', 'spss', 'stata',
1922
            'systat', 'weka', 'dBase', ... https://CRAN.R-project.org/package=foreign
1923
    R Core Team. (2021). R: A language and environment for statistical computing. R
1924
           Foundation for Statistical Computing. https://www.R-project.org/
1925
    Revelle, W. (2020). Psych: Procedures for psychological, psychometric, and personality
1926
           research. Northwestern University. https://CRAN.R-project.org/package=psych
1927
    Sarkar, D. (2008). Lattice: Multivariate data visualization with r. Springer.
1928
           http://lmdvr.r-forge.r-project.org
1929
    Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward.
1930
           Statistical Science: A Review Journal of the Institute of Mathematical Statistics,
1931
           25(1), 1–21. https://doi.org/10.1214/09-STS313
1932
    Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival data: Extending
1933
           the Cox model. Springer.
1934
    Urbanek, S. (2013). Png: Read and write png images.
1935
           https://CRAN.R-project.org/package=png
1936
    Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth).
1937
```

Springer. http://www.stats.ox.ac.uk/pub/MASS4/

1938

- Wei, T., & Simko, V. (2017). R package "corrplot": Visualization of a correlation matrix.

 https://github.com/taiyun/corrplot

 Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag New
- York. https://ggplot2.tidyverse.org

 Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string operations.
- Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string operations.

 https://CRAN.R-project.org/package=stringr
- Wickham, H. (2020a). Forcats: Tools for working with categorical variables (factors).

 https://CRAN.R-project.org/package=forcats
- Wickham, H. (2020b). *Tidyr: Tidy messy data*.

 https://CRAN.R-project.org/package=tidyr
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
- Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller,
- E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ...
- Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software,
- ¹⁹⁵³ 4(43), 1686. https://doi.org/10.21105/joss.01686
- Wickham, H., François, R., Henry, L., & Müller, K. (2020). *Dplyr: A grammar of data*manipulation. https://CRAN.R-project.org/package=dplyr
- Wickham, H., & Hester, J. (2020). Readr: Read rectangular text data.
 https://CRAN.R-project.org/package=readr
- Wickham, H., & Seidel, D. (2020). Scales: Scale functions for visualization.

 https://CRAN.R-project.org/package=scales
- Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot annotations for 'ggplot2'.

 https://CRAN.R-project.org/package=cowplot
- 1962 Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Chapman; Hall/CRC.

 https://yihui.org/knitr/

- Yentes, R. D., & Wilhelm, F. (2018). Careless: Procedures for computing indices of careless responding.
- Zeileis, A., & Croissant, Y. (2010). Extended model formulas in R: Multiple parts and multiple responses. *Journal of Statistical Software*, 34(1), 1–13.
- https://doi.org/10.18637/jss.v034.i01