离散数学 B

重点知识:

1. 支配集的概念,极小和最小支配集的概念

▶ 无向图G=<V,E>,

、支配集: V*⊂V 使得∀u∈V-V*, ∃v∈V*, uEv

一个顶点子集,使得不属于这个子集的顶点都与子集内的某顶点相邻。(通过事物【顶点】的一部分【子集】,利用特定关系【边】控制事物的全体)

▶ 极小支配集: V*是支配集, 其真子集都不是

▶ 最小支配集: |V*|最小的支配集

支配数: γ₀(G)=|V*|, V*是最小支配集

定理1

- 定理1: 无向图G无孤立点,V₁*是极小支配集,则存在V₂*
 也是极小支配集,且V₁*○V₂*=∅.
- 证明: V₁*是极小支配集,则V-V₁*也是支配集.(反证: 否则, 3u∈V₁*, ∀v∈V-V₁*, (u,v)∈E, 又因为u 不是孤立点,所以V₁*-(u)还是支配集,与V₁*是极小支配集矛盾.)

V-V₁*是支配集,则V-V₁*中有子集是极小支配集,设为V₂*,则V₂*、W₂*=<

2. 求极小和最小支配集的算法

$$\psi(v_1, v_2, ..., v_n) = \prod_{i=1}^{n} (v_i + \sum_{u \in N(v_i)} u)$$

N(v)为v的邻域,求左式的最简化析取式,每一项对应一个极小支配集

例: 求下图的所有极小支配集。

$$(a+b)(a+c)=a$$
+bc
 $a(a+b)=a+ab=a$

$$\begin{aligned} \mathscr{H}\colon \ \psi(v_1,v_2,\cdots,v_{\nu}) &= (v_1+v_2+v_3+v_4) \left(v_2+v_1+v_4\right) \left(v_3+v_1+v_4\right) \\ & \cdot \left(v_4+v_1+v_2+v_3+v_5+v_6\right) \left(v_5+v_4+v_6\right) \left(v_6+v_4+v_5\right) \\ &= v_1v_5+v_1v_6+v_4+v_2v_3v_5+v_2v_3v_6 \end{aligned}$$

故 G 的所有极小支配集为: $\{v_1, v_5\}$, $\{v_1, v_6\}$, $\{v_4\}$, $\{v_2, v_3, v_5\}$, $\{v_2, v_3, v_6\}$ 。

- 3. 点覆盖的概念,极小和最小点覆盖的概念
 - ▶ 无向图G=<V,E>
 - ▶ 点覆盖: V*⊆V ∀e∈E, ∃v∈V*, v关联e

一个顶点的子集,使得所有的边都与子集中的某顶点关联 (找出一组事物【顶点】,使得由这些事物可以找到所有的 关系【边】)

- ▶ 极小点覆盖: V*是点覆盖, 其真子集都不是
- ▶ 最小点覆盖: |V*|最小的点覆盖
- 点覆盖数: α₀(G)=|V*|, V*是最小点覆盖
- ▶ 连通图中,点覆盖一定是支配集? YES!
- 极小点覆盖一定是极小支配集?
 NO! 反例: {v₀,v₁, v₃,v₅}是极小点覆盖, {v₁,v₃,v₅}是极小支配集
- ▶ 支配集一定是点覆盖?
 NO! 反例: {v₁,v₄}是支配集,不是点覆盖

点覆盖(例)

 $\{v_0,v_1,v_3,v_5\},\{v_1,v_2,v_3,v_4,v_5,v_6\},\alpha_0=4$

求最(极)小点覆盖集

$$\psi(v_1, v_2, ..., v_n) = \prod_{i=1}^{n} (v_1 + \prod_{u \in N(v_1)} u)$$

求左式的最简化析取式, 每一项对应一个极小点覆盖集

例: 求下图的所有极小点覆盖和极大点独立集。

 $\mathcal{H}: \quad \varphi(v_1, v_2, \dots, v_7) = (v_1 + v_2 v_4) (v_2 + v_1 v_3 v_5 v_6) (v_3 + v_2 v_4 v_5 v_7) (v_4 + v_1 v_3 v_5 v_6) \\ \cdot (v_5 + v_2 v_3 v_4 v_7) (v_6 + v_2 v_4 v_7) (v_7 + v_3 v_5 v_6)$

$$= v_1 v_3 v_5 v_6 + v_2 v_3 v_4 v_5 v_6 + v_2 v_4 v_5 v_7 + v_2 v_3 v_4 v_7$$

故极小点覆盖有:

$$C_1 = \{v_1, v_3, v_5, v_6\}, \quad C_2 = \{v_2, v_3, v_4, v_5, v_6\}, \quad C_3 = \{v_2, v_4, v_5, v_7\}, \quad C_4 = \{v_2, v_3, v_4, v_7\}.$$

- 5. 独立集的概念,极大和最大独立集的概念
 - ▶ 无向图G=<V,E>
 - › 独立集: V*⊆V ∀u,v∈V*, (u,v)∉E
 - 一个顶点的子集,其中任意两个顶点之间没有边相连 (根据给定关系【边】,找出一个互不干扰的事物集合)
 - ,极大独立集: V*是独立集, 其真母集都不是
 - ▶ 最大独立集: |V*|最大的独立集
 - 独立数: β₀(G)=|V*|, V*是最大独立集

独立集(例)

 $\triangleright \{v_0\}, \{v_1, v_4\}, \{v_1, v_3, v_5\}, \beta_0 = 3$

定理2

- ▶ 定理2: 无向图G无孤立点,V*是极大独立集,则V*也是极小支配集.
- 证明: V*是极大独立集,则V*也是支配集.(反证: 否则, ∃u∈V-V*, ∀v∈V*, (u,v)∉E, V*_{u}还是独立集,矛盾.)

V*是极小支配集(友证: 否则, 3 + € V), V*-{u}是支配集,则∃v • V*, (u,v) ∈ E, 与V*是独立集相矛盾.)

逆命题不成立: 极小支配集不一定是极大独立集

定理3

定理3: 无向图G无孤立点, V*⊂V,V*是点覆盖 ⇔ V-V*是独立集.

证明:

(⇒) (反证) 若V-V*不是独立集, 则∃u,v∈V-V*, 且(u,v)∈E, 则V*不是点覆盖, 与V*是点覆盖矛盾.

(⇐) V-V*是独立集。∀(u,v)∈E, u∉V-V*, v∈V-V*, 即 u∈V* ∨ v∈V*, 故 V*是点覆盖.

推论: 无向图G无孤立点, V*是极(最)小点覆盖 \Leftrightarrow V-V*是极(最)大独立集. $\alpha_0+\beta_0=n$.

总结:

 V_1 *是极小支配集,则存在 V_2 *也是极小支配集,且 V_1 * $\cap V_2$ *=Ø

V*是点覆盖,则V*也是支配集

V*是极大独立集,则V*也是极小支配集

V*是点覆盖 ⇔ V-V*是独立集.

V*是G的团 ⇔ V*是G补的独立集.

求解:极小支配集,极小点覆盖,极大独立集

- 6. 匹配的概念,可增广的交错路径的概念,求二部图最大匹配的匈牙利算法
 - ▶ 无向图G=<V,E>
 - 匹配(边独立集): E*⊆E , ∀e,f∈E*, e,f不相邻
 边的一个子集, 子集中任意两条边不相邻 (顶点不重合)
 (若干对不同事物之间的二元关系)
 - ▶ 极大匹配: E*是匹配, 其真母集都不是
 - ▶ 最大匹配: |E*|最大的匹配
 - υ配数: β₁(G)=|E*|, E*是最大匹配

饱和点,交错路径,增广路径

▶ 设M是G中匹配

▶ 饱和点: v与M中边关联

▶ **非饱和点**: v不与M中边关联

▶ 交错路径: 在M和E-M中交替取边的路径

可增广交错路径: 两端都是非饱和点的交错路径

求解最大匹配

- **从一个匹配开始**
- › 逐一检查不饱和点,对每一个不饱和点尝试寻找增广路 径。 (DFS/BFS)
-) 得到更大的匹配
- 递归直到没有不饱和点或没有增广路径

7. 网络流的概念

一些符号和定义

- > V表示整个图中的所有结点的集合。
- » E表示整个图中所有边的集合。
- ▶ G = (V, E),表示整个图。
- » s表示网络的源点, t表示网络的汇点。
- → 对于每条边(u, v), 有一个容量c(u, v), (c(u, v)>=0)。
- 如果c(u, v)=0, 则表示边(u, v)不存在。 c(u, v)>0, 表示u, v之间有边
- ▶ 对于每条边(u, v), 有一个实际流量f(u, v)。

s, t, c(u,v), f(u,v)

网络流的三个性质

1、容量限制: f[u,v]<=c[u,v]

2、反对称性: f[u,v] = - f[v,u]

3、流量平衡:对于不是源点也不是汇点的任意结点,流入该结点的流量和等于流出该结点的流量和。结合反对称性,流量平衡也可以写成,对于任意结点v,有:

$$\sum_{v \in V} f(v, u) = 0$$

只要满足这三个性质,就是一个合法的网络流,也称为可行流。可行流 至少有一个:零流。

最大流问题

- ho 定义一个网络的流量 $F=\sum_{v\in V}f(s,v)$ (即从源点流出的总流量)
- ▶ 最大流问题, 就是求在满足网络流3条性质的情况下, 求F的最大值。

弧的分类

给定一个可行流F:

零流弧: f(u,v)=0

非零流弧: f(u,v)>0

饱和弧: f(u,v)=c(u,v)

非饱和弧: f(u,v)<c(u,v)

若P是网络中联结源点S和汇点t的的一条路(不考虑边的方向性),若称路的方向是从V,到V,,则路上的弧被分为两类:

前向弧: 与路的方向一致的边。

后向弧: 与路的方向相反的边。

8. 残量网络与可改进路

残量网络

为了更方便算法的实现,一般根据原网络定义一个残量网络。其中 r(u, v)为残量网络的容量。

$$r(u,v) = c(u,v) - f(u,v)$$

- » 通俗地讲: 就是对于某一条边(也称弧),还能再有多少流量经过。
- 残量网络不仅描述一条边还可以增加多少流量,也可以描述还可以减少多少流量。

9. 标号法求最大流

标号法寻求可改进路(Ford-Fulkerson算法)

标号过程:

- ◆ 标号过程开始,总先给起点V_s标上(0, +∞),这V_s时是标号而未检查的顶点,其余都是未标号点。
- ◆ 取一个标号而未检查的标号Vi 进行检查,考察与他相邻的每个未标号点Vi:
 - (1) 若在弧 (V_i, V_j) 上 F_{ij} C_{ij} 则给 V_j 标号 $(V_i, L(V_j))$ 这里 $L(V_j)$ = min[$L(V_i)$, C_{ij} $-F_{ij}$] 这时 V_i 成为标号未检查的顶点。
 - (2) 若在弧 (V_j, V_i) 上 $F_{ij}>0$,则给 V_j 标号 $(-V_i, L(V_j))$,这里 $L(V_j)=\min[L(V_i), F_{ij}]$ 。 这时 V_i 成为标号未检查的顶点。
 - ◆ 在V_i的全部可标号的相邻顶点都已标号后,V_i成为标号且已检查过的顶点。不断重复第二步,检查新产生的标号但未检查的顶点。一旦终点V_t被标上号,表明得到一条从V_s到V_t的可改进路P,转入调整过程。

调整过程:

采用"倒向追踪"的方法,从终点Vt开始,利用标号的前半部分Vx找出可改进路P,并以所有标号的后半部分L(Vx)的最小值a作为改进量,改进P上的流量:

$$F_{ij}^{'} = egin{cases} F_{ij}^{'} + a & (V_i, V_j) \in P^+ & ext{ 前向弧 (标号中顶点为+)} \ F_{ij}^{'} - a & (V_i, V_j) \in P^- & ext{ 后向弧 (标号中顶点为-)} \ F_{ij}^{'} & (V_i, V_j)
otin P & ext{ 不在改进路中的弧} \end{cases}$$

去掉所有的标号,对新的可行流重新进入标号过程。直到标号过程无法继续。

例1用标号法求如下网络的最大流

I.标号过程

- (I) 首先给V,标上(0,+∞)
- (2) 检查 V_s 。弧 (V_s,V_2) 上, $F_{s2}=C_{s2}=3$,不满足标号条件;弧 (V_s,V_1) 上, $F_{s1}=1<C_{s1}=5$,则 V_1 的标号为 $(V_s,L(V_1))$,其中 $L(V_1)=min[L(V_s),(C_{s1}-F_{s1})]=min[+\infty,5-1]=4$
- (3) 检查 V_1 。弧 (V_1,V_3) 上, $F_{13}=C_{13}=2$,不满足标号条件;弧 (V_2,V_1) 上, $F_{21}=I>0$,则给 V_2 记下标号为 $(-V_1,L(V_2))$,其中 $L(V_2)=\min[L(V_1),F_{21}]=\min[4,1]=I$
- (4) 检查V₂。弧(V₂,V₄)上,F₂₄=3<C₂₄=4,则给V₄标号(V₂,L(V₄)),其中L(V₄)=min[L(V₂),C₂₄-F₂₄]=min[1,1]=1 同理,标注V₃为(-V₂,1)。
- (5) 在 V_3 , V_4 中任选一个进行检查,如 V_3 。弧(V_3 , V_t)上, F_{3t} = $I < C_{3t}$ =2,则给 V_t 标号(V_3 , $L(V_t)$),其中 $L(V_t)$ =min[$L(V_3)$, C_{3t} - F_{3t}]=min[I,I]=I
- (6) V,有了标号,转入调整过程。

(4) 按a=I在P上调整

$$P^+: F_{s1}' = F_{s1} + a = 2, F_{3t}' = F_{3t} + a = 2$$

 $P^-: F_{21}' = F_{21} - a = 0, F_{32}' = F_{32} - a = 0$

(5) 对调整后的图重新进入标号过程

10. 面向高维随机变量的链式法则和贝叶斯法则

对于高维随机变量,两个基本法则分别对应这两个基本问题:

◆ 加法法则——边缘概率:

$$p(X) = \sum_{Y} \mathrm{p}(X,Y)$$
 Хэңн, Үнч Яң рүү эң рүү эн рүү

◆ 乘法法则——条件概率:

$$p(X,Y) = p(X|Y)p(Y) = p(Y|X)p(X)$$

根据两个基本法则可以推出两个常用的法则:

◆ 链式法则:

$$p(\underline{x_1, x_2, ..., x_p}) = p(x_1) \prod_{i=2}^{p} p(x_i | x_1, x_2, ..., x_{i-1})$$

◆ 贝叶斯法则:

$$p(x_2|x_1) = \frac{p(x_1, x_2)}{p(x_1)} = \frac{p(x_1, x_2)}{\sum_{x_2} p(x_1, x_2)} = \frac{p(x_1|x_2)p(x_2)}{\sum_{x_2} p(x_1, x_2)}$$

- 11. 朴素贝叶斯算法、马尔科夫链、条件独立性的概念与假设
 - ◆ 假设1: 假设维度之间是相互独立, 彼此之间互不相干
 - 典型的算法: 朴素贝叶斯算法, 即假设各个维度相互独立

$$p(x_1, x_2, \dots, x_p) = \prod_{i=1}^p p(x_i)$$

▶ 缺陷: 过于简化

◆ 假设2: 假设**当前状态只与前一个状态有关,其他状态无关**, 即马尔可夫假设

$$X_{j} \perp X_{i+1} \mid X_{i} \not\equiv p_{j} < i$$

▶ 缺陷: 一个状态往往跟前面多个状态有关

◆ 假设3: 将所有变量分为三个互不相交的集合A, B, C, 得 到条件独立性假设:

$$X_A \perp X_B \mid X_C$$

- ◆ 概率图研究问题: 高维随机变量
- ◆ 解决办法: 条件独立性假设

12. 贝叶斯网络的概念

贝叶斯网络

- ◆ 节点:表示随机变量 $\{X_1, X_2, ..., X_n\}$,即可观察到的变量,或隐变量、未知参数等
- ◆ 边: 节点间有因果关系或非条件独立的变量或命题则用箭头 来连接
- ◆ 权值:两个节点间以单箭头连接,父节点是"因",子节点是"果",两节点产生条件概率值

◆ 规范化表示: 假设**节点**E直接影响到节点H,即E->H,则用从E 指向H的箭头建立节点E到节点H的**有向弧**(E, H),**权值**为条 件概率P(H|E)

令G=(L,E)表示一个有向无环图(DAG)。

- ▶ L代表图形中所有的结点的集合
- ➤ E代表有向连接线段的集合
- ▶ X_i (i ∈ L) 为有向无环图中的某一结点i所代表的随机变量
- ▶ 若所有结点x={X_i}的联合概率可以表示成:

$$P(x) = \prod_{i \in I} p(x_i | x_{pa(i)})$$

则称X为相对于一有向无环图G的贝叶斯网络,其中pa(i)表示结点i的父节点集合。

13. 基于贝叶斯网络的高维随机变量因子分解

◆ 链式法则: $p(x_1, x_2, ..., x_k) = p(x_1)p(x_2|x_1)...p(x_k|x_1, ..., x_{k-1})$

◆ 因子分解: $p(x_1, x_2, ..., x_p) = \prod_{i=1}^p p(x_i | x_{pa(i)})$

◆ 如下图所示, 一个简单的贝叶斯网络:

链式法则:

因子分解:

p(a,b,c) = p(a)p(b|a)p(c|a,b) p(a,b,c) = p(a)p(b|a)p(c|a)

- ◆ 概率图就是将图赋予了概率定义,可以直观的根据图结构寻找到概率之间的独立性。
- ◆ 根据条件独立性假设, 我们可以将复杂的计算简化。

条件独立性:

$$X_A \perp X_B \mid X_C$$

因子分解:

$$p(x_1, x_2, ..., x_p) = \prod_{i=1}^{p} p(x_i | x_{pa(i)})$$

其中: $x_{pa(i)}$ 表示 x_i 的父节点。

- ◆ 根据概率图模型可以直观写出因子分解
- ◆ 图结构作用:表达条件独立性。箭头符号定义如下:

贝叶斯网络 (1) tail-tail

◆ 根据因子分解:

$$p(\mathbf{a}, b, c) = p(a)p(b|a)p(c|a)$$

◆ 根据链式法则:

$$p(a,b,c) = p(a)p(b|a)p(c|a,b)$$

◆ 两个公式对比:

$$p(c|a) = p(c|a,b)$$

即在**给定a的前提下,b和c相互独立**。

继续推导:

$$p(c|a)p(b|a) = p(c|a,b)p(b|a) = p(c,b|a)$$

即得到了条件独立的定义:

$$p(c,b|a) = p(c|a)p(b|a)$$

即在tail-tail的拓扑结构中,若a被观察,则路径阻塞,即b和c相互独立。

贝叶斯网络 (2) head-tail

- ◆ 根据因子分解: p(a,b,c) = p(a)p(b|a)p(c|b)
- ◆ 根据链式法则: p(a,b,c) = p(a)p(b|a)p(c|a,b)
- ◆ 两式对比: p(c|b) = p(c|a,b)

即在head-tail的拓扑结构中,若b被观察,则路径阻塞,也就是说,a和c相互独立。

贝叶斯网络 (3) head-head

- ◆ 根据因子分解: p(a,b,c) = p(a)p(b)p(c|a,b)
- ◆ 根据链式法则: p(a,b,c) = p(a)p(b|a)p(c|a,b)
- ◆ 两式对比: $p(\underline{b}|\underline{a}) = p(\underline{b})$

即在head-head的拓扑结构中,若c未被观察,则路径阻塞,也就是说,a和b相互独立。

注:a和b两者是天然独立的,但是一旦c被观察了,那么两者的独立性就被打破了。当c的后继节点被观察,同样会打破a和b的独立性。

14. 贝叶斯网络的 D-划分

D - 划分

- ◆ D-划分的引入: 判断贝叶斯网络中任意两个结点是否独立
- ◆ D 划分是贝叶斯网络三种基本拓扑结构的推广,将结点关系推广到集合关系。

给定证据节点集合C,变量a,b独立,当满足以下条件:

- 任一连接a和b的tail-tail或head-tail无向路径中,至少有一个结点在C中。
- 任一链接a和b的head-head无向路径中,没有结点在C中。

如下图所示,在给定 X_2 和 X_3 的情况下, X_1 和 X_6 是独立的,即 $X_1 \perp X_6 | (X_2, X_3)$ 。具体来说,从 $X_1 \supseteq X_6$ 有两条路径:

- X_1 -> X_2 -> X_6 , 其中 X_2 被观测到,且 X_2 是head-tail结构, 因此该条路径被阻断。
- X_1 -> X_3 -> X_6 ,其中 X_3 被观测到,且 X_3 是head-tail结构, 因此该条路径被阻断。

15. 隐马尔科夫模型的构成及其三个问题(评估、预测、学习)

隐马尔可夫链: 一个隐状态序列产生一个观察值序列。每个隐状态依赖于前一个隐状态

HMM的模型参数:

- 状态种类数量 = (K/观察值种类数量= M)
- π: 每种状态做为初始状态的概率 (K dimensional vector)
- (A) 状态之间的转移概率 Transition probabilities (K×K matrix)
- B: 状态到观察值的发射概率 Emission probabilities (K×M matrix)
- 评估问题: 给定观察序列, x_1 , x_2 , \cdots x_n 和模型参数 (π, A, B) , 观察序列的概 率有多大? (根据语言模型判断一句话是不是人话) **Evaluation**

解码问题:给定观察序列 x_1, x_2, \dots, x_n 和模型 (π, A, B) ,最可能的状态序列 是什么?(根据语言模型给一句话的每个词进行类别标注) Decoding

学习问题: 给定观察序列 x_1, x_2, \dots, x_n , 最佳的模型参数 (π, A, B) 是什么? (训练获得语言模型)

Learning

补充知识:

- 1. 边覆盖的概念,极小和最小边覆盖的概念
 - ▶ 无向图G=<V,E>
 - ▶ 边覆盖: E*⊆E , ∀v∈E, ∃e∈E*, e关联v

所有边的一个子集,任意顶点均与子集中的某条边关联(一个能包含所有事物的关系集合)

- ▶ 极小边覆盖: E*是边覆盖, 其真子集都不是
- ▶ 最小边覆盖: |E*|最小的边覆盖
- 边覆盖数: α₁(G)=|E*|, E*是最小边覆盖

边覆盖(例)

 \bullet {e₂,e₃,e₆}, {e₂,e₃,e₇}, $\alpha_1 = 3$

- 2. 团的概念,极大和最大团的概念
 - ▶ 无向图G= < V,E>, V*⊆V
 - ▶ 团: G[V*]是完全子图
 - ▶ 极大团: V*是团, 其真母集都不是
 - ▶ 最大团: |V*|最大的团
 - ▶ 团数: v₀(G)=|V*|, V*是最大团

团(例)

 $V_0, v_1, v_2, \{v_1, v_2\}, \{v_1\}, v_0(G) = 3$

定理4

▶ 定理4: 无向图G,

V*是G的团 ⇔ V*是G补的独立集.

- 推论: 无向图G, V*是G的极(最)大团 \Leftrightarrow V*是G补的极(最) 大独立集. $v_0(G)=\beta_0(G补)$.
- 3. 割集的概念,最大流最小割定理,构成最小割的边的求解

割集的定义

- ▶ 一个网络流中, 一个割集(S,T)由两个点集S,T组成.
- ▶ S+T = V
- ▶ s 属于 S.
- ▶ t 属于 T.

最大流最小割定理

- ▶ 割集间的容量: $C(S,T) = \sum_{x \in S} \sum_{y \in T} c(x,y)$
- ▶ 即:所有由S中的一点指向T中的一点的边上的容量之和。
- ▶ 任一个网络D中从V。到V_t的最大流的流量等于分离Vs和Vt的割集中容量最小的割集的容量。

最大流最小割定理 - 证明

- ▶ 割集间的容量: $c(S,T) = \sum_{x \in S} \sum_{y \in T} c(x,y)$
- ▶ 即:所有由S中的一点指向T中一点的边上的容量之和。
- ▶ 割集间的流量: $f(S,T) = \sum_{x \in S} \sum_{y \in T} f(x,y)$
- ▶ 即:所有由S中的一点与T中的一点组成的边上的流量之和。 (注意,与容量不同,流量既有正也有负。)

定理1: 割流量的运算法则

X, Y, Z为顶点子集, 且没有交集。

- ▶ f(X,X) = 0 (由流量反对称性)
- ▶ f(X,Y) = -f(Y,X) (由流量反对称性)
- ▶ f(X U Y, Z) = f(X,Z) + f(Y,Z) (显然)
- ▶ f(X, Y U Z) = f(X,Y) + f(X,Z) (显然)

定理2

▶ 任意不包含s和t的顶点集X,与它相关联的边上的流量之和 为0。

(因为,由流量平衡,对于**X**中每个结点**x**,与之相关联的边的流量之和为**0**),如下式(**V**为所有结点的集合):

•
$$f(X,V) = \sum_{x \in X} [\sum_{v \in V} f(x,v)]$$

$$= \sum_{x \in X} [0] \text{ (由流量平衡)}$$

$$= 0$$
(0,4)
(0,2)
(0,2)

定理3

- 整个网络的流量等于任意割的流量
- ▶ 证明:

由于任意割流量相同且等于整个网络的流量,所以整个网络的流量就不可 能超过容量最小的割的容量。 (最短板原理)

$$f(X,X) = 0$$
 (由流量反对称性)

* $f(X,Y) = -f(Y,X)$ (由流量反对称性)

* $f(X,Y) = -f(Y,X)$ (基然)

* $f(X,Y,Z) = f(X,Z) + f(Y,Z)$ (显然)

* $f(X,Y,Z) = f(X,Y) + f(X,Z)$ (显然)

* $f(X,Y) = \sum_{x \in X} [\sum_{x \in X} f(x,y)]$

= $\sum_{x \in X} [0]$ (由流量平衡)

= 0

构成最小割的边的求解

- ▶ 求最大流
- 求最大流的残量网络
- ▶ 在残量网络中,遍历所有可以由源点出发到达的节点,其 集合为S,图中除S之外的其余节点为T,则(S,T为最小 割)
- » 所有连接S和T的边为最小割的边

4. 利用网络流求二部图的最大匹配

二部图 (*bipartite graph*); 设无向图为 G(V, E), 它的项点集合 V 包含两个没有公共元素的子集: $X = \{x_1, x_2, ..., x_s\}$ 和 $Y = \{y_1, y_2, ..., y_t\}$,元素个数分别为 s 和 t; 并且 x_i 与 x_j 之间($1 \le i, j \le s$)、 y_i 与 y_r 之间($1 \le i, r \le t$)之间没有边连接,则称 G 为二部图,有的文献也称为**二分图**。

利用网络流求二部图最大匹配

- (1) 从二部图 G 出发构造一个容量网络 G', 步骤如下:
 - a) 增加一个源点 S 和汇点 T;
 - b) 从 S 向 X 的每一个顶点都画一条有向弧, 从 Y 的每一个顶点都向 T 画一条有向弧;
 - c) 原来 G 中的边都改成有向弧,方向是从 X 的顶点指向 Y 的顶点;
 - d) 令所有弧的容量都等于 1。
- (2) 求容量网络 G'的最大流 F。
- (3) 最大流 F 求解完毕后,从 X 的项点指向 Y 的项点的弧集合中,弧流量为 1 的弧对应二部图最大匹配中的边,最大流 F 的流量对应二部图的最大匹配的边数。

设有 5 位待业者,用 x1, x2, ..., x5表示;另外有 5 项工作,用 y1, y2, ..., y5表示;如果 xi能胜任yi工作,则在他们之间连一条边。现在要求设计一个就业方案,使尽量多的人能就业。

