QFT Study in 2016 Winter

Study Plan

Main Text & References

Main text book is Peskin & Schroeder. We will deal with whole examples and final projects in Peskin. For references, maybe we will use Schwartz, Nair, Zee, Ryder and Maggiore.

- Specific Plan

- I. 4th week, November 11/25
 - : Preliminaries of QFT Motivation of QFT, Klein-Gordon equation & SHO.
- II. 5th week, November 11/29
 - : Group Theory (Lorentz to Poincaré), Dirac equation.
- III. 2nd week, December 12/04, 12/06, 12/09
 - : Canonical Quantization of KG & Dirac Field, Weyl & Majorana Spinors, Majorana mass.
- IV. 1st week, January 1/4, 1/8
 - : Review of Spinor Fields.
- V. 2nd week, January 1/11
 - : Introduce Path integral formalism.
- VI. 3rd week, January 1/17, 1/20
 - : Cross section, LSZ reduction, Perturbative Expansion and Feynman Rule.
- VII. 4th week, January 1/23, 1/26
 - : Renormalization & Quantum Electrodynamics.
- VIII. 1st week, Feburary 1/31, 2/3
 - : Rest of Path integral formalism and Renomalization & Implication of Unitarity.
 - IX. 2nd week, Feburary 2/6, 2/10
 - : Non-abelian gauge theory, Spontaneous symmetry breaking & Weak interaction.
 - X. 3rd week, Feburary 2/13, 2/17
 - : HEP tools (CalcHEP, Madgraph, Feynrules)
 - XI. 2nd week, Feburary 2/20, 2/24
 - : Quantum Yang-Mills Theory

The Limit of NRQM

1. Causality Violation

1) Classical Hamiltonian : $H = \frac{P^2}{2m}$

Consider the transitional amplitude - $U(t, x; 0, x_0) \equiv \langle x, t | x_0, 0 \rangle = \langle x | e^{-iHt} | x_0 \rangle$

$$U(t, x; 0, x_{0}) = \langle x | e^{-i\frac{P^{2}}{2m}t} | x_{0} \rangle = \int d^{3}p \ \langle x | e^{-i\frac{P^{2}}{2m}t} | p \rangle \ \langle p | x_{0} \rangle = \frac{1}{(2\pi)^{3}} \int d^{3}p \ e^{-i\frac{\vec{p}^{2}}{2m}t} \cdot e^{i\vec{p}\cdot(\vec{x}-\vec{x_{0}})}$$

$$= \frac{1}{(2\pi)^{3}} \int d^{3}p \ e^{-\frac{it}{2m}\left(\vec{p} - \frac{m(\vec{x}-\vec{x_{0}})}{t}\right)^{2}} e^{i\frac{m}{2t}(\vec{x}-\vec{x_{0}})^{2}} = \left(\frac{m}{2\pi it}\right)^{\frac{3}{2}} e^{\frac{im}{2t}(\vec{x}-\vec{x_{0}})^{2}}$$

$$(1)$$

 \therefore Since, this expression is nonzero for all x, t, indicating that a particle can propagate between any two points in an arbitrarily short time. \Rightarrow Causality violation.

2) Relativistic Hamiltonian : $H = \sqrt{|\vec{p}|^2 + m^2}$

$$U(t, x; 0, x_0) = \int d^3p \langle x | e^{-i\sqrt{|\vec{p}|^2 + m^2}} | p \rangle \langle p | x_0 \rangle$$

$$= \int \frac{dp}{(2\pi)^3} (2\pi) |\vec{p}|^2 e^{-it\sqrt{|\vec{p}|^2 + m^2}} \int_0^{\pi} d\theta \sin\theta e^{i|\vec{p}||\vec{x} - \vec{x_0}|\cos\theta}$$

$$= \frac{1}{2\pi^2} \int dp |\vec{p}| \sin(|\vec{p}||\vec{x} - \vec{x_0}|) e^{-it\sqrt{|\vec{p}|^2 + m^2}}$$
(2)

It can be solved by complex integration¹ or bessel function². Anyway, it is also nonzero although spacelike separated spacetime. \Rightarrow Causality violation.

3) Continuity Equation : $\frac{\partial \rho}{\partial t} + \nabla \cdot S = 0$

In CM, the number of particles is conserved by continuity equation. But in the following cases, the number of particles of given species is not conserved.

1.
$$n \rightarrow \nu_e^- + e^- + p^+ \cdots$$
 (neutron β - decay)

2.
$$e^+ + e^- \rightarrow 2\gamma$$
 ... (pair annihilation)

For these reasons, Quantum Field Thoery needs to come out.

¹S. Coleman, Notes from Sidney Coleman's Physics 253a

²M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory

Quantum Field Theory

Let R_1, R_2 be separated. If $A \in R_1$ measures $obj \in R_2$ then they communicate faster than light, which is causality violation. It is why we should re-define observable. At first, let θ_1, θ_2 be observables at R_1, R_2 respectively. Then they should satisfy $[\theta_1, \theta_2] = 0$. The observables should be attached to each space-time points, because getting information of properties of time and space. That is, the observables are field!

Physics	Observable
Classical Mechanics	Real-valued function
Quantum Mechanics	Operator
Quantum Field Theory	Field Operator

Table 1: Physics and Observable

And then, we define $\phi(x)$ as an operator-valued function of space-time as follows:

- $[\phi(x), \phi(y)] = 0$ if $t^2 x^2 < 0$ Space-like separated • $\phi(x) = \phi^{\dagger}$ - Hermitian • $e^{-ipa}\phi(x)e^{ipa} = \phi(x-a)$ - Translation • $U^{\dagger}(\Lambda)\phi(x)U(\Lambda) = \phi(\Lambda^{-1}x)$
- Translation could be combined with Lorentz transform, which is called as Poincaré. Now, we are ready to construct QFT. Famous particles & fields are seen in the next table.

Particle	Field
Spin-zero Boson	$\phi(\vec{x},t)~-~\phi$ is a real scalar field
Spin-zero charged Boson	$\phi(\vec{x},t)~-~\phi$ is a complex scalar field
Photons (spin-1 massless boson	$A_{\mu}(\vec{x},t) - A_{\mu}$ is a real vector field
Spin- $\frac{1}{2}$ Fermion (quarks, e^{\pm})	$\psi_r(\vec{x},t) - \psi_r$ is a spinor field

Lorentz transform

Table 2: Particle and Field

Klein-Gordon Field Theory

1. Single Particle Wave function

: A single particle wave function is marked as $u_k(\vec{x})$.

$$u_{k}(\vec{x}) = Ae^{i\vec{k}\cdot\vec{x}} \quad where \quad k_{i} = \frac{2\pi}{L}n_{i}(i=1,2,3)$$

$$u_{k}(\vec{x},t) = e^{-i\omega_{k}t}Ae^{i\vec{k}\cdot\vec{x}}$$

$$= Ae^{-i(\omega_{k}t-\vec{k}\cdot\vec{x})}$$

$$= Ae^{-ik_{\mu}x^{\mu}} = Ae^{-ik\cdot x} \quad where \quad k_{\mu} = (\omega_{k}, -\vec{k}), \quad x^{\mu} = (t, \vec{x})$$

$$(3)$$

And for convenience, we use notation of Peskin:

$$u_p(x) = Ae^{-ip \cdot x} \quad where \quad p_\mu = (E_p, -\vec{p}), \quad E_p = \sqrt{|\vec{p}|^2 + m^2}$$
 (4)

By using this equation, Klein-Gordon equation can be derived.

2. Klein-Gordon Equation

$$i\frac{\partial}{\partial t}u_p(x) = i\frac{\partial}{\partial t}Ae^{-ip\cdot x} = i(-iE_p)u_p(x) = E_p u_p(x)$$
$$-\frac{\partial^2}{\partial t^2}u_p(x) = (|\vec{p}|^2 + m^2)u_p(x)$$
$$\left(\frac{\partial^2}{\partial t^2} + |\vec{p}|^2 + m^2\right)u_p(x) = \left(\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2\right)u_p(x) = 0$$
(5)

 $\frac{\partial^2}{\partial t^2} - \nabla^2$ can be written by using d'Alembertian of which symbol is \Box , which is defined by $\partial_\mu \partial^\mu \equiv \Box$.

$$(\Box + m^2)u_p(x) = 0 \qquad \cdots \qquad \text{(Klein-Gordon Equation)} \tag{6}$$

3. Invariant Quantity

Consider next two equations:

$$u_p^*(x)(\Box + m^2)u_p(x) = 0, \quad u_p(x)(\Box + m^2)u_p^*(x) = 0$$
(7)

Let substitute one from another, we can obtain the next equation.

$$\partial_0(u_p^*\partial^0 u_p - \partial^0 u_p^* u_p) - \nabla(u_p^*\partial^\mu u_p - u_p\partial^\mu u_p^*) = 0$$
(8)

In QM, we already knew continuity equation : $\frac{\partial \rho}{\partial t} + \nabla \cdot S = 0$. So, we can interpret our equation by using continuity equation.

$$\rho = i(u_p^* \partial^0 u_p - \partial^0 u_p^* u_p), \quad S = -i(u_p^* \nabla u_p - \nabla u_p^* u_p) \tag{9}$$

Since, volume integration of density is 1 (normalization or probability interpretation) we can define new inner product - Klein Gordon Inner Product:

$$\langle u_p | u_{p'} \rangle = i \int d^3 x \ u_p^* \stackrel{\leftrightarrow}{\partial_0} u_{p'} \tag{10}$$

4. Normalization

By Klein-Gordon Inner product, we can normalize $u_p(x)$

$$\langle u_p | u_p \rangle = i \int d^3x \ u_p^* \stackrel{\leftrightarrow}{\partial_0} u_p = 2i \int d^3x \ \left(-iE_p |A|^2 \right) = 2E_p V |A|^2 = 1 \Rightarrow A = \frac{1}{\sqrt{2E_p V}}$$
 (11)

$$\therefore u_p(x) = \frac{e^{-ipx}}{\sqrt{2E_pV}} \tag{12}$$

5. Generalization

Let $V \to \infty$. Then we can derive dirac delta & volume integral by kronecker delta & summation.

$$\delta_{pp'} = \delta_{n_1 n_1'} \delta_{n_2 n_2'} \delta_{n_3 n_3'} \Rightarrow \delta^{(3)}(p - p') = \delta^{(3)} \left(\frac{2\pi}{L} (n - n') \right) = \frac{V}{(2\pi)^3} \delta_{pp'} \Rightarrow \delta_{pp'} \rightarrow \frac{(2\pi)^3}{V} \delta^{(3)}(p - p')$$

$$\sum_{p'} \delta_{pp'} f_{p'} = f_p \rightarrow \int d^3 p' \, \delta^{(3)}(p - p') f(p') = f(p) \Rightarrow \sum_{p} \rightarrow \int V \frac{d^3 p}{(2\pi)^3}$$
(13)

6. Lorentz Invariant Measure

Consider a Fourier transformation - $\langle x|p\rangle \equiv \psi_p(x)$. We already defined Klein-Gordon Inner product, so,

$$\langle p|p'\rangle = i \int d^3x \, \psi_p^* \stackrel{\leftrightarrow}{\partial_0} \psi_{p'} = i \int d^3x \, \left(-iE_{p'}e^{i(p-p')x} - iE_pe^{-i(p'-p)x}\right) = 2E_pV\delta_{pp'}$$

$$\Rightarrow \langle p|p'\rangle = 2E_pV\delta_{pp'} = 2E_pV\frac{(2\pi)^3}{V}\delta^{(3)}(p-p') = (2\pi)^3 2E_p\delta^{(3)}(p-p')$$

$$\Rightarrow \delta^{(3)}(p-p') = \frac{1}{(2\pi)^3 2E_p} \langle p|p'\rangle$$

$$\int d^3p' \, \delta^{(3)}(p-p')f(p') = \int d^3p' \, \frac{1}{(2\pi)^3 2E_p} \langle p|p'\rangle \, \langle p'|f\rangle \Rightarrow \langle p|f\rangle = \int d^3p' \, \frac{1}{(2\pi)^3 2E_p} \, \langle p|p'\rangle \, \langle p'|f\rangle$$

$$\therefore \int d^3p \, \frac{1}{(2\pi)^3 2E_p} \, |p\rangle \, \langle p| = 1$$

$$(14)$$

But, we can't find any physical significance by just this. Thus, we should change the form.

$$\int \frac{d^3p}{(2\pi)^3 2E_p} = \int \frac{d^3p}{(2\pi)^3} (2\pi) \int \frac{dp^0}{2\pi} \frac{\delta(p^0 - \sqrt{|\vec{p}|^2 + m^2})}{2p^0}
= \int \frac{d^3p}{(2\pi)^3} (2\pi) \int \frac{dp^0}{2\pi} \delta\left((p^0)^2 - (|\vec{p}|^2 + m^2)\right) \theta(p^0) = \int \frac{d^4p}{(2\pi)^4} (2\pi) \delta(p^2 - m^2) \theta(p^0)
\therefore \int \frac{d^3p}{(2\pi)^3 2E_p} = \int \frac{d^4p}{(2\pi)^4} (2\pi) \delta(p^2 - m^2) \theta(p^0)$$
(15)

Then we can interpret this more physically. Since $p^2=m^2 \to (p^0)^2-|\vec{p}|^2=m^2$, we can think hyperboloid.

Figure 1: General Hyperboloid

Becaue of $\theta(p^0)$, Lorentz invariant measure is considered as integration on only positive p^0 surface of Lorentz Hyperboloid.

* Why L.I Measure's name is L.I Measure?

Consider Lorentz transform $p_3' = \gamma(p_3 + \beta E), E' = \gamma(E + \beta p_3).$

$$\delta^{(3)}(\vec{p} - \vec{q}) = \frac{\delta^{(3)}(\vec{p}' - \vec{q}')}{|dp_3/dp_3'|} = \delta^{(3)}(\vec{p}' - \vec{q}') \frac{dp_3'}{dp_3} = \delta^{(3)}(\vec{p}' - \vec{q}') \gamma \left(1 + \beta \frac{dE}{dp_3}\right)$$

$$= \delta^{(3)}(\vec{p}' - \vec{q}') \frac{\gamma}{E} (E + \beta p_3) = \delta^{(3)}(\vec{p}' - \vec{q}') \frac{E'}{E}$$

$$\therefore E_{\vec{p}} \delta^{(3)}(\vec{p} - \vec{q}) = E_{\vec{p}}' \delta^{(3)}(\vec{p}' - \vec{q}')$$
(16)

Thus, $E_{\vec{p}} \delta^{(3)}(\vec{p} - \vec{q})$ is Lorentz invariant. And therefore, $(2\pi)^3 2E_{\vec{p}} \delta^{(3)}(p-p') = \langle p|p'\rangle$ is Lorentz invariant.

H.W. Show that $\partial_0 \langle u|v\rangle = 0$

Classical Field Theory

Because of special relativity, we use the lagrangian density instead of usual lagrangian.

$$S = \int dt L = \int dt \int d^3x \mathcal{L} = \int d^4x \mathcal{L}(\phi, \partial_{\mu}\phi)$$

$$\delta S = \int d^4x \left(\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \partial_{\mu} \phi \right) = \int d^4x \left[\left(\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \phi \right) + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \phi \right) \right] = 0$$

$$\therefore \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} = 0$$

$$(17)$$

Then we can also obtain conjugate momentum density & Hamiltonian density.

$$\pi(x) = \frac{\partial \mathcal{L}}{\partial \partial_0 \phi(x)}, \ \mathcal{H}(x) = \pi(x)\partial_0 \phi(x) - \mathcal{L} \qquad (H = \int d^3x \ \mathcal{H})$$
 (18)

Lie Group

Lie group is a group whose elements depend in a continuous & differentiable way on a set of real parameters. So, we can consider Lie group as *Differentiable manifold*.

We took notation of Maggiore.

- $g(\theta)$: element of Lie group where θ^{α} = real parameter. (W.L.O.G g(0) = e)
- D_R : Linear operator from Lie group to representation.

From definition of group & these notations, we can get following properties.

- i) $D_R(e) = 1$
- ii) $D_R(g_1)D_R(g_2) = D_R(g_1g_2)$
- * There is a property of a Lie group that is independent of the representation. Lie Algebra

1. Generator

Consider infinitesimal θ . Then we can write unitary representation of this group as $D_R(\theta) \simeq 1 + i\theta_a T_R^a$. $\Rightarrow T_R^a = -i \frac{\partial D_R}{\partial \theta_a}\Big|_{\theta=0} T_R^a \text{ is called the generator of the representation } D_R \text{ of group } g(\theta).$

 $^{^{1}}D_{R}(g(\theta)) = \exp i\theta_{a}T_{R}^{a}$

2. Lie Algebra

Let g_1, g_2 be the elements of group g. Then if the group can be represented as unitary, we can write following reps.

$$D_R(g_1) = e^{i\alpha_a T_R^a}, \ D_R(g_2) = e^{i\beta_a T_R^a}$$
 (19)

By properties of representation, we can get next equation.

$$D_R(g_1)D_R(g_2) = D_R(g_1g_2) = D_R(g_1g_2) \implies e^{i\alpha_a T_R^a} e^{i\beta_a T_R^a} = e^{i\delta_a T_R^a}$$
(20)

By BCH formula, for matrix $A,B,\ e^Ae^B=e^{A+B+\frac{1}{2}[A,B]+\cdots}$.

$$e^{i\alpha_a T_R^a} e^{i\beta_b T_R^b} = e^{i(\alpha_a + \beta_a) T_R^a - \frac{\alpha_a \beta_b}{2} \left[T_R^a, T_R^b \right]} \equiv e^{i\delta_c T_R^c}$$

$$\Rightarrow \alpha_a \beta_b \left[T_R^a, T_R^b \right] = i \left[-2 \{ \delta_c(\alpha, \beta) - \alpha_c - \beta_c \} \right]$$
(21)

It's easy to verify $\delta(\alpha, \beta)$ is linear for each α, β . $(\delta_c(\alpha, 0) = \alpha_c, \delta_c(0, \beta) = \beta_c)$ Thus, we can write δ_c as $\delta_c(\alpha, \beta) = \alpha_c + \beta_c + C^{ab}_{\ c}\alpha_a\beta_b$ where $C^{ab}_{\ c}$ is constant. Thus, the last equation of (21) becomes $\alpha_a\beta_b\left[T_R^a, T_R^b\right] = i(-2C^{ab}_{\ c}\alpha_a\beta_b)T_R^c \equiv if^{ab}_{\ c}\alpha_a\beta_bT_R^c$. Therefore we get the next relation.

$$\therefore \left[T^a, T^b \right] = i f^{ab}_{\ c} T^c \tag{22}$$

We called f_c^{ab} as structure constant.

Example 0.1

- 1. $f_k^{ij} = \epsilon_{ijk}$ for SO(3), SU(2)
- 2. $f_c^{ab} = 0$ for abelian group. (This is the fundamental reason for why we can't quantize a charge of U(1).

* Non-Compact Groups have no unitary representations of finite dimensions

: If a group is non-compact then to identify its generator we need infinite dimensional representations. (Hibert space of 1-particle state)

Lorentz Group

1. Rotation Group in 3D - SO(3)

Let R be a representation of rotation and r be a n-dimensional vector, then simply, $r \to r' = R r$ where $R^T R = 1$. Since $(R_1 R_2)^T \cdot R_1 R_2 = R_2^T (R_1^T R_1) R_2 = 1$, it is closed of multiplication. And trivially identity & inverse are exist, R forms a group. We called this group as O(n). (In addition, if det R = 1, then we call it SO(n).)

* Generator

$$R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 0 \end{pmatrix} \Rightarrow R_z(\delta\theta) = \begin{pmatrix} 1 & -\delta\theta & 0\\ \delta\theta & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} = 1 - i\delta\theta \begin{pmatrix} 0 & -i & 0\\ i & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \equiv 1 - i\delta\theta J_z \quad (23)$$

Thus, we can find all of generators.

$$J_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad J_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \quad J_z = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (24)

Then we can write unitary representation of Rotation group.

$$\therefore R(\theta) = e^{-i\vec{\theta} \cdot \vec{J}} \text{ where } [J_i, J_j] = i\epsilon_{ijk} J_k$$
 (25)

2. Unitary Group - SU(2)

Let U be a representation of this group, then it should be satisfied $U^{\dagger}U = 1$. We called this group as U(n). (In addition, if det U = 1, then we call it SU(n).) Then U can be written as below. (Check!)

$$U = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \quad \text{where } |a|^2 + |b|^2 = 1 \tag{26}$$

We can take $a = e^{-i\alpha}\cos\gamma$, $b = e^{i\beta}\sin\gamma$, thus,

$$U(\delta) = \begin{pmatrix} 1 - i\alpha & -\gamma - i\beta\gamma \\ \gamma - i\beta\gamma & 1 + i\alpha \end{pmatrix} \xrightarrow{\beta\gamma \to \beta} \alpha^2 + \beta^2 + \gamma^2 = 0$$

$$\Rightarrow U(\delta) = 1 - i\alpha \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - i\beta \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - i\gamma \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = 1 - i\eta \cdot \frac{\vec{\sigma}}{2}$$
(27)

Since σ is pauli matrices, it satisfy $\left[\frac{\sigma^{i}}{2}, \frac{\sigma^{j}}{2}\right] = i\epsilon^{ijk}\frac{\sigma^{k}}{2}$ Thus, we can write $\therefore U(\eta) = e^{-i\eta \cdot \frac{\sigma}{2}}$ (28)

3. Lorentz Group

We denote coordinates of Lorentz transformed frame by x'. Then we already knew $x^{0'} = \gamma(x^0 + \beta x^i)$, $x^{i'} = \gamma(x^i + \beta x^0)$ where $\gamma^2 - \beta^2 \gamma^2 = 1$. So, we can substitute $\gamma \equiv \cosh \eta$, $\gamma \beta \equiv \sinh \eta$

$$x^{0'} = \gamma(x^{0} + \beta x^{i}), \ x^{i'} = \gamma(x^{i} + \beta x^{0}) \text{ where } \gamma^{2} - \beta^{2} \gamma^{2} = 1.$$
then $x^{\mu \prime} = \Lambda^{\mu}_{\ \nu} x^{\nu}$ where $(\Lambda^{\mu}_{\ \nu})_{x} = \begin{pmatrix} \cosh \eta & \sinh \eta & 0 & 0 \\ \sinh \eta & \cosh \eta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

For infinitesimal η , we can represent $(\Lambda^{\mu}_{\ \nu})^i=1-i\eta K^i$ where

$$K_x = -i \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ & & \end{pmatrix}, K_y = -i \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & & & \\ 1 & & & \\ 0 & & & \end{pmatrix}, K_z = -i \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & & & \\ 0 & & & \\ 1 & & & \end{pmatrix}$$
(29)

For example, commutator of K_x , K_y follows next relation.

$$[K_x, K_y] = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = -iJ_z \quad (\text{4D representation})$$
(30)

So, pure Lorentz boost can't form a group \Rightarrow They need rotation to form a group. We can obtain next commutation relation for J, K.

$$[J_i, J_j] = i\epsilon_{ijk}J_k, \ [J_i, K_j] = i\epsilon_{ijk}K_k, \ [K_i, K_j] = -i\epsilon_{ijk}J_k \tag{31}$$

So, there are 3 Boost, 3 Rotation generators forming group. And we call this group as **Lorentz Group**.

Now, consider next two new generators.

$$A = \frac{1}{2}(J + iK), \quad B = \frac{1}{2}(J - iK) \tag{32}$$

Then we can find the commutation relation.

$$[A_i, A_j] = i\epsilon_{ijk}A_k, \quad [B_i, B_j] = i\epsilon_{ijk}B_k, \quad [A_i, B_j] = 0$$
(33)

So, A, B obey SU(2) algebra. Thus the Lorentz group is isomorphic to SU(2) \otimes SU(2). Therefore we can label the angular momentum of Lorentz group as $(2j_+ + 1, 2j_- + 1)$

4. Decomposition of Lorentz tensors under SO(3)

Let j be the angular momentum of tensor representation of SO(3). For j, dimension of the representation is 2j + 1. (j is integer) Then let notice some representations which have different angular momentum.

- j = 0: dim = $0 \rightarrow \text{Scalar}$
- j = 1: dim = 3 \rightarrow Spartial vector

For convenience, let ϕ be a scalar then we describe this as $\phi \in \mathbf{0}$. Also, let V^i be a spartial vector then we describe it as $V^i \in \mathbf{1}$.

Now, consider 4-vector. $x^{\mu}=(x^0,x^i)$ where $x^0 \in \mathbf{0}$, $x^i \in \mathbf{1}$. Thus, we write this as $x^{\mu} \in \mathbf{0} \oplus \mathbf{1}$. Then let consider the angular momentum of generic tensor $T^{\mu\nu}$.

$$T^{\mu\nu} \in (\mathbf{0} \oplus \mathbf{1}) \otimes (\mathbf{0} \oplus \mathbf{1}) = (\mathbf{0} \otimes \mathbf{0}) \oplus (\mathbf{0} \otimes \mathbf{1}) \oplus (\mathbf{1} \otimes \mathbf{0}) \oplus (\mathbf{1} \otimes \mathbf{1}) = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{1} \oplus (\mathbf{0} \oplus \mathbf{1} \oplus \mathbf{2})^{1}$$
(34)

This result means, the generic tensor $T^{\mu\nu}$ can be decomposed by 1 scalar, 2 spartial vectors and the tensor which has 9 degrees of freedom. (dimension of $\mathbf{0} \oplus \mathbf{1} \oplus \mathbf{2}$ is 1+3+5=9). And it's easy to find what kinds of these elements are - trace, anti-symmetric tensor $(A^{\mu\nu})$ and traceless symmetric tensor $(S^{\mu\nu})$.

- $tr(T) \in \mathbf{0}$
- $A^{\mu\nu}$: six components. $A^{0i}, \frac{1}{2}\epsilon_{ijk}A^{jk}$ are spartial vectors. $\Rightarrow A^{\mu\nu} \in \mathbf{1} \oplus \mathbf{1}$
- $S^{\mu\nu}$: dimension of $S^{\mu\nu}$ is (4-1)+6=9 (4 is diagonal, -1 is traceless, 6 is symmetric components)

Therefore we can decompose the second rank generic tensor as trace, anti-symmetric tensor and traceless symmetric tensor.

* How to represent spinor as above notation?

: we know SU(2) has same algebra with SO(3).² So, spinor also has angular momentum j but it is half integer. For $j = \frac{1}{2}$, dimension is 2 and $J^i = \frac{\sigma^i}{2}$ where σ^i is pauli matrices.

Since $\frac{1}{2} \otimes \mathbf{0} = \mathbf{0} \otimes \frac{1}{2} = \frac{1}{2}$, $\frac{1}{2} \otimes \frac{1}{2} = \mathbf{0} \oplus \mathbf{1}$, we can find $SU(2) \otimes SU(2) = SO(1,3)$.

¹For (j_1, j_2) , we can obtain total angular momentum by counting angular momentums between $|j_1 - j_2|$, $j_1 + j_2$. For example, $\mathbf{0} \otimes \mathbf{0} = 0$, $\mathbf{0} \otimes \mathbf{1} = 1$, $\mathbf{1} \otimes \mathbf{1} = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{2}$

²We explain this issue at appendix A

5. Lorentz Algebra

1) Scalar Representation

Since $\vec{L} = \vec{x} \times \vec{p}$, for Quantum mechanically, we can write $L^{ij} = -i(x^i \nabla^j - x^j \nabla^i)$. Then for spacetime, we can write $L^{\mu\nu} = i(x^\mu \partial^\nu - x^\nu \partial^\mu)$. We call it as scalar representation of Lorentz group. Trivially, $L^{\mu\nu}$ is antisymmetric. So, there are 6 degrees of freedom: $L^{0i} = \text{boost}$, $L^{ij} = \text{rotation}$. And we can find next commutation relation.

$$[L^{\mu\nu}, L^{\rho\sigma}] = -i(\eta^{\mu\rho}L^{\nu\sigma} - \eta^{\mu\sigma}L^{\nu\rho} - \eta^{\nu\rho}L^{\mu\sigma} + \eta^{\nu\sigma}L^{\mu\rho})$$
(35)

We call it as commutation rule of Lorentz algebra. Then any matrices that are represent this algebra must obey same commutation rules.

2) Vector Representation

Consider $(\mathcal{J}^{\mu\nu})^{\alpha}_{\ \beta} = i(\eta^{\mu\alpha}\delta^{\nu}_{\beta} - \eta^{\nu\alpha}\delta^{\mu}_{\beta})$. Then we can check $\mathcal{J}^{\mu\nu}$ also satisfies the commutation rule of Lorentz algebra. So, $\mathcal{J}^{\mu\nu}$ are also representations of Lorentz group. We call it as the vector representation of Lorentz group. Because we wrote the Lorentz transform of 4-vector as

$$V^{\alpha} \rightarrow \left(\delta^{\alpha}_{\beta} - \frac{i}{2}\omega_{\mu\nu} \left(\mathcal{J}^{\mu\nu}\right)^{\alpha}_{\beta}\right) V^{\beta} \equiv \Lambda^{\alpha}_{\beta} V^{\beta} \tag{36}$$

where $\omega_{\mu\nu}$ is anti-symmetric variable. And we can find \mathcal{J}^{0i} are boosts and \mathcal{J}^{ij} are rotations where $\omega_{0i} = \beta$, $\omega_{ij} = \theta$. (It's easy to find. If you have some troubles to deal this, then see Peskin & Schroeder.)

3) Spinor Representation

Consider $S^{\mu\nu}=\frac{i}{4}\left[\gamma^{\mu},\gamma^{\nu}\right]$ where $\left\{\gamma^{\mu},\gamma^{\nu}\right\}=2g^{\mu\nu}$. Then it is also generator of Lorentz group. Thus, $1-\frac{i}{2}\omega_{\rho\sigma}S^{\rho\sigma}$ is also representation of Lorentz transform. We call it **Spinor Representation** and denote it by $\Lambda_{\frac{1}{6}}$.

We can find next relations:

• Boost:
$$S^{0j} = \frac{i}{4} \left[\gamma^0, \gamma^i \right] = -\frac{i}{2} \begin{pmatrix} \sigma^i & 0 \\ 0 & -\sigma^i \end{pmatrix}$$

• Rotation :
$$S^{ij} = \frac{i}{4} \begin{bmatrix} \gamma^i, \gamma^j \end{bmatrix} = \frac{1}{2} \epsilon^{ijk} \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix} \equiv \frac{1}{2} \epsilon^{ijk} \Sigma^k$$

⁰All proofs of commutation relation of representations are noted at appendix.

 $^{^{1}\}mu, \nu$ represent 6 matrices and α, β represent components

A SU(2) & O(3)

Consider two component spinor $\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$ which is transformed by $U = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$, $|a|^2 + |b|^2 = 1$.

Since $\xi \to U\xi$, $\xi^{\dagger} \to \xi^{\dagger}U^{\dagger}$, we can find $\xi^{\dagger}\xi = |\xi_1|^2 + |\xi_2|^2$ is invariant under U. Now, consider transformation of this spinor by specific components.

$$\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \rightarrow \begin{pmatrix} \xi_1' \\ \xi_2' \end{pmatrix} = \begin{pmatrix} a\xi_1 + b\xi_2 \\ -b^*\xi_1 + a^*\xi_2 \end{pmatrix}, \quad \begin{pmatrix} \xi_1^{*'} & \xi_2^{*'} \end{pmatrix} = \begin{pmatrix} \xi_1^* & \xi_2^* \end{pmatrix} \begin{pmatrix} a^* & -b \\ b^* & a \end{pmatrix} = \begin{pmatrix} a^*\xi_1^* + b^*\xi_2^* & -b\xi_1^* + a\xi_2^* \end{pmatrix}
\Rightarrow \begin{pmatrix} \xi_1^{*'} \\ \xi_2^{*'} \end{pmatrix} = \begin{pmatrix} a^* & b^* \\ -b & a \end{pmatrix} \begin{pmatrix} \xi_1^* \\ \xi_2^* \end{pmatrix} \Rightarrow \begin{pmatrix} -\xi_2^{*'} \\ \xi_1^{*'} \end{pmatrix} = U \begin{pmatrix} -\xi_2^* \\ \xi_1^* \end{pmatrix}$$
(37)

Thus, $\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$, $\tilde{\xi} = \begin{pmatrix} -\xi_2^* \\ \xi_1^* \end{pmatrix}$ are states which are transformed by U.¹ So, we can guess there is some relationship between ξ and $\tilde{\xi}$. We denote it \sim . Then now consider ξ^{\dagger} .

$$\xi^{\dagger} \sim \left(\tilde{\xi}\right)^{\dagger} = \begin{pmatrix} -\xi_2 & \xi_1 \end{pmatrix} \Rightarrow \xi \xi^{\dagger} \sim \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \begin{pmatrix} -\xi_2 & \xi_1 \end{pmatrix} = \begin{pmatrix} -\xi_1 \xi_2 & \xi_1^2 \\ -\xi_2^2 & \xi_2 \xi_1 \end{pmatrix} \equiv h \tag{38}$$

We know $\xi \xi^{\dagger} \to U \xi \xi^{\dagger} U^{\dagger} \Rightarrow h \to U h U^{\dagger}$, thus, we can find det $h = \det h'$. Let $h = \vec{\sigma} \cdot \vec{r}$ where $\vec{r} = (x, y, z)$, $\vec{\sigma}$ are pauli matrices. ² Then

$$h = \begin{pmatrix} z & x - iy \\ x + iy & -z \end{pmatrix} \Rightarrow z = -\xi_1 \xi_2, \ x = \frac{1}{2} \left(\xi_1^2 - \xi_2^2 \right), \ y = \frac{-1}{2i} \left(\xi_1^2 + \xi_2^2 \right)$$
(39)

We know det h is invariant under this transformation, thus, det $h = -(x^2 + y^2 + z^2)$ is invariant. \Rightarrow O(3) Transform!

$$\therefore \text{ An SU(2) transformation on } \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \text{O(3) transformation on } \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\therefore U(\eta) = e^{-i\vec{\eta} \cdot \frac{\vec{\sigma}}{2}} \iff R(\theta) = e^{-i\vec{\theta} \cdot \vec{J}} \tag{40}$$

Therefore we can conclude the rotation generator of spinor is $\vec{J} = \frac{\vec{\sigma}}{2}$.

¹This procedure is called as Flip Spin $\tilde{\xi} = -i\sigma_2 \xi^*$

²It is position vector in SU(2)

$\mathrm{SL}(2,\,\mathbb{C})$ \mathbf{B}

Consider the next transform for $X = x_{\mu}\sigma^{\mu}$ ($\sigma^{\mu} = (1, \vec{\sigma})$):

$$X \to X' = SXS^{\dagger} \tag{41}$$

If $S \in SL(2,\mathbb{C})$, then this transform describes the Lorentz transformation.

Proof:

The definition of $SL(2,\mathbb{C})$ is $\forall A \in SL(2,\mathbb{C}), A_{ij} \in \mathbb{C} \& \det A = 1$. So, this transform preserves determinant (Symmetric Transform). Then let consider $\det X$.

$$X = x_{\mu}\sigma^{\mu} = x^{0} \cdot 1 - x^{1}\sigma^{1} - x^{2}\sigma^{2} - x^{3}\sigma^{3}$$
(42)

$$= x^{0} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - x^{1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - x^{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - x^{3} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(43)

$$= \begin{pmatrix} x^0 - x^3 & -x^1 - ix^2 \\ -x^1 + ix^2 & x^0 + x^3 \end{pmatrix}$$

$$\therefore \det X = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 = x^2$$
(45)

$$\therefore \det X = (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 = x^2$$
(45)

Since the transform preserves determinant, we can get next relation.

$$x^{\prime 2} = x^2 \tag{46}$$

which is same as Lorentz transform.

Now, let find matrix elements of Lorentz transform on this representation.

First, let's see next lemma

Lemma B.1 $x^{\mu} = \frac{1}{2}tr(\bar{\sigma}^{\mu}x_{\nu}\sigma^{\nu})$

