Analizador Sintáctico Descendiente

Jaime Sáez de Buruaga Brouns Julia Miguélez Fernández-Villacañas

1. Especificación mediante gramática incontextual

TABLA DE OPERADORES:

Operador	Tipo	Prioridad	Asociatividad
+	Binario infijo	0	Asociativo a izquierdas
-	Binario infijo	0	Asociativo a izquierdas
and	Binario infijo	1	Asociativo a derechas
or	Binario infijo	1	No asocia
>	Binario infijo	2	No asocia
<	Binario infijo	2	No asocia
>=	Binario infijo	2	No asocia
<=	Binario infijo	2	No asocia
<i>!=</i>	Binario infijo	2	No asocia
==	Binario infijo	2	No asocia
*	Binario infijo	3	Asociativo a izquierdas
/	Binario infijo	3	Asociativo a izquierdas
-	Uniario prefijo	4	Asocia
not	Uniario prefijo	4	No asocia

```
NOTA: ¿ID, REAL, ENT quedan dentro o fuera de la definición de la gramática?
```

```
ID
                = LET [ LET | DIG | _ ]*
        LET = [a | A | b | B | ... | z | Z]
        DIG = [0 | 1 | ... | 9]
       REAL = [+ | - | \varepsilon] [ ENTDEC | ENTEXP | ENTDECEXP ]
        ENT = [+ | - | \varepsilon] POS (DIG)*
        POS = [1 | 2 | ... | 9]
        DEC = .ENT
        EXP
               = [e | E] ENT
G
        = (Vt, Vn, P, S)
       = [a..z, 0..9, _, int, real, bool, true, false, E, +, -, ., and, or, >, <, >=, <=, ==, !=, *, /,
Vt
not,;]
Vn
       = [S, Sd, Si, D, T, I, E0, E1, E2, E3, E4, E5, OP]
        = S
S
Ρ
        = {
        S
                \rightarrow Sd && Si,
       Sd
                \rightarrow D (; D)^*
        D
                \rightarrow T ID,
```

```
Τ
                  \rightarrow int | real | bool,
         Si
                  \rightarrow I(;I)^*
                  \rightarrow ID = E0,
         1
         E0
                  \rightarrow E0 + E1 | E0 - E1 | E1
         E1
                  \rightarrow E2 and E1 | E2 or E2 | E2
                  → E3 OP E3 | E3
         E2
                  \rightarrow E3 * E4 | E3 / E4 | E4
                  \rightarrow -E4 | not E5 | E5
         E4
         E5
                  \rightarrow (E0) | E0 | ID | REAL | ENT | true | false
         OP
                  → < | > | <= | >= | !=
}
```

2. Transformaciones necesarias para LL(1) equivalente.

a. Eliminación de recursión por la izquierda

```
G
          = (Vt, Vn, P, S)
Vt
          = [a..z, 0..9, _, int, real, bool, true, false, E, +, -, ., and, or, >, <, >=, <=, ==, !=, *, /,
not, ;]
          = [S, Sd, D, T, Si, I, E0, E0', E1, E2, E3, E3', E4, E5, OP]
Vn
S
          = S
Ρ
          = {
          S
                   \rightarrow Sd && Si,
          Sd
                   \rightarrow D \mid D; Sd,
          D
                   \rightarrow TID,
          Τ
                   \rightarrow int | real | bool,
          Si
                   \rightarrow 1 \mid 1; Si
          1
                   \rightarrow ID = E0,
                   \rightarrow E1 E0'
          E0
          E0'
                    \rightarrow + E1 E0' | - E1 E0' | \varepsilon
                   \rightarrow E2 and E1 | E2 or E2 | E2
          E2
                   \rightarrow E3 OP E3 | E3
          E3
                   → E4 E3'
          E3'
                  \rightarrow * E4 E3 | / E4 E3 | \varepsilon
                   \rightarrow -E4 | not E5 | E5
          E4
                   \rightarrow (E0) | E0 | ID | REAL | ENT | true | false
          E5
                   → < | > | <= | >= | !=
          OP
}
```

b. Eliminación de factores a la izquierda

```
= (Vt, Vn, P, S)
G
Vt
          = [a..z, 0..9, _, int, real, bool, true, false, E, +, -, ., and, or, >, <, >=, <=, ==, !=, *, /,
not, ;]
          = [S, Sd, D, DEC, T, Si, I, INS, E0, E0', E1, EE1, E2, EE2, E3, E3', E4, E5, OP]
Vn
          = S
S
Ρ
          = {
          S
                    \rightarrow Sd && Si,
          Sd
                    \rightarrow D \mid DEC
          D
                    \rightarrow TID,
                    \rightarrow \varepsilon | ; D DEC
          DEC
          Τ
                    \rightarrow int | real | bool,
          Si
                    \rightarrow 1 \mid 1 \text{ INS}
                    \rightarrow ID = E0,
          INS
                    \rightarrow \varepsilon | ; I SINS
                    \rightarrow E1 E0'
          E0
          EO'
                    \rightarrow + E1 E0' | - E1 E0' | \varepsilon
                    \rightarrow E2 EE1
          EE1
                    \rightarrow and E1 | or E2 | \varepsilon
                    → E3 EE2
          E2
                    → OP E3 | E3
          EE2
                   → E4 E3'
          E3
                   \rightarrow * E4 E3 | / E4 E3 | \varepsilon
          E4
                   \rightarrow -E4 | not E5 | E5
                   \rightarrow (E0) | E0 | ID | REAL | ENT | true | false
          E5
                    → < | > | <= | >= | == | !=
}
```

3. No terminales: primeros y salientes

Productor	Primeros	Siguientes
S	int, real, bool	Ø
Sd	int, real, bool	&&
D	int, real, bool	;, &&
DEC	;	&&
T	int, real, bool	ID
Si	ID	Ø
1	ID	;
INS	;	Ø

EO	-, not, (, ID, REAL, ENT,), ;
	true, false	
E0'	+, -),;
E1	-, not, (, ID, REAL, ENT,), +, -, ;
	true, false	
EE1	and, or), +, -, ;
E2	-, not, (, ID, REAL, ENT,	and, or,), +, -, ;
	true, false	
EE2	<, >, <=, >=, !=, ==	and, or,), +, -, ;
E3	-, not, (, ID, REAL, ENT,), >, <, >=, <=, !=, ==, and,
	true, false	or, +, -, ;
E3'	*,/), >, <, >=, <=, !=, ==, and,
		or, +, -, ;
E4	-, not, (, ID, REAL, ENT,), *, /, <, >, <=, >=, !=, ==,
	true, false	and, or, +, -, ;
E5	(, ID, REAL, ENT, true, false), *, /, <, >, <=, >=, !=, ==,
		and, or, +, -, ;
OP	<, >, <=, >=, ==, !=	-, not, (, ID, REAL, ENT,
		true, false

4. Reglas: directores

Productor	Directores
S → Sd && Si	int, real, bool
Sd → D DEC	int, real, bool
$D \rightarrow T ID$	int, real, bool
DEC ightarrow arepsilon	&&
$DEC \rightarrow ; D DEC$	int, real, bool
$T \rightarrow int$	ID
$T \rightarrow real$	ID
$T \rightarrow bool$	ID
<i>I</i> → <i>ID</i> = <i>E0</i>	;
$INS \rightarrow \varepsilon$	-
INS → ; I INS	;
E0 → E1 E0'	-, not, (, ID, INT, REAL, true, false
E0' → + E1 E0'	+
E0' → - E1 E0'	-
E0′ → ε), -, ;
E1 → E2 EE1	-, not, (, ID, INT, REAL, true, false
EE1 $→$ and E1	and
EE1 → or E2	or

$EE1 ightarrow \varepsilon$	+, -,), -, ;
E2 → E3 EE2	-, not, (, ID, INT, REAL, true, false
EE2 → OP E3	<, >, <=, >=, !=
$EE2 \rightarrow \varepsilon$	and, or, +, -,), -, ;
E3 → E4 E3'	-, not, (, INT, REAL, true, false
E3' → * E4 E3'	*
E3' → / E4 E3'	/
<i>E3′</i> → ε	<, >, <=, >=, !=, and, or, +, -,), -, ;, not,
	(, ID, INT, REAL, true, false
E4 → - E4	-
E4 → not E5	not
E4 → E5	(, ID, INT, REAL, true, false
E5 → (E0)	(
E5 → ID	ID
E5 → REAL	REAL
E5 → ENT	ENT
E5 → true	True
E5 → false	False
<i>OP</i> → <	<
$OP \rightarrow >$	>
<i>OP</i> → <=	<=
<i>OP</i> → >=	>=
<i>OP</i> → ==	==
<i>OP</i> → !=	!=