Ecole Centrale de Nantes

NOLCO Lab

April 2018

System definition. Consider the following nonlinear system, which is based on the model of PVTOL [1]

$$\ddot{x} = -\sin(\theta)u_1 + \varepsilon\cos(\theta)u_2
\ddot{z} = \cos(\theta)u_1 + \varepsilon\sin(\theta)u_2 - 1
\ddot{\theta} = u_2$$
(1)

One assumes that the parameter is small, $\varepsilon = 10^{-3}$.

1. Supposing that the outputs which must be stabilized at 0 are defined as x and z,

$$y_1 = x, \ y_2 = z$$

design a control law allowing to decouple and to linearize, by an input-output point-of-view, the nominal system (without perturbation neither uncertainties). What are the relative degrees? Conclusion on the presence (or not) of internal dynamics? Note that the control law u will read as

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = a(x,z) + b(x,z) \cdot w, \tag{2}$$

with the "new" control input w being designed as a linear state feedback¹

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -k_{11}\dot{y}_1 - k_{12}y_1 \\ -k_{21}\dot{y}_2 - k_{22}y_2 \end{bmatrix}.$$
 (3)

The linear controller is tuned in order to have, for the linear representation (second order system), a damping coefficient equal to 1 and a "sufficiently" fast response. Simulate the closed-loop system under Simulink (take care for the selection of integration algorithm and the step size). Plot Figures with

- coordinates x and z versus time,
- angle θ versus time,
- control inputs u_1 and u_2 .

¹Note that $\dot{y}_1 = \dot{x}$ and $\dot{y}_2 = \dot{z}$.

Conclusions. Comment the behavior of the internal dynamics. Is it possible to prove its (un)stability?

2. Consider now the previous system with $\varepsilon = 0$; furthermore, suppose that some uncertainties can appear on θ -dynamics through the time varying function $\delta(t)$. The dynamics of the system reads now as

$$\ddot{x} = -u_1 \sin(\theta)
\ddot{z} = u_1 \cos(\theta) - 1
\ddot{\theta} = u_2 + \delta(t)$$
(4)

Consider firstly $\delta(t) = 0$. By stating $y_1 = x$ and $y_2 = z$, prove that the previous system can be written as

$$\begin{bmatrix} \ddot{y}_1 \\ \ddot{y}_2 \end{bmatrix} = \alpha + \beta u \tag{5}$$

Analyze the structure of the matrix β . Conclusion.

Due to the previous analysis, it is necessary to use a dynamical state feedback controller, which implies that one need to consider that u_1 and \dot{u}_1 have to be viewed as new state variables. Then, from the system (4), derive a new state system and show that one gets the following input-output representation (with $u_* = [\ddot{u}_1 \ u_2]^T$)

$$\begin{bmatrix} y_1^{(4)} \\ y_2^{(4)} \end{bmatrix} = \alpha_* + \beta_* \cdot u_* \tag{6}$$

Simulate the closed-loop system under Simulink with NO uncertainties. Plot Figures with

- coordinates x and z versus time,
- angle θ versus time,
- control inputs u_1 and u_2 .

Conclusions. Add now the terms $\delta(t) = 200$, then $\delta(t) = 200 \sin(t)$ only in the model, the control law being the same. Conclusions. What would be the solution to improve the performance of the closed loop system?

3. From the previous simulations, it is clear that the used controller is not robust. A solution is to increase the robustness by using specific methodology as **sliding mode control** [2, 3]. Detail the design methodology (sliding variable definition,

gain evaluation, ...). Simulate the closed-loop system under Simulink. Conclusions.

4. One consider now the control law based on adaptive sliding mode theory. The objective consists in using a dynamical gain which will be adapted, *online*, with respect to the establishment (or not) of a sliding motion. A very recent solution [4] reads as $(i \in \{1,2\}, \sigma_i)$ being the sliding variable)

$$w_i = -K_i \cdot \operatorname{sign}(\sigma_i) \tag{7}$$

with the gain $K_i(t)$ defined such that

$$\dot{K}_{i} = \begin{cases} \bar{K} \cdot |\sigma_{i}| \cdot \operatorname{sign}(|\sigma_{i}| - \mu_{i}) & \text{if } K_{i} > \eta_{i} \\ \eta_{i} & \text{if } K_{i} \leq \eta_{i} \end{cases}$$
(8)

with $K_i(0) > 0$, $\bar{K}_i > 0$, $\eta_i > 0$ and $\mu_i > 0$ very small. The parameter η_i is introduced in order to get only positive values for K_i . In the sequel, for discussion and proof, and without loss of generality but for a sake of clarity, one supposes that $K_i(t) > \eta_i$ for all t > 0.

- **4.1** Analyze the control algorithm (how does it work ?). In particular, what is the role of the parameter μ_i ?
- **4.2** Tune by simulation the different parameters, the objective being to obtain accuracy, robustness and stability. Plot the gain; conclusion.
- **4.3** What would be the "best" tuning for μ_i (please justify the answer)? Does it work when applied on the simulator? Show that there exists a minimal value for μ_i , this minimal value depending on K_i and the sampling period?

References

- [1] Hauser, J.E., "Approximate tracking for nonlinear systems with applications to flight control", Memorandum no. UCB/ERL/M89/99, Electronics Research Laboratory, University of Berkeley, p.79-107, 1989.
- [2] V.I. Utkin, Sliding mode in control and optimization, Springer, 1992.
- [3] V.I. Utkin, J. Guldner, and J. Shi, Sliding mode in control in electromechanical systems, Taylor & Francis, 1999.
- [4] F. Plestan, Y. Shtessel, V. Brégeault, and A. Poznyak, "New methodologies for adaptive sliding mode control", *International Journal of Control*, Vol.83, No.9, pp.1907-1919, 2010.