EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb–Pb collisions at $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$

The ALICE Collaboration*

Abstract

The yield of charged particles associated with high- p_t trigger particles (8 < p_t < 15 GeV/c) is measured with the ALICE detector in Pb–Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta $p_t > 3$ GeV/c on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.

^{*}See Appendix A for the list of collaboration members

1 Introduction

Ultra-relativistic heavy ion-collisions produce the quark–gluon plasma (QGP), the deconfined state of quarks and gluons, and are used to explore its properties. In the last decade, important information about the dynamical behavior of the QGP has been obtained from the study of hadron jets, the fragmentation products of high transverse momentum (p_t) partons that are produced in initial hard scatterings of partons from the incoming nuclei [1, 2]. It is generally accepted that prior to hadronization, partons lose energy in the high color-density medium due to gluon radiation and multiple collisions. These phenomena are broadly known as jet quenching [3].

The energy loss was first observed at the Relativistic Heavy Ion Collider (RHIC) in Au–Au collisions at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{GeV}$ as a suppression of hadron yields with respect to the reference from pp collisions at high p_{t} (3-6 GeV/c) [4, 5]. At RHIC, distributions in relative azimuth $\Delta \varphi = \varphi_{\mathrm{trig}} - \varphi_{\mathrm{assoc}}$ between associated particles with transverse momenta $p_{\mathrm{t,assoc}}$ and trigger particles with $p_{\mathrm{t,trig}}$ have been measured. These studies indicate that the peak shapes from high- p_{t} ($p_{\mathrm{t,trig}}>4\,\mathrm{GeV/}c$ and $2\,\mathrm{GeV/}c < p_{\mathrm{t,assoc}} < p_{\mathrm{t,trig}}$) di-hadron correlations in central Au–Au collisions are similar to those in small systems like pp and d–Au [6, 7], where correlations are dominated by jet fragmentation. The near-side peak at $\Delta \varphi = 0$ is comparable in magnitude between all collision systems, while the away-side peak at $\Delta \varphi = \pi$ is strongly suppressed. In central Au–Au collisions at $\sqrt{s_{\mathrm{NN}}} = 200\,\mathrm{GeV}$, the suppression amounts to a factor of 3-5 in the range $0.35 < p_{\mathrm{t,assoc}}/p_{\mathrm{t,trig}} < 0.95$ for $8 < p_{\mathrm{t,trig}} < 15\,\mathrm{GeV/}c$ and $p_{\mathrm{t,assoc}} > 3\,\mathrm{GeV/}c$ [8].

At the LHC, the suppression of charged hadrons in central Pb–Pb collisions at $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$ increases and the nuclear modification factor $R_{\rm AA}$ drops to 0.14 around $7\,{\rm GeV/}c$ [9]. Furthermore, a strong di-jet energy asymmetry has been reported by the ATLAS and CMS collaborations [10, 11]. A detailed study of the overall momentum balance in the di-jet events shows evidence for sizable low- $p_{\rm t}$ radiation outside the cone of the subleading jet [11]. These analyses use full event-by-event reconstruction of di-jets for leading jet transverse momenta above $100\,{\rm GeV/}c$. At lower transverse momenta $(p_{\rm t,jet}<50\,{\rm GeV/}c)$ background fluctuations due to the underlying event dominate [12] and event-by-event jet reconstruction becomes difficult. Hence, di-hadron correlations are an interesting alternative probe. Measurements of di-hadron correlations in central Pb–Pb collisions compared to PYTHIA 8 [13] pp simulations have been presented in [14].

The extraction of the particle yield associated with a jet requires the removal of correlated background primarily of collective origin (e.g., flow) at lower p_t . This is non-trivial and, therefore, we concentrate in this letter on a regime where jet-like correlations dominate over collective effects: $8 < p_{t,trig} < 15 \,\text{GeV}/c$ for the trigger particle and $p_{t,assoc} > 3 \,\text{GeV}/c$ for the associated particle [15]. We present ratios of yields of central to peripheral collisions (I_{CP}) and, for different centralities, of Pb–Pb to pp collisions (I_{AA}). I_{AA} probes the interplay between the parton production spectrum, the relative importance of quark–quark, gluon–gluon and quark–gluon final states, and energy loss in the medium. On the near-side, I_{AA} provides information about the fragmenting jet leaving the medium, while on the away-side it additionally reflects the probability that the recoiling parton survives the passage through the medium. The sensitivity of I_{AA} and R_{AA} to different properties of the medium makes the combination particularly effective in constraining jet quenching models [16, 17].

2 Detector, Data Sets and Analysis

The ALICE detector is described in detail in [18]. The Inner Tracking System (ITS) and the Time Projection Chamber (TPC) are used for vertex finding and tracking. The collision centrality is determined with the forward scintillators (VZERO) as well as for the estimation of the systematic uncertainty with the first two layers of the ITS (Silicon Pixel Detector, SPD) and the Zero Degree Calorimeters (ZDCs). Details can be found in [19]. The main tracking detector is the TPC which allows reconstruction of good-quality tracks with a pseudorapidity coverage of $|\eta| < 1.0$ uniform in azimuth. The reconstructed

Fig. 1: Corrected per-trigger pair yield for $4 < p_{t,assoc} < 6 \text{GeV}/c$ for central Pb–Pb events (histogram), peripheral Pb–Pb events (red circles) and pp events (blue squares). a) azimuthal correlation; b) zoom on the region where the pedestal values (horizontal lines) and the v_2 component ($\cos 2\Delta \varphi$) are indicated. Solid lines are used in the yield extraction while the dashed lines are used for the estimation of the uncertainty of the pedestal calculation; c) background-subtracted distributions using the flat pedestal. Error bars indicate statistical uncertainties only.

vertex is used to select primary track candidates and to constrain the p_t of the track.

In this analysis 14 million minimum-bias Pb–Pb events recorded in fall 2010 at $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$ as well as 37 million pp events from March 2011 ($\sqrt{s}=2.76\,{\rm TeV}$) are used. These include only events where the TPC was fully efficient to ensure uniform azimuthal acceptance. Events are accepted which have a reconstructed vertex less than 7 cm from the nominal interaction point in beam direction. Tracks are selected by requiring at least 70 (out of up to 159) associated clusters in the TPC, and a χ^2 per space point of the momentum fit smaller than 4 (with 2 degrees of freedom per space point). In addition, tracks are required to originate from within 2.4 cm (3.2 cm) in transverse (longitudinal) distance from the primary vertex.

For the measurement of $I_{\rm AA}$ and $I_{\rm CP}$ the yield of associated particles per trigger particle is studied as a function of the azimuthal angle difference $\Delta \varphi$. This distribution is given by $1/N_{\rm trig} \, {\rm d}N_{\rm assoc}/{\rm d}\Delta \varphi$ where $N_{\rm trig}$ is the number of trigger particles and $N_{\rm assoc}$ is the number of associated particles. We measure this quantity for all pairs of particles where $p_{\rm t,assoc} < p_{\rm t,trig}$ within $|\eta| < 1.0$ as a function of $p_{\rm t,assoc}$. Pair acceptance corrections have been evaluated with a mixed-event technique but found to be negligible for the yield ratios due to the constant acceptance in φ and the same detector conditions for the different data sets.

Corrections for detector efficiency (17-18% depending on collision system, p_t and centrality) and contamination (4-8%) by secondary particles from particle–material interactions, γ conversions and weak-decay products of long-lived particles are applied for trigger and associated particles, separately. Addi-

tional secondary particles correlated with the trigger particle are found close to $\Delta \varphi = 0$ in particular due to decays and γ conversions. We correct for this contribution (2-4%). These corrections are evaluated with the Hijing 1.36 [20] Monte Carlo (MC) generator which was tuned to reproduce the measured multiplicity density [19] for Pb–Pb and the PYTHIA 6 [21] MC with tune Perugia-0 [22] for pp using in both cases a detector simulation based on GEANT3 [23]. MC simulations underestimate the number of secondary particles. Therefore, we study the distribution of the distance of closest approach between tracks and the event vertex. The tail of this distribution is dominantly populated by secondary particles and the comparison of data and MC shows that the secondary yield in MC needs to be increased by about 10% (depending on p_t). An MC study shows that effects of the event selection and vertex reconstruction are negligible for the extracted observables. The correction procedure was validated by comparing corrected simulated events with the MC truth.

Figure 1a shows a typical distribution of the corrected per-trigger pair yield before background subtraction. The fact that the $\Delta \varphi$ distribution is flat outside the near- and away-side region gives us confidence that the background can be estimated with the zero yield at minimum (ZYAM) assumption [24]. This procedure estimates the pedestal value by fitting the flat region close to the minimum of the $\Delta \varphi$ distribution ($|\Delta \varphi - \pi/2| < 0.4$) with a constant. The validity of the ZYAM assumption has been questioned in cases where collective effects dominate [25, 26]; however, for the high- p_t correlations of this analysis, the narrow width and large amplitude of the correlated signal compared to the flow modulation drastically reduce the ZYAM bias. Therefore, we define the integrated associated yield as the signal over a flat background. Figure 1b illustrates the background determination. Also indicated is a background shape accounting for elliptic flow v_2 , the second coefficient of the particle azimuthal distribution measured with respect to the reaction plane. It is given by $2v_{2,\text{trig}}v_{2,\text{assoc}}\cos2\Delta\varphi$ where $v_{2,\text{trig}}$ ($v_{2,\text{assoc}}$) is the elliptic flow of the trigger (associated) particles. The v_2 values are taken from an independent measurement [27] of v_2 up to $p_t = 5 \,\mathrm{GeV}/c$. As an upper limit we use the measured v_2 for $p_t = 5 \,\mathrm{GeV}/c$ also for larger p_t where v_2 is expected to decrease. For the centrality class 60-90% no v_2 measurement is available, therefore, as an upper limit, v_2 is taken from the 40-50% centrality class. Since v_2 decreases from mid-central to peripheral collisions and the flat pedestal assumes $v_2 = 0$, this includes all reasonable values of v_2 .

Contributions from $\Delta\eta$ -independent correlations (e.g., due to flow harmonics at all orders) can also be removed on the near-side (where the jet peak is centered around $\Delta\eta\approx0$) by calculating the per-trigger pair yield in the region $|\Delta\eta|<1$ and subtracting the contribution from $1<|\Delta\eta|<2$ normalized for the acceptance. This prescription, which we call the η -gap method, provides a measurement independent of the flow strength.

In Fig. 1c the flat-pedestal subtracted distributions of central and peripheral Pb–Pb collisions are compared to that of pp collisions. The integral over those distributions in the region where the signal is significantly above the background, i.e., within $\Delta \varphi$ of ± 0.7 and $\pi \pm 0.7$ results in the near- and away-side yields per trigger particle (Y), respectively. This procedure samples the same fraction of the signal in Pb–Pb and pp collisions, since in the p_t -range used for this study the width of the peaks is similar for both systems. The yields are used to compute the ratio $I_{\text{AA}} = Y_{\text{Pb-Pb}}/Y_{\text{pp}}$ where $Y_{\text{Pb-Pb}}$ (Y_{pp}) is the yield in Pb–Pb (pp) collisions and the ratio $I_{\text{CP}} = Y_{0-5\%}/Y_{60-90\%}$ where $Y_{0-5\%}$ ($Y_{60-90\%}$) is the yield in central (peripheral) Pb–Pb collisions.

Systematic Uncertainties The uncertainty from the pedestal determination has been estimated by comparing different pedestal evaluation strategies (see Fig. 1b). The constant-fit region has been shifted and an average of the 8 (out of 36) lowest $\Delta \varphi$ points has been used. The integration window for the near- and away-side has been varied between ± 0.5 and ± 0.9 . The effect of detector efficiency and track selection has been studied by systematically varying the track cuts. Track splitting and merging effects were assessed by studying the tracking performance as a function of the distance of closest approach of the track pairs in the detector volume. A bias due to the p_t resolution on the extracted yields was evaluated by folding the detector resolution with the extracted associated spectrum and found to be negligible.

Uncertainty	I_{AA}		I_{CP}			
	Near-S.	Away-S.	Near-S.	Away-S.		
Pedestal calculation	5%	5-20%	5%	20%		
Integration window	0	3%	0	3%		
Tracking efficiency	4%					
Two-track effects	< 1%					
Corrections	2%		1%			
Centrality selection	2%		3%			
Total	7%	8-21%	7%	21%		

Table 1: Systematic uncertainties evaluated separately for near-side and away-side. Ranges indicate different values for different centrality ranges: the smaller (larger) number is for peripheral (central) events.

The sensitivity of the corrections to details of the MC has been studied by varying the particle composition, the material budget and the MC generator (using AMPT [28] for Pb–Pb and PHOJET [29] for pp). Uncertainties in the centrality determination were evaluated by comparing results obtained with the different centrality estimates from the VZERO, the SPD and ZDCs. Table 1 lists the size of the different contributions to the systematic uncertainties for I_{AA} and I_{CP} as well as their sum in quadrature.

3 Results

Figure 2a shows the yield ratio I_{AA} for central (0-5% Pb–Pb/pp) and peripheral (60-90% Pb–Pb/pp) collisions using the three background subtraction schemes discussed. The fact that the only significant difference between the different background subtraction schemes is in the lowest bin of $p_{t,assoc}$ confirms the assumption of only a small bias due to flow anisotropies in this p_t region. The influence of higher flow harmonics [27] on the background shape can be explicitly estimated: including v_3 , v_4 and v_5 from [27] changes the extracted jet yield by less than 1%, except for the first bin in $p_{t,assoc}$ in the most central collisions where it is about 8%. This is consistent with the difference between the data points labeled v_2 bkg and η -gap where the latter includes flow at all orders. In central collisions, an away-side suppression ($I_{AA} \approx 0.6$) is observed which is evidence for in-medium energy loss. Moreover, there is an enhancement above unity of 20-30% on the near-side which has not been observed with any significance at lower collision energies at these momenta [8]. In peripheral collisions, both the near- and away-side I_{AA} measurements approach unity, as expected in the absence of significant medium effects.

Figure 2b shows the yield ratio I_{CP} . As for I_{AA} , the influence of the flow modulation is small and only significant in the lowest $p_{t,assoc}$ bin. I_{CP} is consistent with I_{AA} in central collisions with respect to the near-side enhancement and the away-side suppression.

Comparing this measurement and R_{AA} to models simultaneously will constrain energy-loss mechanisms and model parameters. Robust conclusions can only be drawn with a systematic comparison of multiple observables with calculations spanning the parameter space and cannot be done with current calculations (e.g. [30]). Such a study is beyond the scope of this letter.

Comparison to RHIC Similar measurements have been performed at RHIC. Although the same range in $p_{\rm t,trig}$ does not necessarily probe the same parton $p_{\rm t}$ region at different \sqrt{s} , we assess changes from RHIC to LHC in the following. The STAR measurement [8] (which includes only statistical uncertainties) of the near-side $I_{\rm AA}$ is consistent with unity, albeit with a large uncertainty (18-40%). On the away-side the result from STAR is about 50% lower than the results shown in Fig. 2. We also calculated $I_{\rm AA}$ for the 20% most central events to compare to PHENIX [7] (only v_2 -subtracted data on the away-side available). For $p_{\rm t,assoc} < 4\,{\rm GeV/}c$, the flow influence in this centrality interval is about 75%, too large to provide a reliable measurement. For $4 < p_{\rm t,assoc} < 10\,{\rm GeV/}c$, the v_2 -subtracted $I_{\rm AA}$ is $0.5 - 0.6 \pm 0.08$. This result is slightly larger than results from PHENIX in a similar $p_{\rm t,trig}$ -region of $7 < p_{\rm t,trig} < 9\,{\rm GeV/}c$:

Fig. 2: a) I_{AA} for central (0-5% Pb–Pb/pp, open black symbols) and peripheral (60-90% Pb–Pb/pp, filled red symbols) collisions and b) I_{CP} . Results using different background subtraction schemes are presented: using a flat pedestal (squares), using v_2 subtraction (diamonds) and subtracting the large $|\Delta\eta|$ -region (circles, only on the near-side). For details see text. For clarity, the data points are slightly displaced on the $p_{t,assoc}$ -axis. The shaded bands denote systematic uncertainties.

 0.31 ± 0.07 and 0.38 ± 0.11 for $p_{\rm t,assoc} \approx 3.5\,{\rm GeV}/c$ and $5.8\,{\rm GeV}/c$, respectively. Based on an analysis in a lower $p_{\rm t}$ -region, where collective effects are significantly larger than in the measurement presented here, the STAR collaboration mentions a slightly enhanced jet-like yield in Au–Au compared to d–Au collisions, but does not assess the effect quantitatively [31]. In conclusion, the observed away-side suppression at the LHC is less than at RHIC ($I_{\rm AA}$ is larger), while the single-hadron suppression $R_{\rm AA}$ is found to be slightly larger ($R_{\rm AA}$ is smaller) than at RHIC [9].

Near-Side Enhancement These measurements represent the first observation of a significant near-side enhancement of I_{AA} and I_{CP} in the p_t region studied. This enhancement suggests that the near-side parton is also subject to medium effects.

 I_{AA} is sensitive to (i) a change of the fragmentation function, (ii) a possible change of the quark/gluon jet

The ALICE Collaboration

ratio in the final state due to the different coupling to the medium and (iii) a bias on the parton p_t spectrum after energy loss due to the trigger particle selection. If the fragmentation function (FF) is softened in the medium, hadrons carry a smaller fraction of the initial parton momentum in Pb–Pb collisions as compared to pp collisions. Therefore, hadrons with a given p_t originate from a larger average parton momentum which may lead to more associated particles and $I_{AA} > 1$. An increased fraction of gluon (quark) jets has a similar effect than softening (hardening) of the FF and leads to $I_{AA} > 1$ (< 1).

A different parton distribution in pp and Pb–Pb collisions can modify I_{AA} even if fragmentation of a given parton after energy loss is unmodified. In particular, in the same transverse momentum region, we see a strong suppression of the trigger particles ($R_{AA} \approx 0.2$) and the rising slope of $R_{AA}(p_t)$ [9]. A similar suppression should apply to partons, leading to a parton distribution after energy loss which is biased towards higher parton p_t . Therefore, for a fixed trigger p_t , the mean parton p_t would be larger in Pb–Pb than in pp, leading to an increase in I_{AA} . This argument can be quantified with the hadron-pair suppression factor J_{AA} [32]. $J_{AA}(p_{t,trig},p_{t,assoc}) = R_{AA}(p_{t,trig})I_{AA}(p_{t,trig},p_{t,assoc})$ is approximately $R_{AA}(p_{t,trig}+p_{t,assoc})$ in this case, and with a rising R_{AA} leads to $I_{AA} > 1$.

It is likely that all three effects play a role, and following the above arguments, we note that the combined measurement of $R_{\rm AA}$ and $I_{\rm AA}$ is sensitive to the interplay of energy loss and the change of the fragmentation pattern in the medium.

In summary, the modification of the per-trigger yield of associated particles, I_{AA} and I_{CP} , has been extracted from di-hadron correlations in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. In central collisions, on the away-side, suppression ($I_{AA} \approx 0.6$) is observed as expected from strong in-medium energy loss. On the near-side, a significant enhancement ($I_{AA} \approx 1.2$) has been reported for the first time. Along with the measurement of R_{AA} , I_{AA} provides strong constraints on the quenching mechanism in the hot and dense matter produced.

4 Acknowledgements

The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex.

The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia;

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);

National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);

Ministry of Education and Youth of the Czech Republic;

Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;

The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland;

French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France;

German BMBF and the Helmholtz Association;

General Secretariat for Research and Technology, Ministry of Development, Greece;

Hungarian OTKA and National Office for Research and Technology (NKTH);

Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy;

MEXT Grant-in-Aid for Specially Promoted Research, Japan;

Joint Institute for Nuclear Research, Dubna;

National Research Foundation of Korea (NRF);

CONACYT, DGAPA, México, ALFA-EC and the HELEN Program (High-Energy physics Latin-American–European Network);

Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;

Research Council of Norway (NFR);

Polish Ministry of Science and Higher Education;

National Authority for Scientific Research - NASR (Autoritatea Naţională pentru Cercetare Ştiinţifică - ANCS);

Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS;

Ministry of Education of Slovakia;

Department of Science and Technology, South Africa;

CIEMAT, EELA, Ministerio de Educación y Ciencia of Spain, Xunta de Galicia (Consellería de Educación), CEADEN, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency);

Swedish Reseach Council (VR) and Knut & Alice Wallenberg Foundation (KAW);

Ukraine Ministry of Education and Science;

United Kingdom Science and Technology Facilities Council (STFC);

The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

References

- [1] D. d'Enterria, Springer Verlag. Landolt-Boernstein Vol. 1-23A, arXiv:0902.2011v2 [nucl-ex].
- [2] I. Arsene *et al.* [BRAHMS Collaboration], Nucl. Phys. A 757, 1 (2005); K. Adcox *et al.* [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005); B. B. Back *et al.*, Nucl. Phys. A 757, 28 (2005); J. Adams *et al.* [STAR Collaboration], Nucl. Phys. A 757, 102 (2005).
- [3] J. D. Bjorken, FERMILAB-PUB-82-059-THY (1982); M. Gyulassy and M. Plumer, Phys. Lett. **B243**, 432 (1990); X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. **68**, 1480 (1992);
- [4] K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 88, 022301 (2001).
- [5] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 89, 202301 (2002).
- [6] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 072304 (2003).
- [7] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. **104**, 252301 (2010).
- [8] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 97, 162301 (2006).
- [9] K. Aamodt *et al.* [ALICE Collaboration], Phys. Lett. **B696**, 30-39 (2011).
- [10] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. **105**, 252303 (2010).
- [11] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C84, 024906 (2011).
- [12] C. Klein-Boesing [ALICE Collaboration], J. Phys. G: Nucl. Part. Phys. 38 (2011) 124088.
- [13] T. Sjostrand, S. Mrenna and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008).
- [14] S. Chatrchyan *et al.* [CMS Collaboration], JHEP **07**, 076 (2011).
- [15] K. Aamodt *et al.* [ALICE Collaboration], arXiv:1109.2501 [nucl-ex].
- [16] H. Zhang, J. F. Owens, E. Wang and X. N. Wang, Phys. Rev. Lett. 98, 212301 (2007).
- [17] N. Armesto, M. Cacciari, T. Hirano, J. L. Nagle and C. A. Salgado, J. Phys. G 37, 025104 (2010).
- [18] K. Aamodt et al. [ALICE Collaboration], JINST 3, S08002 (2008).

- [19] K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 106, 032301 (2011).
- [20] X. N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991);
- [21] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
- [22] P. Z. Skands, Phys. Rev. D 82, 074018 (2010).
- [23] R. Brun et al., 1985 GEANT3 User Guide, CERN Data Handling Division DD/EE/841 and 1994 CERN Program Library Long Write-up, W5013, GEANT Detector Description and Simulation Tool.
- [24] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 082302 (2003).
- [25] M. Luzum, Phys. Lett. B 696, 499 (2011).
- [26] T. A. Trainor, Phys. Rev. C 81, 014905 (2010).
- [27] K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 107, 032301 (2011).
- [28] Z. W. Lin, C. M. Ko, B. A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901 (2005).
- [29] R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 52, 1459 (1995).
- [30] T. Renk, K. J. Eskola, [arXiv:1106.1740 [hep-ph]].
- [31] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C80, 064912 (2009).
- [32] A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 78, 014901 (2008).

A The ALICE Collaboration

```
K. Aamodt<sup>1</sup>, B. Abelev<sup>2</sup>, A. Abrahantes Quintana<sup>3</sup>, D. Adamová<sup>4</sup>, A.M. Adare<sup>5</sup>, M.M. Aggarwal<sup>6</sup>,
G. Aglieri Rinella<sup>7</sup>, A.G. Agocs<sup>8</sup>, A. Agostinelli<sup>9</sup>, S. Aguilar Salazar<sup>10</sup>, Z. Ahammed<sup>11</sup>, N. Ahmad<sup>12</sup>,
A. Ahmad Masoodi 12, S.U. Ahn 13, i, A. Akindinov 14, D. Aleksandrov 15, B. Alessandro 16, R. Alfaro Molina 10,
A. Alici<sup>17</sup>, ii, A. Alkin<sup>18</sup>, E. Almaráz Aviña<sup>10</sup>, J. Alme<sup>19</sup>, T. Alt<sup>20</sup>, V. Altini<sup>21</sup>, S. Altinpinar<sup>1</sup>, I. Altsybeev<sup>22</sup>,
C. Andrei<sup>23</sup>, A. Andronic<sup>24</sup>, V. Anguelov<sup>20</sup>, iii, J. Anielski<sup>25</sup>, T. Antičić<sup>26</sup>, F. Antinori<sup>27</sup>, P. Antonioli<sup>28</sup>, L. Aphecetche<sup>29</sup>, H. Appelshäuser<sup>30</sup>, N. Arbor<sup>31</sup>, S. Arcelli<sup>9</sup>, A. Arend<sup>30</sup>, N. Armesto<sup>32</sup>, R. Arnaldi<sup>16</sup>, T. Aronsson<sup>5</sup>, I.C. Arsene<sup>24</sup>, M. Arslandok<sup>30</sup>, A. Asryan<sup>22</sup>, A. Augustinus<sup>7</sup>, R. Averbeck<sup>24</sup>, T.C. Awes<sup>33</sup>,
J. Äystö<sup>34</sup>, M.D. Azmi<sup>12</sup>, M. Bach<sup>20</sup>, A. Badalà<sup>35</sup>, Y.W. Baek<sup>13</sup>, iv, R. Bailhache<sup>30</sup>, R. Bala<sup>16</sup>,
R. Baldini Ferroli<sup>17</sup>, A. Baldisseri<sup>36</sup>, A. Baldit<sup>37</sup>, F. Baltasar Dos Santos Pedrosa<sup>7</sup>, J. Bán<sup>38</sup>, R.C. Baral<sup>39</sup>,
R. Barbera<sup>40</sup>, F. Barile<sup>21</sup>, G.G. Barnaföldi<sup>8</sup>, L.S. Barnby<sup>41</sup>, V. Barret<sup>37</sup>, J. Bartke<sup>42</sup>, M. Basile<sup>9</sup>, N. Bastid<sup>37</sup>
B. Bathen<sup>25</sup>, G. Batigne<sup>29</sup>, B. Batyunya<sup>43</sup>, C. Baumann<sup>30</sup>, I.G. Bearden<sup>44</sup>, H. Beck<sup>30</sup>, I. Belikov<sup>45</sup>, F. Bellini<sup>9</sup>,
R. Bellwied<sup>46</sup>, E. Belmont-Moreno<sup>10</sup>, S. Beole<sup>47</sup>, I. Berceanu<sup>23</sup>, A. Bercuci<sup>23</sup>, Y. Berdnikov<sup>48</sup>, D. Berenyi<sup>8</sup>, C. Bergmann<sup>25</sup>, L. Betev<sup>7</sup>, A. Bhasin<sup>49</sup>, A.K. Bhati<sup>6</sup>, L. Bianchi<sup>47</sup>, N. Bianchi<sup>50</sup>, C. Bianchin<sup>51</sup>, J. Bielčík<sup>52</sup>, J. Bielčíková<sup>4</sup>, A. Bilandzic<sup>53</sup>, E. Biolcati<sup>47</sup>, F. Blanco<sup>54</sup>, F. Blanco<sup>46</sup>, D. Blau<sup>15</sup>, C. Blume<sup>30</sup>, N. Bock<sup>55</sup>, A. Bogdanov<sup>56</sup>, H. Bøggild<sup>44</sup>, M. Bogolyubsky<sup>57</sup>, L. Boldizsár<sup>8</sup>, M. Bombara<sup>58</sup>, C. Bombonati<sup>51</sup>, J. Book<sup>30</sup>, H. Borel<sup>36</sup>, A. Borissov<sup>59</sup>, C. Bortolin<sup>51</sup>, V. S. Bose<sup>60</sup>, F. Bossú<sup>47</sup>, M. Botje<sup>53</sup>, S. Böttger<sup>61</sup>, B. Boyer<sup>62</sup>, P. Braun-Munzinger<sup>24</sup>, M. Bregant<sup>29</sup>, T. Breitner<sup>61</sup>, M. Broz<sup>63</sup>, R. Brun<sup>7</sup>, E. Bruna<sup>5</sup>, Vi, G.E. Bruno<sup>21</sup>,
D. Budnikov<sup>64</sup>, H. Buesching<sup>30</sup>, S. Bufalino<sup>16</sup>, K. Bugaiev<sup>18</sup>, O. Busch<sup>65</sup>, Z. Buthelezi<sup>66</sup>, D. Caffarri<sup>51</sup>,
X. Cai<sup>67</sup>, H. Caines<sup>5</sup>, E. Calvo Villar<sup>68</sup>, P. Camerini<sup>69</sup>, V. Canoa Roman<sup>70</sup>, vii, G. Cara Romeo<sup>28</sup>, F. Carena<sup>7</sup>,
W. Carena<sup>7</sup>, F. Carminati<sup>7</sup>, A. Casanova Díaz<sup>50</sup>, M. Caselle<sup>7</sup>, J. Castillo Castellanos<sup>36</sup>, E.A.R. Casula<sup>71</sup>,
V. Catanescu<sup>23</sup>, C. Cavicchioli<sup>7</sup>, J. Cepila<sup>52</sup>, P. Cerello<sup>16</sup>, B. Chang<sup>34</sup>, S. Chapeland<sup>7</sup>, J.L. Charvet<sup>36</sup>, S. Chattopadhyay<sup>60</sup>, S. Chattopadhyay<sup>11</sup>, M. Cherney<sup>72</sup>, C. Cheshkov<sup>73</sup>, B. Cheynis<sup>73</sup>, E. Chiavassa<sup>16</sup>, V. Chibante Barroso<sup>7</sup>, D.D. Chinellato<sup>74</sup>, P. Chochula<sup>7</sup>, M. Chojnacki<sup>75</sup>, P. Christakoglou<sup>75</sup>,
C.H. Christensen<sup>44</sup>, P. Christiansen<sup>76</sup>, T. Chujo<sup>77</sup>, S.U. Chung<sup>78</sup>, C. Cicalo<sup>79</sup>, L. Cifarelli<sup>9</sup>, viii, F. Cindolo<sup>28</sup>,
J. Cleymans<sup>66</sup>, F. Coccetti<sup>17</sup>, J.-P. Coffin<sup>45</sup>, F. Colamaria<sup>21</sup>, D. Colella<sup>21</sup>, G. Conesa Balbastre<sup>31</sup>,
Z. Conesa del Valle<sup>45</sup>, ix, P. Constantin<sup>65</sup>, G. Contin<sup>69</sup>, J.G. Contreras<sup>70</sup>, T.M. Cormier<sup>59</sup>,
Y. Corrales Morales<sup>47</sup>, I. Cortés Maldonado<sup>80</sup>, P. Cortese<sup>81</sup>, M.R. Cosentino<sup>74</sup>, X. F. Costa<sup>7</sup>, M.E. Cotallo<sup>54</sup>, P. Crochet<sup>37</sup>, E. Cruz Alaniz<sup>10</sup>, E. Cuautle<sup>82</sup>, L. Cunqueiro<sup>50</sup>, G. D Erasmo<sup>21</sup>, A. Dainese<sup>27</sup>, H.H. Dalsgaard<sup>44</sup>, A. Danu<sup>83</sup>, D. Das<sup>60</sup>, I. Das<sup>60</sup>, K. Das<sup>60</sup>, A. Dash<sup>74</sup>, S. Dash<sup>16</sup>, S. De<sup>11</sup>, A. De Azevedo Moregula<sup>50</sup>, G.O.V. de Barros<sup>84</sup>, A. De Caro<sup>85</sup>, Xi</sup>, G. de Cataldo<sup>86</sup>, J. de Cuveland<sup>20</sup>, A. De Falco<sup>71</sup>, D. De Gruttola<sup>85</sup>, N. De Marco<sup>16</sup>, S. De Pasquale<sup>85</sup>, R. de Rooij<sup>75</sup>, E. Del Castillo Sanchez<sup>7</sup>, H. Delagrange<sup>29</sup>, A. Deloff<sup>87</sup>,
V. Demanov<sup>64</sup>, E. Dénes<sup>8</sup>, A. Deppman<sup>84</sup>, D. Di Bari<sup>21</sup>, C. Di Giglio<sup>21</sup>, S. Di Liberto<sup>88</sup>, A. Di Mauro<sup>7</sup>,
P. Di Nezza<sup>50</sup>, T. Dietel<sup>25</sup>, R. Divià<sup>7</sup>, Ø. Djuvsland<sup>1</sup>, A. Dobrin<sup>59</sup>, T. Dobrowolski<sup>87</sup>, I. Domínguez<sup>82</sup>,
B. Dönigus<sup>24</sup>, O. Dordic<sup>89</sup>, O. Driga<sup>29</sup>, A.K. Dubey<sup>11</sup>, L. Ducroux<sup>73</sup>, P. Dupieux<sup>37</sup>, A.K. Dutta Majumdar<sup>60</sup>,
M.R. Dutta Majumdar<sup>11</sup>, D. Elia<sup>86</sup>, D. Emschermann<sup>25</sup>, H. Engel<sup>61</sup>, H.A. Erdal<sup>19</sup>, B. Espagnon<sup>62</sup>,
M. Estienne<sup>29</sup>, S. Esumi<sup>77</sup>, D. Evans<sup>41</sup>, G. Eyyubova<sup>89</sup>, D. Fabris<sup>27</sup>, J. Faivre<sup>31</sup>, D. Falchieri<sup>9</sup>, A. Fantoni<sup>50</sup>,
M. Fasel<sup>24</sup>, R. Fearick<sup>66</sup>, A. Fedunov<sup>43</sup>, D. Fehlker<sup>1</sup>, D. Felea<sup>83</sup>, B. Fenton-Olsen<sup>90</sup>, G. Feofilov<sup>22</sup>, A. Fernández Téllez<sup>80</sup>, E.G. Ferreiro<sup>32</sup>, A. Ferretti<sup>47</sup>, R. Ferretti<sup>81</sup>, J. Figiel<sup>42</sup>, M.A.S. Figueredo<sup>84</sup>, S. Filchagin<sup>64</sup>, R. Fini<sup>86</sup>, D. Finogeev<sup>91</sup>, F.M. Fionda<sup>21</sup>, E.M. Fiore<sup>21</sup>, M. Floris<sup>7</sup>, S. Foertsch<sup>66</sup>, P. Foka<sup>24</sup>,
S. Fokin<sup>15</sup>, E. Fragiacomo<sup>92</sup>, M. Fragkiadakis<sup>93</sup>, U. Frankenfeld<sup>24</sup>, U. Fuchs<sup>7</sup>, C. Furget<sup>31</sup>, M. Fusco Girard<sup>85</sup>,
J.J. Gaardhøje<sup>44</sup>, M. Gagliardi<sup>47</sup>, A. Gago<sup>68</sup>, M. Gallio<sup>47</sup>, D.R. Gangadharan<sup>55</sup>, P. Ganoti<sup>33</sup>, C. Garabatos<sup>24</sup>,
E. Garcia-Solis<sup>94</sup>, I. Garishvili<sup>2</sup>, J. Gerhard<sup>20</sup>, M. Germain<sup>29</sup>, C. Geuna<sup>36</sup>, A. Gheata<sup>7</sup>, M. Gheata<sup>7</sup>,
B.\ Ghidini^{21}\ ,\ P.\ Ghosh^{11}\ ,\ P.\ Gianotti^{50}\ ,\ M.R.\ Girard^{95}\ ,\ P.\ Giubellino^{47\ ,ix}\ ,\ E.\ Gladysz-Dziadus^{42}\ ,\ P.\ Glässel^{65}\ ,
R. Gomez<sup>96</sup>, L.H. González-Trueba<sup>10</sup>, P. González-Zamora<sup>54</sup>, S. Gorbunov<sup>20</sup>, A. Goswami<sup>97</sup>, S. Gotovac<sup>98</sup>, V. Grabski<sup>10</sup>, L.K. Graczykowski<sup>95</sup>, R. Grajcarek<sup>65</sup>, A. Grelli<sup>75</sup>, A. Grigoras<sup>7</sup>, C. Grigoras<sup>7</sup>, V. Grigoriev<sup>56</sup>, A. Grigoryan<sup>99</sup>, S. Grigoryan<sup>43</sup>, B. Grinyov<sup>18</sup>, N. Grion<sup>92</sup>, J.F. Grosse-Oetringhaus<sup>7</sup>, J.-Y. Grossiord<sup>73</sup>,
F. Guber<sup>91</sup>, R. Guernane<sup>31</sup>, C. Guerra Gutierrez<sup>68</sup>, B. Guerzoni<sup>9</sup>, M. Guilbaud<sup>73</sup>, K. Gulbrandsen<sup>44</sup>,
T. Gunji<sup>100</sup>, A. Gupta<sup>49</sup>, R. Gupta<sup>49</sup>, H. Gutbrod<sup>24</sup>, Ø. Haaland<sup>1</sup>, C. Hadjidakis<sup>62</sup>, M. Haiduc<sup>83</sup>,
H. Hamagaki<sup>100</sup>, G. Hamar<sup>8</sup>, L.D. Hanratty<sup>41</sup>, Z. Harmanova<sup>58</sup>, J.W. Harris<sup>5</sup>, M. Hartig<sup>30</sup>, D. Hasegan<sup>83</sup>
D. Hatzifotiadou<sup>28</sup>, A. Hayrapetyan<sup>99</sup>, viii, M. Heide<sup>25</sup>, H. Helstrup<sup>19</sup>, A. Herghelegiu<sup>23</sup>, G. Herrera Corral<sup>70</sup>, N. Herrmann<sup>65</sup>, K.F. Hetland<sup>19</sup>, B. Hicks<sup>5</sup>, P.T. Hille<sup>5</sup>, B. Hippolyte<sup>45</sup>, T. Horaguchi<sup>77</sup>, Y. Hori<sup>100</sup>,
P. Hristov<sup>7</sup>, I. Hřivnáčová<sup>62</sup>, M. Huang<sup>1</sup>, S. Huber<sup>24</sup>, T.J. Humanic<sup>55</sup>, D.S. Hwang<sup>101</sup>, R. Ichou<sup>37</sup>, R. Ilkaev<sup>64</sup>, I. Ilkiv<sup>87</sup>, M. Inaba<sup>77</sup>, E. Incani<sup>71</sup>, G.M. Innocenti<sup>47</sup>, M. Ippolitov<sup>15</sup>, M. Irfan<sup>12</sup>, C. Ivan<sup>24</sup>, A. Ivanov<sup>22</sup>,
M. Ivanov<sup>24</sup>, V. Ivanov<sup>48</sup>, O. Ivanytskyi<sup>18</sup>, P.M. Jacobs<sup>90</sup>, L. Jancurová<sup>43</sup>, S. Jangal<sup>45</sup>, M.A. Janik<sup>95</sup>,
R. Janik<sup>63</sup>, P.H.S.Y. Jayarathna<sup>46</sup>, S. Jena<sup>102</sup>, R.T. Jimenez Bustamante<sup>82</sup>, L. Jirden<sup>7</sup>, P.G. Jones<sup>41</sup>, H. Jung<sup>13</sup>,
```

The ALICE Collaboration

```
W. Jung^{13}, A. Jusko^{41}, S. Kalcher^{20}, P. Kaliňák^{38}, M. Kalisky^{25}, T. Kalliokoski^{34}, A. Kalweit^{103}, K. Kanaki^1, J.H. Kang^{104}, V. Kaplin^{56}, A. Karasu\ Uysal^7, O. Karavichev^{91}, T. Karavicheva^{91}, E. Karpechev^{91},
  A. Kazantsev<sup>15</sup>, U. Kebschull<sup>61</sup>, R. Keidel<sup>105</sup>, M.M. Khan<sup>12</sup>, P. Khan<sup>60</sup>, S.A. Khan<sup>11</sup>, A. Khanzadeev<sup>48</sup>,
  Y. Kharlov<sup>57</sup>, B. Kileng<sup>19</sup>, B. Kim<sup>104</sup>, D.J. Kim<sup>34</sup>, D.W. Kim<sup>13</sup>, J.H. Kim<sup>101</sup>, J.S. Kim<sup>13</sup>, M. Kim<sup>104</sup>,
 S. Kim<sup>101</sup>, S.H. Kim<sup>13</sup>, T. Kim<sup>104</sup>, S. Kirsch<sup>20</sup>, I. Kisel<sup>20</sup>, S. Kiselev<sup>14</sup>, A. Kisiel<sup>7</sup>, xii, J.L. Klay<sup>106</sup>, J. Klein<sup>65</sup>,
 C. Klein-Bösing<sup>25</sup>, M. Kliemant<sup>30</sup>, A. Kluge<sup>7</sup>, M.L. Knichel<sup>24</sup>, K. Koch<sup>65</sup>, M.K. Köhler<sup>24</sup>, A. Kolojvari<sup>22</sup>,
V. Kondratiev<sup>22</sup>, N. Kondratyeva<sup>56</sup>, A. Konevskikh<sup>91</sup>, C. Kottachchi Kankanamge Don<sup>59</sup>, R. Kour<sup>41</sup>, M. Kowalski<sup>42</sup>, S. Kox<sup>31</sup>, G. Koyithatta Meethaleveedu<sup>102</sup>, J. Kral<sup>34</sup>, I. Králik<sup>38</sup>, F. Kramer<sup>30</sup>, I. Kraus<sup>24</sup>, T. Krawutschke<sup>65</sup>, xiii</sup>, M. Kretz<sup>20</sup>, M. Krivda<sup>41</sup>, xiv, F. Krizek<sup>34</sup>, M. Krus<sup>52</sup>, E. Kryshen<sup>48</sup>, M. Krzewicki<sup>53</sup>, Y. Kucheriaev<sup>15</sup>, C. Kuhn<sup>45</sup>, P.G. Kuijer<sup>53</sup>, P. Kurashvili<sup>87</sup>, A. Kurepin<sup>91</sup>, A.B. Kurepin<sup>91</sup>, A. Kuryakin<sup>64</sup>,
  S. Kushpil<sup>4</sup>, V. Kushpil<sup>4</sup>, M.J. Kweon<sup>65</sup>, Y. Kwon<sup>104</sup>, P. La Rocca<sup>40</sup>, P. Ladrón de Guevara<sup>82</sup>, I. Lakomov<sup>22</sup>,
  C. Lara<sup>61</sup>, A. Lardeux<sup>29</sup>, D.T. Larsen<sup>1</sup>, C. Lazzeroni<sup>41</sup>, Y. Le Bornec<sup>62</sup>, R. Lea<sup>69</sup>, M. Lechman<sup>7</sup>, K.S. Lee<sup>13</sup>,
  S.C. Lee^{13}, F. Lefèvre^{29}, J. Lehnert^{30}, L. Leistam^7, M. Lenhardt^{29}, V. Lenti^{86}, I. Le\'on Monz\'on^{96},
  H. León Vargas<sup>30</sup>, P. Lévai<sup>8</sup>, X. Li<sup>107</sup>, J. Lien<sup>1</sup>, R. Lietava<sup>41</sup>, S. Lindal<sup>89</sup>, V. Lindenstruth<sup>20</sup>, C. Lippmann<sup>24</sup>,
 M.A. Lisa<sup>55</sup>, L. Liu<sup>1</sup>, P.I. Loenne<sup>1</sup>, V.R. Loggins<sup>59</sup>, V. Loginov<sup>56</sup>, S. Lohn<sup>7</sup>, D. Lohner<sup>65</sup>, C. Loizides<sup>90</sup>,
 K.K. Loo^{34}, X. Lopez^{37}, E. López Torres^3, G. Løvhøiden^{89}, X.-G. Lu^{65}, P. Luettig^{30}, M. Lunardon^{51}, J. Luo^{67}, G. Luparello^{47}, L. Luquin^{29}, C. Luzzi^7, R. Ma^5, A. Maevskaya^{91}, M. Mager^7, D.P. Mahapatra^{39},
 A. Maire<sup>45</sup>, M. Malaev<sup>48</sup>, I. Maldonado Cervantes<sup>82</sup>, L. Malinina<sup>43</sup>, xv, D. Mal'Kevich<sup>14</sup>, P. Malzacher<sup>24</sup>, A. Mamonov<sup>64</sup>, L. Manceau<sup>16</sup>, V. Manko<sup>15</sup>, F. Manso<sup>37</sup>, V. Manzari<sup>86</sup>, Y. Mao<sup>67</sup>, xvi, M. Marchisone<sup>47</sup>, i,
  J. Mareš<sup>108</sup>, G.V. Margagliotti<sup>69</sup>, A. Margotti<sup>28</sup>, A. Marín<sup>24</sup>, C. Markert<sup>109</sup>, I. Martashvili<sup>110</sup>, P. Martinengo<sup>7</sup>,
M.I. Martínez<sup>80</sup>, A. Martínez Davalos<sup>10</sup>, G. Martínez García<sup>29</sup>, Y. Martynov<sup>18</sup>, A. Mas<sup>29</sup>, S. Masciocchi<sup>24</sup>, M. Masera<sup>47</sup>, A. Masoni<sup>79</sup>, L. Massacrier<sup>73</sup>, M. Mastromarco<sup>86</sup>, A. Mastroserio<sup>7</sup>, xviii, Z.L. Matthews<sup>41</sup>, A. Matyja<sup>42</sup>, xviii, D. Mayani<sup>82</sup>, C. Mayer<sup>42</sup>, M.A. Mazzoni<sup>88</sup>, F. Meddi<sup>111</sup>, A. Menchaca-Rocha<sup>10</sup>, J. Mercado Pérez<sup>65</sup>, M. Meres<sup>63</sup>, Y. Miake<sup>77</sup>, A. Michalon<sup>45</sup>, J. Midori<sup>112</sup>, L. Milano<sup>47</sup>, J. Milosevic<sup>89</sup>, xix, A. Mischke<sup>75</sup>, A.N. Mishra<sup>97</sup>, D. Miśkowiec<sup>7</sup>, C. Mitu<sup>83</sup>, J. Mlynarz<sup>59</sup>, A.K. Mohanty<sup>7</sup>, B. Mohanty<sup>11</sup>,
  L. Molnar<sup>7</sup>, L. Montaño Zetina<sup>70</sup>, M. Monteno<sup>16</sup>, E. Montes<sup>54</sup>, T. Moon<sup>104</sup>, M. Morando<sup>51</sup>,
 D.A. Moreira De Godoy<sup>84</sup>, S. Moretto<sup>51</sup>, A. Morsch<sup>7</sup>, V. Muccifora<sup>50</sup>, E. Mudnic<sup>98</sup>, H. Müller<sup>7</sup>, S. Muhuri<sup>11</sup>, M.G. Munhoz<sup>84</sup>, L. Musa<sup>7</sup>, A. Musso<sup>16</sup>, B.K. Nandi<sup>102</sup>, R. Nania<sup>28</sup>, E. Nappi<sup>86</sup>, C. Nattrass<sup>110</sup>,
 N.P. Naumov<sup>64</sup>, S. Navin<sup>41</sup>, T.K. Nayak<sup>11</sup>, S. Nazarenko<sup>64</sup>, G. Nazarov<sup>64</sup>, A. Nedosekin<sup>14</sup>, M. Nicassio<sup>21</sup>, B.S. Nielsen<sup>44</sup>, T. Niida<sup>77</sup>, S. Nikolaev<sup>15</sup>, V. Nikolic<sup>26</sup>, S. Nikulin<sup>15</sup>, V. Nikulin<sup>48</sup>, B.S. Nilsen<sup>72</sup>,
 M.S. Nilsson<sup>89</sup>, F. Noferini<sup>17</sup>, ii, P. Nomokonov<sup>43</sup>, G. Nooren<sup>75</sup>, N. Novitzky<sup>34</sup>, A. Nyanin<sup>15</sup>, A. Nyatha<sup>102</sup>, C. Nygaard<sup>44</sup>, J. Nystrand<sup>1</sup>, H. Obayashi<sup>112</sup>, A. Ochirov<sup>22</sup>, H. Oeschler<sup>103</sup>, S.K. Oh<sup>13</sup>, J. Oleniacz<sup>95</sup>,
 C. Oppedisano<sup>16</sup>, A. Ortiz Velasquez<sup>82</sup>, G. Ortona<sup>47</sup>, A. Oskarsson<sup>76</sup>, I. Otterlund<sup>76</sup>, J. Otwinowski<sup>24</sup>, G. Øvrebekk<sup>1</sup>, K. Oyama<sup>65</sup>, Y. Pachmayer<sup>65</sup>, M. Pachr<sup>52</sup>, F. Padilla<sup>47</sup>, P. Pagano<sup>85</sup>, G. Paić<sup>82</sup>, F. Painke<sup>20</sup>.
 C. Pajares<sup>32</sup>, S. Pal<sup>36</sup>, S.K. Pal<sup>11</sup>, A. Palaha<sup>41</sup>, A. Palmeri<sup>35</sup>, G.S. Pappalardo<sup>35</sup>, W.J. Park<sup>24</sup>, A. Passfeld<sup>25</sup>, D.I. Patalakha<sup>57</sup>, V. Paticchio<sup>86</sup>, A. Pavlinov<sup>59</sup>, T. Pawlak<sup>95</sup>, T. Peitzmann<sup>75</sup>, E. Pereira De Oliveira Filho<sup>84</sup>,
D. Peresunko<sup>15</sup>, C.E. Pérez Lara<sup>53</sup>, E. Perez Lezama<sup>82</sup>, D. Perini<sup>7</sup>, D. Perrino<sup>21</sup>, W. Peryt<sup>95</sup>, A. Pesci<sup>28</sup>, V. Peskov<sup>7</sup>, xx</sup>, Y. Pestov<sup>113</sup>, V. Petráček<sup>52</sup>, M. Petran<sup>52</sup>, M. Petris<sup>23</sup>, P. Petrov<sup>41</sup>, M. Petrovici<sup>23</sup>, C. Petta<sup>40</sup>, S. Piano<sup>92</sup>, A. Piccotti<sup>16</sup>, M. Pikna<sup>63</sup>, P. Pillot<sup>29</sup>, O. Pinazza<sup>7</sup>, L. Pinsky<sup>46</sup>, N. Pitz<sup>30</sup>, F. Piuz<sup>7</sup>, D.B. Piyarathna<sup>46</sup>, M. Płoskoń<sup>90</sup>, J. Pluta<sup>95</sup>, T. Pocheptsov<sup>43</sup>, S. Pochybova<sup>8</sup>, P.L.M. Podesta-Lerma<sup>96</sup>, M.G. Poghosyan<sup>47</sup>, B. Polichtchouk<sup>57</sup>, A. Pop<sup>23</sup>, S. Porteboeuf-Houssais<sup>37</sup>, V. Pospíšil<sup>52</sup>, B. Potukuchi<sup>49</sup>,
  S.K. Prasad<sup>59</sup>, R. Preghenella<sup>17</sup>, ii, F. Prino<sup>16</sup>, C.A. Pruneau<sup>59</sup>, I. Pshenichnov<sup>91</sup>, G. Puddu<sup>71</sup>, A. Pulvirenti<sup>40</sup>,
  V. Punin<sup>64</sup>, M. Putiš<sup>58</sup>, J. Putschke<sup>5</sup>, xxi, E. Quercigh<sup>7</sup>, H. Qvigstad<sup>89</sup>, A. Rachevski<sup>92</sup>, A. Rademakers<sup>7</sup>,
S. Radomski<sup>65</sup>, T.S. Räihä<sup>34</sup>, J. Rak<sup>34</sup>, A. Rakotozafindrabe<sup>36</sup>, L. Ramello<sup>81</sup>, A. Ramírez Reyes<sup>70</sup>, R. Raniwala<sup>97</sup>, S. Raniwala<sup>97</sup>, S.S. Räsänen<sup>34</sup>, B.T. Rascanu<sup>30</sup>, D. Rathee<sup>6</sup>, K.F. Read<sup>110</sup>, J.S. Real<sup>31</sup>, K. Redlich<sup>87</sup>, P. Reichelt<sup>30</sup>, M. Reicher<sup>75</sup>, R. Renfordt<sup>30</sup>, A.R. Reolon<sup>50</sup>, A. Reshetin<sup>91</sup>, F. Rettig<sup>20</sup>, J.-P. Revol<sup>7</sup>, K. Reygers<sup>65</sup>, H. Ricaud<sup>103</sup>, L. Riccati<sup>16</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, J.-P. Revol<sup>7</sup>, R. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, R. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, R. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, X. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, X. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, X. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, X. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, X. Renfordt<sup>80</sup>, X. Renfordt<sup>80</sup>, R.A. Ricci<sup>114</sup>, M. Richter<sup>1</sup>, xxii, P. Riedler<sup>7</sup>, X. Renfordt<sup>80</sup>, X. Raminatal Renfordt<sup>80</sup>, R.A. Raminatal Renfordt<sup>80</sup>, X. Rami
 W. Riegler<sup>7</sup>, F. Riggi<sup>40</sup>, M. Rodríguez Cahuantzi<sup>80</sup>, D. Rohr<sup>20</sup>, D. Röhrich<sup>1</sup>, R. Romita<sup>24</sup>, F. Ronchetti<sup>50</sup>, P. Rosnet<sup>37</sup>, S. Rossegger<sup>7</sup>, A. Rossi<sup>51</sup>, F. Roukoutakis<sup>93</sup>, C. Roy<sup>45</sup>, P. Roy<sup>60</sup>, A.J. Rubio Montero<sup>54</sup>, R. Rui<sup>69</sup>,
  E. Ryabinkin<sup>15</sup>, A. Rybicki<sup>42</sup>, S. Sadovsky<sup>57</sup>, K. Šafařík<sup>7</sup>, P.K. Sahu<sup>39</sup>, J. Saini<sup>11</sup>, H. Sakaguchi<sup>112</sup>, S. Sakai<sup>90</sup>,
  D. Sakata<sup>77</sup>, C.A. Salgado<sup>32</sup>, S. Sambyal<sup>49</sup>, V. Samsonov<sup>48</sup>, X. Sanchez Castro<sup>82</sup>, L. Šándor<sup>38</sup>, A. Sandoval<sup>10</sup>,
M. Sano<sup>77</sup>, S. Sano<sup>100</sup>, R. Santo<sup>25</sup>, R. Santoro<sup>86</sup>, ix, J. Sarkamo<sup>34</sup>, E. Scapparone<sup>28</sup>, F. Scarlassara<sup>51</sup>, R.P. Scharenberg<sup>115</sup>, C. Schiaua<sup>23</sup>, R. Schicker<sup>65</sup>, C. Schmidt<sup>24</sup>, H.R. Schmidt<sup>24</sup>, xxiii, S. Schreiner<sup>7</sup>, S. Schuchmann<sup>30</sup>, J. Schukraft<sup>7</sup>, Y. Schutz<sup>29</sup>, viii, K. Schwarz<sup>24</sup>, K. Schweda<sup>65</sup>, xxiv, G. Scioli<sup>9</sup>, E. Scomparin<sup>16</sup>, P.A. Scott<sup>41</sup>, R. Scott<sup>110</sup>, G. Segato<sup>51</sup>, I. Selyuzhenkov<sup>24</sup>, S. Senyukov<sup>81</sup>, xxv, S. Serci<sup>71</sup>, E. Serradilla<sup>10</sup>, xxvi,
  A. Sevcenco<sup>83</sup>, I. Sgura<sup>86</sup>, G. Shabratova<sup>43</sup>, R. Shahoyan<sup>7</sup>, N. Sharma<sup>6</sup>, S. Sharma<sup>49</sup>, K. Shigaki<sup>112</sup>,
```

M. Shimomura⁷⁷, K. Shtejer³, Y. Sibiriak¹⁵, M. Siciliano⁴⁷, E. Sicking⁷, S. Siddhanta⁷⁹, T. Siemiarczuk⁸⁷, D. Silvermyr³³, G. Simonetti⁷, R. Singaraju¹¹, R. Singh⁴9, S. Singha¹¹, B.C. Sinha¹¹, T. Sinha⁴0, B. Sitar⁶³, M. Sitta³¹, T.B. Skaali³⁰, K. Skjerda¹¹, R. Smakal⁵², N. Smirnov⁵, R. Snellings³⁵, C. Søgaard⁴⁴, R. Soltz², H. Son¹0¹, J. Song³³, M. Song¹0⁴, C. Soos³, F. Soramel⁵¹, M. Spyropoulou-Stassinaki³³, B.K. Srivastava¹¹¹⁵, J. Stachel⁶⁵, I. Stan³³, G. Stefanek³³, G. Stefanini³, T. Steinbeck²⁰, M. Steinpreis⁵⁵, E. Stenlund³⁶, G. Steyn⁶⁶, D. Stocco²⁰, M. Stolpovskiy⁵³, P. Strmen⁶³, A.A.P. Suaide³⁴, M.A. Subieta Vásquez⁴³, T. Sugitate¹¹², C. Suire⁶², M. Sukhorukov⁶⁴, R. Sultanov¹⁴, M. Šumbera⁴, T. Susa²⁶, A. Szanto de Toledo⁵⁴, I. Szarka⁶³, A. Szostak¹, C. Tagridis⁰³, J. Takahashi³⁴, J.D. Tapia Takaki⁶², A. Tauro³, G. Tejeda Muñoz³⁰, A. Telesca³, C. Terrevoli²¹, J. Thäder²⁴, D. Thomas³⁵, J.H. Thomas²⁴, R. Tieulent³³, A.R. Timmins⁴⁶, D. Tlusty⁵², A. Toia³, H. Torii¹¹¹², xxvii, F. Tosello¹⁶, T. Traczyk⁵⁵, W.H. Trzaska³⁴, T. Tsuji¹¹⁰, A. Tumkin⁶⁴, R. Turrisi²³, A.J. Turvey²², T.S. Tveter⁴³, J. Ulery³⁰, K. Ullaland¹, J. Ulrich⁶¹, A. Uras³³, J. Urbán⁵³, G.M. Urciuoli³³, G.L. Usai³¹, M. Vajzer⁵², xxviii, M. Vala⁴³, xiiv, L. Valencia Palomo⁶², S. Vallero⁶⁵, N. van der Kolk⁵³, M. van Leeuwen⁵⁵, P. Vande Vyvre⁵, L. Vannucci¹¹⁴, A. Vargas³⁰, R. Varma¹⁰², M. Vasileiou³³, A. Vasiliev¹⁵, V. Vechernin²², M. Veldhoen⁵⁵, M. Venaruzzo⁶⁰, E. Vercellin⁴¬, S. Vergara³⁰, D.C. Vernekohl²⁵, R. Vernet¹¹¹6, M. Verweij³⁵, L. Vickovic⁰³, G. Viesti⁵¹, O. Vikhlyantsev⁶⁴, Z. Vilakazi⁶⁶, O. Villalobos Baillie⁴¹, A. Vinogradov¹⁵, L. Vinogradov²², Y. Vinogradov⁶⁴, T. Virgili³⁵, Y.P. Viyogi¹¹, A. Vodopyanov⁴³, A. Vyushin⁶⁴, B. Wagner¹, V. Wagner⁵², R. Wan⁴⁵, xxix, D. Wang⁶⁵, M. Wilde²⁵, A. Wilk²⁵, G. Wilk³¸, M. Ca. Swilliams²², B. Windelband⁶⁵, L. Xaplanteris Karampatsos¹⁰9, H. Yang³⁶, Y. Yang⁶⁵, Y. Yangô⁵, Y. Zahopolskiy¹⁵, J. Yi²⁶, P. Zeinicek⁶¹, I. Zgura³³, M. Zhalov⁴³, X. Zhangôſ³, D. Zhou⁰⁵¬, F. Zhouð⁵¬, F. Zhouð⁵¬, Y. Zho

Affiliation notes

- ⁱ Also at Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France
- ii Also at Sezione INFN, Bologna, Italy
- iii Now at Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- iv Now at Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France
- ^v Also at Dipartimento di Fisica dell'Universita, Udine, Italy
- vi Now at Sezione INFN, Turin, Italy
- vii Also at Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- viii Also at European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ix Now at European Organization for Nuclear Research (CERN), Geneva, Switzerland
- ^x Now at Lawrence Berkeley National Laboratory, Berkeley, California, United States
- xi Now at Centro Fermi Centro Studi e Ricerche e Museo Storico della Fisica "Enrico Fermi", Rome, Italy
- xii Now at Warsaw University of Technology, Warsaw, Poland
- xiii Also at Fachhochschule Köln, Köln, Germany
- xiv Also at Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
- xv Also at M.V.Lomonosov Moscow State University, D.V.Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
- Also at Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier,
 CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
- xvii Now at Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
- xviii Now at SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
- xix Also at "Vinča" Institute of Nuclear Sciences, Belgrade, Serbia
- xx Also at Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- xxi Now at Wayne State University, Detroit, Michigan, United States
- xxii Now at Department of Physics, University of Oslo, Oslo, Norway
- xxiii Now at Eberhard Karls Universität Tübingen, Tübingen, Germany
- xxiv Now at Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- xxv Now at Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3,

- Strasbourg, France
- xxvi Also at Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- xxvii Now at University of Tokyo, Tokyo, Japan
- xxviii Also at Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
- xxix Also at Hua-Zhong Normal University, Wuhan, China
- xxx Now at Sezione INFN, Bologna, Italy
- xxxi Also at Centro Fermi Centro Studi e Ricerche e Museo Storico della Fisica "Enrico Fermi", Rome, Italy

Collaboration Institutes

- ¹ Department of Physics and Technology, University of Bergen, Bergen, Norway
- ² Lawrence Livermore National Laboratory, Livermore, California, United States
- ³ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
- ⁴ Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
- ⁵ Yale University, New Haven, Connecticut, United States
- ⁶ Physics Department, Panjab University, Chandigarh, India
- ⁷ European Organization for Nuclear Research (CERN), Geneva, Switzerland
- 8 KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest, Hungary
- ⁹ Dipartimento di Fisica dell'Università and Sezione INFN, Bologna, Italy
- ¹⁰ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ¹¹ Variable Energy Cyclotron Centre, Kolkata, India
- ¹² Department of Physics Aligarh Muslim University, Aligarh, India
- ¹³ Gangneung-Wonju National University, Gangneung, South Korea
- ¹⁴ Institute for Theoretical and Experimental Physics, Moscow, Russia
- ¹⁵ Russian Research Centre Kurchatov Institute, Moscow, Russia
- ¹⁶ Sezione INFN, Turin, Italy
- ¹⁷ Centro Fermi Centro Studi e Ricerche e Museo Storico della Fisica "Enrico Fermi", Rome, Italy
- ¹⁸ Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
- ¹⁹ Faculty of Engineering, Bergen University College, Bergen, Norway
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ²¹ Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
- ²² V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
- ²³ National Institute for Physics and Nuclear Engineering, Bucharest, Romania
- ²⁴ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- ²⁵ Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
- ²⁶ Rudjer Bošković Institute, Zagreb, Croatia
- ²⁷ Sezione INFN, Padova, Italy
- ²⁸ Sezione INFN, Bologna, Italy
- ²⁹ SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
- ³⁰ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ³¹ Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, CNRS-IN2P3, Institut Polytechnique de Grenoble, Grenoble, France
- ³² Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- ³³ Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
- ³⁴ Helsinki Institute of Physics (HIP) and University of Jyväskylä, Jyväskylä, Finland
- 35 Sezione INFN, Catania, Italy
- ³⁶ Commissariat à l'Energie Atomique, IRFU, Saclay, France
- ³⁷ Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France
- ³⁸ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
- ³⁹ Institute of Physics, Bhubaneswar, India

- ⁴⁰ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
- ⁴¹ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ⁴² The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
- ⁴³ Joint Institute for Nuclear Research (JINR), Dubna, Russia
- ⁴⁴ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- ⁴⁵ Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France
- ⁴⁶ University of Houston, Houston, Texas, United States
- ⁴⁷ Dipartimento di Fisica Sperimentale dell'Università and Sezione INFN, Turin, Italy
- ⁴⁸ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ⁴⁹ Physics Department, University of Jammu, Jammu, India
- ⁵⁰ Laboratori Nazionali di Frascati, INFN, Frascati, Italy
- ⁵¹ Dipartimento di Fisica dell'Università and Sezione INFN, Padova, Italy
- ⁵² Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
- ⁵³ Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
- ⁵⁴ Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- ⁵⁵ Department of Physics, Ohio State University, Columbus, Ohio, United States
- ⁵⁶ Moscow Engineering Physics Institute, Moscow, Russia
- ⁵⁷ Institute for High Energy Physics, Protvino, Russia
- ⁵⁸ Faculty of Science, P.J. Šafárik University, Košice, Slovakia
- ⁵⁹ Wayne State University, Detroit, Michigan, United States
- ⁶⁰ Saha Institute of Nuclear Physics, Kolkata, India
- ⁶¹ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- 62 Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
- ⁶³ Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
- ⁶⁴ Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
- ⁶⁵ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- ⁶⁶ Physics Department, University of Cape Town, iThemba LABS, Cape Town, South Africa
- ⁶⁷ Hua-Zhong Normal University, Wuhan, China
- 68 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
- ⁶⁹ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
- ⁷⁰ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
- ⁷¹ Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
- ⁷² Physics Department, Creighton University, Omaha, Nebraska, United States
- ⁷³ Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
- ⁷⁴ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
- ⁷⁶ Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
- ⁷⁷ University of Tsukuba, Tsukuba, Japan
- ⁷⁸ Pusan National University, Pusan, South Korea
- ⁷⁹ Sezione INFN, Cagliari, Italy
- 80 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- ⁸¹ Dipartimento di Scienze e Tecnologie Avanzate dell'Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy
- 82 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- 83 Institute of Space Sciences (ISS), Bucharest, Romania
- ⁸⁴ Universidade de São Paulo (USP), São Paulo, Brazil
- ⁸⁵ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy
- ⁸⁶ Sezione INFN, Bari, Italy
- 87 Soltan Institute for Nuclear Studies, Warsaw, Poland
- 88 Sezione INFN, Rome, Italy
- ⁸⁹ Department of Physics, University of Oslo, Oslo, Norway
- ⁹⁰ Lawrence Berkeley National Laboratory, Berkeley, California, United States
- ⁹¹ Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

- ⁹² Sezione INFN, Trieste, Italy
- ⁹³ Physics Department, University of Athens, Athens, Greece
- ⁹⁴ Chicago State University, Chicago, United States
- 95 Warsaw University of Technology, Warsaw, Poland
- ⁹⁶ Universidad Autónoma de Sinaloa, Culiacán, Mexico
- ⁹⁷ Physics Department, University of Rajasthan, Jaipur, India
- 98 Technical University of Split FESB, Split, Croatia
- ⁹⁹ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁰⁰ University of Tokyo, Tokyo, Japan
- ¹⁰¹ Department of Physics, Sejong University, Seoul, South Korea
- ¹⁰² Indian Institute of Technology, Mumbai, India
- ¹⁰³ Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- ¹⁰⁴ Yonsei University, Seoul, South Korea
- ¹⁰⁵ Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany
- ¹⁰⁶ California Polytechnic State University, San Luis Obispo, California, United States
- ¹⁰⁷ China Institute of Atomic Energy, Beijing, China
- ¹⁰⁸ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- ¹⁰⁹ The University of Texas at Austin, Physics Department, Austin, TX, United States
- ¹¹⁰ University of Tennessee, Knoxville, Tennessee, United States
- ¹¹¹ Dipartimento di Fisica dell'Università 'La Sapienza' and Sezione INFN, Rome, Italy
- 112 Hiroshima University, Hiroshima, Japan
- ¹¹³ Budker Institute for Nuclear Physics, Novosibirsk, Russia
- ¹¹⁴ Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
- ¹¹⁵ Purdue University, West Lafayette, Indiana, United States
- ¹¹⁶ Centre de Calcul de l'IN2P3, Villeurbanne, France