Ασκήσεις Γεωμετρικής Θεωρίας Ελέγχου

Βασίλας Νικόλαος

4 Δεκεμβρίου 2016

΄ Ασκηση 1. Για τα σημεία που είναι στο βόρειο και στο ανατολικό ημισφαίριο της μοναδιαίας σφαίρας έχουμε δύο χάρτες ψ_{z^+} και ψ_{y^+} . Να δείξετε ότι $\psi_{y^+}^{-1} \circ \psi_{z^+}$ είναι C^k .

Λύση 1. Η μοναδιαία σφαίρα $S^2 \subset \mathbb{R}^3$ περιγράφεται από

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

Μπορούμε να ορίσουμε τους χάρτες (U_{y^+}, ϕ_{y^+}) και (U_{z^+}, ϕ_{z^+}) όπου

$$U_{y^+} = \{(x,y,z) \in S^2 : y > 0\}, \quad \psi_{y^+}(x,y,z) = (x,z),$$

και

$$U_{z^+} = \{(x,y,z) \in S^2: z>0\}, \quad \psi_{z^+}(x,y,z) = (x,y).$$

Για να δείξω ότι ψ_{z^+} και ψ_{y^+} είναι ομοιομορφισμοί, αρκεί να βρω τις αντίστροφες συναρτήσεις και να δείξω ότι είναι συνεχείς. Έτσι έχουμε

$$\psi_{y^{+}}^{-1}(x,z) = \left(x, \sqrt{1 - x^{2} - z^{2}}, z\right) \in S^{2},$$

$$\psi_{z^{+}}^{-1}(x,y) = \left(x, y, \sqrt{1 - x^{2} - y^{2}}\right) \in S^{2},$$

όπου είναι συνεχείς συναρτήσεις και άρα ομοιομορφισμοί, αλλά και παραγωγίσιμες C^∞ συναρτήσεις. Συνεπώς, αφού $\psi_{z^+}, \, \psi_{y^+}$ καθώς και $\psi_{z^+}^{-1}, \, \psi_{y^+}^{-1}$ είναι C^∞ συναρτήσεις τότε και η σύνθεση $\psi_{y^+}^{-1} \circ \psi_{z^+}$ θα είναι C^∞ .

Άσκηση 2. Αν M είναι λεία πολλαπλότητα, TM είναι η εφαπτόμενη δέσμη της $M,~\pi:TM\to M$ είναι η απεικόνιση προβολής και $X:M\to TM$ διανυσματικό πεδίο, τότε να δείξετε ότι $\pi\circ X=id_M.$

Λύση 2. Σύμφωνα με το 1 , ένα διανυσματικό πεδίο X κλάσης C^r σε μία πολλαπλότητα M είναι μία συνάρτηση η οποία σε κάθε σημείο $p\in M$ αντιστοιχεί ένα εφαπτόμενο διάνυσμα $X_p\in T_pM$ του οποίου οι συνιστώσες ως προς κάποιο

¹Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 1975

τοπικό χάρτη (U,ϕ) είναι συναρτήσεις κλάσης C^r στο πεδίο ορισμού U των συντεταγμένων. Επομένως, $\pi\circ X=id_M$ είναι άμεση συνέπεια του ορισμού καθώς $(\pi\circ X)(p)=\pi(X_p)=p$ και προφανώς ισχύει μόνο για διανυσματικά πεδία αφού το πεδίο ορισμού της π είναι TM. Πολλές φορές όπως για παράδειγμα στο βιβλίο 2 , το διανυσματικό πεδίο ορίζεται ως μία συνεχής συνάρτηση $X:M\to TM$ με την ιδιότητα $\pi\circ X=id_M$.

Άσκηση 3. Να αποδείξετε την ταυτότητα του Jacobi

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

Λύση 3. Έστω δύο διανυσματικά πεδία X,Y σε μία πολλαπλότητα M^n και για μία συνάρτηση $f\in C^\infty(M^n)$ τότε η αγκύλη Lie είναι

$$[X,Y]f = YXf - XYf.$$

Σύμφωνα με το παραπάνω υπολογίζουμε τον πρώτο όρο της ταυτότητας του Jacobi να είναι

$$[X, [Y, Z]]f = [Y, Z]Xf - X[Y, Z]f$$

$$= (ZY - YZ)Xf - X(ZY - YZ)f$$

$$= ZYXf - YZXf - XZYf + XYZf.$$
(1)

Αντίστοιχα ο δεύτερος όρος είναι

$$[Y, [Z, X]]f = [Z, X]Yf - Y[Z, X]f$$

$$= (XZ - ZX)Yf - Y(XZ - ZX)f$$

$$= XZYf - ZXYf - YXZf + YZXf,$$
(2)

και ο τελευταίος είναι

$$[Z, [X, Y]]f = [X, Y]Zf - Z[X, Y]f$$

$$= (YX - XY)Zf - Z(YX - XY)f$$

$$= YXZf - XYZf - ZYXf + ZXYf.$$
(3)

Αντικαθιστώντας τις σχέσεις (1), (2) και (3) στην ταυτότητα του Jacobi παρατηρούμε ότι όλοι οι όροι διαγράφονται και επομένως η ταυτότητα ικανοποιείται.

'Ασκηση 4. Για $B \in SO(3,\mathbb{R})$ δείξτε ότι έχει μία ιδιοτιμή $\lambda = 1$.

Λύση 4. Η ορθογώνια ομάδα ορίζεται

$$O(n, \mathbb{R}) = \{ B \in GL(n, \mathbb{R}) : B^{-1} = B^T \},$$

²Lee, J.M., Introduction to Smooth Manifolds, Springer, 2003

και η ειδική ορθογώνια ομάδα, που είναι μία υποομάδα της ορθογώνιας ομάδας ορίζεται

$$SO(n,\mathbb{R}) = \{B \in O(n,\mathbb{R}) : \det(B) = 1\}.$$

Είναι γνωστό ότι για οποιοδήποτε $n \times n$ μητρώο ισχύει ότι

$$\det(B) = \lambda_1 \lambda_2 \cdots \lambda_n = 1,$$

όπου λ_i είναι οι ιδιοτιμές του B. Επίσης το χαρακτηριστικό πολυώνυμο του μητρώου είναι

$$p(\lambda) = \det[\lambda I - B] = b_0 \lambda^n + b_1 \lambda_1^{n-1} + \dots + b_{n-1} \lambda + b_n. \tag{4}$$

Οι συντελεστές b_i της παραπάνω σχέσης είναι πραγματικοί αριθμοί και επομένως αν z είναι μία μιγαδική λύση που ικανοποιεί τη (4) τότε και η συζυγής μιγαδική λύση \bar{z} θα ικανοποιεί τη (4). Αν $B\in O(n,\mathbb{R})$ τότε ο μετασχηματισμός που επιβάλει το μητρώο διατηρεί το εσωτερικό γινόμενο. Για τα διανύσματα u,v το εσωτερικό γινόμενο είναι

$$u \cdot v = u^T v$$
.

και η επίδραση του μητρώου *B* είναι

$$Bu \cdot Bv = (Bu)^T Bv = u^T B^T Bv = u^T v.$$

Έτσι σύμφωνα με το παραπάνω μπορούμε να πούμε ότι το μητρώο B δεν επηρεάζει το μέτρο ενός διανύσματος u καθώς αυτό ορίζεται ως $u=\sqrt{u\cdot u}$. Επομένως αν u είναι το ιδιοδιάνυσμα του μητρώου B τότε ισχύει

$$|Bu| = |u|$$
,

και άρα ισχύει

$$|Bu| = |\lambda u| = |u|$$
,

που σημαίνει ότι $|\lambda|=1$. Τελικά, σύμφωνα με αυτά που αναφέρθηκαν παραπάνω, οι πιθανές ρίζες του χαρακτηριστικού πολυωνύμου είναι (1,1,1) ή (1,-1,-1) ή $(1,z,\bar{z})$, και άρα σίγουρα για μία ιδιοτιμή ισχύει ότι $\lambda=1$.