J. G	//
8 00	ι /
wPlease type a plus sign (+) inside this box → +	

1-20-N

A Box Sig

	lease type a plus sign (+) inside this box → +	to respond	PTO/SB/05 (4/98) Approved for use through 09/30/2000. OMB 0651-0032 Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE to a collection of information unless it displays a valid OMB control number
3	UTILITY		Docket No. Mo-5998/LeA 34,074
	PATENT APPLICATION	First Inv	ventor or Application Identifier Klaus Raming et al
	TRANSMITTAL	Title (GABA B RECEPTORS
((Only for new nonprovisional applications under 37 C F R. § 1 53(b))	Express	Mail Label No. EF080092618US
ſ	APPLICATION ELEMENTS See MPEP chapter 600 concerning utility patent application contents		Assistant Commissioner for Patents Of ADDRESS TO: Box Patent Application Washington, DC, 20231
	X * Fee Transmittal Form (e.g., PTO/SB/17)		5. Microfiche Computer Program (Appendix)
	(Submit an original and a duplicate for fee processing) 2. X Specification [Total Pages 26] (preferred arrangement set forth below)]]	6. Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)
	- Descriptive title of the Invention		a. X Computer Readable Copy
	 Cross References to Related Applications Statement Regarding Fed sponsored R & D 		b. X Paper Copy (identical to computer copy)
, ļ	- Reference to Microfiche Appendix		c. X Statement verifying identity of above copies
Winn therit Seat	 Background of the Invention Brief Summary of the Invention 		ACCOMPANYING APPLICATION PARTS
	- Brief Description of the Drawings (if filed)		7. X Assignment Papers (cover sheet & document(s))
	- Detailed Description		8. 37 C.F.R.§3.73(b) Statement Power of (when there is an assignee) Attorney
world thread month	- Claim(s)		9. English Translation Document (if applicable)
Gum sesh b	- Abstract of the Disclosure 3. X Drawing(s) (35 U.S.C. 113) [Total Sheets 2]	10. Information Disclosure Copies of IDS Statement (IDS)/PTO-1449 Citations
5	4. Oath or Declaration [Total Pages 2]]	11 X Preliminary Amendment
	a. X Newly executed (original or copy)	<u> </u>	12. X Return Receipt Postcard (MPEP 503) (Should be specifically itemized)
ile i	b. Copy from a prior application (37 C.F.R. (for continuation/divisional with Box 16 comple. DELETION OF INVENTOR(S)		13. Statement(s) Statement filed in prior application
hud Sud sire	Signed statement attached dele inventor(s) named in the prior app	lication,	(PTO/SB/09-12) 14. X (if foreign priority is claimed)
in in	see 37 C F.R. §§ 1 63(d)(2) and '		15. Other:
	FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. \$ 1.21), IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R.	EXCEPT	
			upply the requisite information below and in a preliminary amendment:
	Continuation Divisional Continuation Prior application information Examiner	-in-part (C	IP) of prior application No/
	For CONTINUATION or DIVISIONAL APPS only: The entire di		of the prior application, from which an oath or declaration is supplied ing continuation or divisional application and is hereby incorporated by
	reference. The incorporation can only be relied up 11/11/14		been inadvertently omitted from the submitted application parts.
		attention with	ADDRESS
	Lad Customer Number of Bar Code Label:	157 Remarkal	or Correspondence address below
	Name		
	TOTAL		
	Address		
	City Country Telepi	State	Zip Code Fax
	Telepi	IVIIE	1 0%

Burden Hour Statement This form is estimated to take 0.2 hours to complete Time will vary depending upon the needs of the individual case. Any comments on the amount of time year are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

Registration No. (Attorney/Agent)

26,602

11/17/00

Date

Joseph C. Gil

Name (Print/Type)

Signature

PTO/SB/17 (12/99)

Approved for use through 09/30/2000. OMB 0651-0032

Palent and Trademark Office: U S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

F	E	E	TR	RAN	SM	IT	T	Al	L
		,	for	FY	20	00			

Patent fees are subject to annual revision
Small Entity payments <u>must</u> be supported by a small entity statement,
otherwise large entity fees must be paid See Forms PTO/SB/09-12 See 37 C F R §§ 1 27 and 1 28.

WARNING:

TOTAL	AMOUNT	OF	PAYMENT
		v.	CALMEN

(\$)	1.	182.	00

the state of the control indirect.		
Complete if Known		
Application Number	To be Assigned	
Filing Date	Herewith	
First Named Inventor	Klaus Raming et al	
Examiner Name		
Group / Art Unit		
Attorney Docket No.	Mo-5998/I eA 34 074	

Date

11/17/00

METHOD OF PAYMENT (check one)	FEE CALCULATION (continued)	
The Commissioner is hereby authorized to charge indicated fees and credit any overpayments to:	3. ADDITIONAL FEES Large Entity Small Entity Fee	
Deposit Account 13-3848	Code (\$) Code (\$)	Fee Paid
Number 13 3040	105 130 205 65 Surcharge - late filing fee or oath	0.00
Deposit Account Name Bayer Corporation	127 50 227 25 Surcharge - late provisional filing fee or cover sheet.	0.00
	139 130 139 130 Non-English specification	0.00
Charge Any Additional Fee Required Under 37 CFR §§ 1 16 and 1 17	147 2,520 147 2,520 For filing a request for reexamination	0.00
2. Payment Enclosed:	112 920* 112 920* Requesting publication of SIR prior to Examiner action	0.00
Check Money Other	113 1,840* 113 1,840* Requesting publication of SIR after Examiner action	0.00
FEE CALCULATION	115 110 215 55 Extension for reply within first month	0.00
1. BASIC FILING FEE	116 380 216 190 Extension for reply within second month	0.00
Large Entity Small Entity	117 870 217 435 Extension for reply within third month	0.00
Fee Fee Fee Fee Description Code (\$) Code (\$) Fee Paid	118 1,360 218 680 Extension for reply within fourth month	0.00
101 690 201 345 Utility filing fee 710.00	128 1,850 228 925 Extension for reply within fifth month	0.00
106 310 206 155 Design filing fee	119 300 219 150 Notice of Appeal	0.00
107 480 207 240 Plant filing fee	120 300 220 150 Filing a brief in support of an appeal	0.00
108 690 208 345 Reissue filing fee	121 260 221 130 Request for oral hearing	0.00
114 150 214 75 Provisional filing fee	138 1,510 138 1,510 Petition to institute a public use proceeding	0.00
SUBTOTAL (1) (\$) 710.00	140 110 240 55 Petition to revive - unavoidable	0.00
2. EXTRA CLAIM FEES	141 1,210 241 605 Petition to revive - unintentional	0.00
Fee from	142 1,210 242 605 Utility issue fee (or reissue) 143 430 243 215 Design issue fee	0.00
Total Claims 29 -20** = 9 x 18 = 162	144 580 244 290 Plant issue fee	0.00
Independent 2 - 3** = 0 x 80 = 0	122 130 122 130 Pelitions to the Commissioner	0.00
Multiple Dependent 270 = 270	400 50 400 50	0.00
**or number previously paid, if greater, For Reissues, see below	126 240 426 240	0.00
Large Entity Small Entity	Submission of Information Disclosure Stmt	0.00
Fee Fee Fee Fee Description Code (\$) Code (\$)	Recording each patent assignment per property (times number of properties)	40.00
103 18 203 9 Claims in excess of 20	146 690 246 345 Filing a submission after final rejection	
102 78 202 39 Independent claims in excess of 3	(37 CFR § 1.129(a)) 149 690 249 345 For each additional invention to be	0.00
104 260 204 130 Multiple dependent claim, if not paid	examined (37 CFR § 1.129(b))	0.00
109 78 209 39 ** Reissue independent claims over original patent	Other fee (specify)	0.00
110 18 210 9 ** Reissue claims in excess of 20 and over original patent	Other fee (specify)	0.00
SUBTOTAL (2) (\$) 432.00	Reduced by Basic Filing Fee Paid SUBTOTAL (3)	40.00
SUBMITTED BY	Complete (if applicable)	
Name (Print/Type) Joseph C. Gil Registration No. (Attorney/Agent) 26,602 Telephone 777-2342		
Signature	Dale 11/17/0	

Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

PATENT APPLICATION Mo-5998 LeA 34,074

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICA	TION OF)
KLAUS R	AMING ET AL.)
SERIAL NUMBER: TO BE ASSIGNED		
FILED: H	EREWITH)
TITLE:	GABA B RECEPTORS)

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington D.C. 20231
Sir:

Upon the granting of a Serial Number and Filing date and prior to the examination of the subject application, kindly amend the application as follows. IN THE SPECIFICATION:

On page 1, between lines 5 and 6, please insert -- BACKGROUND OF THE INVENTION --.

On page 2, before line 2, please insert -- BRIEF SUMMARY OF THE INVENTION --.

On page 3, before line 2, please insert -- DETAILED DESCRIPTION OF THE INVENTION --.

"Express Mail" mailing label number Date of Deposit	EF080092618US November 17, 2000	
I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Washington, D.C. 20231 Donna J. Veatch		
(Name of person mailing paper or fee) Signature of person mailing paper or fee)		

On page 7, line 4, following "the main operator and promoter regions of", please delete "phase" and insert -- phage --.

On page 21, line 1, please delete "Patent Claims" and insert -- WHAT IS CLAIMED IS: --.

IN THE CLAIMS:

Please amend Claims 1 - 8 as follows:

- 1. (Amended) A purified and isolated [P]polypeptide [which exerts] having the biological activity of a GABA B receptor and [which comprises] comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.
- 2. (Amended) <u>The [P]polypeptide according to Claim 1, characterized in that the amino acid sequence corresponds to a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.</u>
- 3. (Amended) A purified and isolated [N]nucleic acid comprising a nucleotide sequence which encodes a polypeptide according to Claim 1.
- 4. (Amended) The [N]nucleic acid according to Claim 3, characterized in that it is a single- or double-stranded DNA or RNA.
- 5. (Amended) The [N]nucleic acid according to Claim 4, characterized in that it is a fragment of genomic DNA or cDNA.
- 6. (Amended) The [N]nucleic acid according to Claim 3, characterized in that the nucleotide sequence corresponds to a sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.
- 7. (Amended) The [N]nucleic acid according to Claim 3, characterized in that it hybridizes under stringent conditions to the sequences of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.
- 8. (Amended) A DNA construct comprising a nucleic acid according to [any of] Claim[s] 3 [to 7] and a heterologous promoter.

Please cancel Claim 9.

Please amend Claims 10 -17 as follows:

- 10. (Amended) A vector [according to Claim 9], characterized in that the nucleic acid of Claim 3 is [operatively] linked to regulatory sequences which ensure the expression of the nucleic acid in pro-karyotic or eukaryotic cells.
- 11. (Amended) A [H]host cell [containing] stably transformed or transfected with a nucleic acid according to [any of] Claim[s] 3 [to 7, a DNA construct according to Claim 8 or a vector according to Claim 9 or 10].
- 12. (Amended) <u>The</u> [H]host cell according to Claim 11, which is a prokaryotic cell[, in particular E. coli].
- 13. (Amended) \underline{A} [H] \underline{h} ost cell according to Claim 11, which is a eukaryotic cell[, in particular a mammalian or insect cell].
- 14. (Amended) An [A]antibody substance which binds specifically to a polypeptide according to Claim 1.
- 15. (Amended) A [T]transgenic invertebrate containing a nucleic acid according to [any of] Claim[s] 3 [to 7].
- 16. (Amended) <u>The [T]transgenic invertebrate according to Claim 15, which is Drosophila melanogaster or Caenorhabditis elegans.</u>
- 17. (Amended) The [T]transgenic progeny of an invertebrate according to Claim 15 [or 16].

Please cancel Claims 18, 19, 20, 21, 22, 23, 24 and 25.

Please add Claims 26 - 38 as follows:

- -- 26. A vector comprising a nucleic acid according to Claim 3 or the nucleic acid of Claim 3 and a heterologous promoter.
- 27. The host cell of Claim 11 containing a DNA construct according to Claim 8.
 - 28. The host cell of Claim 11 containing a vector according to Claim 10.
 - 29. The host cell of Claim 11 wherein the prokaryotic cell is E. coli.
- 30. The host cell of Claim 11 wherein the eukaryotic cell is a mammalian or insect cell.
- 31. A method of generating a polypeptide having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO:2, SEQ ID NO:4 or SEQ ID NO:6, comprising

Mo-5998 - 3 -

- a) culturing a host cell stably transformed or transfected with a nucleic acid according to Claim 3 under conditions which ensure the expression of the nucleic acid according to Claim 3, or
- b) expressing a nucleic acid according to Claim 3 in an in-vitro system, and
- (c) obtaining the polypeptide from the cell, the culture medium or the in-vitro system.
- 32. A method of generating a nucleic acid according to Claim 3, comprising the steps selected from the group consisting of:
- (a) full chemical synthesis in a manner known per se,
- (b) chemical synthesis of oligonucleotides further comprising, labelling of the oligonucleotides, hybridizing the oligonucleotides to DNA of a genomic library or cDNA library generated from insect genomic DNA or insect mRNA, respectively, and selecting positive clones and isolating the hybridizing DNA from positive clones, and
- (c) chemical synthesis of oligonucleotides and amplification of the target DNA by PCR.
- 33. A method of generating a transgenic invertebrate, comprising stably transforming or transfecting an invertebrate cell or organism with a nucleic acid selected from the group consisting of a nucleic acid of Claim 3, a nucleic acid of Claim 3 and a heterologous promoter, and a vector comprising a nucleic acid of Claim 3 operatively linked to regulatory sequences ensuring expression of the nucleic acid of Claim 3 in the invertebrate cell or organism.
- 34. A method of finding new active compounds for crop protection which alter the properties of polypeptides having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6, comprising the steps of:
- a) providing a host cell according to Claim 11,
- b) culturing the host cell in the presence of a chemical or of a sample comprising a multiplicity of chemicals, and
- (c) detecting altered properties .

Mo-5998 - 4 -

- 35. A method of finding a chemical which binds to a polypeptide having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6, comprising the steps of:
- (a) contacting a polypeptide according to Claim 1 or a host cell according to Claim 11 with a chemical or a mixture of chemicals under conditions which permit the interaction of a chemical with the polypeptide, and
- (b) determining the chemical which binds specifically to the polypeptide.
- 36. A method of finding a chemical which alters the expression of a polypeptide having the biological activity of a GABA B receptor and comprising an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6, comprising the steps of :
- (a) contacting a host cell according to Claim 11 or a transgenic invertebrate according to Claim 15 with a chemical or a mixture of chemicals,
- (b) determining the concentration of the polypeptide according to Claim 1, and
- (c) determining the chemical which specifically affects the expression of the polypeptide.
- 37. A method of finding new active compounds for crop protection or for finding genes which encode polypeptides which participate in the synthesis of functionally similar GABA B receptors in insects comprising selecting for said active compounds with a bio-molecule, cell, or organism selected from the group consisting of:
- (a) a polypeptide according to Claim 1,
- (b) a nucleic acid according to Claim 3,
- (c) a vector according to Claim 26,
- (d) a host cell according to Claim 11,
- (e) an antibody substance according to Claim 14; and
- (f) a transgenic invertebrate according to Claim 15.
- 38. A method of killing insect pests comprising applying a modulator of a polypeptide according to Claim 1. --

Mo-5998

REMARKS

The Claims have been amended to put them in a form more commonly used for US filing. Claims 1 to 17 have been amended as to form and to remove multiple dependencies. Claim 9 has been cancelled and rewritten as Claim 26. Claim 11 has been amended to remove multiple dependent form and Claims 27 to 30 added to claim the dependent subject matter. Claims 18 and 19 have been cancelled and rewritten as Claims 31 and 32. Claims 20, 21, 22 and 23 have been cancelled and rewritten as Claim 33, 34, 35, and 36. Claims 24 and 25 have been cancelled and rewritten as Claims 37 and 38.

Applicants attach hereto the Sequence Listing in the form of a Computer readable Copy and Paper Copy. Applicants by their Attorney state that the contents of the Computer Readable Copy and Paper Copy are the same and no new matter has been added.

An action on the merits is respectfully requested.

Respectfully submitted,

KLAUS RAMING MARIO MEZLER THOMAS MÜLLER

Joseph C. Gil

Attorney for Applicants

Reg. No. 26,602

Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741 (412) 777-2342 FACSIMILE PHONE NUMBER: (412) 777-5449 s:\ksl\JA0057

10

15

20

GABA B receptors

The invention relates to polypeptides which exert the biological activity of GABA B receptors and to nucleic acids encoding these polypeptides, and, in particular, to their use for finding active compounds for crop protection.

Gamma-amino-butyric acid (GABA) is the most important inhibitory neurotransmitter in the nervous system of vertebrates and invertebrates. The GABA receptors can be classified into two subfamilies, the GABA A and GABA B receptors. Amongst these, the GABA A receptors are ligand-controlled ion channels, while the GABA B receptors are metabotropic, G-protein-coupled receptors. GABA B receptors affect the release of various neurotransmitters and the activity of ion channels.

GABA B receptors have been studied extensively, in particular in vertebrates. Two subtypes (GABA B1 and GABA B2), which are functionally active as heterodimers, are known here (Jones et al., 1998; Kaupmann et al., 1998; White et al., 1998).

In insects, GABA is the most important inhibitory neurotransmitter of the central nervous system. Accordingly, GABA receptors can be detected electrophysiologically on preparations of insect central ganglia. Both the GABA A receptors and the GABA B receptors are the molecular target of important natural and synthetic insecticidally active compounds (Sattelle, 1990; Fukunaga et al., 1999).

The protein sequence of a number of insect GABA A receptors is already known. Thus, the sequences of three different subunits have been described for Drosophila melanogaster (ffrench-Constant et al., 1991; Harvey et al., 1994; Henderson et al., 1993).

The provision of insect GABA B receptors is therefore of great practical importance, for example in the search for new insecticides.

The present invention is therefore based in particular on the object of providing insect GABA B receptors and on assay systems based thereon with a high throughput of test compounds (high throughput screening assays; HTS assays).

5

The object is achieved by providing polypeptides which exert at least one biological activity of a GABA B receptor and which comprise an amino acid sequence having at least 70% identity, preferably at least 80% identity, especially preferably at least 90% identity, very especially preferably at least 95% identity, with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6 over a length of at least 20, preferably at least 25, especially preferably at least 30 consecutive amino acids, and very especially preferably over their full lengths.

15

10

The degree of identity of the amino acid sequences is preferably determined using the program GAP from the package GCG, Version 9.1, with standard settings (Devereux et al., 1984).

20

25

The term "polypeptides" as used in the present context not only relates to short amino acid chains which are usually termed peptides, oligopeptides or oligomers, but also to longer amino acid chains which are usually termed proteins. It encompasses amino acid chains which can be modified either by natural processes, such as post-translational processing, or by chemical prior-art methods. Such modifications may occur at various sites and repeatedly in a polypeptide, such as, for example, on the peptide backbone, on the amino acid side chain, on the amino and/or the carboxyl terminus. For example, they encompass acetylations, acylations, ADP-ribosylations, amidations, covalent linkages to flavins, haem-moieties, nucleotides or nucleotide derivatives, lipids or lipid derivatives or phosphatidylinositol, cyclizations, disulphide bridge formations, demethylations, cystine formations, formylations, gamma-carboxylations, glycosylations, hydroxylations, iodinations, methylations, myristylations, oxidations, proteolytic processings, phosphorylations, selenylations and tRNA-mediated amino acid additions.

10

15

20

The polypeptides according to the invention may exist in the form of "mature" proteins or parts of larger proteins, for example as fusion proteins. They can furthermore exhibit secretion or leader sequences, pro-sequences, sequences which allow simple purification, such as multiple histidine residues, or additional stabilizing amino acids.

The biological activity of the GABA B receptors is preferably achieved by heterodimerization of the polypeptides according to the invention. For example, the polypeptides according to the invention with an amino acid sequence of SEQ ID NO: 2 and SEQ ID NO: 4, SEQ ID NO: 2 and SEQ ID NO: 6 or SEQ ID NO: 4 and SEQ ID NO: 6 can gain receptor activity by dimerization.

The polypeptides according to the invention need not constitute complete receptors, but may also be fragments thereof, as long as they still have at least one biological activity of the complete receptors. Polypeptides which, compared with GABA B receptors, are composed of the polypeptides according to the invention with an amino acid sequence of SEQ ID NO: 2 and SEQ ID NO: 4, which have a 50% higher or reduced activity, are still considered to be in accordance with the invention. The polypeptides according to the invention need not be deducible from Drosophila melanogaster GABA B receptors. Polypeptides which are also considered as being in accordance with the invention are those which correspond to the GABA B receptors of, for example, the following invertebrates, or fragments thereof which can still exert the biological activity of these receptors: arthropods, nematodes, molluscs.

25

30

In comparison with the corresponding region of naturally occurring GABA B receptors, the polypeptides according to the invention can have deletions or amino acid substitutions, as long as they still exert at least one biological activity of the complete receptors. Conservative substitutions are preferred. Such conservative substitutions encompass variations, one amino acid being replaced by another amino acid from amongst the following group:

- 1. small aliphatic residues, unpolar residues or residues of little polarity: Ala, Ser, Thr, Pro and Gly;
- 2. polar, negatively charged residues and their amides: Asp, Asn, Glu and Gln;
- 5 3. polar, positively charged residues: His, Arg and Lys;
 - 4. large aliphatic unpolar residues: Met, Leu, Ile, Val and Cys; and
 - 5. aromatic residues: Phe, Tyr and Trp.

Preferred conservative substitutions can be seen from the following list:

Original residue	Substitution
Ala	Gly, Ser
Arg	Lys
Asn	Gln, His
Asp	Glu
Cys	Ser
Gln	Asn
Glu	Asp
Gly	Ala, Pro
His	Asn, Gln
Ile	Leu, Val
Leu	Ile, Val
Lys	Arg, Gln, Glu
Met	Leu, Tyr, Ile
Phe	Met, Leu, Tyr
Ser	Thr
Thr	Ser
Trp	Tyr
Tyr	Trp, Phe
Val	Ile, Leu

10

15

25

30

The term "biological activity of a GABA B receptor" as used in the present context means binding GABA.

Preferred embodiments of the polypeptides according to the invention are Drosophila melanogaster GABA B receptors which have the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.

Subject-matter of the present invention are also nucleic acids which encode the polypeptides according to the invention.

The nucleic acids according to the invention are, in particular, single-stranded or double-stranded deoxyribonucleic acids (DNA) or ribonucleic acids (RNA). Preferred embodiments are fragments of genomic DNA which may contain introns, and cDNAs.

cDNAs which have a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5 constitute preferred embodiments of the nucleic acids according to the invention.

The present invention also encompasses nucleic acids which hybridize under stringent conditions with sequences of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.

The term "to hybridize" as used in the present context describes the process during which a single-stranded nucleic acid molecule undergoes base pairing with a complementary strand. Starting from the sequence information disclosed herein, this allows, for example, DNA fragments to be isolated from insects other than Drosophila melanogaster which encode polypeptides with the biological activity of GABA B receptors.

Preferred hybridization conditions are stated hereinbelow:

10

15

25

30

Hybridization solution: 6X SSC / 0 % formamide, preferred hybridization solution: 6X SSC / 25 % formamide

Hybridization temperature: 34°C, preferred hybridization temperature: 42°C

Wash step 1: 2X SSC at 40°C,

Wash step 2: 2X SSC at 45°C; preferred wash step 2: 0.6X SSC at 55°C, especially preferred wash step 2: 0.3 X SSC at 65°C.

The present invention encompasses furthermore nucleic acids which have at least 70% identity, preferably at least 80% identity, especially preferably at least 90% identity, very especially preferably at least 95% identity, with a sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5 over a length of at least 20, preferably at least 25, especially preferably at least 30, consecutive nucleotides, and very especially preferably over their full lengths.

The degree of identity of the nucleic acid sequences is preferably determined with the aid of program GAP from the package GCG, Version 9.1, using standard settings.

The sequences in accordance with the GenBank accession numbers (Acc. No.)

AC002502, AF145639 and AC004420 are incorporated into the present description by reference.

Subject-matter of the present invention are furthermore DNA constructs which comprise a nucleic acid according to the invention and a heterologous promoter.

The term "heterologous promoter" as used in the present context refers to a promoter which has properties other than the promoter which controls the expression of the gene in question in the original organism. The term "promoter" as used in the present context generally refers to expression control sequences.

10

15

The choice of heterologous promoters depends on whether pro- or eukaryotic cells or cell-free systems are used for expression. Examples of heterologous promoters are the SV40, the adenovirus or the cytomegalovirus early or late promoter, the lac system, the trp system, the main operator and promoter regions of phase lambda, the fd coat protein control regions, the 3-phosphoglycerate kinase promoter, the acid phosphatase promoter and the yeast α -mating factor promoter.

Subject-matter of the present invention are furthermore vectors which contain a nucleic acid according to the invention or a DNA construct according to the invention. All the plasmids, phasmids, cosmids, YACs or artificial chromosomes used in molecular biology laboratories can be used as vectors.

Subject-matter of the present invention are also host cells comprising a nucleic acid according to the invention, a DNA construct according to the invention or a vector according to the invention.

The term "host cell" as used in the present context refers to cells which do not naturally comprise the nucleic acids according to the invention.

Suitable host cells are prokaryotic cells such as bacteria from the genera Bacillus,
Pseudomonas, Streptomyces, Streptococcus, Staphylococcus, preferably E. coli, but
also eukaryotic cells such as yeasts, mammalian cells, amphibian cells, insect cells or
plant cells. Preferred eukaryotic host cells are HEK-293, Schneider S2, Spodoptera
Sf9, Kc, CHO, COS1, COS7, HeLa, C127, 3T3 or BHK cells and, in particular,
Xenopus oocytes.

Another subject-matter of the invention are antibodies which specifically bind to the abovementioned polypeptides or receptors. Such antibodies are produced in the customary manner. For example, such antibodies may be produced by injecting a substantially immunocompetent host with such an amount of a polypeptide according to the invention or a fragment thereof which is effective for antibody production, and

subsequently obtaining this antibody. Furthermore, an immortalized cell line which produces monoclonal antibodies may be obtained in a manner known per se. If appropriate, the antibodies may be labelled with a detection reagent. Preferred examples of such a detection reagent are enzymes, radiolabelled elements, fluorescent chemicals or biotin. Instead of the complete antibody, fragments may also be employed which have the desired specific binding properties. The term "antibodies" as used in the present context therefore also extends to parts of complete antibodies, such as Fa, F(ab')₂ or Fv fragments, which are still capable of binding to the epitopes of the polypeptides according to the invention.

10

5

The nucleic acids according to the invention can be used, in particular, for generating transgenic invertebrates. These may be employed in assay systems which are based on an expression, of the polypeptides according to the invention, which deviates from the wild type. Based on the information disclosed herein, it is furthermore possible to generate transgenic invertebrates where expression of the polypeptides according to the invention is altered owing to the modification of other genes or promoters.

15

The transgenic invertebrates are generated, for example, in the case of Drosophila melanogaster, by P-element-mediated gene transfer (Hay et al., 1997), or, in Caenorhabditis elegans, by transposon-mediated gene transfer (for example by Tc1; Plasterk, 1996).

20

Subject-matter of the invention are therefore also transgenic invertebrates which contain at least one of the nucleic acids according to the invention, preferably transgenic invertebrates of the species Drosophila melanogaster or Caenorhabditis elegans, and their transgenic progeny. The transgenic invertebrates preferably contain the polypeptides according to the invention in a form which deviates from the wild type.

30

25

Subject-matter of the present invention are furthermore processes for producing the polypeptides according to the invention. To produce the polypeptides encoded by the

10

15

20

25

30

nucleic acids according to the invention, host cells which contain one of the nucleic acids according to the invention can be cultured under suitable conditions, where the nucleic acid to be expressed may be adapted to the codon usage of the host cells. Thereupon, the desired polypeptides can be isolated from the cells or the culture medium in the customary manner. The polypeptides may also be produced in *in vitro* systems.

A rapid method of isolating the polypeptides according to the invention which are synthesized by host cells using a nucleic acid according to the invention starts with the expression of a fusion protein, it being possible for the fusion partner to be affinity-purified in a simple manner. For example, the fusion partner may be glutathione Stransferase. The fusion protein can then be purified on a glutathione affinity column. The fusion partner can then be removed by partial proteolytic cleavage, for example at linkers between the fusion partner and the polypeptide according to the invention to be purified. The linker can be designed such that it includes target amino acids such as arginine and lysine residues, which define sites for trypsin cleavage. To generate such linkers, standard cloning methods using oligonucleotides may be employed.

Other purification methods which are possible are based on preparative electrophoresis, FPLC, HPLC (for example using gel filtration, reversed-phase or moderately hydrophobic columns), gel filtration, differential precipitation, ion-exchange chromatography and affinity chromatography.

Since GABA B receptors constitute membrane proteins, the purification methods preferably involve detergent extractions, for example using detergents which have no, or little, effect on the secondary and tertiary structures of the polypeptides, such as nonionic detergents.

The purification of the polypeptides according to the invention can encompass the isolation of membranes, starting from host cells which express the nucleic acids according to the invention. Such cells preferably express the polypeptides according to

the invention in a sufficiently high copy number, so that the polypeptide quantity in a membrane fraction is at least 10 times higher than that in comparable membranes of cells which naturally express GABA B receptors; especially preferably, the quantity is at least 100 times, very especially preferably at least 1000 times higher.

5

The terms "isolation or purification" as used in the present context mean that the polypeptides according to the invention are separated from other proteins or other macromolecules of the cell or of the tissue. The protein content of a composition containing the polypeptides according to the invention is preferably at least 10 times, especially preferably at least 100 times, higher than in a host cell preparation.

10

The polypeptides according to the invention may also be affinity-purified without a fusion partner with the aid of antibodies which bind to the polypeptides.

15

20

Another subject-matter of the present invention are processes for the generation of the nucleic acids according to the invention. The nucleic acids according to the invention can be generated in the customary manner. For example, all of the nucleic acid molecules can be synthesized chemically, or else only short sections of the sequences according to the invention can be synthesized chemically, and such oligonucleotides can be radiolabelled or labelled with a fluorescent dye. The labelled oligonucleotides can be used for screening cDNA libraries generated starting from insect mRNA or for screening genomic libraries generated starting from insect genomic DNA. Clones which hybridize with the labelled oligonucleotides are chosen for isolating the DNA in question. After characterization of the DNA which has been isolated, the nucleic acids according to the invention are obtained in a simple manner.

25

Alternatively, the nucleic acids according to the invention can also be generated by means of PCR methods using chemically synthesized oligonucleotides.

10

15

20

25

The term "oligonucleotide(s)" as used in the present context denotes DNA molecules composed of 10 to 50 nucleotides, preferably 15 to 30 nucleotides. They are synthesized chemically and can be used as probes.

The nucleic acids or polypeptides according to the invention allow new active compounds for crop protection and/or pharmaceutical active compounds for the treatment of humans and animals to be identified, such as chemical compounds which, being modulators, in particular agonists or antagonists, alter the properties of the GABA B receptors according to the invention. To this end, a recombinant DNA molecule comprising at least one nucleic acid according to the invention is introduced into a suitable host cell. The host cell is grown in the presence of a compound or a sample comprising a variety of compounds under conditions which allow expression of the receptors according to the invention. A change in the receptor properties can be detected for example as described hereinbelow in Example 2. This allows, for example, insecticidal substances to be found.

GABA B receptors alter the concentration of intracellular cAMP via interaction with G proteins, preferably after previously having been activated. Thus, changes in the receptor properties by chemical compounds can be measured after heterologous expression, for example by measuring the intracellular cAMP concentrations directly via ELISA assay systems (Biomol, Hamburg, Germany) or RIA assay systems (NEN, Schwalbach, Germany) in HTS format. An indirect measurement of the cAMP concentration is possible with the aid of reporter genes (for example luciferase), whose expression depends on the cAMP concentration (Stratowa et al., 1995). The coexpression of GABA B receptors with specific G proteins, for example Gα15, Gα15 or else chimeric G proteins, in heterologous systems and measuring the rise in calcium, for example using fluorescent dyes or equorin, is an alternative possibility of carrying out the screening (Stables et al., 1997; Conklin et al., 1993).

15

20

30

Furthermore, the binding of GTP to the activated G protein can be used as a read-out-system for assaying substances. Also, binding experiments with labelled GABA can be employed for screening.

The term "agonist" as used in the present context refers to a molecule which activates GABA B receptors.

The term "antagonist" as used in the present context refers to a molecule which displaces an agonist from its binding site.

The term "modulator" as used in the present invention constitutes the generic term for agonist and antagonist. Modulators can be small organochemical molecules, peptides or antibodies which bind to the polypeptides according to the invention. Other modulators may be small organochemical molecules, peptides or antibodies which bind to a molecule which, in turn, binds to the polypeptides according to the invention, thus affecting their biological activity. Modulators may constitute mimetics of natural substrates and ligands.

The modulators are preferably small organochemical compounds.

The binding of the modulators to the polypeptides according to the invention can alter the cellular processes in a manner which leads to the death of the insects treated therewith.

The present invention therefore also extends to the use of modulators of the polypeptides according to the invention as insecticides.

The nucleic acids or polypeptides according to the invention also allow compounds to be found which bind to the receptors according to the invention. Again, they can be applied to plants as insecticides. For example, host cells which contain the nucleic acids according to the invention and which express the corresponding receptors or

polypeptides, or the gene products themselves, are brought into contact with a compound or a mixture of compounds under conditions which permit the interaction of at least one compound with the host cells, the receptors or the individual polypeptides.

5

Using host cells or transgenic invertebrates which contain the nucleic acids according to the invention, it is also possible to find substances which alter receptor expression.

10

The above-described nucleic acids according to the invention, vectors and regulatory regions can furthermore be used for finding genes which encode polypeptides which participate in the synthesis, in insects, of functionally similar GABA B receptors. Functionally similar receptors are to be understood as meaning in accordance with the present invention receptors which comprise polypeptides which, while differing from the amino acid sequence of the polypeptides described herein, essentially have the same functions.

15

Information on the sequence listing and the figures

20

SEQ ID NO: 1, SEQ ID NO: 3 and SEQ ID NO: 5 show the nucleotide and amino acid sequences of the isolated GABA B cDNAs. SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6 furthermore show the amino acid sequences of the proteins deduced from the GABA B cDNA sequences.

25

Figure 1 shows a dose-effect curve of GABA and 3-APMPA on the Drosophila GABA B receptor composed of the polypeptides according to the invention with the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 4, expressed in Xenopus oocytes.

30

Figure 2 shows the functional coupling to the intracellular cAMP system of the coexpressed D-GABA B receptors R1/R2 composed of the polypeptides according to the invention with the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 4.

HEK293 luc cells which have been stably transfected with D-GABA B R1/R2 (D-GABA R1/2) and untransfected control cells (control) were stimulated with forskolin, forskolin and GABA, and also with GABA alone, and the intracellular cAMP concentration was measured. The D-GABA B-R1/2-transfected cells showed a marked reduction in forskolin-induced cAMP response, while the control cells were unresponsive.

15

20

25

Examples

Example 1

5 Isolation of the above-described polynucleotide sequences

Polynucleotides were manipulated by standard methods of recombinant DNA technology (Sambrook et al., 1989). Nucleotide and protein sequences were processed in terms of bioinformatics using the package GCG Version 9.1 (GCG Genetics Computer Group, Inc., Madison Wisconsin, USA).

Example 2

Generation of the expression constructs

The sequence regions of SEQ ID NO: 1, SEQ ID NO: 3 and SEQ ID NO: 5 were amplified by means of polymerase chain reaction (PCR) and cloned into the vector pcDNA3.1/Neo (Invitrogen, Groningen).

Heterologous expression

HEK293 cells were cultured at 5% CO₂ and 37°C in Dulbecco's modified Eagle's medium and 10% foetal calf serum. MBS (Stratagene, La Jolla, USA) was used for the gene transfer, following the manufacturer's instructions. 24 h to 48 h after the gene transfer, the cells were sown intro microtiter plates at various densities. Recombinant cells were selected over 3 to 4 weeks by growth in Dulbecco's modified Eagles medium and 10% foetal calf serum and 700 μg/ml Geneticin (G418, Life Technologies, Karlsruhe) as selection marker. Individual resistant clones were analysed as described below.

10

15

20

25

Insect GABA B receptors were also expressed functionally in Xenopus oocytes. To this end, G-protein-activatable potassium channels (GIRK1 and GIRK4) were coexpressed in order to measure activation of the GABA B receptors (White et al., 1998).

cAMP measurements

HEK293 cell strains were used for determining the cAMP concentration. On the one hand, HEK293 cells stably coexpressed the two Drosophila melanogaster receptors D-GABA B R1 and D-GABA B R2 (D-GABA R1/2). On the other hand, untransfected control cells were incorporated into the assay (control). In each case, the cells were plated into 96-well-plates at a density of 20,000 cells per cavity. Control cells were incubated in culture medium (DMEM, 10% FCS, penicillin and streptomycin, 50 U/ml and 50 µg/ml (Life Technologies)) and D-GABA-R1/2 expressing cells in selection medium (culture medium with 0.5 mg/ml Geneticin (G418, Life Technologies)) for 48 hours at 37°C until a cell density of approximately 80% was reached. Thereupon, the medium was removed, and the cells were washed once with unsupplemented DMEM. After incubation for 30 minutes with IBMX (300 μM) at 37°C, cells were stimulated for 30 minutes with GABA (100 μM) and/or forskolin (10 µM) at 37°C. All incubation steps were carried out in unsupplemented DMEM (Life Technologies). Then, the stimulation medium was removed and the cells were lysed with 50 µl of HCl (0.1 N) per cavity. The cells were lysed for 20 minutes at room temperature with shaking, and the cAMP concentration of the cell lysates were determined in triplicate using the enzyme immunoassay (EIA) kit AK-200 (Biomol, Hamburg, Germany) following the manufacturer's description.

10

15

20

Oocyte measurements

1. Oocyte preparation

The oocytes were obtained from an adult female Xenopus laevis frog (Horst Kähler, Hamburg, Germany). The frogs were kept in large tanks with circulating water at a water temperature of 20 - 24°C. Parts of the frog ovary were removed through a small incision in the abdomen (approx. 1 cm), with full anaesthesia. The ovary was then treated for approximately 140 minutes with 25 ml collagenase (type I, C-0130, SIGMA-ALDRICH CHEMIE GmbH, Deisenhofen, Germany; 355 U/ml, prepared with Barth's solution without calcium in mM: NaCl 88, KCl 1, MgSO₄ 0.82, NaHCO₃ 2.4, Tris/HCl 5, pH7.4), with constant shaking. Then, the oocytes were washed with Barth's solution without calcium. Only oocytes at maturity stage V (Dumont, 1972) were selected for the further treatment and transferred into microtiter plates (Nunc MicroWell™ plates, cat. No. 245128 + 263339 (lid), Nunc GmbH & Co. KG, Wiesbaden, Germany) filled with Barth's solution (in mM: NaCl 88, KCl 1, MgSO₄ 0.82, Ca(NO₃)₂ 0.33, CaCl₂ 0.41, NaHCO₃ 2.4, Tris/HCl 5, pH7.4) and gentamicin (gentamicin sulphate, G-3632, SIGMA-ALDRICH CHEMIE GmbH, Deisenhofen, Germany; 100 U/ml). Then, the oocytes were kept in a cooling incubator (type KB 53, WTB Binder Labortechnik GmbH, Tuttlingen, Germany) at 19.2°C.

2. Injecting the oocytes

25

Injection electrodes of diameter 10 - 15 μm were prepared using a pipette-drawing device (type L/M-3P-A, List-electronic, Darmstadt-Eberstadt, Germany). Prior to injection, aliquots with the D-GABA B DNA or GIRK1/4 DNA were defrosted and diluted with water to a final concentration of 10 ng/μl. The DNA samples were centrifuged for 120 seconds at 3200 g (type Biofuge 13, Heraeus Instruments GmbH, Hanau, Germany). An extended PE

tube was subsequently used as transfer tube to fill the pipettes from the rear end. The injection electrodes were attached to a X,Y,Z positioning system (treatment centre EP1090, isel-automation, Eiterfeld, Germany). With the aid of a Macintosh computer, the oocytes in the microtiter plate wells were approached, and approximately 50 nl of the DNA solution were injected into the oocytes by briefly applying a pressure (0.5-3.0 bar, 3-6 seconds).

A two-electrode voltage terminal equipped with a TURBO TEC-10CD (npi electronic GmbH, Tamm, Germany) amplifier was used to carry out the

3. Electrophysiological measurements

15

20

10

5

electrophysiological measurements. The micropipettes required for this purpose were drawn in two movements from aluminium silicate glass (capillary tube, Article No. 14 630 29, l=100 mm, $\varnothing_{ext}=1.60 \text{ mm}$, $\varnothing_{int}=1.60 \text{ mm}$ 1.22 mm, Hilgenberg GmbH, Malsfeld, Germany) (Hamill et al., 1981). Current and voltage electrodes had a diameter of 1-3 µm and were filled with 1.5 M KCl and 1.5 M potassium acetate. The pipettes had a capacitance of 0.2-0.5 MW. To carry out the electrophysiological measurements, the oocytes were transferred into a small chamber which was flushed continuously with normal Rimland solution (in mM: KCl 90, MgCl₂ 3, HEPES 5, pH 7.2). To apply a substance, the perfusion solution was exchanged for a substance solution with the same composition and additionally the desired substance concentration. The successful expression of the D-GABA B DNA was checked after one week at a terminal potential of -60 mV. Unresponsive oocytes were discarded. All the others were used for substance testing. The data were documented by means of a YT plotter (YT plotter, Model BD 111,

Kipp & Zonen Delft BV, AM Delft, Netherlands). When test substances were assayed in concentration series, these measurements were carried out on at

least two different oocytes and at at least five different concentrations. The

substances have been assayed directly without preincubation in the presence of GABA (gamma-amino-N-butyric acid, A2129, SIGMA-ALDRICH

25

20

25

CHEMIE GmbH, Deisenhofen, Germany) for their antagonism. The individual data were entered in Origin (evaluation software Microcal Origin, Microcal Software, Inc., Northampton, MA 01060-4410 USA) (Additive GmbH, Friedrichsdorf/Ts, Germany). Means, standard deviation, IC₅₀ values and IC₅₀ curves were calculated using Origin. These measurements were carried out at least in duplicate.

References:

10 Conklin et al. (1993) Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha, Nature 363, 274-276

Devereux et al. (1984) Nucleic Acids Research 12, 387

Dumont, J. N. (1972) Oogenesis in *Xenopus laevis* (Daudin). 1. Stages of oocyte development in laboratory maintained animals, J. Morphol. 136, 153-180

Fukunaga, A. et al. (1999) Insecticidal properties of 3-aminopropyl(methyl)-phosphinic acid and its effect on K+-evoked release of acetylcholine from cockroach synaptosomes, Comp. Biochem. and Pysiol. Part C 122, 283-286

ffrench-Constant, R. H. et al. (1991) Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus, Proc. Natl. Acad. Sci. U.S.A. 88, 7209-7213

Hamill, O.P. et al. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfügers Arch. 391, 85-100

Harvey, R. J. et al. (1994) Sequence of a Drosophila ligand-gated ion-channel polypeptide with an unusual amino-terminal extracellular domain, J. Neurochem. 62, 2480-2483

Hay et al. (1997) P element insertion-dependent gene activation in the Drosophila eye, Proceedings of The National Academy of Sciences of The United States of America 94 (10), 5195-5200

5

Henderson, J. E. et al. (1993) Characterization of a putative gamma-aminobutyric acid (GABA) receptor beta subunit gene from Drosophila melanogaster, Biochem. Biophys. Res. Commun. 193, 474-482

10

Jones K. A. et al. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2, Nature 396, 674-679

Kaupmann K. et al. (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes, Nature 396, 683-687

15

Plasterk (1996) The Tc1/mariner transposon family, Transposable Elements/Current Topics in Microbiology and Immunology 204, 125-143

20

Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbour Press

Sattelle D. B. (1990) GABA Receptors of Insects, Advances in Insect Physiology 22, 1-113

25

Stables et al. (1997) A Bioluminescent Assay for Agonist Activity at Potentially Any G-protein coupled Receptor, Analytical Biochemistry 252, 115-126

Stratowa C. et al. (1995) Use of a luciferase reporter system for characterizing Gprotein-linked receptors, Current Opinion in Biotechnology 6, 574-581

10

15

Patent Claims

- 1. Polypeptide which exerts the biological activity of a GABA B receptor and which comprises an amino acid sequence which has at least 70% identity with a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.
- Polypeptide according to Claim 1, characterized in that the amino acid sequence corresponds to a sequence of SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6.
- 3. Nucleic acid comprising a nucleotide sequence which encodes a polypeptide according to Claim 1.
- 4. Nucleic acid according to Claim 3, characterized in that it is single- or double-stranded DNA or RNA.
- 5. Nucleic acid according to Claim 4, characterized in that it is a fragment of genomic DNA or cDNA.
- 20 6. Nucleic acid according to Claim 3, characterized in that the nucleotide sequence corresponds to a sequence of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.
- 7. Nucleic acid according to Claim 3, characterized in that it hybridizes under stringent conditions to the sequences of SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5.
 - 8. DNA construct comprising a nucleic acid according to any of Claims 3 to 7 and a heterologous promoter.

- Vector comprising a nucleic acid according to any of Claims 3 to 7 or a DNA construct according to Claim 8.
- 10. A vector according to Claim 9, characterized in that the nucleic acid is operatively linked to regulatory sequences which ensure the expression of the nucleic acid in pro- or eukaryotic cells.
 - 11. Host cell containing a nucleic acid according to any of Claims 3 to 7, a DNA construct according to Claim 8 or a vector according to Claim 9 or 10.
 - 12. Host cell according to Claim 11, which is a prokaryotic cell, in particular E. coli.
 - 13. Host cell according to Claim 11, which is a eukaryotic cell, in particular a mammalian or insect cell.
 - 14. Antibody which binds specifically to a polypeptide according to Claim 1.
- Transgenic invertebrate containing a nucleic acid according to any of Claims 3 to 7.
 - 16. Transgenic invertebrate according to Claim 15, which is Drosophila melanogaster or Caenorhabditis elegans.
- 25 17. Transgenic progeny of an invertebrate according to Claim 15 or 16.
 - 18. Method of generating a polypeptide according to Claim 1, comprising
- (a) culturing a host cell according to any of Claims 11 to 13 under conditions which ensure the expression of the nucleic acid according to any of Claims 3 to 7, or

15

20

25

- (b) expressing a nucleic acid according to any of Claims 3 to 7 in an invitro system, and
- 5 (c) obtaining the polypeptide from the cell, the culture medium or the invitro system.
 - 19. Method of generating a nucleic acid according to any of Claims 3 to 7, comprising the following steps:
 - (a) full chemical synthesis in a manner known per se, or
 - (b) chemical synthesis of oligonucleotides, labelling of the oligonucleotides, hybridizing the oligonucleotides to DNA of a genomic library or cDNA library generated from insect genomic DNA or insect mRNA, respectively, selecting positive clones and isolating the hybridizing DNA from positive clones, or
 - (c) chemical synthesis of oligonucleotides and amplification of the target DNA by means of PCR.
 - 20. Method of generating a transgenic invertebrate according to Claim 15 or 16, which comprises introducing a nucleic acid according to any of Claims 3 to 7 or a vector of Claim 9 or 10.
 - 21. Method of finding new active compounds for crop protection, in particular compounds which alter the properties of polypeptides according to Claim 1, comprising the following steps:
 - (a) providing a host cell according to any of Claims 11 to 13,

10

15

20

25

- (b) culturing the host cell in the presence of a chemical or of a sample comprising a multiplicity of chemicals, and
- (c) detecting altered properties.

22. A method of finding a chemical which binds to a polypeptide according to Claim 1, comprising the following steps:

- (a) contacting a polypeptide according to Claim 1 or a host cell according to any of Claims 11 to 13 with a chemical or a mixture of chemicals under conditions which permit the interaction of a chemical with the polypeptide, and
- (b) determining the chemical which binds specifically to the polypeptide.
- 23. Method of finding a chemical which alters the expression of a polypeptide according to Claim 1, comprising the following steps:
 - (a) contacting a host cell according to any of Claims 11 to 13 or a transgenic invertebrate according to Claim 15 or 16 with a chemical or a mixture of chemicals,
 - (b) determining the concentration of the polypeptide according to Claim 1, and
 - (c) determining the chemical which specifically affects the expression of the polypeptide.
- Use of a polypeptide according to Claim 1, of a nucleic acid according to any of Claims 3 to 7, of a vector according to Claim 9 or 10, of a host cell according to any of Claims 11 to 13, of an antibody according to Claim 14 or

of a transgenic invertebrate according to Claim 15 or 16 for finding new active compounds for crop protection or for finding genes which encode polypeptides which participate in the synthesis of functionally similar GABA B receptors in insects.

25. Use of a modulator of a polypeptide according to Claim 1 as insecticide.

GABA B Receptors

Abstract

The invention relates to polypeptides which exert the biological activity of GABA B receptors, and to nucleic acids which encode these polypeptides, and in particular to their use for finding active compounds for crop protection.

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

GABA B receptors

GIADII D 1000pto10					
the specification of wh	nich is attached	d hereto,			
or was filed on			_ as		
Application Serial No.			_		
I hereby state that I identified specification			erstand the co	ontents	of the above-
I acknowledge the duability of this applications, \$1.56.	ity to disclose ation in accord	informatio dance with	n which is ma Title 37, Cod	aterial t e of Fe	o the patent- deral Regula-
I hereby claim foreign of any foreign appli and have also identificate having a f is claimed:	cation(s) for fied below any	patent or foreign a	inventor's ce pplication for	rtificate patent	listed below or inventor's
Prior Foreign Applicat	tion(s), the pr	riority(ies)	of which is/ar	e to be	claimed:
19955408.0 (Number)	Germany (Country)		November 18, (Month/Day/Y		d)
I hereby claim the be States application(s) the claims of this ap cation in the manner Code, §112, I acknow fined in Title 37, Co- filing date of the pr date of this application	listed below a plication is no provided by vledge the duta de of Federal ior application	and, insofar ot disclosed the first pa ty to disclo Regulations	r as the subject in the prior aragraph of Tose the matering, \$1.56 which	ect matt United itle 35, al infor	er of each of States appli- United States mation as de- d between the
(Application Serial N	0.)	(Filing Dat	re)		(Status)
				(patented,	pending, abandoned)
(Application Serial N	0.)	(Filing Dat	e)		(Status) pending, abandoned)
				(parented,	pending, anandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

JOSEPH C. GIL, Patent Office Registration Number 26,602
ARON PREIS, Patent Office Registration Number 29,426
LYNDANNE M. WHALEN, Patent Office Registration Number 29,457
THOMAS W. ROY, Patent Office Registration Number 29,582
RICHARD E. L. HENDERSON, Patent Office Registration Number 31,619
GODFRIED R. AKORLI, Patent Office Registration Number 28,779
N. DENISE BROWN, Patent Office Registration Number 36,097
NOLAND J. CHEUNG, Patent Office Registration Number 39,138
DIDERICO VAN EYL, Patent Office Registration Number 38,641
CAROLYN M. SLOANE, Patent Office Registration Number 44,339
JAMES R. FRANKS, Patent Office Registration Number 42,552

all of Bayer Corporation, Pittsburgh, Pennsylvania 15205-9741

The state of the s	Send Correspondence To: Patent Department Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741		Direct Telephone (412) 777-2349	Calls To:
	FULL NAME OF SOLE OR FIRST INVENTOR	INVENTOR'S SIGNATUR	E 1/00:	DATE
" " ()	Klaus RAMING	De		12.10.00
T	RESIDENCE		CITIZENSHIP	
T	51375 Leverkusen, Germany		German	
Ŧ :	POST OFFICE ADDRESS Lortzingstr.35, 51375 Leverkusen, Germany	7		
	FULL NAME OF SECOND INVENTOR Mario MEZLER	INVENTOR'S SIGNATUR	Ehr	DATE 96.10,200
	RESIDENCE	7	CITIZENSHIP	
	51371 Leverkusen, Germany		German	
	POST OFFICE ADDRESS Lohrstr. 72 E, 51371 Leverkusen, Germany			
	FULL NAME OF THIRD INVENTOR	INVENTOR'S SIGNATUR	E /) , 1	DATE
	Thomas MÜLLER	Tomo	16/6	5.10.200n
	RESIDENCE		CITIZENSHIP	
	53225 Bonn, Germany		German	
	POST OFFICE ADDRESS			
	Rilkestr.86, 53225 Bonn, Germany			

SEQUENZPROTOKOLL

```
<110> Bayer Aktiengesellschaft
<120> GABA-B-Rezeptoren
<130> Le A 34 074
<140>
<141>
<150> DE 199 55 408.0
<151> 1999-11-18
<160> 6
<170> PatentIn Ver. 2.1
<210> 1
<211> 2523
<212> DNA
<213> Drosophila melanogaster
<220>
<221> CDS
<222> (1)..(2520)
<400> 1
atg cgc aaa gat atg aca agt gat ggt gct gtt acg ttt tgg ata ttt
Met Arg Lys Asp Met Thr Ser Asp Gly Ala Val Thr Phe Trp Ile Phe
                                                                    96
ttg ctt tgt tta atc gcc tcg ccg cac ctg caa ggg ggc gtg gcc ggg
Leu Leu Cys Leu Ile Ala Ser Pro His Leu Gln Gly Gly Val Ala Gly
              20
 agg ccc gat gaa ctg cac atc ggc ggc atc ttt ccg ata gcc ggc aaa
Arg Pro Asp Glu Leu His Ile Gly Gly Ile Phe Pro Ile Ala Gly Lys
                              40
          35
 gga gga tgg cag ggc ggc cag gcg tgt atg cct gcc aca aga ctg gcg
                                                                    192
 Gly Gly Trp Gln Gly Gly Gln Ala Cys Met Pro Ala Thr Arg Leu Ala
                          55
      50
                                                                    240
 ttg gat gat gtc aac aag cag ccg aat ctg ctg ccg ggc ttc aag ctc
 Leu Asp Asp Val Asn Lys Gln Pro Asn Leu Leu Pro Gly Phe Lys Leu
                      70
  65
 atc ctg cac agc aac gac agc gag tgt gag ccc ggt ttg ggc gcc agc
                                                                    288
 Ile Leu His Ser Asn Asp Ser Glu Cys Glu Pro Gly Leu Gly Ala Ser
 gtg atg tac aat ctg ctc tat aat aaa ccg caa aag ctg atg ctg ttg
                                                                    336
 Val Met Tyr Asn Leu Leu Tyr Asn Lys Pro Gln Lys Leu Met Leu Leu
                                  105
 gca gga tgc agc acg gtc tgc acc act gta gcc gag gct gcc aaa atg
                                                                    384
```

Ala	Gly	Cys 115	Ser	Thr	Val		Thr 120	Thr	Val	Ala	Glu	Ala 125	Ala	Lys	Met	
tgg Trp	aat Asn 130	cta Leu	att Ile	gtg Val	ctc Leu	tgc Cys 135	tac Tyr	Gly aaa	gcc Ala	tcg Ser	agt Ser 140	ccg Pro	gct Ala	ctt Leu	tcg Ser	432
gat Asp 145	cgc Arg	aaa Lys	cga Arg	ttc Phe	ccc Pro 150	act Thr	cta Leu	ttc Phe	cgc Arg	acc Thr 155	cat His	cca Pro	tcg Ser	gcc Ala	acg Thr 160	480
gtg Val	cac His	aat Asn	cca Pro	acg Thr 165	cgc Arg	atc Ile	aag Lys	ctg Leu	atg Met 170	aag Lys	aaa Lys	ttc Phe	ggc Gly	tgg Trp 175	tcc Ser	528
cgg Arg	gtg Val	gcc Ala	att Ile 180	ctg Leu	cag Gln	cag Gln	gcg Ala	gag Glu 185	gag Glu	gtc Val	ttt Phe	ata Ile	tcg Ser 190	acc Thr	gta Val	576
gag Glu	gat Asp	ctc Leu 195	gag Glu	aat Asn	cga Arg	tgc Cys	atg Met 200	gag Glu	gct Ala	ggc Gly	gtt Val	gaa Glu 205	atc Ile	gta Val	act Thr	624
aga Arg	caa Gln 210	tca Ser	ttt Phe	cta Leu	tcc Ser	gat Asp 215	cca Pro	aca Thr	gac Asp	gcc Ala	gtg Val 220	cgc Arg	aat Asn	ttg Leu	cga Arg	672
cgc Arg 225	cag Gln	gat Asp	gca Ala	cgc Arg	atc Ile 230	att Ile	gtg Val	gga Gly	ctc Leu	ttc Phe 235	tat Tyr	gtg Val	gtg Val	gcc Ala	gcc Ala 240	720
agg Arg	agg Arg	gtg Val	ctc Leu	tgc Cys 245	gaa Glu	atg Met	tac Tyr	aaa Lys	cag Gln 250	cag Gln	cta Leu	tat Tyr	ggc	cga Arg 255	gct Ala	768
cat His	gtg Val	tgg Trp	ttc Phe 260	ttt Phe	att Ile	ggc Gly	tgg Trp	tac Tyr 265	gag Glu	gac Asp	aac Asn	tgg Trp	tac Tyr 270	gag Glu	gtg Val	816
aat Asn	ctg Leu	aaa Lys 275	gca Ala	gag Glu	ggc Gly	atc Ile	acc Thr 280	tgc Cys	act Thr	gtt Val	gaa Glu	cag Gln 285	Met	cga Arg	ata Ile	864
gct Ala	gcc Ala 290	Glu	gga Gly	cat His	ctg Leu	aca Thr 295	Thr	gaa Glu	gcg Ala	ctc Leu	atg Met	Trp	aat Asn	cag Gln	aac Asn	912
aat Asr 305	Glr	aca Thr	act Thr	ata Ile	tcc Ser 310	Gly	atg Met	act Thr	gca Ala	gag Glu 315	Glu	ttt Phe	cga Arg	cat His	cga Arg 320	960
ct <u>c</u> Lev	g aat 1 Asr	cag Gln	gcg Ala	g cta Leu 325	ı Ile	gag Glu	gag Glu	ggt Gly	tac Tyr 330	: Asr	att Ile	aac Asr	c cac n His	gat Asp 335	cgc Arg	1008
tat Tyr	ccg Pro	g gag Glu	gga Gly	a tat 7 Tyr	cag Glr	gag Glu	ggg Ala	g cca a Pro	cto Let	gco l Ala	tac Tyr	gat Asp	gca Ala	a gtg a Val	g tgg L Trp	1056

340 345 350

agt Ser	gtg Val	gct Ala 355	ttg Leu	gct Ala	ttc Phe	aac Asn	aag Lys 360	acc Thr	atg Met	gaa Glu	cga Arg	ttg Leu 365	aca Thr	acc Thr	ggg Gly	1104
Lys	aaa Lys 370	tct Ser	ctg Leu	agg Arg	gat Asp	ttt Phe 375	acc Thr	tat Tyr	acg Thr	gac Asp	aag Lys 380	gag Glu	att Ile	gcc Ala	gat Asp	1152
gaa Glu 385	atc Ile	tac Tyr	gct Ala	gcc Ala	atg Met 390	aac Asn	tcc Ser	aca Thr	caa Gln	ttt Phe 395	ctg Leu	ggt Gly	gta Val	tcg Ser	ggt Gly 400	1200
gtg Val	gtg Val	gca Ala	ttc Phe	agt Ser 405	tct Ser	cag Gln	ggc Gly	gat Asp	cgt Arg 410	att Ile	gct Ala	ctt Leu	aca Thr	cag Gln 415	atc Ile	1248
gaa Glu	cag Gln	atg Met	ata Ile 420	gac Asp	ggc Gly	aag Lys	tac Tyr	gag Glu 425	aag Lys	ttg Leu	ggt Gly	tac Tyr	tac Tyr 430	gat Asp	act Thr	1296
Gln	Leu	Asp 435	Asn	Leu	Ser	Trp	Leu 440	Asn	Thr	Glu	Gln	Trp 445	att Ile	Gly	Gly	1344
Lys	Val 450	Pro	Gln	Asp	Arg	Thr 455	Ile	Val	Thr	His	Val 460	Leu	cgc Arg	Thr	Val	1392
Ser 465	Leu	Pro	Leu	Phe	Val 470	Cys	Met	Cys	Thr	Ile 475	Ser	Ser	Cys	GIY	480	1440
Phe	Val	Ala	Phe	Ala 485	Leu	Ile	Ile	Phe	Asn 490	. Ile	Trp	Asn	Lys	His 495		1488
Arg	Val	Ile	Gln 500	Ser	Ser	His	Pro	Val 505	. Cys	Asn	Thr	. Ile	Met 510	Leu	ttt Phe	1536
Gly	· Val	. Il∈ 515	e Il∈	e Cys	Leu	ılle	Ser 520	Val	. Ile	e Leu	ı Leu	1 Gly 525	r Ile	e Asp	gga Gly	1584
Arg	Ph∈ 530	e Val	l Ser	r Pro	Glu	535	Tyr	Pro	Lys	s Ile	540	s Glr	n Ala	a Arg	g gct g Ala	1632
Trp 545	Let	ı Lev	ı Sei	c Thi	Gl _y 550	/ Phe	e Thi	: Lei	ı Ala	a Ty:	r Gly 5	y Ala	a Met	: Phe	e ser 560	1680
aaç Lys	g gto s Vai	c tgg l Tr	g cgt o Arg	g Va. 56!	l His	cgt Arg	ttt g Phe	aca e Thi	a acar r Thi	r Ly:	a gca s Ala	a aaa a Ly	a act s Thi	gae Asj 57	c cca p Pro 5	1728

aag Lys	aaa Lys	aaa Lys	gtg Val 580	gaa Glu	cct Pro	tgg Trp	aag Lys	cta Leu 585	tac Tyr	acc Thr	atg Met	gtt Val	tcg Ser 590	gly aaa	cta Leu	1776
tta Leu	tca Ser	ata Ile 595	gat Asp	tta Leu	gtg Val	ata Ile	tta Leu 600	ctc Leu	tca Ser	tgg Trp	cag Gln	atc Ile 605	ttt Phe	gat Asp	ccg Pro	1824
ctg Leu	cag Gln 610	cgt Arg	tat Tyr	ctc Leu	gaa Glu	aca Thr 615	ttc Phe	cca Pro	ctc Leu	gaa Glu	gat Asp 620	cca Pro	gta Val	tct Ser	act Thr	1872
act Thr 625	gat Asp	gat Asp	att Ile	aaa Lys	ata Ile 630	cgt Arg	cca Pro	gag Glu	ctt Leu	gag Glu 635	cat His	tgt Cys	gaa Glu	agt Ser	caa Gln 640	1920
cgc Arg	aac Asn	tcc Ser	atg Met	tgg Trp 645	ttg Leu	ggt Gly	ctt Leu	gta Val	tac Tyr 650	ggc Gly	ttc Phe	aag Lys	ggg Gly	cta Leu 655	atc Ile	1968
ctg Leu	gtg Val	ttt Phe	ggc Gly 660	ctc Leu	ttt Phe	ttg Leu	gcg Ala	tac Tyr 665	gag Glu	acg Thr	cgc Arg	tcc Ser	att Ile 670	aaa Lys	gtg Val	2016
aaa Lys	cag Gln	atc Ile 675	aac Asn	gat Asp	tcg Ser	cgt Arg	tat Tyr 680	gtg Val	ggc Gly	atg Met	agc Ser	atc Ile 685	tat Tyr	aac Asn	gtg Val	2064
gtc Val	gtc Val 690	ctt Leu	tgc Cys	ctg Leu	ata Ile	aca Thr 695	gct Ala	ccg Pro	gtg Val	ggc Gly	atg Met 700	gtc Val	att Ile	gca Ala	tcg Ser	2112
caa Gln 705	Gln	gac Asp	gcg Ala	tcc Ser	ttt Phe 710	gcc Ala	ttc Phe	gtt Val	gct Ala	cta Leu 715	Ala	gtg Val	ata Ile	ttc Phe	tgt Cys 720	2160
tgt Cys	ttc Phe	cta Leu	. agc . Ser	atg Met 725	Leu	ctg Leu	ata Ile	ttt Phe	gtg Val 730	Pro	aag Lys	gtc Val	att Ile	gag Glu 735	gtt Val	2208
ata Ile	. cgt : Arg	cat His	ccc Pro 740	Lys	gat Asp	aag Lys	gcc	gaa Glu 745	Ser	aaa Lys	tac Tyr	aat Asn	ccc Pro 750	Asp	tca Ser	2256
gco	ata Ile	tcg Ser 755	Lys	gag Glu	gac Asp	gaa Glu	gaa Glu 760	Arg	tat Tyr	cag Glr	g aaa n Lys	ctt Leu 765	ı Val	acc Thr	gaa Glu	2304
aac Asr	gag Glu 770	ı Glr	a ttg n Lev	g caa 1 Glr	ı cga	tta Leu 775	ı Ile	aca Thr	cag Glr	g aag n Lys	g gag s Glu 780	ı Glı	a aag 1 Lys	g att	cga Arg	2352
gto Val 789	l Leı	g cga ı Arq	a cag g Glr	g cgt n Arg	cto Leu 790	ı Val	g gag . Glu	g cgg ı Arç	a el ^z a aad	gao Asj 795	o Ala	c aaq a Lys	g ggo s Gly	c aca / Thi	gaa Glu 800	2400

ctg Leu	aat Asn	ggt Gly	gca Ala	aca Thr 805	ggt Gly	gtc Val	gcc Ala	tcc Ser	gcc Ala 810	gcc Ala	gtt Val	gca Ala	aca Thr	act Thr 815	tcg Ser	2448
cag Gln	ccc Pro	gct Ala	tcc Ser 820	ctc Leu	atc Ile	aac Asn	tca Ser	tca Ser 825	gca Ala	cat His	gcc Ala	Thr	ccc Pro 830	gca Ala	gcc Ala	2496
aca Thr	ctc Leu	gca Ala 835	atc Ile	aca Thr	caa Gln	ggt Gly	gag Glu 840	tag								2523
<212	.> 84 !> PF	T	phila	a mel	Lanog	Jast∈	er									
<400 Met)> 2 Arg	Lys	Asp	Met 5	Thr	Ser	Asp	Gly	Ala 10	Val	Thr	Phe	Trp	Ile 15	Phe	
Leu	Leu	Cys	Leu 20	Ile	Ala	Ser	Pro	His 25	Leu	Gln	Gly	Gly	Val 30	Ala	Gly	
Arg	Pro	Asp 35	Glu	Leu	His	Ile	Gly 40	Gly	Ile	Phe	Pro	Ile 45	Ala	Gly	Lys	
Gly	Gly 50		Gln	Gly	Gly	Gln 55	Ala	Cys	Met	Pro	Ala 60	Thr	Arg	Leu	Ala	
Leu 65	Asp	Asp	Val	Asn	Lys 70	Gln	Pro	Asn	Leu	Leu 75	Pro	Gly	Phe	Lys	Leu 80	
Ile	Leu	His	Ser	Asn 85		Ser	Glu	Cys	Glu 90	Pro	Gly	Leu	Gly	Ala 95	Ser	
Val	Met		Asn 100								Lys		Met 110	Leu	Leu	
Ala	Gly	Cys		Thr	Val	Cys	Thr 120		. Val	. Ala	Glu	Ala 125	Ala	Lys	Met	
Trp	Asn 130		ı Ile	e Val	. Leu	. Cys		Gly	/ Ala	a Ser	Ser 140		Ala	. Leu	Ser	
Asp 145		g Lys	s Arg	g Phe	Pro 150		Leu	ı Phe	e Arg	7 Thi 155	His	Pro	Sei	r Ala	Thr 160	
Val	His	s Ası	ı Pro	Thi 165		ı Ile	e Lys	s Le	Met 170		s Lys	Ph∈	e Gly	7 Trp	Ser	
Arg	y Val	l Ala	a Ile 180		ı Glr	ı Glı	n Ala	a Gli 18		u Val	l Phe	e Il€	Sei 190	r Thr	· Val	
Glı	ı As _]	Lei 19		ı Ası	n Arg	g Cys	3 Met		u Ala	a Gl	y Val	L Gli 205		e Val	Thr	

- Arg Gln Ser Phe Leu Ser Asp Pro Thr Asp Ala Val Arg Asn Leu Arg 210 215 220
- Arg Gln Asp Ala Arg Ile Ile Val Gly Leu Phe Tyr Val Val Ala Ala 225 230 235 240
- Arg Arg Val Leu Cys Glu Met Tyr Lys Gln Gln Leu Tyr Gly Arg Ala 245 250 255
- His Val Trp Phe Phe Ile Gly Trp Tyr Glu Asp Asn Trp Tyr Glu Val
- Asn Leu Lys Ala Glu Gly Ile Thr Cys Thr Val Glu Gln Met Arg Ile 275 280 285
- Ala Ala Glu Gly His Leu Thr Thr Glu Ala Leu Met Trp Asn Gln Asn 290 295 300
- Asn Gln Thr Thr Ile Ser Gly Met Thr Ala Glu Glu Phe Arg His Arg 305 310 315 320
- Leu Asn Gln Ala Leu Ile Glu Glu Gly Tyr Asp Ile Asn His Asp Arg 325 330 335
- Tyr Pro Glu Gly Tyr Gln Glu Ala Pro Leu Ala Tyr Asp Ala Val Trp 340 345 350
- Ser Val Ala Leu Ala Phe Asn Lys Thr Met Glu Arg Leu Thr Thr Gly 355 360 365
- Lys Lys Ser Leu Arg Asp Phe Thr Tyr Thr Asp Lys Glu Ile Ala Asp 370 375 380
- Glu Ile Tyr Ala Ala Met Asn Ser Thr Gln Phe Leu Gly Val Ser Gly 385 390 395 400
- Val Val Ala Phe Ser Ser Gln Gly Asp Arg Ile Ala Leu Thr Gln Ile 405 410 415
- Glu Gln Met Ile Asp Gly Lys Tyr Glu Lys Leu Gly Tyr Tyr Asp Thr 420 425 430
- Gln Leu Asp Asn Leu Ser Trp Leu Asn Thr Glu Gln Trp Ile Gly Gly
 435 440 445
- Lys Val Pro Gln Asp Arg Thr Ile Val Thr His Val Leu Arg Thr Val 450 455 460
- Ser Leu Pro Leu Phe Val Cys Met Cys Thr Ile Ser Ser Cys Gly Ile 465 470 475 480
- Phe Val Ala Phe Ala Leu Ile Ile Phe Asn Ile Trp Asn Lys His Arg 485 490 495
- Arg Val Ile Gln Ser Ser His Pro Val Cys Asn Thr Ile Met Leu Phe 500 505 510

- Gly Val Ile Ile Cys Leu Ile Ser Val Ile Leu Leu Gly Ile Asp Gly 515 520 525
- Arg Phe Val Ser Pro Glu Glu Tyr Pro Lys Ile Cys Gln Ala Arg Ala 530 535 540
- Trp Leu Leu Ser Thr Gly Phe Thr Leu Ala Tyr Gly Ala Met Phe Ser 545 550 555 560
- Lys Val Trp Arg Val His Arg Phe Thr Thr Lys Ala Lys Thr Asp Pro 565 570 575
- Lys Lys Lys Val Glu Pro Trp Lys Leu Tyr Thr Met Val Ser Gly Leu 580 585 590
- Leu Ser Ile Asp Leu Val Ile Leu Leu Ser Trp Gln Ile Phe Asp Pro 595 600 605
- Leu Gln Arg Tyr Leu Glu Thr Phe Pro Leu Glu Asp Pro Val Ser Thr 610 615 620
- Thr Asp Asp Ile Lys Ile Arg Pro Glu Leu Glu His Cys Glu Ser Gln 625 630 635 640
- Arg Asn Ser Met Trp Leu Gly Leu Val Tyr Gly Phe Lys Gly Leu Ile 645 650 655
- Leu Val Phe Gly Leu Phe Leu Ala Tyr Glu Thr Arg Ser Ile Lys Val 660 665 670
- Lys Gln Ile Asn Asp Ser Arg Tyr Val Gly Met Ser Ile Tyr Asn Val 675 680 685
- Val Val Leu Cys Leu Ile Thr Ala Pro Val Gly Met Val Ile Ala Ser 690 695 700
- Gln Gln Asp Ala Ser Phe Ala Phe Val Ala Leu Ala Val Ile Phe Cys 705 710 715 720
- Cys Phe Leu Ser Met Leu Leu Ile Phe Val Pro Lys Val Ile Glu Val 725 730 735
- Ile Arg His Pro Lys Asp Lys Ala Glu Ser Lys Tyr Asn Pro Asp Ser 740 745 750
- Ala Ile Ser Lys Glu Asp Glu Glu Arg Tyr Gln Lys Leu Val Thr Glu 755 760 765
- Asn Glu Gln Leu Gln Arg Leu Ile Thr Gln Lys Glu Glu Lys Ile Arg 770 775 780
- Val Leu Arg Gln Arg Leu Val Glu Arg Gly Asp Ala Lys Gly Thr Glu 785 790 795 800
- Leu Asn Gly Ala Thr Gly Val Ala Ser Ala Ala Val Ala Thr Thr Ser 805 810 815

Gln Pro Ala Ser Leu Ile Asn Ser Ser Ala His	Ala Thr Pro Ala Ala
820 825	830
Thr Leu Ala Ile Thr Gln Gly Glu 835 840	
<210> 3 <211> 3663 <212> DNA <213> Drosophila melanogaster	
<220> <221> CDS <222> (1)(3660)	
<pre><400> 3 atg ttc cgg cca agt tgg ttt cca ttc gcc agc Met Phe Arg Pro Ser Trp Phe Pro Phe Ala Ser 1 5 10</pre>	ctg ctg ttc ctg ctc 48 Leu Leu Phe Leu Leu 15
ctt tgg agc acc gcc tgt ggc agg aca gcc aag	aga tcg gac gtc tac 96
Leu Trp Ser Thr Ala Cys Gly Arg Thr Ala Lys	Arg Ser Asp Val Tyr
20 25	30
ata gcg gga ttc ttc ccg tac ggg gat ggc gtg	gaa aac tcc tac acc 144
Ile Ala Gly Phe Phe Pro Tyr Gly Asp Gly Val	Glu Asn Ser Tyr Thr
35 40	45
ggt cgg ggc gtt atg ccc agt gta aag ctc gcc	ttg ggt cac gtt aat 192
Gly Arg Gly Val Met Pro Ser Val Lys Leu Ala	Leu Gly His Val Asn
50 55	60
gag cat gga aag ata ctg gcc aac tac agg ctg Glu His Gly Lys Ile Leu Ala Asn Tyr Arg Leu 65 70 75	His Met Trp Trp Asn
gac act cag tgc aat gct gct gtg ggc gta aag	tcc ttc ttc gat atg 288
Asp Thr Gln Cys Asn Ala Ala Val Gly Val Lys	Ser Phe Phe Asp Met
85 90	95
atg cat tcg ggt ccc aat aaa gtg atg ctc ttc	ggc gct gcg tgc acc 336
Met His Ser Gly Pro Asn Lys Val Met Leu Phe	Gly Ala Ala Cys Thr
100 105	110
cat gtg acc gat ccc ata gcc aag gcc agc aag	g cac tgg cac ctc acc 384
His Val Thr Asp Pro Ile Ala Lys Ala Ser Lys	His Trp His Leu Thr
115 120	125
cag ctc agc tac gcg gac acc cat ccc atg ttc	e acc aag gat gcg ttt 432
Gln Leu Ser Tyr Ala Asp Thr His Pro Met Phe	Thr Lys Asp Ala Phe
130	140

ccg aat ttc ttt cgc gtg gta ccc tcg gag aat gcc ttt aat gcg ccg

Pro Asn Phe Phe Arg Val Val Pro Ser Glu Asn Ala Phe Asn Ala Pro

480

145 150 155 160

cga ctg gcc ttg ctg aag gag ttc aat tgg acc aga gtg ggc act gtc

Arg Leu Ala Leu Leu Lys Glu Phe Asn Trp Thr Arg Val Gly Thr Val

165 170 175

tac cag aat gag cca cgc tat tcg ctg ccc cac aat cac atg gtg gct 576
Tyr Gln Asn Glu Pro Arg Tyr Ser Leu Pro His Asn His Met Val Ala
180 185 190

gac ctg gat gcc atg gag gtc gag gtg gtg gaa acg cag agc ttc gtc

Asp Leu Asp Ala Met Glu Val Glu Val Glu Thr Gln Ser Phe Val

195 200 205

aac gat gtg gct gaa tca ttg aag aaa ctg cgc gag aag gac gtg agg 672
Asn Asp Val Ala Glu Ser Leu Lys Lys Leu Arg Glu Lys Asp Val Arg
210 215 220

atc att ctg ggc aac ttt aac gag cac ttt gca cgc aag gca ttc tgt

Ile Ile Leu Gly Asn Phe Asn Glu His Phe Ala Arg Lys Ala Phe Cys

235 240

gag gct tat aaa ttg gat atg tat ggc aga gcc tat caa tgg ctg atc 768 Glu Ala Tyr Lys Leu Asp Met Tyr Gly Arg Ala Tyr Gln Trp Leu Ile 245 250 255

atg gct acc tat tcc acg gat tgg tgg aat gtc acg cag gac agc gag 816
Met Ala Thr Tyr Ser Thr Asp Trp Trp Asn Val Thr Gln Asp Ser Glu
260 265 270

tgc agt gtg gag gag atc gct aca gcc ttg gaa ggt gcc att cta gtg 864 Cys Ser Val Glu Glu Ile Ala Thr Ala Leu Glu Gly Ala Ile Leu Val 275 280 285

gat ctt ttg ccc ttg tcc acc agt ggt gac atc aca gtg gct ggc att

Asp Leu Leu Pro Leu Ser Thr Ser Gly Asp Ile Thr Val Ala Gly Ile

290 295 300

act gct gat gag tat ctt gtg gag tac gac aga ctg cga ggc act gaa 960
Thr Ala Asp Glu Tyr Leu Val Glu Tyr Asp Arg Leu Arg Gly Thr Glu
305 310 315 320

tat tcc cgc ttt cat ggc tat acc tac gat ggt atc tgg gca gct gcc 1008
Tyr Ser Arg Phe His Gly Tyr Thr Tyr Asp Gly Ile Trp Ala Ala Ala
325 330 335

ctg gcc att cag tat gtg gcc gaa aag cga gag gat ctg cta aca cat
Leu Ala Ile Gln Tyr Val Ala Glu Lys Arg Glu Asp Leu Leu Thr His
340 345 350

ttt gat tat cgc gtg aag gac tgg gag agt gtc ttc ctt gag gct cta

Phe Asp Tyr Arg Val Lys Asp Trp Glu Ser Val Phe Leu Glu Ala Leu

355

360

365

cgt aat aca tcc ttc gag ggt gtg acg gga ccc gtg cgt ttc tac aac 1152
Arg Asn Thr Ser Phe Glu Gly Val Thr Gly Pro Val Arg Phe Tyr Asn
370 380

aac Asn 385	gag Glu	cgc Arg	aag Lys	gcc Ala	aac Asn 390	atc Ile	ctg Leu	atc Ile	aat Asn	cag Gln 395	ttt Phe	cag Gln	ctg Leu	gga Gly	caa Gln 400	1200
atg Met	gaa Glu	aag Lys	atc Ile	999 Gly 405	gaa Glu	tac Tyr	cac His	tca Ser	cag Gln 410	aag Lys	tca Ser	cac His	ttg Leu	gat Asp 415	tta Leu	1248
agc Ser	ttg Leu	gga Gly	aaa Lys 420	cca Pro	gtc Val	aaa Lys	tgg Trp	gtg Val 425	gly ggg	aaa Lys	act Thr	cct Pro	ccc Pro 430	aag Lys	gat Asp	1296
cgc Arg	act Thr	ttg Leu 435	atc Ile	tac Tyr	atc Ile	gag Glu	cac His 440	agt Ser	cag Gln	gtc Val	aat Asn	cca Pro 445	acc Thr	ata Ile	tat Tyr	1344
att Ile	gta Val 450	tcg Ser	gct Ala	agt Ser	gct Ala	tcg Ser 455	gtc Val	att Ile	gga Gly	gtg Val	att Ile 460	att Ile	gcc Ala	aca Thr	gtt Val	1392
ttt Phe 465	ctg Leu	gcc Ala	ttt Phe	aac Asn	att Ile 470	aag Lys	tat Tyr	cgc Arg	aat Asn	caa Gln 475	aga Arg	tac Tyr	atc Ile	aag Lys	atg Met 480	1440
tcc Ser	agt Ser	ccc Pro	cat His	ttg Leu 485	aac Asn	aat Asn	ctg Leu	atc Ile	att Ile 490	gtg Val	ggc Gly	tgt Cys	atg Met	att Ile 495	acc Thr	1488
tat Tyr	ttg Leu	agc Ser	atc Ile 500	att Ile	ttc Phe	ctg Leu	ggt Gly	ctc Leu 505	gat Asp	acc Thr	aca Thr	tta Leu	agt Ser 510	agt Ser	gtg Val	1536
gca Ala	gct Ala	ttt Phe 515	Pro	tat Tyr	atc Ile	tgc Cys	aca Thr 520	gct Ala	cga Arg	gcc Ala	tgg Trp	atc Ile 525	Leu	atg Met	gct Ala	1584
gga Gly	ttc Phe 530	Ser	cto Lev	: agt : Ser	ttt Phe	gga Gly 535	Ala	atg Met	ttc Phe	tcg Ser	aag Lys 540	Thr	tgg Trp	cgg Arg	gtg Val	1632
cat His 545	Ser	ata Ile	a tto e Phe	aco Thr	gat Asp 550	Lev	aag Lys	cto Lev	: aat ı Asr	aag Lys 555	5 Lys	g gtg Val	g ato . Ile	aaç Lys	g gac S Asp 560	1680
tat Tyr	caa Glr	a ttg n Lei	g ttt ı Phe	ato Met	: Val	gtg Val	ggc Gly	gtg Val	ctt Leu 570	ı Lev	g gco ı Ala	att a Ile	gat Asp	ata 116 575	a gcc e Ala	1728
att Ile	ata e Ile	a aco	c acc r Th: 58	r Trj	g cag o Glr	g att	gco Ala	gat a Asp 589	Pro	c tt	t tad	c cgo r Aro	g gaa g Glu 590	ı Thi	c aaa r Lys	1776
caç Glı	g ttg n Lei	g gaa u Gli 59	u Pr	c ttg o Le	g cat u His	ca Hi	gag Glu	ı Ası	t at	t ga e As	t ga p Asj	t gto p Val 60!	I Le	g gte ı Va	g atc l Ile	1824

ccc Pro	gaa Glu 610	aac Asn	gag Glu	tac Tyr	tgc Cys	cag Gln 615	tct Ser	gag Glu	cac His	atg Met	acc Thr 620	ata Ile	ttc Phe	gtt Val	agc Ser	1872
att Ile 625	att Ile	tat Tyr	gcc Ala	tac Tyr	aag Lys 630	gga Gly	ctg Leu	ttg Leu	ttg Leu	gtt Val 635	ttt Phe	ggc Gly	gcc Ala	ttt Phe	ttg Leu 640	1920
gcc Ala	tgg Trp	gaa Glu	act Thr	cga Arg 645	cat His	gtt Val	tct Ser	ata Ile	ccg Pro 650	gct Ala	ctg Leu	aac Asn	gat Asp	tcc Ser 655	aag Lys	1968
cat His	att Ile	ggt Gly	ttc Phe 660	tcc Ser	gtt Val	tat Tyr	aac Asn	gtg Val 665	ttc Phe	atc Ile	act Thr	tgt Cys	ctg Leu 670	gcc Ala	gga Gly	2016
gcg Ala	gct Ala	ata Ile 675	tcc Ser	ctg Leu	gtg Val	cta Leu	tcg Ser 680	gat Asp	cga Arg	aag Lys	gat Asp	tta Leu 685	gtt Val	ttt Phe	gtc Val	2064
tta Leu	ctc Leu 690	tcg Ser	ttt Phe	ttt Phe	atc Ile	att Ile 695	ttt Phe	tgt Cys	acg Thr	aca Thr	gcc Ala 700	act Thr	ttg Leu	tgt Cys	ttg Leu	2112
gtg Val 705	ttc Phe	gta Val	ccg Pro	aaa Lys	ttg Leu 710	gtg Val	gag Glu	ctg Leu	aag Lys	cgg Arg 715	aat Asn	ccc Pro	cag Gln	ggc Gly	gtg Val 720	2160
gtg Val	gac Asp	aaa Lys	cgc Arg	gtt Val 725	agg Arg	gcc Ala	acg Thr	ttg Leu	aga Arg 730	ccc Pro	atg Met	tcc Ser	aaa Lys	aac Asn 735	gga Gly	2208
cgc Arg	cgg Arg	gat Asp	tcc Ser 740	tcg Ser	gtg Val	tgc Cys	gaa Glu	ctg Leu 745	gag Glu	caa Gln	cga Arg	ttg Leu	cga Arg 750	gat Asp	gta Val	2256
			Asn	Cys	cga Arg	Phe	Arg	Lys	Ala		Met					2304
gag Glu	ctg Leu 770	cag Gln	gcc Ala	tta Leu	atc Ile	cgc Arg 775	aag Lys	ctg Leu	gga Gly	ccc Pro	gag Glu 780	gca Ala	cgc Arg	aaa Lys	tgg Trp	2352
atc Ile 785	Asp	ggg Gly	gtg Val	acc Thr	tgc Cys 790	aca Thr	ggt Gly	ggc Gly	tcc Ser	aac Asn 795	gtc Val	ggt Gly	agc Ser	gaa Glu	ctg Leu 800	2400
gag Glu	ccc Pro	ata Ile	ctg Leu	aac Asn 805	. Asp	gac Asp	att	gtt Val	agg Arg 810	Leu	tca Ser	gct Ala	cca Pro	ccg Pro 815		2448
cgt Arg	cga Arg	gag Glu	atg Met 820	Pro	: agc : Ser	acc Thr	aca Thr	gtt Val 825	Thr	gag Glu	ato Met	acg Thr	tcc Ser 830	Val	gat Asp	2496
agt	gtg	aco	tcg	act	cat	gtg	gag	g ato	gat	aac	tcc	ttt:	gtg	tcg	gtg	2544

Ser Val Thr		His Val	Glu Met 840	t Asp	Asn Ser	Phe V 845	/al Se	er V	/al	
cag tct aca Gln Ser Thr 850	gtg atg Val Met	gcg cca Ala Pro 855	tcg cti Ser Lei	t cct u Pro	ccc aaa Pro Lys 860	aag a Lys I	aaa a Lys Li	ag (ys (caa Gln	2592
tcg att gta Ser Ile Val	gag cac Glu His	cac tcg His Ser 870	cat gc	c cct a Pro	gct cca Ala Pro 875	act a	atg a Met M	et (cag Gln 880	2640
ccc atc cag Pro Ile Gli	g cag caa n Gln Gln 885	ctg cag Leu Gln	cag ca Gln Hi	c tta s Leu 890	cag caa Gln Gln	cat (GIn G	ag a ln 1 95	atg Met	2688
cag cag cag Gln Gln Gl	g cac ctg n His Leu 900	cag cag Gln Gln	cag ca Gln Gl	n His	cag cag Gln Gln	Met (caa c Gln G 910	ag ln	caa Gln	2736
cag cag cag Gln Gln Gl: 91	n Gln Gln	cat cat His His	cat cg His Ar 920	gc cat cg His	ctg gag Leu Glu	aag Lys 925	aga a Arg A	ac sn	tcg Ser	2784
gtg tcc gc Val Ser Al 930	t cag acc a Gln Thr	gat gat Asp Asp 935	Asn Il	ta ggc le Gly	agc ato Ser Ile	e Thr	agt a Ser T	icg Thr	gcg Ala	2832
ggc aag cg Gly Lys Ar 945	g agc gga g Ser Gly	gga gad Gly Asi 950	c tgc to Cys Se	cc agc er Ser	atg cgg Met Arg 955	g gag g Glu	agg (Arg <i>P</i>	egt Arg	caa Gln 960	2880
tcg acc gc Ser Thr Al	c tcc agg a Ser Arg 965	g His Ty	c gac ag r Asp Se	gt ggc er Gly 970	agc cag Ser Gl:	g acg n Thr	Pro '	acc Thr 975	gcc Ala	2928
cgg cca aa Arg Pro Ly	g tac ago s Tyr Ser 980	c agc tc c Ser Se	r His A:	gg aac rg Asn 85	tcc tc Ser Se	c acc r Thr	aac a Asn 1	atc Ile	tcc Ser	2976
aca tcg ca Thr Ser G	n Ser Glu	g ttg ag u Leu Se	c aac a r Asn M 1000	tg tgt et Cys	cca ca Pro Hi	c tca s Ser 1005	aag Lys	ccc Pro	agt Ser	3024
act ccg go Thr Pro Al	ct gtg atta	t aag ac e Lys Th 101	r Pro T	ct gcc hr Ala	tcc ga Ser As	p His	cgc Arg	cgc Arg	acc Thr	3072
agc atg gg Ser Met G 1025	gc tcc gc ly Ser Al	t ctg aa a Leu Ly 1030	g tcc a s Ser A	at ttc sn Phe	gtg gt Val Va 1035	t tca l Ser	cag Gln	ser	gac Asp 1040	3120
ctc tgg g Leu Trp A	ac acg ca sp Thr Hi 104	s Thr Le	g tcg c u Ser H	ac gco His Ala 1050	a Lys Gl	ıg cgc .n Arg	GIn	tcg Ser .055	Pro	3168
cgg aac t Arg Asn T	ac gcc ag yr Ala Se	t ccg ca r Pro Gl	ig cgc t .n Arg C	gt gcg Cys Ala	g gaa ca a Glu Hi	at cat is His	ggc Gly	ggc Gly	cac His	3216

1060 1065 1070

1060 1065 1070	
ggg atg acc tat gac ccg aac acc tcg ccc atc cag cgg tcc gtc Gly Met Thr Tyr Asp Pro Asn Thr Thr Ser Pro Ile Gln Arg Ser Val 1075 1080 1085	3264
tcc gag aag aac cgc aac aaa cat cgg cca aaa ccg caa aag ggc acc Ser Glu Lys Asn Arg Asn Lys His Arg Pro Lys Pro Gln Lys Gly Thr 1090 1095 1100	3312
gtt tgc cag agc gag acg gac agc gaa cgg gaa cga gat ccg ccc Val Cys Gln Ser Glu Thr Asp Ser Glu Arg Glu Arg Asp Pro Pro 1105 1110 1115 1120	3360
aac agt cag ccg tgc gtc cag ccg cgt aag gtc agc cgg agc tct aacAsn Ser Gln Pro Cys Val Gln Pro Arg Lys Val Ser Arg Ser Ser Asn112511301135	3408
atc cag cac gcc gcc cac cac agt tcg ccc aat gtg gcg ccc gat Ile Gln His Ala Ala His His His Ser Ser Pro Asn Val Ala Pro Asp 1140 1145 1150	3456
aag cag cgg agc agg cag cgc ggc aag cag gat agc agc atc tac ggc Lys Gln Arg Ser Arg Gln Arg Gly Lys Gln Asp Ser Ser Ile Tyr Gly 1155 1160 1165	3504
gcc agc agc gag acg gaa ctg ctc gag ggc gag acg gca att ttg ccc Ala Ser Ser Glu Thr Glu Leu Leu Glu Gly Glu Thr Ala Ile Leu Pro 1170 1175 1180	3552
atc ttc cgg aaa ctc ctc acc gag aag agt ccc aac tat cgg ggc cgc Ile Phe Arg Lys Leu Leu Thr Glu Lys Ser Pro Asn Tyr Arg Gly Arg 1185 1190 1195 1200	3600
agt gcc gtg ggc cag agc tgt ccg aat ata tcc atc aaa tgc gat atc Ser Ala Val Gly Gln Ser Cys Pro Asn Ile Ser Ile Lys Cys Asp Ile 1205 1210 1215	3648
gtc gag tac ttg tag Val Glu Tyr Leu 1220	3663
<210> 4 <211> 1220 <212> PRT <213> Drosophila melanogaster	
<pre><400> 4 Met Phe Arg Pro Ser Trp Phe Pro Phe Ala Ser Leu Leu Phe Leu Leu 1 5 10 15</pre>	
Leu Trp Ser Thr Ala Cys Gly Arg Thr Ala Lys Arg Ser Asp Val Tyr 20 25 30	
Ile Ala Gly Phe Phe Pro Tyr Gly Asp Gly Val Glu Asn Ser Tyr Thr	

- Gly Arg Gly Val Met Pro Ser Val Lys Leu Ala Leu Gly His Val Asn 50 55 60
- Glu His Gly Lys Ile Leu Ala Asn Tyr Arg Leu His Met Trp Trp Asn 65 70 75 80
- Asp Thr Gln Cys Asn Ala Ala Val Gly Val Lys Ser Phe Phe Asp Met 85 90 95
- Met His Ser Gly Pro Asn Lys Val Met Leu Phe Gly Ala Ala Cys Thr 100 105 110
- His Val Thr Asp Pro Ile Ala Lys Ala Ser Lys His Trp His Leu Thr 115 120 125
- Gln Leu Ser Tyr Ala Asp Thr His Pro Met Phe Thr Lys Asp Ala Phe 130 135 140
- Pro Asn Phe Phe Arg Val Val Pro Ser Glu Asn Ala Phe Asn Ala Pro 145 150 155 160
- Arg Leu Ala Leu Leu Lys Glu Phe Asn Trp Thr Arg Val Gly Thr Val 165 170 175
- Tyr Gln Asn Glu Pro Arg Tyr Ser Leu Pro His Asn His Met Val Ala 180 185 190
- Asp Leu Asp Ala Met Glu Val Glu Val Glu Thr Gln Ser Phe Val
 195 200 205
- Asn Asp Val Ala Glu Ser Leu Lys Lys Leu Arg Glu Lys Asp Val Arg
- Ile Ile Leu Gly Asn Phe Asn Glu His Phe Ala Arg Lys Ala Phe Cys 225 230 235 240
- Glu Ala Tyr Lys Leu Asp Met Tyr Gly Arg Ala Tyr Gln Trp Leu Ile 245 250 255
- Met Ala Thr Tyr Ser Thr Asp Trp Trp Asn Val Thr Gln Asp Ser Glu 260 265 270
- Cys Ser Val Glu Glu Ile Ala Thr Ala Leu Glu Gly Ala Ile Leu Val 275 280 285
- Asp Leu Leu Pro Leu Ser Thr Ser Gly Asp Ile Thr Val Ala Gly Ile 290 295 300
- Thr Ala Asp Glu Tyr Leu Val Glu Tyr Asp Arg Leu Arg Gly Thr Glu 305 310 315 320
- Tyr Ser Arg Phe His Gly Tyr Thr Tyr Asp Gly Ile Trp Ala Ala Ala 325 330 335
- Leu Ala Ile Gln Tyr Val Ala Glu Lys Arg Glu Asp Leu Leu Thr His 340 345 350

- Phe Asp Tyr Arg Val Lys Asp Trp Glu Ser Val Phe Leu Glu Ala Leu 355 360 365
- Arg Asn Thr Ser Phe Glu Gly Val Thr Gly Pro Val Arg Phe Tyr Asn 370 375 380
- Asn Glu Arg Lys Ala Asn Ile Leu Ile Asn Gln Phe Gln Leu Gly Gln 385 390 395 400
- Met Glu Lys Ile Gly Glu Tyr His Ser Gln Lys Ser His Leu Asp Leu 405 410 415
- Ser Leu Gly Lys Pro Val Lys Trp Val Gly Lys Thr Pro Pro Lys Asp 420 425 430
- Arg Thr Leu Ile Tyr Ile Glu His Ser Gln Val Asn Pro Thr Ile Tyr 435 440 445
- Ile Val Ser Ala Ser Ala Ser Val Ile Gly Val Ile Ile Ala Thr Val 450 455 460
- Phe Leu Ala Phe Asn Ile Lys Tyr Arg Asn Gln Arg Tyr Ile Lys Met 465 470 475 480
- Ser Ser Pro His Leu Asn Asn Leu Ile Ile Val Gly Cys Met Ile Thr 485 490 495
- Tyr Leu Ser Ile Ile Phe Leu Gly Leu Asp Thr Thr Leu Ser Ser Val
- Ala Ala Phe Pro Tyr Ile Cys Thr Ala Arg Ala Trp Ile Leu Met Ala 515 520 525
- Gly Phe Ser Leu Ser Phe Gly Ala Met Phe Ser Lys Thr Trp Arg Val 530 535 540
- His Ser Ile Phe Thr Asp Leu Lys Leu Asn Lys Lys Val Ile Lys Asp 545 550 555 560
- Tyr Gln Leu Phe Met Val Val Gly Val Leu Leu Ala Ile Asp Ile Ala 565 570 575
- Ile Ile Thr Thr Trp Gln Ile Ala Asp Pro Phe Tyr Arg Glu Thr Lys 580 585 590
- Gln Leu Glu Pro Leu His His Glu Asn Ile Asp Asp Val Leu Val Ile 595 600 605
- Pro Glu Asn Glu Tyr Cys Gln Ser Glu His Met Thr Ile Phe Val Ser 610 615 620
- Ile Ile Tyr Ala Tyr Lys Gly Leu Leu Leu Val Phe Gly Ala Phe Leu 625 630 635 640
- Ala Trp Glu Thr Arg His Val Ser Ile Pro Ala Leu Asn Asp Ser Lys 645 650 655

- His Ile Gly Phe Ser Val Tyr Asn Val Phe Ile Thr Cys Leu Ala Gly 660 665 670
- Ala Ala Ile Ser Leu Val Leu Ser Asp Arg Lys Asp Leu Val Phe Val 675 680 685
- Leu Leu Ser Phe Phe Ile Ile Phe Cys Thr Thr Ala Thr Leu Cys Leu 690 695 700
- Val Phe Val Pro Lys Leu Val Glu Leu Lys Arg Asn Pro Gln Gly Val 705 710 715 720
- Val Asp Lys Arg Val Arg Ala Thr Leu Arg Pro Met Ser Lys Asn Gly
 725 730 735
- Arg Arg Asp Ser Ser Val Cys Glu Leu Glu Gln Arg Leu Arg Asp Val 740 745 750
- Lys Asn Thr Asn Cys Arg Phe Arg Lys Ala Leu Met Glu Lys Glu Asn 755 760 765
- Glu Leu Gln Ala Leu Ile Arg Lys Leu Gly Pro Glu Ala Arg Lys Trp
 770 780
- Ile Asp Gly Val Thr Cys Thr Gly Gly Ser Asn Val Gly Ser Glu Leu 785 790 795 800
- Glu Pro Ile Leu Asn Asp Asp Ile Val Arg Leu Ser Ala Pro Pro Val 805 810 815
- Arg Arg Glu Met Pro Ser Thr Thr Val Thr Glu Met Thr Ser Val Asp 820 825 830
- Ser Val Thr Ser Thr His Val Glu Met Asp Asn Ser Phe Val Ser Val 835 840 845
- Gln Ser Thr Val Met Ala Pro Ser Leu Pro Pro Lys Lys Lys Gln 850 855 860
- Ser Ile Val Glu His His Ser His Ala Pro Ala Pro Thr Met Met Gln 865 870 875 880
- Pro Ile Gln Gln Leu Gln Gln His Leu Gln Gln His Gln Gln Met 885 890 895
- Gln Gln Gln His Leu Gln Gln Gln His Gln Gln Met Gln Gln Gln 905 910
- Gln Gln Gln Gln His His His Arg His Leu Glu Lys Arg Asn Ser 915 920 925
- Val Ser Ala Gln Thr Asp Asp Asn Ile Gly Ser Ile Thr Ser Thr Ala 930 935 940
- Gly Lys Arg Ser Gly Gly Asp Cys Ser Ser Met Arg Glu Arg Arg Gln 945 950 955 960

Ser Thr Ala Ser Arg His Tyr Asp Ser Gly Ser Gln Thr Pro Thr Ala 965 970 975

Arg Pro Lys Tyr Ser Ser Ser His Arg Asn Ser Ser Thr Asn Ile Ser 980 985 990

Thr Ser Gln Ser Glu Leu Ser Asn Met Cys Pro His Ser Lys Pro Ser 995 1000 1005

Thr Pro Ala Val Ile Lys Thr Pro Thr Ala Ser Asp His Arg Arg Thr 1010 1015 1020

Ser Met Gly Ser Ala Leu Lys Ser Asn Phe Val Val Ser Gln Ser Asp 025 1030 1035 1040

Leu Trp Asp Thr His Thr Leu Ser His Ala Lys Gln Arg Gln Ser Pro 1045 1050 1055

Arg Asn Tyr Ala Ser Pro Gln Arg Cys Ala Glu His His Gly Gly His
1060 1065 1070

Gly Met Thr Tyr Asp Pro Asn Thr Thr Ser Pro Ile Gln Arg Ser Val 1075 1080 1085

Ser Glu Lys Asn Arg Asn Lys His Arg Pro Lys Pro Gln Lys Gly Thr 1090 1095 1100

Val Cys Gln Ser Glu Thr Asp Ser Glu Arg Glu Arg Asp Pro Pro Pro 105 1110 1115 1120

Asn Ser Gln Pro Cys Val Gln Pro Arg Lys Val Ser Arg Ser Ser Asn 1125 1130 1135

Ile Gln His Ala Ala His His His Ser Ser Pro Asn Val Ala Pro Asp 1140 1145 1150

Lys Gln Arg Ser Arg Gln Arg Gly Lys Gln Asp Ser Ser Ile Tyr Gly 1155 1160 1165

Ala Ser Ser Glu Thr Glu Leu Leu Glu Gly Glu Thr Ala Ile Leu Pro 1170 1175 1180

Ile Phe Arg Lys Leu Leu Thr Glu Lys Ser Pro Asn Tyr Arg Gly Arg 185 1190 1195 1200

Ser Ala Val Gly Gln Ser Cys Pro Asn Ile Ser Ile Lys Cys Asp Ile 1205 1210 1215

Val Glu Tyr Leu 1220

<210> 5

<211> 3918

<212> DNA

<213> Drosophila melanogaster

(Z13) DIOBOPHILA	moranogaroo-			
<220> <221> CDS <222> (1)(3915)			
<400> 5 atg cgc ata att Met Arg Ile Ile 1	caa ccg gtc c Gln Pro Val G 5	caa ggg acc Gln Gly Thr 10	aga tac ggt cca Arg Tyr Gly Pro	a tgg ccg 48 o Trp Pro 15
gcc gtg gga ctg Ala Val Gly Leu 20	agg cta gtc c Arg Leu Val I	ctg gcc ctt Leu Ala Leu 25	gcc tgg gca acg Ala Trp Ala Thr 30	r Ser Ala
gcg gct gcc atg Ala Ala Ala Met 35	gag tca tca g Glu Ser Ser A	gcc gag ctg Ala Glu Leu 40	cag gcc ctg ggc Gln Ala Leu Gly 45	c cac gag 144 / His Glu
gca att agg cca Ala Ile Arg Pro 50	ggt gct gcc t Gly Ala Ala S 55	tca att agc Ser Ile Ser	aca tcc agc cca Thr Ser Ser Pro 60	a tcc agc 192 o Ser Ser
tcg cca ccc gga Ser Pro Pro Gly 65	gaa tcg gca t Glu Ser Ala S 70	tcg act gtg Ser Thr Val	act gca ggg ggg Thr Ala Gly Gly 75	g act ccg 240 y Thr Pro 80
att cca ccg cgc Ile Pro Pro Arg	tcc gat tgg a Ser Asp Trp 1 85	aag tac aaa Lys Tyr Lys 90	cgg acg aaa gt Arg Thr Lys Va	c aaa cgc 288 l Lys Arg 95
cgg cag cag cgc Arg Gln Gln Arg 100	ctc aat tcg Leu Asn Ser	cac agc aat His Ser Asn 105	ctg ccc gga ag Leu Pro Gly Se 11	r Thr Asn
gcc tcc cac gct Ala Ser His Ala 115	His His Leu	ctc aat ctg Leu Asn Leu 120	ccc ccc agg ca Pro Pro Arg Gl 125	g cga tac 384 n Arg Tyr
ttg aag gtc aac Leu Lys Val Asn 130	cag gtg ttc Gln Val Phe 135	gaa agc gaa Glu Ser Glu	cgc cgc atg tc Arg Arg Met Se 140	g ccg gcc 432 r Pro Ala
gaa atg cag cgc Glu Met Gln Arg 145	aat cat ggc Asn His Gly 150	aaa atc gtg Lys Ile Val	ctg ctc gga ct Leu Leu Gly Le 155	c ttt gag 480 u Phe Glu 160
ctg tcc aca tcg Leu Ser Thr Ser	cgg gga cca Arg Gly Pro 165	cgt ccg gat Arg Pro Asp 170	Gly Leu Ser Gl	ua ttg gga 528 u Leu Gly 175
gct gcc acc atg Ala Ala Thr Met 180	: Ala Val Glu	cac atc aac His Ile Asn 185	cgc aag cgc ct Arg Lys Arg Le	eu Leu Pro
ggc tac acc cto	gag ctc gtg Glu Leu Val	acc aac gat Thr Asn Asp	act cag tgt ga Thr Gln Cys As	at cct gga 624 sp Pro Gly

195 200 205

gtg Val	ggc Gly 210	gtg Val	gat Asp	cgc Arg	ttc Phe	ttc Phe 215	cac His	gcc Ala	atc Ile	tac Tyr	aca Thr 220	cag Gln	ccc Pro	tcg Ser	acg Thr	672
agg Arg 225	atg Met	gtg Val	atg Met	ctg Leu	ctg Leu 230	gga Gly	tcg Ser	gcc Ala	tgc Cys	tcg Ser 235	gag Glu	gtc Val	acc Thr	gag Glu	agc Ser 240	720
ctg Leu	gcg Ala	aag Lys	gtg Val	gtg Val 245	ccc Pro	tac Tyr	tgg Trp	aac Asn	atc Ile 250	gtg Val	cag Gln	gta Val	tcc Ser	ttc Phe 255	ggt Gly	768
tcc Ser	aca Thr	tcg Ser	ccg Pro 260	gcg Ala	ttg Leu	agc Ser	gac Asp	agg Arg 265	cgg Arg	gag Glu	ttc Phe	ccc Pro	tac Tyr 270	ttc Phe	tac Tyr	816
agg Arg	aca Thr	gtg Val 275	gcc Ala	ccg Pro	gac Asp	tcc Ser	tca Ser 280	cac His	aat Asn	ccg Pro	gcg Ala	cgc Arg 285	atc Ile	gct Ala	ttc Phe	864
att Ile	cgg Arg 290	aag Lys	ttt Phe	ggc Gly	tgg Trp	ggc Gly 295	acg Thr	gtg Val	acc Thr	act Thr	ttc Phe 300	tcg Ser	cag Gln	aac Asn	gag Glu	912
gag Glu 305	gtt Val	cac His	tcg Ser	ctg Leu	gcg Ala 310	gtg Val	aac Asn	aac Asn	ctg Leu	gtc Val 315	acc Thr	gaa Glu	ctg Leu	gag Glu	gcg Ala 320	960
gcc Ala	aac Asn	ata Ile	tcc Ser	tgt Cys 325	gcc Ala	gcc Ala	acc Thr	atc Ile	acc Thr 330	ttt Phe	gcg Ala	gcc Ala	acc Thr	gac Asp 335	ttc Phe	1008
aag Lys	gag Glu	cag Gln	ctg Leu 340	ctg Leu	cta Leu	ctt Leu	agg Arg	gag Glu 345	acg Thr	gac Asp	acg Thr	cgc Arg	atc Ile 350	atc Ile	atc Ile	1056
ggc	agc Ser	ttc Phe 355	tcg Ser	cag Gln	gag Glu	ctg Leu	gcc Ala 360	ccc Pro	cag Gln	atc Ile	ctg Leu	tgc Cys 365	gag Glu	gcc Ala	tac Tyr	1104
agg Arg	ctt Leu 370	Arg	atg Met	ttc Phe	gly ggg	gcg Ala 375	gac Asp	tac Tyr	gcc Ala	tgg Trp	atc Ile 380	Leu	cac His	gag Glu	agc Ser	1152
atg Met 385	gly ggg	gct Ala	ccg Pro	tgg Trp	tgg Trp 390	ccg Pro	gac Asp	cag Gln	cgc Arg	acc Thr 395	Ala	tgc Cys	tct Ser	aac Asn	cac His 400	1200
gaa Glu	ctg Leu	cag Gln	ctg Leu	gcc Ala 405	gtc Val	gag Glu	aac Asn	ctc Leu	atc Ile 410	Val	gto Val	tca Ser	acg Thr	cac His 415	Asn	1248
ago Ser	ato Ile	gtt Val	gga Gly 420	Asn	aac Asn	gto Val	agc Ser	tat Tyr 425	Ser	gga	ctg Leu	aac Asn	aat Asn 430	His	atg Met	1296

ttc a	aac Asn	tcc Ser 435	cag Gln	ctg Leu	cgc Arg	aag Lys	caa Gln 440	tcc Ser	gcc Ala	cag Gln	ttc Phe	cac His 445	ggc Gly	cag Gln	gat Asp	1344
gga Gly	ttt Phe 450	ggc Gly	tcc Ser	ggt Gly	tat Tyr	ggt Gly 455	ccc Pro	agg Arg	atc Ile	agt Ser	atc Ile 460	gct Ala	gca Ala	acg Thr	caa Gln	1392
tct Ser 465	gac Asp	tct Ser	cgt Arg	cgg Arg	cgg Arg 470	agg Arg	aga Arg	agg Arg	ggc Gly	gtg Val 475	gta Val	ggc Gly	acc Thr	agc Ser	gga Gly 480	1440
Gly ggg	cac His	ctc Leu	ttt Phe	ccg Pro 485	gag Glu	gcg Ala	atc Ile	tcg Ser	cag Gln 490	tac Tyr	gcg Ala	ccg Pro	caa Gln	acc Thr 495	tac Tyr	1488
gac Asp	gcc Ala	gtg Val	tgg Trp 500	gcc Ala	atc Ile	gcc Ala	ctg Leu	gcc Ala 505	ttg Leu	aga Arg	gcc Ala	gct Ala	gag Glu 510	gag Glu	cac His	1536
tgg Trp	cgg Arg	cgg Arg 515	aac Asn	gag Glu	gag Glu	cag Gln	tcg Ser 520	aag Lys	ctg Leu	gac Asp	gga Gly	ttc Phe 525	gat Asp	tac Tyr	acc Thr	1584
cgc Arg	agc Ser 530	gac Asp	atg Met	gcc Ala	tgg Trp	gag Glu 535	ttc Phe	ctg Leu	cag Gln	caa Gln	atg Met 540	GТУ	aag Lys	ctc Leu	cac His	1632
ttc Phe 545	ctg Leu	gga Gly	gtg Val	tcg Ser	ggc Gly 550	ccc Pro	gtt Val	tcc Ser	ttc Phe	agc Ser 555	Gly	cca Pro	gat Asp	cgc Arg	gtt Val 560	1680
ggc Gly	acc Thr	act Thr	gcc Ala	ttc Phe 565	tat Tyr	caa Gln	atc Ile	cag Gln	ege Arg 570	Gly	ttg Leu	ctg Leu	gaa Glu	ccg Pro 575	gtg Val	1728
gcc Ala	ctc Leu	tac Tyr	tat Tyr 580	Pro	gcc Ala	acg Thr	gat Asp	gcc Ala 585	Leu	gac Asp	tto Phe	c cgg e Arg	tgt Cys 590	Pro	cgc Arg	1776
tgc Cys	cgg Arg	ccg Pro 595	Val	aag Lys	tgg Trp	cac His	ago Ser 600	Gly	cag Glr	gta Val	cco Pro	ato Ile 605	: Ala	aag Lys	g cgg s Arg	1824
gtg Val	tto Phe 610	: Гу	g ctg Lei	g cgg i Arg	gtg Val	gcg Ala 615	t Thr	ato Ile	gct Ala	cca Pro	a cto Lei 620	ı Ala	tto Phe	tao Tyi	acc Thr	1872
atc Ile 625	: Ala	a acc	c cto	tcc Ser	ago Ser 630	· Val	g gga	a ato / Ile	gct Ala	cto a Lei 635	ı Ala	c ato a Ile	e aco	tto Phe	c ctg E Leu 640	1920
gcg Ala	g tto a Phe	c aat e Ası	t ctq n Lei	g cad u His 645	Phe	cgg Arg	g aaq g Ly:	g cto	g aag 1 Lys 65	s Ala	a at	t aaa e Ly:	a ctt s Lei	t to se: 65:	c agc r Ser 5	1968

ccg aag o Pro Lys I													2016
acc gtc a								_					2064
gac tct t Asp Ser I 690	_		_	_	_	~	_		_			_	2112
gga ttc t Gly Phe S 705		_	Gly	_	_		-	_			-		2160
cat cgg a		_			_	_		_	_	-	_	_	2208
cag gac a Gln Asp I		-	_		_			_		_		_	2256
gcg ctg o	_				_		_		_		_		2304
ctt cac a Leu His A 770					_			-					2352
tac cag o Tyr Gln I 785			. Val						_				2400
ttg agt o	_	_										_	2448
tat atg o													2496
tcg cag t Ser Gln :				-		_		_					2544
atc gtc g Ile Val v 850													2592
ttc atc a Phe Ile 7 865		_	Leu				_			_			2640
tgt ctg	ctt ttc	atc cca	aaa	ctc	cat	gat	att	tgg	gca	aga	aac	gat	2688

Cys Leu I	Leu Phe	Ile P 885	ro Lys	Leu		Asp 890	Ile	Trp	Ala		Asn 895	Asp	
att atc o	gat ccg Asp Pro 900	gtt a Val I	tc cac	agt Ser	atg Met 905	ggc Gly	ctt Leu	aag Lys	atg Met	gag Glu 910	tgc Cys	aac Asn	2736
aca cgc (Thr Arg A	cga ttc Arg Phe 915	gtg g Val V	ıtc gat Val Asp	gat Asp 920	cgc Arg	cga Arg	gaa Glu	ctg Leu	cag Gln 925	tat Tyr	cga Arg	gtg Val	2784
gag gtg (Glu Val (930	caa aac Gln Asn	agg g Arg V	tc tat al Tyr 935	Lys	aag Lys	gaa Glu	atc Ile	cag Gln 940	gct Ala	ctg Leu	gac Asp	gcc Ala	2832
gag att o Glu Ile 2 945	cga aag Arg Lys	Leu G	gag agg Blu Arg 950	cta Leu	ctc Leu	gag Glu	tcg Ser 955	gga Gly	cta Leu	acc Thr	acc Thr	acc Thr 960	2880
tcc acc Ser Thr	aca act Thr Thr	tcg t Ser S	cg tcd Ser Ser	aca Thr	tca Ser	ctc Leu 970	tta Leu	act Thr	gly ggg	gga Gly	ggt Gly 975	cat His	2928
cta aag Leu Lys	cca gaa Pro Glu 980	Leu :	acg gta Thr Val	acc Thr	agt Ser 985	ggc Gly	atc Ile	tcg Ser	cag Gln	act Thr 990	ccg Pro	gct Ala	2976
gca agt Ala Ser	aaa aac Lys Asr 995	aga a n Arg T	act cca Thr Pro	a agt Ser 1000	atc Ile	tcg Ser	gga Gly	Ile	ctg Leu 1005	ccc Pro	aat Asn	ctc Leu	3024
ctg ctt Leu Leu 1010	tcc gtc Ser Val	g ctg (L Leu :	cct cct Pro Pro 101!	o Val	att Ile	cca Pro	Arg	gcc Ala 1020	agt Ser	tgg Trp	ccg Pro	tca Ser	3072
gca gag Ala Glu 1025	tac ato	Gln	atc cco Ile Pro 030	g atg o Met	agg Arg	Arg	tct Ser 1035	gtt Val	acc Thr	ttt Phe	Ala	tcc Ser 1040	3120
cag ccc Gln Pro	caa tta Gln Le	a gag ı Glu 1045	gag gc Glu Al	c tgc a Cys	Leu	cct Pro 1050	Ala	cag Gln	gac Asp	Leu	att Ile 1055	Asn	3168
ctc cgt Leu Arg	tta gc Leu Al 106	a His	cag ca Gln Gl	g gcc n Ala	acg Thr 1065	Glu	gct Ala	aag Lys	acg Thr	ggc Gly 1070	ttg Leu	rata Ile	3216
aac cga Asn Arg	tta cg Leu Ar 1075	a ggg g Gly	ata tt Ile Ph	t tct e Ser 1080	Arg	acc Thr	act Thr	tcg Ser	ago Ser 1085	Asn	aac Lys	g gga s Gly	3264
tcc acc Ser Thr 1090	gcc ag Ala Se	c ttg r Leu	gcg ga Ala As	p Glr	aag n Lys	ggt Gly	ctg Leu	g aag Lys 1100	Ala	gcc Ala	ttt Phe	aaa Lys	3312
tcg cac Ser His	atg gg Met Gl	a ctg y Leu	ttc ac	c cgo r Aro	c ctg J Lev	g att l Ile	ccc Pro	tco Ser	tct Sei	caa Glr	ace Thi	g gcg r Ala	3360

<400> 6

1105 1110 1115 1120 tcc tqc aat qcc ata tac aat aat cca aat cag gat tcc att ccc tca 3408 Ser Cys Asn Ala Ile Tyr Asn Asn Pro Asn Gln Asp Ser Ile Pro Ser 1125 1130 gag geg tee tee cac eeg aat ggt aac cac eta aag eec ate cat agg 3456 Glu Ala Ser Ser His Pro Asn Gly Asn His Leu Lys Pro Ile His Arg 1140 1145 ggt tca ttg acc aaa agc ggt act cac ctg gat cac ctt acc aag gat 3504 Gly Ser Leu Thr Lys Ser Gly Thr His Leu Asp His Leu Thr Lys Asp 1155 1160 ccg aat ttc ctg cct atc ccc act att tct ggc ggt gaa cag ggg gac 3552 Pro Asn Phe Leu Pro Ile Pro Thr Ile Ser Gly Glu Glu Gln Gly Asp 1170 1175 1180 caa acg ttg ggt gga aag tat gtg aaa ctg ctg gag acc aag gtg aac 3600 Gln Thr Leu Gly Gly Lys Tyr Val Lys Leu Leu Glu Thr Lys Val Asn 1185 1190 ttc caa ttg ccc agc aac cgg aga cct tcg gtg gtg cag cag cca ccc 3648 Phe Gln Leu Pro Ser Asn Arg Arg Pro Ser Val Val Gln Gln Pro Pro 1205 1210 3696 agt tta agg gaa agg gta agg ggt tcg cca cgc ttt cca cac cgc atc Ser Leu Arg Glu Arg Val Arg Gly Ser Pro Arg Phe Pro His Arg Ile 1225 1220 ctq ccq ccc act tqc aqt ctc aqc qcc ctq qcc qaa tcc qaq qac cqt 3744 Leu Pro Pro Thr Cys Ser Leu Ser Ala Leu Ala Glu Ser Glu Asp Arg 1235 1240 3792 ccc gga gat age acc tet ate ttg gge age tge aag tee ata eet ege Pro Gly Asp Ser Thr Ser Ile Leu Gly Ser Cys Lys Ser Ile Pro Arg 1255 3840 att teg etg cag cag gtc acc agt gga ggc acc tgg aaa teg atg gaa Ile Ser Leu Gln Gln Val Thr Ser Gly Gly Thr Trp Lys Ser Met Glu 1265 1270 1275 1280 aca gtg ggc aag tcg agg ctt tcc ctc ggc gat tcc cag gaa gag gag Thr Val Gly Lys Ser Arg Leu Ser Leu Gly Asp Ser Gln Glu Glu Glu 1285 1295 1290 cag cag gcg cct gcg aat ggc acc gaa taa 3918 Gln Gln Ala Pro Ala Asn Gly Thr Glu 1300 <210> 6 <211> 1305 <212> PRT <213> Drosophila melanogaster

- Met Arg Ile Ile Gln Pro Val Gln Gly Thr Arg Tyr Gly Pro Trp Pro 1 5 10 15
- Ala Val Gly Leu Arg Leu Val Leu Ala Leu Ala Trp Ala Thr Ser Ala 20 25 30
- Ala Ala Met Glu Ser Ser Ala Glu Leu Gln Ala Leu Gly His Glu
 35 40 45
- Ala Ile Arg Pro Gly Ala Ala Ser Ile Ser Thr Ser Ser Pro Ser Ser 50 55 60
- Ser Pro Pro Gly Glu Ser Ala Ser Thr Val Thr Ala Gly Gly Thr Pro 65 70 75 80
- Ile Pro Pro Arg Ser Asp Trp Lys Tyr Lys Arg Thr Lys Val Lys Arg
 85 90 95
- Arg Gln Gln Arg Leu Asn Ser His Ser Asn Leu Pro Gly Ser Thr Asn 100 105 110
- Ala Ser His Ala His His Leu Leu Asn Leu Pro Pro Arg Gln Arg Tyr
 115 120 125
- Leu Lys Val Asn Gln Val Phe Glu Ser Glu Arg Arg Met Ser Pro Ala 130 135 140
- Glu Met Gln Arg Asn His Gly Lys Ile Val Leu Leu Gly Leu Phe Glu 145 150 155 160
- Leu Ser Thr Ser Arg Gly Pro Arg Pro Asp Gly Leu Ser Glu Leu Gly
 165 170 175
- Ala Ala Thr Met Ala Val Glu His Ile Asn Arg Lys Arg Leu Leu Pro 180 185 190
- Gly Tyr Thr Leu Glu Leu Val Thr Asn Asp Thr Gln Cys Asp Pro Gly
 195 200 205
- Val Gly Val Asp Arg Phe Phe His Ala Ile Tyr Thr Gln Pro Ser Thr 210 215 220
- Arg Met Val Met Leu Gly Ser Ala Cys Ser Glu Val Thr Glu Ser 225 230 230 235
- Leu Ala Lys Val Val Pro Tyr Trp Asn Ile Val Gln Val Ser Phe Gly
 245 250 255
- Ser Thr Ser Pro Ala Leu Ser Asp Arg Arg Glu Phe Pro Tyr Phe Tyr 260 265 270
- Arg Thr Val Ala Pro Asp Ser Ser His Asn Pro Ala Arg Ile Ala Phe 275 280 285
- Ile Arg Lys Phe Gly Trp Gly Thr Val Thr Thr Phe Ser Gln Asn Glu 290 295 300

Glu Val His Ser Leu Ala Val Asn Asn Leu Val Thr Glu Leu Glu Ala 305 Ala Asn Ile Ser Cys Ala Ala Thr Ile Thr Phe Ala Ala Thr Asp Phe 330 325 Lys Glu Gln Leu Leu Leu Arg Glu Thr Asp Thr Arg Ile Ile Ile 345 Gly Ser Phe Ser Gln Glu Leu Ala Pro Gln Ile Leu Cys Glu Ala Tyr 360 Arg Leu Arg Met Phe Gly Ala Asp Tyr Ala Trp Ile Leu His Glu Ser 375 380 Met Gly Ala Pro Trp Trp Pro Asp Gln Arg Thr Ala Cys Ser Asn His 385 Glu Leu Gln Leu Ala Val Glu Asn Leu Ile Val Val Ser Thr His Asn 405 410 Ser Ile Val Gly Asn Asn Val Ser Tyr Ser Gly Leu Asn Asn His Met 425 Phe Asn Ser Gln Leu Arg Lys Gln Ser Ala Gln Phe His Gly Gln Asp Gly Phe Gly Ser Gly Tyr Gly Pro Arg Ile Ser Ile Ala Ala Thr Gln 455 460 Ser Asp Ser Arg Arg Arg Arg Arg Gly Val Val Gly Thr Ser Gly 470 475 Gly His Leu Phe Pro Glu Ala Ile Ser Gln Tyr Ala Pro Gln Thr Tyr 485 490 Asp Ala Val Trp Ala Ile Ala Leu Ala Leu Arg Ala Ala Glu Glu His Trp Arg Arg Asn Glu Glu Gln Ser Lys Leu Asp Gly Phe Asp Tyr Thr 520 Arg Ser Asp Met Ala Trp Glu Phe Leu Gln Gln Met Gly Lys Leu His 530 Phe Leu Gly Val Ser Gly Pro Val Ser Phe Ser Gly Pro Asp Arg Val 550 Gly Thr Thr Ala Phe Tyr Gln Ile Gln Arg Gly Leu Leu Glu Pro Val 570 Ala Leu Tyr Tyr Pro Ala Thr Asp Ala Leu Asp Phe Arg Cys Pro Arg 580 585 Cys Arg Pro Val Lys Trp His Ser Gly Gln Val Pro Ile Ala Lys Arg

600

605

- Val Phe Lys Leu Arg Val Ala Thr Ile Ala Pro Leu Ala Phe Tyr Thr 610 620
- Ile Ala Thr Leu Ser Ser Val Gly Ile Ala Leu Ala Ile Thr Phe Leu 625 630 635 640
- Ala Phe Asn Leu His Phe Arg Lys Leu Lys Ala Ile Lys Leu Ser Ser 645 650 655
- Pro Lys Leu Ser Asn Ile Thr Ala Val Gly Cys Ile Phe Val Tyr Ala 660 665 670
- Thr Val Ile Leu Leu Gly Leu Asp His Ser Thr Leu Pro Ser Ala Glu 675 680 685
- Asp Ser Phe Ala Thr Val Cys Thr Ala Arg Val Tyr Leu Leu Ser Ala 690 695 700
- Gly Phe Ser Leu Ala Phe Gly Ser Met Phe Ala Lys Thr Tyr Arg Val 705 710 715 720
- His Arg Ile Phe Thr Arg Thr Gly Ser Val Phe Lys Asp Lys Met Leu 725 730 735
- Gln Asp Ile Gln Leu Ile Leu Leu Val Gly Gly Leu Leu Val Asp
 740 745 750
- Ala Leu Leu Val Thr Leu Trp Val Val Thr Asp Pro Met Glu Arg His
 755 760 765
- Leu His Asn Leu Thr Leu Glu Ile Ser Ala Thr Asp Arg Ser Val Val 770 780
- Tyr Gln Pro Gln Val Glu Val Cys Arg Ser Gln His Thr Gln Thr Trp 785 790 795 800
- Leu Ser Val Leu Tyr Ala Tyr Lys Gly Leu Leu Leu Val Val Gly Val 805 810 815
- Tyr Met Ala Trp Glu Thr Arg His Val Lys Ile Pro Ala Leu Asn Asp 820 825
- Ser Gln Tyr Ile Gly Val Ser Val Tyr Ser Val Val Ile Thr Ser Ala 835 840 845
- Ile Val Val Leu Ala Asn Leu Ile Ser Glu Arg Val Thr Leu Ala 850 855 860
- Phe Ile Thr Ile Thr Ala Leu Ile Leu Thr Ser Thr Thr Ala Thr Leu 865 870 875 880
- Cys Leu Leu Phe Ile Pro Lys Leu His Asp Ile Trp Ala Arg Asn Asp 885 890 895
- Ile Ile Asp Pro Val Ile His Ser Met Gly Leu Lys Met Glu Cys Asn 900 905 910

- Thr Arg Arg Phe Val Val Asp Asp Arg Glu Leu Gln Tyr Arg Val 915 920 925
- Glu Val Gln Asn Arg Val Tyr Lys Lys Glu Ile Gln Ala Leu Asp Ala 930 935 940
- Glu Ile Arg Lys Leu Glu Arg Leu Glu Ser Gly Leu Thr Thr 945 950 955 960
- Ser Thr Thr Ser Ser Ser Thr Ser Leu Leu Thr Gly Gly Gly His
 965 970 975
- Leu Lys Pro Glu Leu Thr Val Thr Ser Gly Ile Ser Gln Thr Pro Ala 980 985 990
- Ala Ser Lys Asn Arg Thr Pro Ser Ile Ser Gly Ile Leu Pro Asn Leu 995 1000 1005
- Leu Leu Ser Val Leu Pro Pro Val Ile Pro Arg Ala Ser Trp Pro Ser 1010 1015 1020
- Ala Glu Tyr Met Gln Ile Pro Met Arg Arg Ser Val Thr Phe Ala Ser 025 1030 1035 1040
- Gln Pro Gln Leu Glu Glu Ala Cys Leu Pro Ala Gln Asp Leu Ile Asn 1045 1050 1055
- Leu Arg Leu Ala His Gln Gln Ala Thr Glu Ala Lys Thr Gly Leu Ile 1060 1065 1070
- Asn Arg Leu Arg Gly Ile Phe Ser Arg Thr Thr Ser Ser Asn Lys Gly 1075 1080 1085
- Ser Thr Ala Ser Leu Ala Asp Gln Lys Gly Leu Lys Ala Ala Phe Lys 1090 1095 1100
- Ser His Met Gly Leu Phe Thr Arg Leu Ile Pro Ser Ser Gln Thr Ala 105 1110 1115 1120
- Ser Cys Asn Ala Ile Tyr Asn Asn Pro Asn Gln Asp Ser Ile Pro Ser 1125 1130 1135
- Glu Ala Ser Ser His Pro Asn Gly Asn His Leu Lys Pro Ile His Arg 1140 1145 1150
- Gly Ser Leu Thr Lys Ser Gly Thr His Leu Asp His Leu Thr Lys Asp 1155 1160 1165
- Pro Asn Phe Leu Pro Ile Pro Thr Ile Ser Gly Glu Gln Gly Asp 1170 1180
- Gln Thr Leu Gly Gly Lys Tyr Val Lys Leu Leu Glu Thr Lys Val Asn 185 1190 1195 1200
- Phe Gln Leu Pro Ser Asn Arg Arg Pro Ser Val Val Gln Gln Pro Pro 1205 1210 1215

Ser Leu Arg Glu Arg Val Arg Gly Ser Pro Arg Phe Pro His Arg Ile 1220 1225 1230

Leu Pro Pro Thr Cys Ser Leu Ser Ala Leu Ala Glu Ser Glu Asp Arg 1235 1240 1245

Pro Gly Asp Ser Thr Ser Ile Leu Gly Ser Cys Lys Ser Ile Pro Arg 1250 1260

Ile Ser Leu Gln Gln Val Thr Ser Gly Gly Thr Trp Lys Ser Met Glu 265 1270 1275 1280

Thr Val Gly Lys Ser Arg Leu Ser Leu Gly Asp Ser Gln Glu Glu Glu 1285 1290 1295

Gln Gln Ala Pro Ala Asn Gly Thr Glu 1300 1305