Linear Regression: What do these numbers mean?

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

1	
- 1	/
	7

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Ordinary Least Squares

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Residual degrees of freedom

number of observations

number of parameters (including intercept)

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Model degrees of freedom

number of parameters - 1
(or # of features not including intercept)

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Best model minimizes

$$\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

 $\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$ Sum of Squared Error SSE

Variance of observed points (times m) is

$$\sum_{i=1}^{m} \left(\overline{y}_{obs} - y_{obs}^{(i)} \right)^2$$

Total Sum of Squares SST

$$R^2 = 1 - \frac{SSE}{SST}$$

Randomness left in the model

Variation in the data

$$R^2 = 1 - \frac{SSE}{SST}$$

Randomness left in the model

Variation in the data

SSE/SST is the portion of variation left unexplained by the model (handled by ε)

$$R^2 = 1 - \frac{SSE}{SST}$$

Randomness left in the model

Variation in the data

R² is the portion of variation explained by the model (R² is between 0 and 1)

as long as the model has smaller residuals than the mean-only model

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

F-test

Null hypothesis:

This data can be modeled by setting all β values to zero (and the linear relationship we've found is purely due to chance)

Prob (F-statistic):

Is the p-value for this test. ie: it is the probability of finding the observed (or more extreme) results when the above null hypothesis (Ho) is true. If p-value <0.05, we can reject the null hypothesis. (Data is too extreme to fit this model just by chance.) It doesn't mean the model is "true"

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Log L

Likelihood is just a different cost function

$$L(\beta_0, \beta_1) = p(y_{obs} | \beta_0, \beta_1)$$

For a given model (pair of $\beta 0$ And $\beta 1$ values), Likelihood is the prob. Of getting exactly this set of observed y values

The model with maximum likelihood is the best fit.

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

t-test

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

t-test

Null hypothesis:

This specific β value is zero (and the data can be created by such a model (with the other β values intact)

P > |t|:

P-value for this test. Again if p-value < 0.05, we can reject the null hypothesis: This variable does contribute to this model (DOES or DOESN'T. Not how much)

Normality test

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus)	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Null hypothesis:

ε is normally distributed. (no skew, no excess kurtosis)

Prob(Omnibus):

The p-value for this test. If p-value < 0.05, we reject the null hypothesis: ϵ does not exactly follow the normal distribution that we assumed.

We develop the normality test statistic :??

Skew & Kurtosis

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Skew (asymmetry)

Kurtosis (peakness)

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Another normality test

Null hypothesis:

Again, ε is normally distributed. Idea is : we are looking for a skewness coeff. ~ 0, and Kurtosis ~ 3. JB tests if those conditions are held against alternatives.

Prob(Omnibus):

The p-value for this test.

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Autocorrelation test

Null hypothesis:

Errors are uncorrelated

Prob(JB):

The p-value for this test

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Sensitivity of prediction to small errors in input

Condition Number:

Given Mx=b, we can calculate the condition number :

 $CN = \frac{|\lambda max(M)|}{|\lambda min(M)|}$

Note that is the condition number becomes quite large, then this implies that the matrix is ill-posed (does not have a unique, well-defined solution). This may be due to multicollinear relationships between independent variables.

Model Selection I

$$y_{\beta}(x) = \beta_{0} + \beta_{1}x + \varepsilon$$

3.0 le8
2.5
2.0
1.5
1.0
0.5
0.0
0.5
Budget

1.5
2.0
le8

For models with the same amount of parameters, easy:

For models with the same amount of parameters, easy:

Take the one with the better cost function

	Log-Likelihood:	-1753.0
_	Log-Likeliilood.	-1733.0

For models of different complexity: Beware under/overfitting

For models of different complexity: Beware under/overfitting

In machine learning, this is also called Bias/variance tradeoff

First and third will do poorly in the test set

Challenge: Fit a training set, calculate mean squared error on your test set (scikit learn)

There are a few metrics that try to measure this (without even looking at a test set yet)

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

				•	•
	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4 440±07	1 270±07	3 504	0.001	1 920+07 6 960+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Adjusted R^2

$$\overline{R}^{2} = 1 - \frac{SSE / df_{e}}{SST / df_{t}}$$

$$\overline{R}^{2} = 1 - \frac{SSE/df_{e}}{SST/df_{t}} \longrightarrow m - k - 1$$

$$m = \# points$$

$$k = \# parameters$$

Low R²

Higher R²

Highest R²

$$\overline{R}^{2} = 1 - \frac{SSE/df_{e}}{SST/df_{t}} \longrightarrow m - k - 1$$

$$m = \# points$$

$$k = \# parameters$$

Low adj. R²

х

Max. adj R²

Low adj. R²

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Akaike Information Criterion

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

$$AIC = 2k - 2\ln(L)$$
parameters Log likelihood

Higher AIC

х

Min. AIC

Higher AIC

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Bayesian Information Criterion

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

$$BIC = k \ln(m) - 2 \ln(L)$$
parameters # points Log likelihood

Higher BIC

Min. BIC

Higher BIC

My model is not awesome enough.

What do I do?

Try these and check test error (and AIC,BIC,etc.) again:

Use a smaller set of features
 Try adding polynomials
Check functional forms for each feature
 Try including other features
Use more data (bigger training set)
 Regularization (tomorrow)
Try some other model (later)