Universidad de la República, Facultad de Ciencias Económicas y Administración

ECONOMETRIA I - CURSO 2015

PRACTICO 11 REGRESORES ESTOCÁSTICOS

EJERCICIO 1

Considerando el modelo lineal $Y=X\beta+\varepsilon$ con X estocástica.

Se pide:

- 1. Demostrar que si $E(\varepsilon|X)=o$, el estimador mínimo cuadrático de β es insesgado y consistente.
- **2.** Bajo el mismo supuesto, y asumiendo que $E(\varepsilon|X)=o$ $E(\varepsilon\varepsilon'|X)=\sigma_\varepsilon^2 I$, plantear la varianza del estimador mínimo cuadrático de β
- 3. Analizar su respuesta dada en 1. en el caso de $E(\varepsilon|X)\neq o$.

EJERCICIO 2

Considerando el modelo lineal general $Y = X\beta + \varepsilon$ con $E(\varepsilon | X) = 0$ y $E(\varepsilon \varepsilon' | X) = \sigma^2 I$ y con X estocástica cumpliéndose que el plím (X'X)/n = Q, matriz finita invertible definida positiva, se define el siguiente estimador: $\hat{\beta}^* = \beta_{MCO} + C$

donde, $C' = (c_1/n, c_2/n, c_3/n, ..., c_k/n)$ siendo $c_1, c_2, ..., c_k$ constantes conocidas.

Se pide:

- 1. Obtener la esperanza de dicho estimador y la matriz de varianzas y covarianzas.
- 2. Demostrar que dicho estimador es consistente.
- **3.** Asumiendo los postulados del ejercicio, demostrar que su distribución en el límite (asintótica) coincide con la del estimador MCO.

EJERCICIO 3

Dado el modelo de regresión múltiple $Y=X\beta+\varepsilon$, donde X es estocástica pero tiene una distribución independiente de la del vector ε , y además se cumplen las siguientes hipótesis:

```
\begin{split} \mathbf{E}(\boldsymbol{\varepsilon}|\boldsymbol{X}) &= 0 \\ \mathbf{E}(\mathbf{Y}/\mathbf{X}) &= \mathbf{X}.\boldsymbol{\beta} + \mathbf{E}(\boldsymbol{\varepsilon}|\boldsymbol{X}) = \mathbf{X}.\boldsymbol{\beta} \\ \mathbf{E}(\boldsymbol{\varepsilon} \; \boldsymbol{\varepsilon}'|\boldsymbol{X}) &= \boldsymbol{\sigma}^2_{\varepsilon}\boldsymbol{I}, \\ \mathbf{y} \; \text{además:} & \quad \text{plím} \; (\boldsymbol{\varepsilon} \; \boldsymbol{\varepsilon}'/\boldsymbol{n}) = \boldsymbol{\sigma}^2_{\varepsilon} \\ & \quad \text{plím} \; (\boldsymbol{X}'\boldsymbol{X}/\boldsymbol{n}) = \boldsymbol{Q} \; \text{invertible, finita, definida positiva} \\ & \quad \text{plím} \; (\boldsymbol{X}'\boldsymbol{\varepsilon}/\boldsymbol{n}) = 0 \end{split}
```

Se pide:

Demostrar que $\hat{\varepsilon}' \varepsilon / (n-k)$ es un estimador consistente de σ^2_{ε} .

EJERCICIO 4

El archivo Table 13.2.gdt proporciona información hipotética sobre el gasto de consumo verdadero Y^* , el ingreso verdadero X^* , el consumo declarado Y y el ingreso declarado X.

Se supone que los datos sobre X^* son conocidos. Las demás variables fueron generadas admitiendo los siguientes supuestos:

- 1) $E(\varepsilon_i) = E(\omega_i) = E(\nu_i) = 0$
- 2) $Cov(X^*, v) = Cov(X^*, \varepsilon) = Cov(\varepsilon, \omega) = Cov(v; \varepsilon) = Cov(\omega; v) = 0$
- 3) $\sigma_{v}^{2} = 100;$ $\sigma_{\varepsilon}^{2} = 36;$ $\sigma_{\omega}^{2} = 36$ 4) $Y_{i}^{*} = 25 + 0.6 X_{i}^{*} + \varepsilon_{i}$ $Y_{i} = Y_{i}^{*} + \omega_{i}$ $X_{i} = X_{i}^{*} + \nu_{i}$

$$Y_i = Y_i^* + \omega_i \qquad X_i = X_i^* + \omega_i$$

- 1) Calcule por MCO la estimación del parámetro β bajo el supuesto de ausencia de errores de medición, basándose en: $Y_i^* = \alpha + \beta X_i^* + \varepsilon_i$
- 2) Considere ahora errores de medición en el ingreso (utilización de un proxy del regresor): $X_i = X_i^* + v_i$. Estime el coeficiente asociado a Xi en la nueva ecuación del gasto $Y_i^* = \alpha + \beta X_i + \xi_i$.
- 3) Calcule la $Cov(X,\xi)$, la verdadera σ_v^2 y $\sigma_{X^*}^2$. ¿Cuál será la estimación del factor que sesga la estimación de β? Comente.
- 4) Suponga ahora que no hay errores de medición en el ingreso (X*), pero sí lo hay en la variable explicada (el gasto en consumo): $Y_i = Y_i^* + \omega_i$. Estime el coeficiente asociado a X_i^* en la nueva ecuación del gasto $Y_i = \alpha + \beta X_i^* + \eta_i$. Comente el resultado, haciendo referencia al apartado 1).