Föreläsning 11

K&W kap 20, Priks och Vlachos kapitel 4 Effektivitet och fördelning, risk och försäkring

- Effektivitet och fördelning
 - Edgeworth-boxen
- Osäkerhet och risk
 - Diversifiering
 - Försäkring
- Privat (asymmetrisk) information
 - Adverse selection moturval
 - Moral hazard

Omfördelning

- Välfärdsstater använder ofta en betydande del av budgeten till inkomstomfördelning
 - Socialbidrag, arbetslöshetsunderstöd, pension, föräldraförsäkring, sjukförsäkring

- Intra- och interpersonell omfördelning
 - Över tid för den enskilde respektive mellan individer

Effektivitet och fördelning

Kan effektivitet och fördelning separeras?

- Hur uppnå effektivitet givet fördelning?
- I praktiken ofta avvägning

Olika rättvisebegrepp

- Egalitär fördelning, avundsjukefri fördelning,
 Max/Min kriteriet, utilitaristiska kriteriet
- Proceduriella ansatser, t ex Nozick
- Jämlika möjligheter, snarare än jämlik fördelning
 - Går dessa att skilja åt? (Great Gatsby Curve)

Edgeworthboxen

• Illustrerar olika allokeringar av varor mellan individer

- Den vertikala sidan motsvarar total mängd av vara y
- Den horisontella sidan motsvarar total mängd av vara x

Indifferenskurvor

Lisas och Lasses nytta

• Lisas nytta ökar åt nordost och Lasses åt sydväst

Lisas och Lasses nytta

• Lisas nytta ökar åt nordost och Lasses nytta ökar åt sydväst

Effektiva allokeringar?

• Vilka allokeringar är Paretoeffektiva?

 A och C är inte Paretoeffektiva då byteskvoten (MRS) skiljer sig mellan Lasse och Lisa

Byteskvoten (MRS)

- Endast allokeringar där $MRS_{LISA} = MRS_{LASSE}$ kan vara Paretoeffektiva: $MRS = \frac{MU_X}{MU_Y}$
- Om $MRS_{LISA} \neq MRS_{LASSE}$ så är alltså

$$\left(\frac{MU_X}{MU_Y}\right)_{LISA} \neq \left(\frac{MU_X}{MU_Y}\right)_{LASSE}$$

• Om de inte har samma relativa marginalnytta så kan bådas nytta öka genom byten av *X* mot *Y*

Kontraktskurvan

 Mängden av effektiva allokeringar där MRS_{LISA}=MRS_{LASSE}

Nyttomöjlighetskurvan

• Illustrerar alla kombinationer av nyttonivåer längs kontraktskurvan

Effektiva allokeringar?

• Vilka allokeringar är Paretoeffektiva?

- B och D är Paretoeffektive
- Paretosanktionerade förändringar
 - Ökar den enes nytta utan att minska den andres

Ekonomiskt beteende under risk

- Risk är osäkerhet om framtida utfall
 - De flesta föredrar lägre risk, allt annat lika
 - De är därför villiga att betala för att minska riskexponering
- Varje år betalas enorma belopp till försäkringsbolag för att undvika risk
 - Varför ogillas risk?
 - Först något om osäkerhet.

Osäkerhet och förväntat värde

- Stokastisk variabel
 - Variabel med ett osäkert framtida värde
- Det förväntade värdet (EV) av en stokastisk variabel är det sannolikhetsvägda (P_i) medelvärdet av alla möjliga utfall (S_i)

$$EV = (P_1 \times S_1) + (P_2 \times S_2) + ... + (P_N \times S_N)$$

• Exempel: singla tiokrona: Du vinner myntet om ansiktet kommer upp:

$$EV = 0.5 \times 10 + 0.5 \times 0 = 5$$

Projekt A

Projektets väntevärde är EV= $0.2 \cdot (-10) + 0.6 \cdot 10 + 0.2 \cdot 30 = 10 \%$

Projekt B

Projektets väntevärde är EV= $0.2 \cdot (-30) + 0.6 \cdot 10 + 0.2 \cdot 50 = 10 \%$

Projekt A och B

• Projekten har samma väntevärde, 10%, men projekt B är mer riskabelt än projekt A då spridningen är större.

Risk, osäkerhet och riskaversion

- Förväntad nytta är väntevärdet av individens nytta när utfallen är osäkra
- Om två projekt ger samma förväntade avkastning men det ena ger högre risk föredrar en *riskavert* individ det säkrare projektet
 - Anledningen är att riskaverta individer har avtagande marginalnytta av konsumtion
 - Högre marginalnytta av inkomst om man har otur än tur i ett lotteri: alltså vill man omfördela nytta mellan dessa olika utfall

Nytta och marginalnytta för en riskavert individ

Inkomst	Total nytta (utiler)
20,000	920
21,000	945
22,000	968
23,000	989
24,000	1,008
25,000	1,025
26,000	1,040
27,000	1,053
28,000	1,064
29,000	1,073
30,000	1,080

Riskaversion och försäkring

- En riskavert individ köper gärna en försäkring om premien är lika med väntevärdet på försäkringsersättningen
 - Villig att betala mer än 1000 kronor för att försäkra mot en enprocentig risk att förlora 100 000
 - − Väntevärdet av ersättningen: 0,01*100 000 = 1000
- Detta ökar individens förväntade nytta, pga avtagande marginalnytta
 - En vunnen krona är mer värd då inkomsten är låg än en förlorad krona när den är hög

Effekter av en aktuarisk försäkring – samma förväntat värde som utan försäkring

	Income in different states of the world			
	\$0 in medical expenses (0.5 probability)	\$10,000 in medical expenses (0.5 probability)	Expected value of income available for consumption	Expected utility
Without insurance	\$30,000	\$20,000	(0.5 × \$30,000) + (0.5 × \$20,000) = \$25,000	$(0.5 \times 1,080 \text{ utils}) + (0.5 \times 920 \text{ utils}) = 1,000 \text{ utils}$
With fair insurance	\$25,000	\$25,000	$(0.5 \times \$25,000) + (0.5 \times \$25,000)$ = \$25,000	$(0.5 \times 1,025 \text{ utils}) + (0.5 \times 1,025 \text{ utils})$ = 1,025 utils

- Väntevärdet av försäkringsersättningen = 0,5 * 10 000 = 5000
- **Aktuarisk premie** är då 5000 (försäkringsbolaget går då +/- noll)
- En riskavers person är villig att betala **minst** 5000 för att slippa en 50-procentig risk att förlora 10 000

Skillnader i riskaversion

- Nästan alla är riskaverta då nästan alla har avtagande marginalnytta
 - Men graden av riskaversion varierar, vissa är mer riskaverta än andra

- Skillnader i riskaversion bestäms av
 - preferenser
 - inkomst
 - förmögenhet

Skillnader i riskaversion

Att betala för att slippa risk

- Betalningsviljan för att undvika risk beror på individens riskaversion
 - En riskneutral person är okänslig för risk och vill inte betala för att försäkra sig
- Beroende på premiens storlek kan individen även tjäna på att köpa en icke-aktuarisk försäkring.
- I exemplet ovan ger försäkringspreminen \$5000 en aktuarisk försäkring men individen är villig att betala mer (~\$6000)

Allokering och reducering av risk

- Englands handelsflotta var utsatt för risk på 1700talet pga pirater och stormar
 - Försäkringsbolag kompenserade skeppsägarna vid dåligt utfall mot en premie som betalas oavsett utfall
- Om inte skeppsägarna ville ha risk, varför ville ägarna av försäkringsbolaget det?
 - Bla för att de var rikare. De kunde därför sälja försäkringar till många skepp och därmed sprida sin risk

Utbudet på försäkringar

Efterfrågan på försäkring

Försäkringsmarknaden

Diversifiering Att inte lägga alla ägg i samma korg

- Diversifiering kan minska risken mycket om utfallen är *oberoende*
- Två utfall är oberoende om inget utfall är mer eller mindre sannolikt betingat på att det andra inträffar
 - En aktiemarknad underlättar diversifiering, men aktiepriser är inte helt oberoende av varandra
 - Försäkringsbolag poolar många enskilda risker
 - Många risker är svåra att handla med

- Skeppsägare kan skicka skepp åt olika håll, vissa till det Karibiska havet och vissa till Indiska oceanen
 - Detta sprider riskerna
- Antag att risken för katastrof *mellan* haven är oberoende och 10% på båda haven:

TABLE 20-2	low Diversification Reduce	es Risk		
(a) If both ships so	ent to the same destination			
State	Probability	Payoff	Expected payoff	
Both ships arrive	0.9 = 90%	£2,000	$(0.9 \times £2,000) + (0.1 \times £0) = £1,800$	
Both ships lost	0.1 = 10%	0		
(b) If one ship sen	t east, one west			
State	Probability	Payoff	Expected payoff	
Both ships arrive	0.9 × 0.9 = 81%	£2,000		
Both ships lost 0.1 × 0.1 = 1%		0	$(0.81 \times £2,000) + (0.01 \times £0) + (0.18 \times £1,000) = £1,800$	
One ship arrives	(0.9 × 0.1) + (0.1 × 0.9) = 18%	1,000	(0.10 × 2.1,000) = 2.1,000	

 Båda alternativ ger samma förväntad värde men risken är lägre vid diversifiering

Diversifiering – "pooling"

- En typ av diversifiering, speciellt relevant för försäkringsbolag, är poolning
- Poolning: individen har en liten del av många oberoende utfall. Risken i den totala inkomsten blir då mycket liten
 - Försäkringsbolag försäkrar många och om riskerna är oberoende så är den totala risken liten
 - Ex: brandförskring, stöldförsäkring, olycksförsäkring
 - Skillnad mot tex stormförsäkring för skogsägare: många drabbas samtidigt

Diversifieringens begränsningar

- När utfall är positivt korrelerade kan inte all risk diversifieras bort
- Positivt korrelation: Om det är mer sannolikt att ett utfall inträffar givet att det andra har inträffat, och vice versa
 - Väderlek
 - Politiska händelser
 - Konjunkturer och finanskriser

Privat (asymmetrisk) information

• Marknader ger ofta inte en effektiv allokering i situationer där individer (t ex köpare och säljare) har *olika* information

- Två källor till problem
 - Adverse selection (skevt urval/moturval)
 - Moral hazard (opportunistiskt beteende)

"Adverse Selection" – moturval

- Adverse selection inträffar när en individ har bättre info om sina **egenskaper** än motparten
 - Ex: köparen av försäkring känner till sin individuella risk men inte försäkringsbolaget
 - Då alla betalar samma premie köper de med hög risk mer försäkring
- Säljaren måste då höja premierna för alla
 - De med minst risk slutar köpa försäkring
 - I värsta fall kollapsar marknaden ("Market for lemons")

Exempel: Begagnade bilar

- Om 50% av alla begagnade bilar är bra och 50% dåliga
 - Säljare av bra bilar har reservationspriset \$1800
 - Köpare av bra bilar har betalningsviljan \$2000
 - Säljare av dåliga bilar har reservationspriset \$1200
 - Köpare av dåliga bilar har betalningsviljan \$1400
- Om varken köpare eller säljare känner till bilens skick:
 - Säljare vill minst ha $$1500 (0.5 \times 1800 + 0.5 \times 1200)$
 - − Köpare vill högst ge \$1700 (0.5×2000 + 0.5×1400)
- Om bara säljaren vet bilens kvalitet
 - De med bra bilar vill inte sälja till \$1700
 - Bara dåliga bilar på marknaden
 - − Då vill köparna max ge \$1400 => inga bra bilar säljs

Screening

- Använd observerbar information om individer för att lista ut deras privata info
 - Medicinsk historia
 - Skadestatistik för olika grupper
 - Kontrakt som får individer att självselektera (tex självrisker av olika slag)

Signalering

- Signalering visa vilken "typ" man är. Agera på ett sätt som inte vore lönsamt för någon annan "typ" att göra
 - Ställ ut garantier som vore olönsamma om varorna höll låg kvalitet
 - Genomgå en utbildning som vore inhumant plågsam om man inte var smart och arbetssam
- Förekommer överallt i samhället
 - Bli triatlet för att signallera din "typ"

Obligatoriska försäkringar

- Pga adverse selection riskerar privata försäkringar att lämna många oförsäkrade
 - Arbetslöshet: den enskilde vet mer än bolaget
 - Sjukdom: den enskilde vet mer än bolaget
 - Pension: hur länge kommer jag att leva?

- Obligatoriska försäkringar kan hantera detta
 - Alla måste vara med, alltså inget skevt urval
 - Ibland via arbetsgivare (sjukvårdsförsäkring i USA)
 - Kommer till priset av minskad valfrihet

Moral hazard/Opportunistiskt beteende

- Moral hazard inträffar när en individ vet mer om sina egna handlingar än andra (som alltså inte kan observeras)
- Snedvridna incitament för varsamhet eller ansträngning om individen är försäkrad
 - För liten ansträngning att undvika skada
 - Strunta i att låsa cykeln om man har cykelförsäkring
 - Slarvar med tandtråd om tandvårdsförsäkring
 - Sjukskriver sig några extra dagar
 - Letar inte nytt arbete så intensivt som du borde

- Försäkringsbolag kan motverka moral hazard genom att införa en självrisk
 - Bara ersättning för förluster över ett visst belopp
 - Ersättningsnivån < 100 procent
- Självrisken innebär att full försäkring ej erbjuds
 - Detta är ett marknadsmisslyckande

Moral hazard: andra exempel

- En bank som staten kommer att rädda om den går i konkurs
 - Bankens långivare kräver då ingen riskpremie på sina lån
 - Billigt för banken att ta stora risker
- Ett företags VD köper ett privatjet
 - Behövs detta för möten eller är det ren bekvämlighet?

- En riskkapitalist satsar på ett innovationsbolag
 - Satsar entrenören på rätt saker eller det hen tycker är intressantast och roligast?