Jean-Marie Dufour 21 janvier 2003

TECHNIQUES DE SÉRIES CHRONOLOGIQUES EXERCICES PROCESSUS STOCHASTIQUES 1

- 1. (a) Définissez la notion d'espace de probabilité.
 - (b) Définissez ce qu'est un **processus stochastique** (à valeurs réelles) sur un espace de probabilité.
- 2. Répondez par VRAI, FAUX ou INCERTAIN à chacune des assertions suivantes, et justifiez brièvement votre réponse. (Maximum : une page par assertion.)
 - (1) Tout processus stationnaire au sens strict est dans L_2 .
 - (2) Tout processus stationnaire au sens strict est aussi stationnaire du second ordre.
 - (3) Tout processus stationnaire d'ordre 3 est aussi stationnaire d'ordre 2.
 - (4) Tout processus asymptotiquement stationnaire d'ordre 3 est aussi asymptotiquement stationnaire d'ordre 2.
 - (5) Un bruit blanc est un processus stationnaire d'ordre 4.
- 3. Soit $\gamma(k)$ la fonction d'autocovariance d'un processus stationnaire du second ordre (sur les entiers). Démontrez que :

(a)
$$\gamma(0) = Var(X_t)$$
 et $\gamma(k) = \gamma(-k)$, $\forall k \in \mathbb{Z}$;

- (b) $|\gamma(k)| \leq \gamma(0), \forall k \in \mathbb{Z}$;
- (c) la fonction $\gamma(k)$ est semi-définie positive.
- 4. Soit le processus

$$X_t = \sum_{j=1}^{m} [A_j \cos(\nu_j t) + B_j \sin(\nu_j t)], \ t \in \mathbb{Z},$$

où ν_1, \ldots, ν_m sont des constantes distinctes dans l'intervalle $[0, 2\pi)$ et $A_j, B_j, j = 1, \ldots, m$, sont des v.a.'s dans L_2 , telles que

$$E(A_j) = E(B_j) = 0$$
, $E(A_j^2) = E(B_j^2) = \sigma_j^2$, $j = 1, ..., n$, $E(A_j A_k) = E(B_j B_k) = 0$, pour $j \neq k$, $E(A_i B_k) = 0$, $\forall j, k$.

- (a) Démontrez que ce processus est stationnaire d'ordre 2.
- (b) Pour le cas où m=1, démontrez que ce processus est déterministe.

[Suggestion : considérez une régression de X_t sur $\cos(\nu_1 t)$ et $\sin(\nu_1 t)$ basée sur deux observations.]