DSC 215 - PROBABILITY AND STATISTICS FOR DATA SCIENCE

GOODNESS OF FITTESTS

EVALUATING GOODNESS OF FIT FOR A DISTRIBUTION

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

- Advantage of chi-square goodness of fit tests: can be applied to any single variable distribution for which we can calculate the cumulative distribution function.
- Suppose we suspect our data follows a specific distribution. We use our hypothesis testing framework to check this.

 H_0 : The data follows the distribution

 H_1 : The data does not follow the distribution

Ok, but what is our test-statistic?

• Test statistic: For the chi-squared goodness of fit test, data is divided into k-bins (we can do this ourselves if the data is not binned), and the test statistic is

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- Like before, O_i and E_i are the observed and expected counts for bin i.
- Warning: The test is sensitive to the choice of bins, but reasonable choices should produce similar results. A good rule of thumb is you need $E_i \ge 5$ for all bins.

• Example: Suppose you are playing a dice-game where you roll two dice and your winnings depend on the number of sixes your roll. You play the game 200 times and observe the following counts.

	0 sixes	1 six	2 sixes
Number of times outcome appears	130	58	12

- Question: Conduct a chi-square goodness of fit test to determine if the dice are fair.
- Solution: We start with our Hypothesis.

 H_0 : Dice are fair H_1 : Dice are not fair

• Solution (cont'd): We start with our Hypothesis.

```
-H_0: Dice are fair H_1: Dice are not fair
```

- We interpret the dice being fair as meaning
 - The probability of rolling a 6 on any given roll to be 1/6.
 - The dice are independent
- In other words, the number of sixes in 2 rolls is Binomial(2, 1/6)! So
 - $\mathbb{P}(\text{roll O sixes}) = 25/36$
 - $\mathbb{P}(\text{roll 1 sixes}) = 10/36$
 - $\mathbb{P}(\text{roll 2 sixes}) = 1/36$

• Solution (cont'd): From these probabilities we can calculate the expected numbers under the null hypothesis, and compare it to the results we observed

	0 sixes	1 six	2 sixes
Number of times	130	58	12
outcome appears	130	30	
Expected number	138.889	55.556	5.556

So we can now calculate

$$X^{2} = \frac{(130 - 138.889)^{2}}{138.889} + \frac{(58 - 55.556)^{2}}{55.556} + \frac{(12 - 5.556)^{2}}{5.556} \approx 8.15$$

- Solution (cont'd): Remains to calculate the p-value by finding $\mathbb{P}(\chi^2 \geq X^2)$, the probability that a chi-square r.v. with k-1 degrees of freedom, is at least as extreme as X^2 .
- We have 2 degrees of freedom (3 bins, have to sum to 200, so 1 degree of freedom is lost).
- Using tables or software, we determine

$$\mathbb{P}(\chi^2 \ge 8.15) = 0.017$$

- At the $\alpha = 0.05$ level, we can reject(!) the null-hypothesis that the dice are fair.
- Can you guess in which direction the dice are not fair?