Hinman, Fundamentals of Mathematical Logic 解答

鴎海

(最終更新日: 2024年6月10日)

本稿では、以下の書籍の演習問題の解答を与えます.

Hinman, P. G. (2005). Fundamentals of Mathematical Logic. A K Peters.

その他,同書で証明が省略されていたり,注意が必要と思われるような箇所についても,補足的に掲載します. また,正誤表も本稿の末尾に掲載します.

本稿の pdf ファイルおよび TpX ソースファイルの最新版は、GitHub の該当リポジトリから入手できます。

目次

1	Propositional Logic and Other Fundamentals
1.1	The propositional language
	注意: 命題 1.1.5 の補題 (4) の証明
	演習 1.1.10
	演習 1.1.11
	演習 1.1.12
	演習 1.1.13
1.2	Induction and recursion
	注意: 定義 1.2.1
	系 1.2.4
	注意: 定理 1.2.5
	定理 1.2.12
	演習 1.2.18
	演習 1.2.19
	演習 1.2.21
正誤表	
1. Pro	opositional Logic and Other Fundamentals

Propositional Logic and Other Fundamentals

1.1 The propositional language

訳語対応

一意可読性 unique readability

原子文 atomic sentence

真の始切片 proper initial segment

命題記号 sentence symbol

文 sentence

文の帰納法 sentence induction

注意: 命題 1.1.5 の補題 (4) の証明

補題 (4) の証明は, $\phi_0 \dots \phi_k$ の長さに関する帰納法に基づいていますが,帰納法の基底である,長さが 1 の場合に (4) が正しいことの証明が省略されています. これは次のように証明できます. $\phi_0 \dots \phi_k$ と $\psi_0 \dots \psi_l$ の長さに関して 1>k,l であるため,k=l=0 でしかありえず,したがって $\phi_0=\psi_0$ となります.

演習 1.1.10

以下のように定義する.

定義 1 (中置記法での L-文の集合)・

- (i) $Sent_0 := L$ -原子文の集合
- (ii) 任意の $n \in \omega$ に対して,

$$\mathsf{Sent}_{n+1} \coloneqq \mathsf{Sent}_n \cup \{ (\neg \phi) : \phi \in \mathsf{Sent}_n \}$$

$$\cup \ \{ (\phi \bullet \psi) : \phi, \psi \in \mathsf{Sent}_n, \bullet \ \mathsf{l} \sharp \ \lor, \land, \to, \leftrightarrow \mathcal{O}$$
いずれか}

$${\rm (iii)}\ {\sf Sent}_L \coloneqq \bigcup_{n \in \omega} {\sf Sent}_n$$

次は補題 1.1.3 および命題 1.1.4 と全く同じ方法で証明できる.

命題 2 (L-文の帰納法による証明)

L-表現に関する任意の性質 P に対して,

(i) 任意の L-原子文について P が成り立ち、かつ

(ii) 任意の L-文 ϕ , ψ に対し、 ϕ , ψ について $\mathcal P$ が成り立つならば、 $(\neg \phi)$ 、 $(\phi \lor \psi)$ 、 $(\phi \land \psi)$ 、 $(\phi \land \psi)$ 、 $(\phi \leftrightarrow \psi)$ についても $\mathcal P$ が成り立つ

ならば、任意の L-文に対して P が成り立つ.

次を証明する.

命題3(一意可読件)-

任意の L-文 θ に対して、以下のちょうど 1 つが成り立つ.

- (i) θ は L-原子文である.
- (ii) $\theta = (\neg \phi)$ なる L-文 ϕ が存在する.
- (iii) $\theta = (\phi \lor \psi)$ なる L-文 ϕ, ψ がそれぞれ一意に存在する.
- (iv) $\theta = (\phi \land \psi)$ なる L-文 ϕ, ψ がそれぞれ一意に存在する.
- (v) $\theta = (\phi \rightarrow \psi)$ なる L-文 ϕ, ψ がそれぞれ一意に存在する.
- (vi) $\theta = (\phi \leftrightarrow \psi)$ なる L-文 ϕ, ψ がそれぞれ一意に存在する.

そのために次を証明する. 以下, • は \lor , \land , \rightarrow , \leftrightarrow のいずれかとする.

補題 4 -

- (i) L-文に含まれる (の個数と)の個数は同じである.
- (ii) L-文の真の始切片 a に含まれる(の個数は)の個数より多い.
- (iii) L-文の真の始切片は L-文ではない.
- (iv) \bullet' は \lor , \land , \rightarrow , \leftrightarrow のいずれかとし, ϕ , ψ , ϕ' , ψ' は L-文とする. $(\phi \bullet \psi) = (\phi' \bullet' \psi')$ ならば, $\phi = \phi'$, $\bullet = \bullet'$, $\psi = \psi'$ である.
 - a 演習 1.1.11 参照.
- (i) ϕ に対してこれが成り立つことを $\mathcal{P}(\phi)$ と書く.任意の L–文 ϕ に対して $\mathcal{P}(\phi)$ をL–文の帰納法で示す
 - (1) ϕ が L-原始文の場合, (2) は含まれないので, $\mathcal{P}(\phi)$ である.
 - (2) L-文 ϕ , ψ を任意に取り, $\mathcal{P}(\phi)$ と $\mathcal{P}(\psi)$ を仮定する.仮定より, $\mathcal{P}((\neg \phi))$, $\mathcal{P}(\phi \bullet \psi)$ であることは明らかである.
- (ii) ϕ に対してこれが成り立つことを $\mathcal{P}(\phi)$ と書く. 任意の L-文 ϕ に対して $\mathcal{P}(\phi)$ をL-文の帰納法で示す.
 - (1) ϕ が L-原始文の場合,真の始切片が存在しないので, $\mathcal{P}(\phi)$ である.
 - (2) L-文 ϕ , ψ を任意に取り, $\mathcal{P}(\phi)$ と $\mathcal{P}(\psi)$ を仮定する. $(\neg \phi)$, $(\phi \bullet \psi)$ のいずれについても,そ の真の始切片は右端の)を持たず,従って (i) より,そこに含まれる (の個数は) の個数より 多い.つまり, $\mathcal{P}((\neg \phi))$, $\mathcal{P}((\phi \bullet \psi))$ である.
- (iii) (i)と(ii)から従う.
- (iv) $(\phi \bullet \psi) = (\phi' \bullet' \psi')$ であれば, $\phi \bullet \psi) = \phi' \bullet' \psi'$ であり,(iii)より, ϕ と ϕ' の一方は他方の真の始切片になりえないので, $\phi = \phi'$ である.よって, $\bullet = \bullet'$,次いで $\psi = \psi'$ が従う.

命題3を証明する.

(i)-(vi) のちょうど 1 つが θ について成り立つことを $\mathcal{P}(\theta)$ と書く.任意の L- $\dot{\chi}$ θ に対して $\mathcal{P}(\theta)$ をL- $\dot{\chi}$ の帰納法で示す.

(1) θ が L-原始文の場合、(i) のみが成り立つので、 $\mathcal{P}(\theta)$ である.

L-文 θ , θ' を任意に取り、 $\mathcal{P}(\theta)$ と $\mathcal{P}(\theta')$ を仮定する.

- (2) $(\neg \theta) = (\neg \phi)$ なる L—文 ϕ は一意に存在するので,(ii) が成り立ち,また左端から 2 番目の記号が ¬ であるのは (ii) の場合だけである.よって $\mathcal{P}((\neg \theta))$ である.
- (3) $(\theta \lor \theta') = (\phi \lor \psi)$ なる L—文 ϕ , ψ の存在は明らかである (θ, θ') 自身). また, $(\theta \lor \theta')$ について, (1), (2)と 同様の理由で, (i) と (ii) は成り立たない.また補題 4(iv)より, (iii)–(vi) のうち (iii) のみが成り立つ.よって $\mathcal{P}((\theta \lor \theta'))$ である.
- (4) (3)と同様に、 $\mathcal{P}((\theta \wedge \theta'))$ 、 $\mathcal{P}((\theta \rightarrow \theta'))$ 、 $\mathcal{P}((\theta \leftrightarrow \theta'))$ である.

演習 1.1.11

 $n\in\omega$ に対し、長さ n の任意の L—文 ϕ の真の始切片は L—文ではない、ということを $\mathcal{P}(n)$ と書く.任意の n に対して $\mathcal{P}(n)$ を帰納法で示す.

(1) n=1 の場合, 真の始切片が存在しないので, $\mathcal{P}(1)$ である.

任意の $1 \le i \le n$ に対して $\mathcal{P}(i)$ を仮定し、長さ n+1 の L-文 ϕ を任意に取る(もしそのような ϕ が存在しなければ、自明に $\mathcal{P}(n+1)$ である)。 命題 1.1.5 の証明の (1) と (2) より、 ϕ について (i)-(vi) のちょうど 1 つが成り立つ。

- (2) ϕ が L-原始文の場合、真の始切片が存在しないので、 $\mathcal{P}(n+1)$ である.
- (3) $\phi = \neg \psi$ の場合、その真の始切片は \neg か $\neg S$ の形である(S は ψ の真の始切片).前者は L—文ではない.後者は、帰納法の仮定より S は L—文ではないので、命題 1.1.5(ii) が成り立たず、また左端の記号が異なるので、(ii) 以外も成り立たない.よって、 ϕ の真の始切片は L—文ではないので、 $\mathcal{P}(n+1)$ である.
- (4) $\phi = \forall \psi \psi'$ の場合,その真の始切片は以下のいずれかの形であり,仮にそれが L-文であれば,命題 1.1.5(iii) が成り立つはずである.
 - (4.1) \vee . これは L-文ではない.
 - (4.2) $\forall S$ (S は ψ の真の始切片).帰納法の仮定より,S は L-文ではないので,命題 1.1.5(iii) は成り立たない.よって,これは L-文ではない.
 - (4.3) $\forall \psi$. 帰納法の仮定より、 ψ の真の始切片 χ は L-文ではない. したがって、 $\forall \psi = \forall \chi \chi'$ なる L-文 χ,χ' は存在しないので、命題 1.1.5(iii) は成り立たない.よって、これは L-文ではない.
 - (4.4) $\lor \psi S$ (S は ψ' の真の始切片). L-文 χ の長さが n 未満であれば、帰納法の仮定より、 ψ と χ の一方が他方の真の始切片になることはない. したがって、 $\lor \psi S = \lor \chi \chi'$ なる L-文 χ, χ' は存在しないので、命題 1.1.5(iii) は成り立たない.よって、これは L-文ではない.

以上より、 $\mathcal{P}(n+1)$ である.

(5) $\phi = \bullet \psi \psi'$ ($\bullet = \land, \rightarrow, \leftrightarrow$) の場合も, (4)と同様にして $\mathcal{P}(n+1)$ を証明できる.

証明は以上である.

この結果が補題 (4) の代わりになることは次のようにして分かる. $\bullet \phi \psi = \bullet \phi' \psi'$ であるとする. ϕ と ϕ' の一方が他方の真の始切片になることはないので, $\phi = \phi'$ であり, したがって $\psi = \psi'$ である.

演習 1.1.12

任意の $\phi \in \mathsf{Sent}_{n+1} \sim \mathsf{Sent}_n$ に対し、定義 1.1.2 と一意可読性より、以下のいずれかちょうど 1 つが成り立つ.

- (i) $\phi = \neg \psi$ なる $\psi \in \mathsf{Sent}_n$ が一意に存在する.
- (ii) $\phi = \forall \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.
- (iii) $\phi = \wedge \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.

- (iv) $\phi = \rightarrow \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.
- (v) $\phi = \leftrightarrow \psi \psi'$ なる $\psi, \psi' \in \mathsf{Sent}_n$ がそれぞれ一意に存在する.

したがって、任意の $n \in \omega$ に対し、関数 F_{n+1} : $\mathsf{Sent}_n \to Z$ を以下のように再帰的に定義できる.

$$\begin{split} F_{n+1}(\phi) &= F_n(\phi) & \text{if } \phi \in \mathsf{Sent}_n \\ F_{n+1}(\neg \phi) &= G_{\neg}(F_n(\phi)) & \text{if } \neg \phi \in \mathsf{Sent}_{n+1} \sim \mathsf{Sent}_n \\ F_{n+1}(\bullet \phi \psi) &= G_{\bullet}(F_n(\phi), F_n(\psi)) & \text{if } \bullet \phi \psi \in \mathsf{Sent}_{n+1} \sim \mathsf{Sent}_n \end{split}$$

 i_ϕ を $\phi\in \mathsf{Sent}_n$ なる最小の $n\in\omega$ とし,関数 $F\colon \mathsf{Sent}_L\to Z$ を $F(\phi)=F_{i_\phi}(\phi)$ によって定義すると, $\phi\in \mathsf{Sent}_n$ なる任意の n,つまり $n\geq i_\phi$ に対して, $F(\phi)=F_{i_\phi}(\phi)=F_{i_\phi}(\phi)=\cdots=F_n(\phi)$ である.よって,

- (1) 任意の $\phi \in Sent_0$ に対して $F(\phi) = F_0(\phi)$ であるから,F は F_0 の拡張である.
- (2) 任意の $\phi \in Sent_L$ に対して、適当な $n \in \omega$ が存在して、

$$\begin{split} F(\neg\phi) &= F_{n+1}(\neg\phi) = G_\neg(F_n(\phi)) = G_\neg(F(\phi)) \\ F(\bullet\phi\psi) &= F_{n+1}(\bullet\phi\psi) = G_\bullet(F_n(\phi), F_n(\psi)) = G_\bullet(F(\phi), F(\psi)) \end{split}$$

となる. よって,

$$F(\neg \phi) = G_{\neg}(F(\phi))$$
$$F(\bullet \phi \psi) = G_{\bullet}(F(\phi), F(\psi))$$

である.

F の一意性を示す. いま, 関数 F': $\mathsf{Sent}_L \to Z$ も F_0 の拡張であり, かつ

$$F'(\neg \phi) = G_{\neg}(F'(\phi))$$
$$F'(\bullet \phi \psi) = G_{\bullet}(F'(\phi), F'(\psi))$$

を満たすとする. 任意の $\phi\in \mathsf{Sent}_L$ に対して $F(\phi)=F'(\phi)$ が成り立ち,したがって F=F' が成り立つことを, L—文の帰納法で示す.

(1) $\phi \in \mathsf{Sent}_0$ の場合, $F(\phi) = F_0(\phi) = F'(\phi)$ である.

 $\phi, \psi \in \mathsf{Sent}_L$ を任意に取り、 $F(\phi) = F'(\phi)$ 、 $F(\psi) = F'(\psi)$ を仮定する.

(2) 仮定より,

$$F(\neg \phi) = G_{\neg}(F(\phi)) = G_{\neg}(F'(\phi)) = F'(\neg \phi)$$

(3) 仮定より,

$$F(\bullet\phi\psi) = G_{\bullet}(F(\phi), F(\psi)) = G_{\bullet}(F'(\phi), F'(\psi)) = F'(\bullet\phi\psi)$$

証明は以上である.

命題 1.1.9 において, $Z=\{\mathsf{T},\mathsf{F}\}$, $F_0=V_0$ とし, 関数 $G_\neg\colon\{\mathsf{T},\mathsf{F}\}\to\{\mathsf{T},\mathsf{F}\}$ と $G_ullet\colon\{\mathsf{T},\mathsf{F}\}\times\{\mathsf{T},\mathsf{F}\}\to\{\mathsf{T},\mathsf{F}\}$ を

$$G_{\neg} : \begin{matrix} \mathsf{T} \mapsto \mathsf{F} \\ \mathsf{F} \mapsto \mathsf{T} \end{matrix} \qquad \begin{matrix} (\mathsf{T},\mathsf{T}) \mapsto \mathsf{T} \\ (\mathsf{T},\mathsf{F}) \mapsto \mathsf{T} \end{matrix} \qquad \begin{matrix} (\mathsf{T},\mathsf{T}) \mapsto \mathsf{T} \\ (\mathsf{T},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{T},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{T}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{T},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{T}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{T},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \\ (\mathsf{F},\mathsf{F}) \mapsto \mathsf{F} \end{matrix} \qquad \begin{matrix} (\mathsf{F},\mathsf{F})$$

と定めれば、定理 1.1.7 を得る.

演習 1.1.13

(i) $\neg((\neg p_1) \lor p_2)$

- (ii) 仮にこれが L—文であるとする.命題 1.1.5 より, $\wedge p_1 p_2 \neg p_3 = \wedge \phi \psi$ なる L—文 ϕ , ψ が一意に存在する.よって, p_1 は L—文であるから, $p_2 \neg p_3$ は L—文である.しかし, $p_2 \neg p_3$ は命題 1.1.5 のいずれの場合も満たさないので,L—文ではない.矛盾.ゆえに $\wedge p_1 p_2 \neg p_3$ は L—文ではない.
- (iii) $(p_1 \land p_2) \rightarrow (((\neg p_3) \lor p_8) \leftrightarrow p_3)$

1.2 Induction and recursion

訳語対応

 \mathcal{X} -帰納法 \mathcal{X} -induction

 \mathcal{X} -導出 \mathcal{X} -derivation

 \mathcal{X} -閉である \mathcal{X} -closed

帰納的系 inductive system

帰納的閉包 inductive closure

帰納法の仮定 induction hypothesis

注意: 定義 1.2.1

pp. 25–26 にも書かれていますが,このような X_n の再帰的定義は定理 1.2.12 によって正当化されます.もし $\mathcal{X}=(X,X_0,\mathcal{H})$ が帰納的系であれば, $X_0\in\wp(X)$ が成り立ちます.そこで定理 1.2.12 において

$$Z = \wp(X)$$
$$z_0 = X_0$$

 $G\colon \wp(X)\times\omega\ni (x,n)\mapsto x\cup\{H(x_0,\dots,x_{k_{rr}-1})\in X:H\in\mathcal{H},\ x_0,\dots,x_{k_{rr}-1}\in x\}\in\wp(X)$

とすれば、 $F(0) = X_0$ かつ任意の $n \in \omega$ に対して

$$F(n+1) = F(n) \cup \{H(x_0, \dots, x_{k_n-1}) : H \in \mathcal{H}, x_0, \dots, x_{k_n-1} \in F(n)\}$$

であるような関数 $F\colon \omega \to \wp(X)$ が一意に存在することが言えます. この唯一の F に対する F(n) が, X_n (正確には X_n)と書かれているのです.

系 1.2.4

- (i) $\overline{X} \subseteq \bigcap \{Y \subseteq X : Y \ \text{は} \ \mathcal{X}\text{-閉である}\}$
- (ii) $\overline{X} \supseteq \bigcap \{Y \subseteq X : Y$ は \mathcal{X} -閉である $\}$

を示す.

(i) 命題 1.2.3(ii) より,

$$\{Y \subset X : Y は \mathcal{X}$$
-閉である $\} \subset \{Y \subset X : \overline{X} \subset Y\}$

よって,

$$\overline{X} = \bigcap \{Y \subseteq X : \overline{X} \subseteq Y\} \subseteq \bigcap \{Y \subseteq X : Y$$
は X-閉である}

(ii) $\overline{X} \subseteq X$ および命題 1.2.3(i) より、

$$\overline{X} \in \{Y \subseteq X : Y \text{ は } \mathcal{X}\text{-} 閉である\}$$

よって,

$$\overline{X} \supseteq \bigcap \{Y \subseteq X : Y \text{ は } \mathcal{X}\text{-} 閉である\}$$

注意: 定理 1.2.5

特に、 $X=\overline{X}$ とすれば、 $(\overline{X},X_0,\mathcal{H})$ は帰納的系なので、帰納法の仮定 $\mathcal{P}(x_0),\dots,\mathcal{P}(x_{k_H-1})$ は $x_0,\dots,x_{k_H-1}\in\overline{X}$ のときのみを考えればよいことが分かります。

定理 1.2.12

証明をもう少し詳しく書きます.

.....

- (1) $z_n=z$,かつ任意の i< n に対して $z_{i+1}=G(z_i,i)$ であるような z_1,\dots,z_n が存在する,ということを $\mathcal{P}(z,n)$ と書き,また $\mathcal{P}(z,n)$ なる z が一意に存在することを $\mathcal{Q}(n)$ と書く.任意の $n\geq 1$ に対して $\mathcal{Q}(n)$ を帰納法で示す.
 - (1.1) $z=z_0$ であり、また任意の i<0 に対して自明に $z_{i+1}=G(z_i,i)$ であるから、 $\mathcal{P}(z,0)$ である.このような z は z_0 のみであるから、 $\mathcal{Q}(0)$ である.
 - (1.2) Q(n) を仮定し,Q(n+1) を示す.仮定より, $\mathcal{P}(z,n)$ なる z が一意に存在するので,それを \overline{z} と書く. $\mathcal{P}(\overline{z},n)$ であるから,適当な z_1,\dots,z_n を取れば

$$\begin{split} z_1 &= G(z_0,0) \\ &\vdots \\ z_n &= G(z_{n-1},n-1) \\ \overline{z} &= z_n \end{split}$$

である. ここで $z=z_{n+1}=G(\overline{z},n)$ とすれば $\mathcal{P}(z,n+1)$ であり、そのような z は $G(\overline{z},n)$ のみであるから、 $\mathcal{Q}(n+1)$ である.

 $\mathcal{P}(z,n)$ を満たす、この一意に存在する z を z^n と書く.

- (2) 関数 F を F: $\omega \ni n \mapsto z^n \in Z$ によって定める.
 - (2.1) $F(0) = z^0 = z_0$ responds 5.
 - (2.2) $n \in \omega$ に対して、 z^n の定義より、 $F(n+1) = z^{n+1} = G(z_n, n)$ である.

演習 1.2.18

 $\overline{X} \subset X$ は、 \overline{X} の定義から従う.

以下, (i) $X_0\subseteq X$ (ii) 任意の $H\in\mathcal{H}$ と $x_0,\ldots,x_{k_H-1}\in\overline{X}$ に対して, $H(x_0,\ldots,x_{k_H-1})\in\overline{X}$ を示す.

(i) Y が \overline{X} -閉であれば $X_0 \subseteq Y$ であるから,

$$\overline{X} = \bigcap \{Y \subseteq X : Y \ \text{は} \ \mathcal{X}\text{-閉である}\} \supseteq \{Y \subseteq X : X_0 \subseteq Y\} = X_0$$

より, $X_0 \subseteq \overline{X}$ を得る.

(ii) $H \in \mathcal{H}$, $x_0, \dots, x_{k_H-1} \in \overline{X}$ とする. \mathcal{X} -閉である Y を任意に取る.

$$\overline{X} = \bigcap \{Y \subseteq X : Y \text{ は \mathcal{X}-} \mathbb{R} \text{ of } S \} = \bigcap \{Y : Y \text{ it \mathcal{X}-} \mathbb{R} \text{ of } S \}$$

より、 $x_0,\dots,x_{k_H-1}\in Y$ であり、Y は \mathcal{X} -閉であるから、 $H(x_0,\dots,x_{k_H-1})\in Y$ である. よって、

$$H(x_0,\dots,x_{k_H-1})\in\bigcap\{Y\subseteq X:Y$$
 は \mathcal{X} -閉である $\}=\overline{X}$

である.

演習 1.2.19

一意可読性より,任意の $x\in X_{n+1}\sim X_n$ に対して, $x=H(x_0,\dots,x_{k_H-1})$ なる $H\in\mathcal{H}$ と $x_0,\dots,x_{k_H-1}\in X_n$ がそれぞれ一意に存在する. したがって,任意の $n\in\omega$ に対し, 関数 $F_n^u\colon X_n\to Z$ を以下のように再帰的に定義できる.

$$\begin{split} F_0^u(x) &= F_0(x,u) & \text{if } x \in X_0 \\ F_{n+1}^u(x) &= F_n^u(x) & \text{if } x \in X_n \\ F_{n+1}^u(H(x_0,\dots,x_{k+1})) &= G_H(F_n^u(x_0),\dots,F_n^u(x_{k+1}),x_0,\dots,x_{k+1},u) & \text{if } x \in X_{n+1} \sim X_n \end{split}$$

 i_x を $x\in X_n$ なる最小の $n\in\omega$ とし、関数 $F\colon \overline{X}\times U\to Z$ を $F(x,u)=F_{i_x}^u(x)$ によって定義すると、 $x\in X_n$ なる任意の n、つまり $n\geq i_x$ に対して、 $F(x)=F_{i_x}^u(x)=\cdots=F_n^u(x)$ である.よって、

- (1) 任意の $x \in X_0$ に対して $F(x,u) = F_0^u(x) = F_0(x,u)$ であるから,F は F_0 の拡張である.
- (2) 任意の $H\in\mathcal{H},\ u\in U,\ x_0,\dots,x_{k_H-1}\in\overline{X}$ に対して、適当な $n\in\omega$ が存在して、

$$\begin{split} F(H(x_0,\dots,x_{k_H-1}),u) &= F_{n+1}^u(H(x_0,\dots,x_{k_H-1})) \\ &= G_H(F_n^u(x_0),\dots,F_n^u(x_{k_H-1}),x_0,\dots,x_{k_H-1},u) \\ &= G_H(F(x_0,u),\dots,F(x_{k_H-1},u),x_0,\dots,x_{k_H-1},u) \end{split}$$

である. よって,

$$F(H(x_0,\dots,x_{k_H-1}),u) = G_H(F(x_0,u),\dots,F(x_{k_H-1},u),x_0,\dots,x_{k_H-1},u)$$

である.

F の一意性を示す. いま, 関数 $F': \overline{X} \times U \to Z$ も F_0 の拡張であり, かつ

$$F'(H(x_0,\dots,x_{k_H-1}),u)=G_H(F'(x_0,u),\dots,F'(x_{k_H-1},u),x_0,\dots,x_{k_H-1},u)$$

を満たすとする.任意の $x\in \overline{X}$ と $u\in U$ に対して F(x,u)=F'(x,u) が成り立ち,したがって F=F' が成り立つことを, \overline{X} -帰納法で示す.

- (1) $x \in X_0$ の場合, $F(x,u) = F_0^u(x) = F_0(x,u) = F_0'^u(x) = F'(x,u)$ である.
- $(2) \ H \in \mathcal{H}, \ x_0, \dots, x_{k_H-1} \in \overline{X} \ \text{を任意に取り}, \ F(x_i, u) = F'(x_i, u) \ \text{を仮定する} \ (0 \leq i \leq k_H-1) \ \ \texttt{と},$

$$\begin{split} F(H(x_0,\ldots,x_{k_H-1}),u) &= G_H(F(x_0,u),\ldots,F(x_{k_H-1},u),x_0,\ldots,x_{k_H-1},u) \\ &= G_H(F'(x_0,u),\ldots,F'(x_{k_H-1},u),x_0,\ldots,x_{k_H-1},u) \\ &= F'(H(x_0,\ldots,x_{k_H-1}),u) \end{split}$$

演習 1.2.21

 \Rightarrow を示す. 任意の $z \in \overline{X}$ に対して, z の X-導出が存在することを X-帰納法で示す.

- (1) $z \in X_0$ の場合, (z) は z の \mathcal{X} -導出である.
- (2) $H\in\mathcal{H}$ と $z_0,\dots,z_{k_H-1}\in X$ を任意に取り, z_0,\dots,z_{k_H-1} の \mathcal{X} -導出が存在すると仮定する. それらをそれぞれ

$$\begin{aligned} (x_0^0,\dots,x_0^{n_0},z_0) \\ & \vdots \\ (x_{k_H-1}^0,\dots,x_{k_H-1}^{n_{k_H-1}},z_{k_H-1}) \end{aligned}$$

とすると、これらの連結に $H(z_0,\ldots,z_{k_{H}-1})$ を追加した列

$$(x_0^0,\dots,x_0^{n_0},z_0,\\ \dots,\\ x_{k_H-1}^0,\dots,x_{k_H-1}^{n_{k_H-1}},z_{k_H-1},\\ H(z_0,\dots,z_{k_{--1}}))$$

は $H(z_0,\dots,z_{k_H-1})$ の \mathcal{X} -導出である.なぜなら,この列の $H(z_0,\dots,z_{k_H-1})$ 以外の項は,仮定より定義 1.2.6(i) または (ii) を満たし,また $H(z_0,\dots,z_{k_H-1})$ は定義 1.2.6(ii) を満たすからである.

 \Leftarrow を示す. (x_0,\dots,x_n) が x_n の X-導出であれば $x_n\in\overline{X}$ である,ということを $\mathcal{P}(n)$ と書き,これを n に関する帰納法で示す.

- (1) n=0 の場合, x_0 について定義 1.2.6 (ii) は成り立たないので, (i) $x_0 \in X_0$ が成り立つ.これと $X_0 \subseteq \overline{X}$ より, $\mathcal{P}(0)$ である.
- (2) 任意の $0 \le i \le n$ に対して $\mathcal{P}(i)$ を仮定する. (x_0,\dots,x_{n+1}) が x_{n+1} の \mathcal{X} -導出であるとすると,定義 1.2.6(i) または (ii) が成り立つ. (i) の場合, $X_0 \subseteq \overline{X}$ より $\mathcal{P}(n+1)$ である. (ii) の場合,仮定より, $x_{j_0},\dots,x_{j_{k_H-1}} \in \overline{X}$ であるから,命題 1.2.3(i) より, $x_{n+1} = H(x_{j_0},\dots,x_{j_{k_H-1}}) \in \overline{X}$ である. よって, $\mathcal{P}(n+1)$ である.

以上より、任意の $n\in\omega$ に対して $\mathcal{P}(n)$ である.よって、 (x_0,\dots,x_n) が z の \mathcal{X} -導出であれば、 $z=x_n\in\overline{X}$ である.

正誤表

1. Propositional Logic and Other Fundamentals

修正箇所	誤
	正
p. 21, ↑ 1	$H(x_0,\dots,x_{k_h-1})\in Y$
p. 21, + 1	$H(x_0,\dots,x_{k_H-1})\in Y$
p. 22, ↑ 10	x_0, \dots, x_{k_h-1}
p. 22, 1 10	x_0, \dots, x_{k_H-1}
//, ↑8	$\mathcal{P}(H(x_0,\dots,x_{k_h-1}))$
", 10	$\mathcal{P}(H(x_0,\dots,x_{k_{\pmb{H}}-1}))$
p. 27, ↑ 16	$F'(H(x_0,\dots,x_{k_h-1}))$
p. 21, + 10	$\boxed{F'(H(x_0,\dots,x_{k_{\mathbf{H}}-1}))}$
p. 30, \(\psi \) 2	$G^*(F^*(m),m)$
p. 50, \$\psi\$ 2	$G^*(F^*(m), m)$