Please PRINT your name _____

2.

Please Circle your Recitation:

9	
o	

r1	Т	10	36-156	Russell Hewett	r7	Т	1	36-144	Vinoth Nandakumar
r2	Τ	11	36 - 153	Russell Hewett	r8	\mathbf{T}	1	24 - 307	Aaron Potechin
r3	Τ	11	24 - 407	John Lesieutre	r9	\mathbf{T}	2	24 - 307	Aaron Potechin
r4	Τ	12	36-153	Stephen Curran	r10	\mathbf{T}	2	36-144	Vinoth Nandakumar
r5	Τ	12	24 - 407	John Lesieutre	r11	\mathbf{T}	3	36-144	Jennifer Park
r6	Τ	1	36 - 153	Stephen Curran					

(1) **(40 pts)**

(b) If these two vectors are the columns of the 5 by 2 matrix A, which of the four fundamental subspaces for A is the nullspace of P?

(c) By Gram-Schmidt find an orthonormal basis for the column space of A (spanned by a_1 and a_2).

If P is any (symmetric) projection matrix, show that Q = I - 2P is an orthogonal matrix.

00 g

- (2) **(30 pts.)**
 - (a) Find the determinant of the matrix A

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & 1 \\ \hline 0 & 0 & 3 & 4 \end{bmatrix}.$$

(b) The absolute value of det A tells you the volume of a box in \mathbb{R}^4 . Describe that box (2 points – describe a different box with the same volume).

Suppose you remove row 3 and column 4 of an invertible 5 by 5 matrix A. If that reduced matrix is not invertible, what fact does that tell you about A^{-1} ?

00 g

(3) (30 pts.) This 4 by 4 Hadmard matrix is an orthogonal matrix. Its columns are orthogonal unit vectors.

- (a) What projection matrix P_4 (give numbers) will project every b in \mathbb{R}^4 onto the line through q_4 ?
- What projection matrix P_{123} will project every b in \mathbb{R}^4 onto the subspace spanned by q_1, q_2 , and q_3 ? Remember that those columns are orthogonal.

(c) Suppose A is the 4 by 3 matrix whose columns are q_1 , q_2 , q_3 . Find the least-squares solution \hat{x} to the four equations

What is the error vector e?

00 g