











# IVOA PROVENANCE METADATA LINKS TO EXISTING MODELS

<u>Michèle Sanguillon</u><sup>(\*)(1)(2)</sup>, Mathieu Servillat<sup>(\*\*)(1)</sup>, Julien Le Faucheur, <sup>(\*\*)(1)</sup>, Catherine Boisson<sup>(\*\*)(1)</sup>, Johan Bregeon<sup>(\*)(1)</sup>, Ana Palacios<sup>(\*)(2)</sup>, Mireille Louys<sup>(\*\*\*)(3)</sup>, François Bonnarel<sup>(\*\*\*)(3)</sup>, Pierre Le Sidaner<sup>(\*\*\*\*)(3)</sup>

(\*) LUPM, Montpellier (\*\*) LUTH, Meudon (\*\*\*) CDS, Strasbourg, (\*\*\*\*) DIO, Paris (1) CTA, (2) Pollux, (3) VO Experts

### **CTA Context**





CTA will be the first Cherenkov Observatory providing its high level data (event lists, spectra, sky maps) on the Virtual Observatory

- Very high energy gamma ray instrument
- 3 types of telescopes in CTA
- Complex data :
  - Indirect detection
  - Need simulations to compare acquired data to expected ones
- Final products data available on the VO





### CTA data and workflows

# Different levels of data: DL0 to DL5. DL3, DL4 and DL5 data available on the

| VO            |               |                                                                                                                                                                                       |                       |
|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Data Level    | Short Name    | Description                                                                                                                                                                           | Data reduction factor |
| Level 0 (DL0) | DAQ-RAW       | Data from the Data Acquisition hardware/software.                                                                                                                                     |                       |
| Level 1 (DL1) | CALIBRATED    | Physical quantities measured in<br>each separate camera: pho-<br>tons, arrival times, etc., and per-<br>telescope parameters derived<br>from those quantities.                        | 1-0.2                 |
| Level 2 (DL2) | RECONSTRUCTED | Reconstructed shower parameters (per event, no longer pertelescope) such as energy, direction, particle ID, and related signal discrimination parameters.                             | 10-1                  |
| Level 3 (DL3) | REDUCED       | Sets of selected (e.g. gamma-<br>ray-candidate) events, along<br>with associated instrumental<br>response characterizations and<br>any technical data needed for<br>science analysis. | $10^{-2}$             |
| Level 4 (DL4) | SCIENCE       | High Level binned data products like spectra, sky maps, or light curves.                                                                                                              | $10^{-3}$             |
| Level 5 (DL5) | OBSERVATORY   | Legacy observatory data, such as CTA survey sky maps or the CTA source catalog.                                                                                                       | $10^{-5}$ - $10^{-3}$ |



### **CTA** search cases



Use case 1:

ObsCore
Any protocol

Use case 2:

Search public data for all blazars

Extended ObsCore
TAP

Use case 3:

Search data that include LST (Large Size Telescope).

CTA ObsConfig

Use case 4:

Search data produced using a given reconstruction method

No data model
No current protocol

Use case 5:

Search data for a given target produced with loose cuts

No data model No current protocol

## Provenance in the IVOA



#### Explains how data sets were produced:

- Observing process and conditions
- Data reduction, selection and extraction methods applied to raw measures to build up science-ready data products (source lists, spectra, light curves, images, ...)
- Worflows to build theorical data (spectra, images, ...)

#### Helps VO users to:

- Derive selection criteria to filter out suitable data for his/her scientific needs
- Estimate better which data release fits the best for their needs
- Run his/her own reduction method on intermediate data products in order to refine data analysis

### **Provenance in the W3C**



#### **W3C Provenance definition:**

« Provenance is information about entities, activities and people involved in producing a piece of data or thing, which can be used to form assessments about its quality, reliability and trustworthiness. PROV-DM is the conceptual data model that forms a basis for the W3C provenance (PROV) familiy of specfications. »

#### **4 recommendations (30/04/2013)**

PROV-DM: the PROV data model

PROV-O: the PROV ontology

PROV-Constraint: Constraints of the PROV Data Model

PROV-N: a notation for provenance aimed at human

consumption

#### and a number of non-prescriptive notes

PROV-XML: an XML schema for the PROV data model

PROV-AQ: Provenance access and query

Mireille Louys - Provenance- Asterics meeting March 7-8, 2016

#### **Benefits:**

- Four recommendations and a number of nonprescriptive notes
- Tools to validate and translate a description format in another one
- Possible to define our own attributes

# W3C Provenance Data Model W5





### **IVOA** current **DM**



IVOA Provenance Data Model Version 0.1 IVOA Working Draft 2015-05-18



# **IVOA** proposal DM







#### RAVE use case



Kristin Riebe, Leibnitz Institut für Astrophysics Postdam <a href="http://wiki.ivoa.net/internal/IVOA/InterOpJune2015DM/Provenance.pdf">http://wiki.ivoa.net/internal/IVOA/InterOpJune2015DM/Provenance.pdf</a>

- All W3C PROV formats tried out
- To continue in the IVOA DM WG



### Pollux stellar database





•••

١٨

\* The computing of the spectra is done by the producers and not done on the fly. http://pollux.graal.univ-montp2.fr/

POLLUX database collects and presents synthetic spectra computed\* at high resolution.



### Pollux data and workflow





Only the spectra are available on the VO

### Pollux use cases



#### Use case 1:

Show me a list of synthetic spectra satisfying:

- domain of wavelength = visible
- domain of effective temperature = [4000, 5000]

#### Use case 2:

Show me a list of synthetic spectra satisfying:

- code for model atmosphere = MARCS
- type of model atmosphere = spherical

#### Use case 3:

Show me a list of synthetic spectra satisfying:

- code for spectral synthesis = turbospectrm
- version of this code = 2008.1

#### Data Model:

- Obs\* could not be applied
- SimDM implements only a simulator and a PostProcessor

#### **Protocol**

- SSA protocol with format = METADATA but only few criteria are currently available.
- SimDAL not done for this use

### Rich and diverse projects explored for Usecases

- CTA, RAVE, Pollux DB, SVOM(<a href="http://www.svom.fr/svom.html">http://www.svom.fr/svom.html</a>)
- A Core Provenance Model on the way
- Existing modeling to reuse for data products
  - ObsCore/ Dataset Metadata DM
- Protocols available TAP?
- Translation tools in W3C tools

Discussion to happen here?