Instructions: Five points total.

1. (4 pts.) Consider the function of two variables $f(x,y) = -x^2 + 4y^2$

- (a) (1 pt.) Sketch the surface on the axes to the right.
- (b) (3 pts.) Find the equation of the tangent plane to f(x,y) at the point (a,b)=(2,1). Simplify your answer.

$$z = f_{x}(z_{1})(x-2) + f_{y}(z_{1})(y-1) + f_{y}(z_{1}) \qquad f_{y} = -2x \qquad f_{x}(z_{1}) = -4$$

$$f_{y} = 7y \qquad f_{y}(z_{1}) = 8$$

$$z = -4(x-2) + 8(y-1) + 0$$

$$f_{(2x)} = -(2)^{2} + 4(1)^{2}$$

$$4x - 8y + 2 = 0$$

$$z = 8y - 4x$$

2. (1 pt.) Use **implicit differentiation** to solve for $\frac{\partial z}{\partial y}$ in the implicitly defined surface

$$\tan(xz) + xyz = 1$$

$$\frac{\partial z}{\partial y} = \frac{-xz}{x \sec^2(xy) + xy} = -x$$

$$\frac{\partial z}{\partial y} = \frac{-xz}{x \sec^2(xy) + xy} = -x$$

$$\frac{\partial z}{\partial y} = \frac{-xz}{x \sec^2(xy) + xy} = \frac{-z}{y + \sec^2(xy)}$$

$$\frac{\partial z}{\partial y} = \frac{-xz}{x \sec^2(xy) + xy}$$