Estatística e Ciência de Dados

Notas e solução dos exercícios

Conteúdo

Pr	efácio		ix
Pr	efácio		ix
	Pend	lências	ix
1	Esta	tística, Ciência de Dados e Megadados	1
	1.1	Introdução	1
	1.2	Aprendizado com estatística	1
	1.3	Aprendizado automático	2
	1.4	Uma cronologia do desenvolvimento da estatística	3
	1.5	Notação e tipos de dados	3
	1.6	Paradigmas para o aprendizado com estatística	3
	1.7	Este livro	4
	1.8	Conjuntos de dados	4
	1.9	Notas do capítulo	4
I	Ana	álise Exploratória de Dados	5
2	Prep	paração dos dados	7
	2.1	Considerações preliminares	7
	2.2	Planilhas de dados	7
	2.3	Contrução de tabelas	7
	2.4	Construção de gráficos	8
	2.5	Notas de capítulo	8
	2 (Evaraígias	0

iv		Contents

3	Anál	ise de dados de uma variável	21
	3.1	Introdução	21
	3.2	Distribuição de frequências	21
	3.3	Medidas resumo	22
	3.4	Boxplots	23
	3.5	Modelos probabilísticos	24
	3.6	Dados amostrais	24
	3.7	Gráficos QQ	24
	3.8	Desvio padrão e erro padrão	24
	3.9	Intervalo de confiança e tamanho da amostra	25
	3.10	Transformação de variáveis	25
	3.11	Notas de capítulo	27
	3.12	Exercícios	27
	. /1		
4		ise de dados de duas variáveis	29
	4.1	Introdução	29
	4.2	Duas variáveis qualitativas	29
	4.3	Duas variáveis quantitativas	29
	4.4	Uma variável qualitativa e outra quantitativa	29
	4.5	Notas de capítulo	29
	4.6	Exercícios	29
5	Anál	ise de dados de várias variáveis	31
	5.1	Introdução	31
	5.2	Gráficos para três variáveis	31
	5.3	Gráficos para quatro ou mais variáveis	31
	5.4	Medidas resumo multivariadas	31
	5.5	Tabelas de contingência de múltiplas entradas	31
	5.6	Notas de capítulo	31
	5 7	Exercícios	31

Co	ntents		v
6	Anál	ise de Regressão	33
	6.1	Introdução	33
	6.2	Regressão linear simples	33
	6.3	Regressão linear múltipla	33
	6.4	Regressão para dados longitudinais	33
	6.5	Regressão logística	33
	6.6	Notas de capítulo	33
	6.7	Exercícios	33
7	Anál	ise de Sobrevivência	35
	7.1	Introdução	35
	7.2	Estimação da função de sobrevivência	35
	7.3	Comparação de curvas de sobrevivência	35
	7.4	Regressão para dados de sobrevivência	35
	7.5	Notas de capítulo	35
	7.6	Exercícios	35
II	Аp	rendizado Supervisionado	37
8	Regu	ılarização e Modelos Aditivos Generalizados	39
	8.1	Introdução	39
	8.2	Regularização	39
	8.3	Modelos aditivos generalizados (GAM)	39
	8.4	Notas de capítulo	39
	8.5	Exercícios	39
9	Class	sificação por meio de técnicas clássicas	41
	9.1	Introdução	41
	9.2	Classificação por regressão logística	41
	9.3	Análise discriminante linear	41
	9.4	Classificador do vizinho mais próximo	41
	9.5	Algumas extensões	41
	9.6	Notas de capítulo	41
	9.7	Exercícios	41

vi		Con	itents
10	Algo	ritmos de Suporte Vetorial	43
	10.1	Introdução	43
	10.2	Fundamentação dos algoritmos de suporte vetorial	43
	10.3	Classificador de margem máxima	43
	10.4	Classificador de margem flexível	43
	10.5	Classificador de margem não linear	43
	10.6	Regressão por algoritmos de suporte vetorial	43
	10.7	Notas de capítulo	43
	10.8	Exercícios	43
11	Árvo	res e Florestas	45
	11.1	Introdução	45
	11.2	Classificação por árvores	45
	11.3	Bagging, boosting e florestas	45
	11.4	Árvores para regressão	45
	11.5	Notas de capítulo	45
	11.6	Exercícios	45
12	Rede	s neurais	47
	12.1	Introdução	47
	12.2	Perceptron	47
	12.3	Redes com camadas ocultas	47
	12.4	O algoritmo de retropropagação (backpropagation)	47
	12.5	Aprendizado profundo (Deep learning)	47
	12.6	Notas de capítulo	47
	12.7	Exercícios	47
III	[A]	prendizado não Supervisionado	49

Co	ntents		vii
13	Anál	ise de Agrupamentos	51
	13.1	Introdução	51
	13.2	Estratégias de agrupamento	51
	13.3	Algoritmos hierárquicos	51
	13.4	Algoritmos de partição: K-médias	51
	13.5	Notas de capítulo	51
	13.6	Exercícios	51
14	Redu	ıção de dimensionalidade	53
	14.1	Introdução	53
	14.2	Análise de Componentes Principais	53
	14.3	Análise fatorial	53
	14.4	Análise de componentes independentes	53
	14.5	Notas de capítulo	53
	14.6	Exercícios	53
Аp	êndic	e	53
A	Otin	nização numérica	55
	A.1	Introdução	55
	A.2	O método de Newton-Raphson	55
	A.3	O método scoring	55
	A.4	O método de Gauss-Newton	55
	A.5	Métodos Quase-Newton	55
	A.6	Aspectos computacionais	55
	A.7	Notas de capítulo	55
	A.8	Exercícios	55
В	Noçô	ões de simulação	57
	B.1	Introdução	57
	B.2	Método Monte Carlo	57
	B.3	Simulação de variáveis discretas	57

vii	i	Con	tents
	B.4	Simulação de variáveis contínuas	57
	B.5	Simulação de vetores aleatórios	57
	B.6	Métodos de reamostragem	57
	B.7	Notas de capítulo	57
	B.8	Exercícios	57
С	Algo	ritmos para dados aumentados	59
	C.1		59
	C.2	O algoritmo EM	59
	C.3	O algoritmo EM Monte Carlo	59
	C.4	Cálculo de erros padrões	59
	C.5	O algoritmo para dados aumentados	59
	C.6	Exercícios	59

Prefácio

Esta página contém notas e solução para os exercícios propostos no livro **Estatística** e **Ciência de Dados**, de autoria de Pedro Alberto Morettin e Júlio da Motta Singer, publicado pela LTC em 2022 [Morettin and Singer, 2022].

É importante destacar que trata-se de um produto não oficial, as anotações e soluções de exercícios aqui apresentadas são de cunho pessoal e não possuem qualquer revisão ou análise por parte dos autores da obra ou da editora. Dessa forma e por se tratar de um produto construído durante o processo de aprendizagem, o conteúdo pode conter erros, tanto no texto em si, como na lógica utilizada para solução dos exercícios.

Dúvidas ou sugestões de melhoria podem ser encaminhadas para o e-mail jeidsan. $pereira@gmail.com^{I}$.

Pendências

- Exercício 2.2;
- .

¹mailto:jeidsan.pereira@gmail.com

Estatística, Ciência de Dados e Megadados

1.1 Introdução

Atualmente, os termos *Data Science* (**Ciência de Dados**) e *Big Data* (**Megadadas**) são utilizados em profusão como se envolvessem conceitos novos, distintos daqueles com que os estatísticos lidam há cerca de dois séculos [Morettin and Singer, 2022, p. 1].

1.2 Aprendizado com estatística

O aprendizado supervisionado está relacionado com metodologia desenvolvida essencialmente para previsão e classificação. No âmbito da previsão, o objetivo é utilizar variáveis preditivas (sexo, classe social, renda, por exemplo) observadas em várias unidades (clientes de um banco, por exemplo) para "advinhar" valores de uma variável resposta numérica (saldo médio, por exemplo) de novas unidades. O problema de classificação consiste em qual categoria de uma variável resposta qualitativa (bons e maus pagadores, por exemplo) as novas unidades são classificadas [Morettin and Singer, 2022, p. 3].

No aprendizado não supervisionado, dispomos apenas um conjunto de dados, sem distinção entre preditoras e respostas, e o objetivo é descrever associações e padrões entre essas variáveis e agrupá-las com o objetivo de identificar características comuns e conjuntos de unidades de investigação ou desenvolver métodos para combiná-las e assim reduzir sua dimensionalidade [Morettin and Singer, 2022, p. 3].

Além de aprendizado supervisionado e não supervisionado, podemos acrescentar um terceiro tipo, denominado **aprendizado com reforço** (*reinforcement learning*), segundo o qual um algoritmo "aprende" a realizar determinadas tarefas por meio de repetições com o fim de maximizar um prêmio sujeito a um valor máximo [Morettin and Singer, 2022, p. 3].

Embora tanto o aprendizado supervisionado quanto o aprendizado com reforço utilizem um mapeamento entre entradas (*inputs*) e saídas (*outputs*), no primeiro caso a retroalimentação (*feedback*) fornecida ao algoritmo é um conjunto de ações corretas necessárias para a realização de uma tarefa; no aprendizado com reforço, por outro lado, a retroalimentação é baseada num sistema com prêmios e punições como indicativos de ações corretas ou incorretas [Morettin and Singer, 2022, p. 3].

1.3 Aprendizado automático

Jordan [2019 *apud* Morettin and Singer, 2022, p. 4] distingue três tipos de inteligência articifial: i) inteligência artificial imitativa humana; ii) aumento de inteligência; e iii) infraestrutura inteligente.

De modo informal, a inteligência artificial está relacionada com um esforço para automatizar tarefas intelectuais usualmente realizadas por seres humanos (Chollet, 2018) e consequentemente, intimamente ligada ao desenvolvimento da computação (ou programação de computadores) [Morettin and Singer, 2022, p. 4].

Convém ressaltar que o objetivo do aprendizado automático não é o mesmo daquele consi- derado na análise de regressão usual, em que se pretende entender como cada variável preditora Ro está associada com a variável resposta. O objetivo do aprendizado automático é selecionar o mo- delo que produz melhores previsões, mesmo que as variáveis selecionadas com essa finalidade não sejam aquelas consideradas numa análise padrão [Morettin and Singer, 2022, p. 5].

1.4 Uma cronologia do desenvolvimento da estatística

Sem notas para esta seção.

1.5 Notação e tipos de dados

Sem notas para esta seção.

1.6 Paradigmas para o aprendizado com estatística

1.7 Este livro

Independentemente do volume de dados disponíveis para análise, Ciência de Dados é uma atividade multidisciplinar que envolve: i) um problema a ser resolvido com questões claramente especificadas; ii) um conjunto de dados (seja ele volumoso ou não); iii) os meios para sua obtenção; iv) sua organização; v) a especificação do problema original em termos das variáveis desse conjunto de dados; vi) a descrição e resumo dos dados à luz do problema a ser resolvido; vii) a escolha das técnicas estatísticas apropriadas para a resolução desse problema; viii) os algoritmos computacionais necessários para a implementação dessas técnicas; ix) a apresentação dos resultados [Morettin and Singer, 2022, p. 11].

1.8 Conjuntos de dados

Sem notas para esta seção.

1.9 Notas do capítulo

Parte I Análise Exploratória de Dados

Preparação dos dados

2.1 Considerações preliminares

O ramo da Estatística conhecido como **Análise Exploratória de Dados** se ocupa da organização e resumo dos dados de uma amostra ou, eventualmente, de toda a população e o ramo conhecido como **Inferência Estatística** se refere ao processo de se tirar conclusães sobre uma população com base em uma amostra dela [Morettin and Singer, 2022, p. 21].

2.2 Planilhas de dados

Sem notas para esta seção.

2.3 Contrução de tabelas

2.4 Construção de gráficos

Sem notas para esta seção.

2.5 Notas de capítulo

Sem notas para esta seção.

2.6 Exercícios

Exercício 2.1

O objetivo de um estudo da Faculdade de Medicina da USP foi avaliar a associação entre a quantidade de morfina administrada a pacientes com dores intensas provenientes de lesões medulares ou radiculares e a dosagem dessa substância em seus cabelos. Três medidas foram realizadas em cada paciente, a primeira logo após o início do tratamento e as demais após 30 e 60 dias. Detalhes podem ser obtidos no documento disponível no arquivo morfina.doc.

A planilha morfina.xls, disponível no arquivo morfina foi entregue ao estatístico para análise e contém resumos de características demográficas além dos dados do estudo.

- a) Com base nessa planilha, apresente um dicionário com a especificação das variáveis segundo as indicações da Seção 2.2 e construa a planilha correspondente.
- b) Com as informações disponíveis, construa tabelas para as variáveis sexo, raça, grau de instrução e tipo de lesão segundo as sugestões da Seção 2.3.

Solução. Utilizando o arquivo morfina. doc chegamos à seguinte solução para o item a:

Tabela 2.1: Tabela 2.1: Dicionários para as variáveis do estudo morfina. doc $^{\rm I}$

Rótulo	Variável	Unidade de medida
id	Identificação do paciente	
data	Data de avaliação do paciente	
idade	Idade do paciente	anos
sexo	Sexo do paciente	1 - masculino 2 -
SCAU	Sexo do paciente	feminino
72.02	Raça e/ou etnia do paciente	1 - pardo 2 -
raça	Raça e/ou etilla do paciente	negro 3 - branco
		4 - indígena 5 -
		amarelo
maligião	Policião do pocionto	1 - catolico 2 -
religião	Religião do paciente	
		sem religião 3 - evangélico 4 -
		espírita 5 - judeu 6 - outra
m 000	Daga da marianta	
peso altura	Peso do paciente	quilogramas (kg)
	Altura do paciente	metros (m) 1 - Analfabeto 2 -
instrução	Grau de instrução do paciente	Alfabetizado 3 -
		Ens.
		Ens. Fundamental 4 -
		_ *************************************
		Ens. Médio 5 -
<i>C</i> : 1 . 1 .	To farmatidada maior fair da marianta	Ens. Superior
eniermidade	Enfermidade primária do paciente	1 - Lesão medular 2 -
		Lesão radicular 3
		- Trauma 4 - FAF
		5 - Pós cirúrgico
tina	Tino do cabalo do pagiento	1 - Natural 2 -
tipo	Tipo de cabelo do paciente	Artificial
con	Cor do cabelo do paciente	1 - Marrom 2 -
cor	Cor do cabelo do paciente	Vermelho 3 -
		Preto 4 - Louro 5
		- Cinza 6 -
		Branco 7 - Outro
forma	Forma do cabelo do paciente	1 - Caucasiana 2
1011114	Torma do cabelo do paciente	- Asiática 3 -
		Negróide 4 -
		Outra
		Outra

composição da solução do reservatório ampola Número da ampola de morfina

Rótulo	Variável	Unidade de medida
sf	Quantidade de soro fisiológico para diluição	mililitros (ml)
concentracao	Concentração da solução	percentual (%)
disp_prop	Número de disparos proposto por dia	
disp_real	Número de disparos realizados por dia	
vol_desprez	Quantidade de solução desprezada no reservatório	mililitros (ml)
con_desp	Concentração da solução desprezada no reservatório	percentual (%)
obstrucao	Ocorrência de obstrução no cateter	1 - Sim 2 - Não
infeccao	Ocorrência de infecção do sistema	1 - Sim 2 - Não
nausea	Ocorrência de nausea como efeito colateral	1 - Sim 2 - Não
sonolencia	Ocorrência de sonolência como efeito colateral	1 - Sim 2 - Não
constipação	Ocorrência de constipação como efeito colateral	1 - Sim 2 - Não
tontura	Ocorrência de tontura como efeito colateral	1 - Sim 2 - Não
prurido	Ocorrência de prurido como efeito colateral	1 - Sim 2 - Não
retencao	Ocorrência de retenção urinária como efeito colateral	1 - Sim 2 - Não
outros	Ocorrência de outros efeitos colaterais	1 - Sim 2 - Não
do	Dose inicial de morfina	miligrama (mg)
d30	Dose de morfina após 30 dias	miligrama (mg)
d60	Dose de morfina após 60 dias	miligrama (mg)
tO	Quantidade inicial de morfina no cabelo	miligrama (mg)
t30	Quantidade de morfina no cabelo após 30 dias	miligrama (mg)
t60	Quantidade de morfina no cabelo após 60 dias	miligrama (mg)

Para o item 6, como teremos quatro tabelas distintas e os dados não estão cruzados, optamos por incluir o rótulo da primeira coluna no título do gráfico, a fim de não termos títulos repetidos. Temos o seguinte:

Tabela 2.2: Tabela 2.2: Distribuição dos pacientes conforme o sexo

Sexo	Número de pacientes	Percentual (%)	
Masculino	19	54	
Feminino	16	46	
Total	35	100	

¹Trata-se de uma versão inicial para o dicionário de dados. O mesmo será revisado posteriormente para se adequar à especificação do documento morfina.doc.

Tabela 2.3: Tabela 2.3: Distribuição dos pacientes conforme raça/etnia

Raça	Número de pacientes	Percentual (%)
Pardo	20	57
Branco	13	37
Negro	2	6
Total	35	100

Tabela 2.4: Tabela 2.4: Distribuição dos pacientes conforme o grau de instrução

Grau de Instrução	Número de pacientes	Percentual (%)	
Ensino Fundamental	25	71	
Ensino Médio	9	26	
Ensino Superior	1	3	
Total	35	100	

Tabela 2.5: Tabela 2.5: Distribuição dos pacientes conforme o tipo de lesão

Tipo de lesão	Número de pacientes	Percentual (%)	
Medular	10	29	
Radicular	25	71	
Total	35	100	

Exercício 2.2

A Figura 2.6 foi extraída de um estudo sobre atitudes de profissionais de saúde com relação a cuidados com infecção hospitalar. Critique-a e reformule-a para facilitar sua leitura, lembrando que a comparação de maior interesse é entre as diferentes categorias profissionais.

Solução.

Tabela 2.6: Tabela 2.6: ABC

A	В	C
A	В	C
A	В	C

Exercício 2.3

Utilize as sugestões para construção de planilhas apresentadas na Seção 2.2 com a finalidade de preparar os dados do arquivo empresa para análise estatística.

Solução. Vamos iniciar construindo um dicionário para os dados

Tabela 2.7: Tabela 2.7: Dicionário de dados para a planilha empresa.xls

Rótulo	Descrição	Unidade de medida
id	Identificador ddo funcionário	- 1 1
estado	Estado civil do funcionário	1 - Solteiro 2 - Casado
instrucao	Grau de instrução do funcionário	1 - Ensino Fundamental 2 -
		Ensino Médio 3 - Ensino
		Superior
filhos	Número de filhos do funcionário	•
salario	Salário do funcionário	salário mínimo
anos	Idade do funcionário	anos
meses	Fração da idade do funcionário	meses
regiao	Região de procedência do funcionário	1 - Interior2 - Capital 3 - Outra

Com o dicionário de dados em mãos, podemos atualizar a planilha:

Tabela 2.8: Tabela 2.8: Dados de funcionários de uma empresa (parte)

id	estado	instrucao	filhos	salario	anos	meses	regiao
1	1	1		4.00	26	3	1
2	2	1	1	4.56	32	10	2
3	2	1	2	5.25	36	5	2
4	1	2		5.73	20	10	3
5	1	1		6.26	40	7	3
6	2	1	0	6.66	28	0	1
7	1	1		6.86	41	0	1
8	1	1		7.39	43	4	2
9	2	2	1	7.59	34	10	2
10	1	2		7.44	23	6	3

Exercício 2.4

Num estudo planejado para avaliar o consumo médio de combustível de veículos em diferentes velocidades foram utilizados 4 automóveis da marca A e 3 automóveis da marca B selecionados ao acaso das respectivas linhas de produção. O consumo (em

L/km) de cada um dos 7 automóveis foi observado em 3 velocidades diferentes (40 km/h, 80 km/h e 110km/h) Delineie uma planilha apropriada para a coleta e análise estatística dos dados, rotulando-a adequadamente.

Solução. Vamos começar construindo um dicionário de dados para a planilha:

Tabela 2.9: Tabela 2.9: Dicionário para as variáveis do estudo sobre consumo de combustível

Rótulo	Descrição	Unidade
id	Identificador do veículo	
marca	Marca fabricante do veículo	
modelo	Modelo do veículo	
consumo40	Consumo de combustível a 40 km/h	L/km
consumo80	Consumo de combustível a 80 km/h	L/km
consumo110	Consumo de combustível a 110 km/h	L/km

Agora vamos montar uma planilha (fictícia) seguindo a padronização definida acima:

Tabela 2.10: Tabela 2.10: Planilha de dados para estudo sobre consumo de combustível

id	marca	modelo	consumo40	consumo80	consumo110
1	A	XPTO 1			
2	A	XPTO 2			
3	A	XPTO 3			
4	A	XPTO 4			
5	В	XYZ 1			
6	В	XYZ 2			
7	В	XYZ 3			

Exercício 2.5

Utilizando os dados do arquivo enforco.xls, prepare uma planilha Excel num formato conveniente para análise pelo R. Inclua apenas as variáveis Idade, Altura, Peso, Frequência cardiaca e voz no repouso além do quociente VE/VCO2, as correspondentes porcentagens relativamente ao máximo, o quociente voz/FC no pico do exercício e data do óbito. Importe a planilha Excel que você criou utilizando comandos R e obtenha as características do arquivo importado (número de casos, número de observações omissas etc.)

Solução. Conforme especificação enunciada, criamos o arquivo esforco.csv que poderá ser carregado da seguinte maneira:

```
(esforco <- read_csv(paste0(data_dir, "esforco.csv")))</pre>
## Rows: 127 Columns: 8
## -- Column specification ------
## Delimiter: ","
## chr (1): obito
## dbl (7): id, idade, altura, peso, fc_repouso, vo2_repouco, ve_vo2_pico
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 127 x 8
        id idade altura peso fc_repouso vo2_repouco ve_vo2_pico obito
     <dbl> <dbl> <dbl> <dbl>
                                 <dbl>
                                            <dbl>
                                                      <dbl> <chr>
                                  89
                                             5.9
                                                       65.6 26/07/1991
         1
             38
                   149
                          80
             49
                   167
                                    69
                                              3.4
                                                        37.3 30/07/1995
         3
             65
                   153
                         56
                                    82
                                              3
                                                         59.7 21/08/1993
         4
                                    89
                                                        52.4 14/11/1992
             52
                   175
                        78
                                              3.8
         5
             52
                   157
                          59
                                    82
                                              3.2
                                                        48.8 30/07/1994
         6
             58
                    150
                          62
                                    75
                                              3.8
                                                        54.1 Não
         7
                                    89
                                              3.5
                                                        102. 17/10/1991
             24
                   155
                          42
                   149
                          55
                                    91
                                              3.9
                                                        67.8 31/08/1992
         9
             48
                          77
                                   101
                                              2.5
                                                         59.5 Não
                   160
## 10
        10
              50
                   171
                          81
                                   120
                                                         47.8 Não
## # i 117 more rows
```

Temos 127 casos e 8 variáveis.

Exercício 2.6

Rows: 19 Columns: 7

A Figura 2.7 contém uma planilha encaminhada pelos investigadores responsáveis por um estudo sobre AIDS para análise estatistica. Organize-a de forma a permitir sua análise por meio de um pacote computacional como o R.

Solução. Os dados foram reorganizados no arquivo aids.csv.

```
(aids <- read_csv(paste0(data_dir, "aids.csv")))</pre>
```

```
## -- Column specification -------
## Delimiter: ","
## chr (3): id, dst, mac
  dbl (4): grupo, diagnostico, peso, tempo_peso
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
  # A tibble: 19 x 7
     id
               grupo diagnostico dst
                                                            peso tempo_peso
##
               <dbl>
                           <dbl> <chr>
                                                    <chr> <dbl>
                                                                      <dbl>
     <chr>>
   1 2847111D
                             0
                                 <NA>
                                                    pilula
                                                              11
                                                                         37
   2 3034048F
                             0.5 <NA>
                   1
                                                    pilula
                                                              NA
                                                                         NA
   3 3244701J
                                 <NA>
                                                              NA
                                                                         NA
   4 2943791B
                             0
                                 <NA>
                                                               8
                                                                         39
                                                    não
   5 3000327F
                             4
                                 condiloma/sífilis
                                                                         39
                                                    não
   6 3232893D
                                 <NA>
                             1
                                                    diu
                                                               3
                                                                         39
   7 3028772E
                                 <NA>
                                                                         38
   8 3240047G
                             0
                                 <NA>
                                                    pilula
                                                               9
                                                                         38
   9 3017222G
                            NA
                                 HPV
                                                    condon
                                                              NA
                                                                         NA
## 10 3015834J
                             2
                   1
                                 <NA>
                                                    condon
                                                              14
                                                                         40
  11 3173611E
                             0.4 abcesso ovariano
                                                    condon
                                                                         40
## 12 3296159D
                             0
                                 <NA>
                                                    condon
                                                              NA
                                                                         NA
## 13 3147820D1
                             2
                                 <NA>
                                                     <NA>
                                                                         37
## 14 3274750K
                             3
                                                    condon
                                                                         38
## 15 3274447H
                                 sífilis com 3 meses condon
                                                              NA
                                                                         NA
## 16 2960066D
                             5
                                 <NA>
                                                    <NA>
                                                              13
                                                                         36
## 17 3235727J
                             7
                                 <NA>
                                                    condon
                                                               -2
                                                                         38
## 18 3264897E
                                 condiloma/sífilis
                                                    condon
                                                                         NA
## 19 3044120J
                                                     <NA>
                                                                         39
```

Uma possível melhoria seria a transformação das variáveis grupo e mac em fatores.

Exercício 2.7

A planilha apresentada na Figura 2.8 contém dados de um estudo em que o limiar auditivo foi avaliado nas orelhas direita (OD) e esquerda (OE) de 13 pacientes em 3 ocasiões (Limiar, Teste 1 e Teste 2). Reformate-a segundo as recomendações da Seção 2.2, indicando claramente

- a) a definição das variáveis.
- b) os rótulos para as colunas da planilha.

Solução. Precisamos inicialmente definir um dicionário para as variáveis e, na sequência, refatorar a planilha.

Tabela 2.11: Tabela 2.11: Dicionário de dados para o estudo sobre limiar auditivo ²

Rótulo	Descrição da variável	Unidade de medida
id	Identificador do paciente	
od0	Limiar auditivo da orelha direita no início do estudo	%
oe0	Limiar auditivo da orelha esquerda no início do estudo	%
od1	Limiar auditivo da orelha direita no primeiro teste	%
oe1	Limiar auditivo da orelha esquerda no primeiro teste	%
od2	Limiar auditivo da orelha direita no segundo teste	%
oe2	Limiar auditivo da orelha esquerda no segundo teste	%

Tabela 2.12: Tabela 2.12: Limiar auditivo de pacientes observados em 3 ocasiões

id	od0	oe0	od1	oe1	od2	oe2
1	50.00	50.00	50.00	50.00	80.00	80.00
2	41.00	40.00	45.00	50.00	68.00	80.00
3	41.25	41.25	45.00	45.00	64.00	72.00
4	45.00	43.75	60.00	50.00	76.00	88.00
5	51.25	47.50	50.00	50.00	80.00	80.00
6	45.00	52.50	50.00	50.00	84.00	96.00
7	52.50	50.00	55.00	45.00	40.00	28.00
8	42.15	48.75	50.00	50.00	80.00	76.00
9	50.00	48.75	50.00	50.00	72.00	80.00
10	47.50	46.25	55.00	60.00	84.00	84.00
11	55.00	56.25	40.00	35.00	80.00	84.00
12	46.25	46.25	45.00	45.00	72.00	84.00
13	50.00	47.50	40.00	50.00	76.00	76.00

Exercício 2.8

A planilha disponível no arquivo cidades.xls contém informações demográficas de 3554 municípios brasileiros.

²Como consideramos o limite de detecção como sendo 0.05, foram utilizadas duas casas decimais para representar os limites auditivos observados.

a) Importe-a para permitir a análise por meio do software R, indicando os problemas encontrados nesse processo além de sua solução.

- b) Use o comando summary para obter um resumo das variáveis do arquivo.
- c) Classifique cada variável como numérica ou alfanumérica e indique o número de observações omissas de cada uma delas.

Solução. Ao tentar realizar a leitura utilizando a função read_csv que já conhecemos, obteríamos um erro devido a planilha conter formatações.

```
cidades <- read_csv(paste0(data_dir, "cidades.xls"))</pre>
```

Error in vroom_(file, delim = delim %||% col_types\$delim, col_names = col_names, : cadeia de caracteres com nul inc

Podemos limpar a formatação da planilha e tentar a importação novamente ou utilizar a função read_xls do pacore **readxl**.

```
cidades <- readxl::read_xls(paste0(data_dir, "cidades.xls"), na = '-')</pre>
```

Note que, como os valores faltantes na planilha estão indicado com um hífem, utilizamos o argumeno na = '-' para convertelos automaticamente para NA. Note também que as últimas duas linhas do data frame cidades contém os totalizadores e não observações. Vamos removê-las!

```
cidades <- head(cidades, -2)
```

Note que o rótulo das variáveis está em maiúsculo, vamos colocá-los em minústuco com a ajuda da função str_to_lower() do pacore **stringr**:

```
colnames(cidades) <- str_to_lower(colnames(cidades))</pre>
```

Podemos agora ver que temos 17 variáveis e 3554 unidades de análise. Um resumo das variáveis do conjunto de dados é mostrado pelo comando summary:

```
## munic uf código poptot
## Length:3554 Length:3554 Min. :1001 Min. : 795
```

```
Class :character
                        Class :character
                                             1st Qu.:1889
                                                             1st Qu.:
                                                                          7995
    Mode :character
                        Mode :character
                                             Median :3720
                                                             Median:
                                                                         15632
                                                                         43650
                                                    :3440
                                                             Mean
                                             3rd Qu.:4609
##
                                                             3rd Qu.:
                                                                         30655
##
                                                    :5497
                                                             Max.
                                                                     :10406166
##
##
                           popurb
                                               pibtot
                                                                   cres_pib
       cres_pop
                                                                        : 0.0000
##
           :-13.330
                       Min.
                                    423
                                           Min.
                                                        0.90
                                                                Min.
##
    1st Qu.: 0.020
                       1st Qu.:
                                   4388
                                           1st Qu.:
                                                        13.48
                                                                1st Qu.: 0.6936
    Median : 1.145
                       Median :
                                   9232
                                           Median:
                                                        26.79
                                                                Median : 1.0372
           : 1.283
                       Mean
                                  36908
                                                       177.93
                                                                Mean
                                                                        : 1.1607
                                           Mean
    3rd Qu.:
              2.310
                       3rd Qu.:
                                  20732
                                           3rd Qu.:
                                                        66.80
                                                                3rd Qu.: 1.4493
                                                                        :24.6598
           : 23.630
                               :9785640
                                                  :105906.65
                       Max.
                                           Max.
                                                                Max.
                                                                NA's
                                           NA's
                                                  :14
                                                                        :14
                           grau2
                                                                 11oumais
##
        grau1
                                              superior
    Min.
                 469
                       Min.
                                     47
                                           Min.
                                                          0
                                                              Min.
                                                                            37
    1st Ou.:
                                    495
                                                              1st Qu.:
                                                                           407
##
               4738
                       1st Qu.:
                                           1st Ou.:
                                                         75
                                    950
                                                        178
                                                              Median :
                                                                          5407
              22833
                       Mean
                                   5060
                                           Mean
                                                      2064
                                                              Mean
    3rd Qu.:
              16057
                       3rd Qu.:
                                   2272
                                                        522
                                                              3rd Qu.:
                                           3rd Qu.:
           :5322497
                               :1606381
                                                  :1076916
                                                                      :2142313
                       Max.
                                           Max.
                                                              Max.
                       NA's
                               :13
                                                  :13
                                                                     :13
##
       empregad
                          {\tt microemp}
                                                                    medemp
                                                peqemp
                       Min.
                                                        0.00
##
    Min.
                  10
                                     3.0
                                           Min.
                                                                Min.
                                                                            0.000
                                                        1.00
##
                 414
                       1st Qu.:
                                    94.0
                                            1st Qu.:
                                                                1st Qu.:
                                                                            1.000
    1st Qu.:
    Median:
                 926
                       Median :
                                   207.0
                                            Median:
                                                         3.00
                                                                Median:
                                                                            1.000
               7778
                                   916.9
                                            Mean
                                                        36.69
                                                                            6.929
    3rd Qu.:
                       3rd Qu.:
                                   503.0
                                            3rd Qu.:
                                                        13.00
                                                                3rd Qu.:
                                                                            2.000
                2743
           :3986021
                               :377600.0
                                                   :18494.00
                                                                        :3198.000
    NA's
           :14
                       NA's
                               :14
                                            NA's
                                                   :14
                                                                NA's
                                                                        :14
        graenp
##
    Min.
           : 0.000
             0.000
    Median :
              0.000
              1.341
    3rd Qu.: 1.000
           :568.000
    NA's
           :14
```

Esse comando também nos permite perceber os tipos de cada uma das variáveis e se as mesmas contém valores faltantes. Essas informações estão resumidas na Tabela 2.13.

Tabela 2.13: Tabela 2.13: Resumo das observações da tabela cidades.xls

Variável	Tipo	Número de observações faltantes
munic	Alfanumérica	0
uf	Alfanumérica	0
codigo	Numérica	0
poptot	Numérica	0
cres_pop	Numérica	0
popurb	Numérica	0
pibtot	Numérica	14
cres_pib	Numérica	14
graul	Numérica	13
grau2	Numérica	13
superior	Numérica	13
11oumais	Numérica	13
empregad	Numérica	14
microemp	Numérica	14
peqemp	Numérica	14
medemp	Numérica	14
graemp	Numérica	14

Exercício 2.9

Preencha a ficha de inscrição do Centro de Estatistica Aplicada www.ime.usp.br/-cea³ com as informações de um estudo em que você está envolvido.

Solução. Não se aplica.

³http://www.ime.usp.br/-cea

Análise de dados de uma variável

3.1 Introdução

A ideia de uma análise descritiva de dados é tentar responder as seguintes questões:

- i) Qual a frequência com que cada valor (ou intervalo de valores) aparece no conjunto de dados ou seja, qual a distribuição de frequências dos dados?
- ii) Quais são alguns valores típicos do conjunto de dados, como mínimo e máximo?
- iii) Qual seria um valor para representar a posição (ou localização) central do conjunto de dados?
- iv) Qual seria uma medida da variabilidade ou dispersão dos dados?
- v) Existem valores atípicos ou discrepantes (outliers) no conjunto de dados?
- vi) A distribuição de frequências dos dados pode ser considerada simétrica?

[Morettin and Singer, 2022, p. 37]

3.2 Distribuição de frequências

3.3 Medidas resumo

Dado um número $0<\alpha<1$, a **média aparada** de ordem α , $\overline{x}(\alpha)$, é definida como a média do conjunto de dados obtido após a eliminação das 100% primeiras observações ordenadas e das 100% últimas observações ordenadas do conjunto original [...]. Para $\alpha=0,25$ obtemos a chamada **meia média**. [Morettin and Singer, 2022, p. 47].

Dado um número natural $k \geq 2$ e um conjunto $X = \{x_1, \dots, x_n\}$ com $n \in \mathbb{N}$, o k-ésimo **momento centrado** de X é dado por [Morettin and Singer, 2022, p. 50]:

$$m_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k$$

Dentre as medidas de assimetria, as mais comuns são:

- a) o coeficiente de assimetria de Figher-Pearson: $g_1 = \frac{1}{m_2^{(3/2)}}$
- b) o coeficiente de assimetria de Fisher-Pearson ajustado: $\frac{\sqrt{n(n-1)}}{n-2}g_1$

[Morettin and Singer, 2022, p. 50]

As principais propriedades desses coeficientes são

 i) seu sinal reflete a direção da assimetria (sinal negativo corresponde a assimetria à direita e sinal positivo corresponde a assimetria à esquerda);

- comparam a assimetria dos dados com aquela da distribuição normal, que é simétrica,
- iii) valores mais afastados do zero indicam maiores magnitudes de assimetria e consequente- mente, maior afastamento da distribuição normal;
- iv) a estatística indicada em (3.15) tem um ajuste para o tamanho amostral;
- v) esse ajuste tem pequeno impacto em grandes amostras. [Morettin and Singer, 2022, p. 51]

Outro coeficiente de assimetria mais intuitivo é o chamado coefici-

ente de assimetria de Pearson 2, estimado por
$$Sk_2 = \frac{3 \cdot [x - med(x_1, \cdots, x_n)]}{S}$$

[Morettin and Singer, 2022, p. 51].

Seja X uma variável aleatória qualquer, com média μ e variância σ^2 .

Seja
$$X$$
 uma variável aleatória qualquer, com m A **curtose** de X é definida por
$$K(X) = E\left[\frac{(X-\mu)^4}{\sigma^4}\right]$$

[Morettin and Singer, 2022, p. 53]

3.4 Boxplots

3.5 Modelos probabilísticos

Sem notas para esta seção.

3.6 Dados amostrais

Sem notas para esta seção.

3.7 Gráficos QQ

Uma das questões fundamentais na especificação de um modelo para inferência estatística é a escolha de um modelo probabilístico para representar a distribuição (desconhecida) da variável de interesse na população. Uma possível estratégia para isso é examinar o histograma dos dados amostrais e compará-lo com histogramas teóricos associados a modelos probabilísticos candidatos. Alternativamente, os gráficos QQ (QQ plots) também podem ser utilizados com essa finalidade [Morettin and Singer, 2022, p. 59].

3.8 Desvio padrão e erro padrão

3.9 Intervalo de confiança e tamanho da amostra

[...] margem de erro, que, essencialmente, é uma medida de nossa incerteza na extrapolação dos resultados obtidos para a população de onde assumimos que foi obtida [Morettin and Singer, 2022, p. 65].

A margem de erro depende do processo amostral, do desvio padrão amostral S, do tamanho da amostra n e é dado por $me=\frac{kS}{\sqrt{n}}$ em que k é uma constante que depende do modelo probabilístico adotado e da confiança com que pretendemos fazer a inferência [Morettin and Singer, 2022, p. 65].

Especificamente no caso da estimação da média (populacional) μ de uma variável X, a pergunta seria Qual é o tamanho da amostra necessário para que a estimativa \overline{X} da média μ tenha uma precisão ε ? A resposta pode ser obtida da expressão (3.21), fazendo $\varepsilon=\frac{1.96\cdot S}{\sqrt{n}}$ [Morettin and Singer, 2022, p. 66].

3.10 Transformação de variáveis

Se quisermos utilizar os procedimentos talhados para análise de dados com distribuição normal em situações nas quais a distribuição

dos dados amostrais é sabidamente assimétrica, pode-se considerar uma transformação das observações com a finalidade de se obter uma distribuição "mais simétrica" e portanto, mais próxima da distribuição normal. Uma transformação bastante usada com esse propósito é

$$x^{(p)} = \begin{cases} x^p, & se \ p > 0 \\ log(x), & se \ p = 0 \\ -x^p, & se \ p < 0 \end{cases}$$

Essa transformação com 0 apropriada para distribuições assimétricas à direita, pois valores grandes decrescem de <math>x decrescem mais relativamente a valores pequenos. Para distribuições assimétricas à esquerda, basta tomar p>1. Normalmente, consideramos valores de p na sequência

$$\cdots, -3, -2, -1, -1/2, -1/3, -1/4, 0, 1/4, 1/3, 1/2, 1, 2, 3, \cdots$$

e para cada um deles construímos gráficos apropriados (histogramas, boxplots) com os dados originais transformados, com a finalidade de escolher o valor mais adequado para p. Hinkley (1977) sugere que para cada valor de p na sequência acima se calcule a média, a mediana e um estimador de escala (esvio padrão ou algum estimador robusto) e então se escolha o valor que minimiza

$$d_p = \frac{mdia - mediana}{medida \ de \ escala}$$

[Morettin and Singer, 2022, p. 67].

A transformação (3.23) [acima] é um caso particular das **transforma**ç**ões de Box-Cox** que são da forma

$$g(x) = \begin{cases} \frac{(x^p - 1)}{p}, & \text{se } p \neq 0\\ \log(x), & \text{se } p = 0 \end{cases}$$

[Morettin and Singer, 2022, p. 69].

3.11 Notas de capítulo

Sem notas para esta seção.

3.12 Exercícios

Análise de dados de duas variáveis

- 4.1 Introdução
- 4.2 Duas variáveis qualitativas
- 4.3 Duas variáveis quantitativas
- 4.4 Uma variável qualitativa e outra quantitativa
- 4.5 Notas de capítulo
- 4.6 Exercícios

5.7 Exercícios

Análise de dados de várias variáveis

5.1	Introdução	
5.2	Gráficos para	ı três variáveis
5.3	Gráficos para	quatro ou mais variáveis
5.4	Medidas resu	ımo multivariadas
5.5	Tabelas de co	ntingência de múltiplas entradas
5.6	Notas de cap	itulo

Análise de Regressão

- 6.1 Introdução
 6.2 Regressão linear simples
 6.3 Regressão linear múltipla
 6.4 Regressão para dados longitudinais
 6.5 Regressão logística
- 6.7 Exercícios

6.6 Notas de capítulo

Análise de Sobrevivência

- 7.1 Introdução
- 7.2 Estimação da função de sobrevivência
- 7.3 Comparação de curvas de sobrevivência
- 7.4 Regressão para dados de sobrevivência
- 7.5 Notas de capítulo
- 7.6 Exercícios

Parte II Aprendizado Supervisionado

Regularização e Modelos Aditivos Generalizados

- 8.1 Introdução
- 8.2 Regularização
- 8.3 Modelos aditivos generalizados (GAM)
- 8.4 Notas de capítulo
- 8.5 Exercícios

Classificação por meio de técnicas clássicas

- 9.1 Introdução
- 9.2 Classificação por regressão logística
- 9.3 Análise discriminante linear
- 9.4 Classificador do vizinho mais próximo
- 9.5 Algumas extensões
- 9.6 Notas de capítulo
- 9.7 Exercícios

10.8 Exercícios

Algoritmos de Suporte Vetorial

10.1	Introdução	
10.2	Fundamen	itação dos algoritmos de suporte vetorial
10.3	Classificad	or de margem máxima
10.4	Classificad	lor de margem flexível
10.5	Classificad	or de margem não linear
10.6	Regressão	por algoritmos de suporte vetorial
10.7	Notas de ca	apítulo

Árvores e Florestas

- 11.1 Introdução
- 11.2 Classificação por árvores
- 11.3 Bagging, boosting e florestas
- 11.4 Árvores para regressão
- 11.5 Notas de capítulo
- 11.6 Exercícios

Redes neurais

12.7 Exercícios

12.1	Introdução
12.2	Perceptron
12.3	Redes com camadas ocultas
12.4	O algoritmo de retropropagação (backpropagation)
12.5	Aprendizado profundo (Deep learning)
12.6	Notas de capítulo

Parte III

Aprendizado não Supervisionado

Análise de Agrupamentos

13.1	Introd	ココピコハ
17.1		ıuçav
		3

- 13.2 Estratégias de agrupamento
- 13.3 Algoritmos hierárquicos
- 13.4 Algoritmos de partição: K-médias
- 13.5 Notas de capítulo
- 13.6 Exercícios

Redução de dimensionalidade

	T . 1	~
14.1	Introdu	1C20
T-L.T	million	ıçuv

14.2 Análise de Componentes Principais

14.3 Análise fatorial

14.4 Análise de componentes independentes

14.5 Notas de capítulo

14.6 Exercícios

A

Otimização numérica

A.8 Exercícios

A .1	Introdução	
A.2	O método d	le Newton-Raphson
А.3	O método s	coring
A. 4	O método d	le Gauss-Newton
A. 5	Métodos Q	uase-Newton
A. 6	Aspectos co	omputacionais
A. 7	Notas de ca	pítulo

B

Noções de simulação

Exercícios

B. 1	Introdução	
B.2	Método Mo	nte Carlo
В.3	Simulação (de variáveis discretas
B.4	Simulação (de variáveis contínuas
B.5	Simulação (de vetores aleatórios
B.6	Métodos de	reamostragem
B.7	Notas de ca	pítulo

C

Algoritmos para dados aumentados

- C.1 Introdução
- C.2 O algoritmo EM
- C.3 O algoritmo EM Monte Carlo
- C.4 Cálculo de erros padrões
- C.5 O algoritmo para dados aumentados
- C.6 Exercícios

Bibliografia

Pedro Alberto Morettin and Julio da Motta Singer. *Estatística e Ciência de Dados*. LTC, Rio de Janeiro, 2022.