School of Geography and Geology McMaster University

Advanced Topics in Spatial Statistics

Spatially Continuous Data I & II

This session:

- Spatially Continuous Data I & II
 - Definitions
 - Visualization
 - Exploration: First Order Properties
 - Moving Averages
 - Kernel Estimation
 - o Tesselation Methods
 - Exploration: Second Order Properties
 - o Covariogram and Variogram

The difference between point patterns and spatially continuous data

o Location of fires in Kitchener, Ontario

The difference between point patterns and spatially continuous data

 Concentration of a contaminant in npm Produced by Academic TransCAD

The difference between spatially continuous data and area data

o Time series

Scale of Analysis

Examples of Applications

o In the environmental sciences

US NADP/NTN*: Stations in the US

*National Atmospheric Deposition Program/ National Trends Network

US NADP/NTN: Stations in the US

- Damage to environments from acid rain
- Forest effects: die-off of trees at high elevations
- Long term effects on the growth of commercial stands

Examples of Applications

o In the social sciences

Goals of Applications

- The description of important features
- Estimation of an average value over large areas
- The estimation of an average value over small areas
- Estimation of an unknown value at a particular location

(first order and second order effects)

Goals of Applications: PP

- o The description of important features
- The identification of clustered, random or regular patterns

(first order and second order effects)

Spatially Continuous Data

- Visualization
 - Proportional symbol maps
 - Triangulated irregular networks (TIN)
- Exploration

Definitions

- Region
- Location
- Attributes
- Observation
- First order effects
- Second order effects

Definitions: Region

 Region (R) – Specific area over the surface of the earth that is of interest

Definitions: Region

Definitions: Region

Definitions: Region

Definitions: Region

Definitions: Region

Definitions: Location

 \circ An arbitrary point in region R

Definitions: Attribute

A characteristic of interest about a location

Definitions: Observation

 A location for which one or more attributes have been measured

$$Y = (y_1, y_2, \dots, y_n)$$

Definitions: First Order Effects

Large scale variation

Definitions: Second Order Effects

Small scale variation

Definitions: Large Scale Variation

Definitions: Small Scale Variation

Definitions: Small Scale Variation

First Order Effects

 \circ Expected value of Y at ${m s}$

$$\mu(s) = E[Y(s)]$$

(systematic, deterministic)

Second Order Effects

o Covariance between of $Y(s_i)$ and $Y(s_j)$

$$COV(Y(s_i), Y(s_j))$$

(independent, unpredictable? dependent, deterministic?)

Visualizing Spatially Continuous Data

- Symbol maps
- Proportional symbol maps
- Indicator maps

Visualization: Symbol Map (Walker Lake)

Visualization: Symbol map w/labels

81 +	77 +	103	112 +	123	19 +	40 +	111 +	114 +	120 +
82	61	110	121	119	77	52	111	117	124
+	+	+	+	+	+	+	+	+	+
82	74	97	105	112	91	73	115	118	129
+	+	+	+	+	+	+	+	+	+
88	70	103	111	122	64	84	105	113	123
+	+	+	+	+	+	+	+	+	
89	88	94	110	116	108	73	107	118	127
+	+	+	+	+	+	+	+	+	+
77	82	86	101	109	113	79	102	120	121
+	+	+	+	+	+	+	+	+	+
74	80	85	90	97	101	96	72	128	130
+	+	+	+	+	+	+	+	+	+
75	80	83	87	94	99	95	48	139	145
+	+	+	+	+	+	+	+	+	+
77	84	74	108	121	143	91	52	136	144
+	+	+	+	+	+	+	+	+	+
87	100	47	111	124	109	0	98	134	144
+	+	+	+	+	+	+	+	+	+

Visualization: Grayscale map

Visualization: Symbol Map w/labels

Visualization: Symbol Map w/colors

```
| WALKER LAKE V | 0.001 to 300.00 | 0.002 to 300.00 | 0.002 to 400.00 | 0.002 to 400.00 | 0.002 to 500.00 | 0.002 to 500
```

Visualization: Symbol Map w/colors

Visualization: Proportional Symbol Map

Visualization

- o Irregularly spaced observations
 - Indicator Maps?
 - Grayscale maps?

Exploration: Average (Large Area)

Exploration: Averages at Different Scales

- o *n* observations
- 1 observation

Exploration: Moving Averages

o Three-point spatial moving average

$$\hat{\mu}(\mathbf{s}_1) = \frac{1}{3} (y_1 + y_2 + y_3)$$

Exploration: Moving Averages

$$\hat{\mu}(\mathbf{s}) = \sum_{i=1}^{n} w_i(\mathbf{s}) y_i$$

$$\sum_{i=1}^{n} w_i(\mathbf{s}) = 1$$

Exploration: Moving Averages

$$\hat{\mu}(\mathbf{s}_1) = 0.333 y_1 + 0.333 y_2 + 0.333 y_3$$

Exploration: Moving Averages

Exploration: Moving Averages

$$\sum_{i=1}^n w_i(\mathbf{s}) = 1$$

$$w_i(\mathbf{s}) \propto h_i^{-\alpha}$$

$$w_i(\mathbf{s}) \propto h_i^{-\alpha}$$
 $w_i(\mathbf{s}) \propto \mathrm{e}^{-\alpha h_i}$

 \mathcal{M}

Exploration: Kernel Estimation

Kernel function

Exploration: Kernel Estimation

$$\hat{\mu}(\mathbf{s}) = \sum_{i=1}^{n} w_i(\mathbf{s}) y_i$$

$$w_i(\mathbf{s}) = \frac{k\left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau}\right)}{\sum_{i=1}^{n} k\left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau}\right)}$$

Exploration: Kernel Estimation

$$\hat{\mu}(\mathbf{s}) = \frac{\sum_{i=1}^{n} k \left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau} \right) y_i}{\sum_{i=1}^{n} k \left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau} \right)}$$

Exploration: Tessellations

o The objective is to produce "tiles"

Tessellations: Delaunay Triangulation

- Triangulated Irregular Network (TIN)
- Triangles are as close to equilateral as possible

Tessellations: Voronoi Polygons

Areas of Influence

Tessellations: Delaunay Triangulation

Exploration: Delaunay Triangulation

Exploration: Delaunay Triangulation

Exploration: Contours

Exploration: Contour Areas

Visualization/Exploration

- First order effects, large scale variation
- o What about small scale variation?

Next...

- o Exploring second order effects
 - Covariogram and variogram
- o Modeling spatially continuous data