۹ جلسهی نهم

تمرین زیر در جلسهی آموختال به طور کامل مورد بحث قرار خواهد گرفت، ولی در اینجا ایدهای برای حل آن ارائه کردهایم.

تمرین ۱۰۳: آیا تئوریِ ساختارِ $\langle \mathbb{R}, \mathbb{Q}, \leq \rangle$ دارای مدل اول است؟

برای پاسخ به سوال بالا، یک اصلبندی کامل برای ساختار یادشده بنویسید (کامل بودن اصلبندی مورد نظر را میتوانید با بهکارگیری یک سامانهی رفت و برگشتی تحقیق کنید). ادعا میکنیم که ساختار مورد نظر را میتوانید با بهکارگیری یک سامانهی شده، یک مدل اول برای ساختار یادشده است. $\mathbb{Q}, P, \leq 0$

$$P = \{rac{p}{q} \in \mathbb{Q} |$$
 توسط یک عدد اول $r_{\mathsf{Y} k}$ عاد میشود $q\}$

در بالا فرض کردهایم که $\{r_n\}$ شمارشی از همه ی اعداد اول باشد. نیز در نمایش $\frac{p}{q}$ فرض کردهایم که در بالا فرض کردهایم یک سامانه ی رفت و برگشتی، نشان دهید که تئوری یادشده .(p,q)=1 است و از این رو، مدلی که در بالا معرفی کردهایم تنها مدل شمارای آن، و از این رو اول است. حال به ادامه ی درس بازمی گردیم. فرض کنید T یک تئوری کامل و فاقد مدل متناهی در زبان شمارای L باشد. موارد زیر با هم معادلند:

- ا. T دارای مدل اول است.
- T . ۲ دارای مدلی اتمی است.
- ۳. برای هر \mathbb{N} مجموعه $n \in \mathbb{N}$ مجموعه $n \in \mathbb{N}$ برای هر $n \in \mathbb{N}$ برای هر $n \in \mathbb{N}$ برای هر $n \in \mathbb{N}$

 $S_n(T)$ اتمی باشد و $[\phi(x_1,\ldots,x_n)]$ بازی پایهای در $M\models T$ اتمی باشد و $M\models \Phi(\bar a)$ بازی پایهای در $M\models \phi(\bar a)$ معلوم است که $T\cup\{\phi(\bar a)\}$ سازگار است و از این رو $T\cup\{\phi(\bar a)\}$ چنان موجود است که $T\cup\{\phi(\bar a)\}$ بنا به اتمیک بودن مدل T تایپ T تایپ T ایزوله است.

۱ \leftarrow ۳. بنا بر آنچه در جلسه ی قبل ثابت کردیم، کافی است مدلی شمارا و اتمیک بیابیم. در این کار از رهیافتی توپولوژیک، اما بر پایه ی ساختمانهای هنکین بهره پی خواهیم گرفت. درجلسات قبل، قضیه حذف تایپ را به روش مشابهی ثابت کرده بودیم.

قرار دهند

 $X = \{T(C)$ یک تئوری کامل در زبان $L \cup C$ است که T را دربردارد T(C)

با توپولوژی استون، X فشرده و دارای ویژگیِ بئر است. (بررسی کنید که) مجموعه ی Γ_1 تعریف شده در زیر، در X چگال است.

$$\Gamma_1 = \{T(C)|.$$
هنکینی است $T(C)\}$

نیز با کمک ویژگی بئر نشان میدهیم که مجموعهی زیر چگال است.

$$\Gamma_{
m Y}=\{T(C)|$$
 برای هر $ar c\in C$ فرمولی کامل چون $ar c(ar c)$ در $\sigma(ar c)$ واقع است

(در ادامه به طور دقیق تعریف خواهیم کرد که) منظور از فرمول کامل، فرمولی است که تایپی ایزوله کند. برای اثبات چگال بودن Γ_{Υ} آن را به صورت زیر در نظر میگیریم

$$\Gamma_{\mathbf{Y}} = \bigcap_{c_1 \dots c_n \in C} \Gamma_{\mathbf{Y}}^{c_1 \dots c_n}$$

که در آن

$$\Gamma_{\mathsf{Y}}^{c_1...c_n} = \{T(C) |$$
ست. $\sigma(c_1, \ldots, c_n)$ است. $\sigma(c_1, \ldots, c_n)$ شامل فرمول کاملی چون

به بیان دیگر

$$\Gamma^{c_1...c_n}_{\mathbf{r}} = \bigcup_{\substack{\delta \text{ diagle} \ \sigma}} \{T(C) | \sigma(c_1,\ldots,c_n) \in T(C) \}$$

یا $[\sigma(c_1,\ldots,c_n)]_{\sigma}$ فرمولی کامل $[\sigma(c_1,\ldots,c_n)]_{\sigma}$. پس $[\sigma(c_1,\ldots,c_n)]_{\sigma}$ اشتراکی شمارا از مجموعه های باز و چگال، و از این رو چگال است. هر مدلِ واقع در $[\sigma(c_1,\ldots,c_n)]_{\sigma}$ شمارا و اتمیک است.

تمرین ۱۰۴: $1 \leftrightarrow \pi$ را مستقیماً با روش هنکین (و نه با استفاده از روشهای توپولوژیک) ثابت کنید.

تعریف ۱۰۵: فرمول $\theta(x_1,\ldots,x_n)$ را نسبت به تئوری T کامل ۱۰۵ میخوانیم هرگاه

 $.T \models \exists \bar{x} \quad \theta(\bar{x}) \ .$

$$T \models \forall \bar{x} \quad (\theta(\bar{x}) \to \phi(\bar{x}))$$
 اگر $(\theta(\bar{x}) \land \phi(\bar{x}))$ اگر $(\theta(\bar{x}) \land \phi(\bar{x}))$ اگر ورمول $T \models \exists \bar{x} \quad (\theta(\bar{x}) \land \phi(\bar{x}))$ اگر درمول درمول

به عبارت دیگر، فرمول $\theta(\bar{x})$ کامل خوانده می شود، هرگاه تایپ کاملی ایزوله کند. روی چنین فرمولی، نمی توان توسط هیچ فرمول دیگری انشعاب زد؛ یعنی، برای هر فرمول $\phi(\bar{x})$ اگر $\phi(\bar{x})$ سازگار باشد، آنگاه $T \cup \{\theta \land \phi\}$ لزوماً ناسازگار است. عموماً از تکنیک ساخت درخت، در اثبات قضایای مربوط به تعداد تایپها استفاده می شود. چنین رویکردی را در جلسه های آموختال بیشتر خواهیم کاوید، و در این جا تنها به مثالی از این نوع کاربرد بسنده کرده ایم.

گزاره ۱۰۶: اگر تئوری T مدل اول نداشته باشد، آنگاه $n\in\mathbb{N}$ چنان موجود است که $|S_n(T)|\geq \mathsf{T}^{\aleph}.$

به عبارت دیگر، اگر برای هر \mathbb{N} هر \mathbb{N} داشته باشیم $S_n(T)$ آنگاه T دارای مدل اول ست.

اثبات. اگر T دارای مدل اول نباشد، $\mathbb{N} \in \mathbb{N}$ موجود است به طوری که n - تایپهای ایزوله در $n \in \mathbb{N}$ دارای مدل اول نباشد، پس بازی چون $\sigma(\bar{x})$ موجود است، فاقد هیچ تایپ ایزولهای. پس فرمولی $\sigma(\bar{x})$ چگال نیستند. پس بازی چون $\sigma(\bar{x})$ موجود است، که هر دو مجموعه ی $\sigma(\bar{x})$ و $\sigma(\bar{x})$ سازگار باشند.

حال توجه کنید که هر دو فرمول $\phi \wedge \phi$ و $\phi \wedge \phi$ و اکاملند. علت این است که اگر برای مثال، $\phi \wedge \phi$ تایپی ایزوله کند، این تایپ در $[\phi]$ واقع می شود، که این با فرض در تناقض است. بنابراین فرمولی چون $\phi \wedge \phi$ موجود است به طوری که $\{\xi\} \cup \{\theta\} \cup \{\theta\} \cup \{\neg \xi\} \cup \{\theta\} \cup \{\neg \xi\} \cup \{\neg \xi\}\}$ هر دو سازگارند؛ نیز فرمول $\phi \wedge \phi$ چنان موجود است که $\{\chi\} \cup \{\neg \xi\} \cup \{\neg$

فراروند بالا را میتوان ادامه داد و به یک درخت نامتناهی رسید. از آنجا که تعداد گرههای هر درخت

اینچنین % و تعداد شاخههای آن $^{\aleph}$ است و هر شاخه از درخت یک تایپ کامل مشخص میکند، تعداد تایپها، حداقل $^{\aleph}$ است.