UofT-MAT347-2015-Fall Note

hysw

 $\begin{array}{c} \text{Monday } 14^{\text{th}} \text{ September, } 2015 \\ \text{ at } 23:07 \end{array}$

Contents

Lectures			
2.1	Lectu	re 1	
	2.1.1	Definitions	
	2.1.2	Examples	

1 Group

2 Lectures

2.1 Lecture 1

September 14, 2015

The website of the course: http://www.math.toronto.edu/~jkamnitz/courses/mat347/index.html

Lecture time: Monday, Wednesday 11-12 at BA1200 Friday 10-12 at UC52

Topics: group (symmetries).

2.1.1 Definitions

A binary operation on a set G is a map \bullet , $G \times G \to G$ (aka. $(a,b) \to a \cdot b$).

It's called **associative** if $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

It's called **commutative** if $a \cdot b = b \cdot a$.

It has an **identity** if $\exists e \in G$ st. $a \cdot e = a = e \cdot a$.

It has **inverses** if for all $a \in G$ there exists $a^{-1} \in G$ such that $a \cdot a^{-1} = e = a^{-1} \cdot a$.

A **group** is a set with a binary operation which is associative and has an identity and inverses.

A commutative group is called an **abelian group**.

A **permutation** of a set X is a bijection $\sigma: X \to X$.

2.1.2 Examples

Ex1 \mathbb{Z} with addition, \mathbb{R} with addition, and $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ with multiplication are all examples of abelian group.

Ex2 "The main example"

For any set X define $S_X = \{\text{permutation of the set } X\}$. The binary operation on S_X composition.

If $X = \{1, ..., n\}$, then define S_n to be $S_{\{1,...,n\}}$.

Ex3 Let V be a vector space over any fields $(\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_2, \mathbb{F}_p)$.

(V,+) is a group, S_V is also a group.

An more interesting example is

 $GL(V) := \{ \text{all invertable linear operator } T: V \to V \}$

note that $GL(V) \subseteq S_V$

Another interesting example is

 $GL_n(k) := \{\text{invertable nxn matrices with entries in } k\}$

Ex4 If V catties a symmetric bilinear form \langle, \rangle , then we define $O(V, \langle, \rangle) = \{\text{invertable } T : V \to V \text{ st } \langle Tv, Tw \rangle = \langle v, w \rangle \text{ for all } v, w \in V \}.$

For example, $O(\mathbb{R}^n, \langle, \rangle) = O_n(\mathbb{R}) = \{A^{\text{invertable}} \text{ nxn matrices st } AA^{-1} = I. \text{ When } n = 2, O_2(\mathbb{R}) \text{ is rotation and reflection of } \mathbb{R}^2.$

Proposition 1. If G is a group and $a, b, c, d \in G$ and ab = ac then b = c.

Proof. Start with ab = ac multiply both side by a^-1 , then

$$ab = ac$$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$(a^{-1}a)b = (a^{-1}a)c$$

$$b = c$$

Remark 1. Special case: every group has unique identity.