C:	UIZIZZ	ſ	NAME :
		(CLASS:
	ương 6 - 7 Questions	ĺ	DATE :
50	Questions		
1.	Đoạn mã nào trong các tiến trình có thể g	gây ra l	ỗi khi được thực thi đồng thời?
Α	Entry Section.	В	Critical Section.
С	Exit Section.	D	Remainer Section.
2.	Đồng bộ hoá (Process Synchronization) là nào?	à công \	việc cần phải áp dụng cho loại tiến trình
Α	Tiến trình người dùng (User process).	В	Tiến trình cộng tác (Cooperating process).
С	Tiến trình hệ thống (System process).	D	Tiến trình độc lập (Independent process).
3.	Đoạn mã nào được sử dụng để kiểm soát	t quá tr	ình đồng bộ?
Α	Critical section.	В	Program code.
С	Entry section.	D	Remainder section.
4.	Đoạn mã nào có thể chạy cùng lúc mà kh	ıông gâ	y ra sai sót dữ liệu?
Α	Remainder section.	В	Program code.
С	Critical section.	D	Entry section.
5.	Biến số đơn nguyên (atomic varible) là gì?	?	
Α	Biến số chỉ có ý nghĩa địa phương, sử dụr nội bộ trong tiểu trình.	ng B	Các thao tác lên biến số này tuần tự được thực thi trong CPU.
С	Các thao tác lên biến số này được song song thực hiện trong CPU.	D	Biến số chỉ chứa duy nhất một kiểu dữ liệu được định nghĩa trước.

6.

	naruen trinn?		
Α	int sync = 2;	В	boolean flag[2];
С	choosing[i] = true và int number[i];	D	boolean flag[2] và int turn;
7.	Một tiến trình Px thực hiện thao tác signal gì?	() trên	một biến số Semaphore n thì có tác dụng
Α	n++ và sau đó nếu n > 0 thì wake_up() một tiến trình đang bị blocked.	t B	n++ và sau đó nếu n <= 0 thì wake_up() tiến trình Px.
С	n++ và sau đó nếu n > 0 thì wake_up() tiến trình Px.	D	n++ và sau đó nếu n <= 0 thì wake_up() tiến trình đang bị blocked.
8.	Một tiến trình Px thực hiện thao tác wait()	trên m	nột biến số Semaphore n thì có tác dụng gì?
Α	n và sau đó nếu n < 0 thì block() tiến trìnl Px.	h _B	n và sau đó nếu n <= 0 thì block() các tiến trình khác Px.
С	n++ và sau đó nếu n <= 0 thì block() tiến trình Px.	D	n và sau đó nếu n >= 0 thì block() tiến trình Px.
9.	Giải thuật / Phương pháp nào sau đây chỉ trình?	có thể	giải quyết đồng bộ không nhiều hơn 2 tiến
Α	Phương pháp Hàng rào bộ nhớ.	В	Giải thuật Peterson.
С	Giải thuật Banker.	D	Phương pháp Semaphore.
10.	Tình trạng cạnh tranh (Race condition) là g	gì?	
Α	Tiến trình không cho phép các tiến trình khác tác động lên biến số của nó, và dẫn đến việc đồng bộ thất bại.	В	Các lệnh cấp thấp (là mã máy) được thực thi đồng thời trong một chu kỳ lệnh của CPU làm sai sót dữ liệu.
С	Người sử dụng yêu cầu chạy 02 tiến trình có tranh chấp dữ liệu, gây nên hiện tượng tắc nghẽn cho hệ thống.	D	Khi nhiều hơn một tiến trình thao tác lên dữ liệu chia sẻ, kết quả cuối cùng phụ thuộc vào thứ tự thực thi của các thao tác đó.

Giải thuật Peterson sử dụng các biến số điều khiển nào để giải quyết bài toán đồng bộ giữa

11.	Kỹ thuật đồng bộ sử dụng Semaphore giải quyế làm được?	ít được vấn đề gì mà giải thuật Peterson chưa
Α	Mutual Exclusion (Loại trừ tương hỗ).	Progress (Tính tiến triển).
С	Bounded-Waiting (Chờ vô hạn định).	Busy-waiting (Chờ đợi bận rộn).
12.	Yêu cầu về tính sống còn (liveness) của các giải	pháp đồng bộ đảm bảo điều gì cho hệ thống?
Α	Dữ liệu luôn được đồng bộ và không có sai sót khi cập nhật.	Hệ thống đang xử lý các tiến trình có hiệu năng khai thác cao.
С	Các tiến trình luôn tiến triển, tài nguyên không cạn kiệt.	Sự chờ đợi bận rộn (Busy waiting) không xuất hiện với mọi tiến trình.
13.	Mục đích của việc sử dụng Semaphore là gì?	
А	Trị số của Semaphore cho biết process nào đang được thực thi.	Semaphore là tín hiệu ngắt gửi cho hệ điều hành khi cần đồng bộ tiến trình.
С	Thông tin của Semaphore phục vụ cho bài toán đồng bộ tiến trình.	Trị số của Semaphore cho biết số tiến trình tối đa được vào hệ thống.
14.	Phương pháp Hàng rào bộ nhớ (Memory Barrie	r) được hiện thực ra sao?
Α	Việc cập nhật vùng nhớ chia sẻ được quyết định bởi tiến trình cấp phát hàng rào.	Các câu lệnh thay đổi biến số chia sẻ cần được nhìn thấy bởi mọi tiến trình khác.
С	Các vùng nhớ chia sẻ cần được nhìn thấy bởi tất cả tiến trình đang đồng bộ.	Các tiến trình được cấp các bản sao vùng nhớ chia sẻ để thao tác cập nhật.
15.	"Critical Section" mô tả đoạn mã như thế nào tr	ong một tiến trình?
Α	Đoạn mã có yêu cầu nhập xuất dữ liệu từ thiết bị ngoại vi.	Đoạn mã có yêu cầu tính toán và sử dụng toàn bộ CPU.
С	Đoạn mã có chứa những thao tác lên biến dùng chung.	Đoạn mã hệ điều hành tự thêm vào trong tiến trình.

16.	"Entry / Exit Section" la	à đoạn mã gì?		
Α	Đoạn mã hệ điều hàn sau đoạn mã nguy cơ		В	Đoạn mã có chứa lệnh can thiệp vào hoạt động của hệ điều hành.
С	Đoạn mã có chứa nhũ dùng chung.	ứng thao tác lên biếr	D	Đoạn mã có yêu cầu tính toán và sử dụng toàn bộ CPU.
17.	Time P1 P2 t = 1 wait(S) t = 2 wait(Q) t = 3 wait(Q) t = 4 wait(S) t = 5 signal(S) t = 6 signal(Q) t = 7 signal(Q) t = 8 signal(S)		khởi tạ	P2 quyền tác động lên biến semaphore chia ao = 1). Các lệnh sau đây lần lượt được thực n như thế nào?
Α	Hệ thống sẽ rơi vào tr	ạng thái Deadlock.	В	Hệ thống sẽ đảm bảo P2 hoàn tất trước P1.
С	Hệ thống sẽ chạy hết	tất cả lệnh đã nêu.	D	Hệ thống sẽ đảm bảo P1 hoàn tất trước P2.
18.	P1: P2:	Cho đoạn mã của	a 2 tiến	trình như sau:
	(các lệnh bhác) (các lệnh bhác) withuntes); withuntes); critical section signal(mutx); signal(mutx); signal(mutx); (các lệnh bhác) (các lệnh bhác)			biến toàn cục dùng chung (shared variable). à đúng với hệ thống nêu trên?
Α	Với khởi tạo mutex = ´được vào critical section		В	Với khởi tạo mutex = 1; P2 phải gửi tín hiệu đến P1 để xin vào critical section.
С	Với khởi tạo mutex = (được vào critical section		D	Với khởi tạo mutex = 2; P2 chắc chắn sẽ vào critical section trước.
19.	P1: P2: (các lệnh khác) (các lệnh khác) signal(nutex); wait(nutex); finc_1(); finc_2(); (các lệnh khác) (các lệnh khác)	•	utex là	trình P1 và P2 như sau: biến toàn cục dùng chung (Shared variable).
Α	Để đảm bảo hàm fund func_2(), khởi tạo mut	_ " .,	В	Để đảm bảo hàm func_2() chạy trước func_1(), khởi tạo mutex = 2.
С	Để đảm bảo hàm fund func_1(), khởi tạo mut		D	Để đảm bảo hàm func_1() chạy trước func_2(), khởi tạo mutex = 1.

20.	Semaphore được hiện thực như thế nào?		
Α	Mảng các số nguyên hoặc nhị phân, kèm theo 2 thao tác block() và wake_up().	В	Mảng các số nguyên hoặc nhị phân, kèm theo 2 thao tác wait() và signal().
С	Biến số nguyên hoặc nhị phân, kèm theo 2 thao tác block() và wake_up().	D	Biến số nguyên hoặc nhị phân, kèm theo 2 thao tác wait() và signal().
21.	Bài toán "Bộ đếm giới hạn" (Bounded Buff	er) đề	cập vấn đề chính yếu gì?
Α	Bảo mật thông tin khi gửi và nhận thông điệp giữa các tiến trình	В	Khóa chặn truy cập chỉ của một vài tiến trình đang được thực thi.
С	Gửa và nhận gói tin qua bộ nhớ chia sẻ có kích thước nhất định.	D	Tranh chấp tài nguyên giữa nhiều tiến trình trong lúc thực thi
22.	Bài toán "Bộ ghi - Bộ đọc" (Writers and Rea	aders)	đề cập đến vấn đề chính yếu gì?
Α	Bảo mật thông tin khi chia sẻ thông tin giữa các tiến trình đang thực thi.	В	Gửi và nhận gói tin qua bộ nhớ chia sẻ có kích thước nhất định.
С	Phân phối dữ liệu từ nhiều tiến trình nguồn đến nhiều tiến trình đích.	D	Dữ liệu chia sẻ mà chỉ có một vài tiến trình mới có nhu cầu cập nhật dữ liệu.
23.	Bài toán "Triết gia ăn tối" (Dining Philosopl	hers) đ	ề cập đến vấn đề chính yếu gì?
Α	Hiệu suất sử dụng tài nguyên trong hệ thống chạy song song nhiều tiến trình	В	Tranh chấp các tài nguyên chia sẻ riêng biệt giữa từng cặp tiến trình
С	Bảo mật thông tin chia sẻ thông tin giữa nhiều tiến trình với nhau	D	Chia sẻ tài nguyên thành nhiều thực thể để đáp ứng cho nhiều tiến trình.
24.	Bài toán "Bộ đếm giới hạn" (Bounded Buff Semaphore?	er) có	thể giải quyết bằng bao nhiêu biến số
Α	3 biến: mutex, full và empty.	В	1 mảng sem[5].
С	Chỉ cần 2 biến: full và empty	D	Duy nhất một biến số n

25.	Bài toàn "Bộ ghi - Bộ đọc" (Writers and Readers) có đặc trưng gi?		
Α	Hệ thống chỉ có một bộ ghi và rất nhiều bộ đọc	B	Hệ thống chỉ có một bộ đọc và rất nhiều bộ ghi
С	Các bộ đọc mới có thể cập nhật dữ liệu chia sẻ	D	Tất cả bộ đọc và bộ ghi cần xếp hàng để thực thi
26.	Bài toán "Triết gia ăn tối" (Dining Philosopl tạo như thế nào?	hers) n	ếu sử dụng semaphore thì chúng được khởi
Α	semaphore chopstick[5], tất cả phần từ gán bằng 1.	В	semaphore chopstick, khởi tạo giá trị 5.
С	semaphore chopstick[5], tất cả phần tử gán bằng 1.	D	semaphore chopstick[5], các phần tử gán lần lượt từ 1 đến 5.
27.	API POSIX cung cấp nhiều công cụ đồng bố	ộ, như	ng không bao gồm công cụ nào sau đây?
Α	Biến số điều kiện(condition variable).	В	Biến số semaphore.
С	Khóa mutex clock.	D	Dispatcher objects.
28.	Bài toán "Bộ ghi - Bộ đọc" (Writers and Rea	aders)	các biến số được khởi tạo như thế nào?
Α	semaphore rw_mutex = 1, mutex = 1; int read_count = 2;	В	semaphore rw_mutex = 1, mutex = 1; int read_count = 0;
С	<pre>semaphore rw_mutex = 0, mutex = 1; int read_count = 0;</pre>	D	semaphore rw_mutex = 1, mutex = 2; int read_count = 0;
29.	Bài toán "Triết gia ăn tối" (Dining Philosopl tránh bị tắc nghẽn(deadlock)?	hers) c	ó thể giải quyết bằng phương pháp nào để
Α	Các biến số semphore với các lệnh wait() và signal().	В	Các khóa mutex_lock áp dụng cho từng vùng tranh chấp.
С	Bỏ quan sát(Monitor) với các lệnh test().	D	Giải thuật Peterson với các vòng lặp kiểm tra while().

30.	dầu tiên?	co bien the thư 2, nó khác gi với biến thể
Α	Các bộ đọc có thể thực thi song song mà không sai sót dữ liệu.	Nếu một bộ ghi mới đến, nó sẽ được thực thi sớm nhất có thể.
С	Nếu một bộ đọc mới đến, nó sẽ được thực D	Số lượng bộ đọc và bộ ghị bị giới hạn để tránh cạn kiệt tài nguyên.

Answer Key			
1. b	2. b	3. c	4. a
5. b	6. d	7. d	8. a
9. b	10. d	11. d	12. c
13. c	14. b	15. c	16. a
17. a	18. a	19. a	20. d
21. c	22. d	23. b	24. a
25. c	26. c	27. d	28. b
29. c	30. b		