Il Continuum Random Tree Tesi di Laurea Triennale

Lorenzo Beretta

21 settembre 2018

Premessa

- La tesi tratta la convergenza di alberi aleatori al Brownian CRT
- Presenterò solo un suo sottoinsieme autocontenuto
- Prediligerò un approccio visuale
- Le definizioni rigorose si trovano nell'elaborato originale

Definizione: Albero

Albero

$$t = (V_t, E_t) \in T_n = \{\text{grafi connessi, aciclici, } |V| = n\}$$

Albero scalabile

$$\hat{t} = (t, x_1, \ldots, x_{n-1}) \in T_n \times \mathbb{R}^{n-1}_+$$

k-Albero Proprio

- Ha k foglie
- Ogni nodo interno ha 2 figli
- La radice ha 1 figlio

Definizione: Branchpoint $b(v, v^*)$

 $(\mathcal{R}, v_1, \ldots, v)$ e $(\mathcal{R}, v_1^*, \ldots, v^*)$ cammini dalla radice a $v \in v^*$.

 $(\mathcal{R}, \dots, b(v, v^*))$ il segmento iniziale comune massimale.

$$b(7,10)=6$$

Definizione: Sottoalbero Ridotto $r(\hat{t}, B)$

$$B = \{3, 6, 7, 10, 14\}$$

Definizione: Sottoalbero Ridotto $r(\hat{t}, B)$

$$B = \{3, 6, 7, 10, 14\}$$

Immersione di $\hat{t} \in \mathcal{T}_n \times \mathbb{R}^{n-1}_+$ in I_1

*:
$$V_{\hat{t}} \longrightarrow I_1$$
, $v_i \longmapsto v_i^*$ tale che $||v_i^* - v_j^*||_{I_1} = d(v_i, v_j)$ $\forall i, j$.

Immersione di $\hat{t} \in T_n \times \mathbb{R}^{n-1}_+$ in I_1

*:
$$V_{\hat{t}} \longrightarrow I_1$$
, $v_i \longmapsto v_i^*$ tale che $||v_i^* - v_j^*||_{I_1} = d(v_i, v_j)$ $\forall i, j$.

Rappresentazione Insiemistica

L'insieme dei (v_i^*) e degli opportuni cammini lineari:

$$S_{\hat{t}} = \bigcup_{(i,j) \in E_{\hat{t}}} \operatorname{conv}\left(v_i^*, v_j^*\right)$$

Immersione di $\hat{t} \in T_n \times \mathbb{R}^{n-1}_+$ in I_1

$$^*:V_{\hat{t}}\longrightarrow I_1,\quad v_i\longmapsto v_i^*\quad ext{ tale che} \ ||v_i^*-v_j^*||_{I_1}=d(v_i,v_j)\quad orall i,j.$$

Rappresentazione Insiemistica

L'insieme dei (v_i^*) e degli opportuni cammini lineari:

$$S_{\hat{t}} = \bigcup_{(i,j) \in E_{\hat{t}}} \operatorname{conv}\left(v_i^*, v_j^*\right)$$

Rappresentazione in Misura

La misura empirica sui (v_i^*) :

$$\mu_{\hat{t}}(\,\cdot\,) = \frac{1}{n} \sum_{i} \delta_{v_{i}^{*}}(\,\cdot\,)$$

Continuum Tree (S, μ_0)

- $0 \in S \subseteq I_1$
- ullet μ_0 probabilitá non atomica su \emph{I}_1

Continuum Tree (S, μ_0)

- $0 \in S \subseteq I_1$
- ullet μ_0 probabilitá non atomica su I_1
- $\forall x, y \in S$ $\exists !$ cammino semplice tra $x \in y$, ed é lungo $||x y||_{I_1}$

Continuum Tree (S, μ_0)

- $0 \in S \subseteq I_1$
- ullet μ_0 probabilitá non atomica su I_1
- $\forall x, y \in S$ \exists ! cammino semplice tra x e y, ed é lungo $||x y||_{I_1}$
- $\forall x_1, x_2, x_3 \in S$ $b(x_1, x_2) = b(x_1, x_3) = b(x_2, x_3) = \tilde{b} \implies \exists x_i = \tilde{b}$

Continuum Tree (S, μ_0)

- $0 \in S \subseteq I_1$
- ullet μ_0 probabilitá non atomica su l_1
- $\forall x, y \in S$ \exists ! cammino semplice tra x e y, ed é lungo $||x y||_{l_1}$
- $\forall x_1, x_2, x_3 \in S$ $b(x_1, x_2) = b(x_1, x_3) = b(x_2, x_3) = \tilde{b} \implies \exists x_i = \tilde{b}$

Scheletro e Foglie

$$sk(S) = \left\{ x \in S \mid \exists y \in S \text{ t.c. } x \in [[0, y[[]]] \right\}$$

$$lv(S) = S \setminus sk(S)$$

Continuum Tree (S, μ_0)

- $0 \in S \subseteq I_1$
- ullet μ_0 probabilitá non atomica su l_1
- $\forall x, y \in S$ \exists ! cammino semplice tra x e y, ed é lungo $||x y||_{I_1}$
- $\forall x_1, x_2, x_3 \in S$ $b(x_1, x_2) = b(x_1, x_3) = b(x_2, x_3) = \tilde{b} \implies \exists x_i = \tilde{b}$

Scheletro e Foglie

$$sk(S) = \left\{ x \in S \mid \exists y \in S \text{ t.c. } x \in [[0, y[[]]] \right\}$$

$$lv(S) = S \setminus sk(S)$$

• $\mu_0(lv(S)) = 1$

Continuum Tree (S, μ_0)

- $0 \in S \subseteq I_1$
- ullet μ_0 probabilitá non atomica su I_1
- $\forall x, y \in S$ \exists ! cammino semplice tra x e y, ed é lungo $||x y||_{I_1}$
- $\forall x_1, x_2, x_3 \in S$ $b(x_1, x_2) = b(x_1, x_3) = b(x_2, x_3) = \tilde{b} \implies \exists x_i = \tilde{b}$

Scheletro e Foglie

$$sk(S) = \left\{ x \in S \mid \exists y \in S \text{ t.c. } x \in [[0, y[[]]] \right\}$$

$$lv(S) = S \setminus sk(S)$$

- $\mu_0(lv(S)) = 1$
- $\mu_0 \{ y \mid x \in [[0, y]] \} > 0 \quad \forall x \in sk(S)$

Definizione: Continuum Random Tree (\mathscr{S}, μ)

Continuum Random Tree (\mathscr{S}, μ)

$$\mathscr{S}: \Omega \longrightarrow \{\mathsf{Chiusi\ di\ }\mathit{I}_1\}$$

$$\mu: \Omega \longrightarrow \{ \mathsf{Misure} \ \mathsf{su} \ \mathit{l}_1 \}$$

$$(\mathscr{S},\mu)$$
 é un CRT se

$$\forall \omega \in \Omega \quad (\mathscr{S}(\omega), \mu(\omega))$$
 é un continuum tree

Definizione: Famiglia Consistente e Leaf-tight

$$(\mathscr{R}(k))_{k\in\mathbb{N}}$$
 famiglia di k -alberi aleatori

 (L_1^k, \ldots, L_k^k) permutazione aleatoria uniforme delle foglie

Definizione: Famiglia Consistente e Leaf-tight

 $(\mathscr{R}(k))_{k\in\mathbb{N}}$ famiglia di k-alberi aleatori

 $\left(L_1^k,\,\ldots\,,L_k^k\right)$ permutazione aleatoria uniforme delle foglie

Consistente

$$r\left(\mathcal{R}(k),\left\{L_1^k,\ldots,L_j^k\right\}\right)\stackrel{d}{=}\mathcal{R}(j) \quad \forall j\leq k$$

Definizione: Famiglia Consistente e Leaf-tight

$$(\mathscr{R}(k))_{k\in\mathbb{N}}$$
 famiglia di k -alberi aleatori

 $\left(L_1^k,\,\ldots\,,L_k^k
ight)$ permutazione aleatoria uniforme delle foglie

Consistente

$$r\left(\mathscr{R}(k),\left\{L_1^k,\ldots,L_j^k\right\}\right)\stackrel{d}{=}\mathscr{R}(j)\quad \forall j\leq k$$

Leaf-tight

$$\min_{2 \le j \le k} d\left(L_1^k, L_j^k\right) \xrightarrow{P} 0 \text{ per } k \to \infty$$

Campionamenti Finiti del CRT

Campionamento Finito

- (\mathscr{S}, μ) CRT
- $(Z_i)_{i\in\mathbb{N}}\subseteq I_1$ v.a. scambiabili con legge μ

$$r(\mathcal{S}, \{Z_1, \ldots, Z_k\}) := \bigcup_{i < k} [[0, Z_i]]$$

Campionamenti Finiti del CRT

Campionamento Finito

- (\mathscr{S}, μ) CRT
- $(Z_i)_{i\in\mathbb{N}}\subseteq I_1$ v.a. scambiabili con legge μ

$$r(\mathscr{S}, \{Z_1, \ldots, Z_k\}) := \bigcup_{i < k} [[0, Z_i]]$$

Questi campionamenti, al variare di k, devono essere:

- $(Z_i)_{i\in\mathbb{N}}$ scambiabili \implies Consistenti
- $(Z_i)_{i\in\mathbb{N}}$ dense in $\operatorname{supp}(\mu) \Longrightarrow \operatorname{Leaf-tight}$

Teorema di Rappresentazione per Campionamento

Teorema di Rappresentazione per Campionamento

 $(\mathscr{R}(k))_{k\in\mathbb{N}}$ famiglia di k-alberi aleatori consisitente e leaf-tight

 $\exists (\mathscr{S}, \mu)$ CRT t.c. $\forall (Z_i)_{i \in \mathbb{N}} \subseteq \mathit{l}_1$ v.a. scambiabili con legge μ

 $r\left(\mathscr{S}, \{Z_1, \ldots, Z_k\}\right)$ é una rappresentazione insiemistica di $\mathscr{R}(k)$

ullet Eseguo la costruzione sequenziale sugli $\mathscr{R}(k) \longmapsto S(k) \subseteq \mathit{l}_1$

$$S(k) = \bigcup_{i \le k} [[0, Y_i^k]], \quad Y_i^k : \Omega \longrightarrow I_1$$

ullet Eseguo la costruzione sequenziale sugli $\mathscr{R}(k) \longmapsto \mathcal{S}(k) \subseteq \mathit{l}_1$

$$S(k) = \bigcup_{i \le k} [[0, Y_i^k]], \quad Y_i^k : \Omega \longrightarrow I_1$$

ullet $(\mathscr{R}(k))_{k\in\mathbb{N}}$ consistenti $\implies \mu_{(Y_1^k,...,Y_k^k)}$ verificano Kolmogorov

• Eseguo la costruzione sequenziale sugli $\mathscr{R}(k) \longmapsto S(k) \subseteq I_1$

$$S(k) = \bigcup_{i \leq k} [[0, Y_i^k]], \quad Y_i^k : \Omega \longrightarrow I_1$$

- \bullet $(\mathscr{R}(k))_{k\in\mathbb{N}}$ consistenti $\implies \mu_{(Y_1^k,...,Y_k^k)}$ verificano Kolmogorov
- Scelgo una volta sola il processo $(L_i)_{i\in\mathbb{N}}\subseteq I_1$ t.c.

$$S(k) = \bigcup_{i \le k} [[0, L_i]]$$

ullet Eseguo la costruzione sequenziale sugli $\mathscr{R}(k) \longmapsto S(k) \subseteq \mathit{l}_1$

$$S(k) = \bigcup_{i \leq k} [[0, Y_i^k]], \quad Y_i^k : \Omega \longrightarrow I_1$$

- ullet $(\mathscr{R}(k))_{k\in\mathbb{N}}$ consistenti $\implies \mu_{(Y_1^k,...,Y_k^k)}$ verificano Kolmogorov
- Scelgo una volta sola il processo $(L_i)_{i\in\mathbb{N}}\subseteq I_1$ t.c.

$$S(k) = \bigcup_{i \le k} [[0, L_i]]$$

• Definisco (\mathscr{S}, μ) t.c. $\mathscr{S} = \overline{\bigcup_{i \in \mathbb{N}} [[0, L_i]]}, \quad \mu_{S(k)} \xrightarrow{d} \mu$

Processo di Poisson non omogeneo

 $(N_t)_{t\in[0,\infty)}$ Poisson non omogeneo con rate $\lambda(t)=t$

$$P\left\{N_t=n\right\}=rac{\Lambda(t)^n}{n!}e^{-\Lambda(t)},\quad \Lambda(t)=\int_0^t\lambda(s)ds$$

 (S_i) tempi di arrivo con densitá

$$f_{\mathcal{S}_{i+1}}(t) = t \, \exp\left(-rac{1}{2}\left(t^2 - S_i^2
ight)
ight), \quad ext{per } t \in [S_i, \infty)$$

 b_2

 b_2

 b_3

 b_2

- T_{2k}^* insieme dei k-alberi propri
- $\mathscr{R}_B(k): \Omega \longrightarrow \mathcal{T}^*_{2k} \times \mathbb{R}^{2k-1}_+$ albero aleatorio ottenuto al passo k

- T_{2k}^* insieme dei k-alberi propri
- $\mathscr{R}_B(k): \Omega \longrightarrow T^*_{2k} \times \mathbb{R}^{2k-1}_+$ albero aleatorio ottenuto al passo k
- $\mathcal{R}_B(k)$ ha densitá $f(t, x_1, \dots x_{2k-1}) = s \exp\left(-\frac{s^2}{2}\right), \quad s = \sum_{i=1}^{2k-1} x_i$

- T_{2k}^* insieme dei k-alberi propri
- $\mathscr{R}_B(k): \Omega \longrightarrow T^*_{2k} \times \mathbb{R}^{2k-1}_+$ albero aleatorio ottenuto al passo k
- $\mathcal{R}_B(k)$ ha densitá $f(t, x_1, \dots x_{2k-1}) = s \exp\left(-\frac{s^2}{2}\right), \quad s = \sum_{i=1}^{2k-1} x_i$
- ullet (x_i) scambiabili \Longrightarrow $(\mathscr{R}_B(k))_{k\in\mathbb{N}}$ consistente

- ullet T_{2k}^* insieme dei k-alberi propri
- $\mathscr{R}_B(k): \Omega \longrightarrow T_{2k}^* \times \mathbb{R}_+^{2k-1}$ albero aleatorio ottenuto al passo k
- $\mathcal{R}_B(k)$ ha densitá $f(t, x_1, \dots x_{2k-1}) = s \exp\left(-\frac{s^2}{2}\right), \quad s = \sum_{i=1}^{2k-1} x_i$
- ullet (x_i) scambiabili $\implies (\mathscr{R}_B(k))_{k\in\mathbb{N}}$ consistente
- $|S_{i+1} S_i| \xrightarrow{P} 0 \implies (\mathscr{R}_B(k))_{k \in \mathbb{N}}$ leaf-tight

Ricordando il teorema di Rappresentazione per Campionamento

Definizione: Brownian CRT

 (\mathscr{S},μ) é un Brownian CRT se

 $orall (Z_i)_{i\in\mathbb{N}}\subseteq \mathit{I}_1$ v.a. scambiabili con legge μ

 $r(\mathscr{S},\{Z_1,\ldots,Z_k\})$ rappresentazione insiemistica di $\mathscr{R}_B(k)$ $\forall k\in\mathbb{N}$

Bibliografia

- Aldous, D. J. *The continuum random tree. I.* 1991, Ann. Probab. 19, 1-28.
- Aldous, D. J. *The continuum random tree II: an overview.* 1991, Proc. Durham Symp. Stochastic Analysis 1990, 23-70. Cambridge Univ. Press.
- Aldous, D. J. *The Continuum Random Tree III.* 1993, Ann. Probab. 21, 248–289.
- Aldous, D. J. *Exchangeability and related topics*. 1985, Lecture Notes in Mathematics, vol 1117. Springer, Berlin, Heidelberg.
- Patrick Billingsley, *Convergence of Probability Measures.* 1968, Wiley Series in Probability and Statistics.