

Hello R! An Introduction to R

Eghe Rice Osagie (eghe.osagie@han.nl) 21 nov. 2017

www.han.nl/masterscourses

Programma

- 1. Intro R
- 2. Practicum
- 3. Confirmatory factor analysis

Open: https://witusj.github.io/hellor/hellor.html#2

Hello R!

This presentation can be found online:

witusj.github.io/hellor/hellor.html

press F for fullscreen

For the Workshop R (Dutch) go to: witusj.github.io/WorkshopSI/

Workshop documents can be found here (docs folder):

https://github.com/witusj/hellor

Who R we?

Eghe Osagie

- Assistant Professor at HAN University of AS
- Lecturer Bachelor HRM & Master HRM
- •Interests: Employability, Sustainability, HRA, Research methodology

Witek ten Hove

- Instructor at HAN University of AS
- Coördinator of MSI
- •Interests: Business Economics, Data Engineering, Data Mining, AI, Web Dev.

Intro R

Characteristics R

- •Created in: 1995 by Ross Ihaka & Robert Gentleman at the University of Auckland
- Free
- Computer language
- •Windows, Mac, Linux
- and object oriented
- Extending software via 'packages'
- •Each package is maintained and supported by the author, but not warrantied
- •CRAN checks report any potential notes, warnings, and errors associated with a package
- Numorous Output options

Voorbeeld output

Copy paste command in R

library(leaflet)
m <- leaflet() %>% addTiles() %>% #
Add default OpenStreetMap map tiles
addMarkers(lng=174.768, lat=-36.852,
label= "The birthplace of R",
labelOptions = labelOptions(noHide =
T))
m # Print the map

- •Ranking second as tool for data science (after Python)
- Upcoming tool in Social sciences

ORule of Thumb: Play with the R program before you work on anything professional and know your data

Examplary Packages

Package	description
LAVAAN	Latent Variable Analysis (SEM,CFA)
AcousticNDLCodeR	Coding Sound Files for Use with NDL
<u>abd</u>	The Analysis of Biological Data
RQDA	R-Based Qualitative Data Analysis
RSmartlyIO	Loading Facebook and Instagram Advertising Data from 'Smartly.io'
<u>qdap</u>	Bridging the Gap Between Qualitative Data and Quantitative Analysis
<u>qha</u>	Qualitative Harmonic Analysis
<u>quanteda</u>	Quantitative Analysis of Textual Data

See for more packages:

https://cran.r-project.org/web/packages/available_packages_by_name.html

Voorbeeld output

Replace red......

library(leaflet)
m <- leaflet() %>% addTiles() %>% #
Add default OpenStreetMap map tiles
addMarkers(Ing=174.768, lat=-36.852,
label= "The birthplace of R",
labelOptions = labelOptions(noHide =
T))
m # Print the map

....with green.

m <- leaflet() %>%
addTiles() %>% # Add default
OpenStreetMap map tiles
addMarkers(Ing= 5.949481,
lat=51.989683, label= "An introduction
to R", labelOptions =
labelOptions(noHide = T))
m # Print the map

Examplary output

Copy paste command in R

pie(c(a=78, b=17, c=5), init.angle = 315, col = c("deepskyblue", "yellow", "yellow3"), border = FALSE, radius = 1.0)

install.packages("threejs") library(threejs) data(ego) graphjs(ego, bg="black")

More examples:

https://github.com/witusj/hellor/blob/master/hellor.Rmd

Practicum R

Practicum

Go to: witusj.github.io/WorkshopSI/

Perform the following exercises:

- Basis R
- Sessie 1 Inlezen/ Bekijken (Alleen 'lokaal bestand')
- Sessie 2 Muteren/ Analyseren (Alleen 'muteren')

Remaining exercises can be performed at home

Confirmatory Factor Analysis (Dutch)

CFA

Doel confirmatory factor analysis: bevestiging krijgen voor van te voren bepaald model/structuur

CFA model:

Kenmerken:

- NIET elke manifeste variabele een lading op elke factor
- WEL relatie tussen de componenten
- **WEL** meetfouten

CFA model:

De asterixen verwijzen naar de te schatten parameters

Parameters = die delen van het model die nog onbekend zijn voor de onderzoeker, en dus berekend moeten worden

Hier:

- meetfouten,
- factorladingen,
- correlaties tussen factoren,
- variantie van factoren,

• • •

Belangrijke bergippen in CFA

- Rondje
- Vierkant
- ind.
- >
- \cdot \leftrightarrow
- Meetmodel
- Structuurmodel
- EXO
- e

- = niet direct gemeten (latente var. [f])
- = direct gemeten (manifeste var./indicator/item [x])
- = indicator[x]
- = impact van 1 variabele/factor op een andere variabele/factor
- = covariantie of correlatie tussen variabelen/factoren.
- = relatie tussen latente variabelen en indicatoren
- = relaties tussen latente variabelen
- = Exogene construct/factor (pijltje exit)
- = meetfout

Notatie voor tekenen van modellen

Voorbeeld model CFA

Belangerijke Commands LAVAAN

	Formule type	Operator	Betekenis
	Definitie van latente variabele	=~	Is measured by/ Is gemeten door
	• regressie	~	Is regressed on
	(residu) (co)variantie	~~	Is correlated with/ gecorrooleerd met
	 intercept 	~1	intercept
		f	Latente variabele
		у	Afhankelijke var
		x	Onafhank. Var/observed variable/indicator
		cfa()	Voer een CFA analyse uit. Met help("cfa"), krijg je uitleg over de functie
HAN		sem()	Voer een SEM analyse uit. Met help("sem"), krijg je uitleg over de functie
MASTERS PROGRAM	MES	Growth()	Voer een Growth curve analyse uit. Met help("growth"), krijg je uitleg over de functie

Voorbeeld met LAVAAN in R

HAN

1. Bepaal model(len)

Visual = $\sim x1 + x2 + x3$ Textual = $\sim x4 + x5 + x6$ Speed =~ x7 + x8 + x9Latent variable =~ indicator1 + indicator2 + indicator3

2. Specificeer model(len) in R

HS.model <- 'visual =
$$\sim x1 + x2 + x3$$

textual = $\sim x4 + x5 + x6$
speed = $\sim x7 + x8 + x9$ '

3. Fit model(len) in R

fit <- cfa (HS.model, data = HolzingerSwineford1939)

4. Lees Fit indices af/vergelijk ze

summary (fit, fit.measures = TRUE)

5. Bepaal beste model

Fit indices

	Fit indices	Tresholds (cut-offs)
•	Relative Chi square (Chi-square-df; cmin/df)	< 2ª of <3= good ^b (soms is <5 ook toegelaten ^c)
•	p value of the model	>.05
•	RMSEA	<.05=good; .0510=moderate; >.10=bad ^b
•	CFI	>.95=great; >.90 tradtitional; >.80 sommige gevallen toelaatbaar ^b streven >.93 ^d
•	GFI	>.90 ^d liefst >.95 ^b
•	(N)NFI	>.90 ^d of >.95 ^c
•	AGFI	>.80 ^b

HAN

a = Ullman(2001). b = Hu & Bentler (1999). c = Schumacker & Lomax (2004). d = Byrne (1994)

Modification indices (MI) & Standardized residuals covar (SRC)

Aanpassen model: doe je bij geen goede fit. Theoretische onderbouwing belangrijk!!

- Theorie
- MI
 - Error van verschillende constructen mogen niet correleren
 - Error mag niet correleren met latente of observerd constructen
- SRC
 - Error van verschillende constructen mogen niet correleren
 - Error mag niet correleren met latente of observerd constructen

MI rules

CFA samengevat

- CFA om model-fit te schatten: past model bij de data?
 => fit indices: Chi², GFI, AGFI, NNFI, CFI, RMSEA
- CFA om modellen onderling te vergelijken: kijk naar AIC waarde, lagere waarde dan past model beter bij data
- En hoe het model interpreteren? => interpreteren van parameterschattingen

Practicum

• CFA→ open Tutorial LAVAAN, perform excises on p. 4-8

Remaining exercises can be performed at home

Questions?

