Jaap van Ginkel

Security of Systems and Networks

September 12, 2024 Part 4 Modern Crypto Hashing

Recap Question DES

- A) Is optimized for software implementation
- B) Was established during a public competition
- C) Is considered a Feistel Cipher
- D) Was Developed in the 1980's

Recap Question AES

- A) Is optimized for hardware implementation
- B) Is an SPN cipher
- C) Is considered a Feistel Cipher
- D) Was Developed in the 1980's

SSN Modern Cryptography

- Hashes
 - □ MD5
 - □ SHA
 - □ SHA-2
 - □ SHA-3

HASH or **Message** Digest

Crypto Hash Function

- Crypto hash function h(x) must provide
 - Compression output length is small
 - Efficiency h(x) easy to compute for any x
 - One-way given a value y it is infeasible to find an x such that h(x) = y
 - Weak collision resistance given x and h(x), infeasible to find $y \neq x$ such that h(y) = h(x)
 - Strong collision resistance infeasible to find any x and y, with $x \neq y$ such that h(x) = h(y)
- Lots of collisions exist, but hard to find any

Pre-Birthday Problem

- Suppose N people in a room
- □ How large must N be before the probability someone has same birthday as me is $\geq 1/2$?
 - Solve: 1/2 = 1 (364/365)N for N
 - We find N = 253

Birthday Problem

- □ How many people must be in a room before probability is $\geq 1/2$ that any two (or more) have same birthday?
 - $-1 365/365 \cdot 364/365 \cdot \cdot \cdot (365-N+1)/365$
 - Set equal to 1/2 and solve: N = 23
- Surprising? A paradox?
- Maybe not: "Should be" about sqrt(365) since we compare all pairs x and y
 - And there are 365 possible birthdays

Non-crypto Hash (1)

- □ Data $X = (X_0, X_1, X_2, ..., X_{n-1})$, each X_i is a byte
- \Box Define h(X) = X0+X1+X2+...+Xn-1
- □ Is this a secure cryptographic hash?
- \blacksquare Example: X = (10101010, 00001111)
- \Box Hash is h(X) = 10111001
- □ If Y = (00001111, 10101010) then h(X) = h(Y)
- Easy to find collisions, so not secure...

Popular Crypto Hashes

- MD5 invented by Rivest
 - 128 bit output
 - Note: MD5 collisions easy to find
- SHA-1 A U.S. government standard, inner workings similar to MD5
 - 160 bit output
- SHA-2 A NIST standard
- Hashes work by hashing message in blocks

Cryptographic Hash

- Different from parity or CRC!
- Also known as Message Digest
- Input always delivers fixed length output
- Hash properties
 - Easy to compute
 - One-way (Can't go back)
 - Collision-resistant (No two inputs result in same hash)
 - Output should be as random as possible (Avalanche)
 - (cryptool demo)

Merkle-Damgård Construction

HASH Algorithms

- MD
- MD2
- MD4
- MD5 (IETF RFC1321),
- SHA
- SHA-1 (NIST)
- SHA-2 (Collection) (SHA-256/224 512/384)
- SHA-3 (Last NIST competition) 2012

Demo fraud exam results

Birthday Attack

Exam Results for the course SSN of the master education SNE

Course: MSNSSNP6 [Security of Systems and Networks]

Exam date: Oktober 23 2024

Credits: 06 ECTS

Teacher: Jaap van Ginkel

Student	First	Last	Result
======	=====	====	=====
14533812	Josha	van der Heide	5.4
12774545	Tony	Munzer	7.3
12326623	Okechukwu	Onwunli	8.9
12567191	Jannik	Peters	5.7
14525623	Wouter	Petri	6.8
12816558	Petr	Pucil	4.7

Hash

- Brute force Attacks
 - Exhaustive search
- Collision Attacks
 - □ Find m1 and m2 where hash(m1) = hash(m2)
- Preimage Attacks
 - □ Find m for hash(m) = h
- Second Preimage Attacks
 - □ Find m2 for given m1 where hash(m2) = hash(m1)

MD5

- 128 bit Hash
- Broken since at least 2005
- Still used a lot :-(

MD5 Algorithm

- 128 bit hash
- 512 bit block processing
- Padding with 1 then 0
- 64 Rounds in 4 groups
- Mi is Message block
- Ki is Constant
- F is nonlinear function

$$\begin{split} F(X,Y,Z) &= (X \wedge Y) \vee (\neg X \wedge Z) \\ G(X,Y,Z) &= (X \wedge Z) \vee (Y \wedge \neg Z) \\ H(X,Y,Z) &= X \oplus Y \oplus Z \\ I(X,Y,Z) &= Y \oplus (X \vee \neg Z) \end{split}$$

SHA

- Secure Hash Algorithm
- 1993 NIST FIPS
- SHA-0/SHA-1 Similar to MD5
- 160 bit
- Lots of research
- From 2^80 to 2^69
- Move to SHA-2
 - □ 256 and 512 bit
- SHA-3 challenge

SHA-2

SHA-3

- BLAKE
- Blue Midnight Wish
- CubeHash (Bernstein)
- ECHO (France Telecom)
- Fugue (IBM)
- Grøstl (Knudsen et al.)
- Hamsi
- JH
- Keccak (Keccak team, Daemen et al.)
- Luffa
- Shabal
- SHAvite-3
- SIMD
- Skein (Schneier et al.)

SHA-3 History

- Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche
- Based on RadioGatún, a successor of PANAMA from 1998
- Presented at the NIST Hash Workshop (SHA-3) in 2006
- End of 2008 52 candidates selected
- July 2009, 14 algorithms were selected for the second round. Keccak advanced to the last round in December 2010
- October 2, 2012, Keccak won competition (adapted)
- In 2014, the NIST has published a draft FIPS 202 "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions"
- August 5, 2015 NIST announced that SHA-3 had become a hashing standard.

HMAC

- Keyed-hash message authentication code
- MAC + Encryption
- HMAC-MD5
- HMAC-SHA-1
- Cryptool demo

NIST SHA-3: the battlefield

[courtesy of Christophe De Cannière]

Algorithm and variant		•	state size s	Block	size	Operations	Security (in bits) against collision attacks	Capacity against length extension attacks	Performance on Skylake (median cpb) ^[55]			
				size (bits)					long messages	8 bytes	First published	
MD5 (as reference)	128	128 (4 × 32)	512	64	And, Xor, Rot, Add (mod 2 ³²), Or	≤18 (collisions found) ^[56]	0	4.99	55.00	1992	
	SHA-0 160	160 (5 × 32)	512	80	And, Xor, Rot, Add (mod 2 ³²), Or	<34 (collisions found)		≈ SHA-1	≈ SHA-1	1993		
SHA-1							<63 (collisions found ^[57])	0	3.47	52.00	1995	
SHA-2	SHA-224 SHA-256	224 256	256 (8 × 32)	512	64	And, Xor, Rot, Add (mod 2 ³²), Or, Shr	112 128	32 0	7.62 7.63	84.50 85.25	2004 2001	
	SHA-384 SHA-512	384 512	512 (8 × 64)	1024	80	And, Xor, Rot, Add (mod 2 ⁶⁴), Or, Shr	192 256	128 (≤ 384) 0	5.12 5.06	135.75 135.50	2001	
	SHA-512/224 SHA-512/256	224 256					112 128	288 256	≈ SHA-384	≈ SHA-384	2012	
SHA-3	SHA3-224 SHA3-256 SHA3-384 SHA3-512	224 256 384 512	1600 (5 × 5 × 64)	1152 1088 832 576	24 ^[58]	And, Xor, Rot, Not	112 128 192 256	448 512 768 1024	8.12 8.59 11.06 15.88	154.25 155.50 164.00 164.00	2015	
	SHAKE128 SHAKE256	d (arbitrary)d (arbitrary)		1344 1088			min(<i>d</i> /2, 128) min(<i>d</i> /2, 256)	256 512	7.08 8.59	155.25 155.50		