Outline Introduction Multidimensional Scaling (MDS) Asset Tree Conclusions

Growing money on Trees & Graphs Stock market analysis using Multidimensional Scaling

Ravee Malla

2008CS50224 CSC 410 - Colloquium IIT Delhi

October 11 2011

- Introduction
 - Motivation
 - Economics preliminaries
 - Problem Overview
- Multidimensional Scaling (MDS)
 - What is Multidimensional Scaling?
 - Measure on the market
 - Metric on the market
 - Using MDS
 - Time evolution
 - Application
- Asset Tree
- 4 Conclusions

Motivation

- Economics is too serious a subject to be left to economists!
- Identify trends and clusters in the market
- Study time evolution of the market
- Investor risk reduction
- Predict future trends
- Ease of visualization

• Stock: A notional unit of the ownership of a company

- Stock: A notional unit of the ownership of a company
- ullet Market: A set of listed companies, denoted by ${\mathcal C}$

• Stock: A notional unit of the ownership of a company

ullet Market: A set of listed companies, denoted by ${\mathcal C}$

• Stock price: $p: \mathcal{C} \times \mathcal{T} \to \mathbb{R}_+$

- Stock: A notional unit of the ownership of a company
- ullet Market: A set of listed companies, denoted by ${\mathcal C}$
- Stock price: $p: \mathcal{C} \times T \to \mathbb{R}_+$
- Return on stock: $r: p \times \mathcal{C} \times T \to \mathbb{R} := \ln \frac{p(c,\tau)}{p(c,\tau-1)}$

- Stock: A notional unit of the ownership of a company
- ullet Market: A set of listed companies, denoted by ${\mathcal C}$
- Stock price: $p: \mathcal{C} \times \mathcal{T} \to \mathbb{R}_+$
- Return on stock: $r: p \times \mathcal{C} \times \mathcal{T} \to \mathbb{R} := \ln \frac{p(c,\tau)}{p(c,\tau-1)}$
- Portfolio: A set $\mathcal{P} = \langle \mathcal{B}, p, r, \mathcal{N}, \tau \rangle$ where $\mathcal{B} \subset \mathcal{C}$, $\mathcal{N} : \mathcal{B} \to \mathbb{Z}_+$

Problem Overview

• Portfolio Optimization: Design a portfolio \mathcal{P} s.t.

Problem Overview

• Portfolio Optimization: Design a portfolio \mathcal{P} s.t.

 Diversification: How to invest in independent sectors to reduce overall risk

Problem Overview

• Portfolio Optimization: Design a portfolio $\mathcal P$ s.t.

- Diversification: How to invest in independent sectors to reduce overall risk
- Create a tool to help analyze the market and make better investment decisions

What is Multidimensional Scaling?

 Statistical technique to explore similarities in data and visualize on a map

What is Multidimensional Scaling?

- Statistical technique to explore similarities in data and visualize on a map
- ullet Given distances d_{ij} on \mathcal{C}^2 , learn a function $f:\mathcal{C} o\mathbb{R}^2$

What is Multidimensional Scaling?

- Statistical technique to explore similarities in data and visualize on a map
- ullet Given distances d_{ii} on \mathcal{C}^2 , learn a function $f:\mathcal{C} o \mathbb{R}^2$

What is Multidimensional Scaling? Measure on the market Metric on the market Using MDS Time evolution Application

Measure on the market

• MDS requires a metric on the entity set

- MDS requires a metric on the entity set
- Given the state of the market, define a measure
 - Model complex interactions and temporal behaviour
 - Help in finding clusters and trends in the market
 - Well behaved, easy to compute and bounded

What is Multidimensional Scaling? Measure on the market Metric on the market Using MDS Time evolution Application

- MDS requires a metric on the entity set
- Given the state of the market, define a measure
 - Model complex interactions and temporal behaviour
 - Help in finding clusters and trends in the market
 - Well behaved, easy to compute and bounded
- What can this measure be?

- MDS requires a metric on the entity set
- Given the state of the market, define a measure
 - Model complex interactions and temporal behaviour
 - Help in finding clusters and trends in the market
 - Well behaved, easy to compute and bounded
- What can this measure be? **Pearson correlation**

$$\bullet \ \rho: \mathcal{C} \times \mathcal{C} \times \mathcal{T} \to [-1, 1] \equiv \rho_{i,j}^{\tau} \to \frac{\langle r_i^{\tau} r_j^{\tau} \rangle - \langle r_i^{\tau} \rangle \langle r_j^{\tau} \rangle}{\sqrt{[\langle r_i^{\tau^2} \rangle - \langle r_i^{\tau} \rangle^2][\langle r_j^{\tau^2} \rangle - \langle r_j^{\tau} \rangle^2]}}$$

- MDS requires a metric on the entity set
- Given the state of the market, define a measure
 - Model complex interactions and temporal behaviour
 - Help in finding clusters and trends in the market
 - Well behaved, easy to compute and bounded
- What can this measure be? Pearson correlation

$$\bullet \ \rho: \mathcal{C} \times \mathcal{C} \times \mathcal{T} \rightarrow [-1,1] \equiv \rho_{i,j}^{\tau} \rightarrow \frac{\langle r_i^{\tau} r_j^{\tau} \rangle - \langle r_i^{\tau} \rangle \langle r_j^{\tau} \rangle}{\sqrt{[\langle r_i^{\tau^2} \rangle - \langle r_i^{\tau} \rangle^2][\langle r_j^{\tau^2} \rangle - \langle r_j^{\tau} \rangle^2]}}$$

- Why?
 - Globally high ρ implies that market is generally correlated, so it is either in a recession or boom phase
 - Treasure trove of rich probability theory applicable
 - Easy to compute and analyze

Metric on the market

- Given the correlation measure ho, define $d_{ij} = \sqrt{2(1ho_{ij})}$
- Properties preserved by $d, \forall i, j, k$
 - $d_{ij} \geq 0$
 - $d_{ii} = 0$
 - $\bullet \ d_{ij} < d_{ik} + d_{kj}$
 - $d_{ij} = d_{ji}$
 - Ultrametricity: Mapping preserves linearity

What is Multidimensional Scaling? Measure on the market Metric on the market Using MDS Time evolution Application

- ullet Consider company distances $d^{ au}$ as our distance metric
- Randomly assign a vector $X_c^{ au} = (x_c^{ au}, y_c^{ au})$ to each company c

- ullet Consider company distances $d^{ au}$ as our distance metric
- Randomly assign a vector $X_c^{ au} = (x_c^{ au}, y_c^{ au})$ to each company c

$$ullet$$
 Define stress $S^ au(X_1^ au,...,X_N^ au) = \sum_{i
eq j} \sqrt{{d_{i,j}^ au}^2 - \|X_i^ au - X_j^ au\|^2}$

• There on, it's just an optimization problem!

- ullet Consider company distances $d^{ au}$ as our distance metric
- Randomly assign a vector $X_c^{ au} = (x_c^{ au}, y_c^{ au})$ to each company c

• Define stress
$$S^{ au}(X_1^{ au},...,X_N^{ au}) = \sum_{i
eq j} \sqrt{{d_{i,j}^{ au}}^2 - \|X_i^{ au} - X_j^{ au}\|^2}$$

- There on, it's just an optimization problem!
- Why just 2 dimensions?

- ullet Consider company distances $d^{ au}$ as our distance metric
- Randomly assign a vector $X_c^{ au} = (x_c^{ au}, y_c^{ au})$ to each company c

• Define stress
$$S^{ au}(X_1^{ au},...,X_N^{ au}) = \sum_{i \neq j} \sqrt{d_{i,j}^{ au}^2 - \|X_i^{ au} - X_j^{ au}\|^2}$$

- There on, it's just an optimization problem!
- Why just 2 dimensions?
 - Visualization of the market
 - Stress doesn't decrease significantly in higher dimensions

- ullet Consider company distances $d^{ au}$ as our distance metric
- Randomly assign a vector $X_c^{ au} = (x_c^{ au}, y_c^{ au})$ to each company c

• Define stress
$$S^{ au}(X_1^{ au},...,X_N^{ au}) = \sum_{i
eq j} \sqrt{{d_{i,j}^{ au}}^2 - \|X_i^{ au} - X_j^{ au}\|^2}$$

- There on, it's just an optimization problem!
- Why just 2 dimensions?
 - Visualization of the market
 - Stress doesn't decrease significantly in higher dimensions

Time evolution more interesting!

• Generate time evolving maps to reflect how market changes

Time evolution more interesting!

- Generate time evolving maps to reflect how market changes
- ullet Easy, apply MDS algorithm to d^{τ} for successive au

What is Multidimensional Scaling? Measure on the market Metric on the market Using MDS Time evolution Application

Time evolution more interesting!

- Generate time evolving maps to reflect how market changes
- ullet Easy, apply MDS algorithm to d^{τ} for successive au
- Critical Flaw! MDS algorithm assumes random initialization, so successive maps will change dramatically.

Time evolution more interesting!

- Generate time evolving maps to reflect how market changes
- ullet Easy, apply MDS algorithm to $d^{ au}$ for successive au
- Critical Flaw! MDS algorithm assumes random initialization, so successive maps will change dramatically.
- Add another component to S penalizing changes in assigned coordinates

•
$$S^{\tau}(X_1^{\tau},...,X_N^{\tau}) = \sum_{i \neq j} \sqrt{d_{i,j}^{\tau}^2 - \|X_i^{\tau} - X_j^{\tau}\|^2} + \sum_i w_i * \|X_i^{\tau} - X_i^{\tau-1}\|$$

Subprime crisis 2008

- 3 individual markets got correlated & came together due to a recession
- Can define global market score looking at the maps and learn it to predict future recession

• Let
$$G^{\tau} = (\mathcal{C}, \mathcal{C} \times \mathcal{C}, w)$$
 where $w(i, j) = d^{\tau}(i, j)$

- Let $G^{\tau} = (\mathcal{C}, \mathcal{C} \times \mathcal{C}, w)$ where $w(i,j) = d^{\tau}(i,j)$
- Consider a minimum spanning tree T^{τ} of G^{τ} in $\mathcal{O}(n+m)$

- Let $G^{\tau} = (\mathcal{C}, \mathcal{C} \times \mathcal{C}, w)$ where $w(i, j) = d^{\tau}(i, j)$
- Consider a minimum spanning tree T^{τ} of G^{τ} in $\mathcal{O}(n+m)$
- Define a special node v_c on the tree based on importance
 - highest vertex degree
 - most strongly correlated

- Let $G^{\tau} = (\mathcal{C}, \mathcal{C} \times \mathcal{C}, w)$ where $w(i, j) = d^{\tau}(i, j)$
- Consider a minimum spanning tree T^{τ} of G^{τ} in $\mathcal{O}(n+m)$
- \bullet Define a special node v_c on the tree based on *importance*
 - highest vertex degree
 - most strongly correlated
- Mean occupation layer $I(\tau, v_c) = \frac{1}{N} \sum_i depth(v_i^{\tau})$

- Let $G^{\tau} = (\mathcal{C}, \mathcal{C} \times \mathcal{C}, w)$ where $w(i, j) = d^{\tau}(i, j)$
- Consider a minimum spanning tree T^{τ} of G^{τ} in $\mathcal{O}(n+m)$
- \bullet Define a special node v_c on the tree based on *importance*
 - highest vertex degree
 - most strongly correlated
- Mean occupation layer $I(\tau, v_c) = \frac{1}{N} \sum_i depth(v_i^{\tau})$
- Center of mass $v_m = \{v | v \in V, I(\tau, v) \text{ is min}\}$

Bibliography

Multidimensional Scaling Analysis of Stock Market Values

- Ingwer Borg, Patrick J. F. Groenen

 Modern multidimensional scaling: theory and applications
- Warren S. Torgerson
 Multidimensional scaling: I. Theory and method
- A. Chakraborti, I.M Toke, M. Patriarca, F. Abergel Econophysics: Empirical facts and agent-based models
- J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertsz, A. Kanto Dynamics of market correlations: Taxonomy and portfolio analysis

Conclusions

Thanks

Questions or Comments?