Université Badji Mokhtar, Annaba Faculté des Sciences Mathématiques et Informatique

T. C. M. I.Semestre 22018/2019

Corrigé EMD

Exercice 1.

1. La population étudiée est : les 50 jours d'interventions à domicile.

Le caractère étudié : Le nombre d'interventions.

Nature du caractère : quantitatif discret.

2.

$\#$ interventions x_i	$\#$ de jours n_i	Pourcentage %	$n_i \uparrow$	$n_i \downarrow$	$n_i x_i$	$n_i x_i^2$
14	1	2	1	50	14	196
15	2	4	3	49	30	450
16	4	8	7	47	64	1024
17	4	8	11	43	68	1156
18	5	10	16	39	90	1620
19	6	12	22	34	114	2166
20	8	16	30	28	160	3200
21	7	14	37	20	147	3087
22	6	12	43	13	132	2904
23	4	8	47	7	92	2116
24	2	4	49	3	48	1152
25	1	2	50	1	25	625
Total	50	100	-	-	984	19696

3. Diagramme en bâtons

4. La moyenne:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{12} n_i x_i = \frac{984}{50} = 19,68.$$

Le mode : Mo = 20 qui a l'effectif le plus élevé.

La médiane : $n=50=2\times25$ d'où p=25 alors $Me=\frac{x_p+x_{p+1}}{2}=\frac{x_{25}+x_{26}}{2}=\frac{20+20}{2}\Longrightarrow Me=20.$

5. L'écart-type est σ_X , on a

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^{12} n_i x_i^2 - \overline{X}^2 = \frac{19696}{50} - 19,68^2 = 6,6176.$$

alors
$$\sigma_X = \sqrt{6,6176} \simeq 2,5725$$
.

L'écart interquartile : On a $n'=\frac{n}{2}=25=2\times 12+1\Longrightarrow p'=12$ d'où $Q_1=x_{p'+1}=x_{13}=18$

et
$$Q_3 = x_{p+p'+1} = x_{38} = 22$$
.

$$IQR = Q_3 - Q_1 = 22 - 18$$

 $IQR = 4$.

Le coefficient de variation :

$$CV_X = \frac{\sigma_X}{\overline{X}}100 = \frac{2,5725}{19,68}100$$

$$CV_X \simeq 13,07\%.$$

Exercice 2.

1. La population étudiée est : les 100 relevés des durées de communications téléphoniques.

Le caractère étudié : La durée des appels téléphoniques.

Nature du caractère : quantitatif continu.

2.

Durée	[0, 2[[2, 4[[4, 6[[6, 8[[8, 10[[10, 12[[12, 14[Total
Centre n_i	1	3	5	7	9	11	13	_
Effectif x_i	14	16	25	15	12	10	8	100
Fréquence	0,14	0, 16	0, 25	0, 15	0,12	0, 10	0,08	1
$n_i \uparrow$	14	30	55	70	82	92	100	_
$n_i x_i$	14	48	125	105	108	110	104	614
$n_i x_i^2$	14	144	625	735	972	1210	1352	5052

3. La moyenne:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{7} n_i x_i = \frac{614}{100} = 6,14 \,\text{min}.$$

Le mode : la classe modale est la classe qui a l'effectif le plus élevé c'est à dire [4,6[d'où le mode est $Mo=5\,\mathrm{min}$ qui a l'effectif le plus élevé.

La médiane : $\frac{n}{2} = 50 \Longrightarrow Me \in [4,6[$ et elle est donnée par

$$\frac{Me-4}{6-4} = \frac{50-30}{55-30}$$

$$\Longrightarrow Me = \frac{20}{25}2+4$$

$$\Longrightarrow Me = 5,6 \min s$$

4. L'écart-type est σ_X , on a

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^7 n_i x_i^2 - \overline{X}^2 = \frac{5052}{100} - 6, 14^2 = 12,8204.$$
 alors $\sigma_X = \sqrt{12,8204} \simeq 3,5806 \, \text{min}$.

Les quartiles : on a $\frac{n}{4}=25$ alors le premier quartile $Q_1\in[2,4[$ et il est donné par

$$\frac{Q_1 - 2}{4 - 2} = \frac{25 - 14}{30 - 14}$$

$$\Longrightarrow Q_1 = \frac{11}{16}2 + 2$$

$$\Longrightarrow Q_1 = 3,375 \text{ min }.$$

On a $\frac{3n}{4}=75$ alors le troisième quartile $Q_3\in[8,10[$ et il est donné par

$$\frac{Q_3 - 8}{10 - 8} = \frac{75 - 70}{82 - 70}$$

$$\Longrightarrow Q_3 = \frac{5}{12}2 + 8$$

$$\Longrightarrow Q_3 \simeq 8,833 \,\text{min}$$

4. Le coefficient de variation est

$$CV_X = \frac{\sigma_X}{\overline{X}}100 = \frac{3,5806}{6,14}100$$

 $CV_X \simeq 58,32\%$.

5. $25\% < CV_X < 80\%$ alors on peut dire que les durées des appels sont assez dispersées autour de \overline{X} .

Exercice 3.

On complète le tableau pour faciliter le calcul des différentes caractéristiques

$X \setminus Y$	30	40	50	60	70	n_i .	$n_i.x_i$	$n_i.x_i^2$
8					4	4	32	256
12			1	3		4	48	576
16		2	6			8	128	2048
20	3	1				4	80	1600
$n_{\cdot j}$	3	3	7	3	4	20	288	4480
$n_{.j}y_j$	90	120	350	180	280	1020		
$n_{\cdot j}y_j^2$	2700	4800	17500	10800	19600	55400		
$n_{ij}x_iy_j$	1800	2080	5400	2160	2240	13680		

1. Moyenne de X

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{4} n_i \cdot x_i = \frac{288}{20} = 14, 4.$$

Variance de X

$$\sigma_X^2 = \frac{1}{20} \sum_{i=1}^4 n_i x_i^2 - \overline{X}^2 = \frac{4480}{20} - 14, 4^2 = 16, 64;$$

Moyenne de Y

$$\overline{Y} = \frac{1}{n} \sum_{j=1}^{5} n_{\cdot j} y_j = \frac{1020}{20} = 51.$$

Variance de Y

$$\sigma_Y^2 = \frac{1}{20} \sum_{i=1}^5 n_{i}y_j^2 - \overline{Y}^2 = \frac{55400}{20} - 51^2 = 169;$$

2. Covariance

$$Cov(X,Y) = \frac{1}{20} \sum_{i=1}^{4} \sum_{j=1}^{5} n_{ij} x_i y_j - \overline{XY} = \frac{13680}{20} - 14, 4.51 = -50, 4.$$

Coefficient de corrélation linéaire

$$\rho\left(X,Y\right) = \frac{Cov\left(X,Y\right)}{\sigma_X\sigma_Y}$$

$$\sigma_X = \sqrt{16,64} \simeq 4,0792 \text{ et } \sigma_Y = \sqrt{169} = 13;$$

d'où

$$\rho(X,Y) = \frac{-50,4}{4,0792 \cdot 13} \simeq -0,9504.$$

3. Droite de régression de Y en X

$$Y = aX + b$$
 où $a = \frac{Cov(X, Y)}{\sigma_X^2}$ et $b = \overline{Y} - a\overline{X}$
 $a = \frac{-50, 4}{16, 64} \simeq -3,0288;$
 $b = 51 + 3,0288 \cdot 14, 4 \simeq 94,61.$

D'où

$$Y = -3,0288 \cdot X + 94,61.$$

4.

Comme $\rho < 0$ le nombre de buts encaissés et le nombre de parties gagnées évoluent dans le sens contraire et étant donné que $\rho^2(X,Y) = 0,9033 > 0,9$ alors on peut dire qu'il y a une forte corrélation entre les deux variables et elle est caractérisée par une relation linéaire.

Exercice 3. (Etudiants en L2 avec dettes)

1. On a $Card(\Omega) = C_{10}^4$. Alors la probabilité d'obtenir 2 blanches et 2 noires est

$$\mathbb{P}(2B2N) = \frac{C_7^2 C_3^2}{C_{10}^4} = \frac{\frac{7 \cdot 6}{2} \cdot 3}{\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2}} = \frac{7 \cdot 3 \cdot 3}{10 \cdot 3 \cdot 7}$$
$$= \frac{3}{10} = 0,30.$$

2. La probabilité d'obtenir au moins 2 boules noires

$$\mathbb{P}(2B2N) + \mathbb{P}(1B3N) = \frac{C_7^2 C_3^2}{C_{10}^4} + \frac{C_7^1 C_3^3}{C_{10}^4} = \frac{3}{10} + \frac{7 \cdot 1}{\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2}}$$
$$= \frac{3}{10} + \frac{1}{30} = \frac{10}{30} \simeq 0,33.$$

3. La probabilité d'obtenir 2 blanches et 2 noires sachant que l'une des 4 boules est noire

$$\mathbb{P}(2B2N|1N) = \frac{\mathbb{P}(2B2N)}{\mathbb{P}(1N)} = \frac{\frac{3}{10}}{\frac{C_{7}^{3}C_{13}^{1}}{C_{10}^{4}}} = \frac{\frac{3}{10}}{\frac{\frac{7\cdot6\cdot5}{3\cdot2}3}{\frac{10\cdot9\cdot8\cdot7}{4\cdot3\cdot2}}} = \frac{3}{10}\frac{10\cdot3\cdot7}{7\cdot5\cdot3}$$
$$= \frac{3}{5} = 0,60.$$