CT561: Systems Modelling and Simulation

Week 4: University Model

https://github.com/JimDuggan/CT561

Dr. Jim Duggan,
Information Technology,
School of Engineering & Informatics

A First Simulation Model

- Students flowing through a University
- Entrants → Graduates
- High level (one stock
- Disaggregate level (drill down)
- Fraction increase/ decrease rates
- Impact of repeats:
 - Revenue model
 - Numbers in system

A disaggregate model

Equations – Main Stocks

First Year= INTEG (Entrants-(Progression12+Repeat1), 1000)

Second Year= INTEG (Join 2+Progression12-Progression23-Repeat 2, 1000)

Third Year= INTEG (Join3+Progression23-Progression34-Repeat 3, 1000)

Fourth Year= INTEG (Join4+Progression34-Graduates, 1000)

Equations – "Rework" Stocks

Repeat First Year= INTEG (Repeat1-Join 2,0)

Repeat Second Year= INTEG (Repeat 2-Join3, 0)

Repeat Third Year= INTEG (Repeat 3-Join4, 0)

Equations – Main Flows

Entrants=1000

Progression12=First Year*PF1
Progression23=Second Year*PF2
Progression34=Third Year*PF3

Graduates=Fourth Year*PF4

PF1=1-step(0.2,2018)

PF2=1-step(0.15,2018)

PF3=1-step(0.1,2018)

PF4=1-step(0.1,2018)

Equations – "Rework" flows

Repeat1=(1-PF1)*First Year Repeat 2=Second Year*(1-PF2) Repeat 3=Third Year*(1-PF3)

Join 2=Repeat First Year*PF1
Join3=Repeat Second Year*PF2
Join4=Repeat Third Year*PF3

Equations - Revenue

Revenue Per Student=5000

Total Funded Students=First Year+Second Year+Third Year+Fourth Year
Total Repeat Students=Repeat First Year+Repeat Second Year+Repeat Third Year
Total Revenue=Total Funded Students*Revenue Per Student
Lost Revenue=Total Repeat Students*Revenue Per Student

Policy Design Question

- Simulate for 20 years, 2015-2035
- Start the system in a "perfect" state of equilibrium, where student progressions are 100% and all flows = 1000
- Introduce rework for each year in 2018 (80%, 85%, 90%, 90%)
- How might the system respond?
- Will the graduates ever reach 1000 per year again?

Simulation Output

Initial Stocks and Flows

Final Stocks and Flows

All stocks are in equilibrium, but more students are in the system

Other output

First Year : Current
Second Year : Current
Third Year : Current
Fourth Year : Current
Total Students : Current
Total Repeat Students : Current

Policy Analysis: Explore the flows

- which are desirable and could be increased?
- which are undesirable and could be reduced?

The flows

- which are desirable and could be increased?
- which are undesirable and could be reduced?

The flows

- which are desirable and could be increased?
- which are undesirable and could be reduced?

The constants

- Which flows/constants could depend on other system stocks that are not yet part of the model?
- Progression Fractions?
- Is there any new variable that might be relevant?

Challenge 4.1

- Build in the one-stock student model for two Universities in competition
- Add a resource for each university that impacts University enrolment (proportionately)
- Start in equilibrium and then "step" the resource in one of the Universities
- See how the model output changes

