Differential Equations

Table of Laplace Transforms

Table of Laplace Transforms					
	$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}\$		$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}$
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
3.	$t^n, n=1,2,3,\ldots$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$\mathbf{e}^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$		f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_c(t) = u(t-c)$ Heaviside Function	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	\mathbf{e}^{-cs}
27.	$u_c(t)f(t-c)$	$\mathbf{e}^{-cs}F(s)$	28.	$u_{c}(t)g(t)$	$\mathbf{e}^{-cs}\mathfrak{L}\left\{g\left(t+c\right)\right\}$
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^n f(t), n = 1, 2, 3, \dots$	$\left(-1\right)^{n}F^{(n)}(s)$
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	32.	$\int_0^t f(v)dv$	$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$
37.	$f^{(n)}(t)$	$s^n F(s) - s$	$f^{n-1}f($	$(0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}$	$(0)-f^{(n-1)}(0)$