Simulación de Circuitos con SPICE

- PRIMITIVAS DE SPICE
- SINTAXIS DE SPICE
- TIPOS DE ANÁLISIS:
 - Análisis en DC
 - Análisis en AC
 - · Análisis transitorio
 - Análisis a distintas temperaturas
- ELEMENTOS:
 - Resistencias
 - Condensadores
 - Bobinas
 - · Bobinas acopladas
 - Fuentes independientes
 - Fuentes variables con el tiempo:
 - Pulso
 - Sinusoidal
 - Exponencial
 - Lineal a tramos
 - Modulada en frecuencia
 - Fuentes dependientes
- DISPOSITIVOS SEMICONDUCTORES:
 - Diodo de unión *p-n*
 - Transistor BJT
 - Transistor JFET
 - Transistor MOSFET
- SUBCIRCUITOS
- LÍNEAS DE CONTROL:
 - Análisis en DC:

.OP .DC .TF .SENS

Análisis en AC:

.AC .NOISE .DISTO

Análisis transitorio:

.IC .TRAN .FOUR

- Control de Salida
- PROBLEMAS EN LA SIMULACIÓN
- ANEXO

PRIMITIVAS DE SPICE

SPICE es un simulador eléctrico que reproduce el comportamiento (I, V) de circuitos formados por los siguientes elementos o primitivas:

1. Resistencias
2. Condensadores (lineales o no (polinómicos))
3. Inductores (lineales o no)
4. Fuentes independientes de tensión e intensidad
5. Cuatro tipos de fuentes dependientes (lineales o no)
 □ VCVS (de tensión controlada por tensión) □ VCCS (de intensidad controlada por tensión) □ CCVS (de tensión controlada por intensidad) □ CCCS (de intensidad controlada por intensidad) 6. Dispositivos semiconductores
☐ Diodos ☐ BJT NPN ☐ BJT PNP ☐ JFET canal P ☐ JFET canal N ☐ MOSFET canal N ☐ MOSFET canal N

7. Líneas de transmisión

EJEMPLO:

FICHERO DE ENTRADA DE SPICE

```
Ejemplo de circuito. Esta es la linea de TITULO.

* Esta linea es un COMENTARIO.

* V1 1 0 5V
R1 1 2 10K
R2 2 0 10k

*

OP
LEND
```

FICHERO DE SALIDA DE SPICE

**** 10/16/93 13:15:46 ****** Evaluation PSpice (January 1991) ****** Ejemplo de circuito. Esta es la linea de TITULO.
**** CIRCUIT DESCRIPTION

*
* Esta linea es un COMENTARIO. *
V1 1 0 5V
R1 1 2 10K
R2 2 0 10k
· *
.OP
.END
** SMALL SIGNAL BIAS SOLUTION TEMPERATURE =27.000 DEG C ************************************
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 5.0000 (2) 2.5000
VOLTAGE SOURCE CURRENTS NAME CURRENT
V1 -2.500E-04
TOTAL POWER DISSIPATION 1.25E-03 WATTS
** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C ************************************
JOB CONCLUDED TOTAL JOB TIME 1.59

SPICE: Sintaxis

SINTAXIS DE SPICE - FICHERO DE ENTRADA

Es un fichero tipo texto constituido por un conjunto de líneas, cada una de las cuales constituye un ente individual. Existen distintos tipos de líneas:

LÍNEAS DE ELEMENTOS

LÍNEAS DE MODELOS

LÍNEAS DE CONTROL

LÍNEAS DE COMENTARIO

LÍNEA DE FINAL

■ Línea de título y línea de final:

- Son obligatorias.
- Acotan el conjunto de líneas que constituyen la descripción del circuito y de la simulación.

■ Líneas de elementos:

- Existe una por elemento.
- Definen la topología de interconexionado del elemento y el valor del mismo.

■ Líneas de modelo:

- Existe una por cada modelo distinto que se considere.
- Especifican los parámetros del modelo en cuestión.

■ Líneas de comentarios:

- Son transparentes para SPICE.
- Se inicia con *.

■ Líneas de control:

Permiten especificar el tipo de análisis a realizar y las condiciones del mismo.

SPICE: Sintaxis

SINTAXIS DE SPICE – LÍNEAS DEL FICHERO

Cada línea del fichero de entrada contiene un conjunto de campos que pueden ser de dos tipos:

Nombres:

 Deben comenzar por una letra y no pueden contener espacios, comas, "+", "=", ";".

Números:

- Enteros o de coma flotante.
- Se permiten exponentes y factores de escala:

– Se ignoran:

- 1) Las letras que haya detrás de un número y no sean factores de escala.
- 2) Las letras que sigan a un factor de escala.

Ejemplo: 1000V = 1E3 = 1KV = 1000.0 VOLT

Continuación de una línea: Añadiendo el símbolo "+" al principio del siguiente renglón.

```
Ejemplo de circuito. Esta es la linea + de TITULO.

* Esta linea es un + COMENTARIO.

V1 1 0 5V

R1 1 2 10K

R2 2 0 10k

.OP

.END
```

SPICE: Sintaxis

SINTAXIS DE SPICE – LÍNEA GENÉRICA DE ELEMENTO

NOMBRE Nudos_de_conexión_de_terminales VALOR <opciones>

La primera letra del nombre es:

R (resistencias)

C (condensadores)

L (bobinas)

K (bobinas acopladas)

T (líneas de transmisión)

V (fuentes independientes de tensión)

I (fuentes independientes de intensidad)

G (VCCS)

E (VCVS)

F (CCCS)

H (CCVS)

D (diodos)

Q (BJTs)

J (JFETs)

M (MOSFETs)

X (subcircuitos)

Para especificar los dispositivos semiconductores se necesita además una línea de modelo.

SPICE: Análisis

TIPOS DE ANÁLISIS

ANÁLISIS EN DC

- Cáculo del punto de trabajo o punto de operación: Considera Ls nulas (cortos), Cs nulas (abiertos) y excitaciones estáticas. (por defecto)
- Evaluación de características estáticas: Cálculo del punto de trabajo para un rango de valores de la excitación (.DC)
- Información de los modelos en pequeña señal de los dispositivos en el punto de trabajo (.OP)
- Análisis de sensibilidad en pequeña señal (.SENS)
- Característica de transferencia, resistencia de salida y resistencia de entrada en pequeña señal (.TF)

ANÁLISIS EN AC

- Respuesta frecuencial en pequeña señal: Circuito linealizado alrededor del punto de trabajo y considerando entrada sinusoidal (.AC)
- Análisis de ruido: Las fuentes de ruido se calculan automáticamente (.NOISE)
- Análisis de distorsión: Se superponen en la entrada una o varias señales de distintas frecuencias (.DISTO)

SPICE: Análisis

ANÁLISIS EN TRANSITORIO

- Análisis temporal de variables de salida: Se pueden especificar distintas excitaciones: pulsos, exponenciales, sinusoidales, etc. (.TRAN)
- Análisis de Fourier: Distintas componentes de Fourier de la salida para una entrada sinusoidal (.FOUR)

ANÁLISIS A DIFERENTES TEMPERATURAS

Las resistencias y algunos parámetros de los dispositivos semiconductores varían con la temperatura (.TEMP) (por defecto es 27°C)

SPICE calcula el punto de trabajo del circuito antes que cualquier otro tipo de análisis para:

- Linealizar modelos. (análisis en AC)
- \Rightarrow Condiciones iniciales (t = 0). (análisis transitorio)

SPICE: Elementos

ELEMENTOS PASIVOS

RESISTORES:

 \mathbf{R} xxxxxxx N1 N2 VALOR <TC=TC1 <, TC2>>

TC1 y TC2 son coeficientes opcionales de temperatura (nulos por defecto)

VALOR (T) = VALOR (T₀)
$$\left[1 + T_{C1}(T-T_0) + T_{C2}(T-T_0)^2\right]$$

CONDENSADORES Y BOBINAS:

CONDENSADORES Y BOBINAS NO-LINEALES:

 Cxxxxxxxx
 N+
 N POLY
 C0 ... CM
 <IC=val>

 Lxxxxxxxx
 N+
 N POLY
 L0 ... LM
 <IC=val>

$$\begin{array}{c}
N+\\
\downarrow^{+}\\
\downarrow^{-}\\
N-
\end{array} q = f(v) = \sum_{i=0}^{m} c_{i} v^{i}$$

BOBINAS ACOPLADAS:

Kxxxxxxx Lyyyyyyy Lzzzzzzz VALOR

teniendo en cuenta que 0 < VALOR < 1

FUENTES INDEPENDIENTES

Se pueden dar dos situaciones básicas de especificaciones:

Caso A:

- En el análisis en DC o en transitorio se anula la fuente de AC.
- En el análisis en AC éste se realiza sobre el punto de trabajo determinado por el valor de la fuente de DC.

Caso B:

- Para análisis transitorio la fuente es variable en el tiempo y se anula la de AC.
- El análisis en DC se hace con f(0).
- El análisis en AC éste se hace sobre el punto de trabajo resultante con f(0).

SPICE: Elementos

Tanto en el caso A como en el B el formato es el mismo:

Vxxxxxxx N+ N- <<DC> Valor DC/TRAN> <AC <ACMAG <ACPH>>>
Ixxxxxxx N+ N- <<DC> Valor DC/TRAN> <AC <ACMAG <ACPH>>>

- DC y AC delimitan qué parte de la información corresponde a la fuente DC/TRAN y cuál a la fuente de AC.
- DC es opcional, normalmente sólo se usa cuando se va a hacer un barrido del valor de la fuente (.DC).

■ VALORES POR DEFECTO:

Valor DC/TRAN = 0

AC = no hay fuente de AC

– Si hay fuente de AC:

ACMAG = 1

 $ACPHASE = 0^{\circ}$

FUENTES VARIABLES EN EL TIEMPO

Hay 5 tipos de fuentes variables en el tiempo:

- ⇒ PULSO (PULSE)
- → SINUSOIDAL (SIN)
- → EXPONENCIAL (EXP)
- → LINEAL A TRAMOS (PWL, Piece Wise Linear)
- → MODULADA EN FRECUENCIA (SFFM, Single Frecuency FM)

PULSO:

PULSE (V1 V2 TD TR TF PW PERIODO)

- Esta forma de onda se repite cada $\Delta t = PERIODO$.
- Si algún parámetro se omite o se pone a cero SPICE asume los siguientes VALORES POR DEFECTO:

Parámetro	VALOR DEF.	Unidad
V1 (valor inicial)	obligatorio	VoA
V2 (valor final)	obligatorio	VoA
TD (tiempo de retraso)	0.0	S
TR (tiempo de subida)	TSTEP	S
TF (tiempo de bajada)	TSTEP	S
PW (tiempo a V2)	TSTOP	S
PERIODO	TSTOP	S

donde TSTEP y TSTOP son parámetros del análisis transitorio (Ver formato de la línea de control .TRAN).

SPICE: Elementos

FUENTES VARIABLES EN EL TIEMPO

EJEMPLO

PULSE (0 5 10NS 5NS 5NS 20NS 50NS)

o bien:

PULSE (0V 5V 10N 5N 5N 20N 50N)

PULSE (0V 5V 10NS 5NS 5NS 20NS 50NS)

pulse (0 5 10n 5n 5n 20n 50n)

SINUSOIDAL:

Se describe por:

V0 si
$$0 < t < T_D$$

V0 + VA· $e^{-(t-T_D)\cdot THETA}$ · sen $[2\pi\cdot FREQ\cdot (t-T_D)]$ si $t \ge T_D$

■ VALORES POR DEFECTO:

Parámetro	VALOR DEF.	UNIDAD
V0 (offset)	obligatorio	VoA
VA (amplitud)	obligatorio	VoA
FREQ (frecuencia)	1/TSTOP	Hz
TD (retraso)	0.0	S
THETA (factor de amortiguamiento)	0.0	1/s

EXPONENCIAL:

Se describe por:

V1 si
$$0 < t < \text{TD1}$$

V1 + (V2-V1)·(1 - $e^{-(t-\text{TD1})/\text{TAU1}}$) si TD1 < $t < \text{TD2}$
V1 + (V2-V1)·(1 - $e^{-(t-\text{TD1})/\text{TAU1}}$) + (V1-V2)·(1 - $e^{-(t-\text{TD2})/\text{TAU2}}$) si $t \ge \text{TD2}$

■ VALORES POR DEFECTO:

Parámetro	VALOR DEF.	Unidad
V1 (valor inicial)	obligatorio	VoA
V2 (valor del pulso)	obligatorio	VoA
TD1 (retraso de subida)	0.0	S
TAU1 (cte. de tiempo de subida)	TSTEP	S
TD2 (retraso de bajada)	TD1+TSTEP	S
TAU2 (cte. de tiempo de bajada)	TSTEP	S

LINEAL A TRAMOS:

■ VALORES POR DEFECTO:

Parámetro	VALOR DEF.	Unidad
V (valor)	0.0	VoA
TD1 (retraso del valor V)	TSTEP	S

EJEMPLO

- ① PWL (0 0 10n 0 15n 5 35n 5 40n 0)
- ② PWL (0 0 10n 0 35n 5 40n 0)

MODULADA EN FRECUENCIA:

SFFM (V0 VA FC MDI FS)

Se describe por:

$$V = V0 + VA \cdot sen[2\pi \cdot FC \cdot t + MDI \cdot sen(2\pi \cdot FS \cdot t)]$$

■ VALORES POR DEFECTO:

Parámetro	VALOR DEF.	UNIDAD
V0 (offset)	obligatorio	VoA
VA (amplitud)	obligatorio	VoA
FC (frecuencia de portadora)	1/TSTOP	Hz
MDI (índice de modulación)		
FS (frecuencia de señal)	1/TSTOP	Hz

FUENTES DEPENDIENTES LINEALES

VCVS (Voltage Controled Voltage Source):

VCCS (Voltage Controled Current Source):

CCVS (Current Controled Voltage Source):

CCCS (Current Controled Current Source):

FUENTES DEPENDIENTES NO-LINEALES

Tienen varias variables de control y se modelan mediante funciones polinómicas.

FORMA GENÉRICA:

$$y = f(x_1, x_2, x_3, ..., x_m)$$

donde

y, variable controlada, puede ser una tensión o una intensidad.

 x_i (1 \leq i \leq m), variables de control, son tensiones o intensidades.

Asignación de coeficientes:

$$y = P_0 + P_1 \cdot x_1 + P_2 \cdot x_2 + ... + P_m \cdot x_m +$$

$$+ P_{m+1} \cdot x_1^2 + P_{m+2} \cdot x_1 \cdot x_2 + ... + P_{m+m} \cdot x_1 \cdot x_m +$$

$$+ P_{2m+1} \cdot x_2^2 + P_{2m+2} \cdot x_2 \cdot x_3 + ...$$

FORMATO:

VCVS: Exxxxxxx N+ N- <POLY(ND)> NC1+ NC1- <NC2+ NC2- ...> + P0 <P1 ...> <IC=val>

donde ND indica el número de variables de control y (NC1+, NC1-), (NC2+, NC2-), ..., son pares de nudos entre los que están definidas dichas variables.

VCCS: El mismo formato anterior cambiando la E inicial por G.

CCVS: **H**xxxxxxx N+ N- <POLY(ND)> VN1 <VN2 ...> + P0 <P1 ...> <IC=val>

donde VN1, VN2, ..., son nombres de fuentes de tensión donde se miden las intensidades de control.

CCCS: El mismo formato anterior cambiando la H inicial por F.

<POLY(ND)> = por defecto dimensión 1.

<P1 ...> = por defecto nulos. Si sólo se especifica un coefi ciente y la dimensión es 1, el valor se asigna a P1.

<IC = ...> = por defecto nulos.

DISPOSITIVOS SEMICONDUCTORES

- Su descripción requiere dos líneas:
 - Una línea de elemento donde se especifica la topología y algunos parámetros.
 - Una línea de control donde se especifica el modelo. Varios dispositivos semiconductores pueden compartir el mismo modelo.

LÍNEA DE ELEMENTO

DIODO DE UNIÓN:

Dxxxxxxx N+ N- MNAME <AREA> <OFF> <IC=V(0)> <M=val>

VALORES POR DEFECTO:

AREA = Factor multiplicativo de área (escala el valor de corrientes, resistencias y capacidades) (AREA=1).

Dispositivo en ON para condiciones iniciales, análisis DC.

V(0) = 0

M = Multiplicidad (nº de dispositivos iguales conectados en paralelo) (M=1).

- Se pueden especificar dos tipos distintos de condiciones iniciales:
 - Mediante la opción OFF, para mejorar la convergencia en DC.
 - Condiciones iniciales IC, para el análisis transitorio.

TRANSISTOR BIPOLAR:

Qxxxxxxx NC NB NE <NS> MNAME <AREA> <OFF> + <IC=VBE,VCE> <M=val>

VALORES POR DEFECTO:

AREA = 1

Dispositivo en ON para condiciones iniciales, análisis DC.

VBE y/o VCE = 0 M = 1

TRANSISTOR JFET:

Jxxxxxxx ND NG NS MNAME <AREA> <OFF>
+ <IC=VDS,VGS> <M=val>

VALORES POR DEFECTO:

AREA = 1

Dispositivo en ON para condiciones iniciales, análisis DC.

VDS y/o VGS = 0

M = 1

TRANSISTOR MOSFET:

VALORES POR DEFECTO:

L, W = Longitud y anchura del canal.
 Por defecto se especifican mediante tarjeta de control .OPTIONS. (L=100μm, W=100μm)

AD, AS = Areas de las difusiones de fuente y drenador en m².

También especificables mediante línea de control .OPTIONS. (AD=0, AS=0)

PD, PS = Perímetro de las uniones de drenador y fuente. (PD=0, PS=0)

NRD, NRS = Número equivalente de cuadrados de las difusiones de drenador y fuente. (NRD=1, NRS=1)

Dispositivo en ON para condiciones iniciales, análisis DC.

VDS, VGS y/o VBS = 0

M = 1

LÍNEA DE MODELO

Se usa para especificar los modelos de los dispositivos semiconductores

.MODEL MNAME TIPO <PAR1=val, PAR2=val ...>

MNAME: Nombre del modelo

TIPO: Especifica el dispositivo semiconductor

 $\begin{array}{ccc} \mathsf{D} & \to & \mathsf{DIODO} \\ \mathsf{NPN} & \to & \mathsf{BJT} \end{array}$

 $\begin{array}{ccc} \mathsf{PNP} & \to & \mathsf{BJT} \\ \mathsf{NJF} & \to & \mathsf{JFET} \end{array}$

 $PJF \rightarrow JFET$ $NMOS \rightarrow MOSFET$

PMOS → MOSFET

PAR1, PAR2 ...: Parámetros del modelo cuyo valor se va a especificar. Por defecto SPICE asigna un conjunto de valores.

PARÁMETROS DEL MODELO DEL DIODO

	Nombre	Parámetro	UNID.	VAL. DEF.	Ејемр.
1	IS	Saturation current	A	1.0E -14	1.0E-14
2	RS	Parasitic resistance	Ω	0.0	10
3	N	Emission coefficient		1.0	
4	TT	Transit time	S	0.0	0.1ns
5	CJ0	Zero-bias pn junction capacitance	F	0.0	2pF
6	VJ	Junction potential	V	1.0	0.6
7	M	Junction grading coefficent		0.5	0.5
8	EG	Activation energy	eV	1.11	11.1
9	XTI	IS temperature exponent		3	3
10	KF	Flicker noise coefficient		0	
11	AF	Flicker noise exponent		1	
12	FC	Forward-bias depletion cap. coeff.		0.5	
13	BV	Reverse breakdown voltage	V	∞	50
14	IBV	Reverse breakdown current	A	1E-10	

SPICE: Dispositivos Semiconductores

PARÁMETROS DEL MODELO DEL TRANSISTOR MOSFET

	Nombre	PARÁMETRO	UNID.	VAL. DEF.	Ејемр.
1	LEVEL	Model type			1
2	VTO	Zero-bias threshold voltage	V	0.0	1.0
3	KP	Transconductance parameter	A/V^2	2.0E -5	3.1E-5
4	GAMMA	Bulk threshold parameter	$V^{0.5}$	0.0	0.37
5	PHI	Surface potential	V	0.6	0.65
6	LAMBDA	Channel-length modulation (LEVEL=1 and 2 only)	V ⁻¹	0.0	0.02
7	RD	Drain ohmic resistance	Ω	0.0	1.0
8	RS	Source ohmic resistance	Ω	0.0	1.0
9	CBD	Zero-bias B-D junction capacitance	F	0.0	20fF
10	CBS	Zero-bias B-S junction capacitance	F	0.0	20fF
11	IS	Bulk junction saturation current	A	1.0E -14	1.0E-15
12	PB	Bulk junction potential	V	0.8	0.87
13	CGSO	Gate-source overlap capacitance per meter channel width	F/m	0.0	4.0E-11
14	CGDO	Gate-drain overlap capacitance per meter channel width	F/m	0.0	4.0E-11
15	CGBO	Gate-bulk overlap capacitance per meter channel length	F/m	0.0	2.0E-10
16	RSH	Drain and source diffusion sheet resistance	Ω/\Box	0.0	10.0
17	CJ	zZero-bias bulk junction bottom cap. per sq-meter of junction area	F/m ²	0.0	2.0E-4
18	MJ	Bulk junction bottom grading coef.		0.5	0.5
19	CJSW	Zero-bias bulk junction sidewall cap. per meter of junction perimeter	F/m	0.0	1.0E-9
20	MJSW	Bulk junction sidewall grading coef.		0.50 (level1 0.33 (level2	,

SPICE: Dispositivos Semiconductores

	Nombre	PARÁMETRO	UNID.	VAL. DEF.	Ејемр.
21	JS	Bulk junction saturation current per sq-meter of junction area	A/m ²	1.0E-8	
22	TOX	Oxide thickness	m	1.0E -7	1.0E-7
23	NSUB	Substrate doping	cm ⁻³	0.0	4.0E15
24	NSS	Surface state density	cm ⁻²	0.0	1.0E10
25	NFS	Fast surface state density	cm ⁻²	0.0	1.0E10
26	TPG	Type of gate material: +1 opp. to substrate -1 same as substr	rate 0 Al g	1.0 gate	
27	XJ	Metallurgical junction depth	m	0.0	1U
28	LD	Lateral diffusion	m	0.0	0.8U
29	UO	Surface mobility	$cm^2/(Vs)$	600	700
30	UCRIT	Critical field for mobility degradation (LEVEL= 2 only)	V/cm	1.0E 4	1.0E4
31	UEXP	Critical field exponent in mobility degradation (LEVEL= 2 only)		0.0	0.1
32	UTRA	Transverse field coef (mobility) (deleted for LEVEL= 2)		0.0	0.3
33	VMAX	Maximum drift velocity of carriers	m/s	0.0	5.0E4
34	NEFF	Total channel charge (fixed and mobile) coefficient (LEVEL= 2 only)		1.0	5.0
35	KF	Flicker noise coefficient		0.0	1.0E-26
36	AF	Flicker noise exponent		1.0	1.2
37	FC	Coefficient for forward-bias depletion capacitance formula		0.5	
38	DELTA	Width effect on threshold voltage (LEVEL= 2 and 3)		0.0	1.0
39	THETA	Mobility modulation (LEVEL= 3 only)	V ⁻¹	0.0	0.1
40	ETA	Static feedback (LEVEL= 3 only)		0.0	1.0
41	KAPPA	Saturation field factor (LEVEL= 3 only)		0.2	0.5

SPICE: Subcircuitos

SUBCIRCUITOS

Son circuitos definidos como un conjunto de elementos en el fichero de entrada y que pueden ser llamados y colocados como un dispositivo más dentro de un circuito más complejo.

■ FORMA DE DEFINIRLOS:

.SUBCKT NOMBRE N1 N2 ...
(conjunto de elementos y/o otros subcircuitos)
.ENDS <NOMBRE>

FORMA DE INVOCARLOS:

Xzzzzzzz N1 N2 ... NOMBRE

- No hay límite a la complejidad o tamaño de un subcircuito.
- Cada vez que se invoca un subcircuito, SPICE inserta en el lugar de las líneas de llamada las líneas correspondientes a dicho subcircuito.
- Dentro de la definición del subcircuito pueden existir otros subcircuitos y estos a su vez pueden contener otros.
- Los nudos definidos en un subcircuito tienen carácter local, salvo el nudo 0 que es global.
- Dentro de la definición del subcircuito no se pueden usar tarjetas de control y sí de modelo.

EJEMPLO

CIRCUITO COMBINACIONAL

* Descripción del circuito

X1 1 2 4 NAND

X2 2 3 5 NAND

X3 4 5 7 NAND

VA 1 0 DC 5

VB 2 0 DC 0

VC 3 0 DC 4.5

* Fin de la descripción del circuito

* Subcircuito NAND

.SUBCKT NAND 1 2 4

D1 3 1 MOD1

D2 3 2 MOD1

R1 5 3 5K

R2 3 0 5K

Ro 5 4 5K

G1 4 0 POLY 3 0 1 1 1 1

VCC 5 0 DC 5

.MOD MOD1 D

.ENDS NAND

.END

LÍNEAS DE CONTROL

Permiten especificar el análisis a realizar sobre el circuito, indicando asimismo cómo cambiar parámetros de carácter general.

.... NOMBRE

Distinguiremos varios tipos de tarjetas de control:

- Asociadas al análisis en DC.
- Asociadas al análisis en AC.
- Asociadas al análisis TRANSITORIO.
- No asociadas a ningún análisis en particular.

ASOCIADAS AL ANÁLISIS EN DC

.OP

Además de calcular el punto de trabajo (por defecto) da información de los modelos en pequeña señal de los dispositivos.

.DC

```
.DCNOMBRE1VALC1VALF1VALI1+<NOMBRE2</td>VALC2VALF2VALI2>
```

- NOMBRE1 y NOMBRE2 son fuentes independientes.
- Mediante esta línea se ordena que se haga un análisis en DC para cada valor de las fuentes NOMBRE comprendido entre VALC y VALF en incrementos VALI.
- Si se especifican dos fuentes la primera es barrida sobre su rango para cada valor de la segunda.

ASOCIADAS AL ANÁLISIS EN DC

.NODESET

.NODESET V(NUMNOD)=VAL V(NUMNOD)=VAL

- Establece condiciones iniciales en los nudos para que SPICE los use en el análisis en DC.
- Puede ser imprescindible para asegurar la convergencia de astables o biestables.

.TF

.TF VARSAL VALENT

- Ordena calcular, alrededor del punto de trabajo:
 - la relación en pequeña señal VARSAL/VALENT
 - la impedancia de entrada
 - la impedancia de salida
- Como paso previo SPICE hace un análisis en DC.

.SENS

.SENS OV1 <OV2 ...>

- OV1, OV2, ..., son variables de salida.
- SPICE calcula la sensibilidad en pequeña señal para cada variable indicada respecto a cada parámetro del circuito.

ASOCIADAS AL ANÁLISIS EN AC

.AC

- Ordenan un análisis en AC desde una frecuencia FCOM hasta FFIN con la siguiente variación:
 - DEC: Se toman NO frecuencias por decada.
 - OCT: Se toman NO frecuencias por octava.
 - LIN: Variación lineal, siendo NO el número total de frecuencias tomadas.

.NOISE

- Ordena el análisis de ruido en el circuito.
- OUTV = Tensión de salida que define el punto de suma.
- NUMS = Indica el intervalo entre resultados.
- Se calcula el ruido equivalente en la entrada y la salida indicadas. Se escribe la contribución de cada generador de ruido a intervalos de frecuencia indicados por NUMS.

EJEMPLO

PAR DIFERENCIAL SIMPLE

*

* Alimentaciones y entradas

*

VCC 7 0 12

VEE 8 0 -12

VIN 1 0 AC 1

*

* Descipcion del circuito

*

RS1 1 2 1K

RS2601K

Q1 3 2 4 MOD1

Q2 5 6 4 MOD1

RC17310K

RC2 7 5 10K

RE 48 10K

*

* Modelos y tarjetas de control

*

.MODEL MOD1 NPN BF=50 VAF=50

+ IS=1.E-12 RB=100 CJC=.5PF TF=.6NS

.AC DEC 10 1 100MEG

.PRINT AC VM(5) VP(5)

.END

```
*******10/21/93 ******* SPICE 2G.6 3/16/83 *******11:54:01*****
PAR DIFERENCIAL SIMPLE
     INPUT LISTING
                           TEMPERATURE = 27.000 DEG C
************************
* ALIMENTACIONES Y ENTRADAS
VCC 7 0 12
VEE 8 0 -12
VIN 1 0 AC 1
* DESCIPCION DEL CIRCUITO
RS1 1 2 1K
RS2 6 0 1K
Q1 3 2 4 MOD1
Q2 5 6 4 MOD1
RC17310K
RC2 7 5 10K
RE 4 8 10K
* MODELOS Y TARJETAS DE CONTROL
.MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS
.AC DEC 10 1 100MEG
.PRINT AC VM(5) VP(5)
.END
*******10/21/93 ******* SPICE 2G.6 3/16/83 ******11:54:01*****
PAR DIFERENCIAL SIMPLE
**** BJT MODEL PARAMETERS
                              TEMPERATURE = 27.000 DEG C
**********************
     MOD1
TYPE
       NPN
IS
     1.00D-12
BF
      50.000
NF
      1.000
VAF
      5.00D+01
BR
      1.000
NR
       1.000
RB
      100.000
TF
     6.00D-10
      5.00D-13
*******10/21/93 ******* SPICE 2G.6 3/16/83 ******11:54:01*****
PAR DIFERENCIAL SIMPLE
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C
****************************
```

SPICE: Líneas de Control

```
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1)
       0.0000
               (2)
                      -0.0100
                               (3)
                                      6.3645
                                               (4)
                                                     -0.5290
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
       6.3645
                      -0.0100
                               (7)
                                     12.0000
(5)
                (6)
                                               (8)
                                                     -12.0000
 VOLTAGE SOURCE CURRENTS
 NAME
          CURRENT
  VCC
        -1.127D-03
  VEE
        1.147D-03
  VIN
       -9.996D-06
 TOTAL POWER DISSIPATION 2.73D-02 WATTS
*******10/21/93 ******* SPICE 2G.6 3/16/83 ******11:54:01*****
PAR DIFERENCIAL SIMPLE
**** OPERATING POINT INFORMATION TEMPERATURE=27.000DEG C
************************
**** BIPOLAR JUNCTION TRANSISTORS
     Q1
           O2
MODEL
        MOD1
                MOD1
     1.00E-05 1.00E-05
IB
IC
     5.64E-04 5.64E-04
VBE
        0.519
              0.519
VBC
        -6.374
             -6.374
VCE
        6.894
             6.894
BETADC
          56.376 56.376
GM
      2.18E-02 2.18E-02
      2.59E+03 2.59E+03
RPI
RX
      1.00E+02 1.00E+02
RO
      1.00E+05 1.00E+05
CPI
      1.31E-11 1.31E-11
CMU
       2.38E-13 2.38E-13
CBX
       0.00E+00 0.00E+00
      0.00E+00 0.00E+00
CCS
BETAAC
          56.350 56.350
     2.60E+08 2.60E+08
*******10/21/93 ******* SPICE 2G.6 3/16/83 ******11:54:01*****
PAR DIFERENCIAL SIMPLE
****
       AC ANALYSIS
                              TEMPERATURE = 27.000 DEG C
*********************
 FREQ
          VM(5)
                  VP(5)
                                     FREQ
                                             VM(5)
                                                     VP(5)
1.000E+00
           6.924E+01 -1.729E-05
                                   3.981E+00
                                              6.924E+01 -6.883E-05
1.259E+00
           6.924E+01 -2.177E-05
                                              6.924E+01 -8.665E-05
                                   5.012E+00
           6.924E+01 -2.740E-05
1.585E+00
                                   6.310E+00
                                              6.924E+01 -1.091E-04
1.995E+00
           6.924E+01 -3.450E-05
                                   7.943E+00
                                              6.924E+01 -1.373E-04
2.512E+00
           6.924E+01 -4.343E-05
                                   1.000E+01
                                              6.924E+01 -1.729E-04
3.162E+00
           6.924E+01 -5.467E-05
                                    1.259E+01
                                              6.924E+01 -2.177E-04
```

SPICE: Líneas de Control

FREQ	VM(5) VP(5)	FREQ	VM(5) V	P(5)
1.585E+01	6.924E+01 -2.740E-04	5.012E+05	6.848E+01	-8.602E+00
1.995E+01	6.924E+01 -3.450E-04	6.310E+05	6.804E+01	-1.078E+01
2.512E+01	6.924E+01 -4.343E-04	7.943E+05	6.737E+01	-1.349E+01
3.162E+01	6.924E+01 -5.467E-04	1.000E+06		-1.681E+01
3.981E+01	6.924E+01 -6.883E-04	1.259E+06		-2.084E+01
5.012E+01	6.924E+01 -8.665E-04	1.585E+06		-2.562E+01
6.310E+01	6.924E+01 -1.091E-03	1.995E+06		-3.117E+01
7.943E+01	6.924E+01 -1.373E-03	2.512E+06		-3.736E+01
1.000E+02	6.924E+01 -1.729E-03	3.162E+06		-4.399E+01
1.259E+02	6.924E+01 -2.177E-03	3.981E+06		-5.074E+01
1.585E+02	6.924E+01 -2.740E-03	5.012E+06		-5.728E+01
1.995E+02	6.924E+01 -3.450E-03	6.310E+06		-6.336E+01
2.512E+02	6.924E+01 -4.343E-03	7.943E+06		-6.882E+01
3.162E+02	6.924E+01 -5.467E-03	1.000E+07		-7.360E+01
3.981E+02	6.924E+01 -6.883E-03	1.259E+07		-7.776E+01
5.012E+02	6.924E+01 -8.665E-03	1.585E+07		-8.137E+01
6.310E+02	6.924E+01 -1.091E-02	1.995E+07		-8.454E+01
7.943E+02	6.924E+01 -1.373E-02	2.512E+07		-8.734E+01
1.000E+03	6.924E+01 -1.729E-02	3.162E+07		-8.985E+01
1.259E+03	6.924E+01 -2.177E-02	3.981E+07		-9.207E+01
1.585E+03	6.924E+01 -2.740E-02	5.012E+07		-9.400E+01
1.995E+03	6.924E+01 -3.450E-02	6.310E+07		-9.563E+01
2.512E+03	6.924E+01 -4.343E-02	7.943E+07		-9.697E+01
3.162E+03	6.924E+01 -5.467E-02	1.000E+08		-9.801E+01
3.981E+03	6.924E+01 -6.883E-02	1.000L100	1.070L100	-).001L101
5.012E+03	6.924E+01 -8.665E-02			
6.310E+03	6.924E+01 -1.091E-01	IOR CO	ONCLUDED	
7.943E+03	6.924E+01 -1.373E-01	JOB CC	MCLUDED	
1.000E+04	6.924E+01 -1.729E-01	TOTAL	JOB TIME	0.23
1.259E+04	6.924E+01 -2.177E-01	IOIAL	JOD TIVIL	0.23
1.585E+04	6.924E+01 -2.740E-01			
1.995E+04	6.924E+01 -3.450E-01			
2.512E+04	6.924E+01 -4.343E-01			
3.162E+04	6.923E+01 -5.467E-01			
3.981E+04	6.923E+01 -6.883E-01			
5.012E+04	6.923E+01 -8.665E-01			
6.310E+04	6.923E+01 -1.091E+00			
7.943E+04	6.922E+01 -1.373E+00			
1.000E+05	6.921E+01 -1.728E+00			
1.000E+05 1.259E+05	6.919E+01 -2.176E+00			
1.585E+05	6.916E+01 -2.738E+00			
1.995E+05	6.912E+01 -3.446E+00			
1.993E+03 2.512E+05	6.904E+01 -4.335E+00			
2.312E+03 3.162E+05	6.893E+01 -5.451E+00			
3.102E+03 3.981E+05	6.876E+01 -6.851E+00			
3.701E+U3	0.6/0E+01 -0.631E+00	I		

ASOCIADAS AL ANÁLISIS EN AC

.DISTO

.DISTO RLOAD <INTER <SKW2 <REFPWR <SPW2 >

- Ordena un análisis de distorsión como parte del análisis en AC.
- Se consideran dos frecuencias distintas:
 - la nominal F1 del análisis AC
 - F2 = SKW2·F1
- Se pueden obtener las siguientes medidas de distorsión:

HD2 → magnitud a 2·F1 con F2 ausente

HD3 → magnitud a 3·F1 con F2 ausente

SIM2 → magnitud a F1+F2

DIM2 \rightarrow magnitud a F1-F2

DIM3 \rightarrow magnitud a 2·F1-F2

- RLOAD = Nombre de una resistencia de carga en la que se calculan los productos de potencia de distorsión.
- REFPWR = Nivel de potencia de referencia usado en el cálculo de productos de distorsión.
- SPW2 = Amplitud de F2

Valores por defecto:

INTER=no se dan resultados

SKW2=0.9

REFPWR=1MW

SPW2=1

SPICE: Líneas de Control

ASOCIADAS AL ANÁLISIS TRANSITORIO

.IC

Especifica condiciones iniciales para el análisis transitorio. Éstas se usan si se especifica la opción UIC; en caso contrario las condiciones iniciales se establecen mediante un análisis en DC.

.TRAN

- Especifica las condiciones del análisis transitorio:
 - TSTEP → Incremento temporal para imprimir resultados
 - TSTOP \rightarrow Tiempo final
 - $TSTART \rightarrow Tiempo inicial (para imprimir) (por defecto = 0)$
 - TMAX → Máximo incremento temporal para análisis interno. Define el mínimo TSTEP. (por defecto es (TSTOP-TSTART)/50)
 - $\operatorname{UIC} \longrightarrow \operatorname{Indica}$ que se usen las condiciones iniciales especificadas en .IC

.FOUR

- Se pide un análisis de Fourier como parte del análisis transitorio.
- OV1, OV2, OV3, ..., son nombres de variables de salida.
- El análisis se realiza sobre datos del intervalo:

TSTOP-Periodo < t < TSTOP, Periodo=1/FREQ

Los resultados suministrados son la componente en DC y los 9 primeros armónicos.

LÍNEAS DE CONTROL DE SALIDA

SPICE puede suministrar dos tipos de salida:

Listado \rightarrow .PRINT Dibujo \rightarrow .PLOT

```
.PRINT TIPO OV1 < OV2 OV3 ... OV8>
.PLOT TIPO OV1<(L1,H1)> < OV2<(L2,H2)> ... OV8<(L8,H8)>>
```

- TIPO: Tipo de análisis (AC, DC, TRAN, NOISE, DISTO).
- OV1, ..., son los nombres de variables de salida. Pueden ser:
 - Tensiones en nudos o entre dos nudos. (Ej.: V(5), V(7,3))
 - Intensidades en fuentes independientes de tensión. (Ej.: I(Vcc), I(Vin))
 - Para el análisis en AC:

VR o IR \rightarrow .Parte real VI o II \rightarrow .Parte imaginaria VM o IM \rightarrow .Módulo VP o IP \rightarrow .Fase VDB o IDB \rightarrow .Decibelios (20·log₁₀(Módulo))

Ejemplos: VR(5), IM(Vin), VDB(7)

(Li,Hi) representan la variable OVi dentro de esa escala. Si no se indica se supone autoescalado.

Ejemplos: .PLOT TRAN V(17,5) I(Vin) V(17)

OTRAS LÍNEAS DE CONTROL

.TEMP

.TEMP T1 <T2 <T3 ... >

- Especifica las temperaturas a las que el circuito será simulado. T1, T2, T3, ..., son temperaturas en grados centígrados (°C).
- Si se omite entonces la temperatura de simulación es la especificada con TNOM en la línea de control .OPTIONS. (Si ésta a su vez se omite, la temperatura por defecto es de 27°C)

.WIDTH

.WIDTH IN=NCOLUM OUT=NCOLUM

Define el número máximo de columnas de los ficheros de entrada y salida.

.OPTIONS

.OPTIONS OPT1 OPT2 ... (o OPT=OPTVAL ...)

- Esta línea permite al usuario cambiar determinadas opciones y permite ajustar el control del programa.
- ⇔ Hay 32 opciones diferentes:
 - Algunas opciones se usan para controlar la salida. (Ej.: NOPAGE, LIMPTS=x)
 - Otras opciones se usan para controlar el tipo de análisis que realiza SPICE.
 - Otras para obtener convergencia, etc.

SPICE: Líneas de Control

OPCIONES	EFECTO						
GMIN=x	Resets the value of GMIN, the minimum conductance allowed by the program. The default value is 1.0E-12.						
RELTOL=x	Resets the relative error tolerance of the program. The default value is $0.001 (0.1\%)$.						
ABSTOL=x	Resets the absolute current error tolerance of the program. The default value is 1pA.						
VNTOL=x	Resets the absolute voltage error tolerance of the program. The default value is $1\mu V$.						
TRTOL=x	Resets the transient error tolerance. The default value is 7.0. This parameter is an estimate of the factor by which SPICE overestimates the actual truncation error.						
CHGTOL=x	Resets the charge tolerance of the program. The default value is 1.0E-14.						
PIVTOL=x	Resets the absolute minimum value for a matrix entry to be accepted as a pivot. The default value is 1.0E-13.						
PIVREL=x	Resets the relative ratio between the largest column entry and an acceptable pivot value. The default value is 1.0E-3. In the numerical pivoting algorithm the allowed minimum pivot value is determined by						
	EPSREL=AMAX1(PIVREL*MAXVAL,PIVTOL) where MAXVAL is the maximum element in the column where a						
	pivot is sought (partial pivoting).						
TNOM=x	Resets the nominal temperature. The default value is 27°C (300 °K).						
ITL1=x	Resets the dc iteration limit. The default is 100.						
ITL2=x	Resets the dc transfer curve iteration limit. The default is 50.						
ITL5=x	Resets the transient analysis total iteration limit the default is 5000. Set ITL5=0 to omit this test.						
DEFL=x	Resets the value for MOS channel length; the default is $100.0 \mu m$.						
DEFW=x	Resets the value for MOS channel width; the default is 100.0µm.						
DEFAD=x	Resets the value for MOS drain diffusion area; the default is 0.0.						
DEFAS=x	Resets the value for MOS source diffusion area; the default is 0.0.						

ANÁLISIS EN DC: .DC

SPICE: Tipos de Análisis

ANÁLISIS EN DC: .OP

**** mosfets

element	mn	mp	
model	nmos	pmos	
id	311.5309u	-311.5310u	
ibs	0	0	
ibd	-101.8000p	2.272e-17	
vgs	1.6000	-1.7000	
vds	1.7502	-1.5498	
vbs	0	0	
vth	573.9130m	-550.4180m	
vdsat	830.3756m	-981.8583m	
beta	115.0323u	157.8427u	
gam eff	527.6252m	527.6252m	
gm	440.4485u	437.4501u	
gds	14.5032u	29.0124u	
gmb	76.2947u	120.8119u	
cdtot	2.6143f	6.5795f	
cgtot	2.5567f	5.5348f	
cstot	5.0148f	13.2306f	
cbtot	6.2974f	16.9915f	
cgs	2.3439f	4.9162f	
cgd	1.455e-16	4.123e-16	

SPICE: Tipos de Análisis

Relación con el Diagrama de Bode (1)

Relación con el Diagrama de Bode (2)

Relación con el Diagrama de Bode (3)

ANÁLISIS EN DC: .DC

ANÁLISIS TRANSITORIO: .FOUR

***** fourier analysis tnom= 25.000 temp= 25.000

fourier components of transient response v(out) dc component = 1.667D+00

harmonic frequency fourier normalized phase normalized no (hz) component component (deg) phase (deg)

- 1 1.0000k 855.7490m 1.0000 179.9985 0
- 2 2.0000k 68.8141m 80.4139m 89.9990 -89.9995
- 3 3.0000k 55.5648m 64.9312m -179.9929 -359.9913
- 4.0000k 15.3072m 17.8875m 90.0207 -89.9778
- 5.0000k 1.3988m 1.6345m -438.7839m -180.4372
- 6 6.0000k 374.9768u 438.1855u -90.9938 -270.9922
- 7 7.0000k 1.3253m 1.5487m -158.0425m -180.1565
- 8 8.0000k 955.4913u 1.1166m -90.1097 -270.1082
- 9 9.0000k 190.5515u 222.6722u -179.7079 -359.7063

total harmonic distortion = 10.4924 percent

ANÁLISIS EN DC: .DC

ANÁLISIS TRANSITORIO: .FOUR

***** fourier analysis tnom= 25.000 temp= 25.000

fourier components of transient response v(out)

dc component = 1.618D+00

harmonic frequency fourier normalized phase normalized no (hz) component component (deg) phase (deg)

- 1.0000k 1.5191 1.0000 179.9949 0.
- 2 2.0000k 15.6135m 10.2784m 89.9528 -90.0421
- 3 3.0000k 338.4282m 222.7886m 179.9847 -10.2386m
- 4 4.0000k 22.2844m 14.6699m 89.9400 -90.0549
- 5.0000k 157.1142m 103.4289m 179.9838 -11.0779m
- 6 6.0000k 20.8522m 13.7271m 89.9233 -90.0716
- 7 7.0000k 87.1199m 57.3514m 179.9983 3.4485m
- 7.0000k 67.1199III 37.3314III 179.9963 3.4463II
- 8 8.0000k 18.1878m 11.9731m 89.9160 -90.0789
- 9 9.0000k 51.3885m 33.8293m -179.9655 -359.9604

total harmonic distortion = 25.5771 percent

Ejemplo: Circuito RC

Circuito RC

vin in 0 ac pulse (0 5 100n 5n 5n 1u 2u) res in out 10k cap out 0 10p

.tran 5n 4u .ac dec 10 1 1g .end

Ejemplo: Circuito Rectificador

Circuito Rectificador

vin in 0 sin(0 12 50 0 0) d1 in out1 dm r1 out1 0 10k

d2 in out2 dm
r2 out2 0 10k
cap out2 0 10u
.model dm d cjo=2p rs=1 is=1p
.tran 0.1m 0.06
.end

1) NUDOS CON MENOS DE 2 CONEXIONES

2) NUDOS FLOTANTES — Sin camino de DC a tierra

3) LAZOS DE FUENTES Y/O INDUCTORES

Lazos de resistencia cero: V, L, VCVS, CCVS

4) VALORES NEGATIVOS DE COMPONENTES

Se permiten valores<0 de R, C y L → .OP, .DC, .AC ✓ TRAN ~ Posible inestabilidad

- **warning** 0:r1 resistance is negative. it may cause instability problem. 0:r2 resistance is negative. it may cause instability problem. **warning**
- =voltage node =voltage node = 1.0000 0:2=714.2857m +0:1
- small-signal transfer characteristics **** v(2)/vin= 714.2857minput resistance at vin = -140.0000

output resistance at v(2)= -28.5714

5) CIRCUITOS GRANDES

- Memoria RAM —— Dividir el circuito y simular independientemente cada parte
- Limitación del Simulador

PSpice (ver. Evaluación)				
Nudos	64			
Transistores	10			
OpAmps	2			
Prinitivas Digitales	65			

6) CIRCUITOS MÚLTIPLES

Fichero de entrada con varios circuitos

PSpice simula todos por orden 🗸

PROBE almacena sólo los datos del último X

7) TRANSITORIOS LARGOS

- Limitación del número de print steps: LIMPTS en .OPTIONS LIMPTS = 0

LIMPTS = 0 (ilim, default)

LIMPTS = 32000 (máx)

- Limitación del número de iteraciones: ITL5 en .OPTIONS

ITL5 = 5000 (default)

ITL5 = 0 (ilim)

- Datos limitados en PROBE: 16000 ptos → .TRAN 10US 10MS 8MS

8) CONVERGENCIA

-.DC → Circuitos con realimentación positiva o histéresis

-.OP → Usar .NODESET

- TRAN: Precisión relativa: RELTOL en .OPTIONS RELTOL = 0.001 (0.1%, default) RELTOL = 0.01 (1%)

Límite de iteraciones por punto: ITL4 en .OPTIONS(ej. ITL4 = 50)

9) PRECISIÓN → .OPTIONS

RELTOL	Precisión relativa de V, I	0.001
VNTOL	Precisión de V	1μV
ABSTOL	Precisión de I	1pA
CHGTOL	Precisión en Q (C) y Φ (L)	10 ⁻¹⁴

ANEXO: Diagramas de Bode

$$s \prod_{i} \left(1 + \frac{s}{w_{z_{i}}} \right) \prod_{i} \left(1 + \frac{2\xi_{z_{i}}}{w_{nz_{i}}} s + \frac{s^{2}}{w_{nz_{i}}} \right)$$

$$H(s) = K \frac{s}{s \prod_{i} \left(1 + \frac{s}{w_{p_{i}}} \right) \prod_{i} \left(1 + \frac{2\xi_{p_{i}}}{w_{np_{i}}} s + \frac{s^{2}}{w_{np_{i}}} \right)}$$

SEMIPLANO IZQUIERDO

	K > 0	$ \begin{array}{c} \text{polo} \\ s = 0 \end{array} $	$ \begin{array}{c} \text{cero} \\ s = 0 \end{array} $	polo real $s = w_p$	cero real $s = w_z$	polos complejos (w_{np})	ceros complejos (w_{nz})
H(jw)	20log <i>K</i>	-20dB/dec	+20dB/dec	-20dB/dec	+20dB/dec	-40dB/dec	+40dB/dec
$\varphi_{H}(jw)$	0	- π/2	$+\pi/2$	-π/2	$+\pi/2$	-π	+π

▼ SEMIPLANO DERECHO **▼**

	K < 0	polo real $s = w_p$	cero real $s = w_z$	polos complejos (w_{np})	ceros complejos (w_{nz})
H(jw)	20log <i>K</i>	-20dB/dec	+20dB/dec	-40dB/dec	+40dB/dec
$\varphi_{H}(jw)$	-π	$+\pi/2$	- π/2	+π	-π

