Introduction

- Computer Vision is about understanding images
 - Greyscale, Colour, Multi-Spectral
 - Snapshots or Video
 - Taken by static or moving cameras
 - Taken of a static or moving scene
 - Taken with a calibrated or un-calibrated camera
- Can drive:
 - **Inspection** e.g. industrial inspection
 - Analysis e.g. Surveillance/Forensics
 - Control e.g. biometrics, landmine detection, medical imaging
- "What we experience, apparently directly, is actually very different from what is recorded by our sense organs"
- Applications: AR, Gaming, AutoDriver, Robot Vision

Learning Goals

- Understand
 - the broad subject of computer vision
 - the main algorithmic processes used to manipulate images
 - How information may be extracted from images, and the associated problems
- Be able to
 - Describe the various operations both algorithmically and mathematically
 - Code and test basic vision algorithms
 - Develop potential solutions to complex vision problems

Images

- Camera Models
 - Components: a photosensitive image plane, housing and lenses
 - Mathematical model needed simple pinhole model, distortions need to be considered

3D point translated to a 2D image (x,y,z) -> (i,j)

$$\begin{bmatrix} i. w \\ j. w \\ w \end{bmatrix} = \begin{bmatrix} f_i & 0 & c_i \\ 0 & f_j & c_j \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- W is taken as the Scaling factor in the homogeneous coordinates being used to describe the image points
- F_i and f_j describe the combination of camera focal length and the size of the pixels in the I and J directions respectively

- (c_i,c_j) are the coordinates of the point at which the optical axis intersects the image plane (optical centre)
 - Note: this is the perpendicular line from the image plane which extends through the pinhole of the camera

- Digital Images

- Images are (generally) a 2D projection of a 3D scene
- Continuous 2D function
- To process with a computer we need discrete representation
 - Conversion into an MxN matrix
 - Where each element is given an integer value i.e. the continuous range (colour spectrum) is split into k intervals (where k is typically 256)

- Sampling

- Digital images are created with 2D arrays of of photosensitive elements with small borders between them - can result in data loss
- Big issue is that pixels represent an average value (luminance and chrominance) over a discrete area which in the real world could source from a single object, but also multiple objects

- Quantisation

- Each pixel in a digital image f(i,j) is a function of scene brightness, the brightness values are continuous but need to be quantised
- Typically the number of brightness levels per channel is k=2^b where b is the number of bits (typically 8)
- How many bits to use? The more you use the more memory occupied, the less you use the less information in the image
- We want enough samples to not waste space and time, and get exactly enough information

- Colour Images

- Luminance only simple representation, humans can understand
- Colour images (luminance + chrominance)
 - multiple channels (typically 3)
 - ~16.8 million colours more complex to process
 - Facilitates more operations

- RGB images

- Red (700nm), Green (546nm), Blue (436nm)
- Colours are combined on viewing
- RGB -> GreyScale
 - Y = 0.299R + 0.587G + 0.114B
- Camera photosensitive elements
 - Separate for red green blue sometimes sensitive to all

- Bayer pattern
- CMY Images
 - Cyan-Magenta-Yellow
 - Secondary colours, subtractive scheme
 - C = 255 R
 - M = 255 G
 - Y = 255 B
- YUV
 - Previously used for analogue tv signals
 - Conversion from RGB
 - Y = 0.299R + 0.587G + 0.114B
 - U = 0.492 * (B-Y)
 - V = 0.877 * (R-Y)
- HLS
 - Hue, luminance, saturation
 - Separation of luminance and chrominance
 - Hue = 0...360 (circular)
 - Luminance = 0...1
 - Saturation = 0...1

$$egin{align*} V_{max} \leftarrow max(R,G,B) \ V_{min} \leftarrow min(R,G,B) \ & L \leftarrow rac{V_{max} + V_{min}}{2} \ & S \leftarrow egin{cases} rac{V_{max} - V_{min}}{V_{max} + V_{min}} & ext{if } L < 0.5 \ rac{V_{max} - V_{min}}{2 - (V_{max} + V_{min})} & ext{if } L \geq 0.5 \end{cases} \ H \leftarrow egin{cases} 60(G-B)/(V_{max} - V_{min}) & ext{if } V_{max} = R \ 120 + 60(B-R)/(V_{max} - V_{min}) & ext{if } V_{max} = G \ 240 + 60(R-G)/(V_{max} - V_{min}) & ext{if } V_{max} = B \end{cases}$$

- Noise
 - Affects most images, degrades them, interferes with processing
 - Measuring noise
 - Signal to Noise ratio

$$S/N \ ratio = \frac{\sum\limits_{(i,j)} f2(i,j)}{\sum\limits_{(i,j)} v2(i,j)}$$

- Types of noise:
- Gaussian
 - Good approximation to real noise distribution is Gaussian (has mean and std. dev.)
- Salt and Pepper
 - Impulse noise noise is maximum or minimum values
- Smoothing
 - Removing or reducing noise

- Linear smoothing transformations
 - Image averaging average on n images (assumes static camera & scene, statistical independence)
 - Local averaging and Gaussian smoothing
 - Filtering / Convolution
 - Linear transformation
 - Convolution mask
 - Non-linear: some logical operation performed on a local region
 - Averaging filters
 - Local neighbourhood
 - Different masks available: local average, gaussian

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$h = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$f(i,j) = \sum h(i-m, j-n).g(m,n) \quad h = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- How to determine acceptable results: Size of noise, blurring of edges
- Issues with smoothing: blurring sharp edges, quality degradation?
- Non-Linear Transformations
 - Rotating mask
 - Define a number of masks/regions
 - Mask size and shape
 - Use the average of one of the masks which? Most homogeneous
 - Algorithm
 - For each point: calculate dispersions, assign output point average of mask with minimum dispersion

$$\sigma^2 = \frac{1}{n} \sum_{(i,j) \in R} \left[g(i,j) - \frac{1}{n} \sum_{(i',j') \in R} g(i',j') \right]^2$$

- Iterative application: Convergence; Effects of mask size
- Effects: noise suppression and image sharpening
- Median filter
 - Use the median value, not affected by noise (ignores average)
 - Doesnt blur edges and can be applied iteratively
 - Damages thin lines and sharp corners (can change shape to mitigate this)
 - Computationally expensive
- Bilateral filter

- Weight local pixels
 - Distance from centre
 - Difference in colour/intensity space

$$f(i,j) = \frac{1}{W_p} \sum_{(m,n) \in \Omega} g(m,n) f_R(\|g(m,n) - f(i,j)\|) f_S\left(\sqrt[2]{(m-i)^2 + (n-j)^2}\right)$$

$$W_p = \sum_{(m,n) \in \Omega} f_R(\|g(m,n) - f(i,j)\|) f_S\left(\sqrt[n]{(m-i)^2 + (n-j)^2}\right)$$

- Preserves edges
- Causes staircase effect, introduction of false edges
- Image Pyramids
 - Process images at multiple scales efficiently
 - Technique
 - Smooth image (regularly gaussian)
 - Sub-sample (usually by a factor of 2)