Credit: Termination Proofs for Systems Code*

Terminator is a tool that proves program termination for large, multi-sectioned systems composed of more than 20,000 lines of code, such as reactive systems. A reactive system must always terminate and a reactive system is labeled as non-responsive if it does not terminate under unexpected situations. Terminator uses incremental construction of termination-argument. Termination means no cycle in the set of states of program P.

* well-founded means their intersection is empty, nothing in common

Let

- I the set of initial states.
- T the termination argument which is a binary relation and a union of well-founded relations,
- R⁺_I a transitive binary reachability relation,
- τ_1 , τ_2 , ... τ_i , τ_{i+1} , ..., τ_n a non empty sequence of statements in P to be executed, linking program states s_0 , s_2 , ..., s_i , s_{i+1} ,..., s_n in an orderly fashion.

Then if $R^+_I \subseteq T$ that means all binary relations in R^+_I are well-defined too, implying no loop in the set of states of R^{+}_{I} , which guarantees termination.

Else there must be two execution states s_i , s_n , $(s_i, s_n) \in \mathbb{R}^+$, corresponding to non-empty statements $\tau_i \neq \emptyset$ and $\tau_n \neq \emptyset$ such that $(s_i, s_n) \not\equiv T$, disproving $R^+_I \subseteq T$,

counterexample: execution states s_i and s_n are both happening at one single location of a program P, proving existence of a cycle τ_{i+1} , ..., τ_n .

- * Reachability analysis: in a distributed system, is global state s reachable at error location E
- * Binary analysis: is threat assessment and vulnerability testing at the binary code level.

To be able to perform binary reachability analysis, \widehat{P} is created as a version of program P that implements function F, a function whose least fixpoint is a characterization of R^+_I . Let safety checker \widehat{P}_T be created by a transformation of \widehat{P} then an error location in \widehat{P}_T is not reachable iff $R^+_I \subseteq T$.

Optimization, which is essential for verification of large scale programs, is performed as follows:

- specialization of \widehat{P}_T based of the fact that $T = T^{l_1} \wedge T^{l_2} \wedge \dots \wedge T^{l_n}$ for each cutpoint l_i pre-variables for C programs, creating a pre-variable for every heap and stack location addressable using C-expressions
- structured programs,
- weak binary reachability, to reach for a path is least costly-long for the purpose of termination verification.