

Background

Air Travel in the US is probably one of the most frequently public transportation service used.

The FAA handles more than 16 million flights a year.

More than 960 million passengers are scheduled to fly on these flights each year.

2.9 M people fly in and out of the US airports yearly.

This is why we want to create a safe and efficient environment for all passengers embarking on an airplane.

Introduction

- Given health data of pilots
 - Galvanized skin response (GSR)
 - Electrocardiogram (ECG)
 - Electroencephalogram (EEG)
 - Respiration rate
 - o Etc
- Need to predict which state the pilot is in during different times of flight
 - Baseline Normal
 - Channelized Attention (CA) Focused
 - Diverted Attention (DA) Distracted
 - Startle/Surprise (SS) Jump Scare

Methods

EDA

EXPLORATORYDATA ANALYSIS

EDA

Shape and Dimensions of our dataset: (4867421, 28)

How does our dataset look like?

What features/variables are we working with?

	crew	experiment	time	seat	eeg_fp1	eeg_f7	eeg_f8	eeg_t4	eeg_t6	eeg_t5	•	eeg_c4	eeg_p4	eeg_poz	eeg_c3	eeg_cz	eeg_o2	ecg	r	
0	1	CA	0.011719	1	-5.28545	26.775801	-9.527310	-12.793200	16.717800	33.737499		37.368999	17.437599	19.201900	20.596800	-3.951150	14.507600	-4520.0	817.705994	388.
1	1	CA	0.015625	1	-2.42842	28.430901	-9.323510	-3.757230	15.969300	30.443600		31.170799	19.399700	19.689501	21.354700	1.332120	17.750200	-4520.0	817.705994	388
2	1	CA	0.019531	1	10.67150	30.420200	15.350700	24.724001	16.143101	32.142799		-12.012600	19.396299	23.171700	22.407600	1.537860	22.247000	-4520.0	817.705994	388.
3	1	CA	0.023438	1	11.45250	25.609800	2.433080	12.412500	20.533300	31.494101		18.574100	23.156401	22.641199	19.336700	2.544920	18.998600	-4520.0	817.705994	388
4	1	CA	0.027344	1	7.28321	25.942600	0.113564	5.748000	19.833599	28.753599		6.555440	22.754700	22.670300	20.293200	1.699620	22.812799	-4520.0	817.705994	388
5	1	CA	0.031250	1	6.06746	23.128300	8.645660	14.380800	16.055500	26.925200		-9.289120	21.440599	23.253700	19.069599	-0.765018	26.451900	-4520.0	817.705994	388
6	1	CA	0.035156	1	-1.37602	20.972000	3.754160	13.766700	18.122000	29.391199		-0.604736	20.993401	21.556200	17.327299	1.465000	21.289301	-4520.0	817.705994	388
7	1	CA	0.039062	1	1.54787	18.398100	-9.113150	-1.033160	22.627001	32.816601		17.483601	22.912600	23.187000	18.462700	0.299232	23.691500	-4520.0	817.705994	388
8	1	CA	0.042969	1	-7.78946	12.210700	-8.953760	1.091740	28.526501	35.267200		16.681101	28.779600	28.382099	20.697300	-6.620750	31.672701	-4520.0	817.705994	388.
9	1	CA	0.046875	1	-11.17750	18.235901	-1.035220	4.751110	25.983801	30.499100		0.489098	21.937500	21.629299	19.525999	-5.186040	21.618700	-4520.0	817.705994	388

:	crew	int64						
	experiment	object						
	time	float64						
	seat	bool						
	eeg_fp1	float64						
	eeg_f7	float64						
	eeg_f8	float64						
	eeg_t4	float64						
	eeg_t6	float64						
	eeg_t5	float64						
	eeg_t3	float64						
	eeg_fp2	float64						
	eeg_o1	float64						
	eeg_p3	float64						
	eeg_pz	float64						
	eeg_f3	float64						
	eeg_fz	float64						
	eeg_f4	float64						
	eeg_c4	float64						
	eeg_p4	float64						
	eeg_poz	float64						
	eeg_c3	float64						
	eeg_cz	float64						
	eeg_o2	float64						
	ecg	float64						
	r	float64						
	gsr	float64						
	event	object						
	dtype: object							

EDA

EDA - seat

- Left (0)
- Right (1)

EDA - eeg_fp1

EDA - Target

Preprocessing

- Data seemed to be pre cleaned
- Normalization, do we need to normalize? How do you know?
- Were there any NULL values or NA values?
- Were there a lot of zero values?
 Could we ignore them or not? Are they important or not?

Random Forests - Matthieu

Using the Random Forest Classifier We were able to get around a 95% accuracy.

And using Bootstrapping, we were able to get around the same accuracy.

Process:

- Small samples to test the functionality of the model
- Normalization
- Converted the target to numerical values
- Removed columns (loosely)
- Split the data into: X_train, X_test, y_train, y_test

Creating the model:

- Initializing the model
- Fitting the data
- Predicting the data
- Finding the accuracy of the data

Fine Tuning:

Bootstrap (multiple samples)

Decision Trees

Accuracy of 98.8%

Without Time: ~94.94%

Process:

- Small samples to test the functionality of the model
- Normalization
- Converted the target to numerical values
- Removed columns (loosely)
- Split the data into: X_train, X_test, y_train, y_test

Creating the model:

- Initializing the model
- Fitting the data
- Predicting the data
- Finding the accuracy of the data

Fine Tuning:

Bootstrap (multiple samples)

Gradient Boosting Machine

accuracy: 0.9844229751870855

- One of the best models we fit
- 99% accuracy with "time" column
 - Not useful for real life predictions
- 98% without "time" column
- Sometimes would get very low accuracy unexpectedly after training

Best parameters from Grid Search: {'learning_rate': 0.2, 'num_leaves': 300}