Introduction of High Efficiency Once-through Boiler In Golf Ball Factory of PT. Sumi Rubber Indonesia

By. Akmal M Kartajaya 7 December 2017

COMPANY PROFILE

PT Sumi Rubber Indonesia

COMPANY : PT SUMI RUBBER INDONESIA

ADDRESS : INDOTAISEI INDUSTRIAL ESTATE, BLOK H, SECTOR 1-A 7 Q-3

CIKAMPEK - KARAWANG, WEST JAVA

AREA : 37 Ha

BUSINESS STATUS : FOREIGN CAPITAL INVESTMENT

PRODUCT : TYRE & GOLF BALL

EMPLOYEE : 3,615

1. Project Overveiw

1.1. Location of JCM Model Project

PT Sumi Rubber Indonesia Golf Ball No.2 Factory Indotaisei Industrial Estate, Sector 1A, Blok Q3 Cikampek, West Java

1.2. Structure and Role of JCM Model Project

1.3. Background

1.3.1. Boiler is needed for production of golf ball)

Function of BOILER:
Change water become **steam** for production process

In Golf Ball Factory, mainly steam is for :

- Curing the plug rubber become core ball in Press Machines

- Humidity & Temperature Control of Finishing Room

Finishing Room

Finished Goods

1.3.2. Old Boiler (#1 factory boiler)

- Model
- Fuel
- Efficiency
- Capacity

Fire Tube Boiler Natural Gas

89 %

4000 L/hour

1.4. Install The Facility of JCM Model Project

- A high efficiency (95%) once through boiler will install at a Golf Ball factory
- The boiler reduces fuel consumption by incorporating gas single fuel type. Furthermore, electricity consumption is also reduced by inverter function of feed water pump and forced draft fan.

2. Project Implementation

2.1. Schedule of Project

ACTIVITIES	2015		2016						
	Nov	Des	Jan	Feb	Mar	Apr	May	June	July - Dec
Document submit to JCM	\uparrow								
Unofficial announcement			11						
Approval of decision				\Rightarrow					
Boiler Installation								→	
Approval of operation								*	
Operation monitoring								_	$\qquad \qquad $
: PLAN : ACTUAL									

2.2. Installed Facility of JCM Model Project

- A high efficiency (95%) once through boiler is installed at a Golf Ball factory

2.3. Currrent Progress of Project

Since 18 June 2016, Boiler is already continuously running until now

2.4. Challanges of Project

This project have been done by cooperation between Indonesia company and Japanese company.

For getting faster effect, we did short time for installation and start up.

- We can Install for 4 month after project decide
- Short time delivery of boiler by japanese company
- Short time start up with Indonesia and Japanese company
- The Boiler is not same type with the previous boiler
- We must changed many piping by Indonesia company
- Tuning the boiler control to fulfill our factory demand only 3 days by two company

Install area is small for old type boiler

Select one through boiler

2.2. Benefits of Project

- Get special cost support (50%)
- High boiler Efficiency (until 95%, Cost Reduction = USD 13,532 / year)
- Low electricity consumption (down 30%, Cost Reduction = USD 3,935/year)
- More environmental friendly (CO₂ reduction)
- Contribution to sustainable development of Indonesia
 (by technology transfer, energy saving activity, level up employee)
- Easy Operation for start, run and stop Boiler
- Easy monitoring for Boiler Operation / Performance
 - Fuel consumption
 - Steam consumption
 - Electricity consumption
 - Water consumption
 - others

Automated data collection with Comprehensive monitoring system(EVERY FIT)

3. GHG Emission Reduction

ltem	Unit	Reference Boiler	Project Boiler
Efficiency	%	89	95
Fuel Consumption	m3/h	79.61	71.23
	kg/year	1,122,797.00	1,004,607.00
Fuel Emission (A1)	tCO2/year	3,032	2,712
Electric Consumption	kWh/year	126,000	113,525
Electric Emission (A2)	tCO2/year	105.84	95.361
Total Emission (A1+A2)	tCO2/year	3,137	2,808
Expected CO2 Reduction	tCO2/year		329.6
Actual CO2 Reduction	tCO2/year		212

We have not achieved the target yet, because:

- The golf ball production is down compare with original plan
- Energy saving another activity, makes reduce steam consumption
- The JCM Boiler is running as main supply parallely with another boiler to maintain normal steam, it does't make fully capacity.

This condition is now improving with the project company

3. GHG Emission Reduction

the fuel type i (for diesel oil)

JCM ID F PMS ver01.0 JCM Proposed Methodology Spreadsheet Form (Calculation Process Sheet) [Attachment to Proposed Methodology Form] 1. Calculations for emission reductions Fuel type Value Units Parameter 212 tCO₂/p ER_p Emission reductions during the period p 2. Selected default values, etc. 0.95 -Efficiency of project boiler i $\eta_{i,PJ}$ Efficiency of reference boiler 0.89 η_{RE} BF_{PJ} Blow flow rate setting of project boiler 3.3 % Blow flow rate setting of reference boiler 9 % BFRE 3. Calculations for reference emissions 1,791.0 tCO₂/p Reference emissions during the period p RE_o Fuel consumption of project boiler i using the fuel type j 788,493.0 Nm³/p or t/p $FC_{p,i,PJ}$ (=natural gas or LPG) during the period p Fuel consumption of project boiler i using the fuel type i FC_{p,i,PJ} 0 t/p (=diesel oil) during the period p Net calorific value of fuel used by the project boiler during GJ/Nm³ or $NCV_{i,j,P}$ 0.0369 the period p (for natural or LPGgas-fuel) GJ/t Net calorific value of fuel used by the project boiler during NCV_{i,j,PJ} 0.0000 GJ/t the period p (for disele oil) CO₂ emission factor of reference fuel 0.0543 tCO₂/GJ EF_{RE} Efficiency of project boiler i 0.95 $\eta_{i,PJ}$ Efficiency of reference boiler 0.89 η_{RE} 3.3 % Blow flow rate setting of project boiler BFPJ 9 % Blow flow rate setting of reference boiler BFRE 4. Calculations of the project emissions PE_p Project emissions during the period p 1,579.0 tCO₂/p Fuel consumption of project boiler i using the fuel type i 788,493.0 Nm³/p or t/p $FC_{p,i,PJ}$ (=natural gas or LPG) during the period p Fuel consumption of project boiler i using the fuel type j t/p FC_{p,i,PJ} (=diesel oil) during the period p Net calorific value of fuel used by the project boiler during GJ/Nm³ or 0.0369 NCV_{i,i,PJ} the period p (for natural gas or LPG-fuel) GJ/t Net calorific value of fuel used by the project boiler during NCV_{i,j,PJ} 0.0000 GJ/t the period p (for disele oil) CO2 emission factor of fuel used by the project boiler i for $\mathsf{EF}_{\mathsf{i},\mathsf{j},\mathsf{PJ}}$ 0.0543 tCO₂/GJ the fuel type j (for natural gas or LPGfuel) CO₂ emission factor of fuel used by the project boiler i for 0.0000 tCO₂/GJ EF_{i,j,PJ}

4. Measurement, Reporting, Verification (MRV)

To keep these effect we do

- Maintenance program weekly, monthly and yearly done correctly
- Daily inspection use data logging system to easy control
- Boiler water conductivity and blowdown rate keep in range standard
 To keep good environment
- Measuring data in every year to make sure O2, CO, NO_x emission in range standard

Progress of the JCM Project Cycle is not yet decided the Methodology and The JCM methodology is under development.

5. Next plan

- 1. In our company we will change old type boiler to once through boiler when renewal for #1 GB factory boiler and tire factory boiler.
- 2. In indonesia It is said that annualy 1,000 unit of boilers are newly installed / replaced in Indonesia in many sectors.
 - (i) "water tube boiler" imported from China
 - (ii) Euroasiatic (leading) and other brands: "fire tube boiler"

Higher efficiency "Oncethrough Boiler" will have over 50% of share in near future from 36% in 2015

In Japan once through boiler share is already 89%(2013)

THANK YOU