EPFL

Exercise 5

Exercise 5

Transformer

Tutorial Suggestion:

https://www.youtube.com/watch?v=zxQyTK8quyY&t=1087s

Quadratic dependency on Sequence Length for Memory and Computation

Quadratic dependency on Sequence Length for Memory and Computation

Sparse Attention

 use fixed pattern of attention to reduce number of connections

Flash Attention

- Split score matrix into blocks
- Recompute attention matrix

Longformer

- local attention for most tokens
- global attention for a few selected tokens

Quadratic dependency on Sequence Length for Memory and Computation

Sparse Attention

 use fixed pattern of attention to reduce number of connections

Flash Attention

- Split score matrix into blocks
- Recompute attention matrix

Longformer

- local attention for most tokens
- global attention for a few selected tokens

Exercise 5

Quadratic dependency on Sequence Length for Memory and Computation

Sparse Attention

 use fixed pattern of attention to reduce number of connections

Flash Attention

- Split score matrix into blocks
- Recompute attention matrix

Longformer

- local attention for most tokens
- global attention for a few selected tokens

Quadratic dependency on Sequence Length for Memory and Computation

Sparse Attention

 use fixed pattern of attention to reduce number of connections

Flash Attention

- Split score matrix into blocks
- Recompute attention matrix

Longformer

- local attention for most tokens
- global attention for a few selected tokens

EPFL

Exercise 5

Memory Usage

Which parameters impact the model's memory usage?

Dimensions Mismatch

How are input and output dimensions defined in a transformer?

Training and Evaluation Metrics

Memory Usage

Which parameters impact the model's memory usage?

Dimensions Mismatch

How are input and output dimensions defined in a transformer?

Memory Usage

Which parameters impact the model's memory usage?

Dimensions Mismatch

How are input and output dimensions defined in a transformer?

Training and Evaluation Metrics

Memory Usage

Which parameters impact the model's memory usage?

Dimensions Mismatch

How are input and output dimensions defined in a transformer?

Training and Evaluation Metrics

Start Small

We provide you a Debug and Run mode

Performance Indicator

Expect a training perplexity around 20 after 50 epochs

Start Small

We provide you a Debug and Run mode

Performance Indicator

Expect a training perplexity around 20 after 50 epochs

Start Small

We provide you a Debug and Run mode

Performance Indicator

Expect a training perplexity around 20 after 50 epochs

