# **Optimization algorithms**

LATEST SUBMISSION GRADE

40%

| $a^{[8]\{3\}\{7\}}$ $a^{[8]\{7\}\{3\}}$ $a^{[3]\{7\}\{8\}}$ $a^{[3]\{8\}\{7\}}$ | 1. | Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch? | 1/ |
|---------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------|----|
| $\bigcirc \ a^{[3]\{7\}(8)}$                                                    |    | $\bigcirc \ a^{[8]\{3\}(7)}$                                                                                                 |    |
|                                                                                 |    | $\bigcirc \ a^{[8]\{7\}(3)}$                                                                                                 |    |
| a[3]{8}(7)                                                                      |    | $\bigcirc \ a^{[3]\{7\}(8)}$                                                                                                 |    |
|                                                                                 |    | (a) $a^{[3]\{8\}(7)}$                                                                                                        |    |
|                                                                                 |    | ✓ Correct                                                                                                                    |    |

| 2 | . Which of these statements about mini-batch gradient descent do you agree with?                                                                                                                                       | 1/1 point |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|   | Training one epoch (one pass through the training set) using mini-batch gradient descent is faster<br>than training one epoch using batch gradient descent.                                                            |           |
|   | <ul> <li>One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one<br/>iteration of batch gradient descent.</li> </ul>                                                        |           |
|   | <ul> <li>You should implement mini-batch gradient descent without an explicit for-loop over different mini-<br/>batches, so that the algorithm processes all mini-batches at the same time (vectorization).</li> </ul> |           |
|   | ✓ Correct                                                                                                                                                                                                              |           |
|   |                                                                                                                                                                                                                        |           |
| 3 | . Why is the best mini-batch size usually not 1 and not m, but instead something in-between?                                                                                                                           | 1/1 point |
|   | If the mini-batch size is 1, you end up having to process the entire training set before making any<br>progress.                                                                                                       |           |
|   | If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than<br>mini-batch gradient descent.                                                                                 |           |
|   | If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole<br>training set before making progress.                                                                            |           |
|   | ✓ Correct                                                                                                                                                                                                              |           |
|   | If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.                                                                                                                 |           |
|   | ✓ Correct                                                                                                                                                                                                              |           |
|   |                                                                                                                                                                                                                        |           |

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:



Which of the following do you agree with?

- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.



/ Correct

Jan 1st: 
$$heta_1=10^oC$$

Jan 2nd: 
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with  $\beta=0.5$  to track the temperature:  $v_0=0$ ,  $v_t=\beta v_{t-1}+(1-\beta)\theta_t$ . If  $v_2$  is the value computed after day 2 without bias correction, and  $v_2^{corrected}$  is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $\bigcirc$   $v_2=7.5, v_2^{corrected}=7.5$
- $\bigcirc v_2=10$ ,  $v_2^{corrected}=7.5$
- $\bigcirc$   $v_2=10$ ,  $v_2^{corrected}=10$
- $\bigcirc \ v_2 = 7.5$ ,  $v_2^{corrected} = 10$

## Incorrect

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

- $\bigcirc \alpha = \frac{1}{1+2*t}\alpha_0$
- $\alpha = 0.95^t \alpha_0$
- $\bigcirc$   $\alpha = e^t \alpha_0$
- $\bigcirc \alpha = \frac{1}{\sqrt{t}}\alpha_0$



- $\hfill \Box$  Decreasing  $\beta$  will shift the red line slightly to the right.



True, remember that the red line corresponds to  $\beta=0.9$ . In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

#### ✓ Correct

True, remember that the red line corresponds to eta=0.9. In lecture we had a green line \$\$\beta = 0.98) that is slightly shifted to the right.

 $\square$  Decreasing  $\beta$  will create more oscillation within the red line.



### ✓ Correct

True, remember that the red line corresponds to eta=0.9. In lecture we had a yellow line \$\$\beta = 0.98 that had a lot of oscillations.

## 8. Consider this figure:



These plots were generated with gradient descent: with gradient descent with momentum ( $\beta$  = 0.5) and gradient descent with momentum ( $\beta$  = 0.9). Which curve corresponds to which algorithm?

## 8. Consider this figure:



These plots were generated with gradient descent; with gradient descent with momentum ( $\beta$  = 0.5) and gradient descent with momentum ( $\beta$  = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large  $\beta$ ) . (3) is gradient descent with momentum (small  $\beta$ )
- (1) is gradient descent. (2) is gradient descent with momentum (small  $\beta$ ). (3) is gradient descent with momentum (large  $\beta$ )
- (1) is gradient descent with momentum (small  $\beta$ ). (2) is gradient descent. (3) is gradient descent with momentum (large  $\beta$ )
- (1) is gradient descent with momentum (small  $\beta$ ), (2) is gradient descent with momentum (small  $\beta$ ), (3) is gradient descent



