APPENDIX

Proof. (Proof of Theorem 1) Line 2 iterates through each edge in $\mathcal{E}(\mathcal{G})$ once, therefore, the total time complexity is O(m). \mathcal{G}_q takes O(n+m) space, therefore, the total space complexity is O(n+m).

Proof. (Proof of Theorem 2) Lines 1-2 initialize the $\mathcal{A}(u)$ and $\mathcal{D}(u)$ for each vertex $u \in \mathcal{V}(\mathcal{G})$, which takes O(n) time. Line 6 scans each edge in $\mathcal{E}(\mathcal{G})$ once, which takes O(m) time. Therefore, the total time complexity is O(n+m).

Throughout the algorithm, we maintain $\mathcal{A}(u)$, $\mathcal{D}(u)$ and pointer in $N_{out}(u,\mathcal{G})$ (resp. $N_{in}(u,\mathcal{G})$) for each vertex $u \in \mathcal{V}(\mathcal{G})$; during the traversal, in Line 9, at most one copy of each vertex is in Q, resulting in a space complexity of O(n).

Proof. (**Proof of Theorem 3**) Lines 4 initialize $TCV_{\tau}(s, u)$ for each $\tau \in \mathcal{T}_{in}(u, \mathcal{G}_q)$ of each vertex $u \in \mathcal{V}(\mathcal{G}_q) \setminus \{s, t\}$, which takes O(m) time. Lines 5-6 take O(n) time to initialize the completed indicator and the pointer of each vertex $u \in \mathcal{V}(\mathcal{G}_q) \setminus \{s, t\}$. For each edge in $\mathcal{E}(\mathcal{G}_q)$, Lines 8-15 take O(1) time, Lines 17 and 19 take $O(\theta)$ time as the number of vertices in each entry of $TCV(s, \cdot)$ is bounded by $\theta - 1$. Therefore, the total time complexity is $O(n + \theta \cdot m)$.

There are O(m) entries in $TCV.(s,\cdot)$ and $TCV.(\cdot,s)$, and each entry has a length bounded by $\theta-1$. Throughout the algorithm, we maintain the completed indicator and the pointer for each vertex $u \in V(\mathcal{G}_q)$. Therefore, the total space complexity is $O(n + \theta \cdot m)$.

Proof. (**Proof of Theorem 4**) The pointer initialization in Line 1 takes O(n) time and the pointer operations in Lines 8-10 take O(m) time in total. Line 3 iterates through each edge in $\mathcal{E}(\mathcal{G}_q)$ once and the intersection operation in Line 17 is performed at most m times. Each intersection operation takes $O(\theta)$ time as the length of each entry in $TCV.(s,\cdot)$ and $TCV.(\cdot,s)$ is bounded by $\theta-1$. Therefore, the total time complexity is $O(n+\theta\cdot m)$. \mathcal{G}_t takes O(n+m) space, therefore, the total space complexity is O(n+m).

Proof. (**Proof of Theorem 5**) Line 2 initializes a verified indicator for each edge, therefore takes O(m) time. Lines 3-5 can be implemented as a traversal in G_t from s (resp. t), which takes O(m) time. For each unverified edge $e(u, v, \tau)$, the Bidirectional DFS in Line 9 has a depth of $\theta - 1$ at most with a time complexity bounded by $O(d'^{\theta-1})$, Lines 11-18 takes $O(d' \cdot \theta)$ time to verify edges in the batch of paths. Therefore the total time complexity is $O(m \cdot d'^{\theta-1})$.

tspG takes O(n+m) space and the verified indicator for all edges takes O(m) space. The space for stacks S_v and S_e is in O(n). Thus, the total space complexity is O(n+m).

Proof. (**Proof of Lemma 3**) Sufficiency. If there exists a temporal simple path $p_{[\tau_b,\tau_e]}^*(s,t)$ through $e(u,v,\tau)$, there exist two temporal simple paths $p_{[\tau_b,\tau_i]}^*(s,u), p_{[\tau_j,\tau_e]}^*(v,t)$ s.t. $\tau_i < \tau < \tau_j$, and $\mathcal{V}(p_{[\tau_b,\tau_i]}^*(s,u)) \cap \mathcal{V}(p_{[\tau_j,\tau_e]}^*(v,t)) = \emptyset$. Based on the definition of time-stream common vertices, we have $TCV_{\tau_i}(s,u) \subseteq \mathcal{V}(p_{[\tau_b,\tau_i]}^*(s,u))$ and $TCV_{\tau_j}(v,t) \subseteq \mathcal{V}(p_{[\tau_i,\tau_e]}^*(v,t))$, thus, $TCV_{\tau_i}(s,u) \cap TCV_{\tau_j}(v,t) = \emptyset$.

Necessity. Consider $e(c, f, 4) \in \mathcal{E}(\mathcal{G}_q)$ in Fig. 3(c) as an counterexample. There only exist $\tau_i = 3$ and $\tau_j = 5$ satisfying $\tau_i < 4 < \tau_j$, and we have $TCV_3(s,c) \cap TCV_5(f,t) = \emptyset$ as $TCV_3(s,c) = \{b,c\}$ and $TCV_5(f,t) = \{f\}$. However, there does not exist a temporal simple path $p_{[2,7]}^*(s,t)$ through e(c, f, 4). Therefore, the necessity is not established.

Proof. (**Proof of Lemma 5**) To proof Lemma 5, we first proof $\mathcal{P}^*_{[\tau_b,\tau_l]}(s,u) = \mathcal{P}^*_{[\tau_b,\tau]}(s,u)$ by contradiction. Since $\tau_l \leq \tau, \mathcal{P}^*_{[\tau_b,\tau_l]}(s,u) \subseteq \mathcal{P}^*_{[\tau_b,\tau]}(s,u)$. Suppose $\mathcal{P}^*_{[\tau_b,\tau_l]}(s,u) \neq \mathcal{P}^*_{[\tau_b,\tau]}(s,u)$, this implies that there exists $p^*_{[\tau_b,\tau]}(s,u) \in \mathcal{P}^*_{[\tau_b,\tau]}(s,u)$ such that $p^*_{[\tau_b,\tau]}(s,u) \notin \mathcal{P}^*_{[\tau_b,\tau_l]}(s,u)$. It is evident that such $p^*_{[\tau_b,\tau]}(s,u)$ contains an in-coming edge $e(v,u,\tau')$ of u where $\tau_l < \tau' \leq \tau$, which contradicts $\tau_l = \max\{\tau_i|\tau_i\in\mathcal{T}_{in}(u,\mathcal{G}_q),\tau_i\leq\tau\}$. In conclusion, $\mathcal{P}^*_{[\tau_b,\tau_l]}(s,u) = \mathcal{P}^*_{[\tau_b,\tau]}(s,u)$, and we have $TCV_{\tau}(s,u) = TCV_{\tau_l}(s,u)$ following the definition of the time-stream common vertices. We omit the proof for $TCV_{\tau}(u,t) = TCV_{\tau_r}(u,t)$ as it follows a similar approach.

Proof. (**Proof of Lemma 6**) For each temporal path $p \in \mathcal{P}_{[\tau_b,\tau]}(s,u)$, there exists a corresponding temporal simple path $p^* \in \mathcal{P}_{[\tau_b,\tau]}^*(s,u)$ such that the path p^* contains all edges in the path p except those forming cycles. Then, we have $\mathcal{V}(p^*) \subseteq \mathcal{V}(p)$ to derive that $\mathcal{V}(p^*) \cap \mathcal{V}(p) = \mathcal{V}(p^*)$. Thus, $TCV_{\tau}(s,u) = \bigcap_{p^* \in \mathcal{P}_{[\tau_b,\tau]}^*(s,u)} s.t. \ t \notin \mathcal{V}(p^*) \setminus \{s\}$ = $\bigcap_{p \in \mathcal{P}_{[\tau_b,\tau]}(s,u)} s.t. \ t \notin \mathcal{V}(p) \setminus \{s\}$. The proof for $TCV_{\tau}(u,t)$ follows the same approach.

Proof. (**Proof of Lemma 8**) If $TCV_{\tau_l}(s,u) \cap TCV_{\tau_r}(v,t) \neq \emptyset$, i.e., there exits w such that $w \in TCV_{\tau_l}(s,u)$ and $w \in TCV_{\tau_r}(v,t)$, then based on the definition of time-stream common vertices, $\forall p^* \in \mathcal{P}^*_{[\tau_b,\tau_l]}(s,u)$ s.t. $t \notin V(p^*)$, $w \in p^*$. Since $\forall \tau_b \leq \tau_i < \tau_l$, we have $\mathcal{P}^*_{[\tau_b,\tau_l]}(s,u) \subseteq \mathcal{P}^*_{[\tau_b,\tau_l]}(s,u)$, thus, $\forall p^*_i \in \mathcal{P}^*_{[\tau_b,\tau_i]}(s,u)$ s.t. $t \notin V(p^*_i)$, $w \in p^*_i$, that is, $w \in TCV_{\tau_i}(s,u)$. Similarly, $\forall \tau_r < \tau_j \leq \tau_e$, $w \in TCV_{\tau_j}(v,t)$. Therefore, $TCV_{\tau_i}(s,u) \cap TCV_{\tau_i}(v,t) \neq \emptyset$.

Proof. (Proof of Lemma 9) (\Rightarrow) If an edge $e(u, v, \tau) \in \mathcal{E}(\mathcal{G}_q)$, where $u \neq s$ and $v \neq t$, satisfies condition i), based on Lemma 3 and Lemma 8, such an edge will not be excluded as an unpromising edge. Therefore, it should be included in \mathcal{G}_t . If an edge $e(u, v, \tau) \in \mathcal{E}(\mathcal{G}_q)$, where u = s or v = t, based on the condition ii) of Lemma 2, we can conclude that $e(u, v, \tau)$ belongs to tspG. Since \mathcal{G}_t is the upper-bound graph of tspG, $e(u, v, \tau)$ must belong to \mathcal{G}_t .

 (\Leftarrow) If an edge $e(u,v,\tau)$ belongs to \mathcal{G}_t , there does not exist a vertex w appearing in all $p^*_{[\tau_b,\tau_i]}(s,u)$ and $p^*_{[\tau_j,\tau_e]}(v,t)$ where $\tau_i < \tau < \tau_j$. Based on the Definiton 5, it is easy to derive that $e(u,v,\tau)$ satisfies condition i) s.t. $u \neq s$ and $v \neq t$. Since $e(u,v,\tau) \in \mathcal{G}_t$ must belong to \mathcal{G}_q , and we have discussed $w \neq s$ and $w \neq t$ for each edge in \mathcal{G}_q , therefore u can be the source vertex s or v can be the target vertex t.

Proof. (Proof of Lemma 10) Let $\tau_l = \max\{\tau'' | \tau'' \in \mathcal{T}_{in}(u, \mathcal{G}_q) \land \tau_b \leq \tau'' < \tau\}$, $\tau_r = \min\{\tau'' | \tau'' \in \mathcal{T}_{out}(v, \mathcal{G}_q) \land \tau < \tau'' \leq \tau_e\}$. For condition i), if there exists an edge $e(s, u, \tau') \in \mathcal{E}(\mathcal{G}_t)$ such that $\tau_b \leq \tau' \leq \tau_l < \tau$, then we have a temporal simple