

Experimental and Solution validation

Key elements on Industry 4.0

Experimentation validation

- Experimentation Validation: determining that the experimental procedures adopted are providing results that are sufficiently accurate.
- The important aspects to consider are:
 - the requirements for the load period.
 - the length of the executions.
 - the numbers of replications.
 - the experimental design.
 - the sensitivity analysis to assure the accuracy of the results.

Solution validation

- Solution Validation: determining that the results obtained from the model of the proposed solution are sufficiently accurate.
- This is similar to black-box validation in that it entails a comparison with the real world. It is different in that it only compares the final model of the proposed solution to the implemented solution.
 - The solution validation can only take place post-implementation.
 - Unlike the other forms of validation, it is not intrinsic to the simulation study itself.
 - It has no value in giving assurance to the user, but it does provide some feedback to the modeller.

Fonseca i Casas, P., Fonseca i Casas, A., Garrido-Soriano, N., Godoy, A., Pujols, W.C., Garcia, J.: Solution validation for a double façade prototype. Energies. 10, (2017). https://doi.org/10.3390/en10122013

Example of objective test, using the output data.

The Fifth National Bank of Jaspar.

- The Fifth National Bank of Jaspar, is planning to expand its drive-in service at the corner of Main Street.
- Currently, there is one drive-in window serviced by one teller. Only one or two transactions are allowed at the drive-in window.
- It was assumed that each service time was a random sample from some underlying population.

- Service times $\{S_i, i = 1, 2, ..., 90\}$ and interarrival times $\{A_i, i = 1, 2, ..., 90\}$ were collected for the 90 customers who arrived between 11:00 A.M. and 1:00 P.M. on a Friday.
- This time slot was selected for data collection after consultation with management and the teller because it was felt to be representative of a typical rush hour.

- Data analysis led to the conclusion that the arrival process could be modelled as a Poisson process with an arrival rate of 45 customers per hour; and that service times were approximately normally distributed with mean 1.1 minutes and standard deviation 0.2 minute.
- Thus, the model has two input variables:
 - 1. Interarrival times, exponentially distributed (i.e. a Poisson arrival process) at rate $\lambda = 45$ per hour.
 - 2. Service times, assumed to be $N(1.1, (0.2)^2)$.

- The uncontrollable input variables are denoted by X, the decision variables by D, and the output variables by Y.
- From the "black box" point of view, the model takes the inputs X and D and produces the outputs Y, namely

 - \Box f(X, D) = Y

Model input-output transformation

Input variables	Output variables, Y
D = decision variables (interest)	Primary variables of interest (Y ₁ , Y ₂ , Y ₃)
$D_1 = 1$ (a teller) $D_2 = 1.1$ min $D_3 = 1$ (a queue) X = Other variables	Y_1 = use of the teller Y_2 = average waiting time Y_3 = maximum length of queue Y_4 = observed rate of arrivals Y_5 = average time of service
Rate of arrivals Poisson= 45 / hour Service time: N(D ₂ ,0.2 ²)	Y_6 = average time of service of sample Y_7 = mean size of the queue

Input and Output variables for model of current bank operation.

Statistical Terminology	Simulation Terminology	Associated risk
Type I : reject H_0 when H_0 is true.	Reject a valid model.	α
Type II : do not reject H_0 when H_0 is false.	Do not reject an invalid model.	β

Error type in the validation of a model

If the sample is fixed, the needs to reduce error of type II increases α and decreases β and inverse.

Once α has been determined, the only way to decrease β is increasing the sample.

Replicas	Y_4 = Inputs (hour)	Y ₅ (Minutes)	Y ₂ =average delay
			(Minutes)
1	51	1.07	2.79
2	40	1.12	1.12
3	45.5	1.06	2.24
4	50.5	1.10	3.45
5	53	1.09	3.13
6	49	1.07	2.38

Average: 2.51 Deviation: 0.82

Results of six replicas of the model bank

- □ Delay observed in the system $Z_2 = 4.3$ minutes.
- \square Delay of the model Y_2 .
- We propose a statistical test of null hypothesis
 - \blacksquare H₀: E(Y₂) = 4.3 minutes
 - \blacksquare H₁: E(Y₂) \neq 4.3 minutes
- □ If H₀ is rejected following the rules of this test, there is no reason to consider the model invalid.
- If H₀ is rejected, the current version of the model can be rejected, and the modeler is forced to seek ways to improve the model.

- The appropriate statistical test is t, which is conducted as follows:
 - Step 1. Select the level of significance a, sample e and size n. For the bank model:
 - a = 0.05, n = 6
 - **Step 2**. Calculate the mean of Y2 and standard deviation S on these *n* replicas.

$$Y_2 = \frac{1}{n} \left(\sum_{i=1}^{n} Y_{2i} \right) = 2.37 \quad S = \left\{ \left(Y_{2i} - \frac{Y_2}{(n-1)} \right)^{\frac{1}{2}} = 0.82 \right\}$$

■ Where Y2i, i = 1, ..., 6, are shown in the above table.

- Step 3. Getting the critical value t of the table.
 - \blacksquare For a test of two queues, must use $t_{\alpha/2,\,n-1}$; for a test of one queue must use $t_{\alpha,\,n-1}$ or $-t_{\alpha,\,n-1}$.
 - □ n -1 are the degrees of freedom.
 - \blacksquare From the table $t_{0.025.5} = 2.571$ for a test of two tails.

- □ **Step 4**. Calculate the statistic
 - \bullet $t_0 = (Y_2 \mu_0) / \{S / \sqrt{n}\}$
 - \blacksquare on μ_0 is the specific value of the null hypothesis
 - \blacksquare H₀. Where $\mu_0 = 4.3$ minutes, so

$$\mathbf{t}_0 = (2.51 - 4.3) / \{0.82 / \sqrt{6}\} = -5.34$$

- □ **Step 5**. For a test of two queues:
 - \blacksquare if $|t_0| > t_{\alpha/2, n-1}$, reject H_0 .
 - Otherwise do not reject H₀.
 - \blacksquare [For a test of one queue with H_1 : $E(Y_2) > \mu_0$,
 - \blacksquare reject H_0 if $t > t_{\alpha,\,n\text{-}1}$; with $H_1: E(Y_2) < \mu_0$,
 - reject H_0 if $t < -t_{\alpha, n-1}$

- □ Since $|t| = 5.34 > t_{0.025,5} = 2.571$, must reject H₀ and conclude that the model is not suitable in their prediction for the average delay for a client.
- \square Note that when you are making a hypothesis test, reject H_0 is a strong conclusion, so
 - \blacksquare P(reject H₀ | H₀ is true) = α

Replicas	$Y_4 = Inputs(hour)$	Y ₅ (Minutes)	Y ₂ =average delay
			(Minutes)
1	51	1.07	5.37
2	40	1.12	1.98
3	45.5	1.06	5.29
4	50.5	1.10	3.82
5	53	1.09	6.74
6	49	1.07	5.49

Average: 4.468 Deviation: 1.66

Results of six replicas of the model bank

- \square Step 1. Select α = 0.05 and n = 6 (sample size).
- \square Step 2. Calculate $Y_2 = 4.468$ minutes, S = 1.66 minutes.
- Step 3. Calculate the critical value of t.
- \Box $t_{0.025,5} = 2.571.$
- Step 4. Calculate the statistic $t_0 = (Y_2 \mu_0) / \{S / \sqrt{n}\} = 0.247$
- □ Step 5. Since $|t| < t_{0.025,5} = 2.571$, cannot reject H_0 , and can "tentatively" **accept the model as a valid**.