Is Sharing Caring?

Elucidating the Effects of the Presence of CRISPR-Cas Systems on Rates of Horizontal Gene Transfer Using Network Analysis

Siddharth Reed MolBiol 4C12 Thesis

> Golding Lab, Biology Department, McMaster University

April 2, 2019

Table of Contents

- 1. Background
- 2. My Project
- 3. Results
- 4. Conclusion

CRISPR-Cas systems

 Adaptive Bacterial Immune System

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"
- Protects against foreign DNA

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"
- Protects against foreign DNA
- Requires Cas proteins and CRISPR loci

(Rath et al., 2015)

- Adaptive Bacterial Immune System
- Failed "infection" → spacer acquisition → targeted degredation for next "infection"
- Protects against foreign DNA
- Requires Cas proteins and CRISPR loci
- 45% of bacteria have CRISPR loci (n = 6782) (Grissa, I. and Drevet, C. and Couvin, D., 2017)

(Rath et al., 2015)

Horizontal Gene Transfer

 Transformation: Incorporation of free-floating DNA into the genome (Popa and Dagan, 2011)

- Transformation: Incorporation of free-floating DNA into the genome (Popa and Dagan, 2011)
- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)

- (Popa and Dagan, 2011)

- Transformation: Incorporation of free-floating DNA into the genome (Popa and Dagan, 2011)
- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)
- Transduction: Transfer of DNA through phage (Popa and Dagan, 2011)

(Popa and Dagan, 2011)

- Transformation: Incorporation of free-floating DNA into the genome (Popa and Dagan, 2011)
- Conjugation: Transfer of DNA through cell-cell connections (Popa and Dagan, 2011)
- Transduction: Transfer of DNA through phage (Popa and Dagan, 2011)
- CRISPR-Cas directly affects HGT (Popa and Dagan, 2011)

Amount of exogenous DNA/cell density/phage density

- Amount of exogenous DNA/cell density/phage density
- Selective pressures

- Amount of exogenous DNA/cell density/phage density
- Selective pressures
- Metabolic costs

- Amount of exogenous DNA/cell density/phage density
- Selective pressures
- Metabolic costs
- Sequence compatibility

Phylogenomic Networks

 Useful mathematical abstraction of real world system

(Bondy and Murty, 2002)

- Useful mathematical abstraction of real world system
- Nodes can have attributes

(Bondy and Murty, 2002)

- Useful mathematical abstraction of real world system
- Nodes can have attributes
- Edges can have weights

(Bondy and Murty, 2002)

Do CRISPR Systems Affect Horizontal Gene Transfer?

Yes

• Cost trade off factors:

Cost Reduction Strategies

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
- Cost Reduction Strategies

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)

• Cost Reduction Strategies

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Environmental pressures (Dzidic and Bedeković, 2003)

• Cost Reduction Strategies

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Environmental pressures (Dzidic and Bedeković, 2003)

- Cost Reduction Strategies
 - Selective CRISPR inactivation (Rath et al., 2015)

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Phage virulence/density (Bondy-Denomy and Davidson, 2014)

- Cost Reduction Strategies
 - Selective CRISPR inactivation (Rath et al., 2015)

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Phage virulence/density (Bondy-Denomy and Davidson, 2014)
 - Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)

- Cost Reduction Strategies
 - Selective CRISPR inactivation (Rath et al., 2015)

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Phage virulence/density (Bondy-Denomy and Davidson, 2014)
 - Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)

- Cost Reduction Strategies
 - Selective CRISPR inactivation (Rath et al., 2015)
 - CRISPRs themselves can be transferred ⇒ population level immunity (Godde and Bickerton, 2006)

CRISPR Cost Complexity and Curbing It

- Cost trade off factors:
 - Metabolic maintenance (Rath et al., 2015)
 - Off-target effects (autoimmune) (Stern et al., 2010)
 - Environmental pressures (Dzidic and Bedeković, 2003)
 - Phage virulence/density (Bondy-Denomy and Davidson, 2014)
 - Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)
 - Prophage abundance (Watson, Staals, and Fineran, 2018)

- Cost Reduction Strategies
 - Selective CRISPR inactivation (Rath et al., 2015)
 - \circ CRISPRs themselves can be transferred \Longrightarrow population level immunity (Godde and Bickerton, 2006)

CRISPR Cost Complexity and Curbing It

Cost trade off factors:

- Metabolic maintenance (Rath et al., 2015)
- Off-target effects (autoimmune) (Stern et al., 2010)
- Environmental pressures (Dzidic and Bedeković, 2003)
- Phage virulence/density (Bondy-Denomy and Davidson, 2014)
- Anti-CRISPR systems (Bondy-Denomy and Davidson, 2014)
- Prophage abundance (Watson, Staals, and Fineran, 2018)

- Cost Reduction Strategies
 - Selective CRISPR inactivation (Rath et al., 2015)
 - CRISPRs themselves can be transferred ⇒ population level immunity (Godde and Bickerton, 2006)
 - CRISPR can enhance transduction-mediated HGT (Watson, Staals, and Fineran, 2018)

 Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales

- Gophna et al. (2015) found no relation between the presence of CRISPR systems and HGT over short evolutionary timescales
 - Assume all singletons arose from HGT
 - Used GC% to identify HGT
- Contradicted by a former undergraduate thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales
 - Higher gene indel rates for CRISPR containing OTUs than non-CRISPR containing outgroups

My Project

9/20 Objectives

Objectives

Within Network Comparisons

For genera with CRISPR containing OTUs, compare the node statistics of CRIPSR containing OTUs to non-CRISPR containing OTUs.

Objectives

Within Network Comparisons

For genera with CRISPR containing OTUs, compare the node statistics of CRIPSR containing OTUs to non-CRISPR containing OTUs.

Gene Indel Rates vs. Network Statistics

Compare gene Indel rates to node/network statistics for CRISPR containing and non-CRISPR containing OTUs

Results

Example "Consensus" Network

Mean Node Degree

Gene Indel Rates

Gene Indel Rates

Gene Indel Rate Vs. Fraction of CRISPR OTUs

Mean Node Weighted Clustering Coefficient

Conclusion

Findings

Findings

• Large variation in HGT rate between genera.

Findings

- Large variation in HGT rate between genera.
- CRISPR-Cas systems broadly associated with lower HGT rates, with prominent exceptions

Findings

- Large variation in HGT rate between genera.
- CRISPR-Cas systems broadly associated with lower HGT rates, with prominent exceptions
- Population level effects of CRISPR-Cas systems may decrease HGT rates

Findings

- Large variation in HGT rate between genera.
- CRISPR-Cas systems broadly associated with lower HGT rates, with prominent exceptions
- Population level effects of CRISPR-Cas systems may decrease HGT rates
- Interplay of CRISPR-Cas systems and HGT is complex and warrants further study

• Inferring direction: Directed networks have a host of available analytic tools Undirected networks do not

- Inferring direction: Directed networks have a host of available analytic tools Undirected networks do not
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)

- Inferring direction: Directed networks have a host of available analytic tools Undirected networks do not
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes

- Inferring direction: Directed networks have a host of available analytic tools Undirected networks do not
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes

- Inferring direction: Directed networks have a host of available analytic tools Undirected networks do not
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes
- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics

- Inferring direction: Directed networks have a host of available analytic tools Undirected networks do not
- Continuous CRISPR activity: Labeling nodes by estimated CRISPR activity (array length, transciptomic data, etc.)
- Gene function analysis: Considering the transfer dynamics of different functional classes of genes
- Studying movement of CRISPR systems: Studying how frequently CRISPR systems themselves are transferred from arrays, Cas genes
- Intergenic comparisons: Combine any set of fasta files from OTUs for analyzing transfer dynamics
- Considering bacterial ecology and environments: Consider geographically close OTUs or differences between networks due to environmental factors

Is Sharing Caring?

Is Sharing Caring?

Yes, for researchers

Is Sharing Caring?

Yes, for researchers Jury's still out for bacteria

Thanks

Thank you to

- Dr. G. Brian Golding
- Dr. Ben Evans
- The Golding lab
 - Caitlin Simopoulos
 - Daniella Lato
 - Zachery Dickson
 - Sam Long
 - Geoge Long
 - Lucy Zhang
 - Brianne Laverty
 - Nicole Zhang
- Everyone here for listening

All code used for this project is available at https://github.com/DJSiddharthVader/thesis_SidReed

References (1)

- Grissa, I. and Drevet, C. and Couvin, D. (2017). *CRISPRdb*. http://crispr.i2bc.paris-saclay.fr/. Online; accessed 22 October 2018.
- Rath, Devashish et al. (2015). "The CRISPR-Cas immune system: Biology, mechanisms and applications". In: *Biochimie* 117. Special Issue: Regulatory RNAs, pp. 119–128. ISSN: 0300-9084.
- Popa, Ovidiu and Tal Dagan (2011). "Trends and barriers to lateral gene transfer in prokaryotes". In: *Current Opinion in Microbiology* 14.5. Antimicrobials/Genomics, pp. 615–623. ISSN: 1369-5274.
- Bondy, J. A. and U. S. R. Murty (2002). *Graph theory with applications*. Wiley.
- Stern, Adi et al. (2010). "Self-targeting by CRISPR: gene regulation or autoimmunity?" In: *Trends in Genetics* 26.8, pp. 335–340. ISSN: 0168-9525.

References (2)

- Dzidic, Senka and Vladimir Bedeković (2003). "Horizontal gene transfer-emerging multidrug resistance in hospital bacteria". In: *Acta pharmacologica Sinica* 24.6, pp. 519–526.
 - Bondy-Denomy, J. and A. R. Davidson (2014). "To Acquire Or Resist: The Complex Biological Effects Of CRISPR-Cas systems". In: *Trends Microbio*. 22.4, pp. 218–25.
 - Watson, Bridget N. J., Raymond H. J. Staals, and Peter C. Fineran (2018). "CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction". In: *mBio* 9.1. Ed. by Joseph Bondy-Denomy and Michael S. Gilmore.
- Godde, James S. and Amanda Bickerton (June 2006). "The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes". In: *Journal of Molecular Evolution* 62.6, pp. 718–729. ISSN: 1432-1432.

References (3)

- Zhang, Quan and Yuzhen Ye (Feb. 2017). "Not all predicted CRISPR–Cas systems are equal: isolated cas genes and classes of CRISPR like elements". In: *BMC Bioinformatics* 18.1, p. 92. ISSN: 1471–2105.
- Makarova, K. S. et al. (2011). "Evolution and classification of the CRISPR-Cas systems". In: *Nat. Rev. Microbiol.* 9.6, pp. 467–477.
- Guimaraes, L. C. et al. (2015). "Inside the Pan-genome Methods and Software Overview". In: *Curr. Genomics* 16.4, pp. 245–252.
- Rasko, David A. et al. (2008). "The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates". In: *Journal of Bacteriology* 190.20, pp. 6881–6893. ISSN: 0021-9193.

References (4)

- Berglund, Björn (2015). "Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics". In: *Infection Ecology & Epidemiology* 5.1, p. 28564.
- Kunin, V. et al. (2005). "The net of life: reconstructing the microbial phylogenetic network". In: *Genome Res.* 15.7, pp. 954–959.
 - Ravenhall, Matt et al. (May 2015). "Inferring Horizontal Gene Transfer". In: *PLoS Computational Biology* 11.5, pp. 1–16.
 - Onnela, J. P. et al. (2005). "Intensity and coherence of motifs in weighted complex networks". In: *Phys Rev E Stat Nonlin Soft Matter Phys* 71.6 Pt 2, p. 065103.
 - Newman, M. E. (2002). "Assortative mixing in networks". In: *Phys. Rev. Lett.* 89.20, p. 208701.
- (2004). "Analysis of weighted networks". In: Phys Rev E Stat Nonlin Soft Matter Phys 70.5 Pt 2, p. 056131.

 45% of bacteria have CRISPR loci (n = 6782) (Grissa, I. and Drevet, C. and Couvin, D., 2017)

(Makarova et al., 2011)

- 45% of bacteria have CRISPR loci (n = 6782) (Grissa, I. and Drevet, C. and Couvin, D., 2017)
- 3 Main Types, multiple sub types (Bondy-Denomy and Davidson, 2014)

(Makarova et al., 2011)

- 45% of bacteria have CRISPR loci (n = 6782) (Grissa, I. and Drevet, C. and Couvin, D., 2017)
- 3 Main Types, multiple sub types (Bondy-Denomy and Davidson, 2014)
- CRISPR arrays represent unique life history of an organism

(Makarova et al., 2011)

- 45% of bacteria have CRISPR loci (n = 6782) (Grissa, I. and Drevet, C. and Couvin, D., 2017)
- 3 Main Types, multiple sub types (Bondy-Denomy and Davidson, 2014)
- CRISPR arrays represent unique life history of an organism
- 11% 28% are false or orphaned CRISPR loci (Zhang and Ye, 2017)

(Makarova et al., 2011)

CRISPR Biotech Application

CRISPR Biotech Application

(Rath et al., 2015)

Pan-Genomes

Pan-Genomes

(Guimaraes et al., 2015)

Pan-Genomes

(Rasko et al., 2008)

HGT Applications

HGT Applications

Prokaryotic "Net of Life"

Prokaryotic "Net of Life"

(Kunin et al., 2005)

Phylogenomic Network Construction

(Ravenhall et al., 2015)

• Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)}\sum_{vw}^{T(u)}(\hat{w}_{uw}\hat{w}_{vw}\hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of triangles containing u (Onnela et al., 2005)

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of triangles containing u (Onnela et al., 2005)
- Node Assortativity: $A = \frac{Tr(M) ||M^2||}{1 ||M^2||}$ Where M is the mixing matrix of a given attribute and ||M|| is the sum of all elements of M. $A \in [-1,1]$. (Newman, 2002)

- Average Node Degree: $\frac{1}{|N_u|} \sum_{uv}^{N_u} w_{uv}$ where N_u is the set of nodes incident to u
- Node Clustering Coefficient: $\frac{1}{k_u(k_u-1)} \sum_{vw}^{T(u)} (\hat{w}_{uw} \hat{w}_{vw} \hat{w}_{uv})^{\frac{1}{3}}$ where T(u) is the set of triangles containing u (Onnela et al., 2005)
- Node Assortativity: $A = \frac{Tr(M) ||M^2||}{1 ||M^2||}$ Where M is the mixing matrix of a given attribute and ||M|| is the sum of all elements of M. $A \in [-1,1]$. (Newman, 2002)
- Network Modularity: $Q = \frac{1}{2m} \sum_{uv}^{W} [W_{uv} \frac{k_u k_v}{2m}] \delta(u, v)$ where m is the total weight of alledges, k_u is the degree of u and $\delta(u, v)$ is 1 if u and v both have or do not have CRISPR systems and 0 otherwise. $Q \in [-1, 1]$ (Newman, 2004)

Modularity Distributions

Assortativity Distributions

