Time Series Analysis: Univariate and Multivariate Methods, 2nd edition, 2006

Time Series Analysis

Univariate and Multivariate Methods

SECOND EDITION

William W. S. Wei

Department of Statistics The Fox School of Business and Management Temple University

Boston San Francisco New York London Toronto Sydney Tokyo Singapore Madrid Mexico City Munich Paris Cape Town Hong Kong Montreal Publisher Executive Editor Assistant Editor Managing Editor Production Supervisor Marketing Manager Marketing Assistant Senior Designer Prepress Supervisor Manufacturing Buyer

Deirdre Lynch Sara Oliver Ron Hampton Kathleen A. Manley Phyllis Hubbard Celena Carr Barbara Atkinson Caroline Fell **Evelyn Beaton**

Greg Tobin

Composition, Production

Progressive Information

Coordination, and Text Design Illustrations

Technologies Jim McLaughlin Leslie Haimes

Cover Designer

The cover image appears as Figure 17.1 within the text and embodies all the concepts of time series analysis. For instance, the thin solid line represents stationary series as discussed in Chapters 2 and 3; the heavy solid line is nonstationary series as discussed in Chapter 4. As you learn more, you may also see the concepts of a second nonstationary series, forecasting, backcast, seasonal series, heterocedasticity and GARCH models, input and output series, noise series, vector time series, nonlinear time series, and cointegration in the cover image.

Library of Congress Cataloging-in-Publication Data

Wei, William W. S.

Time series analysis: univariate and multivariate methods / William W. S.

Wei.— 2nd ed.

p. cm.

Includes index.

ISBN 0-321-32216-9

1. Time-series analysis. I. Title.

OA280.W45 2006 519.5'5---dc22

2004058701

Copyright © 2006 Pearson Education, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise; without the prior written permission of the publisher. Printed in the United States of America.

2345678910-CRW-09 08 07 06 05

About the Author

William W. S. Wei is Professor of Statistics at Temple University in Philadelphia, PA. He earned his B.A. in Economics from the National Taiwan University (1966), B.A. in Mathematics from the University of Oregon (1969), and M.S. (1972) and Ph.D. (1974) in Statistics from the University of Wisconsin-Madison. From 1982-87, he was the Chair of the Department of Statistics at Temple University. His research interest includes time series analysis, forecasting methods, statistical modeling, and applications of statistics in business and economics. He has developed new methodology in seasonal adjustment, aggregation and disaggregation, outlier detection, robust estimation, and vector time series analysis. Some of his most significant contributions include extensive research on the effects of aggregation, methods of measuring information loss due to aggregation, new stochastic procedures of performing data disaggregation, model-free outlier detection techniques, robust methods of estimating autocorrelations, and statistics for analyzing multivariate time series. He is a Fellow of the American Statistical Association, a Fellow of the Royal Statistical Society, and an Elected Member of the International Statistical Institute. He is an Associate Editor of the Journal of Forecasting and the Journal of Applied Statistical Science.

Contents

	Pre	face		xix
CHAPTER 1	Ove	erview		1
	1.1	Introdu	netion	1
	1.2	Examp	les and Scope of This Book	1
CHAPTER 2	Fundamental Concepts		ntal Concepts	6
	2.1		stic Processes	6
	2.2	The A	itocovariance and Autocorrelation Functions	10
	2,3	The Pa	rtial Autocorrelation Function	11
	2.4	White	Noise Processes	15
	2.5	Estima	tion of the Mean, Autocovariances, and Autocorrelations	16
		2.5.1	Sample Mean	17
		2.5.2	Sample Autocovariance Function	18
		2.5.3	Sample Autocorrelation Function	20
		2.5.4	Sample Partial Autocorrelation Function	22
	2.6	Movin	g Average and Autoregressive Representations of	
			Series Processes	23
	2.7	Linear	Difference Equations	26
	Exercises		30	
CHAPTER 3	Stationary Time Series Models		33	
	3.1	Autore	egressive Processes	33
		3.1.1	The First-Order Autoregressive AR(1) Process	34
		3.1.2	The Second-Order Autoregressive AR(2) Process	39
		3.1.3	The General pth-Order Autoregressive AR(p) Process	45
	3.2	Movir	g Average Processes	47
		3.2.1	The First-Order Moving Average MA(1) Process	48
		3.2.2	The Second-Order Moving Average MA(2) Process	51
		3.2.3	The General q th-Order Moving Average $MA(q)$ Process	52
				ix

x Contents

	3.3		ual Relationship Between AR(p) and	
) Processes	54
	3.4		egressive Moving Average ARMA(p, q) Processes	57
		3.4.1	47.17	57
		3.4.2	The ARMA(1, 1) Process	59
	Exer	cises	•	66
CHAPTER 4	Nonstationary Time Series Models			68
	4.1	Nonst	ationarity in the Mean	69
		4.1.1	Deterministic Trend Models	69
		4.1.2	Stochastic Trend Models and Differencing	70
	4.2	Autor	egressive Integrated Moving Average (ARIMA) Models	71
		4.2.1	The General ARIMA Model	72
		4.2.2	The Random Walk Model	72
		4.2.3	The ARIMA(0, 1, 1) or IMA(1, 1) Model	74
	4.3	Nonst	ationarity in the Variance and the Autocovariance	80
		4.3.1	Variance and Autocovariance of the ARIMA Models	82
		4.3.2	Variance Stabilizing Transformations	83
	Exe	cises		86
CHAPTER 5	Forecasting			88
	5.1	Introd		88
	5.2		num Mean Square Error Forecasts	88
		5.2.1	Minimum Mean Square Error Forecasts for	
		J.2.1	ARMA Models	89
		5.2.2	Minimum Mean Square Error Forecasts for	
			ARIMA Models	91
	5.3	Comp	utation of Forecasts	94
	5.4	The A	RIMA Forecast as a Weighted Average of	
		Previo	ous Observations	96
	5.5	Updat	ing Forecasts	99
	5.6	Event	ual Forecast Functions	100
	5.7	A Nu	merical Example	103
	Exe	rcises		105
CHAPTER 6	Mo	del Id	entification	108
	6,1	Stens	for Model Identification	108
	6.2	-	rical Examples	111
	6,3	-	overse Autocorrelation Function (IACF)	122

	Contents	xi
	6.4 Extended Sample Autocorrelation Function and Other	
	Identification Procedures	128
	6.4.1 The Extended Sample Autocorrelation Function (ESACF)	128
	6.4.2 Other Identification Procedures	133
	Exercises	134
CHAPTER 7	Parameter Estimation, Diagnostic Checking,	
	and Model Selection	136
	7.1 The Method of Moments	136
	7.2 Maximum Likelihood Method	138
	7.2.1 Conditional Maximum Likelihood Estimation	138
	7.2.2 Unconditional Maximum Likelihood Estimation and	
	Backcasting Method	140
	7.2.3 Exact Likelihood Functions	143
	7.3 Nonlinear Estimation	145
	7.4 Ordinary Least Squares (OLS) Estimation in Time	
	Series Analysis	151
	7.5 Diagnostic Checking	152
	7.6 Empirical Examples for Series W1–W7	153
	7.7 Model Selection Criteria	156
	Exercises	158
CHAPTER 8	Seasonal Time Series Models	160
	8.1 General Concepts	160
	8.2 Traditional Methods	162
	8.2.1 Regression Method	162
	8.2.2 Moving Average Method	163
	8.3 Seasonal ARIMA Models	164
	8.4 Empirical Examples	170
	Exercises	182
CHAPTER 9	Testing for a Unit Root	186
	9.1 Introduction	186
	9.2 Some Useful Limiting Distributions	186
	9.3 Testing for a Unit Root in the AR(1) Model	189
	9.3.1 Testing the AR(1) Model without a Constant Term	189
	9.3.2 Testing the AR(1) Model with a Constant Term	192
	9.3.3 Testing the AR(1) Model with a Linear Time Trend	195
	9.4 Testing for a Unit Root in a More General Model	196

	9.5	Testing for a Unit Root in Seasonal Time Series Models	206
		9.5.1 Testing the Simple Zero Mean Seasonal Model	207
		9.5.2 Testing the General Multiplicative Zero Mean	
		Seasonal Model	207
	Exer	cises	211
CHAPTER 10	Inte	rvention Analysis and Outlier Detection	212
		Intervention Models	212
		Examples of Intervention Analysis	215
		Time Series Outliers	223
		10.3.1 Additive and Innovational Outliers	223
		10.3.2 Estimation of the Outlier Effect When the Timing of the Outlier Is Known	224
		10.3.3 Detection of Outliers Using an Iterative Procedure	226
	10.4	Examples of Outlier Analysis	228
		Model Identification in the Presence of Outliers	230
	Exer		235
CHAPTER 11	Fourier Analysis		237
		General Concepts	237
		Orthogonal Functions	238
		Fourier Representation of Finite Sequences	241
		Fourier Representation of Periodic Sequences	242
		Fourier Representation of Nonperiodic Sequences:	
	11,0	The Discrete-Time Fourier Transform	247
	11.6	Fourier Representation of Continuous-Time Functions	254
		11.6.1 Fourier Representation of Periodic Functions	254
		11.6.2 Fourier Representation of Nonperiodic Functions: The Continuous-Time Fourier Transform	256
	117	The Fast Fourier Transform	258
	Exer		261
CHAPTER 12	Spe	ctral Theory of Stationary Processes	264
CIMI ILK IZ	•	The Spectrum	264
	12,1	12.1.1 The Spectrum and Its Properties	264
		12.1.1 The Spectrum and its Properties 12.1.2 The Spectral Representation of Autocovariance Functions:	207
		The Spectral Distribution Function	267
		12.1.3 Wold's Decomposition of a Stationary Process	271
		12.1.4 The Spectral Representation of Stationary Processes	272

	Contents	iiix
12.2	The Spectrum of Some Common Processes	274
	12.2.1 The Spectrum and the Autocovariance Generating Function	1 274
	12.2.2 The Spectrum of ARMA Models	274
	12.2.3 The Spectrum of the Sum of Two Independent Processes	278
	12.2.4 The Spectrum of Seasonal Models	279
12.3	The Spectrum of Linear Filters	281
	12.3.1 The Filter Function	281
	12.3.2 Effect of Moving Average	283
	12.3.3 Effect of Differencing	284
12.4	Aliasing	285
Exer	cises	286
CHAPTER 13 Esti	mation of the Spectrum	289
	Periodogram Analysis	289
	13.1.1 The Periodogram	289
	13.1.2 Sampling Properties of the Periodogram	290
	13.1.3 Tests for Hidden Periodic Components	292
13.2	The Sample Spectrum	298
	The Smoothed Spectrum	301
	13.3.1 Smoothing in the Frequency Domain:	
	The Spectral Window	301
	13.3.2 Smoothing in the Time Domain: The Lag Window	304
	13.3.3 Some Commonly Used Windows	306
	13.3.4 Approximate Confidence Intervals for Spectral Ordinates	313
13.4	ARMA Spectral Estimation	318
Exer	cises	321
CHAPTER 14 Trai	nsfer Function Models	322
14.1	Single-Input Transfer Function Models	322
	14.1.1 General Concepts	322
	14.1.2 Some Typical Impulse Response Functions	324
14.2	The Cross-Correlation Function and Transfer Function Models	325
	14.2.1 The Cross-Correlation Function (CCF)	325
	14.2.2 The Relationship between the Cross-Correlation Function and the Transfer Function	328
14 3	Construction of Transfer Function Models	329
14.5	14.3.1 Sample Cross-Correlation Function	329
	14.3.2 Identification of Transfer Function Models	331
	14.3.3 Estimation of Transfer Function Models	332

		14.3.4 Diagnostic Checking of Transfer Function Models	334
		14.3.5 An Empirical Example	335
	14.4	Forecasting Using Transfer Function Models	341
		14.4.1 Minimum Mean Square Error Forecasts for Stationary Input and Output Series	342
		14.4.2 Minimum Mean Square Error Forecasts for Nonstationary Input and Output Series	343
		14.4.3 An Example	346
	14.5	Bivariate Frequency-Domain Analysis	349
		14.5.1 Cross-Covariance Generating Functions and the Cross-Spectrum	349
		14.5.2 Interpretation of the Cross-Spectral Functions	351
		14.5.3 Examples	355
		14.5.4 Estimation of the Cross-Spectrum	357
	14.6	The Cross-Spectrum and Transfer Function Models	359
•		14.6.1 Construction of Transfer Function Models through Cross-Spectrum Analysis	359
		14.6.2 Cross-Spectral Functions of Transfer Function Models	360
	14.7	Multiple-Input Transfer Function Models	361
	Exerc	cises	363
CHAPTER 15	Time Series Regression and GARCH Models		
	15.1	Regression with Autocorrelated Errors	366
	15.2	ARCH and GARCH Models	368
	15.3	Estimation of GARCH Models	373
		15.3.1 Maximum Likelihood Estimation	373
		15.3.2 Iterative Estimation	374
	15.4	Computation of Forecast Error Variance	375
	15.5	Illustrative Examples	37€
	Exerc	cises	380
CHAPTER 16	Vect	tor Time Series Models	382
	16.1	Covariance and Correlation Matrix Functions	382
	16.2	Moving Average and Autoregressive Representations	
		of Vector Processes	384
	16.3	The Vector Autoregressive Moving Average Process	386
		16.3.1 Covariance Matrix Function for the Vector AR(1) Model	391
	•	16.3.2 Vector AR(p) Models	394
		16.3.3 Vector MA(1) Models	390
		16.3.4 Vector MA(q) Models	393
		16.3.5 Vector ARMA(1, 1) Models	398

	Contents	xv
	16.4 Nonstationary Vector Autoregressive Moving Average Models	400
	16.5 Identification of Vector Time Series Models	401
	16.5.1 Sample Correlation Matrix Function	401
	16.5.2 Partial Autoregression Matrices	402
	16.5.3 Partial Lag Correlation Matrix Function	408
	16.6 Model Fitting and Forecasting	414
	16.7 An Empirical Example	416
	16.7.1 Model Identification	417
	16.7.2 Parameter Estimation	417
	16.7.3 Diagnostic Checking	420
	16.7.4 Forecasting	420
	16.7.5 Further Remarks	421
	16.8 Spectral Properties of Vector Processes	421
	Supplement 16.A Multivariate Linear Regression Models	423
	Exercises	426
CHAPTER 17	More on Vector Time Series	428
	17.1 Unit Roots and Cointegration in Vector Processes	428
	17.1.1 Representations of Nonstationary Cointegrated Processes	430
	17.1.2 Decomposition of Z_t	434
	17.1.3 Testing and Estimating Cointegration	435
	17.2 Partial Process and Partial Process Correlation Matrices	442
	17.2.1 Covariance Matrix Generating Function	442
	17.2.2 Partial Covariance Matrix Generating Function	443
	17.2.3 Partial Process Sample Correlation Matrix Functions	447
	17.2.4 An Empirical Example: The U.S. Hog Data	448
	17.3 Equivalent Representations of a Vector ARMA Model	451
	17.3.1 Finite-Order Representations of a Vector Time	
	Series Process	453
	17.3.2 Some Implications	457
	Exercises	460
CHAPTER 18	State Space Models and the Kalman Filter	463
	18.1 State Space Representation	463
	18.2 The Relationship between State Space and ARMA Models	464
	18.3 State Space Model Fitting and Canonical Correlation Analysis	470
	18.4 Empirical Examples	474
	18.5 The Kalman Filter and Its Applications	478
	Supplement 18.A Canonical Correlations	483
	Exercises	487

CHAPTER 19	Lon	g Men	nory and Nonlinear Processes	489
	19.1	Long N	Memory Processes and Fractional Differencing	489
		19.1.1	Fractionally Integrated ARMA Models and Their ACF	489
		19.1.2	Practical Implications of the ARFIMA Processes	492
		19.1.3	Estimation of the Fractional Difference	492
	19.2	Nonlin	ear Processes	494
		19.2.1	Cumulants, Polyspectrum, and Tests for Linearity and Normality	495
		19.2,2	Some Nonlinear Time Series Models	498
	19.3	Thresh	old Autoregressive Models	499
			Tests for TAR Models	500
			Modeling TAR Models	502
	Exer			506
CHAPTER 20	Agg	regati	on and Systematic Sampling in Time Series	507
	20.1	Tempo	ral Aggregation of the ARIMA Process	507
		20.1.1	The Relationship of Autocovariances between the	
			Nonaggregate and Aggregate Series	508
		20.1.2	Temporal Aggregation of the IMA(d, q) Process	511
		20.1.3	Temporal Aggregation of the AR(p) Process	512
		20.1.4	Temporal Aggregation of the ARIMA(p, d, q) Process	513
		20.1.5	The Limiting Behavior of Time Series Aggregates	515
	20.2	The Ef	fects of Aggregation on Forecasting and	
		Parame	eter Estimation	520
		20.2.1	Hilbert Space	520
		20.2.2	The Application of Hilbert Space in Forecasting	521
		20.2.3	The Effect of Temporal Aggregation on Forecasting	522
		20.2.4	Information Loss Due to Aggregation in	
			Parameter Estimation	524
	20.3	System	natic Sampling of the ARIMA Process	526
	20.4	The Ef	fects of Systematic Sampling and Temporal Aggregation	
		on Cau	•	528
		20.4.1	Decomposition of Linear Relationship between Two Time Series	528
		20.4.2	An Illustrative Underlying Model	531
		20,4,3	The Effects of Systematic Sampling and	
			Temporal Aggregation on Causality	532
	20,5	The Ef	fects of Aggregation on Testing for Linearity and Normality	534
		20.5.1	Testing for Linearity and Normality	534
		20.5.2	The Effects of Temporal Aggregation on Testing for Linearity and Normality	537

	Contents	xvii
20.6 The Effects of A	ggregation on Testing for a Unit Root	540
_	el of Aggregate Series	541
	cts of Aggregation on the Distribution of the	542
	cts of Aggregation on the Significance Level lower of the Test	543
20.6.4 Example	S	545
20.6.5 General (Cases and Concluding Remarks	547
20.7 Further Commer	nts	549
Exercises		550
References		553
Appendix		565
	a Used for Illustrations	565
Statistical Tables		565
Author Index		601
Subject Index		605

View publication stats