7ª Aula Laboratorial de Matemática Computacional Licenciatura em Matemática Aplicada e Computação 2º Sem. 20/21

Problemas

Considere uma matriz A_n , de dimensões $n \times n$, cujos elementos são dados por

$$a_{i,i} = 2, \quad i = 1, ..., n;$$

$$a_{i,i-1} = 1, \quad i = 2, ..., n;$$

$$a_{i,i+1} = 1, \quad i = 1, ..., n - 1;$$

$$a_{i,j} = 0, \quad \text{se}|i - j| > 1.$$

$$(1)$$

Para resolver um sistema com esta matriz, pretende-se aplicar o método SOR ¹, cuja fórmula iteradora é a seguinte:

$$x^{(k+1)} = \omega z^{(k+1)} + (1 - \omega) x^{(k)}, \tag{2}$$

onde $z^{(k+1)}$ é o vector que se obtém de $x^{(k)}$, aplicando o método de Gauss-Seidel; ω é um parâmetro dado. É fácil ver que, no caso de $\omega=1$, este método reduz-se ao método de Gauss-Seidel. A utilização deste método permite, mediante a escolha adequada do parâmetro ω , obter uma convergência mais rápida que a do referido método. Sabe-se que no caso de matrizes simétricas e definidas positivas o método SOR converge, sse $\omega \in]0,2[$. Mais informações sobre este método podem ser encontradas nos Apontamentos de Matemática Computacional, p.157-158.

- 1. Com base na função GaussSeidel, que implementa o método de Gauss-Seidel, construa uma função em MATLAB para implementar o método SOR. Esta função deverá ter, além dos outros parâmetros de entrada, o valor de ω .
- 2. Pretende-se agora saber qual o valor de ω que permite obter a convergência mais rápida do método SOR, aplicado a esta matriz, no caso de n=20. Para isso, considere o sistema Ax=b, onde $b=(1,\ldots,1)$. Aplique o método SOR, com $\omega=0.1,0.2,\ldots,1.9$, utilizando sempre a mesma aproximação inicial e a tolerância $\epsilon=10^{-6}$. Registe o número de iterações realizadas, em cada caso, e a partir daí determine o valor óptimo do parâmetro (ω_{opt}) , com duas casa decimais (para esse efeito, teste o método, com novos valores de ω).
- 3. Mostre que a matriz A é definida positiva (recorrendo aos cálculos que entender necessários).
- 4. Escreva um programa que, para cada valor de ω , lhe permita calcular C_{ω} , a matriz de iteração do método SOR (ver fórmulas na bibliografia).
- 5. Calcule o raio espectral de C_{ω} , para cada valor de ω (considere os mesmos valores que no problema 2). Para que valor de ω o raio espectral é mínimo? Diga se este resultado está de com as conclusões do problema 2.
- 6. Repita os cálculos do problema 5, no caso de n=30 e n=40 . Como varia o valor de ω_{opt} , quando n aumenta?

¹Do inglês, sucessive over-relaxations