2. In the real world, we encounter functions where the relationship between the inputs and their corresponding outputs is not deterministic. Assume $g(x) = x^2$, where x is a real number, meaning $x \in \mathbb{R}$. Now, assume we do not know the function g(x) and aim to approximate it with a linear regression function in the form h(x) = wx, where $w \in \mathbb{R}$. The goal is to predict the output corresponding to the same inputs x as closely as possible using the least-squares approach.

Additionally, for simplicity, assume that x is sampled uniformly from the interval [-1,1]. Show that the input x has a uniform distribution over this interval and that its outputs can be assumed independent of x (for simplicity, you can assume $x \neq 0$).

Let the noise be $y = g(x) + \nu$, where ν is noise. Given the explanations, answer the following questions:

- (a) Write a brief explanation of why we expect this model to have high bias.
- (b) Calculate the bias of the model h(z) in terms of z (Hint: Start by finding the value of w in the least-squares method).
- (c) Calculate the variance of h(z) in terms of z.
- (d) For a fixed point z, show how g(z) and R(h,z) (the expected risk) are related to the bias and variance. Specifically, calculate the values of bias and variance at z=1 and obtain the risk R(h,z).

Solution a. Using a linear fit for a quadratic function, which we know is quadratic, introduces more complexity and will result in a large bias.

b. The value of w using the least squares method is given by $w = X^{\dagger}y$, where here X is a 1×1 matrix. Thus, we have:

$$X^{\dagger} = (X^{\top}X)^{-1}X^{\top}$$

$$w = X^{\dagger}y = (X^{\top}X)^{-1}X^{\top}y = \frac{x}{x^2} \times (2x^2) = 2x$$

$$h(z) = wz = 2xz$$

bias
$$(h(z)) = \mathbb{E}[h(z)] - g(z) = \mathbb{E}[2xz] - 2z^2 = 2z\mathbb{E}[x] - 2z^2 = 2z\int_{-1}^{1} x\frac{1}{2}dx - 2z^2 = -2z^2$$

c. The variance of the model h(z) can be obtained using either of the two following methods:

$$\operatorname{var}(h(z)) = \operatorname{var}(2xz) = \mathbb{E}[4x^2z^2] - \mathbb{E}[2xz]^2$$
$$= \int_{-1}^1 4x^2z^2 \frac{1}{2}dx - 4z^2 \mathbb{E}[x]^2$$
$$= \frac{2}{3}x^3z^2|_{-1}^1 - 0 = \frac{4}{3}z^2$$

$$\operatorname{var}(h(z)) = \operatorname{var}(2xz) = 2z^2 \operatorname{var}(x) = 4z^2 \mathbb{E}[(x - \mathbb{E}[x])^2] = 4z^2 \int_{-1}^1 x^2 \frac{1}{2} = \frac{2}{3} z^2 x^3 \big|_{-1}^1 = \frac{4}{3} z^2$$

d. Using the bias-variance decomposition and considering that noise reduction is not feasible 18 , we can write the value of R(h, z) as follows:

$$R(h, z) = bias(h(z))^{2} + var(h(z))$$

Now, for z = 1, we have:

$$z = 1 \Rightarrow \begin{cases} bias(h(z)) = -2 \\ var(h(z)) = \frac{4}{3} \\ R(h, z) = (-2)^2 + \frac{4}{3} = \frac{16}{3} \end{cases}$$

1. Linear regression models are always linear with respect to the model parameters, denoted as θ , but they are not necessarily linear with respect to the inputs. Suppose n inputs are drawn from some distribution defined on $\mathcal{X} \times \mathbb{R}$, where each pair $(x_i, y_i) \in \mathcal{X} \times \mathbb{R}$. We apply a nonlinear transformation $\phi : \mathcal{X} \to \mathbb{R}^d$ that maps inputs to a higher-dimensional space. The prediction for y_i is given by the dot product:

$$\hat{y}_i = \theta^T \phi(x_i),$$

where $\theta \in \mathbb{R}^d$. The training error is defined as:

$$\hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^T \phi(x_i))^2.$$

- (a) Express the training error in matrix form, using the design matrix $\Phi = [\phi(x_1), \dots, \phi(x_n)]^T$.
- (b) Solve the ordinary least squares (OLS) problem for this setting, deriving the optimal θ .
- (c) Under what condition does the OLS solution have a unique result? Provide a rigorous proof using linear algebra.

Solution:

(a)

$$\Phi = \begin{bmatrix} \phi(x_1)^T \\ \phi(x_2)^T \\ \vdots \\ \phi(x_n)^T \end{bmatrix} \in \mathbb{R}^{n \times d}.$$

Let $\mathbf{y} = [y_1, y_2, \dots, y_n]^T \in \mathbb{R}^n$. Then, the training error can be rewritten as:

$$\hat{R}(\theta) = \frac{1}{n} \|\mathbf{y} - \Phi\theta\|_2^2.$$

(b) The OLS objective function is:

$$\min_{\theta} \|\mathbf{y} - \Phi\theta\|_2^2.$$

The optimal θ is obtained by setting the gradient to zero:

$$\frac{\partial}{\partial \theta} \left(\| \mathbf{y} - \Phi \theta \|_2^2 \right) = -2\Phi^T (\mathbf{y} - \Phi \theta) = 0 \to \Phi^T \Phi \theta = \Phi^T \mathbf{y}.$$

Solving for θ :

$$\theta^* = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}.$$

(c) For θ^* to be uniquely defined, the matrix $\Phi^T \Phi \in \mathbb{R}^{d \times d}$ must be invertible. This requires:

$$rank(\Phi^T \Phi) = d.$$

We prove that $\Phi^T \Phi$ is invertible if and only if Φ has full column rank.

- Suppose Φ has full column rank, meaning its columns are linearly independent. Then, for any nonzero $\theta \in \mathbb{R}^d$, $\theta^T \Phi^T \Phi \theta = \|\Phi \theta\|_2^2 > 0$. This is because the only member of the null space of Φ is the zero vector. Since this quadratic form is always positive for nonzero θ , $\Phi^T \Phi$ is positive definite and thus invertible.
- If $\Phi^T \Phi$ is invertible, then for any $\theta \neq 0$, we must have $\Phi^T \Phi \theta = 0 \Rightarrow \theta = 0$. This implies that the columns of Φ are linearly independent, as if they were not, there would exist some θ in the null space of Φ , causing $\Phi \theta = 0$. This means that $\Phi(X)$ has full column rank.

Thus, $\Phi^T \Phi$ is invertible if and only if Φ has full column rank, i.e., rank(Φ) = d.

۲. (۱۰ نمره) رگوسیون خطی - در رگرسیون لاسو، بردار وزن اپتیمال به صورت زیر بدست می آید:

$$\omega^* = argminJ_{\lambda}(\omega)$$

به طوري که:

$$J_{\lambda} = \frac{\mathbf{1}}{\mathbf{Y}}||y - X\omega||_{\mathbf{Y}}^{\mathbf{Y}} + \lambda||\omega||_{\mathbf{1}}$$

 $(X^TX=I$ و روی دادهها whitening انجام داده باشیم. که در آن $X\in R^{n imes d}$

 ω_i^* نشان دهید که عمل whitening روی داده ها باعث می شود که ویژگی ها از هم مستقل شوند به طوری که ω_i^* به تنهایی از i امین ویژگی نتیجه شود. برای اثبات این، ابتدا نشان دهید که J_λ می تواند به صورت زیر نوشته شود:

$$J_{\lambda}(\omega) = g(y) + \sum_{i=1}^{d} f(X_{:,i}; y; \omega_i; \lambda)$$

که $X_{:,i}$ نشان دهنده \mathbf{i} امین ستون ماتریس \mathbf{X} است.

ب) اگر $lpha \geq \omega_i$ باشد، ω_i را پیدا کنید.

- پ) اگر $\cdot < \omega_i$ باشد، ω_i را پیدا کنید.
- ت) با توجه به قسمتهای قبل، در چه شرایطی ω_i صفر می شود؟ این شرایط چگونه قابل اعمال است؟
- ث) همانطور که میدانید، در رگرسیون ریج، عبارت نرمالسازی در تابع هزینه به صورت $\lambda ||\omega||_{\gamma}^{\gamma}$ ظاهر می شود. در این حالت، چه زمانی ω_i صفر می شود؟ تفاوت این حالت و حالت قبلی چیست؟

 $\mathcal{T}_{\lambda}(w) = \frac{1}{2} \| y - \chi w \|_{\ell}^{2} + \lambda \| w \|_{l} = \frac{1}{2} \left(y - \chi_{w} \right)^{T} \left(y - \chi_{w} \right) + \lambda \| w \|_{l}$ (خا (2 $= \frac{1}{2} y^{T}y - y^{T} X \omega + \frac{1}{2} \omega^{T} X^{T} X \omega + \lambda \|\omega\|_{L} = \frac{1}{2} \|y\|_{L}^{2} - y^{T} X \omega + \frac{1}{2} \|\omega\|_{L}^{2} + \lambda \|\omega\|_{L}^{2}$ $J_{\lambda}(\omega) = g(y) + \sum_{i=1}^{d} f(x_i, i, y_i, \omega_i, \lambda)$

ب هدف ما کینه کردن (۱۵) راست ، بنادران داریم که جایی این مقدار کینم می شود نه درادیان صفر شود (عیرن تابع محدب $\frac{\partial \mathcal{J}_{\lambda}}{\partial \omega_{i}} = -y^{T} \chi_{:,i} + \omega_{i} + \lambda = 0 \Rightarrow \omega_{i}^{*} = y^{T} \chi_{:,i} - \lambda$ $\lim_{N \to \infty} |\lambda_{i}|^{2} = -y^{T} \chi_{:,i} + \omega_{i} + \lambda = 0 \Rightarrow \omega_{i}^{*} = y^{T} \chi_{:,i} - \lambda$ رچون ه در نوبران باید دانته با تنیم سرد، نوبران باید دانته با تنیم سرد،

ب) منساب قسیت میل برای ه ن س درعه س کاسن درارعم. $\frac{\partial J_{\lambda}}{\partial \omega_{i}} = -y^{\top} \chi_{:,i} + w_{i} - \lambda = 0 \implies \omega_{i}^{*} = y^{\top} \chi_{:,i} + \lambda$ · Jie yt xi,i <-> الما حول ۱۰ س در، س الد

ت) با توجه به نتایج دو قسمت میل نتیجه می سریم د برای معادیر ۸ مه بین از x:,ز کل قرار کبرد، ر ما در هیچب از در حالت قبل صادق نیست و نیاران و نیاران مفاور ، نیاران مفادیر ی در از در ما در این مفادیری در ۸ را طوری تعین سنم نه ۱۶۲ X:۱۱،۱ ۲ و برقرار شود.

Jx (w) = { yTy - yT x w + { 2wTw + } 2wTw " reidge (1.1.) Ridge (1.1.) in [] $f(\chi_{:,i}, y; \omega_{i}, \lambda) = -y^{T} \chi_{:,i} \omega_{i} + (\frac{\lambda+1}{2}) \omega_{i}^{2}$ $\frac{\partial J_{\lambda}^{r}}{\partial \omega_{i}} = -y^{T} \chi_{:,i} + (\lambda + 1) \omega_{i} = 0 \implies \omega_{i}^{*} = \frac{y^{T} \chi_{:,i}}{\lambda + 1} \implies \omega_{i}^{*} = 0 \text{ if } y^{T} \perp \chi_{:,i}$ از طرف توج دارم به نار: X کا هان حواب مبون افعانه کردن قید هوار رازی است . شاموای می تران این در روش را بدین صورت تعبیر عود به در مارو های جواب ساده ارت که من شفیت داده شده است د در بازه ی خاصی منز مقادیر را صغری در : بنابرای السوبرای مساتلی به نیاز به صغر کردن برض یا رسترها داریم قابی استاده این و از طرف Ridge عدی باراسترها را العیل می لندو آن ما را مرمن مورت توجه و زیال وی نند و درامن حالت وزن ها را با اسین دون درجه رزمال وی شوند و ضرائب را دَمنِهَ صغر عُريند و فعا من مي والله أيخارا به صفر نزديك لله.

۱) یک سکه داریم که احتمال شیر آمدن آن، p، نامشخص است. برای تخمین p سکه را n بار پرتاب کردهایم که در نتیجه r بار شیر آمده است. برآوردگر بیش ترین درست نمایی (MLE) برای تخمین p را به دست آورید و اریبی و واریانس آن را محاسبه کنید.

۵) در مساله ی رگرسیون خطی با n داده مشاهده شده و p متغیر کمکی (covariate)، فرض کنید $\mathbf{X}_{n\times p}$ ماتریس متغیرهای کمکی مشاهده شده و $\mathbf{y}_{n\times 1}$ بردار متغیرهای پاسخ مشاهده شده و $\mathbf{p}_{p\times 1}$ بردار ضرایب رگرسیون باشد. طبق مدل احتمالاتی رگرسیون داریم مشاهده شده و $\mathbf{y}_{n\times 1}$ بردار متغیرهای پاسخ مشاهده شده و $\mathbf{v}_{p\times 1}$ بردار ضرایب رگرسیون باشد. طبق مدل احتمالاتی رگرسیون داریم $\mathbf{v}_{n\times 1}$ که $\mathbf{v}_{n\times 1}$ که $\mathbf{v}_{n\times 1}$ درستنمایی باشد و $\mathbf{v}_{n\times 1}$ که $\mathbf{v}_{n\times 1}$ که $\mathbf{v}_{n\times 1}$ درستنمایی باشد و قرار دهیم $\mathbf{v}_{n\times 1}$ درستنمایی باشد و ثور دهیم و تعمین گر

$$.\hat{\mathbf{y}} - \mathbf{y} = [\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T - I]\epsilon$$
 الف) نشان دهید

$$\mathbb{E}[\|\hat{\mathbf{y}} - \mathbf{y}\|^2]/n = \sigma^2(n-p)/n$$
 ب نشان دهید

۸) از تعدادی مهندس خواسته شده که محیط یک بیضی را اندازه بگیرند و تخمینهای x_1, \cdots, x_n به دست آمده است. تخمینها مختلفی مستقل از هم و نااریب هستند. فرض کنید مقدار واقعی محیط برابر μ باشد و μ باشد و μ باشد و نااریب هستند. فرض کنید مقدار واقعی محیط برابر μ باشد و میکنند σ_i ها لزوما با هم برابر نیستند و مقدارشان هم نامشخص است. هدف به دست آوردن تخمین تا جای ممکن بهتری برای μ است.

الف) اگر σ_i ها را بدانیم چه تخمینگری برای μ پیشنهاد میکنید؟ چرا؟

ب) تابع درستنمایی را بنویسید و برای به دست آوردن برآوردگر بیشترین درستنمایی تلاش کنید.

 $\lambda_1, \dots, \lambda_n \sim \Gamma(a, b)$ به روش بیزی عمل کنید: λ_i را معکوس σ_i^2 بگیرید. در توزیع پیشین فرض کنید μ و μ مستقل اند و μ به روش بیزی عمل کنید: μ را معکوس μ بگیرید. در توزیع پیشین μ را گاوسی با میانگین صفر و واریانس (تابع چگالی توزیع گاما به شکل μ و μ است) همچنین توزیع پیشین μ را گاوسی با میانگین صفر و واریانس بی به بی نهایت میل می کند) بگیرید. توزیع پسین را محاسبه کنید و برآوردگر بیشترین احتمال پسین را به دست آورید.

