## CS 4342: Class 9

Jacob Whitehill

# Softmax regression (aka multinomial logistic regression)

# Softmax regression: vectorizaţion

• x: column vector, z: row vector

• Let 
$$\mathbf{W} = \begin{bmatrix} & & & | & & \\ \mathbf{w}^{(1)} & \dots & \mathbf{w}^{(c)} & \\ | & & | & \end{bmatrix}$$



 We can compute the "pre-activation scores" z for all c classes in one-fell-swoop with the equation:

$$\mathbf{z} = \mathbf{x}^{\top} \mathbf{W}$$

Note: z is a row vector.

# Softmax regression: vectorization

 By vectorizing, we can compute the pre-activation scores for all n examples in one-fell-swoop as:

$$\mathbf{Z} = \mathbf{X}^{\mathsf{T}} \mathbf{W}$$
 n x c matrix

# Softmax regression: vectorization

 By vectorizing, we can compute the pre-activation scores for all n examples in one-fell-swoop as:

$$\mathbf{Z} = \mathbf{X}^{\top} \mathbf{W}$$
 n x c matrix

- With numpy, we can call np.exp to exponentiate every element of Z.
- We can then use np.sum and / (element-wise division) to compute the softmax.

- With softmax regression, we need to conduct gradient descent on all c of the weights vectors.
- As usual, let's just consider the gradient of the crossentropy loss for a single example x.
- We will compute the gradient w.r.t. each weight vector  $\mathbf{w}_k$  separately (where k = 1, ..., c).

Gradient for each weight vector w<sub>k</sub>:

$$\nabla_{\mathbf{w}_k} f_{\text{CE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{W}) = \mathbf{x}(\hat{\mathbf{y}}_k - \mathbf{y}_k)$$

- This is the same expression (for each *k*) as for linear regression and logistic regression.
- We can vectorize this to compute all c gradients over all n examples...

Let Y and Ŷ both be n x c matrices:

$$\mathbf{Y} = egin{bmatrix} \mathbf{y}_1^{(1)} & \mathbf{y}_c^{(1)} \ \mathbf{y}_1^{(n)} & \cdots & \mathbf{y}_c^{(n)} \ \mathbf{y}_1^{(n)} & \cdots & \mathbf{y}_c^{(n)} \end{bmatrix}$$
 One-hot encoded vector of class labels for example 1.

Let Y and Ŷ both be n x c matrices:

$$\mathbf{Y} = egin{bmatrix} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & dots \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{bmatrix}$$
 One-hot encoded vector of class labels for example  $n$ .

Let Y and Ŷ both be n x c matrices:

$$\mathbf{Y} = \left[ egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & dots & & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array} 
ight] \qquad \hat{\mathbf{Y}} = \left[ egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ & dots & & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array} 
ight]$$

$$\hat{\mathbf{Y}} = \begin{bmatrix} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ \vdots & \vdots & \vdots \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{bmatrix}$$

The machine's estimates of the c class probabilities for example n.

• Let **Y** and  $\hat{\mathbf{Y}}$  both be  $n \times c$  matrices:

$$\mathbf{Y} = \left[ egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & dots & & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array} 
ight] \qquad \hat{\mathbf{Y}} = \left[ egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ & dots & & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array} 
ight]$$

Then we can compute all c gradient vectors as:

$$\nabla_{\mathbf{W}} f_{\text{CE}}(\mathbf{Y}, \hat{\mathbf{Y}}; \mathbf{W}) = \frac{1}{n} \mathbf{X} (\hat{\mathbf{Y}} - \mathbf{Y})$$

• Let **Y** and  $\hat{\mathbf{Y}}$  both be  $n \times c$  matrices:

$$\mathbf{Y} = \left[ egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & dots & & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array} 
ight] \qquad \hat{\mathbf{Y}} = \left[ egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ & dots & & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array} 
ight]$$

• Then we can compute all c gradient vectors as:

$$\nabla_{\mathbf{W}} f_{\text{CE}}(\mathbf{Y}, \hat{\mathbf{Y}}; \mathbf{W}) = \frac{1}{n} \mathbf{X} (\hat{\mathbf{Y}} - \mathbf{Y})$$

How far the guesses are from ground-truth.

• Let **Y** and  $\hat{\mathbf{Y}}$  both be  $n \times c$  matrices:

$$\mathbf{Y} = \left[ egin{array}{cccc} \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_c^{(1)} \\ & draversize & & & \\ \mathbf{y}_1^{(n)} & \dots & \mathbf{y}_c^{(n)} \end{array} 
ight] \qquad \hat{\mathbf{Y}} = \left[ egin{array}{cccc} \hat{\mathbf{y}}_1^{(1)} & \dots & \hat{\mathbf{y}}_c^{(1)} \\ & draversize & & & \\ \hat{\mathbf{y}}_1^{(n)} & \dots & \hat{\mathbf{y}}_c^{(n)} \end{array} 
ight]$$

• Then we can compute all c gradient vectors as:

$$\nabla_{\mathbf{W}} f_{\text{CE}}(\mathbf{Y}, \hat{\mathbf{Y}}; \mathbf{W}) = \frac{1}{n} \mathbf{X} (\hat{\mathbf{Y}} - \mathbf{Y})$$

The input features (e.g., pixel values).

# Softmax regression demo

- Let's apply softmax regression to train a handwriting recognition system that can recognize all 10 digits (0-9).
- We will use the popular MNIST dataset consisting of 60K training examples and 10K testing examples:

```
0123456789
0123456789
0123456789
0123456789
0123456789
```

# Stochastic gradient descent (SGD)

### Gradient descent

- With gradient descent, we only update the weights after scanning the entire training set.
  - This is slow.
- If the training set contains 60K examples (like in MNIST), then the gradient is an *average* over 60K images.
  - How much would the gradient really change if we just used, say, 30K images? 15K images? 128 images?

$$\nabla_{\mathbf{W}} f_{\text{CE}}(\mathbf{Y}, \hat{\mathbf{Y}}; \mathbf{W}) = \frac{1}{n} \mathbf{X} (\hat{\mathbf{Y}} - \mathbf{Y})$$

Average over entire training set.

- This is the idea behind stochastic gradient descent (SGD):
  - Randomly sample a small (≪ n) mini-batch (or sometimes just batch) of training examples.
  - Estimate the gradient on just the mini-batch.
  - Update weights based on *mini-batch* gradient estimate.
  - Repeat.

- In practice, SGD is usually conducted over multiple epochs.
  - An epoch is a single pass through the entire training set.
- Procedure:
  - 1. Let  $\tilde{n} \ll n$  equal the size of the mini-batch.

- In practice, SGD is usually conducted over multiple epochs.
  - An epoch is a single pass through the entire training set.
- Procedure:
  - 1. Let  $\tilde{n} \ll n$  equal the size of the mini-batch.
  - 2. Randomize the order of the examples in the training set.

- In practice, SGD is usually conducted over multiple epochs.
  - An epoch is a single pass through the entire training set.
- Procedure:
  - 1. Let  $\tilde{n} \ll n$  equal the size of the mini-batch.
  - 2. Randomize the order of the examples in the training set.
  - 3. For e = 0 to numEpochs:

- In practice, SGD is usually conducted over multiple epochs.
  - An epoch is a single pass through the entire training set.
- Procedure:
  - 1. Let  $\tilde{n} \ll n$  equal the size of the mini-batch.
  - 2. Randomize the order of the examples in the training set.
  - 3. For e = 0 to numEpochs:
    - I. For i = 0 to  $(\lceil n/\tilde{n} \rceil 1)$  (one epoch):

- In practice, SGD is usually conducted over multiple epochs.
  - An epoch is a single pass through the entire training set.
- Procedure:
  - 1. Let  $\tilde{n} \ll n$  equal the size of the mini-batch.
  - 2. Randomize the order of the examples in the training set.
  - 3. For e = 0 to numEpochs:
    - I. For i = 0 to  $(\lceil n/\tilde{n} \rceil 1)$  (one epoch):
      - A. Select a mini-batch  $\mathcal{J}$  containing the next  $\tilde{n}$  examples.

- In practice, SGD is usually conducted over multiple epochs.
  - An epoch is a single pass through the entire training set.
- Procedure:
  - 1. Let  $\tilde{n} \ll n$  equal the size of the mini-batch.
  - 2. Randomize the order of the examples in the training set.
  - 3. For e = 0 to numEpochs:
    - I. For i = 0 to  $(\lceil n/\tilde{n} \rceil 1)$  (one epoch):
      - A. Select a mini-batch  $\mathcal{J}$  containing the next  $\tilde{n}$  examples.
      - B. Compute the gradient on this mini-batch:  $\frac{1}{\tilde{n}}\sum_{i\in\mathcal{I}}\nabla\mathbf{w}f(\mathbf{y}^{(i)},\hat{\mathbf{y}}^{(i)};\mathbf{W})$

- In practice, SGD is usually conducted over multiple epochs.
  - An epoch is a single pass through the entire training set.
- Procedure:
  - 1. Let  $\tilde{n} \ll n$  equal the size of the mini-batch.
  - 2. Randomize the order of the examples in the training set.
  - 3. For e = 0 to numEpochs:
    - I. For i = 0 to  $(\lceil n/\tilde{n} \rceil 1)$  (one epoch):
      - A. Select a mini-batch  $\mathcal{J}$  containing the next  $\tilde{n}$  examples.
      - B. Compute the gradient on this mini-batch:  $\frac{1}{\tilde{n}} \sum_{i \in \mathcal{I}} \nabla_{\mathbf{W}} f(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}; \mathbf{W})$
      - C. Update the weights based on the current mini-batch gradient.

- Suppose our training set contains n=8 examples.
- Here is how regular gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.

| 1 |
|---|
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |

- Suppose our training set contains n=8 examples.
- Here is how regular gradient descent would proceed:
  - Initialize weights **w**<sup>(0)</sup> to random values.
  - For each round:
    - Compute gradient on all n examples.

| examples |
|----------|
| 1        |
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 8        |

**Training** 

- Suppose our training set contains n=8 examples.
- Here is how regular gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - For each round:
    - Compute gradient on all n examples.
    - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \boldsymbol{\varepsilon} \nabla_{\mathbf{w}} f$

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
|   |  |

- Suppose our training set contains n=8 examples.
- Here is how regular gradient descent would proceed:
  - Initialize weights **w**<sup>(0)</sup> to random values.
  - For each round:
    - Compute gradient on all n examples.
    - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \epsilon \nabla_{\mathbf{w}} f$

| examples |
|----------|
| 1        |
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 8        |
|          |

**Training** 

- Suppose our training set contains n=8 examples.
- Here is how regular gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - For each round:
    - Compute gradient on all n examples.
    - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \boldsymbol{\varepsilon} \nabla_{\mathbf{w}} f$

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.

| 1 |
|---|
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - Randomize the order of the training data.

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \boldsymbol{\epsilon} \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \epsilon \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \boldsymbol{\varepsilon} \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \epsilon \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights **w**<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., E): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \boldsymbol{\varepsilon} \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights **w**<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \epsilon \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights w<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=1
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \boldsymbol{\varepsilon} \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights **w**<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., *E*): e=2
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \epsilon \widetilde{\nabla}_{\mathbf{w}} f$

| 4 |  |
|---|--|
| 1 |  |
| 3 |  |
| 5 |  |
| 7 |  |
| 6 |  |
| 8 |  |
| 2 |  |
|   |  |

- Suppose our training set contains n=8 examples with  $\tilde{n}=2$ .
- Here is how stochastic gradient descent would proceed:
  - Initialize weights **w**<sup>(0)</sup> to random values.
  - Randomize the order of the training data.
  - For each epoch (e=1, ..., E): e=2
    - For each round ( $r=1, ..., \lceil n/\tilde{n} \rceil$ ):
      - Compute gradient on next  $\tilde{n}$  examples.
      - Update weights:  $\mathbf{w}^{(t+1)} \longleftarrow \mathbf{w}^{(t)} \epsilon \widetilde{\nabla}_{\mathbf{w}} f$

#### Training examples

| 4 |
|---|
| 1 |
| 3 |
| 5 |
| 7 |
| 6 |
| 8 |
| 2 |
|   |

. . .

#### Stochastic gradient descent

- Despite "noise" (statistical inaccuracy) in the mini-batch gradient estimates, we will still converge to local minimum.
- Training can be much faster than regular gradient descent because we adjust the weights many times per epoch.

$$\hat{\mathbf{y}}_1 = \frac{\exp \mathbf{z}_1}{\sum_{k'=1}^2 \exp \mathbf{z}_{k'}}$$

$$\hat{\mathbf{y}}_1 = \frac{\exp \mathbf{z}_1}{\sum_{k'=1}^2 \exp \mathbf{z}_{k'}}$$

$$= \frac{\exp \mathbf{z}_1}{\exp \mathbf{z}_1 + \exp \mathbf{z}_2}$$

$$\hat{\mathbf{y}}_1 = \frac{\exp \mathbf{z}_1}{\sum_{k'=1}^2 \exp \mathbf{z}_{k'}}$$

$$= \frac{\exp \mathbf{z}_1}{\exp \mathbf{z}_1 + \exp \mathbf{z}_2}$$

$$= \frac{1}{1 + \exp \mathbf{z}_2 / \exp \mathbf{z}_1}$$

$$\hat{\mathbf{y}}_{1} = \frac{\exp \mathbf{z}_{1}}{\sum_{k'=1}^{2} \exp \mathbf{z}_{k'}}$$

$$= \frac{\exp \mathbf{z}_{1}}{\exp \mathbf{z}_{1} + \exp \mathbf{z}_{2}}$$

$$= \frac{1}{1 + \exp \mathbf{z}_{2} / \exp \mathbf{z}_{1}}$$

$$= \frac{1}{1 + \exp (\mathbf{z}_{2} - \mathbf{z}_{1})}$$

$$\hat{\mathbf{y}}_{1} = \frac{\exp \mathbf{z}_{1}}{\sum_{k'=1}^{2} \exp \mathbf{z}_{k'}}$$

$$= \frac{\exp \mathbf{z}_{1}}{\exp \mathbf{z}_{1} + \exp \mathbf{z}_{2}}$$

$$= \frac{1}{1 + \exp \mathbf{z}_{2} / \exp \mathbf{z}_{1}}$$

$$= \frac{1}{1 + \exp (\mathbf{z}_{2} - \mathbf{z}_{1})}$$

$$= \frac{1}{1 + \exp (-z)}$$

$$\hat{\mathbf{y}}_{1} = \frac{\exp \mathbf{z}_{1}}{\sum_{k'=1}^{2} \exp \mathbf{z}_{k'}}$$

$$= \frac{\exp \mathbf{z}_{1}}{\exp \mathbf{z}_{1} + \exp \mathbf{z}_{2}}$$

$$= \frac{1}{1 + \exp \mathbf{z}_{2} / \exp \mathbf{z}_{1}}$$

$$= \frac{1}{1 + \exp (\mathbf{z}_{2} - \mathbf{z}_{1})}$$

$$= \frac{1}{1 + \exp (-z)}$$

$$= \frac{1}{1 + \exp (-x^{\top} \mathbf{w})}$$

Suppose c=2. Then even though there are two weight vectors w<sup>(1)</sup>, w<sup>(2)</sup> in softmax regression, they are equivalent to just a single weight vector w:

$$\hat{\mathbf{y}}_{1} = \frac{\exp \mathbf{z}_{1}}{\sum_{k'=1}^{2} \exp \mathbf{z}_{k'}}$$

$$= \frac{\exp \mathbf{z}_{1}}{\exp \mathbf{z}_{1} + \exp \mathbf{z}_{2}}$$

$$= \frac{1}{1 + \exp \mathbf{z}_{2} / \exp \mathbf{z}_{1}}$$

$$= \frac{1}{1 + \exp (\mathbf{z}_{2} - \mathbf{z}_{1})}$$

$$= \frac{1}{1 + \exp (-\mathbf{z})}$$

$$= \frac{1}{1 + \exp (-\mathbf{z})}$$

$$\hat{\mathbf{y}}_{2} = \frac{1}{1 + \exp (\mathbf{x}^{\top}\mathbf{w})}$$

 Suppose we use logistic regression to distinguish between the positive and negative classes of the following "image" dataset (where m=2):



 Suppose we use logistic regression to distinguish between the positive and negative classes of the following "image" dataset (where m=2):



• **Exercise**: find a vector of weights  $\mathbf{w} = [w_1, w_2]$  such that, for each positive example  $\mathbf{x}^+$  and each negative example  $\mathbf{x}^-$ , we have  $\sigma(\mathbf{x}^{+\top}\mathbf{w}) > \sigma(\mathbf{x}^{-\top}\mathbf{w})$ , where:

$$\sigma(\mathbf{x}^{\top}\mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{x}^{\top}\mathbf{w})}$$

- Why is this task impossible with logistic regression?
- First, note that  $\sigma(z) > \sigma(z')$  if and only if z > z'.



- Why is this task impossible with logistic regression?
- First, note that  $\sigma(z) > \sigma(z')$  if and only if z > z'.



• Hence, it suffices to show that no w satisfies:

$$(\mathbf{x}^+)^\top \mathbf{w} > (\mathbf{x}^-)^\top \mathbf{w}$$

for each positive example x+ and negative example x-.

• Then: 
$$\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} > \begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 example example

• Then: 
$$\left[\begin{array}{cc} 1 & 0 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] > \left[\begin{array}{c} 1 & 1 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right]$$
  $w_1 > w_1 + w_2$ 

• Then: 
$$\left[\begin{array}{cc} 1 & 0 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] > \left[\begin{array}{c} 1 & 1 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right]$$
  $w_1 > w_1 + w_2$   $w_2 < 0$ 

$$\begin{array}{c|c} \bullet \text{ Then:} & \left[\begin{array}{c} 1 & 0 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] > \left[\begin{array}{c} 1 & 1 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] \\ & w_1 > w_1 + w_2 \\ & w_2 < 0 \\ \\ \left[\begin{array}{c} 0 & 1 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] > \left[\begin{array}{c} 0 & 0 \end{array}\right] \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] \\ \begin{array}{c} \text{Negative} \\ \text{example} \end{array}$$

Suppose (by way of contradiction) such a w did exist.

**Contradiction** 

- This is an instance of the classic XOR problem:
  - 10 => 1
     01 => 1
     00 => 0
     11 => 0
- No linear or generalized linear model can solve this.
- Instead, we need non-linear models (more soon).

### Smirk?









Neutral (0)

Smile (0)

Smirk left (1)

**Smirk right (1)**