第三章二维随机变量及其分布

二维随机变量:

1.小学生身高 $X \sim N(\mu_1, \sigma_1^2)$,体重 $Y \sim N(\mu_2, \sigma_2^2)$,

健康状况(身高,体重)分布: (X,Y) (有实际背景的二维随机变量)

2.将一枚骰子掷两次看成一个试验,样本点如图。 (X_1, X_2) 为二维随机变量

(同一试验 X 重复两次看成一个 试验构成的二维变量)。

Y Y	X_2 1	2	3	4	5	6
$\frac{A_1}{1}$	1/36	1/36	1/36	1/36	1/36	1/36
2	1		1/36		, -	
3	1/36	, 0,0	1/36	, 0,0	, 0,0	, ,
4	, ,,	, ,,	1/36	, ,,	, ,,	, ,,
5	1/36	, _	1/36	, _	, _	, ,
6	1/36		1/36		,	,
						3

(3,2)为 (X_1, X_2) 二维试验一个样本点。不是X试验两次取 3,2 两个值。

n维随机变量:

- 1.成年人健康状况的 n 个指标
 (身高,体重,血压,...)用
 n个随机变量表示,(X₁,X₂...X_n)
 称为 n 维随机变量。 (不关心)
- 2.将一枚掷骰子掷n次构成n 维随机变量。(X₁, X₂…X_n)

(重点研 (3,1,......5)

$$X \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \end{pmatrix}$$

X_1	X_{21}	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	$\frac{1}{36}$	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	$\frac{1}{36}$	1/36	1/36
6	1/ /36	1/ /36	1/36	1/ /36	1/ /36	1/36

定义: S(e) 是样本空间,X(e) ,Y(e) 是定义在S(e) 上的两个随机变量,则称有序数组(X(e) ,Y(e))为二维随机变量,简记为(X,Y)。同样我们可以定义n 维随机变量 $\left(X_1,X_2\cdots X_n\right)$ 。

二维随机变量的一切结果都可以推广到n维。

用 X 表示电视机寿命值分布, 从 X 中抽样得到的 n个寿命值(9.3,6.9,7.2....8.1)

电视机寿命试验X重复n次构成n维变量 $(X_1, X_2 \cdots X_n)$

(9.3,6.9,7.2....8.1) 是 $(X_1, X_2 \cdots X_n)$ 的一个样本点

 $(X_1, X_2 \cdots X_n)$ 是一个样本,而不是n个样本。

- 一. 二维离散型随机变量及其分布
- 二. 二维随机变量的分布函数
- 三.二维连续型随机变量及其分布
- 四. 随机变量的独立性
- 五.二维随机变量函数的分布

一。二維离散型随机变量及其分布

- 1.联合分布列
- 2.边际分布列
- 3.条件分布列

定义: X, Y 为两个离散型随机变量,称(X, Y)为二维离散型随机变量。

1.联合分布列

定义:设(X, Y)为二维离散型随机变量,且 X 的所有可能取值为 $x_1, x_2, ..., Y$ 的可能取值为 $y_1 y_2, ...$,称

$$P(X = x_i, Y = y_j) = P(X = x_i) \cap (Y = y_j) = p_{ij}, i, j = 1, 2, ...$$

为二维离散型随机变量(X,Y)的联合分布列。

例1. 掷两次骰子看成一个试验,用 (X,Y) 表示出现的点数。

$$P(X = i, Y = j) = \frac{1}{36}, i, j = 1, 2, ... 6$$

例2. 某球队的队服, X表示颜色,

Y表示款式,(X,Y)为二维

离散型随机变量。

性质: (i)
$$p_{ij} \ge 0$$
; (ii) $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$

					5	
1	1/36	1/36	1/36	1/36	1/36	1/36
					1/36	
3	1/36	1/36	1/ /36	$\frac{1}{36}$	1/36	1/ /36
4	$\frac{1}{36}$	1/36	1/36	1/36	1/36	1/ /36
5	$\frac{1}{36}$	1/36	1/36	1/36	1/36	1/36
6	1/ /36	1/ /36	1/36	1/ /36	1/ /36	1/36

X	$\mathcal{X}_{1(subseteq)}$	$\mathcal{X}_{2\left(\stackrel{\smile}{=} ight)}$	$X_{3(黄)}$	1
$y_{1(k)}$	15/ /100	10/ /100	12/ /100	
$\mathcal{Y}_{2(foxtimes)}$	20/ ₁₀₀	18/ /100	25/ 100	
				1

2.边际分布列(边缘分布列)

$$P(X = x_i) = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} p_{ij} = p_{i.} \quad i = 1, 2...$$

$$P(Y = y_j) = \sum_{i=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{i=1}^{\infty} p_{ij} = p_{.j} \quad j = 1, 2...$$

$$\frac{Y^{X}}{y_{1(\mathbb{K})}} \begin{array}{c|c} x_{1(\underline{x})} & x_{2(\underline{\Xi})} & x_{3(\underline{\Xi})} \\ \hline y_{1(\mathbb{K})} & \frac{15}{100} & \frac{100}{100} & \frac{12}{100} & \frac{37}{100} \\ \hline y_{2(\underline{\Xi})} & \frac{20}{100} & \frac{18}{100} & \frac{25}{100} & \frac{63}{100} \\ \hline y_{1(\mathbb{K})} & \frac{37}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \hline y_{2(\underline{\Xi})} & \frac{35}{100} & \frac{28}{100} & \frac{37}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \hline y_{1(\mathbb{K})} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \hline y_{1(\mathbb{K})} & \frac{1}{100} \\ \hline y_{1(\mathbb{K})} & \frac{1}{100} & \frac{1}{100}$$

3.条件分布列

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{ij}}$$
 $i = 1, 2...$

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_i}$$
 $j = 1, 2...$

	ı			ı	\boldsymbol{X}	\mathcal{X}_1	$X_2 X_3$
X	$x_{1(21)}$	$\left(x_{2\left(rac{st}{2} ight) } ight)$	<i>X</i> _{3(黄)}	7			0.1 0.12
$y_{1(k)}$, ,	0.1	0.12	0.37	$P(X=x_i Y=y_1)$	0.37	$0.37 \ 0.37$
$\mathcal{Y}_{2(短)}$	0.2	0.18			Y	y_1	y_2
	0.35	0.28	0.37	1	$P(Y=y_j X=x_2)$	$\frac{0.1}{0.28}$	$\frac{0.18}{0.28}$

例3. 10件产品,5件一等品,3件二等品,2件次品,从中任取3件,用X表示一等品的个数,Y表示次品的个数,求 (1) (X,Y) 的联合分布列。 (2) X 的边界分布列。(3) 在 X=1的条件下,Y 的分布列,(4) P(X-Y=0)。

解: (1)
$$P(X = m, Y = n) = \frac{C_5^m C_2^n C_3^{3-n-m}}{C_{10}^3}$$
, Y O 1 2 3 $0 = 0,1,2,3; n = 0,1,2; m+n \le 3$ $0 = 0,1,2; m+n \le$

(4)
$$P(X-Y=0)=P(X=0,Y=0)+P(X=1,Y=1)=\frac{1}{120}+\frac{1}{4}=\frac{31}{120}$$

例4.某人射击命中率为p,用X表示首次命中所需要的射击次数,Y表示第二次命中所需要的射击次数。求(1)(X,Y)的联合分布列,(2) X的边际分布列,(3) P(Y=n|X=m) 1 2 ··· m ··· n

解:
$$(1)P(X=m,Y=n)=p^2q^{n-2}, m=1,2\cdots,n=m+1,\cdots$$

$$(2)P(X=m) = \sum_{m=1}^{\infty} p^2 q^{m-2} = p^2 \frac{q^{(m+1)-2}}{1-q} = pq^{m-1}, m = 1, 2 \cdots$$

$$(3)P(Y=n|X=m) = \frac{P(X=m,Y=n)}{P(X=m)} = \frac{p^2q^{n-2}}{pq^{m-1}} = pq^{n-m-1},$$

$$(4)P(Y=n) = \sum_{n=1}^{\infty} p^2 q^{n-2} = (n-1)p^2 q^{n-2} \quad n = m+1, \dots \quad (m=1,2\dots)$$

$$n = 2,3\dots$$

例5:设某班车起点站上客人数 $X \sim P(\lambda)$,每位乘客中途下车的概率为p(0 ,且中途下车与否相互独立,以<math>Y表示在中途下车的人数,

求: (1) 在发车时有n个乘客的条件下,中途有m人下车的概率;

(2) 二维随机变量 (X,Y) 的联合分布列。

解: (1)
$$P(Y = m | X = n) = C_n^m p^m (1 - p)^{n-m}$$
 $m = 0, 1, ..., n = 0, 1, ...$
 $(2)P(X = n, Y = m) = P(X = n)P(Y = m | X = n) = \frac{\lambda^n}{n!} e^{-\lambda} C_n^m p^m q^{n-m}$
 $= \frac{1}{n!} e^{-\lambda} C_n^m (p\lambda)^m (q\lambda)^{n-m}$ $m = 0, 1, ..., n = 0, 1, ...$

(3) 中途下车人数Y的分布列。

$$P(Y = m) = \sum P(X = n, Y = m)$$
 $Y \sim P(p\lambda)$

$$=\sum_{n=m}^{+\infty}\frac{1}{n!}e^{-\lambda}C_n^m(p\lambda)^m(q\lambda)^{n-m}=\sum_{n=m}^{+\infty}\frac{1}{n!}e^{-\lambda}\frac{n!}{m!(n-m)!}(p\lambda)^m(q\lambda)^{n-m}$$

m = 0,1...

$$=\frac{(p\lambda)^m}{m!}e^{-\lambda}\sum_{n=m}^{+\infty}\frac{(q\lambda)^{n-m}}{(n-m)!}=\frac{(p\lambda)^m}{m!}e^{-\lambda}e^{q\lambda}=\frac{(p\lambda)^m}{m!}e^{-p\lambda}$$

$$P(X=n,Y=m) = \frac{1}{n!}e^{-\lambda}C_n^m(p\lambda)^m(q\lambda)^{n-m}$$

例6. X 在1,2,3,4 四个数字中随机取值,Y 从1到 X 随机取整数值,

求 (X,Y) 的联合分布列。

解:
$$P(X = m) = \frac{1}{4}$$
, $m = 1,2,3,4$.
$$P(Y = n | X = m) = \frac{1}{m}$$
, $n = 1,2,\cdots m$. $(m = 1,2,3,4)$.

$$P(X=m,Y=n)=P(X=m)P(Y=n|X=m)$$

$$=\frac{1}{4m}$$
, $m=1,2,3,4$; $n=1,2\cdots m$.