Business Analytics

Cabbage Price Prediction

Team 4

18102087 Lee Yeongju

20102122 Jeong Hyoan

17102039 Kang Juho

Table of Contents

- 1. Brief explanation about topic
- 2. Additional preprocessing
- 3. Model selection
- 4. Feature engineering poly
- 5. Hyperparameter tunning
- 6. Model evaluation & Comparison
- 7. Feature importance
- 8. Conclusion

1. Brief Explanation about Topic

Topic: Predicting the price of cabbage, to help consumers make decisions

Data

Explanatory variable

- Daily Temperature
- Daily Rainfall
- Monthly Imports and Exports
- Monthly Consumer Price Index
- Yearly Production per area

Target variable

Daily Cabbage price

2. Additional Preprocessing - Deleting error data

- Monthly Imports and Exports data (m_trade)
 - → We found *error data*
 - ✓ Import amount > 0, but the imports = 0, because of unit '\$1000'

In [12]:	m_trade										
Out[12]:		년월	수출액(\$1000)	수출량(kg)	수입액(\$1000)	수입량(kg)					
	0	2022.09	33	12522	627	1081765					
	1	2022.08	34	14287	436	781725					
	2	2022.07	296	341857	33	74030					
	3	2022.06	968	1362508	0	0					
	4	2022.05	1889	2276613	0	0					
	124	2012.05	861	1317991	38	111135					
	125	2012.04	54	29408	524	865030					
	126	2012.03	99	71207	48	135850					
	127	2012.02	102	179261	0	0					
	128	2012.01	342	644146	0	78					

```
#수입액 결측치 제거
m_trade.rename(columns={'수입액($1000)':'수입액'}, inplace = True)
m_trade.rename(columns={'수입액($1000)':'수입량'}, inplace = True)
m_trade['수입액']=m_trade['수입액'].astype(int)
m_trade['수입량']=m_trade['수입량'].astype(int)

m_trade= m_trade.loc[(m_trade.수입액 != 0) | (m_trade.수입량 == 0)]
```

2. Additional Preprocessing – Missing values

Checking missing values

D2 data: 2012.01~2022.11

Production data: 2012 ~ 2011

- Consumer Price Index data: 2012.01 ~ 2022.10

- Imports and exports data: 2012.01~2022.09

→ Also, it has other missing values in the data

2. Additional Preprocessing – Deleting Missing value

Monthly Consumer Price Index (m_price)

- The dataset has <u>missing value</u> in the data

```
# 수출수임 데이터 결측치 제거
d2.dropna(subset=['수출액($1000)'], inplace=True)
d2.isnull().sum()
```

- We delete the missing data
 - → Deleting null data after 2022.09 : Do not need to handle 'Consumer Price Index data'

	Year	Month	Day	평균배추 가격	지 점	평균기 온(℃)	최저기 온(℃)	최고기 온(℃)	강수량 (mm)	배추:면적 (ha)	생산량 (톤)	소비자물가 지수	수출액 (\$1000)	수출량 (kg)	수입액 (\$1000)	수입량 (kg)
20	2012	2	1	3560	전 국	-6.5	-10.6	-0.4	0.3	29524	2001642.0	91.588	102.0	179261.0	0.0	0.0
21	2012	2	2	3740	전 국	-10.2	-13.9	-5.7	0.1	29524	2001642.0	91.588	102.0	179261.0	0.0	0.0
22	2012	2	3	3840	전 국	-7.0	-13.7	-0.9	0.0	29524	2001642.0	91.588	102.0	179261.0	0.0	0.0
23	2012	2	6	4100	전 국	1.2	-4.3	6.2	1.6	29524	2001642.0	91.588	102.0	179261.0	0.0	0.0
24	2012	2	7	4100	전 국	-3.7	-8.5	3.0	0.0	29524	2001642.0	91.588	102.0	179261.0	0.0	0.0
2642	2022	9	26	27760	전 국	17.8	13.9	23.4	0.0	23853	NaN	108.930	33.0	12522.0	627.0	1081765.0
2643	2022	9	27	26720	전 국	18.7	13.2	26.3	0.0	23853	NaN	108.930	33.0	12522.0	627.0	1081765.0
2644	2022	9	28	25860	전 국	18.4	13.5	24.8	0.0	23853	NaN	108.930	33.0	12522.0	627.0	1081765.0
2645	2022	9	29	24640	전 국	18.6	13.5	26.4	0.0	23853	NaN	108.930	33.0	12522.0	627.0	1081765.0
2646	2022	9	30	23740	전 국	18.9	12.7	27.6	0.0	23853	NaN	108.930	33.0	12522.0	627.0	1081765.0

2. Additional Preprocessing – Changing Missing value

- Yearly production per area data (y_produce)
 - → We change missing value in y_produce to minimum value of production

In [19]:	y_produce						
Out[19]:							
		시점	배추:면적 (ha)	생산량 (톤)			
	0	2022	23853	NaN			
	1	2021	30085	2017507.0			
	2	2020	30949	2242640.0			
	3	2019	25837	1859705.0			
	4	2018	31143	2391946.0			
	5	2017	32416	2395686.0			
	6	2016	24902	1793391.0			
	7	2015	27174	2134976.0			
	8	2014	32027	2538804.0			
	9	2013	32020	2299251.0			
	10	2012	29524	2001642.0			

#생산량 결측치 처리: min값으로 대체
production_min = d2['생산량 (톤)'].min()
d2.fillna(production_min, inplace=**True**)
d2.isnull().sum()

3. Model Selection

Linear Regression

- Multi-linear regression models tend to be overfitted
 - → Generalization error is increased about new data
- By solving this problem, we used Ridge and Lasso
- We will find the <u>best hyperparameters</u> for each model
- And we will compare the test scores of each models applying the hyperparameters

4. Feature Engineering

- Changing the "Month" column to categorical '계절' (season) column
 - → Applying OneHotEncoder to the '계절'

```
d2['Month']=d2['Month'].astype(str)
d2['Month']=d2['Month'].str.replace('10', '가을')
d2['Month']=d2['Month'].str.replace('12', '겨울')
d2['Month']=d2['Month'].str.replace('1', '겨울')
d2['Month']=d2['Month'].str.replace('2', '겨울')
d2['Month']=d2['Month'].str.replace('3', '봄')
d2['Month']=d2['Month'].str.replace('4', '봄')
d2['Month']=d2['Month'].str.replace('5', '봄')
d2['Month']=d2['Month'].str.replace('6', '여름')
d2['Month']=d2['Month'].str.replace('7', '여름')
d2['Month']=d2['Month'].str.replace('8', '여름')
d2['Month']=d2['Month'].str.replace('9', '가을')
d2['Month']=d2['Month'].str.replace('11', '가을')
```

→ Code changing months to seasons

- To put all numeric features on same scale, we used 'StandardScaler'
- In order to enrich a feature representation, we added 'Polynomial Features'

Lasso

- Find Alpha & value of degree in Polynomial

```
kfold = KFold(n_splits=5, shuffle=True, random_state=0)
                                                      # Using KFold for cross-validation with data scaling and polynomial
|scaler = StandardScaler()
d_settings=[]
alpha_settings=[]
avg_r2=[]
avg mse=[]
            # We will select the hyperparameter having the highest R2
best_r2=0
for alpha in np.logspace(-1, 1, 50): # candidates for alpha
   print(alpha)
                  # We set the 50 candidates of alpha in range from 0.1 to 10
   r2 \text{ val} = []
   mse_val = []
   maxdegree=5
    for d in range(1,maxdegree):
                                # We set the candidates of degree in range from 1 to 4
       print(d)
       alpha settings.append(alpha)
       d_settings.append(d)
       poly = PolynomialFeatures(degree=d,include_bias=False)
```

Lasso

- Find Alpha & value of degree in Polynomial

```
for train idx, val idx in kfold.split(x trainval, y trainval):
   x_train = x_trainval.iloc[train_idx]
   y train = y trainval.iloc[train idx]
   x_val = x_trainval.iloc[val_idx]
                                    # Dividing category variables and numerical variables for training and validation set
   y_val = y_trainval.iloc[val_idx]
   x_train_cat = x_train[['계절']]
   'x_train_num = x_train[['평균기온(♡)', '최저기온(♡)', '최고기온(♡)', '강수량(mm)', '생산면적 (ha)', '생산량 (톤)', '소
   x_val_cat = x_val[['계절']]
   x_val_num = x_val[['평균기온(℃)', '최저기온(℃)', '최고기온(℃)', '강수량(mm)', '생산면적 (ha)', '생산량 (톤)', '소비자
   # For x_train_cat and x_val_cat, apply onehotencoding
   ohe = OneHotEncoder(sparse=False)
                                    # Transforming categorical features into numeric using OneHotEncoding
   ohe.fit(x_train_cat)
   x train cat ohe = ohe.transform(x train cat)
   x_val_cat_ohe = ohe.transform(x_val_cat)
   # For x_train_num and x_val_num, apply standardscaler
   scaler = StandardScaler()
   scaler.fit(x_train_num)
   x_train_num_scaled = scaler.transform(x_train_num)
   x_val_num_scaled = scaler.transform(x_val_num)
   poly.fit(x_train_num_scaled)
   x_train_poly = poly.transform(x_train_num_scaled)
   x val poly = poly.transform(x val num scaled)
```

Lasso

- Find Alpha & value of degree in Polynomial

```
# concatenate them agin into x_train and X_val. # Concatenating into x_train_trans and x_val_trans
           x_train_trans = np.concatenate([x_train_cat_ohe, x_train_poly], axis=1)
           x_val_trans = np.concatenate([x_val_cat_ohe, x_val_poly], axis=1)
           # training is performed with the Lasso set to the current alpha.
           lasso = Lasso(alpha = alpha, random_state=0, max_iter=10000)
           lasso.fit(x train trans, y train)
           # get v_valid_hat with the trained model & store r2 score in scores_val
           y val hat= lasso.predict(x val trans)
                                                                Best score on validation set: 0.7552897
           # store r2 score.mse
                                                                 Best hyperparameters: {'alpha': 10.0, 'degree': 4}
           r2 val.append(r2 score(y val. y val hat))
       mean_r2 = np.mean(r2_val) # get the cross-validation score
       # When the mean_score is higher than current best score,best_score is updated and the hyperparameter at that time is saved
       if mean_r2 > best_r2:
           best_r2 = mean_r2
           best_parameters = {'alpha': alpha,'degree': d}
print("Best score on validation set: {:.7f}".format(best_r2))
print("Best hyperparameters: {}".format(best parameters))
```

Ridge

Find Alpha & value of degree in Polynomial

```
x train num scaled = scaler.transform(x train num)
           x_val_num_scaled = scaler.transform(x_val_num)
           poly.fit(x_train_num_scaled)
           x_train_poly = poly.transform(x_train_num_scaled)
           x_val_poly = poly.transform(x_val_num_scaled)
           # concatenate them agin into x train and X val.
           x_train_trans = np.concatenate([x_train_cat_ohe, x_train_poly], axis=1)
           x_val_trans = np.concatenate([x_val_cat_ohe, x_val_poly], axis=1)
           # training is performed with the Lasso set to the current alpha.
           ridge = Ridge (alpha = alpha, random_state=0, max_iter=10000)
           ridge.fit(x train trans, y train)
           # get v_valid_hat with the trained model & store r2 score in scores_val
           y val hat= ridge.predict(x val trans)
                                                                   Best score on validation set: 0.7328941
           # store r2 score.mse
                                                                   Best hyperparameters: {'alpha': 7.543120063354615, 'degree': 3}
           r2_val.append(r2_score(y_val, y_val_hat))
       mean_r2 = np.mean(r2_val) # get the cross-validation score
       # When the mean_score is higher than current best score, best_score is updated and the hyperparameter at that time is saved
       if mean_r2 > best_r2:
           best_r2 = mean_r2
           best_parameters = {'alpha': alpha,'degree': d}
print("Best score on validation set: {:.7f}".format(best r2))
print("Best hyperparameters: {}".format(best parameters))
```

6. Model evaluation & Comparison

Lasso

Best hyperparameters: {'alpha': 10.0, 'degree': 4}

```
x_trainval_cat = x_trainval[['계절']]
        x_trainval_num = x_trainval[['평균기온(♡)', '최저기온(♡)', '최고기온(♡)', '강수량(mm)', '생산면적 (ha)', '생산량 (톤)', '소비자들
        x_test_cat = x_test[['계절']]
        x_test_num = x_test[['평균기온(♡)', '최저기온(♡)', '최고기온(♡)', '강수량(mm)', '생산면적 (ha)', '생산량 (톤)', '소비자물가지수'
        ohe = OneHotEncoder(sparse=False)
        ohe.fit(x_trainval_cat)
        x_trainval_cat_ohe = ohe.transform(x_trainval_cat)
        x_test_cat_ohe = ohe.transform(x_test_cat)
        scaler = StandardScaler()
       scaler.fit(x trainval num)
       x_trainval_num_scaled = scaler.transform(x_trainval_num)
       x_test_num_scaled = scaler.transform(x_test_num)
       poly = PolynomialFeatures(degree=4, include_bias=False)
       poly.fit(x_trainval_num_scaled)
       x_trainval_poly = poly.transform(x_trainval_num_scaled)
       x_test_poly = poly.transform(x_test_num_scaled)
In [24]: lasso = Lasso<mark>(alpha = 10,</mark> random_state=0, max_iter=10000)
         lasso.fit(x_trainval_trans, y_trainval)
         y_{test_hat} = lasso.predict(x_{test_trans})
         test_score = r2_score(y_test, y_test_hat)
        print("Test-set score:", test_score)
         Test-set score: 0.8709727352447184
```

6. Model evaluation & Comparison

Ridge

Best hyperparameters: {'alpha': 7.543120063354615, 'degree': 3}

```
scaler = StandardScaler()
        scaler.fit(x_trainval_num)
        x trainval num scaled = scaler.transform(x trainval num)
        x_test_num_scaled = scaler.transform(x_test_num)
        poly = PolynomialFeatures(degree=3,include_bias=False)
        poly.fit(x_trainval_num_scaled)
        x_trainval_poly = poly.transform(x_trainval_num_scaled)
        x_test_poly = poly.transform(x_test_num_scaled)
In [29]: ridge = Ridge(alpha = 7.543120063354615) random_state=0, max_iter=10000)
         ridge.fit(x_trainval_trans, y_trainval)
         y test hat = ridge.predict(x test trans)
         test_score = r2_score(y_test, y_test_hat)
         print("Test-set score:", test_score)
         Test-set score: 0.8784319654985169
```

- ✓ Ridge has higher test score than Lasso
- ✓ We are able to get a Ridge model with quite an explanatory power

THANK YOU