

Lecture 3: Finite-time control via optimization

Mikael Johansson

KTH - Royal Institute of Technology

Finite-time optimal control

Given a dynamical system

$$x_{t+1} = f_t(x_t, u_t)$$

with initial state x_0 , find input sequence $\{u_0, \ldots, u_{N-1}\}$ which minimizes

$$\sum_{t=0}^{N-1} g_t(x_t, u_t) + g_N(x_N)$$

while satisfying state and control constraints $x_t \in X_t$, $u_t \in U_t$ for all t.

Here, *N* is the *horizon* of the planning problem.

Outline

- The finite-time optimal control problem
- Mathematical programming: convexity, LPs and QPs.
- A few quadratic programs with analytical solutions
- Application: energy-optimal state transfer

2/31

Finite-time optimal control on standard form

Convenient to represent optimal control problems on standard form

$$\begin{array}{ll} \underset{\{u_0, \dots, u_{N-1}\}}{\text{minimize}} & \sum_{t=0}^{N-1} g_t(x_t, u_t) + g_N(x_N) \\ \text{subject to} & x_{t+1} = f_t(x_t, u_t) & t = 0, \dots, N-1 \\ & x_t \in X_t & t = 0, \dots, N \\ & u_t \in U_t & t = 0, \dots, N-1 \end{array}$$

Note: optimal solution may be either

- an open-loop sequence $\{u_0, \ldots, u_{N-1}\}$, or
- a feedback policy $u_t = \varphi_t(x_t)$ for some functions $\varphi_t : \mathbb{R}^n \mapsto \mathbb{R}^m$

3/31 4/31

Example: energy-optimal state transfer

Example. Find minimum-energy input which drives linear system

$$X_{t+1} = AX_t + Bu_t$$

from $x_0 = 0$ to $x_N = x_{tat}$.

Finite-time optimal control formulation:

minimize
$$\sum_{t=0}^{N-1} u_t^2$$
subject to
$$x_{t+1} = Ax_t + Bu_t$$

$$x_0 = 0$$

$$x_N = x_{tqt}$$

Last lecture: solution always exists if system is reachable and $N \ge n$.

Today: how to find optimal solutions via mathematical programming.

5/31

Mathematical programming: standard form and notation

Standard form for constrained optimization problems

minimize
$$f_0(z)$$

subject to $f_i(z) \le 0$, $i = 1, ..., m$ $g_i(z) = 0$, $i = 1, ..., p$ (1)

Notation:

- $z \in \mathbb{R}^n$ is the decision vector, representing the free variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the *objective function*, representing the operating cost
- $f_i(z) \le 0$, i = 1, ..., m and $g_i(z) = 0$, i = 1, ..., p are constraints Furthermore
- z is feasible, if it satisfies all constraints.
- the optimization problem is feasible, if it admits at least one feasible z
- z^* is optimal, if it attains the smallest value of f_0 among all feasible z
- $p^* = f_0(z^*)$ is the *optimal value* of the optimization problem

Outline

- The finite-time optimal control problem
- Mathematical programming: convexity, LPs and QPs.
- A few quadratic programs with analytical solutions
- Application: energy-optimal state transfer

6/31

Hard and easy optimization problems

Sometimes convenient to write optimization problem as

minimize
$$f_0(z)$$

subject to $z \in Z$ (2)

where we have introduced the feasible set

$$Z = \{z \mid f_i(z) \leq 0, i = 1, ..., m \land g_i(z) = 0, i = 1, ..., p\}.$$

Without further assumptions, (2) may be easy or very difficult to solve.

We focus on *convex optimization problems*, where f_0 and Z are convex

• powerful and useful theory, efficient numerical solvers

7/31 8/31

Unconstrained optimization: optimality conditions

Consider the unconstrained minimization problem

minimize
$$f_0(z)$$

with $f_0: \mathbb{R}^n \mapsto \mathbb{R}$. If f is differentiable, any minimizer z^* must satisfy

$$\nabla f_0(z^\star) = 0$$

Condition not sufficient: z^* could be minimum, maximum or saddle point.

Can say more if f_0 is a convex function.

9/31

Convex functions

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}$ is *convex* if its domain is a convex set and if for all $z_1, z_2 \in \text{dom } f$ and $\theta \in [0, 1]$, we have

$$f(\theta z_1 + (1 - \theta)z_2) < \theta f(z_1) + (1 - \theta)f(z_2)$$

"line segment between $(z_1, f(z_1))$ and $(z_2, f(z_2))$ always above graph of f"

Convex sets

Definition. The set $Z \subseteq \mathbb{R}^n$ is *convex* if for any $z_1, z_2 \in Z$, and any $\theta \in [0, 1]$ we have $\theta z_1 + (1 - \theta)z_2 \in Z$.

"line segment between any two points in Z also in Z"

10 / 31

The role of convexity

A continuously differentiable function f is convex if and only if

$$f(z_2) \ge f(z_1) + \nabla f(z_1)^T (z_2 - z_1)$$
 $\forall z_1, z_2 \in \text{dom } f$

"Every linearization is a global lower bound"

Consequences:

- first-order optimality conditions necessary and sufficient
- stationary points of convex functions are global minima!

12/31

Some convex functions

Claim. The following functions are convex:

(a) affine functions

$$f(z) = a^T z + b$$

(b) quadratic functions

$$f(x) = z^T P z$$

where P is positive semindefinite $(P \succeq 0)$

(c) The sum of two convex functions

$$f(z) = f_1(z) + f_2(z)$$

Consequence: $f(z) = z^T P z + 2q^T z + r$ is convex if (and only if) $P \succeq 0$.

13 / 31

Convex sets induced by constraints

Claim. The following sets are convex

- (a) $Z = \{z \mid f(z) \le 0\}$ where f is a convex function.
- (b) $Z = \{z \mid g^T z = h\}$
- (c) $Z = Z_1 \cap Z_2$ where Z_1 and Z_2 are convex.

Note. $Z = \{z \mid f(z) = 0\}$ is not necessarily convex, even if f is.

14/31

Convex optimization problems on standard form

Standard form for constrained optimization problems

minimize
$$f_0(z)$$

subject to $f_i(z) \le 0$, $i = 1, ..., m$
 $g_i^T z = h_i$, $i = 1, ..., p$ (3)

where f_0, f_1, \ldots, f_m are convex functions.

Note. equality constraints must be linear.

Example: linear program (LP)

Minimize a linear function subject to linear constraints:

minimize
$$c^T z$$

subject to $a_i^T z \le b_i$, $i = 1, ..., m$
 $g_i^T z = h_i$, $i = 1, ..., p$

- Strong theory with insightful geometrical interpretations.
- Very efficient solvers (100 millions of constraints, billions of variables)
- A mature technology

15/31 16/31

Example: quadratic program (QP)

Minimize a convex quadratic function subject to linear constraints

minimize
$$z^T P z + 2q^T z + r$$

subject to $a_i^T z \le b_i$, $i = 1, ..., m$
 $g_i^T z = h_i$, $i = 1, ..., p$

with $P \succ 0$.

Similarly to LP: strong and useful theory, efficient numerical solvers.

Note. Easy to solve numerically, but can only rarely find analytical solution.

17 / 31

Completion of squares lemma

Lemma. All minimizers of the quadratic function

$$f(z) = z^T P z + 2q^T z + r$$

with $P \succ 0$ satisfy the normal equations

$$Pz + q = 0$$
.

If $P \succ 0$, then the minimizer is unique and given by

$$z^{\star} = -P^{-1}a$$

with corresponding minimal value

$$f^* = r - q^T P^{-1} q = r - (z^*)^T P z^*.$$

Moreover, f can be written as a completion-of-squares

$$f(z) = (z - z^*)^T P(z - z^*) + r - (z^*)^T P z^*.$$

Outline

- The finite-time optimal control problem
- Mathematical programming: convexity, LPs and QPs.
- A few quadratic programs with analytical solutions
- Application: energy-optimal state transfer

18 / 31

Least-norm solution to linear equations

Proposition. Let $z \in \mathbb{R}^n$, $d \in \mathbb{R}^m$ and $C \in \mathbb{R}^{m \times n}$ with m < n, and consider

minimize
$$z^T z$$

subject to $Cz = d$

If rank(C) = m, then the optimal solution is

$$z^{\star} = C^{T} (CC^{T})^{-1} d.$$

19/31 20 / 31

Outline

KTH VETRISAR

- The finite-time optimal control problem
- Mathematical programming: convexity, LPs and QPs.
- A few quadratic programs with analytical solutions
- Application: energy-optimal state transfer

21 / 31

KTH VETENSKAP

Energy-optimal state transfer: compact formulation

Can eliminate x from the decision vector.

For the constraints, the the prediction equations (and $x_0 = 0$) yields

$$x_N = \sum_{k=0}^{N-1} A^k B u_{N-1-k} := C_N \begin{bmatrix} u_0 \\ \vdots \\ u_{N-1} \end{bmatrix} = C_N U_N$$

For the objective, $\sum_{k=0}^{N-1} u_k^2 = U_N^T U_N$, so (4) is equivalent to

minimize
$$U_N^T U_N$$

subject to $C_N U_N = x_{tgt}$

Energy-optimal state transfer

Find minimum-energy input which drives linear system

$$X_{t+1} = AX_t + Bu_t$$

from $x_0 = 0$ to $x_N = x_{tat}$.

Finite-time optimal control formulation:

minimize
$$\sum_{t=0}^{N-1} u_t^2$$
subject to
$$x_{t+1} = Ax_t + Bu_t$$

$$x_0 = 0$$

$$x_N = x_{tqt}$$
(4)

This is a quadratic program in $z = (u_0, \ldots, u_{N-1}, x_0, \ldots, x_N)$.

22 / 31

Least-norm state transfer

Least-energy state transfer can be found by solving the quadratic program

minimize
$$U_N^T U_N$$

subject to $C_N U_N = x_{tat}$

We have shown that the optimal solution is

$$U_N^{\star} = C_N^T (C_N C_N^T)^{-1} x_{\text{tqt}}$$

with associated optimal value (minimum energy cost)

$$\mathcal{E}(x_{\rm tgt}, N) = (U_N^{\star})^T U_N^{\star} = x_{\rm tgt}^T (C_N C_N^T)^{-1} x_{\rm tgt} = x_{\rm tgt}^T (\sum_{k=0}^{N-1} A^k B B^T (A^T)^k)^{-1} x_{\rm tgt}$$

Note

- $\mathcal{E}(x_{\text{tgt},N})$ measures the energy is needed to reach x_{tgt} in N steps.
- $\{x_{\text{tgt}} \mid \mathcal{E}(x_{\text{tgt}}, N) \leq 1\}$ is an ellipsoid, whose size grows as N increases.

23/31 24/31

Least-norm state transfer

Example. Reachable sets with unit energy for mechanical system

Continuous-time model

$$m\ddot{p}(t) = F(t) - kp(t) - d\dot{p}(t)$$

m = 1, k = d = 0.1, and h = 1 gives the discrete-time model

$$x(t+1) = \begin{bmatrix} 0.95 & 0.94 \\ -0.09 & 0.86 \end{bmatrix} x(t) + \begin{bmatrix} 0.48 \\ 0.94 \end{bmatrix} u(t)$$

(first state is position, second is velocity; control signal is applied force)

Least-norm state transfer

Reachable sets for different horizon length N

Correspond well with physical intuition.

26 / 31

25 / 31

Finite-time state transfer with bounded controls

Consider the minimum energy state transfer with the additional constraint

$$u_{\min} \le u_t \le u_{\max}, \qquad t = 0, 1, \dots, N - 1$$

Optimal control solves the quadratic program

minimize
$$U_T^T U_T$$

subject to $C_T U_T = x_{\text{tgt}}$
 $U_T \le u_{\text{max}} \mathbf{1}$
 $-U_T \le -u_{\text{min}} \mathbf{1}$

Not easy to find explicit solution, but can solve numerically.

Finite-time state transfer with bounded controls

Optimal controls and trajectories for $x_{tgt} = (4, 0)$, $u_{max} = 1$, $u_{min} = -1$.

27/31

28 / 31

Warning: open-loop control is fragile

Open loop control is sensitive to modeling errors and disturbances.

Example. Open-loop optimal input on system with larger spring constant

Nominal response (blue) and actual (red). Target state no longer reached!

- similar problems when disturbances act on system
- need to introduce feedback to compensate for uncertainties

29 / 31

Extra: energy-optimal state transfer as QP

With $z = (u_0, u_1, ..., u_{N-1}, x_0, x_1, ..., x_N)$, objective is

$$f_0(z) = z^T P z = z^T \begin{bmatrix} I_{N \times N} & 0 \\ 0 & 0_{(N+1) \times (N+1)} \end{bmatrix} z$$

The linear dynamics induces the constraints

$$\begin{bmatrix} B & 0 & \dots & 0 & A & -I & 0 & 0 & \dots & 0 \\ 0 & B & \dots & 0 & 0 & A & -I & 0 & \dots & 0 \\ \vdots & & & & & & & & \\ 0 & 0 & \dots & B & 0 & \dots & 0 & \dots & A & -I \end{bmatrix} z = 0$$

while initial and target constraints read

$$\begin{bmatrix} 0_{n \times Nm} & I_{n \times n} & 0_{n \times Nn} \end{bmatrix} z = 0_{n \times 1}$$
$$\begin{bmatrix} 0_{n \times Nm} & 0_{n \times Nn} & I_{n \times n} \end{bmatrix} z = x_{\text{tgt}}$$

QP, since P is positive semidefinite (f_0 is convex) and constraints are linear.

KTH VETERISAN VE

Summary and reading instructions

Summary:

- The finite-time optimal control problem
- Mathematical programming: convexity, LP and QP
- A few quadratic programs with analytical solutions
- Application: minimum energy state transfer

Reading instructions: lecture notes Chapter 3.1-3.2 + Appendices A and B.

30 / 31

1/31