EXPERIMENT NUMBER: 5

AIM OF THE EXPERIMENT: Measurement power in a three-phase circuit

OBJECTIVE: To measure power in a three-phase load by two wattmeter methods.

APPARATUS REQUIRED:

Sl. No.	Instrument Name	Specification	Quantity	
1	A.C. Wattmeter	0-600V, 750W	2	
2	A.C. Voltmeter	0-600V	1	
3	A.C. Ammeter	0-5 A	1	
4	Resistors	25,50 Ω	3	
5	Inductance	0.27566 H, 0.437274 H, 0.5 H, 0.37 H	3	
6	A.C Voltage Source	440 V (peak), 50 Hz	1	

Circuit diagram:

Circuit diagram of Power measurement by two wattmeter method

Cayan Handal Abantika Saha Sayan Das Joseph Denula Call Schini Bhattacharya Amirbun M Menigkatet Selhow Cupta Timen Karak Sawadaapta Pal Howston Sangal Disonahak anan Kumar Hyana Sanan

OBSERVATION TABLE:

1. Balanced Load:

SL. NO.	LINE CURRENT (I_L) in Amp	LINE VOLTAGE (V_L) in Volt	1st Wattmeter reading (W_1) in Watt	2nd Wattmeter reading (W_2) in Watt	$\begin{array}{c} POWER = \\ W_1 + W_2 \end{array}$	$\phi = tan^{-1}\frac{\sqrt{3}(W_1-W_2)}{W_1+W_2}$ (In degrees)	P. F. = cos φ
1	5.081	440	1936	1936	3872	0	1
2	2.54	440	0.05042	968	968.05042	-59.997	0.500
3	1.738	440	-132.7	585.7	453	-69.996	0.342
4	2.818	440	-297.8	893.5	595.7	-73.897	0.277
5	1.597	440	-251.3	442.6	191.3	-80.956	0.157
6	2.317	440	-288.3	630.7	342.4	-77.860	0.210

2. Unbalanced Load:

SL. NO.	LINE CURRENT (I_L) in Amp	LINE VOLTAGE (V_L) in Volt	1st Wattmeter reading (W_1) in Watt	2nd Wattmeter reading (W ₂) in watt	$\begin{array}{c} POWER = \\ W_1 + W_2 \end{array}$
1	3.811	440	1452	1936	3388
2	2.324	440	135.1	89.2	224.3
3	1.664	440	-52.47	555.7	503.23

CALCULATIONS:

Reading 1:

First Wattmeter reading
$$= W_1 = 1936 \, W$$

Second Wattmeter reading $= W_2 = 1936 \, W$
Total Power $= W_1 + W_2 = 3872 \, W$

$$\phi = tan^{-1} \frac{\sqrt{3}(W_1 - W_2)}{W_1 + W_2} = tan^{-1} \frac{\sqrt{3}(1936 - 1936)}{3872} = 0^{\circ}$$
Power factor $= cos \, \phi = cos \, 0^{\circ} = 1$

Reading 2:

First Wattmeter reading
$$=W_1=0.05042~W$$

Second Wattmeter reading $=W_2=968~W$
Total Power $=W_1+W_2=968.05942~W$
 $\phi=tan^{-1}\frac{\sqrt{3}(W_1-W_2)}{W_1+W_2}=tan^{-1}\frac{\sqrt{3}(0.05042-968)}{968.05042}=-59.997^\circ$
Power factor $=cos~\phi=cos(-59.997^\circ)=0.500$

Reading 3:

First Wattmeter reading
$$=W_1=-132.7~W$$

Second Wattmeter reading $=W_2=585.7~W$
Total Power $=W_1+W_2=453~W$
 $\phi=tan^{-1}\frac{\sqrt{3}(W_1-W_2)}{W_1+W_2}=tan^{-1}\frac{\sqrt{3}(-132.7-585.7)}{453}=-69.996^\circ$
Power factor $=cos~\phi=cos(-69.996^\circ)=0.342$

Reading 4:

First Wattmeter reading
$$=W_1=-297.8\,W$$

Second Wattmeter reading $=W_2=893.5\,W$
Total Power $=W_1+W_2=595.7\,W$

$$\phi=tan^{-1}\frac{\sqrt{3}(W_1-W_2)}{W_1+W_2}=tan^{-1}\frac{\sqrt{3}(-297.8-893.5)}{595.7}=-73.897^\circ$$
Power factor $=\cos\phi=\cos(-73.897^\circ)=0.277$

Reading 5:

First Wattmeter reading
$$=W_1=-251.3~W$$

Second Wattmeter reading $=W_2=442.6~W$
Total Power $=W_1+W_2=191.3~W$
 $\phi=tan^{-1}\frac{\sqrt{3}(W_1-W_2)}{W_1+W_2}=tan^{-1}\frac{\sqrt{3}(-251.3-442.6)}{191.3}=-80.956^\circ$
Power factor $=cos~\phi=cos(-80.956^\circ)=0.157$

Bayan Hondal Abantika Saha Sayan Das Joseph Denula Call Solvini Bhattacharyo Amirbum M

Reading 6:

First Wattmeter reading
$$=W_1=-288.3~W$$

Second Wattmeter reading $=W_2=630.7~W$
Total Power $=W_1+W_2=342.4~W$

$$\phi=tan^{-1}\frac{\sqrt{3}(W_1-W_2)}{W_1+W_2}=tan^{-1}\frac{\sqrt{3}(-288.3-630.7)}{342.4}=-77.860^\circ$$
Power factor $=cos~\phi=cos(-77.860^\circ)=0.210$

PHASOR DIAGRAM:

Bayan Hondal Abantika Saha Sayan Das Joseph Denula Call Solvin Bhattacharyo Amirbum M

QUESTIONS:

• Establish that power factor may also be estimated from two wattmeter readings.

Charge Roll Sellow Cupt Time Korak Sawadeepte Pal Houston Sangal DSonahak and Kunar Hoperdan Sangal

Explain why the wattmeter will give (a) zero reading (b) negative reading.

The reading of a wattmeter is proportional to (current through the current coil) x (voltage across the pressure coil) x Cosine (angle between this current and this voltage). Depending on the value of the cosine the wattmeter reading can be zero or negative. For a three-phase balanced load the two wattmeter readings will be, $W_1 = V_{ab} \cdot I_a \cdot \cos(30^\circ + \phi)$ and $W_2 = V_{cb} \cdot I_c \cdot \cos(30^\circ - \phi)$.

- a) When this angle becomes equal to 90 degrees the reading of the wattmeter will be zero. So, if $\phi = 60^{\circ}$ (P.F. equal to 0.5), a zero reading will be obtained for the first wattmeter.
- b) When this angle becomes more than 90 degrees the reading of the wattmeter will be negative. For a three-phase balanced load when $\phi > 60^{\circ}$ (P.F. less than 0.5), a negative reading will be obtained for the first wattmeter (W_1) . In this case, the voltage-coil connections must be reversed in order that the instrument may give a positive or forward reading.

CONCLUSION:

- With this method we can measure power in a phase three wire system with unbalanced or balance load. The load may be star or delta connected; in this experiment we have used star connected load.
- Reading of wattmeter W_1 is zero when the load power factor is 0.5 lagging i.e., $\phi = 60^\circ$.
- Reading of wattmeter W_1 is negative for $\phi > 60^\circ$. In this case, we reverse the connections to the pressure coil in order to measure power registered by wattmeter W_1 . However, the reading thus obtained must be taken as negative while calculating total power and power factor.
- The reading of W_1 is positive when $\phi < 60^{\circ}$.
- Both the wattmeters indicate the same readings when power factor of load is unity.
- All our calculations match with these observations and the experiment thus was successful.

Playan Hondal Abantika Saha Sayan Das Joseph Pal Houston Sanyal Disenahak anan Kumar Hoperton Sansan