

09/623828

1/26

FIGURE 1A

09/623828

2/26

FIGURE 1B

3/26

POPULATION 2
 OF NUCLEIC ACIDS
 CHARACTERISTIC OF CONDITION
 (A) SPLICING PATTERNS WITH
 RESPECT TO CONDITION (B)
 SPLICING PATTERNS

POPULATION 1
 OF NUCLEIC ACIDS
 CHARACTERISTIC OF CONDITION
 (B) SPLICING PATTERNS WITH
 RESPECT TO CONDITION(A)
 SPLICING PATTERNS

FIGURE 1C

FIGURE 1D

09/623828

5/26

FIGURE 2

09/623828

6/26

path. RNA/normal cDNA hybrids

non spliced sequences after RNase H digestion

desired sequence which is 5'- and 3'-
labelled by two oligonucléotides

PCR-amplified fragment

cloning and sequencing

FIGURE 3

09/623828

7/26

8/26

FIGURE 5

09/623828

9/26

A

B

Conditions A and B
of cDNA

mRNA

1st strands of cDNA
in conditions A and B

2nd strand of cDNA in A

Hybridization of the 2 strands of A
with the 1st strand of B

Digestion with Sau3AI

Separation of loops engaged into duplex

Addition of linkers to the sites Sau3AI

PCR Amplification and cloning

FIGURE 6A

10/26

FIGURE 6B

09/623828

11/26

FIGURE 7

09/623828

12/26

Figure 8

09/623828

13/26

Figure 9

09/623828

14/26

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 10

09/623828

15/26

A)

1 2 3

B)

1 2 3 4 5 6 7 8 9 10 11 12

Figure 11

16/26

Figure 12

09/623828

17/26

A _____ B
|
Construction of qualitative differential libraries corresponding to different dots of toxicity abacus-like charts

Hybridization with probes derived from the model treated by different products

FIGURE 13

09/623828

18/26

FIGURE 14

09/623828

19/26

responder-derived biopsy samples

unresponder-derived biopsy samples

FIGURE 15

09/623828

20/26

Figure 16

09/623828

21/26

Peptidic Sequence of ΔSHC (SEQ ID NO: 9)

1

MNKLSGGGGR RTRVEGGQLG GEEWTRHGSF VNKPTRGWLH PNDKVMGPGV
SYLVRYMGCV EVLQSMRALD FNTRTQVTRE AISLVCEAVP GAKGATRRK
PCSRPLSSIL GRSNLKFAGM PITLTGSTSS LNLMAADCKQ IIANHHMQSI
SFASGGDPDT AEYVAYVAKD PVNQRACHIL ECPEGLAQDV ISTIGQAFEL
RFKQYLRNPP KLVTPHDRMA GFDGSAWDEE EEEPPDHQYY NDFPGKEPPL
GGVVDMRLRE GAAPGAARPT APNAQTPSHL GATLPVGQPV GGDPEVRKQM
PPPPPCCPGRE LFDDPSYVNV QNLDKARQAV GGAGPPNPAI NGSAPRDLFD
MKPFEDALRV PPPPQSVSMA EQLRGEPWFH GKLSRREAEA LLQLNGDFLV
RTKDHRFESV SHLISYHMDN HLPIIISAGSE LCLQQPVERKL

441

Nucleic Sequence of ΔSHC (SEQ ID NO: 10)

atgaacaaggc	tgagtggagg	cggcgccgcgc	aggactcggt	tggaaggggg	50
ccagcttggg	ggcgaggagt	ggacccgcca	cgggagcttt	gtcaataaggc	100
ccacgcgggg	ctggctgcat	cccaacgaca	aagtcatggg	accgggggtt	150
tcctacttgg	ttcggtacat	gggttgtgtg	gaggtccctcc	agtcaatgcg	200
tgcctggac	ttcaaacaccc	ggactcaggt	caccaggag	gccatcagtc	250
tggtgtgtga	ggctgtgccg	ggtgctaagg	gggcgacaag	gaggagaaag	300
ccctgttagcc	gcccgcctcag	ctctatcctg	gggaggagta	acctgaaatt	350
tgctggaatg	ccaatcactc	tcaccgtctc	caccagcagc	ctcaacactca	400
tggccgcaga	ctgcaaacag	atcatcgcca	accaccat	gcaatctatc	450
tcatttgcac	ccggcgggga	tccggacaca	gccgagtatg	tgccttatgt	500
tgccaaagac	cctgtgaatc	agagagcctg	ccacattctg	gagtgtcccg	550
aagggtttgc	ccaggatgtc	atcagcacca	ttggccaggc	cttcgagttg	600
cgcattcaaacc	aatacctcag	gaaccaccc	aaactggtca	cccctcatga	650
caggatggct	ggctttgatg	gctcagcatg	ggatgaggag	gaggaagagc	700
cacctgacca	tcagttactat	aatgacttcc	cggggaaagga	accccccttg	750
gggggggtgg	tagacatgag	gcttcggaa	ggagccgctc	caggggctgc	800
tgcacccact	gcacccaatg	cccagacccc	cagccacttg	ggagctacat	850
tgcctgttagg	acagcctgtt	gggggagatc	cagaagtccg	caaacagatg	900

FIGURE 17A

09/623828

22/26

ccacctccac caccctgtcc aggcagagag cttttgatg atccccta 950
tgtcaacgtc cagaacctag acaaggcccg gcaagcagtg ggtggtgctg 1000
ggcccccaa tcctgctatc aatggcagtg cacccggga cctgttgac 1050
atgaagccct tcgaagatgc tcttcgggtg cctccacctc cccagtcggt 1100
gtccatggct gagcagctcc gaggggagcc ctggttccat gggaaagctga 1150
gccggcggga ggctgaggca ctgctgcagc tcaatggga cttcttggtt 1200
cgactaagg atcaccgctt tgaaagtgtc agtcacctta tcagctacca 1250
catggacaat cactgcccc tcatctctgc gggcagcga ctgtgtctac 1300
agcaacctgt ggagcggaaa ctgtga 1326

FIGURE 17B

09/623828

23/26

Trypan Blue

HepG2 / Ethanol

MTT Test

FIGURE 18A

ELISA Test - Fragmentation of DNA

09/623828

24/26

HepG2 / Camptothecin

Trypan Blue

MTT Test

FIGURE 18B

ELISA Test - Fragmentation of DNA

09/623828

25/26

HepG2 / PMA
Trypan Blue

Test MTT

ELISA Test - Fragmentation of DNA

FIGURE 18C

09/623828

26/26

Figure 19

