





# РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОПРИВОДОМ РУЛЕВОЙ РЕЙКИ ДЛЯ БЕСПИЛОТНОГО СРЕДСТВА

Выпускная квалификационная работа бакалавра ТПУ ИШИТР ОАР 15.03.06 «Мехатроника и робототехника»

Выполнил: студент группы 8E02 Сокуров Руслан Ергалиевич Научный руководитель: доцент ОАР, к.т.н. Ланграф Сергей Владимирович

#### ВВЕДЕНИЕ



- К 2035 году ожидается увеличении доли беспилотных автомобилей в общей структуре мировых продаж автотранспорта возрастёт до 10–15%. [1];
- Основные проблемы внедрения технологий автономности включают в себя отсутствие в настоящее время в Российской Федерации ряда критичных электронных компонентов 2-го и 3-го уровней автономности [1].

<sup>1.</sup> Распоряжение Правительства РФ от 28.12.2022 N 4261-р <Об утверждении Стратегии развития автомобильной промышленности Российской Федерации до 2035 года>

#### **ОБЗОР**



| Название                    | Достоинства                                   | Недостатки                                                       |
|-----------------------------|-----------------------------------------------|------------------------------------------------------------------|
| ПИД-регулирование           | Простота реализации; Низкие                   | Требует настройки параметров;                                    |
|                             | требования к вычислительным                   | Может быть неустойчивым при                                      |
|                             | ресурсам;                                     | значительных изменениях параметров                               |
|                             | Быстрая реакция на изменения                  | системы;                                                         |
|                             | параметров системы;                           | Ограниченная адаптивность;                                       |
| Адаптивное управление [2]   | Высокая адаптивность к<br>изменениям условий; | Сложность реализации и большая вычислительная нагрузка; Возможны |
|                             |                                               | временные задержки в адаптации                                   |
|                             | Возможность учета множества                   | Требуется наличие данных прошлых измерений;                      |
| Управление на основе        | ограничений;                                  | Высокие требования к вычислительным                              |
| прогнозирующей модели [3]   | Способность прогнозировать                    | ресурсам;                                                        |
|                             | поведение системы;                            | Возможны ошибки при неточности                                   |
|                             |                                               | моделей и данных;                                                |
|                             |                                               | Сложность разработки и внедрения;                                |
| Искусственный интеллект [4] | Способность к самообучению;                   | Высокая вычислительная нагрузка;                                 |
|                             | Высокая гибкость и адаптивность;              | Необходимость больших объемов данных                             |
|                             |                                               | для обучения;                                                    |

- 2. Адаптивные системы управления в электроприводах и системах автоматизации: методические указания / П.А. Воронин; Оренбургский гос. унт. Оренбург: ОГУ, 2018. 47 с.
- 3. James B. Rawlings, David Q. Mayne, Moritz M. Diehl Model Predictive Control: Theory, Computation, and Design. Santa Barbara, California: Nob Hill Publishing, LLC, 2022.
- 4. Теория и практика машинного обучения : учебное пособие / В. В. Воронина, А. В. Михеев, Н. Г. Ярушкина, К. В. Святов. Ульяновск : УлГТУ, 2017. 290 с.

#### ИССЛЕДОВАНИЕ ОБЪЕКТА УПРАВЛЕНИЯ







#### РАЗРАБОТКА И НАСТРОЙКА КОНТУРА УПРАВЛЕНИЯ ТОКОМ ЭЛЕКТРОПРИВОДА РУЛЕВОЙ РЕЙКИ С УЧЁТОМ ФИЗИЧЕСКИХ ОГРАНИЧЕНИЙ, ПРИСУЩИХ СИСТЕМЕ





5. СИСТЕМЫ ПОДЧИНЕННОГО РЕГУЛИРОВАНИЯ ЭЛЕКТРОПРИВОДОВ. Часть 1. Электроприводы постоянного тока с подчиненным регулированием координат: Учеб. Пособие для вузов. - Екатеринбург: Изд-во Урал. гос. проф.-пед. ун-та, 1997.-279 с



Время, с

### РАЗРАБОТКА И НАСТРОЙКА КОНТУРА УПРАВЛЕНИЯ СКОРОСТЬЮ ЭЛЕКТРОПРИВОДА РУЛЕВОЙ РЕЙКИ С УЧЁТОМ ФИЗИЧЕСКИХ ОГРАНИЧЕНИЙ, ПРИСУЩИХ СИСТЕМЕ



Переходная характеристика





System: Переходная характеристика

I/O: Step4 to Mex coct

5. СИСТЕМЫ ПОДЧИНЕННОГО РЕГУЛИРОВАНИЯ ЭЛЕКТРОПРИВОДОВ. Часть 1. Электроприводы постоянного тока с подчиненным регулированием координат: Учеб. Пособие для вузов. - Екатеринбург: Изд-во Урал. гос. проф.-пед. ун-та, 1997.-279 с

### РАЗРАБОТКА И НАСТРОЙКА КОНТУРА УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ ЭЛЕКТРОПРИВОДА РУЛЕВОЙ РЕЙКИ С УЧЁТОМ ФИЗИЧЕСКИХ ОГРАНИЧЕНИЙ, ПРИСУЩИХ СИСТЕМЕ





Выход контура положения
— Выход регулятора положения

во общения

5. СИСТЕМЫ ПОДЧИНЕННОГО РЕГУЛИРОВАНИЯ ЭЛЕКТРОПРИВОДОВ. Часть 1. Электроприводы постоянного тока с подчиненным регулированием координат: Учеб. Пособие для вузов. - Екатеринбург: Изд-во Урал. гос. проф.-пед. ун-та, 1997.-279 с

## **ЭКСПЕРИМЕНТАЛЬНОЕ** ИССЛЕДОВАНИЕ







## **ЭКСПЕРИМЕНТАЛЬНОЕ** ИССЛЕДОВАНИЕ







## **ЭКСПЕРИМЕНТАЛЬНОЕ** ИССЛЕДОВАНИЕ







#### **РЕЗУЛЬТАТЫ**





"Томскнефтехим" запустил доставку грузов беспилотным электромобилем















# РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОПРИВОДОМ РУЛЕВОЙ РЕЙКИ ДЛЯ БЕСПИЛОТНОГО СРЕДСТВА

Выпускная квалификационная работа бакалавра ТПУ ИШИТР ОАР 15.03.06 «Мехатроника и робототехника»

Выполнил: студент группы 8E02 Сокуров Руслан Ергалиевич Научный руководитель: доцент ОАР, к.т.н. Ланграф Сергей Владимирович