MAT 171 - Section 1.4: Complex Numbers

1: Definition of Complex Number and the Imaginary Unit

The imaginary unit is defined as i, which is equal to $\sqrt{-1}$ where $i^2 = -1$.

Complex numbers is the set of all numbers that can be represented in the **standard form** of $\mathbf{a} + \mathbf{bi}$ where a and b are real numbers. a is known as the **real part** and b is called the **imaginary part**. A complex number that takes on the form of bi is called a **pure imaginary number**.

The Imaginary Unit Equalities							
i =		$i^2 =$		$i^3 =$		$i^4 =$	
Simplify the Following							
$i^{27} =$		$i^{30} =$		$i^{2000} =$		$i^{24} =$	
Simplify and Write the Following Expressions in Standard Form							
$3 + \sqrt{-8}$				$-4i^2 + 2i$			
(3+2i) + (4-3i)		-3+5i)-(-4+7i)					
-3i(5-4i)		(1+3i)(2-5i)					
(1+3i)(2-5i)		(2+7i)(2-7i)					
$(5-2i)^2$		$\frac{3}{4+i}$					
$\frac{5i}{2-i}$		(5-2i) + (3+3i)					
Convert the Following Complex Number to Standard Form, then Simplify							
$5\sqrt{-8} + 3\sqrt{-18}$				$(-2+\sqrt{-11})^2$			
$\frac{-12+\sqrt{-28}}{32}$		$\sqrt{-12}(\sqrt{-4}-\sqrt{2})$					