大学物理(王少杰教材)第6套阶段训练题目答案 量子力学(14章5-10节)

重 十八字(14 草 5-10 节)
一、填空题(共 30 分)
1、(本题 4 分)设氢原子的动能等于氢原子处于温度为 T 时的热平衡状态时的平均平动动能,氢原子的质量为 m ,则此氢原子的德布罗意波长 $\lambda =$ 。
答案: $\frac{h}{\sqrt{3mkT}}$
2、(本题 4 分) 已知中子的质量为 $m=1.67\times10^{-27}{\rm kg}$, 当中子的动能等于温度为
$T=300\mathrm{K}$ 的热平衡中子气体分子的平均动能时,其德布罗意波长 $\lambda=$ nm。
答案: 0.15
3、(本题 4 分)波长为 $\lambda = 5000 \text{A}$ 的光沿 x 轴正向传播,若光的波长的不确定量
$\Delta \lambda = 10^3 \text{Å}$,则利用不确定关系式 $\Delta x \cdot \Delta P \geq h$,可得光子的 x 坐标的不确定量至
少为µm。
答案: 2.5
4、 (本题 4 分)根据量子理论,氢原子核外电子的状态可以由四个量子数来确定,其中主量子数 n 可取的值为,它可决定。
答案: 1, 2, 3正整数, 原子系统的能量
5、(本题 4 分)原子内电子的量子态由 n , l , m_l , m_s 四个量子数表征,当 n , l , m_l
定时,不同的量子态数目为
答案: 2, $2\times(2l+1)$, $2n^2$
6、(本题 4 分)多电子原子中,电子在核外的排列需遵循
答案: 泡利不相容; 能量最低
7、(本题 3 分) 在主量子数 n=2,自旋磁量子数 $m_s = \frac{1}{2}$ 的量子态中,能够填充的
最大电子数为。

答案: 4

8、(本题 3 分)按照量子理论,即使电子的能量小于方势垒的能量,依然有一定的穿透系数,这是微观粒子的______表现。

答案:波动性

二、推导证明题(共6分)

9、(本题 6 分)在一维无限深势阱中运动的粒子,由于边界条件的限制,势阱宽度 a 必须等于德布罗意波半波长的整数倍。试用这一条件导出能量量子化公式。

解: 驻波条件
$$n \cdot \frac{\lambda}{2} = a$$
, $\therefore \lambda = \frac{2a}{n}$, $(n = 1, 2, \dots)$ (2分)

所以
$$p = \frac{h}{\lambda}$$
, $\therefore p = \frac{nh}{2a}$ (2分)

得到
$$E = \frac{p^2}{2m} = \frac{n^2 \cdot h^2}{8ma^2}$$
. $(n = 1, 2, \cdots)$ (2分)

三、计算题

10、(本题 8 分)已知第一玻尔轨道半径为a,试计算当氢原子中的电子沿第n玻尔轨道运动时,其相应的德布罗意波长是多少?

解:电子在第n玻尔轨道半径,则其角动量为

$$L = m\upsilon r_n = n\frac{h}{2\pi} = m\upsilon n^2 a \tag{3 }$$

所以
$$m\upsilon = \frac{h}{2\pi na}$$
 (3分)

波长为
$$\lambda = \frac{h}{mi} = 2\pi na$$
 (2分)

11、(本题 10 分) 求下列两种情况下的实物粒子德布罗意波长与粒子动能 E_{K} 和静止质量 m_{0} 的关系。

1) 当
$$E_K = m_0 c^2$$
时, λ 的表达式?

2) 当
$$E_{\kappa}$$
? m_0c^2 时, λ 的表达式?

解: 由相对论能量动量关系

$$m^2c^4 = p^2c^2 + m_0^2c^4$$
 (2 $\%$)

得到
$$p = \frac{\sqrt{E_k^2 + 2E_k m_0 c^2}}{c}$$
 (2 分)

得到
$$\lambda = \frac{h}{p} = \frac{hc}{\sqrt{E_k^2 + 2E_k m_0 c^2}}$$
 (2 分)

所以当当
$$E_k \ll m_0 c^2$$
时 $\lambda \approx \frac{h}{\sqrt{2m_0 E_k}}$ (2分)

当
$$E_k >> m_0 c^2$$
时 $\lambda \approx \frac{hc}{E_k}$ (2分)

12、(本题 10 分)已知光子的波长为 $\lambda = 3000\,\text{Å}$,如果确定此波长的精确度 $\frac{\Delta\lambda}{\lambda} = 10^{-6}$,按照如下关系式 $\Delta x \cdot \Delta P \ge \frac{h}{2\pi}$ 计算此光子的位置不确定量。

解: 光子的动量
$$p = \frac{h}{\lambda}$$
 (3分)

则动量数值的不确定量为
$$|\Delta p| = \left| -\frac{h}{\lambda^2} \right| \Delta \lambda = (\frac{h}{\lambda})(\frac{\Delta \lambda}{\lambda})$$
 (3分)

根据不确定关系式:

$$\Delta x \ge \frac{h}{2\pi\Delta p} = \frac{\lambda}{2\pi(\frac{\Delta\lambda}{\lambda})} = 0.048 \text{m}$$
 (4 $\%$)

13、(本题 10 分)设有一个电子在宽为 0.20 nm 一维无限深的方势阱中,(1) 计算电子在最低能级的能量;(2) 当电子处于第一激发态时,在势阱何处出现的概率最小,其值为多少?

解: 1)
$$E_1 = \frac{\hbar^2 \pi^2}{2ma^2} = 1.51 \times 10^{-18} \text{ J} = 9.43 \text{ eV}$$

$$2) \Psi(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x$$

第一激发态
$$\left|\Psi(x)\right|^2 = \frac{2}{a}\sin^2\frac{2\pi}{a}x$$

$$\Rightarrow: \frac{\mathrm{d} \left| \Psi(x) \right|^2}{\mathrm{d} x} = 0$$

得到
$$\frac{8\pi}{a^2}\sin\frac{2\pi x}{a}\cos\frac{2\pi x}{a}=0$$

可得极小值位置在在 x=0, a/2, 和 x=a (即 x=0, 0.1nm, 0.2nm) 处概率最小, 其值均为 0.

14、(本题 10 分) H_2 分子中原子的振动相当于一个谐振子,其劲度系数为 k=1.13 ×10 3 N/m,质量是 m=1.67 ×10 2 N $_2$ R $_3$ 8。此分子的能量本征值(以 eV 为单位)多大?当此谐振子由某一激发态跃迁到相邻的下一激发态时,所放出的光子的能量和波长各是多少?

解:振动角频率
$$\omega = \sqrt{\frac{k}{m}}$$
 (2分)

则振动的能量为

$$E_n = (n + \frac{1}{2})\hbar\omega = (n + \frac{1}{2})\frac{h}{2\pi}\sqrt{\frac{k}{m}}$$

$$= (n + \frac{1}{2})\frac{6.63 \times 10^{-34}}{2\pi}\sqrt{\frac{1.13 \times 10^3}{1.67 \times 10^{-27}}}/1.6 \times 10^{-19}$$

$$= \left(n + \frac{1}{2}\right) \times 0.54 \text{eV}$$
(3 \(\frac{\gamma}{2}\))

放出光子的能量为 $\Delta E = E_{n+1} - E_n = 0.54 \text{eV}$ (2分)

波长为:
$$\lambda = \frac{hc}{\Delta E} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{0.54 \times 1.6 \times 10^{-19}} = 2.3 \times 10^{-6} \text{m}$$
 (3分)

15、(本题 **10** 分)假设氢原子处于n=3,l=2的激发态,则原子的轨道角动量在空间有哪些可能的取向? 计算各可能取向的角动量与z轴之间的夹角。

解: 由
$$l = 2$$
有, $m_l = 0, \pm 1, \pm 2$, (2分)

所以, 角动量的 z 方向分量为

$$L_z = 2\hbar, \hbar, 0, -\hbar, -2\hbar$$
 (2 $\%$)

角动量的大小

$$L = \sqrt{l(l+1)}\hbar = \sqrt{6}\hbar \tag{2 \%}$$

与z轴夹角为 $\theta = \arccos \frac{L_z}{L}$,

$$\mathbb{P}\theta = \arccos\frac{\sqrt{6}}{3}, \arccos\frac{\sqrt{6}}{6}, \frac{\pi}{2}, \pi - \arccos\frac{\sqrt{6}}{6}, \pi - \arccos\frac{\sqrt{6}}{3}$$
 (4 \(\frac{\frac{1}}{3}\)

四、设计应用题

16、(本题 6 分)根据所学量子知识,设计测量普朗克常数,包括原理和设计方案、结论。

参考答案:根据光电效应实验,测出不同频率光照射时,照射频率和截止电压关系,得到直线关系得斜率 k,进而通过光电效应方程可得普朗克常数 h=ek(e是电子电量)。