Лабораторная работа 14

Модели обработки заказов

Извекова Мария Петровна

10 мая 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Извекова Мария Петровна
- студентка 3-го курса
- Российский университет дружбы народов
- · 1132226460@pfur.ru

Построить модели несколько моделей в GPSS и проанализировать их отчеты

Задание

Построить модели: 1. Модель оформления заказов клиентов одним оператором 2. Построение гистограммы распределения заявок в очереди 3. Модель обслуживания двух типов заказов от клиентов в интернет-магазине 4. Модель оформления заказов несколькими операторами

Модель оформления заказов клиентов одним оператором

В интернет-магазине заказы принимает один оператор. Интервалы поступления заказов распределены равномерно с интервалом 15 \pm 4 мин. Время оформления заказа также распределено равномерно на интервале 10 \pm 2 мин. Обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется разработать модель обработки заказов в течение 8 часов.

```
🥌 Untitled Model 1
```

```
;operator
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10.2
RELEASE operator
TERMINATE 0
:timer
GENERATE 480
TERMINATE 1
START 1
```

Untitled M	odel 1.1.1 -	REPORT								
		суббоз	а, мая 10,	2025 09	36:32					
			ENI							
	0.	.000	48	30.000	9	1		0		
	NAME			V	THE					
	OPERATOR			10001						
	OPERATOR			10000						
LABEL			BLOCK TYPE			CURRENT		RETRY		
			GENERATE		32		0	0		
			QUEUE		32		0	0		
			SEIZE		32		0	0		
			DEPART		32		0	0		
			ADVANCE		32		1	0		
			RELEASE		31		0	0		
			TERMINATE		31		0	0		
			GENERATE		1		0	0		
		9	TERMINATE		1		0	0		
FACTITTY	-	MTDIES	UTIL. A	UTF TIME	auatt .	OWNED DEN	ID TNT	en nerny	DELAY	
OPERATOR			0.639					0 0		
OPERATOR		32	0.639	9.50	9 1	33	U	0 0	U	
OUEUE		MAX CO	ONT. ENTRY	ENTRY(0)	AVE.CON	I. AVE.T	IME I	AVE. (-0)	RETRY	
OPERATOR	. 0	1	0 32	31	0.001	0.0	21	0.671	0	
1										
			ASSEN		NT NEXT	PARAMETE	ER '	VALUE		
	0		186 33		6					
	0	496.0		0	1					
35	0	960.0	000 35	0	8					

Рис. 2: Отчет модели 1

Упражнение.

Скорректируйте модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин.

Рис. 3: Упражнение 1: моделирование

Рис. 4: Упражнение 1: отчет

Построение гистограммы распределения заявок в очереди

Предположим требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой. Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

```
Waittime QTABLE operator q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum, X$Custnum
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 5: моделирование

Рис. 6: Гистограмма

Модель обслуживания двух типов заказов от клиентов в интернет-магазине

В интернет-магазин к одному оператору поступают два типа заявок от клиентов — обычный заказ и заказ с оформление дополнительного пакета услуг. Заявки первого типа поступают каждые 15 \pm 4 мин. Заявки второго типа — каждые 30 \pm 8 мин. Оператор обрабатывает заявки по принципу FIFO («первым пришел — первым обслужился»). Время, затраченное на оформление обычного заказа, составляет 10 \pm 2 мин, а на оформление дополнительного пакета услуг — 5 \pm 2 мин. Требуется разработать модель обработки заказов в течение 8 часов, обеспечив сбор данных об очереди заявок от клиентов.

Multitled Model 2

r order GENERATE 15.4 QUEUE operator q SEIZE operator DEPART operator q ADVANCE 10,3 RELEASE operator TERMINATE O ; order and service package GENERATE 30,8 QUEUE operator_q SEIZE operator DEPART operator q ADVANCE 5,2 ADVANCE 10,2 RELEASE operator TERMINATE 0 stimer GENERATE 480 TERMINATE 1 START 1

Ι

LABEL	Loc	BLOCK TYPE	THE PARTY OF	come	CHREENT	COUNTY	BETSY	
TWACT	200	GENERATE		32	CONNERT	0	O .	
	2	QUEUE		32		4	0	
	3	SEIZE		28		0	0	
	1	DEPART		28		0	0	
							0	
		ADVANCE		28		1 0	0	
	6	RELEASE						
	7	TERMINATE		27		0	0	
	8	GENERATE		1.5		0	0	
		QUEUE		1.5		3	0	
		SEIZE		12		0	0	
	11	DEPART		12		0	0	
	12	ADVANCE		12		0	0	
	13	ADVANCE		12		0	0	
	1.4	RELEASE		12		0	0	
	15	TERMINATE		12		0	0	
	16	GENERATE		1		0	0	
	17	TERMINATE		1		0	0	
ACILITY	FUTDIFF	UTIL. AN	T TIME A		NATE OF	in tur	FR RETRY	DETAY
OPERATOR	40		11,365					7
			11.000		10		ì	
UEUE OPERATOR_Q	MAX C	ONT. ENTRY B	ENTRY(0) A	VE.COM	T. AVE.T	EME	AVE. (-0)	RETRY
OPERATOR_Q		7 47	2	3.355	34.	161	35.784	0
EC XN PRI	BOT	ASSEM	CUBBENT	NEXT	PARAMET	ra.	VALUE	
42 0	487.			6				
50 0	493.		0	1				
49 0	499.		0	i i				
51 0		100 51	0	16				

GPSS	World Si	mulation	Repo	rt - Unti	tled Model 2	.1.1
	суббота,	мая 10,	2025	11:33:16		
START T	IME 000		TIME 0.000	BLOCKS 17	FACILITIES 1	STORAGES
NAME OPERATOR OPERATOR				VALUE 001.000		

Упражнение

Скорректируйте модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов. Используйте оператор TRANSFER.

Рис. 7: Модель

Рис. 8: Отчет

Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. Обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

Рис. 9: Отчет

Рис. 10: Модель

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Рис. 11: Отчет

Рис. 12: Модель

Выводы

В результате была реализована с помощью gpss:

модель оформления заказов клиентов одним оператором; построение гистограммы распределения заявок в очереди; модель обслуживания двух типов заказов от клиентов в интернет-магазине; модель оформления заказов несколькими операторами.

Библиография

- 1. Королькова А. В., Кулябов Д. С. Модели обработки заказов
- 2. Королькова А. В., Кулябов Д. С. Имитационное моделирование в GPSS