CENG444 Spring 2023

Due date: 31.05.2023 23:00

PROGRAMMING ASSIGNMENT 2

You are required to solve the **maximum consecutive sum problem: MCS**. The problem is defined as the following: Let x[] be an array of integers. For a given x, we want to find a subarray x[i..j] of x with maximum sum of integers. The problem is known as the <u>maximum sum subarray problem</u>, where the task is to find a contiguous subarray with the largest sum, within a given one-dimensional array.

You are required to include the following steps in your parallel implementation:

- **1)** Calculate **s**, as the **prefix-sum**s of **x**.
- **2)** Calculate **m**, as the **prefix-min**s of **s**.
- 3) Calculate s_m , where $s_m[j] = s[j] m[j-1]$.
- 4) Calculate indx, where indx[j] = $max\{i: 0 \le i \le j \text{ and } s[i] = m[j]\}$

The sum of numbers (MCS) will be max $(s_m(j))$ and the indices will be $[max(indx)+1, minimum index of <math>s_m$ array with the element having the value MCS].

You can see the example steps as follows:

	x[0]	x[1]	x[2]	x[3]	x[4]	x[5]	<i>x</i> [6]	x[7]	x[8]	<i>x</i> [9]
x:	- 2	1	3	- 7	11	- 2	-6	12	- 3	- 1
s:	-2	-1	2	-5	6	4	-2	10	7	6
m:	-2	-2	-2	- 5	- 5	- 5	- 5	- 5	- 5	- 5
s_m :	- 2	1	4	- 3	11	9	3	15	12	11
indx:	0	0	0	3	3	3	3	3	3	3

where the MCS value is max $(s_m(j)) = 15$, the indices are [4, 7].

For the original problem definition and the example, you can refer to the Section V.A of the <u>Peachy</u> Parallel Assignments (EduHPC 2019) document.

You are required to implement a parallel version of this problem on OpenMP (or any other parallel programming model that you will utilize in this course).

Notes:

- You are required to run your programs with large arrays (may be generated randomly) and various number of threads (1-16), and make a performance analysis by comparing different versions.
- You are required to write a report (2 pages at most), which includes

- Your computer's specification (i.e., the number of cores, the number of threads; typically that can be obtained by *lscpu* command in Linux platform),
- Instructions for compiling and executing your programs,
- Graphs, your observations about the performance of your implementation, how you interpret the results.

Submission: You are required to submit your **commented** source code and report to cloud-lms. Please create a compressed file including all source files and report; and name it as yourstudentnumber_ASS2.zip (e.g. If your student number is 202112345678, the file name must be 202112345678_ASS2.zip). You need to work individually, no group work is allowed. No late submission will be accepted.