Введение в анализ данных

Лекция 8 Линейная классификация

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2020

Метод опорных векторов

Hinge loss

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \max(0, 1 - y_i \langle w, x_i \rangle) \to \min_{w}$$

Какой классификатор лучше?

• Будем максимизировать отступ классификатора — расстояние от гиперплоскости до ближайшего объекта

- Будем максимизировать отступ классификатора расстояние от гиперплоскости до ближайшего объекта
- При этом будет стараться сделать поменьше ошибок
- По сути, делаем как можно меньше предположений о модели, и верим, что это понизит вероятность переобучения

Простой случай

- Будем считать, что выборка линейно разделима
- Существует линейный классификатор, не допускающий ни одной ошибки

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

• Расстояние от точки до гиперплоскости $\langle w, x \rangle + w_0 = 0$:

$$\frac{|\langle w, x \rangle + w_0|}{||w||}$$

• Отступ классификатора:

$$\min_{i=1,\dots,\ell} \frac{|\langle w, x_i \rangle + w_0|}{\|w\|}$$

Небольшое предположение

• Линейный классификатор:

$$a(x) = \text{sign}(\langle w, x_i \rangle + w_0)$$

• Если мы поделим w и w_0 на число a>0, то выходы классификатора никак не поменяются:

$$a(x) = \operatorname{sign}\left(\frac{\langle w, x_i \rangle + w_0}{a}\right) = \operatorname{sign}\left(\langle w, x_i \rangle + w_0\right)$$

Небольшое предположение

• Поделим w и w_0 на $\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| > 0$, после этого будет выполнено

$$\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| = 1$$

• Расстояние от точки до гиперплоскости $\langle w, x \rangle + w_0 = 0$:

$$\frac{|\langle w, x \rangle + w_0|}{\|w\|}$$

• Отступ классификатора:

$$\min_{i=1,\dots,\ell} \frac{|\langle w, x_i \rangle + w_0|}{\|w\|} = \frac{\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0|}{\|w\|} = \frac{1}{\|w\|}$$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

• При условии, что $\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| = 1$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- При условии, что $|\langle w, x_i \rangle + w_0| \ge 1$
- И мы минимизируем $\|w\|$ тогда где-то модуль отступа будет равен 1

Метод опорных векторов (SVM)

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

• Любой линейный классификатор допускает хотя бы одну ошибку

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - 10^{1000} \end{cases}$$

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

• Объединим ограничения:

$$\xi_i \ge \max(0, 1 - y_i(\langle w, x_i \rangle + w_0))$$

Метод опорных векторов

$$C\sum_{i=1}^{\ell} \max(0, 1 - y_i(\langle w, x_i \rangle + w_0)) + ||w||^2 \to \min_{w, w_0}$$

• Функция потерь (hinge loss) + регуляризация

Сравнение логистической регрессии и SVM

Резюме

- Логистическая регрессия обучение модели так, что на объектах с близкими прогнозами эти прогнозы стремятся к доле положительных объектов
- Метод опорных векторов основан на идее максимизации отступа классификатора

Калибровка вероятностей

Предсказание вероятностей

Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x)=p доля положительных равна p

Калибровочная кривая

- Разобьём отрезок [0,1] на n корзинок $[0,t_1],[t_1,t_2],\dots,[t_{n-1},1]$ это ось X
- Для каждого отрезка $[t_i, t_{i+1}]$ берём объекты, для которых $b(x) \in [t_i, t_{i+1}]$
- Считаем среди объектов долю положительных, откладываем её на оси Y

Калибровочная кривая

Калибровка модели

- Задача: найти преобразование c(b(x)), которое «выпрямляет» калибровочную кривую
- Два подхода: изотонная регрессия и калибровка Платта

Калибровка Платта

- Обучающая выборка: $(b(x_i), y_i)_{i=1}^{\ell}$
- Один признак
- Будем использовать log-loss мы знаем, что он позволяет корректно оценивать вероятности

Калибровка Платта

- Обучающая выборка: $(b(x_i), y_i)_{i=1}^{\ell}$
- Один признак
- Будем использовать log-loss мы знаем, что он позволяет корректно оценивать вероятности

$$c(b(x)) = \frac{1}{1 + \exp(p * b(x) + q)}$$
$$-\sum_{i=1}^{\ell} ([y_i = +1] \log c(b(x_i)) + [y_i = -1] \log (1 - c(b(x_i)))) \to \min_{p,q}$$

Калибровка Платта

- Обучающая выборка: $(b(x_i), y_i)_{i=1}^{\ell}$
- Строить калибровку на тех же данных, на которых обучалась модель b(x) плохая идея
- На обучающей выборке b(x) неплохо приближает y
- На новых данных у b(x) другое распределение

Калибровка Платта

- Нужно использовать кросс-валидацию
- Строим b(x) на обучающем множестве, подбираем параметры c(x) на тестовом множестве
- Получаем столько моделей, сколько блоков в кросс-валидации
 — можно их усреднить

Изотонная регрессия

- Обучающая выборка: $(b(x_i), y_i)_{i=1}^{\ell}$
- Один признак
- Подбираем такую функцию $c\big(b(x)\big)$, что для $b(x_1) < b(x_2)$ выполнено $c\big(b(x_1)\big) \le c\big(b(x_2)\big)$
- Тоже надо подбирать на отложенной выборке или кроссвалидации

Изотонная регрессия

- Обучающая выборка: $(b(x_i), y_i)_{i=1}^{\ell}$
- Один признак
- Подбираем такую функцию $c\big(b(x)\big)$, что для $b(x_1) < b(x_2)$ выполнено $c\big(b(x_1)\big) \le c\big(b(x_2)\big)$
- Тоже надо подбирать на отложенной выборке или кроссвалидации

Калибровка вероятностей

Многоклассовая классификация

Бинарная классификация

Многоклассовая классификация

Многоклассовая классификация

One-vs-all

- K классов: $\mathbb{Y} = \{1, ..., K\}$
- $X_k = (x_i, [y_i = k])_{i=1}^{\ell}$
- Обучаем $a_k(x)$ на X_k , k = 1, ..., K
- $a_k(x)$ должен выдавать оценки принадлежности классу (например, $\langle w, x \rangle$ или $\sigma(\langle w, x \rangle)$)
- Итоговая модель:

$$a(x) = \arg \max_{k=1,\dots K} a_k(x)$$

One-vs-all

- Модель $a_k(x)$ при обучении не знает, что её выходы будут сравнивать с выходами других моделей
- Нужно обучать К моделей

All-vs-all

- $X_{km} = \{(x_i, y_i) \in X \mid y_i = k$ или $y_i = m\}$
- Обучаем $a_{km}(x)$ на X_{km}
- Итоговая модель:

$$a(x) = \arg \max_{k \in \{1, \dots, K\}} \sum_{m=1}^{K} [a_{km}(x) = k]$$

All-vs-all

- Нужно обучать порядка K^2 моделей
- Зато каждую обучаем на небольшой выборке

Доля ошибок

• Функционал ошибки — доля ошибок (error rate)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• Подходит для многоклассового случая!

Общие подходы

Микро-усреднение

Вычисляем TP_k , FP_k , FN_k , TN_k для каждого класса

Суммируем по всем классам, получаем ТР, FP, FN, TN

Подставляем их в формулу для precision/recall/...

Крупные классы вносят больший вклад

Макро-усреднение

Вычисляем нужную метрику для каждого класса (например, precision₁, ..., precision_K)

Усредняем по всем классам

Игнорирует размеры классов

Работа с категориальными признаками

- Значения признака «район»: $U = \{u_1, \dots, u_m\}$
- Новые признаки вместо x_j : $[x_j = u_1]$, ..., $[x_j = u_m]$
- One-hot кодирование

Район	Цена
ЦАО	10.000.000
ЮАО	4.000.000
ЦАО	9.000.000
CAO	7.000.000
ЮАО	5.000.000

- Значения признака $x_j \colon U_j = \{u_1, \dots, u_m\}$
- Посчитаем все категории в обучающей выборке:

$$count(j, u_p) = \sum_{i=1}^{\ell} [x_{ij} = u_p]$$

- Значения признака $x_j \colon U_j = \{u_1, \dots, u_m\}$
- Для регрессии посчитаем суммарный ответ в категории:

$$target(j, u_p) = \sum_{i=1}^{\ell} [x_{ij} = u_p] y_i$$

- Значения признака $x_j \colon U_j = \{u_1, \dots, u_m\}$
- Для классификации посчитаем классы в категории:

$$\operatorname{target}_{k}(j, u_{p}) = \sum_{i=1}^{\ell} [x_{ij} = u_{p}] [y_{i} = k]$$

- Mean-target encoding
- Задача регрессии
- Заменим категориальный признак на числовой:

$$\widetilde{x_{ij}} = \frac{\text{target}(j, x_{ij})}{\text{count}(j, x_{ij})}$$

- Mean-target encoding
- Задача классификации
- Заменим категориальный признак на K числовых:

$$\widetilde{x_{ij}} = \left(\frac{\operatorname{target}_1(j, x_{ij})}{\operatorname{count}(j, x_{ij})}, \dots, \frac{\operatorname{target}_K(j, x_{ij})}{\operatorname{count}(j, x_{ij})}\right)$$

Район	Счётчик	Цена
ЦАО	9.500.000	10.000.000
ЮАО	4.500.000	4.000.000
ЦАО	9.500.000	9.000.000
CAO	7.000.000	7.000.000
ЮАО	4.500.000	5.000.000

- Проблема в основном с редкими категориями
- Решение 1: добавление шума

Район	Счётчик	Цена
ЦАО	9.130.000	10.000.000
ЮАО	4.023.000	4.000.000
ЦАО	10.124.000	9.000.000
CAO	7.942.000	7.000.000
ЮАО	4.728.000	5.000.000

- Проблема в основном с редкими категориями
- Решение 2: добавление априорных величин в счётчики

$$\widetilde{x_{ij}} = \frac{\operatorname{target}(j, x_{ij}) + a}{\operatorname{count}(j, x_{ij}) + b}$$

• Решение 3: кроссвалидация счётчиков

Блок 1

Блок 2

Блок 3

• Решение 3: кроссвалидация счётчиков

• Решение 3: кроссвалидация счётчиков

Блок 3

Вычисляем признаки:
$$\widetilde{x_{ij}} = \frac{\operatorname{target}(j, x_{ij})}{\operatorname{count}(j, x_{ij})}$$

• Решение 3: кроссвалидация счётчиков

Блок 3

• Решение 3: кроссвалидация счётчиков

Резюме

- Счётчики позволяют заменить категориальный признак на один числовой
- Могут привести к переобучению
- Можно бороться с ним через добавление шума, априорных значений или кросс-валидацию