Correction

Feuille d'exercices nº 5 : Congruences

Exercice 1:

- 1. 128 15 = 113. Or 113 n'est pas divisible par 11 donc 128 et 15 ne sont pas congrus modulo 11.
- 2. Soit r un entier compris ente 0 et 6. Sachant que 2013 est congru à r modulo 7 et que $0 \le r < 7$, r est le reste dans la division euclidienne de 2013 par 7. $2013 = 7 \times 630 + 3$ donc r = 3.
- 3. Le plus petit entier positif r tel que $2017 \equiv r \pmod{10}$ est le reste dans la division euclidienne de 2017 par 10. On l'appelle aussi résidu de 2017 modulo 10. $2017 = 10 \times 201 + 7$ donc r = 7.

Exercice 2: On numérote les jours de l'année de 1 à 365. En 2014 le 1^{er} jour de l'année est un mercredi. Les affirmations suivantes sont-elles exactes? Si ce n'est pas le cas, dire de quel jour de la semaine il s'agit.

- 1. En 2014 le $141^{\text{ème}}$ jour de l'année est aussi un mercredi si et seulement si $141 \equiv 1 \pmod{7}$. $141 = 7 \times 20 + 1$ donc $141 \equiv 1 \pmod{7}$. Alors le $141^{\text{ème}}$ jour de l'année est bien un mercredi.
- 2. En 2014 le $220^{\rm ème}$ jour de l'année est-il aussi un mercredi ? $220=7\times31+3$ donc $220\equiv3\ (mod\ 7)$. Le $220^{\rm ème}$ jour de l'année n'est pas un mercredi ; il a le même nom que le $3^{\rm ème}$ jour de l'année. C'est donc un vendredi.

Exercice 3: Pour désigner le résidu d'un entier a modulo n, on peut utiliser la notation suivante : $res_n(a)$.

$$51 = 7 \times 7 + 2 \text{ donc } 51 \equiv 2 \pmod{7}.$$

$$21 = 7 \times 3 + 0 \text{ donc } res_7(21) = 0.$$

$$34 = 7 \times 4 + 6 \text{ donc } res_7(34) = 6.$$

$$36 = 7 \times 5 + 1 \text{ donc } res_7(36) = 1.$$

$$513 = 7 \times 73 + 2 \text{ donc } res_7(513) = 2.$$

$$511 = 7 \times 7 + 2 \text{ donc } 51 \equiv 2 \pmod{7}.$$

$$114 = 7 \times 16 + 2 \text{ donc } 114 \equiv 2 \pmod{7}.$$

$$114 = 7 \times 16 + 2 \text{ donc } 114 \equiv 2 \pmod{7}.$$

$$114 = 7 \times 16 + 2 \text{ donc } 114 \equiv 2 \pmod{7}.$$

$$114 = 7 \times 16 + 2 \text{ donc } 114 \equiv 2 \pmod{7}.$$

$$114 = 7 \times 16 + 2 \text{ donc } 114 \equiv 2 \pmod{7}.$$

$$114 = 7 \times 16 + 2 \text{ donc } 114 \equiv 2 \pmod{7}.$$

$$116 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

$$176 = 7 \times 25 + 1 \text{ donc } 176 \equiv 1 \pmod{7}.$$

Exercice 4:

- 1. Soit n un entier. La division euclidienne de n par 7 s'écrit n=7q+r avec $0 \le r < 7$, q et r entiers. Les valeurs possibles pour le reste r sont donc les entiers de 0 à 6.
- 2. Tableau donnant les résidus possibles de $n^3 \mod 7$. Les résidus de n^2 sont calculés pour faciliter le calcul de tête des résidus de n^3 . Et on se sert des résidus de n^2 et de n^3 pour obtenir ceux de n^5 dans l'exercice suivant.

	res de n^2	res de n^3	res de n^5
r	res de n-	res de n°	
	mod 7	mod 7	mod 7
0	0	0	0
1	1	1	1
2 3	4	1	4
3	2	6	5
4	2	1	2
5	4	6	3
6	1	6	6

3. On constate que les résidus possibles de n^3 modulo 7 sont 0, 1 ou 6.

Si $n^3 \equiv 0 \mod 7$ alors il existe un entier k tel que $n^3 = 0 + 3k = 3k$.

Si $n^3 \equiv 1 \mod 7$ alors il existe un entier k tel que $n^3 = 1 + 3k$.

Et enfin, si $n^3 \equiv 6 \mod 7$ alors $n^3 \equiv -1 \mod 7$.

Il existe donc un entier k tel que $n^3 = -1 + 3k$.

Exercice 5: $n^5 - 2$ est divisible par $7 \iff n^5 - 2 \equiv 0 \mod 7 \iff n^5 \equiv 2 \mod 7$

D'après le tableau de l'exercice précédent,

 $n^5 \equiv 2 \bmod 7 \iff n \equiv 4 \bmod 7$

 \iff il existe un entier k tels que n = 4 + 7k.

Exercice 6: Calculer le reste de la division euclidienne de $n = 19^{52} \times 23^{41}$ par 7.

On cherche d'abord le résidu de 19 modulo 7, puis la plus petite puissance de 19 qui soit congrue à 1 modulo 7

 $19 = 7 \times 2 + 5 \text{ donc } 19 \equiv 5 \pmod{7}$. Alors $19^{52} \equiv 5^{52} \pmod{7}$.

 $5^2 = 25 = 7 \times 3 + 4 \text{ donc } 5^2 \equiv 4 \pmod{7}.$

Alors $5^3 \equiv 20 \equiv 6 \equiv -1 \pmod{7}$.

Ainsi $5^6 \equiv 1 \pmod{7}$. Et par suite $5^{6p} \equiv 1 \pmod{7} \forall p \in \mathbb{N}$. $52 = 6 \times 8 + 4 \pmod{5^{52}} = (5^6)^8 \times 5^4$. Alors $5^{52} \equiv 5^4 \pmod{7}$.

Comme $5^4 \equiv 30 \equiv 2 \pmod{7}$, on en déduit que le résidu modulo 7 de 5^{52} (et donc de 19^{52}) est égal à 2.

On procède de façon analogue pour déterminer le résidu de 23⁴¹ modulo 3.

 $23 = 7 \times 3 + 2$ donc $23 \equiv 2 \pmod{7}$. Alors $23^{41} \equiv 2^{41} \pmod{7}$.

 $2^2 = 4 \text{ donc } 2^2 \equiv 4 \pmod{7}$. $2^3 \equiv 8 \equiv 1 \pmod{7}$. Alors $(2^3)^p \equiv 1 \pmod{7} \forall p \in \mathbb{N}$.

 $41 = 3 \times 13 + 2$ donc $2^{41} = (2^3)^{13} \times 2^2$. Ainsi $2^{41} \equiv 2^2 \pmod{7}$. Le résidu modulo 7 de 2^{41} (et donc de 23^{41}) est alors égal à 4.

Enfin, puisque $19^{52} \equiv 2 \; (mod \; 7)$ et $23^{41} \equiv 4 \; (mod \; 7)$, on en déduit que $19^{52} \times 23^{41} \equiv 8 \equiv 1 \; (mod \; 7)$.

Exercice 7:

1. $3^{2n} - 2^n = (3^2)^n - 2^n = 9^n - 2^n$.

Or $9^n - 2^n \equiv 2^n - 2^n \mod 7$, c'est-à-dire $9^n - 2^n \equiv 0 \mod 7$.

Alors $3^{2n} - 2^n$ est divisible par 7.

2. $7^{2n} - 23^n = (7^2)^n - 23^n = 49^n - 23^n$.

Or $49^n - 23^n \equiv 10^n - 10^n \mod 13 \equiv 0 \mod 13$.

Alors $7^{2n} - 23^n$ est divisible par 13.