## MACHINE LEARNING IN R

Bernd Bischl Computational Statistics, LMU



Material here: goo.gl/DYzSmA

## AGENDA

- About mlr
- Features of mlr
  - ► Tasks and Learners
  - ► Train, Test, Resample
  - Performance
  - Benchmarking
  - Hyperparameter Tuning
  - Nested Resampling
  - Parallelization
- mlrMBO Bayesian Optimization
- mlrCPO Composable Preprocessing
- iml Interpretable Machine Learning
- OpenML
- Outlook and mlr contribution

# MACHINE LEARNING



Machine Learning is a method of teaching computers to make predictions based on some data

# MOTIVATION: MLR I

#### The good news

- CRAN serves hundreds of packages for machine learning
- Often compliant to the unwritten interface definition:

```
> model = fit(target ~ ., data = train.data, ...)
> predictions = predict(model, newdata = test.data, ...)
```

#### THE BAD NEWS

- Some packages API is "just different"
- Functionality is always package or model-dependent, even though the procedure might be general
- No meta-information available or buried in docs

# Our goal: A domain-specific language for ML concepts!

MOTIVATION: MLR II

Project home page

https://github.com/mlr-org/mlr

- <u>Cheatsheet</u> for an quick overview
- <u>Tutorial</u> for mlr documentation with many code examples
- Ask questions in the <u>GitHub issue tracker</u>
- 8-10 main developers, quite a few contributors, 4 GSOC projects in 2015/16 and one coming in 2017
- About 20K lines of code, 8K lines of unit tests

# MOTIVATION: MLR III

 Unified interface for the basic building blocks: tasks, learners, hyperparameters, . . .



# R EXAMPLE: TITANIC

# Titanic: Machine Learning from Disaster

- Titanic sinking on April 15, 1912
- Data provided on our website goo.gl/DYzSmA
- 809 out of 1309 passengers got killed
- Task
  - Can we predict who survived?
  - Why did people die / Which groups?



# R Example: Data set

#### Data Dictionary

Survived Survived, 0 = No, 1 = YesPclass Ticket class, from 1st to 3rd

Sex Sex

Age Age in years

Sibsp # of siblings/ spouses
Parch # of parents/ children

Ticket Ticket number
Fare Passenger fare
Cabin Cabin number

Embarked Port of Embarkation

## Preprocessing I

Load the input data

```
> load("data.rda")
> print(summarizeColumns(data)[, -c(5, 6, 7)], digits = 0)
                       na mean min
                                  max nlevs
##
                 type
         name
       Pclass
                factor
                                  709
## 1
                           NA 277
## 2
     Survived
               factor 0
                         NA 500
                                  809
## 3
        Name character 0 NA
                                    2 1307
         Sex
               factor
                        0 NA 466
                                  843
##
## 5
         Age numeric 263 30
                                0 80
## 6
       Sibsp numeric
                                    8
       Parch
               numeric
## 7
                                  11
                                        929
## 8
       Ticket
             factor
                           NA
## 9
        Fare
              numeric 1
                           33
                                0 512
  10
        Cabin
             factor
                           NA
                                1 1014
                                        187
  11 Embarked
             factor
                           NA
                                2 914
                                          4
```

## Preprocessing II

- NB: All preprocessing steps are really naive, later we show better preprocessing with mlrCPO
- Set empty factor levels to NA

```
> data$Embarked[data$Embarked == ""] = NA
> data$Embarked = droplevels(data$Embarked)
> data$Cabin[data$Cabin == ""] = NA
> data$Cabin = droplevels(data$Cabin)
```

## Preprocessing III

```
> # Price per person, multiple tickets bought by one
> # person
> data$farePp = data$Fare / (data$Parch + data$Sibsp + 1)
>
> # The deck can be extracted from the the cabin number
> data$deck = as.factor(stri_sub(data$Cabin, 1, 1))
>
> # Starboard had an odd number, portside even cabin
> # numbers
> data$portside = stri_sub(data$Cabin, 3, 3)
> data$portside = as.numeric(data$portside) %% 2
>
> # Drop stuff we cannot easily model on
> data = dropNamed(data,
+ c("Cabin", "PassengerId", "Ticket", "Name"))
```

## Preprocessed data

```
> print(summarizeColumns(data)[, -c(5, 6, 7)], digits = 0)
             type na mean min max nlevs
##
        name
      Pclass factor 0
                        NA 277 709
## 1
    Survived factor 0 NA 500 809
        Sex factor 0
## 3
                        NA 466 843
                            0 80
## 4
        Age numeric 263 30
## 5
       Sibsp numeric
## 6 Parch numeric 0 0 0 9
   Fare numeric 1 33 0 512
## 7
    Embarked factor 2
                        NA 123 914
## 8
      farePp numeric 1 21 0 512
## 9
        deck factor 1014 NA 1 94
## 11 portside numeric 1059 0
                            0 1
```

#### **IMPUTATION**

- Impute numerics with median and factors with a seperate category
- NB: This is really naive, we should probably use multiple imputation and embed this in cross-valdiation

## Tasks I

■ Create classification problem

```
> task = makeClassifTask(id = "titanic", data = data,
+ target = "Survived", positive = "1")
```

## Tasks II

```
> print(task)
## Supervised task: titanic
## Type: classif
## Target: Survived
## Observations: 1309
## Features:
## numerics factors ordered functionals
##
## Missings: FALSE
## Has weights: FALSE
## Has blocking: FALSE
## Has coordinates: FALSE
## Classes: 2
## 0 1
## 809 500
## Positive class: 1
```

# WHAT LEARNERS ARE AVAILABLE? I

## CLASSIFICATION (84)

- LDA, QDA, RDA, MDA
- Trees and forests
- Boosting (different variants)
- SVMs (different variants)
- . . . .

# Clustering (9)

- K-Means
- EM
- DBscan
- X-Means
- . . .

## REGRESSION (61)

- Linear, lasso and ridge
- Boosting
- Trees and forests
- Gaussian processes
- . . . .

# Survival (12)

- Cox-PH
  - Cox-Boost
- Random survival forest
- Penalized regression
- ...

# WHAT LEARNERS ARE AVAILABLE? II

## ■ Explore all learners via tutorial

| Class / Short Name / Name                                                   | Packages           | Num. | Fac. | Ord. | NAs | Weights | Props                          | Note                                       |
|-----------------------------------------------------------------------------|--------------------|------|------|------|-----|---------|--------------------------------|--------------------------------------------|
| e <b>lassif.ada</b><br>nda<br>nda Boosting                                  | ada<br>rpart       | Х    | X    |      |     |         | prob<br>twoclass               | xval has been set to 0 by default for spe  |
| classif.adaboostm1<br>ndaboostm1<br>nda Boosting M1                         | RWeka              | Х    | Х    |      |     |         | prob<br>twoclass<br>multiclass | NAs are directly passed to WEKA with na.ac |
| classif.bartMachine<br>partmachine<br>Bayesian Additive Regression<br>frees | <u>bartMachine</u> | Х    | Х    |      | Х   |         | prob<br>twoclass               | use_missing_data has been setto TRUE       |
| classif.binomial                                                            | <u>stats</u>       | Х    | X    |      |     | х       | prob<br>twoclass               | Delegates to glm with freely choosable bin |

# WHAT LEARNERS ARE AVAILABLE? III

#### ■ Or ask mlr

```
> listLearners("classif", properties = c("prob",
   "multiclass"))[1:5, c(1,4,13,16)]
##
               class package prob multiclass
## 1 classif.adaboostm1
                         RWeka TRUE
                                         TRUE
## 2
     classif.boosting adabag,rpart TRUE
                                         TRUE
          classif.C50 C50 TRUE TRUE
## 3
## 4 classif.cforest
                        party TRUE
                                       TRUE
## 5 classif.ctree
                         party TRUE
                                         TRUE
```

## TRAIN MODEL I

- Create a learner
- Output prosterior probs instead of a factor of class labels

```
> lrn = makeLearner("classif.randomForest",
+ predict.type = "prob")
```

- Split data into a training and test data set (neccessary for performance evaluation)
- And train a model

```
> n = nrow(data)
> train = sample(n, size = 2/3 * n)
> test = setdiff(1:n, train)
>
> mod = train(lrn, task, subset = train)
```

## PREDICTIONS I

## ■ Make predictions for new data

```
> pred = predict(mod, task = task, subset = test)
> head(as.data.frame(pred))

## id truth prob.0 prob.1 response
## 2 2 1 0.566 0.434 0
## 10 10 0 0.884 0.116 0
## 11 11 0 0.868 0.132 0
## 12 12 1 0.110 0.890 1
## 16 16 0 0.518 0.482 0
## 20 20 0 0.908 0.092 0
```

# PREDICTIONS II

■ Evaluate predictive performance

```
> performance(pred, measures = list(mlr::acc, mlr::auc))
## acc auc
## 0.7963 0.8515
```

## RESAMPLING

- Aim: Assess the performance of a learning algorithm
- Uses the data more efficiently then simple train-test
- Repeatedly split in train and test, then aggregate results.



# CROSS VALIDATION

- Most popular resampling strategy: Cross validation with 5 or 10 folds
- Split the data into *k* roughly equally-sized partitions
- Use each part once as test set and joint k-1 other parts to train
- Obtain k test errors and average them

## Example of 3-fold cross-validation

| Iteration 1 | Test  | Train | Train |
|-------------|-------|-------|-------|
| Iteration 2 | Train | Test  | Train |
| Iteration 3 | Train | Train | Test  |

## CROSSVALIDATION IN MLR I

```
> rdesc = makeResampleDesc("CV", iters = 3,
    stratify = TRUE)
> r = resample(lrn, task, rdesc,
    measures = list(mlr::acc, mlr::auc))
> print(r)
## Resample Result
## Task: titanic
## Learner: classif.randomForest
## Aggr perf: acc.test.mean=0.7998,auc.test.mean=0.8534
## Runtime: 1.53608
```

# CROSSVALIDATION IN MLR II

```
> head(r$measures.test)
##
    iter
           acc
                  anc
## 1 1 0.8165 0.8575
## 2 2 0.8146 0.8693
## 3 3 0.7683 0.8332
> head(as.data.frame(r$pred))
##
    id truth prob.0 prob.1 response iter
           0 0.584 0.416
## 1 31
                                    1 test
           0 0.420 0.580
## 2 39
                                    1 test
## 3 53
           0 0.822 0.178
                                  1 test
           0 0.930 0.070
                                0 1 test
## 4 59
           0 0.946 0.054
## 5 71
                                  1 test
## 6 75
           0 0.450 0.550
                                    1 test
```

# RESAMPLING METHODS IN MLR

| Method    | Parameters |
|-----------|------------|
| Holdout   | split      |
|           | stratify   |
| CV        | iters      |
|           | stratify   |
| L00       |            |
| RepCV     | reps       |
|           | folds      |
|           | stratify   |
| Subsample | iters      |
|           | split      |
|           | stratify   |
| Bootstrap | iters      |
|           | stratify   |
|           |            |

## BENCHMARKING AND MODEL COMPARISON I

- Comparison of multiple models on multiple data sets
- Aim: Find best learners for a data set or domain, learn about learner characteristics, . . .

```
> bmr = benchmark(list.of.learners, list.of.tasks, rdesc)
```

## R Example: Algorithms I

■ Benchmark experiment - Compare 4 algorithms

```
> set.seed(3)
> 
> learners = c("glmnet", "naiveBayes", "randomForest",
+    "ksvm")
> learners = makeLearners(learners, type = "classif",
+    predict.type = "prob")
> 
> bmr = benchmark(learners, task, rdesc,
+    measures = mlr::auc)
```

# R Example: Algorithms II

#### Access aggregated results

```
> getBMRAggrPerformances(bmr, as.df = TRUE)

## task.id learner.id auc.test.mean
## 1 titanic classif.glmnet 0.8402
## 2 titanic classif.naiveBayes 0.8011
## 3 titanic classif.randomForest 0.8583
## 4 titanic classif.ksvm 0.8326
```

## R Example: Algorithms III

- Access more fine-grained results
- Many more getters for predictions, models, etc.

```
> head(getBMRPerformances(bmr, as.df = TRUE), 4)

## task.id learner.id iter auc
## 1 titanic classif.glmnet 1 0.8379

## 2 titanic classif.glmnet 2 0.8137

## 3 titanic classif.glmnet 3 0.8691
## 4 titanic classif.naiveBayes 1 0.8007
```

# R Example: Algorithms IV

## > plotBMRBoxplots(bmr)



## PERFORMANCE MEASURES I

- mlr has 71 performance measures implemented
- See all via https://mlr-org.github.io/mlr/articles/ tutorial/devel/measures.html
- Or ask via listMeasures()

| mlr 213                        | Get S  | started | Basi  | cs 🕶  | Advan | ced 🕶 | Exten | ding + | Арре | endix 🕶 | mlr-org   | Packages ▼ Search                                                                                                                                                                                                                                                |
|--------------------------------|--------|---------|-------|-------|-------|-------|-------|--------|------|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classificatio                  | n      |         |       |       |       |       |       |        |      |         |           |                                                                                                                                                                                                                                                                  |
| ID / Name                      | Minim. | Best    | Worst | Multi | Pred. | Truth | Probs | Model  | Task | Feats   | Aggr.     | Note                                                                                                                                                                                                                                                             |
| acc<br>Accuracy                |        | 1       | 0     | Х     | х     | х     |       |        |      |         | test.mean | Defined as: mean(response == truth)                                                                                                                                                                                                                              |
| auc<br>Area under the<br>curve |        | 1       | 0     |       | х     | Х     | Х     |        |      |         | test.mean | Integral over the graph that results fr<br>and tpr for many different thresholds                                                                                                                                                                                 |
| bac<br>Balanced<br>accuracy    |        | 1       | 0     | Х     | Х     | Х     |       |        |      |         | test.mean | For binary tasks, mean of true positive negative rate.                                                                                                                                                                                                           |
| ber<br>Balanced error<br>rate  | х      | 0       | 1     | Х     | Х     | Х     |       |        |      |         | test.mean | Mean of misclassification error rates classes.                                                                                                                                                                                                                   |
| brier<br>Brier score           | х      | 0       | 1     |       | х     | х     | Х     |        |      |         | test.mean | The Brier score is defined as the qual<br>between the probability and the valu<br>That means we use the numeric repn<br>for our target classes. It is similiar to<br>error in regression, multiclass.brier is<br>one vs. all comparisons and for a bin<br>brier. |
| brier.scaled<br>Brier scaled   |        | 1       | 0     |       | X     | х     | Х     |        |      |         | test.mean | Brier score scaled to [0,1], see<br>http://www.ncbi.nlm.nih.gov/pmc/ar                                                                                                                                                                                           |
| f1<br>F1 measure               |        | 1       | 0     |       | х     | Х     |       |        |      |         | test.mean | Defined as: 2 * tp/ (sum(truth == posi<br>sum(response == positive))                                                                                                                                                                                             |

# PERFORMANCE MEASURES II

- Titanic is binary classification
- 2x2 confusion matrix: true labels y vs.predictions  $\hat{y}$ :

|           |                             | Actual                                                     | Class $y$                                |                                                                                                                     |  |
|-----------|-----------------------------|------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
|           |                             | Positive                                                   | Negative                                 |                                                                                                                     |  |
| $\hat{y}$ | Test<br>outcome<br>positive | True positive (TP)                                         | False positive<br>(FP, Type I error)     | $\frac{\text{Precision} =}{\text{#TP}}$ $\frac{\text{#TP}}{\text{#TP} + \text{#FP}}$                                |  |
| outcome   | Test<br>outcome<br>negative | False negative<br>(FN, Type II error)                      | True negative (TN)                       | $\label{eq:megative} \begin{aligned} \text{Negative predictive value} &= \\ \frac{\#TN}{\#FN + \#TN} \end{aligned}$ |  |
|           |                             | Sensitivity = $\frac{\text{#TP}}{\text{#TP} + \text{#FN}}$ | Specificity = $\frac{\#TN}{\#FP + \#TN}$ | $Accuracy = \frac{\text{#TP} + \text{#TN}}{\text{#TOTAL}}$                                                          |  |

# PERFORMANCE MEASURES III

- Most classifiers are scoring systems
- Every threshold on that score induces a binary system
- Measure TPR and FPR for all, then put them in a ROC plot



■ AUC is the area under such a ROC curve (between 0.5 and 1)

## R Example: Random Forest I

■ The Random Forest seems to work best, lets have a closer look

```
> res = holdout(lrn, task)
> df = generateThreshVsPerfData(res$pred,
+ list(fpr, tpr, acc))
> plotROCCurves(df)
```

# R EXAMPLE: RANDOM FOREST II



# R Example: Random Forest III

## HYPERPARAMETER TUNING

- Optimize parameters or decisions for ML algorithm w.r.t. the estimated prediction error
- Tuner proposes configuration, eval by resampling, tuner receives performance, iterate



# HYPERPARAMETERS IN MLR I

```
> lrn = makeLearner("classif.rpart")
> getParamSet(lrn)
##
                     Type len
                              Def Constr Req Tunable Trafo
  minsplit
                  integer
                                20 1
                                     to Inf
                                                   TRUE
  minbucket
                  integer
                                 - 1 to Inf
                                                   TRUE
                  numeric - 0.01
##
                                     0 to 1
                                                   TRUE
  ср
                                 4 0 to Inf
  maxcompete
                  integer -
                                                   TRUE
  maxsurrogate
                  integer
                                 5 0 to Inf
                                                   TRUE
## usesurrogate
                 discrete
                                      0,1,2
                                                   TRUE
                                                   TRUE
  surrogatestyle discrete
                                        0,1
  maxdepth
                                30
                                    1 to 30
                                                   TRUE
                  integer
                                10 0 to Inf
                                                  FALSE
## xval
                  integer
                  untyped
                                                   TRUE
## parms
```

# HYPERPARAMETERS IN MLR II

Either set them in constructor or change them later

```
> lrn = makeLearner("classif.ksvm", C = 5, sigma = 3)
> lrn = setHyperPars(lrn, C = 1, sigma = 2)
```

## GRID SEARCH

Try all combinations of finite grid

 $\sim$  Inefficient, combinatorial explosion, searches irrelevant areas



## RANDOM SEARCH

Unformly randomly draw configurations,

 $\sim$  Scales better then grid search, easily extensible



## TUNING IN MLR. I

- Create a set of parameters
- Here we optimize an RBF SVM on logscale

```
> lrn = makeLearner("classif.ksvm",
+    predict.type = "prob")
>
> par.set = makeParamSet(
+    makeNumericParam("C", lower = -8, upper = 8,
+         trafo = function(x) 2^x),
+    makeNumericParam("sigma", lower = -8, upper = 8,
+         trafo = function(x) 2^x)
+         trafo = function(x) 2^x)
```

## TUNING IN MLR II

Optimize the hyperparameter of learner

```
> tune.ctrl = makeTuneControlRandom(maxit = 50L)
> tr = tuneParams(lrn, task = task, par.set = par.set,
+ resampling = rdesc, control = tune.ctrl,
+ measures = mlr::auc)
```

## TUNING IN MLR III

## NESTED RESAMPLING I

- Continuous tuning on the same data can lead to overfitting
- Unbiased evaluation with split into train, optimization and test set



## NESTED RESAMPLING EXAMPLE I

- makeTuneWrapper: Fuses a base learner with a search strategy to select its hyperparameters
- Therefore we need an additional inner resampling loop
- Tuning settings are like before (par.set and ctrl)

```
> inner = makeResampleDesc("Subsample", iters = 4)
> lrn = makeLearner("classif.ksvm", predict.type = "prob")
> lrn.autosvm = makeTuneWrapper(
+ lrn, resampling = inner,
+ par.set = par.set, control = tune.ctrl,
+ measures = mlr::auc)
```

# NESTED RESAMPLING EXAMPLE II

■ We use rdesc for the outer loop

```
> r = resample(lrn.autosvm, task,
+ resampling = rdesc, extract = getTuneResult,
+ measures = mlr::auc)
> r

## Resample Result
## Task: titanic
## Learner: classif.ksvm.tuned
## Aggr perf: auc.test.mean=0.8402
## Runtime: 101.106
```

# NESTED RESAMPLING EXAMPLE III

```
> r$extract
## [[1]]
## Tune result:
## Op. pars: C=34.5; sigma=0.0105
## auc.test.mean=0.8403
##
## [[2]]
## Tune result:
## Op. pars: C=1.53; sigma=0.0237
## auc.test.mean=0.8268
##
## [[3]]
## Tune result:
## Op. pars: C=47.7; sigma=0.00936
## auc.test.mean=0.8364
```

# R Example: Tuning + Nested I

■ Let's add our auto-tuned SVM to the benchmark

```
> bmr2 = benchmark(lrn.autosvm, task, rdesc)
```

# R Example: Tuning + Nested II

> plotBMRBoxplots(mergeBenchmarkResults(list(bmr, bmr2)))



## PARALLELIZATION

- We use our own package: parallelMap
- Setup:

```
> parallelStart("multicore")
> benchmark(...)
> parallelStop()
```

- Backends: local, multicore, socket, mpi and batchtools
- The latter means support for: makeshift SSH-clusters, Docker swarm and HPC schedulers like SLURM, Torque/PBS, SGE or LSF
- Levels allow fine grained control over the parallelization
  - mlr.resample: Job = "train / test step"
  - mlr.tuneParams: Job = "resample with these parameter settings"
  - mlr.selectFeatures: Job = "resample with this feature subset"
  - mlr.benchmark: Job = "evaluate this learner on this data set"

# EXPENSIVE BLACK-BOX OPTIMIZATION



mlrMBO - Bayesian Optimization and Model-Based Optimization https://github.com/mlr-org/mlrMBO

#### General idea:

- Do some experiments on the black box
- Measure performance
- Model relationship between params and performance by regression
- Optimize surrorgate model to get a new interesting configuration
- Evaluate
- ▶ Iterate

#### $Iter = 1,\, Gap = 2.0795e\text{-}01$





#### Iter = 2, Gap = 5.5410e-02





# Iter = 3, Gap = 5.5410e-02type ● init ▲ prop ■ seq

10.0

7.5

х

1.0 0.5 
0.0 
-0.5 
-1.0 -

0.12 -

0.09 -

·**a** 0.06 −

0.03 -

0.00 -

2.5

5.0



12.5



х

2.5

10.0



12.5

#### Iter = 5, Gap = 2.2202e-05





#### Iter = 15, Gap = 9.0305e-06



# HYPERPARAMETER TUNING



## **MLRMBO**

#### General mlrMBO workflow:

- 1. Define objective function and its parameters
- 2. Generate initial design (optional)
- 3. Define mlr learner for surrogate model (optional)
- 4. Set up a MBO control object
- 5. Start the optimization with mbo()

Or use mlr's really simple tuning interface with mbo!

## Machine Learning

- Successful, but requires human labor and expertise
  - ▶ Pre-process data
  - Select/ engineer features
  - Select a model family
  - Optimize hyperparameters (algorithm parameters)
  - ▶ ..
- Deep learning lets us automatically learn features
  - Automates feature engineering step, with large amount of data
  - Even more sensitive to architectures, hyperparameters, · · ·

# AUTOMATIC MACHINE LEARNING I

Can algorithms be trained to automatically build end-to- end machine learning systems?

# Use machine learning to do better machine learning

- Can we turn

  Solution = data + manual exploration + computation
- Into
  Solution = data + computation (x100)

# AUTOMATIC MACHINE LEARNING II

### Not about automating data scientists

- Efficient exploration of techniques
  - Automate the tedious aspects (inner loop)
  - Make every data scientist a super data scientist
- Democratisation
  - Allow individuals, small companies to use machine learning effectively (at lower cost)
  - Open source tools and platforms
- Data Science
  - Better understand algorithms, develop better ones
  - ► Self-learning algorithms

# MACHINE LEARNING PIPELINES



## AUTOMATING MACHINE LEARNING PIPELINES



# AUTOMATIC MACHINE LEARNING: TECHNIQUES

- Bayesian Optimization: Intelligently optimize pipelines/ architectures by iteratively choosing better ones
- Genetic algorithms: Evolve pipelines/architectures to work better for a given application
- Meta-learning: learn from previous applications to predict useful pipelines/ architectures for new problems
- **Transfer Learning:** train models on one problem, then transfer (parts) of good solutions to solve new problems.
- Reinforcement Learning: Train many models, use performance as "reward" for certain approaches
- Combinations of all of these

# AUTOMATIC MACHINE LEARNING: PARAMETERS



# MLRMBO: MODEL-BASED OPTIMIZATION TOOLBOX

- Any regression from mlr
- Arbtritrary infill
- Mixed-space optimization with categorical and subordinate parameters
- Single or multi-crit
- Multi-point proposal
- Via parallelMap and batchtools runs on many parallel backends and clusters
- Algorithm configuration
- Active research



## REFERENCES

- mlrMB0 Paper on arXiv (under review)
  https://arxiv.org/abs/1703.03373
- Bischl, Wessing et al: MOI-MBO: Multiobjective infill for parallel model-based optimization, LION 2014
- Horn, Wagner, Bischl et al: Model-based multi-objective optimization: Taxonomy, multi-point proposal, toolbox and benchmark, EMO 2014

# MLRCPO I

mlrCPO - Composable Preprocessing Operators for mlr https://github.com/mlr-org/mlrCPO

```
> library(mlrCPO)
```

 Preprocessing operations (e.g. imputation or PCA) as R objects with their own hyperparameters

```
> operation = cpoScale()
> print(operation)
## scale(center = TRUE, scale = TRUE)
```

# MLRCPO II

- Objects are handled using the "piping" operator %>>%:
- Composition:

```
> imputing.pca = cpoImputeMedian() %>>% cpoPca()
```

Application to data

```
> task %>>% imputing.pca
```

■ Combination with a Learner to form a machine learning pipeline

```
> pca.rf = imputing.pca %>>%
+ makeLearner("classif.randomForest")
```

### MLRCPO EXAMPLE: TITANIC I

The feature engineering and preprocessing steps done on the Titanic dataset, using mlrCPO:

```
> # Add interesting columns
> newcol.cpo = cpoAddCols(
+ farePp = Fare / (Parch + Sibsp + 1),
+ deck = stri_sub(Cabin, 1, 1),
+ side = {
+ digit = stri_sub(Cabin, 3, 3)
+ digit = suppressWarnings(as.numeric(digit))
+ c("port", "starboard")[digit %% 2 + 1]
+ })
```

# MLRCPO EXAMPLE: TITANIC II

```
> # drop uninteresting columns
> dropcol.cpo = cpoSelect(names = c("Cabin",
+ "Ticket", "Name"), invert = TRUE)
>
> # impute
> impute.cpo = cpoImputeMedian(affect.type = "numeric") %>>%
+ cpoImputeConstant("__miss__", affect.type = "factor")
```

# MLRCPO EXAMPLE: TITANIC III

```
> train.task = makeClassifTask("Titanic", train.data,
+ target = "Survived")
>
> pp.task = train.task %>>% newcol.cpo %>>%
+ dropcol.cpo %>>% impute.cpo
```

■ Advantage: Different preprocessing steps can be tried by preparing different CPO objects (→ "strategy pattern").

## Transformation of New Data

- New data (e.g. for testing, prediction) must also be preprocessed, in same order and with same hyperparameters
- Preprocessing parameters (e.g. PCA matrix) should only depend on training data
- Use retrafo() to get retrafo information to use on test data
- Object of type CPOTRained, behaves very similar to CPO

```
> # get retransformation
> ret = retrafo(pp.task)
> # can be applied to data using the %>>% operator,
> # just as a normal CPO
> pp.test = test.data %>>% ret
```

#### COMBINATION WITH LEARNERS

- Attach one or more CPO to a Learner to build machine learning pipelines
- Autotmatically handles preprocessing of test data

```
> learner = newcol.cpo %>>% dropcol.cpo %>>%
+ impute.cpo %>>% makeLearner("classif.randomForest",
+ predict.type = "prob")
>
> # the new object is a "CPOLearner", subclass of "Learner"
> inherits(learner, "CPOLearner")
## [1] TRUE
> # train using the task that was not preprocessed
> ppmod = train(learner, train.task)
```

#### TUNING WITH MLRCPO I

- CPO hyperparameters can be tuned jointly, and jointly with Learner parameters
- Tuning can be done using tuneParams() function from mlr or nested resampling, without any problem

```
> lrn = cpoFilterFeatures(abs = 2L) %>>%
   makeLearner("classif.randomForest")
>
> ps = makeParamSet(
   makeDiscreteParam("filterFeatures.method",
      values = c("anova.test", "chi.squared")),
   makeIntegerParam("mtry", lower = 1, upper = 10)
+ )
> ctrl = makeTuneControlRandom(maxit = 10L)
> tr = tuneParams(lrn, iris.task, cv3, par.set = ps,
+ control = ctrl)
```

## MLRCPO III

 "cbind" CPO combines different preprocessing outputs of the same data

```
> scale = cpoSelect(pattern = "Fare", id = "first") %>>%
+ cpoScale(id = "scale")
> scale.pca = scale %>>% cpoPca()
> cbinder = cpoCbind(scale, scale.pca, cpoSelect(
+ pattern = "Age", id = "second"))
> result = train.data %>>% cbinder
> result[1:3, ]
##
     Fare PC1
                       Age
## 2 2.1137 2.1137 0.9167
## 4 2.1137 2.1137 30.0000
## 6 -0.1458 -0.1458 48.0000
```

## MLRCPO IV

- listCPO() to show available CPOs
- Currently 69 CPOs, and growing: imputation, feature type conversion, target value transformation, over/undersampling, ...
- CPO "multiplexer" enables tuning over different distinct preprocessing operations
- Custom CPOs can be created using makeCPO()
- Further documentation in the vignettes

#### Interpretable Machine Learning

- iml Interpretable Machine Learning https://github.com/christophM/iml
- Background
  - Machine learning has a huge potential
  - Lack of explanation hurts trusts and creates barrier for machine learning adoption
  - Interpretation of the behaviour and explanation of predictions of machine learning model with Interpretable Machine Learning

#### SUPPORTED METHODS

- Model-agnostic interpretability methods for any kind of machine learning model
- Supported are
  - Feature importance
  - Partial dependence plots
  - Individual conditional expectation plots
  - ► Tree surrogate
  - Local interpretable model-agnostic explanations
  - Shapley value

# ONE IML MODEL FOR ALL METHODS I

■ Use iml package

```
> library(iml)
```

- We use our trained model mod
- We need training data from the index vector train

```
> mod

## Model for learner.id=classif.randomForest; learner.class=clas
## Trained on: task.id = titanic; obs = 872; features = 10
## Hyperparameters:
```

# ONE IML MODEL FOR ALL METHODS II

- Extract features
- Create IML model

```
> X = dropNamed(train.data, "Survived")
> iml.mod = Predictor$new(mod, data = X,
+ y = train.data$Survived, class = 2)
```

### FEATURE IMPORTANCE

■ What were the most important features?

```
> imp = FeatureImp$new(iml.mod, loss = "ce")
> plot(imp)
```



### PARTIAL DEPENDENCE PLOTS

■ How does the "passenger class" influence the prediction on average?

```
> pdp = PartialDependence$new(iml.mod, feature = "Pclass")
> plot(pdp)
```



# LOCAL LINEAR MODELS (LIME)

Explain a single prediction with LIME



### **OPENML**

Main idea: Make ML experiments reproducible, computer-readable and allow collaboration with others.



# OPENML R-PACKAGE

https://github.com/openml/r

#### TUTORIAL

■ Caution: Work in progress

#### CURRENT API IN R.

- Explore and Download data and tasks
- Register learners and upload runs
- Explore your own and other people's results

#### OPENML ACCOUNT

■ Install the openML package and either farff or RWeka

```
> library("OpenML")
```

- You need an openML API key to talk to the server
- Create an account on https://www.openml.org/register

```
> setOMLConfig(apikey = "c1994bdb7ecb3c6f3c8f3b35f4b47f1f")
> 
> # Permanently save your API disk to your config file
> saveOMLConfig(apikey = "c1994...47f1f", overwrite=TRUE)
```

■ Find your own API key in account settings API Authentication

#### OPENML DATA AND TASKS I

You can access all datasets or tasks

```
> datasets = listOMLDataSets()
> datasets[1:3, c(1,2,11)]
    data.id name number.of.features
##
## 1
             anneal
                                  39
## 2
         3 kr-vs-kp
                                  37
## 3
         4
              labor
                                  17
> tasks = listOMLTasks()
> tasks[1:3, 1:4]
## task.id
                          task.type data.id name
## 1
         2 Supervised Classification 2 anneal
## 2
         3 Supervised Classification 3 kr-vs-kp
## 3
         4 Supervised Classification 4
                                            labor
```

## OPENML DATA AND TASKS II

■ Search for data on https://www.openml.org/home



## OPENML TITANIC DATASET

■ We download the Titanic dataset from OpenML

```
> listOMLDataSets(data.name = "titanic")[, 1:5]
## data.id name version status format
## 1 40704 Titanic 2 active ARFF
## 2 40945 Titanic 1 active ARFF
> titanic = getOMLDataSet(data.id = 40945L)
```

#### OPENML TITANIC TASK

■ We also can directly load the Titanic classification task

> listOMLTasks(data.name = "titanic")[1:2, 1:4]

```
## task.id
                         task.type data.id name
                         Clustering 40704 Titanic
## 1 145769
## 2 146230 Supervised Classification 40704 Titanic
> titanic.task = getOMLTask(task.id = 146230)
> titanic.task
##
  OpenML Task 146230 :: (Data ID = 40704)
    Task Type : Supervised Classification
##
## Data Set : Titanic :: (Version = 2, OpenML ID =
## Target Feature(s) : class
## Estimation Procedure : Stratified crossvalidation (1 x 10 f
## Evaluation Measure(s): precision
```

#### OPENML AND MLR

- We can use OpenML and mlr together
- Use mlr for learner and use the task that we've got from OpenML

```
> lrn = makeLearner("classif.randomForest", mtry = 2)
> run.mlr = runTaskMlr(titanic.task, lrn)
> run.mlr$bmr$results
## $Titanic
## $Titanic$classif.randomForest
## Resample Result
## Task: Titanic
## Learner: classif.randomForest
## Aggr perf: ppv.test.join=0.7692,timetrain.test.sum=3.0720,tim
## Runtime: 3.17739
> # uploadOMLRun(run.mlr)
```

### There is more ...

- Regression, Clustering and Survival analysis
- Cost-sensitive learning
- Multi-Label learning
- Imbalancy correction
- Wrappers
- Bayesian optimization
- Multi-criteria optimization
- Ensembles, generic bagging and stacking
- . . . .

#### WE ARE WORKING ON

- Even better tuning system
- More interactive and 3D plots
- Large-Scale learning on databases
- Time-Series tasks
- Large-Scale usage of OpenML
- auto-mlr
- . . .

### MLR CONTRIBUTION

- Write an issue on Git
- We are founding an association Machine Learning in R e.V subscribe for updates contact.mlr.org@gmail.com

# Thanks!