

SalinasBOT

Agente Conversacional de apoio ao turista da região de Aveiro

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática

Sistemas Inteligentes

João Alegria | 68661 Hugo Pintor | 76610 Higino Caires | 89094 Carlos Manuel | 88702

ÍNDICE

PROPÓSITO DO TRABALHO	3
CHATBOT	4
ARQUITETURA	6
Workflow	6
Componentes do Chatbot	7
Componentes Primários Componentes Secundários	
AIML	9
WORDNET	11
Guia de Instalação	11
BASE DE DADOS	Erro! Marcador não definido.
REFERÊNCIAS	13

PROPÓSITO DO TRABALHO

Proposto na Unidade Curricular de Sistemas Inteligentes do Mestrado de Engenharia Informática, SalinasBOT consiste num agente conversacional de apoio ao turista da região de Aveiro.

O seu principal intuito consiste no desenvolvimento de um *chatbot* e permitir a troca de mensagens entre o utilizador e o mesmo, respondendo assim o mais assertivamente às questões lançadas pelo utilizador.

Assim, a missão deste projeto é dar resposta às principais esferas turísticas da região de Aveiro, tais como: Gastronomia, Hotelaria, Espaços de Lazer e Produtos Regionais. Também é interessante ver presente serviços complementares tais como, previsões meteorológicas, farmácias de serviço da região e serviços de partilha de transporte.

No desenrolar do presente relatório, será apresentado e explicado os primeiros detalhes idealizados para a implementação do *bot*.

CHATBOT

O termo *chatbot* têm tido uma evolução significativa nos últimos anos devido à adoção destes por parte de grandes empresas da área da tecnologia. Apple, Facebook e Google são alguns dos exemplos possíveis a apontar, onde foram adotadas novas ferramentas e *frameworks* de modo a construir assistentes inteligentes e, proporcionar assim, ao utilizador uma rápida e diferente interação com os seus produtos.

É possível definir este como um programa ou serviço de resposta automática baseado em regras, no qual pode ou não conter inteligência artificial, onde o utilizador poderá interagir e estabelecer um diálogo através da troca de mensagens de texto ou de voz.

O seu principal objetivo é responder a perguntas colocadas pelo utilizador e responder a estas o mais corretamente possível, procurando simular o comportamento de um ser humano durante a interação. [1]

É possível apontar dois tipos de *chatbots*. Os que são baseados em regras e os que são baseados em inteligência artificial. Os primeiros, unicamente baseados em regras, apresentam algumas limitações pois dependem da introdução de palavras-chave ou de comandos específicas para procederem com o seu fluxo. Desta forma, na eventualidade do *bot* não compreender a mensagem introduzida pelo utilizador, poderá conduzir a uma resposta errada ou à ausência da mesma. No entanto, um *bot* que tenha presente inteligência artificial na sua solução terá uma maior capacidade de aprender e entender a linguagem natural. Desta forma, quanto maior for a sua utilização e o número de utilizadores a beneficiar da solução, a tendência é que esta melhore, tornando-se mais credível e convincente. [2]

As principais vantagens da utilização dos *chatbots* têm como objetivo a simplificação de certas interações, especialmente as que são repetitivas, tornando possível a aplicação de respostas previamente delineadas para determinadas solicitações ao agente.

Por outro lado, não são apenas as grandes empresas a adotar este serviço. A adoção de pequenos *bots* em sistemas de troca de mensagens têm vindo a ser adotadas por pequenas e médias empresas, sobretudo com o apoio das aplicações de redes sociais já existentes. Alguns destes podem ser encontrados no Facebook Messenger, Slack e Skype, reduzindo assim a necessidade de custos acrescidos com o envio de mensagens de texto – SMS – e as limitações que estas acarretam. [3]

Figura 1 - Exemplo da utilização do chatbot da iFood no Facebook Messenger [3]

Relativamente aos modelos de suporte de criação de uma resposta, Denny Britz em *Deep Learing for Chatbots* [4] conclui que um *chatbot* pode gerar respostas com base em modelos de aprendizagem ou utilizar heurísticas para selecionar respostas predefinidas de um repositório já existente.

Desta forma é possível apontar três tipos de modelos [5]:

- Modelos Geradores tendencialmente mais difíceis de construir e de treinar. Para estes, é necessário um número considerado de exemplos para treinar o modelo de aprendizagem, de modo a obter uma qualidade de resposta desejável. No entanto, não é possível assertivamente calcular qual a resposta que este irá gerar.
- Modelos baseados em recuperação teoricamente mais fáceis de construir, fornecendo uma resposta ao utilizador mais previsível. Neste é possível definir um conjunto respostas e ter um maior controlo no retorno da mesma ao utilizador, garantindo assim que não hajam respostas inadequadas, face ao proposto pelo mesmo, onde a tomada de decisão da resposta a retornar tem como base o contexto (como por exemplo, coordenadas atuais do utilizador, username, todas as mensagens anteriores, etc) da conversa até então.
- Modelos com padrões baseados em heurísticas as heurísticas para a seleção de uma resposta podem ser concebidas de diferentes formas, desde condições if-else até classificadores de machine learning. Uma das práticas mais simples é a adoção de regras rules com padrões como condição para as regras. A linguagem AIML [6] Artificial Intelligence Markup Language é uma das que emprega a adoção de regras para escrever padrões e modelos de resposta.

ARQUITETURA

A arquitetura exibida de seguida apresenta o *workflow* e os componentes que, nesta fase inicial, o *chatbot* irá reunir.

Após um levantamento de algumas abordagens já existentes [5] [7] conclui-se que o modo de funcionamento de um *chatbot* é semelhante em todos os analisados.

Assim, a arquitetura foi conceptualizada de modo a ser fluída e escalável. De notar que, esta solução corresponde a uma primeira versão da mesma, suscetível a posteriores alterações conforme a evolução do trabalho.

Figura 2 - Proposta de arquitetura do chatbot

Workflow

O workflow idealizado e apresentado anteriormente reúne as principais ações que o chatbot desempenhará. Uma vez que, a escalabilidade é um fator tomado em consideração, é possível adicionar novas funcionalidades no decorrer da evolução do projeto, tais como, o acesso a APIs de terceiros.

A solução iniciará com a interação entre o *chatbot* e o utilizador, onde será capturado o *input* escrito pelo mesmo e, analisado posteriormente, pelo interpretador.

Neste, e com o auxílio de ferramentas linguísticas existentes no Wordnet [8], irá tentar atribuir ao *input* do utilizador uma categoria, que estará associada a uma *tag* AIML, disponível no Repositório de Perguntas.

Após essa atribuição, o *chatbot* utilizará essa mesma categoria, mas desta vez para ir procurar uma das respostas disponíveis no Repositório de Respostas.

O workflow ficará concluído quando a resposta encontrada for enviada ao utilizador, repetindo-se este ciclo quando o utilizador fornecer um novo input.

Em paralelo estará implementado um sistema de *logging* que permitirá guardar as conversas entre o utilizador e o *chatbot*, bem como a utilização de bases de conhecimento externas (Repositório de Informações Externas) para auxiliar no enriquecimento do Repositório de Respostas.

Componentes do Chatbot

Dos componentes exibidos na proposta de arquitetura já apresentada, é possível dividir estes em duas categorias: componentes primários e componentes secundários.

Componentes Primários

Os componentes primários são os componentes essenciais para o funcionamento da solução, sendo que é sobre estes que incidem os principais processos contidos no *workflow* descrito anteriormente.

Assim componentes primários são:

- Consola Ferramenta de interação entre o chatbot e o utilizador
- Interpretador Módulo de interpretação dos inputs do utilizador e a associação a uma questão e tag AIML para que possa ser retornada a resposta mais assertiva.
- Repositório de Perguntas / Respostas Sistema de base de dados do sistema. Nesta primeira iteração está estimado a implementação de tags definidas em AIML nas quais estão associados possíveis skeletons de questões colocadas pelo utilizador, bem como, possíveis respostas às mesmas.

Componentes Secundários

Relativamente aos componentes secundários estes têm como objetivo o auxílio aos componentes primários, especificados anteriormente, providenciando novas funcionalidades no worksflow do chatbot.

Assim os componentes secundários até agora idealizados são:

- Sistema de Logging Módulo que permite guardar as mensagens trocadas entre o utilizador e o bot num ficheiro de texto.
- Wordnet A utilização do Wordnet centrar-se-á sobretudo como suporte ao interpretador, tendo como principal função utilizar as suas valências na associação de sinónimos e de contextualização frásica, de modo a auxiliar a interpretação dos inputs do utilizador. Com isto, espera-se uma maior facilidade na identificação das perguntas e consecutivamente na recuperação e construção da resposta.

 Repositório de Informações Externas – Módulo encarregue de recolher informações de serviços terceiros, nomeadamente através do uso de APIs e pedidos HTTP. Será particularmente útil para recolher informações relativas aos serviços de meteorologia, farmácias e de transportes, de modo a fornecer ao utilizador informação sempre atualizada e, desta forma, aumentar o know-how do bot.

AIML

O AIML (Artificial Intelligence Markup Language) é um conjunto de tags baseadas na linguagem em XML, de forma a possibilitar a representação e criação de diálogos semelhantes à linguagem natural por meios de softwares. Por fim, este consegue simular a inteligência humana. [9]

A unidade básica da AIML consiste no tag <category>, onde cada categoria é formada por <pattern> e <template>, onde:

- **<pattern>** Contém uma frase que o usuário pode realizar, ou seja, basicamente consiste em uma questão.
- <template> Contém a resposta que o chatterbot irá utilizar para a resposta.

Exemplo:

O tag <srai> permite identificar ao chatterbot que duas questões são similares, ou seja, apesar de formuladas de um modo diferente, tem um mesmo significado.

Exemplo:

O caractere para substituição (*) pode ser usado quando se tem um grupo de instruções semelhantes que precisarão ser definidos a partir de um mesmo conjunto de questionamento.

Exemplo – ChatBot explicar a finalidade dos móveis de uma casa:

```
<aiml>
  <category>
    <pattern>0 que é uma *</pattern>
    <template><srai>DEFINE <star/></srai></template>
  </category>
  <category>
    <pattern>Explique o que é uma *</pattern>
    <template><srai>O que é uma <star/></srai></template>
  </category>
  <category>
    <pattern>DEFINE Mesa</pattern>
    <template>Serve para servir refeições.</template>
  </category>
  <category>
    <pattern>DEFINE Cadeira</pattern>
    <template>Móvel para se sentar</template>
  </category>
</aiml>
```

Uma determinada questão pode ter várias respostas possíveis, desta forma, a utilização do tag random> permite que o chatterbot escolha uma das respostas de modo aleatório.

Exemplo - ChatBot explicar a finalidade dos móveis de uma casa:

WORDNET

O Wordnet [8] consiste numa extensa base de dados lexical e servirá como suporte ao interpretador, como demonstrado na arquitetura.

Sendo o Wordnet uma interface presente no módulo NLTK [10], este permite efetuar *Natural Language Processing* a partir do *input* fornecido pelo utilizador.

Desta forma, as principais funcionalidades do Wordnet são:

- Sinónimos, hipónimos, hiperónimos e definições de palavras através de *Synsets* (conjuntos de sinónimos);
- Antónimos através de Lemmas;
- Similaridade entre palavras;
- Stemming e Lemmatization com o uso de Morphy.

Pretende-se utilizar o WordNet para efetuar a interpretação do que é escrito no chat, pela parte do utilizador, nomeadamente efetuar descrições sobre determinadas palavras, como funcionalidade extra, e fazer uso de Natural Language Processing, para intercalar com o uso do AIML.

Guia de Instalação e Primeiros-Passos

De modo a aplicar a interface Wordnet, é necessário instalar o NLTK e para isso basta executar o comando pip install -U nltk na linha de comandos.

De seguida, num ficheiro Python ou usando o Python diretamente pela consola, é também necessário importar o NLTK e transferir os ficheiros de *corpora* através das seguintes instruções:

```
import nltk
nltk.download()
```

Depois dos passos anteriores terem sido elaborados e visto que os módulos necessários já estão instalados, é possível proceder com a importação do NLTK, através do:

```
from nltk.corpus import wordnet as wn
```

Assim sendo o Wordnet vai nos fornecer funcionalidades como:

- hipónimos, sinónimos, hiperónimos e definições de palavras por meio de synonym ring ou synset que é um conjunto de dados sendo eles considerados semanticamente equivalentes;
- Similaridade entre palavras;
- Através do Lemmas temos os Antónimos;
- Stemming e Lemmatization usando o Morphy

O Stemming vai permitir remover de uma palavra os seus prefixos e sufixos, alterando-os para a sua forma inicial. Já a Lemmatization é um método baseado no WordNet's built-in morphy function, sendo semelhante ao Stemming o que faz é converter a palavra na sua forma inicial, sendo que a palavra raiz também conhecida com Lemma, está presente no dicionário.

Em comparação, o Stemming é mais lento porque têm de verificar se o *Lemma* está presente no dicionário.

Fazendo um apanhado geral, o WordNet servirá para realizar a interpretação do que é escrito no chat, pela parte do utilizador, como especificamente efetuar descrições sobre determinadas palavras, sendo uma funcionalidade extra, e usar processamento natural da linguagem, para intercalar com o uso do AIML.

REFERÊNCIAS

- [1] Wikipedia, "Chatterbot," 2018. [Online]. Available: https://pt.wikipedia.org/wiki/Chatterbot. [Accessed: 15-Apr-2018].
- [2] M. Shinmi, "ChatBots Tendência 2017," 2017. [Online]. Available: https://www.oxigenweb.com.br/artigos/chatbots-tendencia-2017/. [Accessed: 15-Apr-2018].
- [3] L. R. Oliveira, "Você conhece os Chatbots? Descubra aqui o que são e como usá-los para otimizar o atendimento ao cliente," 2017. [Online]. Available: https://marketingdeconteudo.com/chatbots/. [Accessed: 15-Apr-2018].
- [4] D. Britz, "Deep Learning for Chatbots, Part 1 Introduction," 2016. [Online]. Available: http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/. [Accessed: 15-Apr-2018].
- [5] Pavel Surmenok, "Chatbot Architecture," 2016. [Online]. Available: https://medium.com/@surmenok/chatbot-architecture-496f5bf820ed. [Accessed: 15-Apr-2018].
- [6] Wikipedia, "AIML," 2017. [Online]. Available: https://pt.wikipedia.org/wiki/AIML. [Accessed: 16-Apr-2018].
- [7] Quora, "What is the typical architecture of an Al chatbot?," 2017. [Online]. Available: https://www.quora.com/What-is-the-typical-architecture-of-an-Al-chatbot. [Accessed: 16-Apr-2018].
- [8] Princeton University, "WordNet," 2018. [Online]. Available: https://wordnet.princeton.edu. [Accessed: 15-Apr-2018].
- [9] Cláudio L. V. Oliveira, "Visão geral sobre Artificial Intelligence Markup Language (AIML)." [Online]. Available: http://www.profclaudio.com.br/arquivos/AIML-Visao_Geral.pdf. [Accessed: 16-Apr-2018].
- [10] NLTK Project, "WordNet Interface." [Online]. Available: http://www.nltk.org/howto/wordnet.html. [Accessed: 16-May-2018].