CSE214 – Spring 2023 Recitation #12

1a. [**10** minutes]

	Worst Case	Average Case	Best case
Binary search of a			
sorted array			
Insertion sort			
Merge Sort			
Quick Sort without			
"median of three"			
pivot selection			
Bubble sort			
Selection sort			
Heap sort			
Counting sort			

	Heap sort			
	Counting sort			
_				
	1b. When does the best	case for bubble	sort and insertion	sort occur?
	1c. Show that the best c	ase for bubble s	ort and insertion s	ort is O(n).
2	a) Show that the worst	case time comp	lexity of quick sort	is O(n^2).

2b) Show that the time complexity of heap sort is O(n log n).

3) Perform Merge Sort on the following array: [66, 22, 32, 15, 28, 43, 29, 80]
4.[10 minutes] Perform Heap Sort to sort the array [75, 20, 1000, 7, 9,17] in ascending order.
4a. What are the number of operations to convert an array into a heap?
4b. For a heap array, what is the formula to find the parent, left child, right child?
4c. Is an array sorted in ascending order always a min-heap? Why or why not?

4d. How would the first first iteration of quicksort look on this array if we have the pivot be the last element?
5. [5 minutes] Suppose we are sorting an array of eight integers using quicksort, and we have just finished the first partitioning with the array look like this:

12

11

10

30

Which statement is correct?

- A. The pivot could be either the 7 or the 30
- B. The pivot could be the 7, but it is not the 30
- C. The pivot is not the 7, but it could be the 30
- D. Neither the 7 nor the 30 is the pivot