MT09-A2014 – Examen médian : CORRIGÉ

Questions de cours : durée : 30mn. Sans documents ni outils électroniques

Exercice 1 (barème approximatif: 1 points)

Soit $g: \mathbb{R} \to \mathbb{R}$, une fonction définissant la méthode de point fixe : x_0 donné, $x_n = g(x_{n-1})$, pour $n = 1, 2, \ldots$

- 1. Énoncer sans le démontrer le théorème de convergence globale pour cette méthode. On précisera bien les hypothèses et les conclusions.
- 2. Énoncer sans le démontrer le théorème de convergence locale pour cette méthode. On précisera bien les hypothèses et les conclusions.

Réponse : cf. polycopié.

Exercice 2 (barème approximatif: 2 points)

Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$, une matrice inversible (avec n > 0). On cherche une matrice $C \in \mathcal{M}_{nn}(\mathbb{R})$, vérifiant : C triangulaire inférieure, $c_{ii} > 0$ ($\forall i, i = 1, ..., n$) et $A = CC^T$.

1. Montrer que si C existe, alors A est symétrique.

Réponse :
$$A^T = (CC^T)^T = (C^T)^T C^T = CC^T = A$$
.

2. Montrer que si C existe, alors C et C^T sont inversibles.

Réponse : comme C est triangulaire inférieure, on a $\det(C) = \det(C^T) = \prod_{i=1}^n c_{ii} > 0$, donc C et C^T sont inversibles.

3. Montrer que si C existe, alors A est définie positive.

Réponse : soit $x \in \mathbb{R}^n$. On a $x^TAx = x^TCC^Tx = (C^Tx)(C^Tx) = ||C^Tx||_2^2 \ge 0$. On en déduit que A est semi-définie positive. De plus si $x \ne 0$, alors $x^TAx = ||C^Tx||_2^2 = 0$ implique que $C^Tx = 0$ et donc que x = 0 car C^T est inversible (donc $Ker(C^T) = \{0\}$). On conclut donc que A est définie positive.

4. En déduire une condition nécessaire sur A, pour que cette décomposition existe.

Réponse : pour que A admette une telle décomposition, il est nécessaire que A soit SDP.

5. Montrer, en la calculant, que C existe pour $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 8 & 4 \\ 3 & 4 & 11 \end{pmatrix}$.

Expliquer brièvement le principe des calculs avant de les effectuer.

Réponse : pour la méthode, voir le cours (travail par identification : calcul d'abord du terme diagonal, puis de la colonne sous la diagonale). Résultat : $C = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & -1 & 1 \end{pmatrix}$.

Exercice 3 (barème approximatif: 2 points)

Soit un réel ε et soit la matrice $A = \begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix}$ et le vecteur $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

1. À quelles conditions sur ε la matrice A admet-elle une factorisation A=LU?

(On ne demande pas de faire cette factorisation dans cette question.)

Réponse : les sous-matrices principales de A ont pour déterminants ε et $\varepsilon-1$. Elles sont inversibles si et seulement si $\varepsilon \neq 0$ et $\varepsilon \neq 1$. Donc A = LU est faisable sous ces conditions.

- 2. On suppose les conditions de la question 1. vérifiées.
 - (a) Effectuer la factorisation A = LU.

Réponse : on trouve $A = \begin{pmatrix} 1 & 0 \\ \frac{1}{\varepsilon} & 1 \end{pmatrix} \begin{pmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{pmatrix}$.

(b) Résoudre le système Ax = b en utilisant la factorisation A = LU.

Réponse : on résout Ly = b, puis Ux = y. On trouve $y = \begin{pmatrix} 1 \\ 2 - \frac{1}{\varepsilon} \end{pmatrix}$ puis $x = \begin{pmatrix} \frac{1}{1 - \varepsilon} \\ \frac{1 - 2\varepsilon}{1 - \varepsilon} \end{pmatrix}$.

- 3. On travaille en arithmétique flottante en décimal, avec une mantisse de 3 chiffres et un exposant de 1 chiffre.
 - (a) Dire quelle forme prennent les nombres à virgule flottante.

Réponse : avec les simplifications du cours, on peut écrire l'ensemble des flottants comme : $\mathcal{F} = \{\pm 0.d_1d_2d_3\ 10^{\pm e_1}\} \cup \{0\}$, où d_1, d_2, d_3 et e_1 sont des chiffres dans $\{0, 1, \dots, 9\}$ et $d_1 \neq 0$.

(b) Donner les résultats des calculs de L,U et x en arithmétique flottante, quand $\varepsilon=5\ 10^{-4}$. Bien expliquer.

Réponse : des erreurs vont être commises dans le calcul de $u_{22}=1-\frac{1}{\varepsilon}$. Avec $\varepsilon=5\ 10^{-4}$, on obtient $\frac{1}{\varepsilon}=0.200\ 10^4$. Comme $1=0.100\ 10^1=0.0001\ 10^4$, $u_{22}=1-\frac{1}{\varepsilon}=(0.0001-0.200)\ 10^4=-0.200\ 10^4$ en arithmétique flottante. Cela signifie que le résultat du calcul $1-\frac{1}{\varepsilon}$ vaut $-\frac{1}{\varepsilon}$.

Il vient donc :
$$\widetilde{L} = \begin{pmatrix} 1 & 0 \\ 2 & 10^3 & 1 \end{pmatrix}$$
, $\widetilde{U} = \begin{pmatrix} 5 & 10^{-4} & 1 \\ 0 & -2 & 10^3 \end{pmatrix}$.

La résolution de $\widetilde{L}\widetilde{y}=b$ nécessite le même type d'approximation. Il vient alors $\widetilde{y}=\begin{pmatrix}1\\-2&10^3\end{pmatrix}$. La

résolution de
$$\widetilde{U}\widetilde{x} = \widetilde{y}$$
 donne $\widetilde{x} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Ces résultats sont très éloignés de la solution exacte!

Note: si on calcule l'approximation flottante de la solution exacte, on trouve :

$$fl(x) = \left(\begin{array}{ccc} \frac{1}{1-\varepsilon} & = & 1\\ \frac{1-\varepsilon}{1-2\varepsilon} & = & 0.999 \end{array}\right),$$

en notant que $1 - \varepsilon = (0.100 - 0.00005)10^1 = (0.09995)10^1 = 0.100 \ 10^1 = 1$, et $1 - 2\varepsilon = (0.100 - 0.0001)10^1 = 0.0999 \ 10^1 = 0.999$. On a supposé ici que les calculs sont faits exactement, puis arrondis au plus proche (et que 0.5 est arrondi à 1).

Il faut noter que $f(x) \approx x$, mais que \tilde{x} est très différent de f(x).

(c) Comment pourrait-on simplement améliorer ces résultats?

Réponse : la grande erreur qui est commise provient du premier pivot $(=\varepsilon)$ qui est très petit. Pour améliorer notablement la précision, il suffirait de permuter les deux lignes de A, afin que le pivot devienne 1.

MT09-A14- Examen médian : CORRIGÉ

Durée: 1h30.

Polycopiés de cours et scilab autorisés - pas d'outils numériques

Questions de cours déjà traitées : environ 5 points.

Exercice 1: (barème approximatif: 5,5 points) CHANGEZ DE COPIE

Soit A une matrice symétrique appartenant à $\mathcal{M}_{nn}(\mathbb{R})$ $(n \geq 1)$. On note $\lambda_1, \lambda_2, \ldots, \lambda_n$ ses valeurs propres, distinctes ou non. On note également y_1, y_2, \ldots, y_n les vecteurs propres associés, qu'on suppose normalisés : $||y_i||_2 = 1, \forall i = 1, \ldots, n$.

1. (a) Déterminer les valeurs propres de A^2 en fonction des $(\lambda_i)_{i=1,\dots,n}$.

Réponse : on a $Ay_i = \lambda_i y_i$ $(y_i \neq 0)$, qu'on multiplie par A à gauche pour obtenir $A^2 y_i = \lambda_i A y_i = \lambda_i^2 y_i$. Donc les valeurs propres de A^2 sont les $(\lambda_i^2)_{i=1,\dots,n}$.

(b) En déduire que $\rho(A^2) = (\rho(A))^2$.

Réponse : $\rho(A^2) = \max_{1 \le i \le n} |\lambda_i|^2 = \max_{1 \le i \le n} |\lambda_i|^2 = (\max_{1 \le i \le n} |\lambda_i|)^2 = (\rho(A))^2$.

(c) En déduire que $||A||_2 = \rho(A)$.

Réponse : $||A||_2^2 = \rho(A^T A) = \rho(A^2) = (\rho(A))^2$ car A est symétrique. On en déduit que $||A||_2 = \rho(A)$.

On suppose dans toute la suite que A est symétrique définie positive. On ordonne les valeurs propres de façon que $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.

2. (a) Montrer que $\lambda_1 > 0$. En déduire que A est inversible.

Réponse : comme A est symétrique définie positive, $y_1^T A y_1 > 0$ car $y_1 \neq 0$. Donc $y_1^T A y_1 = y_1^T (A y_1) = \lambda_1 y_1^T y_1 = \lambda_1 ||y_1||_2^2 > 0$. Comme $||y_1||_2 > 0$, on en déduit que $\lambda_1 > 0$.

En fait, toutes les valeurs propres de A sont > 0, donc 0 n'est pas valeur propre, donc A est inversible.

(b) Déterminer les valeurs propres de A^{-1} , puis $||A^{-1}||_2$, en fonction des λ_i , $i = 1, \ldots, n$.

Réponse : soit y_i un vecteur propre associé à la valeur propre λ_i pour A. Comme A est inversible et que les $\lambda_i > 0$, il vient $Ay_i = \lambda_i y_i \iff y_i = \lambda_i A^{-1} y_i \iff \frac{1}{\lambda_i} y_i = A^{-1} y_i$, avec $y_i \neq 0$. Donc les valeurs propres de A^{-1} sont les $(\frac{1}{\lambda_i})_{i=1,\ldots,n}$ qui sont > 0.

Comme A est symétrique, A^{-1} l'est aussi $((A^{-1})^T = (A^T)^{-1} = A^{-T})$. Donc $||A^{-1}||_2 = \rho(A^{-1}) = \frac{1}{\lambda_1}$.

(c) En déduire le conditionnement $\chi_2(A)$.

Réponse : $\chi_2(A) = ||A||_2 ||A^{-1}||_2 = \rho(A)\rho(A^{-1}) = \frac{\lambda_n}{\lambda_1}$. (Les valeurs propres sont > 0.)

- 3. On veut résoudre Ax = b.
 - (a) On prend $b = \lambda_n y_n$. Que vaut x?

Réponse : on a $Ay_n = \lambda_n y_n$. Comme A est inversible, l'unique solution de Ax = b est $x = y_n$.

- (b) On résout en réalité un système perturbé : $A(x + \delta x) = b + \delta b$. On prend $\delta b = \lambda_1 y_1$. Que vaut δx ? **Réponse :** par linéarité, les égalités $A(x + \delta x) = b + \delta b$ et Ax = b impliquent que δx est solution de $A\delta x = \delta b$, soit $A\delta x = \lambda_1 y_1$. On déduit $\delta x = y_1$.
- (c) Comparer l'erreur relative $\frac{||\delta x||_2}{||x||_2}$ à l'erreur relative faite sur le second membre. Rappeler l'inégalité du cours. Commenter.

Réponse : on a $||\delta x||_2 = ||y_1||_2 = 1$ et $||x||_2 = ||y_n||_2 = 1$ (les vecteurs propres sont choisis normés). Par ailleurs, on a $||\delta b||_2 = ||\lambda_1 y_1||_2 = \lambda_1$ et $||b||_2 = ||\lambda_n y_n||_2 = \lambda_n$ (les valeurs propres sont > 0).

D'après le cours, on a $\frac{||\delta x||_2}{||x||_2} \le \chi_2(A) \frac{||\delta b||_2}{||b||_2}$, soit ici : $1 = \frac{||\delta x||_2}{||x||_2} \le \frac{\lambda_n}{\lambda_1} \frac{\lambda_1}{\lambda_n} = 1$. Avec ces données, il y a donc égalité dans l'inégalité du cours.

(d) On suppose que $\lambda_n \gg \lambda_1$. Commenter.

Réponse : si $\lambda_n \gg \lambda_1$, cela signifie que $\chi_2(A) \gg 1$: le système est mal conditionné. Une petite pertubation sur le second membre $\frac{||\delta b||_2}{||b||_2} = \frac{\lambda_1}{\lambda_n} \ll 1$, provoque une grande pertubation sur la solution

$$\frac{||\delta x||_2}{||x||_2} = 1.$$

- 4. On perturbe à présent volontairement le système pour essayer d'améliorer la solution : on modifie A afin de diminuer δx . On étudie le système $(A + \alpha I)v = c$.
 - (a) Calculer $(A + \alpha I)y_i$, i = 1, ..., n. En déduire les valeurs propres de $A + \alpha I$.

Réponse : $(A + \alpha I)y_i = Ay_i + \alpha y_i = (\lambda_i + \alpha)y_i$, avec $y_i \neq 0$. Donc les valeurs propres de $A + \alpha I$ sont $(\lambda_i + \alpha)_{i=1,\dots,n}$.

(b) On prend $c = b + \delta b = \lambda_n y_n + \lambda_1 y_1$. Déterminer v sous la forme $v = k_n y_n + k_1 y_1$, où k_1 et k_n sont des scalaires. Calculer k_1 et k_n .

Réponse : $(A + \alpha I)v = k_n(\lambda_n + \alpha)y_n + k_1(\lambda_1 + \alpha)y_1 = c = \lambda_n y_n + \lambda_1 y_1$ si et seulement si $k_n = \frac{\lambda_n}{\lambda_n + \alpha}$ et $k_1 = \frac{\lambda_1}{\lambda_1 + \alpha}$ (car les $(y_i)_{i=1,\dots,n}$ forment une base de \mathbb{R}^n). On suppose que α est différent de $-\lambda_1$ et $-\lambda_n$.

(c) Calculer v - x.

Réponse : $v - x = k_n y_n + k_1 y_1 - y_n = -\frac{\alpha}{\lambda_n + \alpha} y_n + \frac{\lambda_1}{\lambda_1 + \alpha} y_1.$

(d) On choisit α de façon à avoir $\lambda_1 \ll \alpha \ll \lambda_n$. Comparer $||v-x||_2$ à $||\delta x||_2$. (Dans cette question, on suppose que la base des vecteurs propres $(y_i)_{i=1,\dots,n}$ est orthonormalisée.)

Réponse : comme $\alpha \ll \lambda_n$, on a $\frac{\alpha}{\lambda_n + \alpha} \approx \frac{\alpha}{\lambda_n} \ll 1$. De plus, comme $\lambda_1 \ll \alpha$, il vient $\frac{\lambda_1}{\lambda_1 + \alpha} \approx \frac{\lambda_1}{\alpha} \ll 1$. Donc v - x va être petit (et donc beaucoup plus petit que δx).

Plus précisément, en utilisant le fait que les $(y_i)_{i=1,\dots,n}$ forment une base orthonormée (on peut prendre une base orthonormée de vecteurs propres car A est symétrique réelle), on obtient :

$$||v - x||_{2}^{2} = ||(k_{n} - 1)y_{n} + k_{1}y_{1}||_{2}^{2} = ||(k_{n} - 1)y_{n}||_{2}^{2} + 2(k_{n} - 1)k_{1} < y_{n}, y_{1} > + ||k_{1}y_{1}||_{2}^{2}$$

$$= |k_{n} - 1|^{2}||y_{n}||_{2}^{2} + |k_{1}|^{2}||y_{1}||_{2}^{2} \quad \text{car } y_{1} \perp y_{n}$$

$$= \left(\frac{\alpha}{\lambda_{n} + \alpha}\right)^{2} + \left(\frac{\lambda_{1}}{\lambda_{1} + \alpha}\right)^{2} \approx \left(\frac{\alpha}{\lambda_{n}}\right)^{2} + \left(\frac{\lambda_{1}}{\alpha}\right)^{2} \quad \ll 1 = ||\delta x||_{2}^{2}.$$

Donc si on connaît la perturbation $\delta b = \lambda_1 y_1$, on peut corriger l'erreur sur x en modifiant le système à résoudre.

Exercice 2: (barème approximatif: 4 points) CHANGEZ DE COPIE

Soit une matrice A inversible appartenant à $\mathcal{M}_{nn}(\mathbb{R})$ $(n \geq 1)$, M appartenant à $\mathcal{M}_{nn}(\mathbb{R})$ et b dans \mathbb{R}^n . On veut calculer $B = A^{-1}M$ et $c = A^{-1}b$. On rappelle que :

- la factorisation LU d'une matrice de $\mathcal{M}_{nn}(\mathbb{R})$ nécessite de l'ordre de $n^3/3$ multiplications,
- la résolution d'un système linéaire triangulaire (supérieur ou inférieur) de $\mathcal{M}_{nn}(\mathbb{R})$ nécessite de l'ordre de $n^2/2$ multiplications.

On suppose que la factorisation A = LU est faisable.

1. (a) Montrer que le nombre de multiplications nécessaires pour calculer A^{-1} est de l'ordre de αn^3 . On déterminera α et on justifiera clairement la réponse.

Réponse : pour calculer A^{-1} , on doit résoudre n systèmes linéaires : si on pose $X = A^{-1}$, chaque colonne X_j de X est solution de $AX_j = e_j$, où $e_j = (0, \dots, 0, 1, 0, \dots 0)^T$ est le $j^{\text{ème}}$ vecteur de la base canonique et donc le $j^{\text{ème}}$ vecteur colonne de la matrice I.

On doit donc factoriser A=LU (coût = $n^3/3$), puis résoudre n systèmes triangulaires inférieurs $LY_j=e_j$ (coût = $n.n^2/2=n^3/2$), et enfin n systèmes triangulaires inférieurs $LX_j=Y_j$ (coût = $n.n^2/2=n^3/2$).

Coût total = $4/3n^3$.

(b) Montrer que le nombre de multiplications nécessaires pour calculer B et c en utilisant A^{-1} est de l'ordre de βn^3 . On déterminera β .

Réponse : le coût du produit de deux matrices MN est $n^2.n = n^3$, car il y a n^2 termes à calculer du type $\sum_{k=1}^n M_{ik} N_{kj}$. Le coût du produit matrice-vecteur Mx est $n.n = n^2$ (n termes du type $\sum_{j=1}^n M_{ij} x_j$).

On en déduit que le coût du calcul de $B = A^{-1}M$ est $= 4/3n^3 + n^3 = 7/3n^3$, et le coût du calcul de $c = A^{-1}b$ est $= 4/3n^3 + n^2 = 4/3n^3$ (on néglige les termes d'ordre inférieur à 3).

2. (a) Montrer que le calcul de c peut se ramener à la résolution de systèmes linéaires dont on précisera les matrices et les seconds membres.

Réponse : pour calculer c, il suffit de factoriser A = LU, puis de résoudre Ly = b, et Ux = y.

- (b) Montrer que le calcul de B peut se ramener à la résolution de plusieurs systèmes linéaires dont on précisera, pour chacun d'eux, la matrice, le vecteur inconnu et le second membre.
 - **Réponse:** pour calculer B, il suffit de factoriser A = LU, puis de résoudre n systèmes triangulaires inférieurs $LY_j = M_j$ (où M_j est le $j^{\text{ème}}$ vecteur colonne de M), et n systèmes triangulaires supérieurs $UB_j = Y_j$, (où B_j est le $j^{\text{ème}}$ vecteur colonne de B).
- (c) Évaluer le nombre de multiplications nécessaires pour calculer B et c en passant par cette méthode. Comparer avec le résultat du 1.

Réponse : dans ce cas, le coût du calcul de $B = A^{-1}M$ est $= n^3/3 + 2n \cdot n^2/2 = 4/3n^3$, et le coût du calcul de $c = A^{-1}b$ est $= n^3/3 + 2 \cdot n^2/2 = n^3/3$ (on néglige les termes d'ordre inférieur à 3). Le coût est donc presque deux fois plus petit que pour la question 1. $(4/3n^3)$ au lieu de $7/3n^3$).

 \mathbf{NB} : en pratique, on ne fait qu'une seule fois la factorisation LU. Si on peut faire le calcul de Bet de c au même moment, les coûts de c sont réduits de $n^3/3$. Le coût total du calcul de B et c est $donc = 4/3n^3.$

- 3. On calcule B et c par la méthode du 2. On dispose des fonctions scilab:
 - function [L,U]=LU(K), qui, étant donnée une matrice K, calcule la factorisation LU: K=LU.
 - function [x]=solinf(L,b), qui, étant donnés la matrice triangulaire inférieure L et le vecteur colonne b, résout Lx = b.
 - function [x]=solsup(U,b), qui, étant donnés la matrice triangulaire supérieure U et le vecteur colonne b, résout Ux = b.

Utiliser les fonctions ci-dessus pour écrire une fonction scilab :

```
function [B,c]=calcule(A,M,b)
qui calcule B = A^{-1}M et c = A^{-1}b.
Réponse:
function [B,c] = calcule(A,M,b)
n = length(b)
if n = size(A, 1) \mid n = size(A, 2) \mid n = size(M, 1) \mid n = size(M, 2)
   error('tailles des matrices incoherentes')
B = zeros(n,n); c = zeros(n, 1); // initialisation
[L,U] = LU(A) // factorisation
y = solinf(L, b); c = solsup(U, y); // calcul de c
for jj = 1:n // calcul de B
    y = solinf(L, M(:, jj))
    B(jj, :) = solsup(U, y)
end
```

Exercice 3: (barème approximatif: 5,5 points) CHANGEZ DE COPIE

Soit la suite $(V^{(k)})_{k \in \mathbb{N}} = ((x^{(k)}\ y^{(k)}\ z^{(k)})^T)_{k \in \mathbb{N}}$ de vecteurs de \mathbb{R}^3 , définie par la relation :

la suite
$$(V^{(k)})_{k \in \mathbb{N}} = ((x^{(k)} \ y^{(k)} \ z^{(k)})^T)_{k \in \mathbb{N}}$$
 de vecteurs de \mathbb{R}^3 , définie par la relation :
$$\begin{cases}
V^{(k+1)} = CV^{(k)} + d, & \forall k = 0, 1, \dots \text{ avec } C = \frac{1}{4} \begin{pmatrix} 0 & -2 & 0 \\ -1 & 0 & -1 \\ 0 & -2 & 0 \end{pmatrix} \text{ et } d = \frac{1}{4} \begin{pmatrix} 2a_1 \\ a_2 \\ 2a_3 \end{pmatrix}, \\
V^{(0)} \text{ donné dans } \mathbb{R}^3,
\end{cases} (1)$$

où $a = (a_1 \ a_2 \ a_3)^T$ est un vecteur donné de \mathbb{R}^3 .

endfunction

1. La suite (1) converge-t-elle? Justifier la réponse.

Réponse : on voit immédiatement que $||C||_{\infty} = \frac{1}{2} < 1$, donc la méthode itérative (1) converge quel que soit le vecteur initial.

2. Si la suite converge vers un vecteur $V = (x \ y \ z)^T$, quel est le système d'équations AV = b que vérifie V? On précisera la matrice $A \in \mathcal{M}_3$ et le second membre $b \in \mathbb{R}^3$ de ce système. (On pourra exprimer b simplement en fonction du vecteur a).

Réponse : la suite converge vers V. Par continuité, à convergence, on a V = CV + d, ce qui s'écrit (I-C)V=d, ou encore

$$\begin{pmatrix} 4 & 2 & 0 \\ 1 & 4 & 1 \\ 0 & 2 & 4 \end{pmatrix} V = \begin{pmatrix} 2a_1 \\ a_2 \\ 2a_3 \end{pmatrix} \quad (\Leftrightarrow \widetilde{A}V = \widetilde{b}) \qquad \Longleftrightarrow \qquad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix} V = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad \Leftrightarrow \quad AV = b \ (b = a).$$

3. La suite (1) aurait pu être obtenue en appliquant une méthode itérative connue au système AV=b. Quelle est cette méthode? Justifier.

Réponse : c'est la méthode de Jacobi. En effet, cette méthode s'écrit $V^{(k+1)} = JV^{(k)} + f$, où $J = D^{-1}(E+F)$ et $f = D^{-1}b$ avec les notations du cours. Pour AV = b, en prenant $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et

$$E + F = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
, on observe que $J = C$ et $f = d$.

 \mathbf{NB} : on trouve des résultats identiques pour \widetilde{A} .

4. Quel théorème du cours permettrait de répondre directement à la question 1.?

Réponse : il suffit de noter que la matrice A est à diagonale strictement dominante, donc Jacobi converge (et Gauss-Seidel aussi...).

5. On applique la méthode de Gauss-Seidel au système AV = b. Exprimer $V^{(k+1)}$ en fonction de $V^{(k)}$. On précisera ce que vaut la matrice R de l'itération de Gauss-Seidel.

Réponse : Gauss-Seidel s'écrit $V^{(k+1)} = RV^{(k)} + g$ avec la matrice $R = (D-E)^{-1}F$ et le vecteur $g = (D-E)^{-1}b$. Les calculs donnent :

$$(D-E)^{-1} = \frac{1}{16} \begin{pmatrix} 8 & 0 & 0 \\ -2 & 4 & 0 \\ 1 & -2 & 8 \end{pmatrix}, \quad R = (D-E)^{-1}F = \frac{1}{16} \begin{pmatrix} 0 & 8 & 0 \\ 0 & 2 & -4 \\ 0 & -1 & 2 \end{pmatrix}, \quad g = \frac{1}{16} \begin{pmatrix} 8a_1 \\ -2a_1 + 4a_2 \\ a_1 - 2a_2 + 8a_3 \end{pmatrix}.$$

NB: avec \widetilde{A} , on trouve $\widetilde{R} = (\widetilde{D} - \widetilde{E})^{-1}\widetilde{F} = R$ et $\widetilde{g} = (\widetilde{D} - \widetilde{E})^{-1}\widetilde{b} = g$, en utilisant:

$$(\widetilde{D} - \widetilde{E})^{-1} = \frac{1}{32} \begin{pmatrix} 8 & 0 & 0 \\ -2 & 8 & 0 \\ 1 & -4 & 8 \end{pmatrix}.$$

6. La méthode de Gauss-Seidel converge-t-elle? Justifier.

Réponse : A est toujours à diagonale strictement dominante, donc Gauss-Seidel converge. On pourrait aussi remarquer que $||R||_{\infty} = \frac{1}{2} < 1$.