Week1: Lecture 2: CNN

Vertical edge detection examples

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1/

Vertical

1	1	1
0	0	0
-1	-1	-1

Horizontal

Vertical and Horizontal Edge Detection

Vertical

Horizontal

	1	1		_	-	_	_	
	0	0	=	30	10	-10	-30	
	-1	-		30	10	-10	-30	
_	-1	-1		0	0	0	0	

Andrew Ng

Learning to detect edges

1	0	-1
1	0	-1
1	0	-1

	(0	-1
->	2	0	-2
	١	G	-/
	52	٠,١	Cilter

3	0	1	2	7	4	
1	5	8	9	3	1	
2	7	2	5	1	3	
0	1	3	1	7	8	
4	2	1	6	2	8	
2	4	5	2	2	٥	

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w ₈	W9

3	0	-3
lo	0	-(5
3	C	-3
A .		

0		0.15
20	Marr	Filter

Andrew Ng

Padding

fxt

n+2p-f+1 x n+2p-f+1 6+2-3+1 x = 6x6 Andrew Ng

Valid and Same convolutions

"Same": Pad so that output size is the same as the input size.

$$n + 2p - f + 1 = pr \implies p = \frac{f - 1}{2}$$

$$3 \times 3 \qquad p = \frac{3 - 1}{2} = 1$$

$$5 \times 5 \qquad p = 2$$
And rew 1

Valid and Same convolutions

"Same": Pad so that output size is the same as the input size.

$$n+2p-f+1=pr\Rightarrow p=\frac{f-1}{2}$$
 3×3
 $p=\frac{3-1}{2}=1$
 5×5
 $p=2$
Andrew Ng

Strided convolution

	×					
2	3	7 3	4 4	6 4	2	9
6	6	9 1	8 0	7 2	4	3
3	4	8-1	3 º	8 3	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4
		7	×7			

	3	4	4
*	1	0	2
	-1	0	3
		3×3	

91	loo	

Strided convolution

		×						
C	2	3	7	4	6	2	9	
ſ	6	6	9	8	7	4	3	
1	3 3	4 4	8 4	3	8	9	7	
	7 1	8 0	3 ²	6	6	3	4	
	4 -1	2 0	1 ³	8	3	4	6	
	3	2	4	1	9	8	3	
	0	1	3	9	2	1	4	
	7×7							

	3	4	4
t	1	0	2
	-1	0	3
		3×3	

91	loo	83

Stride = 2

Strided convolution

		×					
C	2	3	7	4	6	2	9
1	6	6	9	8	7	4	3
1	3	4	8	3	8	9	7
	7	8	3	6	6	3	4
	4	2	1	8	3 3	4 4	64
	3	2	4	1	91	80	3 ²
	0	1	3	9	2-1	10	43

_	
7	٠

3	4	4		
1	0	2		
-1	0	3		
3+3				

Stride = 2

91	loo	83		
69	વા	127		
44	72	74		
3 × 3				

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		- (J.	2	
27	3,	7 ⁵	4	6	2
6ી	60	99	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

Andrew Ng

