Studiu de fezabilitate – Colonie minieră și energetică pe Lună

Data: 25 Aug 2025

1. Rezumat executiv

Acest studiu explorează fezabilitatea unei colonii lunare bazate pe o flotă de 100 instalații ISRU. Obiective: extragerea heliului-3 (³He) pentru fuziune, producerea de oxigen și apă pentru suport vital și propulsie, și obținerea litiului pentru baterii și materiale strategice. Integrarea acestor fluxuri permite nu doar activitate minieră, ci și dezvoltarea unei colonii autonome energetic, capabile de export spre Pământ.

2. Ipoteze de bază

- Flotă de 100 instalații, fiecare ~3 MW_th pentru degazare + 0.2–0.8 MW_e auxiliare.
- Scenariu Median: ~0.33 kg ³He/zi → ~54 GWh th/zi potențial în fuziune D–³He.
- O₂ lichid din reducerea ilmenitului: ~305 t/zi.
- Apă: ~343 t/zi din reducere + ~1–2 t/zi din volatili.
- Li din regolit: ~200–400 kg/zi (la 10–20 ppm, 50% randament).
- He total: ~1,1 t/zi (majoritar ⁴He).

3. Bilanț energetic

Intrare zilnică (Median): ~7,9 GWh_th (degazare) + ~3,2 GWh_e (electroliză și auxiliare). Din 70% din ³He produs → ~12–15 GWh_e/zi disponibile, acoperind consumul uzinei și lăsând un surplus de ~9–12 GWh_e/zi. Astfel, colonia are un bilanț energetic pozitiv dacă utilizează ³He local pentru fuziune.

4. Coș zilnic de resurse (scenariu Median, 100 instalații)

Resursă	Cantitate	Unitate	Utilizare locală	Pot. export
³ He	~0,33	kg/zi	fuziune locală, transmutare Li- 7	combustibil fuziune
He total (⁴ He)	~1,1	t/zi	criogenie, gaze	industrie

			inerte	criogenică
O ₂ lichid	~305	t/zi	respirație, propulsant LOX	LOX orbital/terestru
H ₂ O	~344	t/zi	consum uman, agricultură, procese	stoc propulsant
Li (ISRU)	200-400	kg/zi	baterii locale	export metalic/izotopic
Fe/Ti	zeci t/zi	estimate	structuri, drumuri, 3D- print	aliaje speciale

5. Integrarea fluxurilor

- Buclă $H_2O-O_2-H_2$: reducere ilmenit $\to H_2O \to \text{electroliză} \to O_2$ (respirație/LOX) + H_2 (reagent, combustibil).
- Energie: fuziune D-³He (principal), micro-fisiune backup, solar pentru sarcini non-critice.
- Materiale: Fe/Ti din reziduuri, regolit sinterizat pentru drumuri, He-4 pentru criogenie.
- Alimente: apă + energie → agricultură controlată în habitat.
- Baterii Li: mobilitate robotică şi stocare energetică.

6. Etape de implementare

- Faza 1: pilot 2–3 module; validare ppb ³He, randament energetic, cartografiere locală volatili.
- Faza 2: scalare la 100 module; punerea în funcțiune a reactorului D–³He; linie de producție baterii Li-ion.
- Faza 3: export resurse (³He, LOX, Li-7, He-4) către orbită/Pământ, menținând independența energetică locală.

7. Concluzii

Colonia bazată pe mineritul ³He și reducerea ilmenitului este fezabilă energetic și logistic. Surplusul de energie din fuziune asigură nu doar autonomia uzinei, ci și dezvoltarea unei societăți locale: habitate, agricultură, industrie și mobilitate electrică. Exporturile completează modelul economic, iar integrarea fluxurilor reduce dependența

de Pământ. Fezabilitatea depinde critic de maturizarea reactorului D–³He și de cartografierea precisă a resurselor lunare.