2020年度 日本留学試験

数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号)、または、0から9までの数が一つずつ入ります。適するものを選び、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **BC** などが繰り返し現れる場合, 2度目以降 は, **A** , **BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し、 $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{\mathbf{A}}\sqrt{\mathbf{B}}$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}}$ x c -x と答える場合は、 $\boxed{\textbf{D}}$ e , $\boxed{\textbf{E}}$ e 1 とし、下のようにマークしてください。

【解答用紙】

1 / 13 /1-48											
Α	0	0	1	2	3	4	(5)	6	0	8	9
В	Θ	0	1	0	0	4	6	6	0	8	9
С	Θ	0	1	0	3	0	6	6	0	8	9
D	0	0	1	2	3	4	(5)	6	0	8	9
E	Θ	0		0	3	4	6	6	0	8	9

- 4. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*	
名 前			

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

解答コー	ス Course
コース 1 Course 1	Course 2
0	0

選択したコースを正しくマークしないと、採点されません。

- 問 1 a は正の定数とする。 2 次関数 $y=\frac{1}{4}x^2$ のグラフを平行移動する。移動後の放物線と x 軸 との交点が (-2a,0), (4a,0) であるとき,この放物線の方程式 y=f(x) について考える。
 - (1) f(x) は

$$f(x) \, = \, \frac{ \hspace{.1in} \hspace{.1in$$

と表せる。

 $(2) \quad y=f(x)$ において, y の値が $10a^2$ 以下となる x の値の範囲は, 不等式

$$x^2 - \boxed{\mathbf{E}} ax - \boxed{\mathbf{FG}} a^2 \leqq 0$$

を解いて, - \mathbf{H} $a \leq x \leq \mathbf{I}$ a である。

(3) 直線 y=10a が y=f(x) のグラフによって切り取られる線分の長さを 10 とする。

$$oldsymbol{J}$$
 $oldsymbol{\mathsf{K}}$ $a^2+oldsymbol{\mathsf{LM}}$ $a=10$ であるから, a の値は $oldsymbol{\mathsf{O}}$ である。

問	2	2 10 段の階段がある。1	段のぼり $(1$ 回に階段を 1 段のぼること), または 2 段のぼり $(1$ 回に
		階段を 2 段のぼること) の	ついずれかで階段をのぼるとし,1 段のぼりも 2 段のぼりも必ず 1 回
		はあることとする。	

10 段の階段をのぼるとき、次の 2 つの場合について考えよう。

- (1) 2段のぼりが連続してもよい場合
 - (i) 例えば, 2 段のぼりが 3 回ならば, 1 段のぼりは **P** 回であり, のぼり方は **QR** 通りある。
 - (ii) 2 段のぼりが連続してもよい場合の階段ののぼり方は全部で ST 通りある。
- (2) 2段のぼりが連続しない場合
 - (i) 例えば、2 段のぼりが 2 回ならば、1 段のぼりは $\boxed{\mathbf{U}}$ 回であり、のぼり方は $\boxed{\mathbf{VW}}$ 通りある。
 - (ii) 2段のぼりが連続しない場合の階段ののぼり方は全部で **XY** 通りある。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{Z}$ はマークしないでください。

II

問 1 初項から第n 項までの和 S_n が

$$S_n = \frac{n^2 - 17n}{4}$$

で表される数列 $\{a_n\}$ に対して,数列 $\{b_n\}$ を

$$b_n = a_n \cdot a_{n+5}$$
 $(n = 1, 2, 3, \cdots)$

と定める。

(1) 次の文中の $oldsymbol{A}$ \sim $oldsymbol{C}$ には、下の選択肢 $oldsymbol{0}$ \sim $oldsymbol{9}$ の中から適するものを選び なさい。

数列 $\{b_n\}$ の初項から第 n 項までの和 T_n を求めよう。

 $a_n =$ **A** であるから、 $b_n =$ **B** である。したがって

$$T_n = \boxed{\mathbf{C}}$$

である。

$$\bigcirc \qquad \frac{n-7}{2}$$

$$\bigcirc \frac{n-9}{2}$$

$$3 \frac{n^2 - 12n + 27}{4}$$

$$\frac{n^2 - 13n + 36}{4}$$

$$n(n^2 - 17n + 89)$$

(問1は次ページに続く)

(2)	次に, T_n の最小値を求めよう。
	$n \leq $ $lacktriangle$ $lacktriangle$ または $lacktriangle$ EF $\leq n$ のとき, $b_n > 0$ であり,また, $lacktriangle$
	のとき、 $b_n < 0$ である。
	したがって, $n=egin{bmatrix} \mathbf{I} & \mathbf{J} & \mathbf{J} & \mathbf{J} & \mathbf{J} & \mathbf{K} & \mathbf{K} & \mathbf{T}_n & \mathbf{L} & \mathbf$
	その値は $lackbox{L}$ である。ただし, $lackbox{I}$ $<$ $lackbox{J}$ $<$ $lackbox{K}$ となるように答えな
	さい。

数学-22

- 問2 次の各問いに答えなさい。
 - (1) 複素数 $8+8\sqrt{3}i$ を極形式で表すと

$$\boxed{\textbf{MN}} \left(\cos \frac{\pi}{\boxed{\textbf{O}}} + i \sin \frac{\pi}{\boxed{\textbf{P}}} \right)$$

となる。

(2) $z^4=8+8\sqrt{3}i$ を満たす複素数 z を $0 \le \arg z < 2\pi$ の範囲で考える。 |z|= **Q** である。このような z は全部で 4 個あり,偏角の小さい順に z_1 , z_2 , z_3 , z_4 とすると

$$\arg \frac{z_1 z_2 z_3}{z_4} = \frac{\pi}{\boxed{\mathbf{R}}}$$

である。

(3) $w^8-16w^4+256=0$ を満たす複素数 w を $0 \le \arg w < 2\pi$ の範囲で考える。 このような w は全部で 8 個あり,偏角の小さい順に $w_1,\,w_2,\,w_3,\,w_4,\,w_5,\,w_6,\,w_7,\,w_8$ と する。これらのうち 4 個は (2) の $z_1,\,z_2,\,z_3,\,z_4$ のどれかと一致する。それは

である。

また,
$$w_1w_8=$$
 $\boxed{\mathbf{W}}$, $w_3w_4=$ $\boxed{\mathbf{XY}}$ i である。

注) 複素数: complex number, 極形式: polar form, 偏角: argument

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{Z}$ はマークしないでください。

III

関数 $f(x) = x^3 - 4x + 4$ について考える。

y=f(x) のグラフ上の点 A(-1,7) における接線を ℓ とし,y=f(x) のグラフに点 B(0,-12) から引いた接線を m とする。また,2 つの接線 ℓ と m の交点を C とおく。2 直線 ℓ , m のなす角を θ $(0<\theta<\frac{\pi}{2})$ とするとき, $\tan\theta$ の値を求めよう。

f(x) の導関数 f'(x) は

$$f'(x) = \begin{bmatrix} \mathbf{A} \\ \end{bmatrix} x^{\mathbf{B}} - \begin{bmatrix} \mathbf{C} \\ \end{bmatrix}$$

である。したがって、接線 ℓ の傾きは $\boxed{ DE }$ であり、接線 ℓ の方程式は

$$y = \begin{bmatrix} \mathsf{DE} \end{bmatrix} x + \begin{bmatrix} \mathsf{F} \end{bmatrix}$$

である。

(2) y = f(x) のグラフと接線 m との接点の x 座標を a とする。このとき、接線 m の方程式は a を用いて

$$y = \left(\boxed{\mathbf{G}} a^{\mathbf{H}} - \boxed{\mathbf{I}} \right) x - \boxed{\mathbf{J}} a^{\mathbf{K}} + \boxed{\mathbf{L}}$$

と表せる。この直線が点 B(0,-12) を通るから,a= **M** で,接線 m の方程式は

$$y = \begin{bmatrix} \mathbf{N} & x - \mathbf{OP} \end{bmatrix}$$

となる。したがって、2 直線 ℓ と m の交点 C の座標は $\left(\begin{array}{|c|c|} \mathbf{Q} \end{array} \right)$ である。

(3) 2 直線 ℓ , m と x 軸の正の向きとのなす角をそれぞれ α , β とすると

$$\tan \alpha = \begin{bmatrix} \mathbf{ST} \end{bmatrix}, \quad \tan \beta = \begin{bmatrix} \mathbf{U} \end{bmatrix}$$

であるから

$$\tan \theta = \begin{array}{|c|c|c|}\hline \mathbf{V} \\\hline \hline \mathbf{W} \\\hline \end{array}$$

を得る。

注) 導関数: derivative

[III] の問題はこれで終わりです。[III] の解答欄 [X] \sim [Z] はマークしないでください。

IV

区間 $0 \le x \le \pi$ において, 関数

$$f(x) = \sin x + \frac{\sin 2x}{2} + \frac{\sin 3x}{3}$$

を考える。このとき、 $0 < x < \pi$ で f(x) > 0 を示して、さらに、曲線 y = f(x) と x 軸とで囲まれた部分の面積 S を求めよう。

(1) 次の文中の **K** , **N** , **Q** , **R** には, 次の選択肢

① 増加 ① 減少

のどちらかから適するものを選び、他の には適する数を入れなさい。

f(x) を微分すると

$$f'(x) = \left(\begin{array}{|c|c|} \mathbf{A} & \cos^2 x - \begin{array}{|c|c|} \mathbf{B} \end{array} \right) \left(\begin{array}{|c|c|} \mathbf{C} & \cos x + \begin{array}{|c|c|} \mathbf{D} \end{array} \right)$$

である。 f'(x)=0 となる x は $0 \le x \le \pi$ の範囲に 3 個存在して,それらを小さい順に 並べると

$$x = \frac{\pi}{|\mathbf{E}|}, \frac{\mathbf{F}}{|\mathbf{G}|}\pi, \frac{\mathbf{H}}{|\mathbf{I}|}\pi$$

である。

次に, f(x) の増減を調べると

$$0 \le x \le \frac{\pi}{J}$$
 のとき、 K

$$\frac{\pi}{J} \le x \le \frac{L}{M} \pi \quad \text{のとき}, \quad N$$

$$\frac{L}{M} \pi \le x \le \frac{O}{P} \pi \quad \text{のとき}, \quad Q$$

$$\frac{O}{P} \pi \le x \le \pi \quad \text{のとき}, \quad R$$

である。また

$$f(0) = 0$$
, $f(\pi) = 0$, $f\left(\frac{\Box}{\Box}\pi\right) = \frac{\sqrt{\Box}}{\Box} > 0$

である。したがって、 $0 < x < \pi$ のとき f(x) > 0 である。

(IV)は次ページに続く)

1/1 1111/1/11 1111/11 1111/11 1111/11 1111/11 1111/11 1111/11 1111/11 11/11 11/	まれた部分の面積。	で囲ま	r 軸と	7	y = f(x)	曲線	(2)
---	-----------	-----	------	---	----------	----	-----

$$S = \begin{array}{|c|c|} \hline {f UV} \\ \hline {f W} \end{array}$$

である。

この問題冊子を持ち帰ることはできません。