

FOREST COVER TYPE PREDICTION Chaos-Aware Machine Learning Arquitecture

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

Nicolás Martínes Pineda 20241020098

Universidad Distrital Francisco José de Caldas

Anderson Danilo Martínez

20241020107

Universidad Distrital Francisco José de Caldas

Gabriel Esteban Gutiérrez

20221020003

Universidad Distrital Francisco José de Caldas

Jean Paul Contreras

20242020131

Universidad Distrital Francisco José de Caldas

Environment & Objectives

Looking forward a tool to predict how seven types of trees should naturally distribute in a comprehend cell of 30x30 meters, we plan on build a reliable machine learning model that learns how variable ecology influents.

We'll build a prediction system that adapts the large data resource around 56 features that combines height, slope, aspect and soil labels.

In summary, our main objectives rely on:

- Chaos-aware validation: elevation bands at 2,400 / 2,800 / 3,200 m.
- Uncertainty: aleatoric (entropy) + epistemic (model variance) with threshold amplification.
- Weighted ensemble (RF + XGBoost + LightGBM) for robust, calibrated predictions.

Approach & Planning

Classical ecological linear models fail to capture abrupt regime shifts in montane ecosystems. We adopt ensemble tree methods (RF, XGBoost, LightGBM) + domain feature engineering for robustness and interpretability.

Elevation × aspect coupling produces phase-transition zones (mid-elevation

most chaotic). We encode aspect trigonometrically and stratify evaluation by elevation bands (2,400 / 2,800 / 3.200 m).

Data: Roosevelt NF – 15,120 samples, 56 cartographic features at 30 m resolution. Results are region-bound; multi-region validation reserved for future work.

Winning a competition \neq deployable system, so we must design for reliability, observability and operational recovery. Operational focus: modular pipeline, experiment tracking (MLflow), low-latency serving (FastAPI/Kubernetes), and continuous drift monitoring (PSI, KL).

Gap proposal: prior work rarely treats regime-specific chaos as a design requirement. We look forward to contribute with chaos-aware pipeline + dual uncertainty + elevation-banded validation to manage sensitivity.

Methodology & Progress

Requirements Specification:

Functional requirements include: multiclass prediction (7 classes) with full probability vector: domain-aware features (sin/cos aspect, elevation bands, soil consolidation); uncertainty quantification (aleatoric, epistemic, combined); monitoring & drift detection; dual serving modes (real-time REST + batch GeoTIFF export). Non-functional requirements emphasize modularity, loose-coupling, high cohesion. interpretability, reproducibility (MLflow), availability and MTTR targets.

Systems Analysis Summary:

The data mix continuous topo inputs and many rare soil categories – mountains create fragile zones where tiny changes can flip labels, 56 features (topography, distances, 40 soil one-hots with 73% sparsity, wilderness binaries). Vulnerabilities: soil sparsity, threshold chaos (±50m around 2,400/2,800/3,200 m), geographic/time brittleness, aspect-elevation nonlinear coupling

High-Level Architecture Design:

The architecture follows separation of concerns, loose coupling (data contracts), high cohesion, scalability and maintainability. A modular, auditable pipeline from raw GIS to predictions,

designed so any layer can be replaced without breaking the system, these layers are:

- •1) Data Ingestion
- 2) Validation
- 3)Feature engineering {sin/cos aspect, elevation bins, soil consolidation}
- 4) Model training {spatially blocked 5fold CV, Optuna, weighted ensemble}
- 5) Prediction & uncertainty {aleatoric entropy + epistemic variance, threshold amplification}
- 6) Monitoring {PSI, KL, band-wise metrics}
- 7) Serving {FastAPI/Kubernetes, realtime & batch}

FOREST COVER TYPE PREDICTION Chaos-Aware Machine Learning Arquitecture

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

Nicolás Martínes Pineda 20241020098

Universidad Distrital Francisco José de Caldas

Anderson Danilo Martínez

20241020107

Universidad Distrital Francisco José de Caldas

Gabriel Esteban Gutiérrez

20221020003

Universidad Distrital Francisco José de Caldas

Jean Paul Contreras

20242020131

Universidad Distrital Francisco José de Caldas

Validation and Experimentation Plan:

We validated not only overall accuracy but also resilience: blocked CV prevents leakage across elevation regimes, planning on stress-test the model with realistic noise/drift scenarios, and we will quantify uncertainty so the system can defer to humans where predictions are unreliable

Results

Baseline and Ensemble Performance: Weighted ensemble (RF + XGBoost + LightGBM) - Accuracy 95.2%; ensemble improves calibration vs single models

Band-Wise Performance Analysis: shows mid-elevation (2,400-2,800 m) as the most error-prone regime – motivates banded validation and uncertainty amplification.

Threshold Proximity Effects: proximity policy: $\star 2$ uncertainty amplification in ± 50 m windows $\rightarrow 19.6\%$ of patches flagged for manual review.

Robustness Under Perturbations: perturbation tests (±25 m elevation, ±5° aspect, 5% noise) produce ≤3 pp

accuracy degradation - meets acceptance criteria.

Uncertainty Calibration: weighted ensemble yields near-diagonal reliability – probabilities align with observed accuracy

Overall Findings & Interpretations: Chaos-aware ensemble delivers high accuracy (95.2%), reliable calibration and perturbation robustness. ~19.6% of area flagged for manual review – supports a human-in-the-loop deployment model

Conclusions & Future Work

Mid-elevation transition zones drive most errors; uncertainty amplification and banded validation reduce silent failures and enable an auditable manual-review workflow.

Combining ecological domain knowledge with systems engineering produced interpretable, maintainable predictions ready for operational validation.

A chaos-aware, production-oriented pipeline (domain features + weighted

ensemble + uncertainty & monitoring) achieves 95.2% accuracy while providing auditable decision support in transition zones.

Next steps: test the approach in other regions, improve uncertainty modeling, and integrate live sensors and retraining to handle seasonal and climate-driven shifts