PCT

ORLD INTELLECTUAL PROPERTY ORGANIZAT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12Q 1/70, G01N 33/569, C07K 14/015, 16/08

(11) International Publication Number: WO 95/11997

(43) International Publication Date: 4 May 1995 (04.05.95)

(21) International Application Number:

PCT/EP94/03564

(22) International Filing Date:

28 October 1994 (28.10.94)

(30) Priority Data:

۲.

93117452.8 28 October 1993 (28.10.93) EP (34) Countries for which the regional or

international application was filed:

AT et al.

(71) Applicant (for all designated States except US): DEUTSCHES KREBSFORSCHUNGSZENTRUM, STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE]; Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KERN, Andréa [DE/DE]; Auf der Spreit 25, D-74930 Ittlingen (DE). KLEIN-SCHMIDT, Jürgen [DE/DE]; Weihwiesenweg 5, D-69245 Bammental (DE). GELETNEKY, Karsten [DE/DE]; Römerstrasse 20, D-69115 Heidelberg (DE). RABREAU, Michèle [FR/FR]; 13, rue F.-Marceau, F-33200 Bordeaux (FR). SCHLEHOFER, Jörg [DE/DE]; Feilgasse 14, D-69181 Leimen (DE). TOBIASCH, Edda [DE/DE]; Am Petrus 9, D-69221 Dossenheim (DE).

(74) Agent: DEUFEL, Paul; Müller-Boré & Partner, P.O. Box 26 02 47, D-80059 München (DE).

(81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ADENO-ASSOCIATED VIRUS - ITS DIAGNOSTIC USE WITH EARLY ABORTION

(57) Abstract

The present invention relates to a method of detecting a causative agent of the so-called spontaneous early abortion by investigating patients' samples for the presence of adeno-associated virus DNA (AAV DNA), or AAV antigen or antibodies, preferably of the IgM type, directed to AAV. Furthermore, the present invention relates to antibodies suitable for said method.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	• •
BG	Bulgaria	IE	Ireland	NZ.	Norway New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	
BY	Belarus	KE	Kenya	RO	Portugal Portugal
CA	Canada	KG	Kyrgystan	RU	Romania
CF	Central African Republic	KP	Democratic People's Republic		Russian Federation
CG	Congo	254	of Korea	SD	Sudan
CH	Switzerland	KR		SE	Sweden
CI	Côte d'Ivoire	KZ	Republic of Korea	SI	Slovenia
CM	Cameroon		Kazakhstan	SK	Slovakia
		LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon			***	***********

WO 95/11997 FCT/EP94/03564

Adeno-Associated Virus Its Diagnostic Use with Early Abortion

The present invention relates to a method of detecting a causative agent of the so-called spontaneous early abortion by investigating patients' samples for the presence of adeno-associated virus DNA (AAV DNA), or AAV antigen or antibodies, preferably of the IgM type, directed to AAV. Furthermore, the present invention relates to antibodies suitable for said method.

The adeno-associated viruses (AAV) which are human parvoviruses that depend on coinfecting helper viruses for their replication, are thought to be non-pathogenic (Siegl, G. et al. (1985), Intervirology, 23, pp. 61-73; Berns, K.l. et al. (1987), Adv. Virus Res., 32, pp. 243-306) but rather to exhibit tumorsuppressive properties (Rommelaere et al. (1991), J. Virol. Methods, 33, pp. 233-251). The virus may persist in infected individuals, possibly by integration of its DNA into specific chromosomal sites of the host cell genome as seen in cell culture. Recent studies of our laboratories have demonstrated that AAV is able to induce differentiation in a variety of cells of human and mouse origin (Klein-Bauernschmitt et al. (1992), J. Virol., 66, pp. 4191-4200) including embryonic stem cells. In the course of looking for putative targets of AAV infection, we analysed material from spontaneous abortion for the presence of AAV DNA using for example the polymerase chain reaction (PCR), the Southern blotting technique and the in situ hybridization technique. Additionally, we analysed serum samples from women with miscarriage and from other diseased or healthy women for the presence of antibodies to AAV using serological standard techniques such as enzyme linked immunosorbent assay (ELISA), fluorescenceimmuno assay (FIA), radioimmuno assay (RIA) or immunofluorescence assay (IFA).

Surprisingly, we found a significant correlation of both detectable AAV DNA in samples of abortion material and detectable IgM antibodies directed to AAV with the early abortion occurring during the first trimester of pregnancy.

| BNSDOCID: <WO__9511997A1__>

. 5

10

15

20

25

.30

Disclosure of the invention

Accordingly, the present invention relates to a method of detecting the causative agent of spontaneous abortion comprising the steps of

5

a) hybridizing a probe for an AAV polynucleotide to nucleic acids of a sample of abortion material under conditions which allow the formation of a heteroduplex between an AAV nucleic acid and the probe, and

10

b) detecting a polynucleotide duplex which contains the probe.

In a preferred embodiment of the present invention the method as mentioned above is a polymerase chain reaction (PCR), Southern blotting or in situ hybridization technique.

20

15

In another preferred embodiment of the present invention a hybridization technique is applied as described above, wherein one or more nucleic acid probes are used which are selected from the group consisting of the primers pan1, pan3, nest1 and nest2. In Figure 1 a schematic drawing of these primers, relative to the genome of the AAV type 2 (AAV-2) and the nucleotide sequences of the primers is presented.

The present invention further relates to a method of detecting the causative agent of spontaneous abortion comprising the steps of

25

 incubating a probe antibody directed to an AAV antigen with a sample of abortion material under conditions which allow the formation of an antigen-antibody complex, and

30

 detecting the antigen-antibody complex containing the probe antibody. In step (a) one or more probe antibodies can be used. These antibodies can be directed to e.g. an AAV capsid or a single protein thereof, particularly VP1, VP2 or VP3. Examples of these antibodies are the following monoclonals:

5

A1; deposited at DSM under DSM ACC2195 on Oct. 13, 1994

A69; deposited at DSM under DSM ACC2196 on Oct. 13, 1994

B1; deposited at DSM under DSM ACC2197 on Oct. 13, 1994

A20; deposited at DSM under DSM ACC2194 on Oct. 13, 1994

10 (see Table 1).

The antibodies as mentioned above are subject matter of the present invention.

15

In a preferred embodiment of the present invention the method of antigen detection as mentioned above is an enzyme linked immunosorbent assay (ELISA), a radioimmuno assay (RIA), a fluorescence immuno assay (FIA) or an immunofluorescence assay (IFA).

20

An example of the ELISA comprises the following steps:

- (a) providing a substrate carrying the monoclonal antibody A 20,
- (b) contacting the substrate of (a) with a sample of abortion material to get an antigen-antibody complex,

25

- (c) contacting the complex of (b) with a polyclonal anti-AAV capsid anti-body to get an antibody-antigen-antibody complex,
- (d) contacting the complex of (c) with an enzyme-labelled antibody directed to the polyclonal antibody of (c) to get a labelled complex of (c), and

30

(e) contacting the complex of (d) with an enzyme-label-indicator to indicate the presence of said complex.

10

15

20

25

30

It is clear that the term "sample of abortion material" is only an example of materials which contain AAV capsids or parts thereof. Another examples are cells expressing recombinant AAV capsids or parts thereof.

The present invention, i.e. the antibodies alone or in combination with the AAV antigen detection method, is suitable to detect AAV capsids and/or parts thereof in any material.

Furthermore, the present invention relates to a method of detecting the causative agent of spontaneous abortion comprising the steps of

- a) incubating a sample containing AAV or an antigenic part thereof with a sample suspected of containing anti-AAV antibodies under conditions which allow the formation of an antibody-antigen complex, preferably only containing antibodies of the IgM type, and
- detecting an antibody-antigen complex, preferably IgM antibodyantigen complex, containing the probe antigen.

In step (a) the term "sample containing AAV or an antigenic part thereof" refers to AAV capsid proteins, particularly VP1, VP2 and/or VP3, preferably.

In another preferred embodiment of the present invention the method of detection of AAV specific antibodies, particularly IgM antibodies, is an ELISA, a RIA, a FIA or an IFA.

An example of the ELISA comprises the following steps:

- (a) providing a substrate carrying an anti-human IgM antibody,
 - (b) contacting the substrate of (a) with a patient's bodyfluid to get an antibody-antibody complex,

10

15

20

25

. 30

- (c) contacting the complex of (b) with recombinant VP1, VP2 and/or VP3to get a VP-antibody-antibody complex,
- (d) contacting the complex of (c) with an anti-VP-antibody to get an anti- ... VP-antibody-VP-antibody-antibody complex,
- (e) contacting the complex of (d) with an enzyme-labelled antibody directed to the anti-VP-antibody of (d) to get a labelled complex of (d), and
- (f) contacting the complex of (e) with an enzyme-label-indicator to indicate the presence of said complex.

It is evident that persisting anti-AAV IgM/IgG titers in serum are associated with predisposition to early abortions. Thus, the present invention can also be used for effective risk factor screening, development of methods for prevention of pregnancy failure, and information of patients about the risks of pregnancy failure.

Furthermore, the present invention relates to a kit for detecting the causative agent of spontaneous abortion by hybridization as described above, comprising a probe for an AAV polynucleotide in a suitable container.

The present invention further relates to a kit for detecting the causative agent of spontaneous abortion by immunological antigen detection as described above, comprising a probe antibody directed against an AAV antigen in a suitable container.

The present invention further relates to a kit for detecting the causative agent of spontaneous abortion by immunological antibody detection as described above, comprising AAV or an antigenic part thereof in a suitable container.

Modes for carrying out the invention:

The art is rich in methods available to the man of the art in recombinant

10

15

20

25

30

nucleic acid technology, microbiology and immunobiology for carrying out the present invention. Detailed descriptions of all of these techniques will be found in the relevant literature. See for example Maniatis, Fritsch & Sambrook: Molecular Cloning: A Loboratory Manual (1989); DNA Cloning, Vol. I and II (D.N. Glover ed., 1985); Oligonucleotide Synthesis (M.J. Gait ed., 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds., 1984); Animal Cell Culture (R.I. Freshney ed., 1986); J.D. Watson, M. Gilman, J. Witkowski, M. Zoller: Recombinant DNA, Second Edition (1992); Immunochemical Methods in Cell and Molecular Biology (Academic Press, London, 1987); Protein Purification: Principles and Practice, Second Edition (Springer Verlag, N.Y.); Handbook of Experimental Immunology, Vol. I-IV (D.M. Weir and C.C. Blackwell eds., 1986); Immunoassay: A Practical Guide (D.W. Chan and M.T. Perlstein eds., 1987); ELISA and Other Solid Phase Immunoassays: Theoretical and Practical Aspects (D.M. Kemeny and S.J. Challacombe eds., 1988); Principles and Practice of Immunoassay (C.P. Price and D.J. Newman eds., 1991).

More detailed information on specific methodological aspects of AAV, such as cell culture, virus growth, virus purification, isolation of proteins, can be found in the relevant literature, e.g. Handbook of Parvoviruses, Vol. I and II CRC Press, Boca Raton, Florida, Ed. P. Tijssen; Ruffing, M. et al. (1992), J. Virol., 66, pp. 6922-6930.

All reagents such as antigens, antibodies, probe antigens, probe antibodies, nucleic acid probes, primers and auxilliary reagents necessary to perform an immunoassay or a hybridization assay, possibly using amplification techniques for improved sensityity may be filled into suitable containers or coated to any solid phase such as plastic, glass and cells, and packaged into kits together with instructions for conducting the test.

The present invention is exemplified by the following examples.

- 7 -

Example 1:

Detection by Polymerase-Chain-Reaction (PCR) - analysis of AAV DNA in biological, e.g., curettage material of spontaneous abortion.

5

The primers used in PCR (pan1, pan3) and nested PCR (nest1, nest2), respectively, were designed to hybridize to sequences of AAV-2 and AAV-5 DNA by allowing mismatches not leading to amplification of other (e.g. cellular) DNA sequences. The amplified products are distinguishable by Southern blot experiments. The primers were prepared according to standard procedures.

10

The primers were designed displaying mismatches (underlined) as shown below:

15

----- AACTGGACCAATGAAAACTTTCC ----- pan1

1386 TGCGTAAACTGGACCAATGAGAACTTTCCCTTCAAC

AAV-2

130 TGCGTAAACTGGACCAATGAAAACTTTCCCTTCAAC

AAV-5 ·

20

AAAAAGTCTTTGACTTCCTGCTT

pan3

1729 AAAAAGTCTTTGACTTCCTGCTT

AAV-2

25

472 AAAAAGTCCTTGACTTCCTGCTT

AAV-5

DNA prepared from histological sections (5 µm, of fresh or fixed, paraffinembedded, deparaffinated material [Methods as described by D.H. Wright and M.M. Manos in "PCR Protocols, A Guide to Methods and Applications", edited by M.A. Innis, D.H. Gelfand, J.J. Snoisky and T.L. White, Chapter 19, pp. 153-158; Academic Press, New York, 1990] were analysed by PCR using

30

10

15

20

25

the primers pan1 and pan3 combined, followed in AAV posititive cases by a repetition of the PCR (to confirm specificity) using the (internal) primers nest1 and nest2 (see Figure), respectively. PCRs were performed for 40 cycles (one cycle = 92 °C, 1 min; 62 °C, 4 min; 92 °C, 15 sec) (van den Brule et al., (1989) J. Med. Virol., 29, pp. 20-27). Amplified products were characterized by electrophoretic separation (2 % agarose gel) and blotting onto a nylon membrane (Gene Screen, NEN, Dupont, Dreieich, Germany) followed by hybridization at high stringency with ³²P-labelled probes (labelled using the Megaprime™ DNA Labelling System, Amersham, UK) of AAV-2 (pTAV2 [Heilbronn et al. (1990), J. Virol., 64, pp. 3012-3018]) or of AAV-5. This probe was cloned from DNA from purified AAV-5 virions, propagated with adenovirus type 12 and purified as described in de La Maza and Carter (1980), J. Virol., 33. pp. 1129-1137 and in Rose (1974) Parvovirus Reproduction, pp. 1-61; In: H. Fraenkel-Conrat and R.R. Wagner, eds., Comprehensive Virology, Plenum Press, New York.

Example 2:

Detection by Southern Blotting analysis of AAV DNA in fresh curettage material

Genomic DNA was isolated using standard procedures with minor modification (Laird et al. (1991), Nucl. Acids Res., Vol. 19, pp. 4293-4294) and digested with restriction enzymes allowing analysis of characteristic restriction sites within the AAV genome. After separation through 0,8 % agarose gels, DNA fragments were blotted onto Nylon membranes (Gene Screen) and hybridized AAV-2 DNA (pTAV2, see Example 1) or specific AAV-5 DNA (see Table 2) labelled by random priming with $\{a^{-32}P\}$ dCTP (Amersham, Braunschweig, Germany).

Example 3:

Detection of AAV DNA by in situ hybridization in sections of biopsy material, e.g. curettage from spontaneous abortion

5

10

15

In situ hybridization was performed as described (Tobiasch et al. (1992) Differentiation, 50, pp. 163-178), however, with the modification that AAV-2 DNA was detected by RNA-DNA hybridization. After DNase treatment, the probes were subjected to limited alkaline hydrolysis. Upon linearisation of the plasmid pTAV2 (Heilbronn et al. (1990), see above) with EcoRV, riboprobes were obtained and labelled with [35S]-UTP by in vitro transcription with T7 RNA polymerase (method as described in Boehringer Mannheim Procedure supplied with the "SP6/17 Transcription Kit"). Prior to hybridization, both probe and target DNA were denatured (93 °C, 10 min). For in situ hybridization with [32P-]-UTP labelled probes, the protocol was as described in Dürst et al. (1992) Virology, 189, pp. 132-140.

Example 4

20

Provision of antibodies directed to AAV capsid proteins

25

two BALB/c mice were injected subcutaneously (s.c.) with 150 μ £ of a mixture of gel purified recombinant capsid proteins in PBS containing 100 μ g each of VP1, VP2 and VP3, mixed with an equal volume of complete Freund's adjuvant. After four weeks the mice were boosted s.c. with 25 μ g of purified UV-inactivated AAV-2 in 50 μ £ PBS and 50 μ £ incomplete Freund's adjuvant. After four weeks the mice were injected intraperitoneally (i.p.) each with 10 μ g of UV-inactivated AAV-2 in 100 μ £ PBS. Three days later one mouse was killed and the spleen cells were fused with X63/Ag8 cells according to standard procedures (Harlow, E. and Lane, D. (1988), Cold

In order to generate monoclonal antibodies directed to AAV capside proteins

30

10

15

20

25

- 10 -

Spring Harbor Laboratory, Antibodies, A laboratory mannual). Resultant hybridoma culture supernatants were screened by Western blotting, immunofluorescence and ELISA. The second mouse was immunized six months later with 100 μ g of purified VP3 in PBS (i.p.) and monoclonal antibodies were prepared as described above.

Example 5:

ELISA for the detection of IgG antibodies directed to AAV

96-well microtiterplates (Nunc, Denmark) were coated with 50 µl CsClgradient purified AAV 2 (dilution 1:1000 in 0,05 M carbonate-buffer pH 9,6) or with 50 \(\mu \mathbb{l} \) recombinant AAV 2 capsid proteins VP1-3 (1:8000 in 0,05 M carbonate-buffer) and incubated over night at RT. Plates were washed twice (washing buffer: PBS, 0,05 % Tween 20) and human sera were added (50 μ²/well, dilutions 1:25 to 1:800, dilution buffer: PBS, 2 % BSA, 0,05 % Tween 20) and incubated for 1 h at 37 °C in a wet chamber. After washing plates were incubated with 50 \(\mu \mathbb{I}\)/well peroxydase conjugated monkey antihuman IgG antibody (1:2000) for 45 minutes at 37 °C in a wet chamber. Plates were washed four times and 50 μ l substrate solution (5 mg OPD in 25 m ℓ 0,1 M citratebuffer pH 5,0 + 10 $\mu\ell$ H₂O, 35 %) was added. Plates were stored for 10-15 minutes in the dark and the reaction was stopped with 50 μl 1N H₂SO₄/well. Extinctions were measured at 492 nm in a Titertek photometer. Background signal was determined by measuring the extinction without adding human sera and was substracted on every well (background signal extinction ranged from 0,035 to 0,05).

Example 6:

30

ELISA for the detection of IgM antibodies directed to AAV

10

15

20

25

30

- 11 -

Version A

Plates were coated as described in Example 4. Human sera were added after they had been treated according to the following absorption protocol in order to eliminate remaining IgG-antibodies: $20~\mu \ell$ absorption reagent (FREKA-Fluor, Fresenius, Germany) were diluted with $25~\mu \ell$ PBS and $5~\mu \ell$ of human serum was added. Absorption was performed for at least 15 minutes at RT, and subsequently sera were tested at dilutions from 1:100 to 1:800. Incubation was performed for 1 h at 37 °C in a wet chamber and after washing $50~\mu \ell$ /well peroxydase conjugated goat anti-human IgM antibody (1:2000 in PBS/2 % BSA/0,05 % TWEEN 20) were added. Plates were incubated for 45 minutes at 37 °C and washed four times. The OPD reaction and photometric evaluation were performed as described in Example 5.

Version B

μ-capture ELISA

Plate Coating

Rabbit anti-human IgM antibody (DAKO) was first denatured at a protein concentration of 600µg/ml, incubating for 30 min at RT in 50mM glycin/HCl pH 2,5 containing 100 mM NaCl then neutralized with 1 M Tris base. The denatured antibody was then desalted by passing the solution over a Sephadex PD 10 column equilibrated in the coating solution (10mM Tris/HCl pH 8,5 containing 100 mM NaCl). The sample was eluted from the column in the same buffer. The solution was adjusted to a protein concentration of 6µg/ml by dilution in coating buffer and 200µl added to each well on a polystyrene microtiter plate (NUNC immuno flat-bottomed well). The plate was incubated at 37°C for 24 h in a humid atmosphere, contents decanted and wells washed 4 times with 250µl/well of Tris-buffered saline (TBS) (0,02 M Tris/HCl pH 7,4, 0,15 M NaCl) containing 0,05 % Tween 20 (wash buffer). The wells were then blocked with TBS containing 1 % Tween 20 and 5 % Sucrose (blocking solution) by incubating at 4°C followed by 2 washings in wash buffer (TBS containing 0,05 % Tween 20).

Assay

5

10

15

20

25

30

The second step in the ELISA involved contacting patients' sera with the antibody-coated plate. During incubation, IgM was immunologically bound to the solid-phase antibody. After removal of the unbound material and washing of the microtiter plates, the plates were incubated with purified recombinant AAV nucleocapsid proteins VP1, VP2 and VP3. After removal of the unbound material and washing of the microtiter plates, complexes of human IgM antibody-VP complexes were detected by incubation with the A1, A69 and B1 antibodies. Unbound monoclonal antibodies were removed by aspiration and the plates were washed. The bound monoclonal antibodies were detected by incubating the plates with goat anti-mouse immunoglobulin antibodies conjugated to horseradish peroxidase (HRP). Following removal of unbound conjugate by washing, a solution containing H₂O₂ 3.3', 5.5' tetramethylbenzidine (TMB) was added. Reactions were stopped after a suitable interval by addition of sulfuric acid. The cutoff value of the ELISA was calculated as the average optical density of five negative samples plus 3 standard deviations (to correct for any aspecific binding). Samples giving absorbance values higher than the cutoff were considered positive.

Specifically, the anti-human IgM on the plate was reacted with serum by adding 100µl of serum samples diluted 1:200 in TBS containing 10 mg/ml bovine serum albumin, and incubating the serum-containing wells for 1 h at room temperature. After incubation, the serum samples were removed by aspiration and the wells were washed 5 times with washing solution (TBS + 0,05% Tween 20). Aliquots of 100µl of the VP1, VP2 and VP3 antigen mixture (conc of 10-10 nM VP1, VP2 and VP3) were added to each well and the plates were incubated at room temperature at least 2 h, followed by removal of excess probe by aspiration and 5 washes with TBS + 0,05 % Tween 20. Bound VP1, VP2 and VP3 was detected by addition of 100µl of a mixture of hybridoma supernatants from A1, A69 and B1 monoclonal antibodies producing hybridomas (antibody conc 1-10 nM), followed by 5 standard washes of the plates with TBS + 0,05% Tween 20. Monoclonal

antibody binding was detected by addition of 200 μ l of 1 1/2000 dilution of sheep anti-mouse IgG horseradish peroxidase-conjugated antibody (Dako, Hamburg/Germany) and incubated for 1,5 h at room temperature, followed by 5 standard washings of the plate. Enzyme activity was revealed by addition of 100 μ l of a solution of TMB (Serex, Maywood, N.J./USA). The plate was incubated until the desired color development was reached and terminated by addition of 50 μ l 2N sulfuric acid. Optical densities (OD_{45o}) of negative and positive control sera as well as samples were determined. The cutoff value as calculated from five negative sera was OD_{45o} = 0,40.

10

5

Example 7:

ELISA for the detection of AAV capsids

15

20

Plate Coating

100 μ l of the A20 antibody (see above) equilibrated in coating buffer solution (50 mM NaHCO₃ pH 9.6 and adjusted to a protein concentration of 1,5 ng/ml was added to each well on a polystyrene microtiter plate (NUNC immuno flat-bottomed well). The plate was incubated at 4 °C for 24 h, contents decanted and wells, washed 5 times with 250 μ l/well of phosphate-buffered saline (PBS) (wash buffer). The wells were blocked with 260 μ l of 3 % BSA in PBS (blocking solution) by incubating at least 30 minutes at room temperature followed by 6 washings in wash buffer.

25

Assay

A standard curve within the range of 10 - 10 000 capsids/m² was prepared by diluting AAV capsids in standard dilution solution containing PBS.

. 30

Unknown samples were diluted as appropriate in dilutent solution and 100 μ £ added to the test wells. When tissue culture supernatants were to be assayed, 100 μ l of a 1:10 to 1:10⁸ dilution was to be added to the test well.

The plate was incubated for 3 h at room temperature. The plate was washed 5 times in wash buffer and $100~\mu$ rabbit anti-AAV-polyclonal antiserum at a dilution of 1/1000 in 3 % BSA in PBS added to each well. The plate was incubated at room temperature for 2 h as previously and then washed 5 times in PBS Tween. AAV capsid was detected by addition of $100~\mu$ of a 1/2000 dilution of a goat anti-rabbit IgG myeloperoxidase-conjugated anti-body prepared in antibody diluent and incubated for 1 h at room temperature followed by 5 standards washes of the plate. Enzyme activity was revealed by addition of $100~\mu$ of a 0,1 mg/ml solution of tetramethylbenzidine (TMB) prepared in 0,1 M Na-acetate buffer pH 6 to each well. The plate was incubated at room temperature until the desired color development was reached, longer incubation periods being necessary to detect lower concentration ranges, i.e. standards less than 10 capsids/ml. The concentration of unknown samples was determined by comparison of their optical density to the standard curve.

Example 8:

Detection of AAV-DNA in curettage materil of spontaneous absorption

20

5

10

15

A total of 50 samples of curettage material of spontaneous absorption were analysed for the presence of AAV DNA either by PCR or Southern Blotting or both. 41 samples were from abortions in the first and 9 samples from abortions in the second and third trimester of pregnancy.

25

30

Among the 41 samples taken during the first trimester of pregnancy, 14 consisted of fresh material that could be tested by Southern Blotting, by which method 9 samples were shown to be positive. All other samples tested were sections from paraffin-embedded tissues, that were analysed by PCR. Among these, 30 samples were from abortions in the first trimester of pregnancy, of which 12 samples were shown to be positive for AAV DNA. All of the 9 samples from the second or third trimester of pregnancy were negative by

- 15 -

PCR.

5

Thus, in 21 of 41 samples, i.e. 50 % of spontaneous abortions in the first trimester of pregnancy AAV specific DNA sequences could be detected, whereas 9 spontaneous abortions in the second or third trimester were negative (see Table 3).

Example 9:

- A total serum of 148 serum samples drawn from healthy probands, diseased patients with various syndromes being unrelated to abortion, and pregnant women with spontaneous abortion during the first trimester of pregnancy were tested for antibodies directed to AAV.
- The results obtained are displayed in Table 4. Generally, the prevalence of specific IgG antibodies was quite high, between 62 and 100 % in the different groups of probands/patients. However, specific IgM antibodies were shown to be significantly correlated with "pregnancy problems".

Table 1

oligomeric VP1 and VP2 capsid, no reaction Characteristics monomeric capsid with recombinant oligomeric VP1, VP2 and VP3 preferable recogmonomeric and monomeric and monomeric and oligomeric VP1 recognition of nition of AAV recognition of recognition of protein Fluorescence Immuno-++ + + + + Precipitation 1mmnno-+++ + + + + Western Blotting of VP1, VP2 and ++ recognition recognition of VP1 recognition of VP1 and VP2 + specific + specific (negativ) Epitope conformation between aa 105 - 136 between aa 136 - 669 between aa presumable 1 - 104 Subtype lgG2a lgG3 lgG1 lgG1 Term A69 A20 A **B**1

aa: amino acid6

1 Table 2

- 17 -

5 388 bp part of BamH1b fragment of AAV5

		TCAATCAGGTGCCGGTGACTCACGAGTTTAAAGTTCCCAGGGAATTGGCGGGAACTAAAG	
10	487	AGTTAGTCCACGGCCACTGAGTGCTCAAATTTCAAGGGTCCCTTAACCGCCCTTGATTTC	546
		GGGCGGAGAAATCTCTAAAACGCCCACTGGGTGACGTCACCAATACTAGCTATAAAAGTC	
	547	CCCGCCTCTTTAGAGATTTTGCGGGTGACCCACTGCAGTGGTTATGATCGATATTTTCAG	606
15			
		TGGAGAAGCGGGCCAGGCTCTCATTTGTTCCCGAGACGCCTCGCAGTTCAGACGTGACTG	
	607	ACCTCTTCGCCCGGTCCGAGAGTAAACAAGGGCTCTGCGGAGCGTCAAGTCTGCACTGAC	666
			•
20		TTGATCCCGCTCCTCTGCGACCGCTCAATTGGAATTCAAGGTATGATTGCAAATGTGACT	
20	667	AACTAGGGCGAGAGACGCTGGCGAGTTAACCTTAAGTTCCATACTAACGTTTACACTGA	726
		ATCATGCTCAATTTGACAACATTTCTAACAAATGTGATGAATGTGAATATTTGAATCGGG	
	727	TAGTACGAGTTAAACTGTTGTAAAGATTGTTTACACTTACACTTACACTTAAACTTAGCCC	786
25		·	
		GCAAAAATGGATGTATCTGTCACAATGTAACTCACTGTCAAATTTGTCATGGGATTCCCC	
	787	CGTTTTTACCTACATAGACAGTGTTACATTGAGTGACAGTTTAAACAGTACCCTAAGGGG	846
30		CCTGGGAAAAGGAAAACTTGTCAGATTT	
	847	GGACCCTTTTCCTTTTGAACAGTCTAAA 874	

35

Table 3

Prevalence of AAV DNA in curettage materials

10

	1	of AAV DNA I ve / number a	•
Diagnosis / Pathology	PCR	Southern Blotting	Total
spontaneous abortion (1st trimester of pregnancy)	12/30	9/14	21/41
abortion 2nd trimester	0/3	n.d.	0/3
abortion 3rd trimester or placenta post partum	0/6	n.d.	0/6

15

20

n.d. = not done;

= 3 samples positive with PCR were tested by Southern blotting analysis

Tabl 4

Serum Antibodies to AAV Diagnosis	c	igg. IgM-	lgG + lgM-	IgG-	1gG + 1gM +	lgG+	%	IgM+	%
Controls (all)	58	8	45	2	3	48	83		8.6
Employees	32	4	24	2	2	26	81	4	12.5
Patients "	26	4	21	0	-	22	85	-	4
breast (all)	38	1	32	0	5	37	97	5	13,2
mammary dystrophy	19	1	13	0	ន	18	75	5	26
breast cancer	19	0	19	0	0	19	100	0	0
cervix uteri (all)	26	2	17	4	က	20	77	7	27
normal (or metaplasia)	က	-	2	.0	0	2	67	0	0
CIN / CIS	22	-	14	4	3	17	77	7	32
cancer	-	0	1	0	0	1	100	0	0
pregnancy problems (all)	26	9	12	2	9	18	69	80	31
Extra uterine	2	0	2	0	0	2	100	0	0
chromosomal aberrations	8	0	2	0	1	ဗ	100	-	33
abortion (1st trimester) of unclear etiology	21	9	œ	2	ស	13	62	80	38
								_	_

with uterus myoma, or normal pregnancy, hysterectomy (normal)

CLAIMS:

- A method of detecting the causative agent of spontaneous abortion comprising the steps of
 - (a) hybridizing a probe for an AAV polynucleotide to nucleic acids of a sample of abortion material under conditions which allow the formation of a heteroduplex between an AAV nucleic acid and the probe, and
 - (b) detecting a polynucleotide duplex which contains the probe.
- 2. The method according to claim 1, which is a PCR, Southern blotting or an in situ hybridization technique.
- 3. The method according to claim 1, wherein one or more probes are used which are selected from the group consisting of the primers pan1, pan3, nest1 and nest2.
- A method of detecting the causative agent of spontaneous abortion comprising the steps of
 - (a) incubating a probe antibody directed to an AAV antigen with a sample of abortion material under conditions which allow the formation of an antigen-antibody complex, and
 - (b) detecting the antigen-antibody complex containing the probe antibody.
- 5. The method according to claim 4, wherein the probe antibody is A1 (DSM

ACC2195, deposited on 13. 10. 1994), A20 (DSM ACC2194, deposited on 13. 10. 1994), A69 (DSM ACC2196, deposited on 13. 10. 1994) and/or B1 (DSM ACC2197, deposited on 13. 10. 1994).

- 6. The method according to claim 4 or 5, which is an ELISA, a RIA, a FIA or an IFA.
- A method of detecting the causative agent of spontaneous abortion comprising the steps of
 - (a) incubating a sample containing AAV or an antigenic part thereof with a sample suspected of containing anti-AAV antibodies under conditions which allow the formation of an antibody-antigen complex, and
 - (b) detecting the antibody-antigen complex, containing the probe antigen.
- 8. The method according to claim 7, wherein the antigenic part of AAV is VP1, VP2 or VP3.
- The method according to claim 7 or 8, wherein the antibody in the antibody-antigen complex is of the IgM type.
- 10. The method according to one of claim 7 to 9, which is an ELISA, a RIA, a FIA or an IFA.
- 11. A kit for performing the method according to claim 1, comprising a probe for an AAV polynucleotide in a suitable container.
- 12. A kit for performing the method according to claim 4, comprising a probe antibody directed to an AAV antigen in a suitable container.

Ç

- 13. The kit according to claim 12, wherein the probe antibody is A1 (DSM ACC2195, deposited on 13.10.1994), A20 (DSM ACC2194, deposited on 13.10.1994), A69 (DSM ACC2196, deposited on 13.10.1994 and/or B1 (DSM ACC2197, deposited on 13.10.1994).
- 14. A kit for performing the method according to claim 7, comprising AAV or an antigenic part thereof in a suitable container.
- 15. The kit according to claim 14, wherein the antigenic part of AAV is VP1, VP2 and/or VP3.
- 16. Antibody directed to an AAV antigen.
- 17. Antibody according to claim 16, wherein the antibody is directed to an AAV capsid or a protein thereof.
- 18. Antibody according to claim 17, wherein the antibody is A1 (DSM ACC2195, deposited on 13.10.1994).
- 19. Antibody according to claim 17, wherein the antibody is A20 (DSM ACC 2194, deposited on 13.10.1994).
- 20. Antibody according to claim 17, wherein the antibody is A69 (DSM ACC2196, deposited on 13.10.1994).
- 21. Antibody according to claim 17, wherein the antibody is B1 (DSM ACC2197, deposited on 13.10.1994).

Figur 1

INTERNATIONAL SEARCH REPORT

١.

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12Q1/70 G01N3: G01N33/569 C07K14/015 C07K16/08 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12Q CO7K GO1N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X OBSTETRICS AND GYNECOLOGY, 1,2,4, vol.81, no.3, March 1993, NY US 7-12, pages 402 - 408 14-17 ROGERS B B et al 'DETECTION OF HUMAN PARVOVIRUS B19 IN EARLY SPONTANEOUS ABORTUSES USING SEROLOGY HISTOLOGY ELECTRON MICROSCOPY IN-SITU HYBRIDIZATION AND THE POLYMERASE CHAIN REACTION' Y see the whole document 3,5,13, 18-21 Y WO.A.91 12269 (MIKROGEN 3,5,13, MOLEKULARBIOLOGISCHE ENTWICKLUNGS-GMBH) 22 17-21 August 1991 see the whole document -/--X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. * Special categories of cited documents : T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 2 -02- 1995 8 February 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 GURDJIAN, D

Form PCT/ISA/210 (second sheet) (July 1992)

` 2

INTERNATIONAL SEARCH REPORT

nal Application No T/EP 94/03564

		T/EP 94/03564
C.(Continu	IDON) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO,A,91 04330 (RIJKSUNIVERSITEIT TE LEIDEN) 4 April 1991	5,13, 17-21
A	see abstract	8
A	JOURNAL OF VIROLOGY, vol.45, no.2, 1983, WASHINGTON US pages 555 - 564 Srivastava, Arun et al 'Nucleotide sequence and organization of the adeno-associated virus 2 genome'	3
	· .	
,		·

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

pon on patent family members

Patent document cited in search report	Publication date		t family nber(s)	Publication date
WO-A-9112269	22-08-91	DE-A- AU-B- AU-A- DE-D- EP-A- ES-T-	4003826 650864 7211591 59101577 0514413 2052370	14-08-91 07-07-94 03-09-91 09-06-94 25-11-92 01-07-94
WO-A-9104330	04-04-91	JP-T- NL-A- EP-A-	5504143 8902301 0491824	01-07-93 02-04-91 01-07-92