Assignment Project Exam Help Deep Learning for COMP6714 - Part I

https://pawcoder.com

Outline

Assignment Project Exam Help

https://powcoder.com

Problem Definition

The standard *supervised* classification/regression setting: ssignment Project Exam Help • Labelled data: $\{\mathbf{x}_{(i)}, y_{(i)}\}_{i \in [n]}$

- Can be deemed as [X, y], i.e., Data Matrix consisting of training samples, and the corresponding Class Labels.

Proof of y_i powcoder. Com Binary classification: $y_{(i)} \in \{-1,1\}$, or $\{0,1\}$.

- |C|-class classification: $y_{(i)} \in \{0, 1, \dots, |C| 1\}$.
- Regression: y_(i) ∈ ℝ.
- a further lapping to pip OWV CARAT class) from dom $x \rightarrow \text{dom } y$ such that some loss function is minimized.
- Assumption:
 - Training and test data are drawn i.i.d. from the same (unknown) distribution (defined over dom $\mathbf{X} \times \text{dom } \mathbf{y}$).

Key Concepts

Ultimate goal: ssignment:Project.Exam Help

How to approximate it?

Labelled datasets are divided into two/three subsets.

Timing data: DOWCOGET (Optional) Dekelopment/validation data:

- Test data:
- How A raid mode? eChat powcoder
 - Minimize the loss function on the training data
 - (Optionally) also considering some regularization measures.
 - To prevent overfitting

Loss Functions

Assignment Project Exame the Perpension of the Project of Example of Example of the Project of Example of

Commonly Used Loss Functions

As suppose $L(\{\hat{y}_1, \hat{y}_2, P, \hat{y}_n\}, \{t_1, t_2, \dots, t_n\})$: Help

- Classification:
 - Cross entropy-loss: $\ell(\hat{\mathbf{p}},\mathbf{t}) = \sum_{j=1}^{|C|} t_j \log(\hat{p}_j)$ Where j^* Cross entropy-loss: $\ell(\hat{\mathbf{p}},\mathbf{t}) = \sum_{j=1}^{|C|} t_j \log(\hat{p}_j)$ Cross entropy-loss: $\ell(\hat{\mathbf{p}},\mathbf{t}) = \sum_{j=1}^{|C|} t_j \log(\hat{p}_j)$
 - Exercise: write out the loss function for (hard) binary classification problems.
- Regrestion: We Chat pow coder

(Traditional) Machine Learning vs. Deep Learning

Assignment of Project Exam Help

https://powcoder.com

Examples

OCR Assignment eares ectur berxfaire, ringle p

- Even with such features, usually a powerful (non-linear) model
- need to be used (e.g., SVM with non-linear kernels).

 In: Italian are linear Wacierian facion in matically by the model.
 - The final classifier is in fact a simple softmax classifier (i.e., a

Feed Forward Network / Multilayer Perceptron (MLP)

Assignment Project Exam Help

Add WeChat powcoder

Concepts:

- Neurons
- Input / hidden / output layers
- Activitation function

NN with Multiple Hidden Layers

NN with One Hidden Layer and Biases

Assignment Project Exam Help

$\underset{\bullet}{\text{Add}} \underset{a_n = \sigma_n(\mathbf{W}_n \mathbf{a}_{n-1} + \mathbf{b}_n)}{\text{WeChat powcoder}}$

- $\mathbf{y} = \mathbf{a}_n$ and $\mathbf{x} = \mathbf{a}_1$
- σ_n s are typically non-linear functions, applied element-wise to the input vector.

11/29

Non-linearalities /1

Assignment Softmax Jeff Exam Help

$$Softmax([z_1, z_2, \ldots, z_m]) = \left[\frac{exp(z_1)}{Z}, \frac{exp(z_2)}{Z}, \ldots, \frac{exp(z_m)}{Z}\right]$$

Intuition:

https://www.hineston.

• $\sigma'(z) = \sigma(z)(1 - \sigma(z))$

Logit and beitic frictions hat powcoder

Recall that $logit(p) = log \frac{p}{1-p}$. It follows that

$$logit(p) = z$$

$$\iff$$

logistic(z) = p

Non-linearalities /2

Assignment tanh(z) = exp(z) - exp(-z) ect Exam Help

- ullet Squashing $\mathbb R$ to [-1,1], and differentiable every where.
- $\tanh'(z) = 1 \tanh^2(z)$
- Indexpensive to calculate derivatives, and alleviates gradient
 - Inexpensive to calculate derivatives, and alleviates gradient vanishing problems. Hence, popular for DL models.
 - There exist many slight variants.

Add (z) We Cifhat powcoder

Illustration of Non-linearalities

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

-2

Forward Computation

Assignment Project Exam Help https://peweoder.com

Notations (f_j) : We get that the ted provided in layer l-1 to the j-th neuron in layer l. Things to ponder:

- Which weights influence $z_1^{[2]}$?
- What's the impact to y if x_1 increases by a tiny amount ϵ ?

Function Approximation

Assign he well appropriate any function (despite potentally elp

• Learning: find $\theta^* = \arg\min_{\theta} \sum_{i} \ell(\mathbf{y}_i, \mathbf{t}_i)$, where $\mathbf{y}_i = f(\mathbf{x}_i; \theta)$

https://powcoder.com

Function Minimization

Assignment in a collective of the global minimum.

- Gradient Descent:
 - Start at a random X Start
 - Based on this approximation, find the best direction to move x
- within the tiny neighborhood. Then, goto Step of the tiny neighborhood.

$$f(\mathbf{x}_0 + \epsilon) \approx f(\mathbf{x}_0) + f'(\mathbf{x}_0)\epsilon$$

 $f(\mathbf{x}_0 + \epsilon) \approx f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \epsilon \rangle$

Which ϵ can minimize $f(\mathbf{x}_0 + \epsilon)$ subject to $\|\epsilon\| \le$ some small constant?

Illustration of GD

Variants of GD

Assignment descent (GP) roject Exam Help

- Stochastic gradient descent (SGD): Hexpensive to compute the v, but bringing in much variance.
- Mini batch SGD:
- $\nabla_L(\theta)$ is evaluated only on a mini-batch of training sample. SGD With momentum: Sizenmay taching the with the control of the co
- - Think of the gradient as the velocity, and θ as the position. Then this method keeps a portion of the last velocity value together with new gradient.
 - Helps to get over some difficult regions quickly (e.g., avoid too much oscillation).

Derivative

Assignment Project Exam Help

Rewrite y in a verbose manner:

- : $h^{=\sin(z_1)}_{\text{tips:}}$ //powcoder.com
- $z_2 = a \cdot x$
- Then Add We Chat powcoder

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial x}$$

$$\frac{\partial z_1}{\partial x} = \frac{\partial z_2}{\partial x} + 3\frac{\partial z_3}{\partial x}$$

Rules

Assignment and Description of the Control of the Co

• Sum rule: $\frac{\partial (z_1+z_2)}{\partial x} = \frac{\partial z_1}{\partial x} + \frac{\partial z_2}{\partial x}$

- We require that $\frac{\partial \overline{y}}{\partial x}$ has the same shape as x.
- We can use this as a cue to work out which term needs a type of the control on which term needs a type of the control of the

Computational Graph

Assignment Project Exam Help

https://powcoder.com

Baby Network

Assignment Project Exam Help

- For single $\mathbf{x} \in \mathbb{R}^d$:
 - $y = \mathbf{W}\mathbf{x} + b$
- For the same x, Wabove

Shapes:

- (d = 3 here)
- W is a matrix. $\mathbb{R}^{d\times 1}$
- b (plot as x_0) is a scalar

Simplifying the Bias Terms

Assignment Project Exam Help • Extend \mathbf{x} to \mathbb{R}^{d+1} and let x_0

- be the bias term.
- y https://powcoder.com i.e., $y = \sum_{i=0}^{a} x_i W_{i1}$

Shapes:

- WeChat powcoder
- (d = 3 here)
- **W** is a matrix, $\mathbb{R}^{(d+1)\times 1}$

Exercise:

$$\frac{\partial y}{\partial M} =$$

$$\frac{\partial y}{\partial \mathbf{M}} =$$

24/29

Add the Non-linear Transformation

Assignment Project Exam Help

- For simplicity, ignore the bias terms from now on in this letture only/powcoder.com $y = \sigma(w)$
- Let σ be the sigmoid function then whether the chat power the sigmoid function in the character σ

Shapes:

Exercise:

• $\frac{\partial y}{\partial \mathbf{W}} =$

Add the Loss Function

Assignment Projecte: Exam Help $\underbrace{\mathsf{Projecte:}}_{l=\ell(\sigma(\mathbf{wx}),\,t)} \underbrace{\mathsf{Projecte:}}_{\mathbf{wx}} \underbrace{\mathsf{Exam}}_{\mathbf{w}} \underbrace{\mathsf{Help}}_{\mathbf{w}}$

. https://powcoder.com

Vectorized Version

Assignment Projecte: Exam Help $\int_{\mathbf{v}} \mathbf{F}(\sigma(\mathbf{w}\mathbf{x}), \mathbf{t}) \mathbf{v} \cdot \mathbf{v} = \frac{\partial I}{\partial \mathbf{w}} = \frac{\partial I}{\partial \mathbf{v}} \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{z}} \cdot \frac{\partial \mathbf{z}}{\partial \mathbf{w}} = \mathbf{v} = \mathbf{v} \cdot \mathbf{v}$

. https://powcoder.com

Computational Graph

Assignment Projects: Exam Help $I = I(\sigma(\mathbf{w}\mathbf{x}), \mathbf{t})$

. https://powcoder.com

Figure: NN2

References

Assignment Project Exam Help

https://powcoder.com