This scatterplot compares the extent of consensus among the panelists on a question to the extent of clear opinion on that question.

For each panelist $i=1,\ldots,N$ and each question $j=1,\ldots,M$, encode i's response to j as agreement $(r_{ij}=+1)$, disagreement $(r_{ij}=-1)$, or uncertainty $(r_{ij}=0)$. (These calculations ignore strong (dis)agreement. r_{ij} is not defined if i left no opinion on j.) The panelists also recorded their confidence $C_{ij} \in [1,9]$ in their answers; we standardize this measure to $C'_{ij} = C_{ij}/\overline{C}$ and calculate confidence weights $c_{ij} = 1 - \gamma + \gamma C'_{ij}$, where γ is a tuning parameter, controlled by the user, that interpolates between $c_{ij} \equiv 1$ and $c_{ij} = C'_{ij}$.

Write (i,j) if panelist i responded to question j. The uncertainty of question i.

Write (i,j) if panelist i responded to question j. The uncertainty of question j is $\sum_{(i,j)} c_{ij} (1-|r_{ij}|)/\sum_{(i,j)} c_{ij}$, the ratio of uncertain responses to all responses. The consensus of question j is calculated, analogously to the τ_a statistic, as $\sum_{(i,j),(i',j)} r_{ij} r_{i'j}/(\frac{\sum_{(i,j)}|r_{ij}|}{2})$, the (unweighted) ratio of the difference between the numbers of agreements and of disagreements (concordance minus discordance) to the number of pairs of clear responses.