Day-9

Health Lifestyle

In [1]:

```
# import libraies
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
d=pd.read_csv(r"C:\Users\user\Downloads\lifestyle.csv")
d
```

Out[2]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Pr
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	
1	2	Male	28	Doctor	6.2	6	60	8	Normal	
2	3	Male	28	Doctor	6.2	6	60	8	Normal	
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	
374 rows × 13 columns										

374 rows × 13 columns

In [3]:

d.head(10)

Out[3]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	B Pres
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	12
1	2	Male	28	Doctor	6.2	6	60	8	Normal	12
2	3	Male	28	Doctor	6.2	6	60	8	Normal	12
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	14
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	14
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	14
6	7	Male	29	Teacher	6.3	6	40	7	Obese	14
7	8	Male	29	Doctor	7.8	7	75	6	Normal	12
8	9	Male	29	Doctor	7.8	7	75	6	Normal	12
9	10	Male	29	Doctor	7.8	7	75	6	Normal	12
4										•

In [4]:

d.describe()

Out[4]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000
4							>

In [5]:

```
d.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373
Data columns (total 13 columns):
     Column
                              Non-Null Count Dtype
     ----
     Person ID
                              374 non-null
                                              int64
 0
     Gender
 1
                              374 non-null
                                              object
 2
                              374 non-null
     Age
                                              int64
 3
     Occupation
                              374 non-null
                                              object
 4
     Sleep Duration
                                              float64
                              374 non-null
 5
     Quality of Sleep
                              374 non-null
                                              int64
    Physical Activity Level 374 non-null
 6
                                              int64
 7
     Stress Level
                              374 non-null
                                              int64
 8
     BMI Category
                              374 non-null
                                              object
     Blood Pressure
 9
                              374 non-null
                                              object
 10 Heart Rate
                              374 non-null
                                              int64
11 Daily Steps
                              374 non-null
                                              int64
12 Sleep Disorder
                              374 non-null
                                              object
```

dtypes: float64(1), int64(7), object(5)

memory usage: 38.1+ KB

In [6]:

d.columns

Out[6]:

In [7]:

sns.pairplot(d)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x2383e40f220>

In [9]:

```
sns.distplot(d['Age'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [12]:

In [13]:

```
# relation
sns.heatmap(da.corr())
```

Out[13]:

<AxesSubplot:>

to train the model

we are going to train linear regresssion model; we need to split out data into two values varible x and y where x is independent(input) and y is dependent on x (output) we could ignore addrees column as it not require four model

In [14]:

In [15]:

```
# to split my dataset into test and train data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [16]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[16]:

LinearRegression()

```
In [17]:
```

```
print(lr.intercept_)
```

13525.271371865661

In [18]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-effecient'])
coeff
```

Out[18]:

	Co-effecient
Quality of Sleep	68.698776
Physical Activity Level	66.099006
Stress Level	562.296378
Heart Rate	-201.914683

In [19]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[19]:

<matplotlib.collections.PathCollection at 0x23843c29070>

In [20]:

```
print(lr.score(x_test,y_test))
```

0.7979085511851789

Ridge Regression

```
In [21]:
from sklearn.linear_model import Ridge,Lasso
In [22]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
rr.score(x_test,y_test)
Out[22]:
0.7961661532612262
Lasso Regression
In [23]:
la=Lasso(alpha=10)
In [24]:
la.fit(x_train,y_train)
Out[24]:
Lasso(alpha=10)
In [25]:
la.score(x_test,y_test)
Out[25]:
```

0.7954036470526151

In []: