SIEM Lab Setup Documentation - Phase 1

Introduction

Objective:

The objective of Phase 1 was to set up a SOC (Security Operations Center) lab, simulate basic cyberattacks, configure log sources from Windows and Linux systems, and detect real-world threats using a SIEM solution.

What is a SIEM and Why it Matters?

What is SIEM?

A SIEM (Security Information and Event Management) system aggregates, parses, correlates, and analyzes security-related logs in real time.

Key Functions:

- Log Collection and Normalization
- Alerting and Rule-based Correlation
- Dashboards and Incident Response
- Compliance and Reporting

Popular SIEM Tools:

- 1. Splunk
- 2. Wazuh
- 3. ELK Stack
- 4. Security Onion

Why SIEM is Important?

SIEMs are essential for early threat detection, compliance, and centralized monitoring of cybersecurity events, such as brute-force attacks, unauthorized access, and log tampering.

Lab Setup Overview

This lab simulates a basic enterprise network with a Windows host, a Linux VM, and an attacker machine. Log sources are configured to send data to a central SIEM solution.

Architecture

Windows Machine:

• OS: Windows 10

• Tools: Sysmon, Winlogbeat

Software: Splunk Enterprise

Linux Machine:

OS: Ubuntu/Kali

• Tools: auditd, rsyslog, Filebeat

Software: Splunk Universal Forwarder

SIEM Host:

Tool: Wazuh / Splunk / ELK Stack

Receives logs from both Windows and Linux over the network

Communication:

• Logs forwarded over TCP (port varies by tool, e.g., 9997 for Splunk)

Tools Used

- Wazuh / Splunk Free / ELK Stack
- Sysmon for Windows telemetry
- Auditd for Linux auditing
- Winlogbeat, Filebeat as log forwarders
- Hydra and Netcat for brute force simulation

Splunk Forwarder Configuration

1. Install Splunk Forwarder on Linux VM:

-Download and extract Splunk Forwarder , according to you machine type.

2. Start Splunk Forwarder:

sudo /opt/splunkforwarder/bin/splunk start --accept-license

3. Configure Splunk Forward Server:

This will forward our defined logs in inputs.conf to splunk enterprise server hosted on

windows machine.

sudo /opt/splunkforwarder/bin/splunk add forward-server <Windows_IP>:9997

Note:

This step, might be done again, if machine restarts with new IP_address.

4. Monitor Logs:

This step commands forwarder to forward which specific logs to splunk server.

Add the following to /opt/splunkforwarder/etc/system/local/inputs.conf:

[monitor:///var/log/syslog]
disabled = false
index = linux_logs
sourcetype = syslog
[monitor:///var/log/auth.log]
disabled = false
index = linux_logs
sourcetype = linux_secure
[monitor:///var/log/sysmon.log]
disabled = false
index = linux_logs
sourcetype = sysmon_linux

Splunk Enterprise Configuration

- 1. Download Splunk Enterprise for windows from official site.
- 2. Set username and password to login on splunk server later.
- 3. Enable Receiving on Port 9997:

Settings > Forwarding and Receiving > Configure Receiving > new receiving port > Port 9997

3. Configure web.conf:

To allow access to splunk forwarder in linux via actual IP of windows where splunk server

is hosted, edit C:\Program Files\Splunk\etc\system\local\web.conf:

[settings] enableSplunkWebSSL = false httpport = 8000 mgmtHostPort = 192.168.1.34:8089

4. splunk-launch.conf:

This is necessary, if we are changing IP in above step, to start splunk server with that

actual IP.

Configure environmental variables if needed in splunk-launch.conf , i.e , add bind ip

- **5. Firewall Configuration(this is optional):**Allow inbound connections on port 9997 (TCP) in Windows Defender Firewall.
- **6.** Create new index (namespace or data repository where forwarded logs are collected and analyzed) in splunk enterprise, with name as linux logs.
- 7. Now restart splunk enterprise and splunk forwarder.

Detection Use Case 1 - Brute Force Login

Simulation:

- Used Hydra to brute-force SSH login to Linux machine
- Also simulated failed RDP attempts on Windows

Event IDs:

- 4625: Failed Windows login
- 4624: Successful login

Detection:

 Alert triggered when ≥5 failed logins occur from same IP within 2 minutes

Splunk Query Example:

index=win_logs EventCode=4625 | stats count by src_ip, user | where count > 5

Detection Use Case 2 - After-Hours Login

Definition:

Business hours: 9:00 AM to 6:00 PM

Detection:

 Alert when user login (Event ID 4624 or SSH Accepted password) happens outside business hours

Splunk Example:

index=linux_logs "Accepted password" | eval hour=strftime(_time, "%H") | where hour<9 OR hour>18

Detection Use Case 3 - RDP Lateral Movement

Simulation:

• RDP session from Admin-PC (A) to Server (B)

Event IDs:

4624 with LogonType=10 (RemoteInteractive)

Detection:

• Detect logins from internal IPs not normally associated with that system

MITRE ATT&CK:

T1021.001 - Remote Services: RDP

Detection Use Case 4 - Log Tampering

Simulation:

- Commands used:
 - wevtutil cl Security
 - o auditpol /set /category:* /success:disable

Event IDs:

- 1102: Audit log cleared
- 4719: Audit policy changed

Detection:

Alert when logs are unexpectedly cleared or policies are modified

MITRE ATT&CK:

T1562.002 - Impair Defenses: Disable Windows Event Logging

Reflection Questions & Answers

1. What is the role of SIEM in modern cybersecurity?

SIEM systems enable real-time threat detection, centralized log analysis, and incident response.

- 2. Challenges faced while setting up the lab?
 - -> Networking between VMs
 - -> Forwarding logs consistently
 - -> Tuning detection rules.
- 3. Difference between Sysmon logs and Windows Security logs?

Sysmon provides detailed process/file/network events, whereas

Security logs focus on access, logon, and audit events.

4. How does a brute force attack appear in logs?

Burst of Event ID 4625 from same IP, possibly followed by 4624 on success.

5. How to detect a login outside normal business hours?

Analyze timestamps of Event ID 4624 and compare with business hour range.

6. Tracking RDP lateral movement in logs?

Look for LogonType 10 and Event ID 4624 from internal IPs.

7. Risk of log tampering and detection?

Tampering hides evidence. Detected via Event IDs 1102, 4719, and file size anomalies.

8. Improvements if more time was available?

Automate log collection, expand attack library, and integrate threat intel feeds.

9. How does this phase help for interviews/jobs?

Hands-on SIEM experience builds real-world blue team skills.

10. Biggest takeaway from Phase 1?

Importance of proper logging and correlation to detect even subtle attacks.