Ideas of mathematical proof. Practical class Week 19

Note that solutions must be by the methods specified in the problems – even if you can see another solution, even if an easier one.

- **1.1.** Use mathematical induction to prove that $5^n + 3$ is divisible by 4 for all positive integers n.
- **1.2.** Use mathematical induction to prove that $11^n 4^n$ is divisible by 7 for all positive integers n.
- 1.3. Use the method of undetermined coefficients to guess a formula for

$$1+3+5+\cdots+(2n-1)$$

as a quadratic expression in n, and then use mathematical induction to prove this formula. (Pretend as if you did not know the formula for the arithmetical progression...)

1.4. Use mathematical induction to prove that

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$$

for any positive integer n.

- **1.5.** Use mathematical induction to prove that $n! > 3^n$ for any $n \ge 7$.
- **1.6.** What is wrong in the following "proof" that all men are bald? We use induction on the number of hairs on the head, n. Indeed,
 - 1°. If n=1, then a man with just one hair is of course bald.
 - 2° . Suppose the assertion is true for n=k, that is, having k hairs means the man is bald. Now, if he has k+1 hairs, it is just one more, surely, does not transform a man from being bald to non-bald. Thus, by the Axiom of Mathematical Induction, a man is bald if he has n hairs, for any n.
- **1.7.** Prove by induction that for $x \neq 1$ we have

$$1 + x + x^2 + \dots + x^{n-1} = \frac{1 - x^n}{1 - x}.$$

for any positive integer n.

1.8. Use mathematical induction to prove that

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$$

for all positive integers n.

1.9. Use mathematical induction to prove that $n^3 < 2^n$ for any $n \ge 10$.