Marisa Paone MET CS677 7/24/2023

Homework #3

NOTE: Since my training and testing sets are split in half each time the program is run, different results are received. I included a txt file of the run of the program I completed and saved it as output.txt

Question 1.

Please see main.py.

1. Summarize your results into a table.

class	μ(f_1)	σ(f_1)	μ(f_2)	σ(f_2)	μ(f_3)	σ(f_3)	μ(f_4)	σ(f_4)
0	2.28	2.02	4.26	5.14	0.80	3.24	-1.15	2.13
1	-1.87	1.88	-0.99	5.4	2.15	5.26	-1.25	2.07
all	0.43	2.84	1.92	5.87	1.40	4.31	-1.19	2.10

2. Examine your table. Are there any obvious patterns in the distribution of banknotes in each class?

Knowing that class 0 are good banknotes and class 1 are counterfeit banknotes, the obvious patterns in the distribution of banknotes are for class 1. The mean for features 1, 2, and 4 are negative and close to a value of negative 1. Also, for class 1, the standard deviation for feature 3 is higher than class 0 by 2 (greater variability). For class 0, the mean values are positive (except for feature 4) and have a value of 2 or greater. The standard deviation of features 2 and 3 for class 0 banknotes is relatively smaller than the standard deviation for class 1 banknotes.

Question 2.

Please see main.py, good_bills.pdf and fake_bills.pdf

3. Visually examine your results of the pairplots. Come up with three simple comparisons that you think may be sufficient to detect a fake bill.

My simple classifier is a banknote is good if f = -2.5, and f = -2.5, and

5. Summarize your true label findings in the table below:

True Positives	False Positives	True Negatives	False Negatives	Accuracy	TPR	TNR
268	132	165	121	0.631195	0.67	0.576923

6. Does your simple classifier give you higher accuracy on identifying fake bills or real bills? Is your accuracy better than 50%?

My simple classifier gives higher accuracy on identifying real bills since my TPR is higher than my TNR. My accuracy is better than 50%, it falls around 63% and the lowest I received from running the program a couple of times is 60%.

Question 3.

Please see main.py.

2. Plot a graph showing the accuracy of k-NN classifiers. What is the optimal value k* of k?

The optimal k value for this run of the program is k = 3, followed by k = 11.

3. Use the optimal value k^* to compute performance measures and summarize them in a table. k = 3:

True Positives	False Positives	True Negatives	False Negatives	Accuracy	TPR	TNR
387	2	297	0	0.997085	0.994859	1

4. Is your k-NN classifier better than your simple classifier for any of the measures from the previous table?

Yes, my k-NN classifier is very close to 100% accurate. It is 99.7% accurate in predicting bills. It is better than my simple classifier for each measure in this table.

5. Consider a bill x that contains the last 4 digits of your BUID as feature values. What is the class label predicted for this bill by your simple classifier and k-NN using k*?

Simple Classifier Prediction: green

k-NN prediction: green

Question 4.

Please see main.py.

2. Did accuracy increase with k^* in any of the 4 cases compared with accuracy when all 4 features are used?

Yes, accuracy increased when removing feature 4. It increased to 100% accurate!

- 3. Which feature, when removed, contributed the most to loss of accuracy?

 Removing feature 1 contributed to the most loss of accuracy. It decreased from 99.7% to 95.0% accurate.
- 4. Which feature, when removed, contributed the least to loss of accuracy?

 Removing feature 3 contributed to the lease loss of accuracy. It decreased from 99.7% to 98.3% accurate.

Question 5.

Please see main.py.

2. Summarize your performance measures for logistic regression in a table.

True Positives	False Positives	True Negatives	False Negatives	Accuracy	TPR	TNR
374	15	296	1	0.976676	0.96144	0.996633

- 3. Is your logistic regression better than your simple classifier for any of the measures from the previous table?
 - Yes logistic regression is better than my simple classifier for all measures.
- 4. Is your logistic regression better than your k-NN classifier(using the best k*) for any of the measures from the previous table?
 - No, logistic regression is a smidge worse (97.7%) than my k-NN classifier with k=3 (99.7%).
- 5. What is the class label predicted for the bill x by logistic regression? Is It the same label predicted by k-NN?
 - Yes, it is the same label predicted by k-NN, it is green.

Question 6.

Please see main.py.

- 2. Did accuracy increase in any of the 4 cases compared with accuracy when all 4 features are used? Accuracy increased when dropping feature 4, it increased from 97.7% to 97.8%!
- 3. Which feature, when removed, contributed the most to the loss of accuracy?

 Removing feature 1 contributed the most to the loss of accuracy. It went from 97.7% to 81.0%.
- 4. Which feature, when removed, contributed the least to the loss of accuracy?Removing feature 2 contributed the least to the loss of accuracy. It went from 97.7% to 90.2%.
- 5. Is the relative significance of features the same as you obtained using k-NN?
 Yes, it is the same except for the last question (contributing to the least to loss of accuracy). In both cases though, removing feature 4 increased accuracy, and removing feature 1 decreased accuracy the most. For k-NN removing feature 3 contributed to the least loss of accuracy, and for logistic regression removing feature 2 contributed to the least loss of accuracy.