Preliminaries and Definitions

Definition. Let \mathscr{D} be a pre-Hilbert space. Denote by $\mathscr{L}^{\dagger}(\mathscr{D})$ the space of linear operators on \mathscr{D} such that for all $A \in \mathscr{L}^{\dagger}(\mathscr{D})$

- 1. $A(\mathcal{D}) \subseteq \mathcal{D}$,
- 2. $\mathscr{D} \subseteq \mathcal{D}(A^*)$ and $A^*(\mathscr{D}) \subseteq \mathscr{D}$.

Under the involution $A^{\dagger} = A^*|_{\mathscr{D}}$, $\mathscr{L}^{\dagger}(\mathscr{D})$ is a *-algebra. An Op*-algebra is a unital *-subalgebra of $\mathscr{L}^{\dagger}(\mathscr{D})$.

Definition. Let \mathscr{A} be an Op^* -algebra. We define the convex hull of all elements $A^{\dagger}A$ as the set $\mathcal{P}(\mathscr{A}) = co(\{A^{\dagger}A \; ; \; A \in \mathscr{A}\})$. Similarly, we write $\mathcal{K}(\mathscr{A}) = \{A \in \mathscr{A} \; ; \; \langle A\psi, \psi \rangle \geq 0 \text{ for all } \psi \in \mathscr{D}\}.$

We have the relations $\mathcal{P} \subseteq \overline{\mathcal{P}} \subseteq \mathcal{K}$, where the middle closure may be taken over a topology finer that the ultraweak topology on \mathscr{A} . If \mathscr{A} is a C*-algebra, then these all coincide. This is not the case for general Op*-algebras. As a result there are a variety of positivity one can take in the unbounded setting. For the time being we take the weakest.

Definition. (Weak Positivity) Let $\mathcal{E}: \mathcal{A} \to \mathcal{B}$ be a linear map between Op^* -algebras. We say \mathcal{E} is $(\mathcal{P}(\mathcal{A}), \mathcal{K}(\mathcal{B}))$ positive (usually just stated as "postive") if for any $A \in \mathcal{A}$ one has $\langle \mathcal{E}(A^{\dagger}A)\psi, \psi \rangle \geq 0$ for any $\psi \in \mathcal{D}(\mathcal{B})$. In a similar manner we say \mathcal{E} is completely positive if every corresponding matrix amplification $\mathcal{E}_n: \mathcal{A} \otimes M_n \to \mathcal{B} \otimes M_n$ is positive.

This of course carries the insinuation that $\mathscr{A} \otimes M_n$ is an Op*-algebra over $\mathcal{D}(\mathscr{A})^n$, which is indeed the case. We may also consider the tensor product $\mathscr{A} \otimes M_{\infty}$, where M_{∞} denotes the set of finitely-supported, but infinite matrices. We will consider stability of this tensor product and its relationship to complete positivity later.

There is a generalization of the Stinespring Theorem for this class, and hence any more specific class of positive maps between Op*-algebras.

Theorem. (Stinespring's Theorem) Let $\mathcal{E}: \mathcal{A} \to \mathcal{B}$ be a completely positive map. This map is of the form

$$\mathcal{E}(A) = V^*\pi(A)V.$$

Where $\pi: \mathscr{A} \to \pi(\mathscr{A})$ is a *-representation onto an Op^* -algebra $\pi(\mathscr{A})$ over a dilated pre-Hilbert space \mathcal{D}_{π} containing $\mathcal{D}(\mathcal{A})$ as a subspace, and $V: \mathcal{D}(\mathscr{A}) \to \mathcal{D}_{\pi}$ is a linear map continuous with respect to the graph topologies on $\mathcal{D}(\mathscr{A})$ and \mathcal{D}_{π} , V^* the corresponding TVS adjoint. Conversely, any such map is completely positive. If \mathcal{E} is ultraweakly continuous, then so is π .

Proof. We show the first part of the theorem, which closely follows the bounded case. Consider the algebraic tensor product $\mathscr{A} \otimes \mathcal{D}$, where $\mathcal{D} = \mathcal{D}(\mathscr{A})$. For $\xi = \sum_i A_i \otimes \phi_i$ and $\eta = \sum_j B_j \otimes \psi_j$ the bilinear form $\langle \xi, \eta \rangle = \sum_{i,j} \langle \phi_i, \mathcal{E}(A_i^{\dagger}B_j)\psi_j \rangle$. That this is positive semi-definite follows from positivity of \mathcal{E} . Define the action of π by

$$\pi(X)\xi = \sum_{i} X A_i \otimes \phi_i.$$

This defines a representation of \mathscr{A} on $\mathscr{A} \otimes \mathcal{D}$ satisfying

$$\langle \xi, \pi(A)\eta \rangle = \langle \pi(A^{\dagger})\xi, \eta \rangle.$$

Now let \mathcal{N} be the kernel of the previously defined inner product on $\mathscr{A} \otimes \mathcal{D}$. Given that $\xi \in \mathcal{N}$, one has

$$\|\pi(A)\xi\|^2 = \langle \xi, \pi(A^{\dagger}A)\xi \rangle \le \|\xi\| \cdot \|\pi(A^{\dagger}A)\xi\| = 0.$$

Thus the action of π on the pre Hilbert space $\mathcal{D}_{\pi} = (\mathscr{A} \otimes \mathcal{D})/\mathcal{N}$ admits a well-defined linear operator. $\pi(\mathscr{A})$ is then an Op*-algebra.

Now define $V: \mathcal{D} \to \mathcal{D}_{\pi}$ via $V\psi = 1 \otimes \psi + \mathcal{N}$. Let ρ_X denote a seminorm corresponding to $X \in \mathcal{A}$ or $X \in \pi(\mathcal{A})$ in either graph topology. We have

$$\rho_{\pi(A)}(V\psi)^{2} = \langle \pi(A)V\psi, \pi(A)V\psi \rangle$$

$$= \langle \pi(A)(1 \otimes \psi), \pi(A)(1 \otimes \psi) \rangle$$

$$= \langle A \otimes \psi, \pi(A) \otimes \psi \rangle$$

$$= \langle \mathcal{E}(A^{\dagger}A)\psi, \psi \rangle$$

$$\leq \|\mathcal{E}(A^{\dagger}A)\psi\| \cdot \|\psi\|$$

$$\leq \|B\psi\|^{2}$$

$$= \rho_{B}(\psi)^{2}.$$

Where $B = I + \mathcal{E}(A^{\dagger}A) \in \mathcal{B}$ and $1 \otimes \psi$ is understood here as an equivalence class. Moreover, we have

$$\langle V\phi, \pi(A)V\psi\rangle = \langle 1\otimes\phi, A\otimes\psi\rangle = \langle \phi, \mathcal{E}(A)\psi\rangle$$

and so $\mathcal{E}(A) = V^*\pi(A)V$.

Now suppose that \mathcal{E} is ultraweakly continuous and that $\{A_{\alpha}\}_{\alpha}$ converges to 0 ultraweakly in \mathscr{A} . Let $\{\sum_{k} X_{n,k} \otimes \xi_{n,k}\}_n$ and $\{\sum_{k} Y_{n,k} \otimes \eta_{n,k}\}_n$ be two square summable sequences in \mathcal{D}_{π} . One has

$$\sum_{n} \langle \pi(A_{\alpha})\xi_{n}, \eta_{n} \rangle = \sum_{n,i,j} \langle \pi(A_{\alpha})X_{n,i} \otimes \xi_{n,i}, Y_{n,j} \otimes \eta_{n,j} \rangle$$

$$= \sum_{n,i,j} \langle A_{\alpha}X_{n,i} \otimes \xi_{n,i}, Y_{n,j} \otimes \eta_{n,j} \rangle$$

$$= \sum_{n,i,j} \langle \psi_{n,i}, \mathcal{E}((A_{\alpha}X_{n,i})^{\dagger}Y_{n,j})\eta_{n,j} \rangle.$$

Where ξ_n and η_n are the nth terms of the previous defined sequences. It follows by our assumption on the continuity of \mathcal{E} , the seperate continuity of multiplication, and continuity of the involution that the last line converges to zero, as required.

The previous definitions and Stinespring's Theorem motivates the following definition.

Definition. A quantum channel of Op^* -algebras is a completely positive, ultraweakly continuous linear map $\mathcal{E}: \mathscr{A} \to \mathscr{B}$, where \mathscr{A} and \mathscr{B} are Op^* -algebras.