Due: March 4th

- 1. Prove that a bounded nonincreasing sequence (a_n) converges.
- 2. Suppose that $S \subseteq \mathbb{R}$ is not empty. Prove that there is a nondecreasing sequence (s_n) of element of S so that $\lim_{n\to\infty} s_n = \sup S$.

Note: Your proof should have at least two cases: $\sup S \in \mathbb{R}$ and $\sup S = +\infty$.

- 3. Let $s_1 = 1$ and $s_{n+1} = (s_n + 1)/3$ for $n \ge 1$.
 - (a) Find s_2 , s_3 , and s_4 .
 - (b) Use induction to show that $s_n > 1/2$ for all n.
 - (c) Show that (s_n) is a nonincreasing sequence.
 - (d) Show that $\lim_{n\to\infty} s_n$ exists and find $\lim_{n\to\infty} s_n$.
- 4. No proofs are required in this question. For each of the sequences below, answer the following questions:
 - (a) Give an example of a monotone subsequence,
 - (b) Give the set of subsequential limits,
 - (c) Give the lim sup and the lim inf.
 - (d) Does it converge? diverge to $+\infty$? diverge to $-\infty$?

$$a_n = (-1)^n$$
, $b_n = \frac{1}{n}$, $c_n = n^2$, $d_n = \frac{6n+4}{7n-3}$