Programme de khôlle semaines 19 et 20

Questions de cours: Savoir énoncer et démontrer les résultats suivants

- Les sous-espaces propres d'une matrice symétrique réelle sont orthogonaux.
- $M_n(\mathbb{R}) = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$ cette somme directe étant orthogonale.
- Le gradient d'une fonction de classe \mathscr{C}^1 sur un ouvert $\mathscr{U} \subset \mathbb{R}^2$, s'il est non nul en $(x_0, y_0) \in \mathscr{U}$, est orthogonal à la ligne de niveau $f(x, y) = \lambda$ passant par le point $M_0(x_0, y_0, f(x_0, y_0))$.
- Le gradient est orienté dans le sens des valeurs croissantes de f.

Savoir-faire

- Étude d'une conique via la réduction de la matrice $A \in S_2(\mathbb{R})$ de la partie quadratique de son équation (rotation du repère initial) puis et translation du repère initial.
- Savoir déterminer les axes de symétries (et les relier aux espaces propres de A), les éventuels sommets et centres, les demi-axes pour une ellipse, les asymptotes pour une hyperbole.
- Connaître la classification des coniques, fonction du signe du déterminant de la matrice de la partie quadratique (type ellipse, parabole, hyperbole, incluant les cas dégénérés.)
- Savoir dessiner une conique après étude.
- Savoir déterminer une équation réduite d'une conique définie par directrice et excentricité.

Savoir-faire

- Savoir étudier les limites et la continuité d'une fonction $f: \mathbb{R}^p \to \mathbb{R}^n$ avec $p, n \leq 3$ en utilisant la caractérisation via les applications composantes.
- Savoir justifier qu'une fonction $f: A \subset \mathbb{R}^p \to \mathbb{R}^n$ est de classe $\mathscr{C}^1, \mathscr{C}^2$ sur A (utiliser les fonctions composantes, reconnaître des fonctions polynomiales, des composées...).
- Savoir écrire la formule de Taylor-Young à l'ordre 1 ou 2 pour une fonction de deux variables à valeurs réelles.
- Savoir dériver en chaîne les fonction composées dont les expressions sont :
 - du type : f(x(t)), y(t)) avec $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$,
 - du type f(x(u,v),y(u,v)) avec $f: \mathscr{U} \subset \mathbb{R}^2 \to \mathbb{R}$,
 - En particulier, avec les coordonnées polaires $F(r,\theta)=f(r\cos\theta,r\sin\theta)$ avec $f:\mathbb{R}^2\to\mathbb{R}$.
- Construire la matrice Hessienne d'une matrice de classe \mathscr{C}^2 en un point (x_0, y_0) d'un ouvert.

- Déterminer les points critiques d'une fonction de plusieurs variables à valeurs réelles.
- Étude des extrema locaux sur un ouvert à l'aide de la matrice Hessienne et du signe des valeurs propres.
- Savoir que sur un ouvert, les extrema locaux sont atteints en des points critiques (attention à la réciproque).
- Exemples dans le cas où l'on ne peut pas conclure à l'aide de la matrice Hessienne (si la Hessienne A au point critique n'est pas inversible : det(A) = 0).
- Exemples d'étude des extrema globaux sur un ouvert.
- Exemples d'étude des extrema globaux sur un ensemble quelconque : on distingue ce qui se passe sur l'intérieur (qui est ouvert) de ce qui se passe sur la frontière.
- Savoir qu'une fonction de plusieurs variables à valeurs réelles et continue sur un **fermé-borné** de \mathbb{R}^n est bornée et atteint ses bornes.
- Savoir résoudre des équations aux dérivées partielles par différentes méthodes : intégrations successives, changement de variable.
- Encore un peu de géométrie : savoir déterminer une équation cartésienne de la tangente à une courbe définie par une équation f(x,y) = 0 où f est une fonction de classe \mathscr{C}^1 en un point régulier (x_0,y_0) (voir fin du Chapitre 8 pour la démonstration).

A préparer :

Exercice:

Soit $\mathscr{R}_0 = (O, i, j)$ le repère orthonormé direct usuel. On considère le point F(1;1) et la droite d'équation cartérsienne $(\mathscr{D}): x_0 - y_0 = 1$ dans \mathscr{R}_0 .

Dans cet exercice, on étudie l'hyperbole $\mathscr H$ de directrice $(\mathscr D)$, de foyer F et d'excentricité e=2.

- 1. Donner une équation cartésienne (que l'on ne cherchera pas à réduire) de $\mathcal H$ dans $\mathcal R_0$.
- 2. Déterminer un repère \mathcal{R}_1 dans lequel la directrice a pour équation cartésienne $x_1 = -d$. Donner une équation cartésienne de \mathcal{H} dans \mathcal{R}_1 .
- 3. Déterminer un repère $\mathscr{R}_2=(\Omega,\overrightarrow{u},\overrightarrow{v})$ dans lequel l'équation de \mathscr{H} est réduite :

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

- 4. Déterminer $X_0(\Omega), X_0(S_i)$ avec $S_i, i \in \{1, 2\}$ les deux sommets de \mathcal{H} .
- 5. Déterminer dans \mathcal{R}_2 les équation des asymptotes à \mathcal{H} .
- 6. Tracer \mathcal{H} .

7. Donner une équation cartésienne des axes de symétrie de $\mathcal H$ dans $\mathcal R_0$. On demande deux méthodes.

Exercice

Étudier et tracer les coniques dont les équations cartésiennes dans le repère orthonormé direct usuel sont :

- 1. $x^2 + xy + y^2 1 = 0$. Donner ensuite l'équation dans le repère usuel de l'axe focal et de la directrice puis placer le foyer.
- 2. $x^2 + 2\sqrt{3}xy y^2 + 16y + 16 = 0$. Donner ensuite l'équation dans le repère usuel de l'axe focal et de la directrice puis placer le foyer.
- 3. $x^2 + 2xy + y^2 2\sqrt{2}x + 6\sqrt{2}y + 6 = 0$. Donner ensuite l'équation dans le repère usuel de l'axe focal et de la directrice puis placer le foyer.

Exercice

Déterminer les points critiques, et leur nature, des fonctions définie sur \mathbb{R}^2 par :

- 1. $f(x,y) = x^4 + y^4 (x-y)^2$.
- 2. $f(x,y) = x^2 + xy + y^2 + 2x + 3y$.
- 3. $f(x,y) = x^3 + y^3$
- 4. $f(x,y) = x^2 + y^2 + x^3$.

En cas d'extremum étudier s'il est global ou non.

Exercice

A l'aide du changement de variable défini par u=xy et $v=\frac{x}{y}$ déterminer toutes les fonctions de classe \mathscr{C}^2 sur $(\mathbb{R}_+^*)^2$ solution de l'équation aux dérivées partielles :

$$x^{2} \frac{\partial^{2} f}{\partial x^{2}}(x, y) - y^{2} \frac{\partial^{2} f}{\partial y^{2}}(x, y) = 0.$$