Probability Spaces, Random Variables and Distribution Functions

Definition 1

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A measurable function $X: \Omega \to \mathbb{R}$ is called a random variable. The law of the random variable is the probability measure μ on $(\mathbb{R}, \mathcal{B})$ defined by

$$\mu(A) = \mathbb{P}(X \in A), A \in \mathcal{B}.$$

The distribution function of *X* is defined by

$$F(x) = \mu((-\infty, x]) = \mathbb{P}(X \le x)$$

for real x.

Theorem 1

Let *F* be a distribution function of some random variable *X*. Then

- a) $F(x) \le F(y)$ whenever $x \le y$,
- b) $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to+\infty} F(x) = 1$,
- c) F is right-continuous

Proof

- a) If $x \le y$ then $(-\infty, x] \subseteq (-\infty, y]$ and it follows that $F(x) = \mu((-\infty, x]) \le \mu((-\infty, y]) = F(y)$.
- b) Note that $\bigcap_{n=1}^{\infty} (-\infty, -n] = \emptyset$ so that $\lim_{x \to -\infty} F(x) = \mu(\bigcap_{n=1}^{\infty} (-\infty, -n]) = 0.$
 - Similarly, $\bigcup_{n=1}^{\infty} (-\infty, n] = \mathbb{R}$ and $\lim_{x \to +\infty} F(x) = \mu(\bigcup_{n=1}^{\infty} (-\infty, n]) = 1.$
- For right-continuity, note that $\lim_{n \to \infty} F\left(x + \frac{1}{n}\right) = \mu\left(\bigcap_{n=1}^{\infty} (-\infty, x + \frac{1}{n}]\right) = F(x).$

Theorem 2

If F is a nondecreasing, right-continuous function with $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$, then there exists on some probability space a random variable X for which $F(x) = P(X \le x)$.

Proof

Define the random variable X on $([0,1], \mathcal{B}[0,1], \lambda)$ by $X(\omega) = \inf\{z: F(z) \ge \omega\}$. Now, if $z > X(\omega)$ then $F(z) \ge \omega$, so by right-continuity, $F(X(\omega)) \ge \omega$. If, in addition $X(\omega) \le c$ then $\omega \le F(X(\omega)) \le F(c)$. Thus $\omega \le F(c)$ if and only if $X(\omega) \le c$, so that $P(X \le c) = \lambda([0, F(c)]) = F(c)$.