How to Use a Cross Table to Solve A Interview Question

Hongyu Dai

Question

• Suppose there are 5 coins. Four of the coins are fair with P(heads)=0.5, and one of the coins is biased with P(heads)=0.75. Suppose a coin is randomly selected and flipped 4 times resulting in 4 heads.

• What is the probability that the selected coin was biased? That is, what is P(biased coin selected | HHHH)?

Note: The following calculation only retains four decimal places for the convenience of calculation

• Baye's formula:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

• Assume:

A= biased coin selected

B= HHHH

 $P(biased\ coin\ selected\ |\ HHHH) = P(A|B) = \frac{P(AB)}{P(B)}$

Note: HHHH means flipped 4 times resulting in 4 heads)

5 coins One biased with P(heads)=0.75 Four fair with P(heads)=0.5

		A=biased with coin	Ā=fair with coin	Row Total
В=НННН	cell prob	P(AB)	P(AB)	
	col prob			
\overline{B} =non-HHHH	cell prob row prob col prob	$P(A\overline{B})$	$P(A\overline{B})$	
Column Total		P(biased)=P(A)	$P(fair)=P(\overline{A})$	1

$$P(B) = P(AB) + P(\overline{A}B)$$

$$P(\overline{B}) = P(A\overline{B}) + P(A\overline{B})$$

		A=biased with coin	Ā=fair with coin	Row Total
В=НННН	cell prob row prob col prob	$0.2 * (0.75^4) = 0.0633$		$P(HHHH)$ $=P(B) = P(AB) + P(\overline{A}B)$
B̄=non-HHHH	cell prob row prob col prob	$0.2 * (1 - 0.75^4) = 0.1367$	$0.8 * (1 - 0.5^4) = 0.75$	P(non-HHHH) $=P(\overline{B})=P(A\overline{B})+P(A\overline{B})$
Column Total		P(biased)=P(A)	$P(fair)=P(\overline{A})$	1

$$row \ prob = \frac{cell \ prob}{corresponding \ row \ prob}$$

		A=biased with coin	Ā=fair with coin	Row Total
В=НННН	cell prob row prob col prob	$0.2 * (0.75^4) = 0.0633$	$0.8*(0.5^4) = 0.05$	P(HHHH)= 0.0633 + 0.05 = 0.1133
non-HHHH	cell prob row prob col prob	$0.2 * (1 - 0.75^4) = 0.1367$	$0.8*(1-0.5^4) = 0.75$	P(non-HHHH)= 0.1367 + 0.75 = 0.8867
Column Total		P(biased)= $\frac{1}{5}$ = 0.2	$P(fair) = \frac{4}{5} = 0.8$	1

$$col\ prob = \frac{cell\ prob}{corresponding\ col\ prob}$$

		A=biased with coin	Ā=fair with coin	Row Total
В=НННН	cell prob row prob col prob	$0.2 * (0.75^4) = 0.0633$ $\frac{0.0633}{0.1133} = 0.5587$	$0.8 * (0.5^4) = 0.05$ $\frac{0.05}{0.1133} = 0.4413$	P(HHHH)= 0.0633 + 0.05 = 0.1133
non-HHHH	cell prob row prob col prob	$0.2 * (1 - 0.75^4) = 0.1367$ $\frac{0.1367}{0.8867} = 0.1542$	$0.8 * (1 - 0.5^4) = 0.75$ $\frac{0.75}{0.8867} = 0.8458$	P(non-HHHH)= 0.1367 + 0.75 = 0.8867
Column Total		P(biased)= $\frac{1}{5}$ = 0.2	$P(fair) = \frac{4}{5} = 0.8$	1

		A=biased with coin	Fair with coin	Row Total
В=НННН	cell prob row prob col prob	$0.2 * (0.75^{4}) = 0.0633$ $\frac{0.0633}{0.1133} = 0.5587$ $\frac{0.0633}{0.2} = 0.3165$	$0.8 * (0.5^4) = 0.05$ $\frac{0.05}{0.1133} = 0.4413$ $\frac{0.05}{0.8} = 0.0625$	P(HHHH)= 0.0633 + 0.05 = 0.1133
non-HHHH	cell prob row prob col prob	$0.2 * (1 - 0.75^{4}) = 0.1367$ $\frac{0.1367}{0.8867} = 0.1542$ $\frac{0.1367}{0.2} = 0.6835$	$0.8 * (1 - 0.5^{4}) = 0.75$ $\frac{0.75}{0.8867} = 0.8458$ $\frac{0.75}{0.8} = 0.9375$	P(non-HHHHH)= 0.1367 + 0.75 = 0.8867
Column Total		P(biased)= $\frac{1}{5}$ = 0.2	$P(fair) = \frac{4}{5} = 0.8$	1

$$P(biased\ coin\ selected\ |\ HHHH) = P(A|B) = \frac{P(AB)}{P(B)} = \frac{0.0633}{0.1133} = 0.5587$$