Supplementary materials for "NCART: Neural Classification and Regression Tree for Tabular Data"

Jiaqi Luo^a, Shixin Xu^{a,*}

^aData Science Research Center, Duke Kunshan University, No.8 Duke Avenue, Kunshan, 215000, Jiangsu Province, China

1. Sparse Function

We denote the d-probability simplex (the set of vectors representing probability distributions over d choices) by $\Delta^d := \{\mathbf{p} \in \mathbb{R}^d : \mathbf{p} \geq \mathbf{0}, \|\mathbf{p}\|_1 = 1\}.$

sparsemax is an alternative to softmax which tends to yield sparse probability distributions:

$$\operatorname{sparsemax}(\mathbf{z}) := \operatorname{argmin}_{\mathbf{p} \in \Delta^d} \|\mathbf{p} - \mathbf{z}\|^2.$$

entmax is a more general sparse function that has the following expression:

$$\alpha - \operatorname{entmax}(\mathbf{z}) := \operatorname{argmin}_{\mathbf{p} \in \Delta^d} \mathbf{p}^\mathsf{T} \mathbf{z} + H_{\alpha}^T(\mathbf{p}).$$

 $\label{lem:eq:linear} \textit{Email addresses:} \ \texttt{jiaqi.luo@dukekunshan.edu.cn} \ (Jiaqi\ Luo), \\ \texttt{shixin.xu@dukekunshan.edu.cn} \ (Shixin\ Xu\)$

^{*}Corresponding author

Here, $H_{\alpha}^{T}(\mathbf{p})$ is called $Tsallis\alpha-entropie$ which is defined as:

$$H_{lpha}^{T}(\mathbf{p}) = \left\{ egin{array}{ll} rac{1}{lpha(lpha-1)} \sum_{j=1}^{d} (p_{j} - p_{j}^{lpha}) & lpha
eq 1 \ - \sum_{j=1}^{d} p_{j} \log p_{j} & lpha = 1, \end{array}
ight.$$

where p_j is the j_{th} component of **p**. It's worth noting that 1 - entmax is equivalent to the *softmax* function, and 2 - entmax is equal to the *sparsemax* function.

2. Datasets Description

Table. 1 are the datasets used in this paper, the column #Tar. means the number of distinct target values in the label, and the column Objective gives a brief introduction to the objectives of each dataset. The selection of data follows the following principles: 1. Diversity of feature types; 2. Diversity of feature dimensions; 3. Diversity of sample numbers.

3. Optimization of hyperparameters

Table. 2 lists the search range of hyperparameters, which refers to the survey [1] and some adjustments are made on this basis to try to avoid GPU memory overflow and to lower the risk of overfitting on small-scale datasets. We implement the NCART model ¹ using PyTorch and employ the official open-source

¹The code is available at https://github.com/Luojiaqimath/NCART

Dataset	#Samp.	#Num.	#Cat.	#Tar.	#Maj.	Data id	Objective		
				Bina	ry Classific	cation			
diabetes	768	8	0	2	0.65	37	Patient's diabetes status recognition		
credit-g	1000	20	13	2	0.70	31	People's credit risks prediction		
qsar-biodeg	1055	41	0	2	0.66	1494	Analyze molecule biodegradation and structure		
scene	2407	299	5	2	0.82	312	Scene recognition		
ozone-level	2534	72	0	2	0.94	1487	Ozone level alarm forecasting		
delta_ailerons	7129	5	0	2	0.53	803	Aileron control prediction for aircraft		
MagicTelescop	13376	10	0	2	0.50	44125	Gamma signal recognition		
jannis	57580	54	0	2	0.50	44131	For challenging machine learning competitions		
road-safety	111762	32	3	2	0.50	44161	Personal injury road accidents recognition		
Higgs	940160	24	0	2	0.50	44129	Higgs boson signals recognition		
				Multic	lass Classi	fication			
autoUniv-au7	700	12	4	3	0.35	1553	An advanced dataset generator for classification		
plants-margin	1600	64	0	100	0.01	1491	Plant leaf classification		
waveform	5000	40	0	3	0.34	60	Waves prediction		
gas-drift	13910	128	0	6	0.21	1476	Gas sensor drift prediction		
EMNIST	131600	784	0	47	0.02	41039	Handwritten character digits recognition		
					Regression	ı			
analcatdata	4052	7	5	10	-	44055	For analyzing categorical data		
kin8nm	8192	8	0	8188	-	189	Predict the dynamics of a robot arm		
superconduct	21263	79	0	3007	-	44148	The critical temperature prediction		
house_sales	21613	17	2	4028	-	44066	House sale prices prediction		
year	515345	90	0	89	-	44027	Song release year prediction		

Table 1: Details of datasets (sorted by dataset size in each task type). #Samp. = #Sample; #Num. = #Numerical features; #Cat. = #Categorical features; #Tar. = #Target; #Maj. = percentage of the majority class. #Target in regression task means the number of unique values.

implementations for other models ^{2 3 4 5 6 7 8 9 10}.

²XGBoost: https://xgboost.readthedocs.io/en/stable/

³CatBoost: https://catboost.ai/

⁴LightGBM: https://lightgbm.readthedocs.io/en/latest/

⁵NODE: https://github.com/Qwicen/node

⁶TabNet: https://github.com/dreamquark-ai/tabnet

⁷SAINT: https://github.com/somepago/saint

⁸FT-Transformer & ResNet: https://github.com/Yura52/rtdl

⁹TabCaps: https://github.com/WhatAShot/TabCaps

¹⁰RLN: https://github.com/irashavitt/regularization_learning_networks

HyperParameters	Range	HyperParameters	Range			
		XGBoost				
num_boost_round	1000	early_stopping_rounds	10			
max_depth	LogUniformInt [2, 10]	alpha	LogUniform [1e-8, 0.1]			
lambda	LogUniform [0.5, 2]	eta	LogUniform [0.05, 0.3]			
		CatBoost				
iterations	1000	od_wait	10			
max_depth	LogUniformInt [2, 10]	l2_leaf_reg	LogUniform [0.1, 2]			
learning_rate	LogUniform [0.05, 0.3]					
]	LightGBM				
iterations	1000	early_stopping_round	10			
num_leaves	LogUniformInt [8, 64]	$lambda_l_1$	LogUniform [1e-8, 0.1]			
$lambda_l_2$	LogUniform [1e-8, 0.1]	learning_rate	LogUniform [0.05, 0.3]			
		NODE				
num_layers	[2, 4, 8]	total_tree_count	[128, 256]			
tree_depth	[4, 6, 8]	tree_out put_dim	[2, 3]			
		TabNet				
n_d	LogUniform [8, 16]	n_steps	UniformInt [1, 6]			
gamma	Uniform [1, 2]	n_independent	UniformInt [1, 5]			
n_shared	UniformInt [1, 5]	momentum	LogUniform [0.01, 0.4]			
mask_type	[sparsemax, entmax]					
		SAINT				
dim	[16, 32, 64]	depth	[1, 2, 3, 6]			
heads	[2, 4, 8]	dropout	[0, 0.1, 0.2, 0.3, 0.4, 0.5]			
	FT	-Transformer				
num_blocks	UniformInt [1, 6]	num_tokens	[8, 16, 24, 32, 64, 128, 256, 512]			
dropout_att	[0, 0.1, 0.2, 0.3, 0.4, 0.5]	dropout_ffn	[0, 0.1, 0.2, 0.3, 0.4, 0.5]			
dropout_res	[0, 0.1, 0.2, 0.3, 0.4, 0.5]					
		TabCaps				
learning_rate	UniformInt [0.02, 0.1]	num_senior_capsules	UniformInt[1, 5]			
primary_capsule_size	UniformInt[64, 128]	num_primary_capsules	UniformInt[4, 32]			
senior_capsule_size	UniformInt[4, 32]	num_learnable_words	UniformInt[16, 64]			
		RLN				
layers	UniformInt [2, 6]	theta	UniformInt [-12, -8]			
norm	[1, 2]					
		ResNet				
n_blocks	UniformInt [1, 10]	d_hidden	[32, 64, 128, 256, 512]			
dropout	[0, 0.1, 0.2, 0.3, 0.4, 0.5]					
		NCART				
W. E. (0)	[8, 16, 32, 64]	d in Eq. (4)	UniformInt [2, 10]			
N in Eq. (9)	10, 10, 32, 041					

Table 2: Hyperparameters space.

4. Inference Time Figures

Figure 1: Average inference time(s) of a five cross-validation with the best hyperparameters for binary classification tasks. Subfigures are sorted by dataset size. The value on the y-axis represents the inference time. Missing areas indicate that the model has GPU memory overflow.

5. Training Time

The detailed training time(s) of five cross-validation with the best hyperparameters are shown in Table 3.

Figure 2: Average inference time(s) of a five cross-validation with the best hyperparameters for multi-class classification tasks. Subfigures are sorted by dataset size. The value on the y-axis represents the inference time. Missing areas indicate that the model has GPU memory overflow.

Figure 3: Average inference time(s) of a five cross-validation with the best hyperparameters for regression tasks. Subfigures are sorted by dataset size. The value on the y-axis represents the inference time. Missing areas indicate that the model's running time exceeds the time limit.

Dataset	XGBoost	CatBoost	LightGBM	NODE	TabNet	SAINT	FTTrans	TabCaps	RLN	ResNet	NCART
Binary Classification											
diabetes	0.08	1.08	0.11	32.85	0.13	156.10	1.09	0.74	24.22	1.99	5.79
credit-g	0.18	4.19	0.16	84.10	<u>0.07</u>	73.99	6.28	0.39	16.08	2.44	7.18
qsar-biodeg	0.13	3.21	0.18	20.84	0.14	199.24	29.71	2.02	46.89	1.39	13.34
scene	0.44	3.48	<u>0.21</u>	193.95	14.73	OOM	OOM	2.13	34.73	1.63	13.16
ozone-level	<u>0.11</u>	1.91	0.24	211.53	2.15	298.27	70.45	1.30	4.98	3.23	8.26
delta_ailerons	0.06	2.95	0.17	346.49	50.27	89.17	91.79	1.81	5.11	10.97	15.22
MagicTelescop	0.29	10.61	0.38	369.31	31.19	180.62	18.59	22.92	59.22	20.43	19.19
jannis	1.31	18.75	<u>0.86</u>	500.89	684.32	169.47	155.88	37.78	83.88	48.70	36.45
road-safety	3.87	5.85	3.82	1000.29	1306.03	443.30	805.73	135.45	25.47	192.86	132.75
Higgs	<u>6.63</u>	9.63	10.73	954.56	8209.51	1162.72	2914.61	1022.71	599.21	1015.46	1424.64
Multiclass Classification											
autoUniv-au7	0.20	1.01	0.18	30.11	<u>0.06</u>	136.29	7.06	0.33	41.37	1.11	4.13
plants-margin	6.53	10.05	6.66	405.50	81.59	103.81	39.45	27.11	4.60	<u>3.94</u>	4.85
waveform	1.19	2.30	<u>0.45</u>	28.52	9.57	129.35	4.24	2.38	46.18	4.34	9.48
gas-drift	<u>2.10</u>	6.68	6.81	1145.76	41.46	455.32	131.10	8.73	33.51	14.81	35.15
EMNIST	251.56	207.63	249.05	2649.74	1536.03	OOM	OOM	304.60	<u>98.74</u>	99.62	288.04
Average Rank	1.93	3.93	2.20	9.53	6.73	10.13	8.20	4.80	7.13	5.07	6.47
Best/Worst	<u>7/0</u>	0/0	4/0	0/4	2/3	0/9	0/3	0/0	1/0	1/0	0/0
Total time	<u>274.67</u>	289.33	280.00	7974.43	11967.27	≫4420.14	≫4276.10	1570.42	1164.22	1422.93	1991.12
Regression											
analcatdata	0.31	1.10	0.15	97.77	7.66	42.17	9.39	-	30.32	6.41	11.49
kin8nm	1.69	4.13	1.43	210.32	108.63	323.10	29.08	-	39.24	15.71	14.98
superconduct	2.46	13.37	16.24	858.54	132.95	569.11	279.68	-	81.50	28.59	44.02
house_sales	0.81	5.07	0.64	1744.48	132.61	387.82	70.98	-	169.44	22.45	36.68
year	14.22	8.25	12.92	TimeOut	3036.32	3916.41	1805.23	-	120.02	1594.27	690.45
Average Rank	2.0	2.4	<u>1.6</u>	9.6	8.0	8.6	6.8	-	6.2	4.8	5.0
Best/Worst	1/0	1/0	<u>3/0</u>	0/3	0/1	0/1	0/0	-	0/0	0/0	0/0
Total time	<u>19.48</u>	31.91	31.37	≫2911.10	3580.22	5238.61	2686.11	-	401.14	1667.43	789.83

Table 3: Average training time(s) of a five cross-validation with the best hyperparameters. The **bold** indicates the top result; - indicates that the model can not be applied to the task type; *OOM* represents there exists GPU overflow; *TimeOut* means the running time exceeds the time limit.

6. Performance Figures

References

[1] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, G. Kasneci, Deep neural networks and tabular data: A survey, IEEE Transactions on Neural Networks and Learning Systems (2022).

Figure 4: Rank values of different models on 20 datasets. Fig. (a), (b) and (c) are for classification tasks and Fig. (c) is for regression tasks.