Démontrer

Paul a commencé à tracer à main levée ci-dessous quatre droites (d1), (d2), (d3) et (d4) de façon que:

- (d₁) et (d₃) sont parallèles ;
- (d₂) est perpendiculaire à (d₃);
- (d₄) est perpendiculaire à (d₁).
- a. Rajoute les noms des droites manquantes et code la figure de Paul

c. Coche la bonne réponse :

Sur ma figure, les droites (d_2) et (d_4) semblent :

- □ perpendiculaires
- □ sécantes

- □ concourantes
- d. Complète la démonstration suivante, avec les mots « perpendiculaire(s) » et « parallèle(s) »:
- « Les droites (d1) et (d3) sont parallèles et (d2) est perpendiculaire à (d3), donc (d2) est perpendiculaire à (d₁).

Or, (d_1) et (d_4) sont perpendiculaires entre elles . Ceci prouve que (d_2) et (d_4) sont parallèles ».

e. Démontre que (d₃) est perpendiculaire à (d₄) :

 (d_1) et (d_3) sont parallèles. (d_4) étant perpendiculaire à (d_1) alors (d_4) est perpendiculaire à (d_3) .