ST. HENRY'S COLLEGE KITOVU

A'LEVEL PURE MATHEMATICS P425/1 SEMINAR QUESTIONS 2019

ALGEBRA

1. Solve the simultaneous equations:

(a)
$$x^2 + y^2 = 5$$
, $\frac{1}{x^2} + \frac{1}{y^2} = \frac{5}{4}$

(b)
$$\frac{x}{y} + \frac{y}{x} = \frac{17}{4}$$
, $x^2 - 4xy + y^2 = 1$

2. Find the range of values of x for which

(a)
$$\frac{2x+1}{x+2} > \frac{1}{2}$$
.

(b)
$$|2x+1| > 7$$

3. Resolve into partial fractions

(a)
$$\frac{x^3 + x^2 + 4x}{x^2 + x - 2}$$

(b)
$$\frac{3x^2 + 8x + 13}{(x-1)(x^2 + 2x + 5)}$$

(c)
$$\frac{2x^3 + 2x^2 + 2}{(x+1)^2(x^2+1)}$$

4. Solve the following equations:

(a)
$$2^{3x+1} = 5^{x+1}$$

(b)
$$9^x - 4(3^x) + 3 = 0$$

(c)
$$\log_x 9 + \log_{x^2} 3 = 2.5$$

(d)
$$\sqrt{2x-1} - \sqrt{x-1} = 1$$

$$2x + 3y + 4z = 8$$

(e)
$$3x - 2y - 3z = -2$$

 $5x + 4y + 2z = 3$

5. Find:

- (a) The three numbers in arithmetic progression such that their sum is 27 and their product is 504
- (b) The three numbers in a geometrical progression such that their sum 39 and their product is 729.
- (c) The sum of the last three terms of a geometrical progression having n terms is 1024 times the sum of the first three terms of the progression. If the third term is 5, find the last term.

- (d) Prove by induction that $1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$ and deduce that $1^3 + 3^3 + 5^3 \dots + (2n+1)^3 = (n+1)^2(2n^2 + 4n + 1)$
- 6. Expand:
 - (a) $\frac{7+x}{(1+x)(1+x^2)}$ in ascending powers of x as far as the term in x^4 .
 - (b) $\left(1 \frac{3}{2}x x^2\right)^5$ in ascending powers of x as far as the term in x^4 .
 - (c) Find the term independent of x in the expansion of $\left(2x + \frac{1}{x^2}\right)^2$ in descending powers of x and find the greatest term in the expansion when $x = \frac{2}{3}$.
 - (d) Find by binomial theorem, the coefficient of x^8 in the expansion $(3-5x^2)^{1/2}$ in ascending powers of x.
 - (e) In the binomial expansion of $(1+x)^{n+1}$, n being an integer greater than two, the coefficient of x^4 is six times the coefficient of x^2 in the expansion $(1+x)^{n-1}$. Determine the value of n.
- 7. (a) Without using the calculator, simplify $\frac{\left(\cos\left(\frac{\pi}{9}\right) + i\sin\left(\frac{\pi}{9}\right)\right)^4}{\left(\cos\left(\frac{\pi}{9}\right) i\sin\left(\frac{\pi}{9}\right)\right)^5}$
 - (b) In a quadratic equation $z^2 + (p+iq)z + 3i = 0$. p and q are real constants. Given that the sum of the squares of the roots is 8. Find all possible pairs of values of p and q.
- 8. (a) How many different arrangements of letters can be made by using all the letters in the word contact? In how many of these arrangements are the vowels separated?
 - (b) In how many ways can a team of eleven be picked from fifteen possible players.
- 9. (a) If α and β are the roots of the equation $x^2 px + q = 0$, form the equation whose roots are $\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}$.
 - (b) If α and β are the roots of the equation $x^2 + bx + c = 0$, form the equation whose roots are $\frac{1}{\beta^3}$ and $\frac{1}{\alpha^3}$. If in the equation above $\alpha\beta^2 = 1$, prove that $\alpha^3 + c^3 + abc = 0$
- 10. (a) If z = x + iy and \bar{z} is the conjugate of z, find the values of x and y such that $\frac{1}{z} + \frac{2}{z} = 1 + i$
 - (b) If x, y, a and b are real numbers and if $x + iy = \frac{a}{b + \cos \theta + i \sin \theta}$. Show that $(b^2 1)(x^2 + y^2) + a^2 = 2abx$
 - (c) If n is an integer and $z = cos\theta + sin\theta$, show that $2\cos n\theta = z^n + \frac{1}{z^n}$, $2i\sin n\theta = z^n \frac{1}{z^n}$.

Use the result to establish the formula $8\cos^4\theta = \cos 4\theta + 4\cos 2\theta + 3$.

(e) If z is a complex number and $\left| \frac{z-1}{z+1} \right| = 2$, find the equation of the curve in the Argand diagram on which the point representing z lies.

TRIGONOMETRY

11. If
$$sin\theta + sin\beta = a$$
 and $cos\theta + cos\beta = b$, show that $cos^2 \left(\frac{\theta - \beta}{2}\right) = \frac{1}{4}(a^2 + b^2)$

- 12. Show that $\sin 7x + \sin x 2\sin 2x \cos 3x = 4\cos^3 3x$
- 13. If A, B and C are angles of a triangle, show that:
 - (i) $\cos A + \cos(B C) = 2\sin B \sin C$

(ii)
$$\cos \frac{C}{2} + \sin \frac{A - B}{2} = 2\sin \frac{A}{2}\cos \frac{B}{2}$$

- 14. Express $y = 8\cos x + 6\sin x$ in form of $R\cos(x \alpha)$ where R is positive and α is acute. Hence find the maximum and minimum values of $\frac{1}{8\cos x + 6\sin x + 15}$ and the corresponding angle respectively.
- 15. Show that:

(a)
$$\tan^{-1} x = \sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right)$$

(b)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$$

(c) Find
$$x$$
 if $\tan^{-1} x + \tan^{-1} (1 - x) = \tan^{-1} \left(\frac{4}{3}\right)$

16. (a) Show that
$$\cos 4\theta = \frac{\tan^4 \theta - 6\tan^2 \theta + 1}{\tan^4 \theta + 2\tan^2 \theta + 1}$$

(b) Solve the equation $8\cos^4 x - 10\cos^2 x + 2 = 0$ for x in the range of $0^{\circ} \le x \le 180^{\circ}$

17. (a) If
$$\tan \theta = \frac{1}{p}$$
 and $\tan \beta = \frac{1}{q}$ and $pq = 2p$, show that $\tan(\theta + \beta) = p + q$

(b) Show that
$$\sin 2A + \cos 2A = \frac{(1 + \tan A)^2 - 2\tan^2 A}{1 + \tan^2 A}$$

18. If α , β and γ are all greater than $\frac{\pi}{2}$ and less than 2π and $\sin \alpha = \frac{1}{2}$, $\tan \beta = \sqrt{3}$, $\cos \gamma = \frac{1}{\sqrt{2}}$. Find the value of $\tan(\alpha + \beta + \gamma)$ in surd form.

- 19. Solve for x in the range 0° to 360°
 - (a) $3\cos^2 x 3\sin x \cos x + 2\sin^2 x = 1$
 - (b) $4\cos x = 3\tan x + 3\sec x$
- 20. Prove that $4\cos\theta\cos3\theta + 1 = \frac{\sin 5\theta}{\sin\theta}$. Hence find all the values of θ in the range 0° to 180° for

which
$$\cos\theta\cos 3\theta = \frac{-1}{2}$$

VECTORS

- 21. The coordinates of the points A and B are (0,2,5) and (-1,3,1) and the equation of the line L is $\frac{x-3}{2} = \frac{y-2}{-2} = \frac{z-2}{-1}$
 - (i) Find the equation of the plane containing the point A and perpendicular to L and verify that B lies in the plane.
 - (ii) Show that the point C in which L meets the plane is (1,4,3) and find the angle between CA and CB
- 22. (a) A body moves such that its position is given by OP = (3sint)i + (3cost)j where O is the origin and t is the time. Prove that the velocity of the particle when at P is perpendicular to OP.
 - (b) The lines L_1 and L_2 have Cartesian equations $\frac{x}{1} = \frac{y+2}{2} = \frac{z-5}{-1}$ and $\frac{x-1}{-1} = \frac{y+3}{-3} = \frac{z-6}{1}$. Show that L_1 and L_2 intersect and find the coordinates of the point of intersection.
- 23. (a) Find the acute angle between the lines whose equations are $\frac{x-2}{-4} = \frac{y-3}{3} = \frac{z+1}{-1}$ and $\frac{x-3}{2} = \frac{y-1}{6} = \frac{z+1}{-5}$.
 - (b) The points A and B have coordinates (1,2,3) and (4,6,-2) respectively and the plane has equation x + y z = 24. Determine the equation of the line AB, hence the angle this line makes with the plane.
- 24. (a) Find the perpendicular distance of the line $\frac{x-5}{1} = \frac{y-6}{2} = \frac{z-3}{4}$ from the point (-6,-4,-5).
 - (b) Find the shortest distance between the two skew lines $\frac{x+1}{1} = \frac{y-2}{2} = \frac{z-3}{1}$ and $\frac{x}{2} = \frac{y+1}{1} = \frac{z-1}{3}$ respectively.
 - (c) Find the perpendicular distance of the plane 2x 14z + 5z = 10 from the origin.
- 25. (a) Show that the line $\frac{x-2}{2} = \frac{y-2}{-1} = \frac{z-3}{3}$ is parallel to the plane 4x y 3z = 4 and find the perpendicular distance from the line to the plane.
 - (b) Find the Cartesian equation of the line of intersection of the two planes 2x 3y z = 1 and 3x + 4y + 2z = 3.

26. (a) Find the Cartesian equation of the plane containing the point (1,3,1) and parallel to the

vectors
$$\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$

- (b) Find the Cartesian equation of the plane containing the points (1,2,-1), (2,1,2) and (3,-3,3).
- 27. Given the points A, B and C with coordinates (2,5,-1), (3,-4,2) and C(-1,2,1). Show that ABC is a triangle and find the area of the triangle ABC
- 28. (a) Find the angle between the parallel planes 3x + 2y z = -4 and 6x + 4y 2z = 6.
 - (b) Find the acute angle between the planes 2x + y + 3z = 5 and 2x + 3y + z = 7
- 29. The points A and B have coordinates (2,1,1) and (0,5,3) respectively. Find the equation of the line AB. If C is the point (5,-4,2). Find the coordinates of D on AB such that CD is perpendicular to AB. Find the equation of the plane containing AB and perpendicular to the line CD.
- 30. (a) Given that $OP = \begin{pmatrix} 4 \\ -3 \\ 5 \end{pmatrix}$ and $OQ = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, find the coordinates of the point R such that

 $\overline{PR} = \overline{PQ} = 1:2$ and the points P, Q and R are collinear.

(b) A and B are the points (3,1,1) and (5,2,3) respectively, and C is a point on the line r =

$$\begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
. If angle BAC=90°, find the coordinates of C

ANALYSIS

31. Differentiate from first principles

(a)
$$y = \tan^{-1} x$$

(b)
$$y = ax^n$$

(c)
$$y = \sin 3x$$

32. Find the derivative of:

(a)
$$y = 5\sin^{-1}(4x)$$

(b)
$$y = \tan^{-1} \left(\frac{1 + \tan x}{1 - \tan x} \right)$$

(c)
$$y = \frac{\sin x}{x^2 + \cos x}$$

$$(d) \quad y = \sqrt{\frac{x}{1+x}}$$

33. Find:

(a)
$$\int \sin^{-1} x$$

$$(b) \int \frac{dx}{x^2 + 4x + 13}$$

(c)
$$\int \frac{dx}{x \log_e x}$$

(d)
$$\int \frac{dx}{(1+x^2)\tan^{-1}x}$$

(e) Show that
$$\int_0^2 \sqrt{\frac{x}{4-x}} dx = \pi - 2$$

(f) Show that
$$\int_{1}^{10} x \log_{10} x = 50 - \frac{99}{4 \ln 10}$$

34. (a) If
$$x = t^3$$
 and $y = 2t^2$. Find $\frac{dy}{dx}$ in terms of t and show that when $\frac{dy}{dx} = 1$, $x = 2$ or $x = \frac{10}{27}$

(b) If
$$y = \frac{2t}{1+t^2}$$
 and $x = \frac{1-t^2}{1+t^2}$, find $\frac{d^2y}{dx^2}$ in terms of t

35. Given that:

(a)
$$y = \sqrt{4 + 3\sin x}$$
, show that $2y \frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + y^2 = 4$

(b)
$$y = e^{2x} \cos 3x$$
, show that $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 13y = 0$

(c)
$$y = (x + \sqrt{1 + x^2})^p$$
, show that $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - p^2y = 0$

(d)
$$y = \sin(\log_e x)$$
, show that $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$

- 36. (a) Find the volume generated when the area enclosed by the curve $y = 4x x^2$ and the line y = 2x is rotated completely about the x axis.
 - (b) Find the area contained between the two parabolas $4y = x^2$ and $4x = y^2$.
 - (c) Find the area between the curve $y = x^3$, the x axis and the lines y = 1, y = 8.
 - (d) Find the area of the curve $x^2 + 3xy + 3y^2 = 1$
 - (e) Show that in the solid generated by the revolution of the rectangular hyperbola $x^2 y^2 = a^2$ about the x axis, the volume of the segment of height a from the vertex is $\frac{4}{3}\pi a^3$
- 37. (a) A right circular cone of semi vertical angle θ is circumscribed about a sphere of radius R. show that the volume of the cone is $V = \frac{1}{3}\pi R^3 (1 + \cos ec \theta)^3 \tan^2 \theta$ and find the value of θ when the volume is minimum.

- (b) Water is poured into a vessel, in the shape of a right circular cone of vertical angle 90°, with the axis vertical, at the rate of 125cm³/s. At what rate is the water surface rising when the depth of the water is 10cm?
- 38. Sketch the curve $y = \frac{x}{x+2}$. Find the area enclosed by the curve, the lines x = 0, x = 1 and the line y = 1. Also find the volume generated when this area revolves through 2π radians about the line y = 1.
- 39. Solve the differential equations below:

(a)
$$\frac{1}{3x} \frac{dy}{dx} + \cos^2 y = 1$$
, when $x = 2$ and $y = \frac{\pi}{4}$

(b)
$$(x-y)\frac{dy}{dx} = x + y$$
, when $x = 4$ and $y = \pi$

(c)
$$\frac{dy}{dx} + 3y = e^{2x}$$
, when $x = 0$ and $y = \frac{6}{5}$

- 40. In a certain type of chemical reaction a substance A is continuously transformed into a substance B. throughout the reaction, the sum of the masses of A and B remains constant and equal to m. The mass of B present at time t after the commencement of the reaction is denoted by x. At any instant, the rate of increase of mass of B is k times the mass of A where k is a positive constant.
 - (a) Write down a differential equation relating x and t
 - (b) Solve this differential equation given that x = 0 and t = 0. Given also that $x = \frac{1}{2}m$ when

 $t = \ln 2$, determine the value of k and show that at time t, $x = m(1 - e^{-t})$. Hence find:

- (i) The value of x (in terms of m) when $t = 3 \ln 2$
- (ii) The value of t when $x = \frac{3}{4}m$

GEOMETRY

- 41. (a) Find the equation of a line which makes an angle of 150° with the x axis and y intercept of -3 units.
 - (b) Find the acute angle between the lines 3y x = 4 and 6y 3x 5 = 0
 - (c) OA and OB are equal sides of an isosceles triangle lying in the first quadrant. OA and OB make angles θ_1 and θ_2 with x axis respectively. Show that the gradient of the bisector of the acute angle AOB is $\cos ec\theta \cot\theta$ where $\theta = \theta_1 + \theta_2$
 - (d) Find the length of the perpendicular from the point P(2,-4) to the line 3x + 2y 5 = 0
- 42. (a) Find the equation of the circle with centre (4,-7) which touches the line 3x + 4y 9 = 0
 - (b) Find the equation of the circle through the points (6,1), (3,2), (2,3)
 - (c) Find the equation of the circumcircle of the triangle formed by three lines 2y-9x+26=0, 9y+2x+32=0 and 11y-7x-27=0

(2) Mr. Ssentongo Leornard – 0782318244/701503577

- 43. (a) Find the length of the tangent from the point (5,6) to the circle $x^2 + y^2 + 2x + 4y 21 = 0$.
 - (b) Find the equations of the tangents to the circle $x^2 + y^2 = 289$ which are parallel to the line 8x 15y = 0
 - (c) Find the equation of the circle of radius $12\frac{4}{5}$ which touches both the lines 4x-3y=0 and 3x+4y-13=0 and intersects the positive y axis.
 - (d) A circle touches both the x axis and the line 4x-3y+4=0. Its centre is in the first quadrant and lies on the line x-y-1=0. Prove that its equation is $x^2+y^2-6x-4y+9=0$
- 44. Find the equations of the parabolas with the following foci and directrices:
 - (i) Focus (2,1), directrix x = -3
 - (ii) Focus (0,0), directrix x + y = 4
 - (iii) Focus (-2,-3), directrix 3x + 4y 3 = 0
- 45. (a) Show that the curve $x = 5 6y + y^2$ represents a parabola. Find its focus and directrix, hence sketch it.
 - (b) Find the equation of the normal to the curve $y^2 = 4bx$ at the point $P(bp^2, 2bp)$. Given that the normal meets the curve again at $Q(bq^2, 2bq)$, prove that $p^2 + pq + 2 = 0$
- 46. (a) Show that the equation of the normal with gradient m to the parabola $y^2 = 4ax$ is given by $y = mx 2am am^3$.
 - (b) P and Q are two points on the parabola $y^2 = 4ax$ whose coordinates are $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ respectively. If OP is perpendicular to OQ, show that pq = -4 and that the tangents to the curve at P and Q meet on the line x + 4a = 0
- 47. (a) A conic is given by $x = 4\cos\theta$, $y = 3\sin\theta$. Show that the conic is an ellipse and determine its eccentricity
 - (b) Given that the line y = mx + c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that $c^2 = a^2m^2 + b^2$. Hence determine the equations of the tangents at the point (-3,3) to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
- 48. (a) Show that the locus of the point of intersection of the tangents to an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which are at right angles to one another is a circle $x^2 + y^2 = a^2 + b^2$.
 - (b) The normal to the ellipse $x^2 + y^2 = 100$ at the points A(6,4) and B(8,3) meet at N. If P is the mid point of AB and O is the origin, show that OP is perpendicular to ON.

- 49. (a) P is a point $(ap^2, 2ap)$ and Q the point $(aq^2, 2aq)$ on the parabola $y^2 = 4ax$. The tangents at P and Q intersect at R. Show that the area of triangle PQR is $\frac{1}{2}a^2(p-q)^3$
 - (b) The normal to the parabola $y^2 = 4ax$ at $P(ap^2, 2ap)$ meets the axis of the parabola at M and MP is produced beyond P to Q so that MP = PQ. Show that the locus of Q is $y^2 = 16a(x+2a)$
- 50. (a) The normal to the rectangular hyperbola xy = 8 at the point (4,2) meets the asymptotes at M and N. Find the length of MN
 - (b) The tangent at P to the rectangular hyperbola $xy = c^2$ meets the lines x y = 0 and x + y = 0 at A and B and Δ denotes the area of triangle OAB where O is the origin. The normal at P meets the x axis at C and the y axis at D. if Δ_1 denotes the area of the triangle ODC. Show that $\Delta^2 \Delta_1 = 8c^6$

END