ПРАКТИЧНЕ ЗАНЯТТЯ № 2

Тема: Неінформативний пошук.

Мета: Навчитися розв'язувати задачі методами неінформативного пошуку.

<u>Перелік питань, які студент повинен знати:</u> неінформативний пошук, пошук у ширину, пошук за критерієм вартості, пошук у глибину, пошук з обмеженням глибини, пошук у глибину з ітераційним збільшенням глибини, двонаправлений пошук

Короткі теоретичні відомості

Пошук називається **неінформативним**, якщо відомі лише початкові дані та ціль пошуку. **Приклад 5.** Потрібно дістатися автомобілем із Києва у Херсон. Спрощена дорожня карта частини України наведена на рис. 3.

Рис. 3 – Спрощена дорожня карта частини України

Відомо декілька стратегій неінформативного пошуку:

- пошук у ширину;
- пошук за критерієм вартості;
- пошук у глибину;
- пошук з обмеженням глибини;
- пошук з ітераційним збільшенням глибини;
- двонаправлений пошук.

Пошук у ширину — це проста стратегія, у якій спочатку розгортається вершина найвищого рівня дерева пошуку, потім усі вершини наступного рівня переходу, потім — вершини, пов'язані із вершинами-попередниками тощо. Переваги: прийнятний час пошуку неглибокого розв'язку, що не матиме нескінченного за-

глиблення. Недоліки: алгоритм вимагає великих обчислювальних витрат і значних затрат пам'яті, що значно обмежує застосовність методу.

Приклад 6. Побудуємо маршрут проїзду автомобілем із Києва у Херсон, використовуючи метод пошуку у ширину. Спрощена дорожня карта частини України наведена на рис. 3.

Дерево пошуку шляху із Києва до Херсона відображено на рис. 4.

Рис. 4 – Дерево пошуку маршруту із Києва у Херсон: а) початковий стан; б) розгортка вершини Київ; в) розгортка вершин Житомир, Одеса, Черкаси, Полтава; г) розгортка вершин Вінниця, Миколаїв, Кіровоград, Полтава, Черкаси, Дніпропетровськ; д) розгортка вершин Одеса, Кіровоград, Миколаїв, Херсон, Дніпропетровськ, Запоріжжя.

Отже, шлях із Києва до Херсона є маршрутом Київ – Одеса – Миколаїв – Херсон.

Пошук за критерієм вартості базується на евристиці, яка вказує на перспективність розв'язку, що має найменшу вартість. Наведена стратегія пошуку відбувається за тих же умов, що і стратегія пошуку у ширину, причому, якщо вартості між рівнями переходу однакові, то ці стратегії співпадають. Недоліки: необхідно вводити критерії вартості; стратегія не гарантує, що знайдений розв'язок є оптимальним.

Приклад 7. Побудуємо маршрут проїзду автомобілем із Києва у Херсон, використовуючи метод пошуку за критерієм вартості. Критерієм вартості є мінімальна відстань між містами. Спрощена дорожня карта частини України наведена на рис. 5.

Рис. 5 – Спрощена дорожня карта частини України

Дерево пошуку шляху із Києва до Херсона відображено на рисунку 6.

Рис. 6 – Дерево пошуку маршруту із Києва у Херсон: а) початковий стан; б) розгортка вершини Київ; в) розгортка вершини Житомир; г) розгортка вершини Вінниця; д) розгортка вершини Кіровоград; е) розгортка вершини Миколаїв; ж) цільовий стан.

Отже, шлях із Києва до Херсона є маршрутом Київ — Житомир — Вінниця — Кіровоград — Миколаїв — Херсон.

Пошук у глибину – це стратегія пошуку, у якій спочатку розгортається вершина найвищого рівня дерева пошуку, потім – вершини поточної пошукової гілки. Коли ж алгоритм дістається до найглибшого рівня пошукового дерева, який не має інших гілок, він відновлюється із наступної найвищої поверхневої вершини, яка має не досліджені вершини. Переваги: алгоритм вимагає менших затрат пам'яті у порівнянні зі стратегією пошуку у ширину. Недоліки: потрібно зважати на глибину дерева пошуку.

Пошук з обмеженням глибини. Ідея методу полягає у тому, що завчасно оцінюється критична глибини дерева пошуку, а сходження по гілці дерева припиняється за умови досягнення даної глибини. Такий підхід допомагає попередити нескінченне сходження та тривале хаотичне блукання. Недоліки: потрібно оцінювати складність задачі; якщо встановлена критична глибина буде надто великою, збільшаться витрати на пошук, а якщо надто малою — ціль не буде досягнута.

Приклад 8. Побудуємо маршрут проїзду автомобілем із Києва у Херсон, використовуючи метод пошуку у глибину. Спрощена дорожня карта частини України наведена на рис. 3.

Дерево пошуку шляху із Києва до Херсона відображено на рис. 7.

Рис. 7 – Дерево пошуку маршруту із Києва у Херсон: а) початковий стан; б) розгортка вершини Київ; в) розгортка вершини Житомир; г) розгортка вершини Вінниця; д) розгортка вершини Одеса: е) розгортка вершини Миколаїв; ж) цільовий стан.

Отже, шлях із Києва до Херсона є маршрутом Київ – Житомир – Вінниця – Одеса – Миколаїв – Херсон.

Пошук з ітераційним збільшенням глибини — це стратегія пошуку у глибину поєднана із пошуком найкращого обмеження глибини. Тобто, на першій ітерації встановляється глибина 0, на другій ітерації — 1, на третій ітерації — 2 і т. д. Переваги: не потрібно зберігати у пам'яті дані про вершини-попередники.

Приклад 9. Побудуємо маршрут проїзду автомобілем із Києва у Херсон, використовуючи метод пошуку з ітераційним збільшенням глибини. Спрощена дорожня карта частини України наведена на рис. 3.

Дерево пошуку шляху із Києва до Херсона відображено на рис. 8.

Рис. 8 – Дерево пошуку маршруту із Києва у Херсон: а) початковий стан (обмеження глибини рівне 0); б) обмеження глибини рівне 1; в) обмеження глибини рівне 2; г) обмеження глибини рівне 3.

Отже, шлях із Києва до Херсона є маршрутом Київ – Одеса – Миколаїв – Херсон.

Двонаправлений пошук – цей різновид пошуку використовується у випадках, якщо відомо вихідний стан і мета, а потрібно знайти шлях до цілі. Переваги: пошук відбувається одночасно з двох напрямів, кількість варіантів пошуку у два рази менша у

порівнянні із наведеними стратегіями. Недоліки: необхідно визначати вершину-попередника, що не завжди можливо.

Приклад 10. Побудуємо маршрут проїзду автомобілем із Києва у Херсон, використовуючи метод двонаправленого пошуку. Спрощена дорожня карта частини України наведена на рис. 3.

Дерево пошуку шляху із Києва до Херсона відображено на рисунку 9.

Рис. 9 – Дерево пошуку маршруту із Києва у Херсон: а) початковий стан; б) розгортка вершин Київ та Херсон; в) розгортка вершин Житомир, Черкаси, Полтава, Одеса, Миколаїв.

Отже, шлях із Києва до Херсона є маршрутом Київ – Одеса – Миколаїв – Херсон. Порівняльна характеристика методів неінформативного пошуку наведена у табл. 3. Таблиця 3

Оцінка складності стратегій неінформативного пошуку

Стратегія	Повнота	Часова складність	Витрати пам'яті	Оптимальність
Пошук у ширину	Так	$b^{{}^{d+1}}$	$b^{{}^{d+1}}$	Так

Пошук за критерієм вартості	Так	$b^{\frac{1+\frac{C}{n}}{n}}$	$b^{1+\frac{C}{n}}$	Так
Пошук у глибину	Hi	b^{m}	bm	Hi
Пошук з обмеженням глибини	Hi	$b^{\scriptscriptstyle e}$	be	Hi
Пошук з ітераційним збільшенням глибини	Hi	$b^{\scriptscriptstyle d}$	bd	Так
Двонаправлений пошук	Hi	$b^{rac{d}{2}}$	$b^{\frac{d}{2}}$	Так

^{*} b – коефіцієнт розгалуження; d – глибина найбільш поверхового розв'язку; e – границя глибини; m – максимальна глибина дерева; C – вартість розв'язку; n – середня вартість одного кроку.

Завдання для роботи в аудиторії

Існує транспортна мережа між містами СНД. Мережа наведена у вигляді таблиці зв'язків між містами (див. додаток 1). Зв'язки є двосторонніми, тобто передбачають рух у двох напрямах. Потрібно побудувати маршрут проїзду між містами Рига – Одеса. Відома топологія зв'язків між містами. Виконати:

- 1) пошук у ширину;
- 2) пошук у глибину;
- 3) пошук з обмеженням глибини;
- 4) пошук у глибину з ітераційним збільшенням глибини;
- 5) двонаправлений пошук.

Зобразити рух по дереву пошуку на його графі та вказати складність кожного виду пошуку. Відстань до пункту призначення з'ясувати за географічною картою.

Завдання для самостійного опрацювання

Існує транспортна мережа між містами СНД. Мережа наведена у вигляді таблиці зв'язків між містами (див. додаток 1). Зв'язки є двосторонніми, тобто передбачають рух у двох напрямах. Потрібно побудувати маршрут проїзду із одного міста в інше. Відома топологія зв'язків між містами. Виконати:

- 1) пошук у ширину;
- 2) пошук у глибину;
- 3) пошук з обмеженням глибини;
- 4) пошук у глибину з ітераційним збільшенням глибини;
- 5) двонаправлений пошук.

Зобразити рух по дереву пошуку на його графі та вказати складність кожного виду пошуку. Зробити висновки.

Варіанти завдань:

Номер варіанту	Пункт відправлення	Пункт призначення
1.	Мурманськ	Одеса
2.	Санкт-Петербург	Житомир

3.	Казань	Таллінн
4.	Харків	Нижній Новгород
5.	Брест	Казань
6.	Самара	Ярославль
7.	Уфа	Рига
8.	Мурманськ	Сімферополь
9.	Вільнюс	Одеса
10.	Київ	Казань
11.	Житомир	Нижній Новгород
12.	Рига	Казань
13.	Київ	Мурманськ
14.	Таллінн	Нижній Новгород
15.	Санкт-Петербург	Одеса

Контрольні питання

- 1. У чому полягає сутність пошуку у ширину?
- 2. За яких умов пошук у ширину відрізняється від пошуку за критерієм вартості?
- 3. Назвіть переваги та недоліки стратегії пошуку у ширину. Яким чином можна її покращити?
- 4. У чому полягає сутність пошуку у глибину?
- 5. Порівняйте пошук у ширину та пошук у глибину. Яка із цих стратегій ϵ ефективнішою?
- 6. Чи можна вважати пошук у ширину і пошук у глибину стратегіями пошуку у просторі станів? Чому?
- 7. Порівняйте пошук з обмеженням глибини та пошук з ітераційним збільшенням глибини?
- 8. У чому полягає сутність двонаправленого пошуку?
- 9. За якими параметрами оцінюють складність стратегії пошуку?
- 10. Яка стратегія неінформативного пошуку ϵ найефективнішою?