Prepare > Data Structures > Advanced > Heavy Light 2 White Falcon

Heavy Light 2 White Falcon

1300.34 more points to get your next star!

Rank: 222788 | Points: 899.66/2200

Problem

Submissions

Leaderboard

Discussions

White Falcon was amazed by what she can do with heavy-light decomposition on trees. As a resut, she wants to improve her expertise on heavy-light decomposition. Her teacher gave her an another assignment which requires path updates. As always, White Falcon needs your help with the assignment.

You are given a tree with $m{N}$ nodes and each node's value $m{val_i}$ is initially $m{0}$.

Let's denote the path from node u to node v like this: $p_1, p_2, p_3, \ldots, p_k$, where $p_1 = u$ and $p_k = v$, and p_i and p_{i+1} are connected.

The problem asks you to operate the following two types of queries on the tree:

- "I u v x" Add x to val_{p_1} , 2x to val_{p_2} , 3x to val_{p_3} , ..., kx to val_{p_k} .
- ullet "2 u v" print the sum of the nodes' values on the path between u and v at modulo 10^9+7

Input Format

First line cosists of two integers N and Q seperated by a space.

Following N-1 lines contains two integers which denote the undirectional edges of the tree.

Following Q lines contains one of the query types described above.

Note: Nodes are numbered by using O-based indexing.

Constraints

 $1 \leq N, Q \leq 50000$

 $0 \le x < 10^9 + 7$

Output Format

For every query of second type print a single integer.

Sample Input

3 2

0 .

1 2

1 0 2 1

2 1 2

Sample Output

5

Explanation

After the first type of query, $val_0 = 1$, $val_1 = 2$, $val_2 = 3$. Hence the answer of the second query is 2 + 3 = 5.

Author	ikbalkazar
Difficulty	Hard
Max Score	100
Submitted By	2213

NEED HELP?

View discussions

P View top submissions

RATE THIS CHALLENGE

MORE DETAILS

