Digital Design IE1204

Baserat på föreläsningsbilder av William Sandqvist

F2: Logiska Grindar och Kretsar, Boolesk Algebra

Carl-Mikael Zetterling bellman@kth.se

IE1204 Digital Design

Föreläsningar och övningar bygger på varandra! Ta alltid igen det Du missat! Läs på i förväg – delta i undervisningen – arbeta igenom materialet efteråt!

Detta har hänt ...

Talsystem: Decimala, hexadecimala, oktala, binära

$$(175,5)_{10} = (AE.8)_{16} = (256.4)_8 = (10101110.1)_2$$

Switch

Sluten
$$x = 1$$

En switch har två lägen

- Sluten/Till (Closed/On)
- Öppen/Från (Open/Off)

Implementering av logiska funktioner

Switchen kan användas för att implentera logiska funktioner

L(x) är en logisk funktion x är en logisk variabel

$$L(x) = \begin{cases} 0 & \text{Light Off} \\ 1 & \text{Light On} \end{cases}$$

Operation AND (OCH)

AND-operationen (•) uppnås genom switchar som kopplas i serie

$$L(x_2, x_1) = x_1 \cdot x_2$$

Operation OR (ELLER)

OR-operationen (+) uppnås genom switchar som kopplas parallellt

$$L(x_2, x_1) = x_1 + x_2$$

Operation NOT (ICKE)

NOT-funktionen inverterar det logiska

Sanningstabell

En logisk funktion kan också beskrivas genom en sanningstabell (truth table)

x_1	x_2	$x_1 \cdot x_2$	$x_{1}+x_{2}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

1 står för sann (true)

0 står för falsk (false)

AND OR

Logiska grindar AND-grinden (OCH)

IEC Symbol

(International Electrotechnical Commission)

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = A \cdot B$$

Traditional (American) Symbol

Logiska grindar OR-grinden (ELLER)

IEC Symbol

(International Electrotechnical Commission)

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = A + B$$

Traditional (American) Symbol

Logiska grindar inverterare NOT (ICKE)

IEC Symbol

Inverterare (Inverter)

A	Y
0	1
1	0

$$Y = \overline{A}$$

(International Electrotechnical Commission)

Traditional (American) Symbol

Vilken funktion har grindnätet?

Tidsdiagram

Sanningstabell

<i>X</i> ₁	\boldsymbol{X}_2	$f(\mathbf{X}_1,\mathbf{X}_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Α	В
1	0
1	0
0	0
0	1

Flera grindnät kan implementera samma funktion!

Flera grindnät kan implementera samma funktion!

17

$$g = \overline{x}_1 + x_2$$

IE1204 2017 P2 bellman@kth.se

Boolesk algebra

- Eftersom flera grindnät kan implementera samma funktion, så vill man hitta den *mest* kostnadseffektiva implementeringen
- Grindnäten kan bli mycket stora
- En matematisk bas behövs så att automatiseringen av grindnätsoptimering kan genomföras med datorer

Booles algebra axiom

	Axiom				
(1a)	$0 \cdot 0 = 0$	(1b)	1 + 1 = 1		
(2a)	$1 \cdot 1 = 1$	(2b)	0 + 0 = 0		
(3a)	$0 \cdot 1 = 1 \cdot 0 = 0$	(3b)	1 + 0 = 0 + 1 = 1		
(4a)	If $x = 0$, then $\overline{x} = 1$	(4b)	If $x = 1$, then $\overline{x} = 0$		

Venn-diagram

Venn-diagrammet kan användas för att illustrera logiska operationer

Venn-diagram

Venn-diagrammet kan användas för att illustrera logiska operationer

Boolesk algebra med Venn-diagram

Booles algebra enkla räkneregler

Med axiomen som bas kan man formulera nya lagar (teorem)

	Räknelagar				
(5a)	$x \cdot 0 = 0$		x + 1 = 1		
(6a)	$x \cdot 1 = x$	(6b)	x + 0 = x		
(7a)	$x \cdot x = x$	(7b)	x + x = x		
(8a)	$x \cdot \overline{x} = 0$	(8b)	$x + \overline{x} = 1$		
(9a)	$\overline{\overline{x}} = x$				

Dualitetsprincipen

Har man ett giltigt booleskt samband så får man ett annat giltigt samband om man samtidigt byter

- alla 0:or mot 1:or och alla 1:or mot 0:or
- alla AND mot OR och alla OR mot AND

x_1	x_2	$ x_1 \cdot x_2 $	$ x_1 $	x_2	$x_1 + x_2$
0	0	0	1	1	1
0	1	0	1	0	1
1	0	0	0	1	1
1	1	$ $	0	0	0

Boolesk algebra Räknelagar med flera variabler

	Räknelagar				
(10a)	$x \cdot y = y \cdot x$	(10b)	x + y = y + x	kommutativ	
(11a)	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	(11b)	x + (y+z) = (x+y) + z	associativ	
(12a)	$x \cdot (y+z) = x \cdot y + x \cdot z$	(12b)	$x + y \cdot z = (x + y) \cdot (x + z)$	distributiv	
(13a)	$x + x \cdot y = x$	(13b)	$x \cdot (x + y) = x$	absorption	
(14a)	$x \cdot y + x \cdot \overline{y} = x$	(14b)	$(x+y)\cdot(x+\overline{y}) = x$		
(15a)	$\overline{x \cdot y} = \overline{x} + \overline{y}$	(15b)	$\overline{x+y} = \overline{x} \cdot \overline{y}$	DeMorgan	
(16a)	$x + \overline{x} \cdot y = x + y$	(16b)	$x \cdot (\overline{x} + y) = x \cdot y$		
(17a)	$x \cdot y + y \cdot z + \overline{x} \cdot z$	(17b)	$(x+y)\cdot(y+z)\cdot(\overline{x}+z)$	consensus	
	$=x\cdot y+\overline{x}\cdot z$		$= (x+y) \cdot (\overline{x}+z)$		

Exempel

Bevisa konsensuslagen (17a)

- med Venn-diagram (se övning 1)
- med algebraisk manipulation

Bevis av en av konsensuslagarna

17 a)
$$x \cdot y + \overline{x} \cdot z = x \cdot y + y \cdot z + \overline{x} \cdot z$$

 $x \cdot y + y \cdot z + \overline{x} \cdot z$ (höger led)

$$= x \cdot y \cdot (z + \overline{z}) + (x + \overline{x}) \cdot y \cdot z + \overline{x} \cdot (y + \overline{y}) \cdot z$$

$$= x \cdot y \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z + \overline{x} \cdot y \cdot z + \overline{x} \cdot \overline{y} \cdot z$$

$$= x \cdot y \cdot z + x \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot z + \overline{x} \cdot \overline{y} \cdot z$$

$$= x \cdot y \cdot (z + \overline{z}) + \overline{x} \cdot z \cdot (y + \overline{y})$$

$$= x \cdot y + \overline{x} \cdot z \quad (= \text{vänster led})$$

Notationsalternativ

Olika författare använder olika notationer!

Analys och Syntes

Syntes

 Konstruktion av ett grindnätverk som implementerar en given logisk funktion

Analys

 Framtagandet av den logiska funktionen för ett existerande grindnätverk

Hur kan följande sanningstabell implementeras med logiska grindar?

x_2	$f(x_1, x_2)$
0	1
1	1
0	0
1	1
	$egin{array}{c c} x_2 & & \\ 0 & \\ 1 & \\ 1 & \\ \end{array}$

(Varför denna sanningstabell?)

Vild gissning:

Varna för *tryck* på samtidigt som *kran* stängd.

Hur kan följande sanningstabell implementeras med logiska grindar?

$$\begin{array}{|c|c|c|c|c|c|} \hline x_1 & x_2 & f(x_1, x_2) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 & \text{Ta fram den } \\ 1 & 0 & \text{logiska } \\ 1 & 1 & 1 & 1 \\ \hline f = \overline{x_1}\overline{x_2} + \overline{x_1}x_2 + \overline{x_1}x_2 \\ \hline \end{array}$$

IE1204 2017 P2 bellman@kth.se 32

Hur kan följande sanningstabell implementeras med logiska grindar?

2. Gör en direkt implementering av den logiska funktionen.

IE1204 2017 P2 33

Hur kan följande sanningstabell implementeras med logiska grindar?

2. (Bättre) Minimera den logiska funktionen

$$f = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + x_1 x_2$$

$$= \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \overline{x}_1 x_2 + x_1 x_2 \qquad \text{Lägg till redundant term } \overline{x}_1 x_2 \text{ (7b)}$$

$$= \overline{x}_1 (\overline{x}_2 + x_2) + (\overline{x}_1 + x_1) x_2 \qquad \text{Distribution (12a)}$$

$$= \overline{x}_1 \cdot 1 + 1 \cdot x_2 \qquad \text{(8b)}$$

$$= \overline{x}_1 + x_2$$

Hur kan följande sanningstabell implementeras med logiska grindar?

3. Implementera den minimerade funktionen

$$f = \overline{x}_1 + x_2$$

Mycket enklare implementering!

Diskussion: Algebraisk manipulering

- Algebraisk manipulering av logiska uttryck kan leda till effektiva implementeringar
- Men: För större nätverk kan det bli mycket svårt att identifiera möjliga optimeringar

Vi behöver en metod som fungerar för alla kombinatoriska nätverk!

Mintermer och Maxtermer

- En minterm är en produktterm för en logisk funktion där alla variabler av den logiska funktionen måste vara representerade
- En maxterm är en summaterm för en logisk funktion där alla variabler av den logiska funktionen måste vara representerade

Mintermer och Maxtermer

Row number	x_1	x_2	x_3	= 1 Minterm	= 0 Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$egin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 x_2 \overline{x}_3 \ m_7 = x_1 x_2 x_3 \ \end{array}$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

Introduktion SP och PS

Följande logisk funktion ska beskrivas med ett booleskt uttryck

Row number	$ x_1 $	x_2	x_3	$f(x_1,x_2,x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum of Products SP (SOP)

Row				
number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	$1 m_1$
2	0	1	0	0
3	0	1	1	0
4	1	0	0	$\parallel 1 m_4$
5	1	0	1	$1 m_5$
6	1	1	0	$1 m_6$
7	1	1	1	0

$$f = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3 = \sum m(1, 4, 5, 6)$$

IE1204 2017 P2 bellman@kth.se 40

Sum - of - Products

En *summa av produkter (sum-of-products)* är en logisk funktion f som bildas genom att summera produkttermerna så att f blir 1 om en av produkttermerna blir 1.

- Följande förkortningar används SOP (engelska) och SP (svenska)

I SOP-normalformen är alla produkttermer mintermer

- Det benämns även som disjunktiv normalform

Products - of - Sums

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	$0 \qquad M_0$
1	0	0	1	1
2	0	1	0	$0 M_2$
3	0	1	1	$0 M_3$
4	1	0	0	\parallel 1
5	1	0	1	\parallel 1
6	1	1	0	\parallel 1
7	1	1	1	$0 \qquad M_2$

$$f = (x_1 + x_2 + x_3) \cdot (x_1 + \overline{x}_2 + x_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + \overline{x}_3) = \prod M(0, 2, 3, 7)$$

Products - of - Sums

En produkt av summor (product-of-sums) är en logisk funktion f som bildas genom en produkt av summatermerna så att f blir 0 om en av sumtermer blir 0.

- Följande förkortningar används POS (engelska) och PS (svenska)
- I POS-normalformen är alla sumtermer maxtermer
 - Det benämns även som konjunktiv normalform

Dualitet mellan **Mintermer** och **Maxtermer** och mellan **SP** och **PS**

• Till varje **minterm** finns det en motsvarande **maxterm** $f = \overline{m}_i = M_i$

$$M_0 = \overline{m_0} = \overline{\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}} = \overline{\overline{x_1}} + \overline{x_2} + \overline{x_3} = x_1 + x_2 + x_3$$
(mha DeMorgan 15a)

• Till varje SP finns det en motsvarande PS

$$f = \sum m(1,4,5,6) = \prod M(0,2,3,7)$$

Logiska grindar NAND-grinden

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

$$Y = \overline{A \cdot B}$$

IEC Symbol

(International Electrotechnical Commission)

Traditional (American) Symbol

Logiska grindar NOR-grinden

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

$$Y = \overline{A + B}$$

IEC Symbol (International Electrotechnical Commission)

Traditional (American) Symbol

Bara en typ av grind behövs!

För att implementera en boolesk funktion behövs det bara **NAND**- eller **NOR**-grindar

IE1204 2017 P2 bellman@kth.se 47

DeMorgans teorem - bubbelgrindar

 x_1 x_2

En NAND är en bubbel-OR

(a)
$$\overline{x_1 x_2} = \bar{x}_1 + \bar{x}_2$$

(DeMorgan (15a))

Inverterade ingångar

En NOR är en bubbel-AND

(b) $\overline{x_1 + x_2} = \overline{x_1} \overline{x_2}$ (DeMorgan (15b))

IE1204 2017 P2 bellman@kth.se 48

Inverterare med NAND

$$Y = \overline{A} = \overline{A \cdot A}$$

AND-grind med NAND-grindar

$$= \begin{array}{c|c} A & \hline \\ B & \hline \end{array}$$

OR-grind med NAND-grindar

$$Y = A + B = \overline{A + B} = \overline{A \cdot B} = \overline{A \cdot A \cdot B \cdot B}$$

IE1204 2017 P2 bellman@kth.se 51

Logiska funktioner med bara NAND

AND-OR funktion

Universella mängder av grindar

En mängd (eng. set) av grindar kallas universell eller komplett om alla kombinatoriska system kan beskrivas mha detta set.

Exempel på universella grind-mängder:

 $\{AND, OR, NOT\} \rightarrow \{DeMorgan\} \rightarrow \{AND, NOT\} \rightarrow \{NAND\}$

{OR, AND, NOT} -> (DeMorgan) -> {OR,NOT} -> {NOR}

Logiska grindar XOR-grinden

Exklusivt ELLER

IEC Symbol (International Electrotechnical Commission)

Traditional (American) Symbol

$$Y = A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

Logiska grindar XNOR-grinden

IEC Symbol

(International Electrotechnical Commission)

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

$$Y = \overline{A \oplus B} = \overline{A} \cdot \overline{B} + A \cdot B$$

Traditional (American) Symbol

Hur många olika grindar finns det?

2 ingångar \rightarrow 4 tillstånd, vart och ett kan ha två värden \rightarrow 2⁴ = 16

li	որւ	ıts			1	6 possi	ble ou	tput fu	ınction	ıs									
)	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_{g}	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
X		y			AND					XOR	OR	NOR	XNOR					NAND	
0		0		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0		1		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1		0		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1		1		0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

IE1204 2017 P2 bellman@kth.se 56

Exempel: Trevägs ljuskontroll

Brown/Vranesic: 2.8.1

Antag att vi behöver kunna tända/släcka vardagsrummet från tre olika ställen.

Viss avvikelse kan förekomma. Skala och mått kan avvika från verkligheten.

Exempel: Tvåvägs ljuskontroll = trappströmbrytare

Man ska alltid kunna *ändra* ljuset genom att *ändra* en valfri strömbrytare.

X_1	\mathcal{X}_2	X_3	\int
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Man ska alltid kunna ändra ljuset genom att ändra en valfri strömbrytare.

X_1	\mathcal{X}_2	\mathcal{X}_3	\int
0	0	0 • 1	0
0	0	_	1
0	1	0	1
0	1	1	
1	0	0	1
1	0	1	
1	1	O	
1	1	1	

Man ska alltid kunna ändra ljuset genom att ändra en valfri strömbrytare.

x_1	\mathcal{X}_2	\mathcal{X}_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	
1	1	0	
1	1	1	

Man ska alltid kunna ändra ljuset genom att ändra en valfri strömbrytare.

x_1	\mathcal{X}_2	\mathcal{X}_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	O	1
1	0	1	0
1	1	0	0
1	1	1	

Man ska alltid kunna ändra ljuset genom att ändra en valfri strömbrytare.

Sanningstabellen stämmer nu med förutsättningarna!

X_1	\mathcal{X}_2	X_3	\int
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} - f$$

$$f = \sum m(1,2,4,7) = \overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

(a) Sum-of-products realization

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} - f$$

$$f = \prod M(0,3,5,6) = (x_1 + x_2 + x_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + x_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$$

(b) Product-of-sums realization

Sammanfattning

- Logiska funktioner kan beskrivas med boolesk algebra
- Det finns logiska grindar för de vanliga booleska funktioner
- En logisk funktion kan uttryckas och skrivas om mha boolesk algebra till
 - SOP-form (Summa av min-termer) eller
 - POS-form (Produkt av max-termer)

Två övningsgrupper på svenska

- Tillfälle 1: Efternamn A K Första övningen 1/11 8-10 i sal 205
- Tillfälle 2: Efternamn L Ö
 Första övningen 1/11 13-15 i sal B

• Två salar bokade men bara den med lägst nummer används: B < 205 < 208 < 308