Nom:

Questions	Réponses
Quelle est la limite en	
$-1^+ \text{ de } \frac{x^2-1}{x+1}$?	\Box $+\infty$
	\Box -2
	□ −1
Quelle est la limite en 0	
$\det \frac{\cos(x)-1}{x}?$	\square $+\frac{1}{2}$
	\square $-\frac{1}{2}$
	□ −1
Quelle est la limite en 0	
$\det \frac{\sin(x) - x}{x^3} ?$	$\square -\frac{1}{6}$
	\square $\frac{1}{2}$
	\Box $+\infty$
	\Box $-\frac{1}{2}$
Quelle est la limite en 0	
$\det \frac{\cos(x)-1}{\sin(x)}?$	\square $\frac{1}{2}$
	\square $-\frac{1}{2}$
	□ −1
Quelle est la limite en	
$0^+ \text{ de } x^x$?	\square $-\infty$
	☐ La limite n'existe pas

Questions	Réponses
Le module de $\frac{1}{1+e^{\frac{2i\pi}{3}}}$ est	
176 3	$\Box \frac{2}{\sqrt{3}}$
	☐ Aucune des réponses au-dessus
Si $n \in \mathbb{Z}$, que vaut	$\square (-1)^n$
$\sin(n\pi)$?	
	$\Box 0 \text{ si } n = 2k, \text{ et } (-1)^k \text{ si } n = 2k+1$
	$\Box \ (-1)^k \text{ si } n = 2k, \text{ et } 0 \text{ si } n = 2k+1$
Si $n \in \mathbb{Z}$, que vaut	$\square (-1)^n$
$\cos\left(\pi + n\frac{\pi}{2}\right)?$	
	\square 0 si $n = 2k$, et $(-1)^{k+1}$ si $n = 2k+1$
	$\Box (-1)^{k+1} \text{ si } n = 2k, \text{ et } 0 \text{ si } n = 2k+1$
Si $x \in \mathbb{R}$, alors	$\square \sin(x)$
$\cos(\pi/2 - x)$ vaut	$\Box - \sin(x)$
	$\square \cos(x)$
	$\Box - \cos(x)$
	$\hfill\Box$ cela dépend de x
Si $x \in \mathbb{R}$, alors $\sin^2(x)$	
vaut	$\Box 1 - \sin(x)\cos(x)$
	$\Box 1 + \cos(2x)$
	$\Box 1 - \cos(2x)$

Questions	Réponses
Si $f(x) = e^{(x+2)^2}$ pour tout $x \in \mathbb{R}$, alors $f'(x)$ est égal à	$\Box e^{2x+4}$
	$\Box \ 2(x+2)e^{(x+2)^2}$
	$\square 2xe^{x^2+4x+4}$
Si $f(x) = u(v(x))$ pour tout $x \in \mathbb{R}$, alors $f'(x)$ est égal à	$ \Box u'(v(x)) + v'(u(x)) $
	$\Box u'(v(x)) - v'(u(x))$
	$\Box u'(x)v'(u(x))$
	$\square v'(x)u'(v(x))$
	$\square \ u'(x)v'(u(x))$
Si $f(x) = \frac{2}{1+e^{-x}}$ pour tout $x \in \mathbb{R}$, alors $f'(x)$ est égal à	$\Box -\frac{1}{\sinh(x)-1}$
	$\Box -\frac{1}{\operatorname{sh}(x)+1}$
	$\Box -\frac{1}{\operatorname{ch}(x)-1}$
	$\Box -\frac{1}{\operatorname{ch}(x)+1}$
Les solutions réelles de l'équation différentielle $y' + 6y = 0$ sont de la forme	$\Box \ y(x) = Ce^{-6x}, \text{ avec } C \in \mathbb{R}$
	$\square \ y(x) = Ce^{6x}, \text{ avec } C \in \mathbb{R}$
	$\square \ y(x) = C + e^{-6x}, \text{ avec } C \in \mathbb{R}$
	$\Box y(x) = C + e^{6x}$, avec $C \in \mathbb{R}$
Si $y : \mathbb{R} \to \mathbb{R}$ est solution de l'équation différentielle y'' + 2y' - 3y = 0 avec	$\square y(x) = e^{3x} + 2e^{-x}$
	$\Box y(x) = 2e^x + e^{-3x}$
	$\Box y(x) = e^x + e^{-3x}$
y(0) = -y'(0) = 2, alors	$ y(x) = e^{-x} + 2e^{-3x} $

Questions	Réponses
Le domaine de définition	\square $[-1,1]$
$de x \mapsto \ln(1+x) est$	
	$\square]-1,+\infty[$
	$\square]-\infty,1]$
Le domaine de définition	\square \mathbb{R}^*
de $x \mapsto \sqrt{x-2}$ est	$\square]2,+\infty[$
	$\square]-2,+\infty[$
	$\square]-\infty,2[$
	$\square]-\infty,-2[$
Si $x > 0$ et $y > 0$, alors $\ln\left(\frac{x}{y}\right)$ est égal à	$\square \ln(x)\ln(y)$
	$\square \ln(x) - \ln(y)$
	$\square \frac{\ln(x)}{\ln(y)}$
	$\Box \ln(x) + \ln(y)$
	□ aucune des réponses au-dessus
Quelle est la valeur de $\ln(e^{3^2}) - 2$?	
	\square 2
Quelle est la valeur de $\ln\left(-\frac{1}{\sqrt{e}}\right)$?	
	\square $\frac{1}{2}$
	\Box $-\frac{1}{2}$
	\square 2
	□ la quantité n'est pas définie