loantap-logistic-regression

February 26, 2025

1 Business Case: LoanTap Logistic Regression

LoanTap is an online platform committed to delivering customized loan products to millennials. They innovate in an otherwise dull loan segment, to deliver instant, flexible loans on consumer friendly terms to salaried professionals and businessmen.

The data science team at LoanTap is building an underwriting layer to determine the creditworthiness of MSMEs as well as individuals.

LoanTap deploys formal credit to salaried individuals and businesses 4 main financial instruments:

- Personal Loan
- EMI Free Loan
- Personal Overdraft
- Advance Salary Loan

This case study will focus on the underwriting process behind Personal Loan only.

Problem Statement: Given a set of attributes for an Individual, determine if a credit line should be extended to them. If so, what should the repayment terms be in business recommendations?

```
[111]: # Importing the necessary libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")
[112]: # converting data into dataframe
```

```
[112]: # converting data into dataframe

loantap = pd.read_csv("logistic_regression.csv")
loantap.head()
```

```
[112]:
                                               installment grade sub_grade
          loan_amnt
                                   int_rate
                             term
             10000.0
                        36 months
                                       11.44
                                                    329.48
       0
                                                                В
                                                                          B4
              8000.0
                       36 months
                                                    265.68
       1
                                       11.99
                                                                В
                                                                          B5
```

```
2
     15600.0
               36 months
                              10.49
                                           506.97
                                                      В
                                                                ВЗ
3
      7200.0
               36 months
                               6.49
                                                      Α
                                                                A2
                                           220.65
4
                                                      C
     24375.0
               60 months
                              17.27
                                           609.33
                                                                C5
                 emp_title emp_length home_ownership
                                                        annual_inc
                                                          117000.0
0
                 Marketing 10+ years
                                                  RENT
1
           Credit analyst
                               4 years
                                              MORTGAGE
                                                           65000.0
2
              Statistician
                              < 1 year
                                                  RENT
                                                           43057.0
3
           Client Advocate
                               6 years
                                                  RENT
                                                           54000.0
   Destiny Management Inc.
                               9 years
                                                           55000.0
                                              MORTGAGE
  verification_status
                         issue_d loan_status
                                                           purpose
0
         Not Verified
                        Jan-2015
                                   Fully Paid
                                                          vacation
1
         Not Verified Jan-2015
                                   Fully Paid
                                               debt_consolidation
2
      Source Verified Jan-2015
                                   Fully Paid
                                                       credit card
3
         Not Verified Nov-2014
                                   Fully Paid
                                                       credit_card
4
             Verified Apr-2013
                                  Charged Off
                                                       credit_card
                      title
                               dti earliest_cr_line
                                                      open_acc pub_rec \
                  Vacation 26.24
0
                                            Jun-1990
                                                          16.0
                                                                     0.0
        Debt consolidation 22.05
                                            Jul-2004
                                                          17.0
                                                                     0.0
1
   Credit card refinancing
                             12.79
                                           Aug-2007
                                                          13.0
                                                                     0.0
   Credit card refinancing
                              2.60
                                            Sep-2006
                                                           6.0
                                                                     0.0
     Credit Card Refinance 33.95
                                           Mar-1999
                                                          13.0
                                                                     0.0
   revol_bal revol_util total_acc initial_list_status application_type
     36369.0
                                25.0
0
                     41.8
                                                                 INDIVIDUAL
1
     20131.0
                     53.3
                                27.0
                                                        f
                                                                INDIVIDUAL
                     92.2
                                26.0
2
     11987.0
                                                        f
                                                                 INDIVIDUAL
     5472.0
                     21.5
                                13.0
                                                        f
                                                                 INDIVIDUAL
3
     24584.0
                     69.8
                                43.0
                                                        f
                                                                INDIVIDUAL
             pub_rec_bankruptcies
   mort_acc
0
        0.0
                               0.0
                               0.0
1
        3.0
2
        0.0
                               0.0
3
        0.0
                               0.0
        1.0
                               0.0
                                               address
0
      0174 Michelle Gateway\r\nMendozaberg, OK 22690
   1076 Carney Fort Apt. 347\r\nLoganmouth, SD 05113
   87025 Mark Dale Apt. 269\r\nNew Sabrina, WV 05113
2
3
             823 Reid Ford\r\nDelacruzside, MA 00813
4
              679 Luna Roads\r\nGreggshire, VA 11650
```

```
[113]: # making an copy of the dataset
       df = loantap.copy()
```

1.0.1 Identification of variables

```
[114]: df.shape
[114]: (396030, 27)
[115]: # data info
       df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 396030 entries, 0 to 396029 Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype			
0	loan_amnt	396030 non-null	float64			
1	term	396030 non-null	object			
2	int_rate	396030 non-null	float64			
3	installment	396030 non-null	float64			
4	grade	396030 non-null	object			
5	sub_grade	396030 non-null	object			
6	emp_title	373103 non-null	object			
7	emp_length	377729 non-null	object			
8	home_ownership	396030 non-null	object			
9	annual_inc	396030 non-null	float64			
10	verification_status	396030 non-null	object			
11	issue_d	396030 non-null	object			
12	loan_status	396030 non-null	object			
13	purpose	396030 non-null	object			
14	title	394274 non-null	object			
15	dti	396030 non-null	float64			
16	earliest_cr_line	396030 non-null	object			
17	open_acc	396030 non-null	float64			
18	<pre>pub_rec</pre>	396030 non-null	float64			
19	revol_bal	396030 non-null	float64			
20	revol_util	395754 non-null	float64			
21	total_acc	396030 non-null	float64			
22	initial_list_status	396030 non-null	object			
23	application_type	396030 non-null	object			
24	mort_acc	358235 non-null	float64			
25	<pre>pub_rec_bankruptcies</pre>	395495 non-null	float64			
26	address	396030 non-null	object			
dtypes: float64(12), object(15)						

3

memory usage: 81.6+ MB

[116]: # Checking of null values

```
df.isna().sum()
[116]: loan_amnt
                                    0
       term
                                    0
       int rate
                                    0
       installment
                                    0
                                    0
       grade
       sub_grade
                                    0
                                22927
       emp_title
       emp_length
                                18301
      home_ownership
                                    0
       annual_inc
                                    0
                                    0
       verification_status
                                    0
       issue_d
       loan_status
                                    0
       purpose
                                    0
       title
                                 1756
       dti
                                    0
                                    0
       earliest_cr_line
                                    0
       open_acc
                                    0
       pub_rec
                                    0
       revol_bal
       revol_util
                                  276
       total_acc
                                    0
       initial_list_status
                                    0
       application_type
                                    0
                                37795
       mort_acc
       pub_rec_bankruptcies
                                  535
                                    0
       address
       dtype: int64
[117]: # Percentage of null values in each columns
       df.isna().sum()/len(df)*100
[117]: loan_amnt
                                0.000000
       term
                                0.000000
       int_rate
                                0.000000
       installment
                                0.000000
       grade
                                0.000000
       sub_grade
                                0.000000
                                5.789208
       emp_title
       emp_length
                                4.621115
```

home_ownership	0.000000
annual_inc	0.000000
verification_status	0.000000
issue_d	0.000000
loan_status	0.000000
purpose	0.000000
title	0.443401
dti	0.000000
earliest_cr_line	0.000000
open_acc	0.000000
<pre>pub_rec</pre>	0.000000
revol_bal	0.000000
revol_util	0.069692
total_acc	0.000000
initial_list_status	0.000000
application_type	0.000000
mort_acc	9.543469
<pre>pub_rec_bankruptcies</pre>	0.135091
address	0.000000
1. 63 . 64	

dtype: float64

1.0.2 Analysing the basic metrics

[118]:	<pre>df.describe(include='all').transpose()</pre>						
[118]:		count	unique	top	freq	\	
	loan_amnt	396030.0	NaN	NaN	NaN		
	term	396030	2	36 months	302005		
	int_rate	396030.0	NaN	NaN	NaN		
	installment	396030.0	NaN	NaN	NaN		
	grade	396030	7	В	116018		
	sub_grade	396030	35	В3	26655		
	emp_title	373103	173105	Teacher	4389		
	emp_length	377729	11	10+ years	126041		
	home_ownership	396030	6	MORTGAGE	198348		
	${\tt annual_inc}$	396030.0	NaN	NaN	NaN		
	verification_status	396030	3	Verified	139563		
	issue_d	396030	115	Oct-2014	14846		
	loan_status	396030	2	Fully Paid	318357		
	purpose	396030	14	${\tt debt_consolidation}$	234507		
	title	394274	48816	Debt consolidation	152472		
	dti	396030.0	NaN	NaN	NaN		
	earliest_cr_line	396030	684	Oct-2000	3017		
	open_acc	396030.0	NaN	NaN	NaN		
	pub_rec	396030.0	NaN	NaN	NaN		
	revol_bal	396030.0	NaN	NaN	NaN		
	revol_util	395754.0	NaN	NaN	NaN		

total_acc	396030.0	N	aN		N	aN Na	ıN	
initial_list_status	396030		2			f 23806	f 238066	
application_type			3		INDIVIDU	AL 39531	395319	
mort_acc	358235.0	N	aN		N	aN Na	ιN	
<pre>pub_rec_bankruptcies</pre>	395495.0	N	aN		N	aN Na	ιN	
address	396030	3937	00 USCGC Sm:	ith\r\nF	PO AE 704	66	8	
	7	nean	std	min	25%	50%	\	
loan_amnt	14113.888		8357.441341	500.0	8000.0	12000.0	`	
term		NaN	NaN	NaN	NaN	NaN		
int_rate	13.6	6394	4.472157	5.32	10.49	13.33		
installment	431.849	9698	250.72779	16.08	250.33	375.43		
grade		NaN	NaN	NaN	NaN	NaN		
sub_grade		NaN	NaN	NaN	NaN	NaN		
emp_title		NaN	NaN	NaN	NaN	NaN		
emp_length		NaN	NaN	NaN	NaN	NaN		
home_ownership		NaN	NaN	NaN	NaN	NaN		
annual_inc	74203.17	5798	61637.621158	0.0	45000.0	64000.0		
verification_status		NaN	NaN	NaN	NaN	NaN		
issue_d		NaN	NaN	NaN	NaN	NaN		
loan_status		NaN	NaN	NaN	NaN	NaN		
purpose		NaN	NaN	NaN	NaN	NaN		
title		NaN	NaN	NaN	NaN	NaN		
dti	17.379	9514	18.019092	0.0	11.28	16.91		
earliest_cr_line		NaN	NaN	NaN	NaN	NaN		
open_acc	11.31		5.137649	0.0	8.0	10.0		
pub_rec	0.178		0.530671	0.0	0.0	0.0		
revol_bal	15844.539		20591.836109	0.0	6025.0	11181.0		
revol_util	53.79		24.452193	0.0	35.8	54.8		
total_acc	25.41		11.886991	2.0	17.0	24.0		
initial_list_status		NaN NaN	NaN	NaN NaN	NaN NaN	NaN NaN		
application_type	1 01	NaN 2001	NaN	NaN	NaN	NaN 1 0		
<pre>mort_acc pub_rec_bankruptcies</pre>	1.813 0.123		2.14793 0.356174	0.0	0.0	1.0		
address	0.12	NaN	0.330174 NaN	NaN	NaN	NaN		
address		IValv	ivan	Ivaiv	IValv	Ivaiv		
	75%		max					
loan_amnt	20000.0	400	00.0					
term	NaN		NaN					
int_rate	16.49	3	0.99					
installment	567.3	153	3.81					
grade	NaN		NaN					
sub_grade	NaN		NaN					
emp_title	NaN		NaN					
emp_length	NaN		NaN					
home_ownership	NaN		NaN					
annual_inc	90000.0	87065	82.0					

verification_status	NaN	NaN
issue_d	NaN	NaN
loan_status	NaN	NaN
purpose	NaN	NaN
title	NaN	NaN
dti	22.98	9999.0
earliest_cr_line	NaN	NaN
open_acc	14.0	90.0
pub_rec	0.0	86.0
revol_bal	19620.0	1743266.0
revol_util	72.9	892.3
total_acc	32.0	151.0
initial_list_status	NaN	NaN
application_type	NaN	NaN
mort_acc	3.0	34.0
<pre>pub_rec_bankruptcies</pre>	0.0	8.0
address	NaN	NaN

Insights Outliers: The significant differences between mean & median in key attributes like loan amount and revolving balance indicate potential outliers.

Loan Duration Preference: A preference for 36-month loan terms among borrowers suggests a balance between manageable installments.

Home Ownership Trends: The prevalence of applicants with mortgaged homes suggests financial stability or a need for substantial, property-secured loans.

Successful Loan Repayment: Most loans being fully paid off reflects positively on borrowers' financial commitment, indicating effective lending criteria.

Debt Consolidation Dominance: The primary use of loans for debt consolidation highlights a common strategy to manage or reduce high-interest debt.

Individual Borrowers: The predominance of individual applicants suggests that personal loans are a major market segment.

```
'total_acc',
'mort_acc',
'pub_rec_bankruptcies']
```

```
[120]: for i in n_columns:
    plt.figure(figsize=(12,5))
    plt.title("Distribution of {}".format(i))
    sns.histplot(df[i]/df[i].max(), kde=True,color="red", bins=40)
    plt.show()
```


1.0.3 Bivariate Analysis

```
[123]: plt.figure(figsize=(15,20))

plt.subplot(2,2,1)
sns.countplot(x='term',data=df,hue='loan_status')

plt.subplot(2,2,2)
sns.countplot(x='home_ownership',data=df,hue='loan_status')

plt.subplot(2,2,3)
sns.countplot(x='verification_status',data=df,hue='loan_status')

plt.subplot(2,2,4)
g=sns.countplot(x='purpose',data=df,hue='loan_status')
g.set_xticklabels(g.get_xticklabels(),rotation=90)

plt.show()
```



```
[124]: plt.figure(figsize=(15, 10))
    plt.subplot(2, 2, 1)
    grade = sorted(loantap.grade.unique().tolist())
    sns.countplot(x='grade', data=df, hue='loan_status', order=grade)

plt.subplot(2, 2, 2)
    sub_grade = sorted(loantap.sub_grade.unique().tolist())
    g = sns.countplot(x='sub_grade', data=df, hue='loan_status', order=sub_grade)
    g.set_xticklabels(g.get_xticklabels(), rotation=90)

plt.show()
```


Insights Loan Terms: The most popular loan term is 36 months, with a high completion rate.

Loan Types: Mortgages and rental loans are the most common loan types. Debt consolidation loans are also frequently used.

Creditworthiness: Borrowers with a credit grade of "B" and a subgrade of "B3" tend to have the highest repayment rates.

Occupations: Managers and teachers are the professions with the highest loan approval rates.

Repayment: Individuals employed for over 10 years demonstrate a strong track record of loan repayment.

1.0.4 Correlation Analysis

```
[126]: plt.figure(figsize=(18,10))
sns.heatmap(df.corr(numeric_only=True), cmap = 'YlOrBr', annot = True)
plt.show()
```


[127]: df.corr(numeric_only=True)

	7	•					
[127]:		loan_amnt	int_rate	installmen	t annual_in	c dti	\
	loan_amnt	1.000000	0.168921	0.95392	9 0.33688	7 0.016636	
	int_rate	0.168921	1.000000	0.16275	8 -0.05677	1 0.079038	
	installment	0.953929	0.162758	1.00000	0 0.33038	1 0.015786	
	annual_inc	0.336887	-0.056771	0.33038	1 1.00000	0 -0.081685	
	dti	0.016636	0.079038	0.01578	6 -0.08168	5 1.000000	
	open_acc	0.198556	0.011649	0.18897	3 0.13615	0 0.136181	
	<pre>pub_rec</pre>	-0.077779	0.060986	-0.06789	2 -0.01372	0 -0.017639	
	revol_bal	0.328320	-0.011280	0.31645	5 0.29977	3 0.063571	
	revol_util	0.099911	0.293659	0.12391	5 0.02787	1 0.088375	
	total_acc	0.223886	-0.036404	0.20243	0 0.19302	3 0.102128	
	mort_acc	0.222315	-0.082583	0.19369	4 0.23632	0 -0.025439	
	<pre>pub_rec_bankruptcies</pre>	-0.106539	0.057450	-0.09862	8 -0.05016	2 -0.014558	
		open_acc	pub_rec	revol_bal	revol_util	total_acc \	`
	loan_amnt	0.198556 -	-0.077779	0.328320	0.099911	0.223886	
	int_rate	0.011649	0.060986	-0.011280	0.293659	-0.036404	
	installment	0.188973 -	-0.067892	0.316455	0.123915	0.202430	
	annual_inc	0.136150 -	-0.013720	0.299773	0.027871	0.193023	
	dti	0.136181 -	-0.017639	0.063571	0.088375	0.102128	
	open_acc	1.000000 -	-0.018392	0.221192	-0.131420	0.680728	

pub_rec	-0.018392	1.000000	-0.101664	-0.075910	0.019723
revol_bal	0.221192	-0.101664	1.000000	0.226346	0.191616
revol_util	-0.131420	-0.075910	0.226346	1.000000	-0.104273
total_acc	0.680728	0.019723	0.191616	-0.104273	1.000000
mort_acc	0.109205	0.011552	0.194925	0.007514	0.381072
<pre>pub_rec_bankruptcies</pre>	-0.027732	0.699408	-0.124532	-0.086751	0.042035
	mort_acc	pub_rec_b	ankruptcies		
loan_amnt	0.222315		-0.106539		
int_rate	-0.082583		0.057450		
installment	0.193694		-0.098628		
annual_inc	0.236320		-0.050162		
dti	-0.025439		-0.014558		
open_acc	0.109205		-0.027732		
<pre>pub_rec</pre>	0.011552		0.699408		
revol_bal	0.194925		-0.124532		
revol_util	0.007514		-0.086751		
total_acc	0.381072		0.042035		
mort_acc	1.000000		0.027239		
<pre>pub_rec_bankruptcies</pre>	0.027239		1.000000		

1.0.5 Insights:

- Positive correlation with annual income (annual_inc) Higher income allows for larger loan applications.
- Weak positive correlation with installment amount (installment) Makes sense as larger loans will typically have higher installments.
- Weak positive correlation with total accounts (total_acc) and mortgage accounts (mort_acc)
 Borrowers with more established credit lines may be eligible for higher loan amounts.
- Weak negative correlation with annual income (annual_inc) Generally, borrowers with higher income qualify for lower interest rates.
- Weak positive correlation with total accounts (total_acc) and mortgage accounts (mort_acc)
 People with a higher income may tend to have more credit accounts.
- Positive correlation between revolving balance (revol_bal) and credit line utilization (revol_util) This indicates that people with higher credit balances also tend to have a higher utilization ratio.
- Weak positive correlation between number of open accounts (open_acc) and total accounts (total acc) As expected, people with more open accounts tend to have more total accounts.

1.0.6 Data Preprocessing using Feautre Engineering

```
[128]: def pub_rec(number):
           if number == 0.0:
               return 0
           else:
               return 1
       def mort_acc(number):
           if number == 0.0:
               return 0
           elif number >= 1.0:
               return 1
           else:
               return number
       def pub_rec_bankruptcies(number):
           if number == 0.0:
               return 0
           elif number >= 1.0:
               return 1
           else:
               return number
[129]: df['pub_rec']=df.pub_rec.apply(pub_rec)
       df['mort_acc'] = df.mort_acc.apply(mort_acc)
       df['pub_rec_bankruptcies']=df.pub_rec_bankruptcies.apply(pub_rec_bankruptcies)
[130]: plt.figure(figsize=(12,30))
       plt.subplot(4,2,1)
       sns.countplot(x='pub_rec',data=df,hue='loan_status')
       plt.subplot(4,2,2)
       sns.countplot(x='initial_list_status',data=df,hue='loan_status')
       plt.subplot(4,2,3)
       sns.countplot(x='mort_acc',data=df,hue='loan_status')
       plt.subplot(4,2,4)
       sns.countplot(x='pub_rec_bankruptcies',data=df,hue='loan_status')
       plt.show()
```


Most the loan disbursed to the people who do not hold bankrupties record have successfully paid loan

1.0.7 Duplicate checks

```
[131]: df.duplicated().sum()
```

[131]: 0

1.0.8 Missing values

```
[132]: df.isnull().sum()
[132]: loan_amnt
                                    0
       term
                                    0
                                    0
       int_rate
       installment
                                    0
       grade
                                    0
       sub_grade
                                    0
       emp_title
                                22927
       emp_length
                                18301
      home_ownership
                                    0
                                    0
       annual_inc
       verification_status
                                    0
                                    0
       issue_d
                                    0
       loan_status
                                    0
       purpose
      title
                                 1756
       dti
       earliest_cr_line
                                    0
       open_acc
                                    0
      pub_rec
                                    0
       revol_bal
                                    0
       revol_util
                                  276
                                    0
       total acc
       initial_list_status
                                    0
       application_type
                                    0
      mort_acc
                                37795
       pub_rec_bankruptcies
                                  535
       address
                                    0
       dtype: int64
[133]: numeric_columns = df.select_dtypes(include=['float64', 'int64'])
       total_acc_avg = numeric_columns.groupby('total_acc')['mort_acc'].mean()
       def fill_mort_acc(total_acc, mort_acc):
           if np.isnan(mort_acc):
               return total_acc_avg[total_acc].round()
           else:
               return mort_acc
       df['mort_acc'] = df.apply(lambda x: fill_mort_acc(x['total_acc'],__

¬x['mort_acc']), axis=1)
[134]: df.isnull().sum()
```

```
[134]: loan_amnt
                                    0
                                    0
       term
       int_rate
                                    0
       installment
                                    0
       grade
                                    0
       sub_grade
                                    0
       emp_title
                                22927
       emp_length
                                18301
                                    0
       home_ownership
                                    0
       annual_inc
       verification_status
                                    0
                                    0
       issue_d
                                    0
       loan_status
       purpose
                                    0
                                 1756
       title
       dti
                                    0
       earliest_cr_line
                                    0
       open_acc
                                    0
       pub_rec
                                    0
                                    0
       revol_bal
       revol_util
                                  276
       total acc
                                    0
       initial_list_status
                                    0
       application_type
                                    0
       mort_acc
                                    0
       pub_rec_bankruptcies
                                  535
                                    0
       address
       dtype: int64
[135]: # droping remaining null values
       df.dropna(inplace=True)
       df.shape
[135]: (370621, 27)
      1.0.9 Outlier Detection
[136]: def box_plot(col):
           if col in df.columns:
               plt.figure(figsize=(8, 5))
               sns.boxplot(x=df[col],color="#29B6F6")
               plt.title('Boxplot for {}'.format(col))
               plt.show()
           else:
```

print(f"Column '{col}' not found in the DataFrame.")

for col in n_columns:
 box_plot(col)

Boxplot for loan_amnt

Boxplot for int_rate

Boxplot for installment

Boxplot for annual_inc

Boxplot for dti

Boxplot for open_acc

Boxplot for pub_rec

Boxplot for revol_util

Boxplot for total_acc

Boxplot for pub_rec_bankruptcies

```
0.0 0.2 0.4 0.6 0.8 1.0 pub_rec_bankruptcies
```

```
for col in n_columns:
    if col in df.columns:
        mean = df[col].mean()
        std = df[col].std()
        upper_limit = mean + 3 * std
        lower_limit = mean - 3 * std
        df = df[(df[col] < upper_limit) & (df[col] > lower_limit)]
```

```
[138]: def box_plot(col):
    if col in df.columns:
        plt.figure(figsize=(8, 5))
        sns.boxplot(x=df[col],color="#29B6F6")
        plt.title('Boxplot for {}'.format(col))
        plt.show()
    else:
        print(f"Column '{col}' not found in the DataFrame.")

for col in n_columns:
    box_plot(col)
```

Boxplot for loan_amnt

Boxplot for int_rate

Boxplot for installment

Boxplot for annual_inc

Boxplot for dti

Boxplot for open_acc

Boxplot for revol_bal

Boxplot for revol_util

Boxplot for total_acc

Boxplot for pub_rec_bankruptcies

```
0.0 0.2 0.4 0.6 0.8 1.0 pub_rec_bankruptcies
```

```
[139]: term_values = {' 36 months': 36, ' 60 months': 60}

df['term'] = df['term'].map(term_values)

df['loan_status'] = df['loan_status'].map({'Fully Paid': 0, 'Charged Off': 1})

list_status = {'w': 0, 'f': 1}

df['initial_list_status'] = df['initial_list_status'].map(list_status)

df['zip_code'] = df['address'].apply(lambda x: x[-5:])

df['zip_code'].value_counts(normalize=True) * 100
```

```
[139]: zip_code

70466 14.375337

30723 14.289710

22690 14.272299

48052 14.127019

00813 11.605591

29597 11.548792
```

```
05113
             11.519108
      93700
                2.768605
      11650
                2.762896
      86630
                2.730643
      Name: proportion, dtype: float64
[140]: # Dropping of unnecessary columns
      unnecessary_columns=['issue_d', 'emp_title', 'title', 'sub_grade', 'address', __
       df.drop(unnecessary_columns,axis=1, inplace=True)
      1.0.10 One hot encoding
[141]: dummies=['purpose', 'zip_code', 'grade', 'verification_status',_
       ⇔'application_type', 'home_ownership']
      data=pd.get dummies(df,columns=dummies,drop first=True)
      pd.set option('display.max columns', None)
      pd.set_option('display.max_rows',None)
[142]: from sklearn.model_selection import train_test_split
      X=data.drop('loan_status',axis=1)
      y=data['loan status']
      X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.
       →30,stratify=y,random_state=42)
      print(X_train.shape)
      print(X_test.shape)
      (245249, 51)
      (105108, 51)
      1.0.11 Model Building
[143]: # Importing stats libraries
      from sklearn.linear_model import LogisticRegression
      from sklearn import metrics
      from sklearn.metrics import confusion_matrix
      from sklearn.metrics import classification_report
      from sklearn.metrics import roc_auc_score
      from sklearn.metrics import roc_curve
```

from sklearn.metrics import precision_recall_curve

```
from sklearn.model_selection import train_test_split, KFold, cross_val_score
      from sklearn.preprocessing import MinMaxScaler
      from sklearn.metrics import (
          accuracy_score, confusion_matrix, classification_report,
          roc_auc_score, roc_curve, auc,
          ConfusionMatrixDisplay, RocCurveDisplay
      from statsmodels.stats.outliers_influence import variance_inflation_factor
[144]: scaler = MinMaxScaler()
      X_train = scaler.fit_transform(X_train)
      X_test = scaler.transform(X_test)
[145]: logreg=LogisticRegression(max_iter=1000)
      logreg.fit(X train, y train)
[145]: LogisticRegression(max_iter=1000)
[146]: | y_pred = logreg.predict(X_test)
      print('Accuracy of Logistic Regression Classifier on test set: {:.3f}'.
        Accuracy of Logistic Regression Classifier on test set: 0.891
[147]: print(classification_report(y_test,y_pred))
                   precision
                                recall f1-score
                                                   support
                 0
                        0.89
                                  0.99
                                            0.94
                                                     84915
                        0.94
                 1
                                  0.46
                                            0.62
                                                     20193
                                            0.89
                                                    105108
          accuracy
                                            0.78
         macro avg
                        0.91
                                  0.73
                                                    105108
                                            0.88
      weighted avg
                        0.90
                                  0.89
                                                    105108
[148]: #Plot confusion Matrix
      confusion_matrix=confusion_matrix(y_test,y_pred)
      print(confusion_matrix)
      ConfusionMatrixDisplay(confusion_matrix=confusion_matrix, display_labels=logreg.
        ⇔classes ).plot()
```

[[84341 574] [10889 9304]]

[148]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x79b6259daa10>

ROC Curve - An ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters:

- True Positive Rate
- False Positive Rate

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

• TPR=(TP)/(TP+FN)

False Positive Rate (FPR) is defined as follows:

• FPR=(FP)/(FP+TN)

An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the classification threshold classifies more items as positive, thus increasing both False Positives and True Positives. The following figure shows a typical ROC curve.

AUC (Area under the ROC Curve) - AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1).

AUC provides an aggregate measure of performance across all possible classification thresholds. One way of interpreting AUC is as the probability that the model ranks a random positive example more highly than a random negative example. For example, given the following examples, which are arranged from left to right in ascending order of logistic regression predictions:

```
[149]: logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test))

fpr, tpr, thresholds = roc_curve(y_test, logreg.predict_proba(X_test)[:,1])

plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.grid()
plt.show()
```


Insights:

- ROC-AUC curve is grossing the area near about 0.73 which indicates that model is performing well.
- There is still room for some model improvement
- By collecting more data, using a more complex model, or tuning the hyperparameters, it is possible to improve the model's performance.

1.0.12 Precision-Recall Curve

```
plt.plot(thresholds, recalls[0:threshold_boundary], label='recall')

start, end = plt.xlim()
plt.xticks(np.round(np.arange(start, end, 0.1), 2))

plt.xlabel('Threshold Value')
plt.ylabel('Precision and Recall Value')
plt.legend()
plt.grid()
plt.show()
```


Insights

- Precision score is highest at 0.55 threshold. High precision value indicates that model is positevly predicating the charged off loan status which helps business to take more stable decision.
- Recall score is higher on smaller threshold but after 0.55 the recall value is constant. Model is correctly classifying the actual predicated values as instances.

Actional Insights and Recommendations

1. 80% of the customers have paid the loan fully.

- 2. 20% of the customers are the defaulters.
- 3. The organization can the trained model to make prediction for whether a person will likely to pay the loan amount or he will be a defaulter.
- 4. Model achieves the 94% f1-score for the negative class (Fully Paid).
- 5. Model achieves the 62% f1-score for the positive class (Charged off).
- 6. Cross Validation accuracy and testing accuracy is almost same which infers model is performing the decent job. We can trust this model for unseen data
- 7. By collecting more data, using a more complex model, or tuning the hyperparameters, it is possible to improve the model's performance.
- 8. ROC AUC curve area of 0.73, the model is correctly classifying about 73% of the instances. This is a good performance, but there is still room for improvement.
- 9. The precision-recall curve allows us to see how the precision and recall trade-off as we vary the threshold. A higher threshold will result in higher precision, but lower recall, and vice versa. The ideal point on the curve is the one that best meets the needs of the specific application.
- 10. After balancing the dataset, there is significant change observed in the precion and recall score for both of the classes.
- 11. Accuracy of Logistic Regression Classifier on test set: 0.891 which is decent and not by chance