Sucessões e Séries de Funções

Corpo Docente:

Ana Breda, Eugénio Rocha, Paolo Vettori Sandrina Santos, Diana Costa, Rita Guerra

Departamento de Matemática, Universidade de Aveiro, 2017

Sucessões de Funcões

Consideremos uma sucessão de funções $f_1, f_2, ..., f_n, ...$ todas definidas em

 $D \subset \mathbb{R}$. Notamos uma tal sucessão por $(f_n)_{n \in \mathbb{N}}$ ou simplesmente por (f_n) e f_n será designado por termo geral da sucessão.

Observe-se que, para cada $x \in D$ a sucessão $(f_n(x))_{n \in \mathbb{N}}$ é uma sucessão de números reais.

A sucessão de funções (f_n) definidas em D converge pontualmente para a

função
$$f \in D$$
 e escrevemos $f_n \to f$, se $\forall_{x \in D} \lim_{n \to \infty} f_n(x) = f(x)$.

$$\forall_{x\in D} \lim_{n\to\infty} f_n(x) = f(x)$$

Exemplo 4.2

Consideremos a sucessão de funções (f_n) que tem por termo geral a função f_n definida por $f_n(x) = x^n$, $x \in [0,1]$. Podemos facilmente constatar que,

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} x^n = f(x) = \begin{cases} 0 & \text{se } x \in [0,1[\\ 1 & \text{se } x = 1. \end{cases}$$

Por outras palavras, a sucessão de funções f_n converge pontualmente, em [0,1], para a função f.

Sucessões de Funções

Def. 4.3

A sucessão de funções (f_n) definidas em D converge uniformemente para a função f em D, se a sucessão numérica $(M_n)_{n\in\mathbb{N}} = \sup_{x\in D} \{|f_n(x) - f(x)|\}$ é um infinitésimo, isto é, se

$$\lim_{n\to\infty} M_n = \lim_{n\to\infty} \sup_{x\in D} \{|f_n(x) - f(x)|\} = 0$$

Obs. 4.4

Retomando o exemplo anterior, constatamos que a sucessão de funções

$$f_n(x) = x^n, x \in [0, 1],$$

não converge uniformemente para f.

De facto,

$$\lim_{n\to\infty} M_n = \lim_{n\to\infty} \sup_{x\in D} \{|f_n(x) - f(x)|\} = 1.$$

Sucessões de Funções

Exemplo 4.5

Consideremos a sucessão de funções

$$g_n(x) = \frac{x^n}{n}, \ x \in [0,1].$$

Para cada $x \in [0,1]$ a sucessão numérica $g_n(x) = \frac{x^n}{n}$ converge para 0. Assim,

 g_n converge pontualmente, em [0,1], para a função g(x) = 0.

Será esta convergência uniforme?

Dado que

$$\lim_{n \to \infty} M_n(x) = \lim_{n \to \infty} \sup_{x \in D} \{ |g_n(x) - g(x)| \}$$

$$= \lim_{n \to \infty} \sup_{x \in D} \{ |g_n(x)| \} = \lim_{n \to \infty} \sup_{x \in D} \{ \frac{x^n}{n} \} = 0,$$

a convergência é também uniforme.

Teo. 4.6

Se (f_n) converge uniformemente para f num conjunto D, então (f_n) converge pontualmente para f nesse conjunto.

Demonstração: Exercício.

Convergência uniforme ⇒ Convergência Pontual

Teo. 4.7

Seja (f_n) uma sucessão de funções contínuas em I = [a, b]. Suponha-se que f_n converge uniformemente para f em I. Então:

- 1 f é contínua em I;
- 2 f é integrável em l e

$$\int_a^b f(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$$

3 Adicionalmente se as funções f_n têm derivadas contínuas em [a, b] e a sucessão das suas derivadas f'_n converge uniformemente em [a, b]. então f é diferenciável em I e

$$f'(x) = \left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f'_n(x).$$

Obs. 4.8

O resultado 3 do teorema anterior mantém-se válido se a convergência de (f_n) para f for apenas pontual. Na verdade para que o resultado seja válido basta que exista $x_0 \in I$ tal que a sucessão numérica $(f_n(x_0))$ seja convergente.

Def. 4.9

Sejam $f_n: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $S_n = f_1(x) + f_2(x) + ... + f_n(x), n \in \mathbb{N}$.

Dizemos que a série de funções $\sum_{n=1}^{\infty} f_n$ converge pontualmente (resp.

uniformemente) em D se a sucessão das somas parciais, S_n , convergir pontualmente (resp. uniformemente) em D.

Em caso de convergência, a função $S = \lim_{n \to \infty} S_n$, designa-se por soma da série

$$\sum_{n=1}^{\infty} f_n = S.$$

Def / 10

e escrevemos

O domínio de convergência da série de funções $\sum_{i} f_n$ é o conjunto constituído

pelos pontos x para os quais a série numérica $\sum f_n(x)$ é convergente.

Dos critérios já conhecidos para séries numéricas podemos concluir que, se

$$\sum_{i=1}^{\infty} f_n$$
 e $\sum_{i=1}^{\infty} g_n$ convergem pontualmente em, respetivamente, D_f e D_g então:

(i) $\sum_{n=0}^{\infty} (f_n \pm g_n)$ converge pontualmente em $D_f \cap D_g$ e

$$\sum_{n=1}^{\infty} f_n \pm g_n = \sum_{n=1}^{\infty} f_n \pm \sum_{n=1}^{\infty} g_n;$$

(ii) $\forall_{\lambda} \in \mathbb{R}, \; \sum_{n=0}^{\infty} \lambda f_{n} \; \text{converge pontualmente em} \; D_{f} \; \text{e}$

$$\sum_{n=1}^{\infty} \lambda f_n = \lambda \sum_{n=1}^{\infty} f_n.$$

Exer. 4.11

Determine, indicando o domínio de convergência de uma representação em série de potências de $\cosh(x)$ e de $\sinh(x)$ a partir do desenvolvimento de série de MacLaurin de e^x .

Teo. 4.12

Seja
$$\sum_{i=1}^{n} f_n$$
 uma série de funções contínuas em $I = [a,b]$.

Se
$$\sum_{n=0}^{\infty} f_n$$
 converge uniformemente em I , então:

- 1 a soma S é contínua em I;
- 2 a soma S é integrável em I e

$$\int_{a}^{b} S(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx$$

(integração termo a termo)

Adicionalmente, se cada f_n possui derivada de primeira ordem contínua em I e $\sum_{n=1}^{\infty} f'_n(x)$ converge uniformemente em I, então S é diferenciável em I e

$$S'(x) = \left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

(derivação termo a termo)

Obs. 4.13

O resultado 3 do teorema anterior mantém-se válido se a hipótese da convergência uniforme de $\sum_{n=1}^{\infty} f_n$ for substituída pela convergência pontual de

$$\sum_{n=1}^{\infty}f_n$$
 ou, simplesmente, pela convergência da série numérica $\sum_{n=1}^{\infty}f_n(x_0)$ para algum $x_0\in I$.

Exemplo 4.14

A série de funções contínuas, em \mathbb{R} , $\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}$ converge para a função descontínua

$$f(x) = \begin{cases} 1 + x^2 & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$$

(Observe-se que se trata de uma série geométrica de razão $\frac{1}{1+x^2}$ para cada $x \neq 0$). Utilizando o teorema anterior podemos concluir que a convergência não é uniforme, é apenas pontual.

Teo. 4.15

Critério de Weierstrass

Sejam (f_n) uma sucessão de funções definidas em D e $\sum_{n=1}^{\infty} a_n$ uma série numérica convergente de termos não negativos, tais que

$$|f_n(x)| \le a_n, \quad n \in \mathbb{N}, \quad x \in D.$$

Então a série $\sum_{n=0}^{\infty} f_n$ converge uniformemente em D.

Exer. 4.16

Mostre que a série de funções $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3}$ converge uniformemente em \mathbb{R} .

Como, para todo
$$x \in \mathbb{R}$$
, $\left| \frac{\sin(nx)}{n^3} \right| \le \frac{1}{n^3}$ e $\sum_{n=1}^{\infty} \frac{1}{n^3}$ é convergente, pelo

Critério de Weierstrass, a série de funções $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^3}$ converge uniformemente em \mathbb{R} .

Exercícios

Exer. 4.17

Considere a série de funções $\sum_{n=1}^{\infty} \frac{\cos(nx)}{n\sqrt{n+1}}.$

- (a) Mostre que esta série converge uniformemente em \mathbb{R} .
- (b) Justifique que a função $S(x) = \sum_{i=1}^{\infty} \frac{\cos(nx)}{n\sqrt{n+1}}$ é contínua em \mathbb{R} .

Exer. 4.18

Obtenha uma representação em série de potências a partir dos desenvolvimentos em série de MacLaurin das funções exponencial $f(x) = e^x$ e de $g(x) = \cos(x)$, para as seguintes funções:

(a) $\cosh(4x)$; (b) $2\cos^2(x)$.

Exercícios

Exer. 4.19

Mostre que as seguintes séries convergem uniformemente nos intervalos indicados:

(a)
$$\sum_{n=1}^{\infty} \sqrt{\frac{2x}{n^3x+1}}$$
 em \mathbb{R}^+ (b) $\sum_{n=1}^{\infty} \frac{\ln(2nx) - \ln(nx+1)}{n^2+1}$ em $[1, +\infty[$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2 x^2}{n^4 x^2 + 5n}$$
 em \mathbb{R} (d) $\sum_{n=1}^{\infty} (-1)^n \frac{(x - \frac{1}{n})^n}{n^2 + 1}$ em $]0, 1[$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{x^2 + 1}}$$
 em \mathbb{R} (f) $\sum_{n=1}^{\infty} \frac{n^{-\frac{5}{4}}}{\cosh(nx)}$ em \mathbb{R}

Séries de Potências (séries uniformemente convergentes)

Teo. 4.20

Seja $\sum_{n=0}^{\infty} a_n(x-c)^n$ uma série de potências con raio de convergência $R \neq 0$.

Então a série converge uniformemente em qualquer subintervalo fechado e limitado do seu intervalo de convergência]c - R, c + R[.

Teo. 4.21

Teorema de Abel

Seja $\sum_{n=0}^{\infty} a_n (x-c)^n$ uma série de potências con raio de convergência $R \in \mathbb{R}^+$. Se a série converge em x=c+R (resp. em x=c-R) então ela converge uniformemente em $[\theta,c+R][$ (resp. em $x=[c-R,\theta]$), para qualquer $\theta \in]c-R,c+R[$.

Séries de Potências (séries uniformemente convergentes)

Teo. 4.22

Sejam
$$\sum_{n=0}^{\infty} a_n (x-c)^n$$
 uma série de potências con raio de convergência $R \neq 0$,

$$I =]c - R, c + R[$$
 o seu intervalo de convergência e $f(x) = \sum_{n=0}^{\infty} a_n(x - c)^n$.

Então:

■
$$f$$
 é diferenciável em I e $f'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1}$.

■ A função
$$F$$
 definida por $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1}$.

é a primitiva de
$$f$$
 em I tal que $F(c) = 0$.

f é integrável em qualquer subintervalo
$$[a, b] \subset D$$
 e
$$F(x) = \int_a^b f(x) dx = \int_a^b \left(\sum_{n=0}^\infty a_n (x-c)^n\right) dx = \sum_{n=0}^\infty \int_a^b a_n (x-c)^n dx.$$

Séries de Potências (séries uniformemente convergentes)

Teo. 4.23

Unicidade de representação em série de potências

Se
$$f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$$
, $x \in I =]c - R$, $c + R[(R \neq 0)]$ então f possui

derivadas finitas de qualquer ordem em I e $a_n = \frac{f^{(n)}(c)}{n!}, n \in \mathbb{N}_0.$

Consequentemente,
$$f(x) = \sum_{n=0}^{\infty} a_n(x-c)^n = T_c f(x)$$
.

Por outras palavras, a representação em série de potencias de x-c de uma função com derivadas finitas de todas as ordens numa vizinhança de c, é única e é a sua série de Taylor.

Exemplo 4.24

Já vimos que,
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ x \in]-1,1[$$
. Como, $\frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)'$,

obtemos

$$\frac{1}{(1-x)^2} = \left(\sum_{n=0}^{\infty} x^n\right)' = \sum_{n=0}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n \text{ para } x \in]-1,1[.$$

Séries de Fourier

Vamos agora considerar séries trigonométricas da forma

$$\sum_{n=0}^{\infty} (a_n \cos(n\omega x) + b_n \sin(n\omega x)) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega x) + b_n \sin(n\omega x))$$

com $\omega \in \mathbb{R}^+$ e $a_n, b_n \in \mathbb{R}$ para todo o $n \in \mathbb{N}_0$.

Obs. 4.25

Uma série deste tipo converge absoluta e uniformemente em $\mathbb R$ sempre que as séries $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ convergirem absolutamente. (Justifique).

Exer. 4.26

Mostre que a série $\sum_{n=0}^{\infty} \left(\frac{1}{n^3} \cos(n\omega x) + \frac{(-1)^n}{n^2} \sin(n\omega x) \right)$ converge absoluta e uniformemente em \mathbb{R} .

Def. 4.27

Uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ diz-se periódica de período T, T > 0, ou

T-periódica se T é o menor número real positivo tal que

$$\forall_{x\in\mathbb{R}} \ f(x+T)=f(x).$$

Obs. 4.28

Toda a função T-periódica $f:\mathbb{R}\longrightarrow\mathbb{R}$ pode ser transformada numa função 2π -periódica $F:\mathbb{R}\longrightarrow\mathbb{R}$ da forma $F(x)=f\left(\frac{T}{2\pi}x\right)$. (Verifique.)

Iremos apenas considerar funções 2π -periódicas.

Seja $f:\mathbb{R}\longrightarrow\mathbb{R}$ uma função 2π -periódica tal que

$$f(x) = a_0 + \sum_{n=0}^{\infty} (a_n \cos(nx) + b_n \sin(nx)), x \in R. \quad (ST)$$

Se esta série convergir uniformemente os coeficientes a_n e b_n são completamente determinados por f.

De facto,
$$\int_{-\pi}^{\pi} f(x)dx = 2\pi a_0 + \sum_{n=1}^{\infty} \left(a_n \int_{-\pi}^{\pi} \cos(nx) + b_n \int_{-\pi}^{\pi} \sin(nx) \right) = 2\pi a_0,$$

pelo que
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
. Dado que,

•
$$\int_{-\pi}^{\pi} \sin(mx) \cos(nx) dx = 0;$$
 •
$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} 0 & \text{se } m \neq n \\ \pi & \text{se } m = n \end{cases};$$

•
$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \begin{cases} 0 & \text{se } m \neq n \\ \pi & \text{se } m = n \end{cases}$$
. Podemos concluir (multiplicando por $\cos(mx)$ (resp. $\sin(mx)$ e integrando em $[-\pi, \pi]$, ambos os membros de (ST)) que: $a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(mx) dx$ e $b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(mx) dx$.

Usar as fórmulas trigonométricas: $2\cos(mx)\cos(nx) = \cos(m+n)x + \cos(m-n)(x)$;

$$2\sin(mx)\sin(nx) = \cos(m-n)x - \cos(m+n)(x); \quad 2\sin(mx)\cos(nx) = \sin(m+n)x + \sin(m-n)(x).$$

Séries de Fourier

Def. 4.29

Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função 2π -periódica e integrável em $[-\pi, \pi]$. Chamamos **série de Fourier** associada à função f ou série de Fourier de f à série

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)), \quad (SF)$$

onde $a_n, n \in \mathbb{N}_0$ e $b_n, n \in \mathbb{N}$, ditos coeficientes de Fourier de f, são dados por:

$$a_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 e $b_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$. (*)

Obs. 4.30

- Se a série (SF) convergir a sua soma F := F(x) é uma função 2π -periódica que pode ser diferente de f.
- Para exprimirmos que os coeficientes da série (SF) foram calculados à custa de *f* através das fórmulas (*) escrevemos

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

e dizemos que a série (SF) está associada à função f.

Obs. 4.31

■ Se $f \in 2\pi$ -periódica então os coeficientes de fourier no intervalo $[-\pi, \pi]$ coincidem com os coeficientes obtidos em qualquer intervalo de amplitude 2π :

$$\int_{a}^{a+2\pi} f(x) \cos(nx) dx = \int_{-\pi}^{\pi} f(x) \cos(nx) dx;$$
$$\int_{a}^{a+2\pi} f(x) \sin(nx) dx = \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

- Se f é ímpar $(f(-x) = -f(x), x \in \mathbb{R})$ então $\int_{-\pi}^{\pi} f(x) dx = 0$; Se f é par $(f(-x) = f(x), x \in \mathbb{R})$ então $\int_{-\pi}^{\pi} f(x) dx = 2 \int_{0}^{\pi} f(x) dx$
- As séries de Fourier permitem lidar com funções meramente integráveis, ao contrário das séries de Taylor onde é exigido que as funções sejam infinitamente diferenciáveis.

Exemplo 4.32

Seja f a função 2π -periódica definida em $[-\pi, \pi]$ por f(x) = |x|.

Determinar a série de Fourier de f.

Os coeficientes de Fourier de
$$f$$
 são $b_n=0$ e $a_n=\left\{ egin{array}{ll} \pi, & n=0 \\ 0, & n \ {\sf par} \\ -rac{4}{\pi n^2}, & n \ {\sf impar} \end{array} \right.$

A série de Fourier de f é

$$\frac{\pi}{2} - \frac{4}{\pi}\cos(x) - \frac{4}{\pi}\frac{\cos(3x)}{3^2} - \frac{4}{\pi}\frac{\cos(5x)}{5^2} - \dots = \frac{\pi}{2} - \frac{4}{\pi}\sum_{n=1}^{\infty}\frac{\cos((2n-1)x)}{(2n-1)^2}.$$

Obs. 4.33

Toda a função f definida em $[-\pi, \pi[$ admite uma única extensão 2π -periódica. A série de Fourier de f é tomada como a série de f dessa sua extensão.

Exer. 4.34

Considere a função 2π -periódica g definida em $[-\pi, \pi[$ por

$$g(x) = \begin{cases} 0, & -\pi \le x < 0 \\ \pi, & 0 \le x < \pi. \end{cases}$$
 Mostre que $g(x) \sim \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{(2n-1)} \sin((2n-1)x).$

Séries e Coeficientes de Fourier

Exer. 4.35

Determine as séries de Fourier das seguintes funções:

1
$$f(x) = x + x^2, x \in [-\pi, \pi[$$

2
$$g(x) = e^x, x \in [-\pi, \pi]$$

3
$$h(x) = \begin{cases} -1, & -\pi \le x < 0 \\ 0, & x = 0 \\ 1, & 0 < x < \pi. \end{cases}$$

Soluções:

1
$$f(x) \sim \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \left[(-1)^n \frac{4}{n^2} \cos(nx) + (-1)^{n+1} \frac{2}{n} \sin(nx) \right];$$

2
$$g(x) \sim \frac{\operatorname{senh}(\pi)}{\pi} + \sum_{n=1}^{\infty} 2 \frac{\operatorname{senh}(\pi)}{\pi} \left[\frac{(-1)^n}{n^2 + 1} \cos(nx) + \frac{(-1)^{n+1}n}{n^2 + 1} \sin(nx) \right];$$

3
$$h(x) \sim \sum_{n=1}^{\infty} 2^{\frac{1-(-1)^n}{n}} \operatorname{sen}(nx) = \sum_{n=1}^{\infty} \frac{4}{2n-1} \operatorname{sen}((2n-1)x).$$