29 ott 2020 - Terremoti

La maggior parte dei terremoti è legata al fenomeno dello scorrimento delle zolle; questo capita perché le rocce sono corpi rigidi, e quindi sottoposte ad una certa pressione, si spezzano.

L'energia si libera sotto forma di onde sismiche.

Quando si supera il limite di deformazione, il blocco roccioso si spezza e quindi l'energia accumulata dalla tensione viene liberata. Nel punto di rottura si forma una faglia.

L'energia che si accumula viene liberata improvvisamente, poiché il blocco roccioso viene sottoposto a trazione per anni/ decenni/secoli prima di rompersi. Questa è la teoria del **rimbalzo elastico**, enunciata da Reid dopo il terremoto di S. Francisco

I terremoti sono fenomeni ciclici, poiché in quella zona ci sono delle forze che non si esauriscono con un unico terremoto. Più i terremoti sono ravvicinati, minore è l'energia accumulata nelle rocce, e minore è l'entità delle scosse.

Viceversa, più lungo è l'intervallo di tempo tra due eventi sismici, più violento e disastroso è il sisma che si produce.

Sismografi, sismogrammi e onde sismiche

Si misurano attraverso dei sismografi.

Nella versione più semplice, il sismografo è costituito da un corpo sospeso di massa elevata, collegato a un pennino che lascia una traccia su un rullo di carta. Quando il terreno è scosso da un terremoto, il corpo tende a rimanere immobile per inerzia e non risente delle oscillazioni provocate dalle onde sismiche. Il rullo segue i movimenti del terreno, mentre il pennino immobile lascia una traccia sulla carta.

Le onde sismiche possono essere classificate in tre grandi gruppi: **onde P**, **onde S** e **onde superficiali**.

• Le **onde P** sono le più veloci, e partono dal punto esatto in cui è iniziato il terremoto (detto ipocentro), e sono le prime a venir registrate da sismografo. Sono onde che non hanno effetti collaterali. Sono chiamate anche onde di compressione. Attraversano tutti i mezzi

• Le **onde S** partono sempre dall'ipocentro. Sono più lente delle onde P ma più ampie, e sono paragonate alle onde che si formano durante l'oscillazione di una corda. Sono *onde trasversali*, e non passano attraverso i fluidi.

- Le **onde superficiali** sono quelle che provocano i veri danni. Si dividono in
 - Onde L (onde di Love): provocano uno scuotimento orizzontale del terreno

• Onde R (onde di Rayleigh): provocano oscillazioni ellittiche simili a quelle delle onde marine (verticale)

 queste onde partono dall'epicentro, ovvero dal punto corrispondente all'ipocentro sulla superficie terrestre

Classificazione dei terremoti

Uno dei parametri utilizzato è la profondità dell'ipocentro

- **terremoti superficiali**, con ipocentro tra 0 e 70 km; rappresentano circa l'85% dei terremoti registrati ogni anno; sono quelli che generano più danni;
- **terremoti intermedi**, con ipocentro tra 70 e 300 km; rappresentano circa il 12% del totale;
- **terremoti profondi**, con ipocentro oltre i 300 km; sono circa il 3% del totale.

Un'altro parametro è l'intensità del terremoto, valutata in base ai danni causati dal terremoto o all'energia sprigionata. Si utilizzano quindi scale sismiche.

La **scala Mercalli** misura i danni dei terremoti

Grado	Descrizione	
I	Non è percepito dall'uomo, è registrato solo dai sismografi	
II	E' percepito da persone sensibili ai piani alti delle case che oscillano più dei piani a terra.	
III	E' percepito da più persone e provoca oscillazione di oggetti appesi e vibrazioni.	
IV	Provoca oscillazioni e vibrazioni anche di automezzi, tintinnio di vetri, vibrazioni di vasellame, scricchiolio di pareti.	
٧	Sveglia chi dorme; provoca scricchiolii, tintinnii, spavento; cadono calcinacci.	
VI	Fa fuggire le persone all'aperto, produce boati, fa cadere oggetti pesanti, provoca qualche lesione agli edifici.	
VII	Provoca panico, caduta di intonaci, camini e tegole, rottura di vetri, danni di scarsa entità ai muri, piccole francin materiali sciolti, suono di campane, onde sugli specchi d'acqua.	
VIII	Si sente anche guidando automezzi, danneggia murature anche buone, ma non di cemento armato; provoca la caduta di torri, palizzate, alberi e l'apertura di crepacci nel suolo.	
IX	Distrugge edifici non particolarmente resistenti, rompe tubazioni sotterranee, provoca ampi crepacci nel terreno, apre crateri con espulsione di sabbia e di fango.	
Х	Distrugge buona parte degli edifici, danneggia dighe ed argini, devia fiumi e rotaie, provoca grandi frane, sposta orizzontalmente i terreni che si sono fessurati.	
ΧI	Rovina completamente gli edifici, rompe ogni tubazione, tronca le comunicazioni, provoca molte vittime.	
XII	Distrugge ogni opera umana, sposta grandi masse rocciose o vasti tratti di terreno in cui si aprono larghi crepacci, lancia in aria oggetti, provoca grandi frane e può causare migliaia di vittime.	

Il modo più scientifico però è calcolare l'energia liberata. Dallo studio dei sismogrammi può essere ricavata la **magnitudo** dei terremoti, una grandezza che consente di valutare l'**energia liberata**. Per definizione, il valore 0 della scala Richter corrisponde a un sisma che, registrato su un sismografo standard alla distanza di 100 km dall'epicentro, produce un sismogramma in cui l'altezza massima della traccia è 0,001 mm.

lagnitudo	Energia liberata (in joule)	ovvero	Frequenza
0	2.000		Circa 8.000 al giorno
1	70.000		Circa 4.000 al giorno
1,5	400.000		Circa 2.000 al giorno
2	2.200.000		Circa 1.000 al giorno
2,5	12 milioni		Circa 400 al giorno
3	70 milioni	Una grande mina	Circa 130 al giorno
3,5	400 milioni	Una piccola bomba atomica	Circa 50 al giorno
4	2 miliardi		Circa 15 al giorno
4,5	12 miliardi		Circa 6 al giorno
5	70 miliardi		2÷3 al giorno
5,5	400 miliardi	Una grande bomba atomica	1 al giorno
6	2.000 miliardi	Una piccola bomba H	Circa 120 all'anno
6,5	12.000 miliardi		Circa 50 all'anno
7	70.000 miliardi	Maggiori test nucleari effettuati	18 all'anno
7,5	400.000 miliardi		6 all'anno
8	2 milioni di miliardi		1 all'anno
8,5	12 milioni di miliardi		1 ogni 8 anni
9	70 milioni di miliardi	Energia totale consumata nel mondo in 10 giorni	1 ogni 20 anni
10	2 miliardi di miliardi		Evento sconosciuto

La magnitudo si calcola con questa scala

Calcolo dela distanza dell'epicentro

I tempi di propagazione delle onde in funzione della distanza dall'epicentro sono descritti da curve

chiamate dromòcrone.

Le dromòcrone riportano i momenti di arrivo delle onde ai sismografi, in funzione della distanza percorsa.

Il loro studio permette di studiare con precisione il punto dove è avvenuto il terremoto, ovvero la rottura del blocco roccioso

