Test 4 Level 2, January 12, 2022

Problem 4.1. Different positive a,b,c are such that $a^{239}=ac-1$ and $b^{239}=bc-1$. Prove that $238^2(ab)^{239}<1$.

Problem 4.2. What is the maximum number of $2 \times 3 \times 3$ bricks that can be fit inside an $8 \times 8 \times 9$ box?

Problem 4.3. Let O be the circumcenter of triangle ABC. Points X and Y on side BC are such that AX = BX and AY = CY. Prove that the circumcircle of triangle AXY passes through the circumcenters of triangles AOB and AOC.

Problem 4.4. You are given n different primes $p_1, p_2, ..., p_n$. Consider the polynomial

$$x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \dots + a_{n-1}x + a_{n}$$

where a_i is the product of the first i given prime numbers. For what n can it have an integer root?

Saudi International Olympiad Teams
Math Team
L2-test 3- January 12, 2022

السؤال الأول

a,b,c الأعداد a,b,c موجبة مختلفة، تحقق أن $a^{239}=ac-1$ ، و $a^{239}=bc-1$. أثبت أن a,b,c

السؤال الثاني

ما هو أكبر عدد من قوالب طوب التي أبعادها 3×3×3، التي يمكن وضعها داخل صندوق أبعاده 8×8×9؟ 18

السؤال الثالث

3 المركز المحيط للمثلث AX = BX , AY = CY على الضلع BC بحيث AX = BX , AY = CY . أثبت أن الدائرة المحيطة بالمثلث AXY تمر بمركزي الدائرتين المحيطتين بالمثلثين AOB, AOC.

السؤال الرابع

لدينا n من الأعداد الأولية المختلفة ولتكن P_1, P_2, \dots, P_n اعتبر كثيرة الحدود

 $x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + ... + a_{n-1}x + a_{n}$

حيث a_i هو حاصل ضرب أول i من الأعداد الأولية المعطاة. لأي قيم n يكون لتلك الكثيرة حدود جذور صحيحة?

 $\sigma_1 = P_1$ 02= P7-P2

الزمن 4 ساعات ونصف كل سؤال 10 نقاط مع أطيب التمنيات بالتوفيق