Quantum Computing Intro Course Qiskit Hackathon

Aeriana M. V. Narbonne

IBM CIC Halfiax

Winter 2023

Outline

- Review: Classical Computing
- Qubits and Gates
- Superposition
- Bloch Sphere
- Bell States Lab

Classical Computing

p	q	$p \wedge q$	$p \lor q$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	F

Qubits

Definition

The **Dirac notation** can be used to represent states. Each state corresponds to a complex vector.

Example

We will represent quantum bits (qubits) zero and one are represented as follows:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Quantum Gates

Definition

Pauli matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

We have the following identities:

$$X^2 = Y^2 = Z^2 = -iXYZ = I$$

 $XY = iZ$ $YZ = iX$ $ZX = iY$ $YX = -iZ$ $ZY = -iX$ $XZ = -iY$

Definition

The **Pauli group** \mathscr{P}_n consists of matrices of the form $i^k P_1 \otimes ... \otimes P_n$ where $P_i \in \{I, X, Y, Z\}$

Advanced Quantum Gates

Definition

The Clifford group (up to scalars) is the normalizer of the Pauli group, ie $\mathscr{C}_n = \{C \mid C\mathscr{P}_n C^{-1} \subset \mathscr{P}_n\}$

Example

H,
$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, and $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ are Clifford operators.

Remark

If P is Pauli and C is Clifford, then $CPC^{-1} = Q$ is Pauli, ie the Clifford group acts on the Pauli group by conjugation.

Quantum Circuits

Definition

The **tensor product**, denoted by \otimes , is an operation of two matrices or vectors which results in a block matrix or vector.

$$A \otimes B = \begin{pmatrix} a_{1,1}B \dots a_{1,n}B \\ \vdots \dots \vdots \\ a_{m,1}B \dots a_{m,n}B \end{pmatrix}$$

Example

We can use the tensor product to extend states and gates to multiple qubits. Given states $|0\rangle$ and $|1\rangle$ as defined above we can calculate the tensor product of the two states as follows:

$$|0\rangle\otimes|1\rangle=$$
 $\begin{pmatrix}1\\0\end{pmatrix}\otimes\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}1\cdot0\\1\cdot1\\0\cdot0\\0\cdot1\end{pmatrix}=\begin{pmatrix}0\\1\\0\\0\end{pmatrix}=|01\rangle$

Qiskit Lab 1.1 - your first quantum circuit

Let's try some coding with Qiskit!

Quantum State

Definition

A quantum state $|\phi\rangle$ is a complex linear combinations of basis states of the form

$$|\phi\rangle = \alpha_1|00\rangle + \alpha_2|01\rangle + \alpha_3|10\rangle + \alpha_4|11\rangle$$

where:

$$|\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 + |\alpha_4|^2 = 1$$

In other words, they are unit vectors. A non-basis state is said to be in a **superposition**.

Probability of Outcome

Definition

We measure the **probability of outcome** of a qubit is defeined as

$$P(\psi_n) = |\alpha_n|^2$$

Example

Let $|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$. The probability of measurement outcome of $|0\rangle$:

$$P(|0\rangle) = |\frac{1}{\sqrt{2}}| = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1^2}{\sqrt{2}^2} = \frac{1}{2}$$

$$P(|1\rangle) = 1 - P(|0\rangle) = 1 - \frac{1}{2} = \frac{1}{2}$$

Therefore, the probability of measuring $|1\rangle$ or $|0\rangle$ would be 50%.

Putting a state in a Superposition

Example

The Hadamard gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H|0
angle = rac{1}{\sqrt{2}} \left(rac{1}{1}
ight) = rac{1}{\sqrt{2}} |0
angle + rac{1}{\sqrt{2}} |1
angle$$

Bloch Sphere

Definition

The equation for a state on the bloch sphere is given as:

$$|\psi
angle = cos(rac{ heta}{2})|0
angle + e^{i\phi}sin(rac{ heta}{2})|1
angle$$

Pauli Eigenvectors and the Bloch Sphere

Matrix	Eigenvalue	Eigenvector
$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	+1	$ +\rangle = \frac{ 0\rangle + 1\rangle}{\sqrt{2}}$
	-1	$ - angle=rac{ 0 angle- 1 angle}{\sqrt{2}}$
$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	+1	$ +i\rangle = \frac{ 0\rangle + i 1\rangle}{\sqrt{2}}$
	-1	$ -i\rangle = \frac{ 0\rangle - i 1\rangle}{\sqrt{2}}$
$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	+1	$ 0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
	-1	$ 1 angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$

Rotations on the Bloch Sphere

Definition

The rotation matrices rotate about the x, y, or z axis by θ .

$$R_{x} = \begin{bmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{bmatrix} R_{y} = \begin{bmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{bmatrix} R_{z} = \begin{bmatrix} e^{-i\frac{\psi}{2}} & 0 \\ 0 & e^{i\frac{\psi}{2}} \end{bmatrix}$$

Example

Setting $\theta=\pi$ will have the same result as applying one of the Pauli matrices:

$$R_{x}(\pi)|0\rangle = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -i \end{bmatrix} = -i|1\rangle = |1\rangle$$

(global phase can be ignored).

Lab 1.2: Rotations on a Bloch Sphere

Bell States

Definition

Bell states aka EPR are maximally entangled states:

$$|\phi^{+}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$
$$|\phi^{-}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$
$$|\psi^{+}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
$$|\psi^{-}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$$

Lab 1.3: Circuits for Bell States in Qiskit

$$\begin{array}{c|c} |0\rangle & \hline & H \\ \hline & |\psi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \\ |0\rangle & \hline & \end{array}$$

$$\begin{array}{c|c} |0\rangle & \hline & H \\ \hline & |0\rangle & \hline & X \\ \end{array} \bigg\} \big|\phi^+\big> = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$

$$|0\rangle - X - H \\ |0\rangle - X \\ |0\rangle - X \\ |0\rangle - X \\ |0\rangle - X - |10\rangle$$

End of Course 1

15 minute break!