S Delta

aubupy soul

EE 103 - Control Systems Module

Madhu Belur

3rd Nov 2023 (Lecture 3)

Control and Computing Group

Department of Electrical Engineering

Indian Institute of Technology Bombay

Today

$$f(t) = \sin t$$

 $f(20) = \sin (20)$

- More Convolution
- Differential equations: feedback
- Laplace transform (and Fourier transform): we take for signals
- Systems have inputs and outputs as signals

Ratio of Laplace transforms (output/input): dy - 6y = 0 CC = y(k)input

output

output

df dy = 6y = 3uF

output

F

output

F

output

Today

- More Convolution
- Differential equations: feedback
- Laplace transform (and Fourier transform): we take for signals
- Systems have inputs and outputs as signals
- Ratio of Laplace transforms (output/input): gain: 'transfer function'
- Poles, zeros: for systems
- But transfer function G(s) of system: also Laplace transform of a signal:

Today

- More Convolution
- Differential equations: feedback
- Laplace transform (and Fourier transform): we take for signals
- Systems have inputs and outputs as signals
- Ratio of Laplace transforms (output/input):
 gain: 'transfer function'
- Poles, zeros: for systems
- But transfer function G(s) of system: also Laplace transform of a signal: the system's 'impulse response'

Convolution

•
$$y(t) = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau$$
,

Convolution

•
$$y(t) = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau$$
, denoted by $y = u*h$
 $y(t) = (u*h)(t)$

Convolution

•
$$y(t) = \int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau$$
, denoted by $y = u*h$
 $y(t) = (u*h)(t)$ (Check that interchange of role of u and h is fine.)

Blank page Aylt) = Cebt -6y = open loop

$$u(t) \rightarrow LTI \rightarrow f(t)$$

$$Special orgat$$

$$u(t) = S$$

$$that corresponding output impulse reports
$$u(t) \leftarrow S$$

$$u(t) \leftarrow$$$$

start expt to system call +=0 intially IW

Blank page

$$u = \frac{du}{dt} + \frac{u}{R}$$
 $u = \frac{du}{dt} + \frac{u}{R}$
 $u = \frac{d$

$$G(s) = \frac{R}{1+sR} \quad \mathcal{L}(G(s)) = \frac{R}{1+sR$$

$$G(s) = \frac{1}{S - a^3}$$

$$u = \frac{d}{dt}y - 3y.$$

Laplace transform

- Given u(t), $U(s) := (L(u))(s) := \int_0^\infty u(t)e^{-st}dt$
- For suitable class of functions, Laplace transform is 'well-defined'.
- Look-up table, linearity, 'linear combination'
- Laplace transform of f(t): exponentials, sinusoids, etc: 'strictly proper' F(s).

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 のQで

Impulse

- Impulse: δ : is nonzero for very small time around t = 0,
- Still manages area = 1 (becomes unbounded)
- Has Fourier and Laplace transform as 1.
- When $u(t) = \delta$, then output $y(t) = L^{-1}G(s)$
- Examples

Laplace transform of (both sides in) a differential equation

Blank page <3+52+35-6+K $5^3 + as^2 + s\omega^2 + \alpha\omega^2$ change Rappens

More generally, For polynomial of Legece 3 with real coefficients, 53+K25+K,5+K to get factored : who (\$2+02)(\$+0), we need (ko = k1·k2) (Proof: open braduts to to verify that a w== ko:)