Übungsblatt 7 zur Linearen Algebra I

Aufgabe 21. $(2+2+1=5 \ Punkte)$

Es sei $\mathbb{R}[X]$ der Polynomring über dem Körper \mathbb{R} (mit einer Unbestimmten). $\mathbb{R}[X]$ ist ein \mathbb{R} -Vektorraum und $\mathbb{R}_n[X] := \{f \in \mathbb{R}[X] \mid deg(f) \leq n\}$ ist ein Untervektorraum davon. Man gebe eine Basis von

- a) $\mathbb{R}[X]$
- b) $\mathbb{R}_n[X]$

an und beweise die Basiseigenschaft.

Ergänzende Bemerkung:

Wenn auch jeder K-Vektorraum eine Basis besitzt, so kann sich die explizite Angabe einer Basis schwierig gestalten; ein typisches Beispiel dafür ist der \mathbb{Q} -Vektorraum \mathbb{R} .

c) In den **Aufgaben 16** und **20** wurde der \mathbb{R} -Vektorraum $\mathbb{R}^{\mathbb{N}}$ thematisiert. Ist das in **Aufgabe 20** angegebene $B=(e_1,e_2,\dots)$ eine Basis des \mathbb{R} -Vektorraums $\mathbb{R}^{\mathbb{N}}$? Man begründe die Antwort.

Aufgabe 22. (2+2=4 Punkte)

- a) Man zeige: $k_2=\{0,1\}$ ist ein Unterkörper des Körpers $K=\{0,1,a,b\}$ mit vier Elementen (siehe **Aufgabe 13 b)**) und K ist ein k_2 -Vektorraum.
- b) Man gebe eine Basis des k_2 -Vektorraums K an und beweise die Basiseigenschaft.

Aufgabe 23. (4 Punkte)

Es ist K der Körper mit 4 Elementen aus **Aufgabe 13 b)**. Dann ist K^2 ein K-Vektorraum mit 16 Vektoren. Unter Verwendung der Verknüpfungstafeln von K gebe man alle eindimensionalen Untervektorräume von K^2 explizit an.

<u>Hinweis</u>: Ein Untervektorraum U von K^2 ist genau dann eindimensional, wenn $U=K(\alpha_1,\alpha_2)$ für ein $(\alpha_1,\alpha_2)\neq (0,0)\in K^2$. Im eben genannten Satz kann man natürlich $K(\alpha_1,\alpha_2)$ durch $span((\alpha_1,\alpha_2))$ ersetzen, denn $K(\alpha_1,\alpha_2)=span((\alpha_1,\alpha_2))$.

Hilfe: Man überlege, wie die Antworten auf folgende Fragen aussehen: In wie vielen verschiedenen eindimensionalen Untervektorräumen von K^2 kann ein Element $(\alpha_1,\alpha_2)\neq (0,0)\in K^2$ liegen? Wie viele verschiedene Elemente hat ein eindimensionaler Untervektorraum von K^2 ?