## 681 Convex Hull Finding

Given a single connected contour, which is either convex or non-convex (concave), use any algorithm to find its **Convex Hull**, i.e., the smallest convex contour enclosing the given shape. If the given contour is convex, then its convex hull is the original contour itself. The maximal size of the shape is  $512 \times 512$ , and the maximal number of the vertices of the shape is 512. Write a program to read the input data (the given shapes) from a disk file, implement your convex hull finding algorithm, and then output the shape data of the results to the standard output.

### Input

The order of the vertices is counterclockwise in X-Y Cartesian Plane (if you consider the origin of the display window is on the upper-left corner, then the orientation of the vertices is clockwise), and none of the neighboring vertices are co-linear. Since all the shapes are closed contours, therefore, the last vertex should be identical to the first vertex. There are several sets of data within a given data file. The negative number -1 is used to separate the data set.

| Line   | Data in     |                                                                      |
|--------|-------------|----------------------------------------------------------------------|
| Number | the File    | Explanation                                                          |
| 1      | K           | a positive integer showing how many sets of data in this file        |
| 2      | N           | a positive integer showing the number of vertices for the shape      |
| 3      | $X_1 Y_1$   | two positive integers for the first vertex $(X_1, Y_1)$              |
| 4      | $X_2 Y_2$   | two positive integers for the next neighboring vertex $(X_2, Y_2)$   |
|        |             |                                                                      |
| N+2    | $X_N Y_N$   | two positive integers for the last vertex $(X_N, Y_N)$               |
| N+3    | -1          | Delimiter                                                            |
| N+4    | M           | a positive integer showing the number of vertices for the next shape |
| N+5    | $XX_1 YY_1$ | two positive integers for the first vertex                           |
|        |             |                                                                      |

Note: Please note that the Line Number, Data in the File and Explanation are not given in the file. They are shown here only to assist you in reading the data.

#### Output

Output the convex hull of all K input shapes to the standard output. The data format should be the same as the input file. In addition, the vertex with the smallest Y value should be the first point and if there are points with the same Y value, then the smallest X value within those points should be the first point.

# Sample Input

## Sample Output

The contour shape of the first data set is shown in figure as follows:



The convex hull of the above shape is shown in the following figure:

