1 目的

我々が日常的に電力として利用している電気の多くは交流である。また回路理論を学ぶ上で、交流及び交流 回路の基本的な性質の理解は必要不可欠である。本実験では、以下の3点を理解することを目的とする。

- 交流電圧と周波数の測定方法
- 交流電圧波形の解析による交流の諸性質
- 交流回路における受動素子の構造と働き

2 原理

2.1 正弦波交流の表式

正弦波交流電圧vや電流iは次のような数式で表される。

$$v = V_m \sin(\omega t + \theta_v)i = I_m \sin(\omega t + \theta_i) \tag{1}$$

ここでは、 V_m は電圧の最大値、 θ_v は電圧の位相角、 θ_i は電流の位相角、t は時間 ω は角周波数を表す。また、角周波数 ω と周期 T、周波数 f の関係は次のような式で表される。

$$\omega = \frac{2}{\pi} = 2\pi f[rad/s] \tag{2}$$

2.1.1 瞬時値と実効値

ある時刻の交流の大きさを瞬時値と言う。実効値は、瞬時値の2乗を1周期の間平均した値の平方根として 定義され、交流の大きさを表すときに使われる。実効値の物理的な意味は、「交流電圧(電流)を抵抗に加えた ときに消費する電力が、その実効値と同じ大きさの直流電圧(電流)を加えたときの消費電力と等しくなる。」 ということである。 実効値は次の式で求められる。

$$V = \frac{V_m}{\sqrt{2}}, I = \frac{I_m}{\sqrt{2}} \tag{3}$$

2.2 各種計測器で測定可能な電気的諸量

本実験で使用する計測器で測定できる電気量を表1に示す。

2.3 リサジュー図形を用いた位相差の測定

リサジュー図形とは互いに直行する単振動が平面上に描く軌跡である。互いに直行する単振動を

$$x(t) = A_1 \sin(\omega_1 t + \theta_1) x(t) = A_2 \sin(\omega_2 t + \theta_2)$$

$$\tag{4}$$

とする時、点