Problems in Existing System and Potential Solutions				
Limitation	Example System	Observed Shortcoming	Potential Solution(s)	
1. No unified multi-format support	Deepware, Reality Defender	Only handle one media type	 Develop a modular multimodal framework that combines image, video, audio, and text analysis. Use shared feature fusion layers and transformers that handle multimodal inputs (e.g., CLIP, FLAVA, MMF). Incorporate metadata and audio analysis modules (e.g., speech forgery, text anomalies). 	
2. Real-time detection issues	DFDC top models	High GPU demand, not edge- optimized	 Implement lightweight models (e.g., MobileNetV3, TinyViT, DistilBERT for audio/text). Use model compression techniques: pruning, quantization. Deploy using TensorRT, ONNX Runtime, or CoreML for edge acceleration. Adopt pipeline batching and frame skipping for efficient video inference. 	
3. Limited generalization to new forgeries	FaceForensics++- based models	Fails on newer manipulations	 Apply domain adaptation and meta-learning to train models that generalize across datasets. Use self-supervised learning to extract features independent of specific forgery types. Train on synthetic variations using style-transfer GANs or diffusion models to simulate unseen manipulations. 	
4. Lack of explainability	Microsoft Video Authenticator	Black-box detection	 Integrate Explainable AI tools: Grad-CAM for CNNs, 	

5. Adversarial vulnerability	CNN-based detectors	Easily fooled by noise	LIME/SHAP for tabular/audio models. Provide highlighted regions, confidence scores, or temporal tracebacks in user interfaces. Design rule-based post-processors to convert features into interpretable insights. Incorporate adversarial training (FGSM, PGD, DeepFool perturbations). Use robust loss functions (TRADES, confidence-penalty, logit squeezing). Add input transformation defenses (JPEG compression, bit-depth reduction). Monitor feature-space consistency using ensemble voting or detection heuristics.
6. Dataset bias	Celeb-DF, FaceForensics++	Lack demographic diversity	 Curate inclusive datasets representing gender, ethnicity, lighting, compression, and language variance. Use federated learning across global sources to build diverse, privacy-respecting models. Monitor fairness with bias evaluation metrics (e.g., False Positive Rate per group).
7. No real-world deployment tools	Academic GitHub repos	No APIs or GUI	 Build API-first systems using Flask/FastAPI + Docker for modular services. Develop user-friendly dashboards for journalists, forensic analysts, moderators.

>	Integrate with cloud services (GCP, AWS, Azure) for scalable usage.
>	Offer browser extensions or mobile apps for public/media-facing workflows.