Programming Practices 2

Instructions: Problem 1 is based on the contents covered on 18th and 19th July, whereas problem 2 is based on what will be covered in the class on 25th July.

- 1. Use the Advertising data uploaded in the github repository to do the following
 - a. Take a random sample of size 150 and use this as a training data. Rest of the data can be used for testing.
 - b. From the training data select random samples of size 100 and fit a linear regression model to predict the sales with respect to all the input features.
 - c. Derive the ANOVA table of the model parameters and verify whether the sales figure truly depends on at least any one of the predictor variables taken.
 - d. Apply the model on the test data set and derive the Mean Square Error and the R² score.
 - e. Repeat (b) 30 times by selecting random samples of size 100 from the training data and derive the estimates different model parameters, $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$, obtained for each sample set. Find the variance of each of these parameters. Think what inferences can be drawn about the models from these observations.
- 2. Use the Credit.csv data uploaded in the github repository to do the following
 - a. Take random samples of size 300 and use this as a training data. Rest of the data can be used for testing.
 - b. Run a forward selection method to select the quantitative features (Limit, Rating, Cards, Age, Education and Balance), that can be used to predict the *Income* of a person. Derive the adjusted R², C_p, and AIC scores of the different models to identify the best model.
 - c. Now repeat (b) by including the qualitative predictors (like Gender, Student, Married, Ethnicity and Balance) also and report on the best model that predicts the income of a person.
 - d. Check if Limit and Balance is correlated (Correlation Coefficient >0.6). In that case include the interaction of these parameters in your model and print the ANOVA table and the R^2 obtained using the test data.