All the techniques of handling, missing values of numerical as well as categorical data -Days 2 to 3

- 1. Mean/ Median/Mode replacement
- 2. Random Sample Imputation
- 3. Capturing NAN values with a new feature
- 4. End of Distribution imputation
- 5. Arbitrary imputation
- 6. Frequent categories imputation

2.Random Sample Imputation

Aim: Random sample imputation consists of taking random observation from the dataset and we use this observation to replace the nan values.

Instead of imputing missing values with a statistical measure (like the mean or median), Random Sample Imputation replaces missing values with a randomly sampled value from the observed data. This can help preserve the distribution and variability in the dataset.

When should it be used?

dtype: float64

It assumes that the data are missing completely at random(MCAR)

```
In [42]: import pandas as pd
          df=pd.read_csv('titanic.csv', usecols=['Age','Fare','Survived'])
          df.head()
Out[42]:
             Survived Age
                             Fare
          0
                   0 22.0
                           7.2500
           1
                   1 38.0 71.2833
          2
                     26.0
                           7.9250
           3
                   1 35.0 53.1000
                   0 35.0
                           8.0500
In [43]: df.isnull().sum()
Out[43]: Survived
          Age
                      177
          Fare
          dtype: int64
In [44]: | df.isnull().mean()
Out[44]: Survived
                      0.000000
          Age
                      0.198653
                      0.000000
```

```
In [66]:
          df['Age'].isnull().sum()
 Out[66]: 177
         df['Age'].dropna() ## drop all missing values
 Out[82]: 0
                  22.0
           1
                  38.0
                  26.0
          2
           3
                  35.0
           4
                  35.0
                  . . .
          885
                 39.0
                 27.0
          886
                  19.0
          887
          889
                  26.0
          890
                  32.0
          Name: Age, Length: 714, dtype: float64
 In [84]: df['Age'].dropna().sample(df['Age'].isnull().sum(),random_state=0) # filled
 Out[84]: 423
                  28.00
          177
                  50.00
           305
                  0.92
                 36.00
           292
           889
                  26.00
                  . . .
          539
                 22.00
           267
                  25.00
           352
                  15.00
          99
                  34.00
          689
                 15.00
          Name: Age, Length: 177, dtype: float64
 In [92]: df[df['Age'].isnull()].index # find all index of missing value of Age
 Out[92]: Int64Index([ 5, 17,
                                                                 36,
                                  19,
                                       26,
                                            28,
                                                 29,
                                                       31,
                                                            32,
                                                                      42,
                       832, 837, 839, 846, 849, 859, 863, 868, 878, 888],
                      dtype='int64', length=177)
  In [ ]:
In [134]:
          def impute_nan(df,variable,median):
              df[variable+"_median"]=df[variable].fillna(median) ## fill missing valu
              df[variable+"_random"]=df[variable]
              ## it will have the random sample to fill the missing values
              random_sample=df[variable].dropna().sample(df[variable].isnull().sum(),
              ## random sample and variable have same index in order to marge the dat
              random_sample.index=df[df[variable].isnull()].index
              df.loc[df[variable].isnull(),variable+'_random']=random_sample
```

```
All type of Techniques to Handle Missing values of numerical as well as categorical data - Jupyter Notebook
In [135]:
           df[df['Age'].isnull()].index
Out[135]: Int64Index([ 5, 17, 19, 26,
                                                28,
                                                      29,
                                                            31, 32,
                                                                       36,
                         832, 837, 839, 846, 849, 859, 863, 868, 878, 888],
                        dtype='int64', length=177)
In [136]: df['Age_random'].isnull().sum()
Out[136]: 0
In [137]: | median=df['Age'].median()
In [141]:
           impute_nan(df,'Age',median) ## calling function
In [142]:
           df.head()
Out[142]:
               Survived Age
                                Fare Age_median Age_random
                     0 22.0
                              7.2500
                                             22.0
                                                         22.0
                        38.0 71.2833
                                             38.0
                                                         38.0
            1
                     1
                        26.0
                              7.9250
                                             26.0
                                                         26.0
            3
                        35.0 53.1000
                                             35.0
                                                         35.0
                        35.0
                              8.0500
                                             35.0
                                                         35.0
In [143]:
           import matplotlib.pyplot as plt
```

```
%matplotlib inline
```

```
In [154]: | fig = plt.figure()
          ax = fig.add subplot(111)
          df['Age'].plot(kind='kde', ax=ax, color='black')
          #df.Age_median.plot(kind='kde', ax=ax, color='blue')
          df.Age_random.plot(kind='kde', ax=ax, color='red')
          lines, labels = ax.get_legend_handles_labels()
          ax.legend(lines, labels, loc='best')
```

Out[154]: <matplotlib.legend.Legend at 0x27b102434c0>

Advantages

Easy To implement

There is less distortion in variance

Disadvantage

Every situation randomness wont work

3. Capturing NAN values with a new feature

It works well if the data are not missing completely at random

Instead of simply imputing missing values, you can create a new feature to indicate the presence or absence of missing data (NaN). This approach can be valuable if the fact that data is missing carries some information.

Create a binary indicator column (0 or 1) that marks whether a value is missing or not.

```
In [171]: import numpy as np
    df['Age_NAN']=np.where(df['Age'].isnull(),1,0)
In [172]: df.head()
```

Out[172]:

 Survived
 Age
 Fare
 Age_NAN

 0
 0
 22.0
 7.2500
 0

 1
 1
 38.0
 71.2833
 0

0 35.0

8.0500

2	1	26.0	7.9250	0
3	1	35.0	53.1000	0
4	0	35.0	8.0500	0

```
In [173]: df.Age.median()
Out[173]: 29.69911764705882
In [174]: df['Age'].fillna(df.Age.median(),inplace=True)
In [176]: df.head()
```

Out[176]:

	Survived	Age	Fare	Age_NAN
0	0	22.0	7.2500	0
1	1	38.0	71.2833	0
2	1	26.0	7.9250	0
3	1	35.0	53.1000	0
4	0	35.0	8.0500	0

Advantages:

- 1.Easy to implement
- 2. Captures the importance of missing values

Disadvantages

Creating Additional Features (Curse of Dimensionality)

4.End of Distribution imputation

This method involves replacing missing values with a value from the end of the distribution of the data, such as the minimum or maximum value, or a value from a chosen quantile. It's typically used when you want to avoid introducing bias through mean/median imputation but still want to fill in the missing data.

```
In [177]: df=pd.read_csv('titanic.csv', usecols=['Age','Fare','Survived'])
    df.head()
```

Out[177]:

	Survived	Age	Fare
0	0	22.0	7.2500
1	1	38.0	71.2833
2	1	26.0	7.9250
3	1	35.0	53.1000
4	0	35.0	8.0500

In [178]: df.Age.hist(bins=50)

Out[178]: <AxesSubplot: >

In [185]: extreme=df.Age.mean()+3*df.Age.std()

In [182]: import seaborn as sns
sns.boxplot('Age',data=df)

G:\New folder\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments w ithout an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[182]: <AxesSubplot: xlabel='Age'>

In [187]: impute_nan(df,'Age',df.Age.median(),extreme)

In [188]: df.head()

Out[188]:

	Survived	Age	Fare	Age_end_distribution
0	0	22.0	7.2500	22.0
1	1	38.0	71.2833	38.0
2	1	26.0	7.9250	26.0
3	1	35.0	53.1000	35.0
4	0	35.0	8.0500	35.0

In [192]: df['Age'].hist(bins=50)

Out[192]: <AxesSubplot: >

In [193]: df['Age_end_distribution'].hist(bins=50)

Out[193]: <AxesSubplot: >

In [194]: | sns.boxplot('Age_end_distribution',data=df)

G:\New folder\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments w ithout an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[194]: <AxesSubplot: xlabel='Age_end_distribution'>

Now there is No outlier

Advantages:

Avoids the central tendency bias of mean/median imputation. Useful for skewed data or when you want to preserve extremes in the dataset.

Disadvantages:

May artificially distort the distribution by introducing values that aren't representative of the typical data points.

Arbitrary Value Imputation

This technique was derived from kaggle competition It consists of replacing NAN by an arbitrary value.

Replace missing values in categorical data with the most frequent category (mode)

In [1]: import pandas as pd

Out[4]:

	Survived	Age	Fare
0	0	22.0	7.2500
1	1	38.0	71.2833
2	1	26.0	7.9250
3	1	35.0	53.1000
4	0	35.0	8.0500

```
In [5]: def impute_nan(df,variable):
    df[variable+'zero']=df[variable].fillna(0)
    df[variable+'_hundred']=df[variable].fillna(100)
```

```
In [6]: df['Age'].hist(bins=50)
```

Out[6]: <AxesSubplot: >


```
In [ ]: ## Arbitrsry vslues
## 1. It should be more frequently present
```

Advantages

- 1.Easy to implement
- 2. Captures the importance of missingess if there is one

Disadvantages

- 1.Distorts the original distribution of the variable
- 2.If missingess is not important, it may mask the predictive power of the original variable by distorting its distribution
- 3. Hard to decide which value to use

In []:

How To Handle Categroical Missing Values

∢ 📗

Handling missing values in categorical data is an important aspect of data preprocessing in machine learning. Categorical features may have missing values due to various reasons, such as non-response in surveys, data entry errors, or not being applicable in certain cases. Below are some effective strategies for handling missing values in categorical data:

1. Frequent Category Imputation (Mode Imputation)

Description: Replace missing values with the most frequent category (the mode) in the column

Use Cases: This is the most common and simplest approach for categorical data. It works well when the most frequent category is a reasonable replacement for the missing values

```
df=pd.read_csv('loan.csv',usecols=['BsmtQual','FireplaceQu','GarageType',
In [41]:
In [42]:
          df.head()
Out[42]:
                       FireplaceQu GarageType SalePrice
              BsmtQual
           0
                    Gd
                              NaN
                                         Attchd
                                                 208500
                                         Attchd
           1
                    Gd
                                TA
                                                 181500
           2
                    Gd
                                TA
                                        Attchd
                                                 223500
           3
                    TA
                               Gd
                                        Detchd
                                                 140000
                    Gd
                                TA
                                         Attchd
                                                 250000
In [47]:
          df.shape
Out[47]: (1460, 4)
In [43]: df.isnull().sum()
Out[43]: BsmtQual
                            37
                           690
          FireplaceQu
          GarageType
                            81
          SalePrice
                             0
          dtype: int64
 In [ ]:
```

```
In [45]: df.isnull().mean().sort_values(ascending=True)
```

Out[45]: SalePrice 0.000000

BsmtQual 0.025342

GarageType 0.055479

FireplaceQu 0.472603

dtype: float64

compute the frequency with every feature

```
In [56]: df['BsmtQual'].value_counts().plot.bar()
```

Out[56]: <AxesSubplot: >


```
In [53]: df.groupby(['BsmtQual'])['BsmtQual'].count().sort_values(ascending=False).p
```

Out[53]: <AxesSubplot: xlabel='BsmtQual'>


```
In [ ]:
```

```
In [58]: df['GarageType'].value_counts().plot.bar()
```

```
Out[58]: <AxesSubplot: >
```



```
In [59]: df['FireplaceQu'].value_counts().plot.bar()
```

Out[59]: <AxesSubplot: >


```
In [63]: df['GarageType'].value_counts().index[0]
```

Out[63]: 'Attchd'

```
In [64]: ### Relpacing function
def impute_nan(df,variable):
    most_frequent_category=df[variable].value_counts().index[0]
    df[variable].fillna(most_frequent_category,inplace=True)
```

```
In [ ]: impute_nan(df,'GarageType')
```

Advantages

- 1.Easy To implement
- 2.Fater way to implement

Disadvantages

- 1. Since we are using the more frequent labels, it may use them in an over respresented way, if there are many nan's
- 2.It distorts the relation of the most frequent label

```
In [ ]:
```

Adding a variable to capture NAN

Out[76]:

	BsmtQual	FireplaceQu	GarageType	SalePrice
0	Gd	NaN	Attchd	208500
1	Gd	TA	Attchd	181500
2	Gd	TA	Attchd	223500
3	TA	Gd	Detchd	140000
4	Gd	TA	Attchd	250000

```
In [78]: import numpy as np
df['BsmtQual_var']=np.where(df['BsmtQual'].isnull(),1,0)
```

In [79]: df.head()

Out[79]:

	BsmtQual	FireplaceQu	GarageType	SalePrice	BsmtQual_var
0	Gd	NaN	Attchd	208500	0
1	Gd	TA	Attchd	181500	0
2	Gd	TA	Attchd	223500	0
3	TA	Gd	Detchd	140000	0
4	Gd	TA	Attchd	250000	0

```
In [81]: frequent=df['BsmtQual'].mode()[0]
```

In [82]: df['BsmtQual'].fillna(frequent,inplace=True)

In [83]: df.head()

Out[83]:

	BsmtQual	FireplaceQu	GarageType	SalePrice	BsmtQual_var
0	Gd	NaN	Attchd	208500	0
1	Gd	TA	Attchd	181500	0
2	Gd	TA	Attchd	223500	0
3	TA	Gd	Detchd	140000	0
4	Gd	TA	Attchd	250000	0

```
In [84]: df['FireplaceQu_Var']=np.where(df['FireplaceQu'].isnull(),1,0)
    frequent=df['FireplaceQu'].mode()[0]
    df['FireplaceQu'].fillna(frequent,inplace=True)
```

In [85]: df.head()

Out[85]:

	BsmtQual	FireplaceQu	GarageType	SalePrice	BsmtQual_var	FireplaceQu_Var
0	Gd	Gd	Attchd	208500	0	1
1	Gd	TA	Attchd	181500	0	0
2	Gd	TA	Attchd	223500	0	0
3	TA	Gd	Detchd	140000	0	0
4	Gd	TA	Attchd	250000	0	0

Suppose if you have more frequent categories, we just replace NAN with a new category

```
In [86]:
          df=pd.read_csv('loan.csv', usecols=['BsmtQual','FireplaceQu','GarageType','
          df.head()
Out[86]:
              BsmtQual FireplaceQu GarageType SalePrice
           0
                    Gd
                                                   208500
                               NaN
                                          Attchd
           1
                    Gd
                                 TΑ
                                          Attchd
                                                   181500
           2
                    Gd
                                 TA
                                          Attchd
                                                   223500
           3
                    TA
                                Gd
                                         Detchd
                                                   140000
           4
                    Gd
                                 TA
                                          Attchd
                                                   250000
In [87]:
          def impute_nan(df,variable):
               df[variable+"newvar"]=np.where(df[variable].isnull(), "Missing", df[varia
          for feature in ['BsmtQual','FireplaceQu','GarageType']:
In [88]:
               impute_nan(df,feature)
In [89]:
          df.head()
Out[89]:
              BsmtQual
                        FireplaceQu
                                    GarageType
                                                SalePrice
                                                           BsmtQualnewvar FireplaceQunewvar Gara
           0
                    Gd
                                                   208500
                               NaN
                                          Attchd
                                                                       Gd
                                                                                      Missing
           1
                    Gd
                                 TA
                                                   181500
                                                                                          TΑ
                                          Attchd
                                                                       Gd
           2
                    Gd
                                 TΑ
                                          Attchd
                                                   223500
                                                                       Gd
                                                                                          TΑ
                    TA
                                                                       TΑ
           3
                                         Detchd
                                                   140000
                                                                                         Gd
                                Gd
                    Gd
                                 TA
                                          Attchd
                                                   250000
                                                                       Gd
                                                                                          TΑ
          df=df.drop(['BsmtQual','FireplaceQu','GarageType'],axis=1)
          df.head()
In [93]:
Out[93]:
              SalePrice
                        BsmtQualnewvar FireplaceQunewvar GarageTypenewvar
           0
                208500
                                    Gd
                                                   Missing
                                                                      Attchd
           1
                181500
                                    Gd
                                                       TA
                                                                      Attchd
           2
                223500
                                    Gd
                                                       TA
                                                                      Attchd
           3
                                     TΑ
                140000
                                                       Gd
                                                                      Detchd
                250000
                                    Gd
                                                       TA
                                                                      Attchd
           4
```

1/12/24, 9:20 PM	All type of Techniques to Handle Missing values of numerical as well as categorical data - Jupyter Noteboo			
In []:				