PACE Solver Description: CRGone

- 2 Alexander Dobler

 □

 □
- 3 TU Wien, Austria

- Abstract

- ⁵ We describe *CRGone*, our solver for the exact and parameterized track of the Pace Challenge 2024.
- 6 It solves the problem of one-sided crossing minimization, is based on an integer linear programming
- 7 (ILP) formulation with additional reduction rules, and is implemented in C++ using the ILP solver
- 8 SCIP with Soplex
- 9 2012 ACM Subject Classification Theory of computation → Parameterized complexity and ex-
- $_{10}$ act algorithms; Human-centered computing \rightarrow Graph drawings; Mathematics of computing \rightarrow
- 11 Permutations and combinations
- Keywords and phrases Pace Challenge 2024, One-Layer Crossing Minimization, Exact Algorithm
- Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23
- 14 Category PACE Solver Description
- Supplementary Material Software (source code): https://zenodo.org/doi/10.5281/zenodo.11634869
- ¹⁶ Funding Alexander Dobler: Supported by the Vienna Science and Technology Fund (WWTF) under
- 17 grant 10.47379/ICT19035

1 Introduction

- One-sided crossing minimization (OSCM) is a problem from layered graph drawing and was
- 20 first introduced by Sugiyama et al. [11]. The input is a bipartite graph $G = (V_t \cup V_b, E)$,
- $E \subseteq V_t \times V_b$, with a fixed order π_t of V_t . The question is to find an ordering π_b of V_b , that
- minimizes the number of edge crossings when G is drawn such that V_t and V_b are drawn on
- two different horizontal lines ℓ_t and ℓ_b ordered according to π_t and π_b , respectively. It is a
- purely combinatorial problem as two edges $(a,b),(c,d) \in V_t \times V_b$ cross if and only if
- $a \prec_{\pi_t} c \text{ and } d \prec_{\pi_b} b, \text{ or } a \prec_{\pi_b} b$
- $c \prec_{\pi_t} a \text{ and } b \prec_{\pi_b} d$
- where $x \prec_{\pi} y$ means that x comes before y in the permutation π . The problem is NP-hard [4],
- 28 heuristics [11, 4], and fixed-parameter algorithms with the natural parameter [3, 2, 9] are
- ²⁹ available. It has also been extensively studied with regard to integer linear programming [8].
- In Section 2 we give some definitions and in Section 3 we describe our solver.

2 Definitions and Problem Insights

- $_{32}$ We assume that the input graph is a multigraph as some of our modifications introduce
- multiedges. For a set X, let $\binom{X}{i}$ be all the subsets of X of size i. For a vertex u, let N(u) be its
- adjacent vertices, and let E(u) be its incident edges. Given $u \in V_b$, we define s(u) as the open
- interval (a, b) where a is the minimum index of a neighbour of u in π_t , and b is the maximum
- index. For $u, v \in V_b$ $(u \neq v)$, let c(u, v) be the number of crossings between edge pairs from
- ³⁷ $E(u) \times E(v)$ when u is placed before v in π_b . We have that $\sum_{\{u,v\} \in \binom{V_b}{2}} \min(c(u,v),c(v,u))$
- is a lower bound for the number of crossings and $\sum_{\{u,v\}\in\binom{v_b}{2}\}} \max(c(u,v),c(v,u))$ is an upper
- bound. We define $c_r(u,v) = c(u,v) \min(c(u,v),c(v,u))$.
- For an instance G of OSCM let G_d be the directed multi-graph with V_b as vertex set such that for $\{u,v\} \in \binom{V_b}{2}$, there are c(u,v) arcs from v to u and there are c(v,u) arcs from

23:2 PACE Solver Description: CRGone

- u to v. It is known that OSCM is equivalent to finding a minimum feedback arc set in G_d ; a
- topological order of G_d after removal of the minimum feedback arc set of size k corresponds
- to an order of π_b with k crossings.

Solver description

- 46 We describe now our solver. It starts applying several reduction rules and decomposition rules
- 47 which split the instance into multiple smaller instances. Then an integer linear programming
- 48 formulation is applied that was optimized for sparse graphs.

49 3.1 Reduction rules

- $_{50}$ Here, we describe reduction and decomposition rules and how they were implemented and
- $_{51}$ applied. The first rule is applied during preprocessing and is due to twins in V_b , which can
- 52 be contracted.
- ▶ Reduction Rule 1. Let $u, v \in V_b$ be two distinct vertices with N(u) = N(v). Then contract u and v.
- We find the above pairs using a trie. The values c(u, v) for the reduced instance are only computed afterward. The next is due to the formulation as feedback arc set problem.
- Decomposition Rule 2 ([7]). Let $T = (G_1, G_2, ..., G_p)$ be a topological order of the strongly connected components of G_d . Then split the instance into $G_1, G_2, ..., G_p$, whose individual solutions are then concatenated according to the topological order.
- We also implemented decomposition rules based on biconnected components of G_d [10], which almost never applied to the input instances, so it was not included in the final submission.
 - The next reduction rule fixes the relative order of pairs of vertices in V_b .
- **Proof.** Reduction Rule 3 ([3]). If there exist $u, v \in V_b$ with c(u, v) = 0, fix $u \prec_{\pi_2} v$.
- The last reduction rule is more complicated and is related to modular decompositions of two-structures [6].
- **▶ Decomposition Rule 4.** Let $X \subseteq V_b$, |X| > 1, such that
- $\forall u, v \in X \forall w \in V_b \setminus X : c_r(u, w) = c_r(v, w) \land c_r(w, u) = c_r(w, v).$
- Then compute an optimal order π_1 of X for $G[V_t \cup X]$. Let G_c be the graph obtained from
- 69 G by contracting X into a single vertex x. Compute an optimal order π_2 of $(V_b \setminus X) \cup \{x\}$
- in the reduced instance G_c . By replacing in π_2 the contracted vertex x by π_1 , we obtain an
- 71 optimal solution.
- The sets X above not containing a randomly chosen $y \in V_b$ are computed using a partition
- refinement algorithm as described in [6]. The above decomposition rules are applied recursively
- with decreasing priority, i.e., Decomposition Rule 2 has the highest priority, Reduction Rule 3
- is only applied afterward to the decomposed parts, Decomposition Rule 4 has the lowest
- 76 priority. We also implemented the reduction rules, which fix relative orders of vertex-pairs
- based on 2/1-structures from [2] with the same priority as Reduction Rule 3.

A. Dobler

3.2 Integer linear program

If no decomposition and reduction rules are applicable, we employ an integer linear program.

The formulation is as in [8]. Assume a total order < on V_b . For each pair $u, v \in V_b$, u < vwe have a binary ordering variable $x_{u,v}$ which is 1 if and only if $u \prec_{\pi_b} v$. The formulation is
as follows.

min
$$\sum_{u,v \in V_b, u < v} (c(v,u) + x_{u,v}(c(u,v) - c(v,u)))$$
 (ILP)

84
$$0 \le x_{u,v} + x_{v,w} - x_{u,w} \le 1$$
 $u, v, w \in V_b, u < v < w$ (TRANS)
85 $x_{u,v} \in \{0,1\}$ $u, v \in V_b, u < v$ (BIN)

Adaptations. Due to Reduction Rule 3 and the reduction rules from [2] we know the relative order of specific pairs of vertices from V_b . This means that for some ordering variables $x_{u,v}$ we already know that they are 1 or 0. We remove those variables from the model and replace them by the corresponding constant in the above model. Resulting constraints which are tautologies are removed.

Next, the (TRANS)-constraints are separated using a branch and cut approach. This involves first categorizing the (TRANS) constraints based on the values of s(u), s(v), s(w) for the vertices u, v, w in each constraint.

If $s(u) \cap s(v) \cap s(w) \neq \emptyset$, then it is a type-1 constraint.

If a constraint is type-1 and additionally, there are two pairs x, y and p, q among the triple u, v, w such that $c(x, y) \neq c(y, x)$ and $c(p, q) \neq c(q, p)$, then it is weak-type-1.

If a constraint is not type-1, it is a type-2 constraint.

The idea is that type-1 constraints can be enumerated quickly without storing them by using a sweep-line over the sorted interval borders of s(u) for all $u \in V_b$. We enumerate type-2 constraints by saving for each vertex $u \in V_b$ the set S(u) of vertices $v \in V_b$ with $s(u) \cap s(v) \neq \emptyset$. Then the type-2 constraints (which stay after applying reduction rules) can be found by enumerating pairs in S(u) for each $u \in V_b$. The solver is initialized without any (TRANS)-constraints. First, only violated weak-type-1 constraints are separated. Once, there is a separation round where no violated weak-type-1 constraints are only separated in a separation round if there are no type-1 constraints that can be separated.

Lastly, we implemented a heuristic that exploits fractional solutions. To this end, we start with a feasible solution $\hat{\pi_b}$ conforming to the reduction rules. Then we compute values p(u) for all $u \in V_b$: for each ordering variable $x_{u,v}$ let $y_{u,v}$ be the rounded value in the fractional solution. We add 1 to p(v) if $y_{u,v} = 1$, otherwise, we add 1 to p(u). Lastly, for all $u \in V_b$ we add to p(u) the number of $v \in V_b$ that are fixed before u according to the reduction rules. The heuristic computes an ordering starting with $\hat{\pi_b}$ and swapping two adjacent vertices u, v in $\hat{\pi_b}$ (u before v) where p(u) > p(v) and u does not have to be before v according to the reduction rules. This is implemented in a bubble-sort-like algorithm. The worst-case runtime is equal to the number of ordering variable in the reduced model.

The above is implemented in C++17 using SCIP version 9 [1] with Soplex version 7 [5]. Parameters are chosen such that the solver remains in the root of the branch and bound tree as long as possible.

- References

119

- Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
 Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
 et al. The SCIP optimization suite 9.0, 2024. arXiv:2402.17702.
- Vida Dujmovic, Henning Fernau, and Michael Kaufmann. Fixed parameter algorithms for one-sided crossing minimization revisited. *J. Discrete Algorithms*, 6(2):313–323, 2008. doi:10.1016/J.JDA.2006.12.008.
- Vida Dujmovic and Sue Whitesides. An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. *Algorithmica*, 40(1):15–31, 2004. doi:10.1007/S00453-004-1093-2.
- Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.
- Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
 Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The
 SCIP optimization suite 7.0, 2020. URL: https://opus4.kobv.de/opus4-zib/files/7802/
 scipopt-70.pdf.
- Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition. *Comput. Sci. Rev.*, 4(1):41–59, 2010. doi:10.1016/J.COSREV.2010.01.001.
- Kathrin Hanauer. *Linear Orderings of Sparse Graphs*. PhD thesis, Passau University, Germany, 2018. URL: https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/552.
- Michael Jünger and Petra Mutzel. Exact and heuristic algorithms for 2-layer straightline crossing minimization. In Franz-Josef Brandenburg, editor, *Proc. Symposium on Graph Drawing and Network Visualizations (GD'95)*, volume 1027 of *LNCS*, pages 337–348. Springer, 1995. doi:10.1007/BFB0021817.
- Yasuaki Kobayashi and Hisao Tamaki. A fast and simple subexponential fixed parameter
 algorithm for one-sided crossing minimization. Algorithmica, 72(3):778–790, 2015. doi:
 10.1007/S00453-014-9872-X.
- Hermann Stamm. On feedback problems in planar digraphs. In Rolf H. Möhring, editor, Proc.
 Graph-Theoretic Concepts in Computer Science (WG'90), volume 484 of LNCS, pages 79–89.
 Springer, 1990. doi:10.1007/3-540-53832-1_33.
- 11 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hierarchical system structures. *IEEE Trans. Syst. Man Cybern.*, 11(2):109–125, 1981. doi:10.1109/TSMC.1981.4308636.