

Course: Dynamic Programming and Reinforcement Learning

Fabian Lange and Leonard Dreeßen

Mid-Term Recap: Flight Ticket Market

Problem Context:

Time Horizon: finite (take-off)

Action: Price Offer

Demand: Price and Time-Dependent

Event: Tickets sold

Reward: Sales Revenue

Simple Environment:

State Space: Discrete $(0, 10) \rightarrow (10, 0)$

Action Space: Discrete (0, 10, 20, ..., 200)

Event Space: Discrete (0, ..., 10)

Reward: Price x Tickets sold

Buying Probability: $\left(1 - \frac{a}{200}\right) * \left(1 + \frac{t}{10}\right)$

Mid-Term Recap

Research Directions

- Realistic Customer Behavior
- Estimating Demand and using Dynamic Programming methods
- Duopoly setup

- Five types of customer behaviors implemented
 - Rational, Family, Business, Early Booking, Party
- Every combination of types possible

One simulation step:

Family Customer

Party Customer

Airlines cannot tryout prices over 500 Episodes ~ 15 years

DP methods would not require playing random actions

Airlines might have historical data on customer demand

Estimating Customer Behavior

$$V_{t}(s) = \max_{a \in A_{t}(s)} \left\{ \sum_{i \in I_{t}} P_{t}(i, a, s) * (r_{t}(i, a, s) + \gamma * V_{t+1}(\Gamma_{t}(i, a, s))) \right\}$$

- Airlines know
 - state transitions, reward function, state, action space
- Airlines do not know
 - Number of arriving customers, probability distribution of customer purchases

Use remaining seats as limit

Regression Analysis

Regression Analysis

- Example dataset: play random actions over n episodes, store i, a, s
- Estimate expected sales (\hat{i}) with OLS, Ridge or LASSO Regression

Best Performing:

- OLS & Ridge with at least 1000 datapoints
- Features: $a, t, a^2, t^2, \sqrt{a+1}, \sqrt{t+1}, \log(a+1), \log(t+1), a * t$
- \rightarrow Without stochastic customers: $R^2 \sim 0.837$ and $\emptyset nMSE = 0.021$
- \rightarrow Stochastic customers: $R^2 \sim 0.35$ and $\emptyset nMSE = 0.21$

Discrete probability distribution required:

Poisson distribution with our estimation as parameter:

$$P_{\lambda}(k) = \frac{\lambda^k}{k!} * e^{-\lambda} \text{ with } \lambda = \hat{\imath}$$

DP and ADP using Estimation

Simple Environment

Complex Environment

Duopoly - Setup

State Space: Discrete $(0, 5, 5, a_{agent}^{t_0}, a_{comp}^{t_0})$

 \rightarrow (10, $s_{agent}^{t_{10}}$, $s_{comp}^{t_{10}}$, $a_{agent}^{t_{10}}$, $a_{comp}^{t_{110}}$)

Action Space: Discrete (0, 1, 2, 3, ..., 100)

Event: i_{agent}, i_{comp}

Reward: $i_{player} \cdot a_{player}$

Demand: $\frac{a_{comp}}{a_{agent} + a_{comp}}$

 $softmax(D_{agent}, D_{comp}, D_{no_sell}) \rightarrow$

 $P_{agent}, P_{comp}, P_{no_sell} \rightarrow$

|multinom()|

 i_{agent}, i_{comp}

Duopoly Scenario – Full Information

agent has **full knowledge** about:

- exact customer behavior
- competitor strategy
 - undercut agents price by 1 (but not go below 20)

 \rightarrow min(20, $a_{agent_last} - 1$)

Duopoly Scenario – Limited Information

agent has **knowledge** about:

- own inventory
- own price and competitors price
 - assumes here a time indepedent fix price strategy

 \rightarrow 30 $\forall t$

- setting duopoly fully up:
 - support all DP and RL methods we used so far
 - provide comprehensive monitoring like in monopoly
 - enable estimation of
 - consumer behavior
 - competitor strategy

