5. An introduction to Rock Physics

M. Ravasi ERSE 210 Seismology

Linking Waves to Rocks

 ϕ : porosity

 V_{sh} : shale content

 $S_{w/o/g}$: fluid content

 V_P :P-wave velocity

 V_S : S-wave velocity

 ρ : density

u:displacement

 ϕ , Ψ : potentials

Rock physics: definition

Rock physics is the field of science that aims to characterize **rock properties** based on the behavior of **seismic waves** propagating through them.

- → In a standard seismic interpretation workflow rock physics is used to relate **impedance and** elastic parameters derived from seismic data to specific rock properties.
- → This constrains what **seismic data is physically capable of resolving** and the non-uniqueness associated with a specific interpretation.

History of rock physics

Early days: focus on **physics** → measure wave propagation in the lab under a variety of conditions to create analog acoustic models that describe fluid-filled pores&grains and link them to seismic velocities

History of rock physics

Early days: focus on **physics** → measure wave propagation in the lab under a variety of conditions to create analog acoustic models that describe fluid-filled pores&grains and link them to seismic velocities

Modern days: link with **geology** → identify connections between rock textural parameters that drive the elastic properties to underlying geological processes (e.g., depositional maturity, compaction and diagenesis)

Study shale-gas contact

Study shale-oil contact

Source: https://www.badleys.co.uk/BGL_analysing_fault_seal_capacities.php

A general rule holds for the sensitivity of seismic to fluids:

Mineral part of

the rock

Saturated rock

Saturated pore spaces

Fluid modulus $\widetilde{K}_{\phi} \approx K_{\phi} + K_{fl}$ \uparrow Dry pore modulus (i.e., when fluid is

taken out)

A general rule holds for the sensitivity of seismic to fluids:

$$\frac{1}{K_{sat}} \alpha \frac{\phi}{K_{\phi} + K_{fl}}$$

- \rightarrow Stiff rock (K_{ϕ} is large): small sensitivity to fluids
- \rightarrow Soft rock (K_{ϕ} is small): large sensitivity to fluids

Main principle of AVO analysis and 4D seismic

Mixing Laws

In rock physics we want to mix:

- 2 minerals in a rock: e.g., sand and clay with different %
- 2 fluids: e.g., water and oil with different %
- 1 mineral and 1 fluid: e.g., sand and oil with different %

 \rightarrow How to get K_{min} , K_{fl} , or K_{sat} ? Effective medium theory

(Can predict upper and lower bound but not exact value!)

Mixing Laws

UB -> **Voigt** (arithmetic average): $M = \sum_i f_i M_i$

LB -> **Reuss** (geometric average): $1/M = \sum_i f_i/M_i$

Source: Avseth, P., Mukerji, T., and Mavko, G., Quantitative Seismic Interpretation

Mixing Laws

UB -> **Voigt** (arithmetic average): $M = \sum_i f_i M_i$

LB -> **Reuss** (geometric average): $1/M = \sum_i f_i/M_i$

→ Other (tighter) bounds exist: e.g., **Hashin-Shtrikman**

Source: Avseth, P., Mukerji, T., and Mavko, G., Quantitative Seismic Interpretation

Fluid Relations

At the core of any AVO/4D study, one must understand how *changes in elastic* properties (and seismic responses) related to changes in pore fluids

2 effects to consider:

- changes in rock bulk density: very simple, $\rho = \phi \rho_{fl} + (1 \phi) \rho_{min}$
- changes in rock compressibility: more complicated

$$\frac{1}{K_{dry}} = \frac{1}{K_{min}} + \frac{\phi}{K_{\phi}} \qquad \qquad \frac{1}{K_{\phi}} = \frac{1}{v_{pore}} \frac{\partial v_{pore}}{\partial \sigma}$$
 Pore volume Hydrostatic pressure

Fluid Relations

$$\frac{1}{K_{sat}} = \frac{1}{K_{min}} + \frac{\phi}{K_{\phi} + K_{fl}K_{min}/(K_{min} - K_{fl})} \approx \frac{1}{K_{min}} + \frac{\phi}{K_{\phi} + K_{fl}}$$

Eliminating K_{ϕ} from the two previous relations:

$$\frac{K_{sat}}{K_{min} - K_{sat}} = \frac{K_{dry}}{K_{min} - K_{dry}} + \frac{K_{fl}}{\phi(K_{min} - K_{fl})}$$
 Gassmann relation

Gassmann

And:

$$\mu_{sat} = \mu_{dry}$$

no fluid effect on shear modulus

Petro-elastic modelling

Given a rock composed of some minerals with properties $(K/\mu/\rho_{min,1}, K/\mu/\rho_{min,2}, ..., K/\mu/\rho_{min,N})$ and proportions $(f_{min,1}, f_{min,2}, ..., f_{min,N})$, a fluid composed of different fluids with properties $(K/\rho_{fl,1},K/\rho_{fl,2},...,K/\rho_{fl,N})$ and and proportions $(f_{fl,1},f_{fl,2},...,f_{fl,N})$, and given a certain porosity ϕ

$$\rho_{sat} = \phi \rho_{fl} + (1 - \phi) \rho_{min} \qquad \mu_{sat} = \mu_{dry} \qquad K_{sat} = K_{dry} + \frac{\left(1 - K_{dry}/K_{min}\right)^2}{\phi/K_{fl} + (1 - \phi)/K_{min} + K_{dry}/K_{min}^2}$$

Gassmann fluid substitution

Given a single material with the following properties

$$K_1, \mu_1, \rho_1, \phi_1, (S_{w,1}, S_{o,1}, S_{g,1}), f_{min,i} + (K, \mu, \rho)_{fl}, (K, \mu, \rho)_{min}$$

$$\downarrow \text{ Change fluid proportions } (S_{w,2}, S_{o,2}, S_{g,2})$$

$$K_2, \mu_2, \rho_2 ?$$

We first equate the dry term of the Gassmann relation for the two fluids

$$\frac{K_{dry,1}}{K_{min,1} - K_{dry,1}} = \frac{K_{dry,2}}{K_{min,2} - K_{dry,2}} \qquad K_{dry,1} = K_{dry,2} K_{min,1} = K_{min,2}$$

Gassmann Fluid substitution

We now insert the other two terms from the Gassmann relation

$$\frac{K_1}{K_{min} - K_1} - \frac{K_{fl,1}}{\phi(K_{min} - K_{fl,1})} = \frac{K_2}{K_{min} - K_2} - \frac{K_{fl,2}}{\phi(K_{min} - K_{fl,2})}$$

And solve for K_2 :

$$K_{dry} = \frac{K_1 \left(\frac{\phi K_{min}}{K_{fl,1}} + 1 - \phi \right) - K_{min}}{\frac{\phi K_{min}}{K_{fl,1}} + \frac{K_1}{K_{min}} - 1 - \phi} \qquad K_2 = K_{dry} + \frac{(1 - K_{dry}/K_{min})^2}{\frac{\phi}{K_{fl,2}} + \frac{1 - \phi}{K_{min}} - \frac{K_{dry}}{K_{min}^2}}$$

To which we add: $\mu_2=\mu_1$ $\rho_2=(1-\phi)
ho_{min}+\phi
ho_{fl,2}$

Gassmann Fluid substitution

EAGE E-Lecture: https://www.youtube.com/watch?v=C6LOsvCjyw8

Velocity-Porosity relation – field evidence

Source: Avseth, P., Mukerji, T., and Mavko, G., Quantitative Seismic Interpretation

Velocity-Porosity relation - empirical

Velocity-Porosity relation - theoretical

Friable Sand Model

At high porosity ($\phi > 0.4$), the relations are given by contact theory (Hertz-Mindlin theory):

$$K_{\text{dry}} = \left[\frac{\phi/\phi_{\text{c}}}{K_{\text{HM}} + 4\mu_{\text{HM}}/3} + \frac{1 - \phi/\phi_{\text{c}}}{K + 4\mu_{\text{HM}}/3} \right]^{-1} - \frac{4}{3}\mu_{\text{HM}}$$

$$\mu_{\text{dry}} = \left[\frac{\phi/\phi_{\text{c}}}{\mu_{\text{HM}} + z} + \frac{1 - \phi/\phi_{\text{c}}}{\mu + z} \right]^{-1} - z$$