

هستى قادرآزاد

921.417

پروژهی نهایی درس حمل و نقل دکتر عرفان نائبی پاییز و زمستان ۱۳۹۹

فهرست

	ربارهی دیتاست
۶	مدف پروژه
۶	يش پردازش دادهها
Υ	Feature Engineering
Υ	Sampling
Υ	
٩	Association Rules
17	تیجهگیری
17	Visualization
	ـنابع

بررسی تصادفات امریکا با استفاده از دیتاست US-Accidents: A Countrywide Traffic Accident Dataset

دربارهی دیتاست

این دیتاست یک مجموعه داده تصادفات رانندگی در سراسر کشور آمریکا است که ۴۹ ایالت ایالات متحده را پوشش میدهد. دادهها به طور مداوم از فوریه ۲۰۱۶ با استفاده از چندین ارائهدهنده داده، از جمله دو API که دادههای جریان رویداد ترافیک را ارائه میدهند، جمعآوری میشود. این API ها رویدادهای ترافیکی را که توسط نهادهای مختلفی مانند وزارت حمل و نقل ایالات متحده، سازمانهای اجرای قانون، دوربینهای ترافیکی و حسگرهای ترافیک در شبکه های جادهای ضبط شده است، پخش میکنند. در حال حاضر حدود ۴٫۲ میلیون پرونده ثبت تصادف در این مجموعه داده وجود دارد.

جدول زیر ویژگیهای دادهها را توصیف می کند:

#	Attribute	Description	Nullable
1	ID	This is a unique identifier of the accident record.	No
2	Source	Indicates source of the accident report (i.e. the API which reported the accident.).	No
3	TMC	A traffic accident may have a <u>Traffic Message Channel</u> (<u>TMC</u>) code which provides more detailed description of the event.	Yes
4	Severity	Shows the severity of the accident, a number between 1 and 4, where 1 indicates the least impact on traffic (i.e., short delay as a result of the accident) and 4 indicates a significant impact on traffic (i.e., long delay).	No
5	Start_Time	Shows start time of the accident in local time zone.	No

#	Attribute	Description	Nullable
6	End_Time	Shows end time of the accident in local time zone. End time here refers to when the impact of accident on traffic flow was dismissed.	No
7	Start_Lat	Shows latitude in GPS coordinate of the start point.	No
8	Start_Lng	Shows longitude in GPS coordinate of the start point.	No
9	End_Lat	Shows latitude in GPS coordinate of the end point.	Yes
10	End_Lng	Shows longitude in GPS coordinate of the end point.	Yes
11	Distance(mi)	The length of the road extent affected by the accident.	No
12	Description	Shows natural language description of the accident.	No
13	Number	Shows the street number in address field.	Yes
14	Street	Shows the street name in address field.	Yes
15	Side	Shows the relative side of the street (Right/Left) in address field.	Yes
16	City	Shows the city in address field.	Yes
17	County	Shows the county in address field.	Yes
18	State	Shows the state in address field.	Yes
19	Zipcode	Shows the zipcode in address field.	Yes
20	Country	Shows the country in address field.	Yes
21	Timezone	Shows timezone based on the location of the accident (eastern, central, etc.).	Yes

#	Attribute	Description	Nullable
22	Airport_Code	Denotes an airport-based weather station which is the closest one to location of the accident.	Yes
23	Weather_Timestamp	Shows the time-stamp of weather observation record (in local time).	Yes
24	Temperature(F)	Shows the temperature (in Fahrenheit).	Yes
25	Wind_Chill(F)	Shows the wind chill (in Fahrenheit).	Yes
26	Humidity(%)	Shows the humidity (in percentage).	Yes
27	Pressure(in)	Shows the air pressure (in inches).	Yes
28	Visibility(mi)	Shows visibility (in miles).	Yes
29	Wind_Direction	Shows wind direction.	Yes
30	Wind_Speed(mph)	Shows wind speed (in miles per hour).	Yes
31	Precipitation(in)	Shows precipitation amount in inches, if there is any.	Yes
32	Weather_Condition	Shows the weather condition (rain, snow, thunderstorm, fog, etc.)	Yes
33	Amenity	A <u>POI</u> annotation which indicates presence of <u>amenity</u> in a nearby location.	No
34	Bump	A POI annotation which indicates presence of speed bump or hump in a nearby location.	No
35	Crossing	A POI annotation which indicates presence of <u>crossing</u> in a nearby location.	No
36	Give_Way	A POI annotation which indicates presence of give_way in a nearby location.	No

#	Attribute	Description	Nullable
37	Junction	A POI annotation which indicates presence of <u>junction</u> in a nearby location.	No
38	No_Exit	A POI annotation which indicates presence of <u>no_exit</u> in a nearby location.	No
39	Railway	A POI annotation which indicates presence of <u>railway</u> in a nearby location.	No
40	Roundabout	A POI annotation which indicates presence of <u>roundabout</u> in a nearby location.	No
41	Station	A POI annotation which indicates presence of <u>station</u> in a nearby location.	No
42	Stop	A POI annotation which indicates presence of <u>stop</u> in a nearby location.	No
43	Traffic_Calming	A POI annotation which indicates presence of <u>traffic_calming</u> in a nearby location.	No
44	Traffic_Signal	A POI annotation which indicates presence of <u>traffic_signal</u> in a nearby location.	No
45	Turning_Loop	A POI annotation which indicates presence of <u>turning_loop</u> in a nearby location.	No
46	Sunrise_Sunset	Shows the period of day (i.e. day or night) based on sunrise/sunset.	Yes
47	Civil_Twilight	Shows the period of day (i.e. day or night) based on <u>civil</u> <u>twilight</u> .	Yes
48	Nautical_Twilight	Shows the period of day (i.e. day or night) based on <u>nautical</u> <u>twilight</u> .	Yes
49	Astronomical_Twilight	Shows the period of day (i.e. day or night) based on <u>astronomical twilight</u> .	Yes

در جدول زیر نیز می توان جزئیات دیتاست تصادفات را به صورت خلاصه مشاهده کرد:

Table 4: US-Accidents: details as of March 2019.

Total Attributes	45		
Traffic Attributes (10)	d, source, TMC [33], severity, start_time, end_time		
Traine Attributes (10)	start_point, end_point, distance, and description		
Address Attributes (8)	number, street, side (left/right), city,		
Address Attributes (6)	county, state, zip-code, country		
	time, temperature, wind_chill, humidity,		
Weather Attributes (10)	pressure, visibility, wind_direction, wind_speed,		
	precipitation, and condition (e.g., rain, snow, etc.)		
Period-of-Day (4)	Sunrise/Sunset, Civil Twilight,		
1 criod-or-Day (4)	Nautical Twilight, and Astronomical Twilight		
Total Accidents	2,243,939		
# MapQuest Accidents	1,702,565 (75.9%)		
# Bing Accidents	516,762 (23%)		
# Reported by Both	24,612 (1.1%)		
Ton States	California (485K), Texas (238K), Florida (177K),		
Top States	North Carolina (109K), New York (106K)		

هدف پروژه

هدف از انجام این پروژه که ایدهی آن برگرفته از مفاهیم داخل منبع ۲ است، پیادهسازی Association هدف از انجام این پروژه که ایدهی آن برگرفته از مفاهیم داخل منبع ۲ است، پیادهسازی Rules

پیش پردازش دادهها

این مرحله از حیاتی ترین و متناسب با آن زمان برترین بخشهای پروژه است.

ابتدا به بررسی missing value پرداخته شد. به همین منظور تعداد کل دادههای null در ستونها و سطرهای مختلف برای حذف یا جایگزینی سطرهای مختلف به صورت مرتب شده محاسبه شدند. در ادامه سیاستهای مختلفی برای حذف یا جایگزینی دادههای از دست رفته متناسب با شرایط اتخاذ شد:

- ۱. ستونهایی از دادهها که تعداد missing value آنها بسیار زیاد بود و یا اطلاعات مشابه در ستونهای دیگر وجود داشت حذف شدند.
- veather با استفاده از اطلاعاتی که از missing برخی از مقادیر missing ستون بارندگی یا precipitation با شرایط آب و هوایی داریم تخمین زده شدند.
- ۳. سایر مقادیر با استفاده از imputation و روش iterative mice مقدار دهی شدهاند. با توجه به حجم بسیار زیاد داده ها و دریافت ارور حافظه، این کار در چندین مرحله انجام شده است. به این صورت که ابتدا مقادیر موجود در impute df_impute شدند. سپس با کمک df_impute مقادیر مقادیر مقادیر معادیر متحصر به فرد زیادی که در ستون Weather_Condition وجود دارند، ابتدا از دستور Feature selection استفاده شده و خروجیهای آن را در برآورد precipitation استفاده شده اند.

Feature Engineering

برخی از ستونهای موجود در دیتاست به تنهایی آورده ی مناسبی ندارند. در این حالت متغیرهای کاربردی را از درون این متغیرها استخراح می کنیم. برای مثال از ستونهایی که حاوی زمان و تاریخ هستند (مانند (Start_Time و End_Time) ماه، سال، ساعت، دقیقه، ثانیه و مدت زمانی که آن رخداد طول کشیده است را به عنوان متغیرهای جدید به دیتافریم خود اضافه می کنیم.

برای اعمال association rules در نهایت باید دادهها را از حالت عددی خارج کنیم. بنابراین برای مقادیری مانند Time_diff و Time از اعلاهای مناسب استفاده شده است.

Sampling

برای پردازش دادههای این دیتاست، به دلیل تعداد رکوردهای بالای آن به سیستمهای پیشرفته نیاز است. به همین علت با استفاده از نمونه گیری رندم از دادهها سعی می کنیم این چالش را تا حدودی برطرف کنیم. البته شایان ذکر است در ادامه ی پروژه نیز قسمتهایی وجود دارد که به دلیل نیاز به ظرفیت پردازشی بالا، راهکارهایی برای کاهش ظرفیت موردنیاز انجام شده است. بدیهی است که کار با سیستمهای پیشرفته تر، نتایج بهتری به ما خواهد داد.

Clustering

در این مرحله به منظور dimension reduction یا کاهش ابعاد و عدم امکان استفاده از دادههای پیوسته در این مرحله به منظور clustering برای دادههای مربوط به آب و هوا استفاده شده است که در دیتافریم

df_weather یکی از ابزارهای به کار رفته در این بخش بوده silhouette score یکی از ابزارهای به کار رفته در این بخش بوده است.

در ادامه برای تحلیل تعداد کلاسترها برای مثال سه حالت k=3,4,6 را میبینیم و در نهایت k=4 انتخاب می شود.

	Temperature(F)	Wind_Chill(F)	Humidity(%)	Pressure(in)	Visibility(mi)	Wind_Speed(mph)	Precipitation(in)
0	76.38276	76.24171	42.09599	29.63434	10.04309	8.87879	0.14126
1	37.08000	31.25003	71.65058	29.72438	8.57695	8.81363	0.12894
2	65.34578	64.83711	81.16481	29.81528	8.64554	7.28395	0.11942

K=3

با توجه به تصویر بالا خوشه ی اول مربوط به دمای بالا، wind chill بالا، رطوبت و فشار متوسط، دید، سرعت و بارندگی بالاست. خوشه ی دوم مربوط به دما، دمای باد و دید کم، رطوبت، فشار و بارندگی متوسط و سرعت باد بالاست. خوشه ی سوم دارای رطوبت و فشار بالا، دما و دمای باد متوسط و دید، سرعت باد و بارندگی کم است. دو تصویر پایین نیز به همین ترتیب قایل تفسیر هستند. در نهایت به این نتیجه می رسیم داشتن ۴ خوشه علاوه بر این که بازه بندی مناسبی از لحاظ عددی برای داده ها ارائه می دهد، مقیاس خوبی برای مقایسه نیز فراهم می کند.

	Temperature(F)	Wind_Chill(F)	Humidity(%)	Pressure(in)	Visibility(mi)	Wind_Speed(mph)	Precipitation(in)
0	82.17081	82.60128	43.69858	29.63962	9.99515	8.85788	0.14072
1	34.71079	28,48872	78.57603	29.71235	8.07534	8.64709	0.12106
2	55.93786	53.48226	45.00065	29.69412	10.13451	8.93287	0.14491
3	65.68061	65.22640	82.61886	29.81762	8.56673	7.21602	0.11857

K=4

- ۰: دادههایی با دما، دمای باد بالا، دید، سرعت باد و بارندگی نسبتا بالا، رطوبت و فشار پایین
- ۱: دادههایی با دما، سرعت باد، دید و بارندگی کم، رطوبت و سرعت باد نسبتا بالا و فشار متوسط
 - ۲: دادههایی با دید، سرعت باد و بارندگی بالا، رطوبت کم، دما، دمای باد و فشار متوسط
- ۳: دادههایی با رطوبت و فشار بالا، سرعت باد و بارندگی کم، دید متوسط، دما و دمای باد نسبتا بالا

	Temperature(F)	Wind_Chill(F)	Humidity(%)	Pressure(in)	Visibility(mi)	Wind_Speed(mph)	Precipitation(in)
0	82.63064	82.90157	28.83427	29.43285	10.12190	8.84677	0.13628
1	55.26198	52.74517	46.02325	29.70221	10.12519	8.88782	0.14497
2	79.36619	79.74376	58.48910	29.81570	9.88064	8.77269	0.14247
3	68.75695	68.63151	83.81728	29.82347	8.66272	7.06595	0.12083
4	27.64020	19.43581	72.28993	29.70419	8.30733	9.73330	0.12930
5	48.91875	46.29748	86.08475	29.76167	7.79032	7.19638	0.10840

K=6

پس از استفاده از clustering، دادههای زیر نیز از دیتاست حذف میشوند:

 $\label{eq:childer} $$ (df_final = df.drop(['Temperature(F)', 'Wind_Chill(F)', 'Humidity(\%)', 'Pressure(in)', 'Visibility(mi)', 'Wind_Speed(mph)', 'Precipitation(in)'], axis=1) $$$

در نهایت با استفاده از سایر فیچرهای باقیمانده می توان از association rules استفاده کرد.

Association Rules

در این قسمت با آزمون و خطا مقادیر support و support را در ماکسیمم حالتی که سیستم اجازهی پردازش آن را می دهد محاسبه می کنیم. قبل از انجام این کار بر روی دیتاست از دستور get dummies استفاده می کنیم تا مقادیر به فرمت دلخواه برای association rules در بیایند.

لیستی از قوانین به دست آمده در فایل اکسل Rules_1 که در پیوست آمدهاند قابل مشاهده است. در ادامه به بررسی برخی از آنها میپردازیم. لازم به ذکر است که در بیان این قوانین ابتدا قوانین بر اساس confidence بزرگ به کوچک مرتب میشوند. در انتها نیز قوانین با leverage منفی را رد میکنیم. مقادیر lift بالا قوانین بدیهی هستند. عمدتا liftهای کمتر از ۱ نیز قابل پذیرش نیستند.

۱. در قوانین، به صورت عمده شدت تصادفات ۲ دیده می شود. این امر باعث ایحاد شک در مورد این موضوع می شود که تصادفات با شدت ۲ بیشترین تعداد دارند. برای اثبات این موضوع به صورت زیر عمل شد:

>>> df.gr	oupby(['Seve	rity']).	count()			
	Unnamed: 0	Side	City	labels	Time_diff	time_intervals
Severity						
1	9180	9180	9180	9180	9180	9180
2	722676	722676	722676	722676	722676	722676
3	283348	283348	283348	283348	283348	283348
4	34796	34796	34796	34796	34796	34796
[4 rows x	30 columns]					

که همان طور که دیده می شود تصادفات با شدت ۲ با تعداد ۷۲۲۶۷۶ بیشترین سهم تصادفات را دارند.

7. یکی از مواردی که قابل توجه است شباهت بسیار زیاد بین ستونهای Sunrise_Sunset در نتیجه در Astronomical_Twilight ،Nautical_Twilight است. در نتیجه در قوانین به دست آمدهای که شامل این فیچرها هستند شباهت بسیاری میبینیم. موضوع قابل توجه رخ دادن تصادفات در سمت راست خیابان است. به صورتی که با ترکیب مختلفی از ستونهای مربوط به گرگ و میش، قوانینی که به سمت راست خیابان اشاره میکنند توجه را به خود جلب میکنند. برای مثال می توان به قوانین زیر اشاره کرد:

```
304: frozenset({'Astronomical_Twilight_Day', 'Civil_Twilight_Day'}) → frozenset({'Nautical_Twilight_Day', 'Side_R'})
```

439: frozenset({'Astronomical_Twilight_Day', 'Civil_Twilight_Day', 'Sunrise_Sunset_Day'}) → frozenset({'Nautical_Twilight_Day', 'Side_R'})

177: frozenset({'Severity_2','Civil_Twilight_Day'}) → frozenset({'Nautical_Twilight_Day', 'Side_R'})

اگر بعضی از فیچرها مانند شهر و شرایط گرگ و میش حذف شوند، با نمونه ی جدید حاصله با تعداد رکورد بیشتر قوانین موجود در فایل اکسل Rules_3 به دست می آیند. لازم به ذکر است برای پیدا کردن حالت بهینه لازم بود تا در چند مرحله فیچرها حذف شوند تا با کمک Apriori قوانین جدید استخراج شوند. این چند مرحلهای بودن با مشخص کردن estageها به صورت، ۲۱ و ۳ در کد قابل مشاهده است. بعضی از این قوانین پس از حذف قوانین با leverageهای منفی و liftهای کمتر از ۲ به صورت زیر هستند:

- frozenset($\{'Severity_3'\}$) \rightarrow frozenset($\{'Side_R'\}$)
- o frozenset({'Traffic_Signal'}) → frozenset({'Severity_2'})
- frozenset({'Astronomical_Twilight_Day','Traffic_Signal'} → frozenset({'Severity_2'})
- frozenset({'time_intervals_15-18', 'Astronomical_Twilight_Day'}) → frozenset({'Side_R'})
- 42 frozenset($\{'time_intervals_15-18'\}$) \rightarrow frozenset($\{'Side_R'\}$)
- frozenset($\{'year_2020'\}$) \rightarrow frozenset($\{'Side_R'\}$)
- 36 frozenset($\{'labels_2'\}$) \rightarrow frozenset($\{'Side_R'\}$)

```
frozenset({'Astronomical Twilight Day', 'time intervals 12-15'})→
157
frozenset({'Side_R'})
      frozenset(\{'time_intervals_12-15'\}) \rightarrow frozenset(\{'Side_R'\})
41
      frozenset({'labels 2','Astronomical Twilight Day'})→
142
frozenset({'Side_R'})
      frozenset({'Time diff high', 'Astronomical Twilight Day'})→
frozenset({'Severity 2'})
      frozenset(\{'Time\_diff\_high'\}\) \rightarrow frozenset(\{'Severity\_2'\})
17
      frozenset({'Weather_Condition_Fair'}) → frozenset({'Severity_2'})
7
      frozenset({'Astronomical_Twilight_Day', 'time_intervals_6-9'})→
119
      frozenset({'Severity_2'})
      frozenset(\{'time_intervals_6-9'\}) \rightarrow frozenset(\{'Severity_2'\})
21
      frozenset({'year 2019','Astronomical Twilight Day'}→
103
frozenset({'Severity_2'})
      frozenset({'Astronomical_Twilight_Day', 'Weather_Condition_Clear'})→
94
      frozenset({'Severity 2'})
      frozenset({'Astronomical_Twilight_Day'}) → frozenset({'Severity_2'})
9
      frozenset(\{'labels_0'\}) \rightarrow frozenset(\{'Severity_2'\})
13
      frozenset(\{\text{'labels 3'}\}) \rightarrow frozenset(\{\text{'Severity 2'}\})
16
      frozenset({'Weather_Condition_Clear'}) → frozenset({'Severity_2'})
6
      frozenset({'year_2019', 'Severity_2'}) → frozenset({'Time_diff_high'})
121
      frozenset({'year_2018'}) → frozenset({'Time_diff_low'})
63
      frozenset({'Time_diff_high"Astronomical_Twilight_Day'})→
197
      frozenset({'Severity_2', 'Side_R'})
تفسیر قوانین استخراج شده تا حد زیادی به هدف و مخاطب قوانین بستگی دارد. بسیاری از قوانین بالا
نشان می دهند که شرایط مختلفی باعث رخ دادن تصادف در سمت راست خیابان می شود که می تواند دلایل
```

متفاوتی داشته باشد. از جمله تمایل رانندگان برای منحرف کردن فرمان به سمت راست خیابان، وجود علائمی

که حواس راننده را پرت می کنند و بنابراین آگاه کردن رانندگان در این مورد می تواند در کاهش نرخ تصادفات موثر واقع شود.

عمده ی تصادفاتی که مدت زمان نسبتا طولانی ای ادامه داشته اند شدت تصادف آنها ۲ بوده است. بنابراین طولانی بودن تصادفات لزوما به معنای سهمگین بودن آنها نیست.

تصادفاتی که در بازه ی ۶-۹ صبح رخ می دهند عمدتا شدت ۲ دارند و در رده ی تصادفات سنگین محسوب نمی شوند. بنابراین گزاره ی خواب آلودگی صبح زود با تصادفات سنگین ارتباط دارد با این قانون قابل رد است.

clustering قسمت (که در قسمت label 3 و label 3 تصادفاتی که شرایط آب و هوایی آنها متعلق به 1 اتفاق می افتند. در مورد ویژگیهای آنها صحبت شد) عمدتا با شدت 1 اتفاق می افتند.

تصادفات سال ۲۰۱۹ عمدتا طولاني بودهاند.

تصادفات سال ۲۰۱۸ عمدتا کوتاه بودهاند.

نتيجهگيري

در نهایت می توان گفت، با استفاده از سیستمهایی با ظرفیت بالاتر، انتظار می رود با اضافه کردن سایر فیچرها مانند street ،city و ...قوانین بیشتر و جالبی از داخل دادههای این پروژه به دست آورد. همچنین انجام متن کاوی بر روی ستون description اطلاعات با ارزشی چه برای association rules و چه سایر اهداف داده کاوی در اختیار مخاطبان قرار خواهد داد.

Visualization

در ادامه می توان با استفاده از مصورسازی، به اطلاعات جالبی در مورد دادهها دست پیدا کرد. به این منظور نمودارهای منتخب که با استفاده از Power BI رسم شدهاند ارائه می شود.

نمودار شدت تصادفات بر حسب سال

همان طور که دیده می شود طی سالها تصادفات عمدتا سیر صعودی داشتهاند و بیشترین شدت تصادفات نیز ۲ بوده است. اما کاهشی در روند تصادفات در سال ۲۰۲۰ دیده می شود که علت آن می تواند کم تر شدن ترددها به سبب قرنطینه و محدودیتها باشد.

نمودار شدت تصادفات در ساعات مختلف شبانهروز

با استفاده از نمودار بالا می توان دید در هر بازهی زمانی بیشترین شدت تصادفات به چه صورت است.

توزیع شدت تصادفات ۱ و ۴ در آمریکا

Count of Severity by labels

توزیع تصادفات بر حسب آب و هوا بیشترین تصادفات در شرایط آب و هوایی که در 2 label آن را مشخص کردهایم اتفاق میافتند.

توزیع شدت تصادفات بر حسب آب و هوا

هر کدام از نوارهای افقی نمودار بالا نماینده ی یک شدت تصادف از ۱ تا ۴ هستند. بخش بندی های موجود در هر نوار نشانگر سهم انواع آب و هواهای مشخص شده با labelهای ۰ تا ۳ هستند.

منابع

Moosavi, Sobhan, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, and Rajiv Ramnath. "A Countrywide Traffic Accident Dataset.", arXiv preprint arXiv:1906.05409 (2019).

Moosavi, Sobhan, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, Radu Teodorescu, and Rajiv Ramnath. "Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights." In proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, 2019.