種数2の超楕円曲線を用いた 高速暗号系について

松尾 和人*

趙 晋輝†

* 東洋通信機

† 中央大学

種数2の超楕円曲線

 $\operatorname{char} \mathbb{F}_q \neq 2$

$$C/\mathbb{F}_q: Y^2 = F(X),$$

$$F(X) = X^5 + f_4 X^4 + \dots + f_0,$$

$$f_i \in \mathbb{F}_q, \operatorname{disc}(F) \neq 0$$

背景

1986: 楕円曲線暗号 Miller, Koblitz

1987: 加算アルゴリズム Cantor 1989: 超楕円曲線暗号 Koblitz

Cantorアルゴリズムの改良: Sakai-Sakurai-Ishizuka,

Paulus-Stein,

Nagao, ...

1999: Smart@Euro99

"On the Performance of Hyperelliptic

Cryptosystems"

主旨

現在のところ, 超楕円曲線暗号は楕円曲線暗号と比較して 利点が認められない.

特に、暗復号に楕円曲線暗号の数倍以上の時間を要する.

Harleyアルゴリズム

2000: Gaudry-Harley@ANTS-IV

"Counting Points on Hyperelliptic Curves over Finite Fields"

http://cristal.inria.fr/~harley/hyper/

Cantor:

- ・超楕円関数体の整数環のイデアル類群に 2次形式の 高速composition, reductionアルゴリズムを適用
- ・Mumford representationの利用

Harley:

- ・種数を2に限定
- ・Divisorの詳細な場合分け
- ・楕円曲線の chord-tangent law 的な加算 cf. 山本芳彦, 数論入門 2 (現代数学への入門)
- ・Mumford representationの利用
- ・多項式の CRT と Newton 反復を適用
- ・Karatsuba乗算の適用

加算 : 2I + 27M

2倍算 : 2I + 30M

1: 定義体上の逆元計算時間, M: 定義体上の乗算計算時間

本研究の目的

- 1. Harley アルゴリズムの改良
- 2. (改良) Harley アルゴリズムを用いた 超楕円曲線暗号と, 楕円曲線暗号の速度比較

Harleyの加算

$$\mathcal{D}_i \in \mathcal{J}_C(\mathbb{F}_q),$$

$$\mathcal{D}_3 = \mathcal{D}_1 + \mathcal{D}_2$$

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty}$$

 $\mathcal{D}_2 = P_{21} + P_{22} - 2P_{\infty}$
 P_{∞} : 無限遠点

$$V \in \mathbb{F}_q[X]$$
 such that $V(P_{11X}) = P_{11Y}$
$$V(P_{12X}) = P_{12Y}$$

$$V(P_{21X}) = P_{21Y}$$

$$V(P_{22X}) = P_{22Y}$$

$$P_{11} + P_{12} + P_{21} + P_{22} + P_{31} + P_{32} - 6P_{\infty} = 0$$

$$\mathcal{D}_1 + \mathcal{D}_2 + P_{31} + P_{32} - 2P_{\infty} = 0$$

$$\mathcal{D}_3 = -(P_{31} + P_{32} - 2P_{\infty})$$

$$\mathcal{D}_1 + \mathcal{D}_2 = \mathcal{D}_3$$

Mumford representation

$$\mathcal{D} = (U, V),$$
 $U, V \in \mathbb{F}_q[X], \deg V < \deg U$

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty} = (U_1, V_1)$$

$$U_1 = (X - P_{11X})(X - P_{12X})$$

$$V_1(P_{11X}) = P_{11Y}, V_1(P_{12X}) = P_{12Y}$$

$$F - V_1^2 \equiv 0 \mod U_1$$

$$F - V_2^2 \equiv 0 \mod U_2, \ \mathcal{D}_2 = (U_2, V_2)$$

$$\mathcal{D} = P_{11} + P_{12} + P_{21} + P_{22} - 4P_{\infty}$$
$$= (U, V)$$
$$U = U_1 U_2$$

$$F - V^2 \equiv 0 \mod U = U_1 U_2$$

$$F-V_1^2\equiv 0\ \mathrm{mod}\ U_1$$
 $F-V_2^2\equiv 0\ \mathrm{mod}\ U_2$ $F-V_2^2\equiv 0\ \mathrm{mod}\ U_1U_2$

中国人剰余定理によりVを求める.

$$V = SU_1 + V_1, S \in \mathbb{F}_q[X]$$

$$S \equiv (V_2 - V_1)U_1^{-1} \bmod U_2$$

Reduction

$$\mathcal{D}_3 = -(P_{31} + P_{32} - 2P\infty)$$

$$= (U_3, V_3)$$

$$\mathcal{D}_{3'} = P_{31} + P_{32} - 2P\infty$$

$$= (U_{3'}, V_{3'})$$

$$\mathcal{D}_3 = (U_3, V_3) = (U_{3'}, -V_{3'})$$

$$U_3 = (F - V^2)/U$$
$$V_3 \equiv -V \bmod U_3$$

2倍算

$$\mathcal{D}_3 = 2\mathcal{D}_1$$

$$U=U_1^2$$

$$F-V_1^2\equiv 0 \bmod U_1$$

$$F-V^2\equiv 0 \bmod U=U_1^2$$

Newton 反復によりVを求める.

$$V = SU_1 + V_1, S \in \mathbb{F}_q[X]$$

$$S \equiv \frac{F - V_1^2}{U_1} V_1^{-1} \bmod U_1$$

例外の処理

加算

$$res(U_1, U_2) = 0$$
 のとき

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty}$$
$$\mathcal{D}_2 = P_{11} + P_{22} - 2P_{\infty}$$

$$\mathcal{D}_1 + \mathcal{D}_2 = 2(P_{11} - P_{\infty}) + (P_{12} - P_{\infty}) + (P_{22} - P_{\infty})$$

2倍算

$$res(U_1, V_1) = 0$$
 のとき

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty}$$
$$2(P_{11} - P_{\infty}) = 0$$

$$2\mathcal{D}_1 = 2(P_{12} - P_{\infty})$$

フロー

- 1. 加算/2倍算 の場合分け: $U_1 = U_2, V_1 = V_2$
- 2. *U*₁, *U*₂の次数
- 3. 共通因子による場合分け: Resultant
- 4. 加算
- 5. 結果の次数による場合分け: *S* の次数
- 6. Reduction

改良

フローはオリジナルのまま 詳細計算のチューニングを行った

C+n	Procedure	Cost
Stp.		Cost = 5M
1	Compute the resultant r of U_1 and U_2 .	31/1
	$w_1 \leftarrow u_{11}u_{21}; w_2 \leftarrow u_{10} + u_{21}^2 - u_{20} - w_1;$	
	$r \leftarrow u_{10}(w_2 - u_{20}) + u_{20}(u_{11}^2 + u_{20} - w_1);$	
2	$\frac{\text{If } r = 0 \text{ then}}{\mathcal{D}_{r} \text{ and } \mathcal{D}_{r} \text{ have a linear factor in semmon}}$	
	$\frac{\mathcal{D}_1}{\text{and call the exclusive procedure.}}$	
2	<u> </u>	
3	Compute $I_1 = i_{11}X + i_{10} \equiv U_1^{-1} \mod U_2$.	I + 2M
	$w_1 \leftarrow r^{-1}; I_1 \leftarrow (w_1(u_{21} - u_{11}))X + w_1w_2;$	
4	Compute $S = s_1 X + s_0 \equiv (V_2 - V_1)I_1 \mod U_2$.	
	(Karatsuba)	5M
	$w_1 \leftarrow v_{20} - v_{10}; w_2 \leftarrow v_{21} - v_{11}; w_3 \leftarrow i_{10}w_1;$	
	$w_4 \leftarrow i_{11}w_2;$	
	$w_5 \leftarrow (i_{10} + i_{11})(w_1 + w_2) - w_3 - w_4;$	
_	$S \leftarrow (w_5 - u_{21}w_4)X - u_{20}w_4 + w_3;$	
5	If $s_1 = 0$ then \mathcal{D}_3 should be weight one,	
_	and call the exclusive procedure.	
6	Compute the coefficient k_2 of X^2	
	in $K = (F - V_1^2)/U_1$.	
	$k_2 \leftarrow f_4 - u_{11};$	
7	Compute $T_1 = s_1 X^3 + t_{12} X^2 + t_{11} X + t_{10} = SU_1$.	
	(Karatsuba)	3 <i>M</i>
	$w_1 \leftarrow s_1 u_{11}; t_{10} \leftarrow s_0 u_{10};$	
	$t_{11} \leftarrow (s_0 + s_1)(u_{10} + u_{11}) - w_1 - t_{10};$	
	$t_{12} \leftarrow w_1 + s_0;$	
8	Compute $U_3 = (S(T_1 + 2V_1) - K)/U_2$.	
	(Karatsuba)	7M
	$u_{32} \leftarrow s_1^2;$	
	$w_1 \leftarrow s_1(s_0 + t_{12}) - 1;$	
	$w_2 \leftarrow s_1(t_{11} + 2v_{11}) + s_0t_{12} - k_2;$	
	$u_{31} \leftarrow w_1 - u_{21}u_{32}; u_{30} \leftarrow w_2 - u_{20}u_{32} - u_{21}u_{31};$	T 0.74
9	Make U_3 monic	I+2M
	$w_1 \leftarrow u_{32}^{-1}; u_{30} \leftarrow u_{30}w_1; u_{31} \leftarrow u_{31}w_1;$	
4.0	$u_{32} \leftarrow 1;$	0.1.6
10	Compute $V_3 \equiv -(T_1 + V_1) \mod U_3$. (Karatsuba)	3 <i>M</i>
	$w_1 \leftarrow t_{11} + v_{11}; w_2 \leftarrow t_{10} + v_{10};$	
	$w_3 \leftarrow s_1 u_{31}; w_4 \leftarrow t_{12} - w_3; w_5 \leftarrow w_4 u_{30};$	
	$w_6 \leftarrow (u_{30} + u_{31})(s_1 + w_4) - w_3 - w_5;$	
	$v_{31} \leftarrow w_6 - w_1; v_{30} \leftarrow w_5 - w_2;$ Total	2I + 27M
	I Otal	<u> </u>

・Resultantの計算

$$5M \Rightarrow 4M$$

・*U*₃の計算

8 Compute
$$U_3 = (S(T_1 + 2V_1) - K)/U_2$$
. (Karatsuba)
 $u_{32} \leftarrow s_1^2$;
 $w_1 \leftarrow s_1(s_0 + t_{12}) - 1$;
 $w_2 \leftarrow s_1(t_{11} + 2v_{11}) + s_0t_{12} - k_2$;
 $u_{31} \leftarrow w_1 - u_{21}u_{32}$; $u_{30} \leftarrow w_2 - u_{20}u_{32} - u_{21}u_{31}$;
9 Make U_3 monic
 $w_1 \leftarrow u_{32}^{-1}$; $u_{30} \leftarrow u_{30}w_1$; $u_{31} \leftarrow u_{31}w_1$;
 $u_{32} \leftarrow 1$;

$$U_3 = X^2 + (w_1(2s_0 - w_1) - w_2)X + w_1(w_1(s_0^2 + u_{11} + u_{21} - f_4) + 2(v_{11} - s_0w_2)) + u_{21}w_2 + u_{10} - u_{22},$$

where $w_1 = s_1^{-1}$ and $w_2 = u_{21} - u_{11}$.

$$I + 9M \Rightarrow I + 6M$$

加算

Input	Weight two coprime reduced divisors	
	$\mathcal{D}_1 = (U_1, V_1)$ and $\mathcal{D}_2 = (U_2, V_2)$	
Output	A weight two reduced divisor $\mathcal{D}_3 = (U_3, V_3)$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	4M
	$w_1 \leftarrow u_{21} - u_{11}; \ w_2 \leftarrow u_{21}w_1 + u_{10} - u_{20};$	
	$r \leftarrow u_{10}(w_2 - u_{20}) + u_{20}(u_{20} - u_{11}w_1);$	
2	If $r=0$ then \mathcal{D}_1 and \mathcal{D}_2 have	
	a linear factor in common,	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv U_1^{-1} \mod U_2$.	I + 2M
	$\overline{w_3 \leftarrow r^{-1}}; I_1 \leftarrow w_1 w_3 X + w_2 w_3;$	
4	Compute S . (Karatsuba)	5M
	$w_1 \leftarrow v_{20} - v_{10}; w_2 \leftarrow v_{21} - v_{11};$	
	$w_3 \leftarrow i_{10}w_1; w_4 \leftarrow i_{11}w_2;$	
	$w_5 \leftarrow (i_{10} + i_{11})(w_1 + w_2) - w_3 - w_4;$	
	$S \leftarrow (w_5 - u_{21}w_4)X - u_{20}w_4 + w_3;$	
5	If $s_1 = 0$ then \mathcal{D}_3 should be weight one,	
	and call the exclusive procedure.	
6	Compute	
	$\overline{U_3} = s_1^{-2} ((SU_1 + V_1)^2 - F)/(U_1U_2).$	I + 6M
	$w_1 \leftarrow s_1^{-1}; w_2 \leftarrow u_{21} - u_{11};$	
	$u_{30} \leftarrow \bar{w}_1(w_1(s_0^2 + u_{11} + u_{21} - f_4))$	
	$+2(v_{11}-s_0w_2))+$	
	$u_{21}w_2 + u_{10} - u_{20};$	
_	$u_{31} \leftarrow w_1(2s_0 - w_1) - w_2; u_{32} \leftarrow 1;$	
7	Compute $V_3 \equiv -(SU_1 + V_1) \mod U_3$.	6M
	$w_1 \leftarrow u_{30} - u_{10}, \ w_2 \leftarrow u_{11} - u_{31},$	
	$v_{30} \leftarrow s_1 u_{30} w_2 + s_0 w_1 - v_{10};$	
Total	$v_{31} \leftarrow s_1(u_{31}w_2 + w_1) - s_0w_2 - v_{11};$	2I + 23M
Total		

2倍算

Input	A weight two reduced divisor $\mathcal{D}_1 = (U_1, V_1)$	
Output	without ramification points A weight two reduced divisor	
Output	$\mathcal{D}_2 = (U_2, V_2) = 2\mathcal{D}_1$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and V_1 .	4M
	$w_1 \leftarrow v_{11}^2$; $w_2 \leftarrow u_{11}v_{11}$;	11/1
	$r \leftarrow u_{10}w_1 + v_{10}(v_{10} - w_2);$	
2	If $r = 0$ then	
	$\overline{\mathcal{D}_1}$ is with a ramification point,	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv (2V_1)^{-1} \mod U_1$.	I + 2M
	$w_3 \leftarrow (2r)^{-1}$;	
	$I_1 \leftarrow -v_{11}w_3X + (v_{10} - w_2)w_3$;	
4	Compute $T_1 \equiv (F - V_1^2)/U_1$ mod U_1 .	4 <i>M</i>
	$w_2 \leftarrow u_{11} - f_4; w_3 \leftarrow 2u_{10};$	
	$t_{10} \leftarrow u_{11}(2w_3 - u_{11}w_2 - f_3)$	
	$-f_4w_3 + f_2 - w_1;$	
_	$t_{11} \leftarrow u_{11}(2w_2 + u_{11}) + f_3 - w_3$	F 7.4
5	Compute $S \equiv I_1T_1 \mod U_1$. (Karatsuba)	5M
	$w_1 \leftarrow i_{10}t_{10}; w_2 \leftarrow i_{11}t_{11};$	
6	If $s_1 = 0$ then \mathcal{D}_2 should be weight one,	
	and call the exclusive procedure.	
7	Compute $U_2 = s_1^{-2}((SU_1 + V_1)^2 - F)/U_1^2$.	I + 4M
		1 11/1
	$w_1 \leftarrow s_1^{-1};$	
	$u_{20} \leftarrow \bar{w}_1(w_1(s_0^2 + 2u_{11} - f_4) + 2v_{11}); u_{21} \leftarrow w_1(2s_0 - w_1); u_{22} \leftarrow 1;$	
8	Compute $V_2 \equiv -(SU_1 + V_1)$ mod U_2 .	6M
	$w_1 \leftarrow u_{11} - u_{21};$	
	$v_{20} \leftarrow u_{20}(s_1w_1 + s_0) - s_0u_{10} - v_{10};$	
	$v_{21} \leftarrow s_1(u_{21}w_1 + u_{20} - u_{10}) - s_0w_1 - v_{11};$	
Total		2I + 25M

速度

	P_1	$2P_1$	$P_1 + P_2$
P_1	I + 5M	I + 11M	2I + 17M
$-P_1$	0	3 <i>M</i>	3M
P_2	I + 3M	I + 10M	2I + 17M
$2P_1$	I + 11M	2I + 25M	4I + 34M
$P_1 + P_2$	2I + 17M	4I + 34M	2I + 25M
$-P_1 + P_2$	3 <i>M</i>	2I + 13M	2I + 7M
$P_1 + P_3$	2I + 17M	4I + 34M	4I + 34M
$-P_1 + P_3$	3 <i>M</i>	2I + 13M	2I + 13M
$P_3 + P_4$	I + 10M	2I + 23M	2I + 23M

		改良前	改良後
加算	通常	2I + 27M	2I + 23M
	最悪	(6I + 47M)	4I + 34M
2倍算	通常	2I + 30M	2I + 25M
	最悪	2I + 30M	2I + 25M

Worst case

$$\mathcal{D}_1 + \mathcal{D}_2$$

 $\mathcal{D}_1 = P_1 + P_2 - 2P_\infty$,
 $\mathcal{D}_2 = P_1 + P_3 - 2P_\infty$,
 $P_2 \neq P_3$,
 P_1 : ramification pointでは無い

$$P_{1} \in C(\mathbb{F}_{q^{2}}) \Rightarrow P_{2} = P_{3} = P_{1}^{\sigma} \in C(\mathbb{F}_{q^{2}})$$

$$\sigma : (x, y) \mapsto (x^{q}, y^{q})$$

$$\Rightarrow P_{1} \in C(\mathbb{F}_{q})$$

$$\Rightarrow P_{2}, P_{3} \in C(\mathbb{F}_{q})$$

$$\therefore \#(\mathcal{D}_1, \mathcal{D}_2) = O(q^3)$$

加算の組合せ: $O(q^4)$

Worst caseの起こる確率: O(1/q)

加算: 2*I* + 23*M*

2倍算: 2I + 25M

楕円曲線暗号との比較

比較対象: IEEE P1363方式(Jacobian Projective)

加算: 16M, 2倍算: 10M

安全性 $\approx \#E(\mathbb{F}_q), \#\mathcal{J}_C(\mathbb{F}_q)$

$$(q^{1/2} - 1)^{2g} \le \# \mathcal{J}_C(\mathbb{F}_q) \le (q^{1/2} + 1)^{2g}$$

$$\Rightarrow$$

$$\# E(\mathbb{F}_q) \approx q$$

$$\# \mathcal{J}_C(\mathbb{F}_q) \approx q^2$$

$$N \approx \#E(\mathbb{F}_{q_E}) \Rightarrow q_E \approx N$$

 $N \approx \#\mathcal{J}_C(\mathbb{F}_{q_H}) \Rightarrow q_H \approx \sqrt{N} \Rightarrow q_H \approx \sqrt{q_E}$

定義体上の乗算コスト

 $M \approx 2(\log q)^2$ (classical mulitiplication)

 $M_E:\mathbb{F}_{q_E}$ 上の乗算コスト

 $M_H:\mathbb{F}_{q_H}$ 上の乗算コスト

 $\Rightarrow M_E \approx 4M_H$

	P1363	Harley改
加算	$16M_E = 64M_H$	$2I_H + 23M_H$
2倍算	$10M_E = 40M_H$	$2I_H + 25M_H$

整数倍算において

加算と2倍算が同数出現すると仮定すれば,

$$I_H < 14M_H \tag{*}$$

のとき, 超楕円曲線のほうが楕円曲線より高速

通常, (*) は満たされる.

実装

超楕円曲線 : Harley改

楕円曲線 : P1363

整数倍算 : sliding window (幅4)

逆元演算 : Kobayashi et al. @Euro99

 $\mathbb{F}_{q_H} = \mathbb{F}_p(\alpha)$: 93-bit OEF

 $\mathbb{F}_{q_E} = \mathbb{F}_p(eta)$: 186-bit OEF

$$p = 2^{31} - 1$$

$$\alpha^3 - 5 = 0$$

$$\beta^6 - 5 = 0$$

 $\#\mathcal{J}_C(\mathbb{F}_{q_H}) \approx \#E(\mathbb{F}_{q_E}) \approx 2^{186}$

使用言語 : C++

コンパイラ: gnu g++-2.95.2

	Genus two HEC	EC
加算	8.32μ s.	11.6μ s.
2倍算	8.74 μ s.	6.58μ s.
整数倍算	1.98ms.	1.76ms.

on Pentium III 866MHz

 $M_E \approx 3.8 M_H$

 $I_H \approx 6.4 M_H$

 \Rightarrow

超楕円曲線の演算は理論値より2割程度遅くなってしまった.

 \Rightarrow

実装について検討する必要がある.

まとめ

- ・ Harley アルゴリズムの改良を行った.
- ・種数2の超楕円曲線暗号が 楕円曲線暗号と同等の性能を持つことを示した.
- ・超楕円曲線暗号の実装については一層の検討が必要

現状と今後

3=2

char Fra = 2

I+27M I+27M (with ±#)

?

(the thin)

7=3

charte= 72

?

(木黑小tiu) MAT+IS