Statistical Inference II: Hypothesis Testing, ANOVA

BU609-4a-Testing

Hypothesis Testting - Intro

- Purpose of hypothesis testing is to determine whether there is sufficient statistical evidence in favor of a certain belief about a parameter
- Examples
 - Is there statistical evidence in a random sample to support hypothesis that > 20% of potential customers will purchase a new product?
 - Based on random sample, can manufacturer conclude manufacturing process is under control?
 - Is one type of longterm investment riskier (more variable returns) than another?
 - Does ad A result in more sales than ad B?

Objectives

- Understand and be able to apply hypothesis testing, as a method of statistical inference
- Be able to run Analysis of Variance test for multiple means, and interpret results using Regression

KEY STATISTICAL CONCEPTS

Concept of Hypothesis Testing

- Two hypotheses about pop. parameter(s)
 - H_0 null hypothesis [for example μ = 5]
 - H_1 alternative hypothesis $[\mu > 5]$ What we want to prove
- Initially assume null hypothesis is true (μ = 5)
- Build a statistic related to parameter hypothesized
- Pose question: How probable is it to obtain a statistic value at least as extreme as one = observed from sample?

Jury Illustration

	Guilty	Innocent
Find Innocent	Wrong	Correct Decision
Find Guilty	Correct Decision	Wrong

- Can jury be absolutely sure?
- Are errors equally serious? If not, which type is worse?

(Cont.)

- Make one of the following two decisions (based on test):
 - Reject null hypothesis in favor of alternative
 - Do not reject null hypothesis in favor of alternative hypothesis
- Two types of errors are possible when making decision whether to reject H₀
 - Type I error reject H_0 when it is true.
 - Type II error do not reject H₀ when it is false

Possible Results

	H ₀ is True	H ₀ is False
Reject H ₀	Type I Error $P(Type I Error) = \alpha$	Correct Decision
Don't Reject H ₀	Correct Decision	Type II Error $P(Type II error) = \beta$

- Easy to deal with α
- Difficult to deal with β (so often ignored!)
- Trade-off between these two

-

Testing Pop. Mean (σ known)

Example

- A new billing system for a department store will be cost- effective only if the mean monthly account is more than \$170
- Sample of 400 monthly accounts has mean of \$178
- If accounts are approx. normally distributed with σ = \$65, can we conclude that new system will be cost effective?

Solution

- Population of interest is credit accounts at store; parameter is mean
 - Want to show that the mean account for all customers is greater than \$170
 - » H_1 : $\mu > 170$
 - Null hypothesis must specify a single value for parameter μ

»
$$H_0$$
: $\mu = 170$

10

(Solution cont.)

Is sample mean of 178 sufficiently greater than 170 to infer that population mean is greater than 170?

If μ is really equal to 170, then $\mu_{\overline{\chi}}=$ 170. The distribution of the sample mean should look like this.

Is it likely to have $\bar{x} \ge 178$ under the null hypothesis ($\mu = 170$)?

Recall: Sampling Dist. (σ known)

• Test statistic for μ

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

• Confidence interval estimator of μ

$$\left[\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Solution

Are we likely to see a sample mean of \geq 178, if the population mean is 170?

- H_0 : $\mu = 170$
- H_1 : $\mu > 170$
- Test statistic:

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} = \frac{178 - 170}{65 / \sqrt{400}} = \frac{8}{3.25} = 2.4615$$

- p-value: p(z>2.46) = 1 NORMSDIST(2.46) = 0.0069
- Conclusion: Extremely unlikely. Reject null hypothesis in favor of alternative

p-value (Prob of Type 1 Error) p-value provides information about

- p-value provides information about amount of statistical evidence that supports alternative hypothesis
- p-value of a test is probability of observing a test statistic at least as extreme as one computed, given that null hypothesis is true; P(Type 1 Error) = α
- NB: this p-value is not a proportion parameter or statistic!

Interpreting p-value

• Because probability sample mean will assume value of more than 178 when μ = 170 is so small (.0069), there are very strong reasons to believe that $\mu > 170$

Note how the event $\overline{x} \ge 178$ is rare under H_0 when $\mu_{\overline{x}} = 170$, but... ...it becomes more probable under H_a , when $\mu_{\overline{x}} > 170$

Can conclude that the smaller the p-value the more statistical evidence exists to support alternative hypothesis

13

Practical vs Statistical Significance

14

- Statistically significant results are those which produce sufficiently small p-values
 - support H_1 : $\mu > 170$; However difference between H_0 and H_1 may not be of *practical significance*
 - If two sample sizes are large enough, can almost always prove statistically significant differences between means, proportions, variances
- So, be wary of "statistical significance"

Economic Significance

- It is at least as important to know if results are economically significant - i.e., are they big?
- With lots of data, almost everything will be statistically significant; may not be economically significant
- With little data, little will be statistically significant; may still be economically significant

Read "Signifying Nothing?" in The Economist http://www.economist.com/displaystory.cfm?st ory_id=2384590

1-Tail vs 2-Tail Tests

- Our example is a "1-tail" test
 - Interested in only RHS of sampling dist.
 - Could also focus on LHS
- 2-tail tests involve **both** sides of sampling distribution (so use $\alpha/2$)
- Determined by alternative hypothesis
 - H_1 : > or < , 1-tail test
 - H_1 : \neq , 2-tail test (< or >)
- Be careful when solving (diagram helps)

19

"Rules of Thumb" re p-values

- If p-value is < 1%, *overwhelming evidence* that supports alternative hypothesis
- If 1% ≤ p-value ≤ 5%, there is *strong evidence* that supports alternative
 hypothesis
- If 5% < p-value ≤ 10%, there is weak evidence that supports alternative hypothesis
- If p-value > 10%, there is *no evidence* that supports alternative hypothesis

18

20

Conclusions of a Test of Hypothesis

- If null hypothesis rejected, conclude there is enough evidence to infer that alternative hypothesis is true
- If null hypothesis not rejected, conclude there is <u>not enough</u> statistical evidence to infer that alternative hypothesis is true (<u>do not</u> accept null)
- Alternative hypothesis is more important one; represents what we are investigating

Hypothesis Testing Summary

- Null hypothesis (H₀)
 - specifies a point value of the parameter
 - always =
- Alternative (H₁): what we want to test
 - 3 choices: >, <, or \neq (1 or 2-tails)
- Test statistic: sample statistic upon which we reject or don't reject null hypothesis
 - use to calculate p-value
- Conclusion: if p-value small, reject null hypothesis; otherwise don't

Analysis of Variance (ANOVA) - Use Regression

Comparing means of 2 or more populations

Common Hypothesis Tests

- Means
 - 1 or 2 populations
 - paired difference (dependent samples)
- Variance

21

- 1 or 2 populations
- Proportions
 - 1 or 2 populations

See Handout on website

22

24

Summary

- Analysis of variance helps compare two or more populations of quantitative data
- Specifically interested in relationships among population means (are they equal or not?)
- Procedure works by analyzing the sample variance (hence name)
- Restrict ourselves to single-factor (one-way)
 ANOVA with independent samples
- Use Dummy Variables for difference between means and Regression

ANOVA Basics

 H_0 : $\mu_1 = \mu_2 = \mu_3$ H_1 : At least two means differ

To perform analysis of variance, need to build an "F" statistic (compares 2 variances)

Use Regression!

Why combine two types of variability, when testing for the equality of means?

Test Statistic

- Test stems from the following rationale:
 - If null hypothesis is true, would expect all sample means be close to one another (and as a result to grand mean)
 - If alternative hypothesis is true, at least some sample means would be different from one another (and from grand mean)
- Use **F-statistic**
 - Used when comparing two variances (ratio)
 - Based on Sampling Distribution

25

Anova: Test of Hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

H₁: At least two means differ

Test statistic:
$$F = \frac{MST}{MSE} = \frac{s_1^2}{s_2^2}$$

where MST = mean square treatments (variance of treatment means about grand mean);
MSE = mean square error (variance of observations about treatment means)

p-value: ?? Use p-value from regression of dummy variable representing difference in means

Anova (cont.)

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

H₁: At least two means differ

$$p$$
-value = 0.047

Since p-value is < 0.05, there is sufficient evidence to reject H_0 in favor of H_1 , and argue that at least one of the mean sales is different from the others.