Annexes — Tables statistiques

Comment lire ces tables

- Student (t) : choisissez un seuil (ex. 5%) et les degrés de liberté (ddl = N p). Comparez |t| à la valeur critique : si |t| t_critique rejet de H0.
- Fisher (F): choisissez un seuil, les ddl du numérateur (q = nb de restrictions) et du dénominateur (N p).
 Si F F_critique rejet de H0.

Par convention ici : tests bilatéraux pour Student (= 10%, 5%, 1%) et tests unilatéraux pour Fisher aux mêmes seuils.

Table de Student (bil	atéral)	
Table de Fisher (unila	ntéral)	

Remarques

- Pour **Student**, si vos ddl n'apparaissent pas, prenez la valeur **la plus proche par défaut par le bas** (conservateur).
- Pour **Fisher**, si vos ddl sont hors table, utilisez directement **qf()** dans R ou élargissez la grille.

Table 1: Valeurs critiques de Student (bilatéral)

	ddl	t(=10%)	t(=5%) t	;(=1%)
1	1	6.314	12.706	63.657
2	2	2.920	4.303	9.925
3	3	2.353	3.182	5.841
4	4	2.132	2.776	4.604
5	5	2.015	2.571	4.032
6	6	1.943	2.447	3.707
7	7	1.895	2.365	3.499
8	8	1.860	2.306	3.355
9	9	1.833	2.262	3.250
10	10	1.812	2.228	3.169
11	11	1.796	2.201	3.106
12	12	1.782	2.179	3.055
13	13	1.771	2.160	3.012
14	14	1.761	2.145	2.977
15	15	1.753	2.131	2.947
16	16	1.746	2.120	2.921
17	17	1.740	2.110	2.898
18	18	1.734	2.101	2.878
19	19	1.729	2.093	2.861
20	20	1.725	2.086	2.845
21	21	1.721	2.080	2.831
22	22	1.717	2.074	2.819
23	23	1.714	2.069	2.807
24	24	1.711	2.064	2.797
25	25	1.708	2.060	2.787
26	26	1.706	2.056	2.779
27	27	1.703	2.052	2.771
28	28	1.701	2.048	2.763
29	29	1.699	2.045	2.756
30	30	1.697	2.042	2.750
31	40	1.684	2.021	2.704
32	50	1.676	2.009	2.678
33	60	1.671	2.000	2.660
34	70	1.667	1.994	2.648
35	80	1.664	1.990	2.639
36	90	1.662	1.987	2.632
37	100	1.660	1.984	2.626
38	110	1.659	1.982	2.621
39	120	1.658	1.980	2.617
40	150	1.655	1.976	2.609
41	200	1.653	1.972	2.601
42	500	1.648	1.965	2.586
43	1000	1.646	1.962	2.581

```
F( = 10\%)
 ddl denom. df1=1 df1=2 df1=3 df1=4 df1=5 df1=6 df1=7 df1=8 df1=9 df1=10
          10 3.285 2.924 2.728 2.605 2.522 2.461 2.414 2.377 2.347
          15 3.073 2.695 2.490 2.361 2.273 2.208 2.158 2.119 2.086
2
                                                                   2.059
3
         20 2.975 2.589 2.380 2.249 2.158 2.091 2.040 1.999 1.965
                                                                   1.937
         30 2.881 2.489 2.276 2.142 2.049 1.980 1.927 1.884 1.849
                                                                   1.819
         40 2.835 2.440 2.226 2.091 1.997 1.927 1.873 1.829 1.793
5
                                                                   1.763
         60 2.791 2.393 2.177 2.041 1.946 1.875 1.819 1.775 1.738
                                                                   1.707
6
7
         120 2.748 2.347 2.130 1.992 1.896 1.824 1.767 1.722 1.684
                                                                   1.652
         500 2.716 2.313 2.095 1.956 1.859 1.786 1.729 1.683 1.644
                                                                   1.612
        1000 2.711 2.308 2.089 1.950 1.853 1.780 1.723 1.676 1.638
                                                                   1.605
 df1=12 df1=15 df1=20
  2.284 2.244 2.201
  2.017 1.972 1.924
  1.892 1.845 1.794
3
  1.773 1.722 1.667
  1.715 1.662 1.605
  1.657 1.603 1.543
7
  1.601 1.545 1.482
  1.559 1.501 1.435
  1.552 1.494 1.428
F( = 5\%)
  ddl denom. df1=1 df1=2 df1=3 df1=4 df1=5 df1=6 df1=7 df1=8 df1=9 df1=10
          10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020
1
2
         15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588
                                                                   2.544
         20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393
                                                                   2.348
         30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211
         40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124
                                                                   2.077
6
         60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040
                                                                   1.993
         120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959
7
                                                                   1.910
8
         500 3.860 3.014 2.623 2.390 2.232 2.117 2.028 1.957 1.899
                                                                   1.850
       1000 3.851 3.005 2.614 2.381 2.223 2.108 2.019 1.948 1.889
  df1=12 df1=15 df1=20
  2.913 2.845 2.774
  2.475 2.403 2.328
  2.278 2.203 2.124
  2.092 2.015 1.932
  2.003 1.924 1.839
6
  1.917 1.836 1.748
  1.834 1.750 1.659
7
  1.772 1.686 1.592
  1.762 1.676 1.581
                                      3
F( = 1\%)
  ddl denom. df1=1 df1=2 df1=3 df1=4 df1=5 df1=6 df1=7 df1=8 df1=9 df1=10
          10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849
1
```

15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368

2.979

30 7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888

2

3