[Total No. of Printed Pages—3]

Seat	
No.	

[4657]-550

S.E. (Electronics & Telecommunication)

(I Sem.) EXAMINATION, 2014

DIGITAL ELECTRONICS

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Figures to the right indicate full marks.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Assume suitable data, if necessary.
- 1. (a) State the following characteristics of Digital IC's (TTL): [6]
 - (i) Fan in, Fan out
 - (ii) Noise Margin
 - (iii) Figure of Merit.
 - (b) Implement the following functions using single 8 : 1 MUX : [6] $f(A, B, C, D) = \pi M(0, 3, 5, 7, 12, 15) + d(2, 9).$

Or

- 2. (a) Draw and explain the working of 2 input CMOS NOR gate. [6]
 - (b) Design a 2-Bit magnitude comparator using suitable decoder. [6]

P.T.O.

3. (a)		Design a mod-5 ripple counter using a 3-bit ripple counter. [6]		
	(<i>b</i>)	Explain:	[6]	
		(i) State Table		
		(ii) State Diagram		
		(iii) State Reduction.		
		Or		
4. ((a)	Design and explain the following terms:	[6]	
		(i) Melay Machine		
		(ii) Moore Machine		
		(iii) State Table.		
	(<i>b</i>)	Design a pulse train generator to generate the following	ng	
		sequence10110 using shift register.	[6]	
5.	(a)	Give comparison between PROM, PLA and PAL.	[5]	
	(<i>b</i>)	A combinational circuit is defined by the following function	ıs.	
		Implement this circuit with PLA having 3 input, 4 produ	ct	
		terms and 2 outputs:	[8]	
		$F_1(A, B, C) = \Sigma m(0, 1, 3, 4)$		
		$F_2(A, B, C) = \Sigma m(1, 2, 3, 4, 5).$		
		Or		
6.	(a)	Explain in detail the architecture of FPGA.	[6]	
	(<i>b</i>)	Design a BCD to excess 3 code converter and implement	it	
			[7]	
[465]	7]-550	2		

- 7. (a) Write a VHDL code for 2-bit comparator using behavioural modeling style. [7]
 - (b) Describe any two modeling styles of VHDL with suitable examples. [6]

Or

- 8. (a) Write a VHDL code for 4-bit ALU using case statement. [7]
 - (b) Explain the following statements with examples: [6]
 - (i) Process
 - (ii) Case
 - (iii) Wait.