VŠB – Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky

Analýza emailové komunikace Analysis of Email Communication

2018 Veronika Uhrová

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky

Zadání diplomové práce

Student:

Bc. Veronika Uhrová

Studijní program:

N2647 Informační a komunikační technologie

Studijní obor:

2612T025 Informatika a výpočetní technika

Téma:

Analýza emailové komunikace Analysis of Email Communication

Jazyk vypracování:

čeština

Zásady pro vypracování:

Cílem práce je návrh a implementace systému na analýzu emailové komunikace a vizualizaci výstupů. Systém bude pracovat s reálnými daty a budou navrženy, popsány a vyhodnoceny experimenty s těmito daty. Pro implementaci je doporučen jazyk C#.

1. Rešerše obdobných řešení a analytických přístupů.

2. Návrh a implementace metody na získávání emailových zpráv z vybraného zdroje.

- 3. Výběr a implementace metod strojového učení a analýzy sítí vhodných pro analýzu emailové komunikace.
- Návrh a implementace uživatelského rozhraní na analýzu emailové komunikace a vizualizaci analytických výstupů.
- 5. Dokumentovaná implementace systému.

Seznam doporučené odborné literatury:

[1] S. Zehnalova, Z. Horak, M. Kudělka. Email Conversation Network Analysis: Work Groups and Teams in Organizations. ASONAM 2015.

[2] Tang, G., Pei, J., Luk, W. S. (2014). Email mining: tasks, common techniques, and tools. Knowledge and Information Systems, 41(1), 1-31.

Další podle pokynů vedoucího práce.

Formální náležitosti a rozsah diplomové práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí diplomové práce: doc. Mgr. Miloš Kudělka, Ph.D.

Datum zadání:

01.09.2017

Datum odevzdání:

30.04.2018

doc. Ing. Jan Platoš, Ph.D.

vedoucí katedry

prof. Ing. Pavel Brandštetter, CSc. děkan fakulty

Duchlassiam ×a sam táta suáss successia samast	akus II. is illa som v. čatlas litaućans
Prehlasujem, že som túto prácu vypracovala samost pramene a publikácie, z ktorých som čerpala.	ame. Oviema som vsetky merarne
V Ostrave, 20. 4. 2018	

Abstrakt

Práca študuje aktuálne metódy pre analýzu emailov a detekciu sociálnych rolí v emailových dátach. Nasleduje zoznámenie sa s emailom a jeho popularitou v súčasnosti. Taktiež práca uvádza základné teoretické pojmy a teoretický náhľad na reprezentáciu siete. Uvádzajú sa tu aj základy analýzy sociálnych sietí a detekcie komunít. ďalej sa tu píše o frameworku pre detekciu štrukturálnych rolí a ich identifikácie. Na základe týchto poznatkov je vytvorená aplikácia pre analýzu a vizualizáciu analytických výstupov. Na záver sú uvedené prevedené experimenty týkajúce sa poznatkami skúmaných emailových dát.

Kľúčové slová: email, sociálna siet, sociálna rola, vizualizácia

Abstract

This paper studies current methods for analysing emails and detecting social roles in email data. This is followed by getting acquainted with the email and its popularity nowadays. Also, this thesis presents basic theoretical concepts and a theoretical overview of network representation. Here are also the basics of social networking and community detection. There is also written a framework for structural social roles detection and their identification. Based on this knowledge, an aplication is developed to analyze and visualize analytical outputs. Finally, experiments on the findings of the emailed data are presented.

Key Words: email, social network, social role, visualization

Obsah

Z	znar	n použitých skratiek a symbolov	ć
Zo	znar	n obrázkov	10
Zo	znar	n tabuliek	11
1	Úvo	\mathbf{d}	12
	1.1	Motivácia	12
	1.2	Vízia	12
	1.3	Štruktúra práce	13
2	Súv	isiace práce	14
3	Ema	ailová komunikácia	16
	3.1	Stručná história emailu	16
	3.2	Štruktúra emailu	16
	3.3	Emaily v súčasnosti	17
4	Def	inície a klasifikácie	18
	4.1	Graf	18
	4.2	Súvislosť grafu	19
	4.3	Úplný graf	19
	4.4	Stupeň vrcholu	19
	4.5	Cesta	19
	4.6	Uzavretá cesta	19
	4.7	Komponenta grafu	19
	4.8	Metriky	19
		4.8.1 Closeness centrality (Centralita blízkosti)	19
		4.8.2 Betweeness centrality (Centralita medziľahlosti)	20
		4.8.3 Modularita	21
5	Soc	iálna sieť	22
	5.1	História sociálnych sietí	22
	5.2	Analýza sociálnych sietí	22
	5.3	Komunity v sociálnych siefach	23
	5.4	Detekcia komunít	24
		5 4 1 Louvainov algoritmus pre detekciu komunit	24

6	SSF	RM - F	ramework pre detekciu štrukturálnych rolí v sociálnych sieťach	26
	6.1	Rola v	kontexte SSRM	26
	6.2	Roly o	definované v SSRM	26
		6.2.1	Leader	27
		6.2.2	Outermost	27
		6.2.3	Mediator	27
		6.2.4	Outsider	27
7	Idei	ntifiká	cia štrukturálnych sociálnych rolí	28
	7.1	Outsic	ler	28
	7.2	Leade	r	28
		7.2.1	Closeness centrality (Centralita blízkosti)	28
	7.3	Outer	most	28
	7.4	Media	tor	28
		7.4.1	LBeweeness	29
		7.4.2	CBetweeness	29
		7.4.3	Normalizovaná verzia CBetweeness	29
		7.4.4	Skóre rozmanitosti	30
8	\mathbf{Apl}	ikácia		31
	8.1	Špecif	ikácia	31
		8.1.1	Funkčné požiadavky	31
	8.2	Návrh		32
		8.2.1	Návrhové vzory	33
	8.3	Dôleži	té rozhodnutia	35
		8.3.1	Dostupnosť dát	35
		8.3.2	Webová vs. desktopová aplikácia	35
	8.4	Použit	té knižnice	35
	8.5	Imple	mentácia	37
	8.6	Impor	t dát	37
		8.6.1	Konštrukcia siete	37
		8.6.2	Triedy pre graf a vrcholy	38
9	Exp	erime	nty	39
10	Záv	er		40
	10.1	Možno	osti rozšírenia a zdokonalenia práce	40
Lit	terat	ura		41

Zoznam použitých skratiek a symbolov

 $\begin{array}{cccc} \mathrm{MUA} & & - & \mathrm{Mail\ User\ Agent} \\ \mathrm{MTA} & & - & \mathrm{Mail\ Transfer\ Agent} \end{array}$

 $\begin{array}{cccc} IMAP & & - & Internet \; Message \; Access \; Protocol \\ XML & - & eXtensible \; Markup \; Language \end{array}$

SSRM – Structural social role mining framework

Zoznam obrázkov

1	Akú formu komunikácie preferujete na formálnu komunikáciu?	17
2	Neorientovaný graf	18
3	Orientovaný graf	18
4	Graf v tvare hviezdy	20
5	Sieť s viacerými komunitami	23
6	Vizualizácia krokov Louvainovho algoritmu	25
7	UseCase Diagram	32
8	Diagram komponent znázorňujúci jednotlivé komponenty architektúry aplikácie .	33
9	Triedny diagram - Repository pattern	34
10	Model-View-Controller	35
11	Jednoduchá sieť vytvorená s použitím knižnice vis.js	36
12	Príklad použitia knižnice vis.js	36
13	Doménový model	37

77	. 1	1	I • 1	
Zoznam	tar)11	пe	K

1	Detaily datasetu																																		39)
т	Detaily datasetu	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	03	,

1 Úvod

V stručnom úvode je popísaná motivácia, ktorá viedla k vypracovaniu tejto diplomovej práce, vízia toho, čo sa malo dosiahnuť a hrubá štruktúra vypracovaného textu.

1.1 Motivácia

S cieľom uľahčiť používanie emailov a prebádať podnikateľský potenciál emailov, analýza emailov dosiahla pozoruhodný pokrok v oblasti výskumu, ale aj v praxi. Emaily teda možno považovať za zmiešanú štruktúru obsahujúcu údaje o ľuďoch zo sociálnych alebo aj organizačných aspektov.

Obsah emailu ako textové a netextové dáta

Emaily sú písané viac stručne ako väčšina ostatných dokumentov, často obsahujú hovorové výrazy a abreviácie, ktoré sa nenachádzajú v bežných slovníkoch, preto štandartné techniky analýzy textov pri práci s emailovými dátami nemusia byť efektívne.

Emaily tiež obsahujú bohatšie typy dát, ako napríklad URL linky, HTML tagy alebo obrázky. Niektoré štúdie jednoducho zjednodušia tieto netextové dátové vstupy v štádiu predpripravovania dát - vymažu ich a ďalej pracujú len s textovými dátami. Tieto netextové dáta však môžu byť užitočné v iných oblastiach, ako napríklad detekcia spamu.

Emaily reprezentujúce ľudské sociálne organizačné vzťahy

Emailová aktivita sama o sebe reprezentuje bohaté ľudské sociálne a organizačné vzťahy, ktoré spájajú ľudí do komunít a komplexných sysémov. Porozumenie organizačných štruktúr alebo vzťahov naprieč ľudmi v organizácii môže byť veľmi užitočné aj v reálnom živote. Hlavné problémy, ktoré sú investigované v analýze emailov sú detekcia spamu, kategorizácia emailov, analýza kontaktov, analýza vlastností emailových sietí a vizualizácia emailov.

1.2 Vízia

Cieľom práce je oboznámiť čitateľa s oblasťou sociálnych sietí a špeciálne s témou analýzy emailových dát a tieto znalosti demonštrovať nad reálnymi emailovými dátami. Pre uskutočnenie tohto cieľa je potrebné naštudovať informácie z oblasti analýzy emailov, reprezentácie emailu v sieti a vizualizácie sociálnych sietí vrátanie aktuálnych metód publikovaných v článkoch. K tomu sa viaže tiež prieskum reprezentácie a konštrukcie emailu ako prvku sociálnej siete.

Ďalej boli vybrané metódy detekcie rolí v sociálnej sieti a navrhnutá aplikácia, ktorá umožňuje analyzovať a vizualizovať analytické výsledky. V tejto aplikácii s jednoduchým a použiteľným užívateľským rozhraním budú implementované vybrané metódy analýzy a bude navrhnutá prehľadná vizualizácia vzťahov. Nakoniec bude vytvorená analýza jedného prvku siete a výsledky experimentov budú zrozumiteľne prezentované.

1.3 Štruktúra práce

V prvej kapitole je uvedený prieskum o aktuálnych vedeckých článkoch, ktoré sa zaoberajú analýzou emailov a reprezentácii emailu v sociálnych sietach.

Ďalej sa čitateľ zoznámi s emailom ako komunikačným prostriedkom a dozvie sa, ako sú na tom emaily s popularitou aktuálne.

Potom je uvedený stručný prehľad teórie grafov a definícií určitých pojmov, ktorý je nevyhnutný k porozumeniu ďalších kapitol.

V ďalšej kapitole píšem o sociálnych sieťach, ich histórii a analýze sociálnych sietí a komunitnej štruktúre sociálnych sietí.

Neskôr prechádzam k popisu a reprezentácie frameworku pre detekciu štrukturálnych rolí, popisujem sociálne roly definovaná v rámci tohto frameworku a následnej v ďalšej kapitole referujem pomocou akých metód sa sociálne roly v rámci tohto frameworku identifikujú.

Na základe všetkých poznatkov práce je navrhnutá aplikácia vhodná k sledovaniu sociálnych rolí v emailovej sieti.

Ešte pred záverom sú uvedené výsledky prevedených experimentov týkajúcich sa poznatkami skúmanej sociálnej siete.

2 Súvisiace práce

Pre odhaľovanie vzťahov medzi ľuďmi, skupina a organizáciami z emalových sietí boli aplikované mnohé techniky a modely analýzy sociálnych sietí. Mnoho štúdií použilo maily spoločnosti *Enron* kvôli nedostatku dostupných veľkých súborov.

Napríklad Diesner, Carley a Frantz v [3] zkonštruovali z mailovej komunikácie spoločnosti Enron orientovaný graf zo vzťahu odosielateľ-príjemca, kde hrany boli vážené frekvenciou mailov, ktoré si medzi sebou poslali v čase. Potom aplikovali techniky analýzy sociálnych sietí. V práci popísali, ako vylepšili originálnu sadu a súčasné zistenia ich investigáciou vďaka analýze sociálnych sietí. Skúmajú dynamiku, štruktúru a vlastnosti organizačnej komunikačnej siete ako aj charakteristiky a vzory komunikačného správania zamestnancov z rôznych organizačných levelov. Zistili, že počas obdobia krízy sa komunikácia medzi zamestnancami stala viac rôznorodejšia v súvislosti so zavedenými kontaktami a formálnymi rolami. Taktiež počas obdobia kríz, predtým nekomunikujúci zamestnanci sa začali zapájať do vzájomného rozhovoru, takže interpersonálna komunikácia bola intenzívnejšia a sieť sa tým rozširovala. Tieto zistenia poskytli cenný pohľad do organizačnej krízy reálneho sveta, čo môže byť ďalej využité pre validáciu alebo tvorbu teórií a dynamických modelov organizačných kríz a tým to vedie k lepšiemu porozumeniu základných príčin organizačných kríz v organizáciách.

Xiaoyan Fu v [2] prezentoval rôzne metódy pre vizualizáciu emailových sietí. Vizualizácia objavuje komunikačné vzory medzi rôznymi skupinami, zobrazuje centrálnu analýzu s dôrazom na významné uzly. V práci zkonštruovali 2D vizualizáciu temporálnej emailovej siete, ktorá analyzuje vývoj emailových vzťahov, ktoré sa menia v priebehu času a zobrazenie prostredia pre nájdenie sociálnych kruhov odvodených od siete. Každá metóda bola vyhodnotená s rôznymi datasetmi od výskumnej orgnizácie. Taktiež rozšírili ich metódu pre vizuálnu analýzu siete emailových vírusov.

Ďalej Chapanond, Krishnamoorthy, Yener v [4] použil sieťové metriky a spektrálnu analýzu k analýze či už orientovaného alebo neorientovaného grafu emailov, ktorý skonštruoval zmenou prahovej hodnoty (napr. počtom vymenených emailov medzi užívateľmi). Ich výskum je postavený na vytvorení emailového grafu a štúdiu jeho vlatností či už pomocou teórie grafov alebo technikami spektrálnej analýzy. Grafová teoretická analýza zahŕňa výpočet niekoľkých grafových metrík, ako napríklad rozdelenie podľa stupňov, priemerný pomer vzdialeností, zhlukovací koeficient alebo kompaktnosť emailového grafu. Hodnoty metrík v dátovej sade emailov spoločnosti Enron porovnali aj s inými emailovými dátami.

Jednou z univerzálnejších prác je aj práca autorov Guanting Tang, Jian Pei, and Wo-Shun Luk [1]. Je to stručný prehľad hlavných výskumných snáh o analýzu mailov a popis metód, ktoré sa pri tejto analýze používajú. Nie len čo sa týka analytických alebo implemetnačných úloh, ale aj nástrojov, ktoré nám pri analýze vedia pomôcť. Aby zdôraznili rozdiely medzi analýzou mailov a bežnou analýzou textu, organizujú prieskum do piatich ťažších úloh a to: detekcia nevyžiadanej pošty, kategorizácia emailov, analýza kontaktov, analýza vlastností emailovej siete

a vizualizácia emailov. Tieto úlohy sú vlastne začlenené do rôznych spôsobov používania emailov. Systemaicky preskúmavajú bežne používané techniky a tiež budujú diskusiu o dostupných softwarových nástrojoch.

Na rozdiel od ostatných prác, Afra Abnar, Mansoureh Takaffoli, Reihaneh Rabbany, Osmar R. Zaiane [9] definovali vlastnú metodiku pre analýzu sociálnej siete a definovali Structural social role mining framework, ktorý je navrhnutý pre identifikáciu štrukturálnych rolí, pre identifikáciu zmien v sieti a analýzu dopadu zmien na sieť. Definujú základné sociálne roly v sieti a navrhujú metodológie pre ich identifikáciu. Pre identifikáciu týchto rolí využívajú klasické prostriedky analýzy sociálnych sietí a tiež navrhujú nové metriky zahrňujúc napríklad Betweenness centrality založenú na komunitách. Z tejto práce som vychádzala pri pomenovaní rolí zo siete a implementovala techniky pre ich identifikáciu.

Ďalšou prácou, ktorou som sa inšpirovala bola práca autorov Kudělka, Horák, Zehnalová [10], ktorá prezentuje analytický nástroj, ktorý bol vytvorený pre analýzu hlbších vzťahov v emailových dátach. Tieto vzťahy zahrňujú vzťahy založené na interakcii viacerých užívateľov v tíme. Analytické metódy popísané v práci sú založené na dvoch faktoroch. Prvým faktorom je kontext, čo je skupina viacerých užívateľov v kombinácii so slovami použitými v komunikácii. Druhým faktorom je časový interval, v ktorom bola začatá komunikácia. Práca prezentuje metódy pre váženie komunikácií, užívateľov a vzťahov, ako aj metód pre hľadanie komunít asociovaných so špecifickým kontextom.

3 Emailová komunikácia

3.1 Stručná história emailu

Za počiatky emailovej komunikácie možno považovať priližne rok 1965, kedy bola správa prenášaná medzi sálovými počítačmi pracujúcich v režime zdieľania času na univerzite *Massachusetts Institute of Technology*.

Od tejto doby preša emailová komunikácia značným vývojom. Emaily, tak ako ich poznáme dnes, sú definované štandartom špecifikácie RFC2822 a sú prenášané pomocou komunikačných protokolov.

3.2 Štruktúra emailu

Každý email sa skladá z dvoch častí - z tzv. hlavičky (header) a tela emailu (body).

Hlavička emailu je generovaná automaticky pri vytvorení emailu a sú do nej postupne vkladané informácie zo serverov, cez ktoré správa prechádza (tzv. MTA). Pre bežných užívateľov sú z hlavičky najdôležitejšie tieto údaje: predmet správy, čas odoslania, emailová adresa odosielateľa a prijímateľa. Ostatné údaje emailoví klienti (označovaní tiež ako MUA ¹) väčšinou nezobrazujú.

Pri vytváraní emailu emailovým klientom sú väčšinou do hlavičky vložené tieto záhlavia:

- Date aktuálny čas počítača, ktorý vložil záhlavie
- From adresa odosielateľa
- Cc špecifikuje ďalších adresátov
- Bcc umožňuje rozosielanie správy medzi viacerých adresátov
- Priotity priorita emailu, interpretácia sa líši vzhľadom k MUA
- Reply-To špecifikuje adresu, na ktorú je zaslaná prípadná odpoveď
- Subjekt predmet správy daný užívateľom
- To udáva adresu príjemcu správy
- Message-Id unikátny identifikátor, ktorý je priradený MTA

Telo emailu obsahuje samotné dáta určené pre adresáta.

¹MUA - Mail User Agent, program, ktorý používa užívateľ na rozosielanie a prijímanie emailov (napr. Outlook), tento program komunikuje s MTA (Mail Transfer Agent), ktorý sa stará o prenos emailov v prostredí verejnej siete Internet.

3.3 Emaily v súčasnosti

Emaily teda existujú už niečo cez 50 rokov, ich popularita je však stále veľká vďaka ich efektivite, extrémne nízkym nákladom a kompatibilite s množstvom typov zariadení. Ako jedna z najrozšírenejších typov komunikácie v dnešnej dobe, emaily sú široko rozšírené v každodennom živote. Napríklad, spolupracovníci diskutujú prácu cez emaily, priatelia zdieľajú sociálne aktivity a skúsenosti aj cez emaily alebo veľké spoločnosti distribuujú reklamy práve pomocou emailov.

Aj keď by mnohí tvrdili, že éra emailov už je dávno preč a sú stále viac nahrádzané novými sociálnymi sieťami, nové výskumy ukazujú opak. Napríklad výskum z roku 2016 od spoločnosti Bluecore [13] ukazuje, že email je stále populárny aj u mladších generácií, hlavne na formálnu komunikáciu.

V tomto výskume boli spotrebitelia pýtaní, akú formu komunikácie preferujú pri komunikácii so značkami (interntovými obchodmi, na firemnú komunikáciu a celkovo formálnu komunikáciu). Prevažná časť opýtaných si vybrala email (68%).

Obr. 1: Akú formu komunikácie preferujete na formálnu komunikáciu?

4 Definície a klasifikácie

V tejto kapitole popisujem všetky teoretické pojmy a metódy, ktoré v tejto práci spomínam a používam. V tejto kapitole budem používať matematické názvy podľa kontextu, v ktorom sa budem nachádzať.

4.1 Graf

• Neorientovaný graf

Neorientovaným grafom rozumieme usporiadanú dvojicu G=(V,E), kde V je neprázdna množina vrcholov a E je neprázdna množina hrán - množina (niektorých) dvojprvkových podmnožín množiny V.

Obr. 2: Neorientovaný graf

• Orientovaný graf

Orientovaným grafom rozumieme usporiadanú dvojicu G=(V,E), kde V je množina vr-cholov a množina orientovaných hrán je $E\subseteq V\times V$.

Obr. 3: Orientovaný graf

4.2 Súvislosť grafu

Hovoríme, že vrchol v je dosiahnuteľný z vrcholu u, ak v grafe existuje sled z vrcholu u do vrcholu v.

Graf nazveme súvislý, ak pre každé dva vrcholy u, v je vrchol v dosiahnuteľný z vrcholu u. V opačnom prípade je graf nesúvislý.

4.3 Úplný graf

Úplný graf na n vrcholoch je neorientovaný graf, ktorý má hranu medzi každými dvoma vrcholmi. Počet jeho hrán je m = n * (n-1)/2.

4.4 Stupeň vrcholu

Stupeň vrcholu je počet vrcholov spojených s týmto vrcholom hranou, inými slovami: počet jeho susedov. V orientovanom grafe sa ešte rozlišuje vstupný a výstupný stupeň vrcholu podľa toho, koľko hrán z vrcholu vychádza alebo do neho vchádza.

4.5 Cesta

Cesta je postupnosť vrcholov v grafe taká, že medzi každými dvoma vrcholmi cesty je hrana a vrcholy sa neopakujú. V orientovaných grafoch sa ešte rozlišuje smer cesty, pričom orientácia hrán je stále rovnaká. Dĺžka cesty je počet hrán, ktoré obsahuje.

4.6 Uzavretá cesta

Uzavrená cesta, kružnica v neorientovanom a cyklus v orientovanom grafe, je cesta, ktorá začína a končí v rovnakom uzle.

4.7 Komponenta grafu

Komponenta grafu je súvislá časť grafu a medzi vrcholmi z rôznych komponent neexistuje žiadna hrana.

4.8 Metriky

V tejto časti popisujem metriky, ktoré v rámci identifikácie rolí v sieti používam. Ďalšie informácie o metrikách, ich praktickom využití a ich ďalších variantách sú zhrnuté v kapitole 7.

4.8.1 Closeness centrality (Centralita blízkosti)

Táto centralita meria dôležitosť vrcholu grafu podľa priemernej hodnoty vzdialenosti od všetkých ostatných vrcholov v sieti. Aby dôležité vcholy mali vyššie číslo, je táto centralita počítaná ako

inverzná hodnota tohto priemeru. Vrchol dôležitý podľa tejto metriky môže mať dobrý prístup k informáciám o ostaných vrcholoch alebo naopak môže ostatné vrcholz rýchlejšie ovplyvňovať.

Priemernú vzdialenosť vrcholu x_i od ostatných vcholov možno formálne zapísať ako $l_i = \frac{1}{n} \sum_j d_{ij}$, kde n je počet vrcholov v grafe a d_{ij} je najkratšia cesta medzi vrcholmi x_i a x_j . Centralita je potom $C_i = \frac{1}{l_i}$.

4.8.2 Betweeness centrality (Centralita medziľahlosti)

Táto centralita sa odlišuje od ostatných uvedených. Jej hodnota pre vrchol je počet najkratších ciest medzi každými dvoma vrcholmi v grafe, na ktorých hodnotený vrchol leží. Pokiaľ medzi vrcholmi v sieti tečú nejaké informácie alebo sa posielajú správy, hodnota tejto metriky vyjadruje, aké množstvo informácií cez daný vrchol prejde. Táto centralita je tiež názorný príklad toho, že každá metrika počíta dôležitost vrcholu úplne inak. Vrchol s vysokou centralitou medziľahlosti môže mať malý stupeň a nemusí ležať blízko ostatních vrcholov, stačí, keď cez neho prechádza veľa najkratších ciest. To môže nastať, pokiaľ vrchol je most medzi dvoma alebo viacerými komponentami v grafe, v extrémnom prípade pokiaľ je v strede grafu v tvare hviezdy (viď obrázok).

Betweeness vrcholu x_i možno spočítať ako $B_i = \sum_{st} \frac{n_{st}^i}{g_{st}}$, kde g_{st} je počet všetkých najkratších ciest medzi vrcholmi x_i a x_j a n_{st}^i je počet najkratších ciest, ktoré naviac vedú cez vrchol x_i .

Obr. 4: Graf v tvare hviezdy

4.8.3 Modularita

Modularita je metrika, ktorá udáva rozdiel medzi počtom existujúcich hrán medzi vrcholmi rovnakého typu a počtom takých hrán v náhodne vytvorenom grafe v pomeru ku všetkým exitujúcim hranám. Vrcholy rovnakého typu sú tie, ktoré patria alebo majú patriť do rovnakej skupiny alebo triedy (komunity).

$$Q = \frac{1}{2m} \sum_{i,j} \left[A_{ij} - \frac{d_i d_j}{2m} \right] \delta(c_i, c_j)$$

Def: Modularita

5 Sociálna sieť

Sociálna sieť je množina sociálnych subjektov (uzly siete, spravidla jednotlivci alebo organizácie), ktoré sú prepojené jedným, alebo viacerými špecifickými druhmi vzájomnej závislosti, ako sú príbuzenstvo, priateľstvo, vzájomnosť, vízie, odpor, konflikt, obchod a pod. Sociálna sieť z pohľadu teórie grafov je definovaná ako graf G(V, E), kde V je množina entít (uzlov) a E je množnina vzťahov (hrán) medzi týmito entitami.

Entity grafu môžu byť rôzne (zákazníci, jednotlivci, webové stránky, bankové účty, creditné karty, produkty). Nie je pravidlom, že len sociálna sieť ako ju pozná mnoho ľudí je sociálnou sieťou aj formálne. Prvky sociálnej siete môže ma napríklad aj skupina spolupracujúcich ľudí.

5.1 História sociálnych sietí

Pod pojmom sociálna sieť si väčšina ľudí v dnešnej dobe predstaví služby ako Facebook, Twitter a pod. Tento pojem ale vznikol dlho pred vznikom internetu a dnešných sociálnych sietí. Prívlastok sociálny, ktorý sa v dnešnej dobe často vynecháva, je dôsledkom pôvodu analýzy sociálnych sietí. V druhej polovici 20. storočia sa simultánne v rôznych oblastiach skúmania vzťahov a chovania objavil nový pohľad na vzťahy medzi sociálnymi jednotkami a to ako na sieť, graf. Preto prví predstavitelia analýzy sociálnych sietí boli pôvodne sociológovia alebo psychológovia (napríklad Moreno, Cartwright, Newcomb, Bavelas) a antropológovia (Barnes, Mitchell). Prvé použitie termínu "sociálna sieť"sa pripisuje Barnesovi (1954).

V 30. rokoch 20. storočia psychiater Moreno rozvíjal sociometriu, predchodcu dnešnej analýzy sociálnych sietí. Vypytoval sa ľudí na priateľské vzťahy a skúmal, ako tieto vzťahy ovplyvňujú ich chovanie. Potom vynašiel (sám to tvrdill) tzv. sociogram, čo je diagram reprezentujúci ľudí ako body a vzťahy medzi ľuďmi ako úsečky, teda dnešnú sociálnu sieť. Tento pojem sa ale začal používať až neskôr. Pomocou neho hľadal výrazné a izolované osoby v spoločnosti.

Zhruba o 20 rokov neskôr antropológ Barnes začal skúmať, ako ovplyvnia vzťahy medzi ľuďmi nielen jednotlivcov, ale aj spoločnosť ako celok a zameral sa na štúdium skupín, komunít. Na práci Barnesa a jeho spolupracovníkov naviazala na Univerzite na Harvarde skupina vedená Harrisom Whitom. Tá začala budovať matematickú teóriu okolo dôležitejšcíh pojmov zo sociálnych vied a umožnila tieto javy matematicky vyjadriť, merať a modelovať.

V druhej polovici 20. storočia sa rozšírilo povedomie o sociálnych sieťach a metódy sa začali používať aj v ďalších oboroch ako ekonómia, biológia, doprava atd.

5.2 Analýza sociálnych sietí

Analýza sociálnych sietí je interdisciplinárna veda s koreňmi v sociológii, psychológii, štatistike a teórie grafov. Analýza sociálnej siete chápe sociálnu sieť ako systém prepojenia uzlov (individuálnych aktérov) prostredníctvom hrán (ich vzťahov). Možno teda povedať, že nadväzuje na matematickú teóriu grafov a metódy sieťovej analýzy. Výsledkom analýzy môže teda byť mapa

graficky znázorňujúca všetky prvky skúmaného sociálneho systému a ich vzťahy (resp. vybrané charakteristiky jednotlivých vzťahov vyjadrené vhodným spôsobom graficky). Charakteristikou môže byť napríklad vzájomná sympatia či antipatia alebo pravidelná vzájomná komunikácia alebo spolupráca.

Analýza sociálnych sietí vystupuje napríklad ako základná technika v rámci modernej sociológie, antropológie, sociálnej lingvistiky, geografie, sociálnej psychológie, ekonómie a biológie rovnako ako populárna téma pre výskum.

5.3 Komunity v sociálnych sieťach

Sociálne siete sú riedke grafy zložené z hustých podgrafov. Tieto husté podgrafy sú nazývané komunity. Najčastejšia definícia komunity: Komunita je zhluk uzlov, kde počet vnútorných hrán v komunite je väčší ako počet vnokajších hrán – mimo komunity. [8]

Algoritmy pre dolovanie komunít sú založené na spojoch medzi uzlami, ktoré naznačujú spojenie dvoch entít. Napr. SCAN (Structural Clustering Algorithm for Networks) je metóda pre detekciu komunít v súvislosti na to, ako uzly zdieľajú svojich susedov len s ohľadom na priame spojenie. Teda ak sú dva uzly spojené a tiež zdieľajú rozumné množstvo ich susedov, patria do rovnakej komunity.

Obr. 5: Sieť s viacerými komunitami

5.4 Detekcia komunít

Detekcia komunít je proces identifikácie zhlukov uzlov siete silne prepojených medzi sebou a menej silne prepojených so zvyškom siete. Detekcia komunít v grafoch má za cieľ identifikovať moduly a ich prípadnú hierarchickú organizáciu.

Problém detekcie komunít vyžaduje rozdelenie siete do komunít husto prepojených uzlov, pričom uzly patriace do odlišných komunít sú len slabo prepojené. Presné formulácie tohto optimalizačného problému sú známe ako výpočtovo neriešiteľné. Vyhľadávanie rýchlych algoritmov pritiahlo veľký záujem vďaka zvyšujúcej sa dostupnosti rozsiahlych sieťových dátových súborov a vplyvu sietí na každodenný život. Môžeme rozlišovať niekoľko typov algoritmov detekcie komunít: rozdeľovacie algoritmy - tie detekujú spojenie vnútri siete a postupne ich odstraňujú zo siete, algomeratívne algoritmy - zlučujú podobné uzly a postupne komunity podľa spoločných čŕt a optimalizačné metódy sú postavené na maximalizácii objektívnej funkcie. Kvalita rozdielov vplývajúcich z týchto metód sa často meria takzvanou modularitou. Je to hodnota v intervale od -1 do 1, ktorá meria hustotu spojov vnútri komunít v porovnaní s prepojeniami medzi komunitami.

5.4.1 Louvainov algoritmus pre detekciu komunít

Veľmi obľúbeným a rýchlym algoritmom pre detekciu komunít je Louvainova metóda, ktorú navrhli Blondel, Guillaume, Lambiotte a Lefebvre [12]. Je to jednoduchá metóda pre exktrakciu komunitnej štruktúry veľkých sietí. Je to heuristická metóda, ktorá je postavená na optimalizácii modularity. Je preukázané, že prekoná všetky ostatné známe metódy detekcie komunít, pokiaľ ide o čas výpočtu. Navyše kvalita detekovaných komunít je veľmi dobrá.

Výpočet algoritmu je rozdelený do dvoch fáz, ktoré sa iteratívne opakujú. Predpokladajme, že začíname s váženou sieťou s N uzlami. Ako prvé označíme každý uzol siete inou komunitou. Takže v tomto prvotnom rozdelení je toľko komunít, ako je uzlov. Potom pre každý uzol i uvažujeme susedov j a vyhodnotíme prírastok modularity, ktorý by nastal, ak z sme odstránili uzol i z jeho komunity a priradili by sme ho do komunity uzla j. Uzol i je potom vložený do komunity, pre ktorú je tento prírastok najvyšší, ale len ak je tento prírastok kladný. Ak nie je možný žiadny kladný prírastok, uzol i ostáva vo svojej komunite. Tento proces je aplikovaný opätovne a sekvenčne pre všetky uzly kým sa nedosiahne žiadne zlepšenie a prvá fáza je kompletná. Prvá fáza končí, keď je dosiahnuté lokálne maximum modularity, keď žiadny uzol už nemôže zlepšiť modularitu. Je taktiež dôležité, že výstup algoritmu záleží na postupe, v ktorom sú uzly brané do úvahy. Výsledky algoritmu ale naznačujú, že usporiadanie uzlov nemá významný vplyv na získanú modularitu. Zoradenie však môže ovplyvniť výpočtový čas. Problém pri výbere objednávky preto stojí za to študovať, pretože by mohol poskytnúť dobrú heuristiku na zvýšenie výpočtového času.

Druhá fáza algoritmu spočíva vo vytvorení novej siete, ktorej uzly sú komunity nájdené počas prvej fázy algoritmu. K tomu, aby sa nová sieť vytvorila, váhy spojení medzi novými uzlami sú

dané sumou váh prepojení medzi uzlami korešpondujúcih dvoch komunít. Spojenia medzi uzlami tej istej komunity vedú k slučkám v novej sieti. Keď je druhá fáza kompletná, je možné znovu aplikovať prvú fázu algoritmu na výslednú váženú sieť a proces opakovať. Pri konštrukcii sa počet komunít znižuje pri každom priechode. Proces sa opajuje, kým nie sú žiadne ďalšie zmeny a dosiahne sa maximálna modularita.

Obr. 6: Vizualizácia krokov Louvainovho algoritmu.

Každý priechod je tvorený dvomi fázami: prvá, kde je modularita optimalizovaná tým, že umožňuje len miestne zmeny komunít a druhá, kde nájdené komunity sú agregované tak, aby bolo možné vytvoriť sieť komunít. Priechody sú opakované iteratívne kým nie je možný žiadny nárast modularity.

6 SSRM - Framework pre detekciu štrukturálnych rolí v sociálnych sieťach

Afra Abnar, Mansoureh Takaffoli, Reihaneh Rabbany, Osmar R. Zaiane [9] definovali *Structural social role mining framework*, ktorý je navrhnutý pre identifikáciu štrukturálnych rolí, pre identifikáciu zmien v sieti a analýzu dopadu zmien na sieť. Definujú základné sociálne roly v sieti(menovite Leader, Outermost, Mediator, Outsider).

6.1 Rola v kontexte SSRM

Sociálna rola je síce základný sociologický pojem, ale stále neexistuje žiadny konsenzus v jej definícii. Podľa SSRM je rola je považovaná za pozíciu jednotlivca v spoločnosti. Informácie o sociálnej sieti sú kategorizované do štrukturálnych a neštrukturálnych vlastností. Štrukturálne vlastnosti sú príbuzné ku konštrukcii grafu ako sú spojenia entít (hrany), štruktúra susedov a pozícia entity v tejto štruktúre. Ale neštrukturálne vlastnosti sú ostatné informácie, ktoré neodrážajú konštrukciu grafu ako atribúty entít a spojení. SSRM definuje rolu v sieti ako: Rola entity v sieti je to, ako sa entita správa voči ostatným a jej vplyv na atribúty a štruktúry ostatných entít.

6.2 Roly definované v SSRM

Ľudské siete sú vnútorne zložené z viacerých komunít. V sociálnej sieti s viacerými komunitami, vlastnosti uzlov kolíšu podľa toho, či je existencia komunít dostatočná alebo zanedbateľná. Z pohľadu sociálnej siete, uzol môže byť centrom celej siete, ale nie centrom v jeho komunite. SSRM sa teda zameriava na štúdium sociálnych sietí s predpokladom existencie komunít v sieti, ako jej základnej črty.

V sociálnych sietach môžu byť komunity explicitné alebo implicitné. Explicitné komunity sú postavené nezávisle na jej členoch a sú založené na množine pravidiel. V tomto prípade, ľudia sa stanú členmi tejto komunity častejšie až po zformovaní komunity. Zamestnanci firmy alebo študenti sú príkladom dvoch explicitných komunít. Zatiaľ čo formácia implicitných komunít ťažko závisí na jej členoch a spojeniach. Tým pádom neexistuje žiadna externá podmienka na vybudovanie implicitnej komunity. Implicitné komunity sú postavené postupne ako sa ľudia spoločne stretávajú. Napríklad, skupina priateľov, v ktorej nie je žiadne pravidlo pre správanie sa jednotlivcov, je príklad implicitnej komunity. V oboch prípadoch explicitnej aj implicitnej komunity, by mali existovať aj špeciálny jednotlivci, ktorí tieto komunity manažujú a kontrolujú. Napríklad v školskej triede je to učiteľ alebo inštruktor. Pre firmu to je manažér vo vedení a pre skupinu priateľov je to zase človek, ktorého komunikačné schopnosti prinášajú ďalších členov alebo posilňujú vzťahy medzi tými stálymi. Títo dôležitý jednotlivci sú ešte viac výrazný, keď je komunita obrovská.

Podľa toho SSRM framework definuje pre jednotlivcov v sociálnej sieti určité roly podľa ich vzťahov a pozícií v komunitách až po ich interakcie s ostatnými jednotlivcami. Z perspektívy komunít, v sieti existujú jednotlivci niekoľkých typov:

- so žiadnym vzťahom ku nejakej komunite
- so spojením s viacerými komunitami
- dôležitý členovia komunity
- bežný členovia komunity, ktorí formujú väčšinu
- nedôležitý členovia komunity, ktorí nemajú na komunitu pozorovateľný efekt

Na základe týchto poznatkov SSRM definuje štyri základné roly - leader, mediator, outermost a outsider.

6.2.1 Leader

Sú mimoriadni jednotlivci v zmysle centrality alebo významu v každej komunite. V reálnom svete bývajú títo členovia siete veliteľmi, riaditeľmi, manažérmi, vládcami, prezidentami, autoritami, administrátormi atd.

6.2.2 Outermost

Je to časť menej dôležitých jednotlivcov v každej komunite, ktorých vplyv a efekt na komunitu sú nižšie ako vplyv väčšiny členov komunity. Miesta, kde sa môže outermost v sieti nachádzať sú periférie alebo hranice grafu.

6.2.3 Mediator

Sú to jednotlivci, ktorí zohrávajú dôležitú rolu v spojení komunít v medzi sebou. Fungujú ako mosty medzi odlišnými komunitami. Do tejto skupiny patria vyjednávači, sprostredkovatelia alebo aj rozbočovače v sieti.

6.2.4 Outsider

Sú to jednotlivci, ktorí nie sú spojení so žiadnou komunitou v sieti. Buď majú takmer rovnaké prepojenie k rôznym komunitám alebo majú len veľmi slabé väzby na komunity.

7 Identifikácia štrukturálnych sociálnych rolí

Majúc sieť s komunitami explicitne známymi alebo extrahovanými nejakým dolovacím algoritmom, následne popisujem metodológie pre identifikovanie definovaných štrukturálnych rolí.

7.1 Outsider

Najviac priamočiarou rolou pre identifikáciu je outsider. Je to jednotlivec, ktorý v sieti nepatrí do žiadnej komunity. Identifikácia tejto roly je tak celkom priamočiara.

7.2 Leader

Leader je v každej komunite výnimočný centrálny člen. Pre identifikovanie takýchto uzlov SSRM využíva metriku *closeness centrality*.

7.2.1 Closeness centrality (Centralita blízkosti)

V súvislom grafe closeness centrality uzlu je metrika centrality v sieti, vypočítaná ako súčet dĺžok najkratsích ciest medzi uzlom a všetkými ostatnými uzlami v grafe. Čiže čím viac je uzol centrálnejší, tým bližšie je k ostatným uzlom.

$$C_i = \frac{1}{l_i} = \frac{n}{\sum_j d_{ij}}$$

Def: Closeness centrality

Pre každý uzol sa stanoví hodnota closeness centrality. Hodnoty closeness centrality sú blízke notmálnemu rozdeleniu, v ktorom 95% populácie dát patrí do intervalu $[\mu - 2 \cdot \sigma, \mu + 2 \cdot \sigma]$

Leadri ležia na hornom chvoste distribučnej funkcie, a teda horný interval použijeme pre identifikovanie leadrov. A teda uzly, ktoré majú väčšiu hodnotu closeness centrality ako krajná hodnota tohto intervalu, sú identifikovaní ako leadri.

7.3 Outermost

Podobne ako pri role *Leader* pre identifikovanie outermostov sa využíva metrika closeness centrality. Outermosti budú ležať však na spodnom chvoste distribučnej funkcie closeness centrality.

A tak teda uzlyy, ktoré majú hodnotu closeness centrality nižšiu ako $[\mu-2\cdot\sigma]$, sú outermosti.

7.4 Mediator

Rolu mediator zastávajú tí jednotlivci, ktorí spájajú viacero komunít a sú tzv. spojmy medzi komunitami.

Pre identifikáciu mediátorov sa definujú metriky založené na metrike betweeness centrality a to: LBetweeness - LBC a CBetweeness - CBC a ďalej metriky, ktoré vyjadrujú koľko rozdielnych komunít uzol spája: DSCount a DSPair.

7.4.1 LBeweeness

LPath - Pred definíciou LBetweeness je potrebné definovať LPath a to nasledovne: *LPath* je množina všetkých najkratších ciest medzi lídrami dvoch rozdielnych komunít.

$$LPath = l|startNode(l) \in leaderSet(c_i) \land endNode(l) \in leaderSet(c_j) \land c_i \neq c_j$$

Def: Lpath

LBetweeness centralita pre uzol v - LBX(v) je počet jedinečných LPath ktoré obsahujú v. Ak pre každú cestu p $x \in LPath$ definujeme $I_l(p, v) = 1$ ak v leží na p, inak $I_l(p, v) = 0$ potom:

$$LB(v) = \sum_{p \in LPath} I_l(p, v)$$

Def: LBetweeness

7.4.2 CBetweeness

CBetweeness počíta počet najkratších ciest medzi rozdielnymi komunitami. s_p a e_p označujú štartovací a koncový uzol najkratšej cesty p. Taktiež c_v označuje komunitu, do ktorej uzol v patrí. Množina všetkých najkratších ciest, ktoré spájajú rozdielne komunity: $CPaths = \{p|c_{sp} \neq c_{ep}\}$. Taktiež definujeme $I_p(p,v) = 1$ ak v leží na ceste p a 0 keď neleží.

$$CB(v) = \frac{1}{2} \sum_{p \in CPaths} I_p(p, v)$$

Def: CBetweeness

7.4.3 Normalizovaná verzia CBetweeness

Pravdepodobnosť nájdenia viac viditeľných mediátorov vo väčších komunitách je väčšia v porovnaní s menšími komunitami. Táto situácia sa stáva, pretože vo väčších komunitách je pochopiteľne viac uzlov, čo vedie k viacerým najkratším cestám medzi nimi. Pre kompenzáciu tohoto efektu je definovaná normalizovaná verzia CBC:

Navrhnuté metriky CBC a LBC sú nevyhnutné pre identifikovanie mediátorov, ale nie sú dostatočné. Napríklad pre sieť pozostávajúcu z desiatich komunít a dvoch mediátorov M_1 a M_2 , kde oba ležia na sto najkratších cestách medzi komunitami majú oba rovnaké hodnoty CBC.

$$NBC(v) = \frac{1}{2} \sum_{p \in CPaths} \frac{I_p(p, v)}{min(|c_{s_p}|, |c_{e_p}|)}$$

Def: Normalizovaná verzia CBetweeness

Kdežto M_1 spája dve rozdielne komunity, kým M_2 spája všetkých 10. Pri takomto scenári M_2 spája komunity viac globálne a mal by byť skôr posudzovaný ako mediátor ako M_1 . A tak SSRM definuje tzv. metriku **skóre rozmanitosti**, ktorá označuje rozdielne komunity, ktoré sú prepojené cez uzol.

7.4.4 Skóre rozmanitosti

Táto metrika ukazuje koľko rozdielnych komunít je spojených cez špecifický uzol v. Túto metriku definujeme v dvoch variantach:

1. **DSCount** - je definovaný ako počet rozdielnych komunít, ktoré sú spojené daným uzlom. Nech $I_d(c_i, v) = 1$ ak $\exists p \in CPaths : s_p \in c_i \land v \in p$. Potom DSScount uzla v je definované ako:

$$DS_{count}(v) = \frac{1}{2} \sum_{c_i} I_d(c_i, v)$$

Def: DSCount

2. **DSPair** - Skóre rozmanitosti môže byť definované ako počet párov komunít, ktoré majú najmenej jednu najkratšiu cestu medzi ich členmi, ktoré prechádzajú uzlom v. Definujeme $I_d(c_i,c_j,v)=1$ ak $\exists p\in CPaths: s_p\in c_i \land e_p\in c_j \land v\in p$

$$DS_{pair}(v) = \frac{1}{2} \sum_{c_i} \sum_{c_j \neq c_i} I_d(c_i, c_j, v)$$

Def: DSPair

Aj keď viac mediátorov môže mať rovnaké hodnoty jednotlivých metrík, môžu sa odlišovať napríklad v počte komunít, ktoré spájajú. SSRM to berie do úvahy a definuje tzv. *mediacy score* ako násobok normalizovanej CBetweeness a skóra rozmanitosti:

$$MS(v) = NCB(v) \cdot DS_{count}(v)$$

Def: Mediacy score

8 Aplikácia

Táto kapitola obsahuje všetky podrobnosti o vývoji aplikácie, návrhu a ďalej špecifikáciách požiadavkov. Sú tu uvedené informácie o implementácii, návrhu, návrhových vzoroch, ale aj konštrukcii siete, predpríprave dát. Táto časť taktiež obsahuje diagramy najdôležitejších tried aplikácie alebo diagramy prípadov použitia.

8.1 Špecifikácia

Aplikácia slúži ako užívateľské rozhranie na anlýzu emailovej komunikácie a vizualizáciu analyytických výstupov. Aplikácia umožňuje exportovať dáta z emailovej schránky alebo importovať vlastný XML súbor s emailovými dátami a ďalej s týmito dátami pracovať a zobrazovať sieť emailovej komunikácie. Umožňuje vytvorenie ego-siete alebo detekovať vo vytvorenej siete komunity. Najdôležitejšou časťou aplikácie je detekcia štrukturálnch rolí v sieti, čiže detekcia dôležitých a nedôležitých členov emailovej komunikácie.

8.1.1 Funkčné požiadavky

- Export dát z emailovej schránky
- Import vlastného XML súboru s emailovými dátami
- Zobrazenie informácii o emailovej sieti
- Vizualizácia emailovej siete
- Vytvorenie ego-siete
- Detekcia komunít
- Detekcia štrukturálnych rolí v sieti
- Výber časového rozmedzia emailových konverzácií

Obr. 7: UseCase Diagram

8.2 Návrh

Aplikácia je vytvorená ako .NET aplikácia (veria .NET Frameworku 4.6). Je vytvorená ako trojvrstvová, pre uloženie dát sa používa SQL databáza. Najnižšia vrstva aplikácie slúži na získavanie dát z databázy, pre prepojenie s databázou a posielanie dát z aplikácie do databázy používam Entity Framework a používam tu návrhový vzor Repository. Od tejto časti je oddelená časť s business logikou a na najvyššej časti, ktorá slúži len na zobrazenie dát a komunikáciu s užívateľom, používam známy prístup Model-View-Controller.

Obr. 8: Diagram komponent znázorňujúci jednotlivé komponenty architektúry aplikácie

8.2.1 Návrhové vzory

Repository Návrhový vzor Repository je základným kameňom doménou riadeného návrhu. Model aplikácie teda nemá poňatie o tom, akým spôsobom je perzistovaný. O to sa stará práve Repository. Naviac práve vďaka tomu, že sa o persistenciu stará cudzí objekt, stačí poznať len jeho rozhranie a v prípad potreby ho ľahko nahradiť iným. [11]

Obr. 9: Triedny diagram - Repository pattern

Model-View-Controller V aplikácii je použitý tradičný vzor Model View Controller (MVC). Je to jeden z najpoužívanejších a najobecnejších architektonických vzorov.

MVC rozdeľuje program do troch hlavných častí:

- Model dáta a súvisiace operácie
- View prezentácia dát (užívateľslé rozhranie), obsahuje priamy odkaz na model, aby mohol jeho dáta prezentovať vonkajšiemu svetu
- Controller riadi tok udalostí v programe, konkrétne v tejto aplikácii kontrolery obsahujú len volanie metód z inej vrstvy aplikácie

Obr. 10: Model-View-Controller

8.3 Dôležité rozhodnutia

Pri navrhovaní aplikácie bolo potrebné urobiť niekoľko dôležitých rozhodnutí.

8.3.1 Dostupnosť dát

Pôvodne sa zvažovalo použitie aplikácie a analýzy dát nad verejne dostupnou anonymizovanou emailovou sadou. Emailových dát je ale veľmi málo a chcela som, aby sa výsledky práce dali overiť nie len inými analytickými nástrojmi, ale aj empiricky. Takže som využila to, že pracujem a moja emailová schránka teda nie je chudobná na maily. Navyše mi radi pomohli aj moji kolegovia a poskytli mi svoje emailové dáta. Takto som zozbierala reálne emailové dáta štyroch ľudí, o ktorých je známe ich postavenie v týme alebo aj dátum nástupu do práce. Takže výsledky daných algoritmov som vedela porovnať s reálnou situáciou v kolektíve.

8.3.2 Webová vs. desktopová aplikácia

Bolo nutné sa rozhodnúť, či vyvíjať aplikáciu ako webovú alebo desktopovú. Ako platforma bola zvolená Microsoft .Net a programovací jazyk C#. Jednou z variant bola desktopová aplikácia vyvíjaná vo Windows Forms. WinForms je osvedčná technológia, je vyladená, v základe obsahuje veľké množstvo grafických prvkov. Toto sú výhody rozšírenej a dlho používanej technológii. Nevýhoda je ale práve zastaralosť a ťažkopádnosť v kreslení a spravovaní grafického rozhrania. Keďže ale doba ide dopredu a web a webové aplikácie sú stále viac používanejšie a v súčasnosti existuje mnoho grafických knižníc pre vizualizáciu grafického rozhrania, rozhodla som sa aplikáciu vyvíjať ako webovú.

8.4 Použité knižnice

vis.js

Vis. js je dynamická vizualizačná knižnica založená na prehliadači. Knižnica je navrhnutá tak, aby bola ľahko ovládateľná a aby mohla spracovať veľké množstvo dynamických dát a umožňovala

maipuláciu s dátami a interakciu s nimi. Knižnica sa skladá z častí *DataSet, Timeline, Network, Graph2d* a *Graph3d*. Pre moju aplikáciu som používala len časť *Network*.

Obr. 11: Jednoduchá sieť vytvorená s použitím knižnice vis.js

```
<style type="text/css">
  #mynetwork {
    width: 600px;
    height: 400px;
    border: 1px solid lightgray;
</style>
<script type="text/javascript">
 // create an array with nodes
 var nodes = new vis.DataSet([
    {id: 1, label: 'Node 1'},
    {id: 2, label: 'Node 2'},
    {id: 3, label: 'Node 3'},
   {id: 4, label: 'Node 4'},
{id: 5, label: 'Node 5'}
 ]);
 // create an array with edges
 var edges = new vis.DataSet([
    {from: 1, to: 3},
    {from: 1, to: 2},
{from: 2, to: 4},
    {from: 2, to: 5},
    {from: 3, to: 3}
 ]);
 // create a network
 var container = document.getElementById('mynetwork');
 var data = {
   nodes: nodes,
   edges: edges
 };
 var options = {};
 var network = new vis.Network(container, data, options);
</script>
```

Obr. 12: Príklad použitia knižnice vis.js

8.5 Implementácia

Aplikácia je napsaná v jazyku C#, grafické rozhranie je naimplementované pomocou návrhového vzoru Model View Controller a graf bol vizualizovaný pomocou knižnice vis.js. Aplikácia bola vyvíjaná vo Visual Studiu 2017.

8.6 Import dát

Do aplikácie je možné nahrať XML súbor, ktorý je spracovaný uloženou SQL procedúrou, ktorá rozparsuje emailové dáta na jednodlivé entity - *User, EmailMessage, UserEmail* a *Conversation* a uloží ich do SQL databázy.

Obr. 13: Doménový model

8.6.1 Konštrukcia siete

Rozdiel medzi prísupom rôznych štúdií a mojím prístupom pri konšrukcii grafu z emailového datasetu je v konštrukcii komunikačnej siete. Ako základnú stavebnú jednotku siete som si zvolila konverzáciu. Inšpirovala som sa prácou autorov Kudělka, Horák, Zehnaloová [10]. Konverzácia je teda súbor emailov, ktorá začína jediným emailom, obsahuje najmenej 2 emaily a dvoch rôznych odosielateľov. Vrcholom siete (grafu) sa teda stane užívateľ, ktorý bol ako odosielateľ aspoň v jednej takejto konverzácii. Hrana medzi užívateľmi je zostrojená medzi užívateľmi, ktorí boli spolu v jednej konverzácii ako odosielatelia. Pre konverzáciu ešte ukladám čas jej začiatku, užívateľ si následne v aplikácii môže zvoliť časový rozsah konverzácií.

8.6.2 Triedy pre graf a vrcholy

- dopisat implementaciu grafu + vrcholov + triedny diagram

9 Experimenty

	počet
Emaily	cell6
Konverzácie	cell9
Požívatelia (emailové adresy)	cell9

Tabuľka 1: Detaily datasetu

- experiment pre celu agregovanu siet tabulka: pocet emailov, pocet konverzacii, pocet emailovych adries tabulka: pouzivatelia, ktory su aspon v jednej konverzacii, emaily poslane z emailu korporacie, konverzacie ktorych aspon jeden user je z korporatu, konverzacie iniciovane niekym z korporatu tabulka poctu komunit s meniacim sa casom tabulka poctu leadrov s meniacim sa casom
- experiment pre jedneho vybraneho cloveka tabulka: pocet emailov, pocet konverzacii, pocet emailovych adries porovnanie toho, ci sa rola zmenila pocas kazdeho roku straveneho vo firme

	počet
Emaily	cell6
Konverzácie	cell9
Požívatelia (emailové adresy)	cell9

Tabuľka 2: Detaily datasetu

- 10 Záver
- 10.1 Možnosti rozšírenia a zdokonalenia práce

Literatura

- [1] Guanting Tang, Jian Pei, and Wo-Shun Luk

 Email Mining: Tasks, CommonTechniques, and Tools
- [2] Xiaoyan Fu Visualization and Analysis of Email Networks
- [3] J. Diesner, T. L. Frantz, and K. M. Carley

 Communication networks from the enron email corpus it's always about the people. Enron
 is no different
- [4] A. Chapanond, M. S. Krishnamoorthy, and B. Yener Graph Theoretic and Spectral Analysis of Enron Email Data
- [5] TeamNETData http://inflex.cz:8075/TeamNETdata/
- [6] N. Crossley, E. Bellotti, G. Edwards, M. G. Everett, J. Koskinen, M. Tranmer Social network analysis for Ego-Nets
- [7] Petr KovářÚvod do Teorie grafů skripta VŠB
- [8] M.E.J. Newman

 The structure and function of complex networks
- [9] Afra Abnar, Mansoureh Takaffoli, Reihaneh Rabbany, Osmar R. Zaiane SSRM: Structural Social Role Miningfor Dynamic Social Networks
- [10] Zehnalová, Horák, Kudělka Email Conversation Network Analysis: Work Groups and Teams in Organizations
- [11] Repository pattern
 https://www.rarous.net/weblog/271-active-record-vs-repository-pattern.aspx
- [12] Vincent D. Blondel, Jean-Loup Guillaume1, RenaudLambiotte and Etienne Lefebvre Fast unfolding of communities in large networks
- [13] Do Millennial and Gen Z Consumers Still Use Email? https://www.bluecore.com/blog/do-millennials-use-email/
- [14] vis.js http://visjs.org/