Planche 1.

Exercice 1. Quelles sont les matrices $A \in O_n(\mathbb{R})$ à coefficients positifs?

Exercice 2. Soit $A, B \in S_n^+(\mathbb{R})$. Montrer que $(\det(A))^{1/n} + (\det(B))^{1/n} \leq (\det(A+B))^{1/n}$.

Planche 2.

Exercice 1. Quelle transformation géométrique la matrice suivante représente?

$$\frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ 1 & -2 & 2 \\ 2 & -1 & -2 \end{pmatrix}$$

Exercice 2. Soit $A \in S_n^{++}(\mathbb{R})$ et $B \in S_n^{+}(\mathbb{R})$. Montrer que AB est diagonalisable avec $Sp(AB) \subset \mathbb{R}^+$.

Planche 3.

Exercice 1. Trouver les endomorphismes f symétriques tels que $\langle f(x), x \rangle$ pour tout $x \in E$.

Exercice 2. Soit u un vecteur unitaire de \mathbb{R}^n . On définit la matrice $A = I_n - 2u^t u$. Montrer que $A \in O(\mathbb{R})$ et décrire l'automorphisme orthogonal de \mathbb{R}^n qu'elle décrit.