Aufgabe 1: Raytracing

Teilaufgabe 1a

Raytracing nach Whitted, wie Sie es in der Vorlesung kennengelernt haben, folgt den Gesetzen der geometrischen Optik. Ergänzen Sie die folgende Liste um die 3 weiteren Strahltypen, die bei diesem Raytracing-Verfahren vorkommen!

- (1) Primärstrahlen (2) Reflektionsstrahlen (rekursiv) (3) Transmissionsstrahlen (rekursiv)
- (4) Schattenstrahlen

Teilaufgabe 1b

Die folgenden Skizzen zeigen zwei Lichtstrahlen mit unterschiedlichem Einfallswinkel die an einer spekularen Glasoberfläche reflektiert werden (der Vektor N ist die Oberflächennormale).

In Bild 2, da dort der Winkel des Strahls auf die Oberfläche flacher ist.

Teilaufgabe 1c

Wie nennt man das physikalische Gesetz oder Prinzip, welches den Zusammenhang zwischen Einfallswinkel und Reflektivität beschreibt?

Snelliussches Brechungsgesetz. Es lautet

$$n_1 \cdot \sin(\theta_1) = n_1 \cdot \sin(\theta_2)$$

wobei die Winkel von der Oberflächennormale aus gemessen werden. n_1, n_2 sind Materialkonstanten.

Aufgabe 2

Teilaufgabe 2a

Ergänzen Sie die Skizze und zeichnen Sie die 4 Vektoren ein, die im Phong-Beleuchtungsmodell für die Beleuchtungsberechnung benötigt werden! Verwenden Sie für die Skizze die Betrachterposition B_1 und den Oberflächenpunkt x_1

Die 4 Vektoren sind:

- \bullet View-Vektor V
- Normale N,
- \bullet Licht-Vektor L und
- Reflektionsvektor R_L

$$I = \underbrace{k_a \cdot I_L}_{\text{ambient}} + \underbrace{k_d \cdot I_L \cdot (N \cdot L)}_{\text{diffus}} + \underbrace{k_s \cdot I_L (R_L \cdot V)^n}_{\text{spekular}}$$

Teilaufgabe 2b

Der Wert welcher Komponente(n) des Phong-Beleuchtungsmodells verändert bzw. verändern sich, wenn in der obigen Situation...

- (i) ... der Punkt x_2 statt x_1 betrachtet wird? L, R_L, V : Spekular und diffus
- (ii) ... die Szene aus der Position B₂ statt B₁ betrachtet wird? V: diffus

Teilaufgabe 2c

In welcher Komponente taucht der sogenannte Phong-Exponent auf und welchen Einfluss hat er auf die Erscheinung einer Oberfläche? Wie ändert sich das Aussehen, wenn der Phong-Exponent größer gewählt wird?

Diffuse Komponente

Ein großes n führt dazu, dass **Glanzlichter** kleiner, aber intensiver werden. Die reflektion wird "perfekter".

Teilaufgabe 2d

#	Aussage	Wahr	Falsch
1	Zu drei gewählten Primärfarben gibt es immer Spektralfarben, die durch	X	
	die Kombination dieser drei Farben nicht realisierbar sind.		
2	Menschen können geringe Helligkeitsunterschiede im Bereich niedriger	X	
	Lichtintensität besser wahrnehmen als im Bereich hoher Lichtintensität.		
3	Es gibt keinen linearen Zusammenhang zwischem dem CIE-XYZ- und		X
	dem RGB-Modell.		
4	Gammakorrektur ist nur bei Röhrenmonitoren notwendig.		X

Aufgabe 3

Teilaufgabe 3a

TODO

Teilaufgabe 3b

TODO

Aufgabe 4

Teilaufgabe 4a

Teilaufgabe 4b

TODO

Aufgabe 5

Teilaufgabe 5a

TODO

Teilaufgabe 5a

TODO

Aufgabe 6

Teilaufgabe 6a

TODO

Teilaufgabe 6b

TODO

Teilaufgabe 6c

```
spheretracing.frag
in vec3 A; // Ursprung des Strahls.

in vec3 D; // Die normalisierte Richtung des Strahls.

in float tMax; // Abbruchkriterium: maximale Suchdistanz.

uniform float epsilon; // Toleranz

// Distanzfunktion. Liefert den Abstand von x zur nächsten Fläche.

float DF( vec3 x ) { ... }

// Implementieren Sie Sphere Tracing in dieser Funktion.

bool sphereTrace( out vec3 pos, out int steps ) {

pos = A;

steps = 0;
```

```
float t = 0.;
float t = 0.;
float d = DF(pos);
```

Aufgabe 7

Teilaufgabe 7a

TODO

Teilaufgabe 7b

TODO

Aufgabe 8

Teilaufgabe 8a

TODO

Teilaufgabe 8b

TODO

Teilaufgabe 8c

Aufgabe 9

```
in vec4 p; // Position des Vertex in Objektkoordinaten.
2 uniform float t; // Aktueller Zeitpunkt.
3 uniform float t1; // Die Zeitpunkte der drei Keyframes.
4 uniform float t2;
5 uniform float t3;
6 uniform mat4 M1; // Die drei Transformationsmatrizen (Objekt->Welt).
7 uniform mat4 M2;
8 uniform mat4 M3;
9 uniform mat4 VP; // Die View-Projection-Matrix.
11 void main() {
      vec4 pWorld;
      if (t < t2) {
          pWorld = mix(M1 * p, M2 * p, (t - t1) / (t2 - t1));
      } else {
15
          pWorld = mix(M2 * p, M3 * p, (t - t2) / (t3 - t2));
16
18
      gl_Position = VP * pWorld;
19
20 }
```

Aufgabe 10

Teilaufgabe 10a

```
shader.frag
void renderScene() {

// Setup vor dem Löschen von Frame- und Tiefenpuffer

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

// Zeichnen der Szene ab hier

//TODO

//TODO
```

Teilaufgabe 10b

Teilaufgabe 10c

TODO

Aufgabe 11: Bézierkurven

Teilaufgabe 11a

TODO

Teilaufgabe 11b