13-1. 생체인식 개요 및 베이지언성능 평가

생체인식?

• 생리, 행동적인 특성을 이용해서 개인을 식별하는 기술

생체 정보의 종류

- 사람의 신체 특징(외형적)
- 행동

정확도: 생리적 특성 > 행동

생체인식 요구 특성들

- 보편성
 - 모든 사람들이 가지고 있는 신체 특징
- 유일성
 - 보편적이면서도 다른 개개인의 특성
- 영구성
 - 시간이 지나도 변하지 않는 특성
- 획득성
 - 어떤 특성을 쉽게 취득할 수 있어야 하는 것
- 변조 곤란성
 - 다른 사람이 따라할 수 없는 특성
- 성능
 - 정확도
- 수용성
 - 생체인식 시스템 사용 시 불편함이 없는 특성

생체인식 특성 비교

생체정보	보편성	유일성	영구성	획득성	성능	수용성	변조곤란성
지문	중	상	상	중	상	중	상
얼굴	상	하	중	상	하	상	하
손 등 정맥	중	중	중	중	중	중	상
홍채	상	상	상	중	상	하	상
망막	상	상	중	하	상	하	상
얼굴열상	상	상	하	상	중	상	상
서명	하	하	하	상	하	상	하
음성	중	하	하	중	하	상	하
타이핑	하	하	하	중	하	중	중

생체인식 시스템

- 1. 등록하기
 - 1. 정보에서 특징을 추출한 후 DB에 저 장(유출된 특징으로 생체 정보를 다시 reconstruct하는 것은 불가능)

- 2. 인증/인식(Matching, 정합)
 - 1. 새로운 정보와 이미 DB에 있는 특징 비교

등록(Enrollment)

인증(Verification)

인증은 1:1 매칭 DB안에 내 생체 정보 하나와 지금 입력한 생체 정보를 비교한다.

인식(Recognition, Identification)

인식은 1:N 매칭 DB 안에 1명의 생체 정보가 들어가 있는 것이 아니라 여러 사람의 생체 정보가 들 어가 있음.

특징 비교를 통해 가장 유사도가 높은 생 체 정보 아이디를 return한다.

생체인식 성능척도

입력된 생체 정보와 DB의 생체 정보 를 비교해서 Binary Classification 2가지 종류의 에러

False Acceptance Rate(FAR)

: 잘못된 정보를 옳음으로 판단

False Rejection Rate(FRR)

: 올바른 정보를 잘못됨으로 판단

-> 임계치 값에 따라 변함

시스템의 에러율(Equal Error Rate)

13-2. 지문인식과 홍채인식

지문의 특성

• 높은 신뢰성, 보편성, 경제성

끝점: 진행하다가 끊기는 부분 보기점: 지해되다가 가라지는 보

분기점 : 진행되다가 갈라지는 부분

Minutiae: 끝점 + 분기점

삼각주, 중심점: 특징으로 활용하진 않

지만 정렬 시 기준으로 사용함

일반적으로 500dpi 이상의 해상도 영

상 사용

지문인식 시스템

지문영상획득 – 광학적 방법

빛을 이용하는 방법

빛이 들어온 영역 : 밝음

빛이 들어오지 않은 영역: 어두움

(a) 프리즘을 이용한 센싱방법

(b) 홀로그램을 이용한 센싱방법

지문영상획득 – 광학적 방법

지문이 들어가 있고 나와 있는 것에 따라 소스단으로부터 거리를 측정

- (a) 센서어레이를 이용
- (b) 전기장을 이용
- (c) 초음파를 이용

특징점 추출

- 1. 방향영상 계산 (Directional Image)
- 2. 지문영역 분할 (Segmentation)
- 3. 계조영상 강조 (Gray Image Enhancement)
- 4. 이진화 (Binarization)

- 5. 이진영상 강조 (Binary Enhancement)
- 6. 세선화 (Thinning)
- 7. 특징점(Minutiae) 검출과 의사특징점 제거

특징점 추출 순서도

특징점 추출 예시

하나의 지문 영상에서 여러 개의 특징점이 추출됨 특징점 정합 : Minutiae들의 집합 끼리 유사도를 측정 영상에서 점들의 좌표 집합들은 유사도를 측정하는 Distance Measure를 사용하여 비교함

홍채 인식

사람의 동공 크기를 조절하는 동공 주변의 도넛 모양의 근육 띠가 사람마다 패턴이 다름을 이용

눈 중앙의 검은 동공과 공막(흰자위) 사이에 존재하는 링(Ring) 모양의 패턴

홍채인식 시스템

눈영상 획득 및 홍채영역 추출

• 조명장치 + 카메라 + (프레임그래버)

적외선 카메라로 찍은 영상에서 동공과 홍채 경계 검출

직사각형으로 펼침

영상의 조명 성분(저주파 성분)

조명을 균일하게 맞춰줌

Histogram Equalization

8개 트랙, 256 섹터 2048개의 0or1의 Binary bit 생성

홍채특징 추출 및 코드 생성

2차원 Gabor 웨이블릿 변환에 의한 복소수(Complex) 계수의 위상 (Phase)을 양자화하여 배열한 것

Gabor Wavelet : 가운데가 볼록 튀어나와 있고 양옆으로는 꺼져 있는 모양의 기저 함수

양수 방향 적분, 음수 방향 적분해보면 정확하게 사이즈가 같은 0 양수면 1 할당, 음수면 0할당하는 식으로 양자화

반드시 Gabor Wavelet, 8개 트랙, 256개 섹터 인건 아님(변경 가능)

정합

유사도 계산

$$HD = \frac{1}{2048} \sum_{i=1}^{2048} A_i(XOR)B_i$$

홍채인식기술 - 낮은 FRR, FAR - 뛰어난 변별력

Binary String에 Hamming Distance 거리 계산