Rappel (mon exhaustif) du cours pour le TD3

Formalisme de Dirac

Idée: la physique quantique est linéaire et a donc une structure d'algèbre. On formalise tout cela avec les motations de Dirac, qui sont très pratiques.

Extrêmement similaire à l'algèbre de prépa. Différences principales:

- La dimension est em général imfinie (me change pas grand chose em pratique)
- L'espace vectoriel est complexe (espace de Hilbert)

 Faire attention à bien passer au complexe anjugué
 quand il le faut
- Nouvelles motations (10>, <91,...). Très utiles, surtout em dimension infinie

Soit { lui} ien une base orthonormée de l'espace de Hilbert Lui luj> = Sij

Note: Dans ce cours, toutes les bases serent orthonormées

	Notation	Dirac		Notat.in	matric	ielle	
Ret	14> =	ξφί Ιαίγ	recteur	colonne	しゅうこ	() 2 () 2 () m	
bra	√φ).	= Z \opin \tau \cdot \cd	vecteur	igme <фl	- (φ ^ι ,	φ ₂ ,, φ ₄)	
Prod	Produit scalaire <914> = \(\phi \) i \(\psi \)						
		イル / ゆ ン=	<u>Σ</u> Ψ;*φ;	= < \$ \psi;	\		
Nome de 14>: 1114>11= \(\langle 4\)14> = \(\sum_{\in} \frac{\sum_{1}}{\in} \frac{1}{\in} \)							
	Notation	Dirac		Notatio			
6	perateur Â	= Zaij lui> <ujl< th=""><th>matrice</th><th>$\hat{P}_{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$</th><th>a, a,,</th><th>amp</th></ujl<>	matrice	$\hat{P}_{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	a, a,,	amp	
(lui> <uj)]; (0="" 0="" 10="" baje="" colonne="" des="" ein="" est="" ij="" jeme="" opérateurs.="" th="" une="" ····="" ····)<=""></uj)];>							
Em	, matriciel	: lui>luj = ième lig	0 1 0 1 0	0	· 0 10		

```
identité
En particulier: - I = [14:><uil (relation de fermeture)
                 - Si À est une matrice diagonale dans
{lui>} (L=> &: (lui>) est une base de
                               recteurs propres de Â)
                     Alors  = Z li lui > lui!

Voleurs propres de Â
Calculer les coefficients d'an bet ou d'un opérateur:
 * 147= Z d: lui> ~D {umld>= Z d: {um lui>
                      ms 2um/4> = 4m
        Au gimal 14>= Z < u:14> lui>
         A = Zaij lui> <ujl
      ~s ZumlÂlup> - Zaij Zumlui> zujlup>
       ~ 2 Lum | A lup > = amp
        Au final  = Z Lu: lÂluis luis Luis
```

En général deux opérateurs me commutent pas: ÂB n'est pas toujours égal à BÂ

Les le commutateur $[\hat{A}, \hat{B}] = [\hat{A}\hat{B} - \hat{B}\hat{A}]$ me vaut pas forcement O.

Ât est l'opérateur adjoint (= conjugué hermitique) de Â Définition: <\(\quad 1\alpha\rangle = <\gamma 1\hat{A}^\dag \rangle \r

Representation matricielle: transposé + conjugué de $\widehat{A}^{\dagger} = \begin{pmatrix} a_{i1} & a_{2i} & --- \\ a_{i2} & --- \\ & \ddots \end{pmatrix}$

i.e. $\widehat{A}^{\dagger} = \sum_{i,j} a_{i}^{\alpha} |u_{i}\rangle\langle u_{j}|$

Quelques relations utiles: $(\widehat{A}^{\dagger})^{\dagger} = \widehat{A}^{\dagger}$ $(\widehat{A}\widehat{B})^{\dagger} = \widehat{B}^{\dagger}\widehat{A}^{\dagger}$

Note: le conjugué hermitique d'un bet 107 est le bra <01

truc de calcul 1: Passer n'importe quelle expression de Drac au conjugué hermitique:
On remplace: - À par Ât pour les opérateurs
- 107 par <01 et <01 par 10> pour les vecteurs
- c par c* pour les complexes
et en inverse l'indre des éléments
Exemple: $\hat{A} = \sum_{i \in I} a_{ij} u_{ij} \rangle \langle u_{ij} \iff \hat{A}^{\dagger} = \sum_{i \in I} a_{ij}^{\dagger} u_{ij} \rangle \langle u_{i} $
Truc de calcul 2: Tout se parse bienn en motation de Dirac
Exemple: 14724/1a> peut se lire de mounière équivalente
- l'opérateur 14724/ agit sur le fret la>
- le Ret 147 est multiplié par le scalaire <4/a>
(i.e. <4/10> 14>)

Lien avec la physique

- · L'état d'un système est représenté par un Bet 10>.
- · A chaque grandeur physique en associe un opérateur auto-adjoint (= hermitien) appelé observable

Grandeur physique A ~D opérateur t.q. Â = Â

Matriciellement cela veut dire que les coefficients diagonaux sont réels et que les coefficients mon diagonaux sont complexes conjugués; aii ER et aij = aji

Résultat mathématique 1: Il existe toujour une bosse orhonomée d'un opérateur auto-adjoint et ses valeur propres sont réelles.

5: on mote: - li les valeur propres - 12:> les vecteur propres

On peut décomposer n'importe quel fait sur la base des

14> = \frac{7}{2} ci 1 \(\)i>

Mesure en physique quantique

Si on effectue une mesure de A, on peut uniquement mesurer une de ses valeurs propres.

Si le système est dans l'état los, la probabilité de mesurer li est $|Ci|^2 = |\langle \lambda i | \phi \rangle|^2$ (Si la valeur propre li est dégénérée, la probabilité

devient $\sum_{i,q,\lambda_i=\lambda_j} |c_i|^2 = \sum_{i,q,\lambda_i=\lambda_j} |c_i|^2$

Valeur moyenne de la meoure si le système est dans l'état 16>: $\angle \hat{A} = \angle \phi | \hat{A} | \phi >$

Réduction du paquet d'onde: Immédiatement après la mesure, le système est projeté sur le vecteur propre correspondant à la valeur propre mesurée:

 $|\Psi\rangle_{après} = \frac{|\lambda i\rangle \langle \lambda i| |\Psi\rangle_{avent}}{|Ci|} = \frac{\langle i|\lambda i\rangle}{|Ci|} \frac{\langle Ci|\lambda i\rangle}{|Ci|}$ $= \frac{|\lambda i\rangle \langle \lambda i| |\Psi\rangle_{avent}}{|V|} = \frac{\langle i|\lambda i\rangle}{|V|} \frac{\langle Ci|\lambda i\rangle}{|V|}$

Résultat mathématique 2: Deux observables commutent
si et seulement si il existe une base commune de
diagonalisation.
Deux grandeurs physiques qui commutent sont dites
· ·
compatibles
·