

Kolloquium zur Abschlussarbeit im Bachelorstudiengang Informatik

Untersuchung der Sicherheit von OpenWrt anhand der BSI TR-03148 mittels eines OpenWrt betriebenen Heim-Routers

von Henry Weckermann

Erstbetreuer: Prof. Markus Ullmann

Zweitbetreuer: Prof. Dr. Norbert Jung

Betreuer im BSI: Florian Bierhoff

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Ziele der Arbeit

1. TR-konformität von OpenWrt prüfen

2. Statischer Softwaretest von quelloffener Router-Firmware

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Bundesamt

für Sicherheit in der Informationstechnik

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Verwandte Arbeiten

Ortega et al. (2009) [1]

ARP Cache Poisoning Angriffe verhindern (Technik auf OpenWrt implementiert)

Palazzi et al. (2010) [2]

OpenWrt als vereinheitlichende Plattform für kabellose Geräte

Andrew McDonnell (2014) [3]

Sicherheitsevaluation von OpenWrt Barrier Breaker (erschienen 2014)

- Viel Forschung am und mit dem Linux Kernel [4, 5]
- (Einsatz von /) Forschung an Softwarepaketen, welche auch in OpenWrt genutzt werden [6, 7]:
 - OpenSSL
 - dnsmasq
 - BusyBox
 - Dropbear
 - iptables

Verwandte Arbeiten

• Ortega et al. (2009) [1] ARP Cache Poisoning Angriffe verhindern (Technik auf OpenWrt implementiert)

Palazzi et al. (2010) [2] OpenWrt als vereinheitlichende Plattform für kabellose Geräte

Andrew McDonnell (2014) [3] Sicherheitsevaluation von OpenWrt Barrier Breaker (erschienen 2014)

- Viel Forschung am und mit dem Linux Kernel [4, 5]
- (Einsatz von /) Forschung an Softwarepaketen, welche auch in OpenWrt genutzt werden [6, 7]:
 - OpenSSL
 - dnsmasq
 - BusyBox
 - Dropbear
 - iptables

Verwandte Arbeiten

• Ortega et al. (2009) [1] ARP Cache Poisoning Angriffe verhindern (Technik auf OpenWrt implementiert)

Palazzi et al. (2010) [2] OpenWrt als vereinheitlichende Plattform für kabellose Geräte

• Andrew McDonnell (2014) [3] Sicherheitsevaluation von OpenWrt Barrier Breaker (erschienen 2014)

- Viel Forschung am und mit dem Linux Kernel [4, 5]
- (Einsatz von /) Forschung an Softwarepaketen, welche auch in OpenWrt genutzt werden [6, 7]:
 - OpenSSL
 - dnsmasq
 - BusyBox
 - Dropbear
 - iptables

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Methodik - Testumgebung

Methodik – Device under Test

MODEL:	Archer C7 AC1750	
VERSION:	v5	
SUPPORTED SINCE REL:	18.06.0	
SUPPORTED CURRENT REL:	19.07.6	
TARGET:	ar71xx-ath79	
SUBTARGET:	generic	
PACKAGE ARCHITECTURE:	mips_24kc	
CPU:	Qualcomm Atheros QCA9563	
CPU CORES:	1	
CPU MHZ:	750	
FLASH MB:	16	
RAM MB:	128	
WLAN HARDWARE:	Qualcomm Atheros QCA9563, Qualcomm Atheros QCA9880	
WLAN 2.4GHZ:	b/g/n	
WLAN 5.0GHZ:	a/n/ac	
WLAN DRIVER:	ath9k, ath10k	

[8]

[9]

Methodik – Device under Test (2)

Gründe für dieses Gerät:

- Günstig (ca. 60€)
- Ausreichend Leistung für OpenWrt (s. Folie 21)
- Große Beliebtheit in der OpenWrt Community
 - Derzeit Platz 10 der Downloads [10]

- 19.07.4
- Veröffentlicht: 10. September 2020 [11]

Methodik – Device under Test (3)

Zustände des DUT

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Methodik – Technische Richtlinie

Test Documentation – Programme und Tools

- nmap Port Scanner [12]
- Aircrack-ng Analyse von Wifi Netzwerk Sicherheit [13]
- Wireshark Netzwerkpaket Sniffer [14]
- testssl.sh Test der TLS/SSL Verschlüsselung [15]
- Python Skripte:
 - Bruteforce check (SSH / web)
 - CSRF Token Einzigartigkeit
 - DNS Source Port / Transaction ID Zufälligkeit
- DNS Rebinding Angriff: http://rebind.it/singularity.html [16]

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

- Vom Fraunhofer-Institut f\u00fcr Kommunikation, Informationsverarbeitung und Ergonomie (FKIE)
 entwickelt
- In Python realisiert
- Software zur automatischen Durchführung einer statischen Firmwareanalyse
- Bietet verschiedene Analysen als Plug-Ins an
- Vergleich von analysierter Firmware möglich
- Datenexport durch REST API

- Vom Fraunhofer-Institut f\u00fcr Kommunikation, Informationsverarbeitung und Ergonomie (FKIE)
 entwickelt
- In Python realisiert
- Software zur automatischen Durchführung einer statischen Firmwareanalyse
- Bietet verschiedene Analysen als Plug-Ins an
- Vergleich von analysierter Firmware möglich
- Datenexport durch REST API

- Vom Fraunhofer-Institut f\u00fcr Kommunikation, Informationsverarbeitung und Ergonomie (FKIE)
 entwickelt
- In Python realisiert
- Software zur automatischen Durchführung einer statischen Firmwareanalyse
- Bietet verschiedene Analysen als Plug-Ins an
- Vergleich von analysierter Firmware möglich
- Datenexport durch REST API

- Vom Fraunhofer-Institut f\u00fcr Kommunikation, Informationsverarbeitung und Ergonomie (FKIE)
 entwickelt
- In Python realisiert
- Software zur automatischen Durchführung einer statischen Firmwareanalyse
- Bietet verschiedene Analysen als Plug-Ins an
- Vergleich von analysierter Firmware möglich
- Datenexport durch REST API

- Vom Fraunhofer-Institut f\u00fcr Kommunikation, Informationsverarbeitung und Ergonomie (FKIE)
 entwickelt
- In Python realisiert
- Software zur automatischen Durchführung einer statischen Firmwareanalyse
- Bietet verschiedene Analysen als Plug-Ins an
- Vergleich von analysierter Firmware möglich
- Datenexport durch REST API

- Vom Fraunhofer-Institut f\u00fcr Kommunikation, Informationsverarbeitung und Ergonomie (FKIE)
 entwickelt
- In Python realisiert
- Software zur automatischen Durchführung einer statischen Firmwareanalyse
- Bietet verschiedene Analysen als Plug-Ins an
- Vergleich von analysierter Firmware möglich
- Datenexport durch REST API

Firmware Korpus

Projekt	Geeignetes Produkt	Firmware Version
AdvancedTomato	NETGEAR WNDR3700v3	3.4-138
DD-WRT	TP-Link Archer C7 v5	12-18-2020-r45036
Freifunk Gluon	TP-Link Archer C7 v5	V2-v2020.2.1
Gargoyle Router Management	TP-Link Archer C7 v5	1.12.0 (stable)
LibreCMC	TP-Link Archer C7 v2	v1.5.3:2020-10-02
OpenWrt	TP-Link Archer C7 v5	19.07.4
OpenWrt	TP-Link Archer C7 v5	19.07.5

- Letztes Update der Firmware
 - Veröffentlichungsdatum
- Linux Version + Anzahl der CVE Einträge für diese Linux Version
 - Plug-Ins: CVE Lookup, CWE Checker, Software Components, Known Vulnerabilities
- Analyse der Exploit Mitigations (PIE, RELRO, NX, FORTIFY_SOURCE, Stack Canary)
 - Plug-In: Exploit Mitigations
- Privates kryptographisches Material
 - Plug-In: Crypto Material
- Hartkodierte Login-Daten (Nutzeraccounts) mit bekannten Passwörtern
 - Plug-In: Users and Passwords

- Letztes Update der Firmware
 - Veröffentlichungsdatum
- Linux Version + Anzahl der CVE Einträge für diese Linux Version
 - Plug-Ins: CVE Lookup, CWE Checker, Software Components, Known Vulnerabilities
- Analyse der Exploit Mitigations (PIE, RELRO, NX, FORTIFY_SOURCE, Stack Canary)
 - Plug-In: Exploit Mitigations
- Privates kryptographisches Material
 - Plug-In: Crypto Material
- Hartkodierte Login-Daten (Nutzeraccounts) mit bekannten Passwörtern
 - Plug-In: Users and Passwords

- Letztes Update der Firmware
 - Veröffentlichungsdatum
- Linux Version + Anzahl der CVE Einträge für diese Linux Version
 - Plug-Ins: CVE Lookup, CWE Checker, Software Components, Known Vulnerabilities
- Analyse der Exploit Mitigations (PIE, RELRO, NX, FORTIFY_SOURCE, Stack Canary)
 - Plug-In: Exploit Mitigations
- Privates kryptographisches Material
 - Plug-In: Crypto Material
- Hartkodierte Login-Daten (Nutzeraccounts) mit bekannten Passwörtern
 - Plug-In: Users and Passwords

- Letztes Update der Firmware
 - Veröffentlichungsdatum
- Linux Version + Anzahl der CVE Einträge für diese Linux Version
 - Plug-Ins: CVE Lookup, CWE Checker, Software Components, Known Vulnerabilities
- Analyse der Exploit Mitigations (PIE, RELRO, NX, FORTIFY_SOURCE, Stack Canary)
 - Plug-In: Exploit Mitigations
- Privates kryptographisches Material
 - Plug-In: Crypto Material
- Hartkodierte Login-Daten (Nutzeraccounts) mit bekannten Passwörtern
 - Plug-In: Users and Passwords

- Letztes Update der Firmware
 - Veröffentlichungsdatum
- Linux Version + Anzahl der CVE Einträge für diese Linux Version
 - Plug-Ins: CVE Lookup, CWE Checker, Software Components, Known Vulnerabilities
- Analyse der Exploit Mitigations (PIE, RELRO, NX, FORTIFY_SOURCE, Stack Canary)
 - Plug-In: Exploit Mitigations
- Privates kryptographisches Material
 - Plug-In: Crypto Material
- Hartkodierte Login-Daten (Nutzeraccounts) mit bekannten Passwörtern
 - Plug-In: Users and Passwords

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

nces

Bundesamt

für Sicherheit in der Informationstechnik

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Nicht anwendbare Testfälle:

- Module K Remote Configuration
- Module L Voice over IP
- Module M Virtual Private Network
- WPS Funktionalität
- Automatische Updates und Push Benachrichtigungen

LAN Interface

PORT STATE SERVICE VERSION

22/tcp open ssh Dropbear sshd (protocol 2.0)

53/tcp open domain Cloudflare public DNS

80/tcp open http

TCP

LAN Interface

PORT STATE SERVICE VERSION

22/tcp open ssh Dropbear sshd (protocol 2.0)

53/tcp open domain Cloudflare public DNS

80/tcp open http

TCP

PORT STATE SERVICE VERSION
53/udp open domain Cloudflare public DNS

UDP

LAN Interface

PORT STATE SERVICE VERSION

22/tcp open ssh Dropbear sshd (protocol 2.0)

53/tcp open domain Cloudflare public DNS

80/tcp open http

TCP

PORT STATE SERVICE VERSION 53/udp open domain Cloudflare public DNS

UDP

WAN Interface

All 65535 scanned ports on OpenWrt.fritz.box (192.168.178.115) are closed (65494) or filtered (41)

TCP

LAN Interface

PORT STATE SERVICE VERSION

22/tcp open ssh Dropbear sshd (protocol 2.0)

53/tcp open domain Cloudflare public DNS

80/tcp open http

TCP

PORT STATE SERVICE VERSION 53/udp open domain Cloudflare public DNS

UDP

WAN Interface

All 65535 scanned ports on OpenWrt.fritz.box (192.168.178.115) are closed (65494) or filtered (41)

TCP

All 65535 scanned ports on OpenWrt.fritz.box (192.168.178.115) are open | filtered (56258) or closed (9277)

UDP

Test results for DNS port randomization:

Number of samples: 1086

Number of unique ports: 1086

Range: 61 - 65508

Standard Deviation: 18668.148912615263

Test results for transaction ID randomization:

Number of samples: 1086

Number of unique ports: 1037

Range: 45 - 65415

Standard Deviation: 19128.480563438716

TR-Konformität von OpenWrt (4)

Test results for DNS port randomization:

Number of samples: 1086

Number of unique ports: 1086

Range: 61 - 65508

Standard Deviation: 18668.148912615263

Test results for transaction ID randomization:

Number of samples: 1086

Number of unique ports: 1037

Range: 45 - 65415

Standard Deviation: 19128.480563438716

Source Port Randomization: statistic = 0.032, p = 0.626 **Transaction ID Randomization:** statistic = 0.028, p = 0.802

TR-Konformität von OpenWrt (5)

Notwendige Änderungen zum Bestehen der TR

- In den meisten Fällen mit wenig Aufwand verbunden
- Vor allem "MUST" Kriterien betrachtet
- Nur einige "SHOULD" Kriterien behandelt
- Aufgrund der Natur von OpenWrt werden einige Testfälle auch in Zukunft fehlschlagen

TR-Konformität von OpenWrt (6)

Mean : 0.226 Median : 0.222

Regression coefficient : -0.08936 (p = 0.377)

Standard error : 0.0

Webserver

Mean : 1.256 Median : 1.256

Regression coefficient : -0.11312 (p = 0.262)

Standard error : 0.0

SSH Server

TR-Konformität von OpenWrt (6)

Mean : 0.226 Median : 0.222

Regression coefficient : -0.08936 (p = 0.377)

Standard error : 0.0

Webserver

Lösung:

• Fehlerzähler -> Login-Sperre nach x Fehlversuchen

Mean : 1.256 Median : 1.256

Regression coefficient : -0.11312 (p = 0.262)

Standard error: 0.0

SSH Server

TR-Konformität von OpenWrt (7)

Notwendige Änderungen zum Bestehen der TR - TR.D.2

"Access to the configuration of the DUT <u>MUST</u> at least be secured by a password in the initialized and customized state. The DUT <u>MAY</u> offer a higher level of security by providing alternative authentication mechanisms." [19]

- Man kann das DUT ohne Passwort nutzen
- Nur ein Passwort für alle Authentifizierungsmethoden ► LuCl Passwort = SSH Passwort = User Passwort
- Der Nutzer ist immer "root" Nutzer ▶ passwd setzte keine Restriktionen ein
- Man kann das Passwort ohne Eingabe des vorherigen Passwortes löschen

Lösung: Einführen eines dedizierten Nutzeraccounts mit der Möglichkeit das Programm "sudo" (o.Ä.) zu nutzen

Würde auch TR.D.10 und TR.D.15 beheben

TR-Konformität von OpenWrt (8)

Notwendige Änderungen zum Bestehen der TR - TR.E.5 bis TR.E.8

- Authentizität eines Firmware Updates muss automatisch geprüft werden
- Sollte auf digitalen Signaturen beruhen
- Nicht signierte Firmware darf nicht automatisch installiert werden -> Vorher muss dem Nutzer eine Warnung gezeigt werden

Lösungen:

- Einsatz von digitalen Signaturen möglich -> gleiches (ähnliches) Prüfverfahren wie bei opkg Paketen [20]
 - usign Ed25519 Signaturen (elliptische Kurve)
- Automatischer Download der digital signierten sha256sums Datei sowie der sha256sums.asc Datei
- Automatische Prüfung der Signatur
- Automatische Prüfung der Firmware

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Ergebnisse der Code-Analyse (1)

Betriebssystem und CVE Einträge

Figure 3.3: Number of Critical Severity CVEs in Linux Kernel per Firmware Image

Figure 3.4: Number of High Severity CVEs in Linux Kernel per Firmware Image

Ergebnisse der Code-Analyse (1)

Betriebssystem und CVE Einträge

Figure 3.3: Number of Critical Severity CVEs in Linux Kernel per Firmware Image

Figure 3.4: Number of High Severity CVEs in Linux Kernel per Firmware Image

Ergebnisse der Code-Analyse (1)

Betriebssystem und CVE Einträge

Figure 3.3: Number of Critical Severity CVEs in Linux Kernel per Firmware Image

Figure 3.4: Number of High Severity CVEs in Linux Kernel per Firmware Image

Ergebnisse der Code-Analyse (2)

Exploit Mitigations

Ergebnisse der Code-Analyse (3)

Private Key Material

 DD-WRT und Gargoyle jeweils 2 krypographische Schlüssel

Hard-coded Login Credentials

Ein Benutzeraccount mit Passwort bei Gargoyle

Figure 3.12: Number of Private Keys per Firmware Image

Figure 3.14: Number of Well Known Hard-coded Passwords per Firmware Image

[21]

Agenda

- Ziele der Arbeit
- Verwandte Arbeiten
- Methodik
 - Testumgebung und Rahmenbedingungen
 - Technische Richtlinie
 - Statische Code-Analyse mit FACT
- Ergebnisse
 - TR-Konformität von OpenWrt
 - Ergebnisse der Code-Analyse
- Limitationen und zukünftige Forschung

Limitationen und zukünftige Forschung

Limitationen

- Nativer Internetanschluss vs. double NAT -> weniger fehleranfällig und einfachere Konfiguration
- Zu wenige Systeme für einige Testanforderungen
- Conformance Statement wurde vom Tester ausgefüllt -> ggf. Voreingenommenheit (confirmation bias)
- Keine wirkliche Vergleichbarkeit von CVE Analyse

Limitationen und zukünftige Forschung

Zukünftige Forschung

- Vergleiche der TR Ergebnisse von Open Source Projekten mit Closed Source Router Firmware
- Vollständige Durchführung aller Module der TR bei OpenWrt mit vollem Funktionsumfang von OpenWrt (mit zusätzlichen Paketen aus dem Paketmanager)
- Ausführlichere statische Code-Analyse ggf. mit eigenen Plug-Ins und größerem Korpus
- Entwicklung einer TR-konformen OpenWrt Version (z.B. mit dem OpenWrt Image Builder)

Fragen

FACT Impressionen

Literaturverzeichnis

- [1] A. P. Ortega, X. E. Marcos, L. D. Chiang, and C. L. Abad, "Preventing ARP cache poisoning attacks: A proof of concept using OpenWrt," in 2009 Latin American Network Operations and Management Symposium, pp. 1–9, IEEE, 19.10.2009 21.10.2009. [Abgerufen am: 08.11.2020].
- [2] C. E. Palazzi, M. Brunati, and M. Roccetti, "An OpenWRT solution for future wireless homes," in 2010 IEEE International Conference on Multimedia and Expo, pp. 1701–1706, IEEE, 19.07.2010 23.07.2010. [Abgerufen am: 08.11.2020].
- [3] Andrew McDonnell, "Evaluating the security of OpenWRT." https://blog.oldcomputerjunk.net/2014/evaluating-the-security-of-openwrt-part-1/, 2014. [Abgerufen am: 08.11.2020].
- [4] Linus Torvalds, "Linux—a free unix-386 kernel." https://tech-insider.org/linux/research/acrobat/911010.pdf, 1991. [Abgerufen am: 08.11.2020].
- [5] G. K.-H. Jonathan Corbet, "Linux Kernel Development: How Fast It is Going, Who is Doing It, What They Are Doing and Who is Sponsoring the Work." https://www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2016.pdf, 2016. [Abgerufen am: 11.11.2020].
- [6] M. Jimenez, M. Papadakis, and Y. Le Traon, "An Empirical Analysis of Vulnerabilities in OpenSSL and the Linux Kernel," in 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), pp. 105–112, IEEE, 06.12.2016 09.12.2016. [Abgerufen am:08.11.2020].
- [7] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL: Cryptography for Secure Communications. Sebastopol: O'Reilly Media Inc, 2009.
- [8] OpenWrt Webseite, "Techdata: TP-Link Archer C7 AC1750 v5." https://openwrt.org/toh/hwdata/tp-link/tp-link_archer_c7_v5. [Abgerufen am: 03.02.2021].
- [9] TP-Link Corporation Limited. "AC1750-Dualband-Gigabit-WLAN-Router"https://www.tp-link.com/de/home-networking/wifi-router/archer-c7/ [Abgerufen am: 03.02.2021].
- [10] OpenWrt Webseite, "OpenWrt Download Statistik November 2020," 29.11.2020. [Abgerufen am: 30.11.2020].
- [11] OpenWrt Webseite, "OpenWrt Version History." https://openwrt.org/about/history, 13.12.2020. [Abgerufen am: 28.10.2020].
- [12] G. Lyon, nmap network scanning. Sunnyvale, CA: Insecure.Com LLC, 2008.
- [13] Thomas d'Otreppe de Bouvette. https://github.com/aircrack-ng/aircrack-ng, 25.01.2020. [Abgerufen am: 25.11.2020].
- [14] C. Sanders, Practical packet analysis: Using Wireshark to solve real-world network problems. San Francisco: No Starch Press, 3rd edition ed., 2017.
- [15] D. Wetter, "testssl.sh." https://testssl.sh, 2020. [Abgerufen am: 26.11.2020].
- [16] R. M. Gérald Doussot, "State of DNS Rebinding: Attack & Prevention Techniques and the Singularity of Origin."
- https://docs.google.com/presentation/d/107MxvbIfRcPSlbyZbFxD-fAR34XlquQSIRAHPb2kR4E/edit#slide=id.p, 2019. [Abgerufen am: 02.12.2020].
- [17] Fraunhofer FKIE, "FACT Core." https://github.com/fkie-cad/FACT_core, 2020. [Abgerufen am: 26.10.2020].
- [18] F. J. M. Jr., "The kolmogorov-smirnov test for goodness of fit," Journal of the American Statistical Association, vol. 46, no. 253, pp. 68–78, 1951. [Abgerufen am: 15.01.2021].

Literaturverzeichnis (2)

[19] Bundesamt für Sicherheit in der Informationstechnik, "BSI TR-03148:Secure Broadband Router: Requirements for secure Broadband Routers." https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03148/TR03148.pdf?__blob=publicationFile&v=3, 2020. [Abgerufen am: 26.10.2020].

[20] OpenWrt Webseite, "Release Signing." https://openwrt.org/docs/guide-user/security/release_signatures, 2019. [Abgerufen am: 05.01.2021].

[21] Peter Weidenbach, Johannes vom Dorp, "Home Router Security Report 2020."

https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity 2020 Bericht.pdf, 2020. [Abgerufen am: 27.10.2020].