Cálculo 1

Lista de Aplicações – Semana 08 – Soluções

Temas abordados: Taxas relacionadas; Extremos de funções

Seções do livro: 3.10, 4.1

- 1) Suponha que um barco seja puxado para o cais por uma corda presa à sua proa, situada 6 m abaixo do apoio da corda no cais, conforme a figura abaixo. Suponha ainda que a corda seja puxada com uma velocidade de 2 m/s. Nesse caso, o comprimento c(t) da corda entre a proa e o apoio, a distância d(t) do barco ao cais e o ângulo $\theta(t)$ entre a corda e a vertical são funções do tempo t. Denote por τ o instante em que $c(\tau) = 10$ m.
 - (a) Calcule o valor de $d(\tau)$.
 - (b) Calcule a derivada $d'(\tau)$.
 - (c) Calcule o valor de $tg(\theta(\tau))$.
 - (d) Usando os itens anteriores e a regra da cadeia, calcule o valor de $\theta'(\tau)$.

Soluções:

(a) Utilizando o teorema de Pitágoras no triângulo retângulo de lados $d(\tau), c(\tau)$ e 6, temos que

$$d(\tau) = \sqrt{10^2 - 6^2} = 8.$$

(b) Novamente por Pitágoras, segue-se que as medidas $c(t),\,d(t)$ e 6 estão relacionadas por

$$c^2(t) = d^2(t) + 6^2.$$

Derivando essa igualdade e utilizando regra da cadeia, segue que

$$2c(t) c'(t) = (c^2)'_{c=c(t)}(c(t))' = (c^2(t))' = (d^2(t) + 6^2)' = (d^2)'_{d=d(t)}(d(t))' = 2d(t) d'(t).$$

Da igualdade 2c(t) c'(t) = 2d(t) d'(t), isolando d'(t), obtemos que d'(t) = c(t) c'(t)/d(t). Observe agora que c'(t) = -2, uma vez que a corda está sendo puxada com uma velocidade de 2. Após esta observação, basta substituir $t = \tau$ na expressão de d'(t) e usar os valores $d(\tau) = 10$, obtido no item anterior, $c(\tau) = 10$ e $c'(\tau) = -2$, de modo a obter

$$d'(\tau) = \frac{-20}{8}.$$

(c) A tangente de $\theta(\tau)$ é igual à medida $d(\tau)=8$ do cateto oposto dividida pela medida 6 do cateto adjacente, de modo que

$$tg(\theta(\tau)) = \frac{8}{6}.$$

(d) Em um instante genérico t, tem-se $\operatorname{tg}(\theta(t)) = d(t)/6$. Derivando esta igualdade em relação a t, obtém-se que

$$(1 + tg^2(\theta(t)))\theta'(t) = d'(t)/6.$$

Basta agora isolar $\theta'(t)$, susbtituir $t = \tau$ e usar os valores já calculados de $tg(\theta(\tau)) = 8/6$ e $d'(\tau) = -20/8$, de modo a obter

$$\theta'(\tau) = \frac{-12}{80}.$$

- 2) Considere um reservatório, na forma de um hemisfério de raio R=10 m, com água até uma altura h, conforme ilustra a figura abaixo. Nesse caso, o volume de água é dado por $V(h)=(\pi/3)(3\,R\,h^2-h^3)$. Suponha que o reservatório esteja sendo abastecido com uma vazão de $16\,\pi$ m³/min. Portanto a altura h e o raio r da superfície da água são funções do tempo. Observe que a forma esférica do reservatório estabelece uma relação entre as funções h=h(t) e r=r(t).
 - (a) Usando a regra da cadeia aplicada a V(h(t)), determine o valor de $h'(\tau)$ no instante τ em que $h(\tau) = 4$.
 - (b) Obtenha a relação entre as funções h(t) e r(t) menciona acima.
 - (c) Usado os itens anteriores, determine o valor de $r'(\tau)$ no instante τ em que $h(\tau)=4$.

(a) Como o reservatório está sendo abastecido com uma vazão de 16 π m³/min, segue que

$$(V(h(t)))' = 16\pi,$$

para todo t. Temos que $V'(h)=\pi(2\,R\,h-h^2)$. Pela regra da cadeia, obtemos então que

$$16\pi = (V(h(t)))' = (V(h))'_{h=h(t)}(h(t))' = \pi(2Rh(t) - h^2(t))h'(t).$$

Isolando h'(t), segue que

$$h'(t) = \frac{16}{2 R h(t) - h^2(t)}.$$

Calculando isso no instante τ , no qual $h(\tau) = 4$, obtemos que

$$h'(\tau) = \frac{16}{8R - 16}.$$

(b) Pela figura, observando que a altura do reservatório é R, temos que r(t) e R-h(t) são os catetos de um triângulo retângulo de hipotenusa R. Pelo teorema de Pitágoras, segue que

$$r^{2}(t) + (R - h(t))^{2} = R^{2}.$$

(c) Isolando r(t) da igualdade do item anterior, obtemos que $r(t) = \sqrt{2Rh(t) - h^2(t)}$. Em particular, no instante τ em que $h(\tau) = 4$, temos que $r(\tau) = \sqrt{8R - 16}$. Agora derivando a igualdade do item anterior e utilizando a regra da cadeia, segue que

$$(r^2)'_{r=r(t)}(r(t))' + ((R-h)^2)'_{h=h(t)}(h(t))' = 2r(t)r'(t) - 2(R-h(t))h'(t) = 0.$$

Isolando r'(t), obtemos que

(*)
$$r'(t) = \frac{R - h(t)}{r(t)} h'(t).$$

Calculando isso no instante τ e utilizando os valores $r(\tau)$ e $h'(\tau)$, obtidos nos ítens anteriores, e $h(\tau) = 4$, segue que

$$r'(\tau) = \frac{R-4}{\sqrt{8R-16}} \frac{16}{8R-16} = 16 \frac{R-4}{(8R-16)^{\frac{3}{2}}}.$$

- 3) Suponha que, na construção de uma barraca com vista frontal na forma de um triângulo isósceles de altura h, as laterais devem ser feitas a partir de uma lona com 6 m de comprimento e 3 m de largura, conforme ilustra a figura.
 - (a) Determine o comprimento b da base do triângulo em função da altura h.
 - (b) Use o item anterior para expressar o volume V(h) da barraca em função de h.
 - (c) Determine h de forma que o volume V(h) seja máximo, justificando a sua resposta.

- (a) Usando o Teorema de Pitágoras obtemos que $3^2 = h^2 + (b/2)^2$, e assim $b = 2\sqrt{9 h^2}$.
- (b) Basta usar o item (a) para se concluir que

$$V(h) = 3\frac{bh}{2} = 3h\sqrt{9 - h^2}, \quad h \in [0, 3].$$

(c) Note que

$$V'(h) = 3\sqrt{9 - h^2} - \frac{3h^2}{\sqrt{9 - h^2}}.$$

Assim, a equação V'(h) = 0 é equivalente a

$$3\sqrt{9-h^2} = \frac{3h^2}{\sqrt{9-h^2}},$$

ou ainda,

$$9 - h^2 = h^2.$$

Logo, o único ponto crítico de V no intervalo (0,3) é o ponto $h=3/\sqrt{2}$. Uma vez que V(0)=V(3)=0 e $V(3/\sqrt{2})>0$ concluímos que o ponto crítico $h=3/\sqrt{2}$ é o ponto de máximo global de V em [0,3].

- 4) Um filtro na forma de um cone circular reto tem altura igual a 10 cm e raio da base igual a 5 cm. Suponha que uma certa quantidade de água seja colocada nesse filtro e que ela escoe para um recipiente na forma de um cilindro circular reto de mesmo raio e altura que o filtro, conforme ilustra a figura abaixo. Indique por x a altura da água no filtro e por y a altura da água no recipiente.
 - (a) Sendo r o raio da superfície da água no filtro, use semelhança de triângulos para determinar r em função de x.
 - (b) Sabendo que o volume de um cone circular reto de raio r e altura x é igual a $(1/3)\pi r^2 x$, determine o volume $V_1(x)$ da água no filtro como função de x.

- (c) Determine o volume $V_2(y)$ de água no recipiente cilíndrico.
- (d) Considerando que x = x(t) e y = y(t), em que t > 0 denota o tempo, determine y' no instante $\tau > 0$ tal que $x(\tau) = 5$ e $x'(\tau) = -0, 5$.

- (a) Fazendo um corte transversal no cone veremos dois triângulos retângulos semelhantes. Os catetos do primeiro medem 5 e 10. Os respectivos catetos do outro medem r e x. Segue então r=x/2.
- (b) Basta usar a fórmula do volume do cone e lembrar que r=r(x)=x/2 para obter $V_1(x)=(\pi/12)x^3$
- (c) O volume de água no cilindro reto é dado por $V_2(y) = 5^2 \cdot \pi \cdot y$.
- (d) Como a água escoa do cone para o cilindro sem desperdício, a taxa de variação dos dois volumes V_1 e V_2 , em módulo, são iguais. Como uma delas diminui enquanto a outra aumenta, elas têm sinal contrário, isto é, $\frac{d}{dt}V_2(y(t)) = -\frac{d}{dt}V_1(x(t))$. Assim, podemos usar os itens anteriores e a regra da cadeia para obter

$$3\frac{\pi}{12}x(t)^2x'(t) = \frac{d}{dt}V_1(x(t)) = -\frac{d}{dt}V_2(y(t)) = -25\pi y'(t),$$

ou ainda

$$y'(t) = -\frac{1}{4 \cdot 25} x(t)^2 x'(t).$$

Fazendo $t = \tau$ e usando os valores do enunciado concluímos que $y'(\tau) = 1/8$.

- 5) Suponha que uma viga retangular, de largura x e altura y, deva ser cortada de um cilindro de seção circular de raio a, como ilustra a figura abaixo. A resistência R dessa viga é diretamente proporcional ao produto de sua largura x pelo quadrado de sua altura y. Indique por K a constante de proporcionalidade e observe que a altura y = y(x) pode ser obtida a partir da largura x, e portanto a resistência R = R(x) pode ser expressa apenas em função da largura da viga x, onde x varia de 0 até o diâmetro 2a do cilindro circular.
 - (a) Obtenha a expressão de y = y(x) em termos de x.
 - (b) Obtenha a expressão da resistência R = R(x) como função de x.
 - (c) Calcule os pontos críticos de R(x) no domínio (0, 2a).
 - (d) Calcule o valor máximo da resistência que pode ser obtido entre as vigas cortadas do cilindro.

- (a) Como o centro do círculo de raio a coincide com o centro do retângulo inscrito de lados x e y, a diagonal deste retângulo tem comprimento igual a 2a. Pelo teorema de Pitágoras, segue que $(2a)^2 = x^2 + y^2$, e portanto $y = y(x) = \sqrt{4a^2 x^2}$.
- (b) A resistência é dada por $R = Kxy^2$, isto é,

$$R = R(x) = Kx(4a^{2} - x^{2}) = K(4a^{2}x - x^{3}).$$

(c) Como a função R é derivável em (0,2a), os pontos críticos nesse intervalo são as soluções da equação $R'(x)=K(4a^2-3x^2)=0$. No domínio (0,2a), a única solução dessa equação é

$$x = \frac{2a}{\sqrt{3}}$$

(d) Observe que o valor de R nos extremos do intervalo é R(0) = R(2a) = 0. Nos itens anteriores vimos que R possui apenas o ponto crítico $x = 2a/\sqrt{3}$ no intervalo (0, 2a). O valor de R nesse ponto é dado por

$$R\left(\frac{2a}{\sqrt{3}}\right) = K\left(4a^2\left(\frac{2a}{\sqrt{3}}\right) - \left(\frac{2a}{\sqrt{3}}\right)^3\right) = K\frac{16a^3}{3\sqrt{3}} = K\frac{16a^3\sqrt{3}}{9} > 0.$$

Comparando os valores de R na fronteira e no ponto $x=2a/\sqrt{3}$ concluímos este último é o ponto de máximo de R. Assim, a resistência máxima é $K^{\frac{16a^3\sqrt{3}}{9}}$.