AM 275 - Magnetohydrodynamics: Homework 1

Dante Buhl

January 22, 2025

Problem 1:

Show that

$$u_i \frac{\partial \tau_{ij}}{\partial x_j} = \frac{\partial u_i \tau_{ij}}{\partial x_j} + p e_{kk} - 2\mu \left[e_{ij} - \frac{1}{3} e_{kk} \delta_{ij} \right]^2.$$

Proof. First, we begin with the derivative identity

$$u_i \frac{\partial \tau_{ij}}{\partial x_j} = \frac{\partial u_i \tau_{ij}}{\partial x_j} - \tau_{ij} \frac{\partial u_i}{\partial x_j}$$

and in order to simplify this statement, take τ_i to be the i-th row vector of τ , we have:

$$\sum_{i} u_{i} \nabla \cdot \tau_{i} = \sum_{i} \nabla \cdot u_{i} \tau_{i} - \tau_{i} \cdot \nabla u_{i}$$

Already we have shown the first RHS term originates from the derivative identity, whereas the other terms must originate from $-\sum_{i} \tau_{i} \cdot \nabla u_{i}$. Thus, we investigate this term in more detail.

$$-\sum_{i} \tau_{i} \cdot \nabla u_{i} = \sum_{i} \left[p + \frac{2}{3} \mu \nabla \cdot \boldsymbol{u} \right] \delta_{ij} \cdot \nabla u_{i} - 2\mu e_{i} \cdot \nabla u_{i}$$

where e_{kk} is written as $\nabla \cdot \boldsymbol{u}$ and e_i is the i-th row of e (as in e_{ij}). Notice that $\sum_i \delta_{ij} \cdot \nabla u_i = \nabla \cdot \boldsymbol{u}$, and therefore,

$$-\sum_{i} \tau_{i} \cdot \nabla u_{i} = \left[p + \frac{2}{3} \mu \nabla \cdot \boldsymbol{u} \right] (\nabla \cdot \boldsymbol{u}) - 2\mu \sum_{i} e_{i} \cdot \nabla u_{i}$$
$$= p(\nabla \cdot \boldsymbol{u}) + \frac{2}{3} \mu (\nabla \cdot \boldsymbol{u})^{2} - 2\mu \sum_{i} e_{i} \cdot \nabla u_{i}$$

Thus we recover the second RHS term, pe_{kk} . Now we must show the rest of $-\sum_i \tau_i \cdot \nabla u_i$ recovers the last term of the RHS. We write the decomposition of e_i .

$$-2\mu \sum_{i} e_{i} \cdot \nabla u_{i} = -\mu \sum_{i} \left(\nabla u_{i} + \frac{\partial \mathbf{u}}{\partial x_{i}} \right) \cdot \nabla u_{i}$$

$$= -\mu \sum_{i} |\nabla u_{i}|^{2} + \frac{\partial \mathbf{u}}{\partial x_{i}} \cdot \nabla u_{i}$$

$$= -\mu |\nabla \mathbf{u}|^{2} - \mu \sum_{i} \frac{\partial \mathbf{u}}{\partial x_{i}} \cdot \nabla u_{i}$$

$$= -\mu |\nabla \mathbf{u}|^{2} - \mu \frac{\partial u_{i}}{\partial x_{j}} \cdot \frac{\partial u_{j}}{\partial x_{i}}$$

Now we must show by the transitive propery that,

$$\frac{2}{3}\mu(\nabla \cdot \boldsymbol{u})^2 - \mu|\nabla \boldsymbol{u}|^2 - \mu\sum_{ij}\frac{\partial u_i}{\partial x_j}\frac{\partial u_j}{\partial x_i} = -2\mu\left[e_{ij} - \frac{1}{3}e_{kk}\delta_{ij}\right]_{ll}^2$$

We begin by writing the inner product of these second order tensors and then taking the contraction (necessary in order to obtain a scalar) (also sorry about the indices, I couldn't decide which letters I wanted to stick with in the long run)

$$-2\mu \left[e_{ij} - \frac{1}{3} e_{kk} \delta_{ij} \right]_{ll}^{2} = -2\mu \left[(e_{ij}^{2})_{ll} - \frac{2}{3} (\nabla \cdot \boldsymbol{u}) e_{ll} + \frac{1}{9} (\nabla \cdot \boldsymbol{u})^{2} \delta_{ll} \right]$$

$$= -2\mu \left[(e_{im} \cdot e_{mj})_{ll} - \frac{2}{3} (\nabla \cdot \boldsymbol{u})^{2} + \frac{1}{3} (\nabla \cdot \boldsymbol{u}^{2}) \right]$$

$$= -\frac{\mu}{2} \left(\frac{\partial u_{i}}{\partial x_{m}} \frac{\partial u_{m}}{\partial x_{j}} + \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial x_{j}} + \frac{\partial u_{i}}{\partial x_{m}} \frac{\partial u_{j}}{\partial x_{m}} + \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{m}} \right)_{ll} + \frac{2}{3} \mu (\nabla \cdot \boldsymbol{u})^{2}$$

$$= -\frac{\mu}{2} \left(\nabla u_{i} \cdot \frac{\partial \boldsymbol{u}}{\partial x_{i}} + \frac{\partial \boldsymbol{u}}{\partial x_{i}} \cdot \frac{\partial \boldsymbol{u}}{\partial x_{i}} + \nabla u_{i} \cdot \nabla u_{i} + \frac{\partial \boldsymbol{u}}{\partial x_{i}} \cdot \nabla u_{i} \right) + \frac{2}{3} \mu (\nabla \cdot \boldsymbol{u})^{2}$$

$$= -\frac{\mu}{2} \left(2|\nabla \boldsymbol{u}|^{2} + 2\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}} \right) + \frac{2}{3} \mu (\nabla \cdot \boldsymbol{u})^{2}$$

$$= \frac{2}{3} \mu (\nabla \cdot \boldsymbol{u})^{2} - \mu |\nabla \boldsymbol{u}|^{2} - \mu \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}$$

Therefore, we have shown that

$$u_i \frac{\partial \tau_{ij}}{\partial x_j} = \frac{\partial u_i \tau_{ij}}{\partial x_j} + p(\nabla \cdot \boldsymbol{u}) + \frac{2}{3} \mu (\nabla \cdot \boldsymbol{u})^2 - \mu |\nabla \boldsymbol{u}|^2 - \mu \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i}$$
$$= \frac{\partial u_i \tau_{ij}}{\partial x_j} + p e_{kk} - 2\mu \left[e_{ij} - \frac{1}{3} e_{kk} \delta_{ij} \right]^2$$

where $[\cdot]^2$ implies a tensor "double dot product", where first a (tensor) inner product is taken and the resultant second order tensor is contracted to become a scalar.

Problem 2:

2.1 Show that the imcompressible induction equation is

$$\frac{\partial \boldsymbol{B}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{B} = (\boldsymbol{B} \cdot \nabla) \boldsymbol{u}$$

Proof. We begin by writing the (non-diffusive) induction equation and the corresponding derivative identity.

$$\begin{split} \frac{\partial \boldsymbol{B}}{\partial t} &= \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) \\ \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) &= \boldsymbol{u} (\nabla \cdot \boldsymbol{B}) - \boldsymbol{B} (\nabla \cdot \boldsymbol{u}) + (\boldsymbol{B} \cdot \nabla) \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{B} \end{split}$$

Using this substitution and keeping in mind that $\nabla \cdot \mathbf{B} = 0$ and $\nabla \cdot \mathbf{u} = 0$ we obtain,

$$\frac{\partial \boldsymbol{B}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{B} = (\boldsymbol{B} \cdot \nabla) \boldsymbol{u}$$

2.2 Show that the compressible induction equation can be written as

$$\frac{\partial}{\partial t} \left(\frac{\boldsymbol{B}}{\rho} \right) + (\boldsymbol{u} \cdot \nabla) \left(\frac{\boldsymbol{B}}{\rho} \right) = \left(\frac{\boldsymbol{B}}{\rho} \cdot \nabla \right) \boldsymbol{u}$$

Proof. We begin by taking the compressible induction equation and multiplying by $1/\rho$.

$$\frac{1}{\rho}\frac{\partial \boldsymbol{B}}{\partial t} + \frac{1}{\rho}(\boldsymbol{u}\cdot\nabla)\boldsymbol{B} = \frac{1}{\rho}(\boldsymbol{B}\cdot\nabla)\boldsymbol{u} - \frac{1}{\rho}\boldsymbol{B}(\nabla\cdot\boldsymbol{u})$$

Then, we use the product rule derivative identity to change some of the derivatives. We have,

$$\frac{\partial}{\partial t} \left(\frac{\boldsymbol{B}}{\rho} \right) + \frac{\boldsymbol{B}}{\rho^2} \frac{\partial \rho}{\partial t} + (\boldsymbol{u} \cdot \nabla) \frac{\boldsymbol{B}}{\rho} + \frac{\boldsymbol{B}}{\rho^2} (\boldsymbol{u} \cdot \nabla) \rho = \left(\frac{\boldsymbol{B}}{\rho} \cdot \nabla \right) \boldsymbol{u} - \frac{\boldsymbol{B}}{\rho} (\nabla \cdot \boldsymbol{u})$$

Here we consider the conservation of mass equation which for compressible fluids is written as,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \boldsymbol{u} = 0$$

$$\frac{1}{\rho^2} \frac{\partial \rho}{\partial t} + \frac{1}{\rho^2} (\nabla \cdot \rho \boldsymbol{u}) = 0$$

$$\frac{1}{\rho^2} \frac{\partial \rho}{\partial t} + \frac{1}{\rho^2} (\rho (\nabla \cdot \boldsymbol{u}) + (\boldsymbol{u} \cdot \nabla) \rho) = 0$$

$$\frac{1}{\rho^2} \frac{\partial \rho}{\partial t} + \frac{1}{\rho^2} (\boldsymbol{u} \cdot \nabla) \rho = -\frac{1}{\rho} (\nabla \cdot \boldsymbol{u}).$$

BNotice that we can take this equation, multiply it by B and subtract it from the induction equation. This leaves us with,

$$\frac{\partial}{\partial t} \left(\frac{\boldsymbol{B}}{\rho} \right) + (\boldsymbol{u} \cdot \nabla) \frac{\boldsymbol{B}}{\rho} = \left(\frac{\boldsymbol{B}}{\rho} \cdot \nabla \right) \boldsymbol{u}$$

Problem 3:

3.1 Derive the induction equation given that σ is not necessarily constant

Proof. Let us begin with Ohm's law as we have written in lecture.

$$\begin{aligned} \boldsymbol{j} &= \boldsymbol{j}' = \sigma \boldsymbol{E}' \\ \boldsymbol{E}' &= \boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B} \\ \nabla \times \boldsymbol{B} &= \mu_0 \sigma (\boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B}) \\ \nabla \times \left(\frac{1}{\mu_0 \sigma} \nabla \times \boldsymbol{B} \right) &= \nabla \times \boldsymbol{E} + \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) \\ \frac{1}{\mu_0 \sigma} (\nabla \times \nabla \times \boldsymbol{B}) - \frac{1}{\mu_0 \sigma^2} \nabla \sigma \times (\nabla \times \boldsymbol{B}) &= -\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \frac{1}{\mu_0 \sigma} \nabla^2 \boldsymbol{B} + \frac{1}{\mu_0 \sigma^2} ((\nabla \boldsymbol{B})^T \cdot \nabla \sigma - (\nabla \sigma \cdot \nabla) \boldsymbol{B}) + \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) \end{aligned}$$

This can then be simplified keeping in mind that $\nabla \cdot \mathbf{B} = 0$, and especially if the flow is incompresible, to the following:

$$\frac{\partial \boldsymbol{B}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{B} + \frac{1}{\mu_0 \sigma^2} (\nabla \sigma \cdot \nabla) \boldsymbol{B} = (\boldsymbol{B} \cdot \nabla) \boldsymbol{u} + \frac{1}{\mu_0 \sigma^2} ((\nabla \boldsymbol{B})^T \cdot \nabla \sigma) + \frac{1}{\mu_0 \sigma} \nabla^2 \boldsymbol{B}$$

Essentially we see the appearence of two new terms if the conductivity is not constant. First, the advection of B by the gradient of conductivity, and then some weird term related to ∇B^T on the RHS.

Problem 4:

4.1 Show that initial conditions of the divergence of the magnetic field are preserved for Maxwell's equations

Proof. In order to show this, we must first assume that the temporal and spatial derivatives can be taken in any order, i.e. $\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial t} \right)$. We proceed by taking the dot product of Faraday's law,

$$\nabla \cdot \frac{\partial \mathbf{B}}{\partial t} = \nabla \cdot (-\nabla \times \mathbf{E})$$
$$\frac{\partial}{\partial t} (\nabla \cdot \mathbf{B}) = 0$$

where the RHS is zero because the divergence of a curl is always zero. Thus if we have that $\nabla \cdot \mathbf{B} = 0$ at t = 0, it will always be zero.

4.2 Show that initial conditions of the divergence of the magnetic field are preserved for the induction equation

Proof. A similar proof can be written from the perspective of the induction equation. Let us write a form of the induction equation,

$$\frac{\partial \boldsymbol{B}}{\partial t} = -\nabla \times \left(\frac{1}{\mu_0 \sigma} \nabla \times \boldsymbol{B}\right) + \nabla \times (\boldsymbol{u} \times \boldsymbol{B})$$

where σ is not necessarily a constant and the fluid is not necessarily incompressible. Similarly, we take the divergence of this equation and obtain,

$$\frac{\partial}{\partial t}(\nabla \cdot \boldsymbol{B}) = \nabla \cdot \left(\nabla \times \left(\frac{1}{\mu_0 \sigma} \nabla \times \boldsymbol{B}\right) + \nabla \times (\boldsymbol{u} \times \boldsymbol{B})\right)$$
$$\frac{\partial}{\partial t}(\nabla \cdot \boldsymbol{B}) = 0$$

since again, the divergence of a curl is always zero. Therefore, from the perspective of the induction equation, we have that $\nabla \cdot \mathbf{B} = 0$ will be maintained for all t > 0 if $\nabla \cdot \mathbf{B} = 0$ at t = 0.