FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

NUMERIČKA ANALIZA ELEKTROENERGETSKOG SUSTAVA

Predavanja

ZAGREB

DOMI

NUMERIĞKA ANALIZA

ELEKTROENERGETSKOG SUSTAVA

graf. di.sc. 2. Hebel

2004. /2005.

LITERATURA:

Stefanin, Berbic, V-Feoer: "Metiche metode u analizi el mreza"
Ozegarici: "Elektroerenyetste mreze 1-1V"
Stagg & El-Abird: "Computer Methods in Faver System Analysis
McGrow-Hill International Student Edition

e, e e e e

1 MREZA	جۇ <u>نىڭ ئالىرى ئالىرى</u> ئىلىنىڭ
- aboutived como kiazisteccionama stunja	
- primiter EES-4 sa arramin elementima	1
	-
	injuic
- G(N) kotaa = 1001	ry (do 100°C) +
105 EN RPJ	· · · · · · · · · · · · · · · · · · ·
BLOK T	8
- Snaye 1 Sabirnico - Spicos ne mreze	11.
- vodai	D- Kucumstra
Frato O O	
stance 0 0	
turbing / 12/ 12/	·····
motor o ind. pagano	
-tanstulacija generatua ansi o payanstan stroju (turbino	
- nojuplotinji su termičti blotavi koji uz debtrichu en	
toji služi za frakcijstu dostilaciju nasta Elen. služi	
I vortish engretatish travitora)	<u> </u>
Toplana u Zagrabu I brdo podozena no zitujala	radi ha
ton principu	
I pama turbina ima veci n od vide e turbine.	
- tonite se jos i plinota turbine	be tooknow there
proceso - Zosto postoje i chotanji ičnom so	mo je jedan Mali Ivika

postoje to veiane velicine:
> stroja neovisna veličina samo je jedan mali vitat 1
> nopan noovisha veliding somoles somoles
STRWA-pareama Sci Stlophim aparating
Pretibo rasterlas (20 using time). TRATOSTANICE
Laster. O
stopni aparati
- ted je pretidas utapas bbbada anguedra tanstentrout rada
- Probida (hen res prétat pomenu) - probida mora mosi probinuti struju trattag spoja, radi se za
- hozimu stragu
- +5tye KS SU ZO MU,220; YOOLV: 16 KA, 25 KA, 31,5 KA,
40tA, 50tA i to su here intruje prietideisa
- NAPON - parezan su potroisaoma
- SNAGA - voini tou micza visdeg nopona Ernestinoro:
-EES trebu biti sintroniziran (ujeti koji su potrebni za sintronizaciju
generator s mrezom)
Maky -> presoni oto 30MW prirodio majo (to, je majo)
Descensión EES 20 vijeme reta je bio o toosu i pije bio
Johnson jer je Ernestinus bilo razrućeso -> razbijen svitam rad izvoros Istočna i Zapadna Europa nitordinisu bile pavezone zbuj
rozlizith elektroenergetskih previler Ernestinan se rebonstruirele
zemlje (Nordjste zenje su same, V.B. islo) 2
Zemile (Noralste Zenje SV Same, V.O. 150)

-toje velita odgovornost, oli i veliti tehnološti dobitut u sigurnosti
- tu se može uvzití, produstí energija (tod čeno inotí više vode, bit
] cemo face). Sod imamo prubni rok od 20 dama do se svede
Setundame regulaçõe po zemljama.
- U NAEES Gemo unijet radinati struu, NAPON, SNAGU i iz tih veličina radinamo eve ostab (presjet vediča, izolegiju)
·-
11.10.2004.
PRORAGUN TOKOVA SMAGA
*Zodano -> Snage (delotha i jalana) u potrošakim ovovištima
Evor + ovonista teneta
over - momarsti over
Tovorista - spoj netolito undova
-> Konfiguracija mreže
iznos napana i delatrie unage u generatorstim
<u> ovoriotima</u> (regulatari na prioj stici)
iznos napana i delatrie ornage u generatorstim <u>ovoriotima</u> (regulatari na prioj stici) napan u regulacijstim alettranama (kut 0) referentio ovoriote
referentio ovonite
*0-1-+
* Određye se -> napan u sinh ovonistina (iznas i kut)
$\begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} - \text{Vektor stanjer}$
Up - vektor stenice
12 toya se određyu:
- total snaga v granama
gubici dielotre i jaibne singe u granoma
Samo je jedan Mali Ivica!
3
<u></u>

PROPACUN STABILNOSTI
- ima joto peno podvista
- rodune se ad nastenta trara pa netalita minuta elettrene
- dinamieta - õesto se raioma (trar toda jedna jedinica Tod
npr. 250 MM ispada)
- terpecitimo pocheje > nesterbilini rad (P.H. imo velito -
top, apterecenje)
-providuora se teto do se u populinim évoristha rationa Kis
[U trujanju 0,25, 15, 25) i mjeni vojene koje smije proci
Prie rego neti generatar ispedne iz pogona
- Fod providing je problem sto incomo vive naponstih nivod (snaga
Je nepromipenjiva)
- traba netato "izjednaoit" sie nagenote nivoe du nam
- Provadu bude leturi (2bog imanjantnosti suge)
Metada otpara - otpan se provaduariju
S=S Snaga u naisen realmon 31 sustanu jednata, je]
Snozi u noven volotman sustan
U'= UB /U UB-BAZNI MAPON (wbiggers 100 kV)
_
- Proize fini iznos (00 1 0,9 ÷ 1,1) UN - NAZIVAL NAPON
U - STVARNI NAPON (mode 5it; +101, m Un)
U - oto ± 10% of UB
$\sqrt{3 \cdot U \cdot 7} = U \cdot 7$
1/ 13-4-1 13 1.01.1
$ \begin{array}{c c} \hline & 3 - 0 - 1 \\ \hline & 3 - 0 - 1 \end{array} $ Samo je jedan Madi Ivical Samo je jedan Madi Ivical
5

Metada otapad U=4.U $X_g = 0.1 \cdot \frac{\sqrt{300}}{5} = 0.1 \cdot \frac{10.5^2}{300} = 0.03675 \Omega$ (105 EV) * $Z_{T_1} = \frac{U_{\eta_2 20}}{S_n} \cdot \left[\frac{P_{cu}}{S_n} + \sqrt{V_k^2 - \left(\frac{P_{cu}}{S_n}\right)^2} \right] \left[\Omega \right] = 0.5377 + j19.352 \left(200kV \right)$ * Zy = Z,·L = (0.1+j0.4).100 * ZT = Un(100) \[\frac{P_{\text{cuz}}}{S_{\text{n}}} \Bigg| \frac{P_{\text{cuz}}}{S_{\text{n}}} \Bigg| \frac{12 \log \left[\frac{1.5}{2} \right]}{S_{\text{n}}} \Bigg| \frac{12 \log \left[\frac{1.5}{2} \right]}{10} \Bigg| \frac{1.5}{100} \Bigg| \frac = 1,815 +, 11.963 52 (110 EV) U'= 102.857 EV Xg' Zt' Zy' Zc' $X_g' = j \cdot X_g \cdot \left(\frac{100}{10.5}\right)^2 = j \cdot 0.03 \, 675 \cdot \left(\frac{100}{10.5}\right)^2 = j \cdot 3.33$ $Z_{T_1}' = Z_{T_1} \left(\frac{100}{220}\right)^2 = \left(0.5377 + 1.14.352\right) \left(\frac{100}{220}\right)^2 = 0.111 + 13.99852$ Zy = Zv, (100)2 = 2,066+, 8,216 52 $Z_{V_2}' = Z_{V_2} \left(\frac{100}{220}\right)^2 = 0.82645 + 15.785 \Omega$ Samo je jedan Mali Ivita! Zz = Zz · (100)2 = 1.5+19.8868 12

iste velicine kod ga svedeno na jedan napensti nivo

TEOREM RECIPROCITETA

-> 201 pasme mieze (bez ems ugranama)

- ato zapytumo strene, otton de biti isti

THEVENENOV TEOREM

-> Za othere mreze (majo i pasme etemente)

pro odredyemo Vob

tratto upojano attime elemente i treizmo otper izmedu a i b

Samo je jedan Mali Ivica!

$$i = \frac{E_i}{Z_i}$$
 Y_i

$$T = \sum_{i=1}^{n} \frac{E_{i}}{z_{i}}$$

$$Y = \sum_{i=1}^{n} \frac{1}{z_{i}}$$

$$E = \frac{I}{Y}$$

$$Z = \frac{1}{2}$$

$$E = \frac{\sum_{i=\Lambda}^{n} \frac{E_{i}}{Z_{i}^{i}}}{\sum_{i=\Lambda}^{n} \frac{1}{Z_{i}}}$$

$$Z = \frac{1}{\sum_{i=\Lambda}^{n} \frac{1}{Z_{i}^{i}}}$$

- opet nas suprisulmi primjer ~

Véc Smo

2.77.D 1.428V

-> admob se unoti u Tearen

$$E_{7} = \frac{2}{21} = \frac{19.6 + 4.9}{3 + 4} = \frac{2.177 + 1.225}{0.364M} = 9.523$$

$$Z = \frac{1}{\frac{2}{2} \frac{1}{2}} = \frac{1}{\frac{1}{2} + \frac{1}{4}} = 2.77.0$$

TRANSFORMATORI

Trator je posivan element. Pri prijenosu diče nopom za potrošave ga spustu. Energija se prenosi pomoću magnetskog polja -> Lizikalno, to je obtivem element

-> Majibitnija taraktenistika: 2 napansta nivo čiji omjer zavemo prijerasni amjer

* Zijezda

Did trobut

Ziz cik cak

Veliber sta a > visotonoporista strena promomon strena o

Primor i setudor se određuji panoa smjera energije. Sprijanje je jako bitno...

Primer

Y15 72 20 bret Ai a fore

Samo je jedan Mali Ivica!

- Vzemljeje zyczdistą trajoa -> bitno Zd izračin KS
Ne uzemljuju se 35tV i 20tV mreže Alo mreža pije uzemljag
] anda se fora toja je spojena sa zemljan zave ZEMLJOSPOJ
- Na 110 kV mrezi se visi uzentenje i to samo jednog _
tratoa od njih hrpu
Acres 100 A
Indultiment Petersenta koristano za uzenljenje 35 kV mrežu
Industry tet Petersenta) Wishing 2d Degripe as - mresa
* Za napojanje 4/0.4 taistmo 125 Dys za veće napare
JyO nije uzentjen
* Za 110/x YyO s tercijarom
220/x
> 6/- O-lde 10 "11 + 11" 10 Teal 10 11 to 1
Je Glami problem pe "yatati" nopon. Treba regulirati trafo.
Dije voste regulacije 1. Regulacija pad Teretam (110/x)
2. Regulacija v P.H. (X/O.4)
- Postoji ±5% ±5% sa 3 11 5 polozaja
-5% =25% o'. 25% 5%
20. 10.2004
], 0% = = * * oto na primar paraste napan > parast
36W Ges na setudan
-> puecati org zaroja na primar
* 10EV * dornuto, parca se noma na setundan
parecas zaroje na priman
Samo je jedan Mali Ivical 17 n/k pozeljno mije jet pino zavoja

19 e T stiema i ima vedno tibtumo oranite između primova i setudon. To pije dobro jer strija magneticiranja ihade probrui Samo kroz primar. Onda mi to pretramo u Truhemo *12 april 2 present u opéi poligar, ali abranto nemano de Vedino trobut u existado >12 Zvýczde v općí poligen prelozino v odmitancijama Zonge ≈ 100.2, par try dio zamenguyono $Z_T = Z_1 + Z_2$ Fizitalno gladojusi Yoz ni ne postoji, alij jabiga. $Y_{01} = \frac{\frac{1}{Z_1} \cdot \frac{1}{Z_0}}{\frac{1}{Z_1} + \frac{1}{Z_1} \cdot \frac{1}{Z_0}} = \frac{Z_2'}{Z_0' + Z_1 Z_0' + Z_2 Z_0'} = \frac{1}{Z_0 + Z_1 + Z_0 Z_0'}$ Z' ≈ 1 ato je proreiomato na jet napon, parje: $* Y_{01} = \frac{1}{Z_0(1+1+\frac{Z_1}{Z_0})} = \frac{1}{2Z_0} = \frac{Y_0}{2}$ Zon = 2.Zo

To concide paneir potuse prezent hodo

No to concide paneir potuse prezent hodo

Potus PRAZNOG HODA

Trado se spoji nei Un, se tinder otheren, priemo snegu nei cleru, struju impognetiz liurija.

**Io =
$$\frac{U_1}{V_3}$$
 **V₀ **V₀ = $\frac{V_2}{V_3}$ **V₁ = $\frac{V_3}{V_3}$ **V₁ = $\frac{V_3}{V_3}$ **V₂ = $\frac{V_3}{V_3}$ **V₃ = $\frac{V_3}{V_3}$ **V₄ = $\frac{V_3}{V_3}$ **V₅ = $\frac{V_3}{V_3}$ **V₆ = $\frac{V_3}{V_3}$ **V₇ **C₆

**C₆ je dje bithi dio od V₆

**P₀ = $\frac{V_1^2}{V_3}$ **C₆

**G₇ je dje bithi dio od V₇

**P₀ = $\frac{V_1^2}{V_3}$ **C₆

**S₁ **V₂ = $\frac{V_2}{V_3}$ **V₁ = $\frac{V_3}{V_3}$ **V₂ = $\frac{V_3}{V_3}$ **V₁ = $\frac{V_3}{V_3}$ **V₂ = $\frac{V_3}{V_3}$ **V₁ = $\frac{V_3}{V_3}$ **V₁ **V₂ **V₂ **V₃ **V₁ **V₂ **V₃ **

Metada otpora

$$Z_{T}' = \left(\frac{U_{0}}{U_{n}}\right)^{2} Z_{T} = \frac{U_{0}^{2}}{U_{n}^{2}} \cdot \frac{U_{n}^{2}}{S_{n}} \left[\frac{P_{k}}{S_{n}} + \sqrt{U_{k}^{2} - \frac{P_{k}^{2}}{S_{n}^{2}}}\right] = \frac{U_{0}^{2}}{S_{n}} \left[\frac{P_{k}}{S_{n}} + \sqrt{U_{k}^{2} - \frac{P_{k}^{2}}{S_{n}^{2}}}\right] \left[\Omega_{k}\right]$$

$$Y_{o}' = \frac{U_{o}^{2}}{U_{b}^{2}} \cdot Y_{o} = \frac{U_{o}^{2}}{U_{o}^{2}} \cdot \frac{S_{n}}{V_{o}^{2}} \left[\frac{P_{o}}{S_{n}} - \sqrt{v_{o}^{2} - \frac{P_{o}^{2}}{S_{n}}} \right] = \frac{S_{n}}{U_{o}^{2}} \left[\frac{P_{o}}{S_{n}} - \sqrt{v_{o}^{2} - \frac{P_{o}^{2}}{S_{n}^{2}}} \right] \left[S \right]$$

$$Z_{T_{P,U}} = \frac{Z_{T}}{Z_{0}} = \frac{S_{0}}{U_{n}^{2}} \cdot Z_{T} = \frac{S_{0}}{U_{n}^{2}} \cdot \frac{S_{n}^{2}}{S_{n}} \left[\frac{P_{c}}{S_{n}} t \sqrt{u_{c}^{2} - \frac{P_{c}^{2}}{S_{n}^{2}}} \right] = \frac{S_{B}}{S_{n}} \left[\frac{P_{c}}{S_{n}} t \sqrt{u_{c}^{2} - \frac{P_{c}^{2}}{S_{n}^{2}}} \right] P.U.$$

S obieno 100MVA

$$V_{op_{il}} = \frac{y_n^2}{S_8} \cdot \frac{S_n}{y_n^2} \left[\frac{P_o}{S_n} - \sqrt{v_o^2 - \left(\frac{P_o}{S_n}\right)^2} \right] = \frac{S_n}{S_8} \left[\frac{P_o}{S_n} - \sqrt{v_o^2 - \left(\frac{P_o}{S_n}\right)^2} \right] P \cdot u$$

-> to one or numericke unjectrout noise IT wheme

MOEV SOMVA

kontrolne veliaire privache unage

* temista snaga anisi o vodišana

210 kvudatu termiéta granica le 120 MVA

160 MVA

100EV Zarjanier 1200 MVA (taje dosto za ejelu Hnototu)

Konkretie veliane

220EV

mate T veliti T

Samo je jedan Maki Nikedi

19 GWh Jelezo 186Wh batar

106 = [tuh] stati - twh jubitata touto 60 lipa 24

Unutary the pridera napena	nam. anjen 2000
] -> U Emastinew & notes: trato 400/115EV. R	eg. stlopta se norbazi
] na primon 2600 manjih struja. To stlopto	
Imo B pologaja tuko da mozas mjajati boj	i namota primara u
sludaju viseg ili nizeg napana na setundar	
	<u></u>
† 12 pobegja sa 1	1.25%. kaok
13. polozaj je rozi	
] (onci) u snadini	
] -7 Zoto sto ra pohon postoji više namota (4.59	
] napana) romo u madela to znaci da imamo	attimu EMS
koja smeta za proraou - togo se maram	o_ rijesiti
Primjer:	· · · · · · · · · · · · · · · · · · ·
S = 100MVA	2
July = 127.	<u>{</u>
10=1%	{
] Pr = 17. od J. rooki id	leab;
$\mathcal{P}_{o} = 25 / \mathcal{I}_{v}$	<u> </u>
A = 220/115 / 220/110	
	5
$ *S_{s} = S_{n} = 100 \text{MVA} $	
$\int_{0}^{\infty} \frac{S_{n}}{S_{n}} \frac{P_{o}}{S_{n}} = \int_{0}^{\infty} \left(\frac{P_{o}}{S_{n}} \right)^{2} = 0.0025 - 0.0025$	247
- Au. Sa Sa Olivers	
الم	Samo je jedan Mali Ivical
_ ·	ME.

* motamo naci mehanizam do trafo pretyorimo o posilni element, a da pri tone ne zanemarimo grijenosni grijer 220/115kV $/ 220/110kV = \frac{220}{220} \cdot \frac{110}{115} = 0.956:1$ * ha primon imois vise napona por jednom zavoju nego na sekundam Zato, smanjivanjon baja zavoja na priman parećovas iznos. nopena nej sekudan na priman je o 15 napana više nego na setudan, a to je 5.55% $a = 0.85 \div 1.15$ $-\frac{U_1}{U_r} = \alpha = \frac{L_r}{1}$ $I_{T} = (v_{\tau} - v_{2}) \cdot Y_{\tau} + v_{\tau} \cdot \frac{Y}{2}$ $I_1 = \frac{I_T}{\alpha} = (U_7 - U_2) \cdot \frac{Y_T}{\alpha} + \frac{U_T}{\alpha} \cdot \frac{Y_0}{2}$ $= \left(\frac{U_1}{a} - U_2\right) \frac{Y_T}{a} + \frac{U_1}{a^2} \cdot \frac{Y_0}{2} = \left(U_1 - U_2 \cdot a\right) \frac{Y_T}{a^2} + \frac{U_1}{a^2} \cdot \frac{Y_0}{2}$ $I_2 = (U_2 - U_T) \cdot Y_T + U_2 \cdot \frac{Y_2}{2} = (U_2 - \frac{U_3}{q}) Y_T + U_2 \cdot \frac{Y_0}{2}$ $= \left(U_2 \cdot \alpha - U_1 \right) \cdot \frac{Y_{\tau}}{\alpha} + U_2 \cdot \frac{Y_0}{2}$

•

$$I_{1} = \left(U_{1} - \alpha U_{2}\right) \frac{Y_{T}}{\alpha^{2}} + \frac{U_{1}}{\alpha^{2}} \cdot \frac{Y_{0}}{2}$$

$$I_{2} = \left(U_{2} \cdot \alpha - U_{1}\right) \frac{Y_{T}}{\alpha} + U_{2} \cdot \frac{Y_{0}}{2}$$

lib kao funtaje od

Y-one moramo dobiti tato da vajede 18TE / noponste prilite kao i za prethodne Sheme. Za svako stanue!!!

$$\frac{1}{1} = (U_1 - U_2) Y_{12} + U_1 \cdot Y_{01}$$

$$\frac{1}{2} = (U_2 - U_1) Y_{12} + U_2 \cdot Y_{02}$$

1. Kretto sprijamo te čtu 2, a na ulaz stayljamo U_1 $U_2 = 0$ $U_3 = 1$

$$I_1 = 1 \cdot \frac{V_T}{\alpha^2} + \frac{1}{\alpha^2} \cdot \frac{V_0}{2}$$

$$I_2 = -1 \cdot \frac{V_T}{\alpha}$$

$$2\alpha pnblizhu T-shemu$$

$$(onu prije)$$

Samo je jedan Mali Ivical

$$\frac{Y_{\tau}}{a^2} + \frac{1}{o^2} \cdot \frac{Y_0}{2} = Y_{n2} + Y_{0i}$$

$$Y_{n2} = -\frac{Y_{\tau}}{a}$$

$$Y_{n2} = -\frac{Y_{\tau}}{a}$$

$$Y_{n3} = -\frac{Y_{\tau}}{a}$$

$$V_{01} = \frac{1}{\alpha^{2}} \left[Y_{T} + \frac{Y_{0}}{2} \right] - \frac{Y_{T}}{\alpha}$$

$$Y_{01} = \frac{Y_{T}}{\alpha} \left[\frac{1}{\alpha} - 1 \right] + \frac{1}{\alpha^{2}} \cdot \frac{Y_{0}}{2}$$

Kratto Dajamo tocku 1, nannema Uz na 2

Za priblizhu IT she

$$U_1 = U$$

$$U_2 = 1$$

$$\frac{V_2 - 1}{I_1 = -\frac{V_T}{Q}}$$

$$I_2 = Y_r + \frac{Y_e}{2}$$

$$Y_T + \frac{V_0}{2} = \frac{Y_T}{\alpha} + V_{02}$$

$$Y_{02} = Y_T \left(1 - \frac{1}{\alpha} \right) + \frac{Y_0}{2}$$

$$Y_{12} = \frac{Y_T}{9}$$

$$Y_{02} = \frac{Y_T}{a} \left(1 - \frac{1}{a} \right) + \frac{Y_0}{2}$$

Samo Je jedan Mali Ivica

-> Sa avata dobinenim parametrina, vive nam ne treba

Za a<1 na izlazu dobivamo veći napan Uz ->tomule

*
$$Y_{01} = \frac{Y_{-}}{\alpha} \begin{bmatrix} 1 \\ a \end{bmatrix} + \frac{1}{\alpha} \frac{X_{0}}{2}$$

$$> Y_{-} > 0$$

$$Y_{-} = Y_{-} (1 - \frac{1}{\alpha}) + \frac{1}{\alpha} \frac{X_{0}}{2}$$

$$Y_{02} = Y_{T} \left(1 - \frac{1}{a} \right) + \frac{1}{2}$$

$$\begin{array}{c}
-U_{1} \cdot \frac{1}{\alpha} \left[\frac{1}{\alpha} - 1\right] = U_{2} \cdot \frac{1}{2} \left[1 - \frac{1}{\alpha}\right] \\
U_{1} \left[\frac{1}{\alpha} - \frac{1}{\alpha^{2}}\right] = U_{2} \left[1 - \frac{1}{\alpha}\right] \\
U_{2} \cdot \frac{1}{\alpha} \left[\frac{1}{\alpha}\right] = Q \\
\end{aligned}$$

$$\begin{array}{c}
V_{1} = \frac{1}{\alpha} = Q \\
V_{2} \cdot \frac{1}{\alpha} \left[\frac{1}{\alpha}\right] = Q \\
\end{aligned}$$

$$\begin{array}{c}
V_{2} = \frac{1}{\alpha} = Q \\
V_{2} \cdot \frac{1}{\alpha} \left[\frac{1}{\alpha}\right] = Q \\
\end{aligned}$$

$$\begin{array}{c}
V_{1} = \frac{1}{\alpha} = Q \\
V_{2} \cdot \frac{1}{\alpha} \left[\frac{1}{\alpha}\right] = Q \\
\end{aligned}$$

$$\begin{array}{c}
V_{1} = \frac{1}{\alpha} = Q \\
V_{2} \cdot \frac{1}{\alpha} \cdot \frac{1}{\alpha} = Q \\
\end{aligned}$$

$$\begin{array}{c}
V_{1} = \frac{1}{\alpha} = Q \\
V_{2} \cdot \frac{1}{\alpha} \cdot \frac{1}{\alpha} = Q \\
\end{aligned}$$

$$\begin{array}{c}
V_{1} = \frac{1}{\alpha} = Q \\
V_{2} \cdot \frac{1}{\alpha} \cdot \frac{1}{\alpha} = Q \\
\end{aligned}$$

$$\begin{array}{c}
V_{1} = V_{2} \cdot V_{2} \cdot V_{2} + V_{1} \cdot V_{2} = V_{2} \cdot V_{2} \cdot V_{2} + V_{2} \cdot V_{2} + V_{2} \cdot V_{2} \\
\end{aligned}$$

$$\begin{array}{c}
V_{2} = V_{1} \cdot V_{2} \cdot V_{2} + V_{2} \cdot V_{2} = V_{2} \cdot V_{2} \cdot V_{2} + V_{2} \cdot V_{2} + V_{2} \cdot V_{2} \\
\end{aligned}$$

$$\begin{array}{c}
V_{2} = V_{1} \cdot V_{2} \cdot V_{2} + V_{2} \cdot V_{2} = V_{2} \cdot V_{2} \cdot V_{2} + V_{2} \cdot V_{2} +$$

$$\begin{bmatrix} 1_1 \\ 1_2 \end{bmatrix} = \begin{bmatrix} \frac{Y_T}{Q_2} \\ -\frac{y_T}{Q} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

$$\begin{bmatrix} V_2 \\ V_3 \end{bmatrix}$$

* Oto, je ta mathira agrama... Samo 3 elemento prazijenim i dubio vam isto mathicu ??????

netod se svi mijavjaju, ato pranijenimo pinjenovni anjer trato a -> Zasto traba noć nebi trato bojem ćeno mijavjet model

-> Gouss Seidelova metoda

$$\frac{U_1}{U_T} = \alpha = \frac{I_T}{I_1}$$

$$I_1 = (U_1 - \alpha U_2) \frac{Y_T}{\alpha^2}$$

$$I_2 = (U_2 \alpha - U_1) \frac{Y_T}{\alpha}$$

$$I_{1}' = (U_{1} - U_{2}) Y_{12} + U_{1} \cdot Y_{01}$$

$$I_{2}' = (U_{2} - U_{1}) Y_{12} + U_{2} \cdot Y_{02}$$

troba nam bit In= I' 32

Samo je jedan Mali Ivical

Praniferan Anjerocnog anjera ne Zelino da nam mijerjo, Da neš mab probrijamo (4-a/2) \frac{\gamma_T}{02} = (4-42) \gamma_T + U_1 \gamma_0 * You = 1 (4-a U2) \frac{1}{a^2} - (U_1 - U_2) \frac{1}{a^2} - $= Y_T \left(\frac{1}{\sigma^2} - 1 \right) - \frac{U_2}{U_2} Y_T \left(\frac{1}{\sigma} - 1 \right)$ You we tie nopena, oli se zato uzduzha hipedancija ne te pardor adulturis mozin John July 5 nopenom i dobi, to de nete $\Delta I_{q} = U_{1} \cdot Y_{0} = \Delta I_{2}' = U_{2} \cdot Y_{02} = U_{1} \cdot Y_{T} \left(\frac{1}{\alpha^{2} - 1} \right) - U_{2} \left(\frac{1}{\alpha} - 1 \right) = U_{1} \cdot Y_{T} \left(1 - \frac{1}{\alpha} \right)$ DI = U, You = U svalej iteraciji radnomo stuje ovorista \Rightarrow vidi se da ΔI_2 avisio naparu ν 0 överiët.

$$I_{1}' = (U_{1}' - U_{2}')Y_{12} + U_{1}'Y_{10}$$

$$I_{2}' = (U_{2}' - U_{1}')Y_{12} + U_{2}'Y_{10}$$

blabla -> idemo na KS u svoristu 2

Kratti spoj u ovoristu 2 a U=V'=1

$$I_{1} = \frac{Y_{t}}{\alpha_{1}^{2}} = \frac{\alpha_{2}}{\alpha_{1}} \cdot \frac{Y_{t}}{\alpha_{1} \alpha_{2}} \qquad I_{1} = Y_{12} + Y_{10} \qquad Y_{12} = +\frac{Y_{t}}{\alpha_{1} \cdot \alpha_{2}}$$

$$I_{2} = -\frac{Y_{t}}{\alpha_{1}^{2} \alpha_{2}} \qquad I_{2}' = -Y_{12} \qquad Y_{10} = \frac{Y_{t}}{\alpha_{1} \cdot \alpha_{2}} \left(\frac{\alpha_{2}}{\alpha_{1}} - 1\right)$$

Kratti spoj u ovoristu 1 a 12=1

$$I_{1} = -\frac{Y_{\pm}}{a_{1} a_{2}} \qquad I_{1} = -Y_{n2} \qquad Y_{n2} = \frac{Y_{\pm}}{a_{1} a_{2}}$$

$$I_{2} = \frac{a_{1}}{a_{2}} \cdot \frac{Y_{\pm}}{a_{1} a_{2}} = \frac{Y_{\pm}}{a_{2}^{2}} \qquad I_{2} = Y_{n2} + Y_{20} \qquad Y_{20} = \frac{Y_{\pm}}{a_{1} a_{2}} \left(\frac{a_{1}}{a_{2}} - 1\right)$$

* tad je a = 1 (zosto? ne znam.) anda dabiremo: nas model

$$-Y_{no} = \frac{Y_{\pm}}{Q_n} \left(\frac{1}{Q_n} - 1 \right) \qquad Y_{20} = \frac{Y_{\pm}}{Q_n} \left(\frac{Q_n}{1} - 1 \right) = \frac{Y_{\pm}}{Q_n} \left(1 - \frac{1}{Q_n} \right)$$

$$\frac{1}{1 - 1} = \begin{vmatrix} Y_{n2} + Y_{n0} & -Y_{n2} \\ -Y_{n2} & Y_{n2} + Y_{20} \end{vmatrix}$$

matrice admitercija treba već sad znat

Samo je jedan Mali Ivici

Elementi:

11 zby metrodnituneje i odnitencije tog članista

12 = 21 (simetrična) negatima vijednast među...

22 zby među... i odnitancije tog članista $\frac{Y_{t}}{q_{1}q_{2}} + \frac{Y_{t}}{q_{1}q_{2}} = \frac{q_{2}}{q_{1}} - \frac{Y_{t}}{q_{2}}$

$$Y = \frac{\frac{Y_{t}}{\alpha_{1}\alpha_{2}} + \frac{Y_{t}}{\alpha_{1}\alpha_{2}} \left(\frac{\alpha_{2}}{\alpha_{1}} - 1\right)}{\frac{Y_{t}}{\alpha_{1}\alpha_{2}} + \frac{Y_{t}}{\alpha_{1}\alpha_{2}} \left(\frac{\alpha_{2}}{\alpha_{1}} - 1\right)} = \frac{\frac{Y_{t}}{\alpha_{1}\alpha_{2}} + \frac{Y_{t}}{\alpha_{1}\alpha_{2}} \left(\frac{\alpha_{1}}{\alpha_{2}} - 1\right)}{\frac{Y_{t}}{\alpha_{1}\alpha_{2}} + \frac{Y_{t}}{\alpha_{1}\alpha_{2}} \left(\frac{\alpha_{1}}{\alpha_{2}} - 1\right)}$$

$$= \begin{vmatrix} \frac{Y_{t}}{Q_{1}} & \frac{Q_{2}}{Q_{1}} \\ -\frac{Y_{t}}{Q_{1}} & \frac{Q_{2}}{Q_{1}} \end{vmatrix} = \begin{vmatrix} \frac{Y_{t}}{Q_{1}} & -\frac{Y_{t}}{Q_{1}} \\ -\frac{Y_{t}}{Q_{1}} & \frac{Y_{t}}{Q_{2}} \\ -\frac{Y_{t}}{Q_{1}} & \frac{Y_{t}}{Q_{2}} \end{vmatrix} = \begin{vmatrix} \frac{Y_{t}}{Q_{1}} & -\frac{Y_{t}}{Q_{2}} \\ -\frac{Y_{t}}{Q_{1}} & \frac{Y_{t}}{Q_{2}} \end{vmatrix}$$

$$\left| \begin{array}{c} I_1 \\ I_2 \end{array} \right| = \left| \begin{array}{c} V_1 \\ V_2 \end{array} \right|$$

Prayenin, a az ve tenotzentum (samona primon imano prayenin prijenovni amjer)

lota grapa spoja loti prijanosni anjer Snage se razlitaju do 1/3

) yight an porolet trafog

U EES-v. su najáció tronomotní transformatori (terejár, spajej v se v trobut il serju i tako ponistevamo nutte komponente struje)

Takov terejár nom ne ami tronomotní trafo. Ali imamo; tabníh (u

Tumbrima), na terejár se pribljuci određení teret (prigusmica)

Samo je jedan Mali Ivical:

Onda dobijemo L-shemu.... O Tumbrima hemreno mijerjat pod apteracijan ali mano netatu stloptur.. 080 390 101 110 120 400/115/31.5 1.045/1.05 = 0.996 to je strang shang Nava mneža proizvodi 500MVAr, a potrošina ih _ oko 50. Tope OK, vor nous parique nopen, ali voma do neta granice Ernestinao 100 MVAr Tumbri SOMVAr > to su a stanine take PRIGUONICE Samo je jedan Mali Ivica

GENERATORI

7 oni nam ne trebuju za provician tohova unaga, nec' nei provician Kruttay spoja Kratti spoj je brz, a generatan traba neto vojene daga osjeti, pri nam ve važan ravipni magnetsti tak

djelothi dig t zanemanv, a auj X je rasipno magnetito polje - zadaje se u si , di je to testo usperedit su volicinama v. mrezi, po karistino netabu

$$\frac{X_d'' \left[\Omega_l \right]}{U_{n_g}^2} \cdot S_n \cdot 100\% = X_d'' \left[\frac{1}{2} \right] \frac{U_n^2}{S_n} - bazna impedancija$$

age najtodnowtamiji model, a inorde je terbet tamplicitan (TG, HG):

T6 - 3000 rpm (poganti stroj-pomou turbina)

HG - sparoboche movine (magnetity white my e full tamplicitana)

* Xy - Probena realtancija generatara Xd - sinkrong realtancija generatura, rasipni magnetski tok hotau => struja trajnog KS = nozimoj struji $(X_d = 100 \%)$

* Priguishi namot se sterlig do priguigo prodor magnetitas Samo je jedan Mali Ivical polja u rotar

40

Prije rehonetije u Europi, Hrvatskom je prije upojanja sa Srbijan morala picuijeniti reclastijed taza, jer wijek maajs bits spojene 0 ; 0, 4; 4, 8; 8....

Notjerdi smo frehencijs da se acj nos voletor zonti brze i da stignemo europski vektor. To je trojalo oto 2 sata.... l ando je nostopila sintranizacija

Sod već svi prodaju svima i dobili smojedinstreno traiste, tope smo i htteli...

Taj tropolni rood pitaziranja smo utuzili, aliza neto provacune nom je ipak preloanplician ver umo jachi.

" Ednopani graficti model~ 44

3. Konstantna snaga S = kansti-motaris tanstantinin teretan, (pumpa za vodu) - visobonopensta mreza (premijena napana na Mo EV nece inst utjecoja iza trataci na neta potrosaou ver ma miljan regulatora) Najbelje vjerge je kombinacije aih Du, oli namo (je najtarniji aaj 3. model potrovača. distributing stanica i njen 110/x su regulacijski tratoj 20 x 1.5% 20 peliple. Too nan troba i netation topolaritar relavoja svega tegan. Mi jadnici demo toristiti samo note elemente te TOPOLOGNE. Tu mamo donta protopostente lence i ostalis Pizdani ica toje čeno uzet u abzir

Ato se u netoj potiji suisle mreže utlani bilo tojci granci mreže, mreža ostaje sunislai Kod nam ostane jedan zatvareni dio ondo smijano semo iz njega utlaniti granu.

on onde ne universe micaty er de to overnute outet u zraku.

ovoje stablojer nemrano proć iz jednog Elonista pa opet u njega, bez da neta protemo droput

n - braj svonsta

gmin - mininalni baj grana

gmax - maximalni broj grana

g. - stvarni broj grana

P - broj petlj;

$$\mathcal{G}_{min} = n - 1$$

$$\mathcal{G}_{mox} = \frac{h(h-1)}{2}$$

broj nezavisnih grana = teme ini broj petji

Mor. n=5 g=7 $g_{-n}=4$ p=7-4=3 $g_{nox}=10$ 48 Samo je jedan Mali Ivical

rastaylano su * Imamo zadanu el velizion oratograne odmitancju grane izmed crovista i & Zadano jos In, Fe Is, I, (nezavirne struje)

dogarer: + predznat ima struja taja ULAZI u mrežu.

O predznat ima struja taja 12LAZI iz mreže. -> I. KZ Za ovoriste ((opceniti slugy) $I_{1} = (U_{1} - U_{2}) \cdot Y_{n-2} + (U_{1} - U_{3}) \cdot Y_{n-3} + (U_{1} - U_{4}) \cdot Y_{n-4} + (U_{1} - U_{5}) \cdot Y_{n-5}$ $I_{2} = (U_{2} - U_{3}) \cdot Y_{2-1} + (U_{2} - U_{3}) \cdot Y_{2-3} + (U_{2} - U_{4}) \cdot Y_{2-4} + (U_{2} - U_{5}) \cdot Y_{2-5}$ In-1 = (Un-1-1) Y (-1)-1 + (Un-1-U2) Y (1-1)-2 + + (Un-1-Un) Y (1-1)-1 resustav od n-1 nezorisnih, jednodali, n-ta jednodala VIII.... Un > nepoznanice Napon u referention ili zovinam overith => poznot In=U1=2 Yi-n+U2(-Yn-a)+....+ Un(-Yn-n) I2= U1(-Y2-1) + U2 = Y2-1 + ... + Un(-Y2-n) $I_{n-n} = U_{n} \left(-V_{(n-n)-n} \right) + U_{2} \left(-V_{(n-n)-2} \right) + \dots + U_{n-n} = V_{n-n-1} + U_{n} \left(-V_{(n-n)-n} \right) - \dots$ $I_{n-n} = V_{n} \left(-V_{(n-n)-n} \right) + U_{n} \left(-V_{(n-n)-n} \right) + \dots + U_{n-n-1} = V_{n-n-1} + U_{n} \left(-V_{(n-n)-n} \right) + \dots + V_{n-n-1} = V_{n-n-1} + \dots + V_{n-n-1} + \dots + V_{n-n-1} = V_{n-n-1$

Yii Vlastita admitancija čvorista i medisabnu admitancija između ovanista i &j' $I_n = -\sum_{i=1}^{n-1} \overline{I}_i$ [I] = [Y]. [AU], [au] = [Y] -1, [i] matrica koja se vjede konisti, ali je nužna $[Y]^{-1} = [Z]$ "[I]="[Y]".[V]" -> negasiror ali vijed za slučaj bada mamo zadano referentio otoriste jemeđu 1-n. Zii Vlautita impedancija Evorista Zij među sabra impadancija čvanista Y matrica - sadre broonula.

Z matrica - sadre elemente + 0 M-matrica incidencije M= broj Evorara x broj grang orjentucija grana!

	912 913 0000	-
	-y-2 O y2 y2 O O O	•
My =	-y ₁₋₃ -y ₂₋₃ O y ₃₋₄ y ₃₋₅ O	!
	0 0 0 - 424 33-4 0 34-5	- -
	00009350965	-1
	ynz yns 1 - 1 -1	
	y y y	· !
Y = M.y	M = Y2-3 - Y2-3 - Y3-4 Y3-4 X -1 -1 =	
	- J2-3 - J3-5 - 1 -1	- -
	3-5-751	-
		· - -
	y ₁₋₂ + y ₁₋₃ - y ₁₋₂ - y ₁₋₂	
		'
	- 0 0 - 42-5 - 45-5 - 4	
		. ; ;
	×5=25 elemenata u montrici.	
	-5 =0 diaganolish damenota	
	grand = 7 vandyagandus elementy	
	×2=14 elemenata =0	#
i ka Kalana	▗▕▄▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	
JE MA	TECE SE MORALO ZNA 7 Samo je jedan 34 dli Porch Samo je jedan 34 dli Porch	
	Saino Jes	

Z-matrica impe	edancije		
Inverz matrice (pr. 100 x 100) pc	noci determinanti	ne bi stigli
izracinat cijeli živo	+. Zoto su majo	stori amislili ne b	aj dasgo
	obienou baya	<u>1</u>	
Y → inverz .	notrice y-1		· · · · · · · · · · · · · · · · · ·
- Sod ćena izbijo	/ • • •	rice	
A. 1-1 = E			
	jedinicha moto	ica	
i*j·j*k	wet ob se	smije možiti	
4	1 -		
I = Y	10		
1 1	1	Un = Zadano	
n-1 n-1	h-1		
-> ldo 1 + -			
-> Ideno vad to vid	yer na Jedac	*** **	a Inical
			ama je jedan Mali Irikal
			<u> </u>

$$I_1 = 2A$$

$$I_2 = 4A$$

$$Y = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$y_{n-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

l anda se pri stari reciprode vijednost, anaj koji nije u ton stypes i tem netter (gelege PIVOT) iznovi: = 2 - unnotate out artille (umggan rade i stypes)

$$Y^{(a)} = \begin{vmatrix} \frac{1}{1} & -\frac{1}{1} \\ -\frac{1}{1} & 2-1 \end{vmatrix} = \begin{vmatrix} 1 & -\frac{1}{1} \\ -\frac{1}{1} & 2-1 \end{vmatrix} = \begin{vmatrix} 1 & -\frac{1}{1} \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} \frac{y_{2n}}{y_{inst}} \end{vmatrix}$$

I sod daje neba.

Pivotao dijete...)

$$Y^{(2)} = \begin{vmatrix} 1 - \frac{-1 \cdot 1}{1} & -\frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$$

$$11 = \frac{1}{pivot}$$

$$12 = \frac{y_{22}}{pivot}$$

$$21 = -\frac{y_{21}}{2}$$

$$22 = 4 - \frac{y_{22}}{2}$$

$$1/1 = y_{4n}^{(1)} - \frac{y_{2}^{(1)} y_{3}^{(n)}}{x_{1n}^{(n)}} \qquad 1/2 = -\frac{y_{12}^{(n)}}{p_{1n}^{(n)}}$$

$$21 = \frac{y_2}{p_1 + q_1}$$
 $22 = \frac{1}{p_1 + q_2}$

$$I_3 = -\frac{2}{5}I_i$$

$$\begin{vmatrix} \Delta U_1 \\ \Delta U_2 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 2 \\ 1 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 8 \\ 6 \end{vmatrix}$$

$$I_{1-2} = (V_1 - V_2)y_{1-2} = 2 - 1 = 2A$$

$$I_{2-3} = (v_2 - v_3) \cdot y_{2-3} = (6-0) \cdot 1 = 6A$$

+ Idemo mi molo izanolizilat to Z matrice

$$Z \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad U_2 \quad ih \quad Z \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Pritage repore o prenetroj mezi Di odrađenam stopeu deo narinemo, 1A.

m=5 k=2

			_	↓		_	
	7/18	1/6	1/18	-4/9	-4/9	1/18	o
<u>"</u>	1/6	1/2	1/6	-1/3	-1/3	1/6	Ò
	1/18	1/6	7/18	-4/9	-1/4	1/18	0
Y (5) =	4/9	1/3	4/9	16/9	-8/9	1/9	1/3
•	4/9	1/3	1/9	-8/9	16/9	4/5	1/3
	1/18	1/6	1/18	-1/9	-4/9	7/18	0
	0	0	0	-1/2	-1/3	0	1/3
				Ţ			

u slipedecem torotu de se sni elementi prapipatti (per su u oznadanam vettu i stypcu svi raeličiti od nule)

m=6 k=4

		,					L	
		1/2	3/12	1/6	1/4	-2/3	1/12	1/2
	i	1/4	9/16	1/4	3/16	-1/2	3/16	1/16
	-	1/6	1/4	1/2	1/4	1/3	1/12	1/12
· (6)	=	1/4	3/16	1/4	3/16			3/16
		2/3	1/2	1/3	1/2	4/3	1/2	1/2
		1/12	3/16	1/12	1/16	-1/2	57/14	1/48
	. {	1/12	1/16	1/12	3/16	-1/2	1/48	19/18
	- · · .							

Samo je jedan Mah Ivical

	5/6	1/2	1/3	1/2	1/2	1/3	1/3
•	1/2	3/4	3/8	3/8	3/8	3/8	1/4
/.	1/3	3/8	1/12	3/8	1/4	5/24	5/25
Y ⁽²⁾ =	1/4	3/8	3/8	3/4	3/8	1/4	3/8
:	1/2	3/B	1/4	3/8	3/4	3/8	3/8
	1/3	3/8	5/29	1/4	3/8	7/12	5/24
	1/3	1/4	5/24	3/8	3/8	5/24	7/12

Zu - ofper mreae iencedo crovista 1 i referentinos overista

20 3 7

Za mpr. Zn = 1 ako noviveno struju od 14 na 1, a uzemljino 8, dobit cemo 1 v osovistu 1

1-1-3 Zu=Zn=Zn=3 60

Zen = Ze= 20 Z2 = 3 52 22= 3/8-52 7-220-3-52 may ist petencial W mrezi ne laspolazeno sa strujana, veo sa snegama 3 vote dianity: Everit fereta PQ granice ovorive generatorsto Plul, Qin i Qua - crosiste regularys to 101, 8 - 101, 5-0 -> Snage ou fintaje vive variobli -> iteratime metade peranja S. = U: I. * U: = U: | & U & . $Y_{ij} = -y_{ij} = -(G_{ij} - J_i B_{ij}) = |Y_{ij}| e^{i\Theta_{ij}}$

*
$$S_i = U_i \cdot e^{i\delta_i} \cdot \sum |U_i| e^{-i\delta_i} \cdot |Y_{ij}| \cdot e^{-i\delta_i}$$

$$= U_i \cdot e^{i\delta_i} \cdot \sum |V_i| |Y_{ij}| [\cos(\delta_i - \delta_j - Q_{ij}) + i\sin(\delta_i - \delta_j - Q_{ij})]$$

Tato umo dotazali da sagge u i-tan ovoristu avire o sum saggama suh ovorista

ovoriste tereta > trazimo U, 8

Suviste generatasto > trazimo 8:, Q

$$P_i = \sum_{j=1}^{n} \left[E_{ij} \cdot \left(E_{ij} \cdot G_{ij} - E_{ij} \cdot B_{ij} \right) + F_{i} \left(E_{ij} \cdot G_{ij} + E_{ij} \cdot B_{ij} \right) \right]$$

$$Q_i = \sum_{j=1}^{n} \left[F_{ij} \cdot \left(E_j G_{ij} - F_j B_{ij} \right) + E_i \left(F_j G_{ij} + F_j B_{ij} \right) \right]$$

<u>Vektor stanja</u> (je oraj vektor koji sadiži sne napare po iznasu kotu u mreži

Dovo nije element motrice već vzdužna odmitancija

$$S_{i,j} = U_i \cdot \overline{L}_{i,j}^* = U_i \left[\left(U_i^* - U_i^* \right) y_{i,j}^* + U_i^* y_{i,j}^* \right]$$

$$\Delta S = (U_i^* - U_i^*) \cdot y_i \cdot y_i^* (U_i - V_i) - (|U_i|^2 - |V_i|^2) \cdot \frac{g_{ij}}{2}$$

AP je vrijek +

dodotatijal E zbay top vodag

Zotajer (je yis = yis = - 8:12

Samo je jedan Mali Ivical

D5 = Kvadratna forma Usrabaj tradiatnoj tami izroz je pozitivan i vijet vijedi: 1P>0 1Q>0 fizikalno: gubici eregije fizikalno; gubici jabue ký se pretepju u taplinu Snage. kod se ora dra poniste, vod je optenden PRIRODNOM SNAGOM Idealna snaga - nema debitnih gubitata Hibridae mutrice - mozemo imoti i do 3 ret. overista -nije se adiada u pratosi GAUSS-SEIDELOVA METODA $(U_i - U_{ret}) = \sum_{j=n}^{n-1} Z_{ij} \cdot I_j$ $n = ret, \ \delta v_i$ recovering over ista postaji (1000no Zavisno ovenuta REFERENTINO Uref = | Uref | 10° Z=Y-1 (1-Un=Zn I, + Zn I, + Zn I, +. ...+ Z+ In-1 7 5 * Ui-Un=Zi, I, + Zi, I, + Zin-, In-, Un-1-Un= Zn-11-1 + Zn-12 I2+ - + Zn-1 In-1

Metodaje pardina za mali broj overista (20), alje zato Konvergentus do jaja! SAMO 5-10 iteracija V the mrezama imano vedno referentio i teretna ovanista Nema generatardith oversity aboy templicitomosti, paga pretarmo u teretro ovoriste Ova je metada OK za oto 100 ovalita (vivo ad toga bar i ne...) Za 100 dionisty matrice impedencija ima 100 x 100 = 10000. elemenatu. Tu iteraciju rade kampjutari, alak bi izgleda algoritam pragrama radinguja: START Toming Y motrice Yiu'= - Yerono vadvana forming webbar Y' U Svalv inverz Z=1-1 stayei K = 0 DUmax = 0 N1=N-1

4						
Ŏ VOR	- 6	GENERATOR			TERET	
	v	MW	MVAr	MW	MVAC	- Fio
1.	1,06-70		/		-	y'0.055
2.		40	30	20	10	10.085
3.		0	0.	45	15	V.0.022
4.				40	5	10.055
S ,	-			60	10	10.04

				•
,	v'	Zin (P.U.)	Yi v/2 (P.U.)	Yij
1.1	2	0.02+j.0.06	y0.03	-5-175
- 1	3	0.08 5 0.24	0.025	1.25 7 375
2	3	0.06 + 0.18	1.0.02	-1.66-15
-2	- 4	0.06+10.18	10:02	1.66 75
2-	- ,5	0.04 + 0.12	J'0.015	25-145
- 3 -	- 4	0.01 +j 0.03	y 0-01	10 - 30
- 4-	- 5	0.08+10.29	1:0.025	1.25 73.75
			68	

67	25 _[] 18.75	-54:15	-1.25 7 3:75	0	0
_	5t/15	10.83-1225	-1.66+15	-1.66+15-	-2.54.75
-4,	2543.75	-1,66-1,5	12,916-13875	-10+j30	10
	0	-1.66+15	-10-4,30	12,916-138,75	=1/25+1375
	0	-25+175	0	-125+,3,35	375-jm25

Ovariste 1 je referentno pa odbaque o 1. stopac i 1. sed

 0.016857	0,02591+	0,013(28 +	0.0151743 +
ti0.050571	JO.03771	(,0.00.02857	
0.012571 + 1'0.03771	0.0297143 +	0.026287+	0.017143 + 10.0515286
	0.0262857+	0.03171143-4	0.0185238 + J 0.0585715
0,0151748 + j0,017143	0.017143 +	0.0185238-1 10.0585714	0.003654_+_

Prijagonalni su u Z matrici usijet najvedi

Imaginami - dio = 3 x realni dia

Sn'ou positioni -> napani ce bit pozitimi

$$I_{4} = \frac{-0.6 \pm j \cdot 0.05}{1 - j \cdot 0.05} - j \cdot 0.05 \cdot 1 = -0.5 \pm j \cdot 0.005$$

$$I_{5} = \frac{-0.6 \pm j \cdot 0.05}{1 - j \cdot 0.05} - j \cdot 0.05 \cdot 1 = -0.6 \pm j \cdot 0.005$$

$$I_{6} = \frac{-0.6 \pm j \cdot 0.05}{1 - j \cdot 0.05} - j \cdot 0.005$$

$$I_{6} = \frac{-0.6 \pm j \cdot 0.05}{1 - j \cdot 0.05} - j \cdot 0.005$$

$$I_{6} = \frac{-0.6 \pm j \cdot 0.05}{1 - j \cdot 0.05} - j \cdot 0.005$$

$$I_{6} = \frac{-0.6 \pm j \cdot 0.05}{1 - j \cdot 0.05} - j \cdot 0.005$$

 $U_{2}^{(4)} = U_{1} + Z_{2,1} \cdot I_{1}^{(6)} + Z_{2,2} \cdot I_{2}^{(6)} + Z_{2,3} \cdot I_{3}^{(6)} + Z_{2,4} \cdot I_{4}^{(6)} + Z_{2,5} \cdot I_{5}^{(6)} = 106 + (0.0168574, 0.020574)$ - (0.2 - (0.285) + (0.012571 + (0.03711)(-0.45 + 0.035) + (0.01398 + 0.040857)(-0.4 - 10015) + (0.01398 + 0.04085)(-0.4 - 10015) + (0.01398 + 0.04085)(-0.4 - 10015) +

$$+ (00151713 \pm j0.047140)(-064j0.06) = 1.05112 - j0.05389$$

$$\Delta U_2 = U_2^{(6)} - U_2^{(6)} = 0.00808 - j0.05391$$
"niono ni blizo (rjevenja "
$$I_2^{(6)} = \frac{S_2^+}{(U_1^{(6)})^4} - 420 \cdot U_2^{(6)} = \frac{0.270.2}{1050120009} - j0.085 \cdot (1.05112 + j0.053590) =$$

$$= 0.17574 - j0.208887$$

$$U_3^{(6)} = U_4 + Z_{3,2} I_3^{(6)} + Z_{3,4} I_4^{(6)} + Z_{3,5} I_5^{(6)} = 1.02777 - j0.08581$$

$$I_3^{(6)} = \frac{-0.45 \pm j0.15}{1.02777 + 0.08581} - j0.0255 \cdot (1.02777 - j0.09581) = -0.52585 - j0.12813$$

$$U_4^{(6)} = U_4 + Z_{4,2} I_2^{(6)} + Z_{4,3} I_3^{(6)} + Z_{4,5} I_4^{(6)} + Z_{4,5} I_5^{(6)} = 1.02521 - j0.0992$$

$$I_4^{(6)} = U_4 + Z_{4,2} I_2^{(6)} + Z_{5,2} I_3^{(6)} + Z_{5,4} I_4^{(6)} + Z_{5,5} I_5^{(6)} = 1.01913 - j0.111603$$

$$U_5^{(6)} = U_4 + Z_{5,2} I_2^{(6)} + Z_{5,2} I_3^{(6)} + Z_{5,4} I_4^{(6)} + Z_{5,5} I_5^{(6)} = 1.01913 - j0.111603$$

$$U_5^{(6)} = U_4 + Z_{2,2} I_2^{(6)} + Z_{5,2} I_3^{(6)} + Z_{2,4} I_4^{(6)} + Z_{2,5} I_5^{(6)} = 1.01913 - j0.111603$$

$$U_5^{(6)} = U_4 + Z_{2,2} I_2^{(6)} + Z_{5,2} I_3^{(6)} + Z_{2,4} I_4^{(6)} + Z_{2,5} I_5^{(6)} = 1.01913 - j0.111603$$

$$U_5^{(6)} = U_4 + Z_{2,2} I_2^{(6)} + Z_{2,6} I_3^{(6)} + Z_{2,4} I_4^{(6)} + Z_{2,5} I_5^{(6)} = 1.01913 - j0.111603$$

$$U_5^{(6)} = U_4 + Z_{2,2} I_2^{(6)} + Z_{2,6} I_3^{(6)} + Z_{2,6} I_4^{(6)} + Z_{2,5} I_5^{(6)} = 1.01913 - j0.111603$$

$$U_6^{(6)} = U_4 + Z_{2,2} I_2^{(6)} + Z_{2,6} I_3^{(6)} + Z_{2,6} I_4^{(6)} + Z_{2,6} I_5^{(6)} = 1.01913 - j0.111603$$

$$U_6^{(6)} = U_4 + Z_{2,2} I_2^{(6)} + Z_{2,6} I_3^{(6)} + Z_{2,6} I_4^{(6)} + Z_{2,6} I_5^{(6)} = 1.01913 - j0.111603$$

17:0 140 17,0 1.0512700000 4007117-10.00524 1.02529 - 10.049 -1.01973 - 10.1169

1.01622-j.0.05129 1,0205-j.0.03924 1.01918-j0.04502 1.01212-j0.10908 1,04748[-28° 1.023 61 [-5.33°

1.02425 [-5°

1.09622-10.05286 1.02061-10,02837 1.01824-10,09456 1.0122-10.10861

* Tek nom 3. iteracija ispunjava nasu todnost 0.001 - 0.001

Da smo dobili pozitivan but značilo bi do smo pjebali...

* 12 nos napana veryento za Q, a lut pe mponto

Ī

$$YL_{2,1} = \frac{Y_{2,1}}{Y_{22}} = \frac{-5+j.15}{10.88-j.32,505} = -0.4623+j.0.00036$$

$$YL_{23} = \frac{Y_{23}}{Y_{22}} = \frac{-1.66 + 1.15}{10.83 - 1.62,415} = -0.15421 + 1.0.00012$$

$$YL_{24} = \frac{V_{24}}{V_{22}} = \frac{-1.66 + 1.75}{10.83 - 1.82.615} = -0.05421 + 0.00012$$

$$YL_{25} = \frac{Y_{25}}{Y_{22}} = \frac{-2.5 + 7.5}{10.88 - j.32.45} = -0.23131 + j0.00018$$

Podaci u provirenoj terblici:

_	·	<u> </u>
10,893 - 32,115	-166+15	
-166-45		
. :		
	0	
		10,835 J'82,115 -166+j'5 -166-y'5

Samo je jedan Mali Ivical

Ovo sue steper mi je islobo tonvergentro, Hebel je nestripljiv, $\Delta U_2 = U_2^{(0)} - U_2^{(0)} = 1.08752 + j0.0029 - (1+j0) = 0.03752 + j0.0029$ * (1)200 = (1) × 10206, = 0.0375.1.4 + 10.0029.1.4 = 0.05253+j.0.00406 $U_{2ubr}^{1} = U_{2}^{0} + \Delta U_{2ubr}^{(4)} = 1.05253 + 0.00406$ to sad mothemo a famula za la (Habelye to, maramo, _ * DU3 = 0.0058-ja00821 U3 = 1.4 (0,0069 - 1'0,00821) + U3 = 1.00966 - 10.01289 Pazlita izneđu susjednih iteracija bi Mobela bit ispod 0.001+j0.001 - * U4 = KL4 - YL (2 'Veubr - YL (3) - YL (5) = 1.01128 - 0.01881 $- \Delta U_{i}^{(4)} = 0.0128 - j.001881 - 0.00579 - j.0.02635$ * U = KL5 - YL 5/2 · Q = YL 5/2 · Q = 1.00349 - 1.005267 (1) = 1.4 (0.01949-j'0.05259) + (1+, 0) = 1.92728 - j'0.0374 samo je jedan mali

Sat smo gotas's til redonstanijandi iteracija, i piamo dale, of Habel so zaprico, pa nije reto novbu... Pij + iQij = U(Ui*-yi*) ·yi* + U·U*. 4:1* Paz tjanz = U1 (U2 - U1) yn+ U1. U+ . Un-2 = = 1.06(1.06-1.04623-ja05126)(5+,15)+1.062.(-ja08)= = 0,888-j0,086 -> 88.8-j.8.6 MVA jer je So=100MVA -> P2-1+1 Q2-1 = U2 (4+-4+) y++ |4|2 + + |4|2 + = = (1.04623 - j.0.05M6) (1.04623+j005M6 - 1.06) (5+j 15) + 1.0498 (-j003) = -0.874 +j.0.062 -->-87.4+j.6.2 MVA 1P12 +1 101-2 = P12 +P21 + (Q12+Q21) = 1, 4MW - 2,4 MVAr SP mara bit pozitivan Samo je jedan Mali Ivical

Zbrojeno daje DP+jDQ

Ondo zraomomo sue totale snoge (2-3,3-2,3-4,5-3,6-5,5-5,2-5,5-2

				<u> </u>	
VOD	- P. MwJ	Q [MVA]	AP[M]	- DQ [M/Ar].	
1-2	88,8	8,6	11	-24	PRORVED!
2-1	- 87.4	6.2	1.4		(UPTERECEN ISHD DRIBGONE SMAGE)
1-3	40,7	1.1	12	-1,9	KOD DIELATINE
3-1	-38,5	-3			MORA BIT VEOR
3=2-		-6,8	0.5	-33	OD NEGATIVALE (GUBICI)
2-4	27.5	30			ica/
4-2	-275	59	0.4	-2.9	dali Iv
2-5	54.8-	7,4	1,1	6,2	an M
3-4-		-7,2			paf af
4-3-		3.2	~0	-1.9	Samo
₹-5	6.3	-2.3			
- 5~4		-2.8	100	-511	80

NEWTON-RAPHSON-OVA METODA Jecobona metada y=+(x) yzos-y. - Testo nam je adredit taj pripadojva X, parpljumemo neki tangenta (tanga) $\frac{\left(x'-x^{\circ}\right)}{\partial x} \frac{\partial F}{\partial x} \bigg|_{X} = y^{\circ} - y_{zad}$ $\times - \times^{\circ} = \left(\frac{\partial f}{\partial x} \Big|_{x_0}\right)^{-1} \left(y^{\circ} - y_{zod}\right)$ $X' = X^{\circ} + \left(\frac{\partial f}{\partial x} \middle|_{X_{o}}\right)^{-1} \left(y^{\circ} - y^{2od}\right)$ Je doute tonvergentino (ut, tok volim to vijeo). Mi cemo somo mot funtije vise varjebli, al to

Jednodzte shaga $\mathcal{P}_{i} = \mathcal{U} \cdot \sum_{j=1}^{n} \mathcal{U}_{j} Y_{i,j} \cdot \cos \left(\delta_{i} - \delta_{j} - \Theta_{ij} \right)$ i=1,...,n-1 Qi= Ui · Ž Ui Yij sin (Si-Si-Qi) -ovo ou ore iznosi nopina i odmitancija (1411, 1411) $\mathcal{P}_{i} = \dots = U_{i}^{2} \cdot Y_{i} \cdot \cos(\Theta_{i}) + \sum_{j=1}^{n} U_{i} \cdot U_{j} \cdot Y_{i} \cdot \cos(S_{i} - S_{i} - \Theta_{i})$ Q:= = -U; 2. Yi, i sin(Q:) + = U: U: Yij sin (8; -8; -0) **1** ~ - La referation ovonite nema and formula... * Boy' singa = n-1 (bez releventny) * Broj jokush snege = n-g-1 (bez referenting i generational) Mi trazino U: [5] (1 -> 1.... (n-g-1) _ $\delta_i \rightarrow 1, \dots (n-1)$ - doble incomo n-1+n-y-1=2n-2-y overista Kak deno započet? | Izmis Imo pozetni Xo... Isto to i u Gauss-Seidelu Postupat:

-> 1 Zadamo xº U.º[8:" = 110 i=1....n-g-1

| U.t=|U_g| za ganeratasta čvorista $\delta_g = 0$ [sad ideno s temulana zo Pi i Qi U O, iteraciji \$ -Pi= + (Ui°, Si°) * + ve cos i=1...n-1

-Qi=+(Ui°, Si°) * + je sh i=1...n=9-1 [83]

dijaganoihi alementi te sub-matrice : $J_4 = \frac{\delta P}{\delta \delta}$ Pi=U2 Yincou (-0;) + = U. y. Yincou (5:- 5:-0;) Stanstanta, tot du nom tey dio pije funtcija S; pa $\frac{\partial \mathcal{D}_{i}}{\partial \mathcal{S}_{i}} = -\frac{2}{\sqrt{2}} \mathcal{U}_{i}^{i} \mathcal{U}_{i}^{i} \mathcal{Y}_{ij}^{i} \sin \left(\mathcal{S}_{i}^{i} - \mathcal{S}_{j}^{i} - \mathcal{Q}_{ij}^{i} \right)$ disigenati elementi -> suma unit vandijegana hih 18 = 4.4. Yij sin (5: -5: -0:) - being je tenteje semo naveg ji postali u simi anda doju 0

(derrucije tanstante) Pi = 2U; Vi; cos (-Θ;) + Ž U; Vi; cos (δ; -δ; -Θ;) $\frac{\partial P_i}{\partial y_i} = -U_i V_{ij} \cos(\delta_i - \delta_j - \Theta_{ij})$ $= \frac{\partial Q}{\partial \delta} - \frac{\partial Q}{\partial \delta};$ Q:= U.2. Yisio (- Qi,) + Z ViV, Yij sin (Si-Si-Qi) 10: 10: Vij Cos(8: -6: -0:)

$$-\frac{\partial Q}{\partial U} \longrightarrow \frac{\partial Q}{\partial U}$$

$$\frac{\partial Q_{i}}{\partial U_{i}} = 2U_{i} Y_{i,i} \sin(-\Theta_{i,i}) + \sum_{j=1}^{n-1} U_{j} Y_{i,j} \sin(S_{i} - S_{j} - \Theta_{i,j}) \qquad i=1...n-1-y$$

$$\frac{\partial Q_{i}}{\partial U_{i}} = U_{i} Y_{ij} \sin(S_{i} - S_{j} - \Theta_{i,j})$$

Todje god je cos, Θ_i je element matrice admiturçije (oto 90°), q δ_i i δ_i su mali i priblizho su isti, par im je razlika skoto O. Zato, $\cos{(70^\circ)} \approx mali$, q $\sin{(70^\circ)} \approx veći$

Zato, do bi ubrzeli promiam: cos. Dij i sin Oij

$$\mathcal{E}_{i} - \mathcal{E}_{j} \cong \phi$$

$$\mathcal{E}_{i} - \mathcal{E}_{j} - \Theta_{i,j} \cong -\Theta_{i,j}$$

$$|\Delta P| = |J_1| \Delta \delta_{n-1}$$

$$|\Delta Q| = |J_4| \Delta \delta_{n-1}$$

$$|\Delta U_1| \Delta U_2$$

$$|\Delta U_3| \Delta U_3$$

$$\Delta P = J_1 \cdot \Delta S \longrightarrow \Delta S' = J_1^{-1} \Delta P^{\circ}$$

$$\Delta Q = J_2 \cdot \Delta U \longrightarrow \Delta U' = J_1^{-1} \cdot \Delta Q^{\circ}$$

$$Motrica$$

Samo je jedan Mali Ivical

7. Rijanano Pier = 1 (4, 5; Qi'izr = f(Vi', S') DP'=Pzod-Piza △Q'= Qzod - Qizr DP<E 0QCE Poscylano provadus s Zamiliumo portpoti preroan toctan 4 Thobel e nacrto netoj kaj niko vije vlazio, ch volama: da ne radinamo non-otop Vocabijani martriau, Zaot zimo priv tengente i trenslatiremo plessono -> Sad dio koji nisam kurca stužio: JUX = 05 D-danja D.G.Dx =15 6 zganja $Z_1 = \Delta S_1$ d21.21+1.2=052 -> Z2=0.52-d21.21 den: Zn + doz · 22 +1. 2 -> 2 = 1 S8 - doz 2 - don 21 Z;=AS;-Zdj;Zj Supertitudia unapplied

6.25-118.695 -1.25+,3.75 -5+12 X -5.tins 10.83-132.415 -1.66+15 -166+15 2.3+175 Y = | -1.25 + 3.75-1.66+15 /12.916-38.695 -10+j30 O -1.66+j5 / -10+j30 12,916-138,695 -1.25+13.7 -2.54.25, 0 3.75-1M21 -1.25+1375 dodani su topaciteti u diogandum elementing (Zato se malo pranijeni tot) * To sve je pametro pretront u polami ablik jer se u izrazma za Pi i Q; traze iznosi i kuteni 19.712 -71.5155 15.81/108.435 3, 45/108,535 15.81 108.435 34.18 -71.52 5.27/108.435 5.27/108.435 Y = 3,95/108.435 5,27/108.435 40.79/108,435 31,62 108,435 O 5.27/106.435 31,62/108.435 40.79 -71.54 3, 95 108, 435 0 3,95/108135 0 7,9 108,435 11,82 -71,52 1.06 i unjet isto? P2, 12r = 02 (0) (U1)/21 · Cas (S2 - 82) + 0 U O iteraciji + U2 · V2 · Y22 · cos (-Q2) + U2 · U3 · Y22 · cos (82 - 83 - O32) + + U2° · V4 · Cas (82 - 84 - 624) + U2° · V5 · Y25 · Cas (82 - 85 - 62) = 1.1.06.15.81.cas(-108,435)+1.1.34,18.cas(71,52)+ + 1.1.5,27.cos (-108,535) + 1.1.5,27.cos (108,535)+ + 1.1.7,9 cos(-108.435) = = -5.3 + 10.833 - 1.66 - 1.66 - 2.5 = -0.3 (oro su sue djelothi dijebni Y-matrice) Analogno se dubije i za jalan unagu Q2,121 = -159 +32,417-5-5-7,69 = -0.985 (P.U.) ie jedan (imaginami dijetan 2. stojea)

Soid unamo isnegu u bronist 2 u nuttoj iteraciji (al to, je She hetvology er , jour nement tooke napare) P212-03 Q2 izr = -0.985 Q: = -0.05 Q312 = -028 Snage 0 * OP = P220 = P2: = 02 - (03) = 05 (prevelite reality to DP3 = P3201 = P3; or = 60,45+0.075 = -0.875 =P4zer -P4;24 = -04+0=-04 DP =-0,6+0=-0,6 DQ = 0,2 +0,985 = 1,185 $\left(\frac{\partial P_i}{\partial S_i}\right) = U_i \cdot y_j \cdot Y_j \cdot \sin(-\Theta_{ij})$ AQ= -0.15+0.28=0.13 DOC = -0,05+0,055=0,005 DQ-= -0,10+0,04- -006 ΔP_2 10,53 DP. 38,975 -1.66 DPC -0,4 -1.66 DP--0.6 =3.75 ± -2,5 11.25 ΔQ_{2}^{-} 1.185 -11.338 -12,991 ΔQ 0,13 3855 10 -12,816 1,66 :-5 DQ. 0.005 -7.5 1.25 -3.75 Samo je jedan Mali Ivical

Uliperam dijelu motrice dipogoralni elementi su magatimi, a vandijagarilii przituni... vandijognalni su 3 pota manji nigo v deherolat matrice i and it deans. Δ&, ΔU2' $\frac{\partial P}{\partial S} = J_1$ $\frac{\partial P}{\partial U} = J_2$ $\frac{\partial Q}{\partial S} = J_3$ $\frac{\partial Q}{\partial U} = J_4$ -0.0506B -0,0911 -0.8723 -0,11268 0.05194 0.03134 003091 0.026 * & = 5° + 15' = -0.05068 (-2.505°) 5,=5°+ 081 = -09911 (-3,22°) 8=5, +18 = -0.09733 (-C577°) S== S=+ US= -0,11288 (-6,55°) *U2=U2 + D12 = 1,05969 $V_0' = V_0'' + \Delta V_0'' = 1.00134$ U= U, + AU, - 1,03091 Us = Us + AUs = 1,026 Sad ideno u dragu itorgaju (jes ram an' DU-on' ne Zodapjanaju E=0.0001

P2 izr = U2' = U; Y2; cos (S2'-6,1-02) = = 1.05449 · 1.06 · 42 · cos (108, 435 - 2, 904 - 0) + + 1.05449 · 1.05449 · 34, 18 · cos (71.52) + $\Delta P^1 = P_{2zad} - P_{2izi} = 0.2 - 0.2708 = -0.0708$ vec/e bolje (3, iteracija bi adadjih reve to yeu za s anda picimo: $\left| \Delta \delta \right| \rightarrow \Delta P = J_{A} \cdot \Delta S$ $\Delta Q = J_{A} \cdot \Delta U$ To obciemo o do si pojednostrunimo raan (Parsi o S a Q o U). To nos exple za por iteracija više of je ipak lahve vacunations -0.03443 12 S -0,08239 △ 6, -0.088y *ovo su "vede" vijeolasti za U od. △ 5

√ -0.10589 the prethethe metrice (vettara), all 1 U21 0.07518 costo u Sojednostavnijih iteracija $\triangle \cdot U_3^{-1}$ 0.0607 A 0,1 0.0674 elegantinije dođes do viješenja. 0,06785 161 Jer, U Jacobjevan abjartme su nom trobale 3 iteracie or ovan payconostapycom smay u trobali zoutit s potal all veloiga -> lative je

ISTOSMIFFM MODEL priblizera -900 Pi= 2 U.U. Yi, ras (-01,+8;-8,) (05(x-20) = sind $U_{i} = U_{i} \approx 1$ Qi = Z U; Yi Yi sin (Si - Si - Bij) sin(x-90°) = -cosx Dret pastavimo da nema vidare tampenente (= struja ve nema) $P_{i} = \sum_{j=1}^{n} B_{ij} \left(S_{i} - S_{i} \right) \qquad P_{i} = \sum_{j=1}^{n-1} B_{ij} \cdot S_{i} \qquad S_{n} = 0^{\circ}$ $V_{i} = V_{i} \qquad V_{i} \qquad V_{i} = V_{i} \qquad V_{i} \qquad V_{i} \qquad V_{i} = V_{i} \qquad V_{i} \qquad V_{i} \qquad V_{i} \qquad V_{i} = V_{i} \qquad V_{i$ U mortrionan ablitu: PI=181. 181 motrira susceptancija (nema mog. dijeb) Bij - element Y motrice i to men imaginotni dia Ovaj istografimi model je jato dičan izmjeničnem i daje Stiene rozultute. Ali, ovat ne dobijemo napanste prilite! $\boldsymbol{x} := (\boldsymbol{x}_{1} + \boldsymbol{y}_{2} + \boldsymbol{y}_{3} +$

1

		10.1.2005.
		(*************************************
	8; U:-Un=jau	· · · · · · · · · · · · · · · · · · ·
<u> </u>	δ_n	*
1	P; /= (181. U: - Uraf)	
1	Proces Proraouna	
<u> </u>	Maprasmo motrico B.	
J _		· · · · · · · · · · · · · · · · · · ·
 	+ + + + + + + + + + + + + + + + + + + +	
- -		
	$ \mathcal{D}_{i} = \mathcal{J}_{i} + \mathcal{L}_{i} $	
	\Rightarrow \wedge	
_ _ -	$\frac{1}{2}$	
	Distant Distant Spile realning	1
<u> </u>		
	Dible, nema gubitates (Promo
	Pij - Zanemanli oje ortni o	
-		
	eano eano	je jedan Mali Inical
	97	2 1

44

.

..,

_ '

: .-.

.

٤

. .

2. 20 MW 0,2 3. -45 MW -0.45 4. -40 MW -0.40

5. -60MW -0.60

2-4 JO.18 7555 2-5 JO.12 78.33 3-4 JO.03 733.3

4-5 1024 -14.16

	20.833	-16.6	4,16	0	0
	-16.6	36.111	-5.55	-525	-8,83
Bo = 1	-4.16	جر،حز	43,055	-33,33	0
	0	-C.VE	-3,33	13.05	-5,166
	0	-8, 33	0	4,166	125

Samo je jedan Mali Ivical

$ 0.2 $ $ \Delta U_2 $ $\delta = \Delta U_1 = 0$	
-045	
$-a60 = B_{\odot}$	
-C.60	
102	
$ \begin{array}{c c} J & \Delta U_4 & = J & B^{-1} \\ \hline -0.4 & = J \end{array} $	•
-0.6	
0.0507 0.03771 0.0629 0,5714 -1 0. 0.08914 0.07886 0.05143 5 metricha	
B = 0.00514 0.05857	
0.4309	
-j.0.05126	
10.09497	<i>0</i>
70.11577	
7000	2
napisat: natemo ispastit jer zamo de la tomo. Pa mozamo	
$\mathcal{P} = \mathcal{B}_{\Delta U}$	
- 70.05126	
\(\sum_{\infty}	c a!
- 70.10063 Samo je jedan Mali 1 - 70.11571	
	i

	7	14/
(** = · = · · · · · · · · · · · · · · · ·	15,81
1-3 0.08+		3. 35
2-3 0.06+		\$.27
- 2-4 006+;0		5.27
- 2-5 0.04 + 0	25775	7.7.9
3-4 001+10	203 10-1:30	34.62
<u> </u>		3,25
3325- 5		disamle on
		0 disegnole poz.
-		3,95 vandijeg anothe heg.
-7,9	03.95 1	1.85
0,0533		8_0,05970
Z V-1 0.03.97		
0.04248		
	<u> </u>	
	7,04.4	
	0.2 -0.05	4
	-4 -0.45 -0.101	4
- 54	TQ4 = -0,061	
. 45	-0.6 -0.122	
- Inda hapranho fa	6ter 0.054 = 1.05.	34
	0.1014 = 1051	Uzmeno 1.05
	008467	
	15.81 = 1.0539	
		Samo je jedan Mali Ivical
- 1 P = 1 y 1	S [AM]	

Mreza Hivote imo 200 ovorista i UY motrici (je u Sigurno 90 tamada d. Tak smo zovišili. totore snega... 11.1.2005. KRATKI SPOJ tropolni jedropolni but med napama se zadrana, a napani prodoju prema Samo je jedan Mali Ivical

$$\begin{split} & \left[I\right] = \begin{bmatrix} Y \end{bmatrix} \cdot \begin{bmatrix} U \end{bmatrix} \quad \text{with subgroberng} \\ & \left[U\right] \cdot = \begin{bmatrix} Z \end{bmatrix} \cdot \begin{bmatrix} I \end{bmatrix} \\ & \left[I\right] \\ & \left[I\right] \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ II \end{bmatrix} \\ & \left[I\right] \end{bmatrix} \\ & \left[U\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Im \end{bmatrix} \\ & \left[I\right] \end{bmatrix} \\ & \left[U\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Im \end{bmatrix} \\ & \left[I\right] \end{bmatrix} \\ & \left[I\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Im \end{bmatrix} \\ & \left[I\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Im \end{bmatrix} \\ & \left[I\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Im \end{bmatrix} \\ & \left[I\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Im \end{bmatrix} \\ & \left[I\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Im \end{bmatrix} \\ & \left[I\right] = \begin{bmatrix} Z \\ & II \end{bmatrix} + Z \cdot \begin{bmatrix} 0 \\ & Iim \end{bmatrix} \\ & \left[I\right] = \begin{bmatrix} Z \\ & Iim \end{bmatrix} + Z \cdot \begin{bmatrix} Iim \\ & Ii$$

Prije noustanta KS (metodo tokara snaga).

Ta metoda se karisti za: Samo je jedan Mali Ivical 1. IZBOR OPREME

2. ZA UDESENUE ZASTITE

Za IZBOR OPREME mi uzinomo EUm malo vedi (1.1.Um) 19 29 izraoun Zmm uzimos XLm (za koji vrijedi Xmm EZmm) tako da dobijts vedi In

Za UDESEANE ZASTITE UZIMamo sto tochije vijednosti El, i Zmm tato da zartita mode debiati ito tochije i selettimije YRSTE KRATKIH SPOJEVA TROPOLNI ERATEI SPOU U slugaju da mon 3p KS ordaje on a slita za model mreze en prethodne stranice, direttni sustav i nosa motricha jednadzba dabina malo slavo @ (dijaganalni elementi advetyu stuju Kis u gojedina. Spristy) JEDNOPOLNI KRATKI SPOJ $| U_{i} | = | U_{i} | + | U_{i} | = | U_$ 100 = 002 + 2 | 0 Im = 07 10 I nulti - Na myoste KS: $U_{m} = \phi = U_{m}^{\frac{1}{2}} + \frac{1}{2} I_{m}$ $I_{m} = -\frac{dU_{m}^{\frac{1}{2}}}{dZ}$ Um = 0 Samo je jedan Mali Ivical

Vednopolni KS nowtye u 80%	such Ks (to su prestoci 1
Vednopolni KS novteje u 80%. Slične pizdarije), dokuri ostali	nastroji u 20%. služajera
Mpr. imous 1p KS	2
ondaje	${}^{g}U_{i}=0$ ${}^{g}I_{i}=I_{i}=0$
PU: 1 1 1 0 U:	
$\begin{vmatrix} 2U_{i} & & 1 & 1 & & 0U_{i} \\ & & & & & & & & & & & & & & & & & & $	Je rastarlianje na
U: 1 a a2 U;	triane komponente.
00; + U; + U; = 0	
$I_i = I_i + \alpha^2 I_i + \alpha^i I_i = 0$	
$T_{i} = T_{i} + \alpha^{d} T_{i} + \alpha^{2} T_{i} = 0$	
$- \left \frac{dU}{dU} \right = \left \frac{dU}{dU} \right + \left \frac{dZ}{dZ} \right \cdot \left \frac{dU}{dZ} \right . N_{ca}$	pone ilmas samo u direktnoj mrezi
$ U = Z \cdot I $	
$-\frac{ \mathcal{O} }{ \mathcal{O} } = \mathcal{O} \cdot \mathcal{O} $ I_{i}	
······································	
$U_{i} + dU_{i} + U_{i} = \phi = 2\pi i I_{i} + dU_{i}^{2}$	and the state of t
	books and lines beach
${}^{d}I_{i}=-\frac{2}{2_{ii}+{}^{d}Z_{ii}+2_{ii}}={}^{d}I_{i}=I_{i}$ imp	edencije i Ø i O svoting
d7-17 1, 00	Samo je jedan Mali Ivical
Z=iZ, di Z se razlituje	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a -0.25 = 0.1. popie a2 -0.25 0 1260 21 na - 6 1260	e must no ane le grane o
I Lieure	2 0096 T0308 + 03533	
PU	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 po-raduny 1 []
No misso traves Ostalin Grijana	Le su iste, a @ made ouise z RASTLOPMIL POSTRONEMA. LS, nebud como madt i	o ozemljenjima-1
* A1 idens inc s	1 1 -0:077 0 leg	iono, of U.S., T
-0.075 + 0.105 (+0.5		

0 02 -0,0193 pot ceno initi netatu stroju traz Doutlo. able, rezime. Tefinismo I motricu metada cionista Inventuano tu motrice i dabijeno Z a možemo i onat da razdire ino Y na gongu i danju Toda totana nopone 2 dreve mrete. Nota toga mazeno raginal za bilo baju vistu kratkog vojoj (do sad 3p-14) Kod 3p je pljog a dok hod 1p Incmo 3 m rede O Dile i Masara 3 mreze Romano strije u granoma i name top non thespull. I ondo se motricon transformaçõe vacaro no PS. I mode * Low DZ. V motrico gije isto za paredn tetare Spage i' a providur brutter spoya (milyaya) se dijegonalni elementi, Samo je jedan Mali Ivica! 145