

Lei de Faraday

$$fem = -\frac{d\phi}{dt} = -\frac{d\left(\iint \vec{B} \bullet \vec{dA}\right)}{dt}$$

Como variar o fluxo magnético sobre uma espira?

- Variar intensidade do campo magnético
- Variar a direção entre o campo magnético e a espira
- Variar a área da espira

Variação do campo magnético - Exemplo:

http://www.livephysics.com/simulations/electricity-magnetism-sim/faradays-law-moving-magnet/

Lei de Faraday $fem = -\frac{d\phi}{dt} = -\frac{d\left(\iint \vec{B} \cdot \vec{dA}\right)}{dt}$

Variação da direção entre o campo magnético e a espira

- Exemplo: Gerador de tensão sinusoidal

http://phet.colorado.edu/en/simulation/faraday

Variação da direção entre o campo magnético e a espira

Lei de Faraday
$$fem = -\frac{d\phi}{dt} = -\frac{d\left(\iint \overrightarrow{B} \bullet \overrightarrow{dA}\right)}{dt}$$

Variação da direção entre o campo magnético e a espira

- Exemplo: Gerador de tensão sinusoidal

$$\overbrace{b}^{\omega}$$

$$\overbrace{c}^{\omega}$$

Lei de Lenz

$$fem = \frac{d\phi}{dt}$$

Lei de Lenz

A força electromotriz induzida tende a contrariar a variação de fluxo que lhe deu origem.

Auto-indução

A corrente que circula num circuito gera fluxo magnético sobre o próprio circuito.

Coeficiente de auto-indução (L) $\phi = Li$

Uma variação de corrente num circuito provoca uma variação de fluxo magnético sobre o próprio circuito.

$$fem = -\frac{d\phi}{dt} = -\frac{d(Li)}{dt} = -L\frac{di}{dt}$$

Indução Mútua

A corrente que circula num circuito 1 gera fluxo magnético sobre outro circuito 2.

Coeficiente de indução mútua (M) $\phi_2 = M i_1$

Uma variação de corrente no circuito 1 provoca uma variação de fluxo magnético sobre o circuito 2.

$$fem_2 = -\frac{d\phi_2}{dt} = -\frac{d(Mi_1)}{dt} = -M\frac{di_1}{dt}$$

Indução Mútua

A corrente que circula num circuito 2 gera fluxo magnético sobre outro circuito 1.

Coeficiente de indução mútua (M) $\phi_1 = M i_2$

Uma variação de corrente no circuito 2 provoca uma variação de fluxo magnético sobre o circuito 1.

$$fem_{1} = -\frac{d\phi_{1}}{dt} = -\frac{d(Mi_{2})}{dt} = -M\frac{di_{2}}{dt}$$

Questões

1. Considere duas bobines, b_1 e b_2 , planas concêntricas e complanares, respectivamente, de raios r_1 e r_2 , e número de espiras N_1 e N_2 , percorridas pelas correntes I_1 e I_2 em sentidos contrários.

Se a corrente I₁ for sinusoidal e a corrente I₂ for contínua...

A: existe variação de fluxo magnético em ambas as bobines.

B: existe variação de fluxo magnético apenas na bobine b_1 .

C: existe variação de fluxo magnético apenas na bobine b_2 .

D: não existe variação de fluxo magnético em nenhuma bobine.

2. Uma espira circular é movida da esquerda para a direita, com velocidade constante, através de regiões onde campos magnéticos uniformes de módulos iguais estão orientados para fora ou para dentro do plano da página, como se indica na figura.

2.1 O fluxo magnético

A: tem módulo máximo nas regiões 3 e 5.
B: tem módulo máximo nas regiões 2, 4 e 6.

C: é nulo nas regiões 1, 3, 5 e 7.

D: é nulo nas regiões 1, 2, 4, 6 e 7.

2.2 A força electromotriz induzida

B: tem módulo máximo nas regiões 2, 3 e 4.

C: é nula nas regiões 1, 3, 5 e 7.

D: é nula nas regiões 1, 2, 4, 6 e 7.

2.3 É induzida na espira uma corrente no sentido horário

A: na região 4.

B: nas regiões 2 e 6.

C: nas regiões 2, 4 e 6.

D: nas regiões 2, 3 e 4.

Questões

3. Duas bobinas próximas, A e B, têm 100 e 200 espiras, respectivamente. Uma corrente de 1,5 A na bobine A faz com que através de A passe um fluxo de 2,4 mWb e através de B passe um fluxo de 1,3 mWb.

 $\textbf{3.1} \ O \ coeficiente \ de \ auto-indução \ entre \ A \ e \ B \ (M)$ são respectivamente:

A: $L_A = 160 mH$; $M = 173 mH$	B: $L_A = 320 mH$; $M = 160 mH$
C: $L_A = 240 mH$; $M = 180 mH$	D: $L_A = 90 mH$; $M = 240 mH$

3.2 A força electromotriz média induzida em B quando a corrente em A decai para zero num intervalo de 50 ms é:

mer vare de como e.	
A: 5,2 V	B: 26 mV
C: 3,5 V	D: 10,0 mV