CS & IT ENGINEERING

Data Structure

Hashing Chapter 07 Lec-01

By-Pankaj Sharma sir

$$y = \{(x)\}$$
 in put

$$M = 10$$

$$h(12) = 12 \mod 10 = 2$$

$$h(k) = k \mod 10$$

0	
1	
2	12
3	13
4	14
5	15
6	16
7	
8	18
9	19

$$y = (x)$$
 in put

m² Keys: 12,14,16,32,42,24,36

$$h(12) = 2$$

Collision

$$h(k) = k \mod 10$$

ı	
	12
	14
	46
ŀ	

Collission

Grood Hash Function

1) Easy to compute

Hash function

Collision Resolution Technique

-> Separate chaining

 $h(k) = k \mod m$

$$h(k) = (k \mod m) + 1$$

Linear Probling

$$h(k) = k mod m = L_1$$
 Collission

$$H(k,i) = (h(k)+i)$$

key collission

particular Rey

$$H(K, 1) = (h(K) + 1) = L_{1} + 1$$

 $H(K, 2) = (h(K) + 2) = L_{1} + 2$

0 1 2 3 4 5 6 7	
۱- نگار	

Linear Probling

$$H(K,1) = (4+1) = 5$$

$$H(k,2) = (4+2) = -6$$

$$H(k,3) = (4+3) = 7^{\times}$$

$$H(K,4) = (4+4) = 8^{\times}$$

$$H(K,S) = (4+S) = 9X$$

$$H(K,6) = (4+6) = 10 \mod 10$$

Keys: 31, 26, 43, 27, 31

$$M = 12$$
 $h(31) = 31 \mod 12 = 7$
 $h(31) = 31 \mod 12 = 2$
 $h(43) = 43 \mod 12 = 2$
 $h(43) = 43 \mod 12 = 7$
 $h(43) = (13 \mod 12) = 8$
 $h(43,1) = (13) + 1 \mod 12 = 8$
 $h(34) = 34 \mod 12 = 10$
 $h(46) = 46 \mod 12 = 10$
 $h(46) = 46 \mod 12 = 10$
 $h(46) = (10 + 1) \mod 12 = (10 + 1) \mod 12$
 $h(46) = (10 + 1) \mod 12 = (10 + 1) \mod 12$

,54 4/ 14 -0 17	
,34,46,14,58,13	0
Collission	1
h (14) = 14 mod12 = 2	2
$H(14,1) = (h(14)+1) \mod 12 = (2+1) \mod 12$	3
=(3)201135.011	4
H(14,2) = (h(14)+2) mod 12 = (2+2) mod 12	5
2nd conission tor - 90	6
h(58) = 58 mod 12 = (10) collister	7
11(28)1) = (h(28)+1) mod15 = (1)	8
M(58,2) = (h(c8)+2)made = 12 = 12	9
- 12modiz=1	10
1) mod12	11

Oben addressing Sep. Chairing

Linear Probing

2. Quad. Probing A

3. Double Hashing

.

Keys: 24,17,32,2,13,50,30,61

m = 11

