UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika - 1. stopnja

Tjaša Bajc Geometrijska interpolacija štirih točk s parabolično krivuljo

Delo diplomskega seminarja

Mentorica: izr. prof. dr. Marjetka Knez

Kazalo

1. Uvod	4
2. Geometrijska interpolacija	4
3. Interpolacija z Lagrangeevimi baznimi polinomi	10
4. Hermitov primer	11
Slovar strokovnih izrazov	11
Literatura	12

Geometrijska interpolacija štirih točk s parabolično krivuljo ${\it Povzetek}$

Angleški prevod slovenskega naslova dela ${\it Abstract}$

Math. Subj. Class. (2010): Ključne besede: Keywords:

1. Uvod

Imamo štiri točke v ravnini. Zanima nas, kdaj lahko skoznje potegnemo parabolično krivuljo, to je parametrično polinomsko krivuljo stopnje dve, oziroma koliko je takih krivulj. Na primer, če so točke kolinearne, take prave paraboične krivulje očitno ne bomo našli. Kaj pa v ostalih primerih? Izkaže se, da je dovolj opazovati štirikotnik, katerega oglišča so dane točke. Pokazali bomo, da oglišča konveksnega štirikotnika, ki ni trapez, lahko interpoliramo z natanko dvema paraboličnima krivuljama, oglišča trapeza, ki ni paralelogram, pa z natanko eno parabolično krivuljo. V preostalih primerih štirih točk ne moremo interpolirati s parabolično krivuljo.

Poleg geometrijskega pristopa, ki smo ga na kratko povzeli zgoraj, se interpolacije lahko lotimo tudi z Lagrangeevimi baznimi polinomi. Vemo, da lahko štiri točke vedno interpoliramo s kubično krivuljo. Definirali bomo Lagrangeeve polinome stopnje tri in določili pogoje za proste parametre tako, da bo vodilni koeficient interpolacijskega polinoma enak 0. Tako bomo dobili interpolacijsko polinomsko krivuljo stopnje dve, torej parabolično krivuljo.

V nadaljevanju si bomo ogledali še Hermitov problem. Namesto štirih točk bomo opazovali le dve, v katerih pa bomo poleg vrednosti predpisali tudi smer tangentnega vektorja. Poiskali bomo interpolacijsko krivuljo, ki bo zadoščala danim pogojem. Hermitov problem lahko posplošimo na več točk in opazujemo zlepke, ki jih dobimo z interpolacijo posameznih parov točk. Zlepek, ki ga dobimo na tak način, je geometrijsko zvezna krivulja, ki interpolira dane točke.

2. Geometrijska interpolacija

Za začetek definirajmo nekaj pojmov, ki jih bomo potrebovali v nadaljevanju.

Definicija 2.1. Naj bo A' nesingularna 2×2 realna matrika, d, e realni števili ter

$$A = \begin{bmatrix} A' & 0 \\ d & e & 1 \end{bmatrix}.$$

Matriko A imenujemo afina matrika.

Preko afinih matrik vpeljemo ekvivalenčno relacijo na množici realnih simetričnih 3×3 matrik.

Definicija 2.2. Matriki B in C sta $afino\ podobni$, če obstaja afina matrika A, da velja $B = ACA^T$. Da sta matriki afino podobni, označimo z $B \approx C$.

Definicija 2.3. Definirajmo matriko

$$D = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Definirajmo še podmnožico realnih simetričnih 3×3 matrik

$$\mathbb{P} = \{B; B \approx dD, d \neq 0\}.$$

4

Parabolična krivulja je množica točk v ravnini

(1)
$$C_B = \{(x, y); (x, y, 1)B(x, y, 1)^T = 0, B \in \mathbb{P}\}.$$

Če je matrika B enaka D, je množica C_B kar $C_B = \{(x, y); x = y^2\}.$

Zgled 2.4. (bom pripravila zgled:

matriko B in sliko parabole, ki jo podaja C_B)

Parabolično krivuljo lahko podamo v implicitni obliki kot v (1) ali pa v parametrični obliki. Definirajmo kvadratično parametrizacijo parabolične krivulje, podane s C_B .

Definicija 2.5. Naj bodo p(t), q(t) in $r(t) \equiv 1$ linearno neodvisni polinomi stopnje največ dve. Če za nek B iz množice \mathbb{P} velja

$$C_B = \{(x, y); (x, y, 1)B(x, y, 1)^T = 0\} = \{(p(t), q(t)); t \in \mathbb{R}\},\$$

pravimo, da je (p(t), q(t), 1) kvadratična parametrizacija parabolične krivulje C_B .

Poglejmo, kako bi parametrično krivuljo zapisali v standardni bazi t^2 , t, 1? Najprej bomo definirali matriko koeficientov, ki povezuje kvadratično parametrizacijo in zapis v standardni bazi, nato pa bomo pokazali, da lahko vsako parabolično krivuljo zapišemo v kvadratični parametrizaciji.

Definicija 2.6. Naj bodo p(t), q(t) in $r(t) \equiv 1$ linearno neodvisni polinomi stopnje največ dve. *Matrika koeficientov* K je taka matrika, da velja $(p(t), q(t), 1) = (t^2, t, 1)K$.

Trditev 2.7. Naj bodo p(t), q(t) in $r(t) \equiv 1$ linearno neodvisni polinomi stopnje največ dve, K matrika koeficientov in $B \in \mathbb{P}$. Tedaj velja

- K je afina matrika,
- (p(t), q(t), 1) je kvadratična parametrizacija za C_B natanko tedaj, ko velja $KBK^T = dD$ za neki neničelni d.

Dokaz. Matrika K je nesingularna, ker so p(t), q(t) in 1 linearno neodvisni. Zadnja komponenta vektorja (p(t), q(t), 1) je 1, torej mora biti zadnji stolpec matrike K enak $(0,0,1)^T$. Sledi, da je matrika K afina. Za dokaz druge točke trditve se spomnimo definicije kvadratične parametrizacije. Velja:

$$0 = (p(t), q(t), 1)B(p(t), q(t), 1)^{T}$$

$$= (t^{2}, t, 1)KBK^{T}(t^{2}, t, 1)^{T}$$

$$= (t^{2}, t, 1)\begin{bmatrix} a & b & d \\ b & c & e \\ d & e & f \end{bmatrix} (t^{2}, t, 1)^{T}$$

$$= at^{4} + 2bt^{3} + (c + 2d)t^{2} + 2et + f.$$

Zgornja enakost velja natanko tedaj, ko je a=b=e=f=0 in c=-2d. Tedaj je matrika KBK^T oblike

$$\begin{bmatrix} 0 & 0 & d \\ 0 & -2d & 0 \\ d & 0 & 0 \end{bmatrix} = dD.$$

П

Zgornja trditev ima dve koristni posledici. Najprej bomo dokazali, da lahko vsako parabolično krivuljo parametriziramo s kvadratično parametrizacijo, kasneje pa še, da različni matriki iz množice \mathbb{P} ne porodita nujno različnih paraboličnih krivulj.

Posledica 2.8. Vsaka parabolična krivulja ima kvadratično parametrizacijo.

Dokaz. Res, saj smo parabolično krivuljo definirali kot

$$C_B = \{(x, y); (x, y, 1)B(x, y, 1)^T = 0, B \in \mathbb{P}\}.$$

Matrika B je iz množice \mathbb{P} , ki je definirana kot množica matrik, ki so afino podobne D. Matriko B torej gotovo lahko zapišemo kot ABA^T za neko afino matriko A. Po zgornji trditvi ima parabolična krivulja C_B kvadratično parametrizacijo.

Posledica 2.9. Naj bosta matriki B in \widetilde{B} elementa množice \mathbb{P} . Enakost $C_B = C_{\widetilde{B}}$ velja natanko tedaj, ko velja $B = d\widetilde{B}$, $d \neq 0$.

Dokaz. Upoštevamo definicijo parabolične krivulje in hitro vidimo:

$$C_B = \{(x, y); (x, y, 1)B(x, y, 1)^T = 0\}$$

$$= \{(x, y); (x, y, 1)d\widetilde{B}(x, y, 1)^T = 0\}$$

$$= \{(x, y); (x, y, 1)\widetilde{B}(x, y, 1)^T = 0\}$$

$$= C_{\widetilde{B}}.$$

Ali lahko vsako trojico različnih točk interpoliramo s parabolično krivuljo?

Trditev 2.10. Različnih kolinearnih točk T_0, T_1, T_2 ne moremo interpolirati s parabolično krivuljo.

Dokaz. Vsako parabolično krivuljo lahko parametriziramo s $(t^2,t,1)K$ za neko afino matriko K. Izberimo tri različne vrednosti parametra t, iz katerih dobimo tri linearno neodvisne trojice $(t^2,t,1)$. Ko vsako od teh trojic pomnožimo z matriko K, dobimo tri točke na paraboli, ki so gotovo nekolinearne, ker je K afina matrika. Pokazali smo, da ne za nobene tri vrednosti parametra t ne dobimo kolinearnih točk, torej ne moremo najti parabolične krivulje, ki bi potekala skozi kolinearne točke. \square

Imejmo sedaj tri nekolinearne točke v ravnini T_0, T_1, T_2 . Iščemo parabolično krivuljo (p, q), ki bo pri nekih parametrih t_0, t_1, t_2 interpolirala dane točke, to je

$$T_0 = (p(t_0), q(t_0)), \qquad T_1 = (p(t_1), q(t_1)), \qquad T_2 = (p(t_2), q(t_2)).$$

Za parametre t_0, t_1, t_2 lahko zahtevamo $t_0 < t_1 < t_2$ in še dodatno $t_0 = 0$ in $t_2 = 1$. Za poljuben $t_1 \in (0, 1)$ lahko najdemo taka p(t), q(t) stopnje največ dve, da bo krivulja $\{(p, q), t \in [0, 1]\}$ rešila naš interpolacijski problem. Označimo t_1 z α . Polinoma p in q lahko dobimo z reševanjem sistema enačb

(2)
$$T_0 = (p(0), q(0)), T_1 = (p(\alpha), q(\alpha)), T_2 = (p(1), q(1)).$$

Omenimo še, da je z izbiro α interpolacijska krivulja natanko določena, saj je zgornji sistem linearni sistem šestih enačb za šest neznank (koeficienti polinomov p in q).

Pokazali bomo, da lahko kvadratično parametrizacijo (p(t), q(t), 1) dobimo tudi drugače. Pred tem definirajmo še Vandermondovo matriko za naš primer, torej za parametre $t_0 = 0, t_1 = \alpha$ in $t_2 = 1$, in konfiguracijsko matriko za dane točke.

Definicija 2.11. Za realno število α definiramo *Vandermondovo matriko* $V(\alpha)$,

$$V(\alpha) = \begin{bmatrix} 0 & 0 & 1 \\ \alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Za točke v ravnini T_0, T_1, T_2 definiramo konfiguracijsko matriko

$$R(T_0, T_1, T_2) = \begin{bmatrix} T_0 & 1 \\ T_1 & 1 \\ T_2 & 1 \end{bmatrix}.$$

Trditev 2.12. Naj bodo T_0, T_1, T_2 nekolinearne točke. Enolična kvadratična parametrizacija (p, q), ki zadošča sistemu (2), je podana z naslednjim predpisom:

$$\Phi_{\alpha}(t; T_0, T_1, T_2) = (t^2, t, 1)V(\alpha)^{-1}R(T_0, T_1, T_2).$$

Opomba 2.13. Inverz Vandermondove matrike v eksplicitni obliki je

$$V(\alpha)^{-1} = \begin{bmatrix} \frac{1}{\alpha} & \frac{1}{\alpha^2 - \alpha} & \frac{1}{1 - \alpha} \\ -\frac{\alpha + 1}{\alpha} & \frac{1}{\alpha - \alpha^2} & \frac{\alpha}{\alpha - 1} \\ 1 & 0 & 0 \end{bmatrix}.$$

Dokaz. Označimo najprej $T_0 = (x_0, y_0), T_1 = (x_1, y_1), T_2 = (x_2, y_2)$. Računamo:

$$\Phi_{\alpha}(t; T_0, T_1, T_2) = (t^2, t, 1)V(\alpha)^{-1}R(T_0, T_1, T_2)$$

$$= (t^{2}, t, 1) \begin{bmatrix} -\frac{\frac{1}{\alpha}}{\alpha} & \frac{1}{\alpha^{2} - \alpha} & \frac{1}{1 - \alpha} \\ -\frac{\alpha + 1}{\alpha} & \frac{1}{\alpha - \alpha^{2}} & \frac{\alpha}{\alpha - 1} \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{0} & y_{0} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \end{bmatrix}$$

$$= \frac{1}{\alpha^{2} - \alpha} \begin{bmatrix} t^{2}(\alpha - 1) - t(\alpha^{2} - 1) + \alpha(\alpha - 1) \\ t^{2} - t \\ \alpha t(\alpha - t) \end{bmatrix}^{T} \begin{bmatrix} x_{0} & y_{0} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \end{bmatrix}.$$

Ko rezultat uredimo, dobimo naslednje:

$$\begin{bmatrix} t^2(\frac{x_0}{\alpha} + \frac{x_1}{\alpha^2 - \alpha} - \frac{x_2}{\alpha - 1}) + t(-\frac{x_0(\alpha + 1)}{\alpha} - \frac{x_1}{\alpha^2 - \alpha} + \frac{x_0\alpha}{\alpha - 1}) + x_0 \\ t^2(\frac{y_0}{\alpha} + \frac{y_1}{\alpha^2 - \alpha} - \frac{y_2}{\alpha - 1}) + t(-\frac{y_0(\alpha + 1)}{\alpha} - \frac{y_1}{\alpha^2 - \alpha} + \frac{y_0\alpha}{\alpha - 1}) + y_0 \end{bmatrix}^T = (p(t), q(t), 1).$$

Preverimo, da polinom p ustreza trditvi, torej da interpolira točke T_0, T_1, T_2 . Res:

$$p(0) = x_0,$$

$$p(\alpha) = \alpha x_0 + \frac{\alpha x_1}{\alpha - 1} - \frac{\alpha^2 x_2}{\alpha - 1} - x_0(\alpha + 1) - \frac{x_1}{\alpha - 1} + \frac{\alpha^2 x_2}{\alpha - 1} + x_0 = x_1,$$

$$p(1) = \frac{x_0}{\alpha} + \frac{x_1}{\alpha^2 - \alpha} - \frac{x_2}{\alpha - 1} - \frac{x_0(\alpha + 1)}{\alpha} - \frac{x_1}{\alpha^2 - \alpha} + \frac{x_0\alpha}{\alpha - 1} + x_0 = x_2.$$

Analogno velja za polinom q, torej smo res našli kvadratično parametrizacijo interpolacijske krivulje.

Definirajmo še dve matriki in množico, ki jih bomo potrebovali za dokaz glavnega izreka nekoliko kasneje.

Definicija 2.14. Definiramo matriki

$$A_{\alpha} = V(\alpha) \ D \ V(\alpha)^T$$

in

$$B_{\alpha} = R(T_0, T_1, T_2)^{-1} A_{\alpha} (R(T_0, T_1, T_2)^{-1})^T.$$

Za nekolinearne točke T_0, T_1, T_2 naj bo $\mathbb{B}(T_0, T_1, T_2)$ množica vseh paraboličnih krivulj, ki potekajo skozi dane točke.

Opomba 2.15. Matriko A_{α} enostavno izračunamo in zapišemo eksplicitno z

$$A_{\alpha} = \begin{bmatrix} 0 & \alpha^2 & 1\\ \alpha^2 & 0 & (\alpha - 1)^2\\ 1 & (\alpha - 1)^2 & 0 \end{bmatrix}.$$

Naslednja trditev pokaže, da obstaja bijekcija med zgoraj definirano množico $\mathbb{B}(T_0, T_1, T_2)$ in množico $\mathbb{R} - \{0, 1\}$.

Trditev 2.16. Za nekolinearne točke (T_0, T_1, T_2) je preslikava, ki α priredi matriko B_{α} , bijekcija med $\mathbb{R} - \{0, 1\}$ in množico $\mathbb{B}(T_0, T_1, T_2)$.

Dokaz. Iz trditve 2.12 sledi, da za vsak $\alpha \in \mathbb{R} - \{0,1\}$ parametrizacija $\Phi_{\alpha}(t)$ parametrizira neko parabolo C_B iz množice $\mathbb{B}(T_0, T_1, T_2)$. Obratno, zaradi posledice 2.8 velja, da za vsako parabolo iz $\mathbb{B}(T_0, T_1, T_2)$ obstaja kvadratična parametrizacija, označimo jo s $\Psi(t)$. Če za parametrizacijo $\Psi(t)$ velja, da je $\Psi(t_i) = (T_i, 1)$, postavimo $\alpha = \frac{t_1 - t_0}{t_2 - t_0}$. Opazimo, da velja $\Phi_{\alpha}(t) = \Psi(t_0 + (t_2 - t_0)t)$, torej tudi Φ_{α} parametrizira parabolo C_B . Sledi, da je C_B element množice $\mathbb{B}(T_0, T_1, T_2)$ natanko tedaj, ko jo lahko parametriziramo s Φ_{α} za nek $\alpha \in \mathbb{R} - \{0, 1\}$.

Za dane nekolinearne točke T_0, T_1, T_2 lahko vpeljemo poševni koordinatni sistem tako, da za neko četrto točko T_3 obstaja vektor $p = (p_0, p_1, p_2)$, da velja

$$(T_3, 1) = \sum_{i=0}^{2} p_i(T_i, 1)$$
$$= pR(T_0, T_1, T_2).$$

Sledi $p = (T_3, 1)R(T_0, T_1, T_2)^{-1}$.

Nekaj lastnosti tako definiranega vektorja p podaja spodnja trditev.

Trditev 2.17. Za zgoraj definiran p velja $p_0 + p_1 + p_2 = 1$ in $p_i = 0$ natanko tedaj, ko točka T_3 leži na isti premici kot točki T_j in T_k , $j, k \in \{0, 1, 2\}$.

Dokaz. Dovolj je dokazati, da velja $p_0 = 0$ in $p_2 = 1 - p_1$ natanko tedaj, ko točka T_3 leži na isti premici kot točki T_1 in T_2 . Vektor p je v tem primeru enak $(0, p_1, 1 - p_1)$. Glede na definicijo poševnega koordinatnega sistema velja

$$(T_3, 1) = (x_3, y_3, 1) = (p_1x_1 + (1 - p_2)x_2, p_1y_1 + (1 - p_2)y_2, 1).$$

Premica, ki poteka skozi točki T_1 in T_2 , je podana z enačbo

$$y = \frac{y_2 - y_1}{x_2 - x_1} x + \frac{x_2 y_1 - x_1 y_2}{x_2 - x_1}.$$

Z enostavnim računom se prepričamo, da točka T_3 leži na tej premici.

Označimo sedaj s $T = \{T_0, T_1, T_2, T_3\}$ nabor štirih točk v ravnini, od katerih nobene tri niso kolinearne. Take točke so oglišča konveksnega štirikotnika, če nobena točka T_i ni v konveksni lupini preostalih treh točk.

Trditev 2.18. Točke iz T so oglišča konveksnega štirikotnika natanko tedaj, ko velja $p_0p_1p_2 < 0$, kjer so p_0, p_1, p_2 komponente vektorja p, za katerega velja $(T_3, 1) = pR(T_0, T_1, T_2)$.

$$\square$$
 Dokaz.

Sedaj lahko zapišemo glavni izrek prvega poglavja.

Izrek 2.19. Naj bo $T = \{T_0, T_1, T_2, T_3\}$ nabor štirih točk v ravnini, od katerih nobene tri niso kolinearne.

- i) Ce so točke iz T oglišča konkavnega štirikotnika, danih točk ne moremo interpolirati s parabolično krivuljo.
- ii) Če so točke iz T oglišča paralelograma, danih točk ne moremo interpolirati s parabolično krivuljo.
- iii) Če so točke iz T oglišča trapeza, ki ni paralelogram, lahko dane točke interpoliramo z natanko eno parabolično krivuljo.
- iv) Ce so točke iz T oglišča konveksnega štirikotnika, ki ni trapez, lahko dane točke interpoliramo z natanko dvema paraboličnima krivuljama.

Dokaz. Matriki A_{α} in B_{α} smo definirali v 2.14. Cetrta točke T_3 leži na neki parabolični krivulji iz množice $\mathbb{B}(T_0, T_1, T_2)$ natanko tedaj, ko obstaja tak $\alpha \in \mathbb{R} - \{0, 1\}$, da točka T_3 leži na C_{B_α} . Sledi

$$0 = (T_3, 1)B_{\alpha}(T_3, 1)^T$$

$$= (T_3, 1)R(T_0, T_1, T_2)^{-1} A_{\alpha} (R(T_0, T_1, T_2)^{-1})^T (T_3, 1)^T$$

$$= (p_0, p_1, p_2)A_{\alpha}(p_0, p_1, p_2)^T$$

$$= \alpha^2 p_0 p_1 + (\alpha - 1)^2 p_1 p_2 + p_0 p_2$$

$$= \alpha^2 p_1 (p_0 + p_2) - 2\alpha p_1 p_2 + p_2 (p_0 + p_1).$$

Dobili smo kvadratno enačbo za α , katere diskriminanta je

$$D = 4p_1^2p_2^2 - 4p_1p_2(p_0 + p_2)(p_0 + p_1)$$

= $4p_1p_2(p_1p_2 - (1 - p_1)(1 - p_2))$
= $4p_1p_2(p_1p_2 - 1 + p_1 + p_2 - p_1p_2)$
= $-4p_0p_1p_2$.

Upoštevali smo, da velja $p_0 + p_1 + p_2 = 1$. Produkt $p_0 p_1 p_2$ je različen od nič, saj nobene tri točke niso kolinearne. Opazimo naslednje:

- a) enačba (4) ima enolično rešitev natanko tedaj, ko je $p_1 = 1$,
- b) $\alpha = 0$ je ena od rešitev enačbe (4) natanko tedaj, ko je $p_2 = 1$,
- c) $\alpha = 1$ je ena od rešitev enačbe (3) natanko tedaj, ko je $p_0 = 1$,

Ce sta dva od parametrov p_0, p_1, p_2 enaka 1, je rešitev enačbe (4) bodisi $\alpha = 0$ bodisi $\alpha = 1$. V tem primeru ne obstaja interpolacijska parabolična krivulja za dane točke. Izkaže se, da so tem primeru točke iz T oglišča paralelograma.

Ĉe je natanko en od parametrov p_0, p_1, p_2 enak 1, ima enačba (4) natanko eno rešitev. Natančneje,

- če je $p_0 = 1$, je rešitev $\alpha = \frac{p_1 + 1}{p_1 1} = \frac{p_2 1}{p_2 + 1}$, če je $p_1 = 1$, je rešitev $\alpha = \frac{p_0 + 1}{2}$, če je $p_2 = 1$, je rešitev $\alpha = \frac{2}{p_0 + 1} = \frac{2}{1 p_2}$.

V tem primeru so točke iz T oglišča trapeza, ki ni paralelogram.

Ce so vse vrednosti parametrov p_0, p_1, p_2 različne od 1, točke iz T niso oglišča trapeza. Iz posledice 2.18 sledi, da so točke iz T oglišča konveksnega štirikotnika natanko tedaj, ko je $p_0p_1p_2 < 0$, kar pomeni, da je diskriminanta enačbe (4) strogo pozitivna in obstajata dve različni rešitvi. To sta

$$\alpha_{1,2} = \frac{p_1 p_2 \pm \sqrt{p_0 p_1 p_2}}{p_1 (p_0 + p_2)}.$$

Tedaj lahko točke iz T interpoliramo z dvema različnima paraboličnima krivuljama. Enačba (4) nima rešitve, če je njena diskriminanta negativna. Kot zgoraj je to natanko tedaj, ko so točke iz T oglišča konkavnega štirikotnika.

Konkreten interpolacijski problem rešimo tako, da izračunamo vektor p iz trditve 2.17, iz njegovih komponent pa izračunamo ustrezen α . Parametrizacijo krivulje – torej polinoma p in q – smo eksplicitno zapisali v dokazu trditve 2.12, za implicitno obliko parabolične krivulje $C_{B_{\alpha}}$ pa izračunamo še matriki A_{α} in B_{α} iz definicije 2.14.

3. Interpolacija z Lagrangeevimi baznimi polinomi

V tem poglavju si bomo ogledali rešitev interpolacijskega problema na bolj algebraičen način. Vemo, da lahko štiri točke interpoliramo s kubično krivuljo. Interpolacijsko krivuljo bomo zapisali z Lagrangeevimi baznimi polinomi, kar bo enostavneje, kot če bi delali v standardni bazi. Definirajmo najprej interpolacijski problem.

Za dane točke T_i v ravnini, i = 0, 1, 2, 3, iščemo parabolično krivuljo $\mathbf{p} : [0, 1] \to \mathbb{R}^2$, da bo veljalo

$$\mathbf{p}(t_i) = T_i, \quad i = 0, 1, 2, 3$$

Dodatno zahtevamo, da so parametri urejeni, torej $t_0 < t_1 < t_2 < t_3$. Brez škode za splošnost lahko postavimo $t_0 = 0$ in $t_3 = 1$.

Definirajmo najprej Lagrangeeve bazne polinome v splošnem, kasneje pa bomo konkretno zapisali tiste, ki jih bomo potrebovali pri reševanju našega problema, torej polinome stopnje tri.

Definicija 3.1. Lagrangeeve bazne polinome stopnje n definiramo

$$\ell_{i,n}(t) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{t - t_j}{t_i - t_j}, \qquad i = 0, 1, \dots n.$$

Lagrangeevi bazni polinomi so vsi stopnje n. Poleg tega zanje velja

$$\ell_{i,n}(t_i) = \delta_{ii}$$
.

Oglejmo si polinome $\ell_{0,3}(t)$, $\ell_{1,3}(t)$, $\ell_{2,3}(t)$ in $\ell_{3,3}(t)$, ki so baza za prostor polinomov tretje stopnje:

$$\ell_{0,3}(t) = \frac{(t-t_1)(t-t_2)(t-t_3)}{(t_0-t_1)(t_0-t_2)(t_0-t_3)},$$

$$\ell_{1,3}(t) = \frac{(t-t_0)(t-t_2)(t-t_2)}{(t_1-t_0)(t_1-t_2)(t_1-t_3)},$$

$$\ell_{2,3}(t) = \frac{(t-t_0)(t-t_1)(t-t_3)}{(t_2-t_0)(t_2-t_1)(t_2-t_3)},$$

$$\ell_{3,3}(t) = \frac{(t-t_0)(t-t_1)(t-t_2)}{(t_3-t_0)(t_3-t_1)(t_3-t_2)}.$$

Interpolacijsko krivuljo lahko razvijemo po Lagrangeevih baznih polinomih kot

(5)
$$p(t) = \sum_{i=0}^{3} a_i \ell_{i,n}(t),$$

kjer so $a_i \in \mathbb{R}$ neznani koeficienti.

Hitro lahko vidimo, kaj so koeficienti a_i pri interpolacijskem polinomu. Uvodoma smo zapisali, da naj za \mathbf{p} velja, da je $\mathbf{p}(t_j) = T_j$. Ko vstavimo t_j v (5), dobimo

$$\mathbf{p}(t_j) = \sum_{i=0}^{3} a_i \ell_{i,n}(t_j)$$
$$= \sum_{i=0}^{3} a_i \delta_{ij}$$
$$= a_j,$$

od koder sledi, da so iskani koeficienti kar točke, ki jih interpoliramo. Interpolacijski polinom v Lagrangeevi obliki torej zapišemo kot

$$\mathbf{p}(t) = \sum_{i=0}^{3} T_i \ell_{i,n}(t).$$

Spomnimo, da so polinomi $\ell_{i,n}$ stopnje tri. Ker iščemo parabolično krivuljo, mora biti vodilni koeficient enak nič. To nam da nelinearen sistem

(6)
$$\sum_{i=0}^{3} \frac{T_i}{\prod_{\substack{j=0\\j\neq i}}^{3} (t_i - t_j)} = 0$$

za neznana parametra t_1 in t_2 , enačbi pa dobimo iz komponent (6), saj so T_i točke v ravnini.

4. Hermitov Primer

Nazadnje si oglejmo še naslednji interpolacijski problem. Za dani različni točki T_0 in T_1 v ravnini in dani smeri $d_0, d_1, ||d_0|| = ||d_1|| = 1$, želimo najti parabolično krivuljo $\mathbf{p} : [0, 1] \to \mathbb{R}^2$, da bo veljalo

$$\mathbf{p}(0) = T_0, \quad \mathbf{p}(1) = T_1,$$

 $\mathbf{p}'(0) = d_0 d_0, \quad \mathbf{p}'(1) = d_1 d_1$

za skalarja $d_0, d_1 > 0$.

Podobno kot v prejšnjem poglavju bomo zapisali interpolacijsko krivuljo stopnje tri in določili taki d_0 in d_1 tako, da bo vodilni koeficient enak nič. Na ta način bomo dobili parabolično krivuljo. Interpolacijsko krivuljo zapišemo s pomočjo deljenih diferenc:

$$\mathbf{p}(t) = \mathbf{p}(0) + t[0, 0]\mathbf{p} + t^{2}[0, 0, 1]\mathbf{p} + t^{2}(t - 1)[0, 0, 1, 1]\mathbf{p}$$
$$= T_{0} + td_{0} + t^{2}(T_{1} - t_{0} - d_{o}) + t^{2}(t - 1)(d_{0} + d_{1} - 2(T_{1} - T_{0})).$$

Rešiti moramo torej enačbo

(7)
$$d_0 + d_1 - 2(T_1 - T_0) = 0.$$

SLOVAR STROKOVNIH IZRAZOV

LITERATURA