Algebraic Number Theory

Problem sheet 2

In this sheet, let K be a number field, i.e. a finite extension of \mathbb{Q} , recall that \mathcal{O}_K is its ring of integer and d_K is its discriminant.

- 1. (3 points) Let $\alpha \in \mathbb{C}$ be an algebraic number and let f(T) be its minimal polynomial. Recall that $f(T) \in \mathbb{Q}[T]$. Prove that α is an algebraic integer if and only if $f(T) \in \mathbb{Z}[T]$.
- 2. (5 points) Show that $d_K \equiv 0, 1 \pmod{4}$. (Hint: Try taking the permanent (ie. sum of all expression with + sign as in the determinant) of the matrix $((\sigma_i \alpha_j))$ and use the identity $(a-b)^2 = (a+b)^2 4ab$.)
- 3. (3+3 points) Let $K = \mathbb{Q}(\sqrt{d})$, where $d \in \mathbb{Z}$ is squarefree.
 - (a) Find an integral basis of \mathcal{O}_K . Hence determine d_K (compare with Problem 2).
 - (b) Given p an odd prime such that $p \nmid d_K$. Show that $p\mathcal{O}_K$ is a prime ideal if and only if $\left(\frac{d}{p}\right) = -1$.
- 4. (2+2 points) Let $\omega_1, ..., \omega_n$ be n elements of \mathcal{O}_K such that they are \mathbb{Q} -linearly independent. Recall the discriminant of $\omega_1, ..., \omega_n$ is $d(\omega_1, ..., \omega_n) := \det((\sigma_i \omega_i))^2$.
 - (a) Show that the quotient $\frac{d(\omega_1,...,\omega_n)}{d_K}$ is a perfect square.
 - (b) If $d(\omega_1,...,\omega_n)$ is squarefree, prove that $\omega_1,...,\omega_n$ is an integral basis. Does the converse hold?
- 5. (3 points) Let $K = \mathbb{Q}[\theta]$, where $\theta^3 \theta 4 = 0$. Prove that $1, \theta, \frac{\theta + \theta^2}{2}$ is an integral basis of \mathcal{O}_K .
- 6. (3 points) Verify that the ring $\mathbb{C}[x,y]/(y^2-x^3)$ is not integrally closed.
- 7. (2 points) Let $K = \mathbb{Q}(\sqrt{-7})$. Decompose $33 + 11\sqrt{-7}$ as a product of irreducible elements in \mathcal{O}_K .
- 8. (3+3+3 points) Let A be a Dedekind domain (for example \mathcal{O}_K).
 - (a) Prove that A is PID if and only if A is UFD
 - (b) If A has finitely many prime ideals, prove that A is PID. Does the converse hold?
 - (c) Show that, for any ideal $I \triangleleft A$, any ideal in A/I is principal. Deduce that every ideal of A is generated by two elements.
- 9. (5 points) Let A be an integral domain with dim $A \ge 1$. Show that A is Dedekind if and only if there is a unique factorization of ideals as a product of prime ideals.
- 10. (5 points) Show that Dedekind domian is hereditary, in other words, each ideal is a projective module.

Remark. For an integral domain A, it is Dedekind if and only if it is hereditary.

11. (3+3 points) Let $f(x,y) \in \mathbb{C}[x,y]$ be a nonsingular polynomial (ie. $(f,\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}) = (1)$ as ideals in $\mathbb{C}[x,y]$). Verify that $\mathbb{C}[x,y]/(f(x,y))$ is a Dedekind domain. What is the class group of $\mathbb{C}[x,y]/(f(x,y))$ if we further assume that f is of the form $f(x,y) = y^2 - x^3 - ax - b$ where $x^3 + ax + b$ has no repeated roots (ie. f is the equation of an elliptic curve)? (Compare to Problem 6 where the curve is singular.)