第五部分 多元函数微分学

「选择题]

容易题 1-36, 中等题 37-87, 难题 88-99。

- 1. 设有直线 L: $\begin{cases} x+3y+2z+1=0\\ 2x-y-10z+3=0 \end{cases}$ 及平面 π : 4x-2y+z-2=0,则直线 L ()
 - (A) 平行于 π 。 (B) 在上 π 。(C) 垂直于 π 。 (D) 与 π 斜交。

答: C

- 2. 二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ 在点 (0,0) 处 (0,0)
 - (A) 连续,偏导数存在
- (B) 连续,偏导数不存在
- (C) 不连续,偏导数存在
 - (D) 不连续,偏导数不存在

答: C

- 3. 设函数 u = u(x, y), v = v(x, y) 由方程组 $\begin{cases} x = u + v \\ y = u^2 + v^2 \end{cases}$ 确定,则当 $u \neq v$ 时, $\frac{\partial u}{\partial x} = ($)
- (A) $\frac{x}{u-v}$ (B) $\frac{-v}{u-v}$ (C) $\frac{-u}{u-v}$ (D) $\frac{y}{u-v}$

答: B

- 4. 设f(x,y)是一二元函数, (x_0,y_0) 是其定义域内的一点,则下列命题中一定正确的是 ()
 - (A) 若 f(x, y) 在点 (x_0, y_0) 连续,则 f(x, y) 在点 (x_0, y_0) 可导。
 - (B) 若 f(x,y) 在点 (x_0,y_0) 的两个偏导数都存在,则 f(x,y) 在点 (x_0,y_0) 连续。
 - (C) 若 f(x,y) 在点 (x_0,y_0) 的两个偏导数都存在,则 f(x,y) 在点 (x_0,y_0) 可微。
 - (D) 若 f(x,y) 在点 (x_0,y_0) 可微,则 f(x,y) 在点 (x_0,y_0) 连续。

答: D

- 5. 函数 $f(x, y, z) = \sqrt{3 + x^2 + y^2 + z^2}$ 在点 (1,-1,2) 处的梯度是()

 - (A) $(\frac{1}{3}, \frac{-1}{3}, \frac{2}{3})$ (B) $2(\frac{1}{3}, \frac{-1}{3}, \frac{2}{3})$ (C) $(\frac{1}{9}, \frac{-1}{9}, \frac{2}{9})$ (D) $2(\frac{1}{9}, \frac{-1}{9}, \frac{2}{9})$

答: A

6. 函数 $z = f(x, y)$ 在点 (x_0, y)	' ₀)处具有两个偏身	导数 $f_{x}(x_{0},y_{0}),f_{y}(x_{0},y_{0})$ 是函数存在	生全
微分的 ()。			
(A). 充分条件 ((B). 充要条件		
(C). 必要条件	(D). 既不充分也 ⁷	不必要	
答 C			
7. 对于二元函数 $z = f(x, y)$,下列有关偏导数	数与全微分关系中正确的命题是 ()。
(A). 偏导数不连续,则全微分必不存在		(B). 偏导数连续,则全微分必存在	
(C). 全微分存在,则偏导数必连续		(D). 全微分存在,而偏导数不一定不	字在
答 B			
8. 二元函数 $z = f(x, y)$ 在 (x, y)	(x_0,y_0) 处满足关系	§ ().	
(A). 可微(指全微分存在	三) ⇔ 可导(指位	扁导数存在) ⇒连续	
(B).可微⇒可导⇒连续			
(C).可微⇒可导或可微:	⇒连续,但可导7	下一定连续	
(D).可导⇒连续,但可导	寻不一定可微		
答C			
9. $\left. \frac{\mathcal{J}}{\partial x} \right _{\substack{x=x_0 \ y=y_0}} = \frac{\mathcal{J}}{\partial y} \right _{\substack{x=x_0 \ y=y_0}} = 0$,	则 $f(x,y)$ 在 $(x_0,$	y ₀)是()	
(A). 连续但不可微	(B). 连续但	不一定可微	
(C). 可微但不一定连续	(D). 不一定	可微也不一定连续	
答 D			
10. 设函数 $f(x,y)$ 在点 (x_0,y_0)) 处不连续,则 <i>f</i>	·(x,y) 在该点处 ()	
(A). 必无定义	(B) 极限必不	存在	
(C). 偏导数必不存在	(D). 全微分点	必不存在。	
答D			
11. 二元函数的几何图象一般是	e: ()		
(A) 一条曲线			

- (B) 一个曲面
- (C) 一个平面区域
- (D) 一个空间区域

答 B

12. 函数
$$z = \arcsin \frac{1}{x^2 + y^2} + \sqrt{1 - x^2 - y^2}$$
 的定义域为()

- (A) 空集
- (B) 圆域
- (C) 圆周
- (D) 一个点

答 C

13. 设
$$u = f(x^2 + y^2 - z^2)$$
,则 $\frac{\partial u}{\partial x} = ($)

- (A) 2xf'
- (B) $2x \frac{\partial u}{\partial f}$

(C)
$$2x \frac{\partial f}{\partial (x^2 + y^2 - z^2)}$$

(D)
$$2x \frac{\partial u}{\partial (x^2 + y^2 - z^2)}$$

答 A

14.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^3+y^3} = ($$

- (A) 存在且等于 0。
- (B) 存在且等于 1。
- (C) 存在且等于-1
- (D) 不存在。
- 15. 指出偏导数的正确表达()

(A)
$$f_x'(a,b) = \lim_{h,k\to 0} \frac{f(a+h,b+k) - f(a,b)}{\sqrt{h^2 + k^2}}$$

(B)
$$f_x'(0,) = \lim_{x \to 0} \frac{f(x,0)}{x}$$

(C)
$$f_y'(0,y) = \lim_{\Delta y \to 0} \frac{f(0,y + \Delta y) - f(0,y)}{\Delta y}$$

(D)
$$f_x'(x,0) = \lim_{x\to 0} \frac{f(x,y) - f(x,0)}{x}$$

答 C

16. 设
$$f(x,y) = \ln(x - \sqrt{x^2 - y^2})$$
 (其中 $x > y > 0$),则 $f(x+y,x-y) = ($).
$$(A) \ 2\ln(\sqrt{x} - \sqrt{y}); \ (B) \ \ln(x-y); \ (C) \ \frac{1}{2}(\ln x - \ln y); \ (D) \ 2\ln(x-y).$$
 答案 A

17. 函数
$$f(x,y) = \sin(x^2 + y)$$
 在点 $(0,0)$ 处() (A) 无定义; (B) 无极限; (C) 有极限,但不连续; (D) 连续. 答案 D

18. 函数
$$z = f(x, y)$$
 在点 $P_0(x_0, y_0)$ 间断,则()

(A) 函数在点 P_0 处一定无定义;

- (B) 函数在点 P_0 处极限一定不存在;
- (C) 函数在点 P_0 处可能有定义,也可能有极限;
- (D) 函数在点 P_0 处有定义,也有极限,但极限值不等于该点的函数值.

答案C

19. 设函数u = u(x, y), v = v(x, y)由方程组 $\begin{cases} x = u + v \\ y = u^2 + v^2 \end{cases}$ 确定, $u \neq v$, 则

$$\frac{\partial u}{\partial x} = ()$$

$$(A) \frac{x}{u - v}; \qquad (B) \frac{-v}{u - v};$$

$$(C) \frac{-u}{u - v}; \qquad (D) \frac{xy}{u - v}.$$

答案B

20. $u = \sqrt{3 + x^2 + y^2 + z^2}$ 在点 $M_0(1,-1,2)$ 处的梯度gradu = (

$$(A) \left(\frac{1}{9}, -\frac{1}{9}, \frac{2}{9}\right); \qquad (B) \left(\frac{2}{9}, -\frac{2}{9}, \frac{4}{9}\right); \\ (C) \left(\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right); \qquad (D) \left(\frac{2}{3}, -\frac{2}{3}, \frac{4}{3}\right).$$

答案C

21. 设函数 z = f(x, y) 在点 (x_0, y_0) 处可微,且 $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$,则

函数 f(x,y) 在 (x_0,y_0) 处 (

- (A) 必有极值,可能是极大,也可能是极小;
- (B) 可能有极值,也可能无极值;
- (C) 必有极大值;
- (*D*)必有极小值.

答案B

22. 设
$$z = \sqrt{xy}$$
, 则 $\frac{\partial z}{\partial x}\Big|_{(0,0)} = ($

- (A) 0
- (B) 不存在
- (C) -1

(D) 1

答 A。

23. 设 $z = y \sin(xy) + (1-y) \arctan x + e^{-2y}$, 则 $\frac{\partial z}{\partial x}\Big|_{(1,0)} = ($

- (A) $\frac{3}{2}$
- (B) $\frac{1}{2}$
- (c) $\frac{\pi}{4}$
- (D) 0

答 B。

24. 设
$$x + z = yf(x^2 - z^2)$$
, 则 $z \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = ($

- (A) x
- (B) y
- (C) z
- (D) $yf(x^2 z^2)$

答 A

25. 设
$$f(\frac{y}{x}, \frac{z}{x}) = 0$$
, 确定 $z = z(x, y)$ 则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = ($

- (A) -z
- (B) z
- (C) -y
- (D) y

答 B

26. 已知
$$x + y - z = e^x$$
, $xe^x = \tan t$, $y = \cos t$, 则 $\frac{dz}{dt}\Big|_{t=0} = ($)

- (A) $\frac{1}{2}$
- (B) $-\frac{1}{2}$
- (C) 1

(D) 0

答 D

27. 设
$$z = z(x, y)$$
 由方程 $e^{-xy} - 2z + e^z = 0$ 确定, 则 $\frac{\partial^2 z}{\partial x^2} = ($)

(A)
$$\frac{-y^2e^{-xy}}{e^z-2}$$

(B)
$$\frac{-y^2 e^{-xy} (e^z - 2) - y e^{-xy} e^z}{(e^z - 2)^2}$$

(C)
$$\frac{-y^2e^{-xy}(e^z-2)+y^2e^{-2xy+z}}{(e^z-2)^2}$$

(D)
$$\frac{-y^2e^{-xy}(e^z-2)^2-y^2e^{-2xy+z}}{(e^z-2)^3}$$

答 D

28. 设
$$z = f(x,u), u = xy$$
,则 $\frac{\partial^2 z}{\partial x^2} = ($

(A)
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2} y^2$$

(B)
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} y + \frac{\partial^2 f}{\partial u^2} y^2$$

(C)
$$\frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} y + \frac{\partial^2 f}{\partial u^2} y^2$$

(D)
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} y + \frac{\partial^2 f}{\partial u^2}$$

答 C

29. 设
$$z = f(u, v), u = x^2 + y^2, v = x^2 - y^2$$
,则 $\frac{\partial^2 z}{\partial x \partial y} = ($

(A)
$$2x \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial f}{\partial v} \right)$$

(B)
$$2x \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} \right)$$

(C)
$$2x \left(\frac{\partial^2 f}{\partial u^2} - \frac{\partial^2 f}{\partial v^2} \right)$$

(D)
$$4xy \left(\frac{\partial^2 f}{\partial u^2} - \frac{\partial^2 f}{\partial v^2} \right)$$

答 D

30. 下列做法正确的是()

(A). 设方程
$$z^2 = x^2 + y^2 + a^2$$
, $F'_x = 2zz'_x - 2x$, $F'_z = 2z$, 代入 $z'_x = -\frac{F'_x}{F'_z}$, 得 $z'_x = \frac{x}{2z}$.

(B) 设方程
$$z^2 = x^2 + y^2 + a^2$$
, $F'_x = -2x$, $F'_z = 2z$, 代入 $z'_x = -\frac{F'_x}{F'_z}$, 得 $z'_x = \frac{x}{z}$.

(C) 求 $z = x^2 + y^2$ 平行于平面 2x + 2y - z = 0 的切平面, 因为曲面法向量

$$\overrightarrow{n} = (2x, 2y, -1) / / (2, 2, -1), \therefore \frac{2x}{2} = \frac{2y}{2} = \frac{-1}{-1}, \Rightarrow x = 1, y = 1, z = -1$$

切平面方程为2(x-1)+2(y-1)-(z+1)=0.

(D) 求 xyz = 8 平行于平面 x + y + z = 1 的切平面, 因为曲面法向量

$$\vec{n} = (yz, xz, xy) / (1,1,1), : \frac{yz}{1} = \frac{xz}{1} = \frac{xy}{1}, \Rightarrow x = y = z = 1$$

切平面方程为
$$(x-1)+(y-1)+(z-1)=0$$

答 B

31. 设M(x,y,z)为平面x+y+z=1上的点,且该点到两定点(1,0,1),(2,0,1)的距离平方之和

为最小,则此点的坐标为()

- (A) $(1, \frac{1}{2}, \frac{1}{2})$
- (B) $(1, -\frac{1}{2}, \frac{1}{2})$
- (C) $(1, -\frac{1}{2}, -\frac{1}{2})$
- (D) $(1, \frac{1}{2}, -\frac{1}{2})$

答 B

32. 若函数 z = f(x, y) 在点 (x_0, y_0) 可微,则在该点()

- $(A) \frac{\partial f}{\partial x} 与 \frac{\partial f}{\partial x} 定存在。$
- (B) $\frac{\partial f}{\partial x}$ 与 $\frac{\partial f}{\partial y}$ 一定连续。
- (C) 函数沿任一方向的方向导数都存在,反之亦真。
- (D) 函数不一定连续。

答 A 章纪

33. 在矩形域 $D: |x-x_0| < \delta, |y-y_0| < \delta$ 内, $f_x(x,y) \equiv 0, f_y(x,y) \equiv 0$ 是 f(x,y) = C(常

数)的()

- (A) 必要条件
- (B) 充分条件
- (C) 充要条件 (D) 既非充分也非必要条件

答 C

34. 若函数 $u = f(t, x, y), x = \varphi(s, t), y = \psi(s, t)$ 均具有一阶连续偏导数,则 $\frac{\partial u}{\partial s} = 0$

- (A) $f_2' \varphi_2' + f_3' \psi_2'$ (B) $f_1' + f_2' \varphi_2' + f_3' \psi_2'$
- (C) $f\varphi_2' + f\psi_2'$ (D) $f + f\varphi_2' + f\psi_2'$

答 B

35. 设函数 $\varphi(t)$, $\psi(t)$ 具有二阶连续导数,则函数 $z = \varphi(x+y) + \psi(x-y)$ 满足关系(

$$(A) \frac{\partial^2 z}{\partial x \partial y} = 0$$

(B)
$$\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial x^2} = 0$$

(C)
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
 (D) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$

(D)
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$$

答 <u>D</u>

36. 二元函数 $z = 1 - \sqrt{x^2 + y^2}$ 的极大值点是

- (A) (1, 1)
- (0, 1)(B)
- (C) (1,0)
- (D) (0,0)

答 D

37. 直线 $\frac{x+2}{2} = 2 - y = z$ 与 $\begin{cases} x+2y+1=0\\ y+z+2=0 \end{cases}$ 之间的关系是()

- (A) 重合 (B) 平行 (C) 相交
- (D) 异面

答: B

38. 曲面 $x^2 + 2y^2 + 3z^2 = 21$ 的与平面x + 4y + 6z = 0平行的切平面方程是()

(A)
$$x + 4y + 6z = \pm \frac{21}{2}$$
 (B) $x + 4y + 6z = 21$

(B)
$$x + 4y + 6z = 21$$

(C)
$$x+4y+6z=-21$$
 (D) $x+4y+6z=\pm 21$

(D)
$$x + 4v + 6z = \pm 2$$

答: D

39. 下列结论中错误的是()

(A)
$$\lim_{\substack{x \to 0 \\ y = kx}} \frac{xy}{x+y} = 0$$

(A)
$$\lim_{\substack{x \to 0 \\ y = kx}} \frac{xy}{x + y} = 0$$

 (B) $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{x + y} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1}{\frac{1}{x} + \frac{1}{x}} = 0$

(D)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{x+y}$$
 不存在

答: B

40. 已知 f(x,y) 二阶连续可导,z = f(x,xy),记v = xy,则下列结论中正确的是()

(A)
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + y \frac{\partial^2 f}{\partial x \partial y}$$

(A)
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + y \frac{\partial^2 f}{\partial x \partial v}$$
 (B) $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + 2y \frac{\partial^2 f}{\partial x \partial v}$

(C)
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + 2y \frac{\partial^2 f}{\partial x \partial y} + y \frac{\partial^2 f}{\partial y^2}$$
 (D) $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + 2y \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}$

(D)
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + 2y \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}$$

答: D

41. 设函数
$$z = f(x, y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
, 又 $x = t$, 则下列结论中正

确的是()

(A)
$$df(0,0) = 0$$
 . (B) $dz|_{t=0} = 0$. (C) $dz|_{t=0} = \frac{1}{\sqrt{2}}$. (D) $dz|_{t=0} = \frac{1}{\sqrt{2}} dt$.

答: D

42. 设
$$f(x,y) = \begin{cases} \frac{3xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
,则在原点处(

(A). 偏导数不存在,也不连续

(B). 偏导数存在但不连续

(C). 偏导数存在且可微

(D). 偏导数不存在也不可微

答:(B)

(A). 0

(B). 1

(C). 2

(D). 不存在

答: (B)

(A). 1 (B). $\frac{1}{2}$

(C). 2

(D). 0

答: (B)

45. 设
$$f(x,y) = (\frac{1}{3})^{-\frac{y}{x}}$$
则 $\frac{\partial f}{\partial x} = ($

(A).
$$(\frac{1}{3})^{\frac{-y}{x}} \cdot \frac{y}{x^2}$$

(B).
$$(\frac{1}{3})^{\frac{-y}{x}}(-\frac{y}{x^2})\ln 3$$

(C).
$$(\frac{1}{3})^{-\frac{y}{x}} \ln 3 \cdot \frac{y}{x^2}$$
 (D). $-\frac{y}{x} (\frac{1}{3})^{\frac{-y}{x}-1}$

(D).
$$-\frac{y}{x}(\frac{1}{3})^{\frac{-y}{x}-\frac{1}{2}}$$

答: (B)

46. 设
$$z = y \sin xy + (1 - y) \arctan x + e^{-2y}$$
, 则 $\frac{\partial^2}{\partial x}\Big|_{(1,0)} = ($

(A). 3/2

(B). 1/2

(C). $\pi/4$

(D).0

答: (B)

47. 设方程 $y = F(x^2 + y^2) + F(x + y)$ 确定隐含数 y = f(x) (其中 F 可微), 且

$$f(0) = 2, F'(2) = \frac{1}{2}, F'(4) = 1, \text{ } \text{!!} f'(0) = ($$

(A). 1/7 (B). $-\frac{1}{7}$ (C). $-\frac{1}{4}$ (D). $-\frac{1}{3}$

48. 曲面
$$xyz = 1$$
 上平行于平面 $x + y + z + 3 = 0$ 的切平面方程是 ()

(A)
$$x + y + z - 3 = 0$$

(B)
$$x + y + z - 2 = 0$$

(C).
$$x + y + z - 1 = 0$$

(D).
$$x + y + z = 0$$

答: (A)

49. 二元实值函数 z = 2x - y 在区域 $D = \{(x,y) \in R^2 | 0 \le y \le 1 - |x| \}$ 上的最小值为

(

- (B). -1 (C). -2 (D). -3

答: (C)

50. 平面 $2x + 3y - z = \lambda$ 是曲面 $z = 2x^2 + 3y^2$ 在点 (1/2, 1/2, 1/2) 处的切平面,则

λ的值是(

- (A).4/5
- (B). 5/4
- (C) 2
- (D).1/2

答: (C)

51. 已知曲面 $\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{a}$,在其上任意点 (x_0,y_0,z_0) 处的切平面方程

为 $\frac{1}{2\sqrt{x_0}}(x-x_0)+\frac{1}{2\sqrt{y_0}}(y-y_0)+\frac{1}{2\sqrt{z_0}}(z-z_0)=0$,则切平面在三坐轴走上的

截距之和为(

- (A) \sqrt{a} (B). $3\sqrt{a}$ (C). a (D). 3a

答: (C)

52. 指出 $f(x,y) = \frac{2xy}{x^2 + y^2}$ 与不相同的函数()

(A)
$$f_1(x+y,x-y) = \frac{x^2-y^2}{x^2+y^2}$$

(B)
$$f_2(x+y,x-y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, x^2 + y^2 \neq 0\\ 0, x^2 + y^2 = 0 \end{cases}$$

(C)
$$f_3(u+v,u-v) = \frac{u^2-v^2}{u^2+v^2}$$

(D)
$$f_4(u,u-v) = \frac{2u^2 - 2uv}{2u^2 - 2uv + v^2}$$

答 B

- 53. 指出错误的结论: ()
 - (A) 按等价无穷小的替换原则,有 $\lim_{x,y\to 0} \frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{x,y\to 0} \frac{x^2+y^2}{x^2+y^2} = 0$
 - (B) 按无穷大量与无穷小量的关系,有 $\lim_{x,y\to 0} \frac{xy}{x+y} = \lim_{x,y\to 0} \frac{1}{\frac{1}{y} + \frac{1}{x}} = 0$,

因当
$$x, y \to 0$$
时, $\frac{1}{x}, \frac{1}{y} \to \infty$ 。

(C) 按变量代换的方法,有 $\lim_{x,y\to 0} \frac{x+y}{e^x e^y - 1} = \lim_{x,y\to 0} (1+t)^{\frac{1}{t}} = 1$,

此处
$$t = e^x e^y - 1$$
。

(D) 按根式有理化方法,有
$$\lim_{x,y\to 0} \frac{1-\sqrt{1-xy}}{xy} = \lim_{x,y\to 0} \frac{1}{1+\sqrt{1-xy}} = \frac{1}{2}$$
。

答 B

- 54. 以下各点都是想说明 $\lim_{x,y\to 0} f(x,y)$ 不存在的,试问其理由是否正确? ()
 - (A) 对 $f(x,y) = \frac{xy}{x+y}$, 理由是 y = -x 时函数无定义。
 - (B) 对 $f(x,y) = \begin{cases} \frac{xy}{x+y}, y \neq -x, \\ 0, y = -x \end{cases}$, 理由是令 $y = x^2$ 或 $x^2 x$ 将得到不同的极限值 0,-1 。

(C) 对
$$f(x,y) = \begin{cases} \frac{y}{x}, x \neq 0, \\ 0, x = 0 \end{cases}$$
, 理由是令 $y = 1 - x$, 即知极限不存在。

(D) 对
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, xy \neq 0 \\ 0, xy = 0 \end{cases}$$
, 理由是当 $x \to 0$ 或 $y \to 0$ 时极限已经不存

在, 故二重极限更不可能存在了。

答 B

55. 在具备可微性的条件下, 等式 d(u+v) = du + dv, $d(\lambda u) = \lambda du$,

 $d(uv) = udv + vdu, \qquad d(\frac{u}{v}) = \frac{1}{v^2}(vdu - udv)$ 的成立,对u,v还有什麽限制?

- (A) 没什麽限制(除v作分母时不为 0)。
- (B) u,v 只能是自变量。
- (C) u,v 是自变量或某自变量的一元函数。
- (D) *u*,*v* 是自变量或某自变量的一次函数。

答 A

- 56. 对二元函数而言,指出下列结论中的错误。()
 - (A) 两个偏导数连续⇒任一方向导数存在。
 - (B) 可微⇒任一方向导数存在。
 - (C) 可微⇒连续。
 - (D) 任一方向导数存在⇒函数连续。

答 D

- 57. 设F(x,y,z) = 0满足隐函数定理的条件,问 $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}$ 如何?()
 - (A) 该式 = $\frac{\partial x \cdot \partial y \cdot \partial z}{\partial y \cdot \partial z \cdot \partial x} = 1$
 - (B) 该式 = $(-\frac{F_y}{F_x}) \cdot (-\frac{F_z}{F_y}) \cdot (-\frac{F_x}{F_z}) = -\frac{F_y \cdot F_z \cdot F_x}{F_x \cdot F_y \cdot F_z} = -1$
 - (C) 因为一个方程 F(x,y,z)=0 可以确定一个函数,不妨设 z 为函数,另两个变量 x,y 则为自变量,于是 $\frac{\partial x}{\partial v}=0$,故所给表达式为 0 。
 - (D) 仿(C) 不妨设由 F(x,y,z) = 0 确定 z 为 x,y 的函数, 因 $\frac{\partial y}{\partial z}$ 无意义, 故所给表达式无意义。

答 B

58. 设
$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$
, 试求对 x 的导数。()

- (A) 由第一个方程两边对x求导,得 $F_x+F_z\cdot z_x=0$,故 $z_x=-\frac{F_x}{F_z}$ 。
- (B) 由第二个方程两边对x求导,同理得 $z_x = -\frac{G_x}{G_z}$ 。
- (C) 由两个方程消去 y 得 H(x,z)=0,再对 x 求导,得 $H_x+H_z\cdot z'=0$ 故 $z'=-\frac{H_x}{H_z}$.
- (D) 视 y,z 为 x 的函数,在方程组两边对 x 求导,得 $\begin{cases} F_x + F_y \cdot y' + F_z \cdot z' = 0 \\ G_x + G_y \cdot y' + G_z \cdot z' = 0 \end{cases}$,故解出

$$z' = \frac{F_x G_y - F_y G_x}{F_y G_z - F_z G_y} \circ$$

答 D

59. 设 y = f(x,t),则由 F(x,y,t) = 0两边对 x 求导的结果为: ()

(A)
$$F_x + F_y \cdot y' + F_t \cdot t' = 0$$
, 其中 $y' = \frac{dy}{dx}$, $t' = \frac{dt}{dx}$.

(B)
$$F_x + F_y \cdot y' + F_t \cdot (t_x + t_y \cdot y') = 0$$
.

(C)
$$F_x + F_y \cdot (f_x + f_t \cdot t_x) + F_t \cdot t_x = 0$$

(D)
$$F_x + F_y \cdot (f_x + f_t \cdot t_x) + F_t \cdot (t_x + t_y \cdot y') = 0$$
.

答 A

60.
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2 - xy + y^2} = ($$
 (*B*) 0; (*C*) -1; (*D*) 不存在.

答案: (B)

61. 设函数
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 , 则 (

- (A) 极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 存在,但 f(x,y) 在点 (0,0) 处不连续;
- (B) 极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 存在,且 f(x,y) 在点 (0,0) 处连续;
- (C) 极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 不存在,故 f(x,y) 在点 (0,0) 处不连续;
- (D) 极限 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 不存在,但 f(x,y) 在点 (0,0) 处连续.

答案:(C)

62. 设m, M 分别为函数z = f(x, y) 在区域D上的最小值和最大值,且 $m \le \mu \le M$,则(

- (A) 函数 z = f(x, y) 在定义域 D 内一定有点 P(x, y), 使满足: $f(P) = \mu$;
- (B) 当D为闭区域, f(x,y)为连续函数时,则在D上至少有一点P(x,y),使 $f(P)=\mu\,;$
- (C)当D为有界区域, f(x,y)为连续函数时,则z=f(x,y)在D上至少有一点 P(x,y),使 $f(P)=\mu$;
- (D) 当D为连通区域, f(x,y)为D上的连续函数时,则z=f(x,y)在D上至少有一点 P(x,y),使 $f(P)=\mu$.

答案: (D)

- 63. 函数 f(x,y) 在点 (x_0,y_0) 偏导数存在是 f(x,y) 在该点连续的 (
 - (A) 充分条件但不是必要条件;
 - (B) 必要条件但不是充分条件;
 - (C) 充分必要条件;
 - (D) 既不是充分条件也不是必要条件.

答案: (D)

- 64. 二元函数 z = f(x, y) 在 (x_0, y_0) 处满足关系 (
 - (A) 可微(指全微分存在) ⇔ 可导(指偏导数存在) ⇒ 连续;
 - (*B*)可微⇒可导⇒连续;
 - (C) 可微⇒可导,或可微⇒连续,但可导不一定连续;
 - (D) 可导⇒连续,但可导不一定可微.

答案: (C)

65.
$$\frac{\partial f}{\partial x}\Big|_{\substack{x=x_0 \ y=y_0}} = 0$$
, $\frac{\partial f}{\partial y}\Big|_{\substack{x=x_0 \ y=y_0}} = 0$, $\mathbb{M} f(x,y) \div (x_0,y_0) \div (x_0,y_0)$

- (*A*) 连续且可微;
- (B) 连续但不一定可微;
- (C) 可微但不一定连续;
- (D) 不一定可微也不一定连续.

答案: (D)

答 B

- 70. 如 f(x,y) 在点 (x_0,y_0) 不可微,则一定不成立的是()
 - (A) f(x,y) 在 p_0 点不连续
 - (B) f(x,y) 在 p_0 点沿任何方向 u 的方向导数不存在

(D) f(x,y) 在 p_0 点沿任何方向 u 的方向导数存在,则 f(x,y) 在点 (x_0,y_0) 必连续

- (C) f(x,y) 在 p_0 点两个偏导数都存在且连续
- (D) f(x,y) 在 p_0 点两个偏导数存在且至少有一个不连续

答 C

- 71. 下列条件中 () 成立时, f(x,y) 在 (x_0,y_0) 点必有全微分 df=0
 - (A) 在点 (x_0, y_0) 两个偏导数 $f'_{x} = 0, f'_{y} = 0$

(B)
$$f(x,y)$$
 在点 (x_0,y_0) 的全增量 $\Delta f_1 = \frac{\Delta x \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}$,

(C)
$$f(x,y)$$
 在点 (x_0,y_0) 的全增量 $\Delta f_2 = \frac{\sin(\Delta x^2 + \Delta y^2)}{\sqrt{\Delta x^2 + \Delta y^2}}$

(D)
$$f(x,y)$$
 在点 (x_0,y_0) 的全增量 $\Delta f_3 = (\Delta x^2 + \Delta y^2) \sin \frac{1}{\Delta x^2 + \Delta y^2}$

答 D

- 72. 下列结论中正确的是()
 - (A) 设 $z = f(u,v), u = \varphi(x,y), v = \psi(x,y)$, 如 φ, ψ 在点 (x_0, y_0) 存在偏导,f 在点 (u_0, v_0) 存在偏导,则 $\frac{\partial z}{\partial x} = f'_u u'_x + f'_v v'_x, \frac{\partial z}{\partial v} = f'_u u'_y + f'_v v'_y$ 定成立.
 - (B) f_{xy} , f_{yx} 只要存在, 必有 $f_{xy} = f_{yx}$
 - (C) 偏导数只要存在必定连续
 - (D) 初等函数在有定义的点必定连续

答 D

73. 设
$$f(x,y) = \sqrt{|xy|}$$
,则在(0,0)点(

- (A) 连续, 但偏导数不存在.
- (B) 偏导数存在, 但不可微
- (C) 可微
- (D) 偏导数连续, 但不可微

答 B

74.
$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = 0 \end{cases}$$
, 则在(0,0)点(

- (A) 不连续, 偏导数存在且可微
- (B) 连续,偏导数存在,但不可微
- (C) 沿任何方向 $\overrightarrow{v} = (\cos \theta, \sin \theta)$ 的方向导数存在,且可微
- (D) 不连续, 但沿任何方向 $\vec{v} = (\cos \theta, \sin \theta)$ 的方向导数存在, 并且不可微 答 D

75. 设
$$z = f(x, y)$$
 在 $(1, 1)$ 点可微, $f(1, 1) = 1$, $\frac{\partial f(1, 1)}{\partial x} = a$, $\frac{\partial f(1, 1)}{\partial y} = b$, 又有 $\varphi(x) = f(x, f(x, f(x, x)))$, 则 $\frac{d}{dx} \varphi^2(x) \mid_{x=1} = ($

- (A) $2(a+ab+ab^2+b^3)$.
- (B) $a + ab + ab^2 + b^3$
- (C) $a + ab + 2a^3$
- (D) $a + ab + ab^2 + a^3$

答 A

76. 下列极限中存在的是()

(A)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{(1-x)y}{|x| + |y|}$$

(B)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 y}{x^4 + y^2}$$

(C)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 y}{x^2 + y^2}$$

(D)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{xy}{x^2 + y^2}$$

答 C

77. 设 $\varphi(x,y,z) = xy + z \ln y + e^{xz} - 1, \vec{x_0} = (0,1,1),$ 有 $\varphi(0,1,1) = 0$,下列结论中正确的是

()

(A) 方程 $\varphi(x,y,z)=0$ 在点 $\vec{x_0}$ 邻域内不能确定隐函数x=f(y,z)

- (B) 方程 $\varphi(x,y,z)=0$ 在点 x_0 邻域内不能确定隐函数y=g(x,z)
- (C) 方程 $\varphi(x,y,z) = 0$ 在点 x_0 邻域内不能确定隐函数z = h(x,y)
- (D) 以上均不正确

答 C

78. 若函数u = u(x, y)为可微函数,且满足

 $u(x,y)\big|_{y=x^2} = 1, u_x(x,y)\big|_{y=x^2} = x, \quad \text{M} \stackrel{\text{def}}{=} x \neq 0 \text{ ft}, \quad u_x(x,y)\big|_{y=x^2} = 0$

- (A) 1
- (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$
- (D) -1

答 B

79. 设函数 f(x) 在[-1, 1]上连续,则 $\frac{\partial}{\partial r} \int_{\cos y}^{\sin x} f(t) dt = 0$

- (A) $f(\sin x) f(\cos y)$
- (B) $f(\sin x)\cos x + f(\cos y)\sin y$
- (C) $f(\sin x)\cos x$

(D) $f(\cos y)\sin y$

答C

80. 设
$$x^2 + y^2 + z^2 = 2$$
, 则 $\frac{\partial z}{\partial y}\Big|_{(\sqrt{2},0,0)} = ($)

- (A) -1.0
- (B) -1, 不存在
- (C)1, 0
- (D) 不存在, 0

答C

81. 当 $\lambda = ($)时,由方程 $y - x - \lambda \sin y = 0$ 总能确定 y = y(x),且 y(x) 就具有连续 导函数

- (A) $|\lambda| < 1$
- (B) $|\lambda| \ge 1$
- (C) $\lambda > 0$
- (D) $\lambda \leq 0$

答 A

82. 在()条件下,由方程 $z = x + y \varphi(z^2)$ 所确定的函数 z = z(x, y) 满足方程

$$\frac{\partial z}{\partial y} = \varphi(z^2) \frac{\partial z}{\partial x}$$

(A) $\varphi(z^2)$ 连续		(B) $\varphi(z^2)$ 可微	
(C) $\varphi(z^2)$ 可微且 $\varphi(z^2) \neq 0$		(D) $\varphi(z^2)$ 可微且 $2yz\varphi'(z^2)$	z^2) $\neq 1$
答 D			
83. 已知曲面 $z = 4 - x^2 - y^2$ 上点 F	'的切平面	$\vec{1} 2x + 2y + z = 0$,则点 P 的坐标是()
(A) $(1,-1,2)$	(B)	(-1, 1, -2)	
(C) (1, 1, 2)	(D)	(-1, -1, 2)	
答 C			
84. 曲面 $z = f(x, y)$ 在 $(x_0, -y_0)$ 的	切平面方	7程是()	
(A) $z = f(x_0, y_0) + f_x(x_0, y_0)(x_0)$	$-x_0)+f$	$f_{y}(x_{0}, y_{0})(y - y_{0})$	
(B) $z = f(x_0, -y_0) - f_x(x_0, -y_0)$	$)(x-x_0)$	$-f_{y}(x_{0},y_{0})(y+y_{0})$	
(C) $z = f(x_0, -y_0) + f_x(x_0, -y_0)$	$(x-x_0)$	$+ f_y(x_0, -y_0)(y + y_0)$	
(D) $z = f(x_0, -y_0) + f_x(x_0, -y_0)$	$(x-x_0)$	$+ f_y(x_0, -y_0)(y - y_0)$	
答 C			
85. 若函数 $f(x,y)$ 在点 (x,y) 的某个	个邻域内	具有连续的偏导数,则函数在该点沿	
$\vec{e} = \cos \varphi \vec{i} + \sin \varphi \vec{j}$ (其中 φ	为 <i>x</i> 轴到	ē 的转角)的方向导数为()	
(A) $ gradf(x,y) \vec{e} $		(B) $gradf(x,y) \cdot \vec{e}$	
(C) $ gradf(x,y) \cos\varphi$		(D) $ gradf(x,y) \sin \varphi$	
答 B			
86. 若函数 $u(x,y),v(x,y)$ 点 (x,y)	的某个邻	域内具有连续的偏导数,则在该点梯	
度 grad(uv) = ()			
(A) ugradv		(B) vgradu	
(C) $gradu \cdot gradv$		(D) vgradu+ugradv	
答 C			
87. 若函数 $f(x,y)$ 在区域 D 内连续	, 关于机	及值的陈述()是正确的	

- (A) f(x,y) 在偏导数不存在的点也可能取到极值
- (B) 若 f(x,y) 在 D 内有唯一驻点,则 f(x,y) 至多有一极值点
- (C) 若函数 f(x, v) 有两个极值点,则其中之一必为极大值点,另一个必为极小值点
- (D) 在驻点 (x_0,y_0) 处,若 $\left[f_{xy}(x_0,y_0)\right]^2-f_{xx}(x_0,y_0)f_{yy}(x_0,y_0)\geq 0$,则 (x_0,y_0) 不 为极值点

答 A

- 88. 下列命题中错误的是()
 - (A) 若 f(x) 在 [a,b] 上可导,且存在唯一的极小值点 M_0 ,则 $f(M_0)$ 必是 f(x) 在 [a,b] 上的最小值。
 - (B) 若 f(x,y) 在有界闭域 D 内存在唯一的极小值点 M_0 ,则 $f(M_0)$ 必是 f(x,y) 在 D 上的最小值。
 - (C) 若 f(x,y) 在有界闭域 D 内取到最小值,且 M_0 是 f(x,y) 在 D 内的唯一极小值点,则 $f(M_0)$ 必是 f(x,y) 在 D 上的最小值。
 - (D) 连续函数 f(x,y) 在有界闭域 D 上的最大、最小值可以都在 ∂D 上取到。

答: B

- 89. 下列命题中正确的是()
 - (A) 设 M_0 为曲面 Σ 外一点, M_1 为曲面 Σ 上的点,若 $\left|M_0M_1\right|=\min_{M\in\Sigma}\{\left|MM_0\right|\}$,则 $\overrightarrow{M_0M_1}$ 是 Σ 在 M_1 处的法向量。
 - (B) 设 M_0 为光滑曲面 Σ 外一点, M_1 为曲面 Σ 上的点,若 $\left|M_0M_1\right|=\min_{M\in\Sigma}\{MM_0\}$,则 $\overrightarrow{M_0M_1}$ 是 Σ 在 M_1 处的法向量。
 - (C) 设 M_0 为光滑曲面 Σ 外一点, M_1 为曲面 Σ 上的点,若 $\overline{M_0M_1}$ 是 Σ 在 M_1 处的法向量,则 $|M_0M_1|=\min_{M\in\Sigma}\{|MM_0|\}$ 。
 - (D) 设 M_0 为光滑曲面 Σ 外一点, M_1 为曲面 Σ 上的点,若 $\overrightarrow{M_0M_1}$ 是 Σ 在 M_1 处的法

向量,则 $|M_0M_1| < \max_{M \in \Sigma} \{|MM_0|\}$ 。

答: B

- 90. 下列命题中正确的是()
 - (A) 若二元函数 z = f(x, y) 连续,则作为任一变量 x 或 y 的一元函数必连续。
 - (B) 若二元函数 z = f(x, y) 作为任一变量 x 或 y 的一元函数都连续,则 z = f(x, y) 必连续。
 - (C) 若二元函数 z = f(x, y) 可微,则其必存在连续的一阶偏导数。
 - (D) 若二元函数 z = f(x, y) 不连续,则其必不可导。

答: A

- 91. 设f(x,y)在区域D上有定义, (x_0,y_0) 是D的一个内点,则下列命题中正确的是()
 - (A) 若 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 存在,则 $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$ 存在,且 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$ 。
 - (B) 若 $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$ 与 $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$ 都存在且相等,则 $\lim_{x \to x_0} f(x, y)$ 存在。
 - (C) 若 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 与 $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$ 都存在,则 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$ 。
 - (D) 若 $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$ 不存在,则 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 不存在。

答: C

- 92. 设 f(x,y) 是一二元函数, (x_0,y_0) 是其定义域内的一点,则下列命题中一定正确的是
 - (A) 若 f(x,y) 在点 (x_0,y_0) 的两个偏导数都存在,则 f(x,y) 在点 (x_0,y_0) 的梯度是

grad
$$f(x_0, y_0) = \left(\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y}\right)$$
.

(B) 若 f(x,y) 在点 (x_0,y_0) 的两个偏导数都存在,则 f(x,y) 在点 (x_0,y_0) 沿方向

$$\mathbf{v} = (\cos \alpha, \sin \alpha)$$
 方向导数是 $\frac{\partial f(x_0, y_0)}{\partial v} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0)}{\partial y} \sin \alpha$ 。

(C) 若 f(x,y) 在点 (x_0,y_0) 的两个偏导数都存在,则 f(x,y) 在点 (x_0,y_0) 的微分是

$$df(x_0, y_0) = \frac{\partial f(x_0, y_0)}{\partial x} dx + \frac{\partial f(x_0, y_0)}{\partial y} dy.$$

(D) 若 f(x,y) 在 点 (x_0,y_0) 可 微 , 则 f(x,y) 在 点 (x_0,y_0) 的 微 分 是

$$df(x_0, y_0) = \frac{\partial f(x_0, y_0)}{\partial x} dx + \frac{\partial f(x_0, y_0)}{\partial y} dy$$

答: D

93. 记 $\rho = \sqrt{(x-a)^2 + (y-b)^2}$, d = |f(x,y)-c| 。 设 $x \to a, y \to b$. 指出错误的结论:

- (A) $f(x,y) \rightarrow c \Leftrightarrow$ 对任给 $\varepsilon > 0$,存在 $\delta > 0$, 当 $0 < \rho < \delta$ 时,有 $d < \varepsilon$ 。
- (B) f(x,y)在(a,b)点连续 \Leftrightarrow 对任给 $\varepsilon>0$,存在 $\delta>0$,当 $\left|x-a\right|<\delta$ 及 $\left|y-b\right|<\delta$ 时,有 $d<\varepsilon$ 。
- (C) $f(x,y) \to c \Leftrightarrow$ 对任给 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 及 $0 < |y-b| < \delta$ 时,有 $d < \varepsilon$ 。
- (D) f(x,y) 在(a,b) 点连续 \Leftrightarrow 对任给 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $\rho < \delta$ 时,有 $d < \varepsilon$ 。

答 C

94. 设f(x,y)可微,f(0,0) = 0,偏导数 $f_x(0,0) = a, f_y(0,0) = b$ 。求

$$g(t) = f(t, f(t,t))$$
 在 $t = 0$ 处的导数()

(A) 因
$$g'(t) = f_x + f_y \cdot \frac{df(t,t)}{dt}$$
, 故 $g'(0) = a + b \cdot 0 = a$ 。

(B) 因
$$g'(t) = f_t + f_f = f_x + 1$$
, 故 $g'(0) = a + 1$.

(C) 由
$$g'(t) = f_x + f_y \cdot g'(t)$$
 解得 $g'(t) = \frac{f_x}{1 - f_y}$,故 $g'(0) = \frac{a}{1 - b}$ 。

(D) 因
$$g'(t) = f_x + f_y \cdot (f_x + f_y)$$
, 故 $g'(0) = a + b(a + b)$ 。

答 D

95. 设z = f(x, v), v = g(x, y), 其中f, g 具有二阶连续偏导数,则 $\frac{\partial^2 z}{\partial x^2} = ($

$$(A) \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} (\frac{\partial v}{\partial x})^2 + \frac{\partial f}{\partial y} \cdot \frac{\partial^2 v}{\partial x^2};$$

$$(B) \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \cdot \frac{\partial v}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial^2 v}{\partial x^2};$$

$$(C) \frac{\partial^2 f}{\partial x^2} + \frac{\partial f}{\partial v} \cdot \frac{\partial^2 v}{\partial x^2};$$

$$(D) \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} \frac{\partial v}{\partial x} + \frac{\partial^2 f}{\partial y^2} (\frac{\partial v}{\partial x})^2 + \frac{\partial f}{\partial y} \cdot \frac{\partial^2 v}{\partial x^2}.$$

答: (D)

96. 设u = u(x, y) 为可微函数,且当 $y = x^2$ 时,有u(x, y) = 1及 $\frac{\partial u}{\partial x} = x$,则当

$$y = x^2 (x \neq 0)$$
 Ft, $\frac{\partial u}{\partial y} = ($

$$(A) \frac{1}{2};$$
 $(B) -\frac{1}{2};$ $(C) 0;$ $(D) 1.$

答: (B)

97. 设y = f(x,t) 而t 由方程F(x,y,t) = 0 所确定的x,y 的函数,其中f,F 都具有

一阶连续的偏导数,则
$$\frac{dy}{dx}$$
 = ()

$$(A) \ \frac{f_x \cdot F_t + f_t \cdot F_x}{F_t}; \qquad (B) \ \frac{f_x \cdot F_t - f_t \cdot F_x}{F_t};$$

$$(C) \ \frac{f_x \cdot F_t + f_t \cdot F_x}{f_t \cdot F_y + F_t}; \qquad (D) \ \frac{f_x \cdot F_t - f_t \cdot F_x}{f_t \cdot F_y + F_t}.$$

答: (D)

98. 二元函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$
 在点 $(0,0)$ 处(

(*A*) 连续, 偏导数存在;

(*B*) 连续, 偏导数不存在;

(C) 不连续,偏导数存在;

(D) 不连续,偏导数不存在.

答:(*C*)

99. 己知函数
$$f(x,y)$$
 在点 $(0,0)$ 的某个邻域内连续,且 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)-xy}{(x^2+y^2)^2}=1$,则[]

- (A) 点(0,0) 不是f(x,y)的极值点。
- (B) 点 (0,0) 是 f(x,y) 的极大值点。
- (C) 点(0,0) 是f(x,y) 的极小值点。
- (D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点。

答: A

第六部分 曲线积分与曲面积分

- 1. 设曲线 L 是上半圆周 $x^2 + y^2 = 2x$,则 $\int_L x dl =$ _____。
- 2 . 设 L 是 上 半 椭 圆 周 $x^2+4y^2=1,y\geq 0$, L_1 是 四 分 之 一 椭 圆 周 $x^2 + 4y^2 = 1, x \ge 0, y \ge 0$, 则
- (A) $\int_L (x+y)dl = 2\int_{L_1} (x+y)dl$
 (B) $\int_L xydl = 2\int_{L_1} xydl$

- (C) $\int_{L} x^{2} dl = 2 \int_{L_{1}} y^{2} dl$.
- (D) $\int_{L} (x+y)^{2} dl = 2 \int_{L_{1}} (x^{2} + y^{2}) dl \cdot [$
- 3. 计算 $I = \int_I x dl$, 其中 L 是圆周 $x^2 + y^2 = a^2$ 上从点 A(0,a) 经点 C(a,0) 到点

$$B(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}})$$
的一段。

4. 计算
$$I = \int_L [(x + \sqrt{y})\sqrt{x^2 + y^2} + x^2 + y^2] dl$$
, 其中 L 是圆周 $x^2 + (y - 1)^2 = 1$ 。

5. 已知曲线 L 是平面 x+y+z=0 与球面 $x^2+y^2+z^2=R^2$ 的交线, 计算曲线积分 $\oint_L (x^2+y^2+z) dl \ .$

6. 求柱面 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ 被球面 $x^2 + y^2 + z^2 = 1$ 包围部分的面积S。

7. 计算 $I = \int_L 3x^2 y dx - x^3 dy$, 其中 L 是从点 (0,0) 经过点 (1,0) 到点 (0,0) 的折线段。

8. 设
$$L$$
 是圆周 $x^2 + y^2 = 2x$,则 $\oint_L -ydx + xdy = ______。$

9. 计算
$$I = \oint y^2 x dy - x^2 y dx$$
, 其中 L 是圆周 $x^2 + y^2 = a^2$,顺时针方向为正。

10. 计算 $I = \int_L (12xy + e^y) dx - (\cos y - xe^y) dy$, 其中 L 从点 (-1,1) 沿曲线 $y = x^2$ 到点 (0,0),再沿直线 y = 0 到点 (2,0)。

11. 计算
$$I = \int_L \frac{(x-y)dx + (x+y)dy}{x^2 + y^2}$$
, 其中 L 是曲线 $y = x^2 - 2$ 从点 $A(-2,2)$ 到点 $B(2,2)$ 的一段。

12. 设u(x,y),v(x,y)在全平面内有连续的一阶偏导数,且满足 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$,记C

为包围原点的正向简单闭曲线, 计算
$$I = \oint_C \frac{(xv-yu)dx + (xu+yv)dy}{x^2 + y^2}$$
。

13. 计算 $I = \int_L [e^y \cos x - ay] dx + [e^y \sin x - b(x+y)] dy$,其中 L 为 $4x^2 + 9y^2 = 36$ 在第一象限中的部分,方向为从点 (3,0) 到 (0,2) 。

15. 计算 $I = \int_L y dx - (x^2 + y^2 + z^2) dz$,L 是曲线 $\begin{cases} x^2 + y^2 = 1 \\ z = 2x + 4 \end{cases}$ 在第一卦限中的部分,从点 (0,1,4)到点 (1,0,6).

- 16. 计算 $I = \oint_L y dx + z dy + x dz$,其中 L 是球面 $x^2 + y^2 + z^2 = 4z$ 与平面 x + z = 2 的交
- 线,从z轴正向看去为逆时针方向。

- 17. 计算 $I = \oint_L x^2 y dx + y^2 z dy + z^2 x dz$,其中 L 为 $z = x^2 + y^2$ 与 $x^2 + y^2 + z^2 = 6$ 的交
- 线,方向为从 z 轴的正向往负向看去是顺时针。

18. 计算 $I = \oint_L (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$,其中 L 是用平面 $x + y + z = \frac{3}{2}a$ 切立方体 $\Omega = \{(x, y, z) | 0 \le x, y, z \le a\}$ 所得的切痕,从ox轴正向看去为逆时针方向.

19. 计算 $I = \oint_L (y^2 - z^2) dx + (2z^2 - x^2) dy + (3x^2 - y^2) dz$,其中 L 是平面 x + y + z = 2 与柱面 |x| + |y| = 1 的交线,从 z 轴正向看去, L 为逆时针方向。

20. 已知曲线积分

$$I = \int_{L} (xz + ay^{2} + bz^{2})dx + (xy + az^{2} + bx^{2})dy + (yz + ax^{2} + by^{2})dz$$

与路径无关,求a,b的值,并求从A(0,0,0)到B(1,1,1)的积分值。

21. 判断 $(e^x \cos y + 2xy^2)dx + (2x^2y - e^x \sin y)dy$ 是否是全微分式,若是,求它的原函数。

23. 设函数 f(x,y) 在 R^2 内具有一阶连续偏导数,曲线积分 $\int_L 2xydx + f(x,y)dy$ 与路径无关,且对任意的 t 恒有 $\int_{(0,0)}^{(t,1)} 2xydx + f(x,y)dy = \int_{(0,0)}^{(1,t)} 2xydx + f(x,y)dy$,求 f(x,y) 的表达式。

24. 已知 $\oint_L \frac{1}{f(x)+y^2}(xdy-ydx) = A$,其中 $f \in C^1$,f(1)=1,L 是绕原点一周的任意正向 闭曲线,试求 f(x) 及 A.

25. 设在变力 $\vec{F}(x,y,z) = \{yz,zx,xy\}$ 的作用下,质点由原点沿直线运动到椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上第一挂限中的点 P(u,v,w) 处,问当点 P(u,v,w) 在何处时,力 $\vec{F}(x,y,z)$ 作的功W 最大,并求出功的最大值。

26. 设函数 f(x,y) 在有界闭域 D 上具有二阶连续偏导数, \vec{n} 是 ∂D 的外向单位法向量。

(1) 证明

$$\int_{\partial D} f(x,y) \frac{\partial f(x,y)}{\partial n} dl$$

$$= \iint_{D} f(x,y) \left[\frac{\partial^{2} f(x,y)}{\partial x^{2}} + \frac{\partial^{2} f(x,y)}{\partial y^{2}} \right] dx dy + \iint_{D} \left(\frac{\partial f(x,y)}{\partial x} \right)^{2} + \left(\frac{\partial f(x,y)}{\partial y} \right)^{2} dx dy;$$

$$(2) \stackrel{\text{def}}{=} \frac{\partial^{2} f(x,y)}{\partial x^{2}} + \frac{\partial^{2} f(x,y)}{\partial y^{2}} = 0, (x,y) \in D, \quad \mathbb{E} f(x,y) = 0, (x,y) \in \partial D \quad \mathbb{N}, \quad \mathbb{E} \mathfrak{N}$$

$$f(x,y) = 0, (x,y) \in D.$$

27. 设函数 f(x,y) 具有一阶连续偏导数,证明对上半平面 y>0 中的任意封闭曲线 c 都有 $\oint \frac{ydx-xdy}{f(x,y)}=0$ 成立的充要条件是: $f(tx,ty)=t^2f(x,y)$ 对任意的 t>0 及上半平面中的

任意点(x,y)都成立。

28. 计算 $I=\iint_S xdS$,其中 S 为柱面 $x^2+y^2=1$ 与平面 z=0, z=x+2 所围空间区域的表面。

29. 计算
$$\iint_{S} f(x,y,z)dS$$
, 其中 S 为球面 $x^{2} + y^{2} + z^{2} = a^{2}$,

$$f(x,y,z) = \begin{cases} 0, z < \sqrt{x^2 + y^2} \\ x^2 + y^2, z \ge \sqrt{x^2 + y^2} \end{cases}$$

30. 计算
$$I = \iint_S (x+y+z+a)^2 dS$$
, 其中 S 为球面

$$(x-a)^2 + (y-a)^2 + (z-a)^2 = a^2$$

第六部分 曲线积分与曲面积分 第 27 页 共 46 页

31. 计算 $I = \iint_S xyz(y^2z^2 + z^2x^2 + x^2y^2)dS$, 其中S是球面 $x^2 + y^2 + z^2 = a^2$ 在第一卦限中的部分。

32. 计算
$$I = \iint_{S} [(z^n - y^n)\cos\alpha + (x^n - z^n)\cos\beta + (y^n - x^n)\cos\gamma]dS$$
,

其中
$$S:$$

$$\begin{cases} x^2+y^2+z^2=R^2\\ z\geq 0 \end{cases}$$
 $\mathbf{n}=(\cos a,\cos \beta,\cos \gamma)$ 是 S 向上的法向量。

33. 计算曲面积分 $I=\iint_S \frac{xdy\wedge dz+z^2dx\wedge dy}{x^2+y^2+z^2}$, 其中 S 是由 $x^2+y^2=R^2$ 及

z = R, z = -R (R > 0) 围成的圆柱体的表面,外侧为正。

34. 计算曲面积分 $I=\iint_S xdydz+ydzdx+zdxdy$,其中 S 为旋转抛物面 $z=x^2+y^2$ 介于 z=0 和 z=1之间的部分,上侧为正。

35. 计算曲面积分 $I = \iint_S x^2 dydz + y^2 dzdx + z^2 dxdy$, 其中 S 为

(1)
$$S: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1;$$

(2)
$$S: (x-1)^2 + (y-2)^2 + (z-3)^2 = 4$$

36. 计算曲面积分
$$I=\iint\limits_{\partial\Omega}x^2dydz+y^2dzdx+z^2dxdy$$
,其中
$$\Omega=\{(x,y,z)\bigg|\ 0\leq z\leq \sqrt{4-x^2-y^2}\,,x^2+y^2\leq 1\}\ .$$

37. 计算 $I = \iint_S (x-y+z) dy \wedge dz + (y-z+x) dz \wedge dx + (z-x+y) dx \wedge dy$, 其中曲面 S 是

区域
$$\Omega$$
: $|x-y+z|+|y-z+x|+|z-x+y|=1$ 的外表面.

38. 计算
$$I = \iint_S \frac{2dydz}{x\cos^2 x} + \frac{dzdx}{\cos^2 y} - \frac{dxdy}{z\cos^2 z}$$
, 其中 S 是球面 $x^2 + y^2 + z^2 = 1$,外侧为正。

39. 计算曲面积分 $I=\iint_S \frac{\cos <\vec{r},\vec{n}>}{r^2} dS$,其中 $\vec{r}=\{x,y,z\}$, $r=|\vec{r}|$, S 为椭球面 $x^2+2y^2+3z^2=1$, \vec{n} 为 S 的外向单位法向量。

解

40. 设 Ω_{δ} 是中心在点 (x_0,y_0,z_0) ,半径为 δ 的球体, $\partial\Omega_{\delta}$ 是 Ω_{δ} 的正向边界面, V_{δ} 是 Ω_{δ} 的体积,函数X(x,y,z),Y(x,y,z),Z(x,y,z)均具有一阶连续偏导数,求证

$$\lim_{\delta \to 0^+} \frac{\iint X dy dz + Y dz dx + Z dx dy}{V_{\delta}} = \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z}\right)_{(x_0, y_0, z_0)} \circ$$

43. 设 $f(x,y,z) \in C^1$, $\pi: f(x,y,z) = 0$ 是以原点为顶点的一张锥面,若 π 与平面 $Ax + By + Cz + D = 0 (A^2 + B^2 + C^2 \neq 0)$ 围成一个锥体 Ω ,且其底面积是S,高是h,体积是V,求证 $V = \frac{1}{3}Sh$ 。

44. 设 L(x,y,z) 表示原点到椭球面 $S: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上点 (x,y,z) 处的切平面的距离,

求证

$$\iint_{S} \frac{dS}{L(x,y,z)} = \frac{4\pi}{3abc} (b^{2}c^{2} + c^{2}a^{2} + a^{2}b^{2}).$$

45. 设函数 f(x) 连续,证明曲线积分 $\int_{L(A)}^{(B)} f(\sqrt{x^2 + y^2 + z^2})(xdx + ydy + zdz)$ 与路径无关。

46. 设 $f(x,y) = 75 - x^2 - y^2 + xy$,求 f(x,y) 在点 (x_0,y_0) 处方向导数最大的方向 $\vec{\tau}$ 和 方向导数的最大值 M 。

47 . 设 $f(x,y,z) = \ln(x^2 + y^2 + z^2)$, 求 gradf(x,y,z), div[gradf(x,y,z)] , rot[gradf(x,y,z)] 。

49. 求质量均匀分布的半球面S的重心。

50. 求质量均匀分布的圆柱面 $S: x^2 + y^2 = a^2, 0 \le z \le b$ 关于 z 轴的转动惯量 J 。

51. 设
$$S$$
 是球面 $x^2 + y^2 + z^2 = 2x$, 外侧为正; L 是曲线
$$\begin{cases} x^2 + y^2 + z^2 = 2x, \\ x = \frac{3}{2}, \end{cases}$$
 , 方向为

从 x 轴正向看是逆时针。求向量场 $\vec{F}(x,y,z)=\{xz^2,yx^2,zy^2\}$ 通过曲面 S 的通量 Φ 和沿曲线 L 的环量 I 。

第八部分 常微分方程

「填空题」

1. 微分方程 $y' + y \tan x - \cos x = 0$ 的通解为______。

- 2. 过点($\frac{1}{2}$,0)且满足关系式 $y' \arcsin x + \frac{y}{\sqrt{1-x^2}} = 1$ 的曲线方程为_______。
- 3. 微分方程 xy'' + 3y' = 0 的通解为______。
- 4. 设 $y_1(x)$, $y_2(x)$, $y_3(x)$ 是线性微分方程 y'' + a(x)y' + b(x)y = f(x) 的三个特解,且 $\frac{y_2(x)-y_1(x)}{v_2(x)-v_1(x)} \neq C$,则该微分方程的通解为

5. 设 $y_1 = 3 + x^2$, $y_2 = 3 + x^2 + e^{-x}$ 是某二阶线性非齐次微分方程的两个特解,且相应齐次 方程的一个解为 $y_3 = x$,则该微分方程的通解为_____

- 6. 设出微分方程 $y'' 2y' 3y = x + xe^{-x} + e^{x} \cos 2x$ 的一个特解形式
- 7. 微分方程 $y'' 2y' + 2y = e^x$ 的通解为______。
- 8. 微分方程 $y'' 4y = e^{2x}$ 的通解为_____。
- 9. 函数 $y = C_1 \cos 2x + C_2 \sin 2x$ 满足的二阶线性常系数齐次微分方程为______。
- 10. 若连续函数 f(x) 满足关系式 $f(x) = \int_0^{2x} f(\frac{t}{2}) dt + \ln 2$,则 $f(x) = \underline{\qquad}$

[选择题]

11. 设曲线积分 $\int_{I} [f(x) - e^{x}] \sin y dx - f(x) \cos y dy$ 与路径无关,其中 f(x) 具有一阶连续 导数,且 f(0) = 0,则 f(x)等于[

(A)
$$\frac{1}{2}(e^{-x}-e^x)$$
.

(B)
$$\frac{1}{2}(e^x - e^{-x})$$
.

(C)
$$\frac{1}{2}(e^x + e^{-x}) - 1$$
 (D) $1 - \frac{1}{2}(e^x + e^{-x})$

(D)
$$1 - \frac{1}{2}(e^x + e^{-x})$$

- 12. 若函数 $y = \cos 2x$ 是微分方程 y' + p(x)y = 0 的一个特解,则该方程满足初始条件 v(0) = 2 的特解为[]
- (A) $y = \cos 2x + 2$ (B) $y = \cos 2x + 1$

- (C) $y = 2\cos x$.
- (D) $v = 2\cos 2x$.
- 13. 设函数 $y_1(x)$, $y_2(x)$ 是微分方程 y' + p(x)y = 0 的两个不同特解,则该方程的通解为 []
- (A) $y = C_1 y_1 + C_2 y_2$ (B) $y = y_1 + C y_2$
- (C) $y = y_1 + C(y_1 + y_2)$ (D) $y = C(y_2 y_1)$.
- 14. 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + o(\Delta x), y(0) = \pi$,则 y(1) 等于 []
- (A) 2π . (B) π . (C) $e^{\frac{\pi}{4}}$. (D) $\pi e^{\frac{\pi}{4}}$
- 15. 设函数 y = f(x) 是微分方程 y'' 2y' + 4y = 0 的一个解。若 $f(x_0) > 0$, $f'(x_0) = 0$,

则函数 f(x) 在点 x_0 []

(A) 取到极大值。

- (B) 取到极小值。
- (C) 某个邻域内单调增加。
- (D) 某个邻域内单调减少。
- 16. 设 y_1, y_2 是二阶常系数线性齐次方程 y'' + py' + qy = 0 的两个特解, C_1, C_2 是两个任 意常数,则下列命题中正确的是[]
- (A) $C_1 y_1 + C_2 y_2$ 一定是微分方程的通解。
- (B) $C_1y_1 + C_2y_2$ 不可能是微分方程的通解。
- (C) $C_1 y_1 + C_2 y_2$ 是微分方程的解。
- (D) $C_1y_1 + C_2y_2$ 不是微分方程的解。

- 17. 微分方程 $y'' y = e^x + 1$ 的一个特解应具有形式[]
- (A) $ae^x + b$.

(B) $axe^x + b$.

(C) $ae^x + bx$.

- (D) $axe^x + bx$.
- 18. 具有特解 $y_1 = e^{-x}$, $y_2 = 2xe^{-x}$, $y_3 = 3e^x$ 的三阶线性常系数齐次微分方程是[]
- (A) y''' y'' y' + y = 0. (B) y''' + y'' y' y = 0.
- (C) y''' 6y'' + 11y' 6y = 0 (D) y''' 2y'' y' + 2y = 0
- 19. 设 $y_1 = e^x$, $y_2 = x$ 是三阶线性常系数齐次微分方程 y''' + ay'' + by' + cy = 0 的两个特
- 解,则a,b,c的值为[
- (A) a = 1, b = -1, c = 0.
 - (B) a = 1, b = 1, c = 0.
- (C) a = -1, b = 0, c = 0

- (D) a = 1, b = 0, c = 0.
- 20. 设二阶线性常系数齐次微分方程 y'' + by' + y = 0 的每一个解 y(x) 都在区间 $(0,+\infty)$ 上 有界,则实数b的取值范围是[]
- (A) $b \ge 0$. (B) $b \le 0$.

- (C) $b \le 4$. (D) $b \ge 4$.

[解答题]

21. 求微分方程
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$
 的通解。

22. 求微分方程
$$\frac{dy}{dx} + \frac{1}{x}y = \frac{\sin x}{x}$$
 的通解。

23. 求解微分方程 $xdy - ydx = y^2 e^y dy$ 。

24. 求微分方程 $x^2y' + xy = y^2$ 满足初始条件 y(1) = 1的特解。

25. 设 $y = e^x$ 是微分方程 xy' + p(x)y = x 的一个解,求此微分方程满足条件 $y(\ln 2) = 0$ 的特解。

26. 求微分方程
$$\frac{1}{\sqrt{y}} y' - \frac{4x}{x^2 + 1} \sqrt{y} = x$$
 的通解。

27. 求微分方程
$$(1+e^{\frac{x}{y}})dx + e^{\frac{x}{y}}(1-\frac{x}{y})dy = 0$$
 的通解。

28. 设 μ 为实数,求微分方程 $y'' + \mu y = 0$ 的通解。

29. 求微分方程 $y'' + y' = 2x^2 + 1$ 的通解。

30. 求解微分方程 $y'' - 2y' + y = 4xe^x$ 。

31. 求微分方程 $y'' + y = x + \cos x$ 的通解。

32. 求解微分方程 $yy'' - (y')^2 = y^2 \ln y$ 。

33. 求解微分方程 $y''' + 3y'' + 3y' + y = e^{-x}(x-5)$ 。

34. 求解微分方程 $xy'' - y' = x^2$ 。

35. 求解微分方程 $x^2y'' - 2xy' + 2y = x^3 \ln x$ 。

36. 求解定解问题
$$\begin{cases} y'' + 2x(y')^2 = 0 \\ y(0) = 1, y'(0) = 0 \end{cases}$$

37. 已知函数 f(x)在 $[0,+\infty)$ 上可导,f(0)=1,且满足等式

$$f'(x) + f(x) - \frac{1}{x+1} \int_0^x f(t)dt = 0$$
,

求 f'(x),并证明 $e^{-x} \le f(x) \le l(x \ge 0)$ 。

38. 设p(x),q(x)为连续函数,证明方程y'+p(x)y=q(x)的所有积分曲线上横坐标相同的点的切线交于一点。

39. 设 p(x) 在 $[0,+\infty)$ 上连续非负,证明微分方程 y'+p(x)y=0 的任意非零解满足 $\lim_{x\to +\infty} y(x)=0$ 的充要条件是广义积分 $\int_0^{+\infty} p(x) dx$ 发散。

40. 设 a > 0, 函数 f(x) 在 $[0,+\infty)$ 上连续有界,证明微分方程 y' + ay = f(x) 的解在 $[0,+\infty)$ 上有界。