Clustering Data with Nonignorable Missingness using Semi-Parametric Mixture Models

Marie Du Roy de Chaumaray and Matthieu Marbac

Univ. Rennes, Ensai, CNRS, CREST - UMR 9194, F-35000 Rennes, France

July 15, 2020

Main idea:

Use semiparametric mixture models for clustering (not for density estimation).

Data:

n subjects described by d continuous variables with nonignorable missingness z_i indicates the subpopulation membership of subject i and is not observed $r_{ii} = 1$ if $x_{ii} \in \mathbb{R}$ is observed and $r_{ii} = 0$ otherwise \mathbf{x}^{obs} denotes the observed values for subject i.

Assumptions:

The couples $(X_{ii}, R_{ii})^{\top}$ are conditionally independent given Z_i . No parametric assumptions on the distribution of $X_{ij} \mid \mathbf{Z}_i, R_{ij}$ but we need $d \geq 3$.

Model:

We use a pattern-mixture model for dealing with missingness and a semiparametric mixture for modeling the observed variables

$$f(oldsymbol{x}_i^{ ext{obs}}, oldsymbol{r}_i; oldsymbol{ heta}) = \sum_{k=1}^K \pi_k \prod_{j=1}^d au_{kj}^{r_{ij}} (1 - au_{kj})^{1 - r_{ij}} oldsymbol{p}_{kj}^{r_{ij}}(x_{ij}),$$

We estimate the finite parameters $(\pi_k \text{ and } \boldsymbol{\tau}_k)$ and all the infinite parameters $p_{ki}(\cdot)$ (conditional density of X_{ii} given $Z_{ik} = 1$ and $R_{ii} = 1$) by a maximizing the smoothed likelihood via a MM algorithm (Levine et al., Biometrika, 2011).

We generate 100 realizations $X_i \in \mathbb{R}^4$ where $\mathbb{P}(Z_i = 1) = 1/3$, $\mathbb{P}(Z_i = 2) = 2/3$, $X_{ii} = \delta(Z_{i1} - Z_{i2}) + \varepsilon_{ii}$ and $\mathbb{P}(R_{ii} = 0 \mid X_{ii}, Z_i) = (1 + \exp(\gamma + \alpha(z_{i1} - z_{i2}) + \beta x_{ii}))^{-1}$, where the noises ε_{ii} are independent from all the variables.

Figure: ARI obtained by SPMNM (proposed method), GLMM (Miao et al., JASA, 2016), K-pod (Chi and Chi, Amer. Stat., 2016), NPimputed (mixtools and missMDA) on different scenario: MAR (alpha = 0, β = 0), MNAR-1 (α = 1, β = 0), MNAR-2 (α = 0, β = 1). γ and δ are used to define the rate of missingness and an error rate of 5%.

Results

- Lemma 1: If $d \ge 3$, the densities p_{kj} are linearly independent, $\pi_k > 0$ and $\tau_{kj} > 0$, then the model is identifiable, up to label swapping.
- Lemma 2: Let the assumptions of Lemma 1 hold true. Let $\theta^{[r]}$ and $\theta^{[r+1]}$ be the estimators obtained at iterations [r] and [r+1] respectively, we have, under mild assumptions, $\ell_n(\theta^{[r]}) \leq \ell_n(\theta^{[r+1]})$.
- Lemma 3: Let $\hat{\theta}_n = \arg\max_{\theta} \ell_n(\theta)$. If the assumptions of Lemma 2 hold true, the densities p_{kj} 's are three times continuously differentiable, $p'_{kj}/p_{kj} < \infty$, $p''_{kj}/p_{kj} < \infty$ and if the bandwidth $h \to 0$ when $n \to \infty$, then $\hat{\theta}_n$ is consistent.

Ongoing research

- Bandwidth selection (experiments are done with $h = n^{-1/5}$).
- Number of components (Kasahara and Shimotsu, JRSS-B, 2014).