Processamento de Linguagem Natural

Vetorização

Introdução

- Em programação, para trabalhar com dados textuais, usamos normalmente um tipo string
- Entretanto, muitos algoritmos de processamento de linguagem natural trabalham apenas com números (ou vetores)
- O processo de transformação de um texto para uma representação numérica é chamado de vetorização

- O primeiro para passo transformar um texto em uma representação numérica é a tokenização
- Tokenização é o processo de quebrar um texto em pedaços chamados tokens

- Muitas vezes os tokens correspondem as palavras de um texto
 - "Eu comprei pão" (tokens: eu, comprei, pão)
- Mas nem sempre isso é claro
 - "Eu comprei R\$ 10,00 de couve-flor" (quais são os tokens?)

- Em idiomas diferentes, a tokenização pode ser mais difícil
- Em inglês:
 - "You aren't old"
 - "aren't" pode ser considerado um token, mas pode ser dividido em "are"
 "not"

- Em idiomas diferentes, a tokenização pode ser mais difícil
- Em alemão, nomes compostos não são separados por espaços:
 - Lebensversicherungsgesellschaftsangestellter
 - (tradução: funcionário de uma empresa de seguro de vida)

• Podemos usar o scikit-learn para separar os tokens de um string:

```
count_vectorizer = CountVectorizer()
word_tokenizer = count_vectorizer.build_tokenizer()
word_tokenizer("eu gostei do filme. o filme é divertido")
```

• Vamos fazer um exemplo no Jupyter Notebook...

- As palavras mais utilizadas nos textos são artigos, preposições e conjunções
- Essas palavras isoladamente tem pouco significado e dominam as contagens de tokens

- Palavras extremamente comuns em um idioma são chamadas de stopwords
- Elas são normalmente retiradas do texto quando estamos trabalhando com processamento de linguagem

- Quais palavras retirar?
 - Não existe uma lista única por idioma
 - Podemos encontrar em bibliotecas ou na Internet algumas listas disponíveis

• A biblioteca NLTK possui uma lista de stopwords em português

```
import nltk
stopwords = nltk.corpus.stopwords.words('portuguese')
stopwords
```

• Algumas das stopwords: 'de', 'a', 'o', 'que', 'e', 'é', 'do', 'da', 'em', 'um', 'para', ...

• Usando o scikit-learn para tokenização, temos:

```
count_vectorizer = CountVectorizer(stop_words=stopwords)
analyzer = count_vectorizer.build_analyzer()
analyzer('eu gostei do filme o filme é divertido')
```

Que vai retornar a lista: [gostei, filme, filme, divertido]

Vamos fazer um exemplo no Jupyter Notebook...

- Além de excluir palavras que costumam não ter muito significado, com stopwords também simplificamos os nossos dados
 - Diminui o número de palavras
 - Diminui o tamanho dos vetores

- Existem outras formas de simplificar e uniformizar textos
- Essas operações são chamadas de normalização
- Uma das mais comuns é tornar todo o texto em minúsculo
 - Isto faz com que palavras que comecem com letras maiúsculas ou minúsculas sejam consideradas como as mesmas palavras

- Stemming
 - Retira-se os prefixos e sufixos de uma palavra, mantendo apenas o seu radical
 - Exemplo:
 - aluno, aluna, alunos e alunas → alun
 - As variações de uma mesma palavra são consideradas o mesmo token

- Lematização
 - Transforma formas flexionadas de uma palavra num formato base
 - Exemplo:
 - aluno, aluna, alunos e alunas → aluno
 - tenho, tiver, tinha, tem → ter
 - O resultado da lematização é uma palavra existente no dicionário

- Lematização e Stemming servem para simplificar um texto diminuindo o seu vocabulário
- Stemming é um processo mais rápido, mas pode ser menos eficaz na simplificação, além de poder gerar palavras que não existem
- A biblioteca NLTK implementa Stemming para língua portuguesa

```
stemmer = nltk.stem.RSLPStemmer()
stemmer.stem("conseguimos")
```

One-hot encoding

- A forma mais simples e comum de transformar uma palavra em um vetor é a técnica one-hot encoding
- Nela, inicialmente definimos um conjunto de palavras que consideraremos (vocabulário)
- No one-hot encoding, cada palavra é representada por um vetor único de tamanho N
 - N é o tamanho do vocabulário

One-hot encoding

- Dado o texto "eu gostei do filme"
- Podemos definir o vocabulário como: [eu, gostei, do, filme]
- Assim, temos os seguintes vetores:

```
eu [1, 0, 0, 0]
gostei [0, 1, 0, 0]
do [0, 0, 1, 0]
filme [0, 0, 0, 1]
```

- Podemos utilizar essa ideia para representar um documento inteiro como um vetor
- O modelo bag of words (BoW) descreve a ocorrência das palavras em um documento
- Para usá-lo também precisamos definir um vocabulário

- Dados os documentos:
 - eu gostei do filme
 - eu não assisti o filme
- Temos o vocabulário: [eu, gostei, do, filme, não, assisti, o]

- Com isso, vamos criar uma matriz termo-documento onde cada linha representa uma palavra e cada coluna um documento
- Quando a palavra ocorrer em um documento, marcaremos a posição com 1

	Doc 1	Doc 2
eu	1	1
gostei	1	O
do	1	O
filme	1	1
não	O	1
assisti	O	1
0	0	1

- Documentos similares devem ter suas representações no BoW também similares
- Entretanto, o BoW não leva em consideração a ordem das palavras
 - Por isso o nome bag (as palavras ficam misturadas, como se colocadas num saco)

- Dados os documentos:
 - Ambiente bom, mas atendimento ruim e prato principal ruim
 - Prato principal bom e atendimento bom, mas ambiente ruim

- Note que os dois documentos são representados pelo mesmo vetor
 - Mas eles são diferentes!

	Doc 1	Doc 2
bom	1	1
ambiente	1	1
mas	1	1
atendimento	1	1
ruim	1	1
е	1	1
prato	1	1
principal	1	1

 Para contornar o problema anterior, podemos contar quantas vezes cada token aparece

- Os vetores agora são diferentes
- Podemos perceber que o documento
 1 é mais negativo que o documento 2

	Doc 1	Doc 2
bom	1	2
ambiente	1	1
mas	1	1
atendimento	1	1
ruim	2	1
e	1	1
prato	1	1
principal	1	1

 Mesmo contando a frequência, ainda temos problemas com textos diferentes, mas que contenham exatamente as mesmas palavras

- Dados os documentos:
 - o jogador acertou a bola
 - A bola acertou o jogador

	Doc 1	Doc 2
•	1	1
jogador	1	1
acertou	1	1
a	1	1
bola	1	1

Vamos ver um exemplo no Jupyter Notebook...

- No bag of words, os vetores criados tem valores altos para as dimensões de palavras que se repetem muito
- Retirar stopwords ameniza esse problema, mas podemos ir além

- Palavras muito frequentes tendem a aparecer em praticamente todos os documentos
- Assim, elas não ajudam a diferenciar os documentos
 - · Você não diferencia duas coisas através de suas características iguais

- Para resolver esse problema, podemos penalizar palavras que aparecem muito em todos os documentos analisados
- Essa abordagem é chamada de Term Frequency-Inverse Document Frequency (TF-IDF)

- O TF-IDF é calculado através do produto de dois fatores
- O primeiro é a frequência de uma palavra t em um documento d
 - Ou seja, contamos quantas vezes **t** aparece em **d**
 - $tf_{t,d} = cont(t,d)$
- Este fator representa a importância de um termo em um documento

- Dado o documento:
 - 1. A cada episódio, essa série me impressiona mais, me faz ficar cada vez mais apaixonado
- · Vamos calcular a frequência das palavras "me", "mais" e "série"
 - $tf_{me,1} = 2$
 - $tf_{mais,1} = 2$
 - $tf_{serie,1} = 1$
- Pela frequência, as palavras "me" e "mais" são mais importantes que "série"

- No segundo fator do TF-IDF, calculamos a frequência de documentos que contêm uma palavra \mathbf{t} (df_t)
 - Ou seja, contamos o número de documentos que t ocorre
- No conjunto de dados analisado, temos:
 - $df_{me} = 215$
 - $df_{mais} = 273$
 - $df_{serie} = 6$

- No TF-IDF queremos dar importância para as palavras que ajudam a diferenciar os documentos
 - Ou seja, palavras que não aparecem em muitos documentos
- Por isso, usamos o inverso da frequência de documentos

$$idf_t = \log \frac{N}{df_t}$$

- Onde N é o número de documentos
- Como em muitos casos temos uma grande quantidade de documentos, então usamos o log para reduzir o intervalo de variação dessa medida

No conjunto de dados analisado, temos:

$$idf_{me} = \log \frac{2787}{215} = 1,1127$$

$$idf_{mais} = \log \frac{2787}{273} = 1,009$$

$$idf_{serie} = \log \frac{2787}{6} = 2,667$$

• Percebam que quanto maior o número de documentos contendo uma palavra, menor é o valor do idf_t

Por fim, multiplicamos os dois termos para calcular o TF-IDF

•
$$tfidf_{me,1} = tf_{me,1} \times idf_{me} = 2 \times 1,1127 = 2,2254$$

•
$$tfidf_{mais,1} = tf_{mais,1} \times idf_{mais} = 2 \times 1,009 = 2,0179$$

•
$$tfidf_{serie,1} = tf_{serie,1} \times idf_{serie} = 1 \times 2,667 = 2,667$$

 Notem que mesmo a palavra "serie" aparecendo uma única vez no documento, ela obteve o maior valor de TF-IDF, pois ela é mais rara nos documentos do conjunto de dados

TF-IDF

Vamos ver um exemplo no Jupyter Notebook...

- Representando documentos como vetores, podemos interpretá-los como pontos em um espaço N dimensional
 - Onde N é o tamanho do vocabulário
 - Cada palavra representa uma dimensão

- Partindo da intuição de que documentos com muitas palavras em comum são documentos semelhantes
- Usando bag of words ou TF-IDF, vetores parecidos representam documentos parecidos
 - Os pontos que esses vetores representam estarão próximos no espaço

- Dados os documentos:
 - Ambiente bom, mas atendimento ruim e prato principal ruim
 - Prato principal bom e atendimento bom, mas ambiente ruim
- Cada documento pode ser representado como um ponto em um espaço de 8 dimensões
 - Não temos como visualizar 8 dimensões, então vamos utilizar apenas 2

	Doc 1	Doc 2
bom	1	2
ambiente	1	1
mas	1	1
atendimento	1	1
ruim	2	1
е	1	1
prato	1	1
principal	1	1

- No gráfico abaixo:
 - O eixo X é a dimensão da palavra "bom"
 - O eixo Y é a dimensão da palavra "ruim"

- Adicionando um novo documento:
 - Ambiente bom, mas atendimento ruim e prato principal ruim
 - Prato principal bom e atendimento bom, mas ambiente ruim
 - Prato principal ruim, atendimento ruim e ambiente ruim

	Doc 1	Doc 2	Doc 3
bom	1	2	O
ambiente	1	1	1
mas	1	1	O
atendimento	1	1	1
ruim	2	1	3
е	1	1	1
prato	1	1	1
principal	1	1	1

Temos o gráfico:

- Perceba que o documento 3 está mais próximo do documento 1
 - Ambos são mais negativos que o documento 2

- Conseguimos avaliar visualmente a similaridade entre os três documentos
- Nem sempre isso é possível
- Precisamos de uma medida mais precisa de similaridade entre vetores
- Para isso podemos usar o produto escalar entre vetores:

$$a \cdot b = a_x b_x + a_y b_y$$

$$a \cdot b = 2 \cdot 5 + 3 \cdot 2 = 16$$

- Valores de uma mesma dimensão dos documentos são multiplicados e depois os resultados são somados
- Lembrando que cada palavra representa uma dimensão de vetor
- Então, se dois documentos tiverem muitas palavras iguais, o produto escalar tende a ter um valor alto
- Por outro lado, se dois documentos tiverem muitas palavras diferentes, muitos termos do produto escalar serão iguais a zero, fazendo com que o resultado tenha um valor baixo

- Dados os dois vetores:
 - v = [1,1,1,1]
 - w = [1,1,1,0]
- Temos:
 - $v \cdot w = (1 \times 1) + (1 \times 1) + (1 \times 1) + (1 \times 0) = 3$

- Dados os dois vetores:
 - v = [1,1,1,1]
 - u = [1,0,0,0]
- Temos:
 - $v \cdot u = (1 \times 1) + (1 \times 0) + (1 \times 0) + (1 \times 0) = 1$

• Com isso concluímos que v se assemelha mais a w do que a u.

- Dados os dois vetores: v = [1,1,1,1] e w = [1,1,1,1]
- Temos: $v \cdot w = (1 \times 1) + (1 \times 1) + (1 \times 1) + (1 \times 1) = 4$

- Dados os dois vetores: m = [2,2,2,2] e n = [2,2,2,2]
- Temos: $m \cdot n = (2 \times 2) + (2 \times 2) + (2 \times 2) + (2 \times 2) + (2 \times 2) = 16$

• Os vetores **m** e **n** são mais semelhantes entre eles que **v** e **w**? Isso não faz muito sentido.

- O produto escalar favorece vetores longos
 - Ou seja, vetores que tem valores maiores em suas dimensões
- Documentos longos podem aparecer como mais similares simplesmente por possuírem mais palavras
- O comprimento de um vetor **v** é calculado assim: $|v| = \sqrt{\sum_{i=1}^{n} v_i^2}$
- Onde v_i é o valor da dimensão i

 Para calcular a similaridade independentemente do comprimento do vetor, vamos dividir o produto escalar pelo produto do comprimento dos vetores

$$similaridade(v, w) = \frac{v \cdot w}{|v| |w|}$$

• Esse valor é o mesmo do cosseno do ângulo entre os vetores

$$similaridade(v, w) = cos(v, w) = \frac{v \cdot w}{|v||w|}$$

 O scikit-learn implementa uma função para calcular a similaridade de cosseno:

```
from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity(vec1, vec2)
```

- Cada parâmetro é uma lista de vetores
- A função vai calcular a similaridade de cada vetor do primeiro parâmetro para cada vetor do segundo parâmetro

Exemplo

• Usando um dataset de reviews, vamos criar um programa que encontra os reviews mais parecidos, dado um review de entrada

- Até agora representamos palavras como vetores esparsos
 - Vetores longos com uma dimensão por palavra
 - Com um vocabulário grande, o vetor costuma ter muitos zeros
- Embeddings s\(\tilde{a}\)o vetores densos
 - Eles têm um número de dimensões bem menor que o número de palavras de um vocabulário
 - Cada dimensão não tem uma interpretação clara

- Na prática, os vetores densos funcionam melhor em aplicações de PLN
- Alguns motivos:
 - Trabalhamos com menos dimensões
 - Palavras similares tendem a ser vetores similares

- O word2vec é um dos métodos mais conhecidos de embedding
 - Ele está disponível para uso livremente
- Os embeddings do word2vec são estáticos
 - Ou seja, temos uma representação fixa para cada palavra de um vocabulário
 - Com isso, podemos reutilizar embeddings criados por terceiros

- A ideia do word2vec é usar as palavras próximas a uma palavra w para representar w
- Entretanto, ao invés de contar a frequência das palavras, usamos um classificador para prever a probabilidade de uma determinada palavra aparecer próxima a w
- O word2vec não usa o resultado da classificação, ele usa os pesos aprendidos pelo classificador

- Uma das revoluções do word2vec é que você pode usar um texto sem qualquer marcação extra para treinar esse classificador
- Para saber se uma palavra costuma aparecer ou não próxima de outra palavra, basta olhar o texto
- Por exemplo, "azul" costuma aparecer perto da palavra "Terra"? Basta analisarmos um conjunto grande de textos para saber se isso é verdade ou não.
- Por outro lado, "amarelo" costuma aparecer perto da palavra "Terra"?
 Provavelmente não tanto quanto "azul"

- Dado o texto
 - ... limão, uma colher de geléia de damasco, uma xícara ...
- Vamos utilizar uma janela de 2 palavras de contexto
- Nossa palavra alvo é "geléia"
 - ... limão, uma [colher de **geléia** de damasco], uma xícara ...

• ... limão, uma [colher de **geléia** de damasco], uma xícara ...

X	Y
geléia	colher
geléia	de
geléia	damasco

 O objetivo do treinamento do classificador é, dada a entrada X, encontrar uma saída o mais similar possível a Y

A similaridade entre dois vetores pode ser calculada usando o produto escalar

• O processo de treinamento de aprendizagem de máquina é utilizado para ajustar os pesos do classificador para ir em direção ao objetivo

- Classificar as palavras vizinhas dada uma palavra alvo é chamado de modelo skip gram
- Classificar a palavra alvo dadas as palavras vizinhas é chamado de modelo CBOW (continuous bag of words)

CBOW

Skip-gram

- O site do NILC traz embeddings em português para download:
 - http://www.nilc.icmc.usp.br/embeddings
- Outros embeddings podem ser encontrados livremente na Internet:
 - http://vectors.nlpl.eu/repository/

Vamos utilizar embeddings com Python