Тема 3.

Линейна зависимост и линейна независимост на система от вектори. Пораждащи системи от вектори. Бази и размерност на векторно пространство

1. Линейна зависимост и независимост на система от вектори

Нека V е векторно пространство, $\{v_1,v_2,...,v_k\}$ е произволна система от вектори на V, а $\lambda_1,\lambda_2,...,\lambda_k\in\mathbb{R}$. Вектор u от вида

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k$$

се нарича *линейна комбинация* на векторите $v_1, v_2, ..., v_k$.

Линейна комбинация се нарича *тривиална*, ако всички коефициенти в тази комбинация са равни на нула. В такъв случай комбинацията е равна на нулевия вектор на пространството

$$u = 0v_1 + 0v_2 + \dots + 0v_k = 0.$$

Множеството от всички линейни комбинации на $\{v_1, v_2, ..., v_k\}$, т.е.

 $\mathrm{span}\{v_1,v_2,...,v_k\}=\{\lambda_1v_1+\lambda_2v_2+...+\lambda_kv_k\,|\,\lambda_1,\lambda_2,...,\lambda_k\in\mathbb{R}\}$ е векторно пространство и още по-точно, векторно подпространство на V, което се означава със $\mathrm{span}\{v_1,v_2,...,v_k\}$ и се нарича **линейна обвивка** на $\{v_1,v_2,...,v_k\}$.

Определение 3.1. Система от вектори $\{a_1, a_2, ..., a_k\}$ се нарича **линейно зависима**, ако съществуват числа $\lambda_1, \lambda_2, ..., \lambda_k$, поне едно от които е различно от нула, така че да е в сила равенството

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k = 0.$$

С други думи, една система от вектори на дадено векторно пространство е линейно зависима, ако нулевият вектор на това пространство може да се представи като тяхна нетривиална линейна комбинация.

Векторите на линейно зависима система се наричат **линейно за- висими вектори**.

Пример 3.1. Нека разгледаме векторното пространство $\mathbb{R}^3=\{(x,y,z)\mid x,y,z\in\mathbb{R}\}.$ Системата от вектори $a_1(1,1,-1),$ $a_2(0,1,1),$ $a_3(1,2,0)$ е линейно зависима, тъй като

$$a_1 + a_2 - a_3 = o = (0, 0, 0).$$

Забелязваме, че поне един от векторите a_1 , a_2 и a_3 (в този случай и трите вектора) може да се представи като линейна комбинация на останалите два:

$$a_1 = a_3 - a_2, \qquad a_2 = a_3 - a_1, \qquad a_3 = a_1 + a_2.$$

Както ще видим по-нататък, това е една важна характеристика на векторите, принадлежащи на линейно зависима система.

Пример 3.2. Още един пример за линейно зависима система от вектори на \mathbb{R}^3 е следната: $u=(1,-1,2),\ v=(3,0,-1),\ w=(9,-3,4),$ за които е в сила

$$3u + 2v - w = o,$$

а също и равенствата

$$w = 3u + 2v,$$
 $v = \frac{1}{2}w - \frac{3}{2}u,$ $u = \frac{1}{3}w - \frac{2}{3}v.$

Пример 3.3. Векторите a=(1,2,-3) и b=(-2,-4,6) също са линейно зависими, тъй като b=-2a.

Пример 3.4. Линейно зависими са и векторите (насочените отсечки) \overrightarrow{AB} , \overrightarrow{AD} и \overrightarrow{AC} в успоредника \overrightarrow{ABCD} , защото както знаем $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$.

Също в успоредника \overrightarrow{ABCD} линейно зависими са \overrightarrow{AB} и \overrightarrow{CD} , защото $\overrightarrow{AB}=-\overrightarrow{CD}$.

Определение 3.2. Система от вектори $\{a_1, a_2, ..., a_k\}$ се нарича *линейно независима*, ако само тяхната тривиална линейна комбинация е равна на нулевия вектор, т. е. равенството

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k = 0.$$

е изпълнено, точно когато $\lambda_1 = \lambda_2 = ... = \lambda_k = 0$. Векторите на линейно независима система се наричат **линейно независими вектори**.

Пример 3.5. Системата от вектори $b_1(1,0,1)$, $b_2(2,1,-1)$, принадлежащи на \mathbb{R}^3 , е линейно независима.

За да проверим това, съставяме произволна линейна комбинация на тези вектори

$$xb_1 + yb_2 = x(1,0,1) + y(2,1,-1) = (x+2y, y, x-y), \qquad x, y \in \mathbb{R}$$

и я приравняваме на нулевия вектор на разглежданото векторно пространство:

$$(x + 2y, y, x - y) = (0, 0, 0).$$

Като сравним покомпонентно векторите от двете страни на горното равенство, установяваме, че то е еквивалентно на системата

$$\begin{vmatrix} x + 2y = 0 \\ y = 0 \\ x - y = 0, \end{vmatrix}$$

откъдето получаваме x=y=0. Следователно векторите b_1 и b_2 са линейно независими.

Пример 3.6. Нека разгледаме матриците

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},$$

принадлежащи на векторното пространство $M_{2\times 2}(\mathbb{R})$. Нека x, y, z са произволни реални числа. За да установим дали системата $\{A, B, C\}$ е линейно зависима или независима, разглеждаме линейната комбинация xA + yB + zC и я приравняваме на нулевия вектор на $M_{2\times 2}(\mathbb{R})$, т.е. нулевата квадратна матрица от втори ред. Имаме следнто матрично равенство (уравнение относно коефициентите x, y и z)

$$x\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + y\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} + z\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

След сравняване на съответните компоненти на матриците от двете страни на последното равенство достигаме до системата

$$\begin{vmatrix} x = 0 \\ 2x + y + z = 0 \\ 2y + z = 0 \\ x + z = 0. \end{vmatrix}$$

Единственото решение на горната система е нулевото, т.е. x=y=z=0. Следователно само нулевата линейна комбинация на матриците $A,\ B$ и C е равна на нулевата матрица, т.е. тези матрици на линейно независими.

Никоя от матриците A, B или C не може да се представи като линейна комбинация на останалите две. Същото важи и за линейно независимите вектори от Пример 3.5.

Както ще видим по-късно, това е в сила за векторите на всяка линейно независима система. В тази лекция проверката за линейна зависимост или независимост на вектори правим, използвайки само определенията от теорията. По-нататък тази проверка ще правим чрез понятието ранг на матрица и/или апарата на детерминантите, което значително облекчава техническата част на задачата.

Теорема 3.1. Система от един вектор е линейно зависима, точно когато този вектор е нулевият. Система от поне два вектора е линейно зависима, точно когато поне един от тези вектори е линейна комбинация на останалите.

Доказателство. Нека V е векторно пространство и $a \in V$, $\lambda \in \mathbb{R}$. Разглеждаме произволна линейна комбинация на a, т. е. вектора λa и я приравняваме на нулевия вектор: $\lambda a = o$. Съгласно определението за линейна зависимост векторът a е линейно зависим, точно когато $\lambda \neq 0$. От друга страна, от Следствие 1.5. знаем, че равенството $\lambda a = o$ е изпълнено, точно когато $\lambda = 0$ или a = o. Тъй като вече изключихме възможността $\lambda = 0$, остава само втората възможност, която е a = o. Така установихме и че система от един вектор е линейно независима, точно когато този вектор е различен от нулевия.

За да докажем втората част на твърдението, нека $\{a_1, a_2, ..., a_k\}$, k>1, е система вектори на V и $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$. Първо предполагаме, че тази система и линейно зависима и следователно равенството

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_i a_i + \dots + \lambda_k a_k = 0,$$

е изпълнено, като поне един от коефициентите е различен от нула. Нека този коефициент е $\lambda_i \neq 0, 1 \leq i \leq k$. Тогава можем да разделим двете страни на горното равенство на λ_i и от полученото равенство можем да изразим вектора a_i по следния начин

$$a_i = -\frac{\lambda_1}{\lambda_i} a_1 - \frac{\lambda_2}{\lambda_i} a_2 - \dots - \frac{\lambda_k}{\lambda_i} a_k.$$

Обратно, ако предположим, че един от векторите от разглежданата система се изразява чрез останалите, например $a_1 = \mu_2 a_2 + \dots + \mu_k a_k$, то получаваме: $(-1)a_1 + \mu_2 a_2 + \dots + \mu_k a_k = o$.

Теорема 3.2. Ако системата от вектори $\{v_1, v_2, ..., v_k\}$ е линейно независима, а системата $\{u, v_1, v_2, ..., v_k\}$ е линейно зависима, то векторът и се представя еднозначно като линейна комбинация на $v_1, v_2, ..., v_k$.

Доказателство. Нека векторът u се изразява по два начина чрез линейно независимата система от вектори $\{v_1, v_2, ..., v_k\}$:

$$u = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$
$$u = d_1 v_1 + d_2 v_2 + \dots + d_k v_k.$$

Чрез почленно изваждане на двете равенства получаваме

$$o = (c_1 - d_1)v_1 + (c_2 - d_2)v_2 + \dots + (c_k - d_k)v_k.$$

Тъй като векторите $\{v_1, v_2, ..., v_k\}$ са линейно независими, то горното равенство може да бъде изпълнено само в случай, че всички коефициенти в него са равни на нула, т.е.

$$c_1 - d_1 = c_2 - d_2 = \dots = c_k - d_k = 0.$$

Следователно

$$c_1 = d_1, \quad c_2 = d_2, ..., c_k = d_k,$$

откъдето следва, че двете линейни изразявания на u чрез векторите $\{v_1, v_2, ..., v_k\}$ трябва да съвпадат, с което твърдението е доказано.

Теорема 3.3. Всяка система от вектори, която съдържа линейно зависима подсистема, е линейно зависима. Всяка линейно независима система съдържа само линейно независими подсистеми.

Следствие 3.1. *Нулевият вектор не може да участва в линей*но независима система.

Това твърдение означава, че система от вектори, която съдържа нулевия вектор, е линейно зависима.

Доказателство. Нека е дадена системата от вектори $\{v_1, v_2, ..., v_k, o\}$. Тъй като

$$o = 0v_1 + 0v_2 + \dots + 0v_k,$$

то поне един вектор от тази система се изразява като линейна комбинация на останалите. Съгласно Теорема 3.1 това гарантира, че системата от вектори е линейно зависима.

2. Линейна зависимост в геометричното векторно пространство

Съгласно Теорема 3.1. един свободен вектор е линейно зависим, точно когато той е нулевият вектор.

Теорема 3.4. Два свободни вектора са линейно зависими, точно когато са колинеарни.

Доказателство. Ако някой от векторите е нулевият, то твърдението е вярно.

Нека \vec{a} и \vec{b} са два ненулеви свободни вектора. Ако a и b са линейно зависими, то съгласно Теорема 3.1 единият от тях се изразява линейно чрез другия, т. е. еднозначно е определено число λ така, че

$$\vec{b} = \lambda \vec{a}$$
.

Следователно, съгласно определението за умножение на свободен вектор с число, векторите \vec{a} и \vec{b} са колинеарни.

Обратно, нека \vec{a} и \vec{b} са колинеарни. Ако \vec{a} и \vec{b} са еднопосочно колинеарни, то за $\lambda = \frac{|\vec{b}|}{|\vec{a}|}$, в сила е $\vec{b} = \lambda \vec{a}$. Ако \vec{a} и \vec{b} са разнопосочно колинеарни, то $\vec{b} = \lambda \vec{a}$ е изпълнено за $\lambda = -\frac{|\vec{b}|}{|\vec{a}|}$. Така и в двата случая следва, че свободните вектори \vec{a} и \vec{b} са линейно зависими.

Пример 3.7. Всички вектори, които са колинеарни с дадена права, са линейно зависими помежду си.

Пример 3.8. В успоредника OACB векторите \overrightarrow{OA} и \overrightarrow{OB} са линейно независими, тъй като очевидно не са колинеарни (ъгълът между тях е винаги различен от 0° и 180°).

Докато векторите \overrightarrow{OA} и \overrightarrow{BC} , както и \overrightarrow{OB} и \overrightarrow{AC} са линейно зависими, тъй като $\overrightarrow{OA} = \overrightarrow{BC}$, $\overrightarrow{OB} = \overrightarrow{AC}$.

Системата от вектори $\{\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\}$ е линейно зависима, тъй като

$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}.$$

Теорема 3.5. Три свободни вектора са линейно зависими, точно когато са компланарни.

Пример 3.9. Нека разгледаме паралелепипеда $ABCDA_1B_1C_1D_1$. Векторите \overrightarrow{AB} , \overrightarrow{AD} и $\overrightarrow{AA_1}$ не лежат в една равнина (не са компланарни) и следователно са линейно независими. Векторите \overrightarrow{AB} , \overrightarrow{AD} и $\overrightarrow{A_1C_1}$ са компланарни и следователно - линейно зависими.

Фиг. 3.3

Теорема 3.6. Всеки четири свободни вектора са линейно зависими.

Горното твърдение показва, че максималният брой линейно независими вектора в геометричното векторно пространство е три. Този факт а важен, тъй като по-нататък ще ни даде възможност да определим размерноства на това пространство.

3. Пораждащи системи от вектори

Определение 3.3. Системата от вектори $\{a_1, a_2, ..., a_k\}$ на V се нарича nopa> се да за V, ако всеки вектор на V се изразява като линейна комбинация на $a_1, a_2, ..., a_k$, т.е. $V = \text{span}\{a_1, ..., a_k\}$. Казва се още, че тази система поражда V, а V е породено от нея.

Векторите на една пораждаща система могат да бъдат както линейно независими, така и линейно зависими.

Пример 3.10. Нека разгледаме векторите

 $e_1=(1,0)$ и $e_2=(0,1)$ от векторното пространство \mathbb{R}^2 . Тъй като всеки вектор $v=(x,y)\in\mathbb{R}^2$ може да се представи във вида

$$v = xe_1 + ye_2 = x(1,0) + y(0,1) = (x,y),$$

то системата $\{e_1, e_2\}$ е пораждаща за \mathbb{R}^2 . Вижда се, че всеки вектор от \mathbb{R}^2 се представя по единствен начин като линейна комбинация на $\{e_1, e_2\}$.

Пример 3.11. Нека разгледаме друга система от вектори на \mathbb{R}^2 , състояща се от $u_1=(1,1),\,u_2=(1,-1),\,u_3=(2,0).$ Нека v=(a,b) е произволен вектор на \mathbb{R}^2 . Тъсим представяне от вида

$$v = xu_1 + yu_2 + zu_3 = x(1,1) + y(1,-1) + z(2,0),$$

където $x,y,z\in\mathbb{R}$. Горното равенство е еквивалентно на

$$(a,b) = (x + y + 2z, x - y),$$

откъдето след приравняване на двете компоненти, достигаме до системата линейни уравнения за x,y,z:

$$\begin{vmatrix} x + y + 2z = a \\ x - y = b. \end{vmatrix}$$

Последната система има безброй много решения за x,y,z

$$x = \frac{a+b-2z}{2}$$
, $y = \frac{a-b-2z}{2}$, $z \in \mathbb{R}$.

Следователно всеки вектор $v \in \mathbb{R}^2$ може да се представи като линейна комбинация на системата от вектори $\{u_1, u_2, u_3\}$, откъ-

дето достигаме до извода, че $\{u_1, u_2, u_3\}$ е пораждаща за \mathbb{R}^2 , но представянето не е единствено (всеки вектор от \mathbb{R}^2 може да се представи по безброй много начини като линейна комбинация на $\{u_1, u_2, u_3\}$).

Съществената разлика между двете пораждащи системи на \mathbb{R}^2 , които разгледахме, е следната.

Чрез векторите $\{e_1, e_2\}$ всеки вектор се представя по единствен начин, докато чрез $\{u_1, u_2, u_3\}$ всеки вектор се представя по безброй много начини. Това се дължи на факта, че системата $\{e_1, e_2\}$ е линейно независима $\{e_1 \ u \ e_2 \ he$ се изразяват един чрез друг), докато системата $\{u_1, u_2, u_3\}$ е линейно зависива $\{u_3 = u_1 + u_2\}$.

Определение 3.4. Векторно пространство V се нарича $\kappa pa \Breve{u}$ но-мерно, ако притежава пораждаща система от краен брой вектори. В противен случай си се нарича $\delta e \Breve{s} \kappa pa \Breve{u}$ номерно.

За всяко подпространство на крайномерно векторно пространство може да се намери крайна пораждаща система.

4. База и размерност на векторно пространство

Определение 3.5. Всяка наредена система от вектори, която е линейно независима и пораждаща за ненулево векторно пространство, се нарича *база* (*базис*) на това пространство. Векторите, които образуват база, се наричат *базисни*.

Векторното пространство $V = \{o\}$ не притежава база, тъй като всички негови вектори, а именно векторът o, са линейно зависими.

Пример 3.12. Да разгледаме отново векторното пространство \mathbb{R}^2 и системата от вектори $\{e_1,e_2\}$, където $e_1=(1,0), e_2=(0,1)$. За тази система от вектори вече установихме, че е пораждаща за \mathbb{R}^2 и е линейно независима. Следователно $\{e_1,e_2\}$ е една база на \mathbb{R}^2 .

Всяка векторно пространство има безброй много бази. Така например $\{u_1=(1,1),u_2=(1,-1)\}$ също е база \mathbb{R}^2 .

Теорема 3.7. Всяко ненулево крайномерно векторно пространство притежава база.

Доказателство. Нека $V \neq \{o\}$ е крайномерно векторно пространство. Следователно V притежава пораждаща система, състояща се от краен брой вектори. Нека $\{a_1, a_2, ..., a_k\}$ е такава система. Тогава всеки вектор $x \in V$ има представяне

$$x = \lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k. \tag{3.1}$$

Освен това поне един от векторите на пораждащата система е ненулев. След евентуално преномериране можем да считаме, че $a_1 \neq o$. Тогава системата $L_1 = \{a_1\}$ е линейно независима. Ако тя е и пораждаща, то L_1 е база на V и твърдението е доказано.

Нека L_1 не е пораждаща. Тогава съществува вектор $a \in \{a_2, a_3, ..., a_k\}$, за който системата $L_2 = \{a_1, a\}$ е линейно независима. Това е вярно, защото в противен случай всеки вектор от $\{a_2, a_3, ..., a_k\}$ би се изразявал линейно чрез a_1 $(a_2 = \mu_2 a_1, ...,$

 $a_k = \mu_k a_1$) и тогава за произволен $x \in V$ от (3.1) ще следва

$$x = \lambda_1 a_1 + (\lambda_2 \mu_2) a_1 + \dots + (\lambda_k \mu_k) a_1 = (\lambda_1 + \lambda_2 \mu_2 + \dots + \lambda_k \mu_k) a_1.$$

Тогава системата L_1 ще бъде пораждаща, което е противоречие. След евентуално преномериране в системата $\{a_2, a_3, ..., a_k\}$ можем да считаме, че $a=a_2$. Ако линейно независимата система L_2 е и пораждаща, то твърдението е доказано.

Нека L_2 не е пораждаща. Повтаряйки горните разсъждения, установяваме съществуването на вектор $b \in \{a_3, a_4, ..., a_k\}$, за който системата $L_3 = \{a_1, a_2, a_3\}$ е линейно независима. Ако тя е и пораждаща, твърдението е доказано. В противен случай горният процес продължава по същия начин до получаването на линейно независима система L_p , $1 \le p \le k$, която е пораждаща. Тъй като първоначалната пораждаща система $\{a_1, a_2, ..., a_k\}$ е крайна, то описаният процес също е краен – евентуално може да приключи за $L_k = \{a_1, a_2, ..., a_k\}$. Следователно получената система L_k е база на V.

Следствие 3.2. От всяка пораждаща система от вектори на ненулево крайномерно векторно пространство може да се извлече база на това пространство.

Теорема 3.8. Всяка линейно независима система от вектори на крайномерно векторно пространство може да се допълни до база на пространството.

Теорема 3.9. Всички бази на крайномерно векторно пространство се състоят от равен брой вектори.

Определение 3.6. Pазмерност на ненулево крайномерно векторно пространство се нарича броят на векторите в произволна негова база. За размерност на нулевото пространство $\{o\}$ се приема числото 0.

Ако векторното пространство V има размерност n, записваме $\dim V = n$.

Теорема 3.10. За *п-мерно* векторно пространство са в сила следните твърдения:

- 1) всяка линейно независима система има най-много п вектора;
- **2**) всяка пораждаща пространството система има най-малко п вектора;
- 3) всяка линейно независима система от п вектора е база;
- **4)** всяка пораждаща пространството система от п вектора е база;
- 5) всяка система от n+1 вектора е линейно зависима.

Пример 3.12. Нека определим размерността на векторните пространства, разгледани в Тема.1, като посочим по една база на всяко от тях.

Една база на \mathbb{R}^n се състои от наредените n-торки:

$$a_1 = (1, 0, 0, ..., 0),$$
 $a_2 = (0, 1, 0..., 0),$ $a_3 = (0, 0, 1, ..., 0), ...,$ $a_n = (0, 0, 0, ..., 1).$

Следователно $\dim \mathbb{R}^n = n$. В частност, $\dim \mathbb{R} = 1$, $\dim \mathbb{R}^2 = 2$.

Размерността на геометричното векторно пространство е три, тъй като това е максималният брой линейно независими вектори в това пространство.

Размерността на векторното пространство от всички свободни вектори, колинеарни с дадена права, е равна на 1.

Размерността на векторното пространство от всички свободни вектори, компланарни с дадена равнина, е равна на 2.

Една база на $\mathbb{R}_n[x]$ се състои от полиномите $1, x, x^2, ..., x^n$. Тогава $\dim \mathbb{R}_n[x] = n + 1$.

Една база на $M_{m \times n}(\mathbb{R})$ се състои от матриците:

$$E_{1} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad E_{2} = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 \end{pmatrix}, \dots,$$

$$E_{mn} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$(3.2)$$

Следователно $\dim M_{m \times n}(\mathbb{R}) = mn$.

Посочените в този пример бази се наричат естествени (канонични).

Нека V е n-мерно векторно пространство над \mathbb{K} с база $e=\{e_1,e_2,...,e_n\}$. Тогава, съгласно Теорема 3.2, за произволен вектор $v\in V$ системата $\{x,e_1,e_2,...,e_n\}$ е линейно зависима. Следователно представянето (разлагането) на v относно базисните вектори

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n (3.3)$$

е еднозначно, $x_1, x_2, ..., x_n \in \mathbb{K}$.

Определение 3.7. Числата от наредената n-торка $(x_1, x_2, ..., x_n)$, определена от (3.3), се наричат $\kappa oopdu$ наmu на вектора v относно базата $e = \{e_1, e_2, ..., e_n\}$.

Често вместо равенството (3.3) записваме $v(x_1, x_2, ..., x_n)$.

Нека $w(y_1,y_2,...,y_n)$ относно базата e, т. е. $w=y_1e_1+y_2e_2+...+y_ne_n.$ Тогава

$$v + w = (x_1 + y_1)e_1 + (x_2 + y_2)e_2 + \dots + (x_n + y_n)e_n,$$

$$\lambda v = (\lambda x_1)e_1 + (\lambda x_2)e_2 + \dots + (\lambda x_n)e_n,$$

което показва, че $(v+w)\,(x_1+y_1,x_2+y_2,...,x_n+y_n)$ и $\lambda v(\lambda x_1,\lambda x_2,...,\lambda x_n).$

Координатите на полинома $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ относно базата $\{1, x, x^2, ..., x^n\}$ на $\mathbb{R}_n[x]$ са коефициентите a_i пред съответните степени на x. Тогава можем да запишем $f(x)(a_0, a_1, a_2, ..., a_n)$.

Координатите на всяка матрица $A=(a_{ij})\in M_{m\times n}(\mathbb{R})$ относно каноничната база на $M_{m\times n}(\mathbb{R})$, определена от (3.2), са съответните елементи a_{ij} на тази матрица.

Пример 3.12. Докажете, че първите четири от полиномите на Ермит: $h_0(x) = 1$, $h_1(x) = 2x$, $h_2(x) = 4x^2 - 2$, $h_3(x) = 8x^3 - 12x$ образуват база на $\mathbb{R}_3[x]$ и намерете координатите на $p(x) = 12x^3 - 8x^2 - 12x - 7$ относно тази база.

Литература

- **1.** Д. Мекеров, Н. Начев, Ст. Миховски, Е. Павлов, Линейна ал-гебра и аналитична геометрия, Пловдив, 1997.
- 2. D. C. Lay, S. R. Lay, Judi J. McDonald, *Linear algebra and its applications*, 5th ed. Pearson, 2016.
- **3.** G. Strang, *Linear algebra and its applications*, 4th ed., Nelson Engineering, 2007, ISBN-13: 978-813-150-172-6.
- 4. H. Anton, C. Rorres, Elementary Linear Angebra (applications version), 11th ed., Wiley, 2014, ISBN 978-1-118-43441-3.
- 5. S. Axler, Linear Algebra Done Right, 3rd ed., Springer, 2015.
- **6.** K. Singh, *Linear Algebra Step by Step*, Oxford University Press, 2014.
- **7.** C. D. Meyer, *Matrix Analysis and Applied Linear Algebra*, SIAM, 2000.

8. S. J. Leon, Linear Algebra with Applications, 9th ed., Pearson, 2015.