-> Up Sampling = Adding more samples No. of Quantization . L = 2n levels = Interpolation (R>1) Step size $\Delta = \chi_{max} - \chi_{min}$ -> Down Sampling = Discoording samples Index conversementing $\left(\frac{\kappa - \kappa_{min}}{\Delta}\right)$ = Decimation (R<1) R[n] is a periodic sequence of its Period is $N = \frac{2\pi K}{\omega_0}$, $N_{min} = \frac{2\pi}{\omega_0}$ Sumantization $x_q = x_{min} + i \Delta$. If xa[n] and xb[n] are two Length (duoiation) $N = N_2 - N_1 + 1$ Periodic sequences with fundamen- $\rightarrow A$ sught sided sequence x[n] = 0 for $n < N_1$ If $N_1 \ge 0$, a RSS is called eausal sequence tal ported Na 4 Nb, then the sequence y[n]=xa + xb will have fundamental period. -> A left sided sequence x[n]= 0 forn>N2 N= NaNb If N₂ < 0, a LSS is called an anti-causal sequence. GCD(Na, Nb) > If x[n] = xne[n] + xim[n] & pouldic then xne[n] + xim[n] are periodic. Norm: - Strongth of discrete signal $L_{p}: \|\mathbf{x}\|_{p} = \left(\sum_{n=-\infty}^{\infty} |\mathbf{x}[n]|^{p}\right)^{p}$ $\rightarrow P = 1 \implies \left(\sum_{n=-\infty}^{\infty} |\pi[n] \right) \xrightarrow{\text{Mean absolute}} N = LCM \left(\text{None, Nim} \right)$ $\stackrel{\text{None of Nim above foundame}}{\text{vallere}} N_{\text{pre}} \notin N_{\text{im}} \text{ above foundame}$ Nove & Nim abre foundamental Mean absolute evalue of length-N sequence 11211,/N y[n] = a x[n]=> (= |x [n]|2)/2 Root mean squared value. tve, a>1, amplification a>-ve, a<01, attenuation y[n]= x[n-no] ||x||2/IN: RMS value of length-N sequence no >+ve, no>1, delay $\rightarrow \rho = \infty = \left(\frac{\infty}{N=-\infty} | 2 EnJ |^{\infty}\right)^{1/2} = 1$ Peak absolute value. $n_0 \rightarrow -ve$, $m_0 < 1$, advance. $||\chi||_{\infty} = |\chi|_{\text{max}}$ $|\chi|_{\infty} = |\chi|_{\text{max}}$ Relative = $\left[\frac{\sum_{n=0}^{N-1} |y[n] - \chi[n]|^2}{\sum_{n=0}^{N-1} |\chi[n]|^2}\right]^{\frac{N}{2}}$ $\sum_{n=0}^{N-1} |x[n]|^2$ R= Fs' Fs

Convolution
$$y[n] = \sum_{\kappa=-\infty}^{\infty} x[\kappa] h[\mathbf{n}-\kappa] \\
= \sum_{\kappa=-\infty}^{\infty} x[n-\kappa] h[\kappa] \\
= \kappa[n] * h[n], -\infty = n < \infty$$
Unit state

$$x[n] = x[n] + \mathbf{x} * [-n] = x^* [-n] \\
x[n] = x[n] + \mathbf{x} * [-n] = x^* [-n] \\
x[n] = x[n] - x^* [-n] = x^* [-n] \\
x[n] = x^*$$

 $E_{x} = \sum_{n=-\infty}^{\infty} |n[n]|^{2}$ *If amplitude of x[n] does not $\rightarrow 0$ when $n \rightarrow \infty$, need to measure thme average of energy £.e. power P_{x} because $E_{x} = \infty$ $P_{x} = \lim_{N \rightarrow \infty} \frac{1}{2N_{0}+1} \sum_{m=-N_{0}}^{N_{0}} |x[n]|^{2}$ $= \lim_{N \rightarrow \infty} \frac{1}{N_{0}+1} \sum_{n=-N_{0}}^{N_{0}-1} |x[n]|^{2}$ $= \lim_{N \rightarrow \infty} \frac{1}{N_{0}} \sum_{n=0}^{N_{0}-1} |x[n]|^{2}$ * P_{x} is the time average of signal amplitude squared i.e. RMs

value of x(t) is √Rx

→ A DT signal can be either energy
or power signal bout can't be both
at the same time.

 $\Re[n] = \Re[n] + \Re[n] = \Re[n] + \Re[n] + \Re[n] = \Re[n] + \Re[n] = \Re[n] =$

Discrete Fime Impulse $\Rightarrow \chi [n] = \sum_{\kappa=0}^{\infty} \chi[\kappa] \delta[n-\kappa]$ $\Rightarrow Unit Step sequence \Rightarrow U[n] = \sum_{\kappa=-\infty}^{\infty} U[\kappa] \delta[n-\kappa]$ $U[n] \qquad + \bigoplus_{\kappa=-\infty}^{\infty} \delta[n]$ $U[n] \qquad + \bigoplus_{\kappa=-\infty}^{\infty} \delta[n]$

on past of present inputs only. $S[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$ $U[n] = \begin{cases} 1, n \geq 0 \\ 0, n < 0 \end{cases}$ S[n] = u[n] - u[n-1]

) v[n]=8[n]+8[n-1]+...

$$e^{ST} = Z. \qquad Z^{n} = e^{STn}$$

$$S = \sigma + \int \omega.$$

$$Z = e^{ST} = e^{(\sigma + \int \omega)T} = e^{\sigma T}e^{\int \omega T}$$

$$|Z| = |e^{\sigma T}|e^{\int \omega T}| = |e^{\sigma T}| \qquad |e^{\int \omega T}| = |e^{\sigma T}|$$

$$|Z| = |e^{\sigma T}|e^{\int \omega T}| = |e^{\sigma T}| \qquad |e^{\int \omega T}| = |e^{\sigma T}|$$

$$|Z| = |e^{\sigma T}|e^{\int \omega T}| = |e^{\sigma T}| \qquad |e^{\int \omega T}| = |e^{\sigma T}|$$

$$|Z| = |e^{\sigma T}|e^{\int \omega T}| = |e^{\sigma T}| \qquad |e^{\int \omega T}| = |e$$

→ If A & a are real, won+ \$=0

1x [n] = lAleon

L>Non-recursive (without) FIR.

Non-recevisive system NOTE: FIR System Hyn[l]=Ey[n]n[n-l] h [n] -> finite length $h[n] = 0, n < N_1$ le = Ey[m+l]n[m] >y[n] q [l] = May [-l] y[n]= x[n]*h[n] Auto Connelation FIR Folten $= \sum_{k=N_1}^{N_2} \alpha[k] n[n-k]$ Muse [l] = En[n] [n-l] = Mac [-l] $\mathcal{A}_{nn}[0] = \sum_{n=-\infty}^{\infty} n^2[n]$ IIR System Recursive system h [n] -> Infinite length, Causal IIR $\sqrt{z^{-1}}$ $\frac{1}{4} \frac{1}{4} \left[\frac{1}{1} \right] = \sum_{k=0}^{n} \frac{1}{2} \frac{1}{k} \left[\frac{1}{1} - \frac{1}{k} \right]$ 1 9 my[n] = 2 [n] *y $= \sum_{\kappa=0}^{\infty} n[\kappa] x[n-\kappa]$ -> |May |2 = Man Myy I limits are due to Causality of LTI system. -> |Mny = Mnn Myy Covulation Coefficient A fluto-Reguessive is IIR system $y[n] = x[n] - \sum_{k=0}^{N} d_k y[n-k]$ Acto-Reguessive Moving Average 0 < Pry <! y[n] = \(\sum_{K=0} \) \(\text{Pn n[n-K]} - \(\sum_{K=0} \) \(\text{Vn-K]} \) uncoviulated Cross Corvillation Converlation => $91_{\text{ny}}[n] = \sum_{\kappa=-\infty}^{\infty} \kappa [\kappa] y [\kappa-n]$ $\mathcal{L}_{ny}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l]$ Convolution => \times [n]*y[n] = $\sum_{\kappa=-\infty}^{\infty} \times [\kappa] y$ [n- κ] lag: - time shiff blw pair of signals

order = max { N, n} => Normalised Autocorrelation of n[n] -> Causal Condition: N=M. Mrx [l] = Mxx [m] E-Operater => \ \ \left[\frac{\gamma_{\max}[l]}{\gamma_{\max}[D]} \right] \left[\left[1] La speriation for advancing the sequence by one unit. $V = E \times [n] = \times [nH]$ => For convelation $E^2 \times [n] = \times [n+2]$ I ry [e] = JEx Ey. E^{N} $\chi[n] = \chi[n+N]$ => Mry[l] <!

Jano ayy[o] → General Nth onder difference eq. Beg with E-operator $(E^{N} + a, E^{N-1} + ... + a_{N-1} E + a_{N}) y [n] =$ (bo EN+ b, EN++ ...+bn-1 E+bn) x[n] whon x fly, coso = 1 Q(E) y [n] = P[E] x[n] else, coso<1 Response of Lineau DT Systems Auto Cosvellation of Periodic Sequence Total = Zeno.Input + Zeno-State suspense Response Response ZIR yo [n] is solution when x[n]=0 -This is true only for an exponential function

If $y_0[n] = Cy^n$, $E^{K}y_0[n] = y_0[n+K]$ $\mathcal{K}[n] = \mathcal{K}[n+N]$ 91xx [l]= 1 Z x[n] for x[n-l] P(xx[0]= 1 = 2 22[n]=Px | = 8(E) h & [n] = P(E) & [n] ; IC=0 $\mathcal{H}_{XX}[l+N] = \mathcal{H}_{XX}[l]$ Average enough h[-l] = h[-2] = ... = h[-n] = 0 $\mathcal{H}_{XX}[l+N] = \mathcal{H}_{XX}[l]$ Per sample $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l]$ Per sample $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l]$ Per sample $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l]$ Per sample $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = \mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-2] = ... = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-n] = h[-n] = h[-n] = 0$ $\mathcal{H}_{XX}[l+n] = h[-n] = h[-$ Periodic squence is pouldic. then $8[n-m] \Rightarrow h[n-m]$ 2[k] 8[n-k] => 2[k]h[n-k] Difference Equation = 2[K] S[n-K] => => x[K] h[n-K] y[n+N]+a, y[n+N-1]+...+any[n+1]+any[n]= 186N-M x[n+m]+bn-M+1 x[n+M-1]+...
+bn-1x[n+1]+bnx[n] $y[n] = \sum_{n=0}^{\infty} x[n]h[n-n]$

Two-sided Bilatoral I Transform ROC for DT signal x[n] is $X(z) = Z\{x[n]\}$ | defined as a continuous negion in $z=5^{\circ}$ $x[n]z^{-n}$ | z plane where z z converges $= \sum_{v=-\infty}^{\infty} \chi[n] z^{-\eta}$ $\frac{RUC}{=}$ $X(z) = \frac{P(z)}{S(z)} = \frac{1}{2}$ polynomial. * For non-causal signals, the summation should start from minus infinity \Rightarrow Roots of $P(z) = 0 \Rightarrow zecos$ and the & transform so \Rightarrow Roots of $B(z) = 0 \longrightarrow poles.$ defined is called two ⇒ZT of causal of auticausal signals are identical except their ROC. sided « I transform. $z = e^{i\Omega}$. > S[m] (=> 1 z z-plane including of so $Z' \rightarrow delay of one unit.$ One-Sided Unilateral Z-Transform -> U[n] (=>) Z | 121>1 $X(z) = \sum_{n=0}^{\infty} \kappa[n] z^n$ $\rightarrow e^{\pm \hat{j}^{gn}} o[n] \iff \frac{Z}{Z - e^{\pm \hat{j}^{g}}}$ Inverse Z-Transform $\cos \beta n = (e^{i\beta n} + e^{-i\beta n})/2$ $|z| > |e^{\pm i\beta}| = 1$ $\mathcal{L}[\mathbf{n}] = Z^{-1}\{x(\mathbf{n})\}$ $= \frac{1}{2\pi i} \oint X(z) z Z^{n-i} dz.$ 2 πi closed contour entegral. \Rightarrow $Z\{ax_1[n]+bx_2[n]\}=ax_1(z)+bx_2(nz)$ ZERIOR $\Rightarrow \mathcal{N}[n-n_0] \ u[n-n_0] \Leftrightarrow Z^{-n_0} \times [Z]$ $Z \in \mathcal{R}_{x_0}$ $X(z) = \sum_{n=-\infty}^{\infty} \kappa[n] z^{-n}.$ $=> \times [n+n_0] u[n+n_0] \iff Z^{n_0} \times (Z) Z \in R_{\times}$ z= esa. $\times (E\Omega) = \sum_{n=-\infty}^{\infty} \times [n] \vec{e}^{\Omega n}$ \Rightarrow $n n[n]u[n] \Leftrightarrow -z \frac{dx(z)}{dz} z \in R_X$ $\times (\Omega) = \times (Z)|_{Z=e^{-\beta}\Omega}$ $\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ -> DTFT is used to evaluate z-triansform on a unit circle. $\Rightarrow na^n u(n) \Leftrightarrow \frac{az^{-1}}{(1-az^{-1})^2}$

Initial Value Theorem $\frac{\chi(n) u(n)}{\chi(z)} = \frac{\chi(n-1) \ell_{2} u(n-1)}{\chi(z)}$ Y(z) = z-1/ X(z) If x(n) is causal For filter. $\mathcal{E}^{\circ}.e.$ $\mathcal{K}(n) = 0$, for n < 0z-plane. then $\mathcal{L}[0] = \lim_{z \to \infty} x(z)$ $\mathbf{Y}(z) = \mathbf{X}(z) - \mathbf{z}^{-1} \mathbf{X}(z) = (1 - \mathbf{z}^{-1}) \mathbf{X}(z)$ $\Rightarrow X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$ FIR -> Finite Impulse Response $= \mathcal{N}(0) + \mathcal{E}_{\mathcal{N}(1)} Z^{-1} + \mathcal{N}(2) Z^{-2} + - \longrightarrow T.F. \text{ is polynomial in } Z^{-1}.$ \Rightarrow 0 as $z \rightarrow \infty$ IIR \Rightarrow Infinite Impulse Response. Final Value Theorem > Output is a recursive => T.F. is rational function in Z If $n[n] \Leftrightarrow X(z)$ FIR! then $\lim_{z \to \infty} x[\eta] = x(\infty) = \lim_{z \to \infty} (1-z^{-1})X(z)$ $h[n] = 0 \qquad N_1 \le n \le N_2$ F.e. limit exict if all.

The poles of (1-z-1)x(z)

lil inside the unit could

Magnitude of Poles < 1. Covolution $Y(z) = \left(\sum_{n=N_i}^{N_2} h[n]z^{-n}\right) X(z)$ $H(z) = \sum_{m=N}^{N_2} h[n]z^{-n}$ $X_1[n] * X_2[n] \iff X_1(z) X_2(z)$ $|y(n)| = \sum_{K=1}^{N} a_{K}y(n-K) + \sum_{K=0}^{M} b_{K}x(n-K)$ $|H(z)| = \frac{y(z)}{x(z)} = \sum_{K=0}^{N} b_{K}z^{-K}$ $|H(z)| = \frac{y(z)}{x(z)} = \sum_{K=0}^{N} b_{K}z^{-K}$ ZERIAR2 y[n]=x[n]*h[n]X(Z) LTID $\dot{Y}(z) = H(z)X(z)$ → LTI system & BIBO stable $H(z) = \frac{y(z)}{z} = z(zero State Response)$ $f S' = \sum_{n=-\infty}^{\infty} |h(n)| < \infty$ Z(Input) > If ROC contains a unitainele Y(z)=Hz)Xz) > IZT / Y[n] TI system is stable

> Causal FIR litter is always suspense

stable since all poles are at original unit coucle Auto convielation $R_{nn}(z) = X(z) \dot{X}(z-1)$ -> BROC of BIBO stable contain unit circle.

$$D_{\mathcal{H}} = \frac{1}{N_0} \sum_{n=0}^{N_0-1} \varkappa[n] e^{-\frac{3}{2} \frac{2\pi \varkappa n}{N_0}} - \infty < \varkappa < \infty$$

ANALYSIS EQUATION

Heavimonic of a Ω = 2π Values of the Ω = 2π

Servies -> Do, Diejaon, Deizaon

Foreguency $\rightarrow 0$, Ω_0 , $2\Omega_0$, ..., (No-1) Ω_0 n.

Components

$$\Omega_{o} = 2\pi \frac{1}{N_{o}}$$

Dn = |Dn | eliDn

 $D_{94+N_0} = \frac{1}{N_0} \sum_{N=0}^{N_0-1} 92[n] e^{-\int_{0}^{\pi} \frac{2\pi (94+N_0)\eta}{N_0}}$

 $= \frac{1}{N_0} \sum_{n=0}^{N_0-1} \alpha[n] e^{-\int_0^2 \frac{2\pi n}{N_0} n} e^{-\int_0^2 2\pi n}$

$$e^{-\int_{2\pi n}^{2\pi n}} = \cos(2\pi n) - \int_{1}^{2} \sin(2\pi n)$$
= 1.

Jano = Doc

From n^{sh} harmonic, frequency $\Omega_{H} = 91\Omega$

-> The frequency spacing b/w the consecutive spectral lines, called. The frequency resolution, is ΩoHz.

Poolseval's Theorem $\frac{1}{N_0} \sum_{n=0}^{N_0-1} |x[n]|^2 = \sum_{n=0}^{N_0-1} |D_n|^2.$

 $\Rightarrow If x[n] \Leftrightarrow x_n, y[n] \Leftrightarrow x_n$ $a \times [n] + by[n] \Leftrightarrow a \times n + b \times n$

 $\Rightarrow \chi[n] \iff D_{\mathcal{H}}$ $\chi[n-n_0] \iff D_{\mathcal{H}}e^{-j\mathcal{H}_{\mathcal{L}}\Omega n_0}$