Plant/Control Optimization of a PEM Hybrid Fuel Cell Vehicle to Grid (V2G) System

Dongsuk Kum Scott Moura

ME 555 - Winter 2007
Professor Panos Y. Papalambros

April 16, 2007

Fuel Cell

Water/ Heat

Oxygen

Outline

- Introduction
- Modeling
 - Fuel Cell System & Battery
 - Supervisory Controller
 - System Level Block Diagram & Power Cycle
- Optimization Problem Summary
- Model Analysis
 - DOE study
 - Monotonicity Analysis
 - Surrogate Model
- Optimization Study
 - Optimal Solution and Constraint Activity
 - Lagrange Multipliers and Constraint Relaxation
- Parametric Study
- Discussion of Results

Introduction

Fuel Cell technology

- Abundant energy source H₂
- High efficiency (50-70%)
- Clean energy source (zero emissions)

Hybrid Technology

- Hybrid concept is developing in many engineering fields, esp. the auto industry
- Fuel Cell/Battery leverages advantages of each energy source

V2G Concept

- Enables the use of renewable energy sources
- Adds energy storage capacity element to grid
- Distributed generation (DG) decentralizes grid
- 5% of California's vehicle fleet can provide 10% peak power for entire state [1]
- Consumer may sell power back to the grid
- More expensive FCV becomes a more profitable investment

[1] W. Kempton, J. Tomic, S. Letendre, A. N. Brooks and T. Lipman, "Vehicle-to-grid power: Battery, hybrid, and fuel cell vehicles as resources for distributed electric power in California," California Air Resources Board, Tech. Rep. UCD-ITS-RR-01-03, June 2001, 2001.

Fuel Cell System & Battery

Resistive Equivalent Circuit Model

Isothermal Operation Assumption

Main functions of battery model

$$V_{oc} = f(soc, T), \quad R_{int} = f(soc, T)$$

$$P_{batt} = f(soc, V_{oc}, R_{int})$$

$$I_{batt} = -\frac{V_{oc} - \sqrt{{V_{oc}}^2 - 4P_{batt}R_{\rm int}}}{2R_{\rm int}}$$

$$S\dot{O}C = -\frac{I_{batt}}{Q_{max}} \Rightarrow SOC = \frac{Q_{max} - \int I_{batt} dt}{Q_{max}}$$

Rule-based Controller

- The idea of the rule-based control is to operate the fuel cell within a desired operating region that achieves high efficiency.
- For low power demand, battery provides all necessary power and fuel cell is turned off.
- For high power demand, battery assists fuel cell providing power to grid, which allows FC operate in higher efficiency region.

where
$$P_{charge} = K_{charge} \left(SOC - SOC_{des} \right)$$

System Level Block Diagram & Power Cycle

Grid Power Demand Cycle

- Representative grid power demand cycle
- Adapted from CAISO daily demand forecast
- Scaled for medium size office or apartment complex
- Augmented with white Gaussian noise to simulate stochastic nature of power demand

Optimization Problem Summary

Minimize hydrogen fuel consumption

$$\min f(\mathbf{x}) = m_{H_2}(\lambda_{CP}, n_{FC}, n_{BATT}, P_{pa}, P_{batt}, K_{ch})$$

with respect to

6 Design Variables

- Number of fuel cells in stack, n_{fc}
- Number of battery modules, n_{batt}
- Compressor size, λ_{cp}
- Power Assist (PA) mode threshold, P_{pa}
- Battery mode threshold, $P_{\it batt}$
- Controller Gain, K_{ch}

subject to

10 Constraints

- Fuel cell stack length
- Battery weight
- Stack heat generation
- Parasitic losses
- Fuel cell efficiency
- Oxygen excess ratio
- Max/Min SOC
- Start/End SOC deviation

DOE Study

Purpose: Determine general trends and possible monotonic relationships

- Sensitivity
 - Most sensitive to variations of power threshold values
 - Least sensitive to number of cells & battery modules
- Critical Role of Control
 - Optimal control allows the use of less efficient component sizes
- Monotonicity
 - Power threshold variables
 - Number of cells & battery modules (if fluctuations are ignored)
- Optimal Solution
 - Fluctuations indicate possible local minima

Monotonicity Analysis

Active Constraints

- Fuel Cell Stack Length ACTIVE MP1 wrt n_{fc}
- Battery Weight ACTIVE by MP1 wrt n_{batt}
- Minimum SOC ACTIVE by MP1 wrt $\{n_{fc} \lambda_{cp} P_{pa} P_{batt} K_{ch}\}$

Solutions

$$n_{fc}^* = 421$$

$$n_{batt}^* = 34$$

		n_{FC}	n_{BATT}	λ_{CP}	P_{pa}	$P_{\it batt}$	K_{ch}	Suspected Activity
Fuel consumption	$f(\mathbf{x})$	•	-	+ or -	+	•	?	N/A
Fuel Cell Stack Length	g ₁₆	+						ACTIVE by MP1 wrt n_{FC}
Battery weight	g 17		+					ACTIVE by MP1 wrt n _{BATT}
Minimum SOC	g ₂₃	?	-	?	?	+	-	ACTIVE by MP1 wrt <u>at least</u> one variable

Surrogate Model

Motivation

- Noisy objective function
- Gradient-based optimization is best suited for continuous, smooth objective functions

Artificial Neural Network (ANN)

- Two-layer feed-forward neural network (FFNN)
- Generalized regression neural network (GRNN)
- Trained via Levenberg-Marquardt algorithm, a quasi-Newton optimization technique

Input/Output Model

- 6 inputs (design variables)
- 1 output (objective function)
- -5^6 = 15625 total training sets

Outline

- Introduction
- Modeling
 - Fuel Cell System / Battery
 - Supervisory Controller
 - System Level Block Diagram & Power Cycle
- Optimization Problem Summary
- Model Analysis
 - DOE study
 - Monotonicity Analysis
 - Surrogate Model
- Optimization Study
 - Optimal Solution and Constraint Activity
 - Lagrange Multipliers and Constraint Relaxation
- Parametric Study
- Discussion of Results

Optimal Solution and Constraint Activity

Surrogate Model

Design Variable	Optimal Value
Number of Fuel Cells in Stack, n_{PC}	422
Number of Battery Modules, n_{BATT}	32
Compressor Scale, λ_{CP}	0.5
Power Assist Mode Threshold, P_{pa}	8074 W
Battery Only Mode Threshold, P_{bott}	6662 W
Charge Gain, K_{ch}	1.412
H_2 Fuel Consumption, m_{H_2}	0.0756 kg

Inconsistent Solutions

Neural Net captures general trends, but not local optima

Simulation Model

Design Variable	Optimal Value
Number of Fuel Cells in Stack, n_{FC}	422
Number of Battery Modules, n_{BATT}	23
Compressor Scale, λ_{CP}	0.92367
Power Assist Mode Threshold, P_{pa}	8792 W
Battery Only Mode Threshold, P_{bott}	6755 W
Charge Gain, K_{ch}	22.7115
H_2 Fuel Consumption, m_{H_2}	0.0847 kg

Active Constraints (4)

- Compressor Scale Lower Bound
- Fuel Cell Stack Length
- Battery Weight
- Minimum SOC

Observations

- Feasible for surrogate, infeasible for simulation
- Verifies monotonicity analysis
- Active model validity constraint, λ_{cp}
- Excellent fuel consumption

Active Constraints (1)

Fuel Cell Stack Length

Nearly Active Constraints (3)

- Fuel Cell Efficiency
- Oxygen Excess Ratio
- Minimum SOC

Observations

- Battery weight not active
- Nominal compressor size is nearly optimal
- A single active constraint suggests local optima
- Notably worse fuel consumption than surrogate

Lagrange Multipliers & Constraint Relaxation

Lagrange Multipliers

Karush Kuhn Tucker Conditions

Stationarity: $\nabla f_* + \lambda^T \nabla \mathbf{h}_* + \mu^T \nabla \mathbf{g}_* = \mathbf{0}^T$

Feasibility: $\mathbf{h}(\mathbf{x}_*) = 0$ Transversality: $\mathbf{\mu}^T \mathbf{g} = 0$ Multipliers: $\lambda \neq 0$, $\mu \geq 0$ Post-Optimality
Sensitivity Analysis

$$\left(\frac{\partial f}{\partial \mathbf{h}}\right)_{\bullet} = -\lambda^{T}$$

Ac	Lagrange Multiplier Values, μ, at Optimum		
λ_{CP} lower bound	g ₁ :	$0.5 - \lambda_{CP} \le 0$	3.857
Fuel cell stack length	g_{16} :	$L_{st}\left(n_{f\varepsilon}\right) - 1.2 \le 0$	9.551
Battery weight		$m_{batt}\left(n_{batt}\right) \cdot g - 75 \le 0$	19.549
Minimum SOC	g ₂₄ :	$SOC_{\min} - \min_{k} \{SOC(k)\} \le 0$	53.102

Most Sensitive to Minimum SO

Constraint Relaxation

- Relax minimum SOC to 0.5
- 2.62 % decrease in fuel consumption
- P_{pa} is second most sensitive constraint

Active Model Validity
Constraints

2.62 % reduction in fuel consumption

2^{nd} Most Sensitive to P_{pa}

	Active	Constraints	Lagrange Multiplier Values, µ, at Optimum
λ_{CP} lower bound	g_1 :	$0.5 - \lambda_{CP} \leq 0$	2.6485
P_{pa} lower bound	g_7 :	$8000 - P_{pa} \le 0$	20.4713
$K_{\it ch}$ lower bound	g_{11} :	$1-K_{ch}\leq 0$	0.1495
Fuel cell stack length	g_{16} :	$L_{st}\left(n_{fc}\right) - 1.2 \le 0$	6.0449
Battery weight	\mathbf{g}_{17} :	$m_{batt} (n_{batt}) \cdot g - 75 \le 0$	1.3036
Maximum SOC displacement	g ₂₅ :	$\frac{\left SOC(1) - SOC(N)\right }{SOC(1)} - \Delta SOC_{\max} \le 0$	0.5491

Note: Post-optimality sensitivity analysis shown here is performed on surrogate model.

Parametric Study

- Formulate Multi-objective Optimization Problem
 - Parameterize constraint on Minimum SOC
 - Parameterize constraint on Maximum Battery Weight
- Parametric Study on Minimum SOC
 - Decreasing Minimum SOC results in further decrease in H₂ consumption
 - Beyond SOC = 0.57, maximum ΔSOC becomes active

Pareto Front formed by Parametric Study on SOC_{\min} **FEASIBLE** 0.079 0.078 Max ΔSOC Active H₂ consumption 0.077 0.076 0.075 0.074 **INFEASIBLE** 0.073 0.072 0.64 0.63 0.62 0.61 0.6 0.59 0.58 0.57 $\mathsf{SOC}_{\mathrm{min}}$

Parametric Study on Battery Weight

- Increasing battery weight results in further decrease in H₂ consumption
- Battery weight and Minimum SOC are NOT mutually dependent

Discussion of Results

Surrogate Modeling

- Enables gradient-based optimality analysis
- Eliminates "noise" in objective function
- Local minima are not captured
- Impose more aggressive constraints on surrogate model than actual model

Combined Plant/Control Optimization

- Component sizing and control parameters may be strongly coupled
- An excellent control design can compensate for inefficient component sizes (and vice versa)

Vehicular vs. Stationary Applications

- Control represents larger obstacle than component sizing
- Vehicle application constraints (FC length, battery weight) often constrain the optimal design

Acknowledgements & References

Thank you for your support & advice throughout the course!

- Professor Panos Y. Papalambros
- Jeongwoo Han
- Professor Huei Peng
- Dr. Hosam Fathy
- Dr. Michael Kokkolaras
- James Allison

Key References

- J. Han., Optimal design of hybrid and non-hybrid fuel cell vehicles M.S. thesis, University of Michigan, Ann Arbor, 2000.
- Min-Joong Kim and Huei Peng, "Combined control/plant optimization of fuel cell hybrid vehicles," in 2006 American Control Conference, 14-16 June 2006, 2006, pp. 6.
- J. T. Pukrushpan, A. G. Stefanopoulou and H. Peng, Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design., vol. XVII, Springer, 2004, pp. 161.
- P. Papalambros and D. Wilde. Principles of Optimal Design. Cambridge University Press., 2nd edition, 2000.