

Institute Of Statistical Studies and Research Department of Computer and Information Sciences Digital Logic CS504 June 2010

Time permitted: Three Hours

Solve the following problems in the provided spaces: Clarify your answers. Label your signal lines in each and every Design and Table.

Question 1: (12 points)

a) Using the version of Hamming code shown, Code the data " 0111"

al=a3 ⊕ a5 ⊕ a7 a2= a3 ⊕ a6 ⊕ a7

a4= a5 ⊕ a6 ⊕ a7

The Hamming code(0!11)=

b) If the word "1001110", was received after being coded with Hamming code, what word was sent (assuming single error).

Original word =

- c) The following 8-bit numbers were found in a computer. What is the decimal value represented, if the number is stored as: (show your solution)
 - (i) BCD Exsess3
- (ii) two's complement number (iii) BCD 5421
 - (v) Binary Signed Integer
- (iv) Binary Unsigned integer
- 1) 10110100
- 2) 10010011
- 3) 00101000

Solve here:

- Engesss	wo's C	BCD 5421	Signed	100
			- signed	Unsigned
				
	- Lacasa	CD Exsess3 'Two's C	BCD 5421	BCD 5421 Signed

Question 2: (12 points)

(A)

The months of the year are coded in four variables, a, b, c and d, such that January is 1000, February is 0010, ..., and December is 1100. February of a leap year (in which, February is 29 days) is coded as 0000. Remember: April, June, September and November has 30 days, all other months except February has 31 days)

- a) Show the Truth Table with five variables v, w, x, y, z, that indicates the number
- b) Write the switching formula for each of v, w, x, y and z.

c) Minimize v, w, x, y and z, applying switching rules. Solve here: (a)

a	В	C	1.					
0	0	70	0	-\v-	W	X	y	Z
								1
	1				200			
	+			15 TE				
			200					
		7				_		+
		7	 -					+
				1000				
		1	1 2 2	-	+	-		
-				+				
		-	+	+				
		+	-	1	37 (2.18)		1	
	-	-				-	+	
		1				-		

Solve here: (b): Write the switching formulae for each of v, w, x, y and z

2=

Solve here: (c): Minimize each function

w=

 $\chi =$

y:=

7=

(B) Use switching Algebra rules to reduce the following expression to a minimum Sum of products and a minimum Product of sums, show each step.

G = wx + x'y + wyz + wxz' + wyz'

Question 3: (6 points)

Given the function, (assume all variables are available, both complemented and

$$F = a'b' + a'c + ab'$$

a) Show a block diagram for a two level implementation of F using And and OR

b) Show a block diagram for an implementation of F using, Only, NAND gates

c) Expand F to sum of minterms, eliminate any duplications.

Question 4: (8 points)

Find the minimum Sum of products, and the minimum Product of sums for the following functions ((that is, using K-map, circle the terms on the map and write the algebraic

- a) $F(A,B,C,D,E) = \Sigma M(0,1,5,6,7,8,9,14,17,20,21,22,23,25,28,29,30)$
- b) $G(WX,Y,Z) = \sum m(4, 6, 11, 12, 13) + \sum d(3, 5, 7, 9, 10, 15)$

Solution (a)

5/10

Solution (b):

 $\overline{G(WX,Y,Z)} = \Sigma m(4, 6, 11, 12, 13) + \Sigma d(3, 5, 7, 9, 10, 15)$

G=

Question 5: (12 points)

It is required to build a converter that convert from BCD2-of-5 code to BCD5421.(the two codes are shown bellow)

Decimal	BCD 5421	BCD 2-of-5
0	0000	11000
1	0001	[0100
2	0010	10010
3	0011	10001
4	0100	01100
5	1000	01010
6	1001	01001
7	1010	00110
8	1011	00101
9	1100	00011

All other combinations of input bits never occur

- a) Build the truth table for the $BCD\ 2$ -of-5 (five functions v,w,x,y,z) from the BCD5421 (four inputs a,b,c,d)
- b) Use k-map to minimize each of the five functions v, w, x, y, z.
- c) Implement the converter using Programmable Array Logic (PAL) with 12 AND gates and five 4-input OR gates, show the terms and its sums.

Solve here

1	(B	c	d	11	1			
	-			- V	W	X	У	Z
								-
		200		- 11				
100	-					100	1000	
-					100	- 250	-	_
	The second second			-	7 7			-
-		-	-			_		
-	200							
		200		1			-1-	
- 7	- 1 a - 5		-					
				- 1		1		
							-	

(b) k-map to minimize the five functions v, w, x, y, z.

YZ WX	00 01	11_	10
00			ii.
01			
11			
10			

<u>w=</u> $\underline{\mathbf{v}}$ YZ. 00 00 01 01 11 $\mathbf{y}=$ $\underline{x}=$

(c) Programmable Array Logic (PAL) implementation 7/10 Question 6: (10 points)

A system has one input $(x \in \{a,b\})$ and one output $(z \in \{0,1\})$. The output z is one iff the input (x) had been the same for three consecutive clock cycles, otherwise, z is zero. Assume x = a as an initial state.

- a- Describe the system, including its initial state
 b- State the system Model
- e- Show the transition and the output functions in a state table
- d- Draw the state diagram

Solve here

a) Describe the system

- b) System Model is
- c) State Table

d) State Diagram

Question 7: (10 points) Given the following circuit:

- a) State the design model
- b) Build the state table
- c) Assuming the initial state for $q_1,\,q_2,q_3$ to be (000) complete the given timing diagram for the circuit.

Solve Here

a) Design model is

c) State Table

c) Timing diagram for the circuit;

@ Best Of LUCK @