Applied Optimization Exercise 4 - Duality

Gremaud Lucien, Tristan Henchoz, Chenrui Fan

October 29, 2023

1 Lagrange Duality

- a) For this problem we can easily see that the feasible set is $F = \{x | x \in [2:4]\}$, the optimal value is 2 and the optimal solution is 5.
- b) Lagrange and dual function

The Lagrangian is defined as:

$$\mathcal{L}(x,\lambda) = x^2 + 1 + \lambda(x-2)(x-4)$$

Since $g(\lambda) = \inf_{x \in D} \mathcal{L}(x, \lambda)$ To find the dual function, we first differentiate the Lagrangian with respect to x:

$$\frac{\partial \mathcal{L}}{\partial x} = 2x(1+\lambda) - 6\lambda$$

Setting this to zero to get the minimum value, we get:

$$x^* = \frac{3\lambda}{1+\lambda}$$

Substituting x^* into $\mathcal{L}(x,\lambda)$ gives us the Lagrange dual function, $g(\lambda)$:

$$g(\lambda) = \left(\frac{3\lambda}{1+\lambda}\right)^2 + 1 + \lambda \left(\frac{3\lambda}{1+\lambda} - 2\right) \left(\frac{3\lambda}{1+\lambda} - 4\right)$$

Simplifying we find

$$g(\lambda) = -\frac{\lambda^2 - 9\lambda - 1}{\lambda + 1}$$

And by derivating $g(\lambda)$

$$\frac{\partial g}{\partial \lambda} = -\frac{(\lambda - 2)(\lambda + 4)}{(\lambda + 1)^2}$$

We find a local maximum of g(2) = 5, we also find that g(0) = 1 and that $\lim_{\lambda \to +\infty} g(\lambda) = -\infty$. Which verifies the lower-bound property.

And if we compute the Lagrange dual function, we get:

Lagrange Dual Function $g(\lambda)$

c) The dual problem aims to maximize $g(\lambda)$ subject to $\lambda \geq 0$. We can therefor state the dual problem as

$$\text{maximize} \quad -\frac{\lambda^2 - 9\lambda - 1}{\lambda + 1} \tag{1}$$

subject to
$$\lambda \ge 0$$
 (2)

To check that $g(\lambda)$ is concave we can verify that the second derivative is negative over the domain $\lambda \geq 0$

$$\frac{\partial g}{\partial \lambda} = -\frac{(\lambda - 2)(\lambda + 4)}{(\lambda + 1)^2} \tag{3}$$

$$\frac{\partial^2 g}{\partial \lambda^2} = -\frac{18}{(\lambda+1)^3} \tag{4}$$

And we can see that for any $\lambda \geq 0$, $\frac{\partial^2}{\partial \lambda^2} g(\lambda)$ will always be negative, verifying that $g(\lambda)$ is concave.

And as we have seen earlier g(2) = 5 is the global maximum on the domain $\lambda \ge 0$ making $\lambda = 2$ the optimal value and g(2) = 5 the optimal solution.

We can conclude that the strong duality does hold since p* and d* are equal.