Name: _			
Instructo	r.		

Math 10560, Worksheet 15, Improper Integrals February 22, 2016

- Please show all of your work for both MC and PC questions
- \bullet work without using a calculator.
- Multiple choice questions should take about 4 minutes to complete.
- Partial credit questions should take about 8 minutes to complete.

PLE.	ASE N	MARK YOUR ANS	WERS WIT	TH AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(d)	(e)

Name: _				
Instructo	or:			

Multiple Choice

1.(6 pts) What can be said about the integrals

$$(i) \int_0^1 \frac{e^x}{x^2} dx;$$

$$(ii) \int_1^\infty \frac{\cos^2 x}{x^2} dx?$$

Integral (i) diverges by the Comparison Theorem since the integrand is greater than

Integral (ii) converges by the Comparison Theorem since the integrand is less than $\frac{1}{x^2}$.

- (a) (i) diverges and (ii) converges
- (b) both (i) and (ii) converge
- (c) neither integral (i) nor (ii) is improper
- (d) both (i) and (ii) diverge
- (e) (i) converges and (ii) diverges

2.(6 pts) Evaluate the improper integral

$$\int_4^\infty \frac{1}{(x-2)(x-3)} \, dx.$$

Using a partial fraction expansion $\int \frac{1}{(x-2)(x-3)} dx = \ln \left| \frac{x-3}{x-2} \right| + C.$ Therefore $\int_4^\infty \frac{1}{(x-2)(x-3)} dx = \lim_{t \to \infty} \ln \left| \frac{t-3}{t-2} \right| - \ln \left| \frac{1}{2} \right| = 0 + \ln 2.$

(a) $\ln 3$ (b) $\ln \frac{1}{2}$

(c) the integral diverges

(d) ln 2

 $3 \ln 2$ (e)

Name: Instructor:

3.(6 pts) Evaluate the following improper integral:

$$\int_{e}^{\infty} \frac{1}{x(\ln x)^2} dx$$

Solution: Use the definition of improper integral and make the substitution $u = \ln x$ with dx = xdu. Then

$$\int_{e}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \lim_{t \to \infty} \int_{e}^{t} \frac{1}{x(\ln x)^{2}} dx = \lim_{t \to \infty} \int_{1}^{\ln t} \frac{1}{u^{2}} du$$
$$= \lim_{t \to \infty} \left[-\frac{1}{u} \right]_{1}^{\ln t} = \lim_{t \to \infty} (-\frac{1}{\ln t} + 1) = 1.$$

- 0 (a)
- (b) -1 (c) 1 (d) $\frac{1}{2}$

- (e) divergent

4.(6 pts) Find
$$\int_{-2}^{2} \frac{1}{x+1} dx$$
.

Solution: Function $\frac{1}{x+1}$ has an infinite discontinuity at the point x=-1. Therefore

$$\int_{-2}^{2} \frac{1}{x+1} dx = \int_{-2}^{-1} \frac{1}{x+1} dx + \int_{-1}^{2} \frac{1}{x+1} dx,$$

where each of the integrals is improper. Compute the first integral as follows

$$\int_{-2}^{-1} \frac{1}{x+1} dx = \lim_{t \to -1} \int_{-2}^{t} \frac{1}{x+1} dx = \lim_{t \to -1} \left[\ln|x+1| \right]_{-2}^{t} = \lim_{t \to -1} \ln|t+1| - \ln 1 = -\infty.$$

Since $\int_{-2}^{-1} \frac{1}{x+1} dx$ diverges, then the initial integral diverges as well.

- diverges (b) 0 (c) $\frac{1}{2} \ln 3$ (d) $\frac{8}{9}$
- (e) $\ln 3$

Name: Instructor:

5.(6 pts) Evaluate the integral $\int_{-\infty}^{\infty} xe^{-x} dx$.

Solution: First we find the definite integral using integration by parts: Let u = x and $dv = e^{-x}$ so that du = dx and $v = -e^{-x}$. So we have that

$$\int xe^{-x} dx = -xe^{-x} - \int -e^{-x} dx = -xe^{-x} - e^{-x} + C$$

Then we see that

$$\int_{2}^{\infty} xe^{-x} dx = \lim_{b \to \infty} \int_{2}^{b} xe^{-x} dx = \lim_{b \to \infty} \left(-xe^{-x} - e^{-x} \right) \Big|_{2}^{b}$$
$$= \lim_{b \to \infty} \left(\left(-be^{-b} - e^{-b} \right) - \left(-2e^{-2} - e^{-2} \right) \right) = 0 - \left(-3e^{-2} \right) = \frac{3}{e^{2}}$$

- (a) $-\frac{2}{e^2}$ (b) $\frac{1}{e^2}$ (c) divergent (d) $\frac{3}{e^2}$

6.(6 pts) Compute the integral

$$\int_{-3}^{3} \frac{1}{(x+2)^3} \, dx.$$

Solution: We have to be careful at the point where the function does not exist, namely x = -2. So we see that

$$\int_{-3}^{3} \frac{1}{(x+2)^3} \, dx = \int_{-3}^{-2} \frac{1}{(x+2)^3} \, dx + \int_{-2}^{3} \frac{1}{(x+2)^3} \, dx$$

We work first on the part $\int_{-2}^{3} \frac{1}{(x+2)^3} dx$. We will solve this using *u*-substitution. If we let u = x + 2 (so du = dx), then the bounds change from x = -2 to u = 0 and x = 3 to u=5. Making the substitution we see that

$$\int_{-2}^{3} \frac{1}{(x+2)^3} dx = \int_{0}^{5} \frac{1}{u^3} du = \lim_{b \to 0} \left(\int_{b}^{5} u^{-3} du \right)$$
$$= \lim_{b \to 0} \left(-\frac{u^{-2}}{2} \right) \Big|_{b}^{5} = \lim_{b \to 0} \left(-\frac{5^{-2}}{2} + \frac{b^{-2}}{2} \right) = \lim_{b \to 0} \left(-\frac{1}{50} + \frac{1}{2b^2} \right) = \infty$$

So the integral is **divergent**.

- (a)
- (b)
- (c) $\frac{13}{25}$
- (d) divergent (e) $-\frac{13}{25}$

Name:	
Instructor:	

7.(6 pts) Consider the three integrals

I.
$$\int_{-1}^{1} \frac{dx}{x^2}$$
. II. $\int_{0}^{1} \frac{dx}{\sqrt{x}}$. III. $\int_{-1}^{1} \frac{dx}{1+x}$.

One of the following statements is true. Which one?

Solution. We know that $\int_0^1 \frac{1}{x^p}$ diverges if $p \ge 1$, and converges if p < 1. Integral I: The integrand is discontinuous at x = 0, and the integral is therefore given

as the sum of two improper integrals:

$$\int_{-1}^{1} \frac{dx}{x^2} = \int_{-1}^{0} \frac{dx}{x^2} + \int_{0}^{1} \frac{dx}{x^2}.$$

The the second integral on the right hand side is $\int_0^1 \frac{1}{x^p}$ for $p=2\geq 1$, and so is divergent (the first one is too). Therefore integral I is divergent.

Integral II: The integral is $\int_0^1 \frac{1}{x^p}$ for $p = \frac{1}{2} < 1$ and thus diverges. Integral III: Substitute u = 1 + x with du = dx.

$$\int_{-1}^{1} \frac{dx}{1+x} = \int_{0}^{2} \frac{du}{u} = \int_{0}^{1} \frac{du}{u} + \int_{1}^{2} \frac{du}{u}.$$

The the first integral on the right hand side is $\int_0^1 \frac{1}{x^p}$ for $p=1 \ge 1$, and so is divergent. Therefore integral III diverges.

- (a) They are all convergent.
- (b) They are all divergent.
- (c) I is convergent; II and III are divergent.
- (d) II and III are convergent; I is divergent.
- (e) II is convergent; I and III are divergent.

8.(6 pts) The improper integral

$$\int_0^\infty \frac{dx}{x^2 + 4}$$

Name: Instructor:

$$\int_0^\infty \frac{dx}{x^2 + 4} = \lim_{t \to \infty} \int_0^t \frac{1}{x^2 + 4} dx = \lim_{t \to \infty} \left[\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) \right]_0^t = \lim_{t \to \infty} \frac{1}{2} \tan^{-1} \left(\frac{t}{2} \right) = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$$

- (a)
- diverges to ∞ (b) converges to $\frac{\pi}{2}$ (c) converges to $\frac{1}{4}$

- (d)
- diverges to $-\infty$ (e) converges to $\frac{\pi}{4}$

Name: ______Instructor:

9.(6 pts) The improper integral

$$\int_0^1 x \ln x dx$$

$$\int_0^1 x \ln x dx = \lim_{t \to 0} \int_t^1 x \ln x dx$$

Using integration by parts with $u = \ln x$, dv = xdx, $du = \frac{1}{x}dx$, $v = \frac{x^2}{2}$, we get

$$\lim_{t \to 0} \int_{t}^{1} x \ln x dx = \lim_{t \to 0} \left[\frac{x^{2}}{2} \ln x \right]_{t}^{1} - \lim_{t \to 0} \int_{t}^{1} \frac{x^{2}}{2} \cdot \frac{1}{x} dx = \lim_{t \to 0} \left[\frac{-t^{2}}{2} \ln t \right] - \lim_{t \to 0} \frac{x^{2}}{4} \bigg]_{t}^{1}$$

Using L'Hospital's Rule, we get

$$= \lim_{t \to 0} \left\lceil \frac{-t^2}{2} \ln t \right\rceil = \lim_{t \to 0} \left\lceil \frac{-\ln t}{2/t^2} \right\rceil = -\frac{1}{2} \lim_{t \to 0} \frac{1/t}{-2/t^3} = -\frac{1}{2} \lim_{t \to 0} \frac{-t^3}{2t} = 0$$

Hence

$$\lim_{t \to 0} \int_t^1 x \ln x dx = -\lim_{t \to 0} \frac{x^2}{4} \bigg]_t^1 = -\lim_{t \to 0} \left[\frac{1}{4} - \frac{t^2}{4} \right] = -\frac{1}{4}.$$

- (a) diverges to ∞ (b) converges to $-\frac{1}{4}$ (c) converges to $-e^2$
- (d) converges to $\frac{1}{4}$ (e) diverges to $-\infty$

10.(6 pts) Evaluate the following integral $\int_0^{+\infty} xe^{-x^2} dx$.

Put $u = x^2$ then $dx = \frac{1}{2}du$. Also $x = 0 \Rightarrow u = 0$ and $x = +\infty \Rightarrow u = +\infty$. So,

$$\int_0^{+\infty} x e^{-x^2} \, dx = \frac{1}{2} \int_0^{+\infty} e^{-u} \, du.$$

By definition

$$\frac{1}{2} \int_0^{+\infty} e^{-u} \, du = \lim_{a \to +\infty} \frac{1}{2} \int_0^a e^{-u} \, du = \lim_{a \to +\infty} \frac{1}{2} \left[-e^{-u} \right]_0^a = \frac{1}{2}$$

Name:	
Instructor:	

(a) 1

(b) 2e

(c) $\frac{1}{2}$

- (d) Diverges and the limit is not ∞
- (e) Diverges and the limit is ∞

Name: ______

11.(6 pts) Compute

$$\int_0^2 \frac{1}{x-1} \ dx.$$

Note that this integral is an improper integral as $\frac{1}{x-1}$ is not defined at x=1. Now,

$$\int_0^2 \frac{1}{x-1} \, dx = \int_0^1 \frac{1}{x-1} \, dx + \int_1^2 \frac{1}{x-1} \, dx.$$

By definition,

$$\int_0^1 \frac{1}{x-1} \, dx = \lim_{t \to 1^-} \int_0^t \frac{1}{x-1} \, dx.$$

$$\lim_{t \to 1^{-}} \int_{0}^{t} \frac{1}{x - 1} dx = \lim_{t \to 1^{-}} \left[\ln|x - 1| \right]_{0}^{t}$$
$$= \lim_{t \to 1^{-}} \ln|t - 1| = +\infty.$$

This means that $\int_0^2 \frac{1}{x-1} dx$ diverges.

Note: You could equally consider $\int_1^2 \frac{1}{x-1} dx$ and get the same conclusion. The point is that one of these integrals is divergent is enough to conclude $\int_0^2 \frac{1}{x-1} dx$ is divergent.

- (a) Diverges
- (b) 0

(c) 2

(d) -2

(e) 4

Name:	

Instructor: ANSWERS

Math 10560, Worksheet 15, Improper Integrals February 22, 2016

- Please show all of your work for both MC and PC questions
- \bullet work without using a calculator.
- Multiple choice questions should take about 4 minutes to complete.
- Partial credit questions should take about 8 minutes to complete.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(ullet)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(•)	(e)
3.	(a)	(b)	(ullet)	(d)	(e)
4.	(●)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(•)	(e)
6.	(a)	(b)	(c)	(•)	(e)
7.	(a)	(b)	(c)	(d)	(•)
8.	(a)	(b)	(c)	(d)	(•)
9.	(a)	(•)	(c)	(d)	(e)
10.	(a)	(b)	(•)	(d)	(e)
11.	(●)	(b)	(c)	(d)	(e)