DS - 1001

BRIAN D'ALESSANDRO

VP – DATA SCIENCE, DSTILLERY

ADJUNCT PROFESSOR, NYU

ME

Brian d'Alessandro

Bio

Education:

Undergrad: Rutgers, Math Grad: NYU Stern, Statistics

Professional Experience

Dstillery (AdTech)
Meetup.com (Social Web)
American Express (Credit/Risk)
TV Guide (Marketing)

Affiliations/Publications

ACM KDD
Big Data Journal
Machine Learning Journal
SIAM

GOAL1: DEFINE DATA SCIENCE

DATA SCIENCE IS EVERYWHERE

If you use the internet, you likely suffer from this little problem - too much information and too little time.

Most companies try to solve this problem for you using data science

THE MAGAZINE

October 2012

ARTICLE PREVIEW To read the full article, sign-in or register. HBR subscribers, click here to register for FREE access »

Data Scientist: The Sexiest Job of the 21st Century

"Data scientists are the key to realizing the opportunities presented by big data. They bring structure to it, find compelling patterns in it, and advise executives on the implications for products, processes, and decisions.

They find the story buried in the data and communicate it. And they don't just deliver reports:

They get at the questions at the heart of problems and devise creative approaches to them."

http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/

DS IS THE CONFLUENCE OF MANY DISCIPLINES

Source: http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

RANGE OF DS SKILLS

In this class we will develop a foundation for applying all of these skills.

Business	ML/Big Data	Math/OR	Programming	Statistics
Product	Unstructured	Optimization	Systems	Visualization
Developement	Data	Math	Administration	Tomporal
Business	Structured	Math	Back End	Temporal Statistics
Dusiness	Data	Graphical	Programming	Statistics
	Dutu	Models	rrogramming	Surveys and
	Machine		Front End	Marketing
	Learning	Bayesian /	Programming	
		Monte Carlo		Spatial
	Big and	Statistics		Statistics
	Distributed Data	Algorithms		Science
		Simulation		Data
				Manipulation
				Classical Statistics

Source: http://www.oreilly.com/data/free/analyzing-the-analyzers.csp

GOAL2: START BUILDING YOUR TOOL CHEST

INTRODUCE COMMON ALGORITHMS

Mean Normalized Scores of each Algorithm over 11 Data Sets

Scalability/Complexity/Interpretability

Performance

Source: An Empirical Comparison of Supervised Learning Algorithms http://www.niculescu-mizil.org/papers/comparison.tr.pdf

LEARN WHEN TO USE THEM

Will someone click on an ad?: C=[No, Yes]

Is this pill good for headaches?: C=[No, Yes]

What number is this?: *C=[0,1,2,3,4,5,6,7,8,9]*

7210414959 0690159784 9665407401 3134727121 1742351244 Is this e-mail spam?: C=[No, Yes]

What is this news article about?: *C=[Politics, Sports, Finance ...]*

LEARN HOW TO USE THEM

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc auc score
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt = dt.fit(X, Y)
lr = linear model.LogisticRegression()
lr.fit(X, Y)
mm = svm.SVC(kernel='linear')
mm.fit(X, Y)
knn = KNeighborsClassifier(n neighbors=10)
knn.fit(X, Y)
```

AND HOW TO EVALUATE THEM EMPIRICALLY

THIS IS NOT A THEORY COURSE

$$E[f] \le \hat{E_S}[f] + 2\mathcal{R}_m(\mathcal{F}) + O\sqrt{\frac{ln(\frac{1}{\delta})}{m}}$$

$$E[f] \le \hat{E_S}[f] + 2\hat{\mathcal{R}_S}(\mathcal{F}) + O\sqrt{\frac{ln(\frac{1}{\delta})}{m}}$$

(BUT WE WILL DEVELOP AN INTUITION BEHIND KEY THEORETICAL CONCEPTS)

SUCH AS BIAS-VARIANCE TRADEOFFS

REGULARIZATION

AND MODEL SELECTION

GOAL 3: BETTER DATA DRIVEN DECISIONS

A COMMON THEME

Few problems have out of the box solutions

The Data Scientist has to navigate these choices

BECOMING A SCIENTIST

The scientific method: evaluating the merit of a hypothesis with rigorous empirical testing.

I.e.,

Given raw data, constraints and a problem statement, you have an infinite set of models to choose from, with which you will use to maximize performance on some evaluation metric, that you will have to specify.

Every design choice you make can be formulated as a hypothesis, upon which you will use rigorous testing and experimentation to either validate or refute.

BUT ITS STILL AN ART

Outside of modeling competitions, seldom is a well-posed problem and clean dataset presented to you.

Putting the art into your practice means...

- Translating problems into the language of data science
- Formulating reasonable hypotheses
- Developing an intuition for good vs. bad data, good vs. bad models.
- Abstracting problems to identify similarities
- Managing the DS process from end to end

MAKING DECISIONS WITH THE BIG PICTURE IN MIND

GOAL 4: PREPARATION

FOR THE NEXT TWO YEARS

Year 1 - Fall

Course Title	Credits
DS-GA-1001 Intro to Data Science	3
DS-GA-1002 Statistical and Mathematical Methods for Data Science	3
Data Science Elective 1	3
TOTAL CREDITS	9

Year 1 - Spring

Course Title	Credits
DS-GA-1003 Machine Learning and Computational Statistics	3
DS-GA-1004 Big Data	3
Data Science Elective 2	3
TOTAL CREDITS	9

Year 2 - Fall

Course Title	Credits
DS-GA-1005 Inference and Representation	3
DS-GA-1006 Capstone Project in Data Science	3
Data Science Elective 3	3
TOTAL CREDITS	9

Year 2 - Spring

Course Title	Credits
Data Science Elective 4	3
Data Science Elective 5	3
Data Science Elective 6	3
TOTAL CREDITS	9

YOUR FIRST INTERNSHIP

A Typical Data Scientist Job Description

Requirements

- Ph.D. in a relevant technical field, or 4+ years experience in a relevant role
- Comfort manipulating and analyzing complex, high-volume,
 high-dimensionality data from varying sources
- Ability to communicate complex quantitative analysis and analytic approaches in a clear, precise, and actionable manner
- Fluency with scripting languages such as Python, Ruby, or PHP
- Familiarity with relational databases and SQL-like query languages
- Expert knowledge of a scientific computing language such as R, Python, or Julia
- Experience working with data-distributed query tools a plus (Hadoop, Hive, Presto, etc.)