Portfolio

I. Proposition

A. For A,
$$B\subseteq U$$
, $(A-B)\cup (B-A)=(A\cup B)-(A\cap B)$.

- 1. Proof.
 - a. I will prove the following proposition. $\forall_{A,A\in U} \ \forall_{B,B\in U} \ A\cap B^C = \Phi \Leftrightarrow A\subseteq B$
 - Here
 is used to denote "is logically equivalent to" or "if and only if", or "iff". The letter Φ is used to denote the empty set {}. The letter U is used to denote the universal set and the superscript C is used to denote the set complement.
 - b. Let A and B be subsets of some universal set U.
 - c. (A⊆U)∧(B⊆U).
 - d. We will prove the propositions contrapositive.
 - 1. The contrapositive is $A \cap B^C \neq \Phi \Rightarrow A \nsubseteq B$.
 - e. Assume $A \cap B^C \neq \Phi$. We will prove there must an exist an element $p \mid (p \in A) \land (p \nsubseteq B)$.

f.
$$(A \cap B^C \neq \Phi : (\exists_{p,p \in A \cap B}^{c}) : (\exists_{p,(p \in A) \land (p \notin B)}) : A \nsubseteq B$$

B. Enter level 2 text here.

- 1. Enter level 3 text here.
- 2. Enter level 3 text here.
- 3. Enter level 3 text here.

C. Enter level 2 text here.

- 1. Enter level 3 text here.
- 2. Enter level 3 text here.
 - a. Enter level 4 text here.
 - b. Enter level 4 text here.
 - 1. Enter level 5 text here.
 - 2. Enter level 5 text here.
 - 3. Enter level 5 text here.
 - c. Enter level 4 text here.
 - 1. Enter level 5 text here.
 - 2. Enter level 5 text here.
 - a. Enter level 6 text here.
 - b. Enter level 6 text here.