Matrix operations

Definitions

- A diagonal entry is a matrix element a_{ij} where i = j.
- A diagonal matrix is a matrix where $ineqj \implies a_{ij} = 0$.
- The identity matrix I_n is a diagonal matrix where all the nonzero ele-

Addition and scalar multiplication

Given that \overrightarrow{A} and \overrightarrow{B} are both $m \times n$ matrices, then:

- 1. $\overrightarrow{A} = \overrightarrow{B}$ iff $a_{ij} = b_{ij} \ \forall i, j$. 2. $\overrightarrow{A} + \overrightarrow{B} = [a_{ij} + b_{ij}]$.
- 3. Given $c \in \mathbb{R}$, $c\vec{A} = [ca_{ij}]$.
- 4. Matrix addition is associative and commutative.
- 5. Any matrix plus its own negative equals $\vec{0}$.
- 6. $r(\vec{A} + \vec{B}) = r\vec{A} + r\vec{B}$
- 7. $(r+s)\vec{A} = r\vec{A} + s\vec{A}$ 8. $r(s\vec{A}) = (rs)\vec{A}$ 9. $1\vec{A} = \vec{A}$

Matrix multiplication

Given two matrices $\vec{A}_{p \times m}$ and $\vec{B}_{m \times n}$, we can create two linear maps:

- 1. $T: \mathbb{R}^n \to \mathbb{R}^m, \vec{x} \mapsto \vec{B}\vec{x}$ 2. $S: \mathbb{R}^m \to \mathbb{R}^p, \vec{x} \mapsto \vec{A}\vec{x}$

Let

$$\vec{B} = \begin{bmatrix} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_n} \end{bmatrix} \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

then $\vec{B}\vec{x} = \sum_{i=1}^n x_i \vec{b_i}$ and $\vec{A}(\vec{B}\vec{x}) = \vec{A}(\sum_{i=1}^n x_i \vec{b_i}) = \sum_{i=1}^n x_i (\vec{A}\vec{b_i})$, which can be expressed in matrix form:

1

$$\sum_{i=1}^{n} x_i(\overrightarrow{A}\overrightarrow{b_i}) = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \overrightarrow{A}\overrightarrow{b_1} & \overrightarrow{A}\overrightarrow{b_2} & \cdots & \overrightarrow{A}\overrightarrow{b_n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

We can define this as the product \overrightarrow{AB} ; if $\overrightarrow{A} = (a_{ij})_{p \times m}$, $\overrightarrow{B} = (b_{ij})_{m \times n}$ then $\vec{C} = \vec{A}\vec{B} = (c_{ij})_{p \times n}$ where $c_{ij} = \sum_{k=1}^{m} a_{ik}b_{kj}$.

Rules of matrix multiplication

1.
$$\vec{A}(\vec{B}\vec{C}) = (\vec{A}\vec{B})\vec{C}$$

2.
$$\overrightarrow{A}(\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A}\overrightarrow{B} + \overrightarrow{A}\overrightarrow{C}$$

3.
$$(\overrightarrow{B} + \overrightarrow{C})\overrightarrow{A} = \overrightarrow{B}\overrightarrow{A} + \overrightarrow{C}\overrightarrow{A}$$

1.
$$\overrightarrow{A}(\overrightarrow{BC}) = (\overrightarrow{AB})C$$

2. $\overrightarrow{A}(\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{AB} + \overrightarrow{AC}$
3. $(\overrightarrow{B} + \overrightarrow{C})\overrightarrow{A} = \overrightarrow{BA} + \overrightarrow{CA}$
4. $r(\overrightarrow{AB}) = (r\overrightarrow{A})\overrightarrow{B} = \overrightarrow{A}(r\overrightarrow{B}), r \in \mathbb{R}$
5. $\overrightarrow{I}_{m}\overrightarrow{A}_{m \times n} = \overrightarrow{A}_{m \times n}\overrightarrow{I}_{n} = \overrightarrow{A}$

5.
$$\vec{I}_m \vec{A}_{m \times n} = \vec{A}_{m \times n} \vec{I}_n = \vec{A}$$

Proof. To prove the first property, use

$$\vec{C} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vec{c_1} & \vec{c_2} & \cdots & \vec{c_p} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

and so

$$\overrightarrow{BC} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \overrightarrow{Bc_1} & \overrightarrow{Bc_2} & \cdots & \overrightarrow{Bc_n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$\overrightarrow{A}(\overrightarrow{BC}) = \overrightarrow{A} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \overrightarrow{Bc_1} & \overrightarrow{Bc_2} & \cdots & \overrightarrow{Bc_n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \overrightarrow{A}(\overrightarrow{Bc_1}) & \overrightarrow{A}(\overrightarrow{Bc_2}) & \cdots & \overrightarrow{A}(\overrightarrow{Bc_n}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$= \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ (\overrightarrow{AB})\overrightarrow{c_1} & (\overrightarrow{AB})\overrightarrow{c_2} & \cdots & (\overrightarrow{AB})\overrightarrow{c_n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = (\overrightarrow{AB}) \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \overrightarrow{c_1} & \overrightarrow{c_2} & \cdots & \overrightarrow{c_p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = (\overrightarrow{AB})\overrightarrow{C}$$

The final four properties come from the fact that matrix multiplication is a linear combination of products; recall that $c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$.

However, matrix multiplication does not always behave like that of the real numbers. For example, $ab = ac \implies b = c \ \forall \ a,b,c \in \mathbb{R}, a \neq 0$, but the same is **not** true for $\overrightarrow{AB} = \overrightarrow{AC}$. Another case of this is that $\forall \ a,b \in \mathbb{R}, ab = 0 \implies a = 0 \ or \ b = 0$, but $\overrightarrow{AB} = \overrightarrow{0} \implies \overrightarrow{A} = \overrightarrow{0} \ or \ \overrightarrow{B} = \overrightarrow{0}$. Also, matrix multiplication is **not commutative**; in fact, \overrightarrow{AB} and \overrightarrow{BA} can only both exist iff \overrightarrow{A} and \overrightarrow{B} are both square matrices, that is, they both have the same amount of rows as columns. Even if both products do exist, in the vast majority of cases $\overrightarrow{AB} \neq \overrightarrow{BA}$. For example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix}$$

but

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix}$$

Given a square matrix $\overrightarrow{A}_{n\times n}$, we can also define exponentiation as $\overrightarrow{A}^0 = \overrightarrow{I}_n, \overrightarrow{A}^k = \prod_{i=1}^k \overrightarrow{A} \ \forall \ k > 0$, e.g. $\overrightarrow{A}^2 = \overrightarrow{A}\overrightarrow{A}$. Finally, the **transpose** of a matrix $\overrightarrow{A} = (a_{ij})_{m\times n}$ is $\overrightarrow{A}^T = (b_{ij})_{n\times m} \ni b_{ij} = a_{ji}$. The transpose of a matrix can be used to referse the direction of a mapping between two vector spaces: if $T: \mathbb{R}^n \to \mathbb{R}^m, \overrightarrow{x} \mapsto \overrightarrow{A}\overrightarrow{x}$ then we can say that $S: \mathbb{R}^m \to \mathbb{R}^n, \overrightarrow{x} \mapsto \overrightarrow{A}^T\overrightarrow{x}$.