Física II:

CALORIMETRÍA

Docente: Lic. Cesar Vladimir Arancibia Carbajal

Calorimetría:

Rama de la termodinámica que mide la cantidad de energía generada en procesos de intercambio de calor

Calor:

Es la transferencia de energía entre la materia como resultado de las diferencias en la temperatura.

ENERGIA

$$T_1$$

$$T_1 > T_2$$

Equivalente Mecánico del Calor:

En el experimento de Joule se determina la relación entre la unidad de energía joule y la unidad de calor caloría.

El trabajo que realizan las paletas se transforma en calor

$$1 \lceil cal \rceil = 4186 \lceil J \rceil$$

Capacidad calorífica y Calor específico:

Capacidad calorífica (C):

Es el calor que debe recibir una sustancia para que aumente su temperatura 1 °C

$$C = \frac{Q}{\Lambda T} \Rightarrow Q = C * \Delta T$$

Por lo tanto si una cantidad de calor Q produce un cambio ΔT en la temperatura de una sustancia.

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} \frac{J}{\circ C} \end{bmatrix} \implies \begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} \frac{cal}{\circ C} \end{bmatrix}$$

Calor específico "c":

Es el calor que debe recibir una sustancia de 1kg para que aumente su temperatura 1 °C

$$c = \frac{C}{m} \implies c = \frac{\frac{Q}{\Delta T}}{m} = \frac{Q}{m\Delta T}$$

$$Q = mc\Delta T$$

Unidades en el S.I:

$$\begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} J \\ Kg^{\circ}C \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} \frac{cal}{g^{\circ}C} \end{bmatrix}$$

Calores específicos de algunas sustancias a 25°C y a presión atmosférica

Sustancia	Calor específico c		
	$J/kg*^{\circ}C$	$cal/g * {}^{\circ}C$	
Solidos elementales			
Aluminio	900	0,215	
Cobre	387	0,0924	
Oro	129	0,0308	
Hierro	448	0,107	
Plomo	128	0,0305	
Plata	234	0,056	
Líquidos			
Alcohol (Etílico)	2400	0,58	
Mercurio	140	0,033	
Agua (15°C)	4186	1,00	

Formas de Transferecia del Calor

Conducción	Convección	Radiación
Es típica en los sólidos.	Es típica de líquidos y gases.	Se presenta en todos los estados físicos.
Es la transferencia de calor que tiene lugar por transmisión de Energía de	Es la transferencia de calor que tiene lugar mediante el movimiento de las partículas de un	Es la transferencia de calor mediante ondas electromagnéticas sin
unas partículas a otras, sin desplazamiento de éstas.	fluido. El transporte es efectuado por moléculas de aire.	intervención de partículas que lo transporte.

Efectos del Calor

1°.- Cambios de Estado

Cambios progresivos (→)

Absorben Q

Cambios regresivos (\leftarrow) **Desprenden** Q

Fusión	Vaporización
Cambio de estado : Sólido a líquido	Cambio de estado : Líquido a gas
El calor absorbido por un cuerpo en la fusión es igual al calor cedido por éste en la solidificación.	El calor absorbido por un cuerpo en la vaporización es igual al calor cedido por éste en la condensación.
Punto de fusión: Temperatura en la que se produce la fusión (en el agua :0 °C).	Punto de ebullición: Temperatura en la que se produce la ebullición (en el agua:100° C).

Mientras se produce el cambio de estado, los puntos de fusión y ebullición son cte.

Calor latente de fusión: Cantidad de calor por unidad de masa que ha de suministrarse a una sustancia a su temperatura de fusión para convertirla completamente en líquido Calor latente de vaporización: Cantidad de calor por unidad de masa que ha de suministrarse a una sustancia a su temperatura de ebullición para convertirla completamente en gas.

Agua:

$$Q = mL_F$$

$$L_F = 3.34 \times 10^5 \left[\frac{J}{kg} \right]$$

$$L_F = 79.6 \begin{bmatrix} cal/\\ g \end{bmatrix}$$

$$Q = mL_V$$

$$L_{V} = 2.256 \times 10^{6} \left[\frac{J}{kg} \right]$$

$$L_V = 539 \begin{bmatrix} cal/g \end{bmatrix}$$

Calor Latente

Calor latente de cambio de estado L: Es la cantidad de calor que necesita una unidad de masa de una sustancia para cambiar de estado. Se mide en J/Kg o bien en cal/g.

$$Q = mL_V$$

El calor de fusión y vaporización solo se emplean en el cambio de estado, **no** en aumentar la Temperatura.

Escala Termométrica. Relación entre escalas

Relación entre Escalas:

Celsius - Réaumur
$$\Rightarrow$$
 $T(^{\circ}R) = 0.8T(^{\circ}C)$

Celsius - Fahrenheit
$$\Rightarrow$$
 $T(F) = \frac{9}{5}T(^{\circ}C) + 32$

Celsius - Kelvin
$$\Rightarrow$$
 $T(K) = 273,16 + T(^{\circ}C)$

Calorímetro

- · Es un recipiente térmicamente aislado para evitar la fuga del calor
- Se utiliza para determinar el calor especifico de un solidó o liquido cualquiera

A partir del principio de conservación de la energía (calorimetría):

$$\sum Q_{frios} = -\sum Q_{calientes}$$

 \mathcal{Q}_{frios} Los que absorben energía

 $Q_{calientes}$ Los que pierden energía