Inferential Analysis

C. Alex Simpkins Jr., Ph.D UC San Diego, RDPRobotics LLC

Department of Cognitive Science rdprobotics@gmail.com csimpkinsjr@ucsd.edu

Lectures: https://github.com/COGS108/Lectures-Wi23

- Problem: Does Sesame Street affect kids brain development?
- Data science question: What is the relationship between watching Sesame Street and test scores among children?
- Type of analysis: Inferential analysis

Sesame Street ?? Test scores viewership

Establishing & Stating Your Null and Alternative Hypotheses Helps Guide Your Analysis

Null Hypothesis:

H₀: Sesame Street has *no effect* on kids brain development

Alternative Hypothesis:

H_a: Watching Sesame Street *has an effect* on kids' brain development

Population

Population

In our Sesame street example, the population would be all children

In our Sesame street example, the <u>sample</u> would be the children included in the study

Sample

Population

Population

We don't know how much Sesame street was watched by or the tests scores of all kids

Sample

Best guess

So we look at Sesame street viewing and test scores in a representative sample of kids

Inference

Sample

Approaches to Inference

CORRELATION

ASSOCIATION BETWEEN VARIABLES

> i.e. Pearson Correlation, Spearman Correlation, chisquare test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

DOES CHANGE IN ONE VARIABLE MEAN

REGRESSION

CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN
ASSUMPTIONS IN
THESE OTHER 3

CATEGORIES ARE NOT

MET

i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chisquare test

COMPARISON OF

DIFFERENCE N MEANS **BETWEEN VARIABLES**

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE **VARIABLE MEAN** CHANGE IN ANOTHER? I.e. simple regression, multiple

regression

NON-PARAMETRIC

ASSUMPTIONS IN THESE OTHER 3

CATEGO PRESPARENOT sum test Wilcoxon sign-rank test, sign test

"All models are wrong, but some are useful"

-George Box (British Statistician, *JASA* 1976)

Effect size (β_1) can be estimated using the slope of the line

Effect size (β_1) can be estimated using the slope of the line

The *closer* the points are to the regression line, the *less* uncertain we are in our estimate

Assumptions of linear regression

- 1. Linear relationship
- 2. No multicollinearity
- 3. No auto-correlation
- 4. Homoscedasticity

Linear regression assumes no multicollinearity. Multicollinearity occurs when the independent variables (in multiple linear regression) are too highly correlated with each other.

Autocorrelation occurs when the observations are *not* independent of one another (i.e. stock prices)

Does Poverty Percentage affect Teen Birth Rate?

Teen Birth Rate

Null Hypothesis:

 H_0 : Poverty Rate does not affect Teen Birth Rate ($\beta_1=0$)

Alternative Hypothesis:

 H_a : Poverty Rate affects Teen Birth Rate $(\beta_1 \neq 0)$

What is the relationship between Poverty Percentage & Teen Birth Rate?

What's your hypothesis?

	Location [‡]	PovPct [©]	Brth15to17	Brth18to19	ViolCrime	TeenBrth
1	Alabama	20.1	31.5	88.7	11.2	54.5
2	Alaska	7.1	18.9	73.7	9.1	39.5
3	Arizona	16.1	35.0	102.5	10.4	61.2
4	Arkansas	14.9	31.6	101.7	10.4	59.9
5	California	16.7	22.6	69.1	11.2	41.1
6	Colorado	8.8	26.2	79.1	5.8	47.0
7	Connecticut	9.7	14.1	45.1	4.6	25.8
8	Delaware	10.3	24.7	77.8	3.5	46.3
9	District_of_Columbia	22.0	44.8	101.5	65.0	69.1
10	Florida	16.2	23.2	78.4	7.3	44.5
11	Georgia	12.1	31.4	92.8	9.5	55.7
12	Hawaii	10.3	17.7	66.4	4.7	38.2
13	Idaho	14.5	18.4	69.1	4.1	39.1
14	Illinois	12.4	23.4	70.5	10.3	42.2
15	Indiana	9.6	22.6	78.5	8.0	44.6
16	Iowa	12.2	16.4	55.4	1.8	32.5
17	Kansas	10.8	21.4	74.2	6.2	43.0

EDA: distributions

Teen Birth Rate

p-value: the probability of getting the observed results (or results more extreme) by chance alone

What would be the p-value of you flipping 16 heads?

Takes into account the effect size (β_1) and the SE

p-value: the probability of getting the observed results (or results more extreme) by chance alone

Confounding

Shoe Size ?? Literacy

Big shoes Literate Adult

Variable2 Variable1 Confounder

Confounding

Your analysis sees an increase in crime rate whenever popsicle sales increase. What could confound this analysis?

We'll discuss additional approaches of how to account for confounding in your analysis in the next lecture.

Spine Surgery Results

Sample: 400 patients with index

vertebral fractures

Vertebroplasty	Conservative care	Relative risk (95% confidence interval)
30/200 (15%)	15/200 (7.5%)	2.0 (1.1–3.6)
	1	Eeklooks like vertebroplasty was
		way worse for patients!

subsequent fractures

But wait...at time of initial

	Vertebroplasty	Conservative care		
	N = 200	N = 200		
Age, y, mean ± SD	78.2 ± 4.1	79.0 ± 5.2		
Weight, kg, mean ± SD	54.4 ± 2.3	53.9 ± 2.1		
Smoking status, No. (%)	110 (55)	16 (8)		

Age and weight are similar between groups. **Smoking Status** differs vastly.

So...let's stratify those results real quick

				No smoke			
Vertebroplasty Cons	servative RI	R (95% confidence	Vertebroplasty	Conservative	RR (95% confidence		
	int	terval)			interval)		
23/110 (21%) 3/16	(19%) 1.1	1 (0.4, 3.3)	7/90 (8%)	12/184(7%)	1.2 (0.5, 2.9)		

Risk of re-fracture is now similar within group

Confounding

What are possible confounders for our analysis of the effect of poverty on teen birth rate?

