Devoir surveillé n°2

Durée: 3 heures, calculatrices et documents interdits

Homographies du plan complexe.

On introduit les parties de \mathbb{C} suivantes :

- le demi-plan de Poincaré : $\mathscr{P} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}.$

Soit $a, b, c, d \in \mathbb{C}$ vérifiant $ad - bc \neq 0$. L'homographie définie par $h(z) = \frac{az + b}{cz + d}$ est la fonction hqui à tout nombre complexe z tel que $cz + d \neq 0$, associe $h(z) = \frac{az + b}{cz + d}$.

Partie 1 : Exemples

- 1) Soit h l'homographie définie par $h(z) = i \frac{1+z}{1-z}$.
 - a) Montrer que, pour tout $z \in \mathbb{U}$ tel que $z \neq 1$, $h(z) \in \mathbb{R}$.
 - **b)** Montrer que, pour tout $z \in \mathcal{D}$, $h(z) \in \mathcal{P}$.
 - c) Déterminer les points fixes de h, i.e. les nombres complexes z tels que h(z) = z.
 - d) Pour quel(s) nombre(s) complexe(s) Z l'équation h(z) = Z, d'inconnue z, possède-t-elle une solution sur \mathbb{C} ?
- 2) Soit g l'homographie définie par $g(z) = \frac{z-i}{z+i}$
 - a) Montrer que, pour tout $z \in \mathbb{R}$, $g(z) \in \mathbb{U}$.
 - **b)** Montrer que, pour tout $z \in \mathcal{P}$, $g(z) \in \mathcal{D}$.

Partie 2: Homographies conservant \mathbb{U}

- 3) Soit $\theta \in \mathbb{R}$ et h l'homographie définie par $h(z) = \frac{e^{i\theta}}{z}$. Montrer que, pour tout $z \in \mathbb{U}$, $h(z) \in \mathbb{U}$.
- 4) Soit $\alpha \in \mathbb{C}$ tel que $\alpha \notin \mathbb{U}$, $\theta \in \mathbb{R}$ et h la fonction définie par $h(z) = e^{i\theta} \frac{z + \alpha}{\bar{c}z + 1}$
 - a) Montrer que h est une homographie, bien définie sur \mathbb{U} .
 - **b)** Montrer que, pour tout $z \in \mathbb{U}$, $h(z) \in \mathbb{U}$.
- 5) Réciproquement, nous allons montrer que les homographies précédentes sont les seules à vérifier : $\forall z \in \mathbb{U}, h(z) \in \mathbb{U}$. Établissons deux résultats préliminaires.
 - a) Montrer que, pour tout $\alpha, \beta \in \mathbb{C}$, $|\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2 + 2\operatorname{Re}(\bar{\alpha}\beta)$.
 - **b)** Soit $a, b \in \mathbb{C}$. Montrer que si, pour tout $\theta \in \mathbb{R}$, $a + 2\operatorname{Re}\left(be^{-i\theta}\right) = 0$, alors a = b = 0.
- **6)** Soit $a, b, c, d \in \mathbb{C}$ tel que $ad bc \neq 0$ et h l'homographie définie par $h(z) = \frac{az + b}{cz + d}$ vérifiant, pour tout $z \in \mathbb{U}$, $h(z) \in \mathbb{U}$.

a) Établir que, pour tout $\theta \in \mathbb{R}$,

$$|a|^2 + |b|^2 + 2 \operatorname{Re}\left(\bar{a}be^{-i\theta}\right) = |c|^2 + |d|^2 + 2 \operatorname{Re}\left(\bar{c}de^{-i\theta}\right).$$

- **b)** En déduire que $|a|^2 + |b|^2 = |c|^2 + |d|^2$ et que $\bar{a}b = \bar{c}d$.
- c) Si a = 0, que peut-on dire de h?
- d) On suppose dorénavant que $a \neq 0$. Montrer que

$$(|a|^2 - |c|^2)(|a|^2 - |d|^2) = 0.$$

- e) Le cas |a| = |c| est-il possible?
- f) Que peut-on dire si |a| = |d|? Conclure.

II. La série harmonique.

Pour tout entier naturel n non nul, on définit

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}.$$

On étudie dans ce problème diverses propriétés de la suite $(H_n)_{n\in\mathbb{N}^*}$, nommée aussi série harmonique.

I – Limite de la série harmonique.

- 1) Exprimer, pour tout $n \in \mathbb{N}^*$, H_{n+1} en fonction de H_n . En déduire le sens de variation de la suite $(H_n)_{n \in \mathbb{N}^*}$.
- 2) Soit $n \in \mathbb{N}^*$. Simplifier la quantité $H_{2n} H_n$, en l'écrivant à l'aide d'un seul symbole Σ .
- 3) Montrer que, pour tout $n \in \mathbb{N}^*$, $H_{2n} H_n \geqslant \frac{1}{2}$.
- **4)** En déduire que, pour tout $n \in \mathbb{N}$, $H_{2^n} \geqslant \frac{n}{2} + 1$.
- 5) La suite $(H_n)_{n\in\mathbb{N}^*}$ admet-elle une limite? Laquelle?

II – Une propriété arithmétique : si $n \ge 2$, H_n n'est pas entier.

Pour tout $n \in \mathbb{N} \setminus \{0, 1\}$, posons la propriété

$$P_n$$
: « il existe $p, q \in \mathbb{N}$ tels que $H_n = \frac{2p+1}{2q}$ ».

- **6)** Montrer que, si $n \ge 2$ est pair, alors $P_n \Rightarrow P_{n+1}$.
- 7) Montrer que si p,q sont deux entiers naturels impairs, et k,ℓ deux entiers naturels quelconques $\frac{k}{p} + \frac{\ell}{q}$ peut s'écrire comme un quotient dont le dénominateur est impair.
- 8) En déduire que, si n est impair (que l'on écrit donc n = 2m + 1), il existe un nombre rationnel r de dénominateur impair tel que

$$H_{n+1} = \frac{H_{m+1}}{2} + r.$$

Indication : on pourra décomposer une somme écrite en fonction de la parité de ses indices.

9) Montrer finalement par un raisonnement par récurrence que, pour tout $n\geqslant 2,\, P_n$ est vraie.

III – Quelques relations.

10) Soit n un entier naturel supérieur ou égal à 2. Montrer que :

$$\sum_{1 \leqslant i < j \leqslant n} \frac{1}{j-i} = \sum_{k=1}^{n-1} H_k.$$

11) Déterminer deux nombres a, b vérifiant, pour tout $k \in \mathbb{N}$,

$$\frac{1}{(k+1)(k+2)} = \frac{a}{k+1} + \frac{b}{k+2},$$

et en déduire, pour tout $n \in \mathbb{N}^*$, une expression simplifiée de

$$\sum_{k=1}^{n} \frac{1}{(k+1)(k+2)}.$$

12) Soit $n \in \mathbb{N}^*$, déterminer une forme simple de $\sum_{k=1}^n \frac{H_k}{(k+1)(k+2)}$.

Indication : on pourra effectuer une opération similaire à celle effectuée précédemment.