Smartcards© André Zúquete Security 1

Smartcard: Components

- CPU
 - □ 8/16 bit
 - Crypto-coprocessor (opt.)
- ROM
 - Operating system
 - Communication
 - Cryptographic algorithms
- EEPROM
 - File system
 - Programs / applications
 - Keys / passwords

- RAM
 - Transient data
 - Erased on power off
- Mechanical contacts
 - □ ISO 7816-2
 - Power
 - Soft reset
 - Clock
 - Half duplex I/O
- Physical security
 - Tamperproof case
 - Resistance to side-effect attacks

© André Zúquete Security 3

Communication protocol stack Off-card application APDU (Application Protocol Data Unit) T=0 / T=1 ↑ On-card application APDU (Application Protocol Data Unit) T=0 / T=1 ↑ C André Zúquete Security 4

T±O and T±1

- T=0
 - Each byte transmitted separately
 - Slower
- T=1
 - Blocks of bytes transmitted
 - Faster
- ATR (ISO 7816-3)
 - Response of the card to a reset operation
 - Reports the protocol expected by the card

© André Zúquete

Security

6

Encoding objects in smartcards: TLV and ASN.1 BER

- Tag-Length-Value (TLV)
 - Object description with a tag value, the length of its contents and the contents
 - Each element of TLV is encoded according with ASN.1 BER
- Values can contain other TLV objects
 - □ The structure can be recursive

© André Zúquete Security 7

Smartcard: File system (1/3) MF File identification **EF** (EF) Name or number DF DF File types **EF** Master File (MF) File system root, ID 0x3F00 DF DF EF EF Elementary File (EF) Ordinary data file File size fixed and determined when created Dedicated File (DF) Similar to a directory Can contain other EFs or DF © André Zúquete Security

File system (2/3)	
File system types	offset
Transparent	length
 Data blocks identified 	by offset + length
 Fixed records 	
Indexed records	
Variable records	
Indexed records	
Cyclic	R W
Read pointer, write poi	inter
Cyclic increments	

Smartcard: File system (3/3) Access control No restrictions Protected The file access APDU must contain a MAC computed with a key shared between the card and the off-card application External authentication The file access APDU is only allowed if the card already checked the existence of a common shared key with the off-card application

Smartcard: Cryptographic protocols (2/6) Internal authentication The off-card application authenticates the smartcard

- Challenge-response protocol with random number and key number
 - Initiated by the off-card application

Smartcard:

Cryptographic protocols (3/6)

- Secure messaging
 - Protect data red from the smartcard
 - Protect data written into the smartcard
 - Protection forms
 - Authentication with MAC
 - Authentication with MAC and data encryption

© André Zúquete Security 14

OpenCard Framework (OCF)

- Goal: facilitate the development of smartcard-based solutions
 - Make the parts of the solution, typically provided by different parties, independent of each other
- Parties:
 - Card issuer
 - Card initialization, personalization and issuing
 - Card OS provider
 - Basic, lowest level card behavior
 - Card reader / terminal provider
 - Interfaces that deal with reading from and writing into cards
 - Application / service provider
 - Development of off-card (and possibly on-card) applications

© André Zúquete Security 18

Cryptographic services

- Symmetric and asymmetric ciphers
- Key generation
- Key management
 - Key import
 - Key export
- Digital signatures
 - Generation
 - Verification
- Digest functions
- Management of public key certificates
 - Generation
 - Verification

© André Zúquete

Security

19

Cryptographic services: Middleware

- Libraries that bridge the gap between functionalities of smartcards and high-level applications
- Some standard approaches:
 - PKCS #11
 - Cryptographic Token Interface Standard (Cryptoki)
 - Defined by RSA Security Inc.
 - PKCS #15
 - Cryptographic Token Information Format Standard
 - Defined by RSA Security Inc.
 - CAPI CSP
 - CryptoAPI Cryptographic Service Provider

© André Zúquet Defined by Microsoft for Windows systems

20

PKCS #11:

Cryptoki sessions

- Logical connections between applications and tokens
 - Read-only sessions
 - Read/write sessions
 - Session owners
 - Public
 - User
 - Security Officer (SO)
- Operations on open sessions
 - Administrative
 - Login/logout
 - Object management
 - Create / destroy an object on the token
 - Cryptographic
- Session objects
- Transient objects created during sessions
- Lifetime of sessions
 - Usually for a single operation on the token

© André Zúquete Security 23

PKCS #11:

Cryptoki R/O sessions login/logout

- R/O Public Session
 - Read-only access to public token objects
 - Read/write access to public session objects
- R/O User Functions
 - Read-only access to all token objects (public or private)
 - Read/write access to all session objects (public or private)

Security

© André Zúquete

24

