

1. Exponential Function

x	-7	-4	-1	2	5	8	11
H(x)	-125	-13	1	2.75	2.969	2.996	2.999

b)
$$\lim_{x \to -1} H(x) =$$

c)
$$\lim_{x\to\infty} H(x) = 3$$

a)
$$\lim_{x\to-\infty} G(x) =$$

b)
$$\lim_{x \to -2^{-}} G(x) = \frac{1}{3}$$

c)
$$\lim_{x \to -2^+} G(x) = \frac{1}{3}$$

d)
$$\lim_{x \to -2} G(x) = \frac{1}{3}$$

$$e) \lim_{x \to 1^{-}} G(x) = -\infty$$

f)
$$\lim_{x \to 1^+} G(x) = +\infty$$

g)
$$\lim_{x\to 1} G(x) =$$

h)
$$\lim_{x \to \infty} G(x) =$$
 (HA?)

Rational Function		Hale			√A			
x	-10000	0.999	1	1.001	3.999	4	4.001	10000
H(x)	1.9999	-2.331	Undefined	-2.335	-12998	Undefined	13002	2.001

Hale

a)
$$\lim_{x \to \infty} H(x) = 2$$

b)
$$\lim_{x\to 1} H(x) = \frac{2.3}{2.3}$$

c)
$$\lim_{x \to 4^+} H(x) = 4$$

d)
$$\lim_{x\to 4^-} (x) = -\infty$$

e)
$$\lim_{x\to 4} (x) =$$
 DNE

4. The graph of h(x) is given.

a)
$$\lim_{x \to \infty} h(x) = 2$$
 b

a)
$$\lim_{x \to 1^{-}} h(x) = 2$$
 b) $\lim_{x \to 1^{+}} h(x) = -3$

c)
$$\lim_{x \to 1} h(x) = \text{DVE}$$
 d) $h(1) = -1$

d)
$$h(1) = -$$

e)
$$h(-2) = 4$$

e)
$$h(-2) = 4$$
 f) $\lim_{x \to -2} h(x) = 4$

5. The graph of g(x) is given.

a)
$$\lim_{x\to 0^{-}} g(x) = -\infty$$

b)
$$\lim_{x \to 1^+} g(x) = -2$$

c)
$$\lim_{x \to \infty} g(x) = 4$$

d)
$$\lim_{x\to 4} g(x) =$$

e)
$$g(4) = -3$$

c)
$$\lim_{x \to -\infty} g(x) = 4$$
 d) $\lim_{x \to 4} g(x) = 4$
e) $g(4) = -3$ f) $\lim_{x \to 3} g(x) = 2$

6. The graph of f(x) is given.

a)
$$\lim_{x \to 0} f(x) =$$

b)
$$\lim_{x \to -\infty} f(x) = 2$$

c)
$$\lim_{x \to \infty} f(x) = 2$$

a)
$$\lim_{x \to 0} f(x) = 1$$

b) $\lim_{x \to -\infty} f(x) = 2$
c) $\lim_{x \to \infty} f(x) = 2$
d) $\lim_{x \to 1^{+}} f(x) = 2$

e)
$$\lim_{x \to 1^{-}} f(x) =$$

e)
$$\lim_{x \to 1^{-}} f(x) = 0$$
 f) $\lim_{x \to 1} f(x) = 0$

7. The graph of q(x) is given.

a)
$$\lim_{x\to 0} q(x) =$$

a)
$$\lim_{x \to 0} q(x) = 1$$
 b) $\lim_{x \to -3} q(x) = -2$

c)
$$\lim_{x \to a} q(x) = 3$$

c)
$$\lim_{x \to 4} q(x) = 3$$
 d) $\lim_{x \to -4} q(x) = -3$

e)
$$q(-3) = 4$$
 f) $q(4) = 6$

f)
$$q(4) =$$

Given the graph of the function, g(x), below, determine if the statements are true or false. For statements that are false, explain why.

9. $\lim_{x\to c} g(x)$ exists for every value of c on the interval (-1, 1).

10. $\lim_{x\to 2} g(x)$ does not exist.

11.
$$\lim_{x \to 1^{-}} f(x) = 3$$
 $\lim_{x \to 1^{+}} f(x) = -1$ $f(1) = 1$

12. $\lim_{x \to -2^{-}} f(x) = -\infty$ $\lim_{x \to 2^{+}} f(x) = \infty$ f(2) is undefined but $\lim_{x \to 2^{+}} f(x)$ exists.

13. In exercise 11, does $\lim_{x \to \infty} f(x)$ exist? Explain why or why not.

14.
$$\lim_{x \to -\frac{1}{2}} 3x^{2}(2x-1)$$

$$3(-\frac{1}{2})^{2}(3(-\frac{1}{2})-1)$$

$$3(\frac{1}{4})(-1-1)$$

$$3(\frac{1}{4})(-2)$$

$$-\frac{1}{4}(-2)$$

$$-\frac{1}{4}(-2)$$

15.
$$\lim_{x \to -1} x^3 + 2x^2 - 3x + 3$$

 $(-1)^3 + 2(-1)^2 - 3(-1) + 3$
 $-(-1)^4 + 2(-1)^2 - 3(-1) + 3$
 $-(-1)^4 + 2(-1)^2 + 3 + 3$
 $-(-1)^4 + 2(-1)^2 + 3 + 3$
 $-(-1)^4 + 2(-1)^2 + 3 + 3$

16.
$$\lim_{x \to -2} (x-6)^{\frac{2}{3}}$$

$$(-2-6)^{\frac{2}{3}}$$

$$(-8)^{\frac{2}{3}}$$
Yewrite
$$(\sqrt[3]{-8})^{2}$$

$$(-2)^{2} = \sqrt[4]{4}$$

17.
$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\text{Plog in first}$$

$$\frac{20}{4} = 5$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{x + 2}$$

18.
$$\lim_{\theta \to \frac{\pi}{6}} \theta^2 \tan \theta$$

$$\left(\frac{\pi}{6}\right)^2 + \sqrt{\sqrt{3}}$$

$$\left(\frac{\pi^2}{3}\right)^2 \left(\frac{\sqrt{3}}{3}\right)^2 \left(\frac{\pi^2}{3}\right)^2 \left(\frac$$

19.
$$\lim_{x\to 0} \frac{(x+4)^2-16}{x}$$

$$\frac{(o+4)^2-16}{(o)}$$

$$\frac{-2}{(o)}$$

$$\frac{-2}{(o)}$$
Some Work needs to be done
$$\frac{-2}{(o)}$$
Lim $\frac{-2}{x}$

$$\frac{-2}{x}$$

20.
$$\lim_{x \to 1} \frac{x-1}{x^2 - 1}$$
 = $\frac{0}{0}$

$$| X \rightarrow 1 \quad X \rightarrow 1$$

$$| X \rightarrow 1 \quad X$$

21.
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \frac{2}{6}$$

$$(im (X-2)(X-1))$$

$$X-72 (X-2)(X+2)$$

$$lim X-1 = 1$$

$$X-72 X+2 = 4$$

22.
$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2} = \frac{8}{8}$$

$$\lim_{x \to 0} \frac{x^2 (5x + 8)}{x^2 (3x^2 - 16)}$$

$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2} = \frac{8}{16}$$

$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2} = \frac{8}{16}$$

$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2} = \frac{8}{16}$$

23.
$$\lim_{x \to 0} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$$

$$\lim_{2 \to \infty} \frac{2 - (x+2)}{x}$$

$$\lim_{x \to \infty} \frac{2 - (x+2)}{x}$$

$$\lim_{x \to \infty} \frac{2 - (x+2)}{x}$$

$$\lim_{x \to \infty} \left(-\frac{x}{2(x+2)} \right) \left(\frac{1}{x} \right)$$

$$\lim_{x \to \infty} \frac{-1}{2(x+2)} \left(-\frac{1}{4} \right)$$

24.
$$\lim_{x\to 0} \frac{(2+x)^3 - 8}{x}$$

$$\lim_{x\to 0} \frac{(2+x)^3 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8 - 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8}{x}$$

$$\lim_{x\to 0} \frac{x^3 + 8x^2 + 12x + 8}{x}$$

25.
$$\lim_{h \to 0} \frac{(x+h)^2 + 2(x+h) - 3 - (x^2 + 2x - 3)}{h}$$

$$\lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 2x + 2h - 3 - x^2 - 2x + 3}{h}$$

$$\lim_{h \to 0} \frac{2xh + h^2 + 2h}{h}$$

$$\lim_{h \to 0} \frac{h(2x+h+2)}{h}$$

$$\lim_{h \to 0} 2x + h + 2 = 2x + 2$$

26.
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
 if $f(x) = 3x^2 - 2x$

lim $\frac{3(x+h)^2 - 2(x+h) - (3x^2 - 2x)}{h}$ if $\frac{3(x^3 + 2xh + h^3) - 2x - 2h}{h}$ if $\frac{3(x^3 + 2xh + h^3) - 2x - 2h}{h}$ if $\frac{3x^2 + 6xh + 3h^2 - 2x - 2h - 3x^2 + 2x}{h}$

lim $\frac{3x^2 + 6xh + 3h^2 - 2x - 2h - 3x^2 + 2x}{h}$ if $\frac{3x^2 + 6xh + 3h^2 - 2x - 2h - 3x^2 + 2x}{h}$

lim $\frac{6xh + 3h^2 - 2h}{h}$ if $\frac{6$

typo on homework should be "h" going to zero not x

27.
$$\lim_{x \to 2} f(x)$$
 if $f(x) = \begin{cases} 2x^2 - 4x, & x < 2 \\ 4\sin(\frac{\pi x}{4}), & x > 2 \end{cases}$

$$\lim_{X\to 2^{-}} f(x)$$

$$\lim_{X\to 2^{-}} f(x)$$

$$\lim_{X\to 2^{-}} 2x^{-} + 1$$

$$\lim_$$

28.
$$\lim_{x \to 3} e^{x} \cos\left(\frac{\pi x}{3}\right)$$

$$e^{3} \cos\left(\frac{3\pi}{3}\right)$$

$$e^{3} \cos\left(\frac{3\pi}{3}\right)$$

29.
$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1}$$

$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{(x+3)} = \frac{1}{(x+3)} = \frac{1}{$$

31.
$$\lim_{x \to -3^{+}} \frac{2x^{2} - 9x + 9}{x^{2} - 9}$$

$$(x - 3)(x + 3)$$

$$VA \text{ at } x = -3$$

$$VA \text{ at } x = -$$

32.
$$\lim_{x \to 0} \frac{\frac{1}{x-2} + \frac{1}{2}}{x}$$
 $\lim_{x \to 0} \frac{\frac{2 + (x-2)}{x}}{x}$
 $\lim_{x \to 0} \frac{\frac{2 + (x-2)}{x}}{x}$
 $\lim_{x \to 0} \frac{x}{x}$
 $\lim_{x \to 0} \frac{x}{x}$

33.
$$\lim_{x \to -2} \begin{cases} 2-x, & x < -2 \\ x^2 - 2x, & x > -2 \end{cases}$$

$$\text{Piecewise}$$

$$\text{Look of } X = -2 \text{ from with siles}$$

$$\text{Siles}$$

$$\text{Siles$$

34. If $\lim_{x\to 3} f(x) = 2$ and $\lim_{x\to 3} g(x) = -4$, find each of the following limits. Show your analysis applying

the properties of limits.

a.
$$\lim_{x \to 3} \left[\frac{5f(x)}{g(x)} \right]$$

b.
$$\lim_{x \to 3} [f(x) + 2g(x)]$$

c.
$$\lim_{x \to 3} \sqrt{4f(x)}$$

$$2\sqrt{\lim_{x\to 3}f(x)}$$

34. If $\lim_{x\to 3} f(x) = 2$ and $\lim_{x\to 3} g(x) = -4$, find each of the following limits. Show your analysis applying the properties of limits.

d.
$$\lim_{x \to 3} \frac{g(x)}{8}$$

e.
$$\lim_{x \to 3} [3f(x) - g(x)]$$

f.
$$\lim_{x \to 3} \left[\frac{f(x)g(x)}{12} \right]$$

35. If $\lim_{x\to 4} f(x) = 0$ and $\lim_{x\to 4} g(x) = 3$, find each of the following limits. Show your analysis applying the properties of limits.

a.
$$\lim_{x \to 4} \left[\frac{g(x)}{f(x) - 1} \right]$$

b.
$$\lim_{x \to 4} xf(x)$$

Find the limit of each of the following exponential functions. Sketch a graph of each function to aid in your determination of the limit.

39. Using the graph of g(x) pictured to the right, find each of the following limits.

$$\lim_{x \to \infty} g(x) = \underline{\hspace{1cm}}$$

a.
$$\lim_{x \to \infty} g(x) = \underline{\hspace{1cm}}$$
 b. $\lim_{x \to -\infty} g(x) = \underline{\hspace{1cm}}$ DUE

$$\underline{c}. \quad \lim_{x \to -1} g(x) = \underline{\qquad}$$

$$\lim_{x \to 0} \frac{2\sin(2x)}{5x} \qquad \lim_{x \to 0} \frac{1 - \sin(2x)}{\cos(2x)}$$

$$\lim_{x \to 0} \frac{2x}{5\sin(2x)}$$

$$\lim_{x\to 0}\frac{1-\cos(3x)}{5x}$$

$$\frac{1}{5}\lim_{X\to 0}3\left(\frac{1-\cos(3x)}{3x}\right)$$

Find the value of each limit. For a limit that does not exist, state why.

lim (1-sino)(1+sino)
(1-sino)

42.
$$\lim_{x \to 3} \begin{cases} 2x^2 - 3x, & x < 3 \\ 8 - \cos\left(\frac{\pi x}{3}\right), & x > 3 \end{cases}$$

$$\lim_{x \to 3^{-1}} 2x^2 - 3x = 9$$

$$\lim_{x \to 3^{+}} 8 - \cos\frac{\pi x}{3} = 9$$

$$\lim_{x \to 3^{+}} 8 - \cos\frac{\pi x}{3} = 9$$

$$\lim_{x \to 3^{+}} 8 - \cos\frac{\pi x}{3} = 9$$

43.
$$\lim_{\theta \to 0} \frac{2\sin 3\theta}{\theta}$$

$$\lim_{\theta \to 0} \frac{2\sin 3\theta}{\theta}$$

$$\lim_{\theta \to 0} \frac{2\sin 3\theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{2\sin 3\theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{2\sin 3\theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{3\sin 3\theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{2\sin 3\theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{3\sin 3\theta}{3\theta}$$

44.
$$\lim_{x\to 0} \frac{\sin x}{2x^2 - x}$$
Fraction
$$\lim_{X\to 0} \frac{\sin x}{2x^2 - x}$$
Fraction
$$\lim_{X\to 0} \frac{\sin x}{x}$$

$$\lim_{X\to 0} \frac{\sin x}{x(2x-1)}$$

45.
$$\lim_{x \to 0} \frac{5x + \sin 3x}{x}$$
(eurik
$$\lim_{x \to 0} \frac{5x}{x} + \lim_{x \to 0} \frac{5 \ln 3x}{x}$$

$$\lim_{x \to 0} 5 + \lim_{x \to 0} \frac{3 \sin 3x}{x}$$

$$\int_{x \to 0} 5 + \lim_{x \to 0} \frac{3 \sin 3x}{3 \cdot x}$$

$$5 + 3 \cdot (1)$$

$$8$$

46.
$$\lim_{x \to 0} \frac{\sin 2x}{6x}$$

$$\int_{1}^{\infty} \frac{\sin 2x}{3} \frac{\sin 2x}{2x}$$

$$\int_{3}^{\infty} \frac{\sin 2x}{3} \frac{\sin 2x}{2x}$$

$$\int_{3}^{\infty} \frac{\sin 2x}{3} \frac{\sin 2x}{2x}$$

$$\int_{3}^{\infty} \frac{\sin 2x}{3} \frac{\sin 2x}{2x}$$

47.
$$\lim_{x \to 0} \frac{2\sin 4x}{3x}$$

$$\frac{2}{3} \lim_{x \to 0} \frac{45 \sin 4x}{4x}$$

$$\frac{8}{3} \lim_{x \to 0} \frac{\sin 4x}{4x}$$

$$\frac{8}{3} \lim_{x \to 0} \frac{\sin 4x}{4x}$$

$$\frac{8}{3} \lim_{x \to 0} \frac{\sin 4x}{4x}$$

48.
$$\lim_{\theta \to 0} \frac{\cos \theta \tan \theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{\cos \theta \tan \theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{\cos \theta \tan \theta}{3\theta}$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\cos \theta}$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{3\theta}$$

49.
$$\lim_{\theta \to 0} \frac{3 - 3\cos\theta}{\theta}$$

$$\lim_{\theta \to 0} \frac{3 - (1 - \cos\theta)}{\theta}$$
3 (im 1 - \cos \theta \text{ \text{\ti}\text{\texi\tex{\text{\text{\texit{\texit{\

50.
$$\lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{\cot \theta}$$

$$\lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{\cot \theta}$$

$$\lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{\cos \theta}$$

$$\lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{\cos \theta}$$

$$\lim_{\theta \to \frac{\pi}{2}} \cos \theta - \sin \theta$$

$$\lim_{\theta \to \frac{\pi}{2}} \cos \theta$$

$$\lim_{\theta \to \frac{\pi}{2}} \cos \theta - \sin \theta$$

$$\lim_{\theta \to \frac{\pi}{2}} \cos \theta$$

$$\lim_{\theta \to \frac{\pi}{2}} \cos \theta$$

51.
$$\lim_{\theta \to 0} \frac{1 - \tan \theta}{\sin \theta - \cos \theta}$$

$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta - \cos \theta}$$

$$8x^{3} - 27y^{3}$$

$$(2x)^{3} - (3y)$$

$$(2x)^{2} - (3y)$$

$$(2x - 3y)(1x^{2} + 6xy + 9y^{2})$$

$$= (x+3)^{3} - (x+3)(x+3)(x+3)$$

$$(x^{2} + 6x + 9)(x+3)$$

$$54. \quad \lim_{x \to \infty} F(x) = \underline{\qquad \qquad}$$

55.
$$\lim_{x \to 2} F(x) =$$

56.
$$\lim_{x \to -2^{-}} F(x) = _{\underline{\hspace{1cm}}}$$

57.
$$\lim_{x \to -2^+} F(x) = \underline{\hspace{1cm}}$$

58.
$$\lim_{x \to -2} F(x) = _{}^{}$$

60.
$$\lim_{x \to -5} F(x) =$$
 61. $\underline{F}(-5) =$ 7

63.
$$\lim_{x \to 1^+} F(x) =$$
 64. $\lim_{x \to 1^-} F(x) =$ _____

64.
$$\lim_{x \to 1^{-}} F(x) =$$

65.
$$\lim_{x \to 1} F(x) =$$

66.
$$\lim_{x \to -3^+} F(x) =$$
 67. $\lim_{x \to -3^-} F(x) =$ _____

67.
$$\lim_{x \to -3^{-}} F(x) =$$

68.
$$F(-2) = ______$$
 69. $F(-3) = ________$ VA

70.
$$x = -5$$

71.
$$x = 1$$

72.
$$x = -3$$

73.
$$\underline{x} = -2$$

Write a discussion of continuity for each of the functions below. Be sure to include in your discussion where the function is continuous, and, for the values where the function is not continuous, use the three part definition to establish discontinuity.

75. Graph of h(x)

Don't say VA Vood proving it exists by limits

- don't say removable disc without proving it exist by limits

11m /(x)=20 :: DNE

Find the value of <u>a that</u> makes each of the functions below everywhere continuous. Write the two limits that must be equal in order for the function to be continuous.

$$76. \ f(x) = \begin{cases} 4-x^2, & x < -1 \\ ax^2 - 1, & x \ge -1 \end{cases}$$

$$\lim_{x \to -1^-} f(x) \quad \text{must equal } \lim_{x \to -1^+} f(x)$$

$$\lim_{x \to -1^-} 4 - x^2 = \lim_{x \to -1^+} 4 - x^2 = \lim_{x \to -1^+} 4 - \lim_{x \to -1^+} 4 -$$