L2 Random Variables

这次讨论的内容稍微有点无聊,然后会涉及到比较多求积分和求级数的内容。但是这部分又是概率论模型的基础——如果要研究实际问题,这些模型都是必不可少的。因此,我们这次先比较全面地给出这些模型,之后的讨论班我们再研究这些模型背后的实际问题(这部分要交给你们来讲,所以大家不妨先自己研究研究一些实际问题)。

1 Random Variable Basics

Definition (Random Variable) A random variable is a function $X : \Omega \to \mathbb{R}$ with the property that $\{\omega \in \Omega : X(\omega) \in \Sigma\}$ for each $x \in \mathbb{R}$. Such a function is said to be Σ -measurable.

Definition (Distribution Functions) The **distribution function** of a random variable X is the function $F: \mathbb{R} \to [0,1]$ given by $F(x) = \Pr(X \le x)$.

分布函数是表示随机变量最通用也是最根本的方式。因为概率密度函数和概率质量函数只能描述部分的随机变量,两者加起来也无法描述所有的随机变量。

Lemma (Properties of Distribution Functions)

- 1. $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- 2. if x < y then $F(x) \le F(y)$
- 3. F is right-continuous, that is, $F(x+h) \to F(x)$ as $h \downarrow 0$.

Note: In order to prove the third property, the theorem of continuity of probability measures is needed.

我们没有提到概率测度的连续性,因为我想避免掉一些比较高等的数学——比方说,集合序列的极限是怎么定义的? 大家学过数列和函数的极限是用 $\epsilon-N/\delta$ 语言定义的,但是集合是不能直接作差的。如果对这部分感兴趣的话,大家可以去看一下实分析的教材。

Definition (Independence of Random Variable) Random variables X and Y are called **independent** if $\{X \le x\}$ and $\{Y \le y\}$ are independent events for all $x, y \in \mathbb{R}$.

1.1 Discrete Random Variable

Definition (Discrete Random Variable) The random variable X is called **discrete** if it takes values in some countable subset $\{x_1, x_2, \dots\}$, only, of \mathbb{R} . The **discrete random variable** X has **(probability) mass function** (\mathbf{pmf}) $f: \mathbb{R} \to [0, 1]$ given by $f(x) = \Pr(X = x)$.

Continous Random Variable 1.2

Definition (Continuous Random Variable) The random variable X is called **continuous** if its distribution function can be expressed as

$$F(x)=\int_{-\infty}^x f(u)du, x\in \mathbb{R}$$

for some integrable function $f: \mathbb{R} \to [0, \infty)$ called the (probability) density function (pdf) of X.

Note that the word 'continuous' is a misnomer when used in this regard: in describing X as continuous, we are referring to a property of its distribution function rather than of the random variable (function) X itself.

所以我们是怎么区分离散和连续的随机变量的呢? 我们看它们的分布函数可以怎么表示,如果能 用pmf表示, 那就是离散; 如果能用pdf表示, 那就是连续。不过, 有些随机变量的分布函数可能 既不是离散的, 也不是连续的。

钟开莱的教材没有使用discrete和continuous这两个词来区分这两类随机变量,而是通过"能用pmf 表示"和"能用pdf表示"来区分,因为他认为这两个词是不准确的。也许他的这个做法能让大家更 好的理解这两类随机变量的区别。

Moment and Deviation 1.3

这部分内容 (矩与偏差) 目前只需要大概了解即可,之后的讨论班我们会深入讨论。

Definition (Expectation) The mean value, or expectation, or expected value of the random variable X with mass function f is defined to be

$$\mathbb{E}(X) = \sum_{x:f(x)>0} x f(x)$$

whenever this sum is absolutely convergent.

Note: $\mathbb{E}(X)$ can be denoted as $\mathbb{E}X$.

Theorem (Linearity of Expectation) if $a, b \in R$ then $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$

注意: 期望的线性不需要随机变量独立的前提

Definition (Variance) The variance of the random variable X with mass function f is defined to be

$$\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}X^2$$

计算方差更多使用 $\mathbb{E}(X^2)$ $-\mathbb{E}X^2$,因为通常 $\mathbb{E}(X)$ 是已知的。 $\mathbb{E}(X)$ 称为一阶原点矩, $\mathbb{E}(X^2)$ 称为二阶原点矩, \mathbb{V} $\mathrm{var}(X)$ 000年。我们之后的讨论班会

Theorem. X and Y are **independent** and both have finite variances, then

$$Var(X + Y) = Var(X) + Var(Y)$$

2 Elementary Models

这部分会介绍一些常见的基础模型。这些模型是复杂模型的基础,也就是说复杂模型通常都是建立在这些基础模型之上。因此,把基础模型的性质 (pmf/pdf/cdf,均值,方差等)掌握好是非常重要的。

其中,不少模型可能会很难理解:为什么这样是对的?为什么这样能去拟合某个现象?如果从概率论的历史看,概率论早年的发展和统计是非常相关的。很多概率模型都脱胎于统计学家统计出来的数据。因此,现实似乎不是人们根据现象的原理去设计模型,而是人们根据现象的数据,找到一个能拟合得不错的模型,然后把模型用在新的现象。其实机器学习也有点这种感觉——大家很少会先全面分析一个数据集的性质,然后决定用什么模型去建模;大家可能通常先把所有模型都用上去,看看验证集哪个表现更好,以及检查一下有无过拟合,再拿那个最好的模型作为预测模型。

那我们会倾向于使用什么模型呢? 我觉得大概人们大概会考虑几个方面:

- 1. 准确性(这是废话,完全不准的模型谁想用?)
- 2. 简洁性 太过复杂的模型可能导致过拟合,而且也在计算上也不是很方便。
- 3. 良好的性质

为什么人们喜欢使用连续函数,而不是离散函数呢?很多时候就是因为连续函数有很好的性质,比方说无穷阶可导,比方说积分(积分有时候比求级数好求多了)。

至于选择了一个模型之后,怎么根据实际数据确定模型参数,这部分就是统计的内容了:参数估计(例如矩估计和最大似然估计)。

这些模型的分析需要比较好的微积分的基础 (有些离散分布可能需要些组合数学的基础),大家需要复习微积分时,不妨拿这些模型来分析分析 😏

2.1 Discrete Models

2.1.1 Bernoulli Trials

Definition (Bernoulli trials) A random variable X takes values 1 and 0 with probabilities p and 1-p, respectively. $\mathbb{E}(X) = p$, Var(X) = p(1-p).

2.1.2 Binomial Distribution

Definition (Binomial distribution) We perform n independent Bernoulli trials X_1, X_2, \ldots, X_n and count the total number of successes $Y = X_1 + X_2 + \cdots + X_n$. The mass function of Y is:

$$f(k) = \binom{n}{k} p^k (1-p)^k, k = 0, 1, 2, \dots, n.$$

 $\mathbb{E}(Y) = np, \operatorname{Var}(Y) = np(1-p).$

2.1.3 Geometric Distribution

Definition (Geometric distribution) A geometric variable X is a random variable with the geometric mass function

$$f(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

for some number p in (0,1). $\mathbb{E}(X) = p^{-1}$, $Var(X) = (1-p)p^{-2}$.

2.1.4 Poisson Distribution

Definition (Poisson distribution) A *Poisson* variable is a random variable with the Poisson mass function

$$f(k) = rac{\lambda^k}{k!} e^{-\lambda}$$

for some $\lambda > 0$. $\mathbb{E}(X) = \lambda$, $Var(X) = \lambda$.

2.2 Continous Models

2.2.1 Uniform Distribution (Continous)

Definition (Uniform Distribution) The random variable X is uniform on a, b if it has density function f:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b, \\ 0 & \text{otherwise,} \end{cases}$$

$$\mathbb{E}(X)=(a+b)/2, \mathrm{Var}(X)=\frac{(b-a)^2}{12}.$$

2.2.2 Exponential Distribution

Definition (Exponential distribution) The random variable X is exponential with parameter $\lambda(>0)$ if it has density function f:

$$f(x) = \lambda e^{-\lambda x}$$
, for $x \ge 0$

$$\mathbb{E}(X) = 1/\lambda, \operatorname{Var}(X) = 1/\lambda^2.$$

2.2.3 Normal Distribution

正态分布是一个有着比较深刻理论背景的模型,等我们学习中心极限定理时,我们会对其进行更加深入的研究。比方说,这个密度函数为什么是这个形式?这个问题并不trivial,我当时学概率论的时候,书里没讲,老师也没讲。

The normal (or Gaussian) distribution with two parameters μ and σ^2 has density function f:

$$f(x) = rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}(x-\mu)^2}, -\infty < x < \infty$$

$$\mathbb{E}(X) = \mu, \mathrm{Var}(X) = \sigma^2.$$

If $\mu = 0$ and $\sigma^2 = 1$ then f(x):

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}, -\infty < x < \infty$$

is the density of the standard normal distribution.

2.3 Summary

Distribution	Parameter	m pmf/pdf	$\mathbb{E}(X)$	Var(X)
Bernoulli	p	$f(k)=p^k(1-p)^{(1-k)}, k=0,1$	p	p(1-p)
Binomial	n, k, p	$f(k) = \binom{n}{k} p^k (1-p)^k, k = 0, 1, 2, \dots, n.$	np	np(1-p)
Geometric	p	$f(k) = p(1-p)^{k-1}, k = 1, 2, \dots$	p^{-1}	$(1-p)p^{-2}$
Poisson	λ	$f(k)=rac{\lambda^k}{k!}e^{-\lambda}$	λ	λ
Uniform (continuous)	$a,b\in\mathbb{N}$	$f(x) = egin{cases} rac{1}{b-a} & ext{if } a < x < b, \ 0 & ext{otherwise,} \end{cases}$	(a+b)/2	$\frac{(b-a)^2}{12}$
Exponential	λ	$f(x) = \lambda e^{-\lambda x}, x \geq 0$	$1/\lambda$	$1/\lambda^2$
Normal $N(\mu, \sigma)$	μ,σ	$f(x) = rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}, -\infty < x < \infty$	μ	σ^2