Εργασία στο μάθημα Ανάλυση Κοινωνικών Δικτύων για το ακαδημαϊκό έτος 2021-2022

Ραυτόπουλος Μάριος με αριθμό μητρώου 3180163 (φοιτητής τμήματος Πληροφορικής)

The Quaker Social Network

ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ:

- 1. ΣΥΝΟΨΗ
- 2. ΠΡΟΕΤΟΙΜΑΣΙΑ ΔΕΔΟΜΕΝΩΝ
- 3. ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ
- 4. ΕΠΊΛΟΓΟΣ
- 5. ΒΙΒΛΙΟΓΡΑΦΙΑ

ΚΕΦΑΛΑΙΟ 1 : ΣΥΝΟΨΗ

Ερευνούμε τη δομή του δικτύου των Κουάκερων.

Οι σχέσεις μεταξύ των Κουακέρων του 17ου αιώνα προσφέρονται για ανάλυση κοινωνικών δικτύων, διότι οι μελετητές έχουν συνδέσει εδώ και καιρό την ανάπτυξη και την αντοχή των Κουακέρων με την αποτελεσματικότητα των δικτύων τους:

Πριν υπάρξουν οι φίλοι στο Facebook, υπήρχε η Εταιρεία των Φίλων, γνωστή ως Κουάκεροι. Ιδρυμένοι στην Αγγλία στα μέσα του 17ου αιώνα, οι Κουάκεροι ήταν προτεστάντες χριστιανοί που διαφωνούσαν με την επίσημη Εκκλησία της Αγγλίας και προωθούσαν την ευρεία θρησκευτική ανεξιθρησκεία, προτιμώντας το υποτιθέμενο "εσωτερικό φως" και τη συνείδηση των χριστιανών από την επιβεβλημένη από το κράτος ορθοδοξία. Ο αριθμός των Κουάκερων αυξήθηκε ραγδαία στα μέσα και στα τέλη του 17ου αιώνα και τα μέλη τους εξαπλώθηκαν στις Βρετανικές Νήσους, στην Ευρώπη και στις αποικίες του Νέου Κόσμου.

ΚΕΦΑΛΑΙΟ 2: ΠΡΟΕΤΟΙΜΑΣΙΑ ΔΕΔΟΜΕΝΩΝ

Εργαλεία και μέθοδοι

<u>1.</u>

Σύνολα δεδομένων(datasets) από το GitHub: Ανοιχτού κώδικα πλατφόρμα για το κοινό. Συγκεκριμένα πάρθηκαν δύο αρχεία: το quaker-nodes.csv και το quaker-edges.csv

Στη συνέχεια, αυτά τα δύο αρχεία γίνονται import στο project που θα δημιουργήσουμε στο Gephi, για να προχωρήσουμε μετέπειτα στην ανάλυση του κοινωνικού δικτύου.

2.

Gephi 0.9.2: Λογισμικό ανοικτού κώδικα για την οπτικοποίηση δικτύων και την ανάλυση των χαρακτηριστικών του δικτύου.

Το csv των κόμβων (quaker-nodes.csv) περιέχει 96 διαφορετικούς Κουάκερους, δηλαδή, οι κόμβοι που χρησιμοποιούνται είναι unimodal και αναφέρονται σε ένα τύπο κόμβου(αναπαριστούν Κουάκερους).

Το quaker-nodes.csv περιέχει επίσης πληροφορίες χαρακτηριστικών όπως "ιστορική σημασία", "φύλο", "ημερομηνία γέννησης" και "ημερομηνία θανάτου".

Το csv των ακμών (quaker-edges.csv) περιέχει 162 μη σταθμισμένες (unweighted) σχέσεις μεταξύ αυτών των χαρακτήρων, οι οποίες προέκυψαν υπολογιστικά μέσω του *Oxford Dictionary of National Biography* και επιβεβαιώθηκαν και επεκτάθηκαν μέσω των συνεισφορών πλήθους μελετητών. Προφανώς, οι ακμές είναι αμφίδρομες (undirected) διότι μας ενδιαφέρει απλά η σχέση των συγκεκριμένων χαρακτήρων.

ΚΕΦΑΛΑΙΟ 3: ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ

ΜΕΡΟΣ 1: Αρχική γραφική αναπαράσταση του δικτύου μας:

Το layout που επιλέξαμε είναι το Force Atlas με τα αντίστοιχα settings:

ΜΕΡΟΣ 2: Βασικές τοπολογικές ιδιότητες

Ο Γράφος μας έχει 96 κόμβους και 162 ακμές. Οι κόμβοι αναπαριστούν τους Κουάκερους

και οι ακμές τις μεταξύ τους σχέσεις.

Η διάμετρος (το μεγαλύτερο shortest-path ανάμεσα σε όλα τα ζεύγη κόμβων) είναι ίση

με 8

Η ακτίνα(προσδιορίζει την ελάχιστη εκκεντρότητα) είναι ίση με 4

Και το μέσο μήκος μονοπατιού ίσο με 3.37

Οι παραπάνω τιμές βρίσκονται μέσω της ενότητας statistics που παρέχει το Gephi και συγκεκριμένα κάνοντας run το network diameter που δίνει τα αποτελέσματα που αναφέρθηκαν. Ενδεικτικά παρέχεται το παρακάτω screenshot:

Graph Distance Report

Parameters:

Network Interpretation: undirected

Results:

Diameter: 8

Average Path length: 3.3789473684210525

ΜΕΡΟΣ 3: Επιμέρους συνιστώσες

Μέσω της ενότητας filters που παρέχει το Gephi μπορούμε να εφαρμόσουμε Giant Component αλλά δε θα διαπιστώσουμε κάποια αλλαγή. Αυτό γίνεται διότι όλες οι οντότητες μας μπορούν να αλληλοεπιδράσουν μεταξύ τους και δεν εξαρτώνται από κάτι.

Degree Report

Results:

Average Degree: 3.375

Από το διάγραμμα εξάγουμε τα εξής:

Μέσος βαθμός κόμβου = 3.375, δηλαδή κάθε κόμβος επικοινωνεί κατά μέσο όρο με 3 άλλους κόμβους. Επίσης διαπιστώνουμε πως οι περισσότεροι κόμβοι επικοινωνούν με τουλάχιστον 1-2 κόμβους ενώ μόνο ένας επικοινωνεί με 22 που είναι και το μέγιστο

Γράφημα με βάσει τον βαθμό του κόμβου

** Παρατήρηση για τα γραφήματα που δημιουργήθηκαν από το Partition/Ranking: Σε όλα ισχύουν τα εξής (εκτός του Modularity, Homophily):

Όσο πιο έντονο γίνεται το κόκκινο τόσο μεγαλύτερη αντίστοιχη τιμή έχει ο κόμβος

Η κεντρικότητα betweenness μετράει όλες τις συντομότερες διαδρομές μεταξύ κάθε ζεύγους κόμβων του δικτύου και στη συνέχεια μετράει πόσες φορές ένας κόμβος βρίσκεται σε μια συντομότερη διαδρομή μεταξύ δύο άλλων. Στο διάγραμμα παρατηρούμε χαμηλές τιμές διότι δεν αλληλοεπιδρούν όλοι οι κομβόι μεταξύ τους εκτός από μερικούς με υψηλότερη τιμή όπως και ο κόμβος με το μέγιστο βαθμό(που αλληλοεπιδρά με τους περισσότερους).

Γράφημα βάσει του Betweenness Centrality

Closeness Centrality Distribution

Η κεντρικότητα εγγύτητας είναι ένας τρόπος εντοπισμού των κόμβων που είναι σε θέση να διαδίδουν πληροφορίες πολύ αποτελεσματικά σε έναν γράφο. Η κεντρικότητα εγγύτητας ενός κόμβου μετρά τη μέση εγγύτητά του (αντίστροφη απόσταση) προς όλους τους άλλους κόμβους. Οι κόμβοι με υψηλό σκορ εγγύτητας έχουν τις μικρότερες αποστάσεις από όλους τους άλλους κόμβους. Η κατανομή του διαγράμματος ακολουθεί την κανονική κατανομή καθώς βλέπουμε τιμές στο διάστημα [0, 1]. Προφανώς δεν λαμβάνονται οι ακραίες τιμές καθώς όλοι οι κόμβοι ανήκουν σε κάποιο shortest path, όχι όμως σε όλα.

Γράφημα με βάση το closeness centrality

Eccentricity Distribution

Το μέτρο της εκκεντρότητας αποτυπώνει την απόσταση μεταξύ ενός κόμβου και του κόμβου που απέχει περισσότερο από αυτόν. Άρα, μια υψηλή εκκεντρότητα σημαίνει ότι ο πιο απομακρυσμένος κόμβος στο δίκτυο είναι πολύ μακριά, ενώ μια χαμηλή εκκεντρότητα σημαίνει ότι ο πιο απομακρυσμένος κόμβος είναι στην πραγματικότητα αρκετά κοντά.

Όπως φαίνεται στο διάγραμμα, επιβεβαιώνεται και η τιμή της διαμέτρου αφού δεν υπάρχει απόσταση μεγαλύτερη από 8 μεταξύ όλων των κόμβων.

Γράφημα βάσει Eccentricity

Parameters:

Network Interpretation: undirected Number of iterations: 100 Sum change: 0.0032769965002385285

Results:

Eigenvector Centrality Distribution

Η κεντρικότητα ιδιοδιανύσματος είναι ένας δείκτης κεντρικότητας που υπολογίζει την κεντρικότητα ενός φορέα όχι μόνο με βάση τις συνδέσεις του, αλλά και με βάση την κεντρικότητα των συνδέσεων του φορέα αυτού. Η σημαντικότητα αυτού του ελέγχου δε φαίνεται καλά στο δίκτυο μας διότι το άτομο με το μεγαλύτερο σκορ στο διάγραμμα είναι και αυτό με τις περισσότερες συνδέσεις, πράγμα το οποίο θα μπορούσε να μην ισχύει (πχ αν είχαμε υποομάδες στο δίκτυο μας που επικοινωνούσαν όλες με ένα κόμβο αλλά πρακτικά δεν επηρεάζουν το σύνολο οπότε και ο υποτιθέμενος κόμβος του παραδείγματος δεν θα είχε μεγάλο σκορ ακόμα και να επικοινωνούσε με όλους αυτούς τους κόμβους επειδή αυτοί δε θα επικοινωνούσαν με πολλούς ή/και καθόλου άλλους κόμβους.)

Γράφημα σύμφωνα με το Eigenvector Centrality

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.403
Total triangles: 59
The Average Clustering Coefficient is the mean value of individual coefficients.

Clustering Coefficient Distribution

Ο συντελεστής ομαδοποίησης δείχνει πόσο καλά συνδεδεμένη είναι η γειτονιά του κόμβου. Εάν η γειτονιά είναι πλήρως συνδεδεμένη, ο συντελεστής ομαδοποίησης είναι 1, ενώ μια τιμή κοντά στο 0 σημαίνει ότι δεν υπάρχουν σχεδόν καθόλου συνδέσεις στη γειτονιά. Παρατηρούμε πως οι 'γειτονιές' των κόμβων δεν είναι ισχυρά συνδεδεμένες αφού οι τιμές της clustering coefficient συγκεντρώνονται κάτω από 0.5, κάτω από το μισό του διαστήματος δηλαδή, το οποίο φαίνεται και από το μέσο όρο που είναι 0.403.

Παρατηρούνται 59 τρίγωνα, τα οποία σίγουρα δεν είναι πολλά σύμφωνα με τις ακμές μας που είναι 162, καθώς και αφορούν ελάχιστους κόμβους σε σχέση με το υπόλοιπο σύνολο. (τρίγωνα εμφανίζονται κυρίως γύρω από το κόμβο με το μέγιστο βαθμό, κάτι που είναι λογικό και διαμορφώνει ισχυρή γειτονιά πράγμα όμως που δε συμβαίνει στο υπόλοιπο ποσοστό των κόμβων)

Παρακάτω δείχνουμε τους κόμβους με μηδενικό clustering coefficient που δεν σχηματίζουν τρίγωνα χωρίς απαραίτητα να έχουν μικρό βαθμό

Id	Label	Inter	historical	gender	birth	deat	othe	Com	Ecce	Closene	Harmonic Clo	Betweenn	Weight	Degree	Auth	Hub	Eigenvec	Clusterin
Daniel	Daniel		maker of	male	1648	1724	10010	0	6.0	0.308442	0.336491	94.0	2.0	2	0.034	0.034	0.08144	0.0
John	John		Quaker mi	male	1630	1696	10012	0	6.0	0.306452	0.329474	0.0	1.0	1	0.033	0.033	0.078047	0.0
Richar	Richar		Quaker ac	male	1628	1662	10006	0	5.0	0.324232	0.35193	4.763095	2.0	2	0.054	0.054	0.122587	0.0
Gilbert	Gilbert		Quaker ac	male	1626	1705	10007	0	6.0	0.318792	0.350526	4.009524	2.0	2	0.065	0.065	0.14329	0.0
Franci	Franci		Quaker a	male	1640	1727	10001	0	6.0	0.308442	0.336491	94.0	2.0	2	0.034	0.034	0.08144	0.0
Willia	Willia		Quaker sc	male	1601	1711	10010	0	6.0	0.317726	0.347895	4.066667	2.0	2	0.057	0.057	0.131812	0.0
Josep	Josep		religious	male	1663	1731	10013	0	6.0	0.273775	0.297719	0.0	1.0	1	0.023	0.023	0.053765	0.0
Dorca	Dorca		Quaker pr	female	1656	1659	10003	0	6.0	0.292308	0.32193	0.0	1.0	1	0.045	0.045	0.097732	0.0
Anne	Anne		Quaker pr	female	1627	1705	10001	0	6.0	0.263158	0.291579	5.841667	2.0	2	0.015	0.015	0.042083	0.0
Thom	Thom		Quaker pr	male	1640	1708	10001	0	7.0	0.260274	0.296942	28.907143	3.0	3	0.016	0.016	0.049215	0.0
Jane	Jane			female	1631	1711	10011	0	6.0	0.24359	0.260351	0.0	1.0	1	0.006	0.006	0.017548	0.0
Georg	Georg		religious	male	1551	1661	10004	0	6.0	0.296875	0.321754	0.0	1.0	1	0.03442	0.034	0.077291	0.0
Elizab	Elizab		Quaker mi	female	1555	1665	10007	0	6.0	0.300633	0.331404	186.0	2.0	2	0.03508	0.03508	0.081622	0.0
Thom	Thom		Quaker ac	male	1633	1720	10007	0	6.0	0.296875	0.321754	0.0	1.0	1	0.03442	0.034	0.077291	0.0
Samu	Samu		Quaker pr	male	1604	1665	10004	0	6.0	0.263889	0.283333	0.0	1.0	1	0.014	0.014	0.034369	0.0
Willia	Willia		Quaker pr	male	1552	1662	10000	0	6.0	0.244845	0.265614	0.0	1.0	1	0.011	0.011	0.027714	0.0
Willia	Willia		Quaker le	male	1627	1712	10003	0	6.0	0.258152	0.285088	19.142857	2.0	2	0.008	0.008	0.027533	0.0
John	John		Quaker le	male	1625	1697	10000	0	6.0	0.249344	0.26807	0.0	1.0	1	0.007	0.007	0.020371	0.0
Sir Ch	Sir Ch		naval offi	male	1666	1743	10012	0	6.0	0.266106	0.292281	94.0	2.0	2	0.01605	0.01605	0.04071	0.0
John	John		politician	male	1620	1679	10011	0	8.0	0.19	0.204449	0.0	1.0	1	0.00097	0.00097	0.005022	0.0
Thom	Thom		Quaker pr	male	1616	1660	10000	0	7.0	0.25066	0.271679	0.0	1.0	1	0.015	0.015	0.0334	0.0
Alice	Alice		Quaker mi	female	1619	1679	10003	0	6.0	0.270655	0.289298	0.0	1.0	1	0.016	0.016	0.036858	0.0
Antho	Antho		Quaker le	male	1643	1707	10010	0	7.0	0.248691	0.283534	29.834524	3.0	3	0.008	0.008	0.030462	0.0
Samu	Samu		Quaker ac	male	1631	1704	10002	0	6.0	0.25266	0.277018	11.009524	2.0	2	0.006	0.006	0.021611	0.0
Willia	Willia		Quaker pr	male	1627	1671	10011	0	7.0	0.239899	0.260551	0.0	1.0	1	0.006	0.006	0.019055	0.0
Henry	Henry		religious c	male	1673	1738	10009	0	7.0	0.236318	0.251679	0.0	1.0	1	0.004	0.004	0.012418	0.0
Willia	Willia		Quaker le	male	1628	1684	10004	0	8.0	0.189243	0.203421	0.0	1.0	1	0.000	0.000	0.004331	0.0
Thom	Thom		Quaker mi	male	1626	1666	10006	0	7.0	0.232843	0.255363	94.0	2.0	2	0.004	0.004	0.015043	0.0
Josep	Josep		historian	male	1683	1757	10001	0	6.0	0.245478	0.267018	94.0	2.0	2	0.005	0.005	0.016911	0.0
Samu	Samu		Quaker mi	male	1677	1753	10001	0	7.0	0.197505	0.211003	0.0	1.0	1	0.000	0.000	0.00456	0.0
Silvan	Silvan		apothecary	male	1691	1765	10001	0	7.0	0.236318	0.251679	0.0	1.0	1	0.004	0.004	0.012418	0.0
John	John		Quaker a	male	1655	1710	10009	0	6.0	0.258152	0.276316	0.0	1.0	1	0.009	0.009	0.02443	0.0
Lewis	Lewis		politician i	male	1671	1746	10008	0	7.0	0.210643	0.22589	0.0	1.0	1	0.002	0.002	0.007447	0.0

Παρακάτω δείχνουμε τους κόμβους με clustering coefficient = 1 που σχηματίζουν τρίγωνα χωρίς απαραίτητα να έχουν μεγάλο βαθμό

Franci Franci	physician male	1614 16	598 1000	i 0	6.0	0.298742	0.327193	0.0	2.0	2	0.050	0.050	0.118946	1.0
James James	Quaker m male	1636 16	556 1000	0	6.0	0.287009	0.314211	0.0	2.0	2	0.031	0.031	0.076232	1.0
David David	lawyer an male	1656 17	731 1000	· 0	5.0	0.320946	0.351053	0.0	2.0	2	0.042	0.042	0.107922	1.0
Thom	Quaker pr male	1630 16	591 1001	0	5.0	0.346715	0.378772	0.0	2.0	2	0.095	0.095	0.210143	1.0
Villia Willia	Quaker p male	1627 17	713 1000	0	5.0	0.346715	0.378772	0.0	2.0	2	0.095	0.095	0.210143	1.0
Villia Willia	Quaker ac male	1621 16	588 1000	i 0	5.0	0.333333	0.368947	0.0	3.0	3	0.110	0.110	0.235125	1.0
eter Peter	botanist male	1694 17	768 1000	2 0	6.0	0.245478	0.268246	0.0	2.0	2	0.006	0.006	0.023974	1.0
John John	botanist a male	1699 17	777 1000	0	6.0	0.245478	0.268246	0.0	2.0	2	0.006	0.006	0.023974	1.0
Villia Willia	religious male	1650 16	596 1001	0	6.0	0.29321	0.327193	0.0	2.0	2	0.052	0.052	0.113855	1.0
Rober	Quaker a male	1607 16	579 1001	0	6.0	0.29321	0.327193	0.0	2.0	2	0.052	0.052	0.113855	1.0
Gerva Gerva	Quaker le male	1569 16	579 1000	0	6.0	0.294118	0.328947	0.0	2.0	2	0.060	0.060	0.131132	1.0
Hanna	Quaker mi female	1656 16	571 1001	0	6.0	0.29321	0.327193	0.0	2.0	2	0.056	0.056	0.120932	1.0
Villia Willia	Quaker le male	1628 17	711 1000	3 0	6.0	0.277778	0.310702	0.0	2.0	2	0.057	0.057	0.119942	1.0
Edwar Edwar	parliamen male	1560 16	570 1001	0	6.0	0.259563	0.287018	0.0	2.0	2	0.016	0.016	0.044295	1.0
Thom	Quaker mi male	1630 16	591 1000	· 0	5.0	0.318792	0.347018	0.0	2.0	2	0.050	0.050	0.11514	1.0
Solom Solom	musician a male	1617 16	582 1000	3 0	6.0	0.278592	0.306667	0.0	2.0	2	0.024	0.024	0.061146	1.0
vlary Mary	Quaker pr female	1569 16	579 1000	0	6.0	0.263889	0.29193	0.0	2.0	2	0.029	0.029	0.062564	1.0
Mary	Quaker mi female	1623 16	598 1000	ł 0	6.0	0.263889	0.29193	0.0	2.0	2	0.029	0.029	0.062564	1.0

Παρατήρηση:

Μας παρέχετε επίσης και στήλη που δείχνει ακριβώς πόσα τρίγωνα σχηματίζονται ανά κόμβο που τα περισσότερα είναι στους κόμβους που εμφανίζουν τιμή σχεδόν ίση με το average clustering coefficient .

Γράφημα σύμφωνα με το clustering coefficient

<u>ΜΕΡΟΣ 7</u>: Γέφυρες

Αφού εγκαταστήσουμε το κατάλληλο plugin(Bridging Centrality (BriCe)) 'τρέχουμε' τον έλεγχο Bridging Centrality

Bridging Centrality Distribution

Παρατηρούμε χαμηλές τιμές, κάτι που είναι λογικό αφού στο γράφο μας δεν έχουμε υποκοινότητες που να ενώνονται δηλαδή μεγάλες ομάδες κόμβων. Το γράφημα μας αποτελείται από μια μόνο συνιστώσα, το οποίο διαπιστώθηκε και με την εφαρμογή του φίλτρου Giant Component.

Γράφημα με βάσει το Bridging Centrality.

Παρατηρούμε κόμβους με εντονότερο κόκκινο, αλλά οι υποομάδες που 'ενώνονται' έχουν μικρό αριθμό κόμβων γεγονός που δικαιολογεί και τις μικρές τιμές του ελέγχου.

ΜΕΡΟΣ 8: Φύλο και ομοιογένεια

Αφού εγκαταστήσουμε το κατάλληλο plugin (Circular Layout) επιλέγουμε Radial Axis Layout και στο group nodes by επιλέγουμε το Modularity Class και δημιουργούμε το παρακάτω γράφημα.

Όπως φαίνεται και στο διάγραμμα οι κόμβοι μας έχουν την τάση να δημιουργούν σχέσεις σχεδόν αποκλειστικά με την κοινότητά τους με ελάχιστες εξαιρέσεις.

ΜΕΡΟΣ 9: Πυκνότητα Γράφου

Graph Density Report

Parameters:

Network Interpretation: undirected

Results:

Density: 0.036

Η πυκνότητα γραφήματος αντιπροσωπεύει την αναλογία μεταξύ των ακμών που υπάρχουν σε ένα γράφημα και του μέγιστου αριθμού ακμών που μπορεί να περιέχει το γράφημα. Εννοιολογικά, παρέχει μια ιδέα για το πόσο πυκνός είναι ένας γράφος όσον αφορά τη συνδεσιμότητα ακμών.

Στο γράφο μας έχουμε πυκνότητα 0.036, αρκετά μικρός αριθμός δηλαδή που δείχνει ότι οι κόμβοι μας δεν έχουν ισχυρή σύνδεση. Θα προτιμούσαμε πυκνότητα κοντά στην τιμή '1' που είναι και η μέγιστη δυνατή αλλά αυτό συμβαίνει μόνο αν επικοινωνούσαν όλοι οι κόμβοι με όλους.

Modularity Report

Parameters:

Randomize: On Use edge weights: On Resolution: 1.0

Results:

Modularity: 0.573

Modularity with resolution: 0.573 Number of Communities: 7

Size Distribution

Παρατηρούμε 7 κοινότητες με τους περισσότερους κόμβους να ανήκουν στην 4^n κοινότητα. Επιβεβαιώνεται και από το παρακάτω γράφημα

Γράφημα βάσει Modularity Class

PageRank Report

Parameters:

Epsilon = 0.001 Probability = 0.85

Results:

PageRank Distribution

Το PageRank μετράει τη σημασία των ιστοσελίδων χρησιμοποιώντας τη δομή του δικτύου υπερσυνδέσμων του διαδικτύου. Και η βασική ιδέα, είναι ότι το PageRank θα αποδίδει μια βαθμολογία σπουδαιότητας σε κάθε κόμβο. Και η υπόθεση που κάνει, είναι ότι σημαντικοί κόμβοι είναι αυτοί που έχουν πολλούς εσωτερικούς συνδέσμους από σημαντικές σελίδες ή σημαντικούς άλλους κόμβους.

Λειτουργεί καλύτερα για δίκτυα που έχουν κατευθυνόμενες ακμές. Στην πραγματικότητα, οι σημαντικές σελίδες είναι εκείνες που έχουν πολλούς εσωτερικούς συνδέσμους από πιο σημαντικές σελίδες.

Στην περίπτωσή μας δεν έχουμε κατευθυνόμενες ακμές . Οι παράμετροι είναι οι default που δίνει το Gephi. Το epsilon είναι κριτήριο για τερματισμό του αλγορίθμου και η

πιθανότητα αντιπροσωπεύει την πιθανότητα ένας χρήστης που θα κλικάρει έναν τυχαίο σύνδεσμο να συνεχίσει να κλικάρει συνδέσμους πράγμα που σημαίνει πως οι κόμβοι αν ήταν σελίδες στο διαδίκτυο δεν έχουν μεγάλη πιθανότητα να κλικαριστούν.

Γράφημα βάσει PageRank

ΚΕΦΑΛΑΙΟ 4: ΕΠΙΛΟΓΟΣ

Η ανάλυση δικτύου είναι χρήσιμη σε πολλές εργασίες εφαρμογών που καθορίζουν την σημερινή κοινωνία . Μας βοηθά στη βαθιά κατανόηση της δομής μιας σχέσης στα κοινωνικά δίκτυα, μιας δομής ή μιας διαδικασίας αλλαγής στα φυσικά φαινόμενα ή ακόμη και στην ανάλυση των βιολογικών συστημάτων των οργανισμών.

Με την ανάλυση του παραπάνω δικτύου μαθαίνουμε σε βαθύτερο επίπεδο τον τρόπο οργάνωσης των actors του δικτύου , των ρόλων τους και των σχέσεων τους. Επίσης φαίνεται ότι η ανάλυση κοινωνικών δικτύων είναι ικανή να μας δώσει πληροφορίες όχι μόνο για fictional δίκτυα αλλά και πραγματικά ειδικά και σε μια εποχή που δεν υπήρχαν τα social media.

ΚΕΦΑΛΑΙΟ 5: ΒΙΒΛΙΟΓΡΑΦΙΑ

[1]: Σημειώσεις διδάσκοντα

[2]: https://gephi.org/users/ Εγκατάσταση του εργαλείου και χρήση του manual

[3]: https://towardsdatascience.com/network-analysis-d734cd7270f8 και https://en.wikipedia.org/wiki/Centrality για εξακρίβωση εννοιών.

[4]: Χρήση online-streaming πλατφόρμας για μια πιο πρακτική ανάλυση του εργαλείου Gephi.

[5]:Χρήση GitHub για άντληση dataset https://github.com/melaniewalsh/sample-social-network-datasets/tree/master/sample-datasets/quakers

[6]: Ο σύνδεσμος της εικόνας βρίσκεται με ένα απλό γκουγκλάρισμα Quakers/images