- 1. a)
- · MiP, SaM, SiP
- $\exists x. U(x) \land F(x), \forall y, S(y) \rightarrow U(x) \vdash \exists x : S(x) \land F(x)$
- 5. a) $\forall x.\varphi \vdash \forall y.\varphi[x := y]$
 - $\forall x.\varphi \rightarrow \varphi[x \coloneqq y]$ по условию y входит свободно в φ вместо x (аксиома 11)
 - $\varphi[x := y]$ M. P.
 - $\varphi[x := y] \to \varphi[x := y] \to \varphi[x := y]$
 - $\varphi[x := y] \rightarrow \varphi[x := y]$ M. P
 - $\varphi[x\coloneqq y]\to \forall y. \varphi[x\coloneqq y]$ по условию y не входит свободно в φ (правило вывода для \forall)
 - $\forall y. \varphi[x := y]$
 - **b)** $\vdash (\forall x.\varphi \rightarrow \exists x.\varphi) \Rightarrow \forall x.\varphi \vdash \exists x.\varphi$
 - $\forall x. \varphi \to \varphi[x \coloneqq \theta]$ где θ свободна для подстановки в φ axiom 11
 - $\varphi[x := \theta]$ M. P.
 - $\varphi[x \coloneqq \theta] \to \exists x. \varphi \text{ axiom } \mathbf{12}$
 - $\exists x.\varphi$ M. P
 - $\vdash \forall x. \forall x. \varphi \rightarrow \forall x. \varphi \Rightarrow \forall x. \forall x. \varphi \vdash \forall x. \varphi$
 - $\forall x. \forall x. \varphi \rightarrow \forall x. \varphi [x \coloneqq x]$ ахіот 11 подстановка x вместо x всегда свободна
 - $\forall x. \varphi[x := x] \equiv \forall x. \varphi$
 - c) $\forall x.\varphi \vdash \neg \exists x. \neg \varphi$

$$\exists x. \neg \varphi \to \neg \forall x. \varphi$$

- $(\forall x.\varphi \to \neg \exists x. \neg \varphi) \to (\exists x. \neg \varphi \to \neg \forall x. \varphi)$ контрпозиция
- **d)** $\forall x.\alpha \lor \beta \to \neg \exists \neg \alpha \land \neg \exists \neg \beta$
 - $\forall x.x > 1 \lor x > 3$
 - x=2 выполняется α но не β
- e)
- 6.
- 7.
- 8. $\forall x : \exists y : \varphi \to \exists x : \forall y : \varphi$
 - Возьмем $D = \mathbb{N}$
 - $\forall x : \exists y : x < y$
 - Ho $\neg \exists x : \forall y : x < y$

$$\exists x. \forall y. \varphi \rightarrow \forall x. \exists y. \varphi$$

- $f(x,y) = \begin{cases} \text{true if } x = \alpha \\ \text{false if } x \neq \alpha \end{cases}$
- $D = \{\alpha, \beta\}$