2021-2022 学年第一学期期末研究生随机过程试题回忆

1.课后题第6题总共3问

6 记
$$Z_i$$
 ($i=1$, 2 , ...) 为一串独立同分布的离散随机变量, $P\{Z_1=k\}=p_k \ge 0$ ($k=0$, 1 , 2 , ...), $\sum_{k=0}^{\infty}p_k=1$.

(1) 令 $X_n=\sum_{i=1}^{n}Z_i$ ($n=1$, 2 , ...), 并约定 $X_0=0$. 试证 X_n 为 Markov 链,并求其一步转移概率矩阵.

(2) 令 $X_n=Z_n$ ($n=1$, 2 , ...), 试证 X_n 为 Markov 链,并求其一步转移概率矩阵.

(3) 令 $X_n=\max\{Z_1, \ldots, Z_n\}$ ($n=1$, 2 , ...), 并约定 $X_0=0$. 试证 X_n 为 Markov 链,并求其一步转移概率矩阵.

2.证明题

- 3. (15分) 设随机过程 {X_n} 满足:
- (1) $X_n = f(X_{n-1}, \xi_n) (n \ge 1)$, 其中 $f: E \times E \to E$, 且 ξ_n 取值在 E 上;
- (2) $\{\xi_n, n \ge 1\}$ 为独立同分布随机变量,且 X_0 与 $\{\xi_n, n \ge 1\}$ 也相互独立. 证明: $\{X_n\}$ 是 Markov 链,而且其一步转移概率为,对于任意 $i, j \in E$,

$$p_{ij} = P(f(i, \xi_1) = j).$$

3.证明题

1. (20分) 设 $\{N_t, t \geq 0\}$ 是参数 λ 的齐次 Poisson 过程, 设 $X_1(t)$ 为第一个事件来到的时刻. 证明条件随机变量 $(X_1|N_t=1) \sim U(0,t)$, 即服从区间 (0,t) 上的均匀分布.

4.此题中的概率矩阵中的数值与试卷不同,不过题型一模一样

4. (20分)

(I) 设马尔科夫链 $\{X_n\}$ 的状态空间 $E = \{0, 1, 2, 3\}$, 一步转移概率矩阵为

$$P = \begin{pmatrix} 2/3 & 1/3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1/3 & 2/3 & 0 \\ 1/3 & 0 & 2/3 & 0 \end{pmatrix},$$

- (1) 试分解此链, 画出状态转移图, 并指出其非常返集和基本常返闭集; (2) 说明常返闭集中的状态是否为正常返态, 并计算其周期.
- (II) 设 Markov 链的状态空间 $E = \{0, 1, 2\}$, 其转移概率矩阵

$$P = \left(\begin{array}{ccc} 1/2 & 1/3 & 1/6 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/6 & 1/2 \end{array}\right).$$

(1) 判别以上 Markov 链是否具有平稳分布(写出理由); (2) 若具有平稳分布, 求平稳分布及 $\lim_{n\to\infty} P^{(n)}$.

5. 总共 3 小问

- 3. (20分) 设 $Y_t = \sum_{n=1}^{N_t} \xi_n$ 是一个复合 Poisson 过程, $t \geq 0$.

 (1) 若 $\varphi_{\xi}(u) \triangleq Ee^{iu\xi}$ (其中 $i = \sqrt{-1}$) 是随机变量 ξ_n 的特征函数, 试求 Y_t 的
- 特征函数 $\varphi_{Y_t}(u)$.
- (2) 若 $E(\xi^2) < \infty$, 试求 $E(Y_t)$, $Var(Y_t)$.
- (注: $\operatorname{Var}(Y_t) = E[\operatorname{Var}(Y_t|N_t)] + \operatorname{Var}[E(Y_t|N_t)].$)
- (3) 若ε 在 (a,b) 上服从均匀分布, 即 ε~U(a,b), 则求 Yt 的数学期望 E(Yt), 方差 Var(Yt), 以及特征函数。