

Seja muito bem-vindo(a)!

Machine Learning em Python

Introdução

Academy

Estamos no meio de uma revolução, proporcionada pelo Big Data.

Considerar uma carreira em Machine Learning e aprender tudo que for possível sobre esse assunto é uma das decisões mais inteligentes que você pode tomar na sua carreira professional.

Introdução

Introdução

Computação Cognitiva

O que vamos estudar neste capítulo?

- Processo de Machine Learning
- Biblioteca Scikit-learn
- Coleta, Análise Exploratória e Pré-Processamento
- Feature Selection
- Algoritmos de Machine Learning Classificação
- Algoritmos de Machine Learning Regressão
- Métodos Ensemble
- Algoritmo XGBoost

Introdução

AVISO IMPORTANTE

Este capítulo não é um curso de Machine Learning, mas sim uma introdução ao tema. O curso de Machine Learning é o número 4 da Formação Cientista de Dados e aborda o tema em profundidade. Nosso objetivo aqui é que você aprenda como aplicar Machine Learning, pois mais a frente no curso aplicaremos aprendizado de máquina em dados gerados em tempo real.

Algoritmos de Machine Learning

Algoritmos de Machine Learning

Hoje, como Cientista de Dados, é possível construir sistemas que trituram dados com algoritmos complexos, tudo com baixo custo e alta capacidade de processamento.

Algoritmos de Machine Learning

Machine Learning, ou seja a aplicação de algoritmos e ciência para extrair informações de dados, é um dos campos mais espetaculares da ciência da computação atualmente.

Algoritmos de Machine Learning

Big Data

Machine Learning

Capacidade Computacional

Algoritmos de Machine Learning

Algoritmos de Machine Learning

Unsupervised Learning Supervised Learning

Reinforcement Learning

Aprendizagem Supervisionada

Aprendizagem Supervisionada

Como uma criança aprende?

Um professor apresenta imagens, textos ou objetos informando para a criança o que aquilo representa.

Por exemplo, o professor apresenta a foto de um carro, explicando suas principais características.

Mais tarde, quando a criança encontrar algo com as mesmas características será capaz de reconhecer que se trata de um carro.

Aprendizagem Supervisionada

Aprendizagem Não Supervisionada

Aprendizagem Não Supervisionada

Na aprendizagem supervisionada, temos as entradas (as características) e temos as saídas. O algoritmo então aprende o relacionamento nos dados e um modelo é criado. Quando o modelo é apresentado a novos dados de entrada, é capaz de prever as saídas.

Aprendizagem Não Supervisionada

Na aprendizagem supervisionada, temos as entradas (as características) e temos as saídas. O algoritmo então aprende o relacionamento nos dados e um modelo é criado. Quando o modelo é apresentado a novos dados de entrada, é capaz de prever as saídas.

Mas e quando não temos os dados de saída?

Aprendizagem Não Supervisionada

Atributo 1	Atributo 2	Atributo 3	Saída	
x1	x2	x 3	Carro	Aprendizagem
x4	x5	x6	A <mark>viã</mark> o	Aprendizagem Supervisionada
	- T			
x7	x8	x9	?	Aprendizagem Não
x10	x11	x12	?	Supervisionada

Aprendizagem Não Supervisionada

Na aprendizagem não supervisionada, temos as entradas (as características) mas não temos as saídas. O algoritmo aprende o relacionamento nos dados e gera agrupamentos (clusters).

Aprendizagem Por Reforço

Aprendizagem Por Reforço

Como alguém aprende a andar de bicicleta?

Podemos usar a aprendizagem supervisionada?

E a aprendizagem não supervisionada?

Qual seria o melhor método neste caso?

Aprendizagem Por Reforço

Aprendizagem Por Reforço

Quando trabalhamos com aprendizagem supervisionada temos basicamente 2 tipos de algoritmos:

Regressão Logística

Principais Algoritmos de Machine Learning

Principais Algoritmos de Machine Learning

Algoritmo para Redução de Dimensionalidade

Principais Algoritmos de Machine Learning

Gradient Boosting & AdaBoost

Big Data Real-Time Analytics com Python e Spark

O Processo de Construção de Modelos de Machine Learning

O Processo de Construção de Modelos de Machine Learning

- Seleção do Modelo
- Cross-Validation
- Métricas de Performance
- Otimização

Big Data Real-Time Analytics com Python e Spark

Soluções de Machine Learning

Podemos construir modelos de Machine Learning de duas formas principais:

Desenvolvendo todo o algoritmo a partir do zero usando uma linguagem de programação.

Utilizando um framework pronto, onde os principais algoritmos já estão implementados.

Soluções de Machine Learning

Principais linguagens de programação para ML:

- Python
- Linguagem R
- Scala
- Java
- JavaScript
- Go
- C++ / C#

Principais frameworks para ML:

- Scikit-learn (Python)
- Caret (R)
- TensorFlow (Python, R, Java, C++)
- Apache Mahout (Python, Java)
- Spark Mllib (Scala, Java, Python, R)
- H2O (Java, Python)
- Weka (Java, Python)
- PyTorch, CNTK, MXNet (Python, C++, Java)

A linguagem Python oferece duas vantagens principais sobre todas as outras soluções. Primeiro, por se tratar de uma linguagem de uso geral, ela pode ser usada com qualquer uma destas soluções. Segundo, Python possui uma das mais poderosas soluções gratuitas de Machine Learning, o Scikit-learn, que estudaremos neste capítulo.

- Exc<mark>elente documentação</mark>
- Fácil e intuitivo
 - Diversos datasets
- Licença BSD (permite ser usado para fins comerciais)
- Confiável

Tenha uma Excelente Jornada de Aprendizagem.

Muito Obrigado por Participar!

Equipe Data Science Academy