$\mathbb{R} eal\ Analysis$

Aryaman Maithani

https://aryamanmaithani.github.io/

Autumn Semester 2020-21

Contents

0	Notations	2
1	Sets and stuff	4
2	Topology	6
3	Continuity	8
4	Derivatives	11
5	Integrals	13
6	Sequence and series of functions	14

 \S **0** Notations

§0. Notations

- 1. $\mathbb{N} = \{1, 2, 3, \ldots\}$, the set of positive integers.
- 2. \mathbb{Z} is the set of integers.
- 3. \mathbb{Q} is the set of rational numbers.
- 4. \mathbb{R} is the set of real numbers.
- 5. $A \subset B$ is read as "A is a subset of B." In particular, note that $A \subset A$ is true for any set A.
- 6. $A \subsetneq B$ is read "A is a proper subset of B."
- 7. \supset and \supsetneq are defined similarly.
- 8. Given a set S, the set $\mathcal{P}(S)$ is the *power set* of S, i.e., the set of all subsets of $\mathcal{P}(S)$.
- 9. Given a function $f: X \to Y, A \subset X, B \subset Y$, we define

$$f(A) = \{y \in Y \mid y = f(a) \text{ for some } a \in A\} \subset Y,$$

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X.$$

(Note that this f^{-1} is different from the inverse of a function. In particular, this is always defined, even if f is not bijective. However, the f and f^{-1} above need not be "inverses." See 1 of §1.)

Remark. The above is essentially an abuse of notation since we are using $f:A\to B$ to get another function $\tilde{f}:\mathcal{P}(A)\to\mathcal{P}(B)$ which we are again denoting with f.

10. If $f: X \to Y$ is a function and $A \subset X$, then $f|_A$ is a function

$$f|_A:A\to Y$$

defined as

$$f|_A(a) = f(a), \quad a \in A.$$

- 11. Since Rudin follows a non-usual definition for "countable," I shall use the following, which makes it always clear:
 - (a) At most countable: A set S is at most countable if there exists an injection $i:S\to\mathbb{N}$.

§0 Notations 3

(b) Countably infinite: A set S is countably infinite if it is at most countable and infinite.

(c) Uncountable: A set S is uncountable if it not at most countable.

In particular, I will not use the term "countable" just by itself since Rudin uses it to mean "countably infinite" but usually people mean "at most countable."

§1 Sets and stuff

§1. Sets and stuff

1. Given a function $f: X \to Y, A \subset X, B \subset Y$, we define

$$f(A) = \{y \in Y \mid y = f(a) \text{ for some } a \in A\} \subset Y,$$

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X.$$

4

- (a) Show that $A \subset f^{-1}(f(A))$.
 - Show that this inclusion can be proper.

Thus, it is possible that $A \neq f^{-1}(f(A))$.

Show that equality holds if f is injective.

- (b) Show that $B \supset f(f^{-1}(B))$.
 - Show that this inclusion can be proper.

Thus, it is possible that $B \neq f(f^{-1}(B))$.

Show that equality holds if f is surjective.

- 2. Let $i:A\to B$ and $j:B\to A$ be injections. Show that there exists a bijection between A and B. Remark. This is known as the Schröder–Bernstein theorem. (The link has a proof of it as well.)
- 3. Show that if S is infinite, then there is an injection $i : \mathbb{N} \to S$.
- 4. Show that if S is infinite and if there exists an injection $j: S \to \mathbb{N}$, then S is at countably infinite.
- 5. Let C be a countably infinite set. Show that if S is infinite and if there exists an injection $j:S\to C$, then S is countably infinite.
- 6. Show that \mathbb{Q} is countably infinite.
- 7. Show that if A is at most countable, then so is $A \times A$. Conclude that A^n is at most countable for all $n \ge 1$.
- 8. Show that \mathbb{Q}^n is countably infinite for all $n \geq 1$.
- 9. Let $\{0,1\}^{\mathbb{N}}$ be the set of all sequences with entries from $\{0,1\}$. In other words, $\{0,1\}^{\mathbb{N}}$ is the set of all functions from \mathbb{N} to $\{0,1\}$. Show that $\{0,1\}^{\mathbb{N}}$ is uncountable.
- 10. Show that [0,1] is uncountable. (Hence, so is \mathbb{R} .)
- 11. Show that there exists a bijection between any two of the following sets:

$$(0,1), [0,1], (0,1], \mathbb{R}, \mathbb{R} \setminus \mathbb{Q}.$$

§1 Sets and stuff 5

12. Show that there exists a bijection between $\mathcal{P}(\mathbb{N})$ and \mathbb{R} , where $\mathcal{P}(\mathbb{N})$ is the power set of \mathbb{N} .

(You can use properties such as binary/ternary expansions.)

13. Given a set I, $\{P_{\alpha}\}_{{\alpha}\in I}$ is a shorthand for writing a set of the form $\{P_{\alpha}\mid \alpha\in I\}$. (P_{α} is defined given the context.)

§2 Topology 6

§2. Topology

1. Let X be a metric space and let $U \subset X$. Define the boundary of U as

$$\partial U = \bar{U} \cap \overline{(U^c)}.$$

Show that $\partial U = U \setminus U^{\circ}$.

2. Prove or disprove that

$$(\partial U)^{\circ} = \varnothing$$

for any subset U of any metric space X.

HIDDEN: Disprove it. Even in the case that $X = \mathbb{R}^n$

3. Construct a set $A \subset [0,1] \times [0,1]$ such that A contains at most one point on each horizontal and vertical line but $\partial A = [0,1] \times [0,1]$.

HIDDEN: It suffices to ensure that A contains points in each quarter of the square $[0,1] \times [0,1]$ and also in each sixteenth, et cetera.

4. Let (X,d) be a metric space and $x \in X$. Let $\delta > 0$. Define the following sets:

$$B_{\delta}(x) := \{ y \in X \mid d(x, y) < \delta \},\$$

 $C_{\delta}(x) := \{ y \in X \mid d(x, y) \le \delta \}.$

Show that $\overline{B_{\delta}(x)} \subset C_{\delta}(x)$.

Can this inclusion be proper?

HIDDEN: Not if you stay in \mathbb{R}^n . Think about other spaces.

5. Topological Nim

You and your friend want to play Topological Nim. Here's how it works:

Let X be your favourite compact metric space and r>0 your favourite (positive) real number.

Each player removes an open disk of radius r from the space on their turn (only the center of the disk must not have been removed in a prior move), until one player—the winner—removes what remains of the space on his turn.

Show that no matter what moves are played, the game stops after a finite number of moves. (In other words, there is no infinite sequence of legal moves.)

Bonus: Fix $n \in \mathbb{N}$ and r > 0. Assuming optimal play, who will win the game if

$$X = S^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$$

 $\S 2$ Topology 7

with the standard metric? (The answer will depend on r.)

Credits: https://puzzling.stackexchange.com/questions/99859/

6. Let $\{I_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of disjoint nonempty open intervals.

That is, for each $\alpha \in \Lambda$, I_{α} is a nonempty open interval.

Moreover, if $\beta \in \Lambda$ with $\beta \neq \alpha$, then $I_{\alpha} \cap I_{\beta} = \emptyset$.

Show that Λ is at most countable.

HIDDEN: Each interval contains a rational. Construct an injection $\Lambda \to \mathbb{Q}$.

7. Let $I \subset \mathbb{R}$ be such that every $x \in I$ is an isolated point.

Show that I is at most countable.

HIDDEN: Try to use the previous result.

8. Show that every open set U in $\mathbb R$ can be written as a disjoint union of nonempty open intervals. Moreover, show that this set of open intervals is at most countable.

HIDDEN: Consider an equivalence relation \sim on U where $x \sim y$ iff $[x,y] \subset U$.

9. Let K be a compact subset of \mathbb{R}^n . Fix a constant r>0. Show that there exists a finite collection of points $x_1,\ldots,x_k\in K$ such that the collection of open balls $\{B(x_i,2r)\}_{i=1}^k$ forms an open cover of K while $B(x_i,r)$ are mutually disjoint.

§3 Continuity 8

§3. Continuity

1. Let $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the first projection map, that is,

$$\pi_1(x,y) = x.$$

Show that π_1 is an *open map*, that is, $\pi_1(U)$ is open in \mathbb{R} if U is open in \mathbb{R}^2 . Is it a closed map?

HIDDEN: No

2. Pasting lemma.

Let X be a metric space and $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of X.

Let Y be an arbitrary metric space. Suppose that for each $\alpha \in I$, we have a continuous function

$$f_{\alpha}:U_{\alpha}\to Y.$$

Moreover, assume that whenever $x \in U_{\alpha} \cap U_{\beta}$, then $f_{\alpha}(x) = f_{\beta}(x)$. (That is, the functions agree on their common domains.)

Show the following:

(a) There exists a unique function $f: X \to Y$ such that

$$f|_{U_{\alpha}} = f_{\alpha}$$
 for all $\alpha \in I$.

(Recall 10 from $\S 0$.)

- (b) The above function f is continuous.
- 3. Show that the above is not true if we replace "open" with "closed." (In particular, observe very carefully where you used open-ness of U_{α} .)
- 4. Show that the above becomes true once again after replacing "open" with "closed" if we further impose that I be finite.
- 5. Show that the above is equivalent to the following formulation:

Let $f: X \to Y$ be a function between metric spaces.

Let $X = C_1 \cup \cdots \cup C_n$ where each C_i is closed in X.

Assume that $f|_{C_i}:C_i\to Y$ is continuous for all $1\le i\le n$.

Then, f is continuous.

(Write the above formulation for open sets as well.)

Remark. The above lemma for closed sets makes it especially easy to directly verify the continuity of "piece-wise" defined functions, if each piece is closed in the ambient space. (cf. 8)

§3 Continuity 9

6. Give a counterexample if we further drop "closed" completely, even if I is finite. (In fact, you can give one with $X = \mathbb{R}$ and |I| = 2.)

- 7. Given an example of a continuous bijection $f: X \to Y$ such that $f^{-1}: Y \to X$ is not continuous.
- 8. Justify that the following is an example for the above question: $f:[0,1]\cup(2,3]\to[0,2]$ defined by

$$f(x) := \begin{cases} x & x \in [0, 1] \\ x - 1 & x \in (2, 3] \end{cases}.$$

- 9. Let $f: X \to Y$ be a function between metric spaces.
 - (a) f is said to be *open continuous* if $f^{-1}(U)$ is open in X whenever U is open in Y.
 - (b) f is said to be *closed continuous* if $f^{-1}(U)$ is closed in X whenever U is closed in Y.

Show that f is continuous iff f is open continuous iff f is closed continuous.

- 10. Let K be a compact metric space and Y an arbitrary metric space. Assume that $f: K \to Y$ is a continuous bijection.
 - (a) Let $C \subset K$ be closed. Show that C is compact.
 - (b) Show that f(C) is compact.
 - (c) Show that f(C) is closed.

Conclude that $f^{-1}: Y \to K$ is continuous.

11. The following question appeared on a test:

Given an example of a continuous bijection $f:X\to Y$ such that $f^{-1}:Y\to X$ is not continuous.

The lazy TA sees that a student has started their answer as

The following is example: Let $f: S^1 \to S^1$ be defined as...

The TA sees that and marks it wrong straight away. Was the TA justified (mathematically, not morally) in doing so? Why?

§3 Continuity 10

12. Let $I \subset \mathbb{R}$ and $f: I \to \mathbb{R}$ be continuous. We know that if I is compact, then f is bounded and it achieves (both) its bounds.

Show that if I is not compact, then one can always construct:

- (a) a continuous f which is not bounded,
- (b) a continuous f which is bounded but fails to achieve one (or both) of its bounds.
- 13. Let $I \subset \mathbb{R}$ and $f: I \to \mathbb{R}$ be continuous. We know that if I is compact, then f is uniformly continuous.

Can we again do something like the previous case?

That is: if I is not compact, then can one always construct a continuous f which is *not* uniformly continuous?

HIDDEN: No. Show that every function $f: \mathbb{Z} \to Y$ is not only continuous but uniformly continuous.

14. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that

$$\lim_{x\to\infty}f(x)$$
 and $\lim_{x\to-\infty}f(x)$

both exist and are finite.

Show that f is bounded.

15. Suppose f is continuous on [0,1] with f(0) = f(1) = 0. For all $x \in (0,1)$, there exists h > 0 with $0 \le x - h < x < x + h \le 1$ such that

$$f(x) = \frac{f(x+h) + f(x-h)}{2}.$$

Show that f(x) = 0 for all $x \in [0, 1]$.

(Note that given any x, the above only says that there's *one* particular h with the given property.)

§4. Derivatives

1. Prove or disprove:

Let $f : \mathbb{R} \to \mathbb{R}$ be continuously differentiable. If $f'(x_0) > 0$ for some $x_0 \in \mathbb{R}$, the there exists an interval I containing x_0 such that f is increasing on I.

HIDDEN: Prove.

2. Prove or disprove:

Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. If $f'(x_0) > 0$ for some $x_0 \in \mathbb{R}$, the there exists an interval I containing x_0 such that f is increasing on I.

HIDDEN: Disprove.

3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function such that $\lim_{x \to \infty} f(x)$ exists and is finite.

Prove or disprove:

$$\lim_{x \to \infty} f'(x) = 0.$$

HIDDEN: The limit need not exist

4. Let $f:\mathbb{R}\to\mathbb{R}$ be a differentiable function such that $\lim_{x\to\infty}f(x)$ exists and is finite. Further assume that f' is uniformly continuous.

Prove or disprove:

$$\lim_{x \to \infty} f'(x) = 0.$$

HIDDEN: Prove

5. Let I be an open interval and $f:I\to\mathbb{R}$ be differentiable. Show that f' need not be continuous.

Show that f' has the intermediate value property. That is, if $a,b \in I$ with f'(a) < r < f'(b), then there exists $c \in (\min\{a,b\}, \max\{a,b\})$ such that f'(c) = r.

This is known as Darboux's Theorem.

6. Let I be an open interval and $f:I\to\mathbb{R}$ be differentiable. Prove that f' is continuous if and only if the inverse image under f' of any point is a closed set.

7. Let (X,d) be a complete metric space. (That is, every Cauchy sequence in X converges.)

Let $f: X \to X$ be a function with the following property:

There exists 0 < K < 1 such that

$$d(f(x), f(y)) \le Kd(f(x), f(y))$$
 for all $x, y \in X$.

§4 Derivatives

Show that:

(a) f is (uniformly) continuous.

- (b) f has a fixed point. (That is, f(x) = x for some $x \in X$.)
- (c) f has a unique fixed point.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that $|f'(x)| \leq K$ for all $x \in \mathbb{R}$, where K < 1 is some fixed positive constant. Show that \mathbb{R} has a unique fixed point.
- 9. Give an example of a differentiable function $f: \mathbb{R} \to \mathbb{R}$ with |f'(x)| < 1 such that f has no unique fixed point.

Contemplate on how this is different from the earlier question.

10. Show that $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) = \exp\left(-\cos^2(x)\right)$$

has a unique fixed point.

(How would you calculate it numerically? Was your proof of 7b "constructive"?)

§5 Integrals

§5. Integrals

1. Does there exist a function $f:[0,1]\to\mathbb{R}$ such that it takes only a finitely many values and is Riemann Integrable on [0,1] but is not locally constant?

HIDDEN: Yes. Find/show the existence of one.

§6. Sequence and series of functions

1. (Non-)converse of Weierstrass M-test

Construct an example of a family $(f_n)_{n\in\mathbb{N}}$ of functions $f_n:\mathbb{R}\to\mathbb{R}$ such that $\sum f_n$ converges uniformly but $\sum M_n$ does not, where $M_n:=\sup_{x\in\mathbb{R}}|f_n(x)|$.

HIDDEN: Consider f_n such that f_n takes value 1/n at n and 0 otherwise.

2. Recall that if $f:K\to\mathbb{R}$ is a continuous function and K is compact, then there exists a sequence $(P_n)_{n\in\mathbb{N}}$ of polynomials such that $P_n\to f$ uniformly on K. Show that this need not be true if K is not compact.

HIDDEN: Consider $K = \mathbb{R}$ and $f = \exp$

- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Show that there exists a sequence $(P_n)_{n \in \mathbb{N}}$ of polynomials such that $P_n \to f$ **pointwise** on \mathbb{R} .
- 4. Let $K \subset \mathbb{R}$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of differentiable functions $f_n : K \to \mathbb{R}$. Suppose that $f_n \to f$ uniformly on compact subsets of K. Show that f is continuous.

Show that it is not necessary that f is differentiable (anywhere).

HIDDEN: Consider K to be compact and f to be a Weierstrass type function.

Remark. The above is different from the case in Complex Analysis where one has the following theorem:

Montel's Theorem.

Let Ω be an open set in $\mathbb C$ and (f_n) a sequence of (complex) differentiable functions $f_n:\Omega\to\mathbb C$.

Suppose that $f_n \to f$ uniformly on compact subsets of Ω .

Then, f is also (complex) differentiable.

Further, $f'_n \to f'$ uniformly on compact subsets of Ω .

This is just one example of how much "better" things behave in $\mathbb C$ Analysis as compared to $\mathbb R$. In $\mathbb R$, not only can f fail to be differentiable but it can differentiable *nowhere*.

5. Let $f_n: \mathbb{R} \to \mathbb{R}$ be defined as

$$f_n(x) := \left(1 + \frac{z}{n}\right)^n.$$

Show that f_n does not converge uniformly.