Exercises for Chapter 2

- 1. Show that the process $Z_t = a_t a_{t-2}$ is weakly stationary, where a_t is a white noise sequence with zero mean and variance σ_a^2
- 2. Let $X_t = (-1)^t Z$, where X is a random variable Give necessary condition(s) on Z so that X_t is weakly stationary.
- 3. Is it possible to have series $\{Z_t\}$ with a constant mean and $Corr(Z_t, Z_{t+k})$ free of t, but $\{Z_t\}$ is not stationary? If the answer is yes, give an example. If the answer is no, explain why.
- 4. Let $W_t = (-1)^t Y_t$ where Y_t are independently and identically distributed with $P(Y_t = k) = 0.2, k = -2, -1, 0, 1, 2$ for all integers t.
 - (a) Is W_t strictly stationary?
 - (b) Is W_t weakly stationary?
- 5. Suppose that $\{a_t\}_{t=1,...}$ are independent and identically distributed random variables with mean 0 and finite variance σ_a^2 , and θ_i is a constant for i=0,1,2,3,4. If

$$X_t = \theta_0 a_t + \theta_1 a_{t-1} + \theta_2 a_{t-2} + \theta_3 a_{t-3} + \theta_4 a_{t-4},$$

then compute the autocorrelation function $\rho(k)$ of X_t for k=0,1,2,...

- 6. Consider the process $Z_t = a_t 1.7a_{t-1} + 0.72a_{t-2}$ where $\{a_t\}$ are i.i.d. with finite variance $\sigma_a^2 = 4$.
 - (1) Find $Var(Z_t)$.
 - (2) Find the autocovariance function of the process.
 - (3) Find $Var(\frac{1}{15} \sum_{t=1}^{15} Z_t)$.
- 7. Consider a time series (-1.08, -0.33, 0.18, 0.42, 0.18, -0.29, -0.03, -1.09, 0.18, -0.62, -2.18, -2.87, -3.61, -3.46, -3.92).
 - (1) Find the sample ACVF C(h) for h = 0, 1, ..., 5.
 - (2) Find the sample ACF r(h) for h = 0, 1, ..., 5.
 - (3) Is this time series a white noise? Why?