Lemma TP. Let $a, b, c \in \mathbb{Z}$. If a|b and b|c, then a|c.

Proof. Let $a, b, c \in \mathbb{Z}$ be given such that a|b and b|c. By definition, b = ax and c = by for some $x, y \in \mathbb{Z}$. Substituting into c,

$$c = (ax)y$$
$$= a(xy).$$

By CPI, xy = t for $t \in \mathbb{Z}$. Thus, a|c.

2.3 Theorem. A natural number n > 1 is prime if and only if for all primes $p \le \sqrt{n}$, p does not divide n.

Proof. Let a natural number n > 1 be given. Suppose n is prime, then $p \not| n$ for all primes $p \le \sqrt{n}$. Suppose not. That is, let n be prime, and that there exists a prime $p \le \sqrt{n}$ such that p|n. Since n is prime, by definition on page 29 of our text, we can conclude only 1|n and n|n. Observe that $p \le \sqrt{n} < n$. This leads us to conclude p = 1, since p|n. 1 is not a prime number, this contradicts p being prime. Thus, there does not exist p and $p \not| n$.

Now we will show if $p \not| n$ for all primes $p \leq \sqrt{n}$, then n is prime. We will prove by contrapositive. That is, suppose n is composite, there exists a prime $p \leq \sqrt{n}$ such that p|n. Since n is composite, let n = dn' for some $d, n' \in \mathbb{Z}$ with $1 < d \leq n'$. Thus,

$$d^{2} \leq dn' = n,$$

$$d^{2} \leq n,$$

$$d \leq \sqrt{n}.$$

Since d > 1, by Theorem 2.1, p|d. Since d|n, by Lemma TP, p|n. Thus, n is prime since our contrapositive is true.

Now that we have shown both directions of the biconditional statement to be true, n is prime if and only if $p \nmid n$, for all primes $p \leq \sqrt{n}$.