

Lecture 9. Attention Mechanism & Transformers

김수한, 주연우

목치

#01 Limitations of RNN-based models

#02 Self-attention

#03 Transformer

- 1) Positional Encoding
- 2) 인코더의 서브층
- 3) 인코더에 사용하는 기법
- 4) 디코더의 첫번째 서브층

#1 Linear interaction distance

Info of *chef* has gone through O(sequence length) many layers!

#2 Lack of parallelizability

#3 Attention

Query: 기준

- -query와 더 관련성 있는 candidate에 가중치를 주어 attention value 도출
- -attention은 각 단어의 표현을 query로 처리하여 value의 집합에 접근하거나 정보를 통합

#1 Self-attention

Query: t시점에서 decoder의 hidden state

Keys: 모든 시점에서 encoder의 hidden state

Values: 모든 시점에서 encoder의 hidden state

Self-attention은 Query, Key, Value가 서로 같을 때를 의미, 즉 attention을 자기자신에게 수행한다는 의미

#1 Self-attention

#2 Attention의 구조

#2 Attention의 구조

Start with encoder hidden states: $\mathbf{h}_1,...,\mathbf{h}_T \in \mathbb{R}^h$

Decoder state at time step t: $\mathbf{s}_t \in \mathbb{R}^h$

Compute the attention scores for this time step t:

$$\mathbf{e}_t = \left[\mathbf{s}_t^{\mathsf{T}}\mathbf{h}_1, ..., \mathbf{s}_t^{\mathsf{T}}\mathbf{h}_T\right] \in \mathbb{R}^{T_{\bullet}}$$

Take softmax to get attention coefficients for this time step t:

$$\alpha_t = \operatorname{softmax}(\mathbf{e}_t) = \frac{\exp{\{\alpha_t\}}}{\sum_{\tau} \exp{\{\alpha_\tau\}}} \in \mathbb{R}^T$$

#2 Attention의 구조

#2 Attention의 구조

Take wighted sum of the encoder hidden states according to the attention coefficients to get the attention value:

Concatenate the attention value with the decoder hidden state and proceed as in the vanilla seq2seq model:

$$\mathbf{a}_t = \sum_{i=1}^T [\alpha_t]_i \mathbf{h}_i \in \mathbb{R}^h$$

$$[\mathbf{a}_t; \mathbf{s}_t] \in \mathbb{R}^{2h}$$

#2 Attention의 구조

[1st step]

[2nd step]

#2 Attention의 구조

-어느 단어에 집중해야 하는지 학습을 통해 가중치 부여

#3 Barriers

sequence order가 없다 → self-attention은 순서 정보를 만들지 않기 때문

가중 평균을 이용하기 때문에 attention만으로 non-linear를 구현할 수 없다

Sequence 예측 시 미리 결과를 알지 못하도록 해야함

Input에 position representations 추가

각 self-attention의 output에 동일한 feedforward network 적용

self-attention의 input에 masking한다

#4 Masking

-타깃 단어 뒤에 위치한 단어가 self-attention에 영향을 주지 않도록 가린다 -병렬화를 가능하게 하기 위해 future words에 대한 attention을 -∞로 설정하여 해당 attention을 masking한다.

#5 Necessities for a self-attention building block

Self-attention: the basis of the method

Position representations: self-attention은 입력의 순서가 지정되지 않았기에 시퀀스에 position representations를 지정한다.

Nonlinearities: output of the self-attention block feed-forward network에 의해 구현

Masking: 미래의 값을 미리 알지 않고 병렬화하기 위해 사용 미래의 값이 과거로 유출되지 않도록 하는 역할

3. Transformer

기존 seq2seq 모델의 한계와 transfomer

기존의 바닐라 sequence to sequence 모델은 source sentence에 대해서 포착한 모든 정보를 encoder의 last hidden state에서 decoder로 전달 하는데, 이 과정에서 Q. information Bottleneck이 발생할 수 있다.

A. Attention을 사용하여 decoder의 매 스텝마다 source sentence의 특정 부분에 집중하기 위해 encoder와 직접적인 연결을 사용함으로써 문제점을 개선할 수 있다.

<u>트랜스포머</u>는 RNN을 사용하지 않지만 기존의 seq2seq 의 인코더-디코더 구조를 유지하면서 building block만 트랜스포머로 변한 모습.

; 기존의 seq2seq가 인코더와 디코더에서 하나의 RNN이 t개의 시점을 가지는 구조였던 것과 달리, 트랜스포머에서는 인코더와 디코더의 단위가 N개로 구성되는 구조.

Positional Encoding

; 단어 입력을 순차적으로 받는 방식이 아니므로 단어의 임베딩 벡터에 위치정보들을 더하여 단어의 위치정보를 얻는다.

$$PE_{(pos, 2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos, 2i+1)} = cos(pos/10000^{2i/d_{model}})$$

;포지셔널 인코딩 값들을 얻기 위해 sin,cos함수가 결합한 함수(sinusoidal)를 사용

Pos: 입력 문장에서의 임베딩 벡터의 위치

i: 임베딩 벡터 내의 차원의 인덱스

; 인덱스가 짝수인 경우 (2i) 사인 함수의 값을, 홀수인 경우 (2i+1) 코사인 함수의 값을 사용

dmodel: 트랜스포머의 모든 층의 출력 차원을 의미하는 트랜스포머의 하이퍼파라미터

Encoder architecture

Multi-head attention

; 트랜스포머가 한번에 여러 부분에 집중할 수 있도록 해주는 방법으로 self attention의 연산의 여러 개의 haed에서 수행한다.

(다른 시각으로 정보들을 수집하면서 다양한 관점을 가질 수 있도록 한다.)

num_layers ×

Encoder
Self-Attention

Encoder Self-Attention

Self attention : Query, Key, Value가 동일한 경우 Encoder Self attention

:Query = Key = Value(벡터의 값이 같다는 것이 아니라 벡터의 출처가 같다는 의미)

인코더

⊃ 피드포워드 네트워크, self attention 네트워크

디코더

⊃ 피드포워드 네트워크, self attention 네트워크 ,Encoder-Decoder attention 네트워크

인코더의 첫번째 서브층 -1)self-attention

Query:

t시점의 디코더 셀에서의 은닉상태

Key:

모든 시점의 인코더 셀의 은닉상태

Value:

모든 시점의 인코더 셀의 은닉 상태

- ①주어진 query에 대해 모든 key와의 유사도를 구한다.
- ②이를 가중치로 하여 key와 맵핑 되어있는 각각의 value에 반영한다.
- ③유사도가 반영된 value를 모두 가중합하여 리턴한다.

Attention: 디코더의 매 스텝마다 인코더와 직접적인 연결을 사용하여 source sentence의 특정 부분에 집중하는 방법 → 한 문장안에서 attention을 계산하는 방법 = self attention

- •Query: The query is a representation of the current word used to score against all the other words (using their keys). We only care about the query of the token we're currently processing.
- •Key: Key vectors are like labels for all the words in the segment. They're what we match against in our search for relevant words.
- •Value: Value vectors are actual word representations, once we've scored how relevant each word is, these are the values we add up to represent the current word.

인코더의 첫번째 서브층 -1)self-attention

① 문장 행렬에 가중치 행렬을 곱하여 Q행렬, K행렬, V행렬을 구한다.

②어텐션 스코어 행렬을 구하여 소프트맥스 함수를 사용한 후 V행렬을 곱하여 어텐션 값 행렬을 구한다.

Q행렬을 K행렬을 전치한 행렬과 곱해주면, Q벡터와 K벡터의 내적이 각 행렬의 원소가 되는 행렬을 구할 수 있다.

행렬의 값에 전체적으로 $\sqrt{d_k}$ 를 나누어주어 각 행과 열이 어텐션 스코어를 가지는 행렬을 구한 후 이를 소프트맥스 함수에 넣은 후 V행렬을 곱하여 어텐션 값 행렬을 구한다.

인코더의 첫번째 서브층 -1)self-attention

①Dmodel/num_heads의 차원을 가지는 Q, K, V에 대해 num_heads개의 병렬 어텐션을 수행한다.

;이때, 각각의 어텐션 값 행렬을 어텐션 헤드라하고, W^Q , W^K , W^V 의 값은 어텐션 헤드마다다르다.

; 어텐션을 병렬로 수행하여 다양한 시각으로 정보를 수집할 수 있게된다.

- ② 병렬 어텐션을 수행한 후 스케일드 닷 프로덕트 어텐션을 수행한다.
- ③ 나눠졌던 어텐션 헤드를 연결한다.

④어텐션 헤드를 모두 연결한 행렬에 가중치 행렬 W^{o} 을 곱하여 멀티-헤드 어텐션 행렬을 구한다.

인코더의 두번째 서브층 –2)position-wise FFNN

$FFNN(x) = MAX(0,xW_1+b_1)W_2+b_2$

x: 멀티 헤드 어텐션의 결과로 나온 행렬

W1, b1, W2, b2는 하나의 인코더 층 내에서는 다른 문장, 다른 단어들마다 정확하게 동일하게 상용되지만 인코더층마다 다른 값을 가진다.

;오른쪽 그림에서 좌측은 인코더의 입력을 벡터 단위로 봤을 때, 각 벡터들이 멀티 헤드 어텐션 층 (인코더 내 첫번째 서브층)을 지나 FFNN을 통과하는 것을 보여준다. (실제로는 행렬로 연산됨)

;하나의 인코더 층을 지난 행렬은 다음 인코더 층으로 전달되고, 다음 층에서도 동일한 인코더 연산이 반복된다.

인코더에 사용하는 기법- 1) 잔차 연결(Residual connection)

1) 잔차연결

$$H(x) = x + F(x)$$

$$H(x) = x + Multi - head Attention(x)$$

: 서브층의 입력과 출력을 더하는 것

;이전 시점보다 얼마나 변화했는지를 학습한다고 해석할 수도 있다.

;기울기를 smoothing 해주는 효과가 있어 local min 빠지지 않도록 해준다.

;F(X)는 트랜스포머의 서브층의 해당하는데 , 서브층의 입력과 출력은 동일한 차원을 갖고 있으므로 덧셈연산이 가능하므로, 서브층이 멀티 헤드 언텐션이라 할 때 H(X)는 X + Multi-head attention(x)로 표현할 수 있다.

인코더에 사용하는 기법-2) 층 정규화(layer normalization)

- 2) 층 정규화(layer normalization)
- •Layer 내에서 하나의 input sample x에 대해서 모든 feature에 대한 평균과 분산을 구해 normalization

Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.

Let $\mu = \sum_{j=1}^{d} x_j$; this is the mean; $\mu \in \mathbb{R}$.

Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} (x_j - \mu)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.

Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)

Modulate by learned elementwise gain and bias

Layer Normalization

Same for all feature dimensions

인코더에 사용하는 기법-3) Scaled dot product

- 3) Scaled dot product
- Attention score 좀 더 다양한 verctor들에게 분배

$$\operatorname{output}_{\ell} = \operatorname{softmax} \left(X Q_{\ell} K_{\ell}^{\mathsf{T}} X^{\mathsf{T}} \right) * X V_{\ell} \longrightarrow \operatorname{output}_{\ell} = \operatorname{softmax} \left(\frac{X Q_{\ell} K_{\ell}^{\mathsf{T}} X^{\mathsf{T}}}{\sqrt{d/h}} \right) * X V_{\ell}$$

디코더의 첫번째 서브층 -1)self-attention, look-ahead mask

디코더의 첫번째 서브층 -1) self-attention, look-ahead mask

; 인코더는 총 num-analysis만큼의 층 연산을 순차적으로 한 후 마지막 층의 인코더의 출력을 디코더에게 전달한다. ; Multi-head self-attetion층(디코더의 첫번째 서브층)은 인코더의 첫번째 서브층과 동일한 연산을 수행하며, 어텐션 스코어 행렬에서 마스킹을 적용한다.

; look-ahead mask 는 디코더의 첫번째 서브층에서 이루어진다.

디코더의 두번째 서브층 -2)encoder-decoder attention

디코더의 두번째 서브층 -2)encoder-decoder attention

; 디코더의 두번째 서브층은 인코더로부터 2개의 화살표를 받는데, 이는 각각 Key와 Value를 의미한다.

;Key와 Value는 인코더의 마지막 층에서 온 행렬로부터, Query는 디코더의 첫번째 서브층의 결과 행렬로 부터 얻는다. ; Query가 디코더 행렬, Key가 인코더 행렬일 때 Q행렬에 K가 전치된 행렬을 곱하여 어텐션 스코어 행렬을 구한다.

; 그 외 멀티 헤드 어텐션을 수행하는 과정은 다른 어텐션과 동일하다.

THANK YOU

출처: [DSBA] CS224n 2021 Study | #09 Self- Attention and Transformers | - YouTube 1) 트랜스포머(Transformer) - 딥 러닝을 이용한 자연어 처리 입문 (wikidocs.net)

