WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

A1

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

(30) Priority Data:

18 August 1995 (18.08.95)

EP

95113021.0

(34) Countries for which the regional or international application was filed:

DE et al.

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	· GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	lT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belanus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	T.J	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

c v

T)

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

, ¥.

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo-or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly) peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoalobulin superfamily (IqSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene $V\kappa 1$ was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains $C\kappa$ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7 A/B: Sequences of the synthetic genes encoding the constant domains Cκ
 (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102. Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein scFv fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ß-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-ß, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the β-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vκ CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T

Vκ1: N₃₄A,

VK3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and $V\kappa$. In the case of V λ , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2		
HuCAL-VH1A	VH1-12-1	VH1-12-1		
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9		
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4		
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10		
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16		
		VH4-31-17,-18,-19,-20		
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2		
HuCAL-VH6	VH6-35-1	VH6-35-1		
HuCAL-Vκ1	Vκ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19		
HuCAL-Vκ2	Vκ2-6	Vκ2-6		
HuCAL-Vκ3	Vκ3-1,-4	Vκ3-4		
HuCAL-Vκ4	Vκ4-1	Vĸ 4-1		
HuCAL-Vλ1	HUMLV117,DPL5	DPL5		
HuCAL-Vλ2	DPL11,DPL12	DPL12		
HuCAL-V).3	DPL23	HUMLV318		

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₂Q

VH6: S,G

Vκ3: E,D, I₅₈V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vκ2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the $V\kappa 2\text{-}C\kappa$ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGG. The two oligonucleotides encoding this linker were 5'- TCAGCGGGTGGCGGTTCTGGCGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTGCTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3κ2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI), GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and amino acids (GTT/TAT) are trinucleotide mixtures encoding phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 107 and 3.4 x 1010 for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3k2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3x2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 μl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a nonfunctional scFv; one of these two clones contained two consecutive inserts, but out

of frame (data not shown). All codons introduced were presented in an even

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{500nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

distribution.

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^{8} cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of 100 μ g/ml in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 µl of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 μ l FITC-BSA (100 μ g/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to ß-estradiol, testosterone, LeY, LT-ß, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-ß-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, ß-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-Pacl), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA \rightarrow GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via Aatll/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vκ2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3 κ 2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD 600nm of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α-FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD $1.0 = 40 \ \mu g/ml$). 10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase ($2.0 \ \mu$ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/MscI for optimization of L-CDR3, or XhoI/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ I of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology <u>6</u>, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology 6, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry <u>30</u>, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, E., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference?	Family ³	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1 .	. 1	L4; L18; Va'; V4a
Vk1-12	. 2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	. 2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23 ·
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	O12(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name'	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	. 2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	· 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	· 5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	·12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	. 1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	, 1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1 .	2	•
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	1	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	. 1	unassigned	I VLAMBDA N.2
gVLX-4.4	6	10	

Table 1C: Human heavy chain germline gene segments

Used Name'	Reference ²	Family ³	Germline genes*
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2		1	hv1263
VH1-12-9		1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	I-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	- 18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	· 2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49

SUBSTITUTE SHEET (RULE 26)

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	· 2 .	2	VH2S12-14
VH3-11-1	. 13	. 3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	, 3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	. 3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	Н8
VH4-11-11	20	4	Н9
VH4-11-12	17	4	VH4.16
VH4-11-13	. 23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	. 19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	. 4	. H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
· VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6 .	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2 .	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	80	12	12,6%	110
LAY	108	1	80	12	12,6%	48
HIV-b13	106	1	80	9	9,7%	.8
MAL-NaCl	108	1	08	- 13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0.0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB	108	i i	02	7	7.4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	3 1	02	9	9,5%	73
			53			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4.2%	121
WES	108	1	L5	10	10,5%	61
DlLp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101 -	95	1	L15(1)	0	0.0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
1-2a	108	1	L8	8	8,4%	70
RF-KL1	97 ·	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1	· A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8
TNF-E1	105	1	L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	· L1	8	8,4%	70
BLI	108	1	L8	3	3,2%	72
KUE	108	1	L12(2)	11	11,6%	. 32
LUNm01	108	1	L12(2)	10	10,5%	. 6
HIV-b1	106	. 1	A20	. 4	4,3%	8
HIV-s4	103		02	2	2,2%	8
			54			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0.0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	122
CLL PATIENT 1	88	. 1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 '	L12(2)	20	. 21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	. 68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0,0%	66
GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0.0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0,0%	66
PIE	109	3	A27	0	0.0%	91
HAH 14.1	109	3	A27	1	1.0%	51
HAH 14.2	109	3	A27	. 1	1,0%	51

Table 2A:

(continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
HAH 16.1	109	3	A27	1	1,0%	51
NOV .	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67 .
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	1	1,0%	12
BOR'	109	3	A27	2	2.1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEW.	110	3	A27	2	2,1%	98
YES8c	109	. 3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	-A27	0	0,0%	94
ROB	106	3	· A27	. 0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	· A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
НАН	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	. 3	A27	6	6,3%	87
JH.	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6.	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

SUBSTITUTE SHEET (RULE 26)

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0.0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2 ·	2,1%	99
LS2	· 108	3	L6	1,	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	. 99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	. L6	2	2,1%	99
LS5	108	3	Fe	1	1,1%	109
LS2S3-5	107	3 -	L6	3	3,2%	. 99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

5**天**

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	. 3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	.8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	. 1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 .	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3	L6	10	10,5%	121
GER	109	3	L2/L16	7 .	7,4%	75
GF4/1.1	109	3	L2/L16	8	. 8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	. 1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	. L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference?
R6B8K	108	3 .	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	. 84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8% ·	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	ŗ6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4.	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	- 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7 -	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	. 0	0.0%	54

Table 2A: (continued)

Name ¹	.aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	. 0	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7.8%	54
MD3.5	92	3	A27	. 1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54 -
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	80	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	, 14	14,7%	_. 50
BI	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	69
2A4	109	1	02	12	12,6%	23
KA	108	1	08	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	9 9	1.	08	21	24,1%	1
NI ·	112	1	08	2:4	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

WO 97/08320

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	A3	0	0,0%	58
R5A3K	- 114	2	A3	1	1,0%	125
R1C8K	114	2	A3	1	1,0%	125
VK2.R149	113	2	A3	· 2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A3	6	6.0%	92
NIM	113	2	A3	8	8,0%	28
Inc	112	2	A3	11 -	11,0%	35
TEW	107	2	A3	6	6,4%	. 96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A 3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	А3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Taykv306	73	3	A27	1	1,6%	_. 52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	. 0	0,0%	119
1-187-29	110	3	A27	0	0.0%	119
Π117	110	.3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	7 3	A27	. 21	22,3%	8
			61			

SUBSTITUTE SHEET (RULE 26)

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	. 8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3 .	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12.6%	125
Π125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7.4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02.	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	80	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17 .	5	5,0%	45
FK-001	113	4	В3	0	0,0%	81
CD5+.28	101	4	В3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1,0%	- 111
CD5+.5	101	4	В3	1	1,0%	27
			_			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2,0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	B 3	3	3,0%	72
MAL	113	4	B 3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	B3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27 ·
CD528	101	4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	B3	6	5.9%	27
CD5+.10	101	4	B 3	6	5,9%	27
CD519	101	4	B 3	6	5,9%	27
CD518	101	4	B3	7	6,9%	27
CD516	101	. 4	B3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.i	92	4	B3	0	0,0%	54
MD4.4	92	4	B 3	0	0,0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4.	В3	. 0	0,0%	54
MD4.7	92	4	В3	0	0,0%	54
MD4.2	92	4	B3	1	1,3%	54
MD4.3	92	4	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2,4%	122

Table 2B: rearranged human lambda sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	. 1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	. 0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	. 1	DPL5	. 4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2 .	100	1	DPL5	6	6%	78
AL EZI	112	1	· DPL5	7	7%	41
ZIM	112	1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	0%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	. 110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8	8%	84
FOG1-A3	. 111		DPL11	9	. 9%	27
AL NOV	112		DPL11	7	7%	28
			4			

SUBSTITUTE SHEET (RULE 26)

Table 2B: (continued)

Name ¹	· aa²	Computed	Germline	Diff. to	% diff. to germline ⁶	Reference ⁷
		family ³	gene⁴	germine	germine	
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
HBp2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	. 3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110		DPL12	6	6%	56
TEL13	111		DPL11 65	11	10%	49

Table 2B:

(continued)

Name¹ .	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
ВОН	112	2	DPL12	11	10%	37
TOG ·	111	2	DPL11	19	18%	53
TEL16	111	. 2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
во	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	. 15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1 .	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	. 3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	. 1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

SUBSTITUTE SHEET (RULE 26)

Table 2B:

(continued)

Name¹	aa²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR .	108	3	DPL23	26	25%	33
32.B9	. 98	8	DPL21	5	5%	81
PUG	108	3 .	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51	49%	75
К6Н6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	- 43
SHO	. 108	3	DPL23	19	18%	. 19
HAN	108	3	DPL23	20	19%	1. 19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	100	3	DPL23	9	9%	19
СОТ	106	3	DPL23	13	12%	19
Pag-1	11	3	Humlv318	5	5%	31
			67			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	. 7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humiv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ¹
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5.1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5 .	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	. 125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	1	VH1-12-7	7	7,1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122		VH1-12-1	0	0.0%	105
NEI	127		VH1-12-1	0	0.0%	55
AND	127		VH1-12-1	0	0.0%	55
L7	127		VH1-12-1	0	0,0%	54
L22	124		VH1-12-1	0	0,0%	54
L24	127		VH1-12-1	0	0.0%	54

SUBSTITUTE SHEET (RULE 26)

Table 2C:

(continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
L26	116	1 .	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	- 118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	· 22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	. 1	1,0%	54
TNF-E7	116	1	VH1-12-1	2	2,0%	42
mÁb111	122	1	VH1-12-1	7 ·	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7,1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1	· VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0.0%	30
CLL10 13-3	97	1	VH1-12-1	0	0.0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1 .	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	. 30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	11	1.0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	. 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26 .
SP2	119	1	VH1-13-6	. 15	15,3%	89
INF-H9G1	111	1	VH1-13-18	2	2.0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	. 1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124		VH1-12-7	20	20,4%	73
			71			

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	. 4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2 .	VH2-31-11	8	8,1%	. 124
OU	125	2	VH2-31-14	20	25,6%	. 92
HE	120	2	VH2-31-13	19	19.0%	27
CLL33 40-1	78	2	VH2-31-5	2	2.0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	. 114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	9	9,0%	85
N51P8	126	3	VH3-14-1	9	9.0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM 1 - 1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0,0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100	3	VH3-13-26	5	5,1%	96
OST577	122	3	VH3-13-13 メ2_	6	6,1%	5

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'	•
BO .	113	3	VH3-13-19	15	15,3%	10	•
Π125	121	3	VH3-13-10	15	15,3%	64	
2-115-58	127	3	VH3-13-10	11	11,2%	. 124	
KOL	126	3	VH3-13-14	16	16,3%	102	
mAb60	118	3	VH3-13-17	14	. 14,3%	45	1
RF-AN	106	3	VH3-13-26	8	8,2%	85	
BUT	115	3	VH3-11-6	13	13,4%	119	
KOL-based CAMPATH-					•		
9	118	3	VH3-13-13	16	16,3%	41	
B1	119	3	VH3-13-19	13	13,3%	53	
N98P1	127	3	VH3-13-1	13	13,3%	77	
П117	107	3	VH3-13-10	12	12,2%	64	
WEA	114	3	VH3-13-12	15	15,3%	40	
HIL	120	3	VH3-13-14	14	14,3%	23	
s5A10	97	3	VH3-13-14	0	0,0%	46	
s5D11	98	3	VH3-13-7	0 .	0,0%	46	
s6C8	100	3	VH3-13-7	0	0,0%	46	
s6H12	98	3	VH3-13-7	0	0,0%	46	
VH10.7	119	3	VH3-13-14	16	16,3%	128	
HIV-loop2	126	3	VH3-13-7	16	16,3%	12	
HIV-loop35	126	3	VH3-13-7	16	16,3%	12	
TRO	122	3	VH3-13-1	13	13,3%	61	
SA-4B	123	. 3	VH3-13-1	15	15,3%	125	
L2B5	98	3	VH3-13-13	0	0,0%	46	
s6E11	95	3	VH3-13-13	0	0,0%	46	
s6H7	100	3	VH3-13-13	0	0,0%	46	
ss1	102	3	VH3-13-13	0	0,0%	46	
ss8	94	3	VH3-13-13	. 0	0,0%	46	
DOB	120	3	VH3-13-26	21	21,4%	116	
THY-33	115	3	VH3-13-15	20	20,4%	42	
NOV	118	3	VH3-13-19	14	14,3%	38	
rsv13H	120) 3	VH3-13-24		20,4%	11	
L3G11	98	3	VH3-13-20	2	2,0%	46	
L2E8	99	3	VH3-13-19	. 0	0,0%	46	
L2D10	101	3	VH3-13-10	1	1,0%	46	
L2E7	98	3	VH3-13-10	1	1,0%	46	

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0.0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0,0%	46
8	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	. 3	VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0 -	0,0%	8
A77	109	3	VH3-13-10	0 ′	0,0%	44
B19.7	108	3	· VH3-13-10	0	0,0%	44,
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31.
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3,1%	57

*丹*4
SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5,1%	100
N87	126	. 3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74 -
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0.0%	104
AL3.5	90	3	VH3-13-10	· 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2.0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	. 3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2,0%	51
E55 3.14	110) 3	VH3-13-19	0	0,0%	26

PCT/EP96/03647

Table 2C: (continued)

MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-13-7 0 0,0% 104 M72 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 1 1,0% 26 E	Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
YSE 117 3 VH3-13-24 6 6,1% 72 E55 3.23 106 3 VH3-13-19 2 2,0% 26 RF-TS5 101 3 VH3-13-1 3 3,1% 85 N42P5 124 3 VH3-13-2 7 7,1% 77 F0G1-H6 110 3 VH3-13-16 7 7,1% 42 O-81 115 3 VH3-13-19 11 11,2% 47 HIV-s8 122 3 VH3-13-19 12 12,2% 71 33.F12 116 3 VH3-13-19 12 12,2% 71 33.F12 116 3 VH3-13-2 4 4,1% 129 MAb114 125 3 VH3-13-2 4 4,1% 129 MAB6 119 3 VH3-13-3 0 0,0% 101 M26 123 3 VH3-13-3 0 0,0% 103 VHGL 3.1 100 3 VH3-1X-3 0 0,0% 103 VHGL 3.1 100 3 VH3-1X-3 0 0,0% 26 E55 3.13 113 3 VH3-1X-3 1 1,0% 26 SB5/D6 101 3 VH3-1X-6 3 3,0% 2 RAY4 101 3 VH3-1X-6 5 5,0% 112 MAL 129 3 VH3-1X-6 5 5,0% 72 LOC 123 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 S6P1 119 3 VH3-1X-6 11 11,0% 1 S6P1 119 3 VH3-1X-6 11 11,0% 1 S6P1 119 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 S6P1 119 3 VH3-1X-6 11 11,0% 1 S6P1 119 3 VH3-1X-6 11 11,0% 2 HR72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-13 1 1,0% 26 2P3 3 VH3-13-13 1 1,0% 26 2P3 3 VH3-13-13 1 1,0% 26	F13-28	106	3	VH3-13-19	1	1,0%	94
E55 3.23	mAb55	127	3	VH3-13-18	4	4,1%	51
RF-TS5	YSE	117	3	VH3-13-24	6	6,1%	. 72
N42P5 124 3 VH3-13-2 7 7,1% 77 FOG1-H6 110 3 VH3-13-16 7 7,1% 42 O-81 115 3 VH3-13-19 11 11,2% 47 HIV-58 122 3 VH3-13-12 11 11,2% 12 mAb114 125 3 VH3-13-19 12 12,2% 71 33,F12 116 3 VH3-13-2 4 4,1% 129 4B4 119 3 VH3-1X-3 0 0,0% 101 M26 123 3 VH3-1X-3 0 0,0% 103 VHGL 3.1 100 3 VH3-1X-3 0 0,0% 26 E55 3.13 113 3 VH3-1X-3 1 1,0% 26 SB5/D6 101 3 VH3-1X-6 3 3,0% 2 RAY4 101 3 VH3-1X-6 3 3,0% 2	E55 3.23	106	3	VH3-13-19	2	2,0%	26
FOG1-H6	RF-TS5	101	3	VH3-13-1	3.	3,1%	85
0-81 115 3 VH3-13-19 11 11,2% 47 HIV-58 122 3 VH3-13-12 11 11,2% 12 mAb114 125 3 VH3-13-19 12 12,2% 71 33.F12 116 3 VH3-13-2 4 4,1% 129 4B4 119 3 VH3-13-3 0 0,0% 101 M26 123 3 VH3-13-3 0 0,0% 103 VHGL 3.1 100 3 VH3-13-3 0 0,0% 26 E55 3.13 113 3 VH3-13-3 1 1,0% 26 E55 3.13 101 3 VH3-13-4 3 3,0% 2 RAY4 101 3 VH3-13-6 3 3,0% 2 82-D V-D 106 3 VH3-13-3 5 5,0% 112 MAL 129 3 VH3-13-7 5 5,0% 72 <td>N42P5</td> <td>124</td> <td>3</td> <td>VH3-13-2</td> <td>7</td> <td>7,1%</td> <td>77</td>	N42P5	124	3	VH3-13-2	7	7,1%	77
HIV-s8 122 3 VH3-13-12 11 11,2% 12 mAb114 125 3 VH3-13-19 12 12,2% 71 33.F12 116 3 VH3-13-2 4 4,1% 129 484 119 3 VH3-13-3 0 0,0% 101 M26 123 3 VH3-13-3 0 0,0% 103 VHGL 3.1 100 3 VH3-13-3 0 0,0% 26 E55 3.13 113 3 VH3-13-3 1 1,0% 26 SB5/D6 101 3 VH3-13-6 3 3,0% 2 RAY4 101 3 VH3-13-6 3 3,0% 2 82-D V-D 106 3 VH3-13-3 5 5,0% 112 MAL 129 3 VH3-13-3 5 5,0% 72 LOC 123 3 VH3-13-6 5 5,0% 72 LOC 123 3 VH3-13-6 11 11,0% 2 HIB RC3 100 3 VH3-13-6 11 11,0% 1 56P1 119 3 VH3-13-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 1 1,0% 88 FR-TS1 114 3 VH3-13-7 1 1,0% 88 FR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 26	FOG1-H6	110	3	VH3-13-16	7	7,1%	42
mAb114 125 3 VH3-13-19 12 12,2% 71 33.F12 116 3 VH3-13-2 4 4,1% 129 4B4 119 3 VH3-1X-3 0 0,0% 101 M26 123 3 VH3-1X-3 0 0,0% 103 VHGL 3.1 100 3 VH3-1X-3 0 0,0% 26 E55 3.13 113 3 VH3-1X-3 1 1,0% 26 SB5/D6 101 3 VH3-1X-6 3 3,0% 2 RAY4 101 3 VH3-1X-6 3 3,0% 2 82-D V-D 106 3 VH3-1X-3 5 5,0% 112 MAL 129 3 VH3-1X-3 5 5,0% 72 LSF2 101 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 5 5,0% 72	0-81	115	3	VH3-13-19	11 -	11,2%	47
33.F12	HIV-s8	122	3	VH3-13-12	11	11,2%	. 12
33.F12 116 3 VH3-13-2 4 4,1% 129 4B4 119 3 VH3-1X-3 0 0,0% 101 M26 123 3 VH3-1X-3 0 0,0% 103 VHGL 3.1 100 3 VH3-1X-3 0 0,0% 26 E55 3.13 113 3 VH3-1X-3 1 1,0% 26 SB5/D6 101 3 VH3-1X-6 3 3,0% 2 RAY4 101 3 VH3-1X-6 3 3,0% 2 82-D V-D 106 3 VH3-1X-3 5 5,0% 112 MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 1 HB RC3 100 3 VH3-13-7 0 0,0% 103	mAb114	125	3	VH3-13-19	, 12	12,2%	71
M26 123 3 VH3-1X-3 0 0,0% 103 VHGL 3.1 100 3 VH3-1X-3 0 0,0% 26 E55 3.13 113 3 VH3-1X-3 1 1,0% 26 SB5/D6 101 3 VH3-1X-6 3 3,0% 2 RAY4 101 3 VH3-1X-6 3 3,0% 2 82-D V-D 106 3 VH3-1X-3 5 5,0% 112 MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103	33.F12	116	3			4,1%	129
VHGL 3.1 100 3 VH3-1X-3 0 0.0% 26 E55 3.13 113 3 VH3-1X-3 1 1,0% 26 SB5/D6 101 3 VH3-1X-6 3 3,0% 2 RAY4 101 3 VH3-1X-6 3 3,0% 2 82-D V-D 106 3 VH3-1X-3 5 5,0% 112 MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 103 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103	4B4	119	3	VH3-1X-3	0	0,0%	101
E55 3.13	M26	123	3	VH3-1X-3	0	0,0%	103
SB5/D6 101 3 VH3-1X-6 3 3,0% 2 RAY4 101 3 VH3-1X-6 3 3,0% 2 82-D V-D 106 3 VH3-1X-3 5 5,0% 112 MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 <	VHGL 3.1	100	3	VH3-1X-3	О .	0.0%	26
RAY4 101 3 VH3-1X-6 3 3,0% 2 82-D V-D 106 3 VH3-1X-3 5 5,0% 112 MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 26 554 3.6 108 3 VH3-13-13 1 1,0% 26 554 3.6 110 3 VH3-13-13 1 1,0% 26	E55 3.13	113	3	VH3-1X-3	1	1,0%	26
82-D V-D 106 3 VH3-1X-3 5 5,0% 112 MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 1 1,0% 85 <t< td=""><td>SB5/D6</td><td>101</td><td>3</td><td>VH3-1X-6</td><td>3</td><td>3,0%</td><td>2</td></t<>	SB5/D6	101	3	VH3-1X-6	3	3,0%	2
MAL 129 3 VH3-1X-3 5 5,0% 72 LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-13-7 0 0,0% 104 M72 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 1 1,0% 26 E	RAY4	101	3	VH3-1X-6	3	3,0%	2
LOC 123 3 VH3-1X-6 5 5,0% 72 LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-13 0 0,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 26	82-D V-D	106	3	VH3-1X-3	5	5,0%	112
LSF2 101 3 VH3-1X-6 11 11,0% 2 HIB RC3 100 3 VH3-1X-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-13 1 1,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 26	MAL	129	3	VH3-1X-3	5	5,0%	72
HIB RC3 100 3 VH3-1X-6 11 11,0% 1 56P1 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-13 1 1,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 26	LOC	123	3	VH3-1X-6	5	5,0%	72
56P1 119 3 VH3-13-7 0 0,0% 104 M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-13 1 1,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 26 E54 3.6 110 3 VH3-13-13-13 1 1,0% 26 <td>LSF2</td> <td>101</td> <td>3</td> <td>VH3-1X-6</td> <td>11</td> <td>11,0%</td> <td>2</td>	LSF2	101	3	VH3-1X-6	11	11,0%	2
M72 122 3 VH3-13-7 0 0,0% 103 M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-13 1 1,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	HIB RC3	100	3	· VH3-1X-6	41	11,0%	1 .
M74 121 3 VH3-13-7 0 0,0% 103 E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	56P1	119	3	VH3-13-7	0	0,0%	104
E54 3.5 105 3 VH3-13-7 0 0,0% 26 2E7 123 3 VH3-13-7 0 0,0% 63 2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	M72	122	3	VH3-13-7	0	0,0%	103
2E7 123 3 VH3-13-7 0 0.0% 63 2P1 117 3 VH3-13-7 0 0.0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0.0% 18 E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	M74	121	3	VH3-13-7	0	0,0%	103
2P1 117 3 VH3-13-7 0 0,0% 104 RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	E54 3.5	105	3	VH3-13-7	0	0,0%	26
RF-SJ2 127 3 VH3-13-7 1 1,0% 83 PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	2E7	123	3	VH3-13-7	0	0,0%	63
PR-TS1 114 3 VH3-13-7 1 1,0% 85 KIM46H 127 3 VH3-13-13 0 0,0% 18 E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	2P1	117	3	VH3-13-7	0	0,0%	104
KIM46H 127 3 VH3-13-13 0 0.0% 18 E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	RF-SJ2	127	3	VH3-13-7	1	1,0%	83
E55 3.6 108 3 VH3-13-7 2 2,0% 26 E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.B6 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	PR-TS1	114	3	VH3-13-7	1	1,0%	85
E55 3.10 107 3 VH3-13-13 1 1,0% 26 3.B6 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	KIM46H	127	3	VH3-13-13	0	0,0%	18
3.86 114 3 VH3-13-13 1 1,0% 108 E54 3.6 110 3 VH3-13-13 1 1,0% 26	E55 3.6	108	3	VH3-13-7	2	2,0%	26
E54 3.6 110 3 VH3-13-13 1 1,0% 26	E55 3.10	107	3	VH3-13-13	1	1,0%	26
	3.B6	114	3	VH3-13-13	1	1,0%	108
	E54 3.6	110	3	VH3-13-13	1	1,0%	26
166 6 110 0 1 1 ₁ 0 ² 0 00	FL2-2	114	3	VH3-13-13	1	1,0%	80

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
RF-SJ3	112	3	VH3-13-7	2	2.0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8.2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3 ·	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10.2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
к6Н6	119	3	VH3-1X-6	18	18,0%	60
K4B8	119	. 3	VH3-1X-6	18	18,0%	60
K5B8	119	3	VH3-1X-6	18	18,0%.	60

Table 2C: (continued)

K5C7 119 3 VH3-1X-6 19 19,0% 60 K5G5 119 3 VH3-1X-6 19 19,0% 60 K6F5 119 3 VH3-1X-6 19 19,0% 60 AL3.16 98 3 VH3-13-10 1 1,0% 117 N86P2 98 3 VH3-13-10 3 3,1% 77 N54P6 95 3 VH3-13-16 7 7,1% 77 LAMBDA HT112-1 126 4 VH4-11-2 0 0,0% 43— mAb63 126 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-105 4 VH4-11-2 0 0,0% 86 FS-105 4 VH4-11-2 0 0,0% 86 FS-105 4 VH4-11-2 0 0,0% 85 FS-105 4 VH4-11-2 0 0,0% 85 FS-106 102 4 VH4-11-2 1 1,0% 15 FS-107 107 4 VH4-11-2 1 1,0% 15 FS-108 110 110 110 110 110 110 110 110 110	Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline⁵	% diff. to germline ⁶	Reference'
K6F5 119 3 VH3-1X-6 19 19,0% 60 Al3.16 98 3 VH3-13-10 1 1,0% 117 N86P2 98 3 VH3-13-10 3 3,1% 77 N54P6 95 3 VH3-13-16 7 7,1% 77 LAMBDA HT112-1 126 4 VH4-11-2 0 0,0% 3 HY18 121 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 RF-IMC 102 4 VH4-11-2 0 0,0% 85 RF-IMC 102 4 VH4-11-2 1 1,0% 15 MAb410.7.F91 122 4 VH4-11-2 1 1,0% 15 MAb44 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 15 15,2% 110 TS2 124 4 VH4-11-2 15 15,2% 110 TS2 124 4 VH4-11-1 15 15,2% 110 TS4 VH4-11-1 16 16,5% 58 Ab26 126 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 MAb67 128 4 VH4-11-8 0 0,0% 104	K5C7	119	3	VH3-1X-6	19	19,0%	60
AL3.16 98 3 VH3-13-10 1 1,0% 117 N86P2 98 3 VH3-13-10 3 3,1% 77 N54P6 95 3 VH3-13-16 7 7,1% 77 LAMBDA HT112-1 126 4 VH4-11-2 0 0,0% 43 HY18 121 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 FR-TMC 102 4 VH4-11-2 0 0,0% 85 MAb216 122 4 VH4-11-2 1 1,0% 15 MAb410.7.F91 122 4 VH4-11-2 1 1,0% 15 MAb44 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 GH-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 15 15,2% 110 TS2 124 4 VH4-11-2 15 15,5% 110 TS2 124 4 VH4-11-1 15 15,5% 18 Ab26 126 4 VH4-11-1 15 15,5% 110 TS2 124 4 VH4-11-1 15 15,5% 19 WAH 129 4 VH4-11-7 16 16,5% 58 Ab26 126 4 VH4-11-7 16 16,5% 58 WAH 129 4 VH4-11-8 22 22,7% 6 SBP2 118 4 VH4-11-8 0 0,0% 104 MAb67 128 4 VH4-11-8 0 0,0% 104 MAb67 128 4 VH4-11-8 0 0,0% 104 MAb67 128 4 VH4-11-8 2 2,1% 108	K5G5	119	3	VH3-1X-6	19	19,0%	60
N86F2 98 3 VH3-13-10 3 3,1% 77 N54P6 95 3 VH3-13-16 7 7,1% 77 LAMBDA HT112-1 126 4 VH4-11-2 0 0,0% 3 HY18 121 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FR-TMC 102 4 VH4-11-2 0 0,0% 85 RF-TMC 102 4 VH4-11-2 0 0,0% 85 RF-TMC 102 4 VH4-11-2 1 1,0% 15 mAb410.7.F91 122 4 VH4-11-2 1 1,0% 15 mAb440 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 1 1,0% 15 FS-6 108 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 15 15,2% 110 ESS-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-11-8 2 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-11-8 0 0,0% 104	K6F5	119	3	VH3-1X-6	19	19,0%	60
N54P6 95 3 VH3-13-16 7 7,1% 77 LAMBDA HT112-1 126 4 VH4-11-2 0 0,0% 3 HY18 121 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 85 RF-TMC 102 4 VH4-11-2 0 0,0% 85 RAD216 122 4 VH4-11-2 1 1,0% 15 MAb410.7.F91 122 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 GH-3C4 124 4 VH4-11-2 2 2,1% 100 GH-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 15 15,2% 110 TS2 124 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 2 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 MAb67 128 4 VH4-11-8 0 0,0% 104	AL3.16	98	3	VH3-13-10	1	1,0%	117
N54P6 95 3 VH3-13-16 7 7,1% 77 LAMBDA HT112-1 126 4 VH4-11-2 0 0,0% 3 HY18 121 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 FR-TS2 105 4 VH4-11-2 0 0,0% 86 FR-TMC 102 4 VH4-11-2 0 0,0% 85 FR-TMC 102 4 VH4-11-2 1 1,0% 15 mAb216 122 4 VH4-11-2 1 1,0% 15 mAb410.7.F91 122 4 VH4-11-2 1 1,0% 15 mAb44 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 15 15,5% 110 TS2 124 4 VH4-11-2 15 15,5% 110 TS2 124 4 VH4-11-2 15 15,5% 110 TS2 124 4 VH4-11-1 15 15,5% 5 WAH 129 4 VH4-11-1 15 15,5% 5 WAH 129 4 VH4-11-1 19 19,9% 93 268-D 122 4 VH4-11-8 2 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-11-8 2 2,1% 108	N86P2	98	3 .	VH3-13-10	3	3,1%	7 7
HY18 121 4 VH4-11-2 0 0,0% 43— mAb63 126 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 PR-TS2 105 4 VH4-11-2 0 0,0% 85 RF-IMC 102 4 VH4-11-2 0 0,0% 85 mAb216 122 4 VH4-11-2 1 1,0% 15 mAb410.7.F91 122 4 VH4-11-2 1 1,0% 52 mAbA6H4C5 124 4 VH4-11-2 1 1,0% 52 mAbA6H4C5 124 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 1 1,0% 15 FS-6 108 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-2 15 15,2% 110 TS2 124 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-1 8 8,1% 100 TS2 124 4 VH4-31-1 15 15,2% 110 TS2 124 4 VH4-31-1 10 10,3% 99 DI 78 4 VH4-31-1 10 10,3% 99 DI 79 66-695 115 4 VH4-31-1 10 10,0% 45 DES-695 115 4 VH4-31-1 10 10,0% 45		95	3	VH3-13-16	['] 7	7,1%	77
mAb63 126 4 VH4-11-2 0 0,0% 45 FS-3 105 4 VH4-11-2 0 0,0% 86 FS-5 111 4 VH4-11-2 0 0,0% 86 FS-7 107 4 VH4-11-2 0 0,0% 86 FS-8 110 4 VH4-11-2 0 0,0% 86 PR-TS2 105 4 VH4-11-2 0 0,0% 85 RF-TMC 102 4 VH4-11-2 0 0,0% 85 mAb216 122 4 VH4-11-2 1 1,0% 15 mAb410.7.F91 122 4 VH4-11-2 1 1,0% 52 mAb46H4C5 124 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 3 3,1% 59	LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
FS-3	HY18	121	.4	VH4-11-2	0	0,0%	43
FS-5	mAb63	126	4	VH4-11-2	0	0,0%	45
FS-7 FS-8 FS-8 FS-8 FS-8 FS-8 FS-8 FS-9 FS-9 FS-9 FS-9 FS-9 FS-9 FS-9 FS-9	FS-3	105	4	VH4-11-2	0	0,0%	86
FS-8	FS-5	111	4 .	VH4-11-2	0	0,0%	86
PR-TS2 105 4 VH4-11-2 0 0,0% 85 RF-TMC 102 4 VH4-11-2 0 0,0% 85 mAb216 122 4 VH4-11-2 1 1,0% 15 mAb410.7.F91 122 4 VH4-11-2 1 1,0% 52 mAbA6H4C5 124 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 9 9,3% 125 <	FS-7	107	4	VH4-11-2	0	0,0%	86
RF-TMC 102 4 VH4-11-2 0 0,0% 85 mAb216 122 4 VH4-11-2 1 1,0% 15 mAb410.7.F91 122 4 VH4-11-2 1 1,0% 52 mAbA6H4C5 124 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 84 HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-9 16 16,5% 58	FS-8	110	4	VH4-11-2	0	0,0%	86
mAb216 122 4 VH4-11-2 1 1,0% 15 mAb410.7.F91 122 4 VH4-11-2 1 1,0% 52 mAbA6H4C5 124 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 84 HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-31-4 8 8,1% 100 <t< td=""><td>PR-TS2</td><td>105</td><td>4</td><td>VH4-11-2</td><td>0</td><td>0,0%</td><td>85</td></t<>	PR-TS2	105	4	VH4-11-2	0	0,0%	85
mAb410.7.F91 122 4 VH4-11-2 1 1,0% 52 mAbA6H4C5 124 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 <	RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAbA6H4C5 124 4 VH4-11-2 1 1,0% 15 Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 84 HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-12 15 15,2% 110 TS2 124 4 VH4-31-7 16 16,5% 5	mAb216	122	4	VH4-11-2	1	1,0%	15
Ab44 127 4 VH4-11-2 2 2,1% 100 6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 84 HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93	mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
6H-3C4 124 4 VH4-11-2 3 3,1% 59 FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 84 HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-21-4 1 1,0% 45	mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
FS-6 108 4 VH4-11-2 6 6,2% 86 FS-2 114 4 VH4-11-2 6 6,2% 84 HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-31-13 19 19,2% 6 58P2 118 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	Ab44	127	4	VH4-11-2	2	2,1%	100
FS-2 114 4 VH4-11-2 6 6,2% 84 HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-21-4 1 1,0% 45	6H-3C4	124	4	VH4-11-2	3	3,1%	59
HIG1 126 4 VH4-11-2 7 7,2% 62 FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-21-4 1 1,0% 45	FS-6	108	4	VH4-11-2	6	6,2%	86
FS-4 105 4 VH4-11-2 8 8,2% 86 SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	FS-2	114	4	VH4-11-2	6	6,2%	84
SA-4A 123 4 VH4-11-2 9 9,3% 125 LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	HIG1	126	4	VH4-11-2	7	7,2%	62
LES-C 119 4 VH4-11-2 10 10,3% 99 DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	FS-4	105	4	VH4-11-2	8	8,2%	86
DI 78 4 VH4-11-9 16 16,5% 58 Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	SA-4A	123	4	VH4-11-2	9	9,3%	125
Ab26 126 4 VH4-31-4 8 8,1% 100 TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	LES-C	119	4	VH4-11-2	10	10,3%	99
TS2 124 4 VH4-31-12 15 15,2% 110 265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	DI	78	4	VH4-11-9	16	16,5%	58
265-695 115 4 VH4-11-7 16 16,5% 5 WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	Ab26	126	4	VH4-31-4	8	8,1%	100
WAH 129 4 VH4-31-13 19 19,2% 93 268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	TS2	124	4	VH4-31-12	15	15,2%	110
268-D 122 4 VH4-11-8 22 22,7% 6 58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	265-695	115	4	VH4-11-7	16	16,5%	5
58P2 118 4 VH4-11-8 0 0,0% 104 mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	WAH	129	4	VH4-31-13	19	19,2%	93
mAb67 128 4 VH4-21-4 1 1,0% 45 4.L39 115 4 VH4-11-8 2 2,1% 108	268-D	122	4	VH4-11-8	22	22,7%	6
4.L39 115 4 VH4-11-8 2 2,1% 108	58P2	118	4	VH4-11-8	. 0	0,0%	104
	mAb67	128	4	VH4-21-4	1	1,0%	45
mF7 111 · 4· VH4-31-13 3 3,0% 75	4.L39	115	4	VH4-11-8	2	2,1%	108
	mF7	111	. 4.	VH4-31-13	3	3,0%	75

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	·4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0.0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0 .	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0,0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
.L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0	0.0%	• 17

ZΩ

PCT/EP96/03647

Table 2C: (c

(continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ³
CD+1	98	5 .	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	- 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0,0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	. 2	2,0%	17
CD-2	98	5	VH5-12-1	· 2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	3	3,1%	17 .
PBL13	98	.5	VH5-12-1	3	3,1%	-17
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	· 5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3 .	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	. 4	4,1%	17
VERG2	98	5 5	VH5-12-1	5	5,1%	17

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLL6	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOW'	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0.0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
TuO	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	. 5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C:

(continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
1-185-37	125	5 .	VH5-12-4	0 .	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	. 2	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	. 5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	. 46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	. 99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6	· VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	. 6	VH6-35-1	0	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123		VH6-35-1	0	0,0%	122

Table 2C:

WO 97/08320

(continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	- 122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	. 6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2.0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3.0%	122
A10	107	6	VH6-35-1	3	3,0%	68 ,
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	- 122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	۰ 6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	. 123
VH6-B4I	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 . PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VkI-I	28	
I	Vk1-2	0	
ı	Vk1-3	1	
1	Vk1-4	0	
1	Vk1-5	7	•
1	Vk1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
I	Vk1-9	9	
I	Vk1-10	0	
1	Vk1-11	1	
1	Vk1-12	7	
1	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	
1	Vk1-17	16	
1	Vk1-18	1	
1	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	i	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-I	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	-16	
2	Vk2-7	0	
2	Vk2-8	0.	
2	Vk2-9	1	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-1	ı	

WO 97/08320

Table 3A:

(continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
.3	Vk3-5	0	
3	Vk3-6	0.	
3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	1	1 entry
6	Vk6-1	0	-
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	•
. 1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1 .	DPL6	. 0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
. 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38'entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

WO 97/08320 . PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 .	
1	. VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1 .	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1 `	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	•
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	

Table 3C: (continued)

2 VH2-31-14 1 2 VH2-31-8 0 2 VH2-31-9 0 2 VH2-31-10 0 2 VH2-31-11 1 2 VH2-31-12 0 2 VH2-31-13 1 7 ento 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0	
2 VH2-31-9 0 2 VH2-31-10 0 2 VH2-31-11 1 2 VH2-31-12 0 2 VH2-31-13 1 7 ento 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
2 VH2-31-10 0 2 VH2-31-11 1 2 VH2-31-12 0 2 VH2-31-13 1 7 enter 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
2 VH2-31-11 1 2 VH2-31-12 0 2 VH2-31-13 1 7 ento 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
2 VH2-31-12 0 2 VH2-31-13 1 7 ento 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
2 VH2-31-13 1 7 entors 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 0 3 VH3-13-3 0	ries
3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 0 3 VH3-13-3 0	
3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 0 3 VH3-13-3 0	
3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-13-3 0 3 VH3-13-4 0	
3 VH3-13-4 0	
3 VH3-13-5 0	
3 VH3-13-6 0	
3 VH3-13-7 32	
3 VH3-13-8 4	
3 VH3-13-9 0	
3 VH3-13-10 46	
3 VH3-13-11 0	
3 VH3-13-12 11	
3 VH3-13-13 17	
3 VH3-13-14 8	
3 VH3-13-15 4	
3 VH3-13-16 3	
3 VH3-13-17 2	
3 VH3-13-18 1	
3 VH3-13-19 13	
3 VH3-13-20 1	
3 VH3-13-21 1	
3 VH3-13-22 0	

Table 3C: (continued)

Family ¹	Name .	Rearranged ²	Sum
3	· VH3-13-23	. 0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6 .	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	•
3	VH3-14-3	0	
3	VH3-1X-1	0	
3	· VH3-1X-2	0	·
3	VH3-1X-3	6	
3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	
4	VH4-11-15	0	
4 .	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0	
4	VH4-21-3	1	
4 .	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	·
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4 .	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

. [Fram	ewor	k i		
amino acid'	-	2	က	4	S.	9	_	®	6	10	=	12	13	14	15	16
A	•	1							1				102		1	
В			1			1										
С														1		
D	64															
E	8		14												1	
F									1	6				1		
G																10
Н							••••••									
		65			<u> </u>										4	
К			1													
L		6		21							96		1			
М	1			66												
Ν													••••••			
P								103		1		2			1	
Q			62			88					1					
R										*********			••••			
S							89		102	80	•••••	103	•••••	103		
T		1			88					18			•••••			
V		1	9							••••	8	•••••	2	<u>.</u>	98	
W						•••••						••••••				<u></u>
X	1	*****			•••••					·····		••••				
Y																
<u></u>															<u>:</u>	<u></u>
unknown (?)			*******													<u> </u>
not sequenced		_	-						:	 				<u> </u>		
sum of seq ² .	;····	····			:	<u>:</u>	:	:	:	:	:			•	:	-
oomcaa	64	;•••••• :		66	88	;	:	:	:	80	•		······································	103	;·······	: :
mcaa ⁴	D	1	Q	М	T	a	S	Р	S	S	L	S	Α	S	V	G
rel. oomcaas	%98	88%	71%	9/9/	100%	99%	100%	100%	%86	76%	91%	%86	97%	%86	93%	
pos occupied6			5	;		2	•		3	4	3	2	3	3	5	

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

-															
amino acid¹ .	17	18	19	70	21	22	23	24	25	26	27	⋖	ω	ပ	٥
Α			1	1		1			103						
В											1				
. C							105								
D	101														•
E	2							1	1		2				
F					2										
G										1					
н											1				
1			6	4	101	1									
К								2			1				
L								1							
М															
N ·										1					
Р															
a								20			100				
R :		94				*****		81							
S		5		1						102					
Т		6		99		103			1	1					
V			98		2										
W															
Х	1														
Y	1										- 7				
_												105	105	105	10
unknown (?)															
not sequenced		<u>. </u>							<u></u>						
sum of seq ²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	10
oomcaa3	101	94	98	99	101	1.03	105	81	103	102	100	105	105	105	10
mcaa'	D	R	٧	T	1	T	С	R	. A	S	Ω	-	-	-	-
rel. oomcaas	%96	90%	93%	94%	%96	%86	100%	77%	98%	%26	95%	100%	100%	100%	200
pos occupied6		•	:	! !	:	:	:	:		:	:		1	1	

Table 4A: Analysis of V kappa subgroup 1

(CDRI														
amino acid'	ш	ட	28	29	30	31	32	33	34	35	36	37	38	39	40
Α					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1			
E							1					2			
F				1	1		7				6				••••••
G			25		7	3			4						
Н					1	2	2		1			2			
1				98	-1	4			1						•••••
К						7						•••••		95	
L					2	1		101							
М										-		•••••			•••••
N			6		16	42			50						
Р															10
Q					•••••						•••••	98	103		:
R					16	3	2					·············		3	
S			41	2	57	32	3	1	1				: : : :		
T			7			4	······		4		••••••			1	
<u> </u>			1	4	1	••••	•••••	1			•••••		<u></u>		
W						••••••	21	••••••	••••	104			<u>.</u>	<u></u>	<u></u>
X			•••••						1			; ;			
Υ					1		60				98				_
	105	105											<u></u>		<u></u>
unknown (?)				.,			}		•••••			ļ	ļ	3	
not sequenced	-					1	-						-		_
sum of seq ²	105	105	105	105	105	104	:	: ·········	:·····································	104		<u>:</u>	<u> </u>	:	:
oomcaa,	105	105	41	98	:	:·····	· · · · · · · · · · · · · · · · · · ·	101	:·····································	104		:	103	:	10
mcaa ⁴	_	-	S	1	S	·N	Υ	L	N	W	Υ	Q	Q	K	Р
rel. oomcaas	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	
pos occupied ⁶	1	1	6	: :	:	11	9	4	8	1	2	5	2	4	-

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•	Fram	iewor	k II									С	DR II		
amino acid'	41	42	43	44	45	46	47	48	49	20	51	52	53	54	52
А			94							50	95				••••
В															
. C															
D										21	1	1	1		••••••
E	1	3			1	1				1		1			33
F						1			3			. 1			
G	100		1						••••••	9	2				
Н									2		••••••				1
		1				1		100					1		
K		95			86					16			2		5
L		1				89	103							101	
M								2			<u></u>				
N					10					2		1	25		
Р				104					<u></u>	1					•••••
Q ·		1			1							<u></u>			6
R					3	3			ļ				1	1	
S					1				5	1	1	99	41	2	
T		3			1				ļ	1	4	1	31		
V			9			9	•••••				1		1		•••••
W		<u>.</u>							<u> </u>			<u></u>			
Х					1				<u>.</u>				1		
Y		L_							92	2 1					_
-															
unknown (?)		}					ļ	ļ						ļ	
not sequence	d i	1	1	1	1	1	2		3 :	3 :	2	1	1	1	
sum of seq ²	104	1 104	104	104	104	104	103	102	10	2 10	3 104	1 104	104	104	10
oomcaa3	100	95	94	104	86	89	103	100	9	2 50	9	5 99	41	101	(
mcaa*	G	Κ	Α	Р	Κ	L	L	1	Y	Α	Α	S	S	L	(
rel. oomcaa	, web	91%	%06	100%	83%	%98	100%	%08°	8 8	7000	010%	95%	39%	97%	
pos occupied	:	2 (<u>:</u>		:		•		•	i		5 9	3	

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•															
amino acid'	26	57	28	59	9	61	62	3	64	9	99	<u>6</u>	89	69	02
А	3										2	1	1	1	
В				1											
. C															
D	1														67
E													1		30
F			. 1				103					3			
G	2	105							105	4	101		102		
Н															3
l	3		4				1	3							
· K	1					1									1
L								1							
М														1	
N	6														
Р	1			101	2								***********		
Q										1					
R	1					103		1		1	1	************		2	
S	68			2	103			98		96		100			
T	19			1		1		2		3	••••••		•••••	101	
<u>V</u>			99				1					•••••			1
W				*********		•					••••••				*******
X			1	••••••	•••••••	•••••		••••••	••••		1		1		2
Y												1			1
_				•••••	••••••	•••••									
unknown (?)					••••••			•••••							•••••
not sequenced															
sum of seq²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	105
oomcaa,	68	105	99	101	103	103	103	98	105	96	101	100	102	101	67
mcaa*	S	G	V	Р	S	R	F	S	G	. S	G	S	G	T	D
rel. oomcaa'	65%	100%	94%	%96	%86	98%	%86	93%	100%	91%	₉ 096	95%	97%	96%	64%
pos occupied ⁶	:	1	4	4						5	4	4	:	:	

Table 4A: Analysis of V kappa subgroup 1

•	Fr	amew	ork II	1											
amino acid'	7.1	72	73	74	75	9/	77	78	79	80	81	82	83	84	82
Α		3				1				2				101	1
В					1				3		2				
. C															
D						1					16	101			
E											83				
F	102	1	21										73		
G							4				1			2	
Н															
l					9 9	5							17		
K															
L			81					103	1				1		
М													•••••••		1
N						7	4								1
Р										97					1
Q									97						
R						2	1	••••••	2						
S		2		1		86	94			4	***********		1		
T		98		102		2	1			•••••	•••••				97
V	1		2		4			1		*********	•••••		11		1
W	<u> </u>										••••••	<u> </u>	<u></u>		
X				1				•••••			1	2			
Y	1														
_													<u></u>		
unknown (?)	ļ					ļ	ļ					<u></u>			
not sequenced	3==		:			:		1	:					† 	-
sum of seq²	104	104	104	104	:	•		:	;	:	:		:	•	
oomcaa ³	102	98	81	102	99	:	:		97	:		101	•••••••••••••••••••••••••••••••••••••••	101	
mcaa*	F	T	L	Ţ	1	S	S	L	Q	Р	E	D	F	Α	T
rel. oomcaa ^s	0/086	94%	78%	98%	95%	83%	%06	%66	94%	94%	81%	%86	71%	98%	95%
pos occupied		} 4	3	3	3	7	5	2	4	3	5	2	9 5	5 2	6

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

4A. Allalysis of V									· C	DR III						
amino acid¹	98	87	88	68	90	91	92	93	94	95	∢	8	U	۵	w	<u>.</u>
А					1	7	1		5	1						
В				2	3											
. C			102													
D							23	5	1							
E							1	1		1	1					
F		7				3			13							
G						1		1	2	1		1				
Н		1		4	6	7	3	1								
1							4	1	2	1						
K	1				7		1									
L				7	••••	6	2		18	2						
M																
N						6	31	19	1							
Р									1	82	6					
Q				90	86	1	2									
R						1		2	2							
S	1					27	3	58	5	10						
T						3	1	15	25							
V					• • • • • •	··········	····		5						••••	••••••
W				<u></u>	: : : : : :				1							
X				<u>.</u>	: : : : : : :											
The state of the s	101	93				42	32	1	23							
										3	82	88	89	89	89	89
unknown (?)		1						<u>.</u>								
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa ³	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa*	Υ	Υ	С	Q	Q	Υ	Υ	S	T	Р	-	<u> </u>	-	_	-	-
rel. oomcaa ^s	%86	91%	100%	87%	83%	40%	31%	56%	24%	81%	92%	%66	100%	100%	100%	100%
pos occupied6	3		<u>:</u>	:	·	:	·············	·	14		:	:		<u>:</u>	<u>:</u>	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

- Adday A 10 515618							Frar	new	ork	١٧					
amino acid'	96	97	86	66	.100	101	102	103	104	105	106	∢	107	108	sum
A	1														627
В					1					1					19
·c															209
D	1									15					459
E					2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
l	5								1		72				606
K	1	1						77					79		480
L	18	1	1						22	4	2				793
М		1									5				77
N	1				<u></u>						1		2		232
Р	6			••••	7									1	620
Q	1				48					1				<u> </u>	865
R	6							6			ļ <u>.</u>		2	70	413
. S	2	2			<u>.</u>									ļ	1636
T	2	82			ļ		87	3			<u></u>		2	<u></u>	1021
V	2				<u>.</u>			1	63		3				440
W	15				<u> </u>	<u> </u>					<u></u>			<u></u>	141
X					<u></u>	<u></u>								·····	14
Y	16					<u>.</u>					<u> </u>		<u> </u>	<u> </u>	564
	4	1			ļ	<u></u>		<u></u>				85	<u></u>	1	1250
unknown (?)	ļ		ļ	ļ	ļ	<u>.</u>		<u></u>				<u></u>	ļ		. 7
not sequenced	-			-	$\overline{\cdot}$						-	:	:	-	7
sum of seq ²	·····	•	·····	:		• • • • • • • • • • • • • • • • • • • •	<u>:</u>	:				<u> </u>	Ţ	· • · · · · · · · · · · · · · · · · · ·	"
oomcaa ₃	18	82	86	87	48	87	?	·····	63	65	72	85	79	70)
mcaa'	L	Ţ	F	G	G	G	T	K	٧	E		<u> </u>	K	R	
rel. oomcaas	20%	92%	%66	100%	55%	100%	100%	89%	73%	26%	85%	100%	93%	950%	
pos occupied ⁶	17	7	2	1	1 5	5 1	1	4	3	5	6	1		1 4	1

99

PCT/EP96/03647

Table 4B: Analysis of V kappa subgroup 2

		٠								F	ran	iew	ork l								
amino acidi	-	7	က	4	5	9	7	8	6	10	Ξ	12	13	14	5	16	11	18	19	70	21
Α																			22		
В																					•••••
. C																					
D	14																				
E	3																15				
F .									1	1											
G																22					
Н													•	•							
l	·	8																			22
K		Ì																			•
L		3		1					17		18				6						
M				15																	
N																			••••		
Р				******				18				18			15			22			
Q						18											7				
R																					<u></u>
S							18			17										22	
T					17									21							
<u> </u>		6	17	1									18								<u> </u>
W																					<u>.</u>
X																					
Y																					
_																					<u></u>
unknown (?)					1											ļ					<u></u>
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1	-					
sum of seq ²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
oomcaa³	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa*	D	١	٧	М	T	Q	S	Р	L	S	L	Р	٧	Τ	Р	G	Ε	Р	Α	S	1
rel. oomcaa'	82%	47%	100%	%88	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	0/89	100%	100%	100%	100%
pos occupied ^c	:		: :		:	:			}		1		1			•	:	1			1

Table 4B: Analysis of V kappa subgroup 2

										. (DR	}									
amino acid'	22	23	24	25	56	27	∢	8	U	٥	ш	u.	28	29	30	31	32	33	34	35	36
Α																					
В																					••••
· C		22																			
D										1			9		1	1			11		****
E																					
F .															2						
G											1			22							
Н										16							1		1		••••
l					•••••																••••
K			1							••••						1					
L						1		22	13									22			
М						•••••		•••	1									•••••			
N						•••••		•					10		7	12		•••••	9		
Р								*******											••••		•••
Q	1	•	•••••	•		21		•••••		•••••						•••••		•			
R			21							••••	2										
S	21		·	22	22		22	••••••			19		1						•		
T																8		•••••			
V									8												
W						•••••	******	*******	••••	1		•	••••••	••••		•		•		22	
Χ			••••			••••••	•••••	•••••				•••••	1		1			•••••	1		
Y										4			1		11		21				1
-												22									
unknown (?)					-	•	•••••	••••••	••••••			•••••								•••••	
not sequenced																					
sum of seq ⁷	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	2
oomcaa¹	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	1
mcaa*	*******	• :					•••••	•					:	G		······			······	*******	••••
rel. oomcaa ^s													<u> </u>	100%	•••••						-
pos occupied		:	:	:	:		:	:	:	:	:	:	;			:	:	:	:	:	••••

Table 4B: Analysis of V kappa subgroup 2

				F	ram	ewo	rk I	l								С	DR	1			
amino acid'	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	25	23	54	52	26	57
Α							•												14		
В																					
· C												<u></u>									
D												<u></u>		`					7		
E									1												
F .																					
G					22										12				1		2
Н																					
[1		22									
K .			15											5							
<u> </u>	16									14	21			14	1						
M																					
N																	18				
Р				22				21													
Q	6	22				22			12					1							
R	ļ		7						8	7				1				22			<u></u>
<u> </u>					١		21								2	22	2			22	
T	ļ	<u></u>													••••		1				<u></u>
V	ļ										1				6						<u>.</u>
W	ļ																				ļ
Χ	ļ	<u>.</u>																			ļ
Y		_											21				1				
-		<u></u>																			ļ
unknown (?)	ļ																		ļ		
not sequenced	<u></u>						1	1	1				1	1	1					<u> </u>	_
sum of seq ²	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	2
oomcaa,	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	2
mcaa*	L	Q	Κ	Р	G	Q	S	Р	Q	L	L	ı	Υ	L	G	S	Ν	R	Α	S	(
rel. oomcaas	73%	100%	68%	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	%29	57%	100%	82%	100%	64%	100%	7000
pos occupied ⁶		•	:	:			:	:	:	:	:	:	:			;	:	:	:	:	

Table 4B: Analysis of V kappa subgroup 2

														Frar	nev	ork	111				
amino acid'	28	29	09	61	62	63	64	65	99	29	89	69	02	71	72	73	74	75	92	77	78
Α																					••••
В																					••••
· C							<u></u>		<u></u>			<u></u>									••••
D			22				1				1		22								
E																					
F					21									22							
G							21		22		21										
Н																					
1																	1	21			
K																	19				
L								******						_		21	1				
М								••••••			••••••							•••••••			
N	1				••••					••••	•••••							•••••			
P		22				•••••		•••••	*******		•••••						•••	•••••		•	
Q	1																•••••				_
R	1			20				1												20	
S	1			1	•••••	22		21	•••••	22	••••				•••••				20	1	
<u>т</u>	1			1							•	22			21	••••			1		-
V	22				1	•••••															2
W	1	•	<u></u>					•••••						•							
Χ	1				••••						••••••••••••••••••••••••••••••••••••••			•••	••••						
Υ	1	<u> </u>													••••						
_																					
unknown (?)	1													•••••	1	······		<u></u>			-
not sequence	1										········					1	1	1	1	1	
sum of seq'	_9	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	
oomcaa ³	·····	•	÷·····	· : ······	÷	:	····	÷••••••	·:·····	÷		• • • • • • • • • • • • • • • • • • • •	22	: :	••••••••••••••••••••••••••••••••••••••	•	•	:	•		Ť
mcaa*		Р		••••••	†····	· · · · · · · ·	·····	······	······	· · · · · · · · · · · · · · · · · · ·	·••••••	::	D	: :	:		::	· · · · · · · · · · · · · · · · · · ·	S	::	•
rel. oomcaa ⁵	%00	100%	%00	••••••	Ŧ · · · · · · · ·	·······	·····	7			7	·····	100%		:	%00	%O(0000)5%	95%	
pos occupied		• 🛊 • • • • • • • • • • • • • • • • • •	•		:	•	:	:	•	:	:		:	:	<u> </u>	:					· ·

Table 4B: Analysis of V kappa subgroup 2

																	С	DR I	Ш		
amino acid'	79	8	81	82	83	84	82	98	87	88	83	90	91	92	93	94.	95	4	8	ပ	۵
Α		20											14			1					
В												1			1						
· C			4							21											
D			1	21																	
E	19		20					••••													ļ
F.																					
G	1					21							6			1		2			<u>.</u>
Н													1		7						<u> </u>
							1									1					
K																					<u> </u>
L							1							12			2				
M											21										
N																					
P		1														2	16	1	<u>.</u>		
Q	1											20			13					<u></u>	<u> </u>
R														1				<u> </u>	<u>.</u>	<u></u>	
S		<u></u>											: : : :			3	2	<u>.</u>	<u>.</u>		<u></u>
Ţ														8		7					
V		<u></u>			21		19														<u> </u>
W		<u> </u>							<u></u>							6	<u></u>				<u>.</u>
Χ																					
Y								21	21												
_																		14	17	17	1
unknown (?)																					
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	
sum of seq ²	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	1
oomcaa ³	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	1
mcaa*	Ε	Α	Ε	D	٧	G	٧	Υ	Υ	С	М	Q	Α	L	Q	Τ	Р	_	-	-	
rel. oomcaa'	%06)5%	95%	%00	%00	%00 l	%0(%00 	100%	%00 ₋	%00)5%	37%	37%	;2%	3%	%O:	12%	100%	0001	7000
pos occupied ⁶		Ţ	;	:	3	•	•	:	•	:	:	:	:	:	:	:	:	:	:	:	÷

Table 4B: Analysis of V kappa subgroup 2

iiaiysis oi v kapp			<u> </u>						Frai	new	ork	١V					
amino acid'	ш	u.	96	97	86	66	100	101	102	103	104	105	106	4	107	108	sum
А																	71
В												1					3
С																	43
D																	112
E												13					71
F			1		17												72
G						17	2	16				1					233
Н																	26
			3										14				94
K										12					13		66
L			2								11						219
M																	37
N																	56
Р			1						,								159
Q			1				14										159
R								ļ		4					••••••	12	126
S							<u></u>	ļ	ļ								325
· T				17		<u>.</u>	<u></u>	<u></u>	16								140
V						<u> </u>	<u></u>	<u> </u>	<u> </u>		5						146
W			2			<u> </u>		<u></u>	<u></u>							<u></u>	31
X						<u> </u>		ļ	<u></u>					ļ] 3
Y	_		7				<u> </u>	<u>. </u>	<u> </u>								123
-	17	17				<u></u>	ļ	ļ	<u></u>		<u></u>	ļ	<u></u>	13		<u></u>	134
unknown (?)	ļ					<u>.</u>	ļ	<u>.</u>	<u> </u>		<u> </u>		<u></u>	<u></u>	ļ	<u></u>	. 2
not sequenced	_5	5	5	5	5	5	6	6	6	6	6	7	8	9	9	10	211
sum of seq ²	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaai	17	17	7	; :	:	·••••••	********	· • ······	· • · · · · · ·	12	:			13	13	12)
mcaa ⁴	-	-	Υ	T	F	G	Q	G	T	K	L	E	1		K	R	
rel. oomcaa ^s	100%	100%	41%	100%	100%	100%	98%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ⁶	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	ij

105
SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

				- СР							Fran	newo	rk I			
amino acid'	-	2	m _.	4	2	9	^	∞	6	5	=	12	13	14	15	16
А		5					2		27						1	
В	1												<u>.</u>	<u></u>		
. C									·			2				
D	2								14							
E	76		27													
F.		1					,							1		
G	1								82						1	152
Н										1						
1		75														
K	3															
L		4	1	104			1				150		129		1	
·M	5			13												
N														5		
Р								124							147	
Q						123										
R					1											
<u>S</u>							119		3	1		150	1	141		
Т		2			117					147	•••••	••••••		5	1	
V		1	89	1			1				1		22		1	
W			••••													
X														•••••		
Υ										/						
-														•		
unknown (?)																
not sequenced	<u> </u>															
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa,	76	75	89	104	117	123	: :			······································	150		129		147	152
mcaa*	Е	1	V	L	Ţ	Q	S	Р	G	Ţ	L	S	L	S	Р	G
rel. oomcaas	86%	85%	76%	88%	%66	100%	97%	100%	65%	%66	%66	%66	85%	93%	97%	100%
pos occupied"			3			1										1

Table 4C: Analysis of V kappa subgroup 3

C. Allalysis of V				•											(DRI
amino acid'	17	18	19	20	21	22	23	24	25	56	27	4	ω	U	۵	ш
Α			178	2					166	1						
В																
. С			i	Ī			181			1						
D	6						<u></u>									
E	146	1									1					·····
F			<u></u>	<u> </u>	7	1										
G	1	1		į	į				-1	1		1				
Н											17					•••••
l		1		5	2	<u> </u>										•••••
К		1						5								•••••
L					173						1	1				•••••
. W									<u></u>						į	
N												9				•••••
Р																
Q											159					
R		175						176		1	1	10				
S						180			7	175		87				
Т		1		174					7	2		1				·····
V		1	4	1					1			1				
W								1								
X																••••••
Y						1		_			1					_
_												72	182	182	182	182
unknown (?)		<u>.</u>							·····		1					
not sequenced																
sum of seq'	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa¹	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa ⁴	Ε	R	Α	T	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaa ^s	95%	9/0/6	%86	%96	95%	%66	100%	97%	91%	92%	988%	48%	100%	100%	100%	100%
pos occupied ⁶	3	7	2			:	:	3	5	:	6	•		1	1	1

Table 4C: Analysis of V kappa subgroup 3

•															Fram	ew
amino acid'	u_	28	29	30	:31	32	33	34	35	36	37.	38	39	40	4	42
А				1	1			181								
В																
. C					<u></u>	<u></u>		<u></u>								•••••
D			1	1	2	1		į								• • • • • • • • • • • • • • • • • • • •
E						1						į	1			•••••
F .		1				7			<u></u>	1		<u> </u>	<u> </u>			•••••
G			2	7	3	1		2	<u> </u>					1	184	
Н			1			2				1		12	1	1		
1		24	4	1	1											
K				1	1								153			
L ·		8	1			1	176					3				
·M																
N			3	12	25	32										
. Р					1									170		
Q					1	1					183	167	1			18
R			10	3	18	16		1			1		27	5		
·S		72	86	151	118	4								5		
Ţ		1	1	3	8	1		•••••					1			
<u>V</u>		76	68		1		7					3		2		
W			5						185							
X																
Υ				1	1	115				183						
-	182															
unknown (?)											1					
not sequenced																
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	18
oomcaa,	182	76	86	151	118	115	176	181	185	183	183	167	153	170	184	18
mcaa ⁴	-	٧	S	S	S	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	C
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	98%	100%	%66	%66	%06	83%	92%.	100%	6
pos occupied ⁶	1	6		<u> </u>	13		:		1				6		1	

Table 4C: Analysis of V kappa subgroup 3

- !!	rk II	30		<u> </u>						С	DR II					
amino acid'	43	44	45	46	47	48	49	20	51	52	23	54	55	99	57	28
А	176							4	147				176	1		
В																
. c									1							
D								43					2		4	
E																
F			<u></u>	1		1	4									
G				į				125					2	10	179	
Н							9		1							
						178								1		168
K			1								7	1				
L		1		179	174	1										
·M						3					1					
N			1					1			53			2		
Р	5	184								_ 2			2	2		
Q							1									
R			182					1	<u></u>		4	180				
S							3	6	4	179	74	1		5		
Т	3								11	2	44			164		2
V				3	9			3	19				3		<u> </u>	15
W							1		<u></u>			1		ļ	<u></u>	
X						<u>,</u>	<u>.</u>									
Y							165								2	
					<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>				<u> </u>		
unknown (?)			1		ļ	<u> </u>	<u></u>	<u>.</u>	ļ					ļ	<u></u>	
not sequenced	<u> </u>					<u> </u>			<u> </u>							
sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa*	Α	Р	R	L	L	1	Υ	G	Α	S	S	R	Α	Τ.	G	1
rel. oomcaaʻ	96%	%66	98%	%86	95%	97%	%06	%89	%08	980%	40%	%86	95%	%68	97%	91%
pos occupied ⁶	3	:	:	;	;	;	6	7	:	3	:	4	5	7	3	3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

•													۲.	amev	VOEL	111
				~			10	(0	_							
amino acid'	59	09	19	62	63	64	65	99	67	89	69	70	7	72	7	74
<u>.</u> A		68						3		5	3	1		3		
В																
. C																
D		112			·	1						152				
E	·							1		1		30				
F .				183									183		2	
Ğ						184	3	178		177						
Н		1														
				1										1		3
K			1													
L				1											182	
- M								1								
N		1												1		
Р	177															
Q				•								1				
R			182		2		1				2					
S	7			••••••	180		179		185		3			7		2
T	1		2		3		2				177			172		179
V		3						1		1						
W		************								1						
X																
Υ													1			
_																
unknown (?)			,	•••••				1								
not sequenced																
sum of seq?	185	185	185	185	185	185	185	185	185	185	185	184	184	184	184	184
oomcaa³	177	112	182	183	180	184	179	178	185	177	177	152	183	172	182	179
mcaa•	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	Ĺ	T
rel. oomcaas	%96	61%	%86	%66	97%	%66	97%	96%	%00	96%	%96	83%	%66	93%	%66	92%
pos occupied ⁶	ა 3															

Table 4C: Analysis of V kappa subgroup 3

_																
amino acid'	75	9/	11	78	79	8	8	82	83	84	82	98	87	88	83	06
А							3			174						
В					1											
. C									2				1	182		
D			1			į	3	182								
E					149		175									2
F		1				<u> </u>			178		2	1	4	<u>.</u>		
G			3					1		2		<u></u>				
Н							į				1				1	7
l	178						į	1	1		9					
К		<u></u>					1				<u> </u>					
Ĺ				178		1			1		7		1			1
М										1	5	<u></u>				
N	1	5											<u></u>			
Р						149										
Q					34									1	181	155
R		1	111							3						1
S		169	65			34			1				2			
T		8	4							1						8
V	4			6					1	3	159					7
W																
Χ																
Υ	1										1	183	176		1	2
_							<u> </u>		<u> </u>							
unknown (?)									<u></u>							
not sequenced																
sum of seq²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa³	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa⁴	1	S	R	L	Ε	Р	E	D	F	Α	V	Υ	Υ	С	Ω	Q
rel. oomcaas	97%	92%	%09	97%	81%	81%	96%	%66	970%	95%	%98	%66	%96	%66	%66	85%
pos occupied ⁶	<u>:</u>	:	;	:		:	:		;	:				:		

Table 4C: Analysis of V kappa subgroup 3

•					C	DR II	1									
amino acid'	91	92	93	94	92	⋖	8	J	۵	ш	щ.	96	97	86	66	100
Α		1	8	3	3											1
В .																
· C	2			1								2				
D		8	5										1		~	
E		2										1				
F	5		2									7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1										2				
1			1			1						4				
К			2			1						1				1
L				2	7	5						42				
· M		1			1	2										
N		28	71									1				
Р				1	139	24						7	2			
. O	1		1		3	1						3				114
R	34	2	3		2	2	••••	••••	••••			19				
S	2	33	58	102	15	2		•••••				1	8			
T		2	13	1	1	- 2		•••••				1	154			
V					3	• 1						2				
W				69								24				••••
X				••••••		••••••	•••••									
Υ	134	1	1									43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	
unknown (?)			,				•••••		•••••							
not sequenced						14	14	14	14	14	14	14	17	16	16	10
	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	16
oomcaa,	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa'	Υ	G	N	S	Р	-	-	-	-	-	-	Υ	T	F	G	Q
rel. oomcaa ^s	73%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	99%	99%	68%
pos occupied ^a	8	11	13	8	11	12			1	1	1	18	5	2	2	

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

•		Fra	amev	vork	IV					
amino acid'	101	102	103	104	105	106	A	107	108	sum
А										1345
В										2
С										375
D					23					564
E			3		141					759
F						6				765
G	166								1	1804
Н					1					64
1						143				803
К			152					157		489
L				54		1			2	1596
М						3				36
N		1						3		255
Р		1		1	•••••					1147
Q			1		1					1314
R			9	••••••		2		4	134	1326
S		2								2629
T		162	1					1		1593
V				111		11				646
W										287
X			••••							
Y			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)			••••							4
not sequenced	16	16	15	16	16	16	17	17	45	337
sum of seq	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
mcaa ⁴	G	T	Κ	٧	Ε	ı	-	Κ	R	
rel. oomcaa'	%66	97%	%06	%99	84%	86%	100%	95%	9,7%	
pos occupied ^a	2	5	7	4	5	7	1	5	4	

113

Table 4D: Analysis of V kappa subgroup 4

											Fran	newo	ork I					
amino acid'	-	2	3	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18
Α												24					1	
В																		
· C										1						1		
D	25								26									
E																	25	
F																		
G												1				24		
Н																		
1		26																• • • • • • • • • • • • • • • • • • • •
К						1												
Ĺ				1							26				26			
· M				24														
N	1																	
Р								26				1						•••••
Q			1			25										••••		
R																		26
S							26			25				26		1		
Ţ		¢			26													
V			25	1		٠							26					
W																		
X																		
· · · Y																		
-																		
unknown (?)													*********					
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq?	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa³	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa*	D	١	٧	М	Ţ	Q	.S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ⁶	2	1	2							2							:	1

Table 4D: Analysis of V kappa subgroup 4

														DRI				
amino acidi	19	70	21	22	23	24	22	26	27	⋖	മ	ပ	۵	w	u.	28	23	30
Α	26						1				1							
В													<u></u>					•••••
С					33										<u> </u>			
D									·		1		1			1		
E																		
F ·																		
G																		
Н																		
			26								1							
K						33										2		3
L ·					•••••						2	_31	·					
· M																		
N				26			••••••									30	31	
Р							1								1			
Q	L								32									
R	L								1		<u></u>		•••••				1	
S .							31	33		33	<u></u>			32	32		1	<u></u>
T		26												1			<u></u>	<u> </u>
V											28	2					<u></u>	<u>.</u>
<u>W</u>								<u></u>								<u></u>		
Χ																		
Υ													32					
-					<u></u>					<u>,</u>								
unknown (?)					<u></u>		<u> </u>		<u></u>			<u>.</u>						
not sequenced	7	7	7	7			<u> </u>		<u> </u>									<u> </u>
sum of seq?	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa3	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	3
mcaa ⁴	Α	T	1	N	С	К	S	S	0	S	٧	L	Υ	S	S	N	N	
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	%26	97%	91%	94%	
pos occupied ^a	1	1	1	1	1	1	-		:			:	:	:	:	:	:	3

Table 4D: Analysis of V kappa subgroup 4

										- 1	Fram	ewo	rk II					
amino acid¹	3	32	33	34	35	36	37	38	39	40	4	.45	43	44	45	46	47	48
Α				32						2								
В																		
. С																		
D	Į																	
E											1							
F.																		
G											32							
H						2												
<u> </u>																		3
K									33						32			
L		•••••	33	**********												29	33	•••••
· M																		
N	33																	
. Р							÷	•••••		31			31	33				
Q	<u></u>			••••••			32	33	••••			32						
R						********	1	••••	•••••			1			1		••••	
S									•••••				2	•••••			•••••	
T				1		•••••												
V								••••••								4		
W					33													
X						•••••							•••••			•••••		
Υ		33				31												
unknown (?)				*********									•••••					
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa,	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	33	3
mcaa*	N	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	Q	Р	Ρ	K	L	L	I
rel. oomcaas	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	988%	100%	Š
pos occupied ⁶	1	1	1	2	1			1	1								1	

Table 4D: Analysis of V kappa subgroup 4

				С	DR I	ı												
amino acid¹	49	20	51	52	53	54	52	26	57	58	59	09	61	62	63	64	65	99
А			30															
В																		··········
· C																		
D												33						
E							32											
F ·														33				
G									33						1	33		3
Н																		
<u> </u>					1													
K																		
L																		
· · M																		
N					2													
Р				1							33		1					
. Q																		
R						3 3							32					<u> </u>
S			1	31	1			33				•••••			32		3 3	ļ
T			2	1	29													<u> </u>
V							1			33								ļ
W		33														<u>.</u>		ļ
X																		ļ
Υ	33																	
_																		ļ
unknown (?)	Į		•••••							<u></u>								
not sequenced										<u> </u>					<u> </u>			<u> </u>
sum of seq²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa,	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	3
mcaa*	Υ	W	Α	S	T	R	Ε	•••••••	G	٧	Р	D	R	F	S	G	S	(
rel. oomcaa'	100%	100%	91%	94%	9/088	100%	92/6	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	,
pos occupied ⁶	1	1	3	3	4	1	i	11	1	1	1	1	2	1	2	1	1	<u>.</u>

Table 4D: Analysis of V kappa subgroup 4

					Fra	mev	vork	Ш						-				• :
amino acid'	29	89	69	20	11	72	73	74	75	9/	77	78	79	8	81	82	83	84
А													_	33				32
В																		
. C										٠								
D				32												33		
E				·											33			
F.					32													
G		33		1														1
Н																		
I I				*******					33									
K																		
L	ļ	•					33	•••••				32	•••••			••••		
· M												1						
N										2	1							
Р																		
Q					·····								32					
R	ļ												1					
S	33		••••••	••••••						30	32							
T	ļ		33			33		33		1			•••••					
V	ļ				1												33	
W	ļ			••••••									••••••		•••••	•••••••		
X	ļ			•••••	••••					•••••				••••••				
Y								_										-
_				••••••				•••••						•••••		•••••		
unknown (?)								••••••						······································				
not sequenced																		
sum of seq'	1				•••••••			*********	33		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	•••••		• • • • • • • • • • • • • • • • • • • •		
oomcaa¹			33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	32
mcaa'	S		Ţ	D	F	Ţ	L	Ţ	1	S	S					D	٧	Α
rel. oomcaa ^s	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	97%	97%	97%	100%	100%	100%	100%	97%
pos occupied ⁶	1	1	1	2			•••••		1	•							1	

Table 4D: Analysis of V kappa subgroup 4

										· · · · ·	CC)R II						
amino acid'	82	98	87	88	68	90	91	92	93	94	95	⋖	ω	ပ	٥	w	u.	96
Α										1								
В										<u></u>								
· C				33							<u></u>				<u></u>			
D								1	1									••••
E																		•••••
F ·			1					1										
G									2	_								
. Н			1		3													
1										2								
K																		
L				٠		1		2		1	3							
· M			,		,													
N									4	4								
Р										1	29	1						
Q					30	32					1							
R									1			1						
S							2		23	2								
T .				<u></u>			<u></u>		2	22								
V	33			<u></u>														
W					<u></u>					: : :								
Χ	<u> </u>			<u></u>			<u></u>											
Υ	L	33	31				31	29										
-		ļ					<u> </u>	ļ	<u> </u>			13	15	15	15	15	15	ļ
unknown (?)	[<u> </u>			ļ	<u></u>		ļ	ļ	ļ			••••••				ļ	ļ
not sequenced	<u> </u>	<u> </u>								<u> </u>		18	18	18	18	18	18	1
sum of seq ⁷		÷	÷·····	• • • • • • • • • • • • • • • • • • • •	÷	•••••••	÷	·:·····	:	••••••	33			:	:	•	:	:
oomcaa³	33	33	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	
mcaa*	٧	Υ	Υ	С	Q	Q	Υ	Υ	S	T	·····	-	-	<u>-</u>	-	-	-	1
rel. oomcaas	100%	100%	94%	100%	91%	97%	94%	88%	70%	67%	88%	87%	100%	100%	100%	100%	100%	
pos occupied ⁶	1	1	3	1	•	2	:	:	6	:	3	:	:	1	1	1	1	

Table 4D: Analysis of V kappa subgroup 4

						Fra	mev	vork	IV					
amino acid'	97	98	66	100	101	102	103	104	105	106	Α.	107	108	sur
А														18
В														
С														e
D														15
Ε.								·	14					10
· F		15												8
G			15	4	15									22
Н														
<u> </u>										14				13
K							14					13		15
<u> </u>		,					•••••	4						2
M	1													:
N				•••••								1		1:
Р	ļ					1								19
Q				11				1						20
R							1		1			1	11	1
S	2				•••••					1		•••••		49
T	12				•••••	14	••••							2:
<u>V</u>	ļ	<u></u>						9						15
<u>W</u>						••••••	-	1				••••••		1
X				• • • • • • • • • • • • • • • • • • • •	••••	••••	••••••					•••••		
Υ	<u> </u>											•		2
	-	<u></u>									15			10
unknown (?)		ļ			••••	••••••						•		
not sequenced	18	18	18	18	18	18	18	18	18	18	18	18	22	5
sum of seq ²		:			•••••		•••••	15	15	15	15	15	11	
oomcaa ³	12	15	15	11	15	14	14	9	14	14	15	13	11	
mcaa ⁴	Ţ	F	G	Q	G	T	K	٧	Ε	1	-	K	R	
rel. oomcaa'	80%	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%	
pos occupied ^a	3	1	1	2	1	2	2					3	1	

/20

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

											Fran	iewo	rk I						
amino acidi	-	7	က	4	2	9	7	œ	6	0	Ξ	12	13	7	15	16	17	18	19
Α											19		18	20					
В					•														
· C												•							
D					••••••							•••••							
E					•							•						1	
F .			•••••									••••••	••••••					•••••	
G			•••••		······							•	22			42		*******	
Н	2	•••••	i		·····							İ	******					••••••	
1			1	•••••			•				1	·····	•••••					••••••	
K							•••••		•						•••••	••••		14	
L		••••••	1	41		••••••	•••••		•••••		1		*******			•••••			
M							•••••		• • • • • • • • • • • • • • • • • • • •				*******						
N				••••••		••••	•••••			•••			********		•••••		 		
Р				•••••		••••••	41	41	•		••••••			1	41				
Q	22		1			41	••••••							• • • • • • • • • • • • • • • • • • • •		: : :	42		
R						••••••	•••••							•••••		 !		25	
S		39		•••••			•••••		41			41	•••••	•••••	1			1	
T ·				••••	41	•••••	•••••••	<u></u>						19				1	
V		1	38	•			••••••	<u> </u>			20		1	1					4
W				•••••	***********	••••••	•••••	•					•••••						
Χ				•••		*********	•••••		······································		••••••••••••••••••••••••••••••••••••••								
Υ				•••••		•••••		<u></u>					••••••		 !				
Z	16					**********		<u> </u>	······································	<u> </u>									
+										41									
unknown (?)											•								
not sequenced	2	2	1	1	1	1	1	1	1	1	1	1	1	1	<u> </u>				
sum of seq ²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	2 4
oomcaa'	22	39	38	41	41	41	41	41	41	41	20	41	22	20	41	42	42	25	5 4
mcaa'	Q		٧	: :		······	Р	•	•;•••••	•	?		:		······	?	Q		١
rel. oomcaas	55%	%86	93%	%00	100%	100%	%00	% 00	%00	%00	49%		<u> </u>		•	-	:		
pos occupied ⁶	:		:		····	•		· ·	1	· · · · · · · · · · · · · · · · · · ·	4	:	:		2	· · · · · ·	÷·····	·	5

121

•					·						CD	RI							
amino acid'	20	21	22	23	24	25	56	27	۵	ш	78	29	9	31	∢	32	33	34	35
Α	2							1				2	2			1			
В												<u></u>							
С				42															•••••
D										3			3	1		3		1	
E													1						
F					1				1			<u> </u>			1	1			
· G						42	3	1			2	39	4	2					
Н												<u></u>		2		2		2	
	1	41								1	37	<u></u>						1	
K										1			1						
L		1									1						ļ		ļ
М											1							·····	ļ
N								2	1	37			13	31	2		1	9	
Р																1	<u></u>	<u></u>	<u>.</u>
Q																1	<u> </u>	<u>.</u>	<u></u>
R							1	1					5				<u> </u>	<u></u>	ļ
S	1		42		38	-	34	34	38		<u> </u>		13	1	1	3	<u> </u>	19	<u> </u>
T	38				3		4	3	2		<u></u>	1		1		7	ļ	2	<u> </u>
V									<u> </u>		1					2	40	ļ	
W												ļ	<u> </u>					ļ	
Χ											<u>.</u>		<u></u>						
Υ											<u>.</u>		<u>.</u>	4	1	20)	7	
Z																_			_
-															36		<u> </u>	<u>.</u>	
unknown (?)															<u> </u>	<u> </u>	<u>.</u>	ļ	<u> </u>
not sequenced															1		1	1	<u> </u>
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	4	4	4	<u> </u>
oomcaa3			42																
mcaa ⁴	T	1	S	С	S	G	S	S	S	N	1	G	N	N	-	Υ	٧	S	
rel. oomcaas	%U6	%86	%00	100%	9000	%001	1%	1%	%06	9/08	8%	93%	31%	74%	38%	49%	980	460%	
pos occupied			•••••••	Ť·····	3	<u> </u>		•	6	•	•		7	7	:	i	:	•	7

122

Table 5A: Analysis of V lambda subgroup 1

						Fra	me	wor	k II												
amino acid'	36	37	38	39	4	41	: :	4.7	43	44	45	,	46	47	48	49	20	51	52	53	54
Α								4	40										1		
В		•••••		<u>.</u>		<u>.</u>						<u>.</u>									
. C				<u>.</u>		<u>.</u>						<u>.</u>									•••••
D				<u>.</u>	<u>.</u>	<u>.</u>	1					<u>.</u>					13	10	8		
E				<u></u>		<u>.</u>					2	2					5			1	
F	1			4		<u>.</u>				••••••		<u>.</u>				1				<u></u>	
G				<u> </u>		3	9					<u>.</u>					1			<u></u>	
Н	1	1	6	1		<u>.</u>						<u>.</u>				1				1	
1	ļ		<u></u>	<u></u>		<u>.</u>					<u></u>				40		1		<u></u>	<u> </u>	<u></u>
Κ			<u> </u>	<u>.</u>		<u>.</u>		1			3!	5					1	1	<u> </u>	18	
	ļ		1	3		<u>.</u>					<u></u>	.	41	40				<u></u>	<u></u>	1	
M	ļ							1			<u></u>				1	••••••			ļ	1	
N	ļ										ļ	1					3	28	30	2	ļ
. P	ļ	<u></u>	<u>.</u>	<u>.</u>	4	2	1		•••••	42	<u>.</u>									ļ	<u></u>
<u>O</u> .	ļ	39	34	<u> </u>							<u>.</u>						<u></u>	<u></u>	<u>.</u>	15	•
R	ļ	2	<u> </u>	<u>.</u>	1		1				ļ	4					7	÷	-		4
5	ļ	<u></u>	ļ		_				1	<u></u>	<u>.</u>		•••••				9	2	3	3 1	ļ
T	ļ	<u></u>	. 					36	1	<u></u>	<u></u>			•••••			1		·	-	<u>.</u>
<u>V</u>	.l	ļ		1	5		-				ļ		1	2	1		<u> </u>	<u></u>			-
<u>W</u>	. .	ļ									<u>.</u>										
X	. .														<u></u>						
ΥΥ	40)								<u></u>				ļ	<u></u>	40	1	1			-
Z		L	_	-		+		_		_	-	-	_	_				-	-	-	-
-	-	<u></u>										_		<u></u>	<u> </u>		<u>.</u>	<u> </u>			
unknown (?)					·	<u> </u>		•••••		<u></u>	-			<u> </u>	<u> </u>		ļ		<u>.</u>	-	-
not sequence		<u> </u>	-	-	-	_					_	_			-	<u> </u>					
sum of seq ²	*******	•••••••	••••	••••••	•••••	••••	••••••		:·····	•••••••••		•••••		:	42		:		•	:1	
oomcaa¹		••••••••	••••••	••••	••••	••••			•	•••••••		•••••	•••••		40	:	:	•••••	•		,
mcaa ⁴	Y	Q	·-::	••••	••••		•••••	T	············	Р		•••••	L	L	<u> </u>	Y	D	N	N	l K	
rel. oomcaa ^s	95%	430%	910	0 1	0/04/	0/001	93%	86%	95%	100%	2	83%	%86	95%	95%	950%	210%	2,00	710%	420%	2
pos occupied		•		:	:			:	:	•	4	•		•	1		· · · · · ·	0			9

123

Table 5A: Analysis of V lambda subgroup 1

•	CDI	R 11																	
amino acid'	55	99	⋖	8	ပ	۵	ш	23	58	29	09	61	62	63	64	65	99	⋖	മ
А	1														5				
В																			
. С													·						
D											38								
E																			
F .													38						
G								41			2				36				
Н											1								
ı									17				3						
К							·										38		
L		1			•					1					••••••				· ····
М											•								•••••
N			•	•••••		*********		•••••			•••••			•••••					••••••
Р	38									38	•	,			••••••				•••••
Q																			
R												42					4		
S	2	40								2				42		42			
Т														·	1				
V									24				1						
W																			
X																			
Υ				·															
Z					*******													•••	
-			41	41	41	41	42											42	42
unknown (?)								<u> </u>						*********					
not sequenced	1	1						1	1	1	1								
sum of seq ²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	42
mcaa*	Р	S	-	-	-	-	_	G	٧	Р	D	R	F	S	G	S	K	-	-
rel. oomcaa ^s	93%	%86	100%	100%	100%	100%	100%	100%	59%	33%	93%	100%	%06	%Ó01	%98	%001	%06	%00 ₁	%001
pos occupied ⁶	•		:		:	ŧ	1	i	:		3		3			1	<u>.</u>		1

124

Table 5A: Analysis of V lambda subgroup 1

•				Fra	mev	vork	III												
amino acid'	67	89	69	70	71	72	73	74	75	9/	11	78	79	80	81	82	83	84	82
Α		1	3		41			24						2				38	1
В			į																
· C				,															
D	,	1										Ì			1	41			37
E													1		24		42		1
F .																			
G		40						17		1	42				15				
Н													1						2
1									41										1
K																			
L					• • • • • • • • •		42	•••••		•		41							
M				•	••••	•••••	••••••			•••••	••••		••••••		••••••				
N					•••••					••••••				••••	*********	1		••••	
Р				•••••			•••••			•••••				2	•••••				
Q				,		 ! !		<u></u>					31	•••••••		······································			
R							••••••				<u></u>		8	•••••••		 !	<u></u>		
S	42		1	42		24		<u> </u>	<u></u>	20				20				1	
T			38			18		†······		21				17	<u> </u>			3	
V	I				1	······		1	1			1		1			<u></u>	<u> </u>	
W	I					İ					<u> </u>		1	•••••	2			<u> </u>	
Χ	1		(••••••••••••••••••••••••••••••••••••••		···········	•			············			•••••••	······································			············	
Υ	1		(·········	• •												.}			
Z								İ							<u></u>				
-																ŀ			
unknown (?)	1		<u> </u>			†				······						<u> </u>			
not sequenced	1		<u> </u>																
sum of seq?		42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	4
oomcaa,		•	·	÷·····		÷	•	• • • • • • • • • • • • • • • • • • • •		······	•		?·····	·····	:·····	41	• • • • • • • • • • • • • • • • • • • •	·:····	•••••••
mcaa'	S	G	T	S	Α	S	L	Α	1	T	G	L	Q	S	Е	D	Е	Α	D
rel. oomcaa ^s	%001)5%	%06	100%	%86	37%	%00	37%	%86	%0%	%00 1	%8(74%	%81	37%	%86	100%	%06	2/000
pos occupied				·····		:	:	:	:	:	1		:	:	:	i	:	3	••••••

125

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

										CDI	R III									
amino acid	98	87	88	83	90	91	92	93	94	95	۷	8		، ز	۵ '	w	<u>. </u>	96	6	86
Α				22	15			1				1	6					4	1	
В												<u></u>								******
С			42									<u>.</u>	<u></u>							
D							39	17			7									
Ε								,,			<u>.</u>		1					1		
F		2						,,,,,,,,		1	<u></u>									36
G				14				1			<u></u>	1	7	1				5	1	
Н		1									<u></u>			1						
l									: : : : : :		<u>.</u>								1	
K										<u>.</u>										
L				1						37				1					1	
М									<u>.</u>										1	
N		·					2	2				9	1							
Р										1	<u>.</u>							6		
Q				3				<u> </u>			<u> </u>									
R .							<u> </u>	<u> </u>	5	1		2			<u></u>			2		<u></u>
S					4			17	35		1	В		1				1	<u> </u>	<u> </u>
T					22	<u> </u>	<u> </u>	1	1	<u></u>	<u>.</u>	1							<u> </u>	<u> </u>
V				1		<u></u>		1	<u>.</u>	1	ļ		2					9	34	
W			•••••			38		<u>.</u>	<u>.</u>	<u></u>	<u>.</u>						•••••••	7	ļ <u>.</u>	
Χ					ļ		<u>.</u>		<u>.</u>	<u>.</u>	<u>.</u>								ļ	ļ
Y	42	39				3		1		<u>.</u>	<u>.</u>							3	<u>.</u>	ļ
Z					<u> </u>		<u> </u>	<u> </u>	<u>:</u>			<u> </u>								_
_												2	4	35	39	38	38	1	<u> </u>	<u> </u>
unknown (?)								<u> </u>			<u> </u>							<u> </u>	ļ	-
not sequenced				<u> </u>		1					<u> </u>	1	1					-	-	L
sum of seq ²	42	42	42	41	41	41	41	4	4	4	1 4	1	4.1	39	39	38	38			
oomcaa³		39																	34	3
mcaa*	Υ	Υ	С	Α	Ţ	W	D	D	S	L		5	G	-	-	-	_	٧	٧	ا
rel. oomcaa ⁵	0001	93%	100%	54%	54%	930/0	95%	410%	35%	9000		44%	41%	%06	100%	100%	100%	23%	87%	
pos occupied		3	:				:	2 1		:		:	6			<u> </u>	·····	10		

120 E QUEET (BIII E 26)

Table 5A: Analysis of V lambda subgroup 1

•			F	ram	ewoi	rk IV					\neg	
amino acid'	66	00	[0	102	103	104	105	901	⋖	107	108	sum
Α	Ī											285
В			······									
С			Ī		•							84
D		*******	1							•		224
E		1		•••••								81
F												87
G	36	31	36							26		559
Н										<u></u>		25
-1										<u> </u>		188
К					30							141
L						25			34			344
М												5
N					1							176
Р											1	296
Q			Ĭ-		3				1		18	251
R					1					2		156
S		1		<u> </u>	<u> </u>					2		720
T		3		36	1	<u> </u>	36					359
V				<u> </u>		11		36	1			282
W				<u>.</u>			j			1		92
X		<u> </u>		<u>.</u>		<u>.</u>	ļ					
Υ				<u>.</u>	<u></u>	ļ						202
Z											<u> </u>	16
-	ļ	<u> </u>		<u>.</u>	<u>.</u>	<u>.</u>	<u></u>	<u></u>		<u> </u>		524
unknown (?)		<u> </u>	<u>.</u>	<u> </u>		<u>.</u>	<u></u>	<u> </u>		<u></u>		
not sequenced	4	(6 6	5 6	6	6	6	6	6	10	22	141
sum of seq'	36	36	36	36	36	36	36	36	36	31	19	
oomcaa ₃	36	3	1 36	36	30	25	36	36	34	26	18	
mcaa'	G	G	G	Ţ	K	L	Ţ	٧	L	G	0	
rel. oomcaa ^s	100%	86%	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied			4	1	1 5	:	2 1	1	-3	4	2	

127

Table 5B: Analysis of V lambda subgroup 2

											Fran	new	ork I						
amino acid'	-	2	က	4	2	9	7	8	6	0	11	12	13	14	15	16	17	8	13
Α			35					30			6		1	1					
В											,								
· c																			
D									•		•••••••					1			
E											••••••								
F .	***************************************			*******	••••	•			••••••		••••••								
G													42		•	42			
Н	2						·										1		
			1	••••••															28
K				••••															,
L				40											3				1
М		•••••			••••										·				
N																			
Р							42	6							40				
Q	22		4			41											42		
R								6	1										
S		41							40			42		42				43	
. T					42				1										
V		1	2								36								14
W							٠												
X									•••••										
Υ									•										
Z	16									·									<u></u>
······································						<u></u> .				42									
unknown (?)						1													
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq ²	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa³	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa*	Q	S	Α	L	Ţ	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	1
rel. oomcaas	55%	98%	83%	100%	100%	%86	100%	71%	95%	100%	%98	100%	98%	%86	93%	98%	98%	100%	65%
pos occupied ⁶					1														3

Table 5B: Analysis of V lambda subgroup 2

											CD	RI							
amino acid'	20	21	22	23	24	25	26	27	۵	w	28	29	9	3	⋖	32	33	34	35
Α					3		1						1			1			
В												<u> </u>							
. С				42					1			<u> </u>		1					•••••
D							<u> </u>			39		1	4		5				
E	<u> </u>														1				
F.		1											1			4			
G						43		1				39	26						
Н								1				<u> </u>			1	1			
1		41			1						6								
· K															4		<u> </u>		<u></u>
L		1														4	ļ		<u></u>
M																	<u> </u>	<u>.</u>	<u></u>
N								- 1	3	4		1	4	3	28				ļ
Р								1						••••				<u>.</u>	
Q																	<u>.</u>		
R								·	1				2				<u>.</u>	<u> </u>	
S			42		3		3	35	38				5	1	2	4	1	42	
T	43			<u> </u>	36		39	3	<u>.</u>	<u></u>	<u>.</u>	1		1					
V											37	<u></u>	<u> </u>		<u></u>		41	<u></u>	<u>.</u>
W					<u> </u>						<u> </u>				<u> </u>		<u></u>		4
Χ											<u> </u>				<u> </u>				<u>.</u>
Y								1				1		37		29)		
Z																<u> </u>			
-															1				
unknown (?)			<u>.</u>	<u> </u>				<u>!</u>		<u>.</u>	<u> </u>		<u> </u>	<u></u>	1	<u></u>	<u>.</u>	<u>.</u>	
not sequence	d		1	1			<u> </u>									<u> </u>	1		
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	3 42	42	2
oomcaa3	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	2 4
mcaa'	T	1	S	С	Ţ	G	Ţ	S	S	D	٧	G	G	Υ	N	Υ	٧	S	١
rel. oomcaas	100%	95%	100%	100%	84%	100%	31%	81%	%88	31%	%98	910%	%09	. %98	65%	67%	98%	100%	
pos occupied	5		1		4	· • · · · · · · · · · · · · · · · · · ·	·	•	, 4	:	2	į.	:		Ţ	1	•		1

Table 5B: Analysis of V lambda subgroup 2

						Fran	iewo	rk II											
amino acid'	36	37	38	33	40	4	45	43	44	45	46	47	48	49	20	51.	25	23	54
А					1	- 4		40											
В												<u> </u>							
С																			
D				1		2									20	1	2	1	
E															20			2	
F	2				•••••									7		1			
G						36									2	2		1	
Н			2	34														1	
1							1				1	9	43				1		
K							40			41							1	21	<u>.</u>
<u>l</u>			1	1							38	6							
M	<u> </u>											26	_ `				1		<u></u>
N				2											1		8	12	ļ
Р	<u> </u>				41				43									ļ	<u></u>
0	<u> </u>	41	39			<u>.</u>	<u></u>			2								····	
R	<u> </u>	1				<u></u>	1	<u></u>									2		43
S					1	<u>.</u>	<u></u>	<u> </u>						2	<u></u>	<u></u>	21	3	
T					<u></u>	<u> </u>	1	<u> </u>	<u></u>						<u></u>	ļ	7	<u> </u>	<u></u>
V		<u></u>				1	<u></u>	3		<u></u>	4	2			<u>.</u>	39		<u></u>	ļ
W		<u></u>		<u> </u>	<u> </u>	<u> </u>	·	<u> </u>			<u></u>				<u></u>	<u></u>			
X				: : :	<u></u>	<u> </u>	<u></u>	<u> </u>		<u></u>	ļ			••••		<u></u>			
Y	41	<u></u>		5	<u></u>	ļ	ļ	<u> </u>						34				2	
Z	L												a Comment						<u> </u>
-															ļ		<u></u>		
unknown (?)		1	1	·	ļ	<u> </u>	<u>.</u>	<u></u>			<u></u>				<u> </u>	ļ	<u> </u>	ļ	<u></u>
not sequenced	<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>		<u> </u>
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa³	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	43
mcaa*	Υ	Q	Q	Н	Р	G	K	Α	Р	Κ	L	М	İ	Υ	D	٧	S	K	R
rel. oomcaas	95%	95%	91%	79%	95%	84%	93%	93%	100%	95%	88%	%09	100%	79%	47%	91%	49%	49%	100%
pos occupied	•	:	:	:	:	:	:					4			•		•	•	1

Table 5B: Analysis of V lambda subgroup 2

	CDI	R 11																	
amino acid'	22	26	⋖	മ	ں	۵_	ш	22	28	29	09	61	62	63	64	65	99	⋖	8
A															2				
В																			
C										<u></u>						1			•••••
D			·								17								
E																			
F													42						
G								43	1						41				
Н											2								
1			<u></u>	<u></u>	<u></u>		<u> </u>		3										
K					<u></u>												42	<u></u>	
<u>L</u>	l'										1		1					<u></u>	ļ
М																		ļ	ļ
N											19							<u>.</u>	ļ
Р	43									15						ļ	ļ	<u>.</u>	ļ
Q														•				<u>.</u>	ļ
R												43					1	<u>.</u>	<u>.</u>
S		43								28	2			43		42	<u></u>	<u>.</u>	<u></u>
T				••••••							<u> </u>					<u></u>	<u> </u>	ļ	<u> </u>
<u> </u>								<u></u>	39	<u></u>	<u> </u>					<u></u>	<u> </u>	.ļ	ļ
W		ļ	<u></u>	<u></u>				<u> </u>		<u></u>	<u></u>					ļ	ļ		<u>.</u>
X		ļ	<u></u>					<u></u>			ļ				<u> </u>		<u>.</u>	<u>.</u>	ļ
Υ		ļ		ļ				<u></u>		ļ	2			ļ	ļ	<u>.</u>	ļ		
Z				<u> </u>												<u> </u>		<u>. </u>	Ļ
			43	43	43	43	43				ļ	<u></u>	<u></u>	ļ				43	} 4
unknown (?)		<u>.</u>	<u>.</u>	<u>.</u>				<u> </u>	<u> </u>		<u> </u>	ļ	<u>.</u>		<u></u>		ļ		
not sequence	d	<u> </u>	<u> </u>					ļ.,			<u> </u>						-	 	
sum of seq ²	÷	••••••••	43	÷	·····	•••••••	•••••••	· ••••••••	•••••••	•••••••	Ţ····	·••········	?	·:·····	·	•	•••••••		•••••••
oomcaa,	43	43	43	43	43	43	43	• •••••••••	·:····				····	:	:	:		:	}
mcaa*	Р	S	-	<u> </u>	-	-	-	G	٧	S	N	R	F	S	G	S	K	-	
rel. oomcaa ^s	100%	100%	100%	100%	100%	100%	100%	100%	91%	65%	44%	100%	%86	100%	95%	980%	9000	100%	
rel. oomcaa ^s			÷	÷	· · · · · · · · · · · · · · · · · · ·	†	÷	:	:	•	:	100%	:		· - · · · · · ·	%086 2		:	

13/

Table 5B: Analysis of V lambda subgroup 2

					mev														
amino acid'	29	89	69	70	7.	72	73	74	75	9/	77	78	79	8	8	85	83	84	82
Α		3		1	43									36				43	
В		<u> </u>										<u></u>							
. С										<u></u>									
D		1	2												3	42			39
E											1				38		43		
F																			
G		39									42	į			1				•••••
Н												<u> </u>							
l									35			<u> </u>							
K			1									<u> </u>							
L							43					43							
M																			
N			38								٠				1	1			
Р														2					
Q													41						
R													· 2						
S	42			1		43				42									
T			1	41				43		1				2					
V									8					3					
W															·				
Χ																			
Y																			
Z																			
-																			
unknown (?)			1																
not sequenced	1																		
sum of seq'	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	4
oomcaa ³	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	3
mcaa*	S	G	N	T	Α	S	L	T	l	S	G	Ĺ	Q	Α	Ε	D	Ε	Α	[
rel. oomcaas	100%	910%	88%	95%	%00	%00	%00	100%	31%	%86	%86	100%	35%	34%	988%	%86	000	%00 I	3
pos occupied		1	:	1	·	÷	•••••••	-			2	<u>:</u>	2	:	4	:		-	

132

Table 5B: Analysis of V lambda subgroup 2

									-	CDF	R 111								
amino acid'	98	87	88	83	90	91	92	93	94	92	A	ω	U	۵	ш	ட	96	6	86
Α				2	1		21		1								1	1	
В		<u> </u>	<u></u>		<u> </u>		<u></u>					<u></u>		<u>i</u>		<u></u>			 .
· C			43	11	<u></u>									<u></u>					
D								3	1	2							1		
Е							1	1											
F		3				3				1		1					5		4
G							1	21	3	4							1		
H						1													
1							1	1		1	2						1	7	
K										3									
L												1	1				6	5	
. M																	1	1	ļ
N				•••••					.5	7	5						1		
Р				·				1	••••			4							ļ
Q										1	2								ļ
R	ļ						2		3			1					5	ļ	
<u>S</u> ·	ļ	1		30	41			12	23	14	9						1	<u></u>	<u> </u>
Ţ				···			16	4	4	3	21								<u> </u>
<u> </u>	ļ			•••••			1										11	28	<u>.</u>
W	ļ			••••					ļ								5	<u> </u>	<u></u>
<u>X</u>					ļ				ļ									ļ	<u>.</u>
ΥΥ	43	39		•••••	ļ	39	ļ		1	6					• • • • • • • • • • • • • • • • • • • •		4	ļ	ļ
Z	_			_									-	-7-					Ļ
-									ļ	1	3	36	42	43	43	43		ļ	
unknown (?)	Ε					<u> </u>			2	<u> </u>	<u></u>								
not sequence					1				<u> </u>		1							1	_
sum of seq ²		43		• • • • • • • • • • • • • • • • • • •	·:		i			·····			<u> </u>		·····			·	••••••
oomcaa,		39	:·····		·:····		······	:·····			21	36	42	43	43	43	·····	1	••••••
mcaa*	Υ	Υ	С	S	S	Υ	Α	G	S	S	T	-	<u>-</u>	-	_	-	٧	V	
rel. oomcaa ^s	100%	910%	100%	70%	%86	91%	49%	49%	53%	33%	50%	84%	%86	100%	100%	100%	26%	67%	,000
pos occupied	1	3	1	:	2	:	:	:		:	:	5	:	:	1	1	13	5	;

Table 5B: Analysis of V lambda subgroup 2

			F	ram	ewo	rk I\	/					ļ !
amino acid'	66	100	101	102	103	104	105	106	A	107	108	sum
А		1										280
В												
· C		***********		***********						**********	•••••••	99
D						•						188
E				*******								107
F				•••••		•						113
G	42	33	42	•						19		567
н												48
							1					184
K					36							189
L			,			28			40			264
М												29
N					1							146
, Ъ												238
Q					1						14	250
R		1			2					4		121
S							1			2		831
T		7		41			40					398
V						14		42	1			327
W						•••••			·			48
X												
Y					1							285
Z						7						16
_												555
unknown (?)												8
not sequenced	1	1	1	_ 2	2	1	1	1	2	15	28	80
sum of seq²	42	42	42	41	41	42	42	42	41	25	14	
oomcaa³	42	33	42	41	36	28	40	42	40	19	14	
mcaa•	G	G	G	T	K	L	Ţ	٧	· L	G	Q	
rel. oomcaas	100%	79%	100%	100%	88%	67%	95%	100%	%86	76%	100%	
pos occupied ⁶	1	4	1	1	5	2	3	1	2	3	1	

134

Table 5C: Analysis of V lambda subgroup 3

										·	Fram	ewo	rk l						
amino acid'	-	7	က	4	വ	9	7	∞	6	10	=	12	13	14	15	16	17	18	19
A					1		1	2	7					20	1				27
В														<u> </u>					
. C																<u> </u>			
D			5				10												
Е			20										1			1			
F	1	1										1			1				
G			1										\ddot{o}			37			
Н																			
K K					••••••												2		
L				37							4		1	Ì	9				<u></u>
М																			
N			,																
Р							26	35	1						27				1
Q	4		4			38											36		
R																			
S	13	14			1		1		28			37		18					
Т					36			1										38	
V			8	1					2		34		36						10
W																			
Х																			****
Y		23																	
Z																	<u> </u>		
-	20									38									
unknown (?)																			
not sequenced																		<u> </u>	
sum of seq²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa3	20	23	20	37	36	38	26	35	28	38	34	37	36	20	·27	37	36	38	27
mcaa*	-	Υ	Ε	L	T	Q	Р	Р	S	-	٧	S	٧	Α	Р	G	Q	T	Α
rel. oomcaa ^s	53%	61%	53%	92%	95%	100%	%89	92%	74%	100%	%68	97%	95%	53%	71%	97%	95%	100%	71%
pos occupied ⁶		3	::::::::::	:	:	•	:	3	:	1	1		3	;	Ţ	Ţ	;	•	3

Table 5C: Analysis of V lambda subgroup 3

											CD	RI							_
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	⋖	32	33	34	35
Α			1					5					. 1	1			21	3	
. В												<u></u>							••••
. С				38														5	
D							30	1					10			3		1	
E							2	2				1	3	6					
F									-					1		2			
` G					9	38		1				23	4						
Н							1									2		9	
l		38									9			1					
K								7					2	13					
L											28								
M	1													1					
. N			2				4	9			1		2			1		2	
Р			1									3		••••					ļ
Q					10									4					ļ
R	25							2				10	1	•••••			1	<u>.</u>	<u> </u>
S	9		1		19			10					11	2		8		14	<u>.</u>
T	3		33		<u> </u>	<u> </u>		1				1	4	•••••				<u></u>	<u>.</u>
V																1	15	<u> </u>	<u> </u>
W							·											<u>.</u>	3
X																			
Y							1							8		20	1	4	
Z																			
-									38	38					37				
unknown (?)																			
not sequenced															1	1			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	3
oomcaa¹	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	;
mcaa'	R	١	T	С	S	G	D	S	-	-	L	G	S	K	-	Υ	Α	S	١
rel. oomcaas	999	100%	37%	%00I	9009	%00 l	79%	%97	%00 1	%001	74%	31%	39%	35%	%001	34%	55%	37%	
pos occupied ⁶		:				•	:	:	:						•		-		÷

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

							Frar	nev	vor	k II				<u>_</u>			_					_		
amino acid'	36	37	20	9 6	£	40	14	7	7 9	43	44	45	! !	46	47	48	40	7	ς S	51	52	53	54	;
Α										23										1		1		•••
В						•••••		<u>.</u>			···												<u> </u>	•••
С	-							<u>.</u>	<u></u>								ļ	<u>.</u>					<u> </u>	•••
D			<u>.</u>				<u></u>						<u>.</u>						9			8	:	••
E				1			<u> </u>					ļ				ļ			5	3	····	3	ļ	••
F	3	,		<u></u>		,,	ļ										_	2			1	<u> </u>	-	
G			_				36	<u>.</u>				ļ				ļ			9					•••
Н		ļ					<u></u>		1			ļ				ļ		1	3	••••	ļ	1	<u>.</u>	,
		<u></u>					<u>.</u>					ļ	1			2	8				1	<u> </u>	-	••
K		<u></u>			32		<u></u>	_				<u>.</u>				ļ			2	6	1	13	}	••
L		<u>.</u>		2			<u> </u>					<u>.</u>	6	3 3	1	<u> </u>					<u></u>	<u> </u>	<u>.</u>	•••
M		<u></u>					<u>.</u>					<u>.</u>	<u> </u>	1		<u> </u>	1				-			
N .	ļ	<u>.</u>			· ·		<u>.</u>									<u> </u>				1	19) ()	•••
Р	.					36			.1	•••••	38	3				<u>.</u>					-	-		••
Q	ļ	3	17	35	1	<u> </u>	<u>.</u>		36		ļ	-				. .			9	·:			1	
R	ļ		1		4			2			<u>.</u>	<u>.</u>				<u>.</u>			1	1		-÷·	1	3
<u>S</u>					1		2			14	ļ				<u> </u>	<u> </u>			•••••	<u> </u>	10	•••••••	1	•
T	ļ	ļ			••••••	ļ	. 	-			<u> </u>	-			<u> </u>						2	4	-	,
V						ļ	<u>.</u>			1	<u> </u>	-	31	4	37	7 <u> </u> 	9							•••
W	<u> </u>	_				<u>.</u>					<u></u>	_			ļ									
<u>X</u>					•••••							-								-				
ΥΥ	3	5					-								ļ			35		-				
<u>Z</u>	┡	-	4	-		Ļ	Ļ	4			Ļ	╧	_	_	-	÷	÷		-	÷	÷	\dotplus	+	=
·········											-			<u> </u>	<u> </u>					-		-		•••
unknown (?)		<u>.</u>					_			ļ	-			<u> </u>	-				<u></u>	-				
not sequence		<u> </u>	_			_	_	_		<u> </u>	<u> </u>	┿		_	<u> </u>					 	<u> </u>		_	=
sum of seq ²				38																				
oomcaa	P	******		35	·				••••	:				•	:	:	28		<u> </u>	••••••		9 1	•••••	•••
mcaa*	Y	, <u> </u>	Q	Q	K	F							V	L	<u> </u>	•••		Y	D			1		•••
rel. oomcaas	7000	35%	92%	92%	707α		92%	95%	95%	۾ 10%		0001	82%	R70%	200	Dr./20	74%	92%	240%	700	2800	20%	34%	_
pos occupied	•				7		:			:	•	•			:		3	3		7	8	7	9	

Table 5C: Analysis of V lambda subgroup 3

	CD	R II																	
amino acid'	55	99	4	8	ပ	۵	ш	57	28	59	09	61	62	63	64	65	99	٧	ထ
Α		1																	
В																			
С																			
D											9								
E											27		•						
F							••••						38						
G		••••••	•••••					38	•					•	38				
Н							*******		•									*****	•••••
. 1		•••••			•••••			•••••	37				••••••	•••••				•••••	
K				••••														••••••	
L		•••••											********						
M									•				•				••••••		
N			•••••	••••••••					•••••				•••••	•••••	•••••		21	•••••	
Р	37	1	••••	•••••				••••••••	•••••	36					•••••••			••••••	
Q			•••••						•••••	• • • • • • • • • • • • • • • • • • • •					••••••••	••••••		•••••	·
R		••••••		•••••					•••••		••••	38			• • • • • • • • • • • • • • • • • • • •	••••		•••••	
S	1	36			•				••••••	1				38	••••••	38	12	••••••	
Т		••••				•••••	•••••	•••••	•••••		••••	••••		• • • • • • • • • • • • • • • • • • • •		•••••	5	•••••••	
V		••••••				•••••		••••••	•••••		••••		••••						
W									•••••	••••••	•••••	••••••	••••••	••••••		••••••			
Χ								•••••••					••••	••••••		••••	•••••	•••••	
Υ		•••••					•••••	••••••	••••		•••••					•••••	•••••	•••••	
Z								•••••		••••••		•••••		•	•••••	•••••			ļ .
-			38	38	38	38	38	- 1										38	3
unknown (?)									•••••		1	••••	•••••	•••••		•••••••		••••	
not sequenced		*********						•••••	1	1	1				*******	•••••		**********	
sum of seq'	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	3
	37				•••••	***************************************		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					********	••••••			••••••	<u>.</u>
mcaa¹	Р		-	-	-	-	-	G	1	Р	Ε	R	F	S	G	S	N	-	
rel. oomcaas			%00	%00	100%	%00 ₋	%00	••••••	•••••	• • • • • • • • • • • • • • • • • • • •								100%	300
pos occupied ⁶	•				:		:					:		***************************************		•••••		••••••	:

Table 5C: Analysis of V lambda subgroup 3

			•	Fra	mev	ork	Ш						-						
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	80	8	82	83	84	.82
Α				1	36	1		1				11	1	34				38	
В																			
. C												<u></u>		<u></u>					
D																38			37
E									·				10		14		38		
F																			
G		37									28				10				•••••
H.			1									<u></u>							
						1		1	37	1					1				
K			1														<u>.</u>		
L							38								2		.		
M			••••												10		<u> </u>		
N			28					•••••		1									
Р																			
Q		1											25		<u>.</u>		<u></u>		
R				ļ		<u>.</u>	<u></u>			1	10		1		<u> </u>			<u></u>	<u></u>
5	37		2	<u>!</u>	<u></u>	11	<u></u>			23				1	<u></u>		<u> </u>	<u> </u>	<u> </u>
T	1		6	37	<u> </u>	25		36		12	<u></u>	13		2	<u> </u>		<u> </u>		
V			<u></u>	<u> </u>	2		ļ		1		<u> </u>	14	1	1	1		<u> </u>	<u></u>	ļ
W		ļ	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u> </u>				<u>.</u>		<u>.</u>	<u></u>	ļ
X		<u></u>	ļ	ļ		<u></u>		ļ			<u></u>	<u></u>	<u>.</u>		<u></u>		<u>.</u>		-
Υ		ļ	ļ	ļ	ļ	<u>.</u>		ļ	<u></u>	ļ	<u></u>	<u></u>	<u></u>				·		ļ
Z				<u> </u>	<u> </u>				!						_			<u> </u>	L
_				<u> </u>							ļ		ļ				.ļ	ļ	<u>.</u>
unknown (?)		ļ	<u></u>	<u>.</u>		<u> </u>		ļ	<u></u>		ļ		<u> </u>		<u> </u>	ļ	<u> </u>	-	<u>.</u>
not sequence	====	<u> </u>	-	<u> </u>	<u> </u>	<u>!</u>	<u> </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>			<u> </u>	_	╄	<u> </u>	_
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	3
oomcaa,	37	37	28	37	36	25	··:······	36	· · · · · · · · · · · · · · · · · · ·	23	· · · · · · · · · · · · · · · · · · ·	·:	Ŧ	::::::::	·	38	•	:::::::	
mcaa*	5	G	N	T	Α	Ţ	L	T	1	S	G	٧	Q	Α	E	D	••••••••	Α]
rel. oomcaas	92%	97%	74%	%26	95%	66%	100%	95%	97%	61%	74%	37%	%99	89%	37%	100%	100%	100%	
pos occupied		2 2	-	2			•		2		2		1		· [········		1	1

Table 5C: Analysis of V lambda subgroup 3

•					,			-		CDF	RIII								
amino acid'	98	87	88	83	90	91	92	93	94	95	<	80	ပ	۵	w	ш	96	97	86
Α					13	3	2			1	2						4		
В					•														
· C			38											<u> </u>					
D							32	1	1		6								
E				1								2		<u></u>			2		
F.		2						2											35
G									3	14	3			1			3	1	
Н												12	1						
ı																		4	
К											1								
L				1				1		1		1	1				4	2	
М									1								1	1	
N				10			2	1	2		10	1							
Р									1				3			·	1		
Q				25						1	1								
R						10		1	2			2							
S				1	14	1		28	26	13		1				1			
Т						1		3		7	2								
V					11												18	28	
W						23											1		
Х																			
Y	38	36					1		1		1	3	1				3		
Z																			
-		-									10	15	31	36	37	36		1	
unknown (?)		·																	
not sequenced							1	1	1	1	2	1	1	1	1	1	1	1	3
sum of seq ²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	35
oomcaai	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	35
mcaa¹	Υ	Ý	С	Q	S	W	D	S	S	G	N	-	-	-	-	-	٧	٧	F
rel. oomcaas	100%	95%	100%	%99	37%	61%	86%	76 ⁰ %	70%	38%	28%	41%	84%	97%	100%	97%	49%	76%	100%
pos occupied ⁶	1								:	6			5					: ············	1

Table 5C: Analysis of V lambda subgroup 3

_			F	rame	wo	k IV						
amino acid'	66	100	101	102	.103	104	105	106	∢	107	108	sum
А												265
В												
С			•		···					1		82
D												225
E					2							145
F												90
G	35	31	35							24		461
Н												32
1										<u></u>		160
К					30			<u> </u>	<u>.</u>	<u> </u>		110
L						28			33	<u> </u>		233
М								<u>.</u>				17
N												126
P									1	<u></u>		249
Q						<u></u>	·		<u></u>	<u>.</u>	7	275
R				<u> </u>	2	<u>.</u>			<u> </u>		<u> </u>	154
S		<u> </u>	<u>.</u>	<u>.</u>	: : :	<u>.</u>			ļ	2	<u> </u>	501
Т		4		35	<u></u>	<u></u>	35	5	<u>.</u>	<u>.</u>	<u> </u>	347
V		<u> </u>		<u>.</u>		7	<u> </u>	35	5	<u>.</u>	<u> </u>	308
W		<u></u>		<u> </u>		<u>.</u>	<u></u>	<u>.</u>	<u>.</u>	<u> </u>	<u> </u>	62
X		ļ	ļ	<u>.</u>		<u>.</u>			<u>.</u>		<u>.</u>	
Y			ļ	<u>.</u>			ļ				<u>.</u>	211
Z	_	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		1
. <u>-</u>		<u></u>		<u></u>	<u></u>	<u>.</u>						603
unknown (?)	<u> </u>	<u> </u>			ļ		<u> </u>			<u></u>		1
not sequenced]	3	3 3	3 3	4	1 3	3	3 :	3 4	4 1	1 28	89
sum of seq ²	35	35	3	35	34	1 35	3	5 3	5 3	4 2	7	7.
oomcaa³	35	3	3	35	30) 28	3 3	5 3	5 3	3 2	4	7
mcaa*	G	G	G	Ţ	K	L	Ţ	V	L	G	0	!
rel. oomcaa°	100%	%0b&	100%	100%	980%	%00 800 800 800 800	1000	100%	970%	9000	100%	2
pos occupied ⁶		:	•	1	1	3	2	1	1	2	3	1

141

Table 6A: Analysis of V heavy chain subgroup 1A

														Fra	me	worl	κI			
amino acid'	-	7	က	4	S	9	7	8	ნ	2	=	12	13	7	5	9	17	38	6	20
Α					1	14			60							24	1			•••••
<u>.</u> B															·					••••
· C																		<u>i</u>		•••••
D	ļ <u>.</u>		<u></u>																	
<u>E</u>	1				2	1		2		64										•••••
F																				
G								58	1						64					
Н			2				•••••													
<u> </u>		2																		
K		2										57	64						60	•••••
<u> </u>			2	59							3									
M		1																		
· N						•••••						6								
Р	ļ													63						
Q	53		56		2	45														
R	ļ											1					<u></u>	<u> </u>	3	
<u>S</u>							60		3					1		40	63	<u> </u>		<u></u> .
T	 	<u></u>				<u></u>											<u> </u>	ļ	1	
<u>V</u>	2	55		1	55		<u> </u>				61						<u> </u>	64		6
W	 						<u></u>										<u>.</u>	<u> </u>		ļ
X	ļ							ļ			<u> </u>						ļ	<u></u>		
Υ	ļ	ļ		•••••													ļ	ļ		ļ
Z	3	<u> </u>					<u> </u>	<u> </u>			<u></u>						<u> </u>			<u> </u>
_		<u></u>					<u></u>	<u>!</u>		<u>.</u>	<u> </u>						<u>!</u>	<u>.</u>		ļ
unknown (?)		<u> </u>					ļ	<u> </u>	<u></u>	<u>.</u>	<u> </u>	<u>!</u>		•••••		<u></u>	<u>:</u>		<u> </u>	ļ
not sequenced	-		:	_			:	:		;===		•					_	;	:	=
sum of seq ²		†	60			<u> </u>	·:·····	-		-	<u>:</u>	i				:····	:·····	÷	÷	Ŧ
oomcaa,	·	.	56	·····		÷	·•••••••	•••••••••	·····	÷	÷	**********	*********	••••••	**********	••••••	÷	÷	÷	•
mcaa ⁴		٧	Q	L		<u></u>	. S	·		Ε	V	K	K	Р	G	S	S	V	K	<u>'</u>
rel. oomcaa ^s	%06	92%	93%	%86	92%	75%	100%	97%	94%	100%	95%	89%	100%	98%	100%	63%	%86	100%	94%	. 6
pos occupied ⁶	:	:	•	:	•	:	:	:	:	:	:		: :		:	÷	7	<u> </u>	:····	

Table 6A: Analysis of V heavy chain subgroup 1A

																CDF	11					_	
amino acid'	21	22	22	3 3	57	25	56	27	28	29	30	3	5 .	∢ :	, c	32	33	34	35	36	37	38)
Α				(62				1								41					<u></u>	
В			<u>.</u>		<u> </u>							<u>.</u>									ļ	<u></u>	
. С		63	3								<u> </u>	<u>.</u>									<u> </u>	<u> </u>	
D			<u>.</u>					1	<u></u>	ļ	<u> </u>	<u>.</u>										-	
E		<u></u>	<u>.</u>								ļ	<u>.</u>						·····			-	ļ	••
F .		ļ		<u> </u>					<u>.</u>	69						3		3			-	<u>.</u>	••
G		<u></u>			1		69	41		1	<u>.</u>	<u>.</u>					23				<u>.</u>		•••
Н		<u>.</u>	<u>.</u>				••••			<u> </u>	1					1			1		<u>.</u>	ļ	•••
<u> </u>		<u> </u>	<u>.</u>						1	<u> </u>	<u> </u>	ļ						61	1	<u></u>		<u> </u>	
<u>K</u>		<u> </u>	1	63				<u> </u>	<u>.</u>	ļ	ļ	١	1						<u> </u>	ļ	<u>.</u>		••
L	ļ	<u> </u>					•••••	<u> </u>	ļ	<u>.</u>	ļ						1	2	<u> </u>	<u> </u>	<u>.</u>		••
M	ļ	ļ					••••			<u>.</u>								4	<u> </u>	ļ		-	
N	<u> </u>	ļ					•••••	ļ				2	5						4	ļ			•••
P									ļ		<u>.</u>						1	•••••	ļ	<u></u>		-	••
Q	<u> </u>	<u>.</u>						ļ	<u>.</u>			ļ								<u> </u>		-	
R	<u></u>	<u>.</u>	1	1					<u>.</u>	_		1	1						<u>.</u>	ļ	<u> </u>		7
5	63	3				68			1	<u>.</u>	••••••••	···÷··	60	•••••••••••••••••••••••••••••••••••••••		2		· 	60)	<u></u>		•••
T	1	<u> </u>			2			<u>.</u>	6	В	2	5	3				3	ļ		<u> </u>	<u>.</u>	-	
V		<u> </u>			•••••												1	ļ	ļ	<u></u>	·÷	9	•••
W	_	<u>.</u>						<u>.</u>									••••	<u></u>	<u>.</u>	7	0		
Χ	<u>.</u>	<u>.</u>					ļ				<u>.</u>	<u></u> į.					•••••			<u>.</u>			•••
Υ	<u>.</u>							2	7							64		ļ	ļ				•••
Z	L	<u> </u>	_				Ļ	Ļ	_	Ļ		_						<u> </u>	Ļ	+	÷	÷	-
<u>-</u>							ļ							70	70	•••••		ļ			_	_	•••
unknown (?)		<u>.</u>				<u> </u>					<u>.</u>			ļ		•••••••			<u>.</u>	. <u> </u>			•••
not sequence	==		6		=		!		<u> </u>			4	·				_	<u> </u>	<u> </u>	<u> </u>	-	+	=
sum of seq ²	*****		••••••	*********		••••••			*****		···-			70	:		:	:					
oomcaa ³	•••••	••••	•••••			••••••	;	;				•		70	70	:		6					
mcaa⁴	5		С	K	Α	S	G	i ()	T 1	=	S	S 	-	-	Υ	Α	<u> </u>	2	\ 	N '	٧	•••
rel. oomcaas	200°C	20.40	%86	%86	95%	100%	100%		53%	9/1/6	99%	57%	%98	100%	100%	91%	29%	7070	0,70	0/-00	9 000 100	%66	
pos occupied	• • • • • • • • • • • • • • • • • • • •				:·····	:	:	:	:	•		:		•		:	: .	•	•	•	•	2	••

Table 6A: Analysis of V heavy chain subgroup 1A

		<u>.</u>		Fra	mev	vork	П													
amino acid¹	39	40	4	42	43	44	45	46	47	48	49	20	5	25	∢	ω	ပ	23	54	52
Α		70									1				5					
В																				
C																				
D		•••••						1												
Ε								69												
F .					••••••								2					3	39	
G			1	6 8		69	•		1		69	39			1					6
Н			1				•							•••••	•••••				•••••	
1				•									65	38			P1	34		
K							•••••						•••••	••••••	•••••		••••	•••••		
L				1			68			1		1		******		*******		2	4	
М		•••••			•	•				67			•••••	2		••••		4		
N						•••••	••••••			•••••				4				3	22	
P		•••••	68		••••	•••••	1	••••		•				*******	44	•••••				
Q	69			•••••	69	•••••	••••		•••••							•••••		1	1	
R	1			1		1						4						1		
S					1	•••••	••••••		1	1				22	*******	••••••			1	
T					•••••••	••••	••••••		•				1	2	4	*******		1	3	
V										1			2	2	16	•••••		1		
W						•••••	1		67			26			••••••	••••			<u> </u>	
Χ					••••	•••••	••••••							•••••	•••••••	••••••	···-···			-
Υ						••••••	•••••		1				••••••	,,	**********		• • • • • • • • • • • • • • • • • • •	20		
Z																				
<u></u>																70	70			Π
unknown (?)										***********	*******									
not sequenced														•••••						
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa ¹	69	70	68	68	69	69	68	69	67	67	69	39	65	38	44	70	70	34	39	6
mcaa*	Q	Α	Р	G	Q	G	L	Е	W	М	G	G	ı	ı	Р	-	-	Ī	F	(
rel. oomcaa ^s	%6€	100%	37%	37%	96%	96%	%/(%66	%9(%96	%6(999	33%	54%	33%	00%	%00I	19%	26%	7000
pos occupied ⁶	:	:	i	:	:	:	:		i	:								:	Ī	Ţ

Table 6A: Analysis of V heavy chain subgroup 1A

•	С	DR	11																			
amino acid	26	57	58	59	90	;	9	62	63	64	65	99	3 8	ر (8	69	2	17	72	73	74	75
Α	1	34			6	9					·							43				
В																						
· C												<u>.</u>										
, D	15		1	<u>.</u>	<u>.</u>						2								70			
E			<u> </u>	<u></u>						1	<u></u>	ļ								33		
F			<u> </u>		<u> </u>				48		<u></u>			3		4						
G	1	<u></u>	<u> </u>	<u>.</u>				3			67	<u>, </u>									<u></u>	ļ
Н		<u></u>	ļ								<u>.</u>	<u>.</u>								ļ	ļ	ļ
<u> </u>	4	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>					.	<u></u>	<u>.</u>			1	44				1	<u> </u>	<u> </u>
K	1	<u> </u>		2	1			47		1	<u></u>	<u>.</u>	1							8	ļ	
L	1	1	<u> </u>	<u> </u>	<u>.</u>				22	<u> </u>	<u> </u>	<u>.</u>		2		1		3		<u></u>		<u> </u>
M	.	<u></u>	<u> </u>		<u>.</u>			••••		<u>.</u>	<u>.</u>	<u>.</u>				21		•••••		<u> </u>	<u>.</u>	<u>.</u>
N	9		5	9				18		<u></u>	ļ								ļ	<u></u>	<u>.</u>	
Р	1	7	<u> </u>							ļ	<u>.</u>						••••••		ļ	ļ	<u>.</u>	ļ
Q	1						70		ļ	64	<u> </u>	-							ļi			
R	2	<u> </u>		<u>.</u>				2		1	<u> </u>	(69			•••••			ļ	1		
S '	ļ		1	2		1	•••••		<u></u>	ļ	<u>.</u>						5	:·····	<u> </u>	<u>.</u>	7(
T	34	2	â	4				<u></u>	ļ		3				66	*******	65	24	<u> </u>	2	7	6
V	<u></u>	<u> </u>	<u>.</u>	<u>.</u>	<u></u>			ļ	ļ	<u> </u>	<u>.</u>	1		65	3			<u></u>	<u> </u>	<u>.</u>		-
W	<u> </u>	ļ						<u>.</u>	<u> </u>	<u> </u>	<u>.</u>	<u></u>						<u></u>	<u>.</u>	<u> </u>		
X	<u> </u>	-	-				••••••		ļ	ļ	<u>.</u>						<u></u>					-
ΥΥ	<u> </u>			1 6	8			ļ							••••••			ļ	<u>.</u>	<u>.</u>	-	
Z	\vdash	Ļ	÷	+	\dashv	_	_	<u> </u>	-	<u> </u>	+	$\stackrel{\perp}{-}$	-			_	_	_	<u> </u>	÷	-	÷
	ļ								<u>.</u>	<u>.</u>												
unknown (?)								<u>.</u>	-								<u></u>	ļ	<u> </u>			
not sequence	===	╬	+	<u>.</u>	 			-	-	┿	÷	+							<u> </u>			+
sum of seq ²	*****								********		•		-	:	:	:	;		:			•
oomcaa,	******				•••••••	•••••	;	• • • • • • • • • • • • • • • • • • • •							66 T	:	:	4. A				0 6
mcaa'	Ţ	/	۱ ا	٧	Υ	Α	!		·	(•••••	<u></u>	ļ	1	Ţ				-	
rel. oomcaa ^s	7007	0/204	43%	84%	97%	%66	100%	670%	2000	5	91.40	96%	%66	93%	94%	63%	93%	£ 10%		0.00	0/0 / 4	0001
pos occupied	⁶ 1	••		•				•	•		•			:	:	4	•	2	3	1	5	1

Table 6A: Analysis of V heavy chain subgroup 1A

•		•		F	ram	ewo	rk II	l												
amino acid¹	9/	77	78	73	80	81	82	Α	8	U	83	84	82	98	87	88	83	90	91	92
Α			64			1						3			1	70				
В				<u></u>																
· C																				70
D						2							26	70						
E						64							44							
F .																	1	1	2	
G							••••		1										· •• • • • • • • • • • • • • • • • • •	
Н				1			••••	1		<u> </u>										
1		1					3	1	1								2			
K											3									
Ĺ					3		63			70							2			<u></u>
M					67										1		1			<u> </u>
N	4							1	16								<u></u>			<u></u>
Р						*****											<u>.</u>	<u></u>	<u>.</u>	ļ
Q				1		3											<u>.</u>	<u></u>	<u></u>	<u></u>
R	3							23	1		62						<u> </u>	<u></u>		<u> </u>
S	62		1					41	49			67		 	1		<u> </u>		<u></u>	
T	.1	69	2				<u></u>	3	2		4				67		<u> </u>	<u>.</u>	<u></u>	<u> </u>
V			3				4				1			<u></u>			64	<u> </u>	<u> </u>	<u> </u>
W														<u></u>			<u></u>	ļ	<u></u>	<u> </u>
X																	<u>.</u>			<u>.</u>
Υ				68														69	68	
Z														<u> </u>						
_																		<u>.</u>	<u> </u>	
unknown (?)																				<u></u>
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa3	62	69	64	68	67	64	63	41	49	70	62	67	44	70	67	70	64	69	68	7
mcaa*	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	Ε	D	T	Α	٧	Υ	Υ	C
rel. oomcaas	89%	93%	91%	97%	%96	91%	%06	29%	70%	100%	89%	%96	63%	100%	%96	100%	91%	%66	97%	1000%
pos occupied ⁶	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	

148

Table 6A: Analysis of V heavy chain subgroup 1A

[CDR	111							_		
amino acid'	93	94	92	96	97	98	66	100	⋖	ω	<i>ပ</i>	، ۵	ט נ		: و	Ι.		- :	<u>ب</u>	5
Α	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				•••••
. C		<u></u>	<u></u>		1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				•••••
F.					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н									<u></u>	1	1	1		1						
l				2	5	2	2		2	2	1	1			1					
Κ .		5			2	1			1							<u></u>				
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1	<u></u>	1			1	1						10	
N				2	2	1	2	۱	2	2	2	2			1	1	4			• • • • •
P				20	3		1	3	2	2	2	4	2	1	4	1		1		
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		
T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	3 1	1		<u>:</u>	2		3				1	5	1	
X							<u>.</u>	<u>.</u>	<u> </u>						********					
Υ		1		2	3	3 20) 5	5 4	9	1	2	11	20	10	6	9	10	7	1	
Z								<u> </u>	<u>!</u>		<u></u>									
-		<u>.</u>		1	1	2 :	2 :	3 (3 11	11	14	23	26	26	31	34	46	39	21	
unknown (?)		<u>.</u>	<u></u>	<u>.</u>						<u>.</u>	<u>.</u>		1		1	1	<u>.</u>	2	3	ļ
not sequenced			2	2 2	2 :	2 4	4 4	4 4	4 4	5	5	5	5	5	5	5	5	5	5	<u> </u>
sum of seq ²	70	7(68	3 68	3 6	8 6	6 6	6 6	6 66	65	65	65	65	65	65	65	65	65	65	(
oomcaa³	66	5!	5 16	3 20) 2	0 2	0 1	6 2	1 20) 15	16	23	26	26	31	34	46	39	28	
mcaa*	Α	R	Α	Р	G	Y	C	S	G	-	-	-	-	-	-	-	-	-	F	
rel. oomcaas	940%	,06v	40%	%0b(9000	900%	907	2000	30%	73%	25%	35%	40%	40%	48%	52%	71%	%09	43%	
pos occupied	·····	•••••••	··· - · · · · · · · · · · · · · · · · · · ·			:	:		•	;		•	:	:	:	:	:	:	:	:

14 % SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

		•			Fra	mev	ork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	Sui
Α													67
В													
С													16
D		1	1				<u></u>		<u></u>				30
E	1	1											29
F	2												22
G			58		59	1	1						92
Н				1									1
l	3								4				28
K				3		1							32
L	3			1			40	1					38
M	1						3				•••••		18
N				1									17
Р	5			•••••	••••	*****						1	23
Q	ļ			52		••••••							49
R				1		•							35
S	<u></u>	<u></u>									53	51	97
T	ļ	<u></u>	<u> </u>			54	11	1	51		1		73
V	15	<u></u>	1				1	54		54		1	69
W		59		1									24
X	ļ	ļ	ļ										
Y	34	ļ	1				·····						54
Z													
_	1	ļ											57
unknown (?)		ļ	<u></u>	ļ	<u></u>	<u></u>	<u>!</u>	<u></u>					
not sequenced	₹===		; 	-	:	-	-	_	15			: -	40
sum of seq ²		÷	· ! ······	!	i	·····			55				
oomcaa³		÷	· · · · · · · · · · · · · · · · · · ·	····	·••••••	·····	40		51	********	•	:	
mca _a	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ⁵	52%	97%	95%	87%	100%	%96	71%	%96	93%	100%	%86	%96	
pos occupied						:	5	Ī		1	2	3	

148

Table 6B: Analysis of V heavy chain subgroup 1B

														Fra	mev	vor	k I			
amino acidi	-	7	က	4	വ	9	7	∞	တ	2	=	12	13	14	-15	16	17	18	19	20
Α									32							34				
В																				
. C																				
D																				
E		1			5	1				35										
F .															,					
G								27							35					
Н			1											1						
ſ								<u>į</u>									<u></u>	<u></u>	ļ	
K		3	1									34	33				ļ	<u> </u>	33	<u>.</u>
L			3	26	1												<u>.</u>	<u>.</u>		
M				1	1											•••••		<u></u>	<u>.</u>	<u>.</u>
N						•••••			•••••									ļ	ļ	ļ
Р									1					33			1	ļ		
Q	21		20			26								· .	••••		<u></u>	<u>.</u>		<u>.</u>
R	1						•••••					1	2		•••••		<u></u>	<u>.</u>		<u>.</u>
5	ļ		<u></u>				27			<u></u>					••••••	1	34		<u>.</u>	<u> </u>
T	<u> </u>	<u></u>	<u> </u>	<u> </u>					1	<u> </u>	<u>.</u>			1	•••••		<u></u>	<u>.</u>	2	<u>.</u>
V	3	21	<u> </u>		20					<u></u>	-35				••••••			35	5	3
W	<u> </u>	<u></u>	<u> </u>	<u></u>						<u></u>	<u></u>						<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>
X		ļ		<u> </u>						ļ	<u></u>						<u>.</u>	<u>.</u>	<u>.</u>	
Υ	<u> </u>	ļ	<u></u>	ļ				ļ	ļ 	ļ				•••••	•••••		ļ	. .		<u>.</u>
Z	<u> </u>	<u> </u>	<u>!</u>							<u> </u>	<u></u>						<u>!</u>	<u> </u>	<u> </u>	<u> </u>
-	ļ	<u>.</u>	<u></u>	<u></u>					<u></u>	<u></u>	<u></u>	ļ					<u> </u>	<u>.</u>		<u>.</u>
unknown (?)	ļ	<u> </u>	ļ		<u></u>				<u>.</u>	<u></u>	<u> </u>	ļ				<u> </u>	ļ	<u>.</u>		
not sequenced	-	_				_	:				:				_	-			5 5	
sum of seq ²	·····	÷	·÷·····	÷	·····	· ••••••••••••••••••••••••••••••••••••	······	·:·····	÷	· • • • • • • • • • • • • • • • • • • •	÷	35	•••••••	*******	:	······	•••••••	••••••••	••••••••	••••••
oomcaa3	•	÷	•••••••	••••••	·····	• • • • • • • • • • • • • • • • • • • •	•••••••	•:•••••	·····	· ÷ · · · · · · · ·	·	34	·····	:·····	:	••••••			··· • · · · · · · · · · · · · · · · · ·	
mcaa*	Q	÷	Q	·	ļ	·	·			· .	٧	<u> </u>	K	•••••	G	ļ	S			
rel. oomcaas	84%	84%	80%	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	92%	%2.b	100%	940%	
pos occupied								1	3	:	•	2	:	:	:	:	1	2	:	

Table 6B: Analysis of V heavy chain subgroup 1B

						•								CD	RI		<u></u>			
amino acid'	21	22	23	24	25	26	27	28	53	30	31	∀	ω	32	33	34	35	36	37	38
Α				30							2				6					
В																				
. С		35																		
D											1				5		1			1
E			3								1									•••••
. F ·							2		39					2	2					
G		·		1		40				1	14				1					
Ĥ									·					3	1		34			
1								1		1						9				
K			28														<u></u>			
L									1		1					5		<u> </u>	2	
M.																23		<u></u>	<u></u>	
N							1			1	3				•••••	1	3	<u> </u>	<u></u>	
Р									<u>.</u>						. 1		<u></u>	<u> </u>		
Q			2						<u>.</u>		1				1	<u></u>	1	<u></u>		
R		<u> </u>	2					2	<u> </u>	<u> </u>				1			<u>.</u>	<u>.</u>		3
S	35	<u>!</u>	<u> </u>		40		<u></u>	5	<u> </u>	2	15			2	1	<u></u>	<u> </u>	<u>.</u>	<u> </u>	
T		<u> </u>	<u> </u>	3		<u>.</u>	<u> </u>	32	<u> </u>	34					1	<u></u>	<u>.</u>	<u> </u>		<u> </u>
٧			<u> </u>	1			1			1	1				2	2		<u>.</u>	38	
W																	<u> </u>	40		
Χ																				
Υ							36				1			32	19		1			
Z																	L	<u> </u>		
-												40	•40				İ	<u>.</u>		
unknown (?)						<u>.</u>			<u>.</u>	<u>.</u>	<u> </u>	<u></u>			<u></u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>
not sequence	d 5	5	5	5															<u>!</u>	
sum of seq'	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40) 4(40) 40	4
oomcaa³	35	35	28	30	40	40	36	32	39	34	15	40	40	32	19	23	34	40	38	3
mcaa'	S	С	K	Α	S	G	Υ	T	F	T	S	-	-	Υ	Υ	М	Н	W	V	١
rel. oomcaas	%001	%00 	30%	36%	%001	%001	%O(30%	%8(35%	38%	%001	100%	30%	48%	58%	35%	100%	95%	
pos occupied				:		:			1	:	6 10	:		:	:	:		:	1 2	

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	mev	vork	: 11													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	2	52	⋖	ფ	ပ —	53	54	22
Α		39				1					1				7			1		
В		••••																		
. C																	<u></u>			
D							.,,							1					1	
<u>E</u>				1				39										1	1	•••••
<u> </u>							. 2						1					1		•••••
G	ļ		<u></u>	39		28					39	1			1			9	1	35
Н			<u></u>															2		
1			ļ			••••				3			34							
·K			<u> </u>		1										•••••				1	
L		<u> </u>	1			••••	37						1							
M			<u> </u>							37		2	4							
N	<u> </u>		·					ļ						35	•••••			20	12	
Р		1	34	<u></u>			1	·							31			<u>.</u>	ļ	
Q	39	<u></u>	<u>.</u>	<u> </u>	39			1								ļ		ļ	ļ	ļ
R	1	<u> </u>	<u>!</u>	<u> </u>	<u>.</u>	10						4			·	<u></u>		3	1	<u></u>
S		<u> </u>	1	<u>.</u>	<u>.</u>	1	<u></u>	<u></u>	<u></u>		<u></u>		·····	2		<u> </u>	<u></u>	1	20	<u> </u>
Ţ		<u> </u>	4	<u> </u>	<u> </u>	<u></u>	<u></u>	<u>.</u>	<u></u>				•••••	1		<u></u>	<u></u>	<u> </u>	3	<u>.</u>
V		<u> </u>	<u>!</u>	<u>!</u>	<u>.</u>	<u> </u>	<u> </u>		<u> </u>	<u></u>	ļ	<u> </u>		1	1	ļ	<u></u>	<u> </u>	<u> </u>	<u> </u>
W								<u> </u>	40	<u>.</u>		33				<u></u>	<u></u>	<u> </u>	<u>.</u>	<u>.</u>
Х									<u>.</u>	<u>.</u>	<u></u>			<u></u>		<u>.</u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>
Y										<u> </u>				<u></u>		<u>.</u>	ļ	2		
Z												<u> </u>				L				L
-								<u>.</u>				<u></u>				40	40)		ļ
unknown (?)			<u>.</u>			<u> </u>	<u></u>	<u></u>	<u>.</u>	<u></u>	<u> </u>	<u>.</u>			<u></u>		<u> </u>	<u>.</u>	<u> </u>	<u>.</u>
not sequence						<u> </u>									<u> </u>		<u> </u>	<u> </u>		_
sum of seq ²	4() 4() 4() 40	40	4() 4() 40	40	40	40	40	40	40	4(40	40	4() 4() 4
oomcaa,				39		•	•	•			:	:	:	:	:				•	•
mcaa*	Q	Α	Р	G	Q	G	L	E	W	М	G	W	1	N	Р	-	_	N	S	(
rel. oomcaas	98%	080	850%	%86	%86	70%	%0 t b	98%	100%	93%	%86	83%	85%	988%	78%	100%	100%	50%	200%	
pos occupied	•	•	•	•		•	•				•	•	•	•	•	•		•	•	В

Table 6B: Analysis of V heavy chain subgroup 1B

	С	DR	11													-				
amino acid'	99	22	28	29	09	61	62	63	64	65	99	29	89	69	2	7.1	72	73	74	75
Α	1	2			27	2				1		1				2				12
В											<u></u>									
С											<u> </u>									
D	1									4	<u></u>						35			
Ε	2		2			1	******			1						1				
F .				4				39						3						
G	15		6		1					34										
Н			1	1													1			
		1	1									1	1	13						2:
· K	2	2	8				36		1							1				
L						1		1						1						
M														23				1		
N	17		18				1										4			
Р						•••••								******					3	
Q			<u>.</u>	L		36			37											
R			2				1		2		37					34		1		
5	1		<u>.</u>	2	11		1									1			37	
T		35	2		1		1						39		40	1		38		
V	1		<u> </u>				<u>.</u>					38								
W							·				3									
X																				
Y				33																
Z																				
-			<u> </u>			ni														
unknown (?)																				
not sequenced																				
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa ³	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	2
mcaa ⁴	N	T	N	Υ	Α	O	K	F	Q	G	R	٧	Ţ	М	T	R	D	Ţ	S	Ī
rel. oomcaas	43%	88%	45%	83%	%89	%06	%06	%86	93%	85%	93%	95%	%86	58%	100%	85%	%88	92%	93%	יניטיי
pos occupied ⁶	:	,					:	:	:	:	: :			;	: :		•	•	•	

Table 6B: Analysis of V heavy chain subgroup 1B

•				F	ram	ewo	rk II	1												
amino acid'	92	77	78	79	80	81	82	A	ω	ပ	83	84	82	98	87	88	83	90	91	92
А			35									1	2			40				
В																				
· C																				37
D	1					4							19	40			1			
E			******			35		•••••					19							
F			1		·							2							2	1
G						1		1	2											ļ
H				<u>.</u>	<u></u>											•••••				ļ
1		1		<u></u>	<u></u>												1	<u></u>		<u></u>
K		<u>.</u>		<u>.</u>							1							<u> </u>	<u></u>	ļ
L				<u></u>	2		39			39							2	<u></u>	ļ	ļ
М					37		1						_	٠-			2	<u> </u>	ļ	<u>.</u>
N	7	<u>.</u>					ļ	1	2	<u></u>	<u></u>								ļ	<u></u>
Р			<u></u>				ļ	<u></u>	<u></u>		<u> </u>	1		•					1	ļ
Q .	.	<u></u>	<u> </u>		<u>.</u>		ļ		ļ		ļ						<u></u>	<u></u>	ļ	<u> </u>
R	4	<u></u>	ļ					2	16	<u></u>	37	ļ					ļ	ļ	<u> </u>	<u>.</u>
<u> </u>	27	<u></u>	<u></u>	1	<u>.</u>			35	20	<u> </u>	1	36				<u></u>	ļ	1	1	<u> </u>
T	1	39		<u>.</u>	<u>.</u>			1	<u> </u>	<u></u>	1	<u>.</u>	<u> </u>		40	<u></u>	<u> </u>	<u></u>		
V		<u> </u>	4		1				<u>.</u>	1		<u> </u>			<u> </u>	<u></u>	33	<u> </u>	<u>.</u>	
W		<u>.</u>	<u> </u>	<u>.</u>				<u>.</u>	<u> </u>	<u>.</u>		<u> </u>	<u> </u>			<u></u>	<u> </u>	<u>.</u>	<u>.</u>	
Χ		<u>.</u>	<u> </u>	<u>.</u>	ļ			<u>.</u>		<u> </u>	<u>.</u>	<u>.</u>				ļ	<u>.</u>		ļ	
Υ	<u></u>	<u>.</u>	<u>.</u>	36)				ļ					ļ		<u></u>	ļ	38	3!	5
Z	L		L		L	L		_	<u> </u>			ŀ			<u> </u>	<u></u>	<u> </u>	Ļ		-
-		<u>.</u>	<u>.</u>			<u></u>	<u></u>		<u>.</u>		<u>.</u>					ļ	ļ	<u>.</u>		
unknown (?)	<u></u>	ļ	<u>.</u>	<u>.</u>	<u>.</u>		ļ	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>			<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	_
not sequenced		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	÷	÷	1 !
sum of seq ²	·	·÷····	·÷·····		•••••••		•••••••	••••••	•=	•••••••	• • • • • • • • • • • • • • • • • • • •	40	••••••	•••••••	•:	**********	••••••	•:••••	•••••••	
oomcaa,	*******			•••••••	*********	••••••••	•••••••	••••••••	•••••••	••••••		36	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	,				
mcaa'	S	Ţ	Α	Υ	M	E	L	S	S	L	R	S	D	D	T	Α	Į V	Y	Y	
rel. oomcaas	68%	98%	880%	980%	93%	88%	98%	880%	50%	98%	93%	%06	48%	100%	100%	100%	2 70% 8 70%	9200	9000	2 2
pos occupied				•	i	1	1	÷	:	•	:	1 4	1	•	1	•	:	•	•	4

Table 6B: Analysis of V heavy chain subgroup 1B

										CDF	111									
amino acid'	93	94	95	96	97	98	66	100	∢	8	ပ	٥	ш	u.	ຶ	エ		_	×	101
Α	37	1	6		1	1		2	3	1	3		1					5		
В									<u></u>		<u> </u>									
. C		1				3				2	1					<u></u>				
D			7		5	2	3	1	5	4		1		2	2	1	2			27
E			2		1			1	1		2		1		1					
F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									••••••
1		1		1	1	3	1	1	1	1	1	1				<u></u>			1	
К		1			1				1	1		1		1			1			
Ĺ			2	4	4	4	3			1	2	1	1	2		1	<u></u>		2	
M				2		1	1								1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1						·
R	1	31		5	1	1	3					1		1				1		
S		1	. 3	3	1	4	3	· 6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1	<u>.</u>	
V	1		7	1	1	<u>.</u>	1	3	1	2		1			1	2	1		<u>.</u>	1
W			1		1	<u>.</u>	2	2		1	1					1		4		<u> </u>
X			<u></u>												•••••				<u></u>	
Y				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2	<u></u>	
Z																				
-				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)	.		<u> </u>		<u></u>		<u></u>	<u></u>											3	<u> </u>
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa,	37	31	7	7	5	5	9	8	10	11	14	20	23	25	25	25	23	18	15	27
· mcaa⁴	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	26%	64%	%69	%69	%69	64%	50%	42%	75%
pos occupied ^e	:	:	:	:	1	:	:	:											:	:

Table 6B: Analysis of V heavy chain subgroup 1B

ł					Fra	mew	ork	IV.				
mino acid'	102	103	104	105	106	107-	108	109	110	11	112	113
Α												
В						<u> </u>		<u></u>	<u></u>			
С					<u></u>			<u> </u>				
D	2							<u></u>				
E				1								
F	1											
G			27		26					1		
Н	1											
1	7								3			
K				2								
L		-					12			1		
М							2					
N	1											
Р	1			1								
Q				23								
R							1					
S	3								1		18	18
Ţ						21	6		16		1	7
٧	6	<u> </u>	<u>.</u>					21		18		
W		29	<u> </u>									
Χ												
Υ	11											
Z												
-	3											
ınknown (?)												
ot sequenced	4	11	13	13	14	19	19	19	20	20	21	22
sum of seq²	36	29	27	27	26	21	21	21	20	20	19	18
oomcaa ³	11	29	27	23	26	21	12	21	16	18	18	18
mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	80%	%06	95%	100%
		Ī	1	1	·	1	1	1	3	3	2	-

Table 6C: Analysis of V heavy chain subgroup 2

ſ									-					Fra	mev	vorl	k I			
amino acidi	-	2	က	4	S.	9	7	8	6	10	=======================================	12	13	14	15	16	17	18	19	50
А										3										
В		<u></u>	<u></u>																	
· c			<u> </u>																	
D																				
E	1					6										2				
F	ļ																		••••••	
G						•••••		6												
Н																				
1		1																		
К			<u></u>		3								6		1					ļ
L			į	6							6							6		6
М							<u>.</u>										ļ			
N							1									•••••				
Р							1	<u></u>	6					6			1		<u> </u>	
Q	2		į		*******	<u></u>	<u></u>	<u></u>	ļ							4	ļ		<u></u>	
R					2		<u></u>	<u></u>	<u></u>		ļ						<u> </u>	<u></u>	<u>.</u>	
S						<u></u>	4		<u></u>	<u></u>	<u></u>						<u></u>	<u></u>	<u> </u>	
Ţ			6		1		<u>.</u>			2	<u> </u>				5		5	<u>.</u>	6	
V	<u> </u>	5							<u></u>	1	<u> </u>	6					<u></u>	<u></u>	<u> </u>	<u>.</u>
W							<u>.</u>		<u> </u>		<u> </u>						<u></u>	<u></u>	<u> </u>	
X									<u> </u>	<u> </u>	<u> </u>	<u></u>						ļ	ļ	<u>.</u>
Υ	<u> </u>			• • • • • • • • • • • • • • • • • • • •			<u>.</u>	<u>.</u>									ļ		<u>.</u>	
Z	3					<u> </u>			<u> </u>									<u> </u>	<u> </u>	<u>!</u>
-	<u> </u>								ļ	<u></u>	ļ	<u></u>			•			<u></u>	<u> </u>	<u>.</u>
unknown (?)	ļ	<u> </u>			<u></u>	<u></u>			<u> </u>	<u></u>	<u> </u>	<u>.</u>			•••••		<u></u>	<u> </u>	<u>.</u>	<u> </u>
not sequenced	1	1	1	1	_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	6	6	6	6	6	(6	6	6	6	6	6	6	6	6	. 6	6	6	(6
oomcaa3	3	5	6	6	3	•	5 4	(6	3	6	· 	·····	•••••	5	••••••	5	6	••••••	6
mcaa'	Z	٧	T	L	K	E	S	G	Р	Α	L	٧	K	Р	T	Q	T	L	Ţ	L
rel. oomcaas	20%	83%	100%	100%	20%	100%	9/0/9	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	100%
pos occupied ⁶	•	:	:	:	:	1	1 3					1				i	2	;		1

Table 6C: Analysis of V heavy chain subgroup 2

																CD						
amino acid'	21	22	23	24	7 7	67	97	27	28	29	3	3 8	ج ا	Α	ω	32	33	34	35	36	37	38
A									1					1			1					<u> </u>
В			<u> </u>			<u></u>				<u> </u>												<u> </u>
· C		7	<u>, </u>		<u> </u>					<u> </u>	<u>.</u>						2	· 			<u> </u>	ļ
D			<u> </u>							<u> </u>	<u>.</u>			1					<u> </u>	<u></u>	. .	ļ
E																	•••••	ļ	<u> </u>	<u></u>		<u>.</u>
F					3			6			1							ļ	<u>.</u>	ļ		<u>.</u>
G							7			<u>.</u>			1		4		3	<u></u>	3	ļ		
Н																		<u></u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>
		Ĭ													. 1			<u> </u>	<u>.</u>	<u>.</u>		<u> </u>
K			Ī											,				<u></u>	<u>.</u>	<u>!</u>		<u>.</u>
		1	Ī		2			1			6									<u> </u>	<u></u>	<u> </u>
M	1		Ī	-						<u> </u>	1	·····				5						
N	1	<u> </u>	Ť	····							<u>-</u> -		2									
P	1	1								···				••••	••••••							
Q	1	·••••										1		••••								
R	1	·					********					•		•••••	2			1				
S	1	•		1		6	••••			6	•	6	2	4		•				1		
T		3		6							1	1	3	1								
٧	1	1	1	••••	2		********				····					2			7			
W	1	·-		<u>-</u>					-		Ť									-	7	
X		1	-	····•				<u> </u>	-	Ť	Ī			ļ								
Υ	-	·-				1	•••••				····											
Z	-		•									•••••										
-		Ť	Ť	T						Ī	Ì					Г				J		
unknown (?)			İ			••••••				·		*******										
not sequence	B	1	1		••••••																	
sum of seq²		6	7	7	7	7	7	,	7	7	7	7	7	7	7 7	7	7	7	7	7	7	7
oomcaa³		6	7	6	3	6	7	7	6	6	6	6	3	3	1 4	1	5	3	7	4	7	7
mcaa*	1		С	T	F	S	G	F		S	L	S	T	S	G	N	۱ (3 \	V !	5	W	1
rel. oomcaa	5	9 20 20 20 20 20 20 20 20 20 20 20 20 20	100%	%98	43%	%98	100%	9050	0000	%98 86%	%98	%98	43%	570%	5.70%	7.10%	2	43%	100%	0/ ₀ /℃	100%	100%
pos occupied	1		:	:		:	:	1							4			4	1	2	1	1
•	*****			i		·····		•••	****		*********		5 >		,							

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

•				Fra	ımeı	work	: 11					\neg								
amino acid'	39	40	4.	42	43	44	45	46	47	48	49	20	51	52	4	æ	ပ	53	54	55
Α						6					7									
В	-							<u>i</u>												
C																				
D														2					3	6
E						•••••		7								•••••				
F														2						
G		1		7		1														
Н									·			2								1
1													6							
К					6															
L							7			7		2	1	1						
M																		<u> </u>		
N																			3	
P		5	7																	
Q	6																			
R	1				1				·			2						<u>.</u>	<u></u>	<u> </u>
S		1										-						2	<u> </u>	
T																	<u>.</u>	<u></u>		
V																		<u></u>	<u></u>	
w									7			1					<u> </u>	4	<u>.</u>	
X														1				1	1	
Υ														1	1					
Z																				
_															6	7	7		<u></u>	
unknown (?)														,				<u> </u>	<u> </u>	
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	6	5	7	7	6	6	7	7	7	7	7	2	6	2	6	7	7	4	3	6
mcaa'	Q	Р	Р	G	K	Α	L	Е	W	Ĺ	Α	Н	ł	D	-	-	-	W	D	D
rel. oomcaas	%98	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	%98	100%	100%	57%	43%	%98
pos occupied			<u>:</u>	:	:	•	:	:								:	:	:	3	2

158

Table 6C: Analysis of V heavy chain subgroup 2

	С	DR I	ı																	
amino acid¹	26	22	28	29	09	61	62	63	64	65	99	29	89	69	02	71	72	73	74	75
Α																i				
В				<u></u>							<u></u>									
. C																				
D	5																6	1		
E	1								1		1									
F		1		1																
G																			,	
Н				1																
ı														6						
K	1	6							4							6				6
L								7				7								
М.																				
N																	1			
Р						2														
Q																				
R			2			1			2		7					1			<u>.</u>	1
S			2		6		7			4		·	1		5			<u></u>	7	<u> </u>
T						4				3			6		2			6	<u> </u>	<u>.</u>
V														1					<u> </u>	<u>.</u>
W				1													<u></u>	<u> </u>	<u> </u>	<u></u>
Х					1													<u>.</u>		
Y			3	4																<u></u>
Z																				
-																				
unknown (?)				<u> </u>																
not sequenced							<u> </u>										<u> </u>	<u> </u>		
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa3	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	' 6
mcaa'	D	Κ	Υ	Υ	S	T	S	L	K	S	R	L	T	l	S	K	D	T	S	K
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	0001	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied ^a	:	:	:	:	2	•	:	15	3	1		:				:	2	1	;	

Table 6C: Analysis of V heavy chain subgroup 2

				F	ram	ewo	rk II	1												
amino acid¹	9/	77	.78	79	80	81	82	A	ထ	ပ	83	84	82	98	87	88	68	90	91	92
Α													1			5				
В								į												
. С																				7
D											6			7						
Е																				
F .					1															
G				·												2				
Н																				
1		*********		,		2		1			•									
K				******		•••••		••••••	••••••							••••••				
L					6										*********	********				
M					•••••	••••••	7			5										
N	5			••••	•••••	••••			6		1			•••••	***************************************	*******	•			
Р				•••••	-	••••				•		7	•••••		•••••	*******				
Q		7		••••						••••				•••••	*******	*******				
R		******				••••••								•••••						
S	2	••••••		•••••		••••••														
T		******		*********		5		5						*******	7	*******	7			
V			7	7						1			6	•••••	*******	*****				
W				•••••										••••••	•	•••••		<u> </u>		
Χ								••••						•••••	********	•••••				
Υ						••••••							••••	*******	••••	••••••		7	7	1
Z				•••••										*****	+444444		•			
-								1	1	1										
unknown (?)	1								••••				•••••				<u> </u>			-
not sequenced					 !				•••••				•••••	••••	•••••	*******		<u> </u>		<u> </u>
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
oomcaa ³	5	7	7	7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	
mcaa*	N	Q	٧	٧	L	T	М	T	N	M	D	Р	٧	D	T	Α	T	Υ	Υ	C
rel. oomcaas	71%	100%	100%	100%	96%	71%	0001	71%	%98	71%	96%	100%	969	100%	100%	71%	100%	100%	100%	100%
pos occupied		;	:	:	;	:	:	3		3	:					:	;	1	•	

Table 6C: Analysis of V heavy chain subgroup 2

										CDR										
amino acid'	93	94	92	96	97	86	66	<u>0</u>	٧	Ω	ပ	٥	י ע	<u>.</u> (<u>ා</u>	I ·	_ •	_	<u>×</u>	101
Α	5							1	2	1										
В																				
. C	<u> </u>																<u>-</u>	-		
D	ļ																	<u></u>		6
E	ļ							2			1									••••••
F	<u> </u>																		3	
G			<u></u>			1	1		1	2	1	1	1	1						
Н	<u></u>	1	<u></u>	1																·
<u> </u>	ļ	<u> </u>	3			2														
K	<u> </u>	<u> </u>	<u></u>				1													
L		<u></u>	<u> </u>					1		1									1	
M .		<u> </u>	<u> </u>					1											2	
N				1	2	,											1			
Р		<u>.</u>	<u> </u>	1	1		1		1											ļ
Q		<u>.</u>	1	<u></u>																ļ
R	<u> </u>	6	1	<u></u>		1			1											ļ
S	<u> </u>			1		1	1													<u> </u>
<u> </u>		<u>.</u>	<u> </u>	1			1		1											<u> </u>
V	2		1	1	1		1	1			1									ļ
W		<u></u>	<u>.</u>			1	<u></u>								1			1		ļ
X		<u>.</u>	<u>.</u>	<u> </u>	<u></u>		<u></u>													<u> </u>
Y		<u>.</u>	<u>.</u>	<u>.</u>	2		<u></u>	ļ	,	•••••	1	2	1	1	1			2		<u></u>
Z																				
			<u> </u>							2	2	3	4	4	4	6	5	3	<u> </u>	
unknown (?)		<u>.</u>	<u>.</u>	<u> </u>	ļ. Ļ	<u> </u>	<u></u>	<u></u>	<u> </u>		<u>.</u>								<u></u>	ļ
not sequence	<u> </u>	<u> </u>	1	1	1	1	1	1	1	1	1	1	_1	1	1	1	1	1	1	<u> </u>
sum of seq?	7	7 7	? (6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	<u>.</u>
oomcaa ¹		5 6	··÷·····	3 1	2			. .	÷	2	2	3	4	4	4	6	5	3	÷	3
mcaa*	Α	R		Н	N	1	G	Ε	Α	-	-	-	-	-	-	-	-	-	F	C
rel. oomcaa ⁵	710%	86%	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	%29	67%	67%	100%	83%	50%	50%	1000%
pos occupied			:	:	:			:	5	:	;	:				•		•		3

Table 6C: Analysis of V heavy chain subgroup 2

					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	sun
Α									1				3
В													
С													1
D													4
E													2
F													1
G			6		6								5
Н													
													2
K				1			1		<u>i</u>				4
L	1						3						7
M													2
<u>N</u>													2
Р	1			•••••		********	1						4
· Q				3									2
R				`2									4
S											6	3	8
T	ļ					6	1		5				10
V	3					<u> </u>		6		6			ε
W		6		<u></u>									2
X	ļ		<u></u>			<u> </u>							
Υ	1					<u></u>							3
<u>Z</u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>							
-	ļ	<u></u>			ļ								5
unknown (?)	ļ		<u></u>	<u></u>			<u></u>	<u> </u>			••••••		
not sequenced	1	1	1		:	: -						4	
sum of seq?	6	<u></u>	·····	· · · · · · · · · · · · · · · · · · ·	········	:····	i	····			*******		
oomcaa,	3	÷	÷	· !	· · ·····	÷	·				*******	·····	
mcaa*	V	W	G	Q	G	T	L	V	T	V	S	S	
rel. oomcaa ^s	20%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%	
pos occupied	4	1	1	3	1	1	4	1	2	1	_ 1	1	

Table 6D: Analysis of V heavy chain subgroup 3

		·······												Fr	ame
amino acid'	-	2	က	4	ß	9	7	8	6	5	=	12	13	14	15
Α					1		1			12		1		3	1
В			1			1							1		
· C															
D	1					1				16					•••••
E	110		9		15	166			9				8		2
F											4				
G								181	193	174		1			202
Н			5										4		
1												9			
ĸ		5	3										26		
L		1	5	176	43						140			1	
М		12		1											
N										1					
Р													1	194	
Q	41		138	1	3	12							162		4*********
R			6			<u>.</u>						******	4		
S						<u></u>	178			2				8	······
Ţ							1	: : : :							
V	5	147		1	118		<u> </u>	<u>.</u>			62	195		**********	
W										<u> </u>					
Χ										<u></u>			<u></u>		
Υ					<u>.</u>			ļ		<u></u>					
Z	8					<u> </u>	<u> </u>		<u> </u>						
-								<u>.</u>	<u></u>					<u></u>	
unknown (?)			,	: : : : :	<u></u>			<u></u>			Ē			ļ	<u></u>
not sequenced	47	47	45	33	32	3	2 32	31	10	7	6	6	6	6	
sum of seq²	165	165	167	179	180	180	180	181	202	205	206	206	206	206	20
oomcaa ³	110	147	138	176	118	3 16	3 178	181	193	174	140	:			
mcaa*	E	٧	Q	L	٧	E	S	G	G	G	L	٧	Q	Р	C
rel. oomcaas	%29	89%	83%	%86	66%	370%	99%	100%	%96	85%	%89	95%	79%	94%	
pos occupied		5 4	-	;		:	:	·		2 5					l

حکار

Table 6D: Analysis of V heavy chain subgroup 3

Š	work														
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A								183	192		1				
В											<u> </u>				
· C						1	209								
. D															7
Ε	8							8			3		1		
F .		1	1			1						201		201	
G	134								2		207				3
Н														_	1
l								2				3	17	1	
К				15						·					4
L			205		201		·					6		3	
М		•••••	1										1		
N		•			***************************************								10		10
Р				,				1					2		
Q			1						•						
R	62			191											11
S		206				207		4	2	209			15		174
Т	4	1	•	2				4	4			1	163		
V					8			7	9				1	6	
W															
Х															
Y															
Z															
-										·					
unknown (?)															
not sequenced	4	4	4	4	3	3	3	3	3	3	1	1	2	1	2
sum of seq?	208	208	208	208	209	209	209	209	209	209	211	211	210	211	210
oomcaa ³	134	206	205	191	201	207	209	183	192	209	207	201	163	201	174
mcaa ⁴	G	S	L	R	L	S	С	Α	Α	<u>S</u>	G	F	T	F.	S
rel. oomcaa ⁵	64%	93%	%66	92%	%96	%66	100%	88%	92%	100%	%86	95%	78%	95%	83%
pos occupied ^a	4						1						8		

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

				CD	RI									Fr	ame
amino acid'	31	4	8	32	33	34	35	36	37	38	39	40	4-	42	43
Α	1			17	80		1			1		187		1	
В				•											
· C												1		1	
D	26			3	7		2								
E	1				10									1	
<u> </u>				5											
G	13				31		1					2		209	
Н				4			88								
	1			1		15			12						
K	7										1				20
L	3					3			2	3	1	2	1		
M						193									
N	35			8	3		34								•••••
Р				1			1					4	191		
Q											209		1		
R	7									207		7		***********	
<u>S</u>	103			17	8		72		•••			3	14		
T	9				15		10		•••••			4	5		
<u>V</u>	2				7	1		•••••	197		•••••••	2			
W					30			212			•••••••				
Χ	1			********					***********		******				
Υ	1			154	19		3								ļ
Z															
		210	210												
unknown (?)												<u></u>			<u></u>
not sequenced	2			2	2				1	1	1				_
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	21
oomcaa,	·····	210	210	•••••	80	193	····	····	····		:····	·····	191	·····	• • • • • • • • • • • • • • • • • • • •
mcaa*	S	-	-	Y	Α	М	Н	W	V	R	Q	Α	Р	G	K
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	98%	%66	9/888	%06	99%	3
pos occupied	14	1	1	9	10		9	i	:	:	:	:	· · · · · · · · · · · · · · · · · · ·	: ····································	<u> </u>

Table 6D: Analysis of V heavy chain subgroup 3

	work	I		-											
amino acid'	44	45	46	47	48	49	20	21	52	⋖ ·	8	ပ	53	54	52
А	1					77	42		1	2		14		7	
В			3							1					
· · · C	·								:				1		
D			1							7			94	8	3
E			198						3	2	1		2		1
F							7	1	2	1				1	8
G	207					33	11		10	46			4	163	85
Н							6			1					
					3		3	191		1					1
К								1	37	2	30		3	1	
L		211			5		12	1							
М							1	1							
N							13		7	9	2		13	11	1
P		1								1			1		
Q			7				7		·	10					
R	1						24	1	17	5	1		2		16
S	3			1		102	11	9	118	43		1	74	17	82
T							3	5	4	2		13	12	3	3
V			3		204		49	2		1		6			
W				210			1		8	6			****		
X			******										4		3
Υ				1			22		5	58					8
Z															
_			********			*********	******			14	178	178	2	1	1
unknown (?)						••••									•••••
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	207	211	198	210	204	102	49	191	118	58	178	178	94	163	85
mcaa'	G	L.	E	W	٠٧	S	٧	İ	S	Υ	-	-	D	G	G
rel. oomcaa ^s	%86	100%	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	40%
pos occupied ⁶	4	2					15		11						12

Table 6D: Analysis of V heavy chain subgroup 3

_	C	DR II													
amino acid'	. 26	23	28	29	09	61	62	63	64	65	99	29	89	69	02
Α	9	1	2		174	33							1		
В	1	2													
. C															
D	11		17			160									
Е	8	3	2			1			2						
F	1		3	2								207			
G G	5	1	5		4	5				212	1				
Н	1		4												
1	3	37	2					8					14	208	
К	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			2						******
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
T	42	97	5		7								189		1
V		2			10	2		204				1		3	
W			2		•										
Х	4		1			1									
Υ	9		151	210			1					1	1		***********
Z															
•											*******				
unknown (?)					•••••										
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa'	N	T	Υ	Y	Α	D	S	٧	K	G	R	F	T	ı	S
rel. oomcaas	24%	46%	71%	%66	82%	75%	91%	%96	94%	100%	95%	%86	%68	%86	100%
pos occupied ⁶		12	:	:····	:	:	:	:	:		:	:	<u> </u>		

167

Table 6D: Analysis of V heavy chain subgroup 3

										Fram	ewor	k III			
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	∢	8	U
Α				57			1	8						1	
В											2				
. C									<u></u>						
D		199	38		2	2		<u></u>	1				10		
E		6			4						5				
F ·									13						
G													1	4	•••••
Н					-	1	·		1		2		2		
ı			1				2	2				3	1	1	
K					186	6							3		
L								188		209		3	1		212
М	1				2		10	3		2	-	205			
N		5	170		2	188					3		181	10	
P		•	•••••••••••••••••••••••••••••••••••••••		•••••••••••	•••••••	1	•••••••••••••••••••••••••••••••••••••••	***************************************		•				
Q					7						199				
R	211			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1	•						2	8	
S	Î			153	8	10	56		3				6	186	
T							142				1		4	2	
V				1				11		1		1			
W				••••••		•									
Χ		2	2	•	•••••••	4		••••			••••••		1		
Υ			********	*******	***********	*********	**********	*********	194	************	••••••	••••••		•••••••••	
Z				**********			••••••				••••••				
- .															
unknown (?)					•	• • • • • • • • • • • • • • • • • • • •	•		•••••••	***********	•				
not sequenced			1	1		•	***************************************	**********							
sum of seq'	212	212	211	211	212	212	212	212	212	212	212	212	212	212	21
oomcaa ³	·····	:		• • • • • • • • • • • • • • • • • • • •		••••••		***************************************				:	181		:
mcaa*	R	D	Ν.	S	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa'	0001	94%	81%	73%	988%	89%	67%	89%	92%	99%	94%	92%	85%	9/088	70001
pos occupied	2	:			•••••	************									

Table 6D: Analysis of V heavy chain subgroup 3

•	, .														
amino acid'	83	84	85	98	87	88	68	90	91	92	93	94	95	96	97
Α	:	149	1		1	207					173	2	15	9	11
В															
· C									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F .							1		15			1		9	6
G	1	1	6			4	1				2	8	34	26	35
Н		1							1					3	11
ı		8					2						4	15	10
К	30											60	4	3	5
L							18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1								5	3	9	2
R	177											103	9	30	19
S		1			1							3	9	8	11
· T	3	28			207	•	1				25	15	7	6	20
V		9					187				10	1	7	7	15
W										1			3	4	3
Х				1											
Υ								211	194				12	9	8
Z									••••••						
_													1	3	4
unknown (?)															
not sequenced					1	1	1	1	1	1	1	1	7	12	13
sum of seq²	212	212	212	212	211	211	211	211	211	211	211	211	205	200	199
oomcaa ³	177	149	190	209	207	207	187	211	194	210	173	103	54	30	35
mcaa'	R	Α	Ε	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	. %02	%06	%66	%86	%86	89%	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ^e	;	10	:		:		:	. 1	:	:	5	14	18	20	21

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

•		,			CDR	111									
amino acid'	98	66	100	Α	8	ပ	۵	w	ய	9	Ξ	_	_	×	10
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13		1	1								1
F	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
· H	3	4	3	2	9	2		1	3	1	2	8	1		
l	6	11	4	4	3	1	3	10	3	3	2		1	2	
K	2	11			3	1									
Ĺ	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
T	6	12	9	17	17	1	2	5	1	9	3	1			
VV	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1		6	10		
X				1		••••••	•			••••••					1
Υ	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
_	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3	2	
not sequenced	14	14	14	14	15	19	21	22	23	23	23	25	25	. 26	25
sum of seq ²	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oomcaa3	34	28	35	54	73	87	102	110	126	135	134	120	91	71	146
mcaa*	G	S	G	-	_	-	-		-	-	- .	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	7 1%	65%	49%	38%	78%
pos occupied ⁶	20	20			:	<u>:</u>	:	<u>:</u>			••••••				

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	ork I	/				
amino acid'	102	103	104	105	106	107	108	109	110	11	112	113
Α	1		1			2						
В				1						<u></u>		
С												
D	2						<u></u>					
E					1							
F	2											
G			140		130		1					
Н	4		<u></u>			. 50 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
I	15	<u></u>	<u></u>						1	1		
К				13								
L	10			1			91					2
. М							6					
N	1					1						
Р	17				·	1	1					
Q				111		ļ	ļ					
R				8	ļ	<u> </u>						
S	7	1			<u> </u>	<u></u>	<u></u>				118	110
Τ				<u>.</u>	<u> </u>	123	÷	÷	122	**********		1
V	34		1	<u>:</u>		1		125		119		
W		158		<u></u>	<u> </u>		<u> </u>					
Χ				<u></u>								
Υ	82		·····	<u></u>			ļ					
Z					<u> </u>							
-	9	2	2	2	2 2	2	2 2	2	2	2	1	1
ınknown (?)				<u></u>				<u>.</u>	<u>.</u>			<u>.</u>
ot sequenced	:==				\div							: -
sum of seq ²				• =	•••	•••		127		:		
oomcaa3		158	÷•••••	• • • • • • • • • • • • • • • • • • • •			-÷	125	÷	•	·····	••••••
mcaa'	Υ	W	G	Q	G	T	L	V	T	V	S	S
rel. oomcaa ^s	45%	98%	9206	870%	98%	, ,	71%	%86	%86	%86	%66	%96
oos occupied ⁶		:	Ī		;		•	3 2		-	-	-

Table 6E: Analysis of V heavy chain subgroup 4

							·							Fra	me	wor	()			
amino acid'	-	2	က	4	2	9	7	æ	6	01	=	12	13	14	15	91	17	18	19	70
Α									19					1			1		1	
В																				
. С																	· .	<u></u>		
D																				
E .						32										44				
F																				
G								54	1	53		-				2				
Н			4		2															
К												1	54						1	
L		7		54	••••••	•••••••					53	19		1				53		50
M				•	•••••	••••	•						•••••	•••••						
N					•	•••••														
Р					•••••	*******	••••	•••••	33					51	1					2
Q	52		50		51	20										7				
R	1																			
S							33								52				52	
Ţ									1								52			
٧		47				1						34								1
W			·				20													
Х									·											
Y																				
Z	1																			
-																				
unknown (?)																				
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq²	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	53
oomcaa¹	52	47	50	54	51	32	33	54	33	53	53	34	54	51	52	44	52	53	52	50
mcaa*	Q	٧	Q	L	Q	Ε	5	G	Р	G	L	٧	K	Р	S	Ε	T	L	S	L
rel. oomcaa ^s	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	98%	83%	%86	100%	%96	94%
pos occupied ⁶	: · · · · · · · · · · · · · · · · · · ·																;	:		3

Table 6E: Analysis of V heavy chain subgroup 4

															CD	RI					
amino acid'	21	22	22	63	24	25	26	27	28	29	30	31	V	80	32	33	34	32	36	37	38
Α			2	2											1						
В																					
. C		53	3									<u> </u>				1					
D				1								4	1	1	1			1			
E		<u>.</u>																			
F						1				22				· · · · · · · · · · · · · · · · · · ·	1	1				1	
G		<u>.</u>					53	53	<u>.</u>		ļ	21	3	4				8		<u></u>	ļ
Н		<u>.</u>	<u>.</u>					1	<u></u>	<u>.</u>	<u> </u>	<u>.</u>	<u></u>		2					<u></u>	
1		<u> </u>		1					1	32	<u> </u>	ļ	<u> </u>	<u> </u>			<u> </u>	<u></u>	<u> </u>	51	<u> </u>
K		<u>.</u>	<u>.</u>					<u></u>	<u></u>	<u>.</u>	<u> </u>	<u> </u>	<u></u>	<u></u>		<u></u>	<u> </u>	<u></u>	<u>.</u>	<u> </u>	<u> </u>
L		<u>.</u>				·····			<u>.</u>		<u> </u>	<u></u>	<u></u>	<u></u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	1	<u></u>
M			<u>.</u>	<u> </u>								<u>.</u>		<u> </u>			<u></u>	<u>.</u>	ļ	<u> </u>	<u></u>
N		<u>.</u>									1	1	<u> </u>	2	2		<u>.</u>	1		<u> </u>	ļ
Р									3				<u>.</u>	<u>.</u>					<u> </u>	ļ	ļ
Q		<u>.</u>							<u></u>	<u>.</u>	<u>.</u>	1	<u>.</u>					ļ	<u> </u>	<u>.</u>	!
·R		<u>.</u>	<u>.</u>		******		1					3 2		1		ļ	<u> </u>		<u> </u>	ļ	5
5		<u>.</u>		2		35		<u></u>	51	1	52	2 25	5 !	9	1	<u></u>	<u>.</u>	44	<u> </u>	1	<u> </u>
T	53	3	<u></u>	29					<u> </u>	<u>.</u>	<u> </u>		2	<u> </u>	<u>.</u>	<u></u>	<u>.</u>	3	<u> </u>		ļ
V					55		1				<u> </u>	<u>.</u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		}
W		<u>.</u>				<u></u>								١ أ		2	2 56		57	7	
X																		<u>.</u>	<u>.</u>	<u>.</u>	
Υ						19)		1						48	52	2				
Z	L								L		L	<u> </u>	L	<u> </u>					_		<u> </u>
-											<u>.</u>		4	5 39)			<u>.</u>	ļ		<u> </u>
unknown (?)	_					<u> </u>				<u>.</u>	<u> </u>							<u> </u>	<u>.</u>		
not sequence			4	2	-		-	=		=		1	=					<u> </u>	ـــــ	<u> </u>	
sum of seq ⁷	5	3 5	3	55	55	5	5 5	5 5	5 5	5 5	6 5	6 5	6 5	6 50	5 50	3 5	6 5	5 5	7 5	7 5	7 5
oomcaa ³	5	3 5	3	29	55	3	•••••••		****				••••••••	5 39	••••						••••
mcaa'	1		С	T	٧	S	G	G	5 5	1	2	5 5	-	_	Y	Υ	۷	/ S	٧	ا ا	ļ
rel. ooṃcaa ^s	70001	0,000	100%	53%	100%	64%	%9°C	9000	0.50c	20.00	0,570	35%0	9000	700%	%0% 860%	930%	1000%	770%	1000%	2000	0.500
pos occupied	le	1	1			:	•	•	i	1	•	3	:	:	•	•	1	··· ·	·	···:	5

73

Table 6E: Analysis of V heavy chain subgroup 4

				Fra	mev	vork	11													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	21	52	4	80	U	23	54	52
Α			8	1							1					į				
В .																				
. С									<u> </u>											
D						į								1				1		
E				1				56				22								
F .												1		1						
G				55		55					56	1						1		5
Н		2																24		
l										54		1	54							
K					54															
L		1				,	55			2		•								
. M							•													
N							•••••							21						
Р		50	49				2													
Q	56							1				1								
R					3	2						9		1						
S		3										7		1					52	
T	1	1																8	5	
V							,			1			3							
W									56											
. X																				
Υ									1			15		32				23		
Z																				
_															57	57	57			
unknown (?)																				
not sequenced	1																			
sum of seq ²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	5
oomcaa'	56	50	49	55	54	55	55	56	56	54	56	22	54	32	57	57	57	24	52	ç
mcaa*	Q	Р	Р	G	Κ	G	L	Ε	W	Ī	G	Ε	ı	Υ	-	-	-	Н	S	(
rel. oomcaa ^s	%86	%88	%98	%96	95%	%96	%96	%86	%86	95%	%86	39%	95%	26%	100%	100%	100%	42%	91%	
pos occupied	:	:	2	:	2	:	:	:	2	:	:	÷		6	<u> </u>			<u> </u>	:	÷

Table 6E: Analysis of V heavy chain subgroup 4

•	С	DR I	11																	
amino acid'	26	22	58	29	09	61	62	63	64	65	99	29	89	69	2 ;	5	72	73	74	75
Α		1									1		1			1				1
В																<u></u>				
. С																	<u></u>			•••••
D			2									1					55			
E																	1			••••
F .				3														1		
G	1									1										
Н			2																	
1	1	1	<u></u>									1	1	48		3				
K			<u> </u>		1				53									1		5
L		<u></u>	<u> </u>			1		55				1				3				
M														7				2		
N	2		40		53								2							
Р		<u></u>				54		1												
Q		<u>.</u>	<u>.</u>														1			
R	2	<u>.</u>	<u>.</u>	<u>.</u>					3		56								<u></u>	ļ
5	49	<u></u>	1	<u> </u>	2		56			56	ļ		1		56			1	57	ļ
T	1	54	1	<u> </u>	<u> </u>	1		<u> </u>	1		<u> </u>		51		1	•••••		52	<u> </u>	<u> </u>
<u>V</u>	1	1		<u> </u>	<u></u>			<u></u>		<u></u>		53		2		50		ļ	ļ	<u> </u>
W	<u></u>	<u></u>	<u> </u>	<u>.</u>	ļ						<u> </u>					•••••••		<u></u>	ļ	<u> </u>
X		<u>.</u>	<u>.</u>		ļ				<u></u>	ļ	<u> </u>						ļ .	ļ		<u>.</u>
Υ	<u> </u>	ļ	11	54			ļ	<u></u>	ļ	<u></u>	ļ						<u></u>	ļ		
Z	<u>_</u>	<u> </u>	Ļ			Ļ					<u> </u>						<u> </u>	_	_	
-		<u>.</u>	<u>.</u>					<u></u>	ļ	<u></u>	<u>.</u>						<u> </u>	<u> </u>		ļ
unknown (?)	<u> </u>	<u>.</u>		<u>.</u>	<u></u>	ļ		<u></u>	<u> </u>	<u> </u>	<u>.</u>	<u></u>					<u> </u>	<u>.</u>	<u> </u>	<u> </u>
not sequence	= 3				1		: -	1		_	<u> </u>	1							<u> </u>	<u>!</u>
sum of seq²		• = • • • • • • •	··÷····			.:	•••••••	-:	÷	÷	·÷		•			:	:		:	:
oomcaa3	*******	··			••••••	•;••••••	••••••			÷	56	·				:	********	•	•	
mcaa ⁴	S	T	N	Y	N	Р	S	L	K	S	R	V	T	<u> </u>	S	V	D	T	5	
rel. oomcaa ^s	86%	950%	7007	95%	95%	%96	100%	98%	93%	980%	%86	95%	91%	84%	%86	%88	%96	910%	100%	
pos occupied	*******				:	:	:	:	:	:	:	:	;	;	•	•	•	3	5	1

Table 6E: Analysis of V heavy chain subgroup 4

				F	ram	ewo	rk II	l												
amino acid¹	92	77	78	79	80	81.	82	⋖	В	ပ	83	84	82	98	87	88	83	06	91	92
Α												55	57			57				
В								<u> </u>	<u></u>	<u> </u>										
. C																				57
D					1									57						
E						1														
F .			54						1											
G								1												
Н																				
1			1					1			3									
К	3					46		2												
L		3	1		55		53			2							1			
M						1	1			1							1			
N ·	54					3		3	1											
Р							••••													
Q		54			1	1														
R						2		2				1					<u>.</u>	<u></u>		ļ
S			1	57		2	1	44	55		1	<u></u>			2		<u> </u>	<u></u>	1	<u> </u>
T			<u> </u>	<u>.</u>	<u></u>	1		4			53				55		<u> </u>	<u>.</u>		<u></u>
V			<u> </u>	: : : :			2			54	<u>.</u>	1			••••		55	<u>.</u>	<u> </u>	<u></u>
W			<u></u>	<u>.</u>							<u></u>	<u></u>	-,				<u>.</u>	<u> </u>		<u> </u>
X																		<u>.</u>		
Υ.																		57	56	
Z -																	<u> </u>			
_											<u></u>	<u>.</u>					<u></u>	<u></u>		<u></u>
unknown (?)		<u></u>	<u> </u>	<u> </u>				<u>.</u>		<u></u>	<u>.</u>	<u>.</u>	<u></u>			<u>.</u>	<u>.</u>	<u></u>	<u> </u>	<u></u>
not sequenced	<u> </u>		<u> </u>																	
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	5
oomcaa,	54	54	54	57	55	46	53	44	55	54	53	55	57	57	55	57	55	÷	÷	5
mcaa ⁴	N	Q	F	S	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	(
rel. oomcaas	95%	92%	95%	100%	%96	31%	93%	77%	%9£	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	1000-
pos occupied ⁶	i	1	4	<u>:</u>	:	8	:	:	:	:	:	:	:	:	2	ŧ	3	÷	2	†

Table 6E: Analysis of V heavy chain subgroup 4

										CDR	111									
amino acid'	93	94	95	96	97	86	66	100	d	Ω	ပ	ا ۵	י ע	<u>.</u> ` (ပ	Ξ.	_	_	×	101
А	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																				
. С					1				1											••••••
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			- 6	1	1	2	1			1	3	1	2	1						
F				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н	<u> </u>		1				1						1			1				2
1	.			1		2	4	1	3	2	3		1						1	
K			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
M				1	4		3	1		2	1			-					9	
N				3					2	1	1	5	1	1			2	•••		
Р .				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3				<u></u>	
R		54	4	12	2	5	5	3	2	3	1	2			2	1			<u></u>	<u></u>
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Ţ		1	1	2	1	3	4	4	3	3			1	1	1				<u></u>	
V	1	1	4	2	2	5	4	4	7	3	1	2	1						<u> </u>	<u> </u>
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2	<u> </u>	ļ
Х								<u></u>							********				<u> </u>	<u>.</u>
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8	<u>.</u>	<u>.</u>
Z									- 5											
-						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)			<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>		<u> </u>	<u> </u>		<u>.</u>			1			1	1	1	<u> </u>
not sequenced	1		1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	1
sum of seq?	57	57	56	56	56	5 56	56	55	54	54	51	50	49	48	48	47	46	46	46	4
oomcaai	56	54	25	12	10) [10	11	7	9	11	16	23	27	29	34	31	14	31	4
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	_	-	-	-	-	F	ו
rel. oomcaa⁵	%86	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	9/0/9	30%	67%	ò
pos occupied	s 2	2 4	1 12	16	3 16	3 16	3 16	16	16	18	18	13	15	13	10	9	8		5 4	1

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α						1			1				332
В		•••••••••••••••••••••••••••••••••••••••											
C ·													11:
D								<u> </u>					210
E													17
F													13
G			41		40	1							67
Н	1								1				4
l	9					1							28
K				3									27
L	4						19						54
М							9						4
N						1							20
Р	3			2		ļ						2	28
Q				29		<u></u>							33
R	1			4			1						25
<u>S</u> .	1			1	<u> </u>	<u> </u>	<u></u>				36	33	98
T			<u> </u>	1	ļ	33	8		34				53
V	12			<u></u>	<u></u>	<u></u>	<u> </u>	36		36			48
W		46		<u></u>			ļ						26
X						ļ							
Y	16		ļ				·						45
Z			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>					
-	<u> </u>	ļ	<u></u>	<u></u>		<u></u>	<u> </u>	ļ	<u>.</u>	<u></u>	<u></u>		46
unknown (?)		<u>.</u>		ļ			<u></u>	<u> </u>		ļ	ļ	<u> </u>	
not sequenced	====	:	;	:	$\overline{\cdot}$	$\overline{\cdot}$	$\overline{\cdot}$		•	•	:	:	?
sum of seq ²		÷	· !······	·•••••	·:·····	• • • • • • • • • • • • • • • • • • • •	Ţ	Ť		·····	:	·····	7
oomcaaı		********	*********	•••••••	••••••	··:····	19	:	: -	·	•••••••	· ; • • • • • • • • •	
mcaa'	Υ	W	G	Q	G	Ţ	L	V	T	V	S	S	
rel. oomcaa ^s	34%	100%	100%	73%	100%	89%	51%	100%	94%	100%	100%	94%	
pos occupied	:	:	1	E	5 1	5	4	1	3	1	1	2	

170

Table 6F: Analysis of V heavy chain subgroup 5

L			· 											Fra	mev	vork	.			
amino acid'	_	7	က	4	ഹ	9	^	∞	6	9	=	12	13	4	15	9	17	8	6	20
. A					1			1	89		1			1						
В	<u></u>		<u></u>																	•••••
· C							1													•••••
D										2										
E	88	1			2				4	93						92		<u></u>		
F																	1			
G	1							92							94					
Н																				
ı																				96
К												94	94						77	
L		1		91		2												95		
M							*****				3								1	
N					••••••					••••	•••••									
Р				1	••••••		•••••		1	•••	********			94						
Q	. 3		92	••••••	1	90		••••••	••••						•••••	3			1	ļ
R						1		••••				1	1		1				17	
S		•			•••••	••••••	92		•••••••								94			<u> </u>
Ţ			•••••		••••••		••••••													<u> </u>
V		90			89	••••••••••••••••••••••••••••••••••••••		······································	1		91	<u> </u>								
W					•••••									••••						
Χ					•••••										••••					
Υ				••••																
Z									············											
-																				
unknown (?)		·······	†																	
not sequenced	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2 2	2 2	2	
	=	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	9	95	96	3 9
oomcaa ³	88	90	92	91	89	90	92	92	89	93	91	94	94	94	94	92	9	1 9	7	7 9
mcaa*	*******	٧			•••••	********	********	********	· • · · · · · · · ·	·÷·····	•		K	Р	G		S		K	
	%96	9/08	100%	%6(%91	17%	%6t	9/06(14%	0/08(96%	%66	99%	39%	%6 €	370%	900c	100%	80%	2
pos occupied ⁶	<u></u>	:		<u> </u>	(0)			<u> </u>			, .	,	<u> </u>	<u></u>	2	2 :	,	2	1	4

179

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

•								<u> </u>						CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	A	8	32	33	34	35	36	37	38
А				3	2					4							8		1	
В														·						
· c		96						1			1									
D								2			2						1			
E		,				2					1		•••••							
F .					3		6		97					2		•••				
G				92		93					1				•••••	•••••	72			
H					•••••		••••		•••••		1			4	•••••	••••••				1
i i								•		4				•		93				
κ.			89	•••••		•••••	•	1			•					•••••	••••			*******
L								•		•		•••••		•	1				2	
M			1		••••	••••	••••	•••••					_		••••••	1			1	•••••
N		• • • • • • • • • • • • • • • • • • •	1			••••••	•••••	2		4	14	••••		2	••••••	•••••				
Р		: :			1	•••••	•••••	•••••	•		••••••	••••		•••••	•••••	••••			••••	1
Q			4											••••	•	••••				
R			1			1		2							1					95
S	94			1	90		•	84		10	61			2	2	**********	15			
T	2					••••	•••	5		75	16			••••••	••••••	2	1			••••
V				•••••		•••••								••••		1			93	
W				•••••		•	•••••							•••••••••••••••••••••••••••••••••••••••	93			97	•••••	
X				•••••				•			•••••		••••••	••••••	•	•••••			•	
Υ						•••••	90				••••••	••••		87	••••				•••••	•••••
Z								•••••							••••••					
-												97	97							- 11
unknown (?)		• • • • • • • • • • • • • • • • • • •					**********	•••••			••••			••••••	••••					
not sequenced	1	1	1	1	1	1	1	•••••			••••				••••••					
sum of seq	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa,											*********	97				•••••••		•••••		
mcaa'	S	С	K	G	S	G	Υ	S	F	T	S	-	-	Υ	W	1	G	W	٧	R
rel. oomcaa'	98%	100%	93%	%9 (94%	37%	94%	37%	%00 ₁	7.7%	33%	100%	%00 l	%O(%9 (%9(,4%	100%	%96	%86
pos occupied ⁶											: :	;	:		4					<u>ა</u>

Table 6F: Analysis of V heavy chain subgroup 5

				Fra	mev	vork	: 11	·				\perp								
amino acid'	39	40	4	42	43	44	45	.46	47	48	49	20	51	25	⋖	8	ں	53	54	55
А			1			1									1			2	1	
В																				
· C														1				1		
D														14				8	93	
<u>E</u>					3			97								••••			2	
F							••••					1		2			<u></u>			
G				97		96					95						<u></u>	69	1	
Н														3	1		<u></u>	<u></u>	<u></u>	
· 1										1		75	92				<u>.</u>	<u>.</u>	<u> </u>	
K		1			94												<u> </u>	<u> </u>	<u>.</u>	
L							94			2		2	1				<u> </u>		<u></u>	<u></u>
М		92								89			1				<u> </u>	<u>.</u>	<u>.</u>	<u></u>
N																				
Р			96				2							1	93					
Q	97						1													
R		1									1	14						1	<u>.</u>	
S												1			1		<u>.</u>	16		9
T		1										3	1		1			<u> </u>	<u>.</u>	
V		2								5	1	1	2			<u></u>	<u>.</u>	<u>.</u>	<u>!</u>	<u>.</u>
W									94											
Χ																				<u>.</u>
Y									3					76						
Z																				
-																97	9	7		
unknown (?)																				
not sequenced	<u></u>																			
sum of seq'	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	9	7 9	9	, ,
oomcaa,		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		·:-···		••••••	· - · · · · · · · · · · · · · · · · · · ·	Ţ	• • • • • • • • • • • • • • • • • • • •	75	••••••	:	·:·····	· · · · · · · · · · · · · · · · · · ·			•••	
mcaa'	Q	М	Р	G	K	G	L	E	W	М	G	I	1	Υ	Р	-	-	G	D	
rel. oomcaa ^s	%001	35%	39%	%001)7%	%6€	%2₹	%00I	37%	32%	98%	77%	35%	78%	%9 (%UU	800	7 10%	%5°	2
pos occupieď	•		•	:			:		:					:					··•	···

Table 6F: Analysis of V heavy chain subgroup 5

	C	DR	II .																	-
amino acid	99	57	28	59	09	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75
Α		6					1									88				
В																				•••••
. С					1					1										
D	77									2							97			
E	3								2							٠		2		
F .				2			•••••••	91				1		3						
G	1									94										
Н											15									
		4	1					1				3		88						9
K			2															93		
L						1		4							2					
M												·		3						
· N	2		14	2																
P						95	1		1										1	
Q									91		81			•••••				1		
R			78						3		1			1				1		
S	2	2			95	1	95	1					1		95	•••			96	<u></u>
<u> </u>		85	2		1								96						••••	
<u>V</u>				1								93		2		9			•••••	<u> </u>
W			<u>.</u>											••••		.,				ļ
X		<u></u>					<u></u>						•••••							<u></u>
ΥΥ	12	ļ	ļ	92			ļ			,			•••••				• •			
Z	L																			
-		<u>.</u>																		ļ
unknown (?)		<u>.</u>	<u> </u>			<u></u>	<u></u>	<u></u>	<u></u>	<u>.</u>										<u>.</u>
not sequenced																				L
sum of seq'	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	2
oomcaa ¹	77	85	78	92	95	95	95	91	91	94	81	93	96	88	95	88	97	93	96	9
mcaa*	D	Ţ	R	Υ	S _.	Р	5	F	Q	G	Q	٧	T	1	S	Α	D	Κ	S	<u> </u>
rel. oomcaas	79%	88%	80%	95%	%86	98%	98%	94%	94%	97%	84%	%96	%66	91%	98%	91%	100%	%96	%66	3
pos occupied ⁶		•				•	•	•	:										2	<u> </u>

Table 6F: Analysis of V heavy chain subgroup 5

							rk II					-								
amino acid'	92	77	78	79	8	2	82	⋖	ထ	ပ	83	84	85	98	87	88	83	8	91	92
Α		1	91								1	96				93				
В		••••																		•••••
С							1										<u>i</u>			95
D				1										96						
E						1					1									
F .				1				,										2	6	•••••
G								3	1							4				
H			<u></u>			3														
1	<u></u>		<u></u>												2		9			
K			<u> </u>	ļ							91					•••••	1			
<u> </u>		<u></u>	<u></u>	ļ	96					97							2			
M		<u></u>	<u> </u>	<u></u>													84	<u></u>		<u>.</u>
N	7	<u></u>	<u> </u>	<u> </u>				2	2						2			ļ	<u></u>	ļ
Р	.	<u></u>	1	ļ													<u></u>		ļ .	
Q	ļ	<u></u>		ļ	ļ	93											ļ	ļ	<u></u>	ļ
R	1	<u></u>	<u> </u>	<u> </u>	<u></u>		1	1	3		3						<u> </u>	ļ	<u></u>	<u> </u>
S	87	÷	÷	1	ļ		ļ	90	91				96		5	•••••	<u> </u>	ļ	<u></u>	<u> </u>
T	2	94	2	<u>.</u>	ļ		<u> </u>	1			1	1	1		88		1	<u> </u>	<u> </u>	<u>.</u>
<u>.</u> V		<u></u>	2	<u> </u>	1	<u></u>	ļ	ļ	<u> </u>					1			<u> </u>		ļ	<u> </u>
W		<u>.</u>	<u> </u>	<u>.</u>	<u>.</u>		95	<u>.</u>	<u></u>			<u> </u>			·····			<u></u>	<u> </u>	
X		<u>.</u>	<u>.</u>	<u>.</u>		<u>.</u>	<u></u>	<u>.</u>	<u></u>	<u>.</u>	<u>.</u>	<u></u>		•••••				ļ	<u></u>	<u>.</u>
Υ	.[<u>.</u>	<u>.</u>	94				<u>.</u>	<u></u>		<u></u>	<u></u>		•••••		ļ	<u>.</u>	94	89)
Z		L	_		L		Ļ	<u> </u>	_										_	Ļ
-		ļ	<u>.</u>	ļ		ļ		<u></u>	ļ	<u></u>				••••••				ļ	<u>.</u>	ļ
unknown (?)		<u>.</u>	<u> </u>	<u> </u>	<u></u>	ļ		ļ	<u>.</u>	<u> </u>	<u></u>	<u> </u>				<u></u>	ļ	<u> </u>	ļ	-
not sequence	===		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>		 -	?!
sum of seq ²	·····	·÷····	··÷·····	97	•••••••	•••••••		•••••••	•••••••	· · · · · · · · · · · · · · · · · · ·	·	• • • • • • • • • • • • • • • • • • • •		:	·····	······	•======	• • • • • • • • • • • • • • • • • • • •	•	:::::
oomcaa,	******			1 94	••••••	• • • • • • • • • • • • • • • • • • • •	••••••••		•••••••		· * · · · · · · · ·	••••••	· · · · · · · · · · · · · · · · · · ·	:	••••••••	••••••••	************			••••••
mcaa'				Υ					·••••••	· • • • • • • • • • • • • • • • • • • •	· · · · · · ·					·	••••••	Y	Υ	
rel. oomcaa ^s	%U6	92.0	940%	%26	%66	%96	980%	93%	94%	100%	94%	%66	. %66	%66	91%	96%	87%	980%	94%	
pos occupied	:	:	:	:	:	:		:	•	;	÷	•	•	•	•	•	•			

Table 6F: Analysis of V heavy chain subgroup 5

						••••				CDR	111									
amino acid'	93	94	92	96	97	86	66	100	⋖	8	U	۵	ш	u.	ပ	I		ſ	×	101
А	92		1	1	2		3	4	3	2		1			1			4		2
В			i													<u>.</u>	<u></u>			
· C						1	1	1			2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
E			1	1	1	2			1	1				1			1			
F .					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3	10	2	1				5		
Н			10	1		2			1	1		1						<u></u>		
l				3		2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1					
M					2	1	1		1	1	1	1							10	
N				1		2		1	1	2			1					2		
P ·			5	1	4	3	1	2				1	1	. 1	1					
Q		1	3	2		1	1	4	2	1	2									3
R		92	7	9	2	2		2	1		2									
S		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
T	1		1	3	2	1	2	6	3	3	6	1		1		·			ļ	
V	2		2	4	4		1		1	2			1							
W			1		2	1					1		2		1		1	1		
X									,					••••						
, A				1	6	3	6	9	8	7	2	1	2	6	. 8	9	9	10		1
Z							<u> </u>													
_		<u>.</u>				1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)		<u></u>	<u> </u>		<u> </u>		<u>.</u>	<u></u>	<u></u>				1			1	1	1	<u></u>	<u></u>
not sequenced	2	2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	52
sum of seq ²	95	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	45
oomcaa¹	92	92	11	9	11	12	12	9	8	10	16	23	30	30	31	32	30	22	26	37
mcaa'	. A	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-	_	F	D
rel. oomcaa ⁵	97%	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	67%	%29	%69	71%	67%	49%	59%	82%
pos occupied ⁶				Ī	-	-	<u> </u>		1	Ī					:			<u> </u>	-	

Table 6F: Analysis of V heavy chain subgroup 5

					Frar	new	ork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	=	112	ss	นท
Α												1	61
В		•											
С		•••••											20
D	1			••••••	<u>-</u>								45
E				1	<u>-</u>								40
F	2				•								25
G			41		41							1	108
Н													4
1	9								2				58
K				3									65
L	2						25	1					54
M							8						30
N													(
Р	2					1					1		4
Q				34									6
R				3									3
S	2										40	39	15
<u> </u>	1	<u></u>	<u></u>			40	8		39				6
V	11							40		41			5
W		43				•••••							4
Χ						- 140					,		
Υ	13			· · · · · · · · · · · · · · · · · · ·		••••							7
Z		<u> </u>											
	2		<u></u>	<u></u>	<u> </u>								6
unknown (?)	<u>.</u>	<u></u>	<u></u>	<u> </u>	<u></u>								
not sequence	d 52	54	56	56	56	56	56	56	56	56	56	57	16
sum of seq ²	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa3		·;····	•••••••	34	41	40	25	40	••••••	:	•••••••••••	······	
mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa	29%	100%	100%	83%	100%	%86	61%	%86	95%	100%	98%	98%	
pos occupied	16) 1	1	4	1	2	3	2	2	1	2	2	

Table 6G: Analysis of V heavy chain subgroup 6

·					-									Fra	mev	vorl	۱.			
amino acid'	-	7	m .	4	S	9	7	œ	თ	0	11	12	13	14	15	16	11	82	9	70
Α												1								
В							·													
· C								į												
D																				
E																				
F .																				
G	1							52		67										
Н																				
				••••••	•••••									·						
К													68							
L	·	Ī		52							68	1						67	1	68
М					•	••••••														
N			•	•••••••••••••••••••••••••••••••••••••••	••••	•••••	•													
Р									68					67					1	
Q	52		52		51	52										68				
R					1					1										
S							52							1	68				66	
Τ																	68			
V		52										66						1		<u>.</u>
W																				
Χ																				
Y																				
Z																				
-																				
unknown (?)																				
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa ³	52	52	52	52	51	52	52	52	68	67	68	66	68	67	68	68	68	67	66	68
mcaa*	Q	٧	Q	L	Q	Q	S	G	Р	G	L	٧	K	Р	S	Q	T	L	S	L
rel. oomcaas	100%	100%	100%	100%	%86	100%	100%	100%	100%	%66	100%	97%	100%	%66	100%	100%	100%	%66	97%	100%
pos occupied ⁶	 	<u> </u>			: · · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		:········		:····				:	: :	<u> </u>	: :	Ī	

Table 6G: Analysis of V heavy chain subgroup 6

•														CDI	_					
amino acid'	21	.22	23	24	25	26	27	28	29	9	3	⋖	8	32	33	34	35	36	37	38
А	1		67											66	67					
В																				••••••
С		68																		
D							68				1						1			
E																				
F .						·				2				1	1			,	1	
G			1			69							3	1	2			<u></u>		
Н																	1	<u></u>		-
				64								2					1		70	
K												3							<u> </u>	<u>.</u>
L				Ī													<u> </u>	<u></u>	<u></u>	
M		<u> </u>			<u> </u>		······································												<u>.</u>	<u> </u>
N			•	<u> </u>	÷		1	<u> </u>		•••••	2	66					70			
Р	1									•••••										
Q	1		<u></u>	·				······································						•						
R	1		.	İ							2	1								7
S	1	<u> </u>	-	1	69			69		68	66		67		3		1			
T	67	•	•		<u> </u>			<u> </u>			2	1	4	••••••	1					
V	1		1	1 4	1			•	70			-		6					2	
W	1	1		· • • • • • • • • • • • • • • • • • • •	<u> </u>	-								••••••		74	ļ.	74	1	
χ	1	· •	İ	<u> </u>					<u></u>			•								
Υ	1			· •					1			1								
Z	1																			
_	T	Ī		T		Τ	Ī													
unknown (?)		· •									1									
not sequence	·· H	5 !	5	5 !	5 5	5 5	5 5	5 5	4	4										
sum of seq ²	_	=	===	9 69	9 69	69	69	69	70	70	74	74	74	74	74	1 74	4 7	4 7	4 7	1
oomcaa		··÷·····	··•		••••••••	•••••••	•••••••		••••••••	· • · · · · · ·	• • • • • • • • • • • • • • • • • • • •	·•••••••	67	:		•••••••	•••	•••		
mcaa*	T		•••	••••••••		••••••••		•••••	٧	· • · · · · · · ·	••••••	********	S		.,			•••		
rel. oomcaa ^s	070%	9000	20.00	97.70	%UU.	%001	900	%001	0001	%∠Ł	39%	99%	91%	99%	91%	100%	0500	9001	050%	2
pos occupied	:*****	··· <u> </u>	· : ·····	••••					:			•	:	:	:		7	:- : :	··· † ·····	

Table 6G: Analysis of V heavy chain subgroup 6

				Fra	me	work	: 11													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	51	52	⋖	80	ں —	23	54	55
Α				1									1					1		
В																				•••••
. С																				
D																				
Е								74												·····
F .														2	1			1		
G						74					74	1							1	•••••
Н															1					
<u> </u>																				
K	1				1											1			66	••••
L	1						74			74							,,,,,			
M																				
N																			1	
Р	ļ		73				•••••													
Q	72																			
R	<u></u>				73		••••••					73				72			1	
S	ļ	74	1	73										<u></u>		1		72		
T	<u> </u>		<u> </u>										73	<u></u>	<u>.</u>				5	
V																				
W	ļ		<u></u>						74					ļ			<u></u>			7
X	ļ																<u>.</u>			
ΥΥ	<u> </u>						·····							72	72		·····			
Z	<u> </u>																			
-																	74		<u></u>	ļ
unknown (?)	ļ	ļ	<u> </u>					<u></u>	<u>:</u> :	<u> </u>	<u></u>			<u></u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u> </u>	<u></u>
not sequenced	4													<u> </u>						_
sum of seq ⁷	·····	<u> </u>	74		•••••	····	······	. 	<u>.</u>	!	<u></u>		•••••	······		·····		······	<u> </u>	····
oomcaa,	·····	••••••	73			····	·····	,	·	÷	÷			····	·····	•	····	÷	÷	•••••
mcaa ⁴	ļ	S	-	S	R	G	L	Ε	W	L	G			Υ	Υ	: :	-	S	K	V
rel. oomcaa ^s	92%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	93%	%66	97%	97%	97%	100%	97%	89%	č
pos occupied		:	:					:	:	:					:		:		:	

Table 6G: Analysis of V heavy chain subgroup 6

•	CI	DR I]																	
amino acid'	99	22	28	29	09	61	62	63	64	65	99	29	89	69	70	7	72	73	74	75
Α					73	1							2			6		1		
В																				
· C				1																
D			68			1									2		73			
E	1		3			7			1											2
F	7						ļ								,					
G			1				1			8										
Н	1																1			
1						1	<u></u>					65	2	71				1		
К		1			<u></u>				67						1				<u> </u>	70
L	1					5		2		<u> </u>		4						1	<u> </u>	
M					<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	1						<u></u>	<u> </u>	
N	2	65	1		<u> </u>	<u></u>	<u>.</u>	<u></u>	1	<u> </u>	<u> </u>				69			<u></u>	<u>.</u>	
Р					1	1	<u>.</u>	<u>.</u>	<u></u>	<u>.</u>	<u></u>					66	<u></u>	ļ		
0				<u></u>	<u>.</u>	<u></u>			2		1						<u></u>	<u></u>		
R		1			<u></u>				3		73						<u>.</u>	ļ		<u> </u>
S	2	2	1	1	<u>.</u>		73	3	<u>.</u>	66	<u> </u>	<u> </u>	1		2	1	ļ	<u>.</u>	73	<u>!</u>
T	ļ	4	<u></u>	<u> </u>	<u> </u>	<u></u>		. <u>.</u>	<u> </u>	<u>.</u>	<u>.</u>	<u></u>	69	1	·····		<u></u>	71	1	2
V	ļ	<u></u>	<u>.</u>	<u> </u>	<u> </u>	58	3	72	<u> </u>	<u>.</u>	.	4		2		1	<u>!</u>	<u> </u>	<u>.</u>	<u> </u>
W	ļ	<u></u>	<u></u>	<u> </u>	<u>.</u>				ļ	<u> </u>	<u>.</u>	ļ				<u></u>	<u></u>	<u> </u>	ļ	<u>.</u>
X	ļ	<u></u>	<u></u>	<u>.</u>	<u>.</u>				ļ	<u></u>	<u>.</u>	<u></u>					ļ	ļ	<u>.</u>	ļ
Y	60	1		72					ļ							<u></u>	·	<u>.</u>		
Z	L	_	_	_	<u> </u>	-		Ļ	<u> </u>	<u> </u>	<u> </u>	<u>. </u>	<u> </u>			_	_	<u> </u>	-	-
-	<u> </u>	<u> </u>	<u> </u>	<u>.</u>							ļ				ļ	<u>.</u>		
unknown (?)	<u>. </u>	<u></u>	<u>!</u>	<u>.</u>					<u>.</u>	<u> </u>	. 	<u> </u>	ļ			ļ	<u>.</u>	<u>.</u>		<u> </u>
not sequenced		<u> </u>		<u>.</u>	<u> </u>	<u> </u>			-	-	<u> </u>	<u> </u>	<u> </u>				<u> </u>	╄	-	<u>!</u>
sum of seq?	į	÷	÷	· † ······		•••••••		•••••••	•••••••	•••	·· ፣ · · · · · ·	•:	74	:	•	7	•	· -	·· <u> </u>	
oomcaa ³		·	·••••••			•••••••	••••			•••	٠٠٠٠٠٠	•••••••••	69	•	•;••••••			·· · ·····	···	• • • • • • • • • • • • • • • • • • • •
mcaa ⁴	Y	N	D	Υ	Α	V	S	V	K	5	R		T	1	N	Р	ט	T	2	K
rel. oomcaas	81%	88%	92%	920%	%066 0	780%	9000	97.00	910%	89%	%66	0/088	93%	%96	93%	700V	%0bb	9090	%65 6	95%
pos occupied		•	· · · · · · · ·				:			:	:	•	:	:	:	:		:	:	2 :

Table 6G: Analysis of V heavy chain subgroup 6

				F	ram	ewo	rk II	<u> </u>												
amino acid'	9/	77	78	79	80	8	82	٧	80	ပ	83	84	82	98	87	88	83	6	91	92
Α				·									1			74				
В																				
· C																				7
D	1							3						73						
E													73							
F .			71						1		·								3	
G														1						
Н						2		1												-
. 1			1														2			<u> </u>
K								4											••••	<u> </u>
L		1			74		72													
М							1			1							2			<u> </u>
N	74							63			1								1	
Р										••••		70				*****				<u>.</u>
Q		72				71														
R		1	<u>.</u>			1		1												<u> </u>
5		<u></u>		74				1	73		1	3								<u>.</u>
\ T	<u> </u>		<u>.</u>					1			73				74			1		<u></u>
<u>V</u>			2				1			73			•••••				70			<u> </u>
W	<u> </u>		<u></u>					<u></u>												<u>.</u>
Χ	<u> </u>		<u> </u>										•••••							
ΥΥ	ļ	<u></u>	<u></u>				ļ .											73	70	
Z																				
_			<u> </u>																	<u>.</u>
unknown (?)	ļ	<u></u>	<u> </u>	<u> </u>	<u></u>		<u></u>													<u>.</u>
not sequenced	<u> </u>			<u> </u>								1								<u> </u>
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	
oomcaa ³		÷	÷	·····	····	:		••••••	÷ · · · · · · · · ·	73	73	70	73	73	74	74	70	73	÷ • • • • • • • • •	•••••
mcaa*	N	Q	F	S	L	Q	L	N	S	٧	T	Р	E	D	T	Α	٧	Υ	Υ	<u>.</u>
rel. oomcaa ⁵	100%	97%	%96	100%	100%	%96	97%	85%	%66	%66	%66	96%	%66	%66	100%	100%	95%	%66	95%	
pos occupied ⁶	1		:	:	1		3	÷	•	:	2	•		:	1		3	:	:	

Table 6G: Analysis of V heavy chain subgroup 6

	CDR III																			
amino acid'	93	94	92	96	97	86	66	001	⋖	8	ر ا	۵	ا بن	<u>. </u>	တ	I	_	<u>~</u>	×	101
Α	69		11	1	3	12	4	3	2	5		8						10	1	
В																<u></u>	<u> </u>			
· C					1		1			1		1	1			<u></u>				
D			19	4	3	7	4	3	1	6	1	1	1							62
Е			10	4	2	1	2	2	1	2							1			
F .	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н			********	1		1			1	1	1	1				1	1	1		
1				1	2		2	<u>.</u>	5	1										ļ
Κ		1	1	1	1	1	1	1				1								<u> </u>
L			1	8	4	2	3	2	1					1	5				8	<u>.</u>
M				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			<u> </u>
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									
R		69	1	7	8	1	8	8	3		1	1	5					,	<u></u>	<u>.</u>
S		3	5	5	5	7	6	7	3	4	2					1	1		<u> </u>	<u> </u>
T		<u>.</u>	1	1	4	3	4	4	6	3	1			1					<u> </u>	<u>.</u>
V	3	1	4	5	1	9	<u>.</u>		4	<u></u>	9	5	1	1				<u></u>	2	<u>.</u>
W		<u></u>	1	6	8		3	2	4	<u></u>	<u></u>	<u></u>					4	4		<u>.</u>
X		<u></u>	<u></u>	<u>.</u>	<u></u>				<u></u>	<u> </u>	<u> </u>	<u></u>							<u>.</u>	<u>.</u>
Υ		<u></u>	<u></u>	6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		<u>.</u>
Z	L																	<u> </u>	<u> </u>	L
_		<u></u>	<u>.</u>	2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	<u>.</u>
unknown (?)	<u></u>	<u> </u>	<u>.</u>	<u>.</u>	<u></u>	<u></u>	<u>.</u>	<u></u>	<u> </u>	<u> </u>	<u>.</u>	ļ		6	1	5	<u></u>	<u></u>	ļ	.ļ
not sequenced	_	<u> </u>	<u> </u>	1	2	2	2 1	1	1	1	1	1	1	1	1	1	1	1	1	<u> </u>
sum of seq	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	7
oomcaa ³	******	·÷·····	·÷·····	·÷······	15	15	14	1 23	25	33	41	47	53	54	57	56	50	.28		•••
mcaa*	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F]
rel. oomcaas	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	79%	78%	%69	39%	53%	, ,
pos occupied	•	:	:	:	:	:	•	:	•	•	:	•	;	i	:	•	:	•	•	:

13

Table 6G: Analysis of V heavy chain subgroup 6

	,	Framework IV												
	amino acid'	102	103	104	105	106	107	108	109	10	Ξ	112	113	sum
I	Α							2						494
	В		••••••					*********	•••••••••••••••••••••••••••••••••••••••				•	
	С													147
	D								1					403
1	E													186
13	F	2										2		150
	G ·			49		50								571
	Н	2												18
	·	9					3		1					304
	K				1			1						293
	L	5						26						632
	M					•		8						31
	N													436
	Р	4			6								1	387
	Q				40									539
	R				2									495
	S	4		1			1					43	46	1271
	T						45	4		45				640
	<u> </u>	21						2	46	••••	48	•••••	•	647
	W		65					5				•••••		398
	<u> </u>	ļ												
	ΥΥ	19	•••••					•••••				•••••		518
	<u>Z</u>													<i>V</i>
	· _	2												585
	unknown (?)	ļ	••••••							•••••	••••••			13
	not sequenced	_ 5	8	23	24	23	24	25	25	28	25	28	26	580
	sum of seq ²	68	65	50	49	50	49	48	48	45	48	45	47	
	oomcaa3	21									48			
	mcaa ⁴	V	W	G	Q	G	T	L	V	T	٧	S	S	
	rel. oomcaas	31%	100%	%86	82%	100%	92%	54%	%96	100%	100%	%96	%86	
	pos occupied ⁶	9	1	2	4	1	.3	7	3	1	1	2	2	

192

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L., Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401–1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98–103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405–1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991)
 Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249–5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944–3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261–271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903–1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503–1504.
- 65 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp. Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839–2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220-1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052–1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096–2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.

- 112 Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.immunol., 23, 391-397.
- , 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795-2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur J. Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.lmmunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 40 Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718–1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349–357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol. Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

59 Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971) Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953–954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. &t Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. &t Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)

 J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138–1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529-1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- 15 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991) Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934–1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294–1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- 55 Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- 59 Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.lmmol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550–564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337–2344.
- 87 Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1591-1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571-1604.
- 88 Portolano, S., Mciachian, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.

 Rabbitts, T.H., Bentley, D.L., Dunnick; W., Forster, A., Matthyssens, G. & Milstein, C. (1980)

 Rabbitts, T.H., Bentley, D.L., Dunnick; W., Forster, A., Matthyssens, G. & Milstein, C. (1980)

 Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220-1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631–1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)
 Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.lmmunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.lmmunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur. J. Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821-1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl.Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- 2 Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.lmmunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.

3 Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501-2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993).

 (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- 21 Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832–839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, anddeducing two or more consensus gene sequences therefrom,
- optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42**. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

(b) carry cleavage sites, each of which:

- (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
- (bb) are unique within each gene sequence,
- (bc) do not form compatible sites with respect to any single subsequence, and
- (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50**. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- **53**. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

PCT/EP96/03647 WO 97/08320

Figure 1: construction of a synthetic human antibody library based on consensus sequences

Figure 2A: VL kappa consensus sequences

										 	ran	framework 1	Vor	*										· .			CDR			
-	l	7	2 9 9 7 8 7 8 7	1	S	9		8	6	101	11	15	13	tl	91	91	121	81	61	50	17	77	23	74	52	97	77	A	В	Э
VK1	0		Q	Σ	<u>-</u>	0	S	م	S	S		S	A	S	>	9		R	>		_	 	ر ا	8	A	S	O	ı	1	ı
Vk2 D	۵	_	>	\geq	<u> </u>	Q.	S	Δ.		<i>U</i> 1		۵.	>	_	<u>a</u> .	g	ш	۵.	A	S	_	S	ر د	8	S	S	O	S	_	
Vk3 D	۵	_	\ \ \		 	0	S	۵_	< <	_		S,		S	۵_	9	ш	<u>ح</u>	Α.	_	<u> </u>	S	ر د	~	A	S	O	S	i	ı
VK4 D	٥		∠ × ×	Σ	—	Ö	S	ط	٥	S	 . o	Α.	>	S		G	ш	<u>~</u>	A		-	Z	<u>၂</u>	<u>~</u>	S	S	O	S	>	
].																			•					•					
					0	CDRI	_									J 4	ran	framework	10	, x 2								CDR		
	D	Ε	E	28	58	30	31	35	33	34	32	36	37	38	38	07	17	45	43	77	St	97	74	84	67	20	١S	25	23	75
VK1	1	1	1	9		S	S			Α.	3	≻	O	0	\ \	ا م	9	X	A	<u>ا</u> ک	×	<u>ر</u>		_	λ	Y.	A	S	5	٦
VK2 H	エ	S	1	- N G	9	<u>></u>	Z	<i>_</i>		0	≥	>		0	~ ×	<u>~</u>	9	0	5	۵.	Q) 	<u> </u>		>		9	S	Z	R
VK3	ı	ı	ŧ	>	S	<i>(</i>)	S	<u>بر</u>	_	1 -	A W	≻ >	0	0 0	× ×	<u>م</u>	9	0	7 A	<i>م</i>	ω Σ	~	ن ۔۔۔ ،		>	9	\forall	S	S	8
VK4 YSSNN	>	S	S	Z	_		Z	λ	1	/ -	A W	٧٧	0	0 () K	(P	6	3 0) P	٩	×		_	_	_	8	/ A	S	—	æ

	CDRII	₹			1.									4	ran	ne	framework 3	ĺχ												
_	99		89 25	89	69	09	19	79	63	79	99	99	49	89	69	02	LZ	72	73	74	SZ	92	LL	87	64	08	18	28	83	† 8
VK1	O	S	9	>	م	S	8	ഥ	S	9	S	9	S	9	-	۵	ட	-	_	—	<u>.</u>	S	S	بــا	O	Ь	ш	Ω	ட	V
	V	S	Ð	>	٥	\odot	8	щ	S	9	S	9	S	g	\vdash	Ω	ய	—	_	\checkmark		S	\propto	>	ш	⋖	ш		>	9
Vk3	V	—	9	>	Д	Ø	æ	ட	S	9	S	G	S	O	—		ய	—		 	-	S	S	_	ш	۵	W		ட	A
VK4	ш	S G	9	>	۵		\propto	ц.	S	9	S	9	S	G	—		ட		_	-		S	S	_	O	Α	ш	٥	>	A
																										•				
fr	framework 3	P ≷	ork S	3				CDRI	R	_							fr	Į į	l ⊗	framework 4	4									
	58	.98	78	88	68	06	l6	76	63	7 6	96	96	۷6	86	66	001	lOl	105	103	70l	901	90 l	۷01	80 l	60 l					
VK1	<u></u>	>	>	U	a	O	工	>	 -	-	ط	۵	-	ட	ပ	a	ပ	 -	\prec	>	ш	_	\prec	2	 					
VK2	>	>-	>	\mathcal{O}	0	Q	I	>	—	\vdash	ط	ط	—	ட	9	O	9	-	\checkmark	>	ш	_	\checkmark	\propto	—					
VK3	>	>	>	\mathcal{O}	0	O	I	>	\vdash	\vdash	٥	٩	⊢	ட	G	O	G		\checkmark	>	ш		\checkmark	8	—					
VK4 ∨ Y	>	>	>	\mathcal{O}	O	O	H	>		₩-	Р	<u>م</u>	-	ഥ	9	O	9	—	\prec	>	ш		\prec	8	-					

Figure 2B: VL lambda consensus sequences

	0~			;		, ,	45	<u> </u>	
	28	_	>			73	9	O	9
	3	Z		1		99	5	S.	S
2	O	S	S	1		22	Ь	Δ.	Δ.
CDRI	72	S	S	A	=	19	R	\propto	\propto
	.97	S	<u> </u>	D	CDR	53	O	Z	
	52	g	G	G	0	25	Z	S	S
	74	S	⊢	S		15	Z	>	0
. :	23	ပ	\mathcal{C}	ر ا		90	۵		
	77	S	S	S		67	>	>	>
	17	-	_			. 84	-	-	_
	50	⊢	\vdash	\propto	,	L t	ب	Σ	>
	6l	>		A		97			
	81	~	S			St	\prec	\checkmark	>
	11	a	O	O	2	77	_	٩	٩
	91	ပ	9	G	framework 2	43	⋖	⋖	\forall
	SL	۵	ط	ط	e K	77	⊢	\checkmark	O
—	カレ	4	S	\forall	am	17	O	9	9
framework 1	13	9	G	>	f.	07	مـ	٥	ط
§ S	15	S	S	2		38		工	\prec
an	11	>	>	>		38	Q	0	O
fr	01	١.	ı	ı		37	O	O	O
	6	S	S	2		36	>	>	>
	8	۵	\forall	۵.		35	3	≥	3
	1	٦	٩	٩		34	Y V S	S	S
	9	a	Q P	O		33	>	>	\forall
	9	 -	-		=	32	>	>	>
	t	-	_	لب	CDRI	\forall	1	Z	1.
	3	>	A	ш		30 32 32	Z	G Y N Y	
	9 5 7 2 1	2	SALT	>		30	2	9	D
	l	0	O	S		56	9	9	9
		A1 QSVLTQP	M2	A3 S Y E			A1 G S N	M2 G	M3 6 D

Figure 28: VL lambda consensus sequences

	78	>	>	>						
	98	>	>	>						
	98		0							
	18	Ā	A	4						
	83	ш	ш	ш						
	85									
	18	ш	ш	ш						
١	08	S	A	4	11					
Į	64	O	O	0						
	87			·			10۷	9	G	9
	LL	9	G	9			\forall	ب		_
	92	⊢	S	S			901	>	>	>
ر ا	97	_		-		4	901	⊢		
framework 3	74	A		-		논	104			_
8	73					framework	103	$ \mathbf{x} $	<u>×</u>	\checkmark
u u	72	S	2	 		me	102	-		
rai	11	X	A	A		fra	101	9	9	9
	04	S	_	-			100	9	9	9
	69	 	Z	Z			66	9	9	G
	89	9	9	9			86	4	ш	LL.
	۷9	S	S	2			۷6	>	>	>
,	99	$ \times $	\times	Z			96	م	α	ط
	9	S	S	2			96	٥	۵.	ط
	79	9	9	G		=	7 6	 -		⊢
	63		S	2		CDRIII	63	-	-	—
	79		Ш	ட		2	76	>	>	>
	19		\propto	\propto			16	I	H	O H
	09		Z	Ш			06	0	0	O
	69	۵	S	Д			68	0	O	Q
	89	>			_	L	88	ပ	<u>ပ</u>	<u>ں</u>
•		×1 </td <td>W.2</td> <td>M3</td> <td></td> <td></td> <td></td> <td>3</td> <td>W2</td> <td>%3</td>	W.2	M3				3	W2	% 3

Figure 2C: V heavy chain consensus sequences

											Z S	A	<u></u>	×	-	⊢	-	Z
											99	—	G		S	S		>
	30	S	 	S	S	S	<u>—</u>	S			99	9	G		9	9	S	3
	00	ட					ட				7 5				9			$ \mathbf{x} $
	28	<u>. </u>		S		S	S	S		=	23		Z	3	S	>	9	S
- 2	77	9				•		ام		CDR	2	ı	1	-	1	ı	ı	
	97							5			8	,	ı	ı	1	1	1	8
	52			S				ì			A	هـ	Д	1	9	1	م	>
	74	i .	•	ட				_	•		79		Z		S	>	>	>
	23			—				A			19	_	_	_		_		-
	77	l		ں							09	9	≥		<	>		8
	17	1		—							6t	9	9	A	S	9	9	9
	50		>	_	•						84	≥	≥		>	_	≥	_
	6l	\leq	×	—	\propto	S	\checkmark	S			Δ τ		≥	≥	≥	≥	≥	\leq
	81	>					_				97	ш	س	ш	u	ш	ىد	ш
X 1	21	S	S	—	σ.	—	S	—		x 2	St			_	_	_	_	_
\o	91	S	A	O	9	ய	ш	O		00	77	9	9	\forall	9	9	9	9
framework	SI	9	9	 	G	S	9	S		mework	43	0	O	\checkmark	\checkmark	\checkmark	\checkmark	.~
an	τl	مـ	م	م	م	۵.	۵	م		fran	77	9	9	9	9	G	9	9
J-J	13	$ \mathbf{x} $	\checkmark	\checkmark	O	\checkmark	\checkmark	\checkmark		-	lt	م	ط	۵.	۵	ط	ط	ط
	71	\vee	\checkmark	>	>	>	\checkmark	>.			07	X	\forall	م	V	۵	Σ	S
	ll	>	>			_	>	_			38	O	O	O	0	Q	O	Q
	OL	ш	ш	A	9	9	ப	9			38	2	\propto	8	\propto	\propto	\propto	R.
	6	<	Ø	م	9	م	A	٩			37	>	>	_	>	-	>	
	8	9	9	9	9	9	9	9			36	≥	≥	\geq	≥	≥	≥	3
	1	S	S	S	S	S	S	S			35	\scrip*	工	G	S	_	9	_
	9	O	0	ш	ш	ш	O	O			34	1	Σ	>		3	_	3
	9	>	>	\checkmark	>	0	>	0		CDRI	33	i	>	9	A	>	\leq	A
	7	-								12	32	>	>	>	>-	>-	>-	\triangleleft
	3	Q	O	O	0	O	O	O			8	'	1	9	ı	1	ł	S
ļ	7	>	>	>	>	>	>	>			A	'	1	S	1	1	1	Z
	l	0	0	0	ш	0	ш	<u> </u>]		31 [S		. ഗ	S		2
		14		7	က	4	2	9				1A		7	3	4	5	9
	-	H/	VH1	X	VH3	VH4	H	Z Z			ET (F	H S	X X	H H	VH3	H>	X	YH
			-				SU	IBSTI	TUT	E SH: 6 / 20	ET (F.)4	ULE	26)					

sednences
consensus
y chain
V heav
gure 2C:
Fig

figure 2c.: Vireavy Chain Conscisus sequences framework 3	88 88 C 88 C 88 C 88 C 88 C 88 C 88 C	NYAQKFOGRVTITADESTSTAYMELSSLRS	NY A Q K F Q G R V T M T R D T S I S T A Y M E L S S L R S	Y Y S T S L K T R L T I S K D T S K N O V V L T M T N M D P	ADSVKGRFTISRDNSKN	YNPSLKSRVTISVDTSKNQFSLKLSSVTA	FOGOVTISADKSISTAYLOWSSLKA	Y A V S V K S R I T I N P D T S K N Q F S L Q L N S V T P		framework 3 CDRIII framework 4	88 88 89 90 100 100 100 100 100 100 100 100 100	D T A V Y Y C A R W G G D G F Y A M D Y W G Q G T L V T V S	DIAVYYCARWGGDGFYAMDYWGOGTLV	TYYCARWGGDGFYAMDYWGQGTLVTVS	A R W G G D G F Y A M D Y W G Q G T L V T V S) T A V Y Y C A R W G G D G F Y A M D Y W G Q G T L V T V S	A R W G G D G F Y A M D Y W G Q G T L V T V S	
רוטער בר. ע ווכם	69	 >	> Z	<u>≻</u>	> >	. V ∨ ×	H5	0 9H	דודט	TES	78	TWHIA D T	Ĭ,	VH2 D T	VH3 D T	4 D	VH5 D T	

~ ~ ~ ~

GCGTGGGTGA CGCACCCACT G > ഗ GACTCGCGCT CTGAGCGCGA Ø ഗ Н CCCGTCTAGC GGGCAGATCG ഗ ഗ Д BanI ACTGGGTCTC TGACCCAGAG ഗ Figure 3A: V kappa 1 (Vk1) gene sequence O Σ CTATAGGTCT GATATCCAGA Ø ECORV ~~~~~

AGCTATCTGG TCGATAGACC \succ ഗ GGGCATTAGC CCCGTAATCG S Н G ATTACCTGCA. GAGCGAGCCA CTCGCTCGGT Ø ഗ Ø ĸ TAATGGACGT PstI C Н H AGCACACTGG TCGTGTGACC \vdash > K

Ø AseI Н Ц \searrow Д ø × U SexAI Д 又 Ø Ö KpnI 3 K

AATTTATGCA TTAAATACGT CGAAACTATT GCTTTGATAA GGTAAAGCAC CCATTTCGTG GCAGAAACCA CGTCTTTGGT CGTGGTACCA GCACCATGGT

BamHI G ഗ . U S Γı K ഗ വ SanDI \gt G ഗ Ø 口 ഗ S K

GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCTGGATC

~~~~~~~

CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG Figure 3A: V kappa 1 (Vĸ1) gene sequence (continued)

屲 BbsI ~~~~~~ Eco57I 団 Д Ø Н S S Н  $\vdash$ · Н H Е BamHI G

CTTCTGAAAC GAAGACTTTG GGACGTTGGA CCTGCAACCT CCATTAGCAG GGTAATCGTC TTTACCCTGA AAATGGGACT CGGCACTGAT GCCGTGACTA

~ ~ ~ ~ ~ ~

MscI G H  $\vdash$ Д Д  $\vdash$ Н  $\succ$ 工 Ø Ø  $\mathcal{O}$  $\succ$  $\succ$  $\vdash$ 

Ø

GAAACCGGTC CTTTGGCCAG CCCCCCCGAC GGGCGGCTG CATTATACCA GTAATATGGT TTGCCAGCAG AACGGTCGTC GCTGGATAAT CGACCTATTA

G T K V E I K R T Bsiwi GGTACGAAAG TTGAAATTAA ACGTACG CCATGCTTTC AACTTTAATT TGCATGC

~ ~ ~ ~ ~

SUBSTITUTE SHEET (RULE 26)

K

Figure 3B: V kappa 2 (Vk2) gene sequence

| 田            | A L                                                                                         |             | 0<br>0<br>0                   | Q               | AG                             | দৈ          | TT                                                       |
|--------------|---------------------------------------------------------------------------------------------|-------------|-------------------------------|-----------------|--------------------------------|-------------|----------------------------------------------------------|
| Ŋ            | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | Z           | CAA                           |                 | 505<br>000                     | ద           | CGT                                                      |
| D<br>G       | CTCCGGGCGA<br>GAGGCCCGCT                                                                    | Ŋ           | CATAGCAACG<br>GTATCGTTGC      | വ               | AAGCCCGCAG<br>TTCGGGCGTC       | Д           | ~<br>CGGATCGTTT<br>GCCTAGCAAA                            |
| Ħ            | CTC                                                                                         | H           | CA                            |                 |                                | Д           | }                                                        |
|              | TGA<br>ACT                                                                                  | H           | CTG<br>GAC                    | O :             | TCA<br>AGT                     | V<br>SanDI  | CCCAGG G                                                 |
| Д            | CAG                                                                                         | S L L       | CTG<br>GAC                    | P G<br>SexAI    | ACCAGG<br>TGGTCC               | G V<br>SanI | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |
| L P V        | CTGCCAGTGA<br>GACGGTCACT                                                                    | ß           | AAGCCTGCTG<br>TTCGGACGAC      | വ ഗ             | AACCAGGTCA<br>TTGGTCCAGT       | W           | AGTGGGGGTCC<br>TCACCCCAGG                                |
|              |                                                                                             | Q           |                               | ᅜ               |                                |             | •                                                        |
| Ø            | GAG                                                                                         | W           | 550<br>208                    | Q               | CAA                            | R A         | CAACCGTGCC<br>GTTGGCACGG                                 |
| ᆸ            | ACT<br>IGA                                                                                  | ω<br>ω      | GCA<br>CGT                    | 니               | ~<br>CTT<br>GAA                | <b>K</b>    | ၁၅၅                                                      |
| TI<br>TI     | CCCACTGAGC                                                                                  |             | ~<br>GAAGCAGCCA<br>CTTCGTCGGT | Y L Q K<br>KpnI | SG TACCTTCAAA<br>CC ATGGAAGTTT | Z           | CAA                                                      |
| S<br>Banli   | }                                                                                           | C R<br>PstI | }                             | W<br>Kp         | ł                              | Ø           | AG                                                       |
| Ö<br>E       | CAG                                                                                         |             | CTG                           | L D W           | ATT:                           | Q           | 3990                                                     |
| E            | TGACCCAGAG                                                                                  | <b>.</b>    | ATTAGCTGCA<br>TAATCGACGT      | ᆸ               | TCTGGATTGG<br>AGACCTAACC       | Ħ           | ATCTGGGCAG<br>TAGACCCGTC                                 |
| Σ            |                                                                                             | H<br>       |                               |                 |                                | <b>&gt;</b> |                                                          |
| M            | TGA<br>ACT                                                                                  | ഗ           | AGC                           | X               | CTA                            | н           | TTT<br>AAA                                               |
|              | ~~<br>TCG<br>AGC                                                                            | A           | 0<br>0<br>0<br>0              | Z               | TAA                            | L<br>AseI   | ~~~~~~<br>ATTAAT<br>TAATTA                               |
| D I<br>EcoRV | CATATCGTGA<br>CTATAGCACT                                                                    | Д           | GCCTGCGAGC<br>CGGACGCTCG      | <b>&gt;</b> 1   | GCTATAACTA<br>CGATATTGAT       | I<br>A      | CTATTAATTT<br>GATAATTAAA                                 |
|              | ≀ છે Ū                                                                                      |             | <u>ი</u> ი                    | Ŋ               |                                |             | 0 0                                                      |

ATTAAACGTA TAATTTGCAT

GAAAGTTGAA CTTTCAACTT

GCCAGGGTAC

CCGACCTTTG GGCTGGAAAC

|                                                      |                     | ڻ <b>ن</b>                                     | _             |      | ပ္ ပ                                           |                  |
|------------------------------------------------------|---------------------|------------------------------------------------|---------------|------|------------------------------------------------|------------------|
|                                                      | >                   | STG                                            | T T           |      | 000<br>100<br>100                              |                  |
|                                                      | <b>~</b>            | GTC                                            | H             |      | AC(                                            |                  |
|                                                      | S<br>R<br>V         | AGCCGTGTGG<br>TCGGCACACC                       | E             |      | AGCAGCATTA TACCACCCCG<br>TCGTCGTAAT ATGGTGGGGC |                  |
|                                                      | 01                  |                                                |               |      | E K                                            | T.               |
|                                                      | н                   | CCTGAAAATT<br>GGACTTTTAA                       | ≯             |      | TTA<br>AAT                                     | I K R T<br>BsiWI |
|                                                      | L K I               | AAA                                            | H             |      | 3CA<br>CGT                                     | V                |
| ٠                                                    | ь                   | TG?<br>ACI                                     | Q             |      | CAC                                            | М                |
|                                                      |                     | C C C C C C C C C C C C C C C C C C C          |               |      | AG                                             | ·H               |
|                                                      | H                   | CCGATTTTAC CCTGAAAATT<br>GGCTAAAATG GGACTTTTAA | лем тупа      |      | ည်                                             | 缸.               |
|                                                      | D F T               | CCGATTTTAC<br>GGCTAAAATG                       | O             |      | TATTATTGCC<br>ATAATAACGG                       | K V E            |
|                                                      | Ω                   | AT.                                            | $\Rightarrow$ |      | TTA                                            | ~                |
| _                                                    |                     | 000                                            | <b>&gt;</b>   |      | TA!<br>ATI                                     | H                |
| tinued                                               | H                   |                                                | >             |      | JG<br>AC                                       | E                |
| e (con                                               | Ö                   | 000<br>1000<br>1000                            | r. D.         |      | , CG                                           | Q                |
| dneuc                                                | G S G T<br>BamHI    | rcc<br>AGG                                     | $\Theta$      | •    | 000                                            | E<br>O           |
| ene se                                               | <sub></sub> ദ<br>മമ | GGATCCGGCA<br>CCTAGGCCGT                       | >             |      | CGTGGGCGTG                                     |                  |
| /K2) g                                               |                     |                                                | Ω             | н    | }                                              | G<br>MscI        |
| pa 2 (\                                              | W                   | TC                                             | A E<br>Eco57I | BbsI | SAAGA                                          | Įτι              |
| V kap                                                | Q                   | 000                                            | CO            | }    | TG                                             | E                |
| Figure 38: V kappa 2 (Vk2) gene sequence (continued) | Ŋ                   | TAGCGGCTCT<br>ATCGCCGAGA                       | 女田            | (    | AAGCTGAAGA<br>TTCGACTTCT                       | Д                |
| Figu                                                 |                     | T.                                             | 闰             |      | A H                                            |                  |
|                                                      |                     |                                                |               |      |                                                |                  |

| 딦                                                          | GA<br>CT                                       |                  | TC<br>AG                 | $\times$                                  | AT,                      | G            | GCGCGTTTTA GCGGCTCTGG |
|------------------------------------------------------------|------------------------------------------------|------------------|--------------------------|-------------------------------------------|--------------------------|--------------|-----------------------|
| Q                                                          | CTCCGGGCGA<br>GAGGCCCGCT                       | X                | AGCAGCTATC<br>TCGTCGATAG |                                           | АТТААТТТАТ<br>ТААТТАААТА | S G<br>BamHI | ICI                   |
| Д                                                          | 7.GG                                           | S                | 4GC                      | H ~~                                      | AAI<br>IT                | 9<br>B       | GC                    |
|                                                            | TC(<br>AG(                                     | S                | GC2<br>CG1               | L I<br>AseI                               | TT.<br>AA'               |              | SCG                   |
| တ                                                          |                                                |                  |                          |                                           |                          | ഗ            | . 4                   |
| H                                                          | rgT<br>ACA                                     | S                | AGO<br>ICG               | L                                         | rc1<br>AG2               | [II          | ${ m TT}$             |
|                                                            | CTGAGCCTGT<br>GACTCGGACA                       | $\triangleright$ | GAGCGTGAGC<br>CTCGCACTCG | P<br>R                                    | CACCGCGTCT<br>GTGGCGCAGA | 자<br>편       | TT                    |
| ഗ                                                          | AG<br>TC                                       |                  | 5000                     | വ                                         | )<br>(CG                 | <u>α</u>     | 306                   |
| ы                                                          | CTG                                            | S                | 3AG<br>CTC               |                                           | CAC                      | A            | CC                    |
|                                                            |                                                | Ø                |                          | Q<br>A                                    |                          |              |                       |
| H                                                          | AC                                             |                  | ည္သင္သင္သ                | Ø                                         | STT                      | P            | 200                   |
| A                                                          | CCCGGCGACC                                     | S                | GAC                      | ტ н ₹                                     | CCAGGTCAAG<br>GGTCCAGTTC | G V<br>SanDI | TGGGGTCCCG            |
| Д                                                          | , Ö Ö                                          | K                | 0001<br>0001             | P G<br>SexAI                              | AG<br>STC                | G<br>S       | ~~<br>995             |
| IIt                                                        | 200                                            |                  | . GA                     | P G<br>SexAI                              | 000                      |              |                       |
| S<br>BanII                                                 | TGACCCAGAG CCCGGCGACC<br>ACTGGGTCTC GGGCCGCTGG | C R<br>stI       | CTGAGCTGCA GAGCGAGCCA    | ₹ ,                                       | AA                       | [-           | GCCGTGCAAC            |
|                                                            | TGACCCAGAG<br>ACTGGGTCTC                       | C<br>PstI        | .~~<br>?TG<br>3AC        |                                           | CCAGCAGAAA<br>GGTCGTCTTT | Ø            | 3C.P.                 |
| T<br>T                                                     | 366                                            | S                | AGC                      | 0<br>0                                    | GC7<br>CG1               | $\alpha$     | GT(                   |
| gene                                                       | GA(                                            | il.              | TG                       | O' .                                      | CA                       |              | 300                   |
| (Vk3)                                                      |                                                |                  |                          | 7 H C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                          | လ            |                       |
| $\overset{ppa}{V}$                                         | TG(<br>AC(                                     | H                | AC(<br>TG(               | W Y<br>KpnI<br>~~~~~~~~                   | TGGCGTGGTA<br>ACCGCACCAT | S            | GGCGCGAGCA            |
| V kap                                                      | <br>                                           |                  | )<br>)<br>)<br>)         | A W                                       | STG                      | A            | CGP                   |
| gure 3C: V'k<br>D I<br>ECORV                               | ~~~~~<br>GATATC<br>CTATAG                      | R A              | STC                      | A                                         | 3CC                      |              | CG                    |
| Figure 3C: V kappa 3 (Vk3) gene sequence D I V L T Q ECORV | ~~~~~<br>GATATCGTGC<br>CTATAGCACG              | <u> </u>         | ACGTGCGACC<br>TGCACGCTGG | ·J                                        | TG<br>AC                 | ဂ်           | GG                    |
|                                                            |                                                |                  |                          |                                           |                          |              |                       |

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGCCGAGACC 口 Д CCGCGCTCGT CGGCACGTTG ACCCCAGGGC CGCGCAAAAT 口 Ц ഗ ഗ H  $\vdash$ 口 드 Įщ Н ഗ

~~~~~ BbsI Eco57 S BamHI

GGACTTCTGA CCTGAAGACT ACTGGTAATC GTCGGACCTT CAGCCTGGAA TGACCATTAG CTAAAATGGG GATTTTACCC ATCCGGCACG TAGGCCGTGC

Н Д Ы \vdash H \succ 工 Ø Ø Ö \succ > Ø

MscI

G

لتا

CTGGAAACCĞ GACCTTTGGC GGTGGGGCGG CCACCCGCC CAGCATTATA GTCGTAATAT TTATTGCCAG AATAACGGTC TTGCGGTGTA AACGCCACAT

Q G T K V E I K R T Msci CAGGGTACGA AAGTTGAAAT TAAACGTACG GTCCCATGCT TTCAACTTTA ATTTGCATGC

SUBSTITUTE SHEET (RULE 26)

ĬΉ

Figure 3D: V kappa 4 (Vk4) gene sequence

| 团 | GA | | |
|-----------------------------------|--------------------------------------|-----------------|---|
| Ŋ | 3
3
3
3
3
3
3
3 | W | |
| ᄓ | GCCTGGGCGA
CGGACCCGCT | S | |
| W | 5 5
2 5 | | |
| > | TGA | 니 | |
| 4 | 000
000 | > | |
| M T Q S P D S L A V S L G E BanII | CTGGCGGTGA
GACCGCCACT | SSOSVLYSS | |
| r 0 | υ <u>υ</u> | Q | |
| 0, | ATA(
PAT(| W | |
| H | ,
,
,
,
,
,
, | Ø. | |
| H
H | AG CCCGGATAGC
TC GGGCCTATCG | | 2 |
| S
BanII | , | I N C R
PstI | 4 |
| Q | CAG
GTC | C
Ps | |
| E | TGACCCAGAG
ACTGGGTCTC | Z | |
| | TG2
AC | H | |
| | GA | | |
| > | CGT | æ | |
| D I V
EcoRV | ~~~~~~
GATATCGTGA
CTATAGCACT | R A T | |
| l . | _ | | |

TATAGCAGCA ATATCGTCGT GAGCGTGCTG CTCGCACGAC GAAGCAGCCA CTTCGTCGGT TAATTGACGT ACGTGCGACC ATTAACTGCA TGCACGCTGG

Д Д Ø G SexAI Д × Ø Ø KpnI × 3 Ø Ц \succ Z 又 Z Z

AGAAACCAGG TCAGCCGCCG AGTCGGCGGC TCTTTGGTCC TGGTACCAGC ACCATGGTCG CTATCTGGCG GATAGACCGC TGTTGTTTT ACAACAAAAA

召 Д Д SanDI \triangleright ෆ Ŋ 口 α Е ഗ Þ 3 Н AseI 口 口 又

AGGGCCTAGC GAAAGCGGGG TCCCGGATCG CTTTCGCCCC ATCCACCCGT TAGGTGGGCA TTTATTGGGC AAATAACCCG AAACTATTAA TTTGATAATT

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

| S I | ATTTCGTCCC
TAAAGCAGGG | Y T T | TTATACCACC | L T
BsiWI | C GTACG
C CATGC |
|---------------------------------|--------------------------------|----------------------|--------------------------------|-------------------|--------------------------------------|
| L
I | TACCCTGACC
ATGGGACTGG | н
о
о | GCCAGCAGCA
CGGTCGTCGT | E I K R T
Bsiw | GAAATTAAAC GTACG
CTTTAATTTG CATGC |
| S G S G T D F T L T I S S BamHI | GCACTGATTT TA
CGTGACTAAA AT | DVAVYYC QQH | GTGTATTATT GC
CACATAATAA CG | T K V E | TACGAAAGTT GA
ATGCTTTCAA CT |
| F S G S G S G BamHI | ט ט | L Q A E D V A Eco57I | TGCAAGCTGA AGACGTGGCG | Ŋ | CCGCCGACCT TTGGCCAGGG |

X CGACTAAATA GCTGATTTAT AGCAACTATG TCGTTGATAC AGTGGCGCAC CAGGTCAGCG GTCCAGTCGC 召 BamHI S Ø Н U Z Ö Ц SexAI Ŋ S CGCCGAAACT GCGGCTTTGA Д CAACATTGGC GTTGTAACCG 口 TCACCGCGTG G H Ø × Н 区 G Д Z Ω BbeI S Ø GGCCCTGCC CCCGGGACGG GCAGCAGCAG CGTCGTCGTC Ŋ GCCTTCAGTG CGGAAGTCAC Д > Е Eco57I 11111 Ŋ > ഗ Ö XmaI S Ŋ Д Д Bsu36I Ö CCAGCAGTTG GGTCGTCAAC ഗ TCGTGTAGCG AGCACATCGC TGACCCAGCC ACTGGGTCGG д Ы Ŋ Д O Ŏ Figure 4A: V lanıbda 1 (VA.1) gene sequence BssSI \mathcal{O} 区 Q വ Ø KpnI ACTCGACCAT ACACTGGTAG TGAGCTGGTA TGTGACCATC × GTCTCGCACG CAGAGCGTGC Н Z 3 Г Z S S > Ω >

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

| GCGGATCCAA
CGCCTAGGTT | S E D
BbsI | AGCGAAGACG
TCGCTTCTGC | V F G
TGTGTTTGGC
ACACAAACCG | | |
|--|---------------|--------------------------------|-------------------------------------|-----------------|--------------------------|
| AGCGTCCCTC AGGCGTGCCG GATCGTTTTA
TCGCAGGGAG TCCGCACGGC CTAGCAAAAT | T G L Q | AC GGGCCTGCAA
IG CCCGGACGTT | Q H Y T T P P CAGCATTATA CCACCCGCC | | · |
| AGGCGTGCCG
TCCGCACGGC | c a i T | TTGCGATTAC
AACGCTAATG | Q H Y
CAGCATTATA
GTCGTAATAT | L G
MscI | TCTTGGC
AGAACCG |
| AGCGTCCCTC
TCGCAGGGAG | S A S | AGCGCGAGCC | Y C Q
TTATTGCCAG
AATAACGGTC | K L T V
HpaI | AGTTAACCGT
TCAATTGGCA |
| GATAACAACC | S
D | AAGCGGCACC | E A D Y
AAGCGGATTA
TTCGCCTAAT | G G T | GGCGGCACGA |

| | ഗ | AG
TC | | CT | Н | TT | S | .TC
AG |
|-----------------------------|--|------------------------------------|---------------|--------------------------|-------------|--------------------------|------------------|----------------------------|
| | Q | CAGGTCAGAG
GTCCAGTCTC | Z | GGCTATAACT
CCGATATTGA | M | ACTGATGATT
TGACTACTAA | G S
BamHI | TTAGCGGATC
AATCGCCTAG |
| | Q ; | GTC | \Rightarrow | TA | | GAC | S. | ,
,
,
,
,
, |
| | xAI
~~~ | CAG | Ŋ | 000 | ij | AC1
TG2 | | TT?
AAT |
| | S. S. S. S. S. S. S. S. S. S. S. S. S. S | AC | ტ | ე <u>ტ</u> | X | AA
I'T | 只 | TT
AA |
| | S | SAG | _ | rgg(| Δ ; | AGGCGCCGAA
TCCGCGGCTT | K
K | AGCAACCGTT
TCGTTGGCAA |
| | Q | 0000 | | TGT | A P
BbeI | 2000 | Z | AA(
TTC |
| | W | AGCGGCTCAC
TCGCCGAGTG | Д | CGATGTGGGC
GCTACACCCG | | AGGCGCCGAA
TCCGCGGCTT | W | AGC
TCG |
| | > | PG
AC | W | | × × | GA | > | TG
AC |
| | | AGCTTCAGTG
TCGAAGTCAC
Eco57I | W | GTACTAGCAG
CATGATCGTC | P G
XmaI | CATCCCGGGA
GTAGGGCCCT | | czcagcgrg
gagtccgcac |
| | S | CTTCAG
GAAGTC
ECO57I | E | CT7 | чX | 2007 | | AGC
FTC |
| | A. | AGC
TCG
E | • | GTP
CAT | Ħ | CAT
GT? | PSu36I | CTCAGG
GAGTCC |
| | Д | ပ
ပ
ပ | Ŋ | 9
CC | Q | AG | Р
Вs | 20
20 |
| Çe | Ø | CAG | . [4 | rac
atg | | AGC
ICG | 民 | CGT |
| gene sequence | E | TGACCCAGCC
ACTGGGTCGG | SH | TCGTGTACGG | O II | GTACCAGCAG | Z | GCAACCGTCC |
| gene s | | TGA | SCBSSSI | TCG | W Y
KpnI | GT2
CA1 | | GC7
CG1 |
| (VA2) | H | AC
TG | H | TC
AG | 3 | TG | W | |
| mbda 2 | K | CAGAGCGCAC
GTCTCGCGTG | E | CATTACCATC
GTAATGGTAG | W | ATGTGAGCTG
TACACTCGAC | \triangleright | TATGATGTGA
ATACTACACT |
| 3: V laı | W | AGC | | TAC | > | STG | Ω | rga' |
| Figure 4B: V lambda 2 (Vλ2) | Q | CAG | H | CA1
GT? | > | ATC
TAC | \times | TA1
AT? |
| ij | | | | | | • | | |

Figure 4B: V lambda 2 (VA2) gene sequence (continued)

| S G L Q A E
BbsI | CAAGCGGAAG
GTTCGCCTTC | P V F | GCCTGTGTTT
CGGACACAAA | | |
|---------------------|---|---------------|--------------------------------|---------------------|----------------------------|
| H | CTG | <u>С</u> , | 366G | | |
| Ŋ | 000 | F | CAC | | |
| Ω | TAGCGGCCTG
ATCGCCGGAC | туус оону ттр | ATACCACCCC
TATGGTGGGG | | |
| Н | | × | | H ₹ | υ o |
| | CA | Ħ | AT: | L G
MscI
~~~~ | 166
ACC |
| H | 3AC | \sim | 160
100 | ЪŽ, | CTJ
SA2 |
| H
H | GCCTGACCAT
CGGACTGGTA | O. | CAGCAGCATT
GTCGTCGTAA | > | CGTTCTTGGC
GCAAGAACCG |
| | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | Ø | CAC | • | 900 |
| Ŋ | A L | | ပ္ ပ္ | E-1 | ည
ပ |
| N T A S | AACACCGCGA GCCTGACCAT
TTGTGGCGCT CGGACTGGTA | O | TTATTATTGC
AATAATAACG | K L T
HpaI | CGAAGTTAAC
GCTTCAATTG |
| <u>-</u> | 000 | \succ | raj
At2 | | GT. |
| . . | CA(
GT(| ≻ | AT.
TA | × | AA |
| Z | AA
TT | | ${ m TT}$ | . | 000 |
| z b | | Д | SA
T | H | A L |
| Ŋ | 300 | A | 000
000 | C | 0
0
0
0 |
| SH | ~
CAAAAGCGGC
GTTTTCGCCG | | ~~
ACGAAGCGGA
TGCTTCGCCT | Q | GGCGGCGGCA |
| K
BamHI | AA
'TT' | D E
BbsI | GA
GCT | O | 9
9
9
9
9
9 |
| Ва | ~
CA
GT | D
Bb | AC
TG | U | 8 5 |
| | | | • | | |

Figure 4C: V lambda 3 (Vλ3) gene sequence

| T Q P P S V S V A P G Q T SexAI | CAGGTCAGAC
GTCCAGTCTG | 70 | TACGCGAGCT
ATGCGCTCGA | Ω | TTATGATGAT
AATACTACTA |
|---------------------------------|------------------------------------|--------------|---------------------------------|-----------------------------|--------------------------|
| OI . | CAGGTCAGAC
GTCCAGTCTG | DALGDKYAS | GAC | Q A P V L V I Y D D
Bbei | ATC
TAC |
| ٠
ا | GGT
CCA | Ø | 0
0
0
0
0 | 5 4 | ATG |
| XA] | CA(| \succ | TA(
AT(| γ. | TTZ |
| P G
SexAI | A
D
D
D | У. | AA
TT | Н | AT
TA |
| A | AGCGTTGCAC
TCGCAACGTG | | GGGCGATAAA
CCCGCTATTT | > | TTCTGGTGAT
AAGACCACTA |
| > | GTT | Ц | CGA | ъ | TGG |
| · W | 000
000
000 | r | 0
0
0
0
0
0
0 | | TC |
| | | H | | > | |
| > | AGT
CA
7 I | 4 | 000
000
000 | Д, Д | CCA |
| S | CTTCAG'
GAAGTC
ECO57I | 7 | TGC | A P
BbeI | 000 |
| Дı | GCCTTCAGTG
CGGAAGTCAC
Eco57I | Ω | GCGATGCGCT
CGCTACGCGA | д
С | CAGGCGCCAG |
| | | | | | |
| Щ | 0
0
0
0
0 | ດ
ດ | 30
000
000 | a H | 999 |
| Q | TGACCCAGCC
ACTGGGTCGG | | TCGTGTAGCG | K P G
XmaI | GAAACCCGGG |
| E | ACC | S C
BSSSI | GTC | ∀ | AAC
TTG |
| ٦ | AC, | S B | TC | | GA |
| . ⊢ . | AC
TG | H | TC | 0 | CA
GT |
| N
N | rga
act | γ. | STA | O ² | CAG |
| , > 1 | TAT
ATA | A
R |)
923 | Y
KpnI | ACC |
| , co | AGCTATGAAC
TCGATACTTG | Æ | CGCGCGTATC | W Y Q Q
KpnI | GGTACCAGCA |
| | | | | - | |

Figure 4C: V lambda 3 (VA3) gene sequence (continued)

| Ŋ | 0
C
C | | 0
0
0 | 0
0
0
0
0
0 |
|----------------------------|--|-----------------------|--|---|
| BSu36I PERFSGSNSG
BamHI | TTTAGCGGAT CCAACAGCGG
AAATCGCCTA GGTTGTCGCC | TLTISGTQAEDEA
Bbsi | TCAGGCGGAA GACGAAGCGG
AGTCCGCCTT CTGCTTCGCC | Y T T P P V F G G G TATACCACCC CGCCTGTGTT TGGCGGCGGCGATATGGTGGG GCGGACACAA ACCGCCGCGG |
| Z | AAC | 臼 | ~
GGA
GCT | 9
9
9
9 |
| . H | ~~
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | O IS | GA
CT | TG |
| Sam | GGAT CC | E
Bbs | GAA GAC | F
STT
SAA |
| ОЩ | 0000 | A (| | V
GTC |
| Ŋ | rag
atc | Q | TCAGGCGGAA
AGTCCGCCTT | P
CCT
GGA |
| Щ | TT.
AA | | TCA | Р
СС |
| r
K | 900
300 | H | CAC | Y T T P P V F TATACCACCC CGCCTGTGTT ATATGGTGGG GCGGACACAA |
| 臼 | CCCGGAACGC | Ŋ | TTAGCGGCAC | CAC |
| <u>.</u> | 000
000 | ω | AGC | TTAC |
| | 000 | H | | |
| H | CAT | FH | CCA
GGT | H
CAT
GTA |
| GIS | ,~~
\GG(| . 7 | rga
act | Q
CAG
GTC |
| .s
36,113 | cctcaggcat
ggagtccgta | <u> </u> | ACCCTGACCA
TGGGACTGGT | Q Q H
CCAGCAGCAT
GGTCGTCGTA |
| P
Bs | | | | |
| R P | TCTGACCGTC
AGACTGGCAG | A | CAACACCGCG
GTTGTGGCGC | D Y Y C
ATTATTATTG
TAATAATAAC |
| D
R | ACC
TGG | N T A | ACC
TGG | Y Y
TTATTAT:
AATAATA |
| ഗ | CTG | Z | AAC
TTG | Y
TTA
AAT |
| 01 | T(
A(| , | U U | DAF |
| | | | | |

T K L T V L G
HpaI
ACGAAGTTAA CCGTTCTTGG C
TGCTTCAATT GGCAAGAACC G

G

 \mathcal{O}

 Σ

3

口

XhoI

S S Ö Д X 又 \gt 回 D Ö S Figure 5A: V heavy chain 1A (VH1A) gene sequence Ø Q L MfeI > Ø

GTGAAAAAC CACTTTTTG

> TGGCGCGGAA ACCGCCCCTT

> > ACCAAGTCAG

GTCCACGTTA

CAGGTGCAAT

TGGTTCAGTC

CGGCCAGCAG

GCCGTCGTC

لترا

Ŋ

S

Ø

G

G

ഗ

Þ

X

C

S

 \gt

又

>

BSPEI

۲

CACTTTTAGC GTGAAAATCG CCTCCGGAGG GGAGGCCTCC

AGCTGCAAAG TCGACGTTTC

CGTGAAAGTG GCACTTTCAC

TCGATACGCT

AGCTATGCGA

Ç

Ø

Ö

Д

A

Ø

X

>

3

S

Н

BstXI

GTCTCGAGTG CAGAGCTCAC CCTGGGCAGG GCGCCAAGCC

GGACCCGTCC CGCGGTTCGG

CTACCCGCCG

GATGGGCGGC

TTCAGGGCCG

GCGCAGAAGT

Ċ

Q

ĹΤι

×

9 . A

CGCGTCTTCA AAGTCCCGGC

Н

团

Σ

 \succ

Ø

E

A N Y H U ᅜ

GGCGAACTAC TTTTTGGCAC

CCGCTTGATG AAAAACCGTG

TAATAAGGCT

ATTATTCCGA

Д

Д Ø

Е

回

H S

S

BSTEII

HE

SUBSTITUTE SHEET (RULE 26)

TTAGCTGGGT AATCGACCCA

22 / 204

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

| T ATGGAACTGA
A TACCTTGACT | A R W G | ATTATTGCGC GCGTTGGGGC
TAATAACGCG CGCAACCCCG | T L V T | A CCCTGGTGAC | | |
|------------------------------|-----------------|--|---------------|--------------------------|--------------|--------------------------|
| CACCGCGTAT
GTGGCGCATA | Y C
Bss | | G Q G
StyI | GGCCAAGGCA
CCGGTTCCGT | | |
| AAAGCACCAG
TTTCGTGGTC | T A V Y
EagI | ACGGCCGTGT
TGCCGGCACA | M Y Q | GGATTATTGG
CCTAATAACC | | . • |
| ACCGCGGATG
TGGCGCCTAC | O
H
S | TAGCGAAGAT | F Y A M | TTTATGCGAT
AAATACGCTA | | დ |
| GGTGACCATT | S S L R | GCAGCCTGCG
CGTCGGACGC | G D G | GGCGATGGCT
CCGCTACCGA | V S S V BlpI | GGTTAGCTCA
CCAATCGAGT |

Figure 5B: V heavy chain 18 (VH1B) gene sequence

| ω | BAG | N. | AGCTATTATA
TCGATAATAT | Ø | GATGGGCTGG
CTACCCGACC | A Q K F Q G R
GCGCAGAAGT TTCAGGGCCG
CGCGTCTTCA AAGTCCCGGC |
|-------------|--|--------------|--------------------------|------------------------|--------------------------|---|
| Ø | | X
X | TT?
AAJ | ליז | GC1
CG2 | 990 |
| S
A | CGGGCGCGAG | × | TA | M | 166
100 | O C A C A C A C A C A C A C A C A C A C |
| | 000 | လ | AGC | 24 | GA7
CT7 | TT(
AA(|
| Д | | r. | , | 3 | FG
AC | F
TE |
| X | AAA
TTT | H | TAC | | ~~
AG1
TC2 | K
AA(
TT(|
| V K K P | GTGAAAAAAC
CACTTTTTTG | T F T | TACCTTTACC
ATGGAAATGG | L E
XhoI | GTCTCGAGTG
CAGAGCTCAC | A Q K EGCGCAGAAGT |
| > | TGA | H | ACC | н ^ | TC1
AG1 | A
CGC |
| • | • | ٨. | | | | |
| ഠ | CGGCGCGGAA
GCCGCGCCTT | ≯
H 1 | CCTCCGGATA | R Q A P G Q G
BstXI | ccreeccaee
geacceercc | T N Y
CACGAACTAC
GTGCTTGATG |
| G
A
E | ,
300
300
300
300
300
300
300
300
300
30 | S G
BSPEI | 000 | r h | 3GC
2CG | N
AAC
ITG |
| ტ | 000 | | TCC | | TGC | T
CGZ |
| | 0
0
0 | 4 | S
S
S
S | ж
Н | 000 | CA |
| ß | AG | S C K A | AG | A
BstXI | GCC CCTGG
CGG GGACO | 0
0
0
0
0
0
0
0 |
| S Õ A | CAG | × | CAA | д
С | CAAG | 990 |
| > | TT(
AA(| Ö | TG | <u>.</u> | 2005
3005
3005 | 8
100
100 |
| | TGGTTCAGAG
ACCAAGTCTC | ß | AGCTGCAAAG
TCGACGTTTC | 124 | CCGCCAAGCC | ATAGCGGCGG |
| Q L
MfeI | 1 | | | > | | Z |
| Q Z
A A | CAA | > | AG1
TC? | ß | 999 | F C C P |
| > | CAGGTGCAAT
GTCCACGTTA | × | CGTGAAAGTG
GCACTTTCAC | н | TGCACTGGGT
ACGTGACCCA | I N P
ATTAACCCGA
TAATTGGGCT |
| Q | AGG | > | GTC | | , GC2 | I
TT, |
| | บี บั | | O O | Σ | HK | A H |
| | | | | | | |

ACTGA

Н

O

3

| | 回 | | | SP
P | Ē | | |
|--|-------------------------------|--------|------|------------|------------|-----------------------------|------|
| | Σ | | | ATGGA | TACCT | ĸ | H |
| | × | ٠ | | | | Ø | SSHI |
| | Ø | | | 3CG. | GGC | Ŋ | ğ |
| | V T M T R D T S I S T A Y M E | | | CACCGCGTAT | GTGGCGCATA | S S L R S E D T A V Y Y C A | |
| | 70 | | | ניז | כי | × | |
| | Н | | | CCAGCATTAG | GGTCGTAATC | > | |
| | | | | CA | GT. | A | EagI |
| nued) | ഗ | | | CAG | GTC | E | 回 |
| conti | H | | | | | | |
| ence (| Δ | | | ATA | TAT | Ω | |
| sedn | | | | TG | AC | 臼 | |
| gene | K | | | CG | CC | | |
| Figure 5B: V heavy chain 1B (VH1B) gene sequence (continued) | Ħ | | | ACCCGTGATA | TGGGCACTAT | ഗ | ! |
| in 18 | 5 | | | | | 2 | l |
| vy cha | <u>د ۱</u> | | Į. | GGTGACCATG | CCACTGGTAC | μ | |
| √ hea | Н | BStEII | 1 | 3AC | TC | rc | |
| 5B: \ | >. | t E | 1111 | JT(| CA(| 0. | |
| igure- | | B | ì | g | ŏ | V. |) |
| - | | | | | | | |

GCGTTGGGGC CGCAACCCCG TAATAACGCG ATTATTGCGC ACGGCCGTGT TGCCGGCACA TAGCGAAGAT ATCGCTTCTA CGTCGGACGC GCAGCCTGCG

> Н H U StyI Q G Σ. >Σ Ø \succ ſτι G \Box

Н

GGGACCACTG CCCTGGTGAC CCGGTTCCGT GGCCAAGGCA GGATTATTGG CCTAATAACC TTTATGCGAT AAATACGCTA GGCGATGGCT CCGCTACCGA

V S S V BlpI

GGTTAGCTCA G CCAATCGAGT C

SUBSTITUTE SHEET (RULE 26)

G

Ц

3

团

 \vdash O H Д × > 口 K Д G വ Figure 5C: V heavy chain 2 (VH2) gene sequence O MfeI

CGACCCAAAC GCTGGGTTTG GACCACTTTG CTGGTGAAAC 2295222552 9900999009 TGAAAGAAAG ACTTTCTTTC CAGGTGCAAT GTCCACGTTA

C ഗ Н ഗ Н ഗ ĮΞι BSPEI U ഗ ĮΉ Ö ₽, Н \vdash Ц

ACGTCTGGCG TGCAGACCGC ATCGGACAGG TAGCCTGTCC AAAGGCCTAA TTTCCGGATT TGGACATGGA ACCTGTACCT CCTGACCCTG GGACTGGGAC

W I R Q P P G K A L BstxI XhoI CGAGTGGCTG CCTTTCGGGA GCTCACCGAC CIGGATICGC CAGCCGCCIG GGAAAGCCCT GTCGGCGGAC GACCTAAGCG TTGGCGTGGG AACCGCACCC

Н ഗ \vdash ഗ \succ \succ X Ω 3 Н Ø

MluI

×

GCCTGAAAAC CGGACTTTTG TATAGCACCA ATATCGTGGT TGATAAGTAT ACTATTCATA ATTGGGATGA TAACCCTACT GCTCTGATTG CGAGACTAAC

G

>

C

>

| | K N Q V L T
J | AA AAATCAGGTG GTGCTGACTA | T Y Y C A R W
BSSHII | CA CCTATTATTG CGCGCGTTGG
GT GGATAATAAC GCGCGCAACC | Y W G Q G T L V
Styl | TGGGG | | |
|--|------------------|------------------------------|-------------------------|--|-------------------------|--------------------------|-------------|-----|
| inued) | NspV | ATACTTCGAA
TATGAAGCTT | D T A | GATACGGCCA
CTATGCCGGT | M D Y | GATGGATTAT
CTACCTAATA | | |
| Figure 5C: V heavy chain 2 (VH2) gene sequence (continued) | I S K D | ATTAGCAAAG A
TAATCGTTTC I | D G . | GGACCCGGTG C | F Y A | GCTTTTATGC C | SSBlpI | (A |
| Figure 5C: V heavy chain 2 | R L T
MluI | GCGTCTGACC A | M T M | TGACCAACAT (ACTGGTTGTA) | 9 Q 9 9 | GGCGGCGATG | T V S
B1 | |

Figure 5D: V heavy chain 3 (VH3) gene sequence

| S | AG | |
|--------------|---|---------------------|
| Ŋ | CGGGCGGCAG | S Y A |
| U | 3
3
3
3
3
3
3
3
3 | × |
| • | 000 | |
| щ |)
[G | 77 |
| Q | CA2 | 0, |
| > | TGGTGCAAC | Щ |
| 니 | CTGGTGCAAC
GACCACGTTG | EH · |
| Ŋ | $\frac{0}{2}$ | ഥ |
| _C | 999 | Ŋ |
| VESGGLVQPGGS | ໑ວວອວວອວວອ | S C A A S G F T F S |
| S | ပ ဖ | Ø |
| មា | AAA
TTT | Ø |
| 5 | rgg. | บ |
| | TGGTGGAAAG
ACCACCTTTC | ග |
| e L | ı | . า |
| Q
Mf | GCAAT | IJ |
| > | \vdash \prec | ĸ |
| Ħ | GAAG | H |
| | | |

TCGATACGCT AGCTATGCGA TACCTTTAGC ATGGAAATCG GGAGGCCTAA CCTCCGGATT TCGACGCGCC AGCTGCGCGG GGACGCAGAC CCTGCGTCTG

BSPEI

3 L E XhoI S X C щ BstXI Ø Ö K \gt 3 S Σ

Ø

S

GGTGAGCGCG CCACTCGCGC CAGAGCTCAC GTCTCGAGTG GGACCCTTCC CCTGGGAAGG CGCGGTTCGG GCGCCAAGCC ACTCGACCCA TGAGCTGGGT

TGAAAGGCCG ACTTTCCGGC ტ CGCCTATCGC GCGGATAGCG ഗ Ω CACCTATTAT GTGGATAATA GCGCCGCCAG CGCCGCCGTC ഗ
 O
 <u>ෆ</u> S ATTAGCGGTA TAATCGCCAT G ഗ

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

| M | TGA | U | 500;
2860 | H | GAC | | |
|-------------|--------------------------|---------------|--------------------------|-------------|--------------------------|-------------|------------|
| O1 | CTGCAAATGA
GACGTTTACT | Z | GCGTTGGGGC | N I | CCCTGGTGAC
GGGACCACTG | | |
| H | CTG | H | 2002
2007 | | CCC1 | | |
| × | | C A
BSSHII | | H | | | |
| H | CTG1
GAC7 | C W | TTGC | O G
StyI | AAGG | | |
| H | CACCCTGTAT
GTGGGACATA | > 1 | ATTATTGCGC
TAATAACGCG | က
လ ႏ | GGCCAAGGCA
CCGGTTCCGT | | |
| Z | AAA
FTT | ⊼ | rgt
ACA | M | rgg
ACC | | |
| S K
NspV | GAAZ | A H | CCG: | ≯ | TAT | | |
| | ATTCGAAAAA
TAAGCTTTTT | T A
EagI | ACGGCCGTGT
TGCCGGCACA | Ω | GGATTATTGG
CCTAATAACC | | |
| Z | TA | Ω | SAT | Σ | | | |
| R D | GTGZ | 臼 | GAAC | A | rgcg | | |
| S R
PmlI | TCACGTGATA
AGTGCACTAT | æ | TGCGGAAGAT
ACGCCTTCTA | × | тттатсссат
АААТАСССТА | | υ U |
| H | - , | ĸ | _ • | Ţ | | SSBlpI | |
| EH | CCA | H | CTG | r
O | TGG | S S
BlpI | GCT |
| ſτι | TTTTACCATT
AAAATGGTAA | W | ACAGCCTGCG
TGTCGGACGC | ρ
U | GGCGATGGCT
CCGCTACCGA | > | GGTTAGCTCA |
| | T. | Z | A T | Ü | ŏŏ | | ŏŏ |
| | | | 1 | | | | |

Figure 5E: V heavy chain 4 (VH4) gene sequence

O

口 ഗ Д × > Н C Д G ഗ 团 Q MfeI П >

GCTCGCTTTG CGAGCGAAAC GACCACTTTG CTGGTGAAAC TGGTCCGGGC ACCAGGCCCG GICCACGITA ACGIICITIC TGCAAGAAAG CAGGTGCAAT

വ S Н വ U BSPEI O വ > H \mathbf{C} EH 口 S Н

AGCTATTATT TCGATAATAA CAGCATTAGC GTCGTAATCG TTTCCGGAGG AAAGGCCTCC TGGACGTGGC ACCTGCACCG GGACTCGGAC CCTGAGCCTG

H 3 L E XhoI C X C Д BstXI д O K Н 3 വ

C

GATTGGCTAT CTAACCGATA CAGAGCTCAC GTCTCGAGTG GGACCCTTCC CCTGGGAAGG AGCGGTCGGC TCGCCAGCCG CCTCGACCTA GGAGCTGGAT

BStEII 只 ഗ × Н ഗ Д Z \bowtie Z \vdash വ C ഗ \succ

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA CGCCGTCGTG GCGGCAGCAC ATTTATTATA TAAATAATAT

SUBSTITUTE SHEET (RULE 26)

3

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

| K
L
S | AAACTGAGCA
TTTGACTCGT | S
S | TTGGGGCGGC
AACCCCGCCG | A T V | TGGTGACGGT
ACCACTGCCA |
|---------------------------------|--------------------------|--------------------|--|----------------------------------|--------------------------|
| V D T S K N Q F S L K L S N SpV | GTTTAGCCTG
CAAATCGGAC | Y C A R
BSSHII | ATTGCGCGCG
TAACGCGCGC | Y A M D Y W G Q G T L V T V Styl | CAAGGCACCC
GTTCCGTGGG |
| Q N X S VQSN | CGAAAAACCA
GCTTTTTGGT | A D T A V Y Y EagI | GCCGTGTATT
CGGCACATAA | Y W G | TTATTGGGGC
AATAACCCCG |
| S L Q A | GTTGATACTT
CAACTATGAA | A D T Ea | GGCGGATACG GCCGTGTATT
CCGCCTATGC CGGCACATAA | O M A | ATGCGATGGA
TACGCTACCT |
| T I S
BStEII | GACCATTAGC
CTGGTAATCG | S V T A | GCGTGACGGC
CGCACTGCCG | D G F | GATGGCTTTT
CTACCGAAAA |

SUBSTITUTE SHEET (RULE 26)

S S BlpI ~~~~~ TAGCTCAG ATCGAGTC

Ø

ഗ

Ø

ᄺ

ഗ

μ

ഗ 团 C Д 又 区 > ഥ Ø G Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ 니 MfeI Ø

CGGGCGAAAG GCCGCTTTC CACTTTTTG. GTGAAAAAAC CGGCGCGGAA GCCGCCCCTT GAAGTGCAAT TGGTTCAGAG ACCAAGTCTC CTTCACGTTA

3 ഗ ⊣ لتا S ~~~~~~ BSPEI G ഗ G × \mathcal{O} ഗ . \vdash 又 П

TCGATAACCT AGCTATTGGA TTCCTTTACG AAGGAAATGC GTTCCGGATA CAAGGCCTAT TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

Σ 3 XhoI ᄓ Ы G X C ~~~~~~~~~~~ Д BstXI Σ O K > 3 G H

G

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG GGACCCTTCC CCTGGGAAGG GCGCCAGATG AACCGACCCA CGCGGTCTAC TTGGCTGGGT

TCTCCGAGCT TTCAGGGCCA AAGTCCCGGT AGAGGCTCGA ഗ TACCCGTTAT ATGGGCAATA K H ATTTATCCGG GCGATAGCGA TAAATAGGCC CGCTATCGCT ഗ Ω G Д

3 Ø Н \succ K Е ഗ ഗ Figure 5F: V heavy chain 5 (VH5) gene sequence (continued) × Ω Ø ഗ Н V T BstEII CTTCAATGGA GAAGTTACCT GTGGCGCATA AAAGCATTAG CACCGCGTAT TTTCGTAATC AGCGCGGATA TCGCGCCTAT CCACTGGTAA GGTGACCATT

~ ~ ~ ~ ~ ~

S Z ĸ BSSHII Ø Ö \succ Σ Ø <u>E-</u> Ω ഗ K \simeq 口 ഗ ഗ

CGCAACCCCG ACGGCCATGT ATTATTGCGC GCGTTGGGGC TAATAACGCG TGCCGGTACA GCAGCCTGAA AGCGAGCGAT TCGCTCGCTA CGTCGGACTT

~~~~~~

⊱ C Q ( StyI G  $\geq$  $\succ$ Ω Σ K Ŀ G G

E

 $\gt$ 

Н

GGGACCACTG CCCTGGTGAC GGCCAAGGCA CCGGTTCCGT CCTAATAACC GGATTATTGG AAATACGCTA GGCGATGGCT TTTATGCGAT CCGCTACCGA

~~~~~

V S S V BlpI

GGTTAGCTCA G CCAATCGAGT C

Figure 5G: V heavy chain 6 (VH6) gene sequence

H O S Д X > Н G Ы G S Ø Ø Q L MfeI >Ø

GCTCGGTTTG CGAGCCAAAC GACCACTTTG CTGGTGAAAC ACCAGGCCCG TGGTCCGGGC ACGTTGTCAG TGCAACAGTC GTCCACGTTA CAGGTGCAAT

S \mathbf{z} ഗ ഗ >S BSPEI G ഗ \mathbf{H} Ø O, . E Ц ഗ 口

AGCAACAGCG TCGTTGTCGC TAGCGTGAGC ATCGCACTCG TTTCCGGAGA AAAGGCCTCT ACCTGTGCGA TGGACACGCT CCTGAGCCTG GGACTCGGAC

Н 3 口 XhoI \mathcal{O} α ~~~~~~~~~~~~~ G <u>ص</u> BstXI ഗ Ø K Н 3 Z 3 K Ø

CGAGTGGCTG CCGCACCGGA GCTCACCGAC GGCGTGGCCT GTCAGAGGAC CAGTCTCCTG GACCTAAGCG CTGGATTCGC CGGCGTGGAA GCCGCACCTT

CGGTGAGCGT TTGCTAATAC GCCACTCGCA ഗ K AACGATTATG H Ω Z CAAATGGTAT GITTACCATA Z × CCGGCATGGA TAATAGCATC GGCCGTACCT ATTATCGTAG S ĸ × ٢ 凶 G

⊱

CAGTTTAGCC S ᆈ Ø TTCGAAAAAC Z ~~~~~ S I NspV ACCCGGATAC ⊱ Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) Д Z ATTACCATCA ~~~~~~~~~ BsaBI GAAAAGCCGG 召 ഗ 又

GTCAAATCGG AAGCTTTTTG TGGGCCTATG TAATGGTAGT CTTTTCGGCC

Ö

>-

 \succ

>

TTATTGCGCG AATAACGCGC BSSHII GCCGGCACAT CGGCCGTGTA ~~~~~ EagI C Е GGCCTTCTAT CCGGAAGATA ſΞĴ Д TGCAACTGAA CAGCGTGACC GTCGCACTGG \vdash > ഗ ACGTTGACTT Z 口 Ø П

C ~ ~ ~ ~ ~ ~ StyI Ø G 3 \succ Σ Ø \succ H G G ග BSSHII 3 α

GCCAAGGCAC CGGTTCCGTG CTAATAACCC GATTATTGGG TTATGCGATG AATACGCTAC GCGATGGCTT CGCTACCGAA CGTTGGGGCG GCAACCCCGC

BlpI ഗ ഗ H \gt Н

GTTAGCTCAG CAATCGAGTC CCTGGTGACG GGACCACTGC

~~~~~

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
  - **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
  - **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
  - **01K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
  - **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
  - **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
  - **02K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
  - **02K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
  - **02K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
  - **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
  - **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
  - **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
  - O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
  - O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
  - **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **04K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- O4K3 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG -3'
- O4K4 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **04K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- **O1L1** 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- O1L3 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

- **01L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **02L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **02L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGCGAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

PCT/EP96/03647

Figure 6: (continued)

WO 97/08320

- **O1AH3** 5'- GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAGGTC -3'
- O1AH45'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5**5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- O1ABH6 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGATATACCTT-TACCAGCTATTATATGCACTGGGTCCGCCAAGCCCCTGGGCAGGCCCAG
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- O2H2 5'- GGTACAGGTCAGGGTCAGGGTTTGGGTCGGTTT-CACCAGGGCCGGCCGCTTTCTTTCAATTGCACCTGGGCTTTG-3'
- O2H3 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGC CTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

Figure 6: (continued)

**O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'

- O2H6 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCGC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **04H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- O4H4 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **04H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG-3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGGTTTCAGGCTAAACTGGTTTTTCG -3'

Figure 6: (continued)

- **05H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'.
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- O6H3 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGGGGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **06H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCGCCGACCTTTGGCCAGGGTAC 3 '
  SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK2 5'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGCCTGCTG -3'
- OCLK4 5 '- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5 '- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG 3 '
- OCLK7 5 '- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK85'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

| Ö             |       | CA                                             | D C                                                   | A G                       | 90                                                                   | S                                                                                           |
|---------------|-------|------------------------------------------------|-------------------------------------------------------|---------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <u>.</u>      |       | GAA                                            | Y<br>TTA                                              | AAT<br>S                  | 292<br>929                                                           | Y<br>TAT                                                                                    |
| APSVFIFPPSDEQ |       | GCGATGAACA<br>CGCTACTTGT                       | N F Y<br>AACTTTTATC                                   | K V Q W K V D N A L Q S G | TGGAAAGTAG ACAACGCGCT GCAAAGCGGC<br>ACCTTTCATC TGTTGCGCGA CGTTTCGCCG | N S Q E S V T E Q D S K D S T Y S<br>AACAGCCAGG AAAGCGTGAC CGAACAGGAT AGCAAAGATA GCACCTATTC |
| Ŋ             |       |                                                |                                                       | <u>.</u><br>Б             | T.<br>O A                                                            | S<br>Ar                                                                                     |
| щ             |       | 000                                            | GAA                                                   | A CIT                     | 000                                                                  | D<br>GAT                                                                                    |
| Д             |       | 255<br>522                                     | G<br>G<br>G<br>G                                      | N CGA                     | ACG                                                                  | K<br>AAA                                                                                    |
| ഥ             |       | TTTCCGCCGA<br>AAAGGCGGCT                       | CCTGCTGAA                                             | GGACGACTTG                | ACA                                                                  | SAGC                                                                                        |
| Н             |       | ATT<br>TAA                                     | O D C                                                 | CAC                       | TAG                                                                  | D<br>GAT                                                                                    |
| ഥ             |       | TTT                                            | C C C C C C C C C C C C C C C C C C C                 | N N                       | AAG                                                                  | Q<br>CAG                                                                                    |
| >             |       | CGTGTTTATT<br>GCACAAATAA                       | G T A S V V C                                         | Z CGCA                    | TGGA                                                                 | E<br>CGAA                                                                                   |
| ഗ             |       |                                                | S A D                                                 | ت.<br>ت د                 | AG                                                                   | T<br>AC                                                                                     |
| Д             |       | 255<br>522                                     | GGC                                                   | り<br>ン >                  | TTC                                                                  | V<br>GTG                                                                                    |
| Ø             |       | CGTACGGTGG CTGCTCCGAG<br>GCATGCCACC GACGAGGCTC | G T A S V C L L N<br>GGCACGGCGA GCGTGGTGTG CCTGCTGAAC | CCGTGCCGCT CGCACCACAC     | CGCGTGAAGC GAAAGTTCAG<br>GCGCACTTCG CTTTCAAGTC                       | S<br>AAAGC                                                                                  |
| A             |       | 00                                             | U (                                                   |                           | ပ <u>ပ</u>                                                           | E E                                                                                         |
| A V.          |       | GTĞ                                            | L K S<br>TGAAAAG                                      | E F.                      | AAG<br>TTC                                                           | Q<br>CAG                                                                                    |
| •             | IMI   | ACG.                                           | K<br>SAA                                              | ACITI<br>R E              | STG                                                                  | S                                                                                           |
|               | BsiWI | CGTACGGTGG<br>GCATGCCACC                       | L K S<br>ACTGAAAAGC                                   | TGACTTTTCG<br>P R E A     | 3000                                                                 | N<br>AAC                                                                                    |

ß L S S TCTGAGCAGC AGACTCGTCG Figure 7A: sequence of the synthetic Ck gene segment (continued)

| V T K | GGTGACTAAA           | CCACTGATTT |
|-------|----------------------|------------|
| д     | CC                   | 999        |
| S S P | AGC                  | TCG        |
| ഗ     | TGAGCAGCCC           | ACTCGTCGGG |
| Н     |                      |            |
| Ŋ     | CATCAAGGTC           | GTAGTTCCAG |
| Q     | CAA                  | GTT        |
| H     | CAT                  | GTA        |
| E V T | ACC                  | TGG.       |
| >     | GTG                  | CAC        |
| 田     | CGAAGTGACC           | GCTTCACTGG |
| Ö     | TG                   | AC         |
| Ø     | GCG                  | ACGCAC     |
| ×     | $\bar{\mathtt{TAT}}$ | CATA       |
| >     | TG                   | AC         |

SphI StuI  $\alpha$ Z ĮΉ S

凹

G

GACTATTCGT CTGATAAGCA CACCGCTCCG GTGGCGAGGC TCTTTTAATC AGAAAATTAG

Figure 7B: sequence of the synthetic CH1 gene segment

ഗ ഗ Д Ø Ы Д Įτι > S Д G 又 ⊣ Sal ഗ A BlpI

AGGCTCGTCG TCCGAGCAGC GGTTCGCACA AAGGCGACCG TTCCGCTGGC CCAAGCGTGT CTGGTTTCCA GACCAAAGGT CGAGTCGCAG GCTCAGCGTC

~ ~ ~ ~ ~

CCGACGGACC AATTTCTAAT TTAAAGATTA > GGCTGCCTGG C L G CCGACGGGAC GCGGCGGCAC GGCTGCCCTG A L Ø CGCCGCCGTG G T . ග ഗ TTTTCGTGGT AAAAGCACCA Е ഗ X

CTGACCAGCG GACTGGTCGC GICCCCCCC CAGCGGGGCG Ø U ഗ GGTCAGTGGC ACTCGACCTT Z CCAGTCACCG TGAGCTGGAA 3 ഗ > ⊱ TTTCCCGGAA AAAGGGCCTT 团 Д

GTATAGCCTG CATATCGGAC H . 1 CGTCGCCGGA GIGCIGCAAA GCAGCGGCCI ഗ ഗ CACGACGTTT O > CTTTCCGGCG GAAAGGCCGC Д GCGTGCATAC CGCACGTATG 工 >

AGACCTATAT TCTGGATATA Ø AATCCGTGAG TTAGGCACTC [-ŋ CTCGTCGTCG GAGCAGCAGC ഗ ഗ AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG ⊱ ഗ

Figure 7B: sequence of the synthetic CH1 gene segment (continued)

又 > CGAGCAACAC TIGGIATITG GCICGIIGIG Z . W Д 工 TTGCAACGTG AACGTTGCAC Z ပ

K S E F \*
ECORI HindIII

Д

口

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)



Figure 7C: functional map and sequence of module 24 comprising the synthetic Cl gene segment (huCL lambda) (continued)

| ٦   | bbsi<br>caagacgaag<br>cttctgcttc             | CGGATTATTA<br>GCCTAATAAT                               | TTGCCAGCAG                                                           | CATTATACCA<br>GTAATATGGT                                                                   | CCCCGCCTGT                                |
|-----|----------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|
| 51  | GTTTGGCGGC                                   | HpaI<br>CCCACGAAGT TAACCGTTCT<br>CCGTGCTTCA ATTGGCAAGA | HpaI<br>~~~~~~<br>T TAACCGTTCT<br>A ATTGGCAAGA                       | MscI<br>~~~~~<br>TGGCCAGCCG<br>ACCGGTCGGC                                                  | DraIII<br>~~~<br>AAAGCCGCAC<br>TTTCGGCGTG |
| 101 | DrallI<br>~~~~~~<br>CGAGTGTGAC<br>GCTCACACTG | GCTGTTTCCG<br>CGACAAAGGC                               | CCGAGCAGCG                                                           | GCTGTTTCCG CCGAGCAGCG AAGAATTGCA GGCGAACAAA<br>CGACAAAGGC GGCTCGTCGC TTCTTAACGT CCGCTTGTTT | GGCGAACAAA                                |
| 151 | GCGACCCTGG                                   | TGTGCCTGAT                                             | TAGCGACTTT<br>ATCGCTGAAA                                             | TATCCGGGAG<br>ATAGGCCCTC                                                                   | CCGTGACAGT<br>GGCACTGTCA                  |
| 201 | GGCCTGGAAG<br>CCGGACCTTC                     | GCAGATAGCA<br>CGTCTATCGT                               | GCAGATAGCA GCCCCGTCAA GGCGGGAGTG<br>CGTCTATCGT CGGGGCAGTT CCGCCCTCAC | GGCGGGAGTG<br>CCGCCCTCAC                                                                   | GAGACCACCA                                |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CGGCCAGCAG CTATCTGAGC GCCGGTCGTC GATAGACTCG AACAAGTACG TTGTTCATGC CACCCTCCAA ACAAAGCAAC TGTTTCGTTG GTGGGAGGTT 251

RleAI

GCCAGGTCAC GTCCCACAGA AGCTACAGCT AGCAGTGGAA CTGACGCCTG

301

TCGATGTCGA CAGGGTGTCT TCGTCACCTT GACTGCGGAC

CGGTCCAGTG

StuI

GAGGCCTGAT ~ ~ ~ ~ ~ ~ ~ TGCGCCGACT AAAAAACCGT AGCACCGTGG GCATGAGGGG 351

CTCCGGACTA ACGCGGCTGA TTTTTGGCA TCGTGGCACC CGTACTCCCC

SphI

~ ~ ~ ~ ~

AAGCATGC 401

TTCGTACG

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: TGTTTGGAGGGTGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

PCT/EP96/03647

Д

H Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 SapI Н Д Н Н Ø Н K Н Н S O<sup>i</sup> X

AGAAGTGGGG TTACCGTTGC TCTTCACCCC AATGGCAACG TGACCGTGAG ACTGGCACTC CGTGATAACG GCACTATTGC ATGAAACAAA TACTTTGTTT

G S 曰 > Q L MfeI > 闰 Ω X  $\Rightarrow$ Ω K ×  $\vdash$ >

GAAAGCGGCG CTTTCGCCGC CGTTAACCAC GCAATTGGTG TTCTACTTCA AAGATGAAGT CGGCTGATGT GCCGACTACA ACAATGGTTT TGTTACCAAA

വ

Ø

Ø

C

വ

Ц

K

Н

വ

G

G

д

Ø

>

Н

U

G

GCGCCGGAGG CGCGGCCTCC BSPEI CAGACTCGAC GTCTGAGCTG CCGTCGGACG GGCAGCCTGC CGTTGGCCCG GCAACCGGGC GCGCCTGGT CGCCGGACCA

BstXI K O ĸ  $\gt$ 3 വ  $\Sigma$ K  $\succ$ ഗ വ F H BspEI ш U

G

TGGGTGCGCC AAGCCCCTGG TTCGGGGACC ACGCTACTCG ACCCACGCGG TGCGATGAGC CCTAAATGGA AATCGTCGAT GGATTTACCT TTAGCAGCTA

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) S S C ഗ C S Н Ø ഗ > 3 团 XhoI C

CCGTCGTGGA GGCAGCACCT GCCATCGCCG CGGTAGCGGC CGCGCTAATC GCGCGATTAG CTCACCCACT GAGTGGGTGA CTTCCCAGAG GAAGGGTCTC

NspVß Z Ω PmlI S HН ۲ı K C X > ഗ K  $\succ$ 

×

EagI ACTATTAAGC CCATITCACG TGATAATICG Н Ω 团 GGTAAAGTGC Ø 召 口 CCGGCAAAAT GGCCGTTTTA S Z Σ TAATACGCCT ATCGCACTTT TAGCGTGAAA Q Н П ATTATGCGGA H Z

AAGATACGGC TTCTATGCCG CIGCGIGCGG GACGCACGCC TTACTTGTCG AATGAACAGC TGTATCTGCA ACATAGACGT TTTTGTGGG AAAAACACCC

Ω Σ K ₩ ſτι G Ω G C 3  $\alpha$ Ø > $\gt$ 

BSSHII EagI GCGATGGATT TGCGCGCGTT GGGCGGCGA TGGCTTTTAT CGTGTATTAT

NspV

GTTGCCGATA

ACGACGTATC

TCGGTTTCGG

GACGTCTTCG

GCTCGTAATC

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) CAACGGCTAT GGCGAGCCTG CCGCTCGGAC GTTCCGATAT CAAGGCTATA CGCTACCTAA TGGCGGTTCT ACCGCCAAGA ECORV S Д Д C 团 ഗ Z U Ü CGAGTCGCCC TCACTGAGGC CCGCCACCAC CCCCGCCGCT ACCGAAAATA AGTGACTCCG TGCTGCATAG GCTCAGCGGG GGCGGTGGTG S Д U 二 EH BlpI G Н > U 口 ഗ AGCCAAAGCC GCCACCAAGA ACTCGGACGG TGAGCCTGCC CGGTGGTTCT CACTGCCAAT GTGACGGTTA Д ഗ ഗ Н C Ö വ G വ Н CCTCGCCACC GGAGCGGTGG CAGAGCCCAC GTCTCGGGTG CTGCAGAAGC GCACATAATA ACGCGCGCAA AGGCACCCTG TCCGTGGGAC U വ Щ BanII C K ഗ PstI ഗ C r O StyI G GGGGGGGTG GCACTACTGG CGAGCATTAG ATTGGGGCCA CCGCCGCCAC CGTGATGACC TAACCCCGGT ഗ Е G Н U Σ G ECORV ഗ > C K

| ttinued) L SeI                                                                                                                                                               | TT<br>AA                 |                        | <u>ი</u> ი                      | A             | CH                       | H             | AC<br>IIG                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|---------------------------------|---------------|--------------------------|---------------|--------------------------|
| continued<br>L L<br>ASEI                                                                                                                                                     | TA                       | လ                      | PAG(<br>TC(                     |               | AGG                      | Д             | 3000<br>3000             |
| 3-Vk2 (continu<br>Q L<br>AS E                                                                                                                                                | AGC                      | 저<br><sup>I</sup>      | TT                              | D<br>⊟        | 1862<br>1001             | Д             | CCCCGCCGAC               |
| nt VH3                                                                                                                                                                       | CGCAGCTATT<br>GCGTCGATAA | r<br>r                 | CGTTTTAGCG<br>GCAAAATCGC        | >             | TGTGGAAGCT<br>ACACCTTCGA | н утт Р Р     | CCCCGCCGAC               |
| ragme                                                                                                                                                                        |                          | · ·                    |                                 | PK            |                          | [-]           |                          |
| thain f                                                                                                                                                                      | AGC                      | -                      | 1005<br>1005                    | Ω             | \GC(                     | H             | rAC(                     |
| ingle-c                                                                                                                                                                      | CAA                      | 91<br>91               |                                 | Н             | TTZ                      | ×             | TAT                      |
| ensus single-chain fragment V<br>G Q S P<br>I                                                                                                                                | GGTCAAAGCC<br>CCAGTTTCGG | G V P<br>COO1091       | GGTCCCGGAT                      |               | AAATTAGCCG<br>TTTAATCGGC | H             | CATTATACCA<br>GTAATATGGT |
| the consen<br>P<br>SexAI                                                                                                                                                     |                          | GSNRASGVPD<br>Ecol1091 |                                 | F T L K I S R |                          | a             |                          |
| ling the S                                                                                                                                                                   | TCAAAAACCA<br>AGTTTTTGGT | လ                      | GTGCCAGTGG                      | H             | TTTACCCTGA<br>AAATGGGACT | OI.           | TTGCCAGCAG               |
| encoc<br>K                                                                                                                                                                   | AAA                      | A                      | CC7                             | H             | ACC                      |               |                          |
| ic gene<br>Q                                                                                                                                                                 | TCA<br>AGT               |                        | GTG<br>CAÖ                      | দ             | TTT                      | O             | TTC                      |
| synthetic gene encoding the L Q K P E Se:                                                                                                                                    | GA                       | <b>K</b>               | CC<br>GG                        |               | AT<br>TA                 | V Y Y C Q Q   | TA                       |
| ap of the syll Y                                                                                                                                                             | ATTGGTACCT<br>TAACCATGGA | Z                      | GGCAGCAACC<br>CCGTCGTTGG        | G II          | CGGCACCGAT               | <b>&gt;</b>   | GCGTGTATTA               |
| M KE                                                                                                                                                                         | 1961<br>1007             | လ                      | CAG(                            | rn.           | GT(                      | >             | O A C                    |
| riction                                                                                                                                                                      | ATT<br>TAA               | Ŋ                      | 000                             | į             | 999                      | ŋ             | 900                      |
| nd restr<br>D                                                                                                                                                                | 00<br>CC                 | H                      | TG                              | G S<br>BamHI  | 1                        |               | 990                      |
| T                                                                                                                                                                            | AACTATCTGG<br>TTGATAGACC | <b>&gt;</b> +          | ~~~<br>AATTTATCTG<br>TTAAATAGAC | G<br>Ba       |                          | <i>&gt;</i> ≀ | GAAGACGTGG               |
| : seque                                                                                                                                                                      | TA                       |                        | LTT                             | S             | ICT<br>AGA               | E D<br>BbsI   | AGA<br>TCT               |
| Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued)  N Y L D W Y L Q K P G Q S P Q L L  KpnI  AseI | AAC<br>TTG               | I<br>AseI              | AAT<br>TTA                      | Q             | GC.                      | 田田川           | GA                       |
| <b></b>                                                                                                                                                                      |                          |                        |                                 | •             |                          |               |                          |

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) F G Q G T K V E I K R T E FE ECORI Ŋ

MscI

R T BsiWI

TGCATGCCTT ACGTACGGAA AACTTTAATT CCATGCTTTC GGTACGAAAG CTTTGGCCAG GAAACCGGTC



SUBSTITUTE SHEET (RULE 26) 56 / 204

| EOl        | <u>×</u>                 | ≥            | ≷        | ≷         | ≥            | ≥         | ≥         | ≥         | >         | ≥         | 3            | ≷         | <u>≥</u>  |
|------------|--------------------------|--------------|----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|
| 20 L       | >                        | >            | >        | >         | >-           | >         | >         | >         | >         | >-        | >            | >         | >         |
| 101        |                          |              |          |           |              |           |           |           |           |           |              |           |           |
| 100E       | . Σ                      | i            | 1        | ı         | 1            | ı         | 1         | ı         | ı         | 1         | ŀ            | ı         | ı         |
| 100D       | ı                        | ı            | ı        | 1         | 1            | ı         | 1         | t         | ı         | ı         | 't           | 1         | ι         |
| J001       | 1                        | ı            | ı        | ı         | ı            | ı         | ı         | ı         | ı         |           | 1            | i         | t         |
| 1008       | ⋖                        | i            | ı        | i         | ı            | 1         | 1         | 1         | i         | 1         | ı            | 1         | ı         |
| A001       | > .                      | 1            | 1        | 1         | 1            | 1         | t         | 1         | 1         | ı         | ı            | ı         | ı         |
| 001        | ட                        | >            | エ        | I         | $\propto$    | >         | ۵         | 1         | S         | ¥         | <            |           | Σ         |
| 66         | 9                        | Z            | ≥        | >         | ⋖            | 9         | 0         | $\propto$ | Z         | S         | 4            | >         | ≯         |
| 86         |                          | Σ            | ш        | ١         | $\leq$       | $\vdash$  | <         | <u></u>   | ~         |           | ட            | 0         | ш         |
| <i>26</i>  | Ö                        | $\checkmark$ | $\vdash$ | ш         |              | <b>—</b>  | ш         | _         | Z         | 9         | $\vdash$     | ۵         | S         |
| 96         | g                        | G            | $\alpha$ | $\propto$ | ட            | Z         | Z         | ⋖         | >         | >         | $\checkmark$ | <         | 0         |
| <i>S6</i>  | ≷                        | ட            | I        | >         | $\checkmark$ | ≥         | _         | <b>-</b>  | ≥         | S         | Ś            | >         | Σ         |
| <b>7</b> 6 | $\simeq$                 | $\propto$    | <u>~</u> | $\propto$ | $\propto$    | $\propto$ | $\propto$ | $\propto$ | $\propto$ | $\propto$ | $\propto$    | $\propto$ | $\propto$ |
| 86         | 4                        | 4            | 4        | Ø         | ⋖            | ⋖         | ⋖         | ⋖         | ⋖         | <         | ⋖            | 4         | A         |
| 76         | $\overline{\mathcal{O}}$ | C            | ပ        | C         | ပ            | S         | $\circ$   | ပ         | ပ         | ပ         | ပ            | ပ         | O         |
| ⋖          |                          | Ω            |          |           |              |           |           |           |           |           |              |           |           |

333333333  $\Sigma \Sigma \Gamma \Sigma \Sigma \Gamma \Gamma \Gamma \Sigma \Sigma \Sigma \Sigma$ > - ス > ヷ - エト > - ヷ  $\Sigma \succ \kappa \times \Sigma \circ \neg \circ \circ \neg \circ \circ$  $\succ$  O I O L I Z Z Z L L Z  $\times$ **」SFENE>NLYK**  $\Gamma A > \emptyset Q Z J \Gamma D F$  $I X Z L X U \geqslant Z U Z \vdash$  $> 100 \times 000 \times 000$  $\bot$   $\forall$  Z Q  $\Box$  Z Y  $\Box$  Z Y $\succ \Sigma \times \vdash \succ * \; \ltimes \; \Sigma \times \circ \succ$ 4 4 4 4 4 4 4 4 4 4 000000000000

C

Figure 11: Expression analysis of initial library





Figure 12: Increase of specificity during the panning rounds



Figure 13: Phage ELISA of clones after the 3rd round of panning



Clone Number

Figure 14: Competition ELISA



- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

9001 xxxxvQ>x>xxx-Qxx 0001 FRIRZOA> $\times$ OZG $\times$  $\times$ A $\circ$ 80001  $R \ge R \times X \times R \times P > Z \ge R \times R \times R \times R$ 001 Z X I X Y Q J > O X O H O > X > 99 GARAZILRRSRAHEQ $89 \ge Q \times R - > \Sigma I \ge Q R \times I - X \times$  $96 \times 07 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times 107 \times$  $p_{\theta}$  xxxxxxxxxxxxxxxxxxxx 

Figure 16: Purification of fluorescein binding scFv fragments



Figure 17: Enrichment factors after three rounds of panning



anti-ß-estradiol antibodies 09-9anti-ESL-1 antibodies D9-2 0 9.0 Jag-(mago+)do substitute sheet (rule 26) 66 / 204

Figure 18: ELISA of anti-ESL-1 and anti- $\beta$ -estradiol antibodies

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies



| Frequency   | 3            | 8            | 7            |           | _         |          |              | -           | <del></del>  | 2            | 4            |              |
|-------------|--------------|--------------|--------------|-----------|-----------|----------|--------------|-------------|--------------|--------------|--------------|--------------|
| 103         | ≥            | ≥            | ≯            | 3         | ≥         | ≥        | ≷            | ≶           | 3            | ≥            | 3            | ≷            |
| 102         | >            | >-           | >            | >         | >         | >        | >-           | >           | >            | >            | >            | >            |
| lOl         |              |              |              |           |           |          |              | 0           |              |              |              | Ω            |
| 300ℓ        | ш            | Σ            | ட            | ட         | Σ         | Σ        | 1            | ≥           | Σ            | ≥            | Σ            | u.           |
| 100D        | O            | $\checkmark$ | œ            | ட         | エ         | Σ        | 1            | œ           | >            | ட            | ш            | Z            |
| J001        | $\checkmark$ | æ            | $\checkmark$ | >         | ≥         | $\times$ | 1            | $\times$    | >-           | $\propto$    | $\checkmark$ | $\checkmark$ |
| 1008        | 8            | 8            | 9            | ш         | S         | ~        | ı            | >-          | >            | $\propto$    | Ð            | œ            |
| A001        | <del> </del> | Z            |              | Ω         | ≥         | 工        | ı            | ட           | Ö            | ட            | $\propto$    | Σ            |
| 001         | ⋖            | $\checkmark$ | مـ           |           | u.        | ∝        | ۵.           | ≥           | S            | $\propto$    | S            | æ            |
| 66          | O            | ட            | ≥            | $\propto$ |           | م        | م            | エ           | ≥            | Σ            | _            | Σ            |
| 86          | ≥            | ш            | Σ            | ≥         | 9         | w        | ⋖            | ≥           | ≥            | O            | ⋖            | _            |
| <u> </u>    | ۵            | ≥            | ≥            | _         | ≥         | _        | $\checkmark$ | <del></del> |              | O            |              | æ            |
| 96          | $\propto$    | O            | æ            | S         | ط         | 9        | Σ            | $\prec$     | $\checkmark$ | $\checkmark$ | Σ            | Σ            |
| <i>9</i> 6  | <b>⊢</b>     | Z            | $\checkmark$ | >-        | ·>        | Z        | _            | 8           | ≥            | Z            | Z            | Z            |
| <i>t</i> ⁄6 | œ            | œ            | 8            | œ         | $\propto$ | œ        | œ            | œ           | $\propto$    | $\propto$    | $\propto$    | ~            |
| 63          | A            | V            | A            | A         | ⋖         | A        | X            | A           | Ø            | A            | A            | A            |
| 76          | ၁            | ပ            | J            | U         | ں         | C        | J            | ں           | ں            | ں            | ر<br>ا       | ပ            |

SUBSTITUTE SHEET (RULE 26)

| Frequency  | 4                        | က            | 2            | _            | <b>,</b>     | -             |
|------------|--------------------------|--------------|--------------|--------------|--------------|---------------|
| 103        | 3                        | >            | ≥            | 3            | ≥            | ≥             |
| 105        | >                        | >            | >            | >            | >-           | >-            |
| 101        |                          |              |              | ۵            |              |               |
| 100E       | ட                        | ட            | ட            | ட            | ட            | ட             |
| 100D       | Ø                        | O            | O            | Σ            | ≥            | O             |
| J001       | _                        | Σ            | ≥            | <b>—</b>     | $\prec$      | Σ             |
| 1008       | $\checkmark$             | $\checkmark$ | $\checkmark$ | ¥            | Σ            | O             |
| A001       | $\propto$                | O            | Z            | Σ            |              | $\simeq$      |
| 001        | $\times$                 | ≥            | $\propto$    | ≥            | ∝.           | S             |
| 66         | ⋖                        | Ø            | ⋖            | A            | $\propto$    | 4             |
| 86         | O                        | 工            | >            | 9            | _            | 8             |
| <b>Z</b> 6 | $\checkmark$             | æ            | $\checkmark$ | <u>«</u>     | ٩            | $\checkmark$  |
| 96         | _                        | Z            | >            | $\checkmark$ | $\checkmark$ | œ             |
| <i>9</i> 6 | >                        | >            | >-           | >            | .∝           | >             |
| <b>7</b> 6 | $\propto$                | $\alpha$     | œ            | $\propto$    | œ            | $\propto$     |
| 83         | A                        | A            | ⋖            | A            | ⋖            | A             |
| 76         | $\overline{\mathcal{C}}$ | C            | ں            | ں            | ں            | $\mathcal{O}$ |

|   | Frequency  | 16           | <del></del> | _         | _            |           | -           | <del></del> | -         |
|---|------------|--------------|-------------|-----------|--------------|-----------|-------------|-------------|-----------|
|   | 103        | 3            | 3           | ≥         | ≥            | ≥         | ≥           | ≥           | ≷         |
|   | 105        | >            | >           | >         | >            | >         | >           | >-          | >-        |
|   | 101        |              |             |           |              | <u>م</u>  |             |             |           |
|   | 100E       | ட            | ≥           | u_        | ≥            | ≥         | ய           | Σ           | ш.        |
|   | 100D       | 工            | Д           | O         | ≥            | >         | S           | ≥           | ≥         |
|   | J001       | 9            |             | >         | 工            | 工         | O           | ш           | >-        |
|   | 1008       | $\checkmark$ | >           | ≥         | 工            |           | <del></del> | Z           | ≥         |
|   | A001       |              | S           | >         | م            | $\propto$ | ш.          | ш           | ட         |
|   | 001        | $\checkmark$ | z           | Z         | $\checkmark$ | A         | O           | <b>—</b>    | _         |
|   | 66         | S            | ட           | ۵         | <u></u>      | O         | S           | O           | _         |
|   | 86         | <u>~</u>     |             | _         | >            | u         | Z           | ட           |           |
| • | <b>Z</b> 6 | >            | ~           |           | Ø            | _         | $\equiv$    | I           | م         |
|   | 96         | $\alpha$     | ≥           | Ø         | Ö            |           | ≥           |             | ≥         |
|   | 96         | O            | 1           | Σ         |              | œ         | S           | >           |           |
|   | <b>7</b> 6 | $\propto$    | æ           | $\propto$ | œ            | ∝         | 8           | 8           | $\propto$ |
|   | 63         | X            | 4           | A         | A            | ⋖         | Ø           | ⋖           | 4         |
| • | 76         | ب            | ပ           | ن         | ں            | ن         | ں           | ں           | ں         |

| Frequency  | 4        | 4        | 2            | _         | <b>.</b>  | 2   | <del></del>  | 13           | က            | _            | -  | <del></del> |
|------------|----------|----------|--------------|-----------|-----------|-----|--------------|--------------|--------------|--------------|----|-------------|
| 103        | ≥        | ≷        | ≥            | 3         | ≥         | 3   | ≥            | 3            | ≥            | ≥            | ≷  | ≥           |
| 105        | >        | >        | >            | >         | >         | >-  | >            | >            | >            | >            | >- | >           |
| 101        |          | 0        |              |           |           |     |              |              |              |              |    |             |
| 100E       | ı        | ட        | Σ            | Σ         | Σ         | Σ   | ட            | ட            | Σ            | ட            | 1  | Σ           |
| J001       | ı        | 8        | O            | _         | O         |     | $\checkmark$ | $\checkmark$ | $\propto$    | ட            | 1  | _           |
| 100Ca      | t        | ı        | 1            | 1         | $\propto$ | t   | 1            | 1            | ı            | 1            | i  | 1           |
| J001       | ı        | 8        | œ            | $\propto$ | œ         | _   | æ            | æ            | ≥            | $\propto$    | ı  | $\propto$   |
| 1008       | ι        | >        | S            | _         | ۵         |     | >            | $\propto$    | ۵            | $\checkmark$ | 1  | 8           |
| A001       | 1        | ட        | $\checkmark$ | A         | ≥         | Σ   | 3            | <b>—</b>     | 工            | S            | ı  | O.          |
| 001        | ш        | S        | S            | 9         | S         |     | 8            | $\checkmark$ | >            | $\checkmark$ | ட  | ¥           |
| 66         | <b>—</b> |          | S            | >         | ⋖         | >   | <del></del>  | S            | >-           | <b>—</b>     | ш  | -           |
| 86         | ட        | ш        | ш            | ш         | ىدا .     | ≥   | ш            | ш            | O            | ш            | Σ  | ш           |
| ۷6         | 9        | ۵        | $\checkmark$ |           | щ         | ш   | S            | ¥            |              | $\propto$    | _  | ш           |
| 96         | u_       | ш.       |              | Ö         | 工         | Z   | >-           | ட            | <b>×</b>     | ≥            | >  | ய           |
| <i>9</i> 6 | 9        | O        | _            | ш         | Z         | ш   | 0            | O            | $\checkmark$ | $\propto$    |    | O           |
| <b>7</b> 6 | 8        | <u>«</u> | œ            | $\propto$ | $\propto$ | 8   | 8            | <u>~</u>     | œ            | $\propto$    | œ  | $\propto$   |
| 83         | A        | < <      | Ø            | A         | ⋖         | A   | ⋖            | A            | ⋖            | A            | A  | A           |
| 76         | ر        | ر<br>ر   | U            | ر<br>ر    | U         | ن ا | ن ر          | ں            | ں            | ں            | ں  | ပ           |

SUBSTITUTE SHEET (RULE 26)

| Frequency   | 2            | <b>-</b> | -         | ~            |           | <del></del>   |
|-------------|--------------|----------|-----------|--------------|-----------|---------------|
| 103         | ≥            | ≥        | ≷         | ≷            | ≥         | ≥             |
| 105         | >            | >        | >         | >            | >         | >             |
| 101         |              |          | 0         |              |           |               |
| 100E        | Σ            | ட        | Σ         | Σ            | ≥         | ட             |
| 100D        | >            | æ        | $\propto$ | O            | >-        | ட             |
| J001        | >            | ட        | >         | S            | ≥         | I             |
| 1008        | 0            | >-       | >         | ≥            | Z         | <b>—</b>      |
| A001        | _            | Z        | ய         | S            | ۵.        | _             |
| 001         | ⋖            | >-       | ≥         | ب            | A         | ۵             |
| 66          | >            | Σ        | O         | œ            | ≥         | ¥             |
| 86          | ᄔ            | >        | ш         | >            | <u>~</u>  | ш             |
| ۷6          | G            | <b>—</b> | ட         | ш            | S         | 9             |
| 96          | O            | ட        | ட         | $\checkmark$ | ط         | ග             |
| 96          |              | >        | >         | ىب           | <u></u>   | ۵             |
| <b>\$</b> 6 | $\propto$    | 8        | 8         | $\propto$    | $\propto$ | œ             |
| £6          | A            | 4        | ⋖         | ⋖            | A         | A             |
| <i>Z</i> 6  | <del>ا</del> | ပ        | J         | U            | ں         | $\mathcal{C}$ |

lox' site

BgIII O lox site ompa Xbal lox site ColEI Ext2 origin p15A module AatIII Jac p/o cat phoA pCAL system Nhel fl ori BsrGI gIII ss ECOR. Pack lpp-Terminator-Fsel tails/ (His, myc) Tind | domains module IMP-Figure 25: modular pCAL vector system functions (IL2) lacI effector long SUBSTITUTE SHEET (RULE 26)

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                     |
|-------------------------|-----------------------------------|
| Aatll                   | /                                 |
| AfIII                   | Bfrl, BspTl, Bst98l               |
| Ascl                    |                                   |
| Asel                    | Vspl, Asnl, PshBl                 |
| BamHI                   | Bstl                              |
| Bbel                    | Ehel, Kasl, Narl                  |
| Bbsl                    | BpuAl, Bpil                       |
| Bglll                   |                                   |
| Blpl                    | Bpu1102I,CellI, Blpl              |
| BsaBl                   | Maml, Bsh1365l, BsrBRI            |
| BsiWI                   | Pfl23II, SpII, Sunl               |
| BspEl                   | AccIII, BseAI, BsiMI, Kpn2I, Mrol |
| BsrGl                   | Bsp1407l, SspBl                   |
| BssHII                  | Paul                              |
| BstEll                  | BstPl, Eco91l, Eco0651            |
| BstXI                   | .,                                |
| Bsu36l                  | Aocl, Cvnl, Eco81l                |
| Dralll                  | . /                               |
| DsmAl                   |                                   |
| Eagl                    | BstZI, EclXI, Eco52I, XmalII      |
| Eco571                  | /                                 |
| Eco0109I                | Drall                             |
| EcoRI                   | /                                 |
| EcoRV                   | Eco32l                            |
| Fsel                    | 1                                 |
| HindIII                 | /                                 |
| Hpal                    |                                   |
| Kpnl                    | Acc65l, Asp718l                   |
| Mlul                    | /                                 |
| Mscl                    | Ball, MluNl                       |

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | lsoschizomers                      |
|-------------------------|------------------------------------|
| Munl                    | Mfel                               |
| Nhel                    | /                                  |
| Nsil                    | Ppu10l, EcoT22l, Mph1103l          |
| NspV                    | Bsp1191, BstBl, Csp451, Lspl, Sful |
| Pacl                    |                                    |
| Pmel                    |                                    |
| PmII                    | BbrPl, Eco72l, PmaCl               |
| Psp5II                  | PpuMI                              |
| Pstl                    | 1                                  |
| RsrII                   | (Rsril), Cpol, Cspl                |
| SanDI                   |                                    |
| Sapl                    |                                    |
| SexAl                   | 1                                  |
| Spel .                  |                                    |
| Sfil                    |                                    |
| Sphl                    | Bbul, Pael,Nspl                    |
| Stul                    | Aatl, Eco147l                      |
| Styl                    | Eco130l, EcoT14l                   |
| Xbal                    | BspLU11II                          |
| Xhol                    | PaeR7I                             |
| Xmal                    | Aval, Smal, Cfr9l, PspAl           |

| S               |
|-----------------|
| ctor modules    |
| =               |
| ≓               |
| ×               |
| $\simeq$        |
| =               |
|                 |
| vector          |
| ⋍               |
| U               |
| نه              |
| >               |
|                 |
| 7               |
| ~               |
| ਪੁ              |
| ng.             |
| ••              |
| Ö               |
| ت               |
| $\sim$          |
| =               |
|                 |
| Ó               |
| ≂               |
|                 |
| Figure 26: list |
| _               |
| Ō               |
| :=              |
|                 |

|                                        | WO 97/08320                                  |                                                      |                                                        |                             | PCT/EP96/03647                                                                                                                      |
|----------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                        | reference                                    | Skerra et al. (1991)<br>Bio/Technology 9,<br>273-278 | Hoess et al. (1986)<br>Nucleic Acids Res.<br>2287–2300 | see M2                      | Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266 |
|                                        | template                                     | vector<br>pASK30                                     | (synthetic)                                            | (synthetic)                 | vector<br>plG10                                                                                                                     |
|                                        | sites to be<br>inserted                      | Aatll                                                | lox, BgIII                                             | lox', Sphl                  | none                                                                                                                                |
|                                        | sites to be<br>removed                       | 2x Vspl<br>(Asel)                                    | 2x Vspl<br>(Asel)                                      | none                        | Sphl,<br>BamHl                                                                                                                      |
| modules                                | functional element                           | lac<br>promotor/operator                             | Cre/lox<br>recombination site                          | Cre/lox' recombination site | glilp of filamentous<br>phage with N-<br>terminal<br>myctail/amber<br>codon                                                         |
| Figure 26: list of pCAL vector modules | module/flan-<br>king<br>restriction<br>sites | Aatll-lacp/o-<br>Xbal                                | BgIII-lox-<br>Aatli                                    | Xbal-lox'-<br>Sphl          | EcoRI-<br>gIIIlong-<br>HindIII                                                                                                      |
| Figure 21                              | oN<br>N                                      | M1                                                   | M2                                                     | M3                          | M7-1                                                                                                                                |

PCT/EP96/03647

WO 97/08320

Figure 26: list of pCAL vector modules

| 1                                       | WO 97/08320                                                                   |                                                                                      |                               |                      |                                                  | PCT/EI                                    | P96/03647                                 |
|-----------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|----------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                         | see M7-1                                                                      | see M7-I                                                                             | see M3                        | see M1               | see M1                                           | see M1                                    | see M1                                    |
|                                         | vector<br>plG10                                                               | vector<br>plG10                                                                      | (synthetic)                   | (synthetic)          | pASK30                                           | pASK30                                    | pASK30                                    |
|                                         |                                                                               |                                                                                      | NOI                           | Pacl, Fsel           | Pacl, Fsel,<br>BsrGl                             | BsrGI, Nhel                               | BsrGl, Nhel                               |
|                                         | Sphl                                                                          | Sphl, Bbsl                                                                           | none                          | none                 | Vspl,<br>Eco571,<br>BssSl                        | Dralli<br>(Banli not<br>removed)          | DrallI,<br>Banll                          |
| HIDUMES                                 | truncated gillp of<br>filamentous phage<br>with N-terminal Gly-<br>Ser linker | truncated glllp of<br>filamentous phage<br>with N-terminal<br>myctail/amber<br>codon | Cre/lox<br>recombination site | lpp-terminator       | Paci/Fsel-bla-beta-lactamase/bla<br>BsrGl (ampR) | origin of single-<br>stranded replication | origin of single-<br>stranded replication |
| Figure 26: 115t of pual vector industry | EcoRI-gIIIss-<br>HindIII                                                      | M7-III EcoRI-gIIIss-<br>HindIII                                                      | Sphl-lox-<br>HindIII          | HindIII-lpp-<br>Pacl | Paci/Fsel-bla-<br>BsrGl                          | BsrGI-f1 ori-<br>Nhel                     | BsrGI-f1 ori-<br>Nhel                     |
| rigurezi                                | M7-11                                                                         | M7-III                                                                               | M8                            | M9-11                | M10-                                             | M11-                                      | M11-                                      |

Figure 26: list of pCAL vector modules

| WO 97/0832                                         | J                             |                                                |                                                                        |                                  | PCT/EP96/0                                                              |
|----------------------------------------------------|-------------------------------|------------------------------------------------|------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------|
| Rose, R.E. (1988)<br>Nucleic Acids Res.<br>16, 355 | see M3                        | Yanisch-Peron, C.<br>(1985) Gene<br>33,103-119 | Cardoso, M. & Schwarz, S. (1992)<br>J. Appl.<br>Bacteriol. 72, 289-293 | see M1                           | Knappik, A &<br>Plückthun, A.<br>(1994)<br>BioTechniques 17,<br>754-761 |
| pACYC184                                           | (synthetic)                   | pUC19                                          | pACYC184                                                               | (synthetic)                      | (synthetic)                                                             |
| Nhel, BgIII pACYC184                               | BgIII, lox,<br>Xmnl           | BgIII, Nhel                                    |                                                                        |                                  | ·                                                                       |
| BssSI, VspI,<br>NspV                               | none                          | Eco571<br>(BssSl not<br>removed)               | BspEI, MscI,<br>Styl/Ncol                                              | (synthetic)                      | (synthetic)                                                             |
| origin of double-<br>stranded replication          | Cre/lox<br>recombination site | origin of double-<br>stranded replication      | chloramphenicol-<br>acetyltransferase/<br>cat (camR)                   | signal sequence of phosphatase A | signal sequence of<br>phosphatase A +<br>FLAG detection tag             |
| A12 Nhel-p15A-<br>Bglll                            | BgIII-lox-<br>BgIII           | BgIII-ColEI-<br>Nhel                           | Aatll-cat-<br>BgIII                                                    | Xbal-phoA-<br>EcoRl              | Xbal-phoA-<br>FLAG-EcoRI                                                |
| M12                                                | M13                           | M14-<br>Ext2                                   | M17                                                                    | M19                              | M20                                                                     |

Figure 26: list of pCAL vector modules

| WO 97/08320                                                  |                                                                  |                                                                               |
|--------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Lee et al. (1983)<br>Infect. Immunol.<br>264-268             | see M1                                                           | Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-56 |
| (synthetic)                                                  | pASK30                                                           | (synthetic)                                                                   |
|                                                              |                                                                  |                                                                               |
| (synthetic)                                                  | BstXI,<br>Mlul,BbsI,<br>BanII,<br>BstEII,<br>HpaI, BbeI,<br>VspI | (synthetic)                                                                   |
| heat-stable<br>enterotoxin II signal (synthetic)<br>sequence | lac-repressor                                                    | poly-histidine tail                                                           |
| A21 Xbal-stll- enter                                         | AfIII-laci-<br>Nhel                                              | EcoRI-Histail-<br>HindIII                                                     |
| M21                                                          | M41                                                              | M42                                                                           |





SUBSTITUTE SHEET (RULE 26)

|                                                                  | BsrGI   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CCCCCCCCC TGTACACCCC GGGGGGGGGGGGGGGGGGG                                  | Aatii Xbai | ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | CCAGATCTCC CCCCCCCGA CGTCCCCCT<br>GGTCTAGAGG GGGGGGGGCT GCAGGGGGGA       | EcoRI AatII |        | CGAATTCGAC GTC<br>GCTTAAGCTG CAG   |
|------------------------------------------------------------------|---------|-----------------------------------------|---------------------------------------------------------------------------|------------|-----------------------------------------|--------------------------------------------------------------------------|-------------|--------|------------------------------------|
| Figure 27: functional map and sequence of MCS module (continued) | HindIII |                                         | ACATGTAAGC TTCCCCCCC CCTTAATTAA CC<br>TGTACATTCG AAGGGGGGGG GGAATTAATT GG | Nhel       |                                         | CCCCCCGCTA GCCCCCCCC CCAGATCTCC CC<br>GGGGGGCGAT CGGGGGGGG GGTCTAGAGG GG | XbaI        | ****** | CTAGACCCCC CCCCGCATG CCCCCCCCCC CG |
| Figure 2.                                                        |         |                                         | <b>H</b>                                                                  |            |                                         | 51                                                                       |             |        | 101                                |

Figure 28: functional map and sequence of pMCS cloning vector



| _                                                                         |  |
|---------------------------------------------------------------------------|--|
| 5                                                                         |  |
| ፭                                                                         |  |
| Ξ.                                                                        |  |
| Ξ                                                                         |  |
| ဥ                                                                         |  |
| ت                                                                         |  |
| 5                                                                         |  |
| ፘ                                                                         |  |
| Š                                                                         |  |
| 5                                                                         |  |
| .Ē                                                                        |  |
| Ξ                                                                         |  |
| 유                                                                         |  |
|                                                                           |  |
| ت                                                                         |  |
| ≥                                                                         |  |
| _                                                                         |  |
| <u>~</u>                                                                  |  |
| به                                                                        |  |
| 2                                                                         |  |
| ية                                                                        |  |
| ಕ                                                                         |  |
| ೪                                                                         |  |
| Ъ                                                                         |  |
| Ξ                                                                         |  |
| 9                                                                         |  |
| ਛ                                                                         |  |
| Ε                                                                         |  |
| æ                                                                         |  |
| Ξ                                                                         |  |
| :3                                                                        |  |
| $\tilde{z}$                                                               |  |
| 5                                                                         |  |
| ٠.                                                                        |  |
| 8                                                                         |  |
| Figure 28: functional map and sequence of pMCS cloning vector (continued) |  |
| =                                                                         |  |
| <u> </u>                                                                  |  |
| ιĔ                                                                        |  |

| CCTAT TTGTTTATTT<br>GGATA AACAAATAAA                               | ACAAT AACCCTGATA<br>TGTTA TTGGGACTAT | STATT CAACATTTCC<br>CATAA GTTGTAAAGG | CTTCC TGTTTTTGCT<br>GAAGG ACAAAAACGA | Eco571<br>~~~~~~<br>GCTGAAGATC AGTTGGGTGC<br>CGACTTCTAG TCAACCCACG | CAGCGGTAAG ATCCTTGAGA<br>GTCGCCATTC TAGGAACTCT |
|--------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------|------------------------------------------------|
| GAACCCCTAT<br>CTTGGGGATA                                           | ATGAGACAAT<br>TACTCTGTTA             | TATGAGTATT<br>ATACTCATAA             | TTTGCCTTCC<br>AAACGGAAGG             | Eco57I<br>~~~~~~<br>GCTGAAGATC<br>CGACTTCTAG                       | CAGCG<br>GTCGC                                 |
| AATGTGCGCG<br>TTACACGCGC                                           | GTATCCGCTC<br>CATAGGCGAG             | AAAGGAAGAG<br>TTTCCTTCTC             | TTTGCGGCAT<br>AAACGCCGTA             | AGTAAAAGAT<br>TCATTTTCTA                                           | TGGATCTCAA<br>ACCTAGAGTT                       |
| of pMCS cloning vector (continued) TTTTCGGGGA AATG AAAAGCCCCT TTAC | ATTCAAATAT<br>TAAGTTTATA             | TAATATTGAA<br>ATTATAACTT             | TATTCCCTTT<br>ATAAGGGAAA             | CGCTGGTGAA<br>GCGACCACTT                                           | TACATCGAAC<br>ATGTAGCTTG                       |
| Figure 28: functional map and sequence o  1 CAGGTGGCAC  GTCCACCGTG | TTCTAAATAC<br>AAGATTTATG             | AATGCTTCAA<br>TTACGAAGTT             | GTGTCGCCCT                           | CACCCAGAAA<br>GTGGGTCTTT                                           | ACGAGTGGGT<br>TGCTCACCCA<br>BssSI              |
| Figure 28: func                                                    | 51                                   | 101                                  | 151                                  | 201                                                                | 251                                            |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

## \{mn\}

| r taaagttctg<br>a atttcaagac | 3 AGCAACTCGG<br>C TCGTTGAGCC | C TCACCAGTCA<br>S AGTGGTCAGT | r argcagtgct<br>a tacgtcacga | C TGACAACGAT<br>G ACTGTTGCTA | G GGGGATCATG<br>C CCCCTAGTAC | C CATACCAAAC<br>G GTATGGTTTG | A CGTTGCGCAA |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------|
| TGAGCACTTT<br>ACTCGTGAAA     | GCCGGGCAAG                   | GGTTGAGTAC<br>CCAACTCATG     | TAAGAGAATT<br>ATTCTCTTAA     | AACTTACTTC<br>TTGAATGAAG     | GCACAACATG<br>CGTGTTGTAC     | TGAATGAAGC<br>ACTTACTTCG     | ATGGCAACAA   |
| TTTCCAATGA<br>AAAGGTTACT     | CCGTATTGAC<br>GGCATAACTG     | AGAATGACTT<br>TCTTACTGAA     | GGCATGACAG<br>CCGTACTGTC     | CACTGCGGCC<br>GTGACGCCGG     | CCGCTTTTTT<br>GGCGAAAAAÄ     | GAACCGGAGC                   | GCCTGTAGCA   |
| CGAAGAACGT<br>GCTTCTTGCA     | CGGTATTATC<br>GCCATAATAG     | CACTATTCTC<br>GTGATAAGAG     | TCTTACGGAT<br>AGAATGCCTA     | TGAGTGATAA<br>ACTCACTATT     | AAGGAGCTAA<br>TTCCTCGATT     | TGATCGTTGG<br>ACTAGCAACC     | ACACCACGAT   |
| GTTTTCGCCC<br>CAAAAGCGGG     | CTATGTGGCG                   | TCGCCGCATA<br>AGCGGCGTAT     | CAGAAAAGCA<br>GTCTTTTCGT     | GCCATAACCA<br>CGGTATTGGT     | CGGAGGACCG<br>GCCTCCTGGC     | TAACTCGCCT<br>ATTGAGCGGA     | GACGAGCGTG   |
| 301                          | 351                          | 401                          | 451                          | 501                          | 551                          | 601                          | 651          |

CATTTTAAT GTAAAAATTA

TTTAAAACTT

AAATTTTGAA

AAATCTAACT

TTTAGATTGA

TCATATAC AGTATATAG

CCAAGTTTAC GGTTCAAATG

1001

AACTGTCAGA TTGACAGTCT

AAGCATTGGT TTCGTAACCA

CTCACTGATT GAGTGACTAA

AGATAGGTGC TCTATCCACG

CAGATCGCTG GTCTAGCGAC

951

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| GCAACGCGTT | AseI |
|------------|------|
| TACCGTTGTT |      |
| CGGACATCGT |      |
| TGTGGTGCTA |      |
| CTGCTCGCAC |      |
| ָ<br>ט     |      |

| TTCCCGGCAA CAATTAATAG    | CACTTCTGCG CTCGGCCCTT    | GGAGCCGGTG AGCGTGGGTC | TGGTAAGCCC TCCCGTATCG | CTATGGATGA ACGAAATAGA    |
|--------------------------|--------------------------|-----------------------|-----------------------|--------------------------|
| AAGGGCCGTT GTTAATTATC    | GTGAAGACGC GAGCCGGGAA    | CCTCGGCCAC TCGCACCCAG |                       | GATACCTACT TGCTTTATCT    |
| TTACTCTÀGC               | GTTGCAGGAC               | TGATAAATCT            | TGGGGCCAGA            | AGTCAGGCAA               |
| AATGAGATCG               | CAACGTCCTG               | ACTATTTAGA            | ACCCCGGTCT            | TCAGTCCGTT               |
| GGCGAACTAC               | GGCGGATAAA               | GGTTTATTGC            | ATTGCAGCAC            | CACGACGGGG               |
| CCGCTTGATG               | CCGCCTATTT               | CCAAATAACG            | TAACGTCGTG            | GTGCTGCCCC               |
| ACTATTAACT<br>TGATAATTGA | ACTGGATGGA<br>TGACCTACCT | CCGGCTGGCT            | TCGCGGTATC            | TAGTTATCTA<br>ATCAATAGAT |
| 701                      | 751                      | 801                   | 851                   | 901                      |
|                          | 5                        | SUBSTITUTE            | SHEET (AUI            | _E 26)                   |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| 1051 | TTAAAAGGAT               | CTAGGTGAAG               | ATCCTTTTTG                     | ATAATCTCAT                             | GACCAAAATC               |
|------|--------------------------|--------------------------|--------------------------------|----------------------------------------|--------------------------|
|      | AATTTTCCTA               | GATCCACTTC               | TAGGAAAAAC                     | TATTAGAGTA                             | CTGGTTTTAG               |
| 1101 | CCTTAACGTG               | AGTTTTCGTT               | CCACTGAGCG                     | TCAGACCCCG                             | TAGAAAAGAT               |
|      | GGAATTGCAC               | TCAAAAGCAA               | GGTGACTCGC                     | AGTCTGGGGC                             | ATCTTTTCTA               |
| 1151 | CAAAGGATCT               | TCTTGAGATC               | CTTTTTTTCT                     | GCGCGTAATC                             | TGCTGCTTGC               |
|      | GTTTCCTAGA               | AGAACTCTAG               | GAAAAAAAGA                     | CGCGCATTAG                             | ACGACGAACG               |
| 1201 | AAACAAAAAA<br>TTTGTTTTTT | ACCACCGCTA<br>TGGTGGCGAT | CCAGCGGTGG                     | TTTGTTTGCC<br>AAACAAACGG               | GGATCAAGAG<br>CCTAGTTCTC |
| 1251 | CTACCAACTC<br>GATGGTTGAG | TTTTTCCGAA<br>AAAAAGGCTT | GGTAACTGGC<br>CCATTGACCG<br>Ec | C TTCAGCAGAG<br>G AAGTCGTCTC<br>Eco57I | CGCAGATACC<br>GCGTCTATGG |
|      | J                        |                          | ?                              | ?<br>?<br>?<br>?                       |                          |
| 1301 | AAATACTGTC               | CTTCTAGTGT               | AGCCGTAGTT                     | AGGCCACCAC                             | TTCAAGAACT               |
|      | TTTATGACAG               | GAAGATCACA               | TĊGGCATCAA                     | TCCGGTGGTG                             | AAGTTCTTGA               |
| 1351 | CTGTAGCACC               | GCCTACATAC               | CTCGCTCTGC                     | TAATCCTGTT                             | ACCAGTGGCT               |
|      | GACATCGTGG               | CGGATGTATG               | GAGCGAGACG                     | ATTAGGACAA                             | TGGTCACCGA               |

|                                                                           | <b>₫</b> Ħ            | () (f)                   | ΗÆ                    |
|---------------------------------------------------------------------------|-----------------------|--------------------------|-----------------------|
|                                                                           | CAAGACGATA            | TCGTGCACAC               | CCTACAGCGT            |
|                                                                           | GTTCTGCTAT            | AGCACGTGTG               | GGATGTCGCA            |
|                                                                           | GGGTTGGACT C          | AACGGGGGT TCGTGCACAC     | AACTGAGATA C          |
|                                                                           | CCCAACCTGA G          | TTGCCCCCCA AGCACGTGTG    | TTGACTCTAT G          |
| (continued)                                                               |                       | GGTCGGGCTG<br>CCAGCCCGAC |                       |
| of pMCS cloning vector (                                                  | GCGATAAGTC GTGTCTTACC | AAGGCGCAGC               | GGAGCGAACG ACCTACACCG |
|                                                                           | CGCTATTCAG CACAGAATGG | TTCCGCGTCG               | CCTCGCTTGC TGGATGTGGC |
| Figure 28: functional map and sequence of pMCS cloning vector (continued) | GCTGCCAGTG            | GTTACCGGAT               | AGCCCAGCTT            |
|                                                                           | CGACGGTCAC            | CAATGGCCTA               | TCGGGTCGAA            |
| Figure 28: fu                                                             | 1401                  | 1451                     | 1501                  |

| CGGACAGGTA                                                                                 | GAGCTTCCAG                                                                                          |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| GCCTGTCCAT                                                                                 | CTCGAAGGTC                                                                                          |
| AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA<br>TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC GCCTGTCCAT | GGCAGGGTCG GAACAGGAGA GCGCACGAGG GAGCTTCCAG<br>CCGTCCCAGC CTTGTCCTCT CGCGTGCTCC CTCGAAGGTC<br>BSSSI |
| GCTTCCCGAA GGGAGAAAGG                                                                      | GAACAGGAGA                                                                                          |
| CGAAGGGCTT CCCTCTTTCC                                                                      | CTTGTCCTCT                                                                                          |
| AAAGCGCCAC                                                                                 | GGCAGGGTCG                                                                                          |
| TTTCGCGGTG                                                                                 | CCGTCCCAGC                                                                                          |
| GAGCTATGAG                                                                                 | TCCGGTAAGC                                                                                          |
| CTCGATACTC                                                                                 | AGGCCATTCG                                                                                          |
| 1551                                                                                       | 1601                                                                                                |
| SUBSTITI                                                                                   | UTE SHEET (RULE :                                                                                   |

| CCACCTCTGA<br>GGTGGAGACT                                                                   | GCCTATGGAA<br>CGGATACCTT                                                                    | TGCTGGCCTT                                  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|
| CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA<br>GACCATAGAA ATATCAGGAC AGCCCAAAGC GGTGGAGACT | GATTTTTGTG ATGCTCGTCA GGGGGGGGGGG GCCTATGGAA<br>CTAAAAACAC TACGAGCAGT CCCCCCGCCT CGGATACCTT | AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT |
| TATAGTCCTG<br>ATATCAGGAC                                                                   | ATGCTCGTCA                                                                                  | TTTACGGTT                                   |
| CTGGTATCTT<br>GACCATAGAA                                                                   | GATTTTTGTG<br>CTAAAAACAC                                                                    | AACGCGGCCT                                  |
| GGGGAAACGC                                                                                 | CTTGAGCGTC<br>GAACTCGCAG                                                                    | AAACGCCAGC                                  |
| 1651                                                                                       | 1701                                                                                        | 1751                                        |

| _         |  |
|-----------|--|
| ontinued  |  |
| ector (co |  |
| cloning v |  |
| f pMCS    |  |
| duence a  |  |
| ap and se |  |
| tional m  |  |
| 8: funci  |  |
| Figure 2  |  |
|           |  |

| BSrGI<br>~~~~<br>CCTGTA<br>3GACAT                                                                                                              | GACGT<br>CTGCA                             | F                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|
| ACGACCGGAA  BSrGI  CCCCCTGTA GGGGGGACAT AALII                                                                                                  | CC CCCCGACGTC<br>GG GGGGCTGCAG<br>EcoRI    | SAA TTCACGT                            |
| AAAATGCCAA GGACCGGAAA  PacI  CCCCCCCTT AATTAACCCC GGGGGGAA TTAATTGGGG                                                                          | G ATCTCCCCCC<br>C TAGAGGGGGG               | CCCCCCGAA TTCACGT<br>GGGGGGCTT AAGTGCA |
| TTGCGCCGGA AAATGCCAA GGACCGGAAA ACGACCGGAA  HindIII  GTAAGCTTCC CCCCCCTT AATTAACCCC CCCCCTGTA  CATTCGAAGG GGGGGGGAA TTAATTGGGG GGGGGACAT  NheI | CCCCCCAG ATCTCCCCCC<br>GGGGGGTC TAGAGGGGGG | CGCATGCCCC<br>GCGTACGGGG               |
| TTGCGCCGGA<br>HindIII<br>~~~~~~<br>GTAAGCTTCC<br>CATTCGAAGG                                                                                    | CCGCTAGCCC                                 | ACCCCCCCC<br>TGGGGGGGGG                |
| TTTGCGGTCG<br>TTGCTCACAT<br>AACGAGTGTA                                                                                                         | CACCCCCCC<br>GTGGGGGGGG                    | CCCCCTCTAG<br>GGGGGAGATC               |
| 1801                                                                                                                                           | 1851                                       | 1901                                   |



SUBSTITUTE SHEET (RULE 28) 89 / 204

Figure 29: functional map and sequence of pCAL module M1

AatII

|                  | S CTCACTCATT AGGCACCCCA GGCTTTACAC | S GAGTGAGTAA TCCGTGGGGT CCGAAATGTG |
|------------------|------------------------------------|------------------------------------|
|                  | AGGCACCCCA                         | TCCGTGGGGT                         |
|                  | CTCACTCATT                         | GAGTGAGTAA                         |
|                  | TGTGAGTTAG                         | ACACTCAATC                         |
| <b>? ? ? ? ?</b> | GACGTCTTAA                         | CTGCAGAATT                         |
|                  | Н                                  |                                    |

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XbaI

GA  $\Gamma$ CGAATTTCTA GCTTAAAGAT TCACACAGGA AACAGCTATG ACCATGATTA TTGTCGATAC TGGTACTAAT AGTGTGTCCT 101



SUBSTITUTE SHEET (RULE 26)

Figure 30: functional map and sequence of pCAL module M7-II (continued)

| FCORT | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |  |
|-------|-----------------------------------------|--|

| CTGTCGCTAC TGATTACGGT GCTGCTATCG ATGGTTTCAT | A GACAGCGATG ACTAATGCCA CGACGATAGC TACCAAAGTA |
|---------------------------------------------|-----------------------------------------------|
| GCTGCTATCG                                  | CGACGATAGC                                    |
| TGATTACGGT                                  | ACTAATGCCA                                    |
| CTGTCGCTAC                                  | GACAGCGATG                                    |
| AAACTTGATT                                  | TTTGAACTAA                                    |
| 151                                         | )                                             |

| CCACTAAAAC | LAA AGGCCGGAAC GATTACCATT ACCACGATGA CCACTAAAAC | GATTACCATT | AGGCCGGAAC | ACCACTGCAA |     |
|------------|-------------------------------------------------|------------|------------|------------|-----|
| GGTGATTTTG | GTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG | CTAATGGTAA | TCCGGCCTTG | TGGTGACGTT | 201 |
|            |                                                 |            |            |            |     |

## XmnI

~~~~~~~~~~

TTAGCCAACT AATCGGTTGA TCCCTCCTC AGGGAGGGAG ATATTTACCT TATAAATGGA TTAATGAATA ATTTCCGTCA TAAAGGCAGT AATTACTTAT 301

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

	GATAAC	TCTTTTATAT AGAAAATATA	GCGTAA		
E E	I"I"I AAAA	TCTT AGAA	TAC1 ATG2		
	TTTGTCTTTG GCGCTGGTAA ACCATATGAA TTTTTTGTT AAAGATAAC	TCTTTGCGTT TCTTTTATAT AGAAACGCAA AGAAAATATA	ATTTTCTACG TTTGCTAACA TACTGCGTAA TAAAAGATGC AAACGATTGT ATGACGCATT		
	GCGCTGGTAA	TTCCGTGGTG AAGGCACCAC	TTATGTATGT ATTTTCTACG AATACATACA TAAAAGATGC		
	TTTGTCTTTG AAACAGAAAC	AATAAACTTA TTCCGTGGTG TTATTTGAAT AAGGCACCAC	TTATGTATGT AATACATACA	HindIII	TGATAAGCTT
gure 30; tunctional map and 2-4-	ATGTCGCCCT A		GTTGCCACCT CAACGGTGGA		TAAGGAGTCT
gure 30: run	351	401	451	·	501

SUBSTITUTE SHEET (RULE 26)

Figure 31: functional map and sequence of pCAL module M9-II (continued)

1	_	1
	-	
į	_	4
٢	C	3
	Ž	
•	_	
	_	4

ATGGCGC AGATTGTGCG	TCTAACACGC
AAA	ACTGG ACACTTCACT TTTTACCGCG TCTAACACGC
AGCTTGACC TGTGAAGTGA	; ACACTTCACT
AAGCTTGACC	TTCGAACTGG
9999999999	ವಾತಾತಾತಾತಾತಿ

FseI PacI

GCCGGCCTGG TTAATTAAAG AATTAATTTC TGTCTGCCGT TGTAAAAAA ACAGACGGCA ACATTTTTT 51

BsrGI

GGGGGGTGT ACAGGGGGGG GGG CCCCCCCACA TGTCCCCCCC CCC

SUBSTITUTE SHEET (AULE 26)

101

SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

NheI

TGACCGCTAC GCGCGCGCCCCCCCCCCCCCCCCCCCCCC	101 CGCTTTCTTC CCTTCCTTTC TCGCCACGTT CGCCGGCTTT CCCCGTCAAG GCGAAAGAAG GGAAGGAAAG AGCGGTGCAA GCGGCCGAAA GGGGCAGTTC 151 CTCTAAATCG GGGCATCCCT TTAGGGTTCC GATTTAGTGC TTTACGGCAC GAGATTTAGC CCCGTAGGGA AATCCCAAGG CTAAATCACG AAATGCCGTG	CTCGACCCCA AAAAACTTGA TTAGGGTGAT GGTTCTCGTA GTGGGCCATC GAGCTGGGT TTTTTGAACT AATCCCACTA CCAAGAGCAT CACCCGGTAG 251 GCCCTGATAG ACGGTTTTTC GCCCTTTGAC GTTGGAGTCC ACGTTCTTTA CGGGAAACTG CAACCTCAGG TGCAAGAAT	ATAGTGGACT TATCACCTGA	AIIICGGCCI
--	---	--	-----------------------	------------

=	
Ç	
€	
=	
.⊑	
₽	
\Box	
0	
Ų.	
<u> </u>	
=	
⇁	
÷	
_	
<	
~	
dule M1	
=	
_	
0	
Ξ	
_	
ب	
۹.	
C	
of pCAL mo	
•	
0	
nal map and sequence o	
٧.	
×	
-	
×	
=	
\sim	
Š	
_	
\succeq	
=	
d	
æ	
=	
_	
=	
ř	
≂	
.≌	
7.	
~	
=	
=	
\sim	
~	
• • •	
ىھ	
≒	
≓	
.≃	•
-	

TAACCAA'I"I''	AAAATATTAA TTTTATAATT
TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT	ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATTTAA TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT
CTAAAACGGC	AATTTAACGC TTAAATTGCG
TAAATATTCC	ATTTAACAAA TAAATTGTTT
ATAAGAAAAC	AAATGAGCTG TTTACTCGAC
	401

BsrGI

TTTACTCGAC TAAATTGTTT

TTCATGTACA AAGTACATGT CGTTTACAAT GCAAATGTTA 451

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

-	1	
۲	4	
$\overline{}$	1	
t	7)
α	7	

T TTCGTTCCAC TGAGCGTCAG	T GAGATCCTTT TTTTCTGCGC A CTCTAGGAAA AAAAGACGCG	A CCGCTACCAG CGGTGGTTTG	T TCCGAAGGTA ACTGGCTACA	C TAGTGTAGCC GTAGTTAGGC	T ACATACCTCG CTCTGCTAAT	SA TAAGTCGTGT CTTACCGGGT	SG CGCAGCGGTC GGGCTGAACG
AACGTGAGTT TTGCACTCAA	GGATCTTCTT CCTAGAAGAA	AAAAAAACCA TTTTTTGGT	CAACTCTTTT GTTGAGAAAA	ACTGTTCTTC TGACAAGAAG	AGCACCGCCT TCGTGGCGGA	CCAGTGGCGA GGTCACCGCT	CCGGATAAGG
AAAATCCCTT TTTTAGGGAA	AAAGATCAAA TTTCTAGTTT	GCTTGCAAAC CGAACGTTTG	CAAGAGCTAC GTTCTCGATG	GATACCAAAT CTATGGTTTA	AGAACTCTGT TCTTGAGACA	GTGGCTGCTG CACCGACGAC	ACGATAGTTA
AGATCTGACC TCTAGACTGG	ACCCCGTAGA TGGGGCATCT	GTAATCTGCT CATTAGACGA	TTTGCCGGAT	GCAGAGCGCA	CACCACTTCA GTGGTGAAGT	CCTGTTACCA GGACAATGGT	TGGACTCAAG
Н	51	101	151	201	251	301	351

CCCGACTTGC	ACACCGAACT TGTGGCTTGA	CCCGAAGGGA GGGCTTCCCT	AGGAGAGCGC TCCTCTCGCG BssSI	1	GTCCTGTCGG CAGGACAGCC	TCGTCAGGGG	ACGGTTCCTG TGCCAAGGAC
GCGTCGCCAG (CGAACGACCT 7 GCTTGCTGGA 1	CGCCACGCTT (GCGGTGCGAA)	GGGTCGGAAC /		TATCTTTATA ATAGAAATAT	TTTGTGATGC	CGGCCTTTTT GCCGGAAAAA
TTCC	CAGCTTGGAG (GTCGAACCTC	TATGAGAAAG ATACTCTTTC	GTAAGCGGCA CATTCGCCGT		AAACGCCTGG TTTGCGGACC	AGCGTCGATT T	GCCAGCAACG CGGTCGTTGC
of pCAL module M14-ExI TGCTATCAAT	GCACACAGCC	CAGCGTGAGC GTCGCACTCG	CAGGTATCCG GTCCATAGGC		TTCCAGGGGG	CTCTGACTTG GAGACTGAAC	ATGGAAAAAC TACCTTTTTG
Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued) ACCTGAGTTC TGCTATCAAT GGCCTA	GGGGGTTCGT	GAGATACCTA	GAAAGGCGGA CTTTCCGCCT		ACGAGGGAGC TGCTCCCTCG BssSI	GTTTCGCCAC	GGCGGAGCCT CCGCCTCGGA
Figure 33: fu	401	451	501		551	601	651

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701

ATATGGGATA GTGTTCACCC TTGTTACACC GTTTTCCATG AGCAAACTGA

351

Figure 34: functional map and sequence of pCAL module M17 (continued)

AatII

A H	\ K L	ပ္ ဖွ	Ηď	4 ti	A:	စ် ပွဲ
AAGATCACTA	AGGAAGCTAA	TCCCAATGGC	ATGTACCTAT	CCGTAAAGAA	GCCCGCCTGA	TGAGCTGGTG
TTCTAGTGAT	TCCTTCGATT	AGGGTTACCG	TACATGGATA	GGCATTTCTT	CGGGCGGACT	ACTCGACCAC
ATAATGAAAT	TCAGGAGCTA	CGTTGATATA	CAGTTGCTCA	TTTTTAAAGA	CGGCCTTTAT TCACATTCTT	TGAAAGACGG
TATTACTTTA	AGTCCTCGAT	GCAACTATAT	GTCAACGAGT	AAAAATTTCT	GCCGGAAATA AGTGTAAGAA	ACTTTCTGCC
AACTTTCACC	ATCGAGATTT	GATATACCAC	GCATTTCAGT	TATTACGGCC	CGGCCTTTAT	CGTATGGCAA
TTGAAAGTGG	TAGCTCTAAA	CTATATGGTG	CGTAAAGTCA	ATAATGCCGG	GCCGGAAATA	GCATACCGTT
GTGAGGTTCC	TTTTTGAGTT	AAAATCACTG	ACATTTTGAG	TTCAGCTGGA	AAGTTTTATC.	CCCGGAGTTC
CACTCCAAGG	AAAAACTCAA	TTTTAGTGAC	TGTAAAACTC	AAGTCGACCT	TTCAAAATAG	GGGCCTCAAG
GGGACGTCGG	CCGGGCGTAT	AATGGAGAAA	ATCGTAAAGA	AACCAGACCG	AAATAAGCAC	TGAATGCTCA
	GGCCCGCATA	TTACCTCTTT	TAGCATTTCT	TTGGTCTGGC	TTTATTCGTG	ACTTACGAGT
Н	51	101	151	201	251	301

SUBSTITUTE SHEET (RULE 26) -104 / 204

(continued)
7
Ξ
يو
ą
õ
L L
₹
ď
o
il map and sequence of pCAL module M17 (continu
and
map
: functional
4
3
Ę
Figure 34:
ш.

1.901.034.	TATACCCTAT	r cacaagtee aaci	AACAATGTGG	CAAAAGGTAC	TCGTTTGACT
401	AACGTTTTCA	TCGCTCTGGA AGCGAGACCT	GTGAATACCA CACTTATGGT	CGACGATTTC GCTGCTAAAG	CGGCAGTTTC GCCGTCAAAG
451	TACACATATA ATGTGTATAT	TTCGCAAGAT AAGCGTTCTA	GTGGCGTGTT	ACGGTGAAAA TGCCACTTTT	CCTGGCCTAT GGACCGGATA
501	TTCCCTAAAG AAGGGATTTC	GGTTTATTGA CCAAATAACT	GAATATGTTT CTTATACAAA	TTCGTCTCAG AAGCAGAGTC	CCAATCCCTG GGTTAGGGAC
551	GGTGAGTTTC	ACCAGTTTTG TGGTCAAAAC	ATTTAAACGT TAAATTTGCA	AGCCAATATG TCGGTTATAC	GACAACTTCT CTGTTGAAGA
601	TCGCCCCCGT	TTTCACTATG AAAGTGATAC	GGCAAATATT CCGTTTATAA	ATACGCAAGG TATGCGTTCC	CGACAAGGTG GCTGTTCCAC
651	CTGATGCCGC GACTACGGCG	TGGCGATTCA ACCGCTAAGT	GGTTCATCAT CCAAGTAGTA	GCCGTTTGTG CGGCAAACAC	ATGGCTTCCA TACCGAAGGT
701	TGTCGGCAGA ACAGCCGTCT	ATGCTTAATG TACGAATTAC	AATTACAACA TTAATGTTGT	GTACTGCGAT CATGACGCTA	GAGTGGCAGG CTCACCGTCC
751	GCGGGGCGTA	ATTTTTTAA	GGCAGTTATT	GGGTGCCCTT	AAACGCCTGG

Figure 34: functional map and sequence of pCAL module M17 (continued)

TAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC CGCCCCGCAT

BglII

TGCTAGATCT 801

TCC ACGATCTAGA

SUBSTITUTE SHEET (RULE 28) 107 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

EcoRI

1 1 1 1				
 AATTCGAGCA	GAAGCTGATC	TCTGAGGAGG	ATCTGTAGGG	C TCTGAGGAGG ATCTGTAGGG TGGTGGCTCT
TTAAGCTCGT	CTTCGACTAG	AGACTCCTCC	TAGACATCCC	T CTTCGACTAG AGACTCCTCC TAGACATCCC ACCACCGAGA

ATTTTGATTA TGAAAGATG GCAAACGCTA ATAAGGGGGC TAAAACTAAT ACTTTTCTAC CGTTTGCGAT TATTCCCCCG	C GCTAAAGGCA
GCAAACGCT	ACAGTCTGA
ATTTTGATTA TGAAAAGATG TAAAACTAAT ACTTTTCTAC	AATGCCGATG AAAACGCGCT ACAGTCTGAC
	AATGCCGATG
GGTTCCGGTG CCAAGGCCAC	TATGACCGAA
51	101

TGGTTTCATT ACCAAAGTAA	C TGTCGCTACT GATTACGGTG CTGCTATCGA TGGTTTCATT G ACAGCGATGA CTAATGCCAC GACGATAGCT ACCAAAGTAA	GATTACGGTG CTAATGCCAC	TGTCGCTACT	AACTTGATTC TTGAACTAAG	151
TATGACCGAA AATGCCGATG AAAACGCGCT ACAGICIGAC GCIAAAGGCA	ACAGICIGAC	AAAACGCGCT	AATGCCGATG	TATGACCGAA	101
ATACTGGCTT TTACGGCTAC TTTTGCGCGA TGTCAGACTG CGATTTCCGT	TGTCAGACTG	TTTTGCGCGA	TTACGGCTAC	ATACTGGCTT	

01 GGTGACGTTT CCGGCCTTGC TAATGGTAAT GGTGCTACTG GTGATTTTGC

XmnI

ATCGGTTGAA TAGCCAACTT CCCTCCCTCA GGGAGGGAGT TATTTACCTT ATAAATGGAA TTTCCGTCAA AAAGGCAGTT ATTACTTATT TAATGAATAA 301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

351	TGTCGCCCTT ACAGCGGGAA	TTGTCTTTGG AACAGAAACC	CGCTGGTAAA GCGACCATTT	CCATATGAAT GGTATACTTA	TTTCTATTGA AAAGATAACT
401	TTGTGACAAA AACACTGTTT	ATAAACTTAT TATTTGAATA	TCCGTGGTGT AGGCACCACA	CTTTGCGTTT GAAACGCAAA	CTTTTATATG GAAAATATAC
451	TTGCCACCTT AACGGTGGAA	TATGTATGTA ATACATACAT	TTTTCTACGT AAAAGATGCA	TTGCTAACAT AACGATTGTA	ACTGCGTAAT TGACGCATTA
501	AAGGAGTCTT TTCCTCAGAA	HindIII ~~~~~ GATAAGCTTG CTATTCGAAC	ACCTGTGAAG TGGACACTTC	TGAAAAATGG ACTTTTTACC	CGCAGATTGT GCGTCTAACA
			PacI		FSET
551	GCGACATTTT CGCTGTAAAA	TTTTGTCTGC		AAGGGGGGG	9922992222 2299229999
		BsrGI			٠.
601	TGGGGGGGGG	TGTACATGAA ACATGTACTT	ATTGTAAACG TAACATTTGC	TTAATATTTT AATTATAAAA	GTTAAAATTC CAATTTTAAG

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

AGGCCGAAAT TCCGGCTTTA	GGGTTGAGTG CCCAACTCAC	GGACTCCAAC CCTGAGGTTG	TACGAGAACC ATGCTCTTGG	GCACTAAATC CGTGATTTAG	AAAGCCGGCG	GCGCTAGGGC
TTTAACCAAT P AAATTGGTTA I	GACCGAGATA C	TAAAGAACGT C ATTTCTTGCA C	GATGGCCCAC 1 CTACCGGGTG 1	GTGCCGTAAA C	CTTGACGGGG A	AAAGGAGCGG (TTTCCTCGCC
CAGCTCATTT G GTCGAGTAAA	CAAAAGAATA GTTTTCTTAT	AGTCCACTAT TCAGGTGATA	CTATCAGGGC GATAGTCCCG	TGGGGTCGAG ACCCCAGCTC	CGATTTAGAG GCTAAATCTC	GAAGAAAGCG CTTCTTTCGC
TTTGTTAAAT AAACAATTTA	CCTTATAAAT GGAATATTTA	TTGGAACAAG	GAAAAACCGT CTTTTTGGCA	TCAAGTTTTT AGTTCAAAAA	Banii ~~~~~~ AGGGAGCCCC TCCCTCGGGG	GAAAGGAAGG CTTTCCTTCC
GCGTTAAATT CGCAATTTAA	CGGCAAAATC GCCGTTTTAG	TTGTTCCAGT AACAAGGTCA	GTCAAAGGGC CAGTTTÇCCG	ATCACCCTAA TAGTGGGATT	GGAACCCTAA CCTTGGGATT	AACGTGGCGA TTGCACCGCT
651	701	751	801	851	901	951

	T GTAGCGGTCA CGCTGCGCGT AACCACCACA CCCGCCGCGC	CATCGCCAGT GCGACGCGCA TTGGTGGTGT GGGCGGCGCGCG
	AACCACCACA	TTGGTGGTGT
.4 (continued)	CGCTGCGCGT	GCGACGCGCA
quence of modular vector pCAL4 (continued)	GTAGCGGTCA	CATCGCCAGT
Figure 35: functional map and sequence	TUCCOARCE	CONTRACT
Figure 35: fu	1001	T 0 0 T

GCTACAGGGC GCGTGCTAGC CATGTGAGCA AAAGGCCAGC CGATGTCCCG CGCACGATCG GTACACTCGT TTTCCGGTCG	S GAACCGTAAA AAGGCCGCGT TGCTGGCGTT TTTCCATAGG
GCTACAGGGC CGATGTCCCG	GAACCGI
TTAATGCGCC	AAAAGGCCAG
1051	1101
	;

TTTCCATAGG AAAGGTATCC	GTCAGAGGTG CAGTCTCCAC	CCTGGAAGCT GGACCTTCGA
GAACCGTAAA AAGGCCGCGT TGCTGGCGTT TTTCCATAGG CTTGGCATTT TTCCGGCGCA ACGACCGCAA AAAGGTATCC	CTGACGAGCA TCACAAAAT CGACGCTCAA GTCAGAGGTG GACTGCTCGT AGTGTTTTTA GCTGCGAGTT CAGTCTCCAC	ACAGGACTAT AAAGATACCA GGCGTTTCCC TGTCCTGATA TTTCTATGGT CCGCAAAGGG
AAGGCCGCGT TTCCGGCGCA	TCACAAAAAT AGTGTTTTTA	ACAGGACTAT AAAGATACCA TGTCCTGATA TTTCTATGGT
GAACCGTAAA CTTGGCATTT	CTGACGAGCA	ACAGGACTAT TGTCCTGATA
AAAAGGCCAG TTTTCCGGTC	CTCCGCCCCC	GCGAAACCCG CGCTTTGGGC
1101	1151	1201
SUBS	STITLITE SH	ET (RULE 2

ATACCTGTCC TATGGACAGG	CACGCTGTAG GTGCGACATC
CGCTTACCGG AS GCGAATGGCC TA	CTTCGGGAAG CGTGGCGCTT TCTCATAGCT CACGCTGTAG
CCGACCCTGC GGCTGGGACG	CGTGGCGCTT GCACCGCGAA
CTCTCCTGTT GAGAGGACAA	CTTCGGGAAG
CCCTCGTGCG	GCCTTTCTCC
1251	1301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

1351	GTATCTCAGT	TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG
	CATAGAGTCA	AGCCACATCC	AGCAAGCGAG	GTTCGACCCG	ACACACGTGC
1401	AACCCCCCGT	TCAGCCCGAC	CGCTGCGCCT	TATCCGGTAA	CTATCGTCTT
	TTGGGGGGGCA	AGTCGGGCTG	GCGACGCGGA	ATAGGCCATT	GATAGCAGAA
1451	GAGTCCAACC	CGGTAAGACA	CGACTTATCG	CCACTGGCAG	CAGCCACTGG
	CTCAGGTTGG	GCCATTCTGT	GCTGAATAGC	GGTGACCGTC	GTCGGTGACC
1501	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA
	ATTGTCCTAA	TCGTCTCGCT	CCATACATCC	GCCACGATGT	CTCAAGAACT
1551	AGTGGTGGCC	TAACTACGGC	TACACTAGAA	GAACAGTATT	TGGTATCTGC
	TCACCACCGG	ATTGATGCCG	ATGTGATCTT	CTTGTCATAA	ACCATAGACG
1601	GCTCTGCTGT	AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC
	CGAGACGACA	TCGGTCAATG	GAAGCCTTTT	TCTCAACCAT	CGAGAACTAG
1651	CGGCAAACAA GCCGTTTGTT	ACCACCGCTG TGGTGGCGAC	GTAGCGGTGG CATCGCCACC	TTTTTTTGTT AAAAAAACAA	TGCAAGCAGC
1701	AGATTACGCG	CAGAAAAAAA	GGATCTCAAG	AAGATCCTTT	GATCTTTTCT
	TCTAATGCGC	GTCTTTTTT	CCTAGAGTTC	TTCTAGGAAA	CTAGAAAAGA

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

1751	. 18		O TUTE SHEET		20	20
51	1801	1851	1901	1951	2001	2051
ACGGGGTCTG TGCCCCAGAC	BglII ~~~~~CAGATCTAGC GTCTAGATCG	TACGCCCCGC	TCTGCCGACA AGACGGCTGT	GCGGCATCAG CGCCGTAGTC	ACGGGGGCGA TGCCCCCGCT	GAAACTCACC CTTTGAGTGG
ACGCTCAGTG TGCGAGTCAC	ACCAGGCGTT TGGTCCGCAA	CCTGCCACTC	TGGAAGCCAT ACCTTCGGTA	CACCTTGTCG	AGAAGTTGTC TCTTCAACAG	CAGGGATTGG GTCCCTAACC
GAACGAAAAC CTTGCTTTTG	TAAGGGCACC ATTCCCGTGG	ATCGCAGTAC TAGCGTCATG	CACAAACGGC GTGTTTGCCG	CCTTGCGTAT GGAACGCATA	CATATTGGCT GTATAACCGA	CTGAGACGAA GACTCTGCTT
TCACGTTAAG AGTGCAATTC	AATAACTGCC TTATTGACGG	TGTTGTAATT ACAACATTAA	ATGATGAACC TACTACTTGG	AATATTTGCC TTATAAACGG	ACGTTTAAAT TGCAAATTTA	AAACATATTC TTTGTATAAG
GGATTTTGGT CCTAAAACCA	TTAAAAAAT AATTTTTTA	CATTAAGCAT GTAATTCGTA	TGAATCGCCA ACTTAGCGGT	CATAGTGAAA GTATCACTTT	CAAAACTGGT GTTTTGACCA	TCAATAAACC AGTTATTTGG

	Figure 35: fu 2 1 0 1	Figure 35: functional map and sequence of modular vector pCAL4 (continued)	e of modular vector pCAL4 ATAGGCCAGG	l (continued) TTTTCACCGT	AACACGCCAC	ATCTTGCGAA
	1 1 1	GAAATCCCTT	TATCCGGTCC	AAAAGTGGCA	TTGTGCGGTG	TAGAACGCII
	2151	TATATGTGTA ATATACACAT	GAAACTGCCG CTTTGACGGC	GAAATCGTCG CTTTAGCAGC	TGGTATTCAC ACCATAAGTG	TCCAGAGCGA AGGTCTCGCT
	2201	TGAAAACGTT ACTTTTGCAA	TCAGTTTGCT AGTCAAACGA	CATGGAAAAC GTACCTTTTG	GGTGTAACAA CCACATTGTT	GGGTGAACAC CCCACTTGTG
	2251	TATCCCATAT ATAGGGTATA	CACCAGCTCA	CCGTCTTTCA GGCAGAAAGT	TTGCCATACG AACGGTATGC	GAACTCCGGG CȚTGAGGCCC
	2301	TGAGCATTCA ACTCGTAAGT	TCAGGCGGGC	AAGAATGTGA TTCTTACACT	ATAAAGGCCG TATTTCCGGC	GATAAAACTT CTATTTTGAA
(DIN = 00)	2351	GTGCTTATTT CACGAATAAA	TTCTTTACGG	TCTTTAAAAA AGAAATTTTT	GGCCGTAATA	TCCAGCTGAA AGGTCGACTT
	2401	CGGTCTGGTT	ATAGGTACAT TATCCATGTA	TGAGCAACTG ACTCGTTGAC	ACTGAAATGC TGACTTTACG	CTCAAAATGT GAGTTTTACA
	2451	TCTTTACGAT AGAAATGCTA	GCCATTGGGA	TATATCAACG ATATAGTTGC	GTGGTATATC CACCATATAG	CAGTGATTTT GTCACTAAAA

	AACTCAAAAA TTGAGTTTTT	GGAACCTCAC CCTTGGAGTG
	TTAGCTTCCT TAGCTCCTGA AAATCTCGAT AACTCAAAAAAAATCGAAGGA ATCGAGGACT TTTAGAGCTA TTGAGTTTTT	TAGTGATCTT ATTTCATTAT GGTGAAAGTT GGAACCTCAC ATCACTAGAA TAAAGTAATA CCACTTTCAA CCTTGGAGTG
.4 (continued)	TAGCTCCTGA ATCGAGGACT	ATTTCATTAT TAAAGTAATA
nce of modular vector pCAL4 (continued)	TTAGCTTCCT AATCGAAGGA	TAGTGATCTT ATCACTAGAA
Figure 35: functional map and sequenc	TTTCTCCATT AAAGAGGTAA	ATACGCCCGG TATGCGGGCC
Figure 35: fu	2501	2551

		TTACA	TCCGAAATGT
		AGGCI	TCCGA
		TAGGCACCCC AGGCTTTACA	ATCCGTGGGG
		ATGTGAGTTA GCTCACTCAT	CGAGTGAGTA
		ATGTGAGTTA	TACACTCAAŢ
AACII	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CCGACGTCTA	GGCTGCAGAT
		2601	
			CHRC

SATAACAAT STATTGTTA Sphi	CCGGCTCGTA TGTTGTGTGG AATTGTGAGC GGATAACAAT GGCCGAGCAT ACAACACCC TTAACACTCG CCTATTGTTA Xbal Sphl	TGTTGTGTGG ACAACACACC	CCGGCTCGTA GGCCGAGCAT	CTTTATGCTT GAAATACGAA	2651
CGAAATGT	ATGTGAGTTA GCTCACTCAT TAGGCACCCC AGGCTTTACA TACACTCAAT CGAGTGAGTA ATCCGTGGGG TCCGAAATGT	GCTCACTCAT	ATGTGAGTTA TACACTCAAT	CCGACGTCTA GGCTGCAGAT	2601

GAGCATGCG	CTCGTACGC
AAACAGCTAT GACCATGATT ACGAATTTCT AGAGCATGCG	TITGICGATA CIGGIACTAA IGCITAAAGA ICTCGIACGC
GACCATGATT	CTGGTACTAA
AAACAGCTAT	TTTGTCGATA
TTCACACAGG	AAGTGTGTCC
2701	

EcoRI

22222 2751

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26) 116 / 204

WO 97/08320 PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

AatII

CCGAAATGTG GGCTTTACAC AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT

CTATTGTTAA GATAACAATT ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT GCCGAGCATA CGGCTCGTAT TTTATGCTTC AAATACGAAG 51

XbaI

XmnI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SphI

ACG TGC TCAATAGCGT AGTTATCGCA CGCTATACGA GCGATATGCT

51

SUBSTITUTE SHEET (RULE 26)

101

AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ო Σ BglII

11111

ACTGCAG TGACGTC TACGAAGTTA ATGCTTCAAT TACATACGAT ATGTATGCTA ACTTCGTATA TGAAGCATAT TCTAGAGTAT AGATCTCATA

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

:(long):

ECORI

1 51 101 151 201	GAATTCGGTG CTTAAGCCAC AGCAAAATCC TCGTTTTAGG AAACTTTAGA TTTGAAATCT GGCGTTGTAG CCGCAACATC TCCTATTGGG	GTGGTGGATC CACCACCTAG CATACAGAAA GTATGTCTTT AGCAATGCGA AAACATGACC CTTGCTATCC	TGCGTGCGCT ACGCACGCGA ATTCATTTAC TAAGTAAATG TTGATACTCC TGACGAAACT ACTGCTTTGA CTGAAAATGA GACTTTTACT	GAAACGGTTG CTTTGCCAAC TAACGTCTGG ATTGCAGACC GCTGTCTGTG CGACAGACAC CGACAGACAC CGACAGACAC CAGTGTTACG GTCACAATGC	AAAGTTGTTT TTTCAACAAA AAAGACGACA TTTCTGCTGT GAATGCTACA CTTACGATGT CATGTACCCA TCTGAGGGTG
	GCGGTTCTGA		TCTGAGGGTG AGACTCCCAC	GCGGTACTAA	ACCTCCTGAG TGGAGGACTC
301	TACGGTGATA	CACCTATTCC GTGGATAAGG	GGGCTATACT	TATATCAACC ATATAGTTGG	CTCTCGACGG GAGAGCTGCC

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AATCCTTCTC TTAGGAAGAG	TAATAGGTTC ATTATCCAAG	TTACTCAAGG AATGAGTTCC	TCATCAAAAG AGTAGTTTTC	CGCTTTCCAT GCGAAAGGTA	GCCAATCGTC	GGTGGTGGTT	TTCTGAGGGT
CGCTAATCCT GCGATTAGGA	TGTTTCAGAA ACAAAGTCTT	ACGGGCACTG TGCCCGTGAC	CACTCCTGTA GTGAGGACAT	TCAGAGACTG AGTCTCTGAC	GAATATCAAG	CGGCGGCTCT	AGGGTGGCGG TCCCACCGCC
AGCAAAACCC	AATACTTTCA	AACTGTTTAT	ATTACCAGTA	AACGGTAAAT	ATTTGTTTGT	TCAATGCTGG	GGTGGCTCTG
TCGTTTTGGG	TTATGAAAGT	TTGACAAATA	TAATGGTCAT	TTGCCATTTA	TAAACAAACA	AGTTACGACC	CCACCGAGAC
CCTGGTACTG	TCAGCCTCTT	AGGGGGCATT	GTTAAAACTT	CGCTTACTGG	ATGAGGATTT	CAACCTCCTG	CTCTGAGGGT
GGACCATGAC	AGTCGGAGAA	TCCCCCGTAA	CAATTTTGAA	GCGAATGACC	TACTCCTAAA	GTTGGAGGAC	GAGACTCCCA
CACTTATCCG	TTGAGGAGTC	CGAAATAGGC	CACTGACCCC	CCATGTATGA	TCTGGCTTTA	TGACCTGCCT	CTGGTGGCGG
GTGAATAGGC	AACTCCTCAG	GCTTTATCCG	GTGACTGGGG	GGTACATACT	AGACCGAAAT	ACTGGACGGA	GACCACCGCC
351	401	451	501	551	601	651	701

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCGGTGATTT GGCCACTAAA	ACCGAAAATG TGGCTTTTAC	TGATTCTGTC ACTAAGACAG	ACGTTTCCGG TGCAAAGGCC	TCTAATTCCC AGATTAAGGG	XmnI	GAATAATTTC CTTATTAAAG	GCCCTTTTGT CGGGAAAACA
GGCTCTGGTT CCGAGACCAA	GGGGGCTATG CCCCCGATAC	AAGGCAAACT TTCCGTTTGA	TTCATTGGTG AAGTAACCAC	TTTTGCTGGC		CACCTTTAAT GTGGAAATTA	GTTGAATGTC CAACTTACAG
TTCCGGTGGT AAGGCCACCA	ACGCTAATAA TGCGATTATT	TCTGACGCTA AGACTGCGAT	TATCGATGGT ATAGCTACCA	CTACTGGTGA GATGACCACT		GGTGATAATT CCACTATTAA	CCCTCAATCG GGGAGTTAGC
AGGGAGGCGG TCCCTCCGCC	AAGATGGCAA TTCTACCGTT	CGCGCTACAG GCGCGATGTC	ACGGTGCTGC TGCCACGACG	GGTAATGGTG CCATTACCAC		AGTCGGTGAA TCAGCCACTT	TACCTTCCAT ATGGAAGGTA
GGCGGCTCTG	TGATTATGAA ACTAATACTT	CCGATGAAAA GGCTACTTTT	GCTACTGATT CGATGACTAA	CCTTGCTAAT GGAACGATTA		AAATGGCTCA TTTACCGAGT	CGTCAATATT
751	801	851	901	951		1001	1051
			SUESTITU	TE SHEET (F	NULE 26)		

ors (continued)	
nd pCAL vecto	
ector modules an	
ional pCAL vec	•
ences of addit	
maps and seque	
a: Functional	
Figure 35	

CTGTTTTATT	CACCTTTATG GTGGAAATAC	HindIII
	TATATGTTGC CAC ATATACAACG GTG	
TC TATTC AG ATAAC	TT TATA1 AA ATAT <i>1</i>	
ATGAATTTTC TACTTAAAAG	GCGTTTCTTT	
GGTAAACCCT ATGAATTTTC TATTGATTGT CCATTTGGGA TACTTAAAAG ATAACTAACA	TGGTGTCTTT GCGTTTCTTT TATATGTTGC ACCACAGAAA CGCAAAGAAA ATATACAACG	
CTTTGGCGCT	ACTTATTCCG TGAATAAGGC	
1101	1151	

CTACGTTTGC GATGCAAACG ATACATAAAA

TATGTATTTT

1201

AGTCTTGATA TCAGAACTAT

CGTAATAAGG GCATTATTCC

TAACATACTG ATTGTATGAC

TCGAA AGCTT HindI 1111 1251

SUBSTITUTE SHEET (RULE 26)

124 / 204 ·

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-II (ss-TAG):

ECORI

GTGATTTTGA	CACTAAAACT
GAGGCGGTTC CGGTGGTGGC TCTGGTTCCG GT(G GCCACCACCG AGACCAAGGC C
CGGTGGTGGC	GCCACCACCG
GAGGCGGTTC	CTCCGCCAAG
ATTCG	LTAAGC
_	•

ATGGCAAACG CTAATAAGGG GGCTATGACC GAAAATGCCG	CTTTTACGGC
GGCTATGACC	CCGATACTGG
CTAATAAGGG	GATTATTCCC C
ATGGCAAACG	TACCGTTTGC
GAAAAG	CTTTTC
51	}

TTC	AAGACAGCGA
GACGCTAAAG GCAAACTTGA	CGTTTGAACT
GACGCTAAAG	CTGCGATTTC C
CTACAGICI	CGATGTCAGA
ATGAAAACGC	TACTTTTGCG
101	ł
JBS	עדוז

TTTCCGGCCT	
CGATGGTTTC ATTGGTGACG TTTCCGGCCTA GCTACCAAAG TAACCACTGC AAAGGCCGGA	
CGATGGTTTC CGATAG	
GTGCTGCTAT CACGACGATA	
ACTGATTACG TGACTAATGC	
151 (R)	•

TGCTGGCTCT AATTCCCAAA	TTAAGGGTTT
IT IGCIGGCICI AATICCCAA	ACGACCGAGA
CTGGTGATTT	GACCACTAAA
AATGGTGCTA (TTACCACGAT
TGCTAATGGT	ACGATTACCA
201	
26)

GT CGGTGACGGT GATAATTCAC CTTTAATGAA TAATTTCCGT	ATTAAAGGCA
CTTTAATGAA	GAAATTACTT
GATAATTCAC	CTATTAAGTG
CGGTGACGGT	GCCACTGCCA
TGGCTCAAGT	CCGAGTT
251)

SUBSTITUTE SHEET (RULE 26 126 / 204

	۲
	רַ
	۲
	-
	1
g	4
ĕ	A
additional pCAL vector modules and pCAL vectors (continued)	SUPPER 45 PROCES 45 PROCESS
ē	_
Š	Ē
₫	֖֭֭֚֡֞֝֜֜֝֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֡֡
) V	r
یک	ī
S	È
d D	~
aŭ	6
S	ֻ כ
Ē	E
ĕ	r
ī	ì
55	(
Š	•
A	(
d	(
æ	ì
<u>6</u>	j
dit	į
ą	
50	
Š	
ũ	
n	
Sec	
٦	}
7	•
Š	ŗ
Ë	
-	5
<u>.</u>	5
ţ	ز
	5
sear Eusepional mans and sequences of additional pCAL ve	- 0
ù	n n
ġ	ש
	g
ï	Ξ

GTT GAATGTCGCC CTTTTGTCTT CAA CTTACAGCGG GAAAACAGAA	TAT TGATTGTGAC AAAATAAACT ATA ACTAACACTG TTTTATTTGA	TAT ATGTTGCCAC CTTTATGTAT ATA TACAACGGTG GAAATACATA	HindIII CGT AATAAGGAGT CTTGATAAGC GCA TTATTCCTCA GAACTATTCG	
TCAATCGGTT AGTTAGCCAA	AATTTTCTAT TTAAAAGATA	TTTCTTTTAT AAAGAAAATA	CATACTGCGT GTATGACGCA	
ပ္ ပ္	AAACCATATG TTTGGTATAC	TGTCTTTGCG ACAGAAACGC	CGTTTGCTAA GCAAACGATT	
e 35a: Functional maps and sequences of auditorial post accorded 301 CAATATTTAC CTTCCCTCC GTTATAAATG GAAGGGAGG	TGGCGCTGGT	TATTCCGTGG	GTATTTTCTA CATAAAAGAT Hi	₩
sa: Functional 301	351	401	451	501
ف ب <u>ي</u>			SUBSTITUTE SHEET	(RULE 2

HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ∞ Σ SphI

11111

TAAGCTT TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA

SUBSTITUTE SHEET (RULE 26)
130 / 204

TAAAGTTCTG ATTTCAAGAC

TGAGCACTTT ACTCGTGAAA

TTTCCAATGA

GTTTTCGCCC CGAAGAACGT

251

CAAAAGCGGG

XmnI

GCTTCTTGCA AAAGGTTACT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

BsrGI

ATCCTTGAGA	CAGCGGTAAG	TGGATCTCAA	TACATCGAAC	GCGAGTGGGT	201
TAGGAACTCT	GTCGCCATTC	ACCTAGAGTT	ATGTAGCTTG	CGCTCACCCA	
AGTTGGGTGC	GCTGAGGATC	AGTAAAAGAT	CGCTGGTGAA	CACCCAGAAA	151
TCAACCCACG	CGACTCCTAG	TCATTTTCTA	GCGACCACTT	GTGGGTCTTT	
TGTTTTTGCT ACAAAAACGA	TTTGCCTTCC AAACGGAAGG	TTTGCGGCAT	TATTCCCTTT ATAAGGGAAA	GTGTCGCCCT	101
CAACATTTCC	TATGAGTATT	AAAGGAAGAG	TAATATTGAA	AATGCTTCAA	51
GTTGTAAAGG	ATACTCATAA	TTTCCTTCTC	ATTATAACTT	TTACGAAGTT	
AACCCTGATA TTGGGACTAT	ATGAGACAAT AACCCTGATA TACTCTGTTA TTGGGACTAT	ATTCAAATAT GTATCCGCTC TAAGTTTATA CATAGGCGAG	АТТСАААТАТ ТААGТТТАТА	GGGGGTGTAC	~

SUBSTITUTE SHEET (RULE 26)

ভ	
يو	
⊋	
.≒	
Ξ	
ō	
ပ	
S	
Ξ	
≅	
2	
۶	
⋖	
Õ	
O.	
ō	
Ē	
L vector modules and pCAL vectors (conti	
=	
Ð	
ō	
Ε	
_	
0	
ຽ	
ق	
>	
\Rightarrow	
\tilde{c}	
ā	
=	
33	
ō	
:=	
ë	
Ö	
æ	
<u>~</u>	
S	
\bar{c}	
Š	
0	
မွ	
-	
2	
CO	
~	
믔	
Ĕ	
ional maps and sequences of additiona	
7	
=	
.0	
$\ddot{}$	
č	
.⊃	
ш.	
Š	
m	
Figure	
5	
٠Ē	
ĬĨ.	

301 CTATGTGGCG CGGTATTATC GATACCGC GCCATAATAG	351 TCGCCGCATA CACTATTCTC AGCGCGTAT GTGATAAGAG	401 CAGAAAAGCA TCTTACGGAT GTCTTTTCGT AGAATGCCTA	451 GCCATAACCA TGAGTGATAA GGGTATTGGT ACTCACTATT	501 CGGAGGACCG AAGGAGCTAA GCCTCCTGGC TTCCTCGATT	551 TAACTCGCCT TGATCGTTGG	601 GACGAGCGTG ACACCACGAT CTGCTCGCAC TGTGGTGCTA	
CCGTATTGAC	AGAATGACTT	GGCATGACAG	CACTGCGGCC GTGACGCCGG	CCGCTTTTTT GGCGAAAAAA	GAACCGGAGC	GCCTGTAGCA	TTACTCTAGC
GCCGGGCAAG CGGCCCGTTC	GGTTGAGTAC CCAACTCATG	TAAGAGAATT ATTCTCTTAA	AACTTACTTC TTGAATGAAG	GCACAACATG CGTGTTGTAC	TGAATGAAGC ACTTACTTCG	ATGGCAACAA TACCGTTGTT	TTCCCGGCAA
AGCAACTCGG TCGTTGAGCC	TCACCAGTCA AGTGGTCAGT	ATGCAGTGCT	TGACAACGAT ACTGTTGCTA	GGGGATCATG CCCCTAGTAC	CATACCAAAC GTATGGTTTG	CGTTGCGCAA	CAGTTAATAG

g G
Ē
Ę
8
2
8
Š
¥
g
g
Sal
를
ğ
Ē
ğ
λ
ĺ
ರ್ಷ
声
Ü
<u>=</u>
aqu
o
ies S
enc
ğ
Se
nd
SS
υaβ
<u>=</u>
ů
ĊĘ.
Ë
9: F
35,
۳
<u>j</u>
üΞ

CTCGGCCCTT	AGCGTGGGTC	TCCCGTATCG	ACGAAATAGA	TAACTGTCAG	TCATTTTAA	TGACCAAAAT	GTAGAAAAGA
	TCGCACCCAG	AGGGCATAGC	TGCTTTATCT	ATTGACAGTC	AGTAAAAATT	ACTGGTTTTA	CATCTTTTCT
CACTTCTGCG	GGAGCCGGTG	TGGTAAGCCC	CTATGGATGA	AAGCATTGGG	ATTTAAAACT	GATAATCTCA	GTCAGACCCC
GTGAAGACGC	CCTCGGCCAC	ACCATTCGGG	GATACCTACT		TAAATTTTGA	CTATTAGAGT	CAGTCTGGGG
GTTGCAGGAC	TGATAAATCT ACTATTTAGA	TGGGGCCAGA	AGTCAGGCAA TCAGTCCGTT	CTCACTGATT GAGTGACTAA	CTTTAGATTG GAAATCTAAC	GATCCTTTTT CTAGGAAAAA	TCCACTGAGC AGGTGACTCG
GGCGGATAAA	GGTTTATTGC	ATTGCAGCAC	CACGACGGGG	AGATAGGTGC	СТСАТАТАТА	TCTAGGTGAA	GAGTTTTCGT
	CCAAATAACG	TAACGTCGTG	GTGCTGCCCC	TCTATCCACG	GAGTATATAT	AGATCCACTT	CTCAAAAGCA
701 ACTGGATGGA	CCGGCTGGCT	TCGCGGTATC	TAGTTATCTA	CAGATCGCTG	ACCAAGTTTA	TTTAAAAGGA	CCCTTAACGT
TGACCTACCT		AGCGCCATAG	ATCAATAGAT	GTCTAGCGAC	TGGTTCAAAT	AAATTTTCCT	GGGAATTGCA
701	751	801	851	901	951	1001	1051

6
ق
5
Ξ
Ξ
ຽ
٠
Ē
2
ູ
>
ڀ
⋖
<u>ح</u>
=
ĕ
B
S
É
ಠ
2
⊏
Ä
¥
ຽ
>
\Rightarrow
Ö
₫
=
Ë
.0
≝
꽂
ĕ
<u>ب</u>
0
S
ō
P
2
8
Š
Þ
ă
S
ğ
Ë
_
<u></u>
5
·Ξ
ည
Ħ
ű.
Ñ
က
ہ 3
Jure 3
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

a: Functiona	I maps and sequences of a	a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	dures and pear verious led	אונווומרמ)		
				FSeI	PacI	
					1	
1101	TCAAAGGATC	TTCTTGAGAT	CCTTTTTGAT	AATGGCCGGC	CCCCCCCTT	
	AGTTTCCTAG	AAGAACTCTA	GGAAAAACTA	TTACCGGCCG	GGGGGGGAA	
	PacI					
	1 1 1 1 1					
1151	AATTAAGGGG	999				
	TTAATTCCCC	၁၁၁				

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M11-II:

	CCGCGTAATT CGCGCCGCCC ACTTGCCAGC GCCCTAGCGC TGAACGGTCG CGGGATCGCG	TCGCCACGTT CGCCGGCTTT AGCGGTGCAA GCGGCCGAAA	TTAGGGTTCC GATTTAGTGC	AAICCCAAGG CIAAAICACG TTAGGGTGAT GGTTCTCGTA AATCCCACTA CCAAGAGCAT	GCCCTTTGAC GTTGGAGTCC
	CGGGACATCG CCG TGACCGCTAC ACT ACTGGCGATG TGA	CCTTCCTTTC TCG GGAAGGAAAG AGC		CCCCGAGGGA AAT AAAAACTTGA TTA TTTTTGAACT AAT	ACGGTTTTTC GCC
	CGATCGTGCG ACGCGCAGCG TGCGCGTCGC	CGCTTTCTTC GCGAAAGAAG	CTCTAAATCG	GAGATTTAGC CTCGACCCCA GAGCTGGGGT	GCCCTGATAG
Н	51	101	151	201	251

SUBSTITUTE SHEET (RULE 28)

$\overline{\Xi}$	
ຬ	
⊇	
Ξ.	
Ξ	
ō	
ی	
S	
ō	
Ŧ.	
ĕ	
>	
بر	
S	
\simeq	
Ξ	
Ĕ	
ਲ	
nodules a	
<u> </u>	
\equiv	
8	
Ĕ	
<u>, </u>	
ō	
vecto	
ق	
>	
7	
\ddot{c}	
ď	
nalı	
20	
ō	
==	
ë	
g	
7	
S	
9,	
ĕ	
5	
귬	
ية	
ional maps and sequence:	
2	
ਲ	
Š	
슟	
Ë	
C	
Б	
Ĕ	
.2	
ರ	
Ē	
.,>	
<u> </u>	
Ö	
35	
Ę	
2	
Figure 35a:	

TAAA ATTT	ATTGGTTAAA TAACCAATTT	ATTTCGGCCT TAAAGCCGGA	GATTTTGCCG CTAAAACGGC	ATTTATAAGG TAAATATTCC	TATTCTTTTG ATAAGAAAAC	351
CCAG	ATAGAG	CITGITCCAA ACTGGAACAA CACICAACCC 1A1C1CGG1C GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG	CTTGTTCCAA ACTGGAACAA CACTCAACCC 1A1C1CGG1C GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG	CITGITCCAA GAACAAGGIT	ATAGTGGACT TATCACCTGA	301

BsrGI

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)
138 / 204

		CGCGTAATCT GCGCATTAGA	TTCGTAGGTT AAGCATCCAA	GAGGAGCGCA CTCCTCGCGT	CATGACTTCA GTACTGAAGT	GTGGTGCTTT CACCACGAAA	GATAAGGCGC CTATTCCGCG	CTTGGAGCGA
tors (continued)		TTTTGGTCTG AAAACCAGAC	AGGGCGGTTT TCCCGCCAAA	AACTGGCTTG TTGACCGAAC	TTAACCGGCG AATTGGCCGC	GCTGCTGCCA CGACGACGGT	ATAGTTACCG TATCAATGGC	TACAGTCCAG ATGTCAGGTC
or modules and pCAL vect		CTTGAGATCG GAACTCTAGC	ACCGCCTTGC TGGCGGAACG	GAACCGAGGT CTTGGCTCCA	CAGTTTAGCC GTCAAATCGG	ATTACCAGTG TAATGGTCAC	ACTCAAGACG TGAGTTCTGC	GGTTCGTGCA CCAAGCACGT
s of additional pCAL vector		AGATGATCTT TCTACTAGAA	AAACGAAAAA TTTGCTTTTT	CCAACTCTTT GGTTGAGAAA	CTTGTCCTTT GAACAGGAAA	CTCTAAATCA GAGATTTAGT	TCCGGGTTGG AGGCCCAACC	CTGAACGGGG GACTTGCCCC
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	Bglii	AGATCTAATA TCTAGATTAT	CTTGCTCTGA GAACGAGACT	CTCTGAGCTA GAGACTCGAT	GTCACTAAAA CAGTGATTTT	AGACTAACTC TCTGATTGAG	TGCATGTCTT ACGTACAGAA	AGCGGTCGGA TCGCCAGCCT
igure 35a: Fun	M 12	Н	51	101	151	201	251	301
Œ				SUBST	TUTE SHEET	(AULE 26)		

AAA(
GGAATGAGAC
CTGCCTACC CGGAACTGAG TGTCAGGCGT GGAATGAGAC AAA(
CGGAACTGAG
ACTGCCTACC
351

AAACGCGGG		AGGAGAGCGC TCCTCTCGCG	GTCCTGTCGG	TTGTCAGGGG	ACTTCCCTGT TGAAGGGACA	TTCGTAAGCC AAGCATTCGG	CAGTGAGCGA GTCACTCGCT
TGICAGGCGI GGAATGAGAC AAACGCGGCCGACCCGGTCCGCA CCTTACTCTG TTTGCGCCGG		AGGCAGGAAC TCCGTCCTTG	TATCTTTATA ATAGAAATAT	TTCGTGATGC	CGGCCCTCTC	CTCCGCCCCG	CGTAGCGAGT
TGTCAGGCGT	}	GTAAACCGAA CATTTGGCTT	AAACGCCTGG TTTGCGGACC	AGCGTCAGAT TCGCAGTCTA	GGCTTTGCCG CCGAAACGGC	TCCAGGAAAT. AGGTCCTTTA	AACGACCGAG TTGCTGGCTC
CGGAACTGAG GCCTTGACTC	AgeI	AATGACACCG TTACTGTGGC	CGCCAGGGGG	CACTGATTTG GTGACTAAAC	ATGGAAAAAC TACCTTTTTG	CCTGGCATCT GGACCGTAGA	GCCGCAGTCG CGGCGTCAGC
ACTGCCTACC TGACGGATGG		ATAACAGCGG TATTGTCGCC	AGGAGGGAGC TCCTCCCTCG	GTTTCGCCAC CAAAGCGGTG	GGCGGAGCCT	TAAGTATCTT ATTCATAGAA	ATTTCCGCTC TAAAGGCGAG
351		401	451	501	551	601	651

WO 97/08320 PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AgeI	ACCGGTGCAG TGGCCACGTC	TCATCAGTGC AGTAGTCACG		
· ·	CTGCTGACGC GACGACTGCG	XmnI ~~~~~~~~~ CCTGCCACAT GAAGCACTTC ACTGACACCC 1 GGACGGTGTA CTTCGTGAAG TGACTGTGGG ?		92 29
	TATATCCTGT ATCACATATT ATATAGGACA TAGTGTATAA	XmnI ~~~~~~~~~ GAAGCACTTC CTTCGTGAAG	NheI	AGCCAGTATA CACTCCGCTA GC TCGGTCATAT GTGAGGCGAT CG
	TATATCCTGT ATATAGGACA	CCTGCCACAT		AGCCAGTATA TCGGTCATAT
	GGAAGCGGAA CCTTCGCCTT	CCTTTTTTCT GGAAAAAAGA	·	CAACATAGTA GTTGTATCAT
	701	751		801

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 13:

Bglii	TTCAGATCT AAGTCTAGA
XmnI Bg	TACGAAGTTA A
	ATGTATGCTA TACATACGAT
	ACTTCGTATA TGAAGCATAT
Bgl	TCTCATA
	\vdash

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19

SphI

XbaI

CTATTGCACT GATAACGTGA	ECORI ~~~~~ GAATTC CTTAAG
AAACAAAGCA	TACCAAAGCC
TTTGTTTCGT	ATGGTTTCGG
GCGTAGGAGA AAATAAAATG AAACAAAGCA	TCACCCCTGT
CGCATCCTCT TTTATTTTAC TTTGTTTCGT	AGTGGGGACA
GCGTAGGAGA CGCATCCTCT	Sapi ~~~~~~~ ccgttgctct tc ggcaacgaga ag
TCTAGAGCAT	GGCACTCTTA
AGATCTCGTA	CCGTGAGAAT
Н	5.1

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAAATG TTTATTTAC CGCATCCTCT GCGTAGGAGA TCTAGAGCAT AGATCTCGTA

SapI

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA GGCACTCTTA CCGTGAGAAT

MunI EcoRI

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

101

SUBSTITUTE SHEET (RULE 26)

147 / 204

51

SUBSTITUTE SHEET (RULE 26) 148 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 21:

XbaI

11111

AAGAAGAACG TTCTTCCT TTATAGCGTA AATATCGCAT TATGAAAAAG ATACTTTTC GAGGTGATTT CTCCACTAAA TCTAGAGGTT AGATCTCCAA

NsiI

ECORI

GAATTC CTTAAG TGCATACGCT ACGTATGCGA AACGATGTTT TTGCTACAAA GTTTTTCTA CAAAAAAGAT ATCTATGTTC TAGATACAAG

51

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

NheI

Н	GCTAGCATCG	AATGGCGCAA TTACCGCGTT	AACCTTTCGC TTGGAAAGCG	GGTATGGCAT CCATACCGTA	GATAGCGCCC CTATCGCGGG
51	GGAAGAGAGT	CAATTCAGGG	TGGTGAATGT	GAAACCAGTA	ACGTTATACG
	CCTTCTCTCA	GTTAAGTCCC	ACCACTTACA	CTTTGGTCAT	TGCAATATGC
101	ATGTCGCAGA	GTATGCCGGT	GTCTCTTATC	AGACCGTTTC	CCGCGTGGTG
	TACAGCGTCT	CATACGGCCA	CAGAGAATAG	TCTGGCAAAG	GGCGCACCAC
151	AACCAGGCCA	GCCACGTTTC	TGCGAAAACG	CGGGAAAAAG	TGGAAGCGGC
	TTGGTCCGGT	CGGTGCAAAG	ACGCTTTTGC	GCCCTTTTTC	ACCTTCGCCG
201	GATGGCGGAG	CTGAATTACA GACTTAATGT	TTCCTAACCG AAGGATTGGC	CGTGGCACAA GCACCGTGTT	CAACTGGCGG GTTGACCGCC
251	GCAAACAGTC	GTTGCTGATT	GGCGTTGCCA	CCTCCAGTCT	GGCCCTGCAC
	CGTTTGTCAG	CAACGACTAA	CCGCAACGGT	GGAGGTCAGA	CCGGGACGTG
301	GCGCCGTCGC	AAATTGTCGC TTTAACAGCG	GGCGATTAAA CCGCTAATTT	TCTCGCGCCG AGAGCGCGGC	ATCAACTGGG TAGTTGACCC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAAGCCTGTA CTTCGGACAT	GCTGATTATT CGACTAATAA	CTGCCTGCAC GACGGACGTG	CCCATCAACA GGGTAGTTGT	GGAGCATCTG CCTCGTAGAC	CATTAAGTTC GTAATTCAAG	CTCACTCGCA GAGTGAGCGT	TGCCATGTCC ACGGTACAGG
AAGCGGCGTC (TTCGCCGCAG (GTGTCAGTGG (GCTGTGGAAG CGACACCTTC	TGACCAGACA ACTGGT	GACTGGGCGT	TTAGCTGGCC	GCATAAATAT CGTATTTATA	GCGACTGGAG CGCTGACCTC
TGGTAGAACG ACCATCTTGC	CTCGCGCAAC GAGCGCGTTG	GGATGCTATT CCTACGATAA	TTGATGTCTC AACTACAGAG	GACGGTACGC CTGCCATGCG	_ AATCGCGCTG TTAGCGCGAC	TGGCTGGCTG	GAACGGGAAG CTTGCCCTTC
GTCGTGTCGA CAGCACAGCT	GCACAATCTT CGTGTTAGAA	TGGATGACCA ACCTACTGGT	GCGTTATTTC CGCAATAAAG	CTCCCATGAG GAGGGTACTC	GCCACCAGCA CGGTGGTCGT	CGTCTGCGTC GCAGACGCAG	GCCGATAGCG CGGCTATCGC
TGCCAGCGTG ACGGTCGCAC	AAGCGGCGGT TTCGCCGCCA	AACTATCCGC TTGATAGGCG	TAATGTTCCG ATTACAAGGC	GTATTATTT CATAATAAAA	GTCGCATTGG CAGCGTAACC	TGTCTCGGCG	ATCAAÄTTCA TAGTTTAAGT
351	401	451	501	551	601	651	701
SUBSTITUTE SHEET (F.ULE 26)							

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTCCCACTGC AAGGGTGACG	CGTGCCATTA GCACGGTAAT	GGGATACGAC CCCTATGCTG	CCATCAAACA GGTAGTTTGT	CTGCAACTCT GACGTTGAGA	CTCACTGGTG GAGTGACCAC	CTCCCGCGC GAGGGGGCGCG	CGACTGGAAA GCTGACCTTT
GAGGGCATCG T' CTCCCGTAGC A	GGGCGCAATG C	TCTCGGTAGT G AGAGCCATCA C	CCGCTGACCA C GGCGACTGGT G	GGACCGCTTG C CCTGGCGAAC G	TGTTGCCCGT C ACAACGGGCA G	CAAACCGCCT C	ACAGGTTTCC C TGTCCAAAGG G
AATGCTGAAT TTACGACTTA	AGATGGCGCT	GGTGCGGACA CCACGCCTGT	TTATATCCCG AATATAGGGC	AAACCAGCGT TTTGGTCGCA	GGCAATCAGC CCGTTAGTCG	TCCCAATACG	AGCTGGCACG
AAACCATGCA TTTGGTACGT	GCCAACGATC	GCTGCGCGTT CGACGCGCAA	ACAGCTCATG TGTCGAGTAC	CTGCTGGGGC	GGCGGTGAAG CCGCCACTTC	CCACCCTGGC	TCACTGATGC AGTGACTACG
GGTTTTCAAC	GATGCTGGTT CTACGACCAA	CCGAGTCCGG GGCTCAGGCC	GATACCGAGG CTATGGCTCC	GGATTTTCGC CCTAAAAGCG	CTCAGGGCCA GAGTCCCGGT	AAAAGAAAAA TTTTCTTTTT	GTTGGCCGAT
751	801	851	901	951	1001	1051	1101
			SUESTITU	ITE SHEET (F	RULE 26)		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

A GGAGGCCGTT T CCTCCGGCAA	·
CTTCCTGACA GAAGGACTGT	
ATAAAAGCGG TATTTTCGCC	H ↓
AGGCTACCCG TCCGATGGGC	Aflii CCCACTTAA CGGGTGAATT
GCGGGCAGTG	TTGTTTTGCA AACAAAACGT
1151	1201

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 155 / 204

TTTTTAAT

AAAAAATTA

TTAAGCATTC AATTCGTAAG

vertor modules and nCAL vectors (continued)

			, –	= '
אררוסוס (רסוומוומרמ)			TAACTGCCTT ATTGACGGAA	TTGTAATTCA AACATTAAGT
ector indunes and pear			AGGGCACCAA TCCCGTGGTT	CGCAGTACTG GCGTCATGAC
ences of additional pear v			GATCTAGCAC CAGGCGTTTA AGGGCACCAA TAACTGCCTT	CGCCCCCCCC TGCCACTCAT CGCAGTACTG TTGTAATTCA GCGGGGGGGGG ACGGTGAGTA GCGTCATGAC AACATTAAGT
Figure 35a; Functional maps and sequences of additional pCAL vector incounces and pCAL vectors (continued)	pCAL0-1:	Bglii	GATCTAGCAC	555555555555555555555555555555555555555
Figure 35a:	pCAI		Н	51

GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC CTTCGGTAGT GTTTGCCGTA CTACTTGGAC TTAGCGGTCG
GATGAACCTG CTACTTGGAC
CAAACGGCAT GTTTGCCGTA
GAAGCCATCA CTTCGGTAGT
TGCCGACATG ACGGCTGTAC
101
SUBSTITUT

A TAGTGAAAAC I ATCACTTTTG	AAACTGGTGA
CCTTGTCGCC TTGCGTATAA TATTTGCCCA TAGTGAAAAC GGAACAGCGG AACGCATATT ATAAACGGGT ATCACTTTTG	GTTTAAATCA AAACTGGTGA
TTGCGTATAA	AAGTTGTCCA TATTGGCTAC
CCTTGTCGCC	AAGTTGTCCA
GGCATCAGCA CCGTAGTCGT	GGGGGCGAAG
151	201
E SHEET	(RULE

TTTGACCACT

CAAATTTAGT

ATAACCGATG

TTCAACAGGT

CCCCGCTTC

.E 25) SUBSTITUTE

ued)	
tinu	
(con	
Ors	
vect	
B	
od p	
ss ar	
qule	
r mc	
ecto	
CAL	
<u> </u>	
iona	
ddit	
of a	
nces	
duer	
d se	
s an	
map	
nal	
nctic	
Ful	
35a	
) Jure	
E.	

SUBSTITUTE SHEET (RULL	401 451 501 551	ure 35a: Functional maps and sequences or additional pock vectors transmissed at TATGTGTAGA AACTGCCGGA AATCGTCGTG GTAY ATACACATCT TTGACGGCCT TTAGCAGCAC CATGTTTGCAAACGGCTT TTAGCAGCAC CATGTTTGCAAAGG TCAAACGAGT ACCTTTTGCC ACAGGCTATAGT GGTCGAGT ACCTTTTGCC ACAGGCTATAGT GGTCGAGTGG CAGAAAGTAAAAA GGTCGCGGCAA GAATGTGAAT AAAAAAAAAA	AACTGCCGGA TTGACGGCCT AGTTTGCTCA CCAGCTCACC GGTCGAGTGG AGGCGGGCAA TCCGCCCGTT CTTTACGGTC GAAATGCCAG	AATCGTCGTG TAACCAGCAC TGGAAAACGG ACCTTTTGCC CAGAAAGTAA GAATGTGAAT CTTACACTTA TTTAAAAAAGG AAATTTTTCC	GTATTCACTC CATAAGTGAG ACATTGTTCC GCCATACGGA CGGTATGCCT TTTCCGGCCT CCGTAATATC GGCATTATAG	CAGAGCGATG GTCTCGCTAC CACTTGTGAT ACTCCGGGTG TGAGGCCCAC TAAAACTTGT ATTTTGAACA CAGCTGAACG CAGCTGAACG
	H 7	CAGACCAATA	TCCATGTAAC	TCGTTGACTG	ACTTTACGGA	GTTTTACAAG
_	651	TTTACGATGC	CATTIGGGATA GTAACCCTAT	TATCAACGGT ATAGTTGCCA	GGTATATCCA CCATATAGGT	CACTAAAAAA
•	701	TCTCCATTTT AGAGGTAAAA	AGCTTCCTTA TCGAAGGAAT	GCTCCTGAAA CGAGGACTTT	ATCTCGATAA TAGAGCTATT	CTCAAAAAAT GAGTTTTTTA

ATAAGCTTGA

ATACGAAGTT

AATGTACGCT

AACTTCGTAT

CGCATGCCAT

951

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ပ္ပ	Ŋ	
CTCAC	TTGGAGTGGG	
AAC(TTG	
TGAAAGTTGG	ACTTTCAACC	
L TICATIAIGG IGAAAGIIGG AACCICACCC	CACTAGAATA AAGTAATACC	-
GTGATCTTAT	CACTAGAATA	
ACCCCCCCTA		
751	1	

GCTTTACACT CGAAATGTGA GGCACCCCAG CCGTGGGGTC TCACTCATTA AGTGAGTAAT GTGAGTTAGC CACTCAATCG CTGCAGATTA GACGTCTAAT AatII 801

ATAACAATTT TATTGTTAAA TTGTGAGCGG AACACTCGCC Xbal TTGTGTGGAA CCGAGCATAC AACACACCTT GGCTCGTATG AATACGAAGG TTATGCTTCC 851

TGGGGGGGGG GAATTTCTAG ACCCCCCCC CTTAAAGATC CCATGATTAC GGTACTAATG TGTCGATACT ACAGCTATGA CACACAGGAA 901

HindIII GTGTGTCCTT SphI

AAACAGACGG TATTCGAACT CGACATTTT TTTGTCTGCC TATGCTTCAA GCTGTAAAAA GCAGATTGTG CGTCTAACAC TTACATGCGA CTTTTTACCG TTGAAGCATA GAAAAATGGC GGACACTTCA GCGTACGGTA CCTGTGAAGT 1001

SUBSTITUTE SHEET (RULE 23)

(continued)	
L vectors	
and pCA	
r modules	
AL vector	
tional pC	
s of addi	
sednence	
naps and	
nctional r	
35a: Fui	
Figure	

	T GTACATGAAA	T TTGTTAAATC A AACAATTTAG	C CTTATAAATC	T TGGAACAAGA	G AAAAACCGTC	AT CAAGTTTTTT A GTTCAAAAA	BanII ~~~~~~
	GGGGGGGGT	CGTTAAATTT GCAATTTAAA	GGCAAAATCC CCGTTTTAGG	TGTTCCAGTT ACAAGGTCAA	TCAAAGGGCG AGTTTCCCGC	TCACCCTAAT AGTGGGATTA	GAACCCTAAA
FseI	GGGCCGGCCT	TTAAAATTCG AATTTTAAGC	GGCCGAAATC CCGGCTTTAG	GGTTGAGTGT CCAACTCACA	GACTCCAACG CTGAGGTTGC	ACGAGAACCA TGCTCTTGGT	CACTAAATCG
	AGGGGGGGGG	TAATATTTTG ATTATAAAAC	TTAACCAATA AATTGGTTAT	ACCGAGATAG TGGCTCTATC	AAAGAACGTG TTTCTTGCAC	ATGGCCCACT TACCGGGTGA	TGCCGTAAAG
PacI	GTTTAATTAA CAAATTAATT	TTGTAAACGT AACATTTGCA	AGCTCATTTT TCGAGTAAAA	AAAAGAATAG TTTTCTTATC	GTCCACTATT CAGGTGATAA	TATCAGGGCG ATAGTCCCGC	GGGGTCGAGG
	1051	1101	1151	1201	1251 1251	1301	1351

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AAAGGAAGGG TTTCCTTCCC	TAGCGGTCAC ATCGCCAGTG	CTACAGGGCG GATGTCCCGC	GATGAGGGTG	AgeI	CCGGTGCGTC GGCCACGCAG	CACTGACTCG GTGACTGAGC	ACGAACGGGG
ACGTGGCGAG 1 TGCACCGCTC 1	CTGGCAAGTG GACCGTTCAC	TAATGCGCCG ATTACGCGGC	TGTTGGCACT	1	AAAGGCTGCA TTTCCGACGT	CTTCCTCGCT	GAAATGGCTT
AAGCCGGCGA TTCGGCCGCT	CGCTAGGGCG	CCGCCGCGCT	TGGCTTACTA		GCAGGAGAAA CGTCCTCTTT	ATATATTCCG TATATAAGGC	GCGGCGAGCG
TTGACGGGGA	AAGGAGCGGG TTCCTCGCCC	ACCACCACAC TGGTGGTGTG	GAGTGTATAC CTCACATATG	I	GCTTCATGTG	GTGATACAGG CACTATGTCC	TCGTTCGACT
GATTTAGAGC CTAAATCTCG	AAGAAAGCGA TTCTTTCGCT	GCTGCGCGTA CGACGCGCAT	Nhel ~~~~~ CGTGCTAGCG GCACGATCGC	rumX ;	TCAGTGAAGT AGTCACTTCA	AGCAGAATAT TCGTCTTATA	CTACGCTCGG
1401	1451	1501	1551		1601	1651	1701
			BUBSTITUTE SHEET	(RULE 2	6)	•	

	しいいましたでも	1
end semilences of additional pCAL vector modules and pCAL vectors (continued).	Figure 35a: Functional maps and sequences of accommendation of the property of	THE PROPERTY OF THE PROPERTY O

TGCTTGCCCC	GAAGTGAGAG CTTCACTCTC	GACAAGCATC CTGTTCGTAG	AGGACTATAA TCCTGATATT	CTCCTGTTCC GAGGACAAGG		CGTTTGTCTC GCAAACAGAG	CCAAGCTGGA . GGTTCGACCT	TTATCCGGTA
CTTTACCGAA	ACTTAACAGG TGAATTGTCC	CCGCCCCCCT	GAAACCCGAC CTTTGGGCTG	CTCCTGCGCT GAGGACGCGA		GTTATGGCCG CAATACCGGC	GCAGTTCGCT CGTCAAGCGA	CCGCTGCGCC
Ules and pual vertions from	CCAGGAAGAT GGTCCTTCTA	TCCATAGGCT AGGTATCCGA	CAGTGGTGGC GTCACCACCG	TGGCGGCTCC ACCGCCGAGG		TCATTCCGCT AGTAAGGCGA	TTCCGGGTAG AAGGCCCATC	TTCAGTCCGA AAGTCAGGCT
Jitional pCAL vector modu AGCAAGCTGA	CTGGAAGATG GACCTTCTAC	AAGCCGTTTT TTCGGCAAAA	ACGCTCAAAT TGCGAGTTTA	CGTTTCCCCC	AgeI	TTTACCGGTG AAATGGCCAC	TGACACTCAG ACTGTGAGTC	GAACCCCCCG CTTGGGGGGGC
gure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (CONTINUED) GATGCGAGCC AGCAAGCTGA CGCCGCTCCTCGC	CGGAGATTTC GCCTCTAAAG	GGCCGCGGCA	ACGAAATCTG TGCTTTAGAC	AGATACCAGG TCTATGGTCC		TGCCTTTCGG ACGGAAAGCC	ATTCCACGCC TAAGGTGCGG	CTGTATGCAC GACATACGTG
ure 35a: Functional I	1751	1801	1851	IBSTITUTE SI	HEET (F	00 1951	2001	2051

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

		CATCTTATTA GTAGAATAAT	TCAAGAAGAT AGTTCTTCTA	CAAAACGATC GTTTTGCTAG	2351
,		BglII			
ACGCGCAGAC TGCGCGTCTG	GCAAGAGATT CGTTCTCTAA	CGTTTTCAGA GCAAAAGTCT	GCGGTTTTTT CGCCAAAAAA	GCCCTGCAAG CGGGACGTTC	2301
ACGAAAAACC TGCTTTTTGG	CAGAGAACCT GTCTCTTGGA	GTTGGTAGCT CAACCATCGA	GGTTCAAAGA CCAAGTTTCT	CAGTTACCTC GTCAATGGAG	2251
TCCTCCAAGC AGGAGGTTCG	GTGACTGCGC CACTGACGCG	AACTGAAAGG ACAAGTTTTA TTGACTTTCC TGTTCAAAAT	AACTGAAAGG TTGACTTTCC	GTTAAGGCTA CAATTCCGAT	2201
TCATGCGCCG AGTACGCGGC	AGTCTTGAAG TCAGAACTTC	TAGAGGAGTT ATCTCCTCAA	GTAÄTTGATT CATTAACTAA	GCAGCCACTG CGTCGGTGAC	2151
ACCACTGGCA TGGTGACCGT	CCGGAAAGAC ATGCAAAAGC ACCACTGGCA GGCCTTTCTG TACGTTTTCG TGGTGACCGT	CCGGAAAGAC GGCCTTTCTG	TGAGTCCAAC ACTCAGGTTG	ACTATCGTCT TGATAGCAGA	2101

SUBSTITUTE SHEET (AULG 26) 162 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2:

BsrGI

GCAATTTAAA CGTTAAATTT AATTTTAAGC TTAAAATTCG TAATATTTTG ATTATAAAAC AACATTTGCA TTGTAAACGT GTACATGAAA CATGTACTTT

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA TGTTCCAGTT GGTTGAGTGT CCAACTCACA ACCGAGATAG TGGCTCTATC AAAAGAATAG TTTTCTTATC GAATATTTAG CTTATAAATC 101

GACTCCAACG CTGAGGTTGC AAAGAACGTG TTTCTTGCAC GTCCACTATT CAGGTGATAA TGGAACAAGA ACCTTGTTCT ATGCCCACT ACGAGAACCA TGCTCTTGGT TACCGGGTGA AAAAACCGTC TATCAGGGCG ATAGTCCCGC TTTTGGCAG 201

TCACCCTAAT

AGTGGGATTA

TCAAAGGGCGAGAGTTTCCCGC

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGGCATTTC GGGGTCGAGG CCCCAGCTCC CAAGTTTTTT GTTCAAAAA 251

BanII

GGGAGCCCCC GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG 301

SUBSTITUTE SHEET (RULE 26)

151

1	TGCACCGCTC
giants 25.1. Eunctional mans and sequences of additional pCAL vector modules and pCAL vectors (continued)	CCCTCGGGG CTAAATCTCG AACTGCCCCT TTCGGCCGCT TGCACCGCTC

CTGGCAAGTG GACCGTTCAC	TAATGCGCCG ATTACGCGGC
AAGAAAGCGA AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG TTCTTTCGCT TTCCTCGCCC GCGATCCCGC GACCGTTCAC	GCTGCGCGTA ACCACCACAC CCGCCGCGCT TAATGCGCCG
AAGGAGCGGG TTCCTCGCCC	ACCACCACAC TGGTGGTGTG
AAGAAAGCGA TTCTTTCGCT	GCTGCGCGTA
AAAGGAAGGG	TAGCGGTCAC
351	401

		TGGCTTACTA TGTTGGCACT ACCGAATGAT ACAACCGTGA	AGET
		TGGCTTACTA	
		GAGTGTATAC CTCACATATG	ı
TOTAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CGTGCTAGCG GCACGATCGC	
		CTACAGGGCG GATGTCCCGC	
		451	

Ager	1	S TCAGTGAAGT GCTTCATGTG GCAGGAGAAA AAAGGCTGCA
		GCAGGAGAAA CGTCCTCTTT
H	~ ~ ~ ~ ~ ~ ~	GCTTCATGTG CGAAGTACAC
IrmX	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	TCAGTGAAGT AGTCACTTCA
		GATGAGGGTG CTACTCCCAC
		501
HEE	T (i	RULE 26)

CTTCCTCGCT GAAGGAGCGA	AATGGCTT
AGCAGAATAT GTGATACAGG ATATATTCCG CTTCCTCGCT	CHACGCTCGG TCGTTCGACT GCGGCGAGCG GAAATGGCTT
GTGATACAGG ATATATTCCG CACTATGTCC TATATAAGGC	TCGTTCGACT
AGCAGAATAT TCGTCTTATA	CTACGCTCGG
CCGGTGCGTC GGCCACGCAG	
551	103

	E
ontinued)	ててててて
AL vectors (co	で目でででです。そで目でできませる。
odules and pC	
2AL vector mo	
additional pC	
aps and sequences of	
35a: Functional m	
Figure	

₫!	<i>(</i> ካ ()	E K	UU	ΗÆ		<u></u> დ	. L. A	ပ္ ပ္
CTTTACCGAA	ACTTAACAGG TGAATTGTCC	CCGCCCCCCT	GAAACCCGAC CTTTGGGCTG	CTCCTGCGCT GAGGACGCGA		GTTATGGCCG CAATACCGGC	GCAGTTCGCT CGTCAAGCGA	CCGCTGCGCC
CGCCGCTCGC	CCAGGAAGAT GGTCCTTCTA	TCCATAGGCT AGGTATCCGA	CAGTGGTGGC GTCACCACCG	TGGCGGCTCC		TCATTCCGCT AGTAAGGCGA	TTCCGGGTAG AAGGCCCATC	TTCAGTCCGA AAGTCAGGCT
AGCAAGCTGA	CTGGAAGATG	AAGCCGTTTT TTCGGCAAAA	ACGCTCAAAT TGCGAGTTTA	CGTTTCCCCC	AgeI	TTTACCGGTG	TGACACTCAG ACTGTGAGTC	GAACCCCCCG
GATGCGAGCC	CGGAGATTTC GCCTCTAAAG	GGCCGCGGCA CCGGCGCCGT	ACGAAATCTG TGCTTTAGAC	AGATACCAGG TCTATGGTCC		TGCCTTTCGG ACGGAAAGCC	ATTCCACGCC TAAGGTGCGG	CTGTATGCAC GACATACGTG
GTGACTGAGC	ACGAACGGGG TGCTTGCCCC	GAAGTGAGAG	GACAAGCATC	AGGACTATAA TCCTGATATT		CTCCTGTTCC GAGGACAAGG	CGTTTGTCTC GCAAACAGAG	CCAAGCTGGA GGTTCGACCT
מי. דעוויכיוטוומו	651	701	751	801		851	901	951
בי ש			SUBS	STITUTE SHE	ET (RULI	E 28)		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC CACTGACGCG	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT	Bglii	GATCTAGCAC CTAGATCGTG	5550555555
CCGGAAAGAC GGCCTTTCTG	TAGAGGAGTT ATCTCCTCAA	ACAAGTTTTA TGTTCAAAAT	GTTĞGTAGCT CAACCATCGA	CGTTTTCAGA GCAAAAGTCT	i	CATCTTATTA GTAGAATAAT	AAAAAAATTA TTTTTTAAT
TGAGTCCAAC ACTCAGGTTG	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAAA		TCAAGAAGAT AGTTCTTCTA	TAACTGCCTT ATTGACGGAA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC		CAAAACGATC GTTTTGCTAG	AGGGCACCAA TCCCGTGGTT
TTATCCGGTA AATAGGCCAT	ACCACTGGCA TGGTGACCGT	TCATGCGCCG	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG		ACGCGCAGAC TGCGCGTCTG	CAGGCGTTTA GTCCGCAAAT
1001	1051	1.101	1151	1201		1251	1301
		;	SUBSTITUTE	SHEET (RU	LE 26)		

	てモモ
	CHIKCOKKEE KOEEKKECEE CECKECKOK INTERIOR
red)	\ \ \ \ \
ontin	Ē
ctors (c	ر د د د
AL ve	E
Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	ב
odules	E
ctor m	E
CAL ve	6
onal p	7
additi	(
nces of	(
sedne	1
os and	i
al map	
inction	
5a: Fu	
igure 3)
iI.	

CATCAGCA STAGTCGT	GGCGAAG CCCGCTTC	CTCACCCA SAGTGGGT	AGGGAAAT ICCCTTTA	TGTGTAGA ACACATCT	AACGTTTC TTGCAAAG	TCCCATATCA AGGGTATAGT
		•			•	GTGAACACTA TC CACTTGTGAT AG
GATGAACCTG A CTACTTGGAC T	TATTTGCCCA T ATAAACGGGT A	GTTTAAATCA A CAAATTTAGT T	ACATATTCTC A TGTATAAGAG T	CACGCCACAT C	GTATTCACTC C	TGTAACAAGG G ACATTGTTCC C
CAAACGGCAT GTTTGCCGTA	TTGCGTATAA AACGCATATT	TATTGGCTAC	GAGACGAAAA CTCTGCTTTT	TTCACCGTAA AAGTGGCATT	AATCGTCGTG TTAGCAGCAC	TGGAAAACGG ACCTTTTGCC
GAAGCCATCA CTTCGGTAGT	CCTTGTCGCC GGAACAGCGG	AAGTTGTCCA TTCAACAGGT	GGGATTGGCT CCCTAACCGA	AGGCCAGGTT TCCGGTCCAA	AACTGCCGGA TTGACGGCCT	AGTTTGCTCA TCAAACGAGT
1401	1451	1501		(RULE 26)	1651	1701
	GAAGCCATCA CAAACGGCAT CTTCGGTAGT GTTTGCCGTA	GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC CTTCGGTAGT GTTTGCCGTA CTACTTGGAC TTAGCGGTCG CCTTGTCGCC TTGCGTATAA TATTTGCCCA TAGTGAAAAC GGAACAGCGG AACGCATATT ATAAACGGGT ATCACTTTTG	1401 GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC CTTCGGTAGT GTTTGCCGTA TATTTGCCC TTAGCGGTCG GGAACAGCGG AACGCATATT ATAAACGGGT ATCACTTTTG TTCAACAGGG TATTGGCTAC GTTTAAATCA AAACTGGTGA TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT	1401 GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC CTTCGGTAGT GTTTGCCGTA TTAGCGGTCG 1451 CCTTGTCGC TTGCGTATAA TATTTGCCCA TAGTGAAAAC GGAACAGCG AACGCATATT ATAAACGGGT ATCACTTTTG TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT 1501 AAGTTGTCCA TATTGGCTAC GTTTAAATCA AAACTGGTGA TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT 1551 GGGATTGGCT GAGACGAAAA ACATATTTGGGA CCCTAACCGA CTCTGCTTTT TGTATAAACCCT	1401 GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC CTTCGGTAGT GTTTGCGTAA CTACTTGGAC TTAGCGGTCG GAACGCGTA TATTTGCCCA TAGTGAAAAC GGAACAGCG AACGCATATT ATAAACGGGT ATCACTTTTG TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTGACCACT TTTTGACCACT TTTTGACCATT TGTATTAGGA TTATTTGGAATA AAGTGGCATT GTGCGATTAT GTGCGTCCAA AAGTGGCATT GTGCGATTAT	1401 GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC CTTCGGTAGT CTTTGCCGTA CTACTTGGAC TTAGCGGTCG GAACGCTATTA TATTTGCCCA TAGTGAAAAC GGAACAGCG AACGCATATT ATAAACGGGT ATCACTTTTG TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT TTTGACCACT TTCAACAGGT ATAACCGATG CAAATTTTCT AATAAACCCT TTCAACAGGT TTCAACGATG TTCAACAGAAAAACCCT TTCAACCGT TTCACCGTTTTT TGTATAAGAG TTATTTGGAATAAACCCT TTCACCGTCCAAAAAAAAAA

_	
ਰ	
n	
.⊆	
Ξ	
ō	
ے	
5	
2	
ਹ	
8	
ب	
≲	
2	
7	
Ĕ	
a	
S)	
=	
ğ	
2	
_	
ō	
さ	
فِ	
₹	
ပ္က	
_	
Э	
ō	
Ξ	
2	
aq	
ų_	
0	
S	
5	
ᅙ	
ŋb;	
يق	
~	
2	
C.	
S	
ल्	
Ε	
-E	
Ë	
.⊵	
て	
Ξ	
Ē	
=	
53	
က	
بو	
3	
∵ō	
ш	

שונה א מינים	1751	1751 CCAGCTCACC GGTCGAGTGG	GTCTTTCATT	GTCTTTCATT GCCATACGGA ACTOCAGAAAGTAA CGGTATGCCT TGAG	ACTCCGGGTG TGAGGCCCCAC	AGCATTCATC TCGTAAGTAG
	1801	AGGCGGGCAA TCCGCCCGTT	GAATGTGAAT CTTACACTTA	AAAGGCCGGA TTTCCGGCCT	TAAAACTTGT ATTTTGAACA	GCTTATTTT CGAATAAAAA
	1851	CTTTACGGTC GAAATGCCAG	TTTAAAAAGG AAATTTTTCC	CCGTAATATC GGCATTATAG	CAGCTGAACG GTCGACTTGC	GTCTGGTTAT CAGACCAATA
SUBSTIT	1901	AGGTACATTG TCCATGTAAC	AGCAACTGAC TCGTTGACTG	TGAAATGCCT ACTTTACGGA	CAAAATGTTC GTTTTACAAG	TTTACGATGC AAATGCTACG
UTE SHEET	1951	CATTGGGATA GTAACCCTAT	TATCAACGGT ATAGTTGCCA	GGTATATCCA CCATATAGGT	GTGATTTTTT CACTAAAAAA	TCTCCATTTT AGAGGTAAAA
(RULE 26)	2001	AGCTTCCTTA TCGAAGGAAT	GCTCCTGAAA CGAGGACTTT	АТСТССАТАА ТАGAGCTATT	СТСААААААТ GAGTTTTTTA	ACGCCCGGTA TGCGGGCCAT
						Aatii
•	2051	GTGATCTTAT CACTAGAATA	TTCATTATGG	TGAAAGTTGG	AACCTCACCC TTGGAGTGGG	GACGTCTAAT CTGCAGATTA
	2101	GTGAGTTAGC	TCACTCATTA	GGCACCCCAG	GCTTTACACT	TTATGCTTCC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CGAAATGTGA AATACGAAGG CACTCAATCG AGTGAGTAAT CCGTGGGGTC

GTGTGTCCTT CACACAGGAA ATAACAATTT TATTGTTAAA TTGTGAGGGG AACACTCGCC AACACACCTT TTGTGTGGAA CCGAGCATAC GGCTCGTATG 2151

SphI XbaI

CGCATGCCAT GCGTACGGTA TGGGGGGGGG ACCCCCCCC GAATTTCTAG CTTAAAGATC CCATGATTAC GGTACTAATG ACAGCTATGA TGTCGATACT

2201

HindIII

CCTGTGAAGT ATAAGCTTGA ATACGAAGTT AATGTACGCT AACTTCGTAT 2251

GGACACTTCA TATTCGAACT TATGCTTCAA TTACATGCGA TTGAAGCATA

CAAATTAATT GTTTAATTAA AAACAGACGG TTTGTCTGCC CGACATTTTT GCTGTAAAAA GCAGATTGTG CGTCTAACAC GAAAAATGGC CTTTTTACCG 2301

PacI

FseI

TCCTTTGATC AGGAAACTAG GAGTTCTTCT CTCAAGAAGA CAAAAAGGAT GTTTTTCCTA GGGGGGGC CGGCCATTAT GCCGGTAATA SCCCCCCCG 2351

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GTTAAGGGAT	CTTTTAAATT	AACTTGGTCT	GCGATCTGTC	GATAACTACG	TACCGCGAGA	CCAGCCGGAA	CATCCAGTCT		
CAATTCCCTA	GAAAATTTAA	TTGAACCAGA	CGCTAGACAG	CTATTGATGC		GGTCGGCCTT	GTAGGTCAGA		
GAAAACTCAC	CACCTAGATC	TATATGAGTA	ACCTATCTCA	CCGTCGTGTA	GCTGCAATGA	AATAAACCAG	TATCCGCCTC		
CTTTTGAGTG	GTGGATCTAG	ATATACTCAT	TGGATAGAGT	GGCAGCACAT	CGACGTTACT	TTATTTGGTC	ATAGGCGGAG		
TCAGTGGAAC	AAAGGATCTT	ATCTAAAGTA	TCAGTGAGGC	GCCTGACTCC	TGGCCCCCAGT	ATTTATCAGC	CCTGCAACTT		
AGTCACCTTG	TTTCCTAGAA	TAGATTTCAT	AGTCACTCCG	CGGACTGAGG		TAAATAGTCG	GGACGTTGAA		
GGTCTGACGC	AGATTATCAA	TTTTAAATCA	CAATGCTTAA	ATCCATAGTT	GCTTACCATC	CCGGCTCCAG	CAGAAGTGGT		
CCAGACTGCG	TCTAATAGTT	AAAATTTAGT	GTTACGAATT	TAGGTATCAA	CGAATGGTAG	GGCCGAGGTC			
TTTTCTACGG	TTTGGTCATG	AAAAATGAAG TTTTTACTTC	GACAGTTACC CTGTCAATGG	TATTTCGTTC ATAAAGCAAG	ATACGGGAGG TATGCCCTCC	CCCACGCTCA	GGGCCGAGCG CCCGGCTCGC		
2401	2451	2501	SOS TITUTES SUBSTI	2 6 0 1 SHEET (RU	LE 26)	. 2701	2751		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTAATAGTTT AATTATCAAA	CGCTCGTCGT GCGAGCAGCA	GCGAGTTACA CGCTCAATGT	GTCCTCCGAT	GTTATGGCAG CAATACCGTC	CTTTTCTGTG GAAAAGACAC	TGCGGCGACC	CCACATAGCA GGTGTATCGT
AGTTCGCCAG TCAAGCGGTC	CGTGGTGTCA GCACCACAGT	AACGATCAAG TTGCTAGTTC	AGCTCCTTCG TCGAGGAAGC	ATCACTCATG TAGTGAGTAC	CCGTAAGATG GGCATTCTAC	GAATAGTGTA CTTATCACAT	TAATACCGCG ATTATGGCGC
TAGAGTAAGT ATCTCATTCA	CTACAGGCAT GATGTCCGTA	TCCGGTTCCC	AAAAGCGGTT TTTTCGCCAA	CCGCAGTGTT GGCGTCACAA	GTCATGCCAT	GTCATTCTGA CAGTAAGACT	CAATACGGGA GTTATGCCCT
GCCGGGAAGC CGGCCCTTCG	GTTGCCATTG CAACGGTAAC	TTCATTCAGC AAGTAAGTCG	TGTTGTGCAA ACAACACGTT	AGTAAGTTGG TCATTCAACC	TTCTCTTACT AAGAGAATGA	ACTCAACCAA TGAGTTGGTT	TGCCCGGCGT ACGGGCCGCA
ATTAACTGTT TAATTGACAA	GCGCAACGTT	TTGGTATGGC AACCATACCG	TGATCCCCCA ACTAGGGGGT	CGTTGTCAGA GCAACAGTCT	CACTGCATAA GTGACGTATT	ACTGGTGAGT TGACCACTCA	GAGTTGCTCT CTCAACGAGA
2801	2851	2901	SUBSTITUTE	3001 3 001	3051	3101	3151
					-		

172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

GCGAAAACTC	CCACTCGCGC	TCTGGGTGAG	GGCGACACGG	GAAGCATTTA
CGCTTTTGAG	GGTGAGCGCG	AGACCCACTC	CCGCTGTGCC	CTTCGTAAAT
GTTCTTCGGG	TCGATGTAAC	CACCAGCGTT	AGGGAATAAG	CAATATTATT
CAAGAAGCCC		GTGGTCGCAA	TCCCTTATTC	GTTATAATAA
ATTGGAAAAC	GAGATCCAGT	CTTTTACTTT	AAGGCAAAAT GCCGCAAAAA	CTTCCTTTTT
TAACCTTTTG	CTCTAGGTCA	GAAAATGAAA	TTCCGTTTTA CGGCGTTTTT	GAAGGAAAAA
AGTGCTCATC	TACCGCTGTT	TCCTCAGCAT	AAGGCAAAAT	TACTCATACT
TCACGAGTAG	ATGGCGACAA	AGGAGTCGTA	TTCCGTTTTA	
GAACTTTAAA	TCAAGGATCT	ACCCAACTGA	CAAAAACAGG	AAATGTTGAA
CTTGAAATTT	AGTTCCTAGA	TGGGTTGACT	GTTTTTGTCC	TTTACAACTT
3201	3251	3301	3351	3401
			JTE SHEET (173 / 204	Mule 29)

BsrGI

ATTTGAAT TAAACTTA GCGGATACAT CGCCTATGTA TCAGGGTTAT TGTCTCATGA AGTCCCAATA ACAGAGTACT 3451

SUBSTITUTE SHEET (FULE 26) 174 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AatII	ACGAAGTTAT GACGTCTAAT TGCTTCAATA CTGCAGATTA	GCTTTACACT TTATGCTTCC CGAAATGTGA AATACGAAGG	ATAACAATTT CACACAGGAA TATTGTTAAA GTGTGTCCTT	Iyds		HindIII	ATAAGCTTGA CCTGTGAAGT TATTCGAACT GGACACTTCA
	TGTATGCTAT A	GGCACCCCAG C	TTGTGAGCGG A	XbaI	GAATTTCTAG Z	, -	ATACGAAGTT Z
	CTTCGTATAA GAAGCATATT	TCACTCATTA	TTGTGTGGAA AACACACCTT	,	CCATGATTAC GGTACTAATG		AATGTACGCT
)-3: Bglii	GATCTCATAA CTAGAGTATT	GTGAGTTAGC CACTCAATCG	GGCTCGTATG CCGAGCATAC		ACAGCTATGA TGTCGATACT		AACTTCGTAT TTGAAGCATA
pCALO-3: Bgl	H	51	101		151		201
		SL	BSTITUTE S	SKEET (6	HI F 261		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GTTTAATTAA CAAATTAATT		TCCTTTGATC AGGAAACTAG	GTTAAGGGAT CAATTCCCTA	CTTTTAAATT GAAAATTTAA	AACTTGGTCT TTGAACCAGA	GCGATCTGTC CGCTAGACAG	GATAACTACG CTATTGATGC
TTTGTCTGCC (CTCAAGAAGA GAGTTCTTCT	GAAAACTCAC CTTTTGAGTG	CACCTAGATC GTGGATCTAG	TATATGAGTA ATATACTCAT	ACCTATCTCA TGGATAGAGT	CCGTCGTGTA GGCAGCACAT
CGACATTTTT GCTGTAAAAA		CAAAAAGGAT GTTTTTCCTA	TCAGTGGAAC AGTCACCTTG	AAAGGATCTT TTTCCTAGAA	ATCTAAAGTA TAGATTTCAT	TCAGTGAGGC AGTCACTCCG	GCCTGACTCC CGGACTGAGG
GCAGATTGTG CGTCTAACAC	⊕ × × ×	CGGCCATTAT	GGTCTGACGC CCAGACTGCG	AGATTATCAA TCTAATAGTT	ТТТТАААТСА АААТТТАGT	CAATGCTTAA GTTACGAATT	ATCCATAGTT TAGGTATCAA
GAAAAATGGC	FseI		TTTTCTACGG AAAAGATGCC	TTTGGTCATG AAACCAGTAC	AAAAATGAAG TTTTTACTTC	GACAGTTACC CTGTCAATGG	TATTTCGTTC
251		301	351	401	451	501	551
			SUBSTI	TUTE SHEET	(RULE 23)		
				176 / 204			

	(
ontinued)	([(
pCAL vectors (c	
or modules and	
onal pCAL vecto	
ences of addition	
I maps and seque	
sa: Functional r	
Figure 35	

GA	AA	CT	TT	GGT	ACA	SAT	CAG
TACCGCGAGA ATGGCGCTCT	CCAGCCGGAA GGTCGGCCTT	CATCCAGTCT GTAGGTCAGA	TTAATAGTTT AATTATCAAA	CGCTCGTCGT GCGAGCAGCA	GCGAGTTACA CGCTCAATGT	GTCCTCCGAT	GTTATGGCAG CAATACCGTC
TAC	CCA	CAT GT2	TT? AAT	999	000	GT(CA(GT
GCTGCAATGA	AATAAACCAG TTATTTGGTC	TATCCGCCTC ATAGGCGGAG	AGTTCGCCAG TCAAGCGGTC	CGTGGTGTCA GCACCACAGT	AACGATCAAG TTGCTAGTTC	AGCTCCTTCG TCGAGGAAGC	ATCACTCATG TAGTGAGTAC
TGGCCCCAGT	ATTTATCAGC TAAATAGTCG	CCTGCAACTT GGACGTTGAA	TAGAGTAAGT ATCTCATTCA	CTACAGGCAT GATGTCCGTA	TCCGGTTCCC	AAAAGCGGTT TTTTCGCCAA	CCGCAGTGTT GGCGTCACAA
GCTTACCATC CGAATGGTAG	CCGGCTCCAG	CAGAAGTGGT GTCTTCACCA	GCCGGGAAGC CGGCCCTTCG	GTTGCCATTG CAACGGTAAC	TTCATTCAGC AAGTAAGTCG	TGTTGTGCAA ACAACACGTT	AGTAAGTTGG TCATTCAACC
e 35a: Functional maps and sequences of additional peak vector incours and peak vector. 601 ATACGGGAGG GCTTACCATC TGGCCCCAGT TATGCCCTCC CGAATGGTAG ACCGGGGTCA	CCCACGCTCA GGGTGCGAGT	GGGCCGAGCG	ATTAACTGTT TAATTGACAA	GCGCAACGTT CGCGTTGCAA	TTGGTATGGC AACCATACCG	TGATCCCCCA	CGTTGTCAGA GCAACAGTCT
a: Functional 601	651	701	751	801	851	901	951
			SUBSTITU	ITE SHEET (F	RULE 26)		

177 / 204

CCGCTGTGCC

TCCCTTATTC

CGGCGTTTTT

TTCCGTTTTA

CAAAAACAGG GTTTTTGTCC

1301

AAGGCAAAAT GCCGCAAAAA AGGGAATAAG GGCGACACGG

	CTTTTCTGTG	TGCGGCGACC	CCACATAGCA
	GAAAAGACAC	ACGCCGCTGG	GGTGTATCGT
ntinued)	raagatg attctac	GAATAGTGTA CTTATCACAT	
ules and pCAL vectors (co	TTCTCTTACT GTCATGCCAT CCGTAAGATG	ACTCAACCAA GTCATTCTGA	TGCCCGGCGT CAATACGGGA TAATACCGCG
	AAGAGAATGA CAGTACGGTA GGCATTCTAC	TGAGTTGGTT CAGTAAGACT	ACGGGCCGCA GTTATGCCCT ATTATGGCGC
ditional pCAL vector mod	TTCTCTTACT	ACTCAACCAA	TGCCCGGCGT
	AAGAGAATGA	TGAGTTGGTT	ACGGGCCGCA
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	CACTGCATAA	ACTGGTGAGT	GAGTTGCTCT
	GTGACGTATT	TGACCACTCA	CTCAACGAGA
Figure 35a: Functional	1001	1051	1101

SUB

GCGAAAACTC CGCTTTTGAG	CCACTCGCGC GGTGAGCGCG	TCTGGGTGAG AGACCCACTC
GTTCTTCGGG	GAGATCCAGT TCGATGTAAC CTCTAGGTCA AGCTACATTG	CTTTTACTTT CACCAGCGTT GAAAATGAAA GTGGTCGCAA
ATTGGAAAAC TAACCTTTTG		CTTTTACTTT GAAAATGAAA
AGTGCTCATC TCACGAGTAG	TACCGCTGTT ATGGCGACAA	TCCTCAGCAT AGGAGTCGTA
GAACTTTAAA CTTGAAATTT	TCAAGGATCT AGTTCCTAGA	ACCCAACTGA TGGGTTGACT
1151	1201	1251
BSTITUTE SH	ieet (nule :	26)
	^.	

AAATGTTGAA TACTCATACT CTTCCTTTTT CAATATTATT GAAGCATTTA 1351

178 / 204

CTTCGTAAAT

GAAGGAAAAA GTTATAATAA · Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) TTTACAACTT ATGAGTATGA

BsrGI

,			
TGT ACATGAAATT	GTTAAATCAG	TATAAATCAA	GAACAAGAGT
ACA TGTACTTTAA	CAATTTAGTC	ATATTTAGTT	
GCGGATACAT ATTTGAATGT ACATGAAATT	TTAAATTTTT GTTAAATCAG	AACCAATAGG CCGAAATCGG CAAAATCCCT TATAAATCAA	CGAGATAGGG TTGAGTGTTG TTCCAGTTTG GAACAAGAGT
CGCCTATGTA TAAACTTACA TGTACTTTAA	AATTTAAAAA CAATTTAGTC	TTGGTTATCC GGCTTTAGCC GTTTTAGGGA ATATTTAGTT	
GCGGATACAT	ATATTTTGTT AAAATTCGCG	CCGAAATCGG	TTGAGTGTTG
CGCCTATGTA	TATAAAACAA TTTTAAGCGC	GGCTTTAGCC	
TGTCTCATGA	ATATTTTGTT	AACCAATAGG	CGAGATAGGG
ACAGAGTACT	TATAAAACAA	TTGGTTATCC	
TCAGGGTTAT	GTAAACGTTA	CTCATTTTTT	AAGAATAGAC
AGTCCCAATA	CATTTGCAAT	GAGTAAAAAA	
1401	1451	1501	1551

BanII

ACCCTAATCA AGTTTTTGG

GAGAACCATC

TCAGGGCGAT GGCCCACTAC

1651

CTCTTGGTAG

CCGGGTGATG

AGTCCCGCTA

TTTGGCAGAT

AAACCGTCTA

AAAGGGCGAA

CTCCAACGTC

CCACTATTAA AGAACGTGGA

1601

GAGGTTGCAG

TCTTGCACCT

GGTGATAATT

TTTCCCGCTT

CTTGTTCTCA

AAGGTCAAAC

AACTCACAAC

GCTCTATCCC CGAGATAGGG

TCAAAAAACC

TGGGATTAGT

SUBSTITUTE SHEET (RULE 26) 179 / 204

1551

AAGAATAGAC TTCTTATCTG

	マスト
ntinued)	とててて
id pCAL vectors (co	A R R E C C C R R R R R R R R R R R R R R
ional pCAL vector modules and pC ℓ	
vector n	(
of pCAL	
additiona	•
35a: Functional maps and sequences of	
: Functional ma	
Figure 35a:	,

GAGCCCCCGA CTCGGGGGGCT	AGGAAGGGAA TCCTTCCCTT	GCGGTCACGC CGCCAGTGCG	ACAGGGCGCG TGTCCCGCGC	TGAGGGTGTC ACTCCCACAG	H	GGTGCGTCAG	CTGACTCGCT GACTGAGCGA
ACCCTAAAGG TGGGATTTCC	GTGGCGAGAA CACCGCTCTT	GGCAAGTGTA CCGTTCACAT	ATGCGCCGCT	TTGGCACTGA	AgeI	AGGCTGCACC G TCCGACGTGG C	TCCTCGCTCA
Iditional pCAL vector modules and pCAL vectors (COITAAAGCA CTAAATCGGA ACC) GGCATTTCGT GATTTAGCCT TGG	GCCGGCGAAC CGGCCGCTTG	CTAGGGCGCT GATCCCGCGA	GCCGCGCTTA	GCTTACTATG CGAATGATAC		AGGAGAAAAA TCCTCTTTTT	ATATTCCGCT TATAAGGCGA
ditional pCAL vector mode CCGTAAAAGCA GGCATTTCGT	GACGGGGAAA CTGCCCCTTT	GGAGCGGGCG CCTCGCCCGC	CACCACACCC GTGGTGTGGG	GTGTATACTG CACATATGAC		TTCATGTGGC	GATACAGGAT CTATGTCCTA
Figure 35a: Functional maps and sequences of add 1701 GGTCGAGGTG CCAGCTCCAC	TTTAGAGCTT AAATCTCGAA	GAAAGCGAAA CTTTCGCTTT	TGCGCGTAAC ACGCGCATTG	Nhel ~~~~~~ TGCTAGCGGA ACGATCGCCT	XmnI	AGTGAAGTGC TCACTTCACG	CAGAATATGT GTCTTATACA
ia: Functional	1751	1801	1851	1901		1951	2001
Figure 3!			SUBSTITU	JTE SHEET (RULE 26 180 / 204)		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAACGGGGCG CTTGCCCCGC	AGTGAGAGGG TCACTCTCCC	CAAGCATCAC GTTCGTAGTG	GACTATAAAG CTGATATTTC	CCTGTTCCTG GGACAAGGAC	TTTGTCTCAT AAACAGAGTA	AAGCTGGACT TTCGACCTGA
GAAC	AGT(TCA(CAA(GTT(GAC	CCT(GGA(
AATGGCTTAC TTACCGAATG	TTAACAGGGA AATTGTCCCT	GCCCCCCTGA CGGGGGGACT	AACCCGACAG TTGGGCTGTC	CCTGCGCTCT GGACGCGAGA	TATGGCCGCG	AGTTCGCTCC
GGCGAGCGGA CCGCTCGCCT	AGGAAGATAC TCCTTCTATG	CATAGGCTCC GTATCCGAGG	GTGGTGGCGA	GCGGCTCCCT CGCCGAGGGA	ATTCCGCTGT. TAAGGCGACA	CCGGGTAGGC
GTTCGACTGC CAAGCTGACG	GGAAGATGCC CCTTCTACGG	GCCGTTTTTC CGGCAAAAAG	GCTCAAATCA CGAGTTTAGT	TTTCCCCCTG	AgeI ~~~~~~~ TACCGGTGTC ATGGCCACAG	ACACTCAGTT
ACGCTCGGTC TGCGAGCCAG	GAGATTTCCT CTCTAAAGGA	CCGCGGCAAA GGCGCCGTTT	GAAATCTGAC CTTTAGACTG	ATACCAGGCG TATGGTCCGC	CCTTTCGGTT GGAAAGCCAA	TCCACGCCTG
2051	2101	2151	2201	2251	2301	2351

	(
ontinued)	
ς Σ	(
vector	1
pCAL	
les and	
mpom	
vector	
l pCAL	
additiona	
uences of	
has pi	
naps ar	
onal r	
Functi	
35a:	
Figure	

ATCCGGTAAC TAGGCCATTG	CACTGGCAGC	ATGCGCCGGT TACGCGGCCA
GCTGCGCCTT	GCAAAAGCAC	TCTTGAAGTC
CGACGCGGAA	CGTTTTCGTG	AGAACTTCAG
ACCCCCGGTT CAGTCCGACC GCTGCGCCTT ATCCGGTAAC	AGTCCAACCC GGAAAGACAT GCAAAAGCAC CACTGGCAGC	AATTGATTTA GAGGAGTTAG TCTTGAAGTC ATGCGCCGGT
TGGGGGGCAA GTCAGGCTGG CGACGCGGAA TAGGCCATTG	TCAGGTTGGG CCTTTCTGTA CGTTTTCGTG GTGACCGTCG	TTAACTAAAT CTCCTCAATC AGAACTTCAG TACGCGGCCA
ACCCCCCGTT	AGTCCAACCC	AATTGATTTA
TGGGGGGCAA	TCAGGTTGGG	TTAACTAAAT
GTATGCACGA	TATCGTCTTG	AGCCACTGGT
CATACGTGCT	ATAGCAGAAC	TCGGTGACCA
2401	2451	2501

GAGGTTCGGT

CTCCAAGCCA

GACTGCGCTC CTGACGCGAG

AAGTTTTAGT

CTGAAAGGAC GACTTTCCTG

TAAGGCTAAA

2551

ATTCCGATTT

TTCAAAATCA

GAAAAACCGC CTTTTTGGCG

GAGAACCTAC CTCTTGGATG

TGGTAGCTCA

TTCAAAGAGT AAGTTTCTCA

CAATGGAGCC

GTTACCTCGG

ACCATCGAGT

GCGCAGACCA CGCGTCTGGT

AAGAGATTAC

TTTTCAGAGC

GGTTTTTCG

CCTGCAAGGC GGACGTTCCG

2651

CCAAAAAAGC

AAAAGTCTCG TTCTCTAATG

BglII

AGAATAAT TCTTATTA AAGAAGATCA TTCTTCTAGT AAACGATCTC TTTGCTAGAG

2701

SUBSTITUTE SHEET (RULE 26) 182 / 204

2601

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-

TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCAGGCCGGCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

ПСА

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

	BsiwI NspV	C GTACGTTCGA G CATGCAAGCT			TCAAAAAGGA AGTTTTTCCT	CTCAGTGGAA GAGTCACCTT	AAAAGGATCT TTTCCTAGA
StyI ~~~~~~ Psp5II ~~~~~~~ Eco0109I		CCAAGGTCC		FseI	CCGGCCATTA	GGGTCTGACG CCCAGACTGC	GAGATTATCA CTCTAATAGT
BStXI	MscI	AAGCCCCTGG CCA TTCGGGGACC GGT	<i>(</i> ·	ì	GGATC CGGTACCAGG CCTAG GCCATGGTCC	CTTTTCTACG	TTTTGGTCAT AAAACCAGTA
} ?	tEI	TCAGGTGACC AGTCCACTGG	PmlI		CACGTGGATC GTGCACCTAG	ATCCTTTGAT TAGGAAACTA	CGTTAAGGGA
MluI Bsu36I	paI	CGCGTTAACC GCGCAATTGG			AGATTACCAT TCTAATGGTA	TCTCAAGAAG AGAGTTĊTTC	CGAAAACTCA GCTTTTGAGT
		126			176	226	276

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

AGTGGATCTA GGAAAATTTA ATTTTTACTT CAAAATTTAG TTAGATTTCA	ATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC IACTCA TTTGAACCAG ACTGTCAATG GTTACGAATT AGTCACTCCG	ATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC TAGAGT CGCTAGACAG ATAAAGCAAG TAGGTATCAA CGGACTGAGG	CGTGTA GATAACTACG ATACGGGAGG GCTTACCATC TGGCCCCAGT GCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG ACCGGGGTCA	CAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ATTTATCAGC GTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC TAAATAGTCG	AACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT CCTGCAACTT TTGGTC GGTCGGCCTT CCCGGCTCGC GTCTTCACCA GGACGTTGAA	CGCCTC CATCCAGTCT ATTAACTGTT GCCGGGAAGC TAGAGTAAGT GCGGAG GTAGGTCAGA TAATTGACAA CGGCCCTTCG ATCTCATTCA	CGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG CTACAGGCAT GCGGTC AATTATCAAA CGCGTTGCAA CAACGGTAAC GATGTCCGTA
	ATATATGAGT AAACTT TATATACTCA TTTGAA	ACCTATCTCA GCGATC TGGATAGAGT CGCTAG	CCGTCGTGTA GATAAC GGCAGCACAT CTATTG	GCTGCAATGA TACCGC CGACGTTACT ATGGCG	AATAAACCAG CCAGCC TTATTTGGTC GGTCGG	TATCCGCCTC CATCCA	AGTTCGCCAG TTAATP
326	376	426	476	526	576	626	919

SUBSTITUTE SHEET (RULE 26)

190 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

TCCGGTTCCC	AAAAGCGGTT	CCGCAGTGTT	GTCATGCCAT	GTCATTCTGA	CAATACGGGA	ATTGGAAAAC	GAGATCCAGT
AGGCCAAGGG	TTTTCGCCAA	GGCGTCACAA	CAGTACGGTA	CAGTAAGACT	GTTATGCCCT	TAACCTTTTG	CTCTAGGTCA
TTCATTCAGC	TGTTGTGCAA	AGTAAGTTGG	TTCTCTTACT	ACTCAACCAA	TGCCCGGCGT	AGTGCTCATC	TACCGCTGTT
AAGTAAGTCG	ACAACACGTT	TCATTCAACC	AAGAGAATGA	TGAGTTGGTT	ACGGGCCGCA	TCACGAGTAG	ATGGCGACAA
TTGGTATGGC	TGATCCCCCA	CGTTGTCAGA	CACTGCATAA	ACTGGTGAGT	GAGTTGCTCT	GAACTTTAAA	TCAAGGATCT
AACCATACCG	ACTAGGGGGGT	GCAACAGTCT	GTGACGTATT	TGACCACTCA	CTCAACGAGA	CTTGAAATTT	AGTTCCTAGA
CGCTCGTCGT	GCGAGTTACA	GTCCTCCGAT	GTTATGGCAG	CTTTTCTGTG	TGCGGCGACC	CCACATAGCA	GCGAAAACTC
GCGAGCAGCA	CGCTCAATGT		CAATACCGTC	GAAAAGACAC	ACGCCGCTGG	GGTGTATCGT	CGCTTTTGAG
CGTGGTGTCA GCACCACAGT	AACGATCAAG TTGCTAGTTC	AGCTCCTTCG TCGAGGAAGC	ATCACTCATG TAGTGAGTAC	CCGTAAGATG GGCATTCTAC	GAATAGTGTA CTTATCACAT	TAATACCGCG	GTTCTTCGGG
726	176	826	876	926	916	1026	1076

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT GAAGGAAAAA	GCGGATACAT CGCCTATGTA	XhoI ~~~~~~~ BssHII ATGGCTCGAG TACCGAGCTC
TCTTCAGCAT AGAAGTCGTA Eco57I	AAGGCAAAAT TTCCGTTTTA	TACTCATACT	TGTCTCATGA ACAGAGTACT	Bbel Asel CGCGCCATTA A CCGCGGTAAT I
ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA TTTACAACTT	TCAGGGTTAT AGTCCCAATA	PstI BssSI ACGAGCTGCA GG TGCTCGACGT CC BSpEI BsrGI
CCACTCGTGC GGTGAGCACG BSSSI	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA CTTCGTAAAT	EagI ~~~~~~~ ACTCGGCCGC TGAGCCGGCG
TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	CAATATTATT GTTATAATAA	ATTTGAATGT TAAACTTACA BSSHII
1126	1176	1226	1276	1326
		SUBSTIT	JTE SHEET	(RULE 26)

192 / 204

CATGAAATT TCCGGATGTA Figure 36: functional map and sequence of ß-lactamase-MCS module (continued) BbsI GCGAAACAGA CGCTTTGTCT CGCGCTTCAG Eco57I ~~~~~ 1376

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

30 20 -3' Q Α CATGCGACTTATTGC Y G CAGGGCGTGTA G CAG G C G G T G T A T T A T T G C G C D E G H CA K M N P CAG Q R S T

> SUBSTITUTE SHEET (RULE 26) 195 / 204

V W

80% Q

Figure 37: Oligo and primer design for $\mbox{V}\kappa$ CDR3 libraries

G 3'- G G A

T C T

A C C T

 $\begin{array}{c} \mathsf{T} \\ \mathsf{A} \ \mathsf{C} \ \mathsf{C} \ \mathsf{T} \end{array}$

G	С	T	•••••				••••••		G	С	T			•••• <u>•</u>	G	С	Τ
							**********					******					
G	Α	Τ	G	Α	T	G	Α							,		Α	•••••••••••••••••••••••••••••••••••••••
G	Α	G						:	G					<u></u>		Α	
	T								T		•					T	
G	G	T.	G	G	Τ	G	G	T	G	G	T		-441404100			G	
C	A	Τ		**************	******	************				Α						Α	
Α	T	T	•••••	*********	•••••		*********		Α	T	T					T	
Α	Α	G			******	•				Α						Α	
C	T	T					**********		. –	T					-	T	:
	T			••••••			***************************************		:	T						T	
Α	Α	T	Α	Α	T	Α	Α	Ţ	Α	Α	T					Α	i
<u> </u>	*********			*********	•••••				С	C	T	С	С	T	С	С	T
C	Α	G					•		С	Α	G				<u> </u>	Α	
C	G	T					• • • • • • • • • • • • •								: -	G	Τ
T	C	T	T	С	T	T	C	T	T	C	T	Τ	C	T	T	С	T
	C		·····	••••••	••••••		**********	••••							Α	С	T
G	T	T	 	•••••	••••••		************	••••••	G	T	T					T	
T	G	G		••••••	•••••		•••••••	********	T	G	G				T	G	G
T	Α	T	T	Α	T			••••••	T	Α	T				T	Α	Τ
	0%				******			**********	••••••••	*********	•••••	80)%	P] .		

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 38: Oligo and primer design for Vλ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

WO 97/08320

09	70	80
(-	G G G T GGCGGCGGCAC	
gap gap - G C T G C T G C T		
G A T G A T G A T G A G G A G G A G G A G G A G G A G G A G T T T T	Variability 3.32E+05 5.98E+06	
18 18 18 19 SUBS	1.08E+08 STITUTE SHEET (RULE 26)	

200 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

F1 OR

COLE1 ORI

CM(R)

Figure 39: functional map of expression vector series pBS13

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

H1B 39%	58%	52%				
		1	42%	%06	61%	%09
		%99	48%	47%	39%	36%
		46%	49%	37%	36%	45%
		76%	61%	80%	71%	83%
		51%	44%	45%	33%	42%
		46%	%29	54%	46%	47%
		54%	47%	45%	50%	51%

Total amount	7,	3	7,	к4	. 7.1	72	λ3
compared to H3K2	2	7	2	-			
H1A	289%	94%	166%	272%	20%	150%	78%
H1B	219%	122%	%68	139%	117%	158%	101%
H2	186%	223%	208%	182%	126%	9009	97%
H3	50%		71%	54%	59%	130%	47%
H4	37%	55%	%09	77%	195%	107%	251%
H 12	%86	201%	167%	83%	93%	128%	115%
9H	65%	117%	89%	109%	299%	215%	278%
>=							

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

Soluble amount	Ţ	ż	67	24	71	72	73
compared to H3K2	<u>-</u>	2	2	<u>†</u>	-	3	2
H1A	191%	988%	121%	122%	26%	211%	16%
H18	124%	95%	83%	107%	79%	142%	29%
H2	126%	204%	139%	130%	%99	50%	0/00/
H3	63%	1	81%	49%	%69	143%	61%
H4	40%	47%	49%	54%	95%	25%	125%
H2	%69	158%	116%	80%	72%	84%	84%
9H	85%	122%	87%	17%	162%	162%	212%
	McPC						
soluble	38%						
%H3k2 total	117%						
%H3k2 soluble	%69						

Inv onal Application No PCT/EP 96/03647

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N15/13 C12N15/10 C12N1/21 C12N15/62 C12N15/70 G01N33/53 C07K1/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C07K G01N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category 1-55 A EP 0 368 684 A (MEDICAL RES COUNCIL) 16 May 1990 cited in the application see the whole document 1-55 EUROPEAN J. IMMUNOLOGY, A vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "Cloning and sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search .1 1. 02 97 30 January 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Hornig, H Fax: (+31-70) 340-3016

1

tr unonal Application No PCT/EP 96/03647

		PCT/EP 96/03647
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223	1-55
	C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document	
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET TA ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document	1-55
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND	1-55
	AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document	
A	PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application	1-55
A	see the whole document ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document	1-55
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document	1-55
	-/	

1

_		PC1/EP 96/0364/
C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document	1-55
Α	WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document	1-55
A	ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4	1-55
A .	CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994,	1-55

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

.nformation on patent family members

Int onal Application No PCT/EP 96/03647

Patent document cited in search report	Publication date		family ber(s)	Publication date
EP-A-0368684	16-05-90	AU-B- AU-A-	634186 4520189	18-02-93 28-05-90
		CA-A-	2002868	11-05-90
		DE-D-	68913658	14-04-94
		DE-T-	68913658	08-09-94
		ES-T-	2052027	01-07-94
•		WO-A-	9005144	17-05-90
		JP-T-	3502801	27-06-91
WO-A-9511998	04-05-95	AU-A-	8091694	22-05-95
,		EP-A-	0725838	14-08-96

.nformation on patent family members

Int onal Application No PCT/EP 96/03647

Patent document cited in search report	Publication date		. family ber(s)	Publication date
EP-A-0368684	16-05-90	AU-B-	634186	18-02-93
		AU-A-	4520189	28-05-90
		CA-A-	2002868	11-05-90
		DE-D-	68913658	14-04-94
		DE-T-	68913658	08-09-94
		ES-T-	2052027	01-07-94
•	•	WO-A-	9005144	17-05-90
		JP-T-	3502801	27-06-91
WO-A-9511998	04-05-95	AU-A-	8091694	22-05-95
		EP-A-	0725838	14-08-96