K. S. Rangasamy College of Technology

(Autonomous)

Curriculum & Syllabus of B.E. Mechanical Engineering

(For the batch admitted in 2019 – 2020)

R 2018

Accredited by NAAC with 'A++' Grade, Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

DEPARTMENT OF MECHANICAL ENGINEEIRNG

VISION OF THE DEPARTMENT

• To be a leader in providing skill sets for globally competent Engineers, Researchers, Entrepreneurs and Managers in Mechanical Engineering domain.

MISSION OF THE DEPARTMENT

- To offer quality education through experiential learning using ICT tools and socially –relevant projects.
- To engage Faculty and Students in fundamental, heavy engineering and applied research related to energy, environment and safety concerns.
- To groom students to venture into successful entrepreneurs and managers.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1: Professional Competency**: Graduates of the programme will adapt to emerging technological challenges with core competence in mechanical engineering domain
- **PEO2:** Employability and Entrepreneurship: Graduate of the programme will exhibit their technical knowledge and skills to secure suitable positions in technological organizations and to become entrepreneurs
- **PEO3:** Higher Education and Research: Graduates of the programme will pursue advanced studies in thrust areas of mechanical engineering to carryout scientific and industrial research to meet/satisfy current requirements in respective sectors ethically

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2:** Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design /development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

BoS - Chairman Mechanical Engineering (UG & PG) K.S.Rangasamy College of Technology, Tiruchengode - 637 215.

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

PROGRAMME SPECIFIC OUTCOMES (PSOs):

Engineering Graduates will be able to:

PSO1: Use modern tools in the design, analysis and manufacturing of mechanical components and

systems.

PSO2: Solve multidisciplinary problems in manufacturing and allied industries.

PSO3: Adopt creative and innovative approaches to address real-time industrial challenges.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMMEOUTCOMES (POs)

The B.E. Mechanical Engineering Programme outcomes leading to the achievement of the objectives are summarized in the following Table.

Programme Educational Objectives					Progra	mme O	utcom	es (PO)	1				Programme Specific Outcomes (PSO)		
(PEO)	PO1	PO1 PO2 PO3			PO2 PO3 PO4 PO5 PO6			PO7 PO8 PO9			PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
PEO 1	3	1	3	2	2	1	1	1	2	2	3	1	3	3	3
PEO 2	3	3	3	2	2	1	1	1	2	2	3	1	3	3	2
PEO 3	3	2 3 2 2 1 1 1 3 2 3 1								1	3	2	3		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

MAPPING: MECHANICAL ENGINEEIRNG (UG)

V		O						P	0							PSO	
Year	Sem	Course Name	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		Communication Skills I					2			2	2.8	3	2	3	1.8	1.6	1.6
		Calculus and Differential Equations	3	3	2.8	2.4	2.4							2		3	
	ı	Applied Physics	3	3	2.2	2.2	2			2		2.6		2.6	2.6	2	3
		Programming for Problem Solving	3	2	3		3				3	3	2	2	1.8	1.8	
		Engineering Drawing	3	2.8	3		3			3					3	2.8	
		Engineering Physics Laboratory	3	3	2.4	2				2	3	3	2	3	2	2	
		Programming for Problem Solving Laboratory	3	2	3		3				3	3	2	2	1.8	1.8	
I	I	Communication Skills II					2			2	3	3	2.4	3	1.8	2	1.8
		Laplace Transform and Complex Variables	3	3	2.4	2.2	2.8							2		3	
		Applied Chemistry	2.2	1.7 5	2	2.6	2.4	2.2 5	2	1		1		1	1.7	1.3	
	II	Basic Electrical Engineering	2.2	1.8	1.6	2	2	2.5	2	1.6		2		2	1.8	1.6	1
	l II	Engineering Mechanics	3	3	2.8	3	3			3					3	2.8	
		Constitution of India								2	2	1		2			
		Chemistry Laboratory	2.8	2.8	2.8	2.4		1	1.5			1		1.5	1.3	1.3	
		Engineering Practices Laboratory	3	2.4	2.4	3		2.4	2.4	3	3	3			3	2.4	3

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

		Partial Differential	I	I	I		l		1					I			
		Equations and Statistics	3	3	3	2.6	2.6							2	3	2.6	2.2
		Basic Electronics Engineering	3	3	3	3	2								3	2	
		Strength of Materials	3	2.8	2.6	3	3			3					3	3	
		Thermodynamics	3	2.8	2.6	3	2.5							2.5	2.5	3	2.5
	III	Manufacturing Processes	3	2.6	2.6			3	3					2.6	3	2.6	
		Ethics for Engineers					2.6	2.5	2.5			2.5					
		Manufacturing Processes Laboratory	3	2.6	2.6	3		3	3	3		2.4		2.6	3	2.6	3
		Computer Aided Machine Drawing Laboratory	3	3	3	3	2.6				2.5		2.5	2.5	2.4	2.4	3
		Career Competency Development- I						2		2	3	3	2	3		2	
II		Engineering Materials and Metallurgy	3	2.6	2.5	2.5									2.7	2.5	
		Fluid Mechanics and Fluid Machines	3	3	2.8	3	3			3					3	3	3
		Machining Processes	2.6	2.8	2.6			2.5	2.5					3	3	2.6	
		Kinematics of Machines	3	2.8	2.7 5		3								3	3	
		Thermal Engineering	3	2.8	2.5	3	2.5		3	3				2.6	2.6	3	
	IV	Environmental Science	3	2	3	3	3	3	3	3	3	3	2	2			
		Strength of Materials, Fluid Mechanics and Fluid Machines Laboratory	3	3		3				3	3	3			3	3	3
		Machining Processes Laboratory	2.6	2.8	2.6	3		2.5	2.5	2.6		2.8	2.6	3	3	3	3
		Career Competency Development- II	3	2	2	2			1		2.8	3	2.3	3	1.4	1.5	1
		Automobile Engineering	2.5	2.5			3	2.6	2.6			2.5		3	2.5	2.5	2
		Dynamics of Machines	3	2.8	3	3	3								3	3	
		Design of Machine Elements	3	3	3	3	2.6 7			2.6 7				3	3	3	3
		Applied Hydraulics and Pneumatics	3	2.4	3	3		2.5	2.6						2.4	2.8	
	V	Professional Elective -I															
		Open Elective – I															
III	Ш	Thermal Engineering Laboratory	3	3		3				3	3	3		2.6			3
		Dynamics Laboratory	3		3	3				3	3	3			3	3	3
		Career Competency Development III	3	2	2	2	3	2	1	2	3	2.8	2.5	3	2.5	2	
		Heat and Mass Transfer	3	3	2.6	3	3			2.5				2.6	2.6	3	3
	VI	Automation in Manufacturing	2.6	2.8	2.6		3			3				3	3	2.8	
	V 1	Design of Mechanical Transmission Systems	3	3	3	3	2.6			2.6				3	3	3	3
		Professional Elective – II															

		Professional Elective –															
		III Open Elective - II															
		Startups and Entrepreneurship	3	2	3	3	3	1	1	1			3	2			
		Heat Transfer Laboratory	3	2.6		2.4				2.6	2.6	3		3			3
		Automation Laboratory	3	3	3	3	2.8			2.8	3	3		3	2.8	2.6	2.6
		Career Competency Development IV	3	2.4	2	2.4	2.6	1.4	1	2	3	2.6	2.6	3	1.8	1.8	
		Metrology and Measurements	2.6	2.8	2.6		3				2.5	2.8			3	3	3
		Finite Element Analysis	3	2.8	2.6	2.7 5	3			3	3	2.6			3	2.8	
		Operations Research	2.8	2.6	2.8	2.6	2.6						2.6	2.6	2.5	2.5	2.7
		Professional Elective – IV															
		Professional Elective – V															
	VII	Open Elective – III															
		Research Skill Development -I	3	3					3	3	3	3	3	3		3	3
IV		Metrology and Measurements Laboratory	3	3	3	2.6					3	3			3	3	3
		Analysis and Simulation Laboratory	3	2.8	3	3	3			3	3	3		3	2.8		1
		Project Work - Phase I	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
		Career Competency Development V	3	2.3	2	2.3	2.5	1.5	1	2	3	2.6	2.6	3	2	2	
		Total Quality Management	3	2.5			2.5	2.5	2.5	3	2.5	2.6		3	2.7	2.5	
	VIII	Research Skill Development -II							3	3	3	3	3	3		3	3
		Project Work - Phase II	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

SEMESTER I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 EN 001	Communication Skills I	HS	2	1	1	0	2
2.	50 MA 001	Calculus and Differential Equations	BS	4	3	1	0	4
3.	50 PH 001	Applied Physics	BS	3	3	0	0	3
4.	50 CS 001	Programming for Problem Solving	ES	3	3	0	0	3
5.	50 ME 001	Engineering Drawing	ES	6	2	0	4	4
		PRACTICALS						
6.	50 PH 0P1	Engineering Physics laboratory	BS	4	0	0	4	2
7.	50 CS 0P1	Programming for Problem Solving Laboratory	ES	4	0	0	4	2
			Total	26	12	2	12	20

SEMESTER II

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 EN 002	Communication Skills II	HS	2	1	1	0	2
2.	50 MA 002	Laplace Transform and Complex Variables	BS	4	3	1	0	4
3.	50 CH 001	Applied Chemistry	BS	3	3	0	0	3
4.	50 EE 001	Basic Electrical Engineering	ES	3	3	0	0	3
5.	50 ME 003	Engineering Mechanics	ES	4	3	1	0	4
6.	50 MY 001	Constitution of India	MC	2	2	0	0	0
		PRACTICALS						
7.	50 CH 0P1	Chemistry Laboratory	BS	4	0	0	4	2
8.	50 ME 0P1	Engineering Practices Laboratory	ES	4	0	0	4	2
	•		Total	26	15	3	8	20

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 MA 003	Partial Differential Equations and Statistics	BS	4	3	1	0	4
2.	50 EC 001	Basic Electronics Engineering	ES	3	3	0	0	3
3.	50 ME 004	Strength of Materials	PC	4	3	1	0	4
4.	50 ME 006	Thermodynamics	PC	4	3	1	0	4
5.	50 ME 301	Manufacturing Processes	PC	3	3	0	0	3
6.	50 MY 003	Ethics for Engineers	MC	2	2	0	0	0
		PRACTICALS				•		
7.	50 ME 3P1	Manufacturing Processes Laboratory	PC	4	0	0	4	2
8.	50 ME 3P2	Computer Aided Machine Drawing Laboratory	PC	4	0	0	4	2
9.	50 TP 0P1	Career Competency Development- I	EEC	2	0	0	2	0
			Total	30	17	3	10	22

SEMESTER IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 ME 401	Engineering Materials and Metallurgy	PC	3	3	0	0	3
2.	50 ME 005	Fluid Mechanics and Fluid Machines	PC	4	3	1	0	4
3.	50 ME 402	Machining Processes	PC	3	3	0	0	3
4.	50 ME 403	Kinematics of Machines	PC	4	3	1	0	4
5.	50 ME 404	Thermal Engineering	PC	3	3	0	0	3
6.	50 MY 002	Environmental Science	MC	2	2	0	0	0
		PRACTICALS						
7.	50 ME 4P1	Strength of Materials, Fluid Mechanics and Fluid Machines Laboratory	PC	4	0	0	4	2
8.	50 ME 4P2	Machining Processes Laboratory	PC	4	0	0	4	2
9.	50 TP 0P2	Career Competency Development- II	EEC	2	0	0	2	0
			Total	29	17	2	10	21

SEMESTER V

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 ME 501	Automobile Engineering	PC	3	3	0	0	3
2.	50 ME 502	Dynamics of Machines	PC	4	3	1	0	4
3.	50 ME 503	Design of Machine Elements	PC	4	3	1	0	4
4.	50 ME 504	Applied Hydraulics and Pneumatics	PC	3	3	0	0	3
5.	50 ME E1*	Professional Elective -I	PE	3	3	0	0	3
6.	50 ME L1*	Open Elective – I	OE	3	3	0	0	3
		PRACTICALS						
7.	50 ME 5P1	Thermal Engineering Laboratory	PC	4	0	0	4	2
8.	50 ME 5P2	Dynamics Laboratory	PC	4	0	0	4	2
9.	50 TP 0P3	Career Competency Development III	EEC	2	0	0	2	0
			Total	30	18	2	10	24

SEMESTER VI

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 ME 601	Heat and Mass Transfer	PC	3	3	0	0	3
2.	50 ME 602	Automation in Manufacturing	PC	3	3	0	0	3
3.	50 ME 603	Design of Mechanical Transmission Systems	PC	4	3	1	0	4
4.	50 ME E2*	Professional Elective – II	PE	3	3	0	0	3
5.	50 ME E3*	Professional Elective – III	PE	4	2	0	2	3
6.	50 ME L2*	Open Elective - II	OE	3	3	0	0	3
7.	50 MY 014	Startups and Entrepreneurship	MC	2	2	0	0	0
		PRACTICALS						
8.	50 ME 6P1	Heat Transfer Laboratory	PC	4	0	0	4	2
9.	50 ME 6P2	Automation Laboratory	PC	4	0	0	4	2
10.	50 TP 0P4	Career Competency Development IV	EEC	2	0	0	2	0
			Total	32	19	1	12	23

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

SEMESTER VII

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 ME 701	Metrology and Measurements	PC	3	3	0	0	3
2.	50 ME 702	Finite Element Analysis	PC	4	3	1	0	4
3.	50 ME 703	Operations Research	PC	3	3	0	0	3
4.	50 ME E4*	Professional Elective – IV	PE	3	3	0	0	3
5.	50 ME E5*	Professional Elective – V	PE	3	3	0	0	3
6.	50 ME L3*	Open Elective – III	OE	3	3	0	0	3
7.	50 AC 001	Research Skill Development -I	AC	1	1	0	0	0
		PRACTICALS						
8.	50 ME 7P1	Metrology and Measurements Laboratory	PC	4	0	0	4	2
9.	50 ME 7P2	Analysis and Simulation Laboratory	PC	4	0	0	4	2
10.	50 ME 7P3	Project Work - Phase I	EEC	4	0	0	4	2
11.	50 TP 0P5	Career Competency Development V	EEC	2	0	0	2	0
			Total	34	19	1	14	25

SEMESTER VIII

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
		THEORY						
1.	50 HS 003	Total Quality Management	HS	3	3	0	0	3
2.	50 AC 002	Research Skill Development -II	AC	1	1	0	0	0
		PRACTICALS						
3.	50 ME 8P1	Project Work – Phase II	EEC	16	0	0	16	8
			Total	20	4	0	16	11

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 166

Note: HS- Humanities and Social Sciences including Management Courses, BS- Basic Science Courses, ES-Engineering Science Courses, PC-Professional Core Courses, PE-Professional Elective Courses, OE- Open Elective Courses, EEC-Employability Enhancement Courses, MC- Mandatory Courses & AC-Audit Courses.

HUMANITIES AND SOCIAL SCIENCES (HS)

S. No.	Course Code	Course Title	Category	Contact Periods	Г	Т	Р	С
1.	50 EN 001	Communication Skills I	HS	2	1	1	0	2
2.	50 EN 002	Communication Skills II	HS	2	1	1	0	2
3.	50 HS 001	Engineering Economics and Financial Accounting	HS	3	3	0	0	3
4.	50 HS 003	Total Quality Management	HS	3	3	0	0	3

BASIC SCIENCE (BS)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 MA 001	Calculus and Differential Equations	BS	4	3	1	0	4
2.	50 PH 001	Applied Physics	BS	3	3	0	0	3
3.	50 PH 0P1	Engineering Physics Laboratory	BS	4	0	0	4	2
4.	50 MA 002	Laplace Transform and Complex Variables	BS	4	3	1	0	4
5.	50 CH 001	Applied Chemistry	BS	3	3	0	0	3
6.	50 CH 0P1	Chemistry Laboratory	BS	4	0	0	4	2
7.	50 MA 003	Partial Differential Equations and Statistics	BS	4	3	1	0	4

ENGINEERING SCIENCES (ES)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 CS 001	Programming for Problem Solving	ES	3	3	0	0	3
2.	50 ME 001	Engineering Drawing	ES	6	2	0	4	4
3.	50 CS 0P1	Programming for Problem Solving Laboratory	ES	4	0	0	4	2
4.	50 EE 001	Basic Electrical Engineering	ES	3	3	0	0	3
5.	50 ME 003	Engineering Mechanics	ES	4	3	1	0	4
6.	50 ME 0P1	Engineering Practices Laboratory	ES	4	0	0	4	2
7.	50 EC 001	Basic Electronics Engineering	ES	3	3	0	0	3

PROFESSIONAL CORE (PC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 ME 004	Strength of Materials	PC	4	3	1	0	4
2.	50 ME 006	Thermodynamics	PC	4	3	1	0	4
3.	50 ME 302	Manufacturing Processes	PC	3	3	0	0	3
4.	50 ME3P1	Manufacturing Processes Laboratory	PC	4	0	0	4	2
5.	50 ME 3P2	Computer Aided Machine Drawing Laboratory	PC	4	0	0	4	2
6.	50ME 401	Engineering Materials and Metallurgy	PC	3	3	0	0	3
7.	50 ME 005	Fluid Mechanics and Fluid Machines	PC	4	3	1	0	4
8.	50 ME 402	Machining Processes	PC	3	3	0	0	3
9.	50 ME 403	Kinematics of Machines	PC	4	3	1	0	4
10.	50 ME 404	Thermal Engineering	PC	3	3	0	0	3

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

11.	50 ME 4P1	Strength of Materials, Fluid Mechanics and Fluid Machines Laboratory	PC	4	0	0	4	2
12.	50 ME4P2	Machining Processes Laboratory	PC	4	0	0	4	2
13.	50 ME 501	Automobile Engineering	PC	3	3	0	0	3
14.	50 ME 502	Dynamics of Machines	PC	4	3	1	0	4
15.	50 ME 503	Design of Machine Elements	PC	4	3	1	0	4
16.	50 ME 504	Applied Hydraulics and Pneumatics	PC	3	3	0	0	3
17.	50 ME 5P1	Thermal Engineering Laboratory	PC	4	0	0	4	2
18.	50 ME 5P2	Dynamics Laboratory	PC	4	0	0	4	2
19.	50 ME 601	Heat and Mass Transfer	PC	3	3	0	0	3
20.	50 ME 602	Automation in Manufacturing	PC	3	3	0	0	3
21.	50 ME 603	Design of Mechanical Transmission Systems	PC	4	3	1	0	4
22.	50 ME 6P1	Heat Transfer Laboratory	PC	4	0	0	4	2
23.	50 ME 6P2	Automation Laboratory	PC	4	0	0	4	2
24.	50 ME 701	Metrology and Measurements	PC	3	3	0	0	3
25.	50 ME 702	Finite Element Analysis	PC	4	3	1	0	4
26.	50 ME 703	Operations Research	PC	3	3	0	0	3
27.	50 ME 7P1	Metrology and Measurements Laboratory	PC	4	0	0	4	2
28.	50 ME 7P2	Analysis and Simulation Laboratory	PC	4	0	0	4	2

PROFESSIONAL ELECTIVES (PE)

SEMESTER V, PROFESSIONAL ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 HS 004	Principles of Management	PE	3	3	0	0	3
2.	50 ME E12	Power Plant Engineering	PE	3	3	0	0	3
3.	50 ME E13	Rapid Prototyping	PE	3	3	0	0	3
4.	50 ME E14	Product Design for Manufacturing	PE	3	3	0	0	3
5.	50 ME E15	Instrumentation and Control	PE	3	3	0	0	3
6.	50 MA 014	Numerical Methods	PE	3	3	0	0	3
7.	50 CS 014	Object Oriented Programming	PE	3	3	0	0	3

SEMESTER VI, PROFESSIONAL ELECTIVE II

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 ME E21	Gas Dynamics and Jet Propulsion	PE	3	3	0	0	3
2.	50 ME E23	Bio-Mechanics	PE	3	3	0	0	3
3.	50 ME E24	Internal Combustion Engines	PE	3	3	0	0	3
4.	50 ME E25	Quality Control and Reliability Engineering	PE	3	3	0	0	3
5.	50 CS E25	Python Programming	PE	3	3	0	0	3

SEMESTER VI, PROFESSIONAL ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 ME E31	Process Planning and Cost Estimation	PE	4	2	0	2	3
2.	51 ME E32	Flexible Manufacturing System	PE	4	2	0	2	3
3.	51 ME E35	Design of Jigs, Fixtures and Press Tools	PE	4	2	0	2	3
4.	51 ME E36	Computational Fluid Dynamics	PE	4	2	0	2	3
5.	50 ME E37	Logistics and Supply Chain Management	PE	4	2	0	2	3
6.	50 ME E38	Refrigeration and Air Conditioning Engineering	PE	4	2	0	2	3
7.	50 PT T01	Creo for Design	PE	4	2	0	2	3

SEMESTER VII, PROFESSIONAL ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 ME E41	Thermal Turbomachines	PE	3	3	0	0	3
2.	50 ME E42	Energy Storing Devices and Fuel Cells	PE	3	3	0	0	3
3.	50 ME E43	Machine Learning	PE	3	3	0	0	3
4.	50 ME E45	Non-Destructive Evaluation of Materials	PE	3	3	0	0	3
5.	50 ME E46	MEMS Devices – Design and Fabrication	PE	3	3	0	0	3

SEMESTER VII, PROFESSIONAL ELECTIVE V

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 ME E51	Fundamentals of Nano Science	PE	3	3	0	0	3
2.	50 ME E52	Composite Materials	PE	3	3	0	0	3
3.	50 ME E53	Lean Manufacturing	PE	3	3	0	0	3
4.	50 ME E55	Cryogenics	PE	3	3	0	0	3
5.	50 HS 001	Engineering Economics and Financial Accounting	PE	3	3	0	0	3
6.	50 PT T02	Creo for Production Engineering	PE	4	2	0	2	3

OPEN ELECTIVES (OE)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
1.	50 ME L01	Rapid Prototyping	OE	3	3	0	0	3
2.	50 ME L02	Product Design for Manufacturing	OE	3	3	0	0	3
3.	50 ME L03	Composite Materials	OE	3	3	0	0	3
4.	50 ME L04	Quality Control and Reliability Engineering	OE	3	3	0	0	3
5.	50 ME L05	Logistics Management	OE	3	3	0	0	3

SEMESTER VII & SEMESTER VIII, AUDIT COURSES (AC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 AC 001	Research Skill Development -I	AC	1	1	0	0	0
2.	50 AC 002	Research Skill Development -II	AC	1	1	0	0	0

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
1.	50 TP 0P1	Career Competency Development I	EEC	2	2	0	0	-
2.	50 TP 0P2	Career Competency Development II	EEC	2	2	0	0	-
3.	50 TP 0P3	Career Competency Development III	EEC	2	2	0	0	-
4.	50 TP 0P4	Career Competency Development IV	EEC	2	2	0	0	-
5.	50 TP 0P5	Career Competency Development V	EEC	2	2	0	0	-
6.	50 ME 7P3	Project Work - Phase I	EEC	4	0	0	4	2
7.	50 ME 8P1	Project Work – Phase II	EEC	16	0	0	16	8

SUMMARY

S.No.	Category			Cre	dits Pe	r Seme	ster			Total	Percentage
S.NO.	Category	ı	II	III	IV	V	VI	VII	VIII	Credits	%
1.	HS	2	2	-	-	-	-	-	3	7	04.21
2.	BS	9	9	4	-	-	-	-	-	22	13.25
3.	ES	9	9	3	-	-	-	-	-	21	12.65
4.	PC	-	-	15	21	18	14	14	-	82	48.40
5.	PE	-	-	-	-	3	6	6	-	15	09.03
6.	OE	-	-	-	-	3	3	3	-	9	05.42
7.	EEC	-	-	-	-	-	-	2	8	10	06.02
8.	MC	-	MC I	MC II	MC III	-	MC IV	-	-	-	-
	Total	20	20	22	21	24	23	25	11	166	100

	K.	S.Rangasan	ny College o	of Technolog	y – Autono	mous R2018	3	
		5	0 EN 001 -	Communica	tion Skills I			
			Comm	on to All Bra	nches			
Semester		Hours / Wee	ek	Total	Credit	M	ks	
Ocinicator	L	Т	Р	hrs	С	CA	ES	Total
l	1	1	0	30	2	50	50	100
Objective(s)	•	appropriately To help learn To help learn related situat To equip stud	in different a ers develop ers acquire to ions dents with effearners to er	ve their von academic and strategies that the ability to st fective speak shance their	d professiona at could be a speak effecti ing and liste	al contexts dopted while vely in Englis ning skills in	e reading tex sh in real life English	ts and career
Course Outcomes	CO1: U CO2: A CO3: S CO4: C CO5: F	Utilize digital infer meaning Able to select offective oral Skim & Scan reading & voo Generate idea Details in writ Recognize the eading	literacy tools gs of unfamil , compile & s presentation the textual c cabulary skill as from sour ing e basic phon	synthesize in ontent & infe ls ces to develo	stening skills formation us r meanings o op coherent o of language	ing communion unfamiliar content and see execute it	ication strate words to dev support with for compete	egies for an relop relevant nt loud

Listening Skill Practice Module

Listening to Short Audios – Watching Short Videos - answering Multiple Choice Questions and Vocabulary Check- Listening to Short Comprehension Passages – Guided Listening – Listening to songs and cognizing the lyrics.

Speaking Skill Practice Module

Brainstorming – Group Discussion (unstructured) – Self Introduction - Just a Minute (JaM) - Short Narratives – Cue Cards – Picture Cards – Conversational Practices (Preliminary). [4]

Reading Skill Practice Module

Silent Reading – Scanning and Skimming - Reading short and Medium Passages – Cognition of Theme and Inferential Meaning - Academic and Functional Vocabulary List (350 words) – Word Power Check - Loud Reading – Modulation and Pronunciation Check.

Basic Writing and Composition Module

Functional Vocabulary and Word Power – Data Interpretation - Paragraph Writing – Letter Writing –Email Writing – Report Writing (Accident reports)-Conversational Fill Ups. [3]

	Total Hours: 15+15(Tutorial)=30
Text	Book(s)
1.	Ashraf Rizvi, M., "Effective Technical Communication", 2 nd Edition, McGraw Hill Education (India) Private
1.	Limited, Chennai, 2018.
2.	Norman Lewis, "Word Power Made Easy - The Complete Handbook for Building a Superior Vocabulary
۷.	Book", Penguin Random House India, 2020.
Refe	erence(s)
1.	Paul Emmerson and Nick Hamilton, "Five Minute Activities for Business English", Cambridge University
1.	Press, New York, 2005.
2.	Arthur Brookes and Peter Grundy, "Beginning to Write: Writing Activities for Elementary and Intermediate
۷.	Learners", Cambridge University Press, New York, 2003.
3	Michael McCarthy and Felicity O Dell, "English Vocabulary in Use: Upper Intermediate", Cambridge
3	University Press, New York, 2012.
4.	https://learningenglish.britishcouncil.org/en/listening

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	со	РО											PSO			
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1					2			2	3	3	2	3	2	2	2
	CO2								2	3	3	2	3	2	2	2
50 EN 001 & Communication Skills I	CO3					2			2	3	3	2	3	2	1	1
	CO4					2			2	3	3	2	3	2	2	2
	CO5								2	2	3	2	3	1	1	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of 1	Technology	– Autonomo	usR2018								
		50 MA 00	1 - Calculus	and Differe	ntial Equation	ons								
			Common	to All Branc	hes									
Compotor		Hours / Wee	k	Total	Credit	Max	imum Marks	6						
Semester	L	Т	Р	Hrs	С	CA	ES	Total						
I	3	1	0	60	4	50	50	100						
Objective(s)	OI To cu To mi	Orthogonal transformation. To get exposed to the fundamentals in circle of curvature, evolute and envelope of the curves. To acquire skills to understand the concepts involved in Jacobians and maxima and minima.												
Course Outcomes	CO1: Ap CO2: Co CO3: Ar CO4: Ap	oply Cayley - ompute the e nalyze Jacob oply various r fferential equ	rse, the stud Hamilton the quation of the ian methods methods in di lations. te and indefir	orem and to e circle of cu and constrai fferential equ	reduce quad rvature, evoluned maxima uations to solu	ute and envel and minima f ve linear and	lope of the cunctions.	urves.						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Matrices

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values and Eigen vectors – Cayley-Hamilton theorem (without proof) – Orthogonal transformation of a symmetric matrix to diagonal form – Reduction of quadratic form to canonical form by orthogonal transformation - Nature of quadratic form.

Differential Calculus

Curvature – radius of curvature (Cartesian and polar co-ordinates) – Centre of curvature – Circle of curvature – Involute and evolute – envelope. [9+3]

Functions of Several Variables

Partial differentiation – Homogeneous functions and Euler's theorem – Jacobians– Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Constrained maxima and minima: Lagrange's Method of Undetermined Multipliers. [9+3]

Differential Equations

Linear differential equations of second and higher order with constant co-efficient - R.H.S is $e^{\alpha x}$, $\sin \alpha x$, $\cos \alpha x$, $x^n n > 0$, $e^{\alpha x} \sin \beta x$, $e^{\alpha x} \cos \beta x$, $e^{\alpha x} x^n$, $x^n \sin \alpha x$ and $x^n \cos \alpha x$ - Differential equations with variable co-efficients : Cauchy's and Legendre's form of linear equation - Method of variation of parameters - Simultaneous first-order linear equations with constant co-efficients. [9+3]

Integral Calculus

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals. [9+3]

	lotal Hours: 45+15(lutorial)=60
Text	Book(s):
1.	Grewal B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014.
	Web site: https://pvpsitrealm.blogspot.com/2016/09/higher-engineering-mathematics-by-bs.html
2.	Veerarajan.T., "Engineering Mathematics", for Semesters I and II, Tata McGraw Hill PubCo., New Delhi.,
	2010.
Refe	rence(s)
1	Kreyszig Erwin, "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons (Asia) Limited,
1.	New Delhi, 2016.
2.	Dr. P. N. Agrawal, Dr. D. N. Pandey, "Integral Equations, Calculus of variations and its applications",
۷.	NPTEL online video courses.
3.	Matrix Analysis with Applications - Dr. S. K. Gupta Dr. Sanjeev Kumar, Matrix Solvers -prof.Somnath Roy
ა.	NPTEL online video courses.
1	Kandasamy, P., Thilagavathy, K. and Gunavathy, K., "Engineering Mathematics-II", S.Chand & Company
4.	Ltd, New Delhi.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO		
COURSE NAME	0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 MA001 & Calculus and Differential Equations	CO1	3	3	3	3	3							2		3	
	CO2	3	3	2	2	2							2		3	
	CO3	3	3	3	2	2							2		3	
	CO4	3	3	3	3	2							2		3	
	CO5	3	3	3	2	3							2		3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.	S.Rangasan	ny College o	f Technolog	y – Autonon	nous R2018							
			50 PH 00	1 - Applied I	Physics								
			Commo	on to Mech. 8	& MCT								
Semester		Hours / We	eek	Total	Credit	Ma	aximum Mark	S					
Jennester	L	Т	P Hrs C CA ES										
l	3	0	0	45	3	50	50	100					
Objective(s)	•	defects To enrich the understanding of various types of materials and their applications in engineering and technology. To enable the students to correlate the theoretical principles with application oriented studies in electrostatics.											
Course Outcomes	CO1: CO2: CO3: CO4:	Recognize the Assess the entesting methe Analyze the Conferthe mag	ne basics of congineering prods. Concept of elopets of the properties of new perties of new perties of new pressure of the processor of the pr	etudents will erystals struct roblems like p ectrostatics a oundary cond w engineerin	ures and diffe plastic deforn nd correlate ditions and m	nation, slip ar with dielectric agnetic mate	nd twinning b c materials. erials.	y material					

Crystal Physics

Introduction-Fundamental terms of crystallography–Bravais lattice–SC, FCC, BCC, HCP crystals-Miller indices-Relation between inter planer distance and inter atomic distance-Crystal defects–Crystal growth techniques- solution, melts (Bridgman and Czochralski) and vapour growth techniques. [9]

Properties of Matter and Materials Testing

Properties of matter: Hooke's Law - Stress -Strain Diagram - Elastic Moduli - Relation between elastic constants - Poisson's Ratio - Expression for bending moment and depression - Cantilever - Expression for Young's modulus by Non uniform bending and its experimental determination.

Materials testing: Mechanism of plastic deformation- slip and twinning – types of fracture – Vickers Hardness test - fatigue and creep test. [9]

Electrostatics

Maxwell's equation for electrostatics – E due to straight conductors, circular loop, infinite sheet of currentelectric field intensity (D) - Electric potential - dielectrics - dielectric polarization -internal field – Clausius-Mossotti equation - dielectric strength – Dielectric loss- Breakdown mechanism- applications. [9]

Magnetostatics

Maxwell's equation for magnetostatics - B in straight conductors, circular loop, infinite sheet of current - Lorentz force, magnetic field intensity (H) - Biot-Savart's Law - Ampere's Circuit Law - Magnetic flux density (B) - magnetic materials - Classification - properties-Domain theory offerromagnetism- Hysteresis- Hard and Soft magneticmaterials-Ferrites: structure, preparation and applications-Applications. [9]

Advanced Materials and Nanotechnology

New Engineering Materials: Metallic glasses – preparation, properties and applications – Shape memory alloys (SMA) – characteristics, properties of NiTi alloy applications – advantages and disadvantages of SMA **Nano Materials:** Nanomaterials: Properties- Top-down process: Ball Milling method – Bottom-up process: Vapour Phase Deposition method- Carbon Nano Tube (CNT): Properties, preparation by electric arc method, Applications.

Total Hours: 45

Text Book(s):

- 1. Rajendran, V., "Engineering Physics", Tata McGraw Hill, New Delhi. 2011.
- 2. Brijlal and Subramanian, N. "Electricity and Magnetism", 6th edition, Ratan & Prakash, Agra, 2006.

Ref	erence(s)
1.	Hayt, W.H., and John Buck, A., "Engineering Electromagnetics", 6 th ed., Tata McGraw Hill, New Delhi. 2014.
2.	David J Griffith, "Introduction to Electrodynamics", 2 nd Ed., New delhi, Prentice Hall of India Pvt. Ltd., 1997.
3.	Gagadhar K A & Ramanathan and Khanna, P.M., "Electromagnetic Field Theory", 5 th edition, Publishers, New Delhi. 2013.
4.	Dattuprasad and Ramanial Joshi, "Engineering Physics" Tata McGraw hill education, 2016.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	PO												PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 PH001 - Applied Physics	CO1	3	3	2	2	2			2		3		3	3	2	
	CO2	3	3	2	2	2			2		3		3	3		
	CO3	3	3	2	2	2			2		2		2	2		
	CO4	3	3	2	2	2			2		2		2	2		
	CO5	3	3	3	3	2			2		3		3	3	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.R	angasamy	College of Te	echnology -	Autonomous	s R2018							
		50 CS 001			olem Solving								
	1			All Branch									
		Hours / Wee	k	Total	Credit	Maxi	mum Marks						
Semester	L	Т	Р	hrs	С	CA	ES	Tot al					
I	3	0	0	45	3	50	50	100					
Objective(s)	the To To To	 To learn the evolution of computers and examines the most fundamental element of the C language To examine the execution of branching, looping statements, arrays and strings. To understand the concept of functions, pointers and the techniques of putting them to use To apply the knowledge of structures and unions to solve basic problems in C language To enhance the knowledge in file handling functions for storage and retrieval of data At the end of the course, the students will be able to											
Course Outcomes	CO1: Infe of CO2: Ani of CO3: Re- wit CO4: Co pre	er the evolutidata types and the color of th	on, generation dexpression ncept of consoping statem concepts of fusions concepts of fusion concepts	n, representans sole Input and ents, arrays a unctions, recu	ition of proble	res and exane class specified data	nine the exe	cution					

Introduction to Computer and Programming

Introduction to Computers - Evolution of computers - Generations of computers and Programming Languages—Introduction to components of a computer system -Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart—Pseudocode with examples. From algorithms to programs—variables (with data types)—Type Qualifiers - Constants — Operators —expressions and precedence [9]

Suggested Activities:

Knowing the history of computers

Developing Pseudocodes and flowcharts for real life activities

Developing algorithms for basic mathematical expressions using arithmetic operations.

Suggested Evaluation Methods:

Group Discussion on Introduction to Computers and its generation

Assignments on pseudocodes and flowcharts

I/O ,Branching ,Loops and Arrays

Console I/O – Unformatted and Formatted Console I/O – Conditional Branching and Loops - Writing and evaluation of conditionals and consequent branching -Iteration and loops - Arrays (1-D, 2-D), Character arrays and Strings

Suggested Activities:

Simple programs using I/O statements, arithmetic operations

Implementation of simple programs using Branching, Loops and Arrays

Performing String operations

Suggested Evaluation Methods:

Tutorial for the above activities

Group discussion on role of Branching, loop and Arrays in Programming Language

Functions and Pointers

Functions: Scope of a Function – Library Functions and User defined functions - Function Prototypes – Function Categorization - Function Arguments - Arguments to main function - The return Statement - Recursion - Passing Arrays to Functions – Storage class Specifiers. Introduction to Pointer Variables - The Pointer Operators - Pointer Expressions - Pointers and Arrays - Generating a Pointer to an Array - Indexing Pointers – Dynamic memory allocation [9]

Suggested Activities:

Develop simple applications like Calculator, Various Conversion Process using functions

Develop a simple programs by applying pointer concepts

Suggested Evaluation Methods:

Tutorial for the above activities

Group discussion on Function and Pointers

Structures, Unions, Enumerations, Typedef and Preprocessors

Structures - Arrays of Structures - Arrays and Structures within Structures - Passing Structures to Functions - Structure Pointers - Unions - BitFields - Enumerations - typedef - The preprocessor and comments. [9]

Suggested Activities:

Develop simple programs using Structures, Unions, Enumerations, Typedef and Preprocessors

Suggested Evaluation Methods:

Tutorial for the above activities

File

File: Streams – Reading and Writing Characters - Reading and Writing Strings -, File System functions - Random Access Files [9]

Suggested Activities:

Develop simple applications to apply files operations

Suggested Evaluation Methods:

Tutorial for the above activities

Group discussion on Files Concepts

Rev. No.3/w.e.f. 18.01.23
Passed in BoS Meeting held on 24/12/22
Approved in Academic Council Meeting held on 07/01/2023

	Total Hours: 45
Text	Book(s):
1.	Herbert Schildt, "The Complete Reference C", Fourth Edition, Tata McGraw Hill Edition, 2010.
2.	Byron Gottfried, "Programming with C", Third Edition, McGraw Hill Education, 2014.
Refe	rence(s)
1.	Balagurusamy, E., "Programming in ANSI C", 7th Edition, Tata McGraw Hill Edition, New Delhi, 2016.
2.	Brian W. Kernighan and Dennis M. Ritchie, "C Programming Language", Prentice-Hall.
3.	Reema Thareja, "Computer Fundamentals and Programming in C", Second Edition, Oxford Higher
J.	Education, 2016.
4.	King, K N., "C Programming: A Modern Approach", Second Edition, W.W.Norton, New York, 2008.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	3		3				3	3	2	2			
50 CS 001 &	CO2	3	2	3		3				3	3	2	2	2	2	
Programming For	CO3	3	2	3		3				3	3	2	2	2	2	
Problem Solving	CO4	3	2	3		3				3	3	2	2	2	2	
	CO5	3	2	3		3				3	3	2	2	1	1	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S	.Rangasamy	College of 7	Technology •	– Autonomo	us R2018		
		5	0 ME 001 - E	ngineering	Drawing			
		C	ommon to Ci	vil , Mech, MC	T & Text			
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	S
Semester	L	Т	Р	hrs	С	CA	ES	Total
	2	0	4	90	4	50	50	100
Objective(s)	• To vie • To • To	ews. learn the co draw the secondary the co	ous concepts graphic skills ncept of projection of solids ncept of isom	for converting for converting for converting the convertion of solic and development of the convertion of converting projection of converting projection of converting projection of converting for converting projection of converting projection of converting for	ng pictorial vals. Soment of surface.	iews of solid		ographic
Course Outcomes Note: The hou	CO1: Uso CO2: Co CO3: Dra CO4: Dra CO5: Ske	e the drafting nvert the pict aw the projec aw the true sh etch the three	se, the stude instruments orial views of tions of regula hape of section e dimensional	and construction solids in to control ar solids and ons and deveive view of solice	et the conic se orthographic v floor plans lop the latera ds for given o	views Il surfaces of rthographic v	iews	no houre

required for each topic based on importance and depth of coverage required. The marks allotted for questions

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

in the examinations shall not depend on the number of hours indicated.

Introduction to Engineering Drawing and Plane Curves

Use of drawing instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning – Drawing sheet layouts - Title block – Line types – Scales: plain, diagonal and vernier scales. Construction of ellipse, parabola and hyperbola (Eccentricity method) - Construction of rectangular hyperbola - Construction of cycloids, epicycloids and hypocycloids. [7+12]

Orthographic Projection

Introduction to orthographic projections – Planes of projection – Projection of points and lines inclined to both planes – Projection of planes (Inclined to one plane and parallel to other – Inclined to both planes) - Conversions of pictorial views to orthographic views. [6+12]

Projection of Solids and Floor plan

Projections of simple solids: prism, pyramid, cylinder and cone (Axis of solid inclined to both HP and VP) - Floor plans: windows, doors and fixtures such as water closet (WC), bath sink, shower etc. [5+12]

Sections of solids and Development of surfaces

Sections of solids: Prism, Cylinder, Pyramid, Cone – Auxiliary Views - Draw the sectional orthographic views of geometrical solids, objects from industry - Development of surfaces of Right solids – Prism, Pyramid, Cylinder and Cone.

[6+12]

Isometric Projection

Principles of isometric projection – Isometric scale – Isometric projections of simple solids: Prism, pyramid, cylinder and cone - Isometric projections of frustum and truncated solids - Combination of two solid objects in simple vertical positions. [6+12]

	Total Hours: 90
Text	Book(s):
1.	Bhatt N.D., "Engineering Drawing", Charotar Publishing House Pvt. Ltd., 53rd Edition, Gujarat, 2014.
2.	Basant Agarwal and C.M.Agarwal., "Engineering Drawing", McGraw Hill Education, 2013.
Refe	erence(s)
1.	Shah M.B., Rana B.C., and V.K.Jadon., "Engineering Drawing", Pearson Education, 2011.
2.	Natarajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2014.
3.	Venugopal K., "Engineering Graphics", New Age International (P) Limited, 2014.
4.	Dhawan, R.K., "A Text Book of Engineering Drawing" 3 rd Revised Edition, S. Chand Publishing, New Delhi, 2012.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	3										3	3	
	CO2	3	3	3										3	3	
50 ME 001 & Engineering Drawing	CO3	3	3	3		3			3					3	3	
	CO4	3	3	3		3			3					3	3	
	CO5	3	3	3										3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.R	angasamy (College of T	echnology -	- Autonomo	us R2018		
		50 PH 0	P1 - Engine	ering Physi	cs Laborato	ry		
		Common t	o Mech, MC	T, TEXT, FT	, BT, NST &	Civil		
Semester		Hours / Wee		Total	Credit	Ma	ximum Mark	
Gerriester	L	Т	Р	hrs	С	CA	ES	Total
I	0	0	4	60	2	60	40	100
Objective(s)	wi To th To ap To or To ut	th the Physical demonstration	cs theory. te an ability tecision in medifferent expects and electronstudents to descript the behavior	o make physeasurements to teriments to teronics. correlate the and charact	est basic und theoretical p teristics of v	ements and erstanding o	understand f physics cor h application	ncepts
Course Outcomes	CO1: A p CO2: R a CO3: R o CO4: A	pply the con roperties.(1- ecognize th pplications.(ecall the kno ptic cable (7 ssess the di	3) e viscosity a 4-6) owledge of poles -8) electric beha	s, strain and nd surface to roperties of livior of a give	e able to elastic limit f ension prope ight through s en material.(9 onstrate the	rties of liquic spectrometer	ds for its vario	ous fiber

- 1. Determination of Young's modulus of a steel bar by uniform bending method.
- 2. Determination of Young's modulus of a cantilever (Pin & Microscope method).
- 3. Determination of rigidity modulus of a wire by torsional pendulum.
- 4. Comparison of co-efficient of viscosity of two different liquids by Poiseuille's method.
- 5. Co-efficient of viscosity of highly viscous liquids.
- 6. Comparison of surface tension of two different liquids by capillary rise method.
- 7. Determination of NA, acceptance angle, and wave length of a given laser by using optical fiber.
- 8. Determination of velocity and compressibility of given liquid by using ultrasonic interferometer.
- 9. Determination of dielectric constant.
- 10. 10. V-I characteristics of solar cell.

Text Book(s):

1. Lab Manual: "Physics Lab Manual", Department of Physics, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	2	2				2	3	3	2	3	2	2	
50 PH 0P1 &	CO2	3	3	2	2				2	3	3	2	3	2		
Engineering Physics	CO3	3	3	3	2				2	3	3	2	3	2		
Laboratory	CO4	3	3	2	2				2	3	3	2	3		2	
	CO5	3	3	3	2				2	3	3	2	3	2		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

	K.5	S.Rangasam	/ College of	Technology	y – Autonom	ousR 2018		
	50	O CS 0P1 - P	rogrammin	g for Proble	m Solving L	aboratory		
			Common	to All Bran	ches			
Semester		Hours / Wee	k	Total	Credit	Ma	ximum Mark	S
Semester	L	Т	Р	hrs	С	CA	ES	Total
	0	0	4	60	2	60	40	100
Objective(s)	• To	o enable the souse selection apply the krop implement to	on and iteration nowledge of line he concepts he file handli	ve statement library function of arrays, fu ing operation	is in C progra ons in C prog nctions, structions through C	ms ramming		
Course Outcomes	CO1: Ap CO2: De CO3: De im CO4: De	d of the court poly how to remonstrate C esign and Imported points and C properties of the court points are constrate C	ad, display be program to in program to indicate the concept of th	pasic informa manage colle rent ways of is anage collect preprocesso	ition and use ection of relat passing argu tion of different or directives	ed data ments to fun nt data using	ctions, Recu	rsion and

- 1. Implementation of Simple computational problems using various formulas.
- 2. Implementation of Problems involving Selection statements.
- 3. Implementation of Iterative problems e.g., sum of series.
- 4. Implementation of 1D Array manipulation.
- 5. Implementation of 2D Array manipulation.
- 6. Implementation of String operations.
- 7. Implementation of Simple functions and different ways of passing arguments to functions and Recursive Functions.
- 8. Implementation of Pointers
- 9. Implementation of structures and Union.
- 10. Implementation of Bit Fields, Typedef and Enumeration.
- 11. Implementation of Preprocessor directives.
- 12. Implementation of File operations.

Text Book(s):

Lab Manual: "Programming for Problem Solving Laboratory Manual", Department of CSE, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	3		3				3	3	2	2			
50 CS 0P1 &	CO2	3	2	3		3				3	3	2	2	2	2	
Programming for Problem Solving	CO3	3	2	3		3				3	3	2	2	2	2	
Laboratory	CO4	3	2	3		3				3	3	2	2	2	2	
	CO5	3	2	3		3				3	3	2	2	1	1	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

	К.5	S.Rangasamy	/ College of	Technology	– Autonom	ous R2018		
				ommunicati				
				n to all Bran				
Semester		Hours / Wee	k	Total	Credit	Ma	aximum Mark	S
Semester	L	Т	Р	hrs	С	CA	ES	Total
II	1	1	0	30	2	50	50	100
Objective(s)	ir • T • T a • Ir	o help learne o different aca o help learne o help learne and career rela mprove listeni Develop mess	demic and presence of the develops of the develops of the development	professional c trategies that ne ability to s ns. ional skills, a	ontexts. could be add peak and wr nd problem s	opted while rite effectively	reading texts. y in English i	
Course Outcomes	CO1: Id re CO2: Us ef CO3: M ut CO4: Us	entify speake espond to the se communication ffective oral in ake inference tilizing digital se a variety of conventions accemonstrate pr	r's purpose a listening cor ation strategi teractions s and predic iteracy tools f accurate se ademic writing	and tone, con itent ies, vocabula tions, develo on textual co entence struc- ng and use p	nprehend relative and appropriate preading specific proprehension tures with fureer and teach	priate gramred, build aconctional voca	matical struct cademic voca abulary, apply k for effective	ures for bulary by the writing.

Advanced English Listening Module

Extended Listening to Podcasts – Listen and Watch Video Clips - answering Inferential Multiple Choice Questions and Vocabulary Check- Listening to Lengthy Discourses – Structured Listening – Listening to Songs and Cognizing the Lyrics-Listening to popular speeches, news briefs and stories [4]

Oral Communication

Debates – Group Discussion (Structured) and rotate roles – Elevator Speech – Prepared Talk – Extempore – Brief Technical presentations- Spin-a-Yarn – Short Film reviews – talk on silent videos – Dialogues and Role plays (Intermediate & Higher Level) – Interviews [4]

Critical Reading Process

Silent Reading – Scanning and Skimming - Reading comprehension with logical reasoning questions – Cognition of Theme and Inferential Meaning – advanced Academic and Functional Vocabulary List (1000 words) – word webs and semantic threads - Loud Reading – Modulation and Pronunciation Check – Mind maps – Note making – Deep Reading Skills

Academic Writing Practices

Sentence Equivalence and Text completion tasks – Data Interpretation - Essay Writing – Letter Writing – Business Emails – Conversational Fill Ups-Rewordify (select a text and simplify/enhance the language)-Reports on events.

Total Hours: 15+15(Tutorial)=30

[3]

Text Book(s)

- 1. Ashraf Rizvi, M., "Effective Technical Communication", 2nd Edition, McGraw Hill Education (India) Private Limited, Chennai, 2018
- 2. Norman Lewis, "Word Power Made Easy The Complete Handbook for Building a Superior Vocabulary Book", Penguin Random House India, 2020

Reference(s)

- 1. Paul Emmerson and Nick Hamilton, "Five Minute Activities for Business English", Cambridge University Press, N.York, 2005
- 2. Ruth Wainry B, "Stories:Narrative Activities for The Language Classroom", Cambridge University Press, N.York, 2005
- 3. Stuart Redman, "English Vocabulary in Use: Upper Intermediate", Cambridge University Press, N.Y, 2006
- 4. https://www.khanacademy.org/test-prep/sat/sat-reading-writing-practice

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0						PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1					2			2	3	3	2	3		2	1
	CO2								2	3	3	2	3	2	2	2
50 EN 002 & Communication Skills II	CO3					2			2	3	3	2	3	2	2	2
	CO4					2			2	3	3	3	3	2	2	2
	CO5					2			2	3	3	3	3	1	2	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.	S.Rangasam	y College o	f Technolog	y – Autonon	nous R2018		
		50 MA 002 -	Laplace Ti	ransform an	d Complex \	/ariables		
			Commo	n to All Brai	nches			
Semester		Hours / Wee	k	Total	Credit	Ma	aximum Mark	S
Semester	L	Т	Р	hrs	С	CA	ES	Total
II	3	1	0	60	4	50	50	100
Objective (s)	ar To To Bi To	o provide expond Gamma furo familiarize the get exposed linear transfor acquire skill auchy's resided understand	nctions. ne students voluments to the fundation. s to understage the theorem a	with the basic amentals in a and the conce and Contour i	concepts in nalytic function epts involved ntegration.	Vector calcuons, conform	ilus. al mappings integral form	and ula,
Course Outcomes	CO1: E CO2: A D CO3: C CO4: A	d of the cour valuate double nalyze the bastivergence the construct the apply Cauchy's complex integrapply Laplace	e and triple i sic concepts eorems. analytic funct s integral for als. transform tec	ntegrals and of vector cal ions and Bilir mula and Cau	analyze Beta culus to verif near transforr uchy's residu solving differe	y Green's, S mation. e theorem to ential equation	toke's and Good one of the one of	•

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Multiple Integrals

Double integration – Cartesian and polar coordinates – Change of order of integration – Area between two curves – Area as double integral – Triple integration in Cartesian coordinates.

Beta and Gamma functions: Relationship between Beta and Gamma functions – Properties – Problems. [9+3]

Vector Calculus

Introduction - gradient of a scalar point function - directional derivative - angle of intersection of two surfaces – divergence and curl(excluding vector identities) - solenoidal and irrotational vectors - Green's theorem in the plane - Gauss divergence theorem -Stokes' theorem(without proof)- verification of the above theorems and evaluation of integrals using them. [9+3]

Analytic Functions

Analytic functions – Necessary conditions (Cauchy–Riemann equations)- Polar form of Cauchy–Riemann equations – Sufficient conditions (without proof) – Properties of analytic functions – Harmonic function – Harmonic conjugate – Construction of analytic functions– Conformal mapping: w = z + a, az, 1/z -Bilinear transformation.

Complex Integration

Cauchy's Integral theorem (without proof) – Cauchy's integral formula – Taylor's and Laurent's series (without proof) – Classification of singularities – Cauchy's residue theorem – Contour integration – Circular and semi-circular contours (excluding poles on real axis). [9+3]

Laplace Transforms

Conditions for existence – Transform of elementary functions – Basic properties – Shifting theorems—Derivatives and integrals of transforms — Transform of unit step function – Dirac's delta function- Initial and final value theorem—Transform of periodic functions. Inverse Laplace transform – Convolution theorem(excluding proof) – Solution of second order ordinary differential equation with constant co-efficient – simultaneous equations of first order with constant co-efficient.

Total Hours: 45+15(Tutorial) =60

Text Book(s):

- 1. Grewal B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014. Website:https://pvpsitrealm.blogspot.com/2016/09/higher-engineering-mathematics-by-bs.html
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons (Asia) Limited, New Delhi, 2016.

Reference(s)

- Bali.N.P and Dr.ManishGoyal,"A text book of Engineering Mathematics",8thedition,Laxmi Publications (P)
- 2. Veerarajan.T., "Engineering Mathematics", for Semesters I and II , Tata McGraw Hill Publishing Co., New Delhi, 2010.
- 3. Kandasamy P, Thilagavathy K & Gunavathy K, "Engineering Mathematics -II", S.Chand & Company Ltd, New Delhi.
- 4. SWAYAM online video courses.(www.swayamprabha.gov.in)

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	0	РО													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	3	2	3							2		3			
50 MA 002 & Laplace Transform and Complex Variables	CO2	3	3	2	2	3							2		3			
	CO3	3	3	3	2	2							2		3			
	CO4	3	3	2	2	3							2		3			
	CO5	3	3	2	3	3							2		3			

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K	.S.Rangas	amy Colleg	e of Techno	ology – Aut	tonomous	R2018							
			50 CH (001 - Applie	ed Chemist	ry								
			Com	mon to All	Branches									
Semester		Hours / We	eek	Total	Credit		Maximum N	/larks						
Semester	L	Т	Р	hrs	С	CA	ES	Total						
II	3	0	0	45	3	50	50	100						
Objective(s)	•	reactions and its application To help the learners to analyze the hardness of water and its removal techniques To endow with various spectroscopy techniques and its applications												
Course Outcomes	CO CO CO CO	1: Rationaliz orbitals 2: Apply the applicatio 3: Analyse t 4: Interpret of 5: Infer the	thermodynon he cause arthe various types of ste	amic functiond effects of spectroscopreochemistr	es of elemer ins to electro hardness on y technique y and chem	nts and mole o chemical of water and is and its ap ical reaction	reactions an its removal oplications ns with their	lls variation of d its techniques mechanism.						

Periodic properties

Effective nuclear charge - atomic and ionic sizes - ionization energies - electron affinity - electro negativity - polarizability - oxidation states - penetration of orbitals- variations of s, p, d and f orbital energies of atoms - electronic configurations, ionic, dipolar and Vander- waals interactions. Hard soft acids and bases (HSAB).

Molecular orbitals of diatomic molecules - plots of the multicentre orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbital of butadiene and benzene. [9]

Chemical equilibria and corrosion

Thermodynamic functions - energy - entropy - enthalpy- free energy - Gibbs-Helmholtz equation - Van 't Hoff isotherm. Cell potentials - Nernst equation - applications - EMF series - applications - Poteniometric and Conductometric titrations. Corrosion - types of corrosion - chemical and electrochemical corrosion - mechanism - Factors influencing corrosion - Corrosion control methods (impressed current and sacrificial anode methods) - Corrosion inhibitors. [9]

Water chemistry

Sources - Water quality parameters - impurities in water and their effects. Hardness - Estimation of hardness - effect of hard water in various industries-Softening of water- zeolite process- ion-exchange process - reverse osmosis - electrodialysis. Boiler troubles - methods of prevention. [9]

Analytical techniques and applications

Absorption laws - Ultra violet spectroscopy (UV) - Principle - Instrumentation (Block diagram) - applications. Infrared spectroscopy (IR) - Instrumentation (Block diagram) - selection rule - types of fundamental vibrations - applications. Nuclear magnetic resonance spectroscopy (NMR) - Principle - selection rule - Instrumentation (Block diagram) - chemical shift - factors influencing the chemical shift - applications. Atomic absorption spectroscopy (AAS) - Principle - Instrumentation Block diagram) - applications.

Concepts in Organic chemistry

Structural isomerism- types - Stereoisomerism - geometrical (Maleic and Fumaric acids) - optical isomerism (Lactic and Tartaric acids) - symmetry - chirality- enantiomers - diastereomers - optical activity - absolute configurations.

Introduction to reactions - substitution - addition - oxidation - reduction - cyclization and ring openings - mechanism.

Total Hours: 45

Tex	t Book(s):
1.	Jain. P.C. and Monica Jain, "Engineering Chemistry", Dhanpatrai publishing co. New Delhi, 14th
	edition, 2015.
2.	Dr. S.Vairam and Dr. Suba Ramesh, "Engineering Chemistry", Wiley India Private Limited, 2nd
	edition, 2013
Refe	erence(s)
1.	Puri B. R., Sharma L.R., and Pathania M.S., "Principles of Physical Chemistry", Vishal Publishing
1.	Company, Delhi, 2017.
2.	Dara. S.S, "A Text Book of Engineering Chemistry", S Chand & co. Ltd., 2014.
3.	Bahl B.S. and Arun Bahl, "Advanced Organic Chemistry", S.Chand, New Delhi, 2014.
4.	Sharma, B K., "Instrumental Methods of Chemical Analysis", Goel Publishing House Meerut,
4.	23 rd edition, 2014.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	2			2	2									1			
	CO2	3	2	2	2	2	2	2	1		1		1	2	2			
50 CH 001 & Applied Chemistry	CO3	3	3	3	3	2	3	2	1				1	2	1			
	CO4	1	1	2	3	3	2						1	1	1			
	CO5	2	1	1	3	3	2											

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.9	S.Rangasam	y College o	of Technolog	gy – Autono	omous R201	18	
		50 E	E 001 - Ba	sic Electrica	al Engineeri	ing		
			Commo	n to All Bra	nches			
Semester		Hours / We	ek	Total	Credit	N	laximum Ma	ırks
Semester	L	Т	Р	hrs	С	CA	ES	Total
II	3	0	0	45	3	50	50	100
Objective(s)	•	To identify th	ne concepts ne sources d ne various c	of electrical of electric po omponents o	machines ar wer generat of low voltag	nd their char ion and vario e electrical ir	acteristics. ous types of ostallation	power plant.
Course Outcomes	CO1: CO2: CO3: CO4:	Apply the band Acquire known machines and Impart the known-convent Recognize the installations Create awar	asic laws of wledge abo nd AC mach nowledge o tional energ ne significar	electric circu ut the constr ines f generation y sources ace of various	its to calcula uctional deta of electricity s componen	ate the unknoails and prince based on courts of low voltes	ciple of oper conventional tage electric	ation of DC and

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

DC and AC Circuits - Electrical circuit elements (R, L and C), Voltage and current sources - Kirchhoff's current and voltage laws - Serial and parallel circuits - Analysis of simple circuits with DC excitation. Representation of sinusoidal waveforms, Peak and RMS values, Phasor representation, Real power, Reactive power, Apparent power, Power factor. Analysis of single phase AC circuits consisting of R, L, C, RL, RC, RLC combinations.

DC&AC Machines - Construction, Types and Operation-Faraday's laws of electromagnetic induction Transformers: Construction, Working principle, Types, Losses in transformers, Regulation, Efficiency and applications-Simple Problems - Applications

Generation of rotating magnetic fields - Three phase induction motor: Construction, working principle, Characteristics, Starting - Single phase induction motor: Construction, working principle and applications -Synchronous generators: Construction, Working principle and applications. [14]

Electrical Power Generation Systems - Sources of electrical energy: Renewable and non-renewable Principles and schematic diagram of Hydroelectric power plant, Thermal power plant, Nuclear power plant, Solar PV system and Wind energy conversion systems.

Electrical Installations and House Wiring - Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB - Types of Batteries, Important Characteristics for Batteries - UPS.

Single phase and three phase systems: Three phase balanced circuits, Phase sequence, voltage and current relations in star and delta connections - Basic house wiring tools and components - Domestic wiring: Service mains, meter board, distribution board, energy meter. Different types of wiring: staircase, fluorescent lamp and ceiling fan.

Electrical Energy Conservation & Safety - Elementary calculations for energy consumption - BEE Standards - Electrical energy conservation - Methods. Electric shock, Precautions against shock, Objectives of earthing, Types of earthing - Basic electrical safety measures at home and industry.

1 ypc	of cartilling Basic electrical safety measures at nome and massify.	راحا
		Total Hours: 45
Text	Book(s):	
1.	Kothari D.P and Nagrath, I J., "Basic Electrical Engineering", Tata McGraw Hill, 2017.	
2.	Kulshreshtha, D. C., "Basic Electrical Engineering", McGraw Hill, 2017.	
Refe	rence(s)	
1.	L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.	
2.	E. Hughes, "Electrical and Electronics Technology", Pearson, 2016.	
3.	V. D.Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 2015.	
4.	Rajendra Prasad, "Fundamentals of Electrical Engineering", PHI Learning, 2014	

Pre-requisite: Physics

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	60	РО													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	2			2								2	2	1		
	CO2	3	2			2		2						2	1	1		
50 EE 001 & Basic Electrical Engineering	CO3	2	2	1	2	2	3	2	2					2	2	1		
	CO4	1	1	2		2		2	1					1	2	1		
	CO5	2	2	2		2		2	2		2		2	2	1	1		

Note: 3 - Strong Contribution: 2 - Average Contribution: 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

	K.S.	Rangasamy	College of T	echnology -	- Autonomo	us R2018								
	50 ME 003 – Engineering Mechanics Common to all branches													
			Common	to all branche	es									
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	3						
Semester	L	T	Р	hrs	С	CA	ES	Total						
II	3	1	0	60	4	50	50	100						
Objective(s)	me To To To	To the state of th												
Course Outcomes	CO1: U: de CO2: A; CO3: Ca CO4: Ar CO5: Di	se scalar and terminate stroply basic knalculate the palyse and so raw a shear f	se, the stud d vector analy uctures. owledge of so properties of so olve problems orce and ber of frictional f	rtical technique cientific conc surfaces and s on kinemati ding momen	ues for analysepts to solve solids using ics and kinetit diagrams, a	real-world proversious theorons. In alysis of rigons.	roblems. rems.	amics						

Basics and Statics of Particles

Introduction -Units and Dimensions-Laws of Mechanics-Principle of transmissibility-Lame's theorem, Parallelogram and triangular Law of forces-Vectors-Vectorial representation of forces and moments.

Vector operations

Addition, subtraction, dot product, cross product-Coplanar Forces–Resolution and Composition of forces–Equilibrium of a particle–Forces in space-Equilibrium of a particle in space-Equivalent systems of forces-Single equivalent force. [12]

Equilibrium of Rigid Bodies

Free body diagram—Types of supports and their reactions—requirements of stable equilibrium—Static determinacy, Moments and Couples—Moment of a force about a point and about an axis—Vectorial representation of moments and couples—Varignon's theorem-Equilibrium of Rigid bodies in two dimensions.

Trusses: Introduction, axial members, calculation of forces on truss members using method of joints-Method of sections. [12]

Properties of Surfaces and Solids

Determination of Areas and Volumes-Centroid, Moment of Inertia of plane area (Rectangle, circle, triangle using Integration Method; T section, I section, Angle section, Hollow section using standard formula) - Parallel axis theorem and perpendicular axis theorem- Polar moment of inertia -Mass moment of inertia of thin rectangular section -Relation between area moment of inertia and mass moment of inertia. [12]

Dynamics of Particles

Displacement, Velocity, acceleration and their relationship—Relative motion -Projectile motion in horizontal plane— Newton's law—Work Energy Equation – Impulse and Momentum. [12]

Elements of Rigid Body Dynamics, Friction and Beams

Translation and Rotation of Rigid Bodies: Velocity and acceleration-General Plane motion: Crank and Connecting rod mechanism.

Friction

Frictional force-Laws of Coloumb friction-Simple contact friction-Ladder friction-Rolling resistance-Ratio of tension in belt.

Transverse bending on beams

Types of beams: Supports and loads – Shear force and bending moment in beams – Cantilever, simply supported and overhanging beams. [12]

Total Hours: 45 + 15(Tutorial) = 60

Text Book(s):

- Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt. Ltd., 3rd Edition, 2017.
 Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers", Statics and Dynamics, McGraw-Hill International, 11th Edition, 2016.
 Reference(s)
 Jayakumar, V. and Kumar, M, "Engineering Mechanics", PHI Learning Private Ltd, New Delhi, 2012
 Hibbeller, R.C., "Engineering Mechanics", Vol. 1 Statics, Vol. 2 Dynamics, Pearson Education Asia Pvt. Ltd.,
 Bansal R.K, "Engineering Mechanics" Laxmi Publications (P) Ltd, 2011.
- 4. Irving H. Shames, "Engineering Mechanics:Statics and Dynamics", Pearson Education Asia Pvt. Ltd, 4th Edition, 2003.
- 5. James M. Gere and Timoshenko, "Mechanics of Materials", CBS Publisher, New Delhi, 6th Edition, 2012.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	3										3	3			
50 ME 003 & Engineering Mechanics	CO2	3	3	3										3	3			
	CO3	3	3	3		3			3					3	3			
	CO4	3	3	3		3			3					3	3			
	CO5	3	3	2	3									3	2			

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology – Autonomous R 2018 50 MY 001 - Constitution of India															
	50 MY 001 - Constitution of India Common to all Branches														
	Common to all Branches Hours / Wook Total Credit Maximum Marks														
Semester	ŀ	Hours / Week		Total	Credit	Ma	aximum Mark	(S							
Semester	L	Т	Р	hrs	С	CA	ES	Total							
II	2	0	0	30	-	100	-	100							
Objectives	rig To coi of To Re To To	know the pre- hts perspecti- address the enstitutional ro- nationhood in address the volution in 19 gain knowled acquire know	ve. growth of Incole and entitle the early yearole of social the and its in the early particulate in the light and its in the early particulate in the light and its interest and	dian opinion rement to civilears of Indianism in Indianism in Indianism in the assing	regarding moderation and economic nationalism after the cominitial drafting etion commission.	dern Indian nic rights as v imencement g of the India	intellectuals' well as the e of the Bolsh	mergence evik							
Course Outcomes	CO1: Di CO2: Ex CO3: Ex CO4: Do	of the cours scuss the fra kplain about to kpound the prescribe the local kplicate the re	ming of cons he fundame owers and fu cal administ	stitution and intal rights an inctions of varation and the	its features ad duties arious memb	members.	nance								

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

History of Making of the Indian Constitution:

History - Drafting Committee, (Composition & Working)

[5]

Philosophy of the Indian Constitution:

Preamble - Salient Features

[5]

Contours of Constitutional Rights & Duties:

Fundamental Rights - Right to Equality - Right to Freedom - Right against Exploitation -Right to Freedom of Religion - Cultural and Educational Rights - Right to Constitutional Remedies - Directive Principles of State Policy - Fundamental Duties. [5]

Organs of Governance:

Parliament - Composition - Qualifications and Disqualifications - Powers and Functions Executive - President - Governor - Council of Ministers - Judiciary, Appointment and Transfer of Judges, Qualifications - Powers and Functions.

Local Administration:

District's Administration head: Role and Importance, - Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation - Pachayati raj: Introduction, PRI: ZilaPachayat - Elected officials and their roles, CEO ZilaPachayat: Position and role- Block level: Organizational Hierarchy (Different departments) - Village level: Role of Elected and Appointed officials - Importance of grass root democracy. [5]

Election Commission:

Election Commission: Role and Functioning- Chief Election Commissioner and Election Commissioners- State Election Commission: Role and Functioning- Institute and Bodies for the welfare of SC/ST/OBC and women.

ျ

		Total Hours: 30
Text	book:	
1	The Constitution of India, 1950 (Bare Act), Government Publication	
2	Busi, S.N., Ambedkar, B R., "Framing of Indian Constitution", 1st Edition, 2015.	
Refe	rence(s):	
1	Basu, D D., "Introduction to the Constitution of India", Lexis Nexis, 2015.	
2	Jain, M.P., "Indian Constitution Law", 7th Edition, Lexis Nexis, 2014.	
3	Bhansali S R., "Textbook on The Constitution of India", Universal Publishers, 2015	
4	Jain, M P.,"Outlines of Indian Legal and Constitutional History", Lexisnexis, 2014	

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &		РО													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1								2	2	1		2					
50 MY 001 - Constitution of India	CO2								2	2	1		2					
	CO3								2	2	1		2					
	CO4								2	2	1		2					
	CO5								2	2	1		2					

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

K.S.Rangasamy College of Technology – Autonomous R2018													
		50	CH 0P1 - Ch	nemistry Lab	oratory								
	Common to all branches												
Semester		Hours / Wee	k	Total	Credit	Max	Maximum Marks						
Semester	L	Т	Р	hrs	С	CA	ES	Total					
	0	0	4	60	2	60	40	100					
Objective(s)	• To • To • To	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
Course Outcomes	At the end CO1. Ca wa CO2. Es CO3. Inf CO4 Ex	d of the coural culate the a later sample the arter the amouramine the arter the amouramine the arter the amouramine the arter	se, the stude mount of hare nount of baric	ents will be dness, alkalir um chloride a bH metry and bus ion by spe	able to nity, chloride and mixture of ferrous ion bectrophotome	ion and disso of acids by co by potentiome etry	olved oxyger						

- 1. Estimation of hardness of water by EDTA method.
- 2. Estimation of alkalinity of water sample.
- 3. Estimation of chloride content in water sample (Argentometric method).
- 4. Determination of dissolved oxygen in boiler feed water (Winkler's method).
- 5. Estimation of barium chloride by conductometric precipitation titration.
- 6. Estimation of mixture of acids by conductometric titration.
- 7. Estimation of ferrous ion by potentiometric titration.
- 8. Estimation of HCl, beverages and other biological samples by pH meter.
- 9. Estimation of iron content by spectrophotometry method.
- 10. Determination of corrosion rate and inhibitor efficiency by weight loss method.

Text Book(s):

1. Dr. S.Vairam and Dr. Suba Ramesh, "Engineering Chemistry", Wiley India Private Limited, Delhi, 2nd edition, January 2013.

Reference(s)

- Mendham. J, Denney. R.C, Barnes. J.D, and Thomas. N.J.K, "Vogel's Text Book of Quantitative Chemical Analysis", Pearson Education, 6th edition, 2009.
- 2. S.S. Dara, "A Text Book on Experiments and Calculations Engineering", S.Chand & Co., Ltd., 2nd Ed, 2003
- 3. Sunita Rattan, "Experiments in Applied Chemistry" S K Kataria &Sons, New Delhi, 2011

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO		
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3		1	2			1		2	1	1	
	CO2	3	3	3	2						1		1	1	1	
50 CH 0P1 & Chemistry Laboratory	CO3	3	3	3	2						1		1	1	1	
,	CO4	3	3	3	3			1			1					
	CO5	2	2	2	2						1		2	2	2	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

	K.S.Rangasamy College of Technology – Autonomous R2018 50 ME 0P1 – Engineering Practices Laboratory												
		50 ME 0F	1 – Enginee	ring Practic	es Laborato	ry							
	Common to all branches												
Semester		Hours / Wee	k	Total	Credit	Max	Maximum Marks						
Semester	L	Т	Р	hrs	С	CA	ES	Total					
II	0	0	4	60	2	60	40	100					
Objective(s)	• To • To sh • To	 To identify the hand tools and instruments. To provide hands on experience in Fitting, Carpentry, Sheet metal, Welding and lathe shop. To provide practical training on house hold wiring and electronic circuits. 											
Course Outcomes	CO1: F CO2: F CO3: F CO4: G	Perform facin Make a mode Fabricate the Construct and	models of sh	ng, drilling. d carpentry: S leet metal an e electrical a	Square, Dove d welding joi nd electronic	etail and Cros nts. wiring circuit	. ,						

Machine shop

Safety aspects in machine shop, Study of Lathe and Radial drilling machine, Turning, Facing and Drilling.

Fitting and Carpentry

Safety aspects in Fitting and Carpentry, Study of tools and equipments, Preparation of models- Square, Dove tail joint, Cross Lap.

Sheet Metal and Welding

Safety aspects in Sheet metal and Welding, Study of tools and equipments, Sheet metal models - Scoope, Cone, Tray, Preparation weld joints -Lap, butt, T-joints. Study of Gas Welding and Equipments.

Electrical Wiring & Electronics

Safety aspects of Electrical wiring, Study of Electrical Materials and wiring components, Wiring circuit for a lamp using single and stair case switches. Wiring circuit for fluorescent lamps, Basic electronic circuit.

Plumbing

Study of plumbing tools, assembly of G.I. pipes/ PVC and pipe fittings, Cutting of threads in G.I.Pipes/PVC by thread cutting dies.

Smithy, Plastic moulding and Glass cutting

Safety aspects in smithy, plastic moulding and glass cutting, Study of tools and equipments.

Lab Manual:

1. "Engineering Practices Lab Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO											PSO		
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 0P1 &	CO1	3	3	3	3		3	3	3	3	3			3	3	3
	CO2	3	2	2	3		2	2	3	3	3			3	2	3
Engineering Practices	CO3	3	3	3	3		3	3	3	3	3			3	3	3
Laboratory	CO4	3	2	2	3		2	2	3	3	3			3	2	3
	CO5	3	2	2	3		2	2	3	3	3			3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

	K.S.Rangasamy College of Technology – Autonomous R2018 50 MA 003 - Partial Differential Equations and Statistics													
		50 MA 003	3 - Partial Dif	ferential Eq	uations and	Statistics								
			Comn	non to Mech	, MCT									
Semester		Hours / Week Total Credit Maximum Marks L T P hrs C CA ES 3 1 0 60 4 50 50						ks						
Semester	L	Т	Р	hrs	С	CA	ES	Total						
III	3	1	0	0 60 4 50 50										
	•	To develop	the mathema	atical skills fo	r solving part	tial differentia	al equations							
	•	To provide	exposure and	ability to us	e Fourier ser	ies	•							
	•	To acquire skills in handling situations involving one-dimensional boundary value problems												
Objective(s)	problems													
	 To learn basic concepts in descriptive statistics 													
	To familiarize the students with various methods in hypothesis testing and to get													
	exposed to various statistical methods designed to make scientific judgments													
	At the	end of the c	ourse, the s	tudents will	be able to									
	CO1	: Compute th	ne solution of	partial differen	ential equation	ons using diff	erent method	ds						
	CO2	: Obtain the	Fourier series	s expansion	for the period	dic functions								
Course	CO3	: Compute the	ne solution fo	r one-dimens	ional wave e	equation and	one-dimensi	onal heat						
Outcomes		equation.												
Outcomes	CO4		oncepts in de	•			res of central	tendency,						
			of dispersion		_									
	CO5		atistical hypo					test and						
N		analyze th	e design of e	xperiments u	sing CRD, R	BD and Latin	square							

Partial Differential Equations

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Non-linear partial differential equations of first order (Type I – IV) – Solution of partial differential equations of first order – Lagrange's linear equations – Linear partial differential equations with constant coefficients. [9+3]

Fourier Series

Dirichlet's conditions – Fourier series – Odd and even functions – Half range Fourier series – Root mean square value of a function – Parseval's identity – Harmonic analysis. [9+3]

Boundary value problems

Classification of second order quasi - linear partial differential equations – Solution of one-dimensional wave equation – Solution of one-dimensional heat equation – Problems. [9+3]

Basic Statistics

Measures of central tendency: Mean, Median and Mode- measures of dispersion: Range, Quartile deviation and Standard deviation – measures of skewness: Bowley's co-efficient of skewness - Pearson's co-efficient of skewness - moments - kurtosis – correlation – rank correlation – regression. [9+3]

Testing of hypothesis and Design of experiments

Small sample tests based on t, F and χ^2 distributions – Contingency table (Test for Independency) – Goodness of fit – One way classification – Completely randomized design – RBD – Two way classification –Latin square design. [9+3]

Text Book(s):

1. Grewal B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014.
Web site: https://pvpsitrealm.blogspot.com/2016/09/higher-engineering-mathematics-by-bs.html

2. Gupta, S.C, and Kapur, J.N., "Fundamentals of Mathematical Statistics", Sultan Chand, 9th edition, New Delhi, 1996.

Reference(s)

1. Veerarajan T., "Probability, Statistics and Random process", 3rd Edition, Tata Mc-Graw Hill Publications, New Delhi, 2008.

2. Bali N.P and Manish Goyal, "A Text book of Engineering Mathematics", 9th Edition, Lakshmi Publications Pvt Ltd, New Delhi, 2014.

3. Agrawal, P.N., Gupta, S.K., "Mathematical Methods and its Applications", NPTEL online video courses.

4. Basic statistics – nptelnptel.ac.in/courses/105103140/2

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО												PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
50 MA 003 & Partial Differential Equations and Statistics	CO1	3	3	2	2	3	2	1				1		3	2	1	
	CO2	3	3	2	1	3	2	1				2		3	2	1	
	CO3	3	3	2	1	3	2	2				3	3	3	3	3	
	CO4	3	3	2	3	3	3	3		2	3	3	3	3	3	3	
	CO5	3	3	2	3	3	3	3		2	3	3	3	3	3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 EC 001 – Basic Electronics Engineering													
		50 I	EC 001 - Bas	sic Electroni	cs Enginee	ring								
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks						
	L	Т	T P C CA ES											
III	3	0	0	45	3	50	50	100						
	• To	got and basis had about alloads in silvanic and in recall and												
	• To	To familiarize the working and characteristics of transistors												
Objective(s)	• To	To understand the working of operational amplifier												
	• To													
	• To	o get the bas	ic idea about	electronic co	mmunication	n system								
				ents will be a										
				characteristic										
	CO2:	Describe the	construction	, working and	d characteris	tics of bipola	r junction tra	nsistor.						
Course				fundamentals										
Outcomes	CO4:	Explain the f	unctions of lo	gic gates, co	mbinational	circuits and s	sequential log	gic circuits.						
	CO5:	Describe the	Concepts of	Electronic co	ommunicatio	n systems								

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Semiconductor Diodes

Review of semiconductor physics: Insulators, Conductors and Semiconductors-Semiconductor types-; PN Junction Diode- Ideal and Practical diode- VI characteristics- -Equivalent circuits- Zener Diode and its characteristics Zener diode as voltage regulator -Half wave and full-wave rectifiers. [9]

Bipolar Junction Transistors

Transistor- construction, types, operation, configurations- Transistor as a switch-Applications-BJT as a single stage CE amplifier, frequency response andbandwidth [9]

Operational Amplifier

Introduction, Ideal Vs. Practical- Performance Parameters- Applications- Inverting and Non-inverting Amplifiers, Voltage Follower-Summing and difference amplifier, Comparator, Integrator, Differentiator, Instrumentation amplifier [9]

Digital Electronics

Number Systems- Boolean algebra – Logic gates- OR, AND, NOT, NAND, NOR-Adder, Subtractor, Multiplexer, Demultiplexer, Encoder, Decoder-Flip-Flops. [9]

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Electronic communication Systems

The elements of communication system, Transmission media: wired and wireless, need of modulation,AM and FM modulation schemes, Mobile communication systems: cellular concept and block diagram of GSM system.

Total Hours: 45

Text Book(s):

- 1. Sedha R.S., "Applied Electronics", S. Chand & Co., 2016
- 2. Anil K. Maini, 'Digital Electronics Principles and Integrated Circuits', Wiley India Pvt.Ltd, 2016.

Reference(s)

- 1. Robert L. Boylestad, Louis Nashelsky, 'Electronic Devices and Circuit Theory', Pearson New Delhi, 11th Edition, 2016
- 2. Mehta V K, 'Principles of Electronics', S.Chand& Company Ltd., 11th Edition, 2014.
- 3. Frenzel, "Communication Electronics: Principles and Applications", Tata McGraw Hill, 3rdEdition,2015
- 4. David. A. Bell, "Electric Circuits", Oxford University Press, Seventh impression 2015.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	co	PO											PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3	2								3	2	
50 EC 001 & Basic Electronics Engineering	CO2	3	3	3	3	2								3	2	
	CO3	3	3	3	3	2								3	2	
	CO4	3	3	3	3	2								3	2	
	CO5	3	3	3	3	2								3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K	.S.Rangasa	my College	of Technolo	gy – Autono	mous R 201	8						
	50 ME 004 - Strength of Materials												
Semester		Hours / Wee	k	Total hrs	Credit	М	aximum Mar	ks					
Semester	L	Т	Р	TOtal IIIS	C	CA	ES	Total					
III	3	1	0	60	4	50	50	100					
Objective(s)	 bea To typ To To bar To 	identify the name, shafts, calculate the es of loading determine the acquire the cas. impart the kname in the cas impart the kname in the ential for the	cylinders and elastic defor e deflection concept of burnowledge of n	spheres for mation occur of various beackling and be	various types ring in variou ams. ams. able to solvend structural	of simple loads simple geometric simple geometric geomet	ads. ometries for constraints one related to der different	lifferent					

At the end of the course, the students will be able to

CO1: Estimate the stress intensity and deformation in solid bodies subjected to various types of loading and compute the principal stresses and strains by analytical and graphical methods.

Course Outcomes

CO2: Apply the concepts of shear force and bending moment diagrams in design of machine elements.

CO3: Estimate the slope and deflection in determinate beams

CO4: Compute the deflection and stress developed in shaft and springs.

CO5: Calculate the stresses, strains and deformation of the thin, thick cylindrical and spherical vessels.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Stress, strain and deformation of solids

Deformation in solids- Hooke's law, stress and strain- tension, compression and shear stresses- thermal stresses-elastic constants and their relations- volumetric, linear and shear strains- principal stresses and principal planes- Mohr's circle. [12]

Transverse bending on beams

Beams and types transverse loading on beams- shear force and bend moment diagrams-Types of beam supports, simply supported and over-hanging beams, cantilevers. Theory of bending of beams, bending stress distribution and neutral axis, shear stress distribution, point and distributed loads.

[12]

Deflection of Beams

Deflection of a beam using double integration method, computation of slopes and deflection in beams, Maxwell's reciprocal theorems. [12]

Torsion

Torsion, stresses and deformation in circular and hollow shafts, stepped shafts, deflection of shafts fixed at both ends, stresses and deflection of leaf and helical springs. [12]

Thin, Thick Cylinders, Spheres and Columns

Axial and hoop stresses in cylinders subjected to internal pressure, deformation of thick and thin cylinders, deformation in spherical shells subjected to internal pressure. Columns - Euler's theory, slenderness ratio, Rankine formula. [12]

Total Hours: 45 + 15(Tutorial) = 60

Text Book(s):

- 1. Egor P. Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2015.
- 2. Rajput R K., "A Textbook of Strength of Materials (Mechanics of Solids)" 7th edition, S Chand and Company Ltd., New Delhi, 2018.

Reference(s)

- 1. Subramanian, R., "Strength of Materials", Oxford University Press, 2007.
- 2. Rattan, S.S., "Strength of Materials", 2nd Edition, Tata Mc Graw Hill Publishing Co. Ltd., New Delhi 2011.
- 3. James M. Gere and Timoshenko, "Mechanics of Materials", CBS Publisher, New Delhi, 6th Edition, 2012.
- 4. Beer, F., Johnston, E.R., and Dewolf, J.T., "Mechanics of Materials", Tata Mc Graw Hill Publishing Co. Ltd., New Delhi 2011.

Pre-requisite: Basic Knowledge of Engineering mechanics – Statics and Dynamics MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	2											3	
50 ME 004 0 Ot a sail	CO2	3	3	3											3	
50 ME 004 & Strength of Materials	CO3	3	3	3											3	
or materials	CO4	3	3	2										3	3	
	CO5	3	3	3		3			3					3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

K.S.Rangasamy College of Technology – Autonomous R 2018 50 ME 006 - Thermodynamics														
			50 ME 00	6 - Thermod	ynamics									
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks						
Semester	L	Т	Р	Total fils	С	CA	ES	Total						
III	3	1	0	60	4	50	50	100						
	• To 6	evaluate the	properties of	changes in o	pen, closed	and isolated	systems.							
Objective(s)	To apply the concept of thermodynamics laws to various practical applications such as heat engines, heat pump and refrigeration systems.													
Objective(s)	heat engines, heat pump and refrigeration systems. To analyze the performance of steam power cycles.													
	To analyze the performance of steam power cycles.													
	 To derive the mathematical relation for thermodynamic properties. 													
	To impart the knowledge on the properties and process of psychrometry.													
	At the end of the course, the students will be able to													
				of zeroth law				apply the						
		•		nodynamics to	•	•								
Course				laws of ther				ion & air-						
Outcomes				uss the conce										
				oure substand	ces and the p	erformance	of Rankine c	ycle with						
			enerative cycl											
				e Thomson e										
				d apply the di	fferential equ	ıations for er	nergy, Maxwe	ell's						
1			specific heat											
			resence of m sychrometric	noisture in atr processes.	nosphere, its	s properties a	and also unde	erstand the						

Basic Concepts and First Law

Basic concepts - concept of continuum, macroscopic approach, Thermodynamic systems - closed, open and isolated Property, state, path and process, quasistatic process, work, modes of work. Zeroth law of thermodynamics, concept of temperature and heat. Concept of ideal and real gases. First Law of Thermodynamics- Concepts of Internal Energy, Specific Heat Capacities, Enthalpy. Energy Balance for Closed and Open Systems, Energy Balance for Steady-Flow Systems. Steady-Flow Engineering Devices. Energy Balance for Unsteady Flow.

Second Law and Availability

Thermal energy reservoirs, heat engines energy conversion, Kelvin's and Clausius statements of second law, the Carnot cycle, the Carnot Theorem, the thermodynamic temperature scale, the Carnot heat engine, efficiency, the Carnot refrigerator and heat pump, COP. Clausius inequality, concept of entropy, principle of increase of entropy, perpetual-motion machines, Exergy– simple problems. [12]

Properties of Pure Substance and Steam Power Cycles

Properties of pure substances - Phase rule, P-V, P-T, T-V, T-S, H-S diagrams, PVT surfaces. Thermodynamic properties of steam. Calculations of work done and heat transfer in non- flow and flow processes. Vapour and combined power cycles, including the Carnot vapor cycle, Rankine cycle: the ideal cycle for vapor power, the ideal reheat and regenerative and the second-law analysis of vapour power cycles. [12]

Thermodynamic Relations

Gas mixtures –Equation of state, Avogadro's Law, Vander Waal's equation of state, Compressibility factor, compressibility chart. Dalton's law of partial pressure. Exact differentials, TdS relations, Maxwell's relations. Clausius Clapeyron equations, Joule – Thomson coefficient. [12]

Psychrometry

Psychrometry and psychrometric chart, property calculations of air vapour mixtures. Psychrometric process – Sensible heating / cooling - cooling and dehumidification - heating and humidification - adiabatic mixing, evaporative cooling. [12]

Total Hours: 45 + 15(Tutorial) = 60

Text Book(s):

- 1. Cengel, Y. A., "Thermodynamics An Engineering Approach", 8th Edition, Tata McGraw Hill Pub., New Delhi, 2015.
- 2. Nag. P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw-Hill Publications, New Delhi, 2017.

Refe	rence(s)
4	Moran, M. J. and Shapiro, H. N., "Fundamentals of Engineering Thermodynamics", 8th Edition, John Wiley
١.	and Sons, 2014.
2	Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., "Fundamentals of Thermodynamics", 6thEdition, John
۷.	Wiley and Sons, 2003.
3.	Holman, J.P., "Thermodynamics", 4th Edition, McGraw-Hill Publications, 1995.
4.	Rajput, R.K., "A Textbook of Engineering Thermodynamics, 4th Edition, Laxmi Publications, 2010.

Pre-requisite: Mathematics

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3		3								3		
	CO2	3	3	2		2								2		
50 ME 006 & Thermodynamics	CO3	3	3	3									2		3	2
	CO4	3	2	2												
	CO5	3	3	3									3			3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R 2018													
		5	0 ME 301 – I	/lanufacturir	ng Processe	s							
Semester		Hours / We	ek	Total	Credit	М	aximum Mar	ks					
Semester	L	T	Р	hrs	С	CA	ES	Total					
III	3	0	0	45	3	50	50	100					
Objective(s)	 To introduce the students to the concepts of basic manufacturing processes To acquire theoretical and practical knowledge in material casting processes To expose the students to the principles of the various metal joining methods. To study the various metal forming process. To interpret the manufacturing concepts of plastic components. 												
Course Outcomes	CO1 CO2 CO3 CO4 CO5	: Outline the : Explain the : Select the c : Illustrate the : Select appr	construction various cast different type e metal formiopriate types	tudents will features and ing methods s of welding pnocesses of plastics a	operations pand casting or ocesses us and its apper nd plastics p	defects. sed for indust lications. processing m	rial fabricatio						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Machine Tools

Lathe: Specifications of centre lathe - operations performed - accessories and Attachments - principle of capstan and turret lathes - layout of tools. [7]

Metal Casting Process

Introduction- Moulding tools- Patterns- Pattern materials, types of pattern, Pattern allowances-types of molding sand and its properties – Cores and its types - gating and risering System- Melting furnaces: construction and operations - Special casting processes: Investment casting process, Die casting process, shell molding process-centrifugal casting process – Solidification and cooling - Casting cleaning and casting defects-Inspection methods.

Metal Joining Process

Introduction-Classification of welding process: Principle of Gas welding, filler and flux materials Arc welding – Electrodes, coating and Specifications Resistance welding, Solid State Welding, Thermo-chemical welding and radiant energy welding - Brazing and soldering – Welding defects. [9]

Metal Forming Process

Forging- Classification- forging processes - forging operation - forging defects. Rolling: Classification of rolling processes - Rolling mill - Rolling of bars and shapes- Rolling defects- principle of rod and wire drawing-Tube drawing -Extrusion: Classification of extrusion processes- defects. Sheet metal characteristics-Typical shearing operations, bending and drawing operations, blanking, piercing, punching and trimming- special forming methods: Explosive forming, electromagnetic forming, electro hydraulic forming.

Plastic Processing

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typical applications – injection moulding – Plunger and screw machines – Compression moulding, Transfer Moulding – Typical industrial applications – introduction to blow moulding – Rotational moulding – Film blowing – Extrusion – Thermoforming.

	Total Hours: 45
Text	Book(s):
1.	Kaushish, J.P., "Manufacturing Processes," PHI Learning Ltd, New Delhi, 2013.
2.	Mikell P. Groover, "Principles of Modern Manufacturing", SI Version, Wiley & sons Pvt. Ltd, 2013.
Refe	erence(s)
1.	Jain R.K., Production Technology, Khanna Publishers, 2001
2.	Rao P N, "Manufacturing Technology", Tata McGraw Hill Publishing Co. Ltd., Volume 1, New Delhi, 2010
3.	Serope Kalpakjian and Stephen Schmid, "Manufacturing, Engineering and Technology", SI 6th Edition -II, Pearson Education, 2006
4.	Rajput, R.K., "A Textbook of Manufacturing Technology",Laxmi publications (P) ltd, 2015.
5.	Heine R W, Loper C R and Rosenthal P C, "Principles of Metal Casting", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2010.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3			3	3					3	3	3	
50 ME 301 &	CO2	3	3	2			3	3					2	3	3	
Manufacturing	CO3	3	2	3			3	3					3	3	3	
Processes	CO4	3	2	3			3	3					2	3	2	
	CO5	3	3	2			3	3					3	3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R 2018 50 MY 003 - Ethics for Engineers															
			50 MY 003	- Ethics for	Engineers										
Compotor		Hours / Wee	ek	Total bro	Credit	М	aximum Marl	KS							
Semester	L	T	Р	Total hrs	O	CA	ES	Total							
III	2	0	0	30	-	100	-	100							
	To impart the value of professional practices with code of conduct and ethical values. To discuss the various paths have a feel as and assessed it like a with week at his and a feel as a fee														
Objective(s)	• To discuss the various outlooks of roles and responsibilities with work ethics.														
Objective(s)	To introduce the ethical and moral practices by citizens														
	To analyze the ethical commitments to be hold safety, responsibility and rights.														
	 To analyze the ethical commitments to be hold safety, responsibility and rights. To impart knowledge about the global issues pertaining to ethics 														
	At the en	To impart knowledge about the global issues pertaining to ethics At the end of the course, the students will be able to													
				hat ought to g											
Course				rds the ethica											
Outcomes				l principles in											
				l principles in			nd standard c	odes of							
				ethical behav											
				nciples for en											
				issues of eth	ics concernii	ng weapon d	evelopment a	and							
Note: The he		nultinational o			FI 6 16 1										

Human Values

Moral values and Ethics - Integrity-Work ethic-Service learning-Civic virtue-Respect for others – LivingPeacefully – Caring – Sharing – Honesty – Courage-Valuing time – Cooperation – Commitment – Empathy – Self-confidence – Character – Spirituality-Introduction to yoga and meditation for professional excellence and Stress management. [6]

Engineering Ethics

Senses of 'Engineering Ethics'-Variety of moral issues-Types of inquiry-Moral dilemmas – Moral Autonomy – Kohiberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles – Theories about right action – Self – interest – Customs and Religion – Uses of Ethical Theories. [6]

Engineering as social experimentation

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics A Balanced Outlook on Law. [6]

Safety, Responsibilities and rights

Safety and Risk – Assessment of Safety and Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Right – Employee Right – Intellectual Property Rights (IPR) – Discrimination. [6]

Global Issues

Multinational Corporations – environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineering – Engineers as Expert Witnesses and Advisors – Moral Leadership – Code of Conduct – Corporate Social Responsibility. [6]

Text Book(s):

- Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi 2003
 Gail Baura, 'Engineering Ethics 1st Edition An Industrial Perspective' Imprint: Academic Press Published Date: 11th April 2006
- Reference(s)
- 1. Charies B. Fleddermann, 'Engineering Ethics', Pearson Prentice Hall New Jersey, 2004.
- 2. Charies E. Harris, Michael S. Pritchard and Michael J. Rabins, 'Engineering Ethics Concepts and Cases', Cengage Learning, 2009
- 3. John R Boatright, 'Ethics and the Conduct of Business', Pearson Education, New Delhi, 2003
- 4. Steve Starrett, "Engineering Ethics: Real World Case Studies", ASCE Book Series, 2014

Total Hours: 30

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0						PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1					3	2	2			2				2	
	CO2					2	2	2			3					
50 MY 003 & Ethics for Engineers	CO3					3					2				3	
	CO4					3	3	3								
	CO5					2	3	3			3				3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 ME 3P1 - Manufacturing Processes Laboratory													
		50 ME 3P	l - Manufactu	ring Proces	ses Laborat	ory								
Semester		Hours / Wee	ek	Total	Credit	Max	imum Mark	S						
Semester	L	Т	Р	hrs	С	CA	ES	Total						
III	0	0	4	60	2	60	40	100						
Objective(s)	• To • To so • To	 To introduce the students to the concepts of basic manufacturing processes To infer practical knowledge in metal casting process. To combine and use machine tools to operate and control manufacturing processes to solve production problems. To plan, design, analyse, implement and improve cost-effective manufacturing methods To recognize the dimensional characteristics of interchangeable parts 												
Course Outcomes	CO1: I CO2: I CO3: I CO4: I	Perform mol Prepare mol Perform faci Perform knu	rse, the stude d cavity for flad d cavity with c ng, plain turnin ling, grooving le and multi-s	nge pattern, ore ng, step turni and taper tu	gear pattern ng. ırning.		ern.							

Preparation of Sand Mould:

- 1. Mould with Flange Pattern.
- 2. Mould with Gear Pattern.
- 3. Mould with Split Pattern.
- 4. Mould with Core

Measurement of the Machined Components and Machining time estimation of:

- 5. Facing and Plain Turning.
- 6. Chamfering, Step Turning and Knurling.
- 7. Grooving and Taper Turning using Compound rest.
- 8. Single and Multi-start Thread cutting and Boring.
- 9. Internal taper turning.
- 10. Drilling and Tapping.

Design Experiment:

1. Make a new part using mild steel rod on a lathe.

Lab Manual

1. "Manufacturing Technology I Laboratory Manual" by Mechanical Faculty Members

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3		3	3	3		2		3	3	3	3
50 ME 3P1 &	CO2	3	3	2	3		3	3	3		2		2	3	3	3
Manufacturing	CO3	3	2	3	3		3	3	3		2		3	3	3	3
Processes Laboratory	CO4	3	2	3	3		3	3	3		3		2	3	2	3
	CO5	3	3	2	3		3	3	3		3		3	3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of T	echnology -	- Autonomo	us R 2018		
		ME 3P2 - Co						
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	
Semester	L	Т	Р	hrs	С	CA	ES	Total
III	0	0	4	60	2	60	40	100
Objective(s)	tol To inf To me ele To the dir	demonstrate erances, allo provide the formation pre provide base echanical pare ements and per draw assem part drawing provide informensions, ex imputer softw	wances and students with sented verba ic understand ts Selection carts with eveloly from the follormation of as planatory not	symbols on of the opporturally or graphic ling and draw of Views, add ry drawing parturally wing using of sembly draw	drawings. Inity of visualizedly. Inity practice ditional views roportions. In drawing. Descriptions are drawings are ing for manufacturing.	zing and com of various joi for the follow rawings of as nd easy dray facturing sho	nprehending nt, simple ving machine ssembled viewing proportion wing all parts	ws for ons. s, its
Course Outcomes	At the end CO1: So U: CO2: So re CO3: Pi CO4: Pi a CO5: Pi	d of the courelect convented in a low elect fit, allow equirement. The pare the astronger the astron	se, the stude ional represe andard code rance, tolerar sembly drawing with sembly drawing rod part drawing sembly drawing sembly drawing rod part drawing rod p	ntation of thr of practice ice, and sym ing to assist the applicati ing to assist wing with the ing to assist	the manufact on of CAD so the manufact e application the manufact e application the manufact	nanical comp uring from th oftware. uring from th of CAD softw uring from th	onents base e given joints e given bear vare. e given screv	d on s and ings

Indian Standard Code of Practice for Engineering Drawing

General principles of presentation-Conventional representation of threaded parts, springs, gear and common features-Abbreviations and symbols for use in technical drawings-Conventions for sectioning and dimensioning. **Fits and Tolerances**

Types of fits-selection of fits-allowances-types of tolerances-representation of tolerances on drawing-geometric tolerances-form and positional tolerances-datum features —maximum material principle-symbols-methods of indicating symbols on drawing-surface finish symbols-welding symbols-methods of indicating welding symbols on drawing. Fastening nuts-bolts-screws-keys and keyways-joints.

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22

Preparation of part modelling and assembly drawing of machine components using CAD software.

- 1. Cotter joint
- 2. Knuckle joint
- 3. Protected flange coupling
- 4. Universal coupling
- 5. Plummer block
- 6. Bushed bearing
- 7. Swivel bearing
- 8. Connecting rod (I/C engine)
- 9. Screw jack (Bottle type)
- 10. Machine vice

Lab Manual

1. "Computer Aided Machine Drawing Laboratory Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Engineering Drawing

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 3P2 & Computer	CO1	3	3	3		3				3		2	3	3	3	3
	CO2	3	3		3	2							3	2	2	3
Aided Machine Drawing	CO3	3	3			3				3		3		3	3	3
Laboratory	CO4	3		3		3				2		2	2	2	2	3
	CO5	3	3		3	2				2		3	2	2	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S	Rangasamy College of Technology - Au	ıtonoı	nous	Regu	lation		R	2018
	Semeste	r III						
Cauras Cada	Course Name	Hou	ırs/W	eek	Credit	Maxi	mum	Marks
Course Code	Course Name	L	Т	Р	С	CA	ES	Total
50 TP 0P1	Career Competency Development I	0	0	2	0	100	00	100
Objective(s)	 To help learners to enrich their grathe academic and professional co To help the learners to frame synth the meaning of reading passages To help learners to adeptly seque of foreign words with correct spell To help the learners to introduce the professionally To help learners to make various a conducive way. 	ntexts tactica effect nce th ing an themse	I structively e info d pun elves	ctures rmatic ectuation	of sentend on, draft le on. avolve in si	ces and conters and content terms and content terms and content terms are content to the content terms are content terms are content to the content terms are content terms are content to the content terms are content to th	omprel correct	hend usage ations

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

At the end of the course, the students will be able to CO1: Reinforce the essential grammatical correctness and vocabulary efficacy in the academic and professional contexts CO2: Generate syntactical structures and infer the semantics in the reading passages Course effectively Outcomes CO3: Reorganize and compose the sequential information, letter drafts, and interpret the appropriate usage of foreign words with correct spelling and punctuation CO4: Demonstrate their introduction and relate to situational conversations adeptly CO5: Exhibit various modes of presentations and organize their opinions in an expressive Unit - 1 Written Communication - Part 1 Hrs Usage of noun, pronoun, adjective (Comparative Forms), Verb, Adjectives, Adverb, Tenses, Articles and Preposition - Change of Voice - Change of Speech - Synonyms & Antonyms - One Word 8 Substitution - Using the Same Word as Different Parts of Speech - Odd Man Out Materials: Instructor Manual, Word Power Made Easy Book Written Communication - Part 2 Analogies - Sentence Formation - Sentence Completion - Sentence Correction - Idioms & Phrases -6 Jumbled Sentences, Letter Drafting (Formal Letters) - Reading Comprehension(Level 1) - Contextual Usage -Materials: Instructor Manual, Word Power Made Easy Book Written Communication - Part 3 Jumbled Sentences, Letter Drafting (Formal Letters) - Foreign Language Words used in English - -4 Spelling & Punctuation (Editing) Materials: Instructor Manual, News Papers Unit - 3 **Oral Communication - Part 1** 6 Self-Introduction - Situational Dialogues / Role Play (Telephonic Skills) - Oral Presentations-Prepared -'Just A Minute' Sessions (JAM) Materials: Instructor Manual, News Papers **Oral Communication - Part 2** Unit - 5 6 Describing Objects / Situations / People, Information Transfer - Picture Talk - News Paper and Book Review Materials: Instructor Manual, News Papers Total 30 **Evaluation Criteria** S.No. **Particular Test Portion** Marks **Evaluation 1** 50 Questions - 30Questions from Unit 1 & 2, 20 1 50 Questions from Unit 5, (External Evaluation) Written Test Evaluation 2 Self-Introduction, Role Play & Picture Talk from Unit-3 2 30 Oral Communication 1 (External Evaluation by English and MBA Dept) Evaluation 3 Book Review & Prepared Speech from Unit-4

Reference Books

Oral Communication 2

1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand& Co Ltd., New Delhi.

(External Evaluation by English and MBA Dept)

2. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

3

- Instructor can cover the syllabus by Class room activities and Assignments(5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions from Unit 1, 2 and Unit 5 and 5 questions from Unit 3 and 4
- Evaluation has to be conducted as like Lab Examination.

20

100

Total

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	O							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 TP 0P1 & Career Competency Development I	CO1						2		2	3	3	2	3		2	
	CO2						2		2	3	3	2	3		2	
	CO3						2		2	3	3	2	3		2	
	CO4						2		2	3	3	2	3		2	
	CO5						2		2	3	3	2	3		2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of T	echnology -	- Autonomo	us R 2018							
				ng Materials									
Semester		Hours / Wee	k	Total hrs	Credit	Max	kimum Mai	ks					
Semester	L	Т	Р		С	CA	ES	Total					
IV	3	0	0	45	3	50	50	100					
Objective(s)	To beaTo Fe-To eng	 To Predict the metallurgical properties of Non-ferrous metals, aluminium alloy and bearing materials. To learn about different phases and heat treatment methods to tailor the properties of Fe-C alloys. To learn the physical and mechanical properties of ceramic, composite materials for engineering fields. 											
Course Outcomes	CO1: Exp dia CO2: Und CO3: Des CO4: Exp pro	plain with the grams of maderstand how scribe the collain types are seess	structures of terials. to tailor mat ncept of heat and manufactu	nts will be a materials at erial propertic treatment of ring of nonmo	different solid es of ferrous steels & hard etallic materia	and non-ferrodening mechal als and powd	ous metals anisms ler metallu	rgy					

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Constitution of Alloys and Phase Diagrams

Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions. Iron Iron-carbide phase diagram and microstructure of ferrite, austenite and cementite.

Ferrous and Non-ferrous Metals

Classification of steel and cast iron – microstructure - properties and applications - Effect of alloying additions onsteel (Mn, Si, Cr, Mo, V, Ti &W) - stainless and tool steels - HSLA - maraging steels - Cast iron: gray, white,malleable, spheroidal graphite - alloy cast irons - Copper and Copper alloys; Brass, Bronze and Nickel-copperalloys - Aluminium and its alloys - Bearing materials. [9]

Heat Treatment

Heat treatment of Steel: Annealing, tempering, normalising and spheroidising, isothermal transformation diagrams for Fe-C alloys and microstructure development. Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, vacuum and plasma hardening. [9]

Non Metallic Materials and other Engineering Materials

Engineering Ceramics - Properties and applications of Al₂O₃, SiC–Composites – Types –fabrication methods. Powder metallurgy - characteristics and production of metal powders - applications - advantages and limitations.

Testing of Engineering Materials

Destructive Testing: Testing of materials under tension, compression and shear loads - Hardness tests: Brinell, Vickers and Rockwell - Impact test: Izod and Charpy - fatigue and creep test - Metallography - Preparation of specimen, Metallurgical microscope and Scanning Electron Microscope. [9]

Total Hours: 45

Text Book(s):

- 1. Khanna O.P, "A Text Book of Material Science and Metallurgy", Dhanpat Rai Publishers, New Delhi, 2010.
- 2. Sidney H. Avner "Introduction to Physical Metallurgy" 2nd Edition, Tata McGraw-Hill Companies Inc., New Delhi, 2013.

Reference(s)

- 1. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", 7th Edition, Prentice Hall of India Private Limited, 2010.
- 2. Raghavan.V, "Materials Science and Engineering: A First Course", 6th Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2016.
- 3. William D. Callister, "Material Science and Engineering: An Introduction", 5th Edition Wiley India Pvt Ltd, New Delhi, 2016.
- 4. Jindal U.C, "Material Science and Metallurgy", 1st Edition, Dorling Kindersley Publication, 2012.

Pre-requisite: Basic Knowledge of Solid state chemistry, laws of thermodynamics

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3											
50 ME 401 &	CO2	3	3		2										3	2
Engineering Materials	CO3	3	2												2	2
and Metallurgy	CO4	3	2		2										3	3
	CO5	3	3	2	3											3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.I	Rangasamy	College of T	echnology -	- Autonomo	us R 2018							
		50 ME 005	- Fluid Mec	hanics and	Fluid Machir	nes							
Semester		Hours / Wee	k	Total hrs	Credit	Max	imum Marks	;					
Semester	L	I P C CA ES I											
IV	3 1 0 60 4 50 50 100												
Objective(s)	• To	 To learn mass and momentum conservation laws for fluid flows. To impart knowledge on pressure and velocity variation in flow of fluids through pipes To acquire the importance of dimensional analysis. To analyze the flow in water pumps and turbines. 											
			•	ents will be a									
Course Outcomes	CO2: I CO3: I CO4: /	Estimate the Evaluate the Analyze the s	mass and movelocity and principle in the mask in the m	omentum con oressure vari	erties of fluids aservation law ation in flow t an model and d turbines.	vs for fluid flo through pipes	ws.	cy.					

Fluid Properties and Fluid Statics

Units and Dimensions – Fluid Properties – Density, Specific gravity, Viscosity, Surface tension, capillarity, compressibility and bulk modulus - Fluid Statics - Pascal's law – Pressure measurements – Atmospheric, vacuum pressure and gauge pressure – simple and differential manometers - Buoyancy – Centre of buoyancy – meta center and meta center height. [13]

Fluid Kinematics and Fluid Dynamics

Types of fluid Flow – types of flow line – control volume - velocity field and acceleration - Continuity equation and momentum equation - stream and potential function – Euler's and Bernoulli's Equation and its applications.

[12]

Flow through circular conduits

Laminar flow through circular pipes - Hagen Poiseuille equation — Turbulent flow - Boundary layer concepts - Darcy Weisbach equation, friction factor, Moody's diagram -Loss of energy in pipes. [11]

Dimensional Analysis

Need for dimensional analysis – methods of dimensional analysis - Similitude – types of similitude - Dimensionless parameters – application of dimensionless parameters – Model analysis. [11]

Hydraulic Pumps and Turbines

Impact of jet – force exerted by a jet on moving plates. Classification – construction, working principles and design of Pelton wheel and Francis turbines – head, losses, work done and efficiency – specific speed – operation characteristics – Governing of turbines – Classification of pumps – centrifugal pump and reciprocating pump - working principle – discharge, work done and efficiencies- cavitation in pumps – Submersible pumps – Types and applications.

Total Hours: 45+15(Tutorial)=60

Text Book(s):

- 1. Rajput, R.K., "A Textbook of Fluid Mechanics and Hydraulic Machines", S.Chand& company Ltd. 6th Edition 2015.
- Modi P. N and Seth S.M "Hydraulics and mechanics, including Hydraulic machines" standard book house, Delhi 2017.

Reference(s)

- 1. Bansal, R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., New Delhi, 9th Edition, 2017.
- 2. Cengel Yunus A. and Cimbala, John M., "Fluid Mechanics", Tata McGraw Hill, New Delhi, 3rd Edition, 2015.
- Ramamrutham.S. "Hydraulics Fluid Mechanics and Fluid Machines", 8th Edition, DhanpatRai Publishing company (P) Ltd, New Delhi, 2014.
- 4. Ojha, C.S.P., Chandramouli, P.N. and Berndtsson, R., "Fluid Mechanics and Machinery", Oxford University Press, 2010.

Pre-requisite: Engineering Mechanics

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	00						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 005 & Fluid	CO1	3	3	2	3	3			3					3	3	3
	CO2	3	3	3	3	3			3					3	3	3
Mechanics and Fluid	CO3	3	3	3	3	3			3					3	3	3
Machines	CO4	3	3	3	3									3	3	3
	CO5	3	3	3	3	3			3					3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.I	Rangasamy	College of T	echnology -	- Autonomo	us R 2018							
		50	ME 402 - Ma	chining Pro	cesses								
Semester		Hours / Wee	k	Total hrs	Credit	Max	imum Marks						
Semester	L	Т	Р		С	CA	ES	Total					
IV	3	0	0	45	3	50	50	100					
Objective(s)	• To • To • To	 To acquire the basics concept of metal cutting To impart knowledge on working of standard machine tools and allied machines. 											
Course Outcomes	At the end CO1: Cho CO2: Per CO3: Cor CO4: App	of the cours cose appropr form various mpare various bly the approp	e, the stude iate cutting to machining of s machine to oriate abrasiv	nts will be all pols and cutting perations on lools for industrive machining a processes for	ble to ng fluids for r Reciprocatino rial applicatio processes fo	nachining prog g machine. ns. or making con	ocesses.						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Fundamentals of Metal Cutting

Mechanism of metal cutting - Types, cutting force- chip formation - Tool geometry - Mechanics of orthogonal and oblique cutting - Merchant's circle diagram-calculations - Thermal aspects - Machinability-Tool wear - Tool life - Cutting tool materials-Cutting fluids - Types. [9]

Machine Tools I

Reciprocating machine tools: shaper, planer, and slotter. Milling: types, milling cutters, indexing, Operations - Hole making: drilling – Introduction, Reaming, Boring, Tapping – Other Hole - Making Operations. [9]

Machine Tools II

Sawing machine: hack saw, band saw, circular saw - Broaching machines: Broach construction - push, pull, surface and continuous broaching machines. Work holding devices - Concept of Jigs and Fixtures and its applications.

Abrasive Processes and Gear Cutting

Abrasive processes: Introduction - Grinding wheel: Designations and selection, types of grinding machines cylindrical grinding, surface grinding, centre less grinding - Grinding Process parameters - honing, lapping, super finishing, polishing and buffing - Gear cutting: forming, generation, shaping, and hobbing. [9]

Modern Machining High speed machining - Ultra precision Machining and Hard turning - Ultrasonic machining - Abrasive jet machining - Abrasive flow machining - Water jet machining - Electro chemical machining - Electric discharge machining - Wire Electric discharge machining - Electron beam machining - Laser beam machining.

Total Hours: 45

Text Book(s):

- 1. Kaushish, J.P., "Manufacturing Processes," PHI Learning Ltd, New Delhi, 2013.
- 2. Mikell P. Groover, "Principles of Modern Manufacturing", SI Version, Wiley & sons Pvt. Ltd, 2013.

Reference(s)

- 1. Jain R.K., Production Technology, Khanna Publishers, 2001
- 2. Rao P N, "Manufacturing Technology", Tata McGraw Hill Publishing Co. Ltd., Volume 1, New Delhi, 2010
- SeropeKalpakjian and Stephen Schmid," Manufacturing, Engineering and Technology", SI 6th Edition -II, Pearson Education, 2006
- 4. Rajput, R.K., "A Textbook of Manufacturing Technology", Laxmi publications (p) ltd, 2015.
- Heine R W, Loper C R and Rosenthal P C, "Principles of Metal Casting", Tata McGraw Hill Publishing Co.
- 5. Ltd., New Delhi, 2010.

Pre-requisite: Manufacturing Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	co						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3			3	3					3	3	3	
	CO2	2	3	3			3	3					3	3	3	
50 ME 402 & Machining Processes	CO3	3	3	2			2	2					3	3	3	
Processes	CO4	3	2	3			2	2					3	3	2	
	CO5	2	3	2			3	3					3	3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of 7	Гесhnology -	- Autonomo	us R 2018								
	50 ME 403 - Kinematics of Machines													
Semester		Hours / Wee	k	Total hrs	Credit	Max	imum Mark	S						
Semester	L	Т	Р		С	CA	ES	Total						
IV	3	3 1 0 60 4 50 50 100												
Objective(s)	con To i velo To i	nponents. impart the procity, and accured the linguistry design few linguistry	inciples in an celeration at a nkage mecha asic concept	rigid- body dy alyzing the as any point in a anisms and ca s of toothed g on in motion to	ssembly with link of a med am mechanis gearing and k	respect to the chanism. ms for specific inematics of	e displacen ied output n gear trains.	nent, notions.						

At the end of the course, the students will be able to

CO1: Identify the different mechanisms.

CO2: Calculate the velocity and acceleration of simple mechanism using graphical method.

Course CO3: Construct the cam profile based on various follower motions.

CO4: Calculate the contact ratio of gears and kinematics of epicyclic gear trains.

CO5: Identify the type's friction and design the friction drives.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Basics of Mechanisms

Outcomes

Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider crank chains- Mechanical advantage- Transmission angle-Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint.

Kinematics

Displacement, velocity and acceleration analysis of simple mechanisms using graphical method - kinematic analysis of simple mechanisms- slider crank, four bar mechanism dynamics, Coincident points- Coriolis component of acceleration.

Cam and followers

Classification of cams and followers- Terminology and definitions- Displacement diagrams- Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour camscircular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers. [12]

Gears and gear trains

Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- epicyclic and regular gear train kinematics. [12]

Friction drives

Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication friction clutches- belt and rope drives- friction in brakes. [12]

Total Hours: 45+15(Tutorial) = 60

Text Book(s):

- 1. Rattan, S S., "Theory of Machines", Tata McGraw-Hill Publishing Co.Ltd., New Delhi, 4th edition, 2014.
- 2. Uicker JJ, Pennock GR, Shigley JE. "Theory of Machines and Mechanisms", Oxford University Press, New York, 5th Edition, 2017.

Reference(s)

- Rao JS, and Dukkipati. RY., "Mechanism and Machine Theory", Reprint, New Age International, New Delhi, 2nd Edition, 2014.
- 2. Khurmi RS, and Gupta JK., "Theory of machines", S.Chand & Company Ltd., New Delhi, 14th Edition, 2014.
- Amitabh Ghosh and Malik, A K., "Theory of Mechanisms and Machines", Reprint, Affiliated East West Press Pvt. Ltd., 3rd Edition, 2011.
- Bansal R.K and Brar.J S, "A Textbook of Theory of Machines", 5th Edition, Laxmi Publication (P) Ltd., New Delhi, 2015.

Pre-requisite: Basic Knowledge of Engineering mechanics – Statics and Dynamics MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	co						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 403 & Kinematics of Machines	CO1	3	2											3		
	CO2	3	3	2										3	3	
	CO3	3	3	3										3	3	
	CO4	3	3	3		3								3	3	
	CO5	3	3	3		3		·				·		3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

	K.S.Rangasamy College of Technology – Autonomous R 2018													
		50	ME 404 - Th	nermal Engir	neering									
Compostor		Hours / Wee	k	Total hrs	Credit	Max	imum Marks							
Semester	L	T	Р		С	CA	ES	Total						
IV	3	0	0	45	3	50	50	100						
	To study the gas and vapor power cycles and their applications in IC Engines.													
Objective(s)	• To impart the principles of operation in IC engines and its components.													
Objective(3)	To study the principles of steam boilers and analyze the performance of steam													
	nozzles. To learn about reciprocating air compressors with and without inter cooling and its													
	To learn about reciprocating air compressors with and without inter cooling and its performance.													
	•	performance												
				erformance of		nes.								
P				nts will be a			Danistas assa	l 0 :4-						
		•		dard efficienc	•	sei, duai and	Brayton cyc	ies & its						
Course				nbustion eng steam boiler		onente								
Outcomes				imum discha										
Outcomes				eam turbines		ani nozzic.								
		•		in single sta		tage air com	pressors.							

Gas Power Cycles

Introduction – Classification of Cycles - Air standard efficiency - Otto, Diesel, Dual and Brayton cycles. [9]

Internal Combustion Engines

I.C engines - Classification, components and functions. P-V diagram - Valve and port timing diagram, Two-stroke and four -stroke engines - Petrol and diesel engine – Ignition, Fuel injection system, Cooling systems – Governing.
[9]

Steam Boilers

Classification of steam boilers - fire tube, water tube, low pressure and high pressure boiler - super-critical boiler - Boiler mountings and accessories. [9]

Steam Nozzles

Nozzles and its shapes, Friction in a nozzle, Maximum discharge through a nozzle. [6]

Steam Turbines

Introduction - Classification of steam turbines - compounding- velocity diagrams for turbines. [6]

Air Compressor

Classification of air compressor- Construction of reciprocating compressor – Intercooler - applications. [6]

Total Hours: 45

Text Book(s):

- 1. Rajput, R.K., "Thermal Engineering", 10th Edition, Laxmi Publications (P) Ltd., New Delhi, 2017.
- 2. | Mahesh M. Rathore, "Thermal Engineering", 1st Edition, Tata McGraw Hill Publications (P) Ltd., 2010.

Reference(s):

- 1. Khurmi, R.S., and Guptha,J K., "A Textbook of Thermal Engineering", 15thEdition, S.Chand publisher, 2013.
- 2. Kothandaraman C.P., Domkundwar S, Domkundwar. A.V., "A course in thermal Engineering", 5thEdition, Dhanpat Rai& sons, 2016.
- 3. Cengel, Y.A., "Thermodynamics-An Engineering Approach", 8th Edition, Tata McGraw Hill Publication, New Delhi, 2015.
- 4. Moran, M.J and Shapiro, H.N., "Fundamentals of Engineering Thermodynamics" 8th Edition, John Wiley and Sons, 2014.

Pre-requisite: Thermodynamics

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО												PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3		3	2		3	3				3	3	3	
	CO2	3			3	3			3				2	2	3	
50 ME 404 & Thermal Engineering	CO3	3	2	2	3				3				2	2	3	
2.19.1.0011119	CO4	3	3	3	3				3				3	3	3	
	CO5	3	3		3				3				3	3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.I	Rangasamy	College of T	echnology -	- Autonomo	us R 2018						
		50	MY 002 - Env	vironmental	Science							
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks					
Semester	L	Т	Р	hrs	С	CA	ES	Total				
IV	2	0	0	30	0	100	-	100				
Objective(s)	 To help the learners to analyze the importance of environment, ecosystem and biodiversity. To familiarize the learners with the impacts of pollution and control. To enlighten the learners about waste and disaster management. To endow with an overview of food resources and human health. To enlighten awareness and recognize the social responsibility in environmental issues. 											
			se, the stud									
		•	concepts and	•		•	m and biodiv	ersity.				
Course		•	urce, effects,			oollution.						
Outcomes	CO3: En	lighten of so	lid waste and	disaster mar	nagement.							
	CO4: Ale	ertness abou	t food resourd	ces, population	on and health	ı issues.						
	CO5: An	alyze the so	cial issues an	d civic respo	nsibilities.							

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Environment, Ecosystem and Biodiversity

Environmental studies - Scope and multidisciplinary nature - Need for public awareness - Ecosystem - Structure and function. Biodiversity - Values of biodiversity - Endangered and endemic species - Hot spots - India a mega biodiversity nation - Threats - Conservation - In-situ and ex-situ - Case studies. [6]

Environmental Pollution

Pollution - Air, water, soil, noise and nuclear - sources, effects and control measures - Impacts of mining. - Environment protection act- bio accumulation and bio magnification - Case studies. [6]

Waste and Disaster Management

Waste – wealth from waste - carbon foot print - Solid waste - e-waste - sources, effects and control measures. Disaster management - Earth quakes - Landslides - Floods - Cyclones - Tsunami - Disaster preparedness - Case studies. [5]

Food Resources, Human Population and Health

World food problems - over grazing and desertification - effects of modern agriculture. Population - Population explosion and its impacts - HIV/AIDS - Cancer- Role of IT in environment and human health - Case studies. [6]

Social Issues and the Environment

Unsustainable to sustainable development - Use of alternate energy sources - Wind - Geothermal - Solar - Tidal - energy calculation and energy audit - Rain water harvesting - Water shed management - Deforestation - Greenhouse effect - Global warming - Climate change - Acid rain - Ozone layer depletion - Waste land reclamation. Consumerism and waste products - Role of an individual in conservation of natural resources - Case studies.

Total Hours: 30

Text Book(s):

- 1. Anubha Kaushik and Kaushik, C P, "Perspectives in Environmental Studies", New Age International Publishers, New Delhi, 6th edition, January 2018.
- 2. Tyler miller. G, "Environmental Science", 16th Edition Cengage Publications, Delhi, 2018.

Reference(s)

- 1. Gilbert M.Masters and Wendell P. Ela, "Environmental Engineering And Science", PHI Learning Private Limited, New Delhi, 3rd Edition, 2013.
- 2. Rajagopalan. R, "Environmental Studies" Oxford University Press, New Delhi, 2nd edition, 2012.
- 3. Deeksha Dave and Katewa. S.S, "Environmental Studies", Cengage Publications, Delhi, 2nd edition, 2013.
- 4. Cunningham, W.P. and Saigo, B.W. "Environment Science", Mcgraw-Hill, USA. 9th edition, 2007.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	3	3	3	3	3	3	3	3	2	2		1	
	CO2	3	2	3	3	3	3	3	3	3	3	2	2	3	3	3
50 MY 002 & Environmental Science	CO3	3	2	3	3	3	3	3	3	3	3	2	2	3	3	3
	CO4	3	2	3	3	3	3	3	3	3	3	2	2	1	1	1
	CO5	3	2	3	3	3	3	3	3	3	3	2	2	3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.I	Rangasamy	College of T	echnology -	- Autonomo	us R 2018		
50 N	/IE 4P1 - Str	ength of Ma	aterials, Fluid	d Mechanics	and Fluid M	lachines Lab	oratory	
Semester		Hours / Wee	k	Total	Credit	Max	imum Mark	S
Semester	L	Т	Р	hrs	С	CA	ES	Total
IV	0	0	4	60	2	60	40	100
Objective(s)	ToToTofurTo	evaluate the acquire kno analyze and adamental co	the concepts of frictional loss whedge on hyd design structure oncepts of structure materials.	s in pipes. draulics mad tural membe ess, strain ar	chines. Irs subjected Ind elastic beh	to various str	esses usinç erials.	

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

At the end of the course, the students will be able to

CO1: Perform Tension, Compression, Torsion, and Deformation test on Solid materials

CO2: Assess the Hardness and Impact strength of mild steel

CO3: Apply the Bernoulli's principle to find the rate of flow using venturimeter

CO4: Determine the friction factor for set of pipes.

CO5: Analyze the performance characteristics of turbine and pumps

Strength of Materials:

Course

Outcomes

1. Determination of tensile, compression and shear strength of mild steel specimen.

http://sm-nitk.vlabs.ac.in/exp13/index.html

http://sm-nitk.vlabs.ac.in/exp16/index.html

http://sm-nitk.vlabs.ac.in/exp7/index.html

- 2. Determination of modulus of rigidity of helical springs (tension and compression).
- 3. Beam deflection and torsion test on given specimen.

http://sm-nitk.vlabs.ac.in/exp19/index.html

4. Hardness test on metallic specimen - Brinell and Rockwell hardness number.

http://sm-nitk.vlabs.ac.in/exp10/index.html

http://sm-nitk.vlabs.ac.in/exp20/index.html

5. Determination of Impact strength on mild steel specimen (Charpy and Izod).

http://sm-nitk.vlabs.ac.in/exp6/index.html

http://sm-nitk.vlabs.ac.in/exp5/index.html

Fluid Mechanics and Fluid Machines:

6. Determination of the Coefficient of discharge of venturimeter.

http://fm-nitk.vlabs.ac.in/exp5/index.html

7. Determination of friction factor for a set of pipes.

http://fm-nitk.vlabs.ac.in/exp4/index.html

8. Performance analysis of Pelton wheel.

https://fmc-nitk.vlabs.ac.in/fluid-machinery/exp/pelton-turbine/

9. Performance analysis of reciprocating pump.

https://fmc-nitk.vlabs.ac.in/fluid-machinery/exp/reciprocating-pump/

10. Performance analysis of centrifugal pump.

https://fmc-nitk.vlabs.ac.in/fluid-machinery/exp/centrifugal-pump/

Design Experiment:

Evaluate and compare the stiffness of both Aluminium and Mild Steel simply supported beam. Discuss the following point, aluminium or mild steel specimen of same geometric dimensions which will deflect more?

Lab Manual

 "Strength of Materials, Fluid Mechanics and Fluid Machines Laboratory Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Strength of Materials

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	<u></u>						Р	0						PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 4P1 & Strength	CO1	3	3		3				3	3	3			3	3	3
of Materials, Fluid	CO2	3	3		3				3	3	3			3	3	3
Mechanics and	CO3	3	3		3				3	3	3			3	3	3
Fluid Machines	CO4	3	3		3				3	3	3			3	3	3
Laboratory	CO5	3	3		3				3	3	3			3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

	K.S.F	Rangasamy (College of Te	chnology -	Autonomous	s R 2018		
		50 ME 4P	2- Machinin	g Processes	Laboratory			
Semester		Hours / Weel	k	Total	Credit	Maxii	mum Mark	S
Semester	L	Т	Р	hrs	С	CA	ES	Total
IV	0	0	4	60	2	60	40	100
Objective(s)	• To • To mil • To ma • To	study and pr study and pr lling machine study and pr achines.	actice the var actice the var s. actice the var	rious operationious operationious operationious operationious	ons that can bons that can bons that can b	pe performed be performed be performed be performed be performe	in drilling in shaping in grinding	
Course Outcomes	CO1: Me CO2: Pe ar slo CO3: Ma in mi CO4: Pro ma CO5: Pro	easure the cuerform drilling, and machining betting machine a dove shaper machilling machine actice cylindriachining time	time in drilling e etail, keyway a line and horiz cical grinding o in cylindrical ear and estim	sing Lathe tool I tapping open g machine an and estimate ontal milling operation and grinding machine machine machine	ol dynamome rations and ed tap set, Mathe power remachine, Machine and sur	eter. stimate the polychine the extended and the polychine the polychine grinding t and machine the polychine the	ernal splind d machinin gon surfac ement and machine	es in ng time ce in

- 1. Turning and Facing operations using capstan and Turret lathe and study of bar feeding mechanism.
- 2. Measurement of cutting forces in turning operations using lathe tool dynamometer.
- Machining of external splines and estimation of machining time and power requirement in slotting machine.
- 4. a) Drilling and reaming operations and estimation of machining time and power requirement in drilling machines.
 - b) Internal Threading operations using tap set.
- 5. Machining of dovetail, keyway and estimation of machining time and power requirement in shaper.
- 6. Machining of hexagonal surface and estimation of machining time and power requirement in milling machine.
- 7. Machining of spur gear and estimation of machining time and power requirement in milling machine.
- 8. Surface grinding using surface grinder and estimation of machining time and power requirement.
- 9. External cylindrical grinding of shaft using cylindrical grinding machine and estimation of machining time and Power requirement.
- 10. Spur Gear generation using Gear Hobbing Machine and estimation of machining time and power.

Design Experiment:

1. Create a Component using Drilling and Fitting Operation

Lab Manual

1. "Manufacturing Technology Lab Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3		3	3	3		3	2	3	3	3	3
	CO2	2	3	3	3		3	2	3		3	3	3	3	3	3
50 ME4P2 & Machining Processes Laboratory	CO3	3	3	2	3		2	3	2		3	2	3	3	3	3
	CO4	2	2	3	3		2	2	2		2	3	3	3	3	3
	CO5	3	3	2	3		3	3	3		3	3	3	3	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Ra	angasamy College of Technology - A	utono	mous	Regula	ation		R	2018
		Semest	er IV						
Course C	ode:	Course Name	Но	urs/W	eek	Credit	Ma	ximum	Marks
Course	Joue	Course Name	L	T	Р	С	CA	ES	Total
50 TP 0	P2	Career Competency Development II	0	0	2	0	100	00	100
Objectiv	e(s)	 To help the learners to parawriting and review texts in the To help the learners to acquithemselves precisely for effect To help the learners to enrice employability requirements of the learners to comprete to attend placement and composition to help the learners to comprehence to comprehence the learners the learners to comprehence the learners to comprehence the learners to comp	acade ire the ive pro ch the the co ehend etitive rehen und co	mic ar phonofession ir veri rporate the proporate online d the mpetit	nd profe netic sk onal pre bal rea es relimina e exams Pre - I ive onli	essional co ills of the esentation esoning and ary level of sontermedia	ontexts languas s nd abilit f aptitud	ge and by to made skills	express atch the required
Cour Outcor	mes	At the end of the course, the stude CO1: Interpret and infer the meaning writing and review texts both a CO2: Adapt to and demonstrate the professionally. CO3: Interpret the various concepts the requirements of the compe CO4: Infer the concepts of prelimina exams and company recruitm CO5: Infer the concepts of pre-interr competitive exams and compa	g in the acader phone of ver etitive ary leve ents.	e read mically etic ski bal rea exams el of ap	ing pas y and prills accu asoning s and e ptitude	ofessiona urately for and relat mployabil skills perta	illy. effective e for the ity aining to	e presei e concep o compe	ntations ots to titive
Unit – 1		n Communication – Part 3							Hrs
Writing - N Representa Practices: Antonyms	Newsparations. : Sente - Using	nension Level 2 (Paraphrasing Poems) per and Book Review Writing - Skimm ence Completion - Sentence Correct the Same Word as Different Parts of Sentence Manual, Word power Made Easy Bo	ning ar ion - peech	nd Sca Jumb - Editi	anning led Se ing	- Interpre	tation of		al

Unit – 2	Oral Communication – Part	3						
		guage) - Introduction to the Sounds of English - Vowels,						
		to Stress and Intonation - Extempore - News Paper and Book	4					
	Technical Paper Presentation.							
Material:	Instructor Manual, News Paper	rs .						
Unit – 3	Verbal Reasoning – Part 1							
Analogies - Alphabet Test - Theme Detection - Family Tree - Blood Relations (Identifying relationships among group of people) - Coding & Decoding - Situation Reaction Test - Statement & Conclusions								
among group of people) - Coding & Decoding - Situation Reaction Test - Statement & Conclusions								
Material: Instructor Manual, Verbal Reasoning by R.S.Aggarwal								
Unit – 4 Quantitative Aptitude – Part 1								
Problem	on Ages - Percentages - Profit	and Loss - Simple & Compound Interest - Averages - Ratio,	6					
Proportion	n							
Material:	Instructor Manual, Aptitude Boo	ok						
Unit – 5	Quantitative Aptitude – Par	t 2						
Speed, T	ime & Work and Distance - Pip	es and Cisterns - Mixtures and Allegations - Races - Problem						
on Trains	- Boats and Streams	•	6					
Practices	: Puzzles, Sudoku, Series Cor	npletion, Problem on Numbers						
Material: Instructor Manual, Aptitude Book								
		Total	30					
Evaluation	on Criteria							
S No	Particular	Toot Portion	Mark					
S.No.	Particular	Test Portion	S					

S.No.	Particular	Test Portion	Mark s
1	Evaluation 1 Written Test	15 Questions Each from Unit 1, 3, 4 & 5 (External Evaluation)	60
2	Evaluation 2 Oral Communication	Extempore & Miming – Unit 2 (External Evaluation by English, MBA Dept.)	20
3	Evaluation 3 Technical Paper Presentation	Internal Evaluation by the Dept.	20
		Total	100

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand& Co Ltd., New Delhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal&GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions from Unit 1, 3, 4 and Unit 5 and 5 questions from Unit 2.
- Evaluation has to be conducted as like Lab Examination.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO)
COURSE NAME	C	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	2	2					2	3	3	3	1		1
50 TP 0P2 &	CO2	3	2	2	2					3	3	2	3	1	1	1
Career Competency	CO3	3	2	2	2					3	3	2	3	1	1	1
Development II	CO4	3	2	2	2			1		3	3	2	3	2	2	1
	CO5	3	2	2	2			1		3	3	2	3	2	2	1

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

	K	.S.Rangasa	my College	of Technolo	gy – Autono	mous R 201	8					
		Į.	50 ME 501 -	Automobile	Engineering	a						
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks				
Semester	L T P O C CA ES Total 3 0 0 45 3 50 50 100											
V	3	0	0	45	3	50	50	100				
Objective(s)	 To study the vehicle body and structure in automobiles. To learn about various engine auxiliaries used in automobiles. To study the construction and working principle of transmission systems. To explain the construction and its principle of steering, brakes and suspension systems. To study the concepts of electric, hybrid and connected vehicle systems. 											
Course Outcomes	CO1: Red CO2: And CO3: Red CO4: Acd	cognize the balyze the eng alize the prinquire the kno	pasic lay-out on the sign of t	ents will be a of an automo and electron transmission ering, brakes and hybrid ve	bile and theil ic systems. system. s and suspen		S.					

Vehicle Structure and Engines

Automobiles - Types - vehicle construction - different layouts - chassis - frame and body. Vehicle aerodynamics (various resistances and moments involved). IC engines - components - functions and materials, variable valve timing (VVT)

Engine Auxiliary Systems

Electronically controlled – SI and CI injection system, Electronic ignition system, Turbo chargers, Engine emission control by three-way catalytic converter system, BS VI norms. [9]

Transmission Systems

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive [9]

Steering, Brakes and Suspension Systems

Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems- weveller, Pneumatic and Hydraulic. Braking Systems - Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control [9]

Electric Vehicles and Hybrid Vehicles

Introduction-Electric Vehicle development- system layout- basic system components-fuel cell Electric vehiclehybrid vehicle- types - series – parallel - Connected and Automated Vehicles - Levels of Automation - Benefits -Challenges. [9]

Total Hours: 45
Text Book(s):

- 1. Kirpal Singh, "Automobile Engineering", Vol. 1 & 2, Standard Publishers, New Delhi, 13th Edition, 2017.
- 2. Crouse W. H., Anglin D. L., "Automotive Mechanics", McGraw Hill Education Private Limited, New Delhi, 10th Edition, 2017.

Reference(s)

- 1. Ganesan V. "Internal Combustion Engines", Tata McGraw-Hill, New Delhi, 4th Edition, 2017.
- 2. Jain K.K. and Asthana R.B., "Automobile Engineering", Tata McGraw Hill Publishers, New Delhi, 6th Edition, 2002.
- 3. Heisler H., "Advanced Engine Technology", SAE International Publications, USA, 1998.
- 4. Srinivasan S., "Automotive Mechanics" McGraw Hill Education Private Limited, New Delhi, 2nd Edition, 2017.

Pre-requisite: Thermal Engineering

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & COURSE NAME	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 501 &	CO1	3					3	3			3		3	2	2	2
	CO2	2	3			3	2				3		3	2	2	2
	CO3						3	2			2			3	3	2
	CO4	2					3	3			2		3	3	3	2
	CO5	3	2			3	2						3			2

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rang	gasamy C	ollege of 1	echnology -	- Autonomous	s R 2018								
		50 I	ИЕ 502 - D	ynamics of I	Machines									
Compotor	Hou	rs / Week		Total Ura	Credit	Ма	ximum Mark	(S						
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total						
V	3	1	0	60	4	50	50	100						
Objective(s)	 To analys mechanis To analys To analys To apply 	 To apply the force-motion relationship in components subjected to external forces. To analyse the undesirable effects of unbalances resulting from prescribed motions in mechanism. To analyse the effect of dynamics of undesirable free vibrations. To analyse the effect of dynamics of forced vibrations. To apply the principles in mechanisms used for speed control and stability control At the end of the course, the students will be able to 												
Course Outcomes	CO1: Evaluate related w CO2: Apply the	the proble with turning principle cing of revo concepts the param	ms related moment d of static and olving and of of free vibraters relater	to dynamic for iagrams and d dynamic bareciprocating rations.	orce analysis a flywheel. Ilancing to solv masses. ibrations.	re the proble	•							

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Force analysis

Introduction to static force and dynamic force. D'Alembert's principle, dynamic force analysis in reciprocating engines- engine force analysis—equivalent masses—bearing loads. Turning moment diagrams—fluctuation of energy, flywheels—dimensions of flywheel rims—punching press. [12]

Balancing

Static and dynamic balancing-balancing of rotating masses-balancing of reciprocating masses-primary and secondary unbalanced forces-partial balancing of locomotives-balancing of multi cylinder inline engines, balancing of radial engines, balancing of V engines-balancing machines. [12]

Free vibrations

Basic features of vibratory systems—types of vibrations—degrees of freedom—free vibrations of single degree of freedom systems: longitudinal vibration with damping, transverse vibration—critical speed of shaft, torsional vibrations—natural frequency of two and three rotor systems. [12]

Forced vibrations

Step-input forcing-harmonic forcing-periodic forcing-magnification factor-vibration isolation and transmissibility. [12]

Governors and Gyroscopic Couple

Fund	ctions of Governors–gravity controlled and spring controlled governor characteristics. Stability–Hunting and hronism. Gyroscopic couple–Gyroscopic effects on aero planes, ships and automobiles. [12]
	Total Hours: 45+15(Tutorial)= 60
Text	Book(s):
1	Rattan S S., "Theory of Machines", Tata McGraw–Hill Publishing Co. Ltd., New Delhi, 4th Edition, 2014.
2	Uicker J J, Pennock G R, Shigley J E. "Theory of machines and mechanisms" Oxford University Press, New York, 5 th edition, 2017.
Refe	erence(s):
1	Rao J S, and Dukkipati. R Y., "Mechanism and Machine Theory", Reprint, New Age International, New Delhi, 2 nd Edition, 2014.
2	Khurmi R S, and Gupta J K., "Theory of machines", S.Chand & Company Ltd., New Delhi, 14 th Edition, 2014.
3	Amitabh Ghosh and Malik, A K., "Theory of Mechanisms and Machines", Reprint, Affiliated East West Press Pvt. Ltd., 3 rd Edition, 2011.
4	Thomas Bevan, "The Theory of Machines", Pearson Education Ltd., 3rd Edition, 2010.

Pre-requisite: Statics and Dynamics, Kinematics of Machines

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	3		3								3	3	
	CO2	3	3	3										3	3	
50 ME 502 & Dynamics of Machines	CO3	3	3	3		3								3	3	
of Machines	CO4	3	3	3										3	3	
	CO5	3	3	3	3	3								3	3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K	.S.Rangas	amy Colle	ege of Techno	logy – Autono	omous		R2018
		50 ME	503 - Des	sign of Machir	ne Elements			
	Но	urs / Week		Total	Credit	Ма	ximum Ma	rks
Semester	L	Т	Р	Hours	С	CA	aximum Marks ES 50 ess theories of failuments ensions of a	Total
V	3	1	0	60	4	50	50	100
Objective(s)	 To to mate To a To fa com To s 	each studer erial selection enalyze, des amiliarize proponent satisfy fund	nts how to on sign and/or rinciples in ctional and	us steps involus apply the conductor select common avolved in evaluded strength request and standar	cepts of stress only used mach uating the shap uirements, sta	analysis, the analysis, the compore and dime	neories of f nents ensions of a	a

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

At the end of the course, the students will be able to CO1: Apply theories of failures (biaxial, steady load) and Soderberg, Goodman and Gerber relations (variable loading) in design of various machine elements. Course CO2: Design of a shafts, keys, keyways and couplings. Outcomes CO3: Design and analyze the temporary and permanent joints. CO4: Design and optimize energy storing elements. CO5: Design the sliding and roller contact bearings. Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated. Steady and Variable Stresses in Machine Members Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Direct, Bending and torsional stress equations - calculation of principle stresses for various load combinations, eccentric loading - curved beams - crane hook and 'C' frame- Factor of safety theories of failure - Soderberg, Goodman and Gerber relations (variable loading) in design of various machine elements - stress concentration. Design of Shafts, keys and Couplings Design of solid and hollow shafts based on strength, rigidity and critical speed - Keys and keyways - Rigid and flexible couplings. Introduction to gear and shock absorbing couplings. **Design of Temporary and Permanent Joints** Threaded fasteners: Design of bolted joints including eccentric loading. Welded joints, riveted joints for structures - theory of bonded joints - Power screws [12] **Design of Energy Storing Elements and Engine components** Types of springs – Design of helical and leaf springs. Rubber springs, theory of disc and torsional springs, Flywheels considering stresses in rims and arms for engines - Connecting Rods and crank shafts. [12] **Design of Bearings** Sliding contact and rolling contact bearings - Hydrodynamic journal bearings. Sommerfeld Number, Raimondi and Boyd graphs, Mckee's equation- Selection of Rolling Contact bearings [12] Note: Use of approved Design Data book is permitted for examination. Total Hours: 45 + 15(Tutorial) = 60Text Book(s): Bhandari, V.B., "Design of Machine Elements", Tata McGraw-Hill education Pvt. Ltd., 3rd Edition, 2010. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", Tata McGraw-Hill, 8th Edition, 2008. Reference(s): Khurmi R S., Gupta J K., "A Text book of Machine Design", Eurasia Pub. House Pvt. Ltd., 14th Ed., 2005.

- Norton R.L, "Design of Machinery", McGraw-Hill Book co, 3rd Edition, 2004. 2
- 3 Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.
- Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2003.
- Juvinall R. C., Marshek K.M., "Fundamentals of Machine Component Design", John Wiley & Sons, 5th Edition, 2011.

Data Book(s):

Design Data - Data Book of Engineers by PSG College of Technology, Kalaikathir Achchagam-Coimbatore, 2012.

Pre-requisite: Engineering Mechanics, Strength of Materials

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 503 & Design of Machine Elements	CO1	3	3	3	3										3	3
	CO2	3	3	3	3								3	3	3	3
	CO3	3	3	3	3	2			2					3	3	3
	CO4	3	3	3	3	3			3					3	3	3
	CO5	3	3	3	3	3			3					3	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Ra	angasamy	College c	f Technolog	y – Autonomo	ous	R 20	18						
	5	0 ME 504	- Applied	Hydraulics a	nd Pneumation	s								
Semester	Hou	ırs / Week		Total Hrs	Credit	Ма	ximum Mark	s						
Semester	L	Т	Р	TOTAL FILS	С	CA	ES	Total						
V	3	0	0	45	3	50	50	100						
Objective(s)	To appTo appTo desTo solv	 To study the different components in hydraulic and pneumatic system. To apply the working principles of hydraulic actuators and control components. To apply the function of pneumatic components. To design and develop the hydraulic circuits and systems. To solve problems and troubles in fluid power systems. At the end of the course, the students will be able to 												
Course Outcomes	CO1: Identify hydrau CO2: Summa valves CO3: Apply th CO4: Design	fluid power parize the fe me working and const, install, ma	er compone back atures and of differen ruct a fluid	ents used in in functions of I t pneumatic opower circuits	able to dustry and als nydraulic moto circuits and sys s real time app fluid power ci	rs, actuators stems lications	s and flow co							

Fundamentals of Fluid power systems

Introduction to fluid power – advantages and applications of fluid power systems – types of fluid power system – Pascal's law and its applications –fluid power symbols. [9]

Hydraulic Actuators and Control Components

Hydraulic pumps: Gear, Vane and Piston pumps, Pump Performance, Selection of pumps. Hydraulic actuators: Cylinders – types, construction and applications – telescopic cylinders - Hydraulic motors -types and construction, Control components: direction control, flow control and pressure control valves – types, construction and operation – Servo and Proportional valves – applications.

Elements of Pneumatic System

Introduction - Properties of air, Compressors - types - construction details, Filter - Regulator and Lubricator unit, Actuators - types and construction details, Valves - direction, flow and pressure - types and construction details. [9]

Fluid Power Circuit Design

Speed control circuits, Regenerative circuits, Feed circuits, Sequencing circuits, Synchronizing circuits, Automatic cylinder reciprocation circuit, Cascade method, Sealing devices-types and materials, Fail-safe circuits, Accumulators - types and circuits - Intensifier circuits and applications. [9]

Advanced Topics in Hydraulics and Pneumatics

Fluidics – Introduction to fluidic devices - simple circuits, Introduction to Electro Hydraulic Pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control – low cost automation and its applications. Installation, maintenance, troubleshooting and remedies.

Total Hours: 45

Text Book(s):

- 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Asia Delhi, New Delhi, 7th Edition, 2015.
- 2. Majumdar S.R., "Oil Hydraulics Systems", Tata McGraw-Hill Education India, New Delhi, 2nd Edition, 2013.

Reference(s):

- 1. Srinivasan R, "Hydraulic and Pneumatic Controls", Tata McGraw Hill Education India, New Delhi, 2nd Edition, 2016.
- 2. Majumdar S.R., "Pneumatic systems: Principles and Maintenance", Tata McGraw Hill Education, New Delhi, 2010.
- 3. Joji P., "Pneumatic Controls", Wiley India Pvt Ltd, New Delhi, 2011.
- 4. Ilango S, Soundararajan V, "Introduction to Hydraulics and Pneumatics", Prentice hall of India, New Delhi, 2nd Edition, 2015.
- 5. Andrew Parr, "Hydraulics and Pneumatics-Technicians and Engineers Guide", Jaico Pub., Chennai, 2005.

Pre-requisite: Fluid Mechanics and Fluid Machines

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 504 & Applied Hydraulics and Pneumatics	CO1	3	3	3			3	3						2	2	
	CO2	3	2	3			2	3						3	3	
	CO3	3	2	3	3			2						2	3	
	CO4	3	3	3	3									3	3	
	CO5	3	2	3										2	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K	X.S.Rangasa	my College	of Technolo	gy – Autono	mous R 201	8								
		50 M	IE 5P1 - The	rmal Engine	ering Labor	atory									
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks							
Semester	L	Т	Р	Total IIIS	С	CA	ES	Total							
V	0	0 0 4 60 2 60 40 100 To demonstrate the port and valve timing diagram.													
Objective(s)	ToTocorTo	study and an investigate aditioner. study the wo	nalyze the pro the perform rking of steal	perties of fue	els & lubricar engines, A steam turbi	ir Compress	sor, refrigera	itor and air-							

At the end of the course, the students will be able to

- CO1: Analyze the petrol and diesel engine characteristics.
- CO2: Measure the physical, thermal properties of fuels, lubricants and assess the valve timings.
- CO3: Analyze the COP of refrigeration and air conditioning system.
- CO4: Demonstrate the working principles of steam turbine and steam generator.
- CO5: Evaluate the variations of volumetric efficiencies on two stage reciprocating air compressor.
- 1. Valve Timing diagrams and Determination of flash point and fire point of fuels.
- 2. Performance Test on 4 Stroke Diesel Engine.
- 3. Heat Balance Test on 4-Stroke Diesel Engine.
- 4. Morse Test on Multi-Cylinder Petrol Engine.
- 5. Determination of frictional power of a diesel engine by retardation test.
- 6. Determination of viscosity of lubricating oil by Redwood viscometer.
- 7. Performance test on vapour compression refrigeration system.
- 8. Performance and energy balance test on a steam generator.
- 9. Performance and energy balance test on steam turbine.
- 10. Performance test on two stage reciprocating air-compressor.
- 11. Performance test on air-conditioning system.
- 12. Measurement of smoke level using smoke meter.

Virtual Lab Experiments:

- 1. PV Diagram of a SI Engine http://vlabs.iitkgp.ernet.in/rtvlas/exp1/index.html
- 2. Torque Crank Angle Curve of a SI Engine http://vlabs.iitkgp.ernet.in/rtvlas/exp2/index.html
- 3. Load Test on a SI Engine http://vlabs.iitkgp.ernet.in/rtvlas/exp3/index.html
- 4. Mechanical Efficiency of a SI Engine http://vlabs.iitkgp.ernet.in/rtvlas/exp4/index.html
- 5. Determination of Cylinder Mean Effective Pressure http://vlabs.iitkgp.ernet.in/rtvlas/exp5/index.html
- 6. Variation of Exhaust Noise with Engine Speed http://vlabs.iitkgp.ernet.in/rtvlas/exp7/index.html

Design Experiments:

- 1. Calculate the mechanical efficiency of four stroke diesel engine at 20 % load, 40 % load and 70 % load condition
- 2. Find out the kinematic viscosity and absolute viscosity at different temperature like 20°C, 40°C and 60°C at various fuels.
- 3. Find out the flash point and fire point of the following mixtures.
 - (i) 40 % of diesel and 60% of vegetable oil.
 - (ii) 70 % of diesel and 30% of vegetable oil.
 - (iii) 90 % of diesel and 10% of vegetable oil.

Lab Manual:

Course Outcomes

"Thermal Engineering Lab Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Fluid Mechanics Laboratory

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	3	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 5P1 & Thermal = Engineering Laboratory	CO1	3	3		3				3	3	3		3			3
	CO2	3	3		3				3	3	3		3			3
	CO3	3	3		3				3	3	3		3			3
	CO4	3	3		3				3	3	3		2			3
	CO5	3	3		3				3	3	3		2			3

Note: 3 - Strong Contribution: 2 - Average Contribution: 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

	K.S	.Rangasa	my Colleg	e of Techno	logy – Auton	omous	F	R 2018					
		50	ME 5P2 -	Dynamics L	aboratory								
Compotor	Hou	rs / Week		Total Ura	Credit	Ma	aximum Mar	ks					
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total					
V	0	0	4	60	2	60	40	100					
Objective(s)	To veriTo denTo den	 To demonstrate the concepts of free and forced vibrations. To demonstrate the concepts of balancing of rotating masses. To apply principle of cam and follower mechanism. 											
Course Outcomes	CO2: Calcula CO3: Evalua CO4: Estima system	haracteris ate the mo te the natu te the tran	tics curves ment of ine ural frequer smissibility	for governor ertia of conne ncy of longitu ratio using v	s, verify the la	rse and torsi and multi de	ional vibration egree of free						

- 1. Determination of sensitivity and power of Porter governor.
- 2. Determination of sensitivity and power of Proell governor.
- 3. Determination of sensitivity and power of Hartnell governor.
- 4. Determination of gyroscopic couple using Motorized Gyroscope.
- 5. Calculate the moment of inertia of connecting rod by oscillation method.
- 6. Determination of natural frequency and critical speed of given shaft.
- 7. Determination of natural frequency of given spring mass system.
- 8. Determination of natural frequency and deflection of free beam.
- 9. Determination of torsional frequency of a single rotor system.
- 10. Determination of transmissibility ratio using vibrating table.
- 11. Determination of influence co-efficient for multi-degree freedom suspension system.
- 12. Draw the cam profile for the given cam and follower setup.
- 13. Dynamic balancing of rotating masses.

Virtual lab Experiments:

- Free vibration of cantilever beam http://mdmv-nitk.vlabs.ac.in/exp1/index.html
- 2. Free vibration of simply supported beam http://mdmv-nitk.vlabs.ac.in/exp2/index.html
- 3. Free vibration of fixed beam http://mdmv-nitk.vlabs.ac.in/exp3/index.html
- 4. Forced vibration of SDOF system http://mdmv-nitk.vlabs.ac.in/exp4/index.html
- 5. Base Excitation http://mdmv-nitk.vlabs.ac.in/exp5/index.html
- 6. Rotating Unbalance http://mdmv-nitk.vlabs.ac.in/exp6/index.html
- 7. 2DOF Forced vibration http://mdmv-nitk.vlabs.ac.in/exp7/index.html
- 8. Dynamic Vibration Absorber http://mdmv-nitk.vlabs.ac.in/exp8/index.html

Design Experiment:

1. Investigate the range of speed of gravity loaded governors and the spring-loaded governor

Lab Manual:

1. "Dynamics Laboratory Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & COURSE NAME	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3		3	3				3	3	3			3	3	3
	CO2	3		3	3				3	3	3			3	3	3
50 ME 5P2 & Dynamics Laboratory	CO3	3		3	3				3	3	3			3	3	3
Dynamics Laboratory	CO4	3		3	3				3	3	3			3	3	3
	CO5	3		3	3				3	3	3			3	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.F	Rangasamy College of Technology - A	uton	omous	Regu	lation			R 2018		
	Seme	ester	٧							
Course Code	Course Name	Hou	s/Wee	k	Credit	Maxim	ıum Mar	ks		
Course Code	Course Name	L	Т	Р	С	CA	ES	Total		
50 TP 0P3	CAREER COMPETENCY DEVELOPMENT III	0	0	2	0	100	00	100		
Objective(s)	 To help the learners to enrich the written and oral communication skills in the academic and professional contexts To help the learners to enrich their verbal and logical reasoning ability to meet out the employability requirements of the companies To help the learners to comprehend the Intermediate level of aptitude skills required to attend placement and competitive online exams To help the learners to enhance their knowledge in the quantitative aptitude skills in algebraic and linear equations. To help the learners to augment the core technical and coding skills of their respective demains to compate in ending contests. 									
Course Outcomes	CO3: Inter the concepts of intermediate level of aptitude skills pertaining to competitive									
Unit – 1	coding contests Written and Oral Communication – Part	1						Hrs		
Structured and questions Prac & Antonyms -	orehension Level 3 - Self Introduction - North Unstructured GDs Psychometric Assectices: Sentence Completion - Sentence Using the Same Word as Different as - Editing - GD - Debate. Materials: Insection 1 - Sentence Materials: Insection 2 - Se	ssme Corr Parts	ent – T ection of Sp	ypes & - Jumb eech	& Strategi led Sente - Interpre	ies to a ences - tation o	nswer to Synonyl of Picto	he ms 6 rial		

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

Unit – 2 Verbal & Logical Reasoning – Part 1 Syllogism - Assertion and Reasons - Statements and Assumptions - Identifying Valid Inferences identifying Strong Arguments and Weak Arguments - Statements and Conclusions - Cause and Effect - Deriving Conclusions from Passages - Seating Arrangements. Practices: Analogies - Blood Relations - Statement & Conclusions. Materials: Instructor Manual, Verbal Reasoning by R.S.Aggarwal									
Unit – 3 Quantitative Aptitude – Part 3 Probability - Calendar- Clocks - Logarithms - Permutations and Combinations									
Materials: Instructor Manual, Aptitude Book Unit – 4 Algebra - Linear Equations - Quadratic Equations - Polynomials. Practices: Problem on Numbers Ages - Train - Time and Work - Sudoku - Puzzles. Materials: Instructor Manual, Aptitude Book	. 6								
Unit – 5 Technical & Programming Skills – Part 1 Core Subject – 1,2 3 Practices: Questions from Gate Material. Materials: Text Book, Gate Material									
	tal 30								
Evaluation Criteria									
S.No. Particular Test Portion	Marks								
Evaluation 1 Written Test 15 Questions each from Unit 1, 2, 3, 4 & 5 (External Evaluation)	50								
2 Evaluation 2 - GD and Debate (External Evaluation by English, MBA Dept & External Trainers)	30								
Evaluation 3 – 3 Technical Paper Presentation Internal Evaluation by the Dept.	20								
То	tal 100								

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 Questions from Unit 1,2,3,4 and 5 and 5 Questions from Unit 1
- Evaluation has to be conducted as like Lab Examination.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО												PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 TP 0P3 & Career Competency Development III	CO1	3	2	2	2	3		1			3	2	3	3	2	
	CO2	3	2	2	2	3		1			3	3	3	3	2	
	CO3	3	2	2	2	3	2		2	3	3		3	2	2	
	CO4	3				3	2	1		3	3		3		2	
	CO5	3				3	2	1		3	2		3	2	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

K.S.Rangasamy College of Technology – Autonomous R 2018											
		;	50 ME 601 -	Heat and Ma	ass Transfer						
Semester		Hours / Wee	k	Total hrs	Credit	Maximum Marks					
Semester	L	Т	Р	Total IIIS	C	CA ES		Total			
VI	3	0	0	45	3	50	50	100			
Objective(s)	 To analyse the mechanisms of heat transfer under steady and transient conditions with extended surfaces. To study the concepts of free and forced convection heat transfer. To apply the concepts of radiation heat transfer. To study the thermal analysis and design of heat exchangers. To apply the basic concepts of mechanism of mass transfer. 										
Course Outcomes	CO1: Ap ur CO2: Int pr CO3: Re ra CO4: An	oply the basic nsteady state erpret and an oblems. ecognize the diation shield nalyze the he echanger usir	heat conductionallyze free an principles of land.	eat transfer a tion in variou nd forced cor radiation and uring boiling a I NTU methoo	nd compute to a application of application to so analyze the and condensation for industrial	s. Dive the Exte reduction in ation problem al application		rnal Flow using			

Conduction

Basic Concepts – Fourier Law of Conduction - General Differential equation of Heat Conduction – Conduction through Plane Wall, Cylinders and Spherical systems – Composite Systems – Critical Thickness of Insulation – Fins – Unsteady Heat Conduction – Lumped Analysis – Semi-infinite and Infinite Solids – Use of Heislers. [9]

Convection

Free and Forced Convection – Hydrodynamic and thermal boundary layer- External Flow over Plates, Cylinders and Spheres and Internal Flow through tubes – Combined free and forced convection. [9]

Radiation

Laws of Radiation: Stefan Boltzmann Law, Kirchhoff's Law, Planck's law – Black Body Radiation –Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. [9]

Phase Change Heat Transfer and Heat Exchangers

Nusselt theory of condensation – Regimes of boiling - Pool boiling and Flow boiling - Correlations in boiling and condensation - Types of Heat Exchangers - Overall Heat Transfer Coefficient - Fouling Factors - LMTD Method - Effectiveness – NTU Method.

Mass Transfer

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion - Equimolar Counter Diffusion - Convective Mass Transfer – Convective Mass Transfer Correlations [9]

Total Hours: 45

Text Book(s): 1. Sachdeva R.C., "Fundamentals of Engineering Heat and Mass Transfer", New Age International Publishers, 5th edition, 2017. 2. Frank P. Incropera and David P. DeWitt, "Fundamentals of Heat and Mass Transfer", Wiley India Ed, 2018. Reference(s) 1. Rajput R.K., "Heat and mass Transfer", S.Chand Publishers, 7th edition, 2018. 2. Holman J.P., "Heat Transfer", Tata McGraw-Hill company, 10th edition, 2017. 3. Kothandaraman C.P. "Fundamental of Heat and Mass Transfer", New age International Publishers, New Delhi, 4th Edition, 2012. 4. Nag. P.K, "Heat and Mass Transfer" Tata McGraw-Hill, 3rd Edition, 2015. Data book(s): 1. Kothandaraman, C.P., Subramanyam.S., "Heat and Mass Transfer Data Book" New age International Publishers, New Delhi, 9th Edition, 2018.

Kurumi. R.S "Steam Tables" S.Chand Publishers, 2012.

Pre-requisite: Fluid Mechanics, Thermodynamics and Thermal Engineering

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	со	РО												PSO		
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 601 & Heat and Mass Transfer	CO1	3	3	3	3	3			3				3	3	3	3
	CO2	3	3	2	3								3	2	3	3
	CO3	3	3	3	3								2	2	3	3
	CO4	3	3	3	3	3			2				3	3	3	3
	CO5	3	3	2	3								2	3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018											
	50 ME 602 - Automation in Manufacturing											
Semester	Hou	rs / Week		Total hrs	Credit		Maximum Marks					
Semester	L	Т	Р	Totaliis	С	CA	ES	Total				
VI	3	50	100									
Objective(s)	• T	 To perform a sequence of automated or mechanized assembly operations To recognize logic control and associated technologies To impart knowledge on data monitoring using Arduino To apply the concept of automation and types of automations in the industries. To enhance the knowledge on CAE in manufacturing. 										
Course Outcomes At the end of the course, the students will be able to CO1: Apply the process of automation and types. CO2: Analyse the well-defined task accomplished by an automated machine. CO3: Apply knowledge on Automated Material handling equipment's and types. CO4: Enhance the practical knowledge on ARDUINO. CO5: Acquire knowledge of various simulation studies on CAE												

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction

Principles and Components of industrial automation systems and their functionalities, Levels of automations, Fundamentals of manufacturing: Production System Facilities, Manufacturing support systems, Different types of manufacturing systems, Automation in Production Systems, Manufacturing Operations. [9]

Controllers for Industrial Automation

Industrial logic Control Systems, Mechanical, Electrical, Pneumatic, Electronic and Hybrid systems, Programmable Logic Controllers - Architecture - different types of I/O modules - Interfacing real world devices with PLC, different methodologies and strategies adopted for logic development, Basics of HMI and SCADA systems.

Manufacturing Automation

Automated flow lines, buffers, part feeding systems, quantitative analysis of transfer lines and assembly systems. Material handling - AGV, AS/RS. FMS layout configurations and benefits of FMS, Automated inspection, Quality Control Systems: Traditional and Modern Quality Control Methods, SPC Tools, Shop-Floor Control: Automated data collection - bar codes, optical character recognition, vision or image processing, radio frequency identification, magnetic identification, voice technology, comparison. [9]

Data Monitoring using Arduino

Basic structure - Input / Output processing - Programming -Mnemonics Timers, Internal relays and counters - Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Conversion - Analog input / output, Programming and interfacing with Sensors in manufacturing applications, Design, develop and integrate the sensors to interface with Arduino.

Application of CAE in Manufacturing

Simulation of molten metal flow using CAE Techniques, solidification process in casting, Analysis of forging process using CAE, Problem solving using CAE packages and softwares used in foundries - interpretation of results.

[9]

	Total Hors: 45
Text	book(s):
4	Groover, M.P, "Automation, Production systems and Computer Integrated Manufacturing Systems", PHI
ı	Publishers, 2015.
2	Frank Lamb, "Industrial Automation", Mc Graw Hill, 2013.
Refe	rence(s):
1	Boothroyd, G., Poli, C. and Murch, L.E., "Automatic Assembly", Marcel Dekker Inc. 2014.
2	Nussey, J., "Arduino for Dummies", 1st edition, Wiley Publication, 2013.
3	Kesheng Wang, Yi Wang, Jan Ola Strandhagen and Tao Yu, "Advanced Manufacturing and Automation
3	VII" 1st Edition, 2018.
4	Yusuf Altintas, "Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and
4	CNC Design", 2 nd Kindle Edition, Cambridge University Press, 2012.

Pre-requisite: Manufacturing Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО											PSO			
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME 602 & Automation in Manufacturing	CO1	2		2											3	
	CO2	3	3	3		3			3					3	3	
	CO3	2	2	2											2	
	CO4	3	3	3		3			3				3	3	3	
	CO5	3	3	3		3			3					3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018											
50 ME 603 – Design of Mechanical Transmission Systems												
Semester	Hou	rs / Week		Total hrs	Credit	Maximum Marks						
Semester	L	Т	Р	TOTALLIS	С	CA	ES	Total				
VI	3	1	0	60	4	50	50	100				
Objective(s)	 To apply the principles and procedure for the design of power transmission components. To apply the standard procedure available for design of transmission system terms. To learn to use standard data and catalogues. To select / design / manufacture drive systems for a wide variety of driven loads to a given performance specification. To design, manufacturing and quality assurance of selected power transmission components. 											
Course Outcomes	At the end of the course, the students will be able to CO1: Select, design and analyze flexible drives. CO2: Design of spur and Helical gears based on Lewis and Buckingham equation and gear life.											

Selection of Flat ,V belts and chains

Selection of flat belts and pulleys, selection of V belt and pulleys, wire ropes and pulleys, selection of Transmission chains and Sprockets. Design of pulleys and sprockets. [12]

Design of Spur and Helical Gears

Review of gear fundamentals, interference, force analysis in gears, determining dimensions of a spur gear pair. Design of helical gears-parallel axis helical gear, normal and transverse planes, helix angles, equivalent number of teeth, determining dimension of helical gear pair. [12]

Design of Bevel and Worm Gears

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears.

Worm Gear: Merits and demerits terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. [12]

Design of gearboxes

Geometric progression – Standard step ratio – Ray diagram, kinematics layout –Design of sliding mesh gear box – Design of multi speed gear box for machine tool applications – Constant mesh gear box – Speed reducer unit – Variable speed gear box. [12]

Design of Frictional Drives

Clutches – role of clutches, positive and gradually engaged clutches, toothed claw clutches, design of single plate and multiple plate clutches, variable speed drives, types and selection. Role of brakes-types of brakes-self energizing and de-energizing brakes. Design of internally expanding shoe brakes – calculation of heat generation and heat dissipation in brakes. [12]

Note: Use of Approved Design Data Book is permitted for examination.

	Total Hours: 45 + 15 (Tutorial) = 60
Text I	book(s):
1	Bhandari, V.B., "Design of Machine Elements", Tata McGraw-Hill education private limited, 3 rd Edition, 2010.
2	Richard G. Budynas, J.KeithNisbett, "Shigley's Mechanical Engineering Design", McGraw-Hill Education (India) P Ltd., 9 th Edition, 2011
Refer	rence(s):

1	Khurmi R S., Gupta J K., " A Text book of Machine Design", Eurasia Publishing house Pvt. Ltd., 14 th Edition, 2005
2	Maitra G.M., Prasad L.V., "Hand book of Mechanical Design", 2 nd Edition, Tata McGraw-Hill, 2010.
3	Juvinall R. C., Marshek K.M., "Fundamentals of Machine Component Design", John Wiley & Sons, 4 th Edition, 2011.
4	Norton R.L, "Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines", McGraw-Hill Book co, 2008.
5	Hamrock B.J., Jacobson B., Schmid S.R., "Fundamentals of Machine Elements", McGraw-Hill Co., 2011.
Data	book(s):
1	Design Data – Data Book of Engineers by PSG College of Technology, Kalaikathir Achchagam – Coimbatore, 2012.

Pre-requisite: Strength of Materials, Design of Machine Elements

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3									3	3	3
50 ME 603 & Design of	CO2	3	3	3	3	2			2					3	3	3
Mechanical	CO3	3	3	3	3	3			3					3	3	3
Transmission Systems CO		3	3	3	3								3	3	3	3
	CO5	3	3	3	3								3	3	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 MY 014 - Startups and Entrepreneurship											
		50 MY 0	14 - Startu	ps and Entre	preneurship							
Semester	Hou	rs / Week		Total Hrs	Credit	Ma	ximum Mark	S				
Semester	L	Т	Р	Total Fils	С	CA	ES	Total				
VI	2	0	0	30	0	100	-	100				
Objective(s)	that cre To build busines To impa	eates valued a winning ss plan art practicate the h	e for others g strategy, al knowled nabit of bed	. how to shape ge on busines coming entrep		ue propositio		rice				
Course Outcomes	 To know the financing, growth and new venture & its problems At the end of the course, the students will be able to CO1: Transform ideas into real products, services and processes, by validating the idea, testing it, and turning it into a growing, profitable and sustainable business. CO2: Identify the major steps and requirements in order to estimate the potential of an innovative idea as the basis of an innovative project. CO3: Reach creative solutions via an iteration of a virtually endless stream of world-changing ideas and strategies, integrating feedback, and learning from failures along the way. CO4: Apply the 10 entrepreneurial tools in creating a business plan for a new innovative venture. CO5: Apply methods and strategies learned from interviews with startup entrepreneurs and innovators. 											

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

Introduction to Entrepreneurship & Entrepreneur

Meaning and concept of Entrepreneurship, the history of Entrepreneurship development, Myths of Entrepreneurship, role of Entrepreneurship in Economic Development, Agencies in Entrepreneurship Management and Future of Entrepreneurship.

The Entrepreneur: Meaning, the skills required to be an entrepreneur, the entrepreneurial decision process, Role models, Mentors and Support system.

Business Opportunity Identification and Preparing a Business Plan

Business ideas, methods of generating ideas, and opportunity recognition, Idea Generation Process, Feasibility study, preparing a Business Plan: Meaning and significance of a business plan, components of a business plan. [6]

Innovations

Innovation and Creativity - Introduction, Innovation in Current, Environment, Types of Innovation, School of Innovation, Analysing the Current Business Scenario, Challenges of Innovation, Steps of Innovation Management, Experimentation in Innovation Management, Participation for Innovation, Co-creation for Innovation, Proto typing to Incubation, Blue Ocean Strategy-I, Blue Ocean Strategy-II. Marketing of Innovation, **Technology Innovation Process**

Financing and Launching the New Venture

Importance of new venture financing, types of ownership, venture capital, types of debt securities, determining ideal debt-equity mix, and financial institutions and banks.

Launching the New Venture: Choosing the legal form of new venture, protection of intellectual property, and formation of the new venture. [6]

Managing Growth and Rewards in New Venture

Characteristics of high growth new ventures, strategies for growth, and building the new ventures.

Managing Rewards: Exit strategies for Entrepreneurs, Mergers and Acquisition, Succession and exit strategy, managing failures – bankruptcy.

Total Hours: 30

Text Book(s):

- Stephen Key, "One Simple Idea for Startups and Entrepreneurs: Live Your Dreams and Create Your Own Profitable Company" 1st Edition, Tata McGrawhill Company, New Delhi, 2013.
- Charles Bamford and Garry Bruton, "ENTREPRENEURSHIP: The Art. Science, and Process for Success". 2nd Edition, Tata McGrawhill Company, New Delhi, 2016.

Reference(s):

- "The Coming Prosperity: How Entrepreneurs Are Philip Auerswald, Transforming the Global Economy", Oxford University Press, 2012.
- Janet Kiholm Smith; Richard L. Smith; Richard T. Bliss, "Entrepreneurial Finance: Strategy, Valuation, and Deal Structure, Stanford Economics and Finance", 2011
- Edward D. Hess, "Growing an Entrepreneurial Business: Concepts and Cases". Stanford Business Books, 3 2011
- 4 Howard Love, "The Start-Up J Curve: The Six Steps to Entrepreneurial Success", Book Group Press, 2011

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	3	1	3	1	2	1		2	2	2	1	2
FO MV 04.4 9 Ctouture	CO2	2	3	3	2	2		2	2	2		2	2	3		2
50 MY 014 & Startups and Entrepreneurship	CO3	3	2	3	1	2				1	3	1	3	3		2
and Entrepreneurship	CO4	3	3	3	3	3	2	2	1		1	3	3	3		2
	CO5	3	2	3	3	3			2			3	2	2		2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 ME 6P1 – Heat Transfer Laboratory											
		5	0 ME 6P1 -	Heat Transfe	r Laborator	у						
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks				
Semester	L	Т	Р	Totalnis	С	CA	ES	Total				
VI	0	0	4	60	2	60	40	100				
Objective(s)	ToToTosu	 To investigate the heat dissipation of elliptical fin using data acquisition system. To apply the laws of radiation principles to radiative heat transfer between different types of surfaces. To study the performance of double pipe and shell & tube heat exchangers. 										
Course Outcomes	At the end of the course, the students will be able to CO1: Calculate the thermal conductivity and heat transfer co efficient for composite and insulation materials. CO2: Measure the convective heat transfer co efficient by natural and forced convection. CO3: Evaluate the heat dissipation of elliptical fin using PC based data acquisition system. CO4: Analyze the Stefan-Boltzmann constant and evaluate the emissivity of a test plate surface. CO5: Analyze the performance of steam condenser and evaluate the effectiveness of heat exchangers.											

- 1. Determination of thermal conductivity of pipe insulation using lagged pipe apparatus.
- Determination of heat transfer coefficient using composite walls. https://vlab.amrita.edu/?sub=1&brch=194&sim=801&cnt=1
- 3. Determination of temperature distribution and fin efficiency using pin-fin apparatus.
- 4. Determination of elliptical fin heat dissipation using data acquisition system.
- 5. Determination of convective heat transfer coefficient by natural convection apparatus. https://vlab.amrita.edu/?sub=1&brch=194&sim=791&cnt=1
- 6. Determination of Stefan-Boltzmann constant by Stefan-Boltzmann apparatus. https://vlab.amrita.edu/?sub=1&brch=194&sim=548&cnt=1
- 7. Determination of emissivity of a grey surface using emissivity measurement. https://vlab.amrita.edu/?sub=1&brch=194&sim=802&cnt=1
- 8. Determination of efficiency of steam condenser using shell and tube heat exchanger.
- 9. Determination of effectiveness of Parallel flow heat exchanger (water –water).
- 10. Determination of effectiveness of Counter flow heat exchanger (water –water).

Design Experiments:

- 1. Determine the thermal conductivity of pipe with various insulation materials using lagged pipe apparatus.
- 2. Effectiveness of parallel flow heat exchanger (water –Nanofluid).
- 3. Effectiveness of counter flow heat exchanger (water Nanofluid)

Lab Manual:

1. "Heat Transfer Lab Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Thermodynamics, Thermal Engineering, Fluid Mechanics and Heat and Mass Transfer

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO	
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3		2				3	3	3		3			3
	CO2	3	3		2				2	2	3		3			3
50 ME 6P1 & Heat Transfer Laboratory	CO3	3	2		2				2	2	3		3			3
,	CO4	3	2		3				3	3	3		3			3
	CO5	3	3		3				3	3	3		3			3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Ran	gasamy (College of Te	chnology – A	utonomous	F	R 2018					
			50 ME (6P2 – Automa	ation Laborato	ory							
Camaatar	Н	ours / We	ek	Tatal Lira	Credit	N	laximum Marks						
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total					
VI	0	0	4	60	2	60	40	100					
Objective(s)	• 7	 To equip the students with understanding of the fundamental principles and techniques of automation in manufacturing. To demonstrate the principle of logic control and associated technologies To impart knowledge on CNC machining process To apply the concepts of ARDUINO. To apply the concepts of CAE Simulations. 											
Course Outcomes	At the end of the course, the students will be able to CO1: Acquire knowledge about the hydraulics, pneumatics and electro—pneumatic systems. CO2: Recognize the concepts discussed in Computer Integrated Manufacturing course. CO3: Write CNC part programs using CADEM simulation package for simulation of machining operations such as Turning, Drilling & Milling. CO4: Apply these learnings to automate & improve efficiency of manufacturing process. CO5: Recognize the usage of computers in process planning and quality control.												

- 1. Water level controller using programmable logic controller.
- 2. Logic implementation for Bottle Filling Application. http://ied-nitk.vlabs.ac.in/Container%20Filling%20Process%20Using%20PLC/index.html#
- 3. PLC Exercise: Traffic Light Control and Filling/Draining Control Operation.
- 4. PLC Exercise: Reversal of DC Motor Direction.

 http://ied-nitk.vlabs.ac.in/Motor%20forward%20and%20reverse%20direction%20control%20using%20PLC/index.html
- 5. Design of an automated part feeder.
- 6. Performance and simulation with CNC lathe software.
- 7. Performance on CNC lathe

- 8. Performance on CNC milling.
- 9. Simulation of component machining using software.
- 10. Simulation of molten metal flow using Software.
- 11. Simulation of solidification process in casting.
- 12. Analog input / output, Programming and interfacing with Sensors in manufacturing applications using Arduino.
- 13. Pneumatic automation by cascade method.
- 14. Case study on automated system of any Industry.

Lab Manual:

1. "Automation Lab Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO						Р	0						PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3	3	3	3			3	3	3			3	2	2	
	CO2	3	3	3	3	2			2	3	3			2	2	2	
50 ME 6P2 & Automation Laboratory	CO3	3	3	3	3	3			3	3	3			3	3	3	
	CO4	3	3	3	3	3			3	3	3		3	3	3	3	
	CO5	3	3	3	3	3			3	3	3			3	3	3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.R	angasamy College of Technology – A	utonor	nous	Regu	lation		R 201	18
	Seme	ster VI					•	
Course Code	Course Name	Hours	/Week	(Credit	Maxim	um Ma	arks
Course Code	Course Name	L	Т	Р	С	CA	ES	Total
50 TP 0P4	CAREER COMPETENCY DEVELOPMENT IV	0	0	2	0	100	00	100
Objective(s)	 To help the learners to enrich the academic and professional continuous. To help the learners to augment meet out the employability requiing to help the learners to comprehe of Geometry. To help the learners to enhance methods. To help the learners to enrich the better employability, codeathons. 	exts It their rement end the e the o	advan s of the adva data ir iical ar	ced vectors controlled to the	verbal an npanies level of a retation a	d logica aptitude and anal	l reasc skills ir ytical s	oning ability to in the concepts skills in varied

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

At the end of the course, the students will be able to CO1: Examine and correlate the written and oral communication skills in the academic and professional contexts CO2: Predict and discriminate advanced verbal and logical reasoning ability to meet out the e mployability requirements of the companies Course **Outcomes** CO3: Infer the concepts of advanced level of aptitude skills on Geometry pertaining to competitive exams and company recruitments. CO4: Illustrate the data interpretation and analytical skills in varied methods. CO5: Formulate the technical and programming skills to be focused on better employability, codeathons and hackathons Written and Oral Communication - Part 2 Unit – 1 Hrs Self-Introduction - GD - Personal Interview Skills Practices on Reading Comprehension Level 2 - Paragraph Writing - Newspaper and Book Review Writing - Skimming and Scanning - Interpretation of Pictorial Representations - Sentence 4 Completion- Sentence Correction - Jumbled Sentences - Synonyms & Antonyms - Using the Same Word as Different Parts of Speech - Editing. Materials: Instructor Manual, Word power Made Easy Book, News Papers Verbal & Logical Reasoning – Part 2 Unit – 2 Analogies - Blood Relations - Seating Arrangements - Syllogism - Statements and Conclusions, 8 Cause and Effect – Deriving Conclusions from Passages – Series Completion (Numbers, Alphabets & Figures) - Analytical Reasoning - Classification - Critical Reasoning Practices: Analogies - Blood Relations - Statement & Conclusions. Materials: Instructor Manual, Verbal Reasoning by R.S.Aggarwal Unit – 3 Quantitative Aptitude - Part - 5 6 Geometry - Straight Line - Triangles - Quadrilaterals - Circles - Co-ordinate Geometry - Cube - Cone - Sphere. Materials: Instructor Manual, Aptitude book Unit – 4 Data Interpretation and Analysis 6 Data Interpretation based on Text - Data Interpretation based on Graphs and Tables. Graphs can be Column Graphs, Bar Graphs, Line Charts, Pie Chart, Graphs representing Area, Venn Diagram & Flow Charts. Materials: Instructor Manual, Aptitude Book Unit – 5 Technical & Programming Skills – Part 2 6 Core Subject - 4, 5, 6 Practices: Questions from Gate Material. Materials: Text Book, Gate Material Total 30 **Evaluation Criteria** S.No. Particular **Test Portion** Marks **Evaluation 1 Written Test** 15 Questions each from Unit 1, 2, 3, 4 & 5 (External Evaluation) 1 50 Evaluation 2 -GD and HR Interview 2 30 Oral Communication (External Evaluation by English, MBA Dept.)

Interview Reference Books

1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.

Internal Evaluation by the Dept. - 3 Core Subjects

2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition

Evaluation 3 – Technical

- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL Publications

Note:

3

- Instructor can cover the syllabus by Class room activities and Assignments (5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough Work pages
- Each Assignment has 20 questions from Unit 1,2,3,4,5 and 5 questions from Unit 1(Oral Communication) & Unit 5(Programs)
- Evaluation has to be conducted as like Lab Examination.

20

100

Total

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0							PSO)
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
_	CO1	3	3		3	3	2	1	2	3	3	2	3	1	1	
50 TP 0P4 &	CO2	3	2	2	2	3	1	1	2	3	3	2	3	2	1	
Career Competency	CO3	3	2	2	2	2	1	1	2	3	3	3	3	2	2	
Development IV	CO4	3		2	2					3	2	3	3	1	2	
	CO5	3		2	3					3	2	3	3	3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018												
		50 M	E 701- Metro	logy and Me	asurements								
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	3					
Semester	L	Т	Р	hrs	С	CA	ES	Total					
VII	3	0	0	45	3	50	50	100					
Objective(s)	tas	To identify measurement parameters and select the appropriate sensor for it.											
Course Outcomes	CO1: De CO2: Ou ap CO3: De CO4: Exp CO5: Dis	At the end of the course, the students will be able to CO1: Describe the concepts of measurements to apply in various metrological instruments. CO2: Outline the principles of linear and angular measurement tools used for industrial applications. CO3: Demonstrate the techniques of form measurement used for industrial components. CO4: Explain the procedure for conducting computer aided technique. CO5: Discuss various measuring techniques of mechanical properties in industrial applications.											

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Basics of Metrology

Introduction to Metrology –Measurements -Need - Methods-Elements –Factors influencing measurements-Instruments –Precision and Accuracy – Errors – Errors in Measurements-calibration of measuring instruments, ISO Standards. [9]

Linear and Angular Measurements

Linear Measuring Instruments – Types – Classification – Tolerance - Limit gauges – Gauge design – Terminology – procedure – concepts of interchangeability and selective assembly – Angular measuring instruments – Types – Bevel protractor-optical protractors - Sine bar- Clinometers - Angle gauges – Angle Dekkor – Autocollimator – Applications.

Form Measurement

Principles and Methods of straightness – Flatness measurement – Thread measurement, gear measurement, Radius Measurements, surface finish measurement, Roundness measurement – Applications of Form Measurements - Introduction to 3D surface Metrology. [9]

Advances in Metrology

Basic concept of lasers Advantages of lasers – Laser Scan Micrometer – laser Interferometers – DC and AC Lasers interferometer – Applications – Straightness – Alignment – Ball bar tests. Basic concept of CMM – Types of CMM – Constructional features – Probes and Accessories – Software – Applications – Basic concepts of Machine Vision System – Element – Applications.

Measurement of Power, Flow and Temperature

Force, torque, power - mechanical, Pneumatic, Hydraulic and Electrical type. Flow measurement: Venturimeter, Orifice meter, rotameter, pitot tube - Temperature: bimetallic strip, thermocouples, electrical resistance thermometer.

	Total Hours: 45
Text	Book(s):
1.	Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2018.
2.	Jain R.K. "Engineering Metrology", Khanna Publishers, 2018.
Refe	erence(s)
1.	Alan S. Morris, "The essence of Measurement", Prentice Hall of India 1996.
2.	Beckwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education, 2014.
3.	Charles Reginald Shotbolt, "Metrology for Engineers", 5th edition, Cengage Learning EMEA, 1990.
4.	Raghavendra, Krishnamurthy "Engineering Metrology & Measurements", Oxford Univ. Press, 2013.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	00	РО													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	2	3	2		3					3				3			
	CO2	2	3	3							3							
50 ME 701 & Metrology and Measurements	CO3	3	3	3		3					3			3	3	3		
and weasurements	CO4	3	3	2		3				3	3			3				
	CO5	3	2	3						2	2							

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S	.Rangasamy	College of	Technology	– Autonomo	us R2018									
	50 ME 702- Finite Element Analysis														
Semester		Hours / Wee	k	Total	Credit	Max	imum Mark	s							
Semester	L	Т	Р	hrs	С	CA	ES	Total							
VII	3	1	0	60	4	50	50	100							
Objective(s)	so	olution apply conce determine fi determine fi	epts of Finite I eld variables eld variables	Element Ana for two dime for two dime	lysis to solve nsional scala nsional vecto	Problems and one dimension variable property variable produced the use of r	onal probler blems blems								

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

At the end of the course, the students will be able to

CO1: Summarize the basics of finite element formulation.

Course Outcomes

- CO2: Apply finite element formulations to solve one dimensional Problems.
- CO3: Develop the finite element formulations to solve two dimensional scalar Problems.
- CO4: Develop the finite element method to solve two dimensional Vector problems.
- CO5: Apply the need for isoparametric transformation and the use of numerical integration.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

One-Dimensional Problems

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from application to Bars, Beams and Plane Trusses. One dimensional Heat transfer problems. [12]

Two Dimensional Scalar Variable Problems

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite Element formulation – CST and LST elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems. [12]

Two Dimensional Vector Variable Problems

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body Constitutive matrices and Strain displacement matrices – Stress calculations - Plate and shell elements. [12]

Isoparametric Formulation

Natural co-ordinate systems – Isoparametric elements – Shape functions for iso parametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems – Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software.

[12]

[.-]

		Total Hours: 45+15(Tutorial) =60
•	Text	Book(s):
•	1.	Rao, S.S., "The Finite Element Method in Engineering", 6th Edition, Butterworth Heinemann, 2018.
2	2.	Chandrupatla, T.R. and Belegundu, A.D., "Introduction to Finite Elements in Engineering", International
		Edition, Pearson Education Limited, 2014.

Reference(s)

- 1. David Hutton, "Fundamentals of Finite Element Analysis", Tata McGrawHill, 2005
- 2. Reddy. J.N., "An Introduction to the Finite Element Method", 4th Edition, Tata McGraw-Hill, 2018.
- 3. Seshu, P., "Text Book of Finite Element Analysis", PHI Learning Pvt. Ltd., NewDelhi, 2012.
- 4. Cook, R.D., David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2004.

Pre-requisite: Strength of Materials

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	3										3	2			
50 ME 700 9 Finite	CO2	3	3	3	2	3			3	3	2			3	3			
50 ME 702 & Finite Element Analysis	CO3	3	3	3	3	3			3	3	3			3	3			
Liement Analysis	CO4	3	3	2	3	3			3	3	3			3	3			
	CO5	3	2	2	3	3								3	2			

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

	K.S.Rangasamy College of Technology – Autonomous R 2018 Somester Hours / Week Total Hrs Credit Maximum Marks													
		50 I	ME 703- O	perations Re	esearch									
Competer	Hou	ırs / Week		Total Ura	Credit	Ма	ximum Mark	S						
Semester	L	Т	Ρ	TOTAL FILS	C	CA	ES	Total						
VII	3	0	0	45	3	50	50	100						
Objective(s)	take eff To trair of avail To equ assignr To imp concep To trai probler	fective enganestate students able resou ip student ment problart knowled to solve n student ns.	gineering a to apply O urces in end s to find the lems. adge a-bout the real w s to apply	nd manageria perations Res gineering and e optimum so network mod orld problems simulation	al decisions. search technic l business. lution for trans dels and train s s. techniques to	ques for the or sportation prostudents to a	effective utilized blems and apply these	ration						
Course Outcomes	CO3: Constru CO4: Apply Ir	near Prog ansportati ict Networ iventory m lueuing m	ramming mon models ks and find	nodels and so and Assignm optimum solo olve inventory	live them. ent models to ution.		·	S.						

Linear Programming Problems

OR-definition – Phases of OR - Models, Concept of linear programming model-Development of LP models – Graphical solution - Simplex method - Big M method - Two phase method, Introduction to duality theory. [9]

Transportation Problems

Transportation problems- Balanced and Unbalanced TP- Basic feasible solution, Optimal solution by MODI method - Degeneracy, Production problems. Assignment problems - Hungarian method - Balanced and Unbalanced assignment problems - Problem with assignment restrictions-, Travelling salesman problem. [9]

Network Models and Project Management

Shortest route model- Minimal spanning tree model - Maximum flow model - Project network construction - Network logic - Fulkerson's rule - Critical Path Method (CPM) and Project Evaluation and Review Technique (PERT) - Probability of completing a project in a scheduled date - Crashing of project networks. [9]

Inventory Models

Types of inventory models - Inventory cost - Deterministic Inventory models - Economic Order Quantity (EOQ) - Purchase and Production models with and without shortages - Determination of buffer stock and re-order levels - EOQ with price breaks - Multi product EOQ models - ABC, VED&SDE analysis in inventory - Introduction to Stochastic inventory problems -discrete case and continuous case. [9]

Queuing Theory and Simulation

Queuing system - terminologies of queuing problem - applications of queuing model - Poisson distribution and exponential distribution -Single server queuing models - Simulation - Need for simulation - Advantages , disadvantages and applications of simulation - Random number generation - Monte Carlo technique-Inventory and Queuing problems in simulation. [9]

Total Hours: 45

Text Book(s):

- Hamdy A. Taha, "Operation Research An Introduction", 9th Edition, Pearson India Education Services Pvt. Ltd., New Delhi, 2014.
- Panneerselvam, R., "Operations Research" 2nd edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2006.

Reference(s):

1	_	Wayne L. Winston, "Operations Research – Applications and Algorithms", 4th Edition, Cengage Learning
'	'	India Private Limited, New Delhi, 2011.
	,	Frederick S. Hillier And Gerald J. Lieberman, "Introduction To Operations Research", 9th Edition,
	_	McGraw Hill Publishing Co., New Delhi, 2011.
3	3	Perm Kumar Gupta and Hira, D.S., "Operations Research", S.Chand and Company Ltd., 2014.
4	1	Srinivasan G, "Operations Research Principles and Applications", 3 rd Edition EEE PHI, 2017.
5		Sharma J K. "Operations Research Theory and Applications", 5 th Edition, Macmillan India, 2013,

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	2	3	3	3						3	2		3	3		
50 ME 703	CO2	2	3	3	3	3						3	3	2	2			
&	CO3	3	3	2	3	3						2	3					
Operations Research	CO4	3	3	3	2	2						2	3	3		2		
	CO5	3	2	3	2	2						3	2			3		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 AC 001 – Research Skill Development - I													
		50 AC 00)1 – Resea	rch Skill Dev	elopment - I									
Semester	Hou	ırs / Week		Total Hrs	Credit	Ma	ximum Mark	(S						
Semester	Ш	Т	Р	TOTAL TIS	C	CA	ES	Total						
VII	1	0	0	10	0	100		100						
 To learn about the effective usage of power point presentation To prepare presentation with various effects To visualize the data in the presentation To acquire knowledge about data sources To investigate the research articles based on various applications 														
Course Outcomes	At the end of t CO1: Develor CO2: Prepar CO3: Attain t CO4: Analyz	he course op present re a present the import re the varie	e, the stude ation with v ntation with ance of res ous sources	ents will be a isual effects supporting d earch and da s of research	able to ata ta collection									

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Preparing a Presentation

[3]

Presenting data using Power Point- Power Point preparation and presentation, Design principles for creating effective Power Point slides with visuals displaying data. - Profile, - Problem, and a set of basic Excel charts, use to create a presentation.

Creating effective slides using PowerPoint

[2]

Create effective slides using PowerPoint. Tools within Power Point, structure story line, create story boards, identify primary elements of slide design, display data and finalize slide presentation.

Research Designs and Data Sources

[3]

Overview of the topics: process of data collection and analysis. Starting with a research question - Review of existing data sources- Survey data collection techniques- Importance of data collection- Basic features affect data analysis when dealing with sample data. Issues of data access and resources for access.

Measurements and Analysis Plan

[2]

Importance of well-specified research question and analysis plan: various data collection strategies - Variety of available modes for data collection – review of literature - Tools at hand for simple analysis and interpretation.

Total Hours: 10

Text Book(s):

- 1 Judy Jones Tisdale. Effective Business Presentations. Gulf Coast Books LLC. ISBN-13: 978-013097735, 2004.
 - Frauke Kreuter. Framework for Data Collection and Analysis, 2018. https://www.coursera.org/learn/data-collection-framework

Reference(s):

2

- Kothari, C.R. andGaurav Garg, "Research Methodology: Methods and Techniques", New Age International Publishers, 2013.
- 2 Srivastava, T.N. and Rego, S., "Business Research Methodology", Tata Mc Graw Hill, New Delhi, 2019.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO												PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3					3	3	3	3	3	3		3	3	
50 AC 001 &	CO2	3	3					3	3	3	3	3	3		3	3	
Research Skill	CO3		3					3	3	3	3	3	3		3	3	
Development - I	CO4		3					3	3	3	3	3	3		3	3	
	CO5		3					3	3	3	3	3	3		3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of T	echnology -	- Autonomo	us R 2018		
		50 ME 7P1-	Metrology a	nd Measurer	nents Labor	atory		
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	
Semester	L	Т	Р	hrs	С	CA	ES	Total
VII	0	0	4	60	2	60	40	100
Objective(s)	ted To pro To ind To	o familiarize chniques and chniques and commake stude acticing exercite familiarize dustries. It also describe the	applications nts familiar w cises on vario the importa dents with ac	vith the funda ous measurin nce of mea lvanced metr	mental princi g instrument surement au	ples of meas s. nd inspection	suring technic	ques by
Course Outcomes	CO1: D re CO2: Si CO3: M th vi CO4: D th CO5: C	d of the cour escribe the baseleted to expendent the precessure the garead parameter bration. Its criminate the componentalibrate the value inspection	asic concepts eriments ision measur ear tooth dim ters, tempera e capabilities t produced	of Metrology ing instrume ensions, ang ature using the	y and classify and for measurable using sine nermocouple, g process by	rement of var bar, straighti force, displa measuring s	ious compon ness and flati cement, torq urface flatne	ents. ness, ue and ss of

- 1. Calibration and use of measuring instruments Vernier caliper, micrometer, dial gauge and vernier height gauge using gauge blocks.
- 2. Calibration and use of measuring instruments depth micrometer and telescopic gauge.
- 3. Measurement of angles using bevel protractor and sine bar.
- Measurement of screw thread parameters Screw thread micrometers and Three wire method (floating carriage micrometer).
- 5. Measurement of features in a prismatic component using Coordinate Measuring Machine (CMM).
- 6. Non-contact (Optical) measurement using Toolmaker's microscope and Profile projector.
- 7. Machine tool metrology Level tests using precision level; Testing of straightness of a machine tool guide way using Autocollimator.
- 8. Measurement of force and pressure using strain gauges.
- 9. Measurement of torque using digital torque transducer.
- 10. Measurement of temperature using transducer (Thermocouple, RTD and Thermistor).
- 11. Measurement of vibration parameter using vibration setup.
- 12. Study of Coordinate Measuring Machines programming for repeated measurements of identical components.

Additional Experiment:

1. Calibration of LVDT

Lab Manual

1. "Metrology and Measurements Laboratory Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3						3	3			3		3
50 ME 7P1 & Metrology	CO2	3	3	3						3	3			3	3	
and Measurements Laboratory	CO3	3	3	3	3					3	3			3	3	3
	CO4	3		3	2					3	3			3		
	CO5	3		3	3					3	3			3		3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of T	echnology -	- Autonomo	us R 2018							
		50 ME 7P	2- Analysis a	and Simulati	on Laborato	ory							
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks						
Semester	L	L T P hrs C CA ES Tota 0 0 4 60 2 60 40 100 • To give exposure to software tools needed to analyze engineering problems. • To impart knowledge on understanding the force, stress, deflection in mechanical components. • To analyze thermal stress and heat transfer in mechanical components • To analyze the vibration of mechanical components • To solve one dimensional problems using MATLAB Programming At the end of the course, the students will be able to CO1: Analyze the force, stress, deflection in mechanical components. CO2: Analyze thermal stress and heat transfer in mechanical components.		Total									
VII	0												
Objective(s)	• To co	impart know imponents. analyze the analyze the asolve one di	rmal stress an vibration of n mensional pr	derstanding the nd heat trans nechanical co oblems using	ne force, stre fer in mecha omponents g MATLAB P	ss, deflection	in mechanio	cal					
Course Outcomes	CO1: AI CO2: AI CO3: AI	nalyze the for	ce, stress, de al stress and oration of med	eflection in m heat transfer chanical com	echanical co in mechanic ponents.	al componen	ıts.						

- 1. Force and Stress analysis using link elements in Trusses.
- 2. Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates.
- 4. Stress analysis of axis-symmetric components.
- 5. Thermal stress and heat transfer analysis of plates.
- 6. Thermal stress analysis of cylindrical shells.
- 7. Vibration analysis of spring-mass systems.
- 8. Modal analysis of Beams.
- 9. MATLAB programming for solving stepped bar problem using 1D bar element
- 10. MATLAB programming for solving beam problem using 1D beam element.

Lab Manual

1. "Analysis and Simulation Laboratory Manual", Department of Mechanical Engineering, KSRCT.

Pre-requisite: Strength of Materials

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

COURSE CODE &	co	РО												PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3	2		1							3	2		1	
50 ME 7P2 & Analysis and Simulation Laboratory	CO2	3	2	3		1							3	3		1	
	CO3	3	3	2		1							3	3		1	
	CO4	3	2	3		1							3	3		1	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 ME 7P3- Project Work - Phase I													
				oject Work -	Phase I									
Semester		Hours / Wee	k	Total	Credit	Max	kimum Marks							
Jennester	L	T	Р	hrs	С	CA	ES	Total						
VII	0	0	4	60	2	100		100						
Objective(s)	• To • To • To • To	 create/design/implement project relevant to the field of Mechanical Engineering To acquire collaborative skills through working in a team to achieve common goals. To search for related area in which the members are going to do their project. To identify right project work, acquiring knowledge on that area, making preliminary works towards phase II of the project work. To acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific audience in both the written and oral forms. 												
Course Outcomes	At the end of the course, the students will be able to CO1: Survey the literature and market for availability of resources CO2: Select the title and collect relevant information related with selected title. CO3: Collect the literature based on survey and do the partially design of the system. CO4: Carryout partial design of the system													
Methodology	 CO5: Prepare and present the project report Three reviews have to be conducted by the committee of minimum of three members one of which should be the guide. Problem should be selected. Students have to collect about 20 papers related to their work. Report has to be prepared by the students as per the format. Preliminary implementation can be done if possible. Internal evaluation has to be done for 100 marks. 													

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
FOME 7D2 9 Drainet	CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
50 ME 7P3 & Project Work - Phase I	CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
vvork - Phase I	CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology - Autonomous Regulation R 2 Semester VII													
		Seme	ster	VII									
Course Code	Course No		Н	ours/W	/eek	Credit	N	Лахіти	m Mar	ks			
Course Code	Course Na	me	L	Т	Р	С	CA	ES	Т	otal			
50 TP 0P5	CAREER COMPETEN DEVELOPMENT V	ICY	0	0	2	0	100	00	,	100			
Objective(s)	 academic and To help the le the requirement To help the le recruitments a To help the le modules for control 	earners to prace professional corporarers to praction arners to praction arners to practice arners to practice of the property of the professional professio	ntexts ce the etitive ce eff exams ctice ecruit	e verba e exan ectivel s effecti ments	al and ns and y the a vely the and col	logical reacompanie ptitude me data in mpetitive	asoning s odules nterpret exams	ability for com ation a	to me	eet out			
Course Outcomes	CO3: Relate the aptit effectively CO4: Compare and il company base CO5: Formulate and	written and oral or nd assess the ve equirements of to tude modules for flustrate the data d recruitments a integrate the tec	omm rbal a he co com inter nd co chnica	unication logompan logompan logompan logompan logompetition logompetition logompetitics logompan logompetitics log	ion skill gical rea ies based re ion and tive exa	asoning al ecruitmen analysis ams	oility to	meet or competi	ut the tive ex ively fo	kams or			
Unit – 1 Written and Oral Communication													
Self-Introduction	on – GD – HR Interview ons and Competitive Exa	/ Skills – Corpo	rate	Profile	Review	v - Practi	ces on	Compa	iny	Hrs 6			
Unit – 2	Verbal & Logical Reason Company Based Question		ve Ex	xams						6			
Unit – 3	Quantitative Aptitude												
Practices on C	company Based Question	ns and Competiti	ve Ex	xams						6			
	Data Interpretation and	d Analysis											
	Company Based Question	-	ve Ex	xams						6			
Unit – 5 Programming & Technical Skills – Part 3 Data Structure - Arrays – Linked List – Stack – Queues – Tree – Graph. Practices on Algorithms and Objective Type Questions. Materials: Instructor Manual													
Evaluation Cal	torio							To	otal	30			
Evaluation Crit S.No.	teria Particular			Te	est Port	ion				Marks			
₁ Evalua	ation 1	15 Questions 6 (External Eval		from U						60			
	ation 2 -	GD and HR Int								20			
₂ Evalua			iation	hy Fr	alish N	MRA Dant)			20			
2 Evalua Oral C	Communication ation 3 – nical Interview	(External Evalua								20			

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

Reference Books

- 1. Aggarwal, R.S. "A Modern Approach to Verbal and Non-verbal Reasoning", Revised Edition 2008, Reprint 2009, S.Chand & Co Ltd., New Delhi.
- 2. Abhijit Guha, "Quantitative Aptitude", TMH, 3rd edition
- 3. Objective Instant Arithmetic by M.B. Lal & GoswamiUpkar Publications.
- 4. Word Power Made Easy by Norman Lewis W.R. GOYAL PUBlications

Note:

- Instructor can cover the syllabus by Class room activities and Assignments(5 Assignments/week)
- Instructor Manual has Class work questions, Assignment questions and Rough work pages
- Each Assignment has 20 questions for Unit 1,2,3,4 & 5 and Unit 5 and 5 questions from Unit 5(Algorithms) & Unit 1(Oral Communication)
- Evaluation has to be conducted as like Lab Examination.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0						PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3		3			1	2	3	3	3	3	2	2		
50 TP 0P5 & Career Competency Development V	CO2	3	2		2			1	2	3	3	3	3	2	2		
	CO3	3	2	2	2			1			3	3	3	2	2		
	CO4			2		2	1	1			2	2	3	2	2		
	CO5			2		3	2	1			2	2	3	2	2		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	.Rangasamy	College of	Гесhnology	- Autonomo	us R2018		
		50 H	IS 003- Tota	I Quality Ma	anagement			
Semester		Hours / Weel	Κ	Total	Credit	Max	imum Mark	3
Semester	L	Т	Р	hrs	С	CA	ES	Total
VIII	3	0	0	45	3	50	50	100
Objective(s)	ted To ma To see To sta To pro	chniques. equip the stomatic anufacturing some equip the stome equip the stomatic and ards for resonable the stomatic and ards for resonable the stomatic and the extension and the equipocess and the equipocess and the equipocess.	udents to app sectors. udents to app ledge on qua eal life applica udents under eir impact on	oly the TQM oly the TQM oly the TQM olity manager ations stand the im the final produce.		ls and techni ls and techni s, tools, tech	ques in ques in serv	vice quality
Course Outcomes	CO1: Re- CO2 :App CO3: App CO4: App imp	ply the TQM p ply the tradition	eed for quali orinciples for onal tools and and technique	ty concepts a survival and d new tools for es like quality	able to and its applica growth in wor or quality impr / circle, QFD,	rld class com ovement.	petition	ity

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

Introduction

Introduction, definitions of quality, need for quality, evolution of quality, dimensions of quality, product quality and service quality; Basic concepts of TQM, TQM framework, contributions of Deming, Juran and Crosby. Barriers to TQM; Quality statements, customer focus, customer satisfaction, customer complaints, customer retention; costs to quality.

[9]

TQM Principles

TQM principles; leadership, strategic quality planning; Quality councils- employee involvement, motivation; Empowerment; Team and Teamwork; Quality circles, recognition and reward, performance appraisal; continuous process improvement; PDSA cycle, Kaizen, 5S & 7S; Supplier partnership, Partnering, Supplier rating and selection.

TQM Management Tools and Techniques

The seven traditional tools of quality; New management tools - applications to manufacturing, service sector, Statistical Fundamentals, Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, control charts, process capability, concepts of six sigma, Bench marking - Reasons to benchmark, Benchmarking process.

TQM Process based Tools and Techniques

Quality circles, Quality Function Development (QFD), Taguchi quality loss function; TPM- concepts, improvement needs, performance, measures. FMEA- stages, types-Design FMEA and Process FMEA. [9]

Quality Management System

Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards - AS 9100, TS16949 and TL 9000 - ISO 9001, ISO 9001:2008 Requirements-Implementation-Documentation-Internal Audits-Registration-Environmental Management System: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001-Benefits of EMS. [9]

Text Book(s):

1. Dale H. Besterfield ., et. al, "Total Quality Management", 3rd Edition., Pearson Education South Asia, 2013.

2. Janakiraman, B and Gopal, R.K, "Total Quality Management – Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

Reference(s)

1. Joel.E. Ross, "Total Quality Management – Text and Cases", 3rd Edition, Routledge, 2017.

2. James R. Evans, James Robert Evans, William M. Lindsay, "The Management and Control of Quality", 8th Edition, South-Western, 2010.

3. Kiran.D.R, "Total Quality Management", Key concepts and case studies, Butterworth – Heinemann Ltd., 2016.

4. Oakland, J.S. "TQM – Text with Cases", Butterworth – Heinemann Ltd., Oxford, Third Edition, 2003.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &							Р	0						PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 HS 003 & Total Quality Management	CO1	3	2			2	3	3	3	3	3		3	3	2	
	CO2	3	2			2	3	3	3	3	3		3		2	
	CO3		3				2	2			3			3		
	CO4		3			3	2	2	3	2			3		3	
	CO5	3				3	3		3	2	2			2	3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.F	Rangasam	y College	of Technolo	gy – Autonor	nous	R	2018						
		50 AC 00	2 – Resea	rch Skill Dev	elopment - II									
Camaatar	Hou	ırs / Week		Total Hrs	Credit	Max	ximum Marl	KS						
Semester	L	Т	Р	Total HIS	С	CA	ES	Total						
VIII	1	1 0 0 10 0 100 100												
Objective(s)	To orgaTo attaTo app	 To attain knowledge for filing Patent To apply for copy right To develop and deploy Mobile App. in play store 												
Course Outcomes	To develop and deploy Mobile App. in play store At the end of the course, the students will be able to CO1: Prepare a manuscript for journal publication. CO2: Apply the manuscript for publication CO3: Interpret the process of obtaining copyright and patent CO4: Analyze the various provisions to share the application CO5: Create and publish the mobile application in the digital store													

Preparation of Manuscript

2]

Data necessary before writing a paper: the context in which the scientist is publishing. Learning and identification of research community - advantages of scientific journal publication and manuscript preparation - ethical values in publishing.

Writing the paper [2]

Writing research paper - structure of the paper - usage of bibliographical tools - abstract preparation and to do a peer review for the abstract of the others, as in real academic life. Plagiarism of the prepared manuscript.

Copyright [2]

Copyright law in India-Meaning of copyright-Classes of works for copyright protection -Ownership of Copyright-Assignment of copyright-Intellectual Property Rights (IPR) of Computer Software-Copyright Infringements-Procedure for registration

Patents [2]

Patent System In India -Types of Patent Applications-patentable invention - Not patentable-Appropriate office for filing -Documents required Publication and Examination of Patent Applications -Grant of Patent-Infringement of Patents -E-filing of Patent applications

Deploying Mobile App. in play store

[2]

Introduction to Application Stores – Play Store, App Store, Microsoft Store, Creating App – Android, iOS, UWP, Defining Manifest, Certifying App, Create Store Listing, Sharing Screenshots, Sharing App Credentials for Testing.

	Total Hours: 10
Text	Book(s):
1	Mathis Plapp. How to Write and Publish a Scientific Paper (Project-Centered Course).
	https://www.coursera.org /learn/how-to-write-a-scientific-paper#instructors
2	Rajkumar S. Adukia ,Handbook On Intellectual Property Rights In India,2007
3	Dr. M. Kantha Babu ,"Text book on Intellectual Property Rights",2019.
Refe	erence(s):
1	Kothari, C.R. andGaurav Garg, "Research Methodology: Methods and Techniques", New Age
ı	International Publishers, 2013
2	Srivastava, T.N. and Rego, S., "Business Research Methodology", Tata McGrawHill Education Pvt. Ltd.,
2	Delhi, 2019.
3	https://support.google.com/googleplay/android-developer/answer/9859152
4	https://developer.apple.com/ios/submit/
5	https://docs.microsoft.com/en-us/windows/uwp/publish/app-submissions

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0						PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1							3	3	3	3	3	3		3	3
50 AC 002 & Research Skill Development - II	CO2							3	3	3	3	3	3		3	3
	CO3							3	3	3	3	3	3		3	3
	CO4							3	3	3	3	3	3		3	3
	CO5							3	3	3	3	3	3		3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.	Rangasamy	College of To	echnology -	- Autonomo	us R 2018								
50 ME 8P1- Project Work - Phase II Semester Hours / Week Total Credit Maximum Marks														
Somostor		Hours / Wee	k	Total	Credit	Мах	imum Marks	;						
	L	Т	Р		С	CA	ES	Total						
VIII	0	0	16	240	8	50	50	100						
Objective(s)	prince pr	roject involviro have guida epartment. o receive the nalysis or fiel o present in po produce a curvey, proble e typewritten		and experimery project to the guide signed by the hinars on the report covproject work ified in the g	eental studies eam, by the on library re e guide. e progress ma ering backgro details and ouidelines.	related to the faculty member ading, laborate in the proposed in the propound information.	e branch of some of the constant work, consider the branch of the branch	study. ncerned omputer						
Course Outcomes	be typewritten form as specified in the guidelines. At the end of the course, the students will be able to CO1: Make links across different areas of knowledge and to generate, develop and evaluate ideas and information CO2: Apply these skills to the project CO3: Design the project work. CO4: Model and fabricate the project work CO5: Prepare and present the project work along with report.													
Methodology	• P • E • A • V • F • m • e • T	ne of which s rogress of pr ach review h ttendance is alid reasons, inal review w tembers one expert examin	have to be controlled to be controlled to be evaluated to be evaluated to be evaluated to be carried to be t	r project guide monitored pated for 100 or all reviews ance may be but by the could be their professions.	de. by the project marks. If a student given. mmittee that roject guide	et guide and of fails to atten consists of n (if possible in	committee re d review for ninimum of the clude one ex	gularly. some nree cternal						

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО												PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
50 ME 8P1 & Project Work - Phase II	CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

		K.S.Ranga	samy Col	llege of Te	chnology – /	Autonomous		R 2018						
			50 HS	6 004 – Prii	nciples of Ma	anagement								
Compotor	_	Ho	ours / Wee	k	Total Ura	Credit	Max	ximum Mark	S					
Semester	1	L	Т	Р	Total Hrs	С	CA	ES	Total					
V		3	0	0	45	3	50	50	100					
Objective(s)		 To enable the students to understand evolution of Management. To provide them knowledge on planning process To make them differentiate between formal and informal organization To provide them knowledge on leadership ,motivation and communication To enable them to learn different controlling techniques 												
Course Outcomes	At 1	CO1: Iden CO2: Desc CO3: Expo CO4: Anal	tify the org cribe the n ose the kn yze the co	ganizationa ature and p owledge or oncepts of c	ourpose of plant ourpose of concepts of a delegation of a	roles of Manag anning, forecas	sting and ded Organization		g					

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Management and Organizations

Definition of Management – Science or Art – Manager Vs Entrepreneur – types of managers – managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization – Sole proprietorship, partnership, company- public and private sector enterprises – Organization culture and Environment – Current trends and issues in Management. [9]

Planning

Nature and purpose of planning – planning process – types of planning – objectives – setting objectives – Management of objective – policies – Planning premises – Strategic Management, Types of strategies – Planning Tools and Techniques – Decision making steps and process- Types of managerial decision – forecasting and its techniques.

Organizing

Definition –Nature and purpose –Formal-Informal organizations-organizati

on charts-Organization structures-Span of control-factors determining effective span-line and staff authority. Departmentation –Centralization and Decentralization-Job Design – Human Resource Management – HR Planning, Recruitment, Training and Development, Performance Management, Career planning and management.

Directing

Directing: nature and purpose-Motivation and Satisfaction-Motivation theories-job enrichment-definition of leadership-elements of leadership-Leadership styles-leadership theories-Communication-process and barriers to effective communication –role of IT in communication. Organization culture-Elements and types of culture-Managing cultural diversity.

Controlling

Process of controlling-Types of control-Budgetary and non-budgetary control techniques- use of computers and IT in Management control- Maintenance control-quality control-planning operations performance standards-Measurement of performance-Productivity problems and management – direct and preventive control – Remedial actions

IXCIII	
	Total hours: 45
Text	Book(s):
1	Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 12th Edition, 2016
2	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", Pearson Education, 8th Edition, 2015.
Refe	erence(s):
1	Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management" Pearson Education, 9th Edition, 2016.
2	Robert Kreitner & Mamata Mohapatra, " Management", Biztantra, 2012
3	Harold Koontz & Heinz Weihrich "Essentials of management" Tata McGraw Hill, 2015.
4	Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 2016.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	CO	РО												PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1			2		1	3	3	2	3	2	3	2	3	1	1	
	CO2			1		2	2	2	1	3	2	3	2	1	3	2	
50 HS 004 & Principles of Management	CO3			2		1	3	3	2	3	3	3	3	1	2	3	
o. management	CO4			1		1	2	2	1	3	1	3	2	2	1	2	
	CO5			1		1	3	3	1	3	3	3	3	1	2	1	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

K.S.Rangasamy College of Technology – Autonomous R 2018 50 ME E12 – Power Plant Engineering Semester Hours / Week Total Hrs Credit Maximum Marks L T P C CA ES Total V 3 0 0 45 3 50 50 100 • To describe the current energy scenario and basics of steam power plant.															
		50 M	E12 – Po	wer Plant En	gineering										
Compostor	Hou	ırs / Week		Total I Iro	Credit	Max	kimum Mark	s							
Semester	L	Т	Р	Total His	С	CA	ES	Total							
V	3	0	0	45	3	50	50	100							
Objective(s)	To infeTo appTo utilize	 To describe the current energy scenario and basics of steam power plant. To infer knowledge on working of nuclear power plant and hydel power plant. To apply the concept of diesel power plant and gas turbine power plant. To utilize renewable energy sources in power plants. To apply the principles in power plant economics. 													
Course Outcomes	thermal CO2: Recogn hydel p CO3: Apply th CO4: Illustrate energy p	strate the last power plans ower plans e working the layou power plans the variou	layout, constant. sic knowled ts with their principle out, construction.	struction and dge on nuclear layouts. If gas and die tion and work	able to working of the ar processes ar sel power plan king of the com cower plant ec	nd working o ts. ponents insi	f nuclear an de renewab	le							

Energy scenario and steam power plant

Indian and Global energy scenario, environmental issues of present day power generation. Steam power plant-Layout of steam power plant – Selection Criteria – Fuel and Ash Handling systems. Pulverisers – Stokers – Types – Dust collectors and cooling towers. [9]

Nuclear and Hydel Power Plants

Nuclear Energy- Fuels and Nuclear reactions – Components and Layout of nuclear power plant – Pressurized Water Reactor – Boiling Water Reactor – Fast Breeder Reactor – Radioactive waste disposal. Hydro-electric power plant- Site selection – Components and Layout – Advantages – Classification of turbines – Mini and micro hydel plants.

Gas Turbine and Diesel Power Plant

Layout of Gas Turbine Power Plant- Selection criteria – Reheating – Regeneration and Intercooling – Combined – gas and steam – Integrated gasifier based combined cycle system (IGCC). Diesel Power Plant: Selection Criteria – Layout of Diesel power plant – application and advantages. [9]

Non-Conventional Power Plants

Layout and components: Magneto Hydro Dynamic (MHD) power plant – Geothermal power generation, Dry steam, flash steam, and binary cycle – Ocean thermal energy conversion (OTEC) – Tidal power generation – Wind energy power generation – Solar photo voltaic (SPV) –Bio-solar cells – Solar energy harvesting trees.

Power Plant Economics

Cost of electric energy – Load duration curves – Fixed and operating Cost – Energy Rates – Types of tariffs – Economics of load sharing, comparison, Selection and economics of various power plants, Energy Auditing – Types, Energy auditing for Thermal Power Plant-Waste heat recovery techniques – Types. [9]

Total Hours: 45

Text Book(s):

- Arora, S. C., and Domkundwar, S., "A course in Power Plant Engineering", 8th Edition, Dhanpatrai Publications Ltd., New Delhi, 2016.
- 2 El- Wakil, M, M. "Power Plant Technology", 1st edition, Tata McGraw-Hill, New Delhi, 2017.

Reference(s):

1	Rai,G.D. "Introduction to Power Plant Technology", 11 th reprint, Khanna Publishers, 2013.
2	Hegde, R K., "Power Plant Engineering", 1st edition, Pearson education India, New Delhi, 2015.
3	Rajput R.K., "Power Plant Engineering", 4th edition, Laxmi Publications Pvt. Ltd., New Delhi, 2016.
4	Nag, P K., "Power Plant Engineering", 4th edition, Tata McGraw-Hill, New Delhi, 2014.

Pre-requisite: Thermal Engineering

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО													PSO			
COURSE NAME	00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3				3	3	3					3	3			
	CO2	3	3				3	3	3					2	3			
50 ME E12 & Power Plant Engineering	CO3	3	2				3	3	3					2	3			
	CO4	3	3				3	3	3			2	2	3	3			
	CO5	3	3				3	3	3			3	3	3	3			

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	Semester Hours / Week Total Hrs Credit Maximum Marks													
		50	ME E13 -	Rapid Proto	typing									
Compostor	Hou	ırs / Week		Total I Iva	Credit	Max	ximum Mark	S						
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total						
V	3	0	0	45	3	50	50	100						
Objective(s)	To acqTo impTo beAdditiv	 To acquire the basic concept of different software used in rapid prototyping systems. To impart knowledge on CAD modelling technique To be familiar with the characteristics of the different materials those are used in Additive Manufacturing. 												
Course Outcomes	CO2: Delive Rapid CO3: Elucid metho CO4: Revea	nstrate va or the cond I prototypion late the woods. al the meth	rious mater epts, fabriong technique orking prince nods of rapi	rial processes cation and and and ite. iples and par d tooling.	able to s and additive ralysis of manu ameters involv	facturing con	nponents th	rough						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Rapid Prototyping

Need for the time compression in product development, History of RPT systems, Survey of applications, Growth of RPT industry and classification of RPT systems. [9]

Rapid Prototyping Methods

Fused deposition Modeling (FDM): Principle, Process Parameters, Path generation, Applications. Solid Ground Curing: Principle of operation, Machine details, Applications. Stereo Lithographic Resin (SLR) systems: Process parameters, Process details, Data Preparation, Data files, and Machine details, Applications. Selective Laser Sintering (SLS): Types of machines, Principle of operation, Process parameters, Data preparation for SLS, applications. Laminated Object Manufacturing (LOM): Principle of Operation, LOM materials, Process details, Applications.

Concept Modelers

Concept modelers – Principle, Thermo jet printer, Sander's model market, 3-D Printer, Genisys Xs Printer, JP system 5, Object Quadra System. Laser Engineered Net Shaping (LENS) – Principle-applications. [9]

Rapid Tooling

Indirect Rapid Tooling- Silicone rubber tooling, Aluminum filled epoxy tooling, Spray metal tooling, etc., Direct rapid tooling- Direct Accurate clear epoxy solid injection molding (AIM), Quick cast Process, Copper polyamide, Rapid Tools, Direct metal laser sintering (DMLS), ProMetal, Sand Casting Tooling, Laminate tooling, Soft tooling v/s Hard tooling.

[9]

Software for Rapid Tooling

STL Files, Over view of Solid view, Magics, mimics, magics communicator, etc, Internet based softwares, Collaboration tools. Rapid Manufacturing- Process optimization – Factors influencing accuracy, Data preparation Errors, Part building Errors, Errors in finishing, Influence of part orientation. Allied process – Vacuum Casting, Surface Digitizing, Surface Generation from point cloud, Surface modification, data transfer to solid models.

	Total Hours: 45
Text	Book(s):
4	Chua C.K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", 3rd Edition, World
'	Scientific, New Jersey, 2010.
2	Pham D.T. and Dimov S.S., "Rapid Manufacturing", 1st Edition, Springer-Verlag, London, 2011.
Refe	erence(s):
1	Frank W. Liou, "Rapid Prototyping and Engineering Applications", CRC Press, 2008.
2	Jacobs P.F., "Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography", McGraw-Hill,
	New York, 2010
3	Wohlers Terry, "Wohlers Report 2014", Wohlers Associates, 2014.
4	Frank W. Liou, "Rapid Prototyping and Engineering Applications", CRC Press, 2008

Pre-requisite: Basic knowledge of Manufacturing Technology and CAD/CAM

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3							2						2		
	CO2	3	3			1				2			3			2		
50 ME E13 & Rapid Prototyping	CO3	3	3			1							2			2		
	CO4	3	2			1							2			3		
	CO5	2	2			1				2			2			2		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K	.S.Rangasa	my College	of Technolog	gy – Autono	mous R 201	8							
	50 ME E14 – Product Design for Manufacturing Hours / Week — Credit Maximum Marks													
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks						
Semester	L	Т	Р	Total IIIS	С	CA	ES	Total						
V	3	0	0	45	3	50	50	100						
Objective(s)	• To inc de • To de • To	 To learn the fundamentals of product design and its principles. To identify and analyse the product design and development processes in manufacturing industry. To introduce the objectives of product design and the requirements of a good product design. 												
			•	ents will be a										
				n design princ		nufacturing.								
Caa			•	design and fo	~ ~									
Course				by considerin										
Outcomes				onent design										
	CO5: Ob	serve and re	spona Envirc	nmental and	safety issue	s for design.								

Introduction

General design principles for manufacturability – strength and mechanical factors, mechanisms selection, evaluation method, Process capability – Feature tolerances, Geometric tolerances –Assembly limits –Datum features – Tolerance stacks.

Factors Influencing Form Design

Working principle, Material, Manufacture, Design- Possible solutions – Materials choice – Influence of materials on form design – form design of welded members, forgings and castings. [9]

Component Design – Machining Consideration

Design features to facilitate machining – drills – milling cutters – keyways – Doweling procedures, counter sunk screws – Reduction of machined area- simplification by separation – simplification by amalgamation – Design for machinability – Design for economy – Design for clampability – Design for accessibility – Design for assembly.

Component Design – Casting Consideration

Redesign of castings based on Parting line considerations – Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design – Modifying the design-Computer Applications for DFMA. [9]

Design for the Environment

Ltd., New Delhi, 2004.

Introduction – Environmental objectives – Global, Regional and local issues – Basic Design for Environment (DFE) methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment – Weighted sum, Lifecycle assessment method – Techniques to reduce environmental impact – Design to minimize material usage – Design for disassembly, recyclability, remanufacture and energy efficiency – Design to regulations and standards.

Total Hours: 45

Text Book(s):

1. Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", 3rd Ed, Marcel Dekker, New York, 2002.

2. Kevien Otto, Kristin Wood, "Product Design", 2nd Edition, Indian Reprint, Pearson Education, 2004.

Reference(s)

1. Boothroyd, G, "Design for Assembly, Automation and Product Design", 2nd Edition, Marcel Dekker, New York, 2002.

2. Fixel, J. "Design for the Environment", 2nd Edition, McGraw-Hill International Edition, New York, 2012.

3. Bralla, J G, "Design for Manufacture Handbook", 2nd Edition, McGraw-Hill. New York, 2013.

4. Chitale, A.K, and Gupta, R.C., "Product Design and Manufacturing", 3rd Edition, Prentice Hall of India Pvt.

Pre-requisite: Manufacturing Processes, Machining Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO													PSO			
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	2	3	3			3					3	2	3		
50 ME E14 & Product	CO2	2	3	3	3										3	3		
Design for	CO3	3	3	3	3										3	3		
Manufacturing	CO4	3	3	3	3										3	3		
	CO5	2	3	3	3			3							3	3		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.5	S.Rangasam	y College	of Technolog	gy – Autono	mous R 20	18								
	50 ME E15 – Instrumentation and Control Hours / Week Total Credit Maximum Marks														
Semester		Hours / Wee	k	Total	Credit	N	laximum Ma	rks							
Semester	L	Т	Р	hrs	С	CA	ES	Total							
V	3	0	0	45	3	50	50	100							
	To analyse the performance of transducers														
	To realize the different methods of system representation.														
Objective(s)	• To	To describe necessary knowledge in the time domain response													
	• To	 To describe necessary knowledge in the time domain response To apply the knowledge in obtaining the open loop and closed loop frequency responses 													
	• To	 To apply the knowledge in obtaining the open loop and closed loop frequency responses To apply the concept of stability and methods of stability analysis 													
	At the en	d of the cou	rse, the st	udents will b	e able to	-									
	CO1: Ar	alyze the sta	itic and dyr	namic charact	eristics of tra	ansducers.									
	CO2: Ide	entify the bas	ic element	s, derive the t	ransfer func	tion of a sys	tem and ove	rall gain of							
Course	th	e system.													
Outcomes	CO3: Ar	alyze the sy	stem in time	e domain with	different tes	st inputs.									
	CO4: Ar	alyze the pe	rformance	of the system	in frequenc	y domain									
	CO5: Co	nstruct the r	oot locus a	nd Routh-Hur	witz array to	analyses th	e stability ar	nd design the							
	SU	itable compe	ensator for	the given per	formance cri	teria.									

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Basics of Transducers

Classification of Transducers– Static characteristics– Dynamic characteristics: Generalized performance of systems, Zero-order systems, Responses of First-order systems and Second-order systems for Impulse, Step, Ramp and Sinusoidal test inputs [9]

Systems and their Representation

Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical system– Block diagram reduction – Mason's Gain formula –Signal flow graphs. [9]

Time Response Analysis

Review of Time response of zero, first and second order systems – Performance criteria – Error constants – Generalized error series – P, PI and PID controller. [9]

Frequency Response Analysis

Frequency domain specifications: peak resonance, resonant frequency, bandwidth and cut-off rate – Correlation between time and frequency responses for second order systems – Polar plot – Bode plot – Gain Margin and Phase Margin.

Stability of Control System

Characteristic equation – Routh Hurwitz criterion – Root locus construction – Nyquist stability criterion – Lag, lead and lag-lead networks – Lag/Lead compensator design using Bode plots. [9]

Total Hours: 45

Text Book(s):

- 1. Sawhney, A K., "Electrical & Electronic Measurements and Instrumentation", Dhanpath Rai& Co (P) Ltd, 2015.
- 2. Nagrath, I J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2018.

Reference(s)

- 1. Kalsi, H S., "Electronic Instrumentation", Tata McGraw Hill, 2017.
- 2. Gopal, M., "Control Systems, Principles & Design", 3rd edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2014.
- 3. Patranabis D., "Instrumentation and Control", Prentice Hall India Learning Private Limited, 2011.
- 4. Padma Raju, D. and Reddy, Y.J., "Instrumentation and Control Systems", McGraw Hill India, New Delhi, 2016.

Pre-requisite: Electrical and Electronics Engineering

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО										PSO				
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	1	2	1						1	1	2	2	3	2
50 ME E15 & Instrumentation and Control	CO2	3	2	1	2						1	1	2	2	3	2
	CO3	3	2	1	2						1	1	2	2	3	2
	CO4	3	2	2	2						1	1	2	2	3	2
	CO5	3	3	3	3						1	2	2	2	3	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.\$	S.Rangasam	y College	of Technol	ogy – Auton	omous R 2	2018						
			50 MA 014	4 – Numerio	cal Methods								
Semester Hours / Week Total Credit Maximum Marks													
Semester	L	Т	Р	hrs	С	CA	ES	Total					
V	3	0	0	45	3	50	50	100					
Objective(s)	• To • To • To	understand handle large solve initial solve nume	and apply to e datasets u value probl rically partia	the concept using interpolems of ordinal al differentia	s of interpola plation nary different Il equations o	tion ial equation of parabolic,	s numerically elliptic and h						

At the end of the course, the students will be able to

- CO1: Analyze various iteration techniques to solve the algebraic, transcendental and linear equations
- CO2: Apply various interpolation methods and finite difference concepts
- CO3: Compute the numerical differentiation and integration whenever and wherever routine methods are not applicable.
- CO4: Compute the solution for initial value problem using single and multi-step methods.
- CO5: Apply different methods to evaluate the partial differential equations through the theory of Finite differences.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Solution of Equations and Eigen Value Problems

Linear interpolation methods (method of false position) - Newton's method - Statement of Fixed Point Theorem - Fixed pointer iteration x=g(x) method - Solution of linear system of Gaussian elimination and Gauss- Jordan methods - Iterative methods: Gauss Jacobi and Gauss - Seidel methods- Inverse of a matrix by Gauss- Jordan method. Eigen value of a matrix by power methods. [9]

Interpolation and Approximation

Lagrangian Polynomials - Divided difference - Interpolation with a cubic spline - Newton forward and backward difference formulae. [9]

Numerical Differentiation and Integration

Derivatives from difference table - Divided difference and finite difference - Numerical integration by Trapezoidal and Simpson's 1/3 and 3/8 rules - Romberg's method - Two and three point Gaussian quadrature formulas - Double integrals using trapezoidal and Simpson's rules. [9]

Initial Value Problems for Ordinary Differential Equations

Single step Methods: Taylor Series and methods - Euler and Modified Euler methods - Fourth order Runge- Kutta method for solving first and second order equations - Multistep methods – Milne's and Adam's predictor and corrector methods. [9]

Application of Boundary Value Problems

Finite difference solution for the second order ordinary differential equations. Finite difference solution for one dimensional heat equation by implicit and explicit methods - one dimensional wave equation and two dimensional Laplace and Poisson equations.

Total Hours: 45

Text Book(s):

Course Outcomes

- Gerald, C.F, and Wheatley, P.O, "Applied Numerical Analysis", 6th Edition, Pearson Education Asia, New Delhi.2002.
- 2. Kandasamy, P.Thilakavthy, K and Gunavathy, K., "Numerical Methods", S.Chand and Co. New Delhi, 1999.

Reference(s)

- 1. Balagurusamy, E., "Numerical Methods", Tata McGraw-Hill Pub. Co. Ltd., New Delhi, 1999.
- 2. Venkatraman M.K, "Numerical Methods" National Pub. Company, Chennai, 1991.
- 3. Sankara Rao K., "Numerical Methods for Scientists and Engineers", 2nd Ed. Prentice Hall India, 2004.
- 4. | Subramaniam N., "Numerical Methods", SCM Publications, Erode -1.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	co						Р	0						PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3	3	3	3							2	3			
TO MA Odd 9 Normanical	CO2	3	3	3	2	2							2	3			
50 MA 014 & Numerical Methods	CO3	3	3	3	2	2							2	3			
Wethods	CO4	3	3	3	3	2							2	3			
	CO5	3	3	3	2	3							2	3			

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

	K.S.Rangasamy College of Technology – Autonomous R 2018														
50 CS 014 - Object Oriented Programming Hours / Wook Credit Maximum Marks															
Compotor		Hours / Wee	k	Total bro	Credit	M	laximum Mar	ks							
Semester	L	Т	Р	Total hrs	С	CA	ES	Total							
V	3	0	0	45	3	50	50	100							
	To enable the students to learn how C++ supports object Oriented properties														
	 To create and use classes, objects, constructors and destructors for specific applications 														
	To learn how inheritance and virtual functions implement dynamic binding with														
Objective(s)		polymorphism.													
	•	 polymorphism. To learn how to design and implement generic classes with C++ templates. 													
			•	tion handling			•								
				ents will be a											
	CO1: Re	ecognize the	principles of	object-orient	ed problem s	solving and p	rogramming								
Course	CO2: Im	plement the	concept of cl	lasses and ob	jects										
Outcomes	CO3: Ar	nalyze the co	ncept of reus	sability and co	ompile time p	olymorphism	า								
				ynamic memo			e polymorphis	sm							
	CO5: Ide	entify the use	es of generic	programming	and excepti	ion handling	-								

Introduction to C++ and Functions

Evolution of C++ - Concepts of OOP - Advantages of OOP, Basics of C++: Structure of a C++ Program—Streams in C++ and Stream Classes - Unformatted Console I/O Operations, C++ Declarations, Functions: Return by Reference - Default Arguments - Const arguments - Inline Functions - Function Overloading. [9]

Suggested Activities:

Knowing the concepts of OOPS, structure of OOPS.

Developing simple programs in C++ basics, functions and its types

Suggested Evaluation Methods:

Checking output of programs implemented

Group Discussion on OOPS features and difference between C and C++

Quiz for the above topics.

Classes and Objects. Constructors and Destructors

Classes in C++ - Declaring Objects- Access Specifiers and their Scope – Defining Member Functions – Static Members – Array of Objects – Object as Function Arguments – Friend Function and Friend Classes, Constructors and Destructors: Characteristics – Parameterized Constructor – Overloading Constructor – Copy Constructor – Dynamic Initialization Constructor – Destructors.

Suggested Activities:

Simple programs using classes and objects, static members

Implementation of simple programs using constructor and destructor

Implementation of simple programs using friend functions and classes, array of objects

Suggested Evaluation Methods:

Quiz for the above activities.

Checking output of programs implemented

Group Discussion for the above activities

Inheritance, Compile Time Polymorphism and Type Conversion

Inheritance: Reusability – Types of Inheritance – Abstract Classes – Object as Class Member, Operator Overloading: Rules for Operator Overloading – The Keyword Operator –Unary and Binary Operators Overloading-Overloading using Friend Function – Type Conversion. [10]

Suggested Activities:

Implement inheritance and its types in C++ program

Implement compile time polymorphism and unary, binary operator overloading concept in C++ program.

Suggested Evaluation Methods:

Quiz for the above activities.

Checking output of programs implemented

Group discussion on overloading using friend Function and type conversion

Pointers, Memory Models, Binding and Polymorphism

Pointers: Pointer to Class – Pointer to Object – void, wild and this Pointers – Pointer to Constant and Constant Pointers, Memory Models: Dynamic Memory Allocation – Heap Consumption – Dynamic Objects, Polymorphism: Binding in C++ - Pointer to Base and Derived class objects – Working with Virtual Functions – Pure Virtual Functions – Object Slicing – Virtual Destructor.

Suggested Activities:

Develop simple programs using pointers and its types

Develop simple programs using virtual functions

Suggested Evaluation Methods:

Quiz for the above activities.

Checking output of programs implemented

Group discussion on pure virtual function and virtual destructor.

Generic Programming with Templates, Exception Handling

Class Templates – Function Templates – Exception Handling: Principles of Exception Handling – try, throw and catch keywords – Re-throwing Exception – Specifying Exception. [8]

Suggested Activities:

Develop simple programs on class template and function template.

Develop simple programs using exceptional handling and its types.

Suggested Evaluation Methods:

Quiz for the above activities.

Checking output of programs implemented

Group discussion on Exceptional handling Concepts

Text Book(s):

- 1. Ashok N. Kamthane, "Programming in C++", Pearson, Second Edition, 2016.
- 2. Herbert Schildt, "The Complete Reference C++", Fourth Edition, McGraw-Hill Education, 2013.

Reference(s)

- 1. Bjarne Stroustrup, "The C++ programming language", Addison Wesley, 2013.
- 2. Venugopal K.R., Rajkumar Buyya, "Mastering C++", Second Edition, McGraw-Hill Education, 2013.
- 3. Rajesh K. Shukla, "Object-Oriented Programming in C++", Wiley-India Edition, 2008
- 4. Balagurusamy, E, "Object Oriented Programming with C++", Sixth Edition, McGraw-Hill Education, 2013.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО												PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3		3	3	1				2		2		3		
	CO2	3		3	3	1				2		2		3		
50 CS 014 & Object Oriented Programming	CO3	2		3	2					2		2		3		
	CO4	2		3	2									3		
	CO5	3		3	2	·			·	2		2		3		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Total Hours: 45

	ŀ	K.S.Rangasa	my College	of Technolo	gy – Autono	mous R 201	18							
		50 M	E E21 - Gas	Dynamics ar	nd Jet Prop	ulsion								
Semester		Hours / Wee	k	Total hrs	Credit	M	laximum Mar	ks						
Semester	L	Т	Р	TOTALLIS	С	CA	ES	Total						
VI	3	0	0	45	3	50	50	100						
Objective(s)	To sTo eTo s	 To apply the fundamentals of compressible flow. To analyse the phenomenon of flow through constant and variable area ducts. To study the flow phenomenon through ducts with shock waves. To enhance the basic knowledge of jet and rocket propulsion technology. To study the performance analysis of jet and rocket propulsion. 												
Course Outcomes	At the end of the course, the students will be able to CO1: Analyse the Mach number, velocity of sound and calculate the flow properties. CO2: Analyse compressible flow properties across constant area with friction (without heat transfer) and with heat transfer (without friction).													

Basic Concepts and Isentropic Flow

Fundamentals of compressible flow - Energy and momentum equations for compressible fluid flow- various regions of flow - reference velocities - stagnation states – propagation of sound waves and derivation for velocity of sound - critical states, Mach number, critical Mach number - types of waves - Mach cone - Mach angle - effect of Mach number on compressibility . [9]

Flow Through Ducts

Isentropic flow through variable area ducts - nozzle and diffuser flow - Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties. [9]

Flow With Normal and Oblique Shock

Governing equations - variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shock - Prandtl - Meyer equation, flow in convergent and divergent nozzle with shock - normal shock in Fanno and Rayleigh flow - flow with oblique shock (elementary treatment only).

[9]

Air Craft Propulsion Systems

Aircraft propulsion – types - ram jet, turbojet, turbofan and turbo prop engines - performance of turbo jet engine – thrust, thrust power, propulsive and overall efficiencies. [9]

Rocket Propulsion Systems

Delhi, 8th edition, 2018.

Rocket propulsion – Classification of rocket engines – Propellants: solid and liquid propellants, rocket engine performance - Flow through rocket nozzles – mass ratio and propellant mass fraction.

perfo	ormance - Flow through rocket nozzles – mass ratio and propellant mass fraction. [9]	
	Total Hours: 45	
Text	Book(s):	
1.	Yahya S.M., "Fundamental of Compressible Flow", New Age International Ltd., New Delhi, 6th Ed., 201	8.
2.	John D. Anderson, "Modern Compressible Flow", McGraw Hill Education, 3rd edition, 2017.	
Refe	erence(s)	
1.	Rathakrishnan E., "Gas Dynamics", Prentice Hall of India, New Delhi, 6th edition, 2017.	
2.	Ganesan V., "Gas Turbines", McGraw Hill Education, New Delhi, 3rd edition, 2017.	
3.	Saravanamuttoo, H.I.H., Rogers, G.F.C., Cohen H. and Andrew Nix, "Gas Turbine Theory", 7th Edition,	
٥.	Pearson Education, 2017.	
4.	Ahmed F.El-Sayed, "Aircraft Propulsion and Gas Turbines Engines", 2 nd Edition, CRC Press, 2017.	
Data	Book(s):	
1	Yahya S.M. "Gas Tables for Compressible Flow Calculations", New Age International Publishers, New	

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	00						Р	0						PSO				
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	1	3	2							1	1	1	3		
50 ME E21 & Gas Dynamics and Jet Propulsion	CO2	3	3	1	3	2							1	1	1	3		
	CO3	3	3	2	3	2							1	1	1	3		
	CO4	3	3	3	3	2	3	2					1	2	2	3		
	CO5	3	3	3	3	2	3	2					1	2	2	3		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R 2018														
Semester Hours / Week Total hrs Credit Maximum Marks														
Somostor		Hours / We	ek	Total bro	Credit	M	laximum Mar	ks						
Semester	L	Т	Р	Total IIIS	С	CA	ES	Total						
VI	3	0	0	45	3	50	50	100						
Objective(s)	• 1 • 1 • 1 • 7	pertaining to exercise, sport, and physical activity. To apply the mechanical and anatomical principles that govern human motion. To identify and use engineering tools that are used to active muscle.												
Course Outcomes	CO1: CO2: CO3: CO4: ./	Demonstrate mechanical pexplain the matructure of the Recognize the Analyse and	an understa properties. nechanical properties he basic con e active mus quantify linea	adents will be noting of basic roperties of he stituents. In the scale and its slip ar and angulation mobility p	es of biomech uman tissues ding filament r characteris	based on the theory.	neir design, p							

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Biomechanics

Basic Terminology – Nine Fundamentals of Biomechanics, Nine Principles for application of Biomechanicsanatomical description – Bio composites for spinal implants, bone repair – Bio compatibility of Bio composites -Mechanical properties of soft tissues, bones and muscles. [9]

Biomechanics of Tissues and Structures of the Musculoskeletal System

Biomechanics of Bone, Biomechanics of Articular Cartilage, Tendons and Ligaments, Peripheral Nerves and Spinal Nerve Roots, Skeletal Muscle. [9]

Biomechanics of Active Muscle

Muscle force production and transmission, Functional relations, History effects in muscle mechanics, Hill's model, sliding filament theory. [9]

Biomechanics of Human Motion

Linear kinematic and kinetic aspects of human movement, angular kinematic and kinetic aspects of human movement, equilibrium and human moment, biomechanics of Gait. [9]

Biomechanics of Joints

Knee, Hip, Foot and Ankle, Lumbar Spine, Cervical Spine, Shoulder, Elbow, Wrist and Hand. implant material.

[9]

Total Hours: 45

Text Book(s):

- 1. Susan J Hall, "Basic Biomechanics", 6th Edition, McGraw-Hill Education, New York, 2018.
- 2. Jay D Humphrey and Sherry L Delange, "An Introduction to Biomechanics: Solids and Fluids, Analysis and Design", 2nd Edition, London, Springer- Verlag, 2015.

Reference(s)

- 1. Margareta Nordin, Victor H Frankel, "Basic Biomechanics of the Musculoskeletal System", 4th Edition, Lippincott Williams and Wilkins, Philadelphia, 2001.
- 2. Ozkaya, Nihat, Nordin Margareta, "Fundamentals of Biomechanics: Equilibrium, Motion and Deformation" 2nd Edition, Springer, New York, 2009.
- 3. Duane Knudson, "Fundamentals of Biomechanics" 2nd Edition, Springer Science & Business Media, NewYork, 2007.
- 4. Luigi Ambrosio, "Biomedical Composites", Woodhead publishing Ltd., New Delhi, 2010.

Pre-Requisite: Engineering Mechanics and Mechanical Energy

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО											PSO			
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	2	1								2	2		3
50 ME 500 0 D	CO2	3	2	2	1								2	2		3
50 ME E23 & Bio- Mechanics	CO3	3	2	3	1								2	2		3
Wechanics _	CO4	3	2	3	1								2	2		3
	CO5	3	2	3	1								2	2		3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	I	K.S.Rangasa	my College	of Technol	ogy – Autor	nomous R 20	018							
		50	ME E24 – Ir	nternal Com	bustion Eng	gines								
Somostor	Semester Hours / Week Total hrs Credit Maximum Marks													
Semester	L	T	Р	Total IIIS	С	CA	ES	Total						
VI	3	0	0	45	3	50	50	100						
Objective(s)	• T	o acquire the volume to study the volume to demonstration identify the study the accordance to study t	various stage te the pollute alternative	es of combus ant formation fuels in the e	tion in SI and s and its cor xisting IC en	d CI engines ntrol techniqu gines.	ies.							

At the end of the course, the students will be able to

CO1: Analyze optimum air-fuel mixture for complete combustion and understand combustion phenomena in SI engines

CO2: Analyze the stages of combustion and knocking phenomenon in CI engine.

- CO3: Measure the emission of SI and CI engine and analyses the different methods of emission control mechanism with driving cycles.
- CO4: Recognize the electronic engine management system.
- CO5: Incorporate the emerging technologies in IC engines.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Spark Ignition Engines

Course

Outcomes

Air-fuel ratio requirements, Gasoline Direct Injection Engine – fuel jet size, Stages of combustion-normal and abnormal combustion, Factors affecting knock, Combustion chambers, Thermodynamic analysis of SI Engine combustion process. [9]

Compression Ignition Engines

Stages of combustion-normal and abnormal combustion – Factors affecting knock, Direct and Indirect injection systems, Combustion chambers, Turbo charging, Thermodynamic Analysis of CI Engine Combustion process.

Engine Exhaust Emission Control

Formation of NO_X, HC/CO mechanism, Smoke and Particulate emissions, Greenhouse effect, Methods of controlling emissions, Selective catalytic converter and Particulate Trap, Emission measuring equipment's, Indian Driving Cycles. [9]

Engine Electronics and Sensors

Working of MPFI & CRDI – Sensors – Types - manifold absolute pressure (MAP) sensor, knock sensor, mass air flow (MAF) sensor, Temperature sensors, coolant and exhaust gas sensor, exhaust oxygen level sensor – position sensors: throttle position sensor, accelerator pedal position sensor and crank shaft position sensor – Air mass flow sensor.

Recent Technology in IC Engines

Stratified Charge Engine, Lean Burn Engine, Low Heat Rejection Engine, Surface Ignition Engine, Homogeneous Charge Compression Ignition Engine, Premixed Charge Compression Ignition Engine, Data Acquisition System and combustion analysis in Engines. [9]

Total Hours:45

Text Book(s):

- John B. Heywood, "Internal Combustion Engine Fundamentals", McGraw Hill Company, 2nd edition, New Delhi, 2018.
- 2. Ganesan, V., "Internal Combustion Engines", Tata McGraw Hill Company, 4th edition, New Delhi, 2017.

Reference(s)

- 1. Gupta H.N., "Fundamentals of Internal Combustion Engines", Prentice Hall India Learning Private Limited, 2nd edition, 2012.
- 2. James D.Halderman, "Hybrid and Alternative Fuel Vehicles", Pearson publications, 4th Edition, 2015.
- 3. Ramalingam K.K., "Internal Combustion Engines Theory and Practice", Scitech Publications (India) Pvt. Ltd., Chennai, 3rd edition, 2016.
- 4. Rajput, R.K., "Thermal Engineering", Laxmi Publications (P) Ltd., 10th Edition, 2017.

Pre-requisite: Thermodynamics. Thermal Engineering

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО									PSO					
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME E24 & Internal Combustion Engines	CO1	3	3		3		3	3		3	2			2	2	
	CO2		3		3		3	3		3	2			2	2	
	CO3	3					2	2						3	3	
	CO4		2		3		2	2		2	3			3	3	
	CO5	2	2		3		3	3		2	3			2	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

K.S.Rangasamy College of Technology – Autonomous R 2018											
50 ME E25 –Quality Control and Reliability Engineering											
Semester		Hours / Wee	ek	Total hrs	Credit	M	laximum Mar	mum Marks			
Semester	L T		Р	Total fils	С	CA	ES	Total			
VI	3	0	0	45	3	50	50	100			
	To impart knowledge about statistical quality control and reliability concepts to students.										
Objective(s)	• To	control and	control and reliability concepts to								
Objective(s)	improve the quality of products in manufacturing sectors.										
	 To train the students to apply the online and offline quality control and reliability concepts 										
	to improve the quality of products.										
	To equip the students to analyze the reliability of a product or system.										
	To train the students to evaluate the reliability of a product or system.										
	At the end of the course, the students will be able to										
	CO1: Analyze quality costs and apply statistical process control techniques.										
	CO2: Prepare control charts for quality control in manufacturing industries.										
Course	CO3: Apply sampling techniques for quality control.										
Outcomes	CO4: Apply reliability concepts and solve reliability problems.										
	CO5: Analyze and estimate the reliability of a product or system.										

Introduction and Statistical Process Control

Introduction:-Definition of quality, Evolution of Quality: Inspection, Quality Control, Quality assurance, Total quality management concepts, chance causes, assignable causes, Customer-Orientation: Internal & External Customer Concept, Quality costs- Prevention; Appraisal and Failure costs. Analysis techniques for quality costs, Seven SPC tools -Histogram, Check sheets, Ishikawa diagrams, Pareto, Scatter diagrams, Control charts and flow chart.

Online Quality Control

Statistical concepts in quality ,Normal curve, Control chart for attributes –control chart for non-conforming – p chart and np chart – control chart for nonconformities– C and U charts, Control chart for variables – X bar chart, R chart and σ chart -State of control and process out of control identification in charts, pattern study and process capability studies.

Offline Quality Control

Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling techniques – O.C. curves – producers Risk and consumers Risk. AQL, LTPD, AOQL concepts, standard sampling plans for AQL and LTPD- uses of standard sampling plans. [9]

Reliability Concepts

Reliability engineering - fundamentals - Failure rate, failure data analysis, Bathtub curve, Mortality curves concept of burn -in period, useful life and wear out phase of a system, Mean Time Between Failures (MTBF), Mean Time To Failure (MTTF), hazard rate - failure density and conditional reliability-Maintainability and availability - simple problems.

Reliability Estimation

System reliability: Series, Parallel and Mixed configurations, Reliability improvement techniques, use of Pareto analysis – design for reliability – redundancy unit and standby redundancy- fault tree analysis – FMEA analysis, Optimization in reliability – Product design – Product analysis – Product development – Product life cycle. [9]

Text Book(s):

1. Douglas.C. Montgomery, "Introduction to Statistical Quality Control", 7thedition, John Wiley 2012.

2. Srinath. L.S., "Reliability Engineering", 4th Edition Affiliated East West Press, 2011.

Reference(s)

1. Besterfield D.H., "Quality Control", 8th edition, Prentice Hall, 2009.

2. Connor, P.D.T.O., "Practical Reliability Engineering", 5th edition, Wiley India, 2012.

3. Grant, Eugene .L "Statistical Quality Control", TMH, 2005.

4. John.S. Oakland. "Statistical Process control", Elsevier Butterworth-Heinemann, 2008.

Pre-requisite: Nil

5. Monohar Mahajan, "Statistical Quality Control", DhanpatRai & Sons 2016.

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO										PSO			
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME E25 & Quality	CO1	2	2	3											2	
	CO2	3	3	3	3										3	
Control and Reliability	CO3	2	3	3	2										2	
Engineering	CO4	2	2	3	2										3	
	CO5	3	3	3	3								·		3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018											
			50 CS E25	- Python Pro	gramming							
Semester		Hours / Wee	ek	Total hrs	Credit	Maximum Marks						
Semester	L	Т	Р	TOTALLIS	С	CA	ES	Total				
VI	3	0	0	45	3	50	50	100				
	• To	To know basic programming in Python										
Objective(s)	• To	To understand modules and handle exceptions										
To learn object oriented programming concepts												
		To connect database and network through programming										
	• To	o create layo	uts using gra	phical tools								
		d of the cou										
		oply the basic										
_		evelop progra										
Course		CO3: Implement object oriented programming concepts using Python										
Outcomes		CO4: Design layouts with GUI toolkits using Tkinter										
	CO5: Deploy database management for implementing DB connectivity and expel network programming											

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Python

Introduction to Python –Strings –List–Tuples –Dictionaries–Basic Operators–Decision Making statements – Looping statements -File Input and Output [9]

Modular Design and Exception Handling

Modules in Python –Creation of modules -Namespaces –Importing modules –Loading and Execution; Program Routine –Functions –Parameter Passing -Types –Recursion; Exceptions –Types –Handling Exceptions-User Defined Exceptions.

Object Oriented Programming

ObjectOrientedProgramming-ClassandObjects-DataAbstraction-Encapsulation-Inheritance-Polymorphism -Implementation. [9]

Database Connectivity and Network Programming

Introduction to database –Relational Databases: Writing SQL statements; Defining tables; Setting up a Database – Python database APIs –Network Protocols –Socket Programming –Client Server Program –Chat Application.

GUI Programming and Graphics

GUI Programming toolkits –Introduction to Tkinter –Creating GUI widgets –Resizing –Configuring widget options – Creating Layouts –Radio buttons –Check boxes –Dialog boxes –Drawing using Turtle. [9]

	Total hours: 45
Tex	t Book(s):
1.	James Payne, —Beginning Python –using Python 2.6 and Python 3.1, Wiley India Pvt Ltd, 2010
2.	Charles Dierbach, —Introduction to Computer Science using Python, Wiley India Pvt Ltd, 2015
Ref	erence(s)
1.	Wesley J. Chun, "Core Python Applications Programming", 3rd Edition, Pearson Education, 2013.
2.	John Paul Mueller, "Beginning Programming with Python", Wiley India Pvt Ltd, 2014.
3.	Allen Downey, Jeffrey Elkner, Chris Meyers, "Learning with Python", DreamTech Press, 2015.
4.	Dr. R.Nageswara Rao "Core Python Programming", DreamTech Press,Second Edition,2018

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO									PSO				
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	2	2							2	3	3	3
	CO2	3	3	3	2	2							2	3	3	3
50 CS E25 & Python Programming	CO3	3	3	3	2	2							2	3	3	3
	CO4	3	3	3	2	2							2	3	3	3
	CO5	3	3	3	2	2							2	3	3	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

		K.S.Ranga	samy Colle	ege of Tech	nology – A	utonomou	s R 2018					
	50 ME E31 - Process Planning and Cost Estimation											
Semester		Hours / We	ek	Total hrs	Credit		Maximum	n Marks				
Semester	L	T	Р	TOTALLIS	С	CA	ES	Total				
VI	2	0	2	60	3	50	50	100				
	•	To recognize the traditional process planning and methods of computer aided process										
Objective(s)		planning										
Objective(3)	•	To impart knowledge on importance of estimation and costing										
	•	To study the various elements of costs and depreciation methods										
	•	To estimate the cost incurred for various manufacturing methods.										
	•	To analy	se the conc	ept of budge	eting and de	ecision maki	ng.					
			•	students wi		o						
				an for a give								
				ance and ob								
Course	CC	CO3: Explain the various cost components involved in cost estimation and allocate the										
Outcomes		overhead cost to different jobs										
		CO4: Estimating the costing for different machining and manufacturing process										
	CC	5: Describe	CO5: Describe the concept of budgetary control									

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Process Planning

Introduction - Types of production, importance of process planning - Steps involved in manual experienced process planning -Need for CAPP -Retrieval/ Variant and Generative approaches of CAPP- Production drawing-limits, fits, tolerance, Surface Roughness and Process Sheet- Case Study in process planning. [12]

Estimation and Costing

Estimating - Importance, aims, function of estimating - Constituents of estimation - Estimating procedure - Sources of errors - costing - Aims of costing - Costing procedure - Methods of costing - Advantages of efficient costing - Difference between estimating and costing. [12]

Elements of Costs

Price determination - Elements of costs - Ladder of cost - Material cost - Determination of direct material cost - Labour cost - Determination of direct labour cost - over heads - Classification of overhead expenses - Depreciation- Methods of depreciation - Allocation of overhead expenses. [12]

Cost Estimation

Estimation of machining time and cost -- Lathe operations, Milling, Grinding, Planning & shaping operations. Estimation in welding shop: Arc welding, Gas Welding, Flame cutting- Estimation of forging operations: Forging losses- Estimation in Foundry shop: pattern making, moulding. [12]

Cost Economics

Budget - Essentials of budgeting - Types of Budgets - Budgetary control - Objectives - Benefits - Measures of cost economics - Make or buy decision and Analysis. [12]

Total Hours: 60 (Lecture:30 + Hands on Training:30)

Text Book(s):

- 1. Narang G B S. and Kumar, V., "Production and Costing", 4th Edition, Khanna Publishers, New Delhi 2013.
- 2. Banga T R., and Sharma, S C., "Mechanical Estimating and Costing Including Costing", 16th Edition, Khanna Publishers, New Delhi.2006

Reference(s)

- 1 Adithan M and Pabla, B S., "Production Engineering Estimating and Costing", Konark Publishers Pvt. Ltd., New Delhi, 2007
- 2 Chitale, A K., and Gupta, R C., "Product Design and Manufacturing", 6th Edition, Prentice Hall Pvt. Ltd., New Delhi, 2015.
- Nanua Singh, "System approach to Computer Integrated Design and Manufacturing", Wiley publications, New Delhi, 2013.
- Joseph G.Monks, "Operations Management, Theory & Problems", 2nd Edition, McGraw Hill Book Company, 2006.
- 5 Hariprasad, "Mechanical Estimating and costing", Khartna Publishers, 2005.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO									PSO				
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME E31 & Process Planning and Cost Estimation	CO1	3	3	3								3	3	3	3	3
	CO2	3	3	3								3	3	3	3	3
	CO3	3	3	3								3	3	3	3	3
	CO4	3	3	3					·			3	3	3	3	3
	CO5	3	3	3								3	3	3	3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

	K.S.Rangasamy College of Technology – Autonomous R 2018										
	51 ME E32 – Flexible Manufacturing System										
Semester	F	lours / We	ek	Total Ura	Credit		Maximum Marks				
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total			
VI	2	0	2	60	3	50	50	100			
Objective(s)	ToToTo	 To acquire the role of flexible manufacturing systems (FMS) in manufacturing To impart knowledge on processing stations and data base To learn the concept computer-controlled simulation software To demonstrate the concept of Group Technology To realize automatic manufacturing systems and factory of the future. 									
Course Outcomes	CO1: Exp sys CO2: Sel CO3: App CO4: Des	plain the value of the color of	arious produ priate type of ious simulati tool manage	dents will be cts in the profession the computer computer computer computer computer computer technoon philosophy	duction systontrol and so to FMS ar logy and pro	oftware for nd use data ocessing st	the produc a base tech tations of P	etion system. nniques. Production			

Planning, Scheduling and Control of Flexible Manufacturing Systems

Limitations with conventional manufacturing - Introduction to FMS – Development of manufacturing systems – benefits – major elements – types of flexibility – FMS application and flexibility - Single product, N-product, Single batch, N-Batch scheduling problem – Modelling of N operations in M machines – Knowledge based scheduling system - computerized production scheduling system. [12]

Computer Control and Software for Flexible Manufacturing Systems

Introduction – Composition of FMS – Hierarchy of computer control – Computer control of work center and assembly lines – FMS supervising computer control. Types of software – specification and selection – trends.

[12]

FMS Simulation and Data Base

Application of simulation – Model of an FMS – Simulation software –Manufacturing data systems – Data flow – CAD/CAM considerations in planning the FMS data base – FMS database systems – Planning for FMS database. Distributed data processing in FMS –DBMS and their applications in CAD/CAM and FMS – distributed systems in FMS -Integration of CAD and CAM - Part programming in FMS, tool data base - Clamping devices and fixtures data base.

Management technology and Processing stations

Tool Management - tool magazine - Tool preset - identification - Tool monitoring and fault detection - routing - Production Planning and Control - Salient features Machining Centres - Turning centre - Coordinate measuring machine (CMM) - Introduction - Wash Station and Operation Description - Deburring Station and Operation Description - Importance of Cleaning and Deburring in Automated Manufacturing

Group Technology and FMS

Introduction – matrix formulation – Mathematical Programming formulation – Graph Formulation – Knowledge based system for Group Technology. Application of possibility distributions in FMS systems justification [12]

FMS Installation and Factory of the Future

FMS Installation - FMS implementation - FMS application in aerospace industries, sheet metal fabrication and prismatic component production. FMS development towards factories of the future – Artificial intelligence and Expert systems in FMS – Design Philosophy and Characteristics for Future. [12]

Total Hours: 60 (Lecture:30 + Hands on Training:30)

	Text	Book(s):
	1	Mikell P. Groover, "Automation, Production Systems and Computer Integrated Manufacturing", 4th
	ı	edition, Pearson Education India Pvt. Ltd., Noida, India, 2015.
	2	Jha N.K., "Handbook of Flexible Manufacturing Systems" Acadamic Press Inc.1991.
	Refe	rence(s):
Ī		Jain K C., and Sanjay Jain, "Principles of Automation and Advanced Manufacturing Systems" 1st Edition,

Rev. No.3/w.e.f. 18.01.23
Passed in BoS Meeting held on 24/12/22
Approved in Academic Council Meeting held on 07/01/2023

Khanna Publishers, New Delhi, 2004.

2	Raouf, A. and Ben-Daya, M, "Flexible Manufacturing Systems: Recent Development", Elsevier Science,1995.
3	Kalpakjian S and Steven R Schmid, "Manufacturing engineering and technology", 7 th Edition, Pearson Education India Pvt. Ltd., Noida, India, 2014.
4	Radhakrishnan P. and Subramanyan S., "CAD/CAM/CIM", 4 th edition, New Age International (P) Ltd., New Delhi, 2016.

Pre-requisite: Manufacturing Processes, Machining processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		РО									PSO				
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
51 ME E32 & Flexible Manufacturing System	CO1	3	2	3	3			3		3		2		3		2
	CO2	3	3			3				3				3	3	3
	CO3	3	3			3		3						3		3
	CO4	3	3			2				3		3		3	3	3
	CO5	3	3			2				3				1	2	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018										
	51 M	E E35 - De	sign of Jig	s, Fixtures and Pr	ess Tools						
Compotor	Hou	ırs / Week		Total bro	Credit	Max	arks				
Semester	L	Т	Р	Total hrs	С	CA	ES	Total			
VI	2	0	2	60	3	50	50	100			
Objective(s)	To apple To impoperation To acquire	 To impart knowledge on capacity and layout selection of press for machining operations. To acquire design practice of dies for different forming process. To analyse the different sheet metal forming technique using computer aids. 									
Course Outcomes	CO1: Select rack at CO2: Design and we CO3: Compustanda CO4: Design forging CO5: Descrit	the locating and pinion. and development and selected and selected and development and development and extrusion the sheeted and extrusion an	op the jigs feess. The capa for strip lay op the dies sion operation metal form	for blanking, piercin	t for lathe, m of press for ng and bendi	nilling, gring various pring opera	nding, pl rocesses tions, dra outer aids	anning and awing,			

required for each topic based on importance and depth of coverage required. The marks allotted for questions

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

in the examinations shall not depend on the number of hours indicated.

Locating and Clamping Principles of Jigs and Fixtures

Tool Design Objectives - Production Devices - Inspection Devices - Materials used in Jigs and Fixtures - Basic Principle of Six Point Location - Locating Methods and Devices - Principle of Clamping and Its Types - Analysis of Clamping Force. [12]

Design of Jigs

Drill Bushes - Classification of Jigs - Automatic Drill Jigs - Rack and Pinion Operated - Air Operated Jigs. Design and Development of Jigs for given Component.

Design of Fixtures

General Principles of Boring, Lathe, Milling and Broaching Fixtures - Grinding, Planning and Shaping Fixtures, Assembly, Inspection and Welding Fixtures - Modular Fixtures. Design and Development of Fixtures for given Component. [12]

Press Working Terminologies and Elements of Dies and Strip Layout

Press Working Terminology - Presses and Press Accessories - Computation of Capacities and Tonnage Requirements. Elements of Progressive Combination and Compound Dies: Die Block - Die Shoe. Bolster Plate - Punch Plate - Punch Holder - Guide Pins and Bushes - Strippers - Knockouts - Stops - Pilots - Selection of Standard Die Sets Strip Layout - Strip Layout Calculations.

Design and Development of Dies

Design and Development of Progressive and Compound Dies for Blanking and Piercing Operations. Bending Dies - Development of Bending Dies - Forming and Drawing Dies - Development of Drawing Dies. Design Considerations in Forging, Extrusion, Casting and Plastic Dies. [12]

Other Forming Techniques

Bulging, Swaging, Embossing, Coining, Curling, Hole Flanging, Shaving and Sizing, Fine Blanking Dies - Recent Trends in Tool Design - Computer Aids for Sheet Metal Forming Analysis - Basic Introduction - Tooling for Numerically Controlled Machines - Setup Reduction for Work Holding - Single Minute Exchange of Dies - Poka Yoke.

	Total Haures 20 // actives 20 - Handa an Training 20)
	Total Hours: 30 (Lecture:30 + Hands on Training:30)
Tex	xt Book(s):
1	Edward G Hoffman, "Jigs and Fixture Design", 5th Edition, Thomson – Delmar Learning, Singapore, 2010.
2	Donaldson. C, George H.L., Goold V C and Ghose J., "Tool Design", 5th Edition, Tata McGraw-Hill, 2017.
Re	ference(s):
1	Kempster, "Jigs & Fixtures Design", The English Language Book Society", 1978.
2	Joshi, P.H., "Jigs & Fixtures", Third Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi 2010.
3	Hiram E Grant, "Jigs and Fixture" Tata McGraw-Hill, New Delhi, 2003.
4	"Fundamentals of Tool Design", CEEE Edition, ASTME, 1983.
_	Design Data - Data Book of Engineers, PSG College of Technology, Kalaikathir Achchagam-Coimbatore,
5	2012.

Pre-requisite: Machining Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	22		PO									PSO				
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
51 ME E35 & Design of	CO1	3	2	2	3									3	2	3
	CO2	3	2	2	3									3	2	3
Jigs, Fixtures and Press	CO3	3	2	2	3									3	2	3
Tools	CO4	3	2	2	3									3	2	3
	CO5	3	2	2	3									3	2	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018										
	51 ME E36 – Computational Fluid Dynamics										
Compotor	Hou	ırs / Week		Total Ura	Credit	Ма	ximum Mark	s			
Semester	L	Т	Р	Total Hrs	С	CA	ES	Total			
VI	2	0 2		60	3	50	50	100			
Objective(s)	 To acq To commethod To impheat train 	 To acquire mathematical characteristics of partial differential equations To comprehend the concepts like accuracy, stability, consistency of numerical methods for the governing equations. 									
Course Outcomes	At the end of the course, the student will be able to CO1: Perceive and solve the governing equations numerically of boundary conditions for engineering problems CO2: Perform the calculations for finite volume method to fluid flow problems CO3: Evaluate the steady state heat transfer problems numerically and convection diffusion										

Governing Equations and Boundary Conditions

Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations - Physical boundary conditions - Classification, Initial and boundary conditions, Initial and boundary value problems - Numerical errors, Grid independence test. [12]

Discretization Methods

Nature of numerical methods - Method of deriving discretization equations - Taylor series formulation - Variational formulation - Method of weighted residuals - Control volume - Formulation. [12]

Heat Conduction, Convection and Diffusion

Steady one-dimensional conduction - Two and Three dimensional conduction- Steady one - dimensional convection and diffusion - Discretization equations for two dimensional convection and diffusion - applications [12]

Incompressible Fluid Flow

Governing Equations - Stream Function – Vorticity method, Determination of pressure for viscous flow - Computation of boundary layer flow - Finite difference approach – applications [12]

Turbulence Models

Algebraic Models – One equation model, K-€ models, High and Low Reynolds number models, Unsteady turbulent model – applications, Prediction of fluid flow and heat transfer using standard codes. [12]

	Total Hours: 60 (Lecture:30 + Hands on Training:30)
Text	Book(s):
4	Muralidhar K. and Sundararajan T, "Computational Fluid Flow and Heat Transfer ", 2 nd Ed., Narosa
ı	Publishing House, New Delhi, 2014.
2	Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics", Pearson India
	2 nd edition, 2009.
Refe	erence(s):
1	T.J. Chung, Computational Fluid Dynamics, McGraw-Hill Education, Second revised edition, 2010.
2	John F.Wendt, "Computational Fluid Dynamics", Springer Publisher, 3 rd edition, 2012.
3	Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Taylor & Francis group, 2015.
4	Anderson D.A., Tannehill J.C., and Pletcher P.H., "Computational Fluid Mechanics and Heat Transfer",
4	CRC Press, 3 rd edition, 2012.
5	John D Anderson, "Computational Fluid Dynamics", McGraw hill Education, 1st Indian edition, 2012.

Pre-requisite: Fluid Mechanics, Heat Transfer and Numerical Methods

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE & COURSE NAME	СО		PO									PSO				
	0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	2	2	1	1	1	1	1	1	2	3	3	1	3
51 ME E36 &	CO2	3	3	2	2	1	1	1	1	1	1	2	3	3	1	3
Computational Fluid	CO3	3	3	2	2	1	1	1	1	1	1	1	3	3	1	3
Dynamics	C&O4	3	3	2	2	1	1	1	1	1	1	1	3	2	1	3
	CO5	3	3	2	2	1	1	1	1	1	1	1	3	2	1	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018											
	50 ME E37- Logistics and Supply Chain Management											
Semester	Hou	ırs / Week		Total Hrs	Credit	Ma	ximum Mark	S				
Semester	L T P		Р	TOTAL FILS	C	CA	ES	Total				
VI	2	0	2	60	50	100						
	 To com 	To comprehend the stages of Logistics and Supply Chain Management system.										
	 To imp 	art the kno	wledge of	Sourcing dec	ision and Netv	vork design o	of Logistics a	ınd				
	•	Supply Chain Management system.										
Objective(s)	To acquire the performances of each individual driver of L & SCM.											
					ics and Supply		agement sys	tem.				
					nd Supply chai							
	At the end of t						<u>-</u>					
					nagement in c	ompetitive st	trategy.					
					rial handling of							
Course		on in SCM				g						
Outcomes				of the Logist	ics and Supply	chain mana	agement Svs	tem.				
	_	CO4: Demonstrate the role of Transportation in Logistics and Supply chain management System.										
	,	CO5: Describe the future trends in the Logistics and Supply chain management System.										
								_				

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Logistics and Supply Chain Management

Definition and Scope of Logistics – Functions & Objectives - factors influencing the network design, framework for network design, models for facility location and capacity allocation, Impact of uncertainty on network design - Evolution of supply chain-essentials of SCM-structure of supply chain, examples-process views-decision phases, issues - aligning supply chain with business strategy — reverse logistics. [12]

Sourcing Decision and Network design

Warehousing Functions – Types and Site Selection, Layout Design and Costing – Virtual Warehouse, Role of Material Handling in Logistics – Material Storage Systems - Supply chain configuration design - factors involved - sourcing, models for strategic alliances – supplier selection, outsourcing and procurement process - evaluation using simulation models. [12]

Performance Measurement of Logistics and Supply Chain Management System

Framework for strategic alliances – Third Party Logistics(3PL) – 3PL issues and requirements – Retailer – Supplier Partnerships – Issues in Retailer – Supplier Partnerships – Demand forecasting-collaborative forecasting models-bullwhip effect-information sharing - aggregate planning in supply chain - strategies-multi echelon inventory planning-models- discounting- risk pooling. [12]

Transportation

Transportation System Evolution – Infrastructure and Networks, Freight Management, Route Planning, Containerization – Design considerations, Material and Cost, Packaging as Unitization – Consumer and Industrial Packaging and pricing. [12]

Recent Trends in Logistics and Supply Chain Management System

E-Logistics Structure and Operation – Logistics Resource Management, Automatic Identification Technologies – Warehouse Simulation - Role of IT in supply chain -IT infrastructure-CRM-SRM-e-business-RFID-supply chain collaboration. [12]

	Total Hours: 60 (Lecture:30 + Hands on Training:30)
Text	Book(s):
1	Bowersox & Closs, "Logistical Management", McGraw-Hill Companies, 2017.
2	Sunil Chopra and Peter Meindl, Supply Chain management - Strategy, Planning and Operation, Pearson
	Education 2018.
Refe	erence(s):
1	David Simchi-Levi, Philip Kaminsky, and Edith Simchi-Levi, "Designing and Managing the Supply Chain:
ı	Concepts, Strategies, and Case Studies", 3rd Edition, McGraw-Hill, 2019.
2	Mohanty, Essentials of Supply Chain Management, Jaico 2018. Publishing House, 2018.
3	Raghuram, G. and Rangaraj, N., Logistic And Supply Chain Management: Cases And Concept,
3	Macmillan India Limited, New Delhi, 2015.
4	Sople Vinod V, "Logistics Management – The Supply Chain Imperative", Pearson Education, 2014.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO										PSO			
COURSE NAME		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	2	2		1	3	2		3	2		2		1		
50 ME E37 & Logistics	CO2	2	1		1	2	2		3	2		1			1	
and Supply Chain	CO3	2	2		2	3	2		3	2		2				2
Management	CO4	1	1		2	2	1		2	3		1		1		2
	CO5	1	1		2	1	1		2	3		3		1		

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S.Rangasamy College of Technology – Autonomous R 2018											
	50 ME E	38– Refri	geration a	ınd Air Cond	itioning Engi	neering					
Compotor	Hou	rs / Week		Total Ura	Credit	Max	S				
Semester	L	L T P		Total Hrs	С	CA	ES	Total			
VI	2	0	2	60	3	50	50	100			
Objective(s)	 To describe the concepts of simple vapor compression and absorption refrigeration cycles. To demonstrate the working principle of various refrigeration systems and properties of refrigerants. To evaluate the properties of psychometric process by psychometric chart. To design and estimate the cooling load calculations for various HVAC systems. To recognize the working principle, understand the energy efficiency and conservation measures in the HVAC systems. 										
Course Outcomes	At the end of the course, the students will be able to CO1: Evaluate the performance of vapour compression and absorption refrigeration system. CO2: Identify the desirable properties of refrigerants and describe the components of refrigeration system (compressors, condensers, evaporators, expansion valve and cooling towers CO3: Perform the calculations for various properties of air for various psychometric										

Refrigeration Cycle and Systems

Introduction about Aircraft Air-Conditioning -Basic cycles - Reverse Carnot cycle - Simple Vapor compression cycle (sub-cooling, superheating) - Actual vapour compression cycle - Bell Coleman. Multistage and Multiple evaporator systems - Cascade system -Vapor absorption refrigeration system (Ammonia water and Lithium Bromide water) - Steam jet refrigeration system - COP comparison. [12]

Refrigerants, System Components and Balancing

Compressors: Reciprocating and Rotary (elementary treatment) - Scroll compressors - Condensers - Evaporators - Cooling towers. Refrigerants - Properties - Selection of refrigerants - Alternate Refrigerants - Global warming and Ozone depleting aspects - Refrigeration plant controls - Testing and Charging of refrigeration units. Balancing of system components. Applications to refrigeration systems - ice plant - food storage plants - milk chilling plants - refrigerated cargo ships.

Psychrometry

Psychrometric processes - use of psychrometric charts - Grand and Room Sensible Heat Factors - bypass factor - requirements of comfort air conditioning - comfort charts - factors governing optimum effective temperature - recommended design conditions [12]

Cooling Load Calculations

Types of load - design of space cooling load - heat transmission through building - Solar radiation – infiltration - internal heat sources (sensible and latent) - outside air and fresh air load - estimation of total load - Domestic – commercial - industrial systems - central air conditioning systems. Computerized cooling load calculations-Packages –simulation of psychrometric process-simulation of air flow in AC systems-Computerized calculation Domestic and Industrial cooling. Standards for HVAC system – ASHRAE 55, ASHRAE 62.1, Energy Efficiency standards - ASHRAE 90.1, Energy Conservation Building Code (ECBC)

Air-Conditioning Components and Energy Performance assessment

Air conditioning equipments: air cleaning and air filters - humidifiers - dehumidifiers - air washers - condenser – Temperature sensor - Pressure sensors - Humidity sensors - Actuators - Safety controls- cooling tower and spray ponds - elementary treatment of duct design - air distribution system. Thermal insulation of air conditioning systems. Applications: car – industry – stores - public buildings.- Energy Performance assessment

	Total Hours: 60 (Lecture:30 + Hands on Training:30)
Text	Book(s):
1	Billy C and Langley, "Refrigeration and Air conditioning", 3rd Edition, Engle wood cliffs (NJ), Prentice Hall,
	1986.
2	Arora, C P, "Refrigeration and Air Conditioning", 3rd Edition, Tata McGraw-Hill, New Delhi, 2014.
Refe	rence(s):
1	Roy.J Dossat, "Principles of Refrigeration", Pearson Education, New Delhi, 2011.
2	Jordon and Prister, "Refrigeration and Air Conditioning", Prentice Hall of India Pvt Ltd., New Delhi, 1985.
3	Stoecker N F and Jones, "Refrigeration and Air Conditioning", Tata McGraw hill company, New Delhi,
3	1983.
4	Manohar Prasad, "Refrigeration and Air Conditioning", 3rd Edition, Wiley Eastern Ltd., 2014.
5	BEE Energy Auditor Exam Guide Book-4 Energy Performance Assessment for Equipment and Utility
5	System
6	ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings
7	ASHRAE 55 Thermal Comfort Standard
8	ASHARE 62.1.2016 – Ventilation for Acceptable Indoor Air Quality
9	Energy Conservation Building Code 2017

Pre-requisite: Thermodynamics, Thermal Engineering, Fluid Mechanics and Heat and Mass Transfer

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО		PO									PSO				
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
50 ME E38 &	CO1	3	3	3	3		3	3					3			
	CO2	3	3	3	3		3	3					3			
Refrigeration and Air- Conditioning	CO3	3	3	2	3		3	3					3			
Engineering	CO4	3	3	2	3		2	3					2			
	CO5	3	3	3	3		2	3					2			

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018								
	50 PT T01- Creo for Design								
Semester		Hours / Wee	k	Total	Credit	Max	kimum Mark	.S	
Semester	L	Т	Р	hrs	С	CA	ES	Total	
VI	2	0	2	60	3	50	50	100	
Objective(s)	the To dr To of To	o provide the e idea of new o study the coawings. o acquire the drawings. o provide han o acquire de odeling.	structure subnventions and basic dimensed the control of the contr	ch as a mach d rules to be sioning praction ure of mechal	nine element. followed by eaces that have hism design a	engineers for to be followe	making accept in the present of the making accept in the present in the present in the making accept in the present in the	curate eparation o.	

At the end of the course, the students will be able to CO1: Create knowledge about the various practices with regard to the dimensioning. Preparation of the part drawings Course

- sectioning and development of views.
- CO2: Realise the importance of the linking functional and visualization aspects in the
- CO3: Interpret the machine drawings that in turn help them in the preparation of the production drawings
- CO4: Crafting knowledge about the various practices with regard to the dimensioning. sectioning and development of views in sheet metal.
- CO5: Developing knowledge about the various practices with regard to the dimensioning, sectioning and development of views in surface model.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Advance Part Modeling

Outcomes

Advanced Selection Techniques - Advanced Datum Features - Advanced Sketching Techniques - Create advanced holes - Create advanced drafts and ribs - Create advanced shells - Create advanced rounds and chamfers - Use relations and parameters - Create advanced blends - Create sweeps with variable sections -Create helical sweeps - Create swept blends - Advanced Layer Techniques - Advanced reference management techniques - Create family tables - Reuse features - Advanced copy techniques - Create advanced patterns.

Advance Assembly Design

Use advanced component selection - Use advanced assembly constraints - Create and use component interfaces - Utilize intelligent fasteners Extension (IFX) - Create and use flexible components - Restructure and mirror assemblies - Use assembly features and shrink wrap - Replace components in an assembly Understand the basics of simplified reps - Create cross-sections, display styles, and combined views -Substitute components by reps, envelopes, and simplified reps - Understand advanced simplified rep functionality - Create and use assembly structure and skeletons - Utilize design exploration, extension (DEX).

Sheet Metal Design

Sheet metal Model Fundamentals - Creating Primary Sheet metal Wall Features - Creating Secondary Sheet metal Wall Features - Bending and Unbending Sheet metal Models - Sheet metal Form Features - Modifying Sheet metal Models - Sheet metal Setup and Tools - Detail sheet metal designs. [15]

Advanced Surfacing

Describe surface modeling and its terminology - Create various boundary surfaces - Utilize surface analysis tools - Additional Surface Analysis Tools - Extend and trim surfaces - Manipulate surfaces - Create and edit solid models using surface quilts - Utilize the master model technique - Style Surfacing. [15]

	Total Hours: 60 (Lecture:30 + Hands on Training:30)
Text	Book(s):
1.	Sham Tickoo, "PTC Creo Parametric 7.0 for Engineers and Designers", Revised and updated edition
	(MISL-DT), Dreamtech Press, 2018.
2.	Kelly D.S, Pro / Engineer 3.0 for Engineers and Designers, Mcgraw Hill, 2014.
Refe	erence(s)
1.	Creo Work Book, Dysmech Consultancy Servicers Private Limited, Pune, 2016.
2.	David S. Kelley, Pro/Engineer wildfire 5.0 instructor, McGraw-Hill,2016
3.	Sham Tickoo , Designing with Pro Engineer, Dreamtech Press ,2001
4.	Creo Work Book, Dysmech Consultancy Servicers Private Limited, Pune, 2016.

Pre-requisite: Engineering Drawing

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

COURSE CODE &	00	PO													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	2					1		2		2			2				
50 PT T01 & Creo for Design	CO2	2					2		2		2			2				
	CO3	2					2		2		1			3				
	C&O4	3					3		3		1			3				
	CO5	3					3		3		1			3				

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	.Rangasamy	College of	Technology ·	- Autonomo	us R2018										
		50	ME E41- The	ermal Turbo	machines											
Semester		Hours / Wee	k	Total	Credit	Max	kimum Marks	3								
Semester	L	Т	Р	hrs	С	CA	ES	Total								
VII	3	0	0	45	3	50	50	100								
	• To	apply the wo	orking princip	les of differer	nt types of tu	bo machiner	у.	•								
	• To	To recognize the concept of centrifugal and axial flow compressors used in turbo														
Objective(s)		machines.														
Objective(s)	• To	 To explain the stages of combustion phenomenon in gas turbine engines. 														
	• To	recognize th	e concept of	centrifugal a	nd axial flow	turbines use	d in turbo ma	chines.								
	• To	familiarize th	ne working pr	inciples of va	rious gas tur	bine engines	and jet engi	nes.								
	At the end	d of the cour	se, the stude	ents will be	able to											
	CO1: Ana	alyze the fund	damentals of	energy trans	fer using velo	ocity diagram										
Course	CO2: Co	mprehend the	working prir	nciple of cent	rifugal and a	kial flow com	pressors.									
Outcomes	CO3: Ide	ntify with the	combustion p	ohenomena a	and flame sta	bility.										
		sign of spool														
	CO5: Ana	alyze the vari	ous gas turbi	ne engines u	sed in real tii	me applicatio	ns.									

Basic concept of Turbo machines

Energy transfer between fluid and rotor velocity triangles for a generalized turbo machine - Methods of representing velocity diagrams - Euler turbine equation and its different forms - Degree of reaction in turbo-machines - Various efficiencies; Isentropic - Mechanical - Thermal - Polytrophic. [9]

Centrifugal and Axial Flow Compressors

Centrifugal compressor: Configuration and working - Slip factor - Work input factor - Ideal and actual work - Pressure coefficient - Pressure ratio. Axial flow compressor: Geometry and working - Velocity diagrams - Ideal and actual work - Stage pressure ratio - Free vortex theory – Performance curves. [9]

Combustion Chamber

Basics of combustion –Combustion chamber arrangements - Flame stability - Fuel injection nozzles - Swirl for stability - Cooling of combustion chamber – Combustion process simulation studies. [9]

Axial and Radial Flow Turbines

Elementary theory of axial flow turbines: Stage parameters - Multi-staging - Stage loading and flow coefficients - Degree of reaction - Stage temperature and pressure ratios - Single and twin spool arrangements - Performance. Matching of components - Blade cooling - Radial flow turbines. [9]

Gas Turbine and Jet Engine Cycles

Gas turbine cycle analysis: Simple and actual - Reheater, Regenerator and Intercooled cycles. Working principles of Turbojet, Ramjet, Scarmjet and Pulsejet engines - Cryogenics liquid engine cycles - Thrust - Specific impulse - SFC - Thermal and Propulsive efficiencies - Governing mechanism in Gas turbines. [9]

Total Hours: 45

Text	Book(s):
1.	Khajuria P.R and Dubey S.P., "Gas Turbines and Propulsive Systems", DhanpatRai Publications, 2014.
2.	Ganesan, V., "Gas Turbines", 3 rd edition, Tata Mc GrawHill company, New Delhi, 2012.
Refe	erence(s)
1.	Cohen H, Rogers G F C and Saravanamuttoo H I H, "Gas Turbine Theory", 6th Edn, John Wiley Co, 2009.
2.	Philip Hill and Carl Peterson C R, "Mechanics and Thermodynamics of Propulsion", 2 nd edition, Pearson
۷.	Education India Pvt. Ltd., 1992.
3.	Jack Mattingly, "Elements of Gas Turbine Propulsion", 1st Edition, McGraw Hill Company, New Delhi,
Э.	2005.
4.	Rolls Royce, "The Jet Engine", 5th edition, Wiley Publications, 2015.
5.	Erian A. Baskharone, "Principles of Turbo machinery in Air-Breathing Engines", 1st edition, Cambridge
5.	University Press, USA, 2006.
6.	Onkar Singh, "Thermal Turbomachines", Wiley Precise Textbook Series, Second Edition, 2019.

Pre-requisite: Thermal Engineering

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	3	3		3	3					3	3	3	3		
	CO2	3	3	3	3		3	3					3	3	3	3		
50 ME E41 & Thermal Turbomachines	CO3	3	3	3	3		3	2					3	3	3	3		
	CO4	3	3	2	3		2	2					3	2		3		
	CO5	3	3	2	3		2	2					3	2	3	3		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K	.S.Rangasa	my College	of Technolog	gy – Autono	mous R 201	8								
		50 ME E	42 – Energy	Storing Dev	ices and Fu	uel Cells									
Semester		Hours / Wee	k	Total hrs	Credit	М	aximum Mar	ks							
Semester	L	Т	Р	TOTALLIS	С	CA	ES	Total							
VII	3	0	0	45	3	50	50	100							
	To describe the types of batteries and its applications.														
Objective(s)	To analyse the various types of hatteries used in electric vehicles														
	 To 	To demonstrate the working principles of fuel cells.													
	 To 														
	 To 	demonstrate	the different	types of sola	r cells.										
	At the end	of the cour	se, the stud	ents will be	able to										
			undamentals												
			acity and type												
Course			e importance												
Outcomes			ious method				applications.								
Detteries	CO5: Ide	ntify the rene	ewable energ	y technology	for various a	applications.									

Batteries

Characteristics: Voltage – Current – Capacity - Electricity storage density - Power - Discharge rate - Cycle life-Energy efficiency - Shelf life. Primary batteries: Introduction - Zinc – Carbon - Magnesium – Alkaline-Manganese dioxide - Mercuric oxide - Silver oxide batteries - Recycling/Safe disposal of used cells. [9]

Batteries for Electric Vehicles

Secondary batteries: Introduction - Cell reactions - Cell representations and applications - Lead acid - Nickel - Cadmium and lithium ion batteries - Rechargeable zinc alkaline battery - Reserve batteries: Zinc silver oxide-Lithium anode cell, - Photo galvanic cells. Battery specifications for cars and automobiles – Life cycle analysis of batteries.

Fuel Cells

Importance and classification of fuel cells: Description - Working principle - Components. Applications and environmental aspects of the following types of fuel cells: Alkaline fuel cells - Phosphoric acid - Solid oxide-Molten carbonate and direct methanol fuel cells.

Hydrogen as a Fuel

Sources of hydrogen - Production of hydrogen - Electrolysis - Photo catalytic water splitting - Biomass pyrolysis -Gas clean up - Methods of hydrogen storage; High pressurized gas - Liquid hydrogen type - Metal hydride. Hydrogen as engine fuel. Features application of hydrogen technologies in the future limitations. [9]

Energy and Environmental Applications

Future prospects of renewable energy and efficiency of renewable fuels. Solar Cells: Energy conversion devices
- Photovoltaic and photo-electro-chemical cells – photo-bio-chemical conversion cell - Solar waste. Applications
- Food preservation - Green house heating.

[9]

	Total Hours: 45
Text	Book(s):
1.	B. Viswanathan, M. AuliceScibioh, "Fuel Cells: Principles and Applications", 1st edition, CRC Press, India, 2008.
2.	Frano Barbir, "PEM fuel cells: Theory and practice", 2 nd edition, Elsevier Academic press, 2012.
Refer	rence(s):
1.	J. S. Newman and K. E. Thomas-Alyea, "Electrochemical Systems", 3 rd edition, Wiley publications, Hoboken, NJ, 2004.
2.	G. Hoogers, "Fuel Cell Handbook", CRC press, 2002.
3.	Lindon David, "Handbook of Batteries", 3 rd edition, McGraw Hill company, 2002.
4.	H. A. Kiehne , "Battery Technology Hand Book", CRC Press, 2003.
5.	Ter Gazarian A, Energy Storage for Power Systems, Institute of Engineering and Technology, 2 nd Edition, 2011.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	co	РО													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	2	2	1	1	1	1	1	1	2	3	3	3	2		
50 ME E42 & Energy	CO2	3	2	3	2	1	2	2	1	1	1	2	3	3	3	2		
Storing Devices and	CO3	3	2	3	2	1	2	2	1	1	1	2	3	3	3	2		
Fuel Cells	CO4	3	2	2	2	1	2	1	1	1	1	1	3	2	3	2		
	CO5	3	3	3	2	1	1	1	1	1	1	1	3	2	3	2		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S	.Rangasamy	College of	Гесhnology	Autonomo	ous R2018		
			50 ME E43 -	Machine Le	arning			
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	;
Semester	L	Т	Р	hrs	С	CA	ES	Total
VII	3	0	0	45	3	50	50	100
Objective(s)	ap	pplications enlighten the distinguish to learn the dif	e students in he classificat ferent machin necessity and	the features ion and repre ne learning al	of linear regr esentation of lgorithm	ession logistics regreearning in des	ession	
Course Outcomes	CO1: Re ap CO2: Re CO3: Cla CO4: Infe	alize the nec plication cognize the p assify and rep er knowledge	parameter lea present the lo on different i	cial intelligen rning and progistic regress machine lear	ce and deep operties of lin sion ning algorithr	learning in en ear regression on for systemend manufact	n design	ıtion

Introduction

Definition of Machine Learning – History of Artificial Intelligence – Supervised Learning – Unsupervised Learning – Model Representation - Cost Function - Data Science – Artificial Intelligence and deep learning in engineering applications.

Linear Regression

Parameter Learning - Gradient Descent for Linear Regression - Linear Algebra - Matrices and Vectors, Properties - Multivariate Linear Regression - Gradient Descent for Multiple Variables - Features and Polynomial Regression - Gradient Descent in Practice - Feature Scaling, Learning Rate. [9]

Classification and Representation

Logistic Regression - Classification - Hypothesis Representation - Decision Boundary - Advanced Optimization - Multiclass Classification - Underfitting & Overfitting - Logistic Regression Practice. [9]

Machine Learning Algorithms

Random Forest Algorithm (RFA) – Decision Tree – Bayesian Network, Applications – Support Vector Machine Algorithm (SVR) – Artificial Neural Networks (ANN) – Training Data, Hidden Layers, and Predicted Output-Evaluating a Learning Algorithm - Machine Learning System Design. [9]

Applications of Machine Learning

Text Categorization (spam filtering) – Predictive Text Messaging – Optical Character Recognition – Machine Vision (Object Detection And Colour Identification) – Market Segmentation and Prediction – Locating the Position of End-Effector in Robotic Grasping – Predicting the price of a used car – dynamic pricing applications– Applications in Design and Manufacturing Domain. [9]

Total Hours: 45 Text Book(s): Tom M. Mitchell, "Machine Learning", 1st Edition, McGraw Hill Education, New Delhi, 2017. Oliver Theobald, "Machine Learning For Absolute Beginners: A Plain English Introduction", 2nd Edition, Scatterplot Press, 2017. Reference(s) John D. Kelleher, "Fundamentals of Machine Learning for Predictive Data Anayltics (Algorithms, Worked Examples, and Case Studies)", 1st Edition, The MIT Press, 2015. Shai Ben-David and Shai Shalev-Shwartz, "Understanding Machine Learning: From Theory to 2. Algorithms", 1st Edition, Cambridge University Press, 2014. Marc Peter Deisenroth, Aldo Faisal A., and Cheng Soon Ong, "Mathematics for Machine Learning", 3. Cambridge University Press, 2020. Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", 1st Edition, Cambridge University Press, 2012.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	PO													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3	2	3	2						2	2	2	1	2		
	CO2	3	3	3	2	3						2	3	2	1	2		
50 ME E43 & Machine Learning	CO3	2	3	3	3	3						3	2	2	1	2		
, and the second	CO4	3	2	3	3	3						3	2	3	2	2		
	CO5	3	2	3	3	3						3	2	3	2	2		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	 and eddy current testing. To make the students to be ready to use ultrasonic and acoustic emission 													
	Semester Hours / Week Total Hrs. Credit Maximum Marks L T P C CA ES Total VII 3 0 0 45 3 50 50 100 To make the students to understand the importance of NDT in quality assurance. To imbibe the students the basic principles of surface NDE methods, its applications, limitations.													
Compotor	Hou	urs / Week	(Total Ura	Credit	Ma	ximum Mark	S						
Semester	L	Т	Р	Total His.	С	CA	ES	Total						
VII	3	0	0	45	3	50	50	100						
Objective(s)	 To im limitat To eq and e To matechni To ind 	 To imbibe the students the basic principles of surface NDE methods, its applications, limitations. To equip the students with proper competencies to locate a flaw using thermography and eddy current testing. To make the students to be ready to use ultrasonic and acoustic emission techniques. 												
Course Outcomes	the s CO2: Reco CO3: Interp testir CO4: Evalu Emis	pare the di ame to the gnise the loret the res ng late and in sion techr	ifferences to compone importance sults obtain terpret the hique	petween the vents to be inspected from the toler of the transfer of the transf	arious visual i	· Γ and the pro technique an asonic inspe	cedures involved Eddy currection and Ac	olved ent						

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Overview of NDT

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT. Visual inspection – Unaided and aided. [9]

Surface NDE Methods

Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing - Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism. [9]

Thermography and Eddy Current Testing

Thermography - Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy current testing, Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Interpretation/Evaluation, advantages, Limitations, Applications with few case studies.

Ultrasonic Testing and Acoustic Emission

Ultrasonic Testing - Principle, Transducers, transmission and pulse - echo method, straight beam and angle beam, instrumentation, Data representation: A-scan, B-scan and C-scan. Phased Array Ultrasound - Time of Flight Diffraction. Acoustic Emission Technique - Principle, AE parameters, Applications - Case studies. [9]

Radiography

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films - graininess, density, speed, contrast, characteristic curves, penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy - Xero-Radiography, Computed Radiography, Computed Tomography, Applications with few case studies. [9]

	Total Hours: 45
Text	Book(s):
1	Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2015.
2	Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edn, New Age International Publishers, 2010.
Refe	erence(s):
1	Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, New Jersey, 2 nd Edition, 2005
2	G. Gaussorgues, "Infrared Thermography", Chapman & Hall, University Press, Cambridge, 1994.
3	Charles, J. Hellier, Handbook of Non-destructive evaluation, McGraw Hill, New York 2001.
4	ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17

Pre-requisite: Engineering Materials and Metallurgy

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	2	3	3	3						3		3	3	3		
50 ME E45 & Non-	CO2	3	2	3	3	2						3		3	3			
Destructive Evaluation of	CO3	3	3	3	3							3		3	3	3		
Materials	CO4	3	3	3	3							2		3	3			
	CO5	3	3	3	3	3								3	3	3		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R 2018 50 ME E46 – MEMS Design and Fabrication													
		50 1	ME E46 – MI	EMS Design	and Fabric	ation								
Semester		Hours / Wee	k	Total hrs	Credit	N	Maximum Ma	ırks						
Semester	L	Т	Р	Total fils	С	CA	ES	Total						
VII	3	0	0	45	3	50	50	100						
Objective(s)	• To • To (ac • To • To	 To familiar with the fundamentals, fabrication process and applications of MEMS To describe the basic principles of MEMS sensors and actuators To design the process flow of a basic MEMS device, such as an inertia sensor (accelerometer), given a fabrication process description. To demonstrate the fabrication process through the hands-on activities. To apply the microsystems in various industrial applications At the end of the course, the student will be able to												
Course Outcomes	CO1: Ass CO2: Se CO3: Fal CO4: De	sess the sca lect suitable bricate micro sign and dev	ling laws in r micro senso osystems for velop micros	dent will be microsystemants and actual specific app ystem manure for micropr	s tors lications facturing pro	cess and pa	ckaging							

Microsystems

Overview-Microsystems - Working principle of Microsystems - Scaling laws - Scaling in geometry - Scaling in rigid body dynamics - Scaling in electrostatic forces - Scaling in electromagnetic forces - Scaling in electricity - Scaling in fluid mechanics - Scaling in heat transfer. [9]

Microsensors and Actuators

Micro sensors - Micro actuation techniques - Micropump - Micromotors - Microvalves - Microgrippers - Micro accelerometers. [9]

Micro System Fabrication

Substrates - Single crystal silicon wafer formation - MEMS materials - Photolithography - Ion implantation - Diffusion - Oxidation - CVD - Physical Vapor Deposition - Deposition by epitaxy - Etching process. [9]

Micro System Manufacturing and Design

Bulk Micromanufacturing - Surface Micromachining - LIGA - SLIGA. Micro system packaging - Materials - Die level - Device level - System level - Packaging techniques - Surface bonding - Wire bonding - Sealing - Design considerations. [9]

Micro System Applications

Applications of micro system in – Automotive - Bio medical – Aerospace – Telecommunications field. Basic exposure to software for MEMS design – Intellisuite.

Text Book(s):

- 1. Mohamed Gad-el-Hak, —The MEMS Hand Bookll, CRC Press, Florida, 2005.
- 2. Tai-Ran Hsu, —MEMS and Microsystems: Design and Manufacturell, 2nd Edition, John Wiley and Sons, New York, 2008.

Reference(s):

- 1. Fatikow S. and Rembold U., —Microsystem Technology and MicroroboticsII, Springer-Verlag, Berlin Heidelberg, 2014.
- 2. Gardner Julian W., Varadan Vijay K. and AwadelKarim Osama O., —Microsensors MEMS and Smart DevicesII, John Wiley & Sons, New York, 2001.
- 3. Marc Madou, —Fundamentals of Microfabrication ||, 2nd Edition, CRC press, New York, 2011.
- 4. Trimmer W., —Micromechanics and MEMS: Classic and Seminar papers to 1990ll, IEEE Press, 1997.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

COURSE CODE &	СО						Р	0						PSO		
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	2	2	1				2				2	3		
50 ME E46 & MEMS Design and Fabrication	CO2	2	3	3	2				2				2	3		
	CO3	3		2					1				2	2		
	CO4			3					2				2	3		
	CO5		2		2				2				2	3		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.	.Rangasamy	College of	Technology	– Autonomo	us R2018							
		50 ME	E51- Funda	mentals of N	lano Scienc	е							
Semester		Hours / Wee	k	Total	Credit	Max	kimum Marks	i					
Semester	L	Т	Р	hrs	C	CA	ES	Total					
VII	3	0	0	45	3	50	50	100					
		help learner	•		•								
		explore the		process ted	chniques av	ailable for	the process	sing of					
Objective(s)		nostructured											
		 To learn about basis of nanomaterial science, preparation methods and applications To help them understand in broad outline of Nanoscience and Nanotechnology 											
		•					otechnology						
		acquire kno				l fields							
		d of the cour	•										
	CO1: E	lucidate the b	pasics of nan	otechnology i	in physics, ch	nemistry and	biology						
Course	CO2: R	ecognize the	methods of p	oreparation o	f nanomateri	als							
Outcomes	CO3: R	elate the cha	racterization	techniques for	or confirming	nanomateria	ıls						
	CO4: Categorize the nanomaterials and its preparation												
	CO5: Id	lentify the are	ea of applicat	ion and its fie	eld								

Introduction

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thin films multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only). [9]

General Methods of Preparation

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE. [9]

Nanomaterials

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays- functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications. [9]

Characterization Techniques

X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation.

Applications

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)-Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.

Total Hours: 45

Text Book(s):

- 1. John Dinardo N, "Nanoscale Characterisation of Surfaces & Interfaces", 2nd Edition, Weinheim Cambridge, Wiley-VCH, 2000.
- 2. Nils O. Petersen, "Foundations for Nanoscience and Nanotechnology", 1st Edition, CRC Press, 2017.

Reference(s)

- 1. Akhlesh Lakhtakia (Editor), "The Hand book of Nanotechnology, Nanometer structure, Theory, Modeling and Simulations", Prentice Hall India (P) Ltd. New Delhi, 2007.
- 2. Mick Wilson, Kamali Kannargare., Geoff Smith, "Nano technology: Basic Science and Emerging Technologies", Overseas Press, 2005.
- 3. Pradeep T, "NANO: The Essentials: Understanding Nanoscience and Nanotechnology", Tata McGraw hill, 2007.
- 4. Charles P. Poole, Frank J. Owens, "Introduction to Nanotechnology", Wiley Interscience, 2003
- 5. J. Dutta, H. Hoffmann, "Nanomaterials", Topnano-21, 2003.
- 6. Mark A. Ratner, Daniel Ratner, "Nanotechnology: A gentle introduction to the next Big Idea", Prentice Hall P7R:1st Edition, 2002.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0							PSO	
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	3	2	2							2	2	2	
50 ME E51 & Fundamentals of Nano Science	CO2	3	3	3	2	2							2	2	2	
	CO3	3	3	3	2	2							2	2	2	
	CO4	3	3	3	2	2							2	2	2	
	CO5	3	3	3	2	2							2	2	2	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S.Rangasamy College of Technology – Autonomous R2018													
		50	0 ME E52 - C	omposite M	aterials									
Semester		Hours / Wee	k	Total	Credit	Max	imum Mark	S						
Semester	L	Т	Р	hrs	С	CA	ES	Total						
VII	3	0	0	45	3	50	50	100						
Objective(s)	ToToToTo	enlighten the describe the classify the	e students in e code for lam different man nowledge an	different type ninate stackir rufacturing m	es of reinforcong sequence ethods availa	in the compo ement able for compo ng basic laws	osite materi	al.						

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

At the end of the course, the students will be able to

CO1: Demonstrate the fundamentals of fibers, matrices and composites.

- CO2: Realize and solve problems concerning the mechanics of composite materials.
- CO3: Perform design calculations for the development of fiber reinforced matrices.
- CO4: Portray the various manufacturing processes involved in the fabrication of composite material.
- CO5: Infer knowledge on the performance of composite materials

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction

Course

Outcomes

Basics of fibers, matrices and composites: Definition – Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Ceramic and Metal Matrices – Characteristics of fibers and matrices. Fiber surface treatments, Fillers and Additives. [9]

Mechanics

Fiber content, density and void content. Rule of mixture -Volume and mass fractions – Density – Void content, Evaluation of four elastic moduli based on strength of materials approach and semi-empirical model Longitudinal Young's modulus-Transverse Young's modulus-Major Poisson's ratio-In-plane shear modulus, Ultimate strengths of a unidirectional lamina. Characteristics of Fiber-reinforced lamina-Laminates-Lamination theory.

Design

Failure Predictions, Laminate Design Consideration-Design criteria-Design allowable -Design guidelines, Joint design-Bolted and Bonded Joints, Design Examples-Design of a tension member – Design of a compression member – Design of a beam-Design of a torsional member, Application of Finite element method (FEM) for design and analysis of laminated composites.

Manufacturing

Bag molding – Compression molding – Pultrusion – Filament winding – Resin film infusion – Elastic reservoir molding - Tube rolling – Quality inspection methods. Processing of metal matrix composites (MMC) – Diffusion bonding – Stir casting – Squeeze casting.

Performance

Static mechanical properties – Fatigue and impact properties – Environmental effects (thermal, degradation, creep) – Long term properties, Fracture behavior and Damage tolerance. [9]

Total Hours: 45

Text Book(s):

- 1. Mallick P.K.,"Fiber Reinforced Composites: Materials, Manufacturing and Design", 3rd Edition, Taylor and Francis, 2008.
- 2. Autar K. Kaw, "Mechanics of Composite Materials", 2nd Edition, CRC Press, London, 2006.

Reference(s)

- 1. Bhagwan D. Agarwal, Lawrence J. Broutman, Chandrashekhar K., "Analysis and Performance of Fiber Composites", 3rd Edition, John Wiley & Sons, New York, 2006.
- 2. Jones R.M,"Mechanics of Composite Materials", 3rd Edition, Mc Graw Hill Company, New York, 2006.
- 3. Chawla K.K., "Composite Materials", 3rd Edition, Springer Verlag, Boston, 2012.
- 4. Ever J. Barbero, "Introduction to Composite Materials Design", 2nd edition, CRC Press, 2011.

Pre-requisite: Manufacturing Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0		•				PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	2	3	3	3									2	3	3
50 ME E52 & Composite Materials	CO2	2	3	2	2									3	3	3
	CO3	3	2	3	3									3	3	3
	CO4	3	2	3	2									2	3	2
	CO5	3	3	3	3			3						3	3	2

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

	K.S	.Rangasamy	College of	Гесhnology	- Autonomo	us R2018		
		ļ	50 ME E53- L	ean Manufa	cturina			
Semester		Hours / Wee	k	Total	Credit	Max	imum Mark	S
Semester	L	Т	Р	hrs	С	CA	ES	Total
VII	3	0	0	45	3	50	50	100
Objective(s)	• To • To re:	apply the all attain optime impart know sources.	rious tools fo bove tools to i um level in qual redge to incr	mplement LN uality without ease product	M system in a any or low fli tivity, reduce	uctuation in o waste and op	perating cos	
Course Outcomes	CO1: Do of CO2: Ap CO3: Ap its CO4: Im	escribe the before lean product oply the concept the tools improvement the	ept of various in lean manu	manufacturir organization ufacturing to a	ng approache nal and logist analyze a ma lies of lean m	ic element in nufacturing sanufacturing.	lean manuf ystem and p	acturing

Introduction

Holistic view of lean principles - Five primary elements, Comparison of Mass Manufacturing and Lean Manufacturing, Types of Wastes, Types of activities – Value Added, Non Value Added. [9]

Organizational and Logistic Element

Organization element: Communication planning, product-focused responsibility, leadership development, workforce preparation. Logistics element: Planning/control function, A,B,C material handling, service cells, customer/supplier alignment, cell team work plan, level loading, mix-model manufacturing, workable work.[9]

Manufacturing and Process Control Element

Manufacturing Flow Element: Product/quantity analysis, process mapping, routing analysis, takt time, workload balancing and one-piece flow, cellular manufacturing, pull system and kanban sizing. Process Control Element: Single minute exchange of dies, poka-yoke, 7S, visual controls, graphic work instructions. [9]

Metrics Element and Implementing Lean

DuPont model, output-based measures, process-driven measures, goal alignment through policy deployment, measurement definition and understanding.

Lean implementation, Reconciling lean with other systems -Toyota production system, lean six sigma-lean and ERP- lean with ISO 9001: 2015. [9]

Value Stream Mapping

Introduction - Primary icons - Customer and supplier icons - Production control icon - Data box icon - Truck icon - Material direction arrow icon - Process icon - Push icon - Pull icon - Information and communication flow icons - Secondary icons - Developing the VSM - Current state mapping - Future state mapping. [9]

Total Hours: 45

Text Book(s):

- 1. William M Feld, "Lean Manufacturing, Tools, Techniques and How To Use Them", The St. Lucie Press/APICS Series on Resource Management, 2001.
- 2. Ronald G. Askin & Jeffrey B. Goldberg, "Design and Analysis of Lean Production Systems", John Wiley & Sons, 2003.

Reference(s)

- 1. Joseph De Feo, William Barnard , "Juran Institute's Six Sigma Breakthrough and Beyond", Tata McGrawHill, New Delhi, 2004.
- 2. Micheal Wader, "Lean Tools: A Pocket guide to Implementing Lean Practices", Productivity and Quality Publishing Pvt Ltd, 2002.

- 3. Askin R.G, Goldberg J.B, "Design and Analysis of Lean Production Systems", John Wiley & Sons, New York, 2003.

 Michael L George, David T Rowlands, Bill Kastle, "What is Lean Six Sigma", McGraw Hill Inc., New
- 4. Michael L George, David T Rowlands, Bill Kastle, "What is Lean Six Sigma", McGraw Hill Inc., New York,2004

Pre-requisite: Manufacturing Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО	РО												PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3	3			3	3	3		3		3	3	3	3	
50 ME E53 & Lean Manufacturing	CO2	3	2	3			3	2	2		2		3	2	3	3	
	CO3	2	3	3			2						2	2	3	3	
	CO4	2	2	3			2	3	3		3		2	3	3	3	
	CO5	3		3			2	2	2		2			3	3	3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S. F	Rangasan	e of Technolo	gy – Autonor	nous	R 2	018					
			50 ME	E55 - Cryogen	ics							
Semester	Hou	ırs / Week		Total Hrs.	Credit	Ma	aximum Mark	S				
Semester	L	Т	Р	TOTAL FILS.	С	CA	ES	Total				
VII	3	0	0	45	3	50	50	100				
Objective(s)	 To study the physical behavior of the materials at cryogenic temperature. To impart the concepts of Liquefaction and gas separation systems. To acquire the construction and working principle of Cryogenic Refrigeration systems. To enhance knowledge of theoretical and modern technological aspects in Cryogenic Engineering. To correlate the theoretical principles with application oriented studies. At the end of the course the students will be able to 											
Course Outcomes	CO1: Define scher CO2: Identi comp CO3: Comp and g CO4: Expla outlin CO5: List th	e the mech matic diago fy the step pare the lique pare the ga gas separa in the cryc e the Cryc	nanical program and eas in the liquefaction as separation. The genic refugenic fluitons of cr	roperties of mare explain the gas quefaction systems. tion, purification systems at storage and tyogenic fluids to the systems.	terials at low to liquefaction sy tems for Neon n systems also ems, working n its transfer.	ystem. , Hydrogen a o Distinguish nedia, solids	and Helium and between the	and also e air gases,				

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Cryogenic Systems

Thermodynamics principle of cryogenic system-Mechanical Properties at low temperatures —Properties of cryogenic fluids. Gas Liquefaction: Minimum work for liquefaction —Methods to produce low temperature: Linde Hampson system —Claude system -Linde dual pressure system—Liquefaction systems for gases other than Neon, Hydrogen and Helium. [9]

Liquefaction Systems

Liquefaction systems for Neon, Hydrogen and Helium Components of Liquefaction systems-Magnetic cooling, magnetic refrigeration systems—Heat Exchangers—Compressors and Expanders—expansion valve—Losses for real machines.

Gas Separation and Purification Systems

Gas separation and purification systems –Properties of mixtures –Principles of mixtures –Principles of gas separation –Air separation systems and Safety in handling of cryogens-Cryogenic instrumentation and Measurement.

Cryogenic Refrigeration Systems

Cryogenic Refrigeration Systems –Working media –Solids, Liquids and gases. Cryogenic fluid storage and transfer –Cryogenic storage systems and Optimization of tank design –Insulation –Fluid transfer mechanisms – Cryostat –Cryo Coolers. [9]

Applications of Cryogenic Refrigeration Systems

Applications –Space technology –In-flight air separation and collection of LOX –Gas Industry –Biology – Medicine –Electronics-nuclear propulsions, chemical propulsions. [9]

Total Hours: 45 Text Book(s): Thipse, S.S., "Cryogenics -A Text book",1st Edition, Narosa publishing house, New Delhi, March 2013 Randall F. Barron, "Cryogenics Systems", 2nd Edition, Oxford University Press, New York, 1985. Reference(s): Mukhopadhyay, M., "Fundamentals of Cryogenic Engineering", 2nd Edition, PHI learning Pub., Delhi, 1 2014. White, G.K., "Experimental Techniques in Low Temperature Physics", 4th Edition, Oxford Press, 2002. 2 Robort Ackermann. "Cryogenic Regenerative Heat Exchangers", 1st Edition Plenum Press, 2013. 3 Timmerhaus, Flynn, "Cryogenics Process Engineering", 1st Edition, Plenum Press, New York, 1989 4 Fredrick J. Edeskutty and Watter F. Stewart "Safety in Handling of Cryogenic Fluids", 1st Edition, Plenum 5 Press, 2012.

Pre-requisite: Thermodynamics, Thermal Engineering, Fluid Mechanics and Heat and Mass
Transfer

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60						Р	0						PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	3	3	2	2	1	2	2	3	2	1	1	3	2	3	1	
50 ME E55 & Cryogenics	CO2	3	2	3	2	3	1	2	1	1	2	3	3	2	2	2	
	CO3	3	1	1	2	1	2	2	1	1	2	1	3	3	3	1	
	CO4	3	2	2	2	2	2	2	1	1	1	1	3	3	2	2	
	CO5	3	1	2	2	2	2	2	1	1	1	1	3	1	1	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

	K.S.	.Rangasamy	College of	Technology	 Autonomo 	us R2018						
	50 H	IS 001 - Engi	neering Ecc	nomics and	Financial A	ccounting						
Semester		Hours / Wee	k	Total	Credit	Max	kimum Marks					
Semester	L	Т	Р	hrs	С	CA	ES	Total				
VII	3	0	0	45	3	50	50	100				
Objective(s)	• To • To ge • To	 To recognize the basic of economics, how to organize a business To enhance the knowledge in financial aspects related to business To enhance the knowledge about central banking with commercial banks and generation of funds To learn different methods of appraisal of projects and pricing techniques. To describe the applications of break-even analysis in engineering projects At the end of the course, the students will be able to 										
Course Outcomes	CO1: C CO2: D CO3: E CO4: D CO5: A	outline the suitescribe forms xplain the vatescribe pricir	table demands of business rious kinds of business rious kinds of gractice are ren analysis in	ents will be and forecasting and Distinguand banking and appraisal particles and appraisal particles.	techniques v lish between I Interpret tec process	proprietorshi chnical feasib	p and partne ility	rship.				

Basic Economics

Definition of economics – nature and scope of economics – basic concepts of economics Factors of production demand analysis - definition of demand - Law of demand - Exception to law of demand - Factors affecting demand - demand forecasting Elasticity of demand Definition of supply - factors affecting supply - elasticity of supply - market structure - perfect competition - imperfect competition - monopoly - duopoly Oligopoly and bilateral monopoly. [9]

Organization and Business Financing

Forms of business - proprietorship - partnership - joint stock company - cooperative organization - state Enterprise - Mixed economy Money and banking - kinds of banking - commercial banks - central banking functions - control of credit - monetary policy Credit instrument Types of financing - Short term borrowing - Long term borrowing Internal generation of funds External commercial borrowings - Assistance from government budgeting support International finance corporations

Financial Accounting and Capital Budgeting

The balance Sheet and related concepts - The profit and loss statement and related concepts Financial ratio analysis Cash flow analysis - fund flow analysis - Capital budgeting Average rate of return - Payback period-Net present value Internal rate of return.

Cost Analysis

Types of costing - traditional costing approach - activity based costing - Fixed Cost Variable cost - marginal cost Cost output relationship in the short run and in long run - pricing practice - full cost pricing - marginal cost pricing-going rate pricing Bid pricing - pricing for a rate of return Aappraising project profitability - cost benefit analysis - feasibility reports - appraisal process - technical feasibility - economic feasibility Financial feasibility.

Break Even Analysis

Break Even Analysis-Basic assumptions -break even chart Managerial uses of break-even analysis Applications of break-even analysis in engineering projects. Break Even Analysis-break even chart Break Even Analysis.

	Total Hours: 45
Text	Book(s):
1.	Khan M Y and Jain P K., "Financial Management" McGraw - Hill Publishing Co., Ltd., New York, 2000.
2.	Varshney R L and Maheshwary, K L., "Managerial Economics", S Chand and Co., New Delhi, 2001.
Refe	erence(s)
1.	Barthwal R.R., "Industrial Economics - An Introductory Text Book", New Age Pub., New Delhi, 2001.
2.	Samuelson P.A., "Economics - An Introductory Analysis", McGraw - Hill & Co., New York, 2000.
3.	Bhattacharyya, S K, John Deardon and Koppikar Y M, "Accounting for Management: Text and Cases",
ა.	South Asia Books, 1986.
4.	Mote, V L, Samuel and Gupta, G S., "Managerial Economics – 110002, 1984.– Concepts and Cases",
4.	Tata Mcgraw Hill, New Delhi, 2007.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	СО						Р	0						PSO				
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3				1	2	2		3	2	2			3			
50 HS 001 & Engineering Economics and Financial Accounting	CO2		2			2	2	2			3	3			2			
	CO3	2				3				3	2	3			3			
	CO4	3				3	3	3		2		3			2			
	CO5		3			2	3	3			3	3			3			

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K.S	.Rangasamy	College of	Гесhnology	– Autonomo	us R2018		
		50 PT	T02 - Creo fo	r Production	n Engineerin	g		
Semester		Hours / Wee	k	Total	Credit	Max	imum Marks	3
Semester	L	T	Р	hrs	С	CA	ES	Total
VII	2	0	2	60	3	50	50	100
Objective(s)	• To ind	o demonstrated dustries. The consure that ecession in the consure the rocess in order	students with e the basic op the error rate he process can nathematical er to become ability to make ctively.	is decreased in achieved. formatting an professionall	CAM and auto d, uniformity o nd documenta y efficient.	omation of ma of the product ation related t	anufacturing t is high and o manufactu	the
Course Outcomes	At the end CO1: Cre CO2: Cre CO3: Cre CO4: Re	d of the coule eate, modify eate geometre eate geometre trieve the ma	rse, the stude and analyze r ies, tool paths ies, tool paths thematical fu epts of rapid	nold compon s and genera s and genera nctions durin	ents and ass te NC codes te NC codes g design prod	for turning us for milling us cess.	sing Creo so	

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Mold design

Basic Mold Process - Prepare design models for the mold process - Design Model Analysis - Mold Models - Shrinkage - Work pieces - Mold Volume Creation - Parting Lines - Skirt Surfaces - Parting Surface Creation - Splitting Mold Volumes - Mold Component Extraction - Mold Features Creation - Filling and Opening the Mold. [20]

Manufacturing Process

Manufacturing Process Overview - Creating Manufacturing Models - Configuring Operations - Using Reference Models - Using Work piece Models - Creating and Using NC Model Assemblies - Creating and Configuring a Work Center - Creating and Configuring Tools - Using Manufacturing Parameters - Creating Face Milling Sequences - Creating Volume Milling Sequences - Creating Profile Milling Sequences - Creating Straight Cut Surface Milling Sequences - Creating From Surface Isolines Surface Milling Sequences - Creating Cut Line Surface Milling Sequences - Advanced Surface Milling Options - Creating Roughing and Re-roughing Sequences - Creating Finishing Sequences - Creating Trajectory Milling Sequences - Creating Hole making Sequences - Creating Engraving Sequences - Using the Process Manager - Creating and Post- Processing CL Data Files.

Rapid Prototyping: Introduction to RPT - Data Preparation - RPT Data Processing - Data Post Processing - RPT assignment. [15]

Text Book(s):

- 1. Sham Tickoo, "Pro / Engineer PTC Creo Parametric 3.0 for Engineers and Designers", Revised and updated edition (MISL-DT), Dreamtech Press, 2015.
- 2. Chua C.K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", 3rd Edition, World Scientific, New Jersey, 2010.

Reference(s)

- 1. Chee Kai Chua, "Rapid Prototyping: Principles and Applications", World Scientific publications, 3rd edition, Singapore, 2010.
- 2. Philip. J. Pritchard, "Mathcad: a Tool for Engineers and Scientists", Wiley publications, Indiana, 2013.
- 3. Jacobs P.F., "Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography", McGraw-Hill, New York, 2010
- 4. David S. Kelley, Pro/Engineer wildfire 5.0 instructor, McGraw-Hill,2016

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	00		PO													PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
	CO1	3		3		3								3	3	3			
	CO2	3		3		3								3	3	3			
50 PT T02 & Creo for Production Engineering	CO3	3		3		3								3	3	3			
	CO4	3		3		3								3	3	3			
	CO5	3		3		3								3	3	3			

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.Ra	angasamy	College o	f Technolog	y – Autonomo	ous	R 20	18							
		50	ME L01 -	Rapid Proto	typing										
Competer	Hou	ırs / Week		Total Hrs	Credit	Max	ximum Mark	(S							
Semester	L	Т	Р	TOTAL FILS	С	CA	ES	Total							
V/VI/VII	3	3 0 0 45 3 50 50 1 To study the fundamental theory behind RP process.													
Objective(s)	To acqTo impTo be Additive	uire the baart knowle familiar we Manufac	asic concep edge on CA vith the ch cturing.	ot of different of D modelling the aracteristics	software used	nt materials	those are	used in							

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

Course

- CO1: Demonstrate various material processes and additive manufacturing systems
- CO2: Deliver the concepts, fabrication and analysis of manufacturing components through rapid prototyping technique.
- CO3: Elucidate the working principles and parameters involved in Rapid prototyping methods.
- CO4: Reveal the methods of rapid tooling.

At the end of the course, the students will be able to

CO5: Expose the skills on programming and software knowledge of RPT.

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Rapid Prototyping

Need for the time compression in product development, History of RPT systems, Survey of applications, Growth of RPT industry and classification of RPT systems.

Rapid Prototyping Methods

Fused deposition Modeling (FDM): Principle, Process Parameters, Path generation, Applications. Solid Ground Curing: Principle of operation, Machine details, Applications. Stereo Lithographic Resin (SLR) systems: Process parameters, Process details, Data Preparation, Data files, and Machine details, Applications. Selective Laser Sintering (SLS): Types of machines, Principle of operation, Process parameters, Data preparation for SLS, applications, Laminated Object Manufacturing (LOM): Principle of Operation, LOM materials, Process details, Applications.

Concept Modelers

Concept modelers – Principle, Thermo jet printer, Sander's model market, 3-D Printer, Genisys Xs Printer, JP system 5, Object Quadra System. Laser Engineered Net Shaping (LENS) – Principle-applications.

Rapid Tooling

Outcomes

Indirect Rapid Tooling- Silicone rubber tooling, Aluminum filled epoxy tooling, Spray metal tooling, etc., Direct rapid tooling- Direct Accurate clear epoxy solid injection molding (AIM), Quick cast Process, Copper polyamide, Rapid Tools, Direct metal laser sintering (DMLS), ProMetal, Sand Casting Tooling, Laminate tooling, Soft tooling v/s Hard tooling.

Software for Rapid Tooling

STL Files, Over view of Solid view, Magics, mimics, magics communicator, etc, Internet based softwares, Collaboration tools. Rapid Manufacturing- Process optimization - Factors influencing accuracy, Data preparation Errors, Part building Errors, Errors in finishing, Influence of part orientation. Allied process -Vacuum Casting, Surface Digitizing, Surface Generation from point cloud, Surface modification, data transfer to solid models.

	Total Hours: 45
Text	Book(s):
4	Chua C.K., Leong K.F. and Lim C.S., "Rapid Prototyping: Principles and Applications", 3rd Edition, World
'	Scientific, New Jersey, 2010.
2	Pham D.T. and Dimov S.S., "Rapid Manufacturing", 1st Edition, Springer-Verlag, London, 2011.
Refe	rence(s):
1	Frank W. Liou, "Rapid Prototyping and Engineering Applications", CRC Press, 2008.
2	Jacobs P.F., "Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography", McGraw-Hill,
	New York, 2010
3	Wohlers Terry, "Wohlers Report 2014", Wohlers Associates, 2014.
4	Frank W. Liou, "Rapid Prototyping and Engineering Applications", CRC Press, 2008

Pre-requisite: Manufacturing Technology and CAD/CAM

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COURSE CODE &	60	PO													PSO			
COURSE NAME	CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	CO1	3	3							2						2		
	CO2	3	3			1				2			3			2		
50 ME L01 & Rapid Prototyping	CO3	3	3			1							2			2		
	CO4	3	2			1							2			3		
	CO5	2	2			1				2			2			2		

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

	K	.S.Rangasa	my College	of Technolog	gy – Autono	mous R 201	8	
		50 ME	L02 – Prod	uct Design f	or Manufact	turing		
Semester		Hours / Wee	k	Total hrs	Credit	M	aximum Mar	ks
Semester	L	Т	Р	Total IIIS	C	CA	ES	Total
V/VI/VII	3	0	0	45	3	50	50	100
Objective(s)	To incTo deTo	identify and dustry. introduce th sign. irecognize th	analyse the e objectives ne concept of	of product design product design of product de design for m sign for environ	gn and developsign and the nanufacturing	requirement	s of a good p	product
Course Outcomes	CO1: Red CO2: Exp CO3: Inte CO4: Dev	cognise the koress knowle erpret compovelop knowle	nowledge or dge on form nent design l dge on comp	ents will be a n design prince design and for oy considering conent design onmental and	siples for mar orgings. g machining. n by consider	ing casting.		

Introduction

General design principles for manufacturability – strength and mechanical factors, mechanisms selection, evaluation method, Process capability – Feature tolerances, Geometric tolerances –Assembly limits –Datum features – Tolerance stacks.

Factors Influencing Form Design

Working principle, Material, Manufacture, Design- Possible solutions – Materials choice – Influence of materials on form design – form design of welded members, forgings and castings. [9]

Component Design – Machining Consideration

Design features to facilitate machining – drills – milling cutters – keyways – Doweling procedures, counter sunk screws – Reduction of machined area- simplification by separation – simplification by amalgamation – Design for machinability – Design for economy – Design for clampability – Design for accessibility – Design for assembly.

Component Design - Casting Consideration

Redesign of castings based on Parting line considerations – Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design – Modifying the design-Computer Applications for DFMA. [9]

Design for the Environment

Introduction – Environmental objectives – Global, Regional and local issues – Basic Design for Environment (DFE) methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment – Weighted sum, Lifecycle assessment method – Techniques to reduce environmental impact – Design to minimize material usage – Design for disassembly, recyclability, remanufacture and energy efficiency – Design to regulations and standards.

to reduce environmental impact – Design to minimize material usage – Design for disassembly, recyclability, remanufacture and energy efficiency – Design to regulations and standards. [9]

Total Hours: 45

Text Book(s):

1. Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", 3rd Edition, Marcel Dekker, New York, 2002.

2. Kevien Otto, Kristin Wood, "Product Design", 2nd Edition, Indian Reprint, Pearson Education, 2004.

Reference(s)

1. Boothroyd, G, "Design for Assembly, Automation and Product Design", 2nd Edition, Marcel Dekker, New York, 2002.

2. Fixel, J. "Design for the Environment", 2nd Edition, McGraw-Hill International Edition, New York, 2012.

3. Bralla, J G, "Design for Manufacture Handbook", 2nd Edition, McGraw-Hill International Edition, New York, 2013.

4. Chitale, A.K, and Gupta, R.C., "Product Design and Manufacturing", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.

Pre-requisite: Manufacturing Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60				PSO											
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	3	3	2	3	3			3					3	2	3
50 ME L02 & Product	CO2	2	3	3	3										3	3
Design for	CO3	3	3	3	3										3	3
Manufacturing	CO4	3	3	3	3										3	3
	CO5	2	3	3	3			3							3	3

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

	K.S.	Rangasamy	College of	Technology	– Autonomo	us R2018									
	50 ME L03 - Composite Materials Hours / Week Total Credit Maximum Marks														
Semester		Hours / Wee	k	Credit	Max	imum Mark	S								
Semester	L	Т	Р	hrs	С	CA	ES	Total							
V/VI/VII	3	0	0	45	3	50	50	100							
Objective(s)	ToToTo	enlighten the describe the classify the	e students in e code for lam different man nowledge an	different type ninate stackir aufacturing m	es of reinforce ng sequence ethods availa	in the compo ement able for comp ng basic laws	osite materi	al.							

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

At the end of the course, the students will be able to

- CO1: Demonstrate the fundamentals of fibers, matrices and composites.
- CO2: Realize and solve problems concerning the mechanics of composite materials.
- CO3: Perform design calculations for the development of fiber reinforced matrices.
- CO4: Portray the various manufacturing processes involved in the fabrication of composite material.
- CO5: Infer knowledge on the performance of composite materials

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction

Course

Outcomes

Basics of fibers, matrices and composites: Definition – Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Ceramic and Metal Matrices – Characteristics of fibers and matrices. Fiber surface treatments, Fillers and Additives.

Mechanics

Fiber content, density and void content. Rule of mixture -Volume and mass fractions – Density – Void content, Evaluation of four elastic moduli based on strength of materials approach and semi-empirical model Longitudinal Young's modulus-Transverse Young's modulus-Major Poisson's ratio-In-plane shear modulus, Ultimate strengths of a unidirectional lamina. Characteristics of Fiber-reinforced lamina-Laminates-Lamination theory.

Design

Failure Predictions, Laminate Design Consideration-Design criteria-Design allowable -Design guidelines, Joint design-Bolted and Bonded Joints, Design Examples-Design of a tension member – Design of a compression member – Design of a beam-Design of a torsional member, Application of Finite element method (FEM) for design and analysis of laminated composites.

Manufacturing

Bag molding – Compression molding – Pultrusion – Filament winding – Resin film infusion – Elastic reservoir molding - Tube rolling – Quality inspection methods. Processing of metal matrix composites (MMC) – Diffusion bonding – Stir casting – Squeeze casting.

Performance

Static mechanical properties – Fatigue and impact properties – Environmental effects (thermal, degradation, creep) – Long term properties, Fracture behavior and Damage tolerance. [9]

Total Hours: 45

Text Book(s):

- 1. Mallick P.K., Fiber Reinforced Composites: Materials, Manufacturing and Design, 3rd Edition, Taylor and Francis, 2008.
- 2. Autar K. Kaw, "Mechanics of Composite Materials", 2nd Edition, CRC Press, London, 2006.

Reference(s)

- 1. Bhagwan D. Agarwal, Lawrence J. Broutman, Chandrashekhar K., "Analysis and Performance of Fiber Composites", 3rd Edition, John Wiley & Sons, New York, 2006.
- 2. Jones R.M,"Mechanics of Composite Materials", 3rd Edition, Mc Graw Hill Company, New York, 2006.
- 3. Chawla K.K., "Composite Materials", 3rd Edition, Springer Verlag, Boston, 2012.
- 4. Ever J. Barbero, "Introduction to Composite Materials Design", 2nd edition, CRC Press, 2011.

Pre-requisite: Manufacturing Processes

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	00						Р	0						PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1	2	3	3	3									2	3	3	
50 ME L03 & ⊢	CO2	2	3	2	2									3	3	3	
	CO3	3	2	3	3									3	3	3	
	CO4	3	2	3	2									2	3	2	
	CO5	3	3	3	3			3						3	3	2	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

Rev. No.3/w.e.f. 18.01.23

Passed in BoS Meeting held on 24/12/22

Approved in Academic Council Meeting held on 07/01/2023

	K.S.Rangasamy College of Technology – Autonomous R 2018											
		50 ME L04	- Quality C	ontrol and F	Reliability Er	ngineering						
Semester		Hours / Wee	k	Total hrs	Credit	M	ks					
Semester	L	Т	Р	Total IIIS	С	CA	ES	Total				
V/VI/VII	3	0	0	45	3	50	50	100				
Objective(s)	To impTo impTo	equip the stu prove the qua train the stud prove the qua equip the stu	dents to app lity of product lents to apply lity of product dents to ana	statistical qua ly the statistic cts in manufa the online a cts. lyze the relia uate the relial	cal process of cturing sector and offline quality	control and re ors. ality control and oduct or syste	eliability conc and reliability em.	epts to				
			•	nts will be a								
				ply statistical								
Course				ality control in or quality con		ning mausine	·S.					
Outcomes				d solve reliab		2						
Catoonics				iability of a p								

Introduction and Statistical Process Control

Introduction:-Definition of quality, Evolution of Quality: Inspection, Quality Control, Quality assurance, Total quality management concepts, chance causes, assignable causes, Customer-Orientation: Internal & External Customer Concept, Quality costs- Prevention; Appraisal and Failure costs. Analysis techniques for quality costs, Seven SPC tools -Histogram, Check sheets, Ishikawa diagrams, Pareto, Scatter diagrams, Control charts and flow chart.

Online Quality Control

Statistical concepts in quality ,Normal curve, Control chart for attributes –control chart for non-conforming – p chart and np chart – control chart for nonconformities– C and U charts, Control chart for variables – X bar chart, R chart and σ chart -State of control and process out of control identification in charts, pattern study and process capability studies.

Offline Quality Control

Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling techniques – O.C. curves – producers Risk and consumers Risk. AQL, LTPD, AOQL concepts, standard sampling plans for AQL and LTPD- uses of standard sampling plans. [9]

Reliability Concepts

Reliability engineering - fundamentals - Failure rate, failure data analysis, Bathtub curve, Mortality curves concept of burn -in period, useful life and wear out phase of a system, Mean Time Between Failures (MTBF), Mean Time To Failure (MTTF), hazard rate - failure density and conditional reliability-Maintainability and availability - simple problems. [9]

Reliability Estimation

System reliability: Series, Parallel and Mixed configurations, Reliability improvement techniques, use of Pareto analysis – design for reliability – redundancy unit and standby redundancy- fault tree analysis – FMEA analysis, Optimization in reliability – Product design – Product analysis – Product development – Product life cycle. [9]

	Total hours: 45
Text	Book(s):
1.	Douglas.C. Montgomery, "Introduction to Statistical Quality Control", 7thedition, John Wiley 2012.
2.	Srinath. L.S., "Reliability Engineering", 4th Edition Affiliated East West Press, 2011.
Refe	rence(s)
1.	Besterfield D.H., "Quality Control", 8th edition, Prentice Hall, 2009.
2.	Connor, P.D.T.O., "Practical Reliability Engineering", 5th edition, Wiley India, 2012.
3.	Grant, Eugene .L "Statistical Quality Control", TMH, 2005.
4.	John.S. Oakland. "Statistical Process control", Elsevier Butterworth-Heinemann, 2008.
5.	Monohar Mahajan, "Statistical Quality Control", DhanpatRai & Sons 2016.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО												PSO		
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	2	2	3											2	
50 ME L04 & Quality	CO2	3	3	3	3										3	
Control and Reliability	CO3	2	3	3	2										2	
Engineering	CO4	2	2	3	2								·		3	
	CO5	3	3	3	3										3	

Note: 3 - Strong Contribution; 2 - Average Contribution; 1 - Some Contribution

K.S. Rangasamy College of Technology – Autonomous R 2018											
		50 M	IE L05 – Lo	ogistics Man	agement						
Compotor	Но	urs / Weel	<	Total Hrs.	Credit	Max	rks				
Semester	L	Т	Р	TOTAL MIS.	С	CA	ES	Total			
V/VI/VII	3	0	0	45	3	50	50	100			
Objective(s)	 To inf To encosts To leach To deach 	 To infer the working knowledge on theories of logistics and competitive strategy. To enhance the knowledge in logistics function including performance measurement, costs, transportation and packaging To learn the current challenges faced by logistics professionals. 									
Course Outcomes	At the end of the course the students will be able to CO1: Outline the logistics in competitive strategy. CO2: Apply the concept of warehousing and material handling equipment systems in logistics management.										

Note: The hours given against each topic are of indicative. The faculty have the freedom to decide the hours required for each topic based on importance and depth of coverage required. The marks allotted for questions in the examinations shall not depend on the number of hours indicated.

Introduction to Logistics and Network Design

Definition and Scope of Logistics – Functions & Objectives, Customer Value Chain – factors influencing the network design, framework for network design, models for facility location and capacity allocation, Impact of uncertainty on network design. [9]

Warehousing and Materials Handling, Material Handling Equipment and Systems

Warehousing Functions – Types and Site Selection, Layout Design and Costing – Virtual Warehouse, Role of Material Handling in Logistics – Material Storage Systems – Principles, Benefits, Methods – Automated Material Handling.

Strategic Alliances and Performance Measurement

Framework for strategic alliances – Third Party Logistics(3PL) – 3PL issues and requirements – Retailer – Supplier Partnerships – Issues in Retailer – Supplier Partnerships – Distributor Integration – Types and issues of Distributor Integration – Internal and External Performance Measurement – Logistics Audit. [9]

Rev. No.3/w.e.f. 18.01.23 Passed in BoS Meeting held on 24/12/22 Approved in Academic Council Meeting held on 07/01/2023

Transportation and Packaging

Transportation System Evolution – Infrastructure and Networks, Freight Management, Route Planning, Containerization – Design considerations, Material and Cost, Packaging as Unitization – Consumer and Industrial Packaging.

Current Trends

E-Logistics Structure and Operation – Logistics Resource Management, Automatic Identification Technologies – Warehouse Simulation, Reverse Logistics - Global Logistics , Strategic logistics Planning. [9]

	Total Hours: 45
Text	Book(s):
1	Sople Vinod V, "Logistics Management – The Supply Chain Imperative", Pearson Education, 2014
2	Ailawadi C Sathish and Rakesh Singh, "Logistics Management", Prentice Hall India, 2012
Refe	erence(s):
1	Coyle, "The Management of Business Logistics", Thomson Learning, 2014
2	Bloomberg David J, "Logistics", Prentice Hall India, 2014
3	Simchi – Levi Davi, Kaminsky Philip and Simchi-Levi Edith, "Designing and Managing the Supply Chain", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2012.
4	Musgrave Adam, "Transportation and Logistics Management", Global Vision Publishing, 2013.

Pre-requisite: Nil

MAPPING OF COURSE OUTCOMES, PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COURSE CODE &	60	РО												PSO			
COURSE NAME	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
	CO1			2		3	3	3	3			2		3	3	3	
	CO2			2		3	3	3	3			2		3	3	3	
50 ME L05 & Logistics Management	CO3			2		3	3	3	3			2		3	3	3	
	CO4			2		3	3	3	3			2		3	3	3	
	CO5			2		3	3	3	3			2		3	3	3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

