Tutorien-Übungsblatt 7

Aufgabe 1

- 1. Beweisen Sie, dass K(x) nicht berechenbar ist!
- 2. Beweisen Sie, dass die Menge der nichtkomprimierbaren Strings \mathcal{L} nicht rekursiv aufzählbar ist!
- 3. Geben Sie eine möglichst gute obere Schranke für die Kolmogorow-Komplexität von 0^n an!
- 4. Geben Sie eine möglichst gute obere Schranke für die Kolmogorow-Komplexität der Binärdarstellung der n-ten Primzahl p an!
- 5. Sei x ein Palindrom. Geben sie eine möglichst gute obere Schranke für K(x) an!
- 6. Sei π_n die Kreiszahl π bis zur n-ten Nachkommastelle entwickelt. Geben Sie eine möglichst gute obere Schranke für π_n an.

Aufgabe 2

Geben Sue für folgendende Formeln an ob diese in den besagten Theorien liegen

- 1. Ist $\phi_1 = \forall x \exists y \forall z : x + y = z \text{ in Th}(\mathbb{N}, +)$?
- 2. Ist $\phi_2 = \forall x \exists y \forall z \exists w : (x + z = w) \land (x + y = w)$ in Th(N, +)?
- 3. Ist $\phi_3 = \forall x \forall y \forall z \forall w \forall v \exists s : \neg(x+w=y) \lor \neg(y+v=z) \lor (x+s=z)$ in Th(N, +)?
- 4. Sei $\operatorname{Th}(\mathbb{N},<)$ die Theorie der natürlichen Zahlen mit der Relation "echt kleiner". Zeigen Sie: $\operatorname{Th}(\mathbb{N},<)$ ist entscheidbar.

Aufgabe 3

Geben Sie Modelle für die folgenden prädikatenlogischen Formeln an! Geben Sie dazu jeweils ein Universum \mathcal{U} und eine Interpretation der Relationszeichen R_i an!

1.
$$\phi_1 = \forall x (R_1(x, x))$$
 [K1.1]
 $\land \forall x, y (R_1(x, y) \leftrightarrow R_1(y, x))$ [K1.2]
 $\land \forall x, y, z ((R_1(x, y) \land R_1(y, z)) \rightarrow R_1(x, z))$ [K1.3]

$$\begin{array}{lll} 2. & \phi_{2} = & \phi_{1} \\ & \wedge \forall \; x \; (R_{1}(x,x) \to \neg R_{2}(x,x)) & [\text{K2.1}] \\ & \wedge \forall \; x,y \; (\neg R_{1}(x,y) \to (R_{2}(x,y) \oplus R_{2}(y,x))) & [\text{K2.2}] \\ & \wedge \forall \; x,y,z \; ((R_{2}(x,y) \wedge R_{2}(y,z)) \to R_{2}(x,z)) & [\text{K2.3}] \\ & \wedge \forall \; x \; \exists \; y \; (R_{2}(x,y)) & [\text{K2.4}] \end{array}$$

Lösung zu Aufgabe 1

1. Annahme: K(x) ist berechenbar

Unter Verwendung des Rekursionstheorems läßt sich folgende Turingmaschine \mathcal{M} konstruieren:

- 1. Generiere eigene Darstellung $\langle \mathcal{M} \rangle$!
- 2. Zähle alle Strings $x \in \{0,1\}^*$ auf und berechne K(x)! Falls $K(x) > |\langle \mathcal{M} \rangle|$, breche die Zählschleife ab!
- 3. Schreibe x auf das Band!

Damit ist $|\langle \mathcal{M} \rangle|$ kleiner als K(x) und $\langle \mathcal{M} \rangle$ ist eine Beschreibung von x. Damit ist also K(x) nicht die Länge der kleinsten Beschreibung. Widerspruch!

2. Annahme: \mathcal{L} ist rekursiv aufzählbar

Dann gibt es einen Aufzähler T für \mathcal{L} und es läßt sich über das Rekursionstheorem folgende Turingmaschine \mathcal{M} konstruieren:

- 1. Generiere eigene Darstellung $\langle \mathcal{M} \rangle$!
- 2. Verwende T, um die Strings in \mathcal{L} aufzuzählen! Sobald ein aufgezählter String x länger ist als $|\langle \mathcal{M} \rangle|$, breche ab!
- 3. Schreibe x auf das Band!

Nun ist $\langle \mathcal{M} \rangle$ eine kürzere Beschreibung von x, also ist x damit komprimierbar. Widerspruch!

3. Eine obere Schranke ist $\log n + c$.

Verwende Turingmaschine \mathcal{M} mit Eingabe n in Binärdarstellung:

1. Ersetze Binärdarstellung von n durch Unärdarstellung 0^n !

Die Grösse c dieser Turingmaschine ist eine Konstante c die unabhängig von n ist.

4. Eine obere Schranke ist $\log n + c$.

Verwende folgende Turingmaschine \mathcal{M} mit Eingabe n in Binärdarstellung:

- 1. Zähle alle Primzahlen auf (z.B. Sieb des Eratosthenes) und lasse einen Zähler mitlaufen!
- 2. Sobald der Zähler den Wert n erreicht, breche ab!
- 3. Gib die aktuelle Primzahl p aus! Die Grösse c dieser Turingmaschine ist eine Konstante c die unabhängig von n ist.
- 5. Sei |x| = n. Eine obere Schranke für K(x) ist $\frac{|x|}{2} + c$. Wir geben dazu eine Maschine \mathcal{M} an die x bei Eingabe der ersten Worthälfte x_1 erzeugt.
 - 1. Falls x ein Palindrom ungerader Länge ist, dann schreibe $x_{\lfloor \frac{n}{2} \rfloor + 1}$ auf das Band hinter x_1
 - 2. Spiegle x_1^R auf das Band hinter den Bandinhalt

Die Grösse c dieser Turingmaschine ist eine Konstante c die unabhängig von n ist.

6. Eine obere Schranke für $K(\pi_n)$ ist auch hier $\log(n) + c$. Man kann die Binärentwicklung von π zum Beispiel anhand der BPP-Folge berechnen.

$$\pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right)$$

Man summiert einfach solange auf bis sich die n-te Stelle nicht mehr ändert und bricht dann ab. Die Grösse einer Turingmaschine die dies berechnet ist eine Konstante c und unabhängig von n.

Lösung zu Aufgabe 2

- 1. Nein. Wähle irgend ein $x \in \mathbb{N}$. Dann setze z = x + y + 1. Somit gilt für jede mögliche Wahl von z: $x + y \neq x + y + 1 = z$ womit ϕ_1 keine "Wahrheit" in $Th(\mathbb{N}, +)$ ist.
- 2. Nein. Wähle dazu $x \in \mathbb{N}$ beliebig und z = y+1. Wäre ϕ_2 in Th(\mathbb{N} , +), so würde gelten w = x+z = x+y+1 = w+1 was ein Widerspruch ist.
- 3. Ja. Wähle dazu s = w + v. Gilt $\neg(x + w = y)$ oder $\neg(y + v = z)$ dann ist ϕ_3 trivialerweise wahr. Nehmen wir also an $(x + w = y) \land (y + v = z)$. Dann gilt x + s = x + w + v = y + v = z womit ϕ_3 auch in diesem Falle wahr ist.
- 4. Wir reduzieren dazu das "Wortproblem" von $\operatorname{Th}(\mathbb{N},<)$ auf das Wortproblem von $\operatorname{Th}(\mathbb{N},+)$. Sei ϕ eine Formel über $(\mathbb{N},<)$. Für alle Auftreten von Teilformeln x < y für beliebige x,y in ϕ ersetzen wir x < y durch $\exists z \exists w : (x+z=y) \wedge (1+w=z)$ mit ungebundenen Variablen z und w. Es ist offensichtlich dass nun x < y falls $\exists z \exists w : (x+z=y) \wedge (1+w=z)$ gilt. Wir erhalten also eine neue Formel ϕ' die genau dann in $\operatorname{Th}(\mathbb{N},+)$ liegt falls ϕ in $\operatorname{Th}(\mathbb{N},<)$ liegt.

Lösung zu Aufgabe 3

Für das Universum \mathcal{U} ziehen wir die klassischen Zahlenmengen $\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ in Betracht und suchen unter den Standardrelationen $=, \leq, \geq, <, >, \neq$ nach geeigneten Kandidaten zur Interpretation der Relationszeichen R_i .

1. Die einzelnen Klauseln erlauben jeweils folgende Relationen für \mathbb{R}_1 :

Klausel [K1.1]: $=, \leq, \geq$

Klausel [K1.2]: $=, \neq$

Klausel [K1.3]: $=, \leq, \geq, <, >$

Da nur = als einzige Äquivalenzrelation alle drei Klauseln erfüllt, sind die folgenden Tupel (\mathcal{U}, R_1) mögliche Modelle:

$$(\mathbb{N}, =), (\mathbb{N}_0, =), (\mathbb{Z}, =), (\mathbb{Q}, =), (\mathbb{R}, =), (\mathbb{C}, =)$$

2. Da hier R_1 durch ϕ_1 auf die Relation = festgelegt ist, erlauben die zusätzlichen Klauseln jeweils folgende Relationen für R_2 :

Klausel [K2.1]: $<,>,\neq$

Klausel [K2.2]: $\leq, \geq, <, >$

Klausel [K2.3]: $=, \leq, \geq, <, >$

Klausel [K2.4]: $=, \leq, \geq, <, >$ (außer für \mathbb{N}, \mathbb{N}_0), \neq

Da nur < und mit Einschränkungen auch > die vier neuen Klauseln erfüllen, sind die folgenden Tupel (\mathcal{U}, R_1, R_2) mögliche Modelle:

$$(\mathbb{N},=,<), (\mathbb{N}_0,=,<), (\mathbb{Z},=,<), (\mathbb{Q},=,<), (\mathbb{R},=,<), (\mathbb{C},=,<), (\mathbb{Z},=,>), (\mathbb{Q},=,>), (\mathbb{R},=,>), (\mathbb{C},=,>)$$