

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aula 3

Markus Stein
19 March 2019

Modelo Estatístico

- Definição de **população**;
 - Def.: Parâmetro: as quantidades da população, em geral desconhecidas, sobre as quais temos interesse, são denominadas parâmetros.
 - Def.: Espaço paramétrico: O conjunto Θ em que θ toma valores é denominado espaço paramétrico.
- Definição de amostra aleatória;

Exemplo 1: Artigo "digital screen time × pediatric sleep". Qual a população em estudo? Qual o tipo de amostragem? Os resultados estão de acordo com o experimento realizado?

• Definição de distribuição amostral: é a distribuição de probabilidade de uma estatística;

Exemplo 2: Distribuição amostral da média e da variância amostrais. Executar os comandos do aqruivo 'Aula2_R_dist_amostral.R' usando o software R. Outro exemplo de distribuição amostral encontra-se no arquivo 'CDF plot CLT.R'.

- Estatística e Estimador;
 - Momentos Amostrais e Propriedades; Exemplos: Média amostral \bar{X}_n e variância amostral S_n^2 ;
- Construindo um Modelo Estatístico: (Notas de aula, pg. 10)

Tarefa 1: Seja $X_1, X_2, \dots X_n$ uma amostra aleatória de uma população com densidade $f_X(x)$ tal que $E(X_1) = \mu$ e $V(X_1) = \sigma^2$. Encontre:

a.	$E(\bar{X}_n) \in Var(\bar{X}_n)$)
b.	$E(S_n^2)$ e $Var(S_n^2)$.	

Tarefa 2: Revisão de probabilidade

- Transformações e esperanças (Capítulos 2 e 3 de Casella e Berger);
 - Definção de Função Geradora de Momentos (fgm), Definição 2.3.6;
 - Como **fgm** gera momentos? Teorema 2.3.7;
 - Unicidade e convergência da **fgm** (Teorema 2.3.12):
 - Desigualdade de Chebychev (Teorema 3.6.1)
- Esperança de variáveis aleatórias independentes (Capítulo 4 de Casella e Berger);
 - Fgm da soma de duas variáveis, Teorema 4.2.12;
 - Teorema 4.6.7 generaliza o Teorema 4.2.12 para soma de \boldsymbol{n} variáveis.