Register Allocation

- Recall: A variable is live at a particular program point if its value may be read later before it is written.
 - Can find this using global liveness analysis.
- The **live range** for a variable is the set of program points at which that variable is live.
- The **live interval** for a variable is the smallest subrange of the IR code containing all a variable's live ranges.
 - A property of the IR code, not the CFG.
 - Less precise than live ranges, but simpler to work with.

Computing Live Variables

- To know if a variable will be used at some point, we iterate across the statements in a basic block in reverse order.
- Initially, some small set of values are known to be live (which ones depends on the particular program).
- When we see the statement $\mathbf{a} = \mathbf{b} + \mathbf{c}$:
 - Just before the statement, **a** is not alive, since its value is about to be overwritten.
 - Just before the statement, both **b** and **c** are alive, since we're about to read their values.
 - (what if we have $\mathbf{a} = \mathbf{a} + \mathbf{b}$?)

```
a = b;
c = a;
d = a + b;
e = d;
d = a;
f = e;
```

```
a = b;
  c = a;
d = a + b;
  e = d;
  d = a;
  f = e;
 { b, d }
```

```
a = b;
  c = a;
d = a + b;
  e = d;
 d = a;
{ b, d, e }
 f = e;
 { b, d }
```

```
a = b;
  c = a;
d = a + b;
 e = d;
{ a, b, e }
d = a;
{ b, d, e }
 f = e;
 { b, d }
```

```
a = b;
  c = a;
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

```
a = b;
  c = a;
 { a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

```
a = b;
 { a, b }
 c = a;
 { a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

```
{ b }
 a = b;
 { a, b }
 c = a;
 { a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto _L0
    d = e + f
    Goto L1;
LO:
   d = e - f
L1:
    g = d
```

```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   g = d
```



```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   g = d
```



```
e = d + a
   f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   g = d
```



```
e = d + a
   f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   g = d
```



```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   q = d
```



```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   q = d
```



```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   q = d
```



```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   q = d
```



```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   q = d
```



```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
    d = e + f
    Goto L1;
LO:
   d = e - f
L1:
   q = d
```

```
e = d + a
         f = b + c
         { b, e, f}
         { b, e, f }
          f = f + b
          { e, f }
d = e + f
  { d }
                      { d }
```

```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
    d = e + f
    Goto L1;
LO:
   d = e - f
L1:
   q = d
```

```
e = d + a
         { b, c, e }
         f = b + c
         { b, e, f}
         { b, e, f }
          f = f + b
          { e, f }
d = e + f
  { d }
                      { d }
```

```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
    d = e + f
    Goto L1;
LO:
   d = e - f
L1:
   q = d
```

```
e = d + a
         { b, c, e }
         { b, c, e }
         f = b + c
         { b, e, f}
         { b, e, f }
          f = f + b
          { e, f }
d = e + f
  { d }
                      { d }
```

```
e = d + a
    f = b + c
    f = f + b
    IfZ e Goto L0
    d = e + f
    Goto L1;
L0:
   d = e - f
L1:
   q = d
```

```
{ a, b, c, d }
         e = d + a
         { b, c, e }
         { b, c, e }
         f = b + c
         { b, e, f}
         { b, e, f }
          f = f + b
          { e, f }
d = e + f
  { d }
                      { d }
```

```
e = d + a
   f = b + c
   f = f + b
   IfZ e Goto L0
   d = e + f
   Goto L1;
LO:
   d = e - f
L1:
   q = d
```

```
{ a, b, c, d }
          e = d + a
         { b, c, e }
         { b, c, e }
          f = b + c
         { b, e, f}
         { b, e, f }
          f = f + b
          { e, f }
  e, f }
d = e + f
  { d }
                      { d }
```



```
{ a, b, c, d }
        e = d + a
        { b, c, e }
        { b, c, e }
         f = b + c
        { b, e, f}
        { b, e, f }
         f = f + b
         { e, f }
{ e, f }
                     { d }
```



```
{ a, b, c, d }
  e = d + a
 { b, c, e }
 { b, c, e }
  f = b + c
  { b, e, f}
 { b, e, f }
  f = f + b
   { e, f }
              { d }
```

Register Allocation with Live Intervals

- Given the live intervals for all the variables in the program, we can allocate registers using a simple greedy algorithm.
- Idea: Track which registers are free at each point.
- When a live interval begins, give that variable a free register.
- When a live interval ends, the register is once again free.
- We can't always fit everything into a register; we'll see what do to in a minute.

\mathbf{R}_{0}	R ₄	\mathbf{R}_{2}	\mathbf{R}_{2}
0		 2	 2

R	\mathbf{R}_{1}	R ₂	R ₂
U			

\mathbf{R}_{0}	R ₄	\mathbf{R}_{2}	\mathbf{R}_{2}
0		 2	 2

Free Registers

 $\mathbf{R_0} \quad \mathbf{R_1} \quad \mathbf{R_2} \quad \mathbf{R_2}$

$\mathbf{R}_{\mathbf{o}}$	R,	\mathbf{R}_{2}	\mathbf{R}_{2}
0	1	 2	 2

a b c d e f g

a b c d e f g

a b c d e f g

\mathbf{R}_{0}	\mathbf{R}_{1}	\mathbf{R}_{2}
U	1	

Register Spilling

- If a register cannot be found for a variable *v*, we may need to **spill** a variable.
- When a variable is spilled, it is stored in memory rather than a register.
- When we need a register for the spilled variable:
 - Evict some existing register to memory.
 - Load the variable into the register.
 - When done, write the register back to memory and reload the register with its original value.
- Spilling is slow, but sometimes necessary.

R	\mathbf{R}_{1}	\mathbf{R}_{2}
U	1	4

\mathbf{R}_{0}	\mathbf{R}_{1}	R
U	1	<u> </u>

\mathbf{R}_{0}	\mathbf{R}_{1}	\mathbf{R}_{2}
U	1	4

Б	-	D
$\mathbf{R_0}$	\mathbf{R}_{1}	\mathbf{R}_2

Linear Scan Register Allocation

- This algorithm is called linear scan register allocation and is a comparatively new algorithm.
- Advantages:
 - Very efficient (after computing live intervals, runs in linear time)
 - Produces good code in many instances.
 - Allocation step works in one pass; can generate code during iteration.
 - Often used in JIT compilers like Java HotSpot.
- Disadvantages:
 - Imprecise due to use of live intervals rather than live ranges.
 - Other techniques known to be superior in many cases.

Correctness Proof Sketch

- No register holds two live variables at once:
 - Live intervals are conservative approximations of live ranges.
 - No two variables with overlapping live ranges placed in the same register.
- At each program point, every variable is in the same location:
 - All variables assigned a unique location.

Second-Chance Bin Packing

- A more aggressive version of linear-scan.
- Uses live ranges instead of live intervals.
- If a variable must be spilled, don't spill all uses of it.
 - A later live range might still fit into a register.
- Requires a final data-flow analysis to confirm variables are assigned consistent locations.
- See "Quality and Speed in Linear-scan Register Allocation" by Traub, Holloway, and Smith.

a b c d e f g

abcdefg

abcdefg

abcdefg

R	\mathbf{R}_{1}	R ₂
U	L	

a b c d e f g

\mathbf{R}_{0}	\mathbf{R}_{1}	R
U	1	4

\mathbf{R}_{0}	\mathbf{R}_{1}	R ₂
U		

a b c d e f g

\mathbf{R}_{0}	\mathbf{R}_{1}	R ₂
U	ı	

\mathbf{R}_{0}	\mathbf{R}_{1}	R ₂
U		

\mathbf{R}_{0}	\mathbf{R}_{1}	\mathbf{R}_{2}
U	1	4

\mathbf{R}_{0}	\mathbf{R}_{1}	R
U	1	4

```
{ a, b, c, d }
         e = d + a
        { b, c, e }
         { b, c, e }
          f = b + c
         { b, e, f}
         { b, e, f }
          f = f + b
          { e, f }
d = e + f
  { d }
                      { d }
```



```
{ a, b, c, d }
         e = d + a
        { b, c, e }
         { b, c, e }
          f = b + c
         { b, e, f}
         { b, e, f }
          f = f + b
          { e, f }
d = e + f
  { d }
                      { d }
```


d

e

 \mathbf{R}_{3}

d

e

d

The Register Interference Graph

- The register interference graph (RIG) of a control-flow graph is an undirected graph where
 - Each node is a variable.
 - There is an edge between two variables that are live at the same program point.
- Perform register allocation by assigning each variable a different register from all of its neighbors.
- There's just one catch...

The One Catch

- This problem is equivalent to graphcoloring, which is NP-hard if there are at least three registers.
- No good polynomial-time algorithms (or even good approximations!) are known for this problem.
- We have to be content with a heuristic that is good enough for RIGs that arise in practice.

The One Catch to The One Catch

The One Catch to The One Catch

If you can figure out a way to assign registers to arbitrary RIGs, you've just proven **P** = **NP** and will get a \$1,000,000 **check** from the Clay Mathematics Institute.

The One Catch to The One Catch CHALLENGE ACCEPTED

If you can figure out a way to assign registers to arbitrary RIGs, you've just proven **P** = **NP** and will get a \$1,000,000 **check** from the Clay Mathematics Institute.

Battling **NP**-Hardness

Chaitin's Algorithm

• Intuition:

- Suppose we are trying to *k*-color a graph and find a node with fewer than *k* edges.
- If we delete this node from the graph and color what remains, we can find a color for this node if we add it back in.
- Reason: With fewer than k neighbors, some color must be left over.

• Algorithm:

- Find a node with fewer than k outgoing edges.
- Remove it from the graph.
- Recursively color the rest of the graph.
- Add the node back in.
- Assign it a valid color.

$\mathbf{R_0}$	\mathbf{R}_{1}	${f R}_2$	\mathbf{R}_3	

Registers

Registers

Registers

\mathbf{R}_{0}	\mathbf{R}_{1}	\mathbb{R}_2	\mathbf{R}_3

\mathbf{R}_{0}	\mathbf{R}_{1}	\mathbb{R}_2	\mathbf{R}_3	

\mathbf{R}_{0}	\mathbf{R}_{1}	\mathbf{R}_{2}	\mathbf{R}_3	

Registers

One Problem

- What if we can't find a node with fewer than k neighbors?
- Choose and remove an arbitrary node, marking it "troublesome."
 - Use heuristics to choose which one.
- When adding node back in, it may be possible to find a valid color.
- Otherwise, we have to spill that node.

Registers

 $\mathbf{R_0}$

 $\mathbf{R}_{\mathbf{1}}$

 \mathbf{R}_2

(spilled)

(spilled)

Registers

 $\mathbf{R_0}$

 $\mathbf{R}_{\mathbf{1}}$

 \mathbf{R}_2

Registers

Registers

 R_0 R_1 R_2

Registers

R₀ R₁ R₂

Registers

Registers

Registers

Registers

R₀ R₁ R₂

Registers

 $\mathbf{R_0}$

 $\mathbf{R}_{\mathbf{1}}$

 \mathbf{R}_2

Registers

 \mathbf{R}_{0} \mathbf{R}_{1}

Registers

Registers

Registers

 R_0 R_1 R_2

Registers

 R_0 R_1 R_2

 R_0 R_1 R_2

Chaitin's Algorithm

Advantages:

- For many control-flow graphs, finds an excellent assignment of variables to registers.
- When distinguishing variables by use, produces a precise RIG.
- Often used in production compilers like GCC.

Disadvantages:

- Core approach based on the NP-hard graph coloring problem.
- Heuristic may produce pathologically worst-case assignments.

Correctness Proof Sketch

- No two variables live at some point are assigned the same register.
 - Forced by graph coloring.
- At any program point each variable is always in one location.
 - Automatic if we assign each variable one register.
 - Requires a few tricks if we separate by use case.

Improvements to the Algorithm

- Choose what to spill intelligently.
 - Use heuristics (least-commonly used, greatest improvement, etc.) to determine what to spill.
- Handle spilling intelligently.
 - When spilling a variable, recompute the RIG based on the spill and use a new coloring to find a register.

Summary of Register Allocation

- Critical step in all optimizing compilers.
- The linear scan algorithm uses live intervals to greedily assign variables to registers.
 - Often used in JIT compilers due to efficiency.
- Chaitin's algorithm uses the register interference graph (based on live ranges) and graph coloring to assign registers.
 - The basis for the technique used in GCC.