

Added source term: $\left f^{\alpha \beta} \right \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}$	$\frac{2}{3} r_2 \partial^{\beta} \omega_{,}^{\ \lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \theta} \partial^{\lambda} \omega_{\ \kappa}^{\theta \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega_{\ \kappa}^{\theta \kappa}$	$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{i}^{\alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{i} +$	$\frac{1}{2}t_1\partial_\kappa f_{\theta}^{\ \ \lambda}\partial^\kappa f_{\lambda}^{\ \ \theta} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\ \ \theta}\partial^\kappa f_{\lambda}^{\ \ \theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\ \ \alpha}\partial^\kappa f_{\lambda\kappa} +$	$2t_1 \omega_{\kappa} \partial^{\kappa} f^{\theta} - \frac{1}{3}t_1 \omega_{\alpha}^{\alpha} \partial^{\kappa} f'_{\kappa} - \frac{1}{3}t_1 \omega_{\lambda}^{\lambda} \partial^{\kappa} f'_{\kappa} + \frac{1}{2}t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda\alpha} +$	$\frac{1}{3}t_1 \omega_{\kappa\alpha}{}^{\alpha} \partial^{\kappa}f'_{,} + \frac{1}{3}t_1 \omega_{\kappa\lambda}{}^{\lambda} \partial^{\kappa}f'_{,} + \frac{2}{3}t_1 \partial^{\alpha}f_{\kappa\alpha} \partial^{\kappa}f'_{,} - \frac{1}{3}t_1 \partial_{\kappa}f^{\lambda}_{\lambda} \partial^{\kappa}f'_{,} +$	$\tfrac{1}{2} t_1 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{2} t_1 \partial^\alpha f_{\kappa \theta} \partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{2} t_1 \partial^\alpha f_\kappa^{\ \lambda} \partial^\kappa f_{\alpha \lambda} +$	$r_5 \partial_\theta \omega_{\lambda \ \alpha}^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_{\lambda \ \theta}^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_{\lambda \ \alpha}^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$	$\frac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{ \ \ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} - \frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{ \ \ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} - r_5 \partial_\alpha \omega_{\lambda}^{ \alpha} \partial_\kappa \omega^{\theta\kappa\lambda} +$	$-\frac{1}{3}t_1\;\omega_{,}^{\;\alpha_{l}}\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_1\;\omega_{,}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;l}-r_5\;\partial_{,}\omega_{\;\;\kappa}^{\kappa\lambda}\partial_{}^{l}\omega_{\lambda}^{\;\;\alpha}+\frac{2}{3}r_2\;\partial_{}^{\beta}\omega_{\;\;\kappa}^{\theta\alpha}\partial_{\theta}\omega_{\alpha\beta}^{\;\;\kappa}-$	Lagrangian density
×	$\omega_{\lambda}^{\alpha}{}_{\alpha}\partial^{\lambda}\omega^{\theta\kappa}{}_{\kappa}$	$r_2 \partial^{\beta} \omega_{\mu}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} +$	$_{\alpha}^{\lambda}\partial^{\kappa}f_{\lambda\kappa}^{}+$	$\kappa_{f'}_{\kappa} + \frac{1}{2} t_1 \partial^{\alpha}_{f}^{\lambda}_{\kappa} \partial^{\kappa}_{\lambda\alpha} +$	$_{lpha}\partial^{\kappa}f^{\prime}_{\prime}-rac{1}{3}t_{1}\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f^{\prime}_{\prime}+$	$_{\kappa}\partial^{\kappa}f_{\alpha\lambda}+$	$_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ -	$\partial_{\alpha}\omega_{\lambda}^{\ \alpha}_{\ \theta}\partial_{\kappa}\omega^{\theta\kappa\lambda}+$	$_{\lambda}^{\alpha}_{\alpha} + \frac{2}{3} r_2 \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} -$	

	$\sigma_0^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\#1}\dagger$	0	0	0	0
$\tau_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

$f_{1}^{#2} + \alpha$	$f_{1}^{#1} + ^{\alpha}$	$\omega_{1^{-}}^{#2}\dagger^{\alpha}$	$\omega_{1^{ ext{-}}}^{*1}\dagger^{lpha}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1+}^{\#2} \dagger^{\alpha\beta}$	$\omega_{1}^{#1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{ikt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	$\omega_{1}^{*1}{}_{\alpha\beta}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2} f$
0	0	0	0	0	0	$-\frac{\bar{i}kt_{1}}{\sqrt{2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$
$-rac{1}{3}ar{l}kt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	0	0	0	$\omega_{1^{-}\alpha}^{\#1}$
$-\frac{1}{3}i\sqrt{2}kt_1$	0	3 <u>L</u> 1	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-\alpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
$\frac{2k^2t_1}{3}$	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	<u>ikt</u> 1 3	0	0	0	$f_{1^-\alpha}^{\#2}$

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 \bar{l} k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 \bar{i} k \sigma_{1}^{\#2\alpha} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
17	5	3	3	3	1	1	1	#	

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$\omega_{2}^{*1} + \alpha \beta \chi$	$f_{2}^{#1} \dagger^{\alpha\beta}$	$\omega_{2^{+}}^{*1}\dagger^{lphaeta}$	
0	$\frac{i k t_1}{\sqrt{2}}$	<u>t1</u> 2	$\omega_{2}^{*1}{}_{\alpha\beta}$ f
0	$k^2 t_1$	$-\frac{ikt_1}{\sqrt{2}}$	$f_{2}^{\#1}{}_{lphaeta}$
$\frac{t_1}{2}$	0	0	$f_{2^{+}\alpha\beta}^{\#1} \ \omega_{2^{-}\alpha\beta\chi}^{\#1}$

$\omega_{0^{-}}^{\#1}$ †	$f_{0+}^{#2}$ †	$f_{0+}^{#1}$ †	$\omega_{0^{+}}^{\#1}$ †	
0	0	0	0	$\omega_{0^+}^{\#1}$
0	0	0	0	$f_{0+}^{#1}$
0	0	0	0	$f_{0+}^{#2}$
$k^2 r_2 - t_1$	0	0	0	$\omega_{0^{ ext{-}}}^{\#1}$

	Massive particl	le	
? $J^P = 0$	Pole residue:	$-\frac{1}{r_2} > 0$	
2	Polarisations:	1	
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$	
?	Spin:	0	
·	Parity:	Odd	

 $r_2 < 0 && r_5 < 0 && t_1 < 0$ Unitarity conditions