Biology Extended Essay

Investigation of anti-cancer and anti-genotoxic properties of different concentrations of

Azadirachta indica leaf extract by using Allium Cepa Root Tip Assay

How does the concentration of Azadirachta indica (neem) leaf extract (0.000, 0.002, 0.004, 0.006, 0.008 and 0.010 g/cm³) without or with 50cm³ of 3% hydrogen peroxide (H₂O₂) affect the Mitotic Index (MI) and the abnormal mitotic index(A-MI) in the root tips of Allium cepa, the duration of the experiment (24h), the species of the onion used (Allium cepa var. aggregatum), and the initial root length of the onion (1 inch) the same?

Word count: 3999

<u>1</u>	INTRODUCTION	4
1.1	MOTIVATION BEHIND INVESTIGATION	4
1.2	RESEARCH QUESTION	4
1.3	BACKGROUND INFORMATION	5
1.4	Hypothesis	9
<u>2</u>	METHODOLOGY	10
2.1	MATERIALS AND APPARATUS LIST	10
2.2	METHOD OF CONTROL OF VARIABLES	11
2.3	PRELIMINARY TRIALS	12
2.4	EXPERIMENTAL PROTOCOL	13
2.5	ENVIRONMENTAL, SAFETY AND ETHICAL ISSUES	16
<u>3</u>	RESULTS	17
3.1	QUALITATIVE DATA	17
3.2	TABLE OF FORMULAE USED	20
3.3	QUANTITATIVE AND PROCESSED DATA	21
3.4	VISUAL REPRESENTATION USING GRAPHS	22
3.5	DATA ANALYSIS: STATISTICAL TESTS	24
<u>4</u>	<u>DISCUSSION</u>	29
<u>5</u>	EVALUATION AND EXTENSIONS	32
<u>6</u>	CONCLUSION	34
<u>7</u>	BIBLIOGRAPHY	35
<u>8</u>	<u>APPENDIX</u>	40
8.1		
8.2		
8.3	RAW DATA FOR THE INVESTIGATION	42

8.4	ANOVA TEST AND TUKEY TEST (FULL)	46
<u>9</u> <u>1</u>	PRELIMINARY RESULTS FOR OTHER ABNORMALITIES AFTER 24H	49
9.1	QUALITATIVE DATA	49
9.2	QUANTITATIVE DATA	49
9.3	DISCUSSION	50
<u>10</u>	PRELIMINARY RESULTS FOR INVESTIGATING MI AFTER 48H	51
10.1	RAW DATA FOR PART 2	51
10.2	PROCESSED DATA	52
10.3	DATA ANALYSIS	53
10.4	DISCUSSION	58

1 Introduction

1.1 MOTIVATION BEHIND INVESTIGATION

Recently, increasing rates of cancer is the leading cause of death¹. However, the current medicine given to treat cancer like chemotherapy has many side effects like nausea and pain². In India, the Neem plant is an herb believed to cure cancer and even prevent relapses. However, laboratory researches show that excessive amounts of neem can cause adverse effects³. I was curious to find out if this was true, what amount of neem would be just right to prevent cancer while minimising adverse effects.

Research has shown high Reactive oxygen species (ROS) levels can cause cancer by causing genotoxicity and DNA damage⁴. J. Spencer et al. showed more DNA stand breaks with increasing concentration of $H_2O_2^4$. Hence, I decided to investigate how neem prevents oxidative damage caused by H_2O_2 .

1.2 RESEARCH QUESTION

How does the concentration of *Azadirachta indica* (neem) leaf extract (0.000, 0.002, 0.004, 0.006, 0.008 and 0.010 g/cm³) without or with 50cm³ of 3% hydrogen peroxide (H₂O₂) affect the Mitotic Index (MI) and the abnormal mitotic index(A-MI) in the root tips of *Allium cepa*, the duration of the experiment (24h), the species of the onion used (*Allium cepa var. aggregatum*), and the initial root length of the onion (1 inch) the same?

1.3 BACKGROUND INFORMATION

1.3.1 Cell cycle regulation and abnormal cell division

Mitosis, a process where the cell separates its duplicated DNA into two new nuclei, is highly regulated to prevent fatal mistakes. The cell cycle is regulated by many kinases (enzymes that attach phosphate groups to specific target proteins to activate them) in a cascade reaction. Cyclins drive the cell cycle by associating themselves with other enzymes, called cyclin-dependent kinases (CDKs). When a cyclin binds to the CDKs, it makes a functional enzyme and modifies target proteins.

If DNA is damaged, it is detected and the cell is halted at G₁ stage of mitosis. A protein called p53 responds to DNA damage. This protein, a tumor suppressor, stops the cell at G₁, activating DNA repair proteins, allowing DNA repair to occur. If DNA is not repairable, p53 will trigger programmed cell death^{5–7}. However, mutations in the p53 gene, can cause the cell to enter mitosis instead of self-destructing. This cell is cancerous, duplicating rapidly and lacking differentiated functions⁸. In humans cancerous cells can lead to fatalities as it can interfere with normal cellular functions⁹.

1.3.2 <u>Abnormal vs normal mitotic cells</u>

<u>Table 1: Normal vs Abnormal Mitotic Figures¹⁰ (self-taken)</u>

	Normal	Abnormal			
Prophase	A: Normal Prophase (Control	B: Vacuolated nucleus at			
_	w/o H ₂ O ₂)	prophase (0.002g/cm ³ Neem			
	Contraction Property	$W H_2O_2$			
	Condensing chromatids	Patches of lighter area and			
	forming chromosomes,	this is known as vacuoles			
	spread out evenly throughout	15 1115 W 11 45 V 40 5 10 5			
	the nucleus				
	There are many theories surrounding the cause of nuclear				
	vacoulation (i.e true holes, nuclear invagination by				
	cytoplasm, glycogen accumala	tion etc) ^{11,12}			
Metaphase	C: Normal Metaphase	D: Sticky Metaphase (0.002)			
	(Control w/o H ₂ O ₂) Chromosomes, distinct from	g/cm³ Neem w H ₂ O ₂) Chromosomes stick to each			
	each other, lining up in the	other (darker band) and			
	equotorial plane of the cell	distinct chromosomes cannot			
		be seen			
	Sticky metaphase could be due to too much adhesin holding				
	the chromosomes together, causing it to strongly adhere to each other 13,14.				

Anaphase	E: Normal Anaphase (Control w/o H ₂ O ₂)	F: Anaphase bridge (0.002g /cm³ w H ₂ O ₂)
	Two distinct portions of DNA and they are migrating to the poles of the cell	There is a "bridge"
	The "Bridge" is probably chromosomes and abnormal sp	
Telophase	G: Telophase-Cytokenisis (0.004g/cm ³ Neem w/o H ₂ O ₂)	H: unequal division, causing micro nuclei at telophase (0.004g/cm³ neem w H ₂ O ₂) One small nucleus and one
	Two equally shaped nucleus	large nucleus and this is called the micro nuclei
	Abnormality could be due to involved in proper splitting DN	

1.3.3 Reactive Oxygen Species

Reactive oxygen species (ROS) contain oxygen atom(s) more reactive than normal O_2 gas. ROS are produced naturally during cellular respiration and photosynthesis in the mitochondria, chloroplast and peroxisomes¹⁵. High levels of ROS can cause oxidative stress on cells, DNA damage and lead to cancer^{16,17}.

 H_2O_2 increases cell proliferation by mediating the MAPK/ERK cascade ¹⁶. H_2O_2 results in a signaling cascade where one protein activates another which activates another protein. The cascade reaches the final protein called ERK (MAPK) which is translocated to the nucleus where it expresses certain genes leading to cell proliferation ¹⁸.

In this investigation, H_2O_2 was used as the ROS. H_2O_2 can pass through the cell membrane quite easily due to its permeability. Once, it reaches the cell, it reacts with the ions in the cell to produce a highly reactive OH• radical. This OH• radical then goes onto attack the DNA and cause damage to the DNA¹⁹.

1.3.4 Azadirachta indica

Figure 1: The Neem Tree used

The neem tree, contains phytochemicals like Quercetin, Rutin, and Nimbolide, which contribute to anti-cancer and anti-genotoxic properties^{20,21}. Quercetin and Rutin are flavonoids which gets oxidized in place of DNA molecules, preventing DNA from being oxidized²².

Nimbolide disrupts Mitochondrial Outer Membrane Permeabilization (MOMP) by disrupting the Bcl-2 family of proteins responsible for cell apoptosis^{21,23,24}, resulting in apoptosis. Nimbolide also disrupts the Nrf2-KEAP1 complex, releasing more Nrf2. Nrf2 is a protein that regulates gene expression of antioxidant response²⁵. However, too much Nrf2 can allow cancer cell survival and proliferation^{21,24,26}. Nimbolide also disrupts other pathways, like the MAPK (ERK ½) cascade that cause cell proliferation. Hence nimbolide can cause MI to fall²⁴.

Figure 2: Properties of Nimbolide²⁴

1.4 Hypothesis

In the set-up with H_2O_2 , nimbolide has to reduce oxidative stress. In the process it could get metabolized. Hence little nimbolide is left to reduce cell proliferation. However in the set-up without H_2O_2 , all the nimbolide is being used to reduce cell proliferation. Therefore, as the concentration of neem increases, the MI in the set-up with H_2O_2 decreases to a less extent compared to the MI in set-up without H_2O_2 .

In the set-up with H_2O_2 , higher levels of abnormalities are present as compared to the set up without H_2O_2 . Hence, as the concentration of neem increases, A-MI for the set-up with H_2O_2 decreases with a larger extent compared to the A-MI in set-up without H_2O_2 .

2 METHODOLOGY

2.1 MATERIALS AND APPARATUS LIST

Table 2: Apparatus and materials list

Apparatus	Quantity/Size/Brand for 1 replicate	Uncertainty	
Plastic Cups	14	-	
Sewing thread	1 spool	-	
10cm ³ Measuring cylinder	1	± 0.2 cm ³	
50 cm ³ Measuring cylinder	1	± 0.5 cm ³	
250cm ³ Measuring cylinder	1	$\pm 2 \text{cm}^3$	
Microscope	1	-	
Slide and coverslip	14	-	
Razor Blade	1	-	
Watch glasses	1	-	
Forceps	1	-	
Digital Camera	1	-	
Ruler	1	0.1cm	
Stone mortar and pestle	1 set	-	
Tissue paper	1 roll	-	
Glass stirrer	1	-	
Permanent marker for	1	-	
labelling			
Plastic dropper	1	-	
Weighing Scale	1	± 0.01g	

Table 3: Chemicals List

Chemicals / liquids / organisms	Quantity for 1 replicate
6% Hydrogen Peroxide	150 cm^3
Deionized water bottle	2
0.5% aqueous toluidine blue dropper	1
0.1M HCl dropper	1
Azadirachta indica leaves	4.50g
Allium Cepa	14

2.2 METHOD OF CONTROL OF VARIABLES

Independent Variable: Concentration of *Azadirachta indica* leaves extract(0.002, 0.004, 0.006, 0.008, 0.010g/cm³)

Azadirachta Indica leaves have anti-cancer and anti-oxidant properties. However, an experiment done by researchers in the university of Agriculture in Nigeria found out that concentrations of 0.1, 0.2, 0.3, 0.4, 0.5 g/cm³ causes chromosomal aberrations³. Hence, 10 to 100 times less the concentration was used (0.002, 0.004, 0.006, 0.008, 0.010 g/cm³) to see if there is any difference in the results and to find the ideal concentration that gives benefits and minimizes genotoxicity.

Dependent Variable: MI and A-MI of Allium cepa root tip

MI quantifies the number of cells undergoing mitosis given by the formula: $\frac{\mathit{Cells in Mitosis}}{\mathit{Total number of cells}} \times 100\% \text{ . A very high MI can indicate rapidly growing cells. Chromosomal aberrations (detected under the light microscope) is quantified using the abnormal mitotic index given by the formula: <math display="block">\frac{\mathit{Cells undergoing abnormal mitosis}}{\mathit{Total number of mitotic cells}} \times 100\% \text{ . Both high MI and A-MI suggests the presence of cancerous cells, hence, chosen to test for anti-cancer properties of different concentrations of neem. By counting the total number of cells in one microscopic view of at least 2 roots from 1 onion and count the number of normal and abnormal mitotic cells, MI and A-MI can be found.$

Control Variable (1): Species of Allium cepa

Different species have different number of chromosomes and rate of cell proliferation at the root tip. Hence keeping the species the same is important. Keep the *Allium cepa* to one species – *Allium cepa var. aggregatum*.

Control Variable (2): The duration the root tips are immersed in the solution

The duration has to be the same across all the set-ups to ensure that any variance in MI between set-ups is not due to the root tips being exposed to the mixture longer or shorter than the other set-ups. Make sure that the MI is taken after 24h strictly

Control Variable (3): Initial length of root tip

Different lengths of roots will have different MIs different area exposed to the solution. Hence any change in the initial length of root tip may cause MIs to be different and the results may be affected as well. Make sure that the initial length of root tip is 1 inch.

2.3 PRELIMINARY TRIALS

In the preliminary trials, data was taken after 24h, 72h, and 120h. However, these timing did not give good results as exposure to H_2O_2 was too long for and it caused the roots to die off. Also, timings of 72h and 120h caused the onions to rot and allowed fungal growth. Hence the experiment was cut short to 24h and 48h.

In the preliminary trials, 6% H₂O₂ used was too concentrated causing roots of the onion in one set-up (the one with no leaf extract) to completely dissolve into the hydrogen peroxide. Hence the concentration was reduced to 3%.

2.4 EXPERIMENTAL PROTOCOL

2.4.1 <u>Preparation</u>

- 1. Grow the onion roots to about 1 inch in water(details in Section 8.2.1) which takes 24h.
- 2. Weigh 4.50g of Neem leaves using a weighing scale.
- 3. Using a stone mortar and pestle, grind the neem leaves using a stone mortar and pestle.

 This method was adopted as it is tradition to grind the leaves and drink its juice.
- 4. Use 5.0cm³ of deionized water measured using a 10cm³ measuring cylinder to grind the neem leaves.
- 5. After grinding all the leaves, top the solution volume to 450cm³ using a measuring cylinder.
- 6. To make the 3% H₂O₂ solution, combine 150cm³ 6% H₂O₂ stock solution and 150cm³ water, both measured using 200cm³ measuring cylinders. Always use fresh stock as hydrogen peroxide is photosensitive^{27,28}.

2.4.2 <u>Experimental protocol</u>

1. Prepare the test and control set-ups according to the table below.

Table 4: Volumes for each independent variable

Neem cond	centration /	Volume of neem /	Volume of	3% H ₂ O ₂	Total volume
g/cm ³		cm ³	distilled	Stock / cm ³	$/ \text{ cm}^3$
			Water / cm ³		
Group 1:	0.000	0	100	-	100
Without	0.002	20	80	-	100
H_2O_2	0.004	40	60	-	100
	0.006	60	40	-	100
	0.008	80	20	-	100
	0.010	100	0	-	100
Group 2:	0.000	0	50	50	100
With H ₂ O ₂	0.002	10	40	50	100
	0.004	20	30	50	100
	0.006	30	20	50	100
	0.008	40	10	50	100
	0.010	50	0	50	100

- 2. Soak the onions in the respective cups according to table 4.
- 3. After 24h, take out the tip of the root (2mm).
- 4. Soak 2 root tips in 0.1M HCl for 2 min. Rinse the root tips.
- 5. Soak 2 root tips in toluidine blue dye for 2 min. Rinse the root tips.
- 6. Place the root tips on a slide and put a drop of water on it. Place a cover slip on it followed by a tissue paper on it. Using the flat portion of the hand, squash the root tip.

Figure 3: Flat portion of the hand

- 7. Observe the root under the microscope and count the MI.
- 8. 2 roots from one onion is considered 1 replicate. Do 10 replicates for each of the independent variables.

2.5 ENVIRONMENTAL, SAFETY AND ETHICAL ISSUES

There are no ethical issues in this investigation.

Even though plastic cups make the experiment easier to carry out, it increases the use of plastic which is not environmentally friendly. As such, cups can be washed, dried and recycled.

When there is extensive fungal infection of the onion, use gloves to handle the onion and dispose the set-up appropriately in the biohazard waste. At high concentrations of H_2O_2 , it can cause irritation of the skin²⁷. However, since a low concentration was used, it is safe. Keep H_2O_2 away from naked flames^{27,28}. Cutting the root tip using a blade and while using glassware can cause injury. Be careful while using the blade and do not leave both the blade and glassware in unsupervised areas to avoid injuries. The dye used is Toluidine Blue is a relatively a safe dye²⁹.

3 RESULTS

3.1 QUALITATIVE DATA

Figure 4: Neem extract without H₂O₂

As the concentration of neem increases from 0.000 to 0.010g/cm³ (left to right), the intensity of the green color increases.

Figure 5: Neem extract reacting with hydrogen peroxide.

When the hydrogen peroxide (3%) was added, the neem and the hydrogen peroxide started reacting. As the concentration of neem (in g/cm³) increases, the depth of the foam increases, showing increasing vigorous reaction.

<u>Table 5: Microscopic view of the root tips after the various treatments</u>

Neem	Neem without H ₂ O ₂	Neem with H ₂ O ₂	Description
Conc			
entrat ion /			
g/cm ³			
0.000			The root exposed to H ₂ O ₂ shows a more abnormal elongation of the nuclei, vacuolated cells and cells undergoing abnormal prophase than the root not exposed to H ₂ O ₂ .
0.002			
0.004			The root exposed to H ₂ O ₂ shows more vacuolated cells and cells undergoing abnormal mitosis than the root not exposed to H ₂ O ₂ .
0.006			The root exposed to H ₂ O ₂ still has cells udergoing abnormal mitosis and cells that have vacuolated nucleus. However, the root not exposed to H ₂ O ₂ has no cells at mitosis and all cells
0.008			have a dense ideal nucleus.
0.010			

Figure 6: Roots of the onions soaked in the set-up without H₂O₂ after 24h.

As the concentration of neem increases, the root get harder.

Figure 7: Roots of the onions soaked in the set-up with H_2O_2 after 24h.

At concentration $0.000 g/cm^3$, the length is much shorter than other concentrations. The roots are also generally softer to touch that the roots from the set-up without H_2O_2 .

3.2 TABLE OF FORMULAE USED

Table 6: Formulae used

For	Formula	Example
Mean	\sum mitotic index of replicates	For control w/o H ₂ O ₂ and 0.000 g/cm ³
	10	neem,
		Mean =
		6.63+10.37+11.41+5.39+57.78+12.10+33.55+18.50+17.48+18.07
		= 19.13 (to 2 d.p)
Mitotic	Cells in Mitosis	For control w/o H ₂ O ₂ and 0.000 g/cm ³
Index,	$\frac{\text{cetts in Artests}}{\text{Total number of cells}} \times 100\%$	neem,
regardless		Replicate 1 Root 1
of		$=\frac{28+2+1+0}{313} \times 100\% = 9.90\% $ (to 2 d.p)
abnormalit		313
у		
Abnormal	Cells undergoing abnormal mitosis	For control w/o H ₂ O ₂ and 0.000 g/cm ³
Mitotic	Total number of mitotic cells × 100%	neem,
Index		Replicate 1 Root 1
		$=\frac{2}{31} \times 100\% = 6.67\%$ (to 2d.p)

3.3 QUANTITATIVE AND PROCESSED DATA

Table 7: An example of raw data (0.000 g/cm³ neem without H₂O₂: Replicate 10)

Raw Data									
Root	Prophase	Metaphase	Anaphase	Telophase	A-	A-	A-	A-	
no.	Fropilase	Metaphase	Anaphase	Telophase	Prophase	metaphase	Anaphase	telophase	
1	15	0	0	0	0	0	0	2	
2	14	1	0	0	0	0	0	1	
	Calculations								
Root		ber of cells		ber of cells	Total Nur	nber of cells	MI-N	MI-A	
no.	in norm	al mitosis	in Abnorn	nal Mitosis					
1	1 15 2					128	13.28	11.76	
2		15 1		1		70	22.86	6.25	
Average		15	-	2		99	18.07	9.01	

Table 8: Summary of data for each independent variable

	Concentration	Average	Average	Average	Average	Average
	of neem /	number	number of	Total	MI	A-MI
	g/cm ³	of cells in	cells	Number		
		abnormal	undergoing	of cells		
		mitosis	abnormal			
			mitosis			
Without	0.000	24.5	2.8	136	19.13	24.51
H_2O_2	0.002	28.2	3.5	184	16.66	14.54
	0.004	11.2	1.1	125	11.00	17.36
	0.006	2.0	0.3	132	2.74	14.58
	0.008	2.8	0.2	134	2.25	0.58
	0.010	2.2	0.5	101	2.80	5.60
With	0.000	1.10	23.25	114.75	27.65	93.41
H_2O_2	0.002	3.50	14.70	181.30	9.85	78.96
	0.004	0.55	5.55	134.15	6.01	60.74
	0.006	2.80	3.65	143.50	5.27	40.35
	0.008	2.55	1.15	135.65	2.54	12.17
	0.010	5.55	0.55	164.85	4.94	14.07

3.4 <u>VISUAL REPRESENTATION USING GRAPHS</u>

Graph 1: MI and A-MI in set-up with neem without H_2O_2

Graph 2: MI and A-MI in set-up with neem with H₂O₂

Graph 3: Comparison of MI between set-up without and with H₂O₂

Graph 4: Comparison of A-MI between set-up without and with H₂O₂

3.5 DATA ANALYSIS: STATISTICAL TESTS

ANOVA Test and Tukey test were used for this investigation.

3.5.1 MI in Neem without H₂O₂

Type I error is avoided in ANOVA where all independent variables are compared together^{30,31}. In ANOVA test, two hypothesis are made, the null and alternative hypothesis, tested at 0.05 significance level.

Null hypothesis: There is no statistically significant difference between increasing concentrations of neem in the set-up without H_2O_2 and MI.

Alternative hypothesis: There is a statistically significant difference between increasing concentrations of neem in the set-up without H_2O_2 and MI.

Anova: Single Factor Neem w/o H2O2 MI							
SUMN	MARY						
Groups	Count	Sum	Average	Variance			
0	10	191.28	19.128	248.5329			
0.002	10	166.55	16.655	134.179			
0.004	10	109.95	10.995	102.1179			
0.006	10	27.43	2.743	4.834579			
0.008	10	22.46	2.246	10.17132			
0.010	10	27.97	2.797	11.44785			
ANOVA							
Source of							
Variation	SS	df	MS	F	P-value	F crit	
Between							
Groups	2883.462	5	576.6924	6.767585	5.8E-05	2.38607	
Within							
Groups	4601.551	54	85.21391				
Total	7485.013	59					

Using Microsoft Excel's ANOVA test software, the above summary is obtained. Since the p-value (5.8E-05) is less than 0.05, there is sufficient evidence to suggest that one or more comparisons are statistically different. Hence the null hypothesis is rejected. However,

ANOVA cannot tell which comparisons are statistically different. Hence the Tukey test was chosen based on its ability to look at 6 independent variables inclusive of the control, accounting for error etc³².

Tukey test was done using astatsa.com. Table 9 shows the Q-Critical values used.

Table 9: Tukey test Q-Critical value used

Number of independent variables, k = 6	Significance level, $\alpha = 0.05$	4.1782
Degree of freedom, $v = 54$		

If the Tukey HSD Q statistics is above the Q-critical values, there is a significant difference in the data at a confidence interval of 95%.

Table 10: Tukey results (MI in set-up with neem without H_2O_2)

Comparisons	MI in the set-up with neem without H ₂ O ₂			
	Tukey HSD Tukey HSD			
	Q statistics	p value	Inference	
0.000 vs 0.002	0.8472	0.8999947	insignificant	
0.000 vs 0.004	2.7861	0.3736337	insignificant	
0.000 vs 0.006	5.613	0.0028093	** p<0.05	
0.000 vs 0.008	5.7832	0.001922	** p<0.05	
0.000 vs 0.010	5.5945	0.0029256	** p<0.05	
0.002 vs 0.004	1.9389	0.7180143	insignificant	
0.002 vs 0.006	4.7658	0.0166407	* p<0.05	
0.002 vs 0.008	4.936	0.0118308	* p<0.05	
0.002 vs 0.010	4.7473	0.0172595	* p<0.05	
0.004 vs 0.006	2.8269	0.3570371	insignificant	
0.004 vs 0.008	2.9971	0.2932046	insignificant	
0.004 vs 0.010	2.8084	0.3645242	insignificant	
0.006 vs 0.008	0.1703	0.8999947	insignificant	
0.006 vs 0.010	0.0185	0.8999947	insignificant	
0.008 vs 0.010	0.1888	0.8999947	insignificant	

3.5.2 A-MI in Neem without H_2O_2

Null hypothesis: There is no statistical difference between increasing concentrations of neem in the set-up without H_2O_2 and A-MI.

Alternative hypothesis: There is statistical difference between increasing concentrations of neem in the set-up without H₂O₂ and A-MI.

ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	3654.975	5	730.995	2.095412	0.080053	2.38607
Within						
Groups	18838.17	54	348.855			
Total	22493.15	59				

Null Hypothesis accepted. Hence no Tukey test was done.

3.5.3 MI in Neem with H₂O₂

Null hypothesis: There is no statistical difference between increasing concentrations of neem in the set-up with H_2O_2 and MI.

Alternative hypothesis: There is statistical difference between increasing concentrations of neem in the set-up with H_2O_2 and MI.

ANOVA						
Source of						
Variation	SS	df	MS	$\boldsymbol{\mathit{F}}$	P-value	F crit
Between						
Groups	4289.262	5	857.8524	6.073286	0.000157	2.38607
Within						
Groups	7627.506	54	141.2501			
Total	11916.77	59				

Null hypothesis was rejected. Tukey test was done. Q critical values are in Table 9.

Table 11: Tukey results (MI in the set-up with neem with H_2O_2)

Comparisons	MI in the set up with neem with H ₂ O ₂			
	Tukey HSD Tukey HSD Q statistics p value			
0.000 vs 0.002	4.7375	0.0175975	* p<0.05	
0.000 vs 0.004	5.7592	0.0020292	** p<0.05	
0.000 vs 0.006	5.9548	0.0013008	** p<0.05	
0.000 vs 0.008	6.6828	0.0010053	** p<0.05	
0.000 vs 0.010	6.0442	0.0010594	** p<0.05	
0.002 vs 0.004	1.0217	0.8999947	insignificant	
0.002 vs 0.006	1.2173	0.8999947	insignificant	
0.002 vs 0.008	1.9453	0.7154867	insignificant	
0.002 vs 0.010	1.3067	0.8999947	insignificant	
0.004 vs 0.006	0.1956	0.8999947	insignificant	
0.004 vs 0.008	0.9235	0.8999947	insignificant	
0.004 vs 0.010	0.285	0.8999947	insignificant	
0.006 vs 0.008	0.728	0.8999947	insignificant	
0.006 vs 0.010	0.0894	0.8999947	insignificant	
0.008 vs 0.010	0.6386	0.8999947	insignificant	

3.5.4 A-MI in Neem with H_2O_2

Null hypothesis: There is no statistical difference between increasing concentrations of neem in the set-up with H_2O_2 and A-MI.

Alternative hypothesis: There is statistical difference between increasing concentrations of neem in the set-up with H_2O_2 and A-MI.

ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	56534.03	5	11306.81	16.16185	1.02E-09	2.38607
Within						
Groups	37778.32	54	699.5985			
Total	94312.34	59				

Null Hypothesis was rejected. Tukey test was done. Q critical values are in Table 9.

Table 12: Tukey Test (A-MI in the set-up with neem with H_2O_2)

Comparisons	A-MI in the set up with neem with H ₂ O ₂			
	Tukey HSD Tukey HSD			
	Q statistics	p value		
0.000 vs 0.002	1.7277	0.8020583	insignificant	
0.000 vs 0.004	3.9052	0.0799202	insignificant	
0.000 vs 0.006	6.3432	0.0010053	** p<0.05	
0.000 vs 0.008	9.7123	0.0010053	** p<0.05	
0.000 vs 0.010	9.4858	0.0010053	** p<0.05	
0.002 vs 0.004	2.1775	0.6230857	insignificant	
0.002 vs 0.006	4.6155	0.0223118	* p<0.05	
0.002 vs 0.008	7.9846	0.0010053	** p<0.05	
0.002 vs 0.010	7.7581	0.0010053	** p<0.05	
0.004 vs 0.006	2.438	0.5194205	insignificant	
0.004 vs 0.008	5.8071	0.0018221	** p<0.05	
0.004 vs 0.010	5.5806	0.0030187	** p<0.05	
0.006 vs 0.008	3.3691	0.1806194	insignificant	
0.006 vs 0.010	3.1426	0.2446772	insignificant	
0.008 vs 0.010	0.2266	0.8999947	insignificant	

4 DISCUSSION

In the absence of H₂O₂, as the concentration of neem increases, both the MI and A-MI falls(graph 1).

As the neem concentration increases, content of nimbolide and anti-proliferative phytochemicals increases. Hence, the root cells undergo a slower rate of proliferation and MI falls. At a 95% confidence interval, the difference between the MI of the control and concentrations $0.006g/cm^3$ and above and the difference between the MI in $0.002g/cm^3$ and concentrations $0.006g/cm^3$ and above is significant(Table 10). Therefore, neem concentration of $0.006g/cm^3$ gives rise to significant anti-cell proliferation effect. After the concentration of $0.006g/cm^3$, there is saturation of these phytochemicals in the cell and therefore anything higher than $0.006g/cm^3$ does not make a significant difference.

Researches³ suggests neem causes mutagenic effects above 0.010 g/cm³. Since the range used in this investigation was below 0.01g/cm³, no adverse effects was seen in terms of A-MI, 0.01g/cm³ of neem can be used.

In the absence of H₂O₂, there is no significant difference in the fall of A-MI as concentration of neem increases (Section 3.5.2). Some researches³ state that neem cause abnormalities in mitosis while other researches suggest that phytochemicals in neem like nimbolide may help reduce cytotoxicity and thereby protecting the DNA²¹. Hence at low concentrations of neem, both toxic and anti-genotoxic effects of neem may take place. There could also be inherent abnormalities in the onion roots. Hence, results obtained is net effect.

In the presence of H₂O₂, as the concentration of neem increases, both the MI and A-MI fall(graph 2). As neem concentration increases, A-MI falls because disruption of KEAP1-Nrf2 complex increases releasing more Nrf2 protein which helps to preventing oxidative stress on Page 29 of 58

the DNA undergoing duplication and division. Increasing neem concentration, increases concentration of quercetin and rutin which get oxidized in place of the DNA. This can explain the frothing seen when neem and H_2O_2 are mixed, helping to prevent oxidative stress on the DNA (Figure 5). However, throughout these processes, the phytochemical could get metabolized and fewer of these phytochemicals are left to lower MI.

As the concentration increases in the set-up with H₂O₂, the difference between the MI and A-MI fall(Graph 2). This could be because the number cells undergoing abnormal mitosis falls more than the number of cells undergoing mitosis(abnormal and normal).

At a 95% confidence interval, significant differences only occur for the MI between the control and 0.002g/cm^3 concentration (Table 11) and the A-MI between control and concentrations of 0.006g/cm^3 and above of neem (Table 12). No other comparisons are significantly different. Graph 2 also shows that the error bars only start to overlap at 0.006g/cm^3 . Hence a minimum neem concentration of 0.006g/cm^3 has to be used to reduce both MI and A-MI significantly.

As the concentration of neem increases, the MI in the set-up with H_2O_2 decreases to a less extent compared to the MI in set-up without H_2O_2 (Graph 3). In the set-up with H_2O_2 , nimbolide has to reduce oxidative stress and only remaining nimbolide will reduce cell proliferation. However, in the set-up without H_2O_2 all the nimbolide is being used to reduce cell proliferation. Therefore, the set up with H_2O_2 and neem will experience a smaller magnitude in the fall of the MI compared to the set-up with only neem.

Graph 3 also shows that MI and A-MI start to plateau at higher concentrations including and above 0.008g/cm³. This could be due to the saturation of phytochemicals and the definite Page **30** of **58**

amount of proliferation pathways occurring. Hence any increase in the concentration of phytochemicals do not cause any significant difference in the MI.

As the concentration of neem increases, A-MI for the set-up with H_2O_2 decreases with a larger extent compared to the A-MI in set-up without H_2O_2 (Graph 4). In the set-up with H_2O_2 , high levels of oxidative damage occurs to the DNA than in the set-up without H_2O_2 . The difference in the A-MI between the set-ups with and without H_2O_2 is large and reduce as concentration increases. Moreover, error bars do not overlap until 0.004g/cm³. This suggests that for the effects of H_2O_2 to be reduced to give the same results as the set-up without H_2O_2 a concentration of 0.04g/cm³ is required.

To add on, the A-MI is higher than the MI in both set-ups without or with H₂O₂. This can be attributed to the formula used to calculate the A-MI because the number of cells undergoing mitosis is much smaller than the number of cells present. Hence the A-MI calculated would be generally higher due to the denominator being significantly lower in magnitude than that of the MI.

Overall, the results support the hypothesis made.

5 EVALUATION AND EXTENSIONS

Abnormal and normal mitotic index, used to detect DNA damage may not be all-encompassing.

Other types of abnormal figures were seen not classified under the mitotic index. Below shows some example:

Type of abnormality	Self-taken Photos
Apoptosis: Complete disintegration of the nucleus and the cell	
Fragmentation of the nucleus, nucleus is not	
concentrated around one area rather is spread out unevenly.	
Abnormally shaped nucleus having pointed edges	

None of the above nuclei are undergoing mitosis but reflect DNA damage. A preliminary trial was done for this extension (Section 9). In the presence of H_2O_2 , as the neem concentration increases, the number of abnormalities decreases but no trend was observed in the absence of H_2O_2 . Therefore, further investigation in this area can be done.

Another limitation is that the duration was kept at 24h. However, the effects of neem could possibly remain after 24h. A trial was done to investigate what the effects were after 24h at the 48h mark(Section 10). Although some concentrations showed effects, the data predominantly

showed that neem could not alter the mitotic index at the 48h mark. Hence, an investigation can be conducted by creating more intervals for testing between 24h and 48h and testing MI and A-MI.

Additionally, this experiment investigated one type of ROS. An extension could be done to see whether neem can fight against other forms of radicals like Cl•.

Moreover, there is biological variation of the onions used. Hence, it is nearly impossible to maintain the exact same health level, root length, stage of growth etc. of every single onion. Hence this increases the variation in mitotic index obtained.

Furthermore, the investigation is based on the Allium cepa working as a model of cancer cells. However, Allium cepa is not a true model because it does not fully reflect the human body and its mechanisms. Hence, conclusions obtained in this investigation cannot be fully applied to other species, like humans.

Despite these limitations the experiment has strengths. Using *Allium cepa* as a model has the least safety and ethical issue as opposed to using other mediums like actual human and/or animal tissue. Additionally, this experiment can be reproduced easily as the cost, and duration of this experiment is minimal. Moreover, results obtained have significant differences between independent variables and this is a strength of the investigation.

6 CONCLUSION

In conclusion, as the concentration of neem increases without H_2O_2 in the mixture, both the MI and A-MI reduces. This trend was attributed to the properties of the phytochemicals present in neem (e.g. nimbolide) which disrupt cell proliferation pathways and disrupts cell regulatory proteins like CDKs and cyclin proteins which causes cell cycle arrest.

Additionally, in the set-up with H₂O₂ as the concentration of neem increases, both MI and A-MI falls. This was attributed to the increasing flavonoids present in neem (as concentration of neem increases) which gets oxidised in place of DNA molecules which allow the increasing normal progression of mitosis. However, at the same time, nimbolide works to disrupt cell proliferation and slows down mitosis. Hence both MI and A-MI falls as concentration increases.

7 BIBLIOGRAPHY

- Susan Scutti. Cancer surpasses heart disease as leading cause of death in many US countries.
 CNN. 2018 Nov 12 [accessed 2019 Apr 4]. https://edition.cnn.com/2018/11/12/health/cancersurpasses-heart-disease-study/index.html
- 2. Side Effects of Cancer Treatment National Cancer Institute. 2018 [accessed 2019 Apr 4]. https://www.cancer.gov/about-cancer/treatment/side-effects
- 3. Adegbite AE, Ayodele MS, Odunbaku KR, Idehen EO. Mutagenic effect of neem leaf extract used in traditional medicine on Allium cepa (L.). Scientific Research and Essays. 2009 [accessed 2018 Oct 13];4(11):1315–1321. http://www.academicjournals.org/SRE
- 4. Spencer JPE, Jenner A, Chimel K, Aruoma OI, Cross CE, Wu R, Halliwell B. DNA strand breakage and base modification induced by hydrogen peroxide treatment of human respiratory tract epithelial cells. 1995. https://core.ac.uk/download/pdf/81158349.pdf
- 5. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. The Company of Biologists Ltd. 2013;140(15):3079–3093. doi:10.1242/dev.091744
- 6. Khan Academy. Cell cycle regulators. [accessed 2019 Apr 4]. https://www.khanacademy.org/science/biology/cellular-molecular-biology/stem-cells-and-cancer/a/cell-cycle-regulators
- 7. Campbell NA, B.Reece J, A.Urry L, L.Cain M, A.Wasserman S, V.Minorsky P, B.Jackson R. Biology: A global Approach. 10th ed. Pearson; 2015.
- 8. What Is Cancer? National Cancer Institute. 2015 [accessed 2019 Jun 11]. https://www.cancer.gov/about-cancer/understanding/what-is-cancer
- Ingrid Lobo. Chromosome Abnormalities and Cancer Cytogenetics. 2008 [accessed 2019
 Jun 11]. https://www.nature.com/scitable/topicpage/chromosome-abnormalities-and-cancer-cytogenetics-879. doi:10.1038/ng1215
- 10. Allium IN, Cells CR. Mitotic Aberrations Induced By Sunflower Seed Oil. 1962.

- 11. Bavle RM. Nuclear vacuolization: Giant Lochkern-like cells. Journal of oral and maxillofacial pathology: JOMFP. 2016 [accessed 2019 Jun 13];20(3):339–341. http://www.ncbi.nlm.nih.gov/pubmed/27721594. doi:10.4103/0973-029X.190895
- 12. Aravinthan A, Verma S, Coleman N, Davies S, Allison M, Alexander G. Vacuolation in hepatocyte nuclei is a marker of senescence. Journal of Clinical Pathology. 2012;65(6):557–560. doi:10.1136/jclinpath-2011-200641
- 13. Ahmida R, Elshatshat S. Genotoxic evaluations of Allium cepa L. using different concentrations of synthesized butenolide. Pelagia Research Library Asian Journal of Plant Science and Research. [accessed 2019 Jun 13];2013(4):8–12. www.pelagiaresearchlibrary.com 14. Leslie Redpath J, Bengtsson U, DeSimone J, Lao X, Wang X, Stanbridge EJ. Sticky anaphase aberrations after G2-phase arrest of gamma-irradiated human skin fibroblasts: TP53 independence of formation and TP53 dependence of consequences. Radiation research. 2003 [accessed 2019 Jun 13];159(1):57–71. http://www.ncbi.nlm.nih.gov/pubmed/12492369
- 15. Apel K, Hirt H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004 [accessed 2018 Jul 6];55:373–99. http://www.heribert-hirt.info/pdf/prr85_ros.pdf.

doi:10.1146/annurev.arplant.55.031903.141701

- 16. Dong J, Liu B, Zhu R. Targeting ROS for Cancer Therapy. Chemotherapy. 2016 [accessed 2018 Jul 6];05(02):1–7. http://www.omicsgroup.org/journals/targeting-ros-for-cancer-therapy-2167-7700-1000199.php?aid=73644. doi:10.4172/2167-7700.1000199
- 17. López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer letters. 2007 [accessed 2018 May 6];252(1):1–8. http://www.ncbi.nlm.nih.gov/pubmed/17150302. doi:10.1016/j.canlet.2006.10.029
- 18. McCain J. The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. P & T: a peer-reviewed journal for formulary Page 36 of 58

management. 2013 [accessed 2019 Apr 4];38(2):96–108. http://www.ncbi.nlm.nih.gov/pubmed/23599677

- 19. Rueff J, Brás A, Cristóvão L, Mexia J, Sáda Costa M, Pires V. DNA strand breaks and chromosomal aberrations induced by H2O2and60Co γ-radiation. Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis. 1993;289(2):197–204. doi:10.1016/0027-5107(93)90070-V
- 20. R. Subapriya, S. Nagini. Medicinal Properties of Neem Leaves: A Review. 2005 [accessed 2018 Jul 7]. http://medicalmate.gr/img/cms/Vivliothiki Gia Epaggelmaties Ygeias/wound management/Allegato NE 01.pdf
- 21. Hao F, Kumar S, Yadav N, Chandra D. Neem components as potential agents for cancer prevention and treatment. Biochimica et biophysica acta. 2014 [accessed 2018 Jul 7];1846(1):247–57. http://www.ncbi.nlm.nih.gov/pubmed/25016141. doi:10.1016/j.bbcan.2014.07.002
- 22. Cotelle N. Role of flavonoids in oxidative stress. Curr Top Med Chem. 2001;1(6):569–590.
- 23. Kuwana T. The Role of Mitochondrial Outer Membrane Permeabilization (MOMP) in Apoptosis: Studying Bax Pores by Cryo-Electron Microscopy. 1st ed. Elsevier Inc.; 2018. doi:10.1016/bs.abl.2017.12.002
- 24. Wang L, Phan DDK, Zhang J, Ong P-S, Thuya WL, Soo R, Wong AL-A, Yong WP, Lee SC, Ho PC-L, et al. Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development. Oncotarget. 2016 [accessed 2019 Feb 27];7(28):44790–44802. http://www.ncbi.nlm.nih.gov/pubmed/27027349. doi:10.18632/oncotarget.8316
- 25. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annual review of pharmacology and toxicology. 2013 [accessed 2019 Apr 5];53:401–26. http://www.ncbi.nlm.nih.gov/pubmed/23294312. doi:10.1146/annurev-pharmtox-011112-140320

- 26. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophysical reviews. 2017 [accessed 2019 Mar 9];9(1):41–56. http://www.ncbi.nlm.nih.gov/pubmed/28510041. doi:10.1007/s12551-016-0244-4
- 27. LabChem. Hydrogen Peroxide, 3% w/w. 2017. www.labchem.com
- 28. Pubchem. Hydrogen Peroxide. Pubchem. [accessed 2018 May 21]. https://pubchem.ncbi.nlm.nih.gov/compound/784#section=Top
- 29. ThermoFisher Scientific. Safety Data Sheet: Toluidine Blue 2010. O. https://www.fishersci.com/store/msds?partNumber=T16125&productDescription=TOLUIDI NE+BLUE+O+CERT+BIO+25G&vendorId=VN00033897&countryCode=US&language=en 30. University California B. of I and Type II Type errors. https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf
- 31. What are type I and type II errors? minitab. 2019 [accessed 2019 Mar 9]. https://support.minitab.com/en-us/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/basics/type-i-and-type-ii-error/
- 32. IBM Knowledge Center. One-Way ANOVA Post Hoc Tests. IBM Knowledge Center. [accessed 2019 Mar 9]. https://www.ibm.com/support/knowledgecenter/en/SSLVMB_23.0.0/spss/base/idh_onew_post.html
- 33. Ronald Ross Watson, Victor R. Preedy. Botanical Medicine in Clinical Practice Google Books. 2008 [accessed 2019 Feb 27]. https://books.google.com.sg/books?hl=en&lr=&id=j5PdVtMgVLYC&oi=fnd&pg=PA85&dq=neem+extract+and+anti+cancer+mitotic+index+root+tip&ots=n95Fs4J7E_&sig=Ft1XkJc0xvu_9smsg2hFYyxzJCo#v=onepage&q&f=false
- 34. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007

 Page 38 of 58

[accessed 2019 Mar 9];35(4):495–516. http://www.ncbi.nlm.nih.gov/pubmed/17562483. doi:10.1080/01926230701320337

8 APPENDIX

8.1 BACKGROUND INFORMATION

Appendix Table 1: Scientific classification of neem

Scientific classification ³³							
Kingdom	Plantae						
Division	Rutales						
Order	Sapindales						
Family	Meliaceae						
Genus	Azadirachta						
Species	Indica						

8.2 METHODOLOGY

8.2.1 Protocol for growing onions

- 1. Soak the onion in a tub of water for 1h.
- 2. Place the soaked onions on top of the wet kitchen tissue placed in a plastic container, evenly spaced out.
- 3. Place another wet kitchen tissue, about 2 cm in depth, on top of the onions. Make sure that are no "gaps" in which air can easily go in and out.

<u>Appendix Figure 1:Step 2 of protocol</u>; <u>Appendix Figure 2: Step 3 of protocol</u>

- 4. Place the plastic container with onions outdoors for 1 day.
- 5. Transfer the onions into the plastic cups. Hold up the onions using strings. Leave them outside on the balcony until the roots are about 1 inch long.

Appendix Figure 3: Setup of Onion

8.2.2 Other steps and protocols with pictures:

1. Using a stone mortar and pestle, grind the neem leaves using a stone mortar and pestle.

Appendix Figure 4: Stone and mortar pestle

8.3 RAW DATA FOR THE INVESTIGATION

Appendix Table 2: $0.000g/cm^3$ Neem without H_2O_2

Concentration	Replicate	Root no.	Prophase	Metaphase	Anaphase	Telophase	A-Prophase	A-metaphase	A-Anaphase	A-telophase	Total number of cells in normal mitosis	Total number of cells in Abnormal Mitosis	Total Number	MI-N	MI-A
	.,	1	3	2	0	0	0	2	0	1	5	3	239	3.35	37.50
		2	28	0	1	0	0	2	0	0	29	2	313	9.90	6.45
	1	Average	16	1	1	0	0	2	0	1	17	3	276	6.63	21.98
		1	24	0	0	2	0	6	0	0	26	6	240	13.33	18.75
		2	2	0	0	0	1	0	0	1	2	2	54	7.41	50.00
	2	Average	13	0	0	1	1	3	0	1	14	4	147	10.37	34.38
		1	6	1	1	0	0	0	0	1	8	1	46	19.57	11.11
		2	1	0	0	0	0	1	0	1	1	2	92	3.26	66.67
	3	Average	4	1	1	0	0	1	0	1	5	2	69	11.41	38.89
		1	3	0	0	0	0	3	2	0	3	5	143	5.59	62.50
		2	2	0	0	0	2	0	0	0	2	2	77	5.19	50.00
	4	Average	3	0	0	0	1	2	1	0	3	4	110	5.39	56.25
		1	127	1	0	0	0	1	0	0	128	1	205	62.93	0.78
		2	75	0	0	0	3	1	1	0	75	5	152	52.63	6.25
	5	Average	101	1	0	0	2	1	1	0	102	3	179	57.78	3.51
		1	12	1	0	0	4	1	0	0	13	5	91	19.78	27.78
		2	2	0	0	0	0	1	0	2	2	3	113	4.42	60.00
	6	Average	7	1	0	0	2	1	0	1	8	4	102	12.10	43.89
		1	53	1	0	0	5	0	0	0	54	5	143	41.26	8.47
		2	31	0	0	0	0	0	0	0	31	0	120	25.83	0.00
	7	Average	42	1	0	0	3	0	0	0	43	3	132	33.55	4.24
		1	27	0	0	0	2	0	0	0	27	2	175	16.57	6.90
		2	16	0	0	0	0	0	0	3	16	3	93	20.43	15.79
	8	Average	22	0	0	0	1	0	0	2	22	3	134	18.50	11.34
		1	33	1	2	0	4	0	0	0	36	4	124	32.26	10.00
		2	2	0	0	0	0	1	0	0	2	1	111	2.70	33.33
	9	Average	18	1	1	0	2	1	0	0	19	3	118	17.48	21.67
		1	15	0	0	0	0	0	0	2	15	2	128	13.28	11.76
		2	14	1	0	0	0	0	0	1	15	1	70	22.86	6.25
	10	Average	15	1	0	0	0	0	0	2	15	2	99	18.07	9.01
	Ave	rage	24	0	0	0	1	1	0	1	25	3	136	19.13	24.51
0.000	S	iD .	29	0	0	0	1	1	0	1	29	1	57	15.76	18.16

Appendix Table 3: 0.002g/cm³ Neem without H₂O₂

Appendix Table 4: 0.004 g/cm³ Neem without H₂O₂

Page **42** of **58**

Appendix Table 5: 0.006 g/cm³ Neem without H₂O₂

				-			-								
		1	0	0	0	0	0	0	1	0	. 0	1.0	555	0.18	100.00
		2	1	0	0	0	1	0	0	0	1	1.0	500	0.40	50.00
	1	Average	0.5	0	0	0	0.5	0	0.5	0	0.5	1.0	527.5	0.29	75.00
		1	1	0	0	0	0	0	0	0	1	0.0	37	2.70	0.00
		2	4	0	0	0	0	0	0	0	4	0.0	47	8.51	0.00
	2	Average	2.5	0	0	0	0	0	0	0	2.5	0.0	42	5.61	0.00
		1	3	0	0	0	0	0	0	0	3	0.0	167	1.80	0.00
		2	5	0	0	0	1	0	0	0	5	1.0	118	5.08	16.67
	3	Average	4	0	0	0	0.5	0	0	0	4	0.5	142.5	3.44	8.33
		1	0	0	0	0	0	0	0	0	0	0.0	46	0.00	0.00
		2	3	0	0	0	0	0	0		3	0.0	35	8.57	0.00
	4	Average	1.5	0	0	0	0	0	0	0	1.5	0.0	40.5	4.29	0.00
		1	3	0	0	0	1	0	0	0	3	1.0	145	2.76	25.00
		2	5	0	0	0	0	0	0	0	5	0.0	57	8.77	0.00
	5	Average	4	0	0	0	0.5	0	0	0	4	0.5	101	5.77	12.50
		1	0	0	0	0	0	0	0	0	0	0.0	73	0.00	0.00
		2	1	0	0	0	0	0	0	0	1	0.0	84	1.19	0.00
	6	Average	0.5	0	0	0	0	0	0	0	0.5	0.0	78.5	0.60	0.00
		1	0	0	0	0	0	0	0	0	0	0.0	56	0.00	0.00
		2	3	0	0	0	0	0	0	0	3	0.0	126	2.38	0.00
	7	Average	1.5	0	0	0	0	0	0	0	1.5	0.0	91	1.19	0.00
		1	7	0	0	0	0	0	0	0	7	0.0	100	7.00	0.00
		2	0	0	0	0	0	0	1	0	0	1.0	69	1.45	100.00
	8	Average	3.5	0	0	0	0	0	0.5	0	3.5	0.5	84.5	4.22	50.00
		1	0	0	0	0	0	0	0	0	0	0.0	119	0.00	0.00
		2	1	3	0	0	0	0	0	0	4	0.0	99	4.04	0.00
1	9	Average	0.5	1.5	0	0	0	0	0	0	2	0.0	109	2.02	0.00
		1	0	0	0	0	0	0	0	0	0	0.0	112	0.00	0.00
		2	0	0	0	0	0	0	0	0	0	0.0	95	0.00	0.00
1	10	Average	0	0	0	0	0	0	0	0	0	0.0	103.5	0.00	0.00
	Ave	rage	1.85	0.15	0.00	0.00	0.15	0.00	0.10	0.00	2.00	0.3	132.00	2.74	14.58
0.006	S	iD .	1.55	0.47	0.00	0.00	0.24	0.00	0.21	0.00	1.47	0.4	142.25	2.20	26.30

Appendix Table 6: 0.008 g/cm³ Neem without H₂O₂

Appendix Table 7: 0.010 g/cm³ Neem without H₂O₂

Appendix Table 8: 0.000 g/cm³ Neem with H_2O_2

											,	,			
l		1	10	0	0	0	16	21	1	4	10	42	94	55.32	80.77
		2	0	1	0	0	75	0	0	0	1	75	178	42.70	98.68
l	1	Average	5	0.5	0	0	45.5	10.5	0.5	2	5.5	58.5	136	49.01	89.73
l		1	0	0	0	0	50	1	0	0	0	51	59	86.44	100.00
		2	0	0	0	0	47	0	0	0	0	47	67	70.15	100.00
	2	Average	0	0	0	0	48.5	0.5	0	0	0	49	63	78.29	100.00
		1	0	0	0	0	3	0	0	0	0	3	154	1.95	100.00
		2	0	0	0	0	12	0	0	0	0	12	79	15.19	100.00
	3	Average	0	0	0	0	7.5	0	0	0	0	7.5	116.5	8.57	100.00
		1	0	0	0	0	87	0	0	0	0	87	140	62.14	100.00
		2	0	0	0	0	23	0	0	0	0	23	64	35.94	100.00
	4	Average	0	0	0	0	55	0	0	0	0	55	102	49.04	100.00
		1	0	0	0	0	1	4	0	0	0	5	119	4.20	100.00
		2	0	0	0	0	45		0	0	0	45	56	80.36	100.00
	5	Average	0	0	0	0	23	4	0	0	0	25	87.5	42.28	100.00
		1	0	0	0	0	0	0	0	1	0	1	102	0.98	100.00
		2	0	0	0	0	0	1	0	3	0	4	125	3.20	100.00
	6	Average	0	0	0	0	0	0.5	0	2	0	2.5	113.5	2.09	100.00
		1	3	0	0	0	20	0	0	1	3	21	86	27.91	87.50
		2	4	0	0	0	4	0	0	0	4	4	98	8.16	50.00
	7	Average	3.5	0	0	0	12	0	0	0.5	3.5	12.5	92	18.04	68.75
		1	0	0	0	0	4	0	0	0	0	4	107	3.74	100.00
		2	0	0	0	0	4	0	0	0	0	4	139	2.88	100.00
	8	Average	0	0	0	0	4	0	0	0	0	4	123	3.31	100.00
		1	0	0	1	0	6	1	1	0	1	8	246	3.66	88.89
		2	0	0	1	0	5	5	0	0	1	10	264	4.17	90.91
	9	Average	0	0	1	0	5.5	3	0.5	0	1	9	255	3.91	89.90
		1	2	0	0	0	4	1	0	0	2	5	78	8.97	71.43
		2	0	0	0	0	14	0	0	0	0	14	40	35.00	100.00
	10	Average	1	0	0	0	9	0.5	0	0	1	9.5	59	21.99	85.71
	Ave	rage	0.95	0.05	0.10	0.00	21.00	1.90	0.10	0.45	1.10	23.25	114.75	27.65	93.41
0.0000	S	D	1.80	0.16	0.32	0.00	20.80	3.33	0.21	0.83	1.90	22.30	55.18	25.80	10.29

Appendix Table 9: 0.002 g/cm³ Neem with H_2O_2

		1	0.00	0.00	0.00	0.00	39.00	0.00	0.00	0.00	0	39	144	27.08	100.00
		2	0.00	0.00	0.00	0.00	29.00	10.00	3.00	0.00	0	42	431	9.74	100.00
	1	Average	0.00	0.00	0.00	0.00	34.00	5.00	1.50	0.00	0	40.5	287.5	18.41	100.00
	1	Average 1	0.00	0.00	0.00	0.00	27.00	0.00	0.00	1.00	0	28	91	30.77	100.00
		2	1.00	0.00	0.00	0.00	29.00	1.00	0.00	0.00	1	30	135	22.96	96.77
	2	Average	0.50	0.00	0.00	0.00	28.00	0.50	0.00	0.50	0.5	29	113	26.87	98.39
		1	0.00	1.00	0.00	0.00	8.00	0.00	1.00	1.00	1	10	265	4.15	90.91
		2	0.00	0.00	0.00	0.00	2.00	1.00	0.00	0.00	0	3	147	2.04	100.00
	3	Average	0.00	0.50	0.00	0.00	5.00	0.50	0.50	0.50	0.5	6.5	206	3.10	95.45
	-	1	0.00	0.00	0.00	0.00	24.00	0.00	1.00	0.00	0	25	158	15.82	100.00
		2	0.00	0.00	0.00	0.00	10.00	0.00	0.00	0.00	0	10	128	7.81	100.00
	4	Average	0.00	0.00	0.00	0.00	17.00	0.00	0.50	0.00	0	17.5	143	11.82	100.00
		1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	72	0.00	0.00
		2	0.00	0.00	0.00	0.00	7.00	5.00	0.00	0.00	0	12	240	5.00	100.00
	5	Average	0.00	0.00	0.00	0.00	3.50	2.50	0.00	0.00	0	6	156	2.50	50.00
		1	23.00	0.00	0.00	0.00	24.00	0.00	0.00	0.00	23	24	213	22.07	51.06
		2	0.00	0.00	0.00	0.00	3.00	0.00	0.00	0.00	0	3	84	3.57	100.00
	6	Average	11.50	0.00	0.00	0.00	13.50	0.00	0.00	0.00	11.5	13.5	148.5	12.82	75.53
		1	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0	1	83	1.20	100.00
		2	5.00	0.00	0.00	0.00	3.00	0.00	0.00	0.00	5	3	147	5.44	37.50
	7	Average	2.50	0.00	0.00	0.00	2.00	0.00	0.00	0.00	2.5	2	115	3.32	68.75
		1	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0	1	105	0.95	100.00
		2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	98	0.00	0.00
	8	Average	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0	0.5	101.5	0.48	50.00
		1	35.00	0.00	0.00	0.00	34.00	2.00	2.00	0.00	35	38	283	25.80	52.05
		2	2.00	0.00	0.00	0.00	3.00	3.00	3.00	0.00	2	9	191	5.76	81.82
	9	Average	18.50	0.00	0.00	0.00	18.50	2.50	2.50	0.00	18.5	23.5	237	15.78	66.94
		1	2.00	0.00	0.00	0.00	4.00	6.00	0.00	0.00	2	10	249	4.82	83.33
		2	1.00	0.00	0.00	0.00	6.00	0.00	0.00	0.00	1	6	362	1.93	85.71
	10	Average	1.50	0.00	0.00	0.00	5.00	3.00	0.00	0.00	1.5	8	305.5	3.38	84.52
	Avei		3.45	0.05	0.00	0.00	12.65	1.40	0.55	0.10	3.50	14.70	181.30	9.85	78.96
0.002	SI	D	6.36	0.16	0.00	0.00	11.64	1.74	0.83	0.21	6.33	12.94	73.81	8.71	19.73

Appendix Table 10: 0.004 g/cm³ Neem with H₂O₂

												,			
		1	0.00	1.00	0.00	0.00	0.00	1.00	1.00	5.00	1	7	42	19.05	87.50
		2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	68	0.00	0.00
	1	Average	0.00	0.50	0.00	0.00	0.00	0.50	0.50	2.50	0.5	3.5	55	9.52	43.75
		1	1.00	0.00	0.00	0.00	10.00	2.00	0.00	1.00	1	13	89	15.73	92.86
		2	1.00	0.00	0.00	0.00	12.00	0.00	0.00	1.00	1	13	90	15.56	92.86
	2	Average	1.00	0.00	0.00	0.00	11.00	1.00	0.00	1.00	1	13	89.5	15.64	92.86
		1	0.00	0.00	0.00	0.00	5.00	0.00	0.00	0.00	0	5	83	6.02	100.00
		2	0.00	0.00	0.00	0.00	9.00	0.00	0.00	0.00	0	9	93	9.68	100.00
	3	Average	0.00	0.00	0.00	0.00	7.00	0.00	0.00	0.00	0	7	88	7.85	100.00
		1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	2	0	144	1.39	0.00
		2	0.00	0.00	0.00	0.00	0.00	4.00	0.00	1.00	0	5	194	2.58	100.00
	4	Average	0.50	0.50	0.00	0.00	0.00	2.00	0.00	0.50	1	2.5	169	1.98	50.00
		1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	257	0.00	0.00
		2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1	1	256	0.78	50.00
	5	Average	0.50	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.5	0.5	256.5	0.39	25.00
		1	0.00	1.00	0.00	0.00	0.00	2.00	3.00	0.00	1	5	167	3.59	83.33
		2	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.00	0	2	88	2.27	100.00
	6	Average	0.00	0.50	0.00	0.00	0.00	1.00	2.50	0.00	0.5	3.5	127.5	2.93	91.67
		1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	137	0.00	0.00
		2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	160	0.00	0.00
	7	Average	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	148.5	0.00	0.00
		1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	52	0.00	0.00
		2	2.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	2	1	189	1.59	33.33
	8	Average	1.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	1	0.5	120.5	0.79	16.67
		1	0.00	1.00	0.00	0.00	1.00	1.00	3.00	0.00	1	5	180	3.33	83.33
		2	1.00	0.00	0.00	0.00	11.00	0.00	0.00	0.00	1	11	165	7.27	91.67
	9	Average	0.50	0.50	0.00	0.00	6.00	0.50	1.50	0.00	1	8	172.5	5.30	87.50
		1	0.00	0.00	0.00	0.00	15.00	0.00	0.00	0.00	0	15	81	18.52	100.00
		2	0.00	0.00	0.00	0.00	19.00	0.00	0.00	0.00	0	19	148	12.84	100.00
	10	Average	0.00	0.00	0.00	0.00	17.00	0.00	0.00	0.00	0	17	114.5	15.68	100.00
	Aver	rage	0.35	0.20	0.00	0.00	4.20	0.50	0.45	0.40	0.55	5.55	134.15	6.01	60.74
0.004	SI	D	0.41	0.26	0.00	0.00	5.95	0.67	0.86	0.81	0.44	5.72	56.63	5.99	38.15

Appendix Table 11: 0.006 g/cm³ Neem with H₂O₂

1 Average 3 0 0 0 0 5 0 0 0 0 0 5 94 5.32 100.0 1 Average 3 0 0 0 0 8 1 0 0 0 3 9 132 8.22 8.22 1 1 5 0 0 0 0 5 0 0 1 5 6 115 9.57 54.55 2 13 0 0 0 0 12 1 0 0 2 13 15 117 23.93 53.55 2 Average 9 0 0 0 0 8.5 0.5 0 1.5 9 10.5 116 16.75 54.00 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 19 0.63 100.0 2 1 1 0 0 0 0 0 17 0 0 0 0 1 1 17 94 191.5 94.4 3 Average 0.5 0 0 0 0 8.5 0.5 0 0.5 9 126.5 9.89 97.2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 114 8.8 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 114 8.8 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													•			
1 Average 3 0 0 0 0 8 1 0 0 0 3 9 132 8.25 84.2 1 1 5 0 0 0 0 5 0 0 1 5 6 115 9.57 54.51 2 Average 9 0 0 0 0 8.5 0.5 0 1.5 9 10.5 116 16.75 \$4.01 1 0 0 0 0 0 0 17 0 0 0 1 1 19 0.63 100.0 2 1 0 0 0 0 17 0 0 0 0 1 1 19 94.4 3 Average 0.5 0 0 0 0 8.5 0 0.5 0 0.5 9 126.5 9.89 99.2 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 17 94 19.15 94.4 3 Average 0.5 0 0 0 0 0 8.5 0 0.5 0 0.5 9 126.5 9.89 99.2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 114 0 88 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 114 0 88 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.3 0.00 0.00	l													170	11.18	68.42
1 5 0 0 0 5 0 0 1 1 5 6 115 957 \$4.55 2 13 0 0 0 0 12 1 0 2 13 15 117 2.393 \$1.55. 2 Average 9 0 0 0 0 8.5 0.5 0 1.5 9 10.5 116 16.75 \$4.00 1 0 0 0 0 0 0 17 0 0 0 1 1 0 0 1 1 159 0.63 1 0 0 0 0 0 17 0 0 0 0 1 1 17 17 94 19.5 94.00 3 Average 0.5 0 0 0 0 8.5 0 0.5 0 0.5 9 126.5 9.89 97.2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 114 88 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 88.5 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 8.5 0 0.5 9 9.5 0.4 0.00 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l		2	0	0	0	0	5	0	0	0	0	5			100.00
2 13 0 0 0 0 12 1 0 0 2 13 15 117 23.93 53.57 2 Average 9 0 0 0 0 8.5 0.5 0 1.5 9 10.5 116 16.75 54.00 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 159 0.63 100.0 2 1 1 0 0 0 0 0 17 0 0 0 0 1 1 17 94 19.15 94.4 3 Average 0.5 0 0 0 0 8.5 0 0.5 0 0.5 9 126.5 9.89 97.22 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 12.5 9.89 97.22 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 14 0 0 14 0 0.88 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.3 0.00 0.00	l	1	Average	3	0	0	0	8	1	0	0	3	9	132	8.25	84.21
2 Average 9 0 0 0 0 8.5 0.5 0 1.5 9 10.5 116 16.75 \$4.00 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 159 0.63 100.0 2 1 1 0 0 0 0 0 1.7 0 0 0 0 1 1 17 94 19.15 94.4 3 Average 0.5 0 0 0 0 8.5 0 0.5 0 0.5 9 126.5 9.89 97.2: 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 11 14 0.88 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 114 3.55 100.0 2 0 0 2 2 0 0 0 0 0 0 4 1 0 0 5 141 3.55 100.0 2 0 0 2 2 2 0 0 0 0 0 0 0 0 1 1 0 1 82 60.0 5 Average 0 1 1 0 0 0 0 0 0 0 1 0 0 5 141 3.55 100.0 5 Average 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 141 3.55 100.0 5 Average 0 1 1 1 0 0 0 2 2 1 0 0 0 0 0 0 0 5 2 0.0 0 6 Average 0 0 1 1 1 0 0 0 2 2 1 0 0 2 87 2.30 100.0 0 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 1 64 0.00 0.0 0 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 1 69.5 115 5 50.0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 154 0.00 0.00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 154 0.00 0.00 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l		1	5	0	0	0	5	0	0	1	5	6	115	9.57	54.55
1 0 0 0 0 0 0 0 1 1 0 0 1 159 0.63 100.0 2 1 1 0 0 0 0 0 177 0 0 0 1 1 159 0.63 100.0 3 Average 0.5 0 0 0 0 8.5 0 0.5 0 0.5 9 126.5 9.89 97.22 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 114 0.88 0.00 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 114 0.88 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.5 0.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98.5 0.44 0.00 1 1 0 0 0 0 0 0 0 0 4 1 0 0 0 5 0 98.5 0.44 0.00 2 0 0 2 2 0 0 0 0 0 0 1 0 0 0 5 111.5 100 5 Average 0 1 1 1 0 0 0 2 1 0 0 4 1 82 6.10 20.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l		2	13	0	0	0	12	1	0	2	13	15	117	23.93	53.57
2 1 0 0 0 17 0 0 0 0 17 0 0 0 1 1 17 94 19.15 94.4 3 Average 0.5 0 0 0 0 8.5 0 0.5 0 0.5 0 9.126.5 989 97.22 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 114 0.88 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 83 0.00 1 0 0 0 0 0 0 0 0 0 0 0 0 83 0.00 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 5 0 98.5 0.44 0.00 2 0 0 2 2 2 0 0 0 0 0 1 0 0 5 141 3.55 100.0 5 Average 0 1 1 0 0 0 0 0 0 0 1 0 0 4 1 82 60.0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2 3 111.5 4.82 60.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0.00 0.00	1	2	Average	9	0	0	0	8.5	0.5	0	1.5	9	10.5	116	16.75	54.06
3 Average 0.5 0 0 0 0 8.5 0 0.5 9 126.5 9.89 97.22 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 114 0.88 0.00 2 1 0 0 0 0 0 0 0 0 0 0 1 1 0 114 0.88 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 98.5 0.44 0.00 1 0 0 0 0 0 0 4 1 0 0 0 5 0 98.5 0.44 0.00 1 0 0 0 0 0 0 0 1 0 0 5 141 3.55 100.0 2 0 0 2 2 0 0 0 0 1 1 0 4 1 82 6.10 20.00 5 Average 0 1 1 1 0 0 0 2 1 0 0 2 3 111.5 4.22 60.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 87 2.30 100.00 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 69.5 11.5 50.00 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 69.5 11.5 50.00 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 69.0 10.1 50.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1		1	0	0	0	0	0	0	1	0	0	1	159	0.63	100.00
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 114 0.88 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 83 0.00 0.00 4 Average 1 0 0 0 0 0 0 0 0 0 0 0.5 0 98.5 0.44 0.00 1 0 0 0 0 0 0 0 1 0 0 5 141 3.55 100.0 2 0 0 2 2 2 0 0 0 0 1 1 0 0 4 1 82 6.10 120.00 5 Average 0 1 1 0 0 0 2 1 0 2 3 111.5 4.82 60.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0.00 0.00	1		2	1	0	0	0	17	0	0	0	1	17	94	19.15	94.44
2	l	3	Average	0.5	0	0	0	8.5	0	0.5	0	0.5	9	126.5	9.89	97.22
4 Average 1 0 0 0 0 0 0 0 0 0 0 0 0 98.5 0 44 0.00 1 0 0 0 0 0 0 0 4 1 0 0 0 5 141 3.55 100.0 2 0 0 2 2 2 0 0 0 0 1 1 0 4 1 82 6.10 120.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 3 111.5 482 66.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 87 2.30 100.0 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 2 87 2.30 111.5 50.00 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 159 51.5 50.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 159 0.00 0.00 1 5 1 2 1 0 0 0 0 0 0 0 0 0 0 0 159 0.00 154 0.00 0.00 2 9 2 1 1 3 1 1 1 1 1 1 2 5 280 60.07 29.4 8 Average 7 1.5 1.5 1 1.5 1 1.5 0.5 0 0.5 10.5 2.5 191.5 74.0 14.7 1 1 0 0 0 0 0 0 0 1 1 1 0 1 2 326 0.92 66.6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.33 7 0.00 0.00	1		1	1	0	0	0	0	0	0	0	1	0	114	0.88	0.00
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 5 141 3.55 100.0 2 0 0 2 2 2 0 0 0 0 1 1 0 4 1 82 6.10 20.00 5 Average 0 1 1 1 0 0 2 1 0 2 3 111.5 4.82 60.0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 0.00 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 1 69.5 1.15 50.0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 69.5 1.15 50.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 64 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 154 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 1 50 159 0.00 0.00 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 159 0.00 0.00 1 1 5 1 2 1 0 0 0 0 0 0 0 0 159 0.00 0.00 2 9 2 1 1 3 1 1 1 1 1 2 5 280 6.07 29.41 8 Average 7 1.5 1.5 1 1 1.5 0.5 0 0 0.5 10.5 2.5 191.5 7.40 14.71 8 Average 0 0 0 0 0 0 0 1 1 0 1 1 2 326 0.07 29.41 8 Average 7 1.5 1.5 1 1.5 1.5 0.5 0 0.5 10.5 2.5 191.5 7.40 14.71 9 Average 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 326 0.92 66.65 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 326 0.92 66.65 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l		2		0	0	0	0	0	0	0	0	0	83	0.00	0.00
2 0 2 2 0 0 0 0 0 0 1 0 4 1 82 6.10 20.00 5 Average 0 1 1 1 0 0 0 2 1 0 0 2 3 111.5 4.82 66.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 52 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 2 87 2.30 110.00 6 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 52 87 2.30 100.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 154 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 1 5 1 5 1 2 1 0 0 0 0 0 0 0 0 159 0.00 154 8 Average 7 1.5 15 1.5 1 1.5 0.00 2 9 2 1 1 3 1 1 1 1 1 2 5 280 607 29.4 8 Average 7 1.5 1 1.5 1 1.5 0.5 0 0.5 0.5 10.5 2.5 191.5 7.40 14.7; 1 1 0 0 0 0 0 0 1 1 1 0 1 1 2 326 0.92 66.6 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 2 336 0.92 66.6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	4	Average	1	0	0	0	0	0	0	0	0.5	0	98.5	0.44	0.00
5 Average 0 1 1 1 0 0 0 2 1 1 0 0 2 3 111.5 4.82 60.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 52 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 0.00 0.00	1		1	0	0	0	0	0	4	1	0	0	5	141	3.55	100.00
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0	1		2	0	2	2	0	0	0	1	0	4	1	82	6.10	20.00
2 0 0 0 0 0 0 0 2 0 0 0 2 87 230 1000 6 Average 0 0 0 0 0 0 0 0 1 0 0 1 64 0.00 0.00 1 0 0 0 0 0 0 0 0 0 0 0 1 64 0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 1 5 1 5 1 2 1 0 0 0 0 0 0 0 0 159 0.00 2 9 2 1 1 3 1 1 1 1 2 5 280 6.07 8 Average 7 1.5 1.5 1 1.5 0.5 0 0.5 10.5 2.5 191.5 7.40 14.7: 1 1 0 0 0 0 0 1 1 1 0 1 2 2 3.6 0.92 6.66. 3 Average 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00	1	5	Average	0	1	1	0	0	2	1	0	2	3	111.5	4.82	60.00
6 Average 0 0 0 0 0 0 0 0 1 0 0 1 69.5 1.15 50.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 64.0.00 0.00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 159 0.00 0.00 1 5 1 2 1 0 0 0 0 0 0 0 9 0 133 8.74 0.00 2 9 2 1 1 3 1 1 1 12 5 280 6.07 29.41 8 Average 7 1.5 1.5 1 1.5 0.5 0 0.5 0 0.5 10.5 2.5 191.5 7.40 14.77 1 1 0 0 0 0 0 1 1 1 0 1 1 2 326 0.92 66.67 2 0 0 0 0 0 0 0 1 1 1 0 1 1 2 326 0.92 66.67 9 Average 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00	l		1	0	0	0	0	0	0	0	0	0	0	52	0.00	0.00
1 0 0 0 0 0 0 0 0 0 0 0 0 0 154 000 000 7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 154 000 000 1 1 5 1 2 1 0 0 0 0 0 0 0 0 159 000 000 2 2 0 0 0 0 0 0 0 0 0 0 0 0 159 000 000 2 2 1 1 3 1 1 1 1 1 2 5 280 667 294: 8 Average 7 15 1.5 1 1.5 0.5 0 0.5 10.5 2.5 191.5 7.40 14.7: 1 1 0 0 0 0 0 1 1 0 1 2 23.6 0.92 66.6 19.9 19.9 19.9 19.9 19.9 19.9 19.9	1		2	0	0	0	0	0	0	2	0	0	2	87	2.30	100.00
2 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0.00 0.00 1 1 5 1 2 1 0 0 0 0 0 0 0 0 159 0.00 0.00 2 9 2 1 1 3 1 1 1 1 1 2 5 280 6.07 29.41 8 Average 7 1.5 1.5 1 1.5 0.5 0 0.5 10.5 2.5 191.5 7.40 14.77. 1 1 1 0 0 0 0 0 1 1 1 0 1 2 326 0.92 66.67 2 0 0 0 0 0 0 0 1 1 1 0 1 2 326 0.92 66.67 9 Average 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00	1	6	Average	0	0	0	0	0	0	1	0	0	1	69.5	1.15	50.00
7 Average 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 159 0.00 0.00 0 0 0 0 159 0.00 0.00 0 0 1 5 1 2 1 0 0 0 0 0 0 0 9 0 103 8.74 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l		1	0	0	0	0	0	0	0	0	0	0	164	0.00	0.00
1 5 1 2 1 0 0 0 0 9 0 103 8.74 0.00	1		2	0	0	0	0	0	0	0	0	0	0	154	0.00	0.00
2 9 2 1 3 1 1.5 0.5 0 0.5 10.5 2.5 191.5 7.40 14.77. 8 Average 7 1.5 1.5 1 1.5 0.5 0 0.5 10.5 2.5 191.5 7.40 14.77. 1 1 1 0 0 0 0 0 1 1 1 0 0 1 2 326 0.92 66.6. 2 0 0 0 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00	1	7	Average	0	0	0	0	0	0	0	0	0	0	159	0.00	0.00
8 Average 7 1.5 1.5 1 1.5 0.5 0 0.5 10.5 2.5 191.5 7.40 14.7: 1 1 1 0 0 0 0 1 1 1 2 326 0.92 66.6: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00	l		1	5	1	2	1	0	0	0	0	9	0	103	8.74	0.00
1 1 0 0 0 0 1 1 1 2 326 0.92 66.67 2 0 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00	l		2	9	2	1		3	1		1	12		280	6.07	29.41
2 0 0 0 0 0 0 0 0 0 0 0 0 337 0.00 0.00 9 Average 0.5 0 0 0 0 0 0.5 0.5 0 0.5 1 331.5 0.46 33.3: 1 0 0 0 0 0 0 0 0 0 0 0 0 128 0.00 0.00 2 4 0 0 0 0 1 0 0 0 0 4 1 70 7.14 20.00 10 Average 2 0 0 0 0.5 0 0 0 2 0.5 99 3.57 10.00 Average 2.30 0.25 0.25 0.10 2.70 0.45 0.30 0.20 2.80 3.65 143.50 5.27 40.33	1	8	Average	7	1.5	1.5	1	1.5	0.5	0	0.5	10.5	2.5	191.5	7.40	14.71
9 Average 0.5 0 0 0 0 0.5 0.5 0 0.5 1 331.5 0.46 33.33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 0.00 0.00 0.00 0 0 0 0 0 128 0.00 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0 0	l		1	1	0	0	0	0	1	1	0	1	2	326	0.92	66.67
1 0 0 0 0 0 0 0 0 0 0 0 128 0.00 0.00 2 4 1 70 7.14 20.00 10 Average 2 0 0 0 0 0 0.5 0 0 0 2 0.5 99 3.57 10.00 Average 2.30 0.25 0.25 0.10 2.70 0.45 0.30 0.20 2.80 3.65 143.50 5.27 40.33	1		2	0	0	0	0	0	0	0	0	0	0	337	0.00	0.00
2 4 0 0 0 1 0 0 0 4 1 70 7.14 20.00 10 Average 2 0 0 0 0.5 0 0 0 2 0.5 99 3.57 10.00 Average 2.30 0.25 0.25 0.10 2.70 0.45 0.30 0.20 2.80 3.65 143.50 5.27 40.33	1	9	Average	0.5	0	0	0	0	0.5	0.5	0	0.5	1	331.5	0.46	33.33
10 Average 2 0 0 0 0.5 0 0 0 2 0.5 99 3.57 10.00 Average 2.30 0.25 0.25 0.10 2.70 0.45 0.30 0.20 2.80 3.65 143.50 5.27 40.30	l			0	0		0	0				0	0	128		0.00
Average 2.30 0.25 0.25 0.10 2.70 0.45 0.30 0.20 2.80 3.65 143.50 5.27 40.35	l		2	4	0	0	0	1	0	0	0	4	1	70	7.14	20.00
	1	10	Average													10.00
		Ave	rage	2.30	0.25	0.25	0.10	2.70	0.45	0.30	0.20	2.80	3.65	143.50	5.27	40.35
0.006 SD 3.19 0.54 0.54 0.32 3.92 0.64 0.42 0.48 3.81 4.17 74.22 5.38 34.50	0.006	S	D	3.19	0.54	0.54	0.32	3.92	0.64	0.42	0.48	3.81	4.17	74.22	5.38	34.50

Appendix Table 12: 0.008 g/cm³ Neem with H₂O₂

Appendix Table 13: 0.010 g/cm³ Neem with H₂O₂

8.4 ANOVA TEST AND TUKEY TEST (FULL)

8.4.1 Neem without H₂O₂: A-MI

Null hypothesis: There is no relationship between increasing concentrations of neem in the set-up without H_2O_2 and A-MI.

Alternative hypothesis: There is a relationship between increasing concentrations of neem in the set-up without H_2O_2 and A-MI.

	Anova: Si	ngle Factor	Neem w/c	H2O2 Ab	normal MI	
SUMN	MARY					
Groups	Count	Sum	Average	Variance		
0	10	245.16	24.516	329.6946		
0.002	10	145.35	14.535	236.7192		
0.004	10	173.57	17.357	664.2271		
0.006	10	145.83	14.583	691.5556		
0.008	10	5.77	0.577	3.32929		
0.01	10	55.96	5.596	167.6045		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	3654.975	5	730.995	2.095412	0.080053	2.38607
Within						
Groups	18838.17	54	348.855			
Total	22493.15	59				

Null Hypothesis accepted. Hence no Tukey test was done.

8.4.2 <u>Neem with H₂O₂: MI</u>

Null hypothesis: There is no relationship between increasing concentrations of neem in the set-up with H_2O_2 and MI.

Alternative hypothesis: There is a relationship between increasing concentrations of neem in the set-up with H_2O_2 and MI.

	And	va: Single	Factor Nee	em w H2O2	. MI	
SUMN	MARY					
Groups	Count	Sum	Average	Variance		
0	10	276.53	27.653	665.5554		
0.002	10	98.48	9.848	75.85604		
0.004	10	60.08	6.008	35.90397		
0.006	10	52.73	5.273	28.98409		
0.008	10	25.37	2.537	17.59805		
0.01	10	49.37	4.937	23.60307		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	4289.262	5	857.8524	6.073286	0.000157	2.38607
Within						
Groups	7627.506	54	141.2501			
Total	11916.77	59				

Null hypothesis was rejected. Tukey test was done. Q critical values are the same as mentioned above.

Comparisons	MI for se	t up with neem v	with H ₂ O ₂
	Tukey HSD Q statistics	Tukey HSD p value	
0.000 vs 0.002	4.7375	0.0175975	* p<0.05
0.000 vs 0.004	5.7592	0.0020292	** p<0.01
0.000 vs 0.006	5.9548	0.0013008	** p<0.01
0.000 vs 0.008	6.6828	0.0010053	** p<0.01
0.000 vs 0.010	6.0442	0.0010594	** p<0.01
0.002 vs 0.004	1.0217	0.8999947	insignificant
0.002 vs 0.006	1.2173	0.8999947	insignificant
0.002 vs 0.008	1.9453	0.7154867	insignificant
0.002 vs 0.010	1.3067	0.8999947	insignificant
0.004 vs 0.006	0.1956	0.8999947	insignificant
0.004 vs 0.008	0.9235	0.8999947	insignificant
0.004 vs 0.010	0.285	0.8999947	insignificant
0.006 vs 0.008	0.728	0.8999947	insignificant
0.006 vs 0.010	0.0894	0.8999947	insignificant
0.008 vs 0.010	0.6386	0.8999947	insignificant

8.4.3 Neem with H₂O₂: A-MI

Null hypothesis: There is no relationship between increasing concentrations of neem in the set-up with H_2O_2 and A-MI.

Alternative hypothesis: There is a relationship between increasing concentrations of neem in the set-up with H_2O_2 and A-MI.

	Anova: S	ingle Facto	or Neem w	H2O2 Abn	ormal MI	
SUM	MARY					
Groups	Count	Sum	Average	Variance		
0	10	934.09	93.409	105.9819		
0.002	10	789.58	78.958	389.286		
0.004	10	607.45	60.745	1455.558		
0.006	10	403.53	40.353	1189.907		
0.008	10	121.73	12.173	322.8392		
0.01	10	140.68	14.068	734.0189		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	56534.03	5	11306.81	16.16185	1.02E-09	2.38607
Within						
Groups	37778.32	54	699.5985			
Total	94312.34	59				

Null Hypothesis was rejected. Tukey test was done. Q critical values are the same as mentioned above.

Comparisons	A-MI for s	set up with neem	with H ₂ O ₂
	Tukey HSD Q statistics	Tukey HSD p value	
0.000 vs 0.002	1.7277	0.8020583	insignificant
0.000 vs 0.004	3.9052	0.0799202	insignificant
0.000 vs 0.006	6.3432	0.0010053	** p<0.01
0.000 vs 0.008	9.7123	0.0010053	** p<0.01
0.000 vs 0.010	9.4858	0.0010053	** p<0.01
0.002 vs 0.004	2.1775	0.6230857	insignificant
0.002 vs 0.006	4.6155	0.0223118	* p<0.05
0.002 vs 0.008	7.9846	0.0010053	** p<0.01
0.002 vs 0.010	7.7581	0.0010053	** p<0.01
0.004 vs 0.006	2.438	0.5194205	insignificant
0.004 vs 0.008	5.8071	0.0018221	** p<0.01
0.004 vs 0.010	5.5806	0.0030187	** p<0.01
0.006 vs 0.008	3.3691	0.1806194	insignificant
0.006 vs 0.010	3.1426	0.2446772	insignificant
0.008 vs 0.010	0.2266	0.8999947	insignificant

9 Preliminary results for Other abnormalities after 24h

9.1 **QUALITATIVE DATA**

Appendix Table 14: Types of abnormalities

Type of abnormality	Photos taken by me	Description
Apoptosis		Complete disintegration of the nucleus
Fragmentation of the nucleus		The blue intensity of the dye is very minimal and it is not concentrated around one area rather it is spread out unevenly.
Abnormally shaped nucleus		Not round and ideal nucleus. There are pointed edges and they looked slightly deformed.

9.2 QUANTITATIVE DATA

Appendix Table 15: Average type of abnormality for 10 replicates used in the main investigation

		Тур	es of abnormalit	ies per 100 ce	lls
Group	Concentration			abnormally	
			fragmentation	shaped	Total
		apoptosis	of the nucleus	nucleus	abnormalities
Neem	0.000	1.21	0.11	0.00	1.32
without	0.002	0.25	0.00	0.00	0.25
H_2O_2	0.004	0.12	0.32	0.00	0.44
	0.006	0.00	0.00	0.00	0.00
	0.008	0.00	0.00	0.00	0.00
	0.010	0.00	0.15	0.00	0.15
Neem	0.000	2.48	0.26	3.88	6.62
with	0.002	0.03	1.13	0.30	1.46
H_2O_2	0.004	0.00	0.71	4.73	5.44
	0.006	0.21	0.10	0.66	0.98
	0.008	0.00	0.07	0.11	0.18
	0.010	3.12	0.09	0.03	3.25

9.3 **DISCUSSION**

The average total number of abnormal figures in the group without H_2O_2 show a decreasing trend. However, since the average number of abnormal figures per 100 cell is very small, any difference in the number of abnormal figures cannot be confidently attributed to the effects of neem. In the group with H_2O_2 , there is a decreasing trend in the total number of abnormal figures with a few anomalies (in red), reflecting the main investigation.

After a series of cascades, the nucleus fragments, cytoskeleton gets disrupted, the membrane starts to bleb and the cell fragments^{24,34}, possibly triggering apoptosis.

However, this may occur at a much lower extent in the absence of oxidative stress. Hence the results show no trend in the absence of H₂O₂. This could indicate neem's specificity when it comes to causing programmed cell death and acting on cells that actually undergo oxidative stress.

Both part 1 and part 2 showed that within 24h results can be seen. Part 3 was done to see if the effects lasted 48h.

10 PRELIMINARY RESULTS FOR INVESTIGATING MI AFTER 48H

10.1 RAW DATA FOR PART 2

Appendix Table 16: MI after 48h for set up with neem without hydrogen peroxide

Mitotic Index	Concentration	Replicate	Prophase	Metaphase	Anaphase	Telophase	A-Prophase	A-metaphase	A-Anaphase	A-telophase	Total number of cells in normal mitosis	Total number of cells in Abnormal Mitosis	Total Number	MI-N	MI-A
		1	12	0		1	. 0	1) (1	3	86	16.28	7.14
			4) () 4				
		3	34) 4	3!				
		4	14) (2:				
			15								4 -				
		Average	15.80												
	0.000	SD	11.05												
			7) (
			15) (1				
			18			_) (11				
			12) (
		Average	10.60												
	0.002	SD	6.73	0.45	0.00	0.00	3.65	0.49	0.00	0.00	6.80	0 3.50	33.28	5.84	1 22.40
			19	C	C		2	(() (19	9 :	95	22.11	9.52
			17	0			3	() (1	7	109	18.35	5 15.00
			11) (1:				
		4	7) (7			
			6) () (-			
		Average	12.00												
	0.004	SD	5.83												
			. 3) (
			51) 2	5:				
			1 0) (1				
			26) (
		Average	19.20												
	0.006	SD	20.61												
			33	0	0		1	1	. () :	1 3:	3	103	34.99	8.33
			2 0	0			0	() (0 (57	0.00	0.00
		3	47	1	1		0	(() (49	9 (246	19.92	
			30	0	C		3) (30	0 :	95	34.74	9.09
			15		C		0) (1	5 (71	21.13	0.00
		Average	25.00	0.20	0.20	0.00	0.80	0.20	0.00	0.20	25.40	0 1.20	114.40	22.15	
	0.008	SD	18.01												
	1		49) ;	2 49				
			0) (0 (
	1	1	11) (1:				
	1	-	0) (
	1	A	13.60			_				0.40					
Neem	0.010	Average SD	20.38												

Appendix Table 17: MI after 48h for set up with neem with hydrogen peroxide

Mitotic Index	Concentration	Replicate	Prophase	Metaphase	Anaphase	Telophase	A-Prophase	A-metaphase	A-Anaphase	A-telophase	Total number of cells in normal mitosis	Total number of cells in Abnormal Mitosis	Total Number of cells	MI-N		MI-A
			1 0	0	0	C	48	11		2 15	5 (76	121		62.81	100.00
			2 2	0	2		17	9		5 7	7	1 38	123		34.15	90.48
			3 1) (1 40			70.69	97.56
			4 0) :		39			74.47	100.00
			5 0									o			12.20	100.00
		Average	0.60												50.86	97.61
	0.000	SD	0.89											_	26.78	4.12
			1 0							2 (1	38			88.37 2.76	100.00
			3 5) 4		20			19.53	80.00
			4 2) (14.85	86.67
			5 0									5			9.62	100.00
		Average	1.40												27.03	93.33
	0.002	SD	2.19	0.00	0.00	0.00	14.95	0.00	1.79	1.79	2.19	13.91	45.20		34.86	9.43
			1 0	0	0	C	33	0	(15	; (48	55		87.27	100.00
			2 0	0		C	50) 14		64	79		81.01	100.00
			3 1	0		C	1	0) :	:	1 2	94		3.19	66.67
			4 1		C	C	9	C) (10	9	79		24.05	47.37
			5 1	0	0	C	2	C	1	4 (:	1 6	61		11.48	85.71
		Average	0.60	0.00	0.00	0.00	19.00	0.00	0.80	6.00	2.40	25.80	73.60		41.40	79.95
	0.004	SD	0.55							7.78					39.78	22.78
			1 2) ([:				4.23	66.67
			2 1) :					1.75	50.00
			3 17) :	1				8.93	15.00
			4 2) :					8.25	37.50
			5 0												0.00 4.63	0.00
	0.006	Average SD	7.09												3.92	26.70
	0.006	30	1 0) (1				0.00	0.00
			2 16) (10				8.60	0.00
			3 1) (0.65	0.00
			4 1								ó				0.49	0.00
			5 7												13.10	36.36
		Average	5.00	0.00	0.00	0.00	0.80	0.00	0.00	0.00	5.00	0.80	145.60		4.57	7.27
	0.008	SD	6.75			0.00	1.79	0.00	0.00	0.00	6.79	5 1.79	52.18		5.96	16.26
			1 0	C	C	C	0	C) () (0) (125		0.00	0.00
	1		2 0	0		C	0	0	() () () (52		0.00	0.00
	1		3 0	1		C) () :	1 0	140		0.71	0.00
	1		4 0) () (0.00	0.00
	1		5 0								0) (48		0.00	0.00
	1	Average	0.00												0.14	0.00
Neem in H2O2	0.010	SD	0.00	0.45	0.00	0.00	0.00	0.00	0.00	0.00	0.4	0.00	46.08		0.32	0.00

10.2 PROCESSED DATA

The data was obtained from 5 of the replicates in part 1 that were left longer for 48h. Detailed data is in the appendix.

Appendix Table 18: MI of Neem without H₂O₂

Concentratio	on / g/cm ³	0.000	0.002	0.004	0.006	0.008	0.010
Replicates	1	16.28	12.31	22.11	5.17	34.95	50.88
	2	8.57	11.72	18.35	27.78	0.00	0.00
	3	19.13	1.69	16.67	16.49	19.92	6.75
	4	14.35	16.38	16.39	0.00	34.74	0.00
	5	22.47	15.46	8.57	25.49	21.13	15.25

Appendix Table 19: A-MI of Neem without H₂O₂

Concentration	on / g/cm ³	0.000	0.002	0.004	0.006	0.008	0.010
Replicates	1	7.14	56.25	9.52	0.00	8.33	15.52
	2	33.33	11.76	15.00	7.27	0.00	0.00
	3	20.45	0.00	35.29	0.00	0.00	0.00
	4	38.24	5.26	30.00	0.00	9.09	0.00
	5	25.00	13.33	0.00	0.00	0.00	11.11

Appendix Table 20: MI: Neem with H₂O₂

Concentration	on / g/cm ³	0.000	0.002	0.004	0.006	0.008	0.010
Replicates	1	62.81	88.37	87.27	4.23	0.00	0.00
	2	34.15	2.76	81.01	1.75	8.60	0.00
	3	70.69	19.53	3.19	8.93	0.65	0.71
	4	74.47	14.85	24.05	8.25	0.49	0.00
	5	12.20	9.62	11.48	0.00	13.10	0.00

Appendix Table 21: A-MI of Neem with H₂O₂

Concentration	on / g/cm ³	0.000	0.002	0.004	0.006	0.008	0.010
Replicates	1	100.00	100.00	100.00	66.67	0.00	0.00
	2	90.48	100.00	100.00	50.00	0.00	0.00
	3	97.56	80.00	66.67	15.00	0.00	0.00
	4	100.00	86.67	47.37	37.50	0.00	0.00
	5	100.00	100.00	85.71	0.00	36.36	0.00

10.3 DATA ANALYSIS

10.3.1 Neem without H₂O₂: MI

Null hypothesis: There is no relationship between increasing concentrations of neem in the set-up without H_2O_2 and the MI.

Alternative hypothesis: There is a relationship between increasing concentrations of neem in the set-up without H_2O_2 and the MI.

	Anova: Si	ingle Factor	r Neem w/c	H2O2 MI	after 48h	
SUMN	MARY					
Groups	Count	Sum	Average	Variance		
0	5	80.79883	16.15977	27.38873		
0.002	5	57.56997	11.51399	34.09041		
0.004	5	82.08542	16.41708	24.42585		
0.006	5	74.93523	14.98705	149.2827		
0.008	5	110.7338	22.14675	204.7385		
0.01	5	72.8799	14.57598	451.1066		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	305.7678	5	61.15357	0.411793	0.835824	2.620654
Within						
Groups	3564.131	24	148.5055			
Total	3869.899	29				

Since the p value is more than 0.05, the null hypothesis was accepted.

10.3.2 <u>Neem without H₂O₂: A-MI</u>

Null hypothesis: There is no relationship between increasing concentrations of neem in the set-up without H_2O_2 and the A-MI.

Alternative hypothesis: There is a relationship between increasing concentrations of neem in the set-up without H_2O_2 and the A-MI.

A	nova: Singl	e Factor N	eem w/o H2	2O2 Abnor	mal MI after 48	h
SUMN	MARY					
Groups	Count	Sum	Average	Variance		
0	5	124.166	24.83321	146.0043		
0.002	5	86.6112	17.32224	501.9124		
0.004	5	89.81793	17.96359	211.9814		
0.006	5	7.272727	1.454545	10.57851		
0.008	5	17.42424	3.484848	22.84206		
0.01	5	26.62835	5.32567	55.60693		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	2282.038	5	456.4077	2.885839	0.035330266	2.620654
Within						
Groups	3795.702	24	158.1543			
Total	6077.741	29				

Null Hypothesis accepted. No Tukey test was done.

10.3.3 Neem with H₂O₂: MI

Null hypothesis: There is no relationship between increasing concentrations of neem in the set-up with H_2O_2 and the MI.

Alternative hypothesis: There is a relationship between increasing concentrations of neem in the set-up with H_2O_2 and the MI.

	Anova: S	Single Facto	or Neem w	H2O2 MI a	fter 48h	
SUMN	MARY					
Groups	Count	Sum	Average	Variance		
0	5	254.3091	50.86182	716.9191		
0.002	5	135.1288	27.02577	1214.942		
0.004	5	207.0029	41.40058	1582.46		
0.006	5	23.15573	4.631146	15.35831		
0.008	5	22.83516	4.567032	35.46306		
0.01	5	0.714286	0.142857	0.102041		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between						
Groups	11580.36	5	2316.072	3.89775	0.009968	2.620654
Within						
Groups	14260.98	24	594.2075			
Total	25841.34	29				

Null hypothesis was rejected. Tukey test was done and the Q critical values are as follows:

$$Q\alpha = 0.01, k = 6, v = 24 \text{ critical} = 5.3738$$

$$Q\alpha = 0.05, k = 6, v = 24$$
 critical = 4.3729

Comparisons	MI	for Neem with H	H_2O_2
	Tukey HSD	Tukey HSD	
	Q statistics	p value	
0.000 vs 0.002	2.1865	0.6232802	insignificant
0.000 vs 0.004	0.8679	0.8999947	insignificant
0.000 vs 0.006	4.2408	0.061082	insignificant
0.000 vs 0.008	4.2467	0.0605443	insignificant
0.000 vs 0.010	4.6525	0.0324203	* p<0.05
0.002 vs 0.004	1.3186	0.8999947	insignificant
0.002 vs 0.006	2.0543	0.6741045	insignificant
0.002 vs 0.008	2.0602	0.671843	insignificant
0.002 vs 0.010	2.466	0.515844	insignificant
0.004 vs 0.006	3.3729	0.2010785	insignificant
0.004 vs 0.008	3.3788	0.199612	insignificant
0.004 vs 0.010	3.7846	0.117627	insignificant
0.006 vs 0.008	0.0059	0.8999947	insignificant
0.006 vs 0.010	0.4117	0.8999947	insignificant
0.008 vs 0.010	0.4058	0.8999947	insignificant

10.3.4 <u>Neem with H₂O₂: A-MI</u>

Null hypothesis: There is no relationship between increasing concentrations of neem in the set-up with H_2O_2 and the A-MI.

Alternative hypothesis: There is a relationship between increasing concentrations of neem in the set-up with H_2O_2 and the A-MI.

Anova: Single Factor							
SUMMARY							
Groups	Count	Sum	Average	Variance			
0	5	488.0372	97.60743	17.00748			
0.002	5	466.6667	93.33333	88.88889			
0.004	5	399.7494	79.94987	518.8096			
0.006	5	169.1667	33.83333	713.0556			
0.008	5	36.36364	7.272727	264.4628			
0.01	5	0	0	0			
ANOVA							
Source of							
Variation	SS	df	MS	F	P-value	F crit	
Between							
Groups	48021.17	5	9604.235	35.96588	2.16714E-10	2.620654	
Within							
Groups	6408.897	24	267.0374				
Total	54430.07	29					

Null Hypothesis was rejected Tukey test was done. Q critical values are the same as mentioned above.

Comparisons	A-MI for	2	
	Tukey HSD Q statistics	Tukey HSD p value	
0.000 vs 0.002	0.5848	0.8999947	Insignificant
0.000 vs 0.004	2.4162	0.5349923	Insignificant
0.000 vs 0.006	8.7266	0.0010053	** p<0.01
0.000 vs 0.008	12.361	0.0010053	** p<0.01
0.000 vs 0.010	13.3562	0.0010053	** p<0.01
0.002 vs 0.004	1.8313	0.7598008	insignificant
0.002 vs 0.006	8.1417	0.0010053	** p<0.01
0.002 vs 0.008	11.7762	0.0010053	** p<0.01
0.002 vs 0.010	12.7713	0.0010053	** p<0.01
0.004 vs 0.006	6.3104	0.0020158	** p<0.01
0.004 vs 0.008	9.9448	0.0010053	** p<0.01
0.004 vs 0.010	10.94	0.0010053	** p<0.01
0.006 vs 0.008	3.6344	0.1437284	insignificant
0.006 vs 0.010	4.6296	0.0336115	* p<0.05
0.008 vs 0.010	0.9952	0.8999947	insignificant

10.4 <u>Discussion</u>

There is no significant difference between any of the independent variable in the group without H_2O_2 and there was significant differences between some independent variables in the group with H_2O_2 . This could possibly suggest the effect of neem only lasts about 24h which is why traditionally families take neem every day.

However, why there are still significant difference in the group with H_2O_2 cannot be explained using the current research. It can also be seen that it showed more significant differences then after 24h. This could be due to the lower concentrations losing their effects quite readily causing while the higher concentrations still showed effects after 48h. Hence, the difference between lower concentrations (0.002 and 0.004 g/cm³) and the higher concentrations (0.006-0.010g/cm³) would be higher and enough to produce significantly different results.