

Lab 1 MIPSfpag 基础

These materials produced in association with Imagination.

Join our University community for more resources.

community.imgtec.com/university

Lab 1 MIPSfpga 基础

1. 概述

这是 MIPSfpga 系列实验中的第一个,在这个实验室里你将学会建立一个 Vivado 工程,该工程能够对 MIPSfpga 系统进行仿真、综合、实现、并下载到 Digilent Nexys4 DDR FPGA 开发板上进行实际验证。

本实验使用 Vivado 2015.2 作为开发工具,如果是 Vivado 更新的版本,也可以基本按照这个操作流程来进行,只是可能有些局部地方稍有不同。

2. MIPSfpga 处理器系统搭建

2.1 新建一个 Vivado 工程

打开 Vivado,新建一个工程,将其命名为 MIPSfpga_basic。

2.2 导入 MIPSfpga 设计文件

找到 MIPSfpga_rtl_up 目录,选择将目录中的全部设计文件加入工程。

同样在 MIPSfpga_rtl_up 目录中找到约束文件(后缀为.xdc),将其加入工程。

找到 Nexys4 DDR 开发板对应的 FPGA 型号,将其添加进工程。

完成新建工程,结果如下所示。

2.3 添加时钟模块

打开 IP Catalog, 找到 Clocking Wizard 模块,双击添加。

在时钟选项中,选择 PLL 方式。

将输出时钟的频率设置为 50MHz(MIPSfpga 处理器在 Nexys4 DDR 开发板上最高可以跑到 62MHz,为了保险起见,同时为了方便以后外设模块的实现,这里只选择 50MHz)。同时取消 reset 和 locked 信号的选项。

时钟模块成功添加后,会弹出一个"Generate Output Products"对话框,选择"Generate"。

生成完成后, clk_wiz_0 模块前的"?"消失。

2.4 对 MIPSfpga 进行仿真

找到 testbench.v 文件,将其设置为顶层文件。

选择 *Add Sources*,通过 *Add or create simulation sources* 选项将 MIPSfpga_rtl_up/initfiles 目录下的 ram_reset_init.txt 文件添加进工程。

选择 Simulation Settings 将仿真时长设置为 2000ns。

点击 Run Simulation > Run behavioral simulation 进行行为仿真,并观察仿真波形。

展开 testbench,找到 $testbench \rightarrow sys \rightarrow mipsfpga_ahb \rightarrow mipsfpga_ahb_ram_rese$,将 $ram_reset_dual_port$ 加入仿真。

在波形窗口中点击鼠标右键,选择 *New Divider*,输入 Reset RAM Memory 并点击 **OK**。然后将 *ram_reset_dual_port* 模块中的全部信号加入波形窗口。再将仿真时间修改为 2us,并点击 Restart 按钮,然后选择 Run。

2.5 对 MIPSfpga 进行综合和实现

将 MIPSfpga_rtl_up/initfiles 目录下的 ram_reset_init.txt 和 ram_program_init.txt 文件复制到 MIPSfpga_rtl_up 目录中。选择 *Add Sources*,通过 *Add or create design sources* 选项将 MIPSfpga_rtl_up 目录下的 ram_reset_init.txt 和 ram_program_init.txt 文件添加进工程。

点击 *Generate Bitstream* 按键,生成 bitstream 文件。Mipsfpga 综合实现后观察时序能否满足 CPU 运行时钟的频率要求。

2.6 将 MIPSfpga 下载到 Nexys4 DDR FPGA 开发板运行

按照下图将 FPGA 下载线连接到 Nexys4 DDR 开发板的 USB Programmer Port; 打开 Power Switch 电源开关; 下载 bitstream 文件。然后,按 Processor Reset 按钮,观察 MIPSfpga 运行 ram_reset_init.txt 文件中的程序。

