Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, $^{\rm NiMoNa~2016}_{\rm Lukas~Splitthoff,~Timo~Wiedemann}$

08. Juni, 201

living.knowledge WWUMünster

Überblick

```
"/, len(t)))

"[1,451:550] = 2.

"[1,251:350] = 5.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.

"[1,691:910] = 2.
```

Einleitung in DCM

Abbildung: Interaktion zwischen verschiedenen Hirnregionen.

Konektivität im Gehirn Mathematische Modellierung von Interaktionen zwischen mehreren Regionen des Gehirns

Ziel: Austellen eines realistischen neuronalen Modells der interagierenden Gehirnregionen Rückschlüsse auf die Verschaltung von Hirnregionen zu ziehen und zu verstehen, wie diese von Veränderungen in der neuronalen Aktivität beeinflusst wird Äquivalent der DCM ist die FMRT ...

Messung der Veränderung vom Blutfluss - BOLD Signal

in diesem Fall ist DCM ein \dots

Bilineares Modell

Gehirn als nicht-lineares, deterministisches, dynamisches System

$$\begin{split} \dot{z} &= (A + \sum_{j} u_{j}B^{j})z + Cu \\ A &= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \\ B &= \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \\ C &= \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{21} & c_{22} \\ c_{22} & c_{23} \end{pmatrix} \end{split}$$

Vergleichbarkeit

Bilineare Modell \Rightarrow Gehirnaktivitäten $z_i(t)$

Vergleichbarkeit

Bilineare Modell \Rightarrow Gehirnaktivitäten $z_i(t)$

Experiment (funktionelle MRT) \Rightarrow BOLD-Signal/Kontrast $y_i(t)$ \approx Sauerstoffgehalt der roten Blutkörperchen

Hämodynamisches Modell

4 biophysikalische Zustandsvariablen übermitteln $z_i(t) \rightarrow y_i(t)$:

 $s_i(t)$: Zusammenfassung mehrerer neurogener Signale

 $f_i^{in}(t)$: (sauerstoffreicher) Blutzufluss

 $v_i(t)$: Venenvolumen

q_i(t): Desoxyhämoglobinkonzentration

Biophysikalisch:

$$\begin{split} \dot{s}_{i} &= z_{i} - \kappa s_{i} - \gamma (f_{i}^{in} - 1) \\ \dot{f}_{i}^{in} &= s_{i} \\ \dot{v}_{i} &= \frac{1}{\tau} (f_{i}^{in} - f_{i}^{out}) = \frac{1}{\tau} (f_{i}^{in} - v_{i}^{1/\alpha}) \\ \dot{q}_{i} &= \frac{1}{\tau} (f_{i}^{in} E_{i} / \rho - v_{i}^{1/\alpha} q_{i} / v_{i}) \end{split}$$

$$y_i = V_0(k_1(1 - q_i) + k_2(1 - q_i/v_i) + k_3(1 - v_i))$$

Euler-Verfahren

explizites Verfahren

Runge-Kutta-Verfahren (4. Ordnung)

Numerisches Experiment - linear

Numerisches Experiment - bilinear

Numerisches Experiment - hemodynamisch

Literatur

► Dynamic causal modelling
K.J. Friston et al. / NeuroImage 0 (2003)
web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf

Designfeatures

Hervorhebungen

Wenn man Dinge hervorheben möchte nutzt man entweder Fettdruck, kursive Schrift oder das Schlüsselwort älert". Auch ïtemizeUmgebungen werden von der Stilvorlage überschrieben:

Designfeatures

Hervorhebungen

Wenn man Dinge hervorheben möchte nutzt man entweder Fettdruck, kursive Schrift oder das Schlüsselwort älert". Auch ïtemizeUmgebungen werden von der Stilvorlage überschrieben:

- ► So wird sichergestellt,
- ▶ dass alle Elemente der Präsentation
- ▶ dieselbe Farbe nutzen.

Achtung!

Hier kommt Rot ins Spiel!

Beispie

Hier kommt Grün ins Spiel!