

Hyperparameter Learning via Distributional Transfer

Ho Chung Leon Law¹, Peilin Zhao², Lucian Chan¹, Junzhou Huang² and Dino Sejdinovic¹ 1 University of Oxford and 2 Tencent Al Lab

SUMMARY

Goal: Optimise f^{target} (target objective) w.r.t θ , i.e.

$$\theta^*_{target} = \mathrm{argmax}_{\theta \in \Theta} f^{\mathsf{target}}(\theta)$$

Scenario: There are n (potentially) related source tasks f^i , $i=1,\ldots n$. For each source task, we assume we have $\{\theta_k^i, f^i(\theta_k^i)\}_{k=1}^{N_i}$ from past runs and N_i denotes the number of evaluations of f^i from task i.

Method: Transfer information across tasks using kernel mean embeddings of distributions of training datasets used in those tasks.

Here f^i is the accuracy of a trained machine learning model with training data $D_i = \{\mathbf{x}_\ell^i, y_\ell^i\}_{\ell=1}^{s_i}$. i.e. we have per source task:

$$(f^i, D_i = \{\mathbf{x}_{\ell}^i, y_{\ell}^i\}_{l=1}^{s_i}, \{\theta_k^i, f^i(\theta_k^i)\}_{k=1}^{N_i}) \qquad i = 1, \dots n$$

Our strategy now is to measure the similarity between datasets (as a representation of the task itself), in order to find θ^*_{target} .

MOTIVATION

Consider a scenario, where we have to constantly retrain our model in an online setting. For example, suppose that D is some traffic data, and that f is the accuracy of a machine learning model attempting to optimise taxi allocations.

Now as the data distribution changes (e.g. weekend vs weekday), we might expect θ^* to also change.

RELATED WORK

The transfer of information from different tasks has been studied in the context of multi-task BO (multiBO) and meta-learning (manualBO):

- 1. Learning task similarities through evaluations of f
- 2. Hand crafted meta-features for task similarities

Case 1: This would imply we need to observe sufficient evaluations from the target task in order to learn these task correlations.

Case 2: Using hand crafted meta-features can have an adverse effect on exploration if they are defined poorly.

Our methodology can be seen as a combination of these two frameworks, using learnt embeddings of the joint distribution of the data, while capturing correlation across tasks.

ASSUMPTIONS

1. $\mathbf{x}_{\ell}^{i} \in \mathcal{X}$ and $y_{\ell}^{i} \in \mathcal{Y}$ for all i, ℓ , supervised learning model M is the same. 2. $D_{i} = \{\mathbf{x}_{\ell}^{i}, y_{\ell}^{i}\}_{\ell=1}^{s_{i}} \sim \mathcal{P}_{XY}^{i}$, where \mathcal{P}_{XY}^{i} is the joint distribution of the data for source task i.

Implication

- The source of differences of f^i across i and f^{target} is due to the distribution P_i and P_{target} .
- Sample size is related to hyperparameter choice, which we also encode.

MODEL AND EMBEDDING (DistBO)

Under this setting, we will consider $f(\theta, \mathcal{P}_{XY}, s)$, where f is a function of hyperparameters θ , joint distribution of the underlying data \mathcal{P}_{XY} and sample size s. E.g. f could be the negative empirical risk, i.e.

$$f(\theta, \mathcal{P}_{XY}, s) = -\frac{1}{s} \sum_{l=1}^{s} L(h_{\theta}(\mathbf{x}_l), y_l)$$

where L is the loss function and h_{θ} is the model's predictor. In particular, we have that: $f^{i}(\theta) = f(\theta, \mathcal{P}_{XY}^{i}, s_{i})$ and $f^{\text{target}}(\theta) = f(\theta, \mathcal{P}_{XY}^{\text{target}}, s_{target})$. Using a Gaussian process for f, we define a a covariance function C:

$$C(\{\theta_1, \mathcal{P}_{XY}^1, s_1\}, \{\theta_2, \mathcal{P}_{XY}^2, s_2\}) = \nu k_{\theta}(\theta_1, \theta_2) k_p([\psi(D_1), s_1], [\psi(D_2), s_2])$$

where ν is a constant, k_{θ} and k_{p} are the standard Matérn-3/2 kernel. To specify $\psi(D)$ we consider feature maps $\phi_{x}(\mathbf{x}) \in \mathbb{R}^{p}$ and $\phi_{y}(y) \in \mathbb{R}^{q}$. To embed a joint distribution \mathcal{P}_{XY}^{i} , we use the cross covariance operator \mathcal{C}_{XY}^{i} [1], estimated by D_{i} with:

$$\hat{\mathcal{C}}_{XY}^i = \frac{1}{s_i} \sum_{\ell=1}^{s_i} \phi_x(\mathbf{x}_{\ell}^i) \otimes \phi_y(y_{\ell}^i) = \frac{1}{s_i} \Phi_x^i(\mathbf{x}) \Phi_y^i(y)^{\top} \in \mathbb{R}^{p \times q}$$

where $\Phi_x^i(\mathbf{x}) = [\phi_x(\mathbf{x}_1^i), \dots, \phi_x(\mathbf{x}_{s_i}^i)] \in \mathbb{R}^{p \times s_i}$, $\Phi_2^i(y) = [\phi_y(y_1^i), \dots, \phi_y(y_{s_i}^i)] \in \mathbb{R}^{q \times s_i}$. Flattening $\hat{\mathcal{C}}_{XY}^i$, we obtain $\psi(D_i) \in \mathbb{R}^{pq}$.

IMPLEMENTATION

For ϕ_x , ϕ_y , we will consider a flexible representation, specifically in the form of neural networks (1 hidden and 1 output layer in this case).

Explanation: Suppose we have two task i,j and that $P_{XY}^i \approx P_{XY}^j$, this will imply that $f^i \approx f^j$, and hence $\theta_i^\star \approx \theta_j^\star$. However, the converse does not hold in general, i.e. $f^i \approx f^j$ does not imply $P_{XY}^i \approx P_{XY}^j$!

Example: Ridge regression with regularisation λ are likely to be robust to rotations of the covariates, which leads to a different P_X .

Optimisation: Maximise the marginal likelihood to optimise neural network and model parameters in an end-to-end fashion.

Scalability: Replace GP by Bayesian linear regression [2], which scales linearly with the number of observations $N = \sum_{i=1}^{N}$ (distBLR). As $S = \sum_{i=1}^{N} s_i$ is likely to be large, we can employ different random subsample of batch-size b for each step of optimisation.

EXPERIMENTS

Toy example.

Handcrafted features.

- Regression process invariant to manual meta-features
- 4 source tasks (1 similar)
- Ridge regression (ARD)
- 6 hyperparameters

Protein dataset.

- Protein-ligand binding classification problem in the area of drug design
- 7 different proteins
- Jaccard kernel C-SVM (left)
- Random forest (right)

REFERENCES

- [1] Muandet, et al. 'Kernel Mean Embedding of Distributions: A Review and Beyond', 2017
- [2] Perrone, et al. 'Scalable hyperparameter transfer learning', NeurlPS, 2018