$$t_2 = 2$$

$$t_n = t_{n-1} + t_{n-2}$$

$$t_{\mu} = 5$$

0	No. of disk	Moves
0	l	ì
	&	3
	3	7
	4	15
	5	31
_		

	6.	Triangulas	r humbog.
<	-	ť T	Т

		18	13	
U	•	•		
0			•	

$$\frac{\mathbf{b}}{\mathbf{b}} = \mathbf{n} + \mathbf{b}_{\mathbf{n}-1}$$

Verify: $t_0 = 2(0) + 1 = 1$. Part 1. $t_1 = 2(1) + 1 = 3$ to = 2(2)+2 - 6 0 tn1 = tn + 2 Part 2. =(2n+1)+2. 21+2+1 =2(n+1)+1**(3)** 0 20 tn = tn-1+n2 t, = 1. Solution: $t_n = (n)(n+1)(2n+1)$ 3. $T(n) = 3T(\frac{n}{2})$ T(1) = 1T(1) = 10 D T(a) = 3T(1) = 3

$$T(A) = 3T(A)$$

$$= 3 [T(A)*3]$$

$$= 3^{2}$$

$$T(B) = 3T(A)$$

$$= 3^{3}$$

$$T(D) = 3 [G_{A}^{D}] \rightarrow Guess$$

$$T(AD) = 3T(AD) \text{ Verify}$$

$$= 3T(D)$$

$$= 3*3 [G_{A}^{D}] \rightarrow Guess$$

$$= 3 [G_{A}^{D}] \rightarrow Guess$$

	, no. 1 a A	Trans boso to 1
	Substitution method.	from base to to
I	> iteration method.	Substitution
U	-> Plug & Chug.	
0		from to to base
0	1. tn = tn-1+3	Substitution.
	$t_1 = 4$	
U		bactracking method.
O	$t_n = t_{n-1} + 3$	Traction :
0	$= (\pm_{n-2} + 3) + 3$	1/ Purg
	$= \pm n - 2 + 3 + 3$	0
	$= \pm n - 2 + 2 + 3$	11 Chug
	$=(t_{n-3}+3)+3*2$	1P
0	$= t_{n-3} + 3*3$	4C.
0	1,-3	
0	tn = to tn-(n-1) 3*(n	-1)
	$t_n = t_1 + (n-1) + 3$	
	= 4 + 3n - 3	
	= 30 + 1.	
0		
0	2. Compound interest	5012
0	\$100 3%	_ month.
	to = 100	
O	t, = to + 0.03 to.	- 1.02+
10	$t_1 = t_0 + 0.03 t_1 =$	
0	2-17-0000	
	$t_n = 1.03t_n \rightarrow re$	currence sol
	——————————————————————————————————————	
7		

$$\frac{1}{6} \Rightarrow \frac{t_4}{t_3} = \frac{k^4}{k^3} = k - \frac{2401}{343} = 7$$

