

Foundation Calculus and Mathematical Techniques

CELEN037

Practice Problems SET-9 Sample Solution

Type 1: Area Calculation using Definite Integrals

1. Find the area of the region bounded the curve $y=(x-1)^3$, the lines $x=0,\,x=2$, and the

$$A = \int_0^2 |(x-1)^3| dx$$
$$= -\int_0^1 (x-1)^3 dx + \int_1^2 (x-1)^3 dx$$

$$J_0 \qquad J_1 \qquad J_1 \qquad J_2 \qquad = -\left[\frac{(x-1)^4}{4}\right]_0^1 + \left[\frac{(x-1)^4}{4}\right]_1^2 \qquad J_2 \qquad J_3 \qquad J_4 \qquad J$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

X-axis.

Type 2: Volume Calculation using Definite Integrals

26. The region bounded by $y=e^{-x^2}$, lines x=0, x=1 and the X-axis is revolved about the

Solution:

Y-axis.

The area bounded is shown as below:

The volume generated by revolving this area about Y-axis is shown as below:

Therefore, the volume calculation needs to be separated into two parts:

Volume from region revolution of ABF and region revolution of CDBF.

The volume from region revolution of CDBF can be easily calculated as:

When
$$x=0,\ y=1$$
 and $x=1,\ y=\frac{1}{e}$

Therefore
$$V_{CDBF}=\pi\int_{0}^{\frac{1}{e}}1^{2}\;dy=\pi\frac{1}{e}$$

The volume from region revolution of ABF can be easily calculated as:

$$y = e^{-x^2} \implies \ln y = -x^2 \implies x^2 = -\ln y$$

Therefore
$$V_{ABF}=\pi\int_{rac{1}{e}}^{1}x^{2}\;dy \implies \pi\int_{rac{1}{e}}^{1}-\ln y\;dy$$

$$= \pi \left[y - y \ln y \right]_{\frac{1}{e}}^{1}$$

$$= \pi \left((1 - 1 \ln 1) - \left(\frac{1}{e} - \frac{1}{e} \ln \frac{1}{e} \right) \right)$$

$$=\pi\left(1-\left(\frac{1}{e}+\frac{1}{e}\ln e\right)\right)$$

$$=\pi\left(1-\frac{2}{e}\right)$$

Therefore, the total volume $V=V_{CDBF}+V_{ABF}=\pi \frac{1}{e}+\pi \left(1-\frac{2}{e}\right)=\pi \left(1-\frac{1}{e}\right)$

Type 3: Numerical Integration

- 28. Evaluate $\int_1^2 x^3 \sqrt{x^5 + 2x^2 1} \ dx$ by using:
 - (a) Trapezoidal rule with 4 sub-intervals of equal width;
 - (b) Simpson's rule with 4 sub-intervals of equal width.

Give approximation to 6 d.p.

Solution:

$$h = \frac{2-1}{4} = 0.25$$

x	f_n	$f(x) = x^3 \sqrt{x^5 + 2x^2 - 1}$
1	f_0	1.414214
1.25	f_1	4.443846
1.5	f_2	11.241208
1.75	f_3	24.872400
2	f_4	49.959984

(a)
$$I = \int_{1}^{2} x^{3} \sqrt{x^{5} + 2x^{2} - 1} dx \approx \frac{h}{2} [f_{0} + 2(f_{1} + f_{2} + f_{3}) + f_{4}] = 16.561138$$

(b)
$$I = \int_{1}^{2} x^{3} \sqrt{x^{5} + 2x^{2} - 1} dx \approx \frac{h}{3} [f_{0} + 2(f_{2}) + 4(f_{1} + f_{3}) + f_{4}] = 15.926800$$