Билет 12.

Правила Кирхгофа. Последовательное и параллельное соединение источников тока.

Рассмотрим электрическую цепь с несколькими источниками тока, несколькими резисторами. Чтобы упростить расчеты в данном случае введем два *правила Кирхгофа*.

Nº	Правило Кирхгофа	
1	Узел цепи— точки разветвленной цепи, в которых сходятся хотя бы три проводника. В узлах может происходить слияние или разрыв упорядоченно движущихся частиц. Если ток втекает в узел, силу тока считают положительной, если вытекает, то отрицательной.	
	Первое правило Кирхгофа — алгебраическая сумма сил тока в каждом узле равна нулю. $\sum_{i=1}^{n} I_i$	
2	Второе правило Кирхгофа — алгебраическая сумма ЭДС в замкнутом контуре равна сумме падений напряжения (произведений сил токов и сопротивлений участка). [обобщение закона Ома] $\sum_{i=1}^n U_i = \sum_{j=1}^m \xi_j$ Знак силы тока будет «+», если направление совпадает с направлением обхода. Знак ЭДС будет «+», если по направлению обхода первым встречается «-».	

Соединение источников тока

еоединение исто ников тока				
Соединение	ЭДС батареи			
Последовательное	$I = I_{i}; q = q_{i}$ $A_{\delta am} = \xi_{\delta am} q = \sum_{i} \xi_{i} q_{i}$ $\xi_{\delta am} = \sum_{i} \xi_{i}$	$I = \left \frac{I}{\xi_1} \right \frac{ \xi_1 }{ \xi_2 } - I$		
Параллельное	$I = \sum I_i = \sum rac{\xi_i}{r_i}$ $I_i = rac{\xi_i}{r_i}$ $rac{\xi_{\delta am}}{r_{\delta am}} = \sum rac{\xi_i}{r_i}$ Если все ЭДС одинаковые: $rac{\xi_{\delta am}}{rac{r}{n}} = n \cdot rac{\xi}{r} \implies \xi_{\delta am} = \xi$	$I I$ ξ_1 ξ_2 I I ξ_2		