

Grundbegriffe der Informatik - Tutorium 21

Christian Jülg Wintersemester 2012/13 8. Januar 2013

http://gbi-tutor.blogspot.com

Übersicht

Aufwachen

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automaten

Abschluss

Übersicht

Aufwachen

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automaten

Abschluss

Algorithmen-Effizienz...

- 1. ... wird häufig in Abhängigkeit der Eingeabelänge angegeben.
- 2. ... ist unabhängig von der Struktur der eingegebenen Daten.
- 3. ... muss für jede Rechenmaschine einzeln ermittelt werden.

Das O-Kalkül ...

- 1. ... eignet sich gut um einen Mindestaufwand anzugeben.
- 2. ... ist unabhängig von einfachen Faktoren.
- 3. ... beschreibt eine Menge von Funktionen.

- 1. ... gibt einen "Korridor" an, den der Algorithmus nie verlässt.
- 2. ... $\Theta(f(n))$ entält alle Funktionen, die auch in O(f(n)) enthalten sind.
- 3. ... ist reflexiv (Es gilt: $f(n) \in \Theta(f(n))$).

Algorithmen-Effizienz...

- 1. ... wird häufig in Abhängigkeit der Eingeabelänge angegeben.
- 2. ... ist unabhängig von der Struktur der eingegebenen Daten.
- 3. ... muss für jede Rechenmaschine einzeln ermittelt werden.

Das O-Kalkül ...

- 1. ... eignet sich gut um einen Mindestaufwand anzugeben.
- 2. ... ist unabhängig von einfachen Faktoren.
- 3. ... beschreibt eine Menge von Funktionen.

- 1. ... gibt einen "Korridor" an, den der Algorithmus nie verlässt.
- 2. ... $\Theta(f(n))$ entält alle Funktionen, die auch in O(f(n)) enthalten sind.
- 3. ... ist reflexiv (Es gilt: $f(n) \in \Theta(f(n))$).

Algorithmen-Effizienz...

- 1. ... wird häufig in Abhängigkeit der Eingeabelänge angegeben.
- 2. ... ist unabhängig von der Struktur der eingegebenen Daten.
- 3. ... muss für jede Rechenmaschine einzeln ermittelt werden.

Das O-Kalkül ...

- 1. ... eignet sich gut um einen Mindestaufwand anzugeben.
- 2. ... ist unabhängig von einfachen Faktoren.
- 3. ... beschreibt eine Menge von Funktionen.

- 1. ... gibt einen "Korridor" an, den der Algorithmus nie verlässt.
- 2. ... $\Theta(f(n))$ entält alle Funktionen, die auch in O(f(n)) enthalten sind.
- 3. ... ist reflexiv (Es gilt: $f(n) \in \Theta(f(n))$).

Algorithmen-Effizienz...

- 1. ... wird häufig in Abhängigkeit der Eingeabelänge angegeben.
- 2. ... ist unabhängig von der Struktur der eingegebenen Daten.
- 3. ... muss für jede Rechenmaschine einzeln ermittelt werden.

Das O-Kalkül ...

- 1. ... eignet sich gut um einen Mindestaufwand anzugeben.
- 2. ... ist unabhängig von einfachen Faktoren.
- 3. ... beschreibt eine Menge von Funktionen.

- 1. ... gibt einen "Korridor" an, den der Algorithmus nie verlässt.
- 2. ... $\Theta(f(n))$ entält alle Funktionen, die auch in O(f(n)) enthalten sind.
- 3. ... ist reflexiv (Es gilt: $f(n) \in \Theta(f(n))$).

Übersicht

Aufwacher

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automater

Abschluss

Aufgabenblatt 9

Blatt 9

Abgaben: 14 / 19

Punkte: Durchschnitt 6,1 von 20

Probleme

9.1: Die Laufzeitabschätzungen müssen für fast alle n gelten!

Übersicht

Aufwachen

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automater

Abschluss

Aufgabenblatt 10

Blatt 10

Abgabe: 11.01.2013 um 12:30 Uhr im Untergeschoss des Infobaus

Punkte: maximal 20

Themen

- Rekursion
- Master-Theorem
- Endliche Automaten
- Mealy, Moore, endl. Akzeptoren

Übersicht

Aufwacher

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automater

Abschluss

Aufwandsklassen

Fallunterscheidung: Aufwandsklassen

- O-Kalkül Obere Schranke, die der Algorithmus erreichen, aber nicht überschreiten kann
- Ω -Kalkül Untere Schranke und ein "Mindestaufwand", den der Algorithmus hat
- θ -Kalkül Schnittmenge der Betrachtung aus $\Omega(n)$ und O(n). Es entsteht eine Art "Korridor", den der Algorithmus nie verlässt.

O-Kalkül

Definition

$$O(g(n)) = \{f(n) | \exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

Umgangssprachlich

O(g(n)) enthält alle nicht-negativen Funktionen, die höchstens so schnell wie g(n) wachsen.

Dabei kümmern wir uns nicht

- darum, was am Anfang passiert $(\exists n_0 \in \mathbb{N} \dots \forall n \geq n_0)$.
- um einfache Faktoren $(\exists c \in \mathbb{R} \dots c \cdot g(n))$.

Aufwandsklassen

Obere asymptotische Schranke

$$O(g(n)) = \{f(n) \mid \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} \, \forall n > n_0 : 0 \le f(n) \le c \cdot g(n)\}$$

Untere asymptotische Schranke

$$\Omega(g(n)) = \{f(n) \mid \\
\exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} \, \forall n > n_0 : 0 \le c \cdot g(n) \le f(n)\}$$

Asymptotisch scharfe Schranke

$$\theta(g(n)) = \{ f(n) \mid \\ \exists c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N} \, \forall n > n_0 : 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

Beachte:

Alle Kalküle geben eine **Menge** von Funktionen an. $f(n) = O(n^2)$ bedeutet also eigentlich $f(n) \in O(n^2)$!

Rechenregeln

Reflexivität

- $f(n) \in O(f(n))$
- $g(n) \in \Omega(g(n))$
- $h(n) \in \theta(h(n))$

Symmetrie

Hier gilt nur: $f(n) \in \theta(g(n)) \Leftrightarrow g(n) \in \theta(f(n))$

asymptotisches Wachstum

- $O(n^2 + n + \log(n)) = O(n^2)$
- $\qquad \Omega(\mathit{n}^2 + \mathit{n} + \mathit{log}(\mathit{n})) = \Omega(\mathit{n}^2) \subset \Omega(\mathit{log}(\mathit{n}))$

Es gilt nicht:

$$f(n) \not\in \theta(g(n)) \Rightarrow g(n) \in O(f(n)) \vee f(n) \in O(g(n))$$

Sucht Gegenbeispiele:

Es gilt nicht:

$$f(n) \not\in \theta(g(n)) \Rightarrow g(n) \in O(f(n)) \vee f(n) \in O(g(n))$$

Sucht Gegenbeispiele:

 $|\cos(n)| * n^2$ und

Es gilt nicht:

$$f(n) \not\in \theta(g(n)) \Rightarrow g(n) \in O(f(n)) \vee f(n) \in O(g(n))$$

Sucht Gegenbeispiele:

- $|\cos(n)| * n^2 \text{ und } n$
- n und

Es gilt nicht:

$$f(n) \notin \theta(g(n)) \Rightarrow g(n) \in O(f(n)) \lor f(n) \in O(g(n))$$

Sucht Gegenbeispiele:

- $|\cos(n)| * n^2 \text{ und } n$
- n und $f(n) = n^2$ für gerade, 0 für ungerade Werte von n

Übersicht

Aufwacher

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automater

Abschluss

Wozu?

Manche Rekursionen passen in einen der drei Fälle des Master-Theorems und lassen sich so mit dem θ -Kalkül abschätzen

Wozu?

Manche Rekursionen passen in einen der drei Fälle des Master-Theorems und lassen sich so mit dem θ -Kalkül abschätzen

Vorsicht

nicht jede Rekursion eignet sich für das Master-Theorem!

Definition

Der Algorithmus hat Laufzeit $T(n) = a * T(\frac{n}{b}) + f(n)$ wobei a, b konstant

- Fall 1: wenn $f(n) \in O(n^{\log_b(a)-\epsilon})$ mit $\epsilon > 0$ dann $T(n) \in \theta(n^{\log_b(a))}$
- Fall 2: wenn $f(n) \in \theta(n^{\log_b(a)})$ dann $T(n) \in \theta(n^{\log_b(a)}) * \log(n)$
- Fall 3: wenn $f(n) \in \Omega(n^{\log_b(a)+\epsilon})$ mit $\epsilon > 0$, und $\exists d: 0 < d < 1$ und für fast alle n gilt $a*f(\frac{n}{b}) \leq d*f(n)$ dann $T(n) \in \theta(f(n))$

Beispiel

Quicksort hat die Struktur

- wähle Pivot Element und teile damit Liste in zwei Teile
- Quicksort(linker Teil)
- Quicksort(rechter Teil)

Was wären hier a, b und f(n)?

Beispiel

Quicksort hat die Struktur

- wähle Pivot Element und teile damit Liste in zwei Teile
- Quicksort(linker Teil)
- Quicksort(rechter Teil)

Was wären hier a, b und f(n)?

Trifft einer der drei Fälle zu? Wenn ja welcher?

Beispiel

Quicksort hat die Struktur

- wähle Pivot Element und teile damit Liste in zwei Teile
- Quicksort(linker Teil)
- Quicksort(rechter Teil)

Was wären hier a, b und f(n)?

Trifft einer der drei Fälle zu? Wenn ja welcher?

Fall 2 passt hier. Quicksort liegt damit in $\theta(n \cdot log(n))$

Übersicht

Aufwacher

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automaten

Abschluss

Endlich ein Automat!

Wozu?

Ein endlicher Automat ist gerade mächtig genug, um einen regulären Ausdruck zu erkennen. Der Vorteil von endlichen Automaten ist, dass sie sehr einfach zu implementieren sind.

Endlich ein Automat!

Wozu?

Ein endlicher Automat ist gerade mächtig genug, um einen regulären Ausdruck zu erkennen. Der Vorteil von endlichen Automaten ist, dass sie sehr einfach zu implementieren sind.

Was braucht man?

- endliche Menge Z von Zuständen
- lacksquare einen Anfangszustand $z_0 \in Z$
- ein Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- lacktriangle ein Ausgabealphabet Y
- eine Ausgabefunktion (abhängig vom Typ des Automaten)

Endlich ein Automat!

Wie arbeitet er?

Das Lesen eines Zeichens $x \in X$ führt zu einem Zustandsübergang vom aktuellen Zustand $z \in Z$ in einen neuen Zustand $z' \in Z$

- Notation: f(z, x) = z'
- Der Zustand läßt sich als ein Gedächtnis über die Vorgeschichte, also die bisher eingegebenen Zeichen, auffassen.

Dieses ist leider nur **endlich** (endliche Menge an Zuständen!)

Darstellung von endlichen Automaten als Graphen

Zustandsmenge $Z = \{z_0, z_1, ..., z_n\}$ des endlichen Automaten lassen sich als Ecken eines Graphen auffassen

Darstellung von endlichen Automaten als Graphen

Zustandsmenge $Z = \{z_0, z_1, ..., z_n\}$ des endlichen Automaten lassen sich als Ecken eines Graphen auffassen

Zustandsübergänge $f(z_i, x) = z_j$ mit $x \in X$ entsprechen markierten gerichteten Kanten

Darstellung von endlichen Automaten als Graphen

Zustandsmenge $Z = \{z_0, z_1, ..., z_n\}$ des endlichen Automaten lassen sich als Ecken eines Graphen auffassen

Zustandsübergänge $f(z_i, x) = z_j$ mit $x \in X$ entsprechen markierten gerichteten Kanten

Ein im endlichen Automaten erreichter Zustand z_k ist durch den Anfangszustand z_0 und die bisher eingegebene Zeichenreihe $w \in X^*$ mit $w = x_1 \dots x_i$ bestimmt

f^* und f^{**}

f>

Nach Eingabe des ganzen Wortes $w \in X^*$ erreichen wir den Zustand $f^*: Z \times X^* \to Z$ mit

$$f^*(z,\epsilon) = z$$

$$\forall w \in X^* : \forall x \in X : \quad f^*(z, wx) = f(f^*(z, w), x)$$

 f^* und f^{**}

f ×

Nach Eingabe des ganzen Wortes $w \in X^*$ erreichen wir den Zustand $f^*: Z \times X^* \to Z$ mit

$$f^*(z,\epsilon) = z$$
$$\forall w \in X^* : \forall x \in X : \quad f^*(z,wx) = f(f^*(z,w),x)$$

 f^{**}

Nach Eingabe des ganzen Wortes $w \in X^*$ haben wir die Zustände $f^{**}: Z \times X^* \to Z^*$ durchlaufen, mit

$$f^{**}(z, \epsilon) = z$$

 $\forall w \in X^* : x \in X : \qquad f^{**}(z, wx) = f^{**}(z, w)f(f^*(z, w), x)$

Ein Beispielautomat...

Was ist $f^*((0, -), R10)$? Was ist $f^{**}((0, -), R10)$?

Arten von Automaten

Es gibt zwei Arten, wie ein Automat eine Ausgabe tätigen kann. Wir unterscheiden dabei:

Arten von Automaten

Es gibt zwei Arten, wie ein Automat eine Ausgabe tätigen kann. Wir unterscheiden dabei:

Mealy-Automat

- Erzeugung einer Ausgabe bei jedem Zustandsübergang
- Ausgabefunktion $g: Z \times X \rightarrow Y^*$
- Markieren der Kanten mit $x_i|y_i$

Arten von Automaten

Es gibt zwei Arten, wie ein Automat eine Ausgabe tätigen kann. Wir unterscheiden dabei:

Mealy-Automat

- Erzeugung einer Ausgabe bei jedem Zustandsübergang
- Ausgabefunktion $g: Z \times X \rightarrow Y^*$
- Markieren der Kanten mit $x_i|y_i$

Moore-Automat

- Erzeugung einer Ausgabe bei Erreichen eines Zustands
- Ausgabefunktion $h:Z o Y^*$

In beiden Fällen ist die Ausgabe ein Wort $y = y_0 \dots y_{n-1}$ über einem Ausgabealphabet Y.

Mealy-Automat

Für die Ausgabefunktion $g: Z \times X \to Y^*$ lassen sich analog zur Zustandsübergangsfunktion $g^*: Z \times X^* \to Y^*$ und $g^{**}: Z \times X^* \to Y^*$ definieren:

$$g^*(z, \epsilon) = \epsilon$$

$$g^*(z, wx) = g(f^*(z, w), x)$$

$$g^{**}(z,\epsilon) = \epsilon$$

$$g^{**}(z,xw) = g(z,x) \cdot g^{**}(f(z,x),w)$$

- $g^*((0,-),R10)$?
- $g^{**}((0,-),R10)$?
- $g^{**}((0,-),R110)$?

- $g^*((0,-),R10)=R$
- $g^{**}((0,-),R10)$
- $g^{**}((0,-),R110)$

- $g^*((0,-),R10)=R$
- $g^{**}((0,-),R10)=R$
- $g^{**}((0,-),R110)$

- $g^*((0,-),R10)=R$
- $g^{**}((0,-),R10)=R$
- $g^{**}((0,-),R110)=1R$

Entwickelt einen Mealy-Automaten, der...

- nur einen Zustand z hat und $X=Y=\{a,b\},\ g(z,a)=b$ und g(z,b)=ba erfüllt
 - wie sieht $w_1 = g^{**}(z, a)$ aus?
 - $w_2 = g^{**}(z, w_1), \ldots w_{i+1} = g^{**}(z, w_i)$?
 - könnte man den Automaten mit weniger Zuständen darstellen?
- und einen weiteren Automat mit $Z = \mathbb{G}_5$, $X = \{a, b\}$, $Y = \{0, 1\}$, bei b gleicher Zustand und Ausgabe 0, bei a einen Zustand weiter und bei jedem 5.a Ausgabe 1, sonst Ausgabe 0. Was tut der Automat?

Entwickelt einen Mealy-Automaten, der...

- nur einen Zustand z hat und $X=Y=\{a,b\},\ g(z,a)=b$ und g(z,b)=ba erfüllt
 - wie sieht $w_1 = g^{**}(z, a)$ aus?
 - $w_2 = g^{**}(z, w_1), \ldots w_{i+1} = g^{**}(z, w_i)$?
 - könnte man den Automaten mit weniger Zuständen darstellen?

• und einen weiteren Automat mit $Z = \mathbb{G}_5$, $X = \{a, b\}$, $Y = \{0, 1\}$, bei b gleicher Zustand und Ausgabe 0, bei a einen Zustand weiter und bei jedem 5.a Ausgabe 1, sonst Ausgabe 0. Was tut der Automat?

Entwickelt einen Mealy-Automaten, der...

- nur einen Zustand z hat und $X=Y=\{a,b\},\ g(z,a)=b$ und g(z,b)=ba erfüllt
- und einen weiteren Automat mit $Z = \mathbb{G}_5$, $X = \{a, b\}$, $Y = \{0, 1\}$, bei b gleicher Zustand und Ausgabe 0, bei a einen Zustand weiter und bei jedem 5.a Ausgabe 1, sonst Ausgabe 0. Was tut der Automat?

- Ist der häufigste **Spezialfall** eines Moore-Automaten
- Eine Ausgabe findet nicht bei allen Zuständen statt

- Ist der häufigste **Spezialfall** eines Moore-Automaten
- Eine Ausgabe findet nicht bei allen Zuständen statt
- Die Zustände $F \subseteq Z$, bei denen eine Ausgabe (immer ein Bit lang) erfolgt, heißen akzeptierende Zustände Es gilt $F = \{z | h(z) = 1\}$

- Ist der häufigste Spezialfall eines Moore-Automaten
- Eine Ausgabe findet nicht bei allen Zuständen statt
- Die Zustände $F \subseteq Z$, bei denen eine Ausgabe (immer ein Bit lang) erfolgt, heißen akzeptierende Zustände Es gilt $F = \{z | h(z) = 1\}$
- graphisch werden diese durch Doppelkreise angegeben

- Ist der häufigste Spezialfall eines Moore-Automaten
- Eine Ausgabe findet nicht bei allen Zuständen statt
- Die Zustände $F \subseteq Z$, bei denen eine Ausgabe (immer ein Bit lang) erfolgt, heißen akzeptierende Zustände Es gilt $F = \{z | h(z) = 1\}$
- graphisch werden diese durch Doppelkreise angegeben

- Ein Wort $w \in X^*$ wird akzeptiert, wenn gilt $f^*(z_0, w) \in F$
- Die von einem Akzeptor A akzeptierte formale Sprache ist $L(A) = \{w \in X^* | f^*(z_0, w) \in F\}$

Entwickelt einen Akzeptor mit

- **a** $X = \{a, b\}$, der alle Wörter akzeptiert, bei denen die Anzahl der a durch 5 teilbar ist. (Anzahl der b ist egal).
- $X = \{a, b\}$, der alle Wörter akzeptiert, in denen nirgends hintereinander zwei b vorkommen.

Entwickelt einen Akzeptor mit

 $X = \{a, b\}$, der alle Wörter akzeptiert, bei denen die Anzahl der a durch 5 teilbar ist. (Anzahl der b ist egal).

 $X = \{a, b\}$, der alle Wörter akzeptiert, in denen nirgends hintereinander zwei b vorkommen.

Entwickelt einen Akzeptor mit

- $X = \{a, b\}$, der alle Wörter akzeptiert, bei denen die Anzahl der a durch 5 teilbar ist. (Anzahl der b ist egal).
- $X = \{a, b\}$, der alle Wörter akzeptiert, in denen nirgends hintereinander zwei b vorkommen.

Entwickelt einen Akzeptor...

- der alle hexadezimalen IP-Adressen der Form 1A.BF.43.0F akzeptiert
- was ändert sich, wenn man auch Adressen ohne führende 0 akzeptieren möchte?
- bei Langeweile: versucht alle IP-Adressen bei denen die Blöcke aus dezimalen Zahlen zwischen 000 und 255 bestehen zu akzeptieren

Übersicht

Aufwachen

Aufgabenblatt 9

Aufgabenblatt 10

Algorithmen-Effizienz

Master-Theorem

Endliche Automater

Abschluss

Was ihr nun wissen solltet!

Was ist ein (endlicher) Automat? Aus welchen Teilen besteht er?

- Was ist ein (endlicher) Automat? Aus welchen Teilen besteht er?
- Worin unterscheiden sich Mealy-, Moore-Automaten und endl. Akzeptoren?

- Was ist ein (endlicher) Automat? Aus welchen Teilen besteht er?
- Worin unterscheiden sich Mealy-, Moore-Automaten und endl. Akzeptoren?
- Wie sind f^* , f^{**} , g^* , g^{**} , h^* , h^{**} definiert?

- Was ist ein (endlicher) Automat? Aus welchen Teilen besteht er?
- Worin unterscheiden sich Mealy-, Moore-Automaten und endl. Akzeptoren?
- Wie sind f^* , f^{**} , g^* , g^{**} , h^* , h^{**} definiert?
- Wie könnte man sie auch noch anders definieren?

- Was ist ein (endlicher) Automat? Aus welchen Teilen besteht er?
- Worin unterscheiden sich Mealy-, Moore-Automaten und endl. Akzeptoren?
- Wie sind f^* , f^{**} , g^* , g^{**} , h^* , h^{**} definiert?
- Wie könnte man sie auch noch anders definieren?
- Was haben Automaten mit Sprachen zu tun? Warum sind Automaten relevant?

Was ihr nun wissen solltet!

- Was ist ein (endlicher) Automat? Aus welchen Teilen besteht er?
- Worin unterscheiden sich Mealy-, Moore-Automaten und endl. Akzeptoren?
- Wie sind f^* , f^{**} , g^* , g^{**} , h^* , h^{**} definiert?
- Wie könnte man sie auch noch anders definieren?
- Was haben Automaten mit Sprachen zu tun? Warum sind Automaten relevant?

Ihr wisst was nicht? Stellt **jetzt** Fragen!

Ende

8. Januar 2013 Christian Jülg - GBI Tutorium 21