Supervised community detection in protein-interaction networks

Meghana Palukuri¹, Edward Marcotte^{1,2}

¹Oden Institute for Computational Engineering and Sciences, ²Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin

Introduction

Community detection, or finding sets of 'similar' nodes interacting with each other in networks is an interesting problem, with several applications such as finding:

- Groups of people in social networks like Twitter & Facebook.
- ❖ Functional units in **biological networks** such as:
- Gene communities in gene regulatory networks
- Protein Complexes in protein-interaction networks

Protein complexes take part in many cellular functions and their identification will help understand mechanisms of disease.

Fig.1: Yeast interactome visualized by John Morris & Alex Pico

- STATE-OF-THE-ART: Unsupervised graph clustering algorithms - Assumption: Communities are dense subgraphs in a network.
- But, communities have different topologies they are not necessarily dense!
- In several applications, we have data on known communities both their members as well as their internal connectivity.

Fig.2: Different topologies of complexes in the yeast network [1].

The idea is to use the topology of known communities to identify new communities in networks - a supervised approach.

Research Workflow

- 1. Construct a streamlined, plug-and-play pipeline to predict communities in networks, using known community information.
- 2. Compare and benchmark against state-of-the art methods.
- 3. Implement the pipeline to predict protein complexes in human and yeast protein-protein interaction networks (PPINs):

Table 1: Details of experiments conducted

	•		
	Experiment1	Experiment2	
Dataset (PPIN)	Human - hu.MAP [2]	Yeast - DIP [4]	
No. of nodes	7778	4933	
No. of edges	56,712	56,712 22,274	
Complexes	Human - CORUM [3]	UM [3] Yeast - MIPS, TAP-MS [1]	
No. of complexes	429	268	

Super.Complex – The Pipeline

Classification Results

Data Prep: Ensuring equal train-test size distributions:

- Make a say, 90-10 (parameter initSplit) random train-test split.
- 2. Transfer, say 30% (parameter trainTransfer) of smaller train complexes to the test complexes.
- 3. Iteratively transfer any train complex sharing one or more edges with any of the test complexes to test complex set.
- 4. Optimize initSplit and trainTransfer till equal size distributions.

Fig. 4: Final train-test size distributions for hu.MAP

TPOT Results:

Fig. 5: Binary classification Precision Recall curve for hu.MAP **Best classifier: Logistic Regression**

Prediction Results

No. of predicted complexes recovering known complex No. of predicted complexes

No. of recovered known complexes No. of known complexes

A predicted complex recovers a known complex if,

$$\frac{C}{A+C} > p \text{ and } \frac{C}{B+C} > p$$

where, p is an input threshold parameter between 0 and 1 and A/B/C - Number of proteins only in predicted/known/both complex

Table 2: Yeast prediction metrics, compared with state-of-the-art SCI-SVM and SCI-BN [1]

Method	Precision	Recall	F1 score
Greedy	0.313	0.381	0.344
Metropolis	0.288	0.41	0.339
ISA	0.287	0.414	0.339
Cliques	0.185	0.456	0.264
SCI-SVM	0.176	0.379	0.24
SCI-BN	0.219	0.537	0.312

Fig. 6: Example predicted complexes in hu.MAP

- On the left the algorithm (metropolis) distinguishes two complexes that are connected by one node.
- Left complex: AFF4 super elongation complex which could be a key regulator in pathogenesis of leukemia, Middle: unknown
- Right: CCR4-NOT transcription complex [6], called the 'controlfreak of eukaryotic cells'.
- ~1500 complexes predicted in hu.MAP

Conclusion

Fig.7: Human protein interaction network colored by complex size

- Demonstrated the potential of supervised ML strategies through a streamlined pipeline - Super.Complex
- Major steps: feature extraction, an auto-ML pipeline and a subgraph sampling process with a choice between different algorithms.
- Logistic regression and the Metropolis sampling algorithm tend to perform well.
- Comparable and slightly better results than some state-ofthe-art algorithms.
- This plug-and-play pipeline can be improved by further optimizing each part, ex: using biological features.
- Performed experiments on real protein networks of human and yeast: Results can be examined to glean biological insights.

Fig. 8: Yeast protein interaction network DIP colored by complex size

References

- 1. Qi, Yanjun, et al. (2008) Protein complex identification by supervised graph local clustering. Bioinformatics 24(13), 250-268.
- 2. Drew, K., et al. (2017). Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Molecular systems biology, 13(6):932.
- 3. Giurgiu, M., et al. (2018). CORUM: the comprehensive resource of mammalian protein complexes—2019. Nucleic Acids Research.
- 4. Xenarios, I., et al. (2002). DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic acids research, 30(1), 303-305.
- 5. https://github.com/EpistasisLab/tpot
- 6. Miller, J. E., et al. (2012). Ccr4-Not complex: the control freak of eukaryotic cells. Critical reviews in biochemistry and molecular biology, 47(4), 315-333.

The University of Texas at Austin

Oden Institute for Computational Engineering and Sciences