CS 335: Top-Down Parsing

Swarnendu Biswas

Department of Computer Science and Engineering, Indian Institute of Technology Kanpur

Sem 2023-24-II

Example Expression Grammar

```
Start \rightarrow Expr
Expr \rightarrow Expr + Term \mid Expr - Term \mid Term
Term \rightarrow Term \times Factor \mid Term \div Factor \mid Factor
Factor \rightarrow (Expr) \mid \mathbf{num} \mid \mathbf{name}
```

Derivation of $name + name \times name$ with Oracular Knowledge

Sentential Form	Input
Expr	↑ name + name × name
Expr + Term	↑ name + name × name
Term + Term	↑ name + name × name
Factor + Term	↑ name + name × name
name + Term	↑ name + name × name
name + Term	name ↑ + name × name
name + Term	$name + \uparrow name \times name$
$name + Term \times Factor$	name + ↑ name × name
name + Factor \times Factor	name + ↑ name × name
name + name × Factor	name + ↑ name × name
name + name × Factor	name + name ↑ × name
name + name × Factor	name + name × ↑ name
$\textbf{name} + \textbf{name} \times \textbf{name}$	name + name×↑ name
name + name × name	name + name × name ↑

Derivation of **name** + **name** × **name** with Oracular Knowledge

Sentential Form	Input
Expr	↑ name + name × name
Expr + Term	↑ name + name × name
Term + Term	↑ name + name × name
Factor + Term	↑ name + name × name
name + Term	↑ name + name × name

The current input terminal being scanned is called the lookahead symbol

```
\begin{array}{ll} \text{name} + \textit{Factor} \times \textit{Factor} \\ \text{name} + \text{name} \times \uparrow \text{name} \\ \text{name} + \text{name} \times \uparrow \text{name} \\ \text{name} + \text{name} \times \text{name} \\ \text{name} + \text{name} \times \text{name} \\ \end{array}
```

Derivation of **name** + **name** × **name** with Oracular Knowledge

Derivation of **name** + **name** × **name** with Oracular Knowledge

Top-Down Parsing

High-level idea in top-down parsing

- (i) Start with the root (i.e., start symbol) of the parse tree
- (ii) Grow the tree downwards by expanding the production at the lower levels of the tree
 - ► Select a nonterminal and extend it by adding children corresponding to the right side of some production for the nonterminal
- (iii) Repeat till the lower fringe consists only of terminals and the input is consumed
 - Top-down parsing finds a **leftmost derivation** for an input string
 - Expands the parse tree with a **preorder depth-first** traversal

Top-Down Parsing

High-level idea in top-down parsing

- (i) Start with the root (i.e., start symbol) of the parse tree
- (ii) Grow the tree downwards by expanding the production at the lower levels of the tree
 - ➤ Select a nonterminal and extend it by adding children corresponding to the right side of some production for the nonterminal
- (iii) Repeat till the lower fringe consists only of terminals and the input is consumed

Mismatch in the lower fringe and the remaining input stream implies

- (i) Wrong choice of productions while expanding nonterminals, selection of a production may involve trial-and-error
- (ii) Input character stream is not part of the language

Top-Down Parsing Algorithm

```
root = node for the Start symbol
curr = root
push(null) // Stack
word = getNextWord()
while (true)
  if curr ∈ Nonterminal
     pick next rule A \rightarrow \beta_1 \beta_2 \dots \beta_n to expand curr
     create nodes for \beta_1, \beta_2, \dots \beta_n as children of curr
     push(\beta_n \beta_{n-1} \dots \beta_1) // reverse order
     curr = \beta_1
  if curr == word
    word = getNextWord()
     curr = pop() // Consumed
  if word == EOF and curr == null
     accept input
  else
     backtrack
```

Derivation of name + name × name

Rule #	Production
0	Start → Expr
1	$Expr \rightarrow Expr + Term$
2	$Expr \rightarrow Expr - Term$
3	$Expr \rightarrow Term$
4	Term o Term imes Factor
5	$Term \rightarrow Term \div Factor$
6	Term → Factor
7	Factor \rightarrow (Expr)
8	Factor → num
9	Factor → name

Rule #	Sentential Form	Input
	Expr	↑ name + name × name
1	Expr + Term	↑ name + name × name
3	Term + Term	↑ name + name × name
6	Factor + Term	↑ name + name × name
9	name + Term	↑ name + name × name
	name + Term	name ↑ + name × name
	name + Term	$name + \uparrow name \times name$
4	$name + Term \times Factor$	name + ↑ name × name
4	$\mathbf{name} + Factor \times Factor$	$name + \uparrow name \times name$
9	name + name × Factor	name + ↑ name × name
	name + name × Factor	name + name ↑ × name
	name + name × Factor	name + name × ↑ name
9	$\textbf{name} + \textbf{name} \times \textbf{name}$	name + name × ↑ name
	$name + name \times name$	$\mathbf{name} + \mathbf{name} \times \mathbf{name} \uparrow$

Derivation of name + name × name

Rule #	Production		Rule #	Sentential Form	Input
0	Start → Expr			Expr	↑ name + name × name
1	Expr → Expr + Term		1	Expr + Term	↑ name + name × name
2	$Expr \rightarrow Expr - Term$		3	Term + Term	↑ name + name × name
3	Expr → Term		6	Factor + Term	↑ name + name × name
4	Term × Factor		•	namo Torm	<u>↑ name</u> + name × name
5	Ten How does a	a top-d	down	parser choose v	Which + name × name
6	Ten rulo to appl	v2			↑ name × name
7	rule to appl	y:			↑ name × name
8	Factor → num		4	$\mathbf{name} + Factor \times Factor$	$name + \uparrow name \times name$
9	Factor → name		9	name + name × Factor	name + ↑ name × name
				name + name × Factor	name + name ↑ × name
				name + name × Factor	name + name × ↑ name
			9	$\mathbf{name} + \mathbf{name} \times \mathbf{name}$	name + name × ↑ name
				$name + name \times name$	name + name × name ↑

Deterministically Selecting a Production in Expression Grammar

Rule #	Production
0	$Start \rightarrow Expr$
1	$Expr \rightarrow Expr + Term$
2	$Expr \rightarrow Expr - Term$
3	$Expr \rightarrow Term$
4	$Term \rightarrow Term \times Factor$
5	Term → Term ÷ Factor
6	Term → Factor
7	Factor \rightarrow (Expr)
8	Factor → num
9	$Factor \rightarrow \mathbf{name}$

Rule#	Sentential Form	Input
	Expr	↑ name + name × name
1	Expr + Term	↑ name + name × name
1	Expr + Term + Term	↑ name + name × name
1	$Expr + Term + Term + \dots$	↑ name + name × name
1		↑ name + name × name
1		\uparrow name + name \times name

Deterministically Selecting a Production in Expression Grammar

Ru	ıle#	Production		Rule #	Sentential Form		Input
	0	Start → Expr			Expr	↑ name	e + name × name
	1	$Expr \rightarrow Expr + Term$		1	Expr + Term	↑ name	+ name × name
	2	Expr o Expr - Term		1	Expr + Term + Term	↑ name	+ name × name
	3	Expr o Term		1	Expr + Term + Term +	↑ name	+ name × name
	4	Term × Factor		1			+ name × name
	5	Ten A top-down	pars	er can	loop indefinitely	/	+ name × name
	6	with left-red	curciv	o aran	amar		
	7	Fac With left-rec	Juisiv	e gran	IIIIai		J
	8	Factor → num					
	9	Factor → name					

Left Recursion

A grammar is left-recursive if it has a nonterminal A such that there is a derivation $A \stackrel{+}{\Rightarrow} A\alpha$ for some string α

Direct There is a production of the form $A \rightarrow A\alpha$

Indirect The first symbol on the right-hand side of a rule can derive the symbol on the left

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \epsilon$

We can often reformulate a grammar to avoid left recursion

Remove Direct Left Recursion

Grammar with left recursion

$$A \rightarrow A\alpha_1 |A\alpha_2| \dots |A\alpha_m| \beta_1 |\dots |\beta_n|$$

Grammar without left recursion

$$A \to \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

Example

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE'$
 $T \rightarrow FT'$
 $T' \rightarrow *FT'$
 $F \rightarrow (E) \mid id$

Non-Left-Recursive Expression Grammar

Expression Grammar with Recursion

Rule #	Production
0	$Start \rightarrow Expr$
1	$Expr \rightarrow Expr + Term$
2	$Expr \rightarrow Expr - Term$
3	$Expr \rightarrow Term$
4	$Term \rightarrow Term \times Factor$
5	Term \rightarrow Term \div Factor
6	Term \rightarrow Factor
7	Factor \rightarrow (Expr)
8	Factor → num
9	Factor → name

Expression Grammar without Recursion

Rule #	Production
0	$Start \rightarrow Expr$
1	$Start o Term Expr^{'}$
2	$Expr' \rightarrow +Term Expr'$
3	Expr' o -Term Expr'
4	$Expr' o \epsilon$
5	Term $ ightarrow$ Factor Term $^{'}$
6	Term $\rightarrow \times Factor Term'$
7	$Term ightarrow \div Factor Term'$
8	$\mathit{Term}' o \epsilon$
9	$Factor \rightarrow (Expr)$
10	Factor → num
11	Factor → name

Eliminating Indirect Left Recursion

- **Input**: Grammar *G* with no cycles or ϵ -productions
- Algorithm:

```
Arrange nonterminals in some order A_1,A_2,\ldots A_n for i\leftarrow 1\ldots n for j\leftarrow 1\ldots i-1 if \exists a production A_i\rightarrow A_j\gamma Replace A_i\rightarrow A_j\gamma with one or more productions that expand A_j Eliminate the immediate left recursion among the A_i productions
```

Loop invariant at the start of the outer iteration i

 $\forall k < i$, no production expanding A_k has A_l in its body (i.e., right-hand side) for all l < k

The algorithm establishes a topological ordering on nonterminals

Eliminating Indirect Left Recursion

- Input: Grammar G with no cycles or ϵ -productions
- Algorithm:

```
Arrange nonterminals in some order A_1,A_2,\ldots A_n for i\leftarrow 1\ldots n for j\leftarrow 1\ldots i-1 if \exists a production A_i\rightarrow A_j\gamma Replace A_i\rightarrow A_j\gamma with one or more productions that expand A_j Eliminate the immediate left recursion among the A_i productions
```

$$S \rightarrow Aa \mid b$$

$$A \rightarrow Ac \mid Sd \mid \epsilon$$

$$A \rightarrow bdA' \mid A'$$

$$A' \rightarrow cA' \mid adA' \mid \epsilon$$

Implementing Backtracking

- A top-down parser may need to undo its actions after it detects a mismatch between the parse tree's leaves and the input
 - ▶ Implies a possible expansion with a wrong production
- Steps in backtracking
 - ► Set curr to parent and delete the children
 - ► Expand the node curr with untried rules if any
 - Create child nodes for each symbol in the right hand of the production
 - Push those symbols onto the stack in reverse order
 - Set curr to the first child node
 - ▶ Move curr up the tree if there are no untried rules
 - ▶ Report a syntax error when there are no more moves

Backtracking is Expensive

- (i) Parser expands a nonterminal with the wrong rule
- (ii) Mismatch between the lower fringe of the parse tree and the input is detected
- (iii) Parser undoes the last few actions
- (iv) Parser tries other productions (if any)

A large subset of CFGs can be parsed without backtracking

The grammar may require transformations

Avoid Backtracking

- Parser is to select the next rule
 - ▶ Compare the curr symbol and the next input symbol called the lookahead
 - ▶ Use the lookahead to disambiguate the possible production rules
- Intuition
 - ► Each alternative for the leftmost nonterminal leads to a distinct terminal symbol
 - ▶ Which rules to choose becomes obvious by comparing the next word in the input stream

Definition

Backtrack-free grammar (also called predictive grammar) is a CFG for which a leftmost, top-down parser can always predict the correct rule with a one-word lookahead

Definition

Given a string γ of terminal and nonterminal symbols, FIRST (γ) is the set of all terminal symbols that can begin any string derived from γ

- We also need to keep track of which symbols can produce the empty string
- FIRST : $(NT \cup T \cup \{\epsilon, \mathsf{EOF}\}) \to (T \cup \{\epsilon, \mathsf{EOF}\})$
- Steps to compute FIRST set
 - 1. If X is a terminal, then FIRST $(X) = \{X\}$
 - 2. If $X \to \epsilon$ is a production, then $\epsilon \in FIRST(X)$
 - 3. If X is a nonterminal and $X \to Y_1 Y_2 \dots Y_k$ is a production
 - (i) Everything in FIRST (Y_1) is in FIRST (X)
 - (ii) If for some $i, a \in \mathsf{FIRST}(Y_i)$ and $\forall i \leq j < i, \epsilon \in \mathsf{FIRST}(Y_j)$, then $a \in \mathsf{FIRST}(X)$
 - (iii) If $\epsilon \in \text{FIRST}(Y_1, \dots Y_k)$, then $\epsilon \in \text{FIRST}(X)$
- Generalize FIRST relation to string of symbols

FIRST
$$(X\gamma)$$
 = FIRST (X) if $X \rightarrow \epsilon$
FIRST $(X\gamma)$ = FIRST (X) \cup FIRST (γ) if $X \rightarrow \epsilon$

Example of FIRST Set Computation

Grammar

$$Start
ightarrow Expr$$
 $Expr
ightarrow Term Expr'$
 $Expr'
ightarrow + Term Expr' | - Term Expr' | \epsilon$
 $Term
ightarrow Factor Term'$
 $Term'
ightarrow imes Factor Term' | \div Factor Term' | \epsilon$
 $Factor
ightarrow (Expr) | \mathbf{num} | \mathbf{name}$

FIRST Sets

$$\begin{aligned} & \mathsf{FIRST}\left(Start\right) = \{\mathsf{name}, \mathsf{num}, (\} \\ & \mathsf{FIRST}\left(Expr\right) = \{\mathsf{name}, \mathsf{num}, (\} \\ & \mathsf{FIRST}\left(Expr'\right) = \{+, -, \epsilon\} \\ & \mathsf{FIRST}\left(Term\right) = \{\mathsf{name}, \mathsf{num}, (\} \\ & \mathsf{FIRST}\left(Term'\right) = \{\times, \div, \epsilon\} \\ & \mathsf{FIRST}\left(Factor\right) = \{\mathsf{name}, \mathsf{num}, (\} \end{aligned}$$

How does a parser decide when to apply the ϵ -production?

FOLLOW Set

Definition

FOLLOW (X) is the set of terminals that can immediately follow X

• That is, $t \in FOLLOW(X)$ if there is any derivation containing Xt

Terminal c is in FIRST (A) and a is in FOLLOW (A)

Steps to Compute FOLLOW Set

- (i) Place \$ in FOLLOW (S) where S is the start symbol and the \$ is the end marker
- (ii) If there is a production $A \to \alpha B\beta$, then everything in FIRST (β) except ϵ is in FOLLOW (B)
- (iii) If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$ where FIRST (β) contains ϵ , then everything in FOLLOW (A) is in FOLLOW (B)

Example of FOLLOW Set Computation

Grammar

$$Start
ightharpoonup Expr$$
 $Expr
ightharpoonup Term Expr'$
 $Expr'
ightharpoonup + Term Expr' |
ightharpoonup Term Expr' |
ightharpoonup Term
ightharpoonup Factor Term'$
 $Term'
ightharpoonup \times Factor Term' |
ightharpoonup Factor
ightharpoonup (Expr) | num | name$

FOLLOW Sets

Conditions for Backtrack-Free Grammar

• Consider a production $A \rightarrow \beta$

$$\mathsf{FIRST}^+\left(A \to \beta\right) = \left\{ \begin{array}{ll} \mathsf{FIRST}\left(\beta\right) & \mathsf{if} \ \epsilon \notin \mathsf{FIRST}\left(\beta\right) \\ \mathsf{FIRST}\left(\beta\right) \cup \mathsf{FOLLOW}\left(A\right) & \mathsf{otherwise} \end{array} \right.$$

• For any nonterminal A where $A \to \beta_1 |\beta_2| \dots |\beta_n$, a backtrack-free grammar has the property

$$\mathsf{FIRST}^+(A \to \beta_i) \cap \mathsf{FIRST}^+(A \to \beta_j) = \phi, \qquad \forall 1 \le i, j \le n, \ i \ne j$$

Expression grammar on the previous slide is backtrack-free

Not All Grammars are Backtrack-Free

```
Start 
ightharpoonup Expr'
Expr 
ightharpoonup Term Expr' | - Term Expr' | \epsilon
Term 
ightharpoonup Factor Term'
Term' 
ightharpoonup X Factor Term' | \div Factor Term' | \epsilon
Factor 
ightharpoonup (Expr) | num | name
```

```
Factor \rightarrow \mathbf{name} \mid \mathbf{name}[Arglist] \mid \mathbf{name} \ (Arglist) Arglist \rightarrow Expr \ MoreArgs MoreArgs \rightarrow , Expr \ MoreArgs \mid \epsilon
```

Not All Grammars are Backtrack-Free

```
Start 	o Expr
Expr 	o Term Expr'
Expr' 	o + Term Expr' | - Term Expr' | \epsilon
Term 	o Factor Term'
Term' 	o 	imes Factor Term' | \div Factor Term' | \epsilon
Factor 	o (Expr) | num | name
```

```
Factor →name | name [Arglist] | name (Arglist) 
Arglist →Expr MoreArgs 
MoreArgs → , Expr MoreArgs | \epsilon
```

Given a finite lookahead, we can always devise a non-backtrack-free grammar such that the lookahead is insufficient

Left Factoring

Definition

Left factoring is the process of extracting and isolating common prefixes in a set of productions

• Algorithm:

$$A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \dots | \alpha \beta_n | \gamma_1 | \dots | \gamma_j$$

$$A \rightarrow \alpha B | \gamma_1 | \gamma_2 \dots | \gamma_j$$

$$B \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$$

Summarizing Top-down Parsing

- Efficiency depends on the accuracy of selecting the correct production for expanding a nonterminal
 - Parser may not terminate in the worst-case
- A large subset of the context-free grammars can be parsed without backtracking

Recursive-Descent Parsing

Recursive-Descent Parsing

- Recursive-descent parsing is a form of top-down parsing that may require backtracking
 - ► Top-down approach is modeled by calls to functions, where there is one function for each nonterminal

```
void A() {
   Choose an A-production A \to X_1 X_2 \dots X_k
   for i \leftarrow 1 \dots k
   if X_i is a nonterminal
      call function X_i
   else if X_i equals the current input symbol a
      advance the input to the next symbol
   else
   // error
}
```

Recursive-Descent Parsing with Backtracking

- Consider a grammar with two productions $X \to \gamma_1$ and $X \to \gamma_2$
- Suppose FIRST $(\gamma_1) \cap \text{FIRST}(\gamma_2) \neq \phi$
 - ▶ Let us denote one of the common terminal symbols by a
- The function for X will not know which production to use on the input token a
- To support backtracking
 - ► All productions should be tried in some order
 - ► Failure for some production implies the parser needs to try the remaining productions
 - ▶ Report an error only when there are no other rules

Predictive Parsing

Definition

Predictive parsing is a special case of recursive-descent parsing that does not require backtracking

- Lookahead symbol unambiguously determines which production rule to use
- Advantage is that the algorithm is simple and the parser can be constructed by hand

```
\begin{array}{c} \textit{stmt} \rightarrow \textbf{expr}; \\ | \textbf{if} \ (\textit{expr}) \ \textit{stmt} \\ | \ \textbf{for} \ (\textit{optexpr}; \textit{optexpr}; \textit{optexpr}) \ \textit{stmt} \\ | \ \textbf{other} \\ | \ \textit{optexpr} \rightarrow \textbf{expr} \ | \ \epsilon \end{array}
```

Pseudocode for a Predictive Parser

```
void stmt() {
  switch(lookahead) {
   case expr: { match(expr); match(';'); break; }
   case if: {
      match(if); match('('); match(expr); match(')'); stmt(); break;
   case for: {
      match(for); match('('); optexpr(); match(';'); optexpr(); match(';');
      optexpr(); match(')'); stmt(); break;
    case other: { match(other): break: }
    default: { print("syntax error"); }
```

LL(1) Grammars

Definition

LL(k) grammars are the class of grammars for which no backtracking is required

- First L stands for left-to-right scan, second L stands for leftmost derivation
- There is one lookahead token in LL(1) and k lookahead tokens in LL(k)
- Predictive parsers accept LL(k) grammars
- Most programming language constructs are LL(1)
- Every LL(1) grammar is a LL(2) grammar

Nonrecursive Table-Driven LL(1) Parser

LL(1) Parsing Algorithm

- Input: String w and parsing table M for grammar G
- Output: A leftmost derivation of w if $w \in L(G)$; otherwise, report an error
- Algorithm:

```
Let a be the first symbol in w
Let X be the symbol at the top of the stack
while X = 
  if X == a
    pop the stack and advance the input
  else if X is a terminal or M[X,a] is an error entry
    report error
  else if M[X,a] == X \rightarrow Y_1 Y_2 \dots Y_k
    // Expand with the production X \rightarrow Y_1 Y_2 \dots Y_k
    pop the stack
    // Simulate depth-first traversal
    push Y_k Y_{k-1} \dots Y_1 onto the stack
  X \leftarrow \text{top stack symbol}
```

Construction of a LL(1) Parsing Table

- **Input**: Grammar *G*
- Algorithm:

```
for each production A \to \alpha in G

for each terminal a in FIRST (\alpha)

add A \to \alpha to M[A,a]

if \epsilon \in \text{FIRST}(\alpha)

for each terminal b in FOLLOW (A)

add A \to \alpha to M[A,b]

if \epsilon \in \text{FIRST}(\alpha) and \$ \in \text{FOLLOW}(A)

add A \to \alpha to M[A,\$]
```

LL(1) Parsing Table

Grammar

FIRST Sets

FOLLOW Sets

$$E \to TE'$$

$$E' \to + TE' \mid \epsilon$$

$$\mathsf{FIRST}\,(E) = \{\mathsf{id}, (\,\}$$

$$FOLLOW(E) = \{\$, \}$$

$$T \rightarrow FT'$$

FIRST
$$(E') = \{+, \epsilon\}$$

FIRST $(T) = \{id, (\}$

$$\mathsf{FOLLOW}\left(E^{'}\right) = \{\$,\)\}$$

$$T^{'} \rightarrow *FT^{'} \mid \epsilon$$

FIRST
$$(T') = \{*, \epsilon\}$$

FOLLOW
$$(T) = \{\$, +, \}$$

FOLLOW $(T') = \{\$, +, \}$

$$F o (E) \mid \operatorname{id}$$

$$FIRST(F) = \{id, ()\}$$

$$\mathsf{FOLLOW}\,(F) = \{\$, +, *,\,)\}$$

Nonterminal id + * () \$
$$E E \to TE' E \to TE'$$

$$E' E' \to +TE' E' \to \epsilon E' \to \epsilon$$

$$T T \to FT' T \to FT'$$

$$T' T' \to \epsilon T' \to \epsilon T' \to \epsilon T' \to \epsilon$$

$$F F \to id F \to (E)$$

Working of a LL(1) Parser

Stack	Input	Remark
\$ <i>E</i>	↑ id + id * id\$	Expand $E \rightarrow TE'$
\$ <i>E</i> T	↑ id + id * id\$	Expand $T \rightarrow FT'$
\$ <i>E</i> ′ <i>T</i> ′ <i>F</i>	↑ id + id * id\$	Expand $F \rightarrow id$
$\mathbf{\$E}'T'$ id	↑ id + id * id\$	Match id
\$ <i>E</i> ′ <i>T</i> ′	↑ + id * id\$	Expand $T o \epsilon$
\$ <i>E</i> ′	↑ + id * id\$	Expand $E' \rightarrow +TE'$
\$ <i>E</i> T+	↑ + id * id\$	Match +
\$ <i>E' T</i>	↑ id * id\$	Expand $T \rightarrow FT'$
\$ <i>E</i> ′ <i>T</i> ′ <i>F</i>	↑ id * id\$	Expand $F \rightarrow id$
$\mathbf{\$E}^{'}T^{'}$ id	↑ id * id\$	Match id
\$ <i>E</i> ′ <i>T</i> ′	↑ * i d \$	Expand $T^{'} \rightarrow *FT^{'}$
\$ <i>E'T'F</i> *	↑ * id\$	Match *
\$ <i>E</i> ′ <i>T</i> ′ <i>F</i>	↑ id \$	Expand $F \rightarrow id$
$\mathbf{\$}E^{'}T^{'}$ id	↑ id\$	Match id
\$ <i>E</i> ′ <i>T</i> ′	↑\$	Expand $T^{'} ightarrow \epsilon$
\$ <i>E</i> ′	↑\$	Expand $E^{'} ightarrow \epsilon$
\$	↑\$	

More on LL(1) Parsing

- Grammars whose predictive parsing tables contain no duplicate entries are called LL(1)
- No left-recursive or ambiguous grammar can be LL(1)
 - ▶ If grammar *G* is left-recursive or is ambiguous, then parsing table *M* will have at least one multiply-defined cell
- Some grammars cannot be transformed into LL(1)
 - ► The below grammar is ambiguous

$$S \rightarrow iEtSS' \mid a$$

 $S' \rightarrow eS \mid \epsilon$
 $E \rightarrow b$

LL(1) Parsing Table for an Ambiguous Grammar

$$S \rightarrow iEtSS' \mid a$$

 $S' \rightarrow eS \mid \epsilon$
 $E \rightarrow b$

Nonterminal	а	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iEtSS^{'}$		
S [']			$S^{'} ightarrow \epsilon \ S^{'} ightarrow eS$			$S^{'} ightarrow \epsilon$
Е		$E \rightarrow b$				

Detecting Errors in Predictive Parsing

Error conditions

- (i) Terminal on top of the stack does not match the next input symbol
- (ii) Nonterminal A is on top of the stack, a is the next input symbol, and M[A, a] is error

Choices

- (i) Raise an error and quit parsing
- (ii) Print an error message, try to recover from the error, and continue with the compilation

Error Recovery in Predictive Parsing

- Panic mode skip over symbols until a token in a set of synchronizing (synch) tokens appear
 - ► Add all tokens in FOLLOW (A) to the synch set for A, parsing can continue if the parser sees an input symbol in FOLLOW (A)
 - ► Add symbols in FIRST (A) to the synch set for A, parsing can continue with the nonterminal A that is at the top of the stack
 - ► Add keywords that can begin constructs
 - ▶ ...
- Other error handling policies
 - Skip input if the table does not have an entry
 - ▶ Pop nonterminal if the table entry is synch

Predictive Parsing Table with Synchronizing Tokens

Grammar

$$\begin{split} E &\rightarrow TE^{'} \\ E^{'} &\rightarrow + TE^{'} \mid \epsilon \\ T &\rightarrow FT^{'} \\ T^{'} &\rightarrow *FT^{'} \mid \epsilon \\ F &\rightarrow (E) \mid \mathbf{id} \end{split}$$

FOLLOW Sets

$$\begin{aligned} & \mathsf{FOLLOW}\left(E\right) = \mathsf{FOLLOW}\left(E'\right) = \{\$,\,)\} \\ & \mathsf{FOLLOW}\left(T\right) = \mathsf{FOLLOW}\left(T'\right) = \{\$,\,+,\,)\} \\ & \mathsf{FOLLOW}\left(F\right) = \{\$,\,+,\,\times,\,)\} \end{aligned}$$

Nonterminal	id	+	*	()	\$
Ε	$E \rightarrow TE^{'}$			$E \rightarrow TE^{'}$	synch	synch
E [']		$E^{'} \rightarrow +TE^{'}$			$E^{'} ightarrow \epsilon$	$E^{'} ightarrow \epsilon$
Т	$T \to FT'$	synch		$T \to FT'$	synch	synch
$T^{'}$		$T^{'} ightarrow \epsilon$	$T^{'} \rightarrow *FT^{'}$		$T^{'} ightarrow \epsilon$	$T^{'} ightarrow \epsilon$
F	F o id	synch	synch	$F \rightarrow (E)$	synch	synch

Error Recovery Moves by Predictive Parser

Stack	Input	Remark
\$ <i>E</i>	+ id * + id\$	Error, skip +
\$ <i>E</i>	id * + id\$	Expand $E o TE'$
\$ <i>E</i> T	id * + id\$	Expand $T \to FT'$
\$ <i>E'T'F</i>	id * + id\$	Expand $F \rightarrow id$
$\mathbf{\$E}'T'$ id	id * + id\$	Match id
\$ <i>E' T'</i>	* + id\$	Expand $T \to *FT'$
\$ <i>E T F</i> *	* + id\$	Match *
\$ <i>E</i> ′ <i>T</i> ′ <i>F</i>	+ id \$	Error, $M[F, +] = $ synch, pop F
\$ <i>E' T'</i>	+ id\$	Expand $T o \epsilon$
\$ <i>E</i> ′	+ id\$	Expand $E^{'} \rightarrow +TE^{'}$
\$ <i>E' T</i> +	+ id\$	Match +
\$ <i>E</i> T	id\$	Expand $T \to FT'$
\$ <i>E'</i>	id\$	Expand $F \rightarrow id$
E'T'id	id\$	Match id
\$ <i>E' T'</i>	\$	Expand $T^{'} ightarrow \epsilon$
\$ <i>E</i> ′	\$	Expand $E^{'} ightarrow \epsilon$
\$	\$	

References

N. Cooper and L. Torczon. Engineering a Compiler. Section 3.3, 2nd edition, Morgan Kaufmann.