Esercitazione 10 Formulazione Debole per Problemi ai Limiti

Formulazione debole ed elementi di analisi funzionale

Consideriamo il caso 1D e indichiamo con $H^1(\Omega)$ su $\Omega = (0, L) \in \mathbb{R}$ lo spazio di Hilbert definito come $H^1(\Omega) := \{v \in L^2(\Omega) : v' \in L^2(\Omega)\}$, dotato di $norma \|v\|_{H^1(\Omega)} = \sqrt{\|v\|_{L^2(\Omega)}^2 + \|v'\|_{L^2(\Omega)}^2}$ e $seminorma \|v\|_{H^1(\Omega)} = \|v'\|_{L^2(\Omega)}$. Ricordiamo che in 1D $(\Omega \subset \mathbb{R})$, $H^1(\Omega) \subset C^0(\overline{\Omega})$. Per tali funzioni inoltre vale il risultato (di traccia) seguente per $\Omega = (0, L)$:

$$|v(0)| \leq C \|v\|_{H^1(\Omega)} \qquad \text{e} \qquad |v(L)| \leq C \|v\|_{H^1(\Omega)} \qquad \text{per ogni } v \in H^1(\Omega),$$

dove C > 0 è una costante positiva.

Definiamo inoltre lo spazio $H_0^1(\Omega) := \{v \in H^1(\Omega) : v(a) = v(b) = 0\}$, per un generico dominio $\Omega = (a,b) \subset \mathbb{R}$. Vale allora la disuguaglianza di Poincarè, ovvero esiste la costante di Poincarè $C_{\Omega} = \frac{b-a}{\sqrt{2}} > 0$ tale che:

$$||v||_{L^2(\Omega)} \le C_{\Omega} |v|_{H^1(\Omega)}$$
 per ogni $v \in H_0^1(\Omega)$.

Se $v \in H_0^1(\Omega)$, allora la norma e la seminorma $H^1(\Omega)$ sono equivalenti, infatti:

$$|v|_{H^1(\Omega)} \le ||v||_{H^1(\Omega)} \le \sqrt{1 + C_{\Omega}^2} |v|_{H^1(\Omega)}$$
 per ogni $v \in H_0^1(\Omega)$.

I risultati precedenti valgono anche per $v \in H_a^1(\Omega) := \{v \in H^1(\Omega) : v(a) = 0\}$ oppure $v \in H_b^1(\Omega) := \{v \in H^1(\Omega) : v(b) = 0\}$.

Consideriamo un funzionale sullo spazio di Hilbert V, ovvero un operatore $F: V \to \mathbb{R}$.

- $F \in lineare \text{ se } F(\beta v + \gamma w) = \beta F(v) + \gamma F(w) \text{ per ogni } \beta, \gamma \in \mathbb{R} \text{ e per ogni } v, w \in V.$
- F è limitato se e solo se esiste una constante C > 0 tale che $|F(v)| \le C ||v||_V$ per ogni $v \in V$.
- F è continuo se e solo se esiste una constante C > 0 tale che $|F(v) F(w)| \le C ||v w||_V$ per ogni $v, w \in V$.

Osserviamo che se F è lineare e continuo se e solo se è limitato.

Consideriamo ora una forma sullo spazio di Hilbert V, ovvero un'applicazione $a:V\times V\to\mathbb{R}$.

- $a \in bilineare$ se: i) $a(\beta v + \gamma w, z) = \beta a(v, z) + \gamma a(w, z)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w, z \in V$; e ii) $a(v, \beta w + \gamma z) = \beta a(v, w) + \gamma a(v, z)$ per ogni $\beta, \gamma \in \mathbb{R}$ e per ogni $v, w, z \in V$.
- $a \in simmetrica$ se e solo a(v, w) = a(w, v) per ogni $v, w \in V$.
- $a \in continua$ se e solo se esiste una constante di continuità M > 0 tale che:

$$|a(v, w)| \le M \|v\|_V \|w\|_V$$
 per ogni $v, w \in V$.

• a è coerciva se e solo se esiste una constante di coercività $\alpha > 0$ tale che:

$$a(v,v) \ge \alpha \|v\|_V^2$$
 per ogni $v \in V$.

Teorema (Lemma) di Lax-Milgram. Si consideri il seguente problema in formulazione debole:

cercare
$$u \in V$$
 : $a(u, v) = F(v)$ $\forall v \in V$. (1)

Se V è uno spazio di Hilbert dotato di norma $\|\cdot\|$ indotta dal prodotto scalare (\cdot,\cdot) e le seguente ipotesi sono soddisfatte:

- i) $a: V \times V \to \mathbb{R}$ è una forma bilineare;
- ii) $a: V \times V \to \mathbb{R}$ è una forma continua;
- iii) $a: V \times V \to \mathbb{R}$ è una forma coerciva con costante di coercività $\alpha > 0$;
- iv) $F: V \to \mathbb{R}$ è un funzionale lineare;
- iv) $F: V \to \mathbb{R}$ è un funzionale continuo;

allora esiste un'unica soluzione $u \in V$ del problema debole (1) e vale:

$$||u||_V \le \frac{1}{\alpha} ||F||_{V'},$$

dove $||F||_{V'} := \sup_{v \in V \setminus \{0\}} \frac{|F(v)|}{||v||_V}$ è la norma duale del funzionale F.

Aspetto essenziale della formulazione debole di una EDP è l'integrazione per parti. Se per esempio ϕ e ψ sono funzioni sufficientemente regolari nel dominio aperto $\Omega = (0, L) \subset \mathbb{R}$, allora:

$$-\int_0^L \phi'(x) \, \psi(x) \, dx = -\int_0^L (\phi(x) \, \psi(x))' \, dx + \int_0^L \phi(x) \, \psi'(x) \, dx,$$

da cui

$$-\int_0^L \phi'(x) \, \psi(x) \, dx = -\phi(L) \, \psi(L) + \phi(0) \, \psi(0) + \int_0^L \phi(x) \, \psi'(x) \, dx.$$

Esercizio 1

Dati i seguenti problemi in formulazione forte, si scriva la corrispondente formulazione debole motivando la scelta degli spazi funzionali ed eventualmente la regolarità dei dati. Inoltre, utilizzando il Teorema di Lax-Milgram, si dimostri che la soluzione debole esiste ed è unica.

1. $\begin{cases} -\mu_0 u''(x) + \beta_0 u'(x) + \sigma_0 u(x) = f(x) & x \in (0, L), \\ u(0) = u(L) = 0, \end{cases}$

dove $\mu_0 > 0$, $\beta_0 \in \mathbb{R}$ e $\sigma_0 \ge 0$.

2. $\begin{cases} -(\mu(x) u'(x))' + \beta_0 u'(x) = 0 & x \in (0, L), \\ u(0) = g_1, \\ u(L) = g_2, \end{cases}$

dove $\mu(x) \ge \mu_0 > 0$ per ogni $x \in (0, L)$, mentre $g_1, g_2 \in \mathbb{R}$.

Dopo aver posto $\mu(x) = 1 + 2\frac{x}{L}$ e $\beta_0 = 7$, si forniscano le espressioni delle costanti di coercività α e di continuità M.

3.

$$\begin{cases}
-\mu_0 u''(x) + \sigma(x) u(x) = f(x) & x \in (0, L), \\
u(0) = g_1, \\
u(L) = g_2,
\end{cases}$$
To a portrograph $x \in (0, L)$, mentro $g_1, g_2 \in \mathbb{P}$

dove $\mu_0 > 0$ e $\sigma(x) \geq \sigma_0 > 0$ per ogni $x \in (0, L)$, mentre $g_1, g_2 \in \mathbb{R}$.

Dopo aver posto $\mu_0 = 3$ e $\sigma(x) = 5^{-x/L}$, si forniscano le espressioni delle costanti di coercività α e di continuità M.

4.

$$\begin{cases}
-\mu_0 u''(x) + \sigma_0 u(x) = 0 & x \in (0, L), \\
+\mu_0 u'(0) = q_1, \\
-\mu_0 u'(L) = q_2,
\end{cases}$$

dove $\mu_0 > 0$, $\sigma_0 > 0$, mentre $q_1, q_2 \in \mathbb{R}$.

Esercizio 2

Dati i seguenti problemi in formulazione forte, si scriva la corrispondente formulazione debole motivando la scelta degli spazi funzionali ed eventualmente la regolarità dei dati. Inoltre, utilizzando il Teorema di Lax-Milgram, si dimostri che la soluzione debole esiste ed è unica.

1.

$$\begin{cases} -(\mu(x) u'(x))' = 0 & x \in (0, L), \\ u(0) = 0, \\ -\mu(L) u'(L) = \gamma_2 u(L) + q_2, \end{cases}$$

dove $\mu(x) \ge \mu_0 > 0$, $\sigma_0 > 0$, $\gamma_2 \ge 0$, mentre $q_2 \in \mathbb{R}$.

2.

$$\begin{cases}
-\mu_0 u''(x) + \sigma(x) u(x) = 0 & x \in (0, L), \\
+\mu_0 u'(0) = q_1, \\
-\mu_0 u'(L) = \gamma_2 u(L) + q_2,
\end{cases}$$

dove $\mu_0 > 0$, $\sigma(x) \ge \sigma_0 > 0$, con $\sigma(x) \in L^{\infty}(\Omega)$, $\gamma_2 \ge 0$, mentre $q_2 \in \mathbb{R}$.

3.

$$\begin{cases}
-\mu_0 u''(x) + \sigma_0 u(x) = 0 & x \in (0, L), \\
+\mu_0 u'(0) = q_1, \\
u(L) = g_2,
\end{cases}$$

dove $\mu_0 > 0$, $\sigma_0 > 0$, mentre $q_1, g_2 \in \mathbb{R}$.

4.

$$\begin{cases}
-\mu_0 u''(x) + \beta_0 u'(x) = f_0 & x \in (0, L), \\
u(0) = 0, \\
-\mu_0 u'(L) = 0,
\end{cases}$$

dove $\mu_0 > 0$, $\beta_0 \ge 0$, mentre $f_0 \in \mathbb{R}$.

5. Si ripeta il caso proposto al punto 4 con $\beta_0 < 0$. Per quali valori di β_0 la forma bilineare associata al problema in formulazione debole è coerciva?

6.

$$\begin{cases}
-\mu_0 u''(x) + \beta(x) u'(x) + \sigma_0 u(x) = f_0 & x \in (0, L), \\
u(0) = 0, \\
-\mu_0 u'(L) = 0,
\end{cases}$$

dove $\mu_0 > 0$, $\beta(x) = \sigma_0 x$ per ogni $x \in (0, L)$, mentre $\sigma_0 > 0$ e $f_0 \in \mathbb{R}$.