- Leitura do teclado
 - Aplicações que requerem entrada de dados através do teclado, via terminal serial, devem utilizar a chamada de sistema read
 - int read (char *buffer, int size)
 - buffer: endereço onde devem ser armazenados os caracteres lidos
 - size: número máximo de caracteres que podem ser armazenados em buffer contando o final de string 0
 - Retorna
 - 0 caso <ENTER> ainda não tenha sido pressionado ou
 - o número de caracteres armazenados após <ENTER> ter sido pressionado
 - buffer deve conter uma string finalizada com 0. <ENTER> não deve ser armazenado

- Leitura do teclado (tratamento no kernel)
 - O handler do módulo RX deve ler o caracter recebido pelo terminal, enviá-lo de volta via módulo TX e armazená-lo em uma string de tamanho fixo (e.g. 80 caracteres)
 - Esta string é uma variável do kernel
 - Ao detectar o código ASCII do <ENTER>, o handler deve finalizar a string com 0 ('\0')
 - Após a finalização da string, a chamada de sistema read está apta a copiar size caracteres da string do kernel para buffer e retornar para a aplicação o número de caracteres copiados (sincronização entre handler RX e read)
 - Após retornar o número de caracteres copiados em buffer, read deve voltar a retornar 0 até que <ENTER> seja pressionado novamente

Leitura do teclado

 Quando uma aplicação deseja ler dados do teclado, ela deve fazer polling na chamada de sistema read até que ela retorne um valor diferente de 0

```
Bloqueia até o handler RX detectar <ENTER>

/* Leitura bloqueante */
while (read(buffer, size) == 0);

...

Após o bloqueio, buffer contém a string digitada
```

Aplicação

- Inicialmente a aplicação deve ler uma string de no máximo 80 caracteres do teclado e mostrá-la invertida
- Em seguida deve-se entrar em um loop infinito envolvendo o bubble sort, solicitando ao usuário
 - 1. Tamanho do *array* a ser ordenado
 - 2. Elementos do *array* (um-por-um)
 - 3. Tipo de ordenação (crescente/decrescente)
 - 4. Apresentação do array ordenado
 - 5. Volta ao passo 1