

SEGUNDO EXERCÍCIO COMPUTACIONAL Indutância e Força Magnética Em Solenoide Com Êmbolo

Nome: Guilherme Akira Alves dos Santos

NUSP: 11027484

Professor: Luiz Lebensztajn

Turma: 02

São Paulo - SP 2020

SUMÁRIO

1.	Dados do problema para o grupo	03
2.	Cálculo Analítico da Indutância e da Força	03
3.	Sumário das simulações	06
	3.1. Núcleo de material Mu_1000	06
	3.1.1. e _i = 0.1 cm	06
	3.1.2. e _i = 0.2 cm	08
	3.1.3. e _i = 0.3 cm	09
	3.1.4. e _i = 0.4 cm	11
	3.1.5. e _i = 0.5 cm	12
	3.2. Núcleo de material M-15 Steel	14
	3.2.1. e _i = 0.1 cm	14
	3.2.2. e _i = 0.2 cm	15
	3.2.3. e _i = 0.3 cm	17
	3.2.4. e _i = 0.4 cm	18
	3.2.5. e _i = 0.5 cm	20
4.	Análise Qualitativa das simulações	21
5.	Variação da Indutância Própria com o entreferro	22
6.	Variação da Força magnética com o entreferro	23
7	Análise dos resultados comentários e conclusões	24

1. Dados do problema

Número de espiras (N)	400
Corrente	1 A
Material do núcleo	M-15 Steel
Compr. entreferro sup. (e _s)	0.2 cm
Compr. entreferro inf. (e _i)	0.1→0.5 cm

2. Cálculo Analítico da Indutância Própria e da Força Magnética

Com um núcleo ferromagnético ideal ($\mu_c \to \infty$), considera-se apenas as relutâncias dos entreferros na modelagem de circuito magnético (aplicando o efeito de espraiamento). Estas são dadas pelas seguintes expressões:

Fig. 1 - Elemento infinitesimal para cálculo da relutância em entreferro com simetria axial

$$\Re_{e_s} = \frac{1}{2\pi\mu_0(h+e_s)} \times \int_a^b \frac{dr}{r} = \frac{1}{2\pi\mu_0(h+e_s)} ln\left(\frac{b}{a}\right)$$

$$\Re_{e_i} = \frac{e_i}{\mu_0 A}$$

EC2 - PEA 3306 - 2020 (Turma 02)

Para o cálculo da relutância no entreferro superior, utilizou-se os seguintes valores das dimensões de projeto:

$$h = 2.5 cm$$
$$a = 2.5 cm$$

$$b = (a + e_s) cm$$

$$e_s = 0.2 \ cm$$

$$\Re_{e_s} = \frac{1}{2\pi\mu_0((2.5+0.2)*10^{-2})} ln\left(\frac{(2.5+0.2)*10^{-2}}{2.5*10^{-2}}\right) = 361.009 \ k \frac{A.esp}{Wb}$$

O cálculo da relutância no entreferro inferior deu-se por:

$$r = 2.5 \text{ cm}$$

 $A = \pi r^2 = \pi (2.5 * 10^{-2} + e_i)^2$
 $e_i = 0.1 \rightarrow 0.5 \text{ cm}$

	e_i [cm]					
	0.1	0.2	0.3	0.4	0.5	
$\begin{bmatrix} \Re_{e_i} \\ \left[k \frac{A.esp}{Wb} \right] \end{bmatrix}$	374.709	694.933	969.272	1204.770	1407.239	

Com o valor das relutâncias definidos, pode-se modelar o seguinte circuito magnético:

Fig. 2 - Circuito magnético simplificado do atuador eletromecânico

$$Ni = (\Re_{e_i} + \Re_{e_s})\Phi$$

Dessa forma, após algumas manipulações algébricas, encontra-se a indutância própria da seguinte forma:

$$L(e_i) = \frac{N\Phi}{i} = \frac{N^2}{\Re_{e_i} + \Re_{e_s}}$$

	e_i [cm]					
	0.1	0.2	0.3	0.4	0.5	
L [mH]	217.475	151.524	120.275	102.186	90.485	

A força magnética atuante na parte móvel do êmbolo é dada pela seguinte relação:

$$F_{mag.}(e_i) = \frac{1}{2}i^2 \frac{dL(e_i)}{de_i} = -\frac{i^2}{2} \frac{\mu_0 \pi N^2 (r^2 - e_i^2)}{\left(\mu_0 \pi \Re_{e_s} (r + e_i)^2 + e_i\right)^2}$$

	e_i [cm]					
	0.1 0.2 0.3 0.4 0.5					
${F}_{mag.} \ [N]$	-51.121	-21.237	-11.476	-7.117	-4.801	

3. Sumário das simulações

3.1. Núcleo de material Mu_1000

3.1.1.
$$e_i = 0.1 \ cm$$

Fig. 4 - Malha de Elementos Finitos da Fig. 3

Fig. 5 - Mapa de densidade de fluxo magnético

Fig. 6 - Legenda da Fig. 5

Fig. 7 - Janela pop-up Cálculo da Indutância

Fig. 8 - Janela Cálculo da Força Magnética

3.1.2. $e_i = 0.2 \ cm$

Fig. 9 - Geometria de revolução

Fig. 10 - Malha de Elementos Finitos da Fig. 9

Fig. 11 - Mapa de densidade de fluxo magnético

Fig. 12 - Legenda da Fig. 11

Fig. 13 - Janela pop-up Cálculo da Indutância

Fig. 14 - Janela Cálculo da Força Magnética

3.1.3. $e_i = 0.3 \ cm$

Fig. 15 - Geometria de revolução

Fig. 16 - Malha de Elementos Finitos da Fig. 15

Fig. 17 - Mapa de densidade de fluxo magnético

Fig. 18 - Legenda da Fig. 17

Fig. 19 - Janela pop-up Cálculo da Indutância

Fig. 20 - Janela Cálculo da Força Magnética

3.1.4. $e_i = 0.4 \ cm$

Fig. 21 - Geometria de revolução

Fig. 22 - Malha de Elementos Finitos da Fig. 21

Fig. 23 - Mapa de densidade de fluxo magnético

Fig. 24 - Legenda da Fig. 23

Fig. 25 - Janela pop-up Cálculo da Indutância

Fig. 26 - Janela Cálculo da Força Magnética

3.1.5. $e_i = 0.5 \ cm$

Fig. 27 - Geometria de revolução

Fig. 28 - Malha de Elementos Finitos da Fig. 27

Fig. 29 - Mapa de densidade de fluxo magnético

Fig. 30 - Legenda da Fig. 29

Fig. 31 - Janela pop-up Cálculo da Indutância

Fig. 32 - Janela Cálculo da Força Magnética

OK

3.2. Núcleo de material M-15 Steel

3.2.1.
$$e_i = 0.1 \ cm$$

Fig. 33 - Geometria de revolução

Fig. 34 - Malha de Elementos Finitos da Fig. 33

Fig. 35 - Mapa de densidade de fluxo magnético

Fig. 36 - Legenda da Fig. 35

Fig. 37 - Janela pop-up Cálculo da Indutância

Fig. 38 - Janela Cálculo da Força Magnética

3.2.2. $e_i = 0.2 \ cm$

Fig. 39 - Geometria de revolução

Fig. 40 - Malha de Elementos Finitos da Fig. 39

Fig. 41 - Mapa de densidade de fluxo magnético

Fig. 42 - Legenda da Fig. 41

Fig. 43 - Janela pop-up Cálculo da Indutância

Fig. 44 - Janela Cálculo da Força Magnética

3.2.3. $e_i = 0.3 \ cm$

Fig. 45 - Geometria de revolução

Fig. 46 - Malha de Elementos Finitos da Fig. 45

Fig. 47 - Mapa de densidade de fluxo magnético

Fig. 48 - Legenda da Fig. 47

Fig. 49 - Janela pop-up Cálculo da Indutância

Fig. 50 - Janela Cálculo da Força Magnética

3.2.4. $e_i = 0.4 \ cm$

Fig. 51 - Geometria de revolução

Fig. 52 - Malha de Elementos Finitos da Fig. 51

Fig. 53 - Mapa de densidade de fluxo magnético

Fig. 54 - Legenda da Fig. 53

Fig. 55 - Janela pop-up Cálculo da Indutância

Fig. 56 - Janela Cálculo da Força Magnética

3.2.5. $e_i = 0.5 \ cm$

Fig. 57 - Geometria de revolução

Fig. 58 - Malha de Elementos Finitos da Fig. 57

Fig. 59 - Mapa de densidade de fluxo magnético

Fig. 60 - Legenda da Fig. 59

Fig. 61 - Janela pop-up Cálculo da Indutância

Fig. 62 - Janela Cálculo da Força Magnética

4. Análise Qualitativa das Simulações, Comentários e Conclusões

Por meio das simulações, torna-se notável que o fluxo magnético – o qual permeia o núcleo ferromagnético – diminui com o aumento do espaçamento no entreferro inferior do atuador estudado. Este resultado ocorre exatamente como o esperado, pois o aumento do entreferro causa o aumento da relutância magnética do mesmo, esta qual implica na diminuição do fluxo magnético pelo circuito.

Outra característica possível de identificar nos casos analisados, foi que o material Mu_1000 (permeabilidade magnética linear) esteve mais próximo do comportamento esperado analiticamente do que quando comparado ao comportamento do material M-15 Steel (permeabilidade magnética não-linear).

Nota-se, também, que existem linhas de campo atravessando a região de ar no meio do núcleo do atuador, representando a dispersão das mesmas – algo que praticamente não ocorreria no cenário ideal onde $\mu_c \rightarrow \infty$.

5. Variação L(e_i) - Resultados

L	e_i [cm]				
[mH]	0.1	0.2	0.3	0.4	0.5
Analitico	217.475	151.524	120.275	102.186	90.485
Mu_1000	267.316	190.975	154.519	133.172	119.024
<i>M</i> – 15 <i>Steel</i>	281.470	197.248	158.300	135.768	121.089

Fig. 63 - Comparação dos valores obtidos de $L(e_i)$ para cada material

6. Variação F(e_i) - Resultados

$F_{mag.}$	e_i [cm]				
[N]	0.1	0.2	0.3	0.4	0.5
Analitico	-51.121	-21.237	-11.476	-7.117	-4.801
Mu_1000	-59.657	-24.613	-13.473	-8.506	-5.878
<i>M</i> – 15 <i>Steel</i>	-66.605	-26.423	-14.218	-8.900	-6.094

Fig. 64 - Comparação dos valores obtidos de $F_{\text{magn\'etica}}(e_{i})$ para cada material

7. Análise Quantitativa e Qualitativa de L e F, Comentários e Conclusões

Percebe-se a seguinte relação entre tamanho do entreferro, relutância do circuito e indutância própria:

$$e_i \uparrow \Re \uparrow L \downarrow$$

Com a redução da indutância, implica a formação de uma força oposta ao aumento do entreferro. Assim, $F_{\text{magnética}} < 0$ (vide fórmula para cálculo da força magnética) ao longo do deslocamento do entreferro. Este resultado condiz com o princípio da mínima relutância.

Os gráficos plotados na etapa anterior carregam informações interessantes a serem analisadas: é notável que o valor analítico representa uma barreira inferior para a indutância e para o módulo da força magnética gerada pelo circuito.

Analisando o quão discrepante a simplificação ideal (analítica) é, quando comparada aos resultados reais obtidos nas simulações com os materiais Mu_1000 e M-15 Steel, respectivamente, obteve-se os seguintes valores de erro relativo para as indutâncias:

$$Erro_L(e_i) \% = \left| \frac{L_{analítico}(e_i) - L_{material}(e_i)}{L_{material}(e_i)} \right| \times 100\%$$

E (a) 0/	$e_i[cm]$				
$Erro_L(e_i)$ %	0.1	0.2	0.3	0.4	0.5
Mu_1000	18.645	20.658	22.161	23.268	23.977
<i>M</i> – 15 <i>Steel</i>	22.736	23.181	24.021	24.735	25.274

A mesma análise é realizada para a força magnética atuante na parte móvel do êmbolo. Assim, chega-se aos seguintes dados:

$$Erro_F(e_i) \% = \left| \frac{F_{analítico}(e_i) - F_{material}(e_i)}{F_{material}(e_i)} \right| \times 100\%$$

E (a) 0/	$e_i[cm]$				
$Erro_F(e_i)$ %	0.1	0.2	0.3	0.4	0.5
Mu_1000	14.308	13.717	14.822	16.330	18.327
<i>M</i> – 15 <i>Steel</i>	23.247	19.628	19.285	20.034	21.221

Esses valores indicam que há um preço a se pagar: o ato de ignorar as relutância do núcleo ferromagnético para simplificação do modelo matemático implica em resultados consideravelmente destoantes dos dados reais (variações entre 13% e 25%). Dessa forma, a simplificação adotada ($\mu_c \rightarrow \infty$) é útil para princípios educacionais e/ou sistemas que não exijam muita precisão. Em demais situações torna-se necessária a solução do problema considerando a relutância magnética do núcleo ferromagnético. Para resultados analíticos mais próximos da realidade, seria necessário considerar a permeabilidade magnética do núcleo, considerar a dispersão do fluxo e talvez melhorar a modelagem utilizada para o espraiamento nos entreferros.

Muitas vezes o cálculo considerando todas essas variáveis se torna inviável de resolver manualmente com exatidão. Portanto, algoritmos numéricos/computacionais tornam-se essenciais para a análise do problema, assim como realizado por meio do MEF (Método dos Elementos Finitos) neste EC2.