实验二报告

231220088 陈翔宇

实验内容

一、译码器

基本原理

根据题目描述可以画出真值表

化加度 G1	D目描述 G2A_L		J A A	В	С	Y0_L	Y1_L	Y2_L	Y3_L	Y4_L	Y5_L	Y6_L	Y7_L
0	0 ZA_L	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	1	0	1	1	1	1	1	1	1	1
0	0	0	0	i	1	i	1	i	1	i	1	1	1
0	0	0	1	0	0	1	ī	ī	ī	i	ī	1	ī
0	0	0	1	0	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	0	0	1	1	1	1	1	1	1	1
0	0	1	0	0	1	1	1	1	1	1	1	1	1
0	0	1	0	1	0	1	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	0	1	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1	1	1	1
0	0	1	1	1	0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	1	1	1	1	1	1	1	1	1
0	1	0	0	1	0	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1	1	1	1	1	1	1
0	1	0	1	0	1	1	1	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	0	0	1	1	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1	1	1	1	1	1
0	1	1	0	1	0	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	1	1	0	0	1	1	1	1	1	1	1	1
0	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	0	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	0	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1

化简后的表达式:

$$\begin{split} y0_l &= \overline{G1} + C + B + A + G2B_L + G2A_L \\ Y1_L &= \overline{G1} + \overline{A} + C + B + G2B_L + G2A_L \\ Y2_L &= \overline{G1} + \overline{B} + C + A + G2B_L + G2A_L \\ Y3_L &= \overline{G1} + \overline{A} + \overline{B} + C + G2B_L + G2A_L \\ Y4_L &= \overline{G1} + \overline{C} + B + A + G2B_L + G2A_L \\ Y5_L &= \overline{G1} + \overline{A} + \overline{C} + B + G2B_L + G2A_L \end{split}$$

$$egin{aligned} Y6_L &= \overline{G1} + \overline{B} + \overline{C} + A + G2B_L + G2A_L \ Y7_L &= \overline{G1} + \overline{A} + \overline{B} + \overline{C} + G2B_L + G2A_L \end{aligned}$$

整体方案设计

1. 输入输出引脚

• A、B、C:表示三个输入

• Yn_L : 输出译码结果

提示: 使用独立逻辑门实现3-8译码器, 禁止直接使用译码器组件。

提示: 使用独立逻辑门实现3-8译码器,禁止直接使用译码器组件。

提示: 使用独立逻辑门实现3-8译码器,禁止直接使用译码器组件。

真值表: 真值表

错误现象及分析

在完成实验过程中没有遇到任何错误。

二、编码器实验

基本原理

是一种优先权编码器,使低位的输入作为高位的"使能"位 真值表:

整体方案设计

1. 输入输出引脚

• In:表示n个编码输入

• O1 O2 O3:表示编码结果

提示: 使用独立逻辑门实现8-3优先级编码器,禁止直接使用编码器组件。

提示:使用独立逻辑门实现8-3优先级编码器,禁止直接使用编码器组件。

提示: 使用独立逻辑门实现8-3优先级编码器,禁止直接使用编码器组件。

真值表: 真值表

错误现象及分析

在完成实验过程中没有遇到任何错误。

三、加减法器实验

基本原理

全加器示意及其引脚

全加器

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

加法器原理

4

6

1 将全加器的进位输出(Cout)连接到下一个全加器的进位输入(Cin)。第一个全加器的进位输入(Cin)通常连接到0,表示低位没有进位。

3 将第一个全加器的两个输入(A和B)连接到加法操作的两个数的最低位。

5 最后一个全加器的和输出(Sum)以及所有中间全加器的和输出将共同构成最终的和。

7 最后一个全加器的进位输出(Cout)表示整个加法操作的最终进位状态。

1 将减数表示为补码表示,在与另一个数做加法运算。

整体方案设计

1. 输入输出引脚

• Y、X:两个参与运算的数

• cin:决定是否做减法

电路图

提示:使用独立逻辑门及全加器FA子电路实现4位二进制数加减法器,禁止直接使用加减法器组件。

提示:使用独立逻辑门及全加器FA子电路实现4位二进制数加减法器,禁止直接使用加减法器组件。

提示:使用独立逻辑门及全加器FA子电路实现4位二进制数加减法器,禁止直接使用加减法器组件。

真值表: 真值表

错误现象及分析

在完成实验过程中没有遇到任何错误。

四、汉明码校验电路

基本原理

图 11.42 数据校验过程示意图

整体方案设计

1. 输入输出引脚

Input:7位输入码Output:7位输出码

电路图

错误现象及分析

在完成实验过程中没有遇到任何错误。

五、桶型移位器

基本原理

- 1 在移位操作之前,先将被移位数的最高位(对于左移是左边第一个位,对于右移是右边第一个位)暂存起来。
- 2 将被移位数的其余位按照指定的方向(左移或右移)进行移动指定的位数。
- 3 将暂存的最高位移到移位后的最高位位置,而新产生的最低位则用0或特定的值(如算术移位时用符号位填充)填充。
- 4 将暂存的最高位和移位后的数合并,形成最终的移位结果。

整体方案设计

1. 输入输出引脚

电路图

错误现象及分析

在完成实验过程中没有遇到任何错误。

思考题

1. 修改实验中的加法器电路,生成进位标志 CF、溢出标志 OF、符号标志 SF 和结果为零标志位 ZF。

2. 在执行比较指令时,通常使用减法运算后,判断标志位的方式来实现,试通过上述加法器实验举例 说明判别的方法。

- 1. 有符号数比较大小:
 - 用(SF^OF)与ZF来判断大小。ZF=0时等大,ZF不等于0时,(SF^OF)为1则被减数小于减数,反 之则反
- 2. 无符号数比较大小:

用CF与ZF来判断大小。ZF=0时等大,ZF不等于0时,CF为1则被减数小于减数,反之则反

3. 如何使用 8 位桶形移位器扩展到 32 位桶形移位器。

