Методы выбора регрессоров, регуляризации и снижения размерности

ЦМФ

Цели методов

- повышение точности прогноза за счёт избавления от шума
- определение списка наиболее значимых факторов

Пошаговая процедура

Действия:

- исключение регрессоров
- добавление регрессоров

Критерии:

- p-value
- AIC
- R_{adj}^2

Исходные данные

```
statedata <- data.frame(state.x77, row.names = state.abb,
check.names = T)</pre>
```

head(statedata)

	Population	Income	Illiteracy	Life.Exp	Murder	HS.Grad	Frost	Area
AL	3615	3624	2.1	69.05	15.1	41.3	20	50708
AK	365	6315	1.5	69.31	11.3	66.7	152	566432
AZ	2212	4530	1.8	70.55	7.8	58.1	15	113417
AR	2110	3378	1.9	70.66	10.1	39.9	65	51945
CA	21198	5114	1.1	71.71	10.3	62.6	20	156361
CO	2541	4884	0.7	72.06	6.8	63.9	166	103766

Пошаговое исключение регрессоров (1/4)

исходная модель с полным списком регрессоров

Исключаем из модели регрессор, обладающий самым низким p-value (либо тот, без которого модель будет иметь более высокий $R^2_{ad\,i}$ или более низкий AIC)

Пошаговое исключение регрессоров (2/4)

исключение площади штата

```
ols <- update(ols, . ~ . - Area)
summary(ols); extractAIC(ols)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.099e+01 1.387e+00 51.165 < 2e-16 ***
Population 5.188e-05 2.879e-05 1.802 0.0785 .
Income -2.444e-05 2.343e-04 -0.104 0.9174
Illiteracy 2.846e-02 3.416e-01 0.083 0.9340
Murder -3.018e-01 4.334e-02 -6.963 1.45e-08 ***
HS.Grad 4.847e-02 2.067e-02 2.345 0.0237 *
Frost -5.776e-03 2.970e-03 -1.945 0.0584 .
Adjusted R-squared: 0.6993 # BЫPOC
[1] 7.00000 -24.18229 # CHИЗИЛСЯ
```

Процедура повторяется до тех пор, пока не останутся только значимые регрессоры (либо R^2_{adj} перестанет расти, а AIC снижаться)

Пошаговое исключение регрессоров (3/4)

финальная версия модели

Пошаговое исключение регрессоров (4/4)

автоматизированная процедура на основе критерия АІС

Пошаговое добавление регрессоров

начинаем с самой простой модели (только константа)

Если в параметре «direction» указать "both", то на каждом шаге может происходить как добавление, так и исключение регрессора (в пределах, указанных в параметре «scope»)

Недостатки пошаговой процедуры

- из-за последовательного характера добавления и исключения рассматриваются не все возможные комбинации регрессоров
- значимость (равно как R^2_{adj} и AIC) не является надёжной характеристикой полезности регрессора; в частности, значимость меняется при добавлении и удалении переменных
- нет чёткого правила остановки, особенно в случае рассогласования критериев

Регуляризация

- Ridge regression
- Lasso regression

Ridge regression

Две эквивалентные формулировки:

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{d} x_{i,j} \beta_j)^2 + \lambda \sum_{j=1}^{d} \beta_j^2 \to \min_{\beta}$$
 (1)

$$\begin{cases} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{d} x_{i,j} \beta_j)^2 \to \min_{\beta} \\ \sum_{j=1}^{d} \beta_j^2 \le t \end{cases}$$
 (2)

$$\hat{\beta}_{ridge} = (X'X + \lambda^*I)^{-1}X'\vec{y},$$
 где λ^* — вектор $(0,\lambda)$

Достоинства:

- нечувствительность к мультиколлинеарности
- матрица $X'X + \lambda I$ всегда имеет полный ранг

Lasso regression

Две эквивалентные формулировки:

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{d} x_{i,j} \beta_j)^2 + \lambda \sum_{j=1}^{d} |\beta_j| \to \min_{\beta}$$
 (1)

$$\begin{cases} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{d} x_{i,j} \beta_j)^2 \to \min_{\beta} \\ \sum_{j=1}^{d} |\beta_j| \le t \end{cases}$$
 (2)

Нет единой формулы для расчёта \hat{eta}_{lasso}

Достоинства:

 оценки коэффициентов при больших λ обнуляются, что позволяет осуществлять выбор набора регрессоров

Оценки \hat{eta}_{lasso}

```
library(penalized)
```

Снижение размерности

- Principal components regression
- Partial least squares

Идея состоит в замене исходной матрицы регрессоров X на матрицу Z, столбцы которой являются линейными комбинациями столбцов X

Principal components regression

 Z_{pc} — матрица главных компонент X: $Z_{pc} = XV$, V — матрица собственных векторов X'X (по столбцам)

Новая матрица регрессоров Z составляется из p столбцов Z_{pc} , $p\in\{1;\ldots;d\}$ $\hat{\beta}_{pcr}=(Z'Z)^{-1}Z'y$

PCR B R

```
X <- as.matrix(statedata[,-4]); y <- cbind(statedata[,4])
e <- eigen(t(X)%*%X)
Z.pc <- X %*% e$vectors</pre>
```

проверим, насколько хорошо каждая из главных компонент # объясняет дисперсию **у**

```
d <- ncol(X)
tss <- sum((y - mean(y))^2)
beta <- vector("list", d); r.sq <- numeric(d)
for (i in 1:d) {
    Z <- cbind(1, Z.pc[,i])
    beta[[i]] <- solve(t(Z)%*%Z)%*%t(Z)%*%y
    y.hat <- Z %*% cbind(beta[[i]])
    rss <- sum((y - y.hat)^2)
    r.sq[i] <- 1 - rss/tss
}</pre>
```

PCR B R

```
r.sq
[1] 0.0115228286 0.0006716743 0.0450917017 0.0171580799 0.1030782448
[6] 0.5798264601 0.0005978996
```

Порядок главных компонент Z_{pc} отражает степень их влияния на дисперсию признаков, но их влияние на дисперсию объясняемой переменной может быть иным

Переставим столбцы Z_{pc} в соответствии со значениями R^2

```
z <- order(r.sq, decreasing = TRUE)
Z.pc <- Z.pc[,z]</pre>
```

PCR BR

Выбирая р первых столбцов переставленной матрицы Z_{pc} , можно объяснить значительную часть дисперсии **у**

```
beta <- vector("list", d)
r.sq <- numeric(d); delta.r <- numeric(d)
for (p in 1:d) {
    Z <- cbind(1, Z.pc[,1:p])
    beta[[p]] <- solve(t(Z)%*%Z)%*%t(Z)%*%y
    y.hat <- Z %*% cbind(beta[[p]])
    rss <- sum((y - y.hat)^2)
    r.sq[p] <- 1 - rss/tss
    delta.r[p] <- ifelse(p == 1, r.sq[p], r.sq[p] - r.sq[p-1])
}</pre>
```

PCR B R

Построение прогноза

Между столбцами матриц X и Z_{pc} существует функциональная линейная зависимость:

$$Z_{pc} = XB$$
, где матрица коэффициентов B — это переставленная матрица V

```
p <- 4
B <- e$vectors[,z][,1:p]
Z.test <- cbind(1, (X.test %*% B))
y.hat <- Z.test %*% cbind(beta[[p]])
\hat{y} = Z_{pc}\hat{\beta} = XB\hat{\beta} = X\hat{\beta}_{pcr}, \quad \hat{\beta}_{pcr} = B\hat{\beta}
beta.pcr <- c(beta[[p]][1], B %*% cbind(beta[[p]][-1]))
y.hat <- cbind(1, X.test) %*% cbind(beta.pcr)
```

Partial Least Squares

Новая матрица регрессоров Z составляется в ходе итеративной процедуры:

```
X_0 \coloneqq X, Y_0 \coloneqq Y
i \in \{1; ...; rank(X)\}
 X'_0Y_0Y'_0X_0 = UDV' — single value decomposition (SVD)
 z_i \coloneqq X_0 U[,1] - i-я латентная переменная
 z^* \coloneqq \frac{z_i}{z_i'z_i} — нормировка
 p\coloneqq X_0'z^*, \widehat{X}\coloneqq z^*p' — дефлятор матрицы X_0
 X_0 := X_0 - \hat{X}, Y_0 := \vec{0}
Z \coloneqq (z_1, \dots, z_{rank(X)})
Y = ZB + \varepsilon
```

Partial Least Squares в R

```
library(pls)
pls <- plsr(Life.Exp ~ ., data = statedata, ncomp = 7)
summary(pls)
Data: X dimension: 50 7
      Y dimension: 50 1
Fit method: kernelpls
Number of components considered: 7
TRAINING: % variance explained
      1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
X 99.722 99.993 100.00 100.00 100.00 100.00 100.00
Life.Exp 1.156 2.346 20.24 23.19 56.74 73.61 73.62
b <- coef(pls)
b0 \leftarrow pls fitted[1] - sum(pls model[1,-1] * b)
beta.pls <-c(b0, b)
```