Лекция 7. Вычислительная система как объект моделирования

Уровни проектирования

- 1. Структурный.
- 2. Функционально-логический уровень:
 - подуровни регистровых передач,
 - логический уровень.
- 3. Схемотехнический уровень.
- 4. Конструкторский.

Моделирование на системном уровне

При моделировании новых и модернизации действующих вычислительных систем и сетей необходимо предварительно оценивать их возможности по функционированию с учетом различных вариантов структурной организации. Эти варианты могут отличаться составом и характеристиками модулей (наших устройств): структурами межмодульных связей, режимами работы и алгоритмами управления. Именно для оценок и используются модели вычислительных систем.

Под вычислительной системой будем понимать комплекс аппаратных и программных средств, которые в совокупности выполняют определенные рабочие функции.

Коллектив пользователей — это сообщество таких людей, которые используют нашу систему для удовлетворения нужд для обработки информации.

Входные сигналы (программы, данные, команды), которые создаются коллективом пользователей, называются *рабочей нагрузкой*.

Операционная система – набор ручных и автоматических процедур, которые позволяют группе людей эффективно использовать вычислительную установку.

Индекс производительности – описатель, который используется для представления производительности системы. Различают *количественные* и *качественные* индексы производительности.

1. Качественные:

- легкость использования системы;
- мощность системы команд.

2. Количественные:

- пропускная способность объем информации, обрабатываемый в единицу времени;
- время ответа (реакции) время между предъявлением системе входных данных и появлением соответствующей выходной информации;
- коэффициент использования оборудования отношение времени использования указанной части оборудования в течение заданного интервала времени к длительности этого интервала.

Концептуальная модель вычислительной системы включает сведения о выходных и конструктивных параметрах системы, её структуре, особенностях работы каждого элемента и ресурса, постановка прикладных задач, определение цели моделирования.

Основные задачи

- 1. Определение принципов организации вычислительной системы (ВС).
- 2. Выбор архитектуры, уточнение функций ВС и их разделение на подфункции, реализация аппаратным и программным путем.
- 3. Разработка структурной схемы определение состава устройств и способов их взаимодействий.
- 4. Определение требований к выходным параметрам устройств и формирования технического задания на разработку устройств для функционально-логического уровня проектирования.

Непрерывно стохастические модели (Q-схемы)

Особенности непрерывно-стохастического подхода в дальнейшем рассматривается только на примере использования в качестве типовых математическим моделей системы массового обслуживания. При этом исследуемая система формализуется как некоторая система обслуживания. Характерным для таких объектов является случайное появление заявок на обслуживание и завершение обслуживания в случайные моменты времени.

В любом элементарном акте обслуживании можно выделить ожидание обслуживания и собственно обслуживание.

Два типа потоков:

- поток-накопитель характеризуется своей емкостью;
- поток обслуживания.

Поток событий — последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Поток событий называется однородным, если он характеризуется только моментами поступления этих событий (вызывающие моменты). Поток называется неоднородным, если он задается не только вызывающими моментами, но и признаками этих событий. Если интервалы времени между сообщениями независимы между собой и являются случайными величинами, то это поток с ограниченным действием.

Поток событий называется ординарным, если вероятность того, что на малый интервал времени Δt попадает более одного события, пренебрежительно мала по сравнению с вероятностью того, что на этот же интервал времени Δt попадает ровно одно событие.

Поток называется стационарным, если вероятность появления того или иного события на некотором интервале времени зависит лишь от длины этого интервала и не зависит от того, где на оси времени взят этот интервал.

Для ординарного потока среднее число событий. поступающих за малый интервал Δt :

$$P_{>1}(t,\Delta t) + P_1(t,\Delta t) = P_1(t,\Delta t)$$

$$\lim_{\alpha \to 0} \frac{P_1(t, \Delta t)}{\Delta t} = \lambda_t$$

Для стационарного потока его интенсивность не зависит от времени и представляет собой постоянное значение, равное среднему числу событий, поступивших в единицу времени.