ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 4

Aufgabe 13. (5 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit $\partial \Omega \in C^{k,\alpha}$, $k \geq 1$, $0 < \alpha < 1$.

Fixiere $\eta_i \in C_c^{\infty}(\mathbb{R}^n)$ mit $\eta_i \geq 0, 1 \leq i \leq N$, so dass $\sum_{i=1}^N \eta_i = 1$ auf $\partial \Omega$ gilt.

Seien $\Phi_i: U_i \to V_i$ auf einer Umgebung U_i von supp η_i definierte $C^{k,\alpha}$ -Diffeomorphismen mit $\Phi_i(\partial\Omega\cap\operatorname{supp}\eta_i)\subset\mathbb{R}^{n-1}\times\{0\}\subset\mathbb{R}^n$.

Definiere

$$C^{k,\alpha}\left(\partial\Omega\right):=\left\{u\in C^{0}\left(\partial\Omega\right):\left(u\cdot\eta_{i}\right)\circ\Phi_{i}^{-1}\in C^{k,\alpha}\left(V_{i}\cap\left(\mathbb{R}^{n-1}\times\left\{0\right\}\right)\right)\ \text{für }1\leq i\leq N\right\}$$

 $\text{mit } \|u\|_{C^{k,\alpha}(\partial\Omega)}:=\textstyle\sum\limits_{i=1}^{N}\left\|(u\cdot\eta_i)\circ\Phi_i^{-1}\right\|_{C^{k,\alpha}(V_i\cap(\mathbb{R}^{n-1}\times\{0\}))}.$

Zeige, dass $\left(C^{k,\alpha}\left(\partial\Omega\right),\|\cdot\|_{C^{k,\alpha}\left(\partial\Omega\right)}\right)$ ein Banachraum ist.

Aufgabe 14. (5 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit $\partial \Omega \in C^{k,\alpha}$, $k \geq 1$, $0 < \alpha < 1$. Sei $\Omega' \subset \mathbb{R}^n$ offen mit $\Omega \subseteq \Omega' \subseteq \mathbb{R}^n$. Dann gibt es einen stetigen linearen Fortsetzungsoperator

$$E: C^{k,\alpha}\left(\partial\Omega\right) \to C_c^{k,\alpha}\left(\Omega'\right)$$

Hinweis: Benutze eine Zerlegung der Eins und Aufbiegetransformationen und setze in der aufgebogenen Situation konstant in e_n -Richtung fort.

Aufgabe 15. (6 Punkte)

Führe die Details zu Bemerkung 2.6 aus.

Abgabe: Bis Dienstag, 28.11.2017, 10:00 Uhr, in die Mappe vor Büro F 402.