

Assignment Project Exam Help

https://pawgader.com

Add WeChat powcoder

A Bunch of Keys

ASSI SALDS of the attribute of Jean Schema Aid Inperkey of puniquely determines all attributes of R.

A superkey K is called a candidate key if no proper subset of K is a superkey.

https:is,/if/pik W freattiles of of the there is not enough to uniquely identify tuples.

 Candidate keys are also called keys, and the primary key is chosen from them.

Finding Keys

Assignment Project Exam Help

• Given a set Σ of FDs on a relation R, the question is: $\begin{array}{c|c}
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question is:} \\
& \text{The proof of FDs on a relation } R, \text{ the question } R, \text{ the qu$

Add WeChat powcoder

Implied Functional Dependencies

Assignment Project Exam Help

- To design a good database, we need to consider all possible FDs.
- If each student works on one project and each project has one supervisor, does each student have one project supervisor?

```
 \begin{array}{c} \{\{\text{StudentID}\} \rightarrow \{\text{ProjectNo}\}, \\ \text{Add We chat } powcoder \end{array} \}
```

- We use the notation $\Sigma \models X \to Y$ to denote that $X \to Y$ is **implied** by the set Σ of FDs.
- We write Σ^* for all possible FDs **implied** by Σ .

Equivalence of Functional Dependencies

Assighment Project Exam Help

• Example Le Σ_1 Σ_2 Σ_2 Σ_3 Σ_4 Σ_4 Σ_4 Σ_2 Σ_3 Σ_4 Σ_4 Σ_4 Σ_4 Σ_4 Σ_4 Σ_4 Σ_4 Σ_4 Σ_4 and Σ_5 are equivalent.

Questions:

- 1 Is it possible that $\Sigma_1^* = \Sigma_2^*$ but $\Sigma_1 \neq \Sigma_2$? Yes
- ② Is it possible that $\Sigma_1^* \neq \Sigma_2^*$ but $\Sigma_1 = \Sigma_2$? **No**

Implied Functional Dependencies

Assignment Probect Exame Help

- **1** Compute **the set of all attributes** that are dependent on X, which is called the **closure** of X under Σ and is denoted by X^+ .
- AIGHT PS. // Powcoder.com
 - $X^+ := X$; • for each $Y \to Z \in \Sigma$ with $Y \subseteq X^+$, add all the attributes in Z to X^+ , i.e., replace X^+ by $X^+ \cup Z$.

See Algorithm 15.1 on Page 538 in [Elmasri & Navathe, 7th edition] or Algorithm 1 on Page 555 in [Elmasri & Navathe, 6th edition]

Implied Functional Dependencies – Example

Assignment Project, Exam Help $\Sigma = \{AC \rightarrow B, B \rightarrow CD, C \rightarrow E, AF \rightarrow B\}$ on R.

• Decide whether or not $\Sigma \models AC \rightarrow ED$ holds . • The property of the propert

$$\begin{array}{c} (AC)^{+} \supseteq AC & \text{initialisation} \\ ACB & \text{using } AC \rightarrow B \\ \supseteq ACBDE & \text{using } AC \rightarrow B \\ = ACBDE & \text{using } ACB$$

- **2** Then we check that $ED \subseteq (AC)^+$. Hence $\Sigma \models AC \rightarrow ED$.
- Can you quickly tell whether or not $\Sigma \models AC \rightarrow EF$ holds?

Finding Keys

Assignment Project Exam Help

• Algorithm²:

Output: Lipeser of all Levis of WCOder.com

for every subset X of the relation R, compute its closure X⁺

if $X^+ = R$, then X is a superkey. At order was of X^+ is a superkey.

 A prime attribute is an attribute occurring in a key, and a non-prime attribute is an attribute that is not a prime attribute.

 $^{^2}$ It extends Algorithm 15.2(a) in [Elmasri & Navathe, 7th edition, pp. 542], or Algorithm 2(a) or in Algorithm 2(a) in [Elmasri & Navathe, 6th edition pp. 558] to finding all keys of R

Exercise – Finding Keys

Assception is a relation scheme of the control of t

- List all the keys and superkeys of R.
- Find all the prime attributes of R.
- Solution: Describing the stributes of the attributes in R:
 - $(A)^+ = A, (B)^+ = B, (C)^+ = C, (D)^+ = D;$

- $(ABC)^+ = ABCD$, $(ABD)^+ = ABCD$, $(ACD)^+ = ACD$, $(BCD)^+ = BCD$
- 2 Hence, we have
 - AB is the only key of R.
 - AB, ABC, ABD and ABCD are the superkeys of R.
 - A and B are the prime attributes of R.

Exercise – Finding Keys

Assignment Project Exam Help

Example: Still consider a relation schema $R = \{A, B, C, D\}$ and

Thttps://powcoder.com

- Some tricks:
 - If an attribute never appears in the dependent of any FD, this attribute
 - If an attribute never appears in the determinant of any FD but appears in the dependent of any FD, this attribute must not be part of each key.
 - If a proper subset of X is a key, then X must not be a key.

Finding Keys - Example

Assign Fine File Problem Exam Help

- $\qquad \qquad \{ \text{StudentID, CourseNo, Semester} \} \rightarrow \{ \text{ConfirmedBy, Office} \};$
- {ConfirmedBy} → {Office}.

ł	attr	os://r	OW	oder	.com	
	Name	StudentID	CourseNo	Semester	ConfirmedBy	Office
	Tom	123456	COMP2400	2010 S2	Jane	R301
	Mike	123458	COMP2400	2008 S2	Linda	R203
	Mike	12.14.18	OMF 2606	- 2008 52	x 7 chinda	P2 03
I	TUI	1 // (LPO	WCOU	

- What are the keys, superkeys and prime attributes of ENROLMENT?
 - {StudentID, CourseNo, Semester} is the only key.
 - Every set that has {StudentID, CourseNo, Semester} as its subset is a superkey.
 - StudentID, CourseNo and Semester are the prime attributes.