11 Mostre que: L(V) = {Y; V-DV/Yé linear {, L (V) é um usporgo vertorial. Para ser um usparo retariol delle possivi as sequintes propriedades: il um conjunto Não Vajo V, cujo elementos São chamodos Vetores; com isso LIVI é um conjunto Não Jajo, de Cada elemento Tumos um correspondente. ii) um corpo k de escalares iii) uma speração, adição vetorial, que associa dois vetores vi, v2 em V ao vetore (V1+ V2) em V.) jv uma speração, multiplicação por exalor, que associa um escalar, s EK e um Vetor v em V. VI Satisfazem as propriedades: Yv1, v2, v3 EV e Yx, BEK: 1- U1+ 1/2= 1/2+ 1/3) = U1 + (1/2+ 1/3) 3. rxiste um (unico) vetor 0 env, Mulo, Xal que V+0 = V 4- existe um (único) vetor -v em V tal que V+ FV = 0 5_ WB) V= x (BV)

6- d(U1+U2) = xV1+xV2 7- (x+B)V = xV+BV 8=1.V=V
Tomamo Llul em R, o mesmo vale pora R2, etc. Temos que Llul é um operador livear,
Temos que Llul é um operador livear, por que faz uma transforma est de
2 Calque, si possível, a dimensão de L(V). Lem brando que; dim VLP e Vista definido sore um copo R Ca, Rout.
Iom amo Llv1 em R., então a din V=1. Al Llv1 esta em R2, então a din V=2. Pipetimo o processo até RN, teremos que clim V=N, le NLO Podose trabalhar com Llv1 até R e teremos que dim V=t20, sendo N <t20.< td=""></t20.<>
Podose shabalhar com del ase R e seremos que dim V= t20, sendo N< t20.
usporço vitorial de blimensao finita poseri um mesmo vumvo de vetores.
3 Sobre (1) e(2) quando V-Q[X], exemplo de sema base: Vé 31, X, X, E
L(V = L(V, V) pega vetores de Ve lecam en V, por trans formorçois lineaues.

Temos que V=Q[x] é rema bose operadora, mas a dim V Não é pressári-amente inférito. Somente uma base fivita possei dimensas fivita. 4) Vi é um sub-espaço vetorial de Vi (Vale para clim V=+0). Temos que Vx é um auto-espaço avado pelo auto-valores da fransforlmaças linear.
Entato este auto-espaço possei o
elemento vulo pl TCO/ LO e
também dado dois elementos:
ue v , temos que (ut v) pertence
no auto-espaço.
Assim mesma p/ dimv= +00 , temos
que as duas propriedades sao
satir feitas.