

REPUBLIQUE DE CÔTE D'IVOIRE

Concours AMCPE session 2015

Composition : **Mathématiques 5** (algèbre, analyse)

Durée: 3 Heures

Ce sujet comporte 4 exercices indépendants

EXERCICE 1

Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
.

- **1-**Calculer $A^3 3A^2 + 3A I$ où I est la matrice unité d'ordre 3.
- **2-**A est-elle diagonalisable ? Justifier votre réponse.
- **3-**Justifier, sans calcul de déterminant, que A est inversible et déterminer A⁻¹.

EXERCICE 2

On considère l'espace vectoriel IR^3 muni de sa base canonique $B=(e_1,\,e_2,\,e_3)$ et l'endomorphisme f de IR^3 défini par $f(x,\,y,\,z)=(2x-2y+z,\,2x-3y+2z,\,-x+2y)$.

- 1- Déterminer la matrice A de f relativement à la base B.
- **2-a)** Déterminer les valeurs propres de f.
 - **b)** Déterminer le sous-espace propre de associé à chaque valeur propre.
 - c) Justifier que f est diagonalisable.

3- On pose
$$P = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & -1 & -1 \end{pmatrix}$$

Calculer P⁻¹ (inverse de P) et montrer que P⁻¹AP= $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$

- **4-** Calculer Aⁿ pour tout entier naturel non nul n.
- **5-** Résoudre le système différentiel $\begin{cases} x_1' = 2x_1 2x_2 + x_3 \\ x_2' = 2x_1 3x_2 + 2x_3 \text{ où } x_1, x_2 \text{ et } x_3 \text{ sont des fonctions} \\ x_3' = -x_1 2x_2 \end{cases}$

dérivables de la variable réelle t et de fonctions dérivées x₁, x₂ et x₃.

EXERCICE 3

Soit f:
$$IR_+^* - \{1\} \rightarrow IR$$
 On pose $A = \int_0^1 f(t) dt$

$$x \mapsto \frac{x-1}{\ln x}$$

- 1- Démontrer que f est prolongeable par continuité sur IR+ et que A converge.
- **2-** On pose $F(x) = \int_0^x f(t) dt$ et $h(x) = \int_x^{x^2} \frac{dt}{\ln t}$.

Démontrer que F et h sont dérivables sur]0 ;1[, calculer F'(x) et h'(x), et en déduire que pour tout x de [0 ;1[, F'x) = h(x).

3- Calculer pour tout x de]0 ;1[, $\int_x^{x^2} \frac{dt}{t lnt} dt$, en déduire $\lim_{x \to 1} \int_x^{x^2} \frac{dt}{lnt}$ puis la valeur de A.

EXERCICE 4

On considère l'équation différentielle : y' + 2xy = 1 (E)

On considère la fonction g de la variable réelle x définie par $\forall x \in IR$, $g(x) = e^{-x^2} \int_0^x e^{t^2} dt$.

- **1-** Montrer que g est impaire.
- 2- Montrer que g est solution de l'équation différentielle (E).
- **3-** En déduire en fonction de g toutes les solutions de l'équation différentielle (E).
- **4-** Soit $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ une solution développable en série entière de l'équation différentielle (E).
 - **a)** Montrer que la suite $(a_n)_{n\in IN}$ vérifie la relation $\forall n\in IN$, $(n+2)a_{n+2}+2a_n=0$.
 - **b)** Déterminer a_1 . Expliciter les coefficients a_{2n+1} pour tout entier n.
 - **c)** Montrer que la suite $(a_n)_{n \in IN}$ est uniquement déterminée par la valeur de a_0 , et exprimer les coefficients a_{2n} , pour tout $n \in IN$, en fonction de a_0 .

d) Réciproquement, on considère une suite $(a_n)_{n\in IN}$ vérifiant la relation de récurrence $\forall n\in IN, (n+2)a_{n+2}+2a_n=0.$

Déterminer le rayon de convergence R de la série entière $y(x) = \sum_{n=0}^{+\infty} a_n x^n$.

- e) Expliciter le développement en série entière de g.
- **5-** On considère les fonctions g_1 et g_2 définies par :

$$\forall x \in IR, g_1(x) = e^{-x^2} \text{ et } g_2(x) = \int_0^x e^{t^2} dt$$

- a) Expliciter le développement en série entière des fonctions g₁ et g₂.
- **b)** En déduire le développement en série entière de la fonction g_1g_2 à l'aide d'un résultat dont on rappellera l'énoncé. En déduire la relation suivante : $\forall k \in IN$, $\sum_{j=0}^k \frac{(-1)^j}{2j+1} C_k^j = \frac{4^k (k!)^2}{(2k+1)!}$.