Yelp Restaurant Tagging: A Multilabel Image Classification Problem

Chuiyi Liu, Shiyu Wang, Yikai Wang

Data Description

Objective: predict tags of Yelp restaurants

Data set: 235k photos under 2000 restaurants

Randomly subset

Train set: 61k photos under 500 restaurants

Test set: 15k photos under 100 restaurants.

Sample photos:

Labels and Models

9 Labels ⇒ 9 Binary Classifiers

0: good_for_lunch	5: has_alcohol
1: good_for_dinner	6: has_table_service
2: takes_reservations	7: ambience_is_classy
3: outdoor_seating	8: good_for_kids
4: is_expensive	

Models:

- Logistic regression
- SVM
- Convolutional Neural Network

Label on Restaurant vs. Label on Image

Image level model: naively passing label

Restaurant level model: feature aggregation

Label on Restaurant vs. Label on Image

Image level model: naively passing label

Restaurant level model: feature aggregation

Outdoor Seating ??

Feature Extraction

Color feature

<u>Texture feature:</u> texture tile list = [... ...]

<u>Deep learning feature</u>

Feature from Pre-trained model

Alexnet: trained on the ImageNet data

Training target: 10,000+ object categories

Image Level Model

Evaluation Metric: F1 score

Result aggregation:

1. Max: tag "good for lunch"

and "outdoor seating"

2. Average: other tags

Image level model F1 score (aggregated)		
Color +Logistic	0.713	
Texture +Logistic	0.684	
Deep learning feature+Logistic	0.745	
CNN	0.617	

*baseline score: 0.435

Restaurant Level Model

K-means: 50 clusters of photos

<u>Features</u>: percentage of each cluster

Restaurant model F1 score		
Cluster using:	Logistic	
Color	0.7252	
Color +Texture	0.6361	
Deep learning feature	0.7381	

CONCLUSION AND FUTURE WORK

Model	Best Scores
Image level	0.745
Restaurant level	0.738

Future work:

- 1. Apply the best methods to the entire data set.
- 2. Fine tune pre-trained model

^{*}Rank top 25% in Kaggle Leaderboard

Contact Information

Tracy: cliu71@dons.usfca.edu

Yikai: ywang271@dons.usfca.edu

Sharon: swang96@dons.usfca.edu