Response Time-Optimized Distributed Cloud Resource Allocation

Matthias Keller Holger Karl

- Latency-critical service
 - Interactive, emergency service

- Latency-critical service
 - Interactive, emergency service

- Latency-critical service
 - Interactive, emergency service
- Decision: Spend time on RTT or TIS

- Latency-critical service
 - Interactive, emergency service
- Decision: Spend time on RTT or TIS

- Demand assignment
 - Facility Location Solution with RTT only

- Demand assignment
 - Facility Location Solution with RTT only

DCC 2014

- Demand assignment
 - Facility Location Solution with RTT only

- Demand assignment
 - Facility Location Solution with RTT only
 - With RTT + TIS

Goal

Given

- Network
- Data centres

Objective

Minimize response time

Means

Allocation of n VMs at data centres

Goal

Given

- Network
- Data centres

Objective

Minimize response time

Means

Allocation of n VMs at data centres

Characterise:

 How does response time depend on number n of VMs?

Optimal Solutions

Two Approaches

Accurate Solution

- Mixed Integer Convex Problem
- Convex TIS function for each data centre

• Tough to solve – slow?

Two Approaches

Accurate Solution

- Mixed Integer Convex Problem
- Convex TIS function for each data centre

• Tough to solve – slow?

Approximate Solution

- Reformulation: Mixed Integer
 Linear Problem
- Linearization of TIS function

Accuracy? Speed?

Improve accuracy of linearization

- Objective:
 - Minimize the maximum difference
- Control knobs
 - Number of basepoints
 - End point at asymptote
 - Basepoint positions

Improve accuracy of linearization

- Objective:
 - Minimize the maximum difference
- Control knobs
 - Number of basepoints
 - End point at asymptote
 - Basepoint positions
- Evaluation in Paper

Evaluation of both approaches

Convex Problem

- Reference Solution
- Tough to solve slow?

Linear Problem

- Approximate Solution
- Accuracy? Speed?

Linearization

Evaluation of both approaches

Convex Problem

- Reference Solution
- Tough to solve slow?

Linear Problem

- Approximate Solution
- Accuracy? Speed?

Linearization

Configurations

- 6 topologies, 12 54 nodes
- à 50 random demand realizations
- 10 data centre fix

Evaluation of both approaches

Convex Problem

- Reference Solution
- Tough to solve slow?

Linear Problem

- Approximate Solution
- Accuracy? Speed?

Linearization

VM limit: 5 − 10

Configurations

- 6 topologies, 12 54 nodes
- à 50 random demand realizations
- 10 data centre fix

Results – Approximation Ratio

Results – Approximation Ratio

Results – Runtime Ratio

Results - Runtime Ratio

Results - Runtime Ratio

Results – Optimal Solutions

- More Resources:
 - Shorter time in queuing system
 - VMs at closer data centres

Resource Limit (#VM)

Results – Optimal Solutions

- More Resources:
 - Shorter time in queuing system
 - VMs at closer data centres

In the paper...

- Convex/Linear Problem Formulation
 - Facility Location Problem & queuing model
 - P-median facility location + convex cost function
 - P-median facility location + piecewise linear cost function
 - Piecewise Linear Function: Minimize maximal difference
 - Convexity Proof
- Evaluation
 - Pareto optimal solutions
 - Compare linear/convex problem
 - Approx. Ratio
 - Runtime

In conclusion...

... adjust your latency-sensitive service:

- Faster!
 - Adapt to demand fluctuations swiftly

- Accurate!
 - With queuing delay no surprises at runtime

Processing Queue Model