

All pairs shortest paths Floyd Warshall

por Vpode

Víctor Podberezski vpodberezski@fi.uba.ar

Algoritmo Floyd-Warshall

- Algoritmo para la resolución del problema
 - All pairs shortest path
- Utiliza programación dinámica
- Publicado por
 - Robert Floyd en 1962
- Similar a algoritmos publicados previamente por
 - Bernard Roy en 1959
 - Stephen Warshall en 1962

Robert Floyd

Stephen Warshall

Problema

- Sea
 - G=(V,E) un grafo ponderado dirigido
 - Sin ciclos negativos

Donde exponent [GET_7Q10(y)]//compute 7Q10

- cada vértice e=(a,b) \in E tiene un peso w_{ab}
- Queremos saber
 - para cada par i,j ∈ V el camino mínimo entre ellos

Matriz de adyacencias

- Para representar el grafo usaremos
 - una matriz W de |V| x |V| adyacencias levemente modificada

$$w_{ij} = \begin{cases} 0 \\ \text{peso arista de i a j} \\ \infty \end{cases}$$

	1	2	3	4	5
1	0	3	∞	∞	∞
2	3	0	-3	-1	∞
3	2	∞	0	5	∞
4	∞	∞	∞	0	4
5	∞	1	∞	∞	0

Salida de la ejecución del algoritmo

- Matriz "D" de distancias mínimas
 - tamaño |V| x |V|
 - d_{ij} contiene el peso del camino mínimo desde el vértice i al vertice j
 (∞ si no existe un camino)
- Matriz "π" de predecesores
 - tamaño |V| x |V|
 - π_{ij} el vértice predecesor j en el camino mínimo desde i
 (NULL si i=j o si no existe un camino mínimo entre i y j)

Denominación de los vértices

- Sea el Grafo G=(V,E)
 - Numeraremos los vértices $V=\{1,2,...,n\}$ (con N=|V|)
 - Cualquier forma de numerar es válida
- Esta numeración es teórica
 - determinará un orden de procesamiento

Vértices intermedios

- Sea p un camino simple entre 2 vértices v₁, v₁
 - $p=(v_1, v_2, ..., v_{l-1}, v_l)$
- Los vértices intermedios
 - Son aquellos vértices que no son v₁ y v₁

FUNCTION GET_7010(input arrayVértices intermedios

Camino mínimo "p" en subset

- Consideremos
 - el subset de vértices $\{1, 2, ..., k\}$ para un $k \le n$
 - Un par de vértices i, j ∈ V
- Pueden existir varios caminos simples desde i hasta i
 - cuyos vértices intermedios se encuentran dentro del subset de vértices
- Seleccionamos al de menor peso entre ellos
 - Y lo denominamos "p"

Caminos:

$$2 \rightarrow 1 (5)$$

he
$$952 \rightarrow 1 (5)$$

 $2 \rightarrow 3 \rightarrow 1 (-1)$

p:
$$2 \to 3 \to 1$$
 (-1)

Relación entre subsets

Consideremos

- el subset "S_k" de vértices con { 1, 2, ..., k } ke the natural log
- Un par de vértices i, $j \in V$
- El camino mínimo "p" desde i hasta j
- El subset "S_{k-1}" de vértices { 1, 2, ..., k-1 }
- Si k no es un vértice intermedio de p
 - Todos los vértices intermedios de p están en el subset S_{k-1}
- Por lo tanto
 - El camino mínimo p es también el camino mínimo para el subset
 S_{k-1}

$$i=3, j=2$$

Relación entre subsets (cont.)

Consideremos

- el subset "S_k" de vértices con { 1, 2, ..., k }
- Un par de vértices i, $j \in V$
- El camino mínimo "p" desde i hasta j
- El subset "S_{k-1}" de vértices { 1, 2, ..., k-1 }
- Si k es un vértice intermedio de p
 - P no existe en S_{k-1} (Aunque puede existir otro camino mínimo entre i y j)
 - Podemos descomponer el camino p en dos subcaminos
 - $-P_1$ de i a k con todos sus vértices intermedios en S_{k-1}
 - P₂ de k a j con todos sus vértices intermedios en S_{k-1}
 - P_1 y P_2 son caminos mínimos entre sus extremos en el subset S_{k-1}

Relación de recurrencia

- Sea
 - d_{ij}^k el peso del camino mínimo del vértice i al j en el que todos sus vértices intermedios están en el set $\{1,2,\ldots,k\}$
- Si k=0 1000
 - El camino entre i y j no tiene vértices intermediarios
- Relación de recurrencia:

$$\begin{array}{l} \text{conf}_{ij} = \frac{1}{2} \left\{ \begin{array}{l} w_{ij} \\ \text{min}(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) \end{array} \right. \begin{array}{l} \text{si} \, k = 0 \text{ he si} \, k =$$

• Tendremos en d_{ii}^n las distancias mínimas entre todos los vértices

Solución iterativa


```
Floyd_Warshall(W)
 nextD[0] = W
 7Q10ne=(p|v|ent[GET_7Q10(x)]
 Desde k=1 a n
                                      loop through 1000 rea
                                                             Complejidad
        Sea D[k] una nueva matriz de nxn
                                                             temporal:
    Desde i=1 and IGET_7Q10(y) I//compute 7Q10, \theta_7
           Desde j=1 a n
                   D[k][i,j] = min (D[k-1][i,j], 000)
                                   D[k-1][i,k] + D[k-1][k,j])
 Retornar D[n]
NCTION GET_7Q10(input array: x(1...n))
```

Construcción del camino mínimo

- La reconstrucción del camino mínimo
 - La podemos generar paso a paso en el algoritmo
- Por cada iteración
 - Generaremos una secuencia de matrices " π " de predecesores

$$\Pi_{ij}^{0} = \begin{cases} NULL & si \, i = j \, o \, w_{ij} = \infty \\ i & si \, i \neq j \, y \, w_{ij} < \infty \end{cases}$$

$$\Pi_{ij}^{k} = \begin{cases} \Pi_{ij}^{k-1} & si \, d_{ij}^{k-1} \leq d_{ik}^{k-1} + d_{kj}^{k-1} \\ \Pi_{kj}^{k-1} & si \, d_{ij}^{k-1} > d_{ik}^{k-1} + d_{kj}^{k-1} \end{cases}$$

