

Метрические алгоритмы

«distance-based» – анализируются расстояния

$$\rho(x,x_1),\ldots,\rho(x,x_m)$$

- Distance from Means
- kNN (Nearest Neighbor)
- не эффективен на больших данных (время, память)
- не более чем в 2 раза хуже оптимального алгоритма
 - нет процедуры обучения
 - выбросы / дисбаланс классов

называют:

- «memory-based»
- «instance-based»
- «non-parametric»

Диаграмма Вороного (Voronoi diagram)

https://en.wikipedia.org/wiki/Voronoi_diagram

Модельная задача классификации

Ближайший центроид (Nearest centroid algorithm)

Задача классификации на непересекающиеся классы с вещественными признаками:

$$Y = \{1, 2, \dots, l\}$$
$$x_i \in \mathbb{R}^n$$

центроиды:

$$c_{j} = \frac{1}{|\{i: y_{i} = j\}|} \sum_{i: y_{i} = j} x_{i}$$

классификация:

$$a(x) = \arg\min_{j} \rho(x, c_{j})$$

Ближайший центроид (Nearest centroids algorithm)

- + хранить только центроиды (их можно адаптивно менять)
 - + понятие центроида можно менять («средний объект»)
 - + простая реализация
 - + размер модели = число классов \times описание цетроида
- очень простой алгоритм (интуитивно подходит в задачах, где объекты разных классов распределены «колоколообразно»)

Подход, основанный на близости

Задача классификации

$$a(x) = \text{mode}(y_i \mid x_i \in N(x))$$

Задача регрессии

$$a(x) = \text{mean}(y_i \mid x_i \in N(x))$$

N(x) – окрестность (neighborhood) объекта x (похожие на него объекты)

Окрестность

Если X – метрическое пространство с метрикой ρ , пусть нумерация объектов такая, что

$$\rho(x, x_1) \le \ldots \le \rho(x, x_m)$$

k ближайших соседей: $N(x) = \{x_1, ..., x_k\}$

- метод k ближайших соседей (kNN = k nearest neighbours)

Метод k ближайших соседей (kNN)

k = 1 – алгоритм ближайшего соседа (nearest neighbour algorithm)

формально нет обучения – храним всю выборку работа алгоритма – просматриваем всю выборку

(+ вычисляем расстояние до каждого объекта обучения)

- ленивый алгоритм (lazy learning)

Гиперпараметр k можно выбрать на скользящем контроле дальше

Ещё гиперпараметры (потом):

- метрика (+ параметры метрики)
 - ядро (+ параметры ядра)

Обоснование 1NN

Теорема. В достаточно однородном метрическом пространстве объектов бинарной задачи классификации ошибка 1NN не выше удвоенной ошибки оптимального алгоритма.

Пусть в некоторой области p – вероятность встретить объект класса (это же и вероятность ошибки оптимального алгоритма), тогда

	объект	
сосед	класс 1 –	класс 0 –
	p	1-p
класс 1 – <i>p</i>	pp	p(1-p)
класс 0 – $(1-p)$	p(1-p)	(1-p)(1-p)

вероятность ошибочной классификации

$$2p(1-p) = 2p - p^2 \le 2p$$

Термины

Eager learner

как только есть обучение – получает значения параметров (учит модель)

Lazy learner

не использует обучающую выборку до классификации

Решение модельной задачи при разном числе соседей

число соседей = 1, 3 и 5

Как увидим дальше, k отвечает за «сложность модели»

Метод ближайшего соседа обобщается на регрессию

Метод ближайшего соседа обобщается на регрессию

Подбор гиперпараметров специальными методами контроля

будет дальше...

Проблема

близкие соседи должны быть важнее

Весовые обобщения **kNN**

mode(
$$y_i | x_i \in N(x)$$
) = arg max $\sum_{t=1}^{k} I[y(x_t) = a]$

$$\arg\max \sum_{t=1}^{k} w_t I[y(x_t) = a]$$

Разные весовые схемы:

$$w_{t} = (k - t + 1)^{\delta}$$

$$w_{t} = \frac{1}{t^{\delta}}$$

$$w_{t} = K\left(\frac{\rho(x, x_{t})}{h(x)}\right)$$

Весовые Обобщения kNN

Последний способ хорош только на картинках...

Весовые обобщения в регрессии

$$\frac{\sum_{t=1}^{k} w_t y(x_t)}{\sum_{t=1}^{k} w_t}$$

пример для 5NN

Эффект почти не заметен, дальше будет обобщение – регрессия Надарая-Ватсона

Метрики

Расстояние (метрика) на X – функция ho(x,z): $X imes X o \mathbb{R}$

1.
$$\rho(x,z) \ge 0$$

2.
$$\rho(x,z)=0 \Leftrightarrow x=z$$
 (без – полумерика/псевдометрика)

3.
$$\rho(x,z) = \rho(z,x)$$

4.
$$\rho(x,z) + \rho(z,v) \ge \rho(x,v)$$

- ullet Минковского L_p
 - $_{\circ}$ Евклидова $L_{\!_2}$
 - $_{\circ}$ Манхэттенская $L_{\!_{1}}$
- Махалонобиса

- Canberra distance
- Хэмминга
- косинусное
- расстояние Джаккарда
- DTW
- Левенштейна

Евклидова (L2)

$$\sqrt{\sum_{i=1}^{n} (x_i - z_i)^2}$$

Общий вариант – Минковского (Lp)

$$\left(\sum_{i=1}^{n} |x_i - z_i|^p\right)^{1/p}$$

Предельный случай – Чебышева (L∞)

$$\left(\sum_{i=1}^{n} |x_i - z_i|^{\infty}\right)^{1/\infty} \sim \max_i |x_i - z_i|$$

Частный случай – Манхэттенская (L1)

$$\sum_{i=1}^{n} |x_i - z_i|$$

$$(|x_1-z_1|^p+|x_2-z_2|^p)^{1/p}$$

 L_2

$$(|x_1-z_1|^p+|x_2-z_2|^p)^{1/p}$$

 $L_{0.5}$

 $L_{\!_{1.5}}$

 L_{3}

Разделяющие поверхности $L_{\scriptscriptstyle 2}$

Разделяющие поверхности $L_{\!\scriptscriptstyle 1}$

Расстояние Махалонобиса (Mahalonobis distance)

стандартизует нормальные данные

 $\operatorname{norm}(\mu, \Sigma) \to \operatorname{norm}(0, I)$

$$\rho(x,z) = \rho_{L_2}(\varphi(x), \varphi(z)) = \sqrt{(\varphi(x) - \varphi(z))^{\mathrm{T}}(\varphi(x) - \varphi(z))} = \sqrt{(x - \mu)^{\mathrm{T}} \Sigma^{-1}(x - \mu)}$$

Расстояние Махалонобиса

$$\Sigma = \begin{bmatrix} 1.5 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 2 & 0.3 \\ 0.3 & 0.5 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 4 & 0.3 \\ 0.3 & 0.25 \end{bmatrix}$$

Расстояния

Canberra distance

https://en.wikipedia.org/wiki/Canberra_distance

$$\frac{1}{n} \sum_{i=1}^{n} \frac{|x_i - z_i|}{|x_i| + |z_i|}$$

Хэмминга

$$\sum_{i=1}^{n} I[x_i \neq z_i]$$

Косинусная мера сходство

$$\cos(x,z) = \frac{x^{\mathrm{T}}z}{\|x\| \cdot \|z\|}$$

если работать с нормированными векторами, достаточно рассматривать скалярное произведение

Расстояния

Расстояние Джаккарда (на множествах)

$$1 - \frac{|X \cap Z|}{|X \cup Z|}$$

Расстояние на множествах индуцирует расстояние на бинарных векторах

$$1 - \frac{x^{\mathsf{T}}z}{x^{\mathsf{T}}x + z^{\mathsf{T}}z - x^{\mathsf{T}}z} = \frac{x^{\mathsf{T}}x + z^{\mathsf{T}}z - 2x^{\mathsf{T}}z}{x^{\mathsf{T}}x + z^{\mathsf{T}}z - x^{\mathsf{T}}z}$$

тут есть много разных вариантов...

Проблема выбора метрики

- зависимость от масштаба нормировка признаков однородные признаки смесь метрик
- можно выбирать не метрику, а близость пример: косинусная мера сходства

• часто выбор функции расстояния, как ни странно, довольно прост...

Метрики на временных рядах

Евклидово расстояние DTW = Dynamic time warping

https://en.wikipedia.org/wiki/Dynamic_time_warping

Метрики на временных рядах

Пусть есть векторы (временные ряды)

$$x = (x_1, ..., x_m)$$
 $z = (z_1, ..., z_n)$
cpes
 $x[:i] = (x_1, ..., x_i)$

рекурсивное определение -

$$DTW(x[:i], z[:j]) = \rho(x_i, z_j) + \min \begin{cases} DTW(x[:i-1], z[:j-1]) \\ DTW(x[:i-1], z[:j]) \\ DTW(x[:i], z[:j-1]) \end{cases}$$

начальные условия рекурсивного определения

Метрики на временных рядах

Для адекватности и быстроты часто

$$|i-j| > r \Rightarrow DTW(x[:i], z[:j]) = +\infty$$

красивая картинка

Расстояние Левенштейна

«Edit distance»

Расстояние между строками Вводим элементарные операции правки:

- вставить букву
- удалить букву
- заменить букву

расстояние – минимальное число операций, с помощью которых их одной строки можно получить другую

использование: исправление опечаток

Расстояние Левенштейна определение аналогично DTW (можно для каждой операции – свой штраф)

$$D(x[:i], z[:j]) = \min \begin{cases} sub(x_i, z_j) + D(x[:i-1], z[:j-1]) \\ add(x_i) + D(x[:i-1], z[:j]) \\ add(z_j) + D(x[:i], z[:j-1]) \end{cases}$$

$$sub(x_i, z_j) = \begin{cases} 0, & x_i = z_j, \\ 1, & x_i \neq z_j, \end{cases}$$

Приложения метрического подхода: нечёткий матчинг таблиц

пример АМ

матчинг таблиц разных аудиторий для рекламного агенства

Приложения метрического подхода: Ленкор

«VideoLectures.Net Recommender System Challenge» (ECML/PKDD Discovery Challenge 2011)

- написать рекомендательную систему в режиме холодного старта

Описание лекции

101, 'Lecture', 'eng', 'biology', '2008-12-04', '2009-02-12', 'Implementing a common framework on business', 'Professor Rudolf Smith', ...

$$\rho(\text{Lecture}_1, \text{Lecture}_2) = c_1 \cdot \rho_1(\text{Author}_1, \text{Author}_2) + c_2 \cdot \rho_2(\text{Title}_1, \text{Title}_2) + \dots + c_n \cdot \rho_n(\text{Subject}_1, \text{Subject}_2)$$

метрики можно параметризовать и настраивать параметры «хитрый весовой учёт близости» – см. совместные просмотры

Дьяконов А.Г. Алгоритмы для рекомендательной системы: технология LENKOR // Бизнес-Информатика, 2012, №1(19), С. 32–39.

Приложения метрического подхода: Сиамские сети

Discriminative Learning of Deep Convolutional Feature
Point Descriptors [Simo-Serra et al., 2015
http://icwww.epfl.ch/~trulls/pdf/iccv-2015-deepdesc.pdf]

Приложения метрического подхода: простота интерпретаций

http://cs231n.stanford.edu/2017/syllabus.html

Приложения метрического подхода: классификация текстов задача «Large Scale Hierarchical Text Classification»

Итог – матрица оценок

https://www.kaggle.com/c/lshtc

Эффективные методы поиска ближайших соседей *

nested rectangles: KD tree

nested balls: ball tree

Метрические алгоритмы

+ не требуется признаковых описаний

(достаточно уметь измерять расстояния / близости)

- + легко реализуемы
- + интерпретируемость
 - + нет обучения
- медленная классификация (зависит от объёма обучения)
 - требуется хранение всей обучающей выборки
 - **требует подбора метрики (нормировки признаков)**

Считается, что в пространствах гигантских размерностей стандартные метрики неадекватны (проклятие размерности), но ...

в реальности расположение объектов неслучайно – есть геометрия!!!

ответ – взвешенное усреднение целевых значений

$$a(x) = \frac{w_1(x)y_1 + \dots + w_m(x)y_m}{w_1(x) + \dots + w_m(x)}$$

$$a(x) = \frac{w_1(x)y_1 + \dots + w_m(x)y_m}{w_1(x) + \dots + w_m(x)}$$

Смысл весов – чем ближе объект обучения, тем скорее ответ похож на его метку

$$w_i(x) = K\left(\frac{\rho(x, x_i)}{h}\right)$$

Ядро с шириной h.

Здесь также как выше... (про функции ядра)

Смысл:

ответ алгоритма – решение оптимизационной задачи

$$\sum_{i=1}^{m} w_i(x) (a - y(x_i))^2 \to \min_{a}$$

- + хорошее решение задачи сглаживания
 - не решает задачи экстраполяции

Приложения регрессии Надарая-Ватсона

1. Сглаживание сигналов

2. «Многомерные» усреднения

Реализация sklearn.neighbors.NearestNeighbors

```
n neighbors — число соседей (5)
radius - ограничение пространства (1.0)
algorithm - алгоритм для определения БС (auto, ball tree, kd tree,
brute)
leaf size - параметр для BallTree / KDTree
metric - метрика (функция или строка: ), см. scipy.spatial.distance
 scikit-learn:[cityblock, cosine, euclidean, 11, 12, manhattan]
scipy.spatial.distance: [braycurtis, canberra, chebyshev,
correlation, dice, hamming, jaccard, kulsinski, mahalanobis,
minkowski, rogerstanimoto, russellrao, seuclidean, sokalmichener,
sokalsneath, sqeuclidean, yule]
р - параметр для minkowski (2)
metric params - дополнительные параметры для метрики
n_jobs - ...
```

Реализация KNeighborsClassifier/ KNeighborsRegressor

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=1)
knn.fit(X train, y train)
                    n neighbors - число соседей
           weights - веса («uniform», «distance», функция)
    algorithm - алгоритм для эффективного нахождения соседей
               («auto», «ball_tree», «kd_tree», «brute»)
                  leaf size – для BallTree / KDTree
              р - параметр для метрики Минковского
                  metric - метрика («minkowski»)
              metric params - параметры для метрики
         n jobs - число процессов для нахождения соседей
```

from sklearn.neighbors import KNeighborsRegressor

weights - весовая схема для объектов (uniform, distance, функция)

Реализация

sklearn.neighbors.kneighbors graph

- граф соседей

sklearn.neighbors.RadiusNeighborsClassifier sklearn.neighbors.RadiusNeighborsRegressor

- алгоритмы с соседством по радиусу

sklearn.neighbors.KernelDensity

- KDE-оценка плотности

Код

https://github.com/Dyakonov/ml_hacks/blob/master/dj_IML_kNN.ipynb