A Direct Multisearch Filter Method for Biobjective Optimization

Everton Jose da Silva Advisor: Ana Luísa Custódio

Ph.D Student in Mathematics, Nova School of Science and Technology, Portugal

DMS-Filter

Outline

- Introduction
- 2 Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- 6 Conclusions and Future Work

Outline

- Introduction
- 2 Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

Multiobjective Optimization

$$\min_{x \in \Omega \subseteq \mathbb{R}^n} F(x) = \left(f_1(x), f_2(x), \dots, f_m(x) \right)^{\mathsf{T}}$$

$$f_j : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \ j = 1, 2, \dots, m \ge 2$$

- $\Omega = X \cap \{x \in \mathbb{R}^n \mid C(x) \le 0\}$ where X is a full dimensional polyhedron and $C : \mathbb{R}^n \to (\mathbb{R} \cup \{+\infty\})^p$
- objectives often conflicting
- expensive function evaluation
- impossible to use or approximate derivatives

Multiobjective Optimization

$$\min_{x \in \Omega \subseteq \mathbb{R}^n} F(x) = (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$

$$f_j : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \ j = 1, 2, \dots, m \ge 2$$

- $\Omega = X \cap \{x \in \mathbb{R}^n \mid C(x) \le 0\}$ where X is a full dimensional polyhedron and $C : \mathbb{R}^n \to (\mathbb{R} \cup \{+\infty\})^p$
- · objectives often conflicting
- expensive function evaluation
- impossible to use or approximate derivatives

Multiobjective Optimization

$$\min_{x \in \Omega \subseteq \mathbb{R}^n} F(x) = (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$

$$f_j : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \ j = 1, 2, \dots, m \ge 2$$

- $\Omega = X \cap \{x \in \mathbb{R}^n \mid C(x) \leq 0\}$ where X is a full dimensional polyhedron and $C : \mathbb{R}^n \to (\mathbb{R} \cup \{+\infty\})^p$
- · objectives often conflicting
- expensive function evaluation
- impossible to use or approximate derivatives

Motivation

- DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140
 - DMS_{dense} → Asymptotically dense in the unit sphere
 - DMS_⊕ → Coordinate directions

Motivation

- DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140
 - $DMS_{dense} \rightarrow Asymptotically dense in the unit sphere$
 - $DMS_{\oplus} \rightarrow Coordinate directions$

DMS - General Linear Constraints

- Set of poll directions conforms to the geometry of nearby constraints
- Approach of Abramson, Brezhneva, Dennis, and Pingel [2008] for single objective optimization

(in Kolda, Lewis, and Torczon [2003])

Metrics for Performance Profiles (Dolan and Moré [2002])

Purity

$$\frac{|F_{p,s} \cap F_p|}{|F_{p,s}|}$$

• Spreads Γ and Δ

$$\begin{split} \Gamma_{p,s} &= \max_{j \in \{1,...,m\}} \left(\max_{i \in \{0,...,N\}} \{d_i\} \right) \\ \Delta &= \max_{j \in \{1,...,m\}} \left(\frac{d_0 + d_N + \sum_{i=1}^{N-1} |d_i - \overline{d}|}{d_0 + d_N + (N-1)\overline{d}} \right) \end{split}$$

Hypervolume

$$HI_{p,s} = Vol\{b \in \mathbb{R}^m \mid b \le U_p \land \exists a \in F_{p,s} : a \le b\}$$

Metrics for Performance Profiles (Dolan and Moré [2002])

Purity

$$\frac{|F_{p,s} \cap F_p|}{|F_{p,s}|}$$

• Spreads Γ and Δ

$$\Gamma_{p,s} = \max_{j \in \{1,...,m\}} \left(\max_{i \in \{0,...,N\}} \{d_i\} \right)$$

$$\Delta = \max_{j \in \{1,...,m\}} \left(\frac{d_0 + d_N + \sum_{i=1}^{N-1} |d_i - \overline{d}|}{d_0 + d_N + (N-1)\overline{d}} \right)$$

Hypervolume

$$HI_{p,s} = Vol\{b \in \mathbb{R}^m \mid b \le U_p \land \exists a \in F_{p,s} : a \le b\}$$

Metrics for Performance Profiles (Dolan and Moré [2002])

Purity

$$\frac{|F_{p,s} \cap F_p|}{|F_{p,s}|}$$

• Spreads Γ and Δ

$$\Gamma_{p,s} = \max_{j \in \{1,...,m\}} \left(\max_{i \in \{0,...,N\}} \{d_i\} \right)$$

$$\Delta = \max_{j \in \{1,...,m\}} \left(\frac{d_0 + d_N + \sum_{i=1}^{N-1} |d_i - \overline{d}|}{d_0 + d_N + (N-1)\overline{d}} \right)$$

Hypervolume

$$HI_{p,s} = Vol\{b \in \mathbb{R}^m \mid b \le U_p \land \exists a \in F_{p,s} : a \le b\}$$

DMS - General Linear Constraints

Motivation

DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140

 DFMO → G. Liuzzi, S. Lucidi, and F. Rinaldi. A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. (2016), 26, 2744-2774

- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29

Motivation

DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140

 DFMO → G. Liuzzi, S. Lucidi, and F. Rinaldi. A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. (2016), 26, 2744-2774

- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29

DMS - Nonlinear + Bound Constraints

DFMO DMS

New Problem

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^p \max\{0, c_i(x)\}^2$$

$$\min_{\mathbf{x} \in Y} \left(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}), h(\mathbf{x}) \right)^{\top}$$

New Problem

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^p \max\{0, c_i(x)\}^2$$

$$\min_{x \in X} (f_1(x), f_2(x), \dots, f_m(x), h(x))^{\top}$$

New Problem

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^p \max\{0, c_i(x)\}^2$$

$$\min_{x \in X} \left(f_1(x), f_2(x), \dots, f_m(x), h(x) \right)^{\mathsf{T}}$$

Filter Approach

The filter \mathcal{F} is a set of nondominated points

A point x' is said to be filtered by a filter \mathcal{F} if any of the following properties hold:

- There exists a point $x \in \mathcal{F}$ such that $x' \geq x$
- $h(x') > h_{\max}$ for some positive finite upper bound h_{\max}

Filter Approach

The filter \mathcal{F} is a set of nondominated points

A point x' is said to be filtered by a filter \mathcal{F} if any of the following properties hold:

- There exists a point $x \in \mathcal{F}$ such that $x' \succeq x$
- $h(x') > h_{\max}$ for some positive finite upper bound h_{\max}

Outline

- Introduction
- 2 Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

DMS-Filter - Algorithmic Structure

Solutions: $L := \{(x, \alpha) \in \mathcal{F} \mid (F_X(x), h(x)) = (F(x), 0)\}$

DMS-Filter - Algorithmic Structure

Solutions: $L := \{(x, \alpha) \in \mathcal{F} \mid (F_X(x), h(x)) = (F(x), 0)\}.$

Poll Center Selection

Feasible to Infeasible

Infeasible to Feasible

Feasible poll center - Most Isolated Point

Feasible poll center - Most Isolated Point

Feasible poll center - Most Isolated Point

$$\delta_{i,j} = f_{i+1,j} - f_{i,j}$$
 for $i = 1, 2, 3$ and $j = 1, 2$.

Feasible poll center - Most Isolated Point

Outline

- 1 Introduction
- 2 Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

Globalization Strategies

Using Integer Lattices (Torczon [1997], Audet and Dennis [2002])

- requires only simple decrease
- poll directions and step size must satisfy integer/rational requirements Imposing Sufficient Decrease (Kolda, Lewis, and Torczon [2003])
 - use of a forcing function $\rho:(0,+\infty)\to(0,+\infty)$, continuous and nondecreasing, satisfying $\rho(t)/t\to 0$ when $t\downarrow 0$
 - x is nondominated $\Leftrightarrow (F_X(x), h(x)) \notin D(\mathcal{F}, \rho(\alpha))$

Theorem (Refining Subsequences)

There is at least a convergent refining subsequence of iterates $\{x_k\}_{k\in K}$, corresponding to unsuccessful poll steps, with $\lim_{k\in K}\alpha_k=0$.

Let \overline{x} be the limit point of a convergent refining subsequence $\{x_k\}_{k\in K}$.

Definition (Refining Directions)

Refining directions for \overline{x} are limit points of $\{d_k/\|d_k\|\}_{k\in K}$, where $d_k\in D_k$ and $x_k+\alpha_kd_k\in \mathcal{S}:=\{x\in X\mid h(x)\leq h_{\max}\}.$

Theorem (Refining Subsequences)

There is at least a convergent refining subsequence of iterates $\{x_k\}_{k\in K}$, corresponding to unsuccessful poll steps, with $\lim_{k\in K}\alpha_k=0$.

Let \overline{x} be the limit point of a convergent refining subsequence $\{x_k\}_{k\in K}$.

Definition (Refining Directions)

Refining directions for \overline{x} are limit points of $\{d_k/\|d_k\|\}_{k\in K}$, where $d_k\in D_k$ and $x_k+\alpha_k d_k\in \mathcal{S}:=\{x\in X\mid h(x)\leq h_{\max}\}.$

Assume that F and h are Lipschitz continuous near \overline{x} .

Theorem

• Let $\{x_k^{\mathrm{I}}\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in\mathcal{S}$. If $d\in\mathrm{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$h^{\circ}(\overline{x};d) \geq 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If $d\in \mathrm{int}(T_\Omega^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$\exists j = j(d) \in \{1, \dots, m\}$$
 such that $f_i^{\circ}(\overline{x}; d) \ge 0$

Assume that F and h are Lipschitz continuous near \overline{x} .

Theorem

• Let $\{x_k^{\mathrm{I}}\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in\mathcal{S}$. If $d\in\mathrm{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$h^{\circ}(\overline{x};d) \geq 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If $d\in \mathrm{int}(T_\Omega^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$\exists j = j(d) \in \{1, \dots, m\}$$
 such that $f_i^{\circ}(\overline{x}; d) \ge 0$

Theorem

• Let $\{x_k^I\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in \mathcal{S}$. If the set of refining directions for \overline{x} is dense in $\operatorname{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Clarke critical point:

$$\forall d \in T_S^{Cl}(\overline{x}), h^{\circ}(\overline{x};d) \geq 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If the set of refining directions for \overline{x} is dense in $\mathrm{int}(T_\Omega^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Pareto-Clarke critical point:

$$\forall d \in T^{Cl}_{\Omega}(\overline{x}), \exists j = j(d) \in \{1, \dots, m\} \text{ such that } f_j^{\circ}(\overline{x}; d) \geq 0$$

Theorem

• Let $\{x_k^{\mathrm{I}}\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in\mathcal{S}$. If the set of refining directions for \overline{x} is dense in $\mathrm{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Clarke critical point:

$$\forall d \in T_S^{Cl}(\overline{x}), h^{\circ}(\overline{x}; d) \geq 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If the set of refining directions for \overline{x} is dense in $\mathrm{int}(T_\Omega^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Pareto-Clarke critical point:

$$\forall d \in T^{CI}_{\Omega}(\overline{x}), \exists j = j(d) \in \{1, \dots, m\} \text{ such that } f_j^{\circ}(\overline{x}; d) \geq 0$$

Outline

- Introduction
- 2 Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO:
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO:
 - default values
 - maximum of 20000 function evaluations

Results - Purity

- DFMO
- DMS-Filter
- DMS

Results - Spread Gamma (Γ)

- DFMO
- DMS-Filter
- DMS

Results - Spread Delta (Δ)

- DFMO
- DMS-Filter
- DMS

Results - Hypervolume

- DFMO
- DMS-Filter
- DMS

Results - DMS-Filter(line,n) VS DFMO

DFMO

DMS-Filter

- Comparison between DMS-Filter and DMultiMads-PB
 - DMultiMads-PB → Jean Bigeon, Sébastien Le Digabel, Ludovic Salomon. Handling of constraints in multiobjective blackbox optimization. ArXiv:2204.00904
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS-Filter and DMultiMads-PB
 - $\alpha_k < 10^{-9}$ for one point
 - maximum of 20000 function evaluations

DMS-Filter VS DMultiMads-PB

DMS-Filter

DMultiMads-PB

Outline

- 1 Introduction
- ② Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

Conclusions and Future Work

- DMS-Filter extends filter methods to constrained Multiobjective Derivative-free Optimization
- DMS-Filter presents a well-supported convergence analysis for both globalization strategies
- DMS-Filter presents competitive numerical results for constrained Biobjective Derivative-free Optimization Problems

 Future work comprises extending the approach to problems with more than two objectives

THANKS FOR YOUR ATTENTION!

Any comments or questions?

Everton Jose da Silva - ejo.silva@campus.fct.unl.pt