MDI343

Time series: an introduction

François Roueff

http://perso.telecom-paristech.fr/~roueff/

Telecom ParisTech

Jan. 7, 2020

1/90

Qutline

- Example of time series
- Reminders: i.i.d. models
 - Univariate models
 - Multivariate models
 - Regression model
 - Hidden variables
- 3 Introducing dynamics
 - What's wrong with i.i.d. models ?
 - Univariate models
 - Multivariate models
 - Partially observed multivariate time series
- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Stationary and ergodic models
- Weakly stationary time series
 - \bullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- 4 Stationary Time series
- Weakly stationary time series

Figure: Daily currency exchange rate : price of 1 Euro in US Dollars.

Compare with an IID $\mathcal{N}(0,1)$ sequence:

Applying the differencing operator, we obtain the increment process

$$Y = \Delta X$$
 defined by $Y_t = X_t - X_{t-1}, \quad t \in \mathbb{Z}$.

Makes the "local" mean "more constant".

Figure: Increments of daily USD-EUR currency exchange rate.

Jan. 7, 2020

6/90

Applying the differencing operator of the logs, we obtain the log returns

$$Y = \Delta \log X$$
 defined by $Y_t = \log X_t - \log X_{t-1}, \quad t \in \mathbb{Z}$.

Makes the "local" mean and the variance "more constant".

Figure: Log returns of daily USD-EUR currency exchange rate.

Looking at things "locally" ...

Figure: Daily currency exchange rate: price of 1 Euro in US Dollars, on a shorter observation window: between 1999-05-21 and 1999-12-17.

The mean and variance does not appear to vary too much, but still not i.i.d.

- Example of time series
- Reminders: i.i.d. models
 - Univariate models
 - Multivariate models
 - Regression model
 - Hidden variables
- Introducing dynamics
- 4 Stationary Time series
- 5 Weakly stationary time series

- Example of time series
- Reminders: i.i.d. models
 - Univariate models
 - Multivariate models
 - Regression model
 - Hidden variables
- Introducing dynamics
- Stationary Time series
- 5 Weakly stationary time series

Discrete observations

▶ If we observe i.i.d. discrete observations X_1, \ldots, X_n , then the log-likelihood can be defined as

$$L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(X_k) ,$$

where, for all x in the discrete observation space and parameter θ

$$p_{\theta}(x) = \mathbb{P}_{\theta}(X_1 = x)$$
.

Discrete observations

▶ If we observe i.i.d. discrete observations X_1, \ldots, X_n , then the log-likelihood can be defined as

$$L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(X_k) ,$$

where, for all x in the discrete observation space and parameter θ

$$p_{\theta}(x) = \mathbb{P}_{\theta}(X_1 = x) .$$

ightharpoonup We denote the marginal distribution of X_1 under \mathbb{P}_{θ} by $\mathbb{P}_{\theta}^{X_1}$.

Discrete observations

▶ If we observe i.i.d. discrete observations X_1, \ldots, X_n , then the log-likelihood can be defined as

$$L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(X_k) ,$$

where, for all x in the discrete observation space and parameter θ

$$p_{\theta}(x) = \mathbb{P}_{\theta}(X_1 = x)$$
.

- ightharpoonup We denote the marginal distribution of X_1 under $\mathbb{P}_{ heta}$ by $\mathbb{P}_{ heta}^{X_1}$.
- Setting the definition of $\mathbb{P}_{\theta}^{X_1}$ or p_{θ} for all θ provides a statistical model for the observations X_1, \ldots, X_n .

4□ > 4回 > 4 = > 4 = > = 900

▶ Bernoulli model:

$$p_{\theta}(x) = \theta^{x} (1 - \theta)^{1-x}, \quad \theta \in (0, 1), \quad x \in \{0, 1\}.$$

Bernoulli model:

$$p_{\theta}(x) = \theta^{x} (1 - \theta)^{1-x}, \quad \theta \in (0, 1), \quad x \in \{0, 1\}.$$

▶ Binomial model (with $p \ge 1$ known):

$$p_{\theta}(x) = \binom{p}{x} \theta^{x} (1 - \theta)^{p-x}, \quad \theta \in (0, 1), \quad x \in \{0, \dots, p\}.$$

Bernoulli model:

$$p_{\theta}(x) = \theta^{x} (1 - \theta)^{1-x}, \quad \theta \in (0, 1), \quad x \in \{0, 1\}.$$

▶ Binomial model (with $p \ge 1$ known):

$$p_{\theta}(x) = \binom{p}{x} \theta^{x} (1 - \theta)^{p-x}, \quad \theta \in (0, 1), \quad x \in \{0, \dots, p\}.$$

▶ Geometric model:

$$p_{\theta}(x) = \theta(1-\theta)^{x-1}$$
, $\theta \in (0,1)$, $x \in \mathbb{N}^*$.

Bernoulli model:

$$p_{\theta}(x) = \theta^{x} (1 - \theta)^{1-x}, \quad \theta \in (0, 1), \quad x \in \{0, 1\}.$$

▶ Binomial model (with $p \ge 1$ known):

$$p_{\theta}(x) = \binom{p}{x} \theta^{x} (1 - \theta)^{p-x}, \quad \theta \in (0, 1), \quad x \in \{0, \dots, p\}.$$

▶ Geometric model:

$$p_{\theta}(x) = \theta(1-\theta)^{x-1}, \quad \theta \in (0,1), \quad x \in \mathbb{N}^*.$$

▶ Negative binomial, Poisson, ...

Continuous observations

▶ If we observe i.i.d. real valued observations $X_1, ..., X_n$, then the log-likelihood can be defined as

$$L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(X_k) ,$$

where, for all x in the discrete observation space and parameter θ , p_{θ} is the density of $\mathbb{P}_{\theta}^{X_1}$:

$$\mathbb{P}_{\theta}^{X_1}(A) = \mathbb{P}_{\theta}(X_1 \in A) = \int_A p_{\theta}(x) \, dx.$$

Continuous observations

▶ If we observe i.i.d. real valued observations $X_1, ..., X_n$, then the log-likelihood can be defined as

$$L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(X_k) ,$$

where, for all x in the discrete observation space and parameter θ , p_{θ} is the density of $\mathbb{P}_{\theta}^{X_1}$:

$$\mathbb{P}_{\theta}^{X_1}(A) = \mathbb{P}_{\theta}(X_1 \in A) = \int_A p_{\theta}(x) \, dx.$$

Again, setting the definition of $\mathbb{P}_{\theta}^{X_1}$ or p_{θ} for all θ provides a statistical model for the observations X_1, \ldots, X_n .

▶ Exponential model:

$$p_{\lambda}(x) = \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}_{+}}(x) , \quad \lambda > 0 .$$

Exponential model:

$$p_{\lambda}(x) = \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}_{+}}(x) , \quad \lambda > 0 .$$

Gamma model

$$p_{\theta}(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathbb{1}_{\mathbb{R}_{+}}(x), \quad \theta = (\alpha, \lambda) \in \mathbb{R}_{+}^{*2}.$$

▶ Exponential model:

$$p_{\lambda}(x) = \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}_{+}}(x) , \quad \lambda > 0 .$$

Gamma model

$$p_{\theta}(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathbb{1}_{\mathbb{R}_{+}}(x), \quad \theta = (\alpha, \lambda) \in \mathbb{R}_{+}^{*2}.$$

▶ Beta model :

$$p_{\theta}(x) = B(\alpha, \beta) \ x^{\alpha - 1} (1 - x)^{\beta - 1} \ \mathbb{1}_{[0,1]}(x) \ , \quad \theta = (\alpha, \beta) \in \mathbb{R}_{+}^{*2} \ .$$

▶ Exponential model:

$$p_{\lambda}(x) = \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}_{+}}(x) , \quad \lambda > 0 .$$

▶ Gamma model

$$p_{\theta}(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathbb{1}_{\mathbb{R}_{+}}(x), \quad \theta = (\alpha, \lambda) \in \mathbb{R}_{+}^{*2}.$$

▶ Beta model :

$$p_{\theta}(x) = B(\alpha, \beta) \ x^{\alpha - 1} (1 - x)^{\beta - 1} \ \mathbb{1}_{[0,1]}(x) \ , \quad \theta = (\alpha, \beta) \in \mathbb{R}_{+}^{*2} \ .$$

▶ Gaussian model:

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}, \quad \theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+^*.$$

- Example of time series
- 2 Reminders: i.i.d. models
 - Univariate models
 - Multivariate models
 - Regression model
 - Hidden variables
- Introducing dynamics
- Stationary Time series
- 5 Weakly stationary time series

15 / 90

▶ Most real life data is multivariate in the sense that it is doubly indexed, e.g.

$$\mathbf{X}_t = X_{i,t} \quad i = 1, \dots, p \;,$$

where t is the time index and i enumerates individuals, assets, features etc.

▶ Most real life data is multivariate in the sense that it is doubly indexed, e.g.

$$\mathbf{X}_t = X_{i,t} \quad i = 1, \dots, p \;,$$

where t is the time index and i enumerates individuals, assets, features etc.

▶ Examples: portfolio returns, panel data (or longitudinal data), Risk indices, ...

▶ Most real life data is multivariate in the sense that it is doubly indexed, e.g.

$$\mathbf{X}_t = X_{i,t} \quad i = 1, \dots, p$$
,

where t is the time index and i enumerates individuals, assets, features etc.

- ▶ Examples: portfolio returns, panel data (or longitudinal data), Risk indices, ...
- \triangleright To simplify the presentation, let us see the index i as a spatial index (as opposed to time index).

▶ Most real life data is multivariate in the sense that it is doubly indexed, e.g.

$$\mathbf{X}_t = X_{i,t} \quad i = 1, \dots, p \;,$$

where t is the time index and i enumerates individuals, assets, features etc.

- ▶ Examples: portfolio returns, panel data (or longitudinal data), Risk indices, ...
- \triangleright To simplify the presentation, let us see the index i as a spatial index (as opposed to time index).
- ▶ A multivariate model will generally try to capture the *spatial* covariance structure through random vector models: e.g. Gaussian vectors, Ising model, or more general graphical models...

Example: i.i.d. Gaussian vectors

- ightharpoonup Consider a portfolio of n asset returns $\mathbf{X}_t = X_{i,t}$ $i = 1, \dots, p$.
- \triangleright Suppose that $\mathbf{X}_1, \dots, \mathbf{X}_n$ are i.i.d. $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where
 - $\triangleright \mu \in \mathbb{R}^p$ is the unknown mean.
 - $\mathbf{\Sigma} \in \mathbb{R}^{p imes p}$ is the unknown covariance matrix
- ightharpoonup Then the log-likelihood reads, for all $heta=(oldsymbol{\mu},\Sigma)$,

$$L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(\mathbf{X}_k)$$

$$= -\frac{1}{2n} \left(\log \det(2\pi\Sigma) + \sum_{k=1}^n (\mathbf{X}_k - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{X}_k - \boldsymbol{\mu}) \right).$$

- Using a classical moment estimation method, we obtain the empirical estimators:
 - the empirical mean

$$\widehat{\mu}_{n,i} = \frac{1}{n} \sum_{t=1}^{n} \mathbf{X}_{i,t} .$$

▶ the empirical covariance matrix

$$\widehat{\Sigma}_n[i,j] = \frac{1}{n} \sum_{t=1}^n (\mathbf{X}_{i,t} - \widehat{\mu}_{n,i}) (\mathbf{X}_{j,t} - \widehat{\mu}_{n,j}) .$$

- Using a classical moment estimation method, we obtain the empirical estimators:
 - ▶ the empirical mean

$$\widehat{\mu}_{n,i} = \frac{1}{n} \sum_{t=1}^{n} \mathbf{X}_{i,t} .$$

the empirical covariance matrix

$$\widehat{\Sigma}_n[i,j] = \frac{1}{n} \sum_{t=1}^n (\mathbf{X}_{i,t} - \widehat{\mu}_{n,i}) (\mathbf{X}_{j,t} - \widehat{\mu}_{n,j}) .$$

▶ Maximizing the likelihood yields to much more complicated estimators...

- ▶ Using a classical moment estimation method, we obtain the empirical estimators:
 - ▶ the empirical mean

$$\widehat{\boldsymbol{\mu}}_{n,i} = \frac{1}{n} \sum_{t=1}^{n} \mathbf{X}_{i,t} .$$

the empirical covariance matrix

$$\widehat{\Sigma}_n[i,j] = \frac{1}{n} \sum_{t=1}^n (\mathbf{X}_{i,t} - \widehat{\mu}_{n,i}) (\mathbf{X}_{j,t} - \widehat{\mu}_{n,j}) .$$

- ▶ Maximizing the likelihood yields to much more complicated estimators...
- \triangleright In high dimension (p and n are of similar order), it is sometimes advantageous to make a sparse or low rank assumption.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- ▶ Using a classical moment estimation method, we obtain the empirical estimators:
 - the empirical mean

$$\widehat{\mu}_{n,i} = \frac{1}{n} \sum_{t=1}^{n} \mathbf{X}_{i,t} .$$

the empirical covariance matrix

$$\widehat{\Sigma}_n[i,j] = \frac{1}{n} \sum_{t=1}^n (\mathbf{X}_{i,t} - \widehat{\mu}_{n,i}) (\mathbf{X}_{j,t} - \widehat{\mu}_{n,j}) .$$

- Maximizing the likelihood yields to much more complicated estimators...
- \triangleright In high dimension (p and n are of similar order), it is sometimes advantageous to make a sparse or low rank assumption.
- From a regression perspective, it is easier to use sparsity of the precision matrix $M = \Sigma^{-1}$.

- Example of time series
- Reminders: i.i.d. models
 - Univariate models
 - Multivariate models
 - Regression model
 - Hidden variables
- Introducing dynamics
- 4 Stationary Time series
- 5 Weakly stationary time series

From bivariate distribution to conditional distribution

▶ In a regression model, each multivariate observation \mathbf{X}_i is split into a pair of variables : $\mathbf{X}_i = (\mathbf{Z}_i, Y_i)$, where, usually, \mathbf{Z}_i itself is multivariate, say valued in \mathbb{R}^p , and Y_i is univariate (discrete or continuous).

From bivariate distribution to conditional distribution

- ▶ In a regression model, each multivariate observation X_i is split into a pair of variables : $X_i = (Z_i, Y_i)$, where, usually, Z_i itself is multivariate, say valued in \mathbb{R}^p , and Y_i is univariate (discrete or continuous).
- Thus we can see the distribution of \mathbf{X}_1 as a bivariate distribution $\mathbb{P}_{\theta}^{\mathbf{X}_1} = \mathbb{P}_{\theta}^{(\mathbf{Z}_1, Y_1)}$.

From bivariate distribution to conditional distribution

- ▶ In a regression model, each multivariate observation X_i is split into a pair of variables : $X_i = (Z_i, Y_i)$, where, usually, Z_i itself is multivariate, say valued in \mathbb{R}^p , and Y_i is univariate (discrete or continuous).
- ▶ Thus we can see the distribution of \mathbf{X}_1 as a bivariate distribution $\mathbb{P}_{\theta}^{\mathbf{X}_1} = \mathbb{P}_{\theta}^{(\mathbf{Z}_1, Y_1)}$.
- ▶ Every bivariate distribution can be decomposed using
 - ▶ the marginal distribution of the first variable;
 - ▶ the conditional distribution of the second variable given the first variable.

From bivariate distribution to conditional distribution

- ▶ In a regression model, each multivariate observation \mathbf{X}_i is split into a pair of variables : $\mathbf{X}_i = (\mathbf{Z}_i, Y_i)$, where, usually, \mathbf{Z}_i itself is multivariate, say valued in \mathbb{R}^p , and Y_i is univariate (discrete or continuous).
- ▶ Thus we can see the distribution of \mathbf{X}_1 as a bivariate distribution $\mathbb{P}_{\theta}^{\mathbf{X}_1} = \mathbb{P}_{\theta}^{(\mathbf{Z}_1, Y_1)}$.
- ▶ Every bivariate distribution can be decomposed using
 - ▶ the marginal distribution of the first variable;
 - be the conditional distribution of the second variable given the first variable.
- ightharpoonup In a regression model, we see \mathbf{Z}_i as an input (regression variable) and Y_i as an output (observation or response variable) and are only interested on the conditional distribution of the output given the input.

Likelihood of a regression model

▶ The decomposition of the bivariate distribution $\mathbb{P}_{\theta}^{\mathbf{X}_1} = \mathbb{P}_{\theta}^{(\mathbf{Z}_1, Y_1)}$ then yields

$$p_{\theta}(\mathbf{x}) = q(\mathbf{z})p_{\theta}(y|\mathbf{z}) , \qquad \mathbf{x} = (\mathbf{z}, y) ,$$

where $q(\mathbf{z})$ denotes the density of \mathbf{Z}_1 and $p_{\theta}(y|\mathbf{z})$ denotes the conditional density of Y_1 (or the conditional probability of $\mathbf{X}_1 = \mathbf{x}$) given $\mathbf{Z}_1 = \mathbf{z}$ under parameter θ .

Likelihood of a regression model

▶ The decomposition of the bivariate distribution $\mathbb{P}_{\theta}^{\mathbf{X}_1} = \mathbb{P}_{\theta}^{(\mathbf{Z}_1, Y_1)}$ then yields

$$p_{\theta}(\mathbf{x}) = q(\mathbf{z})p_{\theta}(y|\mathbf{z}) , \qquad \mathbf{x} = (\mathbf{z}, y) ,$$

where $q(\mathbf{z})$ denotes the density of \mathbf{Z}_1 and $p_{\theta}(y|\mathbf{z})$ denotes the conditional density of Y_1 (or the conditional probability of $\mathbf{X}_1 = \mathbf{x}$) given $\mathbf{Z}_1 = \mathbf{z}$ under parameter θ .

▶ It follows that the log-likelihood takes the form, up to an additive constant:

$$\log L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(Y_k | \mathbf{Z}_k)$$

Likelihood of a regression model

▶ The decomposition of the bivariate distribution $\mathbb{P}_{\theta}^{\mathbf{X}_1} = \mathbb{P}_{\theta}^{(\mathbf{Z}_1, Y_1)}$ then yields

$$p_{\theta}(\mathbf{x}) = q(\mathbf{z})p_{\theta}(y|\mathbf{z}) , \qquad \mathbf{x} = (\mathbf{z}, y) ,$$

where $q(\mathbf{z})$ denotes the density of \mathbf{Z}_1 and $p_{\theta}(y|\mathbf{z})$ denotes the conditional density of Y_1 (or the conditional probability of $\mathbf{X}_1 = \mathbf{x}$) given $\mathbf{Z}_1 = \mathbf{z}$ under parameter θ .

▶ It follows that the log-likelihood takes the form, up to an additive constant:

$$\log L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(Y_k | \mathbf{Z}_k)$$

Estimating θ allows one to propose a predictor of Y given a new input \mathbf{Z} , assuming that they are distributed according to the same bivariate distribution as the learning data set.

Two examples

▶ The linear regression model:

$$p_{\boldsymbol{\theta},\sigma^2}(y|\mathbf{z}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\boldsymbol{\theta}^T\mathbf{z})^2/(2\sigma^2)}, \quad (\boldsymbol{\theta},\sigma^2) \in \mathbb{R}^p \times \mathbb{R}_+^*, \quad y \in \mathbb{R}.$$

Optimizing the likelihood leads to the least mean square estimator.

Two examples

▶ The linear regression model:

$$p_{\boldsymbol{\theta},\sigma^2}(y|\mathbf{z}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\boldsymbol{\theta}^T\mathbf{z})^2/(2\sigma^2)}, \quad (\boldsymbol{\theta},\sigma^2) \in \mathbb{R}^p \times \mathbb{R}_+^*, \quad y \in \mathbb{R}.$$

Optimizing the likelihood leads to the least mean square estimator.

▶ The logit regression model:

$$p_{\theta}(y|\mathbf{z}) = \left(\frac{e^{\theta^T \mathbf{z}}}{1 + e^{\theta^T \mathbf{z}}}\right)^y \left(\frac{1}{1 + e^{\theta^T \mathbf{z}}}\right)^{1 - y}, \quad \boldsymbol{\theta} \in \mathbb{R}^p, \quad y \in \{0, 1\}.$$

François Roueffnttp://perso.telecom-pa

- Example of time series
- Reminders: i.i.d. models
 - Univariate models
 - Multivariate models
 - Regression model
 - Hidden variables
- Introducing dynamics
- 4 Stationary Time series
- Weakly stationary time series

 \triangleright In certain cases, each (univariate or multivariate) observation \mathbf{X}_i can be seen as a partial observation of a larger set of data. The unobserved part of the data is represented by a hidden variable V_i .

- ightharpoonup In certain cases, each (univariate or multivariate) observation \mathbf{X}_i can be seen as a partial observation of a larger set of data. The unobserved part of the data is represented by a hidden variable V_i .
- Again we can then decompose the bivariate distribution $\mathbb{P}_{\theta}^{(V_1,\mathbf{X}_1)}$ of the complete data (V_1,\mathbf{X}_1) using
 - \triangleright the marginal distribution of the hidden variable V_1 ;
 - \triangleright the conditional distribution of the observed variable \mathbf{X}_1 given the hidden variable V_1 .

- \triangleright In certain cases, each (univariate or multivariate) observation \mathbf{X}_i can be seen as a partial observation of a larger set of data. The unobserved part of the data is represented by a hidden variable V_i .
- Again we can then decompose the bivariate distribution $\mathbb{P}_{\theta}^{(V_1,\mathbf{X}_1)}$ of the complete data (V_1,\mathbf{X}_1) using
 - \triangleright the marginal distribution of the hidden variable V_1 ;
 - ightharpoonup the conditional distribution of the observed variable \mathbf{X}_1 given the hidden variable V_1 .
- ightharpoonup The resulting marginal distribution $\mathbb{P}_{ heta}^{\mathbf{X}_1}$ is called a mixture model.

- ightharpoonup In certain cases, each (univariate or multivariate) observation \mathbf{X}_i can be seen as a partial observation of a larger set of data. The unobserved part of the data is represented by a hidden variable V_i .
- Again we can then decompose the bivariate distribution $\mathbb{P}_{\theta}^{(V_1,\mathbf{X}_1)}$ of the complete data (V_1,\mathbf{X}_1) using
 - \triangleright the marginal distribution of the hidden variable V_1 ;
 - ightharpoonup the conditional distribution of the observed variable ${f X}_1$ given the hidden variable $V_1.$
- ightharpoonup The resulting marginal distribution $\mathbb{P}_{ heta}^{\mathbf{X}_1}$ is called a mixture model.
- The simplest case is that of a finite mixture, where the hidden variable takes its values in a finite set $\{1,2,\ldots,K\}$. This case amounts to see the data as being separated into K clusters, each of them following a different distribution, namely, the conditional distribution of \mathbf{X}_1 given $V_1=k$, for $k=1,2,\ldots,K$.

- \triangleright In certain cases, each (univariate or multivariate) observation \mathbf{X}_i can be seen as a partial observation of a larger set of data. The unobserved part of the data is represented by a hidden variable V_i .
- Again we can then decompose the bivariate distribution $\mathbb{P}_{\theta}^{(V_1,\mathbf{X}_1)}$ of the complete data (V_1,\mathbf{X}_1) using
 - \triangleright the marginal distribution of the hidden variable V_1 ;
 - \triangleright the conditional distribution of the observed variable \mathbf{X}_1 given the hidden variable V_1 .
- ightharpoonup The resulting marginal distribution $\mathbb{P}_{ heta}^{\mathbf{X}_1}$ is called a mixture model.
- The simplest case is that of a finite mixture, where the hidden variable takes its values in a finite set $\{1,2,\ldots,K\}$. This case amounts to see the data as being separated into K clusters, each of them following a different distribution, namely, the conditional distribution of \mathbf{X}_1 given $V_1=k$, for $k=1,2,\ldots,K$.
- A standard example of hidden variable for financial data is the (conditional) volatility.

Likelihood of a mixture model

ightharpoonup The natural decomposition of the bivariate distribution $\mathbb{P}_{ heta}^{(V_1,\mathbf{X}_1)}$ yields

$$p_{\theta}(v, \mathbf{x}) = q_{\theta}(v)p_{\theta}(\mathbf{x}|v)$$
,

where $q_{\theta}(v)$ denotes the density of V_1 (or the probability of $V_1 = v$) and $p_{\theta}(\mathbf{x}|v)$ denotes the conditional density of \mathbf{X}_1 (or the conditional probability of $\mathbf{X}_1 = \mathbf{x}$) given $V_1 = v$ under parameter θ .

25/90

Likelihood of a mixture model

ightharpoonup The natural decomposition of the bivariate distribution $\mathbb{P}_{\scriptscriptstyle{ heta}}^{(V_1,\mathbf{X}_1)}$ yields

$$p_{\theta}(v, \mathbf{x}) = q_{\theta}(v)p_{\theta}(\mathbf{x}|v)$$
,

where $q_{\theta}(v)$ denotes the density of V_1 (or the probability of $V_1 = v$) and $p_{\theta}(\mathbf{x}|v)$ denotes the conditional density of \mathbf{X}_1 (or the conditional probability of $X_1 = x$) given $V_1 = v$ under parameter θ .

▶ It follows that the log-likelihood takes the form (in the case of continuous hidden variables):

$$\log L_n(\theta) = \sum_{k=1}^n \log \int q_{\theta}(v) p_{\theta}(\mathbf{X}_k|v) \, dv.$$

François Roueff MDI343 Jan. 7, 2020

Likelihood of a mixture model

ightharpoonup The natural decomposition of the bivariate distribution $\mathbb{P}_{ heta}^{(V_1,\mathbf{X}_1)}$ yields

$$p_{\theta}(v, \mathbf{x}) = q_{\theta}(v)p_{\theta}(\mathbf{x}|v)$$
,

where $q_{\theta}(v)$ denotes the density of V_1 (or the probability of $V_1 = v$) and $p_{\theta}(\mathbf{x}|v)$ denotes the conditional density of \mathbf{X}_1 (or the conditional probability of $\mathbf{X}_1 = \mathbf{x}$) given $V_1 = v$ under parameter θ .

▶ It follows that the log-likelihood takes the form (in the case of continuous hidden variables):

$$\log \mathbf{L}_n(\theta) = \sum_{k=1}^n \log \int q_{\theta}(v) \, p_{\theta}(\mathbf{X}_k | v) \, dv .$$

ightharpoonup For discrete mixtures, estimating θ allows one to clustering the data by identifying those who most likely share the same hidden variable.

Two examples

Mixture of two Gaussian variables with parameter $\boldsymbol{\theta} = (\alpha, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) \in (0, 1) \times \mathbb{R}^2 \times \mathbb{R}_+^{*2}$: $V_1 \sim \text{Bernoulli}(\alpha)$ and given $V_1 = v$, $X_1 \sim \mathcal{N}(\mu_v, \sigma_v^2)$. Hence

$$q_{\theta}(v) = \alpha^{v} (1 - \alpha)^{1 - v}$$

$$p_{\theta}(x|v) = (2\pi\sigma_{v}^{2})^{-1/2} e^{-(x - \mu_{v})^{2}/(2\sigma_{v}^{2})}.$$

Discrete mixture of Gaussian vectors with parameter $\theta = (\alpha_k, \mu_k, \Sigma_k)_{1 \le k \le K}$:

$$q_{\theta}(v) = \alpha_{v}$$

$$p_{\theta}(\mathbf{x}|v) = \left(\det(2\pi\Sigma_{v})\right)^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{v})^{T} \Sigma_{v}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{v})\right)$$

Optimizing the likelihood is a difficult question (related to the k-means algorithm).

Two examples (cont)

Figure: Density of the mixture of two Gaussian distributions

Two examples (cont)

Figure: IID draws of the mixture of 5 bidimensional Gaussian distributions. Colors represent the (supposedly hidden) cluster variables.

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
 - What's wrong with i.i.d. models?
 - Univariate models
 - Multivariate models
 - Partially observed multivariate time series
- 4 Stationary Time series
- Weakly stationary time series

- 1 Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
 - What's wrong with i.i.d. models?
 - Univariate models
 - Multivariate models
 - Partially observed multivariate time series
- 4 Stationary Time series
- Weakly stationary time series

30 / 90

Back to the USD vs EUR currency exchange rate.

Figure: Top: price of 1 Euro in US Dollars between 1999-05-21 and 1999-12-17; Bottom: the same in randomly shuffled order.

Order of observations is not taken into account in i.i.d. models

▶ The log-likelihood of an i.i.d. model has the form

$$L_n(\theta) = \sum_{k=1}^n \log p_{\theta}(X_k) ,$$

where X_1,\ldots,X_n are the n observations, hence is invariant trough permutation of indices: $(X_1,\ldots,X_n)\mapsto (X_{\sigma(1)},\ldots,X_{\sigma(n)})$, where $\sigma:\{1,\ldots,n\}\to\{1,\ldots,n\}$ is a permutation.

- ▶ The two previous time series are the same up to a permutation of time indices.
- ▶ Hence they have the same likelihood for any i.i.d. model.

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
 - What's wrong with i.i.d. models?
 - Univariate models
 - Multivariate models
 - Partially observed multivariate time series
- 4 Stationary Time series
- Weakly stationary time series

33 / 90

Some useful notation

ightharpoonup For any integers $k \geq l$ and sequence (x_t) we denote the subsample with indices between k and l by

$$x_{k:l} = (x_k, \dots, x_l)$$

- ightharpoonup If (\mathbf{X},\mathbf{Y}) is valued in $\mathbb{R}^p imes \mathbb{R}^n$ and admits a density, we denote
 - \triangleright by $p^{(\mathbf{X},\mathbf{Y})}:(x,y)\mapsto p^{(\mathbf{X},\mathbf{Y})}(x,y)$ the density of (\mathbf{X},\mathbf{Y}) ,
 - \triangleright by $p^{\mathbf{X}}$ the density of \mathbf{X} :

$$p^{\mathbf{X}}(\mathbf{x}) = \int_{\mathbb{R}^n} p^{(\mathbf{X}, \mathbf{Y})}(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \int \cdots \int p^{(\mathbf{X}, \mathbf{Y})}(\mathbf{x}, y_{1:n}) dy_1 \dots dy_n$$
.

 \triangleright by $p^{\mathbf{Y}|\mathbf{X}}(\cdot|x)$ the conditional density of \mathbf{Y} given $\mathbf{X}=x$:

$$p^{\mathbf{Y}|\mathbf{X}}(y|x) = \frac{p^{(\mathbf{X},\mathbf{Y})}(x,y)}{p^{\mathbf{X}}(x)}$$

We add a subscript θ if the density depends on the unknown parameter θ : $p_{\alpha}^{(\mathbf{X},\mathbf{Y})}$, $p_{\alpha}^{\mathbf{X}}$, $p_{\alpha}^{\mathbf{Y}|\mathbf{X}}$...

▶ How to generalize the product form of likelihood without the i.i.d. assumption ?

- ▶ How to generalize the product form of likelihood without the i.i.d. assumption ?
- \triangleright Suppose that $X_{1:n}$ admits a density $p_{\theta}^{X_{1:n}}$.

- ▶ How to generalize the product form of likelihood without the i.i.d. assumption ?
- \triangleright Suppose that $X_{1:n}$ admits a density $p_{\theta}^{X_{1:n}}$.
- Conditioning successively, we have

$$p_{\theta}^{X_{1:n}}(x_{1:n}) = p_{\theta}^{X_n|X_{1:(n-1)}}(x_n|x_{1:n-1})p_{\theta}^{X_{1:n-1}}(x_{1:n})$$

$$\cdots$$

$$= \prod_{k=2}^{n} p_{\theta}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1})p_{\theta}^{X_1}(x_1) .$$

- ▶ How to generalize the product form of likelihood without the i.i.d. assumption ?
- \triangleright Suppose that $X_{1:n}$ admits a density $p_{\theta}^{X_{1:n}}$.
- Conditioning successively, we have

$$p_{\theta}^{X_{1:n}}(x_{1:n}) = p_{\theta}^{X_n|X_{1:(n-1)}}(x_n|x_{1:n-1})p_{\theta}^{X_{1:n-1}}(x_{1:n})$$

$$\dots$$

$$= \prod_{k=2}^{n} p_{\theta}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1})p_{\theta}^{X_1}(x_1) .$$

 \triangleright It is therefore of primary importance to understand the dynamics of the model through the conditional distribution of X_k given its past $X_{1:(k-1)}$.

Two important particular cases

▶ The i.i.d. case :

In this case, by independence of X_k and $X_{1:(k-1)}$, we have that $p_{\pmb{\theta}}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1})$ does not depend on $x_{1:k-1}$, so that

$$p_{\theta}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1}) = p_{\theta}^{X_k}(x_k)$$
.

And, by the "i.d." property,

$$p_{\theta}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1}) = p_{\theta}^{X_k}(x_k) = p_{\theta}(x_k)$$
,

where p_{θ} is the common density of all X_k 's.

Two important particular cases (cont.)

▶ The homogeneous Markov case :

In this case, we have that $p_{\theta}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1})$ only depends on x_{k-1} , so that

 $p_{\theta}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1}) = p_{\theta}^{X_k|X_{k-1}}(x_k|x_{k-1}) .$

And "homogeneous" means that $p_{\theta}^{X_k|X_{k-1}}$ does not depend on k and is given by a common conditional density, say $q_{\theta}(\cdot|\cdot)$, hence

$$p_{\theta}^{X_k|X_{1:(k-1)}}(x_k|x_{1:k-1}) = p_{\theta}^{X_k|X_{k-1}}(x_k|x_{k-1}) = q_{\theta}(x_k|x_{k-1}) .$$

Graphical representation of a homogeneous Markov chain

$$\cdots \xrightarrow{q_{\theta}} X_k \xrightarrow{q_{\theta}} X_{k+1} \xrightarrow{\cdots} \cdots$$

- ▶ Arrows indicate the dependence structure: given all other variables, a child can be generated using only its own parents.
- ▶ Here, each child only has 1 parent: the generation of the child is carried out through the conditional density q_{θ} .

An homoscedastic model : AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \; ,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

An homoscedastic model: AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$
.

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \; ,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

$$X_{k-1} \times$$

◆ロト ◆御ト ◆差ト ◆差ト を めの(

An homoscedastic model : AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$
.

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \;,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

$$X_{k-1}$$
 \times
 ϕX_{k-1}

An homoscedastic model: AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \;,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

$$X_{k-} \times$$

39 / 90

An homoscedastic model: AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$
.

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \;,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

An homoscedastic model: AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$
.

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \; ,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

$$X_{k-1} \times$$

 X_k

An homoscedastic model : AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$
.

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \;,$$

$$\begin{array}{c} X_{k-1} \\ \times \\ & X_k \\ \times \\ & \stackrel{\phi X_k}{\times} \end{array}$$

An homoscedastic model: AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$
.

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \;,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

 $X_{k-1} \times$

 $\overset{X_k}{\times}$

∢ロト→御ト→産ト→産トー産ーの

An homoscedastic model: AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*.$$

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \;,$$

An homoscedastic model: AR(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(\phi x, \sigma^2)$, with

$$\theta = (\phi, \sigma^2) \in (-1, 1) \times \mathbb{R}_+^*$$
.

Equivalently, this model is given by the dynamical equation

$$X_k = \phi X_{k-1} + \epsilon_k \;,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0, \sigma^2)$.

François Roueff

$$X_{k-1}$$
 X_{k-1}
 X_{k+1}
 X_{k+1}

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\theta = (a, b) \in \mathbb{R}_+^* \times \mathbb{R}_+.$

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

$$X_{k-1} \times$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{b} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0,1)$.

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

with $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0,1)$.

$$\xrightarrow{X_{k-1}}_{\times}$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \; ,$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

An heteroscedastic model: ARCH(1).

In this case, $q_{\theta}(\cdot|x)$ is the density of $\mathcal{N}(0, \mathbf{a} + \mathbf{b}x^2)$, with $\mathbf{\theta} = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}_+^* \times \mathbb{R}_+$.

Equivalently, this model is given by the dynamical equation

$$X_k = \sqrt{a + bX_{k-1}^2} \, \epsilon_k \,,$$

▶ The simplest model beyond the i.i.d. model that contains some non-trivial dynamics is the homogeneous Markov model.

- ▶ The simplest model beyond the i.i.d. model that contains some non-trivial dynamics is the homogeneous Markov model.
- ▶ Its log-likelihood takes the form

$$L_n(\theta) = \sum_{k=2}^n \log q_{\theta}(X_k | X_{k-1}) + \log p^{X_1}(X_1) .$$

- ▶ The simplest model beyond the i.i.d. model that contains some non-trivial dynamics is the homogeneous Markov model.
- Its conditional log-likelihood takes the form

$$L_n(\theta) = \sum_{k=2}^n \log q_{\theta}(X_k|X_{k-1}) + \underline{\log p^{X_1}(X_1)}.$$

- ➤ The simplest model beyond the i.i.d. model that contains some non-trivial dynamics is the homogeneous Markov model.
- Its conditional log-likelihood takes the form

$$L_n(\theta) = \sum_{k=2}^n \log q_{\theta}(X_k|X_{k-1}) + \underline{\log p^{X_1}(X_1)}.$$

▶ The likelihood is no longer invariant by permutation.

Exemple: likelihood of the Gaussian AR(1) model

Consider the AR(1) model. Then we have

$$q_{\theta}(x_k|x_{k-1}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_k - \phi x_{k-1})^2/(2\sigma^2)}$$
.

It follows that the (conditional) negated log likelihood reads

$$-L_n(\theta) = \frac{n-1}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2}\sum_{k=2}^n (X_k - \phi X_{k-1})^2,$$

which leads to the estimators

$$\widehat{\phi}_n = \frac{\sum_{k=2}^n X_{k-1} X_k}{\sum_{k=2}^n X_{k-1}^2} \quad \text{and} \quad \widehat{\sigma}_n^2 = \frac{1}{n-1} \sum_{k=2}^n (X_k - \widehat{\phi}_n X_{k-1})^2 \; .$$

→ □ ト → □ ト → 三 ト → 三 → つへの

Exemple: likelihood of the conditionally Gaussian ARCH(1) model

Consider the ARCH(1) model. Then we have

$$q_{\theta}(x_k|x_{k-1}) = \frac{1}{\sqrt{2\pi(a+bx_{k-1}^2)}} e^{-x_k^2/(2(a+bx_{k-1}^2))}.$$

It follows that the (conditional) negated log likelihood reads

$$-L_n(\theta) = \frac{1}{2} \sum_{k=2}^n \left(\log(2\pi(a+bX_{k-1}^2)) + \frac{X_k^2}{a+bX_{k-1}^2} \right) ,$$

which can be minimized in $\theta = (a, b)$ using a gradient descent algorithm.

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
 - What's wrong with i.i.d. models?
 - Univariate models
 - Multivariate models
 - Partially observed multivariate time series
- 4 Stationary Time series
- Weakly stationary time series

Multivariate time series

Exactly as in the IID case, a time series (\mathbf{X}_t) can be multivariate, i.e. \mathbf{X}_t is valued in \mathbb{R}^p for some $p \geq 2$.

Multivariate time series

- Exactly as in the IID case, a time series (\mathbf{X}_t) can be multivariate, i.e. \mathbf{X}_t is valued in \mathbb{R}^p for some $p \geq 2$.
- ► For instance, under the homogeneous Markov chain assumption, the (conditional) likelihood then reads

$$L_n(\theta) = \sum_{k=2}^n \log q_{\theta}(\mathbf{X}_k | \mathbf{X}_{k-1})$$
.

Multivariate time series

- Exactly as in the IID case, a time series (\mathbf{X}_t) can be multivariate, i.e. \mathbf{X}_t is valued in \mathbb{R}^p for some $p \geq 2$.
- ► For instance, under the homogeneous Markov chain assumption, the (conditional) likelihood then reads

$$L_n(\theta) = \sum_{k=2}^n \log q_{\theta}(\mathbf{X}_k | \mathbf{X}_{k-1}).$$

▶ In particular, consider a univariate p-order Markov time series with log likelihood

$$L_n(\theta) = \sum_{k=p+2}^n \log q_{\theta}(X_k | X_{k-p:k-1}).$$

To obtain a multivariate (first order) Markov time series, one can set $\mathbf{X}_k = X_{k-n+1\cdot k}$.

Exemple of Multivariate time series: AR(p) time series

An AR(p) time series (X_t) satisfies the AR(p) equation

$$X_t = \sum_{k=1}^p \phi_k X_{t-k} + \epsilon_t , \qquad t \in \mathbb{Z} .$$

Setting $\mathbf{X}_k = \begin{bmatrix} X_k & X_{k-1} & \dots & X_{k-p+1} \end{bmatrix}^T$, this leads to the vector AR(1) equation:

$$\mathbf{X}_t = \Phi \mathbf{X}_{t-1} + \boldsymbol{\epsilon}_t , \qquad t \in \mathbb{Z} .$$

where

$$\Phi = \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_p \\ 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \dots & 1 & 0 \end{bmatrix} \quad \text{and} \quad \boldsymbol{\epsilon}_t = \begin{bmatrix} \boldsymbol{\epsilon}_t \\ 0 \vdots \\ 0 \end{bmatrix}.$$

Exemple of Multivariate time series: general bivariate case

Consider the bivariate case $\mathbf{X}_t = (X_t(1), X_t(2))$.

▶ IID case

Exemple of Multivariate time series: general bivariate case

Consider the bivariate case $\mathbf{X}_t = (X_t(1), X_t(2))$.

▶ IID case

▶ Markov case:

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
 - What's wrong with i.i.d. models?
 - Univariate models
 - Multivariate models
 - Partially observed multivariate time series
- Stationary Time series
- Weakly stationary time series

Partially observed multivariate time series

Exactly as in the IID case, adding hidden variables allows one to build a wild variety of models, while allowing the practitioner to provide intuitive interpretations of the model.

Partially observed multivariate time series

- ► Exactly as in the IID case, adding hidden variables allows one to build a wild variety of models, while allowing the practitioner to provide intuitive interpretations of the model.
- ▶ The most widely used such time series model is the linear state-space model, or dynamic linear model, defined through two linear equations

$$\mathbf{X}_t = \Phi \mathbf{X}_{t-1} + \mathbf{U}_t \quad \text{(State Equation)} \tag{1a}$$

$$\mathbf{Y}_t = A\mathbf{X}_t + \mathbf{V}_t$$
 (Observation Equation), (1b)

where (\mathbf{Y}_t) is the observed time series, and (\mathbf{X}_t) is the hidden time series (also called the state variables), and (\mathbf{U}_t) and (\mathbf{V}_t) are IID noise sequences.

Partially observed multivariate time series

- ▶ Exactly as in the IID case, adding hidden variables allows one to build a wild variety of models, while allowing the practitioner to provide intuitive interpretations of the model.
- ▶ The most widely used such time series model is the linear state-space model, or dynamic linear model, defined through two linear equations

$$\mathbf{X}_t = \Phi \mathbf{X}_{t-1} + \mathbf{U}_t \quad \text{(State Equation)} \tag{1a}$$

$$\mathbf{Y}_t = A\mathbf{X}_t + \mathbf{V}_t$$
 (Observation Equation), (1b)

where (\mathbf{Y}_t) is the observed time series, and (\mathbf{X}_t) is the hidden time series (also called the state variables), and (\mathbf{U}_t) and (\mathbf{V}_t) are IID noise sequences.

This is a articular instance of the general class of the partially observed Markov models, where one has a bivariate Markov chain $((\mathbf{X}_t, \mathbf{Y}_t))$, where only the component (Y_t) is observed.

Examples of partially observed multivariate time series

▶ IID case

Examples of partially observed multivariate time series

▶ IID case

▶ Partially observed Markov model: general case.

Examples of partially observed multivariate time series (cont.)

▶ Hidden Markov model.

In this special case:

 $\triangleright (X_t)$ alone is a Markov chain.

Examples of partially observed multivariate time series (cont.)

▶ Hidden Markov model.

In this special case:

- $\triangleright (X_t)$ alone is a Markov chain.
- \triangleright Given (X_t) , the observations (Y_t) are conditionally independent.

Examples of partially observed multivariate time series (cont.)

▶ Hidden Markov model.

In this special case:

- $\triangleright (X_t)$ alone is a Markov chain.
- \triangleright Given (X_t) , the observations (Y_t) are conditionally independent.
- ▶ Two highly popular special cases:
 - \triangleright HMM with finite state space : when X_t takes values in $\{1, \ldots, K\}$.
 - ▶ The dynamic linear model, see (1).

Example: an HMM with two hidden states.

Figure: An HMM with two (supposedly) hidden states (red and black).

Example: Noisy observations of an hidden AR(1) state variables.

Figure: Observations (black 'o') obtained by adding noise to a (supposedly) hidden AR(1) process (red lines).

Observation driven models

- \triangleright For most of the partially observed Markov models, there are no closed form formula for the likelihood and computational cost of L_n can be very high as n increases.
- Observation driven models stand as a popular exception. Their dependence structure takes the following form:

With the additional property that the conditional distribution of X_{k+1} given (X_k, Y_k) is degenerate.

Exemple: GARCH(1,1) model

GARCH(1,1) model

For parameter $\theta = (a, b, c) \in (0, \infty)^3$, (Y_t) satisfies the GARCH(1,1) equation

$$\sigma_t^2 = a + b Y_{t-1} + c \sigma_{t-1}^2$$
 (2a)

$$Y_t = \sigma_t \epsilon_t ,$$
 (2b)

where $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0,1)$.

Moreover it is assumed that (σ_t) is non-anticipative solution, in the sense that, for all $t \in \mathbb{Z}$, σ_t only depends on $(\epsilon_s)_{s < t}$

Exemple: GARCH(1,1) model

GARCH(1,1) model

For parameter $\theta=(a,b,c)\in(0,\infty)^3$, (Y_t) satisfies the GARCH(1,1) equation

$$\sigma_t^2 = a + b Y_{t-1} + c \sigma_{t-1}^2$$
 (2a)

$$Y_t = \sigma_t \epsilon_t ,$$
 (2b)

where $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. $\sim \mathcal{N}(0,1)$.

Moreover it is assumed that (σ_t) is non-anticipative solution, in the sense that, for all $t \in \mathbb{Z}$, σ_t only depends on $(\epsilon_s)_{s < t}$

The fact that (σ_t) is non-anticipative ensures that, for all $t \in \mathbb{Z}$, given $(\epsilon_s)_{s < t}$, the conditional distribution of Y_t is $\mathcal{N}(0, \sigma_t)$.

Exemple: GARCH(1,1) model, likelihood

Iterating (2a) with a given θ , for all $k=2,\ldots,n$, one can express σ_k^2 as a deterministic function of $Y_{1:k-1}$ and σ_1^2 , say

$$\sigma_k^2 = \psi^{\theta} < Y_{1:k-1} > (\sigma_1^2). \tag{3}$$

Note that $\psi^{\theta} < Y_{1:k-1} > (\sigma_1^2)$ is easy to compute iteratively.

Exemple: GARCH(1,1) model, likelihood

Iterating (2a) with a given θ , for all $k=2,\ldots,n$, one can express σ_k^2 as a deterministic function of $Y_{1:k-1}$ and σ_1^2 , say

$$\sigma_k^2 = \psi^{\theta} < Y_{1:k-1} > (\sigma_1^2). \tag{3}$$

Note that $\psi^{\theta} < Y_{1:k-1} > (\sigma_1^2)$ is easy to compute iteratively.

Using (3) and (2b), the (conditional) negated log likelihood (given $\sigma_1^2=s_1^2$ and Y_1 for some arbitrary s_1^2) is given by

$$- \underline{L}_n(\theta) = \frac{1}{2} \sum_{k=2}^n \left(\log \left(2\pi \, \psi^\theta < \underline{Y}_{1:k-1} > (s_1^2) \right) + \frac{\underline{Y}_k^2}{\psi^\theta < \underline{Y}_{1:k-1} > (s_1^2)} \right) \; ,$$

which can be minimized in $\theta=(a,b,c)$ using a gradient descent algorithm.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Stationary and ergodic models
- Weakly stationary time series

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Stationary and ergodic models
- Weakly stationary time series

Basic (important) definitions

Definition: Data set

A data set is a collection of values, say $X_{1:n} = X_1, \dots, X_n$. Time series data sets are usually sampled from recorded measurements.

Basic (important) definitions

Definition: Data set

A data set is a collection of values, say $X_{1:n} = X_1, \dots, X_n$. Time series data sets are usually sampled from recorded measurements.

Definition: Model

A model is a collection of probability distributions. The data set is assumed to be distributed according to one of them.

Basic (important) definitions

Definition: Data set

A data set is a collection of values, say $X_{1:n} = X_1, \dots, X_n$. Time series data sets are usually sampled from recorded measurements.

Definition: Model

A model is a collection of probability distributions. The data set is assumed to be distributed according to one of them.

Definition: Statistic

A statistic is any value which can be computed from the data.

A time series X_1, \ldots, X_n is usually presented as

 \triangleright a list of real values X_1, \ldots, X_n in a data or spreadsheet file,

- \triangleright a list of real values X_1,\ldots,X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency.

- \triangleright a list of real values X_1,\ldots,X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - \triangleright a date in years and frequency= 12 corresponds to monthly data,

- \triangleright a list of real values X_1,\ldots,X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - ightharpoonup a date in years and frequency= 12 corresponds to monthly data,
 - \triangleright a date in years and frequency= 4 corresponds to quarterly data,

- ightharpoonup a list of real values X_1,\ldots,X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - \triangleright a date in years and frequency= 12 corresponds to monthly data,
 - ightharpoonup a date in years and frequency= 4 corresponds to quarterly data,
 - ightharpoonup a date in days and frequency= 1 corresponds to daily data,
 - > :

- \triangleright a list of real values X_1, \ldots, X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - \triangleright a date in years and frequency= 12 corresponds to monthly data,
 - ightharpoonup a date in years and frequency= 4 corresponds to quarterly data,
 - ightharpoonup a date in days and frequency= 1 corresponds to daily data,
 - \triangleright
- Remarks :
 - ▶ There may be missing values (usually expressed as 'NA')

A time series X_1, \ldots, X_n is usually presented as

- \triangleright a list of real values X_1, \ldots, X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - \triangleright a date in years and frequency= 12 corresponds to monthly data,
 - ightharpoonup a date in years and frequency= 4 corresponds to quarterly data,
 - ightharpoonup a date in days and frequency= 1 corresponds to daily data,
 - \triangleright
- Remarks :
 - ▶ There may be missing values (usually expressed as 'NA')
 - ▶ In the case of multivariate time series, each variable usually corresponds to a column (so each row corresponds to a date).

Example: US GNP data set

```
# Frequency:
DATE, VALUE
1947-01-01,238.1
1947-04-01,241.5
1947-07-01,245.6
1947-10-01,255.6
1948-01-01,261.7
1948-04-01,268.7
1948-07-01,275.3
1948-10-01,276.6
1949-01-01,271.3
1949-04-01,267.5
1949-07-01,268.9
```

Title:

Source:

Gross National Product
U.S. Department of Commerce
Quarterly

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Stationary and ergodic models
- 5 Weakly stationary time series

 \triangleright Consider a time series X_1, \ldots, X_n .

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,
 - ▷ a seasonal trend.

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,
 - ▷ a seasonal trend.
- ▶ Then X = D + Y where D belongs to a finite dimensional space V and Y is a centered random process.

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,
 - ▷ a seasonal trend.
- ▶ Then X = D + Y where D belongs to a finite dimensional space V and Y is a centered random process.
- ▶ Trends can be estimated or removed by
 - ▶ Fitting the trend using least squares,

$$\widehat{D} = \underset{d \in V}{\operatorname{argmin}} \sum_{t} |X_t - d_t|^2 .$$

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,
 - ▷ a seasonal trend.
- ▶ Then X = D + Y where D belongs to a finite dimensional space V and Y is a centered random process.
- ▶ Trends can be estimated or removed by
 - ▶ Fitting the trend using least squares,

$$\widehat{D} = \operatorname*{argmin}_{d \in V} \sum_{t} |X_t - d_t|^2 .$$

 \triangleright Or applying a well chosen filter F_{ψ} , such that $F_{\psi}(D) = 0$ and thus

$$F_{\psi}(X) = F_{\psi}(Y)$$
.

 $trend\hbox{-} adjustment.html$

Second step : choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

Second step : choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Second step: choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Example

 Y_1, \ldots, Y_n is the sample of a Gaussian ARMA(p,q) model with (unknown) parameter $\vartheta = (\theta_1, \ldots, \theta_q, \phi_1, \ldots, \phi_p, \sigma^2)$.

Second step: choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Example

 Y_1, \ldots, Y_n is the sample of a Gaussian ARMA(p,q) model with (unknown) parameter $\boldsymbol{\vartheta} = (\boldsymbol{\theta}_1, \ldots, \boldsymbol{\theta}_q, \boldsymbol{\phi}_1, \ldots, \boldsymbol{\phi}_p, \boldsymbol{\sigma}^2)$.

▶ a non-parametric model.

Second step : choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Example

 Y_1,\ldots,Y_n is the sample of a Gaussian ARMA(p,q) model with (unknown) parameter $\boldsymbol{\vartheta}=(\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_q,\boldsymbol{\phi}_1,\ldots,\boldsymbol{\phi}_p,\boldsymbol{\sigma}^2)$.

▶ a non-parametric model.

Example

 Y_1, \ldots, Y_n is the sample of a centered stationary Gaussian process with (unknown) autocovariance γ (or spectral density f).

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

 \triangleright Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, ...

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

- \triangleright Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, ...
 - \rightarrow Define an estimator, say $\widehat{\vartheta}_n$, which is a statistic based on the sample Y_1, \ldots, Y_n .

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

- \triangleright Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, ...
 - \rightarrow Define an estimator, say $\widehat{\vartheta}_n$, which is a statistic based on the sample Y_1, \ldots, Y_n .
- ▶ Test hypotheses, for instance

```
H_0 = \{Y \text{ is white noise}\} against H_1 = \{Y \text{ is ARMA}(p,q)\}
```

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

- ightharpoonup Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, ...
 - \to Define an estimator, say $\widehat{\vartheta}_n$, which is a statistic based on the sample Y_1,\ldots,Y_n .
- ▶ Test hypotheses, for instance

$$H_0 = \{Y \text{ is white noise}\}$$
 against $H_1 = \{Y \text{ is ARMA}(p,q)\}$

→ Define a statistical test, say

$$\delta = \begin{cases} 1 & \text{if } T_n > t_n ,\\ 0 & \text{otherwise }, \end{cases}$$

where T_n is a statistic based on the sample Y_1, \ldots, Y_n and t_n is a threshold.

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Stationary and ergodic models
- 5 Weakly stationary time series

We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- Stationary means that the model is shift invariant: for all $n \ge 1$, and all $t_1, \ldots, t_n \in T$, we have

$$(X_{t_1},\ldots,X_{t_n})\stackrel{\mathrm{d}}{=} (X_{t_1+1},\ldots,X_{t_n+1}).$$

68 / 90

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- Stationary means that the model is shift invariant: for all $n \ge 1$, and all $t_1, \ldots, t_n \in T$, we have

$$(X_{t_1},\ldots,X_{t_n})\stackrel{\mathrm{d}}{=} (X_{t_1+1},\ldots,X_{t_n+1}).$$

ightharpoonup Ergodic means that observing one path $(Y_t)_{t\in T}$ allows one to recover the distribution entirely.

▶ An IID process is stationary and ergodic;

- ▶ An IID process is stationary and ergodic;
- ▶ A sequence of independent variables that are not identically distributed is not stationary;

- ▶ An IID process is stationary and ergodic;
- A sequence of independent variables that are not identically distributed is not stationary;
- some models are not stationary but can be made so through some basic transformations:

- ▶ An IID process is stationary and ergodic;
- ▶ A sequence of independent variables that are not identically distributed is not stationary;
- some models are not stationary but can be made so through some basic transformations:
 - removing trends,

- ▶ An IID process is stationary and ergodic;
- ▶ A sequence of independent variables that are not identically distributed is not stationary;
- some models are not stationary but can be made so through some basic transformations:
 - removing trends,
 - ▶ linear filters such as taking the increments (random walks),

- ▶ An IID process is stationary and ergodic;
- ▶ A sequence of independent variables that are not identically distributed is not stationary;
- some models are not stationary but can be made so through some basic transformations:
 - ▶ removing trends,
 - ▶ linear filters such as taking the increments (random walks),
 - ▶ non-linear filters such as taking the logs.

- ▶ An IID process is stationary and ergodic;
- ▶ A sequence of independent variables that are not identically distributed is not stationary;
- some models are not stationary but can be made so through some basic transformations:
 - removing trends,
 - ▶ linear filters such as taking the increments (random walks),
 - ▶ non-linear filters such as taking the logs.
- ightharpoonup A sequence of variables $(Y_t)_{t\in\mathbb{Z}}$ that is constant, *i.e.* $Y_t=Y_0$ for all t, is stationary but is not ergodic;

- ▶ An IID process is stationary and ergodic;
- ▶ A sequence of independent variables that are not identically distributed is not stationary;
- some models are not stationary but can be made so through some basic transformations:
 - ▶ removing trends,
 - ▶ linear filters such as taking the increments (random walks),
 - ▶ non-linear filters such as taking the logs.
- ightharpoonup A sequence of variables $(Y_t)_{t\in\mathbb{Z}}$ that is constant, *i.e.* $Y_t=Y_0$ for all t, is stationary but is not ergodic;
- ➤ A Markov chain on a finite state space can be made stationary by choosing the initial state adequately. If it is irreducible, then it is ergodic.

R code example: dependent data

non-iid-data.html

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- 4 Stationary Time series
- Weakly stationary time series
 - L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- 4 Stationary Time series
- Weakly stationary time series
 - ullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

72 / 90

L^2 space

We denote

$$L^2(\Omega,\mathcal{F},\mathbb{P}) = \left\{ X \,\, \mathbb{C}\text{-valued r.v. such that } \mathbb{E}\left[|X|^2\right] < \infty \right\} \,\, .$$

 (L^2,\langle,\rangle) is a Hilbert space with

$$\langle X, Y \rangle = \mathbb{E}\left[X\overline{Y}\right] .$$

Definition : L^2 Processes

The process $X=(X_t)_{t\in T}$ defined on $(\Omega,\mathcal{F},\mathbb{P})$ with values in \mathbb{C} is an L^2 process if $X_t\in L^2(\Omega,\mathcal{F},\mathbb{P})$ for all $t\in T$.

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

Let $X = (X_t)_{t \in T}$ be an L^2 process.

Let
$$X = (X_t)_{t \in T}$$
 be an L^2 process.

ightharpoonup Its mean function is defined by $\mu(t)=\mathbb{E}\left[X_{t}
ight]$,

Let $X = (X_t)_{t \in T}$ be an L^2 process.

- ightharpoonup Its mean function is defined by $\mu(t)=\mathbb{E}\left[X_{t}
 ight]$,
- ▶ Its covariance function is defined by

$$\gamma(s,t) = \text{cov}(X_s, X_t) = \mathbb{E}\left[X_s \overline{X_t}\right] - \mathbb{E}\left[X_s\right] \mathbb{E}\left[\overline{X_t}\right].$$

Let $X = (X_t)_{t \in T}$ be an L^2 process.

- ightharpoonup Its mean function is defined by $\mu(t)=\mathbb{E}\left[X_{t}
 ight]$,
- ▶ Its covariance function is defined by

$$\gamma(s,t) = \text{cov}(X_s, X_t) = \mathbb{E}\left[X_s \overline{X_t}\right] - \mathbb{E}\left[X_s\right] \mathbb{E}\left[\overline{X_t}\right].$$

Hermitian symmetry, non-negative definiteness

For all finite subset $I \subset T$, $\Gamma_I = \operatorname{Cov}([X(t)]_{t \in I}) = [\gamma(s,t)]_{s,t \in I}$ is a hermitian non-negative definite matrix.

 L^2 independent random variables $(X_t)_{t\in\mathbb{Z}}$ have mean $\mu(t)=\mathbb{E}\left[X_t\right]$ and covariance

$$\gamma(s,t) = \begin{cases} \operatorname{var}(X_t) & \text{if } s = t, \\ 0 & \text{otherwise.} \end{cases}$$

ho L^2 independent random variables $(X_t)_{t\in\mathbb{Z}}$ have mean $\mu(t)=\mathbb{E}\left[X_t\right]$ and covariance

$$\gamma(s,t) = \begin{cases} \operatorname{var}(X_t) & \text{if } s = t, \\ 0 & \text{otherwise.} \end{cases}$$

ightharpoonup A Gaussian process is an L^2 process whose law is entirely determined by its mean and covariance functions: for all $I=\{t_1,\ldots,t_n\}$,

$$(X_s)_{s\in I} \sim \mathcal{N}\left((\mu_s)_{s\in I}, \Gamma_I\right)$$
.

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- 4 Stationary Time series
- Weakly stationary time series
 - L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

▶ Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .

- Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .
- ▶ Then $\mu(t) = \mu(0)$ and $\gamma(s,t) = \gamma(s-t,0)$ for all $s,t \in T$.

- Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .
- ▶ Then $\mu(t) = \mu(0)$ and $\gamma(s,t) = \gamma(s-t,0)$ for all $s,t \in T$.

Definition: Weak stationarity

We say that a random process X is weakly stationary with mean $\mu \in \mathbb{C}$ and autocovariance function $\gamma : \mathbb{Z} \to \mathbb{C}$ if it is L^2 with mean function $t \mapsto \mu$ and covariance function $(s,t) \mapsto \gamma(s-t)$.

- Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .
- ▶ Then $\mu(t) = \mu(0)$ and $\gamma(s,t) = \gamma(s-t,0)$ for all $s,t \in T$.

Definition: Weak stationarity

We say that a random process X is weakly stationary with mean $\mu \in \mathbb{C}$ and autocovariance function $\gamma : \mathbb{Z} \to \mathbb{C}$ if it is L^2 with mean function $t \mapsto \mu$ and covariance function $(s,t) \mapsto \gamma(s-t)$.

ightharpoonup The autocorrelation function is then defined (when $\gamma(0)>0$) by

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} \in [-1, 1] .$$

Autocorrelation=slope of regression line

We have, for all $t \in \mathbb{Z}$ and $h = 1, 2, \dots$,

$$X_t = \mathsf{Constant} + \rho(h)X_{t-h} + \epsilon_{t,h} \quad \mathsf{with} \quad \epsilon_{t,h} \perp \mathrm{Span}\left(1, X_{t-h}\right) \;.$$

Partial Autocorrelation

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{2}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

Partial Autocorrelation

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$,

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{\epsilon_{t,h}}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

- ▶ In the following, we plot successively
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the regression line;

Partial Autocorrelation

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$,

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{\epsilon_{t,h}}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

- ▶ In the following, we plot successively
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the regression line;
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the predictor

Constant
$$+\sum_{k=1}^{n-1} \phi_k X_{t-k} + \kappa(h) X_{t-h}$$
.

Partial Autocorrelation

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{2}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

- In the following, we plot successively
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the regression line;
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the predictor

Constant
$$+\sum_{k=1}^{n-1} \phi_k X_{t-k} + \kappa(h) X_{t-h}$$
.

$$hd X_t - \left(\mathsf{Constant} + \sum_{k=1}^{h-1} \phi_k X_{t-k}
ight)$$
 as a function of X_{t-h} ,

compared to the regression line $X_{t-h} \mapsto \kappa(h) X_{t-h}$.

Partial Autocorrelation=slope of partial regression

ightharpoonup An L^2 strictly stationary process is weakly stationary.

- ightharpoonup An L^2 strictly stationary process is weakly stationary.
- \triangleright The constant L^2 process has constant autocovariance function.

- ightharpoonup An L^2 strictly stationary process is weakly stationary.
- \triangleright The constant L^2 process has constant autocovariance function.

Strong and weak white noise

A sequence of L^2 i.i.d. random variables is called a strong white noise, denoted by $X \sim \text{IID}(\mu, \sigma^2)$.

- ightharpoonup An L^2 strictly stationary process is weakly stationary.
- \triangleright The constant L^2 process has constant autocovariance function.

Strong and weak white noise

- A sequence of L^2 i.i.d. random variables is called a strong white noise, denoted by $X \sim \text{IID}(\mu, \sigma^2)$.
- ightharpoonup An L^2 process X with constant mean μ and constant diagonal covariance function equal to σ^2 is called a weak white noise. It is denoted by $X \sim \mathrm{WN}(\mu, \sigma^2)$. (It does not have to be i.i.d.)

Examples based on stationarity preserving linear filters

 \triangleright Let X be weakly stationary with mean μ and autocovariance γ .

Examples based on stationarity preserving linear filters

- ▶ Let X be weakly stationary with mean μ and autocovariance γ .
- \triangleright Let $\psi \in \ell^1$. We define $Y = F_{\psi}(X)$ by

$$Y_t = \sum_k \psi_k X_{t-k} , \qquad t \in \mathbb{Z} .$$

Examples based on stationarity preserving linear filters

- ▶ Let X be weakly stationary with mean μ and autocovariance γ .
- \triangleright Let $\psi \in \ell^1$. We define $Y = F_{\psi}(X)$ by

$$Y_t = \sum_k \psi_k X_{t-k} , \qquad t \in \mathbb{Z} .$$

ightharpoonup Then Y is weakly stationary with mean μ' and autocovariance γ' given by

$$\mu' = \mu \sum_{k} \psi_{k}$$

$$\gamma'(\tau) = \sum_{\ell,k} \psi_{k} \overline{\psi_{\ell}} \gamma(\tau + \ell - k)$$
(4)

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- 4 Stationary Time series
- Weakly stationary time series
 - L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?

- ▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?
- ightharpoonup A necessary and sufficient condition is that $\Gamma_I = [\gamma(s-t)]_{s,t\in I}$ is a hermitian non-negative definite matrix for all finite subset $I \subset \mathbb{Z}$.

- ▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?
- A necessary and sufficient condition is that $\Gamma_I = [\gamma(s-t)]_{s,t\in I}$ is a hermitian non-negative definite matrix for all finite subset $I \subset \mathbb{Z}$.
- \triangleright We say that γ is hermitian symmetric and non-negative definite.

- ▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?
- ightharpoonup A necessary and sufficient condition is that $\Gamma_I = [\gamma(s-t)]_{s,t\in I}$ is a hermitian non-negative definite matrix for all finite subset $I\subset \mathbb{Z}$.
- ightharpoonup We say that γ is hermitian symmetric and non-negative definite.

Herglotz Theorem

Let $\gamma : \mathbb{Z} \to \mathbb{C}$. Then the two following assertions are equivalent:

- (i) γ is hermitian symmetric and non-negative definite.
- (ii) There exists a finite non-negative measure ν on $\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}$ such that,

for all
$$t \in \mathbb{Z}$$
, $\gamma(t) = \int_{\mathbb{T}} e^{i\lambda t} \nu(d\lambda)$. (5)

When these two assertions hold, ν is uniquely defined by (5).

84 / 90

Spectral density

If moreover $\gamma \in \ell^1(\mathbb{Z})$, these assertions are equivalent to

$$f(\lambda) := \frac{1}{2\pi} \sum_{t \in \mathbb{Z}} e^{-i\lambda t} \gamma(t) \ge 0 \text{ for all } \lambda \in \mathbb{R} ,$$

and $\underline{\nu}$ has density \underline{f} (that is, $\underline{\nu}(\mathrm{d}\lambda) = \underline{f}(\lambda)\mathrm{d}\lambda$).

85 / 90

Spectral density

If moreover $\gamma \in \ell^1(\mathbb{Z})$, these assertions are equivalent to

$$f(\lambda) := \frac{1}{2\pi} \sum_{t \in \mathbb{Z}} e^{-i\lambda t} \gamma(t) \ge 0 \text{ for all } \lambda \in \mathbb{R} ,$$

and ν has density f (that is, $\nu(d\lambda) = f(\lambda)d\lambda$).

Definition: spectral measure and spectral density

If γ is the autocovariance of a weakly stationary process X, the corresponding measure ν is called the spectral measure of X. Whenever the spectral measure ν admits a density f, it is called the spectral density function.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

▶ Let $X \sim WN(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.

- ▶ Let $X \sim WN(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.
- ▶ Let X be a weakly stationary process with covariance function γ /spectral measure ν . Define

$$\boldsymbol{Y}_t = \sum_k \psi_k \boldsymbol{X}_{t-k}$$

for a sequence $\psi \in \ell^1$.

- ▶ Let $X \sim \mathrm{WN}(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.
- ▶ Let X be a weakly stationary process with covariance function γ /spectral measure ν . Define

$$\boldsymbol{Y}_t = \sum_k \psi_k \boldsymbol{X}_{t-k}$$

for a sequence $\psi \in \ell^1$.

ightharpoonup Recall that Y is a weakly stationary process with covariance function

$$\gamma'(\tau) = \sum_{\ell,k} \psi_k \overline{\psi_\ell} \gamma(\tau + \ell - k) .$$

- ▶ Let $X \sim \text{WN}(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.
- Let X be a weakly stationary process with covariance function $\gamma/\text{spectral}$ measure ν . Define

$$\boldsymbol{Y}_t = \sum_k \psi_k \boldsymbol{X}_{t-k}$$

for a sequence $\psi \in \ell^1$.

ightharpoonup Recall that Y is a weakly stationary process with covariance function

$$\mathbf{\gamma}'(\tau) = \sum_{\ell,k} \psi_k \overline{\psi_\ell} \mathbf{\gamma}(\tau + \ell - k) .$$

▶ Then Y is a weakly stationary process with spectral measure ν' having density $\lambda \mapsto \left|\sum_k \psi_k \mathrm{e}^{-\mathrm{i}\lambda k}\right|^2$ with respect to ν ,

$$\mathbf{\nu}'(\mathrm{d}\lambda) = \left| \sum_{k} \psi_{k} \mathrm{e}^{-\mathrm{i}\lambda k} \right|^{2} \mathbf{\nu}(\mathrm{d}\lambda) .$$

A special one : the harmonic process

Let $(A_k)_{1 \leq k \leq N}$ be N real valued L^2 random variables. Denote $\sigma_k^2 = \mathbb{E}\left[A_k^2\right]$. Let $(\Phi_k)_{1 \leq k \leq N}$ be N i.i.d. random variables with a uniform distribution on $[0,2\pi]$, and independent of $(A_k)_{1 \leq k \leq N}$. Define

$$X_t = \sum_{k=1}^{N} A_k \cos(\lambda_k t + \Phi_k) , \qquad (6)$$

where $(\lambda_k)_{1 \leq k \leq N} \in [-\pi, \pi]$ are N frequencies. The process (X_t) is called a harmonic process. It satisfies $\mathbb{E}\left[X_t\right] = 0$ and, for all $s, t \in \mathbb{Z}$,

$$\mathbb{E}\left[X_s X_t\right] = \frac{1}{2} \sum_{k=1}^{N} \sigma_k^2 \cos(\lambda_k(s-t)) .$$

Hence X is weakly stationary with autocovariance

$$\gamma(t) = \frac{1}{2} \sum_{k=1}^{N} \sigma_k^2 \cos(\lambda_k t) = \int_{\mathbb{T}} e^{i\lambda t} \left(\frac{1}{4} \sum_{k=1}^{N} \sigma_k^2 (\delta_{-\lambda_k}(d\lambda) + \delta_{\lambda_k}(d\lambda)) \right) .$$

- Example of time series
- 2 Reminders: i.i.d. models
- Introducing dynamics
- 4 Stationary Time series
- Weakly stationary time series
 - \bullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

Empirical estimates

Suppose you want to estimate the mean and the autocovariance from a sample X_1, \ldots, X_n .

Empirical estimates

- Suppose you want to estimate the mean and the autocovariance from a sample X_1, \ldots, X_n .
- ▶ Define the empirical mean as

$$\widehat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k \;,$$

Empirical estimates

- Suppose you want to estimate the mean and the autocovariance from a sample X_1, \ldots, X_n .
- Define the empirical mean as

$$\widehat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k \;,$$

▶ Define the empirical autocovariance and autocorrelation functions as

$$\begin{split} \widehat{\gamma}_n(h) &= \frac{1}{n} \sum_{k=1}^{n-|h|} (X_k - \widehat{\mu}_n) (X_{k+|h|} - \widehat{\mu}_n) \quad \text{and} \\ \widehat{\rho}_n(h) &= \frac{\widehat{\gamma}_n(h)}{\widehat{\gamma}_n(0)} \; . \end{split}$$

▶ The previous formula only work for h = -n + 1, ..., n - 1.

- ▶ The previous formula only work for h = -n + 1, ..., n 1.
- ightharpoonup Define $\widehat{\gamma}_n(h) = \widehat{\rho}_n(h) = 0$ for all $|h| \geq n$.

- \triangleright The previous formula only work for $h=-n+1,\ldots,n-1$.
- ▶ Define $\widehat{\gamma}_n(h) = \widehat{\rho}_n(h) = 0$ for all $|h| \ge n$.
- $ightharpoonup \operatorname{Now} \widehat{\gamma}_n$ is defined on \mathbb{Z} and satisfies

$$\widehat{\gamma}_n(h) = \int_{-\pi}^{\pi} e^{i\lambda h} I_n(\lambda) d\lambda$$

where I_n is called the (raw) periodogram and is defined by

$$I_n(\lambda) = \frac{1}{2\pi n} \left| \sum_{k=1}^n (X_k - \widehat{\mu}_n) e^{-i\lambda k} \right|^2.$$

- ▶ The previous formula only work for h = -n + 1, ..., n 1.
- ▶ Define $\widehat{\gamma}_n(h) = \widehat{\rho}_n(h) = 0$ for all $|h| \ge n$.
- $ightharpoonup \operatorname{Now} \widehat{\gamma}_n$ is defined on \mathbb{Z} and satisfies

$$\widehat{\gamma}_n(h) = \int_{-\pi}^{\pi} e^{i\lambda h} I_n(\lambda) d\lambda$$
,

where I_n is called the (raw) periodogram and is defined by

$$I_n(\lambda) = \frac{1}{2\pi n} \left| \sum_{k=1}^n (X_k - \widehat{\mu}_n) e^{-i\lambda k} \right|^2.$$

 $ightharpoonup I_n(\lambda)$ can be seen as a (bad) estimator of the spectral density $f(\lambda)$.