

Perception & Physiology Overview

Paul MacNeilage, Psychology Eelke Folmer, Computer Science

Some applied VR questions:

- How far away does that object appear to be?
- How much video resolution is needed to avoid seeing pixels?
- How many frames per second are enough to perceive motion as continuous?
- Is the user's head appearing at the proper height in the virtual world?
- Where is that virtual sound coming from?
- Why am I feeling nauseated?
- Why is one experience more tiring than another?
- What is presence?

Human-in-the-loop

The five senses

How do they work?

Physiology of Sensation

Physical energy

Neural impulses

Vision

Audition

Touch

Physiology of Sensation

Physical energy

Neural impulses

Chemical reaction

Smell and Taste

Olfaction

Gustation

The five senses

Are there more?

Vestibular (Balance) Sense

Proprioception

Sensory Transduction

Sense	Stimulus	Receptor	Sense Organ
Vision	Electromagnetic energy	Photoreceptors	Eye
Auditory	Air pressure waves	Mechanoreceptors	Ear
Touch	Tissue distortion	Mechanoreceptors	Skin, muscles
		Thermoreceptors	Skin
Balance	Gravity, acceleration	Mechanoreceptors	Vestibular organs
Taste/smell	Chemical composition	Chemoreceptors	Mouth, nose

Figure 2.17: A classification of the human body senses.

Sensory Signals

Only "input channels" to the brain!

The brain in a vat

Sensory processing

After sensory signals enter the brain...

- Neuroscience
- Perceptual psychology
- Cognitive psychology

Human-in-the-loop

Extract Critical Features

- Depth
- Color
- Motion
- Etc.

3D Real world

2D Image

Anatomy of the Visual System

Inverse Problem

Solution is underconstrained

- Must infer solution; choose most likely
- Perception as probabilistic inference

Illusions Illustrate Inference

• Illustrate assumptions in inference...

Germany Psychology movement of early 1900's

Illusions Illustrate Inference

From textbook:

Figure 2.16: Optical illusions present an unusual stimulus that highlights limitations of our vision system. (a) The *Ponzo illusion* causes the upper line segment to appear larger than the lower one, even though they are the same length. (b) The *checker shadow illusion* causes the B tile to appear lighter than the A tile, even though they are the exactly the same shade of gray (figure by Adrian Pingstone).

Cue Integration

Multiple sources of information:

Perspective

Depth from Disparity / Stereopsis

Familiar size

How are they integrated?

Crossmodal integration: McGurk Effect

You tube link:

https://www.youtube.com/watch?v=aFPtc8BVdJk

- What do you see?
- What do you hear?
- Combined?

Cue integration across modalities

ILLUSION PRODUCED BY A RIDE IN THE SWING,

Figure 2.20: In the 1890s, a virtual swinging experience was made by spinning the surrounding room instead of the swing. This is known as the *haunted swing illusion*. People who tried it were entertained, but they became nauseated from an extreme version of vection.

Cue Integration across modalities

Why does this matter for VR?

Chromatic adaptation

Waterfall illusion

- Nervous system changes its response based on recent stimulus history...
- This influences perception

What is the relevance for VR?

Measuring perception

 Psychophysics – quantifying the perceptual response to a physical stimulus

Figure 2.21: The most basic psychometric function. For this example, as the stimulus intensity is increased, the percentage of people detecting the phenomenon increases. The point along the curve that corresponds to 50 percent indicates a critical threshold or boundary in the stimulus intensity. The curve above corresponds to the cumulative distribution function of the error model (often assumed to be Gaussian).

What is the relevance for VR?

Visual-vestibular Conflict

Visual

Vestibular

- Causes
 - Vehicular travel
 - Visual displays

- Consequences
 - Dizziness / vertigo
 - Nausea
- Vestibular dysfunction
 Other physiological responses

Visual-vestibular Conflict

Accuracy and Precision of Stationarity Judgments

Accuracy

- PSE point of subjective equality
- Visual gain perceived stationary

Precision

- JND just-noticeable difference
- Range of immobility/stationarity

Impact of Motor Signals

Active Movement

Passive Movement

Head-Fixed

Scene-Fixed

Halow et al 2023.

Influence of Spatial Frequency

Influence of Retinal Stimulus Location

Conflict and Sickness

Journal of Vision (2023) 23(14):7, 1-15

.

Impaired stationarity perception is associated with increased virtual reality sickness

Savannah J. Halow	University of Nevada, Reno, Psychology, Reno, Nevada, USA	\bowtie
Allie Hamilton	University of Nevada, Reno, Psychology, Reno, Nevada, USA	\bowtie
Eelke Folmer	University of Nevada, Reno, Computer Science, Reno, Nevada, USA	\bowtie
Paul R. MacNeilage	University of Nevada, Reno, Psychology, Reno, Nevada, USA	\bowtie

Some applied VR questions:

- How far away does that object appear to be?
- How much video resolution is needed to avoid seeing pixels?
- How many frames per second are enough to perceive motion as continuous?
- Is the user's head appearing at the proper height in the virtual world?
- Where is that virtual sound coming from?
- Why am I feeling nauseated?
- Why is one experience more tiring than another?
- What is presence?

Human-in-the-loop

