Međuispit iz Fizike (3. svibnja 2019.)

1. Pitanja višestrukog izbora

Upute: Na pitanja odgovarati zacrnjivanjem kružića na priloženom Obrascu za odgovore. Svaki zadatak nosi jedan bod. **Netočni** odgovori nose -**0.25 bodova**, a neodgovorena pitanja nose nula bodova.

- 1.1 Čestica se giba po putanji i iznos brzine joj se povećava u vremenu. Koja je od sljedećih tvrdnji točna?
 - (a) Brzina i akceleracija čestice su uvijek paralelni vektori.
 - (b) Brzina i akceleracija čestice nisu nikad paralelni vektori.
 - (c) Brzina i akceleracija čestice su paralelni vektori ako je putanja pravac. točno
 - (d) Brzina i akceleracija čestice su paralelni vektori ako je putanja kružnica.
 - (e) Brzina i akceleracija čestice su paralelni vektori ako je putanja parabola.
- 1.2 Tijelo se giba duž kružnice polumjera R stalnom kutnom akceleracijom iznosa $\alpha=(\pi/2)\,\mathrm{rad}\,\mathrm{s}^{-2}$. Ako u početnom trenutku tijelo miruje, duljina puta koji će tijelo prevaliti u prve dvije sekunde gibanja je
 - (a) 0
 - (b) R
 - (c) 2R
 - (d) $R\pi$ točno
 - (e) $2R\pi$
- 1.3 U jednodimenzionalnom sudaru, čestica mase 2m sudara se s česticom mase m koja miruje. Ako se čestice nakon sudara gibaju zajedno (tj. zalijepljene su jedna za drugu), koliki dio početne kinetičke energije je izgubljen u sudaru?
 - (a) 0
 - (b) 1/4
 - (c) 1/3 **točno**
 - (d) 1/2
 - (e) 2/3
- 1.4 Opruga bez mase, konstante k, koristi se za lansiranje lopte mase m. Da bi lopta dosegla brzinu v, oprugu treba komprimirati za:
 - (a) $v\sqrt{\frac{k}{m}}$
 - (b) $v\sqrt{\frac{m}{k}}$ točno
 - (c) $v\sqrt{\frac{2k}{m}}$
 - (d) $v^{\frac{m}{k}}$
 - (e) $v^2 \frac{m}{2k}$

- 1.5 Kuglica je ispuštena početnom brzinom nula s visine h od tla. Sila otpora zraka može se zanemariti. Na kojoj će visini potencijalna energija kuglice u odnosu na tlo biti dva puta veća od njene kinetičke energije?
 - (a) 3h/4
 - (b) 2h/3 točno
 - (c) h/2
 - (d) h/3
 - (e) h/4
- 1.6 Koliko svojstvenih načina titranja (vlastitih modova) ima sustav na slici?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 4 točno

- 1.7 Funkcija oblika y(x,t) = h(vt x) kao moguće rješenje 1D valne jednadžbe:
 - (a) ne može biti fizikalno rješenje
 - (b) može biti fizikalno rješenje i opisuje širenje u smjeru +x **točno**
 - (c) može biti fizikalno rješenje i opisuje širenje u smjeru -x
 - (d) opisuje stojni val
 - (e) nije rješenje valne jednadžbe
- 1.8 Ako napeto uže modeliramo kao N kuglica, svaka mase Δm , povezanih bezmasenom niti napetosti T i međusobno udaljenih za Δx , onda ovaj model opisuje napeto uže u limesu kada :
 - (a) $\Delta x \to 0$, $\Delta m \to 0$, T = konst. točno
 - (b) $\Delta x \to 0$, $\Delta m \to 0$, $N \cdot T = \text{konst.}$
 - (c) $\Delta x = \text{konst.}$, $\Delta m = \text{konst.}$, $N \to \infty$,
 - (d) $\Delta x \to 0$, $\Delta m = \text{konst.}$, $N \to \infty$,
 - (e) $\Delta x = \text{konst.}$, $\Delta m \to 0$, $N \cdot \Delta m = \text{konst.}$
- 1.9 Harmonijski val 1 ima amplitudu A, period T i valnu duljinu λ , a harmonijski val 2 ima amplitudu 2A, period 2T i valnu duljinu 2λ . Usporedite brzine širenja ta dva vala i maksimalne brzine titranja čestica sredstva.
 - (a) $v_1 < v_2$, $v_{1,\max} < v_{2,\max}$
 - (b) $v_1 < v_2$, $v_{1,\text{max}} > v_{2,\text{max}}$
 - (c) $v_1 = v_2$, $v_{1,\text{max}} = v_{2,\text{max}}$ točno
 - (d) $v_1 = v_2$, $v_{1,\max} < v_{2,\max}$
 - (e) $v_1 > v_2$, $v_{1,\max} < v_{2,\max}$

- $1.10~{
 m Kad}$ putujući harmonijski val amplitude A naiđe na slobodan kraj sredstva i od njega se reflektira, sam kraj sredstva titra amplitudom
 - (a) 0 (slobodan kraj ne titra).
 - (b) A/2.
 - (c) A.
 - (d) 2A. točno
 - (e) ništa od navedenog, val se ne može reflektirati od slobodnog kraja sredstva.

2. Pitanja iz teorije

Uputa: Odgovore na pitanja treba napisati na posebnom papiru te popratiti detaljnim komentarima i crtežima. Svako pitanje nosi 5 bodova.

- 2.1 Skicirajte kružnu putanju čestice, označite vektore položaja i brzine u trenutku t i u kasnijem trenutku $t+\Delta t$. Označite kut koji je za to vrijeme "prebrisao" vektor položaja. Pomoću tih veličina definirajte kutnu brzinu čestice i kutnu akceleraciju čestice.
- 2.2 Napišite jednadžbu gibanja prisilnog titranja, izvedite njeno rješenje i izraz za rezonantnu frekvenciju (najveća amplituda).

3. Računski zadaci

Uputa: Postupke i rješenja treba napisati na posebnim papirima. Svaki zadatak nosi 5 bodova.

3.1 Učenici samostalno izrađenim topom gađaju ravni krov zgrade visine 9 m. Top ispucava loptice pod kutom $\alpha=55^\circ$ u odnosu na tlo i brzinom $v_0=20$ m/s. Za koju minimalnu i maksimalnu udaljenost topa od zgrade će loptica pasti na krov, ako je duljina zgrade 8 m?

Rješenje:

 $\alpha = 55^{\circ}$ $v_0 = 20 \text{ m/s}$ h = 9 m

Promatramo kosi hitac pod kutom α i početnom brzinom izbačaja v_0 . Postavljamo jednadžbu kosog hica, tj. parabole:

$$y = x \tan \alpha - \frac{g}{2v_0 \cos^2 \alpha} x^2$$

Zadana je visina zgrade h = 9 m. Možemo pronaći udaljenosti na kojima se sijeku parabola i horizontalni pravac na visini od 9 m. Jednadžba horizontalnog pravca je: y = 9

Izjednačavanjem slijedi kvadratna jednadžba: $\frac{g}{2\nu_0\cos^2\alpha}x^2-x\tan\alpha+9=0$

Rješavanjem kvadratnih jednadžbi dobivamo: $x_1 = 7,96 \ m$ i $x_2 = 30,37 \ m$

Iz geometrije problema treba primijetiti da je $x_2 = 30,37 \, m$ maksimalna udaljenost topa od zgrade takva da loptica padne na krov, te da je minimalna udaljenost jednaka $x_2 - 8 \, m = 22,37 \, m$ (jer je duljina zgrade 8 m).

3

3.2 Kuglica mase m=40 g pričvršćena je na sredini horizontalno napete niti duljine l=1 m. Uz pretpostavku konstantne napetosti niti od F=10 N, odredite period malih vertikalnih oscilacija kuglice.

Rješenje:

Kada se kuglica nalazi na udaljenosti x (u vertikalnom smjeru) od ravnotežnog položaja (Slika \ref{Slika}) na kuglicu djeluje ukupna sila u vertikalnom smjeru:

$$F_R = mg - 2F\sin\theta \tag{1}$$

Jednadžba gibanja za kuglicu je;

$$m\ddot{x} = mg - 2F\sin\theta\tag{2}$$

Uz pretpostavku malih oscilacija ($\sin \theta = \theta$) dobivamo:

$$m\ddot{x} = mg - 2F\theta \tag{3}$$

Također uzevši u obzir da je $\sin \theta = \frac{x}{l/2}$:

$$\ddot{x} = g - \frac{4F}{ml}x\tag{4}$$

Prepoznajemo jednadžbu harmoničkog oscilatora. Tada je frekvencija:

$$\omega^2 = \frac{4F}{ml} \tag{5}$$

A period titranja:

$$T = 2\pi/\omega = \pi\sqrt{\frac{ml}{F}} = 0.2\,\mathrm{s} \tag{6}$$

3.3 Sustav utega s koloturom nalazi se kosini koja je učvršćena za pod kao na slici. Poznate su ove veličine: $m_1=2$ kg, $m_2=4$ kg, nagib kosine $\alpha=30^\circ$, faktor trenja $\mu=1.2$, duljine $L_1=6$ m i $L_2=2$ m. Ako sustav pustimo u gibanje iz mirovanja, odredite koje će tijelo dotaknuti pod i izračunajte nakon koliko vremena.

Rješenje:

Predpostavljamo gibanje tijela 2 prema dolje. Jednadžbe gibanja za oba utega su:

$$-m_1 g \sin \alpha - \mu m_1 g \cos \alpha + T = m_1 a,$$

$$m_2 g - T = m_2 a.$$

Zbrajanjem jednadžbi dobivamo:

$$a = g \frac{m_2 - m_1 (\sin \alpha + \mu \cos \alpha)}{m_1 + m_2} \approx 1.505 \frac{\mathrm{m}}{\mathrm{s}^2}$$

Tijelo 2 mora prijeći udaljenost L_2 sa tom akceleracijom do poda:

$$L_2 = \frac{at^2}{2}$$

$$t = \sqrt{\frac{2L_2}{a}} \approx 1.63\,\mathrm{s}$$

3.4 Ultrazvučni val frekvencije 8.000×10^4 Hz emitiran je u venu gdje je brzina zvuka 1.5 km/s. Val se reflektira na eritrocitu (crveno krvno zrnce) koji se giba prema stacionarnom detektoru. Ako je frekvencija signala koji se vraća 8.002×10^4 Hz koja je brzina krvnog toka? Odredite frekvenciju udara u superpoziciji emitiranog i reflektiranog vala.

Rješenje:

Treba obratiti pažnju na Dopplerov efekt, eritrocit je prvo opažač a zatim izvor.

Prvo se opažač kreće prema izvoru, a zatim se izvor kreće prema opažaču. Eritorcit cijelo vrijeme ide prema početnom izvoru.

$$f_0 = f_s \frac{v \pm v_0}{v \mp v_s} = f_s \frac{v + v_b}{v} \tag{7}$$

 f_s je frekvencija izvora, v brzina zvuka u krvi, v_b brzina eritrocita, v_s brzina izvora koja je 0 i f_0 frekvencija vala koji smo detektirali.

$$f_0 = f_s \frac{v + v_b}{v} \frac{v}{v - v_b} = f_s \frac{v + v_b}{v - v_b} \tag{8}$$

konačno brzina je:

$$v_b = v \frac{\frac{f_0}{f_s} - 1}{\frac{f_0}{f_s} + 1} = 0.19 \,\text{m/s} \tag{9}$$

Frekvencija udara je:

$$f_{beat} = |f_2 - f_1| = f_0 - f_s = 20 \,\text{Hz}$$
 (10)

Period udara je:

$$T_{beat} = \frac{1}{f_{beat}} = 0.05 \,\mathrm{s}$$
 (11)