

Lab Report 4

Course Name: Machine Learning Course Code: CSE 475 Section - 3

Assignment Name: Underwater Plastic Pollution Detection Using YOLOv

Submitted By Name: Tithi Paul ID: 2021-2-60-057

Dept. of Computer Science & Engineering

Submitted To Dr. Raihan Ul Islam Associate Professor

Department of Computer Science and Engineering
East West University

Underwater Plastic Pollution Detection Using YOLOv

Introduction

Plastic pollution in marine environments has become a significant global concern. Efficient detection methods are essential to identify and mitigate underwater plastic waste. This project employs YOLOv (You Only Look Once), a state-of-the-art object detection algorithm, to detect plastic pollution in underwater images.

Objectives

- To develop an automated detection system for underwater plastic pollution using YOLOv.
- To evaluate the system's performance in terms of accuracy, precision, and recall.
- To visualize and interpret detection results.

Methodology

Environment Setup

The project was implemented using Python in a Jupyter Notebook environment. Key libraries and tools included:

- YOLOv: Object detection framework.
- Ultralytics: YOLO implementation.
- Matplotlib & OpenCV: For data visualization and image processing.

Dataset

• Dataset Resource:

https://www.kaggle.com/datasets/arnavs19/underwater-plastic-pollution-detection/data

Model Training

• Model Configuration:

Input image size: 640x640 pixelsNumber of classes: 15 (plastic objects)

• Training Parameters:

Learning rate: 0.01Batch size: 16Epochs: 25

Training Process: The YOLOv model was trained using GPU acceleration to speed up the process. During training, loss values were monitored to ensure the model's convergence.

Model Evaluation

- Metrics Used:
 - Precision: Measures the proportion of correctly identified plastic objects out of all detections.
 - Recall: Measures the proportion of actual plastic objects detected by the model.
 - o mAP (Mean Average Precision): Evaluates the overall detection performance across different confidence thresholds.

Results

Detection Performance

The model achieved the following performance metrics:

Precision: 0.65Recall: 0.63mAP: 0.67

Visualization of Results

Below are examples of the detection results, where bounding boxes highlight detected plastic objects:

YOLOv8 configuration:

Training performance metrics:

Precision Confidence Curve:

Recall Confidence Curve:

Confusion matrix:

Visual inspection and use of fine-tund YOLOv8 first-hand:

These visualizations demonstrate the model's ability to accurately detect and localize plastic objects in underwater environments.

Conclusion

The YOLOv-based system demonstrated promising results in detecting underwater plastic pollution, achieving high precision and recall. This approach provides an efficient, automated solution for monitoring marine environments.

Future Work

- Incorporate additional data from diverse underwater environments to improve generalizability.
- Optimize model performance under varying lighting and turbidity conditions.
- Explore integration with robotic systems for real-time underwater cleanup operations.