### Multi-Period Asset Pricing

Wang Wei Mun

Lee Kong Chian School of Business Singapore Management University

October 11, 2023

#### Multi-Period Setting – Part 1

• Consider investor with T-period planning horizon and time-separable utility of consumption:

$$V(C_0,\ldots,C_T)=E\left[\sum_{t=0}^T \delta^t U(C_t)\right]$$

- Here  $\delta \in (0,1)$  is subjective discount factor that reflects investor's rate of time preference, while U is strictly increasing and concave utility function
- Investor is endowed with initial wealth of  $W_0$  and trades in n risky assets with (random) return of  $R_{i,t+1}$  over time interval from t to t+1, for  $i=1,\ldots,n$  and  $t=0,\ldots,T-1$

### Multi-Period Setting – Part 2

- Investor can rebalance portfolio at start of each time interval
- Investor allocates proportion  $w_{i,t}$  of remaining wealth of  $(W_t C_t)$  to i'th asset at time t, subject to  $\sum_{i=1}^n w_{i,t} = 1$ :

$$W_{t+1} = (W_t - C_t) \sum_{i=1}^n w_{i,t} R_{i,t+1}$$

- Investor will choose consumption and asset allocation for each time period to maximise lifetime expected utility
- Optimal solution can be found using dynamic programming: solve static optimisation problem in last two time periods, and repeat for investor with (T-1)-period planning horizon, etc.

### Asset Pricing Formula

Intertemporal allocation condition for optimal consumption:

$$U'(C_t^*) = \delta E_t \left[ U'(C_{t+1}^*) R_{t+1} \right]$$

- Here  $E_t[\cdot]$  is expectation conditional on information at time t
- Divide through by  $U'(C_t^*)$  to get asset pricing formula:

$$E_t \left[ \delta \frac{U'(C_{t+1}^*)}{U'(C_t^*)} R_{t+1} \right] = E_t [M_{t+1} R_{t+1}] = 1$$

• Here  $M_{t+1} = \delta U'(C_{t+1}^*) / U'(C_t^*)$  is investor's intertemporal marginal rate of substitution over time interval from time t to time t+1, which acts as (one-period) pricing kernel



#### Dividend Discount Model - Part 1

- Consider "long-lived" asset that has price of  $P_{t+i}$  and pays dividend of  $D_{t+i}$  at time t+i, for  $i=0,\ldots,T$
- Holding period return over first time interval:

$$R_{t+1} = \frac{D_{t+1} + P_{t+1}}{P_t}$$

 Use asset pricing formula to get price of long-lived asset at time t and time t + 1:

$$P_t = E_t[M_{t+1} (D_{t+1} + P_{t+1})]$$
  

$$P_{t+1} = E_{t+1}[M_{t+2} (D_{t+2} + P_{t+2})]$$



#### Dividend Discount Model – Part 2

• Substitute for  $P_{t+1}$  and use law of iterated expectations:

$$P_{t} = E_{t}[M_{t+1}D_{t+1} + M_{t+1}E_{t+1}[M_{t+2}(D_{t+2} + P_{t+2})]]$$
  
=  $E_{t}[M_{t+1}D_{t+1} + M_{t,t+2}(D_{t+2} + P_{t+2})]$ 

- Here  $M_{t,t+2} = M_{t+1}M_{t+2} = \delta^2 U'(C_{t+2}^*)/U'(C_t^*)$  is pricing kernel over time interval from time t to time t+2
- By extension, general pricing formula for long-lived asset:

$$P_{t} = E_{t} \left[ \sum_{i=1}^{T} M_{t,t+i} D_{t+i} + M_{t,t+T} P_{t+T} \right]$$



#### Dividend Discount Model - Part 3

- Here  $M_{t,t+i} = M_{t+1} \cdots M_{t+i} = \delta^i U'(C_{t+i}^*) / U'(C_t^*)$  is pricing kernel over time interval from time t to time t+i
- If investor has infinite lifetime, and long-lived asset has no fixed maturity date, then can take limit as  $T \to \infty$ :

$$P_t = E_t \left[ \sum_{i=1}^{\infty} M_{t,t+i} D_{t+i} \right]$$

- Assumes no price "bubbles":  $E_t[M_{t,t+T}P_{t+T}] \rightarrow 0$
- Interpret each term in infinite sum as price of individual "dividend claim" that delivers one single future dividend:

$$P_{i,t} = E_t[M_{t,t+i}D_{t+i}] \implies P_t = P_{1,t} + P_{2,t} + \cdots$$



#### **Endowment Economy**

- For simplicity, assume "endowment economy" where aggregate economic output grows randomly over time
- Investor immediately consumes any dividend that is received  $\implies$  aggregate consumption must be equal to aggregate dividend in every time period:  $\overline{C}_t = D_t$  for all  $t = 0, 1, 2, \ldots$
- If financial market is "complete" and frictionless, then there will be unique pricing kernel that prices all assets
- Equivalent to economy where single representative investor consumes (per capita) aggregate consumption and invests in market portfolio to receive (per capita) aggregate dividend



### Power Utility

Suppose that representative investor has power utility:

$$U(C_t) = \frac{\overline{C}_t^{1-\gamma}}{1-\gamma} \implies M_{t+i} = \delta^i \left(\frac{\overline{C}_{t+i}}{\overline{C}_t}\right)^{-\gamma}$$

 Aggregate consumption is always equal to aggregate dividend, so price-dividend ratio for market portfolio:

$$\frac{P_t}{D_t} = E_t \left[ \sum_{i=1}^{\infty} \delta^i \left( \frac{D_{t+i}}{D_t} \right)^{1-\gamma} \right]$$

 Must specify stochastic process for aggregate consumption (and dividend and output) to solve for price-dividend ratio



### Lognormal Growth: Economic Environment

 Suppose that aggregate consumption evolves as lognormal random walk with drift:

$$\ln \overline{C}_{t+1} = \ln \overline{C}_t + \mu + \sigma \epsilon_{t+1}$$

- Here  $\epsilon_t \sim N(0,1)$  is independent and identically distributed (i.i.d.) random variable that captures random fluctuations
- Hence continuously compounded aggregate consumption growth rate has normal distribution over every time interval
- ullet Then  $\mu$  represents expected aggregate consumption growth rate, while  $\sigma$  represents volatility of economic fluctuations
- Let  $\rho = -\ln \delta$  be investor's rate of time preference



#### Lognormal Growth: Market Portfolio – Part 1

• Dividend claim that delivers aggregate dividend at time t+1 has constant price-dividend ratio:

$$\frac{P_{1,t}}{D_t} = E_t \left[ \delta \left( \frac{\overline{C}_{t+1}}{\overline{C}_t} \right)^{1-\gamma} \right] = E_t \left[ \delta e^{(1-\gamma)(\mu + \sigma \epsilon_{t+1})} \right]$$
$$= e^{-\rho + (1-\gamma)\mu + \frac{1}{2}(1-\gamma)^2 \sigma^2} = \theta$$

• Price-dividend ratio for dividend claim that delivers aggregate dividend at time t + i:

$$\frac{P_{i,t}}{D_t} = E_t \left[ \delta^i \left( \frac{\overline{C}_{t+i}}{\overline{C}_t} \right)^{1-\gamma} \right] = E_t \left[ \prod_{j=0}^{i-1} \delta \left( \frac{\overline{C}_{t+j+1}}{\overline{C}_{t+j}} \right)^{1-\gamma} \right]$$



#### Lognormal Growth: Market Portfolio – Part 2

 Consumption growth is i.i.d., so all dividend claims have constant price-dividend ratio:

$$\frac{P_{i,t}}{D_t} = \prod_{j=0}^{i-1} E_t \left[ \delta \left( \frac{\overline{C}_{t+j+1}}{\overline{C}_{t+j}} \right)^{1-\gamma} \right] = \prod_{j=0}^{i-1} \frac{P_{1,t+j}}{D_{t+j}} = \theta^i$$

 Hence market portfolio will also have finite constant price-dividend ratio when  $\theta < 1$ :

$$\frac{P_t}{D_t} = \sum_{i=1}^{\infty} \frac{P_{i,t}}{D_t} = \sum_{i=1}^{\infty} \theta^i = \frac{\theta}{1-\theta}$$

### Lognormal Growth: Market Portfolio - Part 3

Market portfolio also has constant expected return:

$$\begin{split} E_t[R_{t+1}] &= E_t \left[ \frac{D_{t+1} + P_{t+1}}{P_t} \right] = \frac{D_t}{P_t} E_t \left[ \frac{D_{t+1}}{D_t} \left( 1 + \frac{P_{t+1}}{D_{t+1}} \right) \right] \\ &= \frac{1 - \theta}{\theta} E_t \left[ \frac{D_{t+1}}{D_t} \left( 1 + \frac{\theta}{1 - \theta} \right) \right] = \frac{1}{\theta} E_t \left[ \frac{\overline{C}_{t+1}}{\overline{C}_t} \right] \\ &= e^{\rho + \gamma \mu - \frac{1}{2} \gamma^2 \sigma^2 + \gamma \sigma^2} \end{split}$$

First dividend claim has same mean return as market portfolio:

$$E_t \left[ \frac{D_{t+1}}{P_{1,t}} \right] = \frac{D_t}{P_{1,t}} E_t \left[ \frac{D_{t+1}}{D_t} \right] = \frac{1}{\theta} E_t \left[ \frac{\overline{C}_{t+1}}{\overline{C}_t} \right] = E_t [R_{t+1}]$$



# Lognormal Growth: Equity Premium

 Suppose there exists riskless asset that always delivers one unit of output in next time period:

$$P_{f,t} = E_t[M_{t+1}] \implies R_{f,t} = \frac{1}{P_{f,t}} = e^{\rho + \gamma \mu - \frac{1}{2}\gamma^2 \sigma^2}$$

• Hence continuously compounded equity premium:

$$\ln E_t[R_{t+1}] - \ln R_{f,t} = \gamma \sigma^2$$

• Equity premium puzzle: annual consumption growth is very smooth (with  $\sigma \approx 2\%$ ), so annual equity premium of only 4% even with  $\gamma = 100$ 



#### Rare Disasters: Economic Environment

 Now suppose that aggregate consumption also contains i.i.d. random variable that represents effect of rare disaster:

$$\begin{split} \ln \overline{C}_{t+1} &= \ln \overline{C}_t + \mu + \sigma \epsilon_{t+1} + \nu_{t+1}, \\ \nu_t &= \left\{ \begin{array}{ll} \ln \phi & \text{with probability of } \pi \\ 0 & \text{with probability of } 1 - \pi \end{array} \right. \end{split}$$

- As before, use  $\pi=1.7\%$  and  $\phi=0.65$
- Price-dividend ratio for first dividend claim:

$$\frac{P_{1,t}}{D_{t}} = \theta E_{t} \left[ e^{(1-\gamma)\nu_{t+1}} \right] = \theta \left\{ 1 + \pi \left( \phi^{1-\gamma} - 1 \right) \right\}$$



### Rare Disasters: Equity Premium – Part 1

Market portfolio has same mean return as first dividend claim:

$$E_{t}[R_{t+1}] = \frac{D_{t}}{P_{1,t}} E_{t} \left[ \frac{\overline{C}_{t+1}}{\overline{C}_{t}} \right] = \frac{e^{\mu + \frac{1}{2}\sigma^{2}} \left\{ 1 + \pi \left( \phi - 1 \right) \right\}}{\theta \left\{ 1 + \pi \left( \phi^{1-\gamma} - 1 \right) \right\}}$$

• Can use  $ln(1+x) \approx x$  as long as  $\gamma$  is reasonably small:

$$\ln E_t[R_{t+1}] \approx \rho + \gamma \mu - \frac{1}{2} \gamma^2 \sigma^2 + \gamma \sigma^2 - \pi \phi \left( \phi^{-\gamma} - 1 \right)$$

• Risk-free rate for riskless bond:

$$R_{f,t} = E_t[M_{t+1}]^{-1} = \left\{1 + \pi \left(\phi^{-\gamma} - 1\right)\right\}^{-1} e^{\rho + \gamma \mu - \frac{1}{2}\gamma^2 \sigma^2}$$



# Rare Disasters: Equity Premium - Part 2

• Can also use  $ln(1+x) \approx x$  as long as  $\gamma$  is reasonably small:

$$\ln R_{f,t} \approx \rho + \gamma \mu - \frac{1}{2} \gamma^2 \sigma^2 - \pi \left( \phi^{-\gamma} - 1 \right)$$

Hence continuously compounded equity premium:

$$\ln E_t[R_{t+1}] - \ln R_f \approx \gamma \sigma^2 + \pi \left(1 - \phi\right) \left(\phi^{-\gamma} - 1\right)$$

• Annual equity premium of around 7.5% for  $\gamma=6$ , which represents reasonable degree of (relative) risk aversion:

$$6 \times 0.02^2 + 0.017 \times 0.35 \times (0.65^{-6} - 1) = 7.5\%$$

