Vorlesung 13 | 8.12.2020 | 14:15-16:00 via Zoom

Information der Fachschaft: Dieses Jahr findet die Mathe-Weihnachtsfeier am Donnerstag, 17.12, ab 18 ct. online via Zoom statt. Alle aktuellen Informationen sind auf https://fsmath.uni-bonn.de/veranstaltungen-detail/events/virtuelle-mathe-weihnachtsfeier.html zu finden. Schaut vorbei!

Information from the Fachschaft: This year's Math Christmas party will take place at Thursday, the 17.12. starting 18 ct. online via zoom. All current information can be found on https://fsmath.uni-bonn.de/events-detail/events/virtual-christmas-party.html. Swing by!

Handzettel

In der letzten Vorlesungen haben wir gesehen: Schwache convergenz von Verteilungsfuktionen und von W-Maße, Konvergenz in Verteilung von Z.V., Konvergenz in W-keit von Z.V.

Heutigen Vorlesung: Konvergenz in L^P , Fast sichere Konvergenz, Borel-Cantelli Lemmata,

5 Konvergenzbefriffe

Definition. Sei $(F_n)_{n\geqslant 1}$ eine Folge von Verteilungsfunktionen. Dann <u>konvergiert F_n </u> schwach gegen eine Verteilungsfunktion F, falls

$$\lim_{n \to \infty} F_n(x) = F(x)$$

für alle $x \in \mathbb{R}$ für welche F stetig ist.

Definition. Sei $(\mathbb{P}_n)_{n\geqslant 1}$ eine Folge von W-maße auf $(\Omega, \mathcal{B}(\Omega))$ mit Ω topoligische Raum. Dann konvergiert $(\mathbb{P}_n)_n$ schwach gegen \mathbb{P} falls für alle beschränkten stetigen Funktionen $g: \Omega \to \mathbb{R}$,

$$\lim_{n\to\infty}\int_{\Omega}g(\omega)\mathbb{P}_n(\mathrm{d}\omega)\to\int_{\Omega}g(\omega)\mathbb{P}(\mathrm{d}\omega).$$

Satz. Sei $(\mathbb{P}_n)_n$ eine Folge W-maße auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ und $F_n(x) = \mathbb{P}_n((-\infty, x])$. Dann konvergiert $(\mathbb{P}_n)_n$ schwach gegen ein W-maß \mathbb{P} mit Verteilungsfunktion F dann und nur dann, wenn

$$F_n \xrightarrow{schwach} F$$
.

Definition. (Konvergenz in Verteilung) Sei $(X_n)_{n\geqslant 1}$ eine Folge von Z.V. wobei X_n auf $(\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$ definiert ist. Dann konvergiert X_n in Verteilung gegen eine Z.V. X

$$X_n \xrightarrow[n \to \infty]{\mathscr{D}} X,$$

falls
$$F_{X_n}(x) = \mathbb{P}(X_n \leq x) \xrightarrow{schwach} F_X(x) = \mathbb{P}(X \leq x).$$

Definition. (Konvergenz in W-keit) Seien X, $(X_n)_n$ Z.V. auf $(\Omega, \mathcal{F}, \mathbb{P})$. Die Folge $(X_n)_n$ konvergiert in W-keit gegen X, falls $\forall \varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0.$$

Lemma.

$$X_n \xrightarrow[n \to \infty]{\mathbb{P}} X \Longrightarrow X_n \xrightarrow[n \to \infty]{\mathcal{D}} X$$

Satz. (Satz von de Moivre–Laplace) Sei $(X_n)_{n\geqslant 1}$ eine Folge iid Ber(p) Z.V.. Dann konvergiert die Folge

$$Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n (X_k - p)$$

in Verteilung gegen eine $\mathcal{N}(0, p(1-p))$ Z.V.

Definition. (Konvergenz in L^p) Seien X, $(X_n)_n$ Z.V. auf $(\Omega, \mathcal{F}, \mathbb{P})$. Sei $p \ge 1$ und nehmen wir an $(X_n)_{n \ge 1} \subseteq \mathcal{L}^p$, $X \in \mathcal{L}^p$ d.h. $||X||_p = \left[\mathbb{E}|X|^p\right]^{1/2} < \infty$. Dann konvergiert X_n gegen X in \mathcal{L}^p ,

$$X_n \xrightarrow[n \to \infty]{\mathscr{L}^p} X$$
,

falls

$$\lim_{n\to\infty} \|X_n - X\|_p = 0.$$

Lemma.

$$X_n \xrightarrow{\mathscr{L}^p} X \rightleftharpoons X_n \xrightarrow{\mathbb{P}} X$$

Definition. (Fast sichere konvergenz) Sei $(X_n)_{n\geqslant 1}$ eine Folge von Z.V. auf $(\Omega, \mathcal{F}, \mathbb{P})$. $Dann\ kovergiert\ X_n\ fast\ sicher\ gegen\ x\in\mathbb{R},\ X_n\xrightarrow[n\to\infty]{}x\ f.s.\ falls$

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=x\right)=1.$$

Lemma. (Borel–Cantelli I) Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum und $(A_n)_{n\geqslant 1}$ eine Folge in \mathcal{F} . Wenn

$$\sum_{n\geq 1} \mathbb{P}(A_n) < \infty \Rightarrow \mathbb{P}(A_n \ u.o.) = 0.$$

Lemma. (Borel–Cantelli II) Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum und $(A_n)_{n\geqslant 1}$ eine Folge unabhängigen Ereignissen in \mathcal{F} . Wenn

$$\sum_{n\geqslant 1} \mathbb{P}(A_n) = \infty \Rightarrow \mathbb{P}(A_n \ u.o.) = 1.$$

Folgerung.

a) Eine Folge $(X_n)_{n\geqslant 1}$ konvergiert f.s. gegen $x\in\mathbb{R}$ wenn $\forall \varepsilon>0$

$$\sum_{n\geqslant 1} \mathbb{P}(|X_n - x| > \varepsilon) < \infty \tag{1}$$

b) Wenn die $(X_n)_n$ unabhängig sind, dann ist (1) notwending.