Développement de protéines de novo

Elyna BOUCHEREAU

2023-02-17

I. Introduction

Identifiant PDB	Score Forsa global	Score Norm Forsa global	Z-Score Forsa local	Longueur	Remarque
				Histidine	
1AZP	122.628	1.858	7.023	66	
1AZQ	122.606	1.858	7.022	66	
1BF4	88.762	1.409	5.461	63	
1BNZ	97.222	1.519	5.847	64	
1C8C	78.492	1.226	4.896	64	
1CA5	72.121	1.076	4.505	67	
1CA6	118.235	1.791	6.804	66	
1SAP	116.701	1.768	6.727	66	
1WD0	117.895	1.786	6.787	66	
1WD1	102.041	1.546	5.996	66	
1WT0	11.647	1.692	6.475	66	
1WTP	98.599	1.494	6.137	66	
$1 \mathrm{WTR}$	117.136	1.775	6.749	66	
$1 \mathrm{WTV}$	108.200	1.639	6.304	66	
1WTX	112.8979	1.710	6.537	66	
1WVL	121.016	1.513	6.333	80	
1XX8	64.767	0.967	4.138	67	
1XYI	124.251	1.883	7.104	66	
3LWH	134.211	2.237	8.004	60	
3LWI	125.677	2.095	7.553	60	
4CJ0	45.527	0.641	3.085	71	Sans tag
					Histidine
4CJ1	80.191	1.129	4.742	71	Sans tag
					Histidine
4CJ2	80.979	1.191	4.876	68	Sans tag
					Histidine

Score maximal est à 8.004 et score minimal à 3.085.

II. Forsa

1.1. Chargement des librairies et initialisation des variables

A tibble: 26 x 26

```
##
                                  Ε
                            D
                                         F
                                                     Η
##
      0 0.0938 0.109 0.0312 0.0781
##
  1 0.0625
                                                     0 0.0156
                                                                  0 0.156
                     0 0.0781 0.109 0.0312 0.0781
## 2 0.0625
                                                     0 0.0156
                                                                  0 0.203
                0
##
   3 0.0625
                0
                     0 0.0781 0.109 0.0312 0.0781
                                                     0 0.0156
                                                                  0 0.203
                     0 0.05
                            0.117 0.0333 0.117
                                                     0 0.05
                                                                  0 0.217
## 4 0.0333
                0
                              0.117 0.0333 0.117
                     0 0.05
                                                     0 0.05
                                                                  0 0.217
## 5 0.0333
                0
## 6 0.05
                0
                     0 0.05
                              0.0833 0.0333 0.117
                                                     0 0.05
                                                                  0 0.217
## 7 0.0625
                0
                     0 0.0781 0.109 0.0312 0.0781
                                                     0 0.0156
                                                                  0 0.203
## 8 0.0625
                0
                     0 0.0781 0.109 0.0312 0.0781
                                                     0 0.0156
                                                                  0 0.203
## 9 0.0625
                0
                     0 0.0781 0.109 0.0312 0.0781
                                                     0 0.0156
                                                                  0 0.203
                     0 0.0781 0.109 0.0312 0.0781
                                                                  0 0.203
## 10 0.0625
                0
                                                     0 0.0156
## # ... with 16 more rows, and 15 more variables: L <dbl>, M <dbl>, N <dbl>,
      O <dbl>, P <dbl>, Q <dbl>, R <dbl>, S <dbl>, T <dbl>, U <dbl>, V <dbl>,
      W < dbl>, X < dbl>, Y < dbl>, Z < dbl>
#### II. Initial round ----
nb_of_bests <- 10</pre>
nb_of_mutants <- 1000</pre>
nb_of_init_seq <- 10000
```

1.2. Création de la génération 0

```
### - 2.2. Generating the first batch of random sequences ----
sequences = {}
header = ""
sequences <- foreach(i=1:nb_of_init_seq,.combine = 'c') %dopar% {</pre>
  sequences[i]=paste(sample(amino_acid_pb_df$letter, seq_length, replace=TRUE, prob = amino_acid_pb_df$
  header = paste("Random_Sequence_",i,sep = "")
  sequence = paste(">",header,"\n",sequences[i],sep = "")
  write(sequence,file = paste("RD_SEQS/",header,".fasta",sep=""))
}
align_raw={}
align_seq={}
align raw <- foreach(i=1:nb of init seq,.combine = 'rbind',.inorder = FALSE) %dopar% {
  name_seq = paste("Random_Sequence_",i,".fasta",sep = "")
  align_seq = system(paste("./SCRIPTS/FORSA/forsa_global RD_SEQS/",name_seq ," OUT_DSSP_backup/2xiw_A.d
  ## We need to delete the file to avoid overfilling
  system(paste("rm ","RD_SEQS/",name_seq,sep=""),intern=T)
  align_seq[1] = paste("Random_Sequence_",i,sep="")
  align_raw[i] = t(align_seq)
}
align_raw[,4]=str_split_i(align_raw[,4],":",5)
align_df<-data.frame(query = align_raw[,2],</pre>
                     target = align_raw[,3],
                     z_score = as.double(align_raw[,4]))
row.names(align_df)<-align_raw[,1]</pre>
par(mfrow = c(1,1)) ## Réinitilisation de l'affichage
hist(as.numeric(unlist(align_df$z_score)),breaks = 100,
     xlim=c(-3, 11),
     main = "Valeur de Z-SCORE pour des séquences aléatoires\n selon une loi uniforme par rapport à 2xi
```

```
ylab = "Nombre de séquences", xlab = "Z-Score",
col = rgb(0.83,0,1,0.7), border = F)
abline(v = c(3.085,8.004), col = "red",lwd=2)
```

Valeur de Z-SCORE pour des séquences aléatoires selon une loi uniforme par rapport à 2xiw


```
top_hit<-head(align_df[order(-align_df$z_score),,drop = F],nb_of_bests)
print(head(top_hit))</pre>
```

La génération a été faite et évaluer à l'aide de **Forsa** pour 10000 séquences aléatoire pondérée en fonction de l'apparition des résidues dans des séquences de protéines Sac7d. La répartition des scores suit une parabole asymétrique, similaire à une loie de poisson. Les scores restent en majorité en dessous du seuil du plus faible Z-score pour un séquence de référence.

1.3. Création des générations suivantes par mutation des meilleures

```
### III. Mutation cycles ----
par(mfrow = c(2,2))
for(cycles in 1:4){
    print(cycles)
    top_hit[,1]<-gsub('-', '', top_hit[,1])
    new_sequences = {}
    new_sequences_tmp = {}
    file_name_1 <<- {}
    cpt = 1
    foreach(i=1:nb_of_bests,.combine = 'c') %dopar% {
        new_sequences_tmp=system(paste("./mutate_seq",nb_of_mutants,top_hit[i,1]),intern = T)
        #new_sequences_tmp = mutate_seq(top_hit[i,1],nb_of_mutants = nb_of_mutants)</pre>
```

```
for (j in 1:(nb_of_mutants*2)){
    if(j %% 2 != 0){
     header <- new_sequences_tmp[j]</pre>
      file_name = paste("Sequence_mutated_0.2_from",i,"_child_",j/2,sep="")
      sequence <- paste(header,"\n",new_sequences_tmp[j],sep="")</pre>
      #new_sequences[i] = sequence
      write(sequence,file = paste("MUT SEQ/",file name,".fasta",sep=""))
   }
 }
}
align_raw_mut={}
align_seq_mut={}
file_names = list.files("MUT_SEQ/")
align_raw_mut <- foreach(i=1:(nb_of_mutants*nb_of_bests),.combine = 'rbind',.inorder = FALSE) %dopar%
  align_seq_mut = system(paste("./SCRIPTS/FORSA/forsa_global MUT_SEQ/",file_names[i] ," OUT_DSSP_back
  system(paste("rm ","MUT_SEQ/",file_names[i],sep=""),intern=T)
  align_seq_mut[1] = paste("Random_Sequence_",i,sep="")
 align_raw_mut[i] = t(align_seq_mut)
align_raw_mut[,4]=str_split_i(align_raw_mut[,4],":",5)
align_df_mut<-data.frame(query = align_raw_mut[,2],</pre>
                         target = align_raw_mut[,3],
                         z_score = as.double(align_raw_mut[,4]))
row.names(align_df_mut)<-align_raw_mut[,1]</pre>
hist(as.numeric(unlist(align_df_mut$z_score)), breaks = 100,
     xlim=c(-3, 11),
     main = paste("\nCycle:",cycles),
     ylab = "Nombre de séquences", xlab = "Z-Score",
     col = rgb(0.83, 0, 1, 0.7), border = F)
abline(v = c(3.085, 8.004), col = "red", lwd = 3)
top_hit <- head(align_df_mut[order(-align_df_mut$z_score),,drop = F],nb_of_bests)</pre>
print(head(top_hit))
write.csv(head(align_df_mut[order(-align_df_mut$z_score),,drop = F],100),file = paste("Top_HITS_",cyc
```


$mtext("Valeur\ de\ Z-SCORE\ pour\ des\ séquences\ aléatoires\n\ selon\ une\ loi\ uniforme\ par\ rapport\ à\ 2xiw",$ # side=3, line=-21, outer=T)

Dès le premier cycle, il est possible d'observer une nette amélioration des Z-scores, avec le pic de la répartition des scores sur le permier seuil. Au bout de 4 cycles, une grande partie des séquences permettent d'obtenir un Z-score supérieur à 8.

III. Conclusion et discussion

Lors de différents tests, il s'est avéré que de garder seulement le top 10 des meilleures z-score permettait d'avoir une convergence des résultats plus rapide vers des scores élevés. Le pool de séquences mutées passant à 10000 séquences au lieu des 100000 proposées. Cela permet également de diminuer grandement le temps de calcul malgré la parallélisation.

Avec un nombre de générations faible, il y a rapidement des séquences obtenant des z-scores élevé qui apparaissent. Des tests sur un nombre plus faible de séquences (1000) ont révélés des résultats similaires, mais avec une variabilité plus importante entre les essais. Les calculs ont été pu être réalisés dans un temps raisonnable (<5 min) sur un ordinateur portable grâce à la parrallelisation avec l'utilisation de 8 threads.

Ainsi avec 4 cycles de génération seulement, on obtient des z-score supérieurs à 9, pour un maximum à 9.735 avec la séquence "AQLPYEFYPGWPMLVDPEGSEKIIPDGDESIPIFSMDGEKITHIVSEKGYVPEWWMT-LADPFSE". Il serait possible ensuite de réaliser de la prédiction de structure par homologie, ayant une structure de référence. Cependant la protéine est très petite et regarder la différence entre les deux modèles sans tenir compte de la flexibilité de la protéine pourrais biaiser la comparaison. En utilisant le l'outil ROBETTA (https://robetta.bakerlab.org/), une modélisation par homologie à 2xiw a été réalisée et obtenant un modèle avec un RMSD de 0.000 avec la référence.

Pour conclure, cette approche utilisant les protéines blocs est efficace pour développer des protéines similaires à une référence mais avec propriété possiblement différentes.

3.2. Liste des séquences après n-cycles

query z_score

AQLPYEFYPGWPMLVDPEGSEKIIPDGDESIPIFSMDGEKITHIVSEKGYVPEWWM9T235DPFSE $\verb|CTLSYEFYYGWPMLVDPEGSCKIIPDGDESIPISSYDGEKIPHIVSEKGYSPDYWQTD| ACPFSE$ AQLMYYFPPGWPTVVDPEHSCKIIPDGDESIPISSHDGEYIPHIVSEKGTSPEWFMT9700DPFSE ASLMTETYPGQDMLYDPEGDYKILPPGDEPICISSMDGMKIQFIQSEKGYDPEKWHDD8ADHRVA AHVMYSLYPGYDMLVDPEGLCKYVPDGDEAIPISSMDGEKIPYTQSEDGYPPEKW9A97FDDPFSE ${\bf AQLPEEFYPGWPYLVDPEGSCKIIPDGDESIPISSLDGERIPHITCEKGYPPEWHMTD. \textbf{ASTPESK}}$ AHAAYCFCPGWQYLVDPEGRCKIFYDGDEEIFISCMEGEFIFTTQSEEGFSPEIWM**D.6A**DPFSP AKLMYEFAPGWDMLLDPSGTCQIIPDGDESIPIISMDGEKIPHTQSPKGYDPEKWM**DMA**DPSSE AKLMVETYPGQDMLNDPEGWYKIIVPGDEFIPIMSMDGEKIQFTVSEKGYDPEKD**K371**ADHFSE ADLPYEFYPGWPMLVDPEASCIIIEDGDEYIPIFSRDGEKIPHIVPEKGYNPEWWET**LISI**DPFVE ASLMDETYPGQDMLMDPEGLYKIIPPGDELIPISIMDGRKIIFPQSEKGYYPEKWKI**DI5A**DHFSE AHWIYFFYPGWDCVVDPQGLCKYVPDGDEPIPISSMDGEKCPHWQSEKGFPPEK**WM**ØLADKFSE AKAMYEFYPGWQMLVDPEGWYKIFYDGDEEIPISCMDGEFIPTTQSEEGYNPEWW489LADPFSG AKLQYEFYPGKWQLVDPEGHEKIIPDGDERIIISMMDGEKIFHTFSEKGYGPSKVL**DEG**WPFSE CHEMYNFYPGRVMLHDPEGLCKAVPDGDEQIPISSMDGEKIPWTQSEDGYPPEKE**MI71**ADPFSE AHLMYEFYQGWDMLLDPNGRCTIICDGDEVTPISLSDGTKIPHYLSEKGYPPEKW**M47**IIVDPFSE AAIMYMFYEGWDMLVDPERLCKIIPDGDNPIMIMSMDGEMIFRYVSEKGYVPEW**WM**WLRDVFSE ASLMLHTYNGQDMLNDPEGCYKIIPPGDFCIPISWMDGFPIQFTQSEKGEDPEKW**KIDL**IADFRSE $A MEMYNFYPGWDMLVDPEGLCKYVPDGDEPIAISSMDGEFIPHTQSPKGYPPRK \verb|WMR3D| LADPFSE|$ AKIMYELYPGWDTLVDPERLCKIIPDGRNCIMIMSMDGEMIVGYVSEKGYPPEWWM#20%RDPFSE ASEMYNFYPGWMFLVSPEGLCWAVYDGDEEIPILSLDGEKITHTHSEQGTPPEKW**MDI**KDPFST AHEMYNFYPGWDPLVDPEGLCKYVPDGDEEIPISERDGSKVPHTMSEKGYPPEK**W.G78**LADWFFC AELMYEFAPGWDMLVHPSGKVKIIPDGDEYIPISSMDGEKIPHTWSPKGICPEKWM9F37ADPWSE AKGDDEFYPGKWQLVDPEGREKIIPDGDERIIISMMDGEKIPHTMSTKGYGPDKV**A**I36MVMFSE ANEKYFFYPGWDMLVDPEGRCWMIYLGDEEIHIMRPDGEKITNYYNENGYDPED**WM**DCAQPFTE ANRKYFFYPGWDMLVDPEGRCWMICNGDEEIHISFMDGYKITHLYNEKGIDPEKWMAXLHVPFYE AQLPYEFYPGWPHLVDPEGSCKIIPDGDVSIPVSVVDGEKIPHIVSEKGYVPEWCM TRADRFSE

query Z score

AHEMYNFYPGWHMLVDPEGLCWPVPDGDEEILISSMDGEKIPHPQSEKGYPPEKWMM28LNDPFSE AQRPYEFYPGWPLLVDPEGSAKIIPDGDESIPIMSMDGEKIPHIVSAKGKVPEYWMŒBDVPFSE AQRPYHIYPGWPYLVDHEGSCKIIPDGDESIPIVIKDGEKIPHIVSEKGYVPEWIMTI9AX97PFSE YSLMTFTYPGGMMLTDPEGMYLIVPPGDEEIPISSMDGEKIQFIQSEKGYDPEKDC**D29**ADSFMG AQLKYEFYPGYPMLVDPEGSQKIYPDGDETIPICSDDGLKINHIVSEHGYVPEWWMDZOFPFSE NKRQYEFMPGKWQLVDPEGREKIIPDGDSRIIISCMDGEKIPFTDSEKGYGPQKVA**D2A**VPFSE AHLMYYFCFGWDMYVDPEGRVKIIPDGDEQTPIVLWDGEKIPHPLSEKGYCPEKL**MZ6B**YDIFSS ASLMTETKPGQDMLLDPEGDYKIIPPGDEEIPISSFDGEEIQFLQSEKGIDPEKWKD**9LPGS**CFCE ANLKYFFYPGWQMLVDPEGCSWMIYLGDEEYHIPTMDGEIVTHTYNEKGEPPEAQ**RA**LADRFYS AQLPYEFYPGWPMLVDPEGSCKIIPDGDESIPISSMDGEKIPHIVSEKGYVPEWWM**9**:D**4**DPFSE AQWPYEADPGCPYLVDPEGSNNIIMDGGESIPIIQMDGEKIPHIVSEKGYVPEDLM®MA®IFSE AKIMYEFVPGFDMLVDPERLQCIIPDGDNCIMISSMNGESIMRYQSNKGYNPEWWMD\$7LEPFSE AQLPYESYPGWPLLVDPEGSCKIIPDGDESIPISSMDGEKIPIIVSEMGYVPEWWMT9.2433HECF AKIMMEFVPGWDGLVCPEGLCLFIPDGDNCIMIMSMNGEMIYRYQSWKGYPPEK₩₩22LRDPTSE ADTPYEFYPGWPMLVDPEGSKKIIPDGDESIPWCSGDGEKIPHIVCELDYDPEWW MIZIGACHFSE AQLWYEFYPGWPMLVDPEGSCKAEWDGDEKIPISSMDGEKIPCILSEKGSPPEWW9A2DEADHFSE AQFPYEFSPGHIMHVGPAGACKIIPDGDESIPISSMDGEKICHIVSEKGYPPEWWYT**F.20**IPFSP AKLMYNFAPGWDMLVDPSGQCKIIIDGDERILISSMDGEKIPHTASPKGYHPEKWMDID&DFFSE AKWQYESWDGKWQLVDPEGREKIIPDGDEVIPISMMDGEKIPWTASEKGYGPMK%A97LAVPHSE AKLQYEFYPGKWQLVDPEGREKIWPDGDKRIIISMMDGLKIPHTKSEKGYHPQKVD**D**\$\textbf{b}\$AVPFWF AGEPYNFYPGWDMLIDPEGLCKYVPDGDEYIPPSSMDGEKIPRTQSESGYPPEKW9MI9LHAPFSE AKLMTETYPGQFMLNDPEGDPKIIQPGDEEIPISSMDGEKIKFTWSEKGYDPEKW**KDT**9ADHFWE AKMMREQYRGWDMLVDPEALCKVIPDGRWCIMIMSMDGECIPFYYSIKGYDPEW WMB LRDIFSRAHLMYEFYFGWDMLVDPEGRCKIIPDGDEEKEISLPDGEKIPHYMSEKGYSPEDWMD77VDPFSA VKLQYQTYPGKWQLVDPEGRTKIIPDGDERIIICMCDGEQIPFTDSETGYGPQKVA**G**17**4**VPFSE AKAIWEFYPGWQMLVDPEGRCKIFYDGDEVIPITCQDGEFIPTEQSEYGYTPDKW**MIDL**ADPFSG AHLMYEFYFGWDVLVDPRGRTKIIPDGDSWTPIILRDGEKIPHYGSEHGYCPEKWWD6:CDPFSE AHEMYNFYPGWDMLVDPEGLQKYVPDGDEEHPWFSMDGQKIPHQQSEKGYPPE**KW2**DLADFFYE ANLKYCRYTGWDMLVDPEGRCWMIYNGDEQIHIIQMDGEKITHTYNKKGFDPEK\$WWDLADPFPE MKIMEWFYPGWIMLVDPERLCKIIPPGDNPIEIMSMDGEMIPRYQSEKGVVPEWW**MID&**FMPSQE AQLPYEFLPGWPMNVDPEGNCKIIPDGDESELISSMKGSKIPHIVSPKGYDPKWIM**TIA**DPFQE WNLLYFFYPGWDMLVDPEGRCMMIYDGREEIHIMQMDGEKITHIYNEKGYDPEK**WA6**LADPFYE AQWPYEAYPGWPMLVDPEGSCKTIPDGDESIPWSSMDGEKIPHWVSEDGYVPEW9MY9YLADPFSE AKIMYKFYPGWDMLVDPEQLTVIFLDGDNCIMIMSMDGQMIPRYTSEKGYVPESW9MB9/TDPFSE ASFMTETYPGQDMLADPEGDYKEIPPGDGLIPISSMNGEWIIFTQSEKGYDPEKW**ØD&**DVMSE $A QLPYERYPGWPMLVDPEGSCKVVPDGDESIPISSMDGEKIPHIMSEKGYVPEWW \ref{Miss} ADPFST$ AKLQYEFYPGKWQFVDPDGREKIVPDGFERIIFFMMDGEKIPHTPCEEGYHPQRT9ADXDAVHGSE AHEMLHKQPGWAMLPDPEGLCKYVKDGDEEIVISSYDGESIPHTQSEKGYPPEQW**HI32**ADNFSG AKLQYPFYPGKWTVVDPKDREKIIPDGDERIIISMMDGEKIPHSDSPKGYGPQKVADD2AVPFSE AQLPYEFYPGWPYLVDPEGSCAIIPDGDWSAVVSSMDGEKPPHIVSEKGYVPEWWMTNADPFSW IHEMYNFYPGWDMLVCPEGLCKYVPDGDEEIMISIMDGEWIPATQSEAGYPPEKW**MD2**ADPFSG AHLYYEFYFGWDWLVDPEGRCKIVPDGDNETPIWLWDGQPIPHYLSEKGNCPEK**W.MØ**LVDPFSE AKLNWEFYPGKWQLVDPEGREKSIPWGDERIIIVMMDGETIPITDDEKGYGPQKV**ADI**5AVPFSE AHLMYEFYFGWVMLVDPWGRKKIIPDGDEEWPISEWDGEPIPVYLCEKGQCPEK**WM**DLVQPFSD ARLPYEFYPGLPELVDPEGRCKIIPDGDISIPISSMDGEWIPHIVSEKGYAPEWWMT**9.A93**PFSE AKLMYEMAPGWDMLVDPSGKCKIIPDGDEKICIVSMDGEKIPHTQSPKCYHPEKWMDLADCFSG LKIMYEFTPGWDMVVDPERLGAIIPDGDNCIMIMSMDGEMIPRYQSEKGYCPEW**WM92**LSDPLSE AKIFYIFYPGWRMLVDPERLCKIIPDGENIIMIMSMDGEMIPRYYNAKGYYPENWM**DDI**RHPFSW AHENDNFYPGEIGLVDPEGLCKYVPDGDECIPISSSDGEKIPHTQSEKGYPPEKWM**97.D87**DPFQE AVLMYEFYPGWDMLKDPEGRQKIIPDGDEDIPICSPKGEKIPHTQSEKGYPPEHW@ID8AGMNSA ${\tt AGLQYEHHPGKWQLVNPEGREKIIPDGDERIIISMMDGEKVPHTPSEKGYGPQKV \textbf{\textit{\textbf{y.D}}} \textbf{\textit{\textbf{y}}} {\tt AVHFSE}}$ AEIMFYFYPGWDMLVDPERLCYIIPDGDNCIMIMSMDGECIPFFQSEKGYVPEWW**M075**RKPFNE

query z score

AALPPAEYPGQPMLVDAEGSDKIIPEGDESIPISSMDGEDIIHIVSEKGYVPEWWMT**\!\! ATD**PFSE AHLMTETYPGQDMLNDPEGDYYIIPPGDFEIPISSIDGEKIQFTQSEKGLDPEKWKINOODHFSQ WELQYEFYPGKWQLVDPEGREHHIWDGDERIIISMMDGEKIPHTMSEKGYKPQKQ.A65YAVPFSN AKLQYEFQPGKWQLLDPEGREKAIPDGDEWIIISYMDGEVIPHTKSEKGYGPQKV**A.D38.**VPFSE AHECYNFYPGWDMLVDPEGLCKPVPSGDEFIPESIMNGEKIPHTQSEKGYPPEKW**X/0D**/6ADPFSE AQLPYEFMPGWPMLVDPEGSCKIIPDGDGSIPISSMDGEKIPRIVSEKGYVPEWRM**T.EM**DPFSE RKAMYEFYPGWQMLVDPEGRRKIFNDGDEPIPISCMDGEFIPTTQSEEGYVPEKWSQLEBADPFSGAMMAR AND STANDARD STANDA $APLPYEFQPGWCYLVDPSGKEKPIPDGEERCPINSMDGNKIPHTQSPKGYNPEKL \verb|MD45| APLPYEFQPGWCYLVDPSGKEKPIPDGEERCPINSMDGNKIPHTQSPKGYNPEKL | MD45| APLPYEFQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDPSGKETQPGWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDFWCYLVDF$ AQLFYEFYPGWPMLVDPAGSQKIIPDGDHSIPISSMDGEKIPVIVSEKGYVSEWWM**T.04M**PFSE AKAIYEFYPGWQMCVDPEGRCKIFMQGDEEIKISCMDGEFIMTTFSEEGYVPEKW\$\mathcal{Q}\$044.AALASG AHLMYEFAPGWDVGVDPSGRCWIIPDGDARVPISSMDGAHICWTQSPKGYNPEKWM2FPDPFSE AQCPYEFYPGTPMLVDPESSCRIIDDGDESIPISSYDGEPVPHIVSEKGYQPEWWMDIQADPFSE AKLQHHFYPGKWGLVAPEGRKKIIPDGDERQIISMMDGEKIFHATSEKGYDPQKVANDBAVERSE FNLKYFFFKGWMMLVDPEGRCWMIYLGDEMHIRSQMDGAKITCTYNEKGYDPE**ISWSY**IDLAGTFYE AKLQYEFQPGKWHLVDPEGREKIIPDGDERIIISMMDGEKIPMTDSEKGYGPQKDADD&VPFSE ACLKTETYPGQDMLNDPEGQYKIVPPGDQEIPISSMDGEKIQFTQSEKGYDPEKW**X02**8AWHFSE AQLTYEFYPGWPKLVDPEGRMKIIPDGDESIPYSSMDGEKIPHIVSEKGMVPEWW**MULI**PDTFSE QDQTHEFKPGKWQCFDPELREKIIPDGEERIIIPMMDGEKPIHVMSEKDYCPQKV431002AVPFSE ANGMYNFYPGWDMLVDPEGLTKYVPDGDEEIPYSSMDGEKIAHTVSEKGSTPEKWM2HLEDPQSE AHEMQNFYPGWDMLVDPEGLCMYVPDGDEIQPISSMNGEKIRHDMSEKGFPPEKW02DLWDPFSQ AHEMYNFYPGWDMLVDPEGLCKRVPDGDEMIPISSMDGEKIPHTQTEKGYPPEK W. O2DLADPFSE