

Pauta de corrección Control 1

P1. (a) (2.0 puntos) Usando los axiomas de cuerpo de los números Reales, los teoremas de unicidad de los elementos neutros e inversos y la propiedad $x \cdot 0 = 0$, demostrar que:

$$\forall a \in \mathbb{R} \setminus \{0\}, \quad (-a)a^{-1} = -1.$$

Solución: Hay que demostrar que el opuesto de 1 vale $(-a)a^{-1}$. Es decir:

$$PDQ: 1 + (-a)a^{-1} = 0.$$

Esto es cierto ya que:

$$1+(-a)a^{-1}=a\cdot a^{-1}+(-a)a^{-1}$$
 ; por Axioma E.I multiplicativo
$$=[a+(-a)]\cdot a^{-1}$$
 ; por Axioma Distributividad
$$=0\cdot a^{-1}$$
 ; por Axioma E.I. aditivo
$$=a^{-1}\cdot 0$$
 ; por Axioma Conmutatividad
$$=0$$
 ; por propiedad $x\cdot 0=0$

0.5 pto.

0.3 pto

0.3 pto

0.3 pto

0.3 pto

0.3 pto

(b) (2.0 puntos) Determine cual(es) de las siguientes dos implicancias son ciertas para todo $x \in \mathbb{R}$:

i)
$$x^2 < x \implies x^3 < x^2$$

ii) $x^3 < x^2 \implies x^2 < x$

$$ii) \quad x^3 < x^2 \implies x^2 < x$$

Justifíque su respuesta.

Solución: Caso (i): Con el dato $x^2 < x$ y la propiedad permitida $x^2 \ge 0$, se deduce que x > 0, por lo tanto se puede multiplicar por x (segunda propiedad permitida), de donde se deduce $x^2 \cdot ... < x \cdot x$. Por lo anterior, la implicación (i) es verdadera. 1 pto. Caso (ii): La desigualdad $x^3 < x^2$ es equivalente a: $x^2(1-x) > 0$ la cual es cierta para todo $x \in$ $(-\infty,0) \cup (0,1)$. Pero los reales negativos no satisfacen $x^2 < x$. Por lo tanto la implicación (ii) es falsa. **Método alternativo:** Se puede ver que, por ejemplo, x=-1 satisface la desigualdad de la izquierda $(-1)^3 < (-1)^2$ es verdadera, pero no la de la derecha $(-1)^2 < (-1)$ es falsa. Por lo tanto la implicación (ii) es falsa 1 pto. (c) (2.0 puntos) Resuelva la inecuación

$$\frac{x+1}{|x-2|} \ge 2$$

Solución: El módulo tiene como punto de corte x=2. Por lo tanto se resuelven dos inecuaciones por separado.

Caso 1: $x \in (-\infty, 2)$:

Aquí la inecuación es equivalente a

$$\frac{x+1}{2-x} \geq 2 \iff \frac{x+1}{2-x} - 2\frac{2-x}{2-x} \geq 0 \iff \frac{3x-3}{2-x} \geq 0 \iff x \geq 1$$

Luego: Solucion 1: $x \in [1, 2)$

1 pto.

Caso 2: $x \in [2, \infty)$:

Aquí la inecuación es equivalente a

$$\frac{x+1}{x-2} \ge 2 \iff \frac{x+1}{x-2} - 2\frac{x-2}{x-2} \ge 0 \iff \frac{x-5}{x-2} \le 0$$

Luego: Solucion 2: $x \in (2,5]$

1 pto.

Por lo tanto: Solución Total: $x \in [1, 2) \cup (2, 5]$

Solución alternativa:

Descartar desde el principio x=2, con esto, en $\mathbb{R}\setminus\{2\}$ la inecuación es equivalente a

$$2|x-2| \le x+1$$

Esta inecuación se puede resolver usando los puntos de corte de arriba, o usando las propiedades de módulo. En el último caso, la inecuación es equivalente a:

$$\iff 2x - 4 \le x + 1 \quad \land \quad 2x - 4 \ge -x - 1$$

1 pto.

 $\iff \qquad x \le 5 \qquad \land \quad 3x \ge 3$

 $\iff x \in [1, 5] \setminus 2$

1 pto.

P2. (a) (3.0 puntos)) Determinar el Lugar Geométrico de los puntos cuya distancia al punto (5,0) es la mitad de su distancia al punto (-1,3).

 $\begin{aligned} & \text{Solución:} \ \ P(x,y) \in L.G \text{ ssi se cumple:} \\ & d(P,(5,0)) = \frac{1}{2}d(P,(-1,3)) \iff \sqrt{(x-5)^2 + y^2} = \frac{1}{2}\sqrt{(x+1)^2 + (y-3)^2} \\ & \iff 4[x^2 - 10x + 25 + y^2] = x^2 + 2x + 1 + y^2 - 6y + 9 \\ & \iff 3x^2 - 42x + 3y^2 + 6y + 90 = 0 \\ & \iff x^2 - 14x + y^2 + 2y + 30 = 0 \end{aligned}$

- (b) Considere los puntos A(3,0) y B(0,2). Considere un punto móvil $P(\alpha,0)$ sobre el eje OX, donde $\alpha \in \mathbb{R}$ es un parámetro indeterminado.
 - i) (1.0 punto) Determine la ecuación de la recta L_1 paralela al trazo AB que pasa por P en términos del parámetro α .

Solución: L_1 pasa por $P(\alpha,0)$ con pendiente $m_1=m_{AB}=-\frac{2}{3}$ Ecuación $L_1:y=-\frac{2}{3}(x-\alpha).$ 0.5 pto

ii) (1.0 punto) Determine la ecuación de la recta L_2 perpendicular al trazo AB que pasa por el punto simétrico de P respecto al origen (o sea, pasa por $P'(-\alpha, 0)$), también en términos de α .

Solución: $L_2 \text{ pasa por } P'(-\alpha,0) \text{ con pendiente } m_2 = -\frac{1}{m_{AB}} = \frac{3}{2}.$ Ecuación $L_2 : y = \frac{3}{2}(x+\alpha).$ 0.5 pto

iii) (1.0 punto) Encuentre el lugar geométrico de las intersecciones de L_1 con L_2 . Observación: En iii) debe establecer la intersección de L_1 con L_2 y luego eliminar el parámetro indeterminado α .

Solución: $(x,y) \in L_1 \cap L_2$ ssi $y = -\frac{2}{3}(x-\alpha) = \frac{3}{2}(x+\alpha)$. Es decir $\alpha = \frac{3}{2}y + x = \frac{2}{3}y - x$.

O sea la ecuación del L.G es: $\frac{3}{2}y + x = \frac{2}{3}y - x \iff y = -\frac{12}{5}x$ que es una recta por el origen de pendiente $m = -\frac{12}{5}$.

Tiempo de trabajo: 2 horas.