無機化学

第Ⅰ部

非金属元素

1 水素

無色無臭の気体 *1 最も軽く、水に溶けにくい

1.1 同位体

¹H 99% 以上 ²H (D)0.015% ³H (T) 微量

1.2 製法

- ナフサの電気分解 工業的製法
- 赤熱した<u>コークス</u>に<u>水蒸気</u>を吹き付ける <u>工業的製法</u> $C + H_2O \longrightarrow H_2 + CO$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 \, \mathrm{H_2O} \longrightarrow 2 \, \mathrm{H_2} + \mathrm{O_2}$
- \bullet イオン化傾向が H_2 より大きい金属と希薄強酸
 - $\textcircled{\textit{fl}}$ Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow

1.3 反応

- 水素と酸素 (爆鳴気の燃焼)
 - $2 H_2 + O_2 \longrightarrow H_2O$
- 加熱した酸化銅(Ⅱ)と水素

$$CuO + H_2 \longrightarrow Cu + H_2O$$

• 水酸化ナトリウムと水

 $NaH + H_2O \longrightarrow NaOH + H_2$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

- 2.1 性質
 - 無色・無臭
 - 第 18 族元素であり、電子配置がオクテットを満た すため反応性が低い。
 - イオン化エネルギーが極めて大きい。
 - 電子親和力は極めて小さい(ほぼ0)。
 - 電気陰性度は定義されない。
- 2.2 生成

 40 K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 ${\rm N_2,\,O_2}$ に次いで 3 番目に空気中での存在量が多い (約 1%)。

 $^{^{*1}}$ 融点 14K 沸点 20K

3 ハロゲン

3.1 単体

3.1.1 性質

I_2	\forall	強(弱)	恒	固体	黑紫色	昇華性	高温で平衡状態	加熱して触媒により一部反応	<u>反応しない</u> Klaq には可溶	ヨウ素デンプン反応で	青紫色
Br_2			↑	液体	赤褐色	揮発性	2つ、	<u>触媒</u> により反応	一部とけて反応	& D=D	C≡C の検出
Cl_2	+	*	\	気体	黄緑色	刺激臭	<mark>常温</mark> でも <mark>光</mark> で	爆発的に反応	一部とけて反応	CIO_12	殺菌・漂白作用
${ m F}_2$	小	弱(強)	低	気体	淡黄色	特異臭	冷電所でも	爆発的に反応	水を酸化して酸素を発生 激しく反応	保存が困難	Kr や Xe と反応
化学式	分子量	分子間力(反応性)	沸点・融点	常温での状態	色	特徴	登 日 ス 日	112 ころぶん	水との反応	衆田	

3.1.2 製法

- フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液の電気分解 工業的製法
- 水酸化ナトリウム σ 電気分解 $\overline{\mathbf{L}}$ 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 O \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- 酸化マンガン(IV)に濃硫酸 を加えて加熱 $\mathrm{MnO}_2 + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl}_2 + \mathrm{Cl}_2 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$

• 高度さらし粉と塩酸

$$\begin{split} &\operatorname{Ca(ClO)_2} \cdot 2\operatorname{H_2O} + 4\operatorname{HCl} \longrightarrow \operatorname{CaCl_2} + 2\operatorname{Cl_2} \uparrow + \\ &4\operatorname{H_2O} \end{split}$$

● さらし粉と塩酸

 $\begin{aligned} &\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \, \longrightarrow \, \operatorname{CaCl}_2 + \operatorname{Cl}_2 \uparrow \, + \\ &2\operatorname{H}_2\operatorname{O} \end{aligned}$

• 臭化マグネシウムと塩素 $\mathrm{MgBr_2} + \mathrm{Cl_2} \longrightarrow \mathrm{MgCl_2} + \mathrm{Br_2}$

• ヨウ化カリウムと塩素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- 塩素と水素 ${\rm H_2 + Cl_2} \xrightarrow{\Re {\rm E} {\rm e} {\rm H} {\rm Colo} {\rm E}} 2\,{\rm HCl}$
- 臭素と水素 $H_2 + \mathrm{Br}_2 \xrightarrow{\bar{\mathrm{All}}\, \mathrm{C}\bar{\mathrm{C}}\bar{\mathrm{C}}} 2\,\mathrm{HBr}$
- ヨウ素と水素 $\mathbf{H}_2 + \mathbf{I}_2 \xrightarrow{\stackrel{\text{$\widehat{\mathbf{a}}} \sqsubseteq \mathbf{c} = \mathbf{m}}{}} 2\,\mathbf{H}\mathbf{I}$
- フッ素と水 $2 \, F_2 + 2 \, H_2 O \longrightarrow 4 \, HF + O_2$
- 塩素と水 $\text{Cl}_2 + \text{H}_2 \text{O} \Longleftrightarrow \text{HCl} + \text{HClO}$
- 臭素と水 $Br_2 + H_2O \Longrightarrow HBr + HBrO$
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応

$$I_2 + I^- \longrightarrow I_3^-$$

3.1.4 塩素発生実験の装置

 $\rm MnO_2 + 4\,HCl \xrightarrow{~~\Delta}~~MnCl_2 + Cl_2 \uparrow + 2\,H_2O$ $\rm Cl_2, HCl, H_2O$

↓ 水 に通す (HCl の除去)

 Cl_2,H_2O

 \downarrow <u>濃硫酸</u>に通す $(H_2O$ の除去)

 Cl_2

3.1.5 塩素のオキソ酸

3.2 ハロゲン化水素

3.2.1 性質

HI		-35°C		ヨウ化水素酸	強酸	インジウムスズ	酸化物の加工
HBr	無色刺激臭	D∘29−	よく溶ける	臭化水素酸	/ 強酸 /	半導体加工	
HCl		-85° C		塩酸	《 強酸 ~	の検出	各種工業
HF		$20^{\circ}\mathrm{C}$		フッ化水素酸	弱酸	と反応	ポリエチレン板
化学式	色・臭い	沸点	水との反応	水溶液	(強弱)	用途	

3.2.2 製法

• <u>ホタル石</u>に<u>濃硫酸</u>を加えて加熱 ${\rm CaF_2 + H_2SO_4} \xrightarrow{\Delta} {\rm CaSO_4} + 2\,{\rm HF} \uparrow$

● 水素と塩素 工業的製法

 $H_2 + Cl_2 \longrightarrow 2 HCl$

<u>塩化ナトリウム</u>に<u>濃硫酸</u>に加えて加熱(揮発性酸の 追い出し)

$$\mathrm{NaCl} + \mathrm{H_2SO_4} \xrightarrow{\quad \Delta \quad} \mathrm{NaHSO_4} + \mathrm{HCl} \uparrow$$

3.3 ハロゲン化銀

3.3.1 性質

•	11.7				
	化学式	AgF	AgCl	AgBr	AgI
	固体の色	色	色	色	色
	水との反応				
	光				

第川部 金属元素