



# TEKNOFEST 2020 ROKET YARIŞMASI 1,5 ADANA Atışa Hazırlık Raporu (AHR)



# Takım Yapısı





Görsel 1. Tuz Gölü Atış Alanı

1,5 Adana Yüksek İrtifa Roket Ekibi, teknik ve profesyonel mühendislik becerilerini dizayn, analiz, üretim ve test süreçlerinde değerlendiren öğrenci temelli bir proje olarak, Prof. Dr. Hüseyin Akıllı danışmanlığında kurulmuştur.

Takım yapısı Çukurova Üniversitesi Makine Mühendisliği ve Elektrik-Elektronik Mühendisliği Bölümü lisans öğrencilerinden ve mezun mühendislerden oluşmaktadır.

Özgün roket ve aviyonik tasarımlarını süreklilik misyonu ile yürüten ekip, genç takım arkadaşlarına mentorluk yaparak teori ve pratik arasında pürüzsüz bir geçiş sağlamakta, ülkemizde roketçilik tutkusunun gelişmesine katkıda bulunmaktadır.



# Takım Yapısı





"Bir Roket Dönemi" çalışma takvimi, takımın ikinci yılında 2020 TEKNOFEST Gaziantep - Roket Yarışmaları başvurusu ile başlamıştır.

2019 Roket Yarışmaları Alçak İrtifa ve Yüksek İrtifa finalisti olarak evine dönen ekip, kendi finansal sistemi çerçevesinde Starline ve Firetech firmalarının sponsorluğu ile tam bağımsız olarak yönetimini sağlamayı başarmıştır.

Intercollegiate Rocket Engineering Competition (IREC) gibi uluslararası yarışmalarda boy gösterme hayali kuran 1,5 Adana ekibi, 2021 Spaceport America Cup (SA Cup) başvurusundan hemen önce "Sounding Rocket" olarak tabir edilen ses üstü hızlarda roket tasarımı konusunda kendini yetiştirmekte, isminin yarattığı sempatiyi kendi ülkesinde duyurmaya devam etmek istemektedir.

Takım Kaptanı **Bumin Han VARLI**, Çukurova Üniversitesi Makine Mühendisliği Bölümü 4. Sınıf; **Hüseyin Karaduman** Çukurova Üniversitesi Elektrik Elektronik Mühendisliği Bölümü 2. Sınıf öğrencisidir.

**Anıl Çetin, Tarık Yalım** ve **Burak Bala** Çukurova Üniversitesi Makine Mühendisliği Bölümü mezunu, yarışma tecrübesi olan mühendislerdir.

Görsel 2. Takım Yapısı Diyagramı

**Burak BALA** 



# KTR'den Değişimler



Tüm roket sistemleri ve alt sistemler KTR'ye uyumlu şekilde üretilmiştir. Herhangi bir değişim yoktur.



#### **Roket Alt Sistemleri**



| Bileşen                 | Üretim / Tedarik | Detay                                                                                                                                     |
|-------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Burun Konisi            | + / +            | Tüm alt sistemleri ile üretilmiştir, burun konisi<br>elektronik sistemin montajı 15.08.2020- 22.08.2020<br>tarih aralığında yapılacaktır. |
| Gövdeler                | +/+              | Tüm alt sistemleri ile üretilmiştir, entegrasyon gövdesi ile montajı 15.08.2020- 22.08.2020 tarih aralığında yapılacaktır.                |
| Motor Kundağı           | +/+              | Tüm alt sistemleri ile üretilmiştir, montajı<br>tamamlanmıştır.                                                                           |
| Motor Tutucu (Retainer) | +/+              | Tüm alt sistemleri ile üretilmiştir, montajı 15.08.2020-<br>22.08.2020 tarih aralığında yapılacaktır.                                     |
| Ayrılma Sistemi         | +/+              | Tüm alt sistemleri ile temin edilmiştir, testler için<br>montajı tamamlanmıştır.                                                          |
| Kurtarma Sistemleri     | + / +            | Tüm kurtarma sistemleri temin edilmiştir.                                                                                                 |
| Aviyonik Sistem         | +/+              | Özgün ve ticari sistemlerin tamamı temin edilmiştir.<br>Roket entegrasyonu 15.08.2020- 22.08.2020 tarih<br>aralığında yapılacaktır.       |

Tablo 1. Roket Alt Sistemleri Üretim Tedarik Açıklamaları



# **OpenRocket / Roket Tasarımı Genel Görünüm**





Görsel 3. Open Rocket Görünümü



CAD Görünüm

Görsel 4. CAD Görünümü



Gerçek Görünüm

Görsel 5. Üretim Görünümü





## **OpenRocket / Roket Tasarımı Genel Görünüm**



Görsel 6. Roket Alt Sistemler Acıklamaları



Tablo 2. Roket Alt Sistemleri





# Roket Alt Sistemleri Mekanik Görünümleri ve Detayları



# Burun ve Faydalı Yük Mekanik Görünüm











Görsel 7. Burun Konisi CAD ve Üretim Görünümü

Görsel 8. Faydalı Yük CAD ve Üretim Görünümü



#### **Burun – Detay**



Burun Konisi alt sistemleri sırası ile Burun Ucu, Bağlantı Tiji, Sabit Disk, Burun Konisi Aviyonik Sistem ve Kurtarma Diski şeklindedir. Tüm alt sistemler üretilmiştir. Aviyonik Sistem ve Kurtarma Diski montajı yapılacaktır.

Burun Konisi Dış Yapısalı, Karbon Fiber malzeme ile 2 adet üretilmiştir. Eklemeli imalat yöntemi detayları gereğince, yapısalın rijitliği ve malzeme sarfiyatının azalması için dikey/yatay iç unsurlar ile tasarlanmış ve üretilmiştir. Burun Konisi omuz uzantısı, burun konisi operasyonda ayrılan bir parça olduğu için çapın 1.5 katı uzunluğu kuralına uygun olarak tasarlanmış üretilmiştir. İnfotron 3D Yazıcı firmasının, Fortus 380mc Carbon Fiber Edition marka Karbon Fiber 3D Yazıcı ile üretimi tamamlanmıştır. Fortus 380mc Carbon Fiber Edition, FDM Naylon 12 Karbon Fiber ve ASA ile basıyor. Karbon katkılı kompozit malzemenin gücüne ve sertliğine ihtiyaç duyan fonksiyonel prototipler, üretim parçaları ve dayanıklı takımlar için hedeflenen bir çözümdür.

Alüminyum alaşımı 6063 serisi malzemeye sahip burun ucu, kalıp ile üretildikten sonra, CNC Torna işlemi ile nihai halini almıştır. Metal uç üretimi, Zahit Alüminyum firması ile tamamlanmıştır. Burun Konisi iç yapısalların montajını sağlayabilmesi adına 5mm diş açılmıştır. Bu yapısal 2 adet üretilmiştir. 241 Mpa çekme mukavemeti, 2.7 g/cm3 yoğunluk ve 582 °C ısıl dayanıma sahiptir. Tüm sistemlerin detayları montaj video sunda gösterilmiştir, sticker vs. gibi bir uygulamaya bu sebeple gidilmemiştir.



# Faydalı Yük ve Faydalı Yük Bölümü – Detay



Faydalı Yük, bilimsel bir amaca hizmet etmesi amacı ile tasarlanmıştır. KTR'de detayları verilen sistem, şartname kuralları çerçevesinde 4 kg kütleye ve malzeme seçimlerine sahiptir. İnsan beyninin maksimum ivme karşısında tepkisini ölçmek amacı ile tasarlanan silikon beyin, malzeme özellikleri ile insan beyninin mekanik özelliklerine benzemektedir; kuvvete duyarlı sensörler ile bir deney düzeneği hazırlanmıştır. Malzeme seçimi Kurşun, Alüminyum Diskler, Elektronik Ürünler şeklindedir. Tüm alt sistemlerinin üretimi tamamlanmıştır. Entegrasyonu sağlanacaktır. Tüm sistemlerin detayları montaj video'sunda gösterilmiştir, sticker vs. gibi bir uygulamaya bu sebeple gidilmemiştir.



#### Kurtarma Sistemi Mekanik Görünüm







Görsel 9. Açılma Sistemi CAD ve Üretim Görünümü



Görsel 10. Kurtarma Sistemi CAD ve Üretim Görünümü



#### Ayrılma Sistemi – Detay



Raptor Peregrine CO2 Sistemi, diğer sistemlere göre güvenilirdir. Tetiklenme sırasında tepki süresi oldukça düşüktür. Bu sayede Apogee noktasına mümkün olan en yakın konumda ayrılma gerçekleşir. Yanma tepkimesinin gerçekleşebilmesi için gerekli olan oksijen miktarı ve hava yoğunluğu, irtifa arttıkça azalır. Bu sebeple, model roketçilikte yüksek gramajlarda barut kullanılması tavsiye edilmeyen bir uygulamadır. Raptor sisteminde kullanılan barut miktarı az olduğu için, yanma tepkimesi açısından sorun teşkil etmeyecektir. Raptor sistemleri yedekli şekilde temin edilmiştir. Bir adet montajı testler için sağlanmıştır, yarışma montajı sağlanacaktır. Tüm sistemlerin detayları montaj video'sunda gösterilmiştir, sticker vs. gibi bir uygulamaya bu sebeple gidilmemiştir.



#### Paraşütler – Detay



Tüm paraşütler ve şok kordları Havadan İkmal Bakım ve Depo Komutanlığı Üsteğmen Hasan Şahan Kışlası (Ankara) tarafından tedarik edilmiştir. Eksiksiz olarak tedariği ve üretimi tamamlanmıştır. Şok Kordları roket için 3,5 Ton / faydalı yük için 1,8 Ton dayanıma sahiptir. Tüm sistemlerin detayları montaj video'sunda gösterilmiştir, sticker vs. gibi bir uygulamaya bu sebeple gidilmemiştir.



## Aviyonik Sistem Mekanik Görünüm











Görsel 11. Aviyonik Sistem CAD ve Üretim Görünümü



#### **Aviyonik Sistem – Detay**



Aviyonik sisteme ait tüm donanımlar temin edilmiştir, özgün PCB kart basım süreci, profesyonel kart basımı ile devam etmektedir. 3 Ağustos 2020 tarihinde profesyonel olarak üretilen 10 adet PCB üzerine sensörler gömülecektir. Aviyonik donanım test video'sunda tüm detaylar mevcuttur: <a href="https://www.youtube.com/watch?v=Y-oW-mYeZNM">https://www.youtube.com/watch?v=Y-oW-mYeZNM</a>



# Kanatçıklar Mekanik Görünüm







Görsel 12. Kanatçıklar Mekanik CAD ve Üretim Görünümü



#### Kanatçıklar – Detay



□ Kanatçıklar, CAD modelinde gösterildiği şekilde, bağlantı arayüzü ile yekpare bir biçimde üretilmiştir. Silindir Alüminyum alaşımı 6063 serisi malzemesinden oluşan kütükler, 5 eksenli CNC ile işlenerek kanatçıkların nihai halinin verilmesi sağlanmıştır. Çift taraflı kama kesit geometrisinin hassas bir biçimde verilebilmesi için otomatik tezgahlar seçilmiş, laboratuvar çalışmaları yapılamadığı gerekçesiyle ÖTR'de bahsedilen üretim yönteminden vazgeçilmiştir. 5 adet üretimi yapılmıştır, 4 adet montajı yapılacaktır. Kanatçık üretimi Şekil 6. da detayları verilmiş firma tarafından gerçekleştirilmiştir. 241 Mpa çekme mukavemeti, 2.7 g/cm³ yoğunluk ve 582 °C ısıl dayanıma sahiptir. Kanatçıkların üretimi ve perçinler / loctite ile montajı tamamlanmıştır.



### **Roket Genel Montaji**



☐ Roket Genel Montaji: <a href="https://www.youtube.com/watch?v=suMqVEZKMKk">https://www.youtube.com/watch?v=suMqVEZKMKk</a>



### **Roket Genel Montaji**



☐ Kara Barut Montajı: <a href="https://www.youtube.com/watch?v=5YhamiwXw6Y">https://www.youtube.com/watch?v=5YhamiwXw6Y</a>



#### Roket Motoru Montajı



☐ Roket motoru montaj adımları: <a href="https://www.youtube.com/watch?v=yGMJ3avF9Yw">https://www.youtube.com/watch?v=yGMJ3avF9Yw</a>



#### Atış Hazırlık Videosu



☐ Roketin yarışmanın ikinci günü en fazla 10 dakikada uçuşa hazır hale getirileceğini kanıtlayan denemeler:

https://www.youtube.com/watch?v=C5iQR33mu38

https://www.youtube.com/watch?v=Zkwsk-QKPPE



#### **Testler**



| Test                                 | Test Sonucu                                                                 | Yorum                                                                             |
|--------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Yapısal / Mekanik Mukavemet Testleri | Olumlu                                                                      | Tüm Yapısallar, Şok Kordları Uçuş Için Güvenlidir                                 |
| Kurtarma Sistemleri Testleri         | Kurtarma Sistemleri Olumlu / Açılma Mekanizması<br>Tekrar Test Edilmelidir. | Açılma Sistemi Dinamik Basınç Hesaba Katılarak<br>Tekrar Denenmiştir.             |
| Aviyonik Sistem Donanım Testleri     | Olumlu                                                                      | Aviyonik Sistem Donanımları Çalışır Durumdadır                                    |
| Aviyonik Sistem Yazılım Testleri     | Olumlu                                                                      | Aviyonik Sistem Kodları Uçuş İçin Güvenlidir                                      |
| Telekomünikasyon Testleri            | Olumlu                                                                      | Telekomünikasyon Testleri Uçuş Için Güvenli<br>Aralıkta Başarı Ile Sonuçlanmıştır |

Tablo 3. Testler



#### **Testler**



| Test                                 | Test Sonucu                                                                                          | Linkler                                                                                                                                                                                  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Yapısal / Mekanik Mukavemet Testleri | Olumlu                                                                                               | https://www.youtube.com/watch?v=I40CF0R5QdE<br>https://www.youtube.com/watch?v=AHbsCwDDgV4                                                                                               |  |  |
| Kurtarma Sistemleri Testleri         | Kurtarma Sistemleri Olumlu / Açılma<br>Mekanizması Tekrar Test Edilmiş ve<br>Başarılı Sonuçlanmıştır | https://www.youtube.com/watch?v=gVwrrg12gfc<br>https://www.youtube.com/watch?v=cBr1Dd8EKS0<br>https://www.youtube.com/watch?v=Zkwsk-QKPPE<br>https://www.youtube.com/watch?v=ZYVdl5sktBg |  |  |
| Aviyonik Sistem Donanım Testleri     | Olumlu                                                                                               | https://www.youtube.com/watch?v=Y-oW-mYeZNM                                                                                                                                              |  |  |
| Aviyonik Sistem Yazılım Testleri     | Olumlu                                                                                               | https://www.youtube.com/watch?v=qSPNY9wq2iU                                                                                                                                              |  |  |
| Telekomünikasyon Testleri            | Olumlu                                                                                               | https://www.youtube.com/watch?v=WZ5_2Ey8oSE<br>https://www.youtube.com/watch?v=Zkwsk-QKPPE                                                                                               |  |  |
| Tablo 4. Testler Açıklamaları        |                                                                                                      |                                                                                                                                                                                          |  |  |



# Yarışma Alanı Planlaması



| No | Süreçler                                                                                                                                                             | Hangi Ekip Üyesi Tarafından Yapılacağı                                                                                                                                                                                            |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1  | Montaj Günü - Teknik İnceleme                                                                                                                                        | Tüm Ekip Üyeleri Montaj Gününde Takım Yapısında Gösterilen Ilgili Birimlerinde Görevli Olacaktır                                                                                                                                  |  |  |  |
| 2  | Roketin Roketsan Hangarına Taşınması                                                                                                                                 | Tüm Ekip Üyeleri Tarafından Roket, Roketsan Hangarına Taşınacaktır                                                                                                                                                                |  |  |  |
| 3  | Roketin Atış Alanına Taşınması                                                                                                                                       | Roketsan Yetkilileri Tarafından Taşınacaktır                                                                                                                                                                                      |  |  |  |
| 4  | Roketin Rampaya Hazırlanması, Altimeter2 Cihazının Yerleştirilmesi, Roketin Rampaya Taşınması                                                                        | Bumin Han Varlı, Hüseyin Karaduman, Tarık Yalım Tarafından 10 Dakika Içerisinde Rampaya Hazırlanacaktır; Hüseyin Karaduman Tarafından<br>Altimeter2 Rokete Yerleştirilecektir; Aynı 3 Takım Üyesi Tarafından Rampaya Taşınacaktır |  |  |  |
| 5  | Roket Aviyonik Sistemlerinin Rampa Üzerinde Switch Ile Aktivasyonunun Sağlanması                                                                                     | Hüseyin Karaduman Tarafından Tüm Sistemlerin Ayrı Switchler ile Aktivasyonu Sağlanacaktır                                                                                                                                         |  |  |  |
| 6  | Yer Bilgisayarı Ile Roketin Irtibatının Kontrol Edilmesi                                                                                                             | Yer Bilgisayarını Kontrol Eden Burak Bala Ile Rampadaki Hüseyin Karaduman Telsiz Yardımı Ile Sistemlerin Irtibata Geçtiğini Kontrol Edecektir                                                                                     |  |  |  |
| 7  | Anlık Alınan Verilerin Yer Bilgisayarı Ve Roket Sistemleri Üzerindeki SD Kartlara Kaydedilmesi                                                                       | Yer Bilgisayarında Burak Bala Tarafından Depolanacaktır, Uçuş Bilgisayarındaki Verilen Depolanmasını Yazılan Kodlar Sağlayacaktır                                                                                                 |  |  |  |
| 8  | Roketin Ateşlenmesi                                                                                                                                                  | Roketsan Yetkilileri Tarafından Ateşlenecektir                                                                                                                                                                                    |  |  |  |
| 9  | Rampa Tepesi                                                                                                                                                         | -                                                                                                                                                                                                                                 |  |  |  |
| 10 | Burnout                                                                                                                                                              | -                                                                                                                                                                                                                                 |  |  |  |
| 11 | Tepe Noktası                                                                                                                                                         | -                                                                                                                                                                                                                                 |  |  |  |
| 12 | Seperation (Faydalı Yük Ve Roketin Ayrılması)                                                                                                                        | -                                                                                                                                                                                                                                 |  |  |  |
| 13 | Sürüklenme Paraşütleri Ile Serbest Düşüş                                                                                                                             | -                                                                                                                                                                                                                                 |  |  |  |
| 14 | Tender Descender L2 Ve L3 Sistemlerinin Tetiklenmesi, Ana Paraşütlerin Açılması                                                                                      | -                                                                                                                                                                                                                                 |  |  |  |
| 15 | Ana Paraşütler ile Kontrollü Düşüşün Başlaması Ve Yere Ulaşma                                                                                                        | -                                                                                                                                                                                                                                 |  |  |  |
| 16 | Telemetrum Roket, Teknotakip Faydalı Yük, Telegps Faydalı Yük, Özgün Aviyonik Roket, Teknotakip<br>Roket Sistemlerinin Ayrı Ayrı Kontrol Edilmesi                    | Hüseyin Karaduman Roket Sistemlerinden Gelen 3 Farklı Sistemin Verilerini Kontrol Edecek, Burak Bala Faydalı Yük Sistemlerinden Gelen 2 Farklı<br>Sistemin Verilerini Kontrol Edecektir                                           |  |  |  |
| 17 | Tüm Sistemlerin Karşılaştırılması Ve 10 M/S Rüzgar Hızı Hesabına Göre Maksimum Sürüklenme<br>Miktarı Hesabının Kontrol Edilerek Harita Üzerinde Bir Çember Çizilmesi | Tüm Ekip Üyeleri Tarafından Harita Üzerinde Muhtemelen Iki Farklı Alan Belirlenecektir                                                                                                                                            |  |  |  |
| 18 | Roket Ve Faydalı Yük Sistemlerinin Kurtarılması                                                                                                                      | Bumin Han Varlı, Tarık Yalım Ve Hüseyin Karaduman Tarafından Kurtarılma Çalışmasının Başlatılması                                                                                                                                 |  |  |  |
|    | Tablo 5. Yarışma Alanı Görev Dağılımı                                                                                                                                |                                                                                                                                                                                                                                   |  |  |  |



# Yarışma Alanı Planlaması



| Olası Risk                          | Çözüm                                                                                                                                                                             |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yapısal Ürün Kaybı                  | Tüm kalıplar üretimin gerçekleştiği firmada bekletilmektedir, olası ürün kaybında yenisi üretilecektir                                                                            |
| Aviyonik Sistem Sensör / Kart Kaybı | Ticari kartlar yedekli temin edilmiştir, olası sensör kayıpları için de yedekli<br>bir biçimde atış alanına gelinecektir.                                                         |
| Montaj Günü Yaşanabilecek Riskler   | Laboratuvar donanımı ile montaj alanına gelinecek, olası sorunların<br>önüne geçebilmek için ekip üyeleri gerekli alet çantaları ile alanda hazır<br>bulunacaktır.                |
| Paraşüt Bağlantıları                | Hakem heyeti tarafından kurtarma paraşüt bağlantısının değiştirilmesinin istenmesi karşısında tüm bağlantılar ve şok kordları yedekli ve farklı uzunluklarda alana getirilecektir |

Tablo 6. Risk Planı