

Fakultät Digitale Medien

Internet of Things – Vision einer smarten Welt

Die Einsatzmöglichkeiten sind vielfältig

- Hausautomation (Licht, Heizung, Audio, ...)

 Smart Home
- Vernetzte Stromzähler, Gaszähler, ... -> Smart Metering
- Haushaltsgeräte-Automation (Kühlschrank)
- Vernetzte Unterhaltungselektronik
- Sicherheit / Peace of Mind (Zutrittskontrolle)
- Weitere Projekte (Autosteuerung per Smartphone App, Car Sharing, Fahrradausleihe, Fitnesstracking)

Mögliche Ziele

- Energiesparen
- Komfort
- Sicherheit
- Wartung

Smart Dumpsters in Santander Vernetzte Müllcontainer

Bilder: Seminar 2016 - Security for the Internet of Things - Konrad-Felix Krentz

Smart Meter Vernetzte Stromzähler

https://commons.wikimedia.org/w/index.php?curid=5308859

Internet of Things (IoT) – Internet der Dinge

Das Internet der Dinge

Technologien

RFID, QR, Barcode

Sensoren, Aktoren

Internet- und Webtechnologien:
 TCP, UDP, IP, IPv6, HTTP, Web Services,
 6LoWPAN, ...

- ...

Aber:

Jedes Gerät im IoT benötigt eigene IP-Adresse

Zahl der IoT-Systeme wächst rasant

Problem:

- IPv4-Adressen fast ausgeschöpft
 - Regional Internet Registries (RIRs)
 - AfriNIC (Africa)
 - APNIC (Asia-Pacific)
 - ARIN (North America)
 - LACNIC (South America)
 - RIPE NCC (Europe)
- Deshalb wird neues Internetprotokoll gebraucht mit großer Anzahl von Internetadressen -> IPv6

Bild: http://inetcore.com/

Bild: https://www.akamai.com/

Änderungsbedarf bei IPv4

IPv4 – derzeitig noch meistgenutzte IP-Version – ist außerordentlich erfolgreich dank des glücklichen Grunddesigns:

- Einsatz war und ist auch unter neuen Hardware-Technologien möglich
 - IPv4 entwickelt vor Verbreitung der LAN-Technologie!
- Funktioniert auch in Netzen, die um Größenordnungen schneller sind als die, für die es ursprünglich konzipiert war
- Hat enorme Zuwächse im globalen heterogenen Internet verkraftet

Trotzdem besteht aufgrund folgender Grundprobleme dringender Änderungsbedarf!

Grundprobleme bei IPv4:

- Adressraum viel zu klein (begrenzt auf ca. eine Million Netze) für Versorgung aller Geräte mit einer IP-Adresse
- Letzte freie IPv4-Adressblöcke wurden von IANA bereits 2011 an die 5 Regional Internet Registries (RIR) vergeben
- Die verteilen jetzt nur noch ihre **Restbestände** ...
- Zunehmende Anzahl von Internet-Hosts macht das Routing immer problematischer
 - Umfang Routingtabellen / Komplexität des Protokolls
- Dienstart für multimediale Daten nicht spezifizierbar
 - Keine Möglichkeit zur Festlegung der "Quality of Service" (Dienstqualität), z.B. für ruckelfreie und synchrone Live-Übertragung von Video- und Audiodaten
- Fehlende Unterstützung verteilter Gruppenarbeit
 - CSCW (Computer-Supported Cooperative Work)

Verfügbare IP-Adressen bei IANA und RIRs

Vorhersage für Adress-Pools der RIRs

Designanforderungen IPv6

IETF – Internet Engineering Task Force –

hat bereits 1994 begonnen, eine neue IP-Version – IPnG bzw. IPv6 – als Nachfolger von IPv4 zu entwickeln

- IPv6 übernimmt die erfolgreichen Basiskonzepte von IPv4, wie z.B.
 - Verbindungsloser Paketdienst
 - Jedes Datagramm erhält Zieladresse und wird unabhängig übertragen
 - Begrenzung der Zahl passierbarer Hops
- Neue Adressgröße:
 - 128 Bit 16-Bit-Gruppen in hexadezimaler Notation mit Doppelpunkt als Trennzeichen, Nullenkompression
- Neues Header-Format/mehrere Header:
 - zwingend ein Basis-Header
 - optional ein oder mehrere Zusatz-Header, z.B. für Authentifikation, Verschlüsselung, Fragmentierung, ...
 - verschiedene Adresstypen f
 ür Unicast, Multicast und Cluster
- Video- und Audiounterstützung:
 - Echtzeit-Übertragung mittels Mechanismus zur Festlegung vorbestimmter Übertragungspfade
- Erweiterbares Protokoll
- Neue Funktionalitäten aus und vermittels zusätzlicher Protokolle
 - Mobile IPv6
 - Neighbor Discovery Protocol
 - basiert auf ICMPv6
 - ersetzt z.B. ARP
- Host Autoconfiguration ("stateless DHCP")
- Unterstützung für Multihoming und Renumeration

IPv6 Adressierung (1/2)

Wichtigste Designanforderung an neues Internetprotokoll IPv6:

 Drastisch vergrößerte Zahl von Adressen, um Nachfrage insbesondere aus den Bereich Mobile Kommunikation und Internet der Dinge (IoT) befriedigen zu können

Adresslänge bei IPv6: 128 Bit (im Vergleich zu 32 Bit bei IPv4)

- Erinnerung: Adresslänge bei IPv4: 32 Bit
- Dank Adresslänge von 128 Bit sind 2¹²⁸ IP-Adressen möglich
 - mit jedem zusätzlichen Bit verdoppelt sich Zahl der IP-Adressen
 - 2¹²⁸ entspricht 10²³ IP-Adressen pro m² Erdoberfläche, zum Vergleich: Alter unseres Sonnensystems: < 10¹⁰ Jahre

IPv6-Adressen werden geschrieben in 8 Blöcken zu je 16-Bit, jeweils getrennt durch Doppelpunkt

- 16-Bit-Blöcke werden in hexadezimaler Notation geschrieben
 - Zahlsystem mit 16 verschiedenen Ziffern 0,1,...9,A,B,C,D,E,F
- Adressverkürzung vermittels Nullenkompression:
 - Unterdrückung führender 0-en
 - Zusammenfassung einer (!) möglichst langen 0en-Blockfolge

Beispiel Adressverkürzung:

000E: 0C64: 0000: 0000: 0000: 1342: 0E3E: 00FE -> E: C64: 0000: 0000: 0000: 1342: E3E: FE

-> E:C64::1342:E3E:FE

Format IPv6:

Präfix oder Site-ID beschreibt -> Typ der IPv6-Adresse bzw. bezeichnet den Standort (z.B. ISP oder Unternehmen)

Subnet-ID beschreibt private Topologie, z.B. innerhalb eines privaten Netzwerks

Interface-ID steht für Netzwerk-Interface und kann z.B. aus dessen MAC-Adresse berechnet werden

2001:08db:3c4d:0015:0000:0000:1a2f:1a2b

Präfix Subnet-ID Interface-ID

IPv6 Adressierung (2/2)

OCHSCHULE HFU

IPv6-Adresstypen und Präfixe

- Unicast-Adressen
 - kennzeichnen einzelne Netzwerkschnittstellen geeignet für Punkt-zu-Punkt-Verbindungen
- Multicast-Adressen
 - identifizieren Gruppen von zusammenhängenden Netzwerkschnittstellen Nachricht wird an alle Mitglieder der Gruppe versandt
- Anycast-Adressen
 - identifiziert Gruppe von funktional zusammenhängenden Netzwerkschnittstellen (meist mit gleicher Interface-ID),
 Nachricht wird an ein Mitglied der Gruppe versandt
- **Abwärtskompatibilität** zu IPv4-Adressen, z.B. mit "IPv4-mapped" 0:0:0:0:0:0:0:ffff::/96, letzte 32 Bit enthalten IPv4-Adresse
- Fast alle anderen IPv6-Adressen sind Globale Unicast-Adressen
- Bisher hat IANA vergeben an Regional Internet Registries (z.B. RIPE für Europa) vergeben: **2000:... bis 3fff:...**
 - RIRs geben Netzbereiche an Provider weiter
 - Provider geben Teilnetze (-> Subnet-ID) an Kunden weiter
- Einige spezielle Adressen in diesem Bereich dienen
 - automatischem -> 6to4-Tunnelling (2002:...)
 - Dokumentation und Literatur: 2001:db8::/32

Anhand der Präfixe werden verschiedene IPv6-Adresstypen unterschieden, z.B.				
::1/128	Loopback-Adresse ("localhost"), entspricht 127.0.0.1			
fe80::/10	Link-lokale Unicast Adresse, nur Zustellung im Iokalen Netzwerk ("private IP-Adressen", entspricht z.B. 192.168.0.0/24)			
ff00::/8	Multicast-Adresse, Gruppen von zusammen- gehörenden Netzwerk-Interfaces können gemeinsam angesprochen werden			
ff01::1/128	All Nodes Adresse, entspricht dem Broadcast			
ff01::2/128	All Routers Adresse, alle Router in einem Bereich			

IPv6 Datagrammheader

Beobachtung:

- Im alten IPv4-Header sind oft viele Felder leer bzw. nicht relevant
 - Platzverschwendung
 - erhöhte Routerbelastung

Neue Idee beim Entwurf von IPv6:

Verwendung kleinerer und der jeweiligen Situation besser angepasster Header

IPv6-Datenpaket

Transport Class: (0-7)

- → normale Kommunikation, (8-15)
- → Audio/Video

Flow Label:

ID für virtuelle End-to-End-Connection, Routerentlastung (!)

Next Header:

Typ des nachfolgenden Headers (Erweiterungsheader/TCP)

IPv6 Basisheader

Version	Transport Class	Flow Label		
Payload Length		Next Header	Hop Limit	64 Bit
Source Address Source Address				
Destination Address				128 Bit

IPv6 Erweiterungsheader

Hop-by-Hop Header

- TLV-Angaben (Type-Length-Value) werden von jedem Router auf dem Weg zum Empfänger interpretiert
- Stets erster Erweiterungsheader nach Basisheader
- Variable Länge (anwendungsspezifisch)

Destination Options Header

- Enthalten TLV-Angaben für Router und/oder Empfängerrechner
- Routerinformationen -> direkt nach Basisheader
- Empfängerinformationen -> direkt vor Nutzdaten

Routing Header

 Geben Liste von Routern vor, die ganz oder teilweise passiert werden müssen (Strict/Loose Source Routing)

Fragment Header

 Information zur Fragmentierung eines Datenpakets bei Überschreitung der MTU eines zu durchquerenden Netzwerks

Authentication Header

Prüfsumme/Signatur zur Authentifikation des Senders

Encapsulation Security Payload

Schlüsselnummer zur Verschlüsselung von Nutz-/Headerdaten

IPv6 Header

IPv6 Nutzdaten

Fakultät Digitale Medien