Estimating individual subjective values of emotion regulation strategies

- Christoph Scheffel^{†,1}, Josephine Zerna^{†,1}, Anne Gärtner¹, Denise Dörfel¹, & Alexander Strobel¹ 3
- ¹ Faculty of Psychology, Technische Universität Dresden, 01069 Dresden, Germany

Author Note

1

- The authors made the following contributions. Christoph Scheffel: Conceptualization,
- Methodology, Funding acquisition, Formal analysis, Investigation, Project administration,
- Software, Visualization, Writing original draft preparation, Writing review & editing;
- Josephine Zerna: Conceptualization, Methodology, Funding acquisition, Investigation,
- Project administration, Software, Visualization, Writing review & editing; Anne Gärtner: 10
- Formal analysis, Writing review & editing; Denise Dörfel: Conceptuatlization, Writing -11
- review & editing; Alexander Strobel: Conceptualization, Writing review & editing. †
- Christoph Scheffel and Josephine Zerna contributed equally to this work. 13
- Correspondence concerning this article should be addressed to Christoph Scheffel, 14
- Zellescher Weg 17, 01069 Dresden, Germany. E-mail: christoph scheffel@tu-dresden.de

2

Abstract

17 Individuals have a repertoire of emotion regulation (ER) strategies at their disposal, which

they can use more or less flexibly. In ER flexibility research, strategies that facilitate goal

achievement are considered adaptive and therefore are subjectively valuable. Individuals

²⁰ are motivated to reduce their emotional arousal effectively and to avoid cognitive effort.

21 Perceived costs of ER strategies in the form of effort, however, are highly subjective.

²² Subjective values (SVs) should therefore represent a trade-off between effectiveness and

²³ subjectively required cognitive effort. However, SVs of ER strategies have not been

determined so far. We present a paradigm that is suitable for determining individual SVs

of ER strategies. Using a multilevel modelling approach, it will be investigated whether

individual SVs can be explained by effectiveness (subjective arousal, facial muscle activity)

27 and subjective effort. Relations of SVs to personality traits will be explored.

28 Keywords: emotion regulation, regulatory effort, effort discounting, registered report,

29 specification curve analysis

30 Word count: 5630

Estimating individual subjective values of emotion regulation strategies

32

31

33

1. Introduction

The ability to modify emotional experiences, expressions, and physiological reactions¹ 34 to regulate emotions is an important cognitive skill. It is therefore not surprising that 35 emotion regulation (ER) has substantial implications for well-being and adaptive 36 functioning². Different strategies can be used to regulate emotions, namely situation 37 selection, situation modification, attentional deployment, cognitive change, and response modification¹, and, following the taxonomy of Powers and LaBar³, individuals can implement ER strategies by means of different tactics. So called antecedent-focused strategies, e.g., attentional deployment and cognitive change, take effect early in the emotion generation process¹. In contrast, response modification takes place late in the process and is therefore conceptualized as a response-focused strategy¹. This postulated temporal sequence of ER strategies influences their effectiveness. Albeit it is meta-analytically proven that all mentioned strategies reduce subjective emotional experience, distraction as a tactic of attentional deployment and (expressive) suppression as a tactic of response modulation showed only small to medium effect sizes (distraction: $d_{+}=0.27$; suppression: $d_{+}=0.27$). In contrast, distancing as tactic of cognitive change showed the highest effectiveness with an effect size of $d_{+} = 0.45^{4}$. 49

Psychophysiological measures provide further important information on the
effectiveness of emotion regulation strategies (for an overview, see Zaehringer et al.⁵).
Compared to cardiovascular, electrodermal, and pupillometric autonomic responses, facial
electromyography has been reported consistently across studies to be influenced by emotion
regulation with even medium effect sizes. For example, studies have shown that reappraisal
of negative emotion is associated with reduced activity of the corrugator supercilii

(associated with anger, sadness, and fear) with $d_{-} = 0.32^{5}$. In addition, the levator labii superioris (associated with disgust) has also been associated with reduced activity during reappraisal⁶. Similar effects have been reported for suppression⁶, distancing⁷, and distraction⁸. Importantly, results on electromyographic measures seem to be more consistent compared to other autonomic measures, likely because they are specific to emotional valence and its changes.

Similarly to the differences in short term effectiveness, these tactics from three 62 different strategies are also related to different medium and long-term consequences. In 63 particular, strategies that do not change the emotional content of the situation, for instance by taking a neutral perspective (i.e., distraction and suppression) are presumed to be disadvantageous in the longer term. Thus, the self-reported habitual use of suppression 66 is associated with more negative affect and lower general well-being⁹. In addition, a 67 number of ER strategies, e.g., rumination and suppression, have been associated with mental disorders (for meta-analytic review, see Aldao et al. 10), which led to the postulation of adaptive (such as reappraisal, acceptance) and maladaptive (such as suppression, rumination) ER strategies. For example, it was shown that maladaptive ER strategies 71 (rumination and suppression) mediate the effect between neuroticism and depressive symptoms 11 . 73

The postulation of adaptive and maladaptive ER strategies has been challenged by
the concepts of ER repertoire and ER flexibility. Within this framework, maladaptive refers
to inflexible ER strategy use or use of strategies that are hindering goal achievement¹².

Adaptive flexible ER requires a large repertoire of ER strategies¹². The term "repertoire"
can be defined as the ability to utilize a wide range of regulatory strategies in divergent
contextual demands and opportunities¹³. A growing number of studies report findings
about the repertoire of emotion regulation strategies and its relationship to
psychopathology^{14–16}. Additionally, greater ER flexibility is related to reduced negative
affect and therefore beneficial in daily life¹⁷.

How do people choose strategies from their repertoire? Similarly to the 83 expectancy-value model of emotion regulation¹⁸ it could be assumed, that people also 84 assign a value to an ER strategy reflecting the usefulness of this strategy for goal achieving. 85 Evidence from other psychological domains (e.g., intertemporal choice¹⁹) shows that subjective values (SVs) are attributed to the choice options on the basis of which the decision is made. Research on ER choice has identified numerous factors that influence the choice of ER strategies, which can be seen as indirect evidence for factors influencing SVs²⁰. For example, a study found that the intensity of a stimulus or situation plays a role in the choice²¹. Higher intensity of the (negative) stimulus lead to a choice of rather disengaging tactics of attentional deployment, like distraction^{20,21}. ER choice was further influenced by, among others, extrinsic motivation (e.g., monetary incentives), motivational determinants (i.e., hedonic regulatory goals), and effort^{20,22}. Nonetheless, there are only few studies to date that examined the required effort of several strategies in more detail and compared them with each other. Furthermore, the research on ER choice lacks information regarding the strategies that were not chosen in each case. It is unclear whether people had clear preferences or whether the choice options were similarly attractive.

We assume that people choose the strategy that has the highest value for them at the 99 moment. The value is determined against the background of goal achievement in the 100 specific situation: A strategy is highly valued if it facilitates goal achievement¹². One 101 certainly central goal is the regulation of negative affect. The effectiveness of ER strategies 102 should therefore influence the respective SV. A second, intrinsic, and less obvious goal is 103 the avoidance of effort²³. When given the choice, most individuals prefer tasks that are less effortful²⁴. Cognitive effort avoidance has been reported in many contexts, for example in 105 affective context²⁵, the context of decision making²⁶, and executive functions²⁷, and is 106 associated with Need for Cognition (NFC)²⁸, a stable measure of the individual pursuit and 107 enjoyment of cognitive effort^{29,30}. In the area of emotion regulation, too, there are initial 108 indications that people show a tendency towards effort avoidance. Across two studies, we

could show in previous work that the choice for an ER strategy is mainly influenced by the 110 effort required to implement a given strategy²². In our studies, participants used the 111 strategies distancing and suppression while inspecting emotional pictures. Afterwards, they 112 choose which strategy they wanted to use again. Participants tended to re-apply the 113 strategy that was subjectively less effortful, even though it was subjectively not the most 114 effective one - in this case: suppression. Moreover, the majority of participants stated 115 afterwards the main reason for their choice was effort. We assume therefore that, although 116 individuals trade off both factors - effectiveness and effort - against each other, effort 117 should be the more important predictor for SVs of ER strategies. In addition, perceived 118 utility should have an impact on SVs. A strategy that is less effortful and can objectively 119 regulate arousal (i.e., is effective), but is not subjectively perceived as useful, should have a 120 low SV. SVs of ER Strategies could therefore be helpful to describe the ER repertoire¹² 121 more comprehensively. Depending on the flexibility of a person, different patterns of SVs 122 could be conceivable: A person with high flexibility would show relatively high SVs for a number of strategies. This would mean that all strategies are a good option for goal 124 achievement. A second person with less flexibility, however, would show high SVs only for 125 one strategy or low SVs for all of the strategies. This in turn would mean that there is only 126 a limited amount of strategies in the repertoire to choose from. Subsequently, the ability to 127 choose an appropriate strategy for a specific situation is also limited. 128

So far we have not seen any attempt in ER choice research to determine individual SVs of ER strategies. However, this would be useful to describe interindividual differences in the preference of ER strategies and the ER repertoire more comprehensively. To investigate this question, the individual SVs of each strategy available for selection would have to be determined. Promising approaches can be found in studies on difficulty levels of effortful cognitive tasks.

Individual SVs of effortful cognitive tasks have been quantified using the Cognitive Effort Discounting Paradigm (COG-ED)²⁹.

In the original study by Westbrook et al.²⁹, cognitive load was varied using the 137 n-back task, a working memory task that requires fast and accurate responses to 138 sequentially presented stimuli. Participants had to decide in an iterative procedure whether 139 they wanted to repeat a higher n-back level for a larger, fixed monetary reward, or a lower 140 level for a smaller, varying reward, with the implicit assumption that the objectively 141 easiest n-back level has the highest SV. In the present study, we want to use this paradigm 142 to determine SVs of ER strategies. In doing so, we need to make an important change: We 143 have to adapt the assumption that the easiest n-back level has the highest SV. As we have 144 shown in previous studies, there are large inter-individual differences in the preference and 145 perceived subjective effort of ER strategies²². Moreover, there is nothing like an objectively 146 easiest ER strategy. Therefore, we have to add an additional step, which precedes the other 147 steps and where the ER option with the higher subjective value is determined. In this step, the same monetary value (i.e., $1 \in$) is assigned to both options. The assumption is that participants now choose the option that has the higher SV for them. In the next step we 150 return to the original paradigm. The higher monetary value (i.e., $2 \in$) is assigned to the 151 option that was not chosen in the first step and therefore is assumed to have the lower SV. 152 In the following steps, the lower value is changed in every iteration according to Westbrook 153 et al.²⁹ until the indifference point is reached. This procedure will be repeated until all 154 strategies have been compared. The SV of each strategy is calculated as the mean of this 155 strategy's SV from all comparisons. In case a participant has a clear preference for one 156 strategy, the SV of this strategy will be 1. But our paradigm can also account for the case 157 that a person does not have a clear preference. Then no SV will be 1, but still, the SVs of 158 all strategies can be interpreted as absolute values and in relation to the other strategy's 159 SVs (see Figure 1). In a separate study, we will test our adapted paradigm together with a 160 n-back task and explore whether this paradigm can describe individuals that do not prefer 161 the easiest n-back option (see Zerna et al.³¹). 162

The aim of the present study is to evaluate whether this paradigm is suitable for

Figure 1. Exemplary visualization of two response patterns. In the top half, the person has a clear preference for one of the three strategies. In the lower half, they have no clear preference and therefore show an inconsistent response pattern. This pattern can be represented by our paradigm.

determining SVs of ER strategies. As a manipulation check, we first want to investigate 164 whether the valence of the pictures is affecting subjective and physiological responding, 165 resulting in lower subjective arousal ratings after and lower EMG activity during neutral 166 compared to negative pictures. Second, we want to check whether the ER strategies 167 distraction, distancing, and suppression effectively reduce subjective arousal and 168 physiological responding compared to the active viewing condition. Third, we want to see whether the strategies subjectively require more cognitive effort than the active viewing 170 condition, and whether participants re-apply the for them least effortful strategy. 171 Furthermore, we want to investigate whether subjective effort, arousal ratings, subjective 172 utility, and EMG activity predict individual subjective values of ER strategies. And lastly, 173 we want to check whether the SV of a strategy is associated with its likelihood of being 174

chosen again, and whether SVs reflect participants' self-reported ER flexibility. All
hypotheses are detailed in the design table. Exploratorily, we want to investigate whether
individual SVs are related to personality traits and how individual SVs of ER strategies
relate to SVs of other tasks with different demand levels, namely *n*-back.

2. Method

We report how we determined our sample size, all data exclusions (if any), all
manipulations, and all measures in the study³². The paradigm was written and presented
using PsychoPy³³. We used R with R Studio^{34,35} with the main packages afex³⁶ and
BayesFactor³⁷ for all analyses. The R Markdown file used to analyze the data and write
this document, as well as the raw data and the materials are freely available at
https://github.com/ChScheffel/CERED. A complete list of all measures assessed in the
study can be found at OSF (https://osf.io/vnj8x/) and GitHub
(https://github.com/ChScheffel/CERED).

188 2.1 Ethics information

The study protocol complies with all relevant ethical regulations and was approved
by the ethics committee of the Technische Universität Dresden (reference number
EK50012022). Prior to testing, written informed consent will be obtained. Participants will
receive 30 € in total or course credit for participation.

193 2.2 Pilot data

The newly developed ER paradigm was tested in a pilot study with N=16 participants (9 female; age: $M=24.1~\pm~SD=3.6$). Regarding self-reported arousal, results showed significant higher subjective arousal for active viewing of negative compared to neutral pictures. However, ER strategies did not lead to a reduction of subjective

arousal compared to active viewing of negative pictures. Regarding physiological responses,
ER strategies were associated with reduced facial muscle activity of the *corrugator* and
levator compared to active viewing of negative pictures. In accordance with our previous
study²², we found that the use of ER strategies compared to active viewing was associated
with increased subjective effort. All results are detailed in the Supplementary Material

203 **2.3 Design**

Young healthy participants (aged 18 to 30 years) will be recruited using the software 204 ORSEE³⁸ at the Technische Universität Dresden. Participants will be excluded from 205 participation if they do not fluently speak German, have current or a history of 206 psychological disorders or neurological trauma, or report to take medication. Participants 207 will be invited to complete an online survey containing different questionnaires to assess 208 broad and narrow personality traits and measures of well-being. The study consists of two 209 lab sessions, which will take place in a shielded cabin with constant lighting. Before each 210 session, participants will receive information about the respective experimental procedure 211 and provide informed consent. In the first session participants will fill out a demographic 212 questionnaire and complete an n-back task with the levels one to four. Then, they will 213 complete an effort discounting (ED) procedure regarding the n-back levels on screen, 214 followed by a random repetition of one n-back level. The second session will take place 215 exactly one week after session one. Participants will provide informed consent and receive 216 written instructions on the ER paradigm and ER strategies that they should apply. A brief training will ensure that all participants are able to implement the ER strategies. Next, 218 electrodes to measure facial EMG will be attached and the ER paradigm will be conducted, followed by an ED procedure regarding the ER strategies. After that, participants will choose one ER strategy to repeat one more time. Study data will be collected and managed 221 using REDCap electronic data capture tools hosted at Technische Universität Dresden^{39,40}. 222

223 **2.3.1 Psychometric measures.** The online survey will contain a number of questionnaires. In the focus of the current project is the Flexible Emotion Regulation Scale (FlexER)⁴¹.

It assess flexible use of ER strategies with items such as "If I want to feel less negative emotions, I have several strategies to achieve this.", which we define as ER flexibility. The items are rated on a 4-point scale ranging from "strongly agree" to "strongly disagree".

Further psychological constructs will be assessed but have no clear hypothesies in the 229 present work an are therefore investigated only exploratory: General psychological 230 well-being will be assessed using the German version of the WHO-5 scale^{42,43}. To measure 231 resilience, the German version 10-item-form of the Connor-Davidson resilience Scale 232 (CD-RISC)⁴⁶ will be used. Habitual use of ER will be assessed using the German version of 233 the Emotion Regulation Questionnaire $(ERQ)^{9,47}$. Implicit theories of willpower in emotion 234 control will be assessed using the implicit theories questionnaire from Bernecker and Job⁴⁸. 235 To assess Need for Cognition, the German version short form of the Need for Cognition Scale^{28,49} will be used. To assess self-control,⁵⁰ sum scores of the German versions of the following questionnaires will be used: the Self-Regulation Scale (SRS)⁵¹, the Brief Self-Control Scale $(BSCS)^{52,53}$, and the Barratt Impulsiveness Scale $(BIS-11)^{54,55}$. 239 Attentional control will be assessed using the Attentional Control Scale (ACS)⁵⁶. For more detailed information on psychometric properties of the questionnaires, please see 241 supplementary material. 242

2.3.2 Emotion regulation paradigm. The ER paradigm will consist of three parts that will be described in the following.

Part one: ER task. Part one will be a standard ER task in a block design (see Figure 2), similar to paradigms previously used by our group²². Participants will be told to actively view neutral and negative pictures (see 2.3.3) or to regulate all upcoming emotions by means of distraction, distancing, and expressive suppression, respectively. Every participant first will have the condition "active viewing-neutral" that serves as a baseline

condition. During this block, 20 neutral pictures will be presented. Participants will be 250 asked to "actively view all pictures and permit all emotions that may arise." In the second 251 block, participants will actively view negative pictures. During the third, fourth, and fifth 252 block, participants will see negative pictures and will be asked to regulate their emotions 253 using distraction, distancing, and suppression. In order to achieve distraction, participants 254 will be asked to think of a geometric object or an everyday activity, like brushing their 255 teeth. During distancing, participants will be asked to "take the position of a non-involved 256 observer, thinking about the picture in a neutral way." Participants will be told not to 257 re-interpret the situation or attaching a different meaning to the situation. During 258 suppression, participants will be told to "suppress their emotional facial expression." They 259 should imagine being observed by a third person that should not be able to tell by looking 260 at the facial expression whether the person is looking at an emotional picture. Participants will be instructed not to suppress their thoughts or change their facial expression to the 262 opposite²². All participants will receive written instruction and complete a training session. After the training session, participants will be asked about their applied ER strategies to 264 avoid misapplication. The order of the three regulation blocks (distraction, distancing, and 265 suppression) will be randomized between participants. Each of the blocks consisted of 20 266 trials showing neutral (Block 1) and negative (Blocks 2, 3, 4, 5) pictures. Each trial began 267 with a fixation cross that lasted 3 to 5 seconds (random uniform distributed). It was 268 followed by neutral or negative picture for a total of 6 seconds. After each block, 269 participants retrospectively rated their subjective emotional arousal ("not at all aroused" 270 to "very highly aroused"), their subjective effort ("not very exhausting" to "very 271 exhausting"), and - after the ragulation blocks - the utility of the respective strategy ("not 272 useful at all" to "very useful") on a continuous scale using a slider on screen. 273

Part two: ER effort discounting. In the second part, ER effort discounting will take
place. The procedure of the discounting will follow the COG-ED paradigm by Westbrook et
al.²⁹ with a major change. We will use the following adaption that allows the computation

of SVs for different strategies without presuming that all individuals would inherently evaluate the same strategy as the easiest one: For each possible pairing (distraction 278 vs. distancing, distraction vs. suppression, and distancing vs. suppression), each of the two 279 strategies will be presented with a monetary reward. The order of the pairings will be 280 randomized. Because there is no strategy that is objectively more difficult, we will add an 281 initial comparison that begins with the option " $1 \in \text{for strategy A or } 1 \in \text{for strategy B}$ ". 282 The participants decide by clicking the on-screen button of the respective option. The 283 strategy that is not chosen will be assigned the fixed value of $2 \in$, the chosen strategy will 284 be assigned a starting value of $1 \in$. From this point on, comparisons between strategies will 285 follow the original COG-ED paradigm²⁹. Each pairing is presented six consecutive times, 286 and with each decision the reward of the strategy with the starting value of $1 \in$ is either 287 lowered (if this strategy was chosen) or raised (if the strategy with the fixed 2 € reward was chosen). The adjustment starts at $0.50 \in$ and each is half the adjustment of the previous step, rounded to two digits after the decimal point. If a participant always chooses the strategy with the fixed $2 \in \text{reward}$, the other strategy's last value on display will be 1.97 \in , 291 if they always choose the lower strategy, its last value will be $0.03 \in$. The sixth adjustment 292 of $0.02 \in \text{will}$ be done during data analysis, based on the participants' decision in the last display of the pairing. Participants will be instructed to decide as realistically as possible 294 by imagining that the monetary reward is actually available for choice. 295

Part three: ER choice. After the discounting part, participants will choose which one of the three ER strategies (distraction, distancing or suppression) they want to re-apply.

Importantly, there will be no further instruction on what basis they should make their decision. Participants should make their decision freely, according to criteria they consider important for themselves. However, participants will be asked to state the reasons for the decision afterwards. As soon as they have decided, they will see the respective instruction and the block with another 20 negative pictures starts.

Figure 2. Block design of the paradigm. Every participant starts with two "active viewing" blocks continuing neutral (Block 1) and negative (Block 2) pictures. Order of the regulation blocks (Blocks 3, 4, and 5) is randomized between participants. After, the discounting procedure takes place. All three regulation strategies are pairwise compared. Before the last block, participants can decide which regulation strategy they want to reapply. Subjective arousal and effort ratings are assessed after each block using a slider on screen with a continuous scale.

2.3.3 Stimuli. Pictures that will be used in the paradigm are selected from the 303 Emotional Picture Set (EmoPicS)⁵⁷ and the International Affective Picture System 304 (IAPS)⁵⁸. The 20 neutral pictures (Valence (V): $M \pm SD = 4.81 \pm 0.51$; Arousal (A): M305 \pm SD = 3 \pm 0.65) depicted content related to the categories persons, objects, and scenes. 306 Further, 100 negative pictures, featuring categories animals, body, disaster, disgust, injury, 307 suffering, violence, and weapons, will be used. An evolutionary algorithm⁵⁹ is used to 308 cluster these pictures into five sets with comparable valence and arousal values (set one: V: 309 $M \pm SD = 2.84 \pm 0.57$, A: $M \pm SD = 5.62 \pm 0.34$; set two: V: $M \pm SD = 2.64 \pm 0.46$, A: 310 $M \pm SD = 5.58 \pm 0.35$; set three: V: $M \pm SD = 2.82 \pm 0.62$, A: $M \pm SD = 5.60 \pm 0.39$; 311 set four: V: $M \pm SD = 2.65 \pm 0.75$, A: $M \pm SD = 5.61 \pm 0.41$; set five: V: $M \pm SD = 0.41$ 312 2.74 ± 0.70 , A: $M \pm SD = 5.63 \pm 0.37$). A complete list of all pictures and their 313 classification into sets can be found in supplementary material 1. The five sets of negative pictures will be assigned randomly to the blocks. 315

2.3.4 Facial electromyography. Bipolar facial electromyography (EMG) will be 316 measured for corrugator supercilii and levator labii as indices of affective valence⁶⁰, similar 317 to previous work by our group⁷. Two passive surface Ag/AgCl electrodes (8 mm inner 318 diameter, 10 mm distance between electrodes) will be placed over each left muscle 319 according to the guidelines of.⁶¹ The ground electrode will be placed over the left *Mastoid*. 320 Before electrode placement, the skin will be abraded with Every abrasive paste, cleaned 321 with alcohol, and filled with Lectron III electrolyte gel. Raw signals will be amplified by a 322 BrainAmp amplifier (Brain Products Inc., Gilching, Germany). Impedance level will be 323 kept below 10 $k\Omega$. Data will be sampled at 1000 Hz, filtered, rectified and integrated. A 20 Hz high pass (order 8), a 300 Hz low pass (order 8), and a 50 Hz notch filter will be applied to both signals. Corrugator and Levator EMG will be analyzed during the 6 s of picture 326 presentation. EMG data will be baseline-corrected using a time window of 2 s prior to 327 stimulus onset. 60 Last, the sampling rate will be changed to 100 Hz, and EMG data will be 328 averaged for each condition and each participant. 329

330 2.4 Sampling plan

Sample size calculation is done using $G^*Power^{62,63}$. In a meta-analysis of Zaehringer 331 and colleagues⁵, effect sizes of ER on peripheral-physiological measures were reported: To 332 find an effect of d = -0.32 of ER on corrugator muscle activity with $\alpha = .05$ and $\beta = .95$, 333 data of at least N=85 have to be analyzed. Power analyses of all other hypotheses yielded 334 smaller sample sizes. However, if participants withdraw from study participation, technical 335 failures occur, or experimenter considers the participant for not suitable for study 336 participation (e.g., because the participant does not follow instructions or shows great fatigue), respective data will also be excluded from further analyses. Therefore, we aim to collect data of N=120 participants, about 50 more data sets, than necessary. Detailed information on power calculation for each hypothesis can be found in the design table.

341 2.5 Analysis plan

354

Data collection and analysis will not be performed blind to the conditions of the 342 experiments. Data of whole participants will be excluded from analysis if participants withdraw their consent or they state that they did not follow experimental instructions. EMG data of subjects will be excluded from analysis if errors occurred during recording. No further data exclusions are planned. The level of significance will be set to $\alpha = .05$. For hypotheses H1-4, repeated measures analysis of variance (rmANOVA) will be conducted 347 and estimated marginal means will be computed using the afex package³⁶. 348 Greenhouse-Geisser-corrected degrees of freedom and associated p-values and will be 349 reported when the assumption of sphericity is violated. If the within-subjects factor of 350 interest is significant, pairwise contrasts will be calculated using Bonferroni adjustment for 351 multiple testing. Proportion of explained variance η_p^2 will be reported as a measure of effect 352 size. 353

Effect of valence on arousal and facial EMG. To examine the impact of valence of

emotional pictures on subjective arousal ratings (H1a), a rmANOVA with the factor
valence (neutral and negative) for the strategy active viewing will be conducted. To
examine the impact of valence on physiological responding (H1b and H1c), a rmANOVA
with the factor valence (neutral and negative) for the strategy active viewing will be
conducted for EMG corrugator and levator activity.

Effects of emotion regulation on arousal, facial EMG and effort. To investigate the 360 effects of the three ER strategies on subjective arousal (H2a), another rmANOVA with the 361 factor strategy (active viewing - negative, distraction, distancing, and suppression) for 362 subjective arousal ratings will be conducted. To examine the effects of the three ER 363 strategies on physiological responding (H3a and H3b), another rmANOVA with the factor 364 strategy (active viewing - negative, distraction, distancing, and suppression) for EMG 365 corrugator and levator activity will be conducted. To examine the effect of ER strategies 366 on subjective effort (H4a), a rmANOVA with the factor strategy (active viewing, 367 distraction, distancing, and suppression) for subjective effort ratings will be conducted.

Subjective values of emotion regulation strategies. For each ER strategy, SVs will be 369 calculated as follows: first, the value 0.02 € will be added to or subtracted from the last 370 monetary value of the flexible strategy, depending on the participant's last choice. Second, 371 the resulting monetary value will be divided by $2.00 \in \text{to}$ arrive at the SV of the opposite 372 strategy in each pairing. Therefore, the SVs of the flexible strategies are 1, because they 373 were chosen in the initial comparison of each pairing in which the same value was offered for both strategies, so they are the preferred strategy of each pairing. The SVs of the fixed 375 strategies lay between 0 and 1, with lower values indicating that the participant would 376 need a much higher monetary incentive to choose this strategy over the other one in the 377 pairing. The final SV per strategy for each participant will be computed by averaging the 378 SVs of each strategy across pairings. 379

To explore the association between subjective effort (H5a), subjective arousal (H5b),

subjective utility (H5c), and physiological responding (H5d,e) on SVs, a multilevel model (MLM) will be specified using the *lmerTest* package⁶⁴. First, ER strategies will be recoded and centered for each subject according to their individual SVs: The strategy with the highest SV will be coded as -1, the strategy with the second highest SV 0, and the strategy with the lowest SV will be coded as 1. Restricted maximum likelihood (REML) will be applied to fit the model. A random slopes model of SVs including subjective effort (effort ratings), subjective arousal (arousal ratings), and physiological responses (*corrugator* and *levator* activity) as level-1-predictors will be specified.

 $SV \sim strategy + \text{effort rating} + \text{arousal rating} + \text{utility} + corrugator \text{ activity} + levator \text{ activity} + (strategy | su$

Level-1-predictors will be centered within cluster⁶⁵. Residuals of the final model will be inspected visually. Intraclass correlation coefficient (ICC), ρ , will be reported for each model (null model, as well as full model).

To investigate whether individual SVs predict ER choice (H7a), a Chi-squared test
with predicted choice (highest SV of each participant) and actual choice will be computed.
Furthermore, an ordinal logistic regression with the dependent variable choice and
independent variables SVs of each strategy will be computed.

The association between flexible ER and SVs of ER strategies (H7b) will be investigated with a linear regression using the individual *intercept* and *slope* of each participants' SVs to predict their FlexER score. To this end, for each participant, SVs will be sorted by magnitude in descending order and entered as dependent variable in a linear model, with strategy (centered, i.e., -1, 0, 1) as independent variable. The resulting *intercept* informs about the extent to which an individual considers any or all of the ER strategies as useful for regulation their emotion, while the *slope* informs about the flexibility in the use of emotion regulation strategies. The individual intercepts and slopes will then be entered as predictors in a regression model with the FlexER score as

dependent variable. A positive association with the predictor *intercept* would indicate that overall higher SVs attached to ER strategies predicts higher scores on the FlexER scale. A positive association with the predictor *slope* would indicate that less negative slopes, i.e., a smaller preference for a given ER strategy, would be associated with a higher score of the FlexER scale.

The influence of personality traits on SVs will be investigated exploratorily.

Therefore, the MLM specified above will be extended by the level-2-predictors NFC and self-control.

For each result of the analyses, both p-values and Bayes factors BF10, calculated using the BayesFactor package³⁷, will be reported. Bayes factors are calculated using the default prior widths of the functions anovaBF, lmBF and regressionBF.

416 Data availability

The data of this study can be downloaded from osf.io/vnj8x/.

418 Code availability

The paradigm code, as well as the R Markdown file used to analyze the data and write this document is available at our Github repository.

References

422 1.

Gross, J. J. Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. *Journal of Personality and Social Psychology* **74**, 224–37 (1998).

425 2.

Gross, J. J. The emerging field of emotion regulation: An integrative review. Review of General Psychology 2, 271–299 (1998).

428 3.

Powers, J. P. & LaBar, K. S. Regulating emotion through distancing: A taxonomy, neurocognitive model, and supporting meta-analysis. *Neuroscience and Biobehavioral Reviews* **96**, 155–173 (2019).

431 4.

Webb, T. L., Miles, E. & Sheeran, P. Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. *Psy-*chological Bulletin 138, 775–808 (2012).

434 5.

Zaehringer, J., Jennen-Steinmetz, C., Schmahl, C., Ende, G. & Paret, C. Psychophysiological effects of downregulating negative emotions: Insights from a meta-analysis of healthy adults. Front Psychol 11, 470 (2020).

437 6.

Burr, D. A., Pizzie, R. G. & Kraemer, D. J. M. Anxiety, not regulation tendency, predicts how individuals regulate in the laboratory: An exploratory comparison of self-report and psychophysiology. *Plos One* **16**, (2021).

440 7.

Gärtner, A., Jawinski, P. & Strobel, A. Individual differences in inhibitory control are not related to emotion regulation. *PsyArXiv* (2021) doi:10.31234/osf.io/cd8rx.

443 8.

Schönfelder, S., Kanske, P., Heissler, J. & Wessa, M. Time course of emotion-related responding during distraction and reappraisal. *Social Cognitive and Affective Neuro-*science 9, 1310–9 (2014).

446 9.

Gross, J. J. & John, O. P. Individual differences in two emotion regulation processes:

Implications for affect, relationships, and well-being. *Journal of Personality and Social Psychology* 85, 348–62 (2003).

449 10.

Aldao, A., Nolen-Hoeksema, S. & Schweizer, S. Emotion-regulation strategies across psychopathology: A meta-analytic review. *Clinical Psychology Review* **30**, 217–237 (2010).

452 11.

Yoon, K. L., Maltby, J. & Joormann, J. A pathway from neuroticism to depression: Examining the role of emotion regulation. *Anxiety, Stress, & Coping* **26**, 558–72 (2013).

455 12.

Aldao, A., Sheppes, G. & Gross, J. J. Emotion regulation flexibility. *Cognitive Therapy and Research* **39**, 263–278 (2015).

458 13.

Bonanno, G. A. & Burton, C. L. Regulatory flexibility: An individual differences perspective on coping and emotion regulation. *Perspectives on Psychological Science*8, 591–612 (2013).

461 14.

- Dixon-Gordon, K. L., Aldao, A. & De Los Reyes, A. Repertoires of emotion regulation:

 A person-centered approach to assessing emotion regulation strategies and links to psychopathology. Cogn Emot 29, 1314–25 (2015).
- 464 15.
- Lougheed, J. P. & Hollenstein, T. A limited repertoire of emotion regulation strategies is associated with internalizing problems in adolescence. *Social Development* **21**, 704–721 (2012).
- 467 16.
- Southward, M. W., Altenburger, E. M., Moss, S. A., Cregg, D. R. & Cheavens, J. S. Flexible, yet firm: A model of healthy emotion regulation. *Journal of Social and Clinical Psychology* 37, 231–251 (2018).
- 470 17.
- Blanke, E. S. et al. Mix it to fix it: Emotion regulation variability in daily life.

 Emotion 20, 473–485 (2020).
- 473 18.
- Tamir, M., Bigman, Y. E., Rhodes, E., Salerno, J. & Schreier, J. An expectancy-value model of emotion regulation: Implications for motivation, emotional experience, and decision making. *Emotion* **15**, 90–103 (2015).
- 476 19.
- Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. *Nat Neurosci* **10**, 1625–33 (2007).
- 479 20.
- Sheppes, G. et al. Emotion regulation choice: A conceptual framework and supporting evidence. Journal of Experimental Psychology: General 143, 163–81 (2014).

- 482 21.
- Sheppes, G., Scheibe, S., Suri, G. & Gross, J. J. Emotion-regulation choice. *Psycho-*
- logical Science **22**, 1391–6 (2011).
- 485 22.
- Scheffel, C. et al. Effort beats effectiveness in emotion regulation choice: Differences
- between suppression and distancing in subjective and physiological measures. Psy-
- chophysiology 00, e13908 (2021).
- 488 23.
- Inzlicht, M., Shenhav, A. & Olivola, C. Y. The effort paradox: Effort is both costly
- and valued. Trends Cogn Sci 22, 337–349 (2018).
- 491 24.
- Hull, C. L. Principles of behavior: An introduction to behavior theory. (Appleton-
- Century-Crofts, 1943).
- 494 25.
- Gonzalez-Garcia, C. et al. Induced affective states do not modulate effort avoidance.
- Psychol Res **85**, 1016–1028 (2021).
- 497 26.
- Kool, W., McGuire, J. T., Rosen, Z. B. & Botvinick, M. M. Decision making and the
- avoidance of cognitive demand. J Exp Psychol Gen 139, 665–82 (2010).
- 500 27.
- Cheval, B. et al. Higher inhibitory control is required to escape the innate attraction
- to effort minimization. Psychology of Sport and Exercise **51**, (2020).
- 503 28.
- Cacioppo, J. T. & Petty, R. E. The need for cognition. Journal of Personality and
 - Social Psychology **42**, 116–131 (1982).

505

506 29.

Westbrook, A., Kester, D. & Braver, T. S. What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. *PLOS ONE* 8, e68210 (2013).

509 30.

Strobel, A. et al. Dispositional cognitive effort investment and behavioral demand avoidance: Are they related? PLoS One 15, e0239817 (2020).

512 31.

Zerna, J., Scheffel, C., Kührt, C. & Strobel, A. When easy is not preferred:
An effort discounting for estimating subjective values of taks. *PsyArXiv* (2022)
doi:10.31234/osf.io/ysh3q.

515 32.

Simmons, J. P., Nelson, L. D. & Simonsohn, U. A. A 21 word solution. SSRN

Electronic Journal (2012) doi:10.2139/ssrn.2160588.

518 33.

Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behavior Research

Methods 51, 195–203 (2019).

521 34.

R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).

524 35.

RStudio Team. RStudio: Integrated development for R. (2020).

- 527 36.
- Singmann, H., Bolker, B., Westfall, J., Aust, F. & Ben-Shachar, M. S. Afex: Analysis
- of factorial experiments. (2021).
- 530 37.
- Morey, R. D. & Rouder, J. N. BayesFactor: Computation of Bayes factors for common
- designs. (2021).
- 533 38.
- Greiner, B. Subject pool recruitment procedures: Organizing experiments with
- ORSEE. Journal of the Economic Science Association 1, 114–125 (2015).
- ₅₃₆ 39.
- Harris, P. A. et al. Research electronic data capture (REDCap)—A metadata-driven
- methodology and workflow process for providing translational research informatics
- support. Journal of Biomedical Informatics 42, 377–381 (2009).
- 539 40.
- Harris, P. A. et al. The REDCap consortium: Building an international community
- of software platform partners. Journal of Biomedical Informatics 95, 103208 (2019).
- 542 41.
- Dörfel, D., Gärtner, A. & Strobel, A. A new self-report instrument for measuring
- emotion regulation flexibility. Society for Affective Science (SAS) Annual Conference
- (2019).
- ₅₄₅ 42.
- Bech, P. Measuring the dimensions of psychological general well-being by the WHO-5.
- Quality of life newsletter **32**, 15–16 (2004).
- 548 43.

Brähler, E., Mühlan, H., Albani, C. & Schmidt, S. Teststatistische prüfung und normierung der deutschen versionen des EUROHIS-QOL lebensqualität-index und des WHO-5 wohlbefindens-index. *Diagnostica* **53**, 83–96 (2007).

551 44.

Connor, K. M. & Davidson, J. R. Development of a new resilience scale: The connordavidson resilience scale (CD-RISC). *Depression and Anxiety* **18**, 76–82 (2003).

554 45.

Sarubin, N. et al. First analysis of the 10-and 25-item german version of the connor-davidson resilience scale (CD-RISC) regarding psychometric properties and components. Zeitschrift Fur Gesundheitspsychologie 23, 112–122 (2015).

₅₅₇ 46.

Campbell-Sills, L. & Stein, M. B. Psychometric analysis and refinement of the connor-davidson resilience scale (CD-RISC): Validation of a 10-item measure of resilience.

Journal of Traumatic Stress 20, 1019–28 (2007).

560 47.

Abler, B. & Kessler, H. Emotion regulation questionnaire - a german version of the ERQ by gross and john. *Diagnostica* **55**, 144–152 (2009).

₅₆₃ 48.

Bernecker, K. & Job, V. Implicit theories about willpower in resisting temptations and emotion control. Zeitschrift Fur Psychologie-Journal of Psychology 225, 157–166 (2017).

566 49.

Bless, H., Wanke, M., Bohner, G., Fellhauer, R. F. & Schwarz, N. Need for cognition
- a scale measuring engagement and happiness in cognitive tasks. Zeitschrift Für

Sozialpsychologie 25, 147–154 (1994).

- 569 50.
- Paschke, L. M. et al. Individual differences in self-reported self-control predict successful emotion regulation. Social Cognitive and Affective Neuroscience 11, 1193–204 (2016).
- 572 51.
- Schwarzer, R., Diehl, M. & Schmitz, G. S. Self-regulation scale. (1999).

575 52.

- Tangney, J. P., Baumeister, R. F. & Boone, A. L. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. *Journal of Personality* **72**, 271–324 (2004).
- 578 53.
- Sproesser, G., Strohbach, S., Schupp, H. & Renner, B. Candy or apple? How self-control resources and motives impact dietary healthiness in women. *Appetite* **56**, 784–787 (2011).
- 54.
- Patton, J. H., Stanford, M. S. & Barratt, E. S. Factor structure of the barratt impulsiveness scale. *Journal of Clinical Psychology* **51**, 768–774 (1995).
- 55.
- Hartmann, A. S., Rief, W. & Hilbert, A. Psychometric properties of the german version of the barratt impulsiveness scale, version 11 (BIS-11) for adolescents. *Perceptual and Motor Skills* **112**, 353–368 (2011).
- 56.
- Derryberry, D. & Reed, M. A. Anxiety-related attentional biases and their regulation by attentional control. *Journal of abnormal psychology* **111**, 225–236 (2002).

590 57.

Wessa, M. et al. EmoPicS: Subjective und psychophysiologische evalueation neuen bildmaterials für die klinisch-biopsychologische forschung. Zeitschrift für Klinische Psychologie und Psychotherapie 39, 77 (2010).

593 58.

Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International affective picture system
(IAPS): Affective ratings of pictures and instruction manual. (University of Florida,
2008).

59.

Yu, X. & Gen, M. Introduction to evolutionary algorithms. (Springer Science & Business Media, 2010).

599 60.

Bradley, M. M. & Lang, P. J. Measuring emotion: Behavior, feeling, and physiology. in *Cognitive neuroscience of emotion* (eds. Lane, R. D. & Nadel, L.) 242–276 (Oxford University Press, 2000).

602 61.

Fridlund, A. J. & Cacioppo, J. T. Guidelines for human electromyographic research.

Psychophysiology 23, 567–89 (1986).

605 62.

Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavior Research Methods* **39**, 175–191 (2007).

608 63.

Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods* 41, 1149–1160 (2009).

64.

Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. *Journal of Statistical Software* 82, 1–26 (2017).

65.

Enders, C. K. & Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. *Psychological Methods* **12**, 121–138 (2007).

66.

Preece, D. A., Becerra, R., Robinson, K. & Gross, J. J. The emotion regulation questionnaire: Psychometric properties in general community samples. *J Pers Assess*102, 348–356 (2020).

620 67.

Fleischhauer, M. et al. Same or different? Clarifying the relationship of need for cognition to personality and intelligence. Personality & Social Psychology Bulletin 36, 82–96 (2010).

623 68.

Fleischhauer, M., Strobel, A. & Strobel, A. Directly and indirectly assessed Need for Cognition differentially predict spontaneous and reflective information processing behavior. *Journal of Individual Differences* **36**, 101–109 (2015).

Acknowledgements

This research is partly funded by the German Research Foundation (DFG) as part of
the Collaborative Research Center (CRC) 940. Additionally, we have applied for funding of
the participants' compensation from centralized funds of the Faculty of Psychology at
Technische Universität Dresden. Applications for the centralized funds will be reviewed in
May. Regardless of whether or not this additional funding will be granted, the study can
commence immediately. The funders have/had no role in study design, data collection and
analysis, decision to publish or preparation of the manuscript.

Competing Interests

The authors declare no competing interests.

626

636

Figures and figure captions

Figure 1

Figure 1. Exemplary visualization of two response patterns. In the top half, the
person has a clear preference for one of the three strategies. In the lower half, they have no
clear preference and therefore show an inconsistent response pattern. This pattern can also
be represented by our paradigm.

Figure 2

648

Figure 2. Block design of the paradigm. Every participant starts with two "active viewing" blocks continuing neutral (Block 1) and negative (Block 2) pictures. Order of the regulation blocks (Blocks 3, 4, and 5) is randomized between participants. After, the discounting procedure takes place. All three regulation strategies are pairwise compared.

Before the last block, participants can decide which regulation strategy they want to reapply. Subjective arousal and effort ratings are assessed after each block using a slider on screen with a continuous scale.

Design Table

Question	Hypothesis	Sampling plan (e.g. power analysis)	Analysis Plan	Interpretation given to different outcomes
1.) Do negative pictures (compared to neutral pictures) evoke subjective arousal and physiological responding? (Manipulation check)	1a) Subjective arousal (arousal rating) is lower after actively viewing neutral pictures compared to actively viewing negative pictures.	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 1.59 \ (\eta_p^2 = 0.716)$ (Scheffel et al., 2021) α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of groups = 1 Number of measurements = 2 Corr among rep measures = 0.5 Nonsphericity correction $\epsilon = 1$ $\frac{Output}{V}$: Noncentrality parameter $\lambda = 40.3380260$ Critical $F = 10.1279645$ Numerator $df = 1.0$ Denominator $df = 3.0$ Total sample size = 4 Actual power = 0.9789865	Repeated measures ANOVA with two linear contrasts, comparing the subjective arousal ratings of two blocks (active viewing – neutral and active viewing – negative). ANOVA is calculated using aov_ez() function of the afex- package, estimated marginal means are calculated using emmeans() function from the emmeans-package: if the factor Block is significant, pairwise contrasts are calculated using pairs() with Bonferroni adjustment for multiple testing. Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	ANOVA yields $p < .05$ is interpreted as subjective arousal (arousal ratings) changing significantly with blocks. Values of arousal ratings are interpreted as equal between blocks if $p > .05$. Each contrast yielding $p < .05$ is interpreted as arousal ratings being different between those two blocks, magnitude and direction are inferred from the respective estimate. Values of arousal ratings are interpreted as equal between blocks if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.
	1b) Physiological responding (EMG corrugator activity) is lower while actively viewing neutral pictures compared to actively viewing negative pictures.	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 0.5573293 (\eta_p^2 = 0.237)$ (Pilot Study) α err prob = 0.05 Power $(1-\beta \text{ err prob}) = 0.95$ Number of groups = 1 Number of measurements = 2	Repeated measures ANOVA with two linear contrasts, comparing the EMG corrugator activity of two blocks (active viewing – neutral and active viewing - negative). ANOVA is calculated using aov_ez() function of the afex- package, estimated marginal means are calculated using	ANOVA yields $p < .05$ is interpreted as physiological responding (EMG corrugator activity) changing significantly with blocks. Values of arousal ratings are interpreted as equal between blocks if $p > .05$. Each contrast yielding $p < .05$ is interpreted as EMG corrugator activity being different between those two blocks, magnitude and direction are

		among rep measures = 0.5	emmeans() function from the	inferred from the respective estimate.
	Nons	sphericity correction $\varepsilon = 1$	emmeans-package: if the factor	Values of EMG <i>corrugator</i> activity are
	Outes	***	Block is significant, pairwise contrasts are calculated using	interpreted as equal between blocks if $p > .05$.
	Outp None	<u>ut</u> : centrality parameter λ =	pairs() with Bonferroni	>.03.
		520293	adjustment for multiple testing.	The Bayes factor <i>BF10</i> is reported
		cal $F = 4.7472253$	adjustment for multiple testing.	alongside every <i>p</i> -value to assess the
		erator df = 1.0	Bayes factors are computed for	strength of evidence.
		ominator $df = 1.0$	the ANOVA and each contrast	-
		sample size = 13	using the BayesFactor-package.	
		al power = 0.9573615	using the Dayesi actor package.	
1c) Phy		ts - ANOVA: Repeated	Repeated measures ANOVA	ANOVA yields $p < .05$ is interpreted as
		sures, within factors	with two linear contrasts,	physiological responding (EMG <i>levator</i>
		ysis: A priori: Compute	comparing the EMG levator	activity) changing significantly with
		red sample size	activity of two blocks (active	blocks. Values of arousal ratings are
viewing	g neutral Input	<u>:</u>	viewing – neutral and active	interpreted as equal between blocks if <i>p</i>
pictures		et size $f = 0.4396788 (\eta_p^2 =$	viewing - negative).	> .05.
actively		2) (Pilot Study)		Factor and an extended a little and the control of the
negativ		prob = 0.05	ANOVA is calculated using	Each contrast yielding $p < .05$ is interpreted as EMG <i>levator</i> activity
		er $(1-\beta \text{ err prob}) = 0.95$	aov_ez() function of the afex-	being different between those two
		ber of groups $= 1$	package, estimated marginal	blocks, magnitude and direction are
		ber of measurements $= 2$	means are calculated using	inferred from the respective estimate.
		among rep measures $= 0.5$	emmeans() function from the	Values of EMG <i>levator</i> activity are
	Nons	sphericity correction $\varepsilon = 1$	emmeans-package: if the factor	interpreted as equal between blocks if <i>p</i>
			Block is significant, pairwise	> .05.
	Outp		contrasts are calculated using	
		centrality parameter λ =	pairs() with Bonferroni	The Bayes factor <i>BF10</i> is reported
		921260	adjustment for multiple testing.	alongside every <i>p</i> -value to assess the
		cal $F = 4.4138734$	Davida fa atoma and a ammust - 1 f	strength of evidence.
		erator $df = 1.0$ eminator $df = 18.0$	Bayes factors are computed for the ANOVA and each contrast	
		I sample size $= 18.0$	using the BayesFactor-package.	
		al power = 0.9517060	using the Dayesractor-package.	
	Actua	ai powei – 0.331/000		

2.) Do ER strategies reduce emotional arousal? (Manipulation check)	2a) Subjective arousal (arousal rating) is lower after using an emotion regulation strategy (distraction, distancing, suppression) compared to active viewing.	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 0.50 \ (\eta_p^2 = 0.20)$ (Scheffel et al., 2021) α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction $\epsilon = 1$ Output: Noncentrality parameter $\lambda = 20.0$ Critical $F = 2.9603513$ Numerator $df = 3.0$ Denominator $df = 27.0$ Total sample size = 10 Actual power = 0.95210128	Repeated measures ANOVA comparing the subjective arousal ratings of four blocks (active viewing, distraction, distancing, suppression). ANOVA is calculated using aov_ez() function of the afex-package, estimated marginal means are calculated using emmeans() function from the emmeans-package: if the factor Block is significant, pairwise contrasts are calculated using pairs() with Bonferroni adjustment for multiple testing. Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	ANOVA yields $p < .05$ is interpreted as arousal ratings changing significantly with blocks. Values of arousal ratings are interpreted as equal between blocks if $p > .05$. Each contrast yielding $p < .05$ is interpreted as arousal ratings being different between those two blocks, magnitude and direction are inferred from the respective estimate. Values of arousal ratings are interpreted as equal between blocks if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.
3.) Do ER strategies reduce physiological responding? (Manipulation check)	3a) Physiological responding (EMG corrugator activity) is lower after using an emotion regulation strategy (distraction, distancing, suppression) compared to active viewing.	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size $f = 0.1605$ (Zaehringer et al., 2020) α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction $\epsilon = 1$	Repeated measures ANOVA comparing the <i>corrugator</i> muscle activity of four blocks (active viewing, distraction, distancing, suppression). ANOVA is calculated using aov_ez() function of the afex-package, estimated marginal means are calculated using emmeans() function from the emmeans-package: if the factor Block is significant, pairwise contrasts are calculated using	ANOVA yields $p < .05$ is interpreted as <i>corrugator</i> muscle activity changing significantly with blocks. Values of <i>corrugator</i> muscle activity are interpreted as equal between blocks if $p > .05$. Each contrast yielding $p < .05$ is interpreted as <i>corrugator</i> muscle activity being different between those two blocks, magnitude and direction are inferred from the respective estimate. Values of <i>corrugator</i> muscle activity

		Output: Noncentrality parameter $\lambda = 17.5169700$ Critical F = 2.6404222 Numerator df = 3.0 Denominator df = 252 Total sample size = 85	pairs() with Bonferroni adjustment for multiple testing. Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	are interpreted as equal between blocks if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.
	3b) Physiological responding (EMG levator activity) is lower after using an emotion regulation strategy (distraction, distancing, suppression) compared to active viewing.	Actual power = 0.9509128 F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input: Effect size f = 0.1605 (Zaehringer et al., 2020) α err prob = 0.05 Power (1 - β err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction ϵ = 1 Output: Noncentrality parameter λ = 17.5169700 Critical F = 2.6404222 Numerator df = 3.0 Denominator df = 2.52 Total sample size = 8.5 Actual power = 0.9509128	Repeated measures ANOVA comparing the <i>levator</i> muscle activity of four blocks (active viewing, distraction, distancing, suppression). ANOVA is calculated using aov_ez() function of the afex-package, estimated marginal means are calculated using emmeans() function from the emmeans-package: if the factor Block is significant, pairwise contrasts are calculated using pairs() with Bonferroni adjustment for multiple testing. Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	ANOVA yields $p < .05$ is interpreted as <i>levator</i> muscle activity changing significantly with blocks. Values of <i>levator</i> muscle activity are interpreted as equal between blocks if $p > .05$. Each contrast yielding $p < .05$ is interpreted as <i>levator</i> muscle activity being different between those two blocks, magnitude and direction are inferred from the respective estimate. Values of <i>levator</i> muscle activity are interpreted as equal between blocks if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.
4.) Do ER strategies require cognitive effort? (Manipulation check)	4a) Subjective effort (effort rating) is greater after using an emotion regulation strategy (distraction,	F tests - ANOVA: Repeated measures, within factors Analysis: A priori: Compute required sample size Input:	Repeated measures ANOVA comparing the subjective effort ratings of four blocks (active viewing, distraction, distancing, suppression).	ANOVA yields $p < .05$ is interpreted as effort ratings changing significantly with blocks. Values of effort ratings are interpreted as equal between blocks if $p > .05$.

	distancing, suppression) compared to active viewing.	Effect size $f = 0.2041241$ ($\eta_p^2 = 0.04$) (Scheffel et al., 2021) α err prob = 0.05 Power (1- β err prob) = 0.95 Number of groups = 1 Number of measurements = 4 Corr among rep measures = 0.5 Nonsphericity correction ϵ = 1 $\frac{Output}{N}$: Noncentrality parameter λ = 17.6666588 Critical F = 2.6625685 Numerator df = 3.0 Denominator df = 156.0 Total sample size = 53 Actual power = 0.95206921	ANOVA is calculated using aov_ez() function of the afex-package, estimated marginal means are calculated using emmeans() function from the emmeans-package: if the factor Block is significant, pairwise contrasts are calculated using pairs() with Bonferroni adjustment for multiple testing. Bayes factors are computed for the ANOVA and each contrast using the BayesFactor-package.	Each contrast yielding $p < .05$ is interpreted as effort ratings being different between those two blocks, magnitude and direction are inferred from the respective estimate. Values of effort ratings are interpreted as equal between blocks if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.
	4b) Majority of participants reuse the strategy that was least effortful for them.	-	Subjects are asked about the reasons for their choice in the follow-up survey. These answers are classified into categories and counted.	The percentage choice of strategies is described descriptively.
5.) Which variables can predict individual subjective values of ER strategies?	5a) Subjective effort (effort ratings) negatively predict subjective values of ER strategies.	t tests - Linear multiple regression: Fixed model, single regression coefficient Analysis: A priori: Compute required sample size Input: Tail(s) = One Effect size f² = 0.34 (Since there are no findings in this respect yet,	Multilevel model of SVs with level-1-predictors subjective effort, subjective arousal, subjective utility, corrugator, and levator muscle activity using subject specific intercepts and allowing random slopes for ER strategies.	Fixed effects yield $p < .05$ are interpreted as subjective values are related to subjective effort. Subjective values are interpreted as not being related to subjective effort if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.

5b) Subjective arousal (arousal ratings) negatively predict subjective values of ER strategies.	we have inferred from the effect size in the closest-similar model: Westbrook et al., 2013) α err prob = 0.05 Power (1- β err prob) = 0.95 Number of predictors = 4 Output: Noncentrality parameter δ = 3.4 Critical t = 1.6991270	The null model and the random slopes model are calculated using lmer() of the lmerTest-package. Bayes factors are computed for the MLM using the BayesFactor-package.	Fixed effects yield $p < .05$ are interpreted as subjective values are related to subjective arousal. Subjective values are interpreted as not being related to subjective arousal if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.
5c) Subjective utility (utility ratings) positively predict subjective values of ER strategies.	Df = 29 Total sample size = 34 Actual power = 0.9529571		Fixed effects yield $p < .05$ are interpreted as subjective values are related to subjective utility. Subjective values are interpreted as not being related to subjective utility if $p > .05$.
			The Bayes factor <i>BF10</i> is reported alongside every <i>p</i> -value to assess the strength of evidence.
5d) Physiological responding (EMG corrugator activity) negatively predict subjective values of ER strategies.			Fixed effects yield $p < .05$ are interpreted as subjective values are related to <i>corrugator</i> activity. Subjective values are interpreted as not being related to <i>corrugator</i> activity if $p > .05$.
			The Bayes factor <i>BF10</i> is reported alongside every <i>p</i> -value to assess the strength of evidence.
5e) Physiological responding (EMG levator activity) negatively predict subjective values of ER strategies.			Fixed effects yield $p < .05$ are interpreted as subjective values are related to <i>levator</i> activity. Subjective values are interpreted as not being related to <i>levator</i> activity if $p > .05$.

6.) Is the effort required for an ER strategy the best predictor for subjective values of ER strategies?	6a) Subjective values decline with increasing effort, even after controlling for task performance (subjective arousal ratings), utility (subjective utility ratings), and physiological responding (EMG corrugator and levator activity).	t tests - Linear multiple regression: Fixed model, single regression coefficient Analysis: A priori: Compute required sample size Input: Tail(s) = One Effect size $f^2 = 0.34$ (Since there are no findings in this respect yet, we have inferred from the effect size in the closest-similar model: Westbrook et al., 2013) α err prob = 0.05 Power (1- β err prob) = 0.95 Number of predictors = 4 Output: Noncentrality parameter $\delta = 3.4$ Critical t = 1.6991270		The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence. Fixed effects yield $p < .05$ are interpreted as subjective values changing significantly with ER strategy. Subjective values are interpreted as equal between ER strategies if $p > .05$. The Bayes factor $BF10$ is reported alongside every p -value to assess the strength of evidence.
		Actual power = 0.9529571		
7.) Are subjective values related to flexible emotion regulation?	7a) The higher the subjective value, the more likely the respective strategy is chosen.	1) χ^2 tests – Goodness-of-fit tests_ Contingency tables Analysis: A priori: Compute required sample size Input: Effect size $\omega = 0.5$ (Based on our theoretical considerations, we assume a large effect) α err prob = 0.05	1) Chi-squared test with the variables "predicted choice" (= highest SV of each participant) and "choice" (Strategy 1, 2, or 3) 2) Ordinal regression with dependent variable "Choice" (Strategy 1, 2, or 3) and independent variables "SV	1) χ^2 yields $p < .05$ is interpreted as predicted choice (highest SV of each participant) and actual choice show significant consistency. Predicted choice and actual choice are interpreted as independent if $p > .05$.

Power $(1-\beta \text{ err prob}) = 0.95$	strategy 1", "SV strategy 2" and	The Bayes factor <i>BF10</i> is reported
Df = 1	"SV strategy 3".	alongside every <i>p</i> -value to assess the
	Sv strategy 5.	
Output:		strength of evidence.
Noncentrality parameter $\lambda = 19.8$		
Critical $\chi^2 = 11.0704977$		2) Ordinal logistic regression yields $p <$
Total sample size $= 52$.05 is interpreted as the respective
Actual power = 0.9500756		subjective value has a significant
		influence on the OR of the choice of a
2) z tests –Logistic regression		strategy.
Analysis: A priori: Compute		Respective SV is interpreted as not
required sample size		related to choice if $p > .05$.
<u>Input:</u>		
Tails: One		The Bayes factor <i>BF10</i> is reported
Pr(Y=1 X=1) H1 = 0.80 (Based		alongside every <i>p</i> -value to assess the
on our theoretical considerations,		strength of evidence.
that a higher SVs should lead		8
almost certainly to the choice of		
the respective strategy)		
Pr(Y=1 X=1) H0 = 0.333 (Based)		
on theoretical considerations: if		
all SVs are equal, choice is on		
<u> </u>		
chance level)		
$\alpha \text{ err prob} = 0.05$		
Power $(1-\beta \text{ err prob}) = 0.95$		
R^2 other $X = 0$		
X distribution: normal		
X param $\mu = 0$		
$X \text{ param } \sigma = 1$		
Output:		
Critical $z = 1.6448536$		
Total sample size = 25		
Actual power = 0.9528726		

7b) Subjective values are lower and decline stronger when ER flexibility is lower.

t tests – Linear multiple regression: Fixed model, single regression coefficient Analysis: A priori: compute required sample size

Input: Tail(s) = One Effect size $f^2 = 0.15$ (as there is no evidence in the literature, we assume a medium sized effect) α err prob = 0.05 Power $(1-\beta$ err prob) = 0.95 Number of predictors = 2

Number of predictors = 2 <u>Output:</u> Noncentrality parameter δ =

3.316662 Critical t = 1.69665997

Critical t = 1.69665997Df = 71

 $\begin{aligned} & Total \ sample \ size = 74 \\ & Actual \ power = 0.95101851 \end{aligned}$

SVs will be sorted by magnitude in descending order. Values will be fitted in a linear model to estimate the individual intercept (i.e., the extent to which an individual considers any of the ER strategies useful) and slope (i.e., the extent to which one strategy is preferred over others, indicating less flexibility).

A linear regression will be computed with individual intercepts and slopes as predictors and FlexER score as criterion. β yield p < .05 are interpreted as significant association between predictor (intercept, slope) and ER flexibility. The direction of effect is interpreted according to sign (negative or positive). p – values > .05 are interpreted as no association between predictor and ER flexibility.

The Bayes factor *BF10* is reported alongside every *p*-value to assess the strength of evidence.

Exploratory: Are		Multilevel model of SVs with	Fixed effects yield $p < .05$ are
individual		level-1-predictors subjective	interpreted as subjective values are
subjective values		effort, subjective arousal,	related to NFC and self-control.
of ER strategies		corrugator, and levator muscle	Subjective values are interpreted as not
related to		activity and level-2-predictors	being related to subjective effort if $p >$
personality traits?		NFC and self-control using	.05.
		subject specific intercepts and allowing random slopes for ER strategies. The null model and the random slopes model are calculated using lmer() of the lmerTest-package.	The Bayes factor <i>BF10</i> is reported alongside every <i>p</i> -value to assess the strength of evidence.
		Bayes factors are computed for the MLM using the BayesFactor-package.	

659

Supplementary Material

Supplementary Material 1

Table S1
List of IAPS (Lang, Bradley, and Cuthbert, 2008) and EmoPicS (Wessa et al., 2010) used in the ER paradigm.

	Neutral	Negative 1	Negative 2	Negative 3	Negative 4	Negative 5
	083 [†]	225 [†]	210 [†]	208 [†]	22 7 †	223 [†]
	107 [†]	230 [†]	218 [†]	219 [†]	252 [†]	238 [†]
	124 [†]	255 [†]	222 [†]	226 [†]	1051*	245 [†]
	140 [†]	327 [†]	228 [†]	253 [†]	2800*	2981*
	143 [†]	1111*	246 [†]	254 [†]	3061*	3016*
	7000*	3017*	251 [†]	326 [†]	3230*	3101*
	7002*	3022*	2703*	1301*	6561*	3181*
	7004*	3180*	3051*	3350*	6838*	3215*
	7006*	3280*	3160*	6242*	9120*	3220*
	7009*	6190*	3185*	6410*	9181*	3225*
	7021*	6244*	3301*	6555*	9185*	6020*
	7025*	6836*	6562*	6825*	9230*	6571*
	7041*	9180*	9031*	6940*	9254*	6831*
	7100*	9182*	9040*	8230*	9295*	8231*
	7150*	9253*	9042*	9041*	9332*	9373*
	7185*	9300*	9043*	9140*	9411*	9400*
	7211*	9326*	9145*	9340*	9420*	9402*
	7224*	9424*	9160*	9409*	9421*	9403*
	7233*	9425*	9184*	9570*	9599*	9405*
	7235*	9920*	9904*	9800*	9905*	9423*
Valence	4.86 ± 0.49	2.84 ± 0.57	2.64 ± 0.46	2.82 ± 0.62	2.65 ± 0.75	2.74 ± 0.70
Arousal	3.01 ± 0.61	5.62 ± 0.34	5.58 ± 0.38	5.60 ± 0.39	5.61 ± 0.41	5.63 ± 0.37

Note. * Pictures taken from the IAPS (Lang, Bradley, and Cuthbert, 2008); † Pictures taken from the EmoPicS (Wessa et al., 2010).

Detailed information on psychometric measures

WHO-5. General psychological well-being is assessed using the WHO-5 scale^{42,43}. 5 Items such as "Over the past 2 weeks I have felt calm and relaxed." are rated on a 6-point Likert scale raning from 0 (at no time) to 5 (all of the time). The german version of the scale showed a high internal consistency (Cronbach's $\alpha = .92$)⁴³.

Connor-Davidson Resilience Scale. Resilience is assessed using the Connor-Davidson Resilience Scale (CD-RISC)^{44–46}. 10 items such as "I am able to adapt to change." are rated on a scale from 0 (not true at all) to 4 (true nearly all the time). The 10-item version showed a high internal consistency (Cronbach's $\alpha = .84$) and a satisfactory retest-reliability of $r_{tt} = .81$ across 6 month⁴⁵.

Emotion Regulation Questionnaire. Habitual use of reappraisal and suppression is measured using the 10-item Emotion Regulation Questionnaire (ERQ)^{9,47}. The scale has items such as "I keep my emotions to myself" (ERQ-suppression - 4 items) and "When I'm faced with a stressful situation, I make myself think about it in a way that helps me stay calm" (ERQ-reappraisal - 6 items), which are answered on a 7-point Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree), and has acceptable to high internal consistency (Cronbach's $\alpha > .75$). ⁶⁶

FlexER Scale. Flexible use of ER strategies is assessed using the FlexER Scale⁴¹ with items such as "If I want to feel less negative emotions, I have several strategies to achieve this.", which are answered on a 4-point scale ranging from "strongly agree" to "strongly disagree". Psychometric properties are currently under investigation.

Implicit Theories Questionnaire. Implicit theories of willpower in emotional control are assessed using the Implicit Theories Questionnaire of. 48 4 items such as "Having to control a strong emotion makes you exhausted and you are less able to manage your feelings right afterwards." are rated on a 6-point scale ranging from 1 (fully agree) to 6 (do not agree at all). The questionnaire showed an internal consistency of Cronbach's $\alpha = .87^{48}$.

```
Need for Cognition Scale. Need for Cognition (NFC) is assessed with the 16-item
687
    short version of the German NFC scale. 49 Responses to each item (e.g., "Thinking is not
688
    my idea of fun", recoded) are recorded on a 7-point Likert scale ranging from -3
689
    (completely disagree) to +3 (completely agree) and are summed to the total NFC score.
690
    The scale shows comparably high internal consistency (Cronbach's \alpha > .80)<sup>49,67</sup> and a
691
    retest reliability of r_{tt} = .83 \text{ across } 8 \text{ to } 18 \text{ weeks.}^{68}
692
          Self-Regulation Scale. As one measure of self-control, the Self-Regulation Scale
693
    (SRS)<sup>51</sup> is used. The scale has 10 items (e.g., "It is difficult for me to suppress thoughts
694
    that interfere with what I need to do.", recoded) on a 4-point scale ranging from 1 (not at
    all true) to 4 (exactly true). It has high internal consistency [Cronbach's \alpha > .80;].<sup>51</sup>
696
          Brief Self-Control Scale. As a second measure of self-control, the Brief Self-Control
697
    Scale (BSCS)<sup>52,53</sup> is used. It comprises 13 items (e.g., "I am good at resisting
698
    temptations") with a 5-point rating scale ranging from 1 (not at all like me) to 5 (very
690
    much like me). The scale shows acceptable internal consistency (Cronbach's \alpha=.81)^{53} .
700
          Barratt Impulsiveness Scale. As a third measure of self-control, the Barratt
701
    Impulsiveness Scale (BIS-11)<sup>54,55</sup> is used. Responses to each item (e.g., "I am
702
    self-controlled.", recoded) are assessed on a 4-point scale ranging from 1 (never/rarely) to 4
    (almost always/always). An internal consistency of Cronbach's \alpha = .74 and a retest
    reliability of r_{tt} = .56 for General Impulsiveness and r_{tt} = .66 for Total Score across 6
705
    month were reported.<sup>55</sup>
706
          Attentional Control Scale. Attentional control is measured using the Attentional
707
    Control Scale (ACS)<sup>56</sup> with items such as "My concentration is good even if there is music
708
    in the room around me". The 20 items are rated on a 4-point scale ranging from 1 (almost
709
    never) to 4 (always). An internal consistency of Cronbach's \alpha = .88 was reported.<sup>56</sup>
```

711 Pilot study: Subjective arousal in the conditions "Active viewing - neutral"

and "Active viewing - negative"

ANOVA:

714	Effect	df	MSE	F	ges	p.value
714	block	1, 15	3895.91	34.32 ***	.475	<.001

BF10 = 1,244.99

Paired contrasts:

Table 1
Paired contrasts for the rmANOVA comparing subjective arousal of negative and neutral pictures in the condition "active viewing".

Contrast	Estimate	SE	df	t	p	BF10	η_p^2	95%CI
$View_{neutral} - View_{negative}$	-129.28	22.07	15.00	-5.86	0.00	794.78	0.70	[0.43, 1.00]

Note. SE = standard error, df = degrees of freedom, t = t-statistic, p = p-value, CI = confidence interval.

Figure 3. Subjective arousal ratings for the conditions "Active viewing - neutral" and "Active viewing - negative" visualized as boxplots. Each dot represents the effort rating of a single subject. Bold dots represent outliers.

718 Pilot study: Subjective arousal in the conditions "Active viewing - negative",

"Distraction", "Distancing", and "Suppression"

ANOVA:

701	Effect	df	MSE	F	ges	p.value
721	block	2.79, 41.89	2238.27	1.17	.011	.332

$$BF10 = 0.11$$

Paired contrasts:

Table 2
Paired contrasts for the rmANOVA comparing subjective arousal of conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression".

Contrast	Estimate	SE	df	t	p	BF10	η_p^2	95%CI
$\overline{View_{negative} - Distraction}$	-0.74	16.14	45.00	-0.05	1.00	0.26	4.68e-05	[0.00, 1.00]
$View_{negative} - Distancing$	-5.35	16.14	45.00	-0.33	1.00	0.27	2.43e-03	[0.00, 1.00]
$View_{negative} - Suppression$	-26.23	16.14	45.00	-1.63	0.67	1.25	0.06	[0.00, 1.00]
Distraction-Distancing	-4.61	16.14	45.00	-0.29	1.00	0.26	1.81e-03	[0.00, 1.00]
Distraction-Suppression	-25.49	16.14	45.00	-1.58	0.73	0.77	0.05	[0.00, 1.00]
Distancing-Suppression	-20.88	16.14	45.00	-1.29	1.00	0.52	0.04	[0.00, 1.00]

Note. SE = standard error, df = degrees of freedom, t = t-statistic, p = p-value, CI = confidence interval.

Figure:

724

Figure 4. Subjective arousal ratings for the conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression" visualized as boxplots. Each dot represents the effort rating of a single subject. Bold dots represent outliers.

Pilot study: Physiological responding (*Corrugator* and *Levator* activity) in the conditions "Active viewing - neutral" and "Active viewing - negative"

727 Corrugator: ANOVA:

Effect	df	MSE	F	ges	p.value
block	1, 15	1.01	9.70 **	.237	.007

BF10 = 6,690,401.91

728

730

732

Paired contrasts:

Table 3

Paired contrasts for the rmANOVA comparing physiological responding (Corrugator activity) of negative and neutral pictures in the condition "active viewing".

Contrast	Estimate	SE	df	t	p	BF10	η_p^2	95%CI
$View_{neutral} - View_{negative}$	-1.11	0.36	15.00	-3.11	0.01	5,019,313.20	0.39	[0.09, 1.00]

Note. SE = standard error, df = degrees of freedom, t = t-statistic, p = p-value, CI = confidence interval.

Levator: ANOVA:

Effect	df	MSE	F	ges	p.value
block	1, 15	0.17	7.72 *	.162	.014

BF10 = 48.44

Paired contrasts:

Table 4
Paired contrasts for the rmANOVA comparing physiological responding (Levator activity) of negative and neutral pictures in the condition "active viewing".

Contrast	Estimate	SE	df	t	p	BF10	η_p^2	95%CI
$View_{neutral} - View_{negative}$	-0.40	0.14	15.00	-2.78	0.01	41.02	0.34	[0.05, 1.00]

Note. SE = standard error, df = degrees of freedom, t = t-statistic, p = p-value, CI = confidence interval.

Figures:

Figure 5. Corrugator activity for the conditions "Active viewing - neutral" and "Active viewing - negative" visualized as boxplots. Each dot represents the corrugator activity of a single trial. Bold dots represent outliers.

Figure 6. Levator activity for the conditions "Active viewing - neutral" and "Active viewing - negative" visualized as boxplots. Each dot represents the levator activity of a single trial. Bold dots represent outliers.

Pilot study: Physiological responding (*Corrugator* and *Levator* activity) in the conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression"

739 *Corrugator*: ANOVA:

Effect	df	MSE	F	ges	p.value
block	1.53, 22.98	1.16	5.71 *	.189	.015

BF10 = 5,257,689.54

740

742

Paired contrasts:

Table 5
Paired contrasts for the rmANOVA comparing physiological responding (Corrugator activity) of conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression".

Contrast	Estimate	SE	df	t	p	BF10	η_p^2	95%CI
$View_{negative} - Distraction$	0.88	0.27	45.00	3.22	0.01	4,962.89	0.19	[0.05, 1.00]
$View_{negative} - Distancing$	0.95	0.27	45.00	3.50	0.01	616.63	0.21	[0.06, 1.00]
$View_{negative} - Suppression$	0.92	0.27	45.00	3.40	0.01	11,678.82	0.20	[0.06, 1.00]
Distraction-Distancing	0.08	0.27	45.00	0.28	1.00	0.07	1.78e-03	[0.00, 1.00]
Distraction-Suppression	0.05	0.27	45.00	0.18	1.00	0.08	7.22e-04	[0.00, 1.00]
Distancing-Suppression	-0.03	0.27	45.00	-0.10	1.00	0.06	2.36e-04	[0.00, 1.00]

Note. SE = standard error, df = degrees of freedom, t = t-statistic, p = p-value, CI = confidence interval.

Levator: ANOVA:

744	Effect	df	MSE	F	ges	p.value
744	block	2.07, 31.00	0.20	8.27 **	.225	.001

BF10 = 672,341.29

Paired contrasts:

Table 6
Paired contrasts for the rmANOVA comparing physiological responding (Levator activity) of conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression".

Contrast	Estimate	SE	df	t	p	BF10	η_p^2	95%CI
$View_{negative} - Distraction$	0.42	0.13	45.00	3.24	0.01	58.02	0.19	[0.05, 1.00]
$View_{negative} - Distancing$	0.45	0.13	45.00	3.46	0.01	93.49	0.21	[0.06, 1.00]
$View_{negative} - Suppression$	0.62	0.13	45.00	4.79	0.00	$6,\!253.91$	0.34	[0.16, 1.00]
Distraction-Distancing	0.03	0.13	45.00	0.22	1.00	0.07	1.06e-03	[0.00, 1.00]
Distraction-Suppression	0.20	0.13	45.00	1.54	0.78	1.52	0.05	[0.00, 1.00]
Distancing-Suppression	0.17	0.13	45.00	1.32	1.00	0.52	0.04	[0.00, 1.00]

Note. SE = standard error, df = degrees of freedom, t = t-statistic, p = p-value, CI = confidence interval.

Figures:

Figure 7. Corrugator activity for the conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression" visualized as boxplots. Each dot represents the corrugator activity of a single trial. Bold dots represent outliers.

Figure 8. Levator activity for the conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression" visualized as boxplots. Each dot represents the levator activity of a single trial. Bold dots represent outliers.

 $_{748}$ $\,$ Pilot study: Subjective effort in the conditions "Active viewing - negative",

"Distraction", "Distancing", and "Suppression"

ANOVA:

750

753

751	Effect	df	MSE	F	ges	p.value
751	block	2.38, 35.66	4388.19	11.13 ***	.185	<.001

$$BF10 = 7.40$$

Paired contrasts:

Table 7
Paired contrasts for the rmANOVA comparing subjective effort of conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression".

Contrast	Estimate	SE	df	t	p	BF10	η_p^2	95%CI
$View_{negative} - Distancing$	-110.72	20.85	45.00	-5.31	0.00	59.77	0.39	[0.20, 1.00]
$View_{negative} - Distraction$	-89.72	20.85	45.00	-4.30	0.00	20.49	0.29	[0.12, 1.00]
$View_{negative} - Suppression$	-88.15	20.85	45.00	-4.23	0.00	33.13	0.28	[0.11, 1.00]
Distraction-Distancing	21.00	20.85	45.00	1.01	1.00	0.50	0.02	[0.00, 1.00]
Distraction-Suppression	22.57	20.85	45.00	1.08	1.00	0.57	0.03	[0.00, 1.00]
Distancing-Suppression	1.57	20.85	45.00	0.08	1.00	0.26	1.27e-04	[0.00, 1.00]

Note. SE = standard error, df = degrees of freedom, t = t-statistic, p = p-value, CI = confidence interval.

Figure:

754

Figure 9. Subjective effort ratings for the conditions "Active viewing - negative", "Distraction", "Distancing", and "Suppression" visualized as boxplots. Each dot represents the effort rating of a single subject. Bold dots represent outliers.