Home / My courses / CS340-2021-2022-I / Exams and Quizzes / Quiz 2

Started on Tuesday, 9 November 2021, 9:00 AM

State Finished

Completed on Tuesday, 9 November 2021, 9:38 AM

Time taken 37 mins 27 secs

Grade 25.00 out of 25.00 (100%)

Question **1**

Correct

Mark 1.00 out of 1.00 Which of the following languages are context-free?

$$L_1 = \{a^m b^m c^n, m \ge 1, n \ge 1\}$$

$$L_2 = \{a^m b^m c^n, n \ge m\}$$

$$L_3 = \{a^m b^m c^m, m \ge 1\}$$

Select one:

- a. L₂ and L₃.
- b. Only L₂.
- c. Only L₃.
- d. Only L₁.

 ✓

Your answer is correct.

The correct answer is: Only L₁.

Question 2

Correct Mark 1.00

out of 1.00

Consider $L = L_1 \cap L_2$ where $L_1 = \{0^m 1^m 20^n 1^n \mid m, n \geq 0\}$ and $L_2 = \{0^m 1^n 2^k \mid m, n, k \geq 0\}$. Then the language L is

Select one:

- a. Not recursive.
- b. Context free but not regular.
- c. Recursively enumerable but not context free.
- d. Regular.

Your answer is correct.

The correct answer is: Context free but not regular.

Question **3**

Correct

Mark 1.00

out of 1.00

Suppose that L_1 is regular and L_2 is a context free language. Which one of the following is not necessarily context free.

Select one:

- a. L₁ L₂
- $\bigcirc \ b.\ L_1\ U\ L_2$
- O c. L1 n L2
- O d. L1 L2

Your answer is correct.

The correct answer is: L₁ - L₂

Correct Mark 1.00 out of 1.00

Question 4

The language generated by the following grammar is $S \longrightarrow ASA \mid BSB \mid \epsilon$.

Select one:

- a. Even length palindrome.
- b. L = $\{a^nb^m, m \ge 1, n \ge 1\}$.
- c. Odd length palindrome.
- od. L = { $a^m b^n$, m ≥ 0, n ≥ 0}.

Your answer is correct.

The correct answer is: Even length palindrome.

Question **5**Correct

Mark 1.00 out of 1.00 Consider the following languages:

 $L_1 = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } | L(D_1) \mid < \mid L(D_2) \mid \}$ $L_2 = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } | L(M_1) \mid < \mid L(M_2) \mid \}$ Which of the following option is correct?

Select one:

- a. Only L₂ is decidable.
- b. Both L₁ and L₂ are decidable.
- c. Only L₁ is decidable.
- d. Both L₁ and L₂ are undecidable.

Your answer is correct.

The correct answer is: Only L₁ is decidable.

Question **6**Correct

Mark 1.00 out of 1.00 A halting non-deterministic Turing machine (TM) is one which halts on all computation paths. Let $G_{M,x}$ denote the configuration graph of a non-deterministic Turing machine M with respect to a string x. Which of the following statements are true?

Select one:

- a. M is a non-halting TM if there exists a pair of two nodes in G_{M,x} which are reachable from the starting configuration and are also reachable from each other. ✓
- \bigcirc b. There exists at least one node with in-degree more than one in $G_{\{M,x\}}$ if M is a non-halting TM.
- c. Every node has in-degree at most one in $G_{\{M,x\}}$ if M is a halting TM.
- d. Every node has in-degree exactly one in $G_{\{M,x\}}$ if M is a non-halting TM.

Your answer is correct.

The correct answer is: M is a non-halting TM if there exists a pair of two nodes in $G_{\{M,x\}}$ which are reachable from the starting configuration and are also reachable from each other.

Question **7**Correct

Mark 1.00 out of 1.00

Let L_1 be a decidable language and L_2 be a Turing recognizable but not decidable language. Which of the following statements are true?

Select one:

- a. L₁ ∩ L₂ is a decidable language.
- \bigcirc b. L2/L1 is a Turing recognizable language. \checkmark
- \bigcirc c. L₁ \cap L₂ is a Turing recognizable language.
- d. L₁/L₂ is a decidable language.

Your answer is correct.

The correct answers are: L_2/L_1 is a Turing recognizable language., $L_1 \cap L_2$ is a Turing recognizable language.

Question **8**

Correct

Mark 1.00 out of 1.00

 $L \rightarrow rLt \mid tLr \mid t \mid r$.

The given grammar produces a language which is:

Select one:

- a. All even palindromes.
- b. All palindromes.

 ✓
- c. All odd palindromes.
- d. Strings with same begin and end symbols.

Your answer is correct.

The correct answers are: All palindromes., All even palindromes., All odd palindromes., Strings with same begin and end symbols.

Question **9**Correct

Mark 1.00 out of 1.00 Consider the following languages:

 $L_1 = \{0^p 1^q 0^r \mid p, q, r \ge 0\}$ $L_1 = \{0^p 1^q 0^r \mid p, q, r \ge 0, p \ne r\}$ Which one of the following statements is false?

Select one:

- a. L₁ ' (complement of L₁) is context free but not regular.
- b. L₂ ' (complement of L₂) is recursive.
- \bigcirc c. L₁ \cap L₂ is context free.
- d. L₂ is context free.

Your answer is correct.

The correct answer is: L_1 ' (complement of L_1) is context free but not regular.

Question 10

Correct

Mark 1.00 out of 1.00 What is the language of the following grammar?

$$S \to aS_1bS_3c \mid aS_4bS_2c$$

$$S_1 \to aS_1b \mid \epsilon$$

$$S_2 \to bS_2c \mid \epsilon$$

$$S_3 \to S_3 c \mid \epsilon$$

$$S_4 \rightarrow S_4 a \mid \epsilon$$

Select one:

- a. L = $\{a^ib^jc^k \mid i+j=k\}$
- b. L = $\{a^i b^j c^k \mid i = j \text{ or } j = k\}$
- O c. L = $\{a^ib^jc^k \mid i+j \ge k\}$
- d. L = $\{a^ib^jc^k \mid i = j = k\}$

Your answer is correct.

The correct answer is: $L = \{a^i b^j c^k \mid i = j \text{ or } j = k \}$

Question 11

Mark 1.00 out of 1.00

Correct

Consider the following context free grammar over the alphabet $\Sigma = \{a, b, c\}$ with S as the start symbol: $S \to abScT \mid abcT$

 $T \to bT \mid b$

Which one of the following represents the language generated by the grammar?

Select one:

$$L = \{(ab)^n cb^{m_1} cb^{m_2} cb^{m_n} \mid n, m_1, m_2,, m_n \ge 1\}$$

- b. L = {(ab)ⁿ(cb^m)ⁿ I m,n ≥ 1 }
- o. L = { $(ab)^n(cb)^n | n \ge 1$ }
- d. L = $\{(ab)^n(cb^n)^m \mid m, n \ge 1\}$

Your answer is correct.

The correct answer is:

$$L = \{(ab)^n cb^{m_1} cb^{m_2} cb^{m_n} \mid n, m_1, m_2,, m_n \ge 1\}$$

Question 12

Correct
Mark 1.00
out of 1.00

For any two languages L_1 and L_2 such that L_1 is context free and L_2 is recursively enumerable but not recursive, which of the following are necessarily true?

- 1. \overline{L}_1 is recursive.
- 2. \overline{L}_1 is context free.
- 3. $\overline{L}_1 \cup L_2$ is recursively enumerable.

Select one:

- a. 2 and 3.
- O b. 1.
- © c. 1 and 3. ✓
- O d. 2.

Your answer is correct.

The correct answer is: 1 and 3.

Question **13**Correct

Mark 1.00 out of 1.00 Let A and B be finite alphabets and let # be a symbol outside both A and B. Let f be a total function from A^* to B^* . We say f is computable if there exists a Turing machine M which given an input x in A^* , always halts with f(x) on its tape. Let L_f denote the language $\{x \# f(x) \mid x \in A^*\}$. Which of the following statement is true?

Select one:

- \bigcirc a. f is computable if and only if L_f is recursively enumerable.
- b. If f is computable, then Lf is recursive, but not conversely.
- c. If f is computable, then Lf is recursively enumerable, but not conversely.
- d.

f is computable if and only if L_f is recursive.

Your answer is correct.

The correct answer is:

f is computable if and only if Lf is recursive.

Question **14**Correct

Mark 1.00 out of 1.00 Which of the following are decidable?

- 1. Whether the intersection of two regular languages is infinite.
- 2. Whether a given context free language is regular.
- 3. Whether two pushdown automata accept the same language.
- 4. Whether a given grammar is context free.

Select one:

- a. 1 and 2.
- b. 2 and 3.
- c. 1 and 4. ✓
- d. 2 and 4.

Your answer is correct.

The correct answer is: 1 and 4.

Question **15**Correct

Mark 1.00 out of 1.00 If G is a grammar with productions

 $S \rightarrow SaS \mid aSb \mid bSa \mid SS \mid \epsilon$

where S is the start variable, then which one of the following strings is not generated by G?

Select one:

- a. abbaa.
- b. babba.

 ✓
- c. abab.
- d. aaab.

Your answer is correct.

The correct answer is: babba

Question **16**

Correct

Mark 1.00 out of 1.00

Which of the following pairs have different expressive power?

Select one:

- a. Single-tape Turing Machine and multi-dimensional Turing Machine.
- b. Multi-tape Turing Machine and multi-dimensional Turing Machine.
- c. Deterministic finite automata and Non-deterministic finite automata.
- d. Deterministic push down automata and non-deterministic pushdown automata.

Your answer is correct.

The correct answer is: Deterministic push down automata and non-deterministic pushdown automata.

Question **17**

Correct Mark 1.00

out of 1.00

 $L_0 = \{ \langle M, w, 0 \rangle \mid M \text{ halts on } w \}$

 $L_1 = \{ \langle M, w, 1 \rangle \mid M \text{ does not halt on } w \}$

Here $\langle M, w, i \rangle$ is a triplet. M is an encoding of a Turing Machine. w is a string and i is a bit. Let $L = L_0 \cup L_1$. Which of the following is true?

Select one:

- О a.
- L' (complement of L) is recursively enumerable, but L is not.
- b. Neither L nor L' (complement of L) is recursively enumerable.
- c. Both L and L' (complement of L) are recursive.
- d. L is recursively enumerable, but L' (complement of L) is not.

Your answer is correct.

The correct answer is: Neither L nor L' (complement of L) is recursively enumerable.

11/18/21, 10:00 PM Quiz 2

Question **18**Correct

Mark 1.00 out of 1.00

Let $L = \{a^p \mid p \text{ is a prime }\}$. Then which of the following is true?

Select one:

- a. It is not accepted by a Turing Machine.
- b. It is neither regular nor context free, but accepted by a Turing Machine.
- c. It is regular but not context free.
- d. It is context free but not regular.

Your answer is correct.

The correct answer is: It is neither regular nor context free, but accepted by a Turing Machine.

Question **19**Correct

Mark 1.00 out of 1.00

A CFG is said to be in Chomsky Normal Form (CNF) if all the productions are of the form $A \to BC$ or $A \to a$. Let G be a CFG that is in CNF. The number of productions to be used to derive a string of terminals of length x is?

Select one:

- О а.
- 2x.
- b. 2x-1.

 ✓
- О с.
- 2x+1.
- d. 2^X.

Your answer is correct.

The correct answer is: 2x-1.

Question 20

Correct

Mark 2.00 out of 2.00 Consider the following language

$$L = \{a^n b^n \mid n \ge 0\}.$$

k-times

If L^k represents the language $L \cdot L \cdot \cdot \cdot L$, where \cdot is the concatenation operation. Then which of the following statements are true?

Select one or more:

- ✓ a.
 - L^k is a CFL. ✔
- < k</p>

L' (complement of L) is a CFL. 🗸

- ☑ c. L* is a CFL. ✔
- \checkmark d. L² is a CFL. \checkmark

Your answer is correct.

The correct answers are: L² is a CFL.,

L^K is a CFL

L' (complement of L) is a CFL., L^* is a CFL.

Question **21**Correct

Mark 2.00 out of 2.00

Language L_1 is polynomial time reducible to language L_2 . Language L_3 is polynomial time reducible to L_2 , which in turn is polynomial time reducible to language L_4 . Which of the following are true?

Select one or more:

- a. If L₄ ∈ P, L₂ ∈ P.
- b. If $L_1 \in P$ or $L_3 \in P$, then $L_2 \in P$.
- \Box c. L₁ \in P, if and only if L₃ \in P.
- ✓ d. If L4 \in P, then L1 \in P and L3 \in P. \checkmark

Your answer is correct.

The correct answers are: If $L_4 \in P$, $L_2 \in P$., If $L_4 \in P$, then $L_1 \in P$ and $L_3 \in P$.

11/18/21, 10:00 PM Quiz 2

Question 22 Correct	Let L be non-Turing recognizable language. Which of the following statements are true?
Mark 2.00 out of 2.00	Select one or more: ☑ a. L' (complement of L) is necessarily undecidable. ✔
	b. L' (complement of L) is necessarily non-Turing recognizable.
	 ✓ c. L' (complement of L) can be non-Turing recognizable.
	d. L' (complement of L) can be decidable.
	Your answer is correct.
	The correct answers are: L' (complement of L) is necessarily undecidable., L' (complement of L) can be non-Turing recognizable.