

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

- Hamiltonian graphs
- Graph algorithms
 - ➤ Eulerian algorithms
 - Fleury
 - Hierholzer
 - ➤ Graph traversals
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
 - > Parenthesis theorem

Hamiltonian graphs

Definition

- ➤ Hamiltonian graph/Hamilton graph: a graph possessing a Hamiltonian cycle.
 - A graph that is not Hamiltonian is said to be non-hamiltonian.
- ➤ Hamiltonian cycle
 - Hamiltonian path that is a cycle
- ➤ Hamiltonian path
 - A path in an undirected or directed graph that visits each vertex exactly once!

Property

Every platonic solid, considered as a graph, is Hamiltonian

Reminder:

Trail: edges are distinct

Eulerian trail: visit ALL the edges once

Path: trail with distinct vertices

- Fleury's algorithm (1883)
 - 1. Check to make sure that the graph is:
 - 1. connected
 - 2. all vertices are of even degree
 - 2. Start at any vertex
 - 3. Travel through an edge:
 - If it is not a bridge for the untraveled part or there is no other alternative
 - A bridge is an edge that if removed, it produces a disconnected graph!!
 - 4. Label the edges in the order in which you travel them.
 - 5. When you cannot travel any more, stop.

Fleury's algorithm

Input: A connected (p, q) graph G = (V, E).

Output: An eulerian circuit C of G.

Method: Expand a trail C_i while avoiding bridges in $G - C_i$, until

no other choice remains.

- 1. Choose any $v_0 \in V$ and let $C_0 = v_0$ and $i \leftarrow 0$.
- 2. Suppose that the trail $C_i = v_0, e_1, v_1, \ldots, e_i, v_i$ has already been chosen:
 - a. At v_i , choose any edge e_{i+1} that is not on C_i and that is not a bridge of the graph $G_i = G E(C_i)$, unless there is no other choice.
 - b. Define $C_{i+1} = C_i$, e_{i+1} , v_{i+1} .
 - c. Let $i \leftarrow i + 1$.
- 3. If i = |E| then halt since $C = C_i$ is the desired circuit; else go to 2.

Theorem

➤ If G is Eulerian, then any circuit constructed by Fleury's algorithm is Eulerian.

- Example
 - ➤ Start with the graph
 - ➤ Make sure that when you remove an edge, G is not disconnected

Hierholzer's algorithm

- ➤ It produces circuits in a graph G
 - The circuits are pairwise edge disjoint.
- > When these circuits are put together properly, they form an Eulerian circuit of G.
- This patching together of circuits hinges of course, on the circuits having a **common** vertex
 - o following from the **connectivity** of the graph
- ➤ Once 1 circuit is formed,
 - if (all edges have not been used)
 - o then
 - there must be 1 edge that is incident to a vertex of the circuit, and
 - we use this edge to begin the next circuit.
 - These circuits then share a common vertex.

- Hierholzer's algorithm (1873)
 - 1. Pick any starting vertex v
 - 2. Follow a trail of edges from that vertex until returning to v.
 - >It is not possible to get stuck at any vertex other than v
 - o because the **even** degree of all vertices ensures that:
 - when the trail enters another vertex w, there must be an unused edge leaving w.
 - The tour formed in this way is a **closed** tour,
 - o but may not cover all the vertices and edges of the initial graph.
 - As long as there exists a vertex u that belongs to the current tour but that has adjacent edges not part of the tour,
 - o start another trail from u, following unused edges until returning to u,
 - o and join the tour formed in this way to the previous tour.

Hierholzer's algorithm

Input: A connected graph G = (V, E), each of whose vertices has even degree.

Output: An eulerian circuit C of G.

Method: Patching together of circuits.

- Choose v ∈ V. Produce a circuit C₀ beginning with v by traversing at each step, any edge not yet included in the circuit. Set i = 0.
- If E(C_i) = E(G); then halt since C = C_i is an eulerian circuit; else choose a vertex v_i on C_i that is incident to an edge not on C_i. Now build a circuit C_i* beginning with v_i in the graph G E(C_i). (Hence, C_i* also contains v_i.)
- 3. Build a circuit C_{i+1} containing the edges of C_i and C_i^* by starting at v_{i-1} , traversing C_i until reaching v_i , then traversing C_i^* completely (hence, finishing at v_i) and then completing the traversal of C_i . Now set $i \leftarrow i+1$ and go to 2.

Example

- ➤ Run Hierholzer's algorithm on this example:
 - Pick a starting vertex *v*
 - Follow a trail of edges from that vertex until returning to v
 - We get a closed tour
 - \circ As long as \exists a vertex $u \in the$ current tour
 - but that has adjacent edges not part of the tour
 - Start another trail from u (create a new tour)
 - Join the tour formed to the previous tour...

Applications

- Eulerian trails
 - **>** Used in
 - Bioinformatics
 - to reconstruct the DNA sequence from its fragments
 - CMOS (Complementary metal—oxide—semiconductor) circuit design
 - to find an optimal logic gate ordering

Graph algorithms

- Searching in a graph
 - >Systematically follow the edges of a graph to visit the vertices of the graph.
 - ➤ Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - **▶ Breadth-first Sear**ch (BFS).
 - **▶ Depth-first Search** (DFS).

- Goal
 - > Can be used to attempt to visit all nodes of a graph in a systematic manner
- Input:
 - **≻**Graph
 - Directed or undirected graphs
 - Weighted or unweighted graphs
- BFS starts with given node
 - ➤ Example: start with D

- Start with a node, then visits nodes adjacent in some specified order
 - Example: Order given by the nodes in the adjacency matrix
 - ➤ Like ripples in a lake

Steps

➤ Red: visited nodes

Steps

➤ Red: visited nodes

- Implementation
 - ➤ Maintain an enqueued array
 - ➤ Visit node when dequeued.
 - **≻Step 1**: Enqueue D

Implementation

- Dequeue D.
- Visit D.
- Enqueue unenqueued nodes adjacent to D.

All the nodes adjacent to D are in the queue

Implementation

• Enqueue unenqueued nodes adjacent to G.

В	
С	
D	
Е	
F	
G	V
Н	

- Dequeue H
- Visit H
- Enqueue unenqueued nodes adjacent to H.

Implementation

A	$\sqrt{}$
В	$\sqrt{}$
C	
D	$\sqrt{}$
Е	
F	$\sqrt{}$
G	
Н	$\sqrt{}$

V
V
1
1
V

- Dequeue A
- Visit A
- Enqueue unenqueued nodes adjacent to A

- Dequeue B
- Visit B
- Enqueue unenqueued nodes adjacent to B

- Pseudo-code
 - ➤ See section 22.2 in Intro to Algo book.

```
Pseudo code: BFS(G,s)
// white: undiscovered, gray: discovered, black: finished
//Q: a queue of discovered vertices
// color[v]: color of v
// d[v]: distance from s to v
// \pi[u]: predecessor of v
1. for each vertex u in V[G] - {s}
           do color[u] \leftarrow white d[u] \leftarrow \infty \pi[u] \leftarrow nil
                                                       Initialize color, v, pi
    color[s] \leftarrow gray
    d[s] \leftarrow 0
                                   Initialize s and Q
    Q \leftarrow \mathbf{Q}
    enqueue(Q.s)
10 while Q ≠ Ø
            do u \leftarrow dequeue(Q)
11
                        for each v in Adi[u]
12
                                     do if color[v] = white
13
                                                 \mathbf{then}\ \mathbf{color}[v] \leftarrow \mathbf{gray}
14
15
16
17
                                                        enqueue(O,v)
18
                        color[u] \leftarrow black
```

Example

- ➤ Source=s
 - black=finished
 - white=unvisited
 - o gray=discovered

Empty Queue

- Complexity analysis
 - \triangleright Initialization takes O(V).
 - ➤ Traversal Loop
 - After initialization
 - Each vertex is Enqueued and Dequeued at most once
 - each operation takes O(1)
 - \rightarrow total time for queuing is O(V).
 - The adjacency list of each vertex is scanned at most once.
 - The sum of lengths of all adjacency lists is $\Theta(E)$.
 - ➤ Summing up over all vertices
 - \circ Total running time of BFS is O(V+E)
 - Linear in the size of the adjacency list representation of graph

More definitions

- \triangleright For a graph G = (V, E) with source s
 - \circ The **predecessor subgraph** of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - $V_{\pi} = \{v \in V : \pi[v] \neq \text{NIL}\} \bigcup \{s\}$
 - $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_{π} is a **BF tree** if:
 - \circ V_{π} consists of the vertices reachable from s
 - \circ \forall $v \in V_{\pi}$, \exists ! simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- \triangleright The edges in E_{π} are called **Tree edges**.

$$|E_{\pi}| = |V_{\pi}| - 1.$$

3!: there exists a unique ...

- Goal
 - > To attempt to visit all nodes of a graph in a systematic manner
- Input
 - ➤ Graph
 - o directed or undirected graphs
 - weighted or unweighted graphs
- Steps
 - \triangleright Explore edges out of the **most recently discovered** vertex ν .
 - When all edges of v have been explored
 - o backtrack to explore other edges leaving the vertex from which v was discovered (its *predecessor*).
 - > Search as **deep as possible** first
 - > Continue until all vertices reachable from the original source are discovered
 - If any undiscovered vertices remain
 - o then one of them is chosen as a new source and search is repeated from that source.

- Pseudo-code
 - ➤ See section 22.3 in Intro to Algo book.

d: discoveryf: finishing

Pseudo-code: DFS(G)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow NIL$
- 4. $time \leftarrow 0$
- **5. for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Pseudo-code: DFS-Visit(u)

```
1. color[u] \leftarrow gray // White vertex u has been discovered
```

- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = white

6. **then**
$$\pi[v] \leftarrow u$$

7.
$$DFS-Visit(v)$$

- 8. $color[u] \leftarrow black$ // Blacken u; it is finished.
- 9. $time \leftarrow time + 1$
- 10. $f[u] \leftarrow time$

Example

- ➤ Edges=shaded if tree edges
- ➤ Edges=dashed otherwise
- ➤ Non-tree edges:
 - B (back), C (cross), or F (forward)
- > Timestamps:
 - o (discovery time/finishing times)

- Complexity analysis
 - \triangleright Loops on lines 1-2 & 5-7 take $\Theta(V)$ time
 - Excluding time to execute DFS-Visit.
 - ➤ DFS-Visit
 - \circ Called once for each white vertex $v \in V$ when it is painted gray the first time.
 - Lines 3-6 of DFS-Visit
 - executed |Adj[v]| times.
 - Total cost of executing DFS-Visit: $\sum_{v \in V} |Adj[v]| = \Theta(E)$
 - Total running time of DFS: $\Theta(V+E)$.

DFS property

- ➤ that discovery and finishing times have *parenthesis structure*.
 - If we represent
 - the discovery of vertex u with a "(u"
 - the finishing by a right "u)"
 - Then the history of discoveries and finishings makes a well-formed expression
 - \rightarrow Parentheses are properly nested.

Parenthesis theorem

- For all u, v, exactly one of the following holds:
 - 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
 - The intervals [u.d;u.f] and [v.d;v.f] are entirely disjoint, and
 - o neither u nor v is a descendant of the other in the depth-first forest
 - 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u
 - The interval [v.d; v.f] is contained entirely within the interval [u.d;u.f], and
 - o v is a descendant of u in a depth-first tree
 - 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.
 - The interval [u.d;u.f] is contained entirely within the interval [v.f;v.f], and
 - u is a descendant of v in a depth-first tree.

Parenthesis theorem

Example

Classification of edges

Property of DFS:

- Used to classify the edges of the input graph G=(V,E)
- > The type of each edge
 - o provide important information about a graph.
 - Example
 - A directed graph is **acyclic** if and only if a DFS yields no "back" edges
- We can define 4 edge types in terms of the DF forest G_{π} produced by a DFS on G:
 - 1. Tree edges in the DF forest G_{π} . Edge (u,v) is a tree edge if v was first discovered by exploring edge (u,v)
 - **2.** Back edges: edges (u,v) connecting a vertex u to an ancestor v in a DF tree.
 - o self-loops that may occur in directed graphs: back edges.
 - **3.** Forward edges: non-tree edges (u,v) connecting a vertex u to a descendant v in a DF tree.
 - 4. Cross edges: all other edges.
 - o They can go between vertices in the same DF tree, as long as
 - 1 vertex is not an ancestor of the other or
 - they can go between vertices in different DF trees.

Theorem

- > In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.
- Proof: decomposition with the different cases (see Intro to Algo, Theorem 22.10)

Conclusion

- Now, you should be able to implement and use:
 - ➤ Eulerian algorithms
 - Fleury
 - Hierholzer
 - ➤ Graph traversals
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
 - > Parenthesis theorem

Questions?

- Reading
 - Canvas: Csci 115 book Chapter 9
 - ➤ Introduction to algorithms, Chapter 22.

