1 Supplementary materials

In Table S-1 is reported a comparison between the fuzzy adaptive binarizations of A_2 - $CF_{1,2}$, A_3 - Hamacher and A_4 - Choquet and the Bradley algorithm on the toy dataset.

Table S-1: Fuzzy adaptive binarizations - compatrisons between Bradley and out algorithms.

			Image a				ompau				
	n_a	t	SSIM	MSE	P_m	R_m	F_m				
$\mathbf{I_{F_{A_2}}^*}$			1.0	0.0	100	100	$\frac{100}{100}$				
I_B	4	0.42	0.16	0.45	21.6	100	35.56				
I_{A_3}		0.01	0.51	0.16	44.4	100	61.54				
I_B	4	0.01	0.44	0.19	40	100	57.14				
I_{A_4}			0.33	0.28	30.77	100	47.06				
I_B	2	0.06	0.33	0.28	30.77	100	47.06				
Image b with γ_0, γ_3 .											
	n_a	t	$\widetilde{\text{SSIM}}$	MSE	P_m	R_m	F_m				
$\mathbf{I_{F_{A_2}}^*}$		0.01	1.0	0.0	100	100	100				
I_B	4	0.01	0.45	0.16	41.18	100	58.33				
$\mathbf{I}^*_{\mathbf{F_{A_3}}}$	4	0.01	1.0	0.0	100.00	100	100				
I_B	4	0.01	0.45	0.16	41.18	100	58.33				
I_{A_4}	2	0.01	0.58	0.11	50	100	66.67				
I_B	2	0.01	0.47	0.19	36.84	100	53.85				
	Image c with γ_0, γ_1 .										
	n_a	t	SSIM	MSE	P_m	R_m	F_m				
$\mathbf{I_{F_{A_2}}^*}$	4	0.5	1.0	0.0	100	100	100				
I_B	4	0.0	0.18	0.49	24.14	100	38.89				
$\mathbf{I}^*_{\mathbf{F_{A_3}}}$	4	0.01	1.0	0.0	100.00	100	100				
I_B	1	0.01	0.97	0.02	87.5	100	93.33				
$I_{F_{A_4}}$	1	0.01	0.88	0.12	56	100	71.79				
I_B	1		0.85	0.1	60.87	100	75.68				
	Image d with γ_1, γ_4 .										
	n_a	t	SSIM	MSE	P_m	R_m	F_m				
$\mathbf{I}^*_{\mathbf{F}_{\mathbf{A_2}}}$	4	0.5	1.0	0.0	100	100	100				
I_B	1		0.29	0.22	33.33	100	50				
$I_{F_{A_3}}$	2	0.01	0.39	0.19	36.84	100	53.85				
I_B			0.39	0.17	38.89	100	56.0				
$I_{F_{A_4}}$	1	0.01	0.43	0.19	36.84	100	53.85				
I_B			0.15	0.42	20.59	100	34.15				
	Image e with γ_0, γ_1 .										
	n_a	t	SSIM	MSE	P_m	R_m	F_m				
$\mathbf{I}^*_{\mathbf{A_2}}$	4	0.58	1.0	0.0	100	100	100				
I_B	-1	0.00	0.66	0.19	71.43	100	83.33				
$\mathbf{I}^*_{\mathbf{A_3}}$	4	0.06	1.0	0.0	100	100	100				
I_{B}			1.0	0.0	100	100	100				
$I_{F_{A_4}}$	4	0.01	1.0	0.0	100	100	100				
I_B			0.96	0.02	100	96.67	98.31				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			т	c	• . 1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	image i with $\gamma_0, \gamma_1, \gamma_3$.											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_a	t	SSIM	MSE	P_m	R_m	F_m				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{I}^*_{\mathbf{A_2}}$	4	0.58		0.0	100		100				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_B			0.07	0.69	26.32	100	41.67				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{I}^*_{\mathbf{A_3}}$	4	0.06	1.0	0.0	100	100	100				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_B			0.97	0.01	95.24	100	97.56				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{I}^*_{\mathbf{A}_4}$	1	0.01	1.0	0.0	100	100	100				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I_{\mathbf{B}}$	4	0.01	1.0	0.0	100	100	100				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_a	t	SSIM	MSE	P_m	R_m	F_m				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{I}_{\mathbf{A}_2}^*$	4	0.55	1.0	0.0	100	100	100				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_B	4	0.55	0.04	0.73	21.67	100	35.62				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{I}^*_{\mathbf{A}_3}$	4	0.01	1.0	0.0	100	100	100				
I_B 0.07 0.02 92.86 100 96.3	$I_{\mathbf{B}}$	4	0.01	1.0	0.0	100	100	100				
I_B 0.07 0.02 92.86 100 96.3	$I_{F_{A_{A}}}$	4	0.07	0.97	0.02	92.86	100	96.3				
	I_B						100	96.3				
Image h with γ_0, γ_1 .												
n_a t SSIM MSE P_m R_m F_m		n_a	t	SSIM	MSE	P_m	R_m	F_m				
$\mathbf{I_{A_2}^*}$ 4 0.58 1.0 0.0 100 100 100	$\mathbf{I}^*_{\mathbf{A}_2}$	4	0.58	1.0	0.0	100	100	100				
I_B 0.66 0.19 71.43 100 83.33	I_B	4	0.56	0.66	0.19	71.43	100	83.33				
$\mathbf{I_{A_3}^*}$ 4 0.08 1.0 0.0 100 100 100	$\mathbf{I}^*_{\mathbf{A_3}}$	4	0.08	1.0	0.0	100	100	100				
$\mathbf{I_B}$ 4 0.08 1.0 0.0 100 100 100	$I_{\mathbf{B}}$			1.0	0.0	100	100	100				
$\mathbf{I}_{\mathbf{A_4}}^*$	$\mathbf{I}_{\mathbf{A}_{4}}^{*}$	4	0.01	1.0	0.0	100	100	100				
I_B 4 0.01 0.96 0.02 100 96.67 98.31	I_B			0.96	0.02	100	96.67	98.31				