Dynamic Modeling and Vibration Analysis of a 6-DOFs Industrial Robot Considering Joint Flexibility

Guodong Shen¹, Sheng Xu^{1,2}, Chunjie Chen^{2,3} and Qiang Wang¹

¹Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Shandong, 250102, P.R.China ²Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China ³CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, P.R. China.

 This paper is concerned with the dynamic modeling and vibration analysis of multi-DOFs industrial robot considering joint flexibility.

• A dynamic model based on Kane method developed to analyze the vibration characteristics under different joint stiffnes parameters.

The results of the proposed strategy can bused to design an accurate model-based controller for an industrial robot.

The schematic diagram of the joint flexibility