มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ข้อสอบปลายภาคการศึกษาที่ 2/2559

วัน ญ์ ๆ า	ที่ 1 1, พฤษภาคม 2560	
วิชา CPE12	2 Basic Circuits and Electronic	CS

เวลา 09.00 -12.00 น. วศ.คอมพิวเตอร์

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 5 ข้อ จำนวน 7 แผ่น (รวมแผ่นนี้) คะแนนรวม 60 คะแนน
- 2. ให้ทำข้อสอบทุกข้อลงในช่องว่างที่เตรียมไว้ให้ ในตัวข้อสอบชุดนี้
- 3. <u>อนุญาต</u>ให้ใช้เครื่องคำนวณใดๆ ทั้งสิ้น
- 4. <u>ไม่อนุญาต</u>ให้นำเอกสารใดๆ เข้าห้องสอบ
- 5. เขียนชื่อ และ รหัสประจำตัว ลงในปกหน้าฉบับนี้

ง ∨ ผศ.สุรพนธ์ ตุ้มนาค ผู้ออกข้อสอบ 0-2470-9083

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการภาควิชาวิศวกรรมคอมพิวเตอร์แล้ว

รศ.ดร. พีรพล ศิริพงศ์วุฒิกร ประชานหลักสูตร ภาควิชาวิศวกรรมคอมพิวเตอร์

ข้อ .	1	2	3	4	5	รวม
คะแนนเต็ม	10	10	10	20	10	60
คะแนนที่ได้						

สื่อ	รหัสประจำตัว	ภาควิชา/ชั้นปี
_D 60		

(10 marks) 1. What is the display value on meter for each circuit below?

1.1

1.1 Answer = ____

1.2 Answer =

1.3

1.3 Answer =

1.4 Answer = _____

- 2. Sketch the output signal from each circuit below which input signal is given. (10 marks)
- 2.1 Vin = $5\sin \omega t$, frequency = 1 kHz. Dual Supply = ± -15 V.

2.2 Vin = $2\sin \omega t$, frequency = 15 kHz. Dual Supply = ± 10 V.

 $2.3 \text{ Vin} = 4 \sin \omega t$, frequency = 10 kHz

3. If $V_{AB} = 36.1 / 3.18$ V. Find the source voltage V. (10 marks)

4. Using the characteristics of Si BJT on picture below, determine component value of a voltage-divider biasing for BJT common emitter circuit having I_{Cmax} = 8 mA. Use Vcc = 26 V and R_C = 3 R_E . (20 marks)

4.1 Draw schematic circuit.

4.2 Find R_{C} and $R_{E.}$

4.3 Calculate β at the Q-point with $V_{CE} = 12.5 \text{ V}$.

4.4 Find I_B , If $R1 = 24 \text{ k}\Omega$ and $R2 = 2 \text{ k}\Omega$. (Assume $\beta = 140$).

5. For the circuit of figure A and B, if $V_{CC} = 10 \text{ V}$ and LED require forward current 20 mA at 2 V. Answer all questions.

(10 Marks)

5.1 Compare I_C in both circuits. Is it the same? Why?

5.2 Does R_C in Fig.1 match with LED condition? Prove it.