Projeto de Unidade Lógica e Aritmética (ALU) – C208-L1

Ana Luiza Martins 1711 - GEC

Tales Machado Prudente 350 – GES

Proposto:

Desenvolva um componente digital com uma largura de dados de 8 bits e duas entradas denominadas A e B. Este componente deve ter uma única saída S e ser capaz de executar um conjunto de operações lógicas e aritméticas conforme definido na tabela abaixo. As operações deverão incluir funções básicas como AND, OR, NOT, adição, subtração, e outras conforme especificado. A tabela de operações detalha o código de operação (OPCODE) correspondente e o resultado esperado para a saída S baseado nas entradas A e B.

OPCODE	NOME	SAÍDA
8	Deslocamento Esquerda	S = A << 7
7	Deslocamento Direita	S = A >> 4
11	Subtração	S = A - B
10	Adição	S = A + B
15	Multiplicação	S = A * B
5	E (AND)	S = A & B
13	OU (NOR)	S = A B
9	INVERSORA (NOT)	$S = \overline{B}$
14	OU EXCLUSIVO (XOR)	$S = A \oplus B$
6	NÃO OU (NOR)	$S = \overline{(A \mid B)}$
3	NÃO E (NAND)	$S = \overline{(A \& B)}$
12	NÃO OU EXCLUSIVO (XNOR)	S = A (•) B

Desenvolvimento:

A ALU, ou Unidade Lógica Aritmética realiza operações aritméticas como adição, subtração, multiplicação, divisão e operações lógicas, como AND, OR e NOT em números binários. É responsável por executar as instruções de um programa, realizando cálculos e manipulações de dados conforme necessário.

Abaixo temos a tabela de OPCodes utilizada no projeto:

OPCODES		
8	Deslocamento Esquerda	1000
7	Deslocamento Direita	0111
11	Subtração	1011
10	Adição	1010
15	Multiplicação	1111
5	E (AND)	0101
13	OU (NOR)	1101
9	INVERSORA (NOT)	1001
14	OU EXCLUSIVO (XOR)	1110
6	NÃO OU (NOR)	0110
3	NÃO E (NAND)	0011
12	NÃO OU EXCLUSIVO (XNOR)	1100

Circuitos utilizados:

Circuito Somador:

• Meio Somador:

• Somador Completo:

• Somador de 8 bits:

Circuito Subtrator:

• Meio Subtrator:

Subtrator Completo:

• Subtrator de 8 bits:

Circuitos deslocadores:

• Deslocamento à esquerda:

• Deslocamento à direita:

Circuito final (ALU):

