Cluster-Labeling Paradigmen und Validierung

Dennis Hoppe

Bauhaus-Universität Weimar

29. Juni 2010

Motivation

Abbildung: Suchmaschine Google (www.google.de)

Motivation

Abbildung: Suchmaschine Carrot Search (www.carrotsearch.com)

Agenda

1 Validierung von Cluster-Labeling-Verfahren

2 Paradigmen des Cluster-Labelings

Validierung von Cluster-Labeling-Verfahren

Ziel ist die Bestimmung der Güte eines Cluster-Labels

- a) Übereinstimmung mit einer externen Referenz prüfen
- b) Validierung anhand intrinsischer Qualitätsmaße
- c) Durchführung von Benutzerstudien

Externe Validierung von Cluster-Labeln

Externe Validierung von Cluster-Labeln

Externe Validierungsmaße

- Precision@N,
- Match@N und
- Mean Reciprocal Rank

Referenz-Label: Antibiotics

Cluster-Label au(c): Infections, Antibiotics, Technology, Web site

Maß	N = 1	N = 2	N = 3	N = 4
Precision@N	0	1/2	1/3	1/4

Externe Referenz: Open Directory Project (ODP)

Top: Health: Pharmacy: Drugs and Medications (2,393)

[A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R

- Analgesics and Anti-Inflammatories (3)
- Antianxiety Agents (5)
- Antiasthmatic (3)
- Antibiotics (22)
- Antidepressants (15)
- Anti-Epileptic Drugs (6)
- Antihistamines (2)
- Antihypertensives (3)

- Antipsychotics (3)
- Beta Blockers (3)
- Chemotherapy Drugs (3)
- Lipid-Lowering Agents (4)
- Stimulants (4)
- Vaccines and Antisera (2)
- Vitamins and Minerals (3)

Abbildung: Open Directory Project (www.dmoz.org)

Intrinsische Eigenschaften von Cluster-Labeln

Was wird von einem guten Cluster-Label erwartet?

- Verständlichkeit
- Überdeckung
- Trennschärfe
- Minimale Überlappung
- Eindeutigkeit
- Redundanzfreiheit

Intrinsische Eigenschaft: Verständlichkeit (f_1)

Informell: Ein Nutzer soll eine klare Vorstellung vom Inhalt eines Clusters bekommen.

Formal:
$$\forall_{c \in \mathcal{C}} \ \forall_{p \in \tau(c)} : |p| > 1 \ \land \ p \in L(G)$$

Nominalphrasen (NP)

- "Antibiotika sind bakteriell wirkende Arnzneistoffe."
- "Antibiotika" und "bakteriell wirkende Arzneistoffe"

Intrinsische Eigenschaft: Verständlichkeit (f_1)

Validierungsmaß: $f_1(p) = \text{penalty}(p) \cdot \text{NP}(p)$, mit

$$\begin{aligned} \mathsf{penalty}(p) := \begin{cases} \exp\frac{-(|p|-|p|_{\mathsf{opt}})^2}{2 \cdot d^2} & \text{, wenn } |p| > 1 \\ 0,5 & \text{, sonst} \end{cases} \\ \mathsf{NP}(p) := \begin{cases} 1 & \text{, wenn } p \in L(G) \\ 0 & \text{, sonst} \end{cases} \end{aligned}$$

Intrinsische Eigenschaft: Überdeckung (f_2)

Informell: Cluster-Label sollen in allen Dokumenten des Clusters vorkommen.

Formal:
$$\forall_{c \in \mathcal{C}} \exists_{p \in \tau(c)} \forall_{\substack{p' \in P_c \\ p' \notin \tau(c)}} : df_c(p') \ll df_c(p),$$

mit P_c der Menge von Phrasen im Cluster c.

Validierungsmaß:
$$f_2(c,p) = 1 - \frac{1}{|P_c \setminus \tau(c)|} \sum_{\substack{p' \in P_c \\ p' \notin \tau(c)}} \frac{\mathrm{df}(p')}{\mathrm{df}(p)}$$

Intrinsische Eigenschaft: Trennschärfe (f_3)

Informell: Cluster-Label sollen *nur* in Dokumenten des eigenen Clusters vorkommen.

Formal:
$$\forall c_i, c_j \in \mathcal{C} \ \exists_{p \in \tau(c_j)} \ : \ \frac{\mathrm{df}_{c_i}(p)}{|c_i|} \ll \frac{\mathrm{df}_{c_j}(p)}{|c_j|}$$

Validierungsmaß:
$$f_3(c_j,p)=1-\frac{1}{k-1}\sum_{\substack{c_i\in\mathcal{C}\\c_i\neq c_j}}\frac{|c_j|\ \mathrm{df}_{c_i}(p)}{|c_i|\ \mathrm{df}_{c_j}(p)}$$

Intrinsische Eigenschaft: Minimale Überlappung (f_4)

Informell: Jedes Dokument soll nur in einem Cluster vorkommen.

Formal:
$$\forall_{\substack{c_i,c_j \in \mathcal{C} \\ c_i \neq c_j}} \exists_{p \in \tau(c_j)}: \frac{|c_i(p) \cap c_j(p)|}{|c_i(p) \cup c_j(p)|} \ll 1$$

Validierungsmaß:
$$f_4(c_j,p)=1-\frac{1}{k-1}\sum_{\substack{c_i\in\mathcal{C}\\c_i\neq c_j}}\frac{|c_i(p)\cap c_j(p)|}{|c_i(p)\cup c_j(p)|}$$

Beispiel: Trennschärfe und Minimale Überlappung

$$p=$$
 Antibiotics $|c_j|=20 \qquad \qquad df_{c_j}(p)=20 \ |c_i|=10 \qquad \qquad df_{c_i}(p)=10 \ c_j\cap c_i=\emptyset$

$$f_3(c_j,p)=0$$
 (Trennschärfe) $f_4(c_j,p)=1$ (Minimale Überlappung)

Intrinsische Eigenschaft: Eindeutigkeit (f_5)

Informell: Cluster-Label eines Clusterings sollen unterschiedlich sein.

Formal:
$$\forall c_i, c_j \in \mathcal{C} : \tau(c_i) \cap \tau(c_j) = \emptyset$$

Validierungsmaß:
$$f_5(c_j,p) = 1 - \frac{1}{k-1} \sum_{\substack{c_i \in \mathcal{C} \\ c_i \neq c_j}} \frac{|p \cap \tau(c_i)|}{|p \cup \tau(c_j)|}$$

Intrinsische Eigenschaft: Redundanzfreiheit (f_6)

Informell: Cluster-Label sollen keine Synonyme enthalten.

Formal: $\forall_{c \in \mathcal{C}} \ \forall_{p,p' \in \tau(c)} : p \text{ und } p' \text{ sind nicht synonym}$

Validierungsmaß:
$$f_6(c,p) = 1 - \frac{1}{|\tau(c)|-1} \sum_{\substack{p' \in \tau(c) \\ p' \neq p}} \operatorname{syn}(p,p'),$$

$$\mathsf{mit}\;\mathsf{syn}:p\times p\mapsto\{0,1\}$$

Bewertung der Relevanz einer Phrase für ein Cluster

 Relevanz rel einer Phrase p für ein Cluster c ist definiert mit

$$rel = \sum_{i=1}^{6} f_i(c, p)$$

- f_1 Verständlichkeit
- f_2 Überdeckung
- f_3 Trennschärfe
- f_4 Minimale Überlappung
- f_5 Eindeutigkeit
- f_6 Redundanzfreiheit

Validierung quantifizierter intrinsischer Label-Eigenschaften

Wählen Qualitätsmaße gute Phrasen aus?

ODP-Kategorie	Besten 5 Phrasen	Schlechteste 5 Phrasen
Antibiotics	used Antibiotics other Antibiotics Antibiotics Health Antibiotics Antibiotics Antibiotics Work	Technology queries project Print time
Psycho	Psycho Bates Motel Norman Marion Crane Janet Leigh shower scene Hitchcock Martin Balsam	User TOPIC mail list release

Neues internes Validierungsmaß

Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002)

- **DCG**@N = $\sum_{i=1}^{N} (2^{rel_i} 1) / (\log_2(1+i))$
- lacksquare Normierung anhand der idealen Relevanzliste ightarrow NDCG

N	Phrase	Relevanz
1	Infections	4
2	Web site	1
3	Technology	0
4	Antibiotics	6
	NDCG@4	0,27

N	Phrase	Relevanz
1	Antibiotics	6
2	Infections	4
3	Technology	0
4	Web site	1
	NDCG@4	0,45

Korrelation von NDCG mit externem Validierungsmaß

Linearen Zusammenhang zwischen P@N & NDCG@N zeigen

- Korrelationskoeffizient (Kor) nach Pearson
- $lue{}$ t-Test belegt statistisch signifikanten Zusammenhang beider Merkmale, wenn für die Prüfgröße (PG) gilt: PG > t

N	Kor(P@N,NDCG@N)	PG	$t_{(0,99;10)}$
1	0,72	3,28	3,169
2	0,90	6,70	3,169
3	0,93	8,46	3,169
4	0,96	11,71	3,169
5	0,97	13,99	3,169

Agenda

1 Validierung von Cluster-Labeling-Verfahren

2 Paradigmen des Cluster-Labelings

Paradigmen des Cluster-Labelings

- Datenzentrierte Ansätze
 - Frequent Predictive Words
 - Weighted Centroid Covering
- Beschreibungsbeachtende Ansätze
 - Suffixbaum-Clustering
- Beschreibungszentrierte Ansätze
 - Topical k-Means
 - Descriptive *k*-Means
 - Lingo

Beispiel: Frequent Predictive Words

Um welche Kategorien handelt es sich?

ODP-Kategorie	Cluster-Label
?	spice, slicer, told, fred, baker
?	excel, jeremy, demo, authentic, forum
?	hat, document, project, string, release
?	data, address, match, bow, custom
?	antibiotics, disease, infection, bacteria, drug

Beispiel: Frequent Predictive Words

Um welche Kategorien handelt es sich?

ODP-Kategorie	Cluster-Label
IBM DB2	spice, slicer, told, fred, baker
MySQL	excel, jeremy, demo, authentic, forum
${\sf PostgreSQL}$	hat, document, project, string, release
Data Warehousing	data, address, match, bow, custom
Antibiotics	antibiotics, disease, infection, bacteria, drug

Beschreibungszentrierte Ansätze

Untersuchte Verfahren

- Descriptive k-Means (Weiss, 2006)
- Lingo (Osinski u.a., 2004)

Beispiel: Descriptive k-Means

ODP-Kategorie	Cluster-Label	
IBM DB2	IBM Data Management, IBM SQL Partners	
MySQL	SQL Server, MySQL database server	
PostgreSQL	PostgreSQL database system	
Data Warehousing	data quality management solutions	
Antibiotics	Antibiotic Resistant Bacteria	

Topical k-Means

Informativeness einer Phrase (Tomokiyo & Hurst, 2003)

- Welche Phrase sagt am meisten über ein Cluster aus?
- Abgrenzung einer Phrase von den restlichen Clustern

Sinnvolle Phrase für Cluster c_i ?

$$p_1 = \mathsf{MySQL}$$

$$p_2 = \mathsf{SQL}$$

 $p_3 = \mathsf{Database}$

 $p_4 = \mathsf{PostgreSQL}$

PostgreSQL

Auswertung

Verfahren	Precision@1	NDCG@1
Nominalphrasen	0,40	0,74
Frequent and Predictive Words Descriptive k -Means	0,20 0,61	0,64 0,82
Topical k -Means	0,55	0,84

Qualität von Cluster-Labeln steigt bei Verwendung von

- Nominalphrasen
- einer Referenzkategorisierung

Auswertung

Verfahren	f_1	f_2	f_3	f_4	f_5	f_6
Schlüsselwortverfahren	0.79	0.66	0.37	1.00	0.94	0.99
Datenzentrierte Ansätze	0.39	0.59	0.63	1.00	0.97	1.00
Beschreibungsbeachtende Ansätze	0.73	0.70	0.89	0.68	1.00	0.99
Beschreibungszentrierte Ansätze	0.91	0.64	0.91	0.44	1.00	1.00

 f_2 Überdeckung

f₃ Trennschärfe

	Überlappung

 f_5 Eindeutigkeit

f₆ Redundanzfreiheit

Zusammenfassung

- Validierung von Cluster-Labeling-Verfahren
- Paradigmen des Cluster-Labelings

Ausblick

- Hierarchisches Cluster-Labeling
- Gewichtung intrinsischer Validierungsmaße
- Einsatz neuer Schlüsselwortverfahren
- Verwendung von externem Wissen

Erkennung von Themen in Dokumentmengen

automatic-taxonomy-generation automatic-text-summarization cluster-labeling faceted-search keyword-extraction labeling-of-topic-models search-result-clustering self-organizing-maps tag-clouds text-classification topic-detection-and-tracking

Referenzen

- [Järvelin & Kekäläinen 2002] Järvelin, Kalervo; Kekäläinen, Jaana: Cumulated gain-based evaluation of IR techniques. In: ACM Transactions on Information Systems 20 (2002), Oktober, Nr. 4, 446. http://dx.doi.org/10.1145/582415.582418. - DOI 10.1145/582415.582418. - ISSN 10468188
- [Osinski u. a. 2004] Osinski, S.; Stefanowski, J.; Weiss, D.: Lingo: Search results clustering algorithm based on singular value decomposition. In: Intelligent information processing and web mining: proceedings of the International IIS: IIPWM'04 Conference held in Zakopane, Poland, Mai 17-20, 2004, Springer Verlag, 2004, 359
- [Tomokiyo & Hurst 2003] Tomokiyo, T.; Hurst, M.: A language model approach to keyphrase extraction. In: *Proceedings of the ACL Workshop on Multiword Expressions*, 2003, 3440
- [Weiss 2006] Weiss, D.: Descriptive clustering as a method for exploring text collections. 2006

