

Laboratório 6 IA - RNA Classificador de Padrões Prof. Dr. Fagner de Assis Moura Pimentel Inteligência Artificial e Robótica - CC7711

Grupo:

Deise Adriana Silva Araújo Lucas Rebouças Silva 22.222.024-6 22.122.048-6

Descrição do Laboratório

O objetivo foi implementar e avaliar classificadores MLP (Multi-Layer Perceptron) usando os datasets clássicos iris, wine e digits do scikit-learn. O pipeline incluiu: divisão treino/teste (70/30), padronização com StandardScaler, treino com MLPClassifier (solver adam, máx. 500 iterações) e avaliação por acurácia, matriz de confusão e relatório de classificação. Foram comparadas arquiteturas, funções de ativação (relu, tanh, logistic) e taxas de aprendizado (0.001 e 0.01).

Arquiteturas e Testes Realizados

Os experimentos, repetidos para cada dataset, abrangeram cinco variações principais (entre parênteses: objetivo de cada variação):

- 1. (10, 10), ativ. ReLU, lr = 0.001 (baseline para medir um ponto de partida simples e estável);
- 2. (50, 5), ativ. ReLU, lr = 0.001 (mais neurônios para avaliar ganho de capacidade x tempo de treino);
- 3. (10, 10), ativ. ReLU, lr = 0.01 (taxa maior para testar convergência mais rápida x risco de oscilar);
- 4. (10, 10), ativ. tanh, lr = 0.001 (comparar uma ativação saturante clássica com ReLU);
- 5. (10, 10), ativ. logistic, lr = 0.001 (avaliar desempenho e estabilidade com sigmoide).

Resultados (Acurácia)

A Tabela 1 resume as acurácias por dataset e configuração.

Dataset	Configuração	Acurácia
digits	relu_(50,5)_lr0.001	0.9574
digits	relu_(10,10)_lr0.01	0.9500
digits	relu_(10,10)_lr0.001	0.9444
digits	tanh_(10,10)_lr0.001	0.9444
digits	logistic_(10,10)_lr0.001	0.9111
iris	relu_(50,5)_lr0.001	0.9333
iris	$\tanh_{10,10} \ln 0.001$	0.9333
iris	relu_(10,10)_lr0.001	0.9111
iris	relu_(10,10)_lr0.01	0.9111
iris	logistic_(10,10)_lr0.001	0.9111
wine	relu_(50,5)_lr0.001	0.9815
wine	relu_(10,10)_lr0.001	0.9630
wine	relu_(10,10)_lr0.01	0.9630
wine	tanh_(10,10)_lr0.001	0.9630
wine	logistic_(10,10)_lr0.001	0.9074

Tabela 1: Acurácia por dataset e configuração.

Gráficos Comparativos de Acurácia

As Figuras a seguir mostram, para cada dataset, a comparação direta de acurácia entre configurações.

Figura 1: Acurácia comparativa — iris

Figura 2: Acurácia comparativa — wine

Figura 3: Acurácia comparativa — digits

Matrizes de Confusão e Curvas de Perda

Abaixo, exemplos das matrizes de confusão e das curvas de perda (convergência) para cada configuração testada em cada dataset.

Figura 4: iris — $relu_(10,10)$ _lr0.001

Figura 5: iris — relu_(50,5)_lr0.001

Figura 6: iris — $relu_(10,10)_lr0.01$

Figura 7: iris — $tanh_(10,10)$ _lr0.001

Figura 8: iris — $logistic_(10,10)_lr0.001$

Figura 9: wine — $relu_(10,10)$ _lr0.001

Figura 10: wine — $relu_(50,5)_lr0.001$

Figura 11: wine — $relu_(10,10)_lr0.01$

Figura 12: wine — $tanh_(10,10)$ _lr0.001

Figura 13: wine — logistic_(10,10)_lr0.001

Figura 14: digits — $relu_(10,10)$ _lr0.001

Figura 15: digits — $relu_(50,5)_lr0.001$

Figura 16: digits — $relu_(10,10)_lr0.01$

Figura 17: digits — $tanh_{10,10} lr0.001$

Figura 18: digits — logistic_(10,10)_lr0.001

Conclusão

No geral, todos os modelos testados apresentaram desempenho **alto** nos três datasets, com acurácias típicas acima de 0.90 (médias: iris ≈ 0.92 , $wine \approx 0.96$, $diqits \approx 0.94$).

As diferenças entre configurações foram relativamente pequenas, mas consistentes com a literatura sobre MLP.

Principais conclusões em poucas linhas:

- Padronização: essencial para uma convergência estável do MLP em todos os conjuntos.
- Arquitetura: aumentar neurônios (50, 5) trouxe pequenos ganhos em alguns casos, com custo de treino maior.
- Taxa de aprendizado: lr = 0.01 tende a acelerar o início do aprendizado, porém pode oscilar; lr = 0.001 foi mais estável.
- Ativações: ReLU manteve ótimo compromisso entre acurácia e tempo; tanh/logistic funcionaram bem, mas geralmente exigiram mais iterações. Em digits, ReLU se destacou ligeiramente.
- Qualidade global: os três datasets são bem comportados para MLP; os resultados altos e consistentes confirmam que as configurações testadas são adequadas.

Relatórios de Classificação (precision, recall, f1)

Relatório de Classificação — iris — relu (10,10) lr0.001

	precision	recall	f1-score	support
setosa versicolor virginica	1.0000 0.8235 0.9231	1.0000 0.9333 0.8000	1.0000 0.8750 0.8571	15 15 15
accuracy macro avg weighted avg	0.9155 0.9155	0.9111 0.9111	0.9111 0.9107 0.9107	45 45 45

Relatório de Classificação — iris — $relu_(50,5)_lr0.001$

	precision	recall	f1-score	support
setosa versicolor	1.0000 0.8750	1.0000	1.0000	15 15
virginica	0.9286	0.8667	0.8966	15
accuracy			0.9333	45
macro avg	0.9345	0.9333	0.9333	45
weighted avg	0.9345	0.9333	0.9333	45

Relatório de Classificação — iris — $\mathrm{relu}_{-}(10,10)_{-}\mathrm{lr}0.01$

	precision	recall	f1-score	support
setosa	1.0000	1.0000	1.0000	15
versicolor	0.7895	1.0000	0.8824	15
virginica	1.0000	0.7333	0.8462	15
accuracy			0.9111	45
macro avg	0.9298	0.9111	0.9095	45
weighted avg	0.9298	0.9111	0.9095	45

Relatório de Classificação — iris — $\tanh_{10,10} \ln 0.001$

	precision	recall	f1-score	support
setosa	1.0000	1.0000	1.0000	15
versicolor	0.8750	0.9333	0.9032	15
virginica	0.9286	0.8667	0.8966	15
· ·				
accuracy			0.9333	45
macro avg	0.9345	0.9333	0.9333	45

weighted avg 0.9345 0.9333 0.9333 45

Relatório de Classificação — iris — logistic_(10,10)_lr0.001

	precision	recall	f1-score	support
setosa	1.0000	1.0000	1.0000	15
versicolor	0.9231	0.8000	0.8571	15
virginica	0.8235	0.9333	0.8750	15
			0 0444	4.5
accuracy			0.9111	45
macro avg	0.9155	0.9111	0.9107	45
weighted avg	0.9155	0.9111	0.9107	45

Relatório de Classificação — wine — $\mathrm{relu}_{-}(10,10)_{-}\mathrm{lr}0.001$

	precision	recall	f1-score	support
class_0	1.0000	1.0000	1.0000	18
class_1	0.9524	0.9524	0.9524	21
class_2	0.9333	0.9333	0.9333	15
accuracy			0.9630	54
macro avg	0.9619	0.9619	0.9619	54
weighted avg	0.9630	0.9630	0.9630	54

Relatório de Classificação — wine — $\mathrm{relu}_{-}(50,5)_{-}\mathrm{lr}0.001$

	precision	recall	f1-score	support
class_0 class_1 class_2	1.0000 1.0000 0.9375	1.0000 0.9524 1.0000	1.0000 0.9756 0.9677	18 21 15
accuracy macro avg weighted avg	0.9792 0.9826	0.9841 0.9815	0.9815 0.9811 0.9816	54 54 54

Relatório de Classificação — wine — $\mathrm{relu}_{-}(10,10)_{-}\mathrm{lr}0.01$

	precision	recall	f1-score	support
class_0	1.0000	1.0000	1.0000	18
class_1	0.9524	0.9524	0.9524	21
class 2	0.9333	0.9333	0.9333	15

accuracy			0.9630	54
macro avg	0.9619	0.9619	0.9619	54
weighted avg	0.9630	0.9630	0.9630	54

Relatório de Classificação — wine — $\tanh_{10,10} \ln 0.001$

	precision	recall	f1-score	support
class_0	0.9474	1.0000	0.9730	18
class_1	0.9524	0.9524	0.9524	21
class_2	1.0000	0.9333	0.9655	15
accuracy			0.9630	54
macro avg	0.9666	0.9619	0.9636	54
weighted avg	0.9639	0.9630	0.9629	54

Relatório de Classificação — wine — logistic_(10,10)_lr0.001

<pre>class_0 class_1 class_2</pre>	0.8571 1.0000 0.8824	1.0000 0.7619 1.0000	0.9231 0.8649 0.9375	18 21 15
accuracy macro avg weighted avg	0.9132 0.9197	0.9206 0.9074	0.9074 0.9085 0.9044	54 54 54

Relatório de Classificação — digits — ${\rm relu_(10,10)_lr0.001}$

	precision	recall	f1-score	support
0	0.9811	0.9630	0.9720	54
1	0.9615	0.9091	0.9346	55
2	0.9815	1.0000	0.9907	53
3	1.0000	0.9455	0.9720	55
4	0.9107	0.9444	0.9273	54
5	0.9636	0.9636	0.9636	55
6	0.9636	0.9815	0.9725	54
7	0.9153	1.0000	0.9558	54
8	0.8868	0.9038	0.8952	52
9	0.8824	0.8333	0.8571	54
accuracy			0.9444	540
macro avg	0.9447	0.9444	0.9441	540
weighted avg	0.9450	0.9444	0.9442	540

Relatório de Classificação — digits — $\mathrm{relu}_{-}(50,5)_{-}\mathrm{lr}0.001$

	precision	recall	f1-score	support
	4 0000	0 0045	0 0007	E 4
0	1.0000	0.9815	0.9907	54
1	0.8852	0.9818	0.9310	55
2	0.9464	1.0000	0.9725	53
3	0.9815	0.9636	0.9725	55
4	0.9623	0.9444	0.9533	54
5	0.9643	0.9818	0.9730	55
6	0.9811	0.9630	0.9720	54
7	0.9138	0.9815	0.9464	54
8	1.0000	0.8269	0.9053	52
9	0.9623	0.9444	0.9533	54
accuracy			0.9574	540
macro avg	0.9597	0.9569	0.9570	540
weighted avg	0.9595	0.9574	0.9572	540

Relatório de Classificação — digits — ${\rm relu_(10,10)_lr0.01}$

				-
	precision	recall	f1-score	support
0	1.0000	0.9630	0.9811	54
1	0.9259	0.9091	0.9174	55
2	0.9273	0.9623	0.9444	53
3	0.9811	0.9455	0.9630	55
4	0.9286	0.9630	0.9455	54
5	0.9636	0.9636	0.9636	55
6	0.9818	1.0000	0.9908	54
7	0.9643	1.0000	0.9818	54
8	0.9000	0.8654	0.8824	52
9	0.9259	0.9259	0.9259	54
accuracy			0.9500	540
macro avg	0.9499	0.9498	0.9496	540
weighted avg	0.9501	0.9500	0.9498	540

Relatório de Classificação — digits — $\tanh_{10,10} \ln 0.001$

support	f1-score	recall	precision	
54	0.9623	0.9444	0.9808	0
55	0.9369	0.9455	0.9286	1
53	0.9714	0.9623	0.9808	2
55	0.9636	0.9636	0.9636	3
54	0.8991	0.9074	0.8909	4
55	0.9730	0.9818	0.9643	5
54	0.9725	0.9815	0.9636	6

7	0.9298	0.9815	0.9550	54
8	0.9565	0.8462	0.8980	52
9	0.8929	0.9259	0.9091	54
accuracy			0.9444	540
macro avg	0.9452	0.9440	0.9441	540
weighted avg	0.9451	0.9444	0.9443	540

Relatório de Classificação — digits — logistic_(10,10)_lr0.001

	precision	recall	f1-score	support
0	0.9630	0.9630	0.9630	54
1	0.8197	0.9091	0.8621	55
2	0.9574	0.8491	0.9000	53
3	0.9464	0.9636	0.9550	55
4	0.8644	0.9444	0.9027	54
5	0.9464	0.9636	0.9550	55
6	0.9615	0.9259	0.9434	54
7	0.8966	0.9630	0.9286	54
8	0.8696	0.7692	0.8163	52
9	0.9020	0.8519	0.8762	54
accuracy			0.9111	540
macro avg	0.9127	0.9103	0.9102	540
weighted avg	0.9127	0.9111	0.9107	540