EE510, Sp. 2020, GPP MIDTERM II Thursday, April 9th 2020

MA	ME.
IVA	WE:

USC ID:

SCORE

Problem / Answer	Case (i)	Case (ii)	Case (iii)	Case (iv)	Case (v)	Case (vi)	Case (vii)
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							

NOTE: ALL PROBLEMS HAVE THE SAME VALUE AND ADD UP TO A TOTAL OF 20pts

Problem 1:

Given a 3x3 matrix A, the exp(At) may contain all of the following terms:

- (i) e^{-t} , e^{-2t} , t^2e^{-t}
- (ii) t, t^2, t^3
- (iii) e^t , e^{2t} , e^{3t} , e^{-t}
- (iv) e^t , e^{-t} , $t e^t$, 1
- (v) e^t , e^{-t} , te^t
- (vi) e^t , e^{-t} , t
- (vii) none of the above.

Problem 2:

A 3x3 matrix A is equal to $A=U\begin{bmatrix}1&\sqrt{2}&0\\2&2\sqrt{2}&0\\0&0&2\end{bmatrix}$ U', UU'=I. (U' means transpose of U). Its singular values are:

- (i) $\sqrt{2}$, $\sqrt{2}$, 2
- (ii) 1, $\sqrt{2}$, 2
- (iii) 1, $\sqrt{2}$, $2 + \sqrt{2}$
- (iv) 1, 1, $\sqrt{2}$
- (v) 1, 2, 2
- (vi) 1, $\sqrt{2}$, $\sqrt{2}$
- (vii) none of the above

Problem 3:

The singular values of $A = \begin{bmatrix} 5/2 & 3/2 \\ 3/2 & -3/2 \end{bmatrix}$ are:

- (i) (3,2)
- (ii) (5/2, 3/2)
- (iii) (1, 3/2)
- (iv) (5/2, 3)
- (v) (1, 1.5)
- (vi) (5/2, -3/2)
- (vii) none of the above.

Problem 4:

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} , B = \begin{bmatrix} 5 & 4 & 3 \\ 4 & 3 & 1 \\ 3 & 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

Which of the following is true ("p.d." stands for positive definite):

- (i) A is p.d., B is p.d., C is p.d.
- (ii) A is not p.d., B is p.d., C is p.d.
- (iii) A is p.d., B is not p.d., C is p.d.
- (iv) A is p.d., B is p.d., C is not p.d.
- (v) A is not p.d., B is not p.d., C is not p.d.
- (vi) A is p.d., B is not p.d., C is not p.d.
- (vii) none of the above.

Problem 5:

A is an nxn matrix. (A' means transpose of A). Which of the following is always correct:

(i)
$$A e^{A.0} = 0$$

(ii)
$$A' e^{At} = e^{At} A'$$

(iii)
$$e^{At} e^{A't} = e^{(A+A')t}$$

(iv)
$$e^A e^{A'} = e^{A \cdot A'}$$

$$(v) e^A e^{A^2} = e^{A+A^2}$$

(vi)
$$e^A e^{A^2} = e^{A^3}$$

(vii) none of the above.

Problem 6:

A, B are symmetric positive definite matrices. Which of the following is not necessarily correct:

(i)
$$A+B$$
 is $p.d$.

(ii)
$$A+B^2$$
 is p.d.

(iv)
$$(A+B)$$
 $(A+B)$ is p.d.

(v)
$$e^A$$
 is p.d.

(vi)
$$AB + BA$$
 is $p.d$.

(vii) none of the above.

Problem 7:

$$\dot{x} = Ax$$
, $A \text{ is } 3x3$, $x(o) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $A = U \begin{bmatrix} -2 & 3 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} U'$, ($U' \text{ means transpose } U$) and

$$U = \begin{bmatrix} 1/\sqrt{3} & 2/\sqrt{8} & 1/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & -2/\sqrt{8} & 1/\sqrt{6} \end{bmatrix}. \text{ As } t \to \infty \quad x(t) \text{ goes to:}$$

$$(i) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} (1/3)$$

$$(ii) \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} (1/3)$$

$$(iii)\begin{bmatrix} 1\\2\\1 \end{bmatrix}(1/3)$$

$$(iv) \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} (1/3)$$

$$(v) \quad \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} (1/3)$$

$$(vi) \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} (1/3)$$

(vii) none of the above.

Problem 8:

$$A = \begin{bmatrix} 1 & b + 1/2 \\ b - 1/2 & 2 \end{bmatrix}$$

The Jacobi method for solving Ax=c converges to the solution for "b" equal to:

(i) -3

- (iv) 1.5
- (v) 1.15
- (vi) 2.3
- (vii) none of the above.

Problem 9:

$$A = \begin{bmatrix} 1 & \sqrt{5} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

 $\|A\| = \max_{\|x\| \neq 0} \frac{\|A\|}{\|x\|}$, we use the norm: $\|y_1\| = \sqrt{{y_1}^2 + {y_2}^2}$) The norm of A is:

- (i) 1
- (ii) 2
- (iii) 5/2
- (iv) 5
- (v) $5+\sqrt{5}$
- (vi) $\sqrt{5}$
- (vii) none of the above.

Problem 10:

- A, B are nxn matrices, are diagonalizable and have the same eigenvectors. (A' and B', are the transposes of A and B). Which one is not true:
- (i) A (B+3 I) = (B + 3 I) A
- (ii) $A(B+B^2) = (B+B^2) A$

(iii)
$$A e^B = e^B A$$

(iv)
$$A'B' = B'A'$$

(v)
$$A'B = B'A$$

$$(vi) A (B - A) + (A - B) A = 0$$

(vii) none of the above.

Problem 11:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

 $A^3 = \alpha_1 A + \alpha_2 I$. The (α_1, α_2) pair is equal to:

(i) (4,3)

(ii) (11, 27)

(iii) (27, 10)

(iv) (4, -2)

(v) (16, 4)

(vi) (4, 16)

(vii) none of the above.

Problem 12:

$$A = \begin{bmatrix} 3 & -1 & 3b \\ -1 & 3 & -1 \\ 3b & -1 & 3 \end{bmatrix}$$

For what numbers "b" is the A matrix positive definite?

(i) 3

- (ii) -4/3
- (iii) 6
- (iv) 1/2
- (v) -3
- (vi) 9
- (vii) none of the above

Problem 13:

The Gauss-Seidel method will converge to the solution of Ax=b, for A equal to:

$$AI = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $A2 = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, $A3 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$, $A4 = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$, $A5 = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$, $A6 = \begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$

- (i) A1
- (ii) A2
- (iii) A3
- (iv) A4
- (v) A5
- (vi) A6
- (vii) none of the above.

•