Prunable Authenticated Log and Authenticable Snapshot in Distributed Collaborative Systems

Victorien Elvinger

October 2018

Supervised by Gérald Oster and François Charoy

• participants issue **operations** to update a shared document

• participants issue **operations** to update a shared document

- participants issue **operations** to update a shared document
- participants have their own copy of co-authored data

- participants issue **operations** to update a shared document
- participants have their own copy of co-authored data
 - always-available
 - continuously diverge then converge from others

- participants issue **operations** to update a shared document
- participants have their own copy of co-authored data
 - always-available
 - continuously diverge then converge from others

- participants issue **operations** to update a shared document
- participants have their own copy of co-authored data
 - always-available
 - continuously diverge then converge from others
 - convergence as a liveness property

- Byzantine^[1] adversary
 - colluding malicious participants + network
 - can conceal divergences using equivocation
- unlimited exchanges between honest participants

^[1] Leslie Lamport et al. The Byzantine Generals Problem. *ACM Transactions on Programming Languages and Systems (TOPLAS)*, July 1982.

- Byzantine^[1] adversary
 - colluding malicious participants + network
 - can conceal divergences using equivocation
- unlimited exchanges between honest participants

^[1] Leslie Lamport et al. The Byzantine Generals Problem. *ACM Transactions on Programming Languages and Systems (TOPLAS)*, July 1982.

- Byzantine^[1] adversary
 - colluding malicious participants + network
 - can conceal divergences using equivocation
- unlimited exchanges between honest participants

^[1] Leslie Lamport et al. The Byzantine Generals Problem. *ACM Transactions on Programming Languages and Systems (TOPLAS)*, July 1982.

- Byzantine^[1] adversary
 - colluding malicious participants + network
 - can conceal divergences using equivocation
- unlimited exchanges between honest participants

^[1] Leslie Lamport et al. The Byzantine Generals Problem. *ACM Transactions on Programming Languages and Systems (TOPLAS)*, July 1982.

- Byzantine^[1] adversary
 - colluding malicious participants + network
 - can conceal divergences using equivocation
- unlimited exchanges between honest participants

^[1] Leslie Lamport et al. The Byzantine Generals Problem. *ACM Transactions on Programming Languages and Systems (TOPLAS)*, July 1982.

Authenticated logs

- misbehaviors are accountable
 - log entries are signed by their author
 - secured dependency tracking of operations thanks to hashes

Authenticated logs

- misbehaviors are accountable
 - log entries are signed by their author
 - secured dependency tracking of operations thanks to hashes
- strong convergence
 - convergent logs \implies convergent documents

 \bullet participants \boldsymbol{keep} the \boldsymbol{entire} \boldsymbol{log} for newcomers

 \bullet participants \boldsymbol{keep} the \boldsymbol{entire} \boldsymbol{log} for newcomers

- participants keep the entire log for newcomers
- newcomers verify and play the entire log

- participants keep the entire log for newcomers
- newcomers verify and play the entire log

How to reduce overheads of authenticated logs in dynamic groups?

• participants **prune their log**

• participants **prune their log**

- participants prune their log
- newcomers retrieve a document and its pruned log
 - 1. verify the **consistency** of the pruned log
 - 2. authenticate the document using the pruned log

- participants prune their log
- newcomers retrieve a document and its pruned log
 - 1. verify the **consistency** of the pruned log
 - 2. authenticate the document using the pruned log

How to prune a log without threatening convergence?

Pruning issue

- operations cannot be arbitrarily dropped
 - operations are required to verify a given operation
- concurrency plays an important role

Pruning issue

- operations cannot be arbitrarily dropped
 - operations are required to verify a given operation
- concurrency plays an important role

Stability

Definition

An operation is stable once it is no longer possible to accept a concurrent operation to it.

- primitive to define which operations can be dropped
 - stable part can be pruned
- necessity of limiting concurrencies

Consistency models and Causal consistency

Causal consistent log

Non causal consistent log

- logs respect a consistency model
 - how operations can be related
- Causal consistency
 - Participants **linearly order** their operations

Causal Stability^[2]

Definition

An operation is *causally stable* (cs) once all participants of the group have observed it.

^[2]Carlos Baquero et al. Making Operation-Based CRDTs Operation-Based. In Distributed Applications and Interoperable Systems - 14th IFIP WG 6.1 International Conference, DAIS 2014, Held as Part of the 9th International Federated Conference on Distributed Computing Techniques. Springer, 2014.

Limitations of Causal Stability

Issues

Limitations of Causal Stability

Issues

convergent logs do not imply convergent stability

Limitations of Causal Stability

Issues

- convergent logs do not imply convergent stability
- does not fit dynamic groups

Membership tracking

- Operations embed a list of the group members
- Dependencies of an operation must include its author

Contribution: Provable causal stability

Definition

An operation is provably causally stable (pcs) once all required observers have provably observed it.

required observers =

- + participants at the moment of generation
- + participants concurrently invited

Contribution: Provable causal stability

Definition

An operation is provably causally stable (pcs) once all required observers have provably observed it.

required observers =

- + participants at the moment of generation
- + participants concurrently invited

Contribution: Provable causal stability

Definition

An operation is provably causally stable (pcs) once all required observers have provably observed it.

required observers =

- + participants at the moment of generation
- + participants concurrently invited

Contribution: Provable causal stability

Definition

An operation is provably causally stable (pcs) once all required observers have provably observed it.

required observers =

- + participants at the moment of generation
- + participants concurrently invited

Malicious participants and causal consistency

- Malicious participants can issue non-linear operations
 - Causal consistency is not achievable

View-Fork-Join-Causal consistency^[3]

- honest participants linearly order their operations
- operations cannot directly depend on non-linear ones

^[3] Prince Mahajan et al. Consistency, Availability, and Convergence. Technical report TR-11-22, The University of Texas at Austin, 2011.

View-Fork-Join-Causal consistency^[3]

- honest participants linearly order their operations
- operations cannot directly depend on non-linear ones

^[3] Prince Mahajan et al. Consistency, Availability, and Convergence. Technical report TR-11-22, The University of Texas at Austin, 2011.

View-Fork-Join-Causal consistency^[3]

- honest participants linearly order their operations
- operations cannot directly depend on non-linear ones

^[3] Prince Mahajan et al. Consistency, Availability, and Convergence. Technical report TR-11-22, The University of Texas at Austin, 2011.

VFJC consistency

 impossibility of honestly accepting concurrent operations which are non-linear with a provably causally stable operation

Contribution: VFJC Stability

Definition

An operation is VFJC-stable (vfjcs) once all required observers have a provably causally stable operation which depends on.

ullet VFJC stability \Longrightarrow provable causal stability

Stability

Stability	CS	PCS	VFJCS	VFJCS
Consistency model				SVFJC
Group membership	Static	Dynamic	Static	Dynamic
environment	Honest	Honest	Malicious	Malicious

CS: Causal Stability

PCS: Provable Causal Stability

VFJC: View-Fork-Join-Causal

VFJCS: View-Fork-Join-Causal Stability

SVFJC: Stabilizable View-Fork-Join-Causal

Conclusions

Contributions

- adaptation of Causal Stability for dynamic groups
- definition of VFJC Stability
- Stabilizable View-Fork-Join-Causal (VFJC) (not covered here)
- document authentication based on a pruned log

Perspectives

- exploring sub-group log pruning
- VFJC Stability as building block of asynchronous Byzantine consensus

References

- Carlos Baquero et al. Making Operation-Based CRDTs Operation-Based.
 In Distributed Applications and Interoperable Systems 14th IFIP WG
 6.1 International Conference, DAIS 2014, Held as Part of the 9th
 International Federated Conference on Distributed Computing
 Techniques. Springer, 2014.
- [2] Prince Mahajan et al. Consistency, Availability, and Convergence.

 Technical report TR-11-22, The University of Texas at Austin, 2011.
- [3] Leslie Lamport et al. The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems (TOPLAS), July 1982.

How to authenticate an untrusted snapshot?

Overview of document authentication

- participants embed a document fingerprint in invitations
 - participants verify fingerprints
- **computed** fingerprint = **embedded** fingerprint
 - ⇒ document considered authentic
- a newcomer trusts a fingerprint verified by her trusted set